K-NN and High Dimensional data

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
	 	В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Instance Based Classifiers

Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

• Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from

other classes

Nearest Neighbor Classification...

Scaling issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

– Example:

- height of a person may vary from 1.5m to 2.1m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

VS

11111111110

011111111111

000000000001

d = 1.4142

d = 1.4142

High Dimensionality

- When data are in high dimensions, strange things happen....
- Consider the unit sphare in d-dimensions: S_d , the unit square c_d and the square C_d that contains completely the sphere and has length 2 in each dimension.

 \mathbf{C}_{d}

In 2-d we have the following:
c_d is included completely
in S_d and S_d is inside C_d

High-d

• However, as d (dimensionality increases) let's see what happens with the volumes of c_d , S_d , and C_d .

- $Vol(c_d) = 1 \text{ as d->} \infty (1^d)$
- $Vol(C_d) = \infty \text{ as } d \rightarrow \infty (2^d)$

But..... $Vol(S_d) = 0$ as $d > \infty!!!!!$

Actually, in high dimensions, most of c_d lies outside $S_d!!$

High-d

- Let's define the volume of S_d as V_d . Also, let consider the hyper-sphere E_d in d-dimensions with radius 1- ϵ .
- Define the difference in volume between S_d and E_d as H_d . Then, $H_d = k_d (1^d (1-e)^d)$ k_d is a constant that depends on d.

Consider the ratio:
$$\frac{H_d}{V_d} = \frac{k_d (1^d - (1 - \varepsilon)^d)}{k_d 1^d} \rightarrow 1$$

that goes to 1 as d -> ∞

- Ratio goes to 1. So?....
- This means that the volume is concentrated on the shell (surface) around the surface of the hyper-sphere!!

High Dimensionality

Hyper-sphere volume of unit radius goes to 0
as dimensionality goes to infinity!!!

All data in the shell!!!

In high dimensions, kNN can be problematic!

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive