(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. Juli 2004 (29.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/063358 A1

(51) Internationale Patentklassifikation7:

C12N 1/15.

- 15/80, C12P 23/00
- (21) Internationales Aktenzeichen:
- PCT/EP2004/000100
- (22) Internationales Anmeldedatum:

67056 Ludwigshafen (DE).

- 9. Januar 2004 (09.01.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 00 649.4

9. Januar 2003 (09.01.2003) DE 8. September 2003 (08.09.2003)

103 41 272.7 (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE];

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MATUSCHEK, Markus [DE/DE]; Karolinenstr. 5, 69469 Weinheim (DE). HEINEKAMP, Thorsten [DE/DE]; Alte Ziegelei 1b, 38419 Hannover (DE). SCHMIDT, Andre [DE/DE]; Magdeburger Str. 11, 31832 Springe (DE). BRAKHAGE, Axel [DE/DE]; Schneiderberg 58, 38167 Hannover (DE).
- (74) Anwalt: FITZNER, Uwe; Lintorfer Strasse 10, 40878 Ratingen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR THE GENETIC MODIFICATION OF ORGANISMS OF THE GENUS BLAKESLEA, CORRE-SPONDING ORGANISMS, AND THE USE OF THE SAME
- (54) Bezeichnung: VERFAHREN ZUR GENTECHNISCHEN VERÄNDERUNG VON ORGANISMEN DER GATTUNG BLA-KESLEA. ENTSPRECHENDE ORGANISMEN UND DEREN VERWENDUNG

VEKTOR pBinAHyg

(57) Abstract: The invention relates to a method for producing a genetically modified organism of the genus Blakeslea, said method comprising the following steps: (i) at least one of the cells is transformed, (ii) the cells obtained in step (i) are optionally rendered homokaryotic, so that cells are created in which the nuclei are all homogeneously modified in at least one genetic characteristic and convert said genetic modification into an expression, and (iii) the genetically modified cell or cells are selected and cultivated.

[Fortsetzung auf der nächsten Seite]

WO 2004/063358 A1

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

 vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

- mit internationalem Recherchenbericht

⁽⁵⁷⁾ Zusammenfassung: Verfahren zur gentechnischen Veränderung von Organismen der Gattung Blakeslea, entsprechende Organismen und deren Verwendung Zusammenfassung Verfahren zur Herstellung eines gentechnisch veränderten Organismus der Gattung Blakeslea umfassend (i) Transformation mindestens einer der Zellen, (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder mehreren genetischen Merkmalen alle gleichartig verändert sind und diese gentechnische Veränderung zur Ausprägung bringen, und (iii) Selektion und Anzucht der gentechnisch veränderten Zelle oder Zellen.

Verfahren zur gentechnischen Veränderung von Organismen der Gattung Blakeslea, entsprechende Organismen und deren Verwendung

Die Erfindung betrifft ein Verfahren zur gentechnischen Veränderung von Organismen der Gattung Blakeslea, entsprechende Organismen und deren Verwendung.

Pilze der Gattung Blakeslea sind als Produktionsorganismen bekannt. So wird z. B. Blakeslea trispora als Produktionsorganismus für β-Carotin (Ciegler, 1965, Adv Appl Microbiol. 7:1) und Lycopin verwendet (EP 1201762, EP 1184464, WO 03/038064). Daneben kommt Blakeslea zur Produktion anderer lipophiler Substanzen in Frage wie z.B. andere Carotinoide und deren Vorstufen, Phospholipide, Triacylglyceride, Steroide, Wachse, fettlösliche Vitamine, Provitamine und Cofaktoren oder zur Produktion hydrophiler Substanzen wie z.B. Eiweiße, Aminosäuren, Nukleotide und wasserlösliche Vitamine, Provitamine und Cofaktoren.

Die hohen Produktivitäten für β-Carotin und Lycopin machen Blakeslea, insbesondere Blakeslea trispora attraktiv für die wirtschaftliche fermentative Herstellung von Carotinoiden und deren Vorstufen.

Allerdings ist es auch von Interesse, die Produktivitäten der bisher natürlicherweise produzierten Carotine und deren Vorstufen weiter zu steigern und die Herstellung weiterer Carotinoide, wie z. B. Xanthophylle zu ermöglichen, die von Blakeslea bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

Carotinoide werden Futtermitteln, Nahrungsmitteln, Nahrungsergänzungsmitteln, Kosmetika und Arzneimitteln zugesetzt. Die Carotinoide dienen vor allem als Pigmente zur Färbung. Daneben werden

2

die antioxidative Wirkung der Carotinoide und andere Eigenschaften dieser Substanzen genutzt. Man unterteilt die Carotinoide in die reinen Kohlenwasserstoffe, die Carotine und die sauerstoffhaltigen Kohlenwasserstoffe, die Xanthophylle. Xanthophylle wie Canthaxanthin und Astaxanthin werden beispielsweise zur Pigmentierung von Hühnereiern und Fischen eingesetzt (Britton et al. 1998, Carotinoids, Vol 3. Biosynthesis and Metabolism). Die Carotine β-Carotin und Lycopin werden vor allem in der Humanernährung eingesetzt. B-Carotin wird beispielsweise als Getränkefarbstoff verwendet. Lycopin hat eine krankheitsvorbeugende Wirkung (Argwal und Rao, 2000, CMAJ 163:739-744; Rao und Argwal 1999, Nutrition Research 19:305-323). Die farblose Carotinoidvorstufe Phytoen kommt vor allem für Anwendungen als Antioxidans in Frage.

5

10

15

20

25

30

Der überwiegende Teil der Carotinoide und deren Vorstufen, die als Zusatzstoffe für die oben genannten Anwendungen eingesetzt werden, wird durch chemische Synthese hergestellt. Die chemische Synthese ist mehrstufig, technisch sehr aufwendig und verursacht hohe Herstellkosten. Fermentative Verfahren sind demgegenüber technisch verhältnismäßig einfach und basieren auf kostengünstigen Einsatzstoffen. Fermentative Verfahren zur Herstellung von Carotinoiden können dann wirtschaftlich attraktiv und wettbewerbsfähig zur chemischen Synthese sein, wenn die Produktivität der bisherigen fermentativen Verfahren gesteigert würde oder neue Carotinoide auf Basis der bekannten Produktionsorganismen hergestellt werden könnten.

Ein Verfahren zur gentechnischen Veränderung von Blakeslea trispora ist erforderlich insbesondere, wenn Blakeslea zur Herstellung von Xanthophyllen genutzt werden soll, weil diese Verbindungen natürlicherweise von Blakeslea nicht synthetisiert werden.

3

Von Blakeslea trispora sind bisher verschiedene DNA-Sequenzen bekannt insbesondere die DNA-Sequenz, die für die Gene der Carotinoidbiosynthese von Geranylgeranylpyrophosphat bis β -Carotin codiert (WO 03/027293).

5

10

15

20

Allerdings sind bisher keine Methoden zur gentechnischen Veränderung von Blakeslea, insbesondere Blakeslea trispora bekannt.

Als Methode zur Herstellung von gentechnischen veränderten Pilzen wurde in einigen Fällen die Agrobacterium-vermittelte Transformation erfolgreich eingesetzt. So sind z. B. folgende Organismen durch Agrobakterien transformiert worden: Saccharomyces cerevisiae (Bundock et al., 1995, EMBO Journal, 14:3206–3214), Aspergillus awamori, Aspergillus nidulans, Aspergillus niger, Colletotrichum gloeosporioides, Fusarium solani pisi, Neurospora crassa, Trichoderma reesei, Pleurotus ostreatus, Fusarium graminearum (van der Toorren et al., 1997, EP 870835), Agraricus bisporus, Fusarium venenatum (de Groot et al., 1998, Nature Biotechnol. 16:839–842), Mycosphaerella graminicola (Zwiers et al. 2001, Curr. Genet. 39:388–393), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genomics 268:645–655), Mucor miehei (Monfort et al. 2003, FEMS Microbiology Lett. 244:101 – 106).

Von Interesse ist besonders eine homologe Rekombination, bei der zwischen der einzuführenden DNA und der Zell-DNA möglichst viele Sequenzhomologien bestehen, so dass eine ortsspezifische Einführung bzw. Ausschaltung von genetischer Information im Genom des Empfängerorganismus möglich ist. Andernfalls wird die Spender-DNA durch illegitime bzw. nicht-homologe Rekombination ins Genom des Empfängerorganismus integriert, was nicht ortsspezifisch erfolgt.

25

4

Eine durch Agrobacterium vermittelte Transformation und anschließende homologe Rekombination der transferierten DNA wurde bisher bei folgenden Organismen nachgewiesen: Aspergillus awamori (Gouka et al. 1999, Nature Biotech 17:598-601), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genomics 268:645-655), Mycosphaerella graminicola (Zwiers et al. 2001, Curr. Genet. 39:388-393).

5

10

15

25

30

Als weitere Methode zur Transformation von Pilzen ist die Elektroporation bekannt. Die integrative Transformation von Hefe durch Elektroporation wurde von Hill, Nucl. Acids. Res. 17:8011 gezeigt. Für filamentöse Pilze wurde die Transformation durch Chakaborty und Kapoor beschrieben (1990, Nucl. Acids. Res. 18:6737).

Eine "biolistische" Methode, d.h. die Übertragung von DNA durch Beschuss von Zellen mit DNA-beladenen Partikeln wurde beispielsweise für Trichoderma harzianum und Gliocladium virens beschrieben (Lorito et al. 1993, Curr. Genet. 24:349–356).

Diese Methoden konnten bisher jedoch nicht erfolgreich zur gezielten genetischen Veränderung von Blakeslea und insbesondere Blakeslea trispora eingesetzt werden.

Eine besondere Schwierigkeit bei der Herstellung von gezielt genetisch veränderten Blakeslea und Blakeslea trispora ist die Tatsache, dass deren Zellen in allen Stadien des sexuellen und des vegetativen Zellzyklus mehrkernig sind. In Sporen von Blakeslea trispora Stamm NRRL2456 und NRRL2457 wurden z. B. im Durchschnitt 4,5 Kerne pro Spore nachgewiesen (Metha und Cerdá-Olmedo, 1995, Appl. Microbiol. Biotechnol. 42:836–838). Dies hat zur Folge, dass die gentechnische Veränderung in aller Regel nur in einem oder wenigen Kernen vorliegt, die Zellen also heterokaryotisch sind.

5

Sollen die genetisch veränderten Blakeslea-Arten, insbesondere Blakeslea trispora zur Produktion eingesetzt werden, so ist es insbesondere bei einer Gendeletion wichtig, dass in den Produktionsstämmen die gentechnische Veränderung in allen Kernen vorliegt, so dass eine stabile und hohe Syntheseleistung ohne Nebenprodukte möglich wird. Die Stämme müssen folglich in Bezug auf die gentechnische Veränderung homokaryotisch sein.

Lediglich für Phycomyces blakesleeanus ist ein Verfahren beschrieben worden, um homokaryotische Zellen zu erzeugen (Roncero et al., 1984, Mutat. Res. 125:195). Durch Zugabe des mutagenen Agens MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) werden nach dem dort beschriebenen Verfahren Kerne in den Zellen eliminiert, so dass statistisch eine gewisse Anzahl von Zellen mit nur noch einem funktionellem Kern vorliegt. Die Zellen werden dann einer Selektion unterzogen, in der nur einkernige Zellen mit einem rezessiven Selektionsmarker zu einem Mycel auswachsen können. Die Nachkommen dieser selektierten Zellen sind mehrkernig und homokaryotisch. Ein rezessiver Selektionsmarker für Phycomyces blakesleanus ist z. B. dar. Dar⁺-Stämme nehmen das toxische Riboflavin-Analog 5-Carbon-5-deazariboflavin auf; Dar⁻-Stämme dagegen nicht (Delbrück et al. 1979, Genetics 92:27). Die Selektion von rezessiven Mutanten erfolgt durch Zugabe von 5-Carbon-5-deazariboflavin (DARF).

25

5

10

15

20

Allerdings ist dieses Verfahren nicht für Blakeslea, insbesondere Blakeslea trispora bekannt und insbesondere nicht mit im Zusammenhang mit einer Transformation beschrieben worden.

30 Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen, mit dem eine gentechnische Veränderung von Blakeslea-Stämmen,

6

insbesondere Blakeslea trispora möglich ist. Darüber hinaus ist es Aufgabe der Erfindung ein Verfahren bereitzustellen, das die Herstellung homokaryotischer genetisch veränderter Stämme erlaubt. Ferner ist es eine Aufgabe der Erfindung entsprechend gentechnisch veränderte Zellen bereitzustellen.

Diese Aufgabe wird durch ein Verfahren zur Herstellung eines gentechnisch veränderten Organismus der Gattung Blakeslea gelöst, umfassend

(i) Transformation mindestens einer der Zellen,

5

10

20

25

- (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und
- 15 (iii) Selektion der gentechnisch veränderten Zelle oder Zellen.

Mit der erfindungsgemäßen Methode ist es möglich, mehrkernige Zellen der Pilze Blakeslea gezielt und stabil genetisch zu verändern, um so Mycel aus Zellen mit einheitlichen Kernen zu gewinnen. Vorzugsweise handelt es sich Zellen von Pilzen der Art Blakeslea trispora.

Unter Transformation wird die Übertragung einer genetischen Information in den Organismus, insbesondere Pilz verstanden. Darunter sollen alle dem Fachmann bekannten Möglichkeiten zur Einschleusung der Information, insbesondere DNA fallen, z. B. Beschuss mit DNA-beladenen Partikeln, Transformation mittels Protoplasten, Mikroinjektion von DNA, Elektroporation, Konjugation oder Transformation kompetenter Zellen, Chemikalien oder Agrobakterien vermittelte Transformation. Als genetische Information werden ein Genabschnitt, ein Gen oder mehrere

7

Gene verstanden. Die genetische Information kann z. B. mit Hilfe eines Vectors oder als freie Nukleinsäure (z. B. DNA, RNA) und auf sonstige Weise in die Zellen eingebracht und entweder durch Rekombination ins Wirtsgenom eingebaut oder in freier Form in der Zelle vorliegen. Besonders bevorzugt ist hierbei die homologe Rekombination.

5

10

15

20

25

Bevorzugte Transformationsmethode ist die Agrobacterium tumefaciensvermittelte Transformation. Hierzu wird zunächst die zu transferierende Spender-DNA in einen Vektor eingefügt, der (i) flankierend zu der zu DNA die T-DNA-Enden trägt, transferierenden der (ii) Selektionsmarker enthält und der (iii) ggf. Promotoren und Terminatoren für die Genexpression der Spender-DNA aufweist. Dieser Vektor wird in einen Agrobacterium-tumefaciens-Stamm übertragen, der ein Ti-Plasmid mit den vir-Genen enthält. vir-Gene sind für den DNA-Transfer in Blakeslea verantwortlich. Mit diesem Zwei-Vektor-System wird die DNA von Agrobacterium in Blakeslea übertragen. Hierzu werden die Agrobakterien zunächst in Gegenwart von Acetosyringone inkubiert. Acetosyringone induziert die vir-Gene. Anschließend werden Sporen von Blakeslea trispora zusammen mit den induzierten Zellen Agrobacterium tumefaciens auf Acetosyringone-haltigem Medium inkubiert und dann auf Medium übertragen, das eine Selektion der Transformanten, d.h. der gentechnisch veränderten Stämme von Blakeslea ermöglicht.

Der Begriff Vector wird in der vorliegenden Anmeldung als eine Bezeichnung für ein DNA-Molekül verwendet, das zum Einschleusen und ggf. zur Vermehrung von Fremd-DNA in eine Zelle dient (siehe auch "Vector" in Römpp Lexikon Chemie – CDROM Version 2.0, Stuttgart/New York: Georg Thieme Verlag 1999). In der vorliegenden Anmeldung sollen unter dem Begriff "Vector" Plasmide, Cosmide usw. verstanden werden, die diesem Zweck dienen.

WO 2004/063358

8

PCT/EP2004/000100

Unter Expression wird in der vorliegenden Anmeldung die Übertragung einer genetischen Information ausgehend von DNA oder RNA in ein Gen-Produkt (hier vorzugsweise Carotinoide) verstanden und soll auch den Begriff der Überexpression beinhalten, womit eine verstärkte Expression gemeint ist, so dass ein bereits in der nicht transformierten Zelle (Wildtyp) hergestelltes Produkt verstärkt produziert wird oder einen großen Teil des gesamten Gehaltes der Zelle ausmacht.

Unter gentechnischer Veränderung soll die Einschleusung genetischer Information in einen Empfängerorganismus, so dass diese stabil exprimiert und bei der Zellteilung weitergegeben wird, verstanden werden. Danach wird gegebenenfalls die Homokaryontisierung durchgeführt, d.h. die Herstellung von Zellen, die nur einheitliche Kerne enthalten, d. h. Kerne mit gleichem genetischem Informationsgehalt.

15

20

25

30

10

5

Diese Homokaryotisierung ist insbesondere notwendig, wenn die durch Transformation eingeführte genetische Information rezessiv vorliegt, d. h. nicht zur Ausprägung gelangt. Führt die Transformation aber zu einem dominanten Vorliegen der genetischen Information, d. h. wird sie ausgeprägt, so ist eine Homokaryotisierung nicht unbedingt nötig.

Vorzugsweise wird zur Homokaryotisierung eine Selektion der einkernigen Sporen durchgeführt. Von Natur aus ist ein geringer Anteil der Sporen von Blakeslea trispora einkernig, so dass sich diese ggf. nach spezifischer Markierung z. B. Färbung der Zellkerne aussortieren lassen. Dies wird bevorzugterweise mittels FACS (Fluorescence Activated Cell Sorting) anhand der geringeren Fluoreszenz der einkernigen Zellen durchgeführt.

Alternativ kann zur Homokaryotisierung zunächst eine Kernreduktion durchgeführt werden. Hierzu kann ein mutagenes Agens eingesetzt werden, wobei es sich insbesondere um N-Methyl-N'-nitro-nitrosoguanidin

9

(MNNG) handelt. Auch die Verwendung von energiereichen Strahlen, wie UV- oder Röntgen-Strahlen zur Kernreduktion ist möglich. Anschließend kann zur Selektion auf das FACS Verfahren oder rezessive Selektionsmarker zurückgegriffen werden.

5

10

15

20

25

30

Unter Selektion wird die Auswahl von Zellen verstanden, deren Kerne dieselbe genetische Information beinhalten, d. h. Zellen die die gleichen Eigenschaften aufweisen, wie Resistenzen oder die Herstellung bzw. vermehrte Herstellung eines Produktes. In der Selektion werden neben der FACS Methode bevorzugt 5-Carbon-5-deazariboflavin (darf) und Hygromycin (hyg) oder 5'-Fluororotat (FOA) und Uracil eingesetzt.

Der in der Transformation (i) eingesetzte Vector kann derart gestaltet sein, dass die im Vector enthaltene genetische Information in das Genom mindestens einer Zelle integriert wird. Dabei kann genetische Information in der Zelle ausgeschaltet werden.

Der in der Transformation (i) eingesetzte Vector kann aber auch derart ausgestaltet sein, dass die im Vector enthaltene genetische Information in der Zelle exprimiert wird, d. h. genetische Information eingefügt wird, die im korrespondierenden Wildtyp nicht vorhanden ist oder die durch die Transformation verstärkt bzw. überexprimiert wird.

Der Vector kann beliebige genetische Informationen zur genetischen Veränderungen von Organismen der Gattung Blakeslea enthalten.

Unter "genetischer Information" werden vorzugsweise Nukleinsäuren verstanden, deren Einbringung in den Organismus der Gattung Blakeslea zu einer genetischen Veränderung in Organismen der Gattung Blakeslea, also beispielsweise zu einer Verursachung, Erhöhung oder Reduzierung von Enzymaktivitäten im Vergleich zum Ausgangsorganismus führen.

10

Der Vector kann beispielsweise genetische Information zur Herstellung lipophiler Substanzen enthalten wie z.B. Carotinoide und deren Vorstufen, Phospholipide, Triacylglyceride, Steroide, Wachse, fettlösliche Vitamine, Provitamine und Cofaktoren oder genetische Information zur Herstellung hydrophiler Substanzen wie z.B. Eiweiße, Aminosäuren, Nukleotide und wasserlösliche Vitaminen, Provitamine und Cofaktoren.

Bevorzugterweise enthält der eingesetzte Vector genetische Informationen zur Herstellung von Carotinoiden oder Xanthophyllen oder deren Vorstufen.

Bevorzugterweise enthält der Vektor genetische Information, die eine Lokalisierung der Carotinoidbiosynthese-Enzyme in dem Zellkompartiment bewirkt, in dem die Carotinoidbiosynthese stattfindet.

15

20

25

30

Besonders bevorzugt sind genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β -Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3- und 3'-Hydroxyechinenon, Lycopin, Lutein, β -Carotin, Phytoen oder Phytofluen. Ganz besonders bevorzugt sind genetische Informationen zur Herstellung von Phytoen, Bixin, Lycopin, Zeaxanthin, Canthaxanthin und Astaxanthin.

Entsprechend werden in einer bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die über eine erhöhte Syntheserate für Zwischenprodukte der Carotinoidbiosynthese verfügen und folglich eine erhöhte Produktivität für Endprodukte der Carotinoidbiosynthese aufweisen. Zur Erhöhung der Syntheserate für Zwischenprodukte der Carotinoidbiosynthese werden insbesondere die Aktivitäten der Enzyme 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase,

11

Isopentenylpyrophosphat-Isomerase und Geranylpyrophosphatsynthase gesteigert.

Entsprechend werden in einer besonders bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die gegenüber dem Wildtyp eine erhöhte HMG-CoA-Reduktase-Aktivität aufweisen.

Unter HMG-CoA-Reduktase—Aktivität wird die Enzymaktivität einer HMG-CoA-Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.

Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwandeln.

- Dementsprechend wird unter HMG-CoA-Reduktase–Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.
- 20 Bei einer erhöhten HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht.
- Vorzugsweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 100%, bevorzugter mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der HMG-CoA-Reduktase-Aktivität des Wildtyps.

. 10

12

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp durch eine Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase.

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase indem man ein Nukleinsäurekonstrukt, enthaltend eine Nukleinsäure codierend eine HMG-CoA-Reduktase in den Organismus einbringt, deren Expression in dem Organismus, verglichen mit dem Wildtyp, einer reduzierten Regulation unterliegt.

Unter einer reduzierten Regulation verglichen mit dem Wildtyp, wird eine im Vergleich zum vorstehend definierten Wildtyp verringerte, vorzugsweise keine Regulation auf Expressions- oder Proteinebene verstanden.

Die reduzierte Regulation kann vorzugsweise durch einen im Nukleinsäurekonstrukt mit der kodierenden Sequenz funktionell verknüpften Promotor erreicht werden, der in dem Organismus verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

Beispielsweise unterliegen die Promotoren ptef1 aus Blakeslea trispora und pgpdA aus Aspergillus nidulans nur einer reduzierten Regulation und sind daher insbesondere als Promotoren bevorzugt.

25

20

15

Diese Promotoren zeigen eine annähernd konstitutive Expression in Blakeslea trispora, so dass die transkriptionelle Regulation nicht mehr über die Intermediate der Carotinoidbiosynthese abläuft.

30 Die reduzierte Regulation kann in einer weiteren bevorzugten Ausführungsform dadurch erreicht werden, dass man als Nukleinsäure

13

codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt.

Besonders bevorzugt ist die Verwendung einer Nukleinsäure, die nur den katalytischen Bereich der HMG-CoA-Reduktase kodiert (trunkierte (t-)HMG-CoA-Reduktase). Die für die Regulation verantwortliche Membran-Domäne fehlt. Die verwendete Nukleinsäure unterliegt somit einer reduzierten Regulation und führt zu einer Erhöhung der Genexpression der HMG-CoA-Reduktase.
In einer besonders bevorzugten Ausführungsform bringt man

In einer besonders bevorzugten Ausführungsform bringt man Nukleinsäuren in Blakeslea trispora ein, welche die Sequenz SEQ ID. NO. 75 enthalten.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Homologievergleiche der Sequenzen aus Datenbanken mit der SEQ ID.
NO. 75 leicht auffinden.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID. NO. 75 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

25

In einer besonders bevorzugten Ausführungsform wird die reduzierte Regulation dadurch erreicht, dass man als Nukleinsäure codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in

14

dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt und einen Promotor verwendet, der in dem Organismus, verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

5

10

15

20

25

Entsprechend wird in einer bevorzugten Variante der Erfindung durch die Transformation die Genexpression der Phytoendesaturase ausgeschaltet, so dass das von den Organismen produzierte Phytoen gewonnen werden kann. Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Phytoendesaturase, insbesondere carB aus Blakeslea trispora mit der SEQ ID NO: 69.

Entsprechend wird in einer bevorzugten Variante der Erfindung durch Transformation die Genexpression der Lycopincyclase ausgeschaltet, so dass das von den Organismen produzierte Lycopin gewonnen werden kann. Der in der Transformation eingesetzte Vektor umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Lycopincyclase, insbesondere carR aus Blakeslea trispora s. (WO 03/027293).

In einer weiteren bevorzugten Ausführungsform werden die Organismen der Gattung Blakeslea beispielsweise in die Lage versetzt Xanthophylle, wie beispielsweise Zeaxanthin oder Astaxanthin herzustellen, indem die genetisch veränderten Organismen der Gattung Blakeslea im Vergleich zum Wildtyp eine Hydroxylase-Aktivität und/oder eine Ketolase-Aktivität besitzen.

30

Der in der Transformation (i) eingesetzte Vector enthält also in einer weiteren, bevorzugten Variante der Erfindung genetische Informationen, die nach Expression eine Ketolase- und/oder Hydroxylase-Aktivität

15

entfalten, so dass die Organismen Zeaxanthin oder Astaxanthin produzieren.

Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-lonon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

10

20

25

30

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Canthaxanthin umzuwandeln.

Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende nicht genetisch veränderte Ausgangsorganismus der Gattung Blakesleaa verstanden.

Je nach Zusammenhang kann unter dem Begriff "Organismus" der Ausgangsorganismus (Wildtyp) der Gattung Blakesleaa oder ein erfindungsgemäßer, genetisch veränderter Organismus der Gattung Blakesleaa oder beides verstanden werden.

Vorzugsweise wird unter "Wildtyp" für die Verursachung der Ketolase-Aktivität und für die Verursachung der Hydroxylase-Aktivität jeweils ein Referenzorganismus verstanden.

16

Dieser Referenzorganismus der Gattung Blakeslea ist Blakeslea trispora ATCC 14271 oder ATCC 14272, die sich lediglich im Paarungstyp unterscheiden.

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakesleaa und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Bestimmung der Ketolase-Aktivität in Organismen der Gattung Blakeslea erfolgt in Anlehnung an die Methode von Fraser et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

Der erfindungsgemäße genetisch veränderte Organismus der Gattung Blakesleaa weist in dieser, bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren.

In einer weiter bevorzugten Ausführungsform erfolgt die Verursachung der Ketolase-Aktivität in den Organismen der Gattung Blakesleaa durch Genexpression einer Nukleinsäure kodierend eine Ketolase.

25

10

15

20

In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren in die Ausgangsorganismus der Gattung Blakesleaa.

17

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase codiert verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus der Gattung Blakesleaa nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

Beispiele für Nukleinsäuren, kodierend eine Ketolase und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise Sequenzen aus:

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; Nukleinsäure: SEQ ID NO: 11, Protein SEQ ID NO: 12),

Haematoccus pluvialis, NIES-144 (Accession NO: D45881; Nukleinsäure: SEQ ID NO: 13, Protein SEQ ID NO: 14),

25 Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 15, Protein SEQ ID NO: 16),

Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 17, Protein SEQ ID NO: 18),

10

15

20

18

Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 19, Protein SEQ ID NO: 20),

Synechocystis sp. Strain PC6803 (Accession NO: NP442491; Nukleinsäure: SEQ ID NO: 21, Protein SEQ ID NO: 22),

Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 23, Protein SEQ ID NO: 24),

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 25, Protein SEQ ID NO: 26),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 27); Protein: Acc.-No. ZP_00111258 (SEQ ID NO: 28) (als putatives Protein annotiert) oder

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 29), Protein: (SEQ ID NO: 30) (nicht annotiert).

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten mit Nukleinsäureseguenzen Datenbanken aus den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 12 und/oder 26 und/oder 30 leicht auffinden.

15

20

25

19

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 12 und/oder 26 und/oder 30 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

10

15

20

25

30

5

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0,2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS

20

eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

- (1) Hybridiserungsbedingungen mit zum Beispiel
- (i) 4X SSC bei 65°C, oder
- (ii) 6X SSC bei 45°C, oder
- 10 (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
 - (iv) 6X SSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
 - (v) 6XSSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
- 15 (vi) 50 % Formamid, 4X SSC bei 42°C, oder
 - (vii) 50 % (vol/vol) Formamid, 0,1 % Rinderserumalbumin, 0,1 % Ficoll,
 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6,5,
 750 mM NaCl, 75 mM Natriumcitrat bei 42°C, oder
 - (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- 20 (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (moderate Bedingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
 - (i) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C, oder
- 25 (ii) 0,1X SSC bei 65°C, oder
 - (iii) 0,1X SSC, 0,5 % SDS bei 68°C, oder
 - (iv) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C, oder
 - (v) 0,2X SSC, 0,1 % SDS bei 42°C, oder
 - (vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakeslea bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 %, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% auf Aminosäureebene mit der Sequenz z SEQ ID NO: 12 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 12 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

20

25

30

15

5

10

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %. 30 %, vorzugsweise mindestens bevorzugter mindestens bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%. 98%, 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 und die enzymatische Eigenschaft einer Ketolase aufweist.

22

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 26 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 %, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 30 und die enzymatische Eigenschaft einer Ketolase aufweist.

20

25

30

5

10

15

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 30 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche

23

Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch IIe, Leu durch IIe, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptids und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

20

15

Multiple alignment parameter:

Gap penalty 10
Gap length penalty 10

Pairwise alignment parameter:

25 K-tuple 1
Gap penalty 3
Window 5
Diagonals saved 5

30 Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 oder 26 oder 30

24

aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 12 oder 26 oder 30, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 20 %, bevorzugt 80,%, 85%, besonders 90%, insbesondere 95% aufweist.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

10

5

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Blakesleaaspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene von Organismen der Gattung Blakesleaa leicht ermitteln.

15

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 11 in die Organismus der Gattung ein.

20

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 25 in die Organismus der Gattung ein.

25

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 29 in die Organismus der Gattung ein.

30

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die

25

chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für eine Ketolase, insbesondere der Ketolase Nostoc punctiforme aus mit der SEQ ID NO: 72.

15 Unter Hydroxylase-Aktivität die Enzymaktivität einer Hydroxylase verstanden.

Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Cantaxanthin in Astaxanthin umzuwandeln.

25

.20

Dementsprechend wird unter Hydroxyase–Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder Cantaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

26

Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge β-Carotin oder Canthaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

5

Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase-Aktivität des Wildtyps.

Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenz-Organismen erfolgt vorzugsweise unter folgenden Bedingungen:

15

20

25

30

10

Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) *in vitro* bestimmt. Es wird zu einer bestimmten Menge an Organismenextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.

Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):

Der in-vitro Assay wird in einem Volumen von 0,250 ml Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7,6), 0,025 mg Ferredoxin von Spinat, 0,5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0,25 mM NADPH, 0,010 mg beta-Carotin (in

27

0,1 mg Tween 80 emulgiert), 0,05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Monound Digalaktosylglyzeriden, (1:1), 0.2 mg Rinderserumalbumin und Organismenextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 30°C Stunden bei inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie THF, Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

10 Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):

Der in-vitro Assay wird in einem Volumen von 250 µl Volumen 15 durchaeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7,6), unterschiedliche Mengen an Organismenextrakt, 20 nM Lycopin, 250 µg an chromoplastidärem Stromaprotein aus Paprika, 0,2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum 20 Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30°C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

25

30

5

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).

Die Erhöhung der Hydroxylase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch

28

Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp.

Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase in denb Organismus der Gattung Blakesleaa.

5

10

15

30

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase in den Organismus der Gattung Blakesleaa.

Dazu kann prinzipiell jedes Hydroxylase-Gen, also jede Nukleinsäure, die eine Hydroxylase codiert, verwendet werden.

Bei genomischen Hydroxylase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis mit der Accession No. AX038729 (WO 0061764; Nukleinsäure: SEQ ID NO: 31, Protein: SEQ ID NO: 32), aus Erwinia uredovora 20D3 (ATCC 19321, Accession No. D90087; Nukleinsäure: SEQ ID NO: 33, Protein: SEQ ID NO: 34) oder

29

Hydroxylase aus Thermus thermophilus (DE 102 34 126.5) kodiert durch die Sequenz mit der SEQ ID NO 76.

Weitere Hydroxylasen werden von den Nukleinsäuren mit den folgenden Accession Nummern kodiert 5 lemblCAB55626.1, CAA70427.1, CAA70888.1. CAB55625.1, AF499108 1, AF315289_1, AF296158_1, AAC49443.1, NP_194300.1, NP 200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130.1, AAL80006.1, AF162276 1, AAO53295.1, AAN85601.1, CRTZ_ERWHE, BAB79605.1. CRTZ ALCSP, CRTZ PANAN, CRTZ AGRAU, 10 CAB56060.1, ZP 00094836.1, AAC44852.1, BAC77670.1, NP 745389.1, NP 849490.1. ZP 00087019.1, NP 344225.1, NP 503072.1, NP_852012.1, NP_115929.1, ZP_00013255.1

In den erfindungsgemäßen bevorzugten transgenen Organismen der Gattung Blakeslea liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein Hydroxylase–Gen vor.

In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase auf.

20

25

30

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 80 %, am bevorzugtesten mindestens 90%, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% auf

30

Aminosäureebene mit der Sequenz SEQ. ID. NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID. NO: 31, 33 oder 76 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 31, 33 oder 76 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

15

20

25

30

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

31

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 31, 33 oder 76 in den Organismus ein.

5

10

15

20

Alle vorstehend erwähnten Hydroxylase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Der in der Transformation (i) eingesetzte Vector umfasst daher in weiteren Ausführungsformen der Erfindung bevorzugterweise eine Sequenz codierend für eine Hydroxlase, insbesondere eine Hydroxlase aus Haematococcus pluvialis mit der SEQ ID NO: 70 oder eine Hydroxlase aus Erwinia uredova mit der SEQ ID NO: 71. oder eine Hydroxylase aus Thermus thermophilus kodiert durch die Sequenz mit der SEQ ID NO 76.

25

Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise ferner die Expression regelnde und unterstützende Bereiche, insbesondere Promotoren und Terminatoren.

30 Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise den gpd und/oder den ptef1 Promotor und/oder den trpC Terminator. Diese

32

haben sich zur Transformation der Blakeslea besonders bewährt. Auch der Einsatz von dem Fachmann geläufigen "inverted repeats" (IR, Römpp Lexikon der Biotechnologie 1992, Thieme Verlag Stuttgart, Seite 407 "Invers repetitive Sequenzen") zur Regelung der Expression bzw. Transkription liegt im Rahmen der Erfindung.

5

10

15

20

25

Vorteilhafterweise weist der im Vector eingesetzte gpd Promotor die Sequenz SEQ ID NO: 1 auf. Vorteilhafterweise weist der im Vector eingesetzte trpC Terminator die Sequenz SEQ ID NO: 2 auf. Vorteilhafterweise weist der im Vector eingesetzte ptef1 Promotor die Sequenz SEQ ID NO: 35 auf.

Insbesondere werden dabei der gpd Promotor und der trpC Terminator aus Aspergillus nidulans und der ptef1 Promotor aus Blakeslea trispora eingesetzt.

Insbesondere enthält der in der Transformation (i) eingesetzte Vector ein Resistenzgen. Bevorzugterweise handelt es sich um ein Hygromycin-Resistenzgen (hph), insbesondere das aus E. coli. Dieses Resistenzgen hat sich bei dem Nachweis der Transformation und Selektion der Zellen als besonders geeignet herausgestellt.

Als Promotor für hph wird also bevorzugt p-gpdA, der Promotor der Glycerinaldehyd-3-phosphatdehydrogenase aus Aspergillus nidulans genutzt. Als Terminator für hph wird bevorzugt t-trpC, der Terminator des Gens trpC, codierend für Anthranilatsynthasekomponenten aus Aspergillus nidulans genutzt.

Als Vectoren haben sich Abkömmlinge des pBinAHyg Vectors als 30 besonders geeignet herausgestellt. Der zur Transformation eingesetzte Vector umfasst also bevorzugterweise die SEQ ID NO: 3.

33

Hinzu kommen je nach gewünschtem Carotinoid oder dessen Vorstufe eine Sequenz codierend für eine Hydroxylase. Ketolase, Phytoendesaturase usw. wie diese zuvor beschrieben wurden. Die Vectoren umfassen also in einer Ausführugsform der Erfndung die Sequenz SEQ ID NO: 69 codierend für die Phytoendesaturase. Die Vectoren umfassen ferner in einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 72 codierend für eine Ketolase. Die Vectoren umfassen weiter in einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase. Entsprechende Kombinationen der zuvorgenannten Sequenzen liegen ebenso im Rahmen der Erfindung. So umfasst der Vector in einer Ausführungsform sowohl eine Sequenz SEQ ID NO: 72 codierend für eine Ketolase als auch die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase und ermöglicht so die Herstellung von Astaxanthin.

15

10

Insbesondere sind Vectoren ausgewählt aus der Gruppe bestehend aus den SEQ ID NO: 37 bis 51 und 62 im Rahmen der Erfindung einsetzbar.

Mit dem erfindungsgemäßen Verfahren sind gentechnisch veränderte 20 Organismen Blakeslea, insbesondere der Art Blakeslea trispora bzw. aus ihnen gebildetes Mycel erhältlich.

Die genetisch veränderten Organismen können zur Produktion von Carotinoiden, Xanthophyllen oder deren Vorstufen, insbesondere Phytoen, Bixion, Astaxanthin, Zeaxanthin und Canthaxanthin verwendet werden. Auch können neue, im Wildtyp natürlicherweise nicht vorkommende Carotinoide durch Einbringung der entsprechenden genetischen Information von den gezielt genetisch veränderten Zellen bzw. dem durch sie gebildeten Mycel erzeugt und anschließend isoliert werden.

25

Bevorzugterweise ist die Gewinnung von Carotinoiden oder deren Vorstufen mit den gezielt genetisch veränderten Zellen bzw. das durch sie gebildete Mycel möglich.

Wird die gentechnische Veränderung nur in Zellen eines der vorkommenden Paarungstypen (bei Blakeslea trispora (+) oder (-)) durchgeführt, so wird zur Kultivierung der entsprechend andere, nicht veränderte Paarungstyp zugesetzt, da so eine gute Produktion der Carotinoide oder deren Vorstufen aufgrund der von dem zweiten, nicht veränderten Paarungstyp abgegebenen Substanzen (z. B. Trisporsäuren) zu erreichen ist. Vorteilhafterweise wird jedoch die gentechnische Veränderung in Zellen beider Paarungstypen vorgenommen und diese zusammen kultiviert. Hierdurch wird ein besonders gutes Wachstum und eine optimale Produktion der Carotinoiden oder deren Vorstufen erreicht.

Auch eine (künstliche) Zugabe der Trisporsäuren ist möglich und sinnvoll.

Trisporsäuren sind Sexualhormone in Mucorales Pilzen, wie Blakeslea, welche die Bildung von Zygophoren und die Produktion von β-Carotin stimulieren (van den Ende 1968, J. Bacteriol. 96:1298 - 1303, Austin et al. 1969, Nature 223:1178 – 1179, Reschke Tetrahedron Lett. 29:3435 – 3439, van den Ende 1970, J. Bacteriol. 101:423 – 428).

Die Erfindung wird nachfolgend an Hand von Beispielen näher ausgeführt.

25 Material und Methoden

20

Molekulargenetische Arbeiten wurden, wenn nicht anders beschrieben, nach den Methoden in Current Protocols in Molecular Biology (Ausubel et al., 1999, John Wiley & Sons) durchgeführt.

30 Stämme und Wachstumsbedingungen

WO 2004/063358

10

25

Die Blakeslea trispora Stämme ATCC 14271 (Paarungstyp(+)) und ATCC14272 (Paarungstyp (-)) wurden von der American Type Culture Collection erhalten. Die Anzucht von B. trispora erfolgte in MEP-Medium (Malzextrakt-Pepton-Medium): 30 g/l Malzextrakt (Difco), 3 g/l Pepton (Soytone, Difco), 20 g/l Agar, Einstellung pH 5,5, ad 1000 ml mit H₂O bei 28 °C.

Die Anzucht von *Agrobacterium tumefaciens* LBA4404 erfolgte nach Hoekema et al. (1983, Nature 303:179-180) bei 28 °C für 24 h in Agrobacterien-Minimal Medium (AMM): 10 mM K₂HPO₄, 10 mM KH₂PO₄, 10 mM Glucose, MM-Salze (2,5 mM NaCl, 2 mM MgSO₄, 700 μM CaCl₂, 9 μM FeSO₄, 4 mM (NH₄)₂SO₄).

Transformation von Agrobacterium tumefaciens

Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das *A. tumefaciens* Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Transformation von Blakeslea trispora

Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD_{600} von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES (pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μ M Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD_{600} von ca. 0,6 angezogen.

30 Zur Co-Inkubation von *Blakeslea* ATCC 14271 bzw. ATCC14272 und *Agrobacterium* wurden 100 μl Agrobakteriensuspension mit 100 μl

Blakeslea Sporensuspension (107 Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt. Zur Selektion auf transformierte Blakesleazellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-Asparagin, 50 mg/l MgSO₄ x 7H₂O, 150 mg/l KH₂PO₄. 25 μg/l ThiaminHCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, 100 mg/L Hygromycin, 100 mg/L Cefotaxim, pH 5,5,18 g/l Agar) ausplattiert. Zur Isolierung einzelner gentechnisch veränderter Sporen wurden die Sporen durch ein FACS Gerät der Fa. BectonDickson (Modell Vantage+Diva Option) einzeln auf Selektivmedium abgelegt.

Herstellung genetisch veränderter Blakeslea trispora durch Agrobacterium-vermittelte Transformation

20 Herstellung des rekombinanten Plasmids pBinAHyg

10

15

25

30

Aus dem Plasmid pANsCos1 (Fig.1, Osiewacz, 1994, Curr. Genet. 26:87-90, SEQ ID NO: 4) wurde die gpdA-hph-trpC-Kassette als BgIII/HindIII Fragment isoliert und in das mit BamHI/HindIII geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet (Fig. 2, SEQ ID NO: 3) und enthielt das E. coli Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors (SEQ ID NO: 1) und des trpC Terminators (SEQ ID aus *Aspergillus* nidulans sowie die entsprechenden Bordersequenzen. die für den DNA-Transfer von Agrobacterium notwendia sind. Die in den weiter unten beschriebenen

37

Ausführungsbeispielen genannten Vektoren sind Abkömmlinge von pBinAHyg.

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Agrobacterium tumefaciens

Nachfolgend wird beispielhaft die Übertragung des Plasmids pBinAHyg in Agrobacterien beschrieben. Die Übertragung der Abkömmlinge erfolgte analog.

Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das *A. tumefaciens* Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora

Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD₆₆₀ von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES (pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μM Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD₆₆₀ von ca. 0,6 angezogen.

25

30

5

Zur Co-Inkubation von *Blakeslea trispora* (B.t.) und *Agrobacterium tumefaciens* (A.t.) wurden 100 µl Agrobakteriensuspension mit 100 µl Blakeslea Sporensuspension (10⁷ Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C

38

wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt.

Zur Selektion auf transformierte Blakeslea-Zellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-Asparagin, 50 mg/l MgSO₄ x 7H₂O, 150 mg/l KH2PO4, 25 µg/l Thiamin-HCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, pH 5,5, 100 mg/l Cefotaxim, 100 mg/l Hygromycin, 18 g/l Agar) ausplattiert. Die Übertragung von Sporen auf frische Selektionsplatten wurde dreimal wiederholt. Auf diese Weise wurde die Transformante Blakeslea trispora GVO 3005 isoliert. Alternativ erfolgte zur Selektion der GVO (gentechnisch veränderten Organismen) die Einzelablage der Sporen durch den BectonDickinson FacsVantage+Diva Option auf CM-17 Agar mit 100 mg/l Cefotaxim, 100 mg/l Hygromycin. In diesem Fall wurde nur dort Pilzmycel gebildet, wo die Sporen gentechnisch verändert waren.

20

25

30

15

5

10

Nachweis der genetischen Veränderung durch Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora Nachfolgend wird beispielhaft der Nachweis der Übertragung für pBinAHyg in Blakeslea trispora beschrieben. Der Nachweis der Übertragung der Abkömmlinge erfolgte analog.

200 ml MEP-Medium (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5) wurden mit 10⁵ bis 10⁷ Sporen der Transformante Blakeslea trispora GVO 3005 beimpft und 7 Tage bei 26 °C mit 200 Upm auf einem Rundschüttler inkubiert. Zum Nachweis der erfolgreichen Transformation wurde DNA aus dem Mycel isoliert (Peglab Fungal DNA Mini Kit) und in einer PCR

(Programm: 94 °C 1 min, dann 30 Zyklen mit 1 min. 94 °C, 1 min. 58 °C, 1 min. 72 °C) eingesetzt.

Zum Nachweis des Hygromycinresistenzgens (hph) wurden die Primer hph-forward (5'-CGATGTAGGAGGGCGTGGATA, SEQ ID NO: 5) und hph-reverse (5'-GCTTCTGCGGGCGATTTGTGT, SEQ ID NO: 6) verwendet. Das erwartete Fragment von hph wies eine Länge von 800 bp auf.

Zur Amplifikation des Kanamycinresistenzgens nptIII und damit als Kontrolle auf Agrobakterien wurden die Primer nptIII-forward (5'-TGAGAATATCACCGGAATTG, SEQ ID NO: 7) und nptIII-reverse (5'-AGCTCGACATACTGTTCTTCC, . SEQ ID NO: 8) verwendet. Das erwartete Fragment von nptIII wies eine Länge von 700 bp auf.

15

20

25

Glycerinaldehyd-3-Amplifikation eines Fragmentes des Zur phosphatdehydrogenasegens gpd1 und damit als Kontrolle auf Blakeslea **MAT292** (5'die Primer trispora wurden GTGAATGGAAATCCCATCGCTGTC, SEQ ID NO: 9) und MAT293 (5'-AGTGGGTACTCTAAAGGCCATACC, SEQ ID NO: 10) verwendet. Das erwartete Fragment von gpd1 wies eine Länge von 500 bp auf.

Das Ergebnis der PCR der Blakeslea trispora DNA ist in Fig. 3 anhand eines Standard-Gels gezeigt. Die Spuren des Gels wurden folgendermaßen belegt:

- 1) 100 bp Größenmarker (100 bp 1 kb)
- 2) B.t. GVO 3005 primer nptlll-for / nptlll-rev
- 3) B.t. GVO 3005 primer hph-for / hph-rev
- 30 4) B.t. GVO 3005 primer MAT292 / MAT293 (gpd)
 - 5) A.t. mit Plasmid pBinAHyg primer nptlll-for / nptlll-rev

40

6) A.t. mit Plasmid pBinAHyg primer hph-for / hph-rev
7) B.t. 14272 WT primer nptlll-for / nptlll-rev
8) B.t. 14272 WT primer hph-for / hph-rev

9) B.t. 14272 WT primer MAT292 / MAT293 (gpd)

5

In der DNA von Blakeslea trispora wurde das Hygromycinresistenzgens (hph) und als Positivkontrolle Glycerinaldehyd-3-phosphatdehydrogenasegen (gpd1) nachgewiesen. nptlll konnte demgegenüber nicht nachgewiesen werden.

10

15

20

25

30

Somit wurde die genetische Veränderung von Blakeslea trispora durch Agrobacterium-vermittelte Transformation nachgewiesen.

Isolierung homokaryotischer GVO von Blakeslea trispora:

Durch erfolgreichen Transfer des Vectors pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora entstehen genetisch veränderte Organismen (GVO) von Blakeslea trispora. Jedoch liegen in Blakeslea in allen Stadien des vegetativen und des sexuellen Zellzyklus mehrkernige Zellen vor. Daher erfolgt die Insertion der Fremd-DNA in der Regel nur in einem Kern. Ziel ist es, Stämme von Blakeslea zu erhalten, bei denen die Insertion der Fremd-DNA in allen Kernen vorliegt, d.h. Ziel ist ein homonukleates rekombinantes Pilzmycel.

1) Herstellung homonukleater rekombinanter Stämme durch FACS (fluorescence-activated cell sorting)

Ein geringer Anteil der Sporen von Blakeslea trispora bzw. der gentechnisch veränderten Stämme von Blakeslea trispora ist von Natur aus einkernig. Zur Herstellung homonukleater rekombinanter Stämme, die Fremd-DNA von pBinAHyg oder pBinAHyg-Abkömmlingen enthielten, wurden die einkernigen Sporen durch FACS aussortiert und auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim

und 100 mg/l Hygromycin plattiert. Die hier gebildten Mycelien waren homonukleat. Zur Sortierung mit FACS wurden die Sporen eines 3 Tage alten Ausstriches mit 10 ml Tris-HCl 50mMol + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Zu 9 ml Sporensuspension wurden 1ml DMSO und 10 µl Syto 11 (Farbstoff-Stammlösung in DMSO Molecular Probes Nr.S-7573) zugegeben. Danach wurde 2 h bei 30°C gefärbt. Selektion und Ablage erfolgten mittels eines Gerätes vom Typ FacsVantage+Diva Option Fa. Becton Dickinson. Die Selektion erfolgte zuerst nach Größe, um einzelne Sporen von Aggregaten und Verunreinigungen zu trennen. Dann wurden diese Sporen nach ihrer Fluoreszenz (Anregung = 488nm; Emission = 530 nm) sortiert abgelegt. Die linke Schulter der Gauß-Kurve der Fluoreszenzhäufigkeitsverteilung enthielt die einkernigen Sporen.

5

10

20

25

2) Herstellung homonukleater Stämme durch Kernreduktion und Selektion mit FACS

Zur Reduzierung der Anzahl von Kernen pro Spore wurde vor der Selektion eine Behandlung von Sporensuspensionen mit MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) durchgeführt, und so durch chemische Mutagenese eine Kernreduktion erzielt.

Hierfür wurde zunächst eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCI-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 µg/ml zugegeben. Die Zeit der Inkubation in MNNG wurde so gewählt, dass die Überlebensrate der Sporen ca. 5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und nach der unter 1) beschriebenen Methode sortiert bzw. selektiert.

42

Alternativ konnten zur Reduktion der Kernzahl in den Sporen auch Röntgen – und UV-Strahlen eingesetzt werden, wie es von Cerdá-Olmedo und Patricia Reau in Mutation Res., 9 (1970), 369-384 beschrieben wurde.

5 3) Herstellung homonukleater Stämme durch Selektion auf rezessive Selektionsmarker

Als rezessiver Selektionsmarker zur Selektion homonukleater Mycelien kommt beispielsweise der rezessive Selektionsmarker pyrG in Frage. Wildtyp-Stämme von Blakeslea trispora sind pyrG⁺. Diese Stämme können nicht in Gegenwart des Pyrimidin-Analogs 5-Fluororotat (FOA) wachsen, weil sie FOA durch die Orotidin-5'-monophosphatdecarboxylase zu lethalen Metaboliten umsetzen. Gentechnisch veränderte Blakesleaa, die homonukleat pyrG sind, fehlt die Enzymaktivität Orotidin-5'monophosphatdecarboxylase. Folglich können diese pyrG-Stämme 5-Fluororotat nicht verwerten. Die Stämme wachsen daher in Gegenwart von FOA und Uracil. Im Fall der Kopplung der Mutation pyrG und der Insertion von Fremd-DNA auf dem Kern einer einkernigen Spore, kann aus dieser Spore homonukleates rekombinantes Pilzmycel gebildet werden.

20

25

30

10

15

Zunächst wurde durch Insertion eines Fragmentes von pyrG (SEQ ID NO: 65) aus Blakeslea trispora in pBinAHyg das Plasmid pBinAHygBTpyrG-SCO (SEQ ID NO: 36, Fig. 4) erzeugt. Dieses Plasmid wurde in Blakelea trispora transformiert und führte dort durch homologe Rekombination zur Disruption von pyrG.

Homonukleate GVO von Blakeslea trispora mit dem Phänotyp pyrGwurden folgendermaßen selektiert. Zur Agrobakterium-vermittelten Transformation von pBinAHygBTpyrG-SCO wurde wie oben beschrieben auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin plattiert. Die Sporen der

5

10

15

Transformanten wurden mit 10 ml Tris-HCl 50mM + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Die Sporen wurden anschließend auf FOA-Medium mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin ausplattiert. FOA-Medium enthielt pro Liter 20 g Glucose, 1 g FOA, 50 mg Uracil, 200 ml Citrat-Puffer (0,5 M, pH 4,5) und 40 ml Spurensalzlösung nach Sutter, 1975, PNAS, 72:127). Homonukleate pyrG-Mutanten zeigten Wachstum auf dem Uracil-haltigen FOA-Medium; aber kein Wachstum bei Plattierung auf FOA-Medium ohne Uracil. Auf die gleiche Weise wurden aus den im folgenden beschriebenen GVO von Blakeslea trispora zur Herstellung von Xanthophyllen homonukleate GVO hergestellt.

Alternativ ist es möglich die Sporen analog zur Vorschrift von Roncero et al. auf Medium mit 5-Carbon-5-deazariboflavin zu plattieren, das zusätzlich Hygromycin enthält (Roncero et al., 1984, Mutation Research, 125: 195 - 204). Hierdurch werden homokaryonte Zellen des Genotyps hyg^R und dar selektiert. Nach diesem Prinzip werden homokaryonte Stämme von Blakeslea trispora mit dem Phänotyp hyg^R und dar erzeugt.

20

25

30

Ausführungsbeispiele zur Herstellung von gentechnisch veränderten Organismen von Blakeslea trispora für die Herstellung von Carotinoiden und Carotinoidvorstufen

Die Erzeugung der im folgenden genannten Plasmide erfolgte durch die Methode "overlap-extension PCR" und durch anschließende Insertion der Amplifikationsprodukte in das Plasmid pBinAHyg. Die Methode "overlap-extension PCR" erfolgte wie in Innis et al. (Eds.) PCR protocols: a guide to methods and applications, Academic Press, San Diego beschrieben. Die Transformation der pBinAHyg-Abkömmlinge und die Herstellung

44

homonukleater gentechnisch veränderter Stämme von Blakeslea trispora erfolgte wie oben beschrieben.

Gentechnisch veränderte Stämme von Blakeslea trispora zur Herstellung von Zeaxanthin

5

10

15

20

25

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Zeaxanthin verwendet, codieren also u.a. Hydroxylasen (crtZ):

- p-tef1-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ (SEQ ID NO: 70) aus Haematococcus pluvialis Flotow NIES-144 (Accession No. AF162276) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-HPcrtZ, SEQ ID NO: 37, Fig. 5);
- p-carRA-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ, SEQ ID NO: 38, Fig. 6)
- p-carB-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-HPcrtZ, SEQ ID NO: 39, Fig. 7)
- p-carRA-HPcrtZ-TAG-3'carA-IR, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Stromabwärts des Gens der Hydroxylase ist eine Inverted-Repeat-Struktur lokalisiert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, ,Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp ,Loop' und anschließend ca. 350 bp ,Inverted Repeat 2') (Seq. pBinAHyg-BTpcarRA-HPcrtZ-TAG-3'carA-IR, SEQ ID NO: 40, Fig. 8);

p-carRA-HPcrtZ-GCG-3'carA-IR, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Das Gen der Hydroxylase ist mit einer Inverted-Repeat-Struktur fusioniert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, 'Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp 'Loop' und anschließend ca. 350 bp 'Inverted Repeat 2'). Das abgeleitete Fusionsprotein besteht folglich aus der Hydroxylase von Haematococcus pluvialis und dem Carboxyterminus von CarA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ-GCG-3'carA-IR, SEQ ID NO: 41, Fig. 9);

5

10

- p-tef1-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ (SEQ ID NO: 71) aus Erwinia uredova 20D3 (Accession No. D90087) unter Kontrolle des ptef1 Promotors (Seq. pBinAHygBTpTEF1-EUcrtZ, SEQ ID NO: 42, Fig. 10);
- p-carRA-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ, SEQ ID NO: 43, Fig. 11);
- p-carB-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-EUcrtZ, SEQ ID NO: 44, Fig. 12);
- p-gpdA-HPcrtZ-t-crtZ, enthaltend Gen der Hydroxylase HPcrtZ aus
 Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des gpdA Promotors und des Terminators t-crtZ; d.h. des stromabwärts von crtZ aus Haematococcus pluvialis Flotow NIES-144 gelegenen Sequenzabschnitts (SEQ ID NO: 73) (Seq. pBinAHyg-gpdA-HPcrtZ-tcrtZ, SEQ ID NO: 45, Fig. 13).

46

p-gpdA-BTcarR-HPcrtZ-BTcarA, enthaltend Genfusion aus Genen der Lycopincyclase carR aus Blakeslea trispora, der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und der Phytoensynthase carA aus Blakeslea trispora unter Kontrolle des gpdA Promotors aus Aspergillus nidulans (Seq. pBinAHygcarR_crtZ_carA, SEQ ID NO: 46, Fig. 14);

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Canthaxanthin

5

15

20

25.

- 10 Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Canthaxanthin verwendet, codieren also u.a. Ketolasen (crtW):
 - p-tef1-NPcrtW, enthaltend das Gen der Ketolase NPcrtW (SEQ ID NO: 72) aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-NpucrtW, SEQ ID NO: 47, Fig. 15);
 - p-carRA-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-NpucrtW, SEQ ID NO: 48, Fig. 16);
 - p-carB-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-NpucrtW, SEQ ID NO: 49, Fig. 17);

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Astaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur 30 gentechnischen Veränderung von Blakeslea trispora für die Herstellung

PCT/EP2004/000100

5

25

30

von Astaxanthin verwendet, codieren also u.a. für Hydroxylasen (crtZ) und Ketolasen (crtW):

- p-carRA-HPcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 50, Fig. 18);
- p-carRA-EUcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxylase EUcrtZ aus Erwinia uredova20D3 (Accession No. D90087) und das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 51, Fig. 19);

Klonierung und Sequenzanalyse von Genen und Promotoren, die beispielhaft für die gentechnische Veränderung von Blakeslea trispora genutzt werden können.

Nachfolgend werden beispielhaft die Klonierung und Sequenzierung verschiedener Gene und Promotoren aus Blakeslea trispora beschrieben.

Klonierung und Sequenzanalyse ptef1

Die Klonierung von p-tef aus Blakeslea trispora erfolgte auf der Grundlage einer bereits in GenBank veröffentlichten Sequenz des Strukturgens für den Translations-Elongationsfaktor 1- α aus Blakeslea trispora (AF157235). Ausgehend von dem Sequenzeintrag AF157235 wurden Primer für die inverse PCR ausgewählt, um die stromaufwärts des Strukturgens gelegene Promotoregion zu amplifizieren und zu sequenzieren.

48

In der inversen nested PCR an 200 ng Xhol-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272 wurde ein 3000-bp-Fragment in folgendem Ansatz erhalten: Matrizen-DNA (1 μg genomische DNA von Blakeslea trispora ATCC 14272) Primer MAT344 5'-GGCGTACTTGAAGGAACCCTTACCG-3' (SEQ ID NO: 63) und MAT 345 5'-ATTGATGCTCCCGGTCACCGTGATT-3' (SEQ ID NO: 64) je 0,25 μM, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus). Der Sequenzabschnitt, der stromaufwärts des vermutlichen Startcodons des Gens tef1 innerhalb 3000-bp-Fragmentes liegt, wurde als Promotor ptef1 bezeichnet.

5

10

15

20

25

30

Klonierung Sequenzanalyse des Gens der HMG-CoA-Reduktase aus Blakeslea trispora

Zunächst wurde mit dem Cosmidvektor pANsCos1 eine Genbank von Blakeslea trispora ATCC 14272, Mating Type (–) hergestellt. Der Vektor wurde durch Spaltung mit Xbal linearisiert und anschließend dephosphoryliert. Eine weitere Spaltung mit mit BamHl schuf die Insertionsstelle, in welche die mit Sau3Al partiell gespaltene und dephosphorylierte genomische DNA von Blakeslea trispora ligiert wurde. Die derart gebildeten Cosmide wurden anschließend *in vitro* verpackt und in Escherichia coli übertragen.

Auf der Grundlage der bekannten Sequenz eines Fragmentes des HMG-CoA-Reduktase codierenden Gens aus Blakeslea trispora (Eur. J. Biochem 220, 403–408 (1994)) wurde eine 315-bp-DNA-Sonde durch folgende PCR hergestellt. Reaktionsansatz: 1 μ g genomische DNA von Blakeslea trispora ATCC 14272, Primer MAT314 5'-CCGATGGCGACGGAAGGTTGTT-3' [SEQ ID NO 79] und MAT315 5'-CATGTTCATGCCCATTGCATCACCT-3' [SEQ ID NO 80] je 0,25 μ M, 100 μ M dNTP, 10 μ l Herculase-Polymerasepuffer 10x, 5 U Herculase

49

(Zugabe bei 85 °C), H_2O ad 100 μ l. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 58 °C, 30 s. 72 °C, 30 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus).

Mit dieser DNA-Sonde wurde die Cosmid-Genbank durchmustert. Es wurde ein Klon identifiziert, dessen Cosmid mit der DNA-Sonde hybridisierte. Die Insertion dieses Cosmids wurde sequenziert. Die DNA-Sequenz enthielt einen Abschnitt, der dem Gen einer HMG-CoA-Reduktase zugeordnet wurde [SEQ ID NO 75].

10 Klonierung und Sequenzanalyse carB

5

15

20

25

30

(carB = Gen der Phytoendesaturase aus Blakeslea trispora)

der Peptidsequenzen Aus dem Sequenzvergleich von Phytoendesaturasen und dem Vergleich der zugehörigen DNA-Sequenzen von Phycomyces blakesleeanus, Cercospora nicotianae, Phaffia rhodozyma und Neurospora crassa wurden die degenerierten Primer MAT182 5'-GCNGARGGNATHTGGTA-3' (SEQ ID 52) und MAT192 5'-TCNGCNAGRAADATRTTRTG-3' (SEQ ID 53) abgeleitet. Die PCR wurde in 100 µl Ansätzen durchgeführt. Diese enthielten 200 ng genomische DNA von Blakeslea trispora ATCC14272, 1 µM MAT182, 1 μΜ MAT192, 100 μΜ dNTP, 10 μΙ Pfu-Polymerasepuffer 10x, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C), H₂O ad 100 μl.

Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 40 °C, 30 s, 72 °C, 30 s, 95 °C, 30 s (35 Zyklen); 72 °C, 10 min (1 Zyklus).

Hiermit wurde ein 358-bp-Fragment erhalten, dessen abgeleitete Peptidsequenz Ähnlichkeit zu den Sequenzen der Phytoendesaturasen aufwies. Durch die Methode der inversen PCR (Innis et al. in PCR protocols: a guide to methods and applications. 1990. S. 219-227) wurden nach dem Prinzip des Chromosome-Walking die Genregionen

stromaufwärts und stromabwärts des 350-bp-Fragmentes folgendermaßen amplifiziert, kloniert und sequenziert:

- (i) ein 1,1-kbp-Fragment durch PCR mit den Primern MAT219 5'-AAGTGACACCGGTTACACGCTTGTCTT-3' (SEQ ID 54) und MAT 220 5'-GCTTATCACCATCTGTTACCTCCTTGC-3' (SEQ ID 55) erhalten aus 200 ng EcoRl-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μM MAT219, 0,25 μM MAT220, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus),
- (ii) ein 2,9-kbp-Fragment durch PCR mit den Primern MAT219 und MAT220 erhalten aus 200 ng Xbal-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μM MAT219, 0,25 μM MAT220, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s, 72 °C, 3 min, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus);

Der klonierte Sequenzabschnitt ist schematisch in Fig. 20 [SEQ ID NO 77] dargestellt. Die Sequenzierung erfolgte in Strang- und Gegenstrangrichtung mit den klonierten Fragmenten sowie mit den PCR-Produkten. Die Sequenz des klonierten Sequenzabschnitts ist in Fig. 21 [SEQ ID NO 78] gezeigt.

Sequenzvergleiche

5

10

15

20

25

30

Die Nukleotidsequenz von carB und die Peptidsequenz des abgeleiteten Proteins CarB wurden mit den bekannten Sequenzen verwandter Proteine verglichen. Zum Sequenzvergleich wurden die Programme GAP und BESTFIT eingesetzt.

51

CarB - Identische Aminoacylreste nach GAP

Programmeinstellungen:

Gap Weight: 8

5 Length Weight: 2

Average Match: 2.912 Average Mismatch: -2.003

Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

10 Phycomyces blakesleeanus: 72,491

Phaffia rhodozyma: 50,460 Neurospora crassa: 47,943 Cercospora nicotianae: 47,740

Octoospora modulanae. 47,7

15

CarB -Identische Aminoacylreste nach BESTFIT

Programmeinstellungen:

Gap Weight: 8

Length Weight: 2

20 Average Match: 2.912

Average Mismatch: -2.003

Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 73,380

25 Phaffia rhodozyma: 53,175

Neurospora crassa: 51,896

Cercospora nicotianae: 50,791

carB - Identische Basen nach GAP

30 Programmeinstellungen:

Gap Weight: 50

52

Length Weight: 3

Average Match: 10.000
Average Mismatch: 0.000

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB

5 aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 64,853

Cercospora nicotianae: 50,143

Phaffia rhodozyma: 43,179

Neurospora crassa: 42,130

10

carB -Identische Basen nach BESTFIT

Programmeinstellungen:

Gap Weight: 50

Length Weight: 3

15 Average Match: 10.000

Average Mismatch: -9.000

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 68,926

20 Phaffia rhodozyma: 62,403

Neurospora crassa: 60,230

Cercospora nicotianae: 56,884

Klonierung zur Expression von carB

Zur Klonierung und Expression von carB aus Blakeslea trispora wurden von dem oben beschriebenen klonierten Sequenzabschnitt aus Blakeslea trispora in sechs Leserastern die möglichen Proteinsequenzen abgeleitet. Diese Proteinsequenzen wurden mit den Sequenzen der Phytoendesaturasen aus Phycomyces blakesleeanus, Phaffia rhodozyma, Neurospora crassa, Cercospora nicotianae verglichen. Auf der Grundlage des Sequenzvergleiches wurden im klonierten Sequenzabschnitt der

WO 2004/063358

5

10

15

20

30

53

PCT/EP2004/000100

genomischen DNA von Blakeslea trispora drei Exons identifiziert, die zusammengefügt eine codierende Region ergeben, deren abgeleitetes Genprodukt über die gesamte Länge 72,7% identische Aminoacylreste mit der Phytoendesaturase CarB aus Phycomyces blakesieeanus aufweist. Dieser Sequenzabschnitt aus drei möglichen Exons und zwei möglichen Introns wurde daher als Gen carB bezeichnet. Zur Überprüfung der vorhergesagten Genstruktur wurde die codierende Sequenz von carB aus Blakeslea trispora durch PCR mit cDNA von Blakeslea trispora als Matrize und mit den Primern Bol1425 5'-AGAGAGGGATCCTTAAATGCGAATATCGTTGC-3' (SEQ ID 56) und Bol1426 5'-AGAGAGGGATCCATGTCTGATCAAAAGAAGCA-3' (SEQ ID 57) erzeugt. Das erhaltene DNA-Fragment wurde sequenziert. Die Lokalisation von Exons und Introns wurde durch Vergleich der cDNA mit der genomischen DNA von carB bestätigt. In Fig. 21 ist die codierende Sequenz von carB schematisch dargestellt. Zur Expression von carB in Escherichia coli wurde zunächst die Ndel-Schnittstelle in carB durch die Methode overlap extension PCR entfernt sowie am 5'-Ende des Gens eine Ndel-Schnittstelle und am 3'-Ende eine BamHI-Schnittstelle eingefügt. Das erhaltene DNA-Fragment wurde mit dem Vektor pJOE2702 ligiert. Das erhaltene Plasmid wurde als pBT4 bezeichnet und zusammen mit pCAR-AE in Escherichia coli XL1-Blue kloniert. Die Expression erfolgte durch Induktion mit Rhamnose. Der Nachweis der Enzymaktivität erfolgte durch Nachweis der Lycopinsynthese via HPLC. Die Klonierungsschritte sind im folgenden beschrieben:

25 PCR 1.1:

Ca. 0,5 μ g cDNA von Blakeslea trispora, 0,25 μ M MAT350 5'-ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' (SEQ ID 58), 0,25 μ M MAT244 5'-GTTCCAATTGGCCACATGAAGAGAGAGAGAGAAACAG-3' (SEQ ID 59), 100 μ M dNTP, 10 μ l Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μ L.

Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30 s, 9. 72 °C 10min Zyklen: (1-2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

5

10

20

25

30

PCR1.2:

Ca. 0,5 μ g cDNA von Blakeslea trispora, 0,25 μ M MAT243 5'-CCTGTCTTACTCTTCATGTGGCCAATTGGAACCAACAC-3' (SEQ ID 60), 0,25 μ M MAT353 5'-CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' (SEQ ID 61),

100 μ M dNTP, 10 μ l Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μ L.

Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30s, 9. 72 °C 10min Zyklen: (1 -2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

Reinigung der PCR-Fragmente aus PCR 1.1, 1.2

Dazu wurde PCR 2 zur Herstellung der codierenden Sequenz von carB aus Blakeslea trispora für die Klonierung in pJOE2702 durchgeführt:

Ca. 50 ng Produkt aus PCR 1.1 und ca. 50 ng Produkt aus PCR1.2 mit 0,25 µM MAT350 (5'-

ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' SEQ ID NO 58), 0,25 µM MAT353 (5'-

CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' SEQ ID NO 61), 100 μ M dNTP, 10 μ L Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μ L.

Temperaturprofil:

1. 95°C 10 min, 2. 85 °C 5 min, 3. 59 °C 30 s, 4. 72 °C 2 min, 5. 95 °C 30 s, 6.72°C 10 min

Zyklen: (1-2.) 1x, (3-5.) 22x, (6.) 1x

55

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Ligation in Vektor pPCR-Script-Amp, eine Klonierung in Escherichia coli XL1-Blue, Sequenzierung der Insertion, Spaltung mit Ndel und BamHI sowie eine Ligation in pJOE2702. Das erhaltene Plasmid wurde als pBT4 bezeichnet.

Charakterisierung und Nachweis der Enzymaktivität von CarB (Phytoendesaturase)

Das von carB abgeleitete Genprodukt wurde als CarB bezeichnet. CarB weist auf Grundlage der Peptidsequenzanalyse folgende Eigenschaften auf:

Länge: 582 Aminoacylreste

Molekulare Masse: 66470

Isoelektrische Punkt: 6,7

15 Katalytische Aktivität: Phytoendesaturase

Edukt: Phytoen Produkt: Lycopin

EC-Nummer: EC 1.14.99-

Der Nachweis der Enzymaktivität erfolgte in vivo. Wenn das Plasmid (pCAR-AE) in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE). Dieser Stamm synthetisiert Phytoen. Wenn zusätzlich das Plasmid pBT4 in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4). Da ausgehend von carB eine enzymatisch aktive Phytoendesaturase gebildet wird, produziert dieser Stamm Lycopin.

Die Plasmide pCAR-AE und pBT4 wurden daher in Escherichia coli übertragen. Nach Wachstum in Flüssigkultur wurden die Carotinoide aus den Zellen extrahiert und charakterisiert (vgl. oben).

20

25

56

Durch HPLC Analyse wurde nachgewiesen, daß der Stamm Escherichia coli XL1-Blue (pCAR-AE) Phytoen und der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4) Lycopin produziert. CarB weist folglich die Enzymaktivität einer Phytoendesaturase auf.

5

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Phytoen

Nachfolgend werden beispielhaft die Herstellung von gentechnisch veränderten Organismen zur Herstellung von Phytoen beschrieben.

10

15

20

25

Vector pBinAHyg∆carB zur Erzeugung von carB⁻ -Mutanten von Blakeslea trispora

Für die Deletion von carB in Blakeslea trispora wurde der Vektor pBinAHygΔcarB (SEQ. ID. NO:62, Fig. 22) konstruiert. Der Vorläufer von pBinAHygΔcarB ist pBinAHyg (SEQ. ID. NO:3, Fig. 2). pBinAHyg wurde folgendermaßen konstruiert:

Aus dem Plasmid pANsCos1 (SEQ. ID. NO:4, Fig. 1, Osiewacz, 1994, Curr. Genet. 26:87-90) wurde die gpdA-hph Kassette als Bglll/Hindlll Fragment isoliert und in das BamHl/Hindlll geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet und enthält das *E. coli* Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors und des trpC Terrminators aus *Aspergillus nidulans* sowie die entsprechenden Bordersequenzen, die für den DNA-Transfer von *Agrobacterium* notwendig sind.

Die Amplifikation der codierenden Sequenz von carB mit den Primern MAT350 und MAT353 mittels PCR wurde mit den folgenden Parametern durchgeführt:

30 50 ng pBT4 mit 0,25 μM MAT350 (5'-ACTTTATTGGATCCTTAAAT-GCGAATATCGTTGCTGC-3'; SEQ ID NO 58), 0,25 μM MAT353 (5'-

CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3'; SEQ ID NO 61), 100 μM dNTP, 10 μL Pfu-Polymerase-Puffer, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μL H₂O

Temperaturprofil:

WO 2004/063358

30

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 30s, 4. 72°C 2 min, 5. 95 °C 30s,
6. 72 °C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Spaltung mit Hindlll, eine weitere Reinigung des 364-bp-Hindlll-Fragments-carB, gefolgt von einer Spaltung von pBinAHyg mit Hindlll, eine Ligation von 364-bp-Hindlll-Fragments-carB in pBinAHyg, eine Transformation des Vektors in Escherichia coli und eine Isolierung des Konstruktes und Bezeichnung als pBinAHygΔcarB wie oben beschrieben.

Alternativ erfolgte eine partielle Spaltung mit Hindlll und die Klonierung eines größeren Hindill-Fragmentes aus carB in pBinAHyg zur Herstellung von pBinAHygΔcarB.

Erzeugung von carB -- Mutanten von Blakeslea trispora

Zunächst wurde das Plasmid pBinAHyg∆carB in den Agrobakterienstamm LBA 4404 übertragen, z. B. durch Elektroporation (vgl. oben). Anschließend wurde das Plasmid von Agrobacterium tumefaciens LBA 4404 in Blakeslea trispora ATCC 14272 und in Blakeslea trispora ATCC 14271 übertragen (vgl. oben). Der erfolgreiche Nachweis des Gentransfers in Blakesleslea trispora erfolgte über Polymerase-Kettenreaktion nach folgendem Protokoll:

Ca. 0,5 ug DNA aus Blakeslea trispora ATCC 14272 carB⁻ bzw. ATCC 14271 carB⁻ wurden mit 0,25 μM Primer hph forward (5'-CGATGTAGGAGGGCGTGGATA-3'; SEQ ID NO 5), 0,25 μM Primer hph reverse (5'-GCTTCTGCGGGCGATTTGTGT-3'; SEQ ID NO 6), 100 μM

58

dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ l H₂O umgesetzt. Temperaturprofil:

1. 95°C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6.72°C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

5

10

15

Als Negativkontrolle wurde eine Amplifikation des Kanamycinresistenzgens aus Agrobacterium versucht. Dazu wurden folgende PCR-Bedingungen verwendet:

Ca. 0,5 μ g DNA aus Blakesiea trispora ATCC 14272 carB⁻ bzw. ATCC 14271 carB⁻ wurden mit 0,25 μ M Primer nptlll forward (5'-TGAGAATATCACCGGAATTG-3'; SEQ ID NO 7), 0,25 μ M Primer nptlll reverse (AGCTCGACATACTGTTCTTCC-3'; SEQ ID NO 8), 100 μ M dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ L H₂O umgesetzt. Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6. 72 °C 10 min-

20 Zyklen: (1-2.) 1x, (3-5.) 30x, (6.) 1x

Produktion von Carotinoiden und Carotinoidvorstufen mit Blakeslea trispora

Zur Produktion der Carotinoide Zeaxanthin, Canthaxanthin, Astaxanthin und Phytoen wurden die entsprechenden gentechnisch veränderten Blakeslea trispora (+) und (-) Stämme fermentiert, das produzierte Carotinoid mittels HPLC Analyse nachgewiesen und isoliert.

59

Das Flüssigmedium zur Produktion von Carotinoiden enthielt pro Liter: 19 g Maismehl, 44 g Sojamehl, 0,55 g KH₂PO₄, 0,002 g Thiaminhydochlorid, 10 % Sonnenblumenöl. Der pH wurde mit KOH auf 7,5 eingestellt.

Carotinoiden Zur Herstellung der wurden Schüttelkolben mit 5 Sporensuspensionen von (+) und (-) Stämmen der GVO von Blakeslea trispora beimpft. Die Schüttelkolben wurden bei 26 °C mit 250 rpm für 7 Tage inkubiert. Alternativ wurde zu Mischungen der Stämme nach 4 Tagen Trisporsäuren zugegeben und weitere 3 Tage inkubiert. Die Endkonzentration der Trisporsäuren betrug 300 - 400 µg/ml. 10

Extraktion und Analytik

Extraktion:

- 1. Entnahme von 10 ml Kultursuspension
- 2. Zentrifugation, 10 min, 5.000 x g 15
 - 3. Verwerfen des Überstandes
 - 4. Resuspendierung des Pellets in 1 ml Tetrahydrofuran (THF) durch Vortexen
 - Zentrifugation, 5 min, 5.000 x g 5.
- 6. Abnahme der THF-Phase 20
 - 7. Wiederholung der Schritte 4.-6. (2 x)
 - 8. Vereinigung der THF-Phasen
 - 9. Zentrifugation der vereinigten THF-Phasen 5 min bei 20.000 x g, um Reste der wäßrigen Phase abzutrennen

25

Analytik

Messung von Phytoen mittels HPLC

Säule: ZORBAX Eclipse XDB-C8, 5 um, 150*4,6 mm

Temperatur: 40 °C

30 Flußrate: 0,5 ml/min

Injektionsvolumen:10 µl

60

Detektion: UV 220 nm

Stoppzeit: 12 min
Nachlaufzeit: 0 min

Maximaldruck: 350 bar

5 Eluent A:

50 mM NaH₂PO₄, pH 2,5 mit Perchlorsäure

Eluent B:

Acetonitril

Gradient:

10

15

20

Zeit [min]	A [%]	B [%]	Fluß [ml/min]
0	50	50	0,5
12	50	50	0,5

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 µm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 50 - 1000 mg/l eingewogen und in THF gelöst. Als Standard wurde Phytoen verwendet, welches unter den gegebenen Bedingungen eine Retentionszeit von 7,7 min. aufweist.

Messung von Lycopin, β-Carotin, Echinenon, Canthaxanthin, Cryptoxanthin, Zeaxanthin und Astaxanthin mittels HPLC

Säule: Nucleosil 100-7 C18, 250*4,0 mm (Macherey & Nagel)

Temperatur: 25 °C

Flußrate: 1,3 ml/min

Injektionsvolumen:10 µI

25 Detektion: 450 nm

Stoppzeit: 15min
Nachlaufzeit: 2 min
Maximaldruck: 250 bar

Eluent A: 10% Aceton, 90% H₂O

30 Eluent B: Aceton

Gradient:

61

Zeit [min]	A [%]	B [%]	Fluß [ml/min]
0	30	70	1,3
10	5	95	1,3
12	5	95	1,3
13	30	70	1,3

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 μm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 10 mg eingewogen und in 100 ml THF gelöst. Als Standard wurden folgende Carotinoide mit folgenden Retentionszeiten eingesetzt β-Carotin (12,5 min), Lycopin (11,7 min), Echinenon (10,9 min), Cryptoxanthin (10,5 min), Canthaxanthin (8,7 min), Zeaxanthin (7,6 min) und Astaxanthin (6,4 min) [s. Fig 23].

15

20

25

30

10

5

Produktion von Zeaxanthin mit gentechnisch veränderten Stämmen von Blakeslea trispora

Nachfolgend wird beispielhaft die Herstellung von Zeaxanthin mit gentechnisch veränderten Organismen (GVO) von Blakeslea trispora beschrieben.

Durch Agrobakterium-vermittelte Transformation wurde der Vektor pBinAHygBTpTEF1-HPcrtZ in Blakeslea trispora übertragen (s.o.). Ein Hygromycin-resistenter Klon wurde isoliert und auf eine Kartoffel-Glucose-Agarplatte (Merck KGaA, Darmstadt) übertragen.

Nach drei Tagen Inkubation bei 26°C wurde ausgehend von dieser Platte ein Sporensuspension hergestellt. Ein 250-ml-Erlenmeyerkolben ohne Schikanen mit 50 ml Growth-Medium (Maismehl 47 g/l, Sojamehl 23 g/l, KH₂PO₄ 0,5 g/l, Thiamin-HCl 2.0 mg/l, pH mit NaOH vor der Sterilisation auf 6,2–6,7 eingestellt) wurde mit 1x10⁵ Sporen beimpft. Diese Vorkultur inkubierte 48 Stunden bei 26 °C und 250 upm. Für die Hauptkultur wurde ein 250-ml-Erlenmeyerkolben ohne Schikane

62

enthaltend 40 ml Produktionsmedium mit 4 ml der Vorkultur beimpft und 8 Tage bei 26 °C und 150 upm inkubiert. Das Produktionsmedium enthielt Glucose 50 g/l, Casein Acid Hydrolisate 2 g/l, Hefeextrakt 1 g/l, L-Asparagin 2 g/l, KH₂PO₄ 1,5 g/l, MgSO₄ x 7 H₂O 0,5 g/l, Thiamin-HCl 5 mg/l, Span20 10 g/l, Tween 80 1 g/l, Linolsäure 20 g/l, Maisquellwasser 80 g/l. Nach 72 Stunden erfolgte die Zugabe von Kerosin in einer Endkonzentration von 40 g/l Kerosin.

Nach der Ernte der Kulturen werden die verbliebenen ungefähr 35 ml Kultur mit Wasser auf 40 ml aufgefüllt. Anschließend werden die Zellen im Hochdruckhomogenisator, Typ Micron Lab 40, Fa. APV Gaulin, 3 x bei 1500 bar aufgeschlossen.

Die Suspension mit den aufgeschlossenen Zellen wurde mit 35 ml THF versetzt und 60 min bei RT im Dunkeln bei 250 upm geschüttelt. Danach wurden 2 g NaCl zugegeben und das Gemisch nochmals geschüttelt. Der Extraktionsansatz wurde dann 10 min bei 5000 x g zentrifugiert. Die gefärbte THF-Phase wurde abgenommen, die Zellmasse war vollständig entfärbt.

Die THF-Phase wurde am Rotationsverdampfer bei 30 mbar und 30 °C auf 1 ml eingeengt und danach nochmals in 1 ml THF aufgenommen. Nach Zentrifugation 5 min bei 20 000 x g wurde ein Aliquot der oberen Phase entnommen und durch HPLC analysiert (Fig. 24, Fig. 23).

20

5

10

63

Patentansprüche

- Verfahren zur Herstellung eines gentechnisch veränderten Organismus der Gattung Blakeslea umfassend
- 5 (i) Transformation mindestens einer der Zellen,
 - (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder mehreren genetischen Merkmalen alle gleichartig verändert sind und diese gentechnische Veränderung zur Ausprägung bringen, und
- 10 (iii) Selektion und Anzucht der gentechnisch veränderten Zelle oder Zellen.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich um Zellen von Pilzen der Art Blakeslea trispora handelt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector oder freie Nukleinsäuren verwendet werden.
 - Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector in das Genom mindestens einer der Zellen integriert wird.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector einen Promotor und/oder einen Terminator enthält.
 - 6. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector enthaltend den gpd, pcarB, pcarRA und/oder ptef1 Promotor und/oder den trpC Terminator eingesetzt wird.

64

- 7. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector enthaltend ein Resistenzgen eingesetzt wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector ein Hygromycin-Resistenzgen (hph), insbesondere aus E. coli enthält.
 - Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der gpd Promotor die Sequenz SEQ ID NO: 1 aufweist.

10

- 10. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der trpC Terminator die Sequenz SEQ ID NO: 2 aufweist.
- 11. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der tef1 Promotor die Sequenz SEQ ID NO: 35 aufweist.
 - 12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass der gpd Promotor und der trpC Terminator aus Aspergillus nidulans stammen.
- 13. Verfahren nach einem Ansprüche 3 bis 12, dadurch gekennzeichnet, dass der Vector die SEQ ID NO: 3 umfasst.
 - 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Transformation (i) mittels Agrobakterien, Konjugation, Chemikalien, Elektroporation, Beschuss mit DNA-beladenen Partikeln, Protoplasten oder Mikroinjektion durchgeführt wird.

65

- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Homokaryontisierung (ii) ein mutagenes Agens eingesetzt wird.
- 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass als mutagenes Agens N-Methyl-N'-nitro-nitrosoguanidin (MNNG), UV-Strahlung oder Röntgenstrahlung eingesetzt wird.
 - 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Selektion durch Markierung und/oder Auswahl der einkernigen Zellen erfolgt.
- 18. Verfahren nach einem der vorhergehenden Ansprüche 1 17, dadurch gekennzeichnet, dass in der Selektion 5-Carbon-5-deazariboflavin (darf) und Hygromycin (hyg) oder 5-Fluororotat (FOA) und Uracil und Hygromycin eingesetzt werden.
- 19. Verfahren nach einem der Ansprüche 3 bis 18, dadurch

 gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector

 genetische Informationen zur Herstellung von Carotinoiden oder deren

 Vorstufen enthält.
 - 20. Verfahren nach einem der Ansprüche 3 bis 19, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Carotinen oder Xanthophyllen enthält.

20

25

21. Verfahren nach einem der Ansprüche 3 bis 20, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, α-Carotin, Lutein, Bixin, Phytofluen oder Phytoen enthält.

- 22. Verfahren nach einem der Ansprüche 3 bis 21, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector derart gestaltet ist, dass die im Vector enthaltene genetische Information in das Genom von Blakeslea trispora eingeführt wird
- 5 23. Verfahren nach einem der Ansprüche 3 bis 22, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen enthält, die nach Expression eine Ketolase-und/oder Hydroxylase-Aktivität entfalten.
- 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector die SEQ ID NO: 70 oder 71 oder 76 und/oder 72 umfasst.
 - 25. Verfahren nach Anspruch 23 oder 24, **dadurch gekennzeichnet**, **dass** der in der Transformation (i) eingesetzte Vector eine Sequenz aus der Gruppe bestehend aus den SEQ ID NO: 37 51 aufweist.
- 26. Verfahren nach einem der Ansprüche 3 bis 21, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector derart gestaltet ist, dass die im Vector enthaltene genetische Information in der Zelle ausgeschaltet wird.
- 27. Verfahren nach einem der Ansprüche 3 bis 21 oder 25, dadurch gekennzeichnet, dass durch die Transformation (i) das Gen der Phytoendesaturase ausgeschaltet wird.
 - 28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector die SEQ ID NO: 69 umfasst.
- 29. Verfahren nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector die Sequenz SEQ ID NO: 62 aufweist.

- 30. Verfahren nach einem der Ansprüche 3 bis 21, dadurch gekennzeichnet, dass durch die Transformation das Gen der Lycopincyclase ausgeschaltet wird.
- 31. Genetisch veränderte mehrkernige Zellen der zur Gattung Blakeslea gehörenden Pilze, insbesondere Blakeslea trispora erhältlich nach einem der vorhergehenden Ansprüche.

5

15

- 32. Verwendung der Zellen nach Anspruch 30 oder eines aus ihnen gebildeten Mycels zur Herstellung von Carotinoiden oder deren Vorstufen.
- 33. Verwendung nach Anspruch 30 oder 31 zur Herstellung von Carotinen oder Xanthophyllen.
 - 34. Verwendung nach einem der Ansprüche 30 bis 32 zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, α-Carotin, Lutein, Bixin, Phytofluen oder Phytoen.
 - 35. Promotor mit der Sequenz SEQ ID NO: 1 oder 35 zur Verwendung in dem Verfahren nach einem der Ansprüche 1 29.
- 36. Terminator mit der Sequenz SEQ ID NO: 2 zur Verwendung in dem Verfahren nach einem der Ansprüche 1 29.
 - 37. Vector umfassend die SEQ ID NO: 3 zur Verwendung in dem Verfahren nach einem der Ansprüche 1 29.
 - 38. Vector nach Anspruch 36 zur Verwendung in dem Verfahren nach einem der Ansprüche 1 29 umfassend die SEQ ID NO: 69 und/oder die SEQ ID NO: 70 oder 71 und/oder 72 oder 76.

Fig. 1: Vektor pANsCos1

Fig. 2: Vektor pBinAHyg

Fig. 3: Gels des Ergebnis einer PCR Spur: 9

Fig. 4: Plasmid pBinAHygBTpyrG-SCO

Fig. 5: Plasmid pBinAHygBTpTEF1-HPcrtZ

Fig. 6: Plasmid pBinAHyg-BTpcarRA-HPcrtZ

Fig. 7: Plasmid pBinAHygBTpcarB-HPcrtZ

Fig. 8: Plasmid p-carRA-HPcrtZ-TAG-3'carA-IR

Fig. 9: Plasmid p-carRA-HPcrtZ-GCG-3'carA-IR

Fig. 10: Plasmid pBinAHygBTpTEF1-EUcrtZ

Fig. 11: Plasmid pBinAHygBTpcarRA-EUcrtZ

Fig. 12: Plasmid pBinAHygBTpcarB-EUcrtZ

Fig. 13: Plasmid p-BinAHyg-gpdA-HPcrtZ

Fig. 14: Plasmid pBinAHyg-carRcrtZcarA

Fig. 15: Plasmid pBinAHyg-BTpTEF1-NPcrtW

Fig. 16: Plasmid pBinAHyg_BTpcarRA_NPcrtW

Fig. 17: Plasmid pBinAHyg-BTpcarB-NPcrtW

Fig. 18: Plasmid pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW

Fig. 19: Plasmid pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW

20/24

Fig. 20: carB

Fig. 21: CDS von carB

Fig. 22: Vektor pBinAHyg∆carB

Fig. 23: HPLC Standard

Fig. 24: HPLC

WO 2004/063358 PCT/EP2004/000100 1/358

SEQUENCE LISTING

<110>	BASF AG					
<120>	Verfahren zur g Gattung Blakesl					ıdung
<130>	?					
<160>	80					
<170>	PatentIn version	on 3.2				
<210>	1					
<211>	2160					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Promotor					
<400>	1					
ctttcg	acac tgaaatacgt	cgagcctgct	ccgcttggaa	gcggcgagga	gcctcgtcct	60
gtcaca	acta ccaacatgga	gtacgataag	ggccagttcc	gccagctcat	taagagccag	120
ttcatg	ggcg ttggcatgat	ggccgtcatg	catctgtact	tcaagtacac	caacgctctt	180
ctgatc	cagt cgatcatccg	ctgaaggcgc	tttcgaatct	ggttaagatc	cacgtcttcg	240
				h		200
ggaagc	cagc gactggtgac	etecagegte	cctttaaggc	tgccaacagc	ttteteagee	300
aggge	agec caagacegae	aaggeteee	tccadaacdc	caacaacaac	tagagggata	360
agggee	agee caagacegae	daggeeeeee	cccagaacgc	cguguuguuc	cggaggggcg	500
gtgtca	agga ggagtaagct	ccttattgaa	gt.cggaggac	ggaggggtgt	caagaggata	420
3-3			33333	33-3-33-3-		
ttette	gact ctgtattata	gataaqatga	tgaggaattg	gaggtagcat	agcttcattt	480
				-	_	
ggattt	gctt tccaggctga	gactctagct	tggagcatag	agggtccttt	ggctttcaat	540
		_	_			

attctcaagt atctcgagtt tgaacttatt ccctgtgaac cttttattca ccaatgagca

600

WO 2004/063358 PCT/EP2004/000100 2/358

ttggaatgaa	catgaatctg	aggactgcaa	tegecatgag	gttttcgaaa	tacatccgga	660
tgtcgaaggc	ttggggcacc	tgcgttggtt	gaatttagaa	cgtggcacta	ttgatcatcc	720
gatagctctg	caaagggcgt	tgcacaatgc	aagtcaaacg	ttgctagcag	ttccaggtgg	780
aatgttatga	tgagcattgt	attaaatcag	gagatatagc	atgatctcta	gttagctcac	840
cacaaaagtc	agacggcgta	accaaaagtc	acacaacaca	agctgtaagg	atttcggcac	900
ggctacggaa	gacggagaag	ccaccttcag	tggactcgag	taccatttaa	ttctatttgt	960
gtttgatcga	gacctaatac	agcccctaca	acgaccatca	aagtcgtata	gctaccagtg	1020
aggaagtgga	ctcaaatcga	cttcagcaac	atctcctgga	taaactttaa	gcctaaacta	1080
tacagaataa	gataggtgga	gagcttatac	cgagctccca	aatctgtcca	gatcatggtt	1140
gaccggtgcc	tggatcttcc	tatagaatca	tccttattcg	ttgacctagc	tgattctgga	1200
gtgacccaga	gggtcatgac	ttgagcctaa	aatccgccgc	ctccaccatt	tgtagaaaaa	1260
tgtgacgaac	tegtgagete	tgtacagtga	ccggtgactc	tttctggcat	gcggagagac	1320
ggacggacgc	agagagaagg	gctgagtaat	aagccactgg	ccagacagct	ctggcggctc	1380
tgaggtgcag	tggatgatta	ttaatccggg	accggccgcc	cctccgccc	gaagtggaaa	1440
ggctggtgtg	cccctcgttg	accaagaatc	tattgcatca	tcggagaata	tggagcttca	1500
tcgaatcacc	ggcagtaagc	gaaggagaat	gtgaagccag	gggtgtatag	ccgtcggcga	1560
aatagcatgo	: cattaaccta	ggtacagaag	tccaattgct	tccgatctgg	taaaagattc	1620
acgagatagt	: accttctccg	aagtaggtag	agcgagtacc	cggcgcgtaa	gctccctaat	1680
tggcccatco	: ggcatctgta	gggcgtccaa	atategtgee	: tctcctgctt	tgcccggtgt	1740
atgaaaccgg	g aaaggceget	caggagctgg	ccageggege	: agaccgggaa	a cacaagetgg	1800
cagtcgacco	c atccggtgct	: ctgcactcga	cctgctgagg	, teceteagte	cctggtaggc	1860

agetttgee egtetgteeg eeeggtgtgt eggegggtt gacaaggteg ttgegteagt 1920
ccaacatttg ttgecatatt tteetgetet eeecaceage tgetettte ttttetettt 1980
ctttteecat etteagtata tteatettee eateeaagaa eetttattte eeetaagtaa 2040
gtaetttget acateeatae teeateette eeateeetta tteetttgaa eettteagtt 2100
egagetttee eaetteateg eagettgaet aacagetaee eegettgage agacateaee 2160

<210> 2

<211> 774

<212> DNA

<213> Artificial

<220>

<223> Terminator

<220>

<221> misc_feature

<222> (267)..(267)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (475)..(475)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (566)..(566)

<223> n is a, c, g, or t

<400> 2

cgatccactt aacgttactg aaatcatcaa acagcttgac gaatctggat ataagatcgt 60

tggtgtcgat gtcagctccg gagttgagac aaatggtgtt caggatctcg ataagatacg 120

ttcatttgtc caagcagcaa agagtgcctt ctagtgattt aatagctcca tgtcaacaag

180

aataaaacgc gttttcgggt ttacctcttc cagatacagc tcatctgcaa tgcattaatg 240 cattgactgc aacctagtaa cgccttncag gctccggcga agagaagaat agcttagcag 300 360 agctattttc attttcggga gacgagatca agcagatcaa cggtcgtcaa gagacctacg 420 agactgagga atccgctctt ggctccacgc gactatatat ttgtctctaa ttgtactttg acatgctcct cttctttact ctgatagctt gactatgaaa attccgtcac cagcncctgg 480 540 gttcgcaaag ataattgcat gtttcttcct tgaactctca agcctacagg acacacattc atcgtaggta taaacctcga aatcanttcc tactaagatg gtatacaata gtaaccatgc 600 atggttgcct agtgaatgct ccgtaacacc caatacgccg gccgaaactt ttttacaact 660 720 ctcctatgag tcgtttaccc agaatgcaca ggtacacttg tttagaggta atccttcttt 774 ctagctagaa gtcctcgtgt actgtgtaag cgcccactcc acatctccac tcga

<210> 3

<211> 15739

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770) <223> n is a, c, g, or t

<400> 3

60 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tcgggaagcc agcgactggt gacctccagc gtccctttaa ggctgccaac agctttctca 300 360 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 480 atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca 540 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc aatattetea agtatetega gtttgaaett atteeetgtg aacettttat teaceaatga 600 660 gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720 780 tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct 840 caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg 900 cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt 960 1020 tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa 1080 ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg 1140

WO 2004/063358 PCT/EP2004/000100 6/358

gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgececteg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	tccggcatct	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tcgttgcgtc	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttcttttctc	1980
tttcttttcc	: catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	: tcccacttca	tcgcagcttg	actaacagct	accccgcttg	g agcagacatc	2160
accatgcctg	g aactcaccgo	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	: tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	g cttcgatgta	2280
ggagggcgtg	g gatatgtcct	: gcgggtaaat	agetgegeeg	atggtttcta	a caaagatcgt	2340
tatgtttato	ggcactttgc	: atcggccgcg	ctcccgattc	: cggaagtgct	tgacattggg	2400

WO 2004/063358 PCT/EP2004/000100 7/358

gaattcagcg	agagcctgac	ctattgcatc	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggctcc	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	teetettett	tactctgata	gcttgactat	3660

WO 2004/063358 PCT/EP2004/000100 8/358

gaaaattccg tcaccagcnc ctgggttcgc aaagataatt gcatgtttct tccttgaact	3720
ctcaageeta caggacacae attcategta ggtataaace tegaaatean tteetaetaa	3780
gatggtatac aatagtaacc atgcatggtt gcctagtgaa tgctccgtaa cacccaatac	3840
gccggccgaa actttttac aactctccta tgagtcgttt acccagaatg cacaggtaca	3900
cttgtttaga ggtaatcctt ctttctagct agaagtcctc gtgtactgtg taagcgccca	3960
ctccacatct ccactcgacc tgcaggeatg caagettggc gtaatcatgg tcatagetgt	4020
ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa	4080
agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac	4140
tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg	4200
cggggagagg cggtttgcgt attgggccaa agacaaaagg gcgacattca accgattgag	4260
ggagggaagg taaatattga cggaaattat tcattaaagg tgaattatca ccgtcaccga	4320
cttgagccat ttgggaatta gagccagcaa aatcaccagt agcaccatta ccattagcaa	4380
ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat	4440
caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg gtcatagccc	4500
ccttattagc gtttgccatc ttttcataat caaaatcacc ggaaccagag ccaccaccgg	4560
aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca ccaccctcag	4620
agccgccacc agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt	4680
aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct	4740
atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac	4800
gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata	4860
atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa	4920

WO 2004/063358 PCT/EP2004/000100 9/358

cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	acgcagcaag	4980
atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	gatgtggacg	5040
ccgggcccga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	cgttgctgtc	5100
gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tcccgtgggc	gaagaactcc	5160
agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	gattccgaag	5220
cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	5280
gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	agaaggcgat	5340
agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	5400
cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	5460
ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	5520
tgatattcgg	caagcaggca	tcgccatggg	tcacgacgag	atcatcgccg	tcgggcatgc	5580
gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	5640
catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	5700
cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cageegeege	attgcatcag	5760
ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	5820
cttcgcccaa	tagcagccag	teeetteeeg	cttcagtgac	aacgtcgagc	acagetgege	5880
aaggaacgcc	cgtcgtggcc	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	5940
gggcaccgga	caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacageegga	6000
acacggcggc	atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	6060
ccacccaagc	ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	6120
cagatccggt	gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	6180

WO 2004/063358 PCT/EP2004/000100 10/358

•			10/358			
gggaatttat	ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	6240
accttaggcg	acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	6300
actccagaaa	cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	6360
taaaacggct	tgtcccgcgt	catcggcggg	ggtcataacg	tgactccctt	aattctccgc	6420
tcatgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	6480
ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	6540
gtgaaaaggt	ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	6600
tetggegeeg	gecagegaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	6660
gcccagcaca	ı ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	6720
gtgggcggtg	g acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	ı gcaccggcat	6780
aatcaggcc	g atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	a tcaggggtat	6840
gttgggttt	c acgtctggcc	: tccggaccag	, ceteegetgg	g tccgattgaa	a cgcgcggatt	6900
ctttatcac	t gataagttgg	g tggacatatt	atgtttatca	a gtgataaag	t gtcaagcatg	6960
acaaagttg	c agccgaatad	c agtgatccgt	geegeeetge	g acctgttga	a cgaggtcggc	7020
gtagacggt	c tgacgacac	g caaactggc	g gaacggttg	g gggttcagc	a geeggegett	7080
tactggcac	t tcaggaaca	a gegggeget	g ctcgacgca	c tggccgaag	c catgctggcg	7140
gagaatcat	a cgcattcgg	t gccgagagc	c gacgacgac	t ggcgctcat	t tetgateggg	7200
aatgcccgc	a gcttcaggc	a ggcgctgct	c gcctaccgc	g atggcgcgc	g catccatgcc	7260
ggcacgcga	c cgggcgcac	c gcagatgga	a acggccgac	g cgcagctto	g cttcctctgc	7320
gaggcgggt	t tttcggccg	g ggacgccgt	c aatgegetg	a tgacaatca	g ctacttcact	7380
gttggggc	eg tgettgagg	a gcaggccgg	c gacagcgat	g ccggcgago	eg eggeggeace	7440

WO 2004/063358 PCT/EP2004/000100 11/358

gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	7500
ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	7560
aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	7620
ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	7680
accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	cctagcgtcc	7740
aagcctcacg	gccgcgctcg	gcctctctgg	cggccttctg	gcgctcttcc	gcttcctcgc	7800
tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	7860
cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	7920
gccagcaaaa	ggccaggaac	cgtaaaaagg	cegegttget	ggcgtttttc	cataggctcc	7980
gccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	8040
gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	.8100
ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgcttttcc	8160
gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atcctttttc	8220
gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	8280
cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	cttcttcact	8340
gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	ctggccggct	8400
accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	aaccaggaag	8460
ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	tgaggaaaag	8520
gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	gggctacaaa	8580
atcacgggcg	tegtggaeta	tgagcacgtc	cgcgagctgg	cccgcatcaa	tggcgacctg	8640
ggccgcctgg	geggeetget	gaaactctgg	ctcaccgacg	acccgcgcac	ggcgcggttc	8700

WO 2004/063358 PCT/EP2004/000100 12/358

ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	cgagcttggc	8760
aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	gccgctaaaa	8820
cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	agaagagcga	8880
cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	gcctttgcga	8940
cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	cctgcaaacg	9000
cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	tgtggatacc	9060
tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	tgaggggccg	9120
actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	gcgacgtgga	9180
gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	ccacagatga	9240
tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	gcgactactg	9300
acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	tgaggggcgc	9360
acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	aagggtttcc	9420
gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	atatttataa	9480
accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	aaggggggtg	9540
ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	ccaggggctg	9600
cgcccctcgg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	ccttgccatt	9660
gccgggatcg	gggcagtaac	gggatgggcg	atcagecega	gcgcgacgcc	cggaagcatt	9720
gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	tgagggcggc	9780
ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	cttcatggcg	9840
gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	cgtgctcgtg	9900
ttcgggggtg	g cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	ataccgaggt	9960

WO 2004/063358 PCT/EP2004/000100 13/358

atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	ttaaaaagct	10020
accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	attgacaata	10080
ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	tttcaggggg	10140
caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	taaaaacttg	10200
catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	ctatcataat	10260
tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	gatgactttg	10320
tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	tgccaggtgc	10380
tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	gattacgtgc	10440
agctttccct	tcaggcggga	ttcatacago	ggccagccat	ccgtcatcca	tatcaccacg	10500
tcaaagggtg	acagcaggct	cataagacgo	cccagcgtcg	ccatagtgcg	ttcaccgaat	10560
acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	: aaaacagcca	gegetggege	10620
gatttagcco	c cgacatagco	: ccactgttcg	tccatttccg	g cgcagacgat	gacgtcactg	10680
cccggctgta	a tgcgcgaggt	: taccgactgo	ggcctgagtt	: ttttaagtga	cgtaaaatcg	10740
tgttgaggc	c aacgcccata	a atgcgggctg	g ttgcccggca	a tccaacgcca	a ttcatggcca	10800
tatcaatga	t tttctggtgd	gtaccgggti	gagaagcggt	t gtaagtgaad	tgcagttgcc	10860
atgttttac	g gcagtgagaç	g cagagatage	getgatgte	c ggcggtgctt	ttgccgttac	10920
gcaccaccc	c gtcagtagc	t gaacaggag	g gacagctga	t agacacaga	a gccactggag	10980
cacctcaaa	a acaccatca	t acactaaat	c agtaagttg	g cagcatcac	c cataattgtg	11040
gtttcaaaa	t cggctccgt	c gatactatg	t tatacgcca	a ctttgaaaa	c aactttgaaa	11100
aagctgttt	t ctggtattt	a aggttttag	a atgcaagga	a cagtgaatt	g gagttcgtct	11160
tgttataat	t agettettg	g ggtatcttt	a aatactgta	g aaaagagga	a ggaaataata	11220

WO 2004/063358 PCT/EP2004/000100 14/358

aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	accgctgcgt	11280
aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	aaaatgaaaa	11340
cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	tggaacggga	11400
aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtce	tgcactttga	11460
acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	tttgctcgga	11520
agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	agtgcatcag	11580
gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	acagccgctt	11640
agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	aaaactggga	11700
agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	cggaaaagcc	11760
cgaagaggaa	cttgtctttt	cccacggcga	cctgggagac	agcaacatct	ttgtgaaaga	11820
tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	agtggtatga	11880
cattgccttc	tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	atgtcgagct	11940
attttttgac	ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	atattttact	12000
ggatgaattg	ttttagtacc	tagatgtggc	gcaacgatgc	cggcgacaag	caggagcgca	12060
ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggc	aagtatttgg	12120
gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	gagaaggacg	12180
gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	gacaccaagg	12240
caccaggcgg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	ggggcaatcc	12300
cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	gaactgatcg	12360
acgcggggtt	: ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	atgcgtgcgc	12420
cccgcgaaac	: cttccagtcc	gteggetega	tggtccagca	agctacggcc	aagatcgagc	12480

WO 2004/063358 PCT/EP2004/000100 15/358

gcgacagcgt gcaactggct ccccctgccc tgcccgcgcc atcggccgcc gtggagcgtt	12540
cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc gacacgcgag	12600
gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa caggtcagcg	12660
aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa atgcagcttt	12720
ccttgttcga tattgcgccg tggccggaca cgatgcgagc gatgccaaac gacacggccc	12780
gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg caaaacaagg	12840
tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag ctgcgggccg	12900
acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc cctatcggcg	12960
agccgatcac cttcacgttc tacgagcttt gccaggacct gggctggtcg atcaatggcc	13020
ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg atgggcttca	13080
cgtccgaccg cgttgggcac ctggaatcgg tgtcgctgct gcaccgcttc cgcgtcctgg	13140
accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc gtcgtgctgt	13200
ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg tcgccgacgg	13260
cccgacggat gttcgactat ttcagctcgc accgggagcc gtacccgctc aagctggaaa	13320
ccttccgcct catgtgcgga tcggattcca cccgcgtgaa gaagtggcgc gagcaggtcg	13380
gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg gtcaatgatg	13440
acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg ggttcagcag	13500
ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact tgcttcgctc	13560
agtatcgctc gggacgcacg gcgcgctcta cgaactgccg ataaacagag gattaaaatt	13620
gacaattgtg attaaggete agattegaeg gettggageg geegaegtge aggattteeg	13680
cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg tttacgagca	13740

WO 2004/063358 PCT/EP2004/000100 16/358

cgaggagaaa a	aagcccatgg	aggegttege	tgaacggttg	cgagatgccg	tggcattcgg	13800
cgcctacatc (gacggcgaga	tcattgggct	gteggtette	aaacaggagg	acggccccaa	13860
ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	gaggccgagg	13920
ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	tgatcgtccg	13980
acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	ttaatatttc	14040
gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	tcgcggcgac	14100
ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	taggtagccc	14160
gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	cgctgttggt	14220
gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gcgggcctgg	cgggggcggt	14280
ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	ctctgctcac	14340
ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	ctttagtgtt	14400
tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	ggctcggcct	14460
gatcggagcg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	tcgaacctac	14520
agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	cggggatgca	14580
tcaggccgac	agtcggaact	tegggteece	gacctgtacc	attcggtgag	caatggatag	14640
gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	ttcctcagcg	14700
gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	gcctgtcacg	14760
gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	agatgatatt	14820
tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	ccgcgagatc	14880
atccgtgttt	caaacccggc	agcttagttg	cegttettee	gaatagcatc	ggtaacatga	14940
gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	gatgggctgc	15000

ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg ctggctggtg 15060 gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac acattgcgga 15120 cgtttttaat gtactggggt ggtttttctt ttcaccagtg agacgggcaa cagctgattg 15180 cccttcaccg cctggccctg agagagttgc agcaagcggt ccacgctggt ttgccccagc 15240 aggcgaaaat cctgtttgat ggtggttccg aaatcggcaa aatcccttat aaatcaaaag 15300 aatagcccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga 15360 acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg 15420 aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 15480 ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg 15540 aagggaagaa agcgaaagga gcgggcgcca ttcaggctgc gcaactgttg ggaagggcga 15600 teggtgeggg cetetteget attacgceag etggegaaag ggggatgtge tgeaaggega 15660 ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgaa 15720 15739 ttcgagctcg gtacccggg

<210> 4

<211> 11611

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (227)..(227)

<223> n is a, c, g, or t

<221> misc_feature <222> (318)..(318) <223> n is a, c, g, or t <220> <221> misc_feature <222> (526)..(526) <223> n is a, c, g, or t <220> <221> misc_feature <222> (8946)..(8946) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10028)..(10028) <223> n is a, c, g, or t <400> 4 agcttgcatg cctgcaggtc gagtggagat gtggagtggg cgcttacaca gtacacgagg 60 acttctagct agaaagaagg attacctcta aacaagtgta cctgtgcatt ctgggtaaac 120 gactcatagg agagttgtaa aaaagtttcg gccggcgtat tgggtgttac ggagcattca 180 ctaggcaacc atgcatggtt actattgtat accatcttag taggaantga tttcgaggtt 240 tatacctacg atgaatgtgt gtcctgtagg cttgagagtt caaggaagaa acatgcaatt 300 atctttgcga acccaggngc tggtgacgga attttcatag tcaagctatc agagtaaaga 360 agaggagcat gtcaaagtac aattagagac aaatatatag tegegtggag ccaagagegg 420 480 attectcagt ctcgtaggtc tcttgacgac cgttgatctg cttgatctcg tctcccgaaa 540 atgaaaatag ctctgctaag ctattcttct cttcgccgga gcctgnaagg cgttactagg ttgcagtcaa tgcattaatg cattgcagat gagctgtatc tggaagaggt aaacccgaaa 600

acccgtttta ttcttgttga catggagcta ttaaatcact agaaggcact ctttgctgct

WO 2004/063358 PCT/EP2004/000100 19/358

tggacaaatg	aacgtatctt	atcgagatec	tgaacaccat	ttgtctcaac	tccggagctg	720
acatcgacac	caacgatctt	atatccagat	tcgtcaagct	gtttgatgat	ttcagtaacg	780
ttaagtggat	cgatecegeg	gtcggcatct	actctattcc	tttgccctcg	gacgagtgct	840
ggggcgtcgg	tttccactat	cggcgagtac	ttctacacag	ccatcggtcc	agacggccgc	900
gcttctgcgg	gcgatttgtg	tacgcccgac	agtcccggct	ccggatcgga	cgattgcgtc	960
gcatcgaccc	tgcgcccaag	ctgcatcatc	gaaattgccg	tcaaccaagc	tctgatagag	1020
ttggtcaaga	ccaatgcgga	gcatatacgc	ccggagccgc	ggcgatcctg	caagctccgg	1080
atgcctccgc	tcgaagtagc	gcgtctgctg	ctccatacaa	gccaaccacg	gcctccagaa	1140
gaagatgttg	gcgacctcgt	attgggaatc	cccgaacatc	gcctcgctcc	agtcaatgac	1200
cgctgttatg	cggccattgt	ccgtcaggac	attgttggag	ccgaaatccg	cgtgcacgag	1260
gtgccggact	tcggggcagt	cctcggccca	aagcatcagc	tcatcgagag	cctgcgcgac	1320
ggacgcactg	acggtgtcgt	ccatcacagt	ttgccagtga	tacacatggg	gatcagcaat	1380
cgcgcatatg	aaatcacgcc	atgtagtgta	ttgaccgatt	ccttgcggtc	cgaatgggcc	1440
gaacccgctc	gtctggctaa	gateggeege	agcgatcgca	tccatggcct	ccgcgaccgg	1500
ctgcagaaca	gcgggcagtt	cggtttcagg	caggtcttgc	aacgtgacac	cctgtgcacg	1560
gcgggagatg	caataggtca	ggeteteget	gaattcccca	atgtcaagca	cttccggaat	1620
cgggagcgcg	gccgatgcaa	agtgccgata	aacataacga	tctttgtaga	aaccatcggc	1680
gcagctattt	acccgcagga	catatccacg	ccctcctaca	tcgaagctga	aagcacgaga	1740
ttettegeee	tccgagagct	gcatcaggtc	ggagacgctg	tcgaactttt	cgatcagaaa	1800
cttctcgaca	gacgtcgcgg	tgagttcagg	catggtgatg	tctgctcaag	cggggtagct	1860
gttagtcaag	ctgcgatgaa	gtgggaaagc	tcgaactgaa	aggttcaaag	gaataaggga	1920

WO 2004/063358 PCT/EP2004/000100 20/358

tgggaaggat	ggagtatgga	tgtagcaaag	tacttactta	ggggaaataa	aggttcttgg	1980
atgggaagat	gaatatactg	aagatgggaa	aagaaagaga	aaagaaaaga	gcagctggtg	2040
gggagagcag	gaaaatatgg	caacaaatgt	tggactgacg	caacgacctt	gtcaaccccg	2100
ccgacacacc	gggcggacag	acggggcaaa	gctgcctacc	agggactgag	ggacctcagc	2160
aggtcgagtg	cagagcaccg	gatgggtcga	ctgccagctt	gtgttcccgg	tetgegeege	2220
tggccagctc	ctgagcggcc	tttccggttt	catacaccgg	gcaaagcagg	agaggcacga	2280
tatttggacg	ccctacagat	gccggatggg	ccaattaggg	agcttacgcg	ccgggtactc	2340
gctctaccta	cttcggagaa	ggtactatct	cgtgaatctt	ttaccagatc	ggaagcaatt	2400
ggacttctgt	acctaggtta	atggcatgct	atttcgccga	cggctataca	ccctggctt	2460
cacattctcc	ttegettaet	gccggtgatt	cgatgaagct	ccatattctc	cgatgatgca	2520
atagattctt	ggtcaacgag	gggcacacca	gcctttccac	ttcggggcgg	aggggcggcc	2580
ggtcccggat	taataatcat	ccactgcacc	tcagagccgc	cagagctgtc	tggccagtgg	2640
cttattacto	agcccttctc	tetgegteeg	teegtetete	cgcatgccag	aaagagtcac	2700
cggtcactgt	: acagagctca	cgagttcgtc	acatttttct	acaaatggtg	gaggcggcgg	2760
attttaggct	: caagtcatga	ccctctgggt	cactccagaa	tcagctaggt	caacgaataa	2820
ggatgattct	: ataggaagat	ccaggcaccg	gtcaaccatg	atctggacag	g atttgggagc	2880
tcggtataaq	g ctctccacct	atcttattct	: gtatagttta	ggcttaaagt	ttatccagga	2940
gatgttgctç	g aagtcgattt	gagtccactt	cctcactggt	: agctatacga	a ctttgatggt	3000
cgttgtagg	g gctgtattag	gtctcgatca	a aacacaaata	a gaattaaat	g gtactcgagt	3060
ccactgaag	g tggettetee	gtetteegta	a geegtgeega	a aatccttac	a gcttgtgttg	3120
tgtgacttt	t ggttacgccg	tctgacttt	t gtggtgagc	t aactagaga	t catgctatat	3180

WO 2004/063358 PCT/EP2004/000100 21/358

ctcctgattt aatacaatgc tcatcataac attccacctg gaactgctag caacgtttga 3240 cttgcattgt gcaacgccct ttgcagagct atcggatgat caatagtgcc acgttctaaa 3300 ttcaaccaac gcaggtgccc caagccttcg acatccggat gtatttcgaa aacctcatgg 3360 cgattgcagt cctcagattc atgttcattc caatgctcat tggtgaataa aaggttcaca 3420 3480 gggaataagt tcaaactcga gatacttgag aatattgaaa gccaaaggac cctctatgct ccaagctaga gtctcagcct ggaaagcaaa tccaaatgaa gctatgctac ctccaattcc 3540 tcatcatctt atctataata cagagtcgaa gaatatcctc ttgacaccgc tccgtcctcc 3600 gacttcaata aggagettae teeteettga caccaccet ceagttette teggegttet 3660 ggagggaggc cttgtcggtc ttgggctggc cctggctgag aaagctgttg gcagccttaa 3720 agggacgctg gaggtcacca gtcgctggct tcccgaagac gtggatctta accagattcg 3780 aaagcgcctt cagcggatga tcgactggat cagaagagcg ttggtgtact tgaagtacag 3840 atgcatgacg gccatcatgc caacgcccat gaactggctc ttaatgagct ggcggaactg 3900 gcccttatcg tactccatgt tggtagttgt gacaggacga ggctcctcgc cgcttccaag 3960 cggagcaggc tcgacgtatt tcagtgtcga aagatctgat caagagacag gatgaggatc 4020 gtttcgcatg attgaacaag atggattgca cgcaggttct ccggccgctt gggtggagag 4080 gctattcggc tatgactggg cacaacagac aatcggctgc tctgatgccg ccgtgttccg 4140 gctgtcagcg caggggcgcc cggttctttt tgtcaagacc gacctgtccg gtgccctgaa 4200 tgaactgcag gacgaggcag cgcggctatc gtggctggcc acgacgggcg ttccttgcgc 4260 4320 agctgtgctc gacgttgtca ctgaagcggg aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc tcctgccgag aaagtatcca tcatggctga 4380 tgcaatgcgg cggctgcata cgcttgatcc ggctacctgc ccattcgacc accaagcgaa 4440

WO 2004/063358 PCT/EP2004/000100 22/358

acatcgcatc	gagcgagcac	gtactcggat	ggaaġccggt	cttgtcgatc	aggatgatct	4500
ggacgaagag	catcaggggc	tcgcgccagc	cgaactgttc	gccaggctca	aggcgcgcat	4560
gcccgacggc	gaggatctcg	tcgtgaccca	tggcgatgcc	tgcttgccga	atatcatggt	4620
ggaaaatggc	cgcttttctg	gattcatcga	ctgtggccgg	ctgggtgtgg	cggaccgcta	4680
tcaggacata	gcgttggcta	cccgtgatat	tgctgaagag	cttggcggcg	aatgggctga	4740
cegetteete	gtgctttacg	gtategeege	tcccgattcg	cagcgcatcg	ccttctatcg	4800
ccttcttgac	gagttettet	gagcgggact	ctggggttcg	aaatgaccga	ccaagcgacg	4860
cccaacctgc	catcacgaga	tttcgattcc	accgccgcct	tctatgaaag	gttgggcttc	4920
ggaatcgttt	tccgggacgc	cggctggatg	atcctccagc	gcggggatct	catgctggag	4980
ttcttcgccc	accccgggct	cgatcccctc	gcgagttggt	tcagctgctg	cctgaggctg	5040
gacgacetcg	cggagttcta	ccggcagtgc	aaatccgtcg	gcatccagga	aaccagcagc	5100
ggctatccgc	gcatccatgc	ccccgaactg	caggagtggg	gaggcacgat	ggccgctttg	5160
gtccggatct	ttgtgaagga	accttacttc	tgtggtgtga	cataattgga	caaactacct	5220
acagagattt	aaagctctaa	ggtaaatata	aaattttaa	gtgtataatg	tgttaaacta	5280
ctgattctaa	ttgtttgtgt	attttagatt	ccaacctatg	gaactgatga	atgggagcag	5340
tggtggaatg	cctttaatga	ggaaaacctg	ttttgctcag	aagaaatgcc	atctagtgat	5400
gatgaggcta	ctgctgactc	tcaacattct	actcctccaa	aaaagaagag	aaaggtagaa	5460
gaccccaagg	actttccttc	agaattgcta	agttttttga	gtcatgctgt	gtttagtaat	5520
agaactcttg	cttgctttgc	tatttacacc	acaaaggaaa	aagctgcact	gctatacaag	5580
aaaattatgg	aaaaatattc	tgtaaccttt	ataagtaggc	ataacagtta	taatcataac	5640

WO 2004/063358 PCT/EP2004/000100 23/358

atactgtttt	ttcttactcc	acacaggcat	agagtgtctg	ctattaataa	ctatgctcaa	5700
aaattgtgta	cctttagctt	tttaatttgt	aaaggggtta	ataaggaata	tttgatgtat	5760
agtgccttga	ctagagatca	taatcagcca	taccacattt	gtagaggttt	tacttgcttt	5820
aaaaaacctc	ccacacctcc	ccctgaacct	gaaacataaa	atgaatgcaa	ttgttgttgt	5880
taacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	caaatttcac	5940
aaataaagca	ttttttcac	tgcattctag	ttgtggtttg	tccaaactca	tcaatgtatc	6000
ttatcatgtc	tggatctgac	gggtgcgcat	gatcgtgctc	ctgtcgttga	ggacccggct	6060
aggctggcgg	ggttgcctta	ctggttagca	gaatgaatca	ccgatacgcg	agcgaacgtg	6120
aagcgactgc	tgctgcaaaa	cgtctgcgac	ctgagcaaca	acatgaatgg	tetteggttt	6180
ccgtgtttcg	taaagtctgg	aaacgcggaa	gtcagcgctc	ttccgcttcc	tegeteactg	6240
actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	6300
tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	6360
aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	6420
gctccgccc	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	6480
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctcctgt	6540
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	6600
ttctcatago	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	6660
ctgtgtgcac	gaaccccccg	ttcagcccga	cegetgegee	ttatccggta	actatcgtct	6720
tgagtccaac	: ccggtaagac	acgacttato	: gccactggca	gcagccactg	gtaacaggat	6780
tagcagagcg	g aggtatgtag	geggtgetae	: agagttcttg	aagtggtggc	: ctaactacgg	6840
ctacactaga	a aggacagtat	ttggtatctg	g cgctctgctg	aagccagtta	a ccttcggaaa	6900

WO 2004/063358 PCT/EP2004/000100 24/358

aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt	6960
ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc	7020
tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt	7080
atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta	7140
aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat	7200
ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac	7260
tacgatacgg gagggettac catetggeee cagtgetgea atgatacege gagaeecaeg	7320
ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag	7380
tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg aagctagagt	7440
aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctgcag gcatcgtggt	7500
gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt	7560
tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt	7620
cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct	7680
tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt	7740
ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaacac gggataatac	7800
cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa	7860
actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa	7920
ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca	7980
aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct	8040
ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga	8100
atgtatttag aaaaataaac aaataggggt teegegeaca ttteeeegaa aagtgeeace	8160

WO 2004/063358 PCT/EP2004/000100 25/358

tgacgtctaa gaaaccatta	ttatcatgac	attaacctat	aaaaataggc	gtatcacgag	8220
gccctttcgt cttcaagaat	tegeggeege	aattaaccct	cactaaagga	tccctatagt	8280
gagtcgtatt atgcggccgc	gaattctcat	gtttgaccgc	ttatcatcga	taagctctgc	8340
tttttgttga cttccattgt	tcattccacg	gacaaaaaca	gagaaaggaa	acgacagagg	8400
ccaaaaagct cgctttcagc	acctgtcgtt	tcctttcttt	tcagagggta	ttttaaataa	8460
aaacattaag ttatgacgaa	gaagaacgga	aacgccttaa	accggaaaat	tttcataaat	8520
agcgaaaacc cgcgaggtcg	ccgccccgta	acaaggcgga	tcgccggaaa	ggacccgcaa	8580
atgataataa ttatcaattg	catactatcg	acggcactgc	tgccagataa	caccaccggg	8640
gaaacattcc atcatgatgg	ccgtgcggac	ataggaagcc	agttcatcca	tegetttett	8700
gtctgctgcc atttgctttg	tgacatccag	cgccgcacat	tcagcagcgt	ttttcagcgc	8760
gttttcgatc aacgtttcaa	tgttggtatc	aacaccaggt	ttaactttga	acttatcggc	8820
actgacggtt accttgttct	gegetggete	atcacgcagg	ataccaaggc	tgatgttgta	8880
gatattggtc accggctgag	ggttttcgat	tgccgctgcg	tggatagcac	catttgcgat	8940
caggengtee ttgatgaatg	g acactccatt	gcgaataagt	tcgaaggaga	cggtgtcacg	9000
aatgegetgg tecagetegg	g togattgoot	tttgtgcagc	agaggtatca	atctcaacgc	9060
caaggeteat egaagegeaa	a tattgctgct	caccaaaacg	cgtattgacc	aggtgttcaa	9120
cggcaaattt ctgcccttc	t gatgtcagaa	aggcaaagtg	attttctttc	tggtattcag	9180
ttgctgtgtg tcggtttca	g caaaaccaag	r ctcgcgcaat	teggetgtge	agatttagaa	9240
ggcagatcac cagacagca	a cggccaacgg	g aaaacagcgc	: atacagaaca	teegtegeeg	9300
cgccgacaac gtgataatt	t ttatgaccca	tgatttattt	: ccttttagac	gtgagcctgt	9360
cgcacagcaa agccgccga	a agttectega	a agctagctto	agacgtgtct	: agatacgtct	9420

WO 2004/063358 PCT/EP2004/000100 26/358

gctttttgtt	gacttccatt	gttcattcca	cggacaaaaa	cagagaaagg	aaacgacaga	9480
ggccaaaaag	ctcgctttca	gcacctgtcg	tttcctttct	tttcagaggg	tattttaaat	9540
aaaaacatta	agttatgacg	aagaagaacg	gaaacgcctt	aaaccggaaa	attttcataa	9600
atagcgaaaa	cccgcgaggt	cgccgccccg	taacaaggcg	gatcgccgga	aaggacccgc	9660
aaatgataat	aattatcaat	tgcatactat	cgacggcact	gctgccagat	aacaccaccg	9720
gggaaacatt	ccatcatgat	ggccgtgcgg	acataggaag	ccagttcatc	catcgctttc	9780
ttgtctgctg	ccatttgctt	tgtgacatcc	agcgccgcac	attcagcagc	gtttttcagc	9840
gcgttttcga	tcaacgtttc	aatgttggta	tcaacaccag	gtttaacttt	gaacttatcg	9900
gcactgacgg	ttaccttgtt	ctgcgctggc	tcatcacgca	ggataccaag	gctgatgttg	9960
tagatattgg	tcaccggctg	agggttttcg	attgccgctg	cgtggatagc	accatttgcg	10020
atcaggcngt	ccttgatgaa	tgacactcca	ttgcgaataa	gttcgaagga	gacggtgtca	10080
cgaatgcgct	ggtccagctc	ggtcgattgc	cttttgtgca	gcagaggtat	caatctcaac	10140
gccaaggcto	atcgaagcgc	aatattgctg	ctcaccaaaa	cgcgtattga	ccaggtgttc	10200
aacggcaaat	ttctgccctt	ctgatgtcag	aaaggcaaag	tgattttctt	tctggtattc	10260
agttgctgtg	, tgtcggtttc	agcaaaacca	agctcgcgca	atteggetgt	gcagatttag	10320
aaggcagato	accagacago	aacggccaac	ggaaaacagc	gcatacagaa	cateegtege	10380
cgcgccgaca	a acgtgataat	tttatgaco	catgatttat	ttccttttag	acgtgagcct	10440
gtcgcacago	c aaagccgccg	aaagttccto	: gaccgatgco	: cttgagagco	: ttcaacccag	10500
tcagctcct	ccggtgggcg	g cggggcatga	ı ctatcgtcgc	: cgcacttatg	g actgtcttct	10560
ttatcatgca	a actcgtagga	a caggtgccgg	g cagcgctctg	ggtcattttc	ggcgaggacc	10620
gctttcgct	g gagcgcgacç	g atgatcggco	: tgtcgcttgc	ggtattcgga	atcttgcacg	10680

	ccctcgctca	agccttcgtc	actggtcccg	Ccaccaaacg	tttcggcgag	aagcaggcca	10740
	ttatcgccgg	catggcggcc	gacgcgctgg	gctacgtctt	gctggcgttc	gcgacgcgag	10800
	gctggatggc	cttccccatt	atgattcttc	tegetteegg	cggcatcggg	atgcccgcgt	10860
	tgcaggccat	gctgtccagg	caggtagatg	acgaccatca	gggacagctt	caaggatcgc	10920
	tegeggetet	taccagccta	acttcgațca	ttggaccgct	gatcgtcacg	gcgatttatg	10980
	ccgcctcggc	gagcacatgg	aacgggttgg	catggattgt	aggegeegee	ctataccttg	11040
	tetgeeteee	cgcgttgcgt	cgcggtgcat	ggagccgggc	cacctcgacc	tgaatggaag	11100
	ccggcggcac	ctcgctaacg	gattcaccac	tccaagaatt	ggagccaatc	aattettgeg	11160
	gagaactgtg	aatgcgcaaa	ccaacccttg	gcagaacata	tccatcgcgt	ccgccatctc	11220
	cagcagccgc	acgcggcgca	tctcgggcag	cgttgggtcc	tgcagatccg	gctgtggaat	11280
	gtgtgtcagt	tagggtgtgg	aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	11340
	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	caggeteece	agcaggcaga	11400
	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	tecegeceet	aactccgccc	11460
	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	cccatggctg	actaatttt	11520
•	tttatttatg	cagaggccga	ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	11580
	ggctttttg	gaggcctagg	cttttgcaaa	a			11611

<210> 5

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Primer

WO 2004/063358 PCT/EP2004/000100 28/358 <400> 5 21 cgatgtagga gggcgtggat a <210> 6 <211> 21 <212> DNA <213> Artificial <220> <223> Primer <400> 6 21 gcttctgcgg gcgatttgtg t <210> 7 <211> 20 <212> DNA <213> Artificial <220> <223> Primer <400> 7 20 tgagaatatc accggaattg <210> 8 <211> 21 <212> DNA <213> Artificial

<220>
<223> Primer

<400> 8
agctcgacat actgttcttc c

WO 2004		PCT/EP2004/000100
	29/358	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Primer	
	`	
<400>	9	
gtgaat	ggaa atcccatcgc tgtc	24
	•	
<210>	10	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		•
<223>	Primer	
<400>	10	
agtggg	tact ctaaaggcca tacc .	24
<210>	11	
<211>	1771	
<212>	DNA	
<213>	Haematococcus pluvialis	
<220>		
	CDS	
<222>	(166)(1155)	
<400>	11	
ggcacg	aget tgeacgeaag teagegegeg caagteaaca eetgeeggte	cacageetea 60
		tagattanna 100
aataat	aaag ageteaageg tttgtgegee tegaegtgge eagtetgeae	tgccttgaac 120
	artat aggaggaga taratagast saggaggata asags ata	cag cta gca 177
cegega	gtct cccgccgcac tgactgccat agcacagcta gacga atg	Gln Leu Ala
	1100	

														_,		205	
					gag											225	
	TOX	vaı	Met	ьеи	Glu 10	GIII	neu	THE	GTĀ	15	AIa	GIU	ATA	ьеu	_		
5					10					13					20		
			226	~ =~	gtt	~ ~=	~~~	200	tat	aac	ata	tta	cat	202	taa	273	
	_		-		Val											213	
GIU	гÃЗ	GIU	цув	25	var	ALG	GIĀ	Ser	30	rop	Val	neu	ar g	35	ırp		
				23					30					33			
aca	acc	caq	tac	tcg	ctt	ccg	tca	gaa	gag	tca	gac	gcg	gcc	cgc	ccg	321	
		_			Leu												
			40					45					50	·			
gga	ctg	aag	aat	gcc	tac	aag	cca	cca	cct	tcc	gac	aca	aag	ggc	atc	369	
Gly	Leu	Lys	Asn	Ala	Tyr	Lys	Pro	Pro	Pro	Ser	Asp	Thr	Lys	Gly	Ile		
		55					60					65					
aca	atg	gcg	cta	cgt	gtc	atc	ggc	tcc	tgg	gcc	gca	gtg	ttc	ctc	cac	417	
Thr	Met	Ala	Leu	Arg	Val	Ile	Gly	Ser	Trp	Ala	Ala	Val	Phe	Leu	His		
	70					75				-	80						
gcc	att	ttt	caa	atc	aag	ctt	ccg	acc	tcc	ttg	gac	cag	ctg	cac	tgg	465	
Ala	Ile	Phe	Gln	Ile	Lys	Leu	Pro	Thr	Ser	Leu	Asp	Gln	Leu	His	Trp		
85					90					95					100		
-					gcc											513	
Leu	Pro	Val	Ser	Asp	Ala	Thr	Ala	Gln	Leu	Val	Ser	Gly	Thr				
				105					110					115			
																5.64	
_															aca	561	
Leu	Let	ı Asp			. vaı	vaı	Pne			Leu	. GIU	Pne			Thr		
			120					125	•				130				
		•															
aac	ctt	. +++	ato	acc	. aco	cat	gat	: act	: ato	cat	gac	acc	ato	gee	atg	609	•
															Met	• • • • • • • • • • • • • • • • • • • •	
		135		. 			140				-	145					
aga	a aad	e ago	, cac	r ctt	: aat	gac	tto	: tto	g ggc	: aga	gta	ı tgo	ato	tec	ttg	657	
_			-			-							_		Leu		
	150					155					160						

31/358

tac	gcc	tgg	ttt	gat	tac	aac	atg	ctg	cac	cgc	aag	cat	tgg	gag	cac	705
Tyr	Ala	Trp	Phe	Asp	Tyr	Asn	Met	Leu	His	Arg	Lys	His	Trp	Glu	His	
165					170					175					180	
a aa	226	Cac	act	aaa	gag	ata	aac	224	as a	cct	aac	ttc	cac	add	aas	753
																755
HIS	ASI	HIS	TILL		Glu	vaı	GTĀ	гуд		PLO	MSD	FIIG	птъ		GTĀ	
				185					190					195		
aac	cct	ggc	att	gtg	ccc	tgg	ttt	gcc	agc	ttc	atg	tcc	agc	tac	atg	801
Asn	Pro	Gly	Ile	Val	Pro	Trp	Phe	Ala	Ser	Phe	Met	Ser	Ser	Tyr	Met	
			200					205					210			
tcg	atg	tgg	cag	ttt	gcg	cgc	ctc	gca	tgg	tgg	acg	gtg	gtc	atg	cag	849
Ser	Met	Trp	Gln	Phe	Ala	Arg	Leu	Ala	Trp	Trp	Thr	Val	Val	Met	Gln	
		215				_	220		_			225				
a t- a-	aka	aat	aaa	002	atg	~ ~~	224	ata	ata	ata	++~	ato	aca	acc	aca	897
_	-															037
Leu		GTĀ	Ala	Pro	Met		ASII	ьeu	ьeu	vaı			Ala	ALA	Ald	
	230					235					240					
CCC	atc	ctg	tcc	gcc	ttc	cgc	ttg	ttc	tac	ttt	ggc	acg	tac	atg	CCC	945
Pro	Ile	Leu	Ser	Ala	Phe	Arg	Leu	Phe	Tyr	Phe	Gly	Thr	Tyr	Met	Pro	
245					250					255					260	
cac	aag	cct	gag	cct	ggc	gcc	gcg	tca	ggc	tct	tca	cca	gcc	gtc	atg	993
His	Lys	Pro	Glu	Pro	Gly	Ala	Ala	Ser	Gly	Ser	Ser	Pro	Ala	Val	Met	
	_			265										275		
220	tac	tac	nee '	tco	י כמכ	act	ago	can	aca	tee	gac	cta	ato	ago	ttt	1041
			_	_											Phe	
ASII	LLL	, 115			. Alg	1111	Ser	285		. DCI	voř	, 1100	290			
			280					200	,				250	•		
																4000
_		_				-									ccc	1089
Leu	Thr	Cys	Tyr	His	3 Phe	Asp	Leu	His	Trp	Glu	His			Tr	Pro	
		295	5				300)				305	•			
tto	gco	ccc	tgg	, tgg	g gag	, ctg	ccc	aac	tgc	cgc	cgc	cto	, tct	ggc	c cga	1137
Phe	a Ala	Pro	Tr	Tr	Glu	. Lev	Pro	Asr	суя	Arg	, Arg	Lev	ser	: Gl3	Arg	
	310)				315	;				320)				
									_							4405

ggt ctg gtt cct gcc tag ctggacacac tgcagtgggc cctgctgcca

Gly Leu Val Pro Ala

325

gctgggcatg	caggttgtgg	caggactggg	tgaggtgaaa	agctgcaggc	gctgctgccg	1245
gacacgctgc	atgggctacc	ctgtgtagct	gccgccacta	ggggagggg	tttgtagctg	1305
tcgagcttgc	cccatggatg	aagctgtgta	gtggtgcagg	gagtacaccc	acaggccaac	1365
acccttgcag	gagatgtctt	gcgtcgggag	gagtgttggg	cagtgtagat	gctatgattg	1425
tatcttaatg	ctgaagcctt	taggggagcg	acacttagtg	ctgggcaggc	aacgccctgc	1485
aaggtgcagg	cacaagctag	gctggacgag	gactcggtgg	caggcaggtg	aagaggtgcg	1545
ggagggtggt	gccacaccca	ctgggcaaga	ccatgctgca	atgctggcgg	tgtggcagtg	1605
agagctgcgt	gattaactgg	gctatggatt	gtttgagcag	tctcacttat	tctttgatat	1665
.agatactggt	caggcaggtc	aggagagtga	gtatgaacaa	gttgagaggt	ggtgcgctgc	1725
ccctgcgctt	atgaagctgt	aacaataaag	tggttcaaaa	aaaaaa		1771

<210> 12

<211> 329

<212> PRT

<213> Haematococcus pluvialis

<400> 12

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val
20 25 30

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp

35 40 45

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 50 55 60

Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala 65 70 75 80

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly Thr Ser Ser Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu 115 120 125

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly 130 135 140

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val
145 150 155 160

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 190

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met 195 200 205

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr 210 215 220

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe
225 230 235 240

Met Ala Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly
245 250 255

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 275 280 285

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His
290 295 300

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315 320

Leu Ser Gly Arg Gly Leu Val Pro Ala 325

<210> 13

<211> 1662

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (168)..(1130)

		_															
<400> cgggg			aaga	aatt	c aa	cagc	tgca	agc	gcgc	CCC	agcc	tcac	ag c	gcca	agtga		60
gctat	tcga	cg t	ggtt	gtga	g cg	ctcg	acgt	ggt	ccac	tga	cggg	cctg	tg a	gcct	ctgcg	1	.20
ctcc	gtec	tc t	gcca	aatc	t cg	cgtc	gggg	cct	gcct	aag	tcga	aga		cac His		1	.76
gca	tcg	gca	cta	atg	gtc	gag	cag '	aaa	ggc	agt	gag	gca	gct	gct	tcc	2	224
Ala	Ser 5	Ala	Leu	Met	Val	Glu 10	Gln	Lys	Gly	Ser	Glu 15	Ala	Ala	Ala	Ser		
	•																
agc	cca	gac	gtc	ttg	aga	gcg	tgg	gcg	aca	cag	tat	cac	atg	cca	tcc	2	272
Ser																	
20					25					30					35		
gag	tca	tca	дас	gca	gct	cat	cct	aca	cta	aaq	cac	qcc	tac	aaa	cct		320
					Ala												
				40					45	-				50			
cca	gca	tct	gac	gcc	aag	ggc	atc	acg	atg	gcg	ctg	acc	atc	att	ggc	:	368
Pro	Ala	Ser	Asp 55	Ala	Lys	Gly	Ile	Thr 60	Met	Ala	Leu	Thr	Ile 65	Ile	Gly		
									•								
															ccg		416
Thr	Trp	Thr 70	Ala	Val	Phe	Leu	His 75	Aľa	Ile	Phe	Gln	Ile 80	Arg	Leu	Pro		
	.				ctt	020	+ aa	++~	cat	ata	tac	as a	acc	aca	acc		464
		_	_												Ala		104
THE	85	Mec	veħ	GIII	лец	90	115	Dou	110	741	95	010					
		1. I							a - a		240	act		ato	tta		512
															ttc Phe		J12
100	rea	. Leu	GLY	GIY	105		Ser	Дец	. neu	110		, HIO	, HIC	· vai	115		
att	gta	ctt	gag	tto	ctg	tac	act	ggt	cta	tto	ato	acc	aca	cat	gac		560
Ile	Val	. Leu	Glu	Phe	Leu	Tyr	Thr	: Gly	Leu	Phe	Ile	Thi	Thr	His	a Asp		
				120)				125	i				130)		
		•									•						

gca atg cat ggc acc ata gct ttg agg cac agg cag ctc aat gat ctc

295

Ala	Met	His	Gly	Thr	Ile	Ala	Leu	Arg	His	Arg	Gln	Leu	Asn	Asp	Leu	
			135					140					145			
at t	~~~	226	ato	taa	a+ a	tas	at-~	+20	~~~	taa	+++	cac	tac	200	ata	656
	_					tca	_		_							030
Leu	GTĀ		тте	Cys	ITE	Ser		Tyr	Ala	Trp	Pne		ıyr	ser	Met	
		150					155					160				
																_
ctg	cat	cgc	aag	cac	tgg	gag	cac	cac	aac	cat	act	ggc	gaa	gtg	ggg	704
Leu	His	Arg	Lys	His	Trp.	Glu	His	His	Asn	His	Thr	Gly	Glu	Val	Gly	
	165				_	170					175					
						·							~~~			752
	_					aag										752
Lys	Asp	Pro	Asp	Phe	His	Lys	GLY	Asn	Pro	GIY	Leu	Val	Pro	Trp	Phe	
180					185					190					195	
gcc	agc	ttc	atg	tcc	agc	tac	atg	tcc	ctg	tgg	cag	ttt	gcc	cgg	ctg	800
Ala	Ser	Phe	Met	Ser	Ser	Tyr	Met	Ser	Leu	Trp	Gln	Phe	Ala	Arg	Leu	
				200					205					210		
		.	~~~	~+~	~+~	- 		a t c	a+a	~~~	~~~	200	ata	~~=	22t	848
						atg										040
Ala	Trp	Trp	Ala	Val	Val	Met	GIn	Met	Leu	GTA	Ala	Pro			Asn	
			215					220					225			
									•							
ctc	cta	gtc	ttc	atg	gct	gca	gcc	cca	atc	ttg	tca	gca	ttc	cgc	ctc	896
Leu	Leu	Val	Phe	Met	Ala	Ala	Ala	Pro	Ile	Leu	Ser	Ala	Phe	Arg	Leu	
		230					235					240				
++-	+ • •	++-	~~~	act	tag	ata	~~=	cac	224	cct	a a a		aac	cct	aca	944
						ctg										244
Pne			. сту	Thr	TĀI	Leu		nis	ьуѕ	PIO			GIY	Pro	ALA	
	245	1				250					255	1				
gca	ggc	tct	. cag	gtg	atg	gcc	tgg	ttc	agg	gcc	aag	aca	agt	gag	gca	992
Ala	Gly	Sex	Gln	Val	Met	Ala	Trp	Phe	Arg	Ala	Lys	Thr	Ser	Glu	Ala	
260	l	٠			265	,				270)				275	
				•												
tat	. aat	: ata	, ato	rant	tho	: cto	r aca	. tan	: tac	cac	ttt	. dan	cta	car	tgg:	1040
	_														Trp	
sei	MSL	, val	. Met			. neu		. Сув			. 1116	. Asp	neu			
				280	,				285	•				290	,	
gag	cac	cad	agg	, tgg	ccc	ttt	gcc	ccc	: tgg	r tgg	cag	, ctg	ccc	cac	: tgc	1088
Glu	ı His	His	Arg	Tr	Pro	Phe	ala	Pro	Trp	Tr	Glr	ı Lev	Pro	His	Cys	
				_												

300

cgc cgc ctg tcc ggg cgt ggc ctg gtg cct gcc ttg gca tga	1130
Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 310 315 320	
cctggtccct ccgctggtga cccagcgtct gcacaagagt gtcatgctac agggtgctgc	1190
ggccagtggc agcgcagtgc actctcagcc tgtatggggc taccgctgtg ccactgagca	1250
	1310
ctgggcatgc cactgagcac tgggcgtgct actgagcaat gggcgtgcta ctgagcaatg	1310
ggcgtgctac tgacaatggg cgtgctactg gggtctggca gtggctagga tggagtttga	1370
tgcattcagt agcggtggcc aacgtcatgt ggatggtgga agtgctgagg ggtttaggca	1430
gccggcattt gagagggcta agttataaat cgcatgctgc tcatgcgcac atatctgcac	1490
acagccaggg aaatcccttc gagagtgatt atgggacact tgtattggtt tcgtgctatt	1550
acageouggg aaacoocco gagagagaet togggaaaac ogeneeggee eegegee	
gttttattca gcagcagtac ttagtgaggg tgagagcagg gtggtgagag tggagtgagt	1610
gagtatgaac ctggtcagcg aggtgaacag cctgtaatga atgactctgt ct	1662

<210> 14

<211> 320

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met His Val Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala 1 5 10 15

Ala Ala Ser Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His
20 25 30

Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala 35 40 45 Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr
50 55 60

Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile
65 70 75 80

Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 85 90 95

Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala 100 105 110

Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr
115 120 125

Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu 130 135 140

Tyr Ser Met Leu His Arg Lys His Trp Glu His His Asn His Thr Gly
165 .170 175

Glu Val Gly Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val 180 185 190

Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe 195 200 205

Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro

210 215 220

Met Ala Asn Leu Leu Val Phe Met Ala Ala Pro Ile Leu Ser Ala 225 230 235 240

Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro 245 250 255

Gly Pro Ala Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr 260 265 270

Ser Glu Ala Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp 275 280 285

Leu His Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu 290 295 300

Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 305 310 315 320

<210> 15

<211> 729

<212> DNA

<213> Agrobacterium aurantiacum

<220>

<221> CDS

<222> (1)..(729)

<400> 15

atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc acc agc ctg Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 48

1 5 10 15

WO 2004/063358 PCT/EP2004/000100 40/358 atc gtc tcg ggc ggc atc atc gcc gct tgg ctg gcc ctg cat gtg cat Ile Val Ser Gly Gly Ile Ile Ala Ala Tro Leu Ala Leu His Val His gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala cat gac gcg atg cac ggg tcg gtg gtg ccg ggg cgt ccg cgc gcc aat His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp cgc aag atg atc gtc aag cac atg gcc cat cac cgc cat gcc gga acc Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr gac gac gac ccc gat ttc gac cat ggc ggc ccg gtc cgc tgg tac gcc Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala ege tte ate gge ace tat tte gge tgg ege gag ggg etg etg eee Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro gtc atc gtg acg gtc tat gcg ctg atc ctt ggg gat cgc tgg atg tac Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr gtg gtc ttc tgg ccg ctg ccg tcg atc ctg gcg tcg atc cag ctg ttc Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

gtg ttc ggc acc tgg ctg ccg cac cgc ccc ggc cac gac gcg ttc ccg 576
Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro

WO 2004/063358		PCT/EP2004/000100
	41/358	

180 185 190

gac cgc cac aat gcg cgg tcg tcg cgg atc agc gac ccc gtg tcg ctg 624
Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

ctg acc tgc ttt cac ttt ggc ggt tat cat cac gaa cac cac ctg cac

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

210

220

ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac 720
Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp
225 230 235 240

acc gca tga 729
Thr Ala

<210> 16

<211> 242

<212> PRT

<213> Agrobacterium aurantiacum

<400> 16

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His
20 25 30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

WO 2004/063358 PCT/EP2004/000100 42/358

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala
115
120
125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His
210 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240 Thr Ala

<210> 17 <211> 1631 <212> DNA <213> Alcaligenes sp. <220> <221> CDS <222> (99)..(827) <400> 17 ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg 60 ceggtetagg etgtegecet acgeageagg agtttegg atg tee gga egg aag eet 116 Met Ser Gly Arg Lys Pro 5 1 ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc 164 Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 20 15 ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat 212 Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp 25 30 35 260 geg gee geg cat eeg etg ett gee gtg etg tge etg get ggg etg ace Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr 40 45 50 308 tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly 60 65 70 55 tee gtg gtg eeg ggg egg eeg ege gee aat geg geg ate ggg eaa etg 356

Ser Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ile Gly Gln Leu

WO 2004/063358		PCT/EP2004/000100
	44/250	

				٠,				44/35	8								
				75					80					85			
						GJA aaa							_				404
			90					95					100				
cac	atg	acg	cat	cac	cgg	cac	gcc	ggc	acc	gac	aac	gat	ccc	gat	ttc		452
His	Met		His	His	Arg	His		Gly	Thr	Asp	Asn		Pro	Asp	Phe		
		105					110					115					
ggt	cac	gga	ggg	ccc	gtg	cgc	tgg	tac	ggc	agc	ttc	gtc	tcc	acc	tat		500
Gly	His	Gly	Gly	Pro	Val	Arg	Trp	Tyr	Gly	Ser		Val	Ser	Thr	Tyr		
	120					125					130						
ttc	ggc	tgg	cga	gag	gga	ctg	ctg	cta	ccg	gtg	atc	gtc	acc	acc	tat		548
Phe	Gly	Trp	Arg	Glu	Gly	Leu	Leu	Leu	Pro	Val	Ile	Val	Thr	Thr	Tyr	-	
135					140		•			145					150		
					- -		.						.				50 <i>6</i>
	_		_		_	cgc											596
AIA	ьеи	TTE	Leu	155		Arg	тр	Mec	160	vaı	тте	Pne	пр	165			
				100					100					100			
ccg	gcc	gtt	ctg	gcg	tcg	atc	cag	att	ttc	gtc	ttc	gga	act	tgg	ctg		644
Pro	Ala	Val	Leu	Ala	Ser	Ile	Gln	Ile	Phe	Va1	Phe	Gly	Thr	Trp	Leu		
			170					175					180				
ccc	cac	cac	cca	gga	cat	gac	gat	ttt	ccc	gac	cgg	cac	aac	gcg	agg		692
						Asp											
		185					190					195					
tcg	acc	ggc	ato	ggc	gac	ccg	ttg	tca	cta	ctg	acc	tgc	ttc	cat	ttc		740
Ser	ጥከተ	Glv	·Ile	Glv	Asp	Pro	Leu	Ser	Leu	Leu	Thr	Cvs	Phe	His	Phe		
202	200	_				205					210						
		•															
ggc	ggc	tat	cac	cac	gaa	cat	cac	ctg	cat	ccg	cat	gtg	ccg	tgg	tgg		788
Gly	Gly	Туг	His	His	Glu	His	His	Leu	His	Pro	His	Val	Pro	Trp	Trp		
215	,				220	ı				225					230		
cgc	ctg	r cct	cgt:	aca	ı cgc	aag	acc	gga	ggc	e cgc	gca	tga	. cgc	aatt	cct		837

Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly Arg Ala

cattgtcgtg	gcgacagtcc	tcgtgatgga	gctgaccgcc	tattccgtcc	accgctggat	897
tatgcacggc	cccctaggct	ggggctggca	caagtcccat	cacgaagagc	acgaccacgc	957
gttggagaag	aacgacctct	acggcgtcgt	cttcgcggtg	ctggcgacga	tcctcttcac	1017
egtgggegee	tattggtggc	cggtgctgtg	gtggatcgcc	ctgggcatga	cggtctatgg	1077
gttgatctat	ttcatcctgc	acgacgggct	tgtgcatcaa	cgctggccgt	ttcggtatat	1137
tccgcggcgg	ggctatttcc	gcaggctcta	ccaagctcat	cgcctgcacc	acgcggtcga	1197
ggggcgggac	cactgcgtca	gcttcggctt	catctatgcc	ccacccgtgg	acaagctgaa [.]	1257
gcaggatctg	aagcggtcgg	gtgtcctgcg	ccccaggac	gagcgtccgt	cgtgatctct	1317
gateceggeg	tggccgcatg	aaatccgacg	tgctgctggc	aggggccggc	cttgccaacg	1377
gactgatcgc	gctggcgatc	cgcaaggcgc	ggcccgacct	tcgcgtgctg	ctgctggacc	1437
gtgcggcggg	cgcctcggac	gggcatactt	ggtcctgcca	cgacaccgat	ttggcgccgc	1497
actggctgga	ccgcctgaag	ccgatcaggc	gtggcgactg	gcccgatcag	gaggtgcggt	1557
tcccagacca	ttcgcgaagg	ctccgggccg	gatatggctc	gatcgacggg	cgggggctga	1617
tgcgtgcggt	gacc					1631

<210> 18

<211> 242

<212> PRT

<213> Alcaligenes sp.

