પ્રશ્ન 1(અ) [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: ડિસ્ટ્રિબ્યુટેડ લેજર

જવાબ:

ટેબલ: ડિસ્ટ્રિબ્યુટેડ લેજર લક્ષણો

લક્ષણ	વર્ણન
વ્યાખ્યા	અનેક કમ્પ્યુટરમાં ફેલાયેલ ડેટાબેસ
સંગ્રહ	ડેટા અનેક જગ્યાએ સંગ્રહિત
નિયંત્રણ	કોઈ એક સત્તાધિકારીની માલિકી નથી
અપડેટ	બધી કોપી એકસાથે અપડેટ થાય

• વિકેન્દ્રીકરણ: કેન્દ્રીય સર્વરની જરૂર નથી

• પારદર્શિતા: બધા સહભાગીઓ ટ્રાન્ઝેક્શન જોઈ શકે છે

• **સુરક્ષા**: સુરક્ષા માટે cryptography નો ઉપયોગ

મેમરી ટ્રીક: "ડેટા સુરક્ષિત પારદર્શી રીતે સંગ્રહિત" (DSPS)

પ્રશ્ન 1(બ) [4 ગુણ]

બ્લોકચેનની એપ્લિકેશનનું વર્ણન કરો.

જવાબ:

ટેબલ: બ્લોકચેન એપ્લિકેશન

એપ્લિકેશન	ઉપયોગ	ફાયદો
Cryptocurrency	Bitcoin જેવા ડિજિટલ પૈસા	સુરક્ષિત પેમેન્ટ
Supply Chain	ઉત્પાદનોને સ્ત્રોતથી ટ્રેક કરવા	નકલી માલ અટકાવવા
આરોગ્યસેવા	તબીબી રેકોર્ડ સંગ્રહિત કરવા	ડેટા સુરક્ષા
મતદાન	ઇલેક્ટ્રોનિક મતદાન સિસ્ટમ	પારદર્શી ચૂંટણી
રિયલ એસ્ટેટ	મિલકતના રેકોર્ડ	છેતરપિંડી અટકાવવા

• નાણાકીય: ઝડપી આંતરરાષ્ટ્રીય પેમેન્ટ

• **ઓળખ**: ડિજિટલ ID ચકાસણી

• Smart Contract: સ્વચાલિત કરાર

મેમરી ટ્રીક: "પૈસા, દવા, મતદાન, મિલકત" (PDMM)

પ્રશ્ન 1(ક) [7 ગુણ]

Asymmetric Encryption Model ને ઉદાહરણ સાથે સમજાવો.

જવાબ:

ડાયાગ્રામ: Asymmetric Encryption પ્રક્રિયા

ટેબલ: Key સરખામણી

Кеу язіг	હેતુ	શેરિંગ	ઉદાહરણ
Public Key	Encryption	ખુલ્લેઆમ શેર કરવામાં આવે	RSA Public Key
Private Key	Decryption	ગુપ્ત રાખવામાં આવે	RSA Private Key

ઉદાહરણ પ્રક્રિયા:

- 1. Alice એ Bob ને મેઝેજ મોકલવો છે
- 2. Alice એ Bob ની public key વાપરીને encrypt કરે છે
- 3. ફક્ત Bob ની private key decrypt કરી શકે છે
- 4. Bob મેઝેજ પ્રાપ્ત કરે છે અને decrypt કરે છે
- **સુરક્ષા**: Public key જાણીતી હોવા છતાં ડેટા સુરક્ષિત રહે છે
- પ્રમાણીકરણ: મોકલનારની ઓળખ સાબિત કરે છે
- નોન-રિપ્યુડિએશન: મોકલનાર મોકલવાનો ઇનકાર કરી શકતો નથી

મેમરી ટ્રીક: "Public Encrypt કરે, Private Decrypt કરે" (PEPD)

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

બ્લોકચેનમાં Consistency, Availability અને Partition Tolerance (CAP) પ્રમેય સમજાવો.

જવાબ:

ડાયાગ્રામ: CAP Theorem ત્રિકોણ

ટેબલ: CAP ગુણધર્મો

ગુણઘર્મ	વ્યાખ્યા	બ્લોકચેન ફોકસ
Consistency	બધા nodes માં સમાન ડેટા	મધ્યમ પ્રાધાન્યતા
Availability	સિસ્ટમ હંમેશા જવાબ આપે	ઉચ્ચ પ્રાધાન્યતા
Partition Tolerance	નેટવર્ક વિભાજન સાથે કામ કરે	ઉચ્ચ પ્રાધાન્યતા

મુખ્ય મુદ્દાઓ:

• Trade-off: ફક્ત 3 માંથી 2 ગુણધર્મોની ખાતરી આપી શકાય

• **બ્લોકચેન પસંદગી**: સામાન્ય રીતે Availability + Partition Tolerance ને પ્રાધાન્યતા

• **વાસ્તવિક ઉદાહરણ**: Bitcoin એ C કરતાં AP પસંદ કરે છે (eventual consistency)

મેમરી ટ્રીક: "કોઈ પણ બે પસંદ કરો" (CAT)

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો: Public key, Private key, Digital Signature.

જવાબ:

રેબલ: Cryptographic ઘટકો

ยรร	વ્યાખ્યા	ઉપયોગ
Public Key	ખુલ્લેઆમ શેર કરાતી encryption key	ડેટા encrypt કરવા, signature ચકાસવા
Private Key માલિક પાસે રાખેલી ગુપ્ત key		ડેટા decrypt કરવા, signature બનાવવા
Digital Signature	મેઝેજનું encrypted hash	વિશ્વસનીયતા અને અખંડિતતા સાબિત કરવા

મેમરી ટ્રીક: "Public સુરક્ષા આપે, Private પુરાવો આપે" (PSPP)

પ્રશ્ન 2(બ) [4 ગુણ]

Public blockchain ને તેના ફાયદા અને ગેરફાયદા સાથે સમજાવો.

જવાબ:

રેબલ: Public Blockchain વિશ્લેષણ

પાસું	વિગતો
વ્યાખ્યા	દરેકને ઉપલબ્ધ ખુલ્લું નેટવર્ક
ઉદાહરણો	Bitcoin, Ethereum

ફાયદા:

• પારદર્શિતા: બધા ટ્રાન્ઝેક્શન દેખાય છે

• વિકેન્દ્રીકરણ: કોઈ એક નિયંત્રણ નથી

• **સુરક્ષા**: ઘણા nodes ચકાસણી કરે છે

ગેરફાયદા:

• ઝડપ: ઘીમી ટ્રાન્ઝેક્શન પ્રોસેસિંગ

• **ઊર્જા**: વધુ વીજળી વપરાશ

• સ્કેલેબિલિટી: મર્યાદિત ટ્રાન્ઝેક્શન પ્રતિ સેકન્ડ

મેમરી ટ્રીક: "પારદર્શી પણ ધીમું" (PD)

પ્રશ્ન 2(ક) [7 ગુણ]

બ્લોકચેનના મુખ્ય ઘટકનું વર્ણન કરો.

જવાબ:

ડાયાગ્રામ: બ્લોકચેન રચના

ટેબલ: મુખ્ય ઘટકો

ยรร	รเน้	મહત્વ
Block	ટ્રાન્ઝેક્શન માટે કન્ટેનર	ડેટા સંગ્રહ
Hash	યુનિક ઓળખકર્તા	સુરક્ષા
Merkle Tree	ટ્રાન્ઝેક્શન સારાંશ	ચકાસણી
Nonce	Mining નંબર	Proof of work
Timestamp	સમય રેકોર્ડ	કાલક્રમિક ક્રમ
Previous Hash	પાછલા block ને લિંક	Chain અખંડિતતા

• અપરિવ**ર**્તનીયતા: ભૂતકાળના રેકોર્ડ બદલી શકાતા નથી

• પારદર્શિતા: બધો ડેટા દેખાય છે

• **સર્વસંમતિ**: નેટવર્ક વેદ્યતા પર સહમત થાય છે

મેમરી ટ્રીક: "Block Hash Merkle Nonce Time Previous" (BHMNTP)

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: SideChain

જવાબ:

ટેબલ: SideChain લક્ષણો

લક્ષણ	વર્ણન
લ્યાખ્યા	મુખ્ય chain સાથે જોડાયેલ અલગ blockchain
હેતુ	મુખ્ય blockchain ની કાર્યક્ષમતા વધારવી
જોડાણ	Two-way peg મિકેનિઝમ

• સ્કેલેબિલિટી: મુખ્ય chain નો લોડ ઘટાડે છે

• લવચીકતા: કસ્ટમ લક્ષણો શક્ય છે

• **સુરક્ષા**: મુખ્ય chain ની સુરક્ષા વારસામાં મળે છે

મેમરી ટ્રીક: "અલગ બાજુ વિસ્તરણ" (ABV)

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

Private blockchain ને તેના ફાયદા અને ગેરફાયદા સાથે સમજાવો.

