Graphs

Königsberg was a city in Germany in 18th century. There
was a river named Pregel that divided the city into four
distinct regions.

- Königsberg was a city in Germany in 18th century. There
 was a river named Pregel that divided the city into four
 distinct regions.
- There was a natural question for the people of Königberg:

'Is it possible to take a walk around the city that crosses each bridge exaactly once?'

 The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.

- The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.
- Euler represented four distinct lands with four points (or nodes), and seven bridges with seven lines connecting those points.

- The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.
- Euler represented four distinct lands with four points (or nodes), and seven bridges with seven lines connecting those points.

'Can you find a path that includes every edge exactly once?'
'Is the given graph traversable?'

$$G = (V, E)$$

$$G = (V, E)$$

set of nodes (or vertices) set of edges (or arc)

$$G = (V, E)$$

set of nodes (or vertices) set of edges (or arc)

$$G = (V, E)$$

set of nodes (or vertices)

•
$$V = \{1, 2, 3, 4, 5\}$$

$$G = (V, E)$$

set of nodes (or vertices)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$

$$G = (V, E)$$

set of nodes (or vertices)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$
 $(1,2) \in E$

$$G = (V, E)$$

set of nodes (or vertices)

set of edges (or arc)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$
 $(1,2) \in E$

starting node

ending node

$$G = (V, E)$$

set of nodes (or vertices)

set of edges (or arc)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$
 $(1,2) \in E$

starting node ending node

•
$$E = \{(1,2), (2,4), (4,3), (1,4), (3,5)$$

(2,1), (4,2), (3,4), (4,1), (5,3)}

$$G = (V, E)$$

set of nodes (or vertices)

set of edges (or arc)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$
 $(1,2) \in E$

starting node ending node

•
$$E = \{(1,2), (2,4), (4,3), (1,4), (3,5)$$

(2,1), (4,2), (3,4), (4,1), (5,3)}

• If $(1,2) \in E$, 1 and 2 are adjacent vertices.

$$G = (V, E)$$

set of nodes (or vertices)

set of edges (or arc)

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E \subseteq V \times V$$
 $(1,2) \in E$

starting node ending node

•
$$E = \{(1,2), (2,4), (4,3), (1,4), (3,5)$$

(2,1), (4,2), (3,4), (4,1), (5,3)}

- If $(1,2) \in E$, 1 and 2 are adjacent vertices.
- $adj(4) = \{1, 2, 3\}$

$$G = (V, E)$$

set of nodes (or vertices) set of edges (or arc)

undirected graph

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

directed graph

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

directed graph

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

directed graph

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

set of edges (or arc)

directed graph

 $deg^{in}(v) = \# of incoming edges$ $deg^{out}(v) = \# of outgoing edges$

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

set of edges (or arc)

directed graph

 $deg^{in}(v) = # of incoming edges$ $deg^{out}(v) = # of outgoing edges$

$$deg^{in}(5) = 1$$

 $deg^{out}(4) = 2$

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

$$\Sigma$$
 deg(v) = 2 IEI

set of edges (or arc)

directed graph

 $deg^{in}(v) = \# of incoming edges$ $deg^{out}(v) = \# of outgoing edges$

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

$$\Sigma$$
 deg(v) = 2 IEI

set of edges (or arc)

directed graph

 $deg^{in}(v) = # of incoming edges$ $deg^{out}(v) = # of outgoing edges$

$$\sum deg^{in}(v) = \sum deg^{out}(v) = IEI$$

$$G = (V, E)$$

set of nodes (or vertices)

undirected graph

deg(v)= # of edges at that vertex

$$\Sigma$$
 deg(v) = 2 IEI

- a vertex v is called odd vertex if deg(v) is odd
- a vertex v is called even vertex if deg(v) is even

set of edges (or arc)

directed graph

 $deg^{in}(v) = # of incoming edges$ $deg^{out}(v) = # of outgoing edges$

$$\sum deg^{in}(v) = \sum deg^{out}(v) = IEI$$

Complete Graphs

Complete Graphs

Cycle Graphs

• a subgraph of a graph G = (V, E) is a graph H = (W, F) such that $W \subseteq V$ and $F \subseteq E$.

