18/

CS 291 Homework 2

Jingbo Wang jw6347@truman.edu

Section 6.3, problem 5.d Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

Prove $(B \to C) \to (A \land B \to A \land C)$ is a tautology.

Answer:

1.	$B \to C$		P
2.	$A \wedge B$		$P [for A \wedge B \rightarrow A \wedge C]$
3.	A	2115	2, Simp
4.	B		2, Simp
5.	C		1, 4, MP
6.	$A \wedge C$		3, 5, Conj
7.	$A \wedge B \to A \wedge C$		2-6, CP
	QED		1,7, CP

Section 6.3, problem 5.e Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

Prove $(A \lor B \to C \land D) \to (B \to D)$ is a tautology.

Answer:

1.	$A \lor B \to C \land D$		P
2.	B	1	$P [for B \to D]$
3.	$A \vee B$	7/2	2, Add
4.	$C \wedge D$	5/2	1, 3, MP
5.	D		4, Simp
6.	$B \to D$		2-5, CP
	QED		1,6, CP

Section 6.3, problem 6.d Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \to C) \to (A \to B \lor C)$ is a tautology.

Answer:

Section 6.3, problem 6.e Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \to B) \to ((A \to \neg B) \to \neg A)$ is a tautology.

Answer:

1.
$$A \rightarrow B$$
 P

 2. $A \rightarrow \neg B$
 P [for $(A \rightarrow \neg B) \rightarrow \neg A$]

 3. $\neg \neg A$
 P [for $(A \rightarrow \neg B) \rightarrow \neg A$]

 4. A
 A

 5. B
 A

 6. $\neg B$
 A

 7. A
 A

 8. A
 A

 9. A
 A

Section 6.3, problem 7.c Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \lor B \to C \land D) \to (B \to D)$ is a tautology.

Answer:

1.	$A \vee B \to C \wedge D$		P
2.	B		$P [for B \to D]$
3.	$A \vee B$		2, Add
4.	$C \wedge D$	2/5	1, 3, MP
5.	$\neg D$		P [for D]
6.	D		4, Simp
7.	False		5, 6, Contr
8.	D		5-7, IP
9.	B o D		2, 9, CP
	$\overline{\text{QED}}$		1, 9, CP

Section 6.3, problem 7.d Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \lor B \to C) \land (C \to D \land E) \to (A \to D)$ is a tautology.

Answer:

1. 2. 3. 4. 5. 6. 7. 8. 9.	$\begin{array}{c} A \vee B \rightarrow C \\ C \rightarrow D \wedge E \\ A \\ A \vee B \\ C \\ D \wedge E \\ \neg D \\ D \\ False \end{array}$	3/3	P P P P [for $A \rightarrow D$] P P [for $A \rightarrow D$] P
8.	D	$\mathcal{I}(\mathcal{I})$	P [for D] 6, Simp
9. 10.	$egin{aligned} False \ D \end{aligned}$		7, 8 Contr 7-9, IP
11.	$A \to D$ QED		3,10, CP 1, 2, 11, CP