

2017-2018 School Year Shanghai Huangpu District 7th Grade (I) Mid-term **Mathematics Exam**

One, multiple choice (Total 4 questions, 3 points per question, full score 12 points)

1. (3 points) Among the four expressions $x^2y = \frac{1}{3} \cdot \frac{2x+3}{4} \cdot \frac{3}{n}$, how many monomials are there?)

A. 1 B. 2 C. 3 D. 4

2. (3 points) The correct simplification is (

A. $x^2 + x^3 = x^5$

B. $(-a^3) \cdot a^3 = a^6$ C. $(-x^3)^2 = x^6$ D. $4a^2 - (2a)^2 = 2a^2$

3. (3 points) If the ones digit of a two-digit number is a, and the tens digit is b, then the value of this two-digit number is (

D. 10(a + b)A. ba B. 10b + a C. 10a + b

4. (3 points) 从边长为 a 的大正方形纸板中挖去一个边长为 b 的小正方形纸板后,将其裁成四个相同的 等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积, 可以验证成立的公式为(

A.
$$a^2 - b^2 = (a - b)^2$$

A.
$$a^2 - b^2 = (a - b)^2$$
 B. $(a+b)^2 = a^2 + 2ab + b^2$

C. (
$$a - b$$
) $^2 = a^2 - 2ab + b^2$ D. $a^2 - b^2 = (a + b)$ ($a - b$)

Two, fill in the blanks (Total 14 questions, 2 points per question, full score 28 points)

5. (2 points) Use an expression to express the reciprocal of the sum of x and y. _____

6. (2 points) Monomial $-\frac{4a^3bc^2}{3}$ has a coefficient of ____, and its highest power is _____.

7. (2 points) Polynomial 2a² - 3a + 4 is a's_____次__ 项式·

8. (2 points) Take polynomial $32x^3y - \frac{4}{5}y^2 + \frac{1}{3}xy - 12x^2$ and use the power of x to reorder:______.

9. (2 points) If $-2x^3y^m$ and $3x^ny^2$ are like terms, then m + n =______.

10. (2 points) Simplify: $3a^2 - 6a^2 =$.

11. (2 points) When x = -2, algebraic expression $x^2 + 2x + 1$ equals ______.

12. (2 points) Simplify: $(a \cdot b) \cdot (b \cdot a)^2 =$ (Write answer in exponential form).

13. (2 points) Simplify: $(-2x^2y) \cdot (-3x^2y^3) =$ ______

14. (2 points) Use the scientific notation to write the simplified answer of (2×10^9) \times

15. (2 points) Simplify
$$(\frac{2}{3})^{2016} \times (-\frac{3}{2})^{2017} =$$
______.

16. (2 points) Given that
$$x - y = 2$$
, $xy=3$, then x^2+y^2 equals ______.

18. (2 points) If algebraic expression
$$4y^2 - 2y + 5 = 7$$
, then algebraic expression $2y^2 - y + 5 = 7$.

Three, calculation questions (Total 6 questions, questions 19, 20 are each 5 points, all other questions 6 points, full score 34 points)

19. (5 points) Simplify:
$$(3x^2 - 2x+1) - (x^2 - x+3)$$

20. (5 points) Use a multiplication formula to calculate:
$$99.8^2 =$$
____.

21. (6 points) Simplify:
$$(-a)^2 \cdot (-a^3) \cdot (-a) + (-a^2)^3 - (-a^3)^2$$

22. (6 points) Simplify:
$$(-2xy^2)^2 \cdot (\frac{1}{4}y^2 - \frac{1}{2}x^2 - \frac{3}{2}xy)$$
.

Four, short answer questions (total 4 questions, questions 25, 26 are 6 points each, all the rest are each 7 points, full score 26 points)

25. (6 points) First simplify and then calculate: $(x - y) (y - x) - [x^2 - 2x (x + y)]$ $x = \frac{1}{2}, y = -2.$

26. (6 points) Solve for x: $2x (x+1) - (3x-2) x=1 - x^2$

27. (7 points) Use 3 matches to create 1 triangle, then continue to create 2, 3, 4, ...

- (1) When there are 6 triangles, there are _____ matches.
- (2) When there are n triangles, there are ____ matches.
- (3) If 2017 matches are used, then there are _____ triangles.
- 28. (7 points) As shown, in rectangle ABCD, there are 6 smaller congruent rectangles. It is given that the lengths and widths of the smaller rectangles are each a and b, and a > b.
- (1) Use the variables a b to express the lengths of AD and AB;
- (2) Use the variables a $\,\dot{}$ b to express the area of the shaded parts.

2017-2018 School Year Shanghai Huangpu District 7th Grade (I) Mid-term Mathematics Exam

Answer Key

One, multiple choice (Total 4 questions, 3 points per question, full score 12 points)

- 1. (3 points) Among the expressions $x^2y \cdot \frac{1}{3} \cdot \frac{2x+3}{4} \cdot \frac{3}{n}$, there are _____ monomials. ()
- A. 1 B. 2 C. 3 D. 4

[Solution]

Using the definition of monomials,

∴ Among the expressions $x^2y \cdot \frac{1}{3} \cdot \frac{2x+3}{4} \cdot \frac{3}{n}$, there are $x^2y \cdot \frac{1}{3}$ as monomials.

Correct answer: B

- 2. (3 points) The correct simplification is ()
- $A \cdot x^2 + x^3 = x^5 B \cdot (-a^3) \cdot a^3 = a^6 C \cdot (-x^3)^2 = x^6 D \cdot 4a^2 \cdot (2a)^2 = 2a^2$

- $A \cdot x^2$ and x^3 are not like terms, and cannot be combined; so, this option is incorrect;
- B \cdot (a^3) • $a^3 = -a^{3+3} = -a^{6}$; so, this option is incorrect;

C \ (-
$$x^3$$
) 2 = (- 1) 2 • (x^3) 2 = x^{6} ; so, this option is correct;

D
$$\cdot$$
 4a² - (2a) ²=4a² - 4a²=0; so, this option is incorrect.

Correct answer: C

3. (3 points) If the ones digit of a two-digit number is a, and the tens digit is b, then the value of this two-digit number is ()

A. ba B.
$$10b + a$$
 C. $10a + b$ D. $10(a + b)$

[Solution]

- : the ones digit is a, and the tens digit is b,
- : this two-digit number can be expressed as 10b+a.

Correct answer: B

4 · (3分)从边长为 a 的大正方形纸板中挖去一个边长为 b 的小正方形纸板后 · 将其裁成四个相同的等腰梯形 (如图甲) · 然后拼成一个平行四边形 (如图乙) · 那么通过计算两个图形阴影部分的面积 · 可以验证成立的公式为 ()

$$A \cdot a^2 \cdot b^2 = (a \cdot b)^2$$
 $B \cdot (a+b)^2 = a^2 + 2ab + b^2$

$$C \cdot (a \cdot b)^2 = a^2 \cdot 2ab + b^2D \cdot a^2 \cdot b^2 = (a+b) (a \cdot b)$$

[Solution]

由图 1 将小正方形一边向两方延长,得到两个梯形的高,两条高的和为 a · b · 即平行四边形的高为 a · b ·

∵两个图中的阴影部分的面积相等,即甲的面积 $=a^2 \cdot b^2$,乙的面积 $=(a+b)(a \cdot b)$

即: $a^2 - b^2 = (a+b)(a-b)$ ·

所以验证成立的公式为: $a^2 - b^2 = (a+b)(a-b)$ ·

故选:D·

Two, fill in the blanks (Total 14 questions, 2 points per question, full score 28 points)

5. (2 points) the reciprocal of the sum of x and y can be expressed as $\frac{1}{x+y}$.

[Solution]

According the question the answer is $\frac{1}{x+y}$.

Correct answer: $\frac{1}{x+y}$

6. (2 points) Monomial $-\frac{4a^3bc^2}{3}$ has a coefficient of $-\frac{4}{3}$ · 次数是 6 ·

The coefficient is $-\frac{4}{3}$, 次数是: 2+1+3=6.

Correct answer: $-\frac{4}{3} \cdot 6$

7 · (2 分)多项式 2a² · 3a+4 是 a 的_____ 次__ 三__ 项式 ·

[Solution]

多项式 2a² - 3a+4 最高次项 2a² 的次数为二,有三项,

故答案为:二,三.

8. (2 points) Take polynomial $32x^3y - \frac{4}{5}y^2 + \frac{1}{3}xy - 12x^2$ and use the power of x to reorder:

$$32 x^3 y - 12 x^2 + \frac{1}{3} x y - \frac{4}{5} y^2$$
 .

[Solution]

Polynomial $32 x^3 y + \frac{4}{5} y^2 + \frac{1}{3} x y - 12 x^2$ ordered by the power of x is: $32 x^3 y - 12 x^2 + \frac{1}{3} x y + \frac{4}{5} y^2$.

Correct answer: $32 x^3 y - 12 x^2 + \frac{1}{3} x y + \frac{4}{5} y^2$.

9. (2 points) If $-2x^3y^m$ and $3x^ny^2$ are like terms, then m + n = 5

[Solution]

 \because - $2x^3y^m$ and $3x^ny^2$ are like terms,

∴n=3 · m=2 ·

∴m + n=5 ·

Correct answer: 5.

10. (2 points) Simplify: 3a² - 6a²=___-3a²___.

[Solution]

 $3a^2 - 6a^2 = -3a^2$

Correct answer: - 3a².

(2 points) When x = -2, algebraic expression $x^2 + 2x + 1$ equals 1

[Solution]

Original Equation = 4 - 4+1=1 ·

Correct answer: 1

12. (2 points) Simplify: $(a - b) \cdot (b - a)^2 = \underline{(a - b)^3}$ (Write answer in exponential form).

[Solution]

$$(a - b) \cdot (b - a)^2 = (a - b) \cdot (a - b)^2 = (a - b)^3 \cdot \frac{1}{2}$$

Correct answer: (a - b)³ ·

13. (2 points) Simplify: $(-2x^2y) \cdot (-3x^2y^3) = 6x^4y^4$

[Solution]

$$(-2x^2y) \cdot (-3x^2y^3) = 6x^4y^4 \cdot$$

Correct answer: 6x4y4 ·

14. (2 points) Use the scientific notation to write the simplified answer of (2×10^9) × (8×10^3)

1.6×10¹³

[Solution]

$$(2\times10^9)\times(8\times10^3)=1.6\times10^{13}$$

Correct answer: 1.6×10¹³

15. (2 points) Simplify $(\frac{2}{3})^{2016} \times (-\frac{3}{2})^{2017} = \underline{\frac{3}{2}}$

$$(\frac{2}{3})^{2016} \times (-\frac{3}{2})^{2017}$$

$$= (\frac{2}{3})^{2016} \times (-\frac{3}{2})^{2016} \times (-\frac{3}{2})$$

$$= (\frac{2}{3} \times \frac{3}{2})^{2016} \times (-\frac{3}{2})$$

$$= -\frac{3}{2}$$

Correct answer: $-\frac{3}{2}$

16. (2 points) Given that x - y = 2, xy=3, then x^2+y^2 equals _____ 10___ ·

[Solution]

$$x^2+y^2=(x-y)^2+2xy$$

Substituting x - y = 2 and xy = 3, we get: $(x - y)^2 + 2xy = 4 + 6 = 10$

Simplified: $x^2+y^2=10$.

Correct answer:10

17. (2 points) If $2^m=5$, $2^n=3$, then $2^{m+2n}=45$

[Solution]

$$2^{m+2n}=2^{m} \cdot 2^{2n}=5 \times 9=45$$

Correct answer 45

18. (2 points) If algebraic expression $4y^2 - 2y + 5 = 7$, then algebraic expression $2y^2 - y + 5 = 6$

$$4y^2 - 2y + 5 = 7$$

$$4y^2 - 2y = 2$$

$$∴2y^2 - y=1$$

Then original equation = 1 + 5 = 6,

Correct answer: 6

Three, calculation questions (Total 6 questions, questions 19, 20 are each 5 points, all other questions 6 points, full score 34 points)

19. (5 points) Simplify:
$$(3x^2 - 2x + 1) - (x^2 - x + 3)$$

[Solution]

Original Equation = $3x^2 - 2x + 1 - x^2 + x - 3$

$$= 2x^2 - x - 2$$

20. (5 points) Use a multiplication formula to calculate: $99.8^2 =$ _____.

[Solution]

99.82

$$= (100 - 0.2)^{2}$$

$$=100^2 - 2 \times 100 \times 0.20 + 2^2$$

21. (6 points) Simplify: $(-a)^2 \cdot (-a^3) \cdot (-a) + (-a^2)^3 - (-a^3)^2 \cdot$

[Solution]

Original Equation = $-a^2 \cdot (-a^3) \cdot (-a) + (-a^6) - a^6$

$$=a^6 - a^6 - a^6$$

 $= -a^6$

22. (6 points) Simplify: $(-2xy^2)^2 \cdot (\frac{1}{4}y^2 - \frac{1}{2}x^2 - \frac{3}{2}xy)$.

[Solution]

Original equation= $4x^2y^4$ ($\frac{1}{4}y^2 - \frac{1}{2}x^2 - \frac{3}{2}xy$)

$$=x^2y^6 - 2x^4y^4 - 6x^3y^5$$

23. (6 points) Simplify: (2x - 3) (x+4) - (x - 1) (x+1)

[Solution]

Original Equation= $2x^2+8x-3x-12-(x^2-1)$

$$=2x^2+8x-3x-12-x^2+1$$

$$=x^2+5x - 11$$

24. (6 points) Simplify: (2a - b + c) (2a - b - c)

[Solution]

Original equation=[(2a - b) + c][(2a - b) - c]

$$= (2a - b)^2 - c^2$$

$$=4a^2 - 4ab + b^2 - c^2$$

Four, short answer questions (total 4 questions, questions 25, 26 are 6 points each, all the rest are each 7 points, full score 26 points)

25. (6 points) First simplify and then calculate: $(x - y) (y - x) - [x^2 - 2x (x + y)]$

$$x = \frac{1}{2}$$
, $y = -2$.

[Solution]

$$(x-y)(y-x)-[x^2-2x(x+y)]$$

$$= -x^2 + 2xy - y^2 - x^2 + 2x^2 + 2xy$$

$$=4xy - y^2$$

When
$$x=\frac{1}{2}$$
, $y=-2$, original equation = $4 \times \frac{1}{2} \times (-2) - (-2)^2 = -4 - 4 = -8$

26. (6 points) Solve for x: $2x (x+1) - (3x-2) x=1 - x^2$

$$2x(x+1) - (3x-2)x=1-x^2$$

Removing the brackets: $2x^2+2x - 3x^2+2x=1 - x^2$

Simplified: 4x=1

Correct answer: $x = \frac{1}{4}$.

27. (7 points) Use 3 matches to create 1 triangle, then continue to create 2, 3, 4, ...

- (1) When there are 6 triangles, there are <u>13</u> matches.
- (2) When there are n triangles, there are 2n+1 matches.
- (3) If 2017 matches are used, then there are <u>1008</u> triangles.

[Solution]

(1) From the pattern:

When there is 1 triangle, 3 matchsticks are needed;

When there are 2 triangles, 5 matchsticks are needed;

When there are 3 triangles, 7 matchsticks are needed;

When there are 4 triangles, 9 matchsticks are needed;

When there are 5 triangles, 11 matchsticks are needed;

When there are 6 triangles, 13 matchsticks are needed;

...

The pattern is 3+2(n-1)=2n+1.

- (2) When there are n triangles, 3+2(n-1)=2n+1 matchsticks are needed.
- (3) 2n+1=2017

∴n=1008

Correct answer: 9 · 2n+1 · 1008 ·

- 28. (7 points) As shown, in rectangle ABCD, there are 6 smaller congruent rectangles. It is given that the lengths and widths of the smaller rectangles are each a and b, and a > b.
- (1) Use the variables a `b to express the lengths of AD and AB;
- (2) Use the variables a b to express the area of the shaded parts.

(1) From the picture: AD=a+2b, AB=a+b;

$$(2)$$
 S_{shaded portions} = $(a+b)$ $(a+2b)$ - 6ab

$$=a^2+2ab+ab+2b^2 - 6ab^{(1)}$$

$$=a^2 - 3ab + 2b^2 \cdot$$