<400> 18

Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu

1 5 10 15

Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe
20 25 30

Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 35 40 45

Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

٠.

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp

85 90 95

Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr 100 105 110

Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly
115 120 125

Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro 180 185 190 Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly
225 230 235 240

Arg Ala

<210> 19

<211> 729

<212> DNA

<213> Paracoccus marcusii

<220>

<221> CDS

<222> (1)..(729)

<400> 19

atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc aca agc ctg

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 10 15

atc gtc tcg ggc ggc atc atc gcc gca tgg ctg gcc ctg cat gtg cat

11e Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His

20
25
30

gcg ctg tgg ttt ctg gac gcg gcg gcc cat ccc atc ctg gcg gtc gcg . 144
Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala
35 40 45

aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

cat gac gcg atg cac ggg tcg gtc gtg ccg ggg cgt ccg cgc gcc aat

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn

70

75

80

gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg 288
Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp
85 90 95

cgc aag atg atc gtc aag cac atg gcc cat cac cgc cat gcc gga acc 336
Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr
100 105 110

gac gac gac cca gat ttc gac cat ggc ggc ccg gtc cgc tgg tac gcc 384
Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala
115 120 125

cgc ttc atc ggc acc tat ttc ggc tgg cgc gag ggg ctg ctg ctg ccc 432

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro
130 135 140

gtc atc gtg acg gtc tat gcg ctg atc ctg ggg gat cgc tgg atg tac 480
Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr
145 150 155 160

gtg gtc ttc tgg ccg ttg ccg tcg atc ctg gcg tcg atc cag ctg ttc 528

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

165 170 . 175

gtg ttc ggc act tgg ctg ccg cac cgc ccc ggc cac gac gcg ttc ccg

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro

180

185

190

gac cgc cat aat gcg cgg tcg tcg cgg atc agc gac cct gtg tcg ctg

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu

195 200 205

ctg acc tgc ttt cat ttt ggc ggt tat cat cac gaa cac cac ctg cac

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

210 215 220

ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac 720

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

235 230 235 240

acc gca tga 729
Thr Ala

<210> 20

<211> 242

<212> PRT

<213> Paracoccus marcusii

<400> 20

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30 .

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr

30/3

100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240

· Thr Ala

<210> 21 <211> 1629 <212> DNA

<213> Synechocystis sp.

<220>

<221> CDS

<222> (1)..(1629)

<400> 21

atg atc acc acc gat gtt gtc att att ggg gcg ggg cac aat ggc tta 48

Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu

1 . 5 10 15

gtc tgt gca gcc tat ttg ctc caa cgg ggc ttg ggg gtg acg tta cta 96

Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu

20 25 30

gaa aag cgg gaa gta cca ggg ggg gcg gcc acc aca gaa gct ctc atg 144
Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met
35 40 45

ccg gag cta tcc ccc cag ttt cgc ttt aac cgc tgt gcc att gac cac 192
Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His
50 55 60

gaa ttt atc ttt ctg ggg ccg gtg ttg cag gag cta aat tta gcc cag 240
Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln
65 70 75 80

tat ggt ttg gaa tat tta ttt tgt gac ccc agt gtt ttt tgt ccg ggg 288

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly

85 90 95

ctg gat ggc caa gct ttt atg agc tac cgt tcc cta gaa aaa acc tgt 336 Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys 100 105 110

gcc cac att gcc acc tat agc ccc cga gat gcg gaa aaa tat cgg caa 384
Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln
115 120 125

ttt gtc aat tat tgg acg gat ttg ctc aac gct gtc cag cct gct ttt 432

Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe aat gct ccg ccc cag gct tta cta gat tta gcc ctg aac tat ggt tgg Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp ·145 gaa aac tta aaa tcc gtg ctg gcg atc gcc ggg tcg aaa acc aag gcg Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala ttq gat ttt atc cgc act atg atc ggc tcc ccg gaa gat gtg ctc aat Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn qaa tgg ttc gac agc gaa cgg gtt aaa gct cct tta gct aga cta tgt Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys tcg gaa att ggc gct ccc cca tcc caa aag ggt agt agc tcc ggc atg Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met atg atg gtg gcc atg cgg cat ttg gag gga att gcc aga cca aaa gga Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly ggc act gga gcc ctc aca gaa gcc ttg gtg aag tta gtg caa gcc caa Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Gln ggg gga aaa atc ctc act gac caa acc gtc aaa cgg gta ttg gtg gaa Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu aac aac cag gcg atc ggg gtg gag gta gct aac gga gaa cag tac cgg Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg gcc aaa aaa ggc gtg att tct aac atc gat gcc cgc cgt tta ttt ttg

Ala Lys Lys Gly Val Ile Ser Asn Ile Asp Ala Arg Arg Leu Phe Leu

caa	ttg	gtg	gaa	ccg	ggg	gcc	cta	gcc	aag	gtg	aat	caa	aac	cta	ggg	960
Gln	Leu	Val	Glu	Pro	Gly	Ala	Leu	Ala	Lys	Val	Asn	Gln	Asn	Leu	Gly	
305					310					315					320	
gaa	cga	ctg	gaa	cgg	cgc	act	gtg	aac	aat	aac	gaa	gcc	att	tta	aaa	1008
Glu	Arg	Leu-	Glu	Arg	Arg	Thr	Val	Asn	Asn	Asn	Glu	Ala	Ile	Leu	Lys	
				325					330					335		
atc	gat	tgt	gcc	ctc	tcc	ggt	tta	ccc	cac	ttc	act	gcc	atg	gcc	ggg	1056
Ile	Asp	Cys	Ala	Leu	Ser	Gly	Leu	Pro	His	Phe	Thr	Ala	Met	Ala	Gly	
			340					345					350			•
ccg	gag	gat	cta	acg	gga	act	att	ttg	att	gcc	gac	tcg	gta	cgc	cat	1104
Pro	Glu	Asp	Leu	Thr	Gly	Thr	Ile	Leu	Ile	Ala	Asp	Ser	Val	Arg	His	
		355					360					365				
														•		
gtc	gag	gaa	gcc	cac	gcc	ctc	att	gcc	ttg	ggg	caa	att	ccc	gat	gct	1152
Val	Glu	Glu	Ala	His	Ala	Leu	Ile	Ala	Leu	Gly	Gln	Ile	Pro	Asp	Ala	
	370					375					380					
	_	tct			_	_										1200
Asn	Pro	Ser	Leu	Tyr	Leu	Asp	Ile	Pro	Thr		Leu	Asp	Pro	Thr	Met	
385					390					395					400	
_															tac	1248
Ala	Pro	Pro	Gly			Thr	Leu	Trp			Phe	Phe	Ala			
				405					410					415		
																1006
_															acc	1296
Arg	Ile	Ala			GLu	СТУ	Thr			. Met	. GIY	runr			Thr	
			420	1				425)				430			
						a-b								++-		1344
															acg Thr	1344
ASP	GIL	435	_	GIU	пĀs	vaı	. A16		ALG	vai	. 116	445		пес	. 1111	
		433	•				## <i>(</i>	,				447				
~ >~	. +=+	- ~~	· cat	. 220	· cts	222	+ + + +	cto	, ato	· att	: aat	: cac	. cas	atr	gaa	1392
_															. Glu	2002
voř	450			LAUL		455					460		, 9	,		
	20(-				_ • •					
											_					

agt ccc gcc gaa ctg gcc caa cgg ctg gga agt tac aac ggc aat gtc

1440

WO 2004/063358		PCT/EP2004/000100
	54/358	

Ser 465	Pro	Ala	Glu	Leu	Ala 470	Gln	Arg	Leu	Gly	Ser 475	Tyr	Asn	Gly	Asn	Val 480	•
					agt Ser										cta Leu	1488
_	_														aca Thr	1536
					ccc Pro										aga Arg	1584
					ttt Phe											1629

<210> 22

<211> 542

<212> PRT

<213> Synechocystis sp.

<400> 22

Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu
1 5 10 15

Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu
20 25 30

Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met 35 40 45

Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His 50 55 60

Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln 65 70 75 80

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly 85 90 95

Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys
100 105 110

Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln
115 120 125

Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe 130 135 140

Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp 145 150 155 160

Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala 165 170 175

Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn 180 185 190

Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys 195 200 205

Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met 210 215 220

Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly

WO 2004/063358		PCT/EP2004/000100
	EC 1350	

225 230 . 235 240

Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Gln
245 250 255

Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu 260 265 270

Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg 275 280 285

Ala Lys Lys Gly Val Ile Ser Asn Ile Asp Ala Arg Arg Leu Phe Leu 290 295 300

Gln Leu Val Glu Pro Gly Ala Leu Ala Lys Val Asn Gln Asn Leu Gly 305 310 315 320

Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Glu Ala Ile Leu Lys 325 330 335

Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly 340 345 350

Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His 355 360 365

Val Glu Glu Ala His Ala Leu Ile Ala Leu Gly Gln Ile Pro Asp Ala 370 375 380

Asn Pro Ser Leu Tyr Leu Asp Ile Pro Thr Val Leu Asp Pro Thr Met 385 390 395 400 Ala Pro Pro Gly Gln His Thr Leu Trp Ile Glu Phe Phe Ala Pro Tyr
405 410 415

Arg Ile Ala Gly Leu Glu Gly Thr Gly Leu Met Gly Thr Gly Trp Thr
420 425 430

Asp Glu Leu Lys Glu Lys Val Ala Asp Arg Val Ile Asp Lys Leu Thr
435 440 445

Asp Tyr Ala Pro Asn Leu Lys Ser Leu Ile Ile Gly Arg Arg Val Glu 450 455 460

Ser Pro Ala Glu Leu Ala Gln Arg Leu Gly Ser Tyr Asn Gly Asn Val 465 470 475 480

Tyr His Leu Asp Met Ser Leu Asp Gln Met Met Phe Leu Arg Pro Leu 485 490 495

Pro Glu Ile Ala Asn Tyr Gln Thr Pro Ile Lys Asn Leu Tyr Leu Thr
500 505 510

Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg 515 . 520 525

Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp 530 535 540

<210> 23

<211> 776

<212> DNA

<213> Bradyrhizobium sp.

<220> <221> CDS

<222> (1)..(774)<400> 23 atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc 48 Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg 5 10 15 gac gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg qtc atc 96 Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30 ate gee gee tgg etg gtg cat gte ggt etg atg tte tte tgg eeg 144 Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45 ctg acc ctt cac agc ctg ctg ccg gct ttg cct ctg gtg gtg ctq caq 192 Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60 ace tgg ctc tat gta ggc ctg ttc atc atc gcg cat gac tgc atq cac 240 Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80 gge teg etg gtg eeg tte aag eeg eag gte aac ege egt ate gga eag 288 Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95 ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val 100 105 110

336

gag cac cac aag cat cac ege cat eee gge aeg gee gag gat eee gat 384 Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120 125

tte gae gag gtg eeg eeg eac gge tte tgg eac tgg tte gee age ttt 432 Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140

ttc ctg cac	tat ttc	ggc tgg	aag cag	gtc gcg atc	atc gca gcc	gtc 480
Phe Leu His	Tyr Phe	Gly Trp	Lys Gln	Val Ala Ile	Ile Ala Ala	Val
145		150		155		160

tcg ctg gtt tat cag ctc gtc ttc gcc gtt ccc ttg cag aac atc ctg 528
Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu
165 170 175

ctg ttc tgg gcg ctg ccc ggg ctg ctg tcg gcg ctg cag ctg ttc acc 576

Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr

180 185 190

ttc ggc acc tat ctg ccg cac aag ccg gcc acg cag ccc ttc gcc gat 624

Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp

195 200 205

cgc cac aac gcg cgg acg agc gaa ttt ccc gcg tgg ctg tcg ctg ctg cfg 672

Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu
210 225 220 .

acc tgc ttc cac ttc ggc ttt cat cac gag cat cat ctg cat ccc gat

720

Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp

225

230

235

240

gcg ccg tgg tgg cgg ctg ccg gag atc aag cgg cgg gcc ctg gaa agg 768
Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg
245 250 255

cgt gac ta 776
Arg Asp

<210> 24

<211> 258

<212> PRT

<213> Bradyrhizobium sp.

<400> 24

WO 2004/063358		PCT/EP2004/000100
	60/358	

1 5 10 15

Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile
20 25 30

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro
35 40 45

Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60

Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95

Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120 125

Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140

Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 145 150 155 160

Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu

165 170 175

Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr
180 185 190

Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200 205

Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu 210 215 220

Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 225 230 235 240

Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250 255

Arg Asp

<210> 25

<211> 777

<212> DNA

<213> Nostoc sp.

<220>

<221> CDS

<222> (1)..(777)

<400> 25

atg gtt cag tgt caa cca tca tct ctg cat tca gaa aaa ctg gtg tta 48

Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu

1 . 5 10 15

ttg tca tcg aca atc aga gat gat aaa aat att aat aag ggt ata ttt Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe

96

20 25 30

att	gcc	tgc	ttt	atc	tta	ttt	tta	tgg	gca	att	agt	tta	atc	tta	tta	1	L44
Ile	Ala	Суз	Phe	Ile	Leu	Phe	Leu	Trp	Ala	Ile	Ser	Leu	Ile	Leu	Leu		
		35					40					45					
									aag						•	1	192
Leu		Ile	Asp	Thr	Ser		Ile	His	Lys	Ser		Leu	Gly	Ile	Ala		
	50					55					60						•
ata	att	+~~	~~~	200	++-	++=	+ = +	202	ggt	++-	+-+-	-++	20+	~~+	a > t		240
• -			_						Gly							4	240
65	Dea	TTD	GIII	1111	70	Deu	TYL	 .	GLY	75	rne	176	1111	ALA	80		
03					, ,					, ,					00		
gat	gcc	atg	cac	ggc	gta	gtt	tat	ccc	aaa	aat	ccc	aga	ata	aat	aat	2	288
Asp	Ala	Met	His	Gly	Val	Val	Tyr	Pro	Lys	Asn	Pro	Arg	Ile	Asn	Asn		
				85					90					95			
															•		
ttt	ata	ggt	aag	ctc	act	cta	atc	ttg	tat	gga	cta	ctc	cct	tat	aaa	:	336
Phe	Ile	Gly	Lys	Leu	Thr	Leu	Ile	Leu	Tyr	Gly	Leu	Leu	Pro	Tyr	Lys		
			100					105					110				
gat	tta	ttg	aaa	aaa	cat	tgg	tta	cac	cac	gga	cat	cct	ggt	act	gat	:	384
Asp	Leu	Leu	Lys	Lys	His	Trp	Leu	His	His	Gly	His	Pro	Gly	Thr	Asp		
		115					120					125					
	_		_						ccc								432
ren	_		Asp	TAL	TYT		GIA	HIS	Pro	GIN		Pne	Pne	ьeu	Trp		
	130					135	•				140						
tat	cta	ċat	ttt	atσ	aac	tet	tat	taa	caa	taa	aco	caa	att	tte	gga		480
				_	_				_						Gly		100
145			•		150					155					160		
tta	gtg	atg	att	ttt	cat	gga	ctt	aaa	aat	ctg	gtg	cat	ata	cca	gaa		528
Leu	Val	Met	Ile	Phe	His	Gly	Leu	Lys	Asn	Leu	Val	His	Ile	Pro	Glu		
				165	•				170					175			
aat	aat	tta	att	ata	ttt	tgg	atg	ata	cct	tct	att	tta	agt	tca	gta		576
Asn	Asn	Leu	Ile	Ile	Phe	Trp	Met	Ile	Pro	Ser	Ile	Leu	Ser	Ser	Val		

185

190

180

WO 2004/063358		PCT/EP2004/000100
	4.4	

WO 2	200470	0000	•					63/35	58				•	. 0	200470	00100
caa	cta	ttt	tat	ttt	ggt	aca	ttt	ttg	cct	cat	áaa	aag	cta	gaa	ggt	624
Gln	Leu	Phe	Tyr	Phe	Gly	Thr	Phe	Leu	Pro	His	Lys	Lys	Leu	Glu	${ t Gly}$	
		195					200					205				
ggt	tat	act	aac	ccc	cat	tgt	gcg	cgc	agt	atc	cca	tta	cct	ctt	ttt	672
Gly	Tyr	Thr	Asn	Pro	His	Сув	Ala	Arg	Ser	Ile	Pro	Leu	Pro	Leu	Phe	
	210					215					220					•
	•															
tgg	tct	ttt	gtt	act	tgt	tat	cac	ttc	ggc	tac	cac	aag	gaa	cat	cac	720
Trp	Ser	Phe	Val	Thr	Cys	Tyr	His	Phe	Gly	Tyr	His	Lys	Glu	His	His	
225					230					235					240	
												•				
gaa	tac	cct	caa	ctt	cct	tgg	tgg	aaa	tta	cct	gaa	gct	cac	aaa	ata	768
Glu	Tyr	Pro	Gln	Leu	Pro	Trp	Trp	Lys	Ļeu	Pro	Glu	Ala	His	Lys	Ile	
				245					250					255		
tct	tta	taa														777
Ser	Leu															

<210> 26

<211> 258

<212> PRT

<213> Nostoc sp.

<400> 26

Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu 1 5 10 15

Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe
20 25 30

Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu 35 40 45

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 55 60

Met	Leu	Trp	Gln	Thr	Phe	Leu	Tyr	Thr	Gly	Leu	Phe	Ile	Thr	Ala	His
65					70					.75					80

Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 85 90 95

Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys 100 105 110

Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125

Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp
130 135 140

Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly
145 150 . 155 160

. .

Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 165 170 175

Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val 180 185 190

Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly
195 200 205

Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 215 220 Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240

Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile
245 250 255

Ser Leu

<210> 27

<211> 789

<212> DNA

<213> Nostoc punctiforme

<220>

<221> CDS

<222> (1)..(789)

<400> 27

tig aat tit tgt gat aaa cca git agc tat tat git gca ata gag caa Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15 48

tta agt gct aaa gaa gat act gtt tgg ggg ctg gtg att gtc ata gta 96
Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val
20 25 30

att att agt ctt tgg gta gct agt ttg gct ttt tta cta gct att aat

144

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn

35

40

45

tat gcc aaa gtc cca att tgg ttg ata cct att gca ata gtt tgg caa 192
Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
50 55 60

atg ttc ctt tat aca ggg cta ttt att act gca cat gat gct atg cat

Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His

70

75

80

ggg		-		_												288
Gly	Ser	Val	Tyr	Arg	Lys	Asn	Pro	ГЛЗ	Ile	Asn	Asn	Phe	Ile	Gly	Ser	
				85					90					95		
•				_												
	_	_						ttt 								336
Leu	Ala	Val		Leu	Tyr ·	Ala	Val	Phe	Pro	Tyr	GIn	GIN		Leu	Lys	
			100					105					110			
				aat	ast	cat	cat	cct	aat	200		at t	~a~	000	ant.	384
		-													Asp ·	204
ASII	urs	115	пец	HIS	mis	лy	120	110	nia	Der	Gra	125	nsp	710	rop	
		113					120					123				
ttt	cat	gat	gat	aag	aga	aca	aac	gct	att	ttc	tgg	tat	ctc	cat	ttc	432
		_						Ala								
	130	_	_	_		135					140					
atg	ata	gaa	tac	tcc	agt	tgg	caa	cag	tta	ata	gta	cta	act	atc	cta	480
Met	Ile	Glu	Tyr	Ser	Ser	Trp	Gln	Gln	Leu	Ile	Val	Leu	Thr	Ile	Leu	
145					150					155					160	
				•												
ttt	aat	tta	gct	aaa	tac	gtt	ttg	cac	atc	cat	caa	ata	aat	ctc	atc	528
Phe	Asn	Leu	Ala	Lys	Tyr	Val	Leu	His	Ile	His	Gln	Ile	Asn	Leu	Ile	
				165					170					175		
		•														
								tta								576
Leu	Phe	Trp		Ile	Pro	Pro	Ile			Ser	Ile	Gln			Tyr	
			180					185					190			
															10 - A-	624
															tat	624
Pne	GTĀ	195		Deu	PLO	nrs	200		PIO	пуs	рув	205		Val	Tyr	
							200					203				
ccc	cat	tac	agc	caa	aca	ata	aaa	tta	cca	act	ttt	tta	tca	ttt	atc	672
		-	-												Ile	
	210	-				215					220					
																•
gct	tgo	tac	cac	ttt	ggt	tat	cat	gaa	gaa	cat	cat	gag	tat	ccc	cat	720
Ala	C	Tvr	His	Phe	GIV	TVI	His	. Glu	Glu	His	His	Glu	Тух	Pro	His	
	. Cys	-2-			3	-2-							_			
225	_	-4-			230					235			_		240	

gta cct tgg tgg caa ctt cca tct gta tat aag cag aga gta ttc aac 768

789

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn

250 255 245

aat tca gta acc aat tcg taa Asn Ser Val Thr Asn Ser

260

<210> 28

<211> 262

<212> PRT

<213> Nostoc punctiforme

<400> 28

Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 10 15

Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 25 30 20

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 45 40 35

Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln 60 55 50

Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 80 75 70 65

Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 95 90 85

Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 105 100

Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125

Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 135 140

Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175

Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr
180 185 190

Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr
195 200 205

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile 210 215 220

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255

Asn Ser Val Thr Asn Ser 260 07/030

<211> 762 <212> DNA

<213> Nostoc punctiforme

<220>

<221> CDS

<222> (1)..(762)

<400> 29

gtg atc cag tta gaa caa cca ctc agt cat caa gca aaa ctg act cca

Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro

1 5 10 15

gta ctg aga agt aaa tct cag ttt aag ggg ctt ttc att gct att gtc

Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val

20 25 30

att gtt agc gca tgg gtc att agc ctg agt tta tta ctt tcc ctt gac

144

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Leu Ser Leu Asp

35

40

45

atc tca aag cta aaa ttt tgg atg tta ttg cct gtt ata cta tgg caa 192

Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln

50 55 60

aca ttt tta tat acg gga tta ttt att aca tct cat gat gcc atg cat

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His

70

75

80

ggc gta gta ttt ccc caa aac acc aag att aat cat ttg att gga aca

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr

85 90 95

ttg acc cta tcc ctt tat ggt ctt tta cca tat caa aaa cta ttg aaa 336
Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys
100 105 110

aaa cat tgg tta cac cac cac aat cca gca agc tca ata gac ccg gat

Lys His Trp Leu His His His Asn Pro Ala Ser Ser Ile Asp Pro Asp

115 120 125

WO 2004/063358 PCT/EP2004/000100 70/358

ttt	cac	aat	ggt	aaa	cac	caa	agt	ttc	ttt	gct	tgg	tat	ttt	cat	ttt	432
Phe	His	Asn	Gly	Lys	His	Gln	Ser	Phe	Phe	Ala	Trp	Tyr	Phe	His	Phe	
	130					135					140					
													•			
atg	aaa	ggt	tac	tgg	agt	tgg	ggg	caa	ata	att	gcg	ttg	act	att	att .	480
Met	Lys	Gly	Tyr	Trp	Ser	\mathtt{Trp}	Gly	Gln	Ile	Ile	Ala	Leu	Thr	Ile	Ile	
145					150					155		•			160	
tat	aac	ttt	gct	aaa	tac	ata	ctc	cat	atc	cca	agt	gat	aat	cta	act	528
Tyr	Asn	Phe	Ala	Lys	Tyr	Ile	Leu	His	Ile	Pro	Ser	Asp	Asn	Leu	Thr	
				165					170					175		
tac	ttt	tgg	gtg	cta	ccc	tcg	ctt	tta	agt	tca	tta	caa	tta	ttc	tat	576
Tyr	Phe	Trp	Val	Leu	Pro	Ser	Ĺeu	Leu	Ser	Ser	Leu	Gln	Leu	Phe	Tyr	
			180					185					190			
										-						
ttt	ggt	act	ttt	tta	ccc	cat	agt	gaa	cca	ata	aaa	ggt	tat	gtt	cag	624
Phe	Gly	Thr	Phe	Leu	Pro	His	Ser	Glu	Pro	Ile	Gly	Gly	Tyr	Val	Gln	
	•	195					200					205				
				•								tgg _				672
Pro			Ala	Gln	Thr		Ser	Arg	Pro	Ile		Trp	Ser	Phe	Ile	
	210					215					220					
																700
												gaa				720
		Tyr	HIS	Pne			HIS	GTU	GIU			GIU	ıyr	Pro	His	
225					230					235					240	
_ 4_ 1		.							.		~~-		+			762
				_			_					aaa				104
тте	ser	.rrp	'ırp			PTO	GIU	тте	_	_	ATG	. Lys				
				245					250							

<210> 30

<211> 253

<212> PRT

<213> Nostoc punctiforme

<400> 30

Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 1 5 10 15 Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 25 30

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Ser Leu Asp
35 40 45 .

Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 55 60

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr
85 90 95

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys
100 105 110

Lys His Trp Leu His His His Asn Pro Ala Ser Ser Ile Asp Pro Asp 115 120 125

Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 130 135 140

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile 145 150 155 160

Tyr Asn Phe Ala Lys Tyr Ile Leu His Ile Pro Ser Asp Asn Leu Thr 165 170 175 WO 2004/063358 PCT/EP2004/000100

72/358

Tyr Phe Trp Val Leu Pro Ser Leu Leu Ser Ser Leu Gln Leu Phe Tyr

180 185 190

Phe Gly Thr Phe Leu Pro His Ser Glu Pro Ile Gly Gly Tyr Val Gln
195 200 205

Pro His Cys Ala Gln Thr Ile Ser Arg Pro Ile Trp Trp Ser Phe Ile 210 215 220

Thr Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

<210> 31

<211> 1608

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (3)..(971)

<400> 31

ct aca ttt cac aag ccc gtg agc ggt gca agc gct ctg ccc cac atc

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile

1 5 10 15

ggc cca cct cct cat ctc cat cgg tca ttt gct gct acc acg atg ctg 95
Gly Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu
20 25 30

tcg aag ctg cag tca atc agc gtc aag gcc cgc cgc gtt gaa cta gcc 143 Ser Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala

35 40 45

cgc gac atc acg cgg ccc aaa gtc tgc ctg cat gct cag cgg tgc tcg Arg Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser tta gtt cgg ctg cga gtg gca gca cca cag aca gag gag gcg ctg gga Leu Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly acc gtg cag gct gcc ggc gcg ggc gat gag cac agc gcc gat gta gca Thr Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala ctc cag cag ctt gac cgg gct atc gca gag cgt cgt gcc cgg cgc aaa Leu Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys cgg gag cag ctg tca tac cag gct gcc gcc att gca gca tca att ggc Arg Glu Gln Leu Ser Tyr Gln Ala Ala Ala Ile Ala Ala Ser Ile Gly gtq tea gge att gee ate tte gee ace tae etg aga ttt gee atg cae Val Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His atg acc gtg ggc ggc gca gtg cca tgg ggt gaa gtg gct ggc act ctc Met Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu ctc ttg gtg gtt ggt ggc gcg ctc ggc atg gag atg tat gcc cgc tat Leu Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr gca cac aaa gcc atc tgg cat gag tcg cct ctg ggc tgg ctg ctg cac Ala His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His aag agc cac cac aca cct cgc act gga ccc ttt gaa gcc aac gac ttg Lys Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu

ttt gca atc atc aat gga ctg ccc gcc atg ctc ctg tgt acc ttt ggc

Phe	Ala	Ile	Ile	Asn	Gly	Leu		Ala	Met	Leu	Leu		Thr	Phe	Gly	
		210					215					220				
ttc	tgg	ctg	ccc	aac	gtc	ctg	ggg	gcg	gcc	tgc	ttt	gga	gcg	ggg	ctg	719
Phe	Trp	Leu	Pro	Asn	Val	Leu	Gly	Ala	Ala	Cys		Gly	Ala	Gly	Leu	
	225					230					235					
ggc	atc	acg	cta	tac	ggc	atg	gca	tat	atg	ttt	gta	cac	gat	ggc	ctg	767
Gly	Ile	Thr	Leu	Tyr	Gly	Met	Ala	Tyr	Met	Phe	Val	His	Asp	Gly	Leu	
240					245					250					255	
ata	cac	agg	cgc	ttt	ccc	acc	ggg	ccc	atc	gct	ggc	ctg	ccc	tac	atg	815
_			Arg													
				260					265					270		
224	caa	cta	aca	ata		, cac	cag	cta	cac	cac	agc	aac	aaq	tac	ggt	863
_	_														Gly	
2,2	9		275					280					285			
ggo	gcg	ccc	tgg:	ggt	atg	ttc	ttg	ggt	cca	cag	gag	ctg	cag	cac	att	911
Gly	Ala	Pro	Trp	Gly	Met	: Phe	Leu	Gly	Pro	Gln	Glu	Lev	Gln	His	Ile	
		290)				295	i				300)			
													ata		. taa	959
															tgg Trp	232
Pro	30; 372		a Alc	i Gii	ı Gı	31(LAL	, nec	· vas	315					
	50.	,				J	-									
tco	c aag	g cgg	g tag	g ggt	gegg	gaac	cagg	gcac	get g	gttt	caca	ac ci	cate	jcctg	J	1011
	c Ly															
32	ס															
				_							. ماديد			201		1071
tg	ataa	ggtg	tgg	ctag	agc (gatg	cgtgi	cg a	gacg	ggca	t gt	cacy	gueg	act	ggtctga	1071
tg	gcca	atgg	cat	cggc	cat	gtct	ggtc	at c	acgg	gctg	g tt	gcct	gggt	gaa	ggtgatg	1131
ca	catc	atca	tgt	gcgg	ttg	gagg	ggct	gg c	acag	tgtg	g gc	tgaa	ctgg	agc	agttgtc	1191
ca	ggct	ggcg	ttg	aatc	agt	gagg	gttt	gt g	attg	gcgg	t tg	tgaa	gcaa	tga	ctccgcc	1251
ca	tatt	ctat	ttg	tggg	agc	tgag	atga	tg g	catg	cttg	g ga	tgtg	catg	gat	catggta	1311

gtgcagcaaa ctatattcac ctagggctgt tggtaggatc aggtgaggcc ttgcacattg 1371

catgatgtac tcgtcatggt gtgttggtga gaggatggat gtggatggat gtgtattctc 1431

agacgtagac cttgactgga ggcttgatcg agaggatggg ccgtattctt tgagagggga 1491

ggctcgtgcc agaaatggtg agtggatgac tgtgacgctg tacattgcag gcaggtgaga 1551

tgcactgtct cgattgtaaa atacattcag atgcaaaaaa aaaaaaaaa aaaaaaaa 1608

<210> 32

<211> 322

<212> PRT

<213> Haematococcus pluvialis

<400> 32

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly

1 5 10 15

Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30

Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala Arg
35 40 45

Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser Leu . 50 55 60

Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly Thr 65 70 75 80

Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala Leu 85 90 95

Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys Arg

110

105

767

100

Glu Gln Leu Ser Tyr Gln Ala Ala Ala Ile Ala Ala Ser Ile Gly Val

115 120 125

Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His Met 130 135 140

Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu Leu 145 150 155 160

Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr Ala 165 170 175

His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His Lys 180 185 190

Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu Phe 195 200 205

Ala Ile Ile Asn Gly Leu Pro Ala Met Leu Leu Cys Thr Phe Gly Phe 210 215 220

Trp Leu Pro Asn Val Leu Gly Ala Ala Cys Phe Gly Ala Gly Leu Gly 225 230 235 240

Ile Thr Leu Tyr Gly Met Ala Tyr Met Phe Val His Asp Gly Leu Val
245
250
255

His Arg Arg Phe Pro Thr Gly Pro Ile Ala Gly Leu Pro Tyr Met Lys
260 265 270

Arg Leu Thr Val Ala His Gln Leu His His Ser Gly Lys Tyr Gly Gly
275 280 285

Ala Pro Trp Gly Met Phe Leu Gly Pro Gln Glu Leu Gln His Ile Pro 290 295 300

Gly Ala Ala Glu Glu Val Glu Arg Leu Val Leu Glu Leu Asp Trp Ser 305 310 315 320

Lys Arg

<210> 33

<211> 528

<212> DNA

<213> Erwinia uredovora

<220>

<221> CDS

<222> (1)..(528)

<400> 33

atg ttg tgg att tgg aat gcc ctg atc gtt ttc gtt acc gtg att ggc
Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly

1 5 10 15

48

atg gaa gtg att gct gca ctg gca cac aaa tac atc atg cac ggc tgg 96
Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp
20 25 30

ggt tgg gga tgg cat ctt tca cat cat gaa ccg cgt aaa ggt gcg ttt

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe

35

40

45

gaa gtt aac gat ctt tat gcc gtg gtt ttt gct gca tta tcg atc ctg

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu

WO 2004/063358	PCT/EP2	004/000100
	78/358	

60

55

															•	
cta	att	tat	ctg	ggc	agt	aca	gga	atg	taa	ccg	ctc	cag	tgg	att	dac	240
				Gly												
65		_			70					75					80	
gca	ggt	atg	acg	gcg	tat	gga.	tta	ctc	tat	ttt	atg	gtg	cac	gac	ggg	288
Ala	Gly	Met	Thr	Ala	Tyr	Gly	Leu	Leu	Tyr	Phe	Met	Val	His	Asp	Gly	•
				85					90					95		
ctg	gtg	cat	caa	cgt	tgg	cca	ttc	cgc	tat	att	cca	cgc	aag	ggc	tac	336
Leu	Val	His	Gln	Arg	\mathtt{Trp}	Pro	Phe	Arg	Tyr	Ile	Pro	Arg	Lys	Gly	Tyr	
			100					105					110			
ctc	aaa	cgg	ttg	tat	atg	gcg	cac	cgt	atg	cat	cac	gcc	gtc	agg	ggc	384
Leu	Lys	Arg	Leu	Tyr	Met	Ala	His	Arg	Met	His	His	Ala	Va1	Arg	Gly	
		115					120					125				
	-			gtt								_				432
Lys		Gly	Cys	Val	Ser		Gly	Phe	Leu	Tyr		Pro	Pro	Leu	Ser	
	130					135					140					
																400
		_		acg			_	_			_	_			_	480
ьуs 145	rea	GIN	Ата	Thr	150	Arg	GIU	Arg	nis	155	Ата	Arg	Ата	GTA	160	
143					150					155					100	
acc	202	as t	aca	cag	aac	aaa	aaa	cat	nan	ccc	aca	tcc	aaa	224	taa	528
				Gln											Cuu	520
.,	**** 9	עכיי	11LQ	165	لإبدت	C+3	JIU	٠.٠ي	170	0			-Ly	175		
				100					_,0					_,_		

<210> 34

50

<211> 175

<212> PRT

<213> Erwinia uredovora

<400> 34

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly
1 5 10 15

WO 2004/063358 PCT/EP2004/000100

79/358

Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp
20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr
100 105 110

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160

Ala Arg Asp Ala Gln Gly Glu Asp Glu Pro Ala Ser Gly Lys
165 170 175

<210> 35 <211> 1520 <212> DNA

<213> Artificial

<220>

<223> Promotor

<400> 35

60	caattcttta	ttttagaggg	tttccctctc	ggcaggaatg	gaggcggaac	ctcgagtacc
120	tacccatttt	ataaggcgaa	gtctcttata	agatatttct	tgttgatgct	tccaatgtca
180	agagtcaagc	tcaacgccaa	gcccaatttg	aaaaaagggg	ttgagataaa	tgaattgaag
240	atttgacctt	ttttgaagat	gacttattgt	aacaatctaa	gctttagccg	tttttctttg
300	tttgtgaagg	ttttttttc	tcgagttttt	aaagcttttt	tccttcaagt	ttctagatat
360	attgattttg	ataagttaat	ggaagacaag	attttttatt	attggtatcc	atttattgtt
420	aaactatggt	tgtaacggac	caataaaaaa	cagaaaacga	aaaaggaaat	cttaaagatt
480	tgaaaacaat	tgctttcctc	gacaacgagt	cttaaaaaait	agtctaaatc	gtcgattata
540	aacatcaaat	gcattactta	ttgtttgctt	ggtttcttt	ttgcaagaaa	tettttgtet
600	aacaagatgt	ttttctggtc	cgaataagga	gatttgaggg	gaataaagca	caaatgaaag
660	aaagattgat	aaacgacatc	atttgtttta	aatgccattc	taaggaacta	gagtgacacc
720	tgactgaaat	ttatttctgt	ctcgtgtcat	agaaaaagaa	attgagagag	gatcaacagg
780	catttgaaat	tattacataa	gctttagcta	caaatctata	gaaaaaatgt	tttatattta
840	ctgtctataa	ctctaaataa	acttttcaaa	cattagagac	aaaaaagaca	aataataata
900	cttttgtcta	ttttctcgta	cttattagat	tctataacaa	aacaaagacc	acacaaagaa
960	tactaaatat	ttcttgatgc	ctttcatttg	tcccacactt	attcttgtta	aagatgatgt
1020	aattttttc	ttcaaaaaga	tccaaaaatt	gagatattat	ttttttgcaa	acaaaatttc
1080	ttccgctttg	tattttgcac	ggttctttgt	aacccaaaga	ttgatcgtgt	acaatagcag

cggtgatgca	tattcaaagt	aatatatgga	ataaacaacg	tgtttaagca	tgaaagaaag	1140
gaaacaaagg	ccgctttgaa	caaatgcata	atatttcaga	caaaaatgat	ctaaagcaag	1200
cagtaaatca	aacaagaaac	attgctgatt	cgcgttagaa	aacgataaaa	gtctaataag	1260
ccactaagta	tacttcaatg	aactttttgt	atgcttatgg	tccaatcaga	ccaataattt	1320
gtgaccattc	ctgaggtggc	tttggtgatg	cggaaacaga	aaaaaatttt	ctcaccaatc	1380
gatttaaaaa	acaatttctg	ctttgaacca	aaacttttt	tttctcttta	atcattaact	1440
ttatcaagta	tgtacctacc	ctcaaagtcc	tcactcaagc	acaattatgc	taacattgtt	1500
ccaccttctc	tttagaaatg					1520

```
<210> 36
```

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<211> 16245

<212> DNA

WO 2004/063358 PCT/EP2004/000100 82/358

<400> 36 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc ceteactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagectegea aateggegaa aaegeetgat tttaegegag ttteecacag atgatgtgga 300 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660 teggeegea aeggeeteae eecaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 agataatata tettttatat agaagatate geegtatgta aggattteag ggggcaagge 1200

ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga

1260

WO 2004/063358 PCT/EP2004/000100 83/358

ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1320 1380 atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc 1440 agetecaceg attitgagaa egacagegae tieegteeca geegtgeeag gigetgeete agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt 1500 cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag 1560 1620 ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc 1680 gcaacaaccg tcttccggag actgtcatac gcgtaaaaca gccagcgctg gcgcgattta 1740 gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga 1800 1860 ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa 1920 tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca 1980 2040 ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc 2100 aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca 2160 aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg 2220 ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat 2280 aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat aataaatggc taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga 2340 tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata 2400 tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga 2460 catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca 2520

WO 2004/063358 PCT/EP2004/000100 84/358

tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta 2580 tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt 2640 2700 tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga 2760 attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga 2820 cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga 2880 ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa 2940 agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc 3000 cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt 3060 tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact 3120 3180 tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg 3240 ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga 3300 cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag 3360 gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca atcccgcaag 3420 gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg 3480 aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca 3540 3600 gcgtgcaact ggctccccct gccctgcccg cgccatcggc cgccgtggag cgttcgcgtc gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta 3660 tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca 3720 3780 agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt

WO 2004/063358 PCT/EP2004/000100 85/358

tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaatto	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcago	tegeaceggg	agccgtaccc	: gctcaagctg	gaaaccttcc	4380
gecteatgtg	g cggatcggat	: tccacccgcg	g tgaagaagtg	g gcgcgagcag	g gtcggcgaag	4440
cctgcgaaga	a gttgcgaggd	ageggeetgg	g tggaacacgo	ctgggtcaat	gatgacctgg	4500
tgcattgca	a acgctaggg	cttgtgggg	cagttccgg	c tgggggttca	a gcagccagcg	4560
ctttactgg	c atttcaggaa	a caagcgggc	a ctgctcgac	g cacttgette	c gctcagtatc	4620
gctcgggac	g cacggcgcg	c tctacgaac	t gccgataaa	c agaggatta	a aattgacaat	4680
tgtgattaa	g gctcagatt	c gacggcttg	g agcggccga	c gtgcaggat	t tccgcgagat	4740
ccgattgtc	g gccctgaag	a aagctccag	a gatgttegg	g tccgtttac	g agcacgagga	4800
gaaaaagcc	c atggaggcg	t tcgctgaac	g gttgcgaga	t gccgtggca	t teggegeeta	4860
catcgacgg	c gagatcatt	g ggctgtcgg	t cttcaaaca	g gaggacggc	c ccaaggacgc	4920
tcacaaggo	g catctgtco	g gcgttttcg	rt ggagcccga	a cagcgaggo	c gaggggtcgc	4980
cggtatgct	g ctgcgggcg	rt tgccggcgg	gg tttattgct	c gtgatgato	g tccgacagat	5040

WO 2004/063358 PCT/EP2004/000100 86/358

tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt 5100 5160 ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg 5220 attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac 5280 accaaacgca gegetagate etgteggegt egeageggge etggeggggg eggtttecat 5340 ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac 5400 5460 cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc 5520 gccaatcccg atgcctacag gaaccaatgt teteggeetg gegtggeteg geetgategg 5580 agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt 5640 ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt 5700 tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta 5760 5820 tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag 5880 cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca 5940 caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt 6000 gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag totgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat 6060 cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga 6120 tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt 6240 taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc 6300 accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga

WO 2004/063358 PCT/EP2004/000100 87/358

aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
teetttgget	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	. tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560

WO 2004/063358 PCT/EP2004/000100 88/358

tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga 7620 7680 tctctagtta gctcaccaca aaagtcagac ggcgtaacca aaagtcacac aacacaagct 7740 gtaaggattt cggcacggct acggaagacg gagaagccac cttcagtgga ctcgagtacc 7800 atttaattct atttgtgttt gatcgagacc taatacagcc cctacaacga ccatcaaagt cgtatagcta ccagtgagga agtggactca aatcgacttc agcaacatct cctggataaa 7860 ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc 7920 7980 tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga 8040 cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc 8100 accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag 8160 acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeete 8220 cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg 8280 8340 agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt 8400 gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg 8460 atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc 8520 8580 ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac 8640 cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca 8700 aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct 8760 8820 cttttcttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt

WO 2004/063358 PCT/EP2004/000100 89/358

tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctacccgc	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggategeeg eggeteeggg egtatatget eegeattggt ettgaceaae tetateagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080

WO 2004/063358 PCT/EP2004/000100 90/358

٠.

ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgeteeg	10620
taacacccaa	tacgccggcc	gaaactttt	: tacaactctc	: ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	: agaggtaato	c cttctttcta	gctagaagto	: ctcgtgtact	10740
gtgtaagcgo	ccactccaca	a tetecaeteg	g acctgcaggo	c atgcaagctt	: aatctataca	10800
atgctccata	a gactcacati	gatattgtc	g aagatttega	a tgctgactta	a gtagagcaac	10860
tacaaaagti	agcagagaa	g catgatttc	t taatctttga	a agaccgcaa	g tttgcagata	10920
tcggtatgt	g aattctatc	t attttttt	c tgatgtgtg	c atggatgac	t catgatcata	10980
ttcttaggt	a atactgtca	a gcatcaata	t ggcaagggc	g tttacaaga	t tgcttcttgg	11040
tctcatatt	a ctaatgctc	a cacagttcc	t ggagaaggt	a ttatcaagg	g acttgccgaa	11100
gtcggcctc	c ctcttggtc	g tggcttgct	t ttgctagca	g aaatgtcat	c tcaaggtgca	11160
ttaactaag	g gtatttaca	c tgccgaato	t gtcaatatg	g ctcgccgca	a caaagatttc	11220
gtttttggc	t ttattgcac	a acacaaaat	g aatcagtat	g atgatgagg	a ttttgttgtc	11280
atgtcgcct	g aagcttggo	g taatcatgg	t catagetgt	t teetgtgtg	a aattgttatc	11340

WO 2004/063358 PCT/EP2004/000100 91/358

cgctcacaat	tccacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcct	11400
aatgagtgag	ctaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	11460
acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	11520
ttgggccaaa	gacaaaaggg	cgacattcaa	ccgattgagg	gagggaaggt	aaatattgac	11580
ggaaattatt	cattaaaggt	gaattatcac	cgtcaccgac	ttgagccatt	tgggaattag	11640
agccagcaaa	atcaccagta	gcaccattac	cattagcaag	gccggaaacg	tcaccaatga	11700
aaccatcgat	agcagcaccg	taatcagtag	cgacagaatc	aagtttgcct	ttagcgtcag	11760
actgtagcgc	gttttcatcg	gcattttcgg	tcatagcccc	cttattagcg	tttgccatct	11820
tttcataatc	aaaatcaccg	gaaccagagc	caccaccgga	accgcctccc	tcagagccgc	11880
caccctcaga	accgccaccc	tcagagccac	caccctcaga	gccgccacca	gaaccaccac	11940
cagagccgcc	gccagcattg:	acaggaggcc	cgatctagta	acatagatga	caccgcgcgc	12000
gataatttat	: cctagtttgc	gcgctatatt	ttgttttcta	tcgcgtatta	aatgtataat	12060
tgcgggacto	: taatcataaa	aacccatctc	ataaataacg	tcatgcatta	catgttaatt	12120
attacatgct	taacgtaatt	caacagaaat	tatatgataa	tcatcgcaag	accggcaaca	12180
ggattcaato	c ttaagaaact	ttattgccaa	atgtttgaac	gatcggggat	catccgggtc	12240
tgtggcggg	a actccacgaa	ı aatatccgaa	ı cgcagcaaga	a tatcgcggtg	catctcggtc	12300
ttgcctggg	c agtegeeged	gacgccgttg	g atgtggacgo	c cgggcccgat	: catattgtcg	12360
ctcaggatc	g tggcgttgtg	g cttgtcggcd	gttgctgtcg	g taatgatato	ggcaccttcg	12420
accgcctgt	t ccgcagagal	cccgtgggcg	g aagaactcca	a gcatgagato	c cccgcgctgg	12480
aggatcatc	c agccggcgt	ccggaaaac	g attccgaage	c ccaaccttto	c atagaaggcg	12540
gcggtggaa	t cgaaatctc	g tgatggcagg	g ttgggcgtc	g cttggtcggi	t catttcgaac	12600

WO 2004/063358 PCT/EP2004/000100 92/358 .

cccagagtcc	cgctcagaag	aactcgtcaa	gaaggcgata	gaaggcgatg	cgctgcgaat	12660
cgggagcggc	gataccgtaa	agcacgagga	agcggtcagc	ccattcgccg	ccaagctctt	12720
cagcaatatc	acgggtagcc	aacgctatgt	cctgatagcg	gtccgccaca	cccagccggc	12780
cacagtcgat	gaatccagaa	aagcggccat	tttccaccat	gatattcggc	aagcaggcat	12840
cgccatgggt	cacgacgaga	tcatcgccgt	cgggcatgcg	cgccttgagc	ctggcgaaca	12900
gttcggctgg	cgcgagcccc	tgatgctctt	cgtccagatc	atcctgatcg	acaagaccgg	12960
cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	13020
tagccggatc	aagcgtatgo	agccgccgca	ttgcatcago	: catgatggat	actttctcgg	13080
caggagcaag	gtgagatgac	aggagatcct	geceeggeac	: ttcgcccaat	agcagccagt	13140
cccttcccg	ttcagtgaca	a acgtcgagca	a cagctgcgca	a aggaacgcco	gtcgtggcca	13200
gccacgatag	g ccgcgctgc	tcgtcctgca	a gttcattcaç	g ggcaccggad	aggtcggtct	13260
tgacaaaaa	g aaccgggcg	c ccctgcgct;	g acageeggaa	a cacggcggca	a tcagagcagc	13320
cgattgtct	g ttgtgccca	g tcatagccg	a atageetet	c cacccaagc	g gccggagaac	13380
ctgcgtgca	a tccatcttg	t tcaatcatg	c gaaacgatc	c agatccggt	g cagattattt	13440
ggattgaga	g tgaatatga	g actctaatt	g gataccgag	g ggaatttat	g gaacgtcagt	13500
ggagcattt	t tgacaagaa	a tatttgcta	g ctgatagtg	a ccttaggcg	a cttttgaacg	13560
cgcaataat	g gtttctgac	g tatgtgctt	a gctcattaa	a ctccagaaa	c ccgcggctga.	13620
gtggctcct	t caacgttgo	eg gttetgtea	g ttccaaacg	gt aaaacggct	t gtcccgcgtc	13680
atcggcggg	gg gtcataacg	gt gactccctt	a attotoogo	ct catgatcag	ga ttgtcgtttc	13740
ccgccttca	ag tttaaacta	at cagtgtttg	ga caggatata	at tggcgggta	aa acctaagaga	13800
aaagagcg	tt tattagaa	ta atcggatal	tt taaaaggg	cg tgaaaaggl	t tatccgttcg	13860

WO 2004/063358 PCT/EP2004/000100 93/358

tccatttgta tgtgcatgcc aaccacaggg ttccccagat ctggcgccgg ccagcgagac 13920 gagcaagatt ggccgccgcc cgaaacgatc cgacagcgcg cccagcacag gtgcgcaggc 13980 aaattgcacc aacgcataca gcgccagcag aatgccatag tgggcggtga cgtcgttcga 14040 14100 gtgaaccaga tcgcgcagga ggcccggcag caccggcata atcaggccga tgccgacagc gtcgagcgcg acagtgctca gaattacgat caggggtatg ttgggtttca cgtctggcct 14160 ccggaccagc ctccgctggt ccgattgaac gcgcggattc tttatcactg ataagttggt 14220 ggacatatta tgtttatcag tgataaagtg tcaagcatga caaagttgca gccgaataca 14280 gtgatccgtg ccgccctgga cctgttgaac gaggtcggcg tagacggtct gacgacacgc 14340 14400 aaactggcgg aacggttggg ggttcagcag ccggcgcttt actggcactt caggaacaag cgggcgctgc tcgacgcact ggccgaagcc atgctggcgg agaatcatac gcattcggtg 14460 14520 ccgagagccg acgacgactg gcgctcattt ctgatcggga atgcccgcag cttcaggcag gcgctgctcg cctaccgcga tggcgcgcgc atccatgccg gcacgcgacc gggcgcaccg 14580 14640 cagatggaaa cggccgacgc gcagcttcgc ttcctctgcg aggcgggttt ttcggccggg gacgccgtca atgcgctgat gacaatcagc tacttcactg ttggggccgt gcttgaggag 14700 14760 caggccggcg acagcgatgc cggcgagcgc ggcggcaccg ttgaacaggc tccgctctcg ccgctgttgc gggccgcgat agacgccttc gacgaagccg gtccggacgc agcgttcgag 14820 14880 cagggactcg cggtgattgt cgatggattg gcgaaaagga ggctcgttgt caggaacgtt gaaggaccga gaaagggtga cgattgatca ggaccgctgc cggagcgcaa cccactcact 14940 acagcagage catgtagaca acateceete eccettteca eegegteaga egeeegtage 15000 agecegetae gggettttte atgeeetgee etagegteea agecteaegg eegegetegg cctctctggc ggccttctgg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 15120

WO 2004/063358 PCT/EP2004/000100 94/358

tcgttcggct	gcggcgagcg	gtatcagctc	actcaaaggc	ggtaatacgg	ttatccacag	15180
aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	ccagcaaaag	gccaggaacc	15240
gtaaaaaggc	cgcgttgctg	gcgtttttcc	ataggctccg	ccccctgac	gagcatcaca	15300
aaaatcgacg	ctcaagtcag	aggtggcgaa	acccgacagg	actataaaga	taccaggcgt	15360
ttccccctgg	aagctccctc	gtgcgctctc	ctgttccgac	cctgccgctt	accggatacc	15420
tgtccgcctt	tetecetteg	ggaagcgtgg	cgcttttccg	ctgcataacc	ctgcttcggg	15480
gtcattatag	cgatttttc	ggtatatcca	tcctttttcg	cacgatatac	aggattttgc	15540
caaagggttc	gtgtagactt	tccttggtgt	atccaacggc	gtcagccggg	caggataggt	15600
gaagtaggcc	cacccgcgag	cgggtgttcc	ttcttcactg	tcccttattc	gcacctggcg	15660
gtgctcaacg	ggaatcctgc	tctgcgaggc	tggccggcta	ccgccggcgt	aacagatgag	15720
ggcaagcgga	tggctgatga	. aaccaagcca	accaggaagg	gcagcccacc	tatcaaggtg	15780
tactgccttc	: cagacgaacg	aagagcgatt	. gaggaaaagg	cggcggcggc	cggcatgagc	15840
ctgtcggcct	acctgctggc	: cgtcggccag	ggctacaaaa	. tcacgggcgt	cgtggactat	15900
gagcacgtco	gegagetgge	: ccgcatcaat	ggcgacctgg	geegeetggg	cggcctgctg	15960
aaactctggo	c tcaccgacga	cccgcgcacg	g gegeggtteg	gtgatgccac	gatectegee	16020
ctgctggcga	a agatcgaaga	a gaagcaggad	gagettggea	aggtcatgat	gggcgtggtc	16080
cgcccgaggg	g cagagecato	g actttttag	g ccgctaaaac	ggccgggggg	g tgcgcgtgat	16140
tgccaagca	c gtccccatgo	c gctccatcaa	a gaagagcgad	ttcgcggage	e tggtgaagta	16200
catcaccga	c gagcaaggc	a agaccgagc	g cctttgcgad	c gctca		16245

<210> 37

<211> 17877

95/358 <212> DNA <213> Artificial <220> <223> Promotor <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 37 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcgcc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag ttteceacag atgatgtgga 300 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 360 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420

tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt

ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg

tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc

480

600

WO 2004/063358 PCT/EP2004/000100 96/358

cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	getgegeeee	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	tteggeegte	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	. tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatato	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	g cgcttatcaa	tatatctata	a gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	g aaacccagga	caataaccti	t atagcttgta	aattctatca	taattgggta	1320
atgactccaa	a cttattgata	gtgtttat	g ttcagataat	gecegatgae	: tttgtcatgc	1380
agctccaccg	g attttgagaa	a cgacagcga	c ttccgtccca	geegtgeeag	gtgctgcctc	1440
agattcagg	t tatgeegete	c aattcgctg	c gtatatcgct	: tgctgattac	gtgcagettt	1500
cccttcagg	c gggattcata	a cagcggcca	g ccatccgtca	a tccatatcac	c cacgtcaaag	1560
ggtgacagc	a ggctcataa	g acgccccag	c gtcgccata	g tgcgttcaco	gaatacgtgc	1620
gcaacaacc	g tetteegga	g actgtcata	c gcgtaaaac	a gccagcgct	g gcgcgattta	1680
gccccgaca	t agccccact	g ttcgtccat	t teegegeag	a cgatgacgto	c actgecegge	1740
tgtatgcgc	g aggttaccg	a ctgcggcct	g agttttta	a gtgacgtaa	a atcgtgttga	1800

WO 2004/063358 PCT/EP2004/000100 97/358

ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgto	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggo	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	: cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060

WO 2004/063358 PCT/EP2004/000100 98/358

			701330			
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tetteegeat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attegtgeag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaateggaeg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	: cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gteegtegge	tegatggtee	: agcaagctac	ggccaagato	gagcgcgaca	3540
gcgtgcaact	ggeteeect	geeetgeeeg	g cgccatcggc	: cgccgtggag	g cgttcgcgtc	3600
gtctcgaaca	a ggaggeggea	a ggtttggcga	a agtcgatgac	c catcgacacç	g cgaggaacta	3660
tgacgacca	a gaagcgaaa	a accgccggc	g aggacctggd	c aaaacaggto	e agegaggeea	3720
agcaggccg	c gttgctgaa	a cacacgaag	c agcagatca	a ggaaatgcag	g ctttccttgt	3780
tcgatattg	c gccgtggcc	g gacacgatg	c gagegatge	c aaacgacac	g geeegetetg	3840
ccctgttca	c cacgcgcaa	c aagaaaatc	c cgcgcgagg	c gctgcaaaa	c aaggtcattt	3900
tccacgtca	a caaggacgt	g aagatcacc	t acaccggcg	t cgagctgcg	g gccgacgatg	3960
acgaactgg	rt gtggcagca	g gtgttggag	t acgcgaagc	g cacccctat	c ggcgagccga	4020
tcaccttca	ac gttctacga	g ctttgccag	g acctgggct	g gtcgatcaa	t ggccggtatt	4080
acacgaagg	gc cgaggaatg	ge etgtegege	cc tacaggcga	ıc ggçgatggg	c ttcacgtccg	4140
accgcgttg	gg gcacctgga	a teggtgte	ge.tgctgcaco	g cttccgcgt	c ctggaccgtg	4200
gcaagaaaa	ac gtcccgttg	gc caggtects	ga tegaegagg	ga aatcgtcgt	g ctgtttgctg	4260
gcgaccac	ta cacgaaat	tc atatggga	ga agtaccgca	aa gctgtcgc	eg aeggeeegae	4320

WO 2004/063358 PCT/EP2004/000100 99/358

ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagc	ctg gaaacettee 4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgag	cag gtcggcgaag 4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtca	aat gatgacctgg 4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggt	tca gcagccagcg 4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgc	ttc gctcagtatc 4620 .
getegggaeg caeggegege tetaegaaet geegataaae agaggat	taa aattgacaat 4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcagg	att teegegagat 4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgttt	acg agcacgagga 4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtgg	gcat teggegeeta 4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacg	ggcc ccaaggacgc 4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgag	ggcc gaggggtcgc 4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatga	atcg tccgacagat 5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcactta	aata tttcgctatt 5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcg	gcgg cgacggtagg 5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctag	ggta gcccgatacg 5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcg	ctgt tggtgttgac 5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcg	gggg cggtttccat 5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcct	ctgc tcacctttac 5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagct	ttag tgtttgatcc 5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtgg	reteg geetgategg 5520
agegggttta acctacttee tttggtteeg ggggateteg egaete	gaac ctacagttgt 5580

WO 2004/063358 PCT/EP2004/000100 100/358

tteettaetg ggetttetea geeceagate tggggtegat eageegggga tgeateagge	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tetgeegeet tacaaegget etecegetga egeegteeeg gaetgatggg etgeetgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840

WO 2004/063358 PCT/EP2004/000100 101/358

cgaggagcct cgtcct	gtca caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag agccag	ttca tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac gctctt	ctga tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg tcttcg	ggaa gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagettte teagee	caggg ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga ggggtg	ggtgt caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag aggata	attet tegaetetgt	: attatagata	agatgatgag	gaattggagg	7260
tagcatagct tcatt	tggat ttgctttcca	a ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct ttcaa	tattc tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa tgagc	attgg aatgaacat	g aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca tccgg	atgtc gaaggettg	g ggcacctgcg	g ttggttgaat	ttagaacgtg	7500
gcactattga tcatc	cgata gctctgcaa	a gggcgttgca	a caatgcaagt	caaacgttgc	7560
tagcagttcc aggtg	ggaatg ttatgatga	g cattgtatta	a aatcaggaga	a tatagcatga	7620
tctctagtta gctca	accaca aaagtcaga	c ggcgtaacc	a aaagtcaca	c aacacaagct	7680
gtaaggattt cggca	acggct acggaagac	g gagaagcca	c cttcagtgg	a ctcgagtacc	7740
atttaattct atttg	gtgttt gatcgagac	c taatacagc	c cctacaacg	a ccatcaaagt	7800
cgtatagcta ccagt	tgagga agtggacto	a aatcgactt	c agcaacatc	t cctggataaa	7860
ctttaagcct aaac	tataca gaataagat	a ggtggagag	c ttataccgá	g ctcccaaatc	7920
tgtccagatc atgg	ttgacc ggtgcctgg	ga tcttcctat	a gaatcatco	t tattcgttga	7980
cctagctgat tctg	gagtga cccagaggg	gt catgactto	ga gcctaaaat	c cgccgcctcc	8040
accatttgta gaaa	aatgtg acgaactc	gt gagctctgt	a cagtgacc <u>c</u>	gg tgactctttc	8100

WO 2004/063358 PCT/EP2004/000100 102/358

tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
٠.						
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtaccegge	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatco	ggtgctctgc	actogacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	: ttgccccgtc	: tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	: gtcagtccaa	a catttgttgc	catattttcc	tgeteteece	e accagctgct	8760
cttttcttt	: ctctttctt	teccatette	e agtatattca	a tcttcccato	c caagaacctt	8820
tatttcccct	: aagtaagta	c tttgctacat	ccatactcca	a toottoocat	t cccttattcc	8880
tttgaacct	t tcagttcga	g ctttcccac	t tcatcgcage	c ttgactaaca	a gctaccccgc	8940
ttgagcaga	c atcaccatg	c ctgaactca	c cgcgacgtc	t gtcgagaag	t ttctgatcga	9000
aaagttcga	c agcgtctcc	g acctgatge	a gctctcgga	g ggcgaagaa	t ctcgtgcttt	9060
cagcttcga	t gtaggaggg	c gtggatatg	t cctgcgggt	a aatagctgc	g ccgatggttt	9120
ctacaaaga	t cgttatgtt	t atcggcact	t tgcatcggc	c ·gcgctcccg	a ttccggaagt	9180
gcttgacat	t ggggaatto	a gcgagagcc	t gacctattg	c atctcccgc	c gtgcacaggg	9240
tgtcacgtt	g caagaccto	gc ctgaaaccg	a actgcccgc	t gttctgcag	c cggtcgcgga	9300

WO 2004/063358 PCT/EP2004/000100 103/358

ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	ı gaagaatago	ttagcagago	tattttcatt	ttcgggagac	10320
gagatcaago	agatcaacgg	, tcgtcaagag	acctacgaga	ctgaggaato	e cgctcttggc	10380
tccacgcgac	: tatatatttç	g tetetaattg	g tactttgaca	tgeteetett	ctttactctg	10440
atagcttgac	: tatgaaaatt	: ccgtcaccag	g encetgggtt	cgcaaagata	a attgcatgtt	10500
tetteettga	actctcaago	c ctacaggaca	a cacattcato	gtaggtataa	acctcgaaat	10560

WO 2004/063358 PCT/EP2004/000100 104/358

		-	0 17000			
canttectac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ttttcgagtt	10800
tttttttt	ttctttgtga	aggatttatt	gttattggta	tccattttt	attggaagac	10860
aagataagtt	aatattgatt	ttgcttaaag	attaaaagga	aatcagaaaa	cgacaataaa	10920
aaatgtaacg	gacaaactat	ggtgtcgatt	ataagtctaa	atccttaaaa	aatgacaacg	10980
agttgctttc	ctctgaaaac	aattctttg	tctttgcaag	aaaggtttct	tttttgtttg	11040
cttgcattac	ttaaacatca	aatcaaatga	aaggaataaa	gcagatttga	gggcgaataa	11100
ggattttctg	gtcaacaaga	tgtgagtgac	acctaaggaa	ı ctaaatgcca	ttcatttgtt	11160
ttaaaacgac	: atcaaagatt	gatgatcaac	: aggattgaga	n gagagaaaaa	gaactcgtgt	11220
catttattt	: tgttgactga	aattttatat	: ttagaaaaaa	tgtcaaatct	atagctttag	11280
ctatattaca	a taacatttga	aataataata	a ataaaaaaag	g acacattaga	a gacacttttc	11340
aaactctaa	a taactgtcta	taaacacaa	a gaaaacaaa	g acctctataa	a caacttatta	11400
gatttttct	c gtacttttgt	ctaaagatga	a tgtattctt	g ttatcccaca	a cttctttcat	11460
ttgttcttg	a tgctactaaa	a tatacaaaa	t ttctttttt	g caagagata	t tattccaaaa	11520
attttcaaa	a agaaatttt	t ttcacaata	g cagttgatc	g tgtaaccca	a agaggttctt	11580
tgttattt	g cacttccgc	t ttgcggtga	t gcatattca	a agtaatata	t ggaataaaca	11640
acgtgttta	a gcatgaaag	a aaggaaaca	a aggccgctt	t gaacaaatg	c ataatatttc	11700
agacaaaaa	t gatctaaag	c aagcagtaa	a tcaaacaag	a aacattgct	g attcgcgtta	11760
gaaaacgat	a aaagtctaa	t aagccacta	a gtatactto	a atgaacttt	t tgtatgctta	11820

WO 2004/063358 PCT/EP2004/000100 105/358

						11000
tggtccaatc a	igaccaataa t	ttgtgacca t	tcctgaggt	ggctttggtg	atgcggaaac	11880
agaaaaaaat t	ttctcacca a	atcgatttaa a	aaacaattt	ctgctttgaa	ccaaaacttt	11940
ttttttctct t	taatcatta a	actttatcaa (gtatgtacct	accctcaaag	tcctcactca	12000
agcacaatta t	gctaacatt g	gttccacctt	ctctttagaa	atgctgtcga	agctgcagtc	12060
aatcagcgtc a	aaggeeegee (gcgttgaact	agcccgcgac	atcacgcggc	ccaaagtctg	12120
cctgcatgct (cagcggtgct	cgttagttcg .	gctgcgagtg	gcagcaccac	agacagagga	12180
ggcgctggga a	accgtgcagg	ctgccggcgc	gggcgatgag	cacagcgccg	atgtagcact .	12240
ccagcagctt	gaccgggcta	tcgcagagcg	tcgtgcccgg	cgcaaacggg	agcagctgtc	12300
ataccaggct	geegeeattg	cagcatcaat	tggcgtgtca	ggcattgcca	tcttcgccac	12360
ctacctgaga	tttgccatgc	acatgaccgt	gggcggcgca	gtgccatggg	gtgaagtggc	12420
. tggcactctc	ctcttggtgg	ttggtggcgc	gctcggcatg	gagatgtatg	cccgctatgc	12480
acacaaagcc	atctggcatg	agtcgcctct	gggctggctg	ctgcacaaga	gccaccacac	12540
acctcgcact	ggaccctttg	aagccaacga	cttgtttgca	atcatcaatg	gactgcccgc	12600
catgctcctg	tgtacctttg	gcttctggct	gcccaacgtc	ctgggggcgg	g cctgctttgg	12660
agcggggctg	ggcatcacgc	tatacggcat	ggcatatatg	tttgtacacg	g atggcctggt	12720
gcacaggcgc	tttcccaccg	ggcccatcgc	tggcctgccc	: tacatgaago	gcctgacagt	12780
ggcccaccag	ctacaccaca	gcggcaagta	cggtggcgcg	ccctggggta	a tgttcttggg	12840
tccacaggag	ctgcagcaca	ttccaggtgc	ggcggaggag	g gtggagcgad	c tggtcctgga	12900
actggactgg	tccaagcggt	agaagcttgg	cgtaatcatg	g gtcatagct	g tttcctgtgt	12960
gaaattgtta	tccgctcaca	attccacaca	acatacgago	c cggaagcat	a aagtgtaaag	13020
cctggggtgc	ctaatgagtg	agctaactca	cattaattg	c gttgcgctc	a ctgcccgctt	13080

WO 2004/063358 PCT/EP2004/000100 106/358

tccagtcggg	aaacctgtcg	tgccagctgc	attaatgaat	cggccaacgc	gcggggagag	13140
gcggtttgcg	tattgggcca	aagacaaaag	ggcgacattc	aaccgattga	gggagggaag	13200
gtaaatattg	acggaaatta	ttcattaaag	gtgaattatc	accgtcaccg	acttgagcca	13260
tttgggaatt	agagccagca	aaatcaccag	tagcaccatt	accattagca	aggccggaaa	13320
cgtcaccaat	gaaaccatcg	atagcagcac	cgtaatcagt	agcgacagaa	tcaagtttgc	13380
ctttagcgtc	agactgtagc	gcgttttcat	cggcattttc	ggtcatagcc	cccttattag	13440
cgtttgccat	cttttcataa	tcaaaatcac	cggaaccaga	gccaccaccg	gaaccgcctc	13500
cctcagagcc	gccaccctca	gaaccgccac	cctcagagcc	accaccctca	gagccgccac	13560
cagaaccacc	accagagccg	ccgccagcat	tgacaggagg	cccgatctag	taacatagat	13620
gacaccgcgc	gcgataattt	atcctagttt	gcgcgctata	ttttgttttc	tatcgcgtat	13680
taaatgtata	attgcgggac	tctaatcata	aaaacccatc	tcataaataa	cgtcatgcat	13740
tacatgttaa	ttattacatg	cttaacgtaa	ttcaacagaa	attatatgat	aatcatcgca	13800
agaccggcaa	caggattcaa	tcttaagaaa	ctttattgcc	aaatgtttga	acgatcgggg	13860
atcatccggg	tetgtggegg	gaactccacg	aaaatatccg	aacgcagcaa	gatatcgcgg	13920
tgcatctcgg	tcttgcctgg	gcagtcgccg	ccgacgccgt	tgatgtggac	gccgggcccg	13980
atcatattgt	cgctcaggat	cgtggcgttg	tgcttgtcgg	cegttgctgt	cgtaatgata	14040
tcggcacctt	: cgaccgcctg	ttccgcagag	atcccgtggg	cgaagaactc	cagcatgaga	14100
teceegeget	ggaggatcat	ccagccggcg	tcccggaaaa	cgattccgaa	gcccaacctt	14160
tcatagaagg	, cggcggtgga	atcgaaatct	: cgtgatggca	ggttgggcgt	cgcttggtcg	14220
gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	aagaaggcga	tagaaggcga	14280
tgcgctgcga	a atcgggagcg	gcgataccgt	: aaagcacgag	gaageggtea	gcccattcgc	14340

WO 2004/063358 PCT/EP2004/000100 107/358

cgccaagcto	ttcagcaata	tcacgggtag	ccaacgctat	gtcctgatag	cggtccgcca	14400
cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	14460
gcaagcaggo	: atcgccatgg	gtcacgacga	gatcatcgcc	gtcgggcatg	cgcgccttga	14520
gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	14580
cgacaagaco	ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	gcttggtggt	14640
cgaatgggca	ggtageegga	tcaagcgtat	gcagccgccg	cattgcatca	gccatgatgg	14700
atactttctc	ggcaggagca	aggtgagatg	acaggagatc	ctgccccggc	acttcgccca	14760
atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	cacagetgeg	caaggaacgc	14820
ccgtcgtggc	cagccacgat	agccgcgctg	cctcgtcctg	cagttcattc	agggcaccgg	14880
acaggtcggt	cttgacaaaa	agaaccgggc	gcccctgcgc	tgacagccgg	aacacggcgg	14940
catcagagca	gccgattgtc	tgttgtgccc	agtcatagcc	gaatagcctc	tccacccaag	15000
cggccggaga	acctgcgtgc	aatccatctt	gttcaatcat	gcgaaacgat	ccagatccgg	15060
tgcagattat	ttggattgag	agtgaatatg	agactctaat	tggataccga	ggggaattta	15120
tggaacgtca	gtggagcatt	tttgacaaga	aatatttgct	agctgatagt	gaccttaggc	15180
gacttttgaa	cgcgcaataa	tggtttctga	cgtatgtgct	tagctcatta	aactccagaa	15240
acccgcggct	gagtggctcc	ttcaacgttg	cggttctgtc	agttccaaac	gtaaaacggc	15300
ttgtcccgcg	tcatcggcgg	gggtcataac	gtgactccct	taattctccg	ctcatgatca	15360
gattgtcgtt	tecegeette	agtttaaact	atcagtgttt	gacaggatat	attggcgggt	15420
aaacctaaga	gaaaagagcg	tttattagaa	taatcggata	tttaaaaggg	cgtgaaaagg	15480
tttatccgtt	cgtccatttg	tatgtgcatg	ccaaccacag	ggttccccag	atctggcgcc	15540
ggccagcgag	acgagcaaga	ttggccgccg	cccgaaacga	tccgacagcg	cgcccagcac	15600

WO 2004/063358 PCT/EP2004/000100 108/358

aggtgcgcag gcaaattgca ccaacgcata cagcgccagc agaatgccat agtgggcggt 15	5660
	5720
gatgccgaca gcgtcgagcg cgacagtgct cagaattacg atcaggggta tgttgggttt 1	5780
cacgtetgge etceggacea geetcegetg gteegattga aegegeggat tetttateae 1	5840
tgataagttg gtggacatat tatgtttatc agtgataaag tgtcaagcat gacaaagttg 1	5900
cagccgaata cagtgatccg tgccgccctg gacctgttga acgaggtcgg cgtagacggt 1	5960
ctgacgacac gcaaactggc ggaacggttg ggggttcagc agccggcgct ttactggcac 1	.6020
ttcaggaaca agcgggcgct gctcgacgca ctggccgaag ccatgctggc ggagaatcat 1	6080
acgcattcgg tgccgagagc cgacgacgac tggcgctcat ttctgatcgg gaatgcccgc 1	L6140
agcttcaggc aggcgctgct cgcctaccgc gatggcgcgc gcatccatgc cggcacgcga	16200
ccgggcgcac cgcagatgga aacggccgac gcgcagcttc gcttcctctg cgaggcgggt	16260
ttttcggccg gggacgccgt caatgcgctg atgacaatca gctacttcac tgttggggcc	16320
gtgcttgagg agcaggccgg cgacagcgat gccggcgagc gcggcggcac cgttgaacag	16380
gctccgctct cgccgctgtt gcgggccgcg atagacgcct tcgacgaagc cggtccggac	16440
gcagcgttcg agcagggact cgcggtgatt gtcgatggat tggcgaaaag gaggctcgtt	16500
gtcaggaacg ttgaaggacc gagaaagggt gacgattgat caggaccgct gccggagcgc	16560
aacccactca ctacagcaga gccatgtaga caacatcccc tccccctttc caccgcgtca	16620
gacgecegta geageceget aegggetttt teatgeeetg eectagegte caageeteae	16680
ggccgcgctc ggcctctctg gcggccttct ggcgctcttc cgcttcctcg ctcactgact	16740
cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac	16800

WO 2004/063358 PCT/EP2004/000100 109/358

ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	16860
aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	cgccccctg	16920
acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	16980
gataccaggc	gtttccccct	ggaageteee	tegtgegete	tectgtteeg	accctgccgc	17040
ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgcttttc	cgctgcataa	17100
ccctgcttcg	gggtcattat	agcgattttt	tcggtatatc	catccttttt	cgcacgatat	17160
acaggatttt	gccaaagggt	tcgtgtagac	tttccttggt	gtatccaacg	gcgtcagccg	17220
ggcaggatag	gtgaagtagg	cccacccgcg	agcgggtgtt	ccttcttcac	tgtcccttat	17280
tcgcacctgg	cggtgctcaa	cgggaatcct	gctctgcgag	gctggccggc	taccgccggc	17340
gtaacagatg	agggcaagcg	gatggctgat	gaaaccaagc	caaccaggaa	gggcagccca	17400
cctatcaagg	ı tgtactgcct	tccagacgaa	cgaagagcga	ttgaggaaaa	ggcggcggcg	17460
gccggcatga	ı gcctgtcggc	ctacctgctg	geegteggee	agggctacaa	aatcacgggc	17520
gtcgtggact	: atgagcacgt	ccgcgagctg	gcccgcatca	atggcgacct	gggccgcctg	17580
ggcggcctgo	c tgaaactctg	geteacegae	gacccgcgca	cggcgcggtt	cggtgatgcc	17640
acgatecte	g ccctgctggc	gaagatcgaa	gagaagcagg	acgagcttgg	caaggtcatg	17700
atgggcgtg	g teegeeegag	ggcagagcca	ı tgacttttt	agccgctaaa	acggccgggg	17760
ggtgcgcgt	g attgccaago	e acgtececat	gegetecate	: aagaagagcg	acttcgcgga	17820
gctggtgaa	g tacatcacco	g acgagcaagg	g caagaccgag	g cgcctttgcg	acgctca	17877

<210> 38

<211> 17238

<212> DNA

<213> Artificial

<220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 38 cegggetggt tgecetegee getgggetgg eggeegteta tggeeetgea aacgegeeag 60 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 240 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 gaggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540

tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc

cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc

600

660

WO 2004/063358 PCT/EP2004/000100 111/358

teggeegega aeggeeteae eecaaaaatg geagegetgg eagteettge eattgeeggg	720
atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg	780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg	840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	900
gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920

WO 2004/063358 PCT/EP2004/000100 112/358

tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagette ttggggtate tttaaataet gtagaaaaga ggaaggaaat aataaatgge	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca	2520
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640
tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga	2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga	2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga	2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa	2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga	3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120
tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg	3180

WO 2004/063358 PCT/EP2004/000100 113/358

ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	cccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgcccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gegtgeaact	ggctccccct	gecetgeceg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	: aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	. cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctato	ggcgagccga	4020
tcaccttcac	gttctacgag	g ctttgccagg	acctgggctg	g gtcgatcaat	ggccggtatt	4080
acacgaaggo	cgaggaatgo	ctgtcgcgcc	: tacaggcgad	ggcgatggg	ttcacgtccg	4140
accgcgttgg	gcacctggaa	a teggtgtege	tgctgcacco	g cttccgcgto	c ctggaccgtg	4200
gcaagaaaad	gtcccgttgo	c caggtcctga	a tcgacgagga	a aatcgtcgt	g ctgtttgctg	4260
gcgaccacta	cacgaaatto	c atatgggaga	a agtaccgca	a gctgtcgcc	g acggcccgac	4320
ggatgttcga	ctatttcage	c tegeacegg	g agccgtacc	c gctcaagct	g gaaaccttcc	4380
gcctcatgt	g cggatcgga	t tccacccgc	g tgaagaagt	g gegegagea	g gtcggcgaag	4440

WO 2004/063358 PCT/EP2004/000100 114/358

cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tegtgtteat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gegetagate	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	a accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	a ctggcggccg	gaggacttct	: gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatccc	g atgcctacag	gaaccaatgt	: teteggeetg	gegtggeteg	gcctgatcgg	5520
agcgggttta	a acctacttco	: tttggttccg	g ggggatctcg	g cgactcgaad	: ctacagttġt	5580
ttccttact	g ggetttetea	gcccagato	tggggtcgat	: cageeggggä	tgcatcaggc	5640

WO 2004/063358 PCT/EP2004/000100 115/358

					•	
cgacagtcgg a	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	576.0
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	58 <u>2</u> 0
cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	teegaaateg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgaeggecag	g tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccg	: ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggco	agttccgcca	6900

WO 2004/063358 PCT/EP2004/000100 116/358

gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
teetttgget	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	. tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	ı tcatccgata	gctctgcaaa	ı gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttco	aggtggaatg	ı ttatgatgaç	g cattgtatta	aatcaggaga	ı tatagcatga	7620
tetetagtta	a gctcaccaca	a aaagtcagad	ggcgtaacca	a aaagtcacac	c aacacaagct	7680
gtaaggatt	t cggcacggct	acggaagac	g gagaagccad	c cttcagtgga	a ctcgagtacc	7740
atttaattc	t atttgtgttl	: gatcgagac	c taatacagco	c cctacaacga	a ccatcaaagt	7800
cgtatagct	a ccagtgagg	a agtggactc	a aatcgactt	c agcaacatc	t cctggataaa	7860
ctttaagcc	t aaactatac	a gaataagat	a ggtggagag	c ttataccga	g ctcccaaatc	7920
tgtccagat	c atggttgac	c ggtgcctgg	a tcttcctat	a gaatcatcc	t tattcgttga	7980
cctagctga	t tctggagtg	a cccagaggg	t catgacttg	a gcctaaaat	c egeegeetee	8040
accatttgt	a gaaaaatgt	g acgaactcg	t gagctctgt	a cagtgaccg	g tgactctttc	8100
tgġcatgcg	g agagacgga	c ggacgcaga	g agaagggct	g agtaataag	c cactggccag	8160

WO 2004/063358 PCT/EP2004/000100 117/358

		•	177000			
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520 .
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	: gtcagtccaa	catttgttgc	catatttcc	: tgctctcccc	accagetget	8760
cttttcttt	: ctctttcttt	teccatette	: agtatattca	tetteccate	: caagaacctt	8820
tatttcccct	: aagtaagtad	: tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacct	tcagttcgag	g ctttcccact	tcatcgcago	c ttgactaaca	gctaccccgc	8940
ttgagcaga	c atcaccatgo	c ctgaactca	c cgcgacgtct	t gtcgagaag	ttctgatcga	9000
aaagttcga	c agcgtctcc	g acctgatge	a gctctcggag	g ggcgaagaa	t ctcgtgcttt	9060
cagcttcga	t gtaggaggg	c gtggatatg	t cctgcgggt	a aatagctgc	g ccgatggttt	9120
ctacaaaga	t cgttatgtt	t atcggcact	t tgcatcggc	c gcgctcccg	a ttccggaagt	9180
gcttgacat	t ggggaattc	a gcgagagcc	t gacctattg	c atctcccgc	c gtgcacaggg	9240
tgtcacgtt	g caagacctg	c ctgaaaccg	a actgcccgc	t gttctgcag	c cggtcgcgga	9300
ggccatgga	t gcgatcgct	g cggccgatc	t tagccagac	g agegggtte	g gcccattcgg	9360
. accgcaagg	ga atcggtcaa	t acactacat	g gcgtgattt	c atatgegeg	a ttgctgatcc	9420

WO 2004/063358 PCT/EP2004/000100 118/358

ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200
cctcttccag atacagetca tetgcaatge attaatgeat tgaetgeaac etagtaaege	10260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac	10320
gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc	10380
tecaegegae tatatatttg tetetaattg taetttgaea tgeteetett etttaetetg	10440
atagcttgac tatgaaaatt ccgtcaccag cncctgggtt cgcaaagata attgcatgtt	10500
tetteettga acteteaage etacaggaca cacatteate gtaggtataa acetegaaat	10560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg	10620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga	10680

WO 2004/063358 PCT/EP2004/000100 119/358

atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ctaccgcttg	10800
gaccagtcca	gttccaggac	cagtcgctcc	acctcctccg	ccgcacctgg	aatgtgctgc	10860
agetectgtg	gacccaagaa	cataccccag	ggcgcgccac	cgtacttgcc	gctgtggtgt	10920
agctggtggg	ccactgtcag	gcgcttcatg	tagggcaggc	cagegatggg	cccggtggga	10980
aagcgcctgt	gcaccaggcc	atcgtgtaca	aacatatatg	ccatgccgta	tagcgtgatg	11040
cccagccccg	ctccaaagca	ggccgccccc	aggacgttgg	gcagccagaa	gccaaaggta	11100
cacaggagca	tggcgggcag	tccattgatg	attgcaaaca	agtcgttggc	ttcaaagggt	11160
ccagtgcgag	gtgtgtggtg	gctcttgtgc	agcagccagc	ccagaggcga	ctcatgccag	11220
atggctttgt	gtgcatagcg	ggcatacatc	tccatgccga	gcgcgccacc	aaccaccaag	11280
aggagagtgo	: cagccacttc	accccatggo	actgcgccgc	ccacggtcat	gtgcatggca	11340
aatctcaggt	. aggtggcgaa	gatggcaatg	cctgacacgc	caattgatgc	tgcaatggcg	11400
gcagcctggt	: atgacagctg	ctcccgtttg	cgccgggcac	gacgctctgc	gatagcccgg	11460
tcaagctgct	ggagtgctac	atcggcgctg	tgctcatcgc	cegegeegge	agcctgcacg	11520
gttcccagc	g cetectetgt	: ctgtggtgct	gecactegea	gccgaactaa	cgagcaccgc	11580
tgagcatgca	a ggcagacttt	gggccgcgtg	g atgtcgcggg	g ctagttcaac	geggegggee	11640
ttgacgctg	a ttgactgcag	g cttcgacage	atagagataa	a aataaaaaga	a gaagaaaaga	11700
aagtttgta	c aatttcttt	tgtttatata	a acatacacgo	c tatgtcaaca	a tttagaataa	11760
gggggaaaa	a atcttccato	c atattcgaa	t gcacaagat	t atttctttg	tegetettt	11820
tggtcgggt	c atcgagatt	t agagtgtaa	t caaagatac	t gtcatctcg	a gagcgttgca	11880
caggctgct	g tttgccaaa	t tggatgttt	g ccgaattag	t aaaatacgc	a agcatttctt	11940

WO 2004/063358 PCT/EP2004/000100 120/358

acctttccgc	tecettttee	taattctccc	aaagactaaa	tgaggaaaga	taaaggacaa	12000
agaaaatgta	aagacaaaga	aattgaaaac	gatataaact	tgcagcacgt	aagaccaaag	12060
caaattggta	actattcttg	tgtacaaaca	tgtataaaaa	aaaacttttt	tttgctcctg	12120
gaggacaaaa	tttcaaactc	cttgaagaag	attgcttgta	tatctatcat·	atgcatatat	12180
catatcgatg	gaaaaagaaa	gtcaggcatg	tatttataaa	aagaagaatg	tgccatgctt	12240
ccgaatttct	tttcactttc	ttttccttat	ctattttaat	ctcaagcttg	gcgtaatcat	12300
ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	12360
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagetaacte	acattaattg	12420
cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12480
tcggccaacg	cgcggggaga	ggcggtttgc	gtattgggcc	aaagacaaaa	gggcgacatt	12540
caaccgattg	agggagggaa	ggtaaatatt	gacggaaatt	attcattaaa	ggtgaattat	12600
caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12660
taccattago	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12720
. tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	tcggcatttt	12780
cggtcatago	: ccccttatta	ı gegtttgeca	tcttttcata	atcaaaatca	ccggaaccag	12840
agccaccacc	ggaaccgcct	ccctcagago	: cgccaccctc	agaaccgcca	ccctcagagc	12900
caccacccto	agagccgcca	a ccagaaccad	caccagagec	: gccgccagca	ttgacaggag	12960
gcccgatcta	a gtaacataga	a tgacaccgcg	g cgcgataatt	: tatcctagtt	: tgcgcgctat	13020
attttgttt	t ctatcgcgta	a ttaaatgta	aattgcggga	a ctctaatcat	: aaaaacccat	13080
ctcataaata	a acgtcatgc	a ttacatgtta	a attattacat	gcttaacgta	a attcaacaga	13140

WO 2004/063358 PCT/EP2004/000100 121/358

aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13200
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13260
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13320
ttgatgtgga	cgccgggccc	gatcatattg	tcgctcagga	tcgtggcgtt	gtgcttgtcg	13380
gccgttgctg	tcgtaatgat	atcggcacct	tcgaccgcct	gttccgcaga	gatcccgtgg	13440
gcgaagaact	ccagcatgag	atccccgcgc	tggaggatca	tccagccggc	gtcccggaaa	13500
acgattccga	agcccaacct	ttcatagaag	gcggcggtgg	aatcgaaatc	tcgtgatggc	13560
aggttgggcg	tegettggte	ggtcatttcg	aaccccagag	tcccgctcag	aagaactcgt	13620
caagaaggcg	atagaaggcg	atgcgctgcg	aatcgggagc	ggcgataccg	taaagcacga	13680
ggaagcggtc	ageceatteg	ccgccaagct	cttcagcaat	atcacgggta	gccaacgcta	13740
tgtcctgata	geggteegee	acacccagcc	ggccacagtc	gatgaatcca	gaaaagcggc	13800
cattttccac	catgatattc	ggcaagcagg	catcgccatg	ggtcacgacg	agatcatcgc	13860
cgtcgggcat	gegegeettg	agcctggcga	acagttcggc	tggcgcgagc	ccctgatgct	13920
cttcgtccag	atcatcctga	. tcgacaagac	cggcttccat	ccgagtacgt	gctcgctcga	13980
tgcgatgttt	cgcttggtgg	tcgaatgggc	aggtagccgg	atcaagcgta	tgcagccgcc	14040
gcattgcato	: agccatgatg	gatactttct	cggcaggagc	aaggtgagat	gacaggagat	14100
cctgccccgg	g cacttegeec	: aatagcagcc	agtcccttcc	cgcttcagtg	acaacgtcga	14160
gcacagctgo	gcaaggaacg	cccgtcgtgg	ccagccacga	tageegeget	gcctcgtcct	14220
gcagttcatt	cagggcaccg	g gacaggtcgg	tcttgacaaa	aagaaccggg	g egeeeetgeg	14280
ctgacagccg	g gaacacggcg	g gcatcagago	agccgattgt	: ctgttgtgcc	cagtcatage	14340
cgaatagcci	ctccacccaa	a geggeeggag	aacctgcgtg	g caatccatct	tgttcaatca	14400

WO 2004/063358 PCT/EP2004/000100 122/358

tgcgaaacga	tccagatccg	gtgcagatta	tttggattga	gagtgaatat	gagactctaa	14460
-5-5		<i>3</i> - 3			3-3	
ttggataccg _.	aggggaattt	atggaacgtc	agtggagcat	ttttgacaag	aaatatttgc	14520
tagctgatag	tgaccttagg	cgacttttga	acgcgcaata	atggtttctg	acgtatgtgc	14580
ttagctcatt	aaactccaga	aacccgcggc	tgagtggctc	cttcaacgtt	gcggttctgt	14640
cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	cgtgactccc	14700
ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	tatcagtgtt	14760
tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	ataatcggat	14820
atttaaaagg	gcgtgaaaag	gtttatccgt	tcgtccattt	gtatgtgcat	gccaaccaca	14880
gggttcccca	gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	14940
atccgacagc	gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagcgccag	15000
cagaatgcca	tagtgggcgg	tgacgtcgtt	cgagtgaacc	agatcgcgca	ggaggcccgg	15060
cagcaccggc	ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	15120
gatcaggggt	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15180
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15240
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15300
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15360
cagccggcgc	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15420
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	r ccgacgacga	ctggcgctca	15480
tttctgatcg	ggaatgcccg	cagetteagg	caggcgctgc	: tcgcctaccg	cgatggcgcg	15540
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15600
cgcttcctct	gcgaggcggg	tttttcggcc	ggggacgccg	g tcaatgcgct	gatgacaatc	15660

WO 2004/063358 PCT/EP2004/000100 123/358

agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15720
cgcggcggca	ccgttgaaca	ggeteegete	tcgccgctgt	tgegggeege	gatagacgcc	15780
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tcgcggtgat	tgtcgatgga	15840
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15900
tcaggaccgc	tgccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	15960
ctccccttt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	16020
gccctagcgt	ccaagcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	16080
cegetteete	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	gcggtatcag	16140
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16200
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	16260
tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	16320
gaaacccgac	aggactataa	agataccagg	cgtttcccc	tggaagctcc	ctcgtgcgct	16380
ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	16440
tggcgctttt	ccgctgcata	accetgette	ggggtcatta	tagcgatttt	ttcggtatat	16500
ccatcctttt	tegeaegata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16560
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16620
tccttcttca	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16680
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16740
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16800
attgaggaaa	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	16860
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	teegegaget	ggcccgcatc	16920

aatggcgac tgggccgct gggcgcctg ctgaaactct ggctcaccga cgacccgcgc 16980
acggcgggt tcggtgatgc cacgatcctc gccctgctgg cgaagatcga agagaagcag 17040
gacgagcttg gcaaggtcat gatgggcgtg gtccgccga gggcagagcc atgactttt 17100
tagccgctaa aacggccggg gggtgcgct gattgccaag cacgtcccca tgcgctcat 17160
caagaagagc gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga 17220
gcgcctttgc gacgctca 17238

<210> 39

<211> 17238

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 39

cegggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag

60

120

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg

aaaacttggc	cctcactgac	agatgagggg	cggacgttga	cacttgaggg	gccgactcac	180
ccggcgcggc	gttgacagat	gaggggcagg	ctcgatttcg	gccggcgacg	tggagctggc	240
cagectegea	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	atgatgtgga	300
caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	actgacagat	360
gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgo	: tggcatcgac	: attcagcgac	: caggtgccgg	gcagtgaggg	g eggeggeetg	840
ggtggcggc	: tgcccttcac	: ttcggccgtc	ggggcattca:	cggacttcat	ggeggggeeg	900
gcaattttta	a ccttgggcat	: tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	a acccagcgaa	a ccatttgagg	g tgataggtaa	gattatacco	g aggtatgaaa	1020
acgagaatt	g gacetttaca	a gaattactct	atgaagcgcc	atatttaaaa	a agctaccaag	1080
acgaagagg	a tgaagagga	t gaggaggcag	g attgccttga	atatattga	c aatactgata	1140
agataatat	a tcttttata	t agaagatato	c gccgtatgta	aggatttca	g ggggcaaggc	1200
ataggcagc	g cgcttatca	a tatatctata	a gaatgggcaa	agcataaaa	a cttgcatgga	1260
ctaatgctt	g aaacccagg	a caataacct	t atagcttgta	a aattctatc	a taattgggta	1320
atgacteca	a cttattgat	a gtgttttat	g ttcagataa	t gcccgatga	c tttgtcatgc	1380

WO 2004/063358 PCT/EP2004/000100 126/358

agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cageggeeag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	getgttgeec	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	. aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggcto	: cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	ı tttaaggttt	: tagaatgcaa	ı ggaacagtga	attggagtto	gtcttgttat	2220
aattagctto	: ttggggtato	: tttaaatact	: gtagaaaaga	a ggaaggaaat	aataaatggc	2280
taaaatgaga	a atatcaccgg	g aattgaaaaa	a actgatcgaa	a aaataccgct	gcgtaaaaga	2340
tacggaagga	a atgtctccts	g ctaaggtata	a taagctggtg	g ggagaaaat	g aaaacctata	2400
tttaaaaat	g acggacagco	ggtataaag	g gaccacctat	t gatgtggaad	gggaaaagga	2460
catgatgct	a tggctggaa	g gaaagctgc	c tgttccaaa	g gtcctgcac	t ttgaacggca	2520
tgatggctg	g agcaatctg	c tcatgagtg	a ggccgatgg	c gtcctttgc	t cggaagagta	2580

WO 2004/063358 PCT/EP2004/000100 127/358

tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tetteegeat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	: cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagegegaca	3540
gcgtgcaact	ggeteecet	gccctgcccg	cgccatcggc	: cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ı ggaggcggca	ggtttggcga	agtcgatgac	: catcgacacg	cgaggaacta	3660
tgacgaccaa	a gaagcgaaaa	accgccggcg	aggacctggc	: aaaacaggto	agcgaggcca	3720
agcaggccgo	gttgctgaaa	a cacacgaago	: agcagatcaa	a ggaaatgcag	ctttccttgt	3780
tcgatattg	gccgtggccg	gacacgatgo	gagegatged	c aaacgacacg	gecegetetg	3840

WO 2004/063358 PCT/EP2004/000100 128/358

		-				
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	ı tgaagaagtg	gegegageag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	g tggaacacgo	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	: cttgtggggt	cagttccgg	tgggggttca	a gcagccagcg	4560
ctttactgg	c atttcaggaa	a caageggge	a ctgctcgac	g cacttgctto	gctcagtatc	4620
gctcgggac	g cacggcgcg	tctacgaac	t gccgataaa	c agaggattaa	a aattgacaat	4680
tgtgattaa	g gctcagatto	c gacggcttg	g agcggccga	c gtgcaggat	t teegegagat	4740
ccgattgtc	g geeetgaag	a aagctccag	a gatgttegg	g tccgtttac	g agcacgagga	4800
gaaaaagcc	c atggaggcg	t tcgctgaac	g gttgcgaga	t gccgtggca	t teggegeeta	4860
catcgacgg	c gagatcatt	g ggctgtcgg	t cttcaaaca	g gaggacggc	c ccaaggacgc	4920
tcacaaggo	g catctgtcc	g gcgttttcg	t ggagcccga	a cagcgaggc	c gaggggtcgc	4980
cggtatgct	g ctgcgggcg	t tgccggcgg	g tttattgct	c gtgatgatc	g tccgacagat	5040
tccaacggg	a atctggtgg	a tgcgcatct	t catcctcgg	c gcacttaat	à tttcgctatt	5100

WO 2004/063358 PCT/EP2004/000100 129/358

ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	teteggeetg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgto	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	toggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	ı tatttgatca	5880
caggcagcaa	ı cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaaco	c cggcagctta	gttgccgttc	: ttccgaatag	r categgtaac	c atgagcaaag	6000
tetgeegeet	tacaacggct	: ctcccgctga	cgccgtcccg	gactgatggg	g ctgcctgtat	6060
cgagtggtga	a ttttgtgccg	g agetgeeggt	cggggagctg	g ttggctggct	ggtggcagga	6120
tatattgtg	g tgtaaacaaa	ı ttgacgctta	a gacaacttaa	a taacacatto	g cggacgtttt	6180
taatgtact	g gggtggtttl	tetttteace	c agtgagacgg	g gcaacagcto	g attgeeette	6240
accgcctgg	c cctgagagag	g ttgcagcaa	g cggtccacgo	e tggtttgcc	c cagcaggcga	6300
aaatcctgt	t tgatggtgg	t toogaaato	g gcaaaatcc	c ttataaatc	a aaagaatagc	6360

WO 2004/063358 PCT/EP2004/000100 130/358

ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg 6420 6480 actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat 6540 cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag 6600 ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg 6660 6720 cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag 6780 ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg 6840 cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca 6900 gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa 6960 7020 gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt aagatccacg tcttcgggaa gccagcgact ggtgacctcc agcgtccctt taaggctgcc 7080 aacagettte teagecaggg ceageceaag acegacaagg ceteceteea gaacgeegag 7140 aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag 7200 cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg 7260 tagcatagct tcatttggat ttgctttcca ggctgagact ctagcttgga gcatagaggg 7320 teetttgget tteaatatte teaagtatet egagtttgaa ettatteeet gtgaacettt 7380 tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt 7440 togaaataca tooggatgto gaaggottgg ggcacctgcg ttggttgaat ttagaacgtg 7500 gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc 7560 7620 tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga

WO 2004/063358 PCT/EP2004/000100 131/358

tctctagtta gctcaccaca aaagtcagac ggcgtaacca aaagtcacac aacacaagct 7680 gtaaggattt cggcacggct acggaagacg gagaagccac cttcagtgga ctcgagtacc 7740 atttaattct atttgtgttt gatcgagacc taatacagcc cctacaacga ccatcaaagt 7800 cgtatagcta ccagtgagga agtggactca aatcgacttc agcaacatct cctggataaa 7860 ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc 7920 tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga 7980 cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc 8040 accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc 8100 8160 tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeeete 8220 cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg 8280 agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt 8340 gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg 8400 atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc 8460 gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc 8520 ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac 8580 egggaacaca agetggeagt egacecatee ggtgetetge actegacetg etgaggtece 8640 8700 teagteett gtaggeaget ttgeecegte tgteegeeg gtgtgtegge ggggttgaea aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct 8760 cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt 8820 tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc 8880

WO 2004/063358 PCT/EP2004/000100 132/358

tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgccċgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
			•			
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgcaege	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	teggģegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agategttgg	tgtcgatgtc	agctccggag	10080

WO 2004/063358 PCT/EP2004/000100 133/358

ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga 10140 gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta 10200 cctcttccag atacagctca tctgcaatgc attaatgcat tgactgcaac ctagtaacgc 10260 10320 cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc 10380 tccacgcgac tatatatttg tctctaattg tactttgaca tgctcctctt ctttactctg atagettgae tatgaaaatt eegteaceag eneetgggtt egeaaagata attgeatgtt tcttccttga actctcaagc ctacaggaca cacattcatc gtaggtataa acctcgaaat canttectae taagatggta tacaatagta accatgeatg gttgcctagt gaatgeteeg 10620 taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga 10680 atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact gtgtaagcgc ccactccaca tctccactcg acctgcaggc atgcaagctt agagataaaa taaaaagaga agaaaagaaa gtttgtacaa tttctttttg tttatataac atacacgcta tgtcaacatt tagaataagg gggaaaaaat cttccatcat attcgaatgc acaagattat ttctttgttc gctctttttg gtcgggtcat cgagatttag agtgtaatca aagatactgt catctcgaga gcgttgcaca ggctgctgtt tgccaaattg gatgtttgcc gaattagtaa aatacgcaag catttettae ettteegete eettteeta atteteecaa agactaaatg 11100 aggaaagata aaggacaaag aaaatgtaaa gacaaagaaa ttgaaaacga tataaacttg 11160 cagcacgtaa gaccaaagca aattggtaac tattcttgtg tacaaacatg tataaaaaaa 11220 aactttttt tgctcctgga ggacaaaatt tcaaactcct tgaagaagat tgcttgtata 11280 tctatcatat gcatatatca tatcgatgga aaaagaaagt caggcatgta tttataaaaa 11340

WO 2004/063358 PCT/EP2004/000100 134/358

gaagaatgtg ccatgcttcc gaatttcttt tcactttctt ttccttatct attttaatct 1	1400
catgctgtcg aagctgcagt caatcagcgt caaggcccgc cgcgttgaac tagcccgcga 1	.1460
catcacgcgg cccaaagtct gcctgcatgc tcagcggtgc tcgttagttc ggctgcgagt 1	.1520
ggcagcacca cagacagagg aggcgctggg aaccgtgcag gctgccggcg cgggcgatga 1	1580
gcacagcgcc gatgtagcac tccagcagct tgaccgggct atcgcagagc gtcgtgcccg 1	L1640
gcgcaaacgg gagcagctgt cataccaggc tgccgccatt gcagcatcaa ttggcgtgtc 1	L1700
aggcattgcc atcttcgcca cctacctgag atttgccatg cacatgaccg tgggcggcgc 1	L1760
agtgccatgg ggtgaagtgg ctggcactct cctcttggtg gttggtggcg cgctcggcat 1	11820
ggagatgtat gcccgctatg cacacaaagc catctggcat gagtcgcctc tgggctggct 1	11880
gctgcacaag agccaccaca cacctcgcac tggacccttt gaagccaacg acttgtttgc 1	11940
aatcatcaat ggactgcccg ccatgctcct gtgtaccttt ggcttctggc tgcccaacgt 1	12000
cctgggggcg gcctgctttg gagcggggct gggcatcacg ctatacggca tggcatatat 1	12060
gtttgtacac gatggcctgg tgcacaggcg ctttcccacc gggcccatcg ctggcctgcc 1	12120
ctacatgaag cgcctgacag tggcccacca gctacaccac agcggcaagt acggtggcgc :	12180
gccctggggt atgttcttgg gtccacagga gctgcagcac attccaggtg cggcggagga :	12240
ggtggagcga ctggtcctgg aactggactg gtccaagcgg tagaagcttg gcgtaatcat	12300
ggtcatagct gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag	12360
ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg	12420
cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa	12480
tcggccaacg cgcggggaga ggcggtttgc gtattgggcc aaagacaaaa gggcgacatt	12540
caaccgattg agggagggaa ggtaaatatt gacggaaatt attcattaaa ggtgaattat	12600

WO 2004/063358 PCT/EP2004/000100 135/358

caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12660
taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12720
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	toggcatttt	12780
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12840
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12900
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12960
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	13020
attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	13080
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13140
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13200
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13260
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13320
ttgatgtgga	cgccgggccc	gatcatattg	tcgctcagga	tcgtggcgtt	gtgcttgtcg	13380
gccgttgctg	r tcgtaatgat	atcggcacct	tcgaccgcct	gttccgcaga	gatecegtgg	13440
gcgaagaact	ccagcatgag	g atccccgcgc	tggaggatca	tecageegge	gteeeggaaa	13500
acgattccga	agcccaacct	: ttcatagaag	geggeggtgg	aatcgaaatc	tcgtgatggc	13560
aggttgggcg	g tegettggte	ggtcatttcg	g aaccccagag	tecegetea <u>c</u>	g aagaactcgt	13620
caagaaggc	g atagaaggcg	g atgcgctgcg	g aatcgggagd	ggcgataccg	g taaagcacga	13680
ggaagcggto	e agcccattcg	g ccgccaagct	: cttcagcaat	: atcacgggta	a gccaacgcta	13740
tgtcctgata	a gcggtccgc	c acacccagco	ggccacagto	gatgaatcca	a gaaaagcggc	13800
cattttcca	c catgatatte	c ggcaagcag	g catcgccato	g ggtcacgac	g agatcatcgc	13860

WO 2004/063358 PCT/EP2004/000100 136/358

	cgtcgggcat (gegegeettg	agcctggcga	acagttcggc	tggcgcgagc	ccctgatgct	13920
	cttcgtccag	atcatcctga	tcgacaagac	cggcttccat	ccgagtacgt	gctcgctcga	13980
	tgcgatgttt	cgcttggtgg	tcgaatgggc	aggtagccgg	atcaagcgta	tgcagccgcc	14040
	gcattgcatc	agccatgatg	gatactttct	cggcaggagc	aaggtgagat	gacaggagat	14100
	cctgccccgg	cacttcgccc	aatagcagcc	agtcccttcc	cgcttcagtg	acaacgtcga	14160
	gcacagctgc	gcaaggaacg	cccgtcgtgg	ccagccacga	tagccgcgct	gcctcgtcct	14220
	gcagttcatt	cagggcaccg	gacaggtcgg	tcttgacaaa	aagaaccggg	cgcccctgcg	14280
	ctgacagccg	gaacacggcg	gcatcagagc	agccgattgt	ctgttgtgcc	cagtcatagc	14340
•	cgaatagcct	ctccacccaa	gcggccggag	aacctgcgtg	caatccatct	tgttcaatca	14400
	tgcgaaacga	tecagatecg	gtgcagatta	tttggattga	gagtgaatat	gagactctaa	14460
	ttggataccg	aggggaattt	atggaacgtc	agtggagcat	ttttgacaag	aaatatttgc	14520
	tagctgatag	tgaccttagg	cgacttttga	. acgcgcaata	atggtttctg	acgtatgtgc	14580
	ttagctcatt	aaactccaga	aacccgcggc	: tgagtggctc	: cttcaacgtt	geggttetgt	14640
	cagttccaaa	cgtaaaacgg	, cttgtcccgc	: gtcatcggcg	g ggggtcataa	cgtgactccc	14700
	ttaattctcc	gctcatgato	agattgtcgt	ttcccgcctt	cagtttaaac	: tatcagtgtt	14760
	tgacaggata	tattggcggg	y taaacctaag	g agaaaagago	gtttattaga	a ataatcggat	14820
	atttaaaagg	gcgtgaaaa	g gtttatccgt	tegtecatt	t gtatgtgcat	gccaaccaca	14880
	gggttcccca	gatctggcg	c cggccagcga	a gacgagcaa	g attggccgc	c gcccgaaacg	14940
	atccgacago	gegeecage	a caggtgcgca	a ggcaaattg	c accaacgca	t acagegecag	15000
	cagaatgcca	tagtgggcg	g tgacgtcgt	t cgagtgaac	c agatcgcgc	a ggaggcccgg	15060
	cagcaccggc	: ataatcagg	c cgatgccga	c agcgtcgag	c gcgacagtg	c tcagaattac	15120

WO 2004/063358 PCT/EP2004/000100 137/358

gatcaggggt	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15180
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15240
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15300
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15360
cagccggcgc	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15420
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15480
tttctgatcg	ggaatgcccg	cagcttcagg	caggcgctgc	tegeetaceg	cgatggcgcg	15540
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15600
cgcttcctct	gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	15660
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15720
cgcggcggca	ccgttgaaca	ggctccgctc	tegeegetgt	tgegggeege	gatagacgcc	15780
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tegeggtgat	tgtcgatgga	15840
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15900
tcaggaccgc	tgccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	15960
ctccccettt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	16020
gccctagcgt	ccaagcctca	cggccgcgct	eggeetetet	ggcggccttc	tggcgctctt	16080
ccgcttcctc	gctcactgac	tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	16140
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16200
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	16260
tccataggct	: ccgccccct	gacgagcato	acaaaaatcg	acgctcaagt	cagaggtggc	16320
gaaacccgac	: aggactataa	agataccagg	cgtttcccc	: tggaagetee	ctcgtgcgct	16380

ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	16440
tggcgctttt	cegetgeata	accctgctte	ggggtcatta	tagcgatttt	ttcggtatat	16500
ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16560
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16620
tccttcttca	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16680
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16740
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16800
attgaggaaa	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	16860
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	16920
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16980
acggcgcggt	teggtgatge	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	17040
gacgagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	17100
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17160
caagaagagc	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	17220
gcgcctttgc	gacgctca					17238

<210> 40

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

139/358 <220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> · <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t <400> 40 gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc aatattetea agtatetega gtttgaactt atteeetgtg aacettttat teaceaatga

gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc

ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca

teegataget etgeaaaggg egttgeacaa tgeaagteaa aegttgetag eagtteeagg

180

240

300

360

420

480

540

600

660

720

780

WO 2004/063358 PCT/EP2004/000100 140/358

tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca ·	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgacco	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	ı cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggt	g cagtggatga	ttattaatco	gggaccggcc	gececteege	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaato	c accggcagta	agcgaaggag	g aatgtgaago	: caggggtgta	ı tageegtegg	1560
cgaaatagc	a tgccattaac	: ctaggtacag	g aagtccaatt	getteegate	: tggtaaaaga	1620
ttcacgaga	t agtaccttct	ccgaagtagg	tagagcgagt	acceggegeg	g taageteeet	1680
aattggccc	a tccggcatc	gtagggcgto	c caaatatcgi	geeteteet	g ctttgcccgg	1740
tgtatgaaa	c cggaaaggc	c gctcaggage	c tggccagcg	g cgcagaccgg	g gaacacaagc	1800
tggcagtcg	a cccatccgg	t gctctgcac	t cgacctgct	g aggteeete	a gtccctggta	1860
ggcagcttt	g ccccgtctg	t ccgcccggt	g tgtcggcgg	g gttgacaag	g tegttgegte	1920
agtccaaca	t ttgttgcca	t attttcctg	c tctccccac	c agctgctct	t ttcttttctc	1980
tttcttttc	c catcttcag	t atattcatc	t tcccatcca	a gaaccttta	t ttcccctaag	2040

WO 2004/063358 PCT/EP2004/000100 141/358

taagtacttt gctacatcca tactccatcc ttcccatccc ttattccttt gaacctttca	2100
gttcgagctt tcccacttca tcgcagcttg actaacagct accccgcttg agcagacatc	2160
accatgcctg aactcaccgc gacgtctgtc gagaagtttc tgatcgaaaa gttcgacagc	2220
gtctccgacc tgatgcagct ctcggagggc gaagaatctc gtgctttcag cttcgatgta	2280
ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta caaagatcgt	2340
tatgtttatc ggcactttgc atcggccgcg ctcccgattc cggaagtgct tgacattggg	2400
gaattcagcg agagcctgac ctattgcatc tcccgccgtg cacagggtgt cacgttgcaa	2460
gacctgcctg aaaccgaact gcccgctgtt ctgcagccgg tcgcggaggc catggatgcg	2520
atcgctgcgg ccgatcttag ccagacgagc gggttcggcc cattcggacc gcaaggaatc	2580
ggtcaataca ctacatggcg tgatttcata tgcgcgattg ctgatcccca tgtgtatcac	2640
tggcaaactg tgatggacga caccgtcagt gcgtccgtcg cgcaggctct cgatgagctg	2700
atgctttggg ccgaggactg ccccgaagtc cggcacctcg tgcacgcgga tttcggctcc	2760
aacaatgtcc tgacggacaa tggccgcata acagcggtca ttgactggag cgaggcgatg.	2820
ttcggggatt cccaatacga ggtcgccaac atcttcttct ggaggccgtg gttggcttgt	2880
atggagcagc agacgcgcta cttcgagcgg aggcatccgg agcttgcagg atcgccgcgg	2940
ctccgggcgt atatgctccg cattggtctt gaccaactct atcagagctt ggttgacggc	3000
aatttcgatg atgcagcttg ggcgcagggt cgatgcgacg caatcgtccg atccggagcc	3060
gggactgtcg ggcgtacaca aatcgcccgc agaagcgcgg ccgtctggac cgatggctgt	3120
gtagaagtac tcgccgatag tggaaaccga cgccccagca ctcgtccgag ggcaaaggaa	3180
tagagtagat gccgaccgcg ggatcgatcc acttaacgtt actgaaatca tcaaacagct	3240
tgacgaatct ggatataaga tcgttggtgt cgatgtcagc tccggagttg agacaaatgg	3300

WO 2004/063358 PCT/EP2004/000100 142/358

tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggctcc	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tcctcttctt	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagene	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	actttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	gataaggaaa	4020
agaaagtgaa	aagaaattcg	gaagcatggc	acattcttct	ttttataaat	acatgeetga	4080
ctttctttt	ccatcgatat	gatatatgca	tatgatagat	atacaagcaa	tcttcttcaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	aaaaaagttt	ttttttatac	atgtttgtac	4200
acaagaatag	ttaccaattt	gctttggtct	tacgtgctgc	aagtttatat	cgttttcaat	4260
ttctttgtct	ttacattttc	tttgtccttt	atctttcctc	atttagtctt	tgggagaatt	4320
aggaaaaggg	agcggaaagg	taagaaatgc	ttgcgtattt	tactaattcg	gcaaacatcc	4380
aatttggcaa	acagcagcct	gtgcaacgct	ctcgagatga	cagtatettt	gattacactc	4440
taaatctcga	tgacccgacc	aaaaagagcg	aacaaagaaa	taatcttgtg	cattcgaata	4500
tgatggaaga	tttttcccc	cttattctaa	atgttgacat	agcgtgtatg	ttatataaac	4560

WO 2004/063358 PCT/EP2004/000100 143/358

aaaaagaaat tgtacaaact ttcttttctt ctcttttat tttatctcta tgctgtcgaa	4620
gctgcagtca atcagcgtca aggcccgccg cgttgaacta gcccgcgaca tcacgcggcc	4680
caaagtctgc ctgcatgctc agcggtgctc gttagttcgg ctgcgagtgg cagcaccaca	4740
gacagaggag gegetgggaa eegtgeagge tgeeggegeg ggegatgage acagegeega	4800
tgtagcactc cagcagcttg accgggctat cgcagagcgt cgtgcccggc gcaaacggga	4860
gcagctgtca taccaggctg ccgccattgc agcatcaatt ggcgtgtcag gcattgccat	4920
cttcgccacc tacctgagat ttgccatgca catgaccgtg ggcggcgcag tgccatgggg	4980
tgaagtggct ggcactctcc tcttggtggt tggtggcgcg ctcggcatgg agatgtatgc	5040
ccgctatgca cacaaagcca tctggcatga gtcgcctctg ggctggctgc tgcacaagag	5100
ccaccacaca cctcgcactg gaccctttga agccaacgac ttgtttgcaa tcatcaatgg	5160
actgcccgcc atgctcctgt gtacctttgg cttctggctg cccaacgtcc tgggggcggc	5220
ctgctttgga gcggggctgg gcatcacgct atacggcatg gcatatatgt ttgtacacġa	5280
tggcctggtg cacaggcgct ttcccaccgg gcccatcgct ggcctgccct acatgaagcg	5340
cctgacagtg gcccaccagc tacaccacag cggcaagtac ggtggcgcgc cctggggtat	5400
gttcttgggt ccacaggagc tgcagcacat tccaggtgcg gcggaggagg tggagcgact	5460
ggtcctggaa ctggactggt ccaagcggta gattgtgact gatagcgaga ctctgggtcg	5520
atgttatctg cctcaacaat ggcttagaaa agaagaaaca gaacaaatac agcaaggcaa .	5580
cgcccgtagc ctaggtgatc aaagactgtt gggcttgtct ctgaagcttg taggaaaggc	5640
agacgctatc atggtgagag ctaagaaggg cattgacaag ttgccggcaa actgtcaagg	5700
cggtgtacga gctgcttgcc aagtatatgc tgcaattgga tctgtactca agcagcagaa	5760
gacaacatat cctacaagag ctcatctaaa aggaagcgaa cgtgccaaga ttgctctgtt	5820

WO 2004/063358 PCT/EP2004/000100 144/358

gagtgtatac	aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880
gattaagagt	ttttttgttg	attagtgaat	ttttgtttta	tttatgtctg	atagttcaat	5940
aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300 ·
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	agcccaacag	tctttgatca	cctaggctac	gggcgttgcc	ttgctgtatt	6420
tgttctgttt	cttctttct	aagccattgt	tgaggcagat	aacatcgacc	caacatcctc	6480
gagccatact	acagcataaa	aggatacgtt	ttctttaaca	gaaatttacc	cttttgttat	6540
cagcacatac	aaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	tcaaaaattt	6600
tattcaatcc	ataaatgaat	tatttttgga	caaaaaagaa	agattatgcc	tgattttctc	6660
tattttttt	ttttttacaa	ctccaccaat	actttctagc	ccagcttggc	gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	6780
ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	6840
ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	6900
ggccaacgcg	cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	6960
accgattgag	ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	7020

WO 2004/063358 PCT/EP2004/000100 145/358

•	ccgtcaccga	cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	7080	
(ccattagcaa	ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	7140	
9	gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200	
•	gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260	
,	ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	7320	
•	ccaccctcag	agccgccacc	agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	7380	
	ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440	
	tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500	
	cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	7560	
	ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620	
	aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680	
	acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740	
	gatgtggacg	ccgggcccga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	7800	
	cgttgctgtc	gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tecegtggge	7860	
	gaagaactcc	agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	7920	
	gattccgaag	cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	7980	
	gttgggcgtc	gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	8040	
	agaaggcgat	agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	8100	
	aagcggtcag	cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	8160	
	tcctgatagc	ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	8220	
	ttttccacca	tgatattcgg	caagcaggca	tegecatggg	tcacgacgag	atcatcgccg	8280	

WO 2004/063358 PCT/EP2004/000100 146/358

	140	0/336			
tcgggcatgc gcgcctt	gag cctggcgaac a	gttcggctg	gcgcgagccc	ctgatgctct	8340
tcgtccagat catcctg	atc gacaagaccg g	cttccatcc	gagtacgtgc	tegetegatg	8400
cgatgtttcg cttggtg	gtc gaatgggcag g	rtagccggat	caagcgtatg	cageegeege	8460
attgcatcag ccatgat	gga tactttctcg g	gcaggagcaa	ggtgagatga	caggagatcc	8520
tgccccggca cttcgcc	caa tagcagccag t	cccttcccg	cttcagtgac	aacgtcgagc	8580
acagctgcgc aaggaac	gcc cgtcgtggcc a	agccacgata	gccgcgctgc	ctcgtcctgc	8640
agttcattca gggcaco	egga caggteggte t	ttgacaaaaa	gaaccgggcg	ccctgcgct	8700
gacagccgga acacggo	eggc atcagagcag o	ccgattgtct	gttgtgccca	gtcatagccg	8760
aatageetet eeacee	aagc ggccggagaa (cctgcgtgca	atccatcttg	ttcaatcatg	8820
cgaaacgatc cagatc	cggt gcagattatt	tggattgaga	gtgaatatga	gactctaatt	8880
ggataccgag gggaat	ttat ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	8940
gctgatagtg acctta	ggcg acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	9000
agctcattaa actcca	gaaa cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	9060
gttccaaacg taaaac	gget tgteeegegt	catcggcggg	ggtcataacg	g tgactccctt	9120
aattctccgc tcatga	tcag attgtcgttt	cccgccttca	gtttaaacta	a tcagtgtttg	9180
acaggatata ttggcg	ggta aacctaagag	aaaagagcgt	: ttattagaat	: aatcggatat	9240
ttaaaagggc gtgaaa	aggt ttatccgttc	gtccatttgt	: atgtgcatgo	caaccacagg	9300
gttccccaga tctgg	egceg gecagegaga	cgagcaagat	: tggccgccg	c ccgaaacgat	9360
ccgacagcgc gccca	gcaca ggtgcgcagg	caaattgcad	caacgcata	c agcgccagca	9420
gaatgccata gtggg	eggtg aegtegtteg	agtgaaccag	g atcgcgcag	g aggcccggca	9480
gcaccggcat aatca	ggccg atgccgacag	cgtcgagcg	c gacagtgct	c agaattacga	9540 [.]

WO 2004/063358 PCT/EP2004/000100 147/358

		- N				
tcaggggtat	gttgggtttc	acgtetggcc	tccggaccag	cctccgctgg	tccgattgaa	9600
cgcgcggatt	ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	9660
gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	geegeeetgg	acctgttgaa	9720
cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
gccggcgctt	tactggcact	tcaggaacaa	gegggegetg	ctcgacgcac	tggccgaagc	9840
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggegetgete	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatg <u>cg</u> ctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	10200
cgacgaagcc	ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	10260
ggcgaaaagg	aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtģ	acgattgatc	10320
aggaccgctg	ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	10380
cccctttcc	accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	10440
cctagcgtcc	aagcctcacg	gccgcgctcg	gcctctctgg	cggccttctg	gcgctcttcc	10500
gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	10560
cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	10620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	10680
cataggctcc	gccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	10740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaageteeet	cgtgcgctct	10800

WO 2004/063358 PCT/EP2004/000100 148/358

cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	10920
atcctttttc	gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	10980
tatccaacgg	cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	11040
cttcttcact	gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	11100
ctggccggct	accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	11160
aaccaggaag	ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	11220
tgaggaaaag	gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	11280
gggctacaaa	atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	11340
tggcgacctg	ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	acccgcgcac	11400
ggcgcggttc	ggtgatgcca	cgatectege	cctgctggcg	aagatcgaag	agaagcagga	11460
cgagcttggc	aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	11520
gccgctaaaa	cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	11580
agaagagcga	cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	11640
gcctttgcga	cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	11700
cctgcaaacg	cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	11760
tgtggatacc	tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	11820
tgaggggccg	actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	11880
gcgacgtgga	gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	11940
ccacagatga	tgtggacaag	cctggggata	agtgccctgc	ggtattgaca [°]	cttgaggggc	12000
gcgactactg	acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	12060

WO 2004/063358 PCT/EP2004/000100 149/358

tgaggggcgc	acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	12120
aagggtttcc	gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	12180
atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	12240
aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
ccaggggctg	cgcccctcgg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	gcggcctgcc	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	12780
attgacaata	ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	12840
tttcaggggg	caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	12900
taaaaacttg	catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	12960
ctatcataat	tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	13020
gatgactttg	tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	13080
tgccaggtgc	tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	13140
gattacgtgc	agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatéca	13200
tatcaccacg	tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320

WO 2004/063358 PCT/EP2004/000100 150/358

gcgctggcgc	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	13380
gacgtcactg	cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	13440
cġtaaaatcg	tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	13500
ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040
aaaatgaaaa	cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	14100
tggaacggga	aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	14160
tgcactttga	. acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	14220
tttgctcgga	agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	14280
agtgcatcag	gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	14340
acageegett	agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	14400
aaaactggga	ı agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	14460
cggaaaagco	: cgaagaggaa	cttgtcttt	cccacggcga	cctgggagac	agcaacatct	14520

WO 2004/063358 PCT/EP2004/000100 151/358

ttgtgaaaga	tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	14580
agtggtatga	cattgccttc	tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	14640
atgtcgagct	attttttgac	ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	14700
atattttact	ggatgaattg	ttttagtacc	tagatgtggc	gcaacgatgc	cggcgacaag	14760
caggagcgca	ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggc	14820
aagtatttgg	gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	14880
gagaaggacg	gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	14940
gacaccaagg	caccaggcgg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	15000
ggggcaatcc	cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	15060
gaactgatcg	acgcggggtt	ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	15120
atgcgtgcgc	cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	15180
aagatcgagc	gcgacagcgt	gcaactggct	ccccatgccc	tgcccgcgcc	atcggccgcc	15240
gtggagcgtt	cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	15300
gacacgcgag	gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	15360
caggtcagcg	aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	15420
atgcagcttt	ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gatgccaaac	15480
gacacggccc	gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	15540
caaaacaagg	tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	15600
ctgcgggccg	acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagcgcacc	15660
cctatcggcg	agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	15720
atcaatggcc	ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	15780

WO 2004/063358 PCT/EP2004/000100 152/358

atgggcttca	cgtccgaccg	cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	15840
cgcgtcctgg	accgtggcaa	gaaaacgtcc	cgttgccagg	tcctgatcga	cgaggaaatc	15900
gtcgtgctgt	ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	15960
tcgccgacgg	cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	16020
aagctggaaa	ccttccgcct	catgtgcgga	tcggattcca	cccgcgtgaa	gaagtggcgc	16080
gagcaggtcg	gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	16140
gtcaatgatg	acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	tccggctggg	16200
ggttcagcag	ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	16260
tgcttcgctc	agtatcgctc	gggacgcacg	gcgcgctcta	cgaactgccg	ataaacagag	16320
gattaaaatt	gacaattgtg	attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	16380
aggatttccg	cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	16440
tttacgagca	cgaggagaaa	aagcccatgg	aggcgttcgc	tgaacggttg	cgagatgccg	16500
tggcattcgg	cgcctacatc	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	16560
acggccccaa	ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	16620
gaggccgagg	ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	16680
tgatcgtccg	acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	16740
ttaatatttc	gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	16800
tcgcggcgac	ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	16860
taggtagccc	gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	16920
cgctgttggt	gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gcgggcctgg	16980
cgggggcggt	ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	17040

WO 2004/063358 PCT/EP2004/000100 153/358

ctctgctcac	ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	17100
ctttagtgtt	tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	17160
ggctcggcct	gateggageg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	17220
tcgaacctac	agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	17280
cggggatgca	tcaggccgac	agtcggaact	tegggteeee	gacctgtacc	attcggtgag	17340
caatggatag	gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg	gctttatcca	gcgatttcct	attatgtcgg	catagttete	aagatcgaca	17460
gcctgtcacg	gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	17520
agatgatatt	tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
ccgcgagatc	atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga	gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgc	ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	17760
ctggctggtg	gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgcgga	cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	17880
cagctgattg	cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	17940
ttgccccagc	aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	18000
aaatcaaaag	aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	18060
ctattaaaga	acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	18120
ccactacgtg	aaccatcacc	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	18180
aatcggaacc	ctaaagggag	ccccgattt	agagettgae	ggggaaagcc	ggcgaacgtg	18240
gcgagaaagg	aagggaagaa	agcgaaagga	gegggegeea	ttcaggctgc	gcaactgttg	18300

ggaagggcga tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc 18360
tgcaaggcga ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac 18420
ggccagtgaa ttcgagctcg gtacccggg 18449

<210> 41

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 41

gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tcgggaagcc agcgactggt gacctccagc gtccctttaa ggctgccaac agctttctca 300

WO 2004/063358 PCT/EP2004/000100 155/358

gccagggcca	gcccaagacc	gacaaggcct	ccctccagaa	cgccgagaag	aactggaggg	360
gtggtgtcaa	ggaggagtaa	gctccttatt	gaagtcggag	gacggagcgg	tgtcaagagg	420
atattcttcg	actctgtatt	atagataaga	tgatgaggaa	ttggaggtag	catagettea	480
tttggatttg	ctttccaggc	tgagactcta	gcttggagca	tagagggtcc	tttggctttc	540
aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560

WO 2004/063358 PCT/EP2004/000100 156/358

cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	tccggcatct	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttettttete	1980
tttcttttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tegeagettg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tecegeegtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggtteggee	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	, tgatggacga	caccgtcagt	gegteegteg	cgcaggetet	cgatgagctg	2700
atgctttggg	r ccgaggactg	ccccgaagtc	eggcaccteg	tgcacgcgga	tttcggctcc	2760
aacaatgtco	tgacggacaa	tggccgcata	acageggtea	ttgactggag	cgaggcgatg	2820

WO 2004/063358 PCT/EP2004/000100 157/358

ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggetcc	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tcctcttctt	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagcnc	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	acttttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	gataaggaaa	4020

WO 2004/063358 PCT/EP2004/000100 158/358

		1				
agaaagtgaa	aagaaattcg	gaagcatggc	acattettet	ttttataaat	acatgcctga	4080
ctttctttt	ccatcgatat	gatatatgca	tatgatagat	atacaagcaa	tcttcttcaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	aaaaaagttt	ttttttatac	atgtttgtac	4200
acaagaatag	ttaccaattt	gctttggtct	tacgtgctgc	aagtttatat	cgttttcaat	4260
ttctttgtct	ttacattttc	tttgtccttt	atctttcctc	atttagtctt	tgggagaatt	4320
aggaaaaggg	agcggaaagg	taagaaatgc	ttgcgtattt	tactaattcg	gcaaacatcc	4380
aatttggcaa	acagcagcct	gtgcaacgct	ctcgagatga	cagtatcttt	gattacactc	4440
taaatctcga	tgacccgacc	aaaaagagcg	aacaaagaaa	taatcttgtg	cattcgaata	4500
tgatggaaga	ttttttcccc	cttattctaa	atgttgacat	agcgtgtatg	ttatataaac	4560
aaaaagaaat	tgtacaaact	ttcttttctt	ctctttttat	tttatctcta	tgctgtcgaa	4620
gctgcagtca	atcagcgtca	aggcccgccg	cgttgaacta	gcccgcgaca	tcacgcggcc	4680
caaagtctgc	ctgcatgctc	agcggtgctc	gttagttcgg	ctgcgagtgg	cagcaccaca ·	4740
gacagaggag	gcgctgggaa	ccgtgcaggc	tgccggcgcg	ggcgatgagc	acagcgccga	4800
tgtagcactc	cagcagcttg	accgggctat	cgcagagcgt	cgtgcccggc	gcaaacggga	4860
gcagctgtca	taccaggctg	ccgccattgc	agcatcaatt	ggcgtgtcag	gcattgccat	4920
cttcgccacc	tacctgagat	ttgccatgca	catgaccgtg	ggcggcgcag	tgccatgggg	4980
tgaagtggct	ggcactctcc	tcttggtggt	tggtggcgcg	ctcggcatgg	agatgtatgc	5040
ccgctatgca	cacaaagcca	tctggcatga	gtcgcctctg	ggctggctgc	tgcacaagag	5100
ccaccacaca	cctcgcactg	gaccctttga	agccaacgac	ttgtttgcaa	tcatcaatgg	5160
actgcccgcc	atgctcctgt	gtacctttgg	cttctggctg	cccaacgtcc	tgggggcggc	5220
<i>c</i> tġctttgga	gcggggctgg	gcatcacgct	atacggcatg	gcatatatgt	ttgtacacga ·	5280

WO 2004/063358 PCT/EP2004/000100 159/358

			.,			
tggcctggtg	cacaggcgct	ttcccaccgg	gcccatcgct	ggcctgccct	acatgaagcg	5340
cctgacagtg	gcccaccagc	tacaccacag	cggcaagtac	ggtggcgcgc	cctggggtat	5400
gttcttgggt	ccacaggagc	tgcagcacat	tccaggtgcg	gcggaggagg	tggagcgact	5460
ggtcctggaa	ctggactggt	ccaagcgggc	gattgtgact	gatagcgaga	ctctgggtcg	5520
atgttatctg	cctcaacaat	ggcttagaaa	agaagaaaca	gaacaaatac	agcaaggcaa	5580
cgcccgtagc	ctaggtgatc	aaagactgtt	gggcttgtct	ctgaagcttg	taggaaaggc	5640
agacgctatc	atggtgagag	ctaagaaggg	cattgacaag	ttgccggcaa	actgtcaagg	5700
cggtgtacga	gctgcttgcc	aagtatatgc	tgcaattgga	tctgtactca	agcagcagaa	5760
gacaacatat	cctacaagag	ctcatctaaa	aggaagcgaa	cgtgccaaga	ttgctctgtt.	5820
gagtgtatac	aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880
gattaagagt	ttttttgttg	attagtgaat	ttttgtttta	tttatgtctg	atagttcaat	5940
aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	ageceaacag	tctttgatca	cctaggctac	gggcgttgcc	ttgctgtatt	6420
tgttctgttt	cttctttct	aagccattgt	tgaggcagat	aacatcgacc	caacatcctc	6480
gagccatact	acagcataaa	aggatacgtt	ttctttaaca	gaaatttacc	cttttgttat	6540

WO 2004/063358 PCT/EP2004/000100 160/358

		10	0,000			
cagcacatac	aaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	tcaaaaattt	6600
tattcaatcc	ataaatgaat	tatttttgga	caaaaaagaa	agattatgcc	tgattttctc	6660
tattttttt	ttttttacaa	ctccaccaat	actttctagc	ccagcttggc	gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	6780
ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	6840
ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	6900
ggccaacgcg	cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	6960
accgattgag	ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	7020
ccgtcaccga	cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	7080
ccattagcaa	ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	7140
gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200
gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	7320
ccaccctcag	agccgccacc	agaaccacca	ccagageege	cgccagcatt	gacaggaggc	7380
ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440
tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500
cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	7560
ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620
aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680
acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740
gatgtggacg	cegggeeega	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	7800

WO 2004/063358 PCT/EP2004/000100 161/358

cgttgctgtc	gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tcccgtgggc	7860
gaagaactcc	agcatgagat	ccccgcgctg	gaggatcatc	cageeggegt	cccggaaaac	7920
gattccgaag	cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	7980
gttgggcgtc	gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	8040
agaaggcgat	agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	8100
aagcggtcag	cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	8160
tcctgatagc	ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	8220
ttttccacca	tgatattcgg	caagcaggca	tegecatggg	tcacgacgag	atcatcgccg	8280
tcgggcatgc	gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	8340
tegtecagat	catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	8400
cgatgtttcg	cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cageegeege	8460
attgcatcag	ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	8520
tgccccggca	cttcgcccaa	tagcagccag	tecetteeeg	cttcagtgac	aacgtcgagc	8580
acagctgcgc	: aaggaacgcc	cgtcgtggcc	: agccacgata	geegegetge	ctcgtcctgc	8640
agttcattca	gggcaccgga	caggtcggtc	: ttgacaaaaa	gaaccgggcg	cccctgcgct	8700
gacagccgga	a acacggcggc	: atcagagcag	g ccgattgtct	gttgtgccca	gtcatagccg	8760
aatagcctct	ccacccaago	ggccggagaa	a cctgcgtgca	atccatcttg	ttcaatcatg	8820
cgaaacgato	cagatccggt	: gcagattati	tggattgaga	ı gtgaatatga	gactctaatt	8880
ggataccga	g gggaatttat	ggaacgtca	g tggagcattt	: ttgacaagaa	atatttgcta	8940
gctgatagt	g accttaggc	g acttttgaa	c gcgcaataat	ggtttctgad	gtatgtgctt	9000
agctcatta	a actccagaaa	a cccgcggct	g agtggctcct	tcaacgttgo	ggttctgtca	9060

WO 2004/063358 PCT/EP2004/000100 162/358

gttccaaacg taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt 9120 9180 aattctccgc tcatgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg 9240 acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat 9300 ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg 9360 gttccccaga tctggcgccg gccagcgaga cgagcaagat tggccgccgc ccgaaacgat ccgacagcgc gcccagcaca ggtgcgcagg caaattgcac caacgcatac agcgccagca 9420 gaatgccata gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca 9480 gcaccggcat aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga 9540 9600 tcaggggtat gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa cgcgcggatt ctttatcact gataagttgg tggacatatt atgtttatca gtgataaagt 9660 gtcaagcatg acaaagttgc agccgaatac agtgatccgt gccgccctgg acctgttgaa 9720 cgaggtcggc gtagacggtc tgacgacacg caaactggcg gaacggttgg gggttcagca 9780 gccggcgctt tactggcact tcaggaacaa gcgggcgctg ctcgacgcac tggccgaagc 9840 catgctggcg gagaatcata cgcattcggt gccgagagcc gacgacgact ggcgctcatt 9900 tctgatcggg aatgcccgca gcttcaggca ggcgctgctc gcctaccgcg atggcgcgcg 9960 10020 catccatgcc ggcacgcgac cgggcgcacc gcagatggaa acggccgacg cgcagcttcg cttcctctgc gaggcgggtt tttcggccgg ggacgccgtc aatgcgctga tgacaatcag 10080 ctacttcact gttggggccg tgcttgagga gcaggccggc gacagcgatg ccggcgagcg 10140 cggcggcacc gttgaacagg ctccgctctc gccgctgttg cgggccgcga tagacgcctt 10200 cgacgaagcc ggtccggacg cagcgttcga gcagggactc gcggtgattg tcgatggatt 10260 ggcgaaaagg aggctcgttg tcaggaacgt tgaaggaccg agaaagggtg acgattgatc 10320

WO 2004/063358 PCT/EP2004/000100 163/358

aggaccgctg	ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	10380
cccctttcc	accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	10440
cctagcgtcc	aagcctcacg	gccgcgctcg	gcctctctgg	cggccttctg	gcgctcttcc	10500
gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	10560
cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	10620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	10680
cataggetee	gccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	10740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	10800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	10920
atcctttttc	gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	10980
tatccaacgg	cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	11040
cttcttcact	gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	11100
ctggccggct	accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	11160
aaccaggaag	ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	11220
tgaggaaaag	gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	11280
gggctacaaa	atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	11340
tggcgacctg	ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	acccgcgcac	11400
ggcgcggttc	ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	11460
cgagcttggc	aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	11520

WO 2004/063358 PCT/EP2004/000100 . 164/358

		•	_				
9	rccgctaaaa	cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	11580
а	ıgaagagcga	cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	11640
g	gcctttgcga	cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	11700
c	ctgcaaacg	cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	11760
t	gtggatacc	tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	11820
t	gaggggccg	actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	11880
ç	gcgacgtgga	gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	11940
c	ccacagatga	tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	12000
ç	gcgactactg	acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	12060
t	gaggggcgc	acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	12120
ē	aagggtttcc	gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	12180
á	atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	12240
ć	aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
(ccaggggctg	cgcccctcgg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
•	ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
(cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
1	tgagggcggc	ggcctgggtg	gcggcctgcc	cttcacttcg	gccgtcgggg	cattcacgga	12540
(cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	12600
•	cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
á	ataccgaggt	atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	12720
+	ttaaaaagct	accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	12780

WO 2004/063358 PCT/EP2004/000100 165/358

attgacaata	ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	12840
tttcaggggg	caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	12900
taaaaacttg	catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	12960
ctatcataat	tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	13020
gatgactttg	tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	13080
tgccaggtgc	tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	ategettget	13140
gattacgtgc	agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	13200
tatcaccacg	tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320
gcgctggcgc	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	13380
gacgtcactg	cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	13440
cgtaaaatcg	tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	13500
ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040

WO 2004/063358 PCT/EP2004/000100 166/358

100/338	
aaaatgaaaa cctatattta aaaatgacgg acagccggta taaagggacc acctatgatg 1	4100
tggaacggga aaaggacatg atgctatggc tggaaggaaa gctgcctgtt ccaaaggtcc 1	4160
tgcactttga acggcatgat ggctggagca atctgctcat gagtgaggcc gatggcgtcc 1	4220
tttgctcgga agagtatgaa gatgaacaaa gccctgaaaa gattatcgag ctgtatgcgg 1	.4280
agtgcatcag gctctttcac tccatcgaca tatcggattg tccctatacg aatagcttag 1	4340
acagccgctt agccgaattg gattacttac tgaataacga tctggccgat gtggattgcg 1	L4400
aaaactggga agaagacact ccatttaaag atccgcgcga gctgtatgat tttttaaaga 1	L4460
cggaaaagcc cgaagaggaa cttgtctttt cccacggcga cctgggagac agcaacatct 1	14520
ttgtgaaaga tggcaaagta agtggcttta ttgatcttgg gagaagcggc agggcggaca 1	14580
agtggtatga cattgccttc tgcgtccggt cgatcaggga ggatatcggg gaagaacagt 1	14640
atgtcgagct attttttgac ttactgggga tcaagcctga ttgggagaaa ataaaatatt 2	14700
atattttact ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag	14760
caggagcgca ccgacttctt ccgcatcaag tgttttggct ctcaggccga ggcccacggc	14820
aagtatttgg gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac	14880
aagtattigg gcaaggggte getggtatte gegeagggea agasseggaa ensembles	
gagaaggacg gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg	14940
gacaccaagg caccaggegg gteaaateag gaataaggge acattgeece ggegtgagte	15000
ggggcaatcc cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa	15060
gaactgatcg acgcggggtt ttccgccgag gatgccgaaa ccatcgcaag ccgcaccgtc	15120
atgcgtgcgc cccgcgaaac cttccagtcc gtcggctcga tggtccagca agctacggcc	15180
aagategage gegacagegt geaactgget eeceetgeee tgeeegegee ateggeegee	15240
gtggagcgtt cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc	15300

