AK8975 3-axis Electronic Compass 電子羅盤

工作電壓:+2.4V~+3.6V

介面:I2C & SPI

若用 I2C -> CSB 接 HIGH, 設定 I2C address 有兩個 pin:CAD0 & CAD1

感測數據為:13bit (0.3uT/LSB)

工作模式:

- 1. power down mode
- 2. single measurement mode
- 3. self-test mode
- 4. fuse access mode

重點接腳

- 1. SDA/SCL-> I2C 介面
- 2. CSB ->當使用 SPI 介面,此接腳要外部 Pull-low;使用 I2C 介,此外部接腳要 Pull-high.
- 3. CAD0/CAD1 -> I2C address 設定(參考手冊)

Slave address select										
CAD1 CAD0 address										
VSS	VSS	00011 00 R/W								
VSS	VDD	0 0 0 1 1 0 1 R/W								
VDD	VSS	00011 10 R/W								
VDD	VDD	00011 11 R/W								

4. DRDY -> 資料就緒 pin ,提供給主控得知是否可以讀取資料.當資料就緒,此 pin 為 high,資料尚未就緒此腳為 low.

I2C 接線方式

參考 SEPC

9.1. I²C Bus Interface

<AK8975>

<AK8975C> Same as AK8975

初始化方式

所有暫存器在上電(Power on)或 AK8975 轉為 Power down mode 會重新初始化。

States	VDD	VID	Power states
1	OFF (0V)	OFF (0V)	OFF (0V).
			SCL, SDA should be fixed to the voltage that does
			not exceed 3.6V. Other digital pins should be fixed
			to L(0V).
2	OFF (0V)	1.65V to 3.6V	OFF (0V). It doesn't affect external interface.
3	2.4V to 3.6V	OFF (0V)	OFF (0V). It consumes current same as
			Power-down mode.
			SCL, SDA should be fixed to the voltage that does
			not exceed 3.6V. Other digital pins should be fixed
			to L (0V).
4	2.4V to 3.6V	1.65V to Vdd	ON

Reset 方式

兩種:1.POR(Power on Reset); 2. VID monitor

當初始化後 AK8975 會自動轉成 Power-down mode

輸出的方位與 IC 位置關係圖(很重要)

Relationship between the Magnetic Field and Output Code \cdot 如 SPEC \cdot

工作模式

- 1. Power down mode
- 2. Single measurement mode
- 3. Self-test mode
- 4. Fuse ROM access mode

可經由 CNTL 暫存器 MOED[3:0] bit 設定上述四種模式,如下圖(手冊),四種模式切換方式

當 power on 後,AK8975 會進入 Power-down mode ,經由外部 I2C 或 SPI 設定暫存器到其他模式工作。且進入 Power-down mode 模式後,至少等待約 100uS 時間,再下達命令切換到其他工作模式

Power-down mode

所有暫存器接可以操作,除了 ROM 暫存器(ROM register)不能操作。 且感測資料(3 軸感測資訊)仍保留在暫存器中。

Single measurement mode

設定 MODE 暫存器[3:0] bit 設定為 "0001",即讓 AK8975 進入 Single Measurement mode。 當 AK8975 測完得到數據後,會將資訊存放在 HXL~HZH中,並且自動轉成 Power-down mode 模式(MODE 暫存器[3:0] bit 為 "0000"。

另外 DEDY 此 PIN 通知功能資料準備就緒,與 ST1 暫存器有關。當資料準備就緒時 DRDY pin 為 high,且讀 ST1 暫存器的 BITO 為"1";當資料尚未就緒時,DRDY 為 low,且讀取 ST1 暫存器 BITO 為"0"。

當資料準備就緒後·AK8975 會轉成 Power-down mode·且 DRDY 為 HIGH·直到有人訪問讀取 HXL~HZH 任一其中暫存器·AK8975 會將 DEDY 拉 LOW·ST1 暫存器 BIT0 設"0"。 也就是 DRDY pin 狀態與 ST1 暫存器 BIT0 是相同的。

讀取 HXL~HZH 任一暫存器 · DRDY 會變 LOW,ST1 暫存器 BIT0 "0"

