

Linda Blaier, Paul Brunner, Selina Ernst, Valerie Segatz, and Chloé Weiler February 2024

1 Abstract

Even though the development of vaccines against Sars-CoV-2 was successful during the recent pandemic, the amount of FDA approved drugs for the therapy of Covid-19 is still limited to Paxlovid and Veklury, Olumiant and Actemra (FDA 2023). One possibility to accelerate the development of new therapies for Covid19 is to screen already approved drugs for effects against the viral reproduction. In this years MeetEU project, we investigated the NSP13 helicase of Sars-CoV-2 and tried to find compounds that could be repurposed for this therapy, as well as novel compounds that could lead to an effective treatment of Covid19. Using our *in-silico* pipeline enables us to evaluate possible drug candidates, suggest novel structures based on already approved drugs and investigate their toxicity, while being cheaper and less labor intensive than projects limited to wet-lab work.

Abbreviations

COVID-19 coronavirus disease 2019

FDA food and drug administration

MD molecular dynamics

MM-PBSA molecular mechanics energies combined with the Poisson-Boltzmann and surface

area continuum solvation

NSP13 non-structural protein 13

RMSD root mean square deviation

RMSF root mean square fluctuation

RTC replication transcription complex

SARS-CoV-2 severe acute respiratory syndrome coronavirus type 2

SAscore synthetic accessibility score

 \mathbf{ssRNA} single-stranded RNA

ZBD zinc-binding domain

2 Introduction

In the wake of the successful development of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) during the recent pandemic, the amount of FDA-approved drugs for the therapy of coronavirus disease 2019 (COVID-19) remain limited to Paxlovid, Veklury, Olumiant, and Actemra (FDA 2023). Expanding the repertoire of drugs available for treating COVID-19 is particularly crucial for high-risk individuals, as vaccines may not fully prevent infections. The goal of this year's Meet-EU project is to develop a pipeline for identifying potential inhibitors targeting the SARS-CoV-2 helicase also known as non-structural protein 13 (NSP13). This protein is considered a promising drug target for two reasons. Firstly, NSP13 is part of the replication transcription complex (RTC) which is essential for viral RNA synthesis (Malone et al. 2022). Secondly, its high conservation across coronaviruses means that there is a reduced likelihood of the virus developing resistances to drugs targeting NSP13 through mutations of the viral genome (Spratt et al. 2021). Consequently, effective NSP13 inhibition would significantly impede viral replication and therefore its spread within the host. NSP13 consists of five domains, namely the zinc-binding domain (ZBD) with the accessory 2B domain, the α -helical stalk domain, as well as the RecA-like 1A and 2A domains (Marecki et al. 2021). The gap between the RecA-like domains and the 2B domain encompass the site for ATP and RNA binding (Newman, Douangamath, Yadzani, Yosaatmadja, Aimon, Brando-Neto, et al. 2021). In the RTC the NSP13 helicase is present as a homodimer. Nevertheless, only one of the copies complexes with a single-stranded RNA single-stranded RNA (ssRNA). Therefore, it was proposed in previous publications that the catalytically active form of the NSP13 helicase is the monomer (Berta et al. 2021).

Computer-aided, structure-based drug discovery is employed for identification of known drugs for their potential as inhibitors of the NSP13 helicase which can then be further investigated in experimental laboratory settings. This process involves several steps: (1) Identification of potential drug binding sites, (2) high-throughput screening of ligands to assess their binding efficacy within the designated pocket, followed by (3) the evaluation of the binding pathways, kinetics, and thermodynamics (Śledź and Caflisch 2018). Focussing this screening on well-documented or already FDA-approved compounds is very attractive, as drug repurposing has the potential to shorten the development period and therefore also the development costs (Pushpakom et al. 2019).

