Notes on the differences between models 1, 2 & 3 In all submissions we used a Random Forest regressor after running randomized search CV, altought we tried to train several other models, as we also mentioned in our PDF summary (GB, KNN...). Model 1: We used most of the features that we devided were important, after much preprocessing and cleaning, but it was before we created additional features as well. The reason the model performed poorly was because we didn't notice that for the "heel_height" feature, all observations that didn't have the word low/medium/high in their "heel_height" data were left with the original value as their heel height, instead of receiving "other" as a value. That caused our model to have many many dummy features after the encoding of categorical data, which were also of course non informative and probably caused overfitting. Model 2: Here we of course fixed the previous problem, and not only gave all unknown observations the category "other" for heel height, we also extracted the heel height and the unit (inch/cm/mm) from the string, which worked for a lot of observations. Then, we converted all heights to centimeters, and then divided it to 6 categories of height. We hoped this feature will somehow improve the model, but we saw only a small improvement when we checked it. Additionaly, we extracted several words from the title and the seller notes that seemed to us like a good indication of the priciness of the shoe (and we also backed it with data of the average price with and without these words). We created a binary feature that is 1 if one of those words exists in the title/notes, and 0 otherwise. Model 3: The biggest change we introduced to the features in our 3rd model is that we added additional features that represent the priciness of the brands. The first one is a numerical feature that for every brand (known brand from the train data only) with a mean log price as the value. For all other brands, and if the brand is unknown or empty, we put the mean log price of all the other brands (that are cheaper, and have a mean log price less than 4). The reason behind this feature was to give more importance to expensive brands, even if we have bery few observations of them in the train data. Additionally, we created a feature that orders the brands by their average price, and ranks them accordingly. For unknown on never seen before brands, we give them the average rank. This is also a numerical feature that we created to strengthen the brand's importance, even if a brand appears very few times in the data. These 2 features seemed to have a very good affect on the model, and along with a few other features we indroduced at this stage (listed below) gave us a RMSE of ~0.52. The additional features were: Extracting "fancy" words from the color feature, after we saw a correlation between their appearance and the price. • Creating a feature that counts the number of missing values for each observation, and creating 7 categories by number of missing values. The idea behind this feature was that during EDA we saw that observation we a lot of missing data tended to be more expansive. Model 4 we tried something different and ran a NN, but probably had some configuration issue as the results on the train set were somewhat un-calibrated, and we didn't have the time to investigate Imports & Settings In [1]: **import** json import re import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Regressors from sklearn.ensemble import RandomForestRegressor from lightgbm import LGBMRegressor # Regression Metrics from sklearn.metrics import mean_squared_error # Model selection from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, RepeatedKFold from sklearn.model_selection import RandomizedSearchCV %matplotlib inline **%run** data_preparation_for_model.ipynb # <-- Our functions for processing and creating the final DFs for the model Prepare Data In [2]: df_train = pd.read_csv('./data/ebay_women_shoes_train.csv') df_train["log_price"] = np.log(df_train.price) X_train, X_test, y_train, y_test = prepare_train_test_data(df_train) Rndomized Search CV - Random Forest In [3]: # Number of trees in random forest $n_{estimators} = [int(x) for x in np.linspace(start = 400, stop = 1600, num = 7)]$ # Number of features to consider at every split max_features = ['auto', 'sqrt'] # Maximum number of levels in tree $max_depth = [int(x) for x in np.linspace(10, 110, num = 6)]$ max_depth.append(None) # Minimum number of samples required to split a node $min_samples_split = [2, 5, 10]$ # Minimum number of samples required at each leaf node $min_samples_leaf = [1, 2, 4]$ # Method of selecting samples for training each tree bootstrap = [True, False] # Create the random grid random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} In [4]: # Rndomized Search CV - search for best hyperparameters # First create the base model to tune rf = RandomForestRegressor() # Random search of parameters, using 3 fold cross validation, # search across 100 different combinations rf_random = RandomizedSearchCV(estimator = rf,param_distributions = random_grid, $n_{iter} = 100,$ cv = 3, verbose=2, random_state=42, $n_{jobs} = -1,$ scoring='neg_root_mean_squared_error' # Fit the random search model rf_random.fit(X_train, y_train) # <-- Might take a while</pre> print(rf_random.best_params_) Fitting 3 folds for each of 100 candidates, totalling 300 fits {'n_estimators': 600, 'min_samples_split': 5, 'min_samples_leaf': 2, 'max_features': 'sqrt', 'max_depth': 70, 'bootstrap': False} In [5]: # Evaluate model y_pred = rf_random.best_estimator_.predict(X_train) print("RMSE on training data:") print(round(mean_squared_error(y_train, y_pred, squared=False), 4)) y_pred_test = rf_random.best_estimator_.predict(X_test) print("RMSE on (our) test data:") print(round(mean_squared_error(y_test, y_pred_test, squared=False), 4)) RMSE on training data: 0.3444 RMSE on (our) test data: 0.5137 In [6]: # View the feature importances feature_importances = list(zip(X_train, rf_random.best_estimator_.feature_importances_)) feature_importances_ranked = sorted(feature_importances, key = lambda x: x[1], reverse = True) # Print out the feature and their importances [print('Feature: {:50} Importance: {}'.format(*pair)) for pair in feature_importances_ranked]; # Plot the top 25 important features feature_names_25 = [i[0] for i in feature_importances_ranked[:25]] y_ticks = np.arange(0, len(feature_names_25)) $x_{axis} = [i[1]$ for i in feature_importances_ranked[:25]] plt.figure(figsize = (10, 14)) plt.barh(feature_names_25, x_axis) #horizontal barplot plt.title('Random Forest Feature Importance (Top 25)', fontdict= {'fontname':'Comic Sans MS','fontsize' : 20}) plt.xlabel('Features', fontdict= {'fontsize' : 16}) plt.show() Feature: f_brand_ranking Importance: 0.2619050982147061 Feature: f_pricy_brands_mean_log_price Importance: 0.17694810018674276 Feature: f_is_luxury_brand Importance: 0.06960086487025656 Feature: f_brand_2 Importance: 0.05106499043918853 Feature: f_country_region_of_manufacture_japan Importance: 0.046123603536946 Importance: 0.030613622592224117 Feature: f_brand_chanel Importance: 0.020258344860469638 Feature: f_brand_11 Feature: f_has_numbered_style Importance: 0.01906256717668859 Feature: f_brand_13 Importance: 0.015635499185482182 Feature: f_brand_10 Importance: 0.015337572825193952 Feature: f_na_vals Importance: 0.014799043349535395 Importance: 0.014301157688860398 Feature: f_style_None Feature: f_brand_chloe Importance: 0.013799873585669954 Feature: f_returns_True Importance: 0.01368253747692065 Feature: f_returns_False Importance: 0.013177126004922041 Feature: f_brand_8 Importance: 0.012085418386255282 Feature: f_fast_safe_shipping_True Importance: 0.01042720172111177 Feature: f_country_region_of_manufacture_None Importance: 0.01038466702557676 Feature: f_style_comfort Importance: 0.009212918446247605 Feature: f_fast_safe_shipping_False Importance: 0.009059127167710726 Feature: f_category_comfort Importance: 0.008316896653131874 Feature: f_brand_7 Importance: 0.007702362485992487 Feature: f_longtime_member_False Importance: 0.007543465866133313 Feature: f_brand_12 Importance: 0.007461876848922508 Feature: f_brand_3 Importance: 0.007398119803214938 Importance: 0.006900439060621277 Feature: f_category_heels Importance: 0.006312497757108328 Feature: f_category_flats Feature: f_brand_4 Importance: 0.0057398860508531355 Importance: 0.0056994070230380976 Feature: f_material_upper_material_other Feature: f_brand_1 Importance: 0.005678357040105858 Feature: f_longtime_member_True Importance: 0.005634368308957878 Importance: 0.005207898760781848 Feature: f_brand_14 Importance: 0.004653496897241465 Feature: f_style_Other Feature: f_material_upper_material_leather Importance: 0.004590421704338355 Feature: f_brand_6 Importance: 0.00418628585941587 Feature: f_heel_height_Unknown Importance: 0.0036312006300279194 Feature: f_brand_5 Importance: 0.0033807771060286257 Importance: 0.0032470655953557204 Feature: f_pricy_words Importance: 0.003235325975561046 Feature: f_same_day_shipping_False Feature: f_same_day_shipping_True Importance: 0.0032164105286729924 Feature: f_brand_0 Importance: 0.0029038028050603123 Feature: f_free_shipping_True Importance: 0.002873348885734368 Feature: f_free_shipping_False Importance: 0.002501098236953649 Feature: f_brand_dansko Importance: 0.0024820913696343254 Feature: f_style_casual Importance: 0.002181705914620273 Feature: f_occasion_other Importance: 0.0021786019570106765 Feature: f_heel_height_Low Importance: 0.0021730876133966293 Feature: f_country_region_of_manufacture_italy Importance: 0.0021554307683256018 Feature: f_heel_height_High Importance: 0.002155353434808363 Feature: f_style_more_formal Importance: 0.0021154939778131317 Feature: f_heel_height_Medium Importance: 0.002027966975223734 Feature: f_country_region_of_manufacture_china Importance: 0.001985379505070741 Feature: f_material_upper_material_pelle Importance: 0.001876963187954547 Feature: f_heel_type_None Importance: 0.0018647557431301462 Feature: f_vintage_null Importance: 0.0018365035323699758 Feature: f_occasion_casual Importance: 0.0018332229879042886 Feature: f_vintage_False Importance: 0.0018069154735903261 Feature: f_heel_height_Flat Importance: 0.0017754898220131553 Feature: f_brand_born Importance: 0.0016277258607805976 Feature: f_brand_clarks Importance: 0.0016235913467824285 Feature: f_material_upper_material_suede Importance: 0.0014822700742302482 Feature: f_style_flats Importance: 0.0014712989335995113 Feature: f_heel_type_High/Slim Importance: 0.0010169254780395256 Feature: f_style_formal Importance: 0.00084170271927792 Feature: f_returns_null Importance: 0.0008176933273016086 Feature: f_heel_height_Very High Importance: 0.000760923485505537 Feature: f_brand_cole haan Importance: 0.0007569164031213414 Feature: f_style_oxford Importance: 0.0007358991581721363 Feature: f_material_upper_material_canvas Importance: 0.000691030542739909 Importance: 0.0006285124676538153 Feature: f_style_sandals Importance: 0.0006267287593939098 Feature: f_brand_skechers

Importance: 0.0006230330256776635 Feature: f_style_ballet Feature: f_heel_type_Medium/Wide Importance: 0.0006118766372829686 Importance: 0.0005938695773692832 Feature: f_fancy_colors Feature: f_brand_sas Importance: 0.000564783686677864 Feature: f_occasion_party Importance: 0.0005621264341039041 Feature: f_style_heels Importance: 0.000560542900393022 Feature: f_brand_sperry top sider Importance: 0.0005114256527372209 Feature: f_country_region_of_manufacture_Other Importance: 0.00047173398695010644 Feature: f_brand_merrell Importance: 0.0004408077523328434 Feature: f_material_upper_material_faux leather Importance: 0.0004402449357170835 Feature: f_brand_steve madden Importance: 0.0004250192727390865 Feature: f_brand_nine west Importance: 0.0004236651812278045 Feature: f_material_upper_material_textile Importance: 0.00038419557066303965 Feature: f_brand_propet Importance: 0.00038040684145921976 Feature: f_country_region_of_manufacture_united states Importance: 0.00032011848191617985 Feature: f_brand_kurt geiger Importance: 0.000299677129110419 Feature: f_occasion_formal Importance: 0.00023534285154756056 Feature: f_pricy_words_notes Importance: 0.0002291633708432536 Feature: f_brand_next Importance: 0.00020295882383888965 Importance: 0.00020120633033467246 Feature: f_country_region_of_manufacture_france Feature: f_country_region_of_manufacture_spain Importance: 0.00017501621510228083 Importance: 0.00017316578858828858 Feature: f_occasion_any Feature: f_country_region_of_manufacture_unknown Importance: 0.0001727805096562108 Feature: f_country_region_of_manufacture_brazil Importance: 0.00016150896280152605 Feature: f_material_upper_material_rubber Importance: 0.00015499273986265913 Feature: f_heel_type_Other Importance: 0.000143156952410824 Feature: f_material_upper_material_fabric Importance: 0.00012851019375820027 Importance: 0.00012610353312974212 Feature: f_material_upper_material_faux suede Feature: f_country_region_of_manufacture_vietnam Importance: 0.00012402654760037515 Feature: f_vintage_True Importance: 0.00010970518412899263 Feature: f_material_upper_material_satin Importance: 0.00010188370361505908 Feature: f_occasion_dress Importance: 9.905730079987505e-05 Importance: 9.572711248187829e-05 Feature: f_material_upper_material_nubuck Importance: 9.296834180306667e-05 Feature: f_material_upper_material_cotton Feature: f_material_upper_material_velvet Importance: 9.291365640333616e-05 Feature: f_country_region_of_manufacture_germany Importance: 8.621017379770857e-05 Feature: f_occasion_wedding Importance: 8.30405064652957e-05 Feature: f_country_region_of_manufacture_portugal Importance: 7.277465386089623e-05 Feature: f_heel_type_Flat Importance: 6.720248435549795e-05 Feature: f_material_upper_material_manmade Importance: 5.750285347426509e-05 Feature: f_country_region_of_manufacture_mexico Importance: 5.2951310555118346e-05 Feature: f_occasion_flat Importance: 3.200999504238923e-05 Feature: f_country_region_of_manufacture_australia Importance: 2.6834212412504643e-05 Feature: f_country_region_of_manufacture_israel Importance: 2.6266650377546525e-05 Feature: f_material_upper_material_linen Importance: 2.0283501297300002e-05 Feature: f_occasion_business Importance: 6.402093792422129e-06 Feature: f_country_region_of_manufacture_united kingdom Importance: 4.8343357425044935e-06 Importance: 4.594811306291569e-06 Feature: f_material_upper_material_nylon Feature: f_occasion_outdoor Importance: 1.0517890305757461e-06 Random Forest Feature Importance (Top 25) f_brand_3 · f_brand_12 f_longtime_member_False f brand 7 f_category_comfort f_fast_safe_shipping_False f_style_comfort · f_country_region_of_manufacture_None f_fast_safe_shipping_True f_returns_False f returns True f brand chloe f style None f_na_vals f_brand_10 f_brand_13 f has numbered style f_brand_11 f_brand_chanel f_country_region_of_manufacture_japan f_is_luxury_brand f_pricy_brands_mean_log_price f_brand_ranking 0.10 0.15 0.20 0.25 0.05 Features Grid Search CV - Random Forest (We stopped using it after a while)

