14. Sean $A \in \mathbb{R}^{n \times n}$ inversible y $B, C \in \mathbb{R}^{n \times m}$. Probar: a) AB = AC entonces B = C ¿Es necesario que A sea inversible para probarlo? b) AB = 0 entonces B = 0 ¿Es necesario que A sea inversible para probarlo? a) $AB = AC \implies A^{-1}AB = A^{-1}AC \implies IB = IC \implies B = C$ A-1 existe por hipótesis por ser A inversible Veamos si es necesario que A sea inversible. Supongamos que A no es inversible. A no inversible (=> Nu(A) \neq \gegge 0\gegg ⇒ ∃x∈IRⁿ, x≠0 tal que Ax=0

$$AB = O \Rightarrow A^{-1}AB = A^{-1}O \Rightarrow IB = IO \Rightarrow B = O$$

$$A^{-1} \text{ existe por hipotesis por ser A inversible}$$

En este caso no necesariamente A tiene que ser inversible. A no inversible \iff Nu(A) \neq £0} \iff $\exists x \in \mathbb{R}^n, x \neq 0$ tal que $\exists x = 0$

Sean bi ∈ Nu(A), bi ≠0 con i=1...n. Definimos B∈IR^{n×n} como la Matriz Formada por las columnas bi ··· bn.

$$B = \begin{bmatrix} 1 & 1 & 1 \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \neq 0 \quad \text{pues } b_i \neq 0 \quad \forall i = 1...n$$

Como cada bi e Nu(A), Abi = 0 Yi=1...n es la i-ésima columna de AB.

$$\Rightarrow$$
 AB = \circ pero B \neq 0, y existe porque A no inversible.