

\mathcal{L} ИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ $N\ 2.\ 2006$

Электронный журнал, рег. N П23275 от 07.03.97

 $http://www.neva.ru/journal \ e-mail: diff@osipenko.stu.neva.ru$

Моделирование динамических систем

ВЛИЯНИЕ ПОГРАНИЧНЫХ СКАЧКОВ ТЕМПЕРАТУРЫ И КОНЦЕНТРАЦИИ НА ТЕРМОФОРЕЗ ЛЕТУЧЕЙ КАПЛИ СФЕРОИДАЛЬНОЙ ФОРМЫ В УМЕРЕННО-РАЗРЕЖЕННОЙ БИНАРНОЙ ГАЗОВОЙ СМЕСИ

С.Н.ДЬЯКОНОВ

Россия, 302026, г. Орел, ул. Комсомольская, 95, ГОУ ВПО "Орловский государственный университет", физико-математический факультет, e-mail: s.dyakonov@univ-orel.ru

Б.В.РЮМШИН

Россия, 302026, г. Орел, ул. Комсомольская, 95, ГОУ ВПО "Орловский государственный университет", физико-математический факультет, e-mail: rumshinbv@univ-orel.ru

Аннотация.

В настоящее время динамика одиночных аэрозольных частиц эллипсоидальной формы в неоднородных термодиффузионных полях исследована

 $^{^{0}}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований проект N_{0} 05-01-96411 р цчр а.

достаточно полно в гидродинамическом режиме со скольжением [1-4]. Анализ влияния скачка температуры у поверхности умеренно крупной твердой нелетучей слабо деформированной сферической частицы на скорость термофореза сделан в работе [5]. В данной работе впервые представлена оценка относительного влияния пограничных температурных и концентрационных скачков в слое Кнудсена на скорость равномерного термофоретического переноса летучей высоковязкой сфероидальной капли, которая вытянута в направлении движения и имеет произвольный эксцентриситет. Рассматривается гидродинамический режим движения со скольжением и фазовым переходом одного из компонентов бинарной газовой смеси на граничной поверхности, с учетом термодиффузионных и стефановских эффектов. Решение аналогичной задачи для сплюснутого сфероида получается, если сделаны известные замены в расчетных формулах для вытянутого сфероида. Результаты работы позволяют анализировать интересные случаи иглообразных или дископодобных тел, когда влияние скачков температуры и концентрации вблизи граничной поверхности с переменной кривизной оказывается очень существенным. Очевидно, что частицы указанной формы хорошо аппроксимируются вытянутыми или сплюснутыми сфероидами вращения, так как такие сфероиды в предельных случаях вырождаются в отрезок нити или круглый диск соответственно.

1 Общее решение уравнения Стокса в системе криволинейных координат вытянутого сфероида.

Рассмотрим точку наблюдения с декартовыми координатами (x,y,z), которая находится на расстоянии $\gamma>0$ от оси z. Меридианные полубесконечные плоскости $\varphi=\mathrm{const}$ ограничены этой осью и содержат ее. Пусть справедливы равенства

$$x + iy = \gamma \exp(i\varphi),$$
 $z + i\gamma = f(\xi + i\sigma),$ $i^2 = -1.$

Параметры ξ и σ характеризуют взаимно ортогональные семейства кривых в меридианных полуплоскостях $\varphi = \text{const.}$ Фиксируя любую из переменных (ξ, σ, φ) получаем три взаимно ортогональных семейства поверхностей. При этом ось z является осью вращения координатных поверхностей $\xi = \text{const}$ и $\sigma = \text{const.}$

Если постоянная c>0 имеет размерность длины, то конформное преоб-

разование

$$f(\xi + i\sigma) = c\operatorname{ch}(\xi + i\sigma)$$

приводит к следующим соотношениям

$$x = c \operatorname{sh} \xi \sin \sigma \cos \varphi, \qquad y = c \operatorname{sh} \xi \sin \sigma \sin \varphi, \qquad z = c \operatorname{ch} \xi \cos \sigma.$$

Криволинейные ортогональные координаты (ξ, σ, φ) определяют единственным образом положение произвольной точки пространства с радиусом вектором $\mathbf{r} = (x, y, z)$, если выполняются условия

$$0 \leqslant \xi < \infty$$
, $0 \leqslant \sigma \leqslant \pi$, $0 \leqslant \varphi < 2\pi$.

Координатные поверхности $\xi={\rm const}$ и $\sigma={\rm const}$ представляют собой взаимно ортогональные семейства софокусных вытянутых вдоль оси z сфероидов и двуполостных гиперболоидов. Они имеют соответствующие уравнения

$$\frac{x^2 + y^2}{\lambda^2 - 1} + \frac{z^2}{\lambda^2} = c^2, \qquad \lambda = \text{ch } \xi, \qquad 1 \leqslant \lambda < \infty,$$
$$\frac{x^2 + y^2}{1 - \mu^2} - \frac{z^2}{\mu^2} = -c^2, \qquad \mu = \cos \sigma, \qquad -1 \leqslant \mu \leqslant +1,$$

а получаются в результате вращения эллипса и гиперболы вокруг оси z, проходящей через фокусы.

Софокусные вытянутые сфероиды имеют общий геометрический центр в начале координат ($\xi=0,\sigma=\pi/2$) и фокусы F_\pm , расположенные в точках ($\gamma=0,z=\pm c$), которые соответствуют ($\xi=0,\sigma=0$) и ($\xi=0,\sigma=\pi$). Расстояния от фокусов F_\pm эллипса $\lambda=\lambda_0$ до точки (γ,z) меридианной плоскости равны

$$r_{\pm} = \sqrt{\gamma^2 + \left(z \mp c\right)^2}.$$

Между координатами (γ,z) и (λ,μ) существует связь

$$\gamma = c\sqrt{(\lambda^2 - 1)(1 - \mu^2)}, \qquad z = c\lambda\mu.$$

Тогда можно записать

$$r_{\pm} = c(\lambda \mp \mu),$$

а обратное преобразование координат раскрывает геометрический смысл безразмерных переменных (λ,μ)

$$\lambda = \operatorname{ch} \xi = \frac{r_{-} + r_{+}}{2c}, \qquad \mu = \cos \sigma = \frac{r_{-} - r_{+}}{2c}.$$

Большая и малая полуоси (a,b) вытянутого сфероида вращения $\lambda = \lambda_0$ расположены вдоль осей z и γ , а значения вычисляются посредством формул

$$a = c \operatorname{ch} \xi_0 = c \lambda_0, \qquad b = c \operatorname{sh} \xi_0 = c \sqrt{\lambda_0^2 - 1}.$$

Откуда параметры $c,\;\lambda_0$ и эксцентриситет e выражаются через a и b

$$c^2 = a^2 - b^2$$
, $\lambda_0 = \frac{1}{e}$, $0 \le e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}} \le 1$.

Вытянутый сфероид вырождается при $\xi_0=0$ или $\lambda_0=1$ в отрезок прямой $z\leqslant |c|$, который соединяет фокусы $F_\pm.$

В произвольной правой системе криволинейных ортогональных координат (q_1, q_2, φ) вращения метрические коэффициенты (h_1, h_2, h_{φ}) находятся с помощью формул [1]

$$\frac{1}{h_m^2} = \left(\frac{\partial x}{\partial q_m}\right)^2 + \left(\frac{\partial y}{\partial q_m}\right)^2 + \left(\frac{\partial z}{\partial q_m}\right)^2, \qquad \frac{1}{h_\varphi^2} = \left(\frac{\partial x}{\partial \varphi}\right)^2 + \left(\frac{\partial y}{\partial \varphi}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2,
m = 1; 2.$$

Тогда производные

$$\frac{\partial \gamma}{\partial \lambda} = c\lambda \sqrt{\frac{1-\mu^2}{\lambda^2 - 1}}, \qquad \frac{\partial \gamma}{\partial \mu} = -c\mu \sqrt{\frac{\lambda^2 - 1}{1-\mu^2}}, \qquad \frac{\partial z}{\partial \lambda} = c\mu, \qquad \frac{\partial z}{\partial \mu} = c\lambda$$

дают для коэффициентов Лямэ выражения в переменных (λ, μ)

$$\frac{1}{h_{\lambda}^{2}} = \left(\frac{\partial \gamma}{\partial \lambda}\right)^{2} + \left(\frac{\partial z}{\partial \lambda}\right)^{2} = c^{2} \frac{\lambda^{2} - \mu^{2}}{\lambda^{2} - 1}, \qquad \frac{1}{h_{\mu}^{2}} = \left(\frac{\partial \gamma}{\partial \mu}\right)^{2} + \left(\frac{\partial z}{\partial \mu}\right)^{2} = c^{2} \frac{\lambda^{2} - \mu^{2}}{1 - \mu^{2}},$$

$$\frac{1}{h_{\varphi}^{2}} = \left(\frac{\partial \gamma}{\partial \varphi}\right)^{2} + \left(\frac{\partial z}{\partial \varphi}\right)^{2} = \gamma^{2},$$

$$\frac{h_{\lambda}}{h_{\mu}} = \sqrt{\frac{\lambda^{2} - 1}{1 - \mu^{2}}}, \qquad \frac{h_{\mu}}{h_{\lambda}} = \sqrt{\frac{1 - \mu^{2}}{\lambda^{2} - 1}}, \qquad c^{2} h_{\lambda} h_{\mu} = \frac{\sqrt{(\lambda^{2} - 1)(1 - \mu^{2})}}{\lambda^{2} - \mu^{2}}.$$

Осесимметричное стационарное векторное поле скоростей в несжимаемой среде определяется через функцию тока $\Psi(\mathbf{r})$, которая для стоксова течения удовлетворяет дифференциальному уравнению в частных производных четвертого порядка

$$E^4 \Psi(\mathbf{r}) \equiv E^2 \Big(E^2 \Psi(\mathbf{r}) \Big) = 0.$$

В правой ортогональной системе криволинейных координат (q_1, q_2, φ) вращения осесимметричный линейный дифференциальный оператор Стокса в частных производных второго порядка и компоненты вектора скорости $\mathbf{v} = \mathbf{v}(\mathbf{r})$ определяются формулами [1]

$$E^{2} \equiv \gamma h_{1} h_{2} \left\{ \frac{\partial}{\partial q_{1}} \left(\frac{h_{1}}{\gamma h_{2}} \frac{\partial}{\partial q_{1}} \right) + \frac{\partial}{\partial q_{2}} \left(\frac{h_{2}}{\gamma h_{1}} \frac{\partial}{\partial q_{2}} \right) \right\},$$

$$v_{1}(q_{1}, q_{2}) = -\frac{h_{2}}{\gamma} \frac{\partial \Psi(q_{1}, q_{2})}{\partial q_{2}}, \qquad v_{2}(q_{1}, q_{2}) = \frac{h_{1}}{\gamma} \frac{\partial \Psi(q_{1}, q_{2})}{\partial q_{1}}, \qquad v_{\varphi}(q_{1}, q_{2}) = 0.$$

Далее линейное уравнение для функции тока интегрируется в специальной системе координат (μ, λ, φ) вытянутого сфероида вращения и применяет подстановку

$$E^2\Psi(\lambda,\mu) = \Omega(\lambda,\mu), \qquad E^2\Omega(\lambda,\mu) = 0,$$
 (1)

где оператор Стокса в переменных (λ, μ) запишется так

$$E^{2} \equiv \frac{1}{c^{2}(\lambda^{2} - \mu^{2})} \left((\lambda^{2} - 1) \frac{\partial^{2}}{\partial \lambda^{2}} + (1 - \mu^{2}) \frac{\partial^{2}}{\partial \mu^{2}} \right).$$

Промежуточная скалярная функция $\Omega(\lambda,\mu)$ имеет размерность скорости и называется "стокслетом". В произвольной точке ${\bf r}$ пространства функция $\Omega(\lambda,\mu)$ равна произведению расстояния γ этой точки до оси симметрии течения и проекции на ось φ аксиального вектора завихренности скорости. С физической точки зрения "стокслет" представляет собой некоторую "круговую вихревую силу".

Частный интеграл первого уравнения (1) описывает вихревое векторное поле скоростей, а общее решение соответствующего однородного уравнения имеет структуру "стокслета"и выражает собой потенциальную составляющую течения.

После обезразмеривания величин и метрических коэффициентов Лямэ

$$r = a\tilde{r}, \qquad r_{\pm} = a\tilde{r}_{\pm}, \qquad \gamma = a\tilde{\gamma}, \qquad z = a\tilde{z},$$
 $v_{\lambda} = U\tilde{v}_{\lambda}, \qquad v_{\mu} = U\tilde{v}_{\mu}, \qquad \Psi = Ua^{2}\tilde{\Psi}, \qquad \Omega = U\tilde{\Omega}$

волнистая линия сверху опускается.

Частное решение второго уравнения (1)

$$(\lambda^2 - 1)\frac{\partial^2 \Omega(\lambda, \mu)}{\partial \lambda^2} + (1 - \mu^2)\frac{\partial^2 \Omega(\lambda, \mu)}{\partial \mu^2} = 0$$

ищется в форме произведения двух функций $\Omega(\lambda,\mu) = L(\lambda)M(\mu)$. В силу независимости переменных λ и μ каждая из частей в равенстве

$$\frac{\lambda^2 - 1}{L(\lambda)} \frac{d^2 L(\lambda)}{d\lambda^2} = -\frac{1 - \mu^2}{M(\mu)} \frac{d^2 M(\mu)}{d\mu^2}$$

должна быть постоянной величиной, которую считаем равной -n(n-1) для целых положительных значений n. Например, при n=-k+1 можно записать

$$n(n-1) = -k(-k+1) = k(k-1).$$

В результате для функций $L(\lambda)$ и $M(\mu)$ получаем два обыкновенных линейных дифференциальных уравнения второго порядка

$$(\lambda^2 - 1)L''(\lambda) - n(n-1)L(\lambda) = 0,$$
 $(1 - \mu^2)M''(\mu) + n(n-1)M(\mu) = 0.$

Уравнение Гегенбауэра степени m = -0.5

$$(1 - u^2)Z''(u) + n(n-1)Z(u) = 0$$

имеет два класса линейно независимых решений $J_n(u)$, $\mathcal{H}_n(u)$ – функции Гегенбауэра первого и второго родов, широко применяемые в гидродинамике. Свойства функций Гегенбауэра подробно исследованы и частично представлены в **Приложении**. В качестве функции $L(\lambda)$ можно рассматривать $J_n(\lambda)$ или $\mathcal{H}_n(\lambda)$, а в качестве функции $M(\mu)$ можно выбрать $J_n(\mu)$ или $\mathcal{H}_n(\mu)$.

