Assignment -4

1. a.
$$S = \{(x, x) \in \mathbb{R}^2 : x_2 > |x_1|\} : d(x,y) := \int_{\frac{\pi}{2}}^{\infty} (x_1 - y_1)^2 :$$

Let $h = x_2 - |x_1| > 0 :$
Choose $S = \frac{h}{2}$

Any point $(y, y) \in \mathcal{B}((x, x), g)$ satisfies.

$$\int (y_1 - x_1)^2 + (y_1 - x_2)^2 < 8$$

=> |y,-x, | < 8 and |y,-x, | < 8 To prove y, > /3/ 121 < (2-x1+1x1)

$$A^{J} \rightarrow x^{J} - g = (x^{J} - p) + \frac{J}{p} = (x^{J}) + \frac{J}{p}$$

Hence 2 is open

$$\mathbb{R}^2 \setminus S = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \leq |x_1|\}$$

Consider \$ ((x,x), 8); (x,x) \in \mathbb{R}^2 \sqrt{S} \tax, \in \mathbb{R}^+ This ball contains points from S. Hence B(x1,x2) contains the points (y1,y2) & B((x1,x1),8) where $y_2 \leq |y_1|$ and $y_2 > |y_1|$ $= \sum_{i=1}^{n} |y_i|^2 = \sum_$ => 2 is not closed.

b, Considex A: B((a, +8, a), 8); 8>0 (a, +8, a) ∈ S.

All possible volue of a stances of (y_1, y_2) from (Q_1, Q_2) ase (x - 8, x + 8) $\Rightarrow \exists (y_1, y_2) \text{ str}(d((y_1, y_2), (Q_1, Q_2)) < x + 8 =)(y_1, y_2) \notin S$ $\Rightarrow \land \Leftrightarrow S \Rightarrow S \text{ is not open.}$

 $\mathbb{R}^{1}/S := \{(x_{i},x_{i}) \in \mathbb{R}^{1}: (x_{i}-\alpha_{i})^{2} + (x_{i}-\alpha_{i})^{2} > x_{i}\}$ Using similar results (openness for i.) we can say that \mathbb{R}^{1}/S is open

. Deserb si 2 €

 $z := (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n) ; a_i, b_i \in \mathbb{R}, a_i < b_i$ $= \sum_{i=1}^n \{(x_i, x_i, \dots, x_n) : a_i \leq x_i < b_i \forall i = \{i, x_i, \dots, x_n\} \}$

e, $S = \{(x_1, x_2, ..., x_n): x_1^2 + x_2^2 + ... + x_n^2 = 1\}$; $x' = (x_1, x_2, ..., x_n)$ Any spen ball $A = \{x', 8\} [x' \in S]$ contains points with $d(y_1, y_2, ..., y_n) \in A$, (0,0,0,...,0) can be > 0 < 1

points where d=1. Hence 2 is (1-8, 1+8) but 2 contains

 $\mathbb{R}^n / S = \{(x_1, x_2, ..., x_n) : x_1^n + x_2^n + x_2^n > 1 \text{ or } c \}$ Solving similar to it, opennent, \mathbb{R}^n / S is open =) S is closed.

To prove :- B = C

$$x \in B \Rightarrow x \in \bigcup \overline{A}$$
 $\Rightarrow x \in \overline{A}$ whose $A \in B$
 $\Rightarrow x \in \overline{A}$ whose $A \in B$
 $\Rightarrow x \in A \cup \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in A \text{ os } x \text{ is a binit point of } A$
 $x \in A \Rightarrow x \in \bigcup A \Rightarrow x \in \bigcup A$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{y: y: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of } A\}$
 $Cox.T: x \in \{a: a \text{ binit point of }$

If x = x + y is a bod above [A + x + x] = x + y.

A(x,y):= $|x - y| + x + y \in \mathbb{R}$ To prove:- sup $A \in A$ $A = A \cup \{y : y \text{ is a limit point of } A\}$ Let $x = x + y \in A$ $A = A \cup \{y : y \text{ is a limit point of } A\}$ Let $x = x + y \in A$

TL L ~ I A C A A L L A C A

 $x \in \tilde{A} \Rightarrow$

Case $I : - x \in A$

[kfotq timil on y : y] U A > x <=

ラ マモ | |

Case II:- x €A

To prove :- x is a limit point of A.

For any E>O, consider (x-E, x)

2-E is not an upper bound of A, by defin

rzo>3-x tz Aəof

=> a ∈ (x-8,3) nA and a+x [x \$A Lutoel

 \Rightarrow If $\beta(x, \varepsilon)$ is considered, it contains a

=> \$(x, E) ∩ A + Φ => x is a limit point

A 70

Thus $\overline{A} \cong A \oplus A$

atnical timil at ille anientes $X \cong A$, is, at a super in A/X -: super G

A/X=(3,x) \$ 12053 E 7; nage a A/X

 $\forall x \in X \setminus A$

A to third simil a ten as a ceApx ceApx ax

φ=An(3,x)& to 0<3 € (=

 \Rightarrow $B(x, \mathcal{E}) \in X \setminus A$

Since is asbitrary, such & exists & x eX/A

=) X/A is open

=> A is dowed.

is, To prove: Foch singleton in a metric space is a closed set. i.e., $\{x\}$ $\forall x \in X$ is closed. i.e., $\{x\}$ is open.

For any $y \in X \setminus \{x\}$, Fix, $E = \frac{d(x,y)}{2} > 0$ $y \neq x$ $\Rightarrow (y, \xi) = \{z: d(y, z) < \xi\}$ $d(x,y) \in d(x,z) + d(z,y)$ $\Rightarrow d(x,z) \Rightarrow d(x,y) - a(y,z)$ $\Rightarrow d(x,z) \Rightarrow d(x,y) - \epsilon$ $\Rightarrow d(x,z) \Rightarrow \epsilon$ $\Rightarrow d(x,z) \Rightarrow \epsilon$ $\Rightarrow x \neq z \Rightarrow z \in X \setminus \{x\} \quad \forall z \in B(y,\epsilon)$ $\Rightarrow x \neq z \Rightarrow X \setminus \{x\} \quad \forall y \in X \mid \{x\} \quad \forall y$

(Soof 2, :- $\frac{1}{2}$ closed $A \in X$ st $F = Y \cap A$ $\Rightarrow X \setminus A$ is open sel to X.

Let $U := X \setminus A$ U is open sel to X. $F = Y \cap A$ $Y \setminus F = Y \setminus Y \cap A$) $Y \setminus F = Y \setminus Y \cap A$ $Y \setminus F = Y \setminus Y \cap A$ $Y \setminus F = Y \setminus Y \cap A$ $Y \setminus Y \cap A = Y \cap X \cap X \cap A$ $Y \cap A = Y \cap X \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap X \cap A$ $Y \cap A = Y \cap$

⇒y ey nu

=> y E Y D(x/A)

1/6 = 1 UN

U is open sel to X

York is open selto Y

To closed selto X.

9, A= HW2 Proposty: - For every x, y ETR with x cy, 7 g & D.

2t x < q < y.

 \mathbb{G} = Dedense in \mathbb{R} with std metric: - For every $x \in \mathbb{R}$ and $870, \exists \varrho \in \mathbb{Q}$ st $d(x, \varrho) < \varepsilon$ where $d(x, y) = |x - y| + x, y \in \mathbb{R}$.

A => B:-

Let x, y ∈ R st x < y

By A, F e ∈ D st x < e cy [e-x ∈ R]

E:= y-x > D

Now : x < e

x - E < QAnd q < y = 0 q < x + E $\Rightarrow x - E < Q < x + E - x$ $\Rightarrow x - E - x < q - x < x + E - x$ $\Rightarrow - E < q - x < E$ $\Rightarrow - E < q - x < E$ $\Rightarrow - E < q - x < E$ $\Rightarrow - E < q - x < E$ $\Rightarrow - E < q - x < E$ $\Rightarrow - E < q - x < E$

3 > (8,x) 6 (=

.. A=>B

 $G \Rightarrow A$ $d(x, 9) < E \quad \text{for each } x \in \mathbb{R}, \ 2 > 0 \ 3 - 9$

=> - E < q-x < E - E+x < q-x+x < E+x

ラ ス- と く 2 く x + を 一〇

Now we have $n-\epsilon$, $y \in \mathbb{R}$ with $x-\epsilon cy$ and $q \in \mathbb{Q}$ st $x-\epsilon cq cy$.

٤, ١ ٤ ٤ ١,٦,٤, -... ١٨٥

Let x,, x, ..., xn be n limit points of A S.R. Franke Construction of A:- (all limit points are in [0,1]

 $A_i := \begin{cases} x_i + \frac{1}{m} \mid m \in \mathbb{N} \end{cases}$ $A_i := \bigcup_{j=1}^n A_j$

To prove :-

in, Each a; is a limit point of A.

Fix E>D, I m EP st 1 < E

=) For any (x;-E, x;+E) we find obleat one element of A

2) $x_i + i = \{i, 1, ..., n\}$ is a limit point of A. 2. $y + x_i \in \mathbb{R}$ is not a limit point of A. Doubt.

A ni benietres the regent open set contained in A \cong A \cong A \cong A

D=[A to to something in A 3 x] = "A : A something of A A] = D

A = A = B = A = B = A . i.

: A° is open => x is an interior pt of A

=> reB

=) A" = B

, ii, β = A"

x E B

=) x is an interior pt of A

Then $\exists x > 0 \text{ st } B(x, x) \subseteq A$

Let U:= B(x,8)

A U CA

(See each rest) tereng open boll is on open sof:

B is an open set in A.

But $A^\circ :=$ the largest open set in A $\Rightarrow B \in A^\circ$

From 1. 2.

A" = B