Variational Bayes

Lecture 11

Konstantin Yakovlev ¹

¹MIPT Moscow, Russia

MIPT 2024

Outline

- Latent Variable Model and Variational Autoencoders
- Improving the representation power of the variational posterior
- Discrete latent variables and Concrete distribution
- Black-box gradient estimation
- Vector-Quantized Variational Autoencoder

Lecture 11 MIPT 2024 2 / 20

Discriminative vs Generative modeling¹

Discriminative: $p(y|\mathbf{x})$

Advantages:

- Solve the problem you are evaluating on
- Very accurate given a sufficiently large amount of data
- Selfcetive training procedure

Generative: $p(y, \mathbf{x})$

Advantages:

- Injection of expert knowledge
- Could be turned to a discriminator with Bayes rule
- Facilitates semi/un-supervised learning

Lecture 11

¹Kingma D. et. al, An Introduction to Variational Autoencoders, 2019

Latent Variable Model

Probalistic model:

Given an observed $\mathbf{x} \sim \pi(\mathbf{x})$, where $\pi(\mathbf{x})$ is unknown. We attempt to approximate $\pi(.)$ with a parametric model $p_{\theta}(.)$.

Latent variable model:

Introduce a latent variable z:

$$p_{ heta}(\mathbf{x}) = \int p_{ heta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}.$$

The most common approach:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z}),$$

where $p_{\theta}(\mathbf{z})$ is the *prior* distribution.

Example:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}), \ p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{j=1}^{D} \mathrm{Bern}(x_{j}|f_{\theta}^{j}(\mathbf{z})),$$

 $f_{\theta}^{j}(\mathbf{z}) = \sigma(\mathrm{MLP}(\mathbf{z})_{i}).$

Maximul Likelihood Learning:

Given a set of N i.i.d. datapoints $\mathfrak{D} = \{\mathbf{x}_i\}_{i=1}^N$

$$\log p_{m{ heta}}(\mathfrak{D}) = \sum_{\mathbf{x} \in \mathfrak{D}} \log p_{m{ heta}}(\mathbf{x})
ightarrow \max_{m{ heta}}.$$

Intractabilities: the marginal likelihood $p_{\theta}(\mathbf{x})$ is intractable due to the integral.

Note: while $\nabla_{\theta} \log p_{\theta}(\mathbf{x}) = (p_{\theta}(\mathbf{x}))^{-1} \nabla_{\theta} p_{\theta}(\mathbf{x}|\mathbf{z}) p(\mathbf{z})$ is intractable $(p_{\theta}(\mathbf{z}) = p(\mathbf{z})$ for simplicity)

MIPT 2024

4/20

Evidence Lower Bound (ELBO)

Challenge: the intractability of $\log p_{\theta}(\mathbf{x})$.

Solution: variational lower bound. First. note that $p_{\theta}(\mathbf{x})$ is tractable $\Leftrightarrow p_{\theta}(\mathbf{z}|\mathbf{x})$ $p_{\theta}(\mathbf{x}, \mathbf{z})/p_{\theta}(\mathbf{x})$ is tractable.

Second, introduce a parametric variational distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$, where ϕ is the vector of variational parameters. So, derive the lower bound

$$\begin{split} &\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}) \\ &= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z}) q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x}) p_{\theta}(\mathbf{z}|\mathbf{x})} \\ &= \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})}}_{\mathcal{L}_{\theta, \phi}(\mathbf{x})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})}}_{\mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})) \geq 0} \end{split}$$

Here $\mathcal{L}_{\theta,\phi}(\mathbf{x})$ is the variational lower bound.

Proposition (Evidence Lower Bound)

$$p_{ heta}(\mathbf{x}) \geq \mathcal{L}_{ heta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log rac{p_{ heta}(\mathbf{x},\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})}$$

Note 1: The gap between ELBO and the marginal likelihood is called the tightness of the bound. The better $q_{\phi}(\mathbf{z}|\mathbf{x})$ approximates the true posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ (in terms of KL), the closer the gap.

Note 2: We will show that there are tractable gradients of ELBO w.r.t. θ , ϕ .

