Примерни задачи за изпит по "Числен анализ"

Задача 1. Да се намери полином $p(x) \in \pi_3$, такъв че p(-1) = -2, p(1) = 0,

$$p'(1) = 5, p''(1) = 12.$$

Решение: Преминаваме към попълване на таблицата с разделените разлики:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
-1	-2	$\frac{0 - (-2)}{1 - (-1)} = 1$	$\frac{5-1}{1-(-1)} = 2$	$\frac{6-2}{2}=2$
1	0	$\frac{p'(1)}{1!} = 5$	$\frac{p''(1)}{2!} = 6$	
1	0	$\frac{p'(1)}{1!} = 5$		
1	0			

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1}) =$$

$$= -2 + 1(x + 1) + 2(x + 1)(x - 1) + 2(x + 1)(x - 1)^2 = 2x^3 - x - 1.$$

Задача 2: Да се намери ПНДСКП от втора степен за $f(x) = x^4$ при $\mu(x) = x^2, x \in [-1,1]$.

Решение: Функцията е четна, теглото е четно, интервалът е симетричен относно нулата. Следователно ПНДСКП е също четна функция. Тогава $P(x) = Ax^2 + B$. Търсим коефициентите A и B така че величината $S(A,B) = \int_a^b \mu(x) [f(x) - P(x)]^2 dx = \int_{-1}^1 x^2 (x^4 - Ax^2 - B)^2 dx$ да бъде минимална. НДУ за минимум са $S_A' = S_B' = 0$. Диференцираме

$$\frac{\partial S}{\partial A} = 2 \int_{-1}^{1} x^2 (x^4 - Ax^2 - B)(-x^2) dx = 0$$

$$\frac{\partial S}{\partial B} = 2 \int_{-1}^{1} x^2 (x^4 - Ax^2 - B)(-1) dx = 0$$

$$\begin{vmatrix} \frac{A}{7} + \frac{B}{5} = \frac{1}{9} \\ \frac{A}{5} + \frac{B}{3} = \frac{1}{7} \end{vmatrix}$$

Окончателно намираме ПНДСКП от втора степен $P(x) = \frac{10}{9}x^2 - \frac{5}{21}$.

Задача 3: Да се намери квадратурна формула на Лобато с три възела в интервала [0, 1] при тегло $\mu(x) = x(1-x)$.

Решение: Търсим формула от вида:

$$\int_{0}^{1} x(1-x)f(x)dx \approx A_{1}f(0) + A_{2}f(x_{2}) + A_{3}f(1)$$

Съгласно **Лекцията** (m = 2, n = 1), възелът x_2 е корен на полином $p(x) = x - x_2$, който е ортогонален на полиномите от нулева степен при тегло $-\mu(x)\sigma(x) = x^2(1-x)^2$ в интервала [0, 1]. От условието за ортогоналност намираме x_2

$$\int_{0}^{1} x^{2} (1-x)^{2} (x-x_{2}) \cdot 1 dx = 0 \implies x_{2} = 1/2$$

Следователно квадратурната формула на Лобато има вида

$$Q(f) = A_1 f(0) + A_2 f(1/2) + A_3 f(1)$$

Коефициентите A_1 , A_2 и A_3 определяме от условията, че Q(f) е точна полиномите от нулева, първа и втора степен при тегло $\mu(x) = x(1-x)$ в интервала [0,1] (ACT(Q) = 3). Т. е. Q(f) е точна за f(x) = 1, f(x) = x и $f(x) = x^2$. Получаваме система уравнения:

$$\int_{0}^{1} x(1-x)dx = 1.A_{1} + 1.A_{2} + 1.A_{3}$$

$$\int_{0}^{1} x(1-x)xdx = 0.A_{1} + \frac{A_{2}}{2} + 1.A_{3} => A_{1} = A_{3} = \frac{1}{60}, A_{2} = \frac{2}{15}.$$

$$\int_{0}^{1} x(1-x)x^{2}dx = 0^{2}.A_{1} + \frac{A_{2}}{4} + 1^{2}.A_{3}$$

Следователно търсената квадратурна формула на Лобато е

$$Q(f) = \frac{1}{60}f(0) + \frac{2}{15}f(1/2) + \frac{1}{60}f(1).$$

Задача 4: Докажете, че уравнението $f(x) = x^3 - 4x - 1 = 0$ притежава единствен положителен корен ξ . Докажете, че итерационният процес

$$x_0 = 2, x_{n+1} = 2 + \frac{1}{x_n(x_n + 2)}, n = 0, 1, 2, ...$$

е сходящ към ξ , като $|x_n - \xi| \le \frac{1}{8^n}$ за всяко $n \in \mathbb{N}$.

Решение: $S_f = (1,0,-4,-1)$. Имаме една смяна на знака и следователно f(x) = 0 има наймного един положителен корен. $f(2) = -1 < 0, f(3) = 14 > 0 \implies \xi \in [2,3]$.

Числено пресмятане на $\xi \in [2,3]$ по метода на свиващите изображения: трансформираме уравнението $x^3 - 4x - 1 = 0$ в еквивалентно (в интервала [2,3]) уравнение:

$$x(x-2)(x+2) = 1 \le x = 2 + \frac{1}{x(x+2)}$$

Ще покажем, че функцията $\varphi(x) = 2 + \frac{1}{x^2 + 2x}$ удовлетворява условията (1) и (3) за свиващи изображения. Имаме

$$\varphi'(x) = -\frac{2(x+1)}{x^2(x+2)^2} < 0, \forall x \in [2,3] => \varphi(x)$$
 е монотонно намаляваща функциия

=>
$$\varphi([2,3]) = [\varphi(3), \varphi(2)] = \left[2\frac{1}{15}, 2\frac{1}{8}\right] \subset [2,3]$$

При $x \in [2,3]$ имаме

$$|\varphi'(x)| = \frac{2(x+1)}{x^2(x+2)^2} \le \frac{2(3+1)}{2^2(2+2)^2} = \frac{1}{8}.$$

Следователно $\varphi(x)$ е свиващо изображение в интервала [2,3] с константа $q=\frac{1}{8}$ и съгласно **Теорема 1** от Лекцията, итерационният процес

$$x_0 = 2, x_{n+1} = 2 + \frac{1}{x_n(x_n + 2)}, n = 0,1,2,...$$

ще клони към корена ξ на уравнението f(x) = 0 и $|x_n - \xi| \le \frac{1}{8^n}$ за всяко $n \in \mathbb{N}$.