

REMARKS

A Notice of Allowance has been mailed from the USPTO for the above-referenced application. The Examiner contacted the undersigned by telephone indicating that Tables 5 and 6 were not sufficiently clear for printing the forthcoming Letters Patent. Applicants submit herewith Replacement Sheets containing Tables 5 and 6. No issue of new matter arises from this submission since the Replacement Sheets are merely clearer copies of the Tables 5 and 6 as filed.

Fees

No fees are believed to be necessary in connection with this Amendment. However, if this is in error, authorization is hereby given to charge Deposit Account No. 11-1153 for any underpayment, or credit any overages.

Conclusion

If a discussion might be of assistance in resolving any issues, the Examiner is invited to telephone the undersigned.

Respectfully submitted,

J. David Smith
Attorney for Applicant(s)
Registration No. 39,839

KLAUBER & JACKSON
411 Hackensack Avenue
Hackensack, NJ 07601
(201) 487-5800

Table 5

Atomic Structure Coordinates of the Free Form of the P/CAP Bromodomain																																																																																																																																																																																																																														
REMARK FILENAME= /blobz/chris/BRNO_XPLOR_AHN3/structures/it/bnd_187.pdb*																																																																																																																																																																																																																														
REMARK initial random number seed: 1,3427168211																																																																																																																																																																																																																														
REMARK overall bonds, angles, improper dihedrals, and torsions																																																																																																																																																																																																																														
REMARK energies: 157.923, 9.30565, 73.153, 0, 22.1819, 36.4277, 0, 228.429																																																																																																																																																																																																																														
REMARK rms-dev.: 2.161568-01, 0.36411, 50.311, 1, 43.8985E-02, 0, 265303																																																																																																																																																																																																																														
REMARK note, cdih																																																																																																																																																																																																																														
REMARK violations: 2, 0																																																																																																																																																																																																																														
REMARK DATE:20-Nov-98 06:51:33																																																																																																																																																																																																																														
REMARK created by user:																																																																																																																																																																																																																														
ATOM 1 CA GLY 1 27.208 16.825 -6.349 1.00 0.00	ATOM 432 N IYS 6 22.756 3.805 -5.800 1.00 0.00	ATOM 67 N IYS 6 22.756 3.805 -5.800 1.00 0.00	ATOM 161 HGL PRO 11 15.582 -6.715 -3.188 1.00 0.00	ATOM 162 HGL PRO 11 15.582 -6.715 -3.188 1.00 0.00	ATOM 163 CD PRO 11 14.324 -5.681 -3.666 1.00 0.00	ATOM 164 HDI PRO 11 15.981 -4.682 -2.666 1.00 0.00	ATOM 165 C PRO 11 16.195 -4.133 -3.582 1.00 0.00	ATOM 166 S PRO 11 16.911 -5.086 -2.237 1.00 0.00	ATOM 167 O PRO 11 13.991 -5.466 1.375 1.00 0.00	ATOM 168 N ASP 12 15.926 4.397 0.912 1.00 0.00	ATOM 169 RHN ASP 12 16.430 -4.508 2.276 1.00 0.00	ATOM 170 RAH ASP 12 16.402 -5.521 2.584 1.00 0.00	ATOM 171 RAH ASP 12 16.402 -5.521 2.584 1.00 0.00	ATOM 172 HBL ASP 12 15.785 -2.412 3.242 1.00 0.00	ATOM 173 HBL ASP 12 16.166 -3.873 3.399 1.00 0.00	ATOM 174 HBL ASP 12 16.798 -3.061 1.899 1.00 0.00	ATOM 175 CG ASP 12 18.896 -4.975 1.771 1.00 0.00	ATOM 176 CGL ASP 12 18.870 -6.197 2.125 1.00 0.00	ATOM 177 ODP ASP 12 19.615 -4.549 3.921 1.00 0.00	ATOM 178 O ASP 12 19.555 -3.719 3.243 1.00 0.00	ATOM 179 O ASP 12 14.679 -4.202 3.913 1.00 0.00	ATOM 180 N GLN 13 15.785 -2.412 3.309 1.00 0.00	ATOM 181 RN GLN 13 15.026 -1.546 4.181 1.00 0.00	ATOM 182 RN GLN 13 15.155 -1.923 5.187 1.00 0.00	ATOM 183 RN GLN 13 15.550 -0.115 6.134 1.00 0.00	ATOM 184 RN GLN 13 15.059 -0.411 3.931 1.00 0.00	ATOM 185 HGL GLN 13 16.510 -0.149 3.931 1.00 0.00	ATOM 186 HGL GLN 13 15.116 -0.659 5.420 1.00 0.00	ATOM 187 CO GLN 13 15.555 -0.255 6.226 1.00 0.00	ATOM 188 CO GLN 13 15.289 -0.255 6.226 1.00 0.00	ATOM 189 HGL GLN 13 15.289 -0.255 6.226 1.00 0.00	ATOM 190 O GLN 13 14.450 -1.025 6.622 1.00 0.00	ATOM 191 O GLN 13 14.875 -2.188 6.790 1.00 0.00	ATOM 192 NEZ GLN 13 15.930 -2.328 7.25 1.00 0.00	ATOM 193 HGL GLN 13 17.651 -2.328 7.25 1.00 0.00	ATOM 194 C GLN 13 16.543 -1.085 7.507 1.00 0.00	ATOM 195 C GLN 13 15.358 -1.566 7.507 1.00 0.00	ATOM 196 C GLN 13 15.228 -0.566 7.507 1.00 0.00	ATOM 197 C GLN 13 15.228 -0.566 7.507 1.00 0.00	ATOM 198 HN GLU 14 16.176 -1.628 4.499 1.00 0.00	ATOM 199 HN GLU 14 16.875 -2.123 5.091 1.00 0.00	ATOM 200 HN GLU 14 17.194 -2.778 5.778 1.00 0.00	ATOM 201 CB GLN 13 16.930 -2.123 5.778 1.00 0.00	ATOM 202 HBL PRO 8 17.200 -1.002 9.523 1.00 0.00	ATOM 203 HBL PRO 8 16.011 -0.245 9.523 1.00 0.00	ATOM 204 CG LEU 14 16.796 -0.357 9.58 1.00 0.00	ATOM 205 CG LEU 14 16.677 -0.357 9.58 1.00 0.00	ATOM 206 CDI LEU 14 16.100 -1.352 -7.702 1.00 0.00	ATOM 207 HDI LEU 14 16.000 -1.352 -7.702 1.00 0.00	ATOM 208 HDI LEU 14 16.429 -0.419 -8.727 1.00 0.00	ATOM 209 HDI LEU 14 16.760 -0.419 -8.727 1.00 0.00	ATOM 210 HDI LEU 14 17.200 -1.002 9.523 1.00 0.00	ATOM 211 HDI LEU 14 16.000 -0.245 9.523 1.00 0.00	ATOM 212 HDI LEU 14 16.796 -0.357 9.58 1.00 0.00	ATOM 213 HDI LEU 14 16.677 -0.357 9.58 1.00 0.00	ATOM 214 CG LEU 14 16.100 -1.352 -7.702 1.00 0.00	ATOM 215 CG LEU 14 16.052 -0.245 -7.733 1.00 0.00	ATOM 216 CG LEU 14 16.500 -0.357 -7.733 1.00 0.00	ATOM 217 HN TYR 15 16.697 -0.408 2.222 1.00 0.00	ATOM 218 HN TYR 15 17.000 -0.408 2.222 1.00 0.00	ATOM 219 HA TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 220 HA TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 221 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 222 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 223 CG TYR 15 16.200 -0.408 2.222 1.00 0.00	ATOM 224 CG TYR 15 16.100 -0.408 2.222 1.00 0.00	ATOM 225 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 226 CG TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 227 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 228 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 229 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 230 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 231 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 232 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 233 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 234 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 235 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 236 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 237 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 238 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 239 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 240 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 241 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 242 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 243 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 244 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 245 HBL TYR 15 16.500 -0.408 2.222 1.00 0.00	ATOM 246 HBL TYR 15 16.000 -0.408 2.222 1.00 0.00	ATOM 247 O SER 16 16.764 -0.408 2.222 1.00 0.00	ATOM 248 N TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 249 HN TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 250 HN TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 251 HA TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 252 HB TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 253 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 254 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 255 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 256 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 257 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 258 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 259 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 260 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 261 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 262 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 263 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 264 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 265 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 266 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 267 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 268 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 269 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 270 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 271 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 272 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 273 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 274 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 275 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 276 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 277 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 278 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 279 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 280 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 281 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 282 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 283 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 284 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 285 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 286 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 287 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 288 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 289 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 290 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 291 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 292 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 293 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 294 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 295 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 296 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 297 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 298 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 299 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 300 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 301 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 302 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 303 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 304 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 305 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 306 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 307 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 308 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 309 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 310 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 311 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 312 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 313 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 314 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 315 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 316 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 317 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 318 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 319 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 320 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 321 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 322 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 323 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 324 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 325 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 326 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 327 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 328 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 329 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 330 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 331 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 332 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 333 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 334 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 335 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 336 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 337 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 338 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 339 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 340 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 341 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 342 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 343 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 344 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 345 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 346 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 347 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 348 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 349 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 350 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 351 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 352 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 353 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 354 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 355 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 356 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 357 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 358 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 359 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 360 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 361 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 362 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 363 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 364 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 365 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 366 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 367 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 368 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 369 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 370 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 371 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 372 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 373 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 374 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 375 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 376 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 377 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 378 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 379 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.00	ATOM 380 OG1 TIR 17 16.615 -2.189 5.185 1.00 0.

REPLACEMENT SHEET

ATOM	245	HG1 THR	17	10.098	1.223	6.144	1.00	0.00	ATOM	349	HG2 LBN	22	0.803	4.94	3.088	1.00	0.00
ATOM	256	HCG THR	17	10.991	0.832	4.783	1.00	0.00	ATOM	444	N HIS	28	-4.264	1.759	-12.558	1.00	0.00
ATOM	257	HCG THR	17	10.078	0.224	4.720	1.00	0.00	ATOM	444	O HIS	28	-4.083	1.459	13.454	1.00	0.00
ATOM	258	HCG THR	17	0.088	1.395	3.867	1.00	0.00	ATOM	445	COD HIS	28	-4.569	1.777	10.377	1.00	0.00
ATOM	259	HCG THR	17	0.883	1.513	5.612	1.00	0.00	ATOM	446	HOD HIS	28	-4.665	5.487	9.340	1.00	0.00
ATOM	260	O THR	17	1.682	4.886	5.821	1.00	0.00	ATOM	447	CEI HIS	28	-4.567	3.882	12.859	1.00	0.00
ATOM	261	O THR	17	1.676	6.646	6.646	1.00	0.00	ATOM	449	NEZ HIS	28	-4.719	3.042	10.886	1.00	0.00
ATOM	262	O THR	17	1.574	2.599	4.697	1.00	0.00	ATOM	450	HEZ HIS	28	-4.915	3.844	10.367	1.00	0.00
ATOM	263	HG1 LBN	18	0.539	2.518	4.093	1.00	0.00	ATOM	451	M HIS	28	-6.246	-1.009	12.480	1.00	0.00
ATOM	264	HG1 LBN	18	0.689	-3.302	4.330	1.00	0.00	ATOM	452	O HIS	28	-6.982	-5.568	8.224	1.00	0.00
ATOM	265	HG1 LBN	18	0.595	2.289	4.289	1.00	0.00	ATOM	453	N HIS	28	-6.600	-0.037	13.241	1.00	0.00
ATOM	266	CIS LBN	18	0.500	-1.918	4.98	1.00	0.00	ATOM	454	RN HIS	28	-6.048	0.472	13.779	1.00	0.00
ATOM	267	HBL LBN	18	1.700	4.954	3.965	1.00	0.00	ATOM	455	CA HIS	28	-8.109	0.272	13.334	1.00	0.00
ATOM	268	HBL LBN	18	1.026	4.000	4.000	1.00	0.00	ATOM	456	HA HIS	28	-8.640	-0.668	13.358	1.00	0.00
ATOM	269	CIS LBN	18	0.584	-2.849	2.014	1.00	0.00	ATOM	457	CB HIS	28	-8.371	1.007	14.688	1.00	0.00
ATOM	270	HBL LBN	18	0.654	-2.603	2.075	1.00	0.00	ATOM	458	HE2 HIS	28	-9.433	1.018	14.822	1.00	0.00
ATOM	271	CIS LBN	18	0.554	5.503	1.000	1.00	0.00	ATOM	459	HE2 GLN	29	-8.012	2.021	14.522	1.00	0.00
ATOM	272	HBL LBN	18	0.654	-2.603	2.075	1.00	0.00	ATOM	460	CG GLN	29	-7.670	-0.275	11.889	1.00	0.00
ATOM	273	HBL LBN	18	0.640	-4.442	0.524	1.00	0.00	ATOM	461	HG1 GLN	29	-7.180	-0.500	15.445	1.00	0.00
ATOM	274	HBL LBN	18	0.648	-1.722	1.899	1.00	0.00	ATOM	462	HG2 GLN	29	-6.929	-1.021	16.203	1.00	0.00
ATOM	275	HBL LBN	18	0.518	-0.963	6.365	1.00	0.00	ATOM	463	CD GLN	29	-8.622	-0.000	6.953	1.00	0.00
ATOM	276	HBL LBN	18	0.511	-1.423	0.889	1.00	0.00	ATOM	464	ND1 GLN	29	-8.354	-0.224	18.047	1.00	0.00
ATOM	277	HBL LBN	18	0.549	-2.403	0.000	1.00	0.00	ATOM	465	NE2 GLN	29	-9.770	-0.676	16.586	1.00	0.00
ATOM	278	HBL LBN	18	0.569	-2.603	2.075	1.00	0.00	ATOM	466	HE2 GLN	29	-9.811	1.000	0.000	0.00	0.00
ATOM	279	C LBN	18	0.637	-4.376	5.349	1.00	0.00	ATOM	467	CG LBN	29	-8.013	-0.995	12.267	1.00	0.00
ATOM	280	O LBN	18	0.654	-3.603	5.503	1.00	0.00	ATOM	468	CH LBN	29	-8.667	-1.009	12.122	1.00	0.00
ATOM	281	N LBN	18	0.656	-5.110	5.504	1.00	0.00	ATOM	469	CB LBN	29	-9.714	-0.341	15.809	1.00	0.00
ATOM	282	HN LBN	18	0.640	-2.603	2.075	1.00	0.00	ATOM	470	HG1 LBN	29	-7.180	-0.500	15.445	1.00	0.00
ATOM	283	HA LBN	18	0.575	-6.377	6.514	1.00	0.00	ATOM	471	HG2 LBN	29	-6.929	-1.021	16.203	1.00	0.00
ATOM	284	HA LBN	18	0.546	-6.995	6.358	1.00	0.00	ATOM	472	CD LBN	29	-8.622	-0.000	6.953	1.00	0.00
ATOM	285	CB LBN	18	0.629	-7.225	6.155	1.00	0.00	ATOM	473	CI LBN	29	-8.354	-0.224	18.047	1.00	0.00
ATOM	286	HBL LBN	19	0.582	-7.243	5.674	1.00	0.00	ATOM	474	CR LBN	29	-8.371	1.007	14.688	1.00	0.00
ATOM	287	HBL LBN	19	0.748	-8.897	1.000	1.00	0.00	ATOM	475	CBR LBN	29	-1.053	-0.995	12.267	1.00	0.00
ATOM	288	CG LYS	19	0.933	-6.922	7.669	1.00	0.00	ATOM	476	HG2 SER	30	-8.013	-0.995	12.267	1.00	0.00
ATOM	289	HG1 LYS	19	0.693	-7.018	8.633	1.00	0.00	ATOM	477	CG SER	30	-9.714	-0.341	15.809	1.00	0.00
ATOM	290	HG2 LYS	19	0.906	-5.653	7.608	1.00	0.00	ATOM	478	HG2 SER	30	-9.714	-0.341	15.809	1.00	0.00
ATOM	291	HA LYS	19	0.412	-7.319	7.429	1.00	0.00	ATOM	479	CS SER	30	-7.871	-1.000	11.111	1.00	0.00
ATOM	292	HDI LYS	19	1.012	-7.444	6.365	1.00	0.00	ATOM	480	OB SER	30	-8.056	-1.562	1.611	1.00	0.00
ATOM	293	HDI LYS	19	1.156	-7.592	7.823	1.00	0.00	ATOM	481	NI ALA	31	-9.149	-2.199	9.989	1.00	0.00
ATOM	294	CE LYS	19	1.067	-6.671	7.506	1.00	0.00	ATOM	482	HN ALA	31	-6.887	-0.224	12.267	1.00	0.00
ATOM	295	HE1 LYS	19	0.987	-9.401	7.506	1.00	0.00	ATOM	483	HA ALA	31	-6.726	-0.881	12.267	1.00	0.00
ATOM	296	HE2 LYS	19	10.988	-9.598	9.117	1.00	0.00	ATOM	484	HA ALA	31	-6.413	-0.246	12.267	1.00	0.00
ATOM	297	NZ LYS	19	11.988	-9.115	9.116	1.00	0.00	ATOM	485	CB ALA	31	-6.553	-1.712	12.267	1.00	0.00
ATOM	298	HDI LYS	19	12.044	-10.147	10.141	1.00	0.00	ATOM	486	HEL ALA	31	-6.226	-0.246	12.267	1.00	0.00
ATOM	299	HDI LYS	19	12.418	-8.955	9.057	1.00	0.00	ATOM	487	HBL ALA	31	-7.743	-1.184	7.740	1.00	0.00
ATOM	300	HDI LYS	19	12.526	-8.661	9.280	1.00	0.00	ATOM	488	HB1 ALA	31	-7.743	-1.184	7.740	1.00	0.00
ATOM	301	C LYS	19	13.177	-1.354	2.277	1.00	0.00	ATOM	489	CH1 ALA	31	-7.006	-1.736	7.433	1.00	0.00
ATOM	302	O LYS	19	13.198	-1.354	2.277	1.00	0.00	ATOM	490	O ALA	31	-7.745	-1.590	8.860	1.00	0.00
ATOM	303	N LYS	20	6.377	-1.342	2.277	1.00	0.00	ATOM	491	RD1 TRP	32	-1.000	-0.885	12.267	1.00	0.00
ATOM	304	SER	20	4.988	-3.752	5.026	1.00	0.00	ATOM	492	RD2 TRP	32	-1.022	-2.398	12.267	1.00	0.00
ATOM	305	GLY	20	4.851	-2.311	5.403	1.00	0.00	ATOM	493	CA TRP	32	-1.022	-2.394	12.267	1.00	0.00
ATOM	306	HA SER	20	5.448	-5.222	6.155	1.00	0.00	ATOM	494	HA TRP	32	-1.060	-0.000	12.267	1.00	0.00
ATOM	307	HOA SER	20	5.590	-1.189	7.866	1.00	0.00	ATOM	495	CB TRP	32	-1.070	-0.000	12.267	1.00	0.00
ATOM	308	HOB SER	20	7.401	-0.573	7.427	1.00	0.00	ATOM	496	HBL TRP	32	-1.167	-2.390	12.267	1.00	0.00
ATOM	309	HO2 SER	20	5.331	-1.177	8.283	1.00	0.00	ATOM	497	HE2 TRP	32	-1.249	-2.307	12.267	1.00	0.00
ATOM	310	OQ SER	20	8.046	-3.222	9.559	1.00	0.00	ATOM	498	IG TRP	32	-1.164	-0.566	12.267	1.00	0.00
ATOM	311	HG SER	20	7.552	-1.322	6.846	1.00	0.00	ATOM	499	RD2 TRP	32	-1.130	-0.566	12.267	1.00	0.00
ATOM	312	CIS SER	21	4.056	-1.364	5.846	1.00	0.00	ATOM	500	RD1 TRP	32	-1.082	-0.052	12.267	1.00	0.00
ATOM	313	N LEB	21	4.723	-2.227	6.155	1.00	0.00	ATOM	501	NE1 TRP	32	-1.022	-2.394	12.267	1.00	0.00
ATOM	314	C LEB	21	4.130	-0.573	7.427	1.00	0.00	ATOM	502	NE2 TRP	32	-1.069	-0.000	12.267	1.00	0.00
ATOM	315	CA LEB	21	3.498	-1.385	7.420	1.00	0.00	ATOM	503	HE1 TRP	32	-1.182	-2.395	12.267	1.00	0.00
ATOM	316	HA LEB	21	3.520	-0.644	6.935	1.00	0.00	ATOM	504	CE2 TRP	32	-1.167	-2.390	12.267	1.00	0.00
ATOM	317	HA LEB	21	3.312	-1.154	7.424	1.00	0.00	ATOM	505	CE1 TRP	32	-1.279	-2.307	12.267	1.00	0.00
ATOM	318	CB LEB	21	3.477	-0.752	6.969	1.00	0.00	ATOM	506	RD3 TRP	32	-1.164	-0.566	12.267	1.00	0.00
ATOM	319	HG LEB	21	3.815	-1.019	6.926	1.00	0.00	ATOM	507	RD2 TRP	32	-1.271	-1.026	12.267	1.00	0.00
ATOM	320	OQ LEB	21	4.155	-1.364	5.846	1.00	0.00	ATOM	508	RD1 TRP	32	-1.082	-0.052	12.267	1.00	0.00
ATOM	321	HO1 LEB	21	4.289	-1.022	4.568	1.00	0.00	ATOM	509	SD2 TRP	32	-1.278	-1.627	9.923	1.00	0.00
ATOM	322	HO2 LEB	21	4.772	-2.227	6.155	1.00	0.00	ATOM	510	SD1 TRP	32	-1.671	-0.027	4.899	1.00	0.00
ATOM	323	CIS LEB	21	4.130	-0.573	7.427	1.00	0.00	ATOM	511	OB2 TRP	32	-1.244	-2.395	12.267	1.00	0.00
ATOM	324																

REPLACEMENT SHEET

ATOM	517	CIO	PHE	34	-6.997	0.794	3.361	1.00	0.00
ATOM	518	CDI	PHE	34	-7.638	0.503	2.562	1.00	0.00
ATOM	519	COP	PHE	34	-5.300	0.255	4.946	1.00	0.00
ATOM	520	PHS	PHE	34	-4.611	-0.459	5.373	1.00	0.00
ATOM	541	CEI	PHE	34	-7.069	2.077	3.688	1.00	0.00
ATOM	542	HEI	PHE	34	-7.761	2.789	3.443	1.00	0.00
ATOM	543	CZ2	PHE	34	-5.368	1.932	5.459	1.00	0.00
ATOM	544	HE2	PHE	34	-4.728	1.024	6.279	1.00	0.00
ATOM	545	CZ2	PHE	34	-6.252	2.450	6.021	1.00	0.00
ATOM	546	HE2	PHE	34	-6.304	3.152	5.314	1.00	0.00
ATOM	547	C	PHE	34	-7.400	-3.024	5.033	1.00	0.00
ATOM	548	O	PHE	34	-7.293	-4.349	2.085	1.00	0.00
ATOM	549	N	PHE	35	-7.543	-4.100	2.285	1.00	0.00
ATOM	550	NET	PHE	35	-6.635	-3.476	5.035	1.00	0.00
ATOM	551	CA	PHE	35	-7.387	5.592	5.541	1.00	0.00
ATOM	552	HA	PHE	35	-6.624	5.946	5.223	1.00	0.00
ATOM	553	HB	PHE	35	-7.660	5.808	6.023	1.00	0.00
ATOM	554	HE2	PHE	35	-6.472	4.598	6.413	1.00	0.00
ATOM	555	HE2	PHE	35	-6.605	6.119	6.850	1.00	0.00
ATOM	556	COT	PHE	35	-6.620	5.387	6.288	1.00	0.00
ATOM	557	NET	PHE	35	-6.714	5.337	6.279	1.00	0.00
ATOM	558	HE2	PHE	35	-5.766	7.589	7.437	1.00	0.00
ATOM	559	SD	PHE	35	-6.296	7.590	7.242	1.00	0.00
ATOM	560	CE	PHE	35	-6.148	8.011	6.470	1.00	0.00
ATOM	561	HE1	PHE	35	-4.744	8.722	7.013	1.00	0.00
ATOM	562	HE2	PHE	35	-4.668	8.724	7.013	1.00	0.00
ATOM	563	HE3	PHE	35	-5.157	-6.114	5.529	1.00	0.00
ATOM	564	C	PHE	35	-6.656	-6.194	5.674	1.00	0.00
ATOM	565	O	PHE	35	-6.847	-5.924	3.827	1.00	0.00
ATOM	566	N	PHE	36	-6.219	-7.044	2.751	1.00	0.00
ATOM	567	HRN	PHE	36	-7.255	-7.708	2.671	1.00	0.00
ATOM	568	CA	PHE	36	-9.128	-7.792	7.020	1.00	0.00
ATOM	569	HA	PHE	36	-5.598	-8.566	4.149	1.00	0.00
ATOM	570	CB	PHE	36	-11.371	-8.248	2.562	1.00	0.00
ATOM	571	HB1	PHE	36	-11.151	-7.501	2.496	1.00	0.00
ATOM	572	HB2	PHE	36	-10.122	-8.460	3.601	1.00	0.00
ATOM	573	CD	PHE	36	-10.307	-9.553	1.996	1.00	0.00
ATOM	574	HE1	PHE	36	-10.073	-10.933	1.748	1.00	0.00
ATOM	575	HR2	PHE	36	-11.473	-8.138	1.102	1.00	0.00
ATOM	576	CD	PHE	36	-11.006	-10.289	2.972	1.00	0.00
ATOM	577	OB1	PHE	36	-11.522	-11.463	3.266	1.00	0.00
ATOM	578	OB2	PHE	36	-12.794	-9.685	3.440	1.00	0.00
ATOM	579	C	PHE	36	-9.943	-6.792	0.656	1.00	0.00
ATOM	580	O	PHE	36	-10.414	-5.939	0.873	1.00	0.00
ATOM	581	N	PHE	37	-8.913	-6.329	-0.486	1.00	0.00
ATOM	582	CA	PHE	37	-9.200	-6.079	-1.644	1.00	0.00
ATOM	583	HA	PHE	37	-9.135	-5.209	-1.386	1.00	0.00
ATOM	584	CB	PHE	37	-8.878	-6.425	-2.646	1.00	0.00
ATOM	585	HE1	PHE	37	-7.850	-5.515	-3.031	1.00	0.00
ATOM	586	HE2	PHE	37	-7.850	-5.515	-3.031	1.00	0.00
ATOM	587	CD	PHE	37	-7.087	-4.224	-1.876	1.00	0.00
ATOM	588	HE1	PHE	37	-6.627	-3.957	-2.592	1.00	0.00
ATOM	589	HE2	PHE	37	-6.338	-3.957	-2.592	1.00	0.00
ATOM	590	CO	PHE	37	-6.570	-4.495	1.00	0.00	0.00
ATOM	591	HE1	PHE	37	-7.057	-4.229	0.971	1.00	0.00
ATOM	592	HE2	PHE	37	-7.229	-4.229	0.971	1.00	0.00
ATOM	593	O	PHE	37	-6.276	-4.934	1.137	1.00	0.00
ATOM	594	CB	PHE	37	-10.861	-10.289	2.972	1.00	0.00
ATOM	595	HE1	PHE	37	-11.522	-11.463	3.266	1.00	0.00
ATOM	596	HE2	PHE	37	-11.522	-11.463	3.266	1.00	0.00
ATOM	597	CD	PHE	37	-11.000	-10.289	2.972	1.00	0.00
ATOM	598	OB1	PHE	37	-11.779	-10.289	2.972	1.00	0.00
ATOM	599	OB2	PHE	37	-11.779	-10.289	2.972	1.00	0.00
ATOM	600	HB	PHE	38	-11.233	-9.585	-5.534	1.00	0.00
ATOM	601	CG1	PHE	38	-11.202	-3.977	-5.534	1.00	0.00
ATOM	602	HE11	PHE	38	-12.102	-3.610	-5.211	1.00	0.00
ATOM	603	HE12	PHE	38	-10.644	-3.864	-5.171	1.00	0.00
ATOM	604	HE21	PHE	38	-12.250	-3.628	-4.479	1.00	0.00
ATOM	605	CG2	PHE	38	-11.677	-4.229	-5.208	1.00	0.00
ATOM	606	HE22	PHE	38	-11.433	-6.633	-5.266	1.00	0.00
ATOM	607	HE23	PHE	38	-11.433	-4.933	-7.070	1.00	0.00
ATOM	608	HE23	PHE	38	-14.998	-9.319	-4.047	1.00	0.00
ATOM	609	CB	PHE	38	-14.855	-9.995	-4.546	1.00	0.00
ATOM	610	HE1	PHE	38	-12.222	-7.700	-4.513	1.00	0.00
ATOM	611	HN	PHE	38	-14.615	-10.931	-3.727	1.00	0.00
ATOM	612	HRN	PHE	38	-14.615	-8.498	-4.492	1.00	0.00
ATOM	613	CA	PHE	39	-13.477	-8.047	-4.775	1.00	0.00
ATOM	614	HE1	PHE	39	-14.173	-7.357	-4.773	1.00	0.00
ATOM	615	HE2	PHE	39	-13.450	-8.431	-5.053	1.00	0.00
ATOM	616	CA	PHE	39	-13.050	-8.431	-5.053	1.00	0.00
ATOM	617	HE1	PHE	39	-12.960	-10.935	-4.968	1.00	0.00
ATOM	618	HE2	PHE	39	-14.498	-8.024	-6.071	1.00	0.00
ATOM	619	CB	PHE	39	-14.640	-10.935	-4.968	1.00	0.00
ATOM	620	HE1	PHE	39	-14.640	-10.935	-4.968	1.00	0.00
ATOM	621	CD	PHE	39	-14.283	-9.316	-5.209	1.00	0.00
ATOM	622	HO1	PHE	39	-17.164	-8.759	-5.263	1.00	0.00
ATOM	623	HO2	PHE	39	-16.460	-10.357	-2.664	1.00	0.00
ATOM	624	CG	PHE	39	-16.415	-8.024	-6.071	1.00	0.00
ATOM	625	HE1	PHE	39	-15.855	-9.316	-5.053	1.00	0.00
ATOM	626	HE2	PHE	39	-15.855	-9.316	-5.053	1.00	0.00
ATOM	627	CD	PHE	39	-14.985	-8.065	-6.071	1.00	0.00
ATOM	628	HO1	PHE	39	-14.985	-8.065	-6.071	1.00	0.00
ATOM	629	HO2	PHE	39	-14.985	-8.065	-6.071	1.00	0.00
ATOM	630	CD	PHE	39	-14.985	-8.065	-6.071	1.00	0.00
ATOM	631	CA	LYS	39	-14.985	-8.033	-5.056	1.00	0.00
ATOM	632	CB	LYS	39	-14.985	-8.033	-5.056	1.00	0.00
ATOM	633	CD	LYS	39	-14.985	-8.033	-5.056	1.00	0.00
ATOM	634	HE1	LYS	39	-14.985	-8.033	-5.056	1.00	0.00
ATOM	635	HE2	LYS	39	-14.985	-8.033	-5.056	1.00	0.00
ATOM	636	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	637	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	638	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	639	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	640	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	641	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	642	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	643	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	644	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	645	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	646	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	647	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	648	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	649	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	650	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	651	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	652	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	653	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	654	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	655	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	656	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	657	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	658	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	659	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	660	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	661	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	662	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	663	CB	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	664	CD	PHE	39	-14.611	-8.033	-5.056	1.00	0.00
ATOM	665	CB	PHE						

REPLACEMENT SHEET

ATOM	819	CD ARG	51	-2.433	4.849	-11.240	1.00	0.00
ATOM	820	HDL ARG	51	-2.996	5.010	-10.332	1.00	0.00
ATOM	821	HDL ARG	51	-1.566	5.493	-11.244	1.00	0.00
ATOM	822	HDL ARG	51	-3.275	5.184	-12.395	1.00	0.00
ATOM	823	HE ARG	51	-4.217	5.390	-12.212	1.00	0.00
ATOM	824	HE ARG	51	-2.832	5.256	-13.688	1.00	0.00
ATOM	825	HHL ARG	51	-1.582	4.983	-13.904	1.00	0.00
ATOM	826	HHL ARG	51	-1.231	4.984	-14.866	1.00	0.00
ATOM	827	HHL ARG	51	-0.936	4.716	-13.161	1.00	0.00
ATOM	828	HHL ARG	51	-3.659	5.519	-14.666	1.00	0.00
ATOM	829	HHL ARG	51	-3.273	5.599	-15.588	1.00	0.00
ATOM	830	HHL ARG	51	-4.617	5.766	-14.460	1.00	0.00
ATOM	831	C ARG	51	-4.084	5.134	-11.066	1.00	0.00
ATOM	832	O ARG	51	-4.094	0.319	-12.061	1.00	0.00
ATOM	833	SER	52	-3.479	-0.122	-9.901	1.00	0.00
ATOM	834	IN SER	52	-3.170	0.463	-9.184	1.00	0.00
ATOM	835	HA SER	52	-3.166	1.623	-7.731	1.00	0.00
ATOM	836	CA SER	52	-3.166	2.171	-7.731	1.00	0.00
ATOM	837	CB SER	52	-3.160	1.980	-9.755	1.00	0.00
ATOM	838	CG SER	52	-1.650	1.980	-9.755	1.00	0.00
ATOM	839	HB1 SER	52	-1.447	1.890	-9.758	1.00	0.00
ATOM	840	HB2 SER	52	-1.477	1.890	-9.758	1.00	0.00
ATOM	841	HG SER	52	-1.672	-1.619	-9.877	1.00	0.00
ATOM	842	C SER	52	-3.993	-2.118	-9.488	1.00	0.00
ATOM	843	O SER	52	-3.353	-2.108	-7.462	1.00	0.00
ATOM	844	N PRO	53	-5.310	-2.179	-8.565	1.00	0.00
ATOM	845	CA PRO	53	-5.307	-2.882	-7.455	1.00	0.00
ATOM	846	HA PRO	53	-6.390	-2.033	-6.773	1.00	0.00
ATOM	847	CB PRO	53	-6.176	-1.577	-6.060	1.00	0.00
ATOM	848	CG PRO	53	-7.113	-3.489	-6.111	1.00	0.00
ATOM	849	HB1 PRO	53	-5.455	-3.145	-7.450	1.00	0.00
ATOM	850	HB2 PRO	53	-7.122	-4.559	-8.355	1.00	0.00
ATOM	851	HGL PRO	53	-7.512	-2.663	-9.337	1.00	0.00
ATOM	852	HGL PRO	53	-7.963	-3.263	-10.110	1.00	0.00
ATOM	853	CD PRO	53	-8.139	-1.812	-9.510	1.00	0.00
ATOM	854	HDL PRO	53	-5.780	-2.805	-10.584	1.00	0.00
ATOM	855	HDL PRO	53	-6.176	-1.157	-10.060	1.00	0.00
ATOM	856	C PRO	53	-5.340	-3.947	-6.639	1.00	0.00
ATOM	857	O PRO	53	-4.455	-5.137	-6.943	1.00	0.00
ATOM	858	N MET	54	-4.649	-3.512	-5.619	1.00	0.00
ATOM	859	HE MET	54	-4.591	-3.522	-5.456	1.00	0.00
ATOM	860	CA MET	54	-3.850	-4.428	-4.777	1.00	0.00
ATOM	861	HA MET	54	-4.303	-5.405	-4.859	1.00	0.00
ATOM	862	CB MET	54	-2.98	-4.508	-5.253	1.00	0.00
ATOM	863	HB1 MET	54	-2.390	-4.624	-5.287	1.00	0.00
ATOM	864	HB2 MET	54	-1.897	-3.587	-4.995	1.00	0.00
ATOM	865	CG MET	54	-1.615	-5.660	-4.644	1.00	0.00
ATOM	866	HDL MET	54	-1.472	-5.464	-3.592	1.00	0.00
ATOM	867	CD MET	54	-0.653	-5.122	-5.122	1.00	0.00
ATOM	868	HE MET	54	-2.452	-7.247	-4.826	1.00	0.00
ATOM	869	NE MET	54	-3.383	-7.311	-3.288	1.00	0.00
ATOM	870	HEI MET	54	-2.405	-7.997	-2.612	1.00	0.00
ATOM	871	HEZ MET	54	-4.308	-6.650	-1.650	1.00	0.00
ATOM	872	HEZ MET	54	-3.418	-6.277	-2.857	1.00	0.00
ATOM	873	O MET	54	-3.897	-3.294	-3.294	1.00	0.00
ATOM	874	O MET	54	-2.327	-4.445	-2.802	1.00	0.00
ATOM	875	O MET	54	-1.472	-5.464	-3.592	1.00	0.00
ATOM	876	IN MET	54	-0.653	-5.122	-5.122	1.00	0.00
ATOM	877	CA ASP	55	-3.870	-3.870	-3.870	1.00	0.00
ATOM	878	HA ASP	55	-4.603	-2.874	-1.119	1.00	0.00
ATOM	879	CB ASP	55	-4.690	-3.863	-0.916	1.00	0.00
ATOM	880	HB1 ASP	55	-6.811	-0.102	-0.102	1.00	0.00
ATOM	881	HB2 ASP	55	-7.075	-4.865	-0.944	1.00	0.00
ATOM	882	CG ASP	55	-7.075	-2.885	-0.815	1.00	0.00
ATOM	883	OD1 ASP	55	-7.575	-3.041	-0.010	1.00	0.00
ATOM	884	OD2 ASP	55	-8.074	-1.881	-0.010	1.00	0.00
ATOM	885	C ASP	55	-4.435	-4.826	-3.626	1.00	0.00
ATOM	886	O ASP	55	-4.378	-5.778	-5.580	1.00	0.00
ATOM	887	N LEU	56	-4.739	-4.786	-0.919	1.00	0.00
ATOM	888	HN LEU	56	-5.426	-4.165	-2.242	1.00	0.00
ATOM	889	CA LEU	56	-4.069	-5.640	-1.688	1.00	0.00
ATOM	890	HA LEU	56	-4.012	-5.620	-1.681	1.00	0.00
ATOM	891	CB LEU	56	-4.205	-5.115	-3.108	1.00	0.00
ATOM	892	HB1 LEU	56	-4.223	-2.352	-2.352	1.00	0.00
ATOM	893	HB2 LEU	56	-1.929	-4.584	-3.801	1.00	0.00
ATOM	894	HEI LEU	56	-1.779	-3.291	-3.291	1.00	0.00
ATOM	895	HEZ LEU	56	-3.343	-4.015	-3.377	1.00	0.00
ATOM	896	NE LEU	56	-3.605	-3.702	-4.770	1.00	0.00
ATOM	897	HD1 LEU	56	-4.611	-4.656	-4.824	1.00	0.00
ATOM	898	HD2 LEU	56	-4.668	-1.773	-1.000	1.00	0.00
ATOM	899	HD3 LEU	56	-3.425	-2.802	-2.859	1.00	0.00
ATOM	900	HD4 LEU	56	-3.604	-1.924	-3.449	1.00	0.00
ATOM	901	HD5 LEU	56	-4.204	-2.255	-2.132	1.00	0.00
ATOM	902	HD6 LEU	56	-4.281	-2.188	-2.352	1.00	0.00
ATOM	903	HD7 LEU	56	-4.253	-3.371	-3.371	1.00	0.00
ATOM	904	HD8 LEU	56	-4.631	-1.706	-1.000	1.00	0.00
ATOM	905	HD9 LEU	56	-4.667	-1.942	-1.000	1.00	0.00
ATOM	906	HD10 LEU	56	-4.262	-2.162	-2.162	1.00	0.00
ATOM	907	HD11 LEU	56	-4.262	-2.162	-2.162	1.00	0.00
ATOM	908	HD12 LEU	56	-4.262	-2.162	-2.162	1.00	0.00
ATOM	909	HD13 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	910	HD14 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	911	HD15 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	912	HD16 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	913	HD17 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	914	HD18 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	915	HD19 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	916	HD20 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	917	HD21 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	918	HD22 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	919	HD23 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	920	HD24 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	921	HD25 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	922	HD26 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	923	HD27 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	924	HD28 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	925	HD29 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	926	HD30 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	927	HD31 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	928	HD32 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	929	HD33 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	930	HD34 LEU	56	-4.223	-2.181	-2.181	1.00	0.00
ATOM	931	CB LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	932	CD LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	933	CE LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	934	CE2 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	935	CE3 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	936	CE4 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	937	CE5 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	938	CE6 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	939	CE7 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	940	CE8 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	941	CE9 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	942	CE10 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	943	CE11 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	944	CE12 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	945	CE13 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	946	CE14 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	947	CE15 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	948	CE16 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	949	CE17 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	950	CE18 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	951	CE19 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	952	CE20 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	953	CE21 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM	954	CE22 LYS	57	-4.075	-2.576	-1.000	1.00	0.00
ATOM								

REPLACEMENT SHEET

ATOM	1101	HEI	TIR	67	6.089	-16.237	-6.940	1.00	0.00
ATOM	1102	HEI	TIR	67	6.098	-13.133	-7.044	1.00	0.00
ATOM	1103	HEI	TIR	67	6.081	-12.449	-7.711	1.00	0.00
ATOM	1104	HEI	TIR	67	5.952	-13.497	-7.466	1.00	0.00
ATOM	1105	HEI	TIR	67	5.930	-14.793	-8.745	1.00	0.00
ATOM	1106	HEI	TIR	67	5.926	-15.205	-8.737	1.00	0.00
ATOM	1107	C	TIR	67	5.966	-10.880	-3.889	1.00	0.00
ATOM	1108	HEI	TIR	67	5.990	-10.653	-5.063	1.00	0.00
ATOM	1109	N	TIR	68	6.059	-9.977	-2.953	1.00	0.00
ATOM	1110	HEI	TIR	68	6.099	-10.817	-1.988	1.00	0.00
ATOM	1111	A	TIR	68	6.515	-6.568	-3.200	1.00	0.00
ATOM	1112	HEI	TIR	68	6.570	-6.455	-4.355	1.00	0.00
ATOM	1113	G	TIR	68	6.509	-6.283	-2.821	1.00	0.00
ATOM	1114	HEI	TIR	68	6.446	-6.005	-2.266	1.00	0.00
ATOM	1115	H	TIR	68	6.466	-6.146	-2.266	1.00	0.00
ATOM	1116	O	TIR	68	6.489	-6.173	-3.966	1.00	0.00
ATOM	1117	C	TIR	68	6.479	-6.173	-5.514	1.00	0.00
ATOM	1118	H	TIR	68	6.577	-6.173	-5.314	1.00	0.00
ATOM	1119	C	TIR	68	6.546	-6.173	-5.314	1.00	0.00
ATOM	1120	H	TIR	68	6.583	-6.173	-5.314	1.00	0.00
ATOM	1121	H	TIR	68	6.578	-6.173	-5.314	1.00	0.00
ATOM	1122	C	TIR	68	6.569	-6.173	-5.314	1.00	0.00
ATOM	1123	S	TIR	68	6.359	-6.568	-6.196	1.00	0.00
ATOM	1124	HEI	TIR	68	6.323	-6.975	-7.143	1.00	0.00
ATOM	1125	H	TIR	68	6.202	-6.781	-4.765	1.00	0.00
ATOM	1126	E	TIR	68	6.141	-6.581	-4.633	1.00	0.00
ATOM	1127	C	TIR	68	6.233	-7.811	-5.998	1.00	0.00
ATOM	1128	OH	TIR	68	6.135	-6.765	-7.013	1.00	0.00
ATOM	1129	H	TIR	68	6.044	-6.751	-6.637	1.00	0.00
ATOM	1130	N	TIR	68	6.783	-7.344	-6.923	1.00	0.00
ATOM	1131	HN	TIR	68	6.395	-6.844	-6.923	1.00	0.00
ATOM	1132	HN	TIR	68	6.706	-6.457	-2.303	1.00	0.00
ATOM	1133	N	TIR	68	6.844	-7.344	-5.259	1.00	0.00
ATOM	1134	HG12	VAL	69	9.000	-8.862	-2.835	1.00	0.00
ATOM	1135	HG13	VAL	69	10.423	-9.887	-1.712	1.00	0.00
ATOM	1136	HA	VAL	69	9.761	-10.795	-1.962	1.00	0.00
ATOM	1137	HN	VAL	69	9.284	-10.461	-1.221	1.00	0.00
ATOM	1138	CA	VAL	69	10.907	-7.375	-1.276	1.00	0.00
ATOM	1139	CB	VAL	69	11.715	-7.964	-1.964	1.00	0.00
ATOM	1140	CG	VAL	69	10.655	-8.242	-0.846	1.00	0.00
ATOM	1141	CD	VAL	69	10.775	-8.343	-0.933	1.00	0.00
ATOM	1142	CG	VAL	69	11.171	-8.640	-1.133	1.00	0.00
ATOM	1143	CA	VAL	69	10.422	-7.059	-0.090	1.00	0.00
ATOM	1144	HG22	VAL	69	11.977	-6.979	-0.411	1.00	0.00
ATOM	1145	HG23	VAL	69	11.822	-6.118	-0.438	1.00	0.00
ATOM	1146	O	VAL	69	10.352	-6.199	-3.043	1.00	0.00
ATOM	1147	O	VAL	69	11.543	-6.277	-3.305	1.00	0.00
ATOM	1148	HN	SER	70	9.507	-6.372	-3.634	1.00	0.00
ATOM	1149	HN	SER	70	8.566	-5.371	-3.359	1.00	0.00
ATOM	1150	CG	SER	70	9.934	-4.491	-4.703	1.00	0.00
ATOM	1151	CB	SER	70	10.985	-4.486	-4.000	1.00	0.00
ATOM	1152	HEI	SER	70	10.826	-4.569	-5.161	1.00	0.00
ATOM	1153	HEI	SER	70	9.476	-4.253	-4.253	1.00	0.00
ATOM	1154	HG	SER	70	10.775	-4.300	-4.600	1.00	0.00
ATOM	1155	O	SER	70	10.674	-4.164	-4.677	1.00	0.00
ATOM	1156	O	SER	70	9.656	-4.177	-4.677	1.00	0.00
ATOM	1157	N	SER	70	9.769	-4.159	-4.249	1.00	0.00
ATOM	1158	CA	VAL	70	10.985	-4.267	-4.582	1.00	0.00
ATOM	1159	CA	VAL	71	10.812	-4.267	-4.582	1.00	0.00
ATOM	1160	CA	VAL	71	9.858	-4.267	-4.582	1.00	0.00
ATOM	1161	CA	VAL	71	10.879	-4.267	-4.582	1.00	0.00
ATOM	1162	HB1	VAL	71	10.771	-4.267	-4.582	1.00	0.00
ATOM	1163	HB2	VAL	71	10.771	-4.267	-4.582	1.00	0.00
ATOM	1164	CG	VAL	71	9.656	-4.267	-4.582	1.00	0.00
ATOM	1165	HG1	VAL	71	9.554	-4.267	-4.582	1.00	0.00
ATOM	1166	HG2	VAL	71	10.506	-4.267	-4.582	1.00	0.00
ATOM	1167	CD	VAL	71	10.218	-4.233	-4.582	1.00	0.00
ATOM	1168	HD1	VAL	71	11.031	-4.663	-5.631	1.00	0.00
ATOM	1169	HD2	VAL	71	9.424	-4.233	-4.582	1.00	0.00
ATOM	1170	CD	VAL	71	10.721	-4.321	-4.582	1.00	0.00
ATOM	1171	HE1	VAL	71	11.466	-3.737	-5.506	1.00	0.00
ATOM	1172	HE2	VAL	71	9.891	-4.412	-5.119	1.00	0.00
ATOM	1173	HE3	VAL	71	11.323	-4.511	-5.477	1.00	0.00
ATOM	1174	HE1	VAL	71	10.580	-4.970	-8.021	1.00	0.00
ATOM	1175	HE2	VAL	71	11.823	-3.822	-8.056	1.00	0.00
ATOM	1176	HE3	VAL	71	12.000	-5.234	-7.344	1.00	0.00
ATOM	1177	C	VAL	71	7.984	-6.678	-7.344	1.00	0.00
ATOM	1178	O	VAL	71	8.016	-6.678	-7.344	1.00	0.00
ATOM	1179	N	VAL	72	10.721	-3.024	-6.564	1.00	0.00
ATOM	1180	HN	VAL	72	9.002	-0.018	-6.730	1.00	0.00
ATOM	1181	CA	VAL	72	6.963	-0.053	-7.86	1.00	0.00
ATOM	1182	HA	VAL	72	6.511	-0.053	-7.86	1.00	0.00
ATOM	1183	CB	VAL	72	11.876	-2.028	-10.238	1.00	0.00
ATOM	1184	HO1	VAL	72	1.944	-2.028	-1.895	1.00	0.00
ATOM	1185	HO2	VAL	72	7.419	-2.028	-1.895	1.00	0.00
ATOM	1186	CD	VAL	72	8.261	-0.980	-9.305	1.00	0.00
ATOM	1187	CG	VAL	72	7.728	-0.975	-9.615	1.00	0.00
ATOM	1188	CG1	VAL	72	6.339	-0.915	-10.258	1.00	0.00
ATOM	1189	CG2	VAL	72	5.985	-0.915	-10.258	1.00	0.00
ATOM	1190	CD	VAL	72	6.224	-0.005	-10.258	1.00	0.00
ATOM	1191	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1192	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1193	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1194	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1195	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1196	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1197	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1198	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1199	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1200	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1201	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1202	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1203	CA	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1204	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1205	CG	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1206	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1207	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1208	CG	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1209	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1210	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1211	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1212	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1213	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1214	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1215	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1216	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1217	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1218	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1219	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1220	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1221	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1222	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1223	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1224	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1225	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1226	CB	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1227	CD	VAL	72	6.264	-0.005	-10.258	1.00	0.00
ATOM	1228	CB	VAL	72					

REPLACEMENT SHEET

ATOM	1383	C02	THR	83	-4.464	-7.286	5.619	1.00	0.00
ATOM	1384	H02	THR	83	-3.654	-7.40	6.333	1.00	0.00
ATOM	1385	H022	THR	83	-4.384	-8.25	5.389	1.00	0.00
ATOM	1386	H023	THR	83	-5.228	6.656	6.048	1.00	0.00
ATOM	1387	C	THR	83	-2.778	6.017	3.711	1.00	0.00
ATOM	1388	O	THR	83	-6.221	4.033	4.033	1.00	0.00
ATOM	1389	N	ASN	84	-6.333	4.690	3.756	1.00	0.00
ATOM	1390	H	ASN	84	-5.550	4.376	4.376	1.00	0.00
ATOM	1391	CA	ASN	84	-7.533	3.987	4.190	1.00	0.00
ATOM	1392	HA	ASN	84	-7.822	4.381	5.183	1.00	0.00
ATOM	1393	CB	ASN	84	-7.250	2.491	4.321	1.00	0.00
ATOM	1394	HBL	ASN	84	-6.457	2.342	5.039	1.00	0.00
ATOM	1395	B02	ASN	84	-6.939	2.087	3.362	1.00	0.00
ATOM	1396	CG	ASN	84	-6.464	1.707	4.778	1.00	0.00
ATOM	1397	O01	ASN	84	-9.459	2.282	5.218	1.00	0.00
ATOM	1398	NDC	ASN	84	-8.388	0.385	4.672	1.00	0.00
ATOM	1399	H021	ASN	84	-7.354	-0.004	4.112	1.00	0.00
ATOM	1400	H022	ASN	84	-9.158	-0.447	4.960	1.00	0.00
ATOM	1401	C	ASN	84	-8.670	-2.122	-3.201	1.00	0.00
ATOM	1402	O	ASN	84	-9.636	-4.879	-3.554	1.00	0.00
ATOM	1403	N	CYS	85	-8.520	-2.023	1.000	1.00	0.00
ATOM	1404	H	CYS	85	-7.708	-1.142	-1.812	1.00	0.00
ATOM	1405	CA	CYS	85	-7.526	-0.908	-0.961	1.00	0.00
ATOM	1406	O	CYS	85	-10.414	-0.280	1.276	1.00	0.00
ATOM	1407	G01	CYS	85	-9.228	-0.005	4.134	1.00	0.00
ATOM	1408	HE1	CYS	85	-9.789	-0.322	1.109	1.00	0.00
ATOM	1409	HE2	CYS	85	-8.132	-1.724	0.595	1.00	0.00
ATOM	1410	M	CYS	85	-9.935	-0.585	1.501	1.00	0.00
ATOM	1411	MG	CYS	85	-9.931	-0.652	1.100	1.00	0.00
ATOM	1412	C	CYS	85	-10.395	-0.578	0.598	1.00	0.00
ATOM	1413	O	CYS	85	-10.995	-0.563	0.598	1.00	0.00
ATOM	1414	N	LYS	86	-1.593	-0.999	1.200	1.00	0.00
ATOM	1415	H	LYS	86	-8.822	-5.82	-1.288	1.00	0.00
ATOM	1416	CA	LYS	86	-9.103	-3.005	1.334	1.00	0.00
ATOM	1417	HA	LYS	86	-9.725	-5.76	-0.840	1.00	0.00
ATOM	1418	CB	LYS	86	-7.758	-8.299	-0.629	1.00	0.00
ATOM	1419	HBL	LYS	86	-7.355	-7.988	-0.630	1.00	0.00
ATOM	1420	H02	LYS	86	-7.078	-7.990	-0.630	1.00	0.00
ATOM	1421	CG	LYS	86	-7.653	-9.807	-0.632	1.00	0.00
ATOM	1422	G01	LYS	86	-8.858	-10.091	-0.561	1.00	0.00
ATOM	1423	HE2	LYS	86	-7.623	-10.178	-0.566	1.00	0.00
ATOM	1424	CD	LYS	86	-6.882	-10.42	-1.656	1.00	0.00
ATOM	1425	HD0	LYS	86	-6.363	-11.427	-2.334	1.00	0.00
ATOM	1426	H02	LYS	86	-5.960	-9.633	-2.147	1.00	0.00
ATOM	1427	CE	LYS	86	-5.359	-11.376	-0.930	1.00	0.00
ATOM	1428	HE1	LYS	86	-5.744	-11.108	-0.690	1.00	0.00
ATOM	1429	HE2	LYS	86	-4.915	-11.221	-1.447	1.00	0.00
ATOM	1430	NZ	LYS	86	-6.277	-12.718	-0.922	1.00	0.00
ATOM	1431	H21	LYS	86	-6.207	-13.125	-0.441	1.00	0.00
ATOM	1432	H22	LYS	86	-7.360	-13.025	-1.249	1.00	0.00
ATOM	1433	C02	LYS	86	-9.005	-8.175	-2.060	1.00	0.00
ATOM	1434	C	LYS	86	-9.669	-6.662	-5.462	1.00	0.00
ATOM	1435	O	LYS	86	-10.579	-9.266	-3.943	1.00	0.00
ATOM	1436	N	LGL	87	-9.188	-7.618	-3.220	1.00	0.00
ATOM	1437	H	GLU	87	-8.883	-6.866	-3.559	1.00	0.00
ATOM	1438	CA	GLU	87	-10.101	-8.013	-4.474	1.00	0.00
ATOM	1439	HA	GLU	87	-10.483	-8.455	-4.100	1.00	0.00
ATOM	1440	CB	GLU	87	-9.384	-7.684	-4.665	1.00	0.00
ATOM	1441	HE1	GLU	87	-13.392	-9.172	-5.582	1.00	0.00
ATOM	1442	HE2	GLU	87	-9.663	-6.362	-5.462	1.00	0.00
ATOM	1443	CG	GLU	87	-9.084	-5.570	-5.963	1.00	0.00
ATOM	1444	HD0	GLU	87	-9.284	-7.126	-5.909	1.00	0.00
ATOM	1445	HD1	GLU	87	-7.359	-6.444	-5.904	1.00	0.00
ATOM	1446	OD0	GLU	87	-8.460	-9.007	-6.907	1.00	0.00
ATOM	1447	OD1	GLU	87	-9.007	-9.593	-6.907	1.00	0.00
ATOM	1448	OE2	GLU	87	-7.316	-10.131	-6.907	1.00	0.00
ATOM	1449	CGU	GLU	87	-11.539	-7.621	-6.645	1.00	0.00
ATOM	1450	O	GLU	87	-12.422	-8.997	-6.610	1.00	0.00
ATOM	1451	N	TYR	88	-11.165	-6.338	-4.387	1.00	0.00
ATOM	1452	H	TYR	88	-11.023	-5.763	-4.109	1.00	0.00
ATOM	1453	CA	TYR	88	-11.100	-5.474	-4.536	1.00	0.00
ATOM	1454	HA	TYR	88	-11.320	-5.026	-4.549	1.00	0.00
ATOM	1455	CB	TYR	88	-11.000	-4.234	-4.639	1.00	0.00
ATOM	1456	HE1	TYR	88	-12.032	-5.040	-4.000	1.00	0.00
ATOM	1457	HE2	TYR	88	-13.100	-5.653	-5.000	1.00	0.00
ATOM	1458	CG	TYR	88	-14.055	-6.162	-5.527	1.00	0.00
ATOM	1459	CD1	TYR	88	-15.165	-2.981	-4.982	1.00	0.00
ATOM	1460	HDI	TYR	88	-15.273	-2.942	-3.308	1.00	0.00
ATOM	1461	CD2	TYR	88	-13.935	-6.561	-6.911	1.00	0.00
ATOM	1462	H02	TYR	88	-13.076	-6.144	-7.350	1.00	0.00
ATOM	1463	HE1	TYR	88	-14.130	-5.790	-6.000	1.00	0.00
ATOM	1464	HE2	TYR	88	-14.987	-5.347	-5.100	1.00	0.00
ATOM	1465	C02	TYR	88	-14.999	-5.987	-5.400	1.00	0.00
ATOM	1466	H022	TYR	88	-14.785	-6.800	-6.000	1.00	0.00
ATOM	1467	CZ	TYR	88	-15.990	-2.463	-7.161	1.00	0.00
ATOM	1468	OH	TYR	88	-16.947	-1.993	-7.569	1.00	0.00
ATOM	1469	CD	TYR	88	-17.473	-2.84	-6.378	1.00	0.00
ATOM	1470	C	TYR	88	-14.010	-6.637	-3.368	1.00	0.00
ATOM	1471	O	TYR	88	-14.955	-5.265	-2.691	1.00	0.00
ATOM	1472	N	TYR	88	-14.187	-4.931	-3.150	1.00	0.00
ATOM	1473	HN	ASN	89	-13.337	-3.777	-1.000	0.00	0.00
ATOM	1474	AS	ASN	89	-13.338	-3.777	-1.000	0.00	0.00
ATOM	1475	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1476	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1477	HB1	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1478	HB2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1479	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1480	CD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1481	ND2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1482	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1483	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1484	CD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1485	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1486	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1487	CD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1488	OD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1489	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1490	CD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1491	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1492	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1493	CD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1494	OD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1495	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1496	CD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1497	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1498	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1499	CD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1500	OD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1501	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1502	CD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1503	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1504	CG	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1505	CD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1506	OD	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1507	CB	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1508	CD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00
ATOM	1509	OD2	ASN	89	-13.338	-3.776	-1.000	0.00	0.00</

