Probability Theory

"A random variable is neither random nor variable."

Gian-Carlo Rota, M.I.T..

Florian Herzog

2013

Probability space

Probability space

A probability space W is a unique triple $W = \{\Omega, \mathcal{F}, P\}$:

- ullet Ω is its sample space
- \mathcal{F} its σ -algebra of events
- P its probability measure

Remarks: (1) The sample space Ω is the set of all possible samples or elementary events ω : $\Omega = \{\omega \mid \omega \in \Omega\}$.

- (2)The σ -algebra \mathcal{F} is the set of all of the considered events A, i.e., subsets of Ω : $\mathcal{F} = \{A \mid A \subseteq \Omega, A \in \mathcal{F}\}.$
- (3) The probability measure P assigns a probability P(A) to every event $A \in \mathcal{F} \colon P : \mathcal{F} \to [0,1].$

Sample space

The sample space Ω is sometimes called the universe of all samples or possible outcomes ω .

Example 1. Sample space

- Toss of a coin (with head and tail): $\Omega = \{H, T\}$.
- Two tosses of a coin: $\Omega = \{HH, HT, TH, TT\}$.
- A cubic die: $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$.
- The positive integers: $\Omega = \{1, 2, 3, \dots\}$.
- The reals: $\Omega = \{ \omega \mid \omega \in \mathbb{R} \}$.

Note that the ω s are a mathematical construct and have per se no real or scientific meaning. The ω s in the die example refer to the numbers of dots observed when the die is thrown.

Event

An event A is a subset of Ω . If the outcome ω of the experiment is in the subset A, then the event A is said to have occurred. The set of all subsets of the sample space are denoted by 2^{Ω} .

Example 2. Events

- Head in the coin toss: $A = \{H\}$.
- Odd number in the roll of a die: $A = \{\omega_1, \omega_3, \omega_5\}$.
- An integer smaller than 5: $A = \{1, 2, 3, 4\}$, where $\Omega = \{1, 2, 3, ...\}$.
- A real number between 0 and 1: A = [0, 1], where $\Omega = \{\omega \mid \omega \in \mathbb{R}\}$.

We denote the complementary event of A by $A^c = \Omega \setminus A$. When it is possible to determine whether an event A has occurred or not, we must also be able to determine whether A^c has occurred or not.

Probability Measure I

Definition 1. Probability measure

A probability measure P on the countable sample space Ω is a set function

$$P: \mathcal{F} \to [0,1],$$

satisfying the following conditions

- $P(\Omega) = 1$.
- $\bullet \ P(\omega_i) = p_i.$
- If $A_1, A_2, A_3, ... \in \mathcal{F}$ are mutually disjoint, then

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i).$$

Probability

The story so far:

- Sample space: $\Omega = \{\omega_1, \ldots, \omega_n\}$, finite!
- ullet Events: $\mathcal{F}=2^\Omega$: All subsets of Ω
- Probability: $P(\omega_i) = p_i \quad \Rightarrow \quad P(A \in \Omega) = \sum_{w_i \in A} p_i$

Probability axioms of Kolmogorov (1931) for elementary probability:

- $P(\Omega) = 1$.
- If $A \in \Omega$ then $P(A) \geq 0$.
- ullet If $A_1,A_2,A_3,...\in\Omega$ are mutually disjoint, then

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i).$$

Uncountable sample spaces

Most important uncountable sample space for engineering: \mathbb{R} , resp. \mathbb{R}^n .

Consider the example $\Omega = [0, 1]$, every ω is equally "likely".

- Obviously, $P(\omega) = 0$.
- Intuitively, P([0, a]) = a, basic concept: **length**!

Question: Has every subset of [0, 1] a determinable length?

Answer: No! (e.g. Vitali sets, Banach-Tarski paradox)

Question: Is this of importance in practice?

Answer: No!

Question: Does it matter for the underlying theory?

Answer: A lot!

Fundamental mathematical tools

Not every subset of [0,1] has a determinable length \Rightarrow collect the ones with a determinable length in \mathcal{F} . Such a mathematical construct, which has additional, desirable properties, is called σ -algebra.

Definition 2. σ -algebra

A collection $\mathcal F$ of subsets of Ω is called a σ -algebra on Ω if

- $\Omega \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$ (\emptyset denotes the empty set)
- If $A \in \mathcal{F}$ then $\Omega \backslash A = A^c \in \mathcal{F}$: The complementary subset of A is also in Ω
- For all $A_i \in \mathcal{F}$: $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

The intuition behind it: collect all events in the σ -algebra \mathcal{F} , make sure that by performing countably many elementary set operation $(\cup, \cap, ^c)$ on elements of \mathcal{F} yields again an element in \mathcal{F} (closeness).

The pair $\{\Omega, \mathcal{F}\}$ is called *measure space*.

Example of σ **-algebra**

Example 3. σ -algebra of two coin-tosses

- $\Omega = \{HH, HT, TH, TT\} = \{\omega_1, \omega_2, \omega_3, \omega_4\}$
- $\mathcal{F}_{min} = \{\emptyset, \Omega\} = \{\emptyset, \{\omega_1, \omega_2, \omega_3, \omega_4\}\}.$
- $\mathcal{F}_1 = \{\emptyset, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \{\omega_1, \omega_2, \omega_3, \omega_4\}\}.$
- $\mathcal{F}_{max} = \{\emptyset, \{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \{\omega_4\}, \{\omega_1, \omega_2\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_4\}, \{\omega_2, \omega_3\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_4\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_1, \omega_3, \omega_4\}, \{\omega_2, \omega_3, \omega_4\}, \Omega\}.$

Borel σ -algebra

The Borel σ -algebra includes all subsets of \mathbb{R} which are of interest in practical applications (scientific or engineering).

Definition 4. Borel σ -algebra $\mathcal{B}(\mathbb{R})$

The Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra containing all open intervals in \mathbb{R} . The sets in $\mathcal{B}(\mathbb{R})$ are called Borel sets. The extension to the multi-dimensional case, $\mathcal{B}(\mathbb{R}^n)$, is straightforward.

- \bullet $(-\infty, a)$, (b, ∞) , $(-\infty, a) \cup (b, \infty)$
- $[a,b] = \overline{(-\infty,a) \cup (b,\infty)}$,
- $(-\infty,a]=\bigcup_{n=1}^{\infty}[a-n,a]$ and $[b,\infty)=\bigcup_{n=1}^{\infty}[b,b+n]$,
- $(a,b] = (-\infty,b] \cap (a,\infty)$,
- $\bullet \{a\} = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, a + \frac{1}{n}),$
- $\bullet \{a_1,\cdots,a_n\}=\bigcup_{k=1}^n a_k.$

Measure

Definition 5. Measure

Let \mathcal{F} be the σ -algebra of Ω and therefore (Ω, \mathcal{F}) be a measurable space. The map

$$\mu: \mathcal{F} \to [0, \infty]$$

is called a measure on (Ω, \mathcal{F}) if μ is countably additive. The measure μ is countably additive (or σ -additive) if $\mu(\emptyset) = 0$ and for every sequence of disjoint sets $(F_i : i \in \mathbb{N})$ in \mathcal{F} with $F = \bigcup_{i \in \mathbb{N}} F_i$ we have

$$\mu(F) = \sum_{i \in \mathbb{N}} \mu(F_i).$$

If μ is countably additive, it is also additive, meaning for every $F,G\in\mathcal{F}$ we have

$$\mu(F \cup G) = \mu(F) + \mu(G)$$
 if and only if $F \cap G = \emptyset$

The triple $(\Omega, \mathcal{F}, \mu)$ is called a *measure space*.

Lebesgue Measure

The measure of length on the straight line is known as the Lebesgue measure.

Definition 6. Lebesgue measure on $\mathcal{B}(\mathbb{R})$

The Lebesgue measure on $\mathcal{B}(\mathbb{R})$, denoted by λ , is defined as the measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which assigns the measure of each interval to be its length.

Examples:

- Lebesgue measure of one point: $\lambda(\{a\}) = 0$.
- Lebesgue measure of countably many points: $\lambda(A) = \sum_{i=1}^{\infty} \lambda(\{a_i\}) = 0$.
- The Lebesgue measure of a set containing uncountably many points:
 - zero
 - positive and finite
 - infinite

Probability Measure

Definition 7. Probability measure

A probability measure P on the sample space Ω with σ -algebra $\mathcal F$ is a set function

$$P: \mathcal{F} \to [0,1],$$

satisfying the following conditions

- $\bullet \ P(\Omega) = 1.$
- If $A \in \mathcal{F}$ then $P(A) \geq 0$.
- If $A_1, A_2, A_3, ... \in \mathcal{F}$ are mutually disjoint, then

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i).$$

The triple (Ω, \mathcal{F}, P) is called a *probability space*.

Lebesgue integral I

Definition 9. Lebesgue Integral

 (Ω, \mathcal{F}) a measure space, $\mu: \Omega \to \mathbb{R}$ a measure, $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable.

• If f is a simple function, i.e., $f(x) = c_i$, for all $x \in A_i$, $c_i \in \mathbb{R}$

$$\int_{\Omega} f d\mu = \sum_{i=1}^{n} c_i \mu(A_i).$$

• If f is nonnegative, we can always construct a sequence of simple functions f_n with $f_n(x) \leq f_{n+1}(x)$ which converges to $f: \lim_{n\to\infty} f_n(x) = f(x)$. With this sequence, the Lebesgue integral is defined by

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Lebesgue integral II

Definition 10. Lebesgue Integral

 (Ω, \mathcal{F}) a measure space, $\mu: \Omega \to \mathbb{R}$ a measure, $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable.

• If f is an arbitrary, measurable function, we have $f = f^+ - f^-$ with

$$f^{+}(x) = max(f(x), 0)$$
 and $f^{-}(x) = max(-f(x), 0),$

and then define

$$\int_{\Omega} f d\mu = \int_{\Omega} f^{+} dP - \int_{\Omega} f^{-} dP.$$

The integral above may be finite or infinite. It is not defined if $\int_{\Omega} f^+ dP$ and $\int_{\Omega} f^- dP$ are both infinite.

Riemann vs. Lebesgue

The most important concept of the Lebesgue integral is that the **limit of** approximate sums (as the Riemann integral): for $\Omega = \mathbb{R}$:

Riemann vs. Lebesgue integral

Theorem 1. Riemann-Lebesgue integral equivalence

Let f be a bounded and continuous function on $[x_1, x_2]$ except at a countable number of points in $[x_1, x_2]$. Then both the Riemann and the Lebesgue integral with Lebesgue measure μ exist and are the same:

$$\int_{x_1}^{x_2} f(x) \ dx = \int_{[x_1, x_2]} f d\mu.$$

There are more functions which are Lebesgue integrable than Riemann integrable.

Random Variable

Definition 11. Random variable

A real-valued random variable X is a \mathcal{F} -measurable function defined on a probability space (Ω, \mathcal{F}, P) mapping its sample space Ω into the real line \mathbb{R} :

$$X:\Omega\to\mathbb{R}.$$

Since X is \mathcal{F} -measurable we have $X^{-1}: \mathcal{B} \to \mathcal{F}$.

Density function

Closely related to the distribution function is the density function. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be a nonnegative function, satisfying $\int_{\mathbb{R}} f d\lambda = 1$. The function f is called a density function (with respect to the Lebesgue measure) and the associated probability measure for a random variable X, defined on (Ω, \mathcal{F}, P) , is

$$P(\{\omega : \omega \in A\}) = \int_A f d\lambda.$$

for all $A \in \mathcal{F}$.

Important Densities I

• Poisson density or probability mass function $(\lambda > 0)$:

$$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$
 , $x = 0, 1, 2, ...$

Univariate Normal density

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)}$$

. The normal variable is abbreviated as $\mathcal{N}(\mu, \sigma)$.

• Multivariate normal density $(x, \mu \in \mathbb{R}^n; \Sigma \in \mathbb{R}^{n \times n})$:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$
.

Important Densities II

• Univariate student t-density ν degrees of freedom $(x, \mu \in \mathbb{R}^1; \sigma \in \mathbb{R}^1)$

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu\sigma}} \left(1 + \frac{1}{\nu} \frac{(x-\mu)^2}{\sigma^2}\right)^{-\frac{1}{2}(\nu+1)}$$

• Multivariate student t-density with ν degrees of freedom $(x, \mu \in \mathbb{R}^n; \Sigma \in \mathbb{R}^{n \times n})$:

$$f(x) = \frac{\Gamma(\frac{\nu+n}{2})}{\Gamma(\frac{\nu}{2})\sqrt{(\pi\nu)^n \det(\Sigma)}} \left(1 + \frac{1}{\nu}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)^{-\frac{1}{2}(\nu+n)}.$$

Important Densities II

ullet The chi square distribution with degree-of-freedom (dof) n has the following density

$$f(x) = \frac{e^{-\frac{x}{2} \left(\frac{x}{2}\right)^{\frac{n-2}{2}}}}{2\Gamma(\frac{n}{2})}$$

which is abreviated as $Z \sim \chi^2(n)$ and where Γ denotes the gamma function.

• A chi square distributed random variable Y is created by

$$Y = \sum_{i=1}^{n} X_i^2$$

where X are independent standard normal distributed random variables $\mathcal{N}(0,1).$

Important Densities III

ullet A standard student-t distributed random variable Y is generated by

$$Y = \frac{X}{\sqrt{\frac{Z}{\nu}}},$$

where $X \sim \mathcal{N}(0,1)$ and $Z \sim \chi^2(\nu)$.

• Another important density is the Laplace distribution:

$$p(x) = \frac{1}{2\sigma} e^{-\frac{|x-\mu|}{\sigma}}$$

with mean μ and diffusion σ . The variance of this distribution is given as $2\sigma^2$.

Expectation & Variance

Definition 13. Expectation of a random variable

The expectation of a random variable X, defined on a probability space (Ω, \mathcal{F}, P) , is defined by:

$$E[X] = \int_{\Omega} X dP = \int_{\Omega} x f d\lambda.$$

With this definition at hand, it does not matter what the sample Ω is. The calculations for the two familiar cases of a finite Ω and $\Omega \equiv \mathbb{R}$ with continuous random variables remain the same.

Definition 14. Variance of a random variable

The variance of a random variable X, defined on a probability space (Ω, \mathcal{F}, P) , is defined by:

$${\rm var}(X) = E[(X-E[X])^2] = \int_{\Omega} (X-E[X])^2 dP = E[X^2] - E[X]^2.$$

Normally distributed random variables

The shorthand notation $X \sim \mathcal{N}(\mu, \sigma^2)$ for normally distributed random variables with parameters μ and σ is often found in the literature. The following properties are useful when dealing with normally distributed random variables:

- If $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.
- If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$) and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$) then $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ (if X_1 and X_2 are independent)

Conditional Expectation I

From elementary probability theory (Bayes rule):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$
 , $P(B) > 0$.

$$E(X|B) = \frac{E(XI_B)}{P(B)} \quad , \quad P(B) > 0.$$

Summary

- ullet σ -algebra: collection of the events of interest, closed under elementary set operations
- Borel σ -algebra: all the events of practical importance in $\mathbb R$
- Lebesgue measure: defined as the length of an interval
- Density: transforms Lebesgue measure in a probability measure
- Measurable function: the σ -algebra of the probability space is "rich" enough
- Random variable X: a measurable function $X: \Omega \mapsto \mathbb{R}$
- Expectation, Variance
- Conditional expectation is a piecewise linear approximation of the underlying random variable.