The development of brain systems supporting handwriting and letter perception

Xinlu Zhang January 30, 2018

1 Project Description

1.1 background

Handwriting ability which is displayed by producing letters by hand a very complex behavior for human . The principal idea is that act of handwriting is generated from something about the visual and motor coordination spontaneously, and this stuff integrates visual and motor brain systems, which is significant to develop letter perceptual abilities. There are two visual stream can effect about our perceptual ability. The dual streams hypothesis of version, which high relates to visual processing, is one of most distinguished ideas about how the brain functions. Ventral stream objects recognition and identification, and dorsal stream reaches to grasp, hand position and unconscious. There are a lot of the early work on visual processing began with investigating responses in the ventral visual stream. Scientists found that selective responses for various object domains, for example faces and places, but also for learned object, such as words. In this case, we want to explore how brain supports perceptual processes by considering the ventral visual stream as major effect with some influence from dorsal visual stream in order to better understand how people start to know the meaning of object.

The data is collected by looking at how letter is produced by brain support at three different levels of ages. The experiment asked early-literate children, literate children, and literate adults to write and perceive individual letters in an fMRI scanner. To look at how the brain supports letter production at these different levels of experience, we asked early-literate children, literate children, and literate adults to write and perceive individual letters in an fMRI scanner. There are 6 areas (LaIPS, RaIPS, LmUPS, RmUPS, LpIPS and RpIPS) to indicate 6 part in our brain and 4 conditions (WatchDynamic_ other, WatchDynamic_ own, WatchStatic_ own, and WatchStatic_ typed) to show 4 designed situations; each area have every condition. To be specific, we collected 4 conditions data in each 6 area from 38 people divided into three different age levels, so each person have 24 response

variable in this experiment.

1.2 Research Questions

1.2.1 RQ1

The five guiding research questions for the present analysis are the following: (1)Does there is any relationship between different areas? (2) Does there is any relationship between different conditions? (3) Does there is any relationship between areas within each condition? (4) Does there is any relationship between conditions within each area? and, finally, (5) Is there a relationship between each group?

1.2.2 RQ2

In second part, we need to build a model for each area according to fixed and random effect.

1.3 Variables

The fixed effects in the first analysis are area, condition, and age; the random effect is student ID. The area indicates six different in our brain. Condition indicates four methods which scientists apply to people in different age level. Age indicates three different age level in this experiment. In this case, area, condition and age are all categorical variables. Area =1,2,3,4,5 and 6 respectively indicates LaPIS, LmIPS, LpIPS, RaIPS, RmIPS and RpIPS. Condition=1 indicates people....., condition=2 indicates people....., condition=3 indicates people....., and condition=4 indicates..... Age=1 indicates people are from 5 to 6 years old called early-literate children, age=2 indicates people are from 7 to 8 years old called literate children, and age=3 indicates people are from 19 to 25 years old called literate adults. In the second analysis, the fixed effects are Age, VMI, VP, MC, WJIV Letter Word Reading, WJIV Spelling, WJIV Word Attack and WJIV Spelling of Sounds and the random effect is student ID. Age is a categorical variable which is same as in the first analysis. VMI indicates Beery Visual Motor Integration. VP indicates Beery Visual Perception. MC indicates Beery Motor Coordination.

2 Methods

3 Pairwise Comparisons

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	34.000	137.664	.000
area	5	812.000	2.538	.027
Group	2	34.000	1.009	.375
condition	3	812	6.133	.000
Group * area	10	812.000	.690	.734
Group * condition	6	812.000	2.695	.013
area * condition	15	812.000	.285	.997

a. Dependent Variable: action.

Figure 1: table of fixed effect

As can be noted in the table above, base on the p value, area with p = 0.027, condition with p < 0.001 and Group* condition with p = 0.013 contain in the model.

