```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import seaborn as sns
import scipy.stats as scp
```

Задание 5_2

Задача (с использованием ПК):

- А) Исследуйте зависимость цены квартиры (в тыс. у.е.) в г. Москве от общей площади (м2).
- Б) Построите 95%-й доверительный интервал для коэффициентов модели.
- В) Проверьте значимость модели регрессии в целом и каждого коэффициента модели по отдельности.
- Г) Сделайте выводы о качестве модели.
- Д) Проверьте выполнение предпосылку о гомоскедастичности.
- Е) При обнаружении гетероскедастичности:
- 1) оцените робастную ковариационную матрицу;
- 2) предложите пути устранения гетероскедастичности и постройте новые модели.

Файл с исходными данными задачи – task3.txt.

```
data = pd.read_csv('/content/task3.txt', sep = '\t')
x = data['Square']
y = data['Price']
data.head()
```

	Price	Square
0	5876	503
1	5743	256
2	5355	263
3	5202	484
4	5099	144

```
sns.set()
sns.scatterplot(x, y)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fd46969c250>

А) Исследуйте зависимость цены квартиры (в тыс. у.е.) в г. Москве от общей площади (м2).

Sauare

import·statsmodels.api·as·sm
results = sm.OLS.from_formula("Price ~ Square", data = data).fit()

print(results.summary())

OLS Regression Results

Dep. Variable:		Price		R-squared:			0.679
Model:		OLS		Adj. R	-squared:		0.661
Method:		Least Squares		F-stat	istic:		38.08
Date:		Sat, 26 Nov 2022		Prob (F-statisti	c):	7.96e-06
Time:		11:51:26 Log-Likelihood:			-169.58		
No. Observations:			20	AIC:			343.2
Df Residuals:			18	BIC:			345.2
Df Model:			1				
Covariance Type:		nonrob	ust 				
	coe-	f std err		t	P> t	[0.025	0.975]
Intercept	41.272	3 425.487	0	.097	0.924	-852.642	935.187

	coef	std err	t	P> t	[0.025	0.975]
Intercept Square	41.2723 12.6840	425.487 2.055	0.097 6.171	0.924 0.000	-852.642 8.366	935.187 17.002
Omnibus: Prob(Omnibus Skew: Kurtosis:	;):	12.7 0.0 1.5 4.5	96 Prob(•):	2.251 10.469 0.00533 321.
=========	=======	=========	=======	=======	========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

Считаем остатки

reg = LinearRegression().fit(x.values.reshape(-1,1), y.values.reshape(-1,1))

sns.set()
sns.scatterplot(x, epsilons.reshape(1, -1)[0])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning cmatplotlib.axes._subplots.AxesSubplot at 0x7fd46905d8d0>

тест ранговой корреляции Спирмена

```
rho, p = scp.spearmanr(x, abs(epsilons))
rho, p
     (0.6759503677838935, 0.0010695333928390479)
```

тест Глейзера

result = [0, 1, 2, 3, 4, 5]

```
data 1 = data
data_1.columns = ['y', 'x']
model = ['x', 'np.sqrt(x)', 'np.abs(1/x)', 'np.abs(1 / np.sqrt(x))', 'np.sqrt(x ** 3)']
result[1] = sm.OLS.from_formula("np.abs(epsilons) ~ x", data = data_1).fit().tvalues['x']
result[2] = sm.OLS.from_formula("np.abs(epsilons) ~ np.sqrt(x)", data = data_1).fit().tval
result[3] = sm.OLS.from_formula("np.abs(epsilons) ~ np.abs(1/x)", data = data_1).fit().tva
result[4] = sm.OLS.from_formula("np.abs(epsilons) ~ np.abs(1 / np.sqrt(x))", data = data_1
result[5] = sm.OLS.from_formula("np.abs(epsilons) ~ np.sqrt(x ** 3)", data = data_1).fit()
for i in range(5):
  print(f'Model {model[i]} t-stats : {np.abs(result[i + 1])}')
print(scp.t.isf(0.05 / 2, 18))
     Model x t-stats : 2.2366585900303493
     Model np.sqrt(x) t-stats : 2.370204403323419
     Model np.abs(1/x) t-stats : 1.5014660685170058
     Model np.abs(1 / np.sqrt(x)) t-stats : 1.9661652840584585
     Model np.sqrt(x ** 3) t-stats : 2.03966855587151
     2.10092204024096
```

Из этого критерия следует, что гипотеза Н0 отвергается, и остатки гетероскедастичны

```
print(results.get_robustcov_results(cov_type = "HCO").summary2())
```

Метод Доступных Взвешенных Наименьших Квадратов