Функции Гегенбауэра $\mathcal{H}_n(\mu)$ второго рода порядка $n \geqslant 2$ бесконечны в точках на оси $\mu = \pm 1$ симметрии течения. Пусть такая логарифмическая особенность не лежит в физической природе гидродинамической задачи. Очевидно, что с учетом соотношений (П.13) частные решения для "стокслета"имеют исключительно вид произведений

$$J_n(\lambda)J_n(\mu), \qquad \mathcal{H}_n(\lambda)J_n(\mu), \qquad n \geqslant 0.$$

Общее решение второго уравнения (1) запишется в виде бесконечного ряда по ультрасферическим полиномам Гегенбауэра степени -0,5

$$\Omega(\lambda,\mu) = \frac{1}{e^2} \sum_{n=0}^{\infty} \left\{ \delta_n J_n(\lambda) + \delta'_n \mathcal{H}_n(\lambda) \right\} J_n(\mu),$$

где $\delta_n, \; \delta_n^{'}$ есть произвольные постоянные безразмерные величины.

Предположим, что справедливо разложение

$$\Psi(\lambda, \mu) = \sum_{n=0}^{\infty} g_n(\lambda) J_n(\mu).$$

Тогда с учетом формулы (П.1) первое уравнение (1) запишется так

$$\sum_{n=0}^{\infty} \left\{ \left(\lambda^2 - 1\right) g_n''(\lambda) - n\left(n - 1\right) g_n(\lambda) \right\} J_n(\mu) = \left(\lambda^2 - \mu^2\right) \sum_{n=0}^{\infty} \frac{\delta_n J_n}{\delta_n' \mathcal{H}_n}(\lambda) J_n(\mu). \tag{2}$$

С помощью формулы (П.8) и частных тождеств

$$\mu^2 J_0(\mu) = J_0(\mu) - 2J_2(\mu), \qquad \mu^2 J_1(\mu) = J_1(\mu) + 2J_3(\mu)$$

уравнение (2) приводится к виду

$$\sum_{n=0}^{\infty} \left\{ (\lambda^{2} - 1)g_{n}^{"}(\lambda) - n(n-1)g_{n}(\lambda) \right\} J_{n}(\mu) = \\
= (\lambda^{2} - 1) \left(\frac{\delta_{0}J_{0}}{\delta'_{0}\mathcal{H}_{0}}(\lambda)J_{0}(\mu) + \frac{\delta_{1}J_{1}}{\delta'_{1}\mathcal{H}_{1}}(\lambda)J_{1}(\mu) \right) + \\
+ \frac{1}{5} \left(10 \frac{\delta_{0}J_{0}}{\delta'_{0}\mathcal{H}_{0}}(\lambda) + \frac{\delta_{2}}{\delta'_{2}}(5\lambda^{2} - 1) \frac{J_{2}}{\mathcal{H}_{2}}(\lambda) - \frac{2}{7} \frac{\delta_{4}J_{4}}{\delta'_{4}\mathcal{H}_{4}}(\lambda) \right) J_{2}(\mu) - \\
- \frac{1}{7} \left(14 \frac{\delta_{1}J_{1}}{\delta'_{1}\mathcal{H}_{1}}(\lambda) - \frac{\delta_{3}}{\delta'_{3}}(7\lambda^{2} - 3) \frac{J_{3}}{\mathcal{H}_{3}}(\lambda) + \frac{2}{3} \frac{\delta_{5}J_{5}}{\delta'_{5}\mathcal{H}_{5}}(\lambda) \right) J_{3}(\mu) - \\
- \sum_{n=4}^{\infty} \frac{1}{2n-3} \left\{ \frac{(n-1)n}{2n-5} \frac{\delta_{n-2}}{\delta'_{n-2}} - \frac{(n-3)(n-2)}{2n-1} \frac{\delta_{n}}{\delta'_{n}} \right\} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(\lambda) J_{n}(\mu) + \\
+ \sum_{n=4}^{\infty} \frac{1}{2n+1} \left\{ \frac{(n+1)(n+2)}{2n-1} \frac{\delta_{n}}{\delta'_{n}} - \frac{(n-1)n}{2n+3} \frac{\delta_{n+2}}{\delta'_{n+2}} \right\} \frac{J_{n+2}}{\mathcal{H}_{n+2}}(\lambda) J_{n}(\mu). \quad (3)$$

Известные соотношения [1]

$$J_{2}(\lambda) = \frac{1}{2} (1 - \lambda^{2}), \qquad J_{3}(\lambda) = \frac{1}{2} (1 - \lambda^{2})\lambda,$$

$$J_{4}(\lambda) = \frac{1}{8} (1 - \lambda^{2}) (5\lambda^{2} - 1) = \frac{1}{4} (5\lambda^{2} - 1) J_{2}(\lambda),$$

$$J_{5}(\lambda) = \frac{1}{8} (1 - \lambda^{2}) (7\lambda^{2} - 3)\lambda = \frac{1}{4} (7\lambda^{2} - 3) J_{3}(\lambda),$$

$$\mathcal{H}_{2}(\lambda) = \frac{1}{2} J_{2}(\lambda) \ln \frac{\lambda + 1}{\lambda - 1} + \frac{1}{2} \lambda, \qquad \mathcal{H}_{3}(\lambda) = \frac{1}{2} J_{3}(\lambda) \ln \frac{\lambda + 1}{\lambda - 1} + \frac{1}{6} (3\lambda^{2} - 2),$$

$$\mathcal{H}_{4}(\lambda) = \frac{1}{2} J_{4}(\lambda) \ln \frac{\lambda + 1}{\lambda - 1} + \frac{1}{24} (15\lambda^{2} - 13)\lambda,$$

$$\mathcal{H}_{5}(\lambda) = \frac{1}{2} J_{5}(\lambda) \ln \frac{\lambda + 1}{\lambda - 1} + \frac{1}{120} (105\lambda^{4} - 115\lambda^{2} + 16)$$

дают оценки

$$(5\lambda^{2} - 1)J_{2}(\lambda) = 4J_{4}(\lambda), \qquad (7\lambda^{2} - 3)J_{3}(\lambda) = 4J_{5}(\lambda),$$

$$(5\lambda^{2} - 1)\mathcal{H}_{2}(\lambda) = 2J_{4}(\lambda)\ln\frac{\lambda + 1}{\lambda - 1} + \frac{1}{6}\left(15\lambda^{2} - 13\right)\lambda + \frac{5}{3}\lambda = 4\mathcal{H}_{4}(\lambda) + \frac{5}{3}\lambda,$$

$$(7\lambda^{2} - 3)\mathcal{H}_{3}(\lambda) = 2J_{5}(\lambda)\ln\frac{\lambda + 1}{\lambda - 1} +$$

$$+\frac{1}{30}\left(105\lambda^{4} - 115\lambda^{2} + 16\right) + \frac{7}{15} = 4\mathcal{H}_{5}(\lambda) + \frac{7}{15}.$$

Многочлены Гегенбауэра образуют систему линейно независимых функций. Тогда равенство (3) окажется тождеством, если в обеих частях будут равны коэффициенты при полиномах $J_n(\mu)$ одинакового порядка. Поэтому для функций $g_n(\lambda)$ имеем линейные неоднородные обыкновенные дифференциальные уравнения второго порядка

$$g_0''(\lambda) = \frac{\delta_0 J_0}{\delta_0' \mathcal{H}_0}(\lambda), \qquad g_1''(\lambda) = \frac{\delta_1 J_1}{\delta_1' \mathcal{H}_1}(\lambda),$$

$$(\lambda^2 - 1)g_2''(\lambda) - 2g_2(\lambda) = 2\frac{\delta_0 J_0}{\delta_0' \mathcal{H}_0}(\lambda) + \frac{1}{3}\delta_2'\lambda + \frac{2}{5}\left(2\frac{\delta_2}{\delta_2'} - \frac{1}{7}\frac{\delta_4}{\delta_4'}\right)\frac{J_4}{\mathcal{H}_4}(\lambda),$$

$$(\lambda^2 - 1)g_3''(\lambda) - 6g_3(\lambda) = -2\frac{\delta_1 J_1}{\delta_1' \mathcal{H}_1}(\lambda) + \frac{1}{15}\delta_3' + \frac{2}{7}\left(2\frac{\delta_3}{\delta_3'} - \frac{1}{3}\frac{\delta_5}{\delta_5'}\right)\frac{J_5}{\mathcal{H}_5}(\lambda),$$

$$(\lambda^{2} - 1)g_{n}'' - n(n - 1)g_{n}(\lambda) =$$

$$= \left\{ \frac{(n - 3)(n - 2)}{(2n - 3)(2n - 1)} \frac{\delta_{n}}{\delta_{n}'} - \frac{(n - 1)n}{(2n - 5)(2n - 3)} \frac{\delta_{n-2}}{\delta_{n-2}'} \right\} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(\lambda) +$$

$$+ \left\{ \frac{(n + 1)(n + 2)}{(2n - 1)(2n + 1)} \frac{\delta_{n}}{\delta_{n}'} - \frac{(n - 1)n}{(2n + 1)(2n + 3)} \frac{\delta_{n+2}}{\delta_{n+2}'} \right\} \frac{J_{n+2}}{\mathcal{H}_{n+2}}(\lambda).$$

Частный интеграл возмущенного уравнения

$$(\lambda^2 - 1)g_n''(\lambda) - n(n-1)g_n(\lambda) = \frac{J_m}{\mathcal{H}_m}(\lambda), \quad n \neq m, \quad n+m \neq 1$$

находится с помощью равенства (П.1)

$$g_n^*(\lambda, m) = \frac{1}{(m-n)(m+n-1)} \frac{J_m}{\mathcal{H}_m}(\lambda).$$

Например, имеем

$$g_n^*(\lambda, n-2) = -\frac{1}{2(2n-3)} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(\lambda), \qquad g_n^*(\lambda, n+2) = +\frac{1}{2(2n+1)} \frac{J_{n+2}}{\mathcal{H}_{n+2}}(\lambda).$$

Таким образом, после замены произвольных постоянных

$$\frac{\delta_n}{\delta'_n} \to 2(n-1)n(2n-1)\frac{\delta_n}{\delta'_n}, \quad n \geqslant 2$$

искомая безразмерная функция тока представляется в виде бесконечного ряда по ультрасферическим полиномам Гегенбауэра

$$\Psi(\lambda, \mu) = \sum_{m=0}^{\infty} \Psi_{m, \lambda}(\lambda) J_m(\mu), \tag{4}$$

$$\Psi_{0,\lambda}(\lambda) = \frac{\alpha_0 J_0}{\alpha_0' \mathcal{H}_0}(\lambda) + \frac{1}{2} \left(\delta_0 \lambda^2 - \frac{1}{3} \delta_0' \lambda^3 \right), \tag{5}$$

$$\Psi_{1,\lambda}(\lambda) = \frac{\alpha_1 J_1}{\alpha_1' \mathcal{H}_1}(\lambda) - \frac{1}{2} \left(\delta_1' \lambda^2 + \frac{1}{3} \delta_1 \lambda^3 \right), \tag{6}$$

$$\Psi_{2,\lambda}(\lambda) = -\delta_0 + \left(\delta_0' - 2\delta_2'\right)\lambda + \frac{\alpha_2 J_2}{\alpha_2' \mathcal{H}_2}(\lambda) + \frac{24}{25} \left(\delta_2 - \frac{\delta_4}{\delta_2'}\right) \frac{J_4}{\mathcal{H}_4}(\lambda), \tag{7}$$

$$\Psi_{3,\lambda}(\lambda) = -\frac{1}{3} \left(\delta_1' + 2\delta_3' + \delta_1 \lambda \right) + \frac{\alpha_3 J_3}{\alpha_3' \mathcal{H}_3}(\lambda) + \frac{120}{49} \left(\frac{\delta_3}{\delta_3'} - \frac{\delta_5}{\delta_5'} \right) \frac{J_5}{\mathcal{H}_5}(\lambda), \quad (8)$$

$$\Psi_{n,\lambda}(\lambda) = \frac{(n-3)(n-2)(n-1)n}{(2n-3)^2} {\binom{\delta_{n-2}}{\delta'_{n-2}}} - \frac{\delta_n}{\delta'_n} {\binom{J_{n-2}}{H_{n-2}}} (\lambda) + \frac{\alpha_n J_n}{\alpha'_n \mathcal{H}_n} (\lambda) + \frac{(n-1)n(n+1)(n+2)}{(2n+1)^2} {\binom{\delta_n}{\delta'_n}} - \frac{\delta_{n+2}}{\delta'_{n+2}} {\binom{J_{n+2}}{H_{n+2}}} (\lambda).$$
(9)

Здесь члены с постоянными коэффициентами (α, α') описывают потенциальную составляющую векторного поля скоростей, а другие слагаемые соответствуют вихревой составляющей течения. Все следующие через один члены разложения связаны друг с другом, так как постоянные интегрирования (δ, δ') "зацепляются".

