

ASIUCompetitive Programming Contest 2011 E.C.

Problem C. Careful Multiplication

Time Limit 1 second

Problem

We learned about modular operations. In the modular world, these three formulas are always true:

- \rightarrow (A + B) mod M = (A mod M + B mod M) mod M
- \rightarrow (A B) mod M = (A mod M B mod M) mod M
- \rightarrow (A × B) mod M = (A mod M × B mod M) mod M

And by using 64-bit integers, we could easily calculate some numbers modulo 10.9. In this way, we could solve problems that required us to print the last 9 digits or the last 9 digits of the number (by always storing the last 9 digits during the calculation, and carefully using 64-bit integers during multiplication) So, what is this problem about? This problem is so simple that given A, B and M, you just need to calculate (A × B) mod M . So simple, right? However, in this problem we decided to set the constraints as $1 \le A$, B, $M \le 10^{18}$. With this large constraint, IT IS IMPOSSIBLE TO MULTIPLY TWO NUMBERS MODULO M USING A 64-BIT INTEGER, because $(10^{18} - 1) \times (10^{18} - 1) \approx 10^{36} \gg 2^{63} - 1$.

So, what method should you use? Take a look at the hints section, if you want.

Input

Our input consists of an arbitrary number of lines, but no more than 10,000.

Each line contains three integers A, B and M ($1 \le A$, B, M $\le 10^{18}$), each separated by a space. Note that you need to use 64-bit integers to store these integers.

The end of input is indicated by a line containing only the value -1.

Output

For each input line, print the value of $(A \times B) \mod M$.

Sample Input 1	Sample Output 1
567	2
2017 7 19	2
7 19 2017	133
943492 189348291412 32418318	25220980
999999999999999999999999999999999999999	9999999820000001
-1	

Hints

Do you remember how we calculated r A mod m using the recursive definition of r n in time complexity $O(\log n)$? In that lecture, we also stated that we can calculate the value of f(n) in $O((T(n) \times \log(n)))$ time if:

- We can calculate f(n) from f(n-1) in O(T(n)) time.
- We can calculate f(n) from f(n/2) in O(T(n)) time.

acm International Collegiate Programming Contest

ASTU
Competitive Programming Contest 2011 E.C.

Try to use this fact.

Just adding A B times will NOT WORK, as its time complexity is O(B) . 10 18 operations are too much..