Math 725 – Advanced Linear Algebra Paul Carmody Assignment #10 – Due 12/1/23

1. Let T be a normal operator on a finite dimensional inner product space. Prove that T is self-adjoint, positive definite, or unitary if the eigenvalues of T are real, positive, or absolute value one, respectively.

Self-adjoint implies real eigenvalues.

 $T = T^*$ thus $\langle \overline{T}v, v \rangle = \langle v, \overline{T}^*v \rangle = \langle \overline{Tv}, v \rangle$ which implies that $Tv = \overline{Tv}$ for all $v \in V$ and hence $Tv \in \mathbb{R}$. Given any eigenvalue λ and eigenvector v, $Tv = \lambda v = \overline{\lambda v}$ which implies that $\lambda = \overline{\lambda}$. Hence $\lambda \in \mathbb{R}$.

Positive-definite implies positive eigenvalues.

Positive-definite means that $\langle Tv, v \rangle > 0$ for all $v \in V$. Given an eigenvalue λ and associated eigenvector v we have $\langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle > 0$. Since $\langle v, v \rangle > 0$ for all $v \in V$, $\lambda > 0$.

Unitary implies eigenvalues are one.

T is unitary means that there exists an orthornormal basis such that the matrix A associated with T has the property that $A^*A = I$. The eigenvalues for A^* and the eigenvalues for A are the same any eigenvector v with eigenvalue λ will allow the following equation: $v^Tv = v^TIv = v^TA^*Av = (\lambda v^T)(\lambda v) = \lambda^2 v^Tv$ which implies that $\lambda^2 = 1$ and, being real, it must be one.

2. Let T be an operator on a finite dimensional inner product space that is both positive definite and unitary. Prove that T = I.

T is positive definite implies that T is diagonalizable. T is unitary implies that its eigenvalue are 1. Hence, a diagonal matrix with 1 on the diagonal is the identity.

3. Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Show that

$$\lambda_1 = \max\{x^T A x : ||x||_2 = 1\}$$
 and $\lambda_n = \min\{x^T A x : ||x||_2 = 1\}.$

Prove that the maximum value is achieved when $x = \pm u_1$ where u_1 is a unit eigenvector associated to λ_1 and the minimum value is achieved when $x = \pm u_n$ where u_n is a unit eigenvector associated to λ_n .

- **4.** The Hilbert matrix H_{n+1} is an $(n+1) \times (n+1)$ matrix whose (i,j) entry is $\frac{1}{i+j-1}$.
- a) Write down H_4 .

$$\left(\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)$$

b) Prove that if v_1, \ldots, v_n are linearly independent vectors in a real inner product space V, then the matrix K whose (i, j) entry is $\langle v_i, v_j \rangle$ is a symmetric positive definite matrix. Also prove that such a matrix is invertible.

Since all $v_i, v_j \in \mathbb{R}$ then $\langle v_i, v_j \rangle = \langle v_j, v_i \rangle$. Hence K is symmetric. All entries for K are greater than zero. Thus, Ku will only increase the elements in u and $\langle Ku, u \rangle > 0$. K is both positive and symmetric.

c) Show that H_{n+1} is a symmetric positive definite matrix. [Hint: Consider $V = \mathcal{P}^{(n)}$ and the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.]

Allowing for the standard orthonormal basis for $\mathcal{P}^{(n)}$, $1, x, x^2, \dots, x^n$. We can see that defining the inner product as $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ we'll get a transformation matrix taking the inner product of corresponding basis vectors

And since $\int_0^1 f(t)g(t)dt > 0$ for all $f, g \in \mathcal{P}^{(n)}$ and f and g commutes we see that it is symmetric as well.

d) Conclude the nontrivial fact that H_{n+1} is invertible.

- **5.** Let S_n be the vector space of all $n \times n$ symmetric real matrices and let $PSD_n \subset S_n$ be the set of all $n \times n$ positive semidefinite matrices. Prove that PSD_n is a convex cone in S_n , i.e., show that
 - i) if $A \in PSD_n$ and $\lambda \geq 0$ then $\lambda A \in PSD_n$, and

 $A \in PSD_n$ then $\langle Av, v \rangle > 0$ for all $v \in V$. then $\langle \lambda Av, v \rangle = \lambda \langle Av, v \rangle$ which must be non-negative when λ is non-negative.

ii) If $A, B \in PSD_n$ and $\lambda, \mu \geq 0$ with $\lambda + \mu = 1$ then $\lambda A + \mu B \in PSD_n$.

 $\langle (\lambda A + \mu B)v, v \rangle = \langle \lambda Av + \mu Bv, v \rangle = \langle \lambda Av, v \rangle + \langle \mu Bv, v \rangle = \lambda \langle Av, v \rangle + \mu \langle Bv, v \rangle$. All terms are non-negative so the whole expression must be non-negative.

- **6.** If A and B are two real $n \times n$ symmetric matrices, we write $A \succeq B$ if A B is positive semidefinite. Prove
 - i) Additivity: if $A_1 \succeq B_1$ and $A_2 \succeq B_2$ then $A_1 + A_2 \succeq B_1 + B_2$, We know from 5 ii) above that

$$(A_1 - B_1) + (A_2 - B_2) \in PSD_n$$

 $(A_1 + A_2) - (B_1 + B_2) \in PSD_n$
 $A_1 + A_2 \succeq B_1 + B_2$

ii) Transitivity: if $A \succeq B$ and $B \succeq C$ then $A \succeq C$.

$$A - B \in PSD_n$$

$$B - C \in PSD_n$$

$$(A - B) + (B - C) \in PSD_n \text{ from 5 ii above}$$

$$A - C \in PSD_n$$

$$A \succeq C$$

iii) Multiplicativity: if $A \succeq B$ and Q is an invertible matrix then $QAQ^t \succeq QBQ^t$.

$$Q(A-B)Q^t = QAQ^t - QBA^t \implies QAQ^t \succeq QBQ^t$$

$Extra\ Questions$

1. Let A be $n \times n$ real symmetric positive matrix. Show that

$$\frac{\pi^{\frac{n}{2}}}{\sqrt{\det A}} = \int_{\mathbb{R}^n} e^{-\langle x, Ax \rangle} dx.$$