```
data_2 = data_1
```

```
data_2['x'] = 1 / data_2['x']
data_2['y'] = data_2['y'] * data_2['x']

fin_model = sm.OLS.from_formula("y ~ x", data = data_2)
  result_dmnk = fin_model.fit()

sum_dm = result_dmnk.summary()
  print(sum_dm)
```

OLS Regression Results

========	======		-===	=====:			=======
Dep. Variable:		у		R-squ	ared:		0.241
Model:		OL	.S	Adj. I	R-squared:		0.199
Method:		Least Square	es.	F-sta	tistic:		5.709
Date:		Sat, 26 Nov 202	22	Prob	(F-statistic):	0.0280
Time:		13:15:1	.7	Log-L:	ikelihood:	•	-66.700
No. Observat	ions:	2	20	AIC:			137.4
Df Residuals	:	1	.8	BIC:			139.4
Df Model:			1				
Covariance T	vpe:	nonrobus	st				
========			===	=====		=======	=======
	coef	std err		t	P> t	[0.025	0.975]
Intercept	15.980	2.539	 6	.293	0.000	10.645	21.316
•	-380.087				0.028		-45.894
Omnibus:	======	 16.21	6	===== Durbi	 n-Watson:	=======	2.633
Prob(Omnibus):		0.00			e-Bera (JB):		16.236
Skew:	, -	1.63		Prob(, ,		0.000298
Kurtosis:		5.97		Cond.	•		99.3
		رر	ر 				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

```
y_pred = fin_model.predict(fin_model.fit().model.exog.reshape(2, 20))
y_pred
```

```
2.0100e+02, 6.2000e+03, 2.0100e+02, 7.3200e+03, 2.0100e+02,
6.1880e+03, 2.0100e+02, 7.0930e+03, 2.0100e+02, 1.2246e+04],
[1.2100e+02, 1.3703e+04, 1.2100e+02, 7.8160e+03, 1.2100e+02,
1.4303e+04, 1.2100e+02, 9.4840e+03, 1.2100e+02, 1.3344e+04,
1.2100e+02, 3.8000e+03, 1.2100e+02, 4.4400e+03, 1.2100e+02,
3.7880e+03, 1.2100e+02, 4.2930e+03, 1.2100e+02, 7.4460e+03],
[1.8900e+02, 2.1183e+04, 1.8900e+02, 1.2100e+04, 1.8900e+02,
2.2259e+04, 1.8900e+02, 1.4584e+04, 1.8900e+02, 2.0824e+04,
1.8900e+02, 5.8400e+03, 1.8900e+02, 6.8880e+03, 1.8900e+02,
5.8280e+03, 1.8900e+02, 6.6730e+03, 1.8900e+02, 1.1526e+04],
[9.4000e+01, 1.0733e+04, 9.4000e+01, 6.1150e+03, 9.4000e+01,
1.1144e+04, 9.4000e+01, 7.4590e+03, 9.4000e+01, 1.0374e+04,
9.4000e+01, 2.9900e+03, 9.4000e+01, 3.4680e+03, 9.4000e+01,
2.9780e+03, 9.4000e+01, 3.3480e+03, 9.4000e+01, 5.8260e+03],
[2.4700e+02, 2.7563e+04, 2.4700e+02, 1.5754e+04, 2.4700e+02,
2.9045e+04, 2.4700e+02, 1.8934e+04, 2.4700e+02, 2.7204e+04,
2.4700e+02, 7.5800e+03, 2.4700e+02, 8.9760e+03, 2.4700e+02,
7.5680e+03, 2.4700e+02, 8.7030e+03, 2.4700e+02, 1.5006e+04],
[1.1100e+02. 1.2603e+04. 1.1100e+02. 7.1860e+03. 1.1100e+02.
```

