In [1]: # Step 1: import neccessary libraries and load the data set import pandas as pd import numpy as np bank_data=pd.read_csv("C:/1562_AIML/banking.csv") bank_data.head()

Out[1]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_v
0	44	blue-collar	married	basic.4y	unknown	yes	no	cellular	aug	_
1	53	technician	married	unknown	no	no	no	cellular	nov	
2	28	management	single	university.degree	no	yes	no	cellular	jun	
3	39	services	married	high.school	no	no	no	cellular	apr	
4	55	retired	married	basic.4y	no	yes	no	cellular	aug	

5 rows × 21 columns

In [2]: bank_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	age	41188 non-null	int64				
1	job	41188 non-null	object				
2	marital	41188 non-null	object				
3	education	41188 non-null	object				
4	default	41188 non-null	object				
5	housing	41188 non-null	object				
6	loan	41188 non-null	object				
7	contact	41188 non-null	object				
8	month	41188 non-null	object				
9	day_of_week	41188 non-null	object				
10	duration	41188 non-null	int64				
11	campaign	41188 non-null	int64				
12	pdays	41188 non-null	int64				
13	previous	41188 non-null	int64				
14	poutcome	41188 non-null	object				
15	emp_var_rate	41188 non-null	float64				
16	cons_price_idx	41188 non-null	float64				
17	cons_conf_idx	41188 non-null	float64				
18	euribor3m	41188 non-null	float64				
19	nr_employed	41188 non-null	float64				
20	у	41188 non-null	int64				
<pre>dtypes: float64(5),</pre>		int64(6), object(10)					

memory usage: 6.6+ MB

```
In [3]: bank_data.y.value_counts()
 Out[3]: 0
              36548
               4640
         Name: y, dtype: int64
 In [4]: # find unique values of default
         bank_data['default'].unique()
Out[4]: array(['unknown', 'no', 'yes'], dtype=object)
 In [6]: bank_data.default.value_counts()
 Out[6]: no
                    32588
         unknown
                     8597
         Name: default, dtype: int64
 In [7]: #convert default column to numeric
         bank_data['default']=bank_data['default'].map({'unknown':0,'no':0,'yes':1})
 In [8]: bank_data.default.value_counts()
Out[8]: 0
              41185
         1
         Name: default, dtype: int64
In [9]: #consider fdatures
         features=['age','default','cons_price_idx','cons_conf_idx']
         x=bank_data[features]
         y=bank_data.y
In [10]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.8,random state=
In [13]: #Build the random forest model
         from sklearn.ensemble import RandomForestClassifier
         #create an instance of Random Forest Classifier
         rf=RandomForestClassifier(n_estimators=1000,criterion='entropy',max_depth=5,max
In [14]: | # train the model
         rf.fit(x_train,y_train)
Out[14]: RandomForestClassifier(criterion='entropy', max_depth=5, max_features='sqrt',
                                n_estimators=1000, random_state=45)
In [15]: # test the model
         y_pred=rf.predict(x_test)
```

```
In [16]: # compute the accuracy of the model
from sklearn.metrics import accuracy_score
print ("Accuracy:",accuracy_score(y_test,y_pred))
```

Accuracy: 0.8866229667394999

```
In [*]: #Perform hyper-parameter tuning
from sklearn.model_selection import GridSearchCV

#Create a paramter grid
param_grid = {
        'n_estimators': [100, 500, 1000, 2000],
        'criterion': ['gini', 'entropy'],
        'max_depth': [None, 5, 10],
        'max_features': ['sqrt', 'log2'],
        'bootstrap': [True, False]
}
#Create RandomForest
rfc = RandomForestClassifier(random_state=45)

grid_s = GridSearchCV(estimator=rfc, param_grid=param_grid, scoring='accuracy'
grid_s.fit(x_train, y_train)
```

In []: