MSK data Method A all stages

MSK data Method A stage 1 only

MSK data
Method A (with covariates)
all stages

MSK data
Method A (with covariates)
stage 1 only

MSK data Method B all stages

MSK data Method B stage 1 only

MSK data Method C all stages

MSK data Method C stage 1 only

MSK data Method D all stages

MSK data Method D stage 1 only

MSK data Method E all stages

MSK data Method E stage 1 only

MSK data Method F all stages

MSK data Method F stage 1 only

MSK data Method G all stages

MSK data Method G stage 1 only

MSK data Method H all stages

MSK data Method H stage 1 only

CAN/DF data Method A all stages

CAN/DF data Method A stage 1 only

CAN/DF data
Method A (with covariates)
all stages

CAN/DF data
Method A (with covariates)
stage 1 only

CAN/DF data Method B all stages

CAN/DF data Method B stage 1 only

CAN/DF data Method C all stages

CAN/DF data Method C stage 1 only

CAN/DF data Method D all stages

CAN/DF data Method D stage 1 only

CAN/DF data Method E all stages

CAN/DF data Method E stage 1 only

CAN/DF data Method F all stages

CAN/DF data Method F stage 1 only

CAN/DF data Method G all stages

CAN/DF data Method G stage 1 only

CAN/DF data Method H all stages

CAN/DF data Method H stage 1 only

Supplementary Materials 1: Detailed Materials and Methods

Investigator consortium: Four institutions (University of Michigan Cancer Center (UM), Moffitt Cancer Center (HLM), Memorial Sloan-Kettering Cancer Center (MSK) and the Dana-Farber Cancer Institute (DFCI)) formed a consortium with support and collaboration of NCI investigators to develop and validate gene expression signatures of lung adenocarcinomas. Lung adenocarcinoma specimens were obtained from the following sources: UM (100 samples), University of Minnesota VA/CALGB (77 samples), HLM (79 samples), MSK (104 samples), and Toronto/DFCI (82 samples). The Toronto/DFCI 82 samples included 43 samples from University Health Network (UHN) and 39 samples from National Cancer Institute of Canada Clinical Trials Group (NCIC CTG). A common protocol and common reagents were previously developed and used for blinded data comparability study that has been published (Dobbin et al, 2005). Using this validated protocol, samples were processed and analyzed at four sites: UM analyzed samples from UM and VA/CALGB, the HLM and MSK analyzed samples from their own institutions, and UHN/NCIC CTG samples processed at DFCI (from hereon referred as CAN/DF samples).

Hypotheses: Prior to the analyses or having the clinical, pathology or outcome data available, we developed an approach for unbiased evaluation of the data to address four specific hypotheses. The specific hypotheses are that overall survival can be predicted in four settings: 1) using gene expression data for subjects of all AJCC stages, 2) using gene expression and clinical data for subjects of all AJCC stages, 3) using gene expression data for stage 1 AJCC subjects, and 4) using gene expression and clinical data for stage 1 AJCC subjects. Note that for hypotheses where evaluation is on stage 1 subjects, there was no restriction on the stages included in the training set (methods could use only stage 1 samples for training, or all samples for training).

Sample criteria and clinical data: Nearly 505 adenocarcinomas of stages I, II and III were collected with approximately 60% of the samples represented by stage I tumors. Tumors were collected by surgical resection from patients who have provided consent and protocols were approved by the Institutional Review Boards (IRB-Med) of the respective institutions. None of the patients received preoperative chemotherapy or radiation and least two years of follow-up information was available. Study pathologists at each of the four sites reviewed both the tumor permanent sections and the frozen sections of the samples considered for inclusion in this study. An initial review was performed to identify stage, diagnosis, and the regions of the frozen section containing the maximum tumor cellularity for macrodissection. Regions containing a minimum of 60% tumor cellularity were required, and in most instances tumor cellularity of at least 70-90% was identified for inclusion in the sample for RNA isolation. A second pathological review of each case was performed to coordinate the pathological information across all tumor collection sites. This collaborative re-evaluation of each tumor sample was used to verify the initial pathological findings and where the second pathological review disagreed with the first pathological diagnosis the samples were excluded. The extensive pathological review is also being used to produce an extensive pathology database for each sample that includes information regarding tumor

differentiation, subtype, tumor size, and presence of lymphocytic infiltration, angiolymphatic invasion, pleural surface involvement, and positive bronchiolar margins. This database, including representative digital photographs taken of each specimen's paraffin section and the frozen section used for RNA isolation will be made available pending final review. Clinical information was also collected about tumor staging, history of prior cancers, lymph node involvement by lymph node sampling/dissection, smoking history, age, gender, operation type, last follow-up date, and patient's status at last follow-up. Additional valuable information, such as CXR and CT scans, pulmonary function tests, time and site of recurrence, and adjuvant treatment information was collected when available. Survival outcome was determined and most patients have reliable long-term follow-up. For the analyses in this study patients were censored after 60 months of follow-up and others excluded for analysis if death occurred within 1 month of operation. Three subjects, all in the UM/HLM training set, were excluded from the analysis as they died within 1 month of operation. The clinical data collected from each individual site underwent two forms of review. A core set of critical covariates were identified for thorough quality assessment. These were reviewed by an NCI statistician to evaluate discrepancies in coding patterns between sites, logical inconsistencies in the data, and missing data. The complete dataset underwent a second round of quality review by the CALGB Statistical Center Data Operations. The clinical dataset was finalized and locked in December, 2006.

The planned total sample size was 600 tumors. Sample size determination was based on obtaining 95% power to identify a gene with hazard ratio of 1.5 associated with unit change in standardized gene expression (defined as expression values that have been standardized to have variance 1 for that gene). Assumes one-sided significance level of 0.001 used to select genes for inclusion in the predictor, and 28% event rate in the population. Additional adjustments for 1) a multiple correlation coefficient of 0.15 between the gene of interest and the clinical covariates (using variance inflation factor method of Hsieh and Lavori, (2000), and 2) 17% sample loss due to various causes.

Multiple comparison adjustment in the context of predictor development involves a tradeoff. Very strict Bonferroni-type adjustment may reduce predictor performance by eliminating informative genes. Too lax adjustment may reduce predictor performance by inclusion of too many noise genes. It was thought that the significance level used in the sample size calculation represented a reasonable tradeoff between the two. A total of 486 tumor samples were arrayed and a total of 442 samples were retained after the QC evaluation of the clinical, pathological, and array data.

Isolation of RNA: Frozen dissected tumor tissue was immersed in 1 ml of Trizol Reagent (Invitrogen Corporation, Carlsbad, CA). Tissue sections were disrupted with a glass homogenizer or glass beads to facilitate dissolution in the Trizol reagent as necessary. Purification of the RNA from the Trizol dissolved samples followed the manufacturer's protocol. The Trizol purified RNA was further purified using the RNeasy columns and the manufacturer's cleanup procedure (Qiagen Inc., Valencia, CA). The quality of total RNA was assessed by electrophoretic analysis on the Agilent 2100 Bioanalyzer. The RNA yield was determined by OD₂₆₀ measurement.

Preparation of Labeled RNA Targets for Hybridization: Beginning with total RNA the poly(A) RNA pool was specifically converted to cDNA and then amplified and labeled with biotin following the procedure initially described by Van Gelder et al.. First-strand cDNA synthesis was carried out using the Superscript Choice System (Invitrogen Corporation, Carlsbad, CA) and the T7 promoter/oligo (dT) primer (5'-GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG-(dT)₂₄-3'), Oligo(dT) Promoter Primer Kit, Affymetrix Corporation, #900375, Affymetrix Corporation, Santa Clara, CA). Following annealing the rest of the cDNA synthesis reaction was prepared such that the final reaction contains 5 mg RNA, 100 pmol T7-(T)24 primer, 500 mM each dNTP, 10 mM DTT, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, and 200 U of Superscript II reverse transcriptase (Invitrogen). reaction was incubated for 1 hr at 42°C. A second-strand cDNA synthesis was then performed at 16°C for 2 hr in a total volume of 150 mL, using 10U of E.coli DNA ligase, 40 U of E. coli DNA polymerase I, and 2 U of E. coli RNase H in the presence of 200 mM of each dNTP, 10 mM NH₄SO₄, 1.3 mM DTT, 26.7 mM Tris-HCl, pH 7.0, 100 mM KCl, 5 mM MgCl₂ and 150 mM b-NAD⁺. All second strand components were purchased from the Invitrogen Corporation. Following the second-strand DNA synthesis, 10 U of T4 DNA Polymerase (Invitrogen) was added and the samples were incubated an additional 5 min at 16°C. The reaction was stopped by the addition of 0.5 M EDTA and the nucleic acids were purified using the Affymetrix GeneChip sample clean-up modules (#900371, Affymetrix). The nucleic acids were eluted with 25 ml of DEPC treated water. Twenty-two microliters of the purified cDNA was used as the template for a transcription reaction performed with the BioArrayTM HighYieldTM RNA Transcript Labeling Kit according to manufacturer's instructions (ENZO Life Sciences, New York, NY) which incorporates biotinylated UTP into the transcripts. The Biotin-labeled RNA was purified using RNeasy columns (Qiagen Inc., Valencia, CA) and fragmented to a size of 35 to 200 bases by incubating at 94° C for 35 minutes in fragmentation buffer (40 mM Tris-acetate, pH 8.1/100 mM potassium acetate/30 mM magnesium acetate). The integrity of the starting material and the products of each reaction were monitored on agarose gels to assess the size distribution of the products and compare them to the starting material.

Array hybridization and scanning. The hybridization solutions consisted of 20 μg of fragmented RNA and 0.1 mg/ml sonicated herring sperm DNA, in 1x MES buffer (containing 100 mM MES, 1 M Na⁺, 20 mM EDTA, and 0.01% Tween 20). In addition the hybridization solutions were spiked with known concentrations of RNA from the bacterial genes, BioB, BioC, and BioD, and one phage gene, Cre, as hybridization standards. The hybridization mixtures was heated to 99°C for 5 min followed by incubation at 45°C for 5 min before injection of the sample into an Affymetrix GeneChip array cartridge 133A. All hybridizations were carried out at 45°C for 16–17 h with mixing on a rotisserie at 60 rpm. Following hybridization, the solutions were removed and the arrays were rinsed with 1x MES. Subsequent washing and staining of the arrays was carried out using the GeneChip Fluidics station protocol EukGE_WS2: This consists of 10 cycles of 2 mixes per cycle with non-stringent wash buffer (6x SSPE, 0.01% Tween 20) at 25°C followed by 4 cycles of 15 mixes per cycle with stringent wash buffer (100

mM MES, 0.1 M Na⁺, and 0.01% Tween 20) at 50°C. The probe arrays were then stained for 10 min in streptavidin-phycoerythrin solution (SAPE) [1x MES solution, 10 μ g/ml SAPE (Molecular Probes, Eugene, OR), and 2 μ g/ μ l acetylated BSA (Invitrogen)] at 25°C. The post-stain wash was 10 cycles of 4 mixes per cycle at 25°C. The probe arrays were treated for 10 min with an antibody solution [1x MES solution, 2 μ g/ μ l acetylated BSA, 0.1 μ g/ μ l normal goat IgG (Sigma Chemical, St. Louis, MO), 3 μ g/ μ l biotinylated goat-anti-streptavidin antibody, (Vector Laboratories, Burlingame, CA)] at 25°C followed by a second staining for 10 min in streptavidin-phycoerythrin solution (SAPE) [1x MES solution, 10 μ g/ml SAPE (Molecular Probes, Eugene, OR), and 2 μ g/ μ l acetylated BSA (Invitrogen)] at 25°C. The final wash was 15 cycles of 4 mixes per cycle at 30°C with non-stringent wash buffer. Following washing and staining, probe arrays was scanned once at 1.56 μ m resolution using the Affymetrix GeneChip Scanner 3000 or at 3 μ m resolution using the Affymetrix GeneChip Scanner 2500.

