

**Heap: Definition and Implementation** 

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering



**Heap: Definition and Implementation** 

Shylaja S S

Department of Computer Science & Engineering

## **Heap Tree**

Definition: A heap can be defined as a binary tree with keys assigned to its nodes (one key per node) provided the following two conditions are met:

- 1. The tree's shape requirement The binary tree is essentially complete, that is, all its levels are full except possibly the last level, where only some rightmost leaves may be missing
- The parental dominance requirement The key at each node is greater than or equal to the keys at its children.
   (This condition is considered automatically satisfied for all leaves.)



# **Heap Tree**





Only the topmost Binary Tree is a heap. Why?

# **Properties of Heap**

- 1. There exists exactly one essentially complete binary tree with n nodes. Its height is equal to [log<sub>2</sub>n]
- 2. The root of a heap always contains its largest element
- 3. A node of a heap considered with all its descendants is also a heap
- 4. A heap can be implemented as an array by recording its elements in the top-down, left-to-right fashion. It is convenient to store the heap's elements in positions 1 through n of such an array, leaving H[0] either unused or putting there a sentinel whose value is greater than every element in the heap.



# **Properties of Heap**

...

In such a representation,

- a) The parental node keys will be in the first [n/2] positions of the array, while the leaf keys will occupy the last [n/2] positions
- b) The children of a key in the array's parental position i (1 <= i <= [n/2]) will be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i (2 <= i <= n) will be in position [i/2]</p>



#### **Heap Construction – Bottom Up**

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8







#### **Heap Construction – Bottom Up**

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8





At k = 3, v = 48

Largest child: 92

Compare 48 with its largest child

48 < 92, Heapify

#### **Heap Construction – Bottom Up**

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8



after two iterations at k=4, k=3

At 
$$k = 2$$
,  $v = 57$ 

Largest child: 37

Compare 57 with its largest child

57 > 37, it's a heap at k=2



# **Heap Construction – Bottom Up**



Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33



v = 25, Now at k = 3, Largest child: 86 Compare 25 with its largest child 25<86, Heapify

# **Heap Construction – Bottom Up**

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33





# DATA STRUCTURES AND ITS APPLICATIONS Heap Construction – Bottom Up

```
ALGORITHM HeapBottomUp(H[1...n])
//Constructs a heap from the elements of a given array by bottom-up algorithm
//Input: An array H[1...n] of orderable items
//Output: A heap H[1...n]
for i \leftarrow |n/2| downto 1 {
    k \leftarrow i
    v \leftarrow H[k]
    heap 
false
    while not heap and 2*k \le n {
        j \leftarrow 2*k
        if j < n
                                 //if there are two children
           if H[j] < H[j+1]
                j \leftarrow j+1
                          //find position of largest child
        if v \ge H[j] //if key of parent node \ge key of largest child
           heap ← true //it's a heap
                                 //heapify
        else {
                H[k] \leftarrow H[j]
                k \leftarrow i
                //end of else
        //end of while
    H[k] \leftarrow v
    //end of for
```



## **Heap Construction – Bottom Up**

```
for(i=n/2-1;i>=0;i--)
 k=i;
 v=h[k];
 heap=0;
 while(!heap && 2*k+1<=n-1)
   j=2*k+1;
   if(j+1 <= n-1)
   if(h[j+1]>h[j]) j=j+1;
  if(v>h[j])
   heap=1;
  else
   h[k]=h[j];
   k=j;
  h[k]=v;
```



# **Heap Construction – Top Down**

25<37, Heapify

Top Down Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8 Insert 25 Insert 57 Insert 48 Heap 25<57, Heapify Heap Heap Insert 37 48 Heap



**Heap Construction – Top Down** 



# **Heap Construction – Top Down**

Top Down Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33







# **Heap Construction – Top Down**





## **Heap Construction – Top Down**

- 1. First, attach a new node with key *K* in it after the last leaf of the existing heap
- 2. Then sift *K* up to its appropriate place in the new heap as follows
- 3. Compare *K* with its parent's key: if the latter is greater than or equal to *K*, stop (the structure is a heap);
- 4. otherwise, swap these two keys and compare *K* with its new parent
- 5. This swapping continues until *K* is not greater than its last parent or it reaches the root



Multiple-Choice-Questions (MCQ's)



# 1. In a max-heap, the value of the parent node is always:

- A) Less than its children
- B) Equal to its children
- C) Greater than or equal to its children
- D) None of the above

Multiple-Choice-Questions (MCQ's)



# 1. In a max-heap, the value of the parent node is always:

- A) Less than its children
- B) Equal to its children
- C) Greater than or equal to its children
- D) None of the above

# Multiple-Choice-Questions (MCQ's)



2. In an array representation of a heap, the parent of node at index i is at: (Assume Heap elements are stored at index positions 1....n)

- A) i/2
- B) (i-1)/2
- C) 2i
- D) 2i + 1

# Multiple-Choice-Questions (MCQ's)



# 2. In an array representation of a heap, the parent of node at index i is at:

- A) i/2
- B) (i-1)/2
- C) 2i
- D) 2i + 1

# Multiple-Choice-Questions (MCQ's)



# 3. Which method of heap construction is more efficient for a large array?

- A) Incremental insertion
- B) Heapify (bottom-up)
- C) Preorder traversal
- D) BFS insertion

Multiple-Choice-Questions (MCQ's)



# 3. Which method of heap construction is more efficient for a large array?

- A) Incremental insertion
- B) Heapify (bottom-up)
- C) Preorder traversal
- D) BFS insertion

Multiple-Choice-Questions (MCQ's)



# 4. Heapify-down (bubble-down) is used when:

- A) Inserting a new element
- B) Deleting the root element
- C) Searching for an element
- D) Traversing the heap

Multiple-Choice-Questions (MCQ's)



# 4. Heapify-down (bubble-down) is used when:

- A) Inserting a new element
- B) Deleting the root element
- C) Searching for an element
- D) Traversing the heap

Multiple-Choice-Questions (MCQ's)



# 5. After inserting an element in a max-heap, which operation ensures the heap property is maintained?

- A) Heapify-down
- B) Heapify-up (bubble-up)
- C) BFS traversal
- D) Sorting the array

Multiple-Choice-Questions (MCQ's)



- 5. After inserting an element in a max-heap, which operation ensures the heap property is maintained?
- A) Heapify-down
- B) Heapify-up (bubble-up)
- C) BFS traversal
- D) Sorting the array



# **THANK YOU**

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu