Aileron Left

Fig. 9. Linear relation between exerted roll moment and command to the left aileron at different windspeeds

Fig. 11. Trigonometric relation between skew and roll moment exerted by the left aileron at different pwm command values

Fig. 13. Quadratic relation between windspeed and roll moment exerted by the left aileron at different pwm command values

Aileron Right

Fig. 10. Linear relation between exerted roll moment and command to the right aileron at different windspeeds

Fig. 12. Trigonometric relation between skew and roll moment exerted by the right aileron at different pwm command values

Fig. 14. Quadratic relation between windspeed and roll moment exerted by the right aileron at different pwm command values

Aileron Left

Fig. 15. Linear relation between exerted pitch moment and command to the left aileron at different windspeeds

Fig. 17. Trigonometric relation between skew and pitch moment exerted by the left aileron at different pwm command values

Fig. 19. Quadratic relation between windspeed and pitch moment exerted by the left aileron at different pwm command values

Aileron Right

Fig. 16. Linear relation between exerted pitch moment and command to the right aileron at different windspeeds

Fig. 18. Trigonometric relation between skew and pitch moment exerted by the right aileron at different pwm command values

Fig. 20. Quadratic relation between windspeed and pitch moment exerted by the right aileron at different pwm command values

Elevator

Fig. 21. Linear relation between exerted pitch moment and command to the elevator at different windspeeds

Fig. 23. Trigonometric relation between skew and pitch moment exerted by the elevator at different pwm command values

Fig. 25. Quadratic relation between windspeed and pitch moment exerted by the elevator at different pwm command values

Rudder

Fig. 22. Linear relation between exerted yaw moment and command to the rudder at different windspeeds

Fig. 24. Trigonometric relation between skew and yaw moment exerted by the rudder at different pwm command values

Fig. 26. Quadratic relation between windspeed and yaw moment exerted by the rudder at different pwm command values

Algorithm 1: Maximum Roll Moment Optimization

Optimization variables:

$$\boldsymbol{\omega} = \left[\begin{array}{cc} \omega_0 \; \omega_1 \; \omega_2 \; \omega_3 \end{array} \right]^T$$
$$\boldsymbol{\delta} = \left[\begin{array}{cc} \delta_{\rm al} \; \delta_{\rm ar} \; \delta_{\rm el} \; \delta_{\rm ru} \end{array} \right]^T$$

Cost function:

$$\max_{\boldsymbol{\omega},\boldsymbol{\delta}} \ C(\boldsymbol{\omega},\boldsymbol{\delta}) = M_{c_{mot}}(1,:)\boldsymbol{\omega} + M_{c_{as}}(1,:)\boldsymbol{\delta}$$

Constraints:

$$\omega_{min} \leq \boldsymbol{\omega} \leq \omega_{max}$$

$$\delta_{min} \leq \boldsymbol{\delta} \leq \delta_{max}$$

$$M_{c_{mot}}(2,:)\boldsymbol{\omega} + M_{c_{as}}(2,:)\boldsymbol{\delta} = 0$$

$$M_{c_{mot}}(3,:)\boldsymbol{\omega} + M_{c_{as}}(3,:)\boldsymbol{\delta} = 0$$

$$\sum_{i=0}^{3} T_{i}(\omega_{i}) + L(\theta,\Lambda,v) \geq m g$$