REPLACEMENT SHEET

ATOM	1655	HDL2	ILE	101	-6.07	5.842	11.709	1.00	0.00
ATOM	1666	HDL3	ILE	101	-7.84	5.966	10.554	1.00	0.00
ATOM	1667	C	ILE	101	-2.51	6.457	8.226	1.00	0.00
ATOM	1668	O	ILE	101	-1.35	6.607	8.312	1.00	0.00
ATOM	1669	N	ILE	102	-2.876	5.943	9.500	1.00	0.00
ATOM	1670	HN	ILE	102	-3.829	5.117	7.527	1.00	0.00
ATOM	1671	CA	ILE	102	-1.886	4.575	6.972	1.00	0.00
ATOM	1672	CB	ILE	102	-1.350	3.953	7.763	1.00	0.00
ATOM	1673	CH	ILE	102	-2.569	3.162	6.012	1.00	0.00
ATOM	1674	HE1	ILE	102	-1.630	3.443	6.283	1.00	0.00
ATOM	1675	HE2	ILE	102	-2.408	3.700	6.933	1.00	0.00
ATOM	1676	HE3	ILE	102	-2.083	3.971	5.260	1.00	0.00
ATOM	1677	HG	ILE	102	-2.423	1.982	4.200	1.00	0.00
ATOM	1678	HEO	ILE	102	-2.676	1.864	5.753	1.00	0.00
ATOM	1679	MET1	ILE	102	-1.493	1.195	3.156	1.00	0.00
ATOM	1680	MET2	ILE	102	-2.958	0.338	3.732	1.00	0.00
ATOM	1681	MET3	ILE	102	-0.549	1.288	6.812	1.00	0.00
ATOM	1682	MET4	ILE	102	-0.559	2.499	6.220	1.00	0.00
ATOM	1683	MET5	ILE	102	-0.447	2.978	5.749	1.00	0.00
ATOM	1684	MET6	ILE	102	-0.524	1.907	7.213	1.00	0.00
ATOM	1685	MET7	ILE	102	-0.522	1.556	6.565	1.00	0.00
ATOM	1686	MET8	ILE	102	-0.697	1.117	1.179	1.00	0.00
ATOM	1687	O	ILE	102	-0.303	4.984	6.965	1.00	0.00
ATOM	1688	N	ILE	103	-1.144	6.366	5.433	1.00	0.00
ATOM	1689	HN	ILE	103	-2.171	6.439	5.498	1.00	0.00
ATOM	1690	CA	ILE	103	-0.581	7.132	6.624	1.00	0.00
ATOM	1691	CB	ILE	103	-0.056	6.512	3.960	1.00	0.00
ATOM	1692	CG	ILE	103	-1.446	8.146	3.857	1.00	0.00
ATOM	1693	HR1	ILE	103	-0.912	8.800	4.572	1.00	0.00
ATOM	1694	HR2	ILE	103	-2.220	7.611	3.120	1.00	0.00
ATOM	1695	CGU	ILE	103	-0.670	8.991	2.860	1.00	0.00
ATOM	1696	HGU	ILE	103	-1.083	8.832	1.874	1.00	0.00
ATOM	1697	RGU	ILE	103	-0.364	8.891	2.871	1.00	0.00
ATOM	1698	GDU	ILE	103	-0.734	10.042	3.347	1.00	0.00
ATOM	1699	QEL	ILE	103	-0.556	10.596	3.342	1.00	0.00
ATOM	1700	QER	ILE	103	-0.337	11.108	3.264	1.00	0.00
ATOM	1701	C	GLU	103	-0.439	7.955	4.578	1.00	0.00
ATOM	1702	O	GLU	103	-1.644	7.658	3.534	1.00	0.00
ATOM	1703	N	GLU	103	-0.552	6.405	4.000	1.00	0.00
ATOM	1704	HN	GLU	104	-0.782	6.480	1.000	1.00	0.00
ATOM	1705	CA	GLU	104	-0.221	9.117	7.306	1.00	0.00
ATOM	1706	CD	GLU	104	-1.329	10.172	6.775	1.00	0.00
ATOM	1707	OD1	GLU	104	-0.003	10.040	6.248	1.00	0.00
ATOM	1708	OD2	GLU	104	-0.949	9.949	8.492	1.00	0.00
ATOM	1709	HB2	LYS	104	-0.530	10.024	9.315	1.00	0.00
ATOM	1710	CG	LYS	104	-2.078	11.156	9.125	1.00	0.00
ATOM	1711	HG	LYS	104	-0.635	12.128	2.601	1.00	0.00
ATOM	1712	HC2	LYS	104	-1.026	11.920	9.820	1.00	0.00
ATOM	1713	HC1	LYS	104	-2.239	14.433	6.661	1.00	0.00
ATOM	1714	HD1	LYS	104	-0.782	10.786	7.088	1.00	0.00
ATOM	1715	HD2	LYS	104	-0.293	10.024	9.316	1.00	0.00
ATOM	1716	HD3	LYS	104	-0.960	12.322	6.447	1.00	0.00
ATOM	1717	HE1	LYS	104	-2.073	12.989	6.695	1.00	0.00
ATOM	1718	HE2	LYS	104	-2.601	12.984	5.954	1.00	0.00
ATOM	1719	HE3	LYS	104	-1.877	14.053	6.791	1.00	0.00
ATOM	1720	EL1	LYS	104	-2.226	11.920	9.820	1.00	0.00
ATOM	1721	EL2	LYS	104	-2.239	14.433	6.661	1.00	0.00
ATOM	1722	EL3	LYS	104	-0.782	10.786	7.088	1.00	0.00
ATOM	1723	CD	LYS	104	-0.293	10.024	9.316	1.00	0.00
ATOM	1724	CG	LYS	104	-0.960	12.322	6.447	1.00	0.00
ATOM	1725	HN	LYS	104	-2.073	12.984	5.954	1.00	0.00
ATOM	1726	C	LYS	104	-2.601	12.984	5.954	1.00	0.00
ATOM	1727	CA	LYS	104	-2.226	11.920	9.820	1.00	0.00
ATOM	1728	CB	LYS	104	-2.239	14.433	6.661	1.00	0.00
ATOM	1729	CH	LYS	104	-0.782	10.786	7.088	1.00	0.00
ATOM	1730	CD1	LYS	104	-0.293	10.024	9.316	1.00	0.00
ATOM	1731	CB2	LYS	105	-0.540	9.077	8.811	1.00	0.00
ATOM	1732	CG	LYS	105	-1.411	9.565	11.031	1.00	0.00
ATOM	1733	COL	LYS	105	-2.955	10.294	11.524	1.00	0.00
ATOM	1734	HDL1	LYS	105	-0.523	9.687	10.853	1.00	0.00
ATOM	1735	COL2	LYS	105	-0.083	9.687	10.853	1.00	0.00
ATOM	1736	CD2	LYS	105	-2.177	11.874	11.874	1.00	0.00
ATOM	1737	CEL	PHR	105	-0.491	8.877	11.478	1.00	0.00
ATOM	1738	HE1	PHR	105	-0.296	9.190	12.285	1.00	0.00
ATOM	1739	CER	PHR	105	-2.051	4.783	13.241	1.00	0.00
ATOM	1740	HER2	PHR	105	-2.665	4.786	13.911	1.00	0.00
ATOM	1741	CZ	PHR	105	-1.172	13.750	1.000	1.00	0.00
ATOM	1742	HZ	PHR	105	-0.079	14.818	8.818	1.00	0.00
ATOM	1743	C	PHR	105	-2.379	5.655	7.785	1.00	0.00
ATOM	1744	O	PHR	105	-4.911	5.877	7.808	1.00	0.00
ATOM	1745	N	PHR	106	-2.702	4.870	6.882	1.00	0.00
ATOM	1746	HN	PHR	106	-1.732	6.922	1.000	0.00	0.00
ATOM	1747	CH	PHR	106	-4.770	4.199	5.841	1.00	0.00
ATOM	1748	CB	PHR	106	-4.078	3.441	6.316	1.00	0.00
ATOM	1749	CG	PHR	106	-2.532	2.886	8.919	1.00	0.00
ATOM	1750	HL1	PHR	106	-1.881	2.844	5.666	1.00	0.00
ATOM	1751	HL2	PHR	106	-1.937	2.881	5.351	1.00	0.00
ATOM	1752	CG	PHR	106	-2.524	2.755	7.777	1.00	0.00
ATOM	1753	CD1	PHR	106	-1.596	1.077	1.077	1.00	0.00
ATOM	1754	CD2	PHR	106	-1.928	1.077	1.077	1.00	0.00
ATOM	1755	CE1	PHR	106	-2.063	1.076	1.076	1.00	0.00
ATOM	1756	CE2	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1757	CH1	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1758	HE1	PHR	106	-0.022	3.776	3.776	1.00	0.00
ATOM	1759	CD2	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1760	CD3	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1761	CG2	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1762	CG3	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1763	CG4	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1764	CG5	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1765	CG6	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1766	CG7	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1767	CG8	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1768	CG9	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1769	CG10	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1770	CG11	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1771	CG12	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1772	CG13	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1773	CG14	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1774	CG15	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1775	CG16	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1776	CG17	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1777	CG18	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1778	CG19	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1779	CG20	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1780	CG21	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1781	CG22	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1782	CG23	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1783	CG24	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1784	CG25	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1785	CG26	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1786	CG27	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1787	CG28	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1788	CG29	PHR	106	-1.737	1.076	1.076	1.00	0.00
ATOM	1789	CG30	PHR	106	-1.7				

REPLACEMENT SHEET

ATOM	1947	H2	LVS	119	4.432	9.001	-5.028	1.00	0.00
ATOM	1948	C2	LVS	119	3.921	10.506	5.527	1.00	0.00
ATOM	1949	HC	LVS	119	3.171	10.446	6.522	1.00	0.00
ATOM	1950	HC	LVS	119	3.077	11.595	6.522	1.00	0.00
ATOM	1951	CD	LVS	119	1.642	10.689	5.053	1.00	0.00
ATOM	1952	HD	LVS	118	1.422	9.100	5.449	1.00	0.00
ATOM	1953	HD	LVS	118	1.637	10.644	3.974	1.00	0.00
ATOM	1954	CG	LVS	118	0.569	11.055	-5.518	1.00	0.00
ATOM	1955	HE1	LVS	118	-0.425	11.347	-4.666	1.00	0.00
ATOM	1956	HE2	LVS	118	1.048	11.922	-5.942	1.00	0.00
ATOM	1957	N2	LVS	118	-0.324	10.443	-6.543	1.00	0.00
ATOM	1958	HE21	LVS	118	-0.734	9.558	-6.180	1.00	0.00
ATOM	1959	HE22	LVS	119	0.214	10.223	-7.498	1.00	0.00
ATOM	1960	HE23	LVS	119	-1.697	11.699	-6.778	1.00	0.00
ATOM	1961	C	LVS	119	4.974	12.103	-3.697	1.00	0.00
ATOM	1962	OT1	LVS	119	4.769	13.177	-4.291	1.00	0.00
ATOM	1963	O12	LVS	119	4.901	11.986	-2.445	1.00	0.00

