

## LAB 6:

## ATTENTION AND TRANSFORMER

University of Washington, Seattle

Spring 2025



#### OUTLINE

#### Part 1: Transformer motivation

- Limitation of RNNs with sequence data
- Seq2seq and attention
- Attention is all you need

#### Part 2: Self-attention layer

- Overview
- Key, Query and Value retrieval process
- Multi-headed attention

#### Part 3: Transformer architecture

- Encoder
- Decoder
- Transformer vs RNN

#### Part 4: Transformer example

- Text Classification on IMDB dataset

#### Part 5: Lab Assignment

- Text Classification on AG News dataset



## Transformer Motivation

Limitations of RNNs with sequence data

Seq2Seq and attention

Attention is all you need



### Limitations of RNNs





# Vanishing and Exploding Gradients

→ Forward Backward output hidden  $h_0$  $x_0$ input  $\chi_2$ 

Longer input sequence → higher risk of Vanishing/Exploding Gradients!

























Each input (token) is fed sequentially → No parallelization





Difficult to store long-term context when sequence is long





If using time-synced many-to-many  $\rightarrow$  len(input seq) == len(output seq)



## Seq2Seq



(+) Can be trained to translate input sequence to output sequence with two different lengths



## Seq2Seq



(-) Suffers from identical limitations as RNNs → Can't process long context, Hard to parallelize





















(+) Addresses long context issue





(+) Addresses long context issue

(-) Difficult to parallelize



# Attention is all you need (2017)





## Attention is all you need (2017)





## Attention is all you need (2017)



Attention without RNN is sufficient Can utilize parallelization with GPUs



# Self-attention layer

Overview

Key, Query, Value retrieval process

Multi-headed attention



# Overview of self-attention layer





# Overview of self-attention layer



















Query  $\approx$  is prior word a subject?

Key  $\approx$  yes, I am the subject











## Multi-headed attention





## Transformer Architecture

Encoder

Decoder

Transformer vs RNN



#### Transformer Architecture





#### Encoder



#### **Encoder layer** with

- Input embedding with positional encoding
- multi-headed self attention
- Residual connections, Layer norm & dropout



## Positional Encoding







#### Decoder



#### **Decoder layer** with

- Masked multi-headed self attention
- Multiheaded cross attention
  - Inputs → Key, Query
  - Outputs → Value



## Transformer vs RNN

|                        | Transformers | RNNs        |
|------------------------|--------------|-------------|
| Sequential             | No           | Yes         |
| Parallel computation   | Yes          | No          |
| Long-term dependencies | Yes          | Kind of     |
| Scalability            | Yes          | Problematic |
| Fine tuning            | Yes          | Difficult   |



# Transformer Example

Text classification of IMDB Dataset



#### review sentiment

| 0 | One of the other reviewers has mentioned that  | positive |
|---|------------------------------------------------|----------|
| 1 | A wonderful little production.<br><br>The      | positive |
| 2 | I thought this was a wonderful way to spend ti | positive |
| 3 | Basically there's a family where a little boy  | negative |
| 4 | Petter Mattei's "Love in the Time of Money" is | positive |
| 5 | Probably my all-time favorite movie, a story o | positive |
| 6 | I sure would like to see a resurrection of a u | positive |
| 7 | This show was an amazing, fresh & innovative i | negative |
| 8 | Encouraged by the positive comments about this | negative |
| 9 | If you like original gut wrenching laughter yo | positive |
|   |                                                |          |

| Training | # samples | label |
|----------|-----------|-------|
| Positive | 12,500    | 1     |
| Negative | 12,500    | 2     |

| Testing  | # samples | label |
|----------|-----------|-------|
| Positive | 12,500    | 1     |
| Negative | 12,500    | 2     |



```
import torchtext
from torch.utils.data import DataLoader
from collections import Counter
# Load dataset and initialize tokenizer
train iter, test iter = torchtext.datasets.IMDB(root='datasets', split=('train', 'test'))
label counts = Counter()
for label, samples in train_iter:
   label counts[label] += 1
print("Label distribution in train_iter:", label_counts)
label counts = Counter()
for label, _ in test iter:
   label counts[label] += 1
print("Label distribution in test_iter:", label_counts)
```

Label distribution in train\_iter: Counter({1: 12500, 2: 12500})
Label distribution in test\_iter: Counter({1: 12500, 2: 12500})

| Training | #<br>samples | label |
|----------|--------------|-------|
| Positive | 12,500       | 1     |
| Negative | 12,500       | 2     |

| Testing  | #<br>samples | label |
|----------|--------------|-------|
| Positive | 12,500       | 1     |
| Negative | 12,500       | 2     |



```
def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

# Create vocabulary with special tokens for padding and unknown words
vocab = torchtext.vocab.build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
vocab.set_default_index(vocab["<unk>"])
```

