UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO IV

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Parte Experimental	4
3	Análise de Dados	5
	Coleta das amostras	5
4	Conclusão	8
R	eferências	q

1. Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática no dia 01 de julho de 2016.

A próxima seção explicará detalhamendamente o experimento realizado.

2. Parte Experimental

O experimento consiste em caracterizar o movimento retilíneo uniforme através da análise de dados e gráficos. Para isto foram utilizados os seguintes materias e aparelhos:

- Trilho de ar e carrinho: aparelho formado por um trilho posicionado horizontalmente responsável pela trajetória retilínea do carrinho e um carrinho encarrilhado neste trilho. O carrinho se movimenta quando um compressor injeta ar por buraquinhos no trilho. A massa do carrinho é 0.1898 kg.
- Compressor de ar: responsável pela injeção de ar no trilho de ar. A injeção de ar causa a movimentação do carrinho.
- Sensores de movimento: Há dois sensores de movimento. Um no início da trajétória e é responsável por registrar o posicionamento inicial. O segundo sensor foi utilizado para registrar o posicionamento final da medição.
- Cronômetro digital: aparelho responsável por iniciar a marcação de tempo a partir do recebimento das informações dos sensores de movimento.
- Outros materias utilizados foram: barbante, porta-peso, peso e polia. O barbante foi preso ao carrinho e ao porta-peso através de uma polia. A massa do porta-peso é 0.01 kg.

O experimento consiste de duas etapas:

- 1. A primeira etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a uma sequência de pontos finals iniciando em 120cm e terminando 170cm.
- 2. A segunda etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a um ponto final variando a quantidade de pesos no porta-peso.

A próxima seção explicará em detalhes cada uma destas etapas.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Coleta das amostras

Na etapa 1, coletamos amostras de tempo para vários deslocamentos do carrinho. O carrinho foi amarrado ao barbante que foi amarrado ao porta-peso. Nesta etapa, o porta-peso não recebeu nenhum peso adicional. Os valores coletados estão na tabela a seguir:

Tabela 3.1: Amostras dos deslocamentos e tempos de duração.

Deslocamentos (m)	Tempos (s)
1.2	1.077
1.3	1.321
1.4	1.533
1.5	1.700
1.6	1.853
1.7	2.013

A seguir, é apresentado o gráfico destas duas variáveis:

Agora que temos os dados de deslocamento e tempo, podemos calcular a aceleração utilizando a fórmula abaixo:

$$\Delta x = +v_0 t + \frac{1}{2} a t^2 (3.1)$$

Figura 3.1: Sample output from tikzDevice

Onde:

 Δx : representa o deslocamento percorrido pelo carrinho. Os valores estão apresentados na tabela anterior para a posição final. A posição inicial é 0;

 v_0 : representa a velocidade inicial. Neste caso, ela é 0;

t: representa o momento que se deseja determinar a aceleração;

a: a aceleração que desejamos calcular a partir do deslocamento e tempo;

Após realizarmos estes cálculos, obtemos o seguinte resultado para a aceleração:

Tabela 3.2: Aceleração X Tempo

Δx (m)	t(s)	a (m/s^2)
1.2	1.077	2.0690921600
1.3	1.321	1.4899363396
1.4	1.533	1.1914442389
1.5	1.700	1.0380622837
1.6	1.853	0.9319640064
1.7	2.013	0.8390568113

A seguir, é apresentado o gráfico da aceleração por intervalor de tempo:

Agora que temos a aceleração, podemos calcular a velocidade utilizando a seguinte fórmula:

$$v^2 = {v_0}^2 + 2a\Delta x (3.2)$$

Onde:

Após realizarmos estes cálculos, obtemos o seguinte resultado para a velocidade:

Tabela 3.3: Velocidade m/s

$\Delta x \text{ (m)}$	t (s)	a (m/s^2)	v (m/s)
1.2	1.077	2.0690921600	2.228412256
1.3	1.321	1.4899363396	1.968205905
1.4	1.533	1.1914442389	1.826484018
1.5	1.700	1.0380622837	1.764705882
1.6	1.853	0.9319640064	1.726929304
1.7	2.013	0.8390568113	1.689021361

A seguir, é apresentado o gráfico da velocidade por intervalor de tempo:

(Incompleto)

Na etapa 2, coletamos amostras de tempo para vários pesos no porta-peso. A próxima tabela apresenta os valores obtidos.

Tabela 3.4: Amostras dos pesos e tempos de duração.

Pesos (kg)	Tempos (s)
0.000	0.0000
0.011	1.1810
0.012	1.1230
0.013	1.0600
0.014	0.9979
0.015	0.9737
0.016	0.9270
0.017	0.9166

4. Conclusão

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora.

Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda.

Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.