

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет: «РЛ»

Кафедра: «РЛ5»

Расчетно-проектное задание

Исполнительный привод

Выполнил: Ионин Д.А. Группа: СМ11-61Б

Вариант 1.1

Руководитель: Иванов С.Е.

ОГЛАВЛЕНИЕ

OΓ	ЛАВЛЕНИЕ	2
УC	СЛОВИЕ КУРСОВОГО ПРОЕКТА	4
1.	ВЫБОР ПРОТОТИПА	5
	1.1 Анализ технического задания	
	1.2 Анализ прототипов	
	1.2.1 Анализ первого прототипа	6
	1.2.2. Анализ второго прототипа	7
	1.2.3. Анализ третьего прототипа	8
2.	ВЫБОР ДВИГАТЕЛЯ	9
	Вывод: выбранный двигатель ДПР-72-Ф1-03 подходит	по
	мощности	
	Вывод: выбранный двигатель ДПР-72-Ф1-03 подходит	по
	моментам.	11
3.	КИНЕМАТИЧЕСКИЙ РАСЧЕТ	12
	3.1 Расчет передаточного отношения привода	
	3.2 Определение чисел зубьев зубчатых колес	
4.	СИЛОВОЙ РАСЧЕТ	15
	4.1 Расчет общего момента нагрузки:	16
5.	РАСЧЕТ ЗУБЧАТЫХ КОЛЕС НА ПРОЧНОСТЬ	
	5.1 Выбор материала5.2 Расчёт допустимых напряжений	
		10
	5.3. Расчет передач на изгибную прочность	
6.	ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ	21
	6.1 Расчет делительного диаметра	22

7.	ПРОЕКТНЫЙ РАСЧЕТ ВАЛА	25
8.	выбор подшипников	26
9.	РАСЧЕТ ПРЕДОХРАНИТЕЛЬНОЙ МУФТЫ	27
	9.1 Расчет диаметра колеса муфты	27
	9.2 Расчет фрикционного материала муфты	28
	9.3 Расчет пружины	28
СП	ИСОК ЛИТЕРАТУРЫ	31

УСЛОВИЕ КУРСОВОГО ПРОЕКТА

ЗАДАНИЕ № І

Тема проекта: исполнительный привод

Техническое задание: разработать конструкцию исполнительного привода по предложенной схеме в соответствии с данным вариантом.

Основные исходные данные:

№ варианта	
Параметры	I
Момент на выходном валу M_c , Нмм	300
Скорость вращения выходного вала ω , c^{-1}	1.5
Момент инерции нагрузки $\pmb{J}_{ ext{ iny H}}, \pmb{\kappa} \pmb{\epsilon} \cdot \pmb{m}^2$	0.1
Ускорение вращения выходного вала є, с ⁻²	5
Погрешность редуктора на выходном валу $\Delta \varphi$, <i>угл. мин</i> .	25
Критерий проектирования	Min погрешности
Тип предохранительной муфты	Фрикционная
Тип корпуса	По согласованию с преподавателем
Тип двигателя.	Выбирается самостоятельно
Характер производства	Единичный
Срок службы (не менее)	500 ч
Вывод выходного элемента	По указанию преподавателя (со стороны двигателя или противоположной),
Вид крепления к основному изделию	По указанию преподавателя (со шпонкой и резьбой, под штифт или др.).
Условия эксплуатации	УХЛ 4.1
Степень защиты	Выбирается самостоятельно
Безлюфтовое колесо	Наличие обосновывается расчетом

1. ВЫБОР ПРОТОТИПА

1.1 Анализ технического задания

Согласно техническому заданию, условие эксплуатации прибора – УХЛ4.1. Это значит, что по ГОСТ 15150-69, изделие предназначено для эксплуатации в макроклиматических районах с умеренным и холодным кондиционированным климатом, помещениях c или частично кондиционированным воздухом. Для изделий исполнения УХЛ4.1 рабочий диапазон температуры +10...+25 °C, средняя рабочая температура -20 °C, предельные значения температуры – +1...+40 °C, предельная относительная влажность – 80% при 25 °C. Срок службы ЭМП назначим 500 часов

По указанию руководителя, выбрал двигатель ДПР.

1.2 Анализ прототипов

1.2.1 Анализ первого прототипа

Данный прототип предназначен для дорогого двигателя, имеющего сложное крепление к корпусу. В качестве опор использован подшипники скольжения. Выходной вал имеет шпоночное соединение,

Рисунок 1.2.1 Прототип рядового исполнения с плохим двигателем

1.2.2. Анализ второго прототипа

Второй прототип имеет много недостатков, но в нем хорошие опоры. Установка валов не учитывает принцип минимизации погрешности, накладывая дополнительные связи на конструкцию. Модуль передачи выходного вала маленький. На выходном валу сложное крепление в 2 подшипника в одну пластину. Все подшипники в конструкции разные.

