# EECS 151/251A Discussion 10/worksheet

Alisha Menon

#### Administrativia

- Midterm 2 on Thursday 11/4
- Midterm review session Tuesday 11/2 (problems 4-7)
- How is the project?

### Agenda

Midterm worksheet/problem examples

#### Midterm 2 Topics!

#### Including:

- CMOS
- Delay optimization and logical effort
- Power and energy
- Wires and RC models
- Arithmetic

#### Problem 1 – CMOS Gate (Fa20 m2)

In this problem, use the process that has  $W_n = W_p = 1$  in a reference inverter, and  $\gamma = 1$ .

(a) Design a complex CMOS gate:  $Y = \overline{(A+B) \cdot C + D}$ . Size the transistors so that the gate has the same pull-up and pull-down strength as a reference inverter.

**251A only:** Also make sure the parasitic delay (P) is minimized in your design.

#### Problem 1 – CMOS Gate (Fa20 m2)

(b) Calculate the logic effort for each input  $(LE_A, LE_B, LE_C, LE_D)$ .

#### Problem 1 – CMOS Gate (Fa20 m2)

(c) **251A only:** Calculate the optimized parasitic delay P.

Reference inverter:  $W_p = 2W_n = W$ ,  $t_{p,inv} = 32ps$ ,  $\gamma = 2$ 

a) Determine path effort and optimal stage effort



b) Find optimal a and b for minimum delay

c) Is this the optimal number of stages for delay? If not, what is?

Reference inverter:  $W_p = 2W_n = W$ ,  $t_{p,inv} = 32ps$ ,  $\gamma = 2$ 

d) If we could add a single inverter anywhere along the critical path, where would be the best for the minimum total area?



Reference inverter:  $W_p = 2W_n = W$ ,  $t_{p,inv} = 32ps$ ,  $\gamma = 2$ 

e) "Better" NAND gate logical effort?



Reference inverter:  $W_p = 2W_n = W$ ,  $t_{p,inv} = 32ps$ ,  $\gamma = 2$ 

f) "Better" NAND gate intrinsic delay parameter (p)?

$$t_{p,inv} = \ln(2) R_{eq,inv} C_{in,inv}$$



g) How does this affect the delay of our original chain?

#### 4) Delays and Adders (18 points, 22 minutes)

You are designing a datapath in a brand-new CMOS FinFET technology, where NMOS and PMOS devices have equal strength. In particular, it has only four CMOS gates: 2- input NAND, 2-input NOR, 2-input XOR, and an OAI21 gate (Y =  $(\overline{A+B})\overline{C}$ ). Gate capacitance equals drain capacitance per unit area ( $\gamma$  = 1), and the four gates come in with only one size each, i.e., you do not need to size gates in this problem.

a) If both the 2-input NAND gate and the 2-input NOR gate have a delay dependence on a fanout, f, given as  $t_{NAND2} = t_{NOR2} = 2ns(4 + 3f)$ , what is the delay dependence on the fanout of the input C of the OAI21 gate (C is in the critical path)?

 $t_{AOI21} =$ 

b) Draw a fast full-adder using the four types of gates and calculate the ci->sum and ci->cout delay. Note that using an OAl21 gate could potentially simplify the logic for C\_out. Assume the capacitance driven by the sum and the carry bits is equal to the capacitance of inputs a<sub>i</sub>, b<sub>i</sub> and t<sub>XOR2</sub> = 2ns (8 + 8f).



t<sub>FA,Ci→Co</sub> = \_\_\_\_\_

 $t_{\mathsf{FA},\mathsf{Ci} 
ightarrow \mathsf{S}} = \underline{\hspace{1cm}}$ 

c) Complete the drawing and label all inputs and outputs for an 4-bit ripple-carry adder in figure below by using full-adder (FA) cells from part b). Inputs are a[3:0] and b[3:0] and there is no carry-in to the least-significant bit.



d) Find the critical path delay for the circuit in part c), if the capacitance driven by the sum and the carry bits is equal to the input a<sub>i</sub>, b<sub>i</sub> capacitance. If you are not confident in your answer in part b), you can express the delay in terms of t<sub>FA,Ci→Co</sub>, and t<sub>FA,Ci→S</sub>

Critical path = \_\_\_\_\_.

