Question 1 (50 points)

For this problem we consider a movie reviewing database with following three tables:

- 1. Movies(title, imdb number, year), where the primary key is imdb number;
- 2. Reviewers (userid, username), where the primary key is userid;
- 3. Reviews(userid, imdbnumber, rating, comment), where the primary key is (userid, imdb number), userid is foreign key referencing Reviewers, and imdb number is foreign key referencing Movies.

For these tables we know the following statistics:

- Movies consists of $N_1 = 60,000$ tuples, there are:
 - 40,000 distinct movie titles,
 - 90 distinct years, 1925–2014 inclusive.
- Reviewers consists of $N_2 = 50$, 000 tuples, there are:
 - 50,000 distinct userids,
 - 50,000 distinct usernames
- Reviews consists of $N_3 = 1,300,000$ tuples, there are:
 - 38,000 distinct userids,
 - 33,000 distinct movie titles,
 - 5 distinct ratings (i.e. 1, 2, 3, 4, and 5) without nulls.

For the queries below, assume that there are no correlations between the columns of a table nor any prior knowledge about the data (i.e., assume uniform distribution). Estimate the number of resulting tuples for the query, and give the answer with **fourth** significant digit accuracy. We will accept either rounding half up or down, but no partial credit will be given.

- (a) **SELECT * FROM** Movies **WHERE** year = 2001 OR year = 1924;
- (b) **SELECT * FROM** Movies **WHERE** year = 1999 **OR** title = "Fight Club"
- (c) **SELECT** * **FROM** Reviews **WHERE** rating > 1
- (d) **SELECT** title, count(*) **FROM** Movies **GROUP BY** title
- (e) SELECT count(*)
 FROM Movies JOIN Reviews ON Movies.imdb number = Reviews.imdb number
 GROUP BY Movies.title

Question 2 (50 points)

2.1 Consider the following legal instance of a relational schema S with attributes ABC:

S	Α	В	С
	а	9	Τ
	а	16	F
	β	20	F

Table 1: Legal instance of schema S for question 2.1

- (a) Which of the following dependencies are *violated* by the instances of S in Table 1? Answer Yes/NO and give reason
 - i. $A \rightarrow B$ is violated.
 - ii. $B \rightarrow A$ is violated.
 - iii. $C \rightarrow A$ is violated.
 - iv. $AC \rightarrow B$ is violated.
 - v. $B \rightarrow AC$ is violated.
- (b) By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S? YES/NO and Also give reason.
- 2.2 For the next set of questions consider the relational schema $r = \{P, Q, R, S, T, U, V\}$ and the set of functional dependencies FD:

$$P \rightarrow Q$$
 (1)

$$Q \rightarrow R$$
 (2)

$$PS \rightarrow TRV$$
 (3)

$$QT \rightarrow UR$$
 (4)

$$S \rightarrow V$$
 (5)

- (a) Which of the following is a minimum cover of the FD?
 - (a) The given FD is a minimum cover.

(b)
$$\{P \rightarrow Q, Q \rightarrow R, PS \rightarrow T, QT \rightarrow U, S \rightarrow V\}$$

(c)
$$\{P \rightarrow Q, Q \rightarrow R, P \rightarrow T, Q \rightarrow U, S \rightarrow V\}$$

(d)
$$\{P \rightarrow Q, Q \rightarrow R, PS \rightarrow T, QT \rightarrow UR, S \rightarrow V\}$$

- (e) none of the above the cover is _____
- (b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(5))?

i.
$$P \rightarrow R$$

ii.
$$PS \rightarrow U$$

iii.
$$QS \rightarrow U$$

iv.
$$QST \rightarrow P$$

- (c) True or False: The attribute closure $\{Q\}^+$ is $\{Q, R, T\}$. Also compute it step by step
- (d) True or False: The attribute closure $\{PS\}^+$ is $\{P, Q, R, S, T, U, V\}$. Also compute it step by step.