```
1.3133e+04, 1.1100e+02, 8.7340e+03, 1.1100e+02, 1.2244e+04,
1.1100e+02, 3.5000e+03, 1.1100e+02, 4.0800e+03, 1.1100e+02,
3.4880e+03, 1.1100e+02, 3.9430e+03, 1.1100e+02, 6.8460e+03],
[6.4000e+01, 7.4330e+03, 6.4000e+01, 4.2250e+03, 6.4000e+01,
7.6340e+03, 6.4000e+01, 5.2090e+03, 6.4000e+01, 7.0740e+03,
6.4000e+01, 2.0900e+03, 6.4000e+01, 2.3880e+03, 6.4000e+01,
2.0780e+03, 6.4000e+01, 2.2980e+03, 6.4000e+01, 4.0260e+03],
[1.1800e+02, 1.3373e+04, 1.1800e+02, 7.6270e+03, 1.1800e+02,
1.3952e+04, 1.1800e+02, 9.2590e+03, 1.1800e+02, 1.3014e+04,
1.1800e+02, 3.7100e+03, 1.1800e+02, 4.3320e+03, 1.1800e+02,
3.6980e+03, 1.1800e+02, 4.1880e+03, 1.1800e+02, 7.2660e+03],
[7.6000e+01, 8.7530e+03, 7.6000e+01, 4.9810e+03, 7.6000e+01,
9.0380e+03, 7.6000e+01, 6.1090e+03, 7.6000e+01, 8.3940e+03,
7.6000e+01, 2.4500e+03, 7.6000e+01, 2.8200e+03, 7.6000e+01,
2.4380e+03, 7.6000e+01, 2.7180e+03, 7.6000e+01, 4.7460e+03],
[1.1100e+02, 1.2603e+04, 1.1100e+02, 7.1860e+03, 1.1100e+02,
1.3133e+04, 1.1100e+02, 8.7340e+03, 1.1100e+02, 1.2244e+04,
1.1100e+02, 3.5000e+03, 1.1100e+02, 4.0800e+03, 1.1100e+02,
3.4880e+03, 1.1100e+02, 3.9430e+03, 1.1100e+02, 6.8460e+03],
[3.1000e+01, 3.8030e+03, 3.1000e+01, 2.1460e+03, 3.1000e+01,
3.7730e+03, 3.1000e+01, 2.7340e+03, 3.1000e+01, 3.4440e+03,
3.1000e+01, 1.1000e+03, 3.1000e+01, 1.2000e+03, 3.1000e+01,
1.0880e+03, 3.1000e+01, 1.1430e+03, 3.1000e+01, 2.0460e+03],
[3.7000e+01, 4.4630e+03, 3.7000e+01, 2.5240e+03, 3.7000e+01,
4.4750e+03, 3.7000e+01, 3.1840e+03, 3.7000e+01, 4.1040e+03,
3.7000e+01, 1.2800e+03, 3.7000e+01, 1.4160e+03, 3.7000e+01,
1.2680e+03, 3.7000e+01, 1.3530e+03, 3.7000e+01, 2.4060e+03],
[3.1000e+01, 3.8030e+03, 3.1000e+01, 2.1460e+03, 3.1000e+01,
3.7730e+03, 3.1000e+01, 2.7340e+03, 3.1000e+01, 3.4440e+03,
3.1000e+01, 1.1000e+03, 3.1000e+01, 1.2000e+03, 3.1000e+01,
1.0880e+03, 3.1000e+01, 1.1430e+03, 3.1000e+01, 2.0460e+03],
[3.6000e+01, 4.3530e+03, 3.6000e+01, 2.4610e+03, 3.6000e+01,
4.3580e+03, 3.6000e+01, 3.1090e+03, 3.6000e+01, 3.9940e+03,
3.6000e+01, 1.2500e+03, 3.6000e+01, 1.3800e+03, 3.6000e+01,
1.2380e+03, 3.6000e+01, 1.3180e+03, 3.6000e+01, 2.3460e+03],
[6.1000e+01, 7.1030e+03, 6.1000e+01, 4.0360e+03, 6.1000e+01,
7.2830e+03, 6.1000e+01, 4.9840e+03, 6.1000e+01, 6.7440e+03,
6.1000e+01, 2.0000e+03, 6.1000e+01, 2.2800e+03, 6.1000e+01,
1.9880e+03, 6.1000e+01, 2.1930e+03, 6.1000e+01, 3.8460e+03]])
```

▼ 95% доверительный интервал :

```
[0.025 0.975]

10.645 21.316

-714.281 -45.894

scp.f.ppf(q = 1 - 0.05, dfn = 1, dfd = len(data_2) - 2)

4.413873419170566
```

Значимость параметров регресии:

b0 => p-value < 0.05, следовательно гипотеза H0 отвергается и параметр значим

b1 => p-value < 0.05, следовательно гипотеза H0 отвергается и параметр значим

Значимость модели регрессии:

F-stat = 5.709 > F-table = 4.413, следовательно гипотеза H0 отвергается и модель значима

Качество модели

 $R^2 = 0.241$

 $R^2(adj) = 0.199$

Качество модели плохое - значение R^2 меньше 0.5, кроме того есть значительное различие между скорректированным коэффициентом и обычным из-за малого количества наблюдений

```
sns.set()
sns.scatterplot(data_2['x'].values, data_2['y'].values)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fd469058cd0>