The cel files for the study are available at the following URL: https://caarraydb.nci.nih.gov/caarray/publicExperimentDetailAction.do?ex pId=1015945236141280 Links to the pathology and clinical data are also available at this site.

Data Preprocessing: Arrays were visually scanned for any defects or scanning artifacts that might compromise the final results. The CEL file data from each of the four generation sites was then transferred to NCI where an honest broker system was set up to anonymize the data for further work. This CEL file data and the MAS 5.0 generated values calculated from the CEL files were used to evaluate the quality of individual arrays using metrics such as scaling factor, 5/3' ratios, and histograms of spot intensities. From a combined analysis by two of the sites a small number of arrays were excluded under the suspicion of poor quality array data. During this initial evaluation of the array data principal components analysis suggested that the data generated at the UM, HLM and MSK sites were quite similar, but that the data from the DF site was different probably due to slightly weaker average signals across the arrays and slightly greater variation across all samples. It was decided that the combined data from UM and HLM would be used as the training set, with the data from MSK held out as an external validation dataset containing similar microarray data and the data from the DF site held out as a second and more challenging external test set. All CEL files generated at the four sites were quantile normalized as a group using the array NCI U133A 61L as a

reference file. The quantile normalized CEL files were imported into the software dChip (Li et al, 2001) (Build version February 2006) and signal values for each probeset were calculated using the default settings. The calculated microarray data was then combined with the clinical data for each sample and assigned a sample number by the honest broker

Overall, 44 of the 486 arrayed samples (including one Stratagene reference sample) were excluded from the study based on violations of the clinical criteria that were discovered after the initial sample was defined, or due to poor array quality. Eleven of the patient samples, and the single excluded Stratagene sample, were excluded due to quality-control problems with the microarray data, with the remaining 33 samples excluded due to

(one of the NCI collaborators).

violations of clinical and pathological criteria.

Protocol for classifier development: Four teams of investigators, corresponding to four of the sites contributing samples (HLM, MSK, CAN, and UM) obtained the training data from all sites for classifier development from the honest broker. encouraged to develop a single classifier (assigning the samples to discrete risk groups) or risk scoring procedure (assigning the samples to points on a risk continuum) for each of the four study hypotheses (see methods). For simplicity, we often use the term "classifier" to refer to either a categorical or continuous outcome prediction. categorical procedures are denoted explicitly with subscript "cat" in the main figures. There was no stipulation that all training samples be used equally, so, for example, it was permitted to train only on the stage 1 samples, or only on the samples from a single institution. The teams used only the training data to define the classifiers, and the test data was not incorporated in any way. Note however that we did permit the classifier to be defined in terms of standardized test set expression levels, or in terms of percentile points of test set gene expression features. This was done to reflect a standardization and calibration process that would surely be part of any clinical implementation of this technology. Although some of the teams presumably had access to the test data derived from their own institution (never the complete test data set), all teams were on the honor system to not use this data in training their classifier. By a specified date, each team provided documentation of their proposed approach to the honest broker. At this point, the test set expression data and clinical covariates (age, stage, and gender), recoded with generic identifiers, was released by the honest broker. Each team then applied its method(s) to the test data in order to predict the outcome for each sample. These results were collected by the honest broker, and the results were released together with the actual outcomes to all co-authors for performance evaluation.

References for Supplementary Materials 1:

Dobbin KK, Beer DG, Meyerson M, Yeatman TJ, Gerald WL, Jacobson JW, Conley B, Buetow KH, Heiskanen M, Simon RM, Minna JD, Girard L, Misek DE, Taylor JM, Hanash S, Naoki K, Hayes DN, Ladd-Acosta C, Enkemann SA, Viale A, Giordano TJ. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. *Clin Cancer Res.* 2005; Jan 15;11(2 Pt 1):565-72.

Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 2000;21(6):552-60.

Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990;87(5):1663-7.

Li C, Wong W. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001;98:31–6.

Supplementary Materials 2: Classifier Development and Applications

Method A (Gene clusters and ridge regression)

Samples used in developing the classifier:

All UM and HLM samples in the training set, for both the prediction of all stages, and the prediction of stage 1 samples

<u>Initial data processing and filtering:</u>

All probe sets for which fewer than five samples showed greater than 50 raw expression units were removed. For the remaining probesets all values less than 0 were set to zero, all values were increased by 1, and then all the values were \log_2 transformed. Standard deviations were calculated for each probe set and one quarter of the probe sets with the smallest standard deviations were removed. An additional 274 probesets were removed that had a greater than 2 fold difference in expression between the UM samples and the HLM samples. This resulted in 13,838 probe sets for subsequent analysis. Expression levels within each of the four sample sets (UM, HLM, MSK, and CAN/DF) were mean centered at the probe-set level.

Gene Selection or feature reduction:

The gene expression data was reduced to 100 features per sample with a clustering algorithm. This algorithm selected a set of 100 "central probe sets" from among the actual probe sets, with the goal of maximizing the correlation between each individual probe set and its closest central probe set. Specifically, a gain function was constructed as follows: first, for each probeset, the central probeset to which it is most correlated was identified. Then, these maximizing correlation coefficients were summed over all genes. An iterative stochastic search was used to maximize this gain function. At each round of optimization a random subset of the current central probesets were reassigned to different The size of the subset is Poisson distributed with mean 5, and the probesets. reassignment was done by sampling uniformly and without replacement from the noncentral probesets. If the new configuration has higher value under the gain function than the current probeset, the new configuration becomes the current configuration. Approximately 400 iterations of this process were sufficient for the search to approximately stabilize at a local solution. Once the central probe sets were identified, each of the 13,838 probe sets was assigned once more to its closest central probe set, producing a set of 100 probe set clusters. The expression levels within each probe set were then transformed across samples to have unit variance. Finally, for each sample the average of these standardized expression levels within each probe set cluster was calculated to be used as a vector of 100 risk-scoring features. C code implementing this algorithm is available by e-mail from one of the authors (kshedden@umich.edu).

Classifier:

Ridged Cox proportional hazards models were used to define linear risk scores based on the training data. A linear risk score is an expression $R = \beta_0 + \Sigma \beta_k X_k$, where X_k is the value of gene expression feature k in a given sample. To construct the risk scores, a penalized likelihood $L(\beta) - \lambda \|\beta_0\|^2$ was numerically maximized, where $L(\beta)$ is the partial likelihood for the Cox model and β_0 is the vector of Cox slopes with the intercept omitted. A ridging weight (λ) of 35 was used based on a modified Akaike Information Criterion that accounts for the degrees of freedom lost by ridging. Risk scores were defined either by gene expression alone, or by a combination of gene expression and clinical measures (age, sex, and AJCC stage), all appearing as additive terms in the ridged Cox model. Stage was coded as a 3-level factor (1, 2, and 3/4 together). A ridging weight of 35 was also used in this case.

Class prediction or risk calculation for the test data:

The risk scoring procedures developed on the training data were applied to both test sets. First, the same probe sets filtered in the training data were removed from the test data. Probe set expression levels were then centered separately within each of the two test sets. Expression summaries at the cluster level were calculated for the test samples based on the clusters derived from the training set (probe sets were standardized relative to the standard deviation on the training data, so as to limit biases resulting from compositional differences between the training and testing data). Risk scores were then constructed for each test sample, using the Cox model coefficients determined from the training data. This classifier gives a continuous risk score.

Method B (Stratified Cox model on univariately selected genes)

Samples used in developing the classifier:

All UM and HLM samples in the training set, for both the prediction of all stages, and the prediction of stage 1 samples

<u>Initial data processing and filtering:</u>

All Affymetrix control probesets were removed from consideration. The gene expression values (g) for each probeset were transformed to a standardized scale by subtracting the median (μ) across the samples and dividing by the MAD (τ) . This data transformation is described by the formula $(g-\mu)/\tau$. The transformation accounts for variability in the gene expression values from batch to batch across the different sets of data.

Gene Selection or feature reduction:

A stratified Cox model was developed with the training data using stratification based on AJCC stage. Four stages (Ia, Ib, II & III) and gene expression (g) were used in modeling survival (Sg) using the equation Sg(t, stage, g) = Sg0(t, stage)* $e^{(g*beta)}$, where t is patient survival time and Sg0 is baseline survival based on stage. Due to the weak association between gene expressions and survival the decision was made to select the top 50 genes (and ties) based on the model likelihood ratio statistic. Fifty-two probesets were selected for the final predictor.

Classifier:

The predictor, based on the selected genes, involved two computations. A risk score is first calculated for a sample using the log hazard ratio parameters β_i for the ith gene calculated from the training data. Letting g_{si} denote the expression level for gene i in sample s, the risk score is $r_s = \Sigma \beta_i (g_{si} - \mu_i) / \tau_i$, where μ_i and τ_i are the mean and standard deviation of the gene expression values for gene i across all training samples. This calculated risk score is then used to calculate the 5-year probability for any subject, taking into account information about tumor stage, with the model Sr(t, stage, r) = Sr0(t, stage)* $e^{(r^*\gamma)}$. In computing the values, stage specific baseline rates (Sr0 = 0.716, 0.562, 0.314 and 0.152 respectively for stages Ia, Ib, II & III) and γ (0.118) were determined from the training set.

Class prediction or risk calculation for the test data:

For the samples in the test set the standardized gene expression values were calculated based on the test set data to account for systematic bias by site. All other values were used from calculations performed on the training data. The 5-year probabilities were calculated from the test set array data as described above. This classifier gives a continuous risk score.

Method C (clustering of samples combined with minimum gene selection).

Samples used in developing the classifier:

All UM samples in the training set

Initial data processing and filtering:

Set all values less than 1 equal to one and then log2 transform the data Exclusion of all control probesets (total of 68); Exclusion of 2 probesets: 207140_at and 207226_at due to a high proportion of samples having the value of 0 or missing values for these probesets; 1534 probesets differentially expressed between the 14 UM samples and the 4 HLM samples of Stratagene Universal RNA arrays identified using SAM analysis (100

permutations; FDR = 4.1%; Tusher et al. Proc Natl Acad Sci U S A. 2001 98(9):5116-5121).

Gene Selection or feature reduction:

A Maximizing Chi-square Analysis (MCA) approach was employed for identification of a minimum set of genes that had the highest independent ability of classifying patients into good/bad prognostic subgroups. The MCA approach includes two main steps: 1) identifying probesets whose expressions are significantly associated with prognosis, and 2) reducing the initial list to a minimum set of genes. The initial identification of significant probesets was done by univariate analysis using Cox proportional hazards regression. This resulted in the selection of 167 probesets using a p-value threshold of 0.001 for the selection. The second step involved stepwise exclusion of probesets, one probeset at a time. For the identified n probesets, MCA left one probeset out, used the n-1 probesets for k-means clustering (k=2, iteration=99), and calculated the Chi-square of cluster separation in terms of survival prediction using Cox proportional regression while adjusting for stage. The resulting n Chi-squares were compared and a probeset was excluded when its exclusion resulted in the largest Chi-square. When multiple probesets had the same largest Chi-square, the one with smallest univariate Chi-square was excluded. The procedure was repeated on the progressively smaller set of probesets until only one probeset was left. Finally, the minimum set of probesets necessary for maximum cluster separation was selected as the minimal set having the largest Chisquare. All statistical analyses, including MCA for probeset selection, were carried out using SAS v9.1 (SAS Institute Inc. NC, USA).

Classifier:

Binary Tree-Structured Vector Quantization (BTSVQ) program generates a binary cluster tree by using k=2 such that, at each level, the data are partitioned into two groups based on the degree of similarity of their expression profiles. When clustering samples, they are successively divided into two groups, until the resulting clusters at a given level of the cluster tree are homogeneous. Each partition is made to maximize the inter-cluster distance while continuing to minimize the intra-cluster distance. This hierarchical clustering method generates a binary tree that can be used to determine which sample types have the most similar gene expression profiles (4; Sultan et al). For classification of the samples in the training sets, the data from either of the training sets corresponding to the classifier probe sets identified by MCA were used to cluster the samples of each of the training sets separately in BTSVQ. For each of the training sets the first 2 sample clusters, which as per BTSVQ would contain the first separation of samples that differ in their classifier expression profile, were assigned "good or "bad" outcome according to the cumulative clinical outcome of the samples in the two clusters. For the classification of the test sets, we obtained a vector containing the median expression values for each of the probesets of the classifier corresponding to all the samples in either the "good" or "bad" clusters from the UM training set. These vectors of median expression values were used as outlined below.

Class prediction or risk calculation for the test data:

For the classification of the test sets samples, the data corresponding to the classifier probesets for each of the test sets was clustered in BTSVQ and clusters from the first level split in the cluster tree were obtained. Subsequently, Spearman's correlation was computed between individual test samples in each of the 2 clusters produced in BTSVQ and the 'good' and 'bad' median expression vectors determined from the UM training data, as mentioned above. The test set clusters were assigned 'good' or 'bad' based on the proportion of samples with higher correlation values to the median expression vector of either the 'good' or 'bad' clusters of UM training set. Finally, individual samples were assigned 'good' or 'bad' outcome according to assignment given to the entire cluster in which they were.

Method D. (clustering of samples combined with minimum gene selection).

Samples used in developing the classifier:

All UM Stage 1 samples in the training set.

Initial data processing and filtering:

Set all values less than 1 equal to one and then log2 transform the data Exclusion of all control probesets (total of 68); Exclusion of 2 probesets: 207140_at and 207226_at due to a high proportion of samples having the value of 0 or missing values for these probesets; 1534 probesets differentially expressed between the 14 UM samples and the 4 HLM samples of Stratagene Universal RNA arrays identified using SAM analysis (100 permutations; FDR = 4.1%; Tusher et al. Proc Natl Acad Sci U S A. 2001 98(9):5116-5121).

Gene Selection or feature reduction:

The same procedures were used as for method C. This procedure gave 42 probesets.

Classifier:

The same procedures were used as for method C.

Class prediction or risk calculation for test data:

The same procedures were used as for method C.

Method E. (Single gene classifier)

Samples used in developing the classifier:

A subset of extreme patients in the UM and HLM samples were used as the training set. Twenty-three samples from patients that survived less than 24 months and 25 samples from patients that survived longer than 60 months were utilized.

Initial data processing and filtering:

Exclude all probesets with median expression below 100.

Gene Selection or feature reduction:

Using only training data from HLM those probesets were identified for which a greater than 2-fold difference was observed between the medians of the short term survivor samples relative to the long term survivor samples. The same was done with the training data from UM. The intersection of these lists was the probeset 204351 at.

Classifier:

This is a single gene classifier with the classification of samples based on the relative expression of S100 calcium binding protein P as measured by the probeset 204351_at.

Class prediction or risk calculation for the test data:

Class is determined by post-hoc split of S100P expression determined from the distribution of the test data. After completing the study, we realized that this was inconsistent with our protocol (which only allowed for standardization of test set data or for calibration against percentile points of test set data). Since the method did not perform well, the impact of this on our overall findings is minimal.

Method F. (Principal component classifier on univariately selected genes)

Samples used in developing the classifier:

The HLM samples were used in the training set excluding 4 cases with death occurring less than 4 months after surgery. See Table 1 below for specific samples.

Initial data processing and filtering:

Remove all probesets where less than 20% of the samples had expression values 1.5-fold higher or lower than the median expression value.

Gene Selection or feature reduction:

Genes were selected by fitting Cox proportional hazards models to each gene in the training set and selecting only those with $p \le 0.001$. This yielded 42 probesets. The algorithm used was the Survival Analysis Prediction Tool from BRB ArrayTools (developed by Dr. Richard Simon and Amy Peng Lam - http://linus.nci.nih.gov/BRB-ArrayTools.html).

Classifier:

A Cox proportional hazards model was built using the first two principal components calculated from the 42 probe set list using BRB ArrayTools. The principal components are combinations of the individual probesets with coefficients determined from the training set. A Cox proportional hazards model was fit to the training set using the first two principal components.

Class prediction or risk calculation for the test data:

The first two principal component coefficients from the training set were applied to the gene expression levels from the test set. These scores were then further reduced using the coefficients from the Cox model linear predictor that was fit to the training set. Using the median risk score from the training data, the risks can be categorized as high or low.

Table 1: Samples used for method F.

training	1	44.94	524145
training	1	34.76	950017
training	1	19.84	323092
training	1	8.61	885163
training	1	37.55	781068
training	0	60	956943
training	0	60	247671
training	1	56.8	943565
training	1	30.12	933667
training	1	13.33	942053
training	0	60	936089
training	1	44.42	819465
training	1	20.86	366281
training	1	27.63	701581
training	0	60	759490
training	0	60	525810
training	1	41.33	265738
training	1	5.65	903414
training	1	16.56	792784

559504	60	0	training
894965	60	0	training
675746	60	0	training
148178	3.52	1	training
517608	17.54	1	training
845868	27.56	1	training
144587	16.39	1	training
836317	60	0	training
419309	60	0	training
659306	60	0	training
697490	45.24	1	training
316985	60	0	training
510932	39.06	1	training
193820	60	0	training
463273	2.27	1	training
932215	60	0	training
221190	42.18	1	training
897384	60	0	training
517541	60	0	training
249311	39.36	1	training
159395	60	0	training
376123	31.7	0	training
130882	42.02	1	training
684308	5.78	1	training
733168	7.69	1	training
696540	47.9	1	training
153791	58.84	0	training
816895	60	0	training
334341	24.51	1	training
189573	7.03	1	training
430943	9.63	1	training
391232	40.21	1	training
123673	60	0	training
678515	40.97	1	training
510311	60	0	training
631005	60	0	training
391371	11.99	1	training
112527	6.24	1	training
489693	21.88	1	training
824309	60	0	training
814773	60	0	training
216432	28.25	1	training
125786	53.39	0	training
568752	39.03	0	training
996308	52.2	1	training
448123	15.77	1	training
306267	27.66	1	training
238604	29.67	1	training
950812	12.02	1	training
993179	60	0	training
			-

728260	15.47	1	training
281485	24.74	1	training
360466	16.49	1	training
925629	8.94	1	training
733074	26.38	1	training
701182	18.2	1	training
888397	60	0	training

Method G. (Principal component classifier on univariately selected genes)

Samples used in developing the classifier:

UM and HLM samples were used in the training set. All 100 samples with survival greater than 1 month and less than 60 months were used along with 42 samples selected at random from the patients that survived longer than 60 months. See Table 2 below for specific samples.

Table 2: Samples used for method G, including a mix of HLM and UM samples.

Experiment N		time	censor		traintest
463273	HLM	2.27		1	training
148178	HLM	3.52		1	training
903414	HLM	5.65		1	training
684308	HLM	5.78		1	training
112527	HLM	6.24		1	training
189573	HLM	7.03		1	training
733168	HLM	7.69		1	training
885163	HLM	8.61		1	training
925629	HLM	8.94		1	training
430943	HLM	9.63		1	training
391371	HLM	11.99		1	training
950812	HLM	12.02		1	training
942053	HLM	13.33		1	training
728260	HLM	15.47		1	training
448123	HLM	15.77		1	training
144587	HLM	16.39		1	training
360466	HLM	16.49		1	training
792784	HLM	16.56		1	training
517608	HLM	17.54		1	training
701182	HLM	18.2		1	training
323092	HLM	19.84		1	training
366281	HLM	20.86		1	training
489693	HLM	21.88		1	training
334341	HLM	24.51		1	training
281485	HLM	24.74		1	training
733074	HLM	26.38		1	training
845868	HLM	27.56		1	training
701581	HLM	27.63		1	training
306267	HLM	27.66		1	training

216432	HLM	28.25	1	training
238604	HLM	29.67	1	training
933667	HLM	30.12	1	training
950017	HLM	34.76	1	training
781068	HLM	37.55	1	training
510932	HLM	39.06	1	training
249311	HLM	39.36	1	training
391232	HLM	40.21	1	training
678515	HLM	40.97	1	training
265738	HLM	41.33	1	training
130882	HLM	42.02	1	training
221190	HLM	42.18	1	training
819465	HLM	44.42	1	training
524145	HLM	44.94	1	training
697490	HLM	45.24	1	training
696540	HLM	47.9	1	training
996308	HLM	52.2	1	training
943565	HLM	56.8	1	training
631005	HLM	60	0	training
894965	HLM	60	0	training
675746	HLM	60	0	training
800868	UM	2.24	1	training
663986	UM	2.4	1	training
252020	UM	2.7	1	training
659223	UM	3.3	1	training
567176	UM	4	1	training
432758	UM	5.8	1	training
271063	UM	5.9	1	training
404793	UM	6.38	1	training
321219	UM	6.6	1	training
455846	UM	7.2	1	training
333004	UM	7.3	1	training
772404	UM	8.4	1	training
474137	UM	8.7	1	training
209144	UM	8.85	1	training
569229	UM	9	1	training
599309	UM	9.2	1	training
826326	UM	9.6	1	training
913626	UM	9.74	1	training
150128	UM	10.1	1	training
518640	UM	11.68	1	training
265064	UM	11.7	1	training
850333	UM	12.2	1	training
233644	UM	12.5	1	training
618265	UM	12.63	1	training
145764	UM	14.5	1	training
173905	UM	14.9	1	training
496607	UM	16.3	1	training
683907	UM	16.8	1	training
398109	UM	16.9	1	training

952867	UM	17.6	1	training
466286	UM	17.6	1	training
403432	UM	18.6	1	training
702722	UM	19	1	training
880814	UM	19	1	training
411207	UM	19.5	1	training
661131	UM	19.6	1	training
798369	UM	19.9	1	training
602007	UM	20.6	1	training
712593	UM	20.9	1	training
452459	UM	21	1	training
949065	UM	21.2	1	training
859039	UM	21.48	1	training
341749	UM	22.3	1	training
202710	UM	22.7	1	training
714441	UM	24.97	1	training
769668	UM	25.95	1	training
555993	UM	26.9	1	training
720794	UM	27.6	1	training
139107	UM	28.2	1	training
493037	UM	29.6	1	training
161979	UM	30.2	1	training
402191	UM	30.7	1	training
977057	UM	31.28	1	training
524193	UM	31.94	1	training
110567	UM	32.24	1	training
284987	UM	32.6	1	training
443769	UM	33.2	1	training
744956	UM	33.9	1	training
185234	UM	34.8	1	training
812142	UM	36.25	1	training
476148	UM	40.2	1	training
496854	UM	42.04	1	training
445613	UM	42.5	1	training
940717	UM	43.8	1	training
172712	UM	45.3	1	training
183391	UM	45.33	1	training
424579	UM	45.8	1	training
255153	UM	47.8	1	training
980608	UM	48	1	training
951138	UM	48.8	1	training
370811	UM	50.2	1	training
222148	UM	54.2	1	training
352567	UM	54.93	1	training
651553	UM	59	1	training
999364	UM	59.11	1	training
913728	UM	60	0	training
450566	UM	60	0	training
579761	UM	60	0	training
763623	UM	60	0	training

668	3131	UM	60	0	training
914	4179	UM	60	0	training
826	5771	UM	60	0	training
943	3098	UM	60	0	training
68	7055	UM	60	0	training
165	5242	UM	60	0	training
878	3703	UM	60	0	training
425	5795	UM	60	0	training
509	9008	UM	60	0	training
542	2450	UM	60	0	training
418	3227	UM	60	0	training
747	7041	UM	60	0	training
440	0283	UM	60	0	training

<u>Initial data processing and filtering:</u>

Same procedure as for method F.

Gene Selection or feature reduction:

Same procedure as for method F, which yielded 38 probesets in this case.

Classifier:

Same procedure as for method F.

Class prediction or risk calculation for the test data:

Same procedure as for method F.

Method H. (Majority vote classifier on mitosis genes).

Samples used in developing the classifier:

All HLM samples in the training set, for both all stage prediction and for stage 1 prediction.

Initial data processing and filtering:

An initial list of 614 probesets suspected of having predictive capacity for survival because they were related to mitosis was initially developed with independent data. This set of probesets served as the initial gene set G_1 described below.

