HDFS

Tomás Fernández Pena

Máster en Tecnologías de Análisis de Datos Masivos: Big Data Universidade de Santiago de Compostela

Tecnologías de Computación para Datos Masivos

Material bajo licencia Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

citius usc es

Centro Singular de Investigación en **Tecnoloxías Intelixentes**

ilesystems

ínea de comandos

nterfaz lava

Herramienta

Otras interfaces

)tros ospostos

Índice

- 1 Filesystems en Hadoop
- Interfaz en línea de comandos
- 3 Interfaz Java
- 4 Herramientas para la gestión del HDFS
- 5 Otras interfaces a HDFS
- 6 Otros aspectos

Índice

- 1 Filesystems en Hadoop
 - 2 Interfaz en línea de comandos
- 3 Interfaz Java
 - 4 Herramientas para la gestión del HDFS
 - 5 Otras interfaces a HDFS
- 6 Otros aspectos

ínea de comandos

Interfaz lava

Herramienta

Otras interfaces

Otros aspecto:

Filesystems en Hadoop

Hadoop tiene una noción abstracta de los filesystems

HDFS es un caso particular de filesystem

Algunos filesystems soportados:

FS	URI	Descripción
Local	file	Disco local
HDFS	hdfs	Sistema HDFS
HFTP	hftp	RO acceso a HDFS sobre HTTP
HSFTP	hsftp	RO acceso a HDFS sobre HTTPS
WebHDFS	webhdfs	RW acceso a HDFS sobre HTTP
S3 (nativo)	s3n	Acceso a S3 nativo
S3 (block)	<i>s</i> 3	Acceso a S3 en bloques

Ejemplo:

hadoop fs -ls file://home/pepe

Para usar con HDFS se recomienda el comando hdfs dfs:

■ hdfs dfs -help

Interactuar con HDFS

Tres modos principales:

- 1. Usando línea de comandos: comando hdfs dfs
 - Permite cargar, descargar y acceder a los ficheros desde línea de comandos
 - ▶ Vale para todos los filesystems soportados
- 2. Usando el interfaz web
- 3. Programáticamente: API Java
- 4. Mediante otras interfaces: WebHDFS, HFTP, HDFS NFS Gateway

Interfaz en línea de comandos (I)

Algunos comandos de manejo de ficheros

Comando	Significado
hdfs dfs -ls <path></path>	Lista ficheros
hdfs dfs -ls -R <path></path>	Lista recursivamente
hdfs dfs -cp <src> <dst></dst></src>	Copia ficheros HDFS a HDFS
hdfs dfs -mv <src> <dst></dst></src>	Mueve ficheros HDFS a HDFS
hdfs dfs -rm <path></path>	Borra ficheros en HDFS
hdfs dfs -rm -r <path></path>	Borra recursivamente
hdfs dfs -cat <path></path>	Muestra fichero en HDFS
hdfs dfs -tail <path></path>	Muestra el final del fichero
hdfs dfs -stat <path></path>	Muestra estadísticas del fichero
hdfs dfs -mkdir <path></path>	Crea directorio en HDFS
hdfs dfs -chmod	Cambia permisos de fichero
hdfs dfs -chown	Cambia propietario/grupo de fichero
hdfs dfs -du <path></path>	Espacio en bytes ocupado por ficheros
hdfs dfs -du -s <path></path>	Espacio ocupado acumulado
hdfs dfs -count <paths></paths>	Cuenta nº dirs/ficheros/bytes

HDFS, TCDM

3/₂₇

nesystems

∟ínea de comandos

Interfaz Java

Herramienta

Otras interface

Otros aspecto

Interfaz en línea de comandos (II)

Movimiento de ficheros del sistema local al HDFS:

Comando	Significado	
hdfs dfs -put <local> <dst></dst></local>	Copia de local a HDFS	
hdfs dfs -copyFromLocal	Igual que -put	
hdfs dfs -moveFromLocal	Mueve de local a HDFS	
hdfs dfs -get <src> <loc></loc></src>	Copia de HDFS a local	
hdfs dfs -copyToLocal	Copia de HDFS a local	
hdfs dfs -getmerge	Copia y concatena de HDFS a local	
hdfs dfs -text <path></path>	Muestra el fichero en texto	

lesystems **Línea de comandos** Interfaz Java Herramientas Otras interfaces Otros aspecto

