LÓGICA INFORMÁTICA GRADO EN INGENIERÍA INFORMÁTICA INGENIERÍA DEL SOFTWARE

EVALUACIÓN POR CURSO PRIMER CONTROL GRUPO 2

8 DE NOVIEMBRE DE 2023

APELLIDOS Y NOMBRE:	

Ejercicio 1 (2 puntos)

1. Dada la siguiente tabla de verdad de las fórmulas proposicionales F_1 y F_2 , en las que solo ocurren las variables proposicionales p, q y r,

$I_1(p) = 0$	$I_1(q)=0$	$I_1(r) = 0$	$I_1(F_1) = 0$	$I_1(F_2)=0$
$I_2(p)=0$	$I_2(q)=0$	$I_2(r) = 1$	$I_2(F_1) = 1$	$I_2(F_2)=0$
$I_3(p) = 0$	$I_3(q) = 1$	$I_3(r)=0$	$I_3(F_1) = 1$	$I_3(F_2) = 1$
$I_4(p) = 0$	$I_4(q) = 1$	$I_4(r) = 1$	$I_4(F_1) = 0$	$I_4(F_2) = 0$
$I_5(p) = 1$	$I_5(q)=0$	$I_5(r)=0$	$I_5(F_1) = 1$	$I_5(F_2) = 1$
$I_6(p) = 1$	$I_6(q) = 0$	$I_6(r) = 1$	$I_6(F_1) = 1$	$I_6(F_2) = 1$
$I_7(p)=1$	$I_7(q) = 1$	$I_7(r) = 0$	$I_7(F_1) = 0$	$I_7(F_2) = 1$
$I_8(p)=1$	$I_8(q)=1$	$I_8(r)=1$	$I_8(F_1) = 1$	$I_8(F_2)=0$

se pide razonar directamente a partir de ella para:

- Obtener una FND de $F_1 \wedge F_2$ y una FNC de $F_1 \vee F_2$.
- Dados T_1 y T_2 tableros semánticos de F_1 y F_2 , determinar, para cada uno de los subapartados siguientes, si los literales indicados podrían ser los contenidos exactamente en alguna hoja abierta de T_1 , de T_2 , de ambos o de ninguno de los dos:
 - *p*, *q*, *r*
 - $\neg p, q, \neg r$
 - $p, \neg r$
- 2. Sea (p_1, p_2, p_3, p_4) una lista *ordenada* de variables proposicionales. Se pide escribir fórmulas proposicionales que expresen lo siguiente:
 - Hay más de una variable verdadera.
 - Después de una variable verdadera no hay ninguna variable falsa.

Ejercicio 2 (2.5 puntos)

Decidir, mediante tableros semánticos, si se tiene la siguiente consecuencia lógica:

$$\{p \to (\neg q \lor r), \neg q \to r\} \models p \to r$$

En caso contrario, obtener todos los posibles contramodelos a partir del tablero construido.

Ejercicio 3 (2.5 puntos)

Demostrar, mediante resolución, que la siguiente fórmula *no* es una tautología y obtener todos sus contramodelos a partir de las resolventes calculadas:

$$((q \lor r) \to (p \land r)) \to ((r \lor p) \to (\neg q \land p))$$

Usar equivalencias para obtener las formas clausales.

Ejercicio 4 (3 puntos)

Consideremos el siguiente conjunto de cláusulas proposicionales:

$$S = \big\{ \{p, \neg q, r, t\}, \{\neg s, \neg t\}, \{\neg p, q, \neg s\}, \{s, t\}, \{q, \neg r, \neg t\}, \{s, \neg t\}, \{\neg q, \neg s, t\}, \{r, \neg s, t\}, \{q, t\} \big\}$$

Demostrar, mediante el algoritmo CDCL, que el conjunto S es inconsistente. Usar la heurística del orden alfabético para elegir los literales de decisión.