B.Tech. DEGREE EX	(AMII
OPEN BOOK	
Sixt	h Seme
18EIC306T – DISCRETE (For the candidates admitted from th	
ecific approved THREE text books (Printed or adwritten class notes (certified by the faculty)	
Hours	
Answer FIVE que	estions
(Question No 7 is con	
Calculate the 8 point DFT of the sequen	nce x(
Also show the graphical representation	of $x(n)$
IDFT of $y(k) = \{1,0,1,0\}$ is	_
	B) y(
(C) $y(n) = \{0.5, 0.5, 0, 0\}$	B) y(D) y(
The difference in the number of comp. DFT and 16 point radix 2 FFT is	
` '	B) 63 D) 25
Analyze a digital Butterworth	
$0.707 \le H(e^{jw}) \le 1$ for $0 \le \omega \le \pi$	r/2
$ H(e^{jw}) 0.2$ for $\frac{3\pi}{4} \le \omega \le$	$\leq \pi$
with T=1 sec using bilinear transformat	
Realize the filter in direct form II.	
The value of Chebyshev polynomial of	
	B) 0 D) 2
(C) -1	D) 2
The order of low pass Butterworth filted Hz and an attenuation of 40 dB at 1000	
	B) 5
(A) 4	~, ~

Reg. No.	

B.Tech. DEGREE EXAMINATION, MAY 2023 **OPEN BOOK EXAMINATION**

Sixth Semester

8EIC306T – DISCRETE TIME SIGNAL PROCESSING

e candidates admitted from the academic year 2018-2019 to 2019-2020)

	ecific approved THREE text books (Printed or photocopy) recommended for the course adwritten class notes (certified by the faculty handling the course / head of the department.				
me: 3	Hours	Max. N	Mark	ks: 1	0(
2	Answer FIVE questions (Question No 7 is compulsory) Calculate the 8 point DFT of the sequence $x(n) = \begin{cases} 1, & -3 \le n \le 3 \\ 0 & otherwise \end{cases}$	Marks 14	BL 3	co 1	£ .
11,	Also show the graphical representation of $x(n)$.	4	3	1	
b.	IDFT of $y(k) = \{1,0,1,0\}$ is	1	2]	
c.	The difference in the number of complex multipliers required for 16-point DFT and 16 point radix 2 FFT is (A) 30 (B) 63 (C) 224 (D) 256	1	2	Ţ	
2.a.i.	Analyze a digital Butterworth filter satisfying the constraints $0.707 \le H(e^{jw}) \le 1$ for $0 \le \omega \le \pi/2$ $ H(e^{jw}) 0.2$ for $\frac{3\pi}{4} \le \omega \le \pi$ with T=1 sec using bilinear transformation.	3 12	4	2	
11.	Realize the filter in direct form II.	6	3	2	
b.	The value of Chebyshev polynomial of degree 0 is (A) 1 (B) 0 (C) -1 (D) 2	1	year	2	
c.	The order of low pass Butterworth filter that has a -3 dB bandwidth of 500) 1	2	2	

3.a.	Design an ideal high pass filter with a frequency response	18	5	2	3
	$H_d(e^{jw}) = 1$ for $\frac{\pi}{4} \le \omega \le \pi$				
	0 for $ \omega \leq \frac{\pi}{4}$				
	Calculate the values of h(n) for N=11 using Hamming window. Also plot the frequency response.				
b.	Choose the condition which is not suitable either as low pass or a high pass filter.	pane	1	3	1
	(A) h(n) symmetric and m odd (B) h(n) symmetric and m even (C) h(n) antisymmetric and m odd (D) h(n) antisymmetric and m even				
C.	The window technique whose main lobe width of $\frac{12\pi}{N}$ is	1	1	3	1
	(A) Hamming window (C) Kaiser window (B) Blackmann window (D) Rectangular window				
4.a.i.	Illustrate any one application of digital signal processing in image processing.	13	4	4	İ
ii.	Summarize the benefits of using DSP, in image data processing.	5	5	4	1
b.	The process of converting a signal from a given rate to a differentiate is	1	1	4	To the state of th
	(A) Sampling (B) Normalizing (C) Sampling rate conversion (D) Holding				
c.	The process of increasing the sampling rate by a factor I is (A) Sampling rate (B) Interpolation (C) Decimation (D) Quantization	9	1	4	í
5.a.i.	Model and realize the auto regressive moving average model for recursive system.	13	3	5	1
pend a	Outline the advantages of discrete wavelet transform.	5	4	5	1
b.	Consider a random process $x(t) = \sqrt{2} \sin(2\pi t + \phi)$, where the random phase ϕ is uniformly distributed in the interval $(0,2\pi)$, the auto correlation R[t1,t2] is	1	1	5	1
	(A) $\cos(2\pi(t_1+t_2))$ (B) $\sin(2\pi(t_1-t_2))$ (C) $\sin(2\pi(t_1+t_2))$ (D) $\cos(2\pi(t_1-t_2))$				
c.	FWT stands for	1	I	5	ĺ

b.a.i.	Determine the circular convolution of the two sequences $x_1(n) = \{1,2,2,1\}$ and $x_2(n) = \{1,2,3,1\}$ using the following method. (1) Concentric circle method (2) Matrix method	10	3	1	2
ii.	Calculate the difference in the number of complex multiplication required for 16 point DFT and 16 point radix 2 FFT.	4	3	1	2
b.	Wavelet series equation is the sum of (A) Scaling coefficient (B) Detail coefficient (C) Span coefficient (D) Both scaling and detail coefficient	1	1	1	1
c.	In quantization, if 'R' is the range, then quantization step size 'q' is	= 1	_1	}	1
	(A) R/2b (C) R/2(b-1) (B) R/2(b-1) (D) R/2(b+1)				
7.a.i.	Determine the direct form and cascade form realization for the system function $H(z) = 1 + \frac{1}{3}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3} + \frac{1}{3}z^{-4} + z^{-5}$.	14	3	2	3
ii.	Compare Hamming and Hanning window.	4	5	2	2
b.	A digital signal processing system is described by the expression $y(n) = 2x(n) + x(n-1) + 2y(n-1)$ is (A) Stable FIR filter (B) Stable IIR filter (C) Unstable FIR filter (D) Unstable IIR filter	1	10	2	1
c.	The value of Chebyshev polynomial of degree 5 is (A) $16x^5 + 20x^3 - 5x$ (B) $16x^5 + 20x^3 + 5x$ (C) $16x^5 - 20x^3 + 5x$ (D) $16x^5 - 20x^3 - 5x$	1	1	2	1
	* * * *				