MIPT 2024

Stochastic Gradient-Based optimization of the ELBO

Unbiased gradient of ELBO w.r.t the generative model parameters

$$\begin{split} & \nabla_{\theta} \mathcal{L}_{\theta,\phi}(\mathbf{x}) \\ & = \nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x},\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x})] \\ & = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \nabla_{\theta} \log p_{\theta}(\mathbf{x},\mathbf{z}) \\ & \approx \nabla_{\theta} \log p_{\theta}(\mathbf{x},\hat{\mathbf{z}}), \ \hat{\mathbf{z}} \sim q_{\phi}(\mathbf{z}|\mathbf{x}). \end{split}$$

Reparametrization trick: First, assume that we can express $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ as $\mathbf{z} = \mathbf{g}(\epsilon, \phi, \mathbf{x}), \ \epsilon \sim p(\epsilon)$, where \mathbf{g} is differentiable w.r.t. ϕ , i.e. $q_{\phi}(\mathbf{z}|\mathbf{x})$ is reparametrizable. Also assume that f(.) is differentiable. Let $\hat{\epsilon} \sim p(\epsilon)$.

$$\begin{split} &\nabla_{\boldsymbol{\phi}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} f(\mathbf{z}) = \nabla_{\boldsymbol{\phi}} \mathbb{E}_{p(\boldsymbol{\epsilon})} f(\mathbf{g}(\boldsymbol{\epsilon}, \boldsymbol{\phi}, \mathbf{x})) \\ &= \mathbb{E}_{p(\boldsymbol{\epsilon})} \nabla_{\boldsymbol{\phi}} f(\mathbf{g}(\boldsymbol{\epsilon}, \boldsymbol{\phi}, \mathbf{x})) \approx \nabla_{\boldsymbol{\phi}} f(\mathbf{g}(\hat{\boldsymbol{\epsilon}}, \boldsymbol{\phi}, \mathbf{x})) \end{split}$$

Unbiased gradient of ELBO w.r.t. the variational parameters

$$\begin{split} & \nabla_{\phi} \mathcal{L}_{\theta,\phi}(\mathbf{x}) \\ & = \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x},\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x})] \\ & = \mathbb{E}_{p(\epsilon)} [\nabla_{\phi} \log p_{\theta}(\mathbf{x},\mathbf{z}) - \nabla_{\phi} \log q_{\phi}(\mathbf{z}|\mathbf{x})] \big|_{\mathbf{z} = \mathbf{g}(\epsilon,\phi,\mathbf{x})} \\ & \approx \left[\nabla_{\phi} \log p_{\theta}(\mathbf{x},\mathbf{z}) - \nabla_{\phi} \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right] \big|_{\mathbf{z} = \mathbf{g}(\hat{\epsilon},\phi,\mathbf{x}), \; \hat{\epsilon} \sim p(\epsilon)} \end{split}$$

Note: also assume that we have access to $q_{\phi}(\mathbf{z}|\mathbf{x})$, $\nabla_{\mathbf{z}} \log q_{\phi}(\mathbf{z}|\mathbf{x})$, and $\nabla_{\phi} \log q_{\phi}(\mathbf{z}|\mathbf{x})$. **Example**: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \prod_{i=1}^{\dim \mathbf{z}} \mathcal{N}(z_i|\mu_i, \sigma_i^2)$.

6/20

Optimimazion of the ELBO

Factorized Gaussian posterior: a common choice of $q_{\phi}(\mathbf{z}|\mathbf{x})$ is a factorized Gaussian

$$egin{aligned} (oldsymbol{\mu}, \log oldsymbol{\sigma}) &= \operatorname{MLP}_{oldsymbol{\phi}}(\mathbf{x}), \; q_{oldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) = \prod_{i=1}^{\dim \mathbf{z}} \mathcal{N}(z_i|\mu_i, \sigma_i^2), \ \mathbf{z} &= oldsymbol{\mu} + oldsymbol{\sigma} \odot oldsymbol{\epsilon}. \end{aligned}$$

Limitation: factorized distribuions are not flexible. By increasing the flexibility of $q_{\phi}(\mathbf{z}|\mathbf{x})$, we improve the tightness of the ELBO $(\mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})))$.