Interfaz en línea de comandos (III)

Otros comandos:

Comando	Significado
hdfs dfs -setrep <path></path>	Cambia el nivel de replicación
hdfs dfs -test -[defsz] <path></path>	Tests sobre el fichero
hdfs dfs -touchz <path></path>	Crea fichero vacío
hdfs dfs -expunge	Vacía la papelera
hdfs dfs -usage [cmd]	Ayuda uso de comandos

Más información: http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FileSystemShell.html

- 3 Interfaz Java
- 4 Herramientas para la gestión del HDFS

Interfaz en línea de comandos

- 5 Otras interfaces a HDFS
- 6 Otros aspectos

Interfaz Java

API que permite interactuar con los filesystems soportados por Hadoop

Utiliza la clase abstracta

```
org.apache.hadoop.fs.FileSystem
```

Otras clases de interés en org.apache.hadoop.fs y org.apache.hadoop.io

- Path: representa a un fichero en un FileSystem
- FileStatus: información del fichero
- FSDataInputStream: stream de entrada de datos para un fichero, con acceso aleatorio
- FSDataOutputStream: stream de salida de datos para un fichero
- IOUtils: Funcionalidades para I/O

6/27

Ejemplo: lectura de un fichero en HDFS

```
public class FileSystemCat {
public static void main(String[] args) throws Exception {
    String uri = args[0];
    // Configuracion por defecto
    Configuration conf = new Configuration();
    // Objeto para acceder al filesystem HDFS
    FileSystem fs = FileSystem.get(URI.create(uri), conf);
    // InputStream
    FSDataInputStream in = null;
    try {
        // Abre el FSDataInputStream con el PATH indicado
        in = fs.open(new Path(uri));
        // Copia con un buffer de 4096 bytes
        // No cierra los buffers al terminar (false)
        IOUtils.copyBytes(in, System.out, 4096, false);
    } finally {
        IOUtils.closeStream(in);
    }}}
```


Ejecución del código anterior

Compilación: comando javac (suponiendo package test)

\$ javac -cp \$(hadoop classpath) test/FileSystemCat.java

Definir correctamente la variable HADOOP_CLASSPATH y usar el comando hdfs para lanzar el fichero class

- \$ export HADOOP_CLASSPATH="."
- \$ hdfs test.FileSystemCat fichero_en_HDFS

También es posible obtener el fichero jar y ejecutarlo con hadoop jar (no es una aplicación YARN)

HDFS, TCDM

8/27

lesystems

ínea de comandos

Interfaz Java

Herramienta

Otras interface

Otros aspectos

FSDataInputStream

Interfaces implementadas por FSDataInputStream:

- Seekable: permite movernos a una posición en el fichero (método seek)
- PositionedReadable: permite copiar a un buffer partes de un fichero

Escritura de ficheros

Dos métodos de FileSystem para abrir los ficheros para escritura:

- create: crea un fichero para escritura (crea los directorios padre, si es preciso)
- 2. append: abre un fichero para añadir datos

Ambos métodos devuelven un FSDataOutputStream

- FSDataOutputStream no permite seek (solo escritura al final del fichero)
- El método hflush () garantiza coherencia, los datos son visibles para nuevos lectores
- El método hsync () garantiza que los datos se mandan a disco (pero pueden estar en la caché del disco)

HDFS, TCDM

10/27

systems Linea de comando

Interfaz Java

Herramienta

Otras interfaces

Otros aspecto

Otras operaciones con ficheros y directorios

Crear un directorio:

■ Método mkdirs de FileSystem

Información sobre ficheros y directorios:

- Métodos getFileStatus y listStatus de FileSystem
- Clase FileStatus

Patrones de nombres de ficheros (globbing)

- Método globStatus de FileSystem
- Interfaz PathFilter, para filtrar con expresiones regulares

Borrar ficheros o directorios, de forma recursiva o no:

■ Método delete de FileSystem

lesystems Línea de comandos **Interfaz Java** Herramientas Otras interfaces Otros aspecto