#### Problem 4 Logical effort (Sp13)

## Logical effort and intrinsic delay?



#### Problem 4 Logical effort (Sp13)

 Made a mistake in layout! What is the effect on L-H transition? H-L transition?



#### Problem 4 Logical effort (Sp13)

- Delay optimization with fixed gate
- Using A input with Cin = 24 fF, CL = 75Cin



Min. inverter: drive resistance R<sub>d</sub>, input cap C<sub>in</sub>, intrinsic cap C<sub>int</sub>

Wire: r<sub>w</sub>, c<sub>w</sub> (per unit length)

a + b) Propagation delay from *in* to *out* (using distributed model for wires)



Min. inverter: drive resistance R<sub>d</sub>, input cap C<sub>in</sub>, intrinsic cap C<sub>int</sub>

Wire: r<sub>w</sub>, c<sub>w</sub> (per unit length)

c) Derive reduction in delay by increasing the first inverter as much as possible:



Min. inverter: drive resistance R<sub>d</sub>, input cap C<sub>in</sub>, intrinsic cap C<sub>int</sub>

Wire: r<sub>w</sub> , c<sub>w</sub> (per unit length)

d) Propagation delay with repeater:

In 

V

X

Min. inverter: drive resistance R<sub>d</sub>, input cap C<sub>in</sub>, intrinsic cap C<sub>int</sub>

Wire: r<sub>w</sub> , c<sub>w</sub> (per unit length)

e) Conditions for design with repeater to be faster?  $L_1$  out  $L_2$ 

#### Problem 6 - Wires and Energy (Sp16)

A NOR gate (G1) with input capacitance  $C_1$  is driving a wire with total resistance  $R_W$  and total capacitance  $C_W$ , and an inverter with input capacitance  $C_2$ . Inverter G2 is driving an external load of  $C_L$ . The on-resistance of G1 and G2 are  $R_1$  and  $R_2$ , respectively. Assume  $\gamma = 1$  and  $2R_N = R_P$ . The power supply has a voltage of  $V_{DD}$ .



a) Determine the delay between input A to Out

#### Problem 6 - Wires and Energy (Sp16)

A NOR gate (G1) with input capacitance  $C_1$  is driving a wire with total resistance  $R_W$  and total capacitance  $C_W$ , and an inverter with input capacitance  $C_2$ . Inverter G2 is driving an external load of  $C_L$ . The on-resistance of G1 and G2 are  $R_1$  and  $R_2$ , respectively. Assume  $\gamma = 1$  and  $2R_N = R_P$ . The power supply has a voltage of  $V_{DD}$ .



b) Assume input A is driven by a square-wave signal of frequency  $f_{clk}$  and input B is driven by a square wave signal of frequency  $\frac{1}{3}f_{clk}$ . Derive an expression for total dynamic power consumption of the circuit.

#### Problem 7 - adder (Sp19 final)

- 22. Adder Design [5pts]: The carry-select technique presented in lecture can be applied hierarchically. Imagine applying the technique in a binary way—a larger adder is divided in half using the carry-select and then the same technique is applied to the sub-adders, etc. The process would stop at 4-bit ripple adders.
  - (a) Assuming a FA and a MUX both have unit delay (delay = 1), what would be the delay (from data in to carry out) of a 32-bit adder?

(b) How would the delay scale with the size of the adder?

#### Problem 7 - adders (Sp19 final)

- Adder Design [6pts]: A carry-lookahead adder used to add A to B is organized into groups of 4-bits. A group has carry into the group, c<sub>i-1</sub> and carry out of the group, c<sub>i+3</sub>.
  - (a) In terms of the propagate and generate signals, p<sub>i</sub> and g<sub>i</sub>, of the individual bit stages, write an expression for the group propagate signal, P and group generate signal, G.

(b) Write an expression for c<sub>i+3</sub> based on the group P and G.

(c) Write an expression for the bit stage sum output, s<sub>i</sub>.