Save presiction to csv file

results_model_03.to_csv("model_03.csv", index=False)

Prediction: Gradient Boosting (We didn't use this model for submission)

The Price is Right!

Rotem Nizhar & Batel Mankovsky

scoring='neg root mean squared error') gridsearch.fit(X=X train, y=y train) pd.DataFrame(gridsearch.cv results).set index('rank test score').sort index() Train RF model we got on whole data + submit In []: df_train = pd.read_csv('./data/ebay_women_shoes_train.csv') df_test = pd.read_csv('./data/ebay_women_shoes_test.csv') # Save original ids order, for submission test_ids = df_test.id X_train, X_test, y_train = prepare_data_for_testing(df_train, df_test) X_test.drop(columns=['log_price'], inplace=True) In []: # Fit the best model we got from randomized search CV, ON ALL DATA! rf_model_03 = rf_random.best_estimator_ rf_model_03.fit(X_train, y_train)

Creating a Grid Search for Random Forest Regressor gridsearch = GridSearchCV(estimator=RandomForestRegressor(random_state=42), param_grid={ 'n_estimators': ['auto', 'sqrt', 'log2'], 'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)] }, cv=5, return_train_score=False,

y_pred_train = rf_model_03.predict(X_train)

define the model model = LGBMRegressor() # evaluate the model cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) n_scores = cross_val_score(model, X_train, y_train, y_tr

y_train) # <-- Might take a whilegrid.best_params_# Evaluate model y_pred = grid.predict(X_train) print("RMSE on training data:") print(round(mean_squared_error(y_train, y_pred_test, y_pred_test, squared=False), 4)) y_pred_test = grid.predict(X_test) print("RMSE on (our) test data:") print(round(mean_squared_error(y_test, y_pred_test, squared=False), 4))

 $print(round(mean_squared_error(y_test, y_pred, squared=False), 4)) params = \{ 'num_leaves': [7, 14, 21, 28, 31, 50, 70], 'learning_rate': [0.1, 0.03, 0.003], 'max_depth': [-1, 1, 2, 3, 4, 5, 6], 'n_estimators': [10, 50, 100, 200, 500, 1000], \} grid = GridSearchCV(LGBMRegressor(random_state=42), params, scoring='neg_mean_squared_error', cv=5) grid.fit(X_train, leaves) grid.fit(X$

In []: | # Predict on whole train data (just a sanity check) print("RMSE on WHOLE training data (sanity check):") print(round(mean_squared_error(y_train, y_pred_train, squared=False), 4))

In []: # Predict on test data y_pred_test = rf_model_03.predict(X_test) In []: results_model_03 = pd.DataFrame({"id": test_ids, "price_pred": y_pred_test})