Lecture 10

Multinomial Logistic Regression

Suman Samui

What we discussed so far...

Logistic regression model

Probabilistic model

Where from the name 'logit' comes from?

What are the important aspects to train a LR model?

Logistic Regression

• Binary classification model → probabilistic

 It can be extended to multiclass classification problem in different ways.

Softmax Regression

(Multinomial Logistic Regression)

Multinomial Logistic Regression

• Labeled dataset with N classes (N > 2)

• The Softmax Regression model first computes a score $s_k(x)$ for each class k

• Then it estimates the probability of each class by applying the *softmax function* (also called the *normalized exponential*) to the scores.

Softmax score for class k

$$s_k(\mathbf{x}) = \mathbf{x}^T \mathbf{\theta}^{(k)}$$

The scores are generally called logits or log-odds.

Note that each class has its own dedicated parameter vector $\theta^{(k)}$

 $\theta^{(k)} \rightarrow$ Column vector with (n+1) elements

 $x^T \rightarrow \text{Row vector with (n+1) elements}$

Softmax function

$$\hat{p}_k = \sigma(\mathbf{s}(\mathbf{x}))_k = \frac{\exp\left(s_k(\mathbf{x})\right)}{\sum_{j=1}^K \exp\left(s_j(\mathbf{x})\right)}$$

the estimated probability

Classes $\rightarrow K$

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)