PROFILING AND ANALYZING THE YELP DATASET: PART 1 - YELP DATASET PROFILING AND UNDERSTANDING

1. Profile the data by finding the total number of records for each of the tables below:

```
i. Attribute table = 10000
ii. Business table = 10000
iii. Category table = 10000
iv. Checkin table = 10000
v. elite_years table = 10000
vi. friend table = 10000
vii. hours table = 10000
viii. photo table = 10000
ix. review table = 10000
x. tip table = 10000
xi. user table = 10000
```

2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.

```
i. Business = Primary Key distinct record: 10000
ii. Hours = Foreign Key (business_id): 1562
iii. Category = Foreign Key (business_id): 2643
iv. Attribute = Foreign Key (business_id): 1115
v. Review = Primary Key distinct record: 10000
vi. Checkin = Foreign Key (business_id): 493
vii. Photo = Primary Key distinct record: 10000
viii. Tip = Foreign Key (business_id): 3979; Foreign Key (user_id): 537
ix. User = Primary Key distinct record: 10000
x. Friend = Foreign Key (user_id): 11
xi. Elite_years = Foreign Key (user_id): 2780
Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.
```

3. Are there any columns with null values in the Users table? Indicate "yes," or "no."

Answer: NO

SELECT id, name, review_count, yelping_since, useful, funny, cool, fans, average_stars, compliment_hot, compliment_more, compliment_profile, compliment_cute, compliment_list, compliment_note, compliment_plain, compliment_cool, compliment_funny, compliment_writer, compliment_photos

FROM user

WHERE id=NULL OR name=NULL OR review_count=NULL OR yelping_since=NULL OR useful=NULL OR funny=NULL OR cool=NULL OR fans=NULL OR average_stars=NULL OR compliment_hot=NULL OR compliment_more=NULL OR compliment_profile=NULL OR compliment_cute=NULL OR compliment_list=NULL OR compliment_note=NULL OR compliment_plain=NULL OR compliment_cool=NULL OR compliment_funny=NULL OR compliment_writer=NULL OR compliment_photos=NULL

4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:

i. Table: Review, Column: Stars

min: max: avg:

1 5 3.7082

ii. Table: Business, Column: Stars

min: max: avg:

1 5 3.6549

iii. Table: Tip, Column: Likes

min: max: avg:

0 2 0.0144

iv. Table: Checkin, Column: Count

min: max: avg:

1 53 1.9414

v. Table: User, Column: Review_count

min: max: avg:

0 2000 24.2995

5. List the cities with the most reviews in descending order:

SELECT city, SUM(review_count) AS Total_Review

FROM business GROUP BY city

ORDER BY Total_Review DESC

+----+

	city		Total_Review	1
+-		-+-		+
1	Las Vegas	1	82854	I
I	Phoenix	I	34503	1
1	Toronto	1	24113	1
I	Scottsdale	I	20614	1
1	Charlotte	1	12523	1
I	Henderson	I	10871	1
1	Tempe	1	10504	1
1	Pittsburgh	1	9798	1
1	Montréal	1	9448	1
1	Chandler	1	8112	1
1	Mesa	1	6875	1
1	Gilbert	1	6380	1
1	Cleveland	1	5593	
	Madison		5265	1

1	Glendale		4406	-
Ī	Mississauga	1	3814	1
Ī	Edinburgh	1	2792	I
Ī	Peoria	1	2624	1
Ī	North Las Vegas	1	2438	I
Ī	Markham	1	2352	I
Ī	Champaign	1	2029	I
Ī	Stuttgart	1	1849	I
Ī	Surprise	1	1520	I
Ī	Lakewood	1	1465	I
Ī	Goodyear	1	1155	ı
+		-+		-+

6. Find the distribution of star ratings to the business in the following cities:

i. Avon

SELECT stars AS Star Rating, COUNT(DISTINCT(id)) AS Count FROM business
WHERE city = 'Avon'
GROUP BY stars

Star Rating	Count
1.5	1
2.5	2
3.5	3
4.0	2
4.5	1

ii. Beachwood

SELECT stars AS Star Rating, COUNT(DISTINCT(id)) AS Count FROM business
WHERE city = 'Beachwood'
GROUP BY stars

+	+
Star Rating	Count
2.0 2.5 3.0 3.5 4.0	++ 1 1 2 2 1
5.0	2 5 +

7. Find the top 3 users based on their total number of reviews: Gerald, Sara, Yuri

SELECT name, review_count FROM user

ORDER BY review_count DESC LIMIT 3

+	+	
name		review_count
+	+	
Gerald	Ī	2000
Sara	Ī	1629
Yuri	Ī	1339

8. Does posing more reviews correlate with more fans? Please explain your findings and interpretation of the results:

SELECT name, SUM(fans), SUM(review_count) FROM user GROUP BY id

ORDER BY fans DESC

+	+ SUM(fans)	++ SUM(review count)
+	+	++
Amy	503	609
Mimi	497	968
Harald	311	1153
Gerald	253	2000
Christine	173	930
Lisa	159	813
Cat	133	377
William	126	1215
Fran	124	862
Lissa	120	834
Mark	115	861
Tiffany	111	408
bernice	105	255
Roanna	104	1039
Angela	101	694
.Hon	101	1246
Ben	96	307
Linda	89	584
Christina	85	842
Jessica	84	220
Greg	81	408
Nieves	80	178
Sui	78	754
Yuri	76	1339
Nicole	73	161
+	+	++

(Output limit exceeded, 25 of 10000 total rows shown)

The result shows that there is NO correlation between the number of fans and the number of posted reviews. For example, Amy has 503 fans with 609 reviews. However, in this selection the Gerald has

posted the maximum number of reviews (2000) but he has only 253 fans. I believe, there are other factors such as how long that person have been active in yelp, what kind of reviews does that person post etc.

