CONTENTS AND SHORT BIBLIOGRAPHY DISCRETE AND ALGORITHMIC GEOMETRY, UPC, 2019

JULIAN PFEIFLE

Due to my teaching (and grading) load this semester, I have not had time to prepare lecture notes for this class. But since I more or less directly copied the content from various sources, I hope to make your job of studying the material easier by explicitly listing the chapters I used. A big thanks to Moritz Otth for pushing me do compile this list!

The overarching theme are realizations of oriented matroids.

1. Matroids

This material is directly copied from [Rei05, Lecture 1].

Examples: Vector and point configurations; algebraic matroids; transversal matroids; graphical matroids

Axiom systems: Independent sets; bases; circuits; cocircuits; rank function; flats; hereditarily pure simplicial complexes; universally shellable simplicial complexes; greedily optimizable independent set systems

Operations: Direct sum; deletion; contraction

Oriented Matroids: Axiom systems: Circuits, cocircuits

I didn't end up introducing Coxeter matroids, or talk much about matroid base polytopes. Also, Chirotopes weren't introduced until later.

For the direct sum, deletion and contraction I followed [Rei05, Lecture 2]. I did not use [BLS+99] except for its Theorem 7.4.2, even though it's great as a reference.

The exercises in this section were taken from [Rei05], [Sch03], [Bok06], [AB07], [Zie95].

2. Oriented matroid / Gale duality

 $\operatorname{LinVal}(A)$; $\operatorname{LinDep}(A)$; $\operatorname{AffVal}(A)$; $\operatorname{AffDep}(A)$. Radon's Lemma. Dictionary of linear/affine Gale transform: Faces of convex hull; convex position. Chirotopes. Cyclic polytopes and neighborliness. Asymptotic Upper Bound Theorem for simplicial polytopes. Arrangements of real algebraic varieties and the Milnor-Thom-Oleinik-Petrovski theorem.

The oriented matroid / Gale duality construction follows [Zie95, Chapter 6], as does the discussion of Radon partitions, (affine) Gale diagrams, cyclic polytopes and neighborliness. The example of a non-rational polytope is [Zie95, Example 6.21]. The Asymptotic Upper Bound Theorem and the presentation of the Milnor-Thom-Oleinik-Petrovski theorem are from [Mat02, Chapter 5], which also has a good introduction to polytopes and Gale duality.

3. Regular triangulations and the secondary polytope

Regular polyhedral subdivisions from projections of lower faces. The Union and Intersection properties. The refinement partial order. Examples. The GKZ vector of a triangulation. The secondary polytope and its vertices and affine hull.

I initially tried to follow [DRS10, Chapter 5], but found it to be too verbose for presentation in class. For a leisurely introduction it works great, though. In the end, I used [Tho06, Chapters 7,8]. An additional source is [Zie95, Chapter 9].

The exercises were taken from [DRS10] and [Zie95].

4. Gröbner bases

Motivation: the Apollonius Circle Theorem. Monomial/term/polynomial/support/ideal/variety. Hilbert basis theorem. Radical of an ideal. Hilbert's Nullstellensatz. Example: Algebraic attack on a small block cipher. Monomial orders. Division algorithm. Elimination Theorem.

The primary sources here are [CLO15, Chapter 2, §§1–8 and Chapter 3, §1] and [Tho06, Chapters 10–12]. A secondary source is [Ric11]. The example on the key sniffing attack is [Seg04, Section 3.1].

5. The Grassmannian and flags

Plücker coordinates of a point configuration. The Grassmannian and Flag variety. The matroid associated to a generic line arrangement via a scaffolding flag. The initial monomials of the Plücker ideal as the incomparable pairs in the straightening poset.

The material on Plücker coordinates and the flag variety is from [MS05, Sections 14.1 and 14.2]. The matroid associated to a generic line arrangement (which also makes an appearance in the exercises) is due to [AB07].

6. Slack realization space of polytopes and oriented matroids

Slack matrix, symbolic slack matrix, generalized slack matrix, and slack ideal of a polytope or matroid. Ideal quotient and saturation with respect to a principal ideal. Realization spaces of polytopes; Mnëv's Universality Theorem. Relationship between slack variety and generalized slack matrices. Simplification of slack ideal via row and column rescaling. Examples.

The relevant papers are [GMTW19] and [BW19].

References

- [AB07] Federico Ardila and Sara Billey. Flag arrangements and triangulations of products of simplices. Adv. Math., 214(2):495–524, 2007.
- [BLS⁺99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter Ziegler. *Oriented matroids. 2nd ed.*, volume 46 of *Encyclopedia of Mathematics and Its Applications*. Cambridge: Cambridge University Press, 2nd ed. edition, 1999.
- [Bok06] Jürgen G. Bokowski. Computational oriented matroids. Equivalence classes of matrices within a natural framework. Cambridge: Cambridge University Press, 2006.
- [BW19] Madeline Brandt and Amy Wiebe. The slack realization space of a matroid. *Algebr. Comb.*, 2(4):663–681, 2019.
- [CLO15] David A. Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. 4th revised ed. Undergraduate Texts in Mathematics. Cham: Springer, 4th revised ed. edition, 2015.
- [DRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations. Structures for algorithms and applications., volume 25 of Algorithms and Computation in Mathematics. Berlin: Springer, 2010.
- [GMTW19] João Gouveia, Antonio Macchia, Rekha R. Thomas, and Amy Wiebe. The slack realization space of a polytope. SIAM J. Discrete Math., 33(3):1637–1653, 2019.
- [Mat02] Jiří Matoušek. Lectures on discrete geometry., volume 212 of Graduate Texts in Mathematics. New York, NY: Springer, 2002.
- [MS05] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra., volume 227 of Graduate Texts in Mathematics. New York, NY: Springer, 2005.
- [Rei05] Vic Reiner. Lecture notes for the ACE Summer School 2005 in Geometric Combinatorics. http://www-users.math.umn.edu/~reiner/Talks/Vienna05/index.html, 2005.
- [Ric11] Jürgen Richter-Gebert. Perspectives on projective geometry. A guided tour through real and complex geometry. Berlin: Springer, 2011.
- [Sch03] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency (3 volumes)., volume 24 of Algorithms and Combinatorics. Berlin: Springer, 2003.
- [Seg04] A.J.M. Segers. Algebraic Attacks from a Gröbner Basis Perspective. Master's thesis, Technische Universiteit Eindhoven, 2004. https://www.win.tue.nl/~henkvt/images/ReportSegersGB2-11-04.pdf.
- [Tho06] Rekha R. Thomas. Lectures in geometric combinatorics., volume 33 of Student Mathematical Library. Providence, RI: American Mathematical Society (AMS); Princeton, NJ: Institute for Advanced Studies, 2006
- [Zie95] Günter M. Ziegler. Lectures on polytopes., volume 152 of Graduate Texts in Mathematics. Berlin: Springer-Verlag, 1995.