A Gentle Introduction to Probability Theory

Alexander Ritz

University of Göttingen

8. Juni 2021

Overview

- Probability Spaces
- 2 Random Variables
- 3 Distributions
- 4 Moments
- 5 Convergence of Random Variables

Section 1

Probability Spaces

Sample Space

Let Ω denote the set of all potential outcomes or results ω of a random experiment.

Then Ω is called sample space or possibility space.

Events

Any subset $A \subset \Omega$ is called an event.

A system $\mathscr A$ of subsets of Ω is called σ -Algebra in Ω , if it has the following properties:

A system $\mathscr A$ of subsets of Ω is called σ -Algebra in Ω , if it has the following properties:

• $\Omega \in \mathscr{A}$

A system $\mathscr A$ of subsets of Ω is called σ -Algebra in Ω , if it has the following properties:

- $\Omega \in \mathscr{A}$
- $\bullet \ \ A \in \mathscr{A} \implies A^{\mathrm{C}} \in \mathscr{A}$

A system $\mathscr A$ of subsets of Ω is called σ -Algebra in Ω , if it has the following properties:

- $\Omega \in \mathscr{A}$
- $\bullet \ A \in \mathscr{A} \implies A^{\mathrm{C}} \in \mathscr{A}$
- $\bullet \ A_1,A_2,A_3,...\in\mathscr{A} \implies \bigcup_{I\in\mathbb{N}}A_I\in\mathscr{A}$

Power Set

The power set of a set A is given by

$$\mathcal{P}(A) := \{M \mid M \subset A\},\$$

being the set of all subsets M of A. It holds that $|\mathcal{P}(A)| = 2^{|A|}$.

Generated σ -Algebra

Given an arbitrary family of subsets F of a sample space Ω , the σ -algebra

$$\sigma(F):=\bigcap_{F\subset\mathscr{A}}\mathscr{A},\quad \text{with }\mathscr{A} \text{ being }\sigma\text{-algebras on }\Omega$$

denotes the smallest σ -algebra on Ω , which contains F.

Borel σ -Algebra

Given $\Omega = \mathbb{R}$ and $I := \{(s, t) : -\infty \le s \le t \le \infty\}$, the σ -algebra generated by the open intervals I are usually denoted

$$\mathscr{B}(\mathbb{R}) := \sigma(I)$$

This is called the Borel σ algebra on \mathbb{R} . By definition of σ -algebras, \mathscr{B} contains all open, closed and half open intervals.

Measurable Space

A tuple (Ω, \mathscr{A}) , consisting of a sample space Ω and a σ -algebra $A \subset \mathcal{P}(\Omega)$ is called measurable space.

Measures

Let $\mathscr A$ be a σ -algebra. A function $\mu:\mathscr A\to [0,\infty]$ is called a measure on $\mathscr A$, if

Measures

Let $\mathscr A$ be a σ -algebra. A function $\mu:\mathscr A\to [0,\infty]$ is called a measure on $\mathscr A$, if

• $\mu(\emptyset) = 0$

Measures

Let $\mathscr A$ be a σ -algebra. A function $\mu:\mathscr A\to [0,\infty]$ is called a measure on $\mathscr A$, if

- $\mu(\emptyset) = 0$
- μ is σ -additive, i.e. for all sequences of pairwise disjoint sets A_1, A_2, \ldots holds:

$$\mu\left(\dot{\bigcup_{i\in\mathbb{N}}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i)$$

Probability Measures

Let \mathscr{A} be a σ -algebra on the sample space Ω . A function $P:\mathscr{A}\to [0,1]$ is called probability measure on \mathscr{A} , if

Probability Measures

Let $\mathscr A$ be a σ -algebra on the sample space $\Omega.$ A function $P:\mathscr A\to [0,1]$ is called probability measure on $\mathscr A$, if $P(\Omega)=1$

Probability Measures

Let $\mathscr A$ be a σ -algebra on the sample space $\Omega.$ A function $P:\mathscr A\to [0,1]$ is called probability measure on $\mathscr A$, if

- $P(\Omega) = 1$
- P is σ -additive, that is, for all sequences of pairwise disjoint sets A_1, A_2, \dots holds:

$$P\left(\bigcup_{i\in\mathbb{N}} A_i\right) = \sum_{i\in\mathbb{N}} P(A_i)$$

Probability Space

The triple (Ω, \mathcal{A}, P) , consisting of a sample space Ω , a σ -algebra \mathcal{A} on Ω and a probability measure P defined on \mathcal{A} , is called probability space.

A function on the sample space Ω

$$X: \Omega \to \mathbb{R}^d$$
 with $\omega \mapsto X(\omega)$

is called random quantity.

A function on the sample space Ω

$$X: \Omega \to \mathbb{R}^d$$
 with $\omega \mapsto X(\omega)$

is called random quantity.

In case of d = 1, X is called a random variable.

A function on the sample space Ω

$$X: \Omega \to \mathbb{R}^d$$
 with $\omega \mapsto X(\omega)$

is called random quantity.

