

Mapping and Estimating Areas Affected by Wildfires in California

Kisman Bhattarai

Henry Ruiz

Noah Williams

ESSM 444/644-500

Agenda

Background Study Area Objectives Flowchart Methods Results Conclusions

Objectives

- Map and estimate the total fire burnt area during SCU wildfire
 - 2. Analyze fire effect on the vegetation through NDVI

Background

- Historically, California has suffered from annual wildfires.
- •These fires vary in severity due to differences in environmental factors (Mermoz et al., 2005)

Santa Clara Unit (SCU) Wildfires – study area

- Started from August 19, 2020
- 3rd largest in recent California history (Cal Fire, 2020)
- The cause of the fire is currently under investigation
- Sequoia sempervirens forest, while further inland is chaparral

Why is it important to map and estimate?

Identify the areas that are in prominent danger for better evacuation and management

Design and implement forest restoration activities effectively

How can we accomplish that?

- Site visit of the massive fire burned area is time-consuming, hectic and expensive.
- We can take the advantage Landsat imagery; in no time we can see and estimate the area affected and execute plan effectively.
- Landsat imagery has been used previously to determine the extent of wildfires (Sirin et al., 2020)

Dataset description

- We are using images from 08/09/2020 and the most recent available from Landsat.
- The WRS path/row are 44/34, respectively.
- The spatial resolution is 30m and consists of 7 spectral bands.
- The images were download from USGS Earth Explorer.

True Color Composites (August-September)

NIR False-Color Composites (Pre-Processing)

Methodological workflow

RESULTS

MAP AND ESTIMATE THE TOTAL FIRE BURNT AREA DURING SCU WILDFIRE

Mapping and estimating Burned area

8% decline in vegetation 32% decline in Bare land and others 41% of total area is affected by fire with-in span of one month

Accuracy assessment:

Confusion Matrix for August Image

Class	Vegetation	Water	Bare land and other	Total
Vegetation	916	0	1	917
Water	0	148	0	148
Bare land and others	176	38	1292	1506
Total	1092	186	1293	2571

The overall accuracy is 91%

Kappa Coefficient is 0.84

Confusion Matrix for September

Class	Fire-burned area	Vegetation	Water	Bare land and othe	Total
Fire-burned area	455	16	0	0	471
Vegetation	27	507	0	16	530
Water	0	0	386	0	386
Bare land and others	203	78	16	1277	1574
Total	685	601	402	1293	2981

264,000 acres

The overall accuracy is 88%

Kappa Coefficient is 0.82

ANALYZE FIRE EFFECT ON THE VEGETATION THROUGH NDVI

TEXAS A&M

AUG2020 **NDVI**

-1 to 0 -1 to 0.33 0.1 to 0.33 0.34 to 0.66 0.67 to 1

.... B NDVI (sept2020): sept2020NDVI

0.67 to 1 0.002496 to 0.072725

SPLIT CLASSES

[1] Raster Color Slice

SEPT2020 NDVI

CLUSTER IMAGE

CLUSTER IMAGE

VEGATION AFFECTED

NDVI SCALE

Results

TOTAL AREA BEFORE

Unhealthy area ~ 4.38 % Moderate healthy area ~ 4.38 % healthy area ~ 0.10 %

TOTAL AREA AFTER

Unhealthy area 41.02 %

Moderate healthy area ~ 0.51 %
healthy area ~ 0.0 %

LOST AREA

Unhealthy area ~ 20.83 % Moderate healthy area ~ 3.87 % healthy area ~ 0.10 %

NDVI slices distribution

IMAGE BEFORE SCU wildfire

IMAGE AFTER SCU wildfire

Conclusions

Landsat imagery is capable of streamlining measurements for wildfire extent.

Vegetation indices are a useful tool for determining the effect wildfires have on vegetation.

References

- Mermoz, M., Kitzberger, T., & Veblen, T. T. (2005). Landscape influences the occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology, 86(10), 2705-2715.
- Sirin, A. A., Medvedeva, M. A., Makarov, D. A., Maslov, A. A., & Joosten, H.
 (2020). Monitoring of vegetation cover of rewetted peatlands in Moscow Oblast.
- Sifakis, N. I., Iossifidis, C., Kontoes, C., & Keramitsoglou, I. (2011). Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite Data. Remote sensing, 3(3), 524-538.\
- Illera, P., Fernández, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of Remote Sensing, 17(6), 1093-1105. doi:10.1080/01431169608949072
- Taufik, A., Ahmad, S.H., & Azmi, E.F. (2019). Classification of Landsat 8 Satellite Data Using Unsupervised Methods.
- Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017, 1-17. doi:10.1155/2017/1353691
- CAL FIRE. (2020). "Top 20 Largest California Wildfires" (PDF).

Thanks for listening...