

Engineering

Introduction to Machine Learning

1

Engineering

Machine Learning – Today and the Past

History of Al Turing Test Driving Forces

Driving Forces

Big Data

More data was created this year than in last **5,000** years (but only 0.5% was analyzed)

For example:

Engineering

5

Driving Forces

Big Data

More data was created this year than in last **5,000** years

(but only 0.5% was analyzed)

Computing

If every person on Earth completes one calculation per second, it would take 305 days to do what Summit can do in 1 second

Engineering

ML vs the Traditional Paradigm Taxonomies of ML

Steps in ML Project

7

Taxonomies of ML

Type of Data

- Supervised ML
 - · Learning by problems and solutions
 - Using labeled examples to predict
- Unsupervised ML
 - · Learning by problems
 - · Explores data to learn hidden patterns
- Reinforcement learning
 - · Learning by trying
 - · Making strategic decisions

Type of Task

- Regression
 - · Predict continuous value
- Classification
 - · Predict discrete value
- Decision making
 - · Predict the best alternative

Engineering

11

Steps in Machine Learning

1. Define the problem

2. Data Collection

3. Data Preparation

4. Choose a Model

5. Train the Model

6. Evaluate the Model

7. Tune Hyper-parameters of the Model

8. Use the Model to Predict

The more, the better

Duplicates, missing data, normalization, split

Nature of tasks

Update learnable parameter to reduce loss

Loss against unseen data

Learn unlearnables

Engineering

16

Machine Learning in Practice

- Preparation of Data
 - One-hot Coding
 - Binning
 - Normalization
 - Standardization
 - Missing data & Imputation
 - Unbalanced data
- · Three Sets
 - Training set
 - Validation set
 - Test set

- Selection of Learning Algorithm
 - Explainability
 - # of features and examples
 - Categorical vs. numerical features
 - Nonlinearity of the data
 - Training and Prediction speed
- Performance Evaluation
 - Confusion Matrix
 - Precision, Recall, Accuracy, AUC
- Overfitting and Underfitting

Engineering

17

Engineering

Steps in ML Project

Data Preparation
Performance Evaluation

Data collection

- Size
 - The more, the better
 - At least 10x more examples than number of trainable parameters
- Quality
 - Noise, even outliers
 - Missing values
 - Features
- Labeling
 - Direct vs. derived

Engineering

19

Data Preparation

1-Hot Coding: Categorical to numerical

$$Red = [1,0,0]$$

$$Red = 1$$

$$Yellow = [0,1,0]$$

VS.
$$Yellow = 2$$

Green =
$$[0,0,1]$$

$$Green = 3$$

Binning: Numerical to categorical

Age
$$\in [0,5)$$

Bucket
$$= 1$$

$$Age \in [6, 12) \rightarrow Bucket = 2$$

Bucket
$$= 2$$

$$Age \in [12, 20) \rightarrow Bucket = 3$$

Bucket
$$= 3$$

Data Preparation

Normalization: Range to [0,1]

$$\bar{x} = \frac{x - \min\{x_1, \dots, x_n\}}{\max\{x_1, \dots, x_n\} - \min\{x_1, \dots, x_n\}}$$

- Improves learning speed by preventing gradient of large range dominate the gradient descent
- Standardization: Distribution to N(0, 1)

$$\hat{x} = \frac{x - \mu \{x_1, \dots, x_n\}}{\sigma\{x_1, \dots, x_n\}}$$

Engineering

21

Data Preparation

· Normalization vs. Standardization

Normalization	Standardization
	Feature distribution is close to normal
No outliers	Some outliers
Usually recommended over standardization	

Data Preparation

- Missing Features and Data Imputation
 - Replacing with an average of the feature

$$\tilde{x} = \frac{1}{M} \sum_{i}^{N} x_{i}$$

	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0		1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN	2	2	19.0	17.0	6.0	9.0	7.0

UNIVERSITY OF TORONTO

Engineering

23

Data Preparation

- Other Data Imputation Methods
 - Most frequent value
 - 0 or any other constant
 - kNN
 - Regression
 - Extrapolation and interpolation

Data Preparation

- Unbalanced Datasets
 - 1. Carefully select performance metrics
 - e.g., Accuracy vs Precision+Recall
 - 2. Resampling
 - 1. Under-sampling
 - 2. Over-sampling
 - 3. SMOTE (Synthetic Minority Over-sampling Technique)

Engineering

26

Three Sets

- Training Set
 - To build the model
- Validation Set
 - To tune hyper-parameters
- Test Set
- · Rule of Thumb
 - 70%:15%:15% for training : validation : test

Engineering

Selecting Learning Model

- Explainability
- # of features and examples
- Categorical vs. numerical features
- Nonlinearity
- Training speed
- Prediction speed

Engineering

29

ML Models

- Supervised ML
 - Linear Models
 - Linear Regression
 - · Logistics Regression
 - Support Vector Machine
 - Non-linear Models
 - · Naive Bayes Method
 - · Decision Trees
 - Neural Networks

- Unsupervised ML
 - Principle Component Analysis
 - Clustering
 - Sequential Patterns

Recommendations for Learning Algorithm

	Recommended	Not recommended
Explainability	kNN, linear regression, decision tree	NN, Kernel-methods
Large data set (feature/sample)	NN	SVM
Categorical	NN, Logistic regression, SVM, Decision tree	Linear regression
Non-linearity	NN, Kernel-methods	Linear regression, SVM
Training speed	Regression, Decision tree	NN
Prediction speed	Regression, NN	knn, rnn

Engineering

31

Back to Steps in Machine Learning

- 1. Define the problem
- 2. Data Collection
- 3. Data Preparation
- 4. Choose a Model
- 5. Train the Model
- 6. Evaluate the Model
- 7. Tune Hyper-parameters of the Model
- 8. Use the Model to Predict

Engineering

32

Performance Evaluation

- Classification Tasks
 - Confusion matrix
 - Accuracy
 - Precision
 - Recall (sensitivity)
 - F1-score
 - AUC (Area Under ROC Curve)

- Regression Tasks
 - MAE
 - MSE
 - $-R^2$

Engineering

33

Classification Tasks

Confusion Matrix

		Actual (as confirmed b	
		positives	negatives
d Value	positives	TP True Positive	FP False Positive
Predicted Value (predicted by the test)	negatives	FN False Negative	TN True Negative

Evaluation of Binary Classification

Accuracy

$$A = \frac{\text{\# of correct predictions}}{\text{\# of all predictions}}$$
$$= \frac{{}^{TP+TN}}{{}^{TP+TN+FP+F}}$$

Recall (Sensitivity)

$$R = \frac{\text{\# of correctly predicted positives}}{\text{\# of actual positives}}$$
$$= \frac{TP}{TB+FN}$$

- Precision

$$P = \frac{\text{\# of correctly predicted positives}}{\text{\# of all predicted positives}}$$
$$= \frac{TP}{TP+}$$

- F1 score

$$F1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$
$$= 2 \frac{Precision \cdot Recall}{Precision + Recal}$$

Engineering

35

Evaluation of Binary Classification

	Actual Positive	Actual Negative	
Predicted Positive	TP =100	FP =10	P =110
Predicted Negative	FN =5	TN =50	Ñ =55
	P =105	N =60	n=165

Recall

Precision

Accuracy

F1 score

		10	ove i	100/4	opin C	ON	3/5	2 ³ /¿		30/2	? / &	2/2	× 81	ec.	Rel	5
	Dove	11	0	1	0	0	1	0	0							
	Woodpe	0	9	0	1	1	0	0	0							
ō	Robin	0	2	13	0	0	1	0	0							
icte	Crow	1	0	0	9	0	0	0	0							
Predicted	Starling	0	0	1	0	12	1	1	0							
☲	Sparrow	0	1	2	0	0	13	1	0							
	Finch	1	0	0	0	0	0	6	1							
	Goldfinc	0	0	0	0	0	0	2	8							

Regression Task

MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum |y_i - \hat{y}|$$

MSE (Mean Squared Error)

$$MSE = \frac{1}{n} \sum (y_i - \hat{y})^2$$

R² (Coefficient of Determination)

$$R^2 = 1 - \frac{\text{Unexplainable Variation}}{\text{Total Variation}} = 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2}$$

Engineering

39

Regression Task

MAE (Mean Absolute Error) and MSE (Mean Squared Error)

$$MAE = \frac{1}{n} \sum |y_i - \hat{y}|$$

$$MSE = \frac{1}{n} \sum (y_i - \hat{y})^2$$

Regression Task

R²

Sum of the squared residuals:

$$SS_{res} = \sum (y_i - \hat{y})^2$$

Total variability/variation:

$$SS_{tot} = \sum (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2}$$

UNIVERSITY OF TORONTO

Engineering

41

Anomaly Detection on Track

- Subway power-rail may overheat and cause defects
 - 6.5 Km light metro line
 - In May 2017, a train was damaged during operation
 - Power rail anomaly can be caused by high temperature
- IR camera is used to identify anomalies, but the video must be viewed manually to detect the anomalies

Anomaly Detection on Track

Using TensorFlow Object Detection API & Microsoft Visual Object
 Tagging Tool to detect anomalies automatically

Engineering

43

Data and Preparation

- 2 sets of videos
 - Line 3
 - 1 set has 4 videos with 16,000 frames recorded in December 2017
 - · Only 3 videos capture the power rail
 - · Partially labelled by TTC with a total 45 anomalies
 - Another set has 8 videos with 10,000 frames recorded in May 2018
 - · Only 2 videos capture the power rail
 - Not labelled
 - Winter images were chosen
 - Recorded using a thermal camera in resolution 640X512
 - · Further labelling was done by the team to get a total of 668 anomalies

Engineering

Performance

· Balanced Tune-up

Method	Precision	Recall
Shallow AutoEncoder	47%	76%
Robust AutoEncoder	51%	88%
Isolation Forest	64%	94%
SVM	61%	93%

Recall Maximization

Method	Precision	Recall
Isolation Forest	52%	100%
SVM	53%	100%

UNIVERSITY OF TORONTO

Engineering

47

Gradient Descent for ML

The most used learning algorithm

Repeat until convergence {

$$\theta_{j+1} \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} MSE(\theta)$$

}

$$MSE = \frac{2}{n} \sum (y_i - \hat{y})^2$$

$$\frac{\partial}{\partial \theta_j} MSE(\theta) = \frac{2}{n} \sum_{i=1}^{n} (\theta^T \cdot x_i - y_i) [x_i]_j$$

TORONTO

Cross Validation

- Cross validation (CV) usually means k-fold cross validation
 - Useful when data set is too small
 - In k-fold, every sample is used for training as well as for testing
 - Recommended in hyper-parameter tune up
- In k-fold CV
 - Data set is split into k subsets of equal size
 - The holdout method is repeated k times
 - Each time, (k-1) sets are used for training and 1 set for testing

49

49

Case 1: Linear regression

Situation

- Two pumps running full time with sensor data available
- Over the course of project, additional data including pressure, and any significant down time were added.
- For better understanding of the data, we sought to determine the relationships between different variables.

Objective

Anomaly detection before the accident happens

Engineering

53

Case 1: Linear regression

Steps

The variables can be divided into three categories

· Performance variables: Discharge pressure and flow

Seasonality

- · Control variables: Speed
- Monitoring variables: Vibration and temperature

We seek to predict the **performance variables** based on the control and monitoring variables.

Multivariate analysis

Engineering

UNIVERSITY OF TORONTO

Engineering

55

Overfitting and Underfitting

	Overfitting	Underfitting
Model Complexity	Higher	Lower
Degree of Training	More	Less
Size of Data	Smaller	Larger

UNIVERSITY OF TORONTO

Engineering

63

63

Hyper-Parameter Tuning

- Hyper-parameter
 - Not trainable unlike model parameters
 - Quite impactful on the model performance
 - Usually done with cross validation for more reliable performance evaluation
- Manual tuning using experience
- Grid search
 - Commonly used but time consuming
- Random search
- Bayesian optimization
 - Assuming Gaussian process as the objective to be optimized
 - Posterior of GP given samples
 - Relatively easy-to-compute acquisition function

Engineering

6

65

Combining Learners

- · No single learner performs consistently better than others
- Performance can be improved by combining base learners
- Diversity vs accuracy of base learners
- Two questions:
 - How to generate diverse learners?
 - How to combine the predictions for best results?

