Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Obiettivi di apprendimento

- Acquisire le nozioni fondamentali riguardanti le caratteristiche delle basi di dati e dei sistemi per la gestione di basi di dati (DBMS), le principali operazioni che possono essere svolte su una base di dati e le tipologie di utenti che interagiscono con i DBMS
- Definire le principali proprietà dei sistemi per la gestione di basi di dati
- Comprendere le nozioni di base relative al funzionamento delle reti di calcolatori, i requisiti necessari per la comunicazione e l'architettura del sistema di comunicazione

Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Introduzione alle basi di dati

Introduzione alle basi di dati: sommario

- La centralità dei dati
- Le problematiche legate alla gestione dei dati su file
- ➤ Le basi di dati e i DBMS
- Proprietà, operazioni e utenti dei DBMS
- > Il modello relazionale

Raccolte di informazioni

- Se ne fa uso da tempo...
 - archivi anagrafici, biblioteche, banche...
- > La tipica struttura di memorizzazione
 - tabella, campi, record
- ➤ I vantaggi derivanti dalla gestione automatizzata delle informazioni
 - es. carte di credito, rubriche telefoniche, ...

Problemi legati alla gestione di informazioni su file

- Limitazioni dei tradizionali ambienti di sviluppo
 - Programmi dipendenti dalla struttura dei dati
- > Il problema dell'accesso condiviso
 - Ridondanze e inconsistenze

- > La gestione dei permessi di accesso
 - Necessità di meccanismi di autenticazione
 - Necessità di sistemi di controllo degli accessi

Problemi da risolvere

- Come strutturare i dati in modo che possano essere facilmente aggiornati senza dover modificare le procedure che vi accedono?
- Come organizzare i dati in modo da consentire l'accesso condiviso (eventualmente anche in scrittura) evitando inutili ridondanze e pericolose inconsistenze?
- Come limitare l'accesso alle informazioni esclusivamente a chi è autorizzato?

Basi di Dati e DataBase Management Systems

- Basi di dati: archivi elettronici contenenti collezioni di dati sotto forma di file
- DBMS: sistemi software per la gestione di basi di dati in grado di garantire:
 - Accesso condiviso
 - Persistenza dei dati
 - Affidabilità dei dati
 - Gestione della sicurezza
 - Indipendenza dei dati

DataBase Management Systems

Il DBMS è l'unico autorizzato a dialogare direttamente con la base dati

Un esempio di modello dei dati

- Descrive organizzazione e struttura dei dati
 - Tabelle (o relazioni), campi (o attributi), record
- Struttura: parte statica: lo schema della base dati o "schema della relazione"
 - CORSO (nome_corso, docente, anno, ...)
- Contenuto: parte dinamica: le istanze
 - (Basi di Dati, Ravarini, 2003-04, ...)
- Viste
- Un altro esempio:

Nome	Via	N°	CAP	Città	Telefono
Bianchi Chiara	Delle Rose	42	20097	S. Donato Milanese	021234567
Rossi Stefano	Gardenia	28	20131	Milano	029876543
Verdi Alessandro	Margherita	13	00195	Roma	061029384
v crai / nessanaro	Maignerita	13	00175	TOHA	00102/304

Architettura di un DBMS

Sistemi Informativi 2 – Armando Sternieri

Chi fa che cosa

- Operazioni sulla base dati
 - Modifica della struttura dati:
 DDL (*Data Definition Language*)
 - 2. Modifica del contenuto: **DML** (*Data Manipulation Language*)
 - 3. Interrogazione: **QL** (*Query Language*)
- SQL (Structured Query Language) → è il linguaggio standard per svolgere tutte e 3 le operazioni
- Utenti della base dati
 - Database Administrator (DBA)
 - Programmatore applicativo
 - Utente finale

Sistemi Informativi 2 – Armando Sternieri

Riassumendo...

