

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỂ THI KẾT THÚC HỌC PHẨN Học kỳ II - Năm học 2016-2017

ΜÃ	LƯU	TR	ľ
lo phò	ng KT- E	DBCL	ghi

Tên học phần:	VẬT LÝ ĐẠI CƯƠNG 1 (CƠ VÀ NHIỆT)	Mã HP: PHY00001		
Thời gian làm bài:	90 phút	Ngày thi:		
Ghi chú: Sinh viên [□ được phép / ⊠ không được phép] sử dụng tài liệu khi làm bài.				

Bài 1: (3 điểm)

Một vật có khối lượng M_1 =1kg có độ lớn vận tốc V_1 , đến va chạm đàn hồi với vật có khối lượng M_2 =2kg đang đứng yên. Sau va chạm vật M_1 và M_2 có độ lớn vận tốc lần lượt là V'_1 và V'_2 . a/ Nếu vận tốc của M₁ sau va chạm có phương không thay đổi so với lúc đầu thì phương vận tốc của M_1 , M_2 sau va chạm như thế nào?.

b/ Tìm vận tốc các hạt sau va chạm nếu V_1 = 4 m/s.

Bài 2: (3 điểm)

Cho một cơ hệ như hình vẽ. Hai vật có khối lượng lần lượt là $m_1=0.5$ kg và m₂ =1kg được nối với nhau bằng một sợi dây không khối lượng, không co giãn và được vắt qua ròng rọc. Hệ số ma sát trượt của m_2 với mặt phẳng nghiêng là k = 0.2, góc hợp mặt phẳng nghiêng và phương ngang là $\alpha = 30^{\circ}$. Ròng rọc là một đĩa tròn đặc đồng chất có khối lương là M = 1kg.

a/ Tính gia tốc chuyển động của cơ hệ.

b/ Lực căng dây T₁ và T₂ trên các đoạn dây.

c/ Tính công trọng lực của của vật m₂ sau 2s kế từ lúc bắt đầu chuyển động.

Bài 3: (4 điểm)

Cho 32 g khí Oxy thực hiện 3 quá trình được biểu diễn trên đồ thị (OVT) như Hình vẽ. Trạng thái ban đầu có các thông số $V_1 = 1$ lít, $p_1 = 10^6$ Pa. Trang thái thứ hai có $T_2 = 450$ K.

b/ Biểu diễn lại chu trình này trên giản đồ (OpV)?

c/ Tính nhiệt lượng hệ nhận vào?

d/ Tính nhiệt lượng hệ tỏa ra?

(Đề thi gồm 3 trang)

Họ tên người ra đề/MSCB: Nguyễn Hoàng Hưng / 0372...... Chữ ký: [Trang 1/3] Ho tên người duyết đề:......Chữ ký:......Chữ

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN Học kỳ II - Năm học 2016-2017

MÃ LƯU TRỮ (do phòng KT-ĐBCL ghi)

ĐÁP ÁN

Câu	Lời giải	Điểm
1.	a/ Dùng định luật bảo toàn động lượng (do va chạm đàn hồi). $M_1\overrightarrow{V_1} + M_2\overrightarrow{V_2} = M_1\overrightarrow{V_1'} + M_2\overrightarrow{V_2'}$	0,5
	Vì vậy nếu $\overrightarrow{V_1}$ cùng phương với $\overrightarrow{V_1'}$, và $\overrightarrow{V_2} = \overrightarrow{0}$, nên $\overrightarrow{V_2'}$ cùng phương với $\overrightarrow{V_1'}$.	0,5
	b) Va chạm đàn hồi, theo định luật bảo toàn năng lượng và động lượng ta có vận tốc hai hạt sau va chạm là: $\overrightarrow{V_1'} = \frac{\left((M_1 - M_2) \overrightarrow{V_1} + 2 M_2 \overrightarrow{V_2} \right)}{M_1 + M_2}$	0,5
	$\overrightarrow{V_2'} = \frac{\left((M_2 - M_1)\overrightarrow{V_2} + 2M_1\overrightarrow{V_1} \right)}{M_1 + M_2}$	0,5
	Với M ₁ =1kg, M ₂ =2kg, V ₁ =4 m/s, V ₂ =0, ta suy ra: $\vec{V_1}' = \frac{(-\vec{V_1})}{2}, \vec{V_2}' = \frac{(2\vec{V_1})}{2}$	0,5
	Như vậy sau va chạm vật M ₁ chuyển động ngược lại so với ban đầu. Vật M ₂ lúc đầu đứng yên, sẽ chuyển động đi tới, Độ lớn các vận tốc sau va chạm là: V' ₁ =4/3 m/s; V' ₂ =8/3 m/s (0.5 điểm)	0,5
2.	a Phương trình động lực học của các vật:	1
*	$\begin{cases} \vec{P}_1 + \vec{T}_1 = m_1 \vec{a} \\ \vec{P}_2 + \vec{T}_2 + \vec{F}_{ms} + \vec{N} = m_2 \vec{a} \\ \vec{M}_{\vec{T}_1} + \vec{M}_{\vec{T}_2} = I \vec{\beta} \end{cases}$	
	Chọn chiều dương là chiều chuyển động của các vật	

