

热

初露锋芒

	1. 理解温度,温标的定义
	2. 理解热量,比热容的意义
学习目标	3. 知道内能以及改变内能的方式
&	4. 知道热机的应用
重难点	1. 理解热量,比热容的意义
	2. 知道内能以及改变内能的方式
	3. 知道热机的应用

根深蒂固

一、	温度 温标
	1、温度是表示
	摄氏温标规定:在一个标准大气压下;沸水的温度为;它们之间分成 100 等
	份,每一等份叫做。-3℃读做:。
	2、测量温度的工具是
	内有粗细均匀的; 医用温度计比常用温度计多设计了; 其作用是。
	3、分子动理论:物体是由组成的;一切物体的分子在;且分子之间存在;分子之间存在。
Ξ,	热量 内能 比热容
	1、内能:物体内部所有分子和的总和。物体的内能与、、等有关。改
	变内能的方式:和; 这两种方式对内能的改变是。
	在热传递过程中,
	2、比热容:的某种物质温度升高(或降低)1℃,吸收(或放出)的。比热容的符
	号是:,比热容的单位是:。比热容是物质的一种,它不随物质的、 温度的改变而改变。
	3、热量的计算:; 水的比热容是:, 它表示的物理意义是:。
三、	热机
	1、工作原理:将转化为。
	2、热机四个冲程(一个工作循环):、、、、。
	3、一个工作循环飞轮转圈;活塞上下往复次。除了冲程其他冲程都是靠飞轮的
	完成的。在做功冲程中能转化为能。在压缩冲程中能转化为能。

枝繁叶茂

一、温度 温标

- 【例 6】下列现象中,不能用分子运动理论解释的是 ()
 - A. 在墙角堆煤,过一段时间白墙变黑,且刷不净
 - B. 在一杯水里滴红墨水,过一会儿整杯水都变红
 - C. 打开装香水的瓶盖,香味四处飘逸
 - D. 煮稀饭时,米粒在沸腾的水中翻滚

方法与技巧

1、温度是表示物体冷热程度的物理量,一个标注大气压下,冰水混合物的温度为 0°C; 沸水的温度为 100°C;

2、分子动理论: 物体是由分子组成的, 分子在不停地做无规则的运动, 分子间存在相互作用力。

二、热量,内能,比热容

知识点一:内能 热量

- 【例1】下列关于内能的说法中错误的是 ()
 - A. 物体运动的速度越大, 具有的内能就越大
 - B. 物体的温度降低, 具有的内能减小
 - C. 物体吸收热量,内能不一定增大
 - D. 物体的内能增大,温度不一定升高

【例:	2】用热传递	的方法系	长改变物体的内能,	实际上是_		从一个物体	_到另一个物体的过
程,	热量只是表	示热传递	员过程中物体内能的	<u> </u>	•	用做功的方式来改变内能,	实际上是其他形式
的能	成	能。					

知识点二: 比热容

【例3】某小组的同学为了研究"液体吸收热量的多少与哪些因素有关",做了如下实验。他们在完全相同的烧杯中分别装入一定质量的甲、乙两种液体。实验时,用完全相同的酒精灯分别对烧杯中的液体加热,并利用仪器测量液体的质量、升高的温度和加热时间,并将实验数据整理、记录分别如表一、表二、表三所示。同一表格内液体的加热时间相等,表一内液体加热时间最短,表二次之,表三内液体加热时间最长。(设加热时间相等时,液体所吸收的热量相等)

表一: 甲液体

1 TIME									
实验	质量	升高的温							
序号	(克)	度(℃)							
1	50	20							
2	40	25							
3	20	50							

表二: 甲液体

实验	质量	升高的温
序号	(克)	度(℃)
4	100	20
5	50	40
6	40	50

表三: 乙液体

实验	质量	升高的温
序号	(克)	度 (℃)
7	200	10
8	100	20
9	50	40

①分析比较实验序号	的数据及相关条件,可得出的初步结论是:同种液体,质量一
定时,升高的温度越多,	吸收的热量越多。
②分析比较实验序号1与4	4或3与6的数据及相关条件,可得出的初步结论是:
③分析比较实验序号4与	。 8或5与9的数据及相关条件,可得出的初步结论是:质量一定的不同液体,升高相
同的温度, 吸收的热量不	司。
④请进一步综合分析比较	表一、表二或表三中的数据及相关条件,并归纳得出结论。
(a) 分析比较表一、表式	二或表三中的数据及相关条件,可初步得出:同种液体,质量与升高温度的乘积
相等, 吸收的热量相等。	
(b) 分析比较	中的数据及相关条件,可初步得出:
	°
(c) 分析比较	中的数据及相关条件,可初步得出:
	•
知识点三:热量计算	
_	温度为40℃的铝块加热到100℃,铝块吸收了多少热量?如果这些热量用来给水加
热,能使多少20℃的水升	片高到40℃?(C _網 =0.88×10³J/(kg·℃))
【柳 5】 批银又左阳业下	F温度升高,这是通过 方式改变了锯条的内能。若锯条质量为 200
	「面反升尚,这是過程」」
	5×10 ² 焦/(千克·℃))
	3~10~無/(兄・し))
	<u> </u>
方 物体的原	
(I 12 12 12 13 14 15 15 15 15 15 15 15	4能是物体4所有分子划能和分子势能的综合,这令物体4的能的方
	内能是物体内所有分子动能和分子势能的综合,改变物体内能的方 力和热传递;比热容是物质的特性,由物质的种类和状态决定的;

三、热机

知识点一: 热机

【例1】内燃机工作的四个冲程中,内能转化为机械能的冲程是 ()

A. 吸气冲程 B. 压缩冲程 C. 做功冲程 D. 排气冲程

【例 2】如图所示为四冲程汽油机工作过程中的示意图,其中表示吸气冲程的是 ()

随堂检测

1、电视机工作时,部分元器件发热,用手试一下后盖,估计后盖处的温度约为 ()

A. 20°C

B. 40°C

C. 60°C

D. 80°C

2、平均气温是一日当中的2时、8时、14时、20时四个时刻气温的平均值,如果某地某日这四个时刻的气温 如图所示,则此地的最高气温是 ,最低气温是 ,平均气温是

- 3、用如图的装置演示气体扩散现象,其中一个瓶装有密度比空气大的红棕色二氧化氮气体,另一瓶装有空气。 为了有力地证明气体发生扩散,装二氧化氮气体的应是 (选填"A"或"B")瓶。根据 现 象可知气体发生了扩散。扩散现象说明气体分子 。若实验温度分别为①0℃,②4℃,
- ③20℃, ④30℃, 则在 温度下(填序号)气体扩散最快。

4、下列关于热量的说法中正确的是 (

A. 温度高的物体含有的热量多

B. 质量大的物体放出的热量多

C. 温度低的物体吸收的热量多

D. 一个物体温度升高得越多, 吸收的热量越多

5、质量为800克、温度为-2℃的冰块放出8.4×10³J 的热量后温度变为多高?把一壶水从20℃加热到100℃,水吸收的热量是8.4×10⁵J。求这壶水的质量。[C $_{*}$ =2.1×10³J/(kg·℃)]

6、许多城市中建有大型绿地,绿地中的人工湖具	有"吸热"功能,	盛夏时节能减弱局	周围地区的"热岛效应"。
若某一人工湖水的质量为 1.0 × 10 7g,水温升高2℃,	则湖水吸收的热	量为J	。若这些热量被同等质量
的沙石吸收($C_{\mathfrak{B}}$ < $C_{\mathfrak{K}}$),则沙石升高的温度	2℃(选填"大	c于"、"等于"、"小	、于")。

- 7、质量相等的一杯冷水和一杯热水升高相同的温度,则它们吸收的热量 ()
 - A. 初温不知, 无法判断
- B. 吸收的热量一样多
- C. 热水吸收的热量多
- D. 冷水吸收的热量多
- 8、某兴趣小组在"研究物体吸收热量的多少与哪些因素有关"的实验中,提出了以下几种猜想:
 - A. 与物体升高的温度有关
 - B. 与物体的质量有关
 - C. 与物质的种类有关

为了验证以上猜想,小组同学用如图所示装置做了如下实验,将50克的水装入烧杯中,用酒精灯加热,并利用温度计和计时器测量水的温度随时间的变化情况,数据记录在表一中,然后在烧杯中再加入50克的水,重复上述实验,实验数据记录在表二中。

表一

50克水	时间(分钟)	0	1	2	3	4	5	6
	温度(℃)	20	24	28	32	36	40	44
	升高温度(℃)	0	4	8	12	16	20	24

表二

	时间(分钟)	0	1	2	3	4	5	6
100克水	温度 (℃)	20	22	24	26	28	30	32
	升高温度(℃)	0	2	4	6	8	10	12

表三

时间(分钟)	/	/	/	/	/	/	/
温度 (℃)	/	/	/	/	/	/	/
升高温度(℃)	/	/	/	/	/	/	/

A. 甲

①分析比较表一(或表二)中的第一行与第三行的数据及相关条件,可得出的初步结论是: ,吸收的热量与升高的温度成正比。
②分析比较表一和表二中第四列、第五列、第六列等有关数据及相关条件,经过推理,可以得出的初步结论是: 同种物质(水)吸收相等的热量,。
③进一步综合分析表一和表二中有关数据及相关条件,归纳得出的结论为:
—————。 ④为了验证猜想(选填字母),请你把实验方案的设计填在表三中。
9、火柴可以点燃,也可以擦燃,前者是用的方法使火柴燃烧起来,后者是用的方法使火柴燃烧起来。这两种方法都可以用来改变物体的。
10、如图所示,在试管中装些水,用软木塞塞住,加热使水沸腾,水蒸气会把软木塞冲出。在这个过程中,燃料的
11、关于物体内能的说法中错误的是() A. 一切物体都有内能 B. 一定质量的物体,温度越高,它具有的内能越大 C. 物体具有的内能越多,它具有的热量就越多 D. 物体对外做功时,物体的内能会减少
12、在下图中,表示内燃机做功冲程的示意图是 ()