2.1 Identification of Consensus Binding Pocket

In drug discovery, the initial step is to investigate the protein structure in order to analyse potential binding sites. These are cavities on the surface or interior of the protein with suitable properties to bind a ligand. The functionality of a binding pocket is determined by its shape and location, but also by the amino acid residues which define its pyhsicochemical characteristics (Stank et al. 2016). Different experimental and theoretical procedures exist to analyse the druggability of such binding pockets. In this work, we combined three different in silico tools, each following a different algorithm. Fpocket (Version 3.0, Le Guilloux et al. (2009)) utilises a geometry-based algorithm based on Voronoi tesselation and sequential clustering to determine potential binding sites. We also used PRankweb which is the web interface based on the P2Rank standalone method which is based on a machine-learning algorithm (Krivák and Hoksza 2018; Jendele et al. 2019; Jakubec et al. 2022). P2Rank assigns structural, physicochemical, and evolutionary features to points on the solvent-accessible surface of a protein. From this information, the machine-learning model is built and used to predict and rank potential ligand binding sites. Lastly, the latest version of FTMAP (Brenke et al. 2009) was used to validate the binding pocket found with the previously mentioned approaches. FTMAP uses docking results of sixteen small molecules differing in polarity, shape, and size to identify binding

hot spots with a fast Fourier transform correlation. The most favourable docked confirmations are determined through energy minimisation and clustering processes. Finally, the results of all three tools were combined to identify a consensus binding pocket of the NSP13 helicase. The resulting coordinates of the consensus binding pocket were then used for molecular docking simulations.

2.2 Molecular Docking

Molecular Docking programs are used to evaluate binding affinities between a potential drug candidate and the target protein. A key aspect of this task is the prediction of the ligand position, orientation, and conformation. Search-based methods approach this task by continuously modifying the ligand pose, while estimating its quality or likelihood (score) and stochastically trying to infer the global optimum of the scoring function. Among the most widely used tools are AutoDock Vina (Trott and Olson 2010) and Glide (Halgren et al. 2004), which mainly differ in their scoring functions. However, such search-based methods are computationally expensive. Therefore, in order to be able to screen large datasets, search-based methods are generally restricted to a previously defined binding pocket (Corso et al. 2022). Consequently, potential other binding sites of a ligand are not assessed. Machine learning-based blind docking approaches try to address that problem by stochastically predicting binding pocket and ligand pose based on learned characteristics and aligning them. The most promising results are achieved by using Diffdock (Corso et al. 2022), a generative model which applies a reverse diffusion process to the docking paradigm. In this manner, Diffdock iteratively transforms an uninformed noisy distribution over ligand poses defined by the degrees of freedom involved in docking (position, turns around its centre of mass, and twists of torsion angles) into a learned model distribution (Corso et al. 2022). Corso et al. (2022) thereby describe this process as a progressive refinement of random ligand poses via updates of their translations, rotations and torsion angles.

2.3 Estimation of Toxicity and Synthetic Accessibility

After identifying the lead compounds that exhibit optimal binding affinity within the consensus pocket, an evaluation of the general toxicity and synthetic accessibility of these compounds was performed using the latest version of eToxPred (Pu et al. 2019). This additional step helps estimate the suitability of the compounds as real-life pharmaceuticals against COVID-19. The Tox-score allows for a general assessment of the predicted risk vs. benefit ratio of the potential NSP13 inhibitors. Moreover, eToxPred allows for an insight into the ease of synthesis, indicated by the synthetic accessibility score synthetic accessibility score (SAscore). This score reflects the ease and efficiency of producing the molecules in large quantities and consequently their feasibility as potential drugs.

2.4 Molecular Dynamics Simulation

As the last step of our pipeline, an molecular dynamics (MD) simulation is conducted using the best-scoring compounds as a ligand in the binding pocket of the NSP13 protein. Simulating the movement of molecules in a system based on the attractive and repulsive forces between atoms helps with understanding the molecular interplay between the found ligands and the binding pocket. Whether the ligand stays inside the binding pocket throughout the whole simulation gives an estimate of how strongly it binds to the protein (Durrant and McCammon 2011). As this is the final step of our pipeline, the result of this simulation estimates how the ligand would perform if administered *invitro*. Additionally, the frames generated by the software can be used to calculate different metrices regarding the binding strength, like the root mean square fluctuation (RMSF), root mean square deviation (RMSD) and the binding affinities estimated by molecular mechanics energies combined with the Poisson-Boltzmann and surface area continuum solvation (MM-PBSA). The RMSD measures

the average displacement of the atoms throughout the simulation compared to the first frame of the simulation and estimates how much the protein moves and changes conformations over time. The RMSF on the other hand calculates the movement of a certain atom or group of atoms over time compared to the average position of the atoms and groups (Martinez 2015). MM-PBSA is able to estimate the binding affinity of the simulated protein-ligand pair (Genheden and Ryde 2015).

3 Material and Methods

3.1 Datasets from ZINC20 and ECBL

A total of 1616 fda approved drugs were downloaded in .sdf format from the ZINC database (Irwin et al. 2020). Additionally, 5016 files were retrieved, downloading the pilot library from the ECBL database.

3.2 Receptor and Ligand Preparation

In this project we analysed crystal structures of the SARS-CoV-2 NSP13 helicase which were obtained by (Newman, Douangamath, Yadzani, Yosaatmadja, Aimon, Brandão-Neto, et al. 2021) in a crystallographic fragment screening. Thus, the three protein structures (PDB codes: 6ZSL, 5RME, 5RM2) were downloaded from the protein data bank RCSB PDB. All three structures were used to obtain a consensus binding pocket. Since, 6ZSL is the crystal structure with the highest resolution of 1.94 Å and both other structures show the NSP13 helicase in complex with a different fragment, we selected 6ZSL for further analysis in our drug discovery pipeline. Although the helicase is a homodimer, it was found that only the monomer is the catalytically active form. Therefore, we concentrated our drug discovery only on the monomer of the helicase, namely on chain A.

Protein Data Bank files often contain problems that first need to be resolved so they can be simulated. Therefore, we prepared the PDB protein structure using the PDBFixer (Version 1.9) application, which among other things adds missing hydrogen and heavy atoms, builds missing loops and replaces non-canonical with canonical amino acids (Eastman et al. 2017). Here, we added hydrogen atoms appropriate for the physiological pH of 7.4. Since the catalytically active form of NSP13 helicase is the monomer (Berta et al. 2021), the additional second copy (Chain B) contained in the crystallographic structure, was removed as well as the ligands contained in the protein structures 5RME and 5RM2. Additionally, for pocket detection the phosphates and zinc ions were removed using PyMol (Version 2.5.7). Ligands were prepared using openbable in order to convert implicit hydrogens into explicit hydrogens, generate necessary 3D structures of the ligands, as well as to split mulitmolecule files into single ones. ADFR suite was further used in order to convert all files into the .pdbqt format, which is required by Autodock Vina.

3.3 Moecular Docking

The molecular docking was done twice. For that first step AutoDock Vina 1.1.2 (Vina) was utilized. As the receptor the monomer of the SARS-CoV-2 helicase (ID: 6ZSL) was used which includes only chain A. Especially for Vina the zinc ions were also removed and the resulting structure was converted into the pdbqt format through AutoDockTools 1.5.7. The consensus pocket was introduced as the grid box with lengths of 30 Å. The exhaustiveness was set to 30 and the maximum number of binding modes to 9. A filter was applied on the set of ligands assuring only 3D structures smaller than the specified grid box were screened against the receptor (1428 from the ZINC database and 3592 from the ECBD database, so 5020 combined). The filter was implemented in Python 3.11.6 and executed together with the Vina command in Bash script. The resulting 9 different conformations for each

ligand were ranked by their affinity scores and only the best value was considered in further steps. A number of ligands were later found to have multiple docking results due to an overlap between the two datasets and in accordance with previous steps only the best score was kept. The remaining 4863 ligands were ranked by their affinity score and the top one hundred were selected for next steps. A second molecular docking was performed with those top scorers from the screening as well as ADP and ATP. The docking software provided by Schrödinger Inc. was accessed through Maestro 2022.3. The included tools Protein Preparation Wizard and LigPrep were utilized to prepare the monomer helicase and ligands for the docking process with the OPLS4 force field. The pH value was set to 7.0. The ligand preparation generates depending on the initial structure a varying amount of conformations. In the analysis of the results only the best performing conformation was included. The Receptor Grid Generation tool was used to generate the receptor grid with the same binding pocket as in Vina. The docking with Glide was performed at standard precision (SP) mode and with flexibility of the ligands enabled. The criteria for the selection of the best performing ligands was chosen to be the docking score. The interactions between the top scoring ligands and the receptor were noted down.