END

Table 6

Atomic Structure Coordinates of the P/CAF Bromodomain/Acetyl-Histamine Complex

3.882	-4.733	1.00	0.00	BED ATOM	151	HDL ARG	9	12.767	-7.958	1.00	0.00	BED ATOM	65	CIB MEC	4
4.858	-5.045	1.00	0.00	BED ATOM	152	HDL ARG	9	14.375	-6.944	1.00	0.00	BED ATOM	67	HBL MEC	4
4.728	-5.963	1.00	0.00	BED ATOM	153	MBC ARG	9	12.911	-7.535	1.00	0.00	BED ATOM	73	HBL MEC	4
2.409	-6.767	1.00	0.00	BED ATOM	154	HB ARG	9	14.490	-7.006	1.00	0.00	BED ATOM	71	SD CEC	4
4.676	-5.955	1.00	0.00	BED ATOM	155	C2 ARG	9	16.531	-7.686	1.00	0.00	BED ATOM	74	HEC MEC	4
6.172	-4.842	1.00	0.00	BED ATOM	156	MH ARG	9	16.443	-7.576	1.00	0.00	BED ATOM	75	HEC MEC	4
4.006	-4.006	1.00	0.00	BED ATOM	157	HHL ARG	9	17.289	-7.049	1.00	0.00	BED ATOM	76	MET CEC	4
3.571	-3.837	1.00	0.00	BED ATOM	158	CD ARG	9	17.929	-7.851	1.00	0.00	BED ATOM	77	MET CEC	4
3.221	-3.711	1.00	0.00	BED ATOM	159	HA ARG	9	11.997	-6.126	1.00	0.00	BED ATOM	78	N SER	5
6.110	-4.914	1.00	0.00	BED ATOM	160	CH SER	5	11.084	-6.792	1.00	0.00	BED ATOM	79	N SER	5
11.194	-7.759	1.00	0.00	BED ATOM	161	HN SER	5	11.194	-7.559	1.00	0.00	BED ATOM	80	HBL MEC	4
9.939	-6.125	1.00	0.00	BED ATOM	162	HM SER	5	9.939	-6.677	1.00	0.00	BED ATOM	81	SD CEC	4
9.033	-6.125	1.00	0.00	BED ATOM	163	HB SER	5	9.033	-6.677	1.00	0.00	BED ATOM	82	SD CEC	4
7.448	-7.111	1.00	0.00	BED ATOM	164	HEI MEC	4	7.448	-7.111	1.00	0.00	BED ATOM	83	HEI MEC	4
5.960	-6.786	1.00	0.00	BED ATOM	165	HEC MEC	4	5.960	-7.000	1.00	0.00	BED ATOM	84	HEC MEC	4
17.289	-7.049	1.00	0.00	BED ATOM	166	HEZ MEC	4	17.289	-7.049	1.00	0.00	BED ATOM	85	HEZ MEC	4
5.560	-5.851	1.00	0.00	BED ATOM	167	HEZ SER	5	5.560	-6.000	1.00	0.00	BED ATOM	86	HEZ SER	5
11.906	-6.000	1.00	0.00	BED ATOM	168	HEZ SER	5	11.906	-6.000	1.00	0.00	BED ATOM	87	HEZ SER	5
6.114	-6.601	1.00	0.00	BED ATOM	169	HO SER	5	6.114	-6.601	1.00	0.00	BED ATOM	88	HO SER	5
8.624	-6.423	1.00	0.00	BED ATOM	170	HO LYS	6	8.624	-6.423	1.00	0.00	BED ATOM	89	HO LYS	6
10.189	-4.819	1.00	0.00	BED ATOM	171	HN SER	5	10.189	-4.819	1.00	0.00	BED ATOM	90	HN SER	5
9.833	-3.999	1.00	0.00	BED ATOM	172	HN LYS	6	9.833	-3.999	1.00	0.00	BED ATOM	91	HN LYS	6
11.227	-5.665	1.00	0.00	BED ATOM	173	CD LYS	6	11.227	-5.665	1.00	0.00	BED ATOM	92	PA LYS	6
8.565	-4.410	1.00	0.00	BED ATOM	174	PA LYS	6	8.565	-4.410	1.00	0.00	BED ATOM	93	CT LYS	6
9.801	-5.172	1.00	0.00	BED ATOM	175	HB1 LYS	6	9.801	-5.172	1.00	0.00	BED ATOM	94	HB1 LYS	6
9.056	-5.056	1.00	0.00	BED ATOM	176	HB2 LYS	6	9.056	-5.056	1.00	0.00	BED ATOM	95	HB2 LYS	6
8.624	-4.148	1.00	0.00	BED ATOM	177	CG LYS	6	8.624	-4.148	1.00	0.00	BED ATOM	96	CG LYS	6
10.189	-4.677	1.00	0.00	BED ATOM	178	HA LYS	6	10.189	-4.677	1.00	0.00	BED ATOM	97	HA LYS	6
11.227	-5.665	1.00	0.00	BED ATOM	179	HEI LYS	6	11.227	-5.665	1.00	0.00	BED ATOM	98	HEI LYS	6
10.299	-5.665	1.00	0.00	BED ATOM	180	HEC LYS	6	10.299	-5.665	1.00	0.00	BED ATOM	99	HEC LYS	6
8.879	-5.000	1.00	0.00	BED ATOM	181	HEZ LYS	6	8.879	-5.000	1.00	0.00	BED ATOM	100	HEZ LYS	6
11.546	-6.155	1.00	0.00	BED ATOM	182	CD SER	5	11.546	-6.155	1.00	0.00	BED ATOM	101	CD SER	5
10.024	-5.150	1.00	0.00	BED ATOM	183	HB1 SER	5	10.024	-5.150	1.00	0.00	BED ATOM	102	HB1 SER	5
13.203	-6.166	1.00	0.00	BED ATOM	184	HB2 SER	5	13.203	-6.166	1.00	0.00	BED ATOM	103	HB2 SER	5
13.089	-4.949	1.00	0.00	BED ATOM	185	HEI SER	5	13.089	-4.949	1.00	0.00	BED ATOM	104	HEI SER	5
13.953	-3.991	1.00	0.00	BED ATOM	186	HEC SER	5	13.953	-3.991	1.00	0.00	BED ATOM	105	HEC SER	5
13.645	-2.302	1.00	0.00	BED ATOM	187	HEZ SER	5	13.645	-2.302	1.00	0.00	BED ATOM	106	HEZ SER	5
13.576	-2.070	1.00	0.00	BED ATOM	188	CD SER	5	13.576	-2.070	1.00	0.00	BED ATOM	107	CD SER	5
14.632	-2.189	1.00	0.00	BED ATOM	189	HB1 SER	5	14.632	-2.189	1.00	0.00	BED ATOM	108	HB1 SER	5
9.720	-2.613	1.00	0.00	BED ATOM	190	HB2 SER	5	9.720	-2.613	1.00	0.00	BED ATOM	109	HB2 SER	5
9.022	-2.026	1.00	0.00	BED ATOM	191	HEI SER	5	9.022	-2.026	1.00	0.00	BED ATOM	110	HEI SER	5
7.474	-2.334	1.00	0.00	BED ATOM	192	HEC SER	5	7.474	-2.334	1.00	0.00	BED ATOM	111	HEC SER	5
7.295	-2.200	1.00	0.00	BED ATOM	193	HEZ SER	5	7.295	-2.200	1.00	0.00	BED ATOM	112	HEZ SER	5
9.216	-2.211	1.00	0.00	BED ATOM	194	HA SER	5	9.216	-2.211	1.00	0.00	BED ATOM	113	HA SER	5
5.906	-1.857	1.00	0.00	BED ATOM	195	HB SER	5	5.906	-1.857	1.00	0.00	BED ATOM	114	HB SER	5
6.590	-1.857	1.00	0.00	BED ATOM	196	HB2 SER	5	6.590	-1.857	1.00	0.00	BED ATOM	115	HB2 SER	5
6.874	-2.334	1.00	0.00	BED ATOM	197	HEI SER	5	6.874	-2.334	1.00	0.00	BED ATOM	116	HEI SER	5
5.982	-2.402	1.00	0.00	BED ATOM	198	HEC SER	5	5.982	-2.402	1.00	0.00	BED ATOM	117	HEC SER	5
4.676	-2.000	1.00	0.00	BED ATOM	199	HEZ SER	5	4.676	-2.000	1.00	0.00	BED ATOM	120	HEZ SER	5
6.266	-1.874	1.00	0.00	BED ATOM	200	CD PRO	5	6.266	-1.874	1.00	0.00	BED ATOM	121	CD PRO	5
4.476	-1.740	1.00	0.00	BED ATOM	201	HB1 PRO	5	4.476	-1.740	1.00	0.00	BED ATOM	122	HB1 PRO	5
4.176	-3.694	1.00	0.00	BED ATOM	202	HB2 PRO	5	4.176	-3.694	1.00	0.00	BED ATOM	123	HB2 PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	203	HEI PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	124	HEI PRO	5
3.571	-3.837	1.00	0.00	BED ATOM	204	HEC PRO	5	3.571	-3.837	1.00	0.00	BED ATOM	125	HEC PRO	5
3.221	-3.711	1.00	0.00	BED ATOM	205	HEZ PRO	5	3.221	-3.711	1.00	0.00	BED ATOM	126	HEZ PRO	5
3.617	-3.711	1.00	0.00	BED ATOM	206	CB ARG	9	3.617	-3.711	1.00	0.00	BED ATOM	127	CB ARG	9
3.529	-2.074	1.00	0.00	BED ATOM	207	HBL ARG	9	3.529	-2.074	1.00	0.00	BED ATOM	128	HBL ARG	9
3.864	-2.238	1.00	0.00	BED ATOM	208	HBL PRO	5	3.864	-2.238	1.00	0.00	BED ATOM	129	HBL PRO	5
2.982	-2.402	1.00	0.00	BED ATOM	209	HBL2 ARG	9	2.982	-2.402	1.00	0.00	BED ATOM	130	HBL2 ARG	9
4.476	-2.000	1.00	0.00	BED ATOM	210	HBL2 PRO	5	4.476	-2.000	1.00	0.00	BED ATOM	131	HBL2 PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	211	HBL2 SER	5	4.476	-3.837	1.00	0.00	BED ATOM	132	HBL2 SER	5
4.476	-3.837	1.00	0.00	BED ATOM	212	HN ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	133	HN ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	213	HN PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	134	HN PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	214	HN SER	5	4.476	-3.837	1.00	0.00	BED ATOM	135	HN SER	5
4.476	-3.837	1.00	0.00	BED ATOM	215	CD PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	136	CD PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	216	CD SER	5	4.476	-3.837	1.00	0.00	BED ATOM	137	CD SER	5
4.476	-3.837	1.00	0.00	BED ATOM	217	HBL2 PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	138	HBL2 PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	218	HBL2 SER	5	4.476	-3.837	1.00	0.00	BED ATOM	139	HBL2 SER	5
4.476	-3.837	1.00	0.00	BED ATOM	219	PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	140	PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	220	ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	141	ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	221	CD ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	142	CD ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	222	CB ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	143	CB ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	223	HBL ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	144	HBL ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	224	HBL PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	145	HBL PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	225	HBL2 ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	146	HBL2 ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	226	HBL2 PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	147	HBL2 PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	227	HBL2 SER	5	4.476	-3.837	1.00	0.00	BED ATOM	148	HBL2 SER	5
4.476	-3.837	1.00	0.00	BED ATOM	228	PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	149	PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	229	ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	150	ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	230	CD PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	151	CD PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	231	CB PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	152	CB PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	232	HBL2 PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	153	HBL2 PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	233	HBL2 SER	5	4.476	-3.837	1.00	0.00	BED ATOM	154	HBL2 SER	5
4.476	-3.837	1.00	0.00	BED ATOM	234	PRO	5	4.476	-3.837	1.00	0.00	BED ATOM	155	PRO	5
4.476	-3.837	1.00	0.00	BED ATOM	235	ARG	9	4.476	-3.837	1.00	0.00	BED ATOM	156	ARG	9
4.476	-3.837	1.00	0.00	BED ATOM	236	CD SER	5	4.476	-3.837	1.00	0.00	BED ATOM	157	CD SER	5
4.476	-3.837	1.00	0.												

89D ATOM	159	HN	ARG
89D ATOM	160	HN	ARG
89D ATOM	161	HN	ARG
89D ATOM	162	C	ARG
89D ATOM	163	O	ARG
89D ATOM	164	N	ASP
89D ATOM	165	H	ASP
89D ATOM	166	C	ASP
89D ATOM	167	H	ASP
89D ATOM	168	G	ASP
89D ATOM	169	F	ASP
89D ATOM	170	D	ASP
89D ATOM	171	C	ASP
89D ATOM	172	C	ASP
89D ATOM	173	O	ASP
89D ATOM	174	C	ASP
89D ATOM	175	O	ASP
89D ATOM	176	C	ASP
89D ATOM	177	C	ASP
89D ATOM	178	C	PRO
89D ATOM	179	C	PRO
89D ATOM	180	F	PRO
89D ATOM	181	R	PRO
89D ATOM	182	C	PRO
89D ATOM	183	G	PRO
89D ATOM	184	H	PRO
89D ATOM	185	C	PRO
89D ATOM	186	H	PRO
89D ATOM	187	H	PRO
89D ATOM	188	C	PRO
89D ATOM	189	O	PRO
89D ATOM	190	N	ASP
89D ATOM	191	H	ASP
89D ATOM	192	C	ASP
89D ATOM	193	H	ASP
89D ATOM	194	C	ASP
89D ATOM	195	H	ASP
89D ATOM	196	H	ASP
89D ATOM	197	C	ASP
89D ATOM	198	O	ASP
89D ATOM	199	O	ASP
89D ATOM	200	C	ASP
89D ATOM	201	O	ASP
89D ATOM	202	N	GLN
89D ATOM	203	H	GLN
89D ATOM	204	C	GLN
89D ATOM	205	N	GLN
89D ATOM	206	G	GLN
89D ATOM	207	H	GLN
89D ATOM	208	G	GLN
89D ATOM	209	C	GLN
89D ATOM	210	H	GLN
89D ATOM	211	H	GLN
89D ATOM	212	C	GLN
89D ATOM	213	N	GLN
89D ATOM	214	E	GLN
89D ATOM	215	H	GLN
89D ATOM	216	E	GLN
89D ATOM	217	H	GLN
89D ATOM	218	N	GLN
89D ATOM	219	C	GLN
89D ATOM	220	H	GLN
89D ATOM	221	C	LEU
89D ATOM	222	H	LEU
89D ATOM	223	C	LEU
89D ATOM	224	S	LEU
89D ATOM	225	H	LEU
89D ATOM	226	C	LEU
89D ATOM	227	H	LEU
89D ATOM	228	C	LEU
89D ATOM	229	H	LEU
89D ATOM	230	D	LEU
89D ATOM	231	H	LEU
89D ATOM	232	C	LEU
89D ATOM	233	H	LEU
89D ATOM	234	D	LEU
89D ATOM	235	C	LEU
89D ATOM	236	C	LEU
89D ATOM	237	N	LEU
89D ATOM	238	N	LEU
89D ATOM	239	H	LEU
89D ATOM	240	C	TYR
89D ATOM	241	H	TYR
89D ATOM	242	C	TYR
89D ATOM	243	H	TYR
89D ATOM	244	H	TYR
89D ATOM	245	C	TYR
89D ATOM	246	C	TYR
89D ATOM	247	H	TYR
89D ATOM	248	H	TYR
89D ATOM	249	O	TYR
89D ATOM	250	O	TYR
89D ATOM	251	O	TYR
89D ATOM	252	C	TYR

REPLACEMENT SHEET

7.249	-6.837	1.00	0.00	BED ATOM	293	H2P TPR	15	9.275	8.431	2.377	1.00	0.00	BED ATOM	347	HE22 TLE	21	3.319	12.844	-9.465	1.00	0.00	BED ATOM	441	HL1 LYS	26	-1.215
7.246	-7.111	1.00	0.00	BED ATOM	294	CG TPR	15	11.284	9.603	2.603	1.00	0.00	BED ATOM	348	HE22 TLE	21	3.073	13.385	-9.384	1.00	0.00	BED ATOM	442	HL2 LYS	26	-0.010
7.246	-7.706	1.00	0.00	BED ATOM	295	CH TPR	15	10.908	7.915	3.053	1.00	0.00	BED ATOM	349	CDN TLE	21	3.222	13.461	-8.710	1.00	0.00	BED ATOM	443	HE3 LYS	26	-0.558
7.246	-7.732	1.00	0.00	BED ATOM	296	HH TPR	15	10.572	6.130	4.000	1.00	0.00	BED ATOM	350	HD1 TLE	21	3.805	12.449	-10.199	1.00	0.00	BED ATOM	444	C LYS	26	-4.673
7.246	-7.819	1.00	0.00	BED ATOM	297	C TPR	15	10.859	5.225	3.384	1.00	0.00	BED ATOM	351	HD2 TLE	21	2.264	11.073	-5.468	1.00	0.00	BED ATOM	445	N LYS	26	-5.762
7.246	-7.869	1.00	0.00	BED ATOM	298	S TPR	15	9.778	6.000	0.051	1.00	0.00	BED ATOM	352	HD3 TLE	21	3.075	10.991	-6.036	1.00	0.00	BED ATOM	446	IN LYS	26	-4.315
7.246	-7.911	1.00	0.00	BED ATOM	299	NE TPR	15	11.641	6.371	1.422	1.00	0.00	BED ATOM	353	C TLE	21	1.969	12.118	-4.732	1.00	0.00	BED ATOM	447	HN SER	27	-3.439
7.246	-7.950	1.00	0.00	BED ATOM	300	NI SER	16	11.465	6.024	1.044	1.00	0.00	BED ATOM	354	O TLE	21	0.869	12.109	-4.493	1.00	0.00	BED ATOM	448	ON SER	27	-5.204
7.246	-7.986	1.00	0.00	BED ATOM	301	HA SER	16	11.449	6.808	1.991	1.00	0.00	BED ATOM	355	R N LEP	22	3.433	13.157	-4.156	1.00	0.00	BED ATOM	449	RA SER	27	-6.104
7.246	-8.020	1.00	0.00	BED ATOM	302	GA SER	16	11.448	8.824	2.004	1.00	0.00	BED ATOM	356	R N LEP	22	3.125	13.100	-3.091	1.00	0.00	BED ATOM	450	RD SER	27	-4.932
7.246	-8.058	1.00	0.00	BED ATOM	303	GB SER	16	11.448	9.307	2.229	1.00	0.00	BED ATOM	357	CA LEP	22	6.688	14.953	-4.976	1.00	0.00	BED ATOM	451	HB1 SER	27	-3.629
7.246	-8.090	1.00	0.00	BED ATOM	304	HE1 TLE	21	12.105	7.807	2.929	1.00	0.00	BED ATOM	358	GB LEP	22	4.491	14.710	-4.404	1.00	0.00	BED ATOM	452	HB2 SER	27	-5.207
7.246	-8.122	1.00	0.00	BED ATOM	305	HE2 TLE	21	12.220	11.692	1.100	1.00	0.00	BED ATOM	359	CB LEP	22	4.491	14.710	-4.404	1.00	0.00	BED ATOM	453	HG SER	27	-4.197
7.246	-8.154	1.00	0.00	BED ATOM	306	HE3 TLE	21	12.220	11.692	1.100	1.00	0.00	BED ATOM	360	HE1 LEP	22	4.491	14.710	-4.404	1.00	0.00	BED ATOM	454	HG2 SER	27	-3.746
7.246	-8.186	1.00	0.00	BED ATOM	307	HE2 SER	16	11.317	11.317	1.000	1.00	0.00	BED ATOM	361	HE2 LEP	22	2.778	13.100	-6.006	1.00	0.00	BED ATOM	455	ON SER	27	-5.591
7.246	-8.217	1.00	0.00	BED ATOM	308	HE3 SER	16	11.317	11.317	1.000	1.00	0.00	BED ATOM	362	HE2 TLE	22	1.722	13.161	-3.950	1.00	0.00	BED ATOM	456	O SER	27	-5.862
7.246	-8.249	1.00	0.00	BED ATOM	309	HE1 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	363	CO TLE	21	2.378	14.131	-3.380	1.00	0.00	BED ATOM	457	HA SER	27	-5.877
7.246	-8.281	1.00	0.00	BED ATOM	310	HE2 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	364	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	458	HL1 SER	27	-5.215
7.246	-8.313	1.00	0.00	BED ATOM	311	HE3 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	365	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	459	HL2 SER	27	-5.663
7.246	-8.345	1.00	0.00	BED ATOM	312	CA TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	366	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	460	HL3 SER	28	-5.595
7.246	-8.376	1.00	0.00	BED ATOM	313	CH TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	367	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	461	HL3 SER	28	-5.125
7.246	-8.408	1.00	0.00	BED ATOM	314	CB TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	368	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	462	HL1 SER	28	-4.733
7.246	-8.440	1.00	0.00	BED ATOM	315	CG TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	369	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	463	HL2 SER	27	-4.207
7.246	-8.472	1.00	0.00	BED ATOM	316	CC TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	370	HE1 LEP	22	2.375	14.131	-3.380	1.00	0.00	BED ATOM	464	HL3 SER	27	-3.817
7.246	-8.504	1.00	0.00	BED ATOM	317	CH TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	371	HE2 LEP	21	0.700	10.884	-1.880	1.00	0.00	BED ATOM	465	NN LHS	28	-5.542
7.246	-8.536	1.00	0.00	BED ATOM	318	CA TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	372	HE2 LEP	21	2.375	14.131	-3.380	1.00	0.00	BED ATOM	466	NN HIS	28	-5.446
7.246	-8.568	1.00	0.00	BED ATOM	319	CB TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	373	HE2 LEP	21	2.375	14.131	-3.380	1.00	0.00	BED ATOM	467	CDP HIS	28	-5.066
7.246	-8.600	1.00	0.00	BED ATOM	320	CG TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	374	N GLN	23	2.201	9.744	-1.985	1.00	0.00	BED ATOM	468	CDP HIS	28	-5.717
7.246	-8.632	1.00	0.00	BED ATOM	321	CH TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	375	HE1 GLN	23	3.107	13.166	-1.917	1.00	0.00	BED ATOM	469	CDL HIS	28	-6.032
7.246	-8.664	1.00	0.00	BED ATOM	322	HE1 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	376	HE1 GLN	23	1.941	12.456	-1.917	1.00	0.00	BED ATOM	470	HE1 HIS	28	-6.314
7.246	-8.696	1.00	0.00	BED ATOM	323	HE2 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	377	HE1 GLN	23	1.828	12.044	-1.917	1.00	0.00	BED ATOM	471	HE2 HIS	28	-6.119
7.246	-8.728	1.00	0.00	BED ATOM	324	HE3 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	378	HE1 GLN	23	3.118	10.850	-1.917	1.00	0.00	BED ATOM	472	HE2 HIS	28	-6.350
7.246	-8.760	1.00	0.00	BED ATOM	325	HE1 SER	16	9.593	13.346	1.000	0.00	0.00	BED ATOM	379	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	473	C HIS	28	-7.364
7.246	-8.792	1.00	0.00	BED ATOM	326	HE2 SER	16	9.593	13.346	1.000	0.00	0.00	BED ATOM	380	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	474	O HIS	28	-7.797
7.246	-8.824	1.00	0.00	BED ATOM	327	HE3 SER	16	9.593	13.346	1.000	0.00	0.00	BED ATOM	381	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	475	N HIS	28	-8.215
7.246	-8.856	1.00	0.00	BED ATOM	328	HE1 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	382	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	476	HE1 LYS	26	-8.660
7.246	-8.888	1.00	0.00	BED ATOM	329	HE2 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	383	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	477	HE2 LYS	26	-8.740
7.246	-9.020	1.00	0.00	BED ATOM	330	HE3 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	384	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	478	HE3 LYS	26	-9.129
7.246	-9.152	1.00	0.00	BED ATOM	331	HE1 SER	20	9.593	12.423	1.000	0.00	0.00	BED ATOM	385	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	479	HE1 HIS	26	-9.512
7.246	-9.284	1.00	0.00	BED ATOM	332	HE2 SER	20	9.593	12.423	1.000	0.00	0.00	BED ATOM	386	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	480	HE2 HIS	26	-9.893
7.246	-9.416	1.00	0.00	BED ATOM	333	HE3 SER	20	9.593	12.423	1.000	0.00	0.00	BED ATOM	387	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	481	HE3 HIS	26	-10.272
7.246	-9.548	1.00	0.00	BED ATOM	334	HE1 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	388	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	482	HE1 LYS	26	-10.651
7.246	-9.680	1.00	0.00	BED ATOM	335	HE2 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	389	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	483	HE2 LYS	26	-11.030
7.246	-9.812	1.00	0.00	BED ATOM	336	HE3 TLE	21	10.182	1.161	1.000	0.00	0.00	BED ATOM	390	HE1 GLN	23	9.536	13.951	-1.917	1.00	0.00	BED ATOM	484	HE3 LYS	26	-11.409
7.246	-10.044	1.00	0.00	BED ATOM	337	HE1 SER	20	9.593	12.423	1.000	0.00	0.00	BED ATOM	391	HE1 GLN	23	9									

REPLACEMENT SHEET

1.938	1.963	1.00	0.00	BED ATOM	535	C TRP	32	-10.855	5.374	5.333	1.00	0.00	BED ATOM	629	H022 VAL	38	-13.457
5.382	-2.797	1.00	0.00	BED ATOM	536	O TRP	32	-11.199	4.994	7.020	1.00	0.00	BED ATOM	723	H02 PRO	44	-17.551
4.752	-3.797	1.00	0.00	BED ATOM	537	N PRO	33	-10.636	6.629	6.533	1.00	0.00	BED ATOM	724	C PRO	44	-18.125
4.574	-3.618	1.00	0.00	BED ATOM	538	CA PRO	33	-10.800	6.481	6.533	1.00	0.00	BED ATOM	631	C VAL	38	-10.518
3.497	-1.493	1.00	0.00	BED ATOM	539	HA PRO	33	-11.693	6.473	8.511	1.00	0.00	BED ATOM	632	O VAL	38	-10.518
3.255	-1.599	1.00	0.00	BED ATOM	540	CB PRO	33	-10.947	6.488	8.051	1.00	0.00	BED ATOM	633	N LYS	39	-11.349
3.057	0.017	1.00	0.00	BED ATOM	541	HB1 PRO	33	-10.191	7.412	7.609	1.00	0.00	BED ATOM	634	CA LYS	39	-12.205
3.357	-0.341	1.00	0.00	BED ATOM	542	HB2 PRO	33	-11.926	8.717	8.715	1.00	0.00	BED ATOM	635	DA LYS	39	-11.005
1.846	0.219	1.00	0.00	BED ATOM	543	CG PRO	33	-10.771	8.306	-8.574	1.00	0.00	BED ATOM	637	CB LYS	39	-11.299
4.396	0.695	1.00	0.00	BED ATOM	544	HG1 PRO	33	-11.713	8.666	-10.216	1.00	0.00	BED ATOM	638	HBL LYS	39	-10.419
4.744	1.048	1.00	0.00	BED ATOM	545	HG2 PRO	33	-10.075	8.205	-10.714	1.00	0.00	BED ATOM	639	HB2 LYS	39	-11.511
4.498	1.505	1.00	0.00	BED ATOM	546	CD PRO	33	-10.223	8.633	-10.569	1.00	0.00	BED ATOM	640	CG LYS	39	-12.452
6.219	0.337	1.00	0.00	BED ATOM	547	HD1 PRO	33	-10.632	7.772	-10.569	1.00	0.00	BED ATOM	641	HGL LYS	39	-12.490
5.566	-0.355	1.00	0.00	BED ATOM	548	HD2 PRO	33	-10.165	7.450	-9.664	1.00	0.00	BED ATOM	642	HGL LYS	39	-13.177
6.219	0.304	1.00	0.00	BED ATOM	549	C PRO	33	-9.996	8.241	-11.222	1.00	0.00	BED ATOM	643	CD LYS	39	-11.947
2.933	-2.312	1.00	0.00	BED ATOM	550	N PRO	33	-9.887	8.108	-11.222	1.00	0.00	BED ATOM	644	DA LYS	39	-12.413
2.612	0.200	1.00	0.00	BED ATOM	551	PHE	34	-9.472	8.618	-11.222	1.00	0.00	BED ATOM	645	HDS PRO	39	-10.888
2.689	-0.225	1.00	0.00	BED ATOM	552	SAW	34	-9.558	8.642	-11.160	1.00	0.00	BED ATOM	646	CE LYS	39	-12.326
1.805	-0.203	1.00	0.00	BED ATOM	553	CA PRO	34	-7.256	8.659	-11.222	1.00	0.00	BED ATOM	647	HE1 LYS	39	-12.074
5.659	-0.303	1.00	0.00	BED ATOM	554	MA PRO	34	-6.597	8.725	-11.166	1.00	0.00	BED ATOM	648	HE2 LYS	39	-13.060
5.324	-0.617	1.00	0.00	BED ATOM	555	HA PRO	34	-7.775	8.328	-12.030	1.00	0.00	BED ATOM	649	SD LYS	39	-13.560
6.968	1.565	1.00	0.00	BED ATOM	556	HE1 PRO	34	-5.198	8.650	-11.222	1.00	0.00	BED ATOM	650	HE2 LYS	39	-13.962
2.303	2.779	1.00	0.00	BED ATOM	557	HB1 PRO	34	-6.228	8.540	-11.222	1.00	0.00	BED ATOM	651	HB2 LYS	39	-14.307
4.944	1.335	1.00	0.00	BED ATOM	558	CD PRO	34	-6.085	8.531	-11.222	1.00	0.00	BED ATOM	652	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	559	CO PRO	34	-6.085	8.531	-11.222	1.00	0.00	BED ATOM	653	CO LYS	39	-14.772
4.098	2.122	1.00	0.00	BED ATOM	560	CH PRO	34	-7.303	8.689	-11.222	1.00	0.00	BED ATOM	654	CB LYS	39	-14.772
4.316	0.226	1.00	0.00	BED ATOM	561	COP PRO	34	-5.663	8.689	-11.222	1.00	0.00	BED ATOM	655	N LYS	39	-14.772
5.622	0.203	1.00	0.00	BED ATOM	562	HO2 PRO	34	-5.674	8.689	-11.222	1.00	0.00	BED ATOM	656	HE1 LYS	39	-14.772
5.324	-0.617	1.00	0.00	BED ATOM	563	CSL PRO	34	-7.375	8.689	-11.222	1.00	0.00	BED ATOM	657	CS LYS	39	-14.772
6.968	1.565	1.00	0.00	BED ATOM	564	HE1 PRO	34	-7.767	8.689	-11.222	1.00	0.00	BED ATOM	658	HE2 PRO	34	-11.066
2.303	2.779	1.00	0.00	BED ATOM	565	CB2 PRO	34	-5.052	8.419	-11.222	1.00	0.00	BED ATOM	659	CH2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	566	CD2 PRO	34	-6.409	8.419	-11.222	1.00	0.00	BED ATOM	660	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	567	CB PRO	34	-6.607	8.419	-11.222	1.00	0.00	BED ATOM	661	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	568	CH PRO	34	-6.753	8.419	-11.222	1.00	0.00	BED ATOM	662	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	569	CG PRO	34	-7.150	8.419	-11.222	1.00	0.00	BED ATOM	663	CB LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	570	MA PRO	34	-6.653	8.419	-11.222	1.00	0.00	BED ATOM	664	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	571	HA PRO	34	-7.624	8.419	-11.222	1.00	0.00	BED ATOM	665	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	572	HN PRO	34	-7.624	8.419	-11.222	1.00	0.00	BED ATOM	666	HA LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	573	CA PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	667	HB1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	574	HA PRO	34	-6.930	8.419	-11.222	1.00	0.00	BED ATOM	668	HB2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	575	CB PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	669	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	576	HE1 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	670	HE2 PRO	34	-11.225
5.829	-0.151	1.00	0.00	BED ATOM	577	HE2 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	671	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	578	HE1 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	672	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	579	HE2 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	673	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	580	HE1 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	674	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	581	HE2 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	675	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	582	HE1 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	676	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	583	HE2 PRO	34	-7.845	8.419	-11.222	1.00	0.00	BED ATOM	677	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	584	HE2 MET	35	-4.294	8.419	-11.222	1.00	0.00	BED ATOM	678	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	585	CG MET	35	-4.294	8.419	-11.222	1.00	0.00	BED ATOM	679	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	586	HE1 MET	35	-6.361	8.419	-11.222	1.00	0.00	BED ATOM	680	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	587	HE2 MET	35	-6.361	8.419	-11.222	1.00	0.00	BED ATOM	681	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	588	HN MET	35	-6.361	8.419	-11.222	1.00	0.00	BED ATOM	682	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	589	HN MET	35	-6.361	8.419	-11.222	1.00	0.00	BED ATOM	683	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	590	CA MET	35	-5.995	8.419	-11.222	1.00	0.00	BED ATOM	684	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	591	CA MET	35	-5.995	8.419	-11.222	1.00	0.00	BED ATOM	685	HE1 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	592	CA MET	35	-5.995	8.419	-11.222	1.00	0.00	BED ATOM	686	HE2 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	593	HE1 MET	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	687	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	594	HE2 MET	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	688	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	595	HE1 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	689	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	596	HE2 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	690	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	597	HE1 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	691	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	598	HE2 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	692	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	599	HE1 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	693	HE2 LYS	39	-14.772
4.098	-0.151	1.00	0.00	BED ATOM	600	HE2 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	694	HE1 LYS	39	-14.772
5.829	-0.151	1.00	0.00	BED ATOM	601	HE1 PRO	35	-11.084	8.419	-11.222	1.00	0.00	BED ATOM	695	HE		

REPLACEMENT SHEET

REPLACEMENT SHEET

6.359	-9.88	1.00	0.00	BED ATOM	1099	ME ARG	66	15.162	-	3.727	-2.548	1.00	0.00	BED ATOM	1193	HEI LVS	71	14.024	6.842	-2.049	1.00	0.00	BED ATOM	1287	C ALA	76	2.240
5.351	-0.277	1.00	0.00	BED ATOM	1100	HE ARG	66	15.688	-	4.084	-1.699	1.00	0.00	BED ATOM	1194	HE2 LVS	71	12.561	4.601	-1.147	1.00	0.00	BED ATOM	1288	O ALA	76	2.240
5.255	-11.059	1.00	0.00	BED ATOM	1101	CQ ARG	66	15.801	-	4.316	-2.655	1.00	0.00	BED ATOM	1195	N2 LVS	71	14.287	4.936	-3.777	1.00	0.00	BED ATOM	1289	N ALA	76	2.270
5.457	-9.074	1.00	0.00	BED ATOM	1102	NHL ARG	66	15.917	-	3.897	-3.076	1.00	0.00	BED ATOM	1196	M2 LVS	71	13.870	4.014	-0.044	1.00	0.00	BED ATOM	1290	N HL	77	3.124
5.526	-7.965	1.00	0.00	BED ATOM	1103	HILL ARG	66	15.959	-	3.334	-4.556	1.00	0.00	BED ATOM	1197	HE2 LVS	71	14.334	3.685	-0.394	1.00	0.00	BED ATOM	1291	CA ALA	77	1.058
5.372	-7.7	1.00	0.00	BED ATOM	1104	HILL ARG	66	14.188	-	3.353	-4.604	1.00	0.00	BED ATOM	1198	M2 LVS	71	15.253	3.804	-0.818	1.00	0.00	BED ATOM	1292	HA ALA	77	4.650
5.314	-0.071	1.00	0.00	BED ATOM	1105	NHL ARG	66	17.125	-	3.533	-3.604	1.00	0.00	BED ATOM	1199	C LVS	71	9.041	4.701	-0.750	1.00	0.00	BED ATOM	1293	C2 ASP	77	1.392
5.314	-0.071	1.00	0.00	BED ATOM	1106	HILL ARG	66	17.654	-	3.160	-0.231	1.00	0.00	BED ATOM	1200	O LVS	71	2.156	3.524	-0.283	1.00	0.00	BED ATOM	1294	HB1 ASP	77	2.156
5.277	-9.807	1.00	0.00	BED ATOM	1107	HE2 ARG	66	17.813	-	2.529	-0.362	1.00	0.00	BED ATOM	1201	N LVS	72	9.970	2.157	-2.334	1.00	0.00	BED ATOM	1295	HB2 ASP	77	0.521
5.075	-0.692	1.00	0.00	BED ATOM	1108	O ARG	66	10.634	-	4.888	-0.211	1.00	0.00	BED ATOM	1202	RH LVS	72	9.933	5.201	-1.059	1.00	0.00	BED ATOM	1296	CC O2 ASP	77	1.817
5.075	-0.692	1.00	0.00	BED ATOM	1109	N ARG	66	11.634	-	4.888	-0.211	1.00	0.00	BED ATOM	1203	CA LVS	72	7.844	5.201	-1.059	1.00	0.00	BED ATOM	1297	CC O2 ASP	77	1.353
5.759	-0.613	1.00	0.00	BED ATOM	1110	HN TTR	67	8.411	-	4.618	-1.255	1.00	0.00	BED ATOM	1204	LVS	72	7.396	4.864	-1.255	1.00	0.00	BED ATOM	1298	C LVS	77	2.613
5.280	-1.004	1.00	0.00	BED ATOM	1111	HN TTR	67	8.016	-	4.864	-0.547	1.00	0.00	BED ATOM	1205	CH LVS	72	8.167	5.595	-2.453	1.00	0.00	BED ATOM	1299	C ASP	77	0.268
5.301	-1.142	1.00	0.00	BED ATOM	1112	CH TTR	67	6.952	-	4.864	-0.547	1.00	0.00	BED ATOM	1206	HBL LVS	72	8.161	2.641	-0.243	1.00	0.00	BED ATOM	1300	O ASP	77	-0.950
5.066	-9.840	1.00	0.00	BED ATOM	1113	CB TTR	67	7.982	-	7.226	-0.752	1.00	0.00	BED ATOM	1207	HB2 LVS	72	7.249	7.226	-0.752	1.00	0.00	BED ATOM	1301	N LVS	71	2.156
5.181	-9.639	1.00	0.00	BED ATOM	1114	CBP TTR	67	6.767	-	6.869	-2.008	1.00	0.00	BED ATOM	1208	HB1 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1302	CB LVS	78	1.944
5.061	-11.738	1.00	0.00	BED ATOM	1115	HB1 TTR	67	6.767	-	6.869	-2.008	1.00	0.00	BED ATOM	1209	HB2 LVS	72	9.130	1.569	-0.119	1.00	0.00	BED ATOM	1303	CB LVS	78	0.319
5.291	-14.512	1.00	0.00	BED ATOM	1116	CBP TTR	67	8.216	-	6.713	-7.985	1.00	0.00	BED ATOM	1210	HB2 LVS	72	9.135	1.569	-0.119	1.00	0.00	BED ATOM	1304	HA LEBU	78	-0.493
5.541	-14.516	1.00	0.00	BED ATOM	1117	CBP TTR	67	7.042	-	7.005	-3.027	1.00	0.00	BED ATOM	1211	CD LVS	72	8.419	6.272	-0.027	1.00	0.00	BED ATOM	1305	CH LVS	78	-1.280
5.220	-13.733	1.00	0.00	BED ATOM	1118	CBP TTR	67	7.188	-	6.184	-3.147	1.00	0.00	BED ATOM	1212	CD LVS	72	8.419	6.272	-0.027	1.00	0.00	BED ATOM	1306	CH LVS	78	-1.280
5.285	-10.973	1.00	0.00	BED ATOM	1119	CD TTR	67	8.122	-	6.065	-3.815	1.00	0.00	BED ATOM	1213	HD2 LVS	72	9.135	1.569	-0.119	1.00	0.00	BED ATOM	1307	CD LVS	78	-1.284
5.677	-14.266	1.00	0.00	BED ATOM	1120	CD TTR	67	8.645	-	6.065	-3.815	1.00	0.00	BED ATOM	1214	HD2 LVS	72	9.135	1.569	-0.119	1.00	0.00	BED ATOM	1308	CD LVS	78	-1.284
5.234	-14.604	1.00	0.00	BED ATOM	1121	CEL TTR	67	6.767	-	6.767	-6.767	1.00	0.00	BED ATOM	1215	CEL LVS	72	7.249	7.226	-0.752	1.00	0.00	BED ATOM	1309	CE LVS	78	-0.388
5.301	-14.604	1.00	0.00	BED ATOM	1122	CEL TTR	67	6.261	-	6.261	-6.261	1.00	0.00	BED ATOM	1216	CEL LVS	72	7.249	7.226	-0.752	1.00	0.00	BED ATOM	1310	CE LVS	78	-0.388
5.066	-9.840	1.00	0.00	BED ATOM	1123	HEI TTR	67	7.982	-	6.869	-2.008	1.00	0.00	BED ATOM	1217	HEI LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1311	HEI LEBU	78	-1.143
5.734	-8.684	1.00	0.00	BED ATOM	1124	HEI TTR	67	7.872	-	6.869	-2.008	1.00	0.00	BED ATOM	1218	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1312	HE2 LEBU	78	-0.319
5.055	-8.684	1.00	0.00	BED ATOM	1125	HE2 TTR	67	8.198	-	6.869	-2.008	1.00	0.00	BED ATOM	1219	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1313	HE2 LEBU	78	-0.319
5.490	-6.639	1.00	0.00	BED ATOM	1126	HE2 TTR	67	8.216	-	6.869	-2.008	1.00	0.00	BED ATOM	1220	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1314	HE2 LEBU	78	-0.319
5.778	-7.032	1.00	0.00	BED ATOM	1127	HE2 TTR	67	8.234	-	6.869	-2.008	1.00	0.00	BED ATOM	1221	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1315	HE2 LEBU	78	-0.319
5.327	-6.548	1.00	0.00	BED ATOM	1128	HE2 TTR	67	8.252	-	6.869	-2.008	1.00	0.00	BED ATOM	1222	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1316	HE2 LEBU	78	-0.319
5.027	-6.548	1.00	0.00	BED ATOM	1129	HE2 TTR	67	8.270	-	6.869	-2.008	1.00	0.00	BED ATOM	1223	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1317	HE2 LEBU	78	-0.319
5.027	-6.548	1.00	0.00	BED ATOM	1130	HE2 TTR	67	8.288	-	6.869	-2.008	1.00	0.00	BED ATOM	1224	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1318	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1131	HE2 TTR	67	8.306	-	6.869	-2.008	1.00	0.00	BED ATOM	1225	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1319	HE2 LEBU	78	-0.319
5.051	-7.283	1.00	0.00	BED ATOM	1132	HE2 TTR	67	8.324	-	6.869	-2.008	1.00	0.00	BED ATOM	1226	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1320	HE2 LEBU	78	-0.319
5.051	-7.283	1.00	0.00	BED ATOM	1133	HE2 TTR	67	8.342	-	6.869	-2.008	1.00	0.00	BED ATOM	1227	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1321	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1134	HE2 TTR	67	8.360	-	6.869	-2.008	1.00	0.00	BED ATOM	1228	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1322	HE2 LEBU	78	-0.319
5.051	-7.283	1.00	0.00	BED ATOM	1135	HE2 TTR	67	8.378	-	6.869	-2.008	1.00	0.00	BED ATOM	1229	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1323	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1136	HE2 TTR	67	8.396	-	6.869	-2.008	1.00	0.00	BED ATOM	1230	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1324	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1137	HE2 TTR	67	8.414	-	6.869	-2.008	1.00	0.00	BED ATOM	1231	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1325	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1138	HE2 TTR	67	8.432	-	6.869	-2.008	1.00	0.00	BED ATOM	1232	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1326	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1139	HE2 TTR	67	8.450	-	6.869	-2.008	1.00	0.00	BED ATOM	1233	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1327	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1140	HE2 TTR	67	8.468	-	6.869	-2.008	1.00	0.00	BED ATOM	1234	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1328	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1141	HE2 TTR	67	8.486	-	6.869	-2.008	1.00	0.00	BED ATOM	1235	HE2 LVS	72	9.136	1.569	-0.119	1.00	0.00	BED ATOM	1329	HE2 LEBU	78	-0.319
5.172	-7.283	1.00	0.00	BED ATOM	1142	HE2 TTR	67	8.504	-																		

REPLACEMENT SHEET

REPLACEMENT SHEET

4.534	5.217	1.00	0.00	BRC ATOM	1845	CN1	TIR	115	4.662
0.515	6.373	1.00	0.00	BRC ATOM	1846	HDL1	TIR	116	3.970
0.073	4.870	1.00	0.00	BRC ATOM	1847	HDL2	TIR	116	4.212
0.238	7.147	1.00	0.00	BRC ATOM	1848	HDL3	TIR	116	5.046
0.085	6.812	1.00	0.00	BRC ATOM	1849	HDL4	TIR	116	5.002
1.755	6.053	1.00	0.00	BRC ATOM	1850	O	TIR	116	7.024
0.544	6.125	1.00	0.00	BRC ATOM	1851	N	TIR	116	6.222
2.465	6.014	1.00	0.00	BRC ATOM	1852	HN	ASP	117	6.079
1.424	8.874	1.00	0.00	BRC ATOM	1853	CA	ASP	117	5.805
1.965	10.275	1.00	0.00	BRC ATOM	1854	HA	ASP	117	5.197
2.585	10.798	1.00	0.00	BRC ATOM	1855	CB	ASP	117	4.967
0.609	10.101	1.00	0.00	BRC ATOM	1856	HBL	ASP	117	5.564
0.267	10.220	1.00	0.00	BRC ATOM	1857	HB2	ASP	117	4.664
0.596	6.976	1.00	0.00	BRC ATOM	1858	CG	ASP	117	3.722
0.963	10.968	1.00	0.00	BRC ATOM	1859	OD1	ASP	117	2.897
2.220	12.889	1.00	0.00	BRC ATOM	1860	OD2	ASP	117	-
1.624	13.480	1.00	0.00	BRC ATOM	1861	C	ASP	117	3.572
1.066	11.154	1.00	0.00	BRC ATOM	1862	O	ASP	117	7.006
0.992	12.209	1.00	0.00	BRC ATOM	1863	N	LVS	118	6.846
1.897	10.725	1.00	0.00	BRC ATOM	1864	HN	LVS	118	8.206
2.384	9.879	1.00	0.00	BRC ATOM	1865	CA	LVS	118	8.282
0.613	11.186	1.00	0.00	BRC ATOM	1866	HA	LVS	118	9.416
1.946	11.488	1.00	0.00	BRC ATOM	1867	CB	LVS	118	10.248
2.063	10.968	1.00	0.00	BRC ATOM	1868	HBL	LVS	118	9.315
1.972	12.327	1.00	0.00	BRC ATOM	1869	HB2	LVS	118	8.636
4.975	13.133	1.00	0.00	BRC ATOM	1870	CG	LVS	118	10.292
2.199	13.349	1.00	0.00	BRC ATOM	1871	HGL	LVS	118	8.918
3.456	12.895	1.00	0.00	BRC ATOM	1872	HC2	LVS	118	8.95
7.119	12.286	1.00	0.00	BRC ATOM	1873	CD	LVS	118	9.857
3.946	13.191	1.00	0.00	BRC ATOM	1874	HOJ	LVS	118	10.477
4.608	12.327	1.00	0.00	BRC ATOM	1875	HO2	LVS	118	10.468
5.794	11.631	1.00	0.00	BRC ATOM	1876	CE	LVS	118	9.208
5.425	10.502	1.00	0.00	BRC ATOM	1877	HE1	LVS	118	8.302
6.386	12.369	1.00	0.00	BRC ATOM	1878	HE2	LVS	118	8.697
6.652	10.963	1.00	0.00	BRC ATOM	1879	NZ	LVS	118	10.212
6.458	11.316	1.00	0.00	BRC ATOM	1880	HE1	LVS	118	11.463
7.656	11.096	1.00	0.00	BRC ATOM	1881	HE2	LVS	118	9.989
6.459	9.921	1.00	0.00	BRC ATOM	1882	HE3	LVS	118	10.206
11.10	11.551	1.00	0.00	BRC ATOM	1883	C	LVS	118	9.557
10.802	10.802	1.00	0.00	BRC ATOM	1884	OCT1	LVS	118	9.047
0.641	10.802	1.00	0.00	BRC ATOM	1885	OCT2	LVS	118	10.454
0.302	12.459	1.00	0.00	BRC END					