9. Are there more reviews with the word "love" or with the word "hate" in them?

Answer: love was used 1780 times and hate was used 232 times

Two separate codes were used.

Code for love

SELECT COUNT(*)

FROM review

WHERE text like '%love%'

```
+----+
| COUNT(*) |
+----+
| 1780 |
```

Code for hate

SELECT COUNT(*)

FROM review

WHERE text like '%hate%'

```
| COUNT(*) |
+----+
| 232 |
```

10. Find the top 10 users with the most fans:

SELECT name, SUM(fans) AS 'Total_Fans' FROM user GROUP BY id ORDER BY Total_Fans DESC LIMIT 10

+			
name	· •	Total_	Fans
+			
Amy			503
Mimi	_		497
Hara	ald		311
Gera	ald		253
Chri	stine		173
Lisa	a		159
Cat			133
Will	iam		126
Fran	1		124
Liss	sa		120
+			

11. Is there a strong relationship (or correlation) between having a high number of fans and being listed as "useful" or "funny?" Out of the top 10 users with the highest number of fans, what percent are also listed as "useful" or "funny"?

Code 1: To determine people with most fans and their respective total funny and useful marking

 ${\tt SELECT\ name,\ SUM(fans)\ AS\ 'Total_Fans',\ SUM(useful),\ SUM(funny)}$

FROM user

GROUP BY id

ORDER BY Total_Fans DESC LIMIT 10

+	+	+	++
name	Total_Fans	SUM(useful)	SUM(funny)
+	+	+	++
Amy	503	3226	2554
Mimi	497	257	138
Harald	311	122921	122419
Gerald	253	17524	2324
Christine	173	4834	6646
Lisa	159	48	13
Cat	133	1062	672
William	126	9363	9361
Fran	124	9851	7606
Lissa	120	455	150
+	+	+	++

Code 2: To determine the people with most funny marking

SELECT name, SUM(funny) AS 'Total_Funny'

FROM user

GROUP BY id

ORDER BY Total_Funny DESC LIMIT 10

+	
name	Total_Funny
+	
Harald	122419
William	9361
Fran	7606
Christine	6646
W	6033
.Hon	5851
Alan	4567
Susie	3823
Jen	3164
Jim	2913
+	++

Code 3: To determine the people with most useful marking

SELECT name, SUM(useful) AS 'Total_Useful'

FROM user

GROUP BY id

ORDER BY Total_Useful DESC LIMIT 10

n	ame	Total_Useful
	arald erald	122921 17524
S	usie	14703
-	ran illiam	9851 9363
.:	Hon	7850 6974

	Alan		5640	
	Christine	1	4834	ı
	Mike		4656	
4.		-+-		4

The result shows that all of the top 10 users with the highest number of fans are listed as useful and funny. However, Amy, who has maximum fans (503) is not marked as the most funny or most useful. Harald, however, has only 311 fans but has been listed as funny and useful four times more than Amy. In the lists of top 10 users with highest number of listing as useful and funny, only Harald, Gerald, Fran, William, and Christine appear who also appear in the list of top 10 users with highest number of fans. Therefore, it seems there is a medium level correlation between having a high number of fans and being listed as "useful" or "funny".

12. Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions. Include your code.

I picked Food and Las Vegas as the business category and city respectively.

i. Do the two groups you chose to analyze have a different distribution of hours?

Restaurants with 2-3 stars have longer hours compared to the highest rated ones

ii. Do the two groups you chose to analyze have a different number of reviews?

The highest rated ones have more reviews

iii. Are you able to infer anything from the location data provided between these two groups? Explain.

All the high rated food businesses are located in the southeast neighborhood of the city and others are located in the Eastside neighborhood

SELECT b.stars, b.review_count, h.hours, b.neighborhood FROM (business b INNER JOIN category c ON b.id = c.business_id) INNER JOIN hours h ON b.id = h.business_id

WHERE c.category = 'Food' AND b.city = 'Las Vegas'

+ stars	+ review_count	+ hours	++ neighborhood
stars 4.0 4.0 4.0 4.0 4.0 4.0 2.5 2.5	review_count 	Monday 10:00-19:00 Tuesday 10:00-19:00 Friday 10:00-19:00 Wednesday 10:00-19:00 Thursday 10:00-19:00	neighborhood +
2.5 2.5 2.5 2.5 2.5 2.5	6 6 6 6 6	Friday 8:00-22:00 Wednesday 8:00-22:00	Eastside Eastside Eastside Eastside Eastside Eastside Eastside Eastside

13. Group business based on the ones that are open and the ones that are closed. What differences can you find between the ones that are still open and the ones that are closed? List at least two differences and the SQL code you used to arrive at your answer.

i. Difference 1:

Closed businesses have received less reviews and lower stars compared to the open businesses

ii. Difference 2:

Closed businesses have received less number of check-ins compared to the open ones.

SELECT b.is_open,
MAX(b.stars) AS 'Max-Star',
AVG(b.stars) AS 'Avg-Stars',
MAX(b.review_count) AS 'Max-review',
COUNT(ch.count) AS 'CheckIn#'
FROM business b INNER JOIN checkin ch ON b.id = ch.business_id
GROUP BY b.is_open

is_open	+ Max-Star	 Avg-Stars	Max-review	++ CheckIn#
0 1		2.0	16 27	'