Лекция 9. Топологическая динамика

1 Топологические динамические системы и их свойства

Рассмотрим поведение точки, траектория которой задаётся дифференциальным уравнением $\dot{x}=v(x)$. Простой пример локального исследования такой системы из дифференциальных уравнений —фазовые портреты дифференциальных уравнений на плоскости. Также можно изучать более глобальные параметры, например, «предельные циклы».

Вспомним, что динамическая система в этом случае это (X, τ, T^t, G) , где τ — топология, а T^t — поток непрерывных преобразований.

Общие конструкции (считаем, что время — \mathbb{Z}):

- ω -предельные точки $\omega_T(X) = \{y: \exists x \in X, k_j \to \infty: y = T^{k_j}x\}.$ Обозначим также $X' = \omega_T(X).$
- α -предельные точки $\alpha_T(X) = \{y : \exists x \in X, k_j \to -\infty : y = T^{k_j}x\}.$
- T называется минимальным, если $\forall x_0 : \omega_T(\{x\}) = X$

2 Символические системы

Определение 1. Пусть \mathbb{A} — конечный алфавит. $\Omega = \{(\dots x_0 x_1 x_2 \dots) \mid x_t \in \mathbb{A}\}, S: (x_i) \mapsto (x_{i+1})$. Тогда (Ω, S) — топологическая система Бернулли. Топология слабая: база $W_u = \{x: u \leq x\}$. Также можно задать метрикой $d(x,y) = \frac{1}{2}|x_0 - y_0| + \sum_{i \neq 0} \frac{|x_i - y_i|}{2^{|i|} + 2}$.

Упражнение 1. Изучить все описанные свойства для бернуллиевской системы.

Упражнение 2. (*) Изучить все описанные свойства для динамической системы из лекции 7 $(1 \to 1, 0 \to 0010)$.

Упражнение 3. Пусть $\overline{Y}=$ замыкание $\{S^ky:y\in Y\}$. Показать, что $\overline{Y}-$ компакт и найти S(Y) для следующих Y:

- $Y = \{(\dots 0101010\dots)\}.$
- $Y = \{(\dots 0001000\dots)\}.$
- $Y = \{(0...010...010...)\}$ (единицы на местах i и j).

Упражнение 4. Привести пример $X \subset \Omega$, которая была бы транзитивна, но не минимальна.

Упражнение 5. (*) Привести пример системы $X\subset \Omega$, такой что $X\neq X'\neq X''$.

Рассмотрим динамическую систему «подкова Смейла»: $\Omega=[0;1]\times[0;1]$, $T(x,y)=(\frac{x}{3}+\frac{2y}{3},3y)$. Множество $K\times K$ получается инвариантным, и на нём возникает интересная динамика, на самом деле на этом подмножестве система бернуллиевская.

Определение 2. Топологическая марковская цепь это слова ... $x_0x_1x_2$... над \mathbb{A} , притом слово $\alpha\beta$ разрешено, если в некотором заданном графе на всех словах \mathbb{A}^* есть стрелка $\alpha \to \beta$.

Для обощения на большую размерность стоит упомянуть, что лучше использовать не «разрешённые» переходы, а наоборот, «запрещённые».

Пример двумерной марковской цепи: \mathbb{Z}^2 и запрещены конфигурации, где в клетках (i,j),(i+1,j),(i+1,j+1) сумма равна 1 по модулю 2 (алфавит бинарный). Такая цепь, наример, является контрпримером к проблеме Рохлина о кратном перемешивании, так как является двукратно перемещивающей, но не трехкратно.

Следующий пример принадлежит Аносову: дело происходит на $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2.$

$$A: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Интересные свойства:

- $A\mu = \mu$.
- A автоморфимзм, диффеоморфизм.
- $A \cong$ марковскому процессу.
- $\bullet \exists A^{-1}.$