Gene Selection or feature reduction:

The probesets and thresholds for classification were selected by an iterative application of the classification process described below. The process was initiated with 614 preselected probesets (G_1). This set of probesets was used to score the HLM samples, as described below. Based on these scores, the highest scoring third of the samples and the lowest scoring third of the samples were selected. A t-test was performed to identify genes that best discriminated between these two subsets of the HLM training data ($p_i < 0.05/n$ for Bonferroni correction). This list of identified genes formed the new gene set G_2 , which was used to start the process over again. After 3 iterations a static group of 313 probesets was identified that were used for further classification of all other data sets, following the "majority vote" procedure below.

Scoring:

Terminology

C = majority vote of individual classifiers (sum of vote by all probesets in classifier)

 c_k = individual classifier k (a single probeset and thresholds for that probeset)

 $x_i = \text{sample } i$ (microarray dataset for an array from a single tumor sample)

G = set of genes used for individual classifiers (set of all probesets in classifier)

 g_{ik} = gene expression value for sample j and probeset k

S = sign (+/-) indicating trend relative to outcome, + = high expression in Poor class, - = high expression in Good class

Individual Classifier

For each element g_k of G define LO and HI as the 33^{rd} percentile and 66^{th} percentile of expression values in the dataset under investigation. Then define

$$c_k = \left\{ \begin{array}{ll} -1 * S_k & & g_{jk} < LO \\ +1 * S_k & & g_{jk} > HI \\ 0 & & \text{otherwise} \end{array} \right.$$

Majority Vote Classifier

The final risk score is the sum of all the individual classifiers, $C_j = \sum (c_{kj})$. For training purposes thresholds were set to define the extreme classes used for gene selection.

$$Pred(x_j) = \begin{cases} Poor & C_j > 0.15 |G| \\ Good & C_j < -0.15 |G| \\ Grey & otherwise \end{cases}$$

0.15 was heuristically determined. A Pred value of |G| (or -|G|) indicates complete agreement with one class whereas values near zero (e.g. 0.15 * |G|) indicate uncertainty in classification.

Class prediction or risk calculation for the test data:

The thresholds for individual classifiers were reset based on the distribution of the gene expression values in each test set. The majority vote classifier was calculated to generate a score. This score exists within a continuum of values between 313 and -313, which can serve as a risk score. For the 2 class discrimination in this study, the threshold was set at $C_i > or < 0.15 |G|$.

Method I. (Clinical variables only)

Samples used in developing the classifier:

All UM and HLM samples in the training set.

Initial data processing and filtering:

None.

Gene Selection or feature reduction:

N/A

Classifier:

AJCC stage (coded as 1, 2, and 3/4), gender, and age were included in a multivariate Cox proportional hazards model.

Class prediction or risk calculation for the test data:

The fitted Cox model coefficients calculated from the training data are used to construct a continuous risk score.

Method J and K. (Based on Chen et al. NEJM 2007 set of genes)

Samples used in developing the classifier:

All UM and HLM samples in the training set.

<u>Initial data processing and filtering:</u>

All probe sets for which fewer than five samples showed greater than 50 raw expression units were removed. For the remaining probesets all values less than 0 were set to zero, all values were increased by 1, and then all the values were \log_2 transformed. An additional 274 probe sets were removed that had a greater than 2 fold difference in expression between the UM samples and the HLM samples. Expression levels within each of the four sample sets (UM, HLM, MSK, and CAN/DF) were mean centered at the probe-set level.

Gene Selection or feature reduction:

All probe sets on the Affymetrix U133A array that detected the same gene names reported in Chen et al., were identified. For method J the five gene signature was translated into 9 probe sets. For method K the 16 gene signature was translated into 33 probe sets covering 15 of the 16 genes used in Chen et al. No U133A probe set detected transcripts for the CPEB4 gene.

The probe sets for the 5 genes are:

DUSP6	208891_at, 208892_s_at, 208893_s_at
ERBB3	202454_s_at
LCK	204890_s_at, 204891_s_at
MMD	203414_at
STAT1	200887_s_at, 209969_s_at

The probe sets for the 16 genes are:

HMMR	207165_at, 209709_s_at
ERBB3	202454_s_at

DLG2	206253_at
ANXA5	200782_at
STAT2	205170_at, 217199_s_at
STAT1	200887_s_at, 209969_s_at
IRF4	216987_at, 216986_s_at, 204562_at
FRAP1	202288_at, 215381_at
ZNF264	205917_at
NF1	211914_x_at, 210631_at, 204323_x_at, 204325_s_at, 211095_at, 211094_s_at
HGF	209961_s_at, 210755_at, 209960_at,210998_s_at, 210997_at
MMD	203414_at
RNF4	212696_s_at
DUSP6	208891_at, 208892_s_at, 208893_s_at
LCK	204891_s_at, 204890_s_at

Classifier:

The gene expression values for the selected probe sets were used for fitting ridged Cox proportional hazards models to our training set data, as describe in method A.

Class prediction or risk calculation for the test data:

The fitted Cox model coefficients calculated from the training data and the gene expression values from each sample in the test data are used to construct a continuous risk score.

Method L, M, and N. (Modeled after Potti et al, NEJM 2006)

Samples used in developing the classifier:

All UM and HLM samples in the training set.

<u>Initial data processing and filtering:</u>

All probe sets for which fewer than five samples showed greater than 50 raw expression units were removed. For the remaining probe sets all values less than 0 were set to zero, all values were increased by 1, and then all the values were \log_2 transformed. Standard deviations were calculated for each probe set and one quarter of the probe sets with the smallest standard deviations were removed. An additional 274 probe sets were removed that had a greater than 2 fold difference in expression between the UM samples and the HLM samples. Expression levels within each of the four sample sets (UM, HLM, MSK, and CAN/DF) were mean centered at the probe-set level.

Gene Selection or feature reduction:

In the Supplementary Material of Potti et al., U133 probe sets belonging to 9 metagenes are listed (note that this is a subset of all metagenes used by their method). We reduced the original set of 132 probesets to 80 probe sets following the filtering procedure described above. We then considered three distinct approaches for constructing risk scores based on these 80 probesets. For method L, the first principal component was used to summarize the expression data in each metagene. The 9 metagene summaries were used as covariates in a ridged Cox proportional hazards model, as described for method A above. The model was developed with a ridging parameter of 1, but other values were found to give similar or inferior results on the testing data. Method M fit a 45-dimensional ridged Cox model in which the metagene principal component scores were main effects, and in addition all two-way interactions were included. Method N fit an 80-dimensional ridged Cox model using the gene expression levels for all genes in the 9 metagenes, ignoring their assignment to metagenes. We also built models using gene expression and clinical covariates, in which case the three clinical covariates were incorporated as additional additive terms in the Cox model linear predictor. This gave 12, 48, and 83 dimensional models, respectively.

Classifier:

Following data reduction ridged Cox proportional hazards models were constructed as described above.

Class prediction or risk calculation for the test data:

Linear predictors from the ridged Cox proportional hazards models developed in methods L-N were used as continuous risk scores.

Metagene	Probesets
35	202539_s_at, 203766_s_at, 206912_at, 211165_x_at, 213575_at
69	203969_at,203971_at,206691_s_at,206924_at,208902_s_at,209024_s_at,20 9252_at,212016_s_at

40	200881_s_at,201116_s_at,201120_s_at,201138_s_at,201182_s_at,201455_s _at,202666_s_at,203018_s_at,206302_s_at,211442_x_at,211778_s_at,21236 0_at,213244_at,213693_s_at,214421_x_at
41	204168_at,205844_at,206066_s_at,206370_at,209971_x_at,210431_at,2106 09_s_at,211062_s_at,213188_s_at,213517_at
74	203850_s_at,205887_x_at,210785_s_at,213650_at
79	200983_x_at,201481_s_at,201627_s_at,202812_at,203796_s_at,203856_at, 206022_at,209479_at,210220_at,211207_s_at,213457_at
19	200908_s_at,203914_x_at,204928_s_at,205767_at,207108_s_at,207814_at
86	203741_s_at,204122_at,204381_at,205339_at,207355_at,207606_s_at,2095 90_at,209751_s_at,210794_s_at,212169_at,213143_at,213433_at
31	201037_at,201637_s_at,201850_at,204633_s_at,204727_at,209343_at,2103 81_s_at,212034_s_at,212410_at

Challenges in developing prognostic models for early stage lung cancer

Some potentially significant additional challenges will arise if gene expression profiling is to be used for lung cancer prognosis in practice. Most likely, a method would be trained on a large reference set, and the fitted model used to make predictions at distinct treatment sites. To account for this, we constructed our testing sets around institutional samples, rather than randomly assigning the entire set of 400+ samples to training and testing subsets. The presence of lower signal in one test set and moderate stage and gender biases in both test sets relative to the training set are therefore realistic elements of our study. However the fact that we produced gene expression summaries by running DChip on the entire sample (training and testing sets together) is somewhat unrealistic, as the adaptive aspect of DChip's approach to expression quantitation may have removed some of the inter-site differences. A related point is that it was permitted for a method to standardize gene expression data within test sets, or to refer to percentile points of summary features within test sets. We view this as being realistic, since in practice some form of standardization and calibration is sure to be used.

There are a number of challenges that should be considered in further efforts to develop accurate prognostic models for lung cancer. The well recognized biologic heterogeneity

of lung adenocarcinomas may contribute to difficulties in prediction. These tumors show considerable histological variation and in most instances contain mixed subtypes with several distinct regions present in a tumor. Thus the region selected for gene expression analysis may not always correspond to the most informative component of the lesion in regards to accurately describing tumor behavior. It is also likely that some of this heterogeneity in lung adenocarcinomas results from genetic alterations related to smoking tobacco (Muira et al, 2002; Powell et al, 2003), which was highly prevalent in the subject cohorts examined. However specific information about smoking in our study was too limited to incorporate into the analysis.

There are also difficulties in using overall survival as an endpoint in prognostic modeling in cancer. Although genes associated with aggressive disease, such as those involved in cell proliferation or increased glycolysis (Beer et al, 2002, Chen et al 2003), may be clearly present in a subject's tumor, this may not always correlate with reduced survival if, for example, a complete resection of this lesion was successful. Similarly, a subject's tumor might exhibit a favorable gene expression profile, but the subject might develop and succumb to a second primary or to some other clinical condition shortly after diagnosis. In both instances, there would be a lack of correlation between gene expression and subject survival. Time to recurrence may be more directly related to tumor biology, but is difficult to accurately define in a retrospective setting. In the UM/HLM, MSK and CAN/DF sets, respectively 99, 32, and 31 subjects died during the study with an explicit indication of disease recurrence. Only 27, 7 and 2 subjects, respectively, died during the study with no indication of lung cancer recurrence in their clinical files. While we did not view our recurrence data as being sufficiently accurate to use as an analysis endpoint, this suggests that a large fraction of the deaths in our study were due to lung cancer. For future profiling projects, methods must be developed to more accurately track this information.

References for Supplementary Materials 2:

Tusher et al. Proc Natl Acad Sci U S A. 2001 98(9):5116-5121).

Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, Cheng CL, Wang CH, Terng HJ, Kao SF, Chan WK, Li HN, Liu CC, Singh S, Chen WJ, Chen JJ, Yang PC A fivegene signature and clinical outcome in non-small-cell lung cancer. *N Engl J Med*. 2007 Jan 4;356(1):11-20.

Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A, Koontz J, Kratzke R, Watson MA, Kelley M, Ginsburg GS, West M, Harpole DH, Nevins JR.A genomic strategy to refine prognosis in early-stage non–small-cell lung cancer. *N Engl J Med* 2006;355:570–80.

Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 2001;98(1):31-6.

Sultan M, Wigle DA, Cumbaa CA, Maziarz M, Glasgow J, Tsao MS, Jurisica I. Binary tree-structured vector quantization approach to clustering and visualizing microarray data. Bioinformatics 2002;18 Suppl 1:S111-9. PMID: 12169538.