Рис. 3.6. Трехступенчатый двухплатный цилиндрический зубчатый привод

Рисунок 1.2.2 Прототип плохого исполнения с опорами

1.2.3. Анализ третьего прототипа

Данная модель построена на одной плате, что негативно влияет на точность и сложность конструкции. В данном прототипе выбран хороший двигатель, интересная конструкция зубчатых колес.

Рисунок 1.2.3 Прототип одноплитного исполнения

2. ВЫБОР ДВИГАТЕЛЯ

Цель расчета: выбор двигателя для ЭМП

2.1 Выбор двигателя по мощности

Расчетная мощность нагрузки:

$$P_{ ext{H}} = (M_{ ext{H}} + J_{ ext{H}} arepsilon_{ ext{H}}) \cdot \omega_{ ext{H}}$$
 $\omega_{ ext{H}} = 2\pi \cdot \eta_{ ext{H}} = 9.4 rac{ ext{pad}}{ ext{c}}$ $P_{ ext{H}} = (0.3 + 0.1 \cdot 5) \cdot 9.4 = 7.52 \ ext{BT}$

Поскольку выбран цилиндрический зубчатый редуктор открытого типа, выберем $\eta_0 = 80\%$

Согласно Т3, условия эксплуатации УХЛ 4.1 не являются суровыми, поэтому, ξ должен соответствовать рекомендованному диапазону 1.5 . . . 2,

Для частых пусков выберем $\xi = 1.7$

Расчетная мощность нагрузки:

$$P_p = \frac{\xi \cdot P_H}{\eta_o} = \frac{1.7 \cdot 7.52}{0.8} = 15.98 \text{ BT}$$

Учитывая разброс температур, характер работы, мощность, срок службы выберем ДПР-72- Φ 1-03 [1]

Табл. 2. Паспортные данные двигателя ДПР-72-Ф1-03

Номинальная мощность	Рном	18.5 Вт
Номинальные момент	Мном	39.2 Нмм
Пусковой момент	Мпуск	245 Нмм
Частота вращения выходного вала	пдв	4500 об/мин
Момент инерции ротора	J_p	7,8 · 10^{-6} кгм 2
Напряжение питания	U	27 B
Срок службы (не менее)	T	1000 ч
Macca		0.6 кг

Вывод: выбранный двигатель ДПР-72-Ф1-03 подходит по мощности.

2.2 Предварительная проверка выбора двигателя по моментам

По указанию руководителя, работу привода нужно рассматривать, как на работе при частых пусках.

Для этого режима двигатель должен удовлетворять условию:

$$M_{\text{HOM}} \ge M_{\text{C.пр.}} + M_{\text{ДПр}}$$

где $M_{\text{ном}}$ — номинальный момент на валу двигателя;

 $M_{\text{с.пр.}}$ — статический приведённый момент;

 $M_{\text{д. пр.}}$ — динамический приведённый момент.

Общее передаточное отношение:

$$i_0 = \frac{4500}{9.4} = 478$$

$$M_{\text{с.пр.}} = \frac{M_c}{i_o \cdot \eta_0} = \frac{0.3}{478 \cdot 0.8} = 0.00078 \text{ H} \cdot \text{M}$$

$$M_{\text{д.пр.}} = \varepsilon_{\text{H}} \cdot i_{\text{o}} \cdot \left((1 + K_{\text{M}}) \cdot J_{p} + \frac{J_{\text{H}}}{i_{\text{o}}^{2}} \right)$$
 (1.7)

где \mathcal{E}_{H} — угловое ускорение вращения на выходном звене;

 i_0 — общее передаточное отношение;

 $K_{\rm M}$ — коэффициент, учитывающий инерционность собственного зубчатого механизма, примем рекомендованное значение 0.75;

 $J_{
m p}$ — момент инерции ротора двигателя (из паспортных данных);

 $J_{
m H}$ — момент инерции нагрузки.

$$M_{\text{д.пр.}} = 5 \cdot 478 \cdot \left((1 + 0.75) \cdot 7.8 \cdot 10^{-6} + \frac{0.1}{478^2} \right) = 0.03367 \text{ H} \cdot \text{M}$$

 $0.0392 \text{ HM} \ge 0.00078 \text{ HM} + 0.03367 \text{ HM}$

Вывод: выбранный двигатель ДПР-72-Ф1-03 подходит по моментам.

3. КИНЕМАТИЧЕСКИЙ РАСЧЕТ

Цель расчета: разработка кинематической схемы привода, разбиение передаточного отношения, определения числа зубьев зубчатых колес.

