Computer Organization & Architecture

2-9 Floating-point Number Arithmetic

Wang Guohua

School of Software Engineering

Contents of this lecture

- Alignment
- Add/Subtract Rule
- Multiply Rule
- Divide Rule
- Problems Considerable in FP Arithmetic
 - Guard Bits
 - Truncation
 - Normalization
 - Overflow

Alignment

- First step of addition and subtraction operations in floating-point numbers.
- Alignment
 - Before addition/subtraction, if exponents of two floating-point numbers differ, it is necessary to manipulate the two summands so that the two exponents are equal.
 - Example: Decimal addition (123 \times 10 $^{\circ}$)+(456 \times 10 $^{-2}$)
 - $(123 \times 10^{0})+(456 \times 10^{-2}) = (123 \times 10^{0})+(4.56 \times 10^{0})$
 - $(123 \times 10^{0})+(456 \times 10^{-2})=(12300 \times 10^{-2})+(456 \times 10^{-2})$
 - The alignment is achieved by shifting the magnitude portion of the mantissa
 right 1 digit and incrementing the exponent until the two exponents are equal.

Add/Subtract Rule

For IEEE Single Precision Floating-point Numbers

- 1. Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents.
- 2. Set the exponent of the result equal to the larger exponent.
- 3. Perform addition/subtraction on the mantissas and determine the sign of the result.
- 4. Normalize the resulting value, if necessary.

Multiply Rule

- For IEEE Single Precision Floating-point Numbers
 - 1. Add the exponents and subtract 127.
 - 2. Multiply the mantissas and determine the sign of the result.
 - 3. Normalize the resulting value, if necessary.

Divide Rule

- For IEEE Single Precision Floating-point Numbers
 - 1. Subtract the exponents and add 127.
 - 2. Divide the mantissas and determine the sign of the result.
 - 3. Normalize the resulting value, if necessary.

Problems Considerable in FP Arithmetic (1)

Guard Bits

- To improve the precision of floating-point computations, guard bits are used.
- The additional bits retained in the mantissa are referred to as guard bits.
- The guard bits are used to pad out the right end of the mantissa with 0s.
- It is important to retain guard bits during the intermediate steps. This yields maximum accuracy in the final results.

Problems Considerable in FP Arithmetic (2)

- Guard Bits (ctd.)
 - Example: X= 1.00...00 \times 2¹ , Y= 1.11...11 \times 2⁰ (X and Y are all in IEEE single precision format). Calculate Z= X Y.
 - Without guard bits $X = 1.000...00 \times 2^{1}$

$$\frac{-Y = 0.111...11 \times 2^{1}}{Z = 0.000...01 \times 2^{1}} = 1.000...00 \times 2^{-22}$$

With guard bits

$$X = 1.000...00 \quad \underline{0} \times 2^{1}$$
 $-Y = 0.111...11 \quad \underline{1} \times 2^{1}$
 $Z = 0.000...00 \quad \underline{1} \times 2^{1} = 1.000...00 \quad \underline{0} \times 2^{-23}$

Problems Considerable in FP Arithmetic (3)

Truncation

- Mantissa is restricted to a specific length (23 bit/single-precision, 52 bit/double-precision)
- An arithmetic operation may result in a mantissa with a larger precision
- Before storing a floating-point number, the excessive bits have to be discarded ⇒ truncation
- A truncation method should be unbiased
 - The errors compensate each other
- Truncation Methods
 - Chopping
 - Von Neumann Rounding
 - Rounding

Problems Considerable in FP Arithmetic (4)

Chopping

- Remove the guard bits and make no changes in the retained bits.
- Easy to implement
- Biased, since all values are rounded towards a lower mantissa value
- The error range in chopping is from 0 to almost 1 in the least significant position of the retained bits.
- Not the optimum method!

Problems Considerable in FP Arithmetic (5)

Chopping (ctd.)

- Example: Truncate 0.b₋₁b₋₂b₋₃ 010 to three bits.
 - $0.b_{-1}b_{-2}b_{-3} 010 \Rightarrow 0.b_{-1}b_{-2}b_{-3}$
 - Actually, all fractions in the range $0.b_{-1}b_{-2}b_{-3}$ 000 to $0.b_{-1}b_{-2}b_{-3}$ 111 are truncated to $0.b_{-1}b_{-2}b_{-3}$.
 - The error range in the 3-bit result is from 0 to 0.000111.

Problems Considerable in FP Arithmetic (6)

Von Neumann Rounding

- Distinguishes an exact representation and rounding towards next odd boundary:
 - 1. If the bits to be removed are all 0s, they are simply dropped, with no changes to the retained bits.
 - 2. If any of the bits to be removed are 1, the least significant bit of the retained bits is set to 1.
- Still moderately easy to implement
- Unbiased, rounding is equally distributed towards positive and negative values
- The error range is between 1 and +1 in the LSB position of the retained bits.
- Better than chopping, higher absolute errors

Problems Considerable in FP Arithmetic (7)

- Von Neumann Rounding (ctd.)
 - Example: Truncate 0.b₋₁b₋₂b₋₃ 000 0.b₋₁b₋₂b₋₃ 111 to three bits.
 - ① $0.b_{-1}b_{-2}b_{-3}$ 000 \Rightarrow $0.b_{-1}b_{-2}b_{-3}$
 - $20.b_{-1}b_{-2}b_{-3}001 0.b_{-1}b_{-2}b_{-3}111 \Rightarrow 0.b_{-1}b_{-2}1$

Problems Considerable in FP Arithmetic (8)

Rounding

- Rounding maps a value to its nearest value representable, distinguishing three cases:
 - 1. MSB of the mantissa part to be truncated is zero ⇒ perform chopping
 - 2. MSB of the truncated mantissa part is one, and any other bit to be truncated is one ⇒ add one to retained LSB
 - 3. MSB of the truncated mantissa part is one, and all other bits to be truncated are zero:
 - ⇒ chop if retained LSB is zero
 - → add one to retained LSB if one
- Some effort to implement
- Unbiased, rounding is equally distributed towards positive and negative values
- The error range is $-\frac{1}{2}$ to $+\frac{1}{2}$ in the LSB position of the retained bits.

