第一届八一赛数学组 A 类试题解析

- 1. (本题 15 分) 从点 $P(1, 1, \frac{\sqrt{2}}{2})$ 处引椭球面 $C: 2x^2 + 3y^2 + 4z^2 = 1$ 的切线,切点的 轨迹在平面 yOz 上的投影为 Γ ,试证明 Γ 为椭圆,并求 Γ 的中心,主方向与面积.
- **解:** 椭球面 C 上任意一点 $Q(x_0, y_0, z_0)$ 的法向量为 $(4x_0, 6y_0, 8z_0)$,从而 Q 处的切线方程为:

$$(x-x_0) \cdot 4x_0 + (y-y_0) \cdot 6y_0 + (z-z_0) \cdot 8z_0 = 0$$

若该切线经过 P 点,则有 $2x_0 + 3y_0 + 2\sqrt{2}z_0 = 1$,也就是说从 P 点引出的切线与椭球面 C 的切点 (x, y, z) 必然满足: $2x + 3y + 2\sqrt{2}z = 1$. 于是切点的轨迹方程为:

$$\begin{cases} 2x + 3y + 2\sqrt{2}z = 1\\ 2x^2 + 3y^3 + 4z^2 = 1 \end{cases}$$

消去 x 得到切点轨迹在平面 yOz 上的投影方程

$$\Gamma: 15v^2 + 16z^2 + 12\sqrt{2}vz - 6v - 4\sqrt{2}z - 1 = 0$$

 Γ 为二次曲线,令 $a_{11}=15,\ a_{22}=16,\ a_{12}=6\sqrt{2},\ b_1=-3,\ b_2=-2\sqrt{2},\ c=-1,$

$$A_0 = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} 15 & 6\sqrt{2} \\ 6\sqrt{2} & 16 \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{12} & a_{22} & b_2 \\ b_1 & b_2 & c \end{pmatrix} = \begin{pmatrix} 15 & 6\sqrt{2} & -3 \\ 6\sqrt{2} & 16 & -2\sqrt{2} \\ -3 & -2\sqrt{2} & -1 \end{pmatrix}$$

得到 Γ 的不变量 $I_1=a_{11}+a_{22}=31,\ I_2=|A_0|=168,\ I_3=|A|=-288$,于是 $I_2>0,\ I_1I_3<0,$ 所以 Γ 为椭圆.

由于 Γ 的中心 O'(0, y, z) 满足:

$$\begin{cases} a_{11}y + a_{12}z + b_1 = 15y + 6\sqrt{2}z - 3 = 0\\ a_{12}y + a_{22}z + b_2 = 6\sqrt{2}y + 16z - 2\sqrt{2} = 0 \end{cases}$$

解得
$$y = \frac{1}{7}$$
, $z = \frac{\sqrt{2}}{14}$, 所以 Γ 的中心为 $O'\left(0, \frac{1}{7}, \frac{\sqrt{2}}{14}\right)$.

Γ 的特征方程为 $|\lambda E - A_0| = \lambda^2 - 31\lambda + 168$,特征根 $\lambda_1 = 7, \lambda_2 = 24$.

特征根
$$\lambda_1$$
对应的单位特征向量 $u_1 = \left(\frac{3\sqrt{17}}{17}, -\frac{2\sqrt{34}}{17}\right)$

特征根
$$\lambda_2$$
对应的单位特征向量 $u_2 = \left(\frac{2\sqrt{34}}{17}, \frac{3\sqrt{17}}{17}\right)$

所以椭圆 Γ 的主方向为

$$e_1' = \left(0, \frac{3\sqrt{17}}{17}, -\frac{2\sqrt{34}}{17}\right), e_2' = \left(0, \frac{2\sqrt{34}}{17}, \frac{3\sqrt{17}}{17}\right)$$

在直角坐标系下 $[O'; e'_1, e'_2]$, Γ 的标准方程为:

$$\left\{ \begin{array}{c} \lambda_1 y'^2 + \lambda_2 z'^2 + \frac{I_3}{\lambda_1 \lambda_2} = 0 \\ x' = 0 \end{array} \right. , \quad \text{RP} \left\{ \begin{array}{c} \frac{y'^2}{\frac{12}{49}} + \frac{z'^2}{\frac{1}{14}} = 1 \\ x' = 0 \end{array} \right.$$