Optimization problem

$$\log p_{m{ heta}}(\mathfrak{D}) \geq \sum_{\mathbf{x} \in \mathfrak{D}} \mathcal{L}_{m{ heta}, \phi}(\mathbf{x})
ightarrow \max_{m{ heta}, \phi}.$$

Data: $\mathfrak{D} = \{x_i\}_{i=1}^N$ Result: learned θ, ϕ

 $oldsymbol{ heta}, oldsymbol{\phi} \leftarrow$ initialization;

while not converged do

 $\mathbf{x}_{1:M} \leftarrow \text{random minibatch of } M$ datapoints;

 $\epsilon \leftarrow$ sample random noise from $p(\epsilon)$:

 $\hat{\mathbf{g}} \leftarrow$ stochastic gradients of $\mathcal{L}_{\theta,\phi}(\mathbf{x})$ w.r.t θ,ϕ ;

 $oldsymbol{ heta}, oldsymbol{\phi} \leftarrow$ update parameters using $\hat{f g}$

end

 $\begin{array}{lll} \textbf{Algorithm 1:} & \textbf{Minibatch version of the} \\ \textbf{Auto-Encoding VB} \end{array}$

Estimation of the Marginal Likelihood and Sampling²,

Estimation of the Marginal Likelihood

Theorem

For all $k \ge 1$ the following is true:

$$\log p(\mathbf{x}) \geq \mathcal{L}_{k+1}(\mathbf{x}) \geq \mathcal{L}_k(\mathbf{x}),$$

$$\mathcal{L}_k(\mathbf{x}) := \mathbb{E}_{\mathbf{z}_{1:k} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log \left(rac{1}{k} \sum_{i=1}^k rac{p_{ heta}(\mathbf{x}, \mathbf{z}_i)}{q_{\phi}(\mathbf{z}_i|\mathbf{x})}
ight).$$

Moreover, if $p_{\theta}(\mathbf{x}, \mathbf{z})/q_{\phi}(\mathbf{z}|\mathbf{x})$ is bounded, then $\mathcal{L}_k(\mathbf{x})$ approaches $\log p(\mathbf{x})$ as k goes to infinity.

Sampling^a

$$\mathbf{x} \sim p_{\theta}(\mathbf{x}) \Leftrightarrow \mathbf{z} \sim p_{\theta}(\mathbf{z}), \ \mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z}).$$

^aKingma D. et. al, Auto-Encoding Variational Bayes, 2014

²Burda Y. et. al, Importance Weighted Autoencoders, 2016

Semi-Implicit Variational Inference³

Challenge: the representation power of the variational family is limited by the assumption that $q(\mathbf{z}|\mathbf{x})$ is factorizable.

Solution: introduce a mixing distribution on the parameters on the original $q(\mathbf{z}|\mathbf{x})$.

$$\mathcal{H} := \{h_{\phi}(\mathbf{z}) : h_{\phi}(\mathbf{z}) = \mathbb{E}_{q_{\phi}(\psi)}q(\mathbf{z}|\psi)\},$$

 $q(\mathbf{z}|\psi)$ explicit and reparametrizable,
 $q_{\phi}(\psi)$ implicit and reparametrizable,
 $\Rightarrow h_{\phi}(\mathbf{z})$ implicit in the general case

Lower bound of ELBO:

$$ext{ELBO} = \mathbb{E}_{\mathsf{z} \sim h_\phi(\mathsf{z})} \log rac{p(\mathsf{x}, \mathsf{z})}{h_\phi(\mathsf{z})} =$$

$$egin{aligned} \log
ho(\mathbf{x}) &- \mathrm{KL}(\mathbb{E}_{\psi \sim q_{\phi}(\psi)} q(\mathbf{z}|\psi) ||
ho(\mathbf{z}|\mathbf{x})) \geq \ &- \mathbb{E}_{\psi \sim q_{\phi}(\psi)} \mathrm{KL}(q(\mathbf{z}|\psi) ||
ho(\mathbf{z}|\mathbf{x})) + \log
ho(\mathbf{x}) = \ \mathbb{E}_{\psi \sim q_{\phi}(\psi)} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\psi)} \log rac{
ho(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\psi)} =: \underline{\mathcal{L}}(q(\mathbf{z}|\psi), q_{\phi}(\psi)) \end{aligned}$$

Theorem

Let
$$\psi^* = \operatorname{arg\,max}_{\psi} \mathbb{E}_{q(\mathsf{z}|\psi)} rac{p(\mathsf{x},\mathsf{z})}{q(\mathsf{z}|\psi)}$$
 . Then

$$egin{aligned} \max_{q_{\phi}(\psi)} & \underline{\mathcal{L}}(q(\mathbf{z}|\psi), q_{\phi}(\psi)) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\psi^*)} \log rac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\psi^*)}, \ & rg \max_{q_{\phi}(\psi)} & \underline{\mathcal{L}}(q(\mathbf{z}|\psi), q_{\phi}(\psi)) = \delta(\psi - \psi^*) \end{aligned}$$

Therefore, SIVI degenerates to vanilla VI.

MIPT 2024

9/20

³Yin M. et. al, Semi-Implicit Variational Inference, 2018

Semi-Implicit Variational Inference: preventing degeneracy

Introduce a regularizer:

$$B_{\mathcal{K}} := \mathbb{E}_{\psi,\psi^{(1:\mathcal{K})} \sim q_{\phi}(\psi)} \mathrm{KL}(q(\mathbf{z}|\psi)|| ilde{h}_{\mathcal{K}}(\mathbf{z})),$$

$$ilde{h}_{\mathcal{K}}(\mathsf{z}) := rac{1}{\mathcal{K}+1} \left(q(\mathsf{z}|oldsymbol{\psi}) + \sum_{k=1}^{\mathcal{K}} q(\mathsf{z}|oldsymbol{\psi}^{(k)})
ight)$$

Note that $B_K=0 \Leftrightarrow K=0$ or $q_\phi(\psi)=\delta(\psi-\mathbf{a}).$

Theorem

$$\lim_{K\to\infty}(\underline{\mathcal{L}}+B_K)=\mathrm{ELBO}=\mathbb{E}_{\mathbf{z}\sim h_\phi(\mathbf{z})}\log\frac{p(\mathbf{x},\mathbf{z})}{h_\phi(\mathbf{z})}.$$

Informal intuition: use the strong law of large numbers:

$$\lim_{K \to \infty} B_K = \mathbb{E}_{\psi \sim q_{\phi}(\psi)} \text{KL}(q(\mathbf{z}|\psi)||h_{\phi}(\mathbf{z})).$$

$$\Rightarrow \underline{\mathcal{L}} + B_{\infty} = \mathbb{E}_{\psi \sim q_{\phi}(\psi)} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\psi)} \log \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\psi)} +$$

$$\mathbb{E}_{\psi \sim q_{\phi}(\psi)} \text{KL}(q(\mathbf{z}|\psi)||h_{\phi}(\mathbf{z})) =$$

$$\mathbb{E}_{\psi \sim q_{\phi}(\psi)} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\psi)} \left(\log \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\psi)} + \log \frac{q(\mathbf{z}|\psi)}{h_{\phi}(\mathbf{z})} \right) =$$

$$\mathbb{E}_{\mathbf{z} \sim h_{\phi}(\mathbf{z})} \log \frac{p(\mathbf{x}, \mathbf{z})}{h_{\phi}(\mathbf{z})} = \text{ELBO}$$

10/20

Semi-Implicit Variational Inference: evaluation

Negative binomial model

$$x_i \sim \text{NB}(r, p), \ r \sim \text{Gamma}(a, 1/b),$$

 $p \sim \text{Beta}(\alpha, \beta), \ a = b = \alpha = \beta = 0.01.$

Therefore, the posterior $p(r, p|x_1, \ldots, x_n)$ is intractable.

Mean-Field VI

$$q(r, p) = \operatorname{Gamma}(r|\tilde{a}, 1/\tilde{b})\operatorname{Beta}(p|\tilde{\alpha}, \tilde{\beta}).$$

SIVI:

$$q(r, p|\psi) = \text{LogNorm}(r|\mu_r, \sigma_0^2) \text{LogitNorm}(p|\mu_p, \sigma_0^2),$$

 $\psi = (\mu_r, \mu_p) \sim q(\psi)$ is MLP-based.

The model is trained with K = 1000.

We see that K = 20 achieves a nice compromise between complexity and accuracy.

MIPT 2024 11 / 20

A Continuous relaxation of discrete random variables⁴

Challenge: discrete random variables lack useful reparameterizations due to the discontinuous nature of discrete states.

Solution: introduce Concrete random variables.

Background: Reparametrization trick:

$$\mathbb{E}_{x \sim p_{\phi}(x)} f(x) \to \min_{\phi}.$$

Assume that f is differentiable w.r.t x, $x \sim p_{\phi}(x) \Leftrightarrow z \sim p(z), \ x = g_{\phi}(z)$, and $g_{\phi}(.)$ is differentiable w.r.t. ϕ .

$$\hat{\nabla}_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\phi}(\mathbf{x})} f(\mathbf{x}) = \frac{\partial f}{\partial g_{\phi}(\mathbf{z})} \frac{\partial g_{\phi}(\mathbf{z})}{\partial \phi}.$$

Gumbel-Max trick

$$d \sim \operatorname{Cat}(\alpha_1, \dots, \alpha_n) \Leftrightarrow d = \arg \max_{k=\overline{1,n}} (\log \alpha_k \underbrace{-\log(-\log u_k)}_{g_k \sim \operatorname{Gumbel}(0,1)}),$$

$$u_k \stackrel{i.i.d.}{\sim} \mathcal{U}[0,1].$$

Concrete random variable: given $oldsymbol{lpha} \in \mathbb{R}^n_{++}$

$$\mathbf{x} := \operatorname{softmax}((\log \alpha + \mathbf{g})/\lambda) \sim \operatorname{Concrete}(\alpha, \lambda),$$
 $\{g_i\} \overset{i.i.d.}{\sim} \operatorname{Gumbel}(0, 1),$
 $\lambda \in \mathbb{R}_{++}$ temperature parameter.

The $\operatorname{softmax}$ approaches $\operatorname{arg\,max}$ as $\lambda \to 0$.

Lecture 11 MIPT 2024 12 / 20

⁴Maddison C. et. al, The Concrete Distribution: A Continuous relaxation of discrete random variables ≥ 2017, ○

Properties of Concrete distribution

Theorem

The following is true for $\mathbf{x} \sim \mathrm{Concrete}(\boldsymbol{\alpha}, \lambda)$

- (Rounding) $\mathbb{P}(x_k > x_i, i \neq k) = \frac{\alpha_k}{\sum_{i=1}^n \alpha_i}$.
- (Zero Temperature) $\mathbb{P}(\lim_{\lambda \to 0} x_k = 1) = \frac{\alpha_k}{\sum_{i=1}^n \alpha_i}$.
- (Convex eventually) if $\lambda \leq (n-1)^{-1}$, then $p(\mathbf{x}|\alpha,\lambda)$ is log-convex in \mathbf{x} .

Note: for any $\lambda > 0$ the gradient estimator is biased. The temperature sets a tradeoff between the bias and the variance of the estimator. The higher λ , the greater the bias.

VAE with a single discrete latent variable:

$$egin{aligned} q_{\phi}(d|\mathbf{x}) &= \operatorname{Cat}(d|f_{ heta}(\mathbf{x})), \ \mathbb{E}_{d \sim q_{\phi}(d|\mathbf{x})} \log rac{p_{ heta}(\mathbf{x},d)}{q_{\phi}(d)} &\stackrel{relax}{\leadsto} \ \mathbb{E}_{\mathbf{z} \sim q_{lpha,\lambda}(\mathbf{z}|\mathbf{x},\phi)} \log rac{p_{ heta}(\mathbf{x},\mathbf{z})}{q_{lpha,\lambda}(\mathbf{z}|\mathbf{x},\phi)}. \end{aligned}$$

Note that we assumed that $p(\mathbf{x}, \mathbf{z})$ is feasible, i.e. the decoder is able to condition on relaxed variable \mathbf{z} .

13 / 20

Continuous relaxation: evaluation

Setup: VAE with discrete latent variables. More specifically, the task is to predict the bottom half \mathbf{x}_1 of a MNIST image given the upper one \mathbf{x}_2 . Consider IWAE objective with the prior $p_{\theta}(\mathbf{z}|\mathbf{x}_2)$ as the variational distribution.

$$\mathcal{L}_{m}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \mathbb{E}_{\mathbf{z}_{1:m} \sim p_{\theta}(\mathbf{z}|\mathbf{x}_{2})} \log \left(\frac{1}{m} \sum_{i=1}^{m} p_{\theta}(\mathbf{x}_{1}|\mathbf{z}_{i}) \right).$$

Comparison with a baseline

binary		Test NLL		Train NLL		
model	m	Concrete	VIMCO	Concrete	VIMCO	
(392V-240H -240H-392V)	1 5 50	58.5 54.3 53.4	61.4 54.5 51.8	54.2 49.2 48.2	59.3 52.7 49.6	
(392V-240H -240H-240H -392V)	1 5 50	56.3 52.7 52.0	59.7 53.5 50.2	51.6 46.9 45.9	58.4 51.6 47.9	

It could be clearly seen that the proposed Concrete estimator outperforms the baseline.

14 / 20

Black-box gradient estimation⁵

Challenge: backpropagation w.r.t. encoder parameters could not be applied in case of discrete latent variables

Solution: introduce a learnable free-form control variate parameterized by a neural network. **Background: gradient estimators**

$$\begin{split} &\mathbb{E}_{p(b|\theta)}[f(b)] \to \min_{\theta} \Leftarrow \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}), \\ &\hat{g}_{\mathsf{reinf}}[f] := f(b) \frac{\partial}{\partial \theta} \log p(b|\theta), \quad b \sim p(b|\theta), \\ &\hat{g}_{\mathsf{reparam}}[f] := \frac{\partial}{\partial \theta} f(b) = \frac{\partial f}{\partial T} \frac{\partial T(\theta, \epsilon)}{\partial \theta}, \; \epsilon \sim p(\epsilon). \end{split}$$

Control variates: reduces the variance of a stochastic estimator.

$$\hat{g}_{\mathsf{new}}(b) := \hat{g}(b) - c(b) + \mathbb{E}_{p(b|\theta)}[c(b)].$$

Constructing a differentiable surrogate: Assume that b - continuous and $b = T(\theta, \epsilon)$, $\epsilon \sim p(\epsilon)$; given c_{ϕ} , a differentiable surrogate of f, but f cannot be differentiated.

$$egin{aligned} \hat{g}_{\mathsf{LAX}} &:= \hat{g}_{\mathsf{reinf}}[f] - \hat{g}_{\mathsf{reinf}}[c_\phi] + \hat{g}_{\mathsf{reparam}}[c_\phi] = \ [f(b) - c_\phi(b)] rac{\partial}{\partial heta} \log p(b| heta) + rac{\partial}{\partial heta} c_\phi(b). \end{aligned}$$

Note that the estimator is unbiased for any $c_\phi.$

Lecture 11 MIPT 2024 15 / 20

⁵Grathwohl W. et. al, Backpropagation Through The Void: Optimizing Control Variates For Black-Box Gradient Estimation, 2018

Black-box gradient estimation: discrete random variables

Gradient-based optimization of the control Theorem: The proposed \hat{g}_{relax} is unbiased for any c_{ϕ} . variate:

$$\frac{\partial}{\partial \phi} \mathbb{V}[\hat{g}] = \frac{\partial}{\partial \phi} \mathbb{E}[\hat{g}^2] - \underbrace{\frac{\partial}{\partial \phi} \mathbb{E}[\hat{g}]^2}_{=0} = \mathbb{E}\left[\frac{\partial}{\partial \phi} \hat{g}^2\right]. \quad \underbrace{\left[f(b) - c_{\phi}(\tilde{z})\right] \frac{\partial}{\partial \theta} \log p(b|\theta) + \frac{\partial}{\partial \theta} c_{\phi}(z) - \frac{\partial}{\partial \theta} c_{\phi}(\tilde{z})}_{\hat{g}_{\text{relax}}},$$

So, we can directly minimize the variance of where b = H(z), $z \sim p(z|\theta)$, $\tilde{z} \sim p(z|\theta,\theta)$. a gradient estimator. We alternate between θ **Example**: when $p(b|\theta) = \text{Be}(\theta)$. $H(z) = \text{Be}(\theta)$ **1**[z > 0]. and ϕ updates.

Discrete random variables and conditional **reparametrization**: let b be a discrete ran- $z = \log \frac{\theta}{1-\theta} + \log \frac{u}{1-u} \sim p(z|\theta), \ u \sim \mathcal{U}[0,1],$ dom variable. Introduce a "relaxed" continuous reparametrizable $z \sim p(z|\theta), \ H(z) = b, \ b \sim \tilde{z} = \log \frac{\theta}{1-\theta} + \log \frac{v'}{1-v'} \sim p(z|b,\theta),$ $p(b|\theta)$, where H(.) is a deterministic mapping. $v' = v[(1-\theta)(1-b) + \theta b] + (1-\theta)b$, $v \sim \mathcal{U}[0,1]$.

