CAP 5638, Pattern Recognition (Fall 2015), Department of Computer Science, Florida State University

Points: 50 Due: Wednesday, October 7, 2015

Submission: Hardcopy (including programs) is required and is due at the beginning of the class on the due date.

Problem 1 (10 points) Problem 1 (parts (a) and (b) only), Chapter 3 of the textbook

Let x have an exponential density

$$p(x|\theta) = \left\{ \begin{array}{ll} \theta e^{-\theta x} & & x \geq 0 \\ 0 & & \text{otherwise.} \end{array} \right.$$

- (a) Plot $p(x|\theta)$ versus x for $\theta = 1$. Plot $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$, for x = 2.
- (b) Suppose that n samples $x_1, ..., x_n$ are drawn independently according to $p(x|\theta)$. Show that the maximum likelihood estimate for θ is given by

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} x_k}.$$

Problem 2 (10 points) Problem 3, Chapter 3 of the textbook

- 3. Maximum likelihood methods apply to estimates of prior probabilities as well. Let samples be drawn by successive, independent selections of a state of nature ω_i with unknown probability $P(\omega_i)$. Let $z_{ik} = 1$ if the state of nature for the kth sample is ω_i and $z_{ik} = 0$ otherwise.
 - (a) Show that

$$P(z_{i1}, \dots, z_{in} | P(\omega_i)) = \prod_{k=1}^{n} P(\omega_i)^{z_{ik}} (1 - P(\omega_i))^{1 - z_{ik}}.$$

(b) Show that the maximum likelihood estimate for $P(\omega_i)$ is

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^n z_{ik}.$$

Interpret your result in words.

Problem 3 (15 points) Problem 7, Chapter 3 of the textbook

7. Show that if our model is poor, the maximum likelihood classifier we derive is not the best — even among our (poor) model set — by exploring the following example. Suppose we have two equally probable categories (i.e., $P(\omega_1) = P(\omega_2) = 0.5$). Further, we know that $p(x|\omega_1) \sim N(0,1)$ but assume that $p(x|\omega_2) \sim N(\mu,1)$. (That is, the parameter θ we seek by maximum likelihood techniques is the mean of the second distribution.) Imagine however that the true underlying distribution is $p(x|\omega_2) \sim N(1,10^6)$.

- (a) What is the value of our maximum likelihood estimate $\hat{\mu}$ in our poor model, given a large amount of data?
- (b) What is the decision boundary arising from this maximum likelihood estimate in the poor model?
- (c) Ignore for the moment the maximum likelihood approach, and use the methods from Chap. ?? to derive the Bayes optimal decision boundary given the true underlying distributions — p(x|ω₁) ~ N(0,1) and p(x|ω₂) ~ N(1,10⁶). Be careful to include all portions of the decision boundary.
- (d) Now consider again classifiers based on the (poor) model assumption of p(x|ω₂) ~ N(μ, 1). Using your result immediately above, find a new value of μ that will give lower error than the maximum likelihood classifier.
- (e) Discuss these results, with particular attention to the role of knowledge of the underlying model.

Problem 4 (5 points) Problem 10, Chapter 3 of the textbook (Hint: think about the bias and variance.)

- 10. Suppose we employ a novel method for estimating the mean of a data set $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$: we assign the mean to be the value of the first point in the set, i.e., \mathbf{x}_1 .
 - (a) Show that this method is unbiased.
 - (b) State why this method is nevertheless highly undesirable.

Problem 5 (10 points) Suppose that the prior distribution of θ and the parametric form (a uniform distribution) remain the same as in the example given in Section 3.5 in the textbook, compute first the Bayesian estimation of θ and then the estimated class conditional $p(x \mid D)$ for $D=\{3, 9, 7\}$. You need to specify the Bayesian estimation and the class conditional fully (i.e., you need to specify the functions with all required constants). Then plot the class conditional from 0 to 10.

Extra Credit Problem

Problem 6 (7 points) Problem 11, Chapter 3 of the textbook; you only need to show the univariate case.

11. One measure of the difference between two distributions in the same space is the Kullback-Leibler divergence of Kullback-Leibler "distance":

$$D_{KL}(p_1(\mathbf{x}), p_2(\mathbf{x})) = \int p_1(\mathbf{x}) \ln \frac{p_1(\mathbf{x})}{p_2(\mathbf{x})} d\mathbf{x}.$$

(This "distance," does not obey the requisite symmetry and triangle inequalities for a metric.) Suppose we seek to approximate an arbitrary distribution $p_2(\mathbf{x})$ by a normal $p_1(\mathbf{x}) \sim N(\mu, \Sigma)$. Show that the values that lead to the smallest Kullback-Leibler divergence are the obvious ones:

$$\mu = \mathcal{E}_2[\mathbf{x}]$$

 $\Sigma = \mathcal{E}_2[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^t],$

where the expectation taken is over the density $p_2(\mathbf{x})$.