જવાબ:

ટેબલ: Private Blockchain વિશ્લેષણ

પાસું	વિગતો	
વ્યાખ્યા	નિયંત્રિત પ્રવેશ સાથે પ્રતિબંધિત નેટવર્ક	
નિયંત્રણ	એક સંસ્થા સંચાલન કરે છે	

ફાયદા:

• ઝડપ: ઝડપી ટ્રાન્ઝેક્શન

• ગોપનીયતા: નિયંત્રિત ડેટા પ્રવેશ • કાર્યક્ષમતા: ઓછો ઊર્જા વપરાશ

• Compliance: નિયામક આવશ્યકતાઓ પૂરી કરે છે

ગેરકાયદા:

• કેન્દ્રીકરણ: એક બિંદુ નિયંત્રણ

• વિશ્વાસ: નિયંત્રક સંસ્થા પર આધાર

• મર્યાદિત: ઓછા સહભાગીઓ

મેમરી ટ્રીક: "ઝડપી ખાનગી નિયંત્રિત" (ZKN)

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

બ્લોકચેનનું ડેટા સ્ટ્રક્ચર સમજાવો.

જવાબ:

ડાયાગ્રામ: બ્લોકચેન ડેટા સ્ટ્રક્ચર

Block 1		Block 2		Block 3	
+	+ +	+	+ +		+
Previous Hash: 0	<	Previous Hash	<	Previous Hash	
Merkle Root		Merkle Root		Merkle Root	
Timestamp		Timestamp		Timestamp	
Nonce		Nonce		Nonce	
+	+ +	+	+ +		+
Transaction 1		Transaction 1		Transaction 1	
Transaction 2		Transaction 2		Transaction 2	
Transaction 3		Transaction 3		Transaction 3	
·	+ +		+ +		+

ટેબલ: ડેટા સ્ટ્રક્ચર તત્વો

તત્વ	હેતુ	8 E
Block Header	મેટાડેટા સમાવે છે	નિશ્ચિત કદ
Transaction List	વાસ્તવિક ડેટા	પરિવર્તનશીલ કદ
Hash Pointer	Blocks ને જોડે છે	256 bits
Merkle Tree	Transaction સારાંશ	Logarithmic

મુખ્ય લક્ષણો:

• **રેખીય રચના**: Blocks ક્રમમાં જોડાયેલા

• Hash લિંકિંગ: દરેક block પૂર્વનો સંદર્ભ આપે છે

• Merkle Trees: કાર્યક્ષમ transaction ચકાસણી

• અપરિવર્તનીય: શોધ્યા વિના સુધારો કરી શકાતો નથી

મેમરી ટ્રીક: "રેખીય Hash Merkle અપરિવર્તનીય" (RHMA)

પ્રશ્ન 3(અ) [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: બ્લોકચેનમાં Consensus Mechanism.

જવાબ:

วัผผ: Consensus Mechanism

પાસું	વર્ણન
હેતુ	નેટવર્ક સ્થિતિ પર સંમત થવું
જરૂરિયાત	ડબલ ખર્ચ અટકાવવો
પ્રકારો	PoW, PoS, DPoS

• **કરાર**: બધા nodes સંમત થવા જોઈએ

• વિકેન્દ્રીકરણ: કોઈ કેન્દ્રીય સત્તા નથી

• સુરક્ષા: દુષ્ટ પ્રવૃત્તિઓ અટકાવે છે

મેમરી ટ્રીક: "કરાર અટકાવે સુરક્ષા" (KAS)

પ્રશ્ન 3(બ) [4 ગુણ]

બ્લોકચેનમાં Hard Fork અને Soft Fork ની સરખામણી કરો.

જવાબ:

ટેબલ: Fork સરખામણી

લક્ષણ	Hard Fork	Soft Fork
સુસંગતતા	બેકવર્ડ સુસંગત નથી	બેકવર્ડ સુસંગત છે
નિયમો	નવા નિયમો બનાવે છે	હાલના નિયમો કડક કરે છે
અપગ્રેડ	બધા nodes અપગ્રેડ કરવા જોઈએ	વૈકલ્પિક અપગ્રેડ
પરિણામ	બે અલગ chains	એક chain ચાલુ રહે છે
ઉદાહરણ	Ethereum થી Ethereum Classic	Bitcoin SegWit

મુખ્ય તફાવતો:

• Hard Fork: બ્લોકચેનમાં કાયમી વિભાજન

• **Soft Fork**: અસ્થાયી પ્રતિબંધ જે કાયમી બને છે

મેમરી ટ્રીક: "Hard વિભાજિત કરે, Soft પ્રતિબંધિત કરે" (HVSP)

પ્રશ્ન 3(ક) [7 ગુણ]

Proof of Work શું છે? તે કેવી રીતે કામ કરે છે? ઉદાહરણ સાથે સમજાવો.

જવાબ:

ડાયાગ્રામ: Proof of Work પ્રક્રિયા

ટેબલ: PoW ઘટકો

ยรร	รเช่	ઉદાહરણ
Hash Function	યુનિક ફિંગરપ્રિન્ટ બનાવે છે	SHA-256
Nonce	Hash બદલવા માટે રેન્ડમ નંબર	12345
કઠિનાઈ	જરૂરી શૂન્યોની સંખ્યા	4 શૂન્ચ
Mining	કમ્પ્યુટિંગ પ્રક્રિયા	Bitcoin mining

કાર્ય પ્રક્રિયા:

- 1. બાકી transactions એકત્રિત કરો
- 2. Transactions સાથે block બનાવો
- 3. વિવિધ nonce વેલ્યુ કોશિશ કરો
- 4. વારંવાર hash ગણો
- 5. જરૂરી શૂન્યો સાથે hash શોધો
- 6. માન્ય block નેટવર્ક પર પ્રસારિત કરો

Bitcoin ઉદાહરણ:

• **લક્ષ્ય**: Hash ચોક્કસ શૂન્યથી શરૂ થવો જોઈએ

• **સમય**: ~10 મિનિટ પ્રતિ block

• **પુરસ્કાર**: 6.25 BTC (2024 મુજબ)

મેમરી ટ્રીક: "કોશિશ ગણતરી શૂન્ય સુધી" (KGSS)

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: બ્લોકચેનમાં Block Rewards.

જવાબ:

ટેબલ: Block Rewards

લક્ષણ	વર્ણન
હેતુ	Miners ને પ્રોત્સાહન આપવા
ઘટકો	Block reward + transaction fees
Bitcoin	50 BTC થી શરૂ, દર 4 વર્ષે અડધું

• પ્રેરણા: નેટવર્ક સહભાગિતાને પ્રોત્સાહન આપે છે

• અડધું કરવું: સમય સાથે કુગાવો ઘટાડે છે

• **ફી**: Miners માટે વધારાની આવક

મેમરી ટ્રીક: "Miners પ્રેરિત પૈસા" (MPP)

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

51% attack શું છે અને તે કેવી રીતે કાયર્ કરે છે?

જવાબ:

ટેબલ: 51% Attack વિશ્લેષણ

પાસું	વિગતો
વ્યાખ્યા	બહુમતી mining power નિયંત્રિત કરવું
મર્યાદા	50% થી વધુ નેટવર્ક hash rate
क्षभता	Transactions ઉલટાવી શકે છે
મર્યાદા	બીજાના coins ચોરી શકતો નથી

તે કેવી રીતે કામ કરે છે:

- 1. આક્રમણકારી બહુમતી mining power મેળવે છે
- 2. ખાનગી blockchain fork બનાવે છે
- 3. પ્રામાણિક નેટવર્ક કરતાં ઝડપથી mine કરે છે
- 4. નેટવર્ક પર લાંબી chain છોડે છે
- 5. નેટવર્ક લાંબી chain ને માન્ય તરીકે સ્વીકારે છે

પરિણામો:

- **ડબલ ખર્ચ**: સમાન coins બે વાર ખર્ચ કરવા
- Transaction ઉલટાવવા: પુષ્ટિ થયેલા transactions રદ કરવા
- નેટવર્ક વિશ્વાસ: બ્લોકચેનની વિશ્વસનીયતાને નુકસાન

મેમરી ટ્રીક: "બહુમતી નિયંત્રણ Chain" (BNC)

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

Proof of Stake શું છે? તે કેવી રીતે કામ કરે છે? ઉદાહરણ સાથે સમજાવો.