3.1 Расчет передаточного отношения привода

Общее передаточное отношение колес:

$$i_0 = \frac{n_{\text{AB}}}{n_{\text{H}}} = \frac{4500}{9.4} = 478$$

Согласно условию ТЗ проектирование будет осуществляться по минимизации погрешности. При расчёте по критерию минимизации погрешности колёс число ступеней будет вычисляться по формуле:

$$n = \frac{\lg i_0}{\lg i_{max}}$$
 (округляется в большую сторону) (3.1.1)

где n — число ступеней;

 i_0 — общее передаточное отношение цепи.

 $i_{max} = 7,5. \ .10$ выберем 10, с этим значением получаются значения близкие к рекомендованному ряду;

Полученное число ступеней:

$$n = \frac{\lg 478}{\lg 10} = 2.67 \approx 3$$

Для числа ступеней 3, передаточное отношение для ступеней определяется выражением:

$$i_{12} \le i_{34} \le i_{56} \tag{3.1.2}$$

Выберем передаточные отношения из табличных:

Таблица 3. Передаточные отношения

i_{12}	i_{34}	i_{56}
6	8	10

3.2 Определение чисел зубьев зубчатых колес

Пусть число зубьев 1 шестерни $z_1=20$ (Выбирается из рекомендованного диапазона [17 ... 30]

Число зубьев колеса рассчитывается по формуле:

$$z_{\kappa} = z_{\iota\iota\iota} \cdot i_{j} \tag{3.2.1}$$

где z_{κ} — число зубьев колеса;

 $z_{\text{ш}}$ — число зубьев шестерни;

 i_i —передаточное отношение одной ступени.

Учитывая рекомендованный ряд, назначаем количества зубьев колес и шестерен:

Таблица 4. Числа зубьев колес редуктора

№ колеса	1	2	3	4	5	6
№ элементарной передачи	I		II		III	
Число зубьев	20	120	20	160	20	200

Тогда действительное значение передаточного отношения будет отличаться от расчётного на:

$$\Delta i = \frac{|i_{\pi} - i_{o}|}{i_{o}}, \tag{3.2.2}$$

где Δi — отличие действительного передаточного отношения от расчётного;

 $i_{\mbox{\tiny d}}$ — действительное передаточное отношение;

 i_{o} — общее передаточное отношение цепи.

Действительное передаточное отношение рассчитывается по формуле:

$$i_{\pi} = i_{12} \cdot i_{34} \cdot i_{56} = \frac{120}{20} \cdot \frac{160}{20} \cdot \frac{200}{20} = 480$$

Это значение отличается от расчетного на

$$\Delta i = \frac{|478 - 480|}{478} = 0.4\%$$

Такое отклонение не превышает допустимую [<10%]. В таком случае можно считать выбранные значения чисел зубьев колеса и шестерни подходящими.

Кинематическая схема приведена на рисунке 3.1:

Рисунок 3.1. Кинематическая схема

4. СИЛОВОЙ РАСЧЕТ

Цель расчёта: определение возникающих в каждой передаче моментов.

Моменты рассчитываются по формуле:

$$M_{ ext{ведущ}} = rac{M_{ ext{ведом}}}{i_j \cdot \eta_j \cdot \eta_{ ext{подш}}}$$

где $M_{\text{ведущ}}$ — момент на ведущем звене;

 $M_{\rm ведом}$ — момент на ведомом звене;

 i_j — передаточное отношение ступени;

 η_i — КПД передачи;

 $\eta_{
m подш}$ — КПД подшипников.[1]

Общий момент нагрузки рассчитывается по формуле:

$$\mathrm{M}_{\scriptscriptstyle \Sigma} = \mathrm{M}_{\scriptscriptstyle \mathrm{H}} + \mathrm{M}_{\scriptscriptstyle \mathrm{A}} = \mathrm{M}_{\scriptscriptstyle \mathrm{H}} + \mathit{J}_{\scriptscriptstyle \mathrm{H}} \cdot \epsilon_{\scriptscriptstyle \mathrm{H}}$$

где $M_{\rm H}$ – момент нагрузки;

 $\mathbf{M}_{\mathtt{J}}$ – динамический момент нагрузки;

 $J_{\rm H}$ – момент инерции нагрузки;

 $\varepsilon_{\rm H}$ –угловое ускорение вращения выходного вала. [1]

Примем КПД подшипника равным 0.99, а КПД передачи 0.98, эти значения взяты с запасом, и близки к идеальным. После уточнения характеристик привода, они получатся ниже.