3.0.1 Area

The below table shows the interrelationships between different areas in brains of people. According to the significant value of each pair, there is an interrelationship between LmIPS and RmIPS, and the P-value is 0.021, which is smaller than the significant level, p = 0.05. The P-value of the intersection term between LmIPS and RpIPS equals to 0.01, which means there is a relationship between RpIPS and LmIPS. The intersection between RaIPS and RpIPS is significant, p = 0.02. However, all the other pairs do not have interactions between them.

	Pairwise Comparisons ^a										
						95% Confide	nce Interval				
		Mean				for Diffe	rencec				
	(J)	Difference	Std.			Lower	Upper				
(I) area	area	(I-J)	Error	<u>df</u>	Sig.c	Bound	Bound				
LaPIS	LmIPS	.126	.071	812	.075	013	.266				
	LpIPS	.009	.071	812	.894	130	.149				
	RalPS	.060	.071	812	.400	079	.199				
	RmIPS	038	.071	812	.593	177	.101				
	RpIPS	106	.071	812	.135	245	.033				
LmIPS	LaPIS	126	.071	812	.075	266	.013				
	LDIPS	117	.071	812	.099	256	.022				
	RalPS	067	.071	812	.347	206	.072				
	RmIPS	164 [*]	.071	812	.021	304	025				
	RpIPS	233 [*]	.071	812	.001	372	093				
LpIPS	LaPIS	009	.071	812	.894	149	.130				
	LmIPS	.117	.071	812	.099	022	.256				
	RalPS	.050	.071	812	.479	089	.189				
	RmIPS	047	.071	812	.504	187	.092				
	RpIPS	116	.071	812	.103	255	.024				
RalPS	LaPIS	060	.071	812	.400	199	.079				
	LmIPS	.067	.071	812	.347	072	.206				
	LpIPS	050	.071	812	.479	189	.089				
	RmIPS	098	.071	812	.169	237	.042				
	RpIPS	166 [*]	.071	812	.020	305	027				
RmIPS	LaPIS	.038	.071	812	.593	101	.177				
	LmlPS	.164*	.071	812	.021	.025	.304				
	LpIPS	.047	.071	812	.504	092	.187				
	RalPS	.098	.071	812	.169	042	.237				
	RpIPS	068	.071	812	.336	207	.071				
RpIPS	LaPIS	.106	.071	812	.135	033	.245				
	LmlPS	.233*	.071	812	.001	.093	.372				
	LpIPS	.116	.071	812	.103	024	.255				
	RalPS	.166*	.071	812	.020	.027	.305				
	RmIPS	.068	.071	812	.336	071	.207				

Based on estimated marginal means

Figure 2: pairwise comparisons between six areas

The univariate tests of area shows p = 0.027, so the area is significant in the model.

^{*.} The mean difference is significant at the .05 level.

a. Dependent Variable: action.

c. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests^a

Numerator df	Denominator df	F	Sig.
5	812.000	2.538	.027

The F tests the effect of area. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Dependent Variable: action.

Figure 3: Univariate Tests of area

3.0.2 Condition

Pairwise Comparisonsa

		Mean Difference (I-				95% Confidence Interval for Difference ^c	
(I) condition	(J) condition	J)	Std. Error	df	Sig. ^c	Lower Bound	Upper Bound
WatchStatic_other	WatchStatic_own	.191*	.058	812.000	.001	.078	.305
	WatchDynamic_own	011	.058	812	.849	125	.103
	WatchTyped	.142*	.058	812	.015	.028	.255
WatchStatic_own	WatchStatic_other	191*	.058	812.000	.001	305	078
	WatchDynamic_own	202*	.058	812	.001	316	089
	WatchTyped	050	.058	812	.392	163	.064
WatchDynamic_own	WatchStatic_other	.011	.058	812	.849	103	.125
	WatchStatic_own	.202*	.058	812	.001	.089	.316
	WatchTyped	.153*	.058	812	.009	.039	.266
WatchTyped	WatchStatic_other	142*	.058	812	.015	255	028
	WatchStatic_own	.050	.058	812	.392	064	.163
	WatchDynamic_own	153*	.058	812	.009	266	039

Based on estimated marginal means

Figure 4: pairwise comparisons between four conditions

Following across the rows for " Sig_c " in the above table of tests for the within subject effects, the relationship between WatchStatic_own and WatchStatic_other is significant, p=0.001, and the relationship between WatchStatic_other and WatchTyped is also significant, p=0.015. In addition, significant interactions betweenWatchStatic own andWatchDynamic own, p=0.001, and between WatchDynamic own and WatchTyped, p=0.09,were noted.