• $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, then $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$

• a subgraph of a graph G = (V, E) is a graph H = (W, F) such that $W \subseteq V$ and $F \subseteq E$.

• $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, then $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$

Graph Theory

• a subgraph of a graph G = (V, E) is a graph H = (W, F) such that $W \subseteq V$ and $F \subseteq E$.

• $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, then $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$

Adjacency List

Adjacency List

1 - 2,4

2 - 1,4

3 - 4

4 - 1,2,3

Adjacency Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	1
3	0	0	0	1
4	1	1	1	0

Adjacency List

1 - 3

2 -

3 - 4

4 - 1,2

Adjacency Matrix

		•			
	1	2	3	4	
1	0	0	3 1 0 0	0	•
2	0	0	0	0	
3	0	0	0	1	
4	1	1	0	0	

Adjacency List Adjacency Matrix

 retrieving all neighbors of a given node u Adjacency List Adjacency Matrix

O(deg(u)) O(IVI)

Adiasansılist

		Adjacency List	Adjacency Matrix
•	retrieving all neighbors of a given node u	O(deg(u))	O(IVI)
•	given nodes u and v, checking if u and v are adjacent	O(deg(u))	O(1)

	Adjacency List	Adjacency Matrix
 retrieving all neighbors of a given node u 	a O(deg(u))	O(IVI)
 given nodes u and v, checking if u and v are adjacent 	ng O(deg(u))	O(1)
• space	O(IEI+IVI)	$O(V ^2)$

		Adjacency List	Adjacency Matrix
•	retrieving all neighbors of a given node u	O(deg(u))	O(IVI)
•	given nodes u and v, checking if u and v are adjacent	O(deg(u))	O(1)
•	space	O(IEI+IVI)	$O(V ^2)$

If graph is sparse, use adjacency list; if graph is dense, use adjacency matrix

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and f are adjacent in f if and only if f and f and f are adjacent in f for all f and f if f and f if f and f if f and f if f if f if f and f if f if

• Two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and f are adjacent in f if and only if f and f and f are adjacent in f for all f and f if f and f if f and f if f and f and f if f and f and f if f if f and f if f if f and f if f

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 for all $a,b\in V_1$

• $f: V_1 \to V_2$, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and f are adjacent in f if and only if f and f and f are adjacent in f for all f and f if and only if f are adjacent in f for all f and f if and only if f are adjacent in f for all f and f if f are adjacent in f for all f and f if f are adjacent in f for all f and f if f are adjacent in f for all f and f if f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f and f are adjacent in f for all f for all f and f and f are adjacent in f for all f f

• $f: V_1 \to V_2$, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

a and c are adjacent in G_1 , f(a) = 1 and f(c) = 3 are adjacent in G_2

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and f are adjacent in f if and only if f and f and f are adjacent in f for all f and f if f and f are f and f if f and f and f and f are adjacent in f and f and f are adjacent in f and f a

• $f: V_1 \to V_2$, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

a and c are adjacent in G_1 , f(a) = 1 and f(c) = 3 are adjacent in G_2 a and d are adjacent in G_1 , f(a) = 1 and f(d) = 2 are adjacent in G_2

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and f are adjacent in f if and only if f and f and f are adjacent in f for all f and f if and only if f are adjacent in f for all f and f if f and f if f and f if f if

• $f: V_1 \to V_2$, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

a and c are adjacent in G_1 , f(a) = 1 and f(c) = 3 are adjacent in G_2 a and d are adjacent in G_1 , f(a) = 1 and f(d) = 2 are adjacent in G_2 b and d are adjacent in G_1 , f(b) = 4 and f(d) = 2 are adjacent in G_2

• Two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection f from V_1 to V_2 such that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 for all

$$A_{G_1} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad A_{G_2} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$G_1 = (V_1, E_1) \qquad G_2 = (V_2, E_2)$$