WO 2004/063358 PCT/EP2004/000100 167/358

gacacgcgag gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa 15360 caggtcagcg aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa atgcagcttt ccttgttcga tattgcgccg tggccggaca cgatgcgagc gatgccaaac gacacggccc gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg caaaacaagg tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag ctgcgggccg acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc 15660 cetateggeg agecgateae etteaegtte taegagettt gecaggaeet gggetggteg 15720 atcaatggcc ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg 15780 atgggettea egteegaceg egttgggeae etggaategg tgtegetget geaeegette 15840 cgcgtcctgg accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc 15900 gtcgtgctgt ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg 15960 tegeegaegg eeegaeggat gttegaetat tteagetege acegggagee gtaeeegete 16020 aagctggaaa ccttccgcct catgtgcgga tcggattcca cccgcgtgaa gaagtggcgc 16080 gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg 16140 gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg 16200 ggttcagcag ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact 16260 tgettegete agtategete gggaegeaeg gegegeteta egaaetgeeg ataaaeagag 16320 gattaaaatt gacaattgtg attaaggete agattegaeg gettggageg geegaegtge 16380 aggatttccg cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg 16440 tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaacggttg cgagatgccg tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcggtcttc aaacaggagg 16560

WO 2004/063358 PCT/EP2004/000100 168/358

acggccccaa	ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	16620
gaggccgagg	ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	16680
tgatcgtccg	acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	16740
ttaatatttc	gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	16800
tegeggegae	ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	16860
taggtagccc	gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	16920
cgctgttggt	gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gcgggcctgg	16980
cgggggcggt	ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	17040
ctctgctcac	ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	17100
ctttagtgtt	tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	17160
ggctcggcct	gateggageg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	17220
tegaacetac	agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	17280
cggggatgca	a tcaggccgac	: agtcggaact	tegggteece	gacctgtacc	attcggtgag	17340
caatggatag	g gggagttgat	: atcgtcaacg	f ttcacttcta	aagaaatago	gccactcagc	17400
ttcctcagc	g gctttatcca	a gcgatttcct	: attatgtcgg	catagttctc	: aagatcgaca	17460
gcctgtcac	g gttaagcgag	g aaatgaataa	a gaaggctgat	: aatteggate	: tctgcgaggg	17520
agatgatat	t tgatcacagg	g cagcaacgct	ctgtcatcgt	: tacaatcaac	atgctaccct	17580
ccgcgagat	c atccgtgtt	t caaacccgg	e agcttagttg	g ccgttcttcc	gaatagcatc	17640
ggtaacatg	a gcaaagtct	g ccgccttac	a acggctctco	c cgctgacgc	gtcccggact	17700
gatgggctg	c ctgtatcga	g tggtgattt	t gtgccgagc	geeggtegg	g gagctgttgg	17760
ctggctggt	g gcaggatat	a ttgtggtgt	a aacaaattg	a cgcttagac	a acttaataac	17820

acattgcgga cgttttaat gtactgggt ggttttctt ttcaccagtg agacggcaa 17880

cagctgattg cccttcaccg cctggccctg agagagttgc agcaagcggt ccacgctggt 17940

ttgccccagc aggcgaaaat cctgtttgat ggtggttccg aaatcggcaa aatcccttat 18000

aaatcaaaag aatagcccga gatagggttg agtgttgtc cagtttggaa caagagtcca 18060

ctattaaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc 18120

ccactacgtg aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta 18180

aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg 18240

gcgagaaagg aagggaagaa agcgaaagga gcgggcgca ttcaggctgc gcaactgttg 18300

ggaagggcga tcggtgcgg cctcttcgct attacgccag ctggcgaaag ggggatgtgc 18360

tgcaaggcga ttaagttggg taacgcagg gttttcccag tcacgacgtt gtaaaacgac 18420

ggccagtgaa ttcgagctcg gtacccggg

```
<210> 42
```

<211> 17593

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 42

60 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660 720 teggeegega aeggeeteac cecaaaaatg geagegetgg eagteettge eattgeeggg atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 960 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080

WO 2004/063358 PCT/EP2004/000100 171/358

acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cageggeeag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agececaetg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	getgttgeec	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag 	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagegetgat	gteeggeggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	. agctgaacag	gagggacago	: tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	ı tcatacacta	ı aatcagtaaç	g ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggcto	cgtcgatact	atgttatacç	g ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	ı tttaaggttt	: tagaatgcaa	a ggaacagtga	attggagtto	gtcttgttat	2220
aattagctto	: ttggggtato	: tttaaatac	: gtagaaaaga	ı ggaaggaaat	: aataaatggc	2280
taaaatgaga	a atatcaccgg	g aattgaaaa	a actgatcgaa	a aaataccgc	t gcgtaaaaga	2340

WO 2004/063358 PCT/EP2004/000100 172/358

tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760 .
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
					2001211111	3000
cttctgcgto	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctatttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	r tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tetteegeat	: caagtgtttt	ggctctcagg	r ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attegtgeag	ggcaagatto	: ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	g gacegaette	: attgccgata	aggtggatta	tctggacaco	: aaggcaccag	3300
gcgggtcaaa	a tcaggaataa	gggcacatto	g ccccggcgtg	g agtcggggca	atcccgcaag	3360
gagggtgaa	t gaatcggacg	g tttgaccgga	a aggcatacag	g gcaagaacto	g atcgacgcgg	3420
ggttttccg	c cgaggatgco	gaaaccatc	g caageegead	c cgtcatgcgt	gegeeeegeg	3480
aaaccttcc	a gteegtegge	c tcgatggtc	c agcaagctad	ggccaagato	c gagcgcgaca	3540

WO 2004/063358 PCT/EP2004/000100 173/358

gcgtgcaact	ggctcccct	gccctgcccg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	geeegetetg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggegageega	4020
tcaccttcac	: gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggo	cgaggaatgo	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	g gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaa	gtecegttge	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	a cacgaaatto	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcg	a ctatttcago	tcgcaccggg	g agccgtacco	geteaaget <u>e</u>	g gaaaccttcc	4380
gcctcatgt	g cggatcgga	t tccacccgcg	g tgaagaagtg	g gcgcgagcaç	g gtcggcgaag	4440
cctgcgaag	a gttgcgagg	c ageggeetg	g tggaacacg	c ctgggtcaai	t gatgacctgg	4500
tgcattgca	a acgctaggg	c cttgtgggg	t cagttccgg	c tgggggttc	a gcagccagcg	4560
ctttactgg	c atttcagga	a caagcgggc	a ctgctcgac	g cacttgctt	c geteagtate	4620
gctcgggac	g cacggcgcg	c tctacgaac	t gccgataaa	c agaggatta	a aattgacaat	4680
tgtgattaa	ıg gctcagatt	c gacggcttg	g agcggccga	c gtgcaggat	t tccgcgagat	4740
ccgattgto	g gccctgaag	a aagctccag	a gatgttcgg	g teegtttae	g agcacgagga	4800

WO 2004/063358 PCT/EP2004/000100 174/358

gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtege	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcetegge	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gegtggeteg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgto	: aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	: tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	a ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	a cgctctgtca	. tcgttacaat	caacatgcta	. ccctccgcga	gatcatccgt	5940
gtttcaaaco	e eggeagetta	gttgccgttc	: ttccgaatag	catcggtaac	: atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	60.60

WO 2004/063358 PCT/EP2004/000100 175/358

cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggageceeeg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggectett	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagegg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagettte	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320

WO 2004/063358 PCT/EP2004/000100 176/358

tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	: cctaattggc ·	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	: cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580

WO 2004/063358 PCT/EP2004/000100 177/358

8640 cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc 8700 teagteett gtaggeaget ttgeecegte tgteegeeg gtgtgtegge ggggttgaea 8760 aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct 8820 cttttcttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt 8880 tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc 8940 9000 ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga 9060 aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt 9120 cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt 9180 ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt 9240 gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg 9300 tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga 9360 ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg 9420 accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc 9480 9540 tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg 9600 gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc 9660 9720 gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc 9780 aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt 9840

WO 2004/063358 PCT/EP2004/000100 178/358

ccgatccgga	gccgggactg	tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gtțactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgeteeg	10620
taacacccaa	tacgccggcc	gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	: acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	: ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ttttcgagtt	10800
tttttttt	: ttctttgtga	aggatttatt	gttattggta	tccattttt	attggaagac	10860
aagataagtt	: aatattgatt	ttgcttaaag	attaaaagga	aatcagaaaa	cgacaataaa	10920
aaatgtaacg	g gacaaactat	ggtgtcgatt	ataagtctaa	atccttaaaa	aatgacaacg	10980
agttgctttc	c ctctgaaaac	: aattctttg	tctttgcaag	aaaggtttct	tttttgtttg	11040

WO 2004/063358 PCT/EP2004/000100 179/358

cttgcattac	ttaaacatca	aatcaaatga	aaggaataaa	gcagatttga	gggcgaataa	11100
ggattttctg	gtcaacaaga	tgtgagtgac	acctaaggaa	ctaaatgcca	ttcatttgtt	11160
ttaaaacgac	atcaaagatt	gatgatcaac	aggattgaga	gagagaaaaa	gaactcgtgt	11220
catttatttc	tgttgactga	aattttatat	ttagaaaaaa	tgtcaaatct	atagctttag	11280
ctatattaca	taacatttga	aataataata	ataaaaaaag	acacattaga	gacacttttc	11340
aaactctaaa	taactgtcta	taaacacaaa	gaaaacaaag	acctctataa	caacttatta	11400
gatttttctc	gtacttttgt	ctaaagatga	tgtattcttg	ttatcccaca	cttctttcat	11460
ttgttcttga	tgctactaaa	tatacaaaat	ttctttttg	caagagatat	tattccaaaa	11520
attttcaaaa	agaaatttt	ttcacaatag	cagttgatcg	tgtaacccaa	agaggttctt	11580
tgttattttg	cacttccgct	ttgcggtgat	gcatattcaa	agtaatatat	ggaataaaca	11640
acgtgtttaa	ı gcatgaaaga	aaggaaacaa	aggccgcttt	gaacaaatgc	ataatatttc	11700
agacaaaaat	gatctaaago	: aagcagtaaa	ı tcaaacaaga	aacattgctg	attcgcgtta	11760
gaaaacgata	a aaagtctaat	aagccactaa	gtatacttca	atgaactttt	tgtatgctta	11820
tggtccaato	c agaccaataa	a tttgtgacca	a ttcctgaggt	ggctttggtg:	atgcggaaac	11880
agaaaaaaa	t tttctcacca	a atcgatttaa	a aaaacaattt	: ctgctttgaa	. ccaaaacttt	11940
tttttctc	t ttaatcatta	a actttatca	a gtatgtacct	accctcaaag	f teeteactea	12000
agcacaatt	a tgctaacat	t gttccacct	t ctctttagaa	a atgttgtgga	a tttggaatgc	12060
cctgatcgt	t ttcgttacc	g tgattggca	t ggaagtgat	t gctgcactgg	g cacacaata	12120
catcatgca	c ggctggggt	t ggggatggc	a tctttcaca	t catgaaccg	c gtaaaggtgc	12180
gtttgaagt	t aacgatctt	t atgccgtgg	t ttt t gctgc	a ttatcgatco	c tgctgattta	12240
tctgggcag	t acaggaatg	t ggccgctcc	a gtggattgg	c gcaggtatg	a cggcgtatgg	12300

WO 2004/063358 PCT/EP2004/000100 180/358

attactctat	tttatggtgc	acgacgggct	ggtgcatcaa	cgttggccat	tccgctatat	12360
tccacgcaag	ggctacctca	aacggttgta	tatggcgcac	cgtatgcatc	acgccgtcag	12420
gggcaaagaa	ggttgtgttt	cttttggctt	cctctatgcg	ccgcccctgt	caaaacttca	12480
ggcgacgctc	cgggaaagac	atggcgctag	agegggeget	gccagagatg	cgcagggcgg	12540
ggaggatgag	cccgcatccg	ggaagtaagg	gcctgaccag	aggcggccag	cagcagcgtt	12600
aatttttcgg	gcgtggtcgt	tgactgccgc	tgatcccaaa	gcttggcgta	atcatggtca	12660
tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	12720
agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	12780
cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	12840
caacgcgcgg	ggagaggcgg	tttgcgtatt	gggccaaaga	caaaagggcg	acattcaacc	12900
gattgaggga	gggaaggtaa	atattgacgg	aaattattca	ttaaaggtga	attatcaccg	12960
tcaccgactt	gagccatttg	ggaattagag	ccagcaaaat	caccagtagc	accattacca	13020
ttagcaaggo	: cggaaacgtc	accaatgaaa	ccatcgatag	cagcaccgta	atcagtagcg	13080
acagaatcaa	gtttgccttt	agcgtcagac	tgtagcgcgt	tttcatcggc	attttcggtc	13140
atagccccct	: tattagcgtt	tgccatcttt	tcataatcaa	aatcaccgga	accagagcca	13200
ccaccggaad	: cgcctccctc	agagccgcca	ccctcagaac	: cgccaccctc	: agagccacca	13260
ccctcagago	c cgccaccaga	accaccacca	gageegeege	cagcattgac	aggaggcccg	13320
atctagtaad	c atagatgaca	ı ceg c gegega	taatttatco	: tagtttgcgc	gctatatttt	13380
gttttctate	c gcgtattaaa	ı tgtataattg	gggactcta	a atcataaaaa	a cccatctcat	13440
aaataacgt	c atgcattaca	ı tgttaattat	: tacatgctta	a acgtaattca	a acagaaatta	13500
tatgataat	c atcgcaagad	cggcaacagg	g attcaatctt	t aagaaactti	t attgccaaat	13560

WO 2004/063358 PCT/EP2004/000100 181/358

gtttgaacga	tcggggatca	tccgggtctg	tggcgggaac	tccacgaaaa	tatccgaacg	13620
cagcaagata	tcgcggtgca	tctcggtctt	gcctgggcag	tcgccgccga	cgccgttgat	13680
gtggacgccg	ggcccgatca	tattgtcgct	caggatcgtg	gcgttgtgct	tgtcggccgt	13740
tgctgtcgta	atgatatcgg	caccttcgac	cgcctgttcc	gcagagatcc	cgtgggcgaa	13800
gaactccagc	atgagatccc	cgcgctggag	gatcatccag	ccggcgtccc	ggaaaacgat	13860
tccgaagccc	aacctttcat	agaaggcggc	ggtggaatcg	aaatctcgtg	atggcaggtt	13920
gggcgtcgct	tggtcggtca	tttcgaaccc	cagagtcccg	ctcagaagaa	ctcgtcaaga	13980
aggcgataga	aggcgatgcg	ctgcgaatcg	ggagcggcga	taccgtaaag	cacgaggaag	14040
cggtcagccc	attegeegee	aagctcttca	gcaatatcac	gggtagccaa	cgctatgtcc	14100
tgatagcggt	ccgccacacc	cagccggcca	cagtcgatga	atccagaaaa	gcggccattt	14160
tccaccatgá	tattcggcaa	gcaggcatcg	ccatgggtca	cgacgagatc	atcgccgtcg	14220
ggcatgcgcg	ccttgagcct	ggcgaacagt	teggetggeg	cgagcccctg	atgctcttcg	14280
tccagatcat	: cctgatcgac	aagaccggct	tccatccgag	tacgtgctcg	ctcgatgcga	14340
tgtttcgctt	: ggtggtcgaa	tgggcaggta	gccggatcaa	gegtatgeag	ccgccgcatt	14400
gcatcagcca	a tgatggatac	tttctcggca	. ggagcaaggt	gagatgacag	gagatcctgc	14460
cccggcacti	t cgcccaatag	g cagccagtco	: cttcccgctt	: cagtgacaac	gtcgagcaca	14520
gctgcgcaa	g gaacgcccgt	: cgtggccago	cacgatage	gegetgeete	gtcctgcagt	14580
tcattcagg	g caccggacaç	g gteggtettg	g acaaaaagaa	a ccgggcgcc	c ctgcgctgac	14640
agccggaac	a cggcggcato	e agagcagccç	g attgtctgt	t gtgcccagto	c atagccgaat	14700
agcctctcc	a cccaagcgg	cggagaacct	t gcgtģcaat	c catcttgtt	c aatcatgcga	14760
aacgatcca	g atccggtgc	a gattatttgg	g attgagagt	g aatatgaga	c tctaattgga	14820

WO 2004/063358 PCT/EP2004/000100 182/358

taccgagggg	aatttatgga	acgtcagtgg	agcatttttg	acaagaaata	tttgctagct	14880
gatagtgacc	ttaggcgact	tttgaacgcg	caataatggt	ttctgacgta	tgtgcttagc	14940
tcattaaact	ccagaaaccc	gcggctgagt	ggctccttca	acgttgcggt	tctgtcagtt	15000
ccaaacgtaa	aacggcttgt	cccgcgtcat	cggcgggggt	cataacgtga	ctcccttaat	15060
tctccgctca	tgatcagatt	gtcgtttccc	gccttcagtt	taaactatca	gtgtttgaca	15120
ggatatattg	gcgggtaaac	ctaagagaaa	agagcgttta	ttagaataat	cggatattta	15180
aaagggcgtg	aaaaggttta	teegttegte	catttgtatg	tgcatgccaa	ccacagggtt	15240
ccccagatct	ggegeeggee	agcgagacga	gcaagattgg	ccgccgcccg	aaacgatccg	15300
acagegegee	cagcacaggt	gcgcaggcaa	attgcaccaa	cgcatacagc	gccagcagaa	15360
tgccatagtg	ggcggtgacg	tcgttcgagt	gaaccagato	gcgcaggagg	cccggcagca	15420
ccggcataat	caggccgatg	ccgacagcgt	: cgagcgcgac	agtgctcaga	attacgatca	15480
ggggtatgtt	gggtttcacg	tetggeetee	ggaccagcct	: ccgctggtcc	gattgaacgc	15540
gcggattctt	: tatcactgat	: aagttggtgg	g acatattatç	g tttatcagtg	ataaagtgtc	15600
aagcatgaca	aagttgcago	cgaatacagt	gateegtgee	gecetggaee	: tgttgaacga	15660
ggtcggcgta	a gacggtctga	a cgacacgcaa	a actggeggaa	a cggttggggg	ttcagcagcc	15720
ggcgctttad	tggcacttca	a ggaacaagc	g ggcgctgcto	gacgcactgo	g ccgaagccat	15780
gctggcggag	g aatcatacgo	c atteggtge	c gagagccga	gacgactggo	gctcatttct	15840
gatcgggaa	t gcccgcagc	t tcaggcagg	c getgetege	c taccgcgate	g gcgcgcgcat	15900
ccatgccgg	c acgcgaccg	g gcgcaccgc	a gatggaaac	g geegaegege	e agettegett	15960
cctctgcga	g gcgggtttt	t cggccgggg	a cgccgtcaa	t gcgctgatga	a caatcagcta	16020
cttcactgt	t ggggccgtg	c ttgaggagc	a ggccggcga	c agcgatgcc	g gcgagcgcgg	16080

WO 2004/063358 PCT/EP2004/000100 183/358

cggcaccgtt gaacaggctc	cgctctcgcc	gctgttgcgg	gccgcgatag	acgccttcga	16140
cgaagccggt ccggacgcag	cgttcgagca	gggactcgcg	gtgattgtcg	atggattggc	16200
gaaaaggagg ctcgttgtca	ggaacgttga	aggaccgaga	aagggtgacg	attgatcagg	16260
accgctgccg gagcgcaacc	cactcactac	agcagagcca	tgtagacaac	atcccctccc	16320
cctttccacc gcgtcagacg	cccgtagcag	cccgctacgg	gctttttcat	gccctgccct	16380
agegtecaag cetcaeggee	gegeteggee	tetetggegg	ccttctggcg	ctcttccgct	16440
tectegetea etgaeteget	gcgctcggtc	gttcggctgc	ggcgagcggt	atcagctcac	16500
tcaaaggcgg taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	16560
gcaaaaggcc agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	16620
aggeteegee eecetgaega	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	16680
ccgacaggac tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	gcgctctcct	16740
gttccgaccc tgccgcttac	: cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	16800
cttttccgct gcataaccct	getteggggt	cattatagcg	attttttcgg	tatatccatc	16860
ctttttcgca cgatatacag	g gattttgcca	aagggttcgt	gtagactttc	cttggtgtat	16920
ccaacggcgt cagccgggca	a ggataggtga	agtaggccca	cccgcgagcg	g ggtgttcctt	16980
cttcactgtc ccttattcg	c acctggcggt	gctcaacggg	g aatcctgcto	c tgcgaggctg	17040
gccggctacc gccggcgta	a cagatgaggg	g caageggate	g gctgatgaa	a ccaagccaac	17100 ·
caggaagggc agcccacct	a tcaaggtgta	a ctgccttcca	a gacgaacga	a gagcgattga	17160
ggaaaaggcg gcggcggcc	g gcatgagcc	t gtcggcctad	c ctgctggcc	g tcggccaggg	17220
ctacaaaatc acgggcgtc	g tggactatga	a gcacgtccg	c gagetggee	c gcatcaatgg	17280
cgacctgggc cgcctgggc	g gcctgctga	a actctggct	c accgacgac	c cgcgcacggc	17340

<210> 43

<211> 16954

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 43 .

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120

180

aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac

WO 2004/063358 PCT/EP2004/000100 185/358

ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag ttteccaeag atgatgtgga 300 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 420 gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660 teggeegega acggeeteac cecaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo 1200 ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260 ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1320 atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc 1380 agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete 1440

WO 2004/063358 PCT/EP2004/000100 186/358

agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gecagegetg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccgġcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	. agctgaacag	gagggacago	tgatagacac	agaagccact	ggagcacctc	2040.
aaaaacacca	ı tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggcto	c cgtcgatact	atgttatacg	r ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	a tttaaggttt	tagaatgcaa	ggaacagtga	attggagtto	: gtcttgttat	2220
aattagctto	ttggggtato	: tttaaatact	: gtagaaaaga	ggaaggaaat	: aataaatggc	2280
taaaatgaga	a atatcaccgg	g aattgaaaa	a actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagg	a atgtctccts	g ctaaggtata	a taagctggtg	ggagaaaat	g aaaacctata	2400
tttaaaaat	g acggacagc	c ggtataaag	g gaccacctat	gatgtggaad	gggaaaagga	2460
catgatgct	a tggctggaa	g gaaagetge	c tgttccaaag	g gtcctgcac	t ttgaacggca	2520
tgatggctg	g agcaatctg	c tcatgagtg	a ggccgatgg	gteetttge	t cggaagagta	2580
tgaagatga	a caaagccct	g aaaagatta	t cgagctgta	t geggagtge	a tcaggctctt	2640
tcactccat	c gacatatcg	g attgtccct	a tacgaatag	c ttagacagc	c gcttagccga	2700

WO 2004/063358 PCT/EP2004/000100 187/358

attggattac.	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tetggacace	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	cccggcgtg	agtcggggca	atecegeaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	: cgaggatgco	gaaaccatcg	r caageegeac	: cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gteegtegge	: tcgatggtcd	: agcaagctac	ggccaagato	gagcgcgaca	3540
gcgtgcaact	ggeteecet	geeetgeeeg	g cgccatcggc	cgccgtgga	g cgttcgcgtc	3600
gtctcgaaca	a ggaggcggca	a ggtttggcga	a agtcgatgad	catcgacac	g cgaggaacta	3660
tgacgaccaa	a gaagcgaaaa	a accgccggc	g aggacctgg	c aaaacaggt	c agcgaggcca	3720
agcaggccg	c gttgctgaa	a cacacgaag	c agcagatca	a ggaaatgca	g ctttccttgt	3780
tcgatattg	c geegtggee	g gacacgatg	c gagcgatgc	c aaacgacac	g gcccgctctg	3840
ccctgttca	c cacgcgcaa	c aagaaaatc	c cgcgcgagg	c gctgcaaaa	c aaggtcattt	3900

WO 2004/063358 PCT/EP2004/000100 188/358

t	ccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
а	.cgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
t	caccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
a	ıcacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggegae	ggcgatgggc	ttcacgtccg	4140
ē	accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	ctteegegte	ctggaccgtg	4200
ç	gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
ç	gegaceacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
,	ggatgttcga	ctatttcago	tegeaceggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
,	gcctcatgtg	ggateggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
	cctgcgaaga	ı gttgcgaggc	: agcggcctgg	ı tggaacacgo	ctgggtcaat	gatgacctgg	4500
	tgcattgcaa	a acgctagggo	: cttgtggggt	cagttccggc	: tgggggttca	gcagccagcg	4560
	ctttactgge	c atttcaggaa	a caagcgggca	a ctgctcgacç	g cacttgctto	gctcagtatc	4620
	gctcgggac	g cacggegeg	c tctacgaac	t gccgataaac	agaggattaa	a aattgacaat	4680
	tgtgattaa	g gctcagatt	c gacggcttg	g agcggccga	gtgcaggat	t teegegagat	4740
	ccgattgtc	g gccctgaag	a aagctccag	a gatgttcgg	g teegtttae	g agcacgagga	4800
	gaaaaagcc	c atggaggcg	t tcgctgaac	g gttgcgaga	t geegtggea	t teggegeeta	4860
	catcgacgg	c gagatcatt	g ggctgtcgg	t cttcaaaca	g gaggacggc	c ccaaggacgc	4920
	tcacaaggo	g catctgtco	g gcgtittcg	t ggagcccga	a cagcgaggc	c gaggggtcgc	4980
	cggtatgct	g ctgcgggcg	rt tgccggcgg	g tttattgct	c gtgatgatc	g teegaeagat	5040
	tccaacggg	ga atctggtgg	ga tgcgcatct	t catcctcgg	c gcacttaat	a tttcgctatt	5100
	ctggagcti	g ttgtttatt	t cggtctacc	g cctgccggg	je ggggtegeg	g cgacggtagg	5160

WO 2004/063358 PCT/EP2004/000100 189/358

cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt	5580
tteettaetg ggetttetea geeceagate tggggtegat cageegggga tgeateagge	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tctgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420

WO 2004/063358 PCT/EP2004/000100 190/358

190/336	
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600
. agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840
cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca	6900
gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa	6960
gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt	7020
aagatccacg tettegggaa gecagegaet ggtgaeetee agegteeett taaggetgee	7080
aacagettte teageeaggg ceageeeaag acegaeaagg eeteeeteea gaacgeegag	7140
aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag	7200
cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg	7260
tagcataget teattiggat tigetticea ggetgagaet etagetigga geatagaggg	7320
teetttgget tteaatatte teaagtatet egagtttgaa ettatteeet gtgaacettt	7380
tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt	7440
tcgaaataca tccggatgtc gaaggcttgg ggcacctgcg ttggttgaat ttagaacgtg	7500
gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc	7560
tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga	7620
tetetagtta geteaceaca aaagteagae ggegtaacea aaagteacae aacaeaaget	7680

WO 2004/063358 PCT/EP2004/000100 191/358

gtaaggattt cggcacggct acg	gaagacg g	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct atttgtgttt gat	cgagacc t	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta ccagtgagga agt	ggactca a	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct aaactataca gaa	ataagata (ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc atggttgacc gg	tgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat tctggagtga cc	cagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta gaaaaatgtg ac	gaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg agagacggac gg	acgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagetetgg eggetetgag gt	gcagtgga	tgattattaa	teegggaeeg	geegeeete	8220
cgccccgaag tggaaaggct gg	tgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga gcttcatcga at	caccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatageegt eggegaaata ge	catgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa agattcacga g	atagtacct	tctccgaagt	aggtagagc	g agtacccggc	8460
gcgtaagctc cctaattggc c	cateeggea	tctgtaggg	gtccaaata	t cgtgcctctc	8520
ctgctttgcc cggtgtatga a	accggaaag	gccgctcagg	g agctggcca	g cggcgcagac	8580
cgggaacaca agctggcagt c	gacccatcc	ggtgctctge	c actcgacct	g ctgaggtccc	8640
tcagtccctg gtaggcagct t	tgccccgtc	: tgtccgccc	g gtgtgtcgg	c ggggttgaca	8700
aggtcgttgc gtcagtccaa c	atttgttgc	catatttc	c tgctctccc	c accagctgct	8760
cttttctttt ctctttcttt t	cccatcttc	agtatattc	a tcttcccat	c caagaacctt	8820
tatttcccct aagtaagtac t	ttgctacat	ccatactcc	a teetteee	t cccttattcc	8880
tttgaacctt tcagttcgag (ctttcccact	t tcatcgcag	gc ttgactaad	a gctaccccgc	8940

WO 2004/063358 PCT/EP2004/000100 192/358

ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagettegat gtaggaggge gtggatatgt cetgegggta aatagetgeg eegatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctge ctgaaaccga actgcccgct gttctgcage cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tetegatgag etgatgettt gggeegagga etgeecegaa gteeggeace tegtgeaege	9540
ggatttegge tecaacaatg teetgaegga caatggeege ataacagegg teattgaetg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200

WO 2004/063358 PCT/EP2004/000100 193/358

cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	: ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	ı aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	c aaggagtttg	aaattttgto	ctccaggagc	aaaaaaagt	tttttttat	10980
acatgtttg	t acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttc	a atttctttgt	: ctttacattt	: tctttgtcct	ttatctttcc	tcatttagtc	11100
	- hh	- ~~~~~~	,	acttacatat	: tttactaatt	11160
						11220
					gacagtatct	
					a aataatcttg	
_					c atagcgtgta	
tgttatata	a acaaaaaga	a attgtacaa	a ctttctttc	ttetetttt	t attttatctc	11400

WO 2004/063358 PCT/EP2004/000100 194/358

tatgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatggc	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	ttttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	11760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tcttttggct	tcctctatgc	11820
gccgcccctg	tcaaaacttc	aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940
gaggcggcca	. gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca	ı tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat	: taattgegtt	gegeteactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaaggg	gacattcaac	: cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggt	g aattatcaco	gtcaccgact	tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagta	g caccattaco	: attagcaagg	g ccggaaacgt	: caccaatgaa	a accatcgata	12420
gcagcaccg	t aatcagtago	gacagaatca	agtttgcctt	: tagcgtcaga	a ctgtagcgcg	12480
ttttcatcg	g cattttcgg	t catageece	c ttattagcg	ttgccatctt	: ttcataatca	12540
aaatcaccg	g aaccagagc	c accaccgga	a ccgcctccc	cagageege	c acceteagaa	12600
ccgccaccc	t cagagecae	c acceteaga	g ccgccacca	g aaccaccac	c agageegeeg	12660

WO 2004/063358 PCT/EP2004/000100 195/358

ccagcattga	caggaggccc	gatctagtaa	catagatgac	accgcgcgcg	ataatttatc	12720
ctagtttgcg	cgctatattt	tgttttctat	cgcgtattaa	atgtataatt	gcgggactct	12780
aatcataaaa	acccatctca	taaataacgt	catgcattac	atgttaatta	ttacatgctt	12840
aacgtaattc	aacagaaatt	atatgataat	catcgcaaga	ccggcaacag	gattcaatct	12900
taagaaactt	tattgccaaa	tgtttgaacg	atcggggatc	atccgggtct	gtggcgggaa	12960
ctccacgaaa	atatccgaac	gcagcaagat	atcgcggtgc	atctcggtct	tgcctgggca	13020
gtcgccgccg	acgccgttga	tgtggacgcc	gggcccgatc	atattgtcgc	tcaggatcgt	13080
ggcgttgtgc	ttgtcggccg	ttgctgtcgt	aatgatatcg	gcaccttcga	ccgcctgttc	13140
cgcagagatc	ccgtgggcga	agaactccag	catgagatcc	ccgcgctgga	ggatcatcca	13200
geeggegtee	cggaaaacga	ttccgaagcc	caacctttca	tagaaggcgg	cggtggaatc	13260
gaaatctcgt	: gatggcaggt	tgggcgtcgc	ttggtcggtc	atttcgaacc	ccagagtccc	13320
gctcagaaga	ı actcgtcaag	aaggcgatag	aaggcgatgc	gctgcgaato	gggagcggcg	13380
ataccgtaaa	ı gcacgaggaa	geggteaged	cattegeege	caagctcttc	agcaatatca	13440
cgggtagcca	a acgctatgto	ctgatagcgg	j teegeeacae	: ccagccggcc	: acagtcgatg	13500
aatccagaaa	a ageggeeatt	ttccaccato	g atatteggea	agcaggcato	gccatgggtc	13560
acgacgagal	t catcgccgto	gggcatgcg	geettgagee	: tggcgaacag	; ttcggctggc	13620
gcgagcccc	t gatgetette	gtccagatca	a teetgatega	a caagaccgg	e ttccatccga	13680
gtacgtgct	c gctcgatgc	g atgtttcgc	t tggtggtcga	a atgggcagg	agccggatca	13740
agcgtatgc	a geegeegea	t tgcatcagc	c atgatggata	a ctttctcgg	c aggagcaagg	13800
tgagatgac	a ggagateet	g ccccggcac	t tegeceaata	a gcagccagt	c ccttcccgct	13860
tcagtgaca	a cgtcgagca	c agctgcgca	a ggaacgccc	g tegtggeca	g ccacgatagc	13920

WO 2004/063358 PCT/EP2004/000100 196/358

cgcgctgcct	cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	13980
accgggcgcc	cctgcgctga	cagccggaac	acggcggcat	cagagcagcc	gattgtctgt	14040
tgtgcccagt	catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	14100
ccatcttgtt	caatcatgcg	aaacgatcca	gatccggtgc	agattatttg	gattgagagt	14160
gaatatgaga	ctctaattgg	ataccgaggg	gaatttatgg	aacgtcagtg	gagcattttt	14220
gacaagaaat	atttgctagc	tgatagtgac	cttaggcgac	ttttgaacgc	gcaataatgg	14280
tttctgacgt	atgtgcttag	ctcattaaac	tccagaaacc	cgcggctgag	tggctccttc	14340
aacgttgcgg	ttctgtcagt	tccaaacgta	aaacggcttg	tcccgcgtca	tcggcggggg	14400
tcataacgtg	actcccttaa	ttctccgctc	atgatcagat	tgtcgtttcc	cgccttcagt	14460
ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	14520
attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccgttcgt	ccatttgtat	14580
gtgcatgcca	accacagggt	tececagate	tggcgccggc	cagcgagacg	agcaagattg	14640
gccgccgccc	gaaacgatcc	gacagcgcgc	ccagcacagg	tgcgcaggca	aattgcacca	14700
acgcatacag	g cgccagcaga	. atgccatagt	gggcggtgac	gtcgttcgag	tgaaccagat	14760
cgcgcaggag	g geeeggeage	accggcataa	tcaggccgat	geegaeageg	tcgagcgcga	14820
cagtgctcag	g aattacgato	: aggggtatgt	: tgggtttcac	: gtctggcctc	cggaccagcc	14880
teegetggte	c cgattgaacg	geggattet	: ttatcactga	a taagttggtg	gacatattat	14940
gtttatcag	t gataaagtgt	caagcatgac	e aaagttgcag	g ccgaatacag	g tgatccgtgc	15000
cgccctgga	c ctgttgaac	g aggtcggcgt	agacggtctq	g acgacacgca	a aactggcgga	15060
acggttggg	g gttcagcago	c cggcgcttta	a ctggcactto	aggaacaag	gggegetget	15120
cgacgcact	g gccgaagcc	a tgctggcgg	a gaatcatac	g catteggtge	c cgagagccga	15180

WO 2004/063358 PCT/EP2004/000100 197/358

cgacgactgg	cgctcatttc	tgatcgggaa	tgcccgcagc	ttcaggcagg	egetgetege	15240
ctaccgcgat	ggcgcgcgca	tccatgccgg	cacgcgaccg	ggegcacege	agatggaaac	15300
ggccgacgcg	cagetteget	tcctctgcga	ggcgggtttt	teggeegggg	acgccgtcaa	15360
tgcgctgatg	acaatcagct	acttcactgt	tggggccgtg	cttgaggagc	aggccggcga	15420
cagcgatgcc	ggcgagcgcg	gcggcaccgt	tgaacaggct	ccgctctcgc	cgctgttgcg	15480
ggccgcgata	gacgccttcg	acgaagccgg	teeggaegea	gcgttcgagc	agggactcgc	15540
ggtgattgtc	gatggattgg	cgaaaaggag	gctcgttgtc	aggaacgttg	aaggaccgag	15600
aaagggtgac	gattgatcag	gaccgctgcc	ggagcgcaac	ccactcacta	cagcagagcc	15660
atgtagacaa	cateceetee	ccctttccac	cgcgtcagac	gcccgtagca	gcccgctacg	15720
ggctttttca	tgeeetgeee	: tagcgtccaa	gcctcacggc	egegetegge	ctctctggcg	15780
gccttctggc	getetteege	: ttcctcgctc	: actgactcgc	: tgcgctcggt	cgttcggctg	15840
cggcgagcgg	tatcagctca	a ctcaaaggcg	g gtaatacggt	: tatccacaga	atcaggggat	15900
aacgcaggaa	a agaacatgto	g agcaaaaggo	c cagcaaaagç	g ccaggaaccg	taaaaaggcc	15960
gcgttgctg	g cgtttttcca	a taggctccg	cccctgac	g agcatcacaa	a aaatcgacgc	16020
tcaagtcag	a ggtggcgaa	a cccgacagg	a ctataaaga	t accaggcgtt	tcccctgga	16080
agctccctc	g tgcgctctc	c tgttccgac	c ctgccgctta	a ccggatacct	gteegeettt	16140
ctcccttcg	g gaagcgtgg	c getttteeg	c tgcataacc	c tgcttcggg	g tcattatagc	16200
gatttttc	g gtatatcca	t cctttttcg	c acgatatac	a ggattttgc	c aaagggttcg	16260
tgtagactt	t ccttggtgt	a tccaacggc	g tcagccggg	c aggataggt	g aagtaggccc	16320
acccgcgag	c gggtgttcc	t tcttcactg	t cccttattc	g cacctggcg	g tgctcaacgg	16380
gaatcctgo	t ctgcgaggc	t ggccggcta	c cgccggcgt	a acagatgag	g gcaagcggat	16440

ggetgatgaa accaagccaa ccaggaaggg cagcccacct atcaaggtgt actgcettec 16500
agacgaacga agagcgattg aggaaaaggc ggcggcggcc ggcatgagcc tgtcggccta 16560
cctgctggcc gtcggccagg gctacaaaat cacgggcgtc gtggactatg agcacgtccg 16620
cgagctggcc cgcatcaatg gcgacctggg ccgcctgggc ggcctgctga aactctggct 16680
caccgacgac ccgcgcacgg cgcggttcgg tgatgccacg atcctcgccc tgctggcaa 16740
gatcgaagag aagcaggacg agcttggcaa ggtcatgatg ggcgtggtcc gcccgaggcc 16800
agagccatga ctttttagc cgctaaaacg gccgggggt gcgcgtgatt gccaagcacg 16860
tccccatgcg ctccatcaag aagagcgact tcgcggagct ggtgaagtac atcaccgacg 16920
agcaaggcaa gaccgagcgc ctttgcgacg ctca

```
<210> 44
```

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<211> 16954

<212> DNA

<223> n is a, c, g, or t

<400> 44 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc 660 720 teggeegega acggeeteae eccaaaaatg geagegetgg eagteettge cattgeeggg atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140

WO 2004/063358 PCT/EP2004/000100 200/358

200/358	
agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge 1	L200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca gecagegetg gegegattta	1680
geceegacat ageceeactg ttegteeatt teegegeaga egatgaegte aetgeeegge	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
. ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat aataaatggc	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400

WO 2004/063358 PCT/EP2004/000100 201/358

tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgțcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	: cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaago	ctgattggga	ı gaaaataaaa	ı tattatatt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	g atgccggcga	a caagcaggag	gegeeegaet	3120
tcttccgcat	: caagtgtttt	ggctctcagg	g ccgaggccca	a cggcaagtat	ttgggcaagg	3180
ggtcgctggt	: attcgtgca <u>c</u>	g ggcaagatto	e ggaataccaa	a gtacgagaag	g gacggccaga	3240
cggtctacgg	g gaccgactto	attgccgata	a aggtggatta	a tctggacaco	c aaggcaccag	3300
gcgggtcaa	a tcaggaataa	a gggcacatt	g ccccggcgts	g agtcggggca	a atcccgcaag	3360
gagggtgaa	t gaatcggac	g tttgaccgg	a aggcataca	g gcaagaact	g atcgacgcgg	3420
ggttttccg	c cgaggatgc	c gaaaccatc	g caagccgca	c cgtcatgcg	t gegeeeegeg	3480
aaaccttcc	a gtccgtcgg	c tcgatggtc	c agcaagcta	c ggccaagat	c gagcgcgaca	3540
gcgtgcaac	t ggctccccc	t geeetgeee	g cgccatcgg	c cgccgtgga	g cgttcgcgtc	3600
gtctcgaac	a ggaggcggc	a ggtttggcg	a agtcgatga	c categacae	g cgaggaacta	3660

WO 2004/063358 PCT/EP2004/000100 202/358

tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtecegttge	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	. agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcago	tcgcaccggg	agccgtacco	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	g cggatcggat	tccacccgcg	f tgaagaagtg	gegegageag	gtcggcgaag	4440
cctgcgaaga	a gttgcgaggo	: agcggcctgg	g tggaacacgo	: ctgggtcaat	gatgacctgg	4500
tgcattgcaa	a acgctagggo	cttgtggggt	: cagttccggc	: tgggggttca	a gcagccagcg	4560
ctttactgg	c atttcaggaa	a caageggge	a ctgctcgacç	g cacttgctto	c gctcagtatc	4620
gctcgggac	g cacggcgcg	c tctacgaac	t gccgataaa	e agaggatta	a aattgacaat	4680
tgtgattaa	g gctcagatt	c gacggcttg	g agcggccga	c gtgcaggat	t tccgcgagat	4740
ccgattgtc	g gccctgaag	a aagctccag	a gatgttcgg	g teegtttae	g agcacgagga	4800
gaaaaagcc	c atggaggcg	t tcgctgaac	g gttgcgaga	t gccgtggca	t teggegeeta	4860
catcgacgg	c gagatcatt	g ggctgtcgg	t cttcaaaca	g gaggacggc	c ccaaggacgc	4920

WO 2004/063358 PCT/EP2004/000100 203/358

tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggggt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agegggttta acctacttee tttggtteeg ggggateteg egaetegaae etaeagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tecagegatt tectattatg teggeatagt teteaagate gacageetgt caeggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tctgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180

WO 2004/063358 PCT/EP2004/000100 204/358

taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
. ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgo	: cagggttttc	ccagtcacga	cgttgtaaaa	ı cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatettt	. cgacactgaa	ı atacgtcgaç	g cetgeteege	: ttggaagcgg	6840
cgaggagcct	: cgtcctgtca	caactaccaa	a catggagtad	gataagggco	agttccgcca	6900
gctcattaag	g agccagttca	ı tgggcgttgg	g catgatggc	c gtcatgcate	c tgtacttcaa	6960
gtacaccaa	c gctcttctga	a tccagtcgat	t catccgctga	a aggcgcttt	c gaatctggtt	7020
aagatccac	g tcttcgggaa	a gccagcgac	t ggtgacctc	c agcgtccct	t taaggetgee	7080
aacagcttt	c tcagccagg	g ccagcccaa	g accgacaag	g cctccctcc	a gaacgccgag	7140
aagaactgg	a ggggtggtg	t caaggagga	g taagctcct	t attgaagtc	g gaggacggag	7200
cggtgtcaa	g aggatattc	t tcgactctg	t attatagat	a agatgatga	g gaattggagg	7260
tagcatago	t tcatttgga	t ttgctttcc	a ggctgagac	t ctagcttgg	a gcatagaggg	7320
teetttgge	t ttcaatatt	c tcaagtatc	t cgagtttga	a cttattccc	t gtgaaccttt	7380
tattcacca	a tgagcattg	g aatgaacat	g aatctgagg	ga ctgcaatcg	c catgaggttt	7440

WO 2004/063358 PCT/EP2004/000100 205/358

tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagetetgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	g agagacggac	ggacgcagag	agaagggctg	agtaataago	cactggccag	8160
acagetetgg	g cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	geegeeete	8220
cgcccgaag	g tggaaaggct	ggtgtgcccc	: tcgttgacca	. agaatctatt	gcatcatcgg	8280
agaatatgga	a gcttcatcga	a atcaccggca	ı gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgi	t cggcgaaata	a gcatgccatt	aacctaggta	cagaagtcca	a attgcttccg	8400
atotootaa	a agattgagg	a gatagtacci	tetecgaagt	: aggtagagc	g agtacccggc	8460
					t cgtgcctctc	8520
					g eggegeagae	8580
						8640
cgggaacac	a agerggeag	L cyacccate	c ggtgttttgt	- accegacet	g ctgaggtccc	0010

WO 2004/063358 PCT/EP2004/000100 206/358

tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagettegat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	ateggeaett	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	. ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	: gtgcacaggg	9240
tgtcacgttg	g caagacctgo	ctgaaaccga	actgcccgct	gttctgcago	c cggtcgcgga	9300
ggccatggat	gcgatcgctg	gegeegatet	tagccagacg	g agcgggttcg	g gcccattcgg	9360
accgcaagga	a atcggtcaat	: acactacate	g gcgtgattto	atatgcgcga	a ttgctgatcc	9420
ccatgtgtat	cactggcaaa	a ctgtgatgga	a cgacaccgto	e agtgcgtcc	g tegegeagge	9480
tctcgatgag	g ctgatgctt	gggccgagg	a ctgccccgaa	a gtccggcac	c togtgcacgc	9540
ggatttcgg	c tccaacaat	g teetgaegg	a caatggccg	c ataacagcg	g tcattgactg	9600
gagcgaggc	g atgttcggg	g attcccaat	a cgaggtcgc	c aacatcttc	t tctggaggcc	9660
gtggttggc	t tgtatggag	c agcagacgc	g ctacttcga	g cggaggcat	c cggagettge	9720
aggatcgcc	g cggctccgg	g cgtatatgc	t ccgcattgg	t cttgaccaa	c tctatcagag	9780
cttggttga	c ggcaatttc	g atgatgcag	c ttgggcgca	g ggtcgatgc	g acgcaatcgt	9840
ccgatccgg	a gccgggact	g tcgggcgta	c acaaatcgc	c cgcagaagc	g eggeegtetg	9900

WO 2004/063358 PCT/EP2004/000100 207/358

gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa '	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140 .
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	aġatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tetteettga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagto	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggo	: atgcaagctt	agagataaaa	10800
taaaaagaga	agaaaagaaa	gtttgtacaa	tttctttttg	, tttatataa	atacacgcta	10860
tgtcaacatt	: tagaataagg	gggaaaaaat	: cttccatcat	attcgaatgo	e acaagattat	10920
ttctttgttc	gctcttttg:	gtcgggtcat	cgagatttag	g agtgtaatc	a aagatactgt	10980
catctcgaga	gcgttgcaca	ggctgctgtt	tgccaaatt	g gatgtttgc	c gaattagtaa	11040
aatacgcaag	g catttettac	cttteeget	cetttteeta	a attctccca	a agactaaatg	11100
aggaaagata	a aaggacaaag	g aaaatgtaa	a gacaaagaa	a ttgaaaacg	a tataaacttg	11160

WO 2004/063358 PCT/EP2004/000100 208/358

		20	0/330			
cagcacgtaa	gaccaaagca	aattggtaac	tattcttgtg	tacaaacatg	tataaaaaaa	11220
aactttttt	tgctcctgga	ggacaaaatt	tcaaactcct	tgaagaagat	tgcttgtata	11280
tctatcatat	gcatatatca	tatcgatgga	aaaagaaagt	caggcatgta	tttataaaaa	11340
gaagaatgtg	ccatgcttcc	gaatttcttt	tcactttctt	ttccttatct	attttaatct	11400
catgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatgge	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	tttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	11760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tcttttggct	tcctctatgc	11820
gccgcccctg	tcaaaacttc	aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940
gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca	. tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat	taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaagggc	: gacattcaac	cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggtg	g aattatcacc	gtcaccgact	tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagtag	g caccattacc	attagcaagg	ccggaaacgt	caccaatgaa	accatcgata	12420

WO 2004/063358 PCT/EP2004/000100 209/358

gcagcaccgt	aatcagtagc	gacagaatca	agtttgcctt	tagcgtcaga	ctgtagcgcg	12480
ttttcatcgg	cattttcggt	catagecece	ttattagcgt	ttgccatctt	ttcataatca	12540
aaatcaccgg	aaccagagcc	accaccggaa	ccgcctccct	cagagccgcc	accctcagaa	12600
ccgccaccct	cagagccacc	accctcagag	ccgccaccag	aaccaccacc	agageegeeg	12660
ccagcattga	caggaggccc	gatctagtaa	catagatgac	accgcgcgcg	ataatttatc	12720
ctagtttgcg	cgctatattt	tgttttctat	cgcgtattaa	atgtataatt	gcgggactct	12780
aatcataaaa	acccatctca	taaataacgt	catgcattac	atgttaatta	ttacatgctt	12840
aacgtaattc	aacagaaatt	atatgataat	catcgcaaga	ccggcaacag	gattcaatct	12900
taagaaactt	tattgccaaa	tgtttgaacg	atcggggatc	atccgggtct	gtggcgggaa	12960
ctccacgaaa	atateegaae	gcagcaagat	atcgcggtgc	atctcggtct	tgcctgggca	13020
gtcgccgccg	g acgccgttga	tgtggacgcc	gggcccgatc	atattgtcgc	tcaggatcgt	13080
ggcgttgtgc	ttgtcggccg	ttgctgtcgt	aatgatatcg	gcaccttcga	ccgcctgttc	13140
cgcagagato	ccgtgggcga	agaactccag	g catgagatcc	ccgcgctgga	ggatcatcca	13200
gccggcgtc	c cggaaaacga	ttccgaagco	c caacctttca	tagaaggcgg	cggtggaatc	13260
gaaatctcg	t gatggcaggt	: tgggcgtcgc	c ttggtcggtc	atttcgaacc	ccagagtccc	13320
gctcagaag	a actegteaag	g aaggcgatag	g aaggcgatgo	gctgcgaatc	gggagcggcg	13380
ataccgtaa	a gcacgagga	a gcggtcagc	c cattegeege	: caagctcttc	agcaatatca	13440
cgggtagcc	a acgctatgt	c ctgatagcg	g teegecacad	ccagccggcc	: acagtcgatg	13500
aatccagaa	a agcggccat	t ttccaccat	g atatteggea	a agcaggcato	gccatgggtc	13560
acgacgaga	t catcgccgt	c gggcatgcg	c gccttgagc	tggcgaacag	g tteggetgge	13620
gcgagcccd	t gatgetett	c gtccagatc	a teetgatega	a caagaccgg	c ttccatccga	13680

WO 2004/063358 PCT/EP2004/000100 210/358

	•	•					
gtacgtgctc	gctcgatgcg	atgtttcgct	tggtggtcga	atgggcaggt	agccggatca	13740	
agcgtatgca	gccgccgcat	tgcatcagcc	atgatggata	ctttctcggc	aggagcaagg	13800	
tgagatgaca	ggagatcctg	cccggcact	tcgcccaata	gcagccagtc	ccttcccgct	13860	
tcagtgacaa	cgtcgagcac	agctgcgcaa	ggaacgcccg	tcgtggccag	ccacgatagc	13920	
cgcgctgcct	cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	1,3980	
accgggcgcc	cctgcgctga	cagccggaac	acggcggcat	cagagcagcc	gattgtctgt	14040	
tgtgcccagt	. catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	14100	
ccatcttgtt	caatcatgcg	aaacgatcca	gatccggtgc	agattatttg	gattgagagt	14160	
gaatatgaga	a ctctaattgg	ataccgaggg	gaatttatgg	aacgtcagtg	gagcattttt	14220	
gacaagaaat	atttgctagc	tgatagtgac	cttaggcgac	ttttgaacgc	gcaataatgg	14280	
tttctgacg	t atgtgcttag	r ctcattaaac	tccagaaacc	cgcggctgag	tggctccttc	14340	
aacgttgcg	g ttctgtcagt	: tccaaacgta	aaacggcttg	tecegegtea	tcggcggggg	14400	
tcataacgt	g actcccttaa	ttctccgctc	: atgatcagat	tgtcgtttcc	: cgccttcagt	14460	
ttaaactat	c agtgtttgad	aggatatatt	ggcgggtaaa	cctaagagaa	a aagagcgttt	14520	
attagaata	a tcggatatti	t aaaagggcgl	gaaaaggttt	atccgttcg	ccatttgtat	14580	
gtgcatgcc	a accacaggg	t tccccagate	c tggcgccgg	c cagcgagac	g agcaagattg	14640	
gccgccgcc	c gaaacgatc	c gacagcgcg	c ccagcacag	g tgcgcaggc	a aattgcacca	14700	
acgcataca	ıg cgccagcag	a atgccatag	t gggcggtga	c gtcgttcga	g tgaaccagat	14760	
cgcgcagga	g gcccggcag	c accggcata	a tcaggccga	t gccgacagc	g tcgagcgcga	14820	
cagtgctca	ag aattacgat	c aggggtatg	t tgggtttca	c gtctggcct	c cggaccagcc	14880	
teegetggt	tc cgattgaac	g cgcggattc	t ttatcactg	a taagttggt	g gacatattat	14940	

WO 2004/063358 PCT/EP2004/000100 211/358

gtttatcagt gataaagtgt caagcatgac aaagttgcag ccgaatacag tgatccgtgc 1500	00
cgccctggac ctgttgaacg aggtcggcgt agacggtctg acgacacgca aactggcgga 1506	50
acggttgggg gttcagcagc cggcgcttta ctggcacttc aggaacaagc gggcgctgct 1512	20
cgacgcactg gccgaagcca tgctggcgga gaatcatacg cattcggtgc cgagagccga 1518	30
cgacgactgg cgctcatttc tgatcgggaa tgcccgcagc ttcaggcagg cgctgctcgc 1524	40
ctaccgcgat ggcgcgcgca tccatgccgg cacgcgaccg ggcgcaccgc agatggaaac 1530	00
ggccgacgcg cagcttcgct tcctctgcga ggcgggtttt tcggccgggg acgccgtcaa 1530	60
tgcgctgatg acaatcagct acttcactgt tggggccgtg cttgaggagc aggccggcga 154	20
cagcgatgcc ggcgagcgcg gcggcaccgt tgaacaggct ccgctctcgc cgctgttgcg 154	80
ggccgcgata gacgccttcg acgaagccgg tccggacgca gcgttcgagc agggactcgc 155	40
ggtgattgtc gatggattgg cgaaaaggag gctcgttgtc aggaacgttg aaggaccgag 156	00
aaagggtgac gattgatcag gaccgctgcc ggagcgcaac ccactcacta cagcagagcc 156	60
atgtagacaa catcccctcc ccctttccac cgcgtcagac gcccgtagca gcccgctacg 157	'20
ggetttttea tgeectgeec tagegteeaa geeteaegge egegetegge etetetggeg 157	'80
gccttctggc gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg 158	340
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 159	900
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 159	∌ 60
gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa aaatcgacgc 160)20
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 160	080
ageteceteg tgegetetee tgtteegace etgeegetta eeggataeet gteegeettt 163	140

ctcccttcgg gaagcgtggc gcttttccgc tgcataaccc tgcttcgggg tcattatagc 1	16200
gattttttcg gtatatccat cctttttcgc acgatataca ggattttgcc aaagggttcg 1	16260
tgtagacttt cettggtgta tecaaeggeg teageeggge aggataggtg aagtaggeee 1	16320
accegegage gggtgtteet tetteactgt ecettatteg cacetggegg tgeteaacgg	16380
gaatcctgct ctgcgaggct ggccggctac cgccggcgta acagatgagg gcaagcggat :	16440
ggctgatgaa accaagccaa ccaggaaggg cagcccacct atcaaggtgt actgccttcc	16500
agacgaacga agagcgattg aggaaaaggc ggcggcggcc ggcatgagcc tgtcggccta	16560
cctgctggcc gtcggccagg gctacaaaat cacgggcgtc gtggactatg agcacgtccg	16620
cgagctggcc cgcatcaatg gcgacctggg ccgcctgggc ggcctgctga aactctggct	16680
caccgacgac ccgcgcacgg cgcggttcgg tgatgccacg atcctcgccc tgctggcgaa	16740
gategaagag aageaggaeg agettggeaa ggteatgatg ggegtggtee geeegaggge	16800
agagccatga cttttttagc cgctaaaacg gccggggggt gcgcgtgatt gccaagcacg	16860
tecceatgeg etecateaag aagagegaet tegeggaget ggtgaagtae ateacegaeg	16920
agcaaggcaa gaccgagcgc ctttgcgacg ctca	16954

<210> 45

<211> 19491

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (18970)..(18970)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (19178)..(19178)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (19269)..(19269)

<223> n is a, c, g, or t

<400> 45

agettggtac cgagetegga tecaetagta aeggeegeea gtgtgetgga attegeeett 60 120 gacggccagt gaattcgagc tcggtacccg gggatctttc gacactgaaa tacgtcgagc 180 ctgctccgct tggaagcggc gaggagcctc gtcctgtcac aactaccaac atggagtacg ataagggcca gttccgccag ctcattaaga gccagttcat gggcgttggc atgatggccg 240 tcatgcatct gtacttcaag tacaccaacg ctcttctgat ccagtcgatc atccgctgaa 300 ggcgctttcg aatctggtta agatccacgt cttcgggaag ccagcgactg gtgacctcca 360 gcgtcccttt aaggctgcca acagctttct cagccagggc cagcccaaga ccgacaaggc 420 ctccctccag aacgccgaga agaactggag gggtggtgtc aaggaggagt aagctcctta 480 ttgaagtcgg aggacggagc ggtgtcaaga ggatattctt cgactctgta ttatagataa 540 gatgatgagg aattggaggt agcatagctt catttggatt tgctttccag gctgagactc 600 tagcttggag catagagggt cctttggctt tcaatattct caagtatctc gagtttgaac 660 ttattccctg tgaacctttt attcaccaat gagcattgga atgaacatga atctgaggac 720 780 tgcaatcgcc atgaggtttt cgaaatacat ccggatgtcg aaggcttggg gcacctgcgt tggttgaatt tagaacgtgg cactattgat catccgatag ctctgcaaag ggcgttgcac 840 aatgcaagtc aaacgttgct agcagttcca ggtggaatgt tatgatgagc attgtattaa 900

WO 2004/063358 PCT/EP2004/000100 214/358

atcaggagat a	tagcatgat	ctctagttag	ctcaccacaa	aagtcagacg	gcgtaaccaa	960
aagtcacaca a	cacaagctg	taaggatttc	ggcacggcta	cggaagacgg	agaagccacc	1020
ttcagtggac t	cgagtacca	tttaattcta	tttgtgtttg	atcgagacct	aatacagccc	1080
ctacaacgac o	catcaaagtc	gtatagctac	cagtgaggaa	gtggactcaa	atcgacttca	1140
gcaacatctc o	ctggataaac	tttaagccta	aactatacag	aataagatag	gtggagagct	1200
tataccgagc t	tcccaaatct	gtccagatca	tggttgaccg	gtgcctggat	cttcctatag	1260
aatcatcctt a	attcgttgac	ctagctgatt	ctggagtgac	ccagagggtc	atgacttgag	1320
cctaaaatcc	gccgcctcca	ccatttgtag	aaaaatgtga	cgaactcgtg	agctctgtac	1380
agtgaccggt	gactctttct	ggcatgcgga	gagacggacg	gacgcagaga	gaagggctga	1440
gtaataagcc	actggccaga	cagetetgge	ggctctgagg	tgcagtggat	gattattaat	1500
ccgggaccgg	ccgcccctcc	gccccgaagt	ggaaaggctg	gtgtgcccct	: cgttgaccaa	1560
gaatctattg	catcatcgga	gaatatggag	g cttcatcgaa	tcaccggcag	g taagcgaagg	1620
agaatgtgaa	gccaggggtg	tatageegte	ggcgaaatag	g catgccatta	a acctaggtac	1680
agaagtccaa	ttgcttccga	tctggtaaaa	a gattcacgaç	g atagtacctt	ctccgaagta	1740
ggtagagcga	gtacccggcg	g cgtaagctco	c ctaattggc	c catccggcat	t ctgtagggcg	1800
tccaaatatc	gtgcctctcc	tgetttgee	ggtgtatga	a accggaaag	g ccgctcagga	1860
gctggccagc	ggcgcagace	c gggaacaca	a gctggcagt	c gacccatco	g gtgctctgca	1920
ctcgacctgc	tgaggtccc	t cagtccctg	g taggcagct	t tgccccgtc	t gtccgcccgg	1980
tgtgtcggcg	gggttgaca	a ggtcgttgc	g tcagtccaa	c atttgttgc	c atattttcct	2040
gctctcccca	ccagctgct	c _. ttttcttt	c tctttcttt	t cccatcttc	a gtatattcat	2100

WO 2004/063358 PCT/EP2004/000100 215/358

2160 cttcccatcc aagaaccttt atttccccta agtaagtact ttgctacatc catactccat 2220 ccttcccatc ccttattcct ttgaaccttt cagttcgagc tttcccactt catcgcagct 2280 ' tgactaacag ctaccccgct tgagcagaca tcaccatgct gtcgaagctg cagtcaatca gcgtcaaggc ccgccgcgtt gaactagccc gcgacatcac gcggcccaaa gtctgcctgc 2340 2400 atgctcagcg gtgctcgtta gttcggctgc gagtggcagc accacagaca gaggaggcgc 2460 tgggaaccgt gcaggctgcc ggcgcgggcg atgagcacag cgccgatgta gcactccagc 2520 agcttgaccg ggctatcgca gagcgtcgtg cccggcgcaa acgggagcag ctgtcatacc 2580 aggctgccgc cattgcagca tcaattggcg tgtcaggcat tgccatcttc gccacctacc 2640 tgagatttgc catgcacatg accgtgggcg gcgcagtgcc atggggtgaa gtggctggca 2700 ctctcctctt ggtggttggt ggcgcgctcg gcatggagat gtatgcccgc tatgcacaca aagccatctg gcatgagtcg cctctgggct ggctgctgca caagagccac cacacacctc 2760 gcactggacc ctttgaagcc aacgacttgt ttgcaatcat caatggactg cccgccatgc 2820 2880 tcctgtgtac ctttggcttc tggctgccca acgtcctggg ggcggcctgc tttggagcgg ggctgggcat cacgctatac ggcatggcat atatgtttgt acacgatggc ctggtgcaca 2940 ggcgctttcc caccgggccc atcgctggcc tgccctacat gaagcgcctg acagtggccc 3000 3060 accagctaca ccacagcggc aagtacggtg gcgcgccctg gggtatgttc ttgggtccac aggagetgea geacatteea ggtgeggegg aggaggtgga gegaetggte etggaaetgg 3120 actggtccaa gcggtagggt gcggaaccag gcacgctggt ttcacacctc atgcctgtga 3180 taaggtgtgg ctagagcgat gcgtgtgaga cgggtatgtc acggtcgact ggtctgatgg 3240 ccaatggcat cggccatgtc tggtcatcac gggctggttg cctgggtgaa ggtgatgcac 3300 atcatcatgt gcggttggag gggctggcac agtgtgggct gaactggagc agttgtccag 3360

WO 2004/063358 PCT/EP2004/000100 216/358

		-	10/350			
gctggcgttg	aatcagtgag	ggtttgtgat	tggcggttgt	gaagcaatga	ctccgcccat	3420
attctatttg	tgggagctga	gatgatggca	tgcttgggat	gtgcatggat	catggtagtg	3480
cagcaaacta	tattcaccta	gggctgttgg	taggatcagg	tgaggccttg	cacattgcat	3540
gatgtactcg	tcatggtgtg	ttggtgagag	gatggatgtg	gatggatgtg	tattctcaga	3600
cgtagacctt	gactggaggc	ttgatcgaga	gagtgggccg	tattctttga	gaggggaggc	3660
tcgtgccaga	aatggtgagt	ggatgactgt	gacgctgtac	attgcaggca	ggtgagatgc	3720
actgtctcga	ttgtaaaata	cattcagatg	caagcttggc	gtaatcatgg	tcatagctgt	3780
ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	3840
agtgtaaagc	ctggggtgco	taatgagtga	gctaactcac	attaattgcg	ttgcgctcac	3900
tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	3960
cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gegacattea	accgattgag	4020
ggagggaagg	, taaatattga	ı cggaaattat	: tcattaaagg	g tgaattatca	a ccgtcaccga	4080
cttgagccat	ttgggaatta	a gagccagcaa	a aatcaccagt	agcaccatta	a ccattagcaa	4140
ggccggaaa	gtcaccaat	g aaaccatcga	a tagcagcaco	gtaatcagta	a gcgacagaat	4200
caagtttgc	tttagcgtc	a gactgtagc	g cgttttcato	c ggcattttc	g gtcatagccc	4260
ccttattag	c gtttgccat	c ttttcataa	t caaaatcac	c ggaaccaga	g ccaccaccgg	4320
aaccgcctc	c ctcagagcc	g ccaccctca	g aaccgccac	c ctcagagcc	a ccaccctcag	4380
agccgccac	c agaaccacc	a ccagagccg	c cgccagcat	t gacaggagg	c ccgatctagt	4440
aacatagat	g acaccgcgc	g cgataattt	a tcctagttt	g cgcgctata	t tttgttttct	4500
atcgcgtat	t aaatgtata	a ttgcgggac	t ctaatcata	a aaacccatc	t cataaataac	4560
gtcatgcat	t acatgttaa	t tattacatg	c ttaacgtaa	t tcaacagaa	a ttatatgata	4620

WO 2004/063358 PCT/EP2004/000100 217/358

atcatcgcaa gacc	ggcaac agg	gattcaat o	cttaagaaac	ttattgcca	aatgtttgaa	4680
cgatcgggga tcat	.ccgggt ctg	gtggcggg a	aactccacga	aaatatccga	acgcagcaag	4740
atategeggt geat	ctcggt ctt	tgcctggg (cagtcgccgc	cgacgccgtt	gatgtggacg	4800
ccgggcccga tcat	attgtc gc	tcaggatc (gtggcgttgt	gcttgtcggc	cgttgctgtc	4860
gtaatgatat cgg	caccttc ga	ccgcctgt	tccgcagaga	tecegtggge	gaagaactcc	4920
agcatgagat ccc	cgcgctg ga	ggatcatc	cagccggcgt	cccggaaaac	gattccgaag	4980
cccaaccttt cat	agaaggc gg	cggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	5040
gcttggtcgg tca	tttcgaa cc	ccagagtc	ccgctcagaa	gaactcgtca	agaaggcgat	5100
agaaggcgat gcg	ctgcgaa tc	gggagcgg	cgataccgta	aagcacgagg	aagcggtcag	5160
cccattcgcc gcc	aagctct to	agcaatat	cacgggtagc	caacgctatg	tcctgatagc	5220
ggtccgccac acc	cagccgg co	cacagtcga	tgaatccaga	aaagcggcca	ttttccacca	5280
tgatattcgg caa	gcaggca to	egecatggg	tcacgacgag	atcatcgccg	tcgggcatgc	5340
gcgccttgag cct	ggcgaac aç	gtteggetg	gegegageee	ctgatgctct	tcgtccagat	5400
catcctgatc gad	caagaccg go	cttccatcc	gagtacgtgc	tegetegate	g cgatgtttcg	5460
cttggtggtc gaa	atgggcag g	tagccggat	caagcgtatg	cageegeege	attgcatcag	5520
ccatgatgga ta	ctttctcg g	caggagcaa	ggtgagatga	caggagatco	tgccccggca	5580
cttcgcccaa ta	gcagccag t	cccttcccg	cttcagtgac	aacgtcgago	c acagctgcgc	5640
aaggaacgcc cg	tegtggce a	gccacgata	geegegetge	: ctcgtcctg	c agttcattca	5700
gggcaccgga ca	ggtcggtc t	tgacaaaaa	ı gaaccgggc <u>ç</u>	g cccctgcgc	t gacagccgga	5760
acacggcggc at	cagagcag c	cgattgtct	: gttgtgccca	gtcatagcc	g aatageetet	5820
ccacccaagc gg	ccggagaa c	ectgegtgea	a atccatctt	g ttcaatcat	g cgaaacgatc	5880

WO 2004/063358 PCT/EP2004/000100 218/358

cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt ggataccgag	5940
gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta gctgatagtg	6000
eccttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt agctcattaa	6060
actccagaaa cccgcggctg agtggctcct tcaacgttgc ggttctgtca gttccaaacg	6120
taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt aattctccgc	6180
tcatgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg acaggatata	6240
ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat ttaaaagggc	6300
gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg gttccccaga	6360
tetggegeeg geeagegaga egageaagat tggeegeege eegaaaegat eegaeagege	6420
geceageaca ggtgegeagg caaattgeac caaegeatae agegeeagea gaatgeeata	6480
gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca gcaccggcat	6540
aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga tcaggggtat	6600
gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa cgcgcggatt	6660
ctttatcact gataagttgg tggacatatt atgtttatca gtgataaagt gtcaagcatg	6720
acaaagttgc agccgaatac agtgatecgt gecgeeetgg acetgttgaa egaggtegge	6780
gtagacggtc tgacgacacg caaactggcg gaacggttgg gggttcagca gccggcgctt	6840
tactggcact tcaggaacaa gcgggcgctg ctcgacgcac tggccgaagc catgctggcg	6900
gagaatcata cgcattcggt gccgagagcc gacgacgact ggcgctcatt tctgatcggg	6960
aatgcccgca gcttcaggca ggcgctgctc gcctaccgcg atggcgcgcg catccatgcc	7020
ggcacgcgac cgggcgcacc gcagatggaa acggccgacg cgcagcttcg cttcctctgc	7080
gaggcgggtt tttcggccgg ggacgccgtc aatgcgctga tgacaatcag ctacttcact	7140

WO 2004/063358 PCT/EP2004/000100 219/358

gttggggccg tgcttgagga gcaggccggc gacagcgatg ccggcgagcg cggcggcacc	7200
gttgaacagg ctccgctctc gccgctgttg cgggccgcga tagacgcctt cgacgaagcc	7260
. ggtccggacg cagcgttcga gcagggactc gcggtgattg tcgatggatt ggcgaaaagg	7320
aggetegttg teaggaaegt tgaaggaeeg agaaagggtg aegattgate aggaeegetg	7380
ceggagegea acecaeteae tacageagag ceatgtagae aacateeeet eeceetttee	7440
accgcgtcag acgcccgtag cagcccgcta cgggcttttt catgccctgc cctagcgtcc	7500
aagceteaeg geegegeteg geetetetgg eggeettetg gegetettee getteetege	7560
tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg	7620
cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag	7680
gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc	7740
gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag	7800
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga	7860
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgcttttcc	7920
gctgcataac cctgcttcgg ggtcattata gcgatttttt cggtatatcc atccttttc	7980
gcacgatata caggattttg ccaaagggtt cgtgtagact ttccttggtg tatccaacgg	8040
cgtcagccgg gcaggatagg tgaagtaggc ccaeccgcga gcgggtgttc cttcttcact	8100
gtcccttatt cgcacctggc ggtgctcaac gggaatcctg ctctgcgagg ctggccggct	8160
. accgccggcg taacagatga gggcaagcgg atggctgatg aaaccaagcc aaccaggaag	8220
ggcagcccac ctatcaaggt gtactgcctt ccagacgaac gaagagcgat tgaggaaaag	8280
geggeggegg eeggeatgag eetgteggee tacetgetgg eegteggeea gggetacaaa	8340
atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa tggcgacctg	8400

WO 2004/063358 PCT/EP2004/000100 220/358

ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	acccgcgcac	ggcgcggttc	8460
ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	cgagcttggc	8520
aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	gccgctaaaa	8580
cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	agaagagcga	8640
cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	gcctttgcga	8700
cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	cctgcaaacg	8760
cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	tgtggatacc	8820
tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	tgaggggccg	8880
actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	gcgacgtgga	8940
gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	ccacagatga	9000
tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	gcgactactg	9060
acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	tgaggggcgc	9120
acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	aagggtttcc	9180
gcccgttttt	cggccaccgc	: taacctgtct	tttaacctgc	ttttaaacca	atatttataa	9240
accttgtttt	. taaccagggo	: tgcgccctgt	. gcgcgtgacc	gegeaegeeg	aaggggggtg	9300
ccccccttc	: tcgaaccctc	: ccggcccgct	aacgcgggcc	tcccatcccc	ccaggggctg	9360
cgcccctcgg	g ccgcgaacgg	g cctcacccca	aaaatggcag	cgctggcagt	ccttgccatt .	9420
gccgggatcg	g gggcagtaad	gggatgggcg	g atcagecega	gegegaeged	cggaagcatt	9480
gacgtgccgo	e aggtgctggd	c atcgacatto	agcgaccagg	tgccgggcag	g tgagggggg	9540
·						0.600

ggcctgggtg gcggcctgcc cttcacttcg gccgtcgggg cattcacgga cttcatggcg

9600

WO 2004/063358 PCT/EP2004/000100 221/358

gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	cgtgctcgtg	9660
ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	ataccgaggt	9720
atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	ttaaaaagct	9780
accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	attgacaata	9840
ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	tttcaggggg	9900
caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	taaaaacttg	9960
catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	ctatcataat	10020
tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	gatgactttg	10080
tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	tgccaggtgc	10140
tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	gattacgtgc	10200
agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	tatcaccacg	10260
tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	ttcaccgaat	10320
acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	gegetggege	10380
gatttagccc	: cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	gacgtcactg	10440
cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	tttaagtga	· cgtaaaatcg	10500
tgttgaggco	: aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	ttcatggcca	10560
tatcaatgat	: tttctggtgc	: gtaccgggtt	gagaagcggt	gtaagtgaac	: tgcagttgcc	10620
atgttttacg	g gcagtgagag	cagagatago	getgatgtee	: ggcggtgctt	: ttgccgttac	10680
gcaccaccc	c gtcagtagct	gaacaggagg	gacagctgat	: aġacacagaa	a gccactggag	10740
cacctcaaaa	a acaccatcat	: acactaaato	: agtaagttgg	g cagcatcaco	cataattgtg	10800
gtttcaaaat	t eggeteegte	gatactatgt	: tatacgccaa	a ctttgaaaa	aactttgaaa	10860

WO 2004/063358 PCT/EP2004/000100 222/358

						•
aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	gagttegtet	10920
tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	ggaaataata	10980
aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	accgctgcgt	11040
aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	aaaatgaaaa	11100
cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	tggaacggga	11160
aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	tgcactttga	11220
acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	tttgctcgga	11280
agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	agtgcatcag	11340
gctctttcac	: tccatcgaca	tatcggattg	tccctatacg	aatagcttag	acagccgctt	11400
agccgaattg	g gattacttac	tgaataacga	tctggccgat	gtggattgcg	aaaactggga	11460
agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	cggaaaagcc	11520
cgaagaggaa	a cttgtcttt	cccacggcga	cctgggagac	agcaacatct	ttgtgaaaga	11580
tggcaaagt	a agtggcttta	a ttgatcttgg	gagaagegge	: agggcggaca	ı agtggtatga	11640
cattgcctt	c tgcgtccggt	t cgatcaggga	a ggatatcggg	gaagaacagt	atgtcgagct	11700
atttttga	c ttactgggga	a tcaagcctga	a ttgggagaaa	a ataaaatatt	atattttact	11760
ggatgaatt	g ttttagtac	c tagatgtgg	gcaacgatgo	c cggcgacaaq	g caggagcgca	11820
ccgacttct	t ccgcatcaa	g tgttttggct	t ctcaggccg	a ggcccacgg	c aagtatttgg	11880
gcaaggggt	c gctggtatt	c gtgcagggc	a agattcgga	a taccaagta	c gagaaggacg	11940
gccagacgg	gt ctacgggac	c gacttcatt	g ccgataagg	t ggattatct	g gacaccaagg	12000
caccaggc	gg gtcaaatca	g gaataaggg	c acattgccc	c ggcgtgagt	c ggggcaatco	12060
cgcaaggag	gg gtgaatgaa	ıt cggacgttt	g accggaagg	c atacaggca	a gaactgatc <u>o</u>	12120

WO 2004/063358 PCT/EP2004/000100 223/358

acgcggggtt	ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	atgegtgege	12180
cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	aagatcgagc	12240
gcgacagcgt	gcaactggct	cccctgccc	tgcccgcgcc	ateggeegee	gtggagcgtt	12300
cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	gacacgcgag	12360
gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	caggtcagcg	12420
aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	atgcagcttt	12480
ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gatgccaaac	gacacggccc	12540
gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	caaaacaagg	12600
tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	ctgcgggccg	12660
acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagcgcacc	cctatcggcg	12720
agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	atcaatggcc	12780
ggtattacad	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	atgggcttca	12840
cgtccgaccg	g cgttgggcac	: ctggaatcgg	tgtcgctgct	gcaccgcttc	cgcgtcctgg	12900
accgtggca	a gaaaacgtco	: cgttgccagg	tcctgatcga	cgaggaaatc	gtcgtgctgt	12960
ttgctggcg	a ccactacaco	g aaattcatat	. gggagaagta	ccgcaagctg	tegeegaegg	13020
cccgacgga	t gttcgactat	ttcagctcgc	: accgggagcc	gtacccgcto	aagctggaaa	13080
ccttccgcc	t catgtgcgg	a toggattoca	cccgcgtgaa	gaagtggcgc	gagcaggtcg	13140
gcgaagcct	g cgaagagtt	g cgaggcagc	g gcctggtgga	acacgcctgg	gtcaatgatg	13200
acctggtgc	a ttgcaaacg	c tagggcctt	g tggggtcagt	: teeggetggg	ggttcagcag	13260
ccagcgctt	t actggcatt	t caggaacaa	g cgggcactgo	tegaegeaet	tgettegete	13320
agtatcgct	c gggacgcac	g gegegeteta	a cgaactgcc	g ataaacaga	g gattaaaatt	13380

WO 2004/063358 PCT/EP2004/000100 224/358

gacaattgtg	attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	aggatttccg	13440
cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	tttacgagca	13500
cgaggagaaa	aagcccatgg	aggcgttcgc	tgaacggttg	cgagatgccg	tggcattcgg	13560
cgcctacatc	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	acggccccaa	13620
ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	gaggccgagg	13680
ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	tgatcgtccg	13740
acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	ttaatatttc	13800
gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	tcgcggcgac	13860
ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	taggtagccc	13920
gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	cgctgttggt	13980
gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gegggeetgg	cgggggcggt	14040
ttccatggcg	ttcggaaccg	tgctgacccg	r caagtggcaa	cctcccgtgc	ctctgctcac	14100
ctttaccgcc	: tggcaactgg	ggccggagg	g acttctgctc	gttccagtag	ctttagtgtt	14160
tgatccgcca	a atcccgatgo	: ctacaggaad	caatgttctc	ggcctggcgt	ggeteggeet	14220
gatcggagc	g ggtttaacct	: acttcctttç	g gttccggggg	g atctcgcgad	tcgaacctac	14280
agttgtttc	c ttactgggct	: ttctcagcc	c cagatetgg	g gtcgatcago	cggggatgca	14340
tcaggccga	c agtcggaaci	tegggteee	c gacctgtace	c atteggtgag	g caatggatag	14400
gggagttga	t atcgtcaac	g ttcacttct	a aagaaatag	c gccactcage	ttcctcagcg	14460
gctttatcc	a gcgatttcc	t attatgtcg	g catagttct	c aagatcgaca	a gcctgtcacg	14520
gttaagcga	g aaatgaata	a gaaggctga	t aattoggat	c tctgcgagg	g agatgatatt	14580

WO 2004/063358 PCT/EP2004/000100 225/358

tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	ccgcgagatc	14640
atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	ggtaacatga	14700
gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	gatgggctgc	14760
ctgtatcgag	tggtgatttt	gtgccgagct	geeggteggg	gagctgttgg	ctggctggtg.	14820
gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	acattgcgga	14880
cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	cagctgattg	14940
cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	ttgccccagc	15000
aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	aaatcaaaag	15060
aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	15120
acgtggacto	: caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	15180
aaccatcaco	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	15240
ctaaagggag	g cccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	15300
aagggaagaa	a agcgaaagga	gcgggcgcca	ttcaggctgc	gcaactgttg	ggaagggcga	15360
tcggtgcgg	g cetetteget	attacgccag	ctggcgaaag	ggggatgtgc	: tgcaaggcga	15420
ttaagttgg	g taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	ggccagtgaa	15480
ttcgagctc	g gtacccgggg	g atctttcgac	: actgaaatac	gtcgagcctg	g ctccgcttgg	15540
aagcggcga	g gagcctcgto	c ctgtcacaac	: taccaacato	g gagtacgata	a agggccagtt	15600
ccgccagct	c attaagagco	c agttcatggg	g cgttggcatg	g atggccgtca	a tgcatctgta	15660
cttcaagta	c accaacgct	c ttctgatcca	a gtcgatcato	c cgctgaagg	c gctttcgaat	15720
ctggttaag	a tccacgtct	t cgggaagcca	a gcgactggt	g acctccago	g tccctttaag	15780
gctgccaac	a gctttctca	g ccagggcca	g cccaagacc	g acaaggcct	c cctccagaac	15840

WO 2004/063358 PCT/EP2004/000100 226/358

gccgagaaga	actggagggg	tggtgtcaag	gaggagtaag	ctccttattg	aagtcggagg	15900
acggagcggt	gtcaagagga	tattcttcga	ctctgtatta	tagataagat	gatgaggaat	15960
tggaggtagc	atagcttcat	ttggatttgc	tttccaggct	gagactctag	cttggagcat	16020
agagggtcct	ttggctttca	atattctcaa	gtatctcgag	tttgaactta	ttccctgtga	16080
accttttatt	caccaatgag	cattggaatg	aacatgaatc	tgaggactgc	aatcgccatg	16140
aggttttcga	aatacatccg	gatgtcgaag	gcttggggca	cctgcgttgg	ttgaatttag	16200
aacgtggcac	tattgatcat	ccgatagctc	tgcaaagggc	gttgcacaat	gcaagtcaaa	16260
cgttgctagc	agttccaggt	ggaatgttat	gatgagcatt	gtattaaatc	aggagatata	16320
gcatgatctc	tagttagctc	accacaaaag	tcagacggcg	taaccaaaag	tcacacaaca	16380
caagctgtaa	ggatttcggc	acggctacgg	g aagacggaga	agccacctto	: agtggactcg	16440
agtaccattt	aattctattt	gtgtttgato	gagacctaat	acagececta	a caacgaccat	16500
caaagtcgta	tagctaccag	tgaggaagt	g gactcaaato	gacttcagca	a acatctcctg	16560
gataaacttt	aagcctaaac	: tatacagaa	t aagataggt	g gagagetta	t accgagetee	16620
caaatctgtc	: cagatcatgg	g ttgaccggt	g cctggatct	t cctatagaa	t catccttatt	16680
cgttgaccta	gctgattctg	g gagtgaccc	a gagggtcat	g acttgagcc	t aaaatccgcc	16740
gcctccacca	a tttgtagaaa	a aatgtgacg	a actcgtgag	c tctgtacag	t gaccggtgac	16800
tctttctgg	c atgcggagag	g acggacgga	c gcagagaga	a gggctgagt	a ataagccact	16860
ggccagaca	g ctctggcgg	c tctgaggtg	c agtggatga	t tattaatco	g ggaccggccg	16920
cccctccgc	c ccgaagtgg	a aaggctggt	g tgcccctcg	t tgaccaaga	a tctattgcat	16980
catcggaga	a tatggagct	t catcgaato	a ccggcagta	a gcgaaggag	a atgtgaagco	17040
aggggtgta	t agccgtcgg	c gaaatagca	at gccattaac	c taggtacag	ga agtccaattg	17100

WO 2004/063358 PCT/EP2004/000100 227/358

cttccgatct	ggtaaaagat	tcacgagata	gtaccttctc	cgaagtaggt	agagcgagta	17160
cccggcgcgt	aagctcccta	attggcccat	ccggcatctg	tagggcgtcc	aaatatcgtg	17220
cetetectge	tttgcccggt	gtatgaaacc	ggaaaggccg	ctcaggagct	ggccagcggc	17280
gcagaccggg	aacacaagct	ggcagtcgac	ccatccggtg	ctctgcactc	gacctgctga	17340
ggtccctcag	tccctggtag	gcagctttgc	cccgtctgtc	cgcccggtgt	gtcggcgggg	17400
ttgacaaggt	cgttgcgtca	gtccaacatt	tgttgccata	ttttcctgct	ctccccacca	17460
gctgctcttt	tettttetet	ttcttttccc	atcttcagta	tattcatctt	cccatccaag	17520
aacctttatt	tcccctaagt	aagtactttg	ctacatccat	actccatcct	teccatecet	17580
tattcctttg	aacctttcag	ttcgagcttt	cccacttcat	cgcagcttga	ctaacagcta	17640
ccccgcttga	gcagacatca	ccatgcctga	actcaccgcg	acgtctgtcg	agaagtttct	17700
gatcgaaaag	ttcgacagcg	tctccgacct	gatgcagctc	tcggagggcg	aagaatctcg	17760
tgctttcagc	ttcgatgtag	gagggcgtgg	atatgtcctg	cgggtaaata	gctgcgccga	17820
tggtttctac	aaagatcgtt	atgtttatcg	gcactttgca	teggeegege	tcccgattcc	17880
ggaagtgctt	gacattgggg	aattcagcga	gagcctgacc	tattgcatct	cccgccgtgc	17940
acagggtgto	acgttgcaag	acctgcctga	aaccgaactg	cccgctgttc	tgcagccggt	18000
cgcggaggco	atggatgcga	tegetgegge	cgatcttagc	cagacgagcg	ggttcggccc	18060
attcggaccg	, caaggaatcg	gtcaatacac	tacatggcgt	gatttcatat	gcgcgattgc _.	18120
tgatccccat	gtgtatcact	ggcaaactgt	gatggacgac	accgtcagtg	cgtccgtcgc	18180
gcaggctctc	gatgagetga	tgctttgggc	cgaggactgc	cccgaagtcc	ggcacctcgt	18240
gcacgcggat	: ttcggctcca	acaatgtcct	gacggacaat	ggccgcataa	cageggteat	18300
tgactggago	gaggcgatgt	tcggggattc	ccaatacgag	gtcgccaaca	tettettetg	18360

WO 2004/063358 PCT/EP2004/000100 228/358

gaggccgtgg	ttggcttgta	tggagcagca	gacgcgctac	ttcgagcgga	ggcatccgga	18420
gcttgcagga	tegeegegge	tccgggcgta	tatgctccgc	attggtcttg	accaactcta	18480
tcagagcttg	gttgacggca	atttcgatga	tgcagcttgg	gcgcagggtc	gatgcgacgc	18540
aatcgtccga	tccggagccg	ggactgtcgg	gcgtacacaa	atcgcccgca	gaagcgcggc	18600
cgtctggacc	gatggctgtg	tagaagtact	cgccgatagt	ggaaaccgac	gccccagcac	18660
tegteegagg	gcaaaggaat	agagtagatg	ccgaccgcgg	gatcgatcca	cttaacgtta	18720
ctgaaatcat	caaacagctt	gacgaatctg	gatataagat	cgttggtgtc	gatgtcagct	18780
ccggagttga	gacaaatggt	gttcaggatc	tcgataagat	acgttcattt	gtccaagcag	18840
caaagagtgc	cttctagtga	tttaatagct	ccatgtcaac	aagaataaaa	cgcgttttcg	18900
ggtttacctc	ttccagatac	agctcatctg	caatgcatta	atgcattgac	tgcaacctag	18960
taacgccttn	caggeteegg	cgaagagaag	aatagcttag	cagagetatt	ttcattttcg	19020
ggagacgaga	tcaagcagat	caacggtcgt	caagagacct	acgagactga	ggaatccgct	19080
cttggctcca	cgcgactata	tatttgtctc	taattgtact	ttgacatgct	cctcttcttt	19140
actctgatag	cttgactatg	aaaattccgt	caccagenee	tgggttcgca	aagataattg	19200
catgtttctt	ccttgaactc	tcaagcctac	aggacacaca	ttcatcgtag	gtataaacct	19260
cgaaatcant	tcctactaag	atggtataca	atagtaacca	tgcatggttg	cctagtgaat	19320
gctccgtaac	acccaatacg	ccggccgaaa	ctttttaca	actctcctat	gagtcgttta	19380
cccagaatgo	: acaggtacac	ttgtttagag	gtaatcctto	: tttctagcta	a gaagteeteg	19440
tgtactgtgt	aagcgcccac	tccacatctc	cactcgacct	gcaggcatgo	: a	19491

<210> 46

<211> 21300

229/358 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t <400> 46 60 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 120 cctqtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 180 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea 300

gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg

gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg

atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca

tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc

aatattctca agtatctcga gtttgaactt attccctgtg aaccttttat tcaccaatga

360

420

480

540

600

WO 2004/063358 PCT/EP2004/000100 230/358

gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacageceet	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	ı taagataggt	ggagagctta	taccgagete	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	: tcctatagaa	tcatccttat	tegttgacet	agctgattct	1200
ggagtgacco	c agagggtcat	gacttgagco	: taaaatccgc	: cgcctccacc	: atttgtagaa	1260
aaatgtgac	g aactcgtgag	g ctctgtacag	g tgaccggtga	a ctctttctgg	g catgcggaga	1320
gacggacgg	a cgcagagaga	a agggctgagt	: aataagcca	tggccagaca	a gctctggcgg	1380
ctctgaggt	g cagtggatga	a ttattaatco	gggaccggc	gecectecgo	cccgaagtgg	1440
aaaggctgg	t gtgcccctc	g ttgaccaag	a atctattgc	a tcatcggaga	a atatggagct	1500
tcatcgaat	c accggcagt	a agcgaagga	g aatgtgaag	c caggggtgt	a tagccgtcgg	1560
cgaaatagc	a tgccattaa	c ctaggtaca	g aagtccaat	t gcttccgat	c tggtaaaaga	1620
ttcacgaga	t agtaccttc	t ccgaagtag	g tagagcgag	t acceggege	g taagctccct	1680
aattggccc	a teeggeate	t gtagggcgt	c caaatatcg	t geeteteet	g ctttgcccgg	1740
tgtatgaaa	ac cggaaaggc	c gctcaggag	c tggccagcg	g cgcagaccg	g gaacacaagc	1800
tggcagtc	ga cccatccgg	rt gctctgcac	t cgacctgct	g aggteecte	a gtccctggta	1860

WO 2004/063358 PCT/EP2004/000100 231/358

ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat	ttgttgccat	attttcctgc	tetececace	agctgctctt	ttcttttctc	1980
tttcttttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	atcggccgcg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agageetgae	ctattgcatc	tecegeegtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gecegetgtt	ctgcagccgg	tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	catteggace	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acageggtea	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aategeeege	agaagcgcgg	ccgtctggac	cgatggctgt	3120

WO 2004/063358 PCT/EP2004/000100 232/358

gtagaagtac tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt ,	ncaggctccg	3480
gcgaagagaa gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg tcaagagacc	: tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct ctaattgtad	tttgacatgo	tectettett	tactctgata	gcttgactat	3660
gaaaattccg tcaccagcn	c ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta caggacaca	c attcatcgta	ı ggtataaacc	: tcgaaatcar	ı ttcctactaa	3780
gatggtatac aatagtaac	c atgcatggtt	gcctagtgaa	ı tgctccgtaa	a cacccaatac	3840
gccggccgaa acttttta	c aactctccta	a tgagtcgttt	: acccagaatç	g cacaggtaca	3900
cttgtttaga ggtaatcct	t ctttctagc	t agaagteete	c gtgtactgt	g taagegeeca ,	3960
ctccacatct ccactcgac	c tgcaggcat	g caagcttgaa	a ttcgagctc	g gtacccgggg	4020
atctttcgac actgaaata	c gtcgagcct	g ctccgcttg	g aagcggcga	g gagcetegte	4080
ctgtcacaac taccaacat	g gagtacgat	a agggccagt	t ccgccagct	c attaagagcc	4140
agttcatggg cgttggcat	g atggccgtc	a tgcatctgt	a cttcaagta	c accaacgctc	4200
ttctgatcca gtcgatcat	c cgctgaagg	c gctttcgaa	t ctggttaag	a tccacgtctt,	4260
cgggaagcca gcgactgg	g acctccago	g tccctttaa	g gctgccaac	a gctttctcag	4320

WO 2004/063358 PCT/EP2004/000100 233/358

ccagggccag	cccaagaccg	acaaggcctc	cctccagaac	gccgagaaga	actggagggg	4380
tggtgtcaag	gaggagtaag	ctccttattg	aagtcggagg	acggagcggt	gtcaagagga	4440
tattcttcga	ctctgtatta	tagataagat	gatgaggaat	tggaggtagc	atagcttcat	4500
ttggatttgc	tttccaggct	gagactctag	cttggagcat	agagggtcct	ttggctttca	4560
atattctcaa	gtatctcgag	tttgaactta	ttccctgtga	accttttatt	caccaatgag	4620
cattggaatg	aacatgaatc	tgaggactgc	aatcgccatg	aggttttcga	aatacatccg	4680
gatgtcgaag	gcttggggca	cctgcgttgg	ttgaatttag	aacgtggcac	tattgatcat	4740
ccgatagcto	tgcaaagggc	gttgcacaat	gcaagtcaaa	cgttgctagc	agttccaggt	.4800
ggaatgttat	gatgagcatt	gtattaaato	: aggagatata	gcatgatcto	: tagttagctc	4860
accacaaaag	tcagacggcg	taaccaaaag	j tcacacaaca	ı caagctgtaa	ggatttcggc	4920
acggctacgg	g aagacggaga	a agccacctto	e agtggactcg	g agtaccattt	aattctattt	4980
gtgtttgate	c gagacctaat	acagececta	a caacgaccat	caaagtcgta	a tagctaccag	5040
tgaggaagt	g gactcaaat	gacttcagc	a acatctcct	g gataaactt	t aagcctaaac	5100
tatacagaa	t aagataggt	g gagagctta	t accgagete	c caaatctgt	c cagatcatgg	5160
ttgaccggt	g cctggatct	t cctatagaa	t catccttat	t cgttgacct	a gctgattctg	5220
gagtgaccc	a gagggtcat	g acttgagcc	t aaaatccgc	c gcctccacc	a tttgtagaaa	5280
aatgtgacg	a actcgtgag	c tctgtacag	t gaccggtga	c tctttctgg	c atgcggagag	5340
acggacgga	ıc gcagagaga	a gggctgagt	a ataagccac	t ggccagaca	g ctctggcggc	5400
tctgaggtg	gc agtggatga	it tattaatco	g ggaccggcc	g cccctccgc	c ccgaagtgga	5460
aaggctggt	g tgececteg	st tgaccaaga	aa tctattgca	it categgage	a tatggagctt	5520
catcgaato	ca coggoagta	aa gcgaaggag	ga atgtgaago	c aggggtgta	at ageegtegge	5580

WO 2004/063358 PCT/EP2004/000100 234/358

234/358	
gaaatagcat gccattaacc taggtacaga agtccaattg cttccga	atct ggtaaaagat 5640
tcacgagata gtaccttctc cgaagtaggt agagcgagta cccggcg	gegt aageteeeta 5700
attggcccat ccggcatctg tagggcgtcc aaatatcgtg cctctcc	etge tttgeceggt 5760
gtatgaaacc ggaaaggccg ctcaggagct ggccagcggc gcagacc	eggg aacacaagct 5820
ggcagtcgac ccatccggtg ctctgcactc gacctgctga ggtccc	tcag tccctggtag 5880
gcagctttgc cccgtctgtc cgcccggtgt gtcggcgggg ttgaca	aggt cgttgcgtca 5940
gtccaacatt tgttgccata ttttcctgct ctccccacca gctgct	cttt tcttttctct 6000
ttcttttccc atcttcagta tattcatctt cccatccaag aacctt	tatt tcccctaagt 6060
aagtactttg ctacatccat actccatcct tcccatccct tattcc	etttg aacctttcag 6120
ttcgagcttt cccacttcat cgcagcttga ctaacagcta ccccgc	ettga gcagacatca 6180
ccatgtcaat actcacttat ctggaatttc atctctacta tacact	tacct gtccttgcgg 6240
cattgtgttg gctgctaaag ccgtttcact cacagcaaga caatc	tcaag tataaatttt 6300
taatgttgat ggccgcctct accgcatcga tttgggacaa ttata	tcgtt tatcatcgcg 6360
cttggtggta ctgtcctact tgtgttgtgg ctgtcattgg ctatg	tacct ctagaagaat 6420
acatgttctt tatcatcatg actttaatga ctgtcgcgtt ctcaa	acttt gttatgcgtt 6480
ggcacttgca tactttcttt attagaccca acacttcttg gaagc	aaaca ctattagtac 6540
gccttgtgcc tgtttcagct ttattggcaa tcacttatca tgctt	ggcac ttgacactgc 6600
caaataaacc ttcattttat ggttcatgca tcctttggta tgctt	egtect gtgttggcta 6660
ttctttggct gggtgctggc gaatatatct tgcgtcgacc tgtgg	getgte ettttgteta 6720
ttgttatccc tagtgtatac ctatgttggg ctgatatcgt cgcta	attagt gctggcacat 6780
ggcatatttc tcttagaaca agcactggca aaatggtagt accc	gattta cctgtagaag 6840

WO 2004/063358 PCT/EP2004/000100 235/358

aatgcctgtt	tttactttg	atcaacacag	tcttggtttt	tgctacctgt	gctatagacc	6900
gcgctcaggc	catcctccat	gtgagegege	gtaatacgac	tcactatagg	gcgaattgga	6960
gctccaccgc	ggtggcggcc	gctctagaac	tagtggatcc	cccgggctgc	aggaattcgg	7020
cacgagetac	atttcacaag	cccgtgagcg	gtgcaagcgc	tctgccccac	atcggcccac	7080
ctcctcatct	ccatcggtca	tttgctgcta	ccacgatgct	gtcgaagctg	cagtcaatca	7140
gcgtcaaggc	cegeegegtt	gaactageee	gcgacatcac	gcggcccaaa	gtctgcctgc	7200
atgctcagcg	gtgctcgtta	gttcggctgc	gagtggcagc	accacagaca	gaggaggcgc	7260
tgggaaccgt	gcaggctgcc	ggcgcgggcg	atgagcacag	cgccgatgta	gcactccagc	7320
agcttgaccg	ggctatcgca	gagcgtcgtg	cccggcgcaa	acgggagcag	ctgtcatacc	7380
aggetgeege	cattgcagca	tcaattggcg	tgtcaggcat	tgccatcttc	gccacctacc	7440
tgagatttgc	catgcacatg	accgtgggcg	gcgcagtgcc	atggggtgaa	gtggctggca	7500
ctctcctctt	ggtggttggt	ggcgcgctcg	gcatggagat	gtatgcccgc	tatgcacaca	7560
aagccatctg	gcatgagtcg	cctctgggct	ggctgctgca	caagagccac	cacacacctc	7620
gcactggacc	ctttgaagcc	aacgacttgt	ttgcaatcat	caatggactg	cccgccatgc	7680
tcctgtgtac	ctttggcttc	tggctgccca	acgtcctggg	ggcggcctgc	tttggagcgg.	7740
ggctgggcat	cacgctatac	ggcatggcat	atatgtttgt	acacgatggc	ctggtgcaca	7800
ggcgctttcc	caccgggccc	atcgctggcc	tgccctacat	gaagcgcctg	acagtggccc	7860
accagctaca	ccacagcggc	aagtacggtg	gcgcgccctg	gggtatgttc	ttgggtccac	7920
aggagctgca	gcacattcca	ggtgcggcgg	aggaggtgga	gcgactggtc	ctggaactgg	7980
actggtccaa	gcgggctcag	gccatcctcc	atctgtacaa	atcatctgtt	caaaatcaaa	8040
accctaaaca	agccatttcc	cttttccagc	atgtcaaaga	gctagcatgg	gccttctgtc	8100

WO 2004/063358 PCT/EP2004/000100 236/358

ttcctgacca	aatgctcaac	aatgaattgt	ttgatgatct	tactatcagc	tgggatattt	8160
tacgtaaagc	ctcaaagtca	ttctatactg	catctgccgt	ttttccaagt	tatgtacgtc	8220
aagacttggg	tgttctctat	gctttctgca	gagctaccga	tgacctgtgc	gatgatgaat	8280
ccaaatctgt	tcaagaaaga	agagaccaat	tagatettae	tcgacaattt	gttegtgate	8340
tctttagcca	aaagaccagt	gcgcctattg	tgattgattg	ggaattgtat	caaaaccaac	8400
ttcctgcttc	ttgtatatca	gcctttagag	cctttactcg	ccttcgccat	gtccttgaag	8460
tagaccctgt	agaagaacta	ttagatggtt	acaaatggga	tcttgagcgt	cgtcctatcc	8520
ttgatgaaca	agacttggag	gcatactctg	cttgtgtggc	cagtagtgtg	ggtgaaatgt	8580
gcacacgtgt	gattcttgct	caagaccaaa	aggaaaatga	tgcttggata	attgaccgtg	8640
cacgtgagat	ggggctggtg	ctacaatacg	ttaacattgc	tcgagacatt	gtgactgata	8700
gcgagactct	gggtcgatgt	tatetgeete	aacaatggct	tagaaaagaa	gaaacagaac	8760
aaatacagca	aggcaacgcc	cgtagcctag	gtgatcaaag	actgttgggc	ttgtctctga	8820
agcttgtagg	aaaggcagac	gctatcatgg	tgagagctaa	gaagggcatt	gacaagttgc	8880
cggcaaactg	tcaaggcggt	gtacgagctg	cttgccaagt	atatgctgca	attggatctg	8940
tactcaagca	gcagaagaca	acatatccta	caagagctca	tctaaaagga	agcgaacgtg	9000
ccaagattgo	: tctgttgagt	gtatacaaco	tctatcaatc	tgaagacaag	cctgtggctc	9060
tccgtcaago	: tagaaagatt	aagagtttt	ttgttgatta	gtgaatttt	gttttattta	9120
tgtctgatag	y ttcaataaag	agacaacaca	tacaatataa	aatcattgto	: tttaaatgtt	9180
aatttagtag	g agtgtaaagd	ctgcatttt	: tttgtacgca	taaacaatga	gttcaccccg	9240
cttctggtti	: ttaaataatt	atgtcaaact	: agggaaaatt	cttttttt	tettegttet	9300
ttttttggc	t tgttgtggag	tcacaggett	gtcttcagat	: tgatagaggt	tgtatacact	9360

WO 2004/063358 PCT/EP2004/000100 237/358

caacagagca atcttgg	gcac gttegettee	ttttagatga	gctcttgtag	gatatgttgt	9420
cttctgctgc ttgagta	acag atccaattgc	agcatatact	tggcaagcag	ctcgtacacc	9480
gccttgacag tttgccg	ggca acttgtcaat	gcccttctta	gctctcacca	tgatagcgtc	9540
tgcctttcct acaagc	ttgg cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	9600
tccgctcaca attcca	caca acatacgagc	cggaagcata	aagtgtaaag	cctggggtgc	9660
ctaatgagtg agctaa	ctca cattaattgo	gttgcgctca	ctgcccgctt	tccagtcggg	9720
aaacctgtcg tgccag	rctgc attaatgaat	. cggccaacgc	gcggggagag	gcggtttgcg	9780
tattgggcca aagaca	aaag ggcgacatto	e aaccgattga	gggagggaag	gtaaatattg	9840
acggaaatta ttcatt	caaag gtgaattato	accgtcaccg	acttgagcca	tttgggaatt	9900
agagccagca aaatca	accag tagcaccati	accattagca	aggccggaaa	cgtcaccaat	9960
gaaaccatcg atagca	agcac cgtaatcag	t agcgacagaa	tcaagtttgo	: ctttagcgtc	10020
agactgtagc gcgtt	ttcat cggcatttt	c ggtcatagco	cccttattag	g cgtttgccat	10080
cttttcataa tcaaa	atcac cggaaccag	a gccaccaccg	g gaaccgccto	cctcagagec	10140
gccaccctca gaacc	gccac cctcagagc	c accaccctca	a gageegeead	cagaaccacc	10200
accagageeg eegee	agcat tgacaggag	g cccgatcta	g taacataga	gacaccgcgc	10260
gcgataattt atcct	agttt gcgcgctat	a ttttgtttt	c tatcgcgta	t taaatgtata	10320
attgegggae tetaa	itcata aaaacccat	c tcataaata	a cgtcatgca	t tacatgttaa	10380
ttattacatg cttaa	acgtaa ttcaacaga	a attatatga	t aatcatcgc	a agaccggcaa	10440
caggattcaa tctta	aagaaa ctttattgo	cc aaatgtttg	a acgatcggg	g atcatccggg	10500
tctgtggcgg gaact	ccacg aaaatatco	eg aacgcagca	a gatatcgcg	g tgcatctcgg	10560
tcttgcctgg gcagt	tegeeg cegaegee	gt tgatgtgga	c geegggeee	g atcatattgt	10620

WO 2004/063358 PCT/EP2004/000100 238/358

cgctcaggat	cgtggcgttg	tgcttgtcgg	ccgttgctgt	cgtaatgata	teggcacett	10680
cgaccgcctg	ttccgcagag	atcccgtggg	cgaagaactc	cagcatgaga	teceegeget	10740
ggaggatcat	ccagccggcg	tcccggaaaa	cgattccgaa	gcccaacctt	tcatagaagg	10800
cggcggtgga	atcgaaatct	cgtgatggca	ggttgggcgt	cgcttggtcg	gtcatttcga	10860
accccagagt	cccgctcaga	agaactcgtc	aagaaggcga	tagaaggcga	tgcgctgcga	10920
atcgggagcg	gcgataccgt	aaagcacgag	gaagcggtca	gcccattcgc	cgccaagctc	10980
ttcagcaata	tcacgggtag	ccaacgctat	gtcctgatag	cggtccgcca	cacccagccg	11040
gccacagtcg ,	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	gcaagcaggc	11100
atcgccatgg	gtcacgacga	gatcatcgcc	gtcgggcatg	cgcgccttga	gcctggcgaa	11160
cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	cgacaagacc	11220
ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	gcttggtggt	cgaatgggca	11280
ggtagccgga	tcaagcgtat	gcagccgccg	cattgcatca	gccatgatgg	atactttctc	11340
ggcaggagca	aggtgagatg	acaggagatc	ctgccccggc	acttcgccca	atagcagcca	11400
gteeetteee	gcttcagtga	caacgtcgag	cacagetgeg	caaggaacgc	ccgtcgtggc	11460
cagccacgat	ageegegetg	cctcgtcctg	cagttcattc	agggcaccgg	acaggtcggt	11520
cttgacaaaa	agaaccgggc	gcccctgcgc	tgacagccgg	aacacggcgg	catcagagca	11580
gccgattgtc	: tgttgtgccc	agtcatagcc	gaatageete	tccacccaag	cggccggaga	11640
acctgcgtgc	aatccatctt	gttcaatcat	gcgaaacgat	. ccagatccgg	tgcagattat	11700
ttggattgag	g agtgaatatg	agactctaat	tggataccga	ggggaattta	tggaacgtca	11760
gtggagcatt	tttgacaaga	aatatttgct	agctgatagt	gaccttaggo	gacttttgaa	11820

WO 2004/063358 PCT/EP2004/000100 239/358

cgcgcaataa	tggtttctga (cgtatgtgct	tagctcatta	aactccagaa	acccgcggct	11880
gagtggctcc	ttcaacgttg	cggttctgtc	agttccaaac	gtaaaacggc	ttgtcccgcg	11940
tcatcggcgg	gggtcataac	gtgactccct	taattctccg	ctcatgatca	gattgtcgtt	12000
tecegeette	agtttaaact	atcagtgttt	gacaggatat	attggcgggt	aaacctaaga	12060
gaaaagagcg	tttattagaa	taatcggata	tttaaaaggg	cgtgaaaagg	tttatccgtt	12120
cgtccatttg	tatgtgcatg	ccaaccacag	ggttccccag	atctggcgcc	ggccagcgag	12180
acgagcaaga	ttggccgccg	cccgaaacga	tccgacagcg	cgcccagcac	aggtgcgcag	12240
gcaaattgca	ccaacgcata	cagcgccagc	agaatgccat	agtgggcggt	gacgtcgttc	12300
gagtgaacca	gatcgcgcag	gaggcccgġc	agcaccggca	taatcaggcc	gatgccgaca	12360
gcgtcgagcg	cgacagtgct	cagaattacg	atcaggggta	tgttgggttt	cacgtctggc	12420
ctccggacca	gcctccgctg	gtccgattga	acgcgcggat	tctttatcac	tgataagttg	12480
gtggacatat	tatgtttatc	agtgataaag	tgtcaagcat	gacaaagttg	cagccgaata	12540
cagtgatccg	tgccgccctg	gacctgttga	acgaggtcgg	cgtagacggt	ctgacgacac	12600
gcaaactggc	ggaacggttg	ggggttcagc	agccggcgct	ttactggcac	: ttcaggaaca	12660
agcgggcgct	gctcgacgca	ctggccgaag	ccatgctggc	ggagaatcat	acgcattcgg	12720
tgccgagagc	cgacgacgac	tggcgctcat	ttctgatcgg	gaatgcccg	agcttcaggc	12780
aggcgctgct	cgcctaccgc	gatggcgcgc	gcatccatgo	: cggcacgcga	a ccgggcgcac	12840
cgcagatgga	aacggccgac	gegeagette	getteetete	g cgaggcggg	ttttcggccg	12900
gggacgccgt	: caatgcgctg	atgacaatca	gctacttcac	tgttggggc	c gtgcttgagg	12960
agcaggccgg	g cgacagcgat	geeggegage	geggeggead	c cgttgaaca	g geteegetet	13020
cgccgctgtt	gegggeegeg	g atagacgcct	tcgacgaag	c cggtccgga	c gcagcgttcg	13080

WO 2004/063358 PCT/EP2004/000100 240/358

agcagggact	cgcggtgatt	gtcgatggat	tggcgaaaag	gaggctcgtt	gtcaggaacg	13140
ttgaaggacc	gagaaagggt	gacgattgat	caggaccgct	gccggagcgc	aacccactca	13200
ctacagcaga	gccatgtaga	caacatcccc	tececettte	caccgcgtca	gacgcccgta	13260
gcagcccgct	acgggctttt	tcatgccctg	ccctagcgtc	caagcctcac	ggccgcgctc	13320
ggcctctctg	gcggccttct	ggcgctcttc	cgcttcctcg	ctcactgact	cgctgcgctc	13380
ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcggtaatac	ggttatccac	13440
agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	13500
ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	cgccccctg	acgagcatca	13560
caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	13620
gtttccccct	ggaagctccc	tcgtgcgctc	teetgtteeg	accetgeege	ttaccggata	13680
cctgtccgcc	tttctccctt	cgggaagcgt	ggcgcttttc	cgctgcataa	ccctgcttcg	13740
gggtcattat	agcgattttt	tcggtatatc	catccttttt	cgcacgatat	acaggatttt	13800
gccaaagggt	tcgtgtagac	tttccttggt	gtatccaacg	gcgtcagccg	ggcaggatag	13860
gtgaagtagg	cccacccgcg	agcgggtgtt	ccttcttcac	tgtcccttat	tcgcacctgg	13920
cggtgctcaa	cgggaatcct	gctctgcgag	gctggccggc	taccgccggc	gtaacagatg	13980
agggcaagcg	gatggctgat	gaaaccaagc	caaccaggaa	gggcagccca	cctatcaagg	14040
tgtactgcct	tccagacgaa	cgaagagcga	ttgaggaaaa	ggcggcggcg	gccggcatga	14100
gcctgtcggc	ctacctgctg	gccgtcggcc	agggctacaa	aatcacgggc	gtcgtggact	14160
atgagcacgt	ccgcgagctg	gcccgcatca	atggcgacct	gggccgcctg	ggcggcctgc	14220
tgaaactctg	gctcaccgac	gacccgcgca	cggcgcggtt	cggtgatgcc	acgatcctcg	14280
ccctgctggc	gaagatcgaa	gagaagcagg	acgagcttgg	caaggtcatg	atgggcgtgg	14340

WO 2004/063358 PCT/EP2004/000100 241/358

			11,000		•	
tccgcccgag	ggcagagcca	tgacttttt	agccgctaaa	acggccgggg	ggtgcgcgtg	14400
attgccaagc	acgtccccat	gcgctccatc	aagaagagcg	acttcgcgga	gctggtgaag	14460
tacatcaccg	acgagcaagg	caagaccgag	cgcctttgcg	acgctcaccg	ggctggttgc	14520
cctcgccgct	gggctggcgg	ccgtctatgg	ccctgcaaac	gcgccagaaa	cgccgtcgaa	14580
gccgtgtgcg	agacaccgcg	gccgccggcg	ttgtggatac	ctcgcggaaa	acttggccct	14640
cactgacaga	tgaggggcgg	acgttgacac	ttgaggggcc	gactcacccg	gcgcggcgtt	14700
gacagatgag	gggcaggctc	gatttcggcc	ggcgacgtgg	agctggccag	cctcgcaaat	14760
cggcgaaaac	gcctgatttt	acgcgagttt	cccacagatg	atgtggacaa	gcctggggat	14820
aagtgccctg	cggtattgac	acttgagggg	cgcgactact	gacagatgag	gggcgcgatc	14880
cttgacactt	gaggggcaga	gtgctgacag	atgaggggcg	cacctattga	catttgaggg	14940
gctgtccaca	ggcagaaaat	ccagcatttg	caagggtttc	cgcccgtttt	teggeeaceg	15000
ctaacctgtc	ttttaacctg	cttttaaacc	aatatttata	aaccttgttt	ttaaccaggg	15060
ctgcgccctg	tgcgcgtgac	cgcgcacgcc	gaaggggggt	gcccccctt	ctcgaaccct	15120
cccggcccgc	taacgeggge	ctcccatccc	cccaggggct	gcgcccctcg	gccgcgaacg	15180
gcctcacccc	aaaaatggca	gcgctggcag	tccttgccat	tgccgggatc	ggggcagtaa	15240
cgggatgggc	gatcagcccg	agcgcgacgc	ccggaagcat	tgacgtgccg	caggtgctgg	15300
catcgacatt	cagcgaccag	gtgccgggca	gtgagggcgģ	cggcctgggt	ggcggcctgc	15360
ccttcacttc	ggccgtcggg	gcattcacgg	acttcatggc	ggggccggca	atttttacct	15420
tgggcattct	tggcatagtg	gtcgcgggtg	ccgtgctcgt	gttcgggggt	gcgataaacc	15480
cagcgaacca	tttgaggtga	taggtaagat	tataccgagg	tatgaaaacg	agaattggac	15540
ctttacagaa	ttactctatg	aagcgccata	tttaaaaagc	taccaagacg	aagaggatga	15600

WO 2004/063358 PCT/EP2004/000100 242/358

agaggatgag	gaggcagatt	gccttgaata	tattgacaat	actgataaga	taatatatct	15660
tttatataga	agatategee	gtatgtaagg	atttcagggg	gcaaggcata	ggcagcgcgc	15720
ttatcaatat	atctatagaa	tgggcaaagc	ataaaaactt	gcatggacta	atgcttgaaa	15780
cccaggacaa	taaccttata	gcttgtaaat	tctatcataa	ttgggtaatg	actccaactt	15840
attgatagtg	ttttatgttc	agataatgcc	cgatgacttt	gtcatgcagc	tccaccgatt	15900
ttgagaacga	cagcgacttc	cgtcccagcc	gtgccaggtg	ctgcctcaga	ttcaggttat	15960
gccgctcaat	tegetgegta	tategettge	tgattacgtg	cagettteec	ttcaggcggg	16020
attcatacag	cggccagcca	tccgtcatcc	atatcaccac	gtcaaagggt	gacagcaggc	16080
tcataagacg	ccccagcgtc	gccatagtgc	gttcaccgaa	tacgtgcgca	acaaccgtct	16140
tccggagact	gtcatacgcg	taaaacagcc	agcgctggcg	cgatttagcc	ccgacatagc	16200
cccactgttc	gtccatttcc	gcgcagacga	tgacgtcact	geceggetgt	atgcgcgagg	16260
ttaccgactg	cggcctgagt	tttttaagtg	acgtaaaatc	gtgttgaggc	caacgcccat	16320
aatgcgggct	gttgcccggc	atccaacgcc	attcatggcc	atatcaatga	ttttctggtg	16380
cgtaccgggt	tgagaagcgg	tgtaagtgaa	ctgcagttgc	catgttttac	ggcagtgaga	16440
gcagagatag	cgctgatgtc	cggcggtgct	tttgccgtta	cgcaccaccc	cgtcagtagc	16500
tgaacaggag	ggacagctga	tagacacaga	agccactgga	gcacctcaaa	aacaccatca	16560
tacactaaat	cagtaagttg	gcagcatcac	ccataattgt	ggtttcaaaa	teggeteegt	16620
cgatactatg	ttatacgcca	actttgaaaa	caactttgaa	aaagctgttt	tctggtattt	16680
aaggttttag	aatgcaagga	acagtgaatt	ggagttcgtc	ttgttataat	tagcttcttg	16740
gggtatcttt	aaatactgta	gaaaagagga	aggaaataat	aaatggctaa	aatgagaata	16800
tcaccggaat	tgaaaaaact	gatcgaaaaa	taccgctgcg	taaaagatac	ggaaggaatg	16860

WO 2004/063358 PCT/EP2004/000100 . 243/358

tctcctgcta	aggtatataa	gctggtggga	gaaaatgaaa	acctatattt	aaaaatgacg	16920
gacagccggt	ataaagggac	cacctatgat	gtggaacggg	aaaaggacat	gatgctatgg	16980
ctggaaggaa	agctgcctgt	tccaaaggtc	ctgcactttg	aacggcatga	tggctggagc	17040
aatctgctca	tgagtgaggc	cgatggcgtc	ctttgctcgg	aagagtatga	agatgaacaa	17100
agccctgaaa	agattatcga	gctgtatgcg	gagtgcatca	ggctctttca	ctccatcgac	17160
atatcggatt	gtccctatac	gaatagctta	gacagccgct	tagccgaatt	ggattactta	17220
ctgaataacg	atctggccga	tgtggattgc	gaaaactggg	aagaagacac	tccatttaaa	17280
gatccgcgcg	agctgtatga	ttttttaaag	acggaaaagc	ccgaagagga	acttgtcttt	17340
tcccacggcg	acctgggaga	cagcaacatc	tttgtgaaag	atggcaaagt	aagtggcttt	17400
attgatcttg	ggagaagcgg	cagggcggac	aagtggtatg	acattgcctt	ctgcgtccgg	17460
tcgatcaggg	aggatatcgg	ggaagaacag	tatgtcgagc	tattttttga	cttactgggg	17520
atcaagcctg	attgggagaa	aataaaatat	tatattttac	tggatgaatt	gttttagtac	17580
ctagatgtgg	cgcaacgatg	ccggcgacaa	gcaggagcgc	accgacttct	tccgcatcaa	17640
gtgttttggc	tctcaggccg	aggcccacgg	caagtatttg	ggcaaggggt	cgctggtatt	17700
cgtgcagggc	aagattcgga	ataccaagta	cgagaaggac	ggccagacgg	tctacgggac	17760
cgacttcatt	gccgataagg	tggattatct	ggacaccaag	gcaccaggcg ,	ggtcaaatca	17820
ggaataaggg	cacattgccc	cggcgtgagt	cggggcaatc	ccgcaaggag	ggtgaatgaa	17880
teggaegttt	gaceggaagg	· catacaggca	agaactgato	gacgcggggt	tttccgccga	17940
ggatgccgaa	accatcgcaa	gccgcaccgt	catgcgtgcg	ccccgcgaaa	ccttccagtc	18000
cgtcggctcg	atggtccago	aagctacggo	caagatcgag	g cgcgacagcg	tgcaactggc	18060
tececetge	e etgeeegege	categgeege	: cgtggagcgt	: tegegtegte	: tcgaacagga	18120

WO 2004/063358 PCT/EP2004/000100 244/358

	ggcggcaggt	ttggcgaagt	cgatgaccat	cgacacgcga	ggaactatga	cgaccaagaa	18180
	gcgaaaaacc	gccggcgagg	acctggcaaa	acaggtcagc	gaggccaagc	aggccgcgtt	18240
•	gctgaaacac	acgaagcagc	agatcaagga	aatgcagctt	tccttgttcg	atattgcgcc	18300
	gtggccggac	acgatgcgag	cgatgccaaa	cgacacggcc	cgctctgccc	tgttcaccac	18360
	gcgcaacaag	aaaatcccgc	gegaggeget	gcaaaacaag	gtcattttcc	acgtcaacaa	18420
	ggacgtgaag	atcacctaca	ccggcgtcga	gctgcgggcc	gacgatgacg	aactggtgtg	18480
	gcagcaggtg	ttggagtacg	cgaagcgcac	ccctatcggc	gageegatea	ccttcacgtt	18540
	ctacgagett	tgccaggacc	tgggctggtc	gatcaatggc	cggtattaca	cgaaggccga	18600
	ggaatgcctg	togogoctac	aggcgacggc	gatgggcttc	acgtccgacc	gcgttgggca	18660
	cctggaatcg	gtgtcgctgc	tgcaccgctt	ccgcgtcctg	gaccgtggca	agaaaacgtc	18720
	ccgttgccag	gtcctgatcg	, acgaggaaat	cgtcgtgctg	tttgctggcg	accactacac	18780
	gaaattcata	tgggagaagt	: accgcaagct	gtcgccgacg	gcccgacgga	tgttcgacta	18840
	tttcagctcg	caccgggagc	cgtacccgct	. caagctggaa	accttccgcc	tcatgtgcgg	18900
	atcggattco	: acccgcgtga	a agaagtggcg	g cgagcaggto	ggcgaagcct	gcgaagagtt	18960
	gcgaggcago	: ggcctggtgg	g aacacgcctg	ggtcaatgat	gacctggtgc	attgcaaacg	19020
	ctagggcctt	gtggggtcag	g tteeggetgg	gggttcagca	gecagegett	tactggcatt	19080
	h=====================================		a staggara	- ttacttcact	cagtatogot	: cgggacgcac	19140
							19200
						gattaaggct	19260
						attgtcggcc	
	ctgaagaaa	g ctccagaga	t gttcgggtc	c gtttacgage	c acgaggagaa	aaagcccatg	19320

WO 2004/063358 PCT/EP2004/000100 245/358

gaggcgttcg	ctgaacggtt	gcgagatgcc	gtggcattcg	gcgcctacat	cgacggcgag	19380
atcattgggc	tgtcggtctt	caaacaggag	gacggcccca	aggacgctca	caaggcgcat	19440
ctgtccggcg	ttttcgtgga	gcccgaacag	cgaggccgag	gggtcgccgg	tatgctgctg	19500
cgggcgttgc	cggcgggttt	attgctcgtg	atgategtec	gacagattcc	aacgggaatc	19560
tggtggatgc	gcatcttcat	cctcggcgca	cttaatattt	cgctattctg	gagcttgttg	19620
tttatttcgg	tctaccgcct	gccgggcggg	gtcgcggcga	cggtaggcgc	tgtgcagccg	19680
ctgatggtcg	tgttcatctc	tgccgctctg	ctaggtagcc	cgatacgatt	gatggcggtc	19740
ctgggggcta	tttgcggaac	tgcgggcgtg	gcgctgttgg	tgttgacacc	aaacgcagcg	19800
ctagatcctg	teggegtege	agcgggcctg	gcgggggcgg	tttccatggc	gttcggaacc	19860
gtgctgaccc	gcaagtggca	acctcccgtg	cctctgctca	cctttaccgc	ctggcaactg	19920
gcggccggag	gacttctgct	cgttccagta	gctttagtgt	ttgatccgcc	aatcccgatg	19980
cctacaggaa	ccaatgttct	cggcctggcg	tggctcggcc	tgatcggagc	gggtttaacc	20040
tacttccttt	ggttccgggg	gatctcgcga	ctcgaaccta	cagttgtttc	cttactgggc	20100
tttctcagcc	ccagatctgg	ggtcgatcag	ccggggatgc	atcaggccga	cagtcggaac	20160
ttegggteee	cgacctgtac	cattcggtga	gcaatggata	ggggagttga	tatcgtcaac	20220
gttcacttct	aaagaaatag	cgccactcag	cttcctcagc	ggctttatcc	agcgatttcc	20280
tattatgtcg	gcatagttct	caagatcgac	agcctgtcac	ggttaagcga	gaaatgaata	20340
agaaggctga	taattcggat	ctctgcgagg	gagatgatat	ttgatcacag	gcagcaacgc	20400
tctgtcatcg	ttacaatcaa	catgctaccc	tccgcgagat	catccgtgtt	tcaaacccgg	20460
cagcttagtt	gccgttcttc	cgaatagcat	cggtaacatg	agcaaagtct	geegeettae	20520
aacggctctc	ccgctgacgc	cgtcccggac	tgatgggctg	cctgtatcga	gtggtgattt	20580

tgtgccgagc tgccggtcgg ggagctgttg gctggctggt ggcaggatat attgtggtgt 20640

aaacaaattg acgcttagac aacttaataa cacattgcgg acgtttttaa tgtactgggg 20700

tggtttttct tttcaccagt gagacgggca acagctgatt gcccttcacc gcctggccct 20760

gagagagttg cagcaagcgg tccacgctgg tttgccccag caggcgaaaa tcctgtttga 20820

tggtggttcc gaaatcggca aaatccctta taaatcaaaa gaatagcccg agatagggtt 20880

gagtgttgtt ccagtttgga acaagggtc actattaaag aacgtggact ccaacgtcaa 20940

agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac ccaaatcaag 21000

ttttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga gcccccgatt 21060

tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaagggaaga aagcgaaagg 21120

agcgggcgcc attcaggctg cgcaactgtt gggaagggcg atcggtggg gcctcttcgc 21180

tattacgcca gctggcgaaa gggggatgtg ctgcaaggcg attaagttgg gtaacgccag 21240

ggttttccca gtcacgacgt tgtaaaacga cggccagtga attcgagctc ggtacccggg 21300

```
<210> 47
```

<223> Plasmid

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<211> 17756

<212> DNA

<213> Artificial

<220>

<220>

PCT/EP2004/000100

<222> (10472)..(10472) <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 47

cegggetggt tgeectegee getgggetgg eggeegteta tggeeetgea aaegegeeag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcgc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 300 cagectegea aateggegaa aacgeetgat tttacgegag tttcccacag atgatgtgga 360 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 420 qaqqqqqqq atccttgaca cttgaqqqqc agaqtqctga cagatqaqqq qcqcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 660 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgccc 720 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 780 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 960 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg

WO 2004/063358 PCT/EP2004/000100 248/358

ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 1080 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1140 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata agataatata tettttatat agaagatate geegtatgta aggattteag ggggcaagge 1200 1260 ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1320 1380 atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc 1440 agetecaceg attitigagaa egacagegae ticegtecea geegtgeeag gigetgeete agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt 1500 1560 cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag 1620 ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc gcaacaaccg tetteeggag actgteatae gegtaaaaca gecagegetg gegegattta 1680 1740 gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc 1800 tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga 1860 ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt 1920 tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca 1980 ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc 2040 2100 aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg 2160

ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat

2220

WO 2004/063358 PCT/EP2004/000100 249/358

aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtetectg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agteggggea	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggtttteege	: cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480

WO 2004/063358 PCT/EP2004/000100 250/358

aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca 3540 gcgtgcaact ggctccccct gccctgcccg cgccatcggc cgccgtggag cgttcgcgtc 3600 3660 gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta 3720 tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca 3780 agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt 3840 tegatattge geegtggeeg gacacgatge gagegatgee aaacgacacg geeegetetg ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt 3900 3960 tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg 4020 acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga 4080 tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt 4140 acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg 4200 accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg 4260 4320 gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac 4380 ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag 4440 cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg 4500 4560 tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc 4620 4680 gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat

WO 2004/063358 PCT/EP2004/000100 251/358

		-				
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcġggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagato	ctgtcggcgt	: cgcagcgggc	: ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagto	gcaacctccc	gtgcctctgc	tcácctttac	5400
cgcctggcaa	a ctggcggccg	gaggacttct	: gctcgttcca	a gtagctttag	tgtttgatcc	5460
gccaatcccg	g atgcctacag	g gaaccaatgi	teteggeets	g gegtggeteg	g geetgategg	5520
agcgggttta	a acctacttco	c tttggttcc;	g ggggateteg	g cgactcgaad	c ctacagttgt	5580
ttccttact	g ggctttctca	a gccccagate	c tggggtcga	t cagccgggg	a tgcatcaggc	5640
cgacagtcg	g aacttcggg	t ccccgacct	g taccattcg	g tgagcaatg	g ataggggagt	5700
tgatatcgt	c aacgttcac	t tctaaagaa	a tagegeeae	t cagetteet	e ageggettta	5760
tccagcgat	t tootattat	g teggcatag	t tctcaagat	c gacagectg	t cacggttaag	5820
cgagaaatg	a ataagaagg	c tgataattc	g gatetetge	g agggagatg	a tatttgatca	5880
caggcagca	a cgctctgtc	a tcgttacaa	t caacatgct	a ccctccgcg	a gatcatccgt	5940

WO 2004/063358 PCT/EP2004/000100 252/358

gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	. aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgo	: cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	g tgaattcgag	6780
ctcggtaccc	ggggatettt	. cgacactgaa	ı atacgtcgaç	cctgctccg	ttggaagcgg	6840
cgaggagcct	: cgtcctgtca	caactaccaa	a catggagtad	: gataagggco	agttccgcca	6900
gctcattaag	g agccagttca	ı tgggcgttgg	g catgatggco	gtcatgcato	c tgtacttcaa	6960
gtacaccaa	getettetga	a tccagtcgal	catccgctga	a aggcgcttt	gaatctggtt	7020
aagatccac	g tcttcgggaa	a gccagcgact	ggtgacctco	e agegteeet	t taaggetgee	7080
aacagettt	c tcagccagg	g ccagcccaa	g accgacaag	g cetecetee	a gaacgccgag	7140
aagaactgg	a ggggtggtg	t caaggagga	g taageteet	t attgaagtc	g gaggacggag	7200

WO 2004/063358 PCT/EP2004/000100 253/358

cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	79:20
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
		astatassa	heether ego		ant art are	9290
cgccccgaag	tggaaaggct	ggtgtgeeee	tegttgacea	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460

PCT/EP2004/000100 WO 2004/063358 254/358

8520 gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac 8580 cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc 8640 tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca 8700 8760 aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct 8820 cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc 8880 tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc 8940 ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga 9000 9060 aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt 9120 ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt 9180 9240 gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg 9300 tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga 9360 ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc 9420 9480 ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc tetegatgag etgatgettt gggeegagga etgeeeegaa gteeggeaee tegtgeaege 9540 9600 ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg gagegaggeg atgttegggg atteceaata egaggtegee aacatettet tetggaggee 9660 9720

gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc

WO 2004/063358 PCT/EP2004/000100 255/358

aggategeeg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa .	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	: ccggcgaaga	gaagaatago	ttagcagago	: tattttcatt	ttcgggagac	10320
gagatcaago	: agatcaacgg	g tegteaagag	g acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgad	tatatatttg	g tototaatto	g tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgad	tatgaaaati	ccgtcaccag	g encetgggti	cgcaaagata	attgcatgtt	10500
tetteettg	a actctcaago	c ctacaggaca	a cacattcato	c gtaggtataa	acctcgaaat	10560
canttccta	c taagatggt:	a tacaatagta	a accatgcat	g gttgcctagi	gaatgctccg	10620
taacaccca	a tacgccggc	c gaaactttt	t tacaactct	c ctatgagtc	g tttacccaga	10680
atgcacagg	t acacttgtt	t agaggtaat	c cttctttct	a gctagaagt	c ctcgtgtact	10740
gtgtaagcg	c ccactccac	a tctccactc	g acctgcagg	c atgcaagct	t cattttgctt	10800
tgtaaattt	c tggtaactg	c caccaagaa	a tatgaggat	a ttcgtgatg	t teetegtggt	10860
agccaaaat	g atagcacgt	g ataaatgac	c accaaatag	g acggctaat	t gtttgggcac	10920
aatgaggct	g aacataacc	c cctattggt	t cactatggg	g taaaaaagt	a ccaaaataga	10980

WO 2004/063358 PCT/EP2004/000100 256/358

ataattgtaa	tgaacttaaa	agcgagggta	gcacccaaaa	gtaagttaga	ttatcacttg	11040
ggatatggag	tatgtattta	gcaaagttat	aaataatagt	caacgcaatt	atttgccccc	11100
aactccagta	acctttcata	aaatgaaaat	accaagcaaa	gaaactttgg	tgtttaccat	11160
tgtgaaaatc	cgggtctatt	gagettgetg	gattgtggtg	gtgtaaccaa	tgttttttca	11220
atagtttttg	atatggtaaa	agaccataaa	gggatagggt	caatgttcca	atcaaatgat	11280
taatcttggt	gttttgggga	aatactacgc	catgcatggc	atcatgagat	gtaataaata	11340
atcccgtata	taaaaatgtt	tgccatagta	taacaggcaa	taacatccaa	aattttagct	11400
ttgagatgtc	aagggaaagt	aataaactca	ggctaatgac	ccatgcgcta	acaatgacaa	11460
tagcaatgaa	aagcccctta	aactgagatt	. tacttctcag	tactggagtc	agttttgctt	11520
gatgactgag	tggttgttct	: aactggatca	ı tttctaaaga	ı gaaggtggaa	caatgttagc	11580
ataattgtgo	: ttgagtgagg	g actttgaggg	g taggtacata	a cttgataaag	, ttaatgatta	11640
aagagaaaaa	a aaaagttttg	g gttcaaagca	a gaaattgttt	: tttaaatcga	a ttggtgagaa	11700
aattttttc	c tgtttccgca	a tcaccaaag	c cacctcagga	a atggtcacaa	a attattggtc	11760
tgattggac	c ataagcata	c aaaaagttc	a ttgaagtata	a cttagtggc	t tattagactt	11820
ttatcgttt	t ctaacgcga	a tcagcaatg	t ttcttgttt	g atttactgc	t tgctttagat	11880
catttttgt	c tgaaatatt	a tgcatttgt	t caaagcggc	c tttgtttcc	t ttctttcatg	11940
cttaaacac	g ttgtttatt	c catatatta	c tttgaatat	g catcaccgc	a aagcggaagt	12000
gcaaaataa	c aaagaacct	c tttgggtta	c acgatcaac	t gctattgtg	a aaaaaatttc	12060
++++***	a ttttamaa	t aatatotot	t gcaaaaaa	ra aattttgta	t atttagtagc	12120
					a gacaaaagta	
accaayaac	.u dalyadayc	a Beacasan				•

WO 2004/063358 PCT/EP2004/000100 257/358

			217000			
cgagaaaaat	ctaataagtt	gttatagagg	tctttgtttt	ctttgtgttt	atagacagtt	12240
atttagagtt	tgaaaagtgt	ctctaatgtg	tctttttta	ttattattat	ttcaaatgtt	12300
atgtaatata	gctaaagcta	tagatttgac	attttttcta	aatataaaat	ttcagtcaac	12360
agaaataaat	gacacgagtt	ctttttctct	ctctcaatcc	tgttgatcat	caatctttga	12420
tgtcgtttta	aaacaaatga	atggcattta	gttccttagg	tgtcactcac	atcttgttga	12480
ccagaaaatc	cttattcgcc	ctcaaatctg	ctttattcct	ttcatttgat	ttgatgttta	12540
agtaatgcaa	gcaaacaaaa	aagaaacctt	tcttgcaaag	acaaaagaat	tgttttcaga	12600
ggaaagcaac	tcgttgtcat	ttttaagga	tttagactta	taatcgacac	catagtttgt	12660
ccgttacatt	tttattgtc	gttttctgat	ttccttttaa	tctttaagca	aaatcaatat	12720
taacttatct	: tgtcttccaa	taaaaaatgg	ataccaataa	caataaatco	ttcacaaaga	12780
aaaaaaaaa	a aaactcgaaa	aaagcttggc	: gtaatcatgg	, tcatagctgt	ttcctgtgtg	12840
aaattgtta	ccgctcacaa	ttccacacaa	a catacgaged	ggaagcataa	agtgtaaagc	12900
ctggggtgc	c taatgagtga	gctaactcad	c attaattgc	g ttgcgctcac	tgeeegettt	12960
ccagtcggg	a aacctgtcgt	gccagctgca	a ttaatgaato	c ggccaacgco	g cggggagagg	13020
cggtttgcg	t attgggccaa	a agacaaaag	g gcgacattca	a accgattgaç	g ggagggaagg	13080
taaatattg	a cggaaattai	t tcattaaag	g tgaattatc	a ccgtcaccga	a cttgagccat	13140
ttgggaatt	a gagccagca	a aatcaccag	t agcaccatt	a ccattagca	a ggccggaaac	13200
gtcaccaat	g aaaccatcg	a tagcagcac	c gtaatcagt	a gcgacagaa	t caagtttgcc	13260
tttagcgto	a gactgtagc	g cgttttcat	c ggcattttc	g gtcatagcc	c ccttattagc	13320
gtttgccat	c ttttcataa	t caaaatcac	c ggaaccaga	g ccaccaccg	g aaccgcctcc	13380
ctcagagco	g ccaccctca	g aaccgccac	c ctcagagcc	a ccaccctca	g agccgccacc	13440

WO 2004/063358 PCT/EP2004/000100 258/358

agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt aacatagatg 13	3500
acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct atcgcgtatt 13	3560
aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac gtcatgcatt 13	3620
acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata atcatcgcaa 13	3680
gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa cgatcgggga 1	3740
tcatccgggt ctgtggcggg aactccacga aaatatccga acgcagcaag atatcgcggt 1	3800
gcatctcggt cttgcctggg cagtcgccgc cgacgccgtt gatgtggacg ccgggcccga 1	3860
tcatattgtc gctcaggatc gtggcgttgt gcttgtcggc cgttgctgtc gtaatgatat 1	.3920
cggcaccttc gaccgcctgt tccgcagaga tcccgtgggc gaagaactcc agcatgagat 1	.3980
ccccgcgctg gaggatcatc cagccggcgt cccggaaaac gattccgaag cccaaccttt 1	4040
catagaaggc ggcggtggaa tcgaaatctc gtgatggcag gttgggcgtc gcttggtcgg 1	L 41 00
tcatttcgaa ccccagagtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat 1	L 41 60
gegetgegaa tegggagegg egatacegta aagcaegagg aageggteag eecattegee 1	14220
gccaagctct tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac 1	14280
acccagccgg ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg 2	14340
caagcaggca tcgccatggg tcacgacgag atcatcgccg tcgggcatgc gcgccttgag	14400
cctggcgaac agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc	14460
gacaagaccg gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc	14520
gaatgggcag gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga	14580
tactttctcg gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa	14640
tagcagccag tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee	14700

WO 2004/063358 PCT/EP2004/000100 259/358

cgtcgtggcc	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	14760
caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	14820
atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	14880
ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	cagatccggt	14940
gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	gggaatttat	15000
ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgaṭagtg	accttaggcg	15060
acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	actccagaaa	15120
cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	taaaacggct	15180
tgtcccgcgt	catcggcggg	ggtcataacg	tgactccctt	aattctccgc	tcatgatcag	15240
attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	ttggcgggta	15300
aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	gtgaaaaggt	15360
ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	tctggcgccg	15420
gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	gcccagcaca	15480
ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	gtgggcggtg	15540
acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	gcaccggcat	aatcaggccg	15600
atgccgacag	g cgtcgagcgc	gacagtgctc	agaattacga	tcaggggtat	gttgggtttc	15660
acgtctggcd	: tccggaccag	cctccgctgg	tccgattgaa	cgcgcggatt	ctttatcact	15720
gataagttgg	g tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	acaaagttgc	15780
agccgaatao	agtgatccgt	: gccgccctgg	acctgttgaa	cgaggtcggc	gtagacggtc	15840
tgacgacacg	g caaactggcg	gaacggttgg	gggttcagca	geeggegett	: tactggcact	15900

tcaggaacaa gcgggcgctg ctcgacgcac tggccgaagc catgctggcg gagaatcata 15960

WO 2004/063358 PCT/EP2004/000100 260/358

cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	aatgcccgca	16020
gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	catccatgcc	ggcacgcgac	16080
cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	gaggcgggtt	16140
tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	ctacttcact	gttggggccg	16200
tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	cggcggcacc	gttgaacagg	16260
ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	ggtccggacg	16320
cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	aggctcgttg	16380
tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	ccggagcgca	16440
acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	accgcgtcag	16500
acgcccgtag	cagcccgcta	cgggctttt	catgccctgc	cctagcgtcc	aagcctcacg	16560
geegegeteg	geetetetgg	cggccttctg	gcgctcttcc	gcttcctcgc	tcactgactc	16620
getgegeteg	gtcgttcggc	: tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	16680
gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	16740
ggccaggaad	cgtaaaaagg	g ccgcgttgct	ggcgtttttc	: cataggeted	geeceetga	16800
cgagcatcac	aaaaatcga	gctcaagtca	a gaggtggcga	aacccgacag	g gactataaag	16860
ataccaggc	g tttccccct	g gaageteeet	: cgtgcgctct	: cctgttccga	a ccctgccgct	16920
taccggata	c ctgtccgcc	t ttctccctt	gggaagcgtg	g gegetttte	gctgcataac	16980
cctgcttcg	g ggtcattat	a gcgattttt	t cggtatatco	e atcetttte	gcacgatata	17040
caggatttt	g ccaaagggt	t cgtgtagac	t ttccttggtg	g tatccaacg	g cgtcagccgg	17100
gcaggatag	g tgaagtagg	c ccacccgcg	a gcgggtgtt	c cttcttcac	t gtcccttatt	17160
cgcacctgg	c ggtgctcaa	c gggaatcct	g ctctgcgag	g ctggccggc	t accgccggcg	17220

taacagatga gggcaagcgg atggctgatg aaaccaagcc aaccaggaag ggcagcccac 17280
ctatcaaggt gtactgcctt ccagacgaac gaagagcgat tgaggaaaag gcggcggcgg 17340
ccggcatgag cctgtcggcc tacctgctgg ccgtcggcca gggctacaaa atcacgggcg 17400
tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa tggcgacctg ggccgcctgg 17460
gcggcctgct gaaactctgg ctcaccgacg acccgcgcac ggcgcggttc ggtgatgcca 17520
cgatcctcgc cctgctggcg aagatcgaag agaagcagga cgagcttggc aaggtcatga 17580
tgggcgtggt ccgcccgagg gcagagccat gacttttta gccgctaaaa cggccggggg 17640
gtgcgcgtga ttgccaagca cgtccccatg cgctccatca agaagagcga cttcgcggag 17700
ctggtgaagt acatcaccga cgagcaaggc aagaccgagc gcctttgcga cgctca 17756

```
<210> 48
```

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<211> 17118

<212> DNA

<223> n is a, c, g, or t

<400> 48 60 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 240 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagectegea aateggegaa aaegeetgat tttacgegag ttteccacag atgatgtgga 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgccc 660 720 teggeegega aeggeeteae eecaaaaatg geagegetgg eagteettge eattgeeggg atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 900 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 1020 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa

acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag

acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata

1080

1140

WO 2004/063358 PCT/EP2004/000100 263/358

2021221212	+a++++++	2022021210	gccgtatgta	aggatttcag	agggaagg	1200
ayacaacaca	CCCCCCacac	agaagatate	geegtatgta	aggarracag	9999044990	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagegac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatateget	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cageggeeag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	: cataatgcgg	getgttgeee	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	g agagcagaga	ı tagegetgat	gteeggeggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacago	: tgatagacac	agaagccact	ggageacctc	2040
aaaaacacca	a tcatacacta	a aatcagtaag	, ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggcto	c cgtcgatact	: atgttatacg	g ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	a tttaaggtt!	tagaatgcaa	a ggaacagtga	attggagtto	gtcttgttat	2220
aattagctto	c ttggggtate	c tttaaatact	: gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	a atatcaccg	g aattgaaaa	a actgatcgaa	a aaataccgct	gcgtaaaaga	2340
						2400

tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata

2400

WO 2004/063358 PCT/EP2004/000100 264/358

tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgattṭttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctatttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	ı tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	: gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caageegeae	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gtccgtcggc	: tcgatggtcd	: agcaagctac	ggccaagato	gagegegaea	3540
gcgtgcaact	ggeteecet	gecetgeeeg	g cgccatcggc	: cgccgtggag	g cgttcgcgtc	3600
gtctcgaaca	a ggaggcggca	ı ggtttggcga	agtcgatgac	: catcgacacg	g cgaggaacta	3660

WO 2004/063358 PCT/EP2004/000100 265/358 .

tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaceggegt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	ageggeetgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	: atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	1 cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	ageggeegae	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gecetgaaga	ı aagctccaga	gatgtteggg	tccgtttacg	g agcacgagga	4800
gaaaaagcc	atggaggcgt	: tegetgaaeg	gttgcgagat	gccgtggcat	: teggegeeta	4860
catcgacgg	c gagatcatto	ggctgtcggt	: cttcaaacag	gaggacggco	ccaaggacgc	4920

WO 2004/063358 PCT/EP2004/000100 266/358

tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	teteggeetg	gegtggeteg	gcctgatcgg	5520
agcgggttta	acctacttco	: tttggttccg	ggggatctcg	g cgactcgaac	: ctacagttgt	5580
ttccttactg	g ggctttctca	a gccccagato	tggggtcgat	cagccgggga	ı tgcatcaggc	5640
cgacagtcgg	g aacttegggt	ccccgacct	g taccattcgg	g tgagcaatgg	g ataggggagt	5700
tgatatcgto	c aacgttcac	t tctaaagaa	a tagcgccact	t cagetteeto	ageggettta	5760
tccagcgat	t tcctattat	g teggeatag	t tctcaagat	c gacagectgi	t cacggttaag	5820
cgagaaatg	a ataagaagg	c tgataattc	g. gatctctgc	g agggagatg	a tatttgatca	5880
caggcagca	a cgctctgtc	a tcgttacaa	t caacatgct	a ccctccgcg	a gatcatccgt	5940
gtttcaaac	c cggcagctt	a gttgccgtt	c ttccgaata	g catcggtaa	c atgagcaaag	6000
tctgccgcc	t tacaacggo	t ctcccgctg	a cgccgtccc	g gactgatgg	g ctgcctgtat	6060
cgagtggtg	ga ttttgtgcc	g agctgccgg	ıt cggggagct	g ttggctggc	t ggtggcagga	6120
tatattgtg	gg tgtaaacaa	a ttgacgctt	a gacaactta	a taacacatt	g cggacgtttt	6180

WO 2004/063358 PCT/EP2004/000100 267/358

taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	: cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	: ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	: cgtcctgtca	caactaccaa	catggagtac	gataagggco	agttccgcca	6900
gctcattaag	g agccagttca	tgggcgttgg	catgatggcc	gtcatgcato	tgtacttcaa	6960
gtacaccaa	gctcttctga	tccagtcgat	. catccgctga	aggcgcttto	gaatctggtt	7020
aagatccac	g tcttcgggaa	gccagcgact	ggtgacctco	agcgtccctt	taaggetgee	7080
aacagcttt	c tcagccaggg	r ccagcccaag	g accgacaagg	g cctccctcca	a gaacgccgag	7140
aagaactgg	a ggggtggtgt	: caaggaggaç	g taagctccti	: attgaagtc	g gaggacggag	7200
cggtgtcaa	g aggatattct	: tcgactctgt	: attatagata	a agatgatga	g gaattggagg	7260
tagcatagc	t tcatttggai	ttgctttcca	a ggctgagac	t ctagcttgg	a gcatagaggg	7320
tcctttggc	t ttcaatatt	c tcaagtatc	t cgagtttga	a cttattccc	t gtgaaccttt	7380
tattcacca	a tgagcattg	g aatgaacat	g aatctgagg	a ctgcaatcg	c catgaggttt	7440

WO 2004/063358 PCT/EP2004/000100 268/358

tcgaaataca	tccggatgtc	gaaggettgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgccc	tcgttgacca	agaatctatț	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	teteegaagt	aggtagagcg	agtacccggc	8460
gcgtaagcto	: cctaattggd	: ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	g gccgctcagg	agctggccag	gggggagac	8580
cacas ses	agot <i>ago</i> s=	- cgacccatc	, aataatata	actemacete	g ctgaggtccc	8640
cygyaacacac	agetggeagi		, ggrgereege	. accogacot	,	5525

WO 2004/063358 PCT/EP2004/000100 269/358

				•	
tcagtccctg gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttctttt ctctttcttt	tcccatcttc	agtatattca	tetteceate	caagaacctt	8820
tatttcccct aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	89 4 0
ttgagcagac atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttegae agegteteeg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg caagacctgo	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga atcggtcaat	: acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat cactggcaaa	ı ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540
ggatttcggc tccaacaat	g tcctgacgga	. caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg atgttcggg	g attcccaata	cgaggtegee	aacatcttct	tctggaggcc	9660
gtggttggct tgtatggag	e agcagacgcg	ctacttcgag	g cggaggcatc	: cggagcttgc	9720
aggategeeg eggeteegg	g cgtatatgct	: ccgcattggt	: cttgaccaac	: tctatcagag	9780
cttggttgac ggcaatttc	g atgatgcago	ttgggcgcag	g ggtcgatgcg	g acgcaatcgt	9840
ccgatccgga gccgggact	g tcgggcgtac	acaaatcgco	c cgcagaagco	g eggeegtetg	9900

WO 2004/063358 PCT/EP2004/000100 270/358

			•			
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaato	cttctttcta	gctagaagto	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	. cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	: atgatatatg	r catatgataç	g atatacaagc	10920
aatcttcttc	c aaggagtttg	aaattttgtc	c ctccaggagc	: aaaaaaaagt	tttttttat	10980
acatgtttgt	t acacaagaat	: agttaccaat	: ttgctttggt	: cttacgtgc	t gcaagtttat	11040
atcgttttca	a atttctttgt	: ctttacattt	tetttgteet	: ttatctttc	c tcatttagtc	11100
tttgggaga	a ttaggaaaag	ggagcggaaa	a ggtaagaaat	gettgegta	t tttactaatt	11160

WO 2004/063358 PCT/EP2004/000100 271/358

cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	aataatcttg	11280
tgcattcgaa	tatgatggaa	gattttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatctc	11400
tatgatccag	ttagaacaac	cactcagtca	tcaagcaaaa	ctgactccag	tactgagaag	11460
taaatctcag	tttaaggggc	ttttcattgc	tattgtcatt	gttagcgcat	gggtcattag	11520
cctgagttta	ttactttccc	ttgacatctc	aaagctaaaa	ttttggatgt	tattgcctgt	11580
tatactatgg	caaacatttt	tatatacggg	attatttatt	acatctcatg	atgccatgca	11640
tggcgtagta	tttccccaaa	acaccaagat	taatcatttg	attggaacat	tgaccctatc	11700
cctttatggt	cttttaccat	atcaaaaact	attgaaaaaa	cattggttac	accaccacaa	11760
tccagcaagc	tcaatagacc	cggattttca	caatggtaaa	caccaaagtt	tetttgettg	11820
gtattttcat	tttatgaaag	gttactggag	ttgggggcaa	ataattgcgt	tgactattat	11880
ttataacttt	gctaaataca	tactccatat	cccaagtgat	aatctaactt	acttttgggt	11940
gctaccetcg	cttttaagtt	cattacaatt	attctatttt	ggtactttt	taccccatag	12000
tgaaccaata	gggggttatg	ttcagcctca	ttgtgcccaa	acaattagcc	gtcctatttg	12060
gtggtcattt	atcacgtgct	atcattttgg	ctaccacgag	gaacatcacg	aatatcctca	12120
tatttcttgg	tggcagttac	cagaaattta	caaagcaaaa	tagaagcttg	gcgtaatcat	12180
ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	12240
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaacto	acattaattg	12300
cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12360
tcggccaacg	cgcggggaga	ggcggtttgc	gtattgggcc	aaagacaaaa	gggcgacatt	12420

WO 2004/063358 PCT/EP2004/000100 272/358

caaccgattg	agggagggaa	ggtaaatatt	gacggaaatt	attcattaaa	ggtgaattat	12480
caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12540
taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12600
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	tcggcatttt	12660
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12720
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12780
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12840
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	12900
attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	12960
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13020
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13080
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13140
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13200
ttgatgtgga	cgccgggccc	gatcatattg	tegeteagga	tcgtggcgtt	gtgcttgtcg	13260
gccgttgctg	, tcgtaatgat	atcggcacct	tegacegeet	gttccgcaga	gatcccgtgg	13320
gcgaagaact	ccagcatgag	atccccgcgc	: tggaggatca	tccagccggo	gtcccggaaa	13380
acgattccga	agcccaacct	ttcatagaag	geggeggtgg	, aatcgaaatc	: tcgtgatggc	13440
aggttgggcg	g tegettggte	ggtcatttcg	g aaccccagag	f tecegeteag	g aagaactcgt	13500
caagaaggc	g atagaaggcg	g atgcgctgco	g aatcgggagd	ggcgataccg	, taaagcacga	13560
ggaagcggto	e ageceattes	g ccgccaagct	cttcagcaat	atcacgggta	a gccaacgcta	13620
tgtcctgata	a geggteege	c acacccagc	ggccacagto	gatgaatcc	a gaaaagcggc	13680

WO 2004/063358 PCT/EP2004/000100 273/358

cattttccac catgatattc ggcaagcagg catcgccatg ggtcacgacg agatcatcgc 13740 cgtcgggcat gcgcgccttg agcctggcga acagttcggc tggcgcgagc ccctgatgct 13800 cttcgtccag atcatcctga tcgacaagac cggcttccat ccgagtacgt gctcgctcga 13860 tgcgatgttt cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta tgcagccgcc gcattgcatc agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat 13980 cctgccccgg cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga 14040 gcacagctgc gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct gcctcgtcct 14100 gcagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg 14160 ctgacageeg gaacaeggeg geateagage ageegattgt etgttgtgee eagteatage 14220 cgaatageet etecacecaa geggeeggag aacetgegtg caatecatet tgttcaatea 14280 tgcgaaacga tccagatccg gtgcagatta tttggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc agtggagcat ttttgacaag aaatatttgc 14400 tagctgatag tgaccttagg cgacttttga acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc tgagtggctc cttcaacgtt gcggttctgt 14520 cagttccaaa cgtaaaacgg cttgtcccgc gtcatcggcg ggggtcataa cgtgactccc 14580 ttaattetee geteatgate agattgtegt tteeegeett eagtttaaae tateagtgtt tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga ataatcggat atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca gggttcccca gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag 14880 cagaatgcca tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg 14940

WO 2004/063358 PCT/EP2004/000100 274/358

cagcaccggc a	ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	15000
gatcaggggt a	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15060
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15120
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15180
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15240
cageeggege	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15300
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15360
tttctgatcg	ggaatgcccg	cagcttcagg	caggcgctgc	tegeetaceg	cgatggcgcg	15420
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15480
cgcttcctct	gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	15540
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15600
cgcggcggca	ccgttgaaca	ggctccgctc	tegeegetgt	tgegggeege	gatagacgcc	15660
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tcgcggtgat	tgtcgatgga	15720
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15780
tcaggaccgc	tgccggagcg	caacccacto	: actacagcag	agccatgtag	acaacatccc	15840
ctccccttt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	15900
gccctagcgt	ccaagcctca	cggccgcgct	cggcctctct	ggcggcctto	: tggcgctctt	15960
ccgcttcctc	gctcactgac	: tcgctgcgct	cggtcgttcg	getgeggega	a geggtateag	16020
ctcactcaaa	. ggcggtaata	ı cggttatcca	a cagaatcago	ggataacgca	a ggaaagaaca	16080
tgtgagcaaa	aggccagcaa	aaggccagg	a accgtaaaaa	ggccgcgttg	g ctggcgtttt	16140
tccataggct	: ccgccccct	gacgagcat	c acaaaaatc	g acgctcaag	t cagaggtggc	16200

gaaacccgac	aggactataa	agataccagg	cgtttccccc	tiggaagetee	ctcgtgcgct	16260
ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	16320
tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16380
ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16440
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16500
tecttettea	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16560
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16620
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16680
attgaggaaa	aggeggegge	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	16740
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	16800
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16860
acggcgcggt	tcggtgatgc	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	16920
gacgagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgactttt	16980
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17040
caagaagagc	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagʻcaag	gcaagaccga	17100
gcgcctttgc	gacgctca					17118

<210> 49

<220>

<211> 18449

<212> DNA

<213> Artificial

<223> Plasmid

WO 2004/063358 PCT/EP2004/000100 276/358

<220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t <400> 49 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaac agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 atattetteg actetgtatt atagataaga tgatgaggaa ttggaggtag catagettea 480 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc 540 aatattctca agtatctcga gtttgaactt attccctgtg aaccttttat tcaccaatga 600 gcattggaat gaacatgaat Ctgaggactg caatcgccat gaggttttcg aaatacatcc 660 ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720

WO 2004/063358 PCT/EP2004/000100 277/358

tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt		1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgacco	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	g cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaato	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca	a tgccattaac	: ctaggtacag	aagtccaatt	gcttccgato	tggtaaaaga	1620
ttcacgagai	t agtaccttct	ccgaagtagg	, tagagcgagt	acccggcgcg	, taageteeet	1680
aattggccc	a teeggeatet	gtagggcgto	caaatatcgt	geeteteetg	g ctttgcccgg	1740
tgtatgaaa	c cggaaaggc	gctcaggage	tggccagcgg	g cgcagaccgg	g gaacacaagc	1800
tggcagtcg	a cccatccggt	t gctctgcact	cgacctgctg	g aggteeetea	a gtccctggta	1860
ggcagcttt	g ccccgtctg	t ccgcccggts	g tgtcggcggg	g gttgacaag	g tegttgegte	1920
agtccaaca	t ttgttgcca	t attttcctg	c tctccccac	e agetgetet	t ttcttttctc	1980

WO 2004/063358 PCT/EP2004/000100 278/358

tttettttee c	atcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt g	ctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt t	cccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg a	actcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc t	:gatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg (gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	: cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tcccgccgtg	g cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	geeegetgtt	ctgcagccgg	g tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgago	gggttcggc	cattcggaco	gcaaggaatc	2580
ggtcaataca	ctacatggcg	g tgatttcata	tgcgcgatt	g ctgatcccca	a tgtgtatcac	2640
tggcaaactg	tgatggacga	a caccgtcag	t gegteegte	g cgcaggctc	t cgatgagctg	2700
atgctttggg	ccgaggactg	g ccccgaagt	c cggcacctc	g tgcacgcgg	a tttcggctcc	2760
aacaatgtcc	tgacggaca	a tggccgcat	a acageggte	a ttgactgga	g cgaggcgatg	2820
ttcggggatt	cccaatacg	a ggtcgccaa	c atcttcttc	t ggaggccgt	g gttggcttgt	2880
atggagcagc	agacgcgct	a cttcgagcg	g aggcatccg	gg agcttgcag	g atcgccgcgg	2940
ctccgggcgt	atatgctcc	g cattggtct	t gaccaacto	ct atcagagct	t ggttgacggc	3000
aatttcgatg	atgcagctt	g ggcgcaggg	nt cgatgcgad	eg caategted	eg atceggagee	3060
gggactgtcg	ggcgtacac	a aatcgccc	gc agaagcgcg	gg ccgtctgga	ac cgatggctgt	3120
gtagaagtac	: tcgccgata	ag tggaaacc	ga cgccccago	ca ctcgtccg	ag ggcaaaggaa	3180
tagagtagat	gccgaccg	eg ggategat	cc acttaacg	tt actgaaat	ca tcaaacagct	3240

WO 2004/063358 PCT/EP2004/000100 279/358

tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgo	tcctcttctt	tactctgata	gcttgactat	3660
gaaaattccg	g tcaccageno	: ctgggttcgc	: aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	a caggacacac	: attcatcgta	ggtataaacc	togaaatcan	ttcctactaa	3780
gatggtatad	c aatagtaaco	c atgcatggtt	gcctagtgaa	a tgctccgtaa	cacccaatac	3840
gccggccgaa	a acttttta	c aactctccta	a tgagtcgtt	t acccagaatç	g cacaggtaca	3900
cttgtttag	a ggtaatcct	t ctttctage	t agaagtcct	c gtgtactgt	g taagcgccca	3960
ctccacatc	t ccactcgac	c tgcaggcat	g caaagcttg	a gattaaaata	a gataaggaaa	4020
agaaagtga	a aagaaattc	g gaagcatgg	c acattcttc	t ttttataaa	t acatgeetga	4080
ctttcttt	t ccatcgata	t gatatatgc	a tatgataga	t atacaagca	a tettetteaa	4140
ggagtttga	a attttgtco	t ccaggagca	a aaaaaagtt	t ttttttata	c atgtttgtac	4200
acaagaata	g ttaccaatt	t getttggte	:t _. tacgtgctg	gc aagtttata	t cgttttcaat	4260
ttctttgto	t ttacattt	c tttgtcctt	t atctttcct	c atttagtct	t tgggagaatt	4320
aggaaaagg	gg agcggaaa	gg taagaaatg	gc ttgcgtatt	t tactaatto	g gcaaacatcc	4380
aatttggca	aa acagcagc	ct gtgcaacgo	ct ctcgagate	ga cagtatctt	t gattacactc	4440

WO 2004/063358 PCT/EP2004/000100 280/358

280/358	
taaatctcga tgacccgacc aaaaagagcg aacaaagaaa taatcttgtg cattcgaata	4500
tgatggaaga ttttttcccc cttattctaa atgttgacat agcgtgtatg ttatataaac	4560
aaaaagaaat tgtacaaact ttcttttctt ctcttttat tttatctcta tgctgtcgaa	4620
gctgcagtca atcagcgtca aggcccgccg cgttgaacta gcccgcgaca tcacgcggcc	4680
caaagtctgc ctgcatgctc agcggtgctc gttagttcgg ctgcgagtgg cagcaccaca	4740
gacagaggag gcgctgggaa ccgtgcaggc tgccggcgcg ggcgatgagc acagcgccga	4800
tgtagcactc cagcagcttg accgggctat cgcagagcgt cgtgcccggc gcaaacggga	4860
gcagctgtca taccaggctg ccgccattgc agcatcaatt ggcgtgtcag gcattgccat	4920
cttcgccacc tacctgagat ttgccatgca catgaccgtg ggcggcgcag tgccatgggg	4980
tgaagtggct ggcactctcc tcttggtggt tggtggcgcg ctcggcatgg agatgtatgc	5040
ccgctatgca cacaaagcca tctggcatga gtcgcctctg ggctggctgc tgcacaagag	5100
ccaccacaca cctcgcactg gaccctttga agccaacgac ttgtttgcaa tcatcaatgg	5160
actgcccgcc atgctcctgt gtacctttgg cttctggctg cccaacgtcc tgggggcggc	5220
ctgctttgga gcggggctgg gcatcacgct atacggcatg gcatatatgt ttgtacacga	5280
tggcctggtg cacaggcgct ttcccaccgg gcccatcgct ggcctgccct acatgaagcg	5340
cctgacagtg gcccaccagc tacaccacag cggcaagtac ggtggcgcgc cctggggtat	5400
gttcttgggt ccacaggage tgcagcacat tccaggtgcg gcggaggagg tggagcgact	5460
ggtcctggaa ctggactggt ccaagcgggc gattgtgact gatagcgaga ctctgggtcg	5520
atgttatctg cctcaacaat ggcttagaaa agaagaaaca gaacaaatac agcaaggcaa	5580
cgcccgtagc ctaggtgatc aaagactgtt gggcttgtct ctgaagcttg taggaaaggc	5640
agacgctatc atggtgagag ctaagaaggg cattgacaag ttgccggcaa actgtcaagg	5700

WO 2004/063358 PCT/EP2004/000100 281/358

	•		201,000		-	
cggtgtacga	gctgcttgcc	aagtatatgc	tgcaattgga	tctgtactca	agcagcagaa	5760
gacaacatat	cctacaagag	ctcatctaaa	aggaagcgaa	cgtġccaaga	ttgctctgtt	5820
gagtgtatac	aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880 ·
gattaagagt	ttttttgttg	attagtgaat	ttttgttta	tttatgtctg	atagttcaat	5940
aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttetttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	: ttccttttag	atgagetett	gtaggatatg	, ttgtcttctg	g ctgcttgagt	6240
acagatccaa	ı ttgcagcata	tacttggcaa	a gcagetegta	a cacegeette	g acagtttgcc	6300
ggcaacttg	caatgccctt	cttagetete	c accatgataç	g egtetgeett	tcctacaagc	6360
ttcagagaca	a agcccaacag	g tetttgate	a cctaggctad	e gggegttged	e ttgctgtatt	6420
tgttctgtt	t cttctttc	aagccattg	t tgaggcaga	t aacatcgac	c caacatcctc	6480
gagccatac	t acagcataa	a aggatacgt	t ttctttaac	a gaaatttac	c cttttgttat	6540
cagcacata	c aaaaaaaaa	g aaatttaag	a tgagtagga	c ttccattct	c tcaaaaattt	6600
tattcaatc	c ataaatgaa	t tatttttgg	a caaaaaaga	a agattatgc	c tgattttctc	6660
tatttttt	t ttttttaca	a ctccaccaa	t actttctag	c ccagcttgg	c gtaatcatgg	6720
tcatagcto	t ttcctgtgt	g aaattgtta	it ccgctcaca	a ttccacaca	a catacgagcc	6780
ggaagcata	a agtgtaaag	c ctggggtgd	c taatgagtg	ga gctaactca	c attaattgcg	6840
ttgcgctca	ac tgcccgctt	t ccagtcggg	ga aacctgtcg	gt gecagetge	a ttaatgaatc	6900
ggccaacgo	cg cggggagaç	gg cggtttgcg	gt attgggcca	aa agacaaaag	gg gcgacattca	6960

WO 2004/063358 PCT/EP2004/000100 282/358

accgattgag ggagggaagg taaatattga cggaaattat tcattaaagg tgaattatca	7020
ccgtcaccga cttgagccat ttgggaatta gagccagcaa aatcaccagt agcaccatta	7080
ccattagcaa ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta	7140
gcgacagaat caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg	7200
gtcatagccc ccttattagc gtttgccatc ttttcataat caaaatcacc ggaaccagag	7260
ccaccaccgg aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca	7320
ccaccctcag agccgccacc agaaccacca ccagagccgc cgccagcatt gacaggaggc	7380
ccgatctagt aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat	7440
tttgttttct atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct	7500
cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa	7560
ttatatgata atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca	7620
aatgtttgaa cgatcgggga tcatccgggt ctgtggcggg aactccacga aaatatccga	7680
acgcagcaag atatcgcggt gcatctcggt cttgcctggg cagtcgccgc cgacgccgtt	7740
gatgtggacg ccgggcccga tcatattgtc gctcaggatc gtggcgttgt gcttgtcggc	7800
cgttgctgtc gtaatgatat cggcaccttc gaccgcctgt tccgcagaga tcccgtgggc	7860
gaagaactcc agcatgagat ccccgcgctg gaggatcatc cagccggcgt cccggaaaac	7920
gattccgaag cccaaccttt catagaaggc ggcggtggaa tcgaaatctc gtgatggcag	7980 .
gttgggcgtc gcttggtcgg tcatttcgaa ccccagagtc ccgctcagaa gaactcgtca	8040
agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg	8100
aagcggtcag cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg	8160
tcctgatagc ggtccgccac acccagccgg ccacagtcga tgaatccaga aaagcggcca	8220

WO 2004/063358 PCT/EP2004/000100 283/358

ttttccacca	tgatattcgg	caagcaggca	tegecatggg	tcacgacgag	atcatcgccg	8280
tegggeatge	gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	8340
tcgtccagat	catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	8400
cgatgtttcg	cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cageegeege	8460
attgcatcag	ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	8520
tgccccggca	cttcgcccaa	tagcagccag	tcccttcccg	cttcagtgac	aacgtcgagc	8580
acagctgcgc	aaggaacgcc	cgtcgtggcc	agccacgata	. geegegetge	ctcgtcctgc	8640
ågttcattca	ı gggcaccgga	caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	8700
gacagccgga	a acacggcggc	atcagagcag	ccgattgtct	: gttgtgccca	gtcatageeg	8760
aatagcctcl	ccacccaago	ggccggagaa	cctgcgtgca	atccatctts	g ttcaatcatg	8820
cgaaacgato	c cagateeggi	gcagattatt	tggattgaga	a gtgaatatga	a gactctaatt	8880
ggataccga	g gggaattta	t ggaacgtcag	g tggagcatt	t ttgacaaga	a atatttgcta	8940
gctgatagt	g accttaggc	g acttttgaad	c gcgcaataa	t ggtttctga	c gtatgtgctt	9000
agctcatta	a actccagaa	a cccgcggct	g agtggctcc	t tcaacgttg	c ggttctgtca	9060
gttccaaac	g taaaacggc	t tgtcccgcg	t ċatcggcgg	g ggtcataac	g tgactccctt	9120
aattctccg	c tcatgatca	g attgtcgtt	t ecegeette	a gtttaaact	a.tcagtgtttg	9180
acaggatat	a ttggcgggt	a aacctaaga	g aaaagagcg	rt ttattagaa	it aatcggatat	9240
ttaaaaggg	gc gtgaaaagg	t ttatccgtt	c gtccatttg	gt atgtgcatg	gc caaccacagg	9300
gttcccca	ga tetggeged	g gccagcgag	ga cgagcaaga	at tggccgccg	gc ccgaaacgat	9360
ccgacagc	gc gcccagcad	ca ggtgcgcag	gg caaattgca	ac caacgcata	ac agcgccagca	9420
gaatgcca	ta gtgggcgg	tg acgtcgtto	og agtgaacca	ag atcgcgca	gg aggcccggca	9480

WO 2004/063358 PCT/EP2004/000100 284/358

gcaccggcat	aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	9540
tcaggggtat	gttgggtttc	acgtetggee	teeggaceag	cctccgctgg	tccgattgaa	9600
cgcgcggatt	ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	9660
gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	9720
cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg ·	gaacggttgg	gggttcagca.	9780
gccggcgctt	tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	98 4 0
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	: gttgaacagg	g ctccgctctc	: geegetgttg	cgggccgcga	tagacgcctt	10200
cgacgaagco	ggtccggacg	g cagcgttcga	gcagggacto	geggtgattg	g tcgatggatt	10260
ggcgaaaagg	g aggctcgttg	g tcaggaacgt	tgaaggaccg	g agaaagggtg	g acgattgatc	10320
aggaccgct	g ccggagcgca	a acccactcad	c tacagcagag	g ccatgtagad	aacatcccct	10380
cccctttc	c accgcgtcag	g acgcccgtag	g cagecegeta	a cgggctttt!	catgeeetge	10440
cctagcgtc	c aagcetcae	g geegegete	g geetetetgg	g eggeettet	g gegetettee	10500
	c tcactgact	c gctgcgctc	g gtcgttcgg	c tgcggcgag	c ggtatcagct	10560
cactcaaag	g cggtaatac	g gttatccac	a gaatcaggg	g ataacgcag	g aaagaacatg	10620
tgagcaaaa	g gccagcaaa	a ggccaggaa	c cgtaaaaag	g ccgcgttgc	t ggcgtttttc	10680
cataggctc	c gccccctg	a cgagcatca	c aaaaatcga	c gctcaagtc	a gaggtggcga	10740

WO 2004/063358 PCT/EP2004/000100 285/358

aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	10800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	10920
atcctttttc	gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	10980
tatccaacgg	cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gegggtgtte	11040
cttcttcact	gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	11100
ctggccggct	accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	11160
aaccaggaag	ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	11220
tgaggaaaag	geggeggegg	ccggcatgag	cetgteggee	tacctgctgg	cegteggeea	11280
gggctacaaa	atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	11340
tggcgacctg	ggccgcctgg	geggeetget	gaaactctgg	ctcaccgacg	accegegeae	11400
ggcgcggtto	ggtgatgcca	cgatcctcgc	: cctgctggcg	aagatcgaag	agaagcagga	11460
cgagcttgg	aaggtcatga	ı tgggcgtggt	cegeeegage	gcagagccat	gacttttta	11520
gccgctaaaa	a cggccggggg	gtgcgcgtga	A ttgccaagca	a cgtccccatg	g cgctccatca	11580
agaagagcg	a cttcgcggag	g ctggtgaag	t acatcaccga	a cgagcaaggo	: aagaccgagc	11640
gcctttgcg	a cgctcaccg	g gctggttgc	c ctcgccgctg	g ggctggcggd	cgtctatggc	11700
cctgcaaac	g cgccagaaa	c gccgtcgaa	g ccgtgtgcga	a gacaccgcgg	g ccgccggcgt	11760
tgtggatac	c tegeggaaa	a cttggccct	c actgacaga	t gaggggcgg	a cgttgacact	11820
tgaggggcc	g actcacccg	g cgcggcgtt	g acagatgag	g ggcaggctc	g atttcggccg	11880
gcgacgtgg	a gctggccag	c ctcgcaaat	c ggcgaaaac	g cctgatttt	a cgcgagtttc	11940

WO 2004/063358 PCT/EP2004/000100 286/358

	tataasassa	actagagata	agtgccctgc	ggtattgaca	cttgaggggc	12000
ccacagatga	tgtggacaag	CCCggggaca	agegeeess	5500005000	00000000	
gcgactactg	acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	12060
tgaggggcgc	acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	12120
aagggtttcc	gecegtttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	12180
atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	12240
aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	teccatecee	12300
ccaggggctg	egeceetegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	geegggateg	gggcagtaac	: gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	: gacgtgccgc	aggtgctggc	atcgacatto	agcgaccagg	tgccgggcag	12480
tgagggcgg	ggcctgggtg	geggeetge	cttcacttcg	g gccgtcgggg	r cattcacgga	12540
cttcatggc	g gggccggcaa	a tttttacct	t gggcattct	t ggcatagtgg	g tegegggtge	12600
cgtgctcgt	g ttcgggggt	g cgataaacc	c agcgaacca	t ttgaggtgat	aggtaagatt	12660
ataccgagg	t atgaaaacg	a gaattggac	c tttacagaa	t tactctatga	a agcgccatat	12720
ttaaaaagc	t accaagacg	a agaggatga	a gaggatgag	g aggcagatt	g ccttgaatat	12780
attgacaat	a ctgataaga	t aatatatct	t ttatataga	a gatategee	g tatgtaagga	12840
tttcagggg	g caaggcata	g gcagcgcgc	t tatcaatat	a tctatagaa	t gggcaaagca	12900
taaaaactt	g catggacta	a tgcttgaaa	ac ccaggacaa	it aaccttata	g cttgtaaatt	12960
ctatcataa	at tgggtaatg	ra ctccaactt	a ttgatagto	gt tttatgttc	a gataatgccc	13020
gatgactti	tg tcatgcago	t ccaccgat	t tgagaacga	ac agcgactto	c gtcccagccg	13080
tgccaggt	gc tgcctcaga	at tcaggtta	tg ccgctcaa	tt egetgegta	at atcgcttgct	: 13140
gattacgt	gc agctttcc	ct tcaggcgg	ga ttcataca	gc ggccagcca	at ccgtcatcca	a 13200

WO 2004/063358 PCT/EP2004/000100 287/358

tatcaccacg	tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320
gcgctggcgc	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	13380
gacgtcactg	cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	tttaagtga	13440
cgtaaaatcg	tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	13500
ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	eggeteegte	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	a aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	: agcttcttgg	g ggtatettta	aatactgtag	g aaaagaggaa	13920
ggaaataata	a aatggctaaa	a atgagaata	t caccggaatt	gaaaaaact	g atcgaaaaat	13980
accgctgcg	t aaaagatac	g gaaggaatg	t ctcctgctaa	a ggtatataa	g ctggtgggag	14040
aaaatgaaa	a cctatattt	a aaaatgacg	g acagccggt	a taaagggac	e acctatgatg	14100
tggaacggg	a aaaggacat	g atgctatgg	c tggaaggaa	a gctgcctgt	t ccaaaggtcc	14160
tgcactttg	a acggcatga	t ggctggagc	a atctgctca	t gagtgaggc	c gatggcgtcc	14220
tttgctcgg	a agagtatga	a gatgaacaa	a gccctgaaa	a gattatcga	g ctgtatgcgg	14280
agtgcatca	g gctctttca	c tccatcgac	a tatcggatt	g tecetatae	g aatagcttag	14340
acagccgct	t agccgaatt	g gattactta	ıc tgaataacg	a tetggeega	t gtggattgcg	14400
aaaactggg	ya agaagacac	t ccatttaaa	atccgcgcg	a gctgtatga	t tttttaaaga	14460

WO 2004/063358 PCT/EP2004/000100 288/358

		_				
cggaaaagcc	cgaagaggaa	cttgtctttt	cccacggcga	cctgggagac	agcaacatct	14520
ttgtgaaaga	tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	14580
agtggtatga	cattgccttc	tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	14640
atgtcgagct	attttttgac	ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	14700
atattttact	ggatgaattg	ttttagtacc	tagatgtggc	gcaacgatgc	cggcgacaag	14760
caggagcgca	ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggc	14820
aagtatttgg	gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	14880
gagaaggacg	gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	14940
gacaccaagg	caccaggegg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	15000
ggggcaatco	cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	15060
gaactgatcg	acgeggggtt	ttccgccgag	gatgccgaaa	. ccatcgcaag	ccgcaccgtc	15120
atgcgtgcgc	: cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	15180
aagatcgago	gegacagegt	gcaactggct	cecetgeed	: tgcccgcgcc	: atcggccgcc	15240
gtggagcgtt	cgcgtcgtct	cgaacaggag	gcggcaggtt	: tggcgaagto	gatgaccatc	15300
gacacgcgag	gaactatgac	: gaccaagaag	g cgaaaaaccg	g ceggegagga	a cctggcaaaa	15360
caggtcagc	g aggccaagca	ı ggccgcgttç	g ctgaaacaca	a cgaagcagca	a gatcaaggaa	15420
atgcagctt	t ccttgttcga	a tattgcgccg	g tggccggaca	a cgatgcgage	c gatgccaaac	15480
gacacggcc	c gctctgccct	gttcaccac	g cgcaacaaga	a aaatcccgc	g egaggegetg	15540
caaaacaag	g tcattttcca	a cgtcaacaa	g gacgtgaag	a tcacctaca	c cggcgtcgag	15600
ctgcgggcc	g acgatgacga	a actggtgtg	g cagcaggtg	t tggagtacg	c gaagegeace	15660
cctatcggc	g agccgatca	c cttcacgtt	c tacgagett	t gccaggacc	t gggctggtcg	15720

WO 2004/063358 PCT/EP2004/000100 289/358

atcaatggcc	ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	15780
atgggcttca	cgtccgaccg	cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	15840
cgcgtcctgg	accgtggcaa	gaaaacgtcc	cgttgccagg	tcctgatcga	cgaggaaatc	15900
gtegtgetgt	ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	15960
tegeegaegg	g cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	16020
aagctggaa	a ccttccgcct	catgtgcgga	teggatteca	cccgcgtgaa	gaagtggcgc	16080
gagcaggtc	g gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	16140
gtcaatgat	g acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	tccggctggg	16200
ggttcagca	g ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	16260
tgetteget	c agtatcgctc	gggacgcacg	gegegeteta	cgaactgccg	ataaacagag	16320
gattaaaat	t gacaattgtg	g attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	16380
aggatttco	g cgagatccga	ttgtcggccc	: tgaagaaago	: tccagagatg	ttegggteeg	16440
tttacgago	a cgaggagaaa	a aagcccatgo	g aggcgttcgc	: tgaacggttg	g cgagatgccg	16500
tggcattcg	g cgcctacato	gacggcgaga	a tcattgggct	gteggtette	: aaacaggagg	16560
acggcccca	aa ggacgctca	c aaggegeate	c tgtccggcg	t tttcgtggag	g cccgaacagc	16620
gaggccga	gg ggtcgccgg	t atgctgctg	e gggegttge	c ggcgggttta	a ttgctcgtga	16680
tgatcgtc	og acagattcc	a acgggaatc	t ggtggatgc	g catcttcat	c ctcggcgcac	16740
· ttaatatt	tc gctattctg	g agcttgttg	t ttatttcgg	t ctaccgcct	g ccgggcgggg	16800
tegeggeg	ac ggtaggcgc	t gtgcagccg	c tgatggtcg	t gttcatctc	t geegetetge	16860
taggtago	cc gatacgatt	g atggcggtc	c tgggggcta	t ttgcggaac	t gcġggcgtgġ	16920
cgctgttg	gt gttgacacc	a aacgcagcg	c tagatectg	t cggcgtcgc	a gcgggcctgg	16980

WO 2004/063358 PCT/EP2004/000100 290/358

cgggggcggt	ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	17040
ctctgctcac	ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	17100
ctttagtgtt	tgatccgcca	atcccgatgc	· ctacaggaac	caatgttctc	ggcctggcgt	17160
ggctcggcct	gatcggagcg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	17220
tcgaacctac	agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	17280
cggggatgca	tcaggccgac	agtcggaact	tegggteece	gacctgtacc	attcggtgag	17340
caatggatag	gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg	gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	17460
gcctgtcacg	gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	17520
agatgatatt	tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
ccgcgagatc	atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga	gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgc	ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	17760
ctggctggtg	gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgcgga	cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	17880
cagetgatto	g cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	17940
ttgccccago	aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	18000
aaatcaaaag	g aatagcccga	gatagggttg	agtgttgttc	: cagtttggaa	caagagtcca	18060
ctattaaaga	a acgtggacto	: caacgtcaaa	gggcgaaaaa	ccgtctatca	ı gggcgatggc	18120
ccactacgt	g aaccatcacc	: caaatcaagt	tttttggggt	: cgaggtgccg	, taaagcacta	18180
aatcggaac	c ctaaagggag	g cccccgattt	agagettgad	ggggaaagco	ggcgaacgtg	18240

ggaaggggaa teggtgeggg cetetteget attacgccag etggegaaag ggggatgtge 18360
tgcaaggega ttaagttggg taacgccagg gttttcccag teacgaegtt gtaaaacgae 18420
ggccagtgaa ttegageteg gtacceggg : 18449

<210> 50

<211> 18617

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 50

cegggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120

aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180

ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc

240

WO 2004/063358 PCT/EP2004/000100 292/358

cagcctcgca	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	atgatgtgga	300
caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	actgacagat	360
gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
ttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	: tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaattttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgeegtget	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	g tgataggtaa	gattatacco	g aggtatgaaa	1020
acgagaatto	g gacctttaca	ı gaattactct	atgaagcgcc	c atatttaaaa	a agctaccaag	1080
acgaagagga	a tgaagaggat	gaggaggcag	g attgccttga	a atatattga	c aatactgata	1140
agataatat	a tcttttata	agaagatato	c gccgtatgta	a aggatttca	g ggggcaaggc	1200
ataggcagc	g cgcttatca	a tatatctata	a gaatgggcaa	a agcataaaa	a cttgcatgga	1260
ctaatgctt	g aaacccagg	a caataacct	t atagcttgt	a aattctatc	a taattgggta	1320
atgactcca	a cttattgat	a gtgttttat	g ttcagataa	t gcccgatga	c tttgtcatgc	1380
agctccacc	g attttgaga	a cgacagcga	c ttccgtccc	a gccgtgcca	g gtgctgcctc	1440
agattcagg	t tatgccgct	c aattcgctg	c gtatatcgc	t tgctgatta	c gtgcagcttt	1500

WO 2004/063358 PCT/EP2004/000100 293/358

cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	: cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	ı tttaaggttt	: tagaatgcaa	ı ggaacagtga	attggagttc	gtcttgttat	2220
aattagctto	: ttggggtatc	: tttaaatact	: gtagaaaaga	. ggaaggaaat	: aataaatggc	2280
taaaatgaga	a atatcaccgg	g aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	a atgtctcctg	g ctaaggtata	a taagctggtg	ggagaaaatg	g aaaacctata	2400
tttaaaaat	g acggacagco	ggtataaagg	g gaccacctat	gatgtggaad	c gggaaaagga	2460
catgatgcta	a tggctggaag	g gaaagetge	c tgttccaaag	g gtcctgcact	t ttgaacggca	2520
tgatggctg	g agcaatctg	c tcatgagtg	a ggccgatggo	gtcctttgc	t cggaagagta	2580
tgaagatga	a caaagccct	g aaaagatta	t cgagctgtai	geggagtge	a tcaggctctt	2640
tcactccat	c gacatatcg	g attgtccct	a tacgaatago	c ttagacago	c gcttagccga	2700
attggatta	c ttactgaat	a acgatctgg	c cgatgtgga	t tgcgaaaac	t gggaagaaga	2760

WO 2004/063358 PCT/EP2004/000100 294/358

	•					
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tetteegeat	. caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	: attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	g gaccgactto	: attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	a tcaggaataa	a gggcacattg	cccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaa	t gaatcggac	g tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccg	c cgaggatgc	gaaaccatco	g caageegeac	: cgtcatgcgt	gegeeeegeg	3480
aaaccttcc	a gtccgtcgg	c togatggtod	c agcaagctac	ggccaagato	gagegegaca	3540
gcgtgcaac	t ggctcccc	t gecetgeeeg	g cgccatcggo	cgccgtggag	g cgttcgcgtc	3600
gtctcgaac	a ggaggcggc	a ggtttggcga	a agtcgatgad	c categacaeg	g cgaggaacta	. 3660
tgacgacca	a gaagcgaaa	a accgccggc	g aggacctgg	c aaaacaggto	e agegaggeca	3720
agcaggccg	gc gttgctgaa	a cacacgaag	c agcagatca	a ggaaatgcag	g ctttccttgt	3780
tcgatattç	ge geegtggee	g gacacgatg	c gagegatge	c aaacgacac	g geeegetetg	3840
ccctgttca	ac cacgcgcaa	ıc aagaaaatc	c cgcgcgagg	c gctgcaaaa	c aaggtcattt	3900
tccacgtc	aa caaggacgt	g aagatcacc	t acaccggcg	t cgagctgcg	g gccgacgatg	3960

WO 2004/063358 PCT/EP2004/000100 295/358

		-	,,,,,,,,,		•	
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	- atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	ageggeetgg	tggaacacgo	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	: tgggggttca	gcagccagcg	4560
ctttactgg	atttcaggaa	caagcgggc	ctgctcgacg	g cacttgctto	gctcagtatc	4620
gctcgggac	g cacggcgcg	: tctacgaaci	gccgataaad	e agaggattaa	a aattgacaat	4680
tgtgattaa	g gctcagatto	gacggcttg	g ageggeegad	gtgcaggati	t teegegagat	4740
ccgattgtc	g gccctgaag	a aagctccag	a gatgttcgg	g teegtttae	g agcacgagga	4800
gaaaaagcc	c atggaggcg	t tcgctgaac	g gttgcgaga	t geegtggea	t teggegeeta	4860
catcgacgg	c gagatcatt	g ggctgtcgg	t cttcaaaca	g gaggacggc	c ccaaggacgc	4920
tcacaaggo	g catctgtcc	g gcgttttcg	t ggagecega	a cagcgaggc	c gaggggtcgc	4980
cggtatgct	g ctgcgggcg	t tgccggcgg	g tttattgct	c gtgatgatc	g tccgacagat	5040
tccaacggg	a atctggtgg	a tgcgcatct	t catcctcgg	c gcacttaat	a tttcgctatt	5100
ctggagctt	g ttgtttatt	t cggtctacc	g cctgccggg	je ggggtegeg	g cgacggtagg	5160
cgctgtgca	ag ccgctgatg	g tegtgtte	at ctctgccgc	t ctgctaggt	a gcccgatacg	5220

WO 2004/063358 PCT/EP2004/000100 296/358

		•				
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgto	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	a ataagaaggo	: tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagca	a cgctctgtca	ı tegttacaat	: caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaac	c cggcagctta	gttgccgttd	c ttccgaatag	g categgtaac	: atgagcaaag	6000
tetgeegee	t tacaacggct	ctcccgctga	a egeegteeeg	g gactgatggg	g ctgcctgtat	6060
cgagtggtg	a ttttgtgcc	g agctgcçgg	t cggggagctg	g ttggctggct	ggtggcagga	6120
tatattgtg	g tgtaaacaa	a ttgacgctt	a gacaactta	a taacacatto	g cggacgtttt	6180
taatgtact	g gggtggttt	t tcttttcac	c agtgagacg	g gcaacagcto	g attgcccttc	6240
accgcctgg	c cctgagaga	g ttgcagcaa	g cggtccacg	c tggtttgcc	c cagcaggcga	6300
aaatcctgt	t tgatggtgg	t tccgaaatc	g gcaaaatcc	c ttataaatc	a aaagaatagc	6360
ccgagatag	gg gttgagtgt	t gttccagtt	t ggaacaaga	g tecaetatt	a aagaacgtgg	6420
actccaac	yt caaagggcg	ra aaaaccgto	t atcagggcg	a tggcccact	a cgtgaaccat	6480

WO 2004/063358 PCT/EP2004/000100 297/358

cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag 6	5540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga 6	5600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg 6	5660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt 6	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag 6	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840
cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca	6900
gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa	6960
gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt '	7020
aagatccacg tcttcgggaa gccagcgact ggtgacctcc agcgtccctt taaggctgcc	7080
aacagettte teagecaggg ceageceaag acegacaagg eeteceteea gaacgeegag	7140
aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag	7200
cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg	7260
tagcatagct tcatttggat ttgctttcca ggctgagact ctagcttgga gcatagaggg	7320
teetttgget tteaatatte teaagtatet egagtttgaa ettatteeet gtgaacettt	7380
tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt	7440
tcgaaataca tccggatgtc gaaggcttgg ggcacctgcg ttggttgaat ttagaacgtg	7500
gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc	7560
tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga	7620
tototagtta gotoaccaca aaagtoagao ggogtaacca aaagtoacao aacacaagot	7680
gtaaggattt eggeaegget aeggaagaeg gagaageeae etteagtgga etegagtaee	7740

WO 2004/063358 PCT/EP2004/000100 298/358

atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagetetgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	: cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagcto	c cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgc	c cggtgtatga	aaccggaaag	geegeteagg	agctggccag	gegegeagae	8580
cgggaacaca	a agctggcagt	: cgacccatco	ggtgctctgc	actcgacctg	g ctgaggtccc	8640
tcagtccct	g gtaggcagct	: ttgccccgtc	tgtccgcccg	gtgtgtcggd	ggggttgaca	8700
aggtcgttg	c gtcagtccaa	a catttgttgc	catattttcc	tgctctccc	accagctgct	8760
cttttcttt	t ctctttctt	tcccatcttc	agtatattca	tcttcccato	caagaacctt	8820
tatttcccc	t aagtaagtad	: tttgctacat	ccatacteca	a tectteccal	t cccttattcc	8880
tttgaacct	t tcagttcga	g ctttcccact	tcatcgcago	ttgactaaca	a gctacccgc	. 8940
ttgagcaga	c atcaccatg	c ctgaactcad	c cgcgacgtc	t gtcgagaag	t ttctgatcga	9000

WO 2004/063358 PCT/EP2004/000100 299/358

aaagttcgac	agegteteeg	acctgatgca	gctctcggag	ggcgaagaat	ctegtgettt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agegggtteg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	. gggccgagga	ctgccccgaa	gteeggeaee	tcgtgcacgc	9540
ggatttcggc	: tccaacaatg	j teetgaegga	a caatggccgc	: ataacagcgg	tcattgactg	9600
gagcgaggcg	g atgttcgggg	g attcccaata	a cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggcl	tgtatggag	c agcagacgc	g ctacttcgag	g cggaggcato	c cggagcttgc	9720
aggatcgcc	g cggctccgg	g cgtatatgc	t ccgcattggt	t cttgaccaad	c tctatcagag	9780
cttggttga	c ggcaatttc	g atgatgcag	c ttgggcgcag	g ggtcgatgc	g acgcaatcgt	9840
ccgatccgg	a gccgggact	g tegggegta	c acaaatcgc	c cgcagaagc	g cggccgtctg	9900
gaccgatgg	c tgtgtagaa	g tactcgccg	a tagtggaaa	c cgacgcccc	a gcactcgtcc	9960
gagggcaaa	g gaatagagt	a gatgccgac	c gcgggatcg	a tccacttaa	c gttactgaaa	10020
tcatcaaac	a gcttgacga	a tctggatat	a agatcgttg	g tgtcgatgt	c agctccggag	10080
ttgagacaa	a tggtgttca	ıg gatctcgat	a agatacgtt	c atttgtcca	a gcagcaaaga	10140
gtgccttct	a gtgatttaa	it agctccato	gt caacaagaa	it aaaacgcgt	t ttcgggttta	10200
cctcttcca	ag atacagcto	ca totgoaato	gc attaatgca	at tgactgcaa	ac ctagtaacgc	10260

WO 2004/063358 PCT/EP2004/000100 300/358

cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaago	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	a tacgccggcc	: gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacagg	t acacttgttt	agaggtaatc	: cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcg	c ccactccaca	a tctccactcg	g acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagg	a aaagaaagt	g aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgco	t gactttctt	t ttccatcga	t atgatatatg	g catatgatag	g atatacaagc	10920
aatcttctt	c aaggagttt	g aaattttgt	c ctccaggago	c aaaaaaaagt	tttttttat	10980
acatgtttg	t acacaagaa	t agttaccaa	t ttgctttgg	t cttacgtgc	t gcaagtttat	11040
atcgtttt	ca atttctttg	t ctttacatt	t tetttgtee	t ttatctttc	c tcatttagtc	11100
tttgggaga	aa ttaggaaaa	ag ggagcggaa	a ggtaagaaa	t gcttgcgta	t tttactaatt	11160
cggcaaac	at ccaatttgg	gc aaacagcag	c ctgtgcaac	g ctctcgaga	t gacagtatct	11220
ttgattac	ac tctaaatc	tc gatgacccg	ja ccaaaaaga	g cgaacaaag	a aataatcttg	11280
tgcattcg	aa tatgatgg	aa gatttttc	cc cccttattc	t aaatgttga	uc atagcgtgta	a 11340
tgttatat	aa acaaaaag	aa attgtacaa	aa ctttcttt	c ttetettt	t attttatct	11400
					ac tagcccgcg	

WO 2004/063358 PCT/EP2004/000100 301/358

		•	01/000			
catcacgcgg	cccaaagtct	gcctgcatgc	tcagcggtgc	tcgttagttc	ggctgcgagt	11520
ggcagcacca	cagacagagg	aggcgctggg	aaccgtgcag	gctgccggcg	cgggcgatga	11580
gcacagegee	gatgtagcac	tccagcagct	tgaccgggct	atcgcagagc	gtcgtgcccg	11640
gcgcaaacgg	gagcagctgt	cataccaggc	tgccgccatt	gcagcatcaa	ttggcgtgtc	11700
aggcattgcc	atcttcgcca	cctacctgag	atttgccatg	cacatgaccg	tgggcggcgc	11760
agtgccatgg	ggtgaagtgg	ctggcactct	cctcttggtg	gttggtggcg	cgctcggcat	11820
ggagatgtat	gcccgctatg	cacacaaagc	catctggcat	gagtcgcctc	tgggctggct	11880
gctgcacaag	agccaccaca	cacctcgcac	tggacccttt	gaagccaacg	acttgtttgc	11940
aatcatcaat	ggactgcccg	ccatgctcct	gtgtaccttt	ggcttctggc	tgcccaacgt	12000
cctgggggcg	gcctgctttg	gagegggget	gggcatcacg	ctatacggca	tggcatatat	12060
gtttgtacac	gatggcctgg	tgcacaggcg	ctttcccacc	gggcccatcg	ctggcctgcc	12120
ctacatgaag	g cgcctgacag	tggcccacca	gctacaccac	: agcggcaagt	acggtggcgc	12180
gccctggggt	: atgttcttgg	gtccacagga	a gctgcagcad	e attccaggto	g cggcggagga	12240
ggtggagcga	a ctggtcctgg	g aactggactg	g gtccaagcgg	g tagaagctt	g agattaaaat	12300
agataagga	a aagaaagtga	a aaagaaatto	ggaagcatg	g cacattetto	tttttataaa	12360
tacatgcct	g actttcttt	t tecategat	a tgatatatg	c _. atatgatag	a tatacaagca	12420
atcttcttc	a aggagtttg	a aattttgtc	c tccaggagc	a aaaaaaagt	t tttttttata	12480
catgtttgt	a cacaagaat	a gttaccaat	t tgctttggt	c ttacgtgct	g caagtttata	12540
tcgttttca	a tttctttgt	c tttacattt	t ctttgtcct	t tatctttcc	t catttagtct	12600
ttgggagaa	t taggaaaag	g gagcggaaa	g gtaagaaa't	g cttgcgtat	t ttactaattc	12660
ggcaaacat	c caatttggc	a aacagcago	c tgtgcaacg	oc tctcgagat	g acagtatctt	12720

WO 2004/063358 PCT/EP2004/000100 302/358

tgattacact	ctaaatctcg	atgacccgac	caaaaagagc	gaacaaagaa	ataatcttgt	12780
gcattcgaat	atgatggaag	atttttccc	ccttattcta	aatgttgaca	tagcgtgtat	12840
gttatataaa	caaaaagaaa	ttgtacaaac	tttctttct	tctcttttta	ttttatctct	12900
atgatccagt	tagaacaacc	actcagtcat	caagcaaaac	tgactccagt	actgagaagt	12960
aaatctcagt	ttaaggggct	tttcattgct	attgtcattg	ttagcgcatg	ggtcattagc	13020
ctgagtttat	tactttccct	tgacatetca	aagctaaaat	tttggatgtt	attgcctgtt	13080
atactatggc	aaacattttt	atatacggga	ttatttatta	catctcatga	tgccatgcat	13140
ggcgtagtat	ttccccaaaa	caccaagatt	aatcatttga	ttggaacatt	gaccctatcc	13200
ctttatggtc	tttaccata	tcaaaaacta	ttgaaaaaac	attggttaca	ccaccacaat	13260
ccagcaagct	caatagaccc	ggattttcac	aatggtaaac	accaaagttt	ctttgcttgg	13320
tattttcatt	: ttatgaaagg	ttactggagt	. tgggggcaaa	taattgcgtt	gactattatt	13380
tataactttg	g ctaaatacat	actccatato	: ccaagtgata	atctaactta	cttttgggtg	13440
ctaccctcg	ttttaagtto	: attacaatta	a ttctattttg	g gtacttttt	accccatagt	13500
gaaccaatag	g ggggttatgt	tcagectcat	tgtgcccaaa	a caattageeg	g tcctatttgg	13560
tggtcattta	a tcacgtgcta	a tcattttgg	c taccacgagg	g aacatcacga	a atatecteat	13620
atttcttgg	t ggcagttaco	c agaaattta	c aaagcaaaa	t agaagettgg	g cgtaatcatg	13680
gtcatagct	g tttcctgtg	t gaaattgtt	a teegeteac	a attccacaca	a acatacgagc	13740
cggaagcat	a aagtgtaaa	g cctggggtg	c ctaatgagt	g agctaactc	a cattaattgc	13800
gttgcgctc	a ctgcccgct	t tccagtcgg	g aaacctgtc	g tgccagctg	c attaatgaat	13860
cggccaacg	c gcggggaga	g geggtttge	g tattgggcc	a aagacaaaa	g ggcgacattc	13920
aaccgattg	a gggagggaa	g gtaaatatt	g acggaaatt	a ttcattaaa	g gtgaattatc	13980

WO 2004/063358 PCT/EP2004/000100 303/358

accgtcaccg	acttgagcca	tttgggaatt	agagccagca	aaatcaccag	tagcaccatt	14040
accattagca	aggccggaaa	cgtcaccaat	gaaaccatcg	atagcagcac	cgtaatcagt	14100
agcgacagaa	tcaagtttgc	ctttagcgtc	agactgtagc	gcgttttcat	cggcattttc	14160
ggtcatagcc	cccttattag	cgtttgccat	cttttcataa	tcaaaatcac	cggaaccaga	14220
gccaccaccg	gaaccgcctc	cctcagagcc	gccaccctca	gaaccgccac	cctcagagcc	14280
accaccctca	gagccgccac	cagaaccacc	accagagccg	ccgccagcat	tgacaggagg	14340
cccgatctag	taacatagat	gacaccgcgc	gcgataattt	atcctagttt	gcgcgctata	14400
ttttgtttt	tatcgcgtat	taaatgtata	attgcgggac	tctaatcata	aaaacccatc	14460
tcataaataa	cgtcatgcat	tacatgttaa	ttattacatg	cttaacgtaa	ttcaacagaa	14520
attatatgat	: aatcatcgca	agaccggcaa	caggattcaa	tcttaagaaa	ctttattgcc	14580
aaatgtttga	acgatcgggg	atcatccggg	tctgtggcgg	gaactccacg	aaaatatccg	14640
aacgcagca	a gatatcgcgg	tgcatctcgg	tettgeetgg	gcagtcgccg	ccgacgccgt	14700
tgatgtgga	c gccgggcccg	atcatattgt	cgctcaggat	cgtggcgttg	tgcttgtcgg	14760
ccgttgctg	t cgtaatgata	teggeacett	cgaccgcctg	ttccgcagag	atcccgtggg	14820
cgaagaact	c cagcatgaga	tccccgcgct	ggaggatcat	ccagccggcg	tcccggaaaa	14880
cgattccga	a gcccaacctt	tcatagaagg	r cggcggtgga	atcgaaatct	: cgtgatggca	14940
ggttgggcg	t cgcttggtcg	g gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	15000
aagaaggcg	a tagaaggcga	a tgcgctgcga	atcgggagcg	gegatacegt	: aaagcacgag	15060
gaagcggto	a gcccattcg	c cgccaagcto	ttcagcaata	tcacgggtag	g cca acg ctat	15120
gtcctgata	g cggtccgcc	a cacccagcc	g gccacagtcg	g atgaatccag	g aaaagcggcc	15180
attttccac	c atgatattc	g gcaagcagg	c atcgccatgg	g gtcacgacga	a gatcatcgcc	15240

WO 2004/063358 PCT/EP2004/000100 304/358

gtcgggcatg cgcgccttga gcctggcgaa cagttcggct ggcgcgagcc cctgatgctc 1	5300
ttcgtccaga tcatcctgat cgacaagacc ggcttccatc cgagtacgtg ctcgctcgat 1	.5360
gcgatgtttc gcttggtggt cgaatgggca ggtagccgga tcaagcgtat gcagccgccg 1	.5420
cattgcatca gccatgatgg atactttctc ggcaggagca aggtgagatg acaggagatc 1	15480
ctgcccggc acttcgccca atagcagcca gtcccttccc gcttcagtga caacgtcgag 1	L5540
cacagetgeg caaggaaege cegtegtgge cagecaegat ageegegetg cetegteetg 1	L5600
cagttcattc agggcaccgg acaggtcggt cttgacaaaa agaaccgggc gcccctgcgc 1	15660
tgacageegg aacaeggegg cateagagea geegattgte tgttgtgeee agteatagee 1	15720
gaatageete tecaceeaag eggeeggaga acetgegtge aateeatett gtteaateat 1	15780
gcgaaacgat ccagatccgg tgcagattat ttggattgag agtgaatatg agactctaat	15840
tggataccga ggggaattta tggaacgtca gtggagcatt tttgacaaga aatatttgct	15900
agetgatagt gacettagge gacttttgaa egegeaataa tggtttetga egtatgtget	15960
tageteatta aacteeagaa accegegget gagtggetee tteaacgttg eggttetgte	16020
agttccaaac gtaaaacggc ttgtcccgcg tcatcggcgg gggtcataac gtgactccct	16080
taatteteeg eteatgatea gattgtegtt teeegeette agtttaaaet ateagtgttt	16140
gacaggatat attggcgggt aaacctaaga gaaaagagcg tttattagaa taatcggata	16200
tttaaaaggg cgtgaaaagg tttatccgtt cgtccatttg tatgtgcatg ccaaccacag	16260
ggttccccag atctggcgcc ggccagcgag acgagcaaga ttggccgccg cccgaaacga	16320
tecgacageg egeceageae aggtgegeag geaaattgea eeaaegeata eagegeeage	16380
agaatgccat agtgggcggt gacgtcgttc gagtgaacca gatcgcgcag gaggcccggc	16440
agcaccggca taatcaggcc gatgccgaca gcgtcgagcg cgacagtgct cagaattacg	16500

WO 2004/063358 PCT/EP2004/000100 305/358

atcaggggta tgttgggttt cacgtctggc ctccggacca gcctccgctg gtccgattga 16560 acgcgcggat tctttatcac tgataagttg gtggacatat tatgtttatc agtgataaag 16620 tgtcaagcat gacaaagttg cagccgaata cagtgatccg tgccgccctg gacctgttga 16680 acgaggtcgg cgtagacggt ctgacgacac gcaaactggc ggaacggttg ggggttcagc 16740 agccggcgct ttactggcac ttcaggaaca agcgggcgct gctcgacgca ctggccgaag ccatgctggc ggagaatcat acgcattcgg tgccgagagc cgacgacgac tggcgctcat ttctgatcgg gaatgcccgc agcttcaggc aggcgctgct cgcctaccgc gatggcgcgc 16920 gcatccatgc cggcacgcga ccgggcgcac cgcagatgga aacggccgac gcgcagcttc 16980 getteetetg egaggegggt tttteggeeg gggaegeegt caatgegetg atgacaatea 17040 gctacttcac tgttggggcc gtgcttgagg agcaggccgg cgacagcgat gccggcgagc 17100 gcggcggcac cgttgaacag gctccgctct cgccgctgtt gcgggccgcg atagacgcct 17160 tcgacgaagc cggtccggac gcagcgttcg agcagggact cgcggtgatt gtcgatggat tggcgaaaag gaggctcgtt gtcaggaacg ttgaaggacc gagaaagggt gacgattgat 17280 caggaccgct gccggagcgc aacccactca ctacagcaga gccatgtaga caacatcccc 17340 tececettte caeegegtea gaegeeegta geageeeget aegggetttt teatgeeetg ccctagcgtc caagcctcac ggccgcgctc ggcctctctg gcggccttct ggcgctcttc 17460 cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 17520 tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 17580 gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 17640 ccataggctc cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg 17700 aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 17760

WO 2004/063358 PCT/EP2004/000100 306/358

tectgttecg	accetgeege	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	17820
ggcgcttttc	cgctgcataa	ccctgcttcg	gggtcattat	agcgattttt	teggtatate	17880
catccttttt	cgcacgatat	acaggatttt	gccaaagggt	tcgtgtagac	tttccttggt	17940
gtatccaacg	gcgtcagccg	ggcaggatag	gtgaagtagg	cccacccgcg	agcgggtgtt	18000
ccttcttcac	tgtcccttat	tegcacetgg	cggtgctcaa	cgggaatcct	gctctgcgag	18060
gctggccggc	taccgccggc	gtaacagatg	agggcaagcg	gatggctgat	gaaaccaagc	18120
caaccaggaa	gggcagccca	cctatcaagg	tgtactgcct	tccagacgaa	cgaagagcga	18180
ttgaggaaaa	ggcggcggcg	gccggcatga	gcctgtcggc	ctacctgctg	gccgtcggcc	18240
agggctacaa	aatcacgggc	gtcgtggact	atgagcacgt	ccgcgagctg	gcccgcatca	18300
atggcgacct	gggccgcctg	ggcggcctgc	tgaaactctg	gctcaccgac	gacccgcgca	18360
cggcgcggtt	cggtgatgcc	acgatcctcg	ccctgctggc	gaagatcgaa	gagaagcagg	18420
acgagettgg	g caaggtcatg	atgggcgtgg	ı teegeeegag	ggcagagcca	tgacttttt	18480
agccgctaaa	a acggccgggg	ggtgcgcgtg	g attgccaago	: acgtccccat	gegetecate	18540
aagaagagc	g acttcgcgga	ı gctggtgaaç	g tacatcacco	g acgagcaagg	g caagaccgag	18600
cgcctttgc	g acgctca					18617

<210> 51

<211> 18333

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 51 60 cogggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcgc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcetegea aateggegaa aaegeetgat tttaegegag ttteeeacag atgatgtgga 360 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 540 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660

teggeegega aeggeeteae eecaaaaatg geagegetgg eagteettge cattgeeggg

atcggggcag taacgggatg ggcgatcage cegagegega egeeeggaag cattgaegtg

720

780

WO 2004/063358 PCT/EP2004/000100 308/358

ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agetecaceg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040

WO 2004/063358 PCT/EP2004/000100 309/358

aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	geggagtgea	tcaggctctt	2640
tcactccato	: gacatatcgg	attgtcccta	tacgaatago	: ttagacagco	gcttagccga	2700
attggattac	: ttactgaata	acgatctggc	: cgatgtggat	: tgcgaaaact	gggaagaaga	2760
cactccatti	: aaagateeg	gcgagctgta	ı tgattttta	a aagacggaaa	a agcccgaaga	2820
ggaacttgto	ttttcccac	g gcgacctggg	g agacagcaad	e atctttgtga	a aagatggcaa	2880
agtaagtgg	c tttattgate	c ttgggagaa	g cggcagggc	g gacaagtggl	t atgacattgc	2940
cttctgcgt	c cggtcgatc	a gggaggata	t cggggaaga	a cagtatgtc	g agctatttt	3000
tgacttact	g gggatcaag	c ctgattggg	a gaaaataaa	a tattatatt	t tactggatga	3060
attgtttta	g tacctagat	g tggcgcaac	g atgccggcg	a caagcagga	g cgcaccgact	3120
tcttccgca	t caagtgttt	t ggctctcag	g cçgaggccc	a cggcaagta	t ttgggcaagg	3180
ggtcgctgg	t attegtgea	g ggcaagatt	c ggaatacca	a gtacgagaa	g gacggccaga	3240
cggtctacg	g gaccgactt	c attgccgat	a aggtggatt	a tctggacac	c aaggcaccag	3300

WO 2004/063358 PCT/EP2004/000100 310/358

gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca atcccgcaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagecgcac cgtcatgcgt gegeeeegeg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540
gegtgeaact ggeteecet geeetgeeeg egeeategge egeegtggag egttegegte	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
tegatattge geegtggeeg gacaegatge gagegatgee aaaegaeaeg geeegetetg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa teggtgtege tgctgcaccg ctteegegte ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560

WO 2004/063358 PCT/EP2004/000100 311/358

ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tegetgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagegaggee	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	: catectegge	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	: cggtctaccg	g cctgccgggc	: ggggtcgcgg	g cgacggtagg	5160
cgctgtgcag	ccgctgatgg	g togtgttcat	: ctctgccgct	ctgctaggta	a gcccgatacg	5220
attgatggcg	gteetggggg	g ctatttgcgg	g aactgcggg	gtggcgctg1	t tggtgttgac	5280
accaaacgca	a gcgctagato	c ctgtcggcg	t cgcagcggg	c ctggcgggg	g cggtttccat	5340
ggcgttcgg	a accgtgctg	a cccgcaagt	g gcaacctcc	c gtgcctctg	c tcacctttac	5400
cgcctggca	a ctggcggcc	g gaggacttc	t getegttee	a gtagcttta	g tgtttgatcc	5460
gccaatccc	g atgcctaca	g gaaccaatg	t teteggeet	g gcgtggctc	g gcctgatcgg	5520
agegggttt	a acctacttc	c tttggttcc	g ggggatete	g cgactcgaa	c ctacagttgt	5580
ttccttact	g ggctttctc	a gccccagat	c tggggtcga	t cagccgggg	a tgcatcaggc	5640
cgacagtcg	g aactteggg	t ccccgacct	g taccattcg	g tgagcaatg	g ataggggagt	5700
tgatatcgt	c aacgttcac	t tctaaagaa	a tagegeeac	t cagetteet	c agcggcttta	5760
tccagcgat	t teetattat	g teggeatag	gt tctcaagat	c gacagecte	gt cacggttaag	5820

WO 2004/063358 PCT/EP2004/000100 312/358

cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	eggtecaege	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	. caaagggcga	aaaaccgtct	atcagggcga	ı tggcccacta	ı cgtgaaccat	6480
cacccaaato	aagtttttg	gggtcgaggt	geegtaaage	actaaatcgg	g aaccctaaag	6540
ggagcccccg	g atttagagct	: tgacggggaa	a agccggcgaa	a cgtggcgaga	a aaggaaggga	6600
agaaagcgaa	a aggagcggg	gecattcag	g ctgcgcaact	t gttgggaagg	g gcgatcggtg	6660
cgggcctct	t cgctattacg	g ccagctggc	g aaaggggga	t gtgctgcaa	g gcgattaagt	6720
tgggtaacg	c cagggtttt	c ccagtcacg	a cgttgtaaa	a cgacggcca	g tgaattcgag	6780
ctcggtacc	c ggggatctt	t cgacactga	a atacgtcga	g cctgctccg	c ttggaagcgg	6840
cgaggagcc	t cgtcctgtc	a caactacca	a catggagta	c gataagggc	c agttccgcca	6900
gctcattaa	g agccagttc	a tgggcgttg	g catgatggc	c gtcatgcat	c tgtacttcaa	6960
gtacaccaa	c gctcttctg	a tccagtcga	t catccgctg	a aggcgcttt	c gaatctggtt	7020

WO 2004/063358 PCT/EP2004/000100 313/358

313/336	•
aagatccacg tettegggaa gecagegaet ggtgaeetee agegteeett taaggetgee	7080
aacagctttc tcagccaggg ccagcccaag accgacaagg cctccctcca gaacgccgag	7140
aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag	7200
cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg	7260
tagcatagct tcatttggat ttgctttcca ggctgagact ctagcttgga gcatagaggg	7320
tcctttggct ttcaatattc tcaagtatct cgagtttgaa cttattccct gtgaaccttt	7380
tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt	7440
togaaataca tooggatgto gaaggottgg ggoacotgog ttggttgaat ttagaacgtg	7500
gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc	7560
tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga	7620
tctctagtta gctcaccaca aaagtcagac ggcgtaacca aaagtcacac aacacaagct	7680
gtaaggattt cggcacggct acggaagacg gagaagccac cttcagtgga ctcgagtacc	7740
atttaattct atttgtgttt gatcgagacc taatacagcc cctacaacga ccatcaaagt	7800
cgtatagcta ccagtgagga agtggactca aatcgacttc agcaacatct cctggataaa	7860
ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc	7920
tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga	7980
cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc	8040
accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc	8100
tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag	8160
acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeete	8220
cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg	8280

WO 2004/063358 PCT/EP2004/000100 314/358

agaatatgga	gcttcatcga	atcaceggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag.	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt ,	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540

WO 2004/063358 PCT/EP2004/000100 315/358

ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
		•				
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tecaegegae	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagettgae	tatgaaaatt	cegtcaccag	cncetgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	. agaggtaatc	cttctttcta	gctagaagto	ctcgtgtact	10740
gtgtaagege	: ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800

WO 2004/063358 PCT/EP2004/000100 316/358

tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattett	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tctttgtcct	ttatctttcc	tcatttagtc	11100
tttgggagaa	ttaġgaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	aataaṭcttg	11280
tgcattcgaa	tatgatggaa	gatttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatctc	11400
tatgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatggc	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	tttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	11760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tcttttggct	tcctctatgc	11820
gccgcccctg	tcaaaacttc	aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940
gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttgagat	taaaatagat	aaggaaaaga	aagtgaaaag	aaattcggaa	gcatggcaca	12060

WO 2004/063358 PCT/EP2004/000100 317/358

ttcttcttt	tataaataca	tgcctgactt	tctttttcca	tcgatatgat	atatgcatat	12120
gatagatata	caagcaatct	tcttcaagga	gtttgaaatt	ttgtcctcca	ggagcaaaaa	12180
aaagttttt	tttatacatg	tttgtacaca	agaatagtta	ccaatttgct	ttggtcttac	12240
gtgctgcaag	tttatatcgt	tttcaatttc	tttgtcttta	cattttcttt	gtcctttatc	12300
tttcctcatt	tagtctttgg	gagaattagg	aaaagggagc	ggaaaggtaa	gaaatgcttg	12360
cgtattttac	taattcggca	aacatccaat	ttggcaaaca	gcagcctgtg	caacgctctc	12420
gagatgacag	tatctttgat	tacactctaa	atctcgatga	cccgaccaaa	aagagcgaac	12480
aaagaaataa	tcttgtgcat	tcgaatatga	tggaagattt	tttccccctt	attctaaatg	12540
ttgacatagc	gtgtatgtta	tataaacaaa	aagaaattgt	acaaactttc	ttttcttctc	12600
tttttattt	atctctatga	tccagttaga	acaaccactc	agtcatcaag	caaaactgac	12660
tccagtactg	agaagtaaat	ctcagtttaa	ggggcttttc	attgctattg	tcattgttag	12720
cgcatgggtc	attagcctga	gtttattact	ttcccttgac	atctcaaagc	taaaattttg	12780
gatgttattg	cctgttatac	tatggcaaac	atttttatat	acgggattat	ttattacatc	12840
tcatgatgcc	atgcatggcg	tagtatttcc	ccaaaacacc	aagattaatc	atttgattgg	12900
aacattgacc	ctatcccttt	atggtctttt	accatatcaa	aaactattga	aaaaacattg	12960
gttacaccac	cacaatccag	caagctcaat	agacccggat	tttcacaatg	gtaaacacca	13020
aagtttcttt	gcttggtatt	ttcattttat	gaaaggttac	tggagttggg	ggcaaataat	. 13080
tgcgttgact	attatttata	actttgctaa	atacatactc	catatcccaa	gtgataatct	13140
aacttacttt	tgggtgctac	cctcgctttt	aagttcatta	caattattct	attttggtac	13200
ttttttacco	catagtgaac	caataggggg	ttatgttcag	cctcattgtg	cccaaacaat	13260
tageegteet	atttggtggt	catttatcac	gtgctatcat	tttggctacc	acgaggaaca	13320

WO 2004/063358 PCT/EP2004/000100 318/358

tcacgaatat	cctcatattt	cttggtggca	gttaccagaa	atttacaaag	caaaatagaa	13380
gcttggcgta	atcatggtca	tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	13440
cacacaacat	acgagccgga	agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgagct	13500
aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	13560
agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	tttgcgtatt	gggccaaaga	13620
caaaagggcg	acattcaacc	gattgaggga	gggaaggtaa	atattgacgg	aaattattca	13680
ttaaaggtga	attatcaccg	tcaccgactt	gagccatttg	ggaattagag	ccagcaaaat	13740
caccagtago	accattacca	ttagcaaggc	cggaaacgtc	accaatgaaa	ccatcgatag	13800
cagcaccgta	atcagtagcg	acagaatcaa	gtttgccttt	agcgtcagac	tgtagcgcgt	13860
tttcatcggc	attttcggtc	atagccccct	tattagcgtt	tgccatcttt	tcataatcaa	13920
aatcaccgga	accagageda	ccaccggaac	cgcctccctc	agagccgcca	ccctcagaac	13980
cgccaccctc	: agagccacca	ccctcagagc	cgccaccaga	accaccacca	gageegeege	14040
cagcattgad	: aggaggcccg	atctagtaac	atagatgaca	ccgcgcgcga	taatttatcc	14100
tagtttgcgg	gctatattt	gttttctatc	gcgtattaaa	totataatto	cgggactcta	14160
	a cccatctcat					14220
	a acagaaatta					14280
	: attgccaaat					14340
	a tatccgaacg					14400
	a cgccgttgat					14460
	t tgtcggccgt					14520
	-					

WO 2004/063358 PCT/EP2004/000100 319/358

			•			
gcagagatcc	cgtgggcgaa	gaactccagc	atgagatccc	cgcgctggag	gatcatccag	14580
ccggcgtccc	ggaaaacgat	tccgaagccc	aacctttcat	agaaggcggc	ggtggaatcg	14640
aaatctcgtg	atggcaggtt	gggcgtcgct	tggtcggtca	tttcgaaccc	cagagtcccg	14700
ctcagaagaa	ctcgtcaaga	aggcgataga	aggcgatgcg	ctgcgaatcg	ggagcggcga	14760
taccgtaaag	cacgaggaag	cggtcagccc	attcgccgcc	aagctcttca	gcaatatcac	14820
gggtagccaa	cgctatgtcc	tgatagcggt	ccgccacacc	cagccggcca	cagtcgatga	14880
atccagaaaa	gcggccattt	tccaccatga	tattcggcaa	gcaggcatcg	ccatgggtca	14940
cgacgagatc	ategeegteg	ggcatgcgcg	ccttgagcct	ggcgaacagt	tcggctggcg	15000
cgagcccctg	atgctcttcg	tccagatcat	cctgatcgac	aagaccggct	tccatccgag	15060
tacgtgctcg	ctcgatgcga	tgtttcgctt	ggtggtcgaa	tgggcaggta	gccggatcaa	15120
gcgtatgcag	ccgccgcatt	gcatcagcca	tgatggatac	tttctcggca	ggagcaaggt	15180
gagatgacag	gagateetge	cccggcactt	cgcccaatag	cagecagted	cttcccgctt	15240
cagtgacaac	gtcgagcaca	gctgcgcaag	gaacgcccgt	cgtggccagc	cacgatagec	15300
gcgctgccto	gteetgeagt	tcattcaggg	caccggacag	gtcggtcttg	acaaaaagaa	15360
ccgggcgcc	c ctgcgctgac	agccggaaca	cggcggcatc	agagcagccg	attgtctgtt	15420
gtgcccagto	atagccgaat	: agcctctcca	. cccaagcggc	: cggagaacct	gegtgeaate	15480
catcttgtto	c aatcatgcga	aacgatccag	atccggtgca	ı gattatttgç	g attgagagtg	15540
aatatgaga	c tctaattgga	taccgagggg	, aatttatgga	acgtcagtgo	g agcattttg	15600
acaagaaat	a tttgctagc	gatagtgaco	: ttaggcgact	: tttgaacgco	g caataatggt	15660
ttctgacgt	a tgtgcttago	c tcattaaact	ccagaaacc	geggetgagt	t ggctccttca	15720
acgttgcgg	t tctgtcagt	t ccaaacgtaa	a aacggcttg1	t ceegegteat	t cggcgggggt	15780

WO 2004/063358 PCT/EP2004/000100 320/358

cataacgtga	ctcccttaat	tctccgctca	tgatcagatt	gtcgtttccc	gccttcagtt	15840
taaactatca	gtgtttgaca	ggatatattg	gcgggtaaac	ctaagagaaa	agagcgttta	15900
ttagaataat	cggatattta	aaagggcgtg	aaaaggttta	tccgttcgtc	catttgtatg	15960
tgcatgccaa	ccacagggtt	ccccagatct	ggcgccggcc	agcgagacga	gcaagattgg	16020
ccgccgcccg	aaacgatccg	acagcgcgcc	cagcacaggt	gcgcaggcaa	attgcaccaa	16080
cgcatacagc	gccagcagaa	tgccatagtg	ggcggtgacg	tcgttcgagt	gaaccagatc	16140
gcgcaggagg	cccggcagca	ccggcataat	caggccgatg	ccgacagcgt	cgagcgcgac	16200
agtgctcaga	attacgatca	ggggtatgtt	gggtttcacg	tetggcetee	ggaccagcct	16260
ccgctggtcc	gattgaacgc	gcggattctt	tatcactgat	aagttggtgg	acatattatg	16320
tttatcagtg	ataaagtgtc	aagcatgaca	aagttgcagc	cgaatacagt	gatccgtgcc	16380
gccctggacc	tgttgaacga	ggtcggcgta	gacggtctga	cgacacgcaa	actggcggaa	16440
cggttggggg	ttcagcagcc	ggcgctttac	tggcacttca	ggaacaagcg	ggcgctgctc	16500
gacgcactgg	ccgaagccat	gctggcggag	aatcatacgc	attcggtgcc	gagagccgac	16560
gacgactggc	gctcatttct	gatcgggaat	gcccgcagct	tcaggcaggc	gctgctcgcc	16620
taccgcgatg	gcgcgcgcat	ccatgccggc	acgcgaccgg	gcgcaccgca	gatggaaacg	16680
gccgacgcgc	agcttcgctt	cctctgcgag	gcgggtttt	cggccgggga	cgccgtcaat	16740
gcgctgatga	caatcagcta	cttcactgtt	ggggccgtgc	ttgaggagca	ggccggcgac	16800
agcgatgccg	gcgagcgcgg	cggcaccgtt	gaacaggcto	cgctctcgcc	gctgttgcgg	16860
gccgcgatag	acgccttcga	. cgaagccggt	ccggacgcag	cgttcgagca	ı gggactcgcg	16920
gtgattgtcg	atggattggc	gaaaaggagg	ctcgttgtca	ggaacgttga	aggaccgaga	16980
aagggtgacg	attgatcagg	accgctgccg	gagcgcaacc	cactcactac	agcagagcca	17040

WO 2004/063358 PCT/EP2004/000100 321/358

tgtagacaac	atecectece	cctttccacc	gcgtcagacg	cccgtagcag	cccgctacgg	17100
gctttttcat	gccctgccct	agcgtccaag	cctcacggcc	gcgctcggcc	tctctggcgg	17160
ccttctggcg	ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	17220
ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	17280
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	17340
cgttgctggc	gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	17400
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	17460
getecetegt	gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	17520
tecetteggg	aagcgtggcg	cttttccgct	gcataaccct	gcttcggggt	cattatagcg	17580
attttttcgg	tatatccatc	ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	17640
gtagactttc	cttggtgtat	ccaacggcgt	cagccgggca	ggataggtga	agtaggccca	17700
cccgcgagcg	ggtgttcctt	cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	17760
aatcctgctc	tgcgaggctg	gccggctacc	gccggcgtaa	cagatgaggg	caagcggatg	17820
gctgatgaaa	ccaagccaac	caggaagggc	agcccaccta	tcaaggtgta	ctgccttcca	17880
gacgaacgaa	gagcgattga	ggaaaaggcg	gcggcggccg	gcatgagcct	gtcggcctac	17940
ctgctggccg	tcggccaggg	ctacaaaatc	acgggcgtcg	tggactatga	gcacgtccgc	18000
gagetggeee	gcatcaatgg	cgacctgggc	cgcctgggcg	gcctgctgaa	actetggete	18060
accgacgacc	cgcgcacggc	gcggttcggt	gatgccacga	tectegeect	gctggcgaag	18120
atcgaagaga	agcaggacga	gcttggcaag	gtcatgatgg	gcgtggtecg	cccgagggca	18180
gagccatgac	ttttttagcc	gctaaaacgg	ccggggggtg	cgcgtgattg	ccaagcacgt	18240
ccccatgcgc	tccatcaaga	agagcgactt	cgcggagctg	gtgaagtaca	tcaccgacga	18300

gcaaggcaag accgagcgcc tttgcgacgc tca

18333

```
<210> 52
```

<211> 17

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (9)..(9)

<223> n is a, c, g, or t

<400> 52

gcngarggna thtggta

17

<210> 53

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

323/358

<221> misc_feature

<222> (6)..(6)

<223> n is a, c, g, or t

<400> 53

20 tengenagra adatrttrtg

<210> 54

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 54

27 aagtgacacc ggttacacgc ttgtctt

<210> 55

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 55

27 gcttatcacc atctgttacc tccttgc

<210> 56

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 56

agagaggat ccttaaatgc gaatatcgtt gc

<210> 57 <211> 32 <212> DNA <213> Artificial <220> <223> Primer <400> 57 32 agagaggat ccatgtctga tcaaaagaag ca <210> 58 <211> 37 <212> DNA <213> Artificial <220> <223> Primer <400> 58 37 actttattgg atccttaaat gcgaatatcg ttgctgc <210> 59 <211> 38 <212> DNA <213> Artificial <220> <223> Primer <400> 59

38

<210> 60 <211> 38 <212> DNA <213> Artificial

gttccaattg gccacatgaa gagtaagaca ggaaacag

```
<220>
```

<223> Primer

<400> 60

cctgtcttac tcttcatgtg gccaattgga accaacac

38

<210> 61

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 61

ctattttaat catatgtctg atcaaaagaa gcatattg

38

<210> 62

<211> 16103

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t ·

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 62 gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegactggt gacetecage gteeetttaa ggetgeeaae agetttetea 300 360 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 420 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg atattetteg actetgtatt atagataaga tgatgaggaa ttggaggtag catagettea 480 540 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc aatattetea agtatetega gtttgaaett atteeetgtg aacettttat teaceaatga 600 660 gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720 tecgataget etgeaaaggg egttgeacaa tgeaagteaa aegttgetag eagtteeagg 780 tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct 840 900 caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt 960 tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca 1020 gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa 1080 ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg 1140 gttgaccggt gcctggatct tcctatagaa tcatccttat tcgttgacct agctgattct 1200

WO 2004/063358 PCT/EP2004/000100 327/358

•	ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
	aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
	gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
	ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
	aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggaget	1500
	tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tageegtegg	1560
	cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
	ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
	aattggccca	tccggcatct	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
	tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
	tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
	ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tcgttgcgtc	1920
	agtccaacat	ttgttgccat	attttcctgc	tctcccacc	agctgctctt	ttctttctc	1980
	tttcttttcc	catcttcagt	atattcatct	teccatecaa	gaacctttat	ttcccctaag	2040
	taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
	gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
	accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
•	gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
	ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
	tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	2400
	gaattcacc	agaggetgag	ctattacata	teceaceata	cacacactat	oacattacaa	2460

gaattcagcg agagcctgac ctattgcatc tcccgccgtg cacagggtgt cacgttgcaa

2460

WO 2004/063358 PCT/EP2004/000100 328/358

gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	catggatgcg ·	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg [.]	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgåcggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatago	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggctcc	acgcgactat	3600
atatttgtct	: ctaattgtac	tttgacatgc	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	, tcaccagenc	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720

WO 2004/063358 PCT/EP2004/000100 329/358

•						
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	actttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caagcttgag	tctatcgcct	ccaaaaagta	4020
cggtgctgaa	ttcagatatc	aatcgcctgt	tgctaaaatt	aacactgtcg	ataaagacaa	4080
gcgtgtaacc	ggtgtcactt	tggaaagcgg	agaagtcatt	gaagccgatg	cagtcgtatg	4140
taatgcggat	cttgtttatg	cttatcacca	tctgttacct	ccttgcaatt	ggacaaagaa	4200
gacattagcc	tcaaagaaac	tcacttcatc	atctatttcg	tttattggt	ccatgtcaac	4260
aaaggtgcct	caattagacg	tacacaatat	cttcttggct	gaagcctaca	aggaaagttt	4320
tgatgagatt	ttcaacgact	teggtttgce	ctctgaagct	tggcgtaatc	atggtcatag	4380
ctgtttcctg	tgtgaaattg	ttatccgctc	acaattccac	acaacatacg	agccggaagc	4440
ataaagtgta	aagcctgggg	tgcctaatga	gtgagctaac	tcacattaat	tgcgttgcgc	4500
tcactgcccg	ctttccagtc	gggaaacctg	tcgtgccagc	tgcattaatg	aatcggccaa	4560
cgcgcgggga	gaggcggttt	gcgtattggg	ccaaagacaa	aagggcgaca	ttcaaccgat	4620
tgagggaggg	aaggtaaata	. ttgacggaaa	ttattcatta	aaggtgaatt	atcaccgtca	4680
ccgacttgag	r ccatttggga	attagagcca	gcaaaatcac	cagtagcacc	attaccatta	4740
gcaaggccgg	, aaacgtcacc	aatgaaacca	tcgatagcag	caccgtaatc	agtagcgaca	4800
gaatcaagtt	: tgcctttagc	gtcagactgt	agcgcgtttt	categgeatt	ttcggtcata	4860
gcccccttat	: tagcgtttgc	: catctttca	ı taatcaaaat	caccggaacc	agagccacca	4920
ccggaaccg	ctccctcage	geegeeacee	: tcagaaccgc	: caccctcaga	gccaccaccc	4980

L	andan-naga	accaccagag	ccaccaccaa	cattgacagg	aggcccgatc	5040
teagageege	Caccagaacc	accaccagag	ccgccgccas		- 33 - 5	
tagtaacata	gatgacaccg	cgcgcgataa	tttatcctag	tttgcgcgct	atattttgtt	5100
ttctatcgcg	tattaaatgt	ataattgcgg	gactctaatc	ataaaaaccc	atctcataaa	5160
taacgtcatg	cattacatgt	taattattac	atgcttaacg	taattcaaca	gaaattatat .	5220
gataatcatc	gcaagaccgg	caacaggatt	caatcttaag	aaactttatt	gccaaatgtt	5280
tgaacgatcg	gggatcatcc	gggtctgtgg	, cgggaactcc	acgaaaatat	ccgaacgcag	5340
caagatatcg	cggtgcatct	cggtcttgcc	tgggcagtcg	ccgccgacgc	cgttgatgtg	5400
gacgccgggc	ccgatcatat	tgtcgctcag	gategtggeg	ttgtgcttgt	: cggccgttgc	5460
tgtcgtaatg	g atateggead	: cttcgaccgc	: ctgttccgca	gagatcccgt	gggcgaagaa	5520
ctccagcato	g agateceege	gctggaggat	: catccagccg	g gegteeegga	a aaacgattcc	5580
gaagcccaa	c ctttcataga	a aggcggcggt	: ggaatcgaaa	a tctcgtgat	g gcaggttggg	5640
cgtcgcttg	g teggteatt	t cgaacccca	g agtcccgct	c agaagaact	c gtcaagaagg	5700
cgatagaag	g cgatgcgct	g cgaatcggg	a gcggcgata	c cgtaaagca	c gaggaagcgg	5760 ·
tcagcccat	t cgccgccaa	g ctcttcagc	a atatcacgg	g tagccaacg	c tatgtcctga	5820
tagcggtcc	g ccacaccca	g ccggccaca	g tcgatgaat	c cagaaaagc	g gccattttcc	5880
accatgata	t teggeaage	a ggcatcgcc	a tgggtcacg	ra cgagatcat	e geegteggge	5940
atgcgcgcc	t tgagcctgg	gc gaacagtto	g gctggcgcg	ga gcccctgat	g ctcttcgtcc	6000
agatcatco	et gategacaa	ag accggctto	c atccgagta	ac gtgctcgct	cc gatgcgatgt	6060
ttcgcttgg	gt ggtcgaatg	gg gcaggtago	c ggatcaago	eg tatgcaged	eg ccgcattgca	6120
tcagccat	ga tggatact	tt ctcggcagg	ga gcaaggtga	ag atgacagga	ag atcctgcccc	6180
ggcacttc	gc ccaatagc	ag ccagtccc	tt cccgcttc	ag tgacaacg	tc gagcacagct	6240

WO 2004/063358 PCT/EP2004/000100 331/358

gcgcaaggaa cgcccgtcgt ggccagccac gatagccgcg ctgcctcgtc ctgcagttca ttcagggcac cggacaggtc ggtcttgaca aaaagaaccg ggcgcccctg cgctgacagc 6360 cggaacacgg cggcatcaga gcagccgatt gtctgttgtg cccagtcata gccgaatagc 6420 ctctccaccc aagcggccgg agaacctgcg tgcaatccat cttgttcaat catgcgaaac 6480 gatccagatc cggtgcagat tatttggatt gagagtgaat atgagactct aattggatac 6540 cgaggggaat ttatggaacg tcagtggagc atttttgaca agaaatattt gctagctgat 6600 agtgacctta ggcgactttt gaacgcgcaa taatggtttc tgacgtatgt gcttagctca 6660 ttaaactcca gaaacccgcg gctgagtggc tccttcaacg ttgcggttct gtcagttcca 6720 aacgtaaaac ggcttgtccc gcgtcatcgg cgggggtcat aacgtgactc ccttaattct 6780 ccgctcatga tcagattgtc gtttcccgcc ttcagtttaa actatcagtg tttgacagga 6840 tatattggcg ggtaaaccta agagaaaaga gcgtttatta gaataatcgg atatttaaaa 6900 gggcgtgaaa aggtttatcc gttcgtccat ttgtatgtgc atgccaacca cagggttccc 6960 cagatetgge geeggeeage gagaegagea agattggeeg eegeeegaaa egateegaea 7020 gegegeecag cacaggtgeg caggeaaatt geaceaacge atacagegee ageagaatge 7080 7140 catagtgggc ggtgacgtcg ttcgagtgaa ccagatcgcg caggaggccc ggcagcaccg 7200 gcataatcag gccgatgccg acagcgtcga gcgcgacagt gctcagaatt acgatcaggg 7260 gtatgttggg tttcacgtct ggcctccgga ccagcctccg ctggtccgat tgaacgcgcg gattetttat cactgataag ttggtggaca tattatgttt atcagtgata aagtgtcaag 7320 7380 catgacaaag ttgcagccga atacagtgat ccgtgccgcc ctggacctgt tgaacgaggt 7440 cggcgtagac ggtctgacga cacgcaaact ggcggaacgg ttgggggttc agcagccggc 7500 gctttactgg cacttcagga acaagcgggc gctgctcgac gcactggccg aagccatgct

ggcggagaat	catacgcatt	cggtgccgag	agccgacgac	gactggcgct	catttctgat	7560
cgggaatgcc	cgcagcttca	ggcaggcgct	gctcgcctac	cgcgatggcg	cgcgcatcca .	7620
tgccggcacg	cgaccgggcg	caccgcagat	ggaaacggcc	gacgcgcagc	ttegetteet	7680
ctgcgaggcg	ggtttttcgg	ccggggacgc	cgtcaatgcg	ctgatgacaa	tcagctactt	7740
cactgttggg	gccgtgcttg	aggagcaggc	cggcgacagc	gatgccggcg	agcgcggcgg	7800
caccgttgaa	caggeteege	tctcgccgct	gttgcgggcc	gcgatagacg	ccttcgacga	7860
agccggtccg	gacgcagcgt	tcgagcaggg	actcgcggtg	attgtcgatg	gattggcgaa	7920
aaggaggcto	gttgtcagga	acgttgaagg	accgagaaag	ggtgacgatt	gatcaggacc	7980
gctgccggag	cgcaacccac	tcactacago	: agagccatgt	agacaacato	ccctcccct	8040
ttccaccgcg	tcagacgcco	: gtagcagcco	getaeggget	ttttcatgco	: ctgccctagc	8100
gtccaagcct	: cacggccgcg	g ctcggcctct	: ctggcggcct	tetggegete	tteegette <u>e</u>	8160
tegeteact	g actcgctgcg	g ctcggtcgt(t cggctgcgg	c gageggtate	e agctcactca	8220
aaggcggta	a tacggttate	c cacagaatc	a ggggataac	g caggaaagaa	a catgtgagca	8280
aaaggccag	c aaaaggcca	g gaaccgtaa	a aaggccgcg	t tgctggcgt	t tttccatagg	8340
ctccgcccc	c ctgacgagc	a tcacaaaaa	t cgacgctca	a gtcagaggt	g gcgaaacccg	8400
acaggacta	t aaagatacc	a ggcgtttcc	c cctggaagc	t ccctcgtgc	g ctctcctgtt	8460
ccgaccctg	c cgcttaccg	g atacctgto	e geetttete	c cttcgggaa	g cgtggcgctt	8520
ttccgctgc	a taaccctgo	t toggggtca	it tatagogat	t ttttcggta	t atccatcctt	8580
tttcgcacg	ra tatacagga	it tttgccaaa	g ggttcgtgt	a gactttcct	t ggtgtatcca	8640
acggcgtca	ıg cegggeagç	ga taggtgaag	gt aggeceace	cc gcgagcggg	st gtteettett	8700
cactgtcc	et tattegead	ec tggcggtgo	ct caacggga	at cetgetete	gc gaggetggee	8760

WO 2004/063358 PCT/EP2004/000100 333/358

ggctaccgcc ggcgtaacag atgagggcaa gcggatggct gatgaaacca agccaaccag gaagggcagc ccacctatca aggtgtactg ccttccagac gaacgaagag cgattgagga aaaggcggcg gcggccggca tgagcctgtc ggcctacctg ctggccgtcg gccagggcta 8940 caaaatcacg ggcgtcgtgg actatgagca cgtccgcgag ctggcccgca tcaatggcga 9000 cctgggccgc ctgggcggcc tgctgaaact ctggctcacc gacgacccgc gcacggcgcg 9060 9120 gttcggtgat gccacgatcc tcgccctgct ggcgaagatc gaagagaagc aggacgagct tggcaaggtc atgatgggcg tggtccgccc gagggcagag ccatgacttt tttagccgct 9180 aaaacggccg gggggtgcgc gtgattgcca agcacgtccc catgcgctcc atcaagaaga 9240 9300 gcgacttcgc ggagctggtg aagtacatca ccgacgagca aggcaagacc gagcgccttt gcgacgetca ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca 9360 aacgcgccag aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga 9420 9480 tacctcgcgg aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg 9540 tggagctggc cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag 9600 atgatgtgga caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact 9660 9720 actgacagat gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg 9780 gcgcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt 9840 ttccgcccgt ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt 9900 ataaaccttg tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg 9960 gctgcgcccc tcggccgcga acggcctcac cccaaaaatg gcagcgctgg cagtccttgc 10020

WO 2004/063358 PCT/EP2004/000100 334/358

cattgccggg atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct 10260 cgtgttcggg ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa 10380 agctaccaag acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata agataatata tettttatat agaagatate geegtatgta aggattteag 10500 10560 ggggcaaggc ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca 10620 10680 taattgggta atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag 10740 gtgctgcctc agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac 10800 gtgcagcttt cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac 10860 cacgtcaaag ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc gcaacaaccg tetteeggag actgteatac gegtaaaaca gecagegetg 10980 gegegattta geceegacat ageeceactg ttegteeatt teegegeaga egatgaegte 11040 actgcccggc tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa ategtgttga ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg 11280

WO 2004/063358 PCT/EP2004/000100 335/358

ttacgcacca ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact 11340 ggagcaccte aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat 11400 tgtggtttca aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt 11460 gaaaaagctg ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc 11520 gtcttgttat aattagotto ttggggtato tttaaatact gtagaaaaga ggaaggaaat 11580 aataaatggc taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct 11640 gcgtaaaaga tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac 11760 gggaaaagga catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact 11820 ttgaacggca tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct 11880 cggaagagta tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca 11940 tcaggetett teactecate gacatategg attgteecta tacgaatage ttagacagee 12000 gcttagccga attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact 12060 gggaagaaga cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt 12360 tactggatga attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact tettecgcat caagtgtttt ggeteteagg ccgaggeeca cggcaagtat ttgggcaagg ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag 12540

WO 2004/063358 PCT/EP2004/000100 336/358

gacggccaga cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc 12600 aaggcaccag gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca 12660 atcccgcaag gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg 12720 atcgacgcgg ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt 12780 12840 gcgccccgcg aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca gcgtgcaact ggctccccct gccctgcccg cgccatcggc cgccgtggag 12900 cgttcgcgtc gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg 12960 cgaggaacta tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc 13020 agcgaggcca agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt tcgatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg 13140 gcccgctctg ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac 13260 aaggtcattt tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg 13320 geegaegatg aegaaetggt gtggeageag gtgttggagt aegegaageg caeecetate ggcgagccga tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat 13380 ggccggtatt acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc 13440 ttcacgtccg accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc 13500 13560 ctggaccgtg gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg 13620 acggcccgac ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg 13680 gaaaccttcc gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag 13740 gtcggcgaag cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat 13800

WO 2004/063358 PCT/EP2004/000100 337/358

gatgacetgg tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca 13860 gcagccagcg ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc geteagtate getegggaeg eaeggegege tetacgaact geegataaac agaggattaa 13980 aattgacaat tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt 14040 tccgcgagat ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat 14160 teggegeeta categaegge gagateattg ggetgteggt etteaaacag gaggaeggee 14220 ccaaggacgc tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc 14280 gaggggtege eggtatgetg etgegggegt tgeeggeggg tttattgete gtgatgateg 14340 tccgacagat tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata 14400 tttcgctatt ctggagettg ttgtttattt cggtetaccg cctgccgggc ggggtcgcgg 14460 cgacggtagg cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta 14520 gcccgatacg attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg 14640 eggttteeat ggegttegga accgtgetga ceegcaagtg geaaceteee gtgeetetge 14700 tcacctttac cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag 14760 tgtttgatcc gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg 14820 gcctgatcgg agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga 14940 tgcatcaggc cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt tgatategte aaegtteaet tetaaagaaa tagegeeaet cagetteete 15060

agcggcttta	tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	15120
cacggttaag	cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	15180
tatttgatca	caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	15240
gatcatccgt	gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	15300
atgagcaaag	tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	15360
ctgcctgtat	cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	15420
ggtggcagga	tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	15480
cggacgtttt	taatgtactg	gggtggtttt	tettttcacc	agtgagacgg	gcaacagctg	15540
attgcccttc	accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	15600
cagcaggcga	aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	15660
aaagaatago	: ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	15720
aagaacgtgg	g actccaacgt	caaagggcga	a aaaaccgtct	atcagggcga	tggcccacta	15780
cgtgaaccat	cacccaaato	: aagtttttç	g gggtcgaggt	: gccgtaaagc	actaaatcgg	15840
aaccctaaa	g ggagececeg	g atttagagct	tgacggggaa	a agccggcgaa	a cgtggcgaga	15900
aaggaaggg	a agaaagcgaa	aggagcggg	c gccattcagg	g ctgcgcaac	t gttgggaagg	15960
gcgatcggt	g cgggcctctt	cgctattac	g ccagctggc	g aaaggggga	t gtgctgcaag	16020
gcgattaag	t tgggtaacgd	c cagggtttt	c ccagtcacga	a cgttgtaaa	a cgacggccag	16080
tgaattcga	g ctcggtacco	c ggg				16103

<210> 63

<211> 25

<212> DNA

<213> Artificial

<220>		
<223>.	Primer	
<400>	63	
ggcgta	cttg aaggaaccct taccg	25
<210>	64	
<211>	25	
<212>		
<213>	Artificial	
<220>	·	
.<223>	Primer	
<400>		25
attga	tgctc ccggtcaccg tgatt	
<210>	•	
<211>		
<212>	•	
<213>	Blakeslea trispora	
-400-	- 65	
<400>	ataca atgetecata gaeteacatt gatattgteg aagatttega tgetgaetta	60
aatct	satada atgetedata gaetedatu gaeteeses and	
	agcaac tacaaaagtt agcagagaag catgatttct taatctttga agaccgcaag	120
gtaga	· ·	
+++a	cagata toggtatgtg aattotatot atttttttt tgatgtgtgc atggatgact	180
cccg	·	
cato	atcata ttcttaggta atactgtcaa gcatcaatat ggcaagggcg tttacaagat	240
catg		
tact	tcttgg tctcatatta ctaatgctca cacagttcct ggagaaggta ttatcaaggg	300
2500		
actt	geegaa gteggeetee etettggteg tggettgett ttgetageag aaatgteate	360
tcaa	ggtgca ttaactaagg gtatttacac tgccgaatct gtcaatatgg ctcgccgcaa	420
caaa	gatttc gtttttggct ttattgcaca acacaaaatg aatcagtatg atgatgagga	480

340/358

ttttgttgtc atgtcgcctg	500
<210> 66	
<211> 611	
<212> DNA	
<213> Blakeslea trispora	
<400> 66	
gagattaaaa tagataagga aaagaaagtg aaaagaaatt cggaagcatg gcacattctt	60
ctttttataa atacatgcct gactttcttt ttccatcgat atgatatatg catatgatag	120
atatacaagc aatcttcttc aaggagtttg aaattttgtc ctccaggagc aaaaaaagt	180
ttttttttat acatgtttgt acacaagaat agttaccaat ttgctttggt cttacgtgct	240
gcaagtttat atcgttttca atttctttgt ctttacattt tctttgtcct ttatctttcc	300
tcatttagtc tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat	360
tttactaatt cggcaaacat ccaatttggc aaacagcagc ctgtgcaacg ctctcgagat	420
gacagtatet ttgattacae tetaaatete gatgaceega eeaaaaagag egaacaaaga	480
aataatcttg tgcattcgaa tatgatggaa gattttttcc cccttattct aaatgttgac	540
atagcgtgta tgttatataa acaaaaagaa attgtacaaa ctttcttttc ttctctttt	600
attttatctc t	611
<210> 67	
<211> 720	
<212> DNA	
<213> Blakeslea trispora	
<400> 67	
atgtcaatac tcacttatct ggaatttcat ctctactata cactacctgt ccttgcggca	60
ttgtgttggc tgctaaagcc gtttcactca cagcaagaca atctcaagta taaattttta	120

WO 2004/063358 PCT/EP2004/000100 341/358

i	atgttgatgg	ccgcctctac	cgcatcgatt	tgggacaatt	atatcgttta	tcatcgcgct	180
	tggtggtact	gtcctacttg	tgttgtggct	gtcattggct	atgtacctct	agaagaatac	240
	atgttctta	·tcatcatgac	tttaatgact	gtcgcgttct	caaactttgt	tatgcgttgg	300
	cacttgcata	ctttctttat	tagacccaac	acttcttgga	agcaaacact	attagtacgc	360
	cttgtgcctg	tttcagcttt	attggcaatc	acttatcatg	cttggcactt	gacactgcca	420
	aataaacctt	cattttatgg	ttcatgcatc	ctttggtatg	cttgtcctgt	gttggctatt	480
	ctttggctgg	gtgctggcga	atatatcttg	cgtcgacctg	tggctgtcct	tttgtctatt	540
	gttatcccta	gtgtatacct	atgttgggct	gatategteg	ctattagtgc	tggcacatgg	600
	catatttctc	ttagaacaag	cactggcaaa	atggtagtac	ccgatttacc	tgtagaagaa	660
	tgcctgtttt	ttactttgat	caacacagtc	ttggtttttg	ctacctgtgc	tatagaccgc	720

<210> 68

<400> 68

ctgtacaaat catctgttca aaatcaaaac cctaaacaag ccatttccct tttccagcat 60 gtcaaagagc tagcatgggc cttctgtctt cctgaccaaa tgctcaacaa tgaattgttt 120 gatgatetta etateagetg ggatatttta egtaaageet caaagteatt etataetgea 180 tctgccgttt ttccaagtta tgtacgtcaa gacttgggtg ttctctatgc tttctgcaga 240 gctaccgatg acctgtgcga tgatgaatcc aaatctgttc aagaaagaag agaccaatta 300 360 gatettactc gacaatttgt tcgtgatetc tttagccaaa agaccagtgc gcctattgtg attgattggg aattgtatca aaaccaactt cctgcttctt gtatatcagc ctttagagcc 420 480 tttactcgcc ttcgccatgt ccttgaagta gaccctgtag aagaactatt agatggttac

<211> 1089

<212> DNA

<213> Blakeslea trispora

WO 2004/063358 PCT/EP2004/000100 342/358

aaatgggatc ttgagcgtcg tcctatcctt gatgaacaag acttggaggc atactctgct 540 tgtgtggcca gtagtgtggg tgaaatgtgc acacgtgtga ttcttgctca agaccaaaag 600 660 gaaaatgatg cttggataat tgaccgtgca cgtgagatgg ggctggtgct acaatacgtt 720 aacattgctc gagacattgt gactgatagc gagactctgg gtcgatgtta tctgcctcaa 780 caatggctta gaaaagaaga aacagaacaa atacagcaag gcaacgcccg tagcctaggt 840 gatcaaagac tgttgggctt gtctctgaag cttgtaggaa aggcagacgc tatcatggtg 900 agagctaaga agggcattga caagttgccg gcaaactgtc aaggcggtgt acgagctgct 960 tgccaagtat atgctgcaat tggatctgta ctcaagcagc agaagacaac atatcctaca agageteate taaaaggaag egaaegtgee aagattgete tgttgagtgt atacaacete 1020 tatcaatctg aagacaagcc tgtggctctc cgtcaagcta gaaagattaa gagttttttt 1080 1089 gttgattag

<400> 69

agagataaaa taaaaagaga agaaaagaaa gtttgtacaa tttcttttg tttatataac 60
atacacgcta tgtcaacatt tagaataagg gggaaaaaat cttccatcat attcgaatgc 120
acaagattat ttctttgttc gctctttttg gtcgggtcat cgagatttag agtgtaatca 180
aagatactgt catctcgaga gcgttgcaca ggctgctgtt tgccaaattg gatgtttgcc 240
gaattagtaa aatacgcaag cattcttac ctttccgctc ccttttccta attctccaa 300
agactaaatg aggaaagata aaggacaaag aaaatgtaaa gacaaagaaa ttgaaaacga 360

<210> 69

<211> 611

<212> DNA

<213> Blakeslea trispora

tataaacttg	cagcacgtaa	gaccaaagca	aattggtaac	tattcttgtg	tacaaacatg	420
tataaaaaaa	aactttttt	tgctcctgga	ggacaaaatt	tcaaactcct	tgaagaagat	480
tgcttgtata	tctatcatat	gcatatatca	tatcgatgga	aaaagaaagt	caggcatgta	540
tttataaaaa	gaagaatgtg	ccatgcttcc	gaatttcttt	tcactttctt	ttccttatct	600
attttaatct	С					611

<210> 70

<211> 882

<212> DNA

<213> Haematococcus pluvialis

<400> 70

atgctgtcga agctgcagtc aatcagcgtc aaggcccgcc gcgttgaact agcccgcgac 60 atcacgcggc ccaaagtctg cctgcatgct cagcggtgct cgttagttcg gctgcgagtg 120 gcagcaccac agacagagga ggcgctggga accgtgcagg ctgccggcgc gggcgatgag 180 cacagegeeg atgtageact ceageagett gacegggeta tegeagageg tegtgeeegg 240 cgcaaacggg agcagctgtc ataccaggct gccgccattg cagcatcaat tggcgtgtca 300 ggcattgcca tcttcgccac ctacctgaga tttgccatgc acatgaccgt gggcggcgca 360 gtgccatggg gtgaagtggc tggcactctc ctcttggtgg ttggtggcgc gctcggcatg 420 gagatgtatg cccgctatgc acacaaagcc atctggcatg agtcgcctct gggctggctg 480 ctgcacaaga gccaccacac acctcgcact ggaccctttg aagccaacga cttgtttgca 540 atcatcaatg gactgcccgc catgctcctg tgtacctttg gcttctggct gcccaacgtc 600 ctgggggcgg cctgctttgg agcggggctg ggcatcacgc tatacggcat ggcatatatg 660 tttgtacacg atggcctggt gcacaggcgc tttcccaccg ggcccatcgc tggcctgccc 720 780 tacatgaagc gcctgacagt ggcccaccag ctacaccaca gcggcaagta cggtggcgcg

ccctggggta	tgttcttggg	tccacaggag	ctgcagcaca	ttccaggtgc	ggcggaggag	840
gtggagcgac	tggtcctgga	actggactgg	tccaagcggt	ag		882
<210> 71						
<211> 528 <212> DNA						
	inia uredovo	ora				
<400> 71						
atgttgtgga	tttggaatgc	cctgatcgtt	ttcgttaccg	tgattggcat	ggaagtgatt	60
gctgcactgg	cacacaaata	catcatgcac	ggctggggtt	ggggatggca	tctttcacat	120
catgaaccgc	gtaaaggtgc	gtttgaagtt	aacgatcttt	atgccgtggt	ttttgctgca	180
ttatcgatcc	toctoattta	tctgggcagt	acaggaatgt	ggeegeteca	gtggattggc	240
000000	19019	333 3				
gcaggtatga	cggcgtatgg	attactctat	tttatggtgc	acgacgggct	ggtgcatcaa	300
cattagecat	tcccctatat	tccacgcaag	ggctacctca	aacggttgta	tatggcgcac	360
cgccggccac			33			
cgtatgcato	acgccgtcag	gggcaaagaa	ggttgtgttt	cttttggctt	cctctatgcg	420
ccacccctat	: caaaacttca	ggegaegete	cgggaaagac	atggcgctag	agegggeget	480
gccagagato	g cgcagggcgg	ggaggatgag	cccgcatccg	ggaagtaa		528
<210> 72						
<211> 762	2					
<212> DN2	A					
<213> No	stoc sp. PC	273102				
<400> 72						
atgatccag	t tagaacaac	c actcagtca	caagcaaaa	tgactccagt	actgagaagt	60
aaatctcac	t ttaadddc	t tttcattoc	t attotcatto	g ttagcgcato	g ggtcattagc	120
uuutotody						
ctgagttta	t tactttccc	t tgacatete	a aagctaaaa	t tttggatgt	t attgcctgtt	180

atactatggc	aaacattttt	atatacggga	ttatttatta	catctcatga	tgccatgcat	240
ggcgtagtat	ttccccaaaa	caccaagatt	aatcatttga	ttggaacatt	gaccctatcc	300
ctttatggtc	ttttaccata	tcaaaaacta	ttgaaaaaac	attggttaca	ccaccacaat	360
ccagcaagct	caatagaccc	ggattttcac	aatggtaaac	accaaagttt	ctttgcttgg	420
tattttcatt	ttatgaaagg	ttactggagt	tgggggcaaa	taattgcgtt	gactattatt	480
tataactttg	ctaaatacat	actccatatc	ccaagtgata	atctaactta	cttttgggtg	540
ctaccctcgc	ttttaagttc	attacaatta	ttctattttg	gtacttttt	accccatagt	600
gaaccaatag	ggggttatgt	tcagcctcat	tgtgcccaaa	caattagccg	tcctatttgg	660
tggtcattta	tcacgtgcta	tcattttggc	taccacgagg	aacatcacga	atatecteat	72
atttcttggt	ggcagttacc	agaaatttac	aaagcaaaat	ga		76

· <400> 73

tagggtgcgg aaccaggcac gctggtttca cacctcatgc ctgtgataag gtgtggctag 60
agcgatgcgt gtgagacggg tatgtcacgg tcgactggtc tgatggccaa tggcatcggc 120
catgtctggt catcacgggc tggttgcctg ggtgaaggtg atgcacatca tcatgtgcgg 180
ttggaggggc tggcacagtg tgggctgaac tggagcagtt gtccaggctg gcgttgaatc 240
agtgagggtt tgtgattggc ggttgtgaag caatgactcc gcccatattc tatttgtggg 300
agctgagatg atggcatgct tgggatgtgc atggatcatg gtagtgcagc aaactatatt 360
cacctagggc tgttggtagg atcaggtgag gccttgcaca ttgcatgatg tactcgtcat 420

<210> 73

<211> 617

<212> DNA

<213> Haematococcus pluvialis

ggtgtgttgg	tgagaggatg	gatgtggatg	gatgtgtatt	ctcagacgta	gaccttgact	480
ggaggcttga	tcgagagagt	gggccgtatt	ctttgagagg	ggaggctcgt	gccagaaatg	540
gtgagtggat	gactgtgacg	ctgtacattg	caggcaggtg	agatgcactg	tctcgattgt	600
aaaatacatt	cagatgc				·	617

<210> 74

<211> 1208

<212> DNA

<213> Haematococcus pluvialis

<400> 74

attgtgactg atagcgagac tctgggtcga tgttatctgc ctcaacaatg gcttagaaaa 60 gaagaaacag aacaaataca gcaaggcaac gcccgtagcc taggtgatca aagactgttg 120 ggcttgtctc tgaagcttgt aggaaaggca gacgctatca tggtgagagc taagaagggc 180 attgacaagt tgccggcaaa ctgtcaaggc ggtgtacgag ctgcttgcca agtatatgct 240 300 gcaattggat ctgtactcaa gcagcagaag acaacatatc ctacaagagc tcatctaaaa 360 ggaagcgaac gtgccaagat tgctctgttg agtgtataca acctctatca atctgaagac aagcctgtgg ctctccgtca agctagaaag attaagagtt tttttgttga ttagtgaatt 420 480 tttgttttat ttatgtctga tagttcaata aagagacaac acatacaata taaaatcatt gtctttaaat gttaatttag tagagtgtaa agcctgcatt ttttttgtac gcataaacaa 540 tgaattcacc ccgcttctgg tttttaaata attatgtcaa actagggaaa attcttttt 600 660 ttctcttcgt tctttttttg gcttgttgtg gagtcacagg cttgtcttca gattgataga 720 ggttgtatac actcaacaga gcaatcttgg cacgttcgct tccttttaga tgagctcttg 780 taggatatgt tgtcttctgc tgcttgagta cagatccaat tgcagcatat acttggcaag

cagctcgtac accgccttga cagtttgccg gcaacttgtc aatgcccttc ttagctctca 840 ccatgatage gtctgccttt cctacaagct tcagagacaa gcccaacagt ctttgatcac 900 ctaggctacg ggcgttgcct tgctgtattt gttctgtttc ttcttttcta agccattgtt . 960 gaggcagata acatcgaccc aacatcctcg agccatacta cagcataaaa ggatacgttt 1020 tetttaacag aaatttacee ttttgttate ageacataca aaaaaaaaga aatttaagat 1080 gagtaggact tccattctct caaaaatttt attcaatcca taaatgaatt atttttggac 1140 aaaaaagaaa gattatgcct gattttctct atttttttt tttttacaac tccaccaata 1200 1208 ctttctag

<210> 75

<211> 6316

<212> DNA

<213> Blakeslea trispora

<220>

<221> misc_feature

<222> (2694)..(2694)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (4263)..(4263)

<223> n is a, c, g, or t

<400> 75

aaggatgaag aatccaactc taataaaaat cttatggata tctttgatcg actcaaaaag 60
gctttcaatg ctattgctat taaaaaaaaa gagagagaga gaactatgag caaaaggact 120
ctatgccaag atggcaaaaa ggcaccagaa acccttagtt tattattgca taatccagtc 180
.
gagctagtac ttctgtagct caagcttaac cgaggatctt ggaatcaact cgtctcgtca 240

WO 2004/063358 PCT/EP2004/000100 348/358

ctcttgccga	tgatcctaga	aatggtatct	atggatgtta	tactaacatt	gttatctttc	300
aaggcctcga	agatgttatt	gttgcggtga	taaataggct	gctatgtact	gaagttgctc	360
tgtaaaatga	atctagttca	ctgcctactc	agcaaatggt	tgtttctaat	gtctttaaag	420
aaagaaaaaa	agatacatat	agactaccct	tcctttcaag	actgtaatcg	agaatcggcc	480
gatggtttat	tacaattaga	cgctgggaat	aagcaaaagg	attcatcttt	gtaaataaga	540
gactggtgca	tatgaaagca	aggatcgtat	caaggaatag	ttttgatcga	gcatcaccag	600
caaatgctgc	taatgttggc	ttcttctttg	cttcctgaga	ttgaatggga	tgtgcctaga	660
gcattgctat	tttaagtgt	atactttaga	tttgtgtctt	·tagatttgtg	tcattttatt	720
tagtcaagaa	agatccccct	ttctctatgt	atgctaagaa	gaaggagcaa	gaagtgtatt	780
tacaagttgg	aatgagattg	aaatattgta	cataataata	ataaaaagaa	aggtagatca	840
aaaaaaatgt	tctgcctatt	gtaagaaatc	gggaccaaca	ggtgcttgat	aaccagaagt	900
agcttccaat	tcaggtagag	gctctaggga	caaatacaca	attatgacag	gaattttctt	960
gttgacttga	acactacaag	agaaacgggt	cagcacaaaa	tccgaaaaaa	aaaagaaacg	1020
gaccattcat	gtcttaccta	tctagctctt	tgtcttcaat	tgcatcccat	tgctcaacca	1080
cagatacgct	tcccaattga	gtatattgat	gaagtgttcc	ctgcatttt	cgcttgacta	1140
attccactac	agtcacagtc	ttattaatgt	tttgtccttt	accagtcagg	ataatatgat	1200
ctttttgctt	cttctatcaa	aaaaataatt	cttgttttga	ataaaaaaaa	caaatattta	1260
aagaaactac	tttgatgacg	gtacctggaa	taactcgaga	cacacatcta	catatgcgtt	1320
gattttattg	tggctaattc	gaacctcatt	ttctgctggt	gggggctgtt	gactttcagt	1380
tgctgagacg	tccttcttgc	ttcttttata	gtcttccact	atgattttaa	tcaagaaagt	1440
aagtcagtga	tgattgttac	aagctatata	tcttgaaaaa	gaacagagag	gtattattat	1500

WO 2004/063358 PCT/EP2004/000100 349/358

cagatgcaac	atggttttct	gtatcatttt	catttcagtt	tctctgttca	aaaaaaaaa	1560
gaacactttc	tctttccact	cctcaaattt	tttctgctaa	actcctcgca	aaacatgtat	1620
ttgctttaaa	ctacaagttg	caattgtctg	atttagcaat	ttcaatatgc	cttttgtgaa	1680
tccacccaaa	aataaacaag	tgcttgagta	tacttgggtt	cagttcaaaa	gaaagcaagc	1740
tttttttt	ctttcttggg	aaagaaaaaa	aaatattgtt	gagccatcct	ttaccagcag	1800
tatgcgagct	acgacatagc	tggtctaaca	atgactgcaa	gcaatagatc	gagcttagtc	1860
tttctattgc	ttcyttgttt	gatctatgtt	cggccttacg	ctgacctatc	caatactcga	1920
gataggcaac	aagatttcga	acagtaatga	aataaatttc	ggataacagt	tgtggatgag	1980
gaagagaaag	cgacttgaac	tcgagaaact	ttgttgaaat	gaaatccgac	cttttacgtg	2040
atcatcatgt	attatcctct	tttctttt	tttcgtagtg	aattacttac	tgattgcgct	2100
caagtcgcgt	ctttataaag	aagaaaaaaa	aatattagaa	ctttcaaaaa	atataactga	2160
aaataaaagt	gtggctcgga	gagcaaatac	cacatccttt	gtcttcgctt	tggtaacacg	2220
gttaataagc	cactataggt	gaataatgat	catttctgag	aataaagcgc	ggcttgaagc	2280
ttatatccat	atcaggattc	atattaggca	caactcacaa	ttgaggttcc	agaagtgcca	2340
attttttt	cctgatagcc	tgtccaatta	agatcaaaaa	ccactgagtt	ttctctatat	2400
attttttt	ttcataattc	ttaactcttc	tteetetete	tetetetete	tetettttg	2460
gcttgcaaaa	aaaatcttta	gtaataccaa	agaaagcaaa	ccttttcctt	ttcttatttc	2520
cttgcttgtt	tttaattt	tgatttctct	atgctttaaa	tacccatttc	tttctttctt	2580
ctgctattac	ctatetttte	attectetee	cccctctctc	tcttggtcta	taaacatcat	2640
gaagteetet	tttaaaagtt	cgcttgacat	ttatgctgtt	tatatacago	atcntgtgtt	2700
ttccaagtgg	ttcattcttg	cttttgttct	ttcgattttc	: ctcaacactt	atctactgaa	2760

WO 2004/063358 PCT/EP2004/000100 350/358

cgcttcgaag	caacagccca	aagtgataat	caaaaaggtt	attgagcggg	tagaagtacc	2820
aagtagagaa	caacctaaat	cagtcataaa	gccctcctcc	aagaaacact	cttctcatca	2880
tcagtctgat	gtcattcgcc	ctcttgatga	agtattgggt	ttgctcggaa	cacccgaggc	2940
cttgactgat	gaagagatca	tctctattgt	tcaagctggt	aaaatggccc	cctatgctct	3000
tgaaaaggtc	ttgggcgatt	tagagcgcgc	tgtccatatc	cgtcgtgctt	tgatctcccg	3060
tgactctcgt	acgaaaactt	tggaagacag	tatgcttccc	gtgaaaaact	atcattatga	3120
taaagtcatg	ggtgcttgtt	gtgaaaatgt	cattggttat	atgcctattc	cagtaggtgt	3180
cgcaggtaag	aagttcaaca	agtcgcgata	tttgacaagt	tgctcatcat	tttcgaaaca	3240
ggtcctttgg	tgattgatgg	tgattctatt	catattccca	tggcaacțac	ggaaggttgt	3300
ttagttgctt	ctactgccag	aggttgtaaa	gcaatcaatg	ctggtggtgg	tgccaacaca	3360
attgttgttg	ctgatggtat	gactcgaggt	ccttgtgtcg	aatttcctac	aatcactcgc	3420
gctgctgact	gtaaacgatg	gattgaacaa	gagggtgaag	ctatcgtgac	cgaggcattc	3480
aattcaactt	ctcgttttgc	tegtgttegt	aaattgaaag	ttgctcttgc	cggtcgtcta	3540
gtctacatcc	gtttctctac	cactacaggt	gatgcaatgg	gcatgaacat	gatctccaag	3600
ggttgtgaaa	aggctttaag	caagattgct	gagagatatc	ctgatatgca	gatcatttct	3660
ctttctggta	actattgtac	tgacaagaaa	cctgctgcta	tcaactggat	tgaaggacgt	3720
ggtaaatctg	ttgttgctga	sgctgtcatc	cctggtacgg	ttgtcgaaaa	ggtattgaag	3780
acctctgtta	gtgctttggt	tgagctgaac	atctctaaaa	acctggttgg	ttctgctatg	3840
gctggctccg	teggtggett	taacgeteat	gctgctaata	ttctaactgc	catttacctt	3900
gctactggto	aagatcctgc	tcaaaatgta	. sagagttcta	actgtattac	tttgatgaaa	3960
gctgtcaatg	gcgaaagaga	ccttcatatc	tcttgtacaa	tgccctgtat	tgaagtaggc	4020

WO 2004/063358 PCT/EP2004/000100 351/358

accattggtg gtggtactat tttgcctcct caacaagcca tgttggattt cattggtgtg 4080 cgtggtcctc accctaccga acctggtgcc aatgcccgwc gccttgctcg tgttatctgt gcctctgtga tggctggtga attgtcttta tgtgcagctt tggctgctgg tcatcttgta 4200 aaggcacaca tggctcataa tcgtaatacc actgctgctg ccgctgttgt tcctgcccct 4260 4320 aanggcatag ttgatgtctc tacacctcct gctacacctg cagaaaagaa tgatcctatt cctggaagtt gtatcaagtc atagaattaa tattatatat atatcatata caaaaaaaag 4380 4440 aaaaaaaaa cactacatct atttatattt ctccatgtac acacacacac acacatataa aaactcttta ttttccaata ttttgctttt ataaataatc ttatttcatt ctaaataaac 4500 tgttttttt tattaatcat caaaccctgc tgagagctgt gcaatatcat ctatgttttc 4560 4620 atggtttaac tctggtatcg gwcgagcctc ctctgtactt gaagtttgta ggcagttttt atttaaggct gctggtcgat catgatcatc akcaaacctg acagcatgaa gttttgactg 4680 4740 atgagcaatt tcactaaggg cagaatctga actetttege tteetactat tgaccatatt gtctttaggt ggaatgagtg aatagcgtct tgtcatatgt aacacagaat caacaatatc 4800 4860 ctggtgatga aactcggcca aacatagcgc ctttctcccc caacaattat aataatcaaa atgagaatga catgtacggt tttcctcgat gacaatatcc aacgtcttgt cataatcctc 4920 4980 tgtgcgyata ccattcatct tttggaagaa cgcacggtag ctctcacaag ctgtcctcag agagttccgt gccatgtttc ccaatgctcc tggcaagtcg aaatgaagtt gtcgaatctg 5040 gcgatgtatg tctacaatgt cgcctgtttc tttcattaga tcaagcattc gtgtagccca 5100 aatgatgtct atgttatgat tttctttcat tccagtaata actatagttt ctcggcaaat 5160 cgaatgastg atggagtaaa ttcatcaaaa gtgcaagtaa tacatacagt gcttgaagaa 5220 atcttgtgta gcacgcctat attatgtaat ataggatcga ttctcgaaac tcgacataac 5280

WO 2004/063358 PCT/EP2004/000100 352/358

caccaggctt	tagcaagegt	tttatttcat	tcatgacaag	ctattgttaa	ttcytgctta	5340
ataaaacaaa	atgaaaaaaa	catacccccc	tcmaaactta	cttcccactc	ttgattggaa	5400
aaacaggtat	agacgtgacg	catatgtata	taatcaaaac	actcatcagg	atagggtaaa	5460
ccattgagca	catcgcattg	ggtgaagaaa	gtattaggag	gcttgatggc	tgtaggatat	5520
ataggtgcaa	tatcaatacc	gtaaaactca	gcatttggga	attctgtagc	catctccaga	5580
atccaagtac	ctgtgccaca	agcaacatca	agcactttag	gtaagggtat	acattgttgt	5640
tcttgttgtt	gttgttgaca	atcacttgag	tctgagtttc	gttttgattg	ttttaatgac	5700
aataattctt	ttacaggtgc	tgagaaatta	ccgtcaaata	gatacttgta	aataaaatgc	5760
taaaaataaa	aacaatagaa	aaaaaaattg	acgctcattt	cattactatg	gaaataactg	5820
caaaatctta	ccacttgtac	aagtctatct	tgctcaatct	catcgtttgg	cagaatgtat	5880
ttattgttgt	_, agtattgata	tcttctacca	ttcatgatat	aactgtcgct	tetaatgete	5940
tgaggtgaag	tacttgtagg	tgaaggtgga	agtgacgcaa	ttttgtcaag	cttaacagga	6000
tectetegge	tacatgtttt	ctgcatatca	ggaaaatctt	gtttatttga	aacatcaaca	6060
gtagatgtgg	tgtgatcttt	tttgaaaata	tcgatgcctt	cctttgaaag	ccttttgaaa	6120
ggctctttta	actttttga	gtgagagcta	cccatgatag	cttatgaaga	attaaaaaga	6180
aaaaagcaaa	ı aaaaattaaa	aaaaaaaaa	. gtagcaaaaa	attetgtegt	aattatacaa	6240
gccaatcaaa	ı atcgaaattc	atgcaaggca	tagatgttca	cgtggatttg	atggttgatc	6300
cttttttt	gcaaga					6316

<210> 76

<211> 1170

<212> DNA

<213> Thermus thermophilus

<400> 76 atgaagegee ttteeetgag ggaggeetgg eectaeetga aagaeeteea geaagateee 60 120 ctegeegtee tgetggegtg gggeegggee cacceegge tetteettee cetgeeeege 180 ttccccctgg ccctgatctt tgaccccgag ggggtggagg gggcgctcct cgccgagggg 240 accaccaagg ccaccttcca gtaccgggcc ctctcccgcc tcacggggag gggcctcctc accgactggg gggaaagctg gaaggaggcg cgcaaggccc tcaaagaccc cttcctgccg 300 aagaacgtcc gcggctaccg ggaggccatg gaggaggagg cccgggcctt cttcggggag 360 tggcgggggg aggagcggga cctggaccac gagatgctcg ccctctccct gcgcctcctc 420 gggcgggccc tcttcgggaa gcccctctcc ccaagcctcg cggagcacgc ccttaaggcc 480 540 ctggaccgga tcatggccca gaccaggagc cccctggccc tcctggacct ggccgccgaa gcccgcttcc ggaaggaccg gggggccctc taccgcgagg cggaagccct catcgtccac 600 660 cogcocctct cocaccttcc cogagagogo gocctgagog aggoogtgac cotcotggtg gcgggccacg agacggtggc gagcgccctc acctggtcct ttctcctcct ctcccaccgc 720 780 ccggactggc agaagcgggt ggccgagagc gaggaggcgg ccctcgccgc cttccaggag gecetgagge tetacecee egectggate etcaceegga ggetggaaag geceteete 840 ctgggagagg accggctccc cccgggcacc accctggtcc tctcccccta cgtgacccag 900 aggetecaet teccegatgg ggaggeette eggeeegage getteetgga ggaaaggggg 960 1020 acccettegg ggcgctactt cccetttggc ctggggcaga ggctctgcct ggggcgggac ttcgccctcc tcgagggccc catcgtcctc agggccttct tccgccgctt ccgcctagac 1080 cccctccct tccccgggt cctcgcccag gtcaccctga ggcccgaagg cgggcttccc 1140 1170 gcgcggccta gggaggaggt gcgggcgtga

<210> 77

<211> 2981

<212> DNA

<213> Blakeslea trispora

<400> 77

tctagaattc attccattcg aaaggatcaa cataaccaat ttaatgacta ctagctaatg 60 gatacaaata tacgcacaaa aaaagaaaga attctatgat caaagagaac acagacacag 120 agtgatacat ttaaatggtt aagttcttat gatgttaaaa tggtaacttt attattgaat 180 taaatgcgaa tatcgttgct gctttgtact tggaaaacgt taggtaaaag ttggttaatg 240 aaagaagcag gagttgtagt atcatctctt gggaagaaat agaaaaagag gaaagtaaca 300 360 aagtaacaag caagacaata atagatccaa tggctttcgg tcttacgagt ttgttcagga gcatacttct tttggctatc ttgtaacttt cttggtaagg gattctggcc aaagctttta 420 cagacttggt cggaagtaag cttacttcca gcaagaacga taggaacacc agtacctgga 480 tgtgtactac aaagaaaaga gaaatgagta cgtgcgttat taaaaaaaag aaaaaaagag 540 600 ggcaaaagta ttacctagct ccgacaaaga aaagattatc ataacggttt gtggaatcct 660 tggtactagg tctgaaccag agaacttgga acacatcatg agaaagacca agaatagaac 720 ctctccaaag gttaaacttg ctttgccaaa cactaggatc attcacttct tcatgttcaa 780 tcaaattagc aaagttgttt actcccaaac gacgttcgat aacttccaga accatcttgc 840 gtgcacggtt taccaactca ggataatttt cttcagcact gtttcctgtc ttactcttca 900 tatggccaat tggaaccaac acaataatgg agtccttgtt gggaggtgcg gcagattcat caattcgaga tggaacgttg acatagaatg aagcttcaga gggcaaaccg aagtcgttga 960 1020 aaatctcatc aaaactttcc ttgtaggctt cagccaagaa gatattgtgt acgtctaatt

WO 2004/063358 PCT/EP2004/000100 355/358

gaggcacctt	tgttgacatg	gaccaataaa	acgaaataga	tgatgaagtg	agtttctttg	1080
aggctaatgt	cttctttgtc	caattgcaag	gaggtaacag	atggtgataa	gcataaacaa	1140
gatccgcatt	acatacgact	gcatcggctt	caatgacttc	teegetttee	aaagtgacac	1200
cggttacacg	cttgtcttta	tcgacagtgt	taattttagc	aacaggcgat	tgatatctga	1260
attcagcacc	gtactttttg	gaggcgatag	actcaagctt	ctgaacaacc	atgttgaaac	1320
caccacgagg	ataccagata	ccttcagcaa	actcggtgta	ttgtaacaaa	ctgtaaactg	1380
ctggagcatc	ataaggcgac	atactatatt	ccaaaaatag	aaaatagaac	aatgaatatc	1440
aaaattcctt	tcacttgccc	tttttcacat	ttctctttc	ccaccccga	ccggtctcac	1500
tcatttttt	ttcatcccac	accacgcgtt	gtatgtgtac	ttaccccata	tacattgttt	1560
gaaaagtaaa	agccatacgc	attttcttgg	tttggaaata	tttactggct	cggtcataga	1620
tcttaccaaa	caagtgcaag	cgaaagattt	caggcacata	ctgaagacga	atcaaatccc	1680
aaatggtttc	aaagttgcgc	ttgatagcaa	taaatgtacc	ttgttcataa	tggacatgtg	1740
tttccttcat	gaaatccaag	aatctaccaa	atccaagggg	accctcaata	cggtccaatt	1800
cgcccttcat	cttggttaaa	tcggaagaga	gttgtacggc	atcaccgtcg	tcaaaatgaa	1860
ccttatagtt	attgtcacag	cgaagcaaat	ccaaatgatc	accaatacgt	tcatccaaat	1920
cagcaaatgc	atcttcaaaa	agcttaggca	tcaaatagag	tgagggaccc	tgatcaaagc	1980
gatgaccatc	gtgatgaatg	aatgaacaac	ggccaccgga	aaagtcgttc	ttttcaacaa	2040
cagtaactcg	aaaaccttca	cgagcaagac	gagcagcagt	agcagttccg	ccaataccgg	2100
caccaatgac	aacaatatgo	ttcttttgat	cagacatgag	attaaaatag	ataaggaaaa	2160
gaaagtgaaa	agaaattcgg	aagcatggca	cattettett	tttataaata	catgcctgac	2220
tttettttt	: catcgatatg	r atatatgcat	atgatagata	tacaagcaat	cttcttcaag	2280

WO 2004/063358 PCT/EP2004/000100 356/358

gagtttgaaa ttttgtcctc caggagcaaa aaaaagtttt tttttataca tgtttgtaca 2340 caagaatagt taccaatttg ctttggtctt acgtgctgca agtttatatc gttttcaatt 2400 2460 tctttgtctt tacattttct ttgtccttta tctttcctca tttagtcttt gggagaatta 2520 ggaaaaggga gcggaaaggt aagaaatgct tgcgtatttt actaattcgg caaacatcca atttggcaaa cagcagcctg tgcaacgctc tcgagatgac agtatctttg attacactct 2580 aaatctcgat gacccgacca aaaagagcga acaaagaaat aatcttgtgc attcgaatat 2640 2700 gatggaagat tttttccccc ttattctaaa tgttgacata gcgtgtatgt tatataaaca aaaagaaatt gtacaaactt tettttette tettttatt ttatetetat gteaataete 2760 acttatctgg aatttcatct ctactataca ctacctgtcc ttgcggcatt gtgttggctg 2820 2880 ctaaagccgt ttcactcaca gcaagacaat ctcaagtata aatttttaat gttgatggcc gcctctaccg catcgatttg ggacaattat atcgtttatc atcgcgcttg gtggtactgt 2940 cctacttgtg ttgtggctgt cattggctat gtacctctag a 2981

<210> 78

<211> 1749

<212> DNA

<213> Blakeslea trispora

<400> 78

atgtctgate aaaagaagca tattgttgtc attggtgccg gtattggcgg aactgctact 60 gctgctcgtc ttgctcgtga aggttttcga gttactgttg ttgaaaagaa cgacttttcc 120 ggtggccgtt gttcattcat tcatcacgat ggtcatcgct ttgatcaggg tccctcactc 180 tatttgatgc ctaagctttt tgaagatgca tttgctgatt tggatgaacg tattggtgat 240 catttggatt tgcttcgctg tgacaataac tataaggttc attttgacga cggtgatgcc 300

WO 2004/063358 PCT/EP2004/000100 357/358

gtacaactet etteegattt aaccaagatg aagggegaat tggaeegtat tgagggteee	360
cttggatttg gtagattctt ggatttcatg aaggaaacac atgtccatta tgaacaaggt	420
acatttattg ctatcaagcg caactttgaa accatttggg atttgattcg tcttcagtat	480
gtgcctgaaa tctttcgctt gcacttgttt ggtaagatct atgaccgagc cagtaaatat	-540
. ttccaaacca agaaaatgcg tatggctttt acttttcaaa caatgtatat gggtatgtcg	600
cettatgatg etceageagt ttacagtttg ttacaataca eegagtttge tgaaggtate	660
tggtatcctc gtggtggttt caacatggtt gttcagaagc ttgagtctat cgcctccaaa	720
aagtacggtg ctgaattcag atatcaatcg cctgttgcta aaattaacac tgtcgataaa	780
gacaagcgtg taaccggtgt cactttggaa agcggagaag tcattgaagc cgatgcagtc	840
gtatgtaatg cggatcttgt ttatgcttat caccatctgt tacctccttg caattggaca	900
aagaagacat tagcctcaaa gaaactcact tcatcatcta tttcgtttta ttggtccatg	960
tcaacaaagg tgcctcaatt agacgtacac aatatcttct tggctgaagc ctacaaggaa	1020
agttttgatg agattttcaa cgacttcggt ttgccctctg aagcttcatt ctatgtcaac	1080
gttccatctc gaattgatga atctgccgca cctcccaaca aggactccat tattgtgttg	1140
gttccaattg gccatatgaa gagtaagaca ggaaacagtg ctgaagaaaa ttatcctgag	1200
ttggtaaacc gtgcacgcaa gatggttctg gaagttatcg aacgtcgttt gggagtaaac	1260
aactttgcta atttgattga acatgaagaa gtgaatgatc ctagtgtttg gcaaagcaag	1320
tttaaccttt ggagaggttc tattcttggt ctttctcatg atgtgttcca agttctctgg	1380
ttcagaccta gtaccaagga ttccacaaac cgttatgata atcttttctt tgtcggagct	1440
agtacacatc caggtactgg tgttcctatc gttcttgctg gaagtaagct tacttccgac	1500
caagtotgta aaagotttgg ccagaatooo ttaccaagaa agttacaaga tagccaaaag	1560

WO 2004/063358		;	358/358	PCT/EP2004/000100		
aagtatg	ctc ctgaacaaac	tcgtaagacc	gaaagccatt	ggatctatta	ttgtcttgct	1620
tgttact	ttg ttactttcct	ctttttctat	ttcttcccaa	gagatgatac	tacaactcct	1680
gcttctt	tca ttaaccaact	tttacctaac	gttttccaag	tacaaagcag	caacgatatt	1740
cgcattt	aa					1749
<210>	79			•		
<211>	25					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Primer				•	
<400>	79		•			
ccgatg	gcga cgacggaagg	ttgtt				25
<210>	80					
<211>	25					
<212>						
<213>	Artificial				•	
<220>						

25

<223> Primer

catgttcatg cccattgcat cacct

<400> 80

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N1/15 C12N C12N15/80 C12P23/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C12P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Chatlon of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 98/46772 A (BOVENBERG ROELOF ARY LANS 1-7,9,14, ;GIST BROCADES BV (NL); SELTEN GERARDUS) 19-23, 22 October 1998 (1998-10-22) 31-33,35 the whole document VAN HEESWIJCK R ET AL: "HIGH FREQUENCY Υ 1-3,7,TRANSFORMATION OF MUCOR WITH RECOMBINANT 14, PLASMID DNA" 19-21, 31-34 CARLSBERG RESEARCH COMMUNICATIONS vol. 49, no. 7, 1984, pages 691-702, XP009031431 ISSN: 0105-1938 the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 27 May 2004 29/06/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Vogt, T

	PCT/EP2004/000100					
	etion) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
Y	NAVARRO EUSEBIO ET AL: "Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides" EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 267, no. 3, February 2000 (2000-02), pages 800-807, XP002282392 ISSN: 0014-2956 the whole document	1-3,7, 14, 19-21, 31-34				
Y	NAVARRO E ET AL: "A negative regulator of light-inducible carotenogenesis in Mucor circinelloides" MGG MOLECULAR GENETICS AND GENOMICS, vol. 266, no. 3, November 2001 (2001-11), pages 463-470, XP002282393 ISSN: 1617-4615 the whole document	1-3,7, 14, 19-21, 31-34				
Y	SKORY C D: "Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae." MGG MOLECULAR GENETICS AND GENOMICS, vol. 268, no. 3, November 2002 (2002-11), pages 397-406, XP002282394 ISSN: 1617-4615 (ISSN print) the whole document	1-3,7, 14, 19-21, 31-34				
A	US 6 413 736 B1 (JOLLY SETSUKO OMATA ET AL) 2 July 2002 (2002-07-02) the whole document.					
Α .	US 2002/051998 A1 (SCHMIDT-DANNERT CLAUDIA ET AL) 2 May 2002 (2002-05-02) the whole document					
A	LEE P C ET AL: "Metabolic engineering towards biotechnological production of carotenoids in microorganisms." APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 60, no. 1-2, October 2002 (2002-10), pages 1-11, XP002282395 ISSN: 0175-7598					
A	ZHIQIANG A ET AL: "New cosmid vectors for library construction, chromosome walking and restriction mapping in filamentous fungi" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 176, no. 1-2, 17 October 1996 (1996-10-17), pages 93-96, XP004070214 ISSN: 0378-1119					
	-/	}				
	7					

	PC1/EP2004/0			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relavant passages	Relevant to claim No.		
P,Y	NICOLAS FRANCISCO E ET AL: "Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 22, no. 15, 1 August 2003 (2003-08-01), pages 3983-3991, XP002282396 ISSN: 0261-4189 (ISSN print) the whole document	1-3,31		

Information on patent family members

PCT/EP2004/000100

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9846772	A	22-10-1998	AU	7642298 A	11-11-1998
			BR	9808859 A	01-08-2000
			CN	1257546 T	21-06-2000
			WO	9846772 A2	22-10-1998
			EP	0979294 A2	16-02-2000
			JP	2001518798 T	16-10-2001
			PL	336345 A1	19-06-2000
			US	6432672 B1	13-08-2002
US 6413736	B1	02-07-2002	US	6015684 A	18-01-2000
			US	5922560 A	13-07-1999
			US	5466599 A	14-11-1995
			US	2003049241 A1	13-03-2003
			AU	688280 B2	12-03-1998
			ΑU	5008693 A	08-11-1994
		•	EΡ	0708604 A1	01-05-1996
			JР	8508885 T	24-09-1996
			NO	954052 A	11121995
			NZ	255742 A	26-05-1997
•			WO	9423594 A1	27-10-1994
US 2002051998	A1	02-05-2002	ΑU	2257401 A	18-06-2001
•			EP	1238068 A1	11-09-2002
•			MO	0142455 A1	14-06-2001

Internationales Aktenzeichen
Pc1/EP2004/000100

a. Klassifizierung des anmeldungsgegenstandes IPK 7 C12N1/15 C12N15/80 C12P23/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C12N C12P Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsullierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, BIOSIS C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kalegorle® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Ansoruch Nr. X WO 98/46772 A (BOVENBERG ROELOF ARY LANS 1-7,9, ;GIST BROCADES BV (NL); SELTEN GERARDUS) 14, 19-23, 22. Oktober 1998 (1998-10-22) 31~33,35 das ganze Dokument Υ VAN HEESWIJCK R ET AL: "HIGH FREQUENCY 1-3,7,14, TRANSFORMATION OF MUCOR WITH RECOMBINANT PLASMID DNA" 19-21, CARLSBERG RESEARCH COMMUNICATIONS, 31-34 Bd. 49, Nr. 7, 1984, Seiten 691-702, XP009031431 ISSN: 0105-1938 das ganze Dokument Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie X Besondere Kategorien von angegebenen Veröffentlichungen *T* Späiere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolfidiert, sondern nur zum Verständnis des der A* Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam enzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Or Veröffentlichung, die sich auf eine m\u00fcndiche Offenbarung, eine Benutzung, eine Ausstellung oder andere Ma\u00e4nahmen bezieht
 Ver\u00f6ffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Priorit\u00e4tstadatum ver\u00f6ffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamille ist Datum des Abschlusses der Internationalen Recherche Absendedatum des Internationalen Recherchenberichts 27. Mai 2004 29/06/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bedlensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Facc (+31–70) 340–3016 Vogt, T

		101/2720	004/000100	
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie*	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht komm	enden Telle	Betr. Anspruch Nr.	
Y	NAVARRO EUSEBIO ET AL: "Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides" EUROPEAN JOURNAL OF BIOCHEMISTRY, Bd. 267, Nr. 3, Februar 2000 (2000-02), Seiten 800-807, XP002282392 ISSN: 0014-2956 das ganze Dokument	1-3,7, 14, 19-21, 31-34		
Y	NAVARRO E ET AL: "A negative regulator of light-inducible carotenogenesis in Mucor circinelloides" MGG MOLECULAR GENETICS AND GENOMICS, Bd. 266, Nr. 3, November 2001 (2001-11), Seiten 463-470, XP002282393 ISSN: 1617-4615 das ganze Dokument		1-3,7, 14, 19-21, 31-34	
Υ	SKORY C D: "Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae." MGG MOLECULAR GENETICS AND GENOMICS, Bd. 268, Nr. 3, November 2002 (2002-11), Seiten 397-406, XP002282394 ISSN: 1617-4615 (ISSN print) das ganze Dokument		1-3,7, 14, 19-21, 31-34	
A	US 6 413 736 B1 (JOLLY SETSUKO OMATA ET AL) 2. Juli 2002 (2002-07-02) das ganze Dokument			
A	US 2002/051998 A1 (SCHMIDT-DANNERT CLAUDIA ET AL) 2. Mai 2002 (2002-05-02) das ganze Dokument			
Α	LEE P C ET AL: "Metabolic engineering towards biotechnological production of carotenoids in microorganisms." APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, Bd. 60, Nr. 1-2, Oktober 2002 (2002-10), Seiten 1-11, XP002282395 ISSN: 0175-7598			
А	ZHIQIANG A ET AL: "New cosmid vectors for library construction, chromosome walking and restriction mapping in filamentous fungi" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, Bd. 176, Nr. 1-2, 17. Oktober 1996 (1996-10-17), Seiten 93-96, XP004070214 ISSN: 0378-1119			
	-/			
	·			

Internationales Aktenzeichen
PC1/EP2004/000100

	PCI/E	2004/000100					
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN							
Kategorie°	e° Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.						
C.(Fortsetz: Kalegorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile NICOLAS FRANCISCO E ET AL: "Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, Bd. 22, Nr. 15, 1. August 2003 (2003-08-01), Seiten 3983-3991, XP002282396 ISSN: 0261-4189 (ISSN print) das ganze Dokument	Betr. Anspruch Nr. 1-3,31					

Angaben zu Veröffemtik gen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PC1/EP2004/000100

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9846772	Α.	22-10-1998	AU	7642298 A	11-11-1998
110 00 107 7 12	•••		BR	9808859 A	01-08-2000
			CN	1257546 T	21-06-2000
			WO	9846772 A2	22-10-1998
			EP	0979294 A2	16-02-2000
			JP	2001518798 T	16-10-2001
			PL	336345 A1	19-06-2000
			US	6432672 B1	13-08-2002
US 6413736	B1	02-07-2002	US	6015684 A	18-01-2000
			บร	5922560 A	13-07-1999
			US	5466599 A	14-11-1995
			US	2003049241 A1	13-03-2003
			ΑU	688280 B2	12-03-1998
			AU	5008693 A	08-11-1994
			EP	0708604 A1	01-05-1996
			JP	8508885 T	24-09-1996
			NO	954052 A	11-12-1995
			NZ	255742 A	26-05-1997
			WO	9423594 A1	27-10-1994
US 2002051998	`A1	02-05-2002	AU	2257401 A	18-06-2001
			EP	1238068 A1	11-09-2002
			WO	0142455 A1	14-06-2001