D. 丁

B. 乙 C. 丙

瓜熟蒂落

1、人体正常体温为	℃,一般体温计	的测量范围是	℃。用两支	℃。用两支准确完好的体温表同时测			
一病人的体温,一支	で读数为38℃,另一支读	卖数为39.2℃,该病人的	勺体温应是	$^{\circ}$ C .			
2、质量相同的甲乙	两物体的比热为2:1,若	甲吸收热量是乙吸收热	^{热量的3倍,则它}	们升高温度之比是(
A. 3:2	B. 2:3	C. 6:1	D. 1:6				
3、放在同一地方体	积相等的实心铜球和空	心铜球,如果他们吸收	(相等的热量, 则				
A. 实心球温度	升的高	B. 空心球温度	度升的高				
C. 两球温度升	高的一样高	D. 不知道末溫	温,无法判断				
4、图中是四冲程热	机气缸工作时的示意图	,其中将内能转化为机	L械能的图是 ()			
	8 0	8 0 9 5		8 3			

5、物体受热后温度会升高,某个小组同学想研究其中的一些关系,他们用酒精灯同时对几种液体加热,以加热时间长短表示物质吸收热量的多少;实验记录如下表:

实验序号	加热物质	质量(克)	20℃	24°C	28℃	32℃
1	水	200	1: 30	1: 32	1: 34	1: 36
2	水	400	1: 40	1: 44	1: 48	1: 52
3	水	600	2: 00	2: 06	2: 12	2: 18
4	煤油	200	1: 30	1: 31	1: 32	1: 33
5	煤油	400	1: 40	1: 42	1: 44	1: 46
6	煤油	600	2: 00	2: 03	2: 06	2: 09

	6	煤油	600	2:	00	2: 03	2: 06	2: 09	Í	
(1)	比较实验序	号1、2、3(或4、5、6)	的數	女据可以?	得出的结论是	į: 			
			0							
(2)	比较实验序	号	的数排	居可	以得出的	」结论是:			0	
(3)	进一步分析	表格中的数据	居:							
分析	比较 1、2、3	3 或 4、5、6	可以得到:_						0	
分析	比较 1、2、3	3和4、5、6	可以得到:_						0	

- 6、清晨,小岚摇动荷叶上的露珠,她发现两颗露珠相互接触时能自动结合成一颗较大的露珠。这一事实说明
 - A. 分子间有间隙

B. 物质间有扩散现象

C. 分子间有斥力

D. 分子间有引力

7、一块质量为400克的铜块和一个铅块吸收相同的热量后,升高的温度之比为4:3,求这铅块的质量。 $[C_{\mathfrak{g}} = 0.39 \times 10_3 \text{J/}(kg \cdot ^{\circ}\text{C}), C_{\mathfrak{g}} = 0.13 \times 10^3 \text{J/}(kg \cdot ^{\circ}\text{C})]$

- 8、物体内能的改变有两种方式。下现象中内能的改变是哪一种方式?
- (1) 用打气筒给自行车打气时气筒会发热,是 使气筒内能改变;
- (2) 古代人类钻木取火,是 使木的内能改变;
- (3) 冰块在阳光下熔化成水,是 使冰块的内能改变。
- 9、质量相等,初温相同的甲、乙两种不同的液体,分别用两个完全相同的加热器加热,加热过程中,温度随时间变化图象如图所示,根据图象可得到两液体的比热容 ()
 - A. 甲液体的比热容大
 - B. 乙液体的比热容大
 - C. 甲、乙两液体的比热容一样大
 - D. 无法判断

10、质量相同的两块金属甲和乙,甲的比热是乙的3倍,当它们吸收相等的热量时,甲、乙升高温度的比为_____; 当它们升高相同的温度时,甲、乙吸收热量的比为。

11、甲、乙两个物体间发生热传递,甲物体温度升高,乙物体温度降低,结果甲、乙两物体温度相同,在这一过程中甲物体内能增加了100J,则 ()

- A. 甲物体的热量也增加了100J
- B. 乙物体放出100J内能,热量减少100J
- C. 乙物体的内能减少了100J
- D. 热传递后, 甲、乙两个物体的内能相等
- 12、下列事例中,不是用做功的方法使物体的内能增加的是 ()
 - A. 用气筒给自行车打气时,气筒壁发热
 - B. 用钢锯条锯木头, 过一会儿钢锯条发热
 - C. 寒冷的冬天,双手相互反复摩擦后,手掌发热
 - D. 冬天, 在房间内用取暖器取暖, 室内空气变暖

