The SLOPE of a position-time graph is the velocity a

- Find the slope in each section of the position-time graph.
- Draw the corresponding velocity-time graph.

- Find the slope in each section of the position-time graph.
- Draw the corresponding velocity-time graph.

- Find the slope in each section of the position-time graph.
- Draw the corresponding velocity-time graph.

The AREA under a velocity-time graph is the change in position of that range!

- Find the area under each section of the velocity-time graph.
- Draw the corresponding position-time graph, assuming initial position = 0.

Question 3: Answer

Question 4: Answer

- Find the area under each section of the velocity-time graph.
- Draw the corresponding position-time graph, assuming initial position = 0.

- 6 $_{\bullet}$ г mu the slope in each section of the position-time graph.
- Draw the corresponding velocity-time graph.

1. For the following position-time graph, create a velocity-time graph on the next page [4 points]

2. For the following position-time graph, create a velocity-time graph:

Quantitative Graphs 2 More Problems	Quantitative	Graphs	2 More	Problems
-------------------------------------	--------------	--------	--------	-----------------

Name	

3. For the following velocity-time graph, create a position-time graph on the next page:

The *initial position* is equal to 60 meters

4. For the following velocity-time graph, create a position-time graph on the next page.

THE INTIAL POSITION IS 0 meters!

Quantitative	Graphs	2 More	Problems
Quantitative	Oraphs	2 WIOIC	1 TOUICIIIS

Name

5. Explain, in a few sentences the method used to solve numbers problems 1 and 2. Make sure you refer to the proper *mathematical principle* that you used, and explain the actual steps you took. [2 points]

6. Explain, in a few sentences, the method used to solve problems 3 and 4. Make sure you refer to the proper *mathematical principle* that you used, and explain the actual steps you took. [2 points]

Name	

Answers:

_1.	
Time:	Value:
0 – 2	10
2 – 4	0
4 - 6	-10
6 - 10	25
10 - 14	- 15
14 - 18	-5
18 – 20	30

Quantitative Graphs 2 More Problems

Name _____

3.

points on final graph:

- (0, 60)
- (4, -20)
- (6, -20)
- (10, 140)
- (14, -60)
- (18, -40)
- (20, 20)

4.

points on final graph:

- (0,0)
- (60,300)
- (100,900)
- (120,1500)
- (140,1200)
- (160,2100)
- (180,2100)
- (200,3000)