Miura K, Bowman ED, Simon R, Peng AC, Robles AI, Jones RT, Katagiri T, He P, Mizukami H, Charboneau L, Kikuchi T, Liotta LA, Nakamura Y, Harris CC. Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. *Cancer Res.* 2002 Jun 1;62(11):3244-50.

Powell CA, Spira A, Derti A, DeLisi C, Liu G, Borczuk A, Busch S, Sahasrabudhe S, Chen Y, Sugarbaker D, Bueno R, Richards WG, Brody JS. Gene expression in lung adenocarcinomas of smokers and nonsmokers. Am J Respir Cell Mol Biol. 2003 Aug;29(2):157-62.

Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S Gene-expression profiles predict survival of subjects with lung adenocarcinoma. 2002; *Nat Med.*, 8(8):816-24.

Chen G, Gharib TG, Wang H, Huang CC, Kuick R, Thomas DG, Shedden KA, Misek DE, Taylor JM, Giordano TJ, Kardia SL, Iannettoni MD, Yee J, Hogg PJ, Orringer MB, Hanash SM, Beer DG. Protein profiles associated with survival in lung adenocarcinoma. *Proc Natl Acad Sci* U S A. 2003; Nov 11;100(23):13537-42.

Supplementary Materials 3a: detailed hazard ratio results

Figure. Results on two independent testing data sets. Figure showing hazard ratios for all the methods A-N.

Codes:

A-H: Methods developed by the consortia using gene expression with and without clinical data.

I: Clinical covariates only (stage, gender and age)

J: derived from Chen et al 5 gene signature

K: derived from Chen et al 16 gene signature

L: derived from Potti et al metagenes (Approach 1, main effects of metagenes)

M: derived from Potti et al metagenes (Approach 2, main effects and interactions of metagenes)

N: derived from Potti et al metagenes (Approach 3, all genes in 9 metagenes)

MSK test set CAN/DF test set

Expanded Table of performance evaluations.

Hazard ratios for hypothesis 1. Gene expression only, all stages, MSK test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	1.83	(1.24,2.70)	0.002	0.627
С	1.74	(0.87,3.47)	0.111	0.561
Е	1.44	(0.71,2.89)	0.301	0.542
F	2.65	(1.32,5.33)	0.005	0.611
G	3.19	(1.50,6.78)	0.002	0.632
Н	2.71	(1.36,5.42)	0.004	0.634
J	1.10	(0.73,1.68)	0.640	0.520
K	1.41	(0.94,2.11)	0.090	0.580
L	1.23	(0.84,1.80)	0.280	0.550
M	1.51	(0.92,2.47)	0.090	0.590
N	1.56	(1.09,2.25)	0.010	0.610

Hazard ratios for hypothesis 1. Gene expression only, all stages, CAN/DF test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	1.76	(1.20,2.60)	0.003	0.623
С	1.07	(0.45,2.56)	0.878	0.506
Е	0.53	(0.18,1.56)	0.239	0.553
F	0.98	(0.46,2.08)	0.947	0.503
G	1.13	(0.52,2.46)	0.751	0.515
Н	2.14	(1.08,4.23)	0.025	0.621
J	2.12	(1.23,3.65)	0.010	0.640
K	2.30	(1.42,3.74)	0.000	0.660
L	1.48	(0.83,2.62)	0.180	0.570
M	0.93	(0.57,1.54)	0.780	0.520
N	0.76	(0.55,1.06)	0.100	0.580

Hazard ratios for hypothesis 2. Gene expression and clinical variables, all stages, MSK test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	2.52	(1.56,4.06)	0.000	0.671
В	4.05	(2.18,7.52)	0.000	0.706
Ι	3.21	(1.82,5.67)	0.000	0.670
J	3.14	(1.71,5.78)	0.000	0.670
K	2.51	(1.41,4.45)	0.000	0.660
L	1.80	(1.16,2.77)	0.010	0.610

M	3.90	(2.13,7.15)	0.000	0.710
N	2.59	(1.61,4.19)	0.000	0.680

Hazard ratios for hypothesis 2. Gene expression and clinical variables, all stages, CAN/DF test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	6.68	(3.30,13.52)	0.000	0.762
В	3.11	(1.70,5.67)	0.000	0.690
Ι	3.85	(2.02,7.533)	0.000	0.700
J	4.00	(2.40,6.68)	0.000	0.740
K	3.64	(2.16,6.14)	0.000	0.720
L	3.37	(1.73,6.58)	0.000	0.710
M	2.21	(1.38,3.57)	0.000	0.660
N	1.16	(0.75,1.79)	0.500	0.540

Hazard ratios for hypothesis 3. Gene expression only, stage 1 only, MSK test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	2.10	(1.15,3.84)	0.014	0.656
D	2.79	(0.86,9.00)	0.080	0.579
Е	1.35	(0.42,4.36)	0.610	0.535
F	5.66	(1.49,21.48)	0.009	0.668
G	4.36	(1.15,16.57)	0.027	0.656
Н	2.92	(0.94,9.10)	0.060	0.640
J	1.12	(0.55,2.30)	0.740	0.520
K	1.60	(0.84,3.07)	0.150	0.610
L	1.30	(0.70,2.43)	0.390	0.570
M	1.86	(0.82,4.24)	0.130	0.630
N	1.09	(0.68,1.76)	0.700	0.530

Hazard ratios for hypothesis 3. Gene expression only, stage 1 only, CAN/DF test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	1.29	(0.84,1.98)	0.243	0.574
D	2.02	(0.61,6.73)	0.242	0.558
Е	0.57	(0.12,2.66)	0.465	0.547
F	0.81	(0.26,2.54)	0.715	0.526
G	0.95	(0.28,3.16)	0.928	0.506
Н	2.33	(0.90,6.08)	0.077	0.638
J	1.72	(0.81,3.65)	0.150	0.610
K	1.64	(0.86,3.13)	0.130	0.610
L	1.11	(0.48,2.60)	0.800	0.520

M	1.09	(0.51,2.35)	0.820	0.520
N	0.75	(0.37,1.52)	0.410	0.560

Hazard ratios for hypothesis 4. Gene expression and clinical variables, stage 1 only, MSK test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	2.22	(1.06,4.62)	0.030	0.659
В	1.82	(0.62,5.29)	0.264	0.596
Ι	0.65	(0.31,1.35)	0.230	0.590
J	0.81	(0.38,1.72)	0.580	0.550
K	1.04	(0.50,2.16)	0.920	0.510
L	1.57	(0.73,3.41)	0.240	0.590
M	1.85	(0.75,4.56)	0.170	0.620
N	1.02	(0.56,1.85)	0.950	0.510

Hazard ratios for hypothesis 4. Gene expression and clinical variables, stage 1 only, CAN/DF test set.

Classifier	Hazard ratio	95% CI	p-value	СРЕ
A	2.85	(1.47,5.54)	0.002	0.699
В	1.29	(0.57,2.93)	0.537	0.551
I	3.65	(1.41,9.46)	0.010	0.720
J	9.18	(2.88,29.32)	0.000	0.800
K	2.34	(1.04,5.27)	0.040	0.660
L	1.31	(0.59,2.88)	0.500	0.550
M	2.28	(0.94,5.51)	0.060	0.660
N	1.02	(0.48,2.15)	0.960	0.500

Supplementary Materials 3b: survivor function methodology

Method A survivor function plots for the training set (Figure 3 of the main article) were generated on the HLM+UM training data using a cross validation procedure. In each of 100 cross-validation replications, a random sample of 200 cases from the combined HLM+UM training set was drawn and used to completely retrain method A. The fitted method was then applied to the held-out samples to produce risk scores. Each risk score was paired with the actual event time and censoring data. The total set of all such score/outcome pairs was pooled over all cross validation replications, then divide into three groups of equal size based on the scores. The survivor function for each of the three subgroups was then estimated using the Kaplan-Meier method. Survivor functions for the test sets (Figure 2 in the main paper) were estimated directly using the Kaplan-Meier method based on the fitted classifier from the training sets. Additional survivor function plots for the other methods not shown in the main article are in Supplementary Figure S1.

Supplementary Materials 4: classifier concordance

Concordance between classifiers.

Each of the classifiers assigns a risk to every patient in the test set. For some classifiers (A,B and C) this is a continuous score, for other classifiers (D,E,F,G and H) it is a binary indication of low or high risk. For analysis of the concordance see Supplementary Table T1. Additionally, the concordance between the predictions from the classifiers is represented graphically in the following figures. For the continuous classifiers the risk scores are standardized to have mean zero and variance 1, and this is shown on the horizontal scale. For the binary classifiers the high risk samples are depicted at the right hand end of the horizontal scale and the low risk at the left hand end. Classifiers that were overall successful for that particular hypothesis are shown in upper case and those that were not successful are shown in lower case. For each of the test sets the patients are ordered based on time to death for those who died and time to last follow up for those who are censored.

The figures reveal an overall heterogeneity between the classifiers. Thus it is not the case that all the classifiers give similar predictions on a majority of the patients and differ on a small subset. Never-the-less there is a subset of patients who appear to be correctly predicted by nearly all the classifiers. For example in the MSK all stages prediction, patients 19L, 37L_REP and 67L are correctly predicted to die early by all the classifiers. Similarly 41L is predicted to be low risk by all the classifiers and does live for more than 5 years. However, there are also patients in which every classifier gives the same prediction, but the predictions are incorrect.

MSK test set, all stages

MSK test set, stage 1 only

DF test set, all stages

DF test set, stage 1 only

<u>Supplementary Materials 5: lists of genes and gene clusters</u>
The genes constituting the 100 clusters used for Method A are given at URL (http://www.stat.lsa.umich.edu/~kshedden/Beer-Test/cluster_profile). Additional probeset information for Methods B, C, D and H is provided below:

Method B:

Probe	row	median(exp)	mad(exp)	beta-hat
200066_at	136	595.98	146.61	26
200621_at	691	1066.44	360.4	31
205308_at	5376	229.25	94.6	27
205396_at	5464	84.34	19.83	.2
205409_at	5477	89.4	41.02	.23
205592_at	5660	23.17	8.59	.23
206791_s_at	6858	67.37	12.18	.29
206799_at	6866	13.96	4.85	.17
206986_at	7053	22.08	7.08	28
207228_at	7293	6.45	3.87	27
207313_x_at	7377	100.02	23.35	.17
208291_s_at	8335	32.09	7.6	.11
208559_at	8597	.54	.57	01
208644_at	8681	990.54	238.71	27
209237_s_at	9271	73.46	23.83	.19
209281_s_at	9315	121.85	49.73	.18
209418_s_at	9451	224.37	62.99	22
209890_at	9916	44.79	27.88	.19
210220_at	10241	84.09	61.24	21
211099_s_at	11083	15.05	7.11	28
211123_at	11107	94.12	16.66	.24
211327_x_at	11286	121.03	26.26	.26
211610_at	11555	119.29	46.04	.18
211829_s_at	11765	24.98	10.07	28
213628_at	13548	200.44	50.77	26
213855_s_at	13775	52.19	11.86	.28

214375_at	14294	115.54	33.46	.2
214443_at	14362	84.01	18.32	.18
214538_x_at	14457	94.05	33.23	29
214717_at	14633	12.73	9.86	25
215100_at	15014	151.37	29.99	.18
215809_at	15722	59.49	15.54	.25
216018_at	15930	37.11	13.35	.3
216227_at	16139	33.73	7.98	.28
216251_s_at	16163	760.29	187.04	.24
216398_at	16309	113.08	18.19	.28
217245_at	17150	45.91	11.49	.25
217538_at	17443	69.44	24.04	.22
218342_s_at	18247	287.76	100.94	.19
218498_s_at	18403	393.06	193.27	.16
218881_s_at	18785	85.56	34.52	.27
219043_s_at	18947	398.9	128.3	22
219069_at	18973	265.05	69.08	24
219184_x_at	19088	460.21	108.01	.23
219394_at	19298	494.34	168.57	29
219930_at	19834	19.2	19.43	25
220020_at	19924	46.79	14.64	.18
220495_s_at	20399	655.61	224.63	27
220550_at	20454	26.49	12.58	.27
220620_at	20524	31.94	6.78	.22
220987_s_at	20891	225.52	91.3	21
221852_at	21752	8.5	6.18	18