4.1 Расчет общего момента нагрузки:

$$M_{\Sigma} = 0.3 + 0.1 \cdot 5 = 0.8 \text{ HM} = 800 \text{Hmm}$$

Расчет моментов в каждой передачи:

$$M_{IV\Sigma} = rac{M_{\Sigma}}{\eta_{
m подш}} = rac{0.8}{0.99} = 0.81 \
m HM = 810 \
m Hmm$$
 $M_{III\Sigma} = rac{M_{IV\Sigma}}{i_{56} \cdot \eta_{
m j} \cdot \eta_{
m подш}} = rac{0.81}{10 \cdot 0.98 \cdot 0.99} = 0.083 \
m HM = 83 \
m Hmm$

$$\begin{split} \mathbf{M}_{II\Sigma} &= \frac{\mathbf{M}_{III\Sigma}}{\mathbf{i}_{34} \cdot \eta_{\mathrm{j}} \cdot \eta_{\mathrm{подш}}} = \frac{0.083}{8 \cdot 0.98 \cdot 0.99} = 0.0107 \ \mathrm{HM} = 10.7 \ \mathrm{Hmm} \\ \mathbf{M}_{I\Sigma} &= \frac{\mathbf{M}_{II\Sigma}}{\mathbf{i}_{12} \cdot \eta_{\mathrm{j}} \cdot \eta_{\mathrm{подш}}} = \frac{0.0107}{6 \cdot 0.98 \cdot 0.99} = 0.0018 \ \mathrm{HM} = 1.8 \ \mathrm{Hmm} \end{split}$$

За неимением большинства необходимых данных (Например, о диаметрах валов), влиянием муфты на систему пренебрегаю. Оно будет рассчитано в проверочном расчете.

5. РАСЧЕТ ЗУБЧАТЫХ КОЛЕС НА ПРОЧНОСТЬ

Цель расчёта: определение модуля зацепления зубчатых колёс, обеспечивающего работоспособность в течение заданного срока службы.

5.1 Выбор материала

Для цилиндрической передачи открытого типа с небольшими окружными скоростями в качестве материала для шестерен будет использоваться углеродистая сталь 45XH, а в качестве материала для колёс — сталь 40X (см. таблица 6) в соответствии с рекомендациями.

$$[HB_{\text{шестерни}} = HB_{3K} + 10..15].$$

Зубья шестерен будут выполнены из материалов с более высокой твёрдостью рабочих поверхностей по сравнению с колёсами для повышения долговечности зубчатой передачи.

Таблица 6. Характеристики используемых материалов

	Шестерня	Колесо	
Материал	Сталь 45Х	Сталь 35Х	
Модуль упругости Е, МПа	2.1 ·	10^{-5}	
Коэффициент линейного расширения α·10-6, 1/°C	10		
Плотность ρ , г/см ³	7,8		
Твёрдость	$HB_1 = 217$	$HB_1 = 197$	
Термообработка	Термообработка Закалка 860 С, масло, Отпуск 500 С, в		
Предел прочности $\sigma_{\scriptscriptstyle B}$, МПа	1030	910	
Предел текучести $\sigma_{\scriptscriptstyle T}$, МПа	835	735	

5.2 Расчёт допустимых напряжений

Расчётное число циклов нагружения определяется по формуле:

$$N_H = 60 \cdot n \cdot c \cdot L$$

где п — частота вращения зубчатого колеса;

с = 1 — число колёс, находящихся в зацеплении с рассчитываемым;

L = 500 ч. — срок службы передачи.

Расчет числа циклов нагружения:

$$N_1 = 60 \cdot 4500 \cdot 1 \cdot 500 = 1.35 \cdot 10^8$$

$$N_2 = N_3 = 60 \cdot \frac{4500}{6} \cdot 1 \cdot 500 = 2.25 \cdot 10^7$$

$$N_4 = N_5 = 60 \cdot \frac{4500}{6 \cdot 8} \cdot 1 \cdot 500 = 2.8 \cdot 10^6$$

$$N_6 = 60 \cdot \frac{4500}{6 \cdot 8 \cdot 10} \cdot 1 \cdot 500 = 2.8 \cdot 10^5$$

Коэффициент долговечности определяется соотношением:

$$K_{FL} = \sqrt[m]{\frac{4 \cdot 10^6}{N_H}}$$

где m = 6 — показатель степени для материалов с твёрдостью $HB \le 350$ [9];

 $N_{\rm H}$ — расчётное число циклов нагружения.

При $N_{\rm H} > 4 \cdot 10^6$ принимают $K_{FL} = 1$ [9].

$$K_{FL1}=K_{FL2}=K_{FL3}=K_{FL4}=K_{FL5}\approx 1$$

$$K_{FL6} = \sqrt[6]{\frac{4 \cdot 10^6}{2.8 \cdot 10^5}} = 1.94$$

В таком случае можно определить допускаемое напряжение изгиба:

$$[\sigma_{F}] = \frac{\sigma_{FR} \cdot K_{FC} \cdot K_{FL}}{S_{F}}$$

Где σ_{FR} — предел выносливости при изгибе;

 $K_{FC}=0.65$ — коэффициент, учитывающий цикл нагружения колеса для реверсивных передач;

 $K_{FL} = 1$ — коэффициент долговечности;

 $S_F = 2,2$ — коэффициент запаса прочности для особо ответственных передач.