**Example sample:** This movie was fantastic!

<u>tokenizer</u>

['This', 'movie', 'was', 'fantastic', '!']

vocab

What the model sees: [14, 21, 17, 762, 36]



```
def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

# Create vocabulary with special tokens for padding and unknown words
vocab = torchtext.vocab.build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
vocab.set_default_index(vocab["<unk>"])
```

```
def text_pipeline(x):
    return vocab(tokenizer(x))

# Example: Test the pipeline on a sample text
sample_text = "This movie was fantastic!"
print(text_pipeline(sample_text))

[14, 21, 17, 762, 36]
```



Distribution of Text Lengths in the IMDB Dataset





```
from torch.nn.utils.rnn import pad sequence
# Define collate function for padding and batching
# setting a max seq len helps with estimating the max gpu memory usage
def collate batch(batch, max seq len=1024):
    labels, texts = zip(*batch)
    # the labels start at 1 but predictions start at 0. To align them, we modify lables
    labels = torch.tensor(labels,dtype=torch.long)-1
    text_list = []
    for text in texts:
        # Truncate or pad to max seg len
        tokenized text = text pipeline(text)
        if len(tokenized text) > max seq len:
            tokenized text = tokenized text[:max seq len] # Truncate if Longer than max seq len
        else:
            # Pad if shorter than max seq len
            tokenized text = tokenized text + [vocab["<pad>"]] * (max seq len - len(tokenized text))
        text list.append(torch.tensor(tokenized text, dtype=torch.long))
    padded_texts = torch.stack(text_list) # Stack the sequences into a tensor
    return padded texts, labels
```







```
class IMDBDataset(Dataset):
    def _ init (self, data iter):
        self.data_iter = list(data_iter) # Converting the iterator to a list for easier access
    def len (self):
        return len(self.data iter)
    def __getitem__(self, idx):
        label, text = self.data iter[idx]
        return label, text
train iter, test_iter = torchtext.datasets.IMDB(root='datasets', split=('train', 'test'))
train_dataset = IMDBDataset(train_iter)
test_dataset = IMDBDataset(test_iter)
batch size = 32
train loader = DataLoader(train dataset, batch size=batch size, shuffle=True, collate fn=collate batch)
test loader = DataLoader(test dataset, batch size=batch size, shuffle=False, collate fn=collate batch)
# Train Loader and test Loader sanity check
# Initialize counter
label counter = Counter()
# Iterate through batches in train loader
for texts, labels in train_loader:
    label_counter.update(labels.tolist())
print("Label counts:", label counter)
```

Define Pytorch Dataloader

Use collate\_batch() function earlier to Dataloader.

Sanity check by counting the labels for train dataloader.



#### Define Model

```
class TransformerModel(nn.Module):
    def __init__(self, vocab_size, embed_size, num_heads, num_encoder_layers, num_classes, dropout=0.1):
        super(TransformerModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.transformer = nn.TransformerEncoder(
           nn.TransformerEncoderLayer(embed_size, num_heads, embed_size * 2, dropout),
           num encoder layers
       self.fc = nn.Linear(embed size, num classes)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x):
       x = self.embedding(x) # Embedding Layer
       x = x.permute(1, 0, 2) # Transformer expects (seq_len, batch_size, embedding_size)
       x = self.transformer(x) # Apply transformer
       x = x.mean(dim=0) # Pooling (take the mean of all tokens in the sequence)
       x = self.dropout(x)
       x = self.fc(x) # Final classification layer
       return x
```

Embedding layer

Transformer encoder

Classification layer

- 1. Input sequence
- 2. Embedding layer
- 3. Encoder
- 4. Pooling
- 5. Classification layer



## Define Hyperparameters

```
# Check for device compatibility, prioritizing CUDA, then MPS for MacBooks with Apple Silicon, and defaulting to CPU
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
   device = torch.device("mps")
else:
   device = torch.device("cpu")
print(f"Using device: {device}")
# Initialize the model,
embed size = 32
num\ heads = 4
num encoder layers = 2
num classes = 2 # Positive or negative sentiment
model = TransformerModel(len(vocab), embed_size, num_heads, num_encoder_layers, num_classes)
# Initialize loss function, and optimizer
loss fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
model.to(device)
```



