

BRAC University Department of Computer Science and Engineering

CSE 422: Artificial Intelligence

Quiz 01: Fall 2024 Time: 30 Minutes Marks: 10

Name:	ID:

- 1. Consider the state space graph at figure 1. A is the start state and G is the goal state. The costs for each edge are shown on the graph. Each edge can be traversed in both directions. There are two heuristics h_1 and h_2 . Now answer the following questions:
 - (a) What are the possible paths returned by each of these search-strategies? In case of ties, follow the alphabetical order. Use graph-searches (avoid repeated states) for all the cases except the last one.
 - i. Depth First Search
 - ii. Breadth First Search
 - iii. Uniform Cost Search
 - iv. A^* search with h_1
 - v. A^* search with h_2 without saving visited states (tree-search version).

Node	h_1	h_2	
A	9.5	10	
В	9	12	
C	8	10	
D	7	8	
E	1.5	1	
F	4	4.5	
G	0	0	

Figure 1: State-space graph for question 1

Name:	ID:
Titalia	12.

(b) Consider the same state-space graph. Suppose you are completing a new heuristic function h_3 shown below. All the values are fixed except $h_3(B)$.

Node	A	В	C	D	E	F	G
h_3	10	?	9	7	1.5	4.5	0

For each of the following conditions, write the set of values that are possible for $h_3(B)$. For example, to denote all non-negative numbers, write $[0, \infty]$, to denote the empty set, write \emptyset , and so on.

- i. What values of $h_3(B)$ make h_3 admissible? [2]
- ii. What values of $h_3(B)$ make h_3 consistent? [1.5]
- iii. What values of $h_3(B)$ will cause A* graph search to expand node A, then node C, then node B, then node D in order? [1.5]