3.4 Estimation of Toxicity and Synthetic Accessibility

The general toxicity and synthetic accessibility of the given compounds was estimated using the machine-learning tool eToxPred (Pu et al. 2019). The SMILES files of the Top100 compounds from AutoDock Vina (Trott and Olson 2010) served as input for the pre-trained model. The toxicity predictor was pre-trained on the FDA-approuved and the KEGG-drug datasets whose compounds were considered non-toxic as well as the TOXNET and the T3DB datasets whose compounds were considered toxic using a deep-belief-network based model. This predictor yields a Tox-score between 0 and 1 and in accordance to the paper, all compounds with a Tox-score below 0.58 were deemed non-toxic. The synthetic accessibility was reflected in a SAscore which was obtained by training an extra-trees-based classifier on NuBBE, UNPD, FDA-approuved, and DUD-E-active datasets.

3.5 Molecular Dynamics Simulation

In order to validate the binding of the discovered compounds, we used GROMACS (Version 2023.3, Abraham et al. (2015)) to simulate the drugs inside of the ATP binding site of NSP13. To do so, the Protein-Ligand Complex tutorial by Lemkul was followed (Lemkul 2018). The a99SB-disp forcefield was used, as it was shown to recreate protein structures in different environments very accurately (Robustelli et al. 2018). The 6ZSL PDB file was first turned into the fitting GROMACS format (.gro). Using the .gro file, the general simulation parameters are set up. This includes setting the size and shape of the simulation box, which was set to be a dodecahedron in this case.

As the ligands feature bonds and atoms not commonly seen in proteins, it is required to create a fitting force-field for them. For this, acpype (Silva and Vranken 2012) was used, which was developed to be compatible with AMBER force-fields. The output files from Maestro Glide were converted to PDB and then piped into acpype. The software uses the given PDB file and information about the charges on the compound to create multiple files for different simulation suites, that enable us to add the compound to the simulation environment with the right descriptions of its atoms. The output of acpype was then combined with the GROMACS topology and *.gro* files manually, according to Lemkul.

Following the tutorial, the simulation space was created, filled with water (a99SBdisp_water used as its force-field) and ions were added to create a net zero charge system. As it is common the charges were equalized using sodium and chloride ions. Energy-minimization was conducted and NVT and NPT equilibration was used to finish the simulation setup. The V-Rescale thermostat was used

for thermal coupling in the *NVT* equilibration and for the *NPT* equilibration, a Parrinello-Rahman pressure coupling was used. This ensures a somewhat stable starting point for the simulation. For these steps, the protein and ligand were energetically coupled, as they are in close proximity to each other. The rest of the simulation space, namely ions and water, were also coupled. The production run was set to simulate 100 ns, using a Leap-Frog Integrator. The *.mdp* file containing the simulation parameters used for the final production run can be seen in the appendix. One of these runs took approximately 36 h, which was made possible by parallelization and usage of a NVIDIA V100 GPU. For the analysis of the simulation, GROMACS internal tools were used to calculate the RMSD and RMSF of the protein. These scores give us insight into the movement and conformational changes during the simulation regarding protein and ligand. Furthermore, the simulation frames were extracted and rendered into a video using VMD (Humphrey et al. 1996). For MM-PBSA calculations we used gmx_MMPBSA (Miller et al. 2012). This package enables direct calculation of binding affinities using the GROMACS output files.

