

Universidade Estadual de Santa Cruz - UESC

Relatório de Implementações de Métodos da Disciplina Análise Numérica

Relatório de implementações realizadas por Levy Marlon Souza Santiago

Disciplina Análise Numérica.

Curso Ciência da Computação

Semestre 2017.2

Professor Gesil Sampaio Amarante II

Ilhéus – BA 2018

ÍNDICE

Especificações do Arquivo de Entrada	5
Biblioteca usada:	5
Algumas representações	5
Observações	6
Método de Euler	7
Estratégia de Implementação:	7
Estrutura dos Arquivos de Entrada/Saída	7
Problema teste 1, 2, 3	7
Dificuldades enfrentadas	9
Método de Heun	10
Estratégia de Implementação:	10
Estrutura dos Arquivos de Entrada/Saída	10
Problema teste 1, 2, 3	10
Dificuldades enfrentadas	12
Método de Runge Kutta Ordem 2	13
Estratégia de Implementação:	13
Estrutura dos Arquivos de Entrada/Saída	13
Problema teste 1, 2, 3	13
Dificuldades enfrentadas	15
Método Runge Kutta Ordem 3	16
Estratégia de Implementação:	16
Estrutura dos Arquivos de Entrada/Saída	16
Problema teste 1, 2, 3	16
Dificuldades enfrentadas	18
Método Runge Kutta Ordem 4	19
Estratégia de Implementação:	19

Estrutura dos Arquivos de Entrada/Saída	19
Problema teste 1, 2, 3	19
Dificuldades enfrentadas	21
Considerações Finais	22

Linguagem(ns) Escolhida(s) e justificativas

A linguagem escolhida foi o Python, pois além de ser uma linguagem em que o autor deste relatório já é familiarizado, existem algumas bibliotecas para cálculos matemáticos e manipulação de funções que já estão implementadas para se utilizar nesta linguagem. A versão do python utilizada foi a versão 3.5.3. O Sistema Operacional usado para implementar os métodos foi o Linux distribuição Ubuntu 17.04.

Especificações Arquivo de Entrada

Biblioteca usada:

Para todos os métodos foi necessário usar uma biblioteca chamada sympy. Para instalar esta biblioteca no Python3, foi utilizado o seguinte comando no terminal Linux: \$ sudo pip3 install sympy. Foi preferível usar esta biblioteca para todos os métodos porque além de implementar funções para cálculos matemáticos (exponencial, seno, cosseno...), também implementa manipulação de funções e equações (f(x) = x + y + z, x + y = 1...). Por isso foi aberta esta nova sessão para explicar como são representadas as funções matemáticas a partir desta biblioteca.

Também foi utilizada em todos os métodos uma biblioteca chamada sys. Esta biblioteca permite usar argumentos em python, e ela foi usada para inserir como argumento do programa o caminho do arquivo de entrada.

Para poder executar qualquer método, deve-se digitar pyhon3 (ou python, caso a versão 3 esteja configurada como padrão na máquina), o nome do arquivo .py e depois o nome do arquivo de entrada como parâmetro.

\$ python3 nomeDoMetodo.py entrada.txt

Algumas representações

Abaixo se encontram as representações de algumas funções matemáticas que podem ser usadas no arquivo de entrada:

```
- x^2 = pow(x, 2) ou x^{**}2;
```

- Raiz quadrada de x = sqrt(x);
- Seno de $x = \sin(x)$;
- Arcoseno de x = asin(x)
- Cosseno de x = cos(x);
- Tangente de x = tan(x);
- Número de Euler (e) elevado a x = exp(x);
- Log de x na base y = log(x, y);
- pi é uma constante já definida (3,1415....);

Observações

Abaixo se encontram algumas observações que é preciso se atentar ao gerar o arquivo de entrada:

- O programa não reconhece 5x, mas sim 5*x;

Método de Euler

Estratégia de Implementação:

A função que implementa o método é a 'metodoEuler', ela recebe como entrada a função, o valor inicial y(0), o intervalo da solução, e o valor de 'h'. O método é aplicado iterativamente. inicialmente o 'xi' é zero, e iterativamente vai somando seu valor anterior com o 'h'. Já o valor de 'yi' vai sendo atualizado também iterativamente a partir da fórmula do próprio método. No fim, o valor yi é o resultado final, então só é feito uma aproximação para três casas decimais e o valor é retornado.

Um fato importante é que esse método só aceita as variáveis 'x' e 'y' para o uso em uma função de entrada. Pois são os símbolos que foram definidos no programa.

Estrutura dos Arquivos de Entrada/Saída

O arquivo de entrada do método em questão foi organizado na seguinte ordem: Primeiro a função, depois o valor inicial y(0), a seguir o intervalo (inicial e final, nessa ordem), e por fim, o valor de 'h', entradas separadas por um enter. O arquivo pode conter outras entradas seguindo esta mesma ordem, lembrando que cada nova entrada (novo problema) deve ser separada por dois espaços (dois Enters).

O arquivo de saída é gerado informando o gerada a partir das entradas. Sequencialmente, são informados as respostas das outras entradas, caso houveram outras.

Problema teste 1, 2, 3...

Abaixo estão quatro entradas que foram testadas neste método e seus respectivos resultados:

Problema 1:

2000 / (200 - x)

0

50

1

Resultado:

Resultado = 573.701

Problema 2:

$$-y + x + 2$$

2

0

0.3

0.1

Resultado:

Resultado = 2.029

Problema 3:

$$-2*x**3 + 12*x**2 - 20*x + 8.5$$

1

0

0.5

0.5

Resultado:

Resultado = 5.25

Problema 4:

4*exp(0.8*x) - 0.5*y

2

0

1

1.0

Resultado:

Resultado = 5.0

Dificuldades enfrentadas

Método de Heun

Estratégia de Implementação:

A estratégia de implementação foi semelhante à implementação do método anterior. A diferença agora é que mudamos o valor de yi duas vezes a cada iteração seguindo as operações que existem no método.

Neste método também está definido o 'x' e 'y' como variáveis únicas para o uso nas funções de entrada.

Estrutura dos Arquivos de Entrada/Saída

O arquivo de entrada do método em questão foi organizado na seguinte ordem: Primeiro a função, depois o valor inicial y(0), a seguir o intervalo (inicial e final, nessa ordem), e por fim, o valor de 'h', entradas separadas por um enter. O arquivo pode conter outras entradas seguindo esta mesma ordem, lembrando que cada nova entrada (novo problema) deve ser separada por dois espaços (dois Enters).

O arquivo de saída é gerado informando o gerada a partir das entradas. Sequencialmente, são informados as respostas das outras entradas, caso houveram outras.

Problema teste 1, 2, 3...

Abaixo estão quatro entradas que foram testadas neste método e seus respectivos resultados:

```
Problema 1:
```

```
2000 / (200 - x)
```

50

1

Resultado:

Resultado = 575.367

Problema 2:

2

0

0.3

0.1

Resultado:

Resultado = 2.041

Problema 3:

1

0

0.5

Resultado:

Resultado = 3.438

Problema 4:

$$4*exp(0.8*x) - 0.5*y$$

2

0

1

1.0

Resultado:

Resultado = 6.701

Dificuldades enfrentadas

Método de Runge Kutta Ordem 2

Estratégia de Implementação:

A estratégia de implementação foi semelhante à implementação do método anterior. As diferenças agora são as mudanças do próprio método. A escolha para os valores de c1, c2 e a2 foram: c1 = 0, c2 = 1 e a2 = 1/2 que é chamado de Método de Euler Modificado.

Neste método também está definido o 'x' e 'y' como variáveis únicas para o uso nas funções de entrada.

Estrutura dos Arquivos de Entrada/Saída

O arquivo de entrada do método em questão foi organizado na seguinte ordem: Primeiro a função, depois o valor inicial y(0), a seguir o intervalo (inicial e final, nessa ordem), e por fim, o valor de 'h', entradas separadas por um enter. O arquivo pode conter outras entradas seguindo esta mesma ordem, lembrando que cada nova entrada (novo problema) deve ser separada por dois espaços (dois Enters).

O arquivo de saída é gerado informando o gerada a partir das entradas. Sequencialmente, são informados as respostas das outras entradas, caso houveram outras.

Problema teste 1, 2, 3...

Abaixo estão quatro entradas que foram testadas neste método e seus respectivos resultados:

```
Problema 1:
```

```
2000 / (200 - x)
```

50

1

Resultado:

Resultado = 575.363

Problema 2:

2

0

0.3

0.1

Resultado:

Resultado = 2.041

Problema 3:

1

0

0.5

0.5

Resultado:

Resultado = 3.109

Problema 4:

4*exp(0.8*x) - 0.5*y

2

0

1

1.0

Resultado:

Resultado = 6.217

Dificuldades enfrentadas

Método de Runge Kutta Ordem 3

Estratégia de Implementação:

A estratégia de implementação foi semelhante à implementação do método anterior. As diferenças agora são as mudanças do próprio método.

Neste método também está definido o 'x' e 'y' como variáveis únicas para o uso nas funções de entrada.

Estrutura dos Arquivos de Entrada/Saída

O arquivo de entrada do método em questão foi organizado na seguinte ordem: Primeiro a função, depois o valor inicial y(0), a seguir o intervalo (inicial e final, nessa ordem), e por fim, o valor de 'h', entradas separadas por um enter. O arquivo pode conter outras entradas seguindo esta mesma ordem, lembrando que cada nova entrada (novo problema) deve ser separada por dois espaços (dois Enters).

O arquivo de saída é gerado informando o gerada a partir das entradas. Sequencialmente, são informados as respostas das outras entradas, caso houveram outras.

Problema teste 1, 2, 3...

Abaixo estão quatro entradas que foram testadas neste método e seus respectivos resultados:

```
Problema 1:
```

```
2000 / (200 - x)
```

0

0

Resultado:

Resultado = 575.364

Problema 2:

2

0

0.3

0.1

Resultado:

Resultado = 2.041

Problema 3:

$$-2*x**3 + 12*x**2 - 20*x + 8.5$$

1

0

0.5

0.5

Resultado:

Resultado = 3.219

Problema 4:

$$4*exp(0.8*x) - 0.5*y$$

2

0

1

1.0

Resultado:

Resultado = 6.176

Dificuldades enfrentadas

Método de Runge Kutta Ordem 4

Estratégia de Implementação:

A estratégia de implementação foi semelhante à implementação do método anterior. As diferenças agora são as mudanças do próprio método.

Neste método também está definido o 'x' e 'y' como variáveis únicas para o uso nas funções de entrada.

Estrutura dos Arquivos de Entrada/Saída

O arquivo de entrada do método em questão foi organizado na seguinte ordem: Primeiro a função, depois o valor inicial y(0), a seguir o intervalo (inicial e final, nessa ordem), e por fim, o valor de 'h', entradas separadas por um enter. O arquivo pode conter outras entradas seguindo esta mesma ordem, lembrando que cada nova entrada (novo problema) deve ser separada por dois espaços (dois Enters).

O arquivo de saída é gerado informando o gerada a partir das entradas. Sequencialmente, são informados as respostas das outras entradas, caso houveram outras.

Problema teste 1, 2, 3...

Abaixo estão quatro entradas que foram testadas neste método e seus respectivos resultados:

Problema 1:

```
2000 / (200 - x)
```

0

0

Resultado:

Resultado = 575.364

Problema 2:

2

0

0.3

0.1

Resultado:

Resultado = 2.041

Problema 3:

$$-2*x**3 + 12*x**2 - 20*x + 8.5$$

1

0

0.5

0.5

Resultado:

Resultado = 3.219

Problema 4:

2

0

1

1.0

Resultado:

Resultado = 6.201

Dificuldades enfrentadas

Considerações Finais

É importante lembrar que as implementações destes métodos não estão completamente revisadas e testadas, por isso, podem haver alguns casos que gerem algum problema. Mas por fim, grande parte dos problemas podem ser resolvidos com estas implementações.