GAUGE REPEATABILITY AND REPRODUCIBILITY DATA SHEET VARIABLE DATA RESULTS

Part Number	Part Number 23461-K0NA-D010		Gauge Name OBD MICROMETER		MANJUNATH		
Part Name C3 K0NA		Gauge Number C07L01BR0012-001		Appraiser B	ISMILE		
Characteristic Specification OBD 54.150-54.180		Gauge Type	VARIABLE	Appraiser C	SHRINIVAS		
Characteristic Classi	fication CRITICAL	Trials 3	Parts 10	Appraisers 3	Date Performed 18/06/2019		

APPRAI	SER/	PART							AVE	RAGE			
TRIAL#	£	1	2	3	4	5	6	7	8	9	10		
1. A	1	54.151	54.152	54.153	54.155	54.158	54.162	54.168	54.171	54.175	54.179		54.162
2.	2	54.150	54.152	54.154	54.155	54.158	54.163	54.169	54.172	54.176	54.178		54.163
3.	3	54.151	54.152	54.153	54.156	54.159	54.163	54.169	54.173	54.175	54.177		54.163
4.	AVE	54.151	54.152	54.153	54.155	54.158	54.163	54.169	54.172	54.175	54.178	X _a =	54.163
5.	R	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	r _a =	0.001
6. B	1	54.151	54.152	54.153	54.155	54.158	54.162	54.168	54.171	54.175	54.179		54.162
7.	2	54.152	54.151	54.154	54.157	54.157	54.163	54.169	54.172	54.176	54.178		54.163
8.	3	54.151	54.152	54.154	54.156	54.159	54.163	54.169	54.173	54.177	54.179		54.163
9.	AVE	54.151	54.152	54.154	54.156	54.158	54.163	54.169	54.172	54.176	54.179	X _b =	54.163
10.	R	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.002	0.001	r _b =	0.001
11. C	1	54.151	54.152	54.153	54.156	54.158	54.162	54.168	54.171	54.175	54.179		54.163
12.	2	54.153	54.153	54.152	54.155	54.157	54.164	54.168	54.174	54.176	54.179		54.163
13.	3	54.151	54.152	54.153	54.156	54.159	54.163	54.169	54.173	54.175	54.177		54.163
14-	AVE	54.152	54.152	54.153	54.156	54.158	54.163	54.168	54.173	54.175	54.178	X _c =	54.163
15.	R	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.003	0.001	0.002	r _c =	0.002
16. PAF AVE	RT (Xp)	54.151	54.152	54.153	54.156	54.158	54.163	54.169	54.172	54.176	54.178	X= R _p =	54.163 0.027
17. $(r_a + r_b + r_c) / (\# OF APPRAISERS) =$							R=	0.0014					
18. (Max x - Min x) =								X _{DIFF} =	0.0002				
19. $R \times D_4^* =$								UCL _R =	0.0035				
20. $R \times D_3^* =$								LCL _R =	0.0000				
Referenc	rence Values 54.151 54.152 54.153 54.156 54.158 54.163 54.169 54.172 54.176 54.178							54.178					

 $^{^*}$ D₄ =3.27 for 2 trials and 2.58 for 3 trials; D₃ = 0 for up to 7 trials. UCL_R represents the limit of individual R's. Circle those that are beyond this limit. Identify the cause and correct. Repeat these readings using the same appraiser and unit as originally used or discard values and re-average and recompute R and the limiting value from the remaining observations.

Notes:

PREPARED BY ISF-QA-016

CHECKED BY

APPROVED BY

GAUGE REPEATABILITY AND REPRODUCIBILITY DATA SHEET VARIABLE DATA RESULTS

Part Numbe 23461-K0NA-D010	Gage Name	OBD MICROMETER	Appraiser A M	1ANJUNATH	1
Part Name C3 K0NA	Gage Number	C07L01BR0012-001	Appraiser B IS	SMILE	
Characteristic OBD	Gage Type	VARIABLE	Appraiser C S	HRINIVAS	
Characteristic Classification	Trials 3	Parts 10	Appraisers 3		Date Performed 18/06/2019

Measurement Unit Analysis						% Total Variation (TV)				
Repeatal	bility - I	Equipment Variation	ı (EV)							
EV	=	R x K ₁		Trials K1		% EV	=	100 (EV/TV)		
	=	0.001 x 0.5908		2	0.8862		=	100(0.0008/0.0086)		
	=	0.0008		3	0.5908		=	9.42		
Reprodu	cibility	- Appraiser Variation	on (AV)							
AV = $\{(X_{DIFF} \times K_2)^2 - (EV^2/nr)\}^{1/2}$						% AV	=	100 (AV/TV)		
	=	{(0.000 x 0.5231)^2)}^1/2		=	100(0.0000/0.0086)				
	=	0.0000	Appraisers	2	3		=	0.00		
			K ₂	0.7071	0.5231	n = numbe	er of part	s		
Repeatability & Reproducibility (R & R)						r = number of trials				
R&R	=	${(EV^2 + AV^2)}^{1/2}$		Parts	K ₃					
	=	{(0.001^2 + 0.000^	2)}^1/2	2	0.7071	% R&R	=	100 (R&R/TV)		
	=	0.0008		3	0.5231		=	100(0.0008/0.0086)		
Part Vari	iation (PV)		4	0.4467		=	9.42		
$PV = R_P \times K_3$			5	0.4030	Gage system O.K					
	=	0.027 x 0.3146		6	0.3742					
	=	0.0085		7	0.3534	% PV	=	100 (PV/TV)		
Total Variation (TV)			8	0.3375		=	100(0.0085/0.0086)			
TV	=	${(R&R^2 + PV^2)}^{1/2}$		9	0.3249	::	=	99.55		
	=	{(0.001^2 + 0.009^	2)}^1/2	10	0.3146			J		
	=	0.0086				ndc	=	14.9		

All calculations are based upon predicting 5.15 sigma (99.0% of the area under the normal distribution curve).

 K_1 is 5.15/d₂, where d₂ is dependent on the number of trials (m) and the number if parts times the number of operators (g) which is assumed to be greater than 15.

AV - If a negative value is calculated under the square root sign, the appraiser variation (AV) defaults to zero (0).

 K_2 is $5.15/d_2$, where d_2 is dependent on the number of operators (m) and (g) is 1, since there is only one range calculation.

 K_2 is 5.15/d₂, where d_2 is dependent on the number of parts (m) and (g) is 1, since there is only one range calculation.

 d_2 is obtained from Table D_3 , "Quality Control and Industrial Statistics", A.J. Duncan.