所以椭圆
$$\Gamma$$
 的面积 $S=\pi\cdot\sqrt{\frac{12}{49}}\cdot\sqrt{\frac{1}{14}}=\frac{\sqrt{42}}{49}\pi.$

2. (本题 15 分) 证明: 对于 n 阶实方阵 A, B,若 $E - A^T A$ 与 $E - B^T B$ 是半正定矩阵, 则

$$\left|E - A^T B\right|^2 \geqslant \left|E - A^T A\right| \left|E - B^T B\right|$$

☞ 证明: 由熟知的结论

$$|E - A^T B| = |E - BA^T| = |E - AB^T| = |E - B^T A|$$

构造矩阵

$$M = \begin{pmatrix} E & -A^T \\ -B & E \end{pmatrix}, N = \begin{pmatrix} E & B^T \\ A & E \end{pmatrix}$$

则

$$|M||N| = |E - BA^{T}||E - AB^{T}|| = |E - A^{T}B|^{2}$$

$$= \begin{pmatrix} E & -A^{T} \\ -B & E \end{pmatrix} \begin{pmatrix} E & B^{T} \\ A & E \end{pmatrix} = \begin{vmatrix} E - A^{T}A & B^{T} - A^{T} \\ A - B & E - BB^{T} \end{vmatrix}$$

下面用摄动法证明

$$\begin{vmatrix} E - A^T A & B^T - A^T \\ A - B & E - BB^T \end{vmatrix} \geqslant |E - A^T A| |E - B^T B|$$

设

$$F(\lambda) = \begin{vmatrix} (1+\lambda)E - A^T A & B^T - A^T \\ A - B & (1+\lambda)E - BB^T \end{vmatrix}$$

由 $E - A^T A$ 与 $E - B^T B$ 半正定知,对任意的 $\lambda > 0$,有 $(1 + \lambda)E - A^T A$, $(1 + \lambda)E - BB^T$ 均正定,故可逆,故对 $F(\lambda)$ 做初等变换得:

$$F(\lambda) = \begin{vmatrix} (1+\lambda)E - A^T A & B^T - A^T \\ A - B & (1+\lambda)E - BB^T \end{vmatrix}$$

$$= \begin{vmatrix} (1+\lambda)E - A^T A & B^T - A^T \\ 0 & (1+\lambda)E - BB^T - (A-B)((1+\lambda)E - A^T A)^{-1}(B^T - A^T) \end{vmatrix}$$

$$= |(1+\lambda)E - A^T A||(1+\lambda)E - BB^T + (B-A)((1+\lambda)E - A^T A)^{-1}(B^T - A^T)|$$

由于 $(1+\lambda)E-BB^T$ 正定且 $(B-A)((1+\lambda)E-A^TA)^{-1}(B^T-A^T)$ 半正定,故

$$|(1+\lambda)E - BB^T + (B-A)((1+\lambda)E - A^TA)^{-1}(B^T - A^T)| \ge |(1+\lambda)E - BB^T| \ge |E - BB^T|$$

所以 $F(\lambda) \ge |E - A^T A| |E - BB^T| = |E - A^T A| |E - B^T B|$. 对任意的 $\lambda > 0$ 成立,由于 $F(\lambda)$ 是关于 λ 的实系数多项式,故令 λ 趋于 0,则有

$$\begin{vmatrix} E - A^T A & B^T - A^T \\ A - B & E - BB^T \end{vmatrix} \geqslant |E - A^T A| |E - B^T B|$$

即证.

- 3. (本题 20 分) 设 S 为 R_n 的一个非空闭凸集, A 为 \mathbb{R} 上 $n \times n$ 的矩阵.
 - (1) 证明: 对 $\forall y \notin S$, 存在唯一的一个 \overline{x} , 使得 $\|y \overline{x}\| = \inf_{x \in S} \|y x\|$

- (2) 证明: 对于 $y \notin S$, 存在非零向量 p 以及 $\varepsilon > 0$, 使得对 $\forall x \in S$, 有 $p^T y \geqslant \varepsilon + p^T x$
- (3) 证明: Ax < 0 有解的充分必要条件是不存在非零向量 $p \ge 0$ 使得 $A^T p = 0$.
- **证明:** 本题实际上是一个以凸优化为背景的线性代数题目,本体的最后一问原型即为 Gordan 定理,在优化理论中有很高的地位,相对来说,前两问是有着一定的引导作用来进行题目完整的证明,在问题解答的过程中,不知不觉已经将凸优化中的闭集情况下的凸集分离定理证明出来了,这也是数学分析和线性代数结合的一个典型例子.
 - (1) 令 $\inf_{x \in S} \|y x\| = r > 0$,由下确界的定义可知,存在序列 $\{x^{(k)}\}, x^{(k)} \in S$,使得 $\|y x^{(k)}\| \to r$. 首先

$$\|x^{(k)} - x^{(m)}\|^2 = 2\|x^{(k)} - y\|^2 + 2\|x^{(m)} - y\|^2 - 4\|\frac{x^{(k)} + x^{(m)}}{2} - y\|^2$$
$$\leq 2\|x^{(k)} - y\|^2 + 2\|x^{(m)} - y\|^2 - 4r^2$$

因此 k 和 m 无穷大的时候 $\|x^{(k)} - x^{(m)}\|$ 趋近于 0, $\{x^{(k)}\}$ 为柯西列,极限 \overline{x} 存在且 $\overline{x} \in S$. 唯一性: 设 $\hat{x} \in S$ 且 $\|y - \overline{x}\| = \|y - \hat{x}\| = r$. 由于 $(\overline{x} + \hat{x})/2 \in S$,则由 Schwartz 不等式,我们有

$$\|y - (\overline{x} + \hat{x})/2\| \le \frac{1}{2} \|y - \overline{x}\| + \frac{1}{2} \|y - \hat{x}\| = r$$

又 $\left\| y - \frac{\overline{x} + \hat{x}}{2} \right\| = \frac{1}{2} \|y - \overline{x}\| + \frac{1}{2} \|y - \hat{x}\|$, 因此 $y - \overline{x} = \lambda(y - \hat{x})$, 表明 $\|y - \overline{x}\| = |\lambda| \|y - \hat{x}\|$ 因此 $|\lambda| = 1$, 如果 $\lambda = -1$, 则显然 $y \in S$, 矛盾,所以 $\lambda = 1$, 又 $y - \overline{x} = \lambda(y - \hat{x})$,问题得证.

(2) S 为闭凸集, $y \notin S$,由上一问可知存在 $\overline{x} \in S$,使得 $\|y - \overline{x}\| = \inf_{x \in S} \|y - x\|$ 令 $p = y - \overline{x}, \varepsilon = p^T(y - \overline{x})$,下面证明这样的 p 和 ε 是符合要求的.

$$p^{\mathrm{T}}(y-x) = p^{\mathrm{T}}(y-\overline{x}+\overline{x}-x) = p^{\mathrm{T}}(y-\overline{x}) + p^{\mathrm{T}}(\overline{x}-x) = \varepsilon + (y-\overline{x})^{\mathrm{T}}(\overline{x}-x)$$

又

$$||y - \overline{x}||^2 \le ||y - [\lambda x + (1 - \lambda)\overline{x}]||^2 = ||(y - \overline{x}) + \lambda(\overline{x} - x)||^2$$
$$= ||y - \overline{x}||^2 + \lambda^2 ||\overline{x} - x||^2 + 2\lambda(y - \overline{x})^{\mathrm{T}}(\overline{x} - x)$$

因此 $(y-\overline{x})^T(x-x)+\frac{\lambda}{2}\|\overline{x}-x\|^2\geqslant 0$. 令 $\lambda\to 0$,有 $(y-\overline{x})^T(\overline{x}-x)\geqslant 0$,因此 $p^{\mathrm{T}}(y-x)\geqslant \varepsilon$ 得证.

