11. Dos seguintes grafos, diga quais são bipartidos, indicando uma partição do conjunto dos seus vértices

15. Qual o número mínimo de vértices de um grafo simples com 200 arestas? Porquê?

O grado Kn tem
$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 arestas

O grado
$$K_{20}$$
 tem 20×190 arastas

Para construir o grado pretendido consideramos um grado com 21 vértices de tal forma que 20 desses vértices formam 1/20

e o vigésimo primeiro vértice inciele em 20 dos outros vertices, obtendo

assim 190+10 = 200 arestes.

(b) Sejam G = (V, E) um grafo e $x, y \in V$. Mostre que se existem dois caminhos elementares distintos entre x, y, então G admite um ciclo.

Serponhamos que temos dois cominhos

$$C_1 = (2x, x_2, x_3, ..., x_n, y)$$
 $C_2 = (x, z_2, z_3, ..., z_k, y)$

Como cy Z Cz existem zi = Zj e zi+1 Z Zj+1

Escolhemos os proximos véctices RR e 23 tais que

XZ = ZB (eventualmente XZ = ZB = J)

Assim < xi = zj, xi+1, ..., 2er = 2s, 2s-1, 2s-2, --, zj = xi>
é um ciclo no grafo G.

41. Mostre que o seguinte grafo não é euleriano nem hamiltoniano:

O grafe nou é culcuiomo parque o véntre a assinalado tem grace 3 e um grado culcuiamo é fal que bolos os seus véntices têm grace par.

Serponhamos, por redução abserdo, que o grado e hamiltoniamo Enta existe sem ciclo hamiltoniamo, no reja, um ciclo que porsoene todos os vértices. Como b, c, e, d têm grau z enta as acestes daybo, do,cp, da,do, dd,ep, de,do, dd,aj dezem paet do ciclo hamiltoniamo.

Mas estes anestes derman à ciclo (a,b,c,d,e,d,a), ciclo esse que não percorne o vértice g. Absundo.

43. Construa um grafo planar conexo cujo número cromático seja 4.

24. O complemento de um grafo
$$G = (V, E)$$
 é um grafo $\overline{G} = (\overline{V}, \overline{E})$, onde

$$\overline{V} = V \in \overline{E} = \{\{x,y\} \subseteq V : x \neq y, \{x,y\} \notin E\}.$$

- (a) Determine o complemento de $K_{3,5}$.
- (b) Determine \overline{G} , onde G é um grafo desconexo com duas componentes conexas que são os grafos K_3 e K_5 .
- (c) Dado o grafo ciclo C_5 , mostre que $\overline{C_5}$ e C_5 são o mesmo grafo.
- (d) Considere o grafo linha P_3 . Mostre que $\overline{P_3}$ e P_3 são o mesmo grafo.
- (e) Diga, justificando, se a seguinte afirmação é verdadeira ou falsa: "O complemento de um grafo conexo é um grafo conexo.".

<u>a</u>)

K3,5

O grado K3,5 é o grado que tem como componentes

come xas K3 e Ks.

14. Prove o Teorema da Amizade: "Em toda a cidade com pelo menos 2 habitantes, residem 2 pessoas com o mesmo número de amigos que habitam nessa mesma cidade."

Répresentamos os habitantes da cidade per vertres e dizemos que dois vértices são adjacentes se os habitantes correspondentes São amigos. Joja G = (V, E) tal grafo. Queremos mostnar que existem v1, v2 EV tais que g $rau(v_1) = grau(v_2).$ desponhamos, per radezão au absendo, que o grave ell bodos os vértices et digenente. Jeja no número de ventices Je os grous são todos diferentes e como o grado e simples então os grans são nacessariamente 0,2,2, -.., n-1 Le temos un vértice de gran n-1 entre esse vértice et adjacente a bodos os netros. Mas tal não pode aconticer pois temas en vértice de gran o.

Asson existen véntices ou e vez com gray (v1) = gray (v2)

47. Considere o grafo G representado por

- (a) Mostre que G não é planar.
- (b) Mostre que $\chi(G) = 4$.
- (c) Verifique se G é bipartido.
- (d) O complemento de um grafo H=(V,E) é um grafo $\overline{H}=(\overline{V},\overline{E})$, onde

$$\overline{V} = V$$
, e $\overline{E} = \{\{a, b\} : a \neq b, \{a, b\} \notin E\}$.

Determine o complemento de G.

J'all	~ echice	$\overline{}$	
5	y, t		
4	7, x, s, w	X X	
		$w \mapsto s$	
Temos er	ntão uma		
Colonação	com 4 cones	Dogc × (G) ≤ 4.	
Como	 < q = serbgnado 	loge $\times (G) \leq 4$. de G entro $\times (G) \geq 4$	
Colo X	C(G) = 4.		

38. Para que valores de $m, n \in \mathbb{N}$ o grafo $K_{m,n}$ é euleriano?

No grado Km, no gran dos vértices one é m me é n Logo para que Km, n seja enleriamo temas necessariamente m e n pares. 35. Seja G um grafo conexo <u>planar</u> com pelo menos 3 vértices. Mostre que G tem pelo menos um vértice de grau não superior a 5.

Sabemos que para em grado comexo planar 30-a 76

desponhamos per reclezão ao absendo que todos os vertros ele

6 têm gran superior a 5, ou seja, maior ou iseal a 6.

Então 2 gran (a) > 60

Per outro lado Z gran (v) = 2a

logo la > 62 (=) 32-a <0. Mas iste contradiz o dacto de para grados conexos planares 32-a > 6.