

Subject 05 PARALLEL PORTS (GPIO)

Parallel Ports (GPIO)

- Parallel port also know as general purpose IO or GPIO
- Enable the CPU to interact with the outside world using logical level bit per bit our as a group
- They can be used as inputs and/or outputs
- As outputs we can turn on and off things
- As inputs we can sense the state of a logic value
- In the PIC18 the IO or GPIO functionality can be multiplexed with other alternate function
- The GPIO is another peripheral of the MCU

Peripherals

- Embedded devices are designed to interact with the environment
- The CPU cannot do this directly given the electrical and logic differences on their interfaces
- The interaction is made trough what is called a "peripheral devices"
- The peripheral devices pass the information from the world to the CPU as if they where a memory or a register.
- So they are like a virtual window to the world that is presented to the CPU as any other memory location

CPU synchronization

- To read the data that represents an input, the CPU must be sure that the peripheral has a new valid value. There are two methods to do this.
 - "Polling": The CPU check the state of a bit "of flag" or a group of them that are mapped in a memory location, this is done voluntarily the use of an specific instruction
 - "Interrupt", The program counter (PC) "jumps" to an special address associated that that particular peripheral. In that address the user programs code that process the event. This is a very efficient way used in time critical situations.

CPU synchronization

• For the output peripherals, the same methods are employed. In this case for some peripherals this is used to check if the peripheral can accept new data to transfer to world

• The PIC18 can use both methods

Parallel ports on the PIC18F45K50

- A 8bits RA0:7
- B 8bits RB0:7
- C 5bits RC0:2,7,6
- D 8bits RD7:RD0
- E 4bits RE3:RE0

Ports

- Ports have four associated registers
 - TRISx defines if is input or output
 - PORTx reads the logic level at the IO pin
 - LATx is a "latch" fix the value to the output
 - ANSELx selects if analog or digital
 - x = A, B, C, D, E

(1) Does not consider other peripherals

TABLE 11-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description		
RA0/C12IN0-/AN0	RA0	0	х	0	DIG	LATA<0> data output; not affected by analog input.		
		1	0	3	TTL	PORTA<0> data input; disabled when analog input enabled.		
	C12IN0-	1	1	1	AN	Comparators C1 and C2 inverting input.		
	ANO	1	1	1	AN	Analog input 0.		
RA1/C12IN1-/AN1	RA1	0	x	0	DIG	LATA<1> data output; not affected by analog input.		
	1 0 I TTL			1	TTL	PORTA<1> data input; disabled when analog input enabled.		
	C12IN1-	1	1	1	AN	Comparators C1 and C2 inverting input.		
	AN1	1	1	- 1	AN	Analog input 1.		
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	x	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.		
		1	0	T	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.		
	C2IN+	1	1	1	AN	Comparator C2 non-inverting input.		
	AN2	1	1	1	AN	Analog output 2.		
	DACOUT	х	1	0	AN	DAC Reference output.		
	VREF-	1	1	1	AN	A/D reference voltage (low) input.		
RA3/C1IN+/AN3/	RA3	0	х	0	DIG	LATA<3> data output; not affected by analog input.		
VREF+		1	0	1	TTL	PORTA<3> data input; disabled when analog input enabled.		
	C1IN+	1	1	1	AN	Comparator C1 non-inverting input.		
	AN3	1	1	1	AN	Analog input 3.		
23	VREF+	1	1	1	AN	A/D reference voltage (high) input.		
RA4/C10UT/SRQ/	RA4	0		0	DIG	LATA<4> data output.		
T0CKI	13	1		1	ST	PORTA<4> data input; default configuration on POR.		
	C10UT	0	, — a	0	DIG	Comparator C1 output.		
	SRQ	0	_	0	DIG	SR latch Q output; take priority over CCP 5 output.		
	T0CKI	1	=	1	ST	Timer0 external clock input.		
RA5/C2OUT/	RA5	0	х	0	DIG	LATA<5> data output; not affected by analog input.		
SRNQ/SS1/ HLVDIN/AN4		1	0	1	TTL	PORTA<5> data input; disabled when analog input enabled.		
	C2OUT	0	0	0	DIG	Comparator C2 output.		
	SRNQ	0	0	0	DIG	SR latch Q output.		
	SS1	1	0	1	TTL	SPI slave select input (MSSP).		
	HLVDIN	1	1	1	AN	High/Low-Voltage Detect input.		
	AN4	1	1	1	AN	A/D input 4.		
RA6/CLKO/OSC2	RA6	0	0 21	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is not enabled.		
		1	_	-	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.		
	CLKO	х	() - 2(0	DIG	In RC mode, OSC2 pin outputs CLKO which has 1/4 the fre quency of OSC1 and denotes the instruction cycle rate.		
	OSC2	х	·	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.		