જવાબ:

ડાયાગ્રામ: Proof of Stake પ્રક્રિયા

ટેબલ: PoS vs PoW

લક્ષણ	Proof of Stake	Proof of Work
ଉର୍ଷ	ઓછો વપરાશ	વધુ વપરાશ
પસંદગી	Stake આધારિત	Computing power
હાર્ડવેર	સામાન્ય કમ્પ્યુટર	વિશેષ miners
ઝડપ	ઝડપી	ધીમી

કાર્ય પ્રક્રિયા:

- 1. Validators coins stake તરીકે લોક કરે છે
- 2. Algorithm રેન્ડમ validator પસંદ કરે છે
- 3. પસંદગીની સંભાવના stake કદ પર આધારીત
- 4. પસંદ થયેલ validator block સૂચવે છે
- 5. અન્ય validators ચકાસણી કરે અને મત આપે છે
- 6. પ્રામાણિક validators ને પુરસ્કાર વહેંચવામાં આવે છે

Ethereum ઉદાહરણ:

• **લઘુત્તમ Stake**: 32 ETH જરૂરી

• **દંડ**: દુષ્ટ વર્તન માટે slashing

• પુરસ્કાર: વાર્ષિક ટકાવારી આવક

મુખ્ય ફાયદા:

• **ઊર્જા કાર્યક્ષમ**: કોઈ સઘન mining નથી

• **આર્થિક સુરક્ષા**: અપ્રામાણિક હોય તો validators stake ગુમાવે છે

• સ્કેલેબિલિટી: ઝડપી transaction પ્રોસેસિંગ

મેમરી ટ્રીક: "Stake પસંદ Validate પુરસ્કાર" (SPVP)

પ્રશ્ન 4(અ) [3 ગુણ]

Byzantine Fault Tolerance નું વર્ણન કરો.

જવાબ:

ટેબલ: Byzantine Fault Tolerance

પાસું	વર્ણન
સમસ્યા	કેટલાક nodes દુષ્ટ રીતે વર્તે છે
સહનશીલતા	ખામીયુક્ત nodes છતાં સિસ્ટમ કામ કરે છે
આવશ્યકતા	1/3 થી ઓછા nodes ખામીયુક્ત હોઈ શકે છે

• **સર્વસંમતિ**: પ્રામાણિક nodes સંમત થવા જોઈએ

• પ્રતિકાર: નેટવર્ક હુમલાઓમાં ટકી રહે છે

• **ઉપયોગ**: બ્લોકચેન consensus માં વપરાય છે

મેમરી ટ્રીક: "ખામીયુક્ત Nodes સહન" (KNS)

પ્રશ્ન 4(બ) [4 ગુણ]

બ્લોકચેનમાં smart contract કેવી રીતે કામ કરે છે?

જવાબ:

ડાયાગ્રામ: Smart Contract અમલીકરણ

કાર્ય પ્રક્રિયા:

• નિર્માણ: Developer contract code લખે છે

• **Deployment**: Contract બ્લોકચેન પર સંગ્રહિત થાય છે

• Trigger: બાહ્ય ઘટના contract સક્રિય કરે છે

• અમલીકરણ: Code સ્વયાલિત રીતે ચાલે છે

• અપરિવર્તનીય: Deployment પછી બદલી શકાતું નથી

મુખ્ય લક્ષણો:

• સ્વ-અમલીકરણ: મધ્યસ્થીની જરૂર નથી

• **પારદર્શિતા**: Code બધાને દેખાય છે

• **ખર્ચ-અસરકારક**: Transaction ખર્ચ ઘટાડે છે

મેમરી ટ્રીક: "Code સ્વચાલિત અમલ" (CSA)

પ્રશ્ન 4(ક) [7 ગુણ]

SHA-256 શું છે અને બ્લોકચેનમાં SHA-256 નો ઉપયોગ શું છે.

જવાબ:

ટેબલ: SHA-256 ગુણધર્મો

ગુણઘર્મ	นต์ฯ
પૂરું નામ	Secure Hash Algorithm 256-bit
આઉટપુટ	હંમેશા 256 bits (64 hex characters)
ઇનપુટ	કોઈ પણ કદનો ડેટા
у <mark>ह</mark> ित	એક-માર્ગીય function

ડાયાગ્રામ: બ્લોકચેનમાં SHA-256

બ્લોકરોનમાં ઉપયોગ:

1. Block Hashing: યુનિક block ઓળખકર્તા બનાવવા

2. Merkle Trees: બધા transactions નો સારાંશ આપવા

3. Proof of Work: Mining કઠિનતા લક્ષ્ય

4. Digital Signatures: સુરક્ષિત transaction હસ્તાક્ષર

5. Wallet Addresses: Bitcoin સરનામાં બનાવવા

મુખ્ય ગુણઘર્મો:

• નિર્ધાર્યવાદી: સમાન input = સમાન output

• Avalanche Effect: નાનો ફેરફાર = સંપૂર્ણ જુદો hash

• અનુલટાવી શકાય નહીં: Output થી input શોધી શકાતું નથી

• Collision પ્રતિરોધી: બે inputs ભાગ્યે જ સમાન hash

ઉદાહરણ:

• Input: "Hello World"

SHA-256: a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f146e

મેમરી ટ્રીક: "Hash ઓળખે સુરક્ષિત કરે સાબિત કરે" (HOSK)

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

Bitcoin અને eventual consistency સમજાવો.

જવાબ:

ટેબલ: Bitcoin Consistency

ખ્યાલ	વર્ણન
Eventual Consistency	બધા nodes આખરે સંમત થાય છે
અસ્થાયી Forks	અનેક માન્ય chains અસ્તિત્વ ધરાવે છે
бэ̀а	સૌથી લાંબી chain જીતે છે

• સમય વિલંબ: નેટવર્ક પ્રસારણમાં સમય લાગે છે

• **પુષ્ટિ**: વધુ blocks = વધુ નિશ્ચિતતા

• અંતિમતા: વ્યવહારિક રીતે અનુલટાવી શકાય તેવું બને છે

મેમરી ટ્રીક: "આખરે દરેક સંમત" (ADS)

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

બ્લોકચેનમાં smart contract ના પ્રકારોની ચર્ચા કરો.

જવાબ:

ટેબલ: Smart Contract પ્રકારો

รเรห	કાર્ય	ઉદાહરણ
કાનૂની Contract	કાનૂની રીતે બંધનકર્તા કરાર	Real estate ટ્રાન્સફર
Application Logic	Decentralized app functions	Token એક્સચેન્જ
Decentralized Autonomous	સ્વ-શાસિત સંસ્થાઓ	DAO મતદાન
Multi-signature	અનેક મંજૂરીઓ જરૂરી	Escrow સેવાઓ

મુખ્ય વર્ગો:

• નાણાકીય: પેમેન્ટ અને લેન્ડિંગ contracts

• વીમો: સ્વચાલિત દાવા પ્રોસેસિંગ

• Supply Chain: ઉત્પાદન અધિકૃતતા ટ્રેક કરવા

• **ગેમિંગ**: ગેમમાં asset મેનેજમેન્ટ

મેમરી ટ્રીક: "કાનૂની Logic સ્વાયત્ત બહુ" (KLSB)

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

Merkle Tree વ્યાખ્યાયિત કરો અને સમજાવો કે તે બ્લોકચેનમાં કેવી રીતે કાર્ય કરે છે.

જવાબ:

ડાયાગ્રામ: Merkle Tree રચના

રેબલ: Merkle Tree ફાયદા

ફાયદો	વર્ણન
કાર્યક્ષમતા	બધો ડેટા ડાઉનલોડ કર્યા વિના transactions ચકાસો
સુરક્ષા	કોઈ પણ ફેરફાર તરત શોધાય જાય છે
સ્કેલેબિલિટી	Logarithmic ચકાસણી સમય
સંગ્રહ	કોમ્પેક્ટ પ્રતિનિધિત્વ

કાર્ય પ્રક્રિયા:

1. **Hash Transactions**: દરેક transaction નો hash મેળવો

2. જોડી Hashing: નજીકના hashes ને મિલાવો

3. **પ્રક્રિયા પુનરાવર્તન**: એક root hash સુધી ચાલુ રાખો

4. **Root સંગ્રહ**: ફક્ત root block header માં સંગ્રહિત કરો

5. **ચકાસણી**: Root સુધીના path સાથે transaction સાબિત કરો

બ્લોકચેન ઉપયોગ:

• Block Header: Merkle root સમાવે છે

• SPV ચકાસણી: Light clients સંપૂર્ણ blockchain વિના ચકાસે છે

• **છેડછાડ શોધ**: કોઈ પણ ફેરફાર tree રચના તોડે છે

• કાર્યક્ષમ Sync: ફક્ત જરૂરી ભાગો ડાઉનલોડ કરો

Bitcoin ઉદાહરણ:

• Block હજારો transactions સમાવે છે

• ફક્ત 32-byte Merkle root header માં સંગ્રહિત

• ~10 hashes સાથે કોઈ પણ transaction ચકાસી શકાય

મેમરી ટ્રીક: "Tree ગોઠવે ચકાસે કાર્યક્ષમ રીતે" (TGCK)

પ્રશ્ન 5(અ) [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: Bitcoin Scripting

જવાબ:

રેબલ: Bitcoin Scripting

લક્ષણ	વર્ણન
ભાષા	Stack-based programming લાષા
હેતુ	ખર્ચની શરતો વ્યાખ્યાયિત કરવી
અમલીકરણ	Coins ખર્ચ કરવામાં આવે ત્યારે ચાલે છે

• સરળ: ફક્ત મૂળભૂત operations

• સુરક્ષિત: મર્યાદિત કાર્યક્ષમતા દુરુપયોગ અટકાવે છે

• **લવચીક**: વિવિધ transaction પ્રકારો શક્ય છે

મેમરી ટ્રીક: "Stack વ્યાખ્યા ખર્ચ" (SVK)

પ્રશ્ન 5(બ) [4 ગુણ]

બ્લોકચેનમાં Decentralized Applications (dApps) સમજાવો અને તે કેવી રીતે કાર્ય કરે છે?

જવાબ:

ડેબલ: dApp ઘટકો

ยรร	รเช็
Frontend	User interface
Backend	Blockchain પર smart contracts
Storage	Decentralized storage systems
Network	Peer-to-peer communication

કાર્ય પ્રક્રિયા:

- 1. User web interface સાથે ક્રિયા કરે છે
- 2. Frontend બ્લોકચેન સાથે જોડાય છે
- 3. Smart contracts બિઝનેસ logic અમલ કરે છે
- 4. પરિણામો બ્લોકચેન પર સંગ્રહિત થાય છે
- 5. અપડેટ્સ સમગ્ર નેટવર્કમાં પ્રતિબિંબિત થાય છે

મુખ્ય લક્ષણો:

• કોઈ કેન્દ્રીય સર્વર નથી: વિતરિત નેટવર્ક પર ચાલે છે

• Open Source: Code જાહેરમાં ઉપલબ્ધ છે

• સ્વાયત્ત: કંપની નિયંત્રણ વિના કામ કરે છે

મેમરી ટ્રીક: "વિકેન્દ્રીત Apps દરેક જગ્યાએ ચાલે" (VADJ)

પ્રશ્ન 5(ક) [7 ગુણ]

Hyperledger ને તેના ફાયદા અને ગેરફાયદા સાથે સમજાવો.

જવાબ:

ટેબલ: Hyperledger ઝાંખી

પાસું	นต์ส	
явіє	Private/Consortium blockchain platform	
વિકાસકર્તાં	Linux Foundation	
લક્ષ્ય	Enterprise applications	
Consensus	Pluggable consensus mechanisms	

ડાયાગ્રામ: Hyperledger આર્કિટેક્ચર

ફાયદા:

• પ્રદર્શન: ઉચ્ચ transaction throughput

• **ગોપનીયતા**: ગુપ્ત transactions

• **મોક્યુલર**: Pluggable components

• ગવર્નન્સ: નિયંત્રિત નેટવર્ક પ્રવેશ

• Compliance: નિયામક આવશ્યકતાઓ પૂરી કરે છે

ગેરફાયદા:

• કેન્દ્રીકરણ: સંપૂર્ણ વિકેન્દ્રીકૃત નથી

• જટિલતા: સેટ કરવું મુશ્કેલ છે

• Vendor Lock-in: પ્લેટફોર્મ નિર્ભરતા

• મર્યાદિત પારદર્શિતા: ખાનગી નેટવર્ક

• พย์: พ่โยู่ infrastructure

ઉપયોગના કિસ્સાઓ:

• Supply chain management

• Trade finance

• Healthcare records

• Identity management

મેમરી ટ્રીક: "ખાનગી પ્રદર્શન Enterprise" (KPE)

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

આના પર ટૂંકી નોંધ લખો: Bitcoin Mining

જવાબ:

રેબલ: Bitcoin Mining

પાસું	વર્ણન
હેતુ	Transactions ચકાસણી અને blocks બનાવવા
પ્રક્રિયા	Cryptographic પઝલ હલ કરવા
પુરસ્કાર	BTC + transaction fees

• **હાર્ડવેર**: વિશિષ્ટ ASIC miners

• ઊર્જા : ઉચ્ચ વીજળી વપરાશ

• સ્પર્ધા: વૈશ્વિક mining pools સ્પર્ધા કરે છે

મેમરી ટ્રીક: "ચકાસણી હલ પુરસ્કાર" (CHP)

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

આના પર ટૂંકી નોંધ લખો: Decentralized Autonomous Organization (DAO)

જવાબ:

ટેબલ: DAO લક્ષણો

લક્ષણ	વર્ણન	
ગવર્નન્સ	સમુદાય-સંચાલિત નિર્ણયો	
મતદાન	Token-આધારિત મતદાન અધિકારો	
સ્વચાલન	Smart contracts નિર્ણયો અમલ કરે છે	
પારદર્શિતા	બધી પ્રવૃત્તિઓ બ્લોકચેન પર	

મુખ્ય લાક્ષણિકતાઓ:

• **કોઈ કેન્દ્રીય સત્તા નથી**: સમુદાય નિયંત્રિત

• Token માલિકી: Tokens આધારે મતદાન શક્તિ

• પ્રસ્તાવ સિસ્ટમ: સભ્યો ફેરફારો સૂચવે છે

• સ્વચાલિત અમલીકરણ: મંજૂર પ્રસ્તાવો સ્વચાલિત અમલ થાય છે

ઉદાહરણો:

• MakerDAO (DeFi protocol)

• Uniswap (Decentralized exchange)

• Aragon (DAO infrastructure)

પડકારો:

• ગવર્નન્સ સમસ્યાઓ: ઓછી મતદારોની સહભાગિતા

• **કાનૂની સ્થિતિ**: નિયામક અનિશ્ચિતતા

મેમરી ટ્રીક: "સમુદાય મત આપે સ્વચાલિત" (SMS)

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

ERC-20 ને તેના ફાયદા અને ગેરફાયદા સાથે સમજાવો

જવાબ:

ટેબલ: ERC-20 Standard

પાસું	นต์า	
પૂરું નામ	Ethereum Request for Comments 20	
уѕіг	Ethereum પર token standard	
Functions	માનકીકૃત token operations	
સુસંગતતા	બધા Ethereum wallets સાથે કામ કરે છે	

ડાયાગ્રામ: ERC-20 Token Flow

જરૂરી Functions:

Function	હેતુ
totalSupply()	કુલ token supply પરત કરે
balanceOf()	Account balance ચકાસે
transfer()	Address પર tokens મોકલે
approve()	વતી ખર્ચની મંજૂરી આપે
transferFrom()	મંજૂર tokens ટ્રાન્સફર કરે
allowance()	મંજૂર રકમ થકાસે

ફાયદા:

- માનકીકરણ: બધા tokens માટે એકસમાન interface
- Interoperability: કોઈ પણ Ethereum wallet/exchange સાથે કામ કરે છે
- **સહેલું Integration**: Developers માટે અમલ કરવું સરળ
- **Liquidity**: Decentralized exchanges પર ટ્રેડ કરી શકાય છે
- Smart Contract: Programmable પૈસાના લક્ષણો
- વૈશ્વિક પ્રવેશ: દુનિયાભરમાં 24/7 ઉપલબ્ધ

ગેરફાયદા:

- Gas Fees: Ethereum transaction ษย์
- સ્કેલેબિલિટી: નેટવર્ક congestion સમસ્યાઓ
- **લવચીકતા**: નવા standards કરતાં મર્યાદિત
- सुरक्षा: Smart contract vulnerabilities
- જટિલતા: તકનીકી જ્ઞાન જરૂરી
- નિયામક: અસ્પષ્ટ કાનૂની સ્થિતિ

ผโรหิย ERC-20 Tokens:

- USDT (Tether)
- LINK (Chainlink)
- UNI (Uniswap)

મેમરી ટ્રીક: "Standard Tokens Trade Everywhere" (STTE)