^{*.} The mean difference is significant at the .05 level.

a. Dependent Variable: action.

c. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Testsa

Numerat df	or	Denominator df	F	Sig.
	3	812	6.133	.000

The F tests the effect of condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Dependent Variable: action.

Figure 5: Univariate Tests of condition

The univariate tests of area shows p = 0.027, so the area is significant in the model.

3.0.3 Areas within each condition

The table in the below shows the inter area effects within each condition. There are significant interaction between LmIPS and LpIPS (p = 0.042), between LmIPS and RmIPS (p = 0.031), and between LmIPS and RpIPS (p = 0.018) in the first condition, Watch-Static_other. None of interrelationship is in the second condition, Watch-Static_own, and all the P-value is larger than the significant level, (p = 0:05). The interaction between LmIPS and RpIPS is significant in the third condition, Watch-Dynamic_own, and there is no interaction between areas in the fourth condition, Watch-Typed.

condition	(I) area	(J) area	J)	Std. Error	dt	Sig.	rower Ronua	Opper Bonua
WatchStatic_other	LaPIS	LmIPS	.222	.141	812	.117	056	.499
		LpIPS	066	.141	812	.639	344	.211
		RaIPS	.114	.141	812	.418	163	.392
		RmIPS	084	.141	812	.551	362	.193
		RpIPS	112	.141	812	.427	390	.165
	LmIPS	LaPIS	222	.141	812	.117	499	.056
		LpIPS	288°	.141	812	.042	565	011
		RaIPS	107	.141	812	.449	384	.170
		RmIPS	306°	.141	812	.031	583	028
		RpIPS	334°	.141	812	.018	611	056
	LpIPS	LaPIS	.066	.141	812	.639	211	.344
		LmIPS	.288*	.141	812	.042	.011	.565
		RaIPS	.181	.141	812	.201	097	.458
		RmIPS	018	.141	812	.899	295	.259
		RpIPS	046	.141	812	.746	323	.231
	RaIPS	LaPIS	114	.141	812	.418	392	.163
		LmIPS	.107	.141	812	.449	170	.384
		LpIPS	181	.141	812	.201	458	.097
		RmIPS	199	.141	812	.160	476	.079
		RpIPS	227	.141	812	.109	504	.051
	RmIPS	LaPIS	.084	.141	812	.551	193	.362
		LmIPS	.306°	.141	812	.031	.028	.583
		LpIPS	.018	.141	812	.899	259	.295
		RaIPS	.199	.141	812	.160	079	.476
		RpIPS	028	.141	812	.843	305	.249
	RpIPS	LaPIS	.112	.141	812	.427	165	.390
		LmIPS	.334*	.141	812	.018	.056	.61
		LpIPS	.046	.141	812	.746	231	.323