## Identify Tracked Values

```
num_epochs = 5
train_losses = np.zeros(num_epochs)
train_accuracies = np.zeros(num_epochs)

test_losses = np.zeros(num_epochs)
test_accuracies = np.zeros(num_epochs)
```

Placeholders for training and testing losses/accuracies



#### Train Model

```
def train epoch(model, train loader, loss fn, optimizer):
   model.train()
   epoch_loss = 0
   epoch accuracy = 0
   # total batches = 0
   total batches = len(train loader)
   for texts, labels in tqdm(train_loader):
       texts, labels = texts.to(device), labels.to(device)
       optimizer.zero_grad()
       # Forward pass
       outputs = model(texts)
       # Compute Loss and gradients
       loss = loss fn(outputs, labels)
       loss.backward()
       # Update model parameters
       optimizer.step()
       # Calculate accuracy
        preds = torch.argmax(outputs, dim=1)
       correct = (preds == labels).sum().item()
       accuracy = correct / labels.size(0)
       epoch_loss += loss.item()
        epoch accuracy += accuracy
   return epoch loss / total batches, epoch accuracy / total batches
```

```
def evaluate(model, test_loader, loss_fn):
    model.eval()
    epoch_loss = 0
    epoch accuracy = 0
    total_batches = len(test loader)
    with torch.no grad():
       for texts, labels in tqdm(test_loader):
            texts, labels = texts.to(device), labels.to(device)
            # Forward pass
            outputs = model(texts)
            # Compute Loss
           loss = loss fn(outputs, labels)
            # Calculate accuracy
            preds = torch.argmax(outputs, dim=1)
            correct = (preds == labels).sum().item()
            accuracy = correct / labels.size(0)
            epoch_loss += loss.item()
            epoch accuracy += accuracy
    return epoch_loss / total_batches, epoch_accuracy / total batches
```



#### Train Model

```
for epoch in range(num epochs):
    start_time = time.time()
    # Train for one epoch
    train loss, train accuracy = train epoch(model, train loader, loss fn, optimizer)
    train_losses[epoch] = train_loss
    train_accuracies[epoch] = train_accuracy
    # Evaluate on the test set
    test loss, test accuracy = evaluate(model, test loader, loss fn)
    test_losses[epoch] = test_loss
    test_accuracies[epoch] = test_accuracy
    end time = time.time()
    print(f"Epoch [{epoch+1}/{num_epochs}] | Time: {end_time - start_time:.2f}s")
    print(f"Train Loss: {train_loss:.4f} | Train Accuracy: {train_accuracy:.4f}")
    print(f"Test Loss: {test_loss:.4f} | Test Accuracy: {test accuracy:.4f}")
100%
                                                                                               782/782 [00:54<00:00, 14.38it/s]
100%
                                                                                               782/782 [00:10<00:00, 77.67it/s]
Epoch [1/5] | Time: 64.46s
Train Loss: 0.5248 | Train Accuracy: 0.7138
Test Loss: 0.3812 | Test Accuracy: 0.8345
```



## Visualize and Evaluate Model





# Lab Assignment

Text classification on AG News Dataset



#### AG News Dataset

Topic:

Sci/Tech

Title:

Your PC May Be Less Secure Than You Think

#### Description:

Most users think their computer is safe from adware and spyware--but they're wrong. A survey conducted by Internet service provider America Online found that 20 percent of home computers were infected by **Train:** 120000

**Test:** 7600

1: World

2: Sports

3: Business

4: Sci/Tech



#### AG News Dataset

Topic:

Sci/Tech

Title:

Your PC May Be Less Secure Than You Think

#### Description:

Most users think their computer is safe from adware and spyware--but they're wrong. A survey conducted by Internet service provider America Online found that 20 percent of home computers were infected by **Train:** 120000

**Test:** 7600

1: World

2: Sports

3: Business

4: Sci/Tech



#### AG News Text Classification

# Transformer Text Input Embedding Layer Transformer Encoder Classification Head 1/2/3/4

In this exercise, you will use Transformer encoder to perform text classification on AG News dataset

Before training, make sure to tokenize and pre-process data into trainable formats (e.g., batching, data loading)

You are free to design architectures such as # of encoder layers, activation functions, etc.

You are also free to pick your hyperparameters e.g., total epochs, batch size, learning rate, optimizer, etc.

#### After training,

- 1. Plot training/testing loss and training/testing accuracy
- 2. Print out snippets of 3 examples that were successfully classified and 3 examples that were incorrectly classified.