В правой специальной системе координат (μ, λ, φ) вытянутого сфероида в силу тождества (П.6) справедливы равенства

$$v_{\mu}(\lambda,\mu) = -\frac{h_{\lambda}}{\gamma} \frac{\partial \Psi(\lambda,\mu)}{\partial \lambda} = -\frac{1}{e\sqrt{(\lambda^2 - \mu^2)(1 - \mu^2)}} \sum_{n=0}^{\infty} \frac{d\Psi_{n,\lambda}(\lambda)}{d\lambda} J_n(\mu),$$

$$v_{\lambda}(\lambda,\mu) = +\frac{h_{\mu}}{\gamma} \frac{\partial \Psi(\lambda,\mu)}{\partial \mu} = -\frac{1}{e\sqrt{(\lambda^2 - \mu^2)(\lambda^2 - 1)}} \sum_{n=0}^{\infty} \Psi_{n+1,\lambda}(\lambda) P_n(\mu).$$

Если физическая природа задачи исключает сингулярные особенности на оси симметрии течения, то в разложении (4) отсутствуют члены с многочленами Гегенбауэра порядка n=0 и n=1, так как это приводит к бесконечным тангенциальным скоростям в точках $\mu=\pm 1$. Тогда с учетом (П.13) линейно независимая система функций $\{1,\lambda,\lambda^2,\lambda^3\}$ требует считать

$$\alpha_0 = \alpha_0' = \delta_0 = \delta_0' = \alpha_1 = \alpha_1' = \delta_1 = \delta_1' = 0.$$

Тогда замена

$$\frac{(n-3)(n-2)(n-1)n}{(2n-3)^3} {\delta_{n-2} \choose \delta'_{n-2}} - \frac{\delta_n}{\delta'_n} \to \frac{\delta_{n-1}}{\delta'_{n-1}}, \qquad n \geqslant 4$$

доставляет разложение

$$\Psi(\lambda, \mu) = \left(C_{1}\lambda + \frac{\alpha_{2}J_{2}}{\alpha'_{2}\mathcal{H}_{2}}(\lambda) + \frac{\delta_{3}J_{4}}{\delta'_{3}\mathcal{H}_{4}}(\lambda)\right)J_{2}(\mu) + \\
+ \left(C_{2} + \frac{\alpha_{3}J_{3}}{\alpha'_{3}\mathcal{H}_{3}}(\lambda) + \frac{\delta_{4}J_{5}}{\delta'_{4}\mathcal{H}_{5}}(\lambda)\right)J_{3}(\mu) + \\
+ \sum_{m=4}^{\infty} \left\{\frac{\delta_{n-1}J_{n-2}}{\delta'_{n-1}\mathcal{H}_{n-2}}(\lambda) + \frac{\alpha_{n}J_{n}}{\alpha'_{n}\mathcal{H}_{n}}(\lambda) + \frac{\delta_{n+1}J_{n+2}}{\delta'_{n+1}\mathcal{H}_{n+2}}(\lambda)\right\}J_{m}(\mu). \quad (10)$$

где C_1 , C_2 есть постоянные интегрирования.

Выражения (4) – (9) являются основой для решения широкого класса задач физико-химической гидродинамики и удачно согласуются с разложением для функции тока по полиномам Гегенбауэра в сферической системе координат [1]. Действительно, по определению координат (λ,μ) вытянутого сфероида вращения при $c\to 0$ или $e\to 0$ радиальная координата λ неограниченно возрастает и происходит переход к безразмерным сферическим координатам (r,θ) . В этом предельном случае $c\lambda\to r,\ \mu\to\cos\theta$ справедливы следующие оценки

$$J_n(\lambda) \sim O(\lambda^n), \qquad J_{n-2}(\lambda) \sim O(\lambda^{n-2}), \qquad J_{n+2}(\lambda) \sim O(\lambda^{n+2}),$$

 $\mathcal{H}_n(\lambda) \sim O(\lambda^{-n+1}), \qquad \mathcal{H}_{n-2}(\lambda) \sim O(\lambda^{-n+3}), \qquad \mathcal{H}_{n+2}(\lambda) \sim O(\lambda^{-n-1}),$

которые доставляют для функции тока известную структуру

$$\Psi(r, \cos \theta) = \sum_{n=0}^{\infty} \left\{ r^n, r^{-n+1}, r^{n+2}, r^{-n+3} \right\} J_n(\cos \theta).$$

2 Сила вязкого сопротивления.

Интегральное действие гидродинамических напряжений на всю поверхность вытянутого сфероида вращения при осесимметричном движении окружающей жидкости направлено вдоль оси z. Если течение внешней несжимаемой среды с коэффициентом динамической вязкости η считается стоксовым, то z - проекция результирующей силы определяется размерным выражением [1]

$$F_z = \pi \eta \int \gamma^3 \frac{\partial}{\partial n} \left(\frac{E^2 \Psi}{\gamma^2} \right) \delta t.$$

Эта формула применяется в симметричных задачах для любого типа граничных условий, когда внешняя среда является бесконечно протяженной или ограничена в пространстве. Указанный динамический параметр обусловлен завихрениями течения и записан через характеристические координаты с правой системой локальных единичных векторов $(\mathbf{n}, \mathbf{t}, \mathbf{i}_{\varphi})$. В направлениях осей n и t дуги имеют дифференциальные элементы длины δn и δt . Интегрирование идет вдоль контура меридианного сечения тела в направлении касательного вектора \mathbf{t} , который образует прямой положительный угол с вектором \mathbf{n} внешней нормали к контуру. Нижний и верхний пределы интегрирования соответствуют верхней и нижней точкам пересечения оси симметрии с граничной поверхностью.

В вытянутой сфероидальной системе координат (μ, λ, φ) с учетом $\mathbf{n} = \mathbf{i}_{\lambda}$, $\mathbf{t} = -\mathbf{i}_{\mu}$ справедливы соотношения [1]

$$\delta n = +\frac{\delta \lambda}{h_{\lambda}}, \qquad \delta t = -\frac{\delta \mu}{h_{\mu}}.$$

Пусть размерная формула для результирующего действия внешней среды на координатную поверхность $\lambda=\lambda_0$ с дифференциальным элементом площади $dS_\lambda=2\pi\gamma\delta t$

$$F_z = -\pi \eta \left\{ \int_{+1}^{-1} \left(\gamma \frac{\partial (\mathbf{E}^2 \Psi)}{\partial \lambda} - 2(\mathbf{E}^2 \Psi) \frac{\partial \gamma}{\partial \lambda} \right) \frac{h_{\lambda}}{h_{\mu}} d\mu \right\}_{\lambda = \lambda_0} =$$

$$= \pi \eta c \left\{ \int_{-1}^{+1} \left((\lambda^2 - 1) \frac{\partial (\mathbf{E}^2 \Psi)}{\partial \lambda} - 2\lambda (\mathbf{E}^2 \Psi) \right) d\mu \right\}_{\lambda = \lambda_0}$$

допускает перемену местами порядка дифференцирования по λ и интегрирования по μ

$$F_z = \pi \eta a e \left\{ \left(\lambda^2 - 1 \right) \frac{\partial}{\partial \lambda} \int_{-1}^{+1} \left(\mathbf{E}^2 \Psi \right) d\mu - 2\lambda \int_{-1}^{+1} \left(\mathbf{E}^2 \Psi \right) d\mu \right\}_{\lambda = \lambda_0}.$$

При отсутствии сингулярных особенностей на оси симметрии течения разложение размерного "стокслета" в бесконечный ряд по ультрасферическим полиномам $J_n(\mu)$ Гегенбауэра начинается с индекса n=2

$$\Omega(\lambda,\mu) = E^2 \Psi(\lambda,\mu) = 2 \frac{U}{e^2} \sum_{n=2}^{\infty} (n-1) n (2n-1) \frac{\delta_n J_n}{\delta'_n \mathcal{H}_n} (\lambda) J_n(\mu).$$

Поэтому в силу равенств (Π .6) и (Π .14) имеем

$$F_z = -8\pi \eta a \lambda_0 U \frac{\delta_2}{\delta_2'} \left(\left(\lambda_0^2 - 1 \right) \frac{P_1}{Q_1} (\lambda_0) + 2\lambda_0 \frac{J_2}{\mathcal{H}_2} (\lambda_0) \right).$$

Так как справедливы тождества

$$(\lambda^2 - 1)P_1(\lambda) + 2\lambda J_2(\lambda) = 0, \qquad (\lambda^2 - 1)Q_1(\lambda) + 2\lambda \mathcal{H}_2(\lambda) = 1,$$

то интегральное действие напряжений на всю поверхность вытянутого сфероида вращения определяется только одним коэффициентом $\delta_2^{'}$ в размерной формуле

$$F_z = -8\pi \eta a \lambda_0 U \delta_2'. \tag{11}$$

Правая криволинейная ортогональная специальная система координат (μ, τ, φ) сжатого сфероида, у которого малая ось вращения лежит на оси z, вводится так

$$z + i\gamma = c \Big(\tau \mu + i \sqrt{(\tau^2 + 1)(1 - \mu^2)} \Big), \qquad c > 0, \qquad \tau \geqslant 1, \qquad |\mu| \leqslant 1.$$

Конформное преобразование для координат (μ, λ, φ) вытянутого сфероида вращения

$$z + i\gamma = c\left(\lambda\mu + i\sqrt{\left(\lambda^2 - 1\right)\left(1 - \mu^2\right)}\right), \qquad c > 0, \qquad \lambda \geqslant 1, \qquad |\mu| \leqslant 1$$

переходит в преобразование для сплюснутого сфероида, если одновременно сделаны замены $\lambda \to +i\tau$, $c \to -ic$. Решение осесимметричной гидродинамической задачи для сжатого сфероида получается из решения аналогичной задачи для вытянутого сфероида, когда в полученных соотношениях произведены указанные замены.

3 Постановка задачи. Уравнения и граничные условия.

Пусть неподвижная бесконечно протяженная бинарная газовая смесь неравномерно нагрета с постоянным градиентом температуры A_T . В такую газообразную среду с коэффициентами динамической вязкости η и взаимной диффузии D компонентов помещается сфероидальная капля чистой высоковязкой летучей жидкости с удельной теплотой парообразования L. Молекулы летучего вещества капли испаряются на межфазной границе при исчезающе малых числах Маха и образуют первую (летучую) компоненту бинарной газовой смеси. Поверхность аэрозольной частицы непроницаема для газовых молекул второго (несущего) компонента. Эффекты теплового, диффузионного скольжений газовой смеси вдоль межфазной границы и явление летучести вызывают относительное движение сфероидального тела в окружающей среде. Очевидно, что при равномерном движении высоковязкая капля окажется вытянутой в направлении вектора ${\bf A}_T$. Ее направленный термофоретический перенос в режиме со скольжением характеризуется в лабораторной системе координат искомой скоростью \mathbf{U}_{ph} термофореза. Далее теоретическая модель пренебрегает внутренней циркуляцией высоковязкого вещества капли и термокапиллярными эффектами, которые обусловлены переменным межфазным поверхностным натяжением. Тогда при движении такого "твердого" летучего сфероида вращения вязкое сопротивление \mathbf{F}_v внешней среды стремится уравновесить термо - и диффузиофоретическую силы $(\mathbf{F}_{\mathrm{Tph}},\mathbf{F}_{\mathrm{Dph}})$, а также реактивное действие \mathbf{F}_{p} от нескомпенсированного фазового перехода летучего компонента газовой смеси. Скорость \mathbf{U}_{ph} достигается, если исчезает результирующая сила $\mathbf{F} \equiv \mathbf{F}_{\mathrm{Tph}} + \mathbf{F}_{\mathrm{Dph}} + \mathbf{F}_p + \mathbf{F}_v$.

Влияние летучести на термофорез тела происходит с разных сторон. Вопервых, меняются распределения температур внутри и в окрестности частицы. В результате появляется дополнительное скольжение газообразной среды вдоль поверхности тела. Во-вторых, окружающее пространство насыщается паром летучего вещества и усиливается термодиффузия компонентов смеси газов.

Задача решается в правой ортогональной специальной системе криволинейных координат (μ, λ, φ) вытянутого сфероида вращения. Геометрический центр сфероидальной капли с полуосями a и b < a жестко связан с началом координат. Полярная ось z ориентирована в направлении вектора $\mathbf{A}_T = (\nabla T)_{\infty}$. В этой инерциальной системе отсчета аэрозольная частица покоится, а центр масс внешней среды перемещается со скоростью $\mathbf{U} = -\mathbf{U}_{\mathrm{ph}}$.

Бинарная смесь газов считается несжимаемой, изотропной и умеренно разреженной, когда достаточно малые числа Кнудсена $\mathrm{Kn} < 0,3$ определяются произведением максимальной средней длины свободного пробега газовых молекул первого или второго сорта на максимальное значение $H = \max |K|$ модуля средней кривизны координатной поверхности $\lambda = \lambda_0$ вытянутого сфероида вращения:

$$K = \frac{1}{2} (K_1 + K_2), \qquad K_1 = \frac{1}{R_1}, \qquad K_2 = \frac{1}{R_2}.$$

Здесь (K_1, K_2) и (R_1, R_2) есть главные кривизны и радиусы кривизны граничной поверхности в двух нормальных взаимно перпендикулярных сечениях (нормальным сечением поверхности в произвольной ее точке называется линия пересечения этой поверхности с плоскостью, проходящей через нормаль к поверхности в данной точке). Тогда в силу неравенства треугольника

$$|K| = \frac{1}{2} |K_1 + K_2| \le \frac{1}{2} (|K_1| + |K_2|)$$

справедлива оценка сверху

$$H = \max |K| = \frac{1}{r} (|K_1| + |K_2|).$$

Так как эллипс в меридианной плоскости (γ, z) имеет уравнение

$$\frac{z^2}{a^2} + \frac{\gamma^2}{b^2} = 1,$$

то известная формула для кривизны плоской кривой дает

$$K_1 = \left(1 + \left(\frac{dz}{d\gamma}\right)^2\right)^{-\frac{3}{2}} \frac{d^2z}{d\gamma^2} = \mp \frac{a}{b^2} \left(1 + \frac{c^2\gamma^2}{b^4}\right)^{-\frac{3}{2}}.$$

Для омбилических вершин $(0;\pm a)$ вытянутого сфероида, лежащих на оси z

$$|K_1| = |K_2| = \frac{a}{b^2}, \qquad |K| = \frac{a}{b^2} > \frac{1}{b}.$$

Для неомбилических вершин $(\pm b;0)$ вытянутого сфероида, расположенных на оси γ

$$|K_1| = \frac{b}{a^2}, \qquad |K_2| = \frac{1}{b}, \qquad |K| = \frac{1}{2b} \left(1 + \frac{b^2}{a^2} \right) < \frac{1}{b}.$$

Очевидно, что на поверхности вытянутого сфероида величина $H = \max |K|$ достигается только в двух омбилических (эллиптических) точках. Таким образом, отношение чисел Кнудсена для вытянутого сфероида и сферы с эквивалентным экваториальным радиусом b равно a/b.