- 4 Results
- 5 Discussion and Outlook
- 6 Supplementary Material

References

- Abraham, M. J., T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl (2015). "GRO-MACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers". In: *SoftwareX* 1, pp. 19–25. ISSN: 2352-7110. DOI: 10.1016/j.softx.2015.06.001.
- Berta, D., M. Badaoui, S. A. Martino, P. J. Buigues, A. V. Pisliakov, N. Elghobashi-Meinhardt, G. Wells, S. A. Harris, E. Frezza, and E. Rosta (2021). "Modelling the active SARS-CoV-2 helicase complex as a basis for structure-based inhibitor design". In: *Chemical Science* 12.40, pp. 13492–13505.
- Brenke, R., D. Kozakov, G. Y. Chuang, D. Beglov, D. Hall, M. R. Landon, C. Mattos, and S. Vajda (2009). "Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques". In: *Bioinformatics* 25.5, pp. 621–7. ISSN: 1367-4803 (Print) 1367-4803. DOI: 10.1093/bioinformatics/btp036.
- Corso, G., H. Stärk, B. Jing, R. Barzilay, and T. Jaakkola (2022). DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. DOI: 10.48550/arXiv.2210.01776.
- Durrant, J. D. and J. A. McCammon (2011). "Molecular dynamics simulations and drug discovery". In: *BMC Biology* 9.1, p. 71. DOI: 10.1186/1741-7007-9-71.
- Eastman, P., J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande (2017). "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics". In: *PLOS Computational Biology* 13.7, e1005659. DOI: 10.1371/journal.pcbi.1005659. URL: https://doi.org/10.1371/journal.pcbi.1005659.
- FDA (2023). Know Your Treatment Options for COVID-19. URL: https://www.fda.gov/consumers/consumer-updates/know-your-treatment-options-covid-19.
- Genheden, S. and U. Ryde (2015). "The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities". In: Expert Opinion on Drug Discovery 10.5, pp. 449–461. ISSN: 1746-0441. DOI: 10.1517/17460441.2015.1032936.
- Halgren, T. A., R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, and J. L. Banks (2004). "Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening". In: *Journal of medicinal chemistry* 47.7, pp. 1750–1759. ISSN: 0022-2623. DOI: 10.1021/jm030644s.
- Humphrey, W., A. Dalke, and K. Schulten (1996). "VMD Visual Molecular Dynamics". In: *Journal of Molecular Graphics* 14, pp. 33–38.
- Irwin, J. J., K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, M. Khurelbaatar, Y. S. Moroz, J. Mayfield, and R. A. Sayle (2020). "ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery". In: *Journal of chemical information and modeling* 60.12, pp. 6065–6073. DOI: 10.1021/acs.jcim.0c00675.
- Jakubec, D., P. Skoda, R. Krivak, M. Novotny, and D. Hoksza (2022). "PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures". In: Nucleic Acids Research 50.W1, W593-W597. ISSN: 0305-1048. DOI: 10.1093/nar/gkac389. URL: https://doi.org/10.1093/nar/gkac389.
- Jendele, L., R. Krivak, P. Skoda, M. Novotny, and D. Hoksza (2019). "PrankWeb: a web server for ligand binding site prediction and visualization". In: Nucleic Acids Research 47.W1, W345–W349. ISSN: 0305-1048. DOI: 10.1093/nar/gkz424. URL: https://doi.org/10.1093/nar/gkz424.
- Krivák, R. and D. Hoksza (2018). "P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure". In: *Journal of Cheminformatics* 10.1, p. 39. ISSN: 1758-2946. DOI: 10.1186/s13321-018-0285-8. URL: https://doi.org/10.1186/s13321-018-0285-8.