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	L	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	T	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	Ĺ	AN	Analog input 0.
RA1/C12IN1-/AN1	12IN1-/AN1 RA1 0 0 DIG LATA<1> data output		LATA<1> data output; not affected by analog input.			
		1	0	1	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	- 1	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	1	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1	0	1	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	I,	AN	Comparator C2 non-inverting input.
	AN2	1	1	- 1	AN	Analog output 2.
	DACOUT	х	1	0	AN	DAC Reference output.
	VREF-	1	1	L	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	1	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	L	AN	Comparator C1 non-inverting input.
	AN3	1	1	- 1	AN	Analog input 3.
	VREF+	1	1	1	AN	A/D reference voltage (high) input.
RA4/CCP5/	RA4	0	000	0	DIG	LATA<4> data output.
C1OUT/SRQ/ T0CKI		1	-	1	ST	PORTA<4> data input; default configuration on POR.
TUCKI	CCP5	0		0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output.
		1	1000	T.	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C10UT	. 0	12000	0	DIG	Comparator C1 output.
	SRQ	0	3000	0	DIG	SR latch Q output; take priority over CCP 5 output.
	T0CKI	1	12201	- 1	ST	Timer0 external clock input.
RA5/C2OUT/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SRNQ/SS1/ HLVDIN/AN4		1	0	1	TTL	PORTA<5> data input; disabled when analog input enabled.
	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch Q output.
	SS1	1	0	1	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	- 1	AN	High/Low-Voltage Detect input.
	AN4	1	1	1	AN	A/D input 4.

Port A cont..

TABLE 11-1: PORTA I/O SUMMARY (CONTINUED)

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA7/CLKI/OSC1	RA7	0	N-21	0	DIG	LATA<7> data output; disabled in external oscillator modes.
	75000	1	19 -1 3	1	TTL	PORTA<7> data input, disabled in external oscillator modes.
	CLKI	x	* 19 -2 1	1	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x	<u> </u>	1	XTAL	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²CTM = Schmitt Trigger input with I²C.

TABLE 11-2: REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ANSELA	200		ANSA5	500	ANSA3	ANSA2	ANSA1	ANSA0	154
CM1CON0	C1ON	C10UT	C10E	C1POL	C1SP	C1R	C1CI	1 <1:0>	319
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2Cl	H<1:0>	319
VREFCON1	DACEN	DACLPS	DACOE	322	DACP	SS<1:0>		DACNSS	349
VREFCON2	_	_	-		3	DACR<4:0>		**	350
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL<3:0>			379	
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	153
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	157
SLRCON	_	-	_	SLRE	SLRD	SLRC	SLRB	SLRA	159
SRCON0	SRLEN	S	RCLK<2:0	l>	SRQEN	SRNQEN	SRPS	SRPR	342
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		262
T0CON	TMR00N	T08BIT	TOCS	TOSE	PSA	T	OPS<2:0>		161
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	156

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTA.

TABLE 11-3: CONFIGURATION REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
CONFIG1H	IESO	FCMEN	PCLKEN	-		FOSC	<3:0>		388

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTA.

To see the rest of the Ports, review the data sheet Page 137 (I/O Ports section)

http://ww1.microchip.com/downloads/en/devicedoc/30000684B.pdf

GPIO basic parameters

- GPIO from the electrical-logical point of view behave with similar characteristics of any discrete logic gate
 - INPUT:
 - VIH (Voltage threshold that defines a logic 1)
 - VIL (Voltage threshold that defines a logic 0)
 - Currents in CMOS inputs are negligible
 - OUTPUT
 - VOH @ IOH (Voltage output high sorcing certain current)
 - VOL @ IOL (Voltage output low sinking certain current)

Anatomy of an output port

Lab board LED interface

VCC = ILED*RSOURCE + ILED*RL + VF

ILED = (VCC-VF)/(RSOURCE+RL)

ILED =
$$(5V-2V)/(80+470) = 5mA$$

$$VOH = 5 - 5ma*80 = 4.6V$$

LED interfacing

VCC = VF + ILED*RL + RSINK*ILED

ILED = (VCC-VF)/(RSINK+RL)

$$ILED = (5V-2V)/(28+470) = 6mA$$

$$VOL = 6ma*28 = 0.17V$$

7 Segment displays

Buffer

INPUT AND OUTPUT EQUIVALENT CIRCUIT

VoH	High Level Output	2.0	I _O =-20 μA	1.9	2.0	1.9	1.9	3	
	Voltage	4.5	I _O =-20 μA	4.4	4.5	4.4	4.4		
		6.0	I _O =-20 μA	5.9	6.0	5.9	5.9	6	V
		4.5	I _O =-6.0 mA	4.18	4.31	4.13	4.10		
		6.0	I _O =-7.8 mA	5.68	5.8	5.63	5.60		

Handling more than one digit

Multiplexing

Multiplexing

Anatomy of a input

Input Voltages

Input voltages

Symbol	Characteristic	Min	Typ†	Max	Units	Conditions				
VIL	Input Low Voltage									
	I/O PORT:									
	with TTL buffer	10-3	-	0.8	V	4.5V ≤ VDD ≤ 5.5V				
		10 - 3		0.15 VDD	٧	1.8V ≤ VDD ≤ 4.5V				
	with Schmitt Trigger buffer	·-	\ -	0.2 VDD	٧	2.0V ≤ VDD ≤ 5.5V				
	with I ² C™ levels	-	-	0.3 VDD	٧					
	with SMBus levels	_		0.8	٧	2.7V ≤ VDD ≤ 5.5V				
	MCLR, OSC1 (RC mode) ⁽¹⁾	-		0.2 VDD	٧	8				
	OSC1 (HS mode)	_		0.3 VDD	٧					
VIH	Input High Voltage									
	I/O ports:		-	23 E		80				
	with TTL buffer	2.0		94 <u>1991</u> 81	٧	4.5V ≤ VDD ≤ 5.5V				
		0.25 VDD+ 0.8	· <u>-</u>	98 <u>1994 </u> 98	٧	1.8V ≤ VDD ≤ 4.5V				
	with Schmitt Trigger buffer	0.8 VDD	* (<u></u>	<u> </u>	٧	2.0V ≤ VDD ≤ 5.5V				
	with I ² C™ levels	0.7 VDD	11 -0 2	-	٧					
	with SMBus levels	2.1	-	-	٧	2.7V ≤ VDD ≤ 5.5V				
	MCLR	0.8 VDD	i —	-	V					
	OSC1 (HS mode)	0.7 VDD	1	-	٧					
	OSC1 (RC mode)(1)	0.9 VDD	i -	-	V					

Input voltages

Interfacing switches

Switches in the lab board

Push Bottons

Current capacity of the input

Input clamp current, IIK (VI < 0 or VI > VDD)......±20 mA

Resistor for input protection

Input protections

Bouncing in switches

Active high switch

Active high switch

Bounces

Debouncing techniques

- •There are many debouncing techniques
- •Use a set-reset latch before the switch
- •Use a special integrated circuit to eliminate bounces
- •RC filters
- •Firmware

•See page 315: Huang

Anti debouncing using firmware

http://www.ganssle.com/debouncing.htm https://youtu.be/4ZMiKMUec9o

Interface for switches using internal pull-ups

Manage of multiple inputs

Manage of multiple inputs

O3

0

Port initialization general

- Check all possible configurations of each port (review the data sheet of the microcontroller)
- In many microcontrollers, the GPIOS are also shared with other input-output peripherals like serial ports, analog inputs, etc.
- Is a good practice to always configure the port even if the desired configuration is the default one (after reset)

Port initialization for PIC

- Define if the port is digital or analong
- Define the direction (input or output)
- If digital input, set internal pull-up resistors if availale and required
- If output is better to define the default logic value before the configuration using the LATx register

Port initialization for PIC

- The port initialization is made using a SFR register called TRISx (TRISA, TRISB....etc)
 - Bit 0 of the register corresponds to the bit 0 of the PORTx
 - A logic 1 in any bit of the register defines a input, a logic 0 an output
- For the PIC18 some of the ports are also analog, so there is also a SFR register that must configured to tell the PIC if the port is analog or digital this is done with the ANSELx (ANSELA, ANSELB, ...etc)

Example of port initialization

- Example, initialize bits 0 and 7 of PORTA as output and the rest of the signals as inputs:
- ANSELA = 0x00; //Define port as digital
- TRISA = $0b_011111110$; //Bit 0 and 7 as outputs
- Another way is to use the direct bit manipulation instructions

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_		ANSA5	1	ANSA3	ANSA2	ANSA1	ANSA0	154

Port B

• The PORTB provides internal pull-ups resistors that can be used activated individually by the user

```
ANSELB = 0b11000000; //Entras en operacion digital (no analogica)
TRISB = 0b11111111; //Definir direction (0 salida 1 entrada)
WPUB = 0b11111111; //Define que todas los bits tendran pull-up
//Habilita la funcionalidad de pull-up en puerto B, apagando el bit 7
//del registro de control INTCON2
INTCON2 = INTCON2 & 0b01111111;
```

REGISTER 10-4: ANSELB - PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7			•				bit 0

REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	-	TMR0IP	=	RBIP
bit 7	210	10					bit 0

REGISTER 10-12: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | 3 | , | 28 | 3 | 3 | | bit 0 |

47

Port input reading

• To read the value on a port the programmer can use 2 registers

LATx PORTx

¿When do we use PORTx or LATx?

- When we what to read the logic value at the PIN you must use PORT instruction
- When you use operations that must read and write to a port, that is, to use the previous value written do to something then is better:

LATA = LATA + 1 tan PORTA = PORTA + 1;

Writing to a port

• To write to a port, using the LATx or PORTx performs exactly the same action

Available ports on the curiosity board

Board Manual

Available ports on the curiosity board

Reserved GPIO in the curiosity board

- RA0 is connected to potentiometer R1 for analog experiments
- RA4 is connected to LED D2 (active high)
- RA5 is connected to LED D3 (active high)
- RA6 is connected to LED D4 (active high)
- RA7 is connected to LED D6 (active high)
- RB4 is connected to push button S1 (active low)
- RC5 is connected to push button S2 (active low)**
- RB7 is the data signal for the debugger-programmer
- RB6 is the clock signals for the debugger-programmer
- RC3,RC4 and RC5 are USB signals

GPIO connected to switches, LED and pots can be reclaimed by removing the soldering blob jumpers, but avoid using the RB6-RB7 since you can interfere with the firmware download

Example

• Implement a 3 bit binary counter using the following design. Each time we press the button, RC0:RC2 will increment by one. The button input must be "filtered" from debounces by firmware

Example


```
#include <xc.h>
                                  //Tells the compiler the oscillator frequ 1Mhz
#define XTAL FREQ 1000000
                                  //required for built in xc compiler delay function
void init ports (void);
                                  //Function to init the ports
//We define a name for the port for legibility
#define BUTTON
                    PORTCbits.RC6
                                    //Button S1 (jumper from RC5 to RC6)
main (void) {
                                        //Init the ports
init ports();
    while (1) {
                //Main loop it will do this forever
        while (BUTTON);
                                        //Waill till BUTTON = 0
         delay ms (20);
                                        //Delay 20msec
        if (BUTTON == 1) continue;
                                        //IF 1 again then is noise skip rest
        //PORTC = PORTC + 1;
                                        //Increment the port
        LATC = LATC + 1;
                                        //BETS WAY TO DO THIS
                                        //Espera si boton = 0
        while (! (BUTTON));
         delay ms (20);
                                        //Delay 20msec
    } //while(1)
} //de main() SUBJECT 05 1.C
//FUNCTION THAT INITS THE PORTS
void init ports(void) {
    //Set port C
    TRISC = 0b111111000;
                             // Set upper nibble as inputs lower outpts
    ANSELC = Ob00000000;
                             // All signals digital
    PORTC = 0b000000000;
                             // Initial value on outputs
```

https://youtu.be/Xj5WgCN_IJ0