Année universitaire : 2013/2014 2^{ième} année licence – Informatique module : Théorie des langages

Examen de Rattrapage

Durée 1h 30mn – documents non autorisés

EXERCICE 1: (5 pts)

- 1) Soit le mot $x = ((acbc)^R.baca)^R$ (α^R désigne le reflet miroir de α)
 - 1-1) Donner la chaîne de caractères à laquelle x est égal. (0,5 pt)
 - 1-2) Quelle est la valeur de |x|? (0,5 pt)
 - 1-3) Donner un préfixe propre de x contenant au moins deux lettres 'c'. (0,5 pt)
 - 1-4) Donner un suffixe propre de x contenant une seule lettre 'a'. (0,5 pt)
- 2) Soit w un mot quelconque de {a, b, c}*.
 - 2-1) Montrer que : si w s'écrit comme $w = u.u^R$ alors $w = w^R$ (1 pt)
 - 2-2) La réciproque est elle vraie ? Justifier. (1 pt)
- 3) Trouver une grammaire, de type 2, qui génère tous les mots palindromes de {a, b, c}*. (1 pt)

EXERCICE 2: (6 pts)

Trouver des grammaires qui engendrent les langages suivants :

- 1) $L_1 = \{ a.b^n / n \ge 1 \}$; (2 pts)
- 2) $L_2 = \{ a^{2n}.b^{2m} / n \ge 1, m \ge 0 \}$; (2 pts)
- 3) $L_3 = \{ a^i b^j c^k / k = min(i,j) \}.$ (2 pts)

EXERCICE 3: (9 pts)

Soit L_1 le langage des mots de $\{a, b\}^*$ tel que dans chaque mot w de L_1 , toute sous-chaîne « bb » est immédiatement suivie par au moins un «a» ; et le langage $L_2 = \{bbb, bba\}$.

- 1) Construire un automate d'états finis simple qui accepte L_1 . (1,5 pts)
- 2) Construire un automate d'états finis simple qui accepte L₂. (1,5 pts)
- 3) Construire un automate d'états finis simple qui accepte $L_1 \cup L_2$. (1,5 pts)
- 4) Rendre l'automate de 3) déterministe, s'il ne l'est pas. (1,5 pts)
- 5) Donner l'automate d'états finis qui accepte le complémentaire de $L_1 \cup L_2$. (1 pt)
- 6) Trouver l'expression régulière qui dénote $L_1 \cup L_2$. (2 pts)

Bref corrigé : (Rattrapage de ThL – L2 informatique – 2013/2014)

EX.1:

- 1) 1-1) x = acabacbc
 - 1-2) |x| = 8
 - 1-3) acabac
 - 1-4) acbc
- 2) 2-1) si $w = u.u^R$ alors $w^R = (u.u^R)^R = (u^R)^R.u^R = u.u^R = w$
 - 2-2) La réciproque est fausse, en effet pour w = radar on a bien $w = w^R$, mais w ne peut pas être mis sous la forme $w = u.u^R$.
- 3) Grammaire pour les palindromes de $\{a, b, c\}^*$: une telle grammaire a pour règles de production (S étant l'axiome) : S \rightarrow aSa | bSb | cSc | a | b | c | ϵ

<u>EX.</u>2:

1) Une grammaire pour L_1 : $G_1 = (\{a, b\}, \{S\}, P_1, S)$

$$P_1: S \rightarrow Sb \mid ab$$

2) Une grammaire pour L_2 : $G_2 = (\{a, b\}, \{S, A\}, P_2, S)$

$$\begin{aligned} P_2: & S \rightarrow aaS \mid aaA \\ & A \rightarrow bbA \mid \epsilon \end{aligned}$$

3) $L_3 = L' \cup L''$, où : $L' = \{ a^i b^j c^i / i \le j \} \text{ et } L'' = \{ a^i b^j c^j / i \ge j \}$

Une grammaire pour L_3 : $G_3 = (\{a, b, c\}, \{S, S_1, A, B, S_2, C, D, E\}, P_3, S)$

$$\begin{array}{lll} P_3: & S \rightarrow S_1 \mid S_2 \\ & S_1 \rightarrow aAS_1c \mid B \\ & A \rightarrow AA \; ; \; AB \rightarrow bB \; ; \; Ab \rightarrow bb \; ; \; Aa \rightarrow aA \\ & B \rightarrow \epsilon \\ & S_2 \rightarrow CD \\ & D \rightarrow EbDc \mid \epsilon \\ & E \rightarrow EE \; ; \; bE \rightarrow Eb \; ; \; CE \rightarrow Ca \; ; \; aE \rightarrow aa \\ & C \rightarrow \epsilon \end{array}$$

EX. 3:

1) Automate pour L_1 :

2) Automate pour L₂:

3) Puisque bba $\in L_1$, alors $L_1 \cup L_2 = L_1 \cup \{bbb\}$ Automate semi généralisé :

Après élimination des ϵ -règles, on obtient :

4) Déterminisation de l'automate de 3) :

Construction de la table de transition de l'automate déterministe :

	a	b
$\leq S0'' \geq q0$	<s0></s0>	<s1,s3></s1,s3>
$\leq S0 > = q1$	<s0></s0>	<s1></s1>
<S1,S3> = q2	<s0></s0>	<s2,s4></s2,s4>
$\leq S1 \geq q3$	<s0></s0>	<s2></s2>
<S2,S4> = q4	<s0></s0>	<s5></s5>
$\langle S2 \rangle = q5$	<s0></s0>	/
$\leq S5 = q6$	/	/

les états soulignés sont des états finaux.

Automate déterministe :

5) Automate du complémentaire de $L_1 \cup L_2$:

Pour construire cet automate:

- on prend l'automate déterministe obtenu en 4);
- on le complète (en ajoutant un état puits q7) ;
- on inverse les états : les états finaux vont devenir non finaux, et vice versa.

On obtient:

6) L'expression régulière E qui dénote $L_1 \cup L_2$ est $E = E1 \cup bbb$, où E1 est l'expression régulière qui dénote L_1 . Le système d'équation qu'on obtient de l'automate de L_1 est le suivant : $\begin{cases} X0 = \epsilon \cup X0.a \cup X1.a \cup X2.a \\ X1 = X0.b \\ X2 = X1.b \end{cases}$ Par remplacement on obtient : X2 = X0.bb et ainsi : $X0 = \epsilon \cup X0.(a \cup ba \cup bba) \text{ d'où, en vertu du théorème d'Arden, } X0 = (a \cup ba \cup bba)^*.$ Solution : $E1 = X0 \cup X1 = (a \cup ba \cup bba)^*.(\epsilon \cup b)$. Donc $E = (a \cup ba \cup bba)^*.(\epsilon \cup b) \cup bbb$.

----- Fin du corrigé du Rattrapage de ThL – L2 informatique – 2013/2014 ------