In case of d = 1, X is called a random variable.

In case of d > 1 X is a vector of random variables, that is

 $X = (X_1, ..., X_d)$. In that case, X is called d-dimensional random vector.

A function on the sample space Ω

$$X: \Omega \to \mathbb{R}^d$$
 with $\omega \mapsto X(\omega)$

is called random quantity.

In case of d = 1, X is called a random variable.

In case of d > 1 X is a vector of random variables, that is $X = (X_1, ..., X_d)$. In that case, X is called d-dimensional random vector.

The function does **not** have to be real valued, but the concept generalises trivially!

Measurability

In order to facilitate the notation of the following concepts, we define:

$$X^{-1}(]-\infty,z]) = \{\omega \in \Omega \mid -\infty < X(\omega) \le z\} =: \{X \le z\}$$

Measurability

A random quantity $X:\Omega\to\mathbb{R}^d$ is called measurable with respect to the σ -algebra \mathscr{A} , if:

$$\forall z \in \mathbb{R}^d : \{X \leq z\} \in \mathscr{A}$$

with $\{X \leq z\} \in \mathscr{A}$ being shorthand for the set of outcomes $\omega \in \Omega$, for which the function $X = (X_1, ..., X_d)$ results in values below $z = (z_1, ..., z_d)$, i.e.:

$$\{X \leq z\} = \{\omega \in \Omega \mid X(\omega) \leq z\} = \{\omega \in \Omega \mid X_1(\omega) \leq z_1, ..., X_d(\omega) \leq z_d\}$$

Distributions of Random Variables

Let $X:\Omega\to\mathbb{R}^d$ be a measurable random variable on the measure space (Ω,\mathscr{A}) . The probabilities of *all* events belonging to X as a whole are called *probability distribution* or *cumulative distribution* of the random variable X. The entire distribution is determined by the function:

$$F_X : \mathbb{R}^d \to [0,1]$$
 (1)
 $z \mapsto F_X(z) := P(\{X \le z\}) = P(\{X_1 \le z_1, \dots, X_d \le z_d\}),$ (2)

leading to F_X being called distribution function of X

Distribution Function

Using Riemann-Stieltjes integrals, one can write:

$$P({a < X \le b}) = F_X(b) - F_X(a) = \int_a^b dF_X(z)$$

, given that F_X is continuous.

Distribution Function

In case F_X is differentiable, the probabilities can be given as:

$$\int_a^b \mathrm{d}F_X(z) = \int_a^b F_X'(z) \, \mathrm{d}z$$

Under the further restriction that F'_X be continuous, the following holds for infinitesimal changes dz:

$$P\big(\{z < X \leq z + \mathrm{d}z\}\big) = F_X\big(z + \mathrm{d}z\big) - F_X\big(z\big) = F_X'\big(z\big)\,\mathrm{d}z = \mathrm{d}F_X\big(z\big)$$

Density Function

If a function $f: \mathbb{R} \to \mathbb{R}$ exists with

$$F_X(z) = \int_{-\infty}^z f(s) ds$$

, it is called density function of X. In case f is continuous, $F_X'=f$ follows.

Expected Value

The expected value $\mathbb{E}(X)$ of a random variable X is defined as its mean function value

$$\mathbb{E}(X) = \int_{\mathbb{R}^d} z \, \mathrm{d}F_X(z)$$

Variance and Standard Deviation

The variance Var(X) of a random variable X is defined as the quadratic deviation of X from its expected value, i.e.

$$Var(X) = \mathbb{E}(|X - \mathbb{E}(X)|^2)$$

A better intuition of the strength of dispersion can be had by examining the standard deviation s(X)

$$s(X) := \sqrt{\mathsf{Var}(X)}$$

Deterministic Convergence

Recall that convergence towards a limit L for a deterministic sequence S_n , with $n \in \mathbb{N}$, can be expressed by

$$\forall \epsilon > 0 \quad \exists N : \quad \forall n \geq N : \quad |S_n - L| < \epsilon$$

Convergence in Probability

A sequence of random variables $X_1, X_2, ...$, denoted by X_n , is said to converge in probability towards X, written as $X_n \stackrel{P}{\to} X$ or $\text{plim}_{n \to \infty} X_n = X$, if

$$\forall \epsilon > 0: P(|X_n - X| > \epsilon) \to 0 \text{ as } n \to \infty$$

Convergence in Distribution

 X_n is said to *converge in distribution* towards X, written as $X_n \stackrel{D}{\rightarrow} X$, if

$$\forall x \in \mathbb{R}: P(X_n \le x) \to P(X \le x) \text{ as } n \to \infty$$

, given that $P(X \le x)$ is continuous at x.

Convergence in rth Mean

 X_n converges in rth mean (for $r \ge 1$), written as $X_n \stackrel{r}{\to} X$, if

$$\forall n \in \mathbb{N} : \quad \mathbb{E}(|X_n|^r) < \infty$$

and

$$\mathbb{E}(|X_n - X|^r) \to 0 \quad \text{as} \quad n \to \infty$$