- Le Guilloux, V., P. Schmidtke, and P. Tuffery (2009). "Fpocket: An open source platform for ligand pocket detection". In: *BMC Bioinformatics* 10.1, p. 168. ISSN: 1471-2105. DOI: 10.1186/1471-2105-10-168. URL: https://doi.org/10.1186/1471-2105-10-168.
- Lemkul, J. A. (Oct. 2018). "From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]". In: Living Journal of Computational Molecular Science 1.1, p. 5068. DOI: 10.33011/livecoms.1.1.5068. URL: https://livecomsjournal.org/index.php/livecoms/article/view/v1i1e5068.
- Malone, B., N. Urakova, E. J. Snijder, and E. A. Campbell (2022). "Structures and functions of coronavirus replication—transcription complexes and their relevance for SARS-CoV-2 drug design". In: *Nature Reviews Molecular Cell Biology* 23.1, pp. 21–39.
- Marecki, J. C., B. Belachew, J. Gao, and K. D. Raney (2021). "Chapter Ten RNA helicases required for viral propagation in humans". In: *Viral Replication Enzymes and their Inhibitors Part B.* Ed. by C. E. Cameron, J. J. Arnold, and L. S. Kaguni. Vol. 50. The Enzymes. Academic Press, pp. 335–367. DOI: https://doi.org/10.1016/bs.enz.2021.09.005. URL: https://www.sciencedirect.com/science/article/pii/S1874604721000226.
- Martinez, L. (2015). "Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis". In: *PLoS ONE* 10.3, e0119264. DOI: 10.1371/journal.pone.0119264.
- Miller, B. R. 3., T. D. J. McGee, J. M. Swails, N. Homeyer, H. Gohlke, and A. E. Roitberg (Sept. 2012). "MMPBSA.py: An Efficient Program for End-State Free Energy Calculations." eng. In: *Journal of chemical theory and computation* 8.9, pp. 3314–3321. ISSN: 1549-9618 (Print). DOI: 10.1021/ct300418h.
- Newman, J. A., A. Douangamath, S. Yadzani, Y. Yosaatmadja, A. Aimon, J. Brandão-Neto, L. Dunnett, T. Gorrie-stone, R. Skyner, D. Fearon, M. Schapira, F. von Delft, and O. Gileadi (2021). "Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase". In: *Nature Communications* 12.1, p. 4848. ISSN: 2041-1723. DOI: 10.1038/s41467-021-25166-6. URL: https://doi.org/10.1038/s41467-021-25166-6.
- Newman, J. A., A. Douangamath, S. Yadzani, Y. Yosaatmadja, A. Aimon, J. Brando-Neto, L. Dunnett, T. Gorrie-stone, R. Skyner, D. Fearon, M. Schapira, F. v. Delft, and O. Gileadi (2021). "Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase". In: *Nature Communications* 12.1, p. 4848. DOI: 10.1038/s41467-021-25166-6.
- Pu, L., M. Naderi, T. Liu, H.-C. Wu, S. Mukhopadhyay, and M. Brylinski (2019). "e toxpred: A machine learning-based approach to estimate the toxicity of drug candidates". In: *BMC Pharmacology and Toxicology* 20, pp. 1–15.
- Pushpakom, S., F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, and M. Pirmohamed (2019). "Drug repurposing: progress, challenges and recommendations". In: *Nature Reviews Drug Discovery* 18.1, pp. 41–58. ISSN: 1474-1784. DOI: 10.1038/nrd.2018.168. URL: https://doi.org/10.1038/nrd.2018.168.
- Robustelli, P., S. Piana, and D. E. Shaw (2018). "Developing a molecular dynamics force field for both folded and disordered protein states". In: *Proceedings of the National Academy of Sciences* 115.21, E4758–E4766. ISSN: 0027-8424. DOI: 10.1073/pnas.1800690115.
- Silva, A. W. S. d. and W. F. Vranken (2012). "ACPYPE AnteChamber PYthon Parser interfacE". In: *BMC Research Notes* 5.1, p. 367. DOI: 10.1186/1756-0500-5-367.
- Śledź, P. and A. Caflisch (2018). "Protein structure-based drug design: from docking to molecular dynamics". In: Current Opinion in Structural Biology 48, pp. 93–102. ISSN: 0959-440X. DOI: https://doi.org/10.1016/j.sbi.2017.10.010. URL: https://www.sciencedirect.com/science/article/pii/S0959440X17301100.

- Spratt, A. N., F. Gallazzi, T. P. Quinn, C. L. Lorson, A. Sönnerborg, and K. Singh (2021). "Coronavirus helicases: Attractive and unique targets of antiviral drug-development and therapeutic patents". In: *Expert opinion on therapeutic patents* 31.4, pp. 339–350.
- Stank, A., D. B. Kokh, J. C. Fuller, and R. C. Wade (2016). "Protein Binding Pocket Dynamics". In: *Accounts of Chemical Research* 49.5. doi: 10.1021/acs.accounts.5b00516, pp. 809-815. ISSN: 0001-4842. DOI: 10.1021/acs.accounts.5b00516. URL: https://doi.org/10.1021/acs.accounts.5b00516.
- Trott, O. and A. J. Olson (2010). "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading". In: *Journal of computational chemistry* 31.2, pp. 455–461. DOI: 10.1002/jcc.21334.