• $f: V_1 \to V_2$, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

a and c are adjacent in G_1 , f(a) = 1 and f(c) = 3 are adjacent in G_2 a and d are adjacent in G_1 , f(a) = 1 and f(d) = 2 are adjacent in G_2 b and d are adjacent in G_1 , f(b) = 4 and f(d) = 2 are adjacent in G_2

• Isomorphic graphs must have same number of edges

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

• G and H both have 5 vertices and 6 edges

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 5 vertices and 6 edges
- · G has 3 vertices of degree two and 2 vertices of degree three

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 5 vertices and 6 edges
- G has 3 vertices of degree two and 2 vertices of degree three H has 1 vertex of degree one, 2 vertices of degree two, 1 vertex of degree three, and 1 vertex of degree 4

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

• G and H both have 8 vertices and 10 edges

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 8 vertices and 10 edges
- G has 4 vertices of degree two and 4 vertices of degree three

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 8 vertices and 10 edges
- G has 4 vertices of degree two and 4 vertices of degree three
 H has 4 vertices of degree two and 4 vertices of degree three

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 8 vertices and 10 edges
- G has 4 vertices of degree two and 4 vertices of degree three
 H has 4 vertices of degree two and 4 vertices of degree three
- One of the odd vertices (s) in H has 2 adjacent odd vertices (w and x)
 We don't have such case in G

• a path in a graph is a sequence of nodes $v_1, v_2, ..., v_k$ such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct

• a path in a graph is a sequence of nodes $v_1, v_2, ..., v_k$ such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct

- a path in a graph is a sequence of nodes v_1 , v_2 , ..., v_k such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes

- a path in a graph is a sequence of nodes $v_1, v_2, ..., v_k$ such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path v_1 , v_2 , ..., v_k such that $v_1 = v_k$. A cycle is simple if first k-1 nodes are distinct

4, 1, 2, 4 is a simple cycle in G

- a path in a graph is a sequence of nodes v_1 , v_2 , ..., v_k such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path v_1 , v_2 , ..., v_k such that $v_1 = v_k$. A cycle is simple if first k-1 nodes are distinct

- a path in a graph is a sequence of nodes $v_1, v_2, ..., v_k$ such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path v_1 , v_2 , ..., v_k such that $v_1 = v_k$. A cycle is simple if first k-1 nodes are distinct
- length of a path is the number of edges in the path

4, 1, 2, 4 is a simple cycle with length 3 $\frac{6}{2}$

- a path in a graph is a sequence of nodes $v_1, v_2, ..., v_k$ such that (v_i, v_j) is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path v_1 , v_2 , ..., v_k such that $v_1 = v_k$. A cycle is simple if first k-1 nodes are distinct
- length of a path is the number of edges in the path

• Given G = (V, E) and $H \subseteq G$, if there is no proper subgraph U of G ($U \subseteq G$) such that $H \subseteq U$, H is called a maximal subgraph of G.

- Given G = (V, E) and $H \subseteq G$, if there is no proper subgraph U of G ($U \subseteq G$) such that $H \subseteq U$, H is called a maximal subgraph of G.
- a connected component is a maximal subgraph where there is a path between any two nodes of it

- Given G = (V, E) and $H \subseteq G$, if there is no proper subgraph U of G ($U \subseteq G$) such that $H \subseteq U$, H is called a maximal subgraph of G.
- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components

- Given G = (V, E) and $H \subseteq G$, if there is no proper subgraph U of G ($U \subseteq G$) such that $H \subseteq U$, H is called a maximal subgraph of G.
- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components

• Consider a vertex v of a given graph G=(V,E), if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)

- Consider a vertex v of a given graph G=(V,E), if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)
- Similarly, if removing an edge from a graph creates a subgraph with more connected components, it's called cut edge

- Consider a vertex v of a given graph G=(V,E), if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)
- Similarly, if removing an edge from a graph creates a subgraph with more connected components, it's called cut edge

