

Arduino-IOT [wk13]

cds_dht22 + node MongoDB Mining

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining iot data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2023

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

ID	성명
AA01	강동하
AA02	고서진
AA03	김민재
AA04	김예원
AA05	김주호
AA06	김창욱
AA07	김현서
AA08	박종혁
AA09	서명진
AA10	유동기
AA11	
AA12	이근보
AA13	정호기

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Practice]

- ◆ [wk11/12]
- > RT Data storaging with Mongo DB
- Multi-sensor circuits (cds-dht22)
- Complete your project
- Upload folder: aann-rpt11

Wk11/12: Practice: aann-rpt11

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aann-rpt11

- 압축할 파일들

- ① AAnn_iot_mongodb.png
- ② AAnn_iot_mongodb_web.png
- 3 AAnn_iot_json.png
- 4 AAnn_iot_client.png
- (5) All *.ino
- 6 All *.js
- ? All *.html in public folder
- 8 Delete 'node_modules' folder

Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

DHT22 + CdS + Node.js + MongoDB

Network socket server : port=3000

```
D:\aann\aann-rpt12\cds_dht22>node cds_dht22_mongodb serial port open mongo db connection OK. iotInfo: Current date: 2021-11-17 10:15:23.935, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:26.213, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:28.490, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:30.767, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:33.045, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:35.322, Temp: 21.1, Humi: 33.2, Lux: 87 iotInfo: Current date: 2021-11-17 10:15:37.605, Temp: 21.1, Humi: 33.2, Lux: 87
```

Express server : port=3030

D:\aann\aann-rpt12\cds_dht22>node cds_dht22_express Express_IOT with CORS is running at port:3030 mongo db connection OK.

on WEB monitoring Arduino data

IoT Signal from Arduino Weather Station

Real-time Signals

on Time: 2021-10-27 11:54:48.997

Signals (온도,습도,조도) : 23.4,42.6,286

Web monitoring: http://localhost:3030/client_cds_dht22.html

Real-time Weather Station from sensors

on Time: 2023-12-06 14:19:26.201

MongoDB shell: mongo

```
> show dbs
admin 0.000GB
config 0.000GB
iot
         0.013GB
iot10
        0.000GB
        0.000GB
local
test
        0.000GB
> use iot
switched to db iot
> show collections
sensors
> db.sensors.find().sort({' id':-1}).limit(10)
   <u>" id" : ObjectId("619466cc0374269b9cc2cd3b"), "date" : "2021-11-17 11:19:56.573", "temperature" : "21.6", "humidity" : "32.4", "luminosity" : "85", "</u>
                                                        "2021-11-17 11:19:54.296", "temperature": "21.7", "humidity": "32.4", "luminosity": "86",
    'id": ObjectId("619466c80374269b9cc2cd37"), "date": "2021-11-17 11:19:52.018", "temperature": "21.7", "humidity": "32.4", "luminosity": "85",
   v" : 0 }
    'id": ObjectId("619466c50374269b9cc2cd35"), "date": "2021-11-17 11:19:49.741", "temperature": "21.7", "humidity": "32.4", "luminosity": "85",
   v":0}
    id": ObjectId("619466c30374269b9cc2cd33"), "date": "2021-11-17 11:19:47.463", "temperature": "21.6", "humidity": "32.3", "luminosity": "85",
   v" : 0 }
    id" : ObjectId("619466c10374269b9cc2cd31"), "date" : "2021-11-17 11:19:45.186", "temperature" : "21.6", "humidity" : "32.3", "luminosity" : "86",
   v":0}
  " id" : ObjectId("619466be0374269b9cc2cd2f"), "date" : "2021-11-17 11:19:42.908", "temperature" : "21.7", "humidity" : "32.4", "luminosity" : "85",
   v":0}
        : ObjectId("619466bc0374269b9cc2cd2d"), "date" : "2021-11-17 11:19:40.630", "temperature" : "21.7", "humidity" : "32.4", "luminosity" : "86",
  "_id" : ObjectId("619466ba0374269b9cc2cd2b"), "date" : "2021-11-17 11:19:38.348", "temperature" : "21.7", "humidity" : "32.4", "luminosity" : "85",
  "id": ObjectId("619466b80374269b9cc2cd29"), "date": "2021-11-17 11:19:36.071", "temperature": "21.7", "humidity": "32.4", "luminosity": "85",
```

Web monitoring: http://localhost:3030/client_iotdb.html

MongoDB database visualization by AA00

Time series: Multi sensor data

A5. Introduction to IoT service

System (Arduino, sDevice, ...)

