Lab01

Question1:

Which of the following functions are increasing? eventually nondecreasing? If you remember techniques from calculus, you can make use of those.

(1)
$$f(x) = -x^2$$

-From the derivative we can check by using positive and negative numbers

$$f(x) = -2x = -2(-6) \Rightarrow +12.$$

$$f(x) = -2x = -2(6) \rightarrow -12$$

So the function is increasing from $-\infty$ towards '0' and it is decreasing from 0 towards ∞ But the graph is eventually decreasing.

(2)
$$f(x) = x^2 + 2x + 1$$

the derivative of f(x) is

$$f'(x) = 2x + 2$$

-From the derivative we can check by using positive and negative numbers

Let
$$x = 4$$

f'(x) = $2x + 2$

Let
$$x = -4$$

f'(x) = 2x + 2
= 2(-4) +2
$$\rightarrow$$
 -6

 $= 2(4) + 2 \rightarrow 10$

** the function is decreasing from $-\infty$ to wards -1 and is increasing from -1 towards ∞ . Eventually the graph is increasing.

(3)
$$f(x) = x^3 + x$$

$$f'(x) = 3x^2 + 1$$

-From the derivative we can check by using positive and negative numbers

Let
$$x = 3$$

F'(x) =
$$3x^2 + 1$$

= $3(3)^2 + 1 \rightarrow 28$

Let
$$x = -3$$

F'(x) =
$$3x^2 + 1$$

= $3(-3)^2 + 1 \rightarrow 28$

** The function is increasing. It is eventually increasing.

Answer:

- 1) It is not eventually non decreasing
- 2) It is eventually non decreasing
- 3) It is increasing

Question2:

Consider the following pairs and functions f, g. Decide if it is correct to say that, asymptotically, f grows no faster than g, g grows no faster than f, or both.

(1)
$$f(x) = 2x^2$$
, $g(x) = x^2 + 1$

Lim
$$f(x)/g(x) \rightarrow 2x^2/x^2 +1$$

 $n\rightarrow \infty$

Since both functions have the same degree so it will grow both. Or we can take derivatives of both f(x) and g(x)

Lim
$$2x^2/x^2 + 1 = \lim_{x \to \infty} 2x^2/x^2 (1 + 1/x^2)$$
 by canceling x^2
 $x \to \infty$

= lim
$$2/(1+1/x^2)$$
 , if we replace n by ∞ denominator will be 1 n $\rightarrow \infty$

= lim 2 , since we got constant, each function grows no faster than $n \rightarrow \infty$ the other.

(2)
$$f(x) = x^2$$
, $g(x) = x^3$

Lim
$$f(x) / g(x)$$

$$x \rightarrow \infty$$

=lim x^2/x^3 , by canceling x^2 on both numerator and denominator $x \rightarrow \infty$

So f(x) grows no faster than g(x)

(3)
$$f(x) = 4x + 1$$
, $g(x) = x^2 - 1$

=
$$\lim f(x) / g(x)$$

$$x \rightarrow \infty$$

$$= \lim_{x \to 0} 4x + 1/x^2 - 1$$

```
x \rightarrow \infty
```

Answer:

- 1) Both functions grow no faster than each other.
- 2) f(x) grows no faster than g(x).
- 3) f(x) grows no faster than g(x).

Question3: GCD program

```
package algorithm.lab01;
public class GCDProb1 {
    public static void main(String[] args) {
        System.out.println(GCDProb1.getGCD(8, 4));
    }
    public static int getGCD(int m, int n) {
        int smaller = m > n ? n: m;
        int gcd = 1;
        for (int i =2; i <= smaller; i ++){
            if ( m % i == 0 && n % i == 0){
                 gcd = i;
            }
        }
        return gcd;
}</pre>
```

Question4: Greedy Strategies

Answer:

The algorithm does not work. Consider $S = \{1, 2, 4, 5\}$, k = 10. Using the greedy strategy, the algorithms populate the set T with 1, 2, 4 and then cannot continue, so the final value is $T = \{1, 2, 4\}$. Since the sum of elements in T is not 7, the return is (incorrectly) null.

Question5: SubsetSum problem

This is correct. We must show that the sum of the elements of $T' = T - \{s_{n-1}\}$ is $k - s_{n-1}$. But the sum of the elements of T (which is the set T' U $\{s_{n-1}\}$) is k. Since $s_{n-1} \notin T'$, the sum of the elements of T' must be s_{n-1} less than the sum of the elements of T; that is the sum of the elements of T0 is $k-s_{n-1}$. (Note that it is possible that the only element of T is s_{n-1} .

In that case the sum of elements of T is s_{n-1} (so it must be that $k = s_{n-1}$). Then the sum of elements of $T' = T - \{s_{n-1}\}$, which is now empty, must be k - k = 0; since the sum of an empty set of integers is 0, this result is still correct.)

If
$$T = \{S0, S1, S2, \dots, S_{n-2}, S_{n-1}\}\$$

$$K = S_0 + S_1 + S_1 + S_{n-1} + S_{n-2} + S_{n-1}$$

Then if we subtract S_{n-1} from T

$$T' = T - S_{n-1} = \{So, S1, S2, \dots, S_{n-2}\}$$
. Then we should subtract the same from our K

$$K_0 = \{S_0 + S_1 + S_2, \ldots + S_{n-2}\}.$$

So to get the SubsetSum of T' equal to K₀ we have to subtract equal value that we subtract from T'

Which is

$$K_0 = k - S_{n-1}$$