- Consider a vertex v of a given graph G=(V,E), if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)
- Similarly, if removing an edge from a graph creates a subgraph with more connected components, it's called cut edge

cut vertices : {b, c, f} cut edges : {(b, f), (c, b)}

- Consider a vertex v of a given graph G=(V,E), if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)
- Similarly, if removing an edge from a graph creates a subgraph with more connected components, it's called cut edge

cut vertices : {b, c, f} cut edges : {(b, f), (c, b)}

cut vertices : {c}
cut edges : { }

• A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G - W is disconnected

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

vertex cut: {b, c} or {f, e}

edge cut: $\{(b, f), (c, e)\}$ or $\{(a, c), (a, b)\}$

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

vertex cut: {b, c} or {f, e} edge cut: {(b, f), (c, e)} or {(a, c), (a, b)}

vertex cut: {c}
edge cut: {(d, c), (c, e)}

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

vertex cut: {b, c} or {f, e} edge cut: {(b, f), (c, e)} or {(a, c), (a, b)} no cut vertex and no cut edge

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set, if G W is disconnected
- Similarly, a subset F of the edge set E of G=(V,E) is called a edge cut, if G F is disconnected

vertex cut: {b, c} or {f, e} edge cut: {(b, f), (c, e)} or {(a, c), (a, b)} no cut vertex and no cut edge

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or senarating set if G W is disconnected
- Simi $\kappa(G)$: minimum number of vertices in a vertex cut $\lambda(G)$: minimum number of edges in a edge cut

edge

vertex cut: {b, c} or {f, e} edge cut: {(b, f), (c, e)} or {(a, c), (a, b)} no cut vertex and no cut edge

• A subset W of the vertex set V of G = (V, E) is called a vertex cut or senarating set if G - W is disconnected

• Simi $\kappa(G)$: minimum number of vertices in a vertex cut $\lambda(G)$: minimum number of edges in a edge cut

edge

vertex cut: {b, c} or {f, e} $\frac{\lambda(G) = 2}{\text{edge cut: } \{(b, f), (c, e)\} \text{ or } \{(a, c), (a, b)\}}$ no cut vertex and no cut edge

- A subset W of the vertex set V of G = (V, E) is called a vertex cut or senarating set if G W is disconnected
- Simi $\kappa(G)$: minimum number of vertices in a vertex cut $\lambda(G)$: minimum number of edges in a edge cut

 $G = \frac{1}{c} \int_{C}^{b} \int_{C}^{c} \frac{f}{dx} dx$ where f is f in f and f is f and f is f and f is f and f in f and f in f in f and f in f

vertex cut: {b, c} or {f, e}
edge cut: {(b, f), (c, e)} or {(a, c), (a, b)}
no cut vertex and no cut edge

edge

• A subset W of the vertex set V of G = (V, E) is called a vertex cut or separating set if G - W is disconnected

edge

, e)}

• Simi $\kappa(G)$: minimum number of vertices in a vertex cut $\lambda(G)$: minimum number of edges in a edge cut

vertex cut: $\{b, c\}$ or $\{f, e\}$

no cut vertex and no cu

edge cut: {(b, f), (c, e)} or {(a, c), (a, b)}

 $\kappa(G) \le \lambda(G) \le \min_{v \in V} \deg(v)$

vertex cut: {c}

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

G and H both have 6 vertices and 8 edges

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- G and H both have 6 vertices and 8 edges
- G has 2 vertices of degree two and 4 vertices of degree three

<u>Isomorphism</u>

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- G and H both have 6 vertices and 8 edges
- G has 2 vertices of degree two and 4 vertices of degree three
 H has 2 vertices of degree two and 4 vertices of degree three

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- G and H both have 6 vertices and 8 edges
- G has 2 vertices of degree two and 4 vertices of degree three
 H has 2 vertices of degree two and 4 vertices of degree three
- G has two simple circuits of length three; however, H has no simple circuit of length three

How many paths of length two from a to c?

How many paths of length two from a to c?

a, b, c or a, d, c

How many paths of length two from a to c?