Предел выносливости при изгибе рассчитывается из соотношения [рекомендованный коэффициент 1,8]:

$$\sigma_{FR} = 1.8 \cdot HB$$
, M Π a

где НВ — твёрдость материала колеса.

Предел выносливости на изгиб для шестерней:

$$\sigma_{\text{FRIII}} = 1.8 \cdot 217 = 390.6 \text{ M}\Pi \text{a}$$

Предел выносливости на изгиб для зубчатых колес:

$$\sigma_{FRK} = 1.8 \cdot 207 = 372.6 \text{ M}\Pi a$$

Допускаемые напряжения на изгиб для шестерен будут равны:

$$[\sigma_F]_1 = [\sigma_F]_3 = [\sigma_F]_5 = \frac{390.6 \cdot 0.65 \cdot 1}{2.2} = 111.8 \text{ M}\Pi a$$

Допускаемые напряжения на изгиб для колес будут равны:

$$[\sigma_F]_2 = [\sigma_F]_4 = \frac{372.6 \cdot 0.65 \cdot 1}{2.2} = 110.1 \, \text{М}$$
Па $[\sigma_F]_6 = \frac{372.6 \cdot 0.65 \cdot 1.94}{2.2} = 213.6 \, \text{М}$ Па

5.3. Расчет передач на изгибную прочность

Для открытых передач модуль зацепления определяется из изгибной прочности:

$$m = K_m \sqrt[3]{\frac{M \cdot Y_F \cdot K}{z \cdot \psi_m \cdot [\sigma_F]}}$$

где $K_m = 1,4$ — коэффициент для прямозубых колёс [9];

М — крутящий момент, действующий на рассчитываемое колесо (по данным силового расчёта);

Y_F — коэффициент формы зуба для прямозубых цилиндрических колёс.

z — число зубьев рассчитываемого колеса;

K = 1,1 — коэффициент расчётной нагрузки [9];

 $\psi_m = 10$ — коэффициент ширины зубчатого венца для мелкомодульных передач [рекомендованный диапазон 3..16];

[σ_F] — допускаемое напряжение изгиба.

Расчет $Y_F/[\sigma_F]$ для каждой передачи:

	1	2	3	4	5	6
Yf	4.15	3.75	4.15	3.75	4.15	3.75
$Y_F/[\sigma_F]$	4.15	3.75	3.98	3.75	3.98	3.75
	${111.8} =$	${110.1} =$	${111.8} =$	${110.1} =$	${111.8} =$	${213.6} =$
	= 0.0371	= 0.0341	= 0.0371	= 0.0341	= 0.0371	= 0.0176

Т.К. расчёт производится по тому зубчатому колесу (из пары шестерня

- зубчатое колесо), для которого отношение $Y_F/[\sigma_F]$ больше. Модуль зацепления для каждой пары колёс будет равен:

$$m_{12} = 1.4 \sqrt[3]{\frac{1.8 \cdot 4.15 \cdot 1.1}{20 \cdot 10 \cdot 111.8}} = 0.1 \text{ mm}$$

$$m_{34} = 1.4 \sqrt[3]{\frac{10.7 \cdot 4.15 \cdot 1.1}{20 \cdot 10 \cdot 111.8}} = 0.18 \text{ mm}$$

$$m_{56} = 1.4 \sqrt[3]{\frac{83 \cdot 4.15 \cdot 1.1}{20 \cdot 10 \cdot 111.8}} = 0.36 \text{ mm}$$

Значения модулей зацепления округляются в соответствии с ГОСТ 9563-60. (Использую комбинированный подход, при котором

 $m_{\mathrm min}=0.3$): Таким образом, модули зацепления цилиндрических зубчатых передач будут равны

$$m_{12}=m_{34}=0.3 \ \mathrm{MM}$$
 $m_{56}=0.4 \ \mathrm{MM}$

6. ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ

Целью расчёта является определение основных размеров передач и их элементов.

Основные геометрические размеры цилиндрических зубчатых передач указаны на рисунке 2.

Рисунок 2 Геометрические параметры цилиндрической зубчатой передачи

В данном приводе используются цилиндрические прямозубые передачи, поэтому угол наклона зубьев $\beta=0^\circ$.

Делительный диаметр определяется соотношением:

$$d = \frac{m \cdot z}{\cos \beta} \tag{6.1}$$

где d — делительный диаметр;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев рассчитываемого колеса;

 $\beta = 0^{\circ}$ — угол наклона зубьев.

6.1 Расчет делительного диаметра

$$d_1 = d_3 = 0.3 \cdot 20 = 6 \text{ mm}$$
 $d_2 = 0.3 \cdot 120 = 36 \text{ mm}$ $d_4 = 0.3 \cdot 160 = 48 \text{ mm}$ $d_5 = 0.4 \cdot 20 = 8 \text{ mm}$ $d_6 = 0.4 \cdot 200 = 80 \text{ mm}$

Диаметр вершин зубьев определяется по формуле:

$$d_{a} = \frac{m \cdot z}{\cos \beta} + 2m(h_{a}^{*} + x) = d + 2m(h_{a}^{*} + x), \tag{5.2}$$

где d_а — диаметр вершин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

z — число зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба [1];

х = 0 — коэффициент смещения.

Расчет диаметра вершин зубьев:

$$\begin{aligned} d_{a1} &= d_{a3} = 6 + 2 \cdot 0.3 \cdot 1 = 6.6 \text{ mm} \\ d_{a2} &= 36 + 2 \cdot 0.3 \cdot 1 = 36.6 \text{ mm} \\ d_{a4} &= 48 + 2 \cdot 0.3 \cdot 1 = 48.6 \text{ mm} \\ d_{a5} &= 8 + 2 \cdot 0.4 \cdot 1 = 8.8 \text{ mm} \\ d_{a6} &= 80 + 2 \cdot 0.4 \cdot 1 = 80.8 \text{ mm} \end{aligned}$$

Диаметр впадин определяется по формуле:

$$d_{f} = \frac{m \cdot z}{\cos \beta} - 2m(h_{a}^{*} + c^{*} - x), \tag{5.3}$$

где d_f — диаметр впадин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба [рекомендованное значение];

 $c^*=0.5$ — коэффициент радиального зазора $m \le 0.5$ мм, ($c^*=0.35$ - коэффициент радиального зазора 0.5 < m < 1 мм); по ГОСТ 9587-81;

х = 0 — коэффициент смещения.

Расчет диаметров впадин:

$$\begin{split} d_{f1} &= d_{f3} = 6 - 2 \cdot 0.3 \cdot (1 + 0.35) = 5.19 \text{ mm} \\ d_{f2} &= 36 - 2 \cdot 0.3 \cdot (1 + 0.35) = 35.19 \text{ mm} \\ d_{f4} &= 48 - 2 \cdot 0.3 \cdot (1 + 0.5) = 47.19 \text{ mm} \\ d_{f5} &= 8 - 2 \cdot 0.4 \cdot (1 + 0.35) = 6.92 \text{ mm} \\ d_{f6} &= 80 - 2 \cdot 0.4 \cdot (1 + 0.35) = 78.92 \text{ mm} \end{split}$$

Окружной шаг определяется по формуле:

$$p = m \cdot \pi$$

где р — окружной шаг;

т — модуль зацепления рассчитываемой пары колёс.

$$p_{12} = p_{34} = p_{56} = 0.3 \cdot \pi = 0.94,$$

$$p_{78} = 0.4 \cdot \pi = 1.26,$$

Ширина колеса определяется по формуле:

$$b_\kappa = \psi_m \cdot m$$

где b_{κ} — ширина колеса;

ψ_m выберем равным 10 — коэффициент ширины зубчатого венца для мелкомодульных передач из рекомендуемого диапазона 3..16; [1]

т — модуль зацепления рассчитываемой пары колёс.

Тогда ширина колёс будет равна:

$$b_2 = b_4 = 10 \cdot 0.3 = 3 \text{ mm}$$

 $b_6 = 10 \cdot 0.4 = 4 \text{ mm}$

Ширина шестерни определяется по формуле:

$$b_{III} = b_{K} + m$$

Тогда ширина шестерней будет равна:

$$b_1 = b_3 = 3 + 0.3 = 3.3 \text{ MM}$$

 $b_5 = 4 + 0.4 = 4.4 \text{ MM}$

Межосевое расстояние определяется по формуле:

$$a_{\omega} = \frac{0.5 \cdot m \cdot (z_{\text{\tiny K}} + z_{\text{\tiny III}})}{\cos \beta}$$

$$a_{w12} = 0.5 \cdot 0.3 \cdot (20 + 120) = 21 \text{ mm}$$

$$a_{w34} = 0.5 \cdot 0.3 \cdot (20 + 160) = 27 \text{ mm}$$

$$a_{w56} = 0.5 \cdot 0.4 \cdot (20 + 200) = 44 \text{ mm}$$

В таблице 7 сведены все рассчитанные геометрические параметры зубчатых колес:

Таблица 7. Геометрические параметры зубчатых колес

Параметр № колеса	Z	d, mm	d _a , мм	d_{f} , mm	<i>b</i> , мм	a_{ω} , MM
1	20	6	6.6	5.19	3.3	21
2	120	36	36.6	35.19	3	21
3	20	6	6.6	5.19	3.3	27
4	160	48	48.6	47.19	3	27
5	20	8	8.8	6.92	4.4	4.4
6	200	80	80.8	78.92	4	44

Вывод: Полученные геометрические параметры зубчатых колес позволяют их компоновку.

7. ПРОЕКТНЫЙ РАСЧЕТ ВАЛА

Диаметр вала исходя из условия крутильной прочности определяется выражением[1]:

$$d \ge \sqrt[3]{\frac{M_{\kappa p}}{0.2[\tau]_{\kappa p}}}$$

где M_{KD} -крутящий момент на валу

 $[\tau]_{\kappa p}$ – предельные крутильные напряжения

$$[\tau]_{\rm Kp} \approx 0.56 \frac{\sigma_{-1}}{n}$$

Где $\sigma_{-1} = 245 \ \text{М} \Pi a$ — предел выносливости при симметричном цикле нагружения

n – коэффициент запаса, выберем рекомендованный 2.[1]

$$[\tau]_{\text{kp}} \approx 0.56 \frac{245}{2} = 68.6 \text{M}\Pi \text{a}$$

Данный двигатель ДПР-72- Φ 1-03 имеет вал диаметром 4 мм, что позволяет закрепить выбранную 1 шестерню на его валу, ($d_{f1}=5.19>4$)

$$d_{II} \ge \sqrt[3]{\frac{18}{0.2 \cdot 68.6}} = 1.09 \text{ MM}$$

$$d_{III} \ge \sqrt[3]{\frac{107}{0.2 \cdot 68.6}} = 1.98 \text{ mm}$$

$$d_{IV} \ge \sqrt[3]{\frac{830}{0.2 \cdot 68.6}} = 3.92 \text{ mm}$$

Для повышения технологичности конструкции, выберу стандартный диаметр 4 мм на все валы

8. ВЫБОР ПОДШИПНИКОВ

В качестве опор будет использоваться шарикоподшипники. Предварительный выбор шарикоподшипников будет осуществляться по диаметру цапфы. Предварительно диаметр цапфы для каждого вала можно определить из выражения

$$d_{II} = d - 2..3 \text{ MM}$$

На вал I подшипник не назначается.

Из опыта прошлого семестра выберу подшипники F682 фирмы NTN изза простоты крепежа и отсутствия чрезмерного запаса хода. [3] (179 стр.)

Рисунок 3. Схема подшипника

Таблица 3. Параметры подшипника F682

d (MM)	2
D (MM)	5
D_1 (MM)	6.1
В (мм)	1.5
C ₁ (MM)	0.5
r (мин)	0.08
G_r (мкм)	13
Номинальная радиальная	169
грузоподъемность Н	
Номинальная осевая	50
грузоподъемность Н	
Размер заплечиков вала (мм)	2.62.7

9. РАСЧЕТ ПРЕДОХРАНИТЕЛЬНОЙ МУФТЫ

Цель расчета: подобрать предохранительную муфту, по рассчитанным ранее параметрам механизма.

Рассчитаю параметры муфты при установке на предпоследний вал редуктора.

9.1 Расчет диаметра колеса муфты

Параметры зубчатого колеса z_4 на предпоследнем валу:

Делительный диаметр, мм	48
Количество зубьев	160
Модуль, мм	0.3
Диаметр вала, мм	4
Передаваемый кр. момент Нмм	83
Ширина зубчатого венца, мм	4

По ГОСТ 15622-96, момент предохранения равен:

$$M_{\rm np} = K \cdot M_{\Sigma H}$$

где $K_{\text{max}} = 1.3$

 $M_{\Sigma {
m H}}$ -суммарный момент нагрузки.

$$M_{\rm np} = 1.3 \cdot 0.083 = 0.108 \, {\rm HM}$$

$$M_{\rm np} = f_{\rm rp} \cdot F_{\rm oc} \cdot D_{\rm cp}$$

где f_{Tp} — коэффициент трения фрикционного материала;

 $F_{\rm oc}$ – осевая сила;

 $D_{\rm cp}$ — средний радиус

 $D_{
m диск} = (3 \dots 6) d_{
m вала} \, -$ наружный диаметр диска. Назначим D = 20 мм

$$D_{
m cp} = rac{1}{2}ig(D_{
m диск} + d_{
m вала}ig) = rac{1}{2}\cdot (0.02 + 0.004) = 0.012 \,
m M$$

9.2 Расчет фрикционного материала муфты

Таблица 9.2.1 Механические свойства материалов поверхности трения

Материал	Условия	Коэф	Допустимое	Рабочая
фрикционной	работы	трения,	давление,	температура,
пары		f0	[р], МПа	${\mathbb C}$
Сталь-сталь		0.08	0.6 - 0.8	250
Сталь-бронза	Со смазкой	0.05	0.4	150
Сталь- текстолит		0.1	0.5 - 0.6	100
Сталь-асбест		0.3	0.25 - 0.3	250
Сталь-	Без смазки	0.8	0.3	550
металлокерамика				
Сталь-	Compress	0.4	0.4	550
металлокерамика	Со смазкой			

Выбираю материал Сталь-металлокерамика: с условием работы без смазки.

$$F_{\text{oc}} = \frac{M_{\text{пр}}}{f_{\text{тр}}D_{cp}} = \frac{0.108}{0.8 \cdot 0.012} = 11.25 \text{ H}$$

9.3 Расчет пружины

Сила пружины при максимальной деформации определяется выражением:

$$F_3 = \frac{F_2}{1 - \delta}$$

 Γ де F_2 — сила пружины при рабочей деформации.

 $\delta = 0,05...0,25$ — относительный инерционный зазор пружины сжатия для пружин сжатия I и II классов.

$$F_{3min} = \frac{11.25}{1 - 0.05} = 11.85 \text{ H}$$

$$11.25$$

$$F_{3max} = \frac{11.25}{1 - 0.25} = 15 \text{ H}$$

Таблица 9.3.1 Характеристики выбранной пружины по ГОСТ 13766-86

Номер	Сила пружины	Диаметр	Наружный	Жесткость	Наибольший
позиции	при	проволоки	диаметр	одного	прогиб
	максимальной	d	пружины	витка C ₁	одного
	деформации F_3	MM	\mathbf{D}_1	Н/мм	витка, S'3
	Н		MM		MM
187	14.0	0.8	10.5	5.160	2.714

Средний диаметр пружины:

$$D_{\rm cp} = D_1 - d = 10.5 - 0.8 = 9.6 \,\mathrm{mm}$$

Индекс пружины:

$$i = \frac{D_{\rm cp}}{d} = \frac{9.6}{0.8} = 12$$

Жесткость пружины определяется по формуле:

$$c = \frac{F_2 - F_1}{h}$$

Сила пружин при предварительной деформации:

$$F_1 = \frac{F_2}{2}$$

Рабочий ход пружины:

$$h = 3 ... 5 \text{ MM}$$

Выберу h = 4 мм

$$c = \frac{F_2 - F_1}{h} = \frac{11.25 - 5.625}{3} = 1.9 \text{ H/mm}$$

Число рабочих витков:

$$n = \frac{c_1}{c} = \frac{5.160}{1.9} = 2.715 \approx 3$$

Перерасчет жесткости:

$$c = \frac{c_1}{T} = \frac{5.160}{3} = 1.72 \text{ H/mm}$$

Деформация пружины:

$$s_i = \frac{F_i}{c}$$

$$S_1=rac{5.625}{1.72}=3.27$$
 мм — предварительная деформация $S_2=rac{11.25}{1.72}=6.54$ мм — рабочая деформация $S_3=rac{14}{1.72}=8.13$ мм — максимальная деформация

Длина пружины при максимальной деформации:

$$l_3 = (n_1 + 1 - n_3) \cdot d = (5 + 1 - 0) \cdot 0.8 = 4.8 \text{ MM}$$

Где, n_1 — общее число витков;

 n_3 — число обработанных витков;

Длина пружины в свободном состоянии:

$$l_0 = l_3 + s_3 = 4.8 + 9.6 = 14.4 \text{ mm}$$

Длина пружины при рабочей деформации:

$$l_2 = l_0 - s_2 = 14.4 - 6.54 = 7.86 \text{ mm}$$

Длина пружины при предварительной деформации:

$$l_2 = l_0 - s_2 = 14.4 - 3.27 = 10.13 \text{ MM}$$

Шаг пружины в свободном состоянии:

$$t = s'_3 + d = 2.714 + 0.8 = 3.514 \text{ mm}$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Кокорев Ю.А., Жаров В.А., Торгов А.М. Расчет электромеханического привода. Изд-во МГТУ, 1995, 132 с.
- 2. Технические характеристики двигателей ДПР-72 исполнения Ф1; ДПР-72-Ф1-03; сайт компании «Электроника и Связь, поставка электронных компонентов» URL: https://eandc.ru/catalog/dpr-72-f1-03/ (Дата обращения 29.02.2024).
- 3. RollingBearings.ru каталог подшипников NTN (на сайте www.podshipnik.ru). URL: https://www.podshipnik.ru/upload/iblock/217/%D0%9F%D0%BE%D0%BE%D0%B4%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D1
 <a href="https://www.podshipnik.ru/upload/iblock/217/%D0%9F%D0%B8%D0