V61

Der He-Ne Laser

Lukas Bertsch lukas.bertsch@tu-dortmund.de

 $\begin{tabular}{ll} Tom\ Troska\\ tom.troska@tu-dortmund.de \end{tabular}$

Durchführung: 11.12.2023

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1.	Theorie	3	
2.	Durchführung	3	
3.		3 3 3 3	
4.	. Diskussion		
Lit	eratur	8	
Α.	Anhang A.1. Originaldaten	9	

1. Theorie

[1]

2. Durchführung

3. Auswertung

3.1. Überprüfung der Stabilitätsbedingung

Abbildung 1: Stabilitätsbedingung für die verwendeten Spiegelkonfigurationen.

3.2. Messung der TEM Moden

- **3.2.1.** TEM_00 -Mode
- 3.2.2. TEM_01 -Mode
- 3.3. Polarisation des Lasers
- 3.4. Multimoden Betrieb
- 3.5. Bestimmung der Wellenlänge des Lasers

Tabelle 1: Messdaten zur Überprüfung der Stabilitätsbedingung für beide Spiegelkonfigurationen.

$r_2 = 1$	$400\mathrm{mm}$	$r_2=\infty$		
L/cm	I / mW	L/cm	I/mW	
50	3,0	55	4,8	
75	4,0	70	2,0	
100	2,8	96	2,4	
125	2,7	120	4,3	
150	2,2	131	3,2	
175	3,3	134,5	2,7	
200	2,0	137,5	1,0	
		140	1,0	
		141	0	

Abbildung 2: Messdaten der Intensitätsverteilung der TEM_00 Mode und Fit mittels scipy [2].

Tabelle 2: Messdaten der Intensitätsverteilung der TEM_{00} und TEM_{01} Moden.

	TEM_{00}	TEM_{00}
d / mm	Ι / μΑ	Ι / μΑ
-20	0,015	0,03
-18	0,021	0,03
-16	0,025	0,01
-14	0,034	0,01
-12	0,062	0,04
-10	0,28	0,12
-9	0,43	0,20
-8	0,74	0,31
-7	1,11	$0,\!42$
-6	1,53	$0,\!55$
-5	2,08	0,69
-4	2,8	0,73
-3	3,3	0,70
-2	3,7	$0,\!58$
-1	3,6	$0,\!40$
0	3,6	$0,\!25$
1	2,9	0,10
2	2,4	0,02
3	1,5	0,05
4	0,96	$0,\!17$
5	0,36	0,31
6	0,20	$0,\!42$
7	0,14	0,53
8	0,10	$0,\!54$
9	0,068	$0,\!56$
10	0,047	0,50
12	0,018	$0,\!35$
14	0,009	0,17
16	0,006	0,09
18	0,005	0,03
20	0,004	0,02

Abbildung 3: Messdaten der Intensitätsverteilung der TEM_01 Mode und Fit mittels scipy [2].

Tabelle 3: Messdaten zur Bestimmung der Polarisation des Laserstrahls

$ heta$ / $^{\circ}$	I/mW	$\mid heta \mid$ $^{\circ}$	I/mW	θ / $^{\circ}$	I / mW
0	0,5	130	0,8	250	3,2
10	0,9	140	0,4	260	3,0
20	1,4	150	0,1	270	2,8
30	2,0	160	0,1	280	2,3
40	2,4	170	0,2	290	1,8
50	2,8	180	0,4	300	1,3
60	3,0	190	0,9	310	0,8
70	3,2	200	1,4	320	0,4
80	3,1	210	1,9	330	0,1
90	2,7	220	2,5	340	0,1
100	2,3	230	2,9	350	0,2
110	1,8	240	3,1	360	0,5
120	1,3				

Abbildung 4: Messdaten zur Bestimmung der Polarisation des Laserstrahls und Fit mittels scipy [2].

Tabelle 4: Frequenzspektrum [f] des Lasers bei verschiedenen Resonatorlängen L.

L/cm	[f] / MHz	Δf / MHz
50	304, 611, 919	$307,50 \pm 0,50$
75	203, 405, 604, 806, 1009	$201,50 \pm 1,50$
100	150, 300, 454, 600, 754, 904, 1054	$150,67 \pm 2,75$
125	124, 240, 364, 480, 600, 720, 840,	$120,00 \pm 2,67$
	960, 1080, 1204	
150	101, 203, 304, 401, 503, 604, 701,	$100,64 \pm 1,77$
	803, 904, 1005, 1106, 1208	
175	86, 176, 260, 350, 435, 518, 600,	$86,25 \pm 3,03$
	686, 773, 863, 949, 1031, 1121	
200	75, 154, 221, 300, 375, 450, 525,	$75,31 \pm 4,18$
	596, 670, 754, 825, 904, 980, 1054	

Tabelle 5: Messdaten zur Bestimmung der Wellenlänge und resultierende Wellenlängen. Zu jeder Gitterkonstanten g ist der Abstand der Maxima n-ter Ordnung und die daraus resultierende Wellenlänge angegeben.

g/mm^{-1}	d / cm	n	d_{nn} / cm	λ / nm
1200	25	1	58	631,18
600	25	1	20,5	632,26
		2	59,5	637,98
100	80	1	10	623,78
		2	20,5	$635,\!43$
		3	31	634,04
		4	42	634,75
60	110	1	11,5	652,52
		2	$22,\!5$	635,89
		3	$33,\!5$	627,24

4. Diskussion

Literatur

- [1] Versuch zum Literaturverzeichnis. TU Dortmund, Fakultät Physik. 2022.
- [2] Pauli Virtanen u. a. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), S. 261–272. DOI: 10.1038/s41592-019-0686-2.

A. Anhang

A.1. Originaldaten

