Newton Raphson's Method for finding a root

This method is applicable for a continuous and differentiable function f(x), provided a starting approximation to the unknown root, say x_0 is given. It consists of the following steps.

- 1. Given x_0 , find the value of f(x) corresponding to it, i.e., $f(x_0)$, the point on the curve is $(x_0, f(x_0))$
- 2. Draw a tangent to the curve f(x) at the point $(x_0, f(x_0))$. The slope of the tangent at $(x_0, f(x_0))$ is $f'(x_0)$, where f'(x) is the derivative of f(x). The equation of the tangent is $y f(x_0) = f'(x_0)$ $(x x_0)$
- 3. Find the intersection of the tangent with the x-axis (i.e., y = 0). This gives the point x, call this point x_1 .

$$x_1 = x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

4. Repeating steps 1 to 3 again with x_1 gives a new value, call it x_2 and so on. In general after steps 1 to 3 have been applied for n+1 terms, the approximation to the root is given by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

N-R method is known to converge quickly to a root when the conditions are favourable. The value of the term $f'(x_n)$ plays a role in it.

Example for illustration: Consider the same polynomial, with roots 3 and 7, viz., $p(x) = x^2 - 10x + 21$. The result of applying Newton-Raphson is summarized below. For the same polynomial and under similar conditions, Newton-Raphson appears to be converging faster than interval-halving.

Iteration	X _n	p(x _n)	p'(x _n)	X_{n+1}
0	20.0			
1	20.0	221	30	12.6333
2	12.6333	54.2678	15.2667	9.07868
3	9.07868	12.6356	8.15735	7.52969
4	7.52969	2.39935	5.05939	7.05546
5	7.05546	0.224899	4.11091	7.00075
6	7.00075	0.00299263	4.0015	7
7	7	1.90735e-06	4	7

Table 4: Root finding Newton Raphson

Application of Newton-Raphson (N-R):

Finding square roots – Let \sqrt{a} , the square root of a real number a be computed. \sqrt{a} is a solution of the polynomial $x^2 - a = 0$. Using Newton-Raphson iterative formulation for finding a root, $x_{n+1} = x_n - \frac{p(x_n)}{p'(x_n)}$, where p'(x) is the derivative of polynomial p(x).

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} (x_n + \frac{a}{x_n})$$

In this formulation of square root computation, we need one *, one + and one / operation on floating point numbers.

Example: To find the square root of a number, say 255.84, using N-R method, produces the following sequence of approximations.

Approx root after 1 iteration: 128.42 Approx root after 2 iterations: 65.2061 Approx root after 3 iterations: 34.5648 Approx root after 4 iterations: 20.9833 Approx root after 5 iterations: 16.5879 Approx root after 6 iterations: 16.0056 Approx root after 7 iterations: 15.995 Approx root after 8 iterations: 15.995

Square Root found is 15.995 after 8 Iterations of Newton raphson

Square Root found using sqrt() function in maths library, sqrt(255.84), is 15.995

Finding N-th root of a real : Finding square root is a special application of N-R, the general problem for finding the n-th roots of a real a, is formulated along similar lines :

 $a^{1/N}$ is a solution of the polynomial $x^N - a = 0$. Using Newton-Raphson iterative formulation for finding a root, $x_{n+1} = x_n - \frac{p(x_n)}{p'(x_n)}$, where p'(x) is the derivative of polynomial p(x).

$$x_{n+1} = x_n - \frac{x_n^N - a}{Nx_n^{N-1}} = \frac{1}{N} ((N-1)x_n + \frac{a}{x_n^{N-1}})$$