Method C

	Gene	
Probe Set ID	Symbol	Gene Title
202260_s_at	STXBP1	syntaxin binding protein 1
202917_s_at	S100A8	S100 calcium binding protein A8
203881_s_at	DMD	dystrophin (muscular dystrophy, Duchenne and Becker types)
203967_at	CDC6	cell division cycle 6 homolog (S. cerevisiae)

204497 at	ADCY9	adenylate cyclase 9
204753_s_at	HLF	hepatic leukemia factor
205394_at	CHEK1	CHK1 checkpoint homolog (S. pombe)
205542_at	STEAP1	six transmembrane epithelial antigen of the prostate 1
206896_s_at	GNG7	guanine nucleotide binding protein (G protein), gamma 7
208025_s_at	HMGA2	high mobility group AT-hook 2
208454_s_at	PGCP	plasma glutamate carboxypeptidase
208502_s_at	PITX1	paired-like homeodomain 1
	ANKHD	
	1 ///	
	MASK-	ankyrin repeat and KH domain containing 1 /// MASK-4E-BP3
208772_at	BP3	alternate reading frame gene
209368_at	EPHX2	epoxide hydrolase 2, cytoplasmic
209460_at	ABAT	4-aminobutyrate aminotransferase
209487_at	RBPMS	RNA binding protein with multiple splicing
209488_s_at	RBPMS	RNA binding protein with multiple splicing
210762_s_at	DLC1	deleted in liver cancer 1
212741_at	MAOA	monoamine oxidase A
213643_s_at	INPP5B	inositol polyphosphate-5-phosphatase, 75kDa
213804_at	INPP5B	inositol polyphosphate-5-phosphatase, 75kDa
214370_at	S100A8	S100 calcium binding protein A8
214764_at	RRP15	ribosomal RNA processing 15 homolog (S. cerevisiae)
215054_at	EPOR	erythropoietin receptor
_	PPP2R1	protein phosphatase 2 (formerly 2A), regulatory subunit A, beta
222351_at	В	isoform
40093_at	BCAM	basal cell adhesion molecule (Lutheran blood group)

Method D

	Gene	
Probe Set ID	Symbol	Gene Title
201250_s_at	SLC2A1	solute carrier family 2 (facilitated glucose transporter), member 1
	ST6GAL	
201998_at	1	ST6 beta-galactosamide alpha-2,6-sialyltranferase 1
202917_s_at	S100A8	S100 calcium binding protein A8
203439_s_at	STC2	stanniocalcin 2
203881_s_at	DMD	dystrophin (muscular dystrophy, Duchenne and Becker types)
204388_s_at	MAOA	monoamine oxidase A
204420_at	FOSL1	FOS-like antigen 1
204497_at	ADCY9	adenylate cyclase 9
	DKFZP5	
204687_at	64O0823	DKFZP564O0823 protein
204740_at	CNKSR1	connector enhancer of kinase suppressor of Ras 1
204754_at	HLF	hepatic leukemia factor
		cytidine monophosphate-N-acetylneuraminic acid hydroxylase
205518_s_at	CMAH	(CMP-N-acetylneuraminate monooxygenase)

	CYP2B7	cytochrome P450, family 2, subfamily B, polypeptide 7
206754 s at	P1	pseudogene 1
207855 s at	CLCC1	chloride channel CLIC-like 1
208025 s at	HMGA2	high mobility group AT-hook 2
208454 s at	PGCP	plasma glutamate carboxypeptidase
209030 s at	CADM1	cell adhesion molecule 1
209030_s_at 209031_at	CADM1	cell adhesion molecule 1
207031_dt	RHOBTB	cen dunesion molecule i
209441 at	2	Rho-related BTB domain containing 2
209459 s at	ABAT	4-aminobutyrate aminotransferase
209460 at	ABAT	4-aminobutyrate aminotransferase
209488 s at	RBPMS	RNA binding protein with multiple splicing
211596 s at	LRIG1	leucine-rich repeats and immunoglobulin-like domains 1
212389 at	SBF1	SET binding factor 1
212307_dt	ST3GAL	SET officing factor 1
213355 at	6	ST3 beta-galactoside alpha-2,3-sialyltransferase 6
213582 at	ATP11A	ATPase, Class VI, type 11A
213643 s at	INPP5B	inositol polyphosphate-5-phosphatase, 75kDa
213804 at	INPP5B	inositol polyphosphate-5-phosphatase, 75kDa
214370 at	S100A8	S100 calcium binding protein A8
211370_ut	MUC5A	5100 carefulli officially protein 710
214385 s at	C	mucin 5AC, oligomeric mucus/gel-forming
211300_5_ut	C4A ///	complement component 4A (Rodgers blood group) ///
214428 x at	C4B	complement component 4B (Childo blood group)
215054 at	EPOR	erythropoietin receptor
215059 at	C4orf31	Chromosome 4 open reading frame 31
	KIAA075	3
215268 at	4	hypothetical LOC643314
215555 at		CDNA FLJ13712 fis, clone PLACE2000394
219922 s at	LTBP3	latent transforming growth factor beta binding protein 3
	TMPRSS	
	11E	
	///	
	TMPRSS	transmembrane protease, serine 11E /// transmembrane protease,
220431 at	11E2	serine 11E2
220512_at	DLC1	deleted in liver cancer 1
220621_at	FOXE3	forkhead box E3
222073_at	COL4A3	collagen, type IV, alpha 3 (Goodpasture antigen)
		protein phosphatase 2 (formerly 2A), regulatory subunit A, beta
222351_at	PPP2R1B	isoform
37986_at	EPOR	erythropoietin receptor

Method H gene set

Method H gene s		T
Probe Set	Gene	
ID	Symbol	Gene Title
1053_at	RFC2	replication factor C (activator 1) 2, 40kDa
200783_s_at	STMN1	stathmin 1/oncoprotein 18
	HSPA1	
200799_at	A	heat shock 70kDa protein 1A
	HSPA1	
	A ///	
	HSPA1	
200800_s_at	В	heat shock 70kDa protein 1A /// heat shock 70kDa protein 1B
200853_at	H2AFZ	H2A histone family, member Z
		protein phosphatase 1G (formerly 2C), magnesium-dependent,
200913_at	PPM1G	gamma isoform
200934_at	DEK	DEK oncogene (DNA binding)
	KPNA2	
	///	karyopherin alpha 2 (RAG cohort 1, importin alpha 1) /// similar to
	LOC643	Importin alpha-2 subunit (Karyopherin alpha-2 subunit) (SRP1-
201088_at	995	alpha) (RAG cohort protein 1)
	K-	
	ALPHA	
201090_x_at	-1	alpha tubulin
	CBX3	
	///	
	LOC653	chromobox homolog 3 (HP1 gamma homolog, Drosophila) ///
201091_s_at	972	similar to chromobox homolog 3
201111_at	CSE1L	CSE1 chromosome segregation 1-like (yeast)
201112_s_at	CSE1L	CSE1 chromosome segregation 1-like (yeast)
201202 at	PCNA	proliferating cell nuclear antigen
201291 s at	TOP2A	topoisomerase (DNA) II alpha 170kDa
201292 at	TOP2A	topoisomerase (DNA) II alpha 170kDa
$\frac{-}{201475 \times at}$	MARS	methionine-tRNA synthetase
201477 s at	RRM1	ribonucleotide reductase M1 polypeptide
201478 s at	DKC1	dyskeratosis congenita 1, dyskerin
201479 at	DKC1	dyskeratosis congenita 1, dyskerin
201535 at	UBL3	ubiquitin-like 3
201555 at	MCM3	MCM3 minichromosome maintenance deficient 3 (S. cerevisiae)
201584 s at	DDX39	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39
201697 s at	DNMT1	DNA (cytosine-5-)-methyltransferase 1
201710 at	MYBL2	v-myb myeloblastosis viral oncogene homolog (avian)-like 2
201710_40	MTHFD	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2,
201761 at	2	methenyltetrahydrofolate cyclohydrolase
201761_at	PSME2	proteasome (prosome, macropain) activator subunit 2 (PA28 beta)
201770 at	SNRPA	small nuclear ribonucleoprotein polypeptide A
201776_at 201774 s at	CNAP1	chromosome condensation-related SMC-associated protein 1
201// 1 _5_at	CINALI	chromosome condensation-related sivic-associated protein i

201833 at	HDAC2	histone deacetylase 2
201835_at 201890 at	RRM2	
		ribonucleotide reductase M2 polypeptide
201896_s_at	PSRC1	proline/serine-rich coiled-coil 1
201897_s_at	CKS1B	CDC28 protein kinase regulatory subunit 1B
201020	MOM	MCM6 minichromosome maintenance deficient 6 (MIS5 homolog,
201930_at	MCM6	S. pombe) (S. cerevisiae)
202094_at	BIRC5	baculoviral IAP repeat-containing 5 (survivin)
202095_s_at	BIRC5	baculoviral IAP repeat-containing 5 (survivin)
202105_at	IGBP1	immunoglobulin (CD79A) binding protein 1
		MCM2 minichromosome maintenance deficient 2, mitotin (S.
202107_s_at	MCM2	cerevisiae)
202153_s_at	NUP62	nucleoporin 62kDa
202338_at	TK1	thymidine kinase 1, soluble
	RANBP	
202483_s_at	1	RAN binding protein 1
	KIAA01	
202503_s_at	01	KIAA0101
202580_x_at	FOXM1	forkhead box M1
202589_at	TYMS	thymidylate synthetase
	TOPBP	
202633_at	1	topoisomerase (DNA) II binding protein 1
	ACTL6	
202666_s_at	A	actin-like 6A
	CAD ///	
	ARHGE	
	F5 ///	carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and
	LOC653	dihydroorotase /// Rho guanine nucleotide exchange factor (GEF) 5
202715_at	691	/// FLJ40722-like
202726_at	LIG1	ligase I, DNA, ATP-dependent
202738_s_at	PHKB	phosphorylase kinase, beta
	R3HDM	
202754_at	1	R3H domain containing 1
	UBE2S	ubiquitin-conjugating enzyme E2S /// similar to Ubiquitin-
	///	conjugating enzyme E2S (Ubiquitin-conjugating enzyme E2-24
	LOC651	kDa) (Ubiquitin-protein ligase) (Ubiquitin carrier protein) (E2-
202779_s_at	816	EPF5)
202854_at	HPRT1	hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)
202870_s_at	CDC20	CDC20 cell division cycle 20 homolog (S. cerevisiae)
202904_s_at	LSM5	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)
202911_at	MSH6	mutS homolog 6 (E. coli)
	PAK3 ///	p21 (CDKN1A)-activated kinase 3 /// ubiquitin-conjugating enzyme
202954_at	UBE2C	E2C
	SMARC	SWI/SNF related, matrix associated, actin dependent regulator of
202983_at	A3	chromatin, subfamily a, member 3
203022_at	RNASE	ribonuclease H2, subunit A