Data (signal, image, sns, ...)

Visualization & monitoring

Data storaging & Mining

Service

MongoDB data management

- Query in mongo shell
- Export & import MongoDB
- Using and understanding iot data with Python (or R)

Query in Mongo shell (문서 검색)

```
db.sensors.count() → sensors collection에 있는 도큐먼트 (문서)의 수
```

```
db.sensors.find().sort({_id: 1}).limit(10) → 오래된 document 10개 추출
```

db.sensors.find().sort({_id: -1}).limit(10) → 최근 document 10개 추출

```
db.sensors.find( {date: {$gt: "2023-12-07 14:46:05"}} ) → 특정 시간 이후 document 추출
```

db.sensors.find({temperature: {\$gt: "25"}}) → 온도가 25도를 넘는 document 추출

https://docs.mongodb.com/manual/tutorial/query-documents/

A5.9.8 MongoDB management (4.x version)

- 2. Import or export MongoDB (VSCode 터미널에서 실행)
- mongoimport --d=dbName --c=collectionName --type=csv --headerline --file= fileName.csv
- mongoexport --d=dbName --c=collectionName --fields=<field1,field2,...> --limit=nn --type=csv --out=fileName.csv

json ^{또는} csv 파일로 import/export [Help] mongoimport --help

https://docs.mongodb.com/manual/reference/program/mongoimport/

https://docs.mongodb.com/manual/reference/program/mongoexport/

A5.9.8 MongoDB Database Tool (5.x version)

MongoDB Command Line Database Tools Download The MongoDB Database Tools are a collection of command-line utilities for working with a MongoDB deployment. These tools release independently from the MongoDB Server schedule enabling you to receive more frequent updates and leverage new features as soon as they are available. See the MongoDB Database Tools documentation for more information. Version 100.9.3 Platform Windows x86 64 Package zip Download & More Options

'bin' folder 복사하고 path 설정 [참고] mongodb 4.4부터 db tool 분리됨.

https://www.mongodb.com/try/download/database-tools

mongoimport /db:dbName /collection:collectionName /type:csv /headerline /file: fileName.csv

```
D:\aann\aann-rpt11\cds_dht22\public\data>mongoimport /db:iot10 /collection:sensors /type:csv
/headerline /file:sensor10.csv

2022-11-07T18:47:51.681+0900 connected to: mongodb://localhost/
2022-11-07T18:47:51.740+0900 10 document(s) imported successfully. 0 document(s) failed to import.
```

Import sensor10.csv to MongoDB: iot10

```
date,temperature,humidity,luminosity 2018-03-12 04:34:40.662,16.6,24.9,0 2018-03-12 04:34:50.923,16.6,24.9,0 2018-03-12 04:35:01.168,16.6,24.9,0 2018-03-12 04:35:11.429,16.6,24.9,0 2018-03-12 04:35:21.674,16.6,24.9,0 2018-03-12 04:35:31.935,16.6,24.9,0 2018-03-12 04:35:52.441,16.6,24.9,0 2018-03-12 04:35:52.441,16.6,24.9,0 2018-03-12 04:36:02.686,16.6,25.0,0 2018-03-12 04:36:12.947,16.6,25.0,0
```


> show dbs
admin 0.000GB
config 0.000GB
iot 0.009GB
iot10 0.000GB
local 0.000GB
test 0.000GB
> use iot10
switched to db iot10

[Tip] iot db의 최근 데이터 500개를 csv 파일 (iot_s500.csv)로 저장할 때,

mongoexport /db:iot /collection:sensors /sort:"{_id: -1}" /limit:500 /fields:date,temperature,humidity,luminosity /type:csv /out:iot_s500.csv

```
D:\aann\aann-rpt11\cds dht22\public\data>mongoexport /db:iot /collection:sensors
/sort:"{ id: -1}" /limit:500 /fields:date,temperature,humidity,luminosity /type
:csv /out:iot s500.csv
2021-11-10T13:08:45.875+0900
                             connected to: mongodb://localhost/
                             exported 500 records
2021-11-10T13:08:45.941+0900
D:\aann\aann-rpt11\cds_dht22\public\data>dir
D 드라이브의 볼륨: DATA
볼륨 일련 번호: 82D1-4852
D:\aann\aann-rpt11\cds dht22\public\data 디렉터리
2021-11-10 오후 01:08
                        <DIR>
2021-11-10 오후 01:08
                        <DIR>
2017-11-16 오전 09:58
                               60,220 aapl.csv
2018-11-26 오후 05:50
                            3,628,861 iot chaos.csv
2021-11-10 오후 01:08
                               18,537 iot s500.csv
2017-11-16 오후 01:18
                              135,008 ppg5k.csv
2018-05-26 우호 12:52
                                  397 sensor10.csv
             5개 파일
                               3,843,023 바이트
             2개 디렉터리 2,410,432,798,720 바이트 남음
```


- 1. iot db의 최근 데이터 1000개를 csv 파일 (AAnn_s1000.csv)로 저장하시오.
- 2. 저장된 AAnn_s1000.csv 파일을 public/data 폴더에 복사.
- 3. csv 파일을 이용하는 Rangeslider가 포함된 웹 클라이언트 client_iot.html 파일을 만드시오.
- 4. Localhost:3030/client_iot.html 로 실행하고 확인.

iot chaos.html client iot.html²

이를 변경해서 코드를 와성하시오.

3. How to use and understand iot data? → Python(or R) in Colab/Jupyter lab

IoT Data

Mining

IoT data mining

3. How to use and understand iot data? → Python(or R) in Colab/Jupyter lab

IoT data mining

How to use and understand iot data? → Google Colab

Pandas: access to the remote json from MongoDB

- The json file is generated on the fly from the express server of Node.js.
- The data stored in MongoDB are saved in the json file.
- The data are composed of three time series; temperature, humidity, and luminosity.

```
In [0]: import pandas as pd

In [0]: # loading json file from MongoDB via web (CORS, port=3030)
url="http://chaos.inje.ac.kr:3030/iot"
df=pd.read_json(url)
print('Large data was retrieved successfully from MongoDB!')

In [0]: df.head()
```


3.1 How to use and understand iot data? → iot_csv.ipynb, iot_json.ipynb

[1]

 Γ

A5.9.8 MongoDB management

3.2 Loading data ... → iot_json.ipynb

1 import pandas as pd

- [2] 1<mark># loading json file from MongoDB via web (CORS, port=3030)</mark> 2 url="http://chaos.inje.ac.kr:3030/iot" 3<mark>;</mark>j1=pd.read_json(url)
- [3] 1 j1.head()

- 1. Express 서버에서 MongoDB에 접속한다.
- 2. 아두이노에서 만들어져 전송되어 MongoDB에 저장되고 있는 센서 데이터를 json 파일로 가져온다.

L→	-		_id	date	humidity	luminosity	temperature
	0	0	5bce24218d1ec32774d781a9	2018-10-23 04:25:21.349	39.7	0	23.2
	1	0	5bce242b8d1ec32774d781aa	2018-10-23 04:25:31.594	39.7	0	23.2
	2	0	5bce24358d1ec32774d781ab	2018-10-23 04:25:41.855	39.7	0	23.2
	3	0	5bce24408d1ec32774d781ac	2018-10-23 04:25:52.100	39.7	0	23.2
	4	0	5bce244a8d1ec32774d781ad	2018-10-23 04:26:02.360	39.7	0	23.2

3.3 Make dataframe from json data

Dataframe with date and three sensor values(temperature, humidity, luminosity)

[]	1	iot_data = j1[['date',	'temperature', '	humidity',	'luminosity']]	
[]	1	iot_data.shape				에서 필요한 항목을 andas의 dataframe
	(340	0230, 4)				
[]	1	iot_data.head()				
•		date	temperature	humidity	luminosity	
	0	2018-10-23 04:25:21.349	23.2	39.7	0	
	1	2018-10-23 04:25:31.594	23.2	39.7	0	
	2	2018-10-23 04:25:41.855	23.2	39.7	0	
	3	2018-10-23 04:25:52.100	23.2	39.7	0	
	4	2018-10-23 04:26:02.360	23.2	39.7	0	

3.4.1 Plot iot data (time series)

3.4.2 Plot iot data (time series)

```
# Plot of ['temperature', 'humidity', 'luminosity']
iot_data.plot(x='date', y=['temperature', 'humidity', 'luminosity'], figsize=(12,6),
title='temperature, humidity, and luminosity')
```

/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py:1716: series.name = label

<matplotlib.axes._subplots.AxesSubplot at 0x7f5b28813128>

Dataframe에서 시간과 세 개의 센서 데이터를 전부 선택해서 그래프를 그린다.

3.5 Plot mean of sensor data

3.6.1 Plot the change of sensor data over various time spans.

Set date as index of timestamp

1 ot_data.set_index('date',inplace=True)

1 iot_data.info() # timestamp index

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 307849 entries. 2018-10-23

Data columns (total 3 columns):

temperature 307849 non-null float64 humidity 307849 non-null float64 luminosity 307849 non-null int64

dtypes: float64(2), int64(1)

memory usage: 9.4 MB

1	<pre>iot_data.head()</pre>	
---	----------------------------	--

		temperature	humidity	luminosity
	date			
2018-10-23 04:2	5:21.349	23.2	39.7	0
2018-10-23 04:2	5:31.594	23.2	39.7	0
2018-10-23 04:2	5:41.855	23.2	39.7	0
2018-10-23 04:2	5:52.100	23.2	39.7	0
2018-10-23 04:20	6:02.360	23.2	39.7	0

시간(date)을 timestamp 형태의 Index로 변경해서 데이터를 재구성한다.

3.6.2 Plot the change of sensor data over various time spans.

1 분당 평균 그래프

```
1 # Plot mean of the jot data per every minute
2 iot_data.resample('606').mean() plot(figsize=(12,6),
3 title='Minutely change of temperature, humidity, and lumi
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5b2b57c630>

3.6.3 Plot the change of sensor data over various time spans.

1 일당 평균 그래프

```
1 # Plot mean of the jot data per every day
2 jot_data.resample('D').mean().plot(kind='line', marker='o', ms=6, figsize=(12,6),
3 title='Daily change of temperature, humidity, and luminosit
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5b2c7fb7f0>

Daily change of temperature, humidity, and luminosity

date

3.6.3 Plot the change of sensor data over various time spans.

1 주당 평균 그래프

```
1 # Plot mean of the jot data per every week 2 iot_data.resample('W').mean(), plot(kind='line', marker='o', ms=10,
                                                 figsize=(12,6),
                                                 title='Weekly change of temperature, humidity, and luminosi
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5b2c8f8748>

[Practice]

- ◆ [wk13]
- Data Mining of IoT Data
- Multi-sensor circuits (cds-dht22)
- Complete your project
- Upload folder: aann-rpt12
- Use repo "aann" in github

wk13: Practice: aann-rpt12

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명 : aann-rpt12 - 제축할 파일들

- ① iot_csv.ipynb
- ② iot_ison.ipynb
- ③ All *.js
- 4 public/All *.html
- 5 client_iot.html
- 6 public/data/All data (*.csv)
- 7 AAnn_s1000.csv

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

