In [8]:

```
import numpy as np
import pandas as pd
import scipy as sp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from sklearn.metrics import mean_squared_error
```

In [2]:

```
X_train = pd.read_csv("hw11t4v0_train.txt", sep="\t", header=None)
print X_train.shape
X_train.head()
```

(500, 10)

Out[2]:

	0	1	2	3	4	5	6	7	8	9
0	3.207	0.966	-0.047	-0.124	-0.283	0.409	-1.882	-3.760	-7.582	4.655
1	-0.110	0.063	0.082	0.127	-0.463	-0.253	-3.869	1.167	1.980	0.466
2	3.671	-1.043	-1.647	1.070	-0.075	-0.255	-0.952	-4.132	-2.808	1.147
3	0.191	-1.138	1.178	0.303	-0.969	-0.123	3.220	1.246	0.807	-0.068
4	3.141	1.167	0.250	-0.368	-0.735	0.389	-0.325	-2.166	-2.377	-0.970

In [3]:

```
X_test = pd.read_csv("hwllt4v0_test.txt", sep="\t", header=None)
print X_test.shape
X_test.head()
```

(50, 10)

Out[3]:

	0	1	2	3	4	5	6	7	8	9
0	0.806	-1.351	-0.086	-1.825	0.388	-0.407	3.451	-0.930	-1.653	0.510
1	3.776	2.515	0.003	0.484	0.608	0.603	0.365	-5.601	-6.973	0.422
2	1.745	3.112	0.015	0.049	0.253	0.189	3.222	-2.712	-1.468	-4.192
3	2.484	1.496	-1.907	0.209	0.022	0.395	-0.610	-1.474	-4.673	1.910
4	2.102	1.392	0.001	-0.055	-0.234	0.229	-2.110	-4.099	-2.209	-1.835

In [4]:

```
y_train = pd.read_csv("hw11t4v0_target.txt", sep="\t", header=None)
y_test = pd.read_csv("hw11t4v0_target_test.txt", sep="\t", header=None)
```

Изобразим проекции обучающей выборки на 1,2 и 3-х мерные пространства.

In [5]:

```
pca = PCA(n_components=3)
X_train_transformed = pca.fit_transform(X_train)

plt.close()
fig = plt.figure(figsize=(10,7))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(X_train_transformed[:,0], X_train_transformed[:,1], X_train_transformed[plt.show()
```


In [6]:

```
pca = PCA(n_components=2)
X_train_transformed = pca.fit_transform(X_train)
plt.scatter(X_train_transformed[:,0], X_train_transformed[:,1], c=y_train)
plt.show()
```


In [7]:

```
pca = PCA(n_components=1)
X_train_transformed = pca.fit_transform(X_train)
plt.scatter(X_train_transformed, X_train_transformed, c=y_train)
plt.show()
```


Видно, что линейным преобразованием признаков не получается выделить кластеры. Попробуем нелинейные преобразования.

In [9]:

```
tsne = TSNE(n_components=3)
X_train_transformed = tsne.fit_transform(X_train)

plt.close()
fig = plt.figure(figsize=(10,7))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(X_train_transformed[:,0], X_train_transformed[:,1], X_train_transformed[
plt.show()
```


In [10]:

```
tsne = TSNE(n_components=2)
X_train_transformed = tsne.fit_transform(X_train)
plt.scatter(X_train_transformed[:,0], X_train_transformed[:,1], c=y_train)
plt.show()
```


In [11]:

```
tsne = TSNE(n_components=1)
X_train_transformed = tsne.fit_transform(X_train)
plt.scatter(X_train_transformed, X_train_transformed, c=y_train)
plt.show()
```


Снова не видно кластеров.

Протестируем модель, обученную на исходной выборке.

In [12]:

```
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_predicted = regressor.predict(X_test)
print mean_squared_error(y_test, y_predicted)
```

22102138.8135

Протестируем модель, обученную на исходной выборке, подверженной уменьшению размерности при помощи РСА.

In [41]:

```
pca = PCA(n_components=2)
pca.fit(X_train)
regressor = LinearRegression()
regressor.fit(pca.transform(X_train), y_train)
y_predicted = regressor.predict(pca.transform(X_test))
print mean_squared_error(y_test, y_predicted)
```

21884276.8955

Чуть лучше.

Протестируем модель, обученную на исходной выборке, подверженной уменьшению размерности при помощи нелинейного преобразования TSNE.