(3) **必要性**: 若 Ax < 0 有解,则存在 \overline{x} 使得 $A\overline{x} < 0$. 若存在非零向量 $p \ge 0$ 使得 $A^{\mathrm{T}}p = 0$,即 $y^{p}A = 0$. 则 $p^{\top}A\overline{x} = 0$,因为 $A\overline{x} < 0$,所以 p 的每个分量不可能全部为非负,因此矛盾,必 要性得证.

充分性: 我们考虑充分性的等价命题: 若 Ax < 0 无解,则存在非零向量 $p \ge 0$ 使得 $A^T p = 0$. 设 $S_1 = \{z | z = Ax, x \in \mathbb{R}^n\}$ 和 $S_2 = \{z | z < 0\}$,显然这两个集合均为凸集,知 Ax < 0 无解,因此 $S_1 \cap S_2 = \emptyset$. 令 $S = S_2 - S_1 = \{z | z = x^{(2)} - x^{(1)}, x^{(1)} \in S_1, x^{(2)} \in S_2\}$,则 S 为非空闭 凸集,而且 $0 \notin S$. 因此若想利用第 (2) 问的结论我们需要进行一些极限逼近操作,我们考虑 S 的闭包 S0 以显然是一个闭集.

- i. 如果 $0 \notin clS$,则可以对 clS 利用第二问的结论,对于所有的 $z \in S$ $S \in clS$),存在非零 向量 p,使得 $p^{\rm T}(0-z) = -p^{\rm T}z \geq \varepsilon$. 因此 $p^{\rm T}z \leq 0$,再者 $z = x^{(2)} x^{(1)}$,由 $x^{(2)}$ $x^{(1)}$ 的 定义,我们有 $p^{\rm T}Ax \geq p^{\rm T}y$,其中 $x \in R$ y 0. 当 x = 0 时,我们有 $p^{\rm T}y \leq 0$,因为 y 0 (y 可以取小于零的任意值),所以 $p \geq 0$ 再令 $p^{\rm T}Ax \geq p^{\rm T}y$ 中的 y 趋近于 0,我们有 $p^{\rm T}Ax \geq 0$,令 $x = -A^{\rm T}p$,我们有 $-\|A^{\rm T}p\| \geq 0$
- ii. 如果 $0 \in clS$,由于由于 $0 \notin S$,则 $0 \in \partial S$ (意为 S 的边界点集合),显然存在一个序列 $\{y^{(k)}\} \notin clS$,使得 $y^{(k)} \to 0$. 每一个 $y^{(k)}$ 则可以对 clS 利用第 (2) 问的结论, $\forall z \in S$ (应当注意到 $S \in clS$),存在非零向量 $p^{(k)}$,使得 $p^{(k)T}(y^{(k)}-z) \geq \varepsilon \geq 0$,然后将 $p^{(k)}$ 单位化并记为 $p_*^{(k)}$,则 $\{p_*^{(k)}\}$ 有界,因此必存在收敛子列 $\{p_*^{(k_f)}\}$,记此收敛子列的极限为 p

0, 因此 $A^T p = 0$, 所以存在 $p \ge 0$ 使得 $A^T p = 0$.

为 p 令 $p_*^{(k_j)T}(y^{(k)}-z) \ge \varepsilon \ge 0$ 中的 $k_j \to \infty$,我们有 $p^T(0-z) \ge 0$,此时模仿 i 中的操作 $p^Tz \le 0$,再者 $z=x^{(2)}-x^{(1)}$,由 $x^{(2)}$ $x^{(1)}$ 的定义,我们有 $p^TAx \ge p^Ty$,其中 $x \in R$ y < 0. 当 x=0 时,我们有 $p^Ty \le 0$,因为 y < 0 y < 0 (y 可以取小于零的任意值),所以 $p \ge 0$.

再令 $p^T Ax \ge p^T y$ 中的 y 趋近于 0,我们有 $p^T Ax \ge 0$,令 $x = -A^T p$,我们有 $-\|A^T p\| \ge 0$,因此 $A^T p = 0$,所以存在 $p \ge 0$ 使得 $A^T p = 0$ 。

至此证明完毕.

