FAQ

Module-5	
Question 1.	What is the main difference between the original Simplex Method and its variants like the Dual Simplex
	and Revised Simplex?
Answer	The original Simplex Method is designed to solve linear
	programming problems by iteratively moving along the
	edges of the feasible region to find the optimal solution.
	Its variants have been developed to address specific types
	of problems or improve computational efficiency.
	• Dual Simplex: While the Simplex method is
	designed for feasible starting solutions, the Dual
	Simplex method is crafted for situations where the
	solution is infeasible but optimal. It's particularly
	useful when certain constraints are violated and
	adjustments are required.
	• Revised Simplex: The main goal here is
	computational efficiency. Instead of working with
	the entire tableau (as in the traditional Simplex), the
	Revised Simplex works with a subset of columns,
	making it faster and more memory-efficient,
	especially for large-scale problems.
Question 2.	How can Excel's Solver handle linear programming

	problems like those solved by the Simplex Method?
Answer	Excel's Solver is a versatile tool that can tackle various
	optimization problems, including linear programming.
	When you set up a linear programming problem in Excel,
	you essentially define your objective function, decision
	variables, and constraints using spreadsheet cells. Solver
	adjusts the decision variables to find the maximum or
	minimum value for the objective function while adhering
	to the given constraints. When using Solver for linear
	programming, you'd typically choose the Simplex LP
	solving method, allowing Solver to use the Simplex
	algorithm to find the optimal solution.
Question 3.	How does Network Analysis in optimization differ
	from typical Network Analysis in fields like social
	media or telecommunications?
Answer	Network Analysis, in its essence, is the study of networks.
	While the foundational principles remain consistent, the
	applications and objectives can vary significantly across
	domains.
	• In optimization, Network Analysis focuses on
	finding the most efficient way to achieve a particular
	goal, such as determining the shortest path in a
	transportation network, or maximising flow in
	supply chain networks. The networks here often
	represent tangible systems with constraints, costs,

	and capacities.
	• In fields like social media or telecommunications,
	Network Analysis might aim to understand the
	structure and dynamics of social or communication
	networks, identify influential nodes (like key
	influencers), or optimise data transmission routes.
	These networks often represent intangible
	relationships and interactions.
Question 4.	What are some real-world applications of Network Analysis in optimization?
Answer	Network Analysis in optimization has numerous
	real-world applications:
	• Transportation: Finding the shortest or most
	cost-effective route between destinations.
	• Supply Chain: Optimising the flow of goods across
	distribution networks to minimise costs or delivery
	times.
	• Telecommunications: Designing efficient
	communication networks and routing data packets to
	minimise latency.
	• Project Management: Using techniques like the
	Critical Path Method to optimise project timelines.
Question 5.	How does Python's NetworkX library aid in Network
	Analysis and what are its key features?
Answer	NetworkX is a comprehensive Python library designed for

the creation, manipulation, and study of complex networks. Some of its key features include:

- Flexibility: Can handle both undirected and directed graphs.
- **Algorithms:** Provides a rich collection of standard graph algorithms, such as shortest path calculations, clustering, and network flow analyses.
- **Data Structures:** Offers versatile data structures for representing graphs, facilitating easy manipulations.
- **Visualisation:** While not a primary graphics tool, NetworkX can work in conjunction with libraries like Matplotlib to visualise networks.

Using NetworkX, data scientists can effectively study large-scale network structures and derive insightful conclusions relevant to various fields of application.