Power Analysis
Type I error: P(Sobs C p Crit Ho) = X
Type I error: P(508s & pcrit Ha) = B
lower: 1-b Land p cue inversely related:
1
Ho Ha
1-1
Cuit .
1-&
Mypotheris testing:
- Significance level
- Power
- Effect size (Cohenis d)
\ \
- Sample size

$$P\left(\frac{x-\mu}{6/\ln} \leq \frac{1-\alpha/2}{6/\ln} \leq 1-\alpha/2\right) = 1-\alpha$$

$$P\left(\frac{x+2}{\alpha/2} + \frac{\delta}{\ln} \leq \mu \leq x + \frac{\delta}{1-\alpha/2} \cdot \frac{\delta}{\ln}\right) = 1-\alpha$$

Margin of error
$$(E)$$

$$\frac{2}{412} \cdot \frac{6}{\sqrt{1}} \leq E$$

$$n > \frac{2^2 \cdot 6^2}{E^2}$$

For proportions:
$$\frac{p-p}{p(1-p)/n} \sim N(0,1)$$

$$\frac{p}{p(1-p)/n} \leq p \leq p + \frac{2}{1+d_{12}} \cdot p(1-p)/n$$

$$2 \frac{1}{2} \cdot \sqrt{p(1-p)/h} \leq E$$
 $n \geq \frac{2^2}{E^2} \cdot p(1-p)$

 $X_1 = 2$ Sample with replacement who replacement $X_2 = 2$ W.p. p_1 $X_{1} = 2$ W.p. 1/3[2,4,8] $X_2 = 2$ w.p. 0 (Xi, Xj) + 0 n - sample size

N - population size $Cov(X_i, X_j) = -\frac{6^2}{N-1}$ With replacement W/o replacement se(·) $\sqrt{\frac{\delta^2}{h}\left(1-\frac{h-1}{N-1}\right)} \approx \sqrt{\frac{5^2}{h}\left(1-\frac{h}{N}\right)}$ \ b2/h $\sqrt{\frac{p(1-p)}{h}}\left(1-\frac{h-1}{h-1}\right) \approx \sqrt{\frac{p(1-p)}{h}}\left(\frac{h}{h-1}\right)\cdot\left(1-\frac{h}{h}\right)$ p

Percentage error:
$$E = R \cdot \mu$$

$$C = \frac{6}{\mu}$$

$$h = \frac{\delta^2 \cdot z^2}{E^2} = \frac{\delta^2 / \mu^2 \cdot z^2}{R^2} = \frac{C^2 \cdot z^2}{R^2}$$