4. (本题 15 分) 已知复系数多项式

$$f(x) = x^{k} + c_1 x^{k-1} + c_2 x^{k-2} + \dots + c_{k-1} x + c_k$$

证明:对多项式 f(x) 的任意一根 z,都有

$$|z| \le 2 \cdot \max \left\{ |c_1|, \sqrt{|c_2|}, \sqrt[3]{|c_3|}, \cdots, \sqrt[k]{|c_k|} \right\}$$

证明: 引理: 令复数 z_1, z_2, \dots, z_k 是下述复系数多项式的根,设 $r_{\text{max}} = \max\{|z_1|, |z_2|, \dots, |z_k|\};$

$$f(x) = x^k + c_1 x^{k-1} + c_2 x^{k-2} + \dots + c_{k-1} x + c_k$$

- ① 对于满足 $r^k > |c_1| r^{k-1} + |c_2| r^{k-2} + \cdots + |c_{k-1}| r + |c_k|$ 的任意正实数 r, 都有 $r > r_{\text{max}}$;
- ② 对于满足 $r > r_{\text{max}}$ 的正实数 r,不一定有 $r^k > |c_1| r^{k-1} + |c_2| r^{k-2} + \cdots + |c_{k-1}| r + |c_k|$. 首先先证明引理: 定义两个复系数多项式整函数 $f(z) = z^k + c_1 z^{k-1} + c_2 z^{k-2} + \cdots + c_{k-1} z + c_k$ 与 $g(z) = z^k$,于是有

$$h(z) = c_1 z^{k-1} + c_2 z^{k-2} + \dots + c_{k-1} z + c_k = f(z) - g(z) \in C$$

记正实数 r = |z| 则有 $r^k = |g(z)|$,结合引理中的条件知,若 r 满足 $r^k > |c_1| r^{k-1} + |c_2| r^{k-2} + \cdots + |c_{k-1}| r + |c_k|$,则有:

$$|h(z)| < |c_1| r^{k-1} + |c_2| r^{k-2} + \dots + |c_{k-1}| r + |c_k| < r^k = |g(z)|$$

整函数 $g(z) = z^k$ 与 f(z) = g(z) + h(z) 在闭圆盘 $|z| \le r$ 内解析,根据 Rouche 定理,

整函数 $g(z) = z^k$ 与 f(z) = g(z) + h(z) 在开圆盘 |z| < r 内有相同数量的零点。

整函数 $g(z) = z^k$ 在闭圆盘 $|z| \le r$ 内必有k 个零点;

故整函数 f(z) = g(z) + h(z) 在闭圆盘 $|z| \le r$ 内也有 k 个零点。

于是就表明了方程 f(z) = 0 根的模长的最大值 $r_{\text{max}} < r$,引理得证。

设 $r_1 = 2 \cdot \max \{ |c_1|, \sqrt{|c_2|}, \sqrt[3]{|c_3|}, \cdots, \sqrt[k]{|c_k|} \}$,于是

$$r_{1} = 2 \cdot \max \left\{ |c_{1}|, \sqrt{|c_{2}|}, \sqrt[3]{|c_{3}|}, \cdots, \sqrt[k]{|c_{k}|} \right\}$$
$$= 2 \cdot \max_{1 < j < k} \sqrt[j]{|c_{j}|} = \max_{1 < j < k} \sqrt[j]{2^{j} |c_{j}|}$$

对所有正实数 $r > r_1$ (即 $r > \max_{1 \le i \le k} \sqrt[j]{2^j |c_j|}$) 可推出 $r^j > 2^j |c_j| \Rightarrow \frac{1}{2^j} > \frac{|c_j|}{r^j}$, 因此:

$$1 = \sum_{i=1}^{+\infty} \frac{1}{2^{i}} > \sum_{i=1}^{k} \frac{1}{2^{i}} > \sum_{i=1}^{k} \frac{|c_{i}|}{r^{i}}$$

那么,可得出 $r^k > |c_1| r^{k-1} + |c_2| r^{k-2} + \cdots + |c_{k-1}| r + |c_k|$,根据上述引理,必有 $r > r_{\text{max}}$,

又根据满足 $r > r_1$ 条件的正实数 r 的任意性,故有 $r_1 \ge r_{\text{max}}$,命题得证。

(蓝色部分为较难思考到的部分)

5. 设 $f(x) \in C^1[0, +\infty)$, 且 $\lim_{x \to +\infty} f(x) = 0$, 已知积分 $I = \int_0^{+\infty} t^{a+1} f'(t) dt$ 对某个常数 a > -1 收敛, 证明: 积分 $\int_0^{+\infty} t^a f(t) dt$ 收敛, 并且等于 $-\frac{I}{a+1}$.