Họ tên người ra đề/MSCB: Nguyễn Hoàng Hưng / 0372..... Chữ ký: [Trang 2/3] Họ tên người duyệt đề:......Chữ ký:......Chữ ký:

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN Học kỳ II – Năm học 2016-2017

MÃ LƯU TRỮ (do phòng KT-ĐBCL ghi)

$P_1 - T_1 = m_1 a$	$ T_1 = P_1 - m_1 a $
$P_2 \sin \alpha + T_2 - F_{ms} = m_2 a$	$T_2 = m_2 a - P_2 \sin \alpha + F_{ms}$
$\begin{cases} P_{1} - T_{1} = m_{1}a \\ P_{2} \sin \alpha + T_{2} - F_{ms} = m_{2}a \\ RT_{1} - RT_{2} = I\beta = \frac{1}{2}MR^{2}\frac{a}{R} = \frac{1}{2}MRa \end{cases}$	$T_1 - T_2 = \frac{1}{2}Ma$
Chiếu hệ phương trình lên phương vu	lông góc mp nghiêng:
$kP_2\cos\alpha-N=0 \Rightarrow F_{ms}=km_2g\cos\alpha$	
$\Rightarrow a = \frac{m_1 g + m_2 g \sin \alpha - k m_2 g \cos \alpha}{\frac{1}{2} M + m_1 + m_2}$	$\frac{\alpha}{2} = 4.13 \text{ m/s}^2$
b/ <i>Lực căng dây:</i> $\Rightarrow T_1=2,935 \text{ N} \text{ và } T_2=0,86 \text{N}$	1
c/ Công của trọng lực:	1
Quãng đường vật m ₂ đi được sau	2s
$S_2 = v_0 t + 1/2 \text{ at}^2 = 8,26 \text{ m}$	
$A_P=W_{t1}-W_{t2}=m_2gh_1-m_2gh_2=m_2g$ $m_2gs_2.sin\alpha=1/2. 1.10.8,26=41.3$, -
3. a//1-2: đẳng áp: hệ nhận nhiệt. $V_2 > V_1$: 2-3: đẳng tích: hệ tỏa nhiệt. $V_3 > V_1 \Rightarrow Q$ 3-1: đẳng nhiệt: tỏa nhiệt. $V_3 > V_1 \Rightarrow Q$	< 0
b/ P1 1 2 V	1
c/ Trạng thái 1: $P_1V_1 = nRT_1 \Rightarrow T_1 = 120$ 1-2: $\frac{V_1}{T_1} = \frac{V_2}{T_2} \Rightarrow V_2 = 3,75.10^{-3} \text{ m}^3 = V_3$	
Nhiệt lượng hệ nhận vào: $Q_{12} = \frac{m}{\mu} C_p (T_p)$	
Nhiệt lượng hệ tỏa ra: $Q_{23} + Q_{31} = \frac{m}{\mu} C_V$	$(T_3 - T_2) + \frac{m}{\mu} R T_{31} ln \frac{V_1}{V_8} = -8174 J$ 1