Estadística Inferencial

Capítulo VIII - Ejercicio 20

Aaric Llerena Medina

Un proceso para llenar cerveza en botellas de 620 ml. sufre una pérdida en el contenido que tiene una media de 5 ml. y una desviación estándar de 1.2 ml. Se escogen al azar 36 de tales botellas. Si la media de la muestra está entre 4.5 y 5.5 ml. se acepta que $\mu = 5$ ml., en caso contrario; se rechaza que $\mu = 5$. ¿Cuál es la probabilidad de aceptar que $\mu = 5$ cuando realmente es $\mu = 4.8$?

Solución:

La cantidad de cerveza en las botellas se distribuye con una media de 4.8 ml y una desviación estándar de 1.2 ml. Por ello, la media muestral \bar{X} sigue una distribución normal, tal que:

• Media Muestral: $\mu_{\bar{X}} = \mu = 4.8$

■ Desviación Estándar Muestral:
$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{1.2}{\sqrt{36}} = \frac{1.2}{6} = 0.2$$

La media muestral \bar{X} de una muestra de 36 botellas se distribuye como $X \sim N$ (4.8, 0.2²).

Se debe encontrar la probabilidad de que \bar{X} esté entre 4.5 y 5.5 ml, es decir: $P\left(4.5 \leq \bar{X} \leq 5.5\right)$.

Estandarizando los valores:

■ Para
$$\bar{X} = 4.5$$
:
$$Z = \frac{4.5 - 4.8}{0.2} = \frac{-0.3}{0.2} = -1.5$$

$$Z = \frac{5.5 - 4.8}{0.2} = \frac{0.7}{0.2} = 3.5$$

Usando la tabla de distribución normal:

Por lo tanto, la probabilidad es:

$$P(4.5 \le \bar{X} \le 5.5) = P(-1.5 \le Z \le 3.5)$$
$$= 0.9998 - 0.0668$$
$$= 0.9330$$

La probabilidad de aceptar que $\mu=5$ cuando realmente es $\mu=4.8$ ml es aproximadamente 0.9330.