	H2A	
	TIMEL	
203046 s at	ESS	timeless homolog (Drosophila)
203040_s_at 203087 s at	KIF2	kinesin heavy chain member 2
203087_s_at 203145 at	SPAG5	·
		sperm associated antigen 5
203209_at	RFC5	replication factor C (activator 1) 5, 36.5kDa
203210_s_at	RFC5	replication factor C (activator 1) 5, 36.5kDa
203213_at	CDC2	cell division cycle 2, G1 to S and G2 to M
203214_x_at	CDC2	cell division cycle 2, G1 to S and G2 to M
	DTYM	
	K ///	
	LOC653	deoxythymidylate kinase (thymidylate kinase) /// similar to
203270_at	208	deoxythymidylate kinase (thymidylate kinase)
203276_at	LMNB1	lamin B1
203302_at	DCK	deoxycytidine kinase
203358_s_at	EZH2	enhancer of zeste homolog 2 (Drosophila)
	MAD2L	
203362 s at	1	MAD2 mitotic arrest deficient-like 1 (yeast)
203414 at	MMD	monocyte to macrophage differentiation-associated
203418 at	CCNA2	cyclin A2
	FAM8A	
203420 at	1	family with sequence similarity 8, member A1
203432 at	TMPO	thymopoietin
203554 x at	PTTG1	pituitary tumor-transforming 1
203693 s at	E2F3	E2F transcription factor 3
203696 s at	RFC2	replication factor C (activator 1) 2, 40kDa
203090_8_at	KI*C2	BUB1 budding uninhibited by benzimidazoles 1 homolog beta
203755 at	DUD1D	1
203764 at	BUB1B DLG7	(yeast)
	-	discs, large homolog 7 (Drosophila)
203832_at	SNRPF	small nuclear ribonucleoprotein polypeptide F
203856_at	VRK1	vaccinia related kinase 1
203967_at	CDC6	CDC6 cell division cycle 6 homolog (S. cerevisiae)
203968_s_at	CDC6	CDC6 cell division cycle 6 homolog (S. cerevisiae)
	CHAF1	
203976_s_at	A	chromatin assembly factor 1, subunit A (p150)
204023_at	RFC4	replication factor C (activator 1) 4, 37kDa
204026_s_at	ZWINT	ZW10 interactor
204033_at	TRIP13	thyroid hormone receptor interactor 13
204092_s_at	AURKA	aurora kinase A
	CDC45	
204126 s at	L	CDC45 cell division cycle 45-like (S. cerevisiae)
204127 at	RFC3	replication factor C (activator 1) 3, 38kDa
204128 s at	RFC3	replication factor C (activator 1) 3, 38kDa
	RAD51	, , , , , , , , , , , , , , , , , , , ,
204146 at	AP1	RAD51 associated protein 1
		

204162 at	KNTC2	kinetochore associated 2
204165 at	WASF1	WAS protein family, member 1
204170 s at	CKS2	CDC28 protein kinase regulatory subunit 2
204240 s at	SMC2	structural maintenance of chromosomes 2
204244 s at	DBF4	DBF4 homolog (S. cerevisiae)
204315 s at	GTSE1	G-2 and S-phase expressed 1
204317 at	GTSE1	G-2 and S-phase expressed 1
204318 s at	GTSE1	G-2 and S-phase expressed 1
204407 at	TTF2	transcription termination factor, RNA polymerase II
204444 at	KIF11	kinesin family member 11
at	ARHGA	Killedin ranning member 11
204492 at	P11A	Rho GTPase activating protein 11A
204510 at	CDC7	CDC7 cell division cycle 7 (S. cerevisiae)
u	RAD54	CDC / con division cycle / (b. colevisiae)
204558 at	L	RAD54-like (S. cerevisiae)
204641 at	NEK2	NIMA (never in mitosis gene a)-related kinase 2
204649 at	TROAP	trophinin associated protein (tastin)
201019_41	CDC25	tropinini ussociated protein (tastin)
204695 at	A A	cell division cycle 25A
204709 s at	KIF23	kinesin family member 23
204707_5_at	WDHD	Kinesin tuniny memoer 25
204727 at	1	WD repeat and HMG-box DNA binding protein 1
201727_dt	WDHD	WD repeat and riving box Britis onlining protein r
204728 s at	1	WD repeat and HMG-box DNA binding protein 1
204752 x at	PARP2	poly (ADP-ribose) polymerase family, member 2
204766 s at	NUDT1	nudix (nucleoside diphosphate linked moiety X)-type motif 1
2 01700 5 ac		flap structure-specific endonuclease 1
	FEN1	
204767_s_at	FEN1	
204767_s_at 204768_s_at	FEN1	flap structure-specific endonuclease 1
204767_s_at 204768_s_at 204822_at	FEN1 TTK	flap structure-specific endonuclease 1 TTK protein kinase
204767_s_at 204768_s_at 204822_at 204825_at	FEN1 TTK MELK	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase
204767_s_at 204768_s_at 204822_at 204825_at 204886_at	FEN1 TTK MELK PLK4	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila)
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at	FEN1 TTK MELK PLK4 PLK4	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila)
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at	FEN1 TTK MELK PLK4 PLK4 E2F1	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205053_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa
204767_s_at 204768_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205063_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205053_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205063_at 205085_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L CDC25	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1 origin recognition complex, subunit 1-like (yeast)
204767_s_at 204768_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205063_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L CDC25 C	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1 origin recognition complex, subunit 1-like (yeast)
204767_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205063_at 205085_at 205167_s_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L CDC25 C SLC16A	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1 origin recognition complex, subunit 1-like (yeast) cell division cycle 25C solute carrier family 16, member 4 (monocarboxylic acid transporter
204767_s_at 204768_s_at 204768_s_at 204822_at 204825_at 204886_at 204887_s_at 204947_at 204962_s_at 205034_at 205046_at 205063_at 205063_at 205065_at 205167_s_at 205234_at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L CDC25 C SLC16A 4	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1 origin recognition complex, subunit 1-like (yeast) cell division cycle 25C solute carrier family 16, member 4 (monocarboxylic acid transporter 5)
204767 s at 204768 s at 204822 at 204825 at 204886 at 204887 s at 204947 at 204962 s at 205034 at 205046 at 205063 at 205085 at	FEN1 TTK MELK PLK4 PLK4 E2F1 CENPA CCNE2 CENPE PRIM1 SIP1 ORC1L CDC25 C SLC16A	flap structure-specific endonuclease 1 TTK protein kinase maternal embryonic leucine zipper kinase polo-like kinase 4 (Drosophila) polo-like kinase 4 (Drosophila) E2F transcription factor 1 centromere protein A cyclin E2 centromere protein E, 312kDa primase, polypeptide 1, 49kDa survival of motor neuron protein interacting protein 1 origin recognition complex, subunit 1-like (yeast) cell division cycle 25C solute carrier family 16, member 4 (monocarboxylic acid transporter

205394 at	CHEK1	CHK1 checkpoint homolog (S. pombe)
_	MRE11	
205395 s at	A	MRE11 meiotic recombination 11 homolog A (S. cerevisiae)
205436 s at	H2AFX	H2A histone family, member X
205644 s at	SNRPG	small nuclear ribonucleoprotein polypeptide G
205733 at	BLM	Bloom syndrome
_	SNRPA	
206055 s at	1	small nuclear ribonucleoprotein polypeptide A'
206074 s at	HMGA1	high mobility group AT-hook 1
206102_at	GINS1	GINS complex subunit 1 (Psf1 homolog)
206272_at	SPHAR	S-phase response (cyclin-related)
206316 s at	KNTC1	kinetochore associated 1
206364 at	KIF14	kinesin family member 14
206445_s_at	PRMT1	protein arginine methyltransferase 1
206550_s_at	NUP155	nucleoporin 155kDa
207165_at	HMMR	hyaluronan-mediated motility receptor (RHAMM)
207183_at	GPR19	G protein-coupled receptor 19
207268_x_at	ABI2	abl interactor 2
	NFATC	nuclear factor of activated T-cells, cytoplasmic, calcineurin-
207416_s_at	3	dependent 3
207740_s_at	NUP62	nucleoporin 62kDa
207828_s_at	CENPF	centromere protein F, 350/400ka (mitosin)
208079_s_at	AURKA	aurora kinase A
		DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like
		helicase homolog, S. cerevisiae) /// DEAD/H (Asp-Glu-Ala-
	DDX11	Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S.
	///	cerevisiae) /// similar to DEAD/H (Asp-Glu-Ala-Asp/His) box
	LOC652	polypeptide 11 isoform 1 /// similar to DEAD/H (Asp-Glu-Ala-
208149_x_at	053	Asp/His) box polypeptide 11 isoform 1
		DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like
208159_x_at	DDX11	helicase homolog, S. cerevisiae)
208696_at	CCT5	chaperonin containing TCP1, subunit 5 (epsilon)
208741_at	SAP18	Sin3A-associated protein, 18kDa
208760_at	UBE2I	Ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)
208765_s_at	HNRPR	heterogeneous nuclear ribonucleoprotein R
208766_s_at	HNRPR	heterogeneous nuclear ribonucleoprotein R
208795_s_at	MCM7	MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)
208808_s_at	HMGB2	high-mobility group box 2
208821_at	SNRPB	small nuclear ribonucleoprotein polypeptides B and B1
208931_s_at	ILF3	interleukin enhancer binding factor 3, 90kDa
209026_x_at	TUBB	tubulin, beta
• • • • • • • • • • • • • • • • • • • •	GABAR	
209046_s_at	APL2	GABA(A) receptor-associated protein-like 2
209052_s_at	WHSC1	Wolf-Hirschhorn syndrome candidate 1
209053_s_at	WHSC1	Wolf-Hirschhorn syndrome candidate 1

	HNRPD	
209068 at	L	heterogeneous nuclear ribonucleoprotein D-like
207008_at	L	centromere protein F, 350/400ka (mitosin) /// centromere protein F,
209172 s at	CENPF	350/400ka (mitosin)
$\frac{209172_{3}at}{209251 \text{ x at}}$	TUBA6	tubulin, alpha 6
209375 at	XPC	xeroderma pigmentosum, complementation group C
209408 at	KIF2C	kinesin family member 2C
209464 at	AURKB	aurora kinase B
209642 at	BUB1	BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
209680 s at	KIFC1	kinesin family member C1
207000_3_at	KII CI	cyclin-dependent kinase inhibitor 3 (CDK2-associated dual
209714 s at	CDKN3	specificity phosphatase)
209773 s at	RRM2	ribonucleotide reductase M2 polypeptide
209832 s at	CDT1	chromatin licensing and DNA replication factor 1
209856 x at	ABI2	abl interactor 2
209890_x_at 209891 at	SPBC25	spindle pole body component 25 homolog (S. cerevisiae)
210052 s at	TPX2	TPX2, microtubule-associated, homolog (Xenopus laevis)
210032_s_at 210115 at	RPL39L	ribosomal protein L39-like
		±
210175_at	C2orf3	chromosome 2 open reading frame 3
210334_x_at	BIRC5	baculoviral IAP repeat-containing 5 (survivin)
210527_x_at	TUBA2	tubulin, alpha 2
210559_s_at	CDC2	cell division cycle 2, G1 to S and G2 to M
210568_s_at	RECQL	RecQ protein-like (DNA helicase Q1-like)
210766_s_at	CSE1L	CSE1 chromosome segregation 1-like (yeast)
210983_s_at	MCM7	MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)
	K-	
2110504	ALPHA	-1
211058_x_at	-1 K-	alpha tubulin /// alpha tubulin
	ALPHA	
211072 x at	-1	alpha tubulin /// alpha tubulin
2110/2_X_at	-1	alpha tubulin /// alpha tubulin
211080 s at	NEK2	NIMA (never in mitosis gene a)-related kinase 2 /// NIMA (never in
211080_s_at 211375 s at	ILF3	mitosis gene a)-related kinase 2
	KIF2C	interleukin enhancer binding factor 3, 90kDa kinesin family member 2C
211519_s_at	+	
211714_x_at	TUBB	tubulin, beta /// tubulin, beta
211747+	ICME	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae) ///
211747_s_at	LSM5	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)
211750_x_at	TUBA6	tubulin, alpha 6 /// tubulin, alpha 6
	VDNI 4.2	karyopherin alpha 2 (RAG cohort 1, importin alpha 1) ///
	KPNA2	karyopherin alpha 2 (RAG cohort 1, importin alpha 1) /// similar to Importin alpha-2 subunit (Karyopherin alpha-2 subunit) (SRP1-
	LOC643	alpha) (RAG cohort protein 1) /// similar to Importin alpha-2 subunit
211762 s at	995	(Karyopherin alpha-2 subunit) (SRP1-alpha) (RAG cohort protein 1)
211702_s_at 211814 s at	CCNE2	cyclin E2
211014_S_at	CUNEZ	Cyclin E2