		RaIPS	.227	.141	812	.109	051	.504
		RmIPS	.028	.141	812	.843	249	.30
WatchStatic_own	LaPIS	LmIPS	.121	.141	812	.391	156	.39
		LpIPS	.081	.141	812	.569	197	.35
		RaIPS	.065	.141	812	.646	212	.34
		RmIPS	004	.141	812	.979	281	.27
		RpIPS	072	.141	812	.608	350	.20
	LmIPS	LaPIS	121	.141	812	.391	399	.15
		LpIPS	041	.141	812	.774	318	.23
		RaIPS	056	.141	812	.691	334	.22
		RmIPS	125	.141	812	.377	402	.15
		RpIPS	194	.141	812	.171	471	.08
	LpIPS	LaPIS	081	.141	812	.569	358	.19
		LmIPS	.041	.141	812	.774	237	.31
		RaIPS	016	.141	812	.912	293	.26
		RmIPS	084	.141	812	.551	362	.19
		RpIPS	153	.141	812	.279	430	.12
	RaIPS	LaPIS	065	.141	812	.646	342	.21
		LmIPS	.056	.141	812	.691	221	.33
		LpIPS	.016	.141	812	.912	262	.29
		RmIPS	069	.141	812	.627	346	.20
		RpIPS	137	.141	812	.331	415	.14
	RmIPS	LaPIS	.004	.141	812	.979	274	.28
		LmIPS	.125	.141	812	.377	152	.40
		LpIPS	.084	.141	812	.551	193	.362
		RaiPS	.069	.141	812	.627	209	.346
		RpIPS	069	.141	812	.627	346	.209
	RpIPS	LaPIS	.072	.141	812	.608	205	.350
	mp.ii o	LmIPS	.194	.141	812	.171	084	.47
		LpIPS	.153	.141	812	.279	124	.430
		RaIPS	.137	.141	812	.331	140	.41
		RmIPS	.069	.141	812	.627	209	.340
WatchDynamic_own	LaPIS	LmIPS	.064	.141	812	.651	213	.341
,		LpIPS	003	.141	812	.984	280	.274
		RaIPS	.042	.141	812	.764	235	.320
		RmIPS	072	.141	812	.611	349	.205
		RpIPS	214	.141	812	.130	491	.063
	LmIPS	LaPIS	064	.141	812	.651	341	.213
		LpIPS	067	.141	812	.636	344	.21
		RaIPS	022	.141	812	.879	299	.25
		RmIPS	136	.141	812	.336	413	.14
		RpIPS	278*	.141	812	.049	555	001
	LpIPS	LaPIS	.003	.141	812	.984	274	.280
	Lpir3	LmIPS	.067	.141	812	.636	211	.344
		RaiPS	.045	.141	812	.749	232	.323
		RmIPS	069	.141	812	.625	346	.208
		RpIPS	211	.141	812	.135	489	.066
	RaIPS	LaPIS	042	.141	812	.764	320	.235
	Naii 3	LmIPS	.022	.141	812	.879	256	.299
		LpIPS	045	.141	812	.749	323	.232
		RmIPS	045	.141	812	.419	323	.16
		RpIPS	256	.141	812	.070	534	.02
	RmIPS	LaPIS	.072	.141	812	.611	205	.349

		LpIPS	.069	.141	812	.625	208	.346
		RaIPS	.114	.141	812	.419	163	.392
		RpIPS	142	.141	812	.315	419	.135
	RpIPS	LaPIS	.214	.141	812	.130	063	.491
		LmIPS	.278°	.141	812	.049	.001	.555
		LpIPS	.211	.141	812	.135	066	.489
		RaiPS	.256	.141	812	.070	021	.534
		RmIPS	.142	.141	812	.315	135	.419
VatchTyped	LaPIS	LmIPS	.099	.141	812	.483	178	.376
		LpIPS	.027	.141	812	.851	251	.304
		RaIPS	.017	.141	812	.903	260	.295
		RmIPS	.008	.141	812	.953	269	.286
		RpIPS	026	.141	812	.855	303	.252
	LmIPS	LaPIS	099	.141	812	.483	376	.178
		LpIPS	073	.141	812	.608	350	.205
		RaIPS	082	.141	812	.562	359	.195
		RmIPS	091	.141	812	.520	368	.187
		RpIPS	125	.141	812.000	.377	402	.152
	LpIPS	LaPIS	027	.141	812	.851	304	.251
		LmIPS	.073	.141	812	.608	205	.350
		RaIPS	009	.141	812	.947	287	.268
		RmIPS	018	.141	812	.897	296	.259
		RpIPS	052	.141	812.000	.711	330	.225
	RaIPS	LaPIS	017	.141	812	.903	295	.260
		LmIPS	.082	.141	812	.562	195	.359
		LpIPS	.009	.141	812	.947	268	.287
		RmIPS	009	.141	812	.950	286	.268
		RpIPS	043	.141	812.000	.761	320	.234
	RmIPS	LaPIS	008	.141	812	.953	286	.269
		LmIPS	.091	.141	812	.520	187	.368
		LpIPS	.018	.141	812	.897	259	.296
		RaIPS	.009	.141	812	.950	268	.286
		RpIPS	034	.141	812.000	.810	311	.243
	RpIPS	LaPIS	.026	.141	812	.855	252	.303
		LmIPS	.125	.141	812.000	.377	152	.402
		LpIPS	.052	.141	812.000	.711	225	.330
		RaIPS	.043	.141	812.000	.761	234	.320
		RmIPS	.034	.141	812.000	.810	243	.311

