

Low-resolution (LR) inputs

Bridging Diffusion Models and 3D Representations:

A 3D Consistent Super-Resolution Framework

Yi-Ting Chen¹

Ting-Hsuan Liao¹

Pengsheng Guo²

Alexander Schwing³

Jia-Bin Huang¹

University of Maryland, College Park¹

Carnegie Mellon University²

University of Illinois at Urbana-Champaign³

Prior knowledge

 $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Clean image estimation

 $\hat{\mathbf{x}}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(\mathbf{x}_t, t) \right)$

 Enforce 3D consistency by 3DGS on clean image

 $\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \hat{\mathbf{x}}_0 + \eta_t \epsilon_{\theta}(\mathbf{x}_t, t) + \sigma_t \epsilon_t$