• For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G=(V,E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_i will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_i will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G=(V,E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

For
$$k + 1$$
, $A^{k+1} = A^k$. A

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_i (true)

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_i will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$c_{ij} = b_{i1}. a_{1j} + b_{i2}. a_{2j} + \ldots + b_{in}. a_{nj}$$

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G=(V,E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$c_{ij} = b_{i1}. a_{1j} + b_{i2}. a_{2j} + \dots + b_{in}. a_{nj}$$

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_i will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$c_{ij} = b_{i1}. a_{1j} + b_{i2}. a_{2j} + \dots + b_{in}. a_{nj}$$

Connectivity

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G=(V,E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

Inductive Step Assume it's true for k, i.e. the number of different paths of length k from v_i to v_j will be the (i, j)-th entry of A^k . v_u

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$c_{ij} = b_{i1}. a_{1j} + b_{i2}. a_{2j} + \dots + b_{in}. a_{nj}$$

Connectivity

How many paths of length two from a to c?

- For a given graph G = (V, E), what are the number of different paths of length k from one vertex to another one?
- Given a graph G = (V, E) together with the adjacency matrix A, the number of different paths of length m from v_i to v_j will be the (i, j)-th entry of A^m

Basis Step (k = 1) For $A = (a_{ij})$, a_{ij} will be the number of different path of length 1 from v_i to v_j (true)

Inductive Step Assume it's true for k, i.e. the number of different paths of length k from v_i to v_j will be the (i, j)-th entry of A^k . v_u

For
$$k + 1$$
, $A^{k+1} = A^k$. A

$$A^{k+1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$c_{ij} = b_{i1}. a_{1j} + b_{i2}. a_{2j} + \dots + b_{in}. a_{nj}$$

 c_{ij} : the number of different paths of length (k+1) from v_i to v_j

• Euler circuit is a simple circuit that contains every edge of G.

- Euler circuit is a simple circuit that contains every edge of G.
- Euler path is a simple path that contains every edge of G

- Euler circuit is a simple circuit that contains every edge of G.
- Euler path is a simple path that contains every edge of G
- Does this graph have an Euler path or Euler circuit?

when you pass a vertex, you add two to the degree of it.

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number
- the graph has a Euler path or Euler circuit if if it has no odd vertex or exactly two odd vertices.

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number
- the graph has a Euler path or Euler circuit if if it has no odd vertex or exactly two odd vertices.

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number
- the graph has a Euler path or Euler circuit if if it has no odd vertex or exactly two odd vertices.

F-B-A-C-B-D-F-E-D-C-E

F-B-D-E-G-C-E-F-D-C-A-B-C

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

Does G contain a Hamilton path or circuit?

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

Does G contain a Hamilton path or circuit?

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

Does G contain a Hamilton path or circuit?

 There is no easy way to determine a given graph has a Hamilton circuit or Hamilton path

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

Does G contain a Hamilton path or circuit?

no Hamilton circuit

 There is no easy way to determine a given graph has a Hamilton circuit or Hamilton path

a graph with a vertex of degree one cannot have a Hamilton circuit

<u>SSSP</u>

<u>SSSP</u>

<u>SSSP</u>

 given a weighted graph G=(V,E) and a source vertex s in V, find the shortest path from s to every other vertex in V

Three cases:

- given a weighted graph G=(V,E) and a source vertex s in V, find the shortest path from s to every other vertex in V
- Three cases:
 - the weight of each edge fixed as 1
 --BFS--

- given a weighted graph G=(V,E) and a source vertex s in V, find the shortest path from s to every other vertex in V
- Three cases:
 - the weight of each edge fixed as 1
 --BFS--
 - the weight of each edge non-negative
 --Dijkstra—

- given a weighted graph G=(V,E) and a source vertex s in V, find the shortest path from s to every other vertex in V
- Three cases:
 - the weight of each edge fixed as 1
 --BFS--
 - the weight of each edge non-negative
 --Dijkstra—
 - the weight of each can be negative
 --Belmann/Ford--

Relaxation

• For each vertex v in V, initialize two parameters:

Relaxation

- For each vertex v in V, initialize two parameters:
 - parent pointer indicates the predecessor of the vertex in the shortest path from s to v