Problems Considerable in FP Arithmetic (9)

Rounding (ctd.)

- Example: Truncate $0.b_{-1}b_{-2}b_{-3}$ $000 0.b_{-1}b_{-2}b_{-3}$ 111 to three bits.
 - ① $0.b_{-1}b_{-2}b_{-3}$ $000 0.b_{-1}b_{-2}b_{-3}$ $011 \Rightarrow 0.b_{-1}b_{-2}b_{-3}$
 - ② $0.b_{-1}b_{-2}b_{-3}$ $101 0.b_{-1}b_{-2}b_{-3}$ $111 \Rightarrow 0.b_{-1}b_{-2}b_{-3} + 0.001$
 - ③ 0.b-1b-2b-3 100
 - $-0.b_{-1}b_{-2}0100 \Rightarrow 0.b_{-1}b_{-2}0$
 - $-0.b_{-1}b_{-2}1100 \Rightarrow 0.b_{-1}b_{-2}1 + 0.001$
- Rounding is the default mode for truncation specified in the IEEE floating-point standard.

Problems Considerable in FP Arithmetic (10)

Normalization

- IEEE Single Precision Normalized FP Numbers
 - E≠ 000...0 (8 bits)and E ≠ 111...1(8 bits)
 - E is encoded with bias value
 - The normalized significand is 1.M
- If a number is not normalized, it can always be put in normalized form by shifting the mantissa and adjusting the exponent.

Problems Considerable in FP Arithmetic (11)

- Normalization (ctd.)
 - Example

```
0 1 0 0 0 1 0 0 0 • 0 0 1 0 1 0 ...
```

(There is no implicit 1 to the left of the binary point.)

Value represented =
$$+0.0010110... \times 2^9$$

(a) Unnormalized value

```
0 1 0 0 0 0 1 0 1 • 0 1 1 0 ...
```

Value represented =
$$+1.0110... \times 2^6$$

(b) Normalized version

Figure 9.27 Floating-point normalization in IEEE single-precision format.

Problems Considerable in FP Arithmetic (12)

Overflow

- As computation proceed, a number that does not fall in the representable range of normal numbers might be generated.
- Exponent Overflow
 - A positive exponent exceeds the maximum possible exponent value.
 - Example: In IEEE single precision, e > 127
 - In some systems, it may be designated as plus infinity or minus infinity.
- Exponent Underflow
 - A negative exponent is less than the minimum possible exponent value.
 - Example: In IEEE single precision, e < 126
 - This means that the number is too small to be represented, it may be reported as 0.

Problems Considerable in FP Arithmetic (13)

Overflow(ctd.)

- Mantissa Overflow
 - The addition of two mantissas of the same sign may result in a carry out of the most significant bit.
 - If so, the mantissa of the result is shifted right and the exponent is incremented.
- Mantissa Underflow
 - In the process of aligning mantissas, digits may flow off the right end of the mantissa.
 - This can be resolved by using guard bits and some method of truncation.

Implementing Floating-Point Operations

- Implementation Methods
 - Software Routines
 - Hardware Routines
 - Computers will provide machine instructions for floating-point operations.
 - Note
 - In either case, the computer must be able to convert input and output from and to the use's decimal representation of numbers.
- Example of Hardware Implementation
 - 32-bit operands, {A: S_A , E_A , M_A }, {B: S_B , E_B , M_B }

Quiz (1)

1. True or False? An overflow of the mantissa field of a floatingpoint number means a real case of overflow.

浮点数的尾数部分溢出并不是真正的溢出,可以通过移位来解决;而指数部分溢出才是真正的溢出。

Quiz (2)

- 2. Consider a reduced 8-bit IEEE floating-point format, with 1 bit for the sign, 3 bits of the exponent and 4 bits for the mantissa. Note that the mantissa is normalized with an implied 1 to the left of the binary point.
 - (1) Express A=2.38 and B=1.6 in this floating-point format.
 - (2) Write the computation process of A-B and give the result in normalized form. Use **Rounding** method as needed.

Quiz (2)

Solution:

```
(1) +2.38 = +10.0110000 = +1.0011 \times 2^{1}
0 100 0011
+1.6 = +1.1001100 = +1.1010 \times 2^{0}
0 011 1010
```

Quiz (2)

Solution:

- (2) ①Shift the mantissa of B to the right by one bit position, giving 0.11010
 - 2 Set the exponent of the result to 100.
 - 3 Subtract the mantissa of B from the mantissa of A, giving

1.0011<u>0</u>

 $\frac{-0.1101\underline{0}}{0.01100}$

and set the sign of the result to 0.

(4) Shift the mantissa to the left by two bit positions. We obtain a result mantissa of 1.1000. So the exponent of the result is 010. The answer is 0 010 1000

Homework

- 9.1
- 9.9 (a) (b)
- 9.20
- 9.21
- 9.22