Tutorium 07: Unifikation

David Kaufmann

14. Dezember 2022

Tutorium Programmierparadigmen am KIT

Unifikation

Welche Probleme löst die Unifikation?

$$state(1,1,1,1) \stackrel{!}{=} state(M,W,Z,K)$$
 $opposite(M,M_2) \stackrel{!}{=} opposite(1,r)$
 $Z \stackrel{!}{=} K$

- Unifikation löst Gleichungssysteme von baumförmigen Termen (hier: Prolog-Terme).
- Eingabe: Menge $C = \{\theta_I^1 \stackrel{!}{=} \theta_r^1, ..., \theta_I^n \stackrel{!}{=} \theta_r^n\}$
 - Alle $\theta^i_{\{l,r\}}$ sind Bäume und können Variablen enthalten.
- Ausgabe: Unifikator σ , sodass $\sigma(\theta_I^i) = \sigma(\theta_I^i)$.
 - Wenn C nicht unifizierbar (bspw. X = f(X)): fail

Welche Probleme löst die Unifikation?

$$state(1,1,1,1) \stackrel{!}{=} state(M,W,Z,K)$$
 $opposite(M,M_2) \stackrel{!}{=} opposite(1,r)$
 $Z \stackrel{!}{=} K$

Mehrere mögliche Lösungen:

$$\sigma_{1} = [M_{2} \Leftrightarrow \mathbf{r}] \circ [K \Leftrightarrow \mathbf{l}] \circ [Z \Leftrightarrow \mathbf{l}] \circ [W \Leftrightarrow \mathbf{l}] \circ [M \Leftrightarrow \mathbf{l}]$$

$$\sigma_{2} = [M_{2} \Leftrightarrow \mathbf{r}] \circ [K \Leftrightarrow \mathbf{l}] \circ [Z \Leftrightarrow K] \circ [W \Leftrightarrow \mathbf{l}] \circ [M \Leftrightarrow \mathbf{l}]$$

- I.d.R. suchen wir nach einem allgemeinsten Unifikator (mgu).
- $mgu \approx minimaler Unifikator, der C löst.$

Prolog-Unifikation

Unifiziert:

$$A \stackrel{!}{=} x$$

$$B \stackrel{!}{=} f(X)$$

$$C \stackrel{!}{=} g(C)$$

$$f(x, D, z) \stackrel{!}{=} f(x, y, E)$$

$$func(F, func(G, z)) \stackrel{!}{=} func(x, func(y, F))$$

$$g(x, H, z) \stackrel{!}{=} f(x, H, H)$$

$$f(g(z)) \stackrel{!}{=} f(J)$$

Ergebnis: Entweder fail oder ein Unifikator.

Unifikation (Robinson, [Rob65])

Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \cup C' = C in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \circ \theta_r] C') \circ [Y \circ \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \circ \theta_l] C') \circ [Y \circ \theta_l] else if \theta_l == f(\theta_1^1, \ldots, \theta_l^n) and \theta_r == f(\theta_1^1, \ldots, \theta_r^n) then unify(C' \cup \{\theta_l^1 = \theta_r^1, \ldots, \theta_l^n = \theta_r^n\}) else fail
```

 $Y \in FV(\theta)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe [Pie02]

if
$$C == \emptyset$$
 then [] else let $\{\theta_I \stackrel{!}{=} \theta_r\} \cup C' = C$ in

- Ist das Gleichungssystem C leer, ist es schon gelöst
 → wir brauchen nichts zu ersetzen.
- Andernfalls betrachten wir eine der Gleichungen: $\theta_I \stackrel{!}{=} \theta_r$.
 - Beliebige Auswahl möglich.
 - Die restlichen Gleichungen merken wir uns als C'.
- Beispiel:

$$C = \{X \stackrel{!}{=} a, Y \stackrel{!}{=} f(X), f(Z) \stackrel{!}{=} Y\}$$

$$\theta_{I} = X, \theta_{r} = a, C' = \{Y \stackrel{!}{=} f(X), f(Z) \stackrel{!}{=} Y\}$$

if
$$\theta_I == \theta_r$$
 then unify(C')

- Wenn die Gleichung trivial ist (auf beiden Seiten steht schon das gleiche), brauchen wir auch nichts zu ersetzen.
- Wir müssen also nur C' unifizieren.
- Verschiedene Gleichheitsrelationen:
 - $A \stackrel{!}{=} B$: Element von C, behandeln wir wie eine Datenstruktur.
 - A == B: Vergleichsoperator
 - A = B: Meta-Gleichheitsoperator, Notation für Pattern-Matching

else if
$$\theta_I == Y$$
 and $Y \notin FV(\theta_r)$
then unify($[Y \diamond \theta_r] C'$) $\circ [Y \diamond \theta_r]$

- Steht auf der linken Seite eine Variable, so wird diese ersetzt.
 - $\theta_I == Y$: "Ist der Term θ_I eine Variable Y?"
 - $Y \notin FV(\theta_r)$: occurs check, Y darf sich nicht selbst einsetzen.
- Wir ersetzen in C' dann Y durch θ_r .
- Substitution $[Y \Leftrightarrow \theta_r]$ wird als Ergebnis vorgemerkt.
- Beispiel: θ_I = X ✓, X ∉ FV(θ_r) = FV(a) = ∅ ✓, d.h.
 Ergebnis: unify({Y ! f(a), f(Z) ! Y}) ∘ [A φ a]

else if
$$\theta_r == Y$$
 and $Y \notin FV(\theta_l)$
then unify($[Y \diamond \theta_l] C'$) $\circ [Y \diamond \theta_l]$

- Auch wenn rechts eine Variable steht muss sie ersetzt werden.
- Beispiel: $\theta_r = Y \checkmark$, $Y \notin FV(\theta_l) = FV(f(Z)) = \{Z\} \checkmark$, d.h. Ergebnis: unify($\{f(Z) \stackrel{!}{=} f(a)\}$) $\circ [Y \Leftrightarrow f(Z)]$

else if
$$\theta_l == f(\theta_l^1, ..., \theta_r^n)$$
 and $\theta_r == f(\theta_r^1, ..., \theta_r^n)$
then unify $(C' \cup \{\theta_l^1 \stackrel{!}{=} \theta_r^1, ..., \theta_l^n \stackrel{!}{=} \theta_r^n\})$

- Steht auf beiden Seiten ein Funktor, extrahieren wir paarweise neue Gleichungen und unifizieren diese mitsamt C'.
 - Namen der Funktoren müssen identisch sein! (hier: f)
 - Parameterzahlen der Funktoren müssen identisch sein!
 - Für Atome: n = 0, aber schon abgedeckt durch den ersten Fall.
- Beispiel: $\theta_I = f(Z), \theta_r = f(a) \checkmark, C' = \emptyset$ Ergebnis: unify $(\emptyset \cup \{Z \stackrel{!}{=} a\}) = [Z \diamondsuit a]$ (links Variable)

Klausuraufgabe SS21 (8 P.)

Gegeben sei die einelementige Menge von Gleichungen

$$C = \{f(X_1, X_1) = f(f(X_2, X_3), f(X_4, g(X_4)))\}$$

Führen Sie den Unifikationsalgorithmus nach Robinson durch. Geben Sie bei jedem rekursiven Aufruf die erzeugte Substitution sowie die noch zu unifizierende Menge an.

Geben Sie das Endergebnis in Listenform an.

Typinferenz

- Lambdas $\lambda p. b$
- Funktionsanwendungen x y
- Variablen x, Konstanten true, 17

$$\lambda a. \lambda f. f$$
 (a true)

- Lambdas $\lambda p. b$
- Funktionsanwendungen x y
- Variablen x, Konstanten true, 17

$$\underbrace{\frac{\lambda a.\ \lambda f.\ f\ (a\ \text{true})}_{\text{Lambda}}}_{p=f,b=f\ (a\ \text{true})}$$

- Lambdas $\lambda p. b$
- Funktionsanwendungen x y
- Variablen x, Konstanten true, 17

- Lambdas $\lambda p. b$
- Funktionsanwendungen x y
- Variablen x, Konstanten true, 17

$$\lambda a. \lambda f. \underbrace{f}_{\text{Variable}} \underbrace{\text{(\underbrace{a}_{\text{Variable}}}_{\text{true}})}$$

- Lambdas $\lambda p. b$
- Funktionsanwendungen x y
- Variablen x, Konstanten true, 17

$$\lambda a. \lambda f. f (a \underline{\text{true}})$$
Konstante

Lambda-Terme als Bäume

Wir können Lambda-Terme also als Bäume mit Lambda- und Anwendungsknoten und Variablen- und Konstantenblättern betrachten, um ihre Struktur zu untersuchen:

Cheatsheet: Typisierter Lambda-Kalkül

$$\frac{\Gamma(t) = \tau}{\Gamma \vdash t : \tau} \text{VAR} \qquad \frac{\Gamma \vdash f : \phi \to \alpha \qquad \Gamma \vdash x : \phi}{\Gamma \vdash f : x : \alpha} \text{App}$$

$$\frac{\Gamma, p : \pi \vdash b : \rho}{\Gamma \vdash \lambda p. \ b : \pi \to \rho} \text{Abs}$$

- Typvariablen: τ , α , π , ρ
- Funktionstypen: $au_1 o au_2$, rechtsassoziativ
- (Weitere Typen: Listen, Tupel, etc.)
- Typisierungsregeln sind eindeutig: Eine Regel pro Termform

(Allgemeine) Typisierungsregel für Variablen

"Der Typkontext Γ enthält einen Typ τ für t." $\Gamma \vdash t : \tau$ • Daraus folgt: "Variable t hat im Kontext Γ den Typ τ ."

Typisierungsregel für Funktionsanwendungen

• "f ist im Kontext Γ eine Funktion, die ϕ s auf α s abbildet."
• "x ist im Kontext Γ ein Term des Typs ϕ ." $\Gamma \vdash f : \phi \to \alpha \qquad \qquad \Gamma \vdash x : \phi$ $\Gamma \vdash f x : \alpha$ • Daraus folgt:

", x eingesetzt in f ergibt einen Term des Typs α ."

Typisierungsregel für Lambdas

- "Unter Einfügung des Typs π von p in den Kontext…"
- Daraus folgt:
- " $\lambda p.~b$ ist eine Funktion, die π s auf ρ s abbildet"

Typinferenz

Vorgehensweise zur Typinferenz:

- Stelle Typherleitungsbaum auf
 - In jedem Schritt werden neue Typvariablen α_i angelegt
 - Statt die Typen direkt im Baum einzutragen, werden Gleichungen in einem Constraint-System eingetragen
- Unifiziere Constraint-System zu einem Unifikator
 - Robinson-Algorithmus, im Grunde wie bei Prolog
 - I.d.R.: Allgemeinster Unifikator (findet man per Robinson)

Unifikation (Robinson, [Rob65])

Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \cup C' = C in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \circ \theta_r] C') \circ [Y \circ \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \circ \theta_l] C') \circ [Y \circ \theta_l] else if \theta_l == f(\theta_1^1, \ldots, \theta_l^n) and \theta_r == f(\theta_1^1, \ldots, \theta_r^n) then unify(C' \cup \{\theta_l^1 = \theta_r^1, \ldots, \theta_l^n = \theta_r^n\}) else fail
```

 $Y \in FV(\theta)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe [Pie02]

Unifikation

Unifikationsalgorithmus: unify(C) =

```
if C = \emptyset then [] else let \{\tau_1 = \tau_2\} \cup C' = C in if \tau_1 == \tau_2 then unify(C') else if \tau_1 == \alpha and \alpha \notin FV(\tau_2) then unify([\alpha \diamond \tau_2] C') \circ [\alpha \diamond \tau_2] else if \tau_2 == \alpha and \alpha \notin FV(\tau_1) then unify([\alpha \diamond \tau_1] C') \circ [\alpha \diamond \tau_1] else if \tau_1 == (\tau_1' \to \tau_1'') and \tau_2 == (\tau_2' \to \tau_2'') then unify(C' \cup \{\tau_1' = \tau_2', \tau_1'' = \tau_2''\}) else fail
```

 $\alpha \in FV(\tau)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe Literatur

Unifikation für Typinferenz

Typen kann man auch als Funktoren darstellen:

$$au_1
ightarrow au_2 \qquad \equiv \qquad \qquad ext{func}(au_1, au_2) \ \equiv \qquad \qquad ext{list}(au) \
ightarrow ext{etc.}$$

Typinferenz: Übungsaufgaben

$$\frac{\dots}{f: \text{int} \to \beta \vdash \lambda x. f \ x: \alpha_1} ABS$$

• "Finde den allgemeinsten Typen α_1 von $\lambda x. f x$ "

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\begin{array}{lll} \Gamma(t) = \alpha_{j} & & & \\ \Gamma \vdash t : \alpha_{i} & & & \\ \hline \Gamma \vdash t : \alpha_{i} & & & \\ \hline \end{array} & \begin{array}{ll} \Gamma \vdash f : \alpha_{j} & \Gamma \vdash x : \alpha_{k} \\ \hline \Gamma \vdash \lambda p. \ b : \alpha_{i} & \\ \hline \end{array} & \begin{array}{ll} \Gamma, p : \alpha_{j} \vdash b : \alpha_{k} \\ \hline \Gamma \vdash \lambda p. \ b : \alpha_{i} & \\ \hline \end{array} & \begin{array}{ll} Constraint: & Constraint: \\ \{\alpha_{i} = \alpha_{i}\} & \{\alpha_{i} = \alpha_{k} \rightarrow \alpha_{i}\} & \{\alpha_{i} = \alpha_{i} \rightarrow \alpha_{k}\} \end{array}$$

Constraint-System auflösen

Typinferenz: Übungsaufgaben

$$\frac{\dots}{\vdash \lambda f. \, \lambda x. \, (f \, x) \, x : \alpha_1} \mathbf{A} \mathbf{B} \mathbf{S}$$

• "Finde den allgemeinsten Typen α_1 von $\lambda f. \lambda x. (f x) x$ "

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\frac{\Gamma(t) = \alpha_j}{\Gamma \vdash t : \alpha_i} \text{VAR} \qquad \frac{\Gamma \vdash f : \alpha_j}{\Gamma \vdash f : \alpha_i} \frac{\Gamma \vdash x : \alpha_k}{\Gamma \vdash \lambda p. b : \alpha_i} \text{APP} \qquad \frac{\Gamma, p : \alpha_j \vdash b : \alpha_k}{\Gamma \vdash \lambda p. b : \alpha_i} \text{ABS}$$

$$\text{Constraint:} \qquad \text{Constraint:} \qquad \text{Constraint:} \qquad \{\alpha_i = \alpha_i\} \qquad \{\alpha_i = \alpha_k \rightarrow \alpha_i\} \qquad \{\alpha_i = \alpha_i \rightarrow \alpha_k\}$$

Constraint-System auflösen

Nächste Woche (21. Dezember 2022)

- Mehr...
 - ...Prolog?
 - ...Unifikation?
 - ...Typherleitung?
 - ...Haskell?