- For each vertex v in V, initialize two parameters:
 - parent pointer indicates the predecessor of the vertex in the shortest path from s to v
 - distance indicates the shortest-path estimate from vertex to the source

- For each vertex v in V, initialize two parameters:
 - parent pointer indicates the predecessor of the vertex in the shortest path from s to v
 - distance indicates the shortest-path estimate from vertex to the source

Initialize (G, s)

```
for each vertex v i V
v.dis = ∞
v.par = nil
s.dis = 0
```

 relaxing an edge (u,v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

 relaxing an edge (u,v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

```
if v.dis > u.dis + w(u,v)
    v.dis = u.dis + w(u,v)
    v.par = u
```

 relaxing an edge (u,v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

```
if v.dis > u.dis + w(u,v)
    v.dis = u.dis + w(u,v)
    v.par = u
```


 relaxing an edge (u,v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

```
if v.dis > u.dis + w(u,v)
    v.dis = u.dis + w(u,v)
    v.par = u
```


 relaxing an edge (u,v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

• Let $\delta(s,v)$ be the weight of the shortest path from source to the vertex v (after the termination of the program)

- Let $\delta(s,v)$ be the weight of the shortest path from source to the vertex v (after the termination of the program)
- For any edge (u,v) in E,

$$\delta(s,v) \leq \delta(s,u) + w(u,v)$$

- Let $\delta(s,v)$ be the weight of the shortest path from source to the vertex v (after the termination of the program)
- For any edge (u,v) in E,

$$\delta(s,v) \leq \delta(s,u) + w(u,v)$$

• For all vertices v in V,

v.dis
$$\geq \delta(s,v)$$

- Let $\delta(s,v)$ be the weight of the shortest path from source to the vertex v (after the termination of the program)
- For any edge (u,v) in E,

$$\delta(s,v) \leq \delta(s,u) + w(u,v)$$

• For all vertices v in V,

v.dis
$$\geq \delta(s,v)$$

If there is no path from s to v, then

v.dis =
$$\delta(s,v) = \infty$$

Dijkstra's Algorithm

<u>Dijkstra(G,s)</u>

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```

```
for each u of V
                            Initialize(G,s)
    u.key = \infty
                                O(|V|)
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```

```
for each u of V
                            Initialize(G,s)
    u.key = \infty
                               O(IVI)
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```

<u>Dijkstra(G,s)</u>

```
for each u of V
                            Initialize(G,s)
    u.key = \infty
                                O(|V|)
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
                                             O(IVI.logIVI)
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```

<u>Dijkstra(G,s)</u>

```
for each u of V
                               Initialize(G,s)
       u.key = \infty
                                   O(|V|)
       u.par = nil
  s.key = 0
   initialize an empty set S
   create a minimum priority Q on V
  while Q \neq \{\}
                                                 O(IVI.logIVI)
       u = ExtractMin(Q)
       S = S \cup \{u\}
       for each v of Adj(u)
           if v.dis > u.dis + w(u,v)
               v.dis = u.dis + w(u,v)
               v.par = u
            update Q
Relax(u,v)
  O(1)
```

```
for each u of V
                               Initialize(G,s)
       u.key = \infty
                                   O(IVI)
       u.par = nil
  s.key = 0
   initialize an empty set S
   create a minimum priority Q on V
   while Q \neq \{\}
                                                 O(IVI.logIVI)
       u = ExtractMin(Q)
       S = S \cup \{u\}
       for each v of Adj(u)
           if v.dis > u.dis + w(u,v)
                                             O(IEI.logIVI)
               v.dis = u.dis + w(u,v)
               v.par = u
            update Q
Relax(u,v)
  O(1)
```

Dijkstra's Algorithm

<u>Dijkstra(G,s)</u>

```
for each u of V
    u.key = ∞
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
           v.dis = u.dis + w(u,v)
           v.par = u
         update Q
```