- > Le basi di dati supportano:
 - Gestione centralizzata e condivisa dei dati
 - Riduzione di ridondanze e inconsistenze
 - Indipendenza dei dati dalle applicazioni
- Ma attenzione a...
 - Costi hardware e software
 - Eventuale conversione di applicazioni esistenti
 - Formazione del personale

Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Introduzione alle basi di dati

Il modello relazionale

Il modello relazionale

- > Descrive organizzazione e struttura dei dati
 - Tabelle (o relazioni), campi, record

Matr	Cognome	Nome	Voto
1234567	Bianchi	Chiara	27
9876543	Neri	Stefano	22
8029384	Rossi	Alessandro	30
5082316	Verdi	Elena	25

- Campi: nome univoco, dati omogenei per tipo (insieme di valori che possono assumere → dominio)
- Record: istanze degli "oggetti" del database

Relazioni e tabelle

- Una relazione R può essere rappresentata da una tabella
 - Ogni riga rappresenta una tupla della relazione
 - Attributi: titoli delle colonne (denotano i domini su cui è definita la relazione)
 - Grado di = numero degli attributi (colonne)
 - Cardinalità di = numero delle tuple (righe)
- ➤ Una relazione è
 un insieme
 non esistono
 tuple replicate

NCC	Nome	Indirizzo	Saldo
1	Rossi	Via Roma 5	321€
2	Bianchi	Via Torino 4	432€
3	Verdi	NULL	321€
4	Neri	Via Torino 4	654 €
5	Rossi	Via Genova 1	765€

Relazioni e tabelle /2

- > Una tabella rappresenta una relazione se:
 - i valori di ogni colonna sono fra loro omogenei
 - le righe sono diverse fra loro
 - le intestazioni delle colonne sono diverse tra loro
- > In una tabella che rappresenta una relazione:
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante

Schemi e istanze

- ➢ Si dice schema di una relazione la descrizione della sua struttura: il nome della relazione seguito dall'elenco dei suoi attributi; a ciascun attributo è associato il suo tipo
 - Esempio:
 Conto = NCC: numero intero, Nome: stringa, Indirizzo: stringa, Saldo: numero intero)
 - Conto ha grado = 4 e cardinalità = 5
- L'istanza della relazione è, istante per istante, il suo contenuto

Schemi e istanze /2

- L'insieme degli schemi delle tabelle che formano un database (DB) si definisce schema del DB. L'insieme delle istanze delle tabelle è un'istanza del DB
- Schema: descrive la parte statica del database (è progettato una tantum)
- Istanza: descrive la parte dinamica, variabile nel tempo

Un esempio "classico": studenti e corsi

STUDENTI				
Matr	Cognome	Nome	Nato_il	Nato_a
3571	Banfi	Alessandro	19/02/1982	Milano
999	Bosio	Umberto	27/01/1983	Aosta
2805	Castelnuovo	Andrea	06/05/1982	Torino
3719	Colpi	Marco	15/01/1983	Genova
773	Izzo	Stefania	08/10/1982	Firenze
3672	Librandi	Silvia	12/03/1983	Bologna
1539	Longoni	Mauro	05/02/1983	Venezia
3500	Matta	Vera	26/04/1982	Roma
1886	Merlo	Andrea	05/05/1983	Trento
1427	Morelli	Riccardo	14/04/1982	Trieste
2608	Ornaghi	Gabriele	09/09/1982	Perugia
3711	Panico	Andrea	29/05/1982	Pescara
1940	Poretti	Stefania	20/02/1982	Ancona
1814	Quaglia	Andrea	13/08/1982	Napoli
1662	Salmoiraghi	Veronica	19/09/1982	Cagliari
2744	Sterlocchi	Elena	29/06/1982	Palermo
3024	Tarantola	Marcello	17/06/1982	Reggio Calabria
3527	Valentini	Samuele	10/07/1982	Bari
3615	Venturi	Anita	28/07/1982	Potenza
681	Zaccaretti	Carolina	23/02/1983	Campobasso

Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori

Introduzione alle reti di calcolatori: sommario

- > I requisiti della comunicazione
- > I "livelli" di un sistema per la comunicazione
 - Livello A: infrastrutture telematiche
 - Livello B: protocolli per la trasmissione
 - Livello C: protocolli applicativi
- > Architetture di rete
 - Client/server vs peer to peer

Gestire informazione

... cioè sull'interconnessione in rete dei sistemi di elaborazione ...

Perché una rete?

- Condividere risorse
 - utilizzo razionale di dispositivi costosi
 - modularità della struttura
 - affidabilità e disponibilità
- Comunicare tra utenti
 - scambio informazioni
 - collaborazione a distanza

Perché una rete?

	Condivisione di risorse fisiche	Condivisione di risorse informative
Reti di dimensioni medio-piccole (un ufficio, un'aula,)	X	
Reti di dimensioni medio-grosse (una regione, un'azienda,)		

La struttura dei sistemi informatici come metafora dell'organizzazione dei sistemi informativi

Mainframe-terminali

Informazione **centralizzata**

PC stand alone

Informazione "sparpagliata"

Rete di PC

Informazione distribuita e coordinata

Sistemi Informativi 2 – Armando Sternieri

Un esempio di rete di calcolatori parzialmente interconnessa

Capitolo 2
Introduzione alle tecnologie:
basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori

I requisiti per la comunicazione

Per comunicare...

/1

E' necessario che esista un canale fisico di comunicazione adatto (requisito per la connessione)

Sistemi Informativi 2 – Armando Sternieri

Per comunicare...

/1

E' necessario che esista un canale fisico di comunicazione adatto (requisito per la connessione)

Forte e chiaro!

occorre predisporre una infrastruttura telematica: cavi, antenne, centrali, satelliti, calcolatori, ...

E' necessario che si parli la stessa lingua (requisito per la trasmissione)

occorre stabilire un protocollo di base comune: delle regole per interpretare i segnali "a basso livello"

Sistemi Informativi 2 – Armando Sternieri

Per comunicare...

/2

E' necessario che si parli la stessa lingua (requisito per la trasmissione)

Sistemi Informativi 2 – Armando Sternieri

E' necessario che si abbiano competenze comuni (requisito per la comunicazione)

occorre stabilire un protocollo applicativo comune: delle regole per interpretare i segnali "ad alto livello"

E' necessario che si abbiano competenze comuni (requisito per la comunicazione)

occorre stabilire un protocollo applicativo comune: delle regole per interpretare i segnali "ad alto livello"

La comunicazione, finalmente!

Se le precedenti condizioni (di connessione, trasmissione e comunicazione) sono soddisfatte, si può dialogare ...

occorre ... avere qualcosa da dire ...

Come proseguiremo ...

> Tratteremo successivamente:

Capitolo 2
Introduzione alle tecnologie:
basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori

Sistemi di comunicazione: livello A - infrastrutture fisiche

Gli ingredienti di base

La più semplice rete di calcolatori:

Sistemi Informativi 2 – Armando Sternieri

Tassonomia delle reti: la dimensione delle reti

- Reti locali (Local Area Network, LAN)
 - di limitata estensione
 - collegano dispositivi collocati nello stesso edificio o in edifici adiacenti.
- > Reti metropolitane (Metropolitan Area Network, MAN)
 - collegano di dispositivi collocati nella stessa area urbana.
- Reti geografiche (Wide Area Network, WAN)
 - collegano di dispositivi diffusi in un'ampia area geografica (nazione, continente, ...);
- "Reti di reti" (Internetwork),
 - collegameno più reti differenti (in termini sia hardware che software) mediante opportuni elementi di interfaccia, che si possono estendere su tutto il pianeta (e.g. Internet).

Interconnessione

Sistemi Informativi 2 – Armando Sternieri

41

Interconnessione di LAN

Repeater

- Collega reti identiche,
- Rigenera i segnali in transito tra una rete e l'altra.

> Bridge

- Collega reti diverse, ma con uno stesso schema di indirizzamento, oppure reti uguali in cui si vuole filtrare il traffico
- Ritrasmette solo i pacchetti che devono transitare da una rete all'altra: rimane in ascolto sulle due reti e, quando riconosce un pacchetto proveniente da una rete e destinato a una stazione appartenente all'altra rete, lo preleva, lo memorizza e quindi lo ritrasmette con il metodo di accesso proprio della rete di destinazione.

Router

- Trasferisce da una rete all'altra pacchetti con schemi di indirizzamento diverso, ma che condividono lo stesso protocollo di rete.
- L'instradamento tra le reti avviene attraverso una **tabella di instradamento**, presente sul router, che può anche variare dinamicamente. Questi dispositivi sono in genere utilizzati per interconnettere una rete locale a una rete geografica, come per esempio Internet.

Gateway

Crea dei collegamenti tra reti con ambienti applicativi differenti.

Mezzi guidati

Doppino telefonico

Sistemi Informativi 2 – Armando Sternieri

Mezzi guidati

Fibra ottica: trasmissione di segnali luminosi basata sul principio di riflessione totale

Livello fisico: mezzi non guidati

- > Segnali trasmessi e ricevuti mediante antenne
- Spettro delle frequenze
 - 900 Mhz & 1800 Mhz → GSM (1900 Mhz negli USA)
 - [30 MHz, 1 GHz] trasmissioni non direzionali:
 - es. radio
 - [2 GHz, 40 GHz] (microonde) trasmissioni direzionali:
 - es. via satellite
 - [300 GHz, 200 THz] (infrarossi)
 - trasmissioni punto a punto o multipunto "locale"

Il problema dell'accesso

In una rete si suppone che ogni nodo possa comunicare con ogni altro nodo ...

- … e se i nodi diventano 100, 1000, 10000, … ??? I canali dedicati diventano davvero troppi!
- La soluzione: introdurre un sistema di commutazione (switching), cioè di condivisione dei canali

Internet: struttura del sistema di accesso

Tecnologie per il local loop

La propria LAN è *in* Internet solo quando il local loop è attivo: cioè sempre nel caso di linea dedicata, mentre nel caso di linea commutata ...

Sistemi Informativi 2 – Armando Sternieri

ADSL

- Asymmetric Digital Subscriber Line
- Funziona sul doppino telefonico tradizionale
- Usa tre canali (in frequenza) diversi sulla stessa linea
 - 1. Plain Old Telephone System (POTS)
 - 2. Upstream (64-640 KBps)
 - 3. Downstream (0.6-6.1 MBps)
- In Italia (oggi) viene offerta una connessione a 640 Kbps downstream e 128 Kbps upstream

QoS: la qualità del servizio

La capacità effettiva del canale che connette due nodi in una WAN dipende dalle capacità dei tratti di linea tra i due nodi

... secondo la logica della catena, che è forte quanto il suo anello più debole

D'altra parte, non ogni tratto è sotto il nostro controllo: lo sono, anzi, solo il local loop e, indirettamente, il backbone dell'ISP

E' per questo che la qualità del servizio di connettività dipende da:

- le caratteristiche del local loop
- ➢ la qualità dell'ISP scelto, e in particolare:
- la sua condizione di connettività
- > la capacità di canale che ci si riserva ("banda garantita") sul suo backbone

Sistemi Informativi 2 – Armando Sternieri

Capitolo 2
Introduzione alle tecnologie:
basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori

Sistemi di comunicazione: livello B - protocolli di trasmissione

Dal livello A al livello B

Una volta che le condizioni infrastrutturali per l'accesso alla rete sono soddisfatte, occorre stabilire "la lingua comune" della rete

"Dai segnali ai bit"

Il problema della commutazione

Una volta che i problemi di connessione sono stati risolti: ... condizioni di accesso e uso:

- sistema telefonico: alternativamente accessibile o non, a capacità di canale costante
- rete di calcolatori: sempre accessibile, a capacità di canale variabile

Perché?

Schemi di commutazione

Prima soluzione: chi arriva per primo prende tutto

T1 a X: la linea verso D è accessibile? Se sì, assegnala a me e lasciamela fino a che non ho terminato la trasmissione; altrimenti: abortisci l'operazione

Per comunicare si crea temporaneamente una linea dedicata ("circuito"):

commutazione di circuito

Seconda soluzione: le risorse sono sempre condivise tra tutti

T1 a X: per trasmettere a D, divido il messaggio in parti indipendenti e te le invio. Ogni volta che la linea è disponibile, trasmetti a D una parte del mio messaggio

Per comunicare si segmenta il messaggio in parti indipendenti ("pacchetti"): commutazione di pacchetto

Commutazione di pacchetto e TCP/IP

I calcolatori comunicano tipicamente su reti a commutazione di pacchetto

→ I nodi destinatari risultano sempre disponibili a rispondere positivamente a richieste di attivazione di comunicazione

TCP/IP è un insieme di protocolli per la comunicazione basata sulla commutazione di pacchetto

I protocolli **TCP/IP** sono largamente indipendenti dalle specifiche infrastrutture di connessione, tanto da essere ugualmente adottabili, e adottati, sia per LAN che per WAN

A partire dall'esperienza delle comunicazioni sociali ...

Nelle situazioni comunicazionali più tipiche:

- [A] la connessione fisica è assicurata da infrastrutture diverse ...
- [C] ... gli argomenti oggetto di comunicazione sono molteplici ...
- [B] ... ma la lingua usata per comunicare è la stessa

La comunicazione nelle/tra reti di calcolatori

- A. occorre predisporre un'infrastruttura telematica
- B. occorre stabilire un protocollo di base comune
- C. occorre stabilire un protocollo applicativo comune
- D. occorre ... avere qualcosa da dire

Posto che D è di competenza dell'utente, per A, B, e C storicamente le diverse società di informatica e telecomunicazioni hanno offerto soluzioni differenti e non sempre compatibili l'una con l'altra

L'effetto: se io "ho la rete X" e tu "hai la rete Y" allora i miei calcolatori non sono in grado di comunicare con i tuoi

...la peculiarità di Internet

Sistemi Informativi 2 – Armando Sternieri

I protocolli TCP/IP

- Protocolli per la connessione di reti eterogenee
- Obiettivo IP: gestire l'attraversamento di reti interconnesse
- Obiettivo TCP: garantire consegna pacchetti e loro corretto riordinamento

Il protocollo IP

- ➤ IP gestisce ogni messaggio da trasmettere in forma frammentata, come un *insieme di pacchetti*
- Ogni nodo di una rete IP è identificato da un indirizzo univoco di 32 bit
 - Se il nodo destinatario appartiene alla stessa sottorete del nodo mittente (p.es. se il suo indirizzo IP è 212.239.33.10), si attiva l'Address Resolution Protocol (ARP) e si inviano i pacchetti al nodo così identificato
 - In caso contrario, si inviano i pacchetti a un nodo pre-identificato (detto "default gateway")
 - dotato della capacità di routing, cioè di instradare correttamente i pacchetti verso il nede destinatario

sistemi Informativi 2 – Armando Sternieri

Il protocollo TCP

- Obiettivo: garantire un trasferimento dati affidabile
- Converte i dati provenienti dal livello superiore in pacchetti
- Stabilisce una connessione con il calcolatore destinatario e la controlla
- È responsabile della ritrasmissione di eventuali pacchetti alterati

Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori

Sistemi di comunicazione: livello C - protocolli applicativi

Protocolli per la comunicazione tra calcolatori

- Diverse tipologie di protocolli
 - Semplifica il progetto delle reti
 - Incrementa la flessibilità

- Quali protocolli consideriamo?
 - Protocolli "applicativi", che specificano i servizi disponibili sulla rete Internet

Protocolli applicativi, servizi di Internet e applicazioni

Protocollo	Servizio Internet	Tipologia di SW applicativo	Esempio
SMTP, POP	posta elettronica	email client	Eudora
HTTP	navigazione nel web	browser	Netscape Navigator, MS Internet Explorer
FTP	trasferimento file	ftp client	Ws FTP, Ftp Voyager

Capitolo 2 Introduzione alle tecnologie: basi di dati e reti di calcolatori

Introduzione alle reti di calcolatori architetture di rete

L'architettura client-server

- 1. L'utente usa il client per esprimere le sue richieste
- 2. Il client si collega al server e trasmette la richiesta
- 3. Il server risponde al client
- 4. Il client presenta la risposta all'utente

Il client

- Si preoccupa di dialogare con l'utente
- Sfrutta tutte le possibilità fornite dal calcolatore su cui viene eseguito (audio, video, ...)
- Fornisce all'utente un'interfaccia intuitiva
- Elabora le richieste dell'utente e le risposte dei server
 - la comunicazione avviene secondo un formato standard (protocollo)

Il server

- > Accetta richieste e risponde automaticamente
 - non bada alla provenienza della richiesta
 - il processo client può trovarsi in qualsiasi punto della rete
- Si può organizzare un insieme di server in modo che siano collegati tra loro
- Potrebbe essere eseguito dallo stesso calcolatore che esegue il processo client!

Client e Server: classificazione del SW

- Client e server sono i processi, non i calcolatori
 - i requisiti dei **processi server** fanno sì che sia conveniente avere applicazioni server su macchine con determinate caratteristiche
 - → "i server"
 - i requisiti dei processi client fanno sì che sia conveniente avere applicazioni server su macchine con determinate caratteristiche
 - → "i client"

Elaborazione distribuita

- Uno dei possibili usi dell'architettura client-server
- Elaborazione distribuita
 - UD: https://members.ud.com/projects/cancer/
 - SETI: http://setiathome.berkeley.edu/

L'alternativa "peer to peer"

Ogni calcolatore è in grado sia di effettuare sia di esaudire richieste di servizio

- Un esempio di impiego:
 - File Sharing (WinMX, Kazaa, ...)