



# Predictive Analytics and Modelling of Data

CMSE11428 (2020-2021)

Dr Xuefei Lu

The University of Edinburgh Business School



### Q1. Imagine that you want to predict house prices in Edinburgh based on the size. Which of the following statements is FALSE?

- A. This is a supervised learning problem, since you have an outcome variable (house prices)
- B. If we regressed house prices on the size, we would have a continuous response variable and a discrete predictor.
- C. The relationship between house prices and size will be approximated by a straight line.
- D. The slope of the regression line will represent the effect of 1 unit increase in size on the house price.



### Q1. Imagine that you want to predict house prices in Edinburgh based on the size. Which of the following statements is FALSE?

- A. This is a supervised learning problem, since you have an outcome variable (house prices)
- B. If we regressed house prices on the size, we would have a continuous response variable and a discrete predictor.
- C. The relationship between house prices and size will be approximated by a straight line.
- D. The slope of the regression line will represent the effect of 1 unit increase in size on the house price.



Q2. A large retailer in the UK has asked you to regress CLV on the frequency of visiting the store. They have provided you with 5 observations: CLV =  $\{10,5,20,15,5\}$  and frequency =  $\{10,3,6,7,4\}$ . The value for  $\widehat{\beta_1}$  has already been calculated and is equal to 1. Which of the following statements is FALSE?

- A. The value for  $\widehat{\beta_0}$  is equal to 5.
- B. The total variance in the response is equal to 153.
- C. The model has 1 degree of freedom.
- D. If you have visited the store 3 times, the model predicts CLV to be 8.



Q2. A large retailer in the UK has asked you to regress CLV on the frequency of visiting the store. They have provided you with 5 observations: CLV =  $\{10,5,20,15,5\}$  and frequency =  $\{10,3,6,7,4\}$ . The value for  $\widehat{\beta_1}$  has already been calculated and is equal to 1. Which of the following statements is FALSE?

- A. The value for  $\widehat{\beta_0}$  is equal to 5.
  - B. The total variance in the response is equal to 153.
- C. The model has 1 degree of freedom.
- D. If you have visited the store 3 times, the model predicts CLV to be 8.

$$\bar{y} = 11, \ \bar{x} = 6 \implies \widehat{\beta_0} = \bar{y} - \widehat{\beta_1} \cdot \bar{x} = 11 - 1 \cdot 6 = 5$$
  
 $\sum (y_i - \bar{y})^2 = (-1)^2 + (-6)^2 + (9)^2 + (4)^2 + (-6)^2 = 170$   
We have 1 predictor, so 1 degree of freedom

The final equation is:  $\hat{y} = 5 + 1 \cdot X = 5 + 1 \cdot 3 = 8$ 

| Dep. Variable:       |        | у         |                  | R-squared: |                     | 0.176  |
|----------------------|--------|-----------|------------------|------------|---------------------|--------|
| Model:               |        | OLS       |                  | Adj. I     | Adj. R-squared:     |        |
| Method:              |        | Lea       | ast Squares      |            | 0.6429              |        |
|                      | Date:  |           | Thu, 11 Apr 2019 |            | Prob (F-statistic): |        |
| Time:                |        | 15:34:16  |                  | Log-l      | Log-Likelihood:     |        |
| No.<br>Observations: |        | 5         |                  |            | AIC:                | 34.85  |
| Df Residuals:        |        | 3         |                  |            | BIC:                | 34.07  |
| Df Model:            |        |           | 1                |            |                     |        |
| Covariance<br>Type:  |        | nonrobust |                  |            |                     |        |
|                      | coef   | std err   | t                | P> t       | [0.025              | 0.975] |
| const                | 5.0000 | 8.083     | 0.619            | 0.580      | -20.723             | 30.723 |
| х                    | 1.0000 | 1.247     | 0.802            | 0.481      | -2.969              | 4.969  |



## Q3. You have built a simple linear regression model on the CLV example in question 2. What is the TRUE statement about the linear regression output? You can assume that Y is CLV and X is frequency.

- A. Since the t-statistics are very small, we can reject the null hypothesis that frequency has no significant influence on CLV.
- B. A p-value of 0.580 means that the probability at the intercept is significant is 58%.
- C. The R2 is 17.6%, which means that the correlation between the CLV and frequency is  $\sqrt{0.176}$ .
- D. The regression line will cross the x-axis at 5.

| Dep. V               | ariable: |               |                  | R-squared: |                     | 0.176  |
|----------------------|----------|---------------|------------------|------------|---------------------|--------|
| Model:               |          | OLS           |                  | Adj. F     | Adj. R-squared:     |        |
| N                    | /lethod: | Least Squares |                  |            | F-statistic:        |        |
|                      | Date:    |               | Thu, 11 Apr 2019 |            | Prob (F-statistic): |        |
|                      | Time:    |               | 15:34:16         |            | Log-Likelihood:     |        |
| No.<br>Observations: |          | 5             |                  |            | AIC:                | 34.85  |
| Df Residuals:        |          | 3             |                  |            | BIC:                | 34.07  |
| Df Model:            |          |               | 1                |            |                     |        |
| Covariance<br>Type:  |          | nonrobust     |                  |            |                     |        |
|                      | coef     | std err       | t                | P> t       | [0.025              | 0.975] |
| const                | 5.0000   | 8.083         | 0.619            | 0.580      | -20.723             | 30.723 |
| х                    | 1.0000   | 1.247         | 0.802            | 0.481      | -2.969              | 4.969  |



## Q3. You have built a simple linear regression model on the CLV example in question 2. What is the TRUE statement about the linear regression output? You can assume that Y is CLV and X is frequency.

- A. Since the t-statistics are very small, we can reject the null hypothesis that frequency has no significant influence on CLV.
- B. A p-value of 0.580 means that the probability at the intercept is significant is 58%.
- C. The R2 is 17.6%, which means that the correlation between the CLV and frequency is  $\sqrt{0.176}$ .
- D. The regression line will cross the x-axis at 5.