Engineering

Generating Diverse Learners

- Different models
- Different hyperprameters
 - # of neurons in DL
 - k in k-nearest neighbor
 - error threshold in decision trees
 - kernel function in support vector machine
- Different input representation
 - Multiple sensors
 - Random subspace (of features)
- Different training sets
 - subsets of training set (bagging or boosting)
 - Partitioning of the training set

Engineering

6

67

Combining Predictions

- Two major approaches
 - Parallel
 - Global: all base learners predict (e.g., voting)
 - · Local: some learners are selected, requiring a gating model
 - Serial
 - Subsequent learners are trained where previous ones did not perform

Engineering

68

Combining Prediction

- Voting
 - Simplest method to combine classifiers
 - Linear combination of predictions

$$y_i = \sum_j w_j d_{ji}$$
 where $w_j \ge 0, \sum_j w_j = 1$

Classifier combination rules

	C_1	C_2	C_3
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

Engineering

69

69

Combining Prediction

- Bagging
 - Short for "boostrap aggregating"
 - Base learners are trained with different subsets of training data
 - Base learners should be unstable so that their predictions on test sets are diverse

Steps:

- Given training set X of size N, n instances randomly drawn from X with replacement to make a subset X_j , $j=1,\ldots,L$.
- Base learners d_j are trained with X_j

Engineering

70

Combining Prediction

- Boosting
 - In bagging, generating complementary base learners is by chance
 - In boosting, complementary base learners are actively generated by training the next learner on samples previous ones struggled.
 - In the original boosting algorithm (Schapire 1990)
 - Consists of 3 base learners and 3 subsets of samples
 - Train the 3 learner sequentially
 - Not expandible

Engineering

71

71

The original boosting algorithm (Schapire 1990)

- During training
 - 1. Training set is divided into three: X_1, X_2, X_3
 - 2. Learner d_1 is trained on X_1 and tested on X_2
 - 3. Make a sample set X_2' with instances in X_2 misclassified by d_1 and the same number of instances in X_2 correctly classified by d_1
 - 4. Train d_2 on X_2'
 - 5. Test d_1 and d_2 on X_3 and make a sample set X_3' with instances in X_3 on which d_1 and d_2 disagree
 - 6. Train d_3 on X_3'

- During testing
 - 1. Given an instance, let d_1 and d_2 predict
 - 2. If they agree, the prediction is final; if they disagree, the prediction by d_3 is final.

Engineering

AdaBoost Algorithm (Freund and Schapire 1996)

Training:

- · Short for "adaptive boosting"
- Use the same training set over and over
- Arbitrary number of base learners
- · Basic idea

Sample instances that were misclassified with a higher probability

```
For all \{x^t, r^t\}_{t=1}^N \in \mathcal{X}, initialize p_1^t = 1/N
     For all base-learners j = 1, ..., L
          Randomly draw X_j from X with probabilities p_i^t
          Train d_j using X_j
          For each (x^t, r^t), calculate y_i^t \leftarrow d_j(x^t)
          Calculate error rate: \epsilon_j \leftarrow \sum_t p_j^t \cdot 1(y_j^t \neq r^t)
          If \epsilon_j > 1/2, then L \leftarrow j-1; stop
          \beta_j \leftarrow \epsilon_j/(1-\epsilon_j)
          For each (x^t, r^t), decrease probabilities if correct:
              If y_i^t = r^t, then p_{i+1}^t \leftarrow \beta_j p_j^t Else p_{j+1}^t \leftarrow p_j^t
          Normalize probabilities:
               Z_j \leftarrow \sum_t p_{j+1}^t; \ p_{j+1}^t \leftarrow p_{j+1}^t/Z_j
Testing:
     Given x, calculate d_j(x), j = 1, ..., L
     Calculate class outputs, i = 1, ..., K:
         y_i = \textstyle \sum_{j=1}^L \left(\log \frac{1}{\beta_j}\right) d_{ji}(x)
```


Engineering

73

73

