Problem Sheet For Analysis

MATHEMATICS SUMMER PROGRAM

June 12, 2024

For this tutorial sheet, we let (X, d) be a metric space.

§1 Basics of Metric-Topology

Problem 1.1

Let $A \subseteq X$. Then, prove that

$$\overline{(A^c)} = \operatorname{int}(A)^c$$
.

Problem 1.2

Is $\operatorname{int}(E) = \operatorname{int}(\overline{E})$ for all subsets $E \subseteq \mathbb{R}$? In the other direction, does $\overline{E} = \overline{\operatorname{int}(E)}$ hold for all subsets $E \subseteq \mathbb{R}$?

Problem 1.3

Let $A_1, A_2, \dots A_n$ be subsets of X. Then, prove that

$$\bigcup_{i=1}^{n} \overline{A_i} = \overline{\bigcup_{i=1}^{n} A_i}.$$

Show that

$$\bigcup_{i=1}^{\infty} \overline{A_i} \subseteq \bigcup_{i=1}^{\infty} A_i.$$

Also, show via an example that inclusion can be proper.

Problem 1.4

Let $A \subseteq X$ be nonempty and distance of $x \in X$ from A is defined as

$$dist(x, A) = \inf\{d(x, a) : a \in A\}.$$

Then, prove that $x \in \overline{A}$ if and only if dist(x, A) = 0.

§2 Completeness of Metric Spaces

Problem 2.1

Let $X=\mathbb{N}$ and $d(m,n)=\mid \frac{1}{m}-\frac{1}{n}\mid$. Show that (X,d) is incomplete.

Problem 2.2

Let $X = \mathbb{Z}$ and d(m, n) = |m - n|. Show that (X, d) is complete.

Problem 2.3

Let $X = \mathbb{R}$ and $d(x, y) = |\arctan(x) - \arctan(y)|$. Show that (X, d) is incomplete.

§3 Baire Category Theorem

Problem 3.1

Let (X, d) be a complete metric space, a countable collection $\{E_i\}$ of subsets of X and

$$X = \bigcup_{i=1}^{\infty} E_i.$$

Then, prove that there exists an m such that $\operatorname{int}(\overline{E_m}) \neq \emptyset$.

Definition 3.2

We say X to be a *Baire* if it satisfies the following condition: Given any countable collection $\{A_n\}$ of closed sets in X, each of which has an empty interior in X, their union $\bigcup A_n$ also has an empty interior in X.

Problem 3.3

Prove that \mathbb{Q} is not a Baire space while \mathbb{Z}_+ is.

Problem 3.4

Any open subspace of a Baire space is also a Baire space.