Относительные перепады температуры и концентрации компонентов газовой смеси предполагаются малыми. Поэтому не рассматривается температурная и концентрационная зависимость коэффициентов молекулярного переноса. В точках с радиусом вектором ${\bf r}$ они считаются постоянными величинами при невозмущенных значениях давления p_0 , температуры T_0 и относительной концентрации C_0 летучего компонента в газовой смеси (в месте нахождения начала координат при отсутствии капли). Однако неоднородность невозмущенного температурного поля считается заметной на расстоянии a и достаточно большой по сравнению с перепадами температуры, которые обусловлены выделением тепла при диссипации энергии путем внутреннего трения. Изменением невозмущенного параметра T_0 с течением времени пренебрегаем.

Внешние массовые силы не действуют, а тепловые источники вне и внутри аэрозольной частицы отсутствуют. Динамика умеренно крупного вытянутого сфероида происходит при малых числах Рейнольдса и Пекле. Поэтому в уравнениях медленного (ползущего) движения внешней среды и тепломассопереноса опущены нелинейные члены (инерционный и конвективные). Времена гидродинамической, тепловой и концентрационной релаксации являются достаточно малыми по сравнению с характерным временем термофоретического переноса. Тогда состояния газообразной среды и конденсированной фазы описываются в квазистационарном приближении (векторное поле скоростей $\mathbf{v}(\mathbf{r})$, распределения давления $p(\mathbf{r})$ и относительной концентрации $C(\mathbf{r})$ летучего компонента в бинарной газовой смеси, скалярные поля температур $T(\mathbf{r})$, $T'(\mathbf{r})$ вне и внутри частицы считаются как установившиеся в любой момент времени) на основе гидродинамического анализа осесимметричными дифференциальными уравнениями Стокса – неразрывности – Лапласа:

$$\eta \Delta \mathbf{v} = \nabla p$$
, div $\mathbf{v} = 0$, $\Delta C = 0$, $\Delta T = 0$, $\Delta T' = 0$.

На бесконечности вектор скорости ${\bf U}$ однородного в пространстве потока газовой смеси направлен вдоль оси z; скалярное распределение температуры T есть линейная функция координаты z; относительная концентрация C невозмущена:

$$r \to \infty$$
: $\mathbf{v} = U\mathbf{i}_z$, $T = T_0 + A_T z$, $C = C_0$.

На непроницаемой для газовых молекул второго сорта граничной поверхности вытянутого сфероида: 1) касательная составляющая v_t гидродинамической скорости газообразной среды равна сумме скоростей теплового и

диффузионного скольжений, которые пропорциональны локальным тангенциальным градиентам $\nabla_t T$ и $\nabla_t C$ соответственно; 2) относительная концентрация C первого компонента газовой смеси и температура T испытывают скачки, обусловленные нормальными к межфазной границе раздела градиентами $\nabla_n C$ и $\nabla_n T$ указанных величин в слое Кнудсена; 3) нормальный поток тепла с учетом фазового перехода непрерывен (нормальный поток массы летучего компонента газовой смеси и разность нормальных потоков тепла вне и внутри капли противоположны по знаку). Результирующее действие \mathbf{F} на летучую высоковязкую аэрозольную частицу сфероидальной формы со стороны набегающего потока внешней среды равно нулю.

$$\lambda = \lambda_0: \quad \mathbf{t}\mathbf{v} = \mathbf{t} \left(K_{\mathrm{Tsl}} \frac{\eta}{\rho T} \, \nabla T + K_{\mathrm{Dsl}} D \, \nabla C \right),$$

$$\mathbf{n} \left(n_2 \mathbf{v} + \frac{(n_1 + n_2)^2 m_1}{\rho} \, D \Big(\nabla C + \frac{K_{\mathrm{TD}}}{T} \nabla T \Big) \right) = 0,$$

$$C - C_{\mathrm{s}}(T') = \mathbf{n} \Big(V_{CC} \nabla C + V_{CT} \frac{1}{T'} \nabla T \Big), \quad T - T' = \mathbf{n} \Big(V_{TT} \nabla T + V_{TC} T' \nabla C \Big),$$

$$\mathbf{n} \Big(- \varkappa \nabla T + \varkappa' \nabla T' \Big) = -L m_1 \mathbf{n} \Big(n_1 \mathbf{v} - \frac{(n_1 + n_2)^2 m_2}{\rho} \, D \Big(\nabla C + \frac{K_{\mathrm{TD}}}{T} \, \nabla T \Big) \Big),$$

$$F_z = 0,$$

$$\rho = m_1 n_1 + m_2 n_2, \qquad C = \frac{n_1}{n_1 + n_2}, \qquad C_{\mathrm{s}}(T') = \frac{n_{1\mathrm{s}}(T')}{n_1 + n_2}.$$

Здесь (n_1,n_2) , $n_{1\mathrm{s}}(T')$ — численные концентрации газовых молекул первого и второго сорта с массами (m_1,m_2) , насыщенных паров летучего вещества при локальной температуре T' граничной поверхности; (\varkappa,\varkappa') — коэффициенты удельной теплопроводности газовой среды и конденсированной фазы; $(K_{\mathrm{Tsl}},K_{\mathrm{Dsl}})$, (V_{TT},V_{TC}) , (V_{CC},V_{CT}) — газокинетические коэффициенты теплового и диффузионного скольжений, температурных и концентрационных пограничных скачков. Локальные единичные характеристические векторы $\mathbf{n} = +\mathbf{i}_{\lambda}$, $\mathbf{t} = -\mathbf{i}_{\mu}$ и \mathbf{i}_{φ} образуют правую тройку [1].

Величина каждого из газокинетических коэффициентов зависит сложным образом от коэффициентов испарения, аккомодации энергии и тангенциального импульса, масс и сечений взаимодействия газовых молекул каждого сорта. Соответствующие выражения находятся в ходе точного решения задачи о тепло-массопереносе в кнудсеновском газовом слое, который прилегает непосредственно к поверхности капли и имеет толщину порядка средней длины свободного пробега молекул газовой смеси. В слое Кнудсена

молекулы, вылетающие с поверхности капли, сталкиваются с молекулами, которые движутся к межфазной границе раздела. Поверхность капли оказывает непосредственное влияние на интенсивность переноса тепла и массы в кнудсеновском слое, где объемные гидродинамические уравнения не имеют места. Газокинетические коэффициенты определяются математическими методами кинетической теории газов из решения системы уравнений Больцмана. Например, коэффициенты $(V_{TT}, V_{TC}), (V_{CC}, V_{CT})$ по величине сравнимы со средней длиной свободного пробега газовых молекул и позволяют оценить влияние температурных и концентрационных пограничных скачков на векторное поле скоростей $\mathbf{v}(\mathbf{r})$ вне умеренно крупного летучего вытянутого сфероида, скалярные термодиффузионые распределения $T(\mathbf{r}), T'(\mathbf{r}), C'(\mathbf{r})$ и искомую скорость термофореза $\mathbf{U}_{\rm ph}$. В работах представлены аналитический вид и методика вычисления газокинетических коэффициентов $(K_{\rm Tsl}, K_{\rm Dsl}), (V_{TT}, V_{TC}), (V_{CC}, V_{CT})$ для бинарной газовой смеси с произвольными концентрациями и отношениями масс молекул компонентов.

При записи термодиффузионной силы опускается бародиффузионный член и слагаемое с силами, так как они не действуют на газовые молекулы.

В данной работе не учитывается эффект изотермического скольжения. В его основе лежит гипотеза, согласно которой тангенциальная составляющая локальной скорости внешней среды относительно поверхности твердого тела пропорциональна тангенциальным напряжениям Π_{nt} , которые действуют в данной точке на граничной поверхности. Постоянная пропорциональности, связывающая эти две величины, называется коэффициентом трения скольжения. Если этот коэффициент отличен от нуля, то в общем случае предполагается его зависимость только от природы окружающей жидкости и состояния твердой поверхности. Относительный вклад эффекта изотермического скольжения имеет порядок величины $O(\mathrm{Kn})$ и может оказывать очень существенное влияние на термофоретический перенос иглообразных или дископодобных аэрозольных частиц.

Температурная зависимость относительной концентрации насыщенного пара летучего вещества разлагается в ряд Тейлора вблизи средней температуры межфазной поверхности. При достаточно малой неизотермичности вытянутой сфероидальной частицы в разложении удерживаются первые два члена

$$C_{\mathrm{s}}(T^{'}) = C_{\mathrm{s}}(T_{\mathrm{w}}) + \frac{\partial C_{\mathrm{s}}}{\partial T^{'}}\Big|_{T^{'}=T_{\mathrm{w}}} (T^{'}-T_{\mathrm{w}}).$$

Далее осесимметричная гидродинамическая задача для газовой среды ре-

шается в терминах стоксова функция тока. В правой ортогональной специальной системе криволинейных координат (μ, λ, φ) вытянутого сфероида вращения составляющие вектора скорости $\mathbf{v}(\mathbf{r})$ определяются с помощью формул [1]

$$v_{\mu}(\lambda,\mu) = -\frac{h_{\lambda}}{\gamma} \frac{\partial \Psi(\lambda,\mu)}{\partial \lambda}, \qquad v_{\lambda}(\lambda,\mu) = +\frac{h_{\mu}}{\gamma} \frac{\partial \Psi(\lambda,\mu)}{\partial \mu}, \qquad v_{\varphi}(\lambda,\mu) = 0.$$

Физические величины и метрические коэффициенты в уравнениях и граничных условиях обезразмериваются так

$$r = a\tilde{r}, \qquad \gamma = a\tilde{\gamma}, \qquad z = a\tilde{z}, \qquad h_{\lambda} = \frac{1}{ae}\,\tilde{h}_{\lambda}, \qquad h_{\mu} = \frac{1}{ae}\,\tilde{h}_{\mu},$$
 $v_{\lambda} = U\tilde{v}_{\lambda}, \qquad v_{\mu} = U\tilde{v}_{\mu}, \qquad \Psi = Ua^{2}\tilde{\Psi},$ $T = T_{0} + A_{T}a\tilde{T}, \qquad T' = T_{0} + A_{T}a\tilde{T}', \qquad F_{z} = \pi\eta_{0}aU\tilde{F}_{z},$

а затем волнистая линия сверху опускается и постановка задачи имеет следующий приведенный линеаризованный вид

$$r \to \infty : \qquad \Psi = -\frac{1}{2} \gamma^{2}, \qquad T = z, \qquad C = C_{0},$$

$$\lambda = \lambda_{0} : \qquad -Ua \frac{\partial \Psi}{\partial \lambda} = \gamma \frac{h_{\mu}}{h_{\lambda}} \left(K_{Tsl} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} a \frac{\partial T}{\partial \mu} + K_{Dsl} D \frac{\partial C}{\partial \mu} \right),$$

$$n_{02} \frac{Ua}{D} \frac{\partial \Psi}{\partial \mu} + \frac{n_{0}^{2} m_{1}}{\rho_{0}} \gamma \frac{h_{\lambda}}{h_{\mu}} \left(\frac{\partial C}{\partial \lambda} + \varepsilon K_{TD} \frac{\partial T}{\partial \lambda} \right) = 0,$$

$$C = C_{s}(\tau) + \frac{\partial C_{s}}{\partial T'} \Big|_{T' = \tau} \left(T' - \tau \right) + \frac{h_{\lambda}}{e} \left(k_{CC} \frac{\partial C}{\partial \lambda} + \varepsilon k_{CT} \frac{\partial T}{\partial \lambda} \right),$$

$$\varepsilon T = \varepsilon T' + \frac{h_{\lambda}}{e} \left(\varepsilon k_{TT} \frac{\partial T}{\partial \lambda} + k_{TC} \frac{\partial C}{\partial \lambda} \right),$$

$$-\frac{\varkappa_{0}}{\varkappa'_{0}} \frac{\partial T}{\partial \lambda} + \frac{\partial T'}{\partial \lambda} = \frac{L m_{1} n_{0}^{2} D}{A_{T} a \varkappa'_{0} n_{02}} \left(\frac{\partial C}{\partial \lambda} + \varepsilon K_{TD} \frac{\partial T}{\partial \lambda} \right),$$

$$F_{z} = 0,$$

где для краткости письма введены следующие обозначения

$$n_{0} = n_{01} + n_{02}, \qquad \rho_{0} = m_{1}n_{01} + m_{2}n_{02},$$

$$\eta_{0} = \eta(T_{0}, C_{0}, p_{0}), \qquad \varkappa_{0} = \varkappa(T_{0}, C_{0}, p_{0}), \qquad \varkappa_{0}' = \varkappa'(T_{0}, p_{0}),$$

$$\tau = \frac{T_{w} - T_{0}}{A_{T}a} \ll 1, \qquad \varepsilon = \frac{A_{T}a}{T_{w}} \ll 1,$$

$$V_{TT} = a \frac{k_{TT}}{k_{TC}} \sim \frac{b^{2}}{a} O(Kn), \qquad V_{CT} = a \frac{k_{CC}}{k_{CT}} \sim \frac{b^{2}}{a} O(Kn).$$

Если стремятся к нулю отношения $(k_{TT}, k_{TC}, k_{CC}, k_{CT})$, пропорциональные числу Кнудсена, то граничные условия для температуры и относительной концентрации первого компонента газовой смеси имеют такой же вид, как и для случая крупного сфероида.

4 Решение термодиффузионной задачи.

Общее решение концентрационно-тепловой задачи представляется бесконечными рядами по полиномам $P_n(\mu)$ Лежандра [6].

$$T(\lambda,\mu) = \sum_{n=0}^{\infty} T_{n,\lambda}(\lambda) P_n(\mu), \quad T'(\lambda,\mu) = \sum_{n=0}^{\infty} T'_{n,\lambda}(\lambda) P_n(\mu),$$
$$C(\lambda,\mu) = \sum_{n=0}^{\infty} C_{n,\lambda}(\lambda) P_n(\mu).$$

Здесь вытянутые радиальные функции записываются так

$$T_{n,\lambda}(\lambda) = E_n P_n(\lambda) + F_n Q_n(\lambda), \qquad T'_{n,\lambda}(\lambda) = G_n P_n(\lambda) + H_n Q_n(\lambda),$$

 $C_{n,\lambda}(\lambda) = K_n P_n(\lambda) + L_n Q_n(\lambda).$

Постоянные величины E_n , F_n , G_n , H_n , K_n , L_n подлежат определению.

Из условий на бесконечности и конечности температуры внутри сфероида на отрезке $|z|\leqslant c$ получаем

$$E_0 = 0$$
, $E_1 = e$, $E_n = 0$, $H_n = 0$, $K_0 = C_0$, $K_1 = 0$, $K_n = 0$, $n \ge 2$.

В результате имеем

$$T(\lambda,\mu) = F_0 Q_0(\lambda) + \left(e\lambda + F_1 Q_1(\lambda)\right)\mu + \sum_{n=2}^{\infty} F_n Q_n(\lambda) P_n(\mu),$$

$$T'(\lambda,\mu) = G_0 + G_1 \lambda \mu + \sum_{n=2}^{\infty} G_n P_n(\lambda) P_n(\mu),$$

$$C(\lambda,\mu) = C_0 + L_0 Q_0(\lambda) + L_1 Q_1(\lambda)\mu + \sum_{n=2}^{\infty} L_n Q_n(\lambda) P_n(\mu).$$

Пусть справедливы следующие разложения

$$\sum_{m=0}^{\infty} \left\{ h_{\lambda} \frac{d}{d\lambda} \frac{C_{m,\lambda}}{T_{m,\lambda}}(\lambda) \right\}_{\lambda=\lambda_0} P_m(\mu) = \sum_{n=0}^{\infty} \frac{u_n}{v_n}(\lambda_0) P_n(\mu),$$

где радиальные коэффициенты $u_n = u_n(\lambda_0), v_n = v_n(\lambda_0)$ определяются с помощью условий ортогональности типа (П.16)

$$u_{n} = \frac{2n+1}{2} \sqrt{\lambda_{0}^{2} - 1} \sum_{m=0}^{\infty} \left\{ \left\{ \frac{dC_{m,\lambda}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_{0}} \int_{-1}^{+1} \frac{P_{m}(\mu)P_{n}(\mu)}{\sqrt{\lambda_{0}^{2} - \mu^{2}}} d\mu \right\},$$

$$v_{n} = \frac{2n+1}{2} \sqrt{\lambda_{0}^{2} - 1} \sum_{m=0}^{\infty} \left\{ \left\{ \frac{dT_{m,\lambda}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_{0}} \int_{-1}^{+1} \frac{P_{m}(\mu)P_{n}(\mu)}{\sqrt{\lambda_{0}^{2} - \mu^{2}}} d\mu \right\}.$$

Многочлены Лежандра есть линейно-независимые функции. Поэтому из третьего, четвертого и пятого граничных условий следуют соответствующие равенства $(n \geqslant 2)$

$$\begin{split} C_0 + L_0 Q_0(\lambda_0) &= C_{\mathrm{s}}(\tau) + \frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T'=\tau} \big(G_0 - \tau\big) + \frac{1}{e}\Big(k_{CC}u_0 + \varepsilon k_{CT}v_0\Big), \\ L_1 Q_1(\lambda_0) &= \frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T'=\tau} G_1\lambda_0 + \frac{1}{e}\Big(k_{CC}u_1 + \varepsilon k_{CT}v_1\Big), \\ L_n Q_n(\lambda_0) &= \frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T'=\tau} G_n P_n(\lambda_0) + \frac{1}{e}\Big(k_{CC}u_n + \varepsilon k_{CT}v_n\Big), \\ \varepsilon F_0 Q_0(\lambda_0) &= \varepsilon G_0 + \frac{1}{e}\Big(k_{TC}u_0 + \varepsilon k_{TT}v_0\Big), \\ \varepsilon \Big(1 + F_1 Q_1(\lambda_0)\Big) &= \varepsilon G_1\lambda_0 + \frac{1}{e}\Big(k_{TC}u_1 + \varepsilon k_{TT}v_1\Big), \\ \varepsilon F_n Q_n(\lambda_0) &= \varepsilon G_n P_n(\lambda_0) + \frac{1}{e}\Big(k_{TC}u_n + \varepsilon k_{TT}v_n\Big), \\ \Big(\frac{\varkappa_0}{\varkappa'_0} + \varepsilon K_{TD}\beta\Big) \Big\{\frac{dQ_0(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} F_0 + \beta\Big\{\frac{dQ_0(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} L_0 = 0, \\ \Big(\frac{\varkappa_0}{\varkappa'_0} + \varepsilon K_{TD}\beta\Big) \Big\{e + \Big\{\frac{dQ_1(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} F_1\Big) + \beta\Big\{\frac{dQ_1(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} L_1 - G_1 = 0, \\ \Big(\frac{\varkappa_0}{\varkappa'_0} + \varepsilon K_{TD}\beta\Big) \Big\{\frac{dQ_n(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} F_n \\ + \beta\Big\{\frac{dQ_n(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} L_n - \Big\{\frac{dP_n(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_0} G_n = 0. \end{split}$$

Здесь и далее применяются обозначения

$$\beta = \frac{Lm_1 n_0^2 D}{A_T a \varkappa_0' n_{02}}, \qquad \delta = \frac{\varkappa_0}{\varkappa_0'} + \varepsilon K_{\text{TD}} \beta.$$

Так как постоянные G_m легко исключаются, то скалярные термодиффузионные поля вне и внутри вытянутой сфероидальной частицы находятся из численного решения следующей линейной неоднородной системы $2(m_*+1)$ алгебраических уравнений с $2(m_*+1)$ неизвестными F_m и L_m $(0 \le m \le m_*)$

$$\begin{split} \varepsilon \frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} Q_{0}(\lambda_{0})F_{0} - \varepsilon Q_{0}(\lambda_{0})L_{0} + \\ + \frac{1}{e}\Big(\varepsilon k_{CC} - \frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} k_{TC}\Big)u_{0} - \frac{1}{e}\,\varepsilon\Big(\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} k_{TT} - \varepsilon k_{CT}\Big)v_{0} = \\ = -\varepsilon\Big(C_{s}(\tau) - C_{0} - \frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}\tau\Big), \\ \Big(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{TD}\beta\Big)\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}\Big\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}F_{1} - \\ - \Big(Q_{1}(\lambda_{0}) - \beta \frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}\Big\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}\Big)L_{1} + \\ + \frac{1}{e}\Big(k_{CC}u_{1} + \varepsilon k_{CT}v_{1}\Big) = -\Big(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{TD}\beta\Big)\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}, \\ \varepsilon\Big(Q_{1}(\lambda_{0}) - \Big(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{TD}\beta\Big)\Big\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}\Big)F_{1} - \varepsilon\beta\Big\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}L_{1} - \\ - \frac{1}{e}\Big(k_{TC}u_{1} + \varepsilon k_{TT}v_{1}\Big) = \varepsilon\Big(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{TD}\beta - 1\Big), \\ \Big(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{TD}\beta\Big)\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}\Big\{P_{n}(\lambda)\frac{dQ_{n}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}F_{n} - \\ - \Big(\Big\{Q_{n}(\lambda)\frac{dP_{n}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}} - \beta\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}\Big\{P_{n}(\lambda)\frac{dQ_{n}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}}\Big\}L_{n} + \\ + \frac{1}{e}\Big(k_{CC}u_{n} + \varepsilon k_{CT}v_{n}\Big)\Big\{\frac{dP_{n}(\lambda)}{d\lambda}\Big\}_{\lambda=\lambda_{0}} = 0, \end{split}$$

$$\varepsilon \left(\left\{ Q_n(\lambda) \frac{dP_n(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0} - \left(\frac{\varkappa_0}{\varkappa_0'} + \varepsilon K_{\text{TD}} \beta \right) \left\{ P_n(\lambda) \frac{dQ_n(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0} \right) F_n - \\
- \varepsilon \beta \left\{ P_n(\lambda) \frac{dQ_n(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0} L_n - \frac{1}{e} \left(k_{TC} u_n + \varepsilon k_{TT} v_n \right) \left\{ \frac{dP_n(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0} = 0.$$

Определенные интегралы вида

$$\chi_{m,n}(\lambda_0) = \int_{-1}^{+1} \frac{P_m(\mu)P_n(\mu)}{\sqrt{\lambda_0^2 - \mu^2}} d\mu, \qquad n = 0, 1, 2, \dots$$

вычисляются с помощью формулы приведения (интегралы $\chi_{m,n}$ выражаются через подобные интегралы $\chi_{m',n'}$, когда индексы m и m', n и n' отличаются друг от друга на произвольные целые числа). С этой целью применяется рекуррентное соотношение (П.3), которое позволяет записать тождество

$$\frac{1}{2m+1} \Big((m+1) P_{m+1}(\mu) P_n(\mu) + m P_{m-1}(\mu) P_n(\mu) \Big) =
= \frac{1}{2n+1} \Big((n+1) P_m(\mu) P_{m+1}(\mu) + n P_m(\mu) P_{m-1}(\mu) \Big), \qquad m \geqslant 1, \quad n \geqslant 1.$$

Обе части этого равенства делятся на квадратный корень $\sqrt{\lambda_0^2-\mu^2}$, а затем интегрируются по μ , где $-1\leqslant\mu\leqslant+1$. В результате имеем

$$(2n+1)\Big((m+1)\chi_{m+1,n}(\lambda_0) + m\chi_{m-1,n}(\lambda_0)\Big)$$

= $(2m+1)\Big((n+1)\chi_{m,n+1}(\lambda_0) + n\chi_{m,n-1}(\lambda_0)\Big).$

Отсюда после замены $n \to (n-1)$ получаем искомую рекуррентную формулу

$$n(2m+1)\chi_{m,n}(\lambda_0) = (2n-1)\Big((m+1)\chi_{m+1,n-1}(\lambda_0) + m\chi_{m-1,n-1}(\lambda_0)\Big) - (n-1)(2m+1)\chi_{m,n-2}(\lambda_0), \qquad n \geqslant 2.$$

Так как полиномы Лежандра удовлетворяют уравнениям

$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{dP_m(\mu)}{d\mu} \right\} + m(m+1) P_m(\mu) = 0,$$

$$(1 - \mu^2) \frac{dP_m(\mu)}{d\mu} = (m+1) \left\{ \mu P_m(\mu) - P_{m+1}(\mu) \right\},$$

то правая часть очевидного равенства

$$\begin{split} \frac{d}{d\mu} \bigg\{ \sqrt{\lambda_0^2 - \mu^2} \left(1 - \mu^2 \right) \frac{P_m(\mu)}{d\mu} \bigg\} = \\ = \sqrt{\lambda_0^2 - \mu^2} \frac{d}{d\mu} \bigg\{ \left(1 - \mu^2 \right) \frac{P_m(\mu)}{d\mu} \bigg\} - \frac{\mu}{\sqrt{\lambda_0^2 - \mu^2}} \left(1 - \mu^2 \right) \frac{dP_m(\mu)}{d\mu} \end{split}$$

представляется так

$$-\frac{m+1}{\sqrt{\lambda_0^2 - \mu^2}} \left\{ m \left(\lambda_0^2 - \mu^2 \right) P_m(\mu) + \mu \left(\mu P_m(\mu) - P_{m+1}(\mu) \right) \right\}, \quad m = 0, 1, 2, \dots$$

Здесь фигурная скобка в силу (П.3) и (П.7) имеет вид

$$m\lambda_0^2 P_m(\mu) - \frac{1}{2m+3} \Big((m+2) P_{m+2}(\mu) + (m+1) P_m(\mu) \Big) -$$

$$- (m-1) \Big(\frac{(m+1)(m+2)}{(2m+1)(2m+3)} P_{m+2}(\mu) + \frac{2m^2 + 2m - 1}{(2m-1)(2m+3)} P_m(\mu) +$$

$$+ \frac{(m-1)m}{(2m-1)(2m+1)} P_{m-2}(\mu) \Big) = -\frac{(m-1)^2 m}{(2m-1)(2m+1)} P_{m-2}(\mu) +$$

$$+ m \Big(\lambda_0^2 - 2 \frac{m^2 + m - 1}{(2m-1)(2m+3)} \Big) P_m(\mu) - \frac{m(m+2)^2}{(2m+1)(2m+3)} P_{m+2}(\mu).$$

Таким образом, обе части тождества

$$\frac{d}{d\mu} \left\{ \sqrt{\lambda_0^2 - \mu^2} \left(1 - \mu^2 \right) \frac{dP_m(\mu)}{d\mu} \right\} = \frac{m(m+1)}{\sqrt{\lambda_0^2 - \mu^2}} \left\{ \frac{(m-1)^2}{(2m-1)(2m+1)} P_{m-2}(\mu) - \left(\lambda_0^2 - 2 \frac{m^2 + m - 1}{(2m-1)(2m+3)} \right) P_m(\mu) + \frac{(m+2)^2}{(2m+1)(2m+3)} P_{m+2}(\mu) \right\}$$

проинтегрируем по μ на отрезке $|\mu| \leqslant 1$. В результате получаем формулу

$$\frac{(m+2)^2}{(2m+1)(2m+3)} \chi_{m+2,0}(\lambda_0) =$$

$$= \left(\lambda_0^2 - 2\frac{m^2 + m - 1}{(2m-1)(2m+3)}\right) \chi_{m,0}(\lambda_0) - \frac{(m-1)^2}{(2m-1)(2m+1)} \chi_{m-2,0}(\lambda_0),$$

$$m \geqslant 2.$$

В частных случаях при m=0,1,2,3 указанные интегралы вычисляются легко

$$\chi_{0,0}(\lambda_0) = 2 \arcsin \frac{1}{\lambda_0},$$

$$\chi_{1,0}(\lambda_0) = 0,$$

$$\chi_{2,0}(\lambda_0) = -\frac{3}{2} \sqrt{\lambda_0^2 - 1} + \left(\frac{3}{2} \lambda_0^2 - 1\right) \arcsin \frac{1}{\lambda_0},$$

$$\chi_{3,0}(\lambda_0) = 0.$$

Рекуррентное свойство (Π .3) дает соотношение

$$(2m+1)\chi_{m,1}(\lambda_0) = (m+1)\chi_{m+1,0}(\lambda_0) + m\chi_{m-1,0}(\lambda_0), \qquad m \geqslant 1.$$

С учетом тождеств

$$\chi_{0,1}(\lambda_0) = \chi_{1,0}(\lambda_0) = 0$$

имеем равенства

$$\chi_{2k+1,0}(\lambda_0) = \chi_{2k,1}(\lambda_0) = 0, \qquad k = 0, 1, 2, \dots$$

5 Решение гидродинамической задачи. Определение скорости термофореза.

