L'amélioration de l'accuracy

L'amélioration de l'**accuracy** et la diminution du **loss** en intelligence artificielle (IA), quel que soit le modèle utilisé (réseaux de neurones, SVM, arbres de décision, etc.), nécessitent une approche systématique qui combine plusieurs stratégies. Voici les meilleures pratiques à appliquer :

1. Optimisation des Données

4 Augmenter la Qualité des Données

- Nettoyage des données : Supprimer les valeurs aberrantes et les données bruitées.
- Normalisation et standardisation : Transformer les données pour éviter des écarts trop grands entre les variables.
- Feature engineering : Extraire de nouvelles caractéristiques pertinentes.

4 Augmentation des Données (Data Augmentation)

- Pour l'image : Rotation, zoom, flip horizontal/vertical.
- Pour le texte : Synonymisation, traduction, suppression de mots non pertinents.

4 Équilibrer le Dataset

- Techniques de **sur-échantillonnage** (SMOTE) pour les classes minoritaires.
- Sous-échantillonnage des classes majoritaires pour éviter un biais de classe.

2. Choix et Optimisation du Modèle

LES Expérimenter Plusieurs Modèles

- Comparer CNN, RNN, Transformer, SVM, XGBoost selon le type de données.
- Tester des architectures avancées comme EfficientNet, ViT pour les images.

Augmenter la Complexité du Modèle (Si Données Suffisantes)

- Ajouter des couches de convolution, de LSTM ou denses.
- Utiliser des résidus (ResNet), attention mécanisme (Transformer).

Réduction de la Complexité du Modèle (Si Overfitting)

- Pruning des couches inutiles.
- Diminution du nombre de paramètres avec une compression efficace.

Utiliser des Transferts d'Apprentissage (Transfer Learning)

• Charger des modèles pré-entraînés (BERT, ResNet, GPT) et les affiner sur son dataset.

3. Réglage des Hyperparamètres (Hyperparameter Tuning)

Utiliser des Techniques d'Optimisation

- **Grid Search**: Test systématique de toutes les combinaisons possibles.
- Random Search : Exploration aléatoire des hyperparamètres.
- Bayesian Optimization ou Hyperopt : Optimisation plus intelligente.

4 Ajuster les Hyperparamètres Clés

- **Learning rate** (taux d'apprentissage) : Un trop grand entraîne un manque de convergence, un trop faible ralentit l'apprentissage.
- **Batch size** : Un petit batch améliore la généralisation, un grand batch accélère l'apprentissage.
- **Nombre d'époques (epochs)** : Trop d'époques cause un sur-apprentissage (overfitting).
- **Dropout rate**: Augmenter pour éviter l'overfitting, diminuer si la performance chute.

4. Techniques d'Optimisation de l'Entraînement

Learning Changer l'Optimiseur

- Adam : Généralement performant.
- SGD avec momentum : Efficace pour des modèles profonds.
- **RMSprop** : Recommandé pour des séries temporelles.

Scheduler de Learning Rate

• Diminuer le taux d'apprentissage au fil des époques avec **ReduceLROnPlateau** ou **Cosine Annealing**.

Utiliser la Régularisation

- L1/L2 (Weight Decay): Pour éviter des poids trop élevés.
- Batch Normalization : Améliore la stabilité et la vitesse d'apprentissage.

5. Stratégies de Validation et d'Évaluation

Union de Coût Choisir la Bonne Fonction de Coût

- Pour classification binaire : Binary Cross-Entropy.
- Pour classification multi-classes : Categorical Cross-Entropy.
- Pour régression : MSE / MAE.

Appliquer une Bonne Validation Croisée (Cross-validation)

• K-Fold Cross Validation pour éviter le sur-ajustement à un seul ensemble de test.

Utiliser une Meilleure Métrique d'Évaluation

- Accuracy n'est pas toujours idéale (ex : dataset déséquilibré).
- Privilégier **F1-score**, **AUC-ROC**, **Precision-Recall** selon le cas.

6. Utilisation de Techniques Avancées

4 Ensemble Learning

- Combinaison de plusieurs modèles (Bagging, Boosting, Stacking).
- Exemple : Mélanger CNN + Transformer pour une meilleure robustesse.

AutoML et NAS (Neural Architecture Search)

- Recherche automatique des meilleures architectures neuronales.
- Exemple : Google AutoML, Optuna, TPOT.

L'amélioration de l'accuracy et la réduction du loss nécessitent une approche holistique :

- 1. **Données de qualité** (nettoyage, augmentation, équilibre).
- 2. Choix de modèle adapté (expérimentation, transfer learning).
- 3. Optimisation des hyperparamètres (Grid Search, Bayesian Optimization).
- 4. **Techniques avancées** (Ensemble Learning, NAS).
- 5. Validation correcte (Cross-validation, métriques adaptées).

Si ton modèle **stagne** malgré ces améliorations, il faut repenser l'architecture et la représentativité des données.

- 1. L'architecture du modèle
- 2. La représentativité des données

1. Repenser l'Architecture du Modèle

Parfois, le modèle choisi **n'est pas adapté** au problème, ou sa structure **limite son potentiel**. Voici quelques pistes pour le modifier :

- **♣** Essayer une Architecture Plus Complexe (Si Données Suffisantes)
- Si ton modèle est **trop simple** (ex : un réseau de neurones avec peu de couches), il ne peut pas apprendre des **relations complexes** dans les données.
- Ajoute des couches, teste des architectures comme **ResNet**, **EfficientNet**, **Transformers** pour mieux capturer les patterns.
- Utilise **des modèles hybrides** (ex : CNN + LSTM pour les séquences d'images).

♣ Réduire la Complexité (Si Overfitting)

- Si ton modèle **mémorise trop les données d'entraînement** mais ne généralise pas, il est **trop complexe**.
- Réduis le nombre de couches ou de neurones.
- Ajoute de la **régularisation** (Dropout, L2 Weight Decay).

♣ Expérimenter d'Autres Approches

- Si un modèle de deep learning **ne fonctionne pas bien**, essaie des méthodes plus classiques (**XGBoost**, **SVM**, **Random Forest**) qui peuvent parfois être plus efficaces sur de petits datasets.
- Pour le NLP, essaie Transformer au lieu de LSTM.
- Pour les images, compare CNN avec ViT (Vision Transformer).

2. Revoir la Représentativité des Données

Même avec le meilleur modèle, si les données d'entraînement ne sont pas de bonne qualité ou pas représentatives, le modèle stagnera.

- ♣ Vérifier la Qualité des Données
- Y a-t-il des erreurs ou du bruit dans les données ?
- Les labels sont-ils corrects ? (Problème fréquent en annotation manuelle).
- ♣ Augmenter la Diversité du Dataset
- Si les données sont **trop homogènes**, le modèle n'apprend pas à généraliser.
- Ajoute des données supplémentaires provenant de différentes sources.
- ♣ Gérer le Déséquilibre de Classes
- Si ton dataset a **trop peu d'exemples d'une classe**, le modèle peut ignorer cette classe
- Utilise **SMOTE** (**Synthetic Minority Over-sampling Technique**) pour générer des exemples artificiels.
- Changer la Préparation des Données
- Teste différentes **normalisations** / **standardisations** (MinMax Scaling, Z-score).
- Si ton modèle apprend mal, peut-être que certaines **features sont inutiles ou mal représentées**.

Si ton modèle **stagne malgré les optimisations**, le problème vient souvent :

- ✓ **De son architecture** (trop simple ou trop complexe).
- ✓ **De ses données** (qualité, diversité, représentativité).

La solution est de **tester différentes architectures** et **améliorer les données** pour qu'elles reflètent mieux la réalité du problème.