После преобразования нет нормального распределения

Тест Уайта

```
from statsmodels.stats.diagnostic import het_white

#perform White's test
white_test = het_white(fin_model.fit().resid, fin_model.fit().model.exog)
```

```
#define labels to use for output of White's test
labels = ['Test Statistic', 'Test Statistic p-value', 'F-Statistic', 'F-Test p-value']

#print results of White's test
print(dict(zip(labels, white_test))['Test Statistic p-value'])

0.08498413502113245
```

p-value = 0.085 > 0.05 следовательно гипотеза Н0 принимается и модель показывает гомоскедастичность

После применения ДМНК качество и адекватность модели значительно понизилась, что свидетельствует о неадекватности метода решения. При этом метод робустной ковариационной матрицы, не уменьшает качество модели. Стоит выбрать его.

Задание 6_2

Задача (с использованием ПК):

- А) Оцените коэффициенты регрессии на примере данных о динамике золотовалютных резервов РФ за период с 26.12.03 по 07.01.05.
- X время, отсчитываемое в днях от начального момента времени 26.12.03, а столбец
 Y золотовалютные резервы (в млрд долл.).
- Б) Построите 90%-й доверительный интервал для коэффициентов модели.
- В) Проверьте значимость модели регрессии в целом и каждого коэффициента модели по отдельности.
- Г) Сделайте выводы о качестве модели.
- Д) Проверьте выполнение предпосылки о гомоскедастичности и об отсутствии автокорреляции остатков.
- Е) При обнаружении гетероскедастичности или автокорреляции:
- 1) оцените робастную ковариационную матрицу;
- 2) предложите пути устранения гетероскедастичности или автокорреляции и постройте новые модели.

Файл с исходными данными задачи – task1.txt.

▼ «Автокорреляция»

```
data = pd.read_csv('/content/task1.txt', sep = '\t', decimal = ',')
data.head()
```

	X	Υ
0	7	77.1
1	14	78.9
2	21	79.1
3	28	82.7
4	35	84.1

sns.set()
sns.scatterplot(data['X'].values, data['Y'].values)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7fd4685f4290>

results = sm.OLS.from_formula("Y ~ X", data = data).fit()
print(results.summary())

OLS Regression Results

Dep. Variable	:		Υ	R-sq	uared:		0.749
Model:		OLS		Adj.	Adj. R-squared:		0.745
Method:		Least Squa	res	F-st	atistic:		155.6
Date:		Sat, 26 Nov 2	022	Prob	(F-statistic)	•	2.96e-17
Time:		14:03	:49	Log-	Likelihood:		-179.59
No. Observati	.ons:		54	AIC:			363.2
Df Residuals:			52	BIC:			367.1
Df Model:			1				
Covariance Ty	pe:	nonrob	ust				
=========		========	====		=========	=======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	72.8507	1.893	38	3.483	0.000	69.052	76.649
Χ	0.1067	0.009	12	2.473	0.000	0.090	0.124
Omnibus:	:======	 17.	===== 247	Durb:	======== in-Watson:	=======	0.058
Prob(Omnibus):		0.	000	Jarq	Jarque-Bera (JB):		3.890

 Skew:
 0.188
 Prob(JB):
 0.143

 Kurtosis:
 1.740
 Cond. No.
 449.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

→

```
from statsmodels.stats.stattools import durbin_watson
```

```
#perform Durbin-Watson test
durbin_watson(model.resid)
```

```
#Тест Голфреда-Кванта
from statsmodels.stats import api
new_x = np.concatenate((np.ones((len(data['y']), 1)), x.values.reshape(-1, 1)), axis = 1)
api.het_goldfeldquandt(epsilons, new_x)
     (0.016108527948533475, 0.9999978722994026, 'increasing')
vec_w = sorted(vec_w)
import scipy.stats as scp
new_w = [round(scp.norm.cdf(vec_w[i])[0], 3) for i in range(len(vec_w))]
new_w
     [0.072,
      0.127,
      0.129,
      0.156,
      0.185,
      0.21,
      0.213,
      0.246,
      0.247,
      0.351,
      0.353,
```

```
10.12.2022, 13:39
```

```
0.389,
0.416,
```

0.561,

0.588,

0.693, 0.783,

0.816, 0.865,

0.878,

0.897,

0.937,

0.995]

```
i = np.linspace(0., 1., len(new_w))
k = 0
for cur in range(len(new_w) - 1):
  k += (((new_w[cur] > i[cur]) & (new_w[cur] < i[cur + 1])) == 0)
k, len(new_w)
     (17, 24)
```

Платные продукты Colab - Отменить подписку