В специальной сфероидальной системе координат при отсутствии сингулярных особенностей на оси симметрии течения газовой смеси функция тока $\Psi = \Psi(\lambda,\mu)$ разлагается в бесконечный ряд по ультрасферическим полиномам Гегенбауэра степени -0,5

$$\Psi(\lambda, \mu) = \sum_{m=2}^{\infty} \Psi_{n, \lambda}(\lambda) J_n(\mu).$$

Вытянутые радиальные функции $\Psi_{n,\,\lambda}(\lambda)$ имеют следующие выражения

$$\Psi_{2,\lambda}(\lambda) = -2\omega_{2}'\lambda + \frac{\alpha_{2}J_{2}}{\alpha_{2}'\mathcal{H}_{2}}(\lambda) + \frac{24}{25} \left\{ \frac{\omega_{2}}{\omega_{2}'} - \frac{\omega_{4}}{\omega_{4}'} \right\} \frac{J_{4}}{\mathcal{H}_{4}}(\lambda),$$

$$\Psi_{3,\lambda}(\lambda) = -\frac{2}{3}\omega_{3}' + \frac{\alpha_{3}J_{3}}{\alpha_{3}'\mathcal{H}_{3}}(\lambda) + \frac{120}{49} \left\{ \frac{\omega_{3}}{\omega_{3}'} - \frac{\omega_{5}}{\omega_{5}'} \right\} \frac{J_{5}}{\mathcal{H}_{5}}(\lambda),$$

$$\Psi_{n,\lambda}(\lambda) = \frac{(n-3)(n-2)(n-1)n}{(2n-3)^2} \left\{ \frac{\omega_{n-2}}{\omega'_{n-2}} - \frac{\omega_n}{\omega'_n} \right\} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(\lambda) + \\
+ \frac{\alpha_n J_n}{\alpha'_n \mathcal{H}_n}(\lambda) + \frac{(n-1)n(n+1)(n+2)}{(2n+1)^2} \left\{ \frac{\omega_n}{\omega'_n} - \frac{\omega_{n+2}}{\omega'_{n+2}} \right\} \frac{J_{n+2}}{\mathcal{H}_{n+2}}(\lambda), \qquad n \geqslant 4,$$

где $(\alpha, \alpha'), (\omega, \omega')$ есть произвольные постоянные интегрирования.

На бесконечности поступательный поток однородный и необходимо считать

$$\alpha_2 = 2e^2, \qquad \alpha_{n+1} = 0, \qquad \omega_n - \omega_{n+2} = 0, \qquad n \geqslant 2.$$

Поэтому в первое и второе линеаризованные граничные условия подставляем функции

$$\Psi_{2,\lambda}(\lambda) = -2\omega_{2}'\lambda + 2e^{2}J_{2}(\lambda) + \alpha_{2}'\mathcal{H}_{2}(\lambda) + \frac{24}{25}\left(\omega_{2}' - \omega_{4}'\right)\mathcal{H}_{4}(\lambda),$$

$$\Psi_{3,\lambda}(\lambda) = -\frac{2}{3}\omega_{3}' + \alpha_{3}'\mathcal{H}_{3}(\lambda) + \frac{120}{49}\left(\omega_{3}' - \omega_{5}'\right)\mathcal{H}_{5}(\lambda),$$

$$\Psi_{n,\lambda}(\lambda) = \frac{(n-3)(n-2)(n-1)n}{(2n-3)^{2}} \left(\omega'_{n-2} - \omega'_{n}\right) \mathcal{H}_{n-2}(\lambda) + \alpha'_{n} \mathcal{H}_{n}(\lambda) + \frac{(n-1)n(n+1)(n+2)}{(2n+1)^{2}} \left(\omega'_{n} - \omega'_{n+2}\right) \mathcal{H}_{n+2}(\lambda), \qquad n \geqslant 4.$$

Тогда рекуррентные свойства $(\Pi.6)$, $(\Pi.9)$

$$\frac{dJ_{n+1}(\mu)}{d\mu} = -P_n(\mu), \qquad (1 - \mu^2) \frac{dP_n(\mu)}{d\mu} = n(n+1)J_{n+1}(\mu), \qquad n \geqslant 1$$

и условия ортогональности типа (П.15), (П.16) для ультрасферических полиномов $J_n(\mu)$, $P_n(\mu)$ приводят к алгебраическим соотношениям

$$L_{0} + \varepsilon K_{\text{TD}} F_{0} = 0, \frac{1}{e} U \left\{ \frac{d\Psi_{2,\lambda}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_{0}} =$$

$$= -2K_{\text{Tsl}} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} - 2 \left(K_{\text{Tsl}} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} F_{1} + K_{\text{Dsl}} \frac{D}{a} L_{1} \right) Q_{1}(\lambda_{0}),$$

$$\frac{1}{e} U \Psi_{2,\lambda}(\lambda_{0}) = \frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \left\{ \varepsilon K_{\text{TD}} \left(\lambda_{0}^{2} - 1 \right) e - 2 \left(L_{1} + \varepsilon K_{\text{TD}} F_{1} \right) \mathcal{H}_{2}(\lambda_{0}) \right\},$$

$$\frac{1}{e} U \left\{ \frac{d\Psi_{n+1,\lambda}(\lambda)}{d\lambda} \right\}_{\lambda=\lambda_0} =
= -n(n+1) \left(K_{Tsl} \frac{\eta_0}{\rho_0 T_0} A_T F_n + K_{Dsl} \frac{D}{a} L_n \right) Q_n(\lambda_0), \quad n \geqslant 2,
\frac{1}{e} U \Psi_{n+1,\lambda}(\lambda_0) = -n(n+1) \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \left(L_n + \varepsilon K_{TD} F_n \right) \mathcal{H}_{n+1}(\lambda_0), \quad n \geqslant 2.$$

Здесь и далее применяются тождества

$$(\lambda^2 - 1)\frac{dQ_n(\lambda)}{d\lambda} = -n(n+1)\mathcal{H}_{n+1}(\lambda), \qquad \frac{d\mathcal{H}_{n+1}(\lambda)}{d\lambda} = -Q_n(\lambda), \qquad n \geqslant 1.$$

Таким образом, коэффициенты $\alpha_m^{'}$ исключаются из каждой пары уравнений

$$\frac{1}{e} U \left\{ 2\omega_{2}' + 2e^{2}\lambda_{0} + Q_{1}(\lambda_{0})\alpha_{2}' + \frac{24}{25} Q_{3}(\lambda_{0}) \left(\omega_{2}' - \omega_{4}'\right) \right\} =
= 2K_{Tsl} \frac{\eta_{0}}{\rho_{0}T_{0}} A_{T} + 2\left(K_{Tsl} \frac{\eta_{0}}{\rho_{0}T_{0}} A_{T}F_{1} + K_{Dsl} \frac{D}{a} L_{1}\right) Q_{1}(\lambda_{0}),$$

$$\frac{1}{e} U \left\{ 2\omega_{2}' \lambda_{0} + e^{2} \left(\lambda_{0}^{2} - 1\right) - \mathcal{H}_{2}(\lambda_{0}) \alpha_{2}' - \frac{24}{25} \mathcal{H}_{4}(\lambda_{0}) \left(\omega_{2}' - \omega_{4}'\right) \right\} =
= -\frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \varepsilon K_{\text{TD}} \left(\lambda_{0}^{2} - 1\right) e + 2 \frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \left(L_{1} + \varepsilon K_{\text{TD}} F_{1}\right) \mathcal{H}_{2}(\lambda_{0}),$$

$$\frac{1}{e}U\bigg\{\alpha_{3}^{'}Q_{2}(\lambda_{0}) + \frac{120}{49}\Big(\omega_{3}^{'} - \omega_{5}^{'}\Big)Q_{4}(\lambda_{0})\bigg\} = 6\Big(K_{\mathrm{Tsl}}\frac{\eta_{0}}{\rho_{0}T_{0}}A_{T}F_{2} + K_{\mathrm{Dsl}}\frac{D}{a}L_{2}\Big)Q_{2}(\lambda_{0}),$$

$$\frac{1}{e}U\left\{\frac{2}{3}\omega_{3}' - \alpha_{3}'\mathcal{H}_{3}(\lambda_{0}) - \frac{120}{49}\left(\omega_{3}' - \omega_{5}'\right)\mathcal{H}_{5}(\lambda_{0})\right\} = 6\frac{n_{0}^{2}m_{1}D}{\rho_{0}n_{02}a}\left(L_{2} + \varepsilon K_{TD}F_{2}\right)\mathcal{H}_{3}(\lambda_{0}),$$

$$\frac{1}{e} U \left\{ \frac{(n-2)(n-1)n(n+1)}{(2n-1)^2} Q_{n-2}(\lambda_0) \left(\omega'_{n-1} - \omega'_{n+1}\right) + Q_n(\lambda_0)\alpha'_{n+1} + \frac{n(n+1)(n+2)(n+3)}{(2n+3)^2} Q_{n+2}(\lambda_0) \left(\omega'_{n+1} - \omega'_{n+3}\right) \right\} =$$

$$= n(n+1) \left(K_{Tsl} \frac{\eta_0}{\rho_0 T_0} A_T F_n + K_{Dsl} \frac{D}{a} L_n \right) Q_n(\lambda_0), \qquad n \geqslant 3,$$

$$\frac{1}{e} U \left\{ \frac{(n-2)(n-1)n(n+1)}{(2n-1)^2} \mathcal{H}_{n-1}(\lambda_0) \left(\omega'_{n-1} - \omega'_{n+1} \right) + \right. \\
\left. + \mathcal{H}_{n+1}(\lambda_0) \alpha'_{n+1} + \frac{n(n+1)(n+2)(n+3)}{(2n+3)^2} \mathcal{H}_{n+3}(\lambda_0) \left(\omega'_{n+1} - \omega'_{n+3} \right) \right\} = \\
= -n(n+1) \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \left(L_n + \varepsilon K_{\text{TD}} F_n \right) \mathcal{H}_{n+1}(\lambda_0), \qquad n \geqslant 3.$$

В результате из первой пары уравнений с учетом известного тождества

$$2\lambda \mathcal{H}_2(\lambda) + (\lambda^2 - 1)Q_1(\lambda) = 1$$

имеем для скорости U выражение

$$eU = 2K_{\text{Tsl}} \frac{\eta_0}{\rho_0 T_0} A_T \mathcal{H}_2(\lambda_0) - \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \varepsilon K_{\text{TD}} e \left(\lambda_0^2 - 1\right) Q_1(\lambda_0) +$$

$$+ 2 \left\{ \left(K_{\text{Tsl}} \frac{\eta_0}{\rho_0 T_0} A_T + \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \varepsilon K_{\text{TD}} \right) F_1 + \right.$$

$$+ \left(K_{\text{Dsl}} + \frac{n_0^2 m_1}{\rho_0 n_{02}} \right) \frac{D}{a} L_1 \left\{ Q_1(\lambda_0) \mathcal{H}_2(\lambda_0) - 2 \left(\lambda_0 Q_1(\lambda_0) + \mathcal{H}_2(\lambda_0)\right) \frac{1}{e} U \omega_2' + \right.$$

$$+ \frac{24}{25} \left(Q_1(\lambda_0) \mathcal{H}_4(\lambda_0) - Q_3(\lambda_0) \mathcal{H}_2(\lambda_0) \right) \frac{1}{e} U \left(\omega_2' - \omega_4'\right).$$

В каждом линейном неоднородном алгебраическом уравнении системы

$$\frac{(n-2)(n-1)}{(2n-1)^2} \left\{ Q_{n-2}(\lambda_0) \mathcal{H}_{n+1}(\lambda_0) - Q_n(\lambda_0) \mathcal{H}_{n-1}(\lambda_0) \right\} \frac{1}{e} U\left(\omega'_{n-1} - \omega'_{n+1}\right) - \left(\frac{(n+2)(n+3)}{(2n+3)^2} \left\{ Q_n(\lambda_0) \mathcal{H}_{n+3}(\lambda_0) - Q_{n+2}(\lambda_0) \mathcal{H}_{n+1}(\lambda_0) \right\} \frac{1}{e} U\left(\omega'_{n+1} - \omega'_{n+3}\right) = \left\{ \left(K_{Tsl} \frac{\eta_0}{\rho_0 T_0} A_T + \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \varepsilon K_{TD}\right) F_n + \left(K_{Dsl} + \frac{n_0^2 m_1}{\rho_0 n_{02}}\right) \frac{D}{a} L_n \right\} Q_n(\lambda_0) \mathcal{H}_{n+1}(\lambda_0)$$

присутствуют три неизвестные величины $(\omega_{n-1}^{'},\omega_{n+1}^{'},\omega_{n+3}^{'})$, которые имеют только четные или нечетные индексы. После перехода к промежуточной неизвестной

$$X_{n-1}(\lambda_0) = \frac{Q_{n-2}(\lambda_0)\mathcal{H}_{n+1}(\lambda_0) - Q_n(\lambda_0)\mathcal{H}_{n-1}(\lambda_0)}{(2n-1)^2} \frac{1}{e} U\left(\omega'_{n-1} - \omega'_{n+1}\right)$$

с учетом обозначения

$$r_n = \left(K_{\text{Tsl}} \frac{\eta_0}{\rho_0 T_0} A_T + \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \varepsilon K_{\text{TD}}\right) F_n + \left(K_{\text{Dsl}} + \frac{n_0^2 m_1}{\rho_0 n_{02}}\right) \frac{D}{a} L_n$$