Based on estimated marginal mean

Figure 6: pairwise comparisons between six areas within each condition

3.0.4 Conditions within each area

Following across the rows in the below table of tests for the within- subject effects in six different areas in brains of people, significant interactions between WatchStatic_other and-WatchStatic_own in LpIPS, p=0.24, between WatchStaticown and WatchDynamic_own in RpIPS, p=0.046, and between WatchDynamic own and WatchTyped in RpIPS, p=0.041, were noted.

Pairwise Comparisons ^a								
area	(I) condition	(I) condition	Mean Difference (I-	Std. Error	df	Sig.c	95% Confiden Differ	
area	(i) condition	() condition	-	5101 61101		0.9.		- Pro-
LaPIS	WatchStatic_other	WatchStatic_own	.172	.141	812	.225	106	.449
		WatchDynamic_own	.032	.141	812	.823	246	.309
		WatchTyped	133	141	812	347	- 144	410

 $^{^{\}star}.$ The mean difference is significant at the .05 level.

a. Dependent Variable: action.

c. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

	WatchStatic_own	WatchStatic_other	172	.141	812	.225	449	.106
		WatchDynamic_own	140	.141	812	.322	417	.137
		WatchTyped	039	.141	812	.784	316	.239
	WatchDynamic_own	WatchStatic_other	032	.141	812	.823	309	.246
		WatchStatic_own	.140	.141	812	.322	137	.417
	West Towns	WatchTyped	.101	.141	812	.473	176	.379
	WatchTyped	WatchStatic_other	133	.141	812	.347	410	.144
		WatchStatic_own	.039	.141	812 812	.784	239 379	.316
LmIPS	WatchStatic_other	WatchDynamic_own WatchStatic_own	101 .071	.141	812	.614	206	.349
LIIIIF3	watchstatic_other	WatchDynamic_own	126	.141	812	.373	403	.151
		WatchTyped	.010	.141	812	.941	267	.288
	WatchStatic_own	WatchStatic_other	071	.141	812	.614	349	.206
		WatchDynamic_own	197	.141	812	.163	474	.080
		WatchTyped	061	.141	812	.667	338	.216
	WatchDynamic_own	WatchStatic_other	.126	.141	812	.373	151	.403
		WatchStatic_own	.197	.141	812	.163	080	.474
		WatchTyped	.136	.141	812	.334	141	.414
	WatchTyped	WatchStatic_other	010	.141	812	.941	288	.267
		WatchStatic_own	.061	.141	812	.667	216	.338
		WatchDynamic_own	136	.141	812	.334	414	.141
pIPS	WatchStatic_other	WatchStatic_own	.318	.141	812	.024	.041	.596
		WatchDynamic_own	.095	.141	812	.501	182	.372
		WatchTyped	.226	.141	812	.110	051	.503
	WatchStatic_own	WatchStatic_other	318	.141	812	.024	596	041
		WatchDynamic_own	223	.141	812	.114	501	.054
		WatchTyped	093	.141	812	.512	370	.185
	WatchDynamic_own	WatchStatic_other	095	.141	812	.501	372	.182
		WatchStatic_own	.223	.141	812	.114	054	.501
W		WatchTyped	.131	.141	812	.355	146	.408
	WatchTyped	WatchStatic_other	226	.141	812	.110	503	.051
		WatchStatic_own	.093	.141	812	.512	185	.370
		WatchDynamic_own	131	.141	812	.355	408	.146
RaiPS	WatchStatic_other	WatchStatic_own	.122	.141	812	.387	155	.399
		WatchDynamic_own	040	.141	812	.775	318	.237
	WatchStatic_own	WatchTyped WatchStatic_other	.036 122	.141	812 812	.801	242 399	.313
