1 DATA MINING BUAN-670-DB

2 HW-1: PCA

2.0.1 DATA LOADING

```
[6]: import pandas as pd

DATA = Path("C:/Users/admin/Downloads")
universities_df = pd.read_csv(DATA / "Universities.csv")

universities_df.info(), universities_df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1302 entries, 0 to 1301
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	College.Name	1302 non-null	object
1	State	1302 non-null	object
2	Public1Private2.	302 non-null i	nt64
3	<pre>Xapplirec.d</pre>	1292 non-null	float64
4	<pre>Xapplaccepted</pre>	1291 non-null	float64
5	Xnew.studenrolled	1297 non-null	float64
6	<pre>Xnew.studfrom.top.10.</pre>	1067 non-null	float64
7	Xnew.studfrom.top.25.	1100 non-null	float64
8	XFT.undergrad	1299 non-null	float64
9	XPT.undergrad	1270 non-null	float64
10	in.state.tuition	1272 non-null	float64
11	out.of.state.tuition	1282 non-null	float64
12	room	981 non-null	float64
13	board	804 non-null	float64
14	addfees	1028 non-null	float64
15	estimbook.costs	1254 non-null	float64
16	estimpersonal	1121 non-null	float64
17	Xfacw.PHD	1270 non-null	float64
18	studfacratio	1300 non-null	float64
19	Graduation.rate	1204 non-null	float64

dtypes: float64(17), int64(1), object(2)

memory usage: 203.6+ KB

[6]: (None,

```
College.Name State Public..1...Private..2.
           Alaska Pacific University
                                          ΑK
  University of Alaska at Fairbanks
                                                                     1
                                         ΑK
      University of Alaska Southeast
                                         AK
                                                                     1
   University of Alaska at Anchorage
                                         ΑK
                                                                     1
         Alabama Agri. & Mech. Univ.
                                          AL
                                                                     1
   X..appli..rec.d X..appl..accepted X..new.stud..enrolled
0
             193.0
                                                          55.0
                                 146.0
                                                         928.0
1
            1852.0
                                1427.0
2
             146.0
                                 117.0
                                                          89.0
3
            2065.0
                                1598.0
                                                        1162.0
            2817.0
                                1920.0
                                                         984.0
   X..new.stud..from.top.10.
                               X..new.stud..from.top.25. X..FT.undergrad \
0
                         16.0
                                                     44.0
                                                                      249.0
1
                          NaN
                                                      NaN
                                                                     3885.0
2
                          4.0
                                                     24.0
                                                                      492.0
3
                          NaN
                                                      NaN
                                                                     6209.0
4
                          NaN
                                                      NaN
                                                                     3958.0
   X..PT.undergrad in.state.tuition out.of.state.tuition
                                                                        board \
                                                                room
0
             869.0
                                                              1620.0 2500.0
                               7560.0
                                                      7560.0
1
            4519.0
                               1742.0
                                                      5226.0
                                                              1800.0 1790.0
2
            1849.0
                               1742.0
                                                      5226.0
                                                              2514.0
                                                                      2250.0
3
           10537.0
                                                      5226.0
                                                              2600.0 2520.0
                               1742.0
4
                                                      3400.0 1108.0 1442.0
             305.0
                               1700.0
   add..fees estim..book.costs
                                  estim..personal..
                                                      X..fac..w.PHD \
0
       130.0
                           800.0
                                              1500.0
                                                               76.0
1
       155.0
                           650.0
                                                               67.0
                                              2304.0
2
                                                               39.0
        34.0
                           500.0
                                              1162.0
3
       114.0
                           580.0
                                              1260.0
                                                               48.0
4
       155.0
                           500.0
                                              850.0
                                                               53.0
   stud..fac..ratio Graduation.rate
0
               11.9
                                 15.0
1
               10.0
                                  {\tt NaN}
2
                9.5
                                 39.0
3
               13.7
                                  NaN
4
               14.3
                                 40.0 )
```

2.0.2 4.2.a. Remove all categorical variables. Then remove all records with missing numerical measurements from the dataset.

From the Universities.csv dataset the following columns are categorical:

- College.Name (object)
- State (object)
- Public..1...Private..2. is a numeric code, but it represents a categorical distinction (public/private).

Lets treat the "Public..1...Private..2." as categorical and remove it along with the other two. Then we will drop the rows with any missing numerical values.

Now lets clean the data accordingly.

4414.0

21

```
[8]: # Dropping the categorical columns by using this and mentioning what columns we_
have to drop.
categorical_cols = ['College.Name', 'State', 'Public..1...Private..2.']
numerical_df = universities_df.drop(columns=categorical_cols)

# Dropping the rows with any missing values and cleaning the dataset.
cleaned_df = numerical_df.dropna()

# After cleaning the data lets see the result shape and preview
cleaned_df.shape, cleaned_df.head()
[8]: ((471, 17),
```

```
X..appli..rec.d X..appl..accepted X..new.stud..enrolled \
0
              193.0
                                  146.0
                                                           55.0
2
              146.0
                                  117.0
                                                           89.0
9
              805.0
                                  588.0
                                                          287.0
              608.0
                                  520.0
                                                          127.0
11
```

```
X..new.stud..from.top.10. X..new.stud..from.top.25. X..FT.undergrad \
0
                          16.0
                                                      44.0
                                                                       249.0
2
                           4.0
                                                      24.0
                                                                       492.0
9
                          67.0
                                                      88.0
                                                                      1376.0
11
                          26.0
                                                      47.0
                                                                       538.0
21
                          30.0
                                                      60.0
                                                                       908.0
```

335.0

1500.0

```
X..PT.undergrad in.state.tuition out.of.state.tuition
                                                             room
                                                                    board \
0
             869.0
                              7560.0
                                                    7560.0 1620.0 2500.0
2
            1849.0
                              1742.0
                                                    5226.0 2514.0 2250.0
9
             207.0
                             11660.0
                                                   11660.0 2050.0 2430.0
                                                    8080.0 1380.0 2540.0
11
             126.0
                              8080.0
21
             119.0
                              5666.0
                                                    5666.0 1424.0 1540.0
```

add..fees estim..book.costs estim..personal.. X..fac..w.PHD \

```
76.0
0
        130.0
                            800.0
                                                1500.0
2
         34.0
                            500.0
                                                1162.0
                                                                  39.0
9
        120.0
                            400.0
                                                900.0
                                                                  74.0
                                                                  63.0
11
        100.0
                            500.0
                                                1100.0
21
        418.0
                           1000.0
                                                1400.0
                                                                  56.0
    stud..fac..ratio Graduation.rate
0
                 11.9
                                   15.0
2
                                   39.0
                  9.5
9
                 14.0
                                   72.0
                                   44.0
11
                 11.4
21
                 15.5
                                   46.0 )
```

Now we have a cleaned dataset with only numerical variables and 471 complete records example i can say as no missing values in the dataset.

2.0.3 4.2.b. Conduct a principal components analysis on the cleaned data and comment on the results. Should the data be normalized? Discuss what characterizes the components you consider key.

Here we will normalize the data it is important for PCA becuase when variables are on different scales then we will Perform PCA. Last we will Interpret the components to identify which ones are key and what they represent.

```
[9]: from sklearn.preprocessing import StandardScaler
     from sklearn.decomposition import PCA
     import matplotlib.pyplot as plt
     import seaborn as sns
     import numpy as np
     # Standardizing the data
     scaler = StandardScaler()
     scaled_data = scaler.fit_transform(cleaned_df)
     # Applying the PCA
     pca = PCA()
     pca_components = pca.fit_transform(scaled_data)
     # The portion of the data variability captured by each component
     explained_variance = pca.explained_variance_ratio_
     cumulative_variance = np.cumsum(explained_variance)
     # This is for plotting explained variance
     plt.figure(figsize=(10, 6))
     sns.lineplot(x=range(1, len(explained variance)+1), y=cumulative variance, u
      ⇔marker="o")
     plt.title('Cumulative Explained Variance by Principal Components')
     plt.xlabel('Number of Principal Components')
```

```
plt.ylabel('Cumulative Explained Variance')
plt.grid(True)
plt.show()

# This show the top 5 components variance explained in data.
explained_variance[:5], cumulative_variance[:5]
```


PCA Results Summary:

- Normalization was important because features like tuition fees, enrollment numbers, and student ratios have very different scales. If we didn't scale them, PCA would focus more on the variables with the largest values, making the results biased.
- Explained Variance: >* The PC1 explains 30.4% >* The PC2 explains 27.0% >* By combining the first 2 components explain 57.4% of the total variance. >* The first 5 components explain 76.4% of the variance.

This suggests that 2 to 5 principal components capture most of the structure in the data.

[]: