LOAN DEFAULT PREDICTION

GROUP No. - 8

AMAN SARKAR - 27

ANJALI GURJAR - 36

ASHOK GANGWAR - 57

ARNAV GUPTA - 48

ADITYA TYAGI - 18

PROJECT OVERVIEW

1 Project Focus:

The core objective of our project is to predict whether a loan applicant will default or not. This is a binary classification.

Why Machine Learning?

Manual credit assessment is:

- Time-consuming
- Subject to human bias
- Prone to errors

Using machine learning (ML), we aim to automate the process and make it more reliable and data-driven.

Problem Statement

Financial institutions face significant risks due to loan defaults, which can lead to heavy losses and affect credit systems. Traditional methods of evaluating a borrower's creditworthiness are often manual, time-consuming, and susceptible to human bias. There is a need for an automated and reliable system to predict whether a loan applicant is likely to default based on historical data.

- Many financial institutions face high risk due to loan defaults
- Manual evaluation of risk is inefficient and error-prone
- Need a robust ML model to predict loan defaults accurately
- Aim: Build a classification model to flag high-risk applicants

OUR APPROACH

1. Data Collection

Use a loan dataset containing applicant details Ensure the dataset includes a target column: Default (1 = Defaulted, 0 = Not Defaulted).

2. Data Preprocessing

- Handle missing values (e.g., using mean, median, or dropping rows/columns).
- Encode categorical variables (e.g., One-Hot Encoding or Label Encoding).
- Normalize/scale numerical features (especially for models like SVM).
- Check class imbalance (e.g., if too many '0's vs. '1's use techniques like SMOTE).

3. Exploratory Data Analysis:

- Visualize distributions, correlations, and outliers.
- Use bar plots, box plots, and heatmaps to understand relationships.

4. Model Selection:

Random Forest Classifier:

- Ensemble of decision trees
- Better accuracy and generalization
- Provides feature importance

Decision Tree Classifier:

- Good interpretability
- Handles non-linear relationships

DATASET

- Features:
 - Age, Income, Credit Score, Employment Type, Loan Amount
 - Marital Status, Previous
 Defaults, Debt-to-Income
 Ratio, etc.
- Target:
 - Default (1) or Not Default (0)
- Preprocessing:
 - Handling missing values, encoding, normalization

4	А	R	ر	U	Ł	ŀ	G	Н		J	K	L
1	Loan_ID	Gender	Married	Dependen [.]	Education	Self_Emplo	A pplicantle	Coapplicar	LoanAmou	Loan_Amo	Credit_His	Property_
2	LP001015	Male	Yes	0	Graduate	No	5720	0	110	360	1	Urban
3	LP001022	Male	Yes	1	Graduate	No	3076	1500	126	360	1	Urban
4	LP001031	Male	Yes	2	Graduate	No	5000	1800	208	360	1	Urban
5	LP001035	Male	Yes	2	Graduate	No	2340	2546	100	360		Urban
6	LP001051	Male	No	0	Not Gradu	No	3276	0	78	360	1	Urban
7	LP001054	Male	Yes	0	Not Gradu	Yes	2165	3422	152	360	1	Urban
8	LP001055	Female	No	1	Not Gradu	No	2226	0	59	360	1	Semiurbar
9	LP001056	Male	Yes	2	Not Gradu	No	3881	0	147	360	0	Rural
10	LP001059	Male	Yes	2	Graduate		13633	0	280	240	1	Urban
11	LP001067	Male	No	0	Not Gradu	No	2400	2400	123	360	1	Semiurbar
12	LP001078	Male	No	0	Not Gradu	No	3091	0	90	360	1	Urban
13	LP001082	Male	Yes	1	Graduate		2185	1516	162	360	1	Semiurbar
14	LP0010 8 3	Male	No	3+	Graduate	No	4166	0	40	180		Urban
15	LP001094	Male	Yes	2	Graduate		12173	0	166	360	О	Semiurbar
16	LP001096	Female	No	0	Graduate	No	4666	0	124	360	1	Semiurbar
17	LP001099	Male	No	1	Graduate	No	5667	0	131	360	1	Urban
18	LP001105	Male	Yes	2	Graduate	No	4583	2916	200	360	1	Urban
19	LP001107	Male	Yes	3+	Graduate	No	3786	333	126	360	1	Semiurbar
20	LP001108	Male	Yes	0	Graduate	No	9226	7916	300	360	1	Urban
21	LP001115	Male	No	0	Graduate	No	1300	3470	100	180	1	Semiurbar
22	LP001121	Male	Yes	1	Not Gradu	No	1888	1620	48	360	1	Urban
23	LP001124	Female	No	3+	Not Gradu	No	2083	0	28	180	1	Urban
24	LP001128		Nο	0	Graduate	No	3909	0	101	360	1	Urban
25	LP001135	Female	No	0	Not Gradu	No	3765	0	125	360	1	Urban
26	LP001149	Male	Yes	0	Graduate	No	5400	4380	290	360	1	Urban
27	P001153	Male	No	Ω	Graduate	No	Λ	24000	148	360		Rural

MODEL USED :-

Decision Tree

A Decision Tree is a supervised machine learning algorithm used for both classification and regression tasks. It splits the data into subsets based on feature values and creates a tree-like structure to make predictions.

/	(ey Terminologies:						
	Term	Description					
	Root Node	The top-most decision node (entire dataset)					
	Internal Nodes	Feature-based decision points					
ŀ	Leaf Nodes	Final output classes (e.g., Default / Not Default)					
	Split	Division of data based on feature value					
	Gini Index / Entropy	Metrics to decide the best split (lower = purer split)					

CONFUSION MATRIX

A Confusion Matrix is a table used to evaluate the performance of a classification model. It compares the actual (true) values with the predicted values to show how well the model is performing.

Actual: No Default (0) True Negative (TN)

Actual: Default (1) False Negative (FN)

Predicted: Default (1) False Positive (FP)

True Positive (TP)

CORELATION HEATMAP MATRIX

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

DECISION TREE output for dataset:--

THANKYOU! FOR YOUR ATTENTION