		Name of the School	School of Basic & Applied Sciences	Name of the Department	Mathematics
		Name of the Program	B.Tech, CSE	Course Code- Course	UBS 1003M
		Session	2024-25	Branch, Year & Semester	CSE , 1 st , 1 st

UNIT 4: Complex Analysis

Questions bank

2 marks questions

- 1. Write Cauchy-Riemann equations in the polar coordinates.
- 2. Find the limit of $\lim_{z \to \infty} \frac{z}{2-iz}$
- 3. Check the continuity of $f(z) = \bar{z}$ about origin.
- 4. Using Cauchy-Riemann equations show that $f(z) = \sin z$ is analytic.
- 5. Check whether the function $u(r, \theta) = r^2 * \cos 2\theta$ is harmonic or not.

6 marks questions

- 1. Show that the function $f(z) = |z|^2$ is differentiable at the origin and nowhere else.
- 2. Find the constants a, b, c such that the function $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + cy^2)$ is analytic.
- 3. Prove that the $u = e^x \cos y$ is a harmonic function. Find its complex conjugate.
- 4. Using the Cauchy-Riemann equations, show that
 - (i) $f(z) = |z|^2$ is not analytic at any point.
 - (ii) $f(z) = 1/z, z \neq 0$ is analytic at all points except at the origin.

10 marks questions

1. Check the continuity of the function f(z) about the origin, where

(i)
$$f(z) = \begin{cases} \frac{lm(z)}{|z|}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

(ii)
$$f(z) = \begin{cases} \frac{Re(z^2)}{|z|^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

2. Prove that the function $f(z) = \left\{ \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2} \right\}, z \neq 0, f(0) = 0$

satisfies Cauchy-Riemann equations, yet it is not analytic about the origin.

- 3. Prove that the function $u = x^4 6x^2y^2 + y^4$ is harmonic. Find the analytic function f(z) = u(x, iy) + iv(x, y).
- 4. Determine the analytic function by Milne Thomson's method
 - (i) whose real part is $e^{2x}(x * cos2y y * sin2y)$
 - (ii) whose imaginary part is $e^{-x}(x * cosy + y * siny)$
- 5. Let f(z) = u(x, y) + iv(x, y) be an analytic function.
 - (i) If $u(x, y) = e^{-2xy} * \sin(x^2 y^2)$
 - (ii) If $v(x, y) = log(x^2 + y^2) + x 2y$

Construct the corresponding analytic function in terms of z for both.

Solutions

2 marks questions

- 1. $u_r = \frac{1}{r} v_\theta \& u_\theta = -r v_r$
- 2.
- 3. continuous
- 5. harmonic

6 marks questions

- 2. $a = -\frac{1}{2}$, b = -2, $c = \frac{1}{2}$
- 3. $v = e^x \sin y + c$

10 marks questions

- 1. (i) not continuous
 - (ii) not continuous
- 3. $v = 4x^3y 4xy^3 + c$, $f(z) = z^4 + ic$
- 4. (i) $f(z) = z^4 + C$
 - (ii) $f(z) = iz * e^{-z} + C$
- 5. (i) $f(z) = -ie^{-iz^2} + C$
 - (ii) $f(z) = (i 2z) + 2i * \log z + C$