Recall from the becture 2 Exercise 2 that
$$pref = p^{(1)}$$

where $G = I_2(m) \xrightarrow{p^{(1)}} GI_2(C) = GL(V)$ where V has basis

Sends
$$S \mapsto y \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$$
 i.e. $S(x) = y$
 $S \mapsto y \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ i.e. $S(x) = y$
 $S(y) = x$
 $S(y) = y$
 $S(y) = y$
 $S(y) = y$
 $S(y) = y$

(a) Check that
$$\mathbb{C}[x,y]^G \supset \mathbb{C}[xy,x^m+y^m]$$

$$f_1 \qquad f_2$$

$$degrees: d=2 \qquad d=m$$

It can be shown that the inclusion above is actually an equality, but let's just assume this.

(b) Explain why the coinvariant algebra $(x,y)/(f_1,f_2) = C(x,y)/(xy,x^m+y^m)$ has the following C-basis in various degrees:

degree
$$0$$
 1 2 ... $m-1$ m

C-basis 1 x,y x^2,y^2 x^{m-1},y^{m-1} x^m $(=-y^m)$

(c) Prove these fake degree formulas
$$f^{4}(q)$$
:
$$f^{1}(q)=1, f^{det}(q)=q^{m}, f^{p}(q)=q^{\frac{m}{2}}=f^{p}(q) \text{ for meven}$$

$$f^{p}(q)=q^{j}+q^{m-j} \text{ for } j=1,2,--,\lfloor \frac{m+j}{2}\rfloor$$

(d) Check that the answers in (c) are consistent for m=3 with our previous calculations of $f^{\mu}(q)$ for $G_3=I_2(3)$,

- (2) Let & be a primitive dth root of unity, such as $g = e^{\frac{2\pi i}{d}}$
 - (a) Show that for positive integers a, b having $a \equiv b \mod d$, one has $\lim_{g \to g} \frac{[a]_g}{[b]_q} = \frac{1}{g}$ if $a \equiv b \equiv 0 \mod d$.
 - (b) We want to understand how a general q-binomial coefficient [12] behaves when one sets q= g.

Write n=n'd+n" uniquely with n',n"e Z and 0=n"=d-1

k=k'd+k" uniquely with k',k" e Z and 0=k"=d-1

that is, let n', k' be the quotients and n', k" be the remainders when dividing n, k by d.

Prove that
$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=g} = \begin{pmatrix} n' \\ k' \end{pmatrix} \cdot \begin{bmatrix} n'' \\ k'' \end{bmatrix}_{q=g}$$

(and hence one only needs to understand how ["']q=g behave when $0 \le k'', n'' \le d-1$)

(c) Use part (b) to prove the CSP result for $X = \binom{n}{k} \mathcal{D} C = X(1,2,-,n)$ and $X(q) = \binom{n}{k}q$ via brute force evaluation of $[X(q)]_{q=1}q$, and brute force enumeration of $[X(q)]_{q=1}q$.

3) Prove that the two statements in Springer's Theorem are equivalent: the isomorphism of $G\times C$ -representations versus $\chi_{\rho}(c) = [f(q)]_{q=\beta}$.