Module 1 Practice Quiz

Due No due datePoints 10Questions 10Available after Jan 10 at 11:59pmTime Limit NoneAllowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	6 minutes	9.33 out of 10
LATEST	Attempt 2	6 minutes	9.33 out of 10
	Attempt 1	less than 1 minute	2.33 out of 10

Submitted Mar 1 at 8:33pm

Question 1 1 / 1 pts

A propositional formula of signature σ is defined recursively as follows:

- Every atom is a formula
- Both 0-place connectives are formulas
- If F is a formula then ¬F is a formula
- For any binary connective \odot , if F and G are formulas then (F \odot G) is a formula

How many of the following strings are propositional formulas under the signature σ = {eat, a, b, c} according to the definition?

- (⊥∧⊤)
- eat
- a ∧ b ∨ c

- 0
- 3
- 1

Correct!

2

According to the signature, there are 4 atoms: eat, a, b, c. Since each atom is a formula (from bullet 1), at least "eat" is a formula.

Since both 0-place connectives (i.e., \top and \bot) are formulas (from bullet 2), and due to bullet 4, " $(\bot \land \top)$ " is a formula.

The last option "a \land b \lor c" is not a formula since, due to bullet 4, each time a binary connective is included, a pair of parentheses has to be also included.

Question 2

1 / 1 pts

Apply unit propagation on the formula $p \land (\neg p \lor \neg q) \land (\neg q \lor r) \land (q \lor \neg r)$ starting with an empty set U of literals. What are the resulting formulas F from the first three iterations?

$$\bigcirc$$
 F₁ = p \land ¬r, F₂ = p, F₃ = T

Correct!

$$F_1 = \neg q \land (\neg q \lor r) \land (q \lor \neg r), F_2 = \neg r, F_3 = T$$

The following table shows U_i and F_i for each iteration i.

Iteration i	Ui	Fi
0	{}	p ^ (¬p ∨ ¬q) ^ (¬q ∨ r) ^ (q ∨ ¬r)
1	{p}	¬q ^ (¬q ∨ r) ^ (q ∨ ¬r)
2	{p, ¬q}	¬r
3	{p, ¬q, ¬r}	Т

$$F_1 = p \land \neg r, F_2 = \neg r, F_3 = T$$

$$\bigcirc$$
 $F_1 = \neg q \land (\neg q \lor r) \land (q \lor \neg r), F_2 = \neg r \land r, F_3 = T$

Question 3 1 / 1 pts

Apply unit propagation on the formula $p \land (\neg p \lor \neg q) \land (\neg q \lor r) \land (q \lor \neg r)$ starting with an empty set U of literals. What are the resulting set U of literals from the first three iterations?

$$\bigcup U_1 = \{p\}, \ U_2 = \{p, \neg r\}, \ U_3 = \{p, q, \neg r\}$$

$$\cup$$
 U₁ = {p}, U₂ = {p, q}, U₃ = {p, ¬q, r}

$$\bigcup U_1 = \{p\}, \ U_2 = \{\neg q\}, \ U_3 = \{\neg r\}$$

Correct!

$$U_1 = \{p\}, \ U_2 = \{p, \neg q\}, \ U_3 = \{p, \neg q, \neg r\}$$

The following table shows U_i and F_i for each iteration i.

Iteration i	Ui	Fi
0	{}	p ^ (¬p ∨ ¬q) ^ (¬q ∨ r) ^ (q ∨ ¬r)
1	{p}	¬q ^ (¬q ∨ r) ^ (q ∨ ¬r)
2	{p, ¬q}	¬r
3	{p, ¬q, ¬r}	Т

Question 4

0.33 / 1 pts

Which of the following propositional formulas or set of propositional formulas are satisfiable? Choose all that apply.

orrect Answer

orrect Answer

Correct!

This is a set of 2 propositional formulas and it's satisfied by the interpretation I such that I(p)=false and I(q)=false.

Note that we can also simply write $I=\{\}$ (i.e., I is the empty set) to define interpretation I, which means "none of p or q is true".

Question 5

1 / 1 pts

Let F, G, H be propositional formulas. Which option is correct?

 $F \wedge (F \vee G) \wedge (\neg F \vee \neg G) \wedge (G \vee H) \wedge (\neg G \vee \neg H)$ is not satisfiable.

Correct!

 \bigcirc $F \lor (G \leftrightarrow H)$ is equivalent to $(F \lor G) \leftrightarrow (F \lor H)$

There are 8 interpretations if you consider the truth value of F, G, and H. For each interpretation I of the 8 interpretations, you can check that the left formula is satisfied by I iff the right formula is satisfied by I.

- \bigcirc { \bot } entails F iff F is a tautology.
- $\bigcirc \ \{F o G, G o H\}$ entails H o F

Question 6 1 / 1 pts

Is the following statement true or false?

For any formulas F and G, if $F \vee G$ is a tautology, then F is a tautology or G is a tautology.

True

Correct!

False

The statement is false since p $\lor \neg p$ is a tautology while neither p or $\neg p$ is a tautology.

Question 7 1 / 1 pts

Which kind of reasoning is used in the following example?

All cats are mammals, all mammals have kidneys; therefore all cats have kidneys.

- Model finding
- Default reasoning

Correct!

Deductive reasoning

This is deductive reasoning since we are deriving entailed facts from some given facts.

Abductive reasoning

Question 8

1 / 1 pts

Suppose p and q are atoms. Which option is correct?

- $\{p \lor q\}$ entails at least one of p or q.
- {} entails p.
- $\bigcirc \{p \lor q, \neg p \land \neg q\}$ is satisfiable.

Correct!

lacksquare $\{p o q, q, p o \neg q\}$ is satisfiable.

This is a set of 3 propositional formulas and it can be satisfied by the following interpretation.

$$I = \{q\}$$

(Note that the above writing is the same as saying I(p)=false, I(q)=true.)

Question 9 1 / 1 pts

Which interpretation I satisfies the propositional formula corresponding to the following parse tree?

- I(p)=f, I(q)=t, I(r)=t
- I(p)=f, I(q)=t, I(r)=f

Correct!

 \bigcirc I(p)=t, I(q)=t, I(r)=f

This is correct. You may consider the truth value of each node in the parse tree directly, or you may first turn the parse tree into a propositional formula and then check what are the interpretations that could satisfy it.

The propositional formula is $\neg(p \to ((q \lor r) \to r))$. To make it to be true, $p \to ((q \lor r) \to r)$ must be false. Thus

- p must be true, and
- $(q \lor r) \to r$ must be false.

Next.

- p must be true,
- $q \lor r$ must be true, and
- · r must be false.

Next,

- p must be true,
- · q must be true, and
- r must be false.
- I(p)=t, I(q)=f, I(r)=t

Question 10

1 / 1 pts

Determine which of the following formulas are tautologies. Choose all that apply.

Correct!

There are 2 atoms thus there are 2^2 interpretations. You can check that all of them satisfy ((p o q) o p) o p

Correct!

$$extstyle (p o (q o r)) o ((p o q) o (p o r))$$

There are 3 atoms thus there are $\mathbf{2^3}=\mathbf{8}$ interpretations. You can check that all of them satisfy

$$(p
ightarrow (q
ightarrow r))
ightarrow ((p
ightarrow q)
ightarrow (p
ightarrow r))$$
 .

Correct!

There are 2 atoms thus there are 2^2 interpretations. You can check that all of them satisfy $(p o q) \lor (q o p)$