Листок 1 Тема 1(1.1). Простые числа

Упражнения и задачи

- 1. Докажите свойства делимости:
 - $a|a, a \neq 0$;
 - $a|b,b|a \implies a = \pm b;$
 - $\bullet \ a|b,b|c \implies a|c;$
 - $a|b,a|c \implies a|b \pm c$.
- 2. Алгоритм Евклида: Пусть $a,b \in \mathbb{Z} \setminus \{0\}, a > b$, определим последовательность $b > r_1 > r_2 > \cdots > r_n$ следующим образом: $a = bq_0 + r_1, b = r_1q_1 + r_2, r_1 = r_2q_2 + r_3, \ldots r_n = r_{n-1}q_{n-1} + r_n$. Докажите, что $\exists n : r_{n-1} = r_nq_n$ и $r_n = (a,b)$. (Сначала докажите , что $(a,b) = (b,r_1)$).
- 3. Докажите, что $\operatorname{ord}_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots$
- 4. Докажите, что $\sqrt{2}$ иррациональное число, т.е. что не \exists рационального r=a/b $(a,b\in\mathbb{Z})$ такого, что $r^2=2.$
- 5. Пусть $\alpha \in \mathbb{R}, \, b \in \mathbb{Z}_+$, докажите, что $\left[\frac{[\alpha]}{b}\right] = \frac{\alpha}{b}$.
- 6. Пусть (a,b) = 1, докажите, что (a+b,a-b) = 1 или 2.
- 7. Пусть $a,b,c\in\mathbb{Z}$, докажите что уравнение ax+by=c разрешимо в целых числах $\iff d=(a,b)|c$. Докажите также, что если x_0,y_0 решение этого уравнения, то все решения имеют вид $x=x_0+t\frac{b}{d},\ y=y_0-t\frac{b}{d}$, где $t\in\mathbb{Z}$.
- 8. Докажите следующие свойства:
 - $\operatorname{ord}_p([a,b]) = \max(\operatorname{ord}_p(a), \operatorname{ord}_p(b));$
 - $\operatorname{ord}_p(a+b) \geqslant \min(\operatorname{ord}_p(a), \operatorname{ord}_p(b))$, причем $\operatorname{ord}_p(a+b) = \min(\operatorname{ord}_p(a), \operatorname{ord}_p(b))$, если $\operatorname{ord}_p(a) \neq \operatorname{ord}_p(b)$;
 - $\bullet (a,b)[a,b] = ab;$
 - (a + b, [a, b]) = (a, b).
- 9. Пусть $a,b,c,d\in\mathbb{Z},\,(a,b)=1,\,(c,d)=1.$ Докажите, что если $\frac{a}{b}+\frac{c}{d}\in\mathbb{Z},$ то $b=\pm d.$
- 10. Пусть $n \in \mathbb{Z}$, n > 2 Докажите, что числа

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}; \ \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}$$

не являются целыми.

11. Пусть f(n) — мультипликативная функция. Докажите, что функции

$$g(n) = \sum_{d|n} f(d), \ h(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$$

также мультипликативны.

12. Докажите, что $\forall n \in \mathbb{Z}$

$$\sum_{d|n} \mu(\frac{n}{d})\nu(d) = 1, \ \sum_{d|n} \mu(\frac{n}{d})\sigma(d) = n.$$

- 13. Докажите, что $\forall m, n \in \mathbb{Z}$

 - $\varphi(n)\varphi(m) = \varphi((n,m))\varphi([n,m]);$ $\varphi(mn)\varphi((m,n)) = (m,n)\varphi(m)\varphi(n).$
- 14. Пусть $P,Q \in \mathbb{Z}_+$ нечетные, (P,Q) = 1. Докажите, что

$$\sum_{0 < x < \frac{Q}{2}} \left[\frac{P}{Q} x \right] + \sum_{0 < y < \frac{P}{2}} \left[\frac{Q}{P} y \right] = \frac{P-1}{2} \frac{Q-1}{2}.$$

(Используйте подсчет целых точек в некоторой ограниченной области на плоскости). SageMath

- Исследуйте основные теоретико-числовые функции в SageMath:
 - НОД, НОК: gcd(), lcm();
 - разложение на множители: factor(), valuation();
 - простые числа: is_prime(), next_prime(), previous_prime();
 - делители: divisors(), prime_divisors();
 - функции Эйлера и Мёбиуса, число и сумма делителей: euler_phi(), moebius(), sigma();
 - число простых чисел: prime_pi().