L9_1 Combinational-Logic-Assignment Project Exam Help

Timing

https://powcoder.com

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

To identify the propagation delay in combinational logic circuits.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Combinational Circuits Implement Boolean Expressions

- Output is determined exclusively by the input
- No memory: Output is valid only as long as input is
 Adder is the basic gate growth ALD to the Help

 - Decoder is the basic gate of indexing (we will use this next lecture)
 - MUX is the basic gate controlling data movement

Half-Adder

Add WeChat powcoder Decoder

Mux

Propagation Delay in Combinational Gates

 Gate outputs do not change exactly when inputs do.

- Transmission time over Avistenment Project Exam Help (~speed of light)
- Saturation time to make transistor gate switch

https://powcoder.com

Add WeChat powcoder

Every combinatorial circuit has a propagation delay (time between input and output stabilization)

Timing in Combinational Circuits

What is the input/output delay (or simply, delay) of the MUX?

Waveform viewers are part of designers' daily life

What is the delay of this Circuit?

Each oval represents one gate (the type does not matter) # = delay of each gate

Example: Building a Circuit

Problem: Build an ALU (Arithmetic Logic Unit) for LC-2K

- Use some of the blocks we have learned about so far to build a circuit Assignment
 - Using full adder, NOR, mux
 - Input A, 32 bits
 - Input B, 32 bits
 - Input S, 1 bit
 - Output, 32 bits
 - When S is low, the output is A+B, when S is high, the output is NOR(a,b)

32 wires

Add WeChat powcoder

Logistics

- There are 3 videos for lecture 9
 - L9 1 Combinational-Logic-Timing
 - L9_2 Memory_LatshipsnChocks Project Exam Help
- - 1. Circuit design combaddonat Chiat-poward wady for this now
 - 2. Circuit design sequential logic

L9_2 Memory Latches-Clocks

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- To identify and understand the operation of simple devices to retain memory in circuits.
- To understand the inclusioned firming with Helpck circuit

https://powcoder.com

Add WeChat powcoder

Sequency Project Exam Help Sequency Project Exam Help Add WeChat powcoder Add WeChat powcoder giving memory to circuits

What is sequential logic?

- So far, we've covered combinational
 - Output is determined from input
 - But computers do Atsvigrkn theattw Payojet the Enava state
- Examples of state

https://powcoder.com

- Registers
- Memory

Add WeChat powcoder

- Sequential logic's output depends not only on the current input, but also on its current state
- This lecture will show you how to build sequential logic from gates
 - The key is feedback

Your First Memory: S-R Latch

ion

- Output Q and Q should have memory, i.e., retain their value for some input changes
- Output Q and Q should always have opposite values

"high" is:

- logical 1
- 1 state
- "set"
- high voltage"low" is:
- logical 0
- 0 state
- "Unset"
- low voltage

Q is not Q

16

Problem: Create a truth table for this circuit

- Output Q and Q should have memory, i.e., retain their value for some input changes
- Output Q and Q should always have opposite values

17

Problem: Create a truth table for this circuit

- Output Q and Q should have memory, i.e., retain their value for some input changes
- Output Q and Q should always have opposite values

Q and \overline{Q} are supposed to be opposite of each other, so **this is a state we avoid.** This state can also lead to unstable future states. Try setting S = 0 and R = 0 now!

D Latch

D Latch

D Latch – Gate and Data

D Latch — Gate and Data

- Problem if we build complex circuits with feedback, these "latches" can become unstable when transparent
 - "Glitches" propagate around and around Exam Help
 - Take 270 to learn more
- We can solve this if we https://pceva.elborkcom
 - Alternating signal that switches between 0 and 1 states at a fixed frequency (e.g., 100MHz)
 - Only store the value the instant the clock changes
- What should the clock frequency be?
 - It depends on the longest propagation delay between state and next state combination logic
 - And a few other things outside of the scope of 370 (shout out 270)

Clocks

- Clock signal
 - Periodic pulse
 - Generated using & stiamments larojout & same Help
 - Distributed throughout chip using clock distribution net https://powcoder.com

What Happens if Data Changes on a Clock Edge?

In edge-triggered flip-flops, the latching edge provides convenient abstraction of "instantaneous" change of state.

Adding an Enable Input

Q only updates on a positive clock edge if 'en' is high

• Think of 'en' as 'write enabled' Project Exam Help

https://powcoder.com

Logistics

- There are 3 videos for lecture 9
 - L9 1 Combinational-Logic-Timing
 - L9_2 Memory_LatshipsnChocks Project Exam Help
- - 1. Circuit design combandtlowe Chiat powcoder
 - Circuit design sequential logic you are ready for this now

L9_3 Finite-State-Machines

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- To define and understand the concept of state as it pertains to architecture
- Ability to model a contemperate and transitions, i.e., a finite state machine. The powcoder.com

Add WeChat powcoder

Finite State Machines

- So far we can do two things with gates:
 - 1. Combinational Logic: implement Boolean expressions
 - Adder, MUX, Decoder, logical operations etc Exam Help
 - 2. Sequential Logic: store state
 - Latch, Flip-Flops https://powcoder.com
- How do we combine thandtwoodbametwingdinteresting?
 - Let's take a look at implementing the logic needed for a vending machine
 - Discrete states needed: remember how much money was input
 - Store sequentially
 - Transitions between states: money inserted, drink selected, etc.
 - Calculate combinationally or with a control ROM (more on this later)

State

Very important concept in architecture

- Represents all the stored information in a system at a point in time • Finite State Machine:

 Assignment Project Exam Help
- - Model of a system whichten umpostes collectate on that system may be in, and the conditions which allow transitions between states
 - Often expressed as a directed graph of respected as

FSM Example – Vending Machine

- We could use a general purpose processor
- However, a custom controller will be:
 - Assignment Project Exam Help Faster
 - Lower power
 - Cheaper to produce in hightwown powcoder.com
- On the other hand, a custom controller:
 Will be slower to design Add WeChat powcoder
 - More expensive in low volume
- Goals:
 - Take money, vend drinks.

Input and Output

• Inputs:

- Coin trigger
- Refund button Assignment Project Exam Help
- 10 drink selectors
- 10 pressure sensors
 - Detect if there are still drinks left

https://pewcoder.com

Add WeChat powcoder

- Outputs:
 - 10 drink release latches
 - Coin refund latch

Operation of Machine

- Accepts quarters only
- All drinks are \$0.75
- Assignment Project Exam Help
 Once we get the money, a drink can be selected
 https://powcoder.com
- If they want a refund, release any coins inserted

- No free drinks!
- No stealing money.

Building the Controller

- Finite State
 - Remember how many coins have been put in the machine and what inputs are acceptable Assignment Project Exam Help

https://powcoder.com

- Read-Only Memory (ROM)
 - Define the outputs and Atde Warshipowcoder

- Custom combinational circuits
 - Reduce the size (and therefore cost) of the controller

Finite State Machines

A Finite State Machine (FSM) consists of:

```
    K states: S = {s1, s2, ..., sk}, s1 is initial state
    N inputs: I = {s1, s2, ..., sk}, s1 is initial state
    M outputs: O = {bitps://pow.codemqom
```

- Transition function T (SAId) Wappingpeachockerrent state and input to next state
- Output Function P(S) or P(S,I) specifies output
 - P(S) is a Moore Machine
 - P(S,I) is a Mealy Machine

FSM for Vending Machine

Implementing a FSM

Logistics

- There are 3 videos for lecture 9
 - L9 1 Combinational-Logic-Timing
 - L9_2 Memory_LatshipsnChocks Project Exam Help
- - 1. Circuit design combandtlo Met Gaiat powcoder
 - 2. Circuit design sequential logic