

VT8233A

V-LINK CLIENT HIGHLY INTEGRATED SOUTH BRIDGE

HIGH BANDWIDTH V-LINK CLIENT CONTROLLER
INTEGRATED DIRECT SOUND AC97 AUDIO,
ULTRADMA-133/100/66/33 MASTER MODE EIDE CONTROLLER,
FOUR PORT USB CONTROLLER, KEYBOARD/MOUSE CONTROLLER,
RTC, LPC, SMBus, Serial IRQ, Plug and Play, ACPI,
and PC99 Compliant Enhanced Power Management

Revision 1.42 October 29, 2002

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2001, 2002 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8233, VT8233C, and VT8233A may only be used to identify products of VIA Technologies.

Cyrix6_X86[™] and VIA C3[™] are registered trademarks of VIA Technologies.

AMD6_K86[™], AMD-K6[™], AMD-K7[™] and Athlon [™] are registered trademarks of Advanced Micro Devices

Celeron[™], Pentium[™], Pentium-III[™], Pentium-4[™], MMX[™], and Intel[™], are registered trademarks of Intel Corp.

PS/2™ is a registered trademark of International Business Machines Corp.

Windows 98[™], Windows 2000[™], Windows XP[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:

940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Web: http://www.viatech.com

Taipei Office:

8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453 Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	1/31/02	Initial public release; same as internal revision 0.5 with additional typographical	DH
		error fixes in pin lists and minor edits in pin descriptions and electrical tables	
1.01	2/4/02	Updated cover and page 1 part descriptions to match	DH
		Fixed company phone numbers on "legal page"	
		Fixed feature bullets to indicate two USB root hubs not three	
		Fixed VLVREF pin name in pin description tables	
		Removed Device 0 Func 4 and Device 1 Func 0 from Table 5 Function Summary	
1.1	2/11/02	Added Function 0 Rx8C[1] & E5[6], Updated PMIO Rx0[4] and Function 1 Rx54[3]	DH
1.2	2/26/02	Fixed APIC "I/O Redirection Table Entry" format for bits 10-8 = 001b	DH
		Updated Device 17 Function 0 Rx8, 4C[3-0], 7C[3-0], 80[6], 96[4]	
		Updated PMIO Rx10[7], 20[15], 22[15], 24[15-14], 5C[1]	
1.21	5/8/02	Updated VIA USA street address and "online services" formatting on legal page	DH
		Fixed typo in SMB I/O registers header text	
1.3	7/22/02	Added note on GPO26-27 pin descriptions	DH
		Updated Device 17 Function 2-3 Rx3D from INTC# to INTD#	
		Fixed figure 4 system block diagram	
1.4	9/12/02	Updated VIA corporate logo on cover page	DH
		Corrected misc typos and document formatting inconsistencies	
		Added missing Device 17, Func 0 I/O Rx5C to register summary tables	
		Corrected register summary table heading for IDE registers	
		Added Port 61[2] and F0Rx49[7]; Fixed notes under Port 71 & 75 descriptions	
		Fixed F0Rx81[2], 82[6], E5[3], and PMIO Rx2C[2], 5C[1-0]	
		Fixed VBAT electrical specs and updated marking specs	
1.41	9/27/02	Fixed PMIO Rx5C; Fixed miscellaneous typographical errors	DH
1.42	10/29/02	Updated VIA logo in page headers to use new VIA corporate logo	DH
		Fixed incorrect bit number in MSCK and MSDT pin descriptions	
		Removed reference to nonexistant ports 72-73 from register overview	

TABLE OF CONTENTS

TABLE OF CONTENTSLIST OF FIGURES	IV
	IV
LIST OF TABLES	IV
PRODUCT FEATURES	
OVERVIEW	
DIFFERENCES BETWEEN THE VT8233 (VERSION CE), VT8233C, AND VT8233A	
PINOUTS	
PIN DIAGRAM	
PIN LISTS	
PIN DESCRIPTIONS	
REGISTERS	
REGISTER OVERVIEW	
REGISTER DESCRIPTIONS	
Legacy I/O Ports	
Keyboard Controller I/O Registers	
DMA Controller I/O Registers	
Interrupt Controller I/O Registers Timer / Counter Registers	
CMOS / RTC I/O Registers	
Keyboard / Mouse Wakeup Index / Data Registers	
Keyboard / Mouse Wakeup Registers	
Memory Mapped I/O APIC Registers	
Indexed I/O APIC Registers	
Configuration Space I/O	
Device 17 Function 0 Registers – Bus Control and Power Management	
PCI Configuration Space Header	
ISA Bus Control	
Miscellaneous Control	
Function Control	
Serial IRQ, LPC, and PC/PCI DMA Control	
Plug and Play Control - PCI	
GPIO and Miscellaneous Control	
ISA Decoding Control	
Power Management-Specific Configuration Registers.	
System Management Bus-Specific Configuration Registers	
General Purpose I/O Control Registers	
Power Management I/O-Space Registers	
System Management Bus I/O-Space Registers	
Device 17 Function 1 Registers - Enhanced IDE Controller	
PCI Configuration Space Header	
IDE-Controller-Specific Configuration Registers	
IDE Power Management Registers	
IDE Back Door Registers	
IDE I/O Registers	
Device 17 Function 2 Registers - USB Controller Ports 0-1	

PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	
Device 17 Function 3 Registers - USB Controller Ports 2-3	81
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	
Device 17 Function 5 Registers - AC97 Audio Controller	
PCI Configuration Space Header	
Audio-Specific PCI Configuration Registers	
I/O Base 0 Regs – Audio Scatter / Gather DMA	
Device 17 Function 6 Registers - AC97 Modem Controller	
PCI Configuration Space Header	
Modem-Specific PCI Configuration Registers	
I/O Base 0 Regs – Modem Scatter / Gather DMA	97
FUNCTIONAL DESCRIPTIONS	100
POWER MANAGEMENT	100
POwer Management Subsystem Overview	
Processor Bus States	
System Suspend States and Power Plane Control	
General Purpose I/O Ports	101
Power Management Events	
System and Processor Resume Events	
Legacy Power Management Timers	
System Primary and Secondary Events	
Peripheral Events	103
ELECTRICAL SPECIFICATIONS	104
ABSOLUTE MAXIMUM RATINGS	104
DC CHARACTERISTICS	104
POWER REQUIREMENTS	105
PACKAGE MECHANICAL SPECIFICATIONS	106

LIST OF FIGURES

FIGURE 1.	PC SYSTEM CONFIGURATION USING THE VT8233A	5
FIGURE 2.	. VT8233A BALL DIAGRAM (TOP VIEW)	6
	POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	
FIGURE 4.	. SYSTEM BLOCK DIAGRAM USING THE VT8633 NORTH BRIDGE	02
FIGURE 5.	. MECHANICAL SPECIFICATIONS - 376 PIN BALL GRID ARRAY PACKAGE	06

LIST OF TABLES

TABLE 1.	VT8233A PIN LIST (NUMERICAL ORDER)	7
TABLE 2.	VT8233A PIN LIST (ALPHABETICAL ORDER)	8
	PIN DESCRIPTIONS	
	MEMORY MAPPED REGISTERS	
	FUNCTION SUMMARY	
	SYSTEM I/O MAP	
TABLE 7.	REGISTERS	21
	KEYBOARD CONTROLLER COMMAND CODES	
	CMOS REGISTER SUMMARY	_
). PNP IRO ROUTING TABLE	

VT8233A

V-LINK CLIENT HIGHLY INTEGRATED SOUTH BRIDGE

HIGH BANDWIDTH V-LINK CLIENT CONTROLLER
INTEGRATED DIRECT SOUND AC97 AUDIO,
ULTRADMA-133/100/66/33 MASTER MODE EIDE CONTROLLER,
FOUR PORT USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
LPC, SMBUS, SERIAL IRQ, PLUG AND PLAY, ACPI,
AND PC99 COMPLIANT ENHANCED POWER MANAGEMENT

PRODUCT FEATURES

• Inter-operable with VIA Host-to-V-Link Host Controller

- Combine with VT8753A (Apollo P4X266A) for a complete 533 / 400 MHz FSB Pentium 4 system
- Combine with VT8633 (Apollo Pro266) for a complete 133 / 100 MHz FSB Pentium 3 / VIA C3 Socket-370 system
- Combine with VT8366 (Apollo KT266) for a complete 266 / 200 MHz FSB Athlon / Duron Socket-A system
- May be used interchangably with the VT8233 or VT8233C South Bridge in most board designs †

High Bandwidth 266 MB/S 8-bit V-Link Client Controller

- Supports 66 MHz V-Link Client interface with peak bandwidth of 266 MB/S
- V-Link operates in 2X or 4X modes
- Full duplex commands with separate Strobe / Command
- Request / Data split transaction
- Configurable outstanding transaction queue for V-Link Client accesses
- Auto Client Retry to eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency; all V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow.
- Highly efficient V-Link arbitration with minimum overhead; all V-Link transactions have predictable cycle length with known Command / Data duration
- Auto connect / reconnect capability for minimum power consumption

Integrated Peripheral Controllers

- Integrated USB Controller with two root hubs and four function ports
- Dual channel UltraDMA-133 / 100 / 66 / 33 master mode EIDE controller
- AC-link interface for AC-97 audio codec and modem codec
- HSP modem support
- Integrated DirectSound compatible digital audio controller
- LPC interface for Low Pin Count interface to Super-I/O or ROM

Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated DMA, timer, and interrupt controller
- Serial IRQ for docking and non-docking applications
- Fast reset and Gate A20 operation

† See Overview for a list of differences between the VT8233, VT8233C and VT8233A

• Concurrent PCI Bus Controller

- 33 MHz operation
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec (data sent to north bridge via high speed V-Link Interface)
- PCI master snoop ahead and snoop filtering
- Eight DW of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Four lines of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Delay transaction from PCI master accessing DRAM
- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.2 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

• UltraDMA-133 / 100 / 66 / 33 Master Mode EIDE Controller

- Dual channel master mode hard disk controller supporting four Enhanced IDE devices
- Transfer rate up to 133MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and UltraDMA-133 interface
- Increased reliability using UltraDMA-133/100/66 transfer protocols
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

Direct Sound Ready AC97 Digital Audio Controller

- AC-Link access to 4 CODECs (AC97 + AMC97 + MC97)
- Multichannel Audio
- Bus Master Scatter / Gather DMA
- Dedicated read and write channels supporting simultaneous stereo playback and record
- Dedicated read and write channels supporting simultaneous modem receive and transmit
- 1 stereo DirectSound channel with source / volume control / mixer
- 1 shared FM / SPDIF PCM read channel
- 1 dedicated channel supporting multi-channel audio
- 32-byte line-bufers for each SGD channel
- Programmable 8bit / 16bit mono / stereo PCM data format support
- AC97 2.1 compliant

System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Universal Serial Bus Controller

- USB v.1.1 and Universal Host Controller Interface (UHCI) v.1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Root hub and four function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

• Sophisticated PC99-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- 32 general purpose input ports and 32 output ports
- Multiple internal and external SMI sources for flexible power management models
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on external temperature sensing circuit
- I/O pad leakage control

• Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, and audio
- Microsoft Windows 98TM, Windows NTTM, Windows 95TM and plug and play BIOS compliant
- Built-in NAND-tree pin scan test capability
- 0.35um, 3.3V, low power CMOS process
- Single chip 27x27 mm, 376 pin BGA with 1.27 mm ball pitch

OVERVIEW

The VT8233A South Bridge is a high integration, high performance, power-efficient, and high compatibility device that supports Intel and non-Intel based processor to V-Link bus bridge functionality to make a complete Microsoft PC99-compliant PCI/ISA system. In addition to complete ISA extension bus functionality, the VT8233A includes standard intelligent peripheral controllers:

- a) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT8233A also supports the UltraDMA-133, 100, 66, and 33 standards to allow reliable data transfer rates up to 133 MB/sec throughput. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-family compliant.
- b) Universal Serial Bus controller that is USB v1.1 and Universal Host Controller Interface (UHCI) v1.1 compliant. The VT8233A includes the root hub with four function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- c) Keyboard controller with PS2 mouse support.
- d) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- e) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- f) Full System Management Bus (SMBus) interface.
- g) Integrated bus-mastering dual full-duplex direct-sound AC97-link-compatible sound system.
- h) Plug and Play controller that allows complete steerability of all PCI interrupts and interrupts / DMA channels to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of onboard peripherals for Windows family compliance.

The VT8233A also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.2 specification, the VT8233A supports delayed transactions and remote power management so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Differences Between the VT8233 (Version CE), VT8233C, and VT8233A

There are three "flavors" of the VT8233 South Bridge available from VIA: the "original" VT8233 (the latest "CE" version is described by a separate data sheet), the VT8233C (described in a separate data sheet), and the VT8233A (described by this document). These parts have similar base functionality and can be used (as long as certain rules are followed) interchangeably in the same board designs (accounting for the feature differences between the chips). The VT8233 integrates a VIA LAN subsystem, the VT8233C integrates a 3COM LAN subsystem, and the VT8233A has no LAN subsystem (the LAN pins are no connects). Otherwise, all three parts have identical pinouts except for some General Purpose I/O pins (in the VT8233C, GPIO 8-15 pin functions are not available as these pins were redefined as external PHY control, MAC clock, and alert input functions). Also, in the VT8233C, SMB port 2 is dedicated for use with the 3Com LAN subsystem, so GPIO functions on those pins available in the VT8233 were removed in the VT8233C. The VT8233A (the part described in this document) is the same as the VT8233 (CE Version) with the following exceptions: the LAN subsystem is not implemented, there are 4 USB ports instead of 6, and there are various register differences (register differences from the VT8233 "CE" part are indicated in this document). Designs that are intended to allow alternate use of any of the three parts should take these differences into account.

Figure 1. PC System Configuration Using the VT8233A

PINOUTS

Pin Diagram

Figure 2. VT8233A Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	VCC 33	CBE 0#	SERR#	T RDY#	CBE 2#	AD18	GPIO 8	GPIO 14	GPIO 11	VCC 33	NC	NC	NC	NC	NC	NC	USB P2+	USB P3+	USB P0+	VCC 25
В	VCC 33	AD8	AD9	DEV SEL#	FRM#	AD17	GPIO 10	GPIO 15	GPIO 13	NC	NC	NC	NC	NC	USB OC2#	NC	USB P2-	USB P1-	USB P0-	VCC 25
C	AD4	AD6	AD7	AD10	I RDY#	AD16	AD19	GPIO9 VRDS	GPIO 12	NC	NC	NC	NC	USB OC3#	USB OC1#	NC	USB P3-	VAD 8	VAD 12	VAD 0
D	AD0	AD2	AD5	AD13	STOP#	GNT 4#	GNT 0#	REQ 1#	NC	NC	NC	NC	NC	NC	USB OC0#	VCC 33	USB P1+	VAD 11	VAD 9	VAD 1
E	AD21	AD1	AD3	AD11	CBE 1#	PAR	REQ 4#	GNT 1#	NC	NC	NC	NC	NC	USB GND	USB GND	USB CLK	VAD 3	VAD 5	V BE0#	UP CMD
F	AD23	AD22	AD20	AD12	AD14	AD15	VCC 33	REQ 0#	NC	NC	NC	NC	NC	USB VCC	USB VCC	GND	UP STB	UP STB#	DN STB	DN STB#
G	AD25	AD24	CBE 3#	REQ 3#	INT A#	GND	VCC 33	vcc	GND	GND	VCC 33	GND	VCC	VCC 33	GND	VL VREF	DN CMD	V PAR	V BE1#	VAD 2
Н	AD28	AD26	AD27	PCI RST#	VCC 33	VCC 33	Н7	8	9	10	11	12	13	H14	VCC 25	VAD 4	VAD 6	VAD 7	VAD 10	VAD 13
J	AD30	AD31	AD29	REQ 2#	INT B#	VCC	J	GND	GND	GND	GND	GND	GND	J	VCC	VCC VK	VL COMP	VAD 14	VCC 25	VCC 25
K	VCC 33	INT D#	GNT 2#	INT C#	GNT 3#	GND	K	GND	GND	GND	GND	GND	GND	K	VCC 25	V CLK	VAD 15	SMI#	SLP#	TPO
L	AC BTCK	AC SDO	SDI3 AGBZ	AC RST#	VCC 33	VCC 33	L	GND	GND	GND	GND	GND	GND	L	GND	PLL VCC	PCI CLK	NMI	IGN NE#	INIT#
M	SDI2 VGT	MS DT	AC SDI0	AC SDI1	AC SYNC	VCC	M	GND	GND	GND	GND	GND	GND	M	VCC	PLL GND	APIC D0	A20 M#	STP CLK#	VCC 33
N	KB CK	KB DT	MS CK	RING#	VSUS 33	GND	N7	8	9	10	11	12	13	N14	VCC 33	APIC CLK	APIC D1	F ERR#	PD CS1#	INTR
P	SUS ST1#	PME#	CPU MISS	GPO 0	VSUS 33	GND	VCC 33	vcc	GND	VCC 33	GND	VCC 33	VCC	GND	GND	VCC 33	PD DRQ	PD A2	PD CS3#	PD A0
R	BAT LOW#	THRM #	SUS CLK	LID#	VSUS 33	VSUS 33	VCC 33	IO RDY	IO R#	SA 19	XD3	VCC 33	SD IOW#	VCC 33	GND	PD DAK#	PD A1	PD D14	PD D0	PD D15
T	EXT SMI#	SUS A#	SMB CK1	SUS C#	PWR GD	GPIO C	IO W#	TEST	OSC	XD1	XD2	SD D11	SD D10	SD DAK#	IRQ 15	PD IOW#	PD IOR#	VCC 33	PD D13	PD D1
U	GPI 1	SMB ALT#	SMB DT1	PWR BTN#	RSM RST#	IO31 VSEL	L REQ#	SA 18	XD5	XD4	SD DRQ	SD D8	SD D9	SD IOR#	SD A1	IRQ 14	PD D10	PD D3	PD D2	PD D12
V	SMB DT2	SMB CK2	PWR OK#	GPIO A	PCK RUN#	PCI STP#	L AD1	MEM W#	SOE#	XD7	XD6	SD D1	SD D4	SD D7	SD D14	SD A2	PD D7	PD RDY	PD D11	PD D5
W	VCC 33	SUS B#	INT RUD#	V BAT	IO30 GHI	L FRM#	L AD2	SER IRQ	SA 16	ROM CS#	XD0	SD D0	SD D3	SD D6	SD D13	SD A0	SD CS3#	PD D6	PD D4	VCC 33
Y	VCC 33	GPI 0	RTC X2	RTC X1	CPU STP#	L AD3	L AD0	SPKR	SA 17	MEM R#	VCC 33	SD RDY	SD D2	SD D5	SD D12	SD D15	SD CS1#	PD D8	PD D9	VCC 33
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Note: Some of the pins above have alternate functions and alternate names. The table above contains only one name (usually the most often used function), but the pin lists and pin descriptions contain all names.

Pin Lists

Table 1. VT8233A Pin List (Numerical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
A01	P	VCC33	D12	-	NC	H03	Ю	AD27	P02	I	PME# / GPI6	U13	Ю	SDD09 / SA09
A02	Ю	CBE0#	D13	-	NC	H04	О	PCIRST#	P03	I	CPUMISS / GPI17	U14	O	SDIOR#
A03	I	SERR#	D14	-	NC	H05	P	VCC33	P04	OD	GPO0	U15	O	SDA1
A04	Ю	TRDY#	D15	I	USBOC0#	H06	P	VCC33	P05	P	VSUS33	U16	I	IRQ14
A05		CBE2#	D16	P	VCC33	H15	P	VCC25	P06	P	GND	U17	Ю	PDD10
A06	Ю	AD18	D17	IO	USBP1+	H16	IO	VAD04	P07	P	VCC33	U18	Ю	PDD03
A07	IO	GPIO8	D18	IO	VAD11	H17	IO	VAD06	P08	P	VCC	U19	IO	PDD02
A08	IO	GPIO14	D19	IO	VAD09	H18	IO	VAD07	P09	P	GND	U20	IO	PDD12
A09	IO	GPIO11	D20	IO	VAD01	H19	IO	VAD10	P10	P	VCC33	V01	IO	SMBDT2 / IO26
A10 A11	P	VCC33 NC	E01 E02	IO IO	AD21 AD01	H20 J01	IO	VAD13 AD30	P11 P12	P P	GND VCC33	V02 V03	IO O	SMBCK2 / IO27 PWROK#
A11	-	NC NC	E02	IO	AD01 AD03	J01 J02	IO	AD31	P13	P	VCCSS	V03	Ю	GPIOA / GPIO24
A13	_	NC NC	E04	IO	AD11	J03	IO	AD29	P14	P	GND	V05	Ю	PCKRUN#
A14	_	NC	E05	IO	CBE1#	J04	I	REQ2#	P15	P	GND	V06	Ö	PCISTP# / GPO6
A15	_	NC	E06	Ю	PAR	J05	I	INTB#	P16	P	VCC33	V07	Ю	LAD1
A16	-	NC	E07	I	REQ4#	J06	P	VCC	P17	I	PDDRQ	V08	Ю	MEMW#
A17	Ю	USBP2+	E08	О	GNT1#	J15	P	VCC	P18	O	PDA2	V09	O	SOE# / strap
A18	IO	USBP3+	E09	-	NC	J16	P	VCCVK	P19	O	PDCS3#	V10	IO	XD07
A19	Ю	USBP0+	E10	-	NC	J17	I	VLCOMP	P20	O	PDA0	V11	Ю	XD06
A20	P	VCC25	E11	-	NC	J18	IO	VAD14	R01	I	BATLOW# / GPI5	V12	IO	SDD01 / SA01
B01	P	VCC33	E12	-	NC	J19	P	VCC25	R02	I	THRM#/I18/AOLGPI	V13	IO	SDD04 / SA04
B02	IO	AD08	E13	-	NC	J20	P	VCC25	R03	Ō	SUSCLK / GPO4	V14	IO	SDD07 / SA07
B03		AD09	E14	P	USBGND	K01	P	VCC33	R04	I P	LID# / GPI4	V15	IO	SDD14 / SA14 SDA2
B04 B05	IO	DEVSEL# FRAME#	E15 E16	P I	USBGND USBCLK	K02 K03	O	INTD# GNT2#	R05	P P	VSUS33	V16 V17	O IO	PDD07
B05	IO	AD17	E10	IO	VAD03	K03	I	INTC#	R06 R07	P	VSUS33 VCC33	V17 V18	I	PDD07 PDRDY
B07	IO	GPIO10	E17	IO	VAD05 VAD05	K04	O	GNT3#	R08	I	IORDY / GPI19	V19	IO	PDD11
B08	Ю	GPIO15	E19	IO	VAD03 VBE0#	K05	P	GND	R09	IO	IOR# / GPIO22	V20	Ю	PDD05
B09		GPIO13	E20	0	UPCMD	K15	P	VCC25	R10	IO	SA19 / O19 / strap	W01	P	VCC33
B10	-	NC	F01	IO	AD23	K16	Ī	VCLK	R11	IO	XD03	W02	Ō	SUSB# / GPO2
B11	_	NC	F02	IO	AD22	K17	IO	VAD15	R12	P	VCC33	W03	Ĭ	INTRUD# / GPI16
B12	-	NC	F03	Ю	AD20	K18	OD	SMI#	R13	О	SDIOW#	W04	P	VBAT
B13	-	NC	F04	Ю	AD12	K19	OD	SLP# / GPO7	R14	P	VCC33	W05	IO	GPIOD/30/GHI
B14	-	NC	F05	Ю	AD14	K20	I	WSC#/APICRO#	R15	P	GND	W06	IO	LFRM#
B15	I	USBOC2#	F06	IO	AD15	L01	I	ACBITCLK	R16	O	PDDACK#	W07	IO	LAD2
B16	-	NC	F07	P	VCC33	L02	О	ACSDOUT	R17	O	PDA1	W08	I	SERIRQ
B17		USBP2-	F08	I	REQ0#	L03	I	ACSDI3/IO21/P1#/ABZ/SB#	R18	IO	PDD14	W09	IO	SA16 / O16 / strap
B18	IO	USBP1-	F09	P	NC	L04	O	ACRST#	R19	IO	PDD00	W10	0	ROMCS# / strap
B19	IO	USBP0-	F10	P	NC NC	L05	P	VCC33	R20	IO	PDD15	W11	IO	XD00
B20	P IO	VCC25 AD04	F11 F12	P P	NC NC	L06 L15	P P	VCC33 GND	T01 T02	IOD O	EXTSMI# / GPI2	W12 W13	IO	SDD00 / SA00 SDD03 / SA03
C01 C02	Ю	AD04 AD06	F12	P	NC NC	L15	P	PLLVCC	T03	Ю	SUSA# / GPO1 SMBCK1	W13	IO IO	SDD05 / SA05 SDD06 / SA06
C02	Ю	AD00 AD07	F14	P	USBVCC	L17	Ī	PCICLK	T04	O	SUSC#	W15	Ю	SDD007 SA00 SDD13 / SA13
C04	Ю	AD10	F15	P	USBVCC	L18	OD	NMI	T05	I	PWRGD	W16	O	SDA0
C05	Ю	IRDY#	F16	P	GND	L19	OD	IGNNE#	T06	Ю	GPIOC / GPIO25	W17	Ŏ	SDCS3#
C06	Ю	AD16	F17	О	UPSTB	L20	OD	INIT#	T07	Ю	IOW# / GPIO23	W18	Ю	PDD06
C07	Ю	AD19	F18	О	UPSTB#	M01	I	ACSDI2/IO20/P0#/VGATE	T08	I	TEST	W19	IO	PDD04
C08	IO	GPIO9/VDS	F19	I	DNSTB	M02	IO	MSDT / IRQ12	T09	I	OSC	W20	P	VCC33
C09	Ю	GPIO12	F20	I	DNSTB#	M03	I	ACSDIN0	T10	IO	XD01	Y01	P	VCC33
C10		NC	G01	IO	AD25	M04	I	ACSDIN1	T11		XD02	Y02	I	GPI0
C11		NC	G02	_		M05	-	ACSYNC	T12			Y03	Ō	RTCX2
C12	-	NC NC	G03	IO		M06	P	VCC	T13		SDD10 / SA10	Y04	I	RTCX1
C13	- T	NC	G04	I	REQ3#	M15	P	VCC DLLCND	T14	O	SDDACK#	Y05	0	CPUSTP# / GPO5
C14 C15	I I	USBOC3# USBOC1#	G05	I	INTA#	M16 M17	P	PLLGND APICD0/GPIO28	T15 T16	O	IRQ15 PDIOW#	Y06 Y07	IO IO	LAD3 LAD0
C15	1	NC	G06 G07	P P	GND VCC33	M17	OD	A20M#	T17	Ö	PDIOW# PDIOR#	Y08	0	SPKR / strap
C16	IO	USBP3-	G07	P	VCCSS	M19	OD	STPCLK#	T18	P	VCC33	Y09	Ю	SA17 / O17 / strap
C17		VAD08	G09	P	GND	M20	P	VCC33	T19	IO	PDD13	Y10	IO	MEMR#
C19		VAD08 VAD12	G10	P	GND	N01	IO	KBCK / A20G	T20	IO	PDD13 PDD01	Y11	P	VCC33
C20	Ю	VAD12 VAD00	G11	P	VCC33	N02	IO	KBDT / KBRC	U01	I	GPI1	Y12	I	SDRDY
D01	IO	AD00	G12	P	GND	N03	IO	MSCK / IRO1	U02	Ī	SMBALRT# / I7	Y13	IO	SDD02 / SA02
D02		AD02	G13	P	VCC	N04	I	RING# / GPI3	U03	Ю	SMBDT1	Y14	Ю	SDD02 / SA02 SDD05 / SA05
D03	Ю	AD05	G14	P	VCC33	N05	P	VSUS33	U04	I	PWRBTN#	Y15	IO	SDD12 / SA12
D04	Ю	AD13	G15	P	GND	N06	P	GND	U05	I	RSMRST#	Y16	Ю	SDD15 / SA15
D05	Ю	STOP#	G16	P	VLVREF	N15	P	VCC33	U06	Ю	GPIOE/31/VIDSEL	Y17	O	SDCS1#
D06	O	GNT4#	G17	I	DNCMD	N16	I	APICCLK	U07	Ю	LREQ#	Y18	Ю	PDD08
D07		GNT0#	G18	Ю	VPAR	N17	О	APICD1/GPIO29	U08	Ю	SA18 / O18 / strap	Y19	Ю	PDD09
D08	I	REQ1#	G19	IO	VBE1#	N18	I	FERR#	U09	IO	XD05	Y20	P	VCC33
D09	-	NC	G20	IO	VAD02	N19	O	PDCS1#	U10		XD04			
D10	-	NC	H01	IO	AD28	N20		INTR	U11	I	SDDRQ			
D11	-	NC	H02	IO	AD26	P01	0	SUSST1# / GPO3	U12	IO	SDD08 / SA08			

Center **GND** pins (24 pins): J8-J13, K8-K13, L8-L13, M8-M13

Table 2. VT8233A Pin List (<u>Alphabetical</u> Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
M18	OD	A20M#	P15	P	GND	D14	-	NC	Y13	Ю	SDD02 / SA02	H19	Ю	VAD10
L01	I	ACBITCLK	R15	P	GND	E09	_	NC	W13	IO	SDD03 / SA03	D18	Ю	VAD11
L04	O	ACRST#	D07	0	GNT0#	E10	-	NC	V13	IO	SDD04 / SA04	C19	IO	VAD12
M03	I	ACSDIN0	E08	О	GNT1#	E11	-	NC	Y14	Ю	SDD05 / SA05	H20	Ю	VAD13
M04	I	ACSDIN1	K03	0	GNT2#	E12	-	NC	W14	IO	SDD06 / SA06	J18	IO	VAD14
M01	I	ACSDI2/IO20/P0#/VGATE	K05	0	GNT3#	E13 F09	-	NC NC	V14	IO	SDD07 / SA07	K17 W04	IO P	VAD15 VBAT
L03 L02	O	ACSDI3/IO21/P1#/ABZ/SB# ACSDOUT	D06 Y02	I	GNT4# GPI0	F10	_	NC NC	U12 U13	IO IO	SDD08 / SA08 SDD09 / SA09	E19	IO	VBE0#
M05	ŏ	ACSYNC	U01	Ī	GPI1	F11	_	NC	T13	IO	SDD10 / SA10	G19	Ю	VBE1#
D01	Ю	AD00	A07	Ю	GPIO8	F12	-	NC	T12	Ю	SDD11 / SA11	G08	P	VCC
E02	IO	AD01	C08	IO	GPIO9 / VRDPSLP	F13	-	NC	Y15	Ю	SDD12 / SA12	G13	P	VCC
D02	IO	AD02	B07	IO	GPIO10	L18	OD	NMI	W15	IO	SDD13 / SA13	J06	P	VCC
E03 C01	IO IO	AD03 AD04	A09 C09	IO IO	GPIO11 GPIO12	T09 E06	I	OSC PAR	V15 Y16	IO IO	SDD14 / SA14 SDD15 / SA15	J15 M06	P P	VCC VCC
D03	IO	AD05	B09	IO	GPIO12 GPIO13	V05	IO	PCKRUN#	T14	0	SDD13 / SA13	M15	P	VCC
C02	IO	AD06	A08	IO	GPIO14	L17	I	PCICLK	U11	I	SDDRQ	P08	P	VCC
C03	Ю	AD07	B08	Ю	GPIO15	H04	O	PCIRST#	U14	О	SDIOR#	P13	P	VCC
B02	IO	AD08	V04	IO	GPIOA / GPIO24	V06	0	PCISTP# / GPO6	R13	O	SDIOW#	A20	P	VCC25
B03	IO	AD09	T06	IO	GPIOC / GPIO25	P20	0	PDA0	Y12	I	SDRDY	B20	P	VCC25
C04 E04	IO IO	AD10 AD11	W05 U06	IO IO	GPIOD/30/GHI GPIOE/31/VIDSEL	R17 P18	0	PDA1 PDA2	W08 A03	I I	SERIRQ SERR#	H15 J19	P P	VCC25 VCC25
F04	IO	AD11 AD12	P04	OD	GPO0E/31/VIDSEL	N19	0	PDCS1#	K19	OD	SLP# / GPO7	J20	r P	VCC25
D04	IO	AD13	L19	OD	IGNNE#	P19	ŏ	PDCS3#	U02	I	SMBALRT# / I7	K15	P	VCC25
F05	IO	AD14	L20	OD	INIT#	R19	IO	PDD00	T03	Ю	SMBCK1	A01	P	VCC33
F06	IO	AD15	G05	I	INTA#	T20	Ю	PDD01	V02	IO	SMBCK2 / IO27	A10	P	VCC33
C06	IO	AD16	J05	Ĭ	INTB#	U19	IO	PDD02	U03	IO	SMBDT1	B01	P	VCC33
B06	IO	AD19	K04	I	INTC# INTD#	U18 W19	IO	PDD03	V01	IO OD	SMBDT2 / IO26	D16	P P	VCC33 VCC33
A06 C07	IO IO	AD18 AD19	K02 N20	OD	INTD# INTR	W19 V20	IO	PDD04 PDD05	K18 V09	0	SMI# SOE# / strap	F07 G07	P P	VCC33
F03	IO	AD20	W03	I	INTRUD# / GPI16	W18	IO	PDD06	Y08	ŏ	SPKR / strap	G11	P	VCC33
E01	IO	AD21	R09	IO	IOR# / GPIO22	V17	IO	PDD07	D05	IO	STOP#	G14	P	VCC33
F02	IO	AD22	R08	I	IORDY / GPI19	Y18	Ю	PDD08	M19	OD	STPCLK#	H05	P	VCC33
F01	IO	AD23	T07	IO	IOW# / GPIO23	Y19	IO	PDD09	T02	0	SUSA# / GPO1	H06	P	VCC33
G02	IO	AD24	C05	IO	IRDY#	U17	IO	PDD10	W02	0	SUSB# / GPO2	K01	P P	VCC33
G01 H02	IO IO	AD25 AD26	U16 T15	I	IRO14 IRO15	V19 U20	IO	PDD11 PDD12	T04 R03	0	SUSC# SUSCLK / GPO4	L05 L06	P P	VCC33 VCC33
H03	IO	AD27	N01	IO	KBCK / A20G	T19	IO	PDD13	P01	ŏ	SUSST1# / GPO3	M20	P	VCC33
H01	IO	AD28	N02	Ю	KBDT / KBRC	R18	IO	PDD14	T08	I	TEST	N15	P	VCC33
J03	IO	AD29	Y07	Ю	LAD0	R20	Ю	PDD15	R02	I	THRM#/GPI18	P07	P	VCC33
J01	IO	AD30	V07	IO	LAD1	R16	Ò	PDDACK#	K20	0	TPO	P10	P	VCC33
J02	IO	AD31	W07	IO IO	LAD2	P17	O	PDDRQ PDIOR#	A04	IO	TRDY#	P12	P P	VCC33
N16 M17	O	APICCLK APICD0 / GPIO28	Y06 W06	IO	LAD3 LFRM#	T17 T16	Ö	PDIOR# PDIOW#	E20 F17	0	UPCMD UPSTB	P16 R07	P	VCC33 VCC33
N17	ő	APICD1 / GPIO29	R04	I	LID# / GPI4	V18	I	PDRDY	F18	ŏ	UPSTB#	R12	P	VCC33
R01	Ĭ	BATLOW# / GPI5	U07	IO	LREQ#	M16	P	PLLGND	E16	Ĭ	USBCLK	R14	P	VCC33
A02	IO	CBE0#	Y10	Ю	MEMR#	L16	P	PLLVCC	E14	P	USBGND	T18	P	VCC33
E05	IO	CBE1#	V08	IO	MEMW#	P02	I	PME# / GPI6	E15	P	USBGND	W01	P	VCC33
A05	IO	CBE2#	N03	IO	MSCK / IRO1	U04	I	PWRBTN#	D15	I	USBOC0#	W20	P	VCC33
G03 P03	IO I	CBE3# CPUMISS / GPI17	M02 A11	IO -	MSDT / IRQ12 NC	T05 V03	O	PWRGD PWROK#	C15 B15	I I	USBOC1# USBOC2#	Y01 Y11	P P	VCC33 VCC33
Y05	O	CPUSTP# / GPO5	A11		NC NC	F08		REQ0#	C14		USBOC2# USBOC3#	Y20	P P	VCC33
B04		DEVSEL#	A13	-	NC	D08	Ī	REQ1#	B19	IO	USBP0-	J16		VCCVK
G17	I	DNCMD	A14	-	NC	J04	I	REO2#	A19	Ю	USBP0+	K16	I	VCLK
F19	I	DNSTB	A15	-	NC	G04	Ĭ	REO3#	B18	IO	USBP1-	J17	I	VLCOMP
F20	I	DNSTB#	A16	-	NC NC	E07	I	REO4#	D17	IO	USBP1+	G16	P	VLVREF
T01 N18		EXTSMI# / GPI2 FERR#	B10 B11	-	NC NC	N04 W10	I	RING# / GPI3 ROMCS# / strap	B17 A17	IO IO	USBP2- USBP2+	G18 N05	IO P	VPAR VSUS33
B05	IO	FRAME#	B12	_	NC NC	U05	I	RSMRST#	C17	IO	USBP3-	P05	P	VSUS33 VSUS33
F16	P	GND	B13	_	NC NC	Y04	I	RTCX1	A18	IO	USBP3+	R05	P	VSUS33
G06		GND	B14	-	NC	Y03	Ō	RTCX2	F14	P	USBVCC	R06	P	VSUS33
G09	P	GND	B16	-	NC	W09	Ю	SA16 / O16 /strap		P	USBVCC	W11	Ю	XD00
G10		GND	C10	-	NC NC	Y09	IO	SA17 / O17 /strap		IO	VAD00	T10	IO	XD01
G12 G15	P	GND	C11 C12	-	NC NC	U08 R10	IO	SA18 / O18 /strap		IO	VAD01	T11	IO	XD02 XD03
K06		GND GND	C12	-	NC NC	W16	O	SA19 / O19 /strap SDA0 / strap	G20 E17	IO IO	VAD02 VAD03	R11 U10	IO	XD03 XD04
L15	P	GND	C16	_	NC NC	W16 U15	ŏ	SDA0 / strap	H16	IO	VAD03 VAD04	U09	Ю	XD04 XD05
N06	P	GND	D09	-	NC	V16		SDA2 / strap	E18	IO	VAD05	V11	Ю	XD06
P06	P	GND	D10	-	NC	Y17	O	SDCS1#	H17	Ю	VAD06	V10	Ю	XD07
P09	P	GND	D11	-	NC	W17	0	SDCS3#	H18	IO	VAD07			
P11	P P	GND	D12 D13	-	NC NC	W12 V12		SDD00 / SA00 SDD01 / SA01	C18 D19	IO IO	VAD08			
P14		ND pine (24 pine): 18 11					Ю	2DD01 / 2A01	מוש	IU	VAD09	<u> </u>		

Center **GND** pins (24 pins): J8-J13, K8-K13, L8-L13, M8-M13

PIN DESCRIPTIONS

Table 3. Pin Descriptions

	V-Link Interface										
Signal Name	Pin #	I/O	Signal Description								
VAD[15:0]	K17, J18, H20, C19, D18, H19, D19, C18, H18, H17, E18, H16, E17, G20, D20, C20	Ю	Address / Data Bus. Bits 0-7 are implemented and bits 8-15 are reserved for future use. VAD[6:0] are used to send strap information to the chipset north bridge. At power up VAD[6:4] reflect the state of straps on pins SDA[2:0] and VAD[3:0] reflect the state of straps on pins SA[19:16]. The specific interpretation of these straps is north bridge chip design dependent.								
VPAR	G18	Ю	Parity.								
VBE[1:0]#	G19, E19	IO	Byte Enables. VBE0# is used with VAD[7-0] and VBE1# is used with VAD[15-8] (VBE1# and VAD[15-8] are reserved for future use).								
VCLK	K16	I	V-Link Clock.								
UPCMD	E20	О	Command from Client-to-Host.								
DNCMD	G17	I	Command from Host-to-Client.								
UPSTB	F17	О	Strobe from Client-to-Host.								
UPSTB#	F18	О	Complement Strobe from Client-to-Host.								
DNSTB	F19	I	Strobe from Host-to-Client.								
DNSTB#	F20	I	Complement Strobe from Host-to-Client.								
VLVREF	G16	I	Voltage Reference.								
VLCOMP	J17	I	V-Link Compensation.								
VCCVK	J16	P	V-Link Compensation Circuit Voltage.								

Advanced Programmable Interrupt Controller (APIC) Interface										
Signal Name	Pin #	I/O	Signal Description							
APICD1 / GPI29 / GPO29	N17	О	Internal APIC Data 1.							
APICD0 / GPI28 / GPO28	M17	О	Internal APIC Data 0.							
APICCLK	N16	I	APIC Clock.							

Straps									
Signal Name	Pin#	I/O	Signal Description						
Strap / SDA2	V16	I	Strap. State reflected on VAD[6] at powerup. No internal function.						
Strap / SDA1	U15	I	Strap. State reflected on VAD[5] at powerup. No internal function.						
Strap / SDA0	W16	I	Strap. State reflected on VAD[4] at powerup. No internal function.						
Strap / SA19	R10	I	Strap. State reflected on VAD[3] at powerup. No internal function.						
Strap / SA18	U8	I	Strap. State reflected on VAD[2] at powerup. No internal function.						
Strap / SA17	Y9	I	Strap. State reflected on VAD[1] at powerup. No internal function.						
Strap / SA16	W9	I	Strap. State reflected on VAD[0] at powerup. No internal function.						
Strap / SOE#	V9	I	Strap. Strap low to enable (high to disable) auto reboot.						
Strap / SPKR	Y8	I	Strap. Strap low to enable (high to disable) CPU frequency strapping						
Strap / ROMCS# / KBCS#	W10	I	Strap. Strap high to enable LPC BIOS ROM						

	CPU Interface										
Signal Name	Pin#	I/O	Signal Description								
A20M#	M18	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or								
			external keyboard controller) and Port 92 bit-1 (Fast_A20).								
FERR#	N18	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error								
			signal on the CPU. Internally generates interrupt 13 if active. Output voltage								
			swing is programmable tot 1.5V or 2.5V by Device 17 Function 0 Rx67[2].								
IGNNE#	L19	OD	Ignore Numeric Error. This pin is connected to the CPU "ignore error" pin.								
INIT#	L20	OD	Initialization. The VT8233A asserts INIT# if it detects a shut-down special								
			cycle on the PCI bus or if a soft reset is initiated by the register								
INTR	N20	OD	CPU Interrupt. INTR is driven by the VT8233A to signal the CPU that an								
			interrupt request is pending and needs service.								
NMI	L18	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the								
			CPU. The VT8233A generates an NMI when PCI bus SERR# is asserted.								
SLP# / GPO7	K19	OD	Sleep. Used to put the CPU to sleep.								
SMI#	K18	OD	System Management Interrupt. SMI# is asserted by the VT8233A to the CPU								
			in response to different Power-Management events.								
STPCLK#	M19	OD	Stop Clock. STPCLK# is asserted by the VT8233A to the CPU to throttle the								
			processor clock.								

Note: Connect each of the above signals to 150 Ω pullup resistors to VCC_CMOS (see Design Guide).

PCI Bus Interface									
Signal Name	Pin #	I/O	Signal Description						
AD[31:0]	(See Pin List)	IO	Address / Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.						
CBE[3:0]#	G3, A5, E5, A2	IO	Command / Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.						
DEVSEL#	B4	IO	Device Select. The VT8233A asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT8233A-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.						
FRAME#	B5	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.						
IRDY#	C5	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.						
TRDY#	A4	IO	Target Ready. Asserted when the target is ready for data transfer.						
STOP#	D5	IO	Stop. Asserted by the target to request the master to stop the current transaction.						
SERR#	A3	Ι	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT8233A can be programmed to generate an NMI to the CPU.						
PAR	E6	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.						
INTA-D#	G5, J5, K4, K2	I	PCI Interrupt Request. These pins are typically connected to the PCI bus INTA#-INTD# pins as follows: INTA# INTB# INTC# INTD#						
REQ[4:0]#	E7, G4, J4, D8, F8	I	PCI Request. This signal goes to the VT8233A to request the PCI bus.						
GNT[4:0]#	D6, K5, K3, E8, D7	0	PCI Grant. This signal is driven by the VT8233A to grant PCI access.						
PCIRST#			PCI Reset. This signal is used to reset devices attached to the PCI bus.						
PCICLK PCKRUN#	L17 V5	IO	PCI Clock. This signal provides timing for all transactions on the PCI Bus. PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8233A drives this signal low when the PCI clock is running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100						
			Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "VT8633 Apollo Pro266 Design Guide" for more details.						

Low Pin Count (LPC) Interface							
Signal Name Pin # I/O Signal Description							
LFRM#	W6	IO	LPC Frame.				
LREQ#	U7	IO	LPC DMA / Bus Master Request.				
LAD[3-0]	Y6, W7, V7, Y7	IO	LPC Address / Data.				

Note: Connect the LPC interface LPCRST# (LPC Reset) signal to PCIRST#

Universal Serial Bus Interface						
Signal Name	Pin #	I/O	Signal Description			
USBP0+	A19	IO	USB Port 0 Data +			
USBP0-	B19	IO	USB Port 0 Data –			
USBP1+	D17	IO	USB Port 1 Data +			
USBP1-	B18	IO	USB Port 1 Data –			
USBP2+	A17	IO	USB Port 2 Data +			
USBP2-	B17	IO	USB Port 2 Data –			
USBP3+	A18	IO	USB Port 3 Data +			
USBP3-	C17	IO	USB Port 3 Data –			
USBCLK	E16	I	USB Clock. 48MHz clock input for the USB interface			
USBOC0#	D15	I	USB Port 0 Over Current Detect. Port 0 is disabled if low.			
USBOC1#	C15	I	USB Port 1 Over Current Detect. Port 1 is disabled if low.			
USBOC2#	B15	I	USB Port 2 Over Current Detect. Port 2 is disabled if low.			
USBOC3#	C14	I	USB Port 3 Over Current Detect. Port 3 is disabled if low.			
USBVCC	F14-F15	Power	Power for USB Port Interface Logic.			
USBGND	E14-E15	Power	Ground for USB Port Interface Logic.			

System Management Bus (SMB) Interface (I ² C Bus)						
Signal Name	Pin # I/O		Signal Description			
SMBCK1	Т3	IO	SMB / I ² C Channel 1 Clock.			
SMBCK2 / GPI27 / GPO27	V2	IO	SMB / I^2C Channel 2 Clock. $Rx95[2] = 0$			
SMBDT1	U3	IO	SMB / I ² C Channel 1 Data.			
SMBDT2 / GPI26 / GPO26	V1	IO	SMB / I^2C Channel 2 Data. $Rx95[2] = 0$			
SMBALRT# / GPI7	U2	I	SMB Alert. (System Management Bus I/O space Rx08[3] = 1) When the			
			chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a			
			power management resume event.			

Programmable Chip Selects						
Signal Name	Signal Description					
PCS0# / GPIO20 / ACSDIN2 / VGATE	M1	О	Programmable Chip Select 0. RxE4[6]=1, E5[1]=1, and E5[4]=0			
PCS1# / GPIO21 / ACSDIN3 / AGPBZ# / SLPBTN#	L3	О	Programmable Chip Select 1. RxE4[6]=1, E5[2]=1, and E5[5]=0			

	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface					
Signal Name	Pin #	I/O	Signal Description			
PDRDY / PDDMARDY / PDSTROBE	V18	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers			
SDRDY / SDDMARDY / SDSTROBE	Y12	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers			
PDIOR# / PHDMARDY / PHSTROBE	T17	0	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers			
SDIOR# / SHDMARDY / SHSTROBE	U14	0	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers			
PDIOW# / PSTOP	T16	О	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.			
SDIOW# / SSTOP	R13	О	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.			
PDDRQ	P17	I	Primary Device DMA Request. Primary channel DMA request			
SDDRQ	U11	I	Secondary Device DMA Request. Secondary channel DMA request			
PDDACK#	R16	О	Primary Device DMA Acknowledge. Primary channel DMA acknowledge			
SDDACK#	T14	О	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge			
IRQ14	U16	I	Primary Channel Interrupt Request.			
IRQ15	T15	I	Secondary Channel Interrupt Request.			

U	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface (continued)					
Signal Name	Pin#	I/O	Signal Description			
PDCS1#	N19	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.			
PDCS3#	P19	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.			
SDCS1#	Y17	О	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector.			
SDCS3#	W17	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector.			
PDA[2-0]	P18, R17, P20	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.			
SDA[2-0] / strap	V16, U15, W16	O	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed. Strap information is communicated to the north bridge via VAD[6:4].			
PDD[15-0]	(See Pin List)	IO	Primary Disk Data			
SDD[15-0] / SA[15-0]	(See Pin List)	IO / IO	Secondary Disk Data			

Serial IRQ						
Signal Name	Pin #	I/O	Signal Description			
SERIRQ	W8	I	Serial IRQ			

AC97 Audio / Modem Interface					
Signal Name	Pin#	I/O	Signal Description		
ACRST#	L4	О	AC97 Reset.		
ACBTCK	L1	I	AC97 Bit Clock.		
ACSYNC	M5	О	AC97 Sync.		
ACSDO	L2	О	AC97 Serial Data Out.		
ACSDIN0	M3	I	AC97 Serial Data In 0.		
ACSDIN1	M4	I	AC97 Serial Data In 1.		
ACSDIN2 / GPIO20 / PCS0# / VGATE	M1	I	AC97 Serial Data In 2. RxE4[6]=0, E5[1]=0, & E5[4]=0		
ACSDIN3 / GPIO21 / PCS1# / SLPBTN# / AGPBZ#	L3	I	AC97 Serial Data In 3. RxE4[6]=0, E5[2]=0, & E5[5]=0		

	Internal Keyboard Controller						
Signal Name	Pin #	I/O	Signal Description				
MSCK / IRQ1	N3	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx51[2]) Rx51[2]=1 Mouse Clock. From internal mouse controller. Rx51[2]=0 Interrupt Request 1. Interrupt input 1.				
MSDT / IRQ12	M2	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx51[2]) Rx51[2]=1 Mouse Data. From internal mouse controller. Rx51[2]=0 Interrupt Request 12. Interrupt input 12.				
KBCK / KA20G	N1	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Clock. From internal keyboard controller Rx51[0]=0 Gate A20. Input from external keyboard controller.				
KBDT / KBRC	N2	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Data. From internal keyboard controller. Rx51[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation				
KBCS# / ROMCS# / strap	W10	O/O	Keyboard Chip Select (Rx51[0]=0). To external keyboard controller chip. Strap high to enable LPC ROM:				

	ISA Subset / Parallel BIOS ROM Interface							
Signal Name	Pin#	I/O	Signal Description					
ROMCS# / KBCS# / strap	W10	О	ROM Chip Select (Rx51[0]=1). Chip Select to the BIOS ROM. Strap high to enable LPC ROM.					
SPKR / strap	Y8	О	Speaker. Strap low to enable (high to disable) CPU frequency strapping.					
MEMR#	Y10	О	Memory Read.					
MEMW#	V8	О	Memory Write.					
IOR# / GPIO22	R9	О	I/O Read. RxE4[7] = 1					
IOW# / GPIO23	T7	О	I/O Write. RxE4[7] = 1					
IORDY / GPI19	R8	I	I/O Ready. Used to insert wait states in I/O or memory cycles. $RxE5[0] = 0$					
SOE# / strap	V9	О	XD Bus Tranceiver Output Enable. Strap low to enable auto reboot.					
XD[7-0]	V10, V11, U9.	IO	XD Bus. For input of BIOS ROM data or data from other on-board I/O					
	U10, R11, T11,		or memory devices.					
	T10, W11							
SA[19-16] / GPO[19-16]	R10, U8, Y9,	О	System Address 19-16. Strap states are passed to North Bridge via					
/ straps	W9		VAD[3-0]. Functions as SA[19-16] if $RxE4[5] = 0$.					
SA[15-0] / SDD[15-0]	(See Pin List)	О	System Address 15-0.					

General Purpose Inputs							
Signal Name	Pin #	I/O	Signal Description				
GPIO (VBAT)	Y2	I	General Purpose Input 0. Status on PMIO Rx20[0]				
GPI1 (VSUS33)	U1	I	General Purpose Input 1. Status on PMIO Rx20[1]				
<u>GPI2</u> / EXTSMI# (<i>VSUS33</i>)	T1	I	General Purpose Input 2. Status on PMIO Rx20[4]				
<u>GPI3</u> / RING# (<i>VSUS33</i>)	N4	I	General Purpose Input 3. Status on PMIO Rx20[8]				
<u>GPI4</u> / LID# (<i>VSUS33</i>)	R4	I	General Purpose Input 4. Status on PMIO Rx20[11]				
GPI5 / BATLOW# (VSUS33)	R1	I	General Purpose Input 5. Status on PMIO Rx20[12]				
<u>GPI6</u> / PME# (VSUS33)	P2	I	General Purpose Input 6. Status on PMIO Rx20[5]				
GPI7 / SMBALRT# (VSUS33)	U2	I	General Purpose Input 7.				
GPI8 / GPO8	A7	I	General Purpose Input 8. $RxE4[3] = 0$				
GPI9 / GPO9 / VRDPSLP	C8	I	General Purpose Input 9. $RxE4[3] = 0 \& E5[3]=1$				
GPI10 / GPO10	В7	I	General Purpose Input 10. $RxE4[3] = 0$				
GPI11 / GPO11	A9	I	General Purpose Input 11. $RxE4[3] = 0$				
GPI12 / GPO12	C9	I	General Purpose Input 12. $RxE4[4] = 0$				
GPI13 / GPO13	В9	I	General Purpose Input 13. RxE4[4] = 0				
GPI14 / GPO14	A8	I	General Purpose Input 14. RxE4[4] = 0				
GPI15 / GPO15	В8	I	General Purpose Input 15. $RxE4[4] = 0$				
$\underline{\mathbf{GPI16}} / \underline{\mathbf{INTRUDER#}} $ (VBAT)	W3	I	General Purpose Input 16. Status on PMIO Rx20[6]				
GPI17 / CPUMISS	P3	I	General Purpose Input 17. Status on PMIO Rx20[5]				
GPI18 / THRM#	R2	I	General Purpose Input 18. $Rx8C[3] = 0$				
GPI19 / IORDY	R8	I	General Purpose Input 19. RxE5[0] = 1				
GPI20 / GPO20 / ACSDIN2 / PCS0# / VGATE	M1	I	Gen Purpose In 20. RxE4[6]=1, E5[1]=0, & PMIO 4C[20]=1				
GPI21 / GPO21 / ACSDIN3 / PCS1# / AGPBZ# / SLPBTN#	L3	I	Gen Purpose In 21. RxE4[6]=1, E5[2]=0, & PMIO 4C[21]=1				
<u>GPI22</u> / GPO22 / IOR#	R9	I	General Purpose Input 22. $RxE4[7] = 0 & PMIO 4C[22]=1$				
<u>GPI23</u> / GPO23 / IOW#	T7	I	General Purpose Input 23. $RxE4[7] = 0 \& PMIO 4C[23]=1$				
GPI24 / GPO24 / GPIOA	V4	I	General Purpose Input 24. $RxE6[0] = 0$				
GPI25 / GPO25 / GPIOC	T6	I	General Purpose Input 25. RxE6[1] = 0				
GPI26 / GPO26 / <u>SMBDT2</u> (VSUS33)	Y2	I	General Purpose Input 26. $Rx95[3] = 0$				
GPI27 / GPO27 / <u>SMBCK2</u> (VSUS33)	T5	I	General Purpose Input 27. $Rx95[3] = 0$				
GPI28 / GPO28 / <u>APICD0</u>	M17	I	General Purpose Input 28. $Rx58[6] = 0 \& PMIO 4C[28] = 1$				
GPI29 / GPO29 / <u>APICD1</u>	N17	I	General Purpose Input 29. $Rx58[6] = 0 \& PMIO 4C[29]=1$				
GPI30 / GPO30 / GPIOD / GHI#	W5	I	General Purpose Input 30. $RxE6[6] = 0 \& E5[3] = 1$				
GPI31 / GPO31 / GPIOE / VIDSEL	U6	I	General Purpose Input 31. $RxE6[7] = 0 \& E5[3] = 1$				
Note: Default pin function is underlined in the sig		1					

Note: Default pin function is underlined in the signal name column above.

Note: Input pin status for the above GPI pins 31-0 is also available on PMIO (ACPI) Rx4C-48[31-0]

Note: See also Power Management I/O register Rx50 for input pin change status for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx52 for SCI/SMI select for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx4C. General purpose input pins 20-31 are shared with OD (open drain) general purpose output functions, so to use one of these pins as an input pin, a one must be written to the corresponding bit of PMIO (ACPI) Rx4C.

General Purpose I/O				
Signal Name	Pin#	I/O	Signal Description	
GPIOA / GPI24 / GPO24	V4	IO	General Purpose I/O A / 24. RxE6[0] = 1	
GPIOC / <u>GPI25</u> / GPO25	T6	IO	General Purpose I/O C / 25.	
GPIOD / GPI30 / GPO30 / <u>GHI#</u>	W5	IO	General Purpose I/O D / 30.	
GPIOE / GPI31 / GPO31 / VIDSEL	U6	IO	General Purpose I/O E / 31.	

The output type of the above pins may be selected as either OD or TTL (see Device 17 Function 0 RxE7)

General Purpose Outputs					
Signal Name	Pin #	I/O	Signal Description		
GPO0 (VSUS33)	P4	OD	General Purpose Output 0.		
$GPO1 / \underline{SUSA\#} \qquad (VSUS33)$	T2	О	General Purpose Output 1. Rx94[2] = 1		
$GPO2 / \underline{SUSB\#} $ (VSUS33)	W2	О	General Purpose Output 2. $Rx94[3] = 1$		
GPO3 / SUSST1# (VSUS33)	P1	О	General Purpose Output 3. $Rx94[4] = 1$		
GPO4 / SUSCLK (VSUS33)	R3	O	General Purpose Output 4. Rx95[1] = 1		
GPO5 / CPUSTP#	Y5	О	General Purpose Output 5. RxE4[0] = 1		
GPO6 / PCISTP#	V6	О	General Purpose Output 6. RxE4[1] = 1		
GPO7 / <u>SLP#</u>	K19	О	General Purpose Output 7. RxE4[2] = 1		
GPO8 / <u>GPI8</u>	A7	О	General Purpose Output 8. RxE4[3]=1		
GPO9 / GPI9 / <u>VRDPSLP</u>	C8	О	General Purpose Output 9. $RxE4[3]=1$, $E5[3]=1$		
GPO10 / <u>GPI10</u>	В7	O	General Purpose Output 10. RxE4[3]=1		
GPO11 / <u>GPI11</u>	A9	O	General Purpose Output 11. RxE4[3]=1		
GPO12 / GPI12	C9	О	General Purpose Output 12. RxE4[4]=1		
GPO13 / <u>GPI13</u>	B9	O	General Purpose Output 13. RxE4[4]=1		
GPO14 / <u>GPI14</u>	A8	О	General Purpose Output 14. RxE4[4]=1		
GPO15 / <u>GPI15</u>	B8	O	General Purpose Output 15. RxE4[4]=1		
GPO16 / <u>SA16</u> / strap	W9	О	General Purpose Output 16. RxE4[5] = 1		
GPO17 / <u>SA17</u> / strap	Y9	O	General Purpose Output 17. $RxE4[5] = 1$		
GPO18 / <u>SA18</u> / strap	U8	O	General Purpose Output 18. $RxE4[5] = 1$		
GPO19 / <u>SA19</u> / strap	R10	O	General Purpose Output 19. $RxE4[5] = 1$		
GPO20 / GPI20 / <u>ACSDIN2</u> / PCS0# / VGATE	M1	OD	General Purpose Output 20. $RxE4[6] = 1, E5[1] = 0$		
GPO21 / GPI21 / <u>ACSDIN3</u> / PCS1# / AGPBZ# / SLPBTN#	L3	OD	General Purpose Output 21. RxE4[6] = 1, E5[2] = 0		
GPO22 / <u>GPI22</u> / IOR#	R9	OD	General Purpose Output 22. $RxE4[7] = 0$		
GPO23 / <u>GPI23</u> / IOW#	T7	OD	General Purpose Output 23. $RxE4[7] = 0$		
GPO24 / <u>GPI24</u> / GPIOA	V4	O/ <u>OD</u>	General Purpose Output 24. $RxE6[0] = 1$		
GPO25 / <u>GPI25</u> / GPIOC	T6	O/ <u>OD</u>	General Purpose Output 25. RxE6[1] = 1		
GPO26 / GPI26 / <u>SMBDT2</u> (<i>VSUS33†</i>)	Y2	OD	General Purpose Output 26. $Rx95[2] = 1, 95[3] = 1$		
GPO27 / GPI27 / <u>SMBCK2</u> (<i>VSUS33†</i>)	T5	OD	General Purpose Output 27. $Rx95[2] = 1, 95[3] = 1$		
GPO28 / GPI28 / <u>APICD0</u>	M17	OD	General Purpose Output 28. $Rx58[6] = 0$		
GPO29 / GPI29 / <u>APICD1</u>	N17	OD	General Purpose Output 29. $Rx58[6] = 0$		
GPO30 / GPI30 / GPIOD / <u>GHI#</u>	W5	O/ <u>OD</u>	General Purpose Output 30. $RxE6[6] = 1, E5[3] = 1$		
GPO31 / GPI31 / GPIOE / <u>VIDSEL</u>	U6	O/ <u>OD</u>	General Purpose Output 31. $RxE6[7] = 1, E5[3] = 1$		

Note: The output state for each of the above general purpose outputs is selectable via Power Management I/O registers Rx4C-48

Note: The output types of GPO24-25 and 30-31 are selectable OD vs TTL (see Function 0 RxE7)

Note: Default pin functions are underlined in the table above.

 $[\]dagger$ The suspend voltage is only used for maintaining the operation of the SMB function on these pins (Device 17 Function 0 Rx95[3] = 0). If VCC power is lost, the GPIO function of these pins and the state of PMIO Rx4C[27:26] (which determines the GPO output level) will be lost also.

Power Management and Event Detection				
Signal Name	Pin#	I/O	Signal Description	
PWRBTN#	U4	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch.	
SLPBTN# / GPIO21 / ACSDIN3 / PCS1# / AGPBZ#	L3	I	Sleep Button. Used by the Power Management subsystem to monitor an external sleep button or switch. RxE4[6] = 1 and E5[5]=0	
RSMRST#	U5	I	Resume Reset. Resets the internal logic connected to the VSUS33 power plane and also resets portions of the internal RTC logic.	
EXTSMI# / GPI2	T1	IO D	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. (10K PU to VCCS if not used) (3.3V only)	
PME# / GPI6	P2	I	Power Management Event. (10K PU to VCCS if not used)	
SMBALRT# / GPI7	U2	I	SMB Alert . When the chip is enabled to allow it, assertion generates an IRQ or SMI or power management event. (10K PU to VCCS if not used)	
LID# / <u>GPI4</u>	R4	I	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high or high-to-low transitions to generate an SMI#. (10K PU to VCCS if not used)	
INTRUDER# / GPI16	W3	I	Intrusion Indicator. The value of this bit may be read at PMIO Rx20[6]	
<u>THRM#</u> / <u>GPI18</u>	R2	Ι	Thermal Alarm Monitor. Rx8C[3] = 1. Rising or falling edges (selectable by PMIO Rx2C[6]) may be detected to set status at PMIO Rx20[10]. Setting of this status bit may then be used to generate an SCI or SMI. THRM# may also be used to enable duty cycle control of stop-clock (STPCLK#) to automatically limit maximum temperature (see Device 17 Function 0 Rx8C[7-3]).	
RING# / GPI3	N4	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VCCS if not used)	
BATLOW# / GPI5	R1	I	Battery Low Indicator. (10K PU to VCCS if not used) (3.3V only)	
CPUSTP# / GPO5	Y5	О	CPU Clock Stop (RxE4[0] = 0). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used.	
PCISTP# / GPO6	V6	0	PCI Clock Stop (RxE4[1] = 0). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.	
SUSA# / GPO1	T2	O	Suspend Plane A Control (Rx94[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VCCS if not used)	
SUSB# / GPO2	W2	О	Suspend Plane B Control (Rx94[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VCCS if not used)	
SUSC#	T4	О	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry.	
SUSST1# / GPO3	P1	О	Suspend Status 1 (Rx94[4] = 0). Typically connected to the North Bridge to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VCCS.	
SUSCLK	R3	O	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., VT8633 or VT8366) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VCCS.	
CPUMISS / GPI17	Р3	I	CPU Missing. Used to detect the physical presence of the CPU chip in its socket. High indicates no CPU present. Connect to the CPUMISS pin of the CPU socket. The state of this pin may be read in the SMBus 2 registers. This pin may be used as CPUMISS and GPI17 at the same time.	

Resets, Clocks, and Power Status				
Signal Name	Pin #	I/O	Signal Description	
PWRGD	T5	I	Power Good. Connected to the PWRGOOD signal on the Power Supply.	
PWROK#	V3	О	Power OK.	
PCIRST#	H4	О	PCI Reset. Active low reset signal for the PCI bus. The VT8233A will assert this pin during power-up or from the control register.	
OSC	Т9	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.	
RTCX1	Y4	I	RTC Crystal Input: 32.768 KHz crystal or oscillator input. This input is used for the internal RTC and for power-well power management logic.	
RTCX2	Y3	О	RTC Crystal Output: 32.768 KHz crystal output	
TEST	T8	I	Test.	
TPO	K20	О	Test Pin Output. Output pin for test mode.	
NC	A11-A16, B10-B14, B16, C10-C13, C16, D9-D14, E9-E13, F9-F13	P	No Connect. Reserved for LAN and USB ports 4-5 in VT8233 and VT8233C.	

Power and Ground			
Signal Name	Pin#	I/O	Signal Description
VCC33	A1, 10, B1, D16, F7, G7, 11, 14, H5-6, K1, L5-6, M20, N15, P7, 10, 12, 16, R7, 12, 14, T18, W1, 20, Y1, 11, 20	Р	I/O Power (3.3V ±5%).
VCC25	A20, B20, H15, J19, J20, K15	P	I/O Power (2.5V ±5%).
VCC	G8, G13, J6, J15, M6, M15, P8, P13	Р	Core Power. 3.3V nominal ±5% (3.465V to 3.135V). This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high. Note for motherboard designs to accommodate any of VIA's 8233 South Bridge family that this voltage is different from the VT8233 and VT8233C both of which require 2.5V VCC.
GND	(See Pin List)	P	Ground. Connect to primary motherboard ground plane.
VSUS33	N5, P5, R5, R6	Р	Suspend Power. Always available unless the mechanical switch of the power supply is turned off. If the "soft-off" state is not implemented, then this pin can be connected to VCC33. Signals powered by or referenced to this plane are: PWRGD, RSMRST#, PWRBTN#, SMBCK1/2, SMBDT1/2, GP00, SUSA# / GP01, SUSB# / GP02, SUSC#, SUSST1# / GP03, SUSCLK / GP04, GPI1, GPI2 / EXTSMI#, GPI3 / RING#, GPI4 / LID, GPI5 / BATLOW#, GPI6 / PME#, GPI7 / SMBALRT#
VBAT	W4	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)
VLVREF	G16	P	V-Link Voltage Reference (0.9V). 0.34 x VCC25 to 0.38 x VCC25.
VCCVK	J16	P	V-Link Compensation Circuit Voltage (2.5V ±5%).
USBVCC	F14-F15	P	USB Differential Output Power. Power for USB differential outputs (USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-). Connect to VSUS33 through a ferrite bead.
USBGND	E14-E15	P	USB Differential Output Ground. Connect to GND through a ferrite bead.
PLLVCC	L16	P	PLL Power. Connect to VCC through a ferrite bead.
PLLGND	M16	P	PLL Ground. Connect to GND through a ferrite bead.

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8233A. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 4. Memory Mapped Registers

FEC00000	APIC Index	(8-bit)
FEC00010	APIC Data	(32-bit)
FEC00020	APIC IRQ Pin Assertion	(8-bit)
FEC00040	APIC EOI	(8-bit)

[&]quot;APIC" = "Advanced Programmable Interrupt Controller"

Table 5. Function Summary

Bus	Device	Func	Device ID	Function
0	17 (11h)	0	3074h	Bus Control & Power Mgmt
0	17 (11h)	1	0571h	IDE Controller
0	17 (11h)	2	3038h	USB Controller Ports 0-1
0	17 (11h)	3	3038h	USB Controller Ports 2-3
0	17 (11h)	5	3059h	AC97 Audio Codec Controller
0	17 (11h)	6	3068h	MC97 Modem Codec Ctrlr

Table 6. System I/O Map

<u>Port</u>	<u>Function</u>	Actual Port Decoding
00-1F	Master DMA Controller	0000 0000 000x nnnn
20-3F	Master Interrupt Controller	0000 0000 001x xxxn
40-5F	Timer / Counter	0000 0000 010x xxnn
60-6F	Keyboard Controller	0000 0000 0110 xnxn
(60h)	KBC Data	0000 0000 0110 x0x0
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	0000 0000 0110 x1x0
70-77	RTC/CMOS/NMI-Disable	0000 0000 0111 0nnn
78-7F	-available for system use-	0000 0000 0111 1xxx
80	-reserved- (debug port)	0000 0000 1000 0000
81-8F	DMA Page Registers	0000 0000 1000 nnnn
90-91	-available for system use-	0000 0000 1001 000x
92	System Control	0000 0000 1001 0010
93-9F	-available for system use-	0000 0000 1001 nnnn
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	

Table 7. Registers

Legacy I/O Registers

Port	Master DMA Controller Registers	Default	<u>Acc</u>
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		WO
0A	Write Single Mask		WO
0B	Write Mode		WO
0C	Clear Byte Pointer FF		WO
0D	Master Clear		WO
0E	Clear Mask		WO
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	<u>Acc</u>
20	Master Interrupt Control		*
21	Master Interrupt Mask		*
20	Master Interrupt Control Shadow	_	$\mathbf{R}\mathbf{W}$
21	Master Interrupt Mask Shadow	1	RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	Default	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	<u>Default</u>	Acc
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	Default	<u>Acc</u>
70	CMOS Memory Address & NMI Disa		WO
71	CMOS Memory Data (128 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-Dh). Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

Legacy I/O Registers (continued)

<u>Port</u>	DMA Page Registers	<u>Default</u>	<u>Acc</u>
87	DMA Page – DMA Channel 0		RW
83	DMA Page – DMA Channel 1		RW
81	DMA Page – DMA Channel 2		RW
82	DMA Page – DMA Channel 3		RW
8F	DMA Page – DMA Channel 4		RW
8B	DMA Page – DMA Channel 5		RW
89	DMA Page – DMA Channel 6		RW
8A	DMA Page – DMA Channel 7		RW

Port	System Control Registers	Default	Acc
92	System Control		RW

Port	Slave Interrupt Controller Regs	<u>Default</u>	<u>Acc</u>
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow	_	RW
A1	Slave Interrupt Mask Shadow		RW

^{*} RW accessible if shadow registers are disabled

Port	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		WO
D6	Write Mode		WO
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		WO
DE	Read / Write Mask		RW

Keyyboard / Mouse Wakeup Registers (I/O Space)

Port	KB / Mouse Wakeup Registers	Default	Acc
002E	Keyboard / Mouse Wakeup Index †	00	RW
002F	Keyboard / Mouse Wakeup Data †	00	RW

[†] Keyboard / Mouse Wakeup registers (index values E0-EF defined below) are accessible if Function 0 PCI Configuration register Rx51[1] = 1.

<u>Keyboard / Mouse Wakeup Registers (Indexed via Port 2E/2F)</u>

Offset	Reserved	<u>Default</u>	Acc
00-DF	-reserved-		RO

Offset	KB / Mouse Wakeup (Rx51[1]=1)	<u>Default</u>	Acc
E0	Keyboard / Mouse Wakeup Enable	08	$\mathbf{R}\mathbf{W}$
E1	Keyboard Wakeup Scan Code Set 0	F0	$\mathbf{R}\mathbf{W}$
E2	Keyboard Wakeup Scan Code Set 1	00	$\mathbf{R}\mathbf{W}$
E3	Keyboard Wakeup Scan Code Set 2	00	$\mathbf{R}\mathbf{W}$
E4	Keyboard Wakeup Scan Code Set 3	00	$\mathbf{R}\mathbf{W}$
E5	Keyboard Wakeup Scan Code Set 4	00	\mathbf{RW}
E6	Keyboard Wakeup Scan Code Set 5	00	\mathbf{RW}
E7	Keyboard Wakeup Scan Code Set 6	00	RW
E8	Keyboard Wakeup Scan Code Set 7	00	RW
E9	Mouse Wakeup Scan Code Set 1	09	RW
EA	Mouse Wakeup Scan Code Set 2	00	RW
EB	Mouse Wakeup Scan Code Mask	00	RW
EC-EF	-reserved-	_	RO

Game Port Registers (I/O Space)

Offset	Game Port (200-20F typical)	<u>Default</u>	Acc
0	-reserved-	00	_
1	Game Port Status		RO
1	Start One-Shot		WO
2-F	-reserved-	00	

Memory Mapped Registers - IOAPIC

Address	APIC Index / Data	Default	Acc
FEC00000	APIC Register Index	00	RW
FEC00001-0F	-reserved-	00	
FEC00010-13	APIC Register Data	0000 0000	RW
FEC00014-1F	-reserved-	00	
FEC00020	APIC IRQ Pin Assertion	XX	WO
FEC00021-3F	-reserved-	00	
FEC00040	APIC EOI	XX	WO
FEC00041-FF	-reserved-	00	_

Offset	APIC Registers	Default	Acc
0	APIC ID	0000 0000	RW
1	APIC Version	0017 8002	RO
2	APIC Arbitration	0000 0000	RO
3	Boot Configuration	0000 0000	RW
4-F	-reserved-	0000 0000	_
11-10	I/O Redirection– AIRQ0	xxx1xxxx xxxxxxx	RW
13-12	I/O Redirection– AIRQ1	xxx1xxxx xxxxxxxx	RW
15-14	I/O Redirection– AIRQ2	xxx1xxxx xxxxxxxx	RW
17-16	I/O Redirection– AIRQ3	xxx1xxxx xxxxxxx	RW
19-18	I/O Redirection– AIRQ4	xxx1xxxx xxxxxxx	RW
1B-1A	I/O Redirection– AIRQ5	xxx1xxxx xxxxxxx	RW
1D-1C	I/O Redirection– AIRQ6	xxx1xxxx xxxxxxx	RW
1F-1E	I/O Redirection– AIRQ7	xxx1xxxx xxxxxxx	RW
21-20	I/O Redirection– AIRQ8	xxx1xxxx xxxxxxx	RW
23-20	I/O Redirection– AIRQ9	xxx1xxxx xxxxxxx	RW
25-24	I/O Redirection– AIRQ10	xxx1xxxx xxxxxxx	RW
27-26	I/O Redirection– AIRQ11	xxx1xxxx xxxxxxx	RW
29-28	I/O Redirection– AIRQ12	xxx1xxxx xxxxxxx	RW
2B-2A	I/O Redirection– AIRQ13	xxx1xxxx xxxxxxx	RW
2D-2C	I/O Redirection– AIRQ14	xxx1xxxx xxxxxxxx	RW
2F-2E	I/O Redirection– AIRQ15	xxx1xxxx xxxxxxxx	RW
31-30	I/O Redirection– AIRQ16	xxx1xxxx xxxxxxxx	RW
33-32	I/O Redirection– AIRQ17	xxx1xxxx xxxxxxx	RW
35-34	I/O Redirection– AIRQ18	xxx1xxxx xxxxxxxx	RW
37-36	I/O Redirection– AIRQ19	xxx1xxxx xxxxxxxx	RW
39-38	I/O Redirection– AIRQ20	xxx1xxxx xxxxxxxx	RW
3B-3A	I/O Redirection– AIRQ21	xxx1xxxx xxxxxxxx	RW
3D-3C	I/O Redirection– AIRQ22	xxx1xxxx xxxxxxxx	RW
3F-3E	I/O Redirection– AIRQ23	xxx1xxxx xxxxxxxx	RW
40-4F	-reserved-	0000 0000	_

Note: The "I/O Redirection" registers are 64-bit registers, so each uses two consecutive index locations, with the lower 32 bits at the even index and the upper 32 bits at the odd index.

<u>Device 17 Function 0 Registers – Bus Control & Power Management</u>

Configuration Space Bus Control & PM Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID (VT8233 "CE" = 3074)	3147	RO
5-4	Command	0087	$\mathbf{R}\mathbf{W}$
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
Α	Sub Class Code	01	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	_
D	-reserved- (latency timer)	00	_
Е	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
30-33	-reserved- (expan. ROM base addr)	00	
34-3B	-reserved- (unassigned)	00	
3C	-reserved- (interrupt line)	00	
3D	-reserved- (interrupt pin)	00	
3E	-reserved- (min gnt)	00	
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	Default	Acc
40	ISA Bus Control	00	RW
41	BIOS ROM Decode Control	00	RW
42	Line Buffer Control	00	RW
43	Delay Transaction Control	00	RW
44-47	-reserved-	00	_
48	Read Pass Write Control	00	RW
49	CCA Control	00	RW
4A-4B	-reserved-	00	_

Offset	Miscellaneous Control	<u>Default</u>	Acc
4C	IDE Interrupt Routing	00	RW
	VT8233 "CE":		
4D	External APIC IRQ Output Control	00	RW
4D	VT8233A: -reserved-	00	_
4E	Internal RTC Test Mode	00	RW
4F	PCI Bus & CPU Interface Control	00	RW

Offset	Function Control	<u>Default</u>	Acc
50	Function Control 1	09	RW
51	Function Control 2	0D	RW

Offset	Serial IRQ, LPC & PC/PCI Control	Default	Acc
52	Serial IRQ & LPC Control	00	RW
53	-reserved-	00	RW

Offse	Plug and Play Control	Default	Acc
54	PCI Interrupt Polarity	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW

Offset	GPIO and Miscellaneous Control	<u>Default</u>	Acc
58	Miscellaneous Control 0	40	RW
59	Miscellaneous Control 1	00	RW
5A	DMA Bandwidth Control	00	RW
5B	-reserved-	00	_

Offset	Programmable Chip Select Control	<u>Default</u>	<u>Acc</u>
5D-5C	PCS0# I/O Port Address	0000	RW
5F-5E	PCS1# I/O Port Address	0000	RW
61-60	PCS2# I/O Port Address	0000	RW
63-62	PCS3# I/O Port Address	0000	RW
64	PCS[1-0]# I/O Port Address Mask	00	RW
65	PCS[3-2]# I/O Port Address Mask	00	RW
66	Programmable Chip Select Control	00	RW
67	Output Control	04	RW
68-6B	-reserved-	00	

Offset	<u>Miscellaneous</u>	<u>Default</u>	Acc
6C	ISA Positive Decoding Control 1	00	RW
6D	ISA Positive Decoding Control 2	00	RW
6E	ISA Positive Decoding Control 3	00	RW
6F	ISA Positive Decoding Control 4	00	RW
71-70	Sub Vendor ID Backdoor	00	RW
73-72	Sub Device ID Backdoor	00	RW
70-78	-reserved-	00	
79	PnP IRQ/DRQ Test (do not prog)	00	RW
7A	IDE / USB Test (do not program)	00	RW
7B	PLL Test (do not program)	00	RW
7C	I/O Pad Control	00	RW
7D-7F	-reserved-	00	_

Configuration Space Power Management Registers

Offset	Power Management	Default	Acc
80	General Configuration 0	00	RW
81	General Configuration 1	04	RW
82	ACPI Interrupt Select	00	RW
83	-reserved-	00	
85-84	Primary Interrupt Channel	0000	RW
87-86	Secondary Interrupt Channel	0000	RW
8B-88	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
8C	Host Bus Power Mgmt Control	00	RW
8D	Throttle / Clock Stop Control	00	RW
8E-8F	-reserved-	00	
93-90	GP Timer Control	0000 0000	RW
94	Power Well Control	00	RW
95	Miscellaneous Control	00	RW
96	Power On / Reset Control	00	RW
97	-reserved-	00	
98	GP2 / GP3 Timer Control	00	RW
99	GP2 Timer	00	RW
9A	GP3 Timer	00	RW
9B-A0	-reserved-	00	_
A1	Write value for Offset 9 (Prog Intfc)	00	wo
A2	Write value for Offset A (Sub Class)	00	WO
A3	Write value for Offset B (Base Class)	00	wo
A4-BF	-reserved-	00	_
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power Management Capability CSR	0000 0000	RW
C8-CF	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	Default	Acc
D1-D0	SMBus I/O Base (16 Bytes)	0001	RW
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-DF	-reserved-	00	_

Configuration Space General Purpose I/O Registers

Offset	General Purpose I/O	<u>Default</u>	Acc
E0	GPI Inversion Control	00	RW
E1	GPI SCI / SMI Select	00	RW
E2-E3	-reserved-	00	_
E4	GPO Pin Select	00	RW
E5	GPIO I/O Select 1	00	RW
E6	GPIO I/O Select 2	00	RW
E7	GPO Output Type	00	RW
E8-FF	-reserved-	00	_

I/O Space Power Management Registers

Offset	Basic Control / Status Registers	Default	Acc
1-0	Power Management Status	0000	\mathbf{WC}
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	_

Offset	Processor Registers	<u>Default</u>	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_

Offset	General Purpose Registers	<u>Default</u>	<u>Acc</u>
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_

Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	_
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	_

Offset	General Purpose I/O Registers	Default	Acc
40	Extended I/O Trap Status	00	WC
41	-reserved-	00	_
42	Extended I/O Trap Enable	00	RW
43-44	-reserved-	00	_
45	SMI / IRQ / Resume Status	00	RO
46-47	-reserved-	00	_
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	FFFFCFFF	RW
50	GPI Pin Change Status	00	RW
51	-reserved-	00	_
52	GPI Pin Change SCI/SMI Select	00	RW
53-57	-reserved-	00	_
59-58	I/O Trap PCI I/O Address	0000	RO
5A	I/O Trap PCI Command / Byte Ena	00	RO
5B	-reserved-	00	_
5C	CPU Performance Control	00	RW
5D-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	<u>Default</u>	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
E-F	-reserved-	00	_

<u>Device 17 Function 1 Registers – IDE Controller</u>

Configuration Space IDE Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0290	$\mathbf{R}\mathbf{W}$
8	Revision ID	nn	RO
9	Programming Interface	85	RW
Α	Sub Class Code	01	RO
В	Base Class Code	01	RO
C-F	-reserved-	00	_
13-10	Base Address – Pri Data / Command	000001F1	RW
17-14	Base Address – Pri Control / Status	000003F5	RW
1B-18	Base Address – Sec Data / Command	00000171	RW
1F-1C	Base Address – Sec Control / Status	00000375	RW
23-20	Base Address – Bus Master Control	0000CC01	\mathbf{RW}
24-2B	-reserved- (unassigned)	00	—
2D-2C	Sub Vendor ID	0000	RO
2F-2E	Sub Device ID	0000	RO
30-33	-reserved- (expan ROM base addr)	00	
34	Capability Pointer	C0	RO
35-3B	-reserved- (unassigned)	00	
3C	Interrupt Line	0E	RO
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	Default	Acc
40	IDE Chip Enable	08	RW
41	IDE Configuration I	02	RW
42	IDE Configuration II	C0	RW
43	IDE FIFO Configuration	3A	RW
44	IDE Miscellaneous Control 1	08	RW
45	IDE Miscellaneous Control 2	03	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E	Sec Non-1F0 Port Access Timing	B6	RW
4F	Pri Non-1F0 Port Access Timing	B6	RW

Configuration Space IDE-Specific Registers (continued)

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
53-50	UltraDMA Extended Timing Control	07070707	RW
54	UltraDMA FIFO Control	04	RW
55-5F	-reserved-	00	
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	_
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	01	RW
72-77	-reserved-	00	_
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	01	RW
7A-7F	-reserved-	00	_
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	_
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-BF	-reserved-	00	_
C3-C0	Power Management Capabilities	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-CF	-reserved-	00	_

Offset	IDE Back Door Registers	Default	Acc
D0	Back Door – Revision ID	06	RW
D1	-reserved-	00	_
D3-D2	Back Door – Device ID	0571	RW
D5-D4	Back Door – Sub Vender ID	0000	RW
D7-D6	Back Door – Sub Device ID	0000	RW
D8-FF	-reserved-	00	_

I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant

Offset	IDE I/O Registers	<u>Default</u>	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	
2	Primary Channel Status	00	WC
3	-reserved-	00	_
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	_
A	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

<u>Device 17 Function 2 Registers – USB Ports 0-1</u>

Configuration Space USB Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	$\mathbf{R}\mathbf{W}$
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C-1F	-reserved-	00	
23-20	USB I/O Register Base Address	00000301	RW
24-2B	-reserved-	00	
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
30-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	10	RW
42-43	-reserved-	00	
44-45	-reserved- (test, do not program)	00	RW
46-47	-reserved- (test)	00	RO
48	USB Miscellaneous Control 3	00	RW
49	MIA Analog Control	00	RW
4A-5F	-reserved-	00	
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

<u>I/O Registers – USB Controller</u>

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	_

Device 17 Function 3 Registers – USB Ports 2-3

Configuration Space USB Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C-1F	-reserved-	00	_
23-20	USB I/O Register Base Address	00000301	RW
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
30-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	<u>Acc</u>
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	10	RW
42-43	-reserved-	00	
44-45	-reserved- (test, do not program)	00	RW
46-47	-reserved- (test)	00	RO
48	USB Miscellaneous Control 3	00	RW
49	MIA Analog Control	00	RW
4A-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

I/O Registers - USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 2 Status / Control	0080	WC
13-12	Port 3 Status / Control	0080	WC
14-1F	-reserved-	00	_

Device 17 Function 5 & 6 Registers – AC/MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3059	RO
5-4	Command	0000	RW
7-6	Status	0210	RO
8	Revision ID	40	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
C-F	-reserved-	00	
13-10	Base Address 0 - SGD Control/Status	0000 0001	$\mathbf{R}\mathbf{W}$
17-14	Base Address 1 (reserved)	0000 0000	
1B-18	Base Address 2 (reserved)	0000 0000	_
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	l
27-24	Base Address 5 (reserved)	0000 0000	l
28-29	-reserved-	00	l
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
33-30	Expansion ROM (reserved)	0000 0000	
34	Capture Pointer	C0	$\mathbf{R}\mathbf{W}$
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	-reserved-	00	
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	_
48	Value Change Rate Control	00	RW
49	S/PDIF Control	00	RW
4A-BF	-reserved-	00	_
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-FF	-reserved-	00	_

Function 6 Configuration Space MC97 Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RW
7-6	Status	0200	RO
8	Revision ID	78	RO
9	Programming Interface	00	RO
Α	Sub Class Code	80	RO
В	Base Class Code	07	RO
C-F	-reserved-	00	_
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 (reserved)	0000 0000	
1B-18	Base Address 2 (reserved)	0000 0000	
1F-1C	Base Address 3 (reserved)	0000 0000	
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	
28-29	-reserved-	00	
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
33-30	Expansion ROM (reserved)	0000 0000	
34	Capture Pointer	D0	\mathbf{RW}
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RO
43	-reserved-	00	
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
48	Value Change Rate Control	00	RO
49	S/PDIF Control	00	RO
4A-CF	-reserved-	00	_
D3-D0	Power Management Capability	0002 0001	RO
D7-D4	Power State	0000 0000	RW
D8-FF	-reserved-	00	—

Function 5 I/O Base 0 Registers - AC97 Audio S/G DMA

Offset	AC97 SGD I/O Registers	<u>Default</u>	<u>Acc</u>
00-2F	-reserved- (8233/8233C Channels0-2)	00	
30	SGD Channel 3 Status	00	WC
31	SGD Channel 3 Control	00	RW
32	SGD Channel 3 Left Volume	3F	RW
33	SGD Channel 3 Right Volume	3F	RW
37-34	SGD Channel 3 Table Pointer Base	0000 0000	WR
	SGD Channel 3 Current Address		RD
3B-38	Stop Index / Data Type / Sample Rate	FF0F FFFF	RW
3F-3C	SGD Channel 3 Current Count	0000 0000	RO
40	SGD 3D Channel Status	00	WC
41	SGD 3D Channel Control	00	RW
42	SGD 3D Channel Format	00	RW
43	SGD 3D Channel Scratch	00	RW
47-44	SGD 3D Channel Table Pointer Base	0000 0000	WR
	SGD 3D Channel Current Address		RD
4B-48	SGD 3D Channel Stop Index	FF00 0000	RW
4F-4C	SGD 3D Channel Current Count	0000 0000	RO
50-5F	-reserved-	00	
60	SGD Write Channel 0 Status	00	WC
61	SGD Write Channel 0 Control	00	RW
62	SGD Write Channel 0 Format	00	RW
63	SGD Write Channel 0 Select	00	RW
67-64	SGD Write Channel 0 Table Ptr Base	0000 0000	WR
	SGD Write Channel 0 Current Addr		RD
6B-68	SGD Write Channel 0 Stop Index	FF00 0000	RW
6F-6C	SGD Write Channel 0 Current Count	0000 0000	RO
70-7F	-reserved- (8233/8233C Write Chan1)	00	_

Offset	AC97 / Audio Codec I/O Registers	<u>Default</u>	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Global IRQ Shadow	0000 0000	RO
8B-88	Modem Codec GPI Intr Status / GPIO	0000 0000	RO
8F-8C	Modem Codec GPI Interrupt Enable	0000 0000	RO
90-9F	Shadow PCI Config Registers 40-4F	n/a	RO
A0-FF	-reserved-	00	

Function 6 I/O Base 0 Registers - MC97 Modem S/G DMA

Offset	MC97 SGD I/O Registers	<u>Default</u>	<u>Acc</u>
0-7	-reserved-	00	_
8-F	-reserved-	00	_
10-17	-reserved-	00	_
18-1F	-reserved-	00	_
20-27	-reserved-	00	
28-2F	-reserved-	00	
30-37	-reserved-	00	_
38-3F	-reserved-	00	—
40	SGD Read Channel Status	00	WC
41	SGD Read Channel Control	00	RW
42	SGD Read Channel Type	00	RW
43	-reserved-	00	_
47-44	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
4B-48	-reserved- (Test)	0000 0000	RO
4F-4C	SGD Read Channel Current Count	0000 0000	RO
50	SGD Write Channel Status	00	WC
51	SGD Write Channel Control	00	RW
52	SGD Write Channel Type	00	RW
53	-reserved-	00	_
57-54	SGD Write Channel Table Ptr Base	0000 0000	WR
	SGD Write Channel Current Address		RD
5B-58	Reserved (Test)	0000 0000	RO
5F-5C	SGD Write Channel Current Count	0000 0000	RO
60-7F	-reserved-	00	_

Offset	AC97 / Modem Codec I/O Registers	<u>Default</u>	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Global IRQ Shadow	0000 0000	RO
8B-88	Modem Codec GPI Intr Status / GPIO	0000 0000	WC
8F-8C	Modem Codec GPI Interrupt Enable	0000 0000	RW
90-9F	Shadow PCI Config Registers 40-4F	n/a	RO
A0-FF	-reserved-	00	_

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7-6	Reserved always reads 0
5	Timer/Counter 2 OutputRO
	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3	Reserved RW, default=0
2	SERR# Check Disable
	0 Enable (Check SERR#)default
	1 Disable (Don't Check SERR#)
1	Speaker Enable
	0 Disabledefault
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 Enable
	0 Disabledefault
	1 Enable Timer/Counter 2
Port 92h - System ControlRW	
7-6	
7-0	0 Offdefault
	1-3 On
5-4	Reserved always reads 0
3	Power-On Password Bytes Inaccessabledefault=0
2	Reserved always reads 0
1	A20 Address Line Enable
	0 A20 disabled / forced 0 (real mode) default
	1 A20 address line enabled
0	High Speed Reset
	0 Normal
	1 Briefly pulse system reset to switch from
	protected mode to real mode

Port 60 - Keyboard Controller Input BufferWO

Keyboard Controller I/O Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" that control pins dedicated to specific functions. In the integrated version, connections are hard wired as listed below. Outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

Bit Input Port

- 0 Keyboard Data In
- 1 Mouse Data In

Bit Output Port

- 0 System Reset (1 = Execute Reset)
- 1 Gaste A20 (1 = A20 Enabled)
- 2 Mouse Data Out
- 3 Mouse Clock Out
- 6 Keyboard Clock Out
- 7 Keyboard Data Out

Bit Test Port

- 0 Keyboard Clock In
- 1 Mouse Clock In

Hardwired Internal Connections

Keyboard Data Out (Open Collector) <=> Keyboard Data In Keyboard Clock Out (Open Collector) <=> Keyboard Clk In

Mouse Data Out (Open Collector) <=> Mouse Data In Mouse Clock Out (Open Collector) <=> Mouse Clock In

Keyboard OBF Interrupt => IRQ1

Mouse OBF Interrupt => IRQ12

Input / Output / Test Port Command Codes

C0h transfers input port data to the output buffer.

D0h copies output port values to the output buffer.

E0h transfers test input port data to the output buffer.

The above definitions are provided for reference only as actual keyboard and mouse control is no longer performed bit-by bit using the above ports but controlled directly by keyboard / mouse controller internal logic. Data is sent and received using the command codes listed on the following page.

Omy w	ite to port 60h if port 64h bit- $1 = 0$ (1=full).
	- Keyboard Controller Output BufferRO ad from port 60h if port 64h bit-0 = 1 (0=empty).
•	- Keyboard / Mouse StatusRO
7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received
	from keyboard / mouse
6	General Receive / Transmit Timeout
	0 No errordefault
	1 Error
5	Mouse Output Buffer Full
	0 Mouse output buffer emptydefault
	1 Mouse output buffer holds mouse data
4	Keylock Status 0 Locked
	0 Locked 1 Free
3	Command / Data
3	0 Last write was data writedefault
	1 Last write was command write
2	System Flag
	0 Power-On Defaultdefault
	1 Self Test Successful
1	Input Buffer Full
	0 Input Buffer Emptydefault
	1 Input Buffer Full
0	Keyboard Output Buffer Full
	0 Keyboard Output Buffer Emptydefault
	1 Keyboard Output Buffer Full
KBC C	ontrol Register(R/W via Commands 20h/60h)
_	
7	Reserved always reads 0
6	PC Compatibility
=	PC Compatibility 0 Disable scan conversion
=	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-
=	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible
6	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
=	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
6	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default
5	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable
6	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface
5	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface
5	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default
5	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable
5 4 3	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2
5 4 3	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2- byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default 1 Enable - Generate interrupt on IRQ12 when
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default 1 Enable - Generate interrupt on IRQ12 when mouse data comes into output buffer
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default 1 Enable - Generate interrupt on IRQ12 when mouse data comes into output buffer Keyboard Interrupts
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default 1 Enable - Generate interrupt on IRQ12 when mouse data comes into output buffer Keyboard Interrupts 0 Disable default
5 4 3 2	PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Interface 0 Enable default 1 Disable Keyboard Interface 0 Enable default 1 Disable Reserved always reads 0 System Flag default=0 This bit may be read back as status register bit-2 Mouse Interrupts 0 Disable default 1 Enable - Generate interrupt on IRQ12 when mouse data comes into output buffer Keyboard Interrupts

Port 64 - Keyboard / Mouse Command......WO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT8233A are listed in the table below.

Table 8. Keyboard Controller Command Codes

<u>Code</u>	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)
21-3Fh	Read SRAM Data (next byte is Data Byte)
60h	Write Control Byte (next byte is Control Byte)
61-7Fh	Write SRAM Data (next byte is Data Byte)
A1h	Output Keyboard Controller Version #
A4h	Test if Password is installed
	(always returns F1h to indicate not installed)
A7h	Disable Mouse Interface
A8h	Enable Mouse Interface
A9h	Mouse Interface Test (puts test results in port 60h)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,
	3=data stuck lo, 4=data stuck hi, FF=general error)
AAh	KBC self test (returns 55h if OK, FCh if not)
ABh	Keyboard Interface Test (see A9h Mouse Test)
ADh	Disable Keyboard Interface
AEh	Enable Keyboard Interface
AFh	Return Version #
C0h	Read Input Port (read input data to output buffer)
C1h	Poll Input Port (read Mouse Data In
	continuously to status bit 5
C8h	Unblock Mouse Output (use before D1 to change
	active mode)
C9h	Reblock Mouse Output (protection mechanism
	for D1)
CAh	Read Mode (output KBC mode info to port 60
	output buffer: bit-0=0 if ISA, 1 if PS/2)
D0h	Read Output Port (copy output port values
	to port 60)
D1h	Write Output Port (data byte following is written to
	keyboard output port as if it came from keyboard)
D2h	Write Keyboard Output Buffer & clear status bit-5
	(write following byte to keyboard)
D3h	Write Mouse Output Buffer & set status bit-5 (write
	following byte to mouse; put value in mouse input
	buffer so it appears to have come from the mouse)
D4h	Write Mouse (write following byte to mouse)
E0h	Read Keyboard Clock In and Mouse Clock In
	(return in bits 0-1 respectively of response byte)
Exh	Set Mouse Clock Out per command bit 3
	Set Mouse Data Out per command bit 2
	Set Gate A20 per command bit 1
Fxh	Pulse Mouse Clock Out low for 6usec per cmd bit 3
	Pulse Mouse Data Out low for 6usec per cmd bit 2
	Pulse Gate A20 low for 6usec per command bit 1
	Pulse System Reset low for 6usec per cmd bit 0
C1h C8h C9h CAh D0h D1h D2h D3h D4h E0h Exh	Poll Input Port (read Mouse Data In continuously to status bit 5 Unblock Mouse Output (use before D1 to change active mode) Reblock Mouse Output (protection mechanism for D1) Read Mode (output KBC mode info to port 60 output buffer: bit-0=0 if ISA, 1 if PS/2) Read Output Port (copy output port values to port 60) Write Output Port (data byte following is written to keyboard output port as if it came from keyboard) Write Keyboard Output Buffer & clear status bit-5 (write following byte to keyboard) Write Mouse Output Buffer & set status bit-5 (write following byte to mouse; put value in mouse input buffer so it appears to have come from the mouse) Write Mouse (write following byte to mouse) Read Keyboard Clock In and Mouse Clock In (return in bits 0-1 respectively of response byte) Set Mouse Clock Out per command bit 3 Set Mouse Data Out per command bit 1 Pulse Mouse Clock Out low for 6usec per cmd bit 3 Pulse Mouse Data Out low for 6usec per cmd bit 2 Pulse Gate A20 low for 6usec per command bit 1

All other codes not listed are undefined.

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0 Register Name 0000 0000 000x 0000 Ch 0 Base / Current Address RW 0000 0000 000x 0001 Ch 0 Base / Current Count RW0000 0000 000x 0010 Ch 1 Base / Current Address RW0000 0000 000x 0011 Ch 1 Base / Current Count RW 0000 0000 000x 0100 Ch 2 Base / Current Address RWCh 2 Base / Current Count 0000 0000 000x 0101 RW Ch 3 Base / Current Address 0000 0000 000x 0110 RW Ch 3 Base / Current Count 0000 0000 000x 0111 RW0000 0000 000x 1000 Status / Command RW0000 0000 000x 1001 Write Request WO Write Single Mask 0000 0000 000x 1010 WO Write Mode 0000 0000 000x 1011 WO 0000 0000 000x 1100 Clear Byte Pointer F/F WO 0000 0000 000x 1101 **Master Clear** WO 0000 0000 000x 1110 WO Clear Mask 0000 0000 000x 1111 R/W All Mask Bits RW

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0 Register Name

RW RW
DW
IX VV
\mathbf{RW}
\mathbf{RW}
$\mathbf{R}\mathbf{W}$
$\mathbf{R}\mathbf{W}$
\mathbf{RW}
$\mathbf{R}\mathbf{W}$
WO
W

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 - Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 - Channel 1 Byte CountRO
Port 4 - Channel 2 Base AddressRO
Port 5 - Channel 2 Byte CountRO
Port 6 - Channel 3 Base AddressRO
Port 7 - Channel 3 Byte CountRO
Port 8 – 1 st Read Channel 0-3 Command RegisterRO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 – 3 rd Read Channel 0 Mode RegisterRO
Port 8 –4 th Read Channel 1 Mode RegisterRO
Port 8 –5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
Port F - Channel 0-3 Read All MaskRO
Port C4 -Channel 5 Base AddressRO
Port C6 – Channel 5 Byte Count
Port C8 – Channel 6 Base Address
Port CA – Channel 6 Byte Count
Port CC - Channel 7 Base Address RO
Port CE -Channel 7 Byte CountRO
Port D0 –1 st Read Channel 4-7 Command RegisterRO
Port D0 –2 nd Read Channel 4-7 Request RegisterRO
Port D0 –3 rd Read Channel 4 Mode RegisterRO
Port D0 –4 th Read Channel 5 Mode RegisterRO
Port D0 –5 th Read Channel 6 Mode RegisterRO
Port D0 –6 th Read Channel 7 Mode RegisterRO
_
Port DE -Channel 4-7 Read All MaskRO

DΩ

Interrupt Controller I/O Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O	Address	Bits	15-0	Register Name

0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	\mathbf{RW}
0000 0000 101x xxx1	Slave Interrupt Mask	\mathbf{RW}

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20 - Master Interrupt Control Snadow RO			
Port A	0 - Slave Interrupt Control Shadow	RO	
7	Reserved	always reads 0	
6	OCW3 bit 2 (POLL)	·	
5	OCW3 bit 0 (RIS)		
4	OCW3 bit 5 (SMM)		

- 3 OCW2 bit 7 (R)
- 2 ICW4 bit 4 (SFNM) 1 ICW4 bit 1 (AEOI)
- 0 ICW1 bit 3 (LTIM)

Port 21	- Master Int	<u>terrupt Mask Shadov</u>	<u>v RO</u>
Port A1	- Slave Inte	rrupt Mask Shadow	RO
7-5	Reserved		always reads 0

4-0 T7-T3 of Interrupt Vector Address

<u>Timer / Counter Registers</u>

Ports 40-43 - Timer / Counter I/O Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	RW
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

CMOS /	RTC	! I/O	Registers
--------	-----	-------	-----------

Port 70	- CMOS AddressRW
7	NMI DisableRW
	0 Enable NMI Generation. NMI is asserted on
	encountering SERR# on the PCI bus.
	1 Disable NMI Generation default
6-0	CMOS Address (lower 128 bytes)RW
Port 71	- CMOS DataRW
7-0	CMOS Data (128 bytes)
Note:	Ports 70-71 may be accessed if Device 17 Function 0 Rx51 bit-3 is set to one to select the internal RTC. If Rx51 bit-3 is set to zero, accesses to ports 70-71 will be directed to an external RTC.
Port 74	- CMOS AddressRW
7-0	CMOS Address (256 bytes)RW

7-0 CMOS Address (256 bytes)......RW

Y-0 CNOS Data (230 bytes)

Note: Ports 74-75 may be accessed only if Rx4E bit-3 (Port 74/75 Access Enable) is set to one to enable port 74/75 access.

Note: Ports 70-71 are compatible with PC industrystandards and may be used to access the lower 128 bytes of the 256-byte on-chip CMOS RAM. Ports 74-75 may be used to access the full on-chip extended 256-byte space in cases where the on-chip RTC is disabled.

Note: The system Real Time Clock (RTC) is part of the "CMOS" block. The RTC control registers are located at specific offsets in the CMOS data area (0-0Dh and 7D-7Fh). Detailed descriptions of CMOS / RTC operation and programming can be obtained from the VIA VT82887 Data Book or numerous other industry publications. For reference, the definition of the RTC register locations and bits are summarized in the following table:

Offset	<u>Description</u>	E	Binary Range	BCD Range
00	Seconds		00-3Bh	00-59h
01	Seconds Alarm		00-3Bh	00-59h
02	Minutes		00-3Bh	00-59h
03	Minutes Alarm		00-3Bh	00-59h
04	Hours	am 12hr:	01-1Ch	01-12h
		pm 12hr:	81-8Ch	81-92h
		24hr:	00-17h	00-23h
05	Hours Alarm	am 12hr:	01-1Ch	01-12h
		pm 12hr:	81-8Ch	81-92h
		24hr:	00-17h	00-23h
06	Day of the Wee	k Sun=1:	01-07h	01-07h
07	Day of the Mon	th	01-1Fh	01-31h
08	Month		01-0Ch	01-12h
09	Year		00-63h	00-99h

0A	Regist	<u>ter A</u>	
	7	UIP	Update In Progress
	6-4	DV2-0	Divide (010=ena osc & keep time)
	3-0	RS3-0	Rate Select for Periodic Interrupt

7	SET	Inhibit Update Transfers
6	PIE	Periodic Interrupt Enable
5	AIE	Alarm Interrupt Enable
4	UIE	Update Ended Interrupt Enable
3	SQWE	No function (read/write bit)
2	\mathbf{DM}	Data Mode (0=BCD, 1=binary)
1	24/12	Hours Byte Format (0=12, 1=24)
0	DSE	Daylight Savings Enable

0C	Regist	er C	
	7	IRQF	Interrupt Request Flag
	6	PF	Periodic Interrupt Flag
	5	AF	Alarm Interrupt Flag
	4	UF	Update Ended Flag
	3-0	0	Unused (always read 0)

0B

Register B

0D	Regist	er D	
	7	VRT	Reads 1 if VBAT voltage is OK
	6-0	0	Unused (always read 0)

0E-7C Software-Defined Storage Registers (111 Bytes)

<u>Offset</u>	Extended Functions	Binary Range	BCD Range
7D	Date Alarm	01-1Fh	01-31h
7E	Month Alarm	01-0Ch	01-12h
7F	Century Field	13-14h	19-20h

80-FF Software-Defined Storage Registers (128 Bytes)

Table 9. CMOS Register Summary

Keyboard / Mouse Wakeup Index / Data Registers

The Keyboard / Mouse Wakeup registers are accessed by performing I/O operations to / from an index / data pair of registers in system I/O space at port addresses 2Eh and 2Fh. The registers accessed using this mechanism are used to initialize Keyboard / Mouse Wakeup functions at index values in the range of E0-EF.

Keyboard / Mouse Wakeup initialization is accomplished in three steps:

- 1) Enter initialization mode (set Function 0 Rx51[1] = 1)
- 2) Initialize the chip
 - a) Write index to port 2Eh
 - b) Read / write data from / to port 2Fh
 - c) Repeat a and b for all desired registers
- 3) Exit initialization mode (set Function 0 Rx51[1] = 0)

Port 2Eh - Keyboard Wakeup IndexRW

7-0 **Index Value**

Function 0 PCI configuration space register Rx51[1] must be set to 1 to enable access to the configuration registers.

Port 2Fh - Keyboard Wakeup DataRW

Data Value

Keyboard / Mouse Wakeup Registers

These registers are accessed via the port 2E / 2F index / data register pair with Function 0 Rx51[1] = 1 using the indicated index values below

Index E0 – Keyboard / Mouse Wakeup Enable (08h)RW 7-5always reads 0 4 **Reserved (Do Not Program)**......default = 03 Win98 Keyboard Power Key Wake-up 0 Disable Enable.....default 2 Password Wake-up 0 Disable default 1 Enable 1 PS/2 Mouse Wake-up 0 Disable default 1 Enable **Keyboard Wake-up** 0 Disabledefault

Index E1 – Keyboard Wakeup Scan Code Set 0 (F0h) RW
7-0 Keyboard Wakeup First Scan Code def = F01
Index E2 – Keyboard Wakeup Scan Code Set 1 (00h) RW
7-0 Keyboard Wakeup Second Scan Code def = 001
Index E3 – Keyboard Wakeup Scan Code Set 2 (00h) RW
7-0 Keyboard Wakeup Third Scan Code def = 001
Index E4 - Keyboard Wakeup Scan Code Set 3 (00h) RW
7-0 Keyboard Wakeup Fourth Scan Codedef = 001
Index E5 - Keyboard Wakeup Scan Code Set 4 (00h) RV
7-0 Keyboard Wakeup Fifth Scan Codedef = 001
Index E6 – Keyboard Wakeup Scan Code Set 5 (00h) RV
7-0 Keyboard Wakeup Sixth Scan Codedef = 001
Index E7 – Keyboard Wakeup Scan Code Set 6 (00h) RW
7-0 Keyboard Wakeup Seventh Scan Code def = 001
Index E8 - Keyboard Wakeup Scan Code Set 7 (00h) RW
7-0 Keyboard Wakeup Eighth Scan Codedef = 001
Index E9 -Mouse Wakeup Scan Code Set 1 (09h) RV
7-0 Mouse Wakeup Scan Code Set 1 def = 091
Index EA – Mouse Wakeup Scan Code Set 2(00h) RV
7-0 Mouse Wakeup Scan Code Set 2 def = 000
•
Index EB -Mouse Wakeup Scan Code Mask (00h) RW
7-0 Mouse Wakeup Scan Code Maskdef = 001
7-0 Mouse Wancup Scall Code Maskdc1 - 001

Enable

Memory Mapped I/O APIC Registers

Memor	ry Address FEC00000 – APIC IndexRW
7-0	APIC Index default = 00h
	8-bit pointer to APIC registers.
Memor	ry Address FEC00013-10 – APIC DataRW
31-0	APIC Data default = 0000 0000h
	Data for the APIC register pointed to by the APIC
	index
Memor	ry Address FEC00020 – APIC IRQ Pin AssertionWO
7-5	Reserved always reads 0
4-0	APIC IRQ Numberdefault undefined
	IRQ # for this interrupt. Valid values are 0-23 only.
Memor	ry Address FEC00040 – APIC EOIWO
7-0	Redirection Entry Cleardefault undefined
	When a write is issued to this register, the APIC will
	check this field and compare it with the vector field
	for each entry in the I/O redirection table. When a
	match is found, the "Remote_IRR" bit for that I/O
	Redirection Entry will be cleared.

Indexed I/O APIC Registers

Offset 0	- APIC Identification (0000 0000h)RW
31-28	Reserved always reads 0
27-24	APIC Identification default = 0
	Software must program this value before using the
	APIC.
23-0	Reserved always reads 0
Offset 1	- APIC Version (00178002)RO
31-24	Reserved always reads 00h
23-16	Maximum Redirectionalways reads 17h
	Equal to the number of APIC interrupt pins minus
	one. For this APIC, this value is 17h (23 decimal).
15	PCI IRQ
	Always reads 1 to indicate that the IRQ assertion
	register is implemented and that PCI devices are
	allowed to write to it to cause interrupts.
14-8	Reserved always reads 0
7-0	APIC Versionalways reads 02h
	The implementation version for this APIC is 02h.
Offset 2	- APIC Arbitration (0000 0000h)RO
31-28	Reserved always reads 00h
27-24	APIC Arbitration IDalways reads 00h
23-0	Reserved always reads 00h
Offset 3	- Boot Configuration (0000 0000h)RW
	Reservedalways reads 00h
0	Interrupt Delivery Mechanism
	0 APIC Serial Busdefault
	1 Front Side Bus Message
	-

Offset 3F-10 - I/O Redirection Table

This table contains 24 registers, with one dedicated table entry for each of the 24 APIC interrupt signals. Each 64-bit register consists of two 32-bit values at consecutive index locations, with the low 32 bits at the even index and the upper 32 bits at the odd index. The default value for all registers is xxx1 xxxx xxxx xxxxxh.

Offset 11-10 - I/O Redirection - APIC IRQ0	RW
Offset 13-12 - I/O Redirection - APIC IRQ1	RW
Offset 15-14 - I/O Redirection - APIC IRQ2	RW
Offset 17-16 - I/O Redirection - APIC IRQ3	RW
Offset 19-18 - I/O Redirection - APIC IRQ4	RW
Offset 1B-1A - I/O Redirection - APIC IRQ5	RW
Offset 1D-1C - I/O Redirection - APIC IRQ6	RW
Offset 1F-1E - I/O Redirection - APIC IRQ7	RW
Offset 21-20 - I/O Redirection - APIC IRQ8	RW
Offset 23-22 - I/O Redirection - APIC IRQ9	RW
Offset 25-24 - I/O Redirection - APIC IRQ10	RW
Offset 27-26 - I/O Redirection - APIC IRQ11	RW
Offset 29-28 - I/O Redirection - APIC IRQ12	RW
Offset 2B-2A - I/O Redirection - APIC IRQ13	RW
Offset 2D-2C - I/O Redirection - APIC IRQ14	RW
Offset 2F-2E - I/O Redirection - APIC IRQ15	RW
Offset 31-30 - I/O Redirection - APIC IRQ16	RW
Offset 33-32 - I/O Redirection - APIC IRQ17	RW
Offset 35-34 - I/O Redirection - APIC IRQ18	RW
Offset 37-36 - I/O Redirection - APIC IRQ19	RW
Offset 39-38 - I/O Redirection - APIC IRQ20	RW
Offset 3B-3A - I/O Redirection - APIC IRQ21	RW
Offset 3D-3C - I/O Redirection - APIC IRQ22	RW
Offset 3F-3E - I/O Redirection - APIC IRQ23	RW

Format for Each I/O Redirection Table Entry:

Format	101 Each 1/O	Redirection Table Entry:
Physical	Mode (bit-11	=0)
		always reads 0
	APIC ID	default = undefined
Logical	Mode (bit-11:	
		default = undefined
55-17	Reserved	always reads 0
		•
16	Interrupt M	asked
		askeddefault
	1 Maske	ed
15	Trigger Mo	de
		Sensitivedefault
		Sensitive
14		(Level Sensitive Interrupts Only). RO
		nessage with a matching interrupt vector
		ed from a local APIC
		sensitive interrupt sent by IOAPIC
		ted by local APIC(s)
13		put Pin Polarity
10	0 Active	e Highdefault
	1 Active	
12		itusRO
12		current status of the delivery of this
	interrupt.	current status of the derivery of this
		no activity)
		Pending (the interrupt has been injected
		s delivery is temporarily delayed either
		se the APIC bus is busy or because the
		ing APIC unit cannot currently accept
		errupt)
11	Destination	* '
11		he interpretation of bits 56-63.
		cal Modedefault
	•	al Mode
	1 Logic	ai Wode
10-8	Delivery Mo	ada
10-0		w the APICs listed in the destination
		act upon reception of this signal
		default
	000 Fixed	
	010 SMI	of I Hority
	010 SWII	wed-
	100 NMI	vcu-
	100 NWII 101 INIT	
	101 INT	yed.
	110 -reserv	
	III Exteri	IAI IIN I

7-0 Interrupt Vector

Contains the interrupt vector for this interrupt. Vector values range from 10h to FEh.

Configuration Space I/O

Configuration space accesses for all functions use PCI configuration mechanism 1 (see PCI specification revision 2.2 for more details). The ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

There are 8 "functions" implemented in the VT8233A (see Table 5 on page 20). The following sections describe the registers and register bits of these functions.

Port CF	FB-CF8 - Configuration AddressRW	
31	Configuration Space Enable	
	0 Disableddefault	
	1 Convert configuration data port writes to	
	configuration cycles on the PCI bus	
30-24	Reserved always reads 0	
23-16	PCI Bus Number	
	Used to choose a specific PCI bus in the system	
15-11	Device Number	
	Used to choose a specific device in the system	
10-8	Function Number	
	Used to choose a specific function if the selected	
	device supports multiple functions	
7-2	Register Number	
	Used to select a specific doubleword in the device's	
	configuration space	
1-0	Fixed always reads 0	
Port CF	FF-CFC - Configuration DataRW	

<u>Device 17 Function 0 Registers – Bus Control and Power Management</u>

All registers are located in the device 17 function 0 configuration space of the VT8233A. These registers are accessed through PCI configuration mechanism #1 via I/O address 0CF8h / 0CFCh.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h)		
Offset 3	3-2 - Device ID (3147h)	RO
Offset 5	5-4 - Command	RW
15-8	Reserved	always reads 0
7	Address / Data Steppi	ng
	0 Disable	
	1 Enable	default
6-4	Reserved	always reads 0
3	Special Cycle Enable	Normally RW, default = 0
2	Bus Master	always reads 1
1		Normally RO, reads as 1
0		Normally RO, reads as 1

Offset 7	7-6 - StatusRWC
15	Detected Parity Error write one to clear
14	Signalled System Erroralways reads 0
13	Signalled Master Abort write one to clear
12	Received Target Abort write one to clear
11	Signalled Target Abort write one to clear
10-9	DEVSEL# Timing fixed at 01 (medium)
8	Data Parity Detected always reads 0
7	Fast Back-to-Backalways reads 0
6-0	Reserved always reads 0
Offset 8	3 - Revision ID (nnh)RO
7-0	Revision IDalways reads nnh
Offset 9	9 - Program Interface (00h)RO
	O - Program Interface (00h)RO A - Sub Class Code (01h)RO
Offset A	
Offset 1	A - Sub Class Code (01h)RO B - Class Code (06h)RO
Offset 1	A - Sub Class Code (01h)RO
Offset I	A - Sub Class Code (01h)

ISA Bus Control

Offset	40 - ISA Bus Control (00h)RW	Offset	42 – Line Buffer Control (00h)RW
7	Reserved always reads 0	7	ISA Master DMA Line Buffer
6	I/O Recovery Time		Controls whether the DMA line buffer is used.
	The number of clocks between 2 I/O commands		0 Disabledefault
	0 Disable default		1 Enable. Master DMA waits until the line
	1 Enable (Rx4C[7:6] determines the # of clocks)		buffer is full (8 DWords) before transmitting
5	ROM Wait States		data (bit-6 must also be enabled to insure that
	0 1 Wait Statedefault		there are no coherency issues).
	1 0 Wait States	6	Gate Interrupt Until Line Buffer Flush Complete
4	ROM Write		This bit should be enabled if bit-7 is enabled.
	0 Disable (ROM writes are ignored) default		0 Disabledefault
	1 Enable (ROM can be written)		1 Enable. IRQs are gated until the line buffer is
3	Double DMA Clock		flushed to insure that there are no coherency
	0 DMA clock runs at 4 MHz default		issues.
	1 DMA clock runs at 8 MHz	5	Flush Line Buffer for Interrupt
2	4D0 / 4D1 Port Configuration		This bit controls whether the line bufer is flushed
	Controls whether ports 4D0 / 4D1 can be configured.		when an interrupt request is generated. This bit
	Ports 4D0 / 4D1 determine whether IRQ requests are		should be enabled if bit-7 is enabled.
	edge or level triggerred (4D0[7-0] for IRQ7-0,		0 Disabledefault
	4D1[7-0] for IRQ15-8) (0 = level, 1 = edge).		1 Enable
	0 Disable default	4	Uninterruptable Burst Read
	1 Enable		0 Disable default
1	DMA / Interrupt / Timer Shadow Register Read		1 Enable. The PCI bus is not granted to DMA
	0 Disable		until burst read transactions from the north
0	1 Enable (shadow register values can be read)	3-0	bridge are completed. Reserved always reads 0
U	Double ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz) default	3-0	Reservedalways reads 0
	Bus clock runs at PCLK / 2 (16 MHz)	Offset	43 – Delay Transaction Control (00h)RW
	1 Bus clock runs at 1 CER / 2 (10 WHZ)	7-4	Reserved (Do Not Program)default = 0
Offset	41 – BIOS ROM Decode Control (00h)RW	3	Delayed Transactions (PCI Spec Rev 2.1)
Setting	these bits to 1 enables the indicated address range to be		This bit controls whether delayed transactions
	ed in the ROMCS# decode:		(delayed read / write and posted write) are enabled.
7	Reservedalways reads 0		0 Disable default
6	FFF00000h-FFF7FFFFh default=0 (disable)		1 Enable
5	FFE80000h-FFEFFFFh default=0 (disable)	2	Only Posted Write
4	FFE00000h-FFE7FFFhdefault=0 (disable)		This bit controls whether posted write is enabled, as
3	FFD80000h-FFDFFFFFh default=0 (disable)		opposed to bit-3 which controls whether delayed read
2	FFD00000h-FFD7FFFFh default=0 (disable)		/ write as well as posted write are enabled.
1	FFC80000h-FFCFFFFFh default=0 (disable)		0 Disabledefault
0	FFC00000h-FFC7FFFFh default=0 (disable)		1 Enable
	· · · · ·	1	Write Delay Transaction Timeout Timer
Note:	ROMCS# is always active when ISA addresses		When enabled, if a delayed transaction (write cycle
FFF80	000-FFFFFFF and 000E0000-000FFFFF are decoded.		only) is not retried after 2 ¹² PCI clocks, the
			transaction is terminated.
			0 Disabledefault
		•	1 Enable
		0	Read Delay Transaction Timeout Timer
			When enabled, if a delayed transaction (read cycle
			only) is not retried after 2 ¹² PCI clocks, the
			transaction is terminated.
			0 Disable default

Enable

Offset 4	48 – Read Pass Write ControlRW	Offset 49 – CCA Control	RW
7	APIC FSB Address Bit-2 Mask 0 Disable (A2 not masked)	7 V_SERR Directed to PMU (SMI 0 Disable 1 Enable	, SCI) default
	Address bit A2 controls whether data is in the lower (0) or upper (1) doubleword of a quadword sent to the CPU. When this bit is enabled, A2 is masked which means it is always 0 to select the lower doubleword.	6 South Bridge Internal Master Higher Than External PCI Mast 0 Disable 1 Enable The "CCA" is an internal arbite	erdefault
6-4	Reserved	priority of external PCI masters devices. Normally priority is the and external PCI master devices, enabled, internal master devices priority than external PCI masters. 5 CCA Clean to Mask Off IRQ Controls whether interrupt reque	e same for internal but when this bit is are given higher (3/4:1/4).
2	IDE Read Pass Write 0 Disable (a read cannot be performed before a preceeding write has been completed) default 1 Enable (the internal IDE controller is allowed to perform a read before a preceeding write)	data is written to memory. 0 Disable 1 Enable 4-3 Reserved (Do Not Program) 2 WSC Mask Off INTR	default
1	USB Read Pass Write 0 Disable (a read cannot be performed before a preceeding write has been completed) default 1 Enable (the internal USB controllers are allowed to perform a read before a preceeding write)	Controls whether INTR is masked is complete. 0 Disable	default
0	Reserved always reads 0		

Miscellaneous Control

Offset 4	4C - IDE Interrupt Routing (04h)RW	Offset -	4E - Internal RTC
7-6	I/O Recovery Time Select	7-5	Reserved
	When Rx40[6] is enabled, this field determines the	4	Last Port 70/74 V
	I/O recovery time.		0 Last write v
	00 1 Bus Clock default		1 Last write v
	01 2 Bus Clock	3	Extra RTC Port
	10 4 Bus Clock		The RTC is norm
	11 8 Bus Clock		This bit controls
5-4	Reserved (do not program) default = 0		can be used to acco
3-2	IDE Secondary Channel IRQ Routing		0 Disable
	00 IRQ14		1 Enable
	01 IRQ15default	2-0	Reserved (Do Not
	10 IRQ10	0.00	4E DOLD 14
	11 IRQ11		<u> 4F – PCI Bus and C</u>
1-0	IDE Primary Channel IRQ Routing	7-4	Reserved
	00 IRQ14default	3	CPU Reset Source
	01 IRQ15		This bit determin
	10 IRQ10		through port 92
	11 IRQ11		CPURST.
			0 Use CPURS
VT823	3 Version CE:	_	1 Use INIT as
		2	Reserved (Do Not
Offset 4	4D – External APIC IRQ Output ControlRW	1	Reserved
7	IDE IRQ to APIC[23:16] with F1/Rx3C[2:0]	0	Software PCI Res
6	USB P4-5 IRQ to APIC[23:16] with F4/Rx3C[2:0]		
5	LAN IRQ to APIC[23:16] with D0/F0/Rx3C[2:0]		
4	Reserved always reads 0		
3	MC97 IRQ to APIC[23:16] with F6/Rx3C[2:0]		
2	AC97 IRQ to APIC[23:16] with F5/Rx3C[2:0]		
1	USB P2-3 IRQ to APIC[23:16] with F3/Rx3C[2:0]		
0	USB P0-1 IRQ to APIC[23:16] with F2/Rx3C[2:0]		
	All bits except bit-4:		
	0 Disable default		
	1 Enable		
VT823	<u>3A:</u>		
Offset 4	4D – ReservedRW		
In the V	T8233A, IRQ Routing to the APIC is fixed as follows:		
INTA#	=> IRQ16		
	=> IRQ17		
	=> IRQ18		
	=> IRQ19		
	Q => IRQ20		

Offset 4	4E - Internal RTC Test ModeRW
7-5	Reservedalways reads 0
4	Last Port 70/74 Written Status
	0 Last write was to port 70default
	1 Last write was to port 74
3	Extra RTC Port 74/75
	The RTC is normally accessed though ports 70/74.
	This bit controls whether two extra ports (74 / 75)
	can be used to access the RTC.
	0 Disabledefault
	1 Enable
2-0	Reserved (Do Not Program) default = 0
Offset 4	4F – PCI Bus and CPU Interface ControlRW
Offset 4	4F – PCI Bus and CPU Interface ControlRW Reservedalways reads 0
7-4	Reservedalways reads 0
7-4	Reserved always reads 0 CPU Reset Source
7-4	Reserved
7-4	Reserved
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated through port 92 or the keyboard) uses INIT or CPURST.
7-4	Reserved
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated through port 92 or the keyboard) uses INIT or CPURST. 0 Use CPURST as CPU Reset default 1 Use INIT as CPU Reset

USB1 IRQ => IRQ21

USB2 IRQ \Rightarrow IRQ21 if Rx59[5] = 0

AC97 / MC97 IRQ => IRQ22

=> IRQ23 if Rx59[5] = 1

Function Control

Function 6 MC97 0 Enable......default 1 Disable **Function 5 AC97** Enable......default Disable **Function 3 USB Ports 2-3** Enable.....default Disable Function 2 USB Ports 0-1 0 Enable default 1 Disable 3 **Function 1 IDE** 0 Enable Disabledefault always reads 0 (Bit-2 is Function 4 USB Port 4-5 Disable in VT8233 and VT8233C) Offset 51 – Function Control 2 (0Dh)RW **Reserved**always reads 0 (Bits 5-4 are LAN control bits in VT8233/VT8233C) 3 **Internal RTC** 0 Disable 1 Enable.....default 2 **Internal PS2 Mouse** 0 Disable Enable.....default 1 **Internal KBC Configuration** 0 Disable ports 2E / 2F offsets E0-EF..... default Enable ports 2E / 2F offsets E0-EF 1 **Internal KBC** 0 Disable Enable.....default 0 / Disable 1 / Enable (External KBC) (Internal KBC) Pin W10 KBCS# ROMCS# N2**KBRC KBDT** N1 KA20G **KBCK** M2IRO12 **MSDT** N3 IRQ1 **MSCK**

Offset 50 – Function Control 1 (09h).....RW

Serial IRQ, LPC, and PC/PCI DMA Control

Offset :	52 – Sei	rial IRQ & LPC Control (00h)RW
7	Reser	vedalways reads 0
6		Short Wait Abort
	0	Disable default
	1	Enable. During a short wait, the cycle is
		aborted after 8Ts.
5	LPC 1	Frame Wait State Time
	0	Frame Wait State is 1Tdefault
	1	Frame Wait State is 2T
4	LPC	Stop to Start Frame Wait State
	0	Enable. One idle state is inserted between
		Stop and Startdefault
	1	Disable. Stop is followed immediately by
		Start.
3	Serial	IRQ
	0	Disable default
	1	Enable (IRQ Asserted via Serial IRQ Pin W8)
2	Serial	IRQ Quiet Mode
	0	Continuous Modedefault
	1	Quiet Mode
1-0	Serial	IRQ Start-Frame Width
	00	4 PCI Clocksdefault
	01	6 PCI Clocks
	10	8 PCI Clocks
	11	10 PCI Clocks

Plug and Play Control - PCI

Offset	54 - PCI Interrupt PolarityRW	Table 10. PnP IRQ Routing Table
7-4	Reserved always reads 0	0000 Disableddefault
3 2 1 0 Note:	The following bits all default to "level" triggered (0) PCI INTA# Invert (edge) / Non-invert (level)(1/0) PCI INTB# Invert (edge) / Non-invert (level)(1/0) PCI INTC# Invert (edge) / Non-invert (level)(1/0) PCI INTD# Invert (edge) / Non-invert (level)(1/0) PCI INTA-D# normally connect to PCI interrupt pins	0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
Offset	INTA-D# (see pin definitions for more information). 55 – PCI PNP Interrupt Routing 1RW	1000 Reserved 1001 IRQ9 1010 IRQ10
7-4 3-0	PCI INTA# Routing (see PnP IRQ routing table) Reservedalways reads 0	1011 IRQ11 1100 IRQ12 1101 Reserved
Offset	56 - PCI PNP Interrupt Routing 2RW	1110 IRQ14
7-4 3-0	PCI INTC# Routing (see PnP IRQ routing table) PCI INTB# Routing (see PnP IRQ routing table)	1111 IRQ15
Offset	57 - PCI PNP Interrupt Routing 3RW	
	PCI INTD# Routing (see PnP IRQ routing table) Reserved	

GPIO and Miscellaneous Control

Offset :	58 – Miscellaneous Control 0 (40h)RW
7	Reserved always reads 0
6	Internal APIC
	0 Disable
	1 Enabledefault
5	Reserved always reads 0
4	Address Decode
	0 Subtractivedefault
	1 Positive
3	RTC High Bank Access
	O Disable access to upper 128 bytes default
	1 Enable access to upper 128 bytes
2	RTC Rx32 Write Protect
	0 Disable (not protected) default
	1 Enable (write protected)
1	RTC Rx0D Write Protect
	0 Disable (not protected) default
	1 Enable (write protected)
0	RTC Rx32 Map to Century Byte
	Controls whether RTC Rx32 is mapped to the
	century byte.
	0 Disable default
	1 Enable
Offset	59 – Miscellaneous Control 1 (00h)RW
7-6	Reserved always reads 0
5	USB Controller 2 (Ports 2-3) IRQ Routing
	0 Route USB2 IRQ to APIC IRQ21 default
	1 Route USB2 IRQ to APIC IRQ23
	(Bit 5 is APIC Specification 1.4 Compatibility
	Enable in the VT8233 and VT8233C)
4	LPC Keyboard
	0 Disable (ISA Keyboard) default
	1 Enable (LPC Keyboard)
3	External MCCS to LPC
	Controls whether external MCCS is through LPC or
	ISA when internal MCCS is not used.
	0 Disable (ISA MCCS) default
	1 Enable (LPC MCCS)
2	Internal MCCS (Microcontroller Chip Select)
	0 Disable (external MCCS) default
	1 Enable (internal MCCS)
1	A20M# Active
	O Disable (A20M# signal not asserted) default
	1 Enable (A20M# signal asserted)
0	NMI on PCI Parity Error
	0 Disable default
	1 Enable (to generate NMI, Port 61[3] and Port
	70[7] must also be set)

Offset :	5A – DI	MA Bandwidth Control (00h)RW
7	DMA	Channel 7 Bandwidth
	0	Normaldefault
	1	Improved
6	DMA	Channel 6 Bandwidth
	0	Normaldefault
	1	Improved
5	DMA	Channel 5 Bandwidth
	0	Normaldefault
	1	Improved
4	DMA	Single Transfer Mode Bandwidth
	0	Normaldefault
	1	Improved
3	DMA	Channel 3 Bandwidth
	0	Normaldefault
	1	Improved
2	DMA	Channel 2 Bandwidth
	0	Normaldefault
	1	Improved
1	DMA	Channel 1 Bandwidth
	0	Normaldefault
	1	Improved
0	DMA	Channel 0 Bandwidth
	0	Normal default
	1	Improved

The above bits determine if DMA bandwidth is improved for the specified channel. If enabled, bandwidth improvement is accomplished by reducing the transaction latency between the DMA Controller and the LPC Bus Controller.

Programmable Chip Select Control

Offset 5D-5C – PCS 0 I/O Port Address (0000h)RW	Offset 66 – PCS Control (00h)RW
15-0 PCS 0 I/O Port Address default = 0	7 PCS 3 Internal I/O
	0 Disable (External)default
Offset 5F-5E – PCS 1 I/O Port Address (0000h)RW	1 Enable (Internal)
15-0 PCS 1 I/O Port Address default = 0	6 PCS 2 Internal I/O
000 (4 (4 (0 DCG 4 (0 D (4)) (0000)) DVI	0 Disable (External)default
Offset 61-60 – PCS 2 I/O Port Address (0000h)RW	1 Enable (Internal)
15-0 PCS 2 I/O Port Address default = 0	5 PCS 1 Internal I/O
Officet (2 (2 DCS 2 I/O Bowt Address (0000h) DW	0 Disable (External)default
Offset 63-62 – PCS 3 I/O Port Address (0000h)RW	1 Enable (Internal)
15-0 PCS 3 I/O Port Address default = 0	4 PCS 0 Internal I/O
	0 Disable (External)default
	1 Enable (Internal)
Offset 65-64 - PCS I/O Port Address Mask (0000h)RW	The above 4 bits determine whether Programmable Chip
15-12 PCS 3 I/O Port Address Mask 3-0	Selects 0-3 are treated as internal I/O
0000 Decode range is 1 bytedefault	3 PCS 3
0001 Decode range is 2 bytes	0 Disabledefault
0011 Decode range is 4 bytes	1 Enable
0111 Decode range is 8 bytes	2 PCS 2
1111 Decode range is 16 bytes	0 Disabledefault
11-8 PCS 2 I/O Port Address Mask 3-0	1 Enable
0000 Decode range is 1 byte default	1 PCS 1
0001 Decode range is 2 bytes	0 Disabledefault
0011 Decode range is 4 bytes	1 Enable
0111 Decode range is 8 bytes	0 PCS 0
1111 Decode range is 16 bytes	0 Disable default
7-4 PCS 1 I/O Port Address Mask 3-0	1 Enable
0000 Decode range is 1 byte default	
0001 Decode range is 2 bytes	
0011 Decode range is 4 bytes	000 (77 0 (1/041)
0111 Decode range is 8 bytes	Offset 67 – Output Control (04h)RW
1111 Decode range is 16 bytes	7-3 Reserved always reads 0
3-0 PCS 0 I/O Port Address Mask 3-0	2 FERR Voltage
0000 Decode range is 1 byte default	0 2.5V
0001 Decode range is 2 bytes	1 1.5Vdefault
0011 Decode range is 4 bytes	1-0 Reserved always reads 0
0111 Decode range is 8 bytes	
1111 Decode range is 16 bytes	

ISA Decoding Control

Offset	6C – ISA Positive Decoding Control 1RW	Offset	6E – ISA Positive Decoding Control 3RW
7	On-Board I/O (Ports 00-FFh) Positive Decoding	7	COM Port B Positive Decoding
	0 Disable default		0 Disabledefault
	1 Enable		1 Enable
6	Microsoft-Sound System I/O Port Positive	6-4	COM-Port B Decode Range
	Decoding		000 3F8h-3FFh (COM1)default
	0 Disable default		001 2F8h-2FFh (COM2)
	1 Enable (bits 5-4 determine the decode range)		010 220h-227h
5-4	Microsoft-Sound System I/O Decode Range		011 228h-22Fh
	00 0530h-0537h default		100 238h-23Fh
	01 0604h-060Bh		101 2E8h-2EFh (COM4)
	10 0E80-0E87h		110 338h-33Fh
	11 0F40h-0F47h		111 3E8h-3EFh (COM3)
3	Internal APIC Positive Decoding	3	COM Port A Positive Decoding
	0 Disabledefault		0 Disable default
	1 Enable		1 Enable
2	BIOS ROM Positive Decoding	2-0	COM-Port A Decode Range
_	0 Disabledefault	2-0	000 3F8h-3FFh (COM1)default
	1 Enable		001 2F8h-2FFh (COM2)
1	Internal PCS1# Positive Decoding		010 220h-227h
1	0 Disabledefault		011 228h-22Fh
	1 Enable		100 238h-23Fh
0	Internal PCS0# Positive Decoding		101 2E8h-2EFh (COM4)
U	0 Disabledefault		110 338h-33Fh
	1 Enable		110 338h-35Fh 111 3E8h-3EFh (COM3)
0.00		0.00	
	6D – ISA Positive Decoding Control 2RW		6F – ISA Positive Decoding Control 4RW
7	FDC Positive Decoding		Bits 4 and 5 are reserved in the VT8233 and VT8233C)
	0 Disable default		Reservedalways reads 0
	1 Enable	5	PCS2# and PCS3# Positive Decoding (8233A only)
6	LPT Positive Decoding		0 Disabledefault
	0 Disable default		1 Enable
	1 Enable	4	I/O Port 0CF9h Positive Decoding (8233A only)
5-4	LPT Decode Range		0 Disabledefault
	00 3BCh-3BFh, 7BCh-7BEhdefault		1 Enable
	01 378h-37Fh, 778h-77Ah	3	FDC Decoding Range
	10 278h-27Fh, 678h-67Ah		0 Primarydefault
	11 -reserved-		1 Secondary
3	Game Port Positive Decoding	2	Sound Blaster Positive Decoding
	0 Disable default		0 Disabledefault
	1 Enable		1 Enable
2	MIDI Positive Decoding	1-0	Sound Blaster Decode Range
	0 Disable default		00 220-233hdefault
	1 Enable		01 240-253h
1-0	MIDI Decode Range		10 260-273h
	00 300-303h default		11 280-293h
	01 310-313h		
	10 320-323h		
	11 330-333h		

-48-

I/O Pad Control

Offset '	. 7C – I/O Pad Control (00h)	RW
7-6	Reservedalway	s reads 0
5-4	IDE Interface Output Drive Strength	
	00 Lowest	default
	11 Highest	
3-2	PLL PCLK Input Delay Select	
	00	default
	01	
	10	
	11	
1-0	PLL CLK66 Feedback Delay Select	
	00	default
	01	
	10	
	11	

Power Management-Specific Configuration Registers

)ffset	80 – General Configuration 0 (00h)RW
7	Reserved always reads 0
6	Sleep Button
	0 Disable default
	1 Sleep Button is on GPI21 / ACSDIN3 pin
5	Debounce LID and PWRBTN# Inputs for 200us
	This bit controls whether the debounce circuit for the
	LID# and PWRBTN# inputs is enabled to reduce
	possible noise.
	0 Disable default
	1 Enable
4	Reserved (Do Not Program) default = 0
3	Microsoft Sound Monitor in Audio Access
	This bit controls whether an I/O access to the sound
	port sets I/O Rx33-30[10] (Audio Access Status) = 1 .
	0 Disable default
	1 Enable
2	Game Port Monitor in Audio Access
	This bit controls whether an I/O access to the game
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.
	0 Disable default
	1 Enable
1	Sound Blaster Monitor in Audio Access
	This bit controls whether an I/O access to the sound
	blaster port sets I/O Rx33-30[10] (Audio Access
	Status) = 1.
	0 Disable default
	1 Enable
0	MIDI Monitor in Audio Access
	This bit controls whether an I/O access to the MIDI
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.
	0 Disable default
	1 Enable

7	81 - General Configuration 1 (04h)RW I/O Enable for ACPI I/O Base
	0 Disable access to ACPI I/O blockdefault
	1 Allow access to Power Management I/O
	Register Block (see offset 4B-48 to set the
	base address for this register block). The
	definitions of the registers in the Power
	Management I/O Register Block are included
	later in this document, following the Power
	Management Subsystem overview.
6-4	======================================
3	ACPI Timer Count Select
	0 24-bit Timer default
	1 32-bit Timer
2	RTC Enable Signal Gated with PSON (SUSC#) in
	Soft-Off Mode
	This bit controls whether RTC control signals are
	gated during system suspend state. This is to prevent
	CMOS and Power-Well register data from being
	corrupted during system on/off when the control
	signals (PWRGD) may not be stable.
	0 Disable
	1 Enable default
1	Clock Throttling Clock Select (STPCLK#)
	This bit controls the timer tick base for the throttle
	timer.
	0 30 usec (480 usec cycle time when using a 4-
	bit timer) default
	1 1 msec (16 msec cycle time when using a 4-bit
	timer)
	` '

setting Rx8D[4] = 1. When Rx8D[4] = 1, the setting

Reserved (Do Not Program)default = 0

of this bit is ignored.

Offset	82 - ACPI Interrupt SelectRW		
7	ATX / AT Power IndicatorRO	3-0	SCI Interrupt Assignment
	0 ATX		This field determines the routing of the ACPI IRQ.
	1 AT		0000 Disableddefault
6	PSON (SUSC#) GatingRO		0001 IRQ1
	During system on/off, this status bit reports whether		0010 Reserved
	PSON gating state has been completed, 0 meaning		0011 IRQ3
	that gating is active now and 1 meaning that gating is		0100 IRQ4
	complete. Software should not access any CMOS or		0101 IRQ5
	Power-Well registers until this bit becomes 1 if		0110 IRQ6
	Rx81[2] = 1 (see register description on previous		0111 IRQ7
	page).		1000 IRQ8
	0 PSON Gating Active		1001 IRQ9
	1 PSON Gating Complete		1010 IRQ10
5	Reserved always reads 0		1011 IRQ11
4	SUSC# AC-Power-On Default ValueRO		1100 IRQ12
	This bit is written at RTC Index 0D bit-7. If this bit		1101 IRQ13
	is 0, the system is configured to "default on" when		1110 IRQ14
	power is connected.		1111 IRQ15

Offset 85-84 - Primary Interrupt Channel (0000h)RW

If a device IRQ is enabled as a Primary IRQ, that device's IRQ can be used to generate wake events. The bits in this register are used in conjunction with:

- PMIO Rx28[7] Primary Resume Status
- PMIO Rx2A[7] Primary Resume Enable

If a device on one of the IRQ's is set to enable the Primary Interrupt, once the device generates an IRQ, the PMIO Rx28[7] status bit will become 1 to report the occurrence of the Primary IRQ. If PMIO Rx2A[7] is set to 1 to enable Resume-on-Primary-IRQ, the IRQ then becomes a wake event.

15 1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel 14 13 1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel 12 1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel 11 10 1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel 9 1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel 8 1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel 7 6 1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel 5 1/0 = Ena/Disa IRO5 as Primary Intrpt Channel 4 1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel 3 1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel 2 always reads 0 1 1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel

Offset 87-86 - Secondary Interrupt Channel (0000h) RW

For legacy PMU, the bits in this register are used in conjunction with:

- PMIO Rx28[1] Secondary Event Timer Timeout Status
- PMIO Rx2A[7] SMI on Secondary Event Timer Timeout

Secondary IRQ's are different from Primary IRQ's in that systems that resume due to a Secondary IRQ can return directly to suspend state after the secondary event timer times out. For this to work, PMIO Rx2A[1] needs to be set to one to enable SMI-on-Secondary-Event-Timer-Timeout (when PMIO Rx28[1] = 1). The timer's count value can be set via Rx93-90[27-26].

15

1/0 = Ena/Disa IRQ15 as Secondary Intr Channel 1/0 = Ena/Disa IRQ14 as Secondary Intr Channel 14 1/0 = Ena/Disa IRQ13 as Secondary Intr Channel 13 1/0 = Ena/Disa IRQ12 as Secondary Intr Channel 12 1/0 = Ena/Disa IRQ11 as Secondary Intr Channel 11 10 1/0 = Ena/Disa IRQ10 as Secondary Intr Channel 9 1/0 = Ena/Disa IRQ9 as Secondary Intr Channel 8 1/0 = Ena/Disa IRQ8 as Secondary Intr Channel 7 1/0 = Ena/Disa IRQ7 as Secondary Intr Channel 1/0 = Ena/Disa IRQ6 as Secondary Intr Channel 6 5 1/0 = Ena/Disa IRO5 as Secondary Intr Channel 4 1/0 = Ena/Disa IRQ4 as Secondary Intr Channel 3 1/0 = Ena/Disa IRQ3 as Secondary Intr Channel 2always reads 0 1 1/0 = Ena/Disa IRQ1 as Secondary Intr Channel 0 1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 8B-88 - Power Management I/O Base.....RW 31-16 Reserved always reads 0 15-7 Power Management I/O Register Base Address Port Address for the base of the 128-byte Power Management I/O Register block, corresponding to See "Power Management I/O Space Registers" in this document for "PMIO" register definitions. 6-0 0000001b Offset 8C - Host Bus Power Management Control......RW **Thermal Duty Cycle** Determines the STPCLK# duty cycle when the THRM# pin is asserted. The duty cycle indicates the percentage of performance (the lower the percentage, the lower the performance and the higher the power savings). The STPCLK# duty cycle when THRM# is NOT asserted is controlled by PMIO Rx10[3:0]. If the setting in that field is lower than the setting in this field, the lower setting will be used. 0000 Reserved default 0001 0-6.25% 0010 6.25-12.50% 0011 18.75-25.00% 0100 31.25-37.50% 0101 37.50-43.75% 0110 43.75-50.00% 0111 50.00-56.25% 1000 56.25-62.50% 1001 62.50-68.75% 1010 68.75-75.00% 1011 75.00-87.50% 1100 75.00-81.25% 1101 81.25-87.50% 1110 87.50-93.75% 1111 93.75-100% **THRM Input** 3 0 Disabledefault Enable 2 Reserved always reads 0 1 PCI Arbitration for C3 / POS Disable default Enable 1 **CPU Stop Grant Cycle Select** Controls whether halt can be used as stop grant cycle. Halt is used as Stop Grant Cycle default 1 Halt is not used as Stop Grant Cycle This bit is combined with PMIO Rx2C[3] for controlling the start of CPUSTP# assertion during system suspend mode: PMIO Rx2C[3] This Bit CPUSTP# Assertion Immediate 0 Wait for CPU Halt 0 1 / Stop Grant cycle 1 1 Wait for CPU Stop Grant cycle

	V 1023511 V-Link bouth bridge
Offset 8	BD – Throttle / Clock Stop ControlRW
7	Throttle Timer Reset def = 0
6-5	Throttle Timer
	This field determines the number of bits used for the
	throttle timer, which in conjunction with the throttle
	timer tick determines the cycle time of STPCLK#.
	For example, if a 2-bit timer and a 7.5 usec timer tick
	are selected, the STPCLK# cycle time would be 30
	usec (2**2 x 7.5). If a 4-bit timer and a 7.5 usec
	timer tick is selected, the cycle time would be 120
	usec (2**4 x 7.5).
	0x 4-Bitdefault
	10 3-Bit
	11 2-Bit
4	Fast Clock (7.5us) as Throttle Timer Tick
	This bit controls whether the throttle timer tick uses
	7.5 usec as its time base (120 usec cycle time when
	using a 4-bit timer).
	0 Timer Tick is selected by Rx80[1] default
_	1 Timer Tick is 7.5 usec (Rx80[1] is ignored)
3	SMI Level Output (Low)
	0 Disable default
	1 Enable (during an SMI event, SMI# is held
2	low until SMI event status is cleared) Internal Clock Stop for PCI Idle
4	This bit controls whether the internal PCI clock is
	stopped when PCKRUN# is high.
	0 PCI clock is not stoppeddefault
	1 PCI clock is stopped
1	Internal Clock Stop During C3
	This bit controls whether the internal PCI clock is
	stopped during C3 state.
	0 PCI clock is not stoppeddefault
	1 PCI clock is stopped
0	Internal Clock Stop During Suspend
	This bit controls whether the internal PCI clock is
	stopped during Suspend state.
	0 PCI clock is not stoppeddefault
	1 PCI clock is stopped

Offset 93-90 - GP Timer Control (0000 0000h).....RW

31-30 Conserve Mode Timer Count Value

00 1/16 second.......default

- 01 1/8 second
- 10 1 second
- 11 1 minute

29 **Conserve Mode Status**

This bit reads 1 when in Conserve Mode

28 **Conserve Mode**

This bit controls whether conserve mode (throttling) is enabled. When this bit is set, the system can enter conserve mode when primary activity is not detected within a given time period (determined by bits 31-30 of this register). Primary activity is defined in PMIO Rx33-30.

- Disable default
- 1 Enable

27-26 Secondary Event Timer Count Value

- 01 64 milliseconds
- 10 ½ second
- 11 by EOI + 0.25 milliseconds

Secondary Event Occurred Status

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

Secondary Event Timer Enable 24

- Disable default
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4)

Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0)

Write to load count value; Read to get current count

GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

GP1 Timer Automatic Reload

- GP1 Timer stops at 0default
- Reload GP1 timer automatically after counting down to 0

GP1 Timer Base

00 Disabledefault

1/16 second

10 1 second

11 1 minute

GP0 Timer Start 3

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

GP0 Timer Automatic Reload

- 0 GP0 Timer stops at 0default
- Reload GP0 timer automatically after counting down to 0

1-0 **GP0 Timer Base**

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

	94 – Power Well Control WO		95 - Miscellaneous Power Well ControlRW
7	SMBus Clock Select	7	CPUSTP# to SUSST# Delay Select
	0 SMBus Clock from 14.31818 MHz Divider		This bit controls the delay between the deassertion of
_	1 SMBus Clock from RTC 32.768 KHz defult		CPUSTP# and the deassertion of SUSST# during a
6	STR Power Well Output Gating		resume.
	This bit controls whether the STR power well for		0 1 msec minimumdefault
	internal signals is gated during STR.		1 125 usec minimum
	0 Disabledefault	6	SUSST# Deasserted Before PWRGD for STD
	1 Enable		0 Disabledefault
5	SUSC#Asserted in STR		1 Enable (SUST# is deasserted before PWRGD
	This bit controls whether SUSC# is asserted (low)	_	when resuming from STD)
	during STR. Normally SUSC# is asserted during	5	Keyboard / Mouse Port Swap
	STD but not during STR.		This bit determines whether the keyboard and mouse
	0 Disable default		ports can be swapped.
	1 Enable		0 Disabledefault
4	SUSST1# / GPO3 Select (Pin P1)		1 Enable
	0 SUSST1#default	4	Reserved always reads 0
	1 GPO3	3	SMB2 / GPO Select
3	GPO2 / SUSB# Select (Pin W2)		0 SMBDT2 / SMBCK2default
	0 SUSB#default		1 GPO26 / GPO27
	1 GPO2	2	AOL 2 SMB Slave
	Before chip rev C, these definitions were reversed		This bit controls whether external SMB masters can
2	GPO1 / SUSA# Select (Pin T2)		access internal SMB registers (for Alert-On-LAN).
	0 SUSA# default		0 Enable (external SMB masters may reset
	1 GPO1		resume the system (when Rx96[4]=1) or detect
	Before chip rev C, these definitions were reversed		GPI status)default
1-0	GPO0 Output Select (Pin P4)		1 Disable
	This field controls the GPO0 output signal for Pulse	1	SUSCLK / GPO4 Select
	Width Modulation.		0 SUSCLK default
	00 GPO0 Fixed Output Level (defined by PMIO		1 GPO4
	Rx4C[0]) default	0	USB Wakeup for STR / STD / SoftOff
	01 GPO0 output is 1 Hz "SLOWCLK"		This bit controls whether USB Wakeup is enabled
	10 GPO0 output is 4 Hz "SLOWCLK"		when PMIO $Rx21-20[14]$ (USB Wakeup Status) = 1.
	11 GPO0 output is 16 Hz "SLOWCLK"		This allows wakeup from STR, STD, Soft Off, and
			POS.
			0 Disabledefault
			1 Enable
		Offact	06 Power On / Poset Control DW
			96 – Power On / Reset ControlRW
		7-4	Reserved always reads 0
		3-0	CPU Frequency Strapping Value Output to NMI
			INTR, IGNNE#, and A20M# during RESET#
			The value written to this field is strapped through
			NMI, INTR, IGNNE#, and A20M# during RESET#
			to determine the multiplier for setting the CPU's
			internal frequency. If the CPU hangs due to
			inappropriate settings written here, the GP3 timer
			(second timeout) can be used to initiate a system

reboot (PMIO Rx42[2] = 1). Refer to the BIOS

Porting Guide for additional details.

Offset 98 – GP2 / GP3 Timer ControlRW

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by Rx5A and starts counting down. The GP3 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

- down to 0

5-4 GP3 Timer Tick Select

- 00 Disable default
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by Rx59 and starts counting down. The GP2 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

- O GP2 Timer stops at 0 default
- 1 Reload GP2 timer automatically after counting down to 0

1-0 GP2 Timer Tick Select

- 00 Disable default
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset 9	99 – GP2 TimerRW
7	Write: GP2 Timer Load Valuedefault = 0
	Read: GP2 Timer Current Count
Offset 9	9A – GP3 TimerRW
7	Write: GP3 Timer Load Value default = 0
	Read: GP3 Timer Current Count
Offset (C3-C0 – Power Management CapabilityRO
31-16	Power Management Capability. always reads 0002h
15-8	Next Pointeralways reads 00h
7-0	Capability IDalways reads 01h
Offset (C7 C4 Down Mamt Canability CSD DW
	C7-C4 – Power Mgmt Capability CSRRW
	Power Management Dataalways reads 00h
	PM CSR P2P Support Extensions. always reads 00h
15-0	PM Control / Status (D0/D3 Only)default = 0000h

System Management Bus-Specific Configuration Registers

Offset I	D1-D0 – SMBus I/O BaseRW
15-4	I/O Base (16-byte I/O space) default = 00h
3-0	Fixedalways reads 0001b
Offset I	O2 – SMBus Host ConfigurationRW
7-4	Reserved always reads 0
3	SMBus Interrupt Select
	0 SMIdefault
	1 SCI
2	SMBus Clock From 64K Source (Divider from
	14.31818 MHz)
	0 Disable default
	1 Enable
1	SMBus IRQ
	0 Disable default
	1 Enable
0	SMBus Host Controller Enable

1 Enable SMB controller functions

0 Disable SMB controller functions...... default

Offset	<u>D3 – SMBus Host Slave Command</u>	RW
7-0	SMBus Host Slave Command Code	default=0
Offset	D4 – SMBus Slave Address for Port 1	RW
7-1	SMBus Slave Address for Port 1	default=0
0	Read / Write for Shadow Port 1	
Offset	D5 – SMBus Slave Address for Port 2	RW
7-1	SMBus Slave Address for Port 2	default=0
0	Read / Write for Shadow Port 2	
Offset	D6 – SMBus Revision ID	RO
7-0	SMBus Revision Code	

General Purpose I/O Control Registers

Offset 1	E0 – GPI Inversion ControlRW
7-0	GPI[27-24, 19-16] Input Inversion
	0 Non-inverted input default
	1 Inverted input
Offeet 1	E1 CDI CCI / CMI Coloct DW
	E1 – GPI SCI / SMI SelectRW
7-0	GPI[27-24, 19-16] SCI / SMI Select
	When GPI[27-24,19-16] are set to enable SCI / SMI
	generation (PMIO Rx52), this field determines whether an SCI or SMI is generated.
	0 SCIdefault
	1 SMI
	1 SIVII
Offset 1	E4 – GPO Pin SelectRW
7	GPO22-23 / IOR#, IOW# Select (Pins R9, T7)
	0 R9 = GPO22, T7 = GPO23 default
	1 R9 = $IOR\#$, T7 = $IOW\#$
6	ACSDIN2,3 / GPIO20,21 Select (Pins M1, L3)
	This bit is ignored if any of RxE5 bits 1, 2, 4, or $5 = 1$
	0 M1 = ACSDIN2, L3 = ACSDIN3 default
	1 M1 = GPIO20, L3 = GPIO21
5	SA[19:16] / GPO[19:16] Select (R10, U8, Y9, W9)
	0 SA[19:16]default
	1 GPO[19:16]
4	GPIO[15:12] Direction
	0 Input (pins are GPI[15:12])default
•	1 Output (pins are GPO[15:12])
3	GPIO[11:8] Direction
	0 Input (pins are GPI[11:8])default
2	1 Output (pins are GPO[11:8])
2	SLP# / GPO7 Select (Pin K19) 0 K19 = SLP#default
	1 K19 = GPO7
1	PCISTP# / GPO6 Select (Pin V6)
1	0 V6 = PCISTP#default
	1 V6 = GPO6
0	CPUSTP# / GPO5 Select (Pin Y5)
v	0 Y5 = CPUSTP#default
	1 Y5 = GPO5
	01 01

Offset 1	E5 – GPIO I/O Select 1RW
7	Reservedalways reads 0
6	AGPBZ# as Source of Bus Master Status (PMIO
U	Rx0[4])
	0 Disable default
_	1 Enable
5	AGPBZ# on ACSDIN3 (Pin L3)
	0 L3 = ACSDIN3 / GPIO21 / PCS1# default
	1 L3 = AGPBZ# (bit 2 and RxE4[6] are ignored)
4	VGATE on ACSDIN2 (Pin M1)
	0 M1 = ACSDIN2 / GPIO20 / PCS0#default
	1 M1 = VGATE (bit 1 and RxE4[6] are ignored)
3	CPU Frequency Change
	0 Enable (Pin U6 = VIDSEL, W5 = GHI#, C8 =
	VRDPSLP) default
	1 Disable (Pin U6 = GPIO31 / GPIOE, W5 =
	GPIO30 / GPIOD, C8 = GPIO9)
2	PCS1# on ACSDIN3 (Pin L3)
4	
	SLPBTN#default
	1 L3 = PCS1# ($RxE4[6]$ ignored)
1	PCS0# on ACSDIN2 (Pin M1)
	0 M1 = ACSDIN2 / GPIO20 / VGATE default
	1 $M1 = PCS0\# (RxE4[6] ignored)$
0	IORDY / GPI19 Select (Pin R8)
	0 R8 = IORDYdefault
	1 $R8 = GPI19$
Off 4	
Offset	E6 – GPIO I/O Select 2RW
7	GPI31 / GPO31 (GPIOE) Select (Pin U6)
	0 U6 = GPI31default
	1 $U6 = GPO31 / GPIOE$
6	GPI30 / GPO30 (GPIOD) Select (Pin W5)
	0 W5 = GPI30 default
	1 W5 = $GPO30 / GPIOD$
5-2	Reserved always reads 0
1	GPI25 / GPO25 (GPIOC) Select (Pin T6)
1	0 T6 = GPI25default
	1 T6 = GPO25 / GPIOC
0	GPI24 / GPO24 (GPIOA) Select (Pin V4)
	0 V4 = GPI24default
	1 $V4 = GPO24 / GPIOA$
Offcot	E7 CDO Output Type DW
	E7 – GPO Output TypeRW
	bits determine whether the indicated GPO pin is open
drain o	TTL when the corresponding bit of $RxE6 = 1$.
7	GPO31 OD/TTL Select (Pin U6)
6	GPO30 OD/TTL Select (Fin W5)
-	· · · · · · · · · · · · · · · · · · ·
5-2	Reservedalways reads 0
1	GPO25 OD/TTL Select (Pin T6)
0	GPO24 OD/TTL Select (Pin V4)
For all	defined hits above:
For all	defined bits above: 0 ODdefault

TTL

Power Management I/O-Space Registers

Basic Power Management Control and Status

I/O Off	set 1-0 - Power Management StatusRWC	I/O Off	set 3-2 - Power Management EnableRW		
			The bits in this register correspond to the bits in the Power		
reset by	software by writing a one to the desired bit position.	Manage	ment Status Register at offset 1-0.		
15	Wakeup Status	15	Reservedalways reads 0		
	Reserved always reads 0		Reserved always reads 0		
11	Abnormal Power-Off Status default = 0	11	Reserved always reads 0		
10	RTC Alarm Status	10	RTC Alarm Enabledefault = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI Enable bit) to be generated when the RTC Status bit is set.		
9	Sleep Button Status	9	Sleep Button Enabledefault = 0 This bit may be set to trigger either an SCI or SMI when the Sleep Button Status bit is set.		
8	Power Button Status	8	Power Button Enabledefault = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI Enable bit) to be generated when the Power Button Status bit is set.		
7-6	Reservedalways reads 0	7-6	Reserved always reads 0		
5	Global Status	5	Global Enable		
	same time by hardware.	4	Reserved always reads 0		
4	Bus Master Status				
	DMA devices are included. See also Function 0 RxE5[6] ("AGPBZ# as Source of Bus Master Status").	3-1 0	Reserved always reads 0 ACPI Timer Enable default = 0 This bit may be set to trigger either an SCI or an SMI		
3-1 0	Reserved		(depending on the setting of the SCI Enable bit) to be generated when the Timer Status bit is set.		

I/O Offset 5-4 - Power Management Control.....RW

15 Soft Resume

This bit is used to allow a system using an AT power supply to operate as if an ATX power supply were being used. Refer to the BIOS Porting Guide for implementation details.

- 0 Disable default
- 1 Enable
- 14 Reservedalways reads 0

12-10 Sleep Type

- 000 Normal On
- 001 Suspend to RAM (STR)
- 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VCCS and VBAT planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU Reset
- 110 Power On Suspend with CPU/PCI Reset
- 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

- **9 Reserved**always reads 0
- 8 STD Command Generates System Reset Only
- - This bit is set by ACPI software to indicate the release of the SCI / SMI lock. Upon setting of this bit, the hardware automatically sets the BIOS Status bit. The bit is cleared by hardware when the BIOS Status bit is cleared by software. Note that the setting of this bit will cause an SMI to be generated if the BIOS Enable bit is set (bit-5 of the Global Enable register at offset 2Ah).

1 Bus Master Reload

This bit controls whether bus master requests (PMIO Rx00[4] = 1) transition the processor from C3 to C0 state.

- 0 Bus master requests are ignored by power management logicdefault
- Bus master requests transition the processor from the C3 state to the C0 state

0 SCI Enable

This bit controls whether SCI or SMI is generated for power management events triggered by the Power Button, Sleep Button, and RTC (when PMIO Rx1-0 bits 8, 9, or 10 equal one).

- 0 Generate SMI.....default
- 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, Timer Status & Global Status always generate SCI and BIOS Status always generates SMI.

I/O Offset 0B-08 - Power Management TimerRW

31-24 Extended Timer Value

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

	Reserved always reads 0
11	PCISTP# Asserted when PCKRUN# is Deasserted
	0 Enabledefault
	1 Disable
10	PCI Bus Clock Run Without Stop
	0 PCKRUN# is always asserted default
	1 PCKRUN# will be de-activated after the PCI
	bus is idle for 26 clocks
9	Host Clock Stop
	This bit controls whether CPUSTP# is asserted in C3
	and S1 states. Normally CPUSTP# is not asserted in
	C3 and S1 states, only STPCLK# is asserted.
	0 CPUSTP# will not be asserted in C3 and S1
	states (only STPCLK# is asserted) default
	1 CPUSTP# will be asserted in C3 and S1 states
8	Assert SLP# for Processor Level 3 Read
	This bit controls whether SLP# is asserted in C3
	state.
	0 SLP# is not asserted in C3 state default
	1 SLP# is asserted in C3 state
	Used with Intel CPUs only.
1	Lower CPU Voltage During C3 / S1
_	This bit controls whether the CPU voltage is lowered
	when in C3/S1 state. The voltage is lowered using
	the VRDSLP signal to the voltage regulator (PMIO

Throttling Enable

Setting this bit starts clock throttling (modulating the STPCLK# signal) regardless of the CPU state. The throttling duty cycle is determined by bits 3-0 of this register.

Throttling Duty Cycle

This field determines the duty cycle of the STPCLK# signal when the system is in throttling mode ("Throttling Enable" bit set to one). The duty cycle indicates the percentage of performance (the lower the percentage, the lower the performance and the higher the power savings).

0000 Reserved 0001 0-6.25% 0010 6.25-12.50%

0011 18.75-25.00% 0100 31.25-37.50%

0101 37.50-43.75%

0110 43.75-50.00% 0111 50.00-56.25%

1000 56.25-62.50%

1001 62.50-68.75%

1010 68.75-75.00% 1011 75.00-87.50%

1100 75.00-81.25%

1101 81.25-87.50%

1110 87.50-93.75%

1111 93.75-100%

RxE5[3] must be 0 to enable the voltage change function). 0 Disable (normal voltage during C3/S1)...... def

Enable (lower voltage during C3/S1)

6-5 Reserved always reads 0

I/O Offset 14 - Processor Level 2.....RO

Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT8233 asserts STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes have no effect.

I/O Offset 15 - Processor Level 3.....RO

.....always reads 0 Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wakeup from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes have no effect.

General Purpose Power Management Registers

 North Bridge SERR# Status USB Wake-Up Status For STR / STD / Soff 	
<u> </u>	
For STR / STD / Soff	
13 AC97 Wake-Up Status	
Can be set only in suspend mode	
12 Battery Low Status	
Set when the BATLOW# input is asserted low.	
11 Notebook Lid Status	
Set when the LID input detects the edge selected by	
Rx2C bit-7 (0=rising, 1=falling).	
10 Thermal Detect Status	
Set when the THRM# input detects the edge selected	
by Rx2C bit-6 (0=rising, 1=falling).	
9 USB Resume Status	
Set when a USB peripheral generates a resume event.	
8 Ring Status	
Set when the RING# input is asserted low.	
7 Reservedalways reads 0	
6 INTRUDER# Status	
Set when the INTRUDER# pin is asserted low.	
5 PME# Status	
Set when the PME# pin is asserted low.	
4 EXTSMI# Status	
Set when the EXTSMI# pin is asserted low.	
3 Internal LAN PME Status	
Set when the internal LAN PME signal is asserted.	
2 Internal KBC PME Status	
Set when the internal KBC PME signal is asserted.	
1 GPI1 Status	
Set when the GPI1 pin is asserted low.	
0 GPI0 Status	
Set when the GPI0 pin is asserted low.	
Note that the above bits correspond one for one with the bits	
of the General Purpose SCI Enable and General Purpose SMI	
Enable registers at offsets 22 and 24: an SCI or SMI is	
generated if the corresponding bit of the General Purpose SCI	
or SMI Enable registers, respectively, is set to one.	

The above bits are set by hardware only and can only be

cleared by writing a one to the desired bit.

I/O Off	set 23-22 - General Purpose SCI Enable	RW
15	Enable SCI on setting of Rx21-20[15]	def=0
14	Enable SCI on setting of Rx21-20[14]	def=0
13	Enable SCI on setting of Rx21-20[13]	def=0
12	Enable SCI on setting of Rx21-20[12]	def=0
11	Enable SCI on setting of Rx21-20[11]	def=0
10	Enable SCI on setting of Rx21-20[10]	def=0
9	Enable SCI on setting of Rx21-20[9]	def=0
8	Enable SCI on setting of Rx21-20[8]	def=0
7	Reservedalwa	ys reads 0
6	Enable SCI on setting of Rx21-20[6]	def=0
5	Enable SCI on setting of Rx21-20[5]	def=0
4	Enable SCI on setting of Rx21-20[4]	def=0
3	Enable SCI on setting of Rx21-20[3]	def=0
2	Enable SCI on setting of Rx21-20[2]	def=0
1	Enable SCI on setting of Rx21-20[1]	def=0
0	Enable SCI on setting of Rx21-20[0]	def=0

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

set 25-24 - General Purpose SMI EnableRW
Enable SMI on setting of Rx21-20[15]def=0
Enable SMI on setting of Rx21-20[14]def=0
Enable SMI on setting of Rx21-20[13]def=0
Enable SMI on setting of Rx21-20[12]def=0
Enable SMI on setting of Rx21-20[11]def=0
Enable SMI on setting of Rx21-20[10]def=0
Enable SMI on setting of Rx21-20[9]def=0
Enable SMI on setting of Rx21-20[8]def=0
Reserved always reads 0
Enable SMI on setting of Rx21-20[6]def=0
Enable SMI on setting of Rx21-20[5]def=0
Enable SMI on setting of Rx21-20[4]def=0
Enable SMI on setting of Rx21-20[3]def=0
Enable SMI on setting of Rx21-20[2]def=0
Enable SMI on setting of Rx21-20[1]def=0
Enable SMI on setting of Rx21-20[0]def=0

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

	SPIO Roman 1 Appears Status
15	GPIO Range 1 Access Status
14	GPIO Range 0 Access Status default = 0
13	GP3 Timer Timeout Status default = 0
12	GP2 Timer Timeout Status default = 0
11	SERIRQ SMI Status default = 0
10	Rx5[5] Write SMI Status default = 0
	This bit reports whether Rx5[5] is written. If
	Rx2B[3] is set to enable SMI, an SMI in generated
	when this bit $= 1$.
9	Reserved always reads 0
8	PCKRUN# Resume Status default = 0
	This bit is set when PCI bus peripherals wake up the
	system by asserting PCKRUN#
7	Primary IRQ/INIT/NMI/SMI Resume Statusdef=0
	This bit is set at the occurrence of primary IRQs as
	defined in Rx85-84 of PCI configuration space
6	Software SMI Status default = 0
	This bit is set when the SMI Command port (Rx2F)
	is written.
5	BIOS Status default = 0
	This bit is set when the Global Release bit is set to
	one (typically by the ACPI software to release
	control of the SCI/SMI lock). When this bit is reset
	(by writing a one to this bit position) the Global
	Release bit is reset at the same time by hardware.
4	Legacy USB Status default = 0
-	This bit is set when a legacy USB event occurs. This
	is normally used for USB keyboards.
3	GP1 Timer Time Out Status default = 0
-	This bit is set when the GP1 timer times out.
2	GP0 Timer Time Out Status default = 0
-	This bit is set when the GP0 timer times out.
1	Secondary Event Timer Time Out Status def=0
-	This bit is set when the secondary event timer times
	out.
0	Primary Activity Status default = 0
U	This bit is set at the occurrence of any enabled
	primary system activity (see the Primary Activity
	Detect Status register at offset 30h and the Primary
	Activity Detect Enable register at offset 34h). After
	checking this bit, software can check the status bits in
	the Primary Activity Detect Status register at offset
	30h to identify the specific source of the primary
	event. Note that setting this bit can be enabled to
	reload the GP0 timer (see bit-0 of the GP Timer

Note that SMI can be generated based on the setting of any of the above bits (see the Rx2A Global Enable register bit descriptions in the right hand column of this page).

Reload Enable register at offset 38).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

The bits in this register are for SMI's only while the bits in Rx21-20 are for SMI's and SCI's

I/O Off	Set 2B-2A - Global EnableRW
15	GPIO Range 1 SMI Enable default = 0
14	GPIO Range 0 SMI Enabledefault = 0
13	GP3 Timer Timeout SMI Enable default = 0
12	GP2 Timer Timeout SMI Enable default = 0
11	SERIRQ SMI Enabledefault = 0
10	SMI on Sleep Enable Writedefault = 0
9	Reserved always reads 0
8	PCKRUN# Resume Enabledefault = 0
	This bit may be set to trigger an SMI to be generated
	when the PCKRUN# Resume Status bit is set.
7	Primary IRQ/INIT/NMI/SMI Resume Enable In
	Post State default = 0
	This bit may be set to trigger an SMI to be generated
	when the Primary IRQ / INIT / NMI / SMI Resume
	Status bit is set.
6	SMI on Software SMI default = 0
	This bit may be set to trigger an SMI to be generated
	when the Software SMI Status bit is set.
5	SMI on BIOS Status default = 0
	This bit may be set to trigger an SMI to be generated
	when the BIOS Status bit is set.
4	SMI on Legacy USBdefault = 0
	This bit may be set to trigger an SMI to be generated
	when the Legacy USB Status bit is set.
3	SMI on GP1 Timer Time Out default = 0
	This bit may be set to trigger an SMI to be generated
	when the GP1 Timer Timeout Status bit is set.
2	SMI on GP0 Timer Time Out default = 0
	This bit may be set to trigger an SMI to be generated
	when the GP0 Timer Timeout Status bit is set.
1	SMI on Secondary Event Timer Time Out def=0
	This bit may be set to trigger an SMI to be generated
	when the Secondary Event Timer Timeout Status bit
	is set.
0	SMI on Primary Activity default = 0
	This bit may be set to trigger an SMI to be generated
	when the Primary Activity Status bit is set.

I/O Off	set 2D-2C - Global ControlRW		
	Reserved always reads 0		
11	IDE Secondary Bus Power-Off		
	0 Disable		
	1 Enable		
10	IDE Primary Bus Power-Off		
	0 Disable		
	1 Enable		
9	Reserved always reads 0		
8	SMI Active		
	0 SMI Inactive		
	1 SMI Active. If the SMI Lock bit is set, this bit		
	needs to be written with a 1 to clear it before		
	the next SMI can be generated.		
7	LID Triggering Polarity		
	0 Rising Edge default		
	1 Falling Edge		
6	THRM# Triggering Polarity		
	0 Rising Edge default		
	1 Falling Edge		
5	Battery Low Resume Disable		
	0 Enable resume default		
	1 Disable resume from suspend when		
	BATLOW# is asserted		
4	SMI Lock		
	0 Disable SMI Lock		
	1 Enable SMI Lock (SMI low to gate for the		
	next SMI) default		
3	Wait for Halt / Stop Grant Cycle for CPUSTP#		
	Assertion		
	0 Don't wait default		
	1 Wait		
	This bit works with Rx8C[0] of PCI configuration		
•	space to control the start of CPUSTP# assertion.		
2	Power Button Triggering Select		
	0 SCI/SMI generated by PWRBTN# rising edge		
	1 SCI/SMI generated by PWRBTN# falling		
	edge Set to zero to avoid the situation where the Power		
	Button Status bit is set to wake up the system then		
	reset again by PBOR Status to switch the system into		
	the soft-off state.		
1	BIOS Release		
•	This bit is set by legacy software to indicate release		
	of the SCI/SMI lock. Upon setting of this bit,		
	hardware automatically sets the Global Status bit.		
	This bit is cleared by hardware when the Global		
	Status bit cleared by software.		
	Note that if the Global Enable bit is set (Power		
	Management Enable register Rx2[5]), then setting		
	this bit causes an SCI to be generated (because		
	setting this bit causes the Global Status bit to be set).		
0	SMI Enable		
	O Disable all CMI concretion default		

0 Disable all SMI generation...... default

I/O Offset 2F - SMI CommandRW

7-0 SMI Command

Writing to this port sets the Software SMI Status bit. Note that if the Software SMI Enable bit is set (see Global Enable register Rx2A[6]), then an SMI is generated.

1 Enable SMI generation

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in Rx37-34. If the corresponding bit is set in that register, setting of a bit below will cause the Primary Activity Status (PACT_STS) bit to be set (Global Status register Rx28[0]). All bits in this register default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

- 31-11 Reserved always read 0
 10 Audio Access Status (AUD_STS)
 Set if Audio is accessed.
 - 9 Keyboard Controller Access Status..... (KBC_STS) Set if the KBC is accessed via I/O port 60h.
 - 8 VGA Access Status......(VGA_STS)
 Set if the VGA port is accessed via I/O ports 3B03DFh or memory space A0000-BFFFFh.
 - 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
 - 6 Serial Port B Access Status (COMB_STS)
 Set if the serial port is accessed via I/O ports 2F82FFh or 2E8-2Efh (COM2 and COM4 respectively).
 - 5 Serial Port A Access Status(COMA_STS) Set if the serial port is accessed via I/O ports 3F8-3FFh or 3E8-3EFh (COM1 and COM3, respectively).
 - 4 Floppy Access Status.....(FDC_STS)
 Set if the floppy controller is accessed via I/O ports
 3F0-3F5h or 3F7h.
 - 3 Secondary IDE Access Status.....(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
 - 2 Primary IDE Access Status (PIDE_STS)
 Set if the IDE controller is accessed via I/O ports
 1F0-1F7h or 3F6h.
 - 1 Primary Interrupt Activity Status.....(PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 4 PCI configuration register offset 44h).
 - **OPCI Master Access Status.................(DRQ_STS)**Set on the occurrence of PCI master activity.

Note: Setting of Primary Activity Status (PACT_STS) may be done to enable a "Primary Activity Event": an SMI will be generated if the Primary Activity Enable bit is set (Global Enable register Rx2A[0]) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (GP Timer Reload Enable register Rx38[0]).

Note: Bits 2-9 above also correspond to bits of GP Timer Reload Enable register Rx38: If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in Rx33-30. Setting of any of these bits also sets the Primary Activity Status (PACT_STS) bit (Rx28[0]) which causes the GP0 timer to be reloaded (if the Primary Activity GP0 Enable bit is set) or generates an SMI (if Primary Activity Enable is set).

Activity	Enabl	le is set).
31-11	Rese	rvedalways read 0
10	SMI	on Audio Status (AUD EN)
	0	Don't set PACT_STS if AUD_STS is set def
	1	Set PACT_STS if AUD_STS is set
9	SMI	on Keyboard Controller Status (KBC_EN)
	0	Don't set PACT_STS if KBC_STS is setdef
	1	Set PACT_STS if KBC_STS is set
8	SMI	on VGA Status(VGA_EN)
	0	Don't set PACT_STS if VGA_STS is set def
	1	Set PACT_STS if VGA_STS is set
7	SMI	on Parallel Port Status(LPT_EN)
	0	Don't set PACT_STS if LPT_STS is setdef
	1	Set PACT_STS if LPT_STS is set
6	SMI	on Serial Port B Status (COMB_EN)
	0	Don't set PACT_STS if COMB_STS is set.def
	1	Set PACT_STS if COMB_STS is set
5		on Serial Port A Status (COMA_EN)
	0	Don't set PACT_STS if COMA_STS is set.def
	1	Set PACT_STS if COMA_STS is set
4		on Floppy Status(FDC_EN)
	0	Don't set PACT_STS if FDC_STS is setdef
	1	Set PACT_STS if FDC_STS is set
3		on Secondary IDE Status(SIDE_EN)
	0	Don't set PACT_STS if SIDE_STS is set def
_	1	Set PACT_STS if SIDE_STS is set
2		on PrimaryIDE Status(PIDE_EN)
	0	Don't set PACT_STS if PIDE_STS is set def
	1	Set PACT_STS if PIDE_STS is set
1		on Primary IRQ Status(PIRQ_EN)
	0	Don't set PACT_STS if PIRQ_STS is set def
	1	Set PACT_STS if PIRQ_STS is set
0	CNAT	on DCI Moston Status
0	PIVII	on PCI Master Status(DRQ_EN)

0 Don't set PACT STS if DRO STS is set def

Set PACT STS if DRQ STS is set

O Off	set 3B-38 - GP Timer Reload EnableRW	<u> 1/O Off</u>	<u>set 40 – Extended I/O Trap Status RWC</u>
ll bits	in this register default to 0 on power up.	7-5	Reserved always reads 0
31-8	Reserved always reads 0	4	BIOS Write Access Status
7	GP1 Timer Reload on KBC Access	3	GP3 Timer Second Timeout With No Cycles
	0 Normal GP1 Timer Operation default		0 Disabledefault
	1 Setting of KBC_STS causes the GP1 timer to		1 Enable (GP3 timer timed out twice with no
	reload.		cycles in between)
6	GP1 Timer Reload on Serial Port Access	2	GP3 Timer Second Timeout Status
	0 Normal GP1 Timer Operation default	1	GPIO Range 3 Access Status
	1 Setting of COMA_STS or COMB_STS causes	0	GPIO Range 2 Access Status
	the GP1 timer to reload.	T/O O86	
			Set 42 – Extended I/O Trap EnableRW
5	Reserved always reads 0		Reserved always reads 0
		4	SMI on BIOS Write Access
4	GP1 Timer Reload on VGA Access		This bit controls whether SMI is generated when
	0 Normal GP1 Timer Operation default		BIOS Write Access Status $Rx40[4] = 1$.
	1 Setting of VGA_STS causes the GP1 timer to		0 Disable default
	reload.		1 Enable (can be reset only by OCI_Reset)
3	GP1 Timer Reload on IDE/Floppy Access	3	Reserved always reads 0
	0 Normal GP1 Timer Operation default	2	GP3 Timer Second Timeout Reboot
	1 Setting of FDC_STS, SIDE_STS, or		This bit controls whether the system is rebooted
	PIDE_STS causes the GP1 timer to reload.		when the GP3 timer times out twice $(Rx40[2] = 1)$.
			0 Disabledefault
2	GP3 Timer Reload on GPIO Range 1 Access		1 Enable
	0 Normal GP3 Timer Operation default	1	SMI on GPIO Range 3 Access
	1 Setting of GR1_STS causes the GP3 timer to		This bit controls whether SMI is generated when
	reload.		GPIO range 3 is accessed $(Rx40[1] = 1)$
1	GP2 Timer Reload on GPIO Range 0 Access		0 Disable default
	0 Normal GP2 Timer Operation default	0	1 Enable
	1 Setting of GR0_STS causes the GP2 timer to	0	SMI on GPIO Range 2 Access
	reload.		This bit controls whether SMI is generated when
			GPIO range 2 is accessed $(Rx40[0] = 1)$
0	GP0 Timer Reload on Primary Activity		0 Disable default
	0 Normal GP0 Timer Operation default		1 Enable
	1 Setting of PACT_STS causes the GP0 timer to		
	reload. Primary activities are enabled via the		
	Primary Activity Detect Enable register (offset		

37-34) with status recorded in the Primary Activity Detect Status register (offset 33-30).

General Purpose I/O Registers

7-5	Reserved always reads 0
4	Latest PCSn Status
	0 Latest PCSn was an I/O Read
	1 Latest PCSn was an I/O Write
3	Serial SMI Status
	This bit is used to report a Serial-IRQ-generated SMI.
2	Reserved always reads 0
1	SMBus IRQ Status
	This bit is used to report an SMBus SMI.
0	SMBus Resume Status
	This bit is used to report an SMBus Resume Event.

I/O Offset 4B-48 - GPI Port Input Value (GPIVAL) RO 31-0 GPI[31-0] Input Value Read Only

I/O Offset 4F-4C - GPO Port Output Value (GPOVAL)RW

Reads from this register return the last value written (held on chip). Some GPIO pins can be used as both input and output (GPIO pins 8-15 and 20-31). The output type of these pins is OD (open drain) so to use one of these pins as an input pin, a one must be written to the corresponding bit of this register. See also Function 0 RxE4[4-3] for I/O control of GPIO pins 8-15.

31-0 GPO[**31-0**] **Output Value**.....def = FFFFFFFh

I/O Of	fset 50 – GPI Pin Change Status	RW
7	GPI27 Pin Change Status	
6	GPI26 Pin Change Status	default = 0
5	GPI25 Pin Change Status	default = 0
4	GPI24 Pin Change Status	default = 0
3	GPI19 Pin Change Status	default = 0
2	GPI18 Pin Change Status	default = 0
1	GPI17 Pin Change Status	default = 0
0	GPI16 Pin Change Status	default = 0
[/O Of	fset 52 – GPI Pin Change SCI/SMI S	SelectRW
7	GPI27 Pin SCI / SMI Select	

- 6 GPI26 Pin SCI / SMI Select
- 5 GPI25 Pin SCI / SMI Select
- 4 GPI24 Pin SCI / SMI Select
- 3 GPI19 Pin SCI / SMI Select
- 2 GPI18 Pin SCI / SMI Select
- 1 GPI17 Pin SCI / SMI Select
- GPI16 Pin SCI / SMI Select
 - 0 SCI on pin input change default
 - 1 SMI on pin input change

I/O Trap Registers

I/O Off	set 57-54 – I/O Trap PCI Data	RC
31-0	PCI Data During I/O Trap SMI	
I/O Off	set 59-58 – I/O Trap PCI I/O Address	RC
15-0	PCI Address During I/O Trap SMI	
I/O Off	set 5A – I/O Trap PCI Command / Byte Enable	RO
7-4	PCI Command Type During I/O Trap SMI	
3-0	PCI Byte Enable During I/O Trap SMI	

1 Lower CPU Voltage During C3 / S1

This bit controls the CPU voltage in C3/S1 state. The voltage is lowered using the VGATE signal (PMIO RxE5[4] must be 0 to enable the voltage change function).

- 0 Disable (normal voltage during C3/S1)......def
- 1 Enable (lower voltage during C3/S1)

0 Lower CPU Frequency During C3 / S1

This bit controls the CPU frequency in C3/S1 state. The frequency is lowered using the GHI# signal (PMIO RxE5[3] must be 0 to enable the frequency change function).

- 0 Disable (normal frequency during C3/S1)...def
- 1 Enable (lower frequency during C3/S1)

System Management Bus I/O-Space Registers

The base address for these registers is defined in RxD1-D0 of the Device 17 Function 0 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if Device 17 Function 0 RxD2[0] = 1.

I/O Off	fset 00 – SMBus Host StatusRWC
7	Reserved always reads 0
6	SMB SemaphoreRWC
U	This bit is used as a semaphore among various
	independent software threads that may need to use
	the Host SMBus logic and has no effect on hardware.
	After reset, this bit reads 0. Writing 1 to this bit
	causes the next read to return 0, then all reads after
	that return 1. Writing 0 to this bit has no effect.
	Software can therefore write 1 to request control and
	if readback is 0 then it will own usage of the host
	controller.
5	Reserved always reads 0
4	Failed Bus TransactionRWC
-	0 SMBus interrupt not caused by failed bus
	transaction
	1 SMBus interrupt caused by failed bus
	transaction. This bit may be set when the
	KILL bit (I/O Rx02[1]) is set and can be
•	cleared by writing a 1 to this bit position.
3	Bus CollisionRWC
	0 SMBus interrupt not caused by transaction
	collisiondefault
	1 SMBus interrupt caused by transaction
	collision. This bit is only set by hardware and
	can be cleared by writing a 1 to this bit
	position.
2	Device ErrorRWC
	0 SMBus interrupt not caused by generation of
	an SMBus transaction error default
	1 SMBus interrupt caused by generation of an
	SMBus transaction error (illegal command
	field, unclaimed host-initiated cycle, or host
	device timeout). This bit is only set by
	hardware and can be cleared by writing a 1 to
_	this bit position.
1	SMBus InterruptRWC
	0 SMBus interrupt not caused by host command
	completion
	1 SMBus interrupt caused by host command
	completion. This bit is only set by hardware
	and can be cleared by writing a 1 to this bit
	position.
0	Host BusyRO
	0 SMBus controller host interface is not
	processing a command default
	1 SMBus host controller is busy processing a
	command. None of the other SMBus registers
	should be accessed if this bit is set

should be accessed if this bit is set.

		- SMBus Slave StatusRWC
7-6	Reserv	
5	Alert S	StatusRWC
		SMBus interrupt not caused by SMBALERT#
		signaldefault
		SMBus interrupt caused by SMBALERT#
		signal. This bit will be set only if the Alert
		Enable bit is set in the SMBus Slave Control
		Register at I/O Offset R08[3]. This bit is only
		set by hardware and can be cleared by writing
		a 1 to this bit position.
4		w 2 StatusRWC
		SMBus interrupt not caused by address match
		to SMBus Shadow Address Port 2 default
	1	SMBus interrupt or resume event caused by
		slave cycle address match to SMBus Shadow
		Address Port 2. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
3		w 1 StatusRWC
·		SMBus interrupt not caused by address match
		to SMBus Shadow Address Port 1default
		SMBus interrupt or resume event caused by
		slave cycle address match to SMBus Shadow
		Address Port 1. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
2		StatusRWC
4		SMBus interrupt not caused by slave event
		match default
		SMBus interrupt or resume event caused by
		slave cycle event match of the SMBus Slave
		Command Register at PCI Function 4
		Configuration Offset D3h (command match)
		and the SMBus Slave Event Register at
		SMBus Base + Offset 0Ah (data event match).
		This bit is only set by hardware and can be
1	_	cleared by writing a 1 to this bit position.
1	Reserv	· · · · · · · · · · · · · · · · · · ·
0	Slave 1	· ·
	1	processing data
		SMBus controller slave interface is busy
		receiving data. None of the other SMBus
		registers should be accessed if this bit is set.

I/O Off	Set 02h – SMBus Host ControlRW	I/O Offset 03h – SMBus Host CommandRW
7	Reservedalways reads 0	7-0 SMBUS Host Command default = 0
6	Startalways reads 0	This field contains the data transmitted in the
	0 Writing 0 has no effect default	command field of the SMBus host transaction.
	1 Start Execution of Command	
	Writing a 1 to this bit causes the SMBus	I/O Offset 04h – SMBus Host AddressRW
	controller host interface to initiate execution of	The contents of this register are transmitted in the address
	the command programmed in the SMBus	field of the SMBus host transaction.
	Command Protocol field (bits 4-2). All	7-1 SMBUS Addressdefault = 0
	necessary registers should be programmed	This field contains the 7-bit address of the targeted
	prior to writing a 1 to this bit. The Host Busy	slave device.
	bit (SMBus Host Status Register bit-0) can be	0 SMBUS Read or Write
	used to identify when the SMBus controller	0 Execute a WRITE commanddefault
	has completed command execution.	1 Execute a READ command
5-2	SMBus Command Protocol	I/O Officet 05h CMD-re Heat Date 0
	Selects the type of command the SMBus host	I/O Offset 05h – SMBus Host Data 0RW
	controller will execute. Reads or Writes are	The contents of this register are transmitted in the Data 0 field
	determined by Rx04[0].	of SMBus host transaction writes. On reads, Data 0 bytes are
	0000 Quick default	stored here.
	0001 Byte	7-0 SMBUS Data 0
	0010 Byte Data	For Block Write commands, this field is programmed
	0011 Word Data	with the block transfer count (a value between 1 and
	0100 Process Call	32). Counts of 0 or greater than 32 are undefined.
	0101 Block	For Block Read commands, the count received from
	0110 I2C with 10-bit Address	the SMBus device is stored here.
	0111 -reserved-	I/O Offset 06h – SMBus Host Data 1RW
	10xx -reserved-	The contents of this register are transmitted in the Data 1 field
	1100 I2C Process Call	of SMBus host transaction writes. On reads, Data 1 bytes are
	1101 I2C Block	stored here.
	1110 I2C with 7-bit Address	7-0 SMBUS Data 1 default = 0
	1111 Universal	7-0 SMIDOS Data 1deraunt – 0
1	Kill Transaction in Progress	I/O Offset 07h – SMBus Block DataRW
	0 Normal host controller operation default	Reads and writes to this register are used to access the 32-byte
	1 Stop host transaction currently in progress.	block data storage array. An internal index pointer is used to
	Setting this bit also sets the FAILED status bit	address the array. It is reset to 0 by reads of the SMBus Host
	(Host Status bit-4) and asserts the interrupt	Control register (I/O Offset 2) and incremented automatically
	selected by the SMB Interrupt Select bit	by each access to this register. The transfer of block data into
	(Function 4 SMBus Host Configuration	(read) or out of (write) this storage array during an SMBus
	Register RxD2[3]).	transaction always starts at index address 0.
0	Interrupt Enable	7-0 SMBUS Block Data default = 0
	0 Disable interrupt generation default	•
	1 Enable generation of interrupts on completion	

of the current host transaction.

7-4	Rese	rvedalways reads 0
3	SMB	Sus Alert Enable
	0	Disable default
	1	Enable generation of an interrupt or resume
		event on the assertion of the SMBALERT#
		signal
2	SMB	Sus Shadow Port 2 Enable
	0	Disable default
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus Slave Shadow Port 2 register (PCI
		function 4 configuration register RxD5).
1	SMB	Sus Shadow Port 1 Enable
	0	Disable default
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus Slave Shadow Port 1 register (PCI
		function 4 configuration register RxD4).
0	SMB	Sus Slave Enable
	0	Disable default
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus host controller slave port of 10h, a
		command field which matches the SMBus
		Slave Command register (PCI function 4
		configuration register RxD3), and a match of
		one of the corresponding enabled events in the
		SMBus Slave Event Register (I/O Offset 0Ah).
Off	Foot AA	h – SMBus Shadow Command RO
, OII	13CL U 9	ii – Sividus Siiauuw Cullillialiu KU

This register is used to store command values for external SMBus master accesses to the host slave and slave shadow ports. 7-0

Shadow Command default = 0This field contains the command value which was received during an external SMBus master access whose address field matched the host slave address (10h) or one of the slave shadow port addresses.

I/O Offset 0B-0Ah – SMBus Slave Event.....RW

This register is used to enable generation of interrupt or resume events for accesses to the host controller's slave port.

15-0 SMBus Slave Eventdefault = 0 This field contains data bits used to compare against incoming data to the SMBus Slave Data Register (I/O Offset 0Ch). When a bit in this register is set and the corresponding bit the Slave Data register is also set, an interrupt or resume event will be generated if the command value matches the value in the SMBus Slave Command register and the access was to SMBus host address 10h.

I/O Offset 0D-0Ch - SMBus Slave DataRO

This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port.

15-0 SMBus Slave Datadefault = 0 This field contains the data value which was transmitted during an external SMBus master access whose address field matched one of the slave shadow port addresses or the SMBus host controller slave port address of 10h.

Device 17 Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT8233A. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO	
Offset 3	3-2 - Device ID (0571h=IDE Controller)RO
Offset 5	5-4 – Command (0000h)RW
15-3	Reserved always reads 0
2	Bus Master default = 0 (disabled)
	S/G operation can be issued only when the "Bus
	Master" bit is enabled.
1	Reserved always reads 0
0	I/O Space default = 0 (disabled)
	When the "I/O Space" bit is disabled, the device will
	not respond to any I/O addresses for both compatible
	and native mode.

Offset '	7-6 – Status (0290h))	RO
15	Detected Parity Error	fixed at 0
14	Signalled System Error	fixed at 0
13	Received Master Abort	fixed at 0
12	Received Target Abort	fixed at 0
11	Signalled Target Abort	fixed at 0
10-9	DEVSEL# Timing	always reads 01 (medium)
8	Data Parity Detected	fixed at 0
7	Fast Back to Back	fixed at 1
6-5	Reserved	always reads 0
4	Capability List	fixed at 1
3-0	Reserved	always reads 0

Offset 8 - Revision ID (06)RO
7-0 Revision Code for IDE Controller Logic Block

Offset 9	- Programming InterfaceR	W	
7	Master IDE Capability fixed at 1 (Supported		
6-4	Reserved always reads 0		
3	Programmable Indicator - Secondary fixed a		
	Supports both modes (may be set to either mode	by	
	writing Rx42[6])	•	
2	Channel Operating Mode - Secondary		
	0 Compatibility Modedefa	ult	
	1 Native Mode		
1	Programmable Indicator - Primary fixed a	t 1	
	Supports both modes (may be set to either mode		
	writing Rx42[7])	•	
0	Channel Operating Mode - Primary		
	0 Compatibility Modedefa	ult	
	1 Native Mode		
Compat	bility Mode (fixed IRQs and I/O addresses):		
	Command Block Control Block		
Chann	<u>el</u> <u>Registers</u> <u>Registers</u> <u>IRQ</u>		
Pri	1F0-1F7 3F6 14		
Sec	170-177 376 15		
Native PCI Mode (registers are programmable in I/O space)			
	Command Block Control Block		
Chann			
Pri	BA @offset 10h BA @offset 14h		
Sec	BA @offset 18h BA @offset 1Ch		
~			
	nd register blocks are 8 bytes of I/O space		
Control	registers are 4 bytes of I/O space (only byte 2 is used	1)	
Offset A	A - Sub Class Code (01h=IDE Controller)R	<u> 10</u>	
Offset 1	B - Base Class Code (01h=Mass Storage Ctrlr) R	<u>RO</u>	

Offset 13-10 - Pri Data / Command Base AddressRW	Offset 2D-2C - Sub Vendor ID (0000h)RO
Specifies an 8 byte I/O address space.	The readback value may be changed by writing to RxD5-D4.
31-16 Reserved always read 0 15-3 Port Address default=01F0h 2-0 Fixed at 001b fixed	Offset 2F-2E – Sub Device ID (0000h)RO The readback value may be changed by writing to RxD7-D6.
Offset 17-14 - Pri Control / Status Base AddressRW	
Specifies a 4 byte I/O address space of which only the third byte is active (i.e., 3F6h for the default base address of 3F4h).	Offset 34 - Capability Pointer (C0h)RO
31-16 Reserved always read 0 15-2 Port Address default=03F4h 1-0 Fixed at 01b fixed	
1-0 Fixed at 010	Offset 3C - Interrupt Line (0Eh)RO
Offset 1B-18 - Sec Data / Command Base AddressRW Specifies an 8 byte I/O address space.	7-4 Reserved
31-16 Reserved always read 0	0001 IRQ1
15-3 Port Address	0010 IRQ2
2-0 Fixed at 001b fixed	
Offset 1F-1C - Sec Control / Status Base AddressRW	1101 IRQ13
	1110 IRQ14default
Specifies a 4 byte I/O address space of which only the third byte is active (i.e., 376h for the default base address of 374h).	1111 IRQ15
byte is active (i.e., 570h for the default base address of 574h).	APIC (See Device 17 Function 0 Rx4D[7])
31-16 Reserved always read 0	x000 IRQ16
15-2 Port Address	x001 IRQ17
1-0 Fixed at 01b fixed	x010 IRQ18
Offcot 22 20 Pug Moston Control Dogs Poss Address DW	 v111 IDO22
Offset 23-20 - Bus Master Control Regs Base AddressRW	x111 IRQ23
Specifies a 16 byte I/O address space compliant with the SFF -	
8038i rev 1.0 specification.	Offset 3D - Interrupt Pin (00h)RO
31-16 Reserved always read 0	7-0 Interrupt Routing Mode
15-4 Port Addressdefault=CC0h	00h Legacy mode interrupt routingdefault
3-0 Fixed at 0001b fixed	01h Native mode interrupt routing
See Rx42[7-6] for Native / Compatibility mode select for the above registers	
	Offset 3E - Minimum Grant (00h)RO
	Offset 3F - Maximum Latency (00h)RO

IDE-Controller-Specific Confliguration Registers

Offset	40 - Chip EnableRW
7-2	Reserved always reads 0
1	Primary Channel
	0 Disable default
	1 Enable
0	Secondary Channel
	0 Disable default
	1 Enable
Offset	41 - IDE Configuration IRW
7	Primary IDE Read Prefetch Buffer
	0 Disable default
	1 Enable
6	Primary IDE Post Write Buffer
	0 Disable default
	1 Enable
5	Secondary IDE Read Prefetch Buffer
	0 Disable default
	1 Enable
4	Secondary IDE Post Write Buffer
	0 Disable default
	1 Enable
3-0	Reserved always reads 0
Offset	42 - IDE Configuration IIRW
7	PIO Operating Mode - Primary Channel
	Selects the mode used in the primary channel for the
	I/O Base Address (not IRQ routing or sharing)
	0 Compatibility Mode (fixed addressing). default
	1 Native PCI Mode (flexible addressing)
6	PIO Operating Mode - Secondary Channel
	Selects the mode used in the secondary channel for
	the I/O Base Address (not IRQ routing or sharing)
	O Compatibility Mode (fixed addressing). default
= 0	1 Native PCI Mode (flexible addressing)
5-0	Reserved always reads 0

Offset 4	43 - FIFO ConfigurationRW		
7-4	Reserved always reads 0		
3-2	Primary Channel FIFO Threshold		
	Determines the threshold required before the primary		
	channel FIFO is flushed.		
	00 FIFO flushed when 1/4 full		
	01 FIFO flushed when 1/2 full		
	10 FIFO flushed when 3/4 fulldefault		
	11 FIFO flushed when completely full (32 DWs)		
1-0	Secondary Channel FIFO Threshold		
	Determines the threshold required before the		
	secondary channel FIFO is flushed.		
	00 FIFO flushed when 1/4 full		
	01 FIFO flushed when 1/2 full		
	10 FIFO flushed when 3/4 fulldefault		
	11 FIFO flushed when completely full (32 DWs)		
	1 , , , ,		

Offset	44 - Miscellaneous Control 1RW	Offset	45 - Miscellaneous Control 2RW
	Reservedalways reads 0	7	Reservedalways reads 0
4	PIO Read Pre-Fetch Byte Counter	6	Interrupt Steering Swap
	Determines whether the amount of data prefetched		Controls whether primary and secondary channel
	under PIO read is limited.		interrupts are swapped.
	0 Disable (no limit) default		0 Primary channel interrupt is steered to IRQ14,
	1 Enable. The maximum number of bytes that		Secondary channel is steered to IRQ15. default
	can be prefetched is determined by Rx61-		1 Primary channel interrupt is steered to IRQ15,
	60[11:0] for the primary channel and Rx69-		Secondary channel interrupt steered to IRQ14
	68[11:0] for the secondary channel.	5	Reservedalways reads 1
3	Bus Master IDE Status Register Read Retry	4	Rx3C Write Protect
	Determines whether a read to the bus master IDE		0 Disable (writes to Rx3C are allowed) default
	status register is retried when DMA operation is not		1 Enable (writes to Rx3C are ignored). Under
	complete.		Native Mode (Rx9[2]=1 or Rx9[0]=1) Rx3C
	O Disable. Reads will return status even if DMA		should not be write protected as it is used to
	operation is not complete.		route IRQ lines.
	1 Enable. Reads of the status register are	3	"Memory-Read-Multiple" Command
	automatically retried while DMA operation is		0 Disabledefault
	not completedefault		1 Enable
2	Packet Command Prefetching	2	"Memory-Write-and-Invalidate" Command
	Determines whether prefetching is enabled for packet		0 Disabledefault
	commands. Packet commands are commands for		1 Enable
	ATAPI, which is used for operating devices such as	1-0	Reservedalways reads 0
	CD-ROM drives.		
	0 Disable default		
	1 Enable	Offeed	AC Misselleneous Control 2 DW
1	Reserved always reads 0		46 - Miscellaneous Control 3RW
0	UltraDMA Host Must Wait for First Transfer	7	Primary Channel Read DMA FIFO Flush
	Before Termination		0 Disable
	0 Enable. The UltraDMA host must wait until at		1 Enable. The primary channel DMA FIFO is
	least the first transfer is completed before it		flushed when an interrupt request is generated
	can terminate a transaction default		default
	1 Disable	6	Secondary Channel Read DMA FIFO Flush
			0 Disable
			1 Enable. The secondary channel DMA FIFO is
			flushed when an interrupt request is generated
		5 A	Reserved
		5-0	Reserved always reads 0

Offset 4B-48 - Drive Timing Control.....RW

The following fields define the Active Pulse Width and Recovery Time for the IDE DIOR# and DIOW# signals when accessing the data ports (1F0 and 170):

31-28	Primary Drive 0 Active Pulse Width def=1010b
27-24	Primary Drive 0 Recovery Timedef=1000b
23-20	Primary Drive 1 Active Pulse Width def=1010b
19-16	Primary Drive 1 Recovery Timedef=1000b
15-12	Secondary Drive 0 Active Pulse Width def=1010b
11-8	Secondary Drive 0 Recovery Time def=1000b
7-4	Secondary Drive 1 Active Pulse Width def=1010b
3-0	Secondary Drive 1 Recovery Time def=1000b

The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks. For example, if the value in the field is 1010b (10 decimal), the active pulse width or recovery time is 11 PCI clocks.

