ВикипедиЯ

Экстремум

Материал из Википедии — свободной энциклопедии

Экстре мум (лат. extremum — крайний) в математике - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Задачи нахождения экстремума возникают во всех областях человеческого знания: теория автоматического управления, проблемы экономики, биология и т.д. $^{[1]}$

Функция (синяя) и её производная (красная). Глобальный максимум функции обозначен символом □, её глобальный минимум — □, локальный максимум — ⋄, локальный минимум — +, нуль производной без экстремума — Х. Видно, что остальные нули производной соответствуют точкам экстремума функции.

Содержание

Определения

Замечание

Необходимые условия существования локальных экстремумов

Достаточные условия существования локальных экстремумов

См. также

Примечания

Литература

Определения

Пусть дана функция $f: M \subset \mathbb{R} \to \mathbb{R}$, и $x_0 \in M^0$ — внутренняя точка области определения f. Тогда

• x_0 называется точкой локального максимума функции f, если существует проколотая окрестность $\dot{U}(x_0)$ такая, что

$$\forall x \in \dot{U}(x_0) \quad f(x) \leqslant f(x_0);$$

• x_0 называется точкой локального минимума функции f, если существует проколотая окрестность $\dot{U}(x_0)$ такая, что

$$orall x \in \dot{U}(x_0) \quad f(x) \geqslant f(x_0).$$

Если неравенства выше строгие, то x_0 называется точкой строгого локального максимума или минимума соответственно.

• x_0 называется точкой абсолютного (глобального) максимума, если

$$\forall x \in M \quad f(x) \leqslant f(x_0);$$

 $lacktriangledown x_0$ называется точкой абсолютного минимума, если

$$\forall x \in M \quad f(x) \geqslant f(x_0).$$

Значение функции $f(x_0)$ называют (строгим) (локальным) максимумом или минимумом в зависимости от ситуации. Точки, являющиеся точками (локального) максимума или минимума, называются точками (локального) экстремума.

Замечание

Функция f, определённая на множестве M, может не иметь на нём ни одного локального или абсолютного экстремума. Например, f(x) = x, $x \in (-1,1)$.

Необходимые условия существования локальных экстремумов

Из леммы Ферма вытекает следующее^[2]:

Пусть точка x_0 является точкой экстремума функции f, определенной в некоторой окрестности точки x_0 .

Тогда либо производная $f'(x_0)$ не существует, либо $f'(x_0)=0$.

Эти условия не являются достаточными, так, функция может иметь нуль производной в точке, но эта точка может не быть точкой экстремума, а являться, скажем, точкой перегиба, как точка (0,0) у функции $f(x) = x^3$.

Достаточные условия существования локальных экстремумов

• Пусть функция $f \in C(x_0)$ непрерывна в $x_0 \in M^0$, и существуют конечные или бесконечные односторонние производные $f'_+(x_0), f'_-(x_0)$. Тогда при условии

$$f_+'(x_0) < 0, \; f_-'(x_0) > 0$$

 $oldsymbol{x_0}$ является точкой строгого локального максимума. А если

$$f'_+(x_0) > 0, \ f'_-(x_0) < 0,$$

то $\boldsymbol{x_0}$ является точкой строгого локального минимума.

Заметим, что при этом функция не дифференцируема в точке x_0 .

• Пусть функция f непрерывна и дважды дифференцируема в точке x_0 . Тогда при условии

$$f'(x_0)=0$$
 и $f''(x_0)<0$

 $oldsymbol{x_0}$ является точкой локального максимума. А если

$$f^{\prime}(x_0)=0$$
 и $f^{\prime\prime}(x_0)>0$

то x_0 является точкой локального минимума.

lacktriangledown Пусть функция f дифференцируема n раз в точке x_0 и $f'(x_0)=f''(x_0)=\cdots=f^{(n-1)}(x_0)=0$, а $f^{(n)}(x_0)
eq 0$.

Если n чётно и $f^{(n)}(x_0) < 0$, то x_0 — точка локального максимума. Если n чётно и $f^{(n)}(x_0) > 0$, то x_0 — точка локального минимума. Если n нечётно, то экстремума нет.

См. также

- Критическая точка (математика)
- Методы оптимизации
- Условный экстремум

Примечания

- 1. Пшеничный, 1969, с. 7.
- 2. *Кудрявцев Л. Д.* Математический анализ. 2-е изд. М.: Высшая школа, 1973. Т. 1.

Литература

■ *Пшеничный Б.Н.* Необходимые условия экстремума. — <u>М.</u>: Наука, 1969. — 150 с.

Источник — https://ru.wikipedia.org/w/index.php?title=Экстремум&oldid=87277646

Эта страница в последний раз была отредактирована 27 августа 2017 в 09:35.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.