```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$HFGEDCBA$$

 $S = \{\}$

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$FGEDCBA$$

 $S = \{H\}$

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$FGEDCBA$$

 $S = \{H\}$

Dijkstra's Algorithm

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$GEDCBA$$

 $S = \{H,F\}$

Dijkstra's Algorithm

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$GEDCBA$$

 $S = \{H,F\}$

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$EDCBA$$

 $S = \{H,F,G\}$

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```


$$EDCBA$$

 $S = \{H,F,G\}$

Dijkstra's Algorithm

```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```



```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```



```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```



```
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```



```
Dijkstra(G,s)
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
           v.dis = u.dis + w(u,v)
           v.par = u
         update Q
```


Dijkstra's Algorithm

```
Dijkstra(G,s)
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
           v.dis = u.dis + w(u,v)
           v.par = u
         update Q
```



```
Dijkstra(G,s)
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q \neq \{\}
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
            v.dis = u.dis + w(u,v)
            v.par = u
         update Q
```



```
Dijkstra(G,s)
for each u of V
    u.key = \infty
    u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }
    u = ExtractMin(Q)
    S = S \cup \{u\}
    for each v of Adj(u)
        if v.dis > u.dis + w(u,v)
           v.dis = u.dis + w(u,v)
           v.par = u
         update Q
```


 $S = \{H,F,G,E,C,D,B,A\}$

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (there is no edge (a,b) such that a and b are elements of same partition)

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (there is no edge (a,b) such that a and b are elements of same partition)

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (there is no edge (a,b) such that a and b are elements of same partition)

 K_5

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (there is no edge (a,b) such that a and b are elements of same partition)

Bipartite Graphs

• a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (there is no edge (a,b) such that a and b are elements of same partition)

• a graph G is called planar if it can be drawn in the plane without any edge crossing.

• a graph G is called planar if it can be drawn in the plane without any edge crossing.

 a graph G is called planar if it can be drawn in the plane without any edge crossing.

• a graph G is called planar if it can be drawn in the plane without any edge crossing.

 a graph G is called planar if it can be drawn in the plane without any edge crossing.

• a graph G is called planar if it can be drawn in the plane without any edge crossing.

a graph G is called planar if it can be drawn in the plane without any edge crossing.

 a graph G is called planar if it can be drawn in the plane without any edge crossing.

this drawing is called planar representation of the graph

Euler Formula: Let G be connected simple graph with e edges and v vertices. Let r be the number of region in a planar representation of G. Then,

$$r = e - v + 2$$

• $K_{3,3}$ cannot be drawn as planar graph

 a graph G is called planar if it can be drawn in the plane without any edge crossing.

this drawing is called planar representation of the graph

Euler Formula: Let G be connected simple graph with e edges and v vertices. Let r be the number of region in a planar representation of G. Then,

$$r = e - v + 2$$

• $K_{3,3}$ cannot be drawn as planar graph

 a graph G is called planar if it can be drawn in the plane without any edge crossing.

this drawing is called planar representation of the graph

Euler Formula: Let G be connected simple graph with e edges and v vertices. Let r be the number of region in a planar representation of G. Then,

$$r = e - v + 2$$

• $K_{3,3}$ cannot be drawn as planar graph

 K_5

 K_5

 K_5

 K_4

 K_4

 K_4

 K_4

 K_4

 K_4

 K_4

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4) = 4$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$C_5 \quad \chi(C_5) = 3$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4) = 4$$

$$C_5 \quad \chi(C_5) = 3$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$C_5 \quad \chi(C_5) = 3$$

$$\chi(G) = 3$$
 (chromatic number)

$$\chi(K_4)=4$$

$$C_5 \quad \chi(C_5) = 3$$

$$\zeta_6 \qquad \chi(C_6) = 2$$

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6, 3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6, 3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

	•
1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

	•
1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6, 3
Muslum	1, 2, 4	Nese	1, 6, 5

1	Mathematics
2	Chemistry
3	English
4	Intro. to Prog.
5	Algorithms
6	Data Structures

Orhan	1, 4	Esengul	2,5
Bergen	2, 3, 4	Ferdi	6,3
Muslum	1, 2, 4	Nese	1, 6, 5

