

An investigation of CNN Architecture

Table of Contents

O1 Introduction
Domain
background

02

GoalsWhat do we want to learn from this project?

03

Model Selection
What is the most effective pretrained model?

04

Model
Architecture
One model or two?

05

Fine TuningHyperparameters, regularization

Introduction

Histopathology - the diagnosis and study of diseases of the tissue

Normal Colon

ACA

Question:

How can we most effectively identify cancer in microscopic slides of tissue and once the cancer is identified how can we classify the type of tissue involved?

Goals

Explore

What pre-trained model will give the best results?

How can we improve on our baseline model?

Refine

How can different approaches to the same problem yield different results?

Apply Regularization

What techniques can we apply to generalize our model?

Model Selection Mobilenet Alexnet Densenet Resnet Densenet Loss Resnet Loss Epoch Mobilenet Loss Alexnet Loss Epoch 16 12 -14 10 12 10 Epoch Epoch

Model Selection (Cont)

Model Architecture

Strategy 1:

Does cancer exist in the image?

Model:

Single binary classification model

Goal

Accurately identify cancer OR malignancy

Strategy 2:

Does cancer exist in the image of:

- a. Colon
- b. Lung

Models:

TWO binary classification models

Model Architecture Results

Strategy #1

Strategy #2

Model Architecture

Goal

Accurately identify Types of Lung cancer

Strategy 3:

Types of Lung cancer, Adenocarcinoma or Squamous cell carcinoma

Model:

Single binary classification model

Accuracy for Types of Lung Cancers

Adjust Learning Rate

- Triangular Rate
- Layer Scaling

Unfreeze Gradients

Gradual training of resnet layers

Data Augmentation

Make more data

- physical transformations
- brightness
- fuzziness

Weight Decay

Apply L2 regularization

Early Stopping

Stop training when metric decreases

Results

96.5%