	IDIDDA	
	HNRPA	
	3P1 ///	
	HNRPA	
	3 ///	
	LOC643	heterogeneous nuclear ribonucleoprotein A3 pseudogene 1 ///
	689 ///	heterogeneous nuclear ribonucleoprotein A3 /// heterogeneous
	LOC647	nuclear ribonucleoprotein A3 pseudogene /// similar to
211931_s_at	474	heterogeneous nuclear ribonucleoprotein A3
212020_s_at	MKI67	antigen identified by monoclonal antibody Ki-67
212022_s_at	MKI67	antigen identified by monoclonal antibody Ki-67
212023_s_at	MKI67	antigen identified by monoclonal antibody Ki-67
	TMEM8	
212202_s_at	7A	transmembrane protein 87A
212219_at	PSME4	proteasome (prosome, macropain) activator subunit 4
212247_at	NUP205	nucleoporin 205kDa
	ATP13	
212297_at	A3	ATPase type 13A3
212315_s_at	NUP210	nucleoporin 210kDa
212316_at	NUP210	nucleoporin 210kDa
212331_at	RBL2	retinoblastoma-like 2 (p130)
212343_at	YIPF6	Yip1 domain family, member 6
	KIAA02	
212621_at	86	KIAA0286 protein
	K-	
	ALPHA	
212639 x at	-1	alpha tubulin
212832 s at	CKAP5	cytoskeleton associated protein 5
212949 at	BRRN1	barren homolog 1 (Drosophila)
_	KIAA17	
213007 at	94	KIAA1794
	KIAA17	
213008 at	94	KIAA1794
	DNAJC	
213088 s at	9	DnaJ (Hsp40) homolog, subfamily C, member 9
213175 s at	SNRPB	small nuclear ribonucleoprotein polypeptides B and B1
213215 at		CDNA clone IMAGE:4157286
213226 at	CCNA2	cyclin A2
	SMC2L	
213253 at	1	SMC2 structural maintenance of chromosomes 2-like 1 (yeast)
	C13orf2	2
213346 at	7	chromosome 13 open reading frame 27
213453 x at	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
	RECQL	Bil commonling a busobings gonling Source
213520 at	4	RecQ protein-like 4
213646 x at	K-	alpha tubulin
213070_A_at	17-	шри шоши

	ALPHA	
	-1	
213911 s at	H2AFZ	H2A histone family, member Z
213947 s at	NUP210	nucleoporin 210kDa
213747_5_at	PSMC3I	nucleoporni 210kDa
213951 s at	P	PSMC3 interacting protein
214028 x at	TDRD3	tudor domain containing 3
	+	
214086_s_at	PARP2	poly (ADP-ribose) polymerase family, member 2
214202_at	CHAE1	MRNA from chromosome 5q21-22, clone:357Ex
2144264	CHAF1	-1
214426_x_at	A	chromatin assembly factor 1, subunit A (p150)
214431_at	GMPS	guanine monophosphate synthetase
214700_x_at	RIF1	RAP1 interacting factor homolog (yeast)
214710_s_at	CCNB1	cyclin B1
214727_at	BRCA2	breast cancer 2, early onset
214804_at		
215006_at	EZH2	Enhancer of zeste homolog 2 (Drosophila)
215075_s_at	GRB2	growth factor receptor-bound protein 2
215286_s_at	PHTF2	putative homeodomain transcription factor 2
215509_s_at	BUB1	BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
215773_x_at	PARP2	poly (ADP-ribose) polymerase family, member 2
	WDHD	
216228 s at	1	WD repeat and HMG-box DNA binding protein 1
		MCM5 minichromosome maintenance deficient 5, cell division
216237 s at	MCM5	cycle 46 (S. cerevisiae)
216952 s at	LMNB2	lamin B2
217094 s at	ITCH	itchy homolog E3 ubiquitin protein ligase (mouse)
	C18orf2	
217640 x at	4	chromosome 18 open reading frame 24
217714 x at	STMN1	stathmin 1/oncoprotein 18
217805 at	ILF3	interleukin enhancer binding factor 3, 90kDa
218009 s at	PRC1	protein regulator of cytokinesis 1
	NUSAP	J
218039 at	1	nucleolar and spindle associated protein 1
	TMEM4	
218073 s at	8	transmembrane protein 48
218115 at	ASF1B	ASF1 anti-silencing function 1 homolog B (S. cerevisiae)
218142 s at	CRBN	cereblon
218204 s at	FYCO1	FYVE and coiled-coil domain containing 1
218252 at	CKAP2	cytoskeleton associated protein 2
218308 at	TACC3	transforming, acidic coiled-coil containing protein 3
218355 at	KIF4A	kinesin family member 4A
218381 s at	U2AF2	U2 small nuclear RNA auxiliary factor 2
218432 at	FBXO3	F-box protein 3
218497_s_at	RNASE	ribonuclease H1

	H1	
218542 at	CEP55	contracomal protein 55kDa
218585 s at	DTL	centrosomal protein 55kDa denticleless homolog (Drosophila)
210303_8_at	FAM29	defiticieless fioniolog (Diosophila)
218602 s at	A A	family with sequence similarity 29, member A
218002_S_at	HCAP-	Tailing with sequence similarity 29, member A
218662 s at	G	chromosome condensation protein G
218002_8_at	HCAP-	Chromosome condensation protein G
218663 at	G	chromosome condensation protein G
	DKFZp	emoniosome condensation protein G
	762E13	
218726 at	12	hypothetical protein DKFZp762E1312
218755 at	KIF20A	kinesin family member 20A
218782 s at	ATAD2	ATPase family, AAA domain containing 2
	MLYC	
218869 at	D	malonyl-CoA decarboxylase
218875 s at	FBXO5	F-box protein 5
218883 s at	MLF1IP	MLF1 interacting protein
218966 at	MYO5C	myosin VC
219000_s_at	DCC1	defective in sister chromatid cohesion homolog 1 (S. cerevisiae)
—	LA16c-	
219135_s_at	360B4.1	hypothetical protein FLJ12681
219148_at	PBK	PDZ binding kinase
	MRPL1	
219162_s_at	1	mitochondrial ribosomal protein L11
	KIF15	
	///	
219306_at	C7orf9	kinesin family member 15 /// chromosome 7 open reading frame 9
	SHCBP	
219493_at	1	SHC SH2-domain binding protein 1
219506_at	C1orf54	chromosome 1 open reading frame 54
	C20orf1	
219512_at	72	chromosome 20 open reading frame 172
	C16orf5	
219556_at	9	chromosome 16 open reading frame 59
219588_s_at	LUZP5	leucine zipper protein 5
	FLJ2010	
219650_at	5	FLJ20105 protein
219787_s_at	ECT2	epithelial cell transforming sequence 2 oncogene
219918_s_at	ASPM	asp (abnormal spindle)-like, microcephaly associated (Drosophila)
	NUSAP	
219978_s_at	1	nucleolar and spindle associated protein 1
219990_at	E2F8	E2F transcription factor 8
	C12orf4	
220060_s_at	8	chromosome 12 open reading frame 48

220085_at HELLS helicase, lymphoid-specific	
220238 s_at KLHL7 kelch-like 7 (Drosophila)	
220239_at KLHL7 kelch-like 7 (Drosophila)	
DEPDC	
220295_x_at 1 DEP domain containing 1	
220651_s_at MCM10 MCM10 minichromosome maintenance deficient 10 (S. cer	revisiae)
220753_s_at CRYL1 crystallin, lambda 1	
220788_s_at RNF31 ring finger protein 31	
Clorf11	
220840_s_at 2 chromosome 1 open reading frame 112	
221012 s at TRIM8 tripartite motif-containing 8 /// tripartite motif-containing 8	
221156 x at CCPG1 cell cycle progression 1	
YEATS	
221203_s_at 2 YEATS domain containing 2	
221258_s_at KIF18A kinesin family member 18A /// kinesin family member 18A	
221436 s at CDCA3 cell division cycle associated 3 /// cell division cycle associ	ated 3
221476 s at RPL15 ribosomal protein L15	
221511 x at CCPG1 cell cycle progression 1	
221520_s_at CDCA8 cell division cycle associated 8	
221564_at PRMT2 protein arginine methyltransferase 2	
DONSO	
221677 s at N downstream neighbor of SON	
BRCA1 interacting protein C-terminal helicase 1 /// BRCA	1
221703 at BRIP1 interacting protein C-terminal helicase 1	
ANGEL	
221825_at 2 angel homolog 2 (Drosophila)	
222036 s_at MCM4 MCM4 minichromosome maintenance deficient 4 (S. cerev	risiae)
SLC35E	
1 ///	
LOC146 solute carrier family 35, member E1 /// hypothetical protein	1
222039_at 909 LOC146909	
RACGA	·
222077_s_at P1 Rac GTPase activating protein 1	
38158_at ESPL1 extra spindle poles like 1 (S. cerevisiae)	
49452_at ACACB acetyl-Coenzyme A carboxylase beta	
57703_at SENP5 SUMO1/sentrin specific peptidase 5	

Supplementary Materials 6: ROC curve analysis

Sensitivity/Specificity Analysis

To construct ROC curves based on censored outcome data, we used Bayes' theorem

together with Kaplan-Meier estimates of the hazard function. Specifically, to calculate the sensitivity for a rule based on a given risk-score cutoff k, we expressed $P(R>k \mid T<t) = P(T<t \mid R>k)*P(R>k)/P(T<t)$, where T is the survival time, t=36 months is the follow-up time we used for this analysis, and R is a risk score. The terms P(T<t) and $P(T<t \mid R>k)$ can be estimated using the Kaplan-Meier procedure, and P(R>k) is estimated directly with its empirical probability. When the conditioning sets $\{R>k\}$ (for sensitivity) and $\{R<k\}$ (for specificity) become small, the Kaplan-Meier estimates are very unstable, therefore we exclude split points where either of these sets contains fewer than five values. Similarly, the specificity $P(R<k \mid T>t) = P(T>t \mid R<k)*P(R<k)/P(T>t)$ can be estimated. Since the resulting ROC curve may not be monotonic, we used isotonic regression to transform it into a monotonic curve.

For ROC plots, see Supplementary Figure S2.

	Method C										
		All s	tages		Stage 1 only						
	M	SK	CAN	N/DF	M	SK	CAN	CAN/DF			
	Sens Spec Sens Spec		Sens	Spec	Sens	Spec					
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00			
>=1	0.39 0.67 0.26 0.75				0.50	0.68	0.19	0.72			
>1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00			

	Method D										
		All s	tages			Stage 1	only				
	M	SK	CAN	N/DF	M	SK	CAN/DF				
	Sens	Spec	Sens	Spec	Sens	Spec	Sens	Spec			
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00			
>=1	0.30	0.80	0.43	0.83	0.49	0.82	0.40	0.83			
>1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00			

	Method E									
		All stages Stage 1 only								
	M	SK	CAN	N/DF	MSK		CAN/DF			
	Sens	Spec	Sens	Spec	Sens	Spec	Sens	Spec		
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00		

>=1	0.56	0.69	0.13	0.74	0.67	0.67	0.10	0.76
>1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00

	Method F										
		All s	tages		Stage 1 only						
	M	SK	CAN	N/DF	MSK		CAN/DF				
	Sens Spec Sens Spec				Sens	Spec	Sens	Spec			
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00			
>=1	0.68	0.67	0.56	0.47	0.98	0.69	0.39	0.54			
>1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00			

	Method G									
		All s	tages		Stage 1 only					
	M	SK	CAN	N/DF	M	SK	CAN/DF			
	Sens Spec Sens Spec				Sens	Spec	Sens	Spec		
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00		
>=1	0.78	0.61	0.43	0.62	1.00	0.63	0.29	0.67		
>1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00		

	Method H										
		All s	stages			Stage	e 1 only				
	N	ISK	CA	N/DF	N	1SK	CA	N/DF			
	Sens	Spec	Sens	Spec	Sens	Sens Spec		Spec			
>=0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00			
>=1	0.81	0.56	0.74	0.44	0.98	0.65	0.61	0.50			
>=2	0.08	0.88	0.18	0.78	0.24	0.93	0.11	0.81			
>2	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00			