Data Ready

當資料準備就緒後,可供主控讀取,DRDY 會為 HIGH 準位,ST1 暫存器 BIT 0 為"1" 且資料可讀取週期,為此次 Single measurement mode 測量完轉為 power-down mode, 直到下 一次新的 Single measurement mode 之前,都是可以讀取的,稱可讀取週期(Data Readable

Data Error

當此資料錯誤發生會發生在非可讀週期之外,也就是在量測的時候去讀取暫存器,此時去讀 取暫存器資訊得到的數值可能是不正確的。且會發生 ST2 暫存器 DERR bit Flag 設為"1",也 就是主控讀取 HXL~HZH 資訊時,也要去檢查 ST2 暫存器 DERR bit 是否為"1",若為"1"代表 讀取到 HXL~HZH 資訊可能是錯的,要放棄此次的資料,重新量測。當 ST2 暫存器被讀取後, DERR bit 會立刻清"0"。

取資訊(HXL~HXH)則會產生錯誤,並記錄在 ST2 暫存器 DERR bit 中.

Magnetic Sensor Overflow

AK8975 有數值上限制,當每個軸上的數值的絕對值總和要小於 2400uT,如下

$$|X| + |Y| + |Z| < 2400uT$$

主控這邊也要做檢查,當各軸絕對值總和必須小於 2400Ut,否則數值是無效的,也就是發生 Magnetic Sensor Overflow。同時 AK8975 的 ST2 暫存器 HOFL bit 會為"1",且當下次新的量 測開始,AK8975 會將 HOFL bit 清"0"。

Self-test Mode

此模式是 AK8975 自我檢測,是否能正常工作。

進入此方法方式

- 1. 先將 AK8975 進入 Power-down mode
- 2. 首先設定 AK8975 的 ASTC 暫存器的 SELF bit 設為"1"
- 3. 設定 MODE[3:0] bit 為"1000", 進入 Self-test mode
- 4. 檢查 DRDY 是否為 HIGH 或者 ST1 暫存器的 DRDY 是否為"1"。
- 5. 當 DRDY 為"1"或 ST1 DRDY bit 為"1",去讀取 HXL~HZH 暫存器數值。
- 6. 將 AK8975 的 ASTC 暫存器的 SELF bit 設為"0"

判斷自我測試是否正常(Self-test Judgment)

如果讀出數值如下表·代表是 AK8975 工作正常,以下數值是經果感測調整(Sensitivity adjustment)的正常範圍。

1		HX[15:0]	HY[15:0]	HZ[15:0]
ĺ	Criteria	-100≤X≤+100	-100≤Y≤+100	-1000≤Z≤-300

感測調整公式(如 SPEC 8.3.11 節):

The sensitivity adjustment is done by the equation below;

$$Hadj = H \times \left(\frac{\left(ASA - 128\right) \times 0.5}{128} + 1\right),$$

H代表個軸的數值。

ASA 為讀取暫存器 0x10(ASAX)、0x11(ASAY)、0x12(ASAZ)的各軸調整感測數值參數。 H_{adi} 為已校準過的量測數值。

以上公式簡化過程及最後公式(方便簡化編程):

$$H_{\text{adj}} = H \times \left(\frac{ASA - 128}{256} + 1\right) \rightarrow H_{\text{adj}} = H \times \left(\frac{ASA - 128}{256} + \frac{256}{256}\right)$$

$$\rightarrow H_{\text{adj}} = H \times \left(\frac{ASA + 128}{256}\right)$$

Fuse ROM Access Mode

用來讀取 Fuse ROM data(讀取唯讀資料)。剛剛講述到的 ASA 資料就是 ROM data。也就是暫存器 0x10(ASAX)、0x11(ASAY)、0x12(ASAZ) (如 SPEC 8.3.11 節),就是要讓主控讀取個軸參數數值,並且透過剛剛**感測調整公式**計算正確各軸的數值。

$$H_{\text{adj}} = H \times \left(\frac{ASA + 128}{256}\right)$$

感測調整公式

進入 Fuse ROM Access Mode 方式:

- 1. 將 MODE[3:0]設"1111"
- 2. 然後在去讀取 ROM 暫存器 0x10(ASAX)、0x11(ASAY)、0x12(ASAZ)的數值。
- 3. 讀取完後,再將 MODE[3:0]設回"0000",進入 Power-down mode。此步一定要做