16 / 20

RELAX: evaluation

VAE with Bernoulli latent varibles

One-layer linear model

$$q(b_i|\mathbf{x}) = \mathrm{Be}(\sigma(\mathbf{W}_q\mathbf{x} + b_q)),$$

 $p(\mathbf{x}|\mathbf{b}) = \mathrm{Be}(\sigma(\mathbf{W}_p\mathbf{b} + \mathbf{b}_p)).$

Datase	t Model	Concrete	NVIL	MuProp	REBAR	RELAX
MNIST	Nonlinear linear one-layer linear two-layer	-102.2 -111.3 -99.62	$-101.5 \\ -112.5 \\ -99.6$	-101.1 -111.7 -99.07	-81.01 -111.6 -98.22	-78.13 -111.20 -98.00
Omniglo	Nonlinear linear one-layer linear two-layer	-110.4 -117.23 -109.95	-109.58 -117.44 -109.98	-108.72 -117.09 -109.55	-56.76 -116.63 -108.71	-56.12 -116.57 -108.54

Training curves

The proposed approach improved validation performance as well increased convergence speed.

17 / 20

Vector Quantised - Variational AutoEncoder⁶

Challenge: the latent codes **z** are ignored when they are paired with a powerful decoder $p(\mathbf{x}|\mathbf{z})$ in VAE framework.

Solution: introduce a discrete latent model VQ-VAE.

Define the variational posterior by a nearest-neighbour look-up using **E**:

$$q(z=k|\mathbf{x}) = egin{cases} 1, & k = rg \min_j \|\mathbf{z}_e(\mathbf{x}) - \mathbf{e}_j\|_2, \ 0, & ext{otherwise}. \end{cases}$$

Posterior collapse

The posterior of \mathbf{z} is collapses if $q_{\phi}(\mathbf{z}|\mathbf{x}) = p(\mathbf{z})$. So, when posterior collapse occurs, it prevents the latent variable from providing meaningful summary of the dataset.

The variational distribution Given a latent embeddings space $\mathbf{E} \in \mathbb{R}^{K \times D}$ and a deterministic encoder $\mathbf{z}_e : \mathbb{R}^{\dim \mathbf{x}} \to \mathbb{R}^D$.

Define a latent variable $\mathbf{z}_q = \mathbf{e}_k$, $k = \arg\min_i \|\mathbf{z}_e(\mathbf{x}) - \mathbf{e}_i\|_2$.

⁶van den Oord A. et. al, Neural Discrete Representation Learning, 2018

◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト

18 / 20

VQ-VAE training

Deriving the ELBO

$$egin{aligned} \mathcal{L}_{ heta,\phi} &= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{ heta}(\mathbf{x},\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x})] \ &= \log p_{ heta}(\mathbf{x}|\mathbf{z}_q) p(\mathbf{z}_q) \propto \log p_{ heta}(\mathbf{x}|\mathbf{z}_q)
ightarrow \max_{\phi, heta,\mathbf{E}}. \end{aligned}$$

Note that arg max is not differentiable, so copy gradients from decoder input \mathbf{z}_q to encoder output \mathbf{z}_e .

Challenge: **E** receive no gradients due to the straight-through gradient.

Solution: Vector Quantization

$$\mathcal{L}_{\text{total}}(\mathbf{x}) = \log p_{\theta}(\mathbf{x}|\mathbf{z}_q) + \|\operatorname{sg}(\mathbf{z}_e(\mathbf{x})) - \mathbf{e}_k\|_2^2 + \beta \|\mathbf{z}_e(\mathbf{x}) - \operatorname{sg}(\mathbf{e}_k)\|_2^2,$$

where $\operatorname{sg}(.)$ is the stop gradient operation. The last term is a *commitment loss*. The loss ensures that the outputs of the encoder do not grow.

The prior:

During training $p(\mathbf{z}_q)$ kept constant and uniform. Subsequently, learn an autoregressive prior $p(\mathbf{z})$ when there are more than one latent variable.

19 / 20

Summary

- Latent Variable Model
- An introduction to Variational Autoencoders
- Semi-Implicit Variational Inference
- Continuous relaxation and Concrete distribution
- Black-box gradient estimator and RELAX
- VQ-VAE

20 / 20