证明: 令 $F(x) = \int_0^x t^a f(t) dt, G(x) = \int_0^x t^{a+1} f'(t) dt$, 首先有

$$\frac{\mathrm{d}}{\mathrm{d}t}(t^{a+1}f(t)) = (a+1)t^a f(t) + t^{a+1}f'(t),\tag{1}$$

注意到 $F'(x) = x^a f(x)$, 将 (1) 式在 [0, x] 上积分可得

$$x^{a+1}f(x) = (a+1)F(x) + G(x) = xF'(x)$$
(2)

由此我们得到

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^{-a-1}F(x)) = -(a+1)x^{-a-2}F(x) + x^{-a-1}F'(x)$$
$$= x^{-a-2}(-(a+1)F(x) + xF'(x)) = -x^{-a-2}G(x).$$

又当 $x \to +\infty$ 时, $G(x) \to I$, 所以

$$G(x) = I - \int_{x}^{+\infty} t f'(t) dt = I + o(1) \quad (x \to +\infty).$$
 (3)

那么由此得

$$\frac{\mathrm{d}}{\mathrm{d}t}(t^{-a-1}F(t)) = It^{-a-2} + o(t^{-a-2}) \quad (t \to +\infty). \tag{4}$$

由 (2) 知 $(a+1)x^{-a-1}F(x)+x^{-a-1}G(x)=f(x)$, 令 $x\to +\infty$, 由題意知 $f(x)\to 0$, $G(x)\to I$, 所以

$$\lim_{x \to +\infty} \left(x^{-a-1} F(x) \right) = 0.$$

将 (4) 在 $[x,+\infty)$ 上积分可得

$$-\frac{F(x)}{x^{a+1}} = (t^{-a-1}F(t))\Big|_{x}^{+\infty} = \frac{I}{(a+1)x^{a+1}} + \int_{x}^{+\infty} o(t^{-a-2}) dt$$
$$= \frac{I}{(a+1)x^{a+1}} + o(x^{-a-1}) \quad (x \to +\infty).$$

即
$$F(x) = -\frac{I}{a+1} + o(1), x \to +\infty$$
, 这就是说 $\lim_{x \to +\infty} F(x) = \int_0^{+\infty} t^a f(t) dt = -\frac{I}{a+1}$.

- 6. (本题 20 分) 设 b_n 表示正整数 n 的最大素因子,以及单调递增的正实数列 $\{a_n\}$. 满足无穷级数 $\sum_{n=1}^{+\infty} \frac{1}{na_n}$ 收敛,问无穷级数 $\sum_{n=1}^{+\infty} \frac{1}{na_{b_n}}$ 是否也是收敛的? 并证明你的结论.
- ☞ **证明:**设 *m* 为正整数,定义

$$G(m) = \sum_{p < m} \frac{1}{n} = \sum_{p < m} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right) = \prod_{p < m} \left(1 - \frac{1}{p} \right)^{-1} \le k \ln(m+1)$$

其中 k 为常数. 故

$$\begin{split} \prod_{p \leq N} \frac{1}{n f\left(p\left(n\right)\right)} &= \sum_{m=1}^{N} \frac{G\left(m\right) - G\left(m-1\right)}{f\left(m\right)} \\ &\leq \sum_{m=1}^{N-1} k \ln\left(m+1\right) \left(\frac{1}{f\left(m\right)} - \frac{1}{f\left(m+1\right)}\right) + \frac{k \ln\left(N+1\right)}{f\left(N\right)} \\ &= \sum_{m=1}^{N} \frac{k \ln\left(m+1\right) - k \ln m}{f\left(m\right)} < \sum_{m=1}^{N} \frac{k}{m f\left(m\right)} \end{split}$$

故无穷级数 $\sum_{n=1}^{+\infty} \frac{1}{na_{b_n}}$ 是收敛.