Logika układów cyfrowych lab.

Prowadzący: Mgr inż. Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 3 - 2017.10.26

Jakub Dorda 235013 Marcin Kotas 235098

> 3 listopada 2017 LATEX

1 Wprowadzenie/cel ćwiczeń

Zapoznanie z podstawami układów sekwencyjnych - rodzajami przerzutników oraz zasadami ich syntezy. W pierwszej części ćwiczeń należało zbudować układ sekwencyjny zaprojektowany przez prowadzącego. Po poprawnym wykonaniu ćwiczenia, należało przerobić i zrealizować ten sam układ na przerzutnikach typu D. W tym celu należało ponownie wykonać syntezę układu oraz minimalizacje.

2 Układ sekwencyjny (0-5-1-3-2-0) na przerzutnikach JK

2.1 Tabela prawdy i tablice Karnaugh:

Tabela 1: Tabela Prawdy

	t		t	+1	1	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	1	0	1	1	-	0	-	1	-
0	0	1	0	1	1	0	-	1	-	_	0
0	1	0	0	0	0	0	-	_	1	0	-
0	1	1	0	1	0	0	-	-	0	-	1
1	0	0	-	-	-	-	-	-	-	-	-
1	0	1	0	0	1	0	1	0	-	_	0
1	1	0	_	-	-	-	-	_	-	_	-
1	1	1	_	-	-	-	-	-	-	_	-

Tabela 2: Tablica Karnaugh dla J_2

Q_1Q_0	00	01	11	10
0	1	0	0	0
1	-	-	-	-

Tabela 3: Tablica Karnaugh dla J_1

Q_1Q_0	00	01	11	10
0	0	1	-	-
1	-	0	-	-

Tabela 4: Tablica Karnaugh dla K_2

Q_1Q_0	00	01	11	10
0	-	-	-	-
1	-	1	_	_

Tabela 5: Tablica Karnaugh dla K_1

Q_1 Q_2	00	01	11	10
0	-	-	0	1
1	-	-	-	-

Tabela 6: Tablica Karnaugh dla ${\cal J}_0$

Q_1Q_0	00	01	11	10
0	1	-	-	0
1	-	-	-	-

Tabela 7: Tablica Karnaugh dla K_0

Q_1Q_0	00	01	11	10
0	-	0	1	-
1	-	0	-	-

2.2 Minimalizacje:

$$J_2 = \bar{Q}_1 \bar{Q}_0 = \overline{Q}_1 + \overline{Q}_0$$

$$J_1 = \bar{Q}_2 Q_0 = \overline{Q}_2 + \overline{Q}_0$$

$$K_1 = \bar{Q}_0$$

$$K_0 = Q_1$$

2.3 Użyte wzory:

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{1}$$

2.4 Schemat układu:

Schemat 1. Układ sekwencyjny (0-5-1-3-2-0) na przerzutnikach JK

3 Układ sekwencyjny (0-5-1-3-2-0) na przerzutnikach D

3.1 Tabela prawdy i tablice Karnaugh:

Tabela 8: Tabela Prawdy

	t			+ 1	1	D_2	D_1	D_0
0	0	0	1	0	1	1	0	1
0	0	1	0	1	1	0	1	1
0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	0
1	0	0	-	-	-	-	-	-
1	0	1	0	0	1	0	0	1
1	1	0	-	-	-	_	-	-
1	1	1	-	-	-	_	-	-

Tabela 9: Tablica Karnaugh dla D_2

Q_1Q_0	00	01	11	10
0	1	0	0	-
1	-	0	-	0

Tabela 10: Tablica Karnaugh dla D_1

Q_1Q_0	00	01	11	10
0	0	1	1	0
1	-	0	-	-

Tabela 11: Tablica Karnaugh dla \mathcal{D}_0

Q_1Q_0	00	01	11	10
0	1	1	0	0
1	-	1	-	-

3.2 Minimalizacje:

$$D_2 = \bar{Q}_1 \bar{Q}_0 = \overline{Q_1 + Q_0}$$

$$D_1 = \bar{Q}_2 Q_0 = \overline{Q_2 + \overline{Q_0}}$$

$$D_0 = \bar{Q}_1$$

3.3 Użyte wzory:

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{2}$$

3.4 Schemat układu:

Schemat 2. Układ sekwencyjny (0-5-1-3-2-0) na przerzutnikach D

4 Wnioski/podsumowanie

W celu sprawdzenia poprawności działania należało przeprowadzić testy dla wszystkich możliwych kombinacji wyjść, czyli przejść przez cały cykl działania układu. Wykonanie pierwszego ćwiczenia sprawiło trudności z powodu spięcia wywołanego przez błąd konstrukcyjny zestawu Unilog (zwarcie między płytką a obudową zestawu). Przez problemy techniczne nie udało się wykonać drugiego układu w czasie trwania laboratorium. Poprawiona synteza i minimalizacja oraz układ dla drugiej części ćwiczeń zostały zawarte w sprawozdaniu