Networking Topology

Lecture 2

Wrap-up..

- Why Networks?
- Classification of Computer Networks based on:
 - Transmission media
 - Guided
 - Twisted pair (UTP,STP)
 - ► Fiber (Multimode, Single Mode)
 - coaxial
 - Unguided (Wireless)
 - Network size
 - **LAN**
 - **■** WAN
 - Management Method
 - Peer to peer
 - Client / server

What is Network Topology?

The physical layout or the geometric pattern formed by the arrangement of interconnected computers is referred to as topology.

structure of a network and may be depicted physically or logically (Wikipedia)

Types of Network Topology

Physical topology defines how nodes in a network are physically linked and includes aspects such as geographic location of nodes and physical distances between nodes.

Logical topology describe how nodes communicate in a network across its physical topology (how signals act on the network).

Types of Network Topology

- Physical topology
 - **■**Star
 - **B**US
 - Ring
 - Mesh
 - **■**Tree

- Logical Topology
 - Ethernet
 - ■Token Ring

Physical topology-Star

- Each network host is connected to a central hub/switch with a point-to-point connection.
- More cabling, hence higher cost.
- All signals transmission through the hub; if down, entire network down.
- Depending on the intelligence of hub, two or more computers may send message at the same time.

Physical topology-Star

Physical topology- Bus

- **■** Simple and low-cost to implement
- ► A single cable called a trunk (backbone, bus)
- Only one computer can send messages at a time
- Each computer receives the message, but ignores it if not addressed to it.
- **■** Passive topology computer only listen for, not regenerate data.

Physical topology- Bus

- Bounce-back: a phenomenon that occurs when a signal reaches the end of a cable, reverses direction, and continues along the cable. A terminator at each end of the cable is used to prevent this.
- Terminator: a device connected to the end of a bus to absorb the signal
- Terminators used at both ends of the trunk to absorb signals and prevent bounce back.

Physical topology- Bus

Bus Topology connectors

Bus connectors

- The **T-connector**: a device that looks like the letter "T."

 The top of the T is inserted into the cable much like a plumber taps into a pipe. The vertical bar of the letter screws onto the network card.
 - Drop-cable: the cable that extends from a node to the bus cable.
- Coaxial cable can carry a signal up to 500 meters

Physical topology- Ring

- A ring topology is a bus topology in a closed loop.
- Used in peer-to-peer networks.
- Data travels around the ring in one direction.
- The intermediate **nodes** repeat (**re transmit**) the data to keep the signal strong.
- Disadvantages: Aggregate network bandwidth is bottlenecked by the weakest link between two nodes.

Physical topology- Mesh

- Used to connect the infrastructure nodes (i.e. bridges, switches and other infrastructure devices) rather than clients.
- The infrastructure nodes are connected to as many other nodes as possible and cooperate with one another to efficiently route data from/to clients.
- The Mesh network is typically quite reliable, as there is often more than one path between a source and a destination in the network.
- Fault tolerant: a feature that ensures that a network continues to operate In the face of a network component failure.

Full-mesh vs. partial-mesh

Physical topology- Tree

It is a hybrid network topology in which star networks are interconnected via bus networks (starbus network).

Logical Topology - Token Ring

Ring Topology

- Every computer serves as a repeater to boost signals
- Typical way to send data:
 - Token passing
 - only the computer who gets the token can send data
- Disadvantages
 - Difficult to add computers
 - More expensive
 - If one computer fails, whole network fails

Logical Topology - Ethernet

- Doesn't use tokens... it is a shared media
- Systems communicating over Ethernet divide a stream of data into shorter pieces called <u>frames</u>.
- Each frame contains source and destination addresses, and error-checking data so that damaged frames can be detected and discarded;
- The frame ends with a <u>frame check sequence</u> (FCS), which is a 32-bit <u>cyclic redundancy check</u> used to detect any in-transit corruption of data.

Logical Topology - Ethernet

- 100BASE-T means: 100 Mbit/s, BASE denotes that baseband transmission is used. The T designates twisted pair cable.
- Uses carrier sense multiple access with collision detection (CSMA/CD) rather than tokens.
- IEEE published the 802.3 standard as a draft in 1983 and as a standard in 1985.
- Can be used with copper(UTP) or fiber media.

CSMA/CD Media Access Control

- CD: Collision Detection
 - If two stations transmit at once
 - Their signals collide, scrambling one another
 - Because each sender listens (senses the carrier), both know that there has been a collision
 - Both stop and wait a random amount of time.

CSMA/CD animations

https://www.youtube.com/watch?v=nyYr3cR5BTw

https://www.youtube.com/watch?v=iKn0GzF5-IU

RJ-45 connector for Ethernet over UTP

Pi	n T568A Pai	r T568B Pair	Wire	T568A Color	T568B Color	Pins on plug face (socket is reversed)
1	3	2	tip	white/green stripe	white/orange stripe	
2	3	2	ring	green solid	orange solid	Pin Position
3	2	3	tip	white/orange stripe	white/green stripe	5 5 4 3 2
4	1	1	ring	blue solid	blue solid	
5	1	1	tip	white/blue stripe	white/blue stripe	
6	2	3	ring	orange solid	green solid	
7	4	4	tip	white/brown stripe	white/brown stripe	
8	4	4	ring	brown solid	brown solid	

Exercise:

Surf the internet to list the Advantages and disadvantages of network topologies