实训周报

15331416 赵寒旭

1. 学习内容

1) 论文阅读

(1) 论文名字

Multi-label Image Recognition by Recurrently Discovering Attentional Regions

(2) 论文内容简述

论文提出了解决多标签图片识别问题的新模型。

模型结构: CNN+ST+LSTM

- ① 图片经过深度卷积神经网络(VGG-16)提取最后一层特征的响应图。
- ② ST 在每次循环中定位一个 Attention Region
- ③ LSTM 预测该区域的类别分数,同时更新 ST 的参数
- ④ 结合所有循环产生的类别分数,得到最终的类别分布

2) cifar 数据集上 ten crop 实验

本周任务是在 AlexNet 网络下加入 tencrop 机制,在 cifar 数据集上进行实验,观察其对模型性能是否有提升。

因为 cifar 数据集图片尺寸很小, 仅 32*32, 取最后一层卷积层的输出不足以进行 ten crop。

目前我对卷积网络做了一定修改,使得最后一层卷积层输出 feature map 为 256*5*5。

个人理解:我现在所做的 ten crop 部分即结构中橙色框出的箭头部分。

拟将 AlexNet 最后一层输出的 feature map 剪切翻转为 10 个 256*3*3 的 feature map, 依次放入一个只有全连接层的网络 FullNet 输出分类分数, 将得到的 10 个向量做平均, 得到原 256*5*5 feature map 最终的分类分数 outputs。

这里的 FullNet 暂代了 ST 和 LSTM 的分类功能。

反向传播时,计算 outputs 与原图 targets 对应的 loss,用于更新 FullNet 网络参数。

2. 遇到的困难以及解决方案,或者学习收获

1) 遇到的困难以及解决方案

(1) 预训练的卷积网络

我本来是想先训练一个新的最后输出 256*5*5 的完整网络,保存参数用于输出 feature map。

因为这个网络没有输出分类结果,无法做反向传播更新网络参数,它应该时一个已经训练过的,并且在最后的网络中仅作为生成 feature map 部分不参与反向传播。

但是分给我们组的 2, 3号卡当时看的时候都被占满了, 跑不起来, 就没有训练。

(2) tencrop

先把网络输出的 Variable 转成 numpy, 剪切矩阵并做翻转, 把十个结果作为 FullNet 的输入, 最后把网络的十个输出结果取平均计算 loss, 反向传播只传回 FullNet。

2) 学习收获

基本了解了论文算法。 大致确定任务做法。

3) 下周计划

实现 cifar 数据集上的 tencrop 操作。

不知道现在的想法是否可行,但目标是先按当前预想完成可运行的代码。

备注:

上次提到的关于测试集数据预处理采用和训练集不同方法的建议, 初步实验之后发现的确提高了模型准确率。

测试集取消了随机剪裁。 TOP1 最高准确率: 78.65

之前训练集和测试集用相同预处理方式:

最好 TOP1 结果: 78.2