указанная бесконечная система приводится к более простому виду

$$(n-2)(n-1)X_{n-1}(\lambda_0) - (n+2)(n+3)X_{n+1}(\lambda_0) = r_nQ_n(\lambda_0)\mathcal{H}_{n+1}(\lambda_0), \quad n \geqslant 3.$$

Обе части каждого такого уравнения умножаем на n(n+1) и почленно складываем уравнения относительно неизвестных с четными, а затем отдельно с нечетными индексами. В результате для неизвестных $X_2(\lambda_0)$ и $X_3(\lambda_0)$ имеют место суммарные равенства

$$24X_{2}(\lambda_{0}) = -\left(\lambda_{0}^{2} - 1\right) \sum_{m=1}^{\infty} r_{2m+1} \left\{ Q_{2m+1}(\lambda) \frac{dQ_{2m+1}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_{0}},$$

$$120X_{3}(\lambda_{0}) = -\left(\lambda_{0}^{2} - 1\right) \sum_{m=2}^{\infty} r_{2m} \left\{ Q_{2m}(\lambda) \frac{dQ_{2m}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_{0}},$$

так как при ограниченных значениях $\omega_{n}^{'}$ справедливы предельные соотношения

$$\lim_{n \to \infty} n |Q_n(\lambda_0)| = 0, \qquad \lim_{n \to \infty} n |\mathcal{H}_n(\lambda_0)| = 0,$$
$$\lim_{n \to \infty} n (n+1) (n+2) (n+3) |X_{n+1}(\lambda_0)| = 0$$

в силу оценки для $Q_n(\lambda_0)$ в данной задаче [6]

$$|Q_n(\lambda_0)| < \frac{\pi}{n} q^{-n-1} \sqrt{1 - \frac{1}{q^2}}, \qquad q = \lambda_0 + \sqrt{\lambda_0^2 - 1} \geqslant 1.$$

Интегральное действие нормальных и касательных напряжений на поверхность вытянутого сфероида со стороны окружающей среды определяется размерным выражением вида

$$F_z = +\frac{8}{e} \pi \eta_0 U a \omega_2'.$$

Поэтому при равномерном движении такого тела выполняется дополнительное условие

$$\omega_{2}^{'}=0.$$

Таким образом, в гидродинамическом режиме со скольжением искомая z - проекция скорости центра масс бинарной газовой смеси определяется через

постоянные r_{2m+1} или (F_{2m+1}, L_{2m+1}) с нечетными индексами (m=0;1;2;...)

$$U = K_{\text{Tsl}} \frac{\eta_0}{\rho_0 T_0} A_T - \left(K_{\text{Tsl}} \frac{\eta_0}{\rho_0 T_0} A_T + \frac{n_0^2 m_1 D}{\rho_0 n_{02} a} \varepsilon K_{\text{TD}} \right) \left(\lambda_0^2 - 1 \right) Q_1(\lambda_0) - \frac{1}{e} \left(\lambda_0^2 - 1 \right) \sum_{m=0}^{m=m_*} r_{2m+1} \left\{ Q_{2m+1}(\lambda) \frac{dQ_{2m+1}(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0}.$$

Здесь суммирование по m ограничено значением $m_*=1;2;3;...$, так как термодиффузионная задача решается с заданной степенью точности и разложения для $T(\mathbf{r})$ и $C(\mathbf{r})$ удерживают вытянутые радиальные функции $T_{n,\lambda}(\lambda)$ и $C_{n,\lambda}(\lambda)$ при полиномах $P_n(\mu)$ Лежандра с порядком $n\leqslant 2m_*+1$.

6 Анализ результатов

При термофорезе вытянутого в направлении движения твердого летучего сфероида с полуосями a и b, когда сфера с эквивалентным экваториальным радиусом b < a является достаточно крупной и влияние пограничных скачков температуры и концентрации на перенос аэрозольной частицы исчезающе малое $(k_{TT} = k_{TC} = k_{CC} = k_{CT} = 0)$ справедливы следующие соотношения $F_n = L_n = G_n = 0$ при $n \neq 1$

$$C_{s}(\tau) - C_{0} - \frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} \tau = 0,$$

$$\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} Q_{1}(\lambda_{0})F_{1} - Q_{1}(\lambda_{0})L_{1} = -\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau}, \qquad Q_{1}(\lambda_{0})F_{1} - \lambda_{0}G_{1} = -1,$$

$$\left(Q_{1}(\lambda_{0}) - \left(\frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{\text{TD}}\beta\right) \left\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\right\}_{\lambda=\lambda_{0}}\right)F_{1} -$$

$$-\beta \left\{\lambda \frac{dQ_{1}(\lambda)}{d\lambda}\right\}_{\lambda=\lambda_{0}} L_{1} = \frac{\varkappa_{0}}{\varkappa'_{0}} + \varepsilon K_{\text{TD}}\beta - 1.$$

Отсюда имеем

$$Q_1(\lambda_0)F_1 = \frac{\triangle'}{\triangle}, \qquad Q_1(\lambda_0)L_1 = \frac{\partial C_s}{\partial T'}\Big|_{T'=\tau} \frac{\triangle''}{\triangle}, \qquad \lambda_0 G_1 = \frac{\triangle''}{\triangle},$$

где введены обозначения

$$\Delta = 1 - \left(\frac{\varkappa_{0}}{\varkappa'_{0}} + \beta \left(\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} + \varepsilon K_{TD}\right)\right) \left\{\frac{\lambda}{Q_{1}(\lambda)} \frac{dQ_{1}(\lambda)}{d\lambda}\right\}_{\lambda=\lambda_{0}},$$

$$\Delta' = \frac{\varkappa_{0}}{\varkappa'_{0}} + \beta \left(\frac{\partial C_{s}}{\partial T'}\Big|_{T'=\tau} \left\{\frac{\lambda}{Q_{1}(\lambda)} \frac{dQ_{1}(\lambda)}{d\lambda}\right\}_{\lambda=\lambda_{0}} + \varepsilon K_{TD}\right) - 1,$$

$$\Delta'' = \Delta + \Delta' = \left(\frac{\varkappa_{0}}{\varkappa'_{0}} + \beta \varepsilon K_{TD}\right) \left(1 - \left\{\frac{\lambda}{Q_{1}(\lambda)} \frac{dQ_{1}(\lambda)}{d\lambda}\right\}_{\lambda=\lambda_{0}}\right).$$

Тогда выражение для скорости центра инерции газообразной среды

$$U_{1} = K_{Tsl} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} - \left(K_{Tsl} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} + \frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \varepsilon K_{TD} \right) \left(\lambda_{0}^{2} - 1 \right) Q_{1}(\lambda_{0}) +$$

$$+ 2\lambda_{0} \left\{ \left(K_{Tsl} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} + \frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \varepsilon K_{TD} \right) F_{1} + \left(K_{Dsl} + \frac{n_{0}^{2} m_{1}}{\rho_{0} n_{02}} \right) \frac{D}{a} L_{1} \right\} Q_{1}(\lambda_{0}) \mathcal{H}_{2}(\lambda_{0})$$

позволяет записать

$$U_{1} = \left\{ K_{\text{Tsl}} \frac{\eta_{0}}{\rho_{0} T_{0}} A_{T} + \left(K_{\text{Dsl}} + \frac{n_{0}^{2} m_{1}}{\rho_{0} n_{02}} \right) \frac{D}{a} \frac{\partial C_{s}}{\partial T'} \Big|_{T' = \tau} \right\} \left(1 - \left(\lambda_{0}^{2} - 1 \right) Q_{1}(\lambda_{0}) \right) \frac{\triangle''}{\triangle} + \frac{n_{0}^{2} m_{1} D}{\rho_{0} n_{02} a} \varepsilon K_{\text{TD}} \left\{ \left(1 - \left(\lambda_{0}^{2} - 1 \right) Q_{1}(\lambda_{0}) \right) \frac{\triangle''}{\triangle} - 1 \right\}.$$

В силу учета летучести и термодиффузионных эффектов эта расчетная формула обобщает результаты известных теорий термофореза крупных твердых аэрозольных частиц сфероидальной формы в простом газе [3].

Для функций Лежандра второго рода

$$Q_1(\lambda) = \frac{1}{2} \lambda \ln \frac{\lambda + 1}{\lambda - 1} - 1, \qquad \lambda \frac{dQ_1(\lambda)}{d\lambda} = \frac{1}{2} \ln \frac{\lambda + 1}{\lambda - 1} - \frac{\lambda^2}{\lambda^2 - 1}$$

при 0 < e < 1 имеют место разложения

$$\lambda_0 \ln \frac{\lambda_0 + 1}{\lambda_0 - 1} = \frac{1}{e} \ln \frac{1 + e}{1 - e} = 2\left(1 + \frac{1}{3}e^2 + \dots\right),$$

$$\frac{\lambda_0^2}{\lambda_0^2 - 1} = \frac{1}{1 - e^2} = 1 + e^2 + \dots,$$

$$Q_1(\lambda_0) = \frac{1}{3}e^2 + \dots, \qquad \left\{\lambda \frac{dQ_1(\lambda)}{d\lambda}\right\}_{\lambda = \lambda_0} = \frac{2}{3}e^2 - \dots$$

В предельном случае частицы сферической формы

$$\lim_{e \to 0} \left\{ \frac{\lambda}{Q_1(\lambda)} \frac{dQ_1(\lambda)}{d\lambda} \right\}_{\lambda = \lambda_0} = -2, \qquad \lim_{e \to 0} \left\{ \left(\lambda_0^2 - 1 \right) Q_1(\lambda_0) \right\} = \frac{1}{3},$$

$$\lim_{e \to 0} \Delta = 1 + 2 \left(\frac{\varkappa_0}{\varkappa_0'} + \beta \left(\frac{\partial C_s}{\partial T'} \Big|_{T' = \tau} + \varepsilon K_{TD} \right) \right),$$

$$\lim_{e \to 0} \Delta' = \frac{\varkappa_0}{\varkappa_0'} - \beta \left(2 \frac{\partial C_s}{\partial T'} \Big|_{T' = \tau} - \varepsilon K_{TD} \right) - 1, \qquad \lim_{e \to 0} \Delta'' = 3 \left(\frac{\varkappa_0}{\varkappa_0'} + \varepsilon K_{TD} \beta \right).$$

Поэтому получаем результат

$$\begin{split} U_2 &= \lim_{e \to 0} U_1 = 2K_{\mathrm{Tsl}} \frac{\eta_0}{\rho_0 T_0} \frac{\frac{\varkappa_0}{\varkappa_0'} + \frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}}{1 + 2\frac{\varkappa_0}{\varkappa_0'} + 2\frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \left(\frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T' = T_{\mathrm{w}}} + \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}\right)}{A_T + \\ &+ 2\left(K_{\mathrm{Dsl}} + \frac{n_0^2 m_1}{\rho_0 n_{02}}\right) D\frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T' = T_{\mathrm{w}}} \frac{\frac{\varkappa_0}{\varkappa_0'} + \frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}}{1 + 2\frac{\varkappa_0}{\varkappa_0'} + 2\frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \left(\frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T' = T_{\mathrm{w}}} + \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}\right)} A_T - \\ &- \frac{n_0^2 m_1 D}{\rho_0 n_{02}} \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}} \frac{1 + 2\frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T' = T_{\mathrm{w}}} + \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}}{1 + 2\frac{\varkappa_0}{\varkappa_0'} + 2\frac{L m_1 n_0^2 D}{\varkappa_0' n_{02}} \left(\frac{\partial C_{\mathrm{s}}}{\partial T'}\Big|_{T' = T_{\mathrm{w}}} + \frac{K_{\mathrm{TD}}}{T_{\mathrm{w}}}\right)} A_T, \end{split}$$

который удачно согласуется с ранее полученными.

Численный анализ проводился в математическом пакете Марle V.6 для паро-воздушной смеси " H_2O+N_2 ". При этом использовались следующие параметры: $K_{\mathrm{Tsl}}=1,16,~K_{\mathrm{Dsl}}=0,30,~\eta_1=1,28\cdot 10^{-5}~\Pi\mathrm{a\cdot c},~\eta_2=1,81\cdot 10^{-5}~\Pi\mathrm{a\cdot c},~T_0=293~\mathrm{K},~L=2,4535\cdot 10^6~\mathrm{Дж/кг},~n_0=2,70\cdot 10^{25}~\mathrm{m}^{-3},~D=2,5\cdot 10^{-5}~\mathrm{m}^2/\mathrm{c},~\varkappa=0,026~\mathrm{Дж/(K\cdot m)},~\varkappa_1=0,599~\mathrm{Дж/(K\cdot m)},~P_{\mathrm{1s}}=17,54~\mathrm{мм}~\mathrm{рт}.$ ст., $\left.\frac{\partial C_\mathrm{s}}{\partial T'}\right|_{T'=T_\mathrm{w}}=1,67\cdot 10^{-3}K^{-1},~K_{\mathrm{TD}}=5,5\cdot 10^{-3},~\mu_1=0,018~\mathrm{кг/моль},~\mu_1=0,028~\mathrm{кг/моль}.$ Полученные результаты приведены в таблицах 1–6.

ТАБЛИЦА 1. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-3},\, a=10~{
m mkm}$

Отношение	Число	Относительное	ļ.	
малой	Кнудсена	изменение	U_1	U
полуоси		скорости		
к большой				
.210	.17931666	.53530749	1.2386564903	1.9017185849
.270	.10847551	.41496783	1.2383288536	1.7521954947
.330	.07261584	.33752437	1.2379792011	1.6558273455
.390	.05199122	.28445555	1.2376131364	1.5896590619
.450	.03905118	.24627627	1.2372344647	1.5419359483
.510	.03040317	.21772905	1.2368458835	1.5061431626
.570	.02433938	.19570868	1.2364493688	1.4784332481
.630	.01992407	.17828304	1.2360464074	1.4564125151
.690	.01660967	.16419655	1.2356381419	1.4385256675
.750	.01405843	.15260290	1.2352254670	1.4237244516
.810	.01205283	.14291345	1.2348090945	1.4112799259
.870	.01044770	.13470768	1.2343895980	1.4006713591
.930	.00914310	.12767801	1.2339674460	1.3915179487
.990	.00806843	.12159481	1.2335430243	1.3835354496

ТАБЛИЦА 2. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-3},\, a=5~{
m mkm}$

Отношение малой	Число Кнудсена	Относительное изменение	U_1	U
полуоси		скорости		
к большой				
.210	.35863332	.89462824	1.2386564907	2.3467935721
.270	.21695102	.72294504	1.2383288539	2.1335725545
.330	.14523168	.60489109	1.2379792015	1.9868217938
.390	.10398244	.51998856	1.2376131367	1.8811578062
.450	.07810237	.45667280	1.2372344650	1.8022457924
.510	.06080634	.40802201	1.2368458838	1.7415062303
.570	.04867876	.36969352	1.2364493692	1.6935566945
.630	.03984815	.33885276	1.2360464078	1.6548841495
.690	.03321934	.31358571	1.2356381422	1.6231166066
.750	.02811685	.29256140	1.2352254673	1.5966047583
.810	.02410567	.27483025	1.2348090948	1.5741719825
.870	.02089540	.25969929	1.2343895984	1.5549597061
.930	.01828619	.24665265	1.2339674463	1.5383287922
.990	.01613685	.23529937	1.2335430247	1.5237949215

ТАБЛИЦА З. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-3},\, a=2.5~{
m mkm}$

Отношение	Число	Относительное		
малой	Кнудсена	изменение	U_1	U
полуоси		скорости		
к большой				
.210	.71726664	1.37779996	1.2386564904	2.9452773535
.270	.43390204	1.16756276	1.2383288536	2.6841555066
.330	.29046335	1.01198603	1.2379792012	2.4907968552
.390	.20796488	.89337487	1.2376131365	2.3432656106
.450	.15620474	.80069755	1.2372344648	2.2278850656
.510	.12161268	.72675687	1.2368458835	2.1357321243
.570	.09735752	.66669269	1.2364493689	2.0607811205
.630	.07969629	.61712866	1.2360464074	1.9988460760
.690	.06643869	.57566147	1.2356381419	1.9469474089
.750	.05623370	.54054337	1.2352254670	1.9029184012
.810	.04821134	.51047894	1.2348090945	1.8651531355
.870	.04179080	.48449145	1.2343895981	1.8324408071
.930	.03657239	.46183297	1.2339674460	1.8038542969
.990	.03227371	.44192270	1.2335430244	1.7786736842

ТАБЛИЦА 4. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-2},\, a=10~{
m mkm}$

Отношение	Число	Относительное)	
малой	Кнудсена	изменение	U_1	U
полуоси		скорости		
к большой				
.210	.17891867	.53541291	1.2378282741	1.9005775115
.270	.10823475	.41499930	1.2375038023	1.7510670129
.330	.07245467	.33752305	1.2371575259	1.6547267013
.390	.05187583	.28443879	1.2367949937	1.5885874713
.450	.03896451	.24625201	1.2364199742	1.5408908727
.510	.03033569	.21770114	1.2360351385	1.5051213986
.570	.02428536	.19567909	1.2356424438	1.4774318305
.630	.01987985	.17825278	1.2352433619	1.4554289280
.690	.01657281	.16416619	1.2348390247	1.4375578397
.750	.01402722	.15257271	1.2344303181	1.4227706929
.810	.01202608	.14288359	1.2340179470	1.4103388568
.870	.01042451	.13467821	1.2336024794	1.3997418487
.930	.00912280	.12764894	1.2331843792	1.3905990638
.990	.00805052	.12156616	1.2327640286	1.3826264145

ТАБЛИЦА 5. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-2},\, a=5~{
m mkm}$

Отношение малой полуоси	Число Кнудсена	Относительное изменение скорости	U_1	U
к большой				
.210	.35783734	.89501778	1.2378282744	2.3457065854
.270	.21646950	.72315236	1.2375038027	2.1324075941
.330	.14490934	.60500008	1.2371575263	1.9856379334
.390	.10375165	.52004155	1.2367949940	1.8799797858
.450	.07792902	.45669245	1.2364199745	1.8010836454
.510	.06067138	.40802105	1.2360351389	1.7403634995
.570	.04857072	.36967943	1.2356424441	1.6924340342
.630	.03975970	.33883007	1.2352433623	1.6537809595
.690	.03314561	.31355728	1.2348390251	1.6220317891
.750	.02805445	.29252907	1.2344303185	1.5955370706
.810	.02405217	.27479523	1.2340179473	1.5731201980
.870	.02084902	.25966242	1.2336024798	1.5539226832
.930	.01824561	.24661448	1.2331843795	1.5373054985
.990	.01610104	.23526028	1.2327640289	1.5227844371

ТАБЛИЦА 6. $A_T=100~{
m K/m},\, T_0=293~{
m K},\, C_0=10^{-2},\, a=2.5~{
m mkm}$

Отношение малой полуоси	Число Кнудсена	Относительное изменение скорости	U_1	U
к большой		скорости		
.21	.7156746803	1.3787889533	1.2378282741	2.9445322246
.27	.4329390041	1.1682160735	1.2375038024	2.6831756353
.33	.2898186722	1.0124276340	1.2371575259	2.4896899928
.39	.2075033097	.8936781426	1.2367949937	2.3420916465
.45	.1558580415	.8009076031	1.2364199742	2.2266781321
.51	.1213427659	.7269023659	1.2360351386	2.1345120052
.57	.0971414386	.6667923635	1.2356424438	2.0595593894
.63	.0795194089	.6171950945	1.2352433620	1.9976295056
.69	.0662912275	.5757032904	1.2348390247	1.9457399144
.75	.0561088949	.5405666456	1.2344303182	1.9017221745
.81	.0481043338	.5104880153	1.2340179470	1.8639693196
.87	.0416980491	.4844894811	1.2336024795	1.8312699046
.93	.0364912168	.4618222959	1.2331843792	1.8026964205
.99	.0322020747	.4419050775	1.2327640286	1.7775287122

7 Приложение.

Функции Гегенбауэра $J_n(x)$, $\mathcal{H}_n(x)$ первого и второго родов удовлетворяют дифференциальному уравнению

$$(x^{2}-1)\frac{d^{2}}{dx^{2}}\frac{J_{n}}{\mathcal{H}_{n}}(x) - n(n-1)\frac{J_{n}}{\mathcal{H}_{n}}(x) = 0$$
 (II.1)

Как линейно независимые решения они имеют свойства, которые выводятся непосредственно из связи с соответствующими функциями Лежандра $P_n(x)$, $Q_n(x)$ первого и второго родов порядка $n \ge 2$

$$J_n(x) = \frac{P_{n-2}(x) - P_n(x)}{2n - 1}, \qquad \mathcal{H}_n(x) = \frac{Q_{n-2}(x) - Q_n(x)}{2n - 1} \tag{\Pi.2}$$

Функции Лежандра первого и второго родов обладают одинаковыми рекуррентными свойствами $(n\geqslant 1)$

$$(2n+1)x \frac{P_n}{Q_n}(x) = (n+1)\frac{P_{n+1}}{Q_{n+1}}(x) + n\frac{P_{n-1}}{Q_{n-1}}(x), \tag{\Pi.3}$$

$$\frac{d}{dx} \frac{P_{n+1}}{Q_{n+1}}(x) - \frac{d}{dx} \frac{P_{n-1}}{Q_{n-1}}(x) = (2n+1) \frac{P_n}{Q_n}(x), \tag{\Pi.4}$$

которые позволяют записать для Функций Гегенбауэра первого и второго родов следующие рекуррентные равенства

$$(2n-1)x \frac{J_n}{\mathcal{H}_n}(x) = (n+1) \frac{J_{n+1}}{\mathcal{H}_{n+1}}(x) + (n-2) \frac{J_{n-1}}{\mathcal{H}_{n-1}}(x), \qquad n \geqslant 1, \qquad (\Pi.5)$$

$$\frac{d}{dx}\frac{J_n}{\mathcal{H}_n}(x) = -\frac{P_{n-1}}{Q_{n-1}}(x), \qquad n \geqslant 1, \\ n \geqslant 2, \tag{\Pi.6}$$

Из соотношений $(\Pi.3)$ и $(\Pi.5)$ следуют тождества

$$x^{2} \frac{P_{n}}{Q_{n}}(x) = \frac{(n+1)(n+2)}{(2n+1)(2n+3)} \frac{P_{n+2}}{Q_{n+2}}(x) + \frac{2n^{2}+2n-1}{(2n-1)(2n+3)} \frac{P_{n}}{Q_{n}}(x) + \frac{(n-1)n}{(2n-1)(2n+1)} \frac{P_{n-2}}{Q_{n-2}}(x), \qquad n \geqslant 2, \quad (\Pi.7)$$

$$x^{2} \frac{J_{n}}{\mathcal{H}_{n}}(x) = \frac{(n+1)(n+2)}{(2n-1)(2n+1)} \frac{J_{n+2}}{\mathcal{H}_{n+2}}(x) + \frac{2n^{2}-2n-3}{(2n-3)(2n+1)} \frac{J_{n}}{\mathcal{H}_{n}}(x) + \frac{(n-3)(n-2)}{(2n-3)(2n-1)} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(x), \qquad n \geqslant 2 \\ + \frac{(n-3)(n-2)}{(2n-3)(2n-1)} \frac{J_{n-2}}{\mathcal{H}_{n-2}}(x), \qquad n \geqslant 4 \quad (\Pi.8)$$

Дифференциальное уравнение (Π .1) в силу равенства (Π .6) позволяет записать формулу

$$(x^{2}-1)\frac{d}{dx}\frac{P_{n}}{Q_{n}}(x) = -n(n+1)\frac{J_{n+1}}{\mathcal{H}_{n+1}}(x), \qquad n \geqslant 1$$
 (\Pi.9)

Приведем соотношения, связывающие функции Лежандра первого и второго родов. Комбинация формул (П.3) дает два равенства

$$(n+1)\{P_{n+1}(x)Q_n(x) - P_n(x)Q_{n+1}(x)\} = n\{P_n(x)Q_{n-1}(x) - P_{n-1}(x)Q_n(x)\},\$$

$$(n+1)\{P_{n+1}(x)Q_{n-1}(x) - P_{n-1}(x)Q_{n+1}(x)\} = (2n+1)x\{P_n(x)Q_{n-1}(x) - P_{n-1}(x)Q_n(x)\}.$$

Откуда последовательно получаем

$$n\{P_n(x)Q_{n-1}(x) - P_{n-1}(x)Q_n(x)\} = P_1(x)Q_0(x) - P_0(x)Q_1(x),$$

$$P_n(x)Q_{n-1}(x) - P_{n-1}(x)Q_n(x) = \frac{1}{n},$$
(II.10)

$$P_{n+1}(x)Q_{n-1}(x) - P_{n-1}(x)Q_{n+1}(x) = \frac{2n+1}{n(n+1)x}$$
 (II.11)

Здесь использованы выражения

$$P_0(x) = 1$$
, $P_1(x) = x$, $Q_0(x) = \frac{1}{2} \ln \frac{x+1}{x-1}$, $Q_1(x) = \frac{1}{2} x \ln \frac{x+1}{x-1} - 1$. (II.12)

Вырожденные случаи при n=0 и 1 определяются формулами

$$J_0(x) = 1,$$
 $J_1(x) = -x,$ $\mathcal{H}_0(x) = -x,$ $\mathcal{H}_1(x) = -1.$ (II.13)

Если аргумент неограниченно возрастает, то функция первого рода $J_n(x)$ обращается в бесконечность как полином степени n, а функция второго рода $\mathcal{H}_n(x)$ стремится к нулю. Однако функция $\mathcal{H}_n(x)$ имеет особенность логарифмического типа при $x = \pm 1$.

$$\int_{-1}^{+1} J_n(x)dx = \begin{cases} 2, & \text{если } n = 0, \\ \frac{2}{3}, & \text{если } n = 2, \\ 0, & \text{если } n \neq 0; 2, \end{cases}$$
 (П.14)

$$\int_{-1}^{+1} \frac{J_m(x)J_n(x)}{1-x^2} dx = \frac{2}{n(n-1)(2n-1)} \delta_{mn}, \tag{\Pi.15}$$

$$\int_{-1}^{+1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}. \tag{\Pi.16}$$

Здесь символ Кронекера δ_{mn} равен единице при m=n и нулю при $m\neq n$. Условие ортогональности (П.15) справедливо, когда $m, n\neq 0; 1$.

Список литературы

- [1] Нарреl J., Brenner H. Low Reynolds number hydrodynamics. Prentice-Hall, 1965. Русский перевод: Хаппель Дж., Бреннер Г. Гидродинамика при малых числах Рейнольдса. Перевод с англ. Бермана В.С. и Маркова В.Г., Под ред. Буевича Ю.А. М.: Мир, 1976, 632 с.
- [2] Яламов Ю.И., Редчиц В.П., Гайдуков М.Н. О диффузиофорезе аэрозольной частицы эллипсоидальной формы в гидродинамическом режиме. // Журнал технической физики. 1979, 49, №7, с. 1534.
- [3] Яламов Ю.И., Редчиц В.П., Гайдуков М.Н. О термофорезе аэрозольной частицы эллипсоидальной формы в гидродинамическом режиме. // Инженерно-физический журнал. 1980, 39, №3, с. 539.
- [4] Яламов Ю.И., Чермошенцев А.В., Чермошенцева О.Ф. Термофорез умеренно крупной твердой аэрозольной частицы, имеющей форму слабо деформированной сферы. // Теплофизика высоких температур. 1997, 35, №3, с. 432–438.
- [5] Яламов Ю.И., Галоян В.С. Динамика капель в неоднородных вязких средах. Ереван: Луйс, 1985, 207 с, илл., библиогр. 230 назв.
- [6] Hobson E. W. The theory of spherical and ellipsoidal harmonics. Cambrige at the university press, 1931. Русский перевод: Гобсон Е.В. Теория сферических и эллипсоидальных функций. Перевод с англ. Фомина С.В. М.: Из-во иностранной литературы, 1952, 476 с.