Correction du TD d'application

Constructions optiques de lentilles

1) a -

Ces rayons, issus d'un <u>objet réel</u>, se croisent après la lentille : on a un faisceau émergent <u>convergent</u> qui donne une <u>image réelle</u>.

c -

Ici, l'objet est <u>réel</u> mais donne un faisceau émergent <u>divergent</u>, donnant donc une image virtuelle.

b -

À partir d'un <u>objet réel</u>, on obtient des rayons parallèles qui donnent une image à l'infini.

d –

Objet virtuel. Les rayons partant de la gauche passent par B, mais une fois arrivés à la lentille on les fait en pointillés, puisqu'ils sont virtuels. Le faisceau émergent est convergent, donnant lieu à une image réelle.

Ici, l'objet est $\underline{r\acute{e}el}$ et donne un faisceau émergent $\underline{convergent}$, donnant donc une image $\underline{r\acute{e}elle}$.

2) a -

Ces rayons, issus d'un <u>objet réel</u>, se croisent avant la lentille : on a un faisceau émergent divergent qui donne une <u>image</u> virtuelle.

b -

À partir d'un <u>objet virtuel</u>, on obtient des rayons <u>convergents</u> qui donnent une image réelle.

f -

On n'a qu'un seul rayon, donc pas d'intersection : aucune idée de la nature de l'objet/image.

c -

Ici, l'objet est <u>virtuel</u> et donne un faisceau émergent <u>parallèle</u>, donnant donc une image à l'infini.

d -

On part d'un <u>objet virtuel</u>. Le faisceau émergent est <u>divergent</u>, donnant lieu à une image virtuelle.

Lycée Pothier 2/4 MPSI3 – 2024/2025

Ici, l'objet est <u>réel</u> et donne un faisceau émergent <u>divergent</u>, donnant donc une image virtuelle.

f -

On n'a qu'un seul rayon, donc pas d'intersection : aucune idée de la nature de l'objet/image.

${ m II} \mid { m Constructions}$ optiques de miroirs

Schéma

Les rayons, incidents, se coupent avant le miroir.

Les rayons, incidents, se coupent après le miroir.

Les rayons, émergents, se coupent après le miroir.

Résultat attendu

Construire les objets et images avec les règles du miroir plan.

Outils

Image par miroir plan = symétrique. Objet à intersection des indicents, image intersection émergents.

Application

Le symétrique de A donne A' où les rayons émergents se croisent.

A est réel, A' virtuel.

Le symétrique de A donne A' où les rayons émergents se croisent.

A est virtuel, A' réel.

Le symétrique de A' donne A où les rayons incidents se croisent.

A est réel, A' virtuel.

III Vidéoprojecteur

1)

Données

- 1) (AB) = 24 mm: « l'objet transverse a une hauteur de 24 mm»;
- 2) $\overline{OA'} = +4.0 \,\mathrm{m}$: « l'écran se situe à $4.0 \,\mathrm{m}$ » (c'est là que se forme l'image, c'est donc la position de A');
- 3) $\overline{OF'} = +5.0 \text{ cm}.$

Résultats attendus

- 1) Que vaut \overline{OA} ?: « Déterminer la position et la nature de l'objet » (O est bon point d'intérêt à partir duquel on peut mesurer des distances, et selon la valeur <u>algébrique</u> de \overline{OA} on saura de quel côté de la lentille l'objet se situe, et donc son caractère virtuel ou réel);
- 2) Que vaut $\overline{A'B'}$? : « Déterminer [...] la taille de l'image ».

Outils du cours

1) Relation de conjugaison pour une lentille mince :

$$\frac{1}{\overline{OF'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$

2) Grandissement pour une lentille mince :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

Application

1) De la relation de conjugaison, on a :

$$\overline{OA} = \frac{\overline{OA'}\overline{OF'}}{\overline{OF'} - \overline{OA'}}$$

Et avec les données,

$$\overline{OA} = -5.1 \, \text{cm}$$

Ainsi, on a un <u>objet réel</u> situé à 5 centimètres à gauche de la lentille.

2) De l'expression du grandissement, on a :

$$\overline{A'B'} = \overline{AB} \times \frac{\overline{OA'}}{\overline{OA}}$$

Et avec les données,

$$\overline{\mathrm{A'B'}} = -1.9\,\mathrm{m}$$

Remarque

Attention, comme on a qu'un seul chiffre significatif, on a $\overline{OA} = -5 \,\mathrm{cm}$, ce qui semble correspondre à la position de F, mais en réalité ce n'est qu'une approximation numérique. Comme $\overline{OA'} \gg \overline{OF'}$, le résultat numérique est proche de $-\overline{OF'}$, mais il est évident que si l'objet était en effet au foyer objet, le vidéoprojecteur ne formerait pas l'image sur l'écran mais à l'infini.