Offset 4C - Address Setup Time.....RW

The following fields define the Address Setup Time. The Address Setup Time is measured from the point when address signals are stable to the point when DIOR# and DIOW# are asserted. The IDE specification requires the setup time to not exceed 1T. However, the VT8233 provides flexibility for devices that may not be able to meet the 1T requirement.

- 7-6 Primary Drive 0 Address Setup Time
- 5-4 Primary Drive 1 Address Setup Time
- 3-2 Secondary Drive 0 Address Setup Time
- 1-0 Secondary Drive 1 Address Setup Time

For each field above:

00 1T

01 2T 10 3T

11 4Tdefault

Offset 4	4E – Sec Non-1F0 Port Access TimingRW
7-4	DIOR# / DIOW# Active Pulse Width def = 0Bh
3-0	DIOR# / DIOW# Recovery Time def = 06h

Offset 4F - Pri Non-1F0 Port Access Timing.....RW

7-4 DIOR# / DIOW# Active Pulse Widthdef = 0Bh
 3-0 DIOR# / DIOW# Recovery Timedef = 06h

The above fields define the primary and secondary channel DIOR# and DIOW# active pulse widths and recovery times when accessing non-data ports. The times are defined in terms of PCI clocks and the actual value is equal to the value encoded in the field plus one.

Offset 5	33-50 - UltraDMA Extended Timing Control RW
31	Pri Drive 0 UltraDMA-Mode Enable Method
	0 Enable by using "Set Feature" command def
	1 Enable by setting bit-30 of this register
30	Pri Drive 0 UltraDMA-Mode Enable
	0 Disable default
	1 Enable UltraDMA-Mode Operation
29	Pri Drive 0 Transfer Mode
	0 DMA or PIO Modedefault
• •	1 UltraDMA Mode
28	Pri Drive 0 Cable Type Reporting
	0 40-pin cable is being useddefault
25.24	1 80-pin cable is being used
27-24	Pri Drive 0 Cycle Time (T = 7.5 ns for 133 MHz)
	$\frac{\text{(T = 10 ns for 100 MHz in 8233 and 8233C)}}{27}$
	0000 2T 0001 3T
	0010 4T
	0010 41 0011 5T
	0100 6T
	0101 7T
	0110 8T
	0111 9Tdefault
	1000 10T
	1001 11T
	1010 12T
	1011 13T
	1100 14T
	1101 15T
	1110 16T
	1111 17T
23	Pri Drive 1 UltraDMA-Mode Enable Method
22	Pri Drive 1 UltraDMA-Mode Enable
21	Pri Drive 1 Transfer Mode
20	Pri Drive 1 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
19-16	Pri Drive 1 Cycle Time
15	Sec Drive 0 UltraDMA-Mode Enable Method
14	Sec Drive 0 UltraDMA-Mode Enable
13	Sec Drive 0 Transfer Mode
12	Sec Drive 0 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
11-8	Sec Drive 0 Cycle Time
7	Sec Drive 1 UltraDMA-Mode Enable Method
6	Sec Drive 1 UltraDMA-Mode Enable
5	Sec Drive 1 Transfer Mode
4	Sec Drive 1 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
2.0	C. D.: 1 C1. T.:

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

Sec Drive 1 Cycle Time

Offset 5	54 – UltraDMA FIFO Control (04h)RW	Offset	70 – Primary IDE Status	RO
7	Reserved always reads 0	7	Interrupt Status	RO
6	Lower ISA Request Priority When Write Device		1 Primary channel interrupt request pendir	
	Packet Command is Issued	6	Prefetch Buffer Status	-
	The IDE secondary channel shares a bus internally		1 PIO Prefetch transaction in progress	
	with the ISA interface. When this bit is enabled, the	5	Post Write Buffer Status	RO
	IDE secondary channel is given higher priority over	_	1 PIO Post Write transaction in progress	
	ISA, which results in better performance.	4	DMA Read Prefetch Status	RO
	0 Disable	-	1 DMA Read Prefetch transaction in progr	
	1 Enable	3	DMA Write Pipeline Status	
5	Clear Native Mode Interrupt on Falling Edge of	3	1 DMA Write transaction in progress	10
J	Gated Interrupt	2	S/G Operation Complete	RΩ
	0 Disable default	_	1 Scatter / Gather operation complete	KO
	1 Enable. The interrupt will be automatically	1	FIFO Empty Status	RO
	cleared on the falling edge of the gated	1	1 Primary Channel FIFO empty	KO
	interrupt.	0	Response to External DMA Request	PΩ
4	Improve PIO Prefetch and Post-Write	U	1 External pri channel DMA request pendi	
7	Performance		1 External pri channel DIVIA request pendi	ing
	0 Enable. PIO prefetch and post write	Offset	71 – Primary Interrupt Control (01h)	RW
	performance is increased by being given	7-1	Reservedalways	
	higher throughputdefault	0	Interrupt Gating	cuus o
	1 Disable	v	0 Disable	
3	Memory Prefetch Size		1 Enable (IRQ output gated until FIFO em	ntv)
3	This bit determines how many lines are prefetched			
	from memory for IDE transactions.		•••••••••••••••••••••••••••••••••••••••	ıcıauı
	0 Prefetch 1 line			
	1 Prefetch 3 lines (24 DoubleWords). This			
	setting improves ATA100 / 133 throughput.	Offset	78 – Secondary IDE Status	RO
2	Change Drive Clears All FIFO & Internal States	7	Interrupt Status	RO
2	0 Disable		1 Secondary channel interrupt request pen	
	1 Command switch from one drive to another	6	Prefetch Buffer Status	RO
			1 PIO Prefetch transaction in progress	
	drive in the same channel terminates all	5	Post Write Buffer Status	RO
	previous outstanding transactions involving		1 PIO Post Write transaction in progress	
1	the previous drivedefault	4	DMA Read Prefetch Status	RO
1	Reserved always reads 0		1 DMA Read Prefetch transaction in progr	
0	Complete DMA Cycle with Transfer Size Less	3	DMA Write Pipeline Status	
	Than FIFO Size		1 DMA Write transaction in progress	
	0 Enable. DMA transfer size is less than the	2	S/G Operation Complete	RO
	FIFO size default		1 Scatter / Gather operation complete	
	1 Disable	1	FIFO Empty Status	RO
			1 Secondary Channel FIFO empty	
		0	Response to External DMA Request	RO
Offset 6	61-60 - Primary Sector SizeRW		1 External sec channel DMA request pend	
	Reservedalways reads 0		1 1	υ
	Number of Bytes Per Sector def=200h (512 bytes)	Offset	79 - Secondary Interrupt Control (01h)	RW
11 0	This field determines the maximum number of bytes	7-1	Reservedalways i	reads 0
	that can be prefetched when $Rx44[4] = 1$.	0	Interrupt Gating	
	that can be preference when tex ri[1] = 1.		0 Disable	
Offset 6	69-68 - Secondary Sector SizeRW		1 Enable (IRQ output gated until FIFO em	pty)
	Reserved			
	Number of Bytes Per Sector def=200h (512 bytes)			
11-0	This field determines the maximum number of bytes			
	that can be prefetched when $Rx44[4] = 1$.			
	um can be preference when text=[+] - 1.	<u>Offset</u>	83-80 – Primary S/G Descriptor Address	RO
		Offset	8B-88 - Secondary S/G Descriptor Address	RO
		These	registers are used for debugging purposes only.	

IDE Power Management Registers

......default

IDE Back Door Registers

00 D0

01 -reserved-

10 -reserved-11 D3 Hot

Offset D0 - Back Door - Revision ID (06h)	.RW
Offset D3-D2 - Back Door - Device ID (0571h)	.RW
Offset D5-D4 - Back Door - Sub-Vendor ID (0000h)	.RW
Offset D7-D6 – Back Door – Sub-Device ID (0000h)	.RW

IDE I/O Registers

These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details.

I/O Offset 0 - Primary Channel Command

I/O Offset 2 - Primary Channel Status

I/O Offset 4-7 - Primary Channel PRD Table Address

I/O Offset 8 - Secondary Channel Command

I/O Offset A - Secondary Channel Status

I/O Offset C-F - Secondary Channel PRD Table Address

Device 17 Function 2 Registers - USB Controller Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 2 PCI configuration space of the VT8233A. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 3 for ports 2-3 and function 4 for ports 4-5).

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO
7-0	Vendor ID (1106h = VIA Technologies)
Office 4	2.2 Davida ID
Offset 3	3-2 - Device ID RO
7-0	Device ID (3038h = VT8233A USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Reserved (memory write and invalidate) fixed at 0
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Master fixed at 0
1	Memory Space fixed at 0
0	I/O Space default=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abortdefault=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

7-0 Silicon Revision Code (0 indicates first silicon) 06h Corresponds to Chip Revision D
Offset 9 - Programming Interface (00h)RO
Offset A - Sub Class Code (03h=USB Controller)RO
Offset B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset 23-20 - USB I/O Register Base Address
Offset 2D-2C – Sub Vendor ID (0000h)RO Offset 2F-2E – Sub Device ID (0000h)RO
Offset 3C - Interrupt Line (00h)RW
7-4 Reserved always reads 0
3-0 USB Interrupt Routing
3-0 USB Interrupt Routing 0000 Disabled
3-0 USB Interrupt Routing 0000 Disabled
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3
3-0 USB Interrupt Routing
3-0 USB Interrupt Routing
3-0 USB Interrupt Routing 0000 Disabled
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
3-0 USB Interrupt Routing 0000 Disabled
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
3-0 USB Interrupt Routing 0000 Disabled
3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
3-0 USB Interrupt Routing 0000 Disabled

as defined in UHCI.....default

.....always reads 0

1 Last command skipped

Reserved

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	Reserved always reads 0	7	USB 1.1 Improvement for EOP
6	Babble Option		This bit controls whether USB Specification 1.1 or
	This bit controls whether the port is disabled when		1.0 is followed when a stuffing error occurs before an
	EOF (End-Of-Frame) babble occurs. Babble is		EOP (End-Of-Packet). A stuffing error results when
	unexpected bus activity that persists into the EOF		the receiver sees seven consecutive ones in a packet.
	interval. When this bit is 0, the port with the EOF		Under USB specification 1.1, when this occurs in the
	babble is disabled. When it is 1, it is not disabled		interval just before an EOP, the receiver will accept
	0 Automatically disable babbled port when EOF		the packet. Under USB specification 1.0, the packet
	babble occursdefault		is ignored.
	1 Don't disable babbled port		0 USB Spec 1.1 Compliant (packet accepted) def
5	Reserved always reads 0		1 USB Spec 1.0 Compliant (packet ignored)
4	Reserved (Do Not Program) default = 0	6-3	Reserved (Do Not Program) default = 0
3	USB Data Length Option	2	Trap Option
	O Support TD length up to 1280 default		Under the UHCI spec, port 60 / 64 is trapped only
	1 Support TD length up to 1023		when its corresponding enable bits are set. When this
	(TD = Transfer Descriptor)		bit is set, trap can be set without checking the enable
2	Reservedalways reads 0		bits.
1	DMA Option		0 Set trap 60/64 status bits only when trap 60/64
	0 Enhanced performance (8 DW burst access		enable bits are setdefault
	with better FIFO latency) default		1 Set trap 60/64 status bits without checking
	1 Normal performance (16 DW burst access		enable bits
	with normal FIFO latency)	1	A20Gate Pass Through Option
0	PCI Wait States		This bit controls whether the A20Gate pass-through
	0 Zero Wait Statesdefault		sequence (as defined in UHCI) is followed. The
	1 One Wait State		A20Gate sequence consists of 4 commands. When
			this bit is 0, the 4-command sequence is followed.
			When this bit is 1, the last command (write FFh to
			port 64) is skipped.
			0 A20GATE Pass-through command sequence

Offset 4	48 - Miscellaneous Control 3RW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) default = 0
1	Lengthen PreSOF Time
	The preSOF time point determines whether there is
	enough timein the remaining frame period to perform
	a 64-byte transaction. It prevents a packet that may
	not fit in the remaining frame period from being
	initiated. This bit controls whether the preSOF time
	point is moved back so that the preSOF time is
	lengthened.
	0 Disable default
	1 Enable (PreSOF time lengthened)
0	Issue Nonzero Bad CRC Code on FIFO Underrun
U	A FIFO underrun occurs when there is no data in the
	FIFO to supply data transmission. When this occurs,
	the south bridge invalidates the data by sending an incorrect CRC code to the device. This bit controls
	the type of incorrect CRC sent.
	0 Non zero CRC (recommended) default1 All zero CRC
	This option isn't really needed any more as non-zero
	CRC always works.
	CRC always works.
	49 – MIA Analog ControlRW
7-3	Reserved always reads 0
2	Reserved (Do Not Program) default = 0
1-0	Port Slew Rate Control
	This field controls the slew rate of signals from the
	port. The voltage values are Pn+ and Pn- crossover-
	point voltages. The different crossover points are
	generated by controlling the rising edge of both Pn+
	and Pn– signals.
	00 1.50V default
	01 1.65V
	10 1.80V
	11 1.95V
Offset	60 - Serial Bus Release NumberRO
7-0	Release Number always reads 10h
	•
Offset S	83-80 – PM CapabilityRO
31-0	PM Capability always reads 00020001h
Offcot	24 DM Canability Status DW
	84 – PM Capability StatusRW
7-0	PM Capability Status 00 D0 default
	00 20
	11 D3 Hot
Offset	C1-C0 - Legacy SupportRO
15-0	UHCI v1.1 Compliant always reads 2000h
_2 3	

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 17 Function 3 Registers - USB Controller Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 3 PCI configuration space of the VT8233A. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 2 for ports 0-1 and function 4 for ports 4-5).

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO
7-0	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
7-0	Device ID (3038h = VT8233A USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Reserved (memory write and invalidate) fixed at 0
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Master fixed at 0
1	Memory Space fixed at 0
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abortdefault=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	9 - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset 1	B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset 2	23-20 - USB I/O Register Base AddressRW
31-16	Reserved always reads 0
15-5	USB I/O Register Base Address. Port Address for
13-3	_
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4-0	00001b
Offset 2	2D-2C – Sub Vendor ID (0000h)RO
Offset 2	2F-2E – Sub Device ID (0000h)RO
	<u> </u>
0.00	
Offset :	3C - Interrupt Line (00h)RW
	BC - Interrupt Line (00h)
7-4	Reservedalways reads 0
	Reserved always reads 0 USB Interrupt Routing default = 16h
7-4	Reservedalways reads 0USB Interrupt Routingdefault = 16h0000 Disableddefault
7-4	Reservedalways reads 0USB Interrupt Routingdefault = 16h0000 Disableddefault0001 IRQ1
7-4	Reservedalways reads 0USB Interrupt Routingdefault = 16h0000 Disableddefault
7-4	Reservedalways reads 0USB Interrupt Routingdefault = 16h0000 Disableddefault0001 IRQ1
7-4	Reservedalways reads 0USB Interrupt Routingdefault = 16h0000 Disableddefault0001 IRQ10010 Reserved
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0100 IRQ4 default 0101 IRQ5 default 0110 IRQ6 default 0111 IRQ7 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0100 IRQ4 default 0101 IRQ5 default 0110 IRQ6 default 0111 IRQ7 default 1000 IRQ8 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0100 IRQ4 default 0101 IRQ5 default 0111 IRQ7 default 1000 IRQ8 default 1001 IRQ9 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0101 IRQ5 default 0101 IRQ5 default 0111 IRQ7 default 1000 IRQ8 default 1001 IRQ9 default 1010 IRQ10 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0100 IRQ4 default 0101 IRQ5 default 0111 IRQ7 default 1000 IRQ8 default 1001 IRQ9 default 1011 IRQ10 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved default 0011 IRQ3 default 0100 IRQ4 default 0101 IRQ5 default 0101 IRQ6 default 0111 IRQ7 default 1000 IRQ8 default 1010 IRQ9 default 1011 IRQ10 default 1100 IRQ12 default 1101 IRQ13 default
7-4	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13

7-0 Interrupt Pinalways reads 04h to indicate INTD#

as defined in UHCI.....default

.....always reads 0

1 Last command skipped

Reserved

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	Reserved always reads 0	7	USB 1.1 Improvement for EOP
6	Babble Option		This bit controls whether USB Specification 1.1 or
	This bit controls whether the port is disabled when		1.0 is followed when a stuffing error occurs before an
	EOF (End-Of-Frame) babble occurs. Babble is		EOP (End-Of-Packet). A stuffing error results when
	unexpected bus activity that persists into the EOF		the receiver sees seven consecutive ones in a packet.
	interval. When this bit is 0, the port with the EOF		Under USB specification 1.1, when this occurs in the
	babble is disabled. When it is 1, it is not disabled		interval just before an EOP, the receiver will accept
	0 Automatically disable babbled port when EOF		the packet. Under USB specification 1.0, the packet
	babble occurs default		is ignored.
	1 Don't disable babbled port		0 USB Spec 1.1 Compliant (packet accepted) def
5	Reservedalways reads 0		1 USB Spec 1.0 Compliant (packet ignored)
4	Reserved (Do Not Program) default = 0	6-3	Reserved (Do Not Program) default = 0
3	USB Data Length Option	2	Trap Option
	O Support TD length up to 1280 default		Under the UHCI spec, port 60 / 64 is trapped only
	1 Support TD length up to 1023		when its corresponding enable bits are set. When this
	(TD = Transfer Descriptor)		bit is set, trap can be set without checking the enable
2	Reservedalways reads 0		bits.
1	DMA Option		0 Set trap 60/64 status bits only when trap 60/64
	0 Enhanced performance (8 DW burst access		enable bits are setdefault
	with better FIFO latency) default		1 Set trap 60/64 status bits without checking
	1 Normal performance (16 DW burst access		enable bits
	with normal FIFO latency)	1	A20Gate Pass Through Option
0	PCI Wait States		This bit controls whether the A20Gate pass-through
	0 Zero Wait Statesdefault		sequence (as defined in UHCI) is followed. The
	1 One Wait State		A20Gate sequence consists of 4 commands. When
			this bit is 0, the 4-command sequence is followed.
			When this bit is 1, the last command (write FFh to
			port 64) is skipped.
			0 A20GATE Pass-through command sequence

Offset 4	48 - Miscellaneous Control 3RW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) default = 0
1	Lengthen PreSOF Time
	The preSOF time point determines whether there is
	enough timein the remaining frame period to perform
	a 64-byte transaction. It prevents a packet that may
	not fit in the remaining frame period from being
	initiated. This bit controls whether the preSOF time
	point is moved back so that the preSOF time is
	lengthened.
	0 Disabledefault
	1 Enable (PreSOF time lengthened)
0	Issue Nonzero Bad CRC Code on FIFO Underrun
U	A FIFO underrun occurs when there is no data in the
	FIFO to supply data transmission. When this occurs,
	the south bridge invalidates the data by sending an
	incorrect CRC code to the device. This bit controls
	the type of incorrect CRC sent.
	0 Non zero CRC (recommended) default
	1 All zero CRC
	This option isn't really needed any more as non-zero
	CRC always works.
Offset 4	49 – MIA Analog ControlRW
7-3	Reserved always reads 0
2	Reserved (Do Not Program) default = 0
1-0	Port Slew Rate Control
	This field controls the slew rate of signals from the
	port. The voltage values are Pn+ and Pn- crossover-
	point voltages. The different crossover points are
	generated by controlling the rising edge of both Pn+
	and Pn– signals.
	00 1.50Vdefault
	01 1.65V
	10 1.80V
	11 1.95V
	11 1,55 (
Offset (60 - Serial Bus Release NumberRO
7-0	Release Number always reads 10h
Offset 8	83-80 – PM Capability RO
31-0	PM Capability always reads 00020001h
Offset 8	84 – PM Capability StatusRW
7-0	PM Capability Status
7-0	00 D0default
	11 D3 Hot
	11 23 1100
Offset (C1-C0 - Legacy SupportRO
	UHCI v1.1 Compliant always reads 2000h
	1

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 17 Function 5 Registers - AC97 Audio Controller

The audio controller interface is hardware compatible with AC97. The PCI configuration registers for the audio controller are located in the function 5 PCI configuration space of the VT8233A. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

Offset 1-0 - Vendor ID RO 7-0 Vendor ID (1106h = VIA Technologies) Offset 3-2 - Device ID RO 7-0 Device ID (3059h = VT8233A Audio Controller)	Offset 13-10 - Base Address 0 - SGD Control / Status RW 31-16 Reserved always reads 0 15-8 Base Address default = 00h 7-0 00000001b (256 bytes)
Offset 5-4 - CommandRW	
15-10 Reservedalways reads 0	Device 0 Offset 2D-2C – Subsystem Vendor ID (0000h)*RO
9 Reserved (fast back-to-back) fixed at 0	15-0 Subsystem Vendor ID default = 0
8 SERR# Enable fixed at 0	*This register is RW if function 5-6 Rx44[4] = 1
7 Reserved (address stepping) fixed at 0	
6 Reserved (parity error response) fixed at 0	Device 0 Offset 2F-2E – Subsystem ID (0000h)*RO
5 Reserved (VGA palette snoop) fixed at 0	15-0 Subsystem ID default = 0
4 Reserved (memory write and invalidate) fixed at 0	*This register is RW if function 5-6 Rx44[4] = 1
Reserved (special cycle monitoring) fixed at 0	
2 Bus Master fixed at 0	
1 Memory Space fixed at 0	
0 I/O Space default=0 (disabled)	Offset 34 – Capture Pointer (C0h)RO
Offset 7-6 - Status RO	
	Offset 3C - Interrupt LineRW
	7-4 Reserved always reads 0
14 Signalled System Error	3-0 Audio Interrupt Routing
13 Received Master Abort	0000 Disableddefault
12 Received Target Abort	0001 IRQ1
11 Signalled Target Abort fixed at 0	0010 Reserved
10-9 DEVSEL# Timing 00 Fast	0011 IRQ3
00 Fast 01 Medium fixed	0100 IRQ4
10 Slow	0101 IRQ5
	0110 IRQ6
11 Reserved 8 Data Parity Error fixed at 0	0111 IRQ7
8 Data Parity Error fixed at 0 7 Fast Back-to-Back Capable fixed at 0	1000 IRQ8
6-5 Reservedalways reads 0	1001 IRQ9
4 PM 1.1 fixed at 1	1010 IRQ10
3-0 Reserved	1011 IRQ11
3-0 Reserved arways reads 0	1100 IRQ12
Offset 8 - Revision ID (40h) RO	1101 IRQ13
7-0 Silicon Revision Code	1110 IRQ14
	1111 Disabled
	Offset 3D - Interrupt Pin (03h)RO
Offset 9 - Programming Interface (00h)RO	Offset 3E - Minimum Grant (00h)RO
Offset A - Sub Class Code (01h=Audio Device)RO	Offset 3F - Maximum Latency (00h)RO
	•

Offset B - Base Class Code (04h=Multimedia Device)..... RO

Audio-Specific PCI Configuration Registers

ittset 4	10 – A 0	C Link Interface Status RO
7-6	Rese	rvedalways reads 0
5	Code	c CID=11b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
4	Code	c CID=10b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
3	Rese	rvedalways reads 0
2	Code	c CID=01b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
1	AC97	7 Low-Power StatusRO
	0	AC97 Codecs not in low-power mode
	1	AC97 Codecs in low-power mode
		This bit reports 1 when Rx26[4] of the codecs
		is 1. It is used to determine whether the bit-
		clock should be gated.
0	Code	c CID=00b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)

fset 4	<u> 41 – A</u>	C Link Interface ControlRW
7	AC-I	ink Interface
	0	Disable default
	1	Enable
6	AC-L	Link Reset
	0Asse	ert AC-Link Reset (used for cold reset)def
	1De-a	assert AC-Link Reset
5	AC-L	Link Sync
	0	Release SYNC default
	1	Force SYNC High (used for warm reset)
4	AC-I	Link Serial Data Out
	0	Release SDOdefault
	1	Force SDO High
3	Varia	able-Sample-Rate On-Demand Mode
	0	Disable (AC Link sends data every frame)def
	1	Enable (AC Link sends data only when there is
		a request from the codec)
2		Link SGD Read Channel PCM Data Output
	_	<u>SA Only)</u>
	0	Disable delast
	1	Enable
	(Bit-2	2 is "3D Audio Channel Slots 3/4" in 8233)
1-0	Resei	rvedalways reads 0

Offset	42 – Function EnableRW	Offset	48 – Volume Change Rate ControlRW
7-6	Reserved always reads 0	7-4	Reservedalways reads 0
5	Function 5 Config Reg Rx2C WritableRW		(Bits 7-4 are Volume Change Rate in 8233/8233C)
	0 Device 17 Function 5 Rx2C-2F RO default	3	Sync
	1 Device 17 Function 5 Rx2C-2F RW		This bit reports whether there is activity in function 5
4-0	Reserved always reads 0		(audio). When function 6 (modem) enters low-power
			state and wants to gate bit-clock, software needs to
			check this bit to see whether bit-clock can actually be
Offcot	44 – MC97 Interface ControlRO		gated, as function 5 shares the same bit-clock.
	-		0 Function 5 activity in progress that requires
Mappe	d RO to function 5 (RW in func 6) for status reporting.		bit-clock
7	AC-Link Interface for Slot-5 (Modem)RO		1 Function 5 does not need bit-clock so bit-clock
	0 Disable default		can be gated
	1 Enable	2-0	ReservedRW
6	Secondary Codec SupportRO	Offset	49 – S/PDIF ControlRW
	0 Disable default		Reservedalways reads 0
_	1 Enable	3	DX3 (DirectSound) Channel S/PDIF Support
5	Function 6 Config Reg Rx9-B WritableRO	3	This bit controls whether DirectSound Channel 3 is
	0 Device 17 Function 6 Rx9-B RO default		used as S/PDIF support
	1 Device 17 Function 6 Rx9-B RW		0 Disable default
4	Function 6 Config Reg 2Ch WritableRO		1 Enable
	0 Device 17 Function 6 Rx2C-2F RO default	2	Reservedalways reads 0
•	1 Device 17 Function 6 Rx2C-2F RW	1-0	S/PDIF Data Slot Select
3	Sync RO This bit reports whether there is activity in function 6	1-0	00 Slot 10/11default
	(modem). When function 5 (audio) enters low-power		01 Slot 3/4
	state and wants to gate bit-clock, software needs to		10 Slot 7/8
	check this bit to see whether bit-clock can actually be		11 Slot 6/9
	gated, as function 6 shares the same bit-clock.		
	0 Function 6 activity in progress that requires		
	bit-clock	0.00	C2 C0 P M (C 1994
	Function 6 does not need bit-clock so bit-clock		C3-C0 - Power Mgmt CapabilityRO
	can be gated	31-0	Power Mgmt Capabilityalways reads 0002 0001h
2-0	Reservedalways reads 0	Offset	C7-C4 – Power State RW
	,		Reservedalways reads 0
			Power State (D3 / D0 Only)
		1-0	TOWER State (D3 / D0 Omy)

<u>I/O Base 0 Regs – Audio Scatter / Gather DMA</u>

VT8233 and VT8233C have channels 0-3 at offsets 00-3F.

I/O Off	set 30 – DXS Channel 3 SGD StatusRWC
7	SGD ActiveRO
	0 SGD has completed or been terminated default
	1 SGD Active
6-5	Reserved always reads 0
4	Current SGD Index Equals Stop IndexRO
	0 SGD index not equal to stop index default
	1 SGD index being processed equals the stop
	index. This bit differs from bit-2 of this
	register in that this bit becomes 1 as soon as
	the SGD reaches the index equal to the stop
	index. Bit-2 becomes 1 after the SGD finishes
	processing the index equal to the stop index.
	So this bit will always turn on before bit-2.
3	SGD Trigger QueuedRO
	This bit reports whether the trigger used to restart the
	SGD operation is queued (I/O Offset 31[1] = 1 while
	the SGD engine is running).
	0 SGD trigger not queueddefault
	1 SGD trigger queued (when SGD reaches EOL,
	it will restart).
2	SGD Stop Interrupt StatusRWC
	1 SGD finished the index equal to the stop index
4	set in 3B-38[31-24].
1	SGD EOL (End Of Link)RWC
	1 Block is the last of the link. May be used by
	software as a signal to generate an interrupt request if I/O Offset $31[1] = 1$.
0	<u> </u>
U	SGD FlagRWC 1 Block complete. May be used by software as a
	signal to generate an interrupt request if I/O
	Offset $31[0] = 1$.
	31130t 31[0] = 1.

I/O Of	fset 31 – DXS Channel 3 SGD ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD operation
5	SGD Auto-Start
	0 Stop at EOLdefault
	1 Auto Restart at EOL
4	Reserved always reads 0
3	SGD Pause
	0 Release pause and resume the transfer
	1 Pause SGD read operation (SGD pointer stays
	at the current address). SGD will finish
	transferring the current block before pausing.
2	Interrupt on Stop Index = Current Index and End
	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(30[2] = 1)$.
	0 Disabledefault
	1 Enable
1	Interrupt on EOL @ End of Block
	Controls whether an interrupt is generated on EOL
	(30[1] = 1).
	0 Disable default
0	1 Enable
0	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(30[0] = 1). 0 Disabledefault
	1 Enable
	1 LHaute

I/O Offset 32 – Reservedalways reads 0I/O Offset 33 – Reservedalways reads 0(Offsets 32 and 33 are DXS Channel Left & Right Volume in VT8233 and VT8233C)

I/O Offset 37-34 – DXS Chan 3 SGD Table Ptr Base.....RW 31-0 SGD Table Pointer Base Address (even addr).... W Current Pointer AddressR I/O Offset 3B-38 – StopIndex / DataType / SampleRateRW **31-24 SGD Stop Index Setting**.....default = FFh 23-22 Reserved always reads 0 21-20 PCM Format Selects the format used by the controller to process the incoming sample. 00 8-bit Mono......default 01 8-bit Stereo 10 16-bit Mono 11 16-bit Stereo 19-0 Reservedalways reads 0 (Bits 19-0 are Sample Rate in VT8233 and 8233C)

I/O Offset 3F-3C - DXS Chan 3 SGD Current Count.... RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Audio SGD Table Format

<u>63</u>	<u>62</u>	<u>61-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	FLAG	-reserved-	Base	Base
			Count	Address
			[23:0]	[31:0]

- EOL End Of Link. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer.
- **FLAG** Block Flag. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.

