

COS40003 Concurrent Programming

Lecture 3 (a): Scheduling I

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

CPU Scheduling Criteria

- CPU Utilization
 - how busy is the CPU?
- Turnaround Time
 - how long from job submission to job termination?
- Response Time
 - how long does it take to get a response
- Missed deadlines

Scheduler Options

Priorities

- -May use priorities to determine who runs next
- -Static vs. Dynamic algorithms
 - Static algorithms typically assign a fixed priority when the job is initially started
 - Dynamically alter the priority of the tasks while they are in the system (possibly with feedback)

Preemptive vs. Non-preemptive

- Preemptive systems allow the task to be interrupted at any time so that the O.S. can take over again

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

 Start jobs in the order they arrive (FIFO queue)

Run each job until completion

	Arrival	Processing
Process	Time	Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

		Arrival	Processing		Turnaround
Proc	ess	Time	Time	Delay	Time
	1	0	3	_	
	2	2	6		
	3	4	4		
	4	6	5		
	5	8	2		

Total delay: 23

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

- ☐ Select the job with the shortest (expected) running time
- ☐ Non-Preemptive

Total delay: 18

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

Preemptive version of SJF

Total delay: 16

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

- Goal: Enable interactivity
 - Limit the amount of CPU that a process can have at one time.
- Time quantum
 - Amount of time the OS gives a process before intervention
 - The "time slice"
 - Typically: 1 to 100ms

	Arrival Processing	
Process	Time	Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

Total delay: 34

	Arrival	Processing		Turnaround
Process	Time	Time	Delay	Time
1	0	3	1	4
2	2	6	10	16
3	4	4	9	13
4	6	5	9	14
//// 5	8	2	5	7

- Effectiveness of round-robin depends on
 - The number of jobs, and
 - -- The size of the time quantum.
- Large # of jobs means that the time between scheduling of a single job increases
 - -- Slow responses
- Larger time quantum means that the time between the scheduling of a single job also increases
 - Slow responses
- Smaller time quantum means better response time but also more overhead!

Outline

- CPU scheduling
- First-Come, First Served (FIFO)
- Shortest Job First (non-preemptive)
- Shortest Job First (with preemption)
- Round-Robin Scheduling
- Lottery Scheduling
- Multi-Level Feedback Queue

Lottery Scheduling

- A kind of proportional share scheduling
- Scheduler gives each task some lottery tickets
- To select the next process to run...
 - The scheduler randomly selects a lottery number
 - The winning process gets to run

<u>Example</u> Task A gets 50 tickets

Task B gets 15 tickets

Task C gets 35 tickets

There are 100 tickets outstanding

Lottery Scheduling

- A kind of proportional share scheduling
- Scheduler gives each task some lottery tickets.
- To select the next process to run...
 - The scheduler randomly selects a lottery number
 - The winning process gets to run

• Example

Task A gets 50 tickets

Task B gets 15 tickets

Task C gets 35 tickets

There are 100 tickets outstanding

→ 50% of CPU

→ 35% of CPU

Acknowledgement

- Chapter 7-9
 - Operating Systems: Three Easy Pieces

- 8.ppt
 - Intro to Operating System at Portland State University
 - by Jonathan Walpole

Questions?