Otras herramientas para mover datos

Es posible mover datos a/desde HDFS usando otras herramientas

- distcp Transferir datos en paralelo entre dos filesystems Hadoop
 - Ejemplo

hadoop distcp hdfs://nnode1/foo hdfs://nnode2/bar

- Aplicación MapReduce map-only
- Puede usar otros filesystems (HFTP, WebHDFS, etc.)
- ▶ Interesante para mover cantidades masivas de datos
- ▶ Más opciones: hadoop distcp
- Apache Flume servicio para recoger, agregar y mover grandes cantidades de datos de log a HDFS
- Apache Sqoop transferencia masivas de datos entre bases de datos estructuradas y HDFS

Herramientas para la gestión del HDFS

Hadoop proporciona un conjunto de herramientas para chequear y optimizar el HDFS

- hdfs dfsadmin: optiene información del estado del HDFS
- hdfs fsck: chequeo del filesystem
- hdfs balancer: herramienta de rebalanceo de bloques entre datanodes

HDFS, TCDM

13/27

nesystems

ínea de comandos

Interfaz Java

Herramienta

Otras interface

Otros aspecto

hdfs dfsadmin

Algunas opciones (usar hdfs dfsadmin comando)

Comando	Significado
-help	Ayuda
-report	Muestra estadísticas del filesystem
-setQuota	Fija una cuota en el número de nombres en
	un directorio (nº de ficheros/directorios)
-clrQuota	Borra la cuota de nombres
-setSpaceQuota	Fija una cuota en el espacio ocupado en un directorio
-clrSpaceQuota	Borra la cuota de espacio
-refreshNodes	Actualiza los nodos que se pueden conectar
-safemode	fija o chequea el <i>safe mode</i>
-saveNameSpace	en <i>safe mode</i> , salva el filesystem en memoria a un
	nuevo fichero fsimage y resetea el fichero edits

ilesystems Línea de comandos Interfaz Java **Herramientas** Otras interfaces Otros aspectos

hdfs fsck

Chequea la salud de los ficheros en HDFS

- Chequea los bloques:
 - Over-replicated: con replicas de más
 - Under-replicated: con replicas de menos
 - Misreplicated: replicas mal colocadas
 - Corruptos
 - Missing replicas: sin réplicas
- Ejemplos:
 - Chequea recursivamente todo el HDFS hdfs fsck /
 - ▶ Informa del número de bloques de un fichero y su localización hdfs fsck /user/pepe/foo -files -blocks -racks

ilesystems Línea de comandos Interfaz Java Herramientas **Otras interfaces** Otros aspecto

Otras interfaces a HDFS

Otros modos de acceder a HDFS

- WebHDFS: proporciona una API REST para acceder a HDFS mediante HTTP
 - Necesita acceso a los nodos del cluster (los datos se transmiten directamente desde los nodos)
 - ▶ Activada mediante la propiedad dfs.webhdfs.enabled del fichero hdfs-site.xml del Namenode (por defecto, true)
- HttpFS: servidor que proporciona un gateway REST HTTP que soporta las operaciones de HDFS (lectura/escritura)
 - ► El servidor de HttpFS actúa como gateway: permite acceder a los datos en HDFS detrás de un firewall
- HDFS NFS Gateway: soporta NFSv3 y permite que HDFS sea montado como parte del sistema de ficheros local del cliente
 - Permite usar HDFS como un sistema de ficheros UNIX local
 - Permite copiar ficheros de HDFS al sistema de ficheros local y viceversa

Namenode principal

Estructura de directorios

HDFS, TCDM

Otros

stems Linea de Comandos

rfaz Java

Herramienta

Otras interfaces

Ficheros en el namenode

Ficheros en dfs.namenode.name.dir

- VERSION información sobre la versión de HDFS
- Ficheros edits_startID-endID: logs de transacciones ya finalizadas
- Fichero edits_inprogress_startID: logs de transacciones actuales
- Ficheros fsimage: información de los metadatos del filesystem
 - Contiene información de directorios y ficheros, incluyendo los bloques (inodos) que los forman
 - La localización de los bloques en los Datanodes se guarda en memoria

17/₂₇

Inicio del Namenode

Cuando se inicia el Namenode:

- 1. Carga el último fsimage en memoria y aplica las modificaciones indicadas en edits
- 2. Con esta imagen reconstruida, crea un nuevo fsimage y un edits vacío
- 3. Espera a que los Datanodes le envíen información de los bloques que tienen
 - Esta información se guarda en memoria

19/27

Modo seguro

Durante la inicialización, el sistema está en modo seguro (safe mode)