	wateristatic_own	WatchDynamic_own	163	.141	812	.250	440	.155
		WatchTyped	086	.141	812	.540	364	.191
	WatchDynamic_own	WatchStatic_other	.040	.141	812	.775	237	.318
	materio y namic_omi	WatchStatic_own	.163	.141	812	.250	115	.440
		WatchTyped	.076	.141	812	.590	201	.353
	WatchTyped	WatchStatic_other	036	.141	812	.801	313	.242
		WatchStatic_own	.086	.141	812	.540	191	.364
		WatchDynamic_own	076	.141	812	.590	353	.201
RmIPS	WatchStatic_other	WatchStatic_own	.252	.141	812	.075	025	.529
		WatchDynamic_own	.044	.141	812	.756	233	.321
		WatchTyped	.225	.141	812	.111	052	.503
	WatchStatic_own	WatchStatic_other	252	.141	812	.075	529	.025
		WatchDynamic_own	208	.141	812	.141	486	.069
		WatchTyped	027	.141	812	.850	304	.250
	WatchDynamic_own	WatchStatic_other	044	.141	812	.756	321	.233
		WatchStatic_own	.208	.141	812	.141	069	.486
		WatchTyped	.182	.141	812	.199	096	.459
	WatchTyped	WatchStatic_other	225	.141	812	.111	503	.052
		WatchStatic_own	.027	.141	812	.850	250	.304
) IPC	Manager 1	WatchDynamic_own	182	.141	812	.199	459	.096
RpIPS	WatchStatic_other	WatchStatic_own	.211	.141	812	.135	066	.489
		WatchTynad	070	.141	812	.619	348	.207
	WatchStatic our	WatchTyped WatchStatic other	.219	.141	812.000 812	.121	058 489	.497
	WatchStatic_own	WatchStatic_other WatchDynamic_own	211 282*	.141	812	.046	559	004
							100000000	
	WatchDunamic our	WatchTyped WatchStatic other	.008	.141	812.000	.955	269	.285
	WatchDynamic_own	WatchStatic_other	.070	.141	812	.619	207	.348
		WatchStatic_own	.282	.141	812	.046	.004	.559
		WatchTyped	.290	.141	812.000	.041	.012	.567
	WatchTyped	WatchStatic_other	219	.141	812.000	.121	497	.058
		WatchStatic_own	008	.141	812.000	.955	285	.269 012
		WatchDynamic_own	290	.141	812.000	.041	567	012

Figure 7: pairwise comparisons between four conditions within each area

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Dependent Variable: action.
c. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

3.0.5 Group

Pairwise (Compa	risons
------------	-------	--------

		Mean Difference (I-				95% Confiden Differ	ce Interval for ence ^b
(I) Group	(J) Group	J)	Std. Error	df	Sig. ^b	Lower Bound	Upper Bound
Early-literate children	Literate children	.135	.137	34.000	.332	143	.412
	Literate adults	.184	.132	34.000	.172	084	.452
Literate children	Early-literate children	135	.137	34.000	.332	412	.143
	Literate adults	.049	.129	34.000	.704	213	.311
Literate adults	Early-literate children	184	.132	34.000	.172	452	.084
	Literate children	049	.129	34.000	.704	311	.213

Based on estimated marginal means

Figure 8: pairwise comparisons between age groups

According the pairwise comparisons table in the above, all the p values of interaction between each groups are larger than significant level p=0.05. The result shows that there is no interrelationship between each age group. It also explains the group is not significant in the model (Figure 1).

4 Exploratory Data Analysis

4.1 Normality

a. Dependent Variable: action.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Figure 9: Histograms of action in 6 areas

According the six histograms of each area, all the value are skew to right, so we cannot say the data is normality in each area.

4.2 Outliers

To see the six boxplots of each area, there are some outliers in each boxplot and all the boxplots show that data are skew to right.

Figure 10: boxplots of action in 6 areas

Because of the out of normality and some outliers, we try to transform the dependent variable y (action) to log(y + 1).

Figure 11: qq plots of log_action in 6 areas

Following the qq plots in the above, all the data of log_action in each area is normality,

even though the plots have few outliers. Because of the normality test, we change the dependent variable from action to log_action.

4.3 Equal Variance

According to the residual plots in 6 areas with dependent variable y=log_action, all the residual points in each plot are randomly distributed and fall in a symmetrical pattern around residual = 0, which means residuals normal distributed.

Figure 12: residual plots in 6 areas

4.4 Correlation Analyses

				Correlati	ons				
		Age	VMI	VP	MC	WJIV_LW	WJIV_Spelling	WJIV_WordAtt ack	WJIV_SpellSo unds
Age	Pearson Correlation	1	.890**	.800**	.738**	.770**	.930**	.758**	.882**
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000
	N	148	148	148	148	148	148	148	148
VMI	Pearson Correlation	.890**	1	.774**	.857**	.765**	.853**	.794**	.852**
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
	N	148	148	148	148	148	148	148	148
VP	Pearson Correlation	.800**	.774**	1	.674**	.700**	.792**	.715**	.761**
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
	N	148	148	148	148	148	148	148	148
MC	Pearson Correlation	.738**	.857**	.674**	1	.584**	.683**	.606**	.701**
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
	N	148	148	148	148	148	148	148	148
WJIV_LW	Pearson Correlation	.770**	.765**	.700**	.584**	1	.891**	.956**	.902**
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
	N	148	148	148	148	148	148	148	148
WJIV_Spelling	Pearson Correlation	.930**	.853**	.792**	.683**	.891**	1	.875**	.951**
	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000
	N	148	148	148	148	148	148	148	148
WJIV_WordAttack	Pearson Correlation	.758**	.794**	.715**	.606**	.956**	.875**	1	.925**
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
	N	148	148	148	148	148	148	148	148
WJIV_SpellSounds	Pearson Correlation	.882**	.852**	.761**	.701**	.902**	.951**	.925**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
	N	148	148	148	148	148	148	148	148

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Figure 13: Correlation

The above table shows some high correlated variables in the model in every area. From example, the Pearson correlation between Age and WJIV_Spelling is 0.930, between WJIV_LW and WJIV_WordAttack is 0.956, and between WJIV_Spelling and WJIV_SpellSounds is 0.951.In addition, the correlation between WJIV_SpellSounds and WJIV_LW is 0.902, and between WJIV_WordAttack and WJIV_SpellSounds is 0.925.

5 Building model

5.1 LaPIS

According to the table in the below, most of variables (age, VIP, MC, WJIV_LW, WJIV_WordAttack, WJIV_Spelling and WJIV_SpellSounds) are not significant, In other words, only the variable VMI is significant in the linear mixed effect model in LaPIS.

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	28	278.151	.000
Age	1	28	.229	.636
VP	1	28	.061	.806
VMI	1	28	4.224	.049
MC	1	28	1.859	.184
WJIV_LW	1	28	1.360	.253
WJIV_WordAttack	1	28	.004	.952
WJIV_Spelling	1	28	.798	.379
WJIV_SpellSounds	1	28	.218	.644

a. Dependent Variable: log_action.

Figure 14: Coefficients table of original model

Following Statistics VIF values in the below table, only the value of VP and MC is smaller than 10, which the variable with highest VIF value need to be removed until all the VIF values are lower than 10.

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.637	.039		16.414	.000		
	Age	.124	.148	.255	.841	.402	.071	14.120
	VMI	331	.131	678	-2.534	.012	.091	10.989
	VP	050	.071	104	715	.476	.311	3.217
	MC	.147	.082	.301	1.788	.076	.230	4.340
	WJIV_LW	.147	.153	.301	.960	.339	.066	15.059
	WJIV_Spelling	216	.188	444	-1.148	.253	.044	22.898
	WJIV_WordAttack	.085	.182	.174	.465	.643	.047	21.488
	WJIV_SpellSounds	.059	.177	.121	.335	.738	.050	20.159

a. Dependent Variable: action

Figure 15: original LMM

After comparing VIF values several times, the final model contains variables in the below table.

Coefficientsa

Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.637	.039		16.487	.000		
	Age	001	.096	001	007	.995	.167	6.004
	VMI	291	.120	597	-2.420	.017	.106	9.395
	VP	054	.069	110	781	.436	.327	3.057
	MC	.146	.078	.300	1.863	.065	.250	4.007
	WJIV_LW	.157	.066	.322	2.365	.019	.349	2.864

a. Dependent Variable: action

Figure 16: Coefficients table of changed model

The below table shows that the variables VMI and WJIV $_{-}$ are significant in the changed linear mixed effect model in LaPIS.

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	31	299.262	.000
Age	1	31	.000	.995
VMI	1	31	4.924	.034
VP	1	31	.144	.707
MC	1	31	2.468	.126
WJIV_LW	1	31	4.772	.037

a. Dependent Variable: log_action.

Figure 17: changed LMM

5.2 LmPIS

To look at the below table, non of variable in the original linear mixed effect model in the LmIPS is significant.

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	28	248.625	.000
Age	1	28	.009	.925
VP	1	28	.009	.925
VMI	1	28	1.973	.171
MC	1	28	.007	.935
WJIV_LW	1	28	.126	.725
WJIV_WordAttack	1	28	.001	.976
WJIV_Spelling	1	28	.000	.986
WJIV_SpellSounds	1	28	.474	.497

a. Dependent Variable: log_action.

Figure 18: iCoefficients table of original mode

Following Statistics VIF values in the below table, only the value of VP and MC is smaller than 10.

Coefficientsa

	Unstandardized Coefficien		d Coefficients	Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.541	.032		16.832	.000		
	Age	.080	.122	.199	.653	.515	.071	14.120
	VMI	207	.108	515	-1.918	.057	.091	10.989
	VP	008	.058	019	129	.898	.311	3.217
	MC	004	.068	011	066	.947	.230	4.340
	WJIV_LW	076	.126	189	602	.548	.066	15.059
	WJIV_Spelling	056	.156	139	359	.720	.044	22.898
	WJIV_WordAttack	.051	.151	.128	.340	.735	.047	21.488
	WJIV_SpellSounds	.126	.146	.314	.863	.390	.050	20.159

a. Dependent Variable: action

Figure 19: original LMM

After changing the model by comparing VIF values, the final model of LmPIS contains variables in the below table.

$Coefficients^{a} \\$

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.541	.032		16.901	.000		
	Age	.084	.079	.209	1.057	.292	.167	6.004
	VMI	183	.099	455	-1.838	.068	.106	9.395
	VP	006	.057	015	103	.918	.327	3.057
	MC	.001	.065	.003	.020	.984	.250	4.007
	WJIV_LW	.011	.055	.026	.193	.848	.349	2.864

a. Dependent Variable: action

Figure 20: Coefficients table of changed model

Then here is the linear mixed effect model after changing.

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	31	266.254	.000
Age	1	31	.365	.550
VMI	1	31	2.265	.142
VP	1	31	.012	.912
MC	1	31	.039	.844
WJIV_LW	1	31	.048	.829

a. Dependent Variable: log_action.

Figure 21: changed LMM