Date	Research talk	Paper(s)	Speaker(s)		Topic / paper
20.2.	MK				
05.3.					How to give a seminar talk
12.3.	NO SEMINAR				
19.3.	JP	P1	Gunz	Samuel Rudolf	Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proceedings of the Royal Society of London Series B: Biological Sciences 255: 279-284. http://doi.org/doi:10.1098/rspb.1994.0040.
26.3.	MK	K1	Haab	5.25+J12K3:L30	Yi T-M, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences 97: 4649-4653. http://doi.org/10.1073/pnas.97.9.4649.
		K2	Panteli	Marina-Effrosyni	Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387: 913-917. http://doi.org/10.1038/43199.
		K3	Kazlauskaite	Liepa	Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation. Cell 138: 160-171. http://doi.org/https://doi.org/10.1016/j.cell.2009.04.047.
2.4.		P2	Mosimann	Meret Linda	Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400: 354-357. http://doi.org/10.1038/22521.
		P3	Desmarquest	Victoria Pascale Aurore	Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology 245: 433-448. http://doi.org/https://doi.org/10.1016/j.jtbi.2006.10.027.
		P4	Stoyanova	Raya Simeonova	Wagner A (2008) Robustness and evolvability: a paradox resolved. Proceedings of the Royal Society B: Biological Sciences 275: 91-100. http://doi.org/doi:10.1098/rspb.2007.1137.
9.4.	TS	ST1	Adelmann	Jan Andreas	Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM (2017) The dynamics of molecular evolution over 60,000 generations. Nature 551: 45-50. http://doi.org/10.1038/nature24287.
		ST2	Emons	Martin Josef	Sanjuan R, Blanquart F, Wymant C, Cornelissen M, Gall A, et al. (2017) Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe. PLOS Biology 15: e2001855. http://doi.org/10.1371/journal.pbio.2001855.
		ST3	Yousefkhani	Ahmadreza	Lemey P, Rasmussen DA, Ratmann O, Koelle K (2011) Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series. PLoS Computational Biology 7: e1002136. http://doi.org/10.1371/journal.pcbi.1002136.
16.4.	NO SEMINAR				
23.4.	NO SEMINAR				
30.4.		S1	Zellinger	Michael	Barnes CP, Silk D, Sheng X, Stumpf MP (2011) Bayesian design of synthetic biological systems. Proceedings of the National Academy of Sciences 108: 15190-15195.
		S2	Guerci	Lorenzo	Oyarzun DA, Stan GB (2013) Synthetic gene circuits for metabolic control: design trade-offs and constraints. J R Soc Interface 10: 20120671. http://doi.org/10.1098/rsif.2012.0671.
		S3	Hiltbrunner	Gian Silvan	Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, et al. (2016) Genetic circuit design automation. Science 352: aac7341. http://doi.org/10.1126/science.aac7341.
7.5.	JS	S4	Affolter	Richard	Shaw WM, Yamauchi H, Mead J, Gowers G-OF, Bell DJ, et al. (2019) Engineering a Model Cell for Rational Tuning of GPCR Signaling. Cell 177: 782-796.e727. http://doi.org/https://doi.org/10.1016/j.cell.2019.02.023
		S5	Deng	Yun	Yeung E, Dy AJ, Martin KB, Ng AH, Del Vecchio D, et al. (2017) Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks. Cell Systems 5: 11-24.e12. http://doi.org/https://doi.org/10.1016/j.cels.2017.06.001.
		S6	Rump	Flavio	Lord ND, Norman TM, Yuan R, Bakshi S, Losick R, et al. (2019) Stochastic antagonism between two proteins governs a bacterial cell fate switch. Science 366: 116-120. http://doi.org/10.1126/science.aaw4506.
14.5.	DI	I1	Moon	Youngbin	Zagorski M, Tabata Y, Brandenberg N, Lutolf MP, Tkačik G, et al. (2017) Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science 356: 1379-1383.
		13	Schubert Santana	Leonor Patricia	Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Current Biology 17: 2095-2104.
		14	Hartout	Philip Jean	Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442: 1038-1041.

I / DI: Dagmar Iber S / JS: Joerg Stelling K /MK: Mustafa Khammash ST / TS: Tanja Stadler P /JP: Joshua Payne