用 I2C Bus 操作 AK8975

其 I2C 通訊基礎不再贅述。這邊講述 AK8975 特定的用法。

Slave Address

設定 AK8975 slave address,有關的 AK8975 外部腳 CAD0 與 CAD1。得到的 Slave address 如

下表。

CAD1	CAD0	Slave Address
0	0	0CH
0	1	0DH
1	0	0EH
1	1	0FH

Table 7.1 Slave Address and CAD0/1 pin

MSB								
0	0	0	1	1	CAD1	CAD0	R/W	

Figure 7.6 Slave Address

R/W:READ="1";WRITE="0"

AK8975 I2C 寫的時序

Figure 7.9 WRITE Instruction

在此 Register Address(暫存器位址)請參考 SPEC CH8 Register

AK8975 I2C 讀的時序

分兩種:單筆讀(One Byte READ)、多筆讀(Multiple Byte READ)。

單筆讀(One Byte READ)

Figure 7.10 One Byte READ

多筆讀(Multiple Byte READ)

Figure 7.11 Multiple Byte READ

暫存器表

建立 AK8975 驅動程式需要用到。參考 SPEC CH8 Register 及更詳細介紹都在 SPEC 後面。

Name	Address	READ/ WRITE	Description	Bit width	Explanation
WIA	00H	READ	Device ID	8	
INFO	01H	READ	Information	8	
ST1	02H	READ	Status 1	8	Data status
HXL	03H	READ	Measurement data	8	X-axis data
HXH	04H			8	
HYL	05H			8	Y-axis data
HYH	06H	1		8	1
HZL	07H	1		8	Z-axis data
HZH	08H			8]
ST2	09H	READ	Status 2	8	Data status
CNTL	0AH	READ/ WRITE	Control	8	
RSV	0BH	READ/ WRITE	Reserved	8	DO NOT ACCESS
ASTC	0CH	READ/ WRITE	Self-test	8	
TS1	0DH	READ/ WRITE	Test 1	8	DO NOT ACCESS
TS2	0EH	READ/ WRITE	Test 2	8	DO NOT ACCESS
I2CDIS	0FH	READ/ WRITE	I ² C disable	8	
ASAX	10H	READ	X-axis sensitivity adjustment value	8	Fuse ROM
ASAY	11H	READ	Y-axis sensitivity adjustment value	8	Fuse ROM
ASAZ	12H	READ	Z-axis sensitivity adjustment value	8	Fuse ROM

Table 8.1 Register Table

特別註記:當使用多筆讀方式,適用 00H~0CH 和 10H~12H,會自動跳下一個暫存器。

10H~12H 僅能在 Fuse ROM Access mode 模式讀取。

再提醒!最後在 Fuse ROM Access mode 跳出,請再設定 MODE[3:0]為"0000"先回到 Power-down mode。

Addr	Register Name	D 7	D6	D5	D4	D3	D2	Dl	D 0	
Read-only Register										
00H	WIA	0	1	0	0	1	0	0	0	
01H	INFO	INFO7	INFO6	INFO5	INFO4	INFO3	INFO2	INFO1	INFO0	
02H	ST1	0	0	0	0	0	0	0	DRDY	
03H	HXL	HX7	HX6	HX5	HX4	HX3	HX2	HX1	HX0	
04H	HXH	HX15	HX14	HX13	HX12	HX11	HX10	HX9	HX8	
05H	HYL	HY7	HY6	HY5	HY4	HY3	HY2	HY1	HY0	
06H	HYH	HY15	HY14	HY13	HY12	HY11	HY10	HY9	HY8	
07H	HZL	HZ7	HZ6	HZ5	HZ4	HZ3	HZ2	HZ1	HZ0	
08H	HZH	HZ15	HZ14	HZ13	HZ12	HZ11	HZ10	HZ9	HZ8	
09H	ST2	0	0	0	0	HOFL	DERR	0	0	
Write/r	ead Registe	r								
0AH	CNTL	0	0	0	0	MODE3	MODE2	MODE1	MODE0	
0BH	RSV	-	-	-	-	-	-	-	-	
0CH	ASTC	-	SELF	-	-	-	-	-	-	
0DH	TS1	-	-	-	-	-	-	-	-	
0EH	TS2	-	-	-	-	-	-	-	-	
0FH	I2CDIS	-	-	-	-	-	-	-	I2CDIS	
Read-or	ıly Register	•								
10H	ASAX	COEFX7	COEFX6	COEFX5	COEFX4	COEFX3	COEFX2	COEFX1	COEFX0	
11H	ASAY	COEFY7	COEFY6	COEFY5	COEFY4	COEFY3	COEFY2	COEFY1	COEFY0	
12H	ASAZ	COEFZ7	COEFZ6	COEFZ5	COEFZ4	COEFZ3	COEFZ2	COEFZ1	COEFZ0	

Table 8.2 Register Map

特別註記:0BH、TS1、TS2 禁止訪問(讀與寫都不行),就不要用就對了。

重點暫存器介紹

介紹幾個重點的暫存器,其餘看 SPEC 上的暫存器介紹即可。

3 軸量測數據 Measurement Data

HXL to HZH: Measurement Data

Addr	Register name	D 7	D6	D5	D4	D3	D2	D1	D 0		
Read-on	Read-only register										
03H	HXL	HX7	HX6	HX5	HX4	HX3	HX2	HX1	HX0		
04H	HXH	HX15	HX14	HX13	HX12	HX11	HX10	HX9	HX8		
05H	HYL	HY7	HY6	HY5	HY4	HY3	HY2	HY1	HY0		
06H	HYH	HY15	HY14	HY13	HY12	HY11	HY10	HY9	HY8		
07H	HZL	HZ7	HZ6	HZ5	HZ4	HZ3	HZ2	HZ1	HZ0		
08H	HZH	HZ15	HZ14	HZ13	HZ12	HZ11	HZ10	HZ9	HZ8		
	Reset	0	0	0	0	0	0	0	0		

Measurement data of magnetic sensor X-axis/Y-axis/Z-axis

HXL[7:0]: X-axis measurement data lower 8bit

HXH[15:8]: X-axis measurement data higher 8bit

HYL[7:0]: Y-axis measurement data lower 8bit

HYH[15:8]: Y-axis measurement data higher 8bit

HZL[7:0]: Z-axis measurement data lower 8bit

HZH[15:8]: Z-axis measurement data higher 8bit

Measurement data is stored in two's complement and Little Endian format. Measurement range of each axis is from -4096 to +4095 in decimal.

Measurement d	Magnetic flux			
Two's complement	Hex	Decimal	density [μT]	
0000 1111 1111 1111	0FFF	4095	1229(max.)	
0000 0000 0000 0001	0001	1	0.3	
0000 0000 0000 0000	0000	0	0	
1111 1111 1111 1111	FFFF	-1	-0.3	
1111 0000 0000 0000	F000	-4096	-1229(min.)	

Table 8.3 Measurement data format

X 軸資訊就是:03H 和 04H 的暫存器高低位元組總和; 是 Little Endian。

Y 軸資訊就是:03H 和 04H 的暫存器高低位元組總和;是 Little Endian。

Z 軸資訊就是:03H 和 04H 的暫存器高低位元組總和;是 Little Endian。

且各軸範圍數值介於-4096~4095(取 2 的補數後·2 的補數:數值反向+1)

且每軸 Magnetic flux density 介於-1229~1229 間。用感測調整公式計算過後。

注意數值轉換當 Decimal 轉換成 uT 是要乘以 0.3

控制工作模式 CNTL

Addr	Register name	D 7	D6	D5	D4	D3	D2	Dl	$\mathbf{D}0$	
Read-only register										
0AH	CNTL	0	0	0	0	MODE3	MODE2	MODE1	MODE0	
Reset		0	0	0	0	0	0	0	0	

MODE[3:0]: Operation mode setting

"0000": Power-down mode

"0001": Single measurement mode

"1000": Self-test mode

"1111": Fuse ROM access mode Other code settings are prohibited

When each mode is set, AK8975/C transits to set mode. Refer to 6.3 for detailed information. When CNTL register is accessed to be written, registers from 02H to 09H are initialized.

寫入相對應的工作模式,使 AK8975 在不同工作模式切換。可參考上面的**工作模式章節**

AK8975 工作流程

簡易流程如下,詳細請參考 code: EXAMPLE_AK8975.C