Multichannel SGD Registers

I/O Off	fset 40 – Multichannel SGD StatusRWC	I/O Offset 41 – Multichannel SGD ControlRW
7	SGD ActiveRO	7 SGD StartWO (always reads 0)
	0 SGD has completed or been terminated default	0 No effect
	1 SGD Active	1 Start SGD operation
6-5	Reserved always reads 0	6 SGD TerminateWO (always reads 0)
4	Current SGD Index Equals Stop IndexRO	0 No effect
	0 SGD index not equal to stop index default	1 Terminate SGD operation
	1 SGD index being processed equals the stop	5 SGD Auto-Start
	index. This bit differs from bit-2 of this	0 Stop at EOLdefault
	register in that this bit becomes 1 as soon as	1 Auto Restart at EOL
	the SGD reaches the index equal to the stop	4 Reservedalways reads 0
	index. Bit-2 becomes 1 after the SGD finishes	3 SGD Pause
	processing the index equal to the stop index.	O Release pause and resume the transfer
	So this bit will always turn on before bit-2.	1 Pause SGD read operation (SGD pointer stays
3	SGD Trigger QueuedRO	at the current address). SGD will finish
	This bit reports whether the trigger used to restart the	transferring the current block before pausing.
	SGD operation is queued (I/O Offset $41[1] = 1$ while	2 Interrupt on Stop Index = Current Index and End
	the SGD engine is running).	of Block
	0 SGD trigger not queueddefault	Controls whether an interrupt is generated when the
	1 SGD trigger queued (when SGD reaches EOL,	current index equals the stop index $(40[2] = 1)$.
	it will restart).	0 Disabledefault
2	SGD Stop Interrupt StatusRWC	1 Enable
	1 SGD finished the index equal to the stop index	1 Interrupt on EOL @ End of Block
	set in 4B-48[31-24].	Controls whether an interrupt is generated on EOL
1	SGD EOL (End Of Link)RWC	(40[1] = 1).
	1 Block is the last of the link. May be used by	0 Disabledefault
	software as a signal to generate an interrupt	1 Enable
	request if I/O Offset $41[1] = 1$.	0 Interrupt on FLAG @ End-of-Block
0	SGD FlagRWC	Controls whether an interrupt is generated on FLAG
	1 Block complete. May be used by software as a	(40[0] = 1).
	signal to generate an interrupt request if I/O	0 Disable default
	Offset $41[0] = 1$.	1 Enable

<u> I/O Off</u>	<u>set 42 – Multichannel SGD FormatRW</u>
7	PCM Format
	Selects the PCM format used by the controller to
	process the incoming sample.
	0 8-bitdefault
	1 16-bit
6-4	
	000 -reserved default
	001 One Channel
	010 Two Channels
	011 -reserved- <u>(Three Channels in VT8233/8233C)</u>
	100 Four Channels
	101 -reserved- <u>(Five Channels in VT8233/8233C)</u>
	110 Six Channels
	111 -reserved-
3-0	Reserved always reads 0
I/O Off	set 43 – Multichannel Scratch RegisterRW
7-0	No Hardware Function default = 00h
I/O Off	set 47-44 – Multichannel SGD Table Ptr BaseRW
31-0	SGD Table Pointer Base Address (even addr) W
	Current Pointer AddressR

I/O Off	set 4B-48 – 1	Multichannel SGD Stop	IndexRW
31-24	SGD Stop	Index Setting	default = FFh
23-0	Reserved		always reads 0
	(Rite 0-23 a	are SGD Slot Select in V	[8233/8233C]

I/O Offset 4F-4C – Multichannel SGD Current Count.. RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Write Channel 0 SGD Registers

I/O Of	fset 60 – Write Channel 0 SGD StatusRWC	I/O Of	fset 61 – Wri
7	SGD ActiveRO	7	SGD Start
	0 SGD has completed or been terminated default		0 No e
	1 SGD Active		1 Start
6	SGD PausedRO	6	SGD Term
	0 SGD not pauseddefault		0 No e
	1 SGD Paused		1 Term
5	Reserved always reads 0	5	SGD Auto-
4	Current SGD Index Equals Stop IndexRO		0 Stop
	0 SGD index not equal to stop index default		1 Auto
	1 SGD index being processed equals the stop	4	Reserved
	index. This bit differs from bit-2 of this	3	SGD Pause
	register in that this bit becomes 1 as soon as		0 Relea
	the SGD reaches the index equal to the stop		1 Paus
	index. Bit-2 becomes 1 after the SGD finishes		at th
	processing the index equal to the stop index.		trans
	So this bit will always turn on before bit-2.	2	Interrupt o
3	SGD Trigger QueuedRO		of Block
	This bit reports whether the trigger used to restart the		Controls wl
	SGD operation is queued (I/O Offset 61[1] = 1 while		current inde
	the SGD engine is running).		0 Disa
	0 SGD trigger not queued default		1 Enab
	1 SGD trigger queued (when SGD reaches EOL,	1	Interrupt o
	it will restart).		Controls w
2	SGD Stop Interrupt StatusRWC		(60[1] = 1).
	1 SGD finished the index equal to the stop index		0 Disal
	set in 6B-68[31-24].		1 Enab
1	SGD EOL (End Of Link)RWC	0	Interrupt o
	1 Block is the last of the link. May be used by		Controls wl
	software as a signal to generate an interrupt		(60[0] = 1).
	request if I/O Offset $61[1] = 1$.		0 Disal
0	SGD FlagRWC		1 Enab
	1 Block complete. May be used by software as a		
	signal to generate an interrupt request if I/O		
	Offset $61[0] = 1$.		

<u>'O Of</u>	fset 61	<u> – Write Channel 0 SGD Control RW</u>
7		StartWO (always reads 0)
	0	No effect
	1	Start SGD operation
6	SGD	TerminateWO (always reads 0)
	0	No effect
	1	Terminate SGD operation
5	SGD	Auto-Start
	0	Stop at EOLdefault
	1	Auto Restart at EOL
4	Rese	rvedalways reads 0
3	SGD	Pause
	0	Release pause and resume the transfer
	1	Pause SGD read operation (SGD pointer stays
		at the current address). SGD will finish
		transferring the current block before pausing.
2	Inter	rupt on Stop Index = Current Index and End
	of Bl	ock
	Contr	ols whether an interrupt is generated when the
	curre	nt index equals the stop index $(60[2] = 1)$.
	0	Disable default
	1	Enable
1	Inter	rupt on EOL @ End of Block
	Contr	ols whether an interrupt is generated on EOL
	(60[1] = 1).
	0	Disable default
	1	Enable
0		rupt on FLAG @ End-of-Block
		ols whether an interrupt is generated on FLAG
	(60[0] = 1).
	0	2154616
	1	Enable

I/O Of	fset 62 – Write Channel 0 SGD FormatRW	I/O Offset 6B-68 – Write Channel 0 SGD Stop Index RW
7 6 5-0	Reserved (Do Not Program) always write 0 Recording FIFO 0 Disable default 1 Enable Reserved always reads 0	31-24 SGD Stop Index Setting
1/O Off 7-3 2	fset 63 – Write Channel 0 Input Select	01 8-bit Stereo 10 16-bit Mono 11 16-bit Stereo 19-16 Reserved
1-0	Recording Source Select 00 Primary Codex	 I/O Offset 6F-6C – Wr Channel 0 SGD Current Count.RO 31-24 Current SGD Index This field reports the index the SGD engine is currently processing. 23-0 Current SGD Count This field reports the count remaining in the current
	fset 67-64 – Wr Channel 0 SGD Table Ptr BaseRW	entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would

31-0 SGD Table Pointer Base Address (even addr).... W

Current Pointer AddressR

I/O Offset 70-7F – Reserved.....always reads 0

read 20 to indicate 20 bytes remaining.

(Offsets 70-7F are Write Channel 1 in 8233/8233C)

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

This register may 31-30 Codec 00 S 01 S 10 S 11 S	Select Codec CID = 00 Select Codec CID = 01 Select Codec CID = 10 Select Codec CID = 11	31-28 27 26 25 24	Reserved (Audio Record 1 in 8233/8233C) . always 0 Audio Record 0 SGD Active Shadow
0 1	11 Data / Status / Index ValidRO Not Valid Valid (OK to Read bits 0-23)	19 18	Reservedalways reads 0 MultiChannel SGD Active Shadow(Rx40[7]) MultiChannel SGD Stop Shadow(Rx40[2])
28 Codec 0 1	10 Data / Status / Index ValidRO Not Valid Valid (OK to Read bits 0-23)	17 16	MultiChannel SGD EOL Shadow(Rx40[1]) MultiChannel SGD Flag Shadow(Rx40[0])
27 Codec 0 1	01 Data / Status / Index ValidRO Not Valid Valid (OK to Read bits 0-23)	15 14 13	DX Channel 3 SGD Active Shadow(Rx30[7]) DX Channel 3 SGD Stop Shadow(Rx30[2]) DX Channel 3 SGD EOL Shadow(Rx30[1])
26 Reserv		12	DX Channel 3 SGD Flag Shadow(Rx30[0])
0 1 1 V 24 AC97 (00 Data / Status / Index ValidRO Not Valid Valid (OK to Read bits 0-23) Controller BusyRO Codec is ready for a register access command		Reserved (DXS Chan 0-2 in 8233/8233C) always 0 Eset 8B-88 – Codec GPI Interrupt Status / GPIO.RO
1 4	AC97 Controller is sending a command to the codec (commands are not accepted)	This reg	gister may be accessed from either function 5 or 6
23 Codec 0 S	Register Read / Write ModeRW Select Codec register write mode Select Codec register read mode		RO R GPI[15-0] Interrupt Status W 1 to clear Codec GPIO RO
Index of attached	Register Index [7:1]RW of the AC97 codec register to access (in the d codec). Data must be written before or at	15-0	R Reflect status of Codec GPI[15-0] W Triggers AC-Link slot-12 output to codec
	ne time as Index because writing to the index	I/O Off	Set 8F-8C – Codec GPI Interrupt EnableRO
	s the AC97 controller to access the addressed register over the AC-link interface.	This reg	gister may be accessed from either function 5 or 6
	Register DataRW		Interrupt on GPI[15-0] Change of StatusRO 0 Disable 1 Enable Reservedalways reads 0

Offset 90-9F - Mapped from Function 5/6 Rx40-4F...... RO

Device 17 Function 6 Registers - AC97 Modem Controller

The modem controller interface is hardware compatible with AC97. The PCI configuration registers for the modem controller are located in the function 6 PCI configuration space of the VT8233A. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO	
7-0	Vendor ID (1106h = VIA Technologies)	
Offset 3	3-2 - Device IDRO	
7-0	Device ID (3068h = VT8233A Modem Controller)	
Offset 4	5-4 - CommandRW	
15-10		
9	Reserved (fast back-to-back)	
8	SERR# Enable fixed at 0	
7	Reserved (address stepping) fixed at 0	
6	Reserved (parity error response) fixed at 0	
5	Reserved (VGA palette snoop) fixed at 0	
4	Reserved (memory write and invalidate) fixed at 0	
3	Reserved (special cycle monitoring) fixed at 0	
2	Bus Master fixed at 0	
1	Memory Space fixed at 0	
0	I/O Space default=0 (disabled)	
Offset '	7-6 - Status (0200h) RO	
15	Detected Parity Erroralways reads 0	
14	Signalled System Error fixed at 0	
13	Received Master Abort fixed at 0	
12	Received Target Abort fixed at 0	
11	Signalled Target Abort fixed at 0	
10-9	DEVSEL# Timing	
	00 Fast	
	01 Medium fixed	
	10 Slow	
	11 Reserved	
8	Data Parity Error fixed at 0	
7	Fast Back-to-Back Capable fixed at 0	
6-0	Reserved always reads 0	
Offset 8	8 - Revision ID (78h) RO	
7-0	Silicon Revision Code	
Offset 9 - Programming Interface (00h)*RO		
Offset A	A - Sub Class Code (80h)*RO	
Offset 1	B - Base Class Code (07h)*RO	

Device (Offset 2D-2C – Subsystem Vendor ID (0000h)*RO		
	Subsystem Vendor ID default = 0		
*This re	gister is RW if function 5-6 Rx44[4] = 1		
	Offset 2F-2E – Subsystem ID (0000h)*RO		
*This re	gister is RW if function 5-6 Rx44[4] = 1		
Offcot 3	C - Interrupt LineRW		
7-4	Reservedalways reads 0		
3-0	Modem Interrupt Routing		
5-0	0000 Disabled		
	0001 IRQ1		
	0010 Reserved		
	0011 IRQ3		
	0100 IRQ4		
	0101 IRQ5		
	0110 IRQ6		
	0111 IRQ7		
	1000 IRQ8		
	1001 IRQ9		
	1010 IRQ10		
	1011 IRQ11		
	1100 IRQ12		
	1101 IRQ13		
	1110 IRQ14		
	1111 Disabled		
Offset 3	D - Interrupt Pin (03h) RO		
Offset 3	E - Minimum Grant (00h)RO		
Offset 3	F - Maximum Latency (00h)RO		

*Registers 9-B are RW if function 5-6 Rx44[5] = 1

Modem-Specific PCI Configuration Registers

)ttset (<u> 40 – A</u>	C Link Interface Status RO
7-6	Rese	rvedalways reads 0
5	Code	c CID=11b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
4	Code	c CID=10b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
3	Rese	rvedalways reads 0
2	Code	c CID=01b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
1	AC9	7 Low-Power StatusRO
	0	AC97 Codecs not in low-power mode
	1	AC97 Codecs in low-power mode
		This bit reports 1 when Rx26[4] of the codecs
		is 1. It is used to determine whether the bit-
		clock should be gated.
0	Code	c CID=00b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)

Offset 4	41 – AC	Link Interface ControlRW
7	AC-Li	nk Interface
	0	Disabledefault
	1	Enable
6	AC-Li	nk Reset
	0Asser	t AC-Link Reset (used for cold reset)def
	1De-as	ssert AC-Link Reset
5		nk Sync
		Release SYNC default
	1	Force SYNC High (used for warm reset)
4		nk Serial Data Out
		Release SDOdefault
		Force SDO High
3		ble-Sample-Rate On-Demand ModeRO
		it is controlled through function 5 but may be
	1000	om function 6.
		Disable (AC Link sends data every frame)def
		Enable (AC Link sends data only when there is
		a request from the codec)
2		ink SGD Read Chan PCM Data Output
		A Only)RO
		is "3D Audio Channel Slots 3/4" in 8233)
		Disable default
	_	Enable
1-0	Reserv	vedalways reads 0

This re	42 – Function Enable	This re	48 – Volume Change Rate Control
7-6 5 4-0	Reserved	7-4 3	Reserved
Offset 4	44 – MC97 Interface Control RW AC-Link Interface for Slot-5 (Modem) 0 Disable default 1 Enable 1 Enable		check this bit to see whether bit-clock can actually be gated, as function 5 shares the same bit-clock. O Function 5 activity in progress that requires bit-clock 1 Function 5 does not need bit-clock so bit-clock
6	Secondary Codec Support 0 Disable	2-0	can be gated Reservedalways reads 0
5 4 3	Function 6 Config Reg Rx9-B Writable O Device 17 Function 6 Rx9-B RO default Device 17 Function 6 Rx9-B RW Function 6 Config Reg 2Ch Writable O Device 17 Function 6 Rx2C-2F RO default Device 17 Function 6 Rx2C-2F RW Sync This bit reports whether there is activity in function 6 (modem). When function 5 (audio) enters low-power state and wants to gate bit-clock, software needs to check this bit to see whether bit-clock can actually be gated, as function 6 shares the same bit-clock. Function 6 activity in progress that requires bit-clock Function 6 does not need bit-clock so bit-clock can be gated Reserved	This re	gister is controlled through function 5 but may be read notion 6. Reserved RO DX3 (DirectSound) Channel S/PDIF Support RO This bit controls whether DirectSound Channel 3 is used as S/PDIF support 0 Disable default 1 Enable Reserved RO S/PDIF Data Slot Select RO 00 Slot 10/11 default 01 Slot 3/4 10 Slot 7/8 11 Slot 6/9
			D3-D0 – Power Mgmt CapabilityRO
		<u>Offset</u> 31-2	Power Mgmt Capabilityalways reads 0002 0001h D7-D4 – Power State

I/O Offset 42 - Modem SGD Read Channel Type RW

I/O Base 0 Regs - Modem Scatter / Gather DMA

I/O Offset 40 - Modem SGD Read Channel Status.....RWC

Modem SGD Read Channel Registers

1/0 01	iset to tradem 5 32 feed challier states with the	To other 12 1/1000111 BOD Items Chamber 1, per minute	
7	SGD ActiveRO	7 Auto-Start SGD at EOL 0 Stop at EOLdefa	14
	0 SGD has completed or been terminated default1 SGD Active		uII
6	SGD PausedRO		a 0
0	0 SGD not paused		s U
	1 SGD Paused	<u> </u>	0.00
<i>5 1</i>		This bit determines the timing of interrupt generation	OII
5-4	Reserved	when bit-1 or bit-0 of this register are equal to 1.	14
3	SGD Trigger QueuedRO	00 Interrupt at PCI Read of Last Line defar	uit
	This bit reports whether the trigger used to restart the	01 Interrupt at Last Sample Sent	
	SGD operation is queued (I/O Offset 41[1] = 1 while	10 Interrupt at Less Than One Line to Send	
	the SGD engine is running).	11 -reserved-	
	0 SGD trigger not queueddefault	1 Interrupt on EOL @ End of Block	_
	1 SGD trigger queued (when SGD reaches EOL,	0 Disable defai	ult
_	it will restart).	1 Enable	
2	SGD Stop Interrupt StatusRWC	0 Interrupt on FLAG @ End-of-Blk	_
	1 SGD finished the index equal to the stop index	0 Disabledefa	ult
	set in 4B-48[31-24].	1 Enable	
1	SGD EOL (End Of Link)RWC		
	1 Block is the last of the link. May be used by		
	software as a signal to generate an interrupt	I/O Offset 47-44 – Modem SGD R Ch Table Ptr Base R	w
	request if I/O Offset $41[1] = 1$.		
0	SGD FlagRWC	31-0 SGD Table Pointer Base Address (even addr)	
	1 Block complete. May be used by software as a	Current Pointer Address	. K
	signal to generate an interrupt request if I/O		
	Offset $41[0] = 1$.		
		I/O Offset 4F-4C - Modem SGD R Ch Current Count R	<u> 10</u>
		31-24 Current Modem SGD Read Channel Index	
I/O Of	fset 41 – Modem SGD Read Channel ControlRW	This field reports the index the SGD engine	is
7	SGD StartWO (always reads 0)	currently processing.	
•	0 No effect	23-0 Current Modem SGD Read Channel Count	
	1 Start SGD read channel operation	This field reports the count remaining in the curre	ent
6	SGD TerminateWO (always reads 0)	entry being processed. For example, if 10 bytes of	f a
U	0 No effect	30-byte count have been transferred, this field wou	
	1 Terminate SGD read channel operation	read 20 to indicate 20 bytes remaining.	
5-4	Test (Do Not Program)always write 0	·	
3	SGD PauseRW		
3	0 Release SGD read channel pause and resume	Modem SGD Table Format	
	the transfer from the paused line		
	1 Pause SGD read channel operation (SGD read	$\frac{63}{62}$ $\frac{62}{61}$ $\frac{61}{60-56}$ $\frac{55-32}{50-32}$ $\frac{31-0}{60-56}$	
	channel pointer stays at the current address)	EOL FLAG STOP -reserved- Base Base	
• •	chainer pointer stays at the current address)	Count Address	
2-0	Reserved always reads 0	[23:0] [31:0]	

Modem SGD Write Channel Registers

I/O Off	fset 50 – Modem SGD Write Channel Status RO	I/O Off	Sset 52 – Modem SGD Write Channel Type RW
7	SGD ActiveRO	7	Auto-Start SGD at EOL
	0 SGD has completed or been terminated default		0 Stop at EOLdefault
	1 SGD Active		1 Auto restart at EOL
6	SGD PausedRO	6-2	Reserved always reads 0
	0 SGD not pauseddefault	1	Interrupt on EOL @ End of Block
	1 SGD Paused		0 Disabledefault
5-4	Reserved always reads 0		1 Enable
3	SGD Trigger QueuedRO	0	Interrupt on FLAG @ End-of-Blk
	This bit reports whether the trigger used to restart the		0 Disabledefault
	SGD operation is queued (I/O Offset 51[1] = 1 while		1 Enable
	the SGD engine is running).		
	0 SGD trigger not queued default		
	1 SGD trigger queued (when SGD reaches EOL,	T/O 08	A CONTRACTOR OF THE PARTY OF TH
	it will restart).		Set 57-54 – Modem SGD W Ch Table Ptr Base . RW
2	SGD Stop Interrupt StatusRWC	31-0	SGD Table Pointer Base Address (even addr) W
	1 SGD finished the index equal to the stop index set in 5B-58[31-24].		Current Pointer AddressR
1	SGD EOL (End Of Link)RWC		
_	1 Block is the last of the link. May be used by	T/O Of	Cost FE FC Modern CCD W.Ch. Comment Count DO
	software as a signal to generate an interrupt		Set 5F-5C – Modem SGD W Ch Current Count. RO
	request if I/O Offset $51[1] = 1$.	31-24	Current Modem SGD Write Channel Index
0	SGD FlagRWC		This field reports the index the SGD engine is
	1 Block complete. May be used by software as a	•••	currently processing.
	signal to generate an interrupt request if I/O	23-0	Current Modem SGD Write Channel Count
	Offset $51[0] = 1$.		This field reports the count remaining in the current
			entry being processed. For example, if 10 bytes of a
			30-byte count have been transferred, this field would
-10 0 m			read 20 to indicate 20 bytes remaining.
	fset 51 – Modem SGD Write Channel ControlRW		
7	SGD StartWO (always reads 0)		
	0 No effect	EOI	Fold Office and in the district of the found of the
	1 Start SGD write channel operation	EOL	End Of Link. 1 indicates this block is the last of the
6	SGD TerminateWO (always reads 0)		link. If the channel "Interrupt on EOL" bit is set,
	0 No effect		then an interrupt is generated at the end of the transfer.
	1 Terminate SGD write channel operation	FLAG	
5-4	Test (Do Not Program)always write 0	FLAG	Block Flag. If set, transfer pauses at the end of this
3	SGD PauseRW		block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.
	0 Release SGD write channel pause and resume	STOP	Block Stop. If set, transfer pauses at the end of this
	the transfer from the paused line	510P	block. To resume the transfer, write 1 to Rx?0[2].
	1 Pause SGD write channel operation (SGD		block. To resume the transfer, write 1 to KX/0[2].

Reserved

2 1 write channel pointer stays at current address)

vedalways reads 0

..... always reads 0

Reset Modem Write SGD Operation.....RW

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

Offset 8	3-80 -	- AC97 Controller Command (W) / Status (R)				
This register may be accessed from either function 5 or 6						
31-30	31-30 Codec IDRW					
	00	Select Codec CID = 00				
	01	Select Codec CID = 01				
	10	Select Codec CID = 10				
	11	Select Codec CID = 11				
29	Code	c 11 Data / Status / Index ValidRO				
	0	Not Valid				
	1	Valid (OK to Read bits 0-23)				
28	Code	c 10 Data / Status / Index ValidRO				
	0	Not Valid				
	1	Valid (OK to Read bits 0-23)				
27	Code	c 01 Data / Status / Index ValidRO				
	0	Not Valid				
	1	Valid (OK to Read bits 0-23)				
26	Rese	rved always reads 0				
25	Code	c 00 Data / Status / Index ValidRO				
	0	Not Valid				
	1	Valid (OK to Read bits 0-23)				
24		7 Controller BusyRO				
		Codec is ready for a register access command				
	1	AC97 Controller is sending a command to the				
		codec (commands are not accepted)				
23		c Register Read / Write ModeRW				
	0	Select Codec register write mode				
	1	Select Codec register read mode				
22-16		c Register Index [7:1]RW				
	Index of the AC97 codec register to access (in the					
	attached codec). Data must be written before or at					
	the same time as Index because writing to the index					
	triggers the AC97 controller to access the addressed					
15.0	codec register over the AC-link interface.					
15-0	Code	c Register DataRW				

Offset 8	87-84 – Modem SGD Status ShadowRO				
	Reservedalways reads 0				
29	Modem Write SGD Active Shadow(Rx50[7])				
28	Modem Read SGD Active Shadow(Rx40[7])				
27-26	Reserved always reads 0				
25	Modem Write SGD Stop Shadow(Rx50[2])				
24	Modem Read SGD Stop Shadow(Rx40[2])				
23-22	Reserved always reads 0				
21	Modem Write SGD EOL Shadow(Rx50[1])				
20	Modem Read SGD EOL Shadow(Rx40[1])				
19-18					
17	Modem Write SGD Flag Shadow(Rx50[0])				
16	Modem Read SGD Flag Shadow(Rx40[0])				
15-0	Reserved always reads 0				
	BB-88 – Codec GPI Interrupt Status / GPIO RWC rister may be accessed from either function 5 or 6				
_	GPI Interrupt StatusRWC				
31-10	R GPI[15-0] Interrupt Status W 1 to clear				
15 0	Codec GPIORW				
13-0	R Reflect status of Codec GPI[15-0]				
	W Triggers AC-Link slot-12 output to codec				
Offset 8F-8C - Codec GPI Interrupt EnableRW					
This reg	rister may be accessed from either function 5 or 6				
31-16	Interrupt on GPI[15-0] Change of StatusRW 0 Disable				
	1 Enable				
1 E A	Reserved always reads 0				

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT8233A is indicated in the following block diagram:

Figure 3. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT8233A supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the Processor Level 2 register (PMIO Rx14) is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the Processor Level 3 register (PMIO Rx15) is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT8233A. If the Host Stop bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the Throttle Enable bit to 1, the duty cycle defined in Throttle Duty Cycle (PMIO Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THRM# Duty Cycle (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT8233A. The first power plane (VCCS) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VCCS and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT8233A is powered by VCC. The amount of logic powered by VCCS is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT8233A supports multiple system suspend states by configuring the Sleep Type field of PMIO Rx4-5:

- POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the Host Stop bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT8233A. As to the PCI bus, setting the PCLK Run bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be de-activated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI Stop bit is enabled. When the system resumes from POS, the VT8233A can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (e.g., VSUS25 of the VT8633) and the suspend logic of the VT8233A (VSUS33).
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT8233A (VSUS33).
- **d) Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the Sleep Enable bit to 1. Three power plane control signals (SUSA#, SUSB# and SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT8233A.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT8233A includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT8233A offers many general-purpose I/O ports with the following capabilities:

- I²C / SMB Support
- Thermal Detect
- Notebook Lid Open / Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT8233A provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- 1) **ACPI-required Fixed Events** defined in the PM1a Status and PM1a Enable registers. These events can trigger either SCI or SMI depending on the SCI Enable bit:
 - PWRBTN# Triggering
 - RTC Alarm
 - Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP Status and GP SCI Enable, and GP SMI Enable registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the Global Status and Global Enable registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - Secondary Event Timer Time Out
 - Occurrence of Primary Events
 (defined in the Primary Activity Status and Primary Activity Enable registers)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VSUS-based events. Event logic resides in the VSUS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 4. System Block Diagram Using the VT8633 North Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT8233A includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events **Conserve Mode Timer**: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP Timer Count).
- 2) Then activate counting by setting the GP0 Start or GP1 Start bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0 Timeout Enable and GP1 Timeout Enable in the Global Enable register) with status recorded (GP0 Tomeout Status and GP1 Timeout Status in the Global Status register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the Primary Activity Status and Primary Activity Enable registers:

Bit Event
7 Keyboard Access
6 Serial Port Access
5 Parallel Port Access
4 Video Access
7 Irigger
1/O port 60h
1/O ports 3F8h-3FFh, 2F8h-2FFh, 3E8h-3EFh, or 2E8h-2EFh
1/O ports 378h-37Fh or 278h-27Fh
1/O ports 3B0h-3DFh or memory A/B segments
3 IDE/Floppy Access
1/O ports 1F0h-1F7h, 170h-177h,

or 3F5h

2 Reserved1 Primary Interrupts Each channel of the interrupt

controller can be programmed to be a primary or secondary

interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the Primary Activity Enable register to 1.

If enabled, the occurrence of the primary event reloads the GP0 timer if the Primary Activity GP0 Enable bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of Primary Activity Status register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0 Timeout Enable bit in the Global Enable register to one) to trigger an SMI to switch the system to a power down mode.

The VT8233A distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT8233A allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the Primary IRQ Channel and Secondary IRQ Channel registers. Secondary interrupts are the only system secondary events defined in the VT8233A.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ Enable bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the Primary Activity Enable bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT8233A through the GP1 timer. The following four categories of peripheral events are distinguished (via the GP Reload Enable register):

Bit-7 Keyboard Access
Bit-6 Serial Port Access
Bit-4 Video Access
Bit-3 IDE/Floppy Access

The four categories are subsets of the primary events as defined in Primary Activity Enable and the occurrence of these events can be checked through a common register Primary Activity Status. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Comment
T_S	Storage Temperature	-55	125	°C	
$T_{\rm C}$	Case Operating Temperature	0	85	°C	
V_{CC}	Core Voltage	-0.5	3.6	Volts	3.3V (VT8233CE is 2.5V)
V_{CC33}	3.3V I/O Voltage	-0.5	3.6	Volts	3.3V
V_{CC25}	2.5V I/O Voltage	-0.5	2.625	Volts	2.5V
V_{SUS33}	Suspend Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V _{CCUSB}	USB Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V_{CCPLL}	PLL Voltage	-0.5	$V_{CC25} + 0.25$	Volts	2.5V
V_{CCVK}	V-Link Compensation Voltage	-0.5	$V_{CC25} + 0.25$	Volts	2.5V
V_{BAT}	Battery Voltage	$V_{CC33} - 0.9$	$V_{CC33} + 0.3$	Volts	3.3V
V_{LREF}	V-Link Reference Voltage	-0.5	V _{CC25} * 0.38	Volts	
	Input voltage (3.3V-only inputs)	-0.5	$V_{CC33} + 0.3$	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, SMBCK1-2, SMBDT1-2

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

$$\begin{split} &T_C=0\text{ - }85^{O}C,\,V_{CC33}=V_{SUS33}=V_{CCUSB}=3.3V\;\pm5\%,\,V_{BAT}=3.3V\;\pm0.3\;/\;-0.9V\\ &V_{CC}=V_{CC25}=V_{CCVK}=V_{CCPLL}=2.5V\;\pm5\%,\,V_{LREF}=0.9V\;\pm5\%,\,GND=0V \end{split}$$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.5	0.8	V	
V _{IH}	Input high voltage	2.0	V _{CC} +0.3	V	
V_{OL}	Output low voltage	_	0.45	V	$I_{OL} = 4.0 \text{mA}$
V _{OH}	Output high voltage	2.4	_	V	$I_{OH} = -1.0 \text{mA}$
I_{IL}	Input leakage current	-	±10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	_	±20	uA	$0.45 < V_{OUT} < V_{CC}$

Power Requirements

$$\begin{split} &T_C=0\text{ - }85^{O}C,\ V_{CC33}=V_{SUS33}=V_{CCUSB}=3.3V\ \pm 5\%,\ V_{BAT}=3.3V\ + 0.3\ /\ - 0.9V\\ &V_{CC}=V_{CC25}=V_{CCVK}=V_{CCPLL}=2.5V\ \pm 5\%,\ V_{LREF}=0.9V\ \pm 5\%,\ GND=0V \end{split}$$

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CC}	Power supply current – Core (3.3V)			mA	At max operating frequency
I_{CC25}	Power supply current – I/O (2.5V)			mA	At max operating frequency
I_{CC33}	Power supply current – I/O (3.3V)			mA	At max operating frequency
I _{SUS33}	Power supply current – Suspend (3.3V)			mA	At max operating frequency
I_{CCUSB}	Power supply current – USB (3.3V)			mA	At max operating frequency
I_{CCVK}	Power supply current – V-Link (2.5V)			mA	At max operating frequency
I_{CCPLL}	Power supply current – PLL (2.5V)			mA	At max operating frequency
I _{VLREF}	Power supply current – 0.9V Reference			uA	At max operating frequency
I_{BAT}	Power supply current – RTC Battery		5	uA	At max operating frequency
P _{MAX}	Power dissipation		2.5	W	At max operating frequency

PACKAGE MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications – 376 Pin Ball Grid Array Package