- Solo permite acceso de lectura
- El modo seguro termina 30 segundos después de que el 99.9 % de los bloques alcancen un nivel mínimo de replicación
- Propiedades ajustables:

Propiedad	Por defecto
dfs.namenode.replication.min	1
dfs.namenode.safemode.threshold-pct	0.999
dfs.namenode.safemode.extension	30 s

Checkpoint node (aka Namenode secundario)

En un sistema ocupado, el fichero del edits puede crecer demasiado

- El Checkpoint Node se ocupa de mezclar edits y fsimage para inicializarlo
 - Proceso costoso en recursos
 - ▶ El CPN tiene requisitos de memoria similares a los del NN
- Checkpoint realizado cada hora (dfs.namenode.checkpoint.period) o cada 1 M transacciones (dfs.namenode.checkpoint.txns)
- Se puede cambiar por un Backup Node
 - Replica completa de la memoria del NN (necesita la misma cantidad de memoria)
 - Realiza los checkpoints

En caso de fallo total del Namenode, se puede recuperar el último checkpoint

Iniciar el demonio del Namenode usando hdfs namenode -importCheckpoint

CiuUS

HDFS, TCDM

21_{/27}

de comandos Interfaz J

Herramienta

Otras interfaces

Otros aspectos

Checkpoint node

NameNode

- NN rota el fichero de edits actual. En seen_txid guarda el ID de la última transacción
- 2. CPN obtiene el último fsimage y edits del NN
- 3. CPN mezcla los ficheros
- 4. CPN transfiere la mezcla al NN
- 5. NN renombra fsimage

CheckPointNode

lesystems Línea de comandos Interfaz Java Herramientas Otras interfaces **Otros aspect**

Localización de las replicas

Política por defecto:

- 1º réplica: en el nodo del cliente o en un nodo al azar
- 2ª réplica: en un rack diferente de la primera (elegido al azar)
- 3º réplica: en el mismo rack que la 2º, pero en otro nodo
- Otras réplicas: al azar (se intenta evitar colocar demasiadas réplicas en el mismo rack)

Más información hadoop.apache.org/docs/stable/hadoop-projectdist/hadoop-hdfs/HdfsDesign.html#Data_Replication

Cimus

HDFS, TCDM

23_{/27}

nesystems

Línea de comandos

nterfaz Java

erramientas

Otras interface

Otros aspecto

Problemas con el Namenode

El Namenode es un single point of failure (SPOF)

- Si falla es imposible acceder a los datos
- Posibilidad de recuperación a partir de los checkpoints
- Conveniente guardar varias réplicas de los datos del namenode (RAID, indicar en dfs.namenode.name.dir directorios en diferentes máquinas, etc)

Mejoras en la versión 2.0

- HDFS High-Availability
- HDFS Federation

lesystems Línea de comandos Interfaz Java Herramientas Otras interfaces **Otros aspect**

HDFS High-Availability

Un par de Namenodes en configuración activo-standby

si falla el Namenode activo, el otro ocupa su lugar

Consideraciones

- Los Namenodes deben usar un almacenamiento compartido de alta disponibilidad
- Los Datanodes deben enviar informes de bloques a los dos Namenodes (el block mapping va en memoria, no en disco)
- Los Clientes deben manejar el fallo del Namenode de forma transparente

Más información: hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html, hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html

HDFS, TCDM

25/₂₇

ilesystems

_ínea de comandos

nterfaz Java

lerramienta

Otras interfaces

Otros aspectos

HDFS Federation

El Namenode mantiene, en memoria, referencias a cada fichero y bloque en el filesystem

problemas de escalabilidad

HDF Federation, introducida en la versión 2.0

- Permite usar varios Namenodes
- Cada uno gestiona una porción del espacio de nombres del filesystem
- Los Namenodes no se coordinan entre sí
- Cada Datanodes se registra con todos los Namenodes

Más información: hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html

Hadoop v3

Novedades en HDFS v3

- Uso de códigos de borrado (erasure coding) para reducir el overhead de la replicación
 - ▶ Reduce el overhead a no más del 50 %
 - Ejemplo: ficheros de 6 bloques:
 - replicación x3: 18 bloques
 - EC: 9 bloques (6 datos + 3 paridad)
 - ▶ Implica un mayor coste de procesamiento
- Soporte de múltiples NameNodes en stand-by
- Soporte de balanceo de datos intra-nodo

27/₂₇