Personal Income Taxation and Entrepreneurship – role of productivity learning

Han Gao

Lichen Zhang

University of New South Wales

University of Hong Kong

2022 Dec, DSE @ ANU

Motivation

Passthrough business owners in US are subject to progressive personal income taxes

Question: How does personal income tax progressivity affect the choice to become an entrepreneur? — e.g., current U.S. progressive tax v.s. flat tax

- static environment: expected return v.s. insurance through redistribution
- life cycle: progressive tax favors the young (high uncertainty + low asset)
 - lower tax burden and higher insurance value

Motivation

Passthrough business owners in US are subject to progressive personal income taxes

Question: How does personal income tax progressivity affect the choice to become an entrepreneur? — e.g., current U.S. progressive tax v.s. flat tax

- static environment: expected return v.s. insurance through redistribution
- life cycle: progressive tax favors the young (high uncertainty + low asset)
 - lower tax burden and higher insurance value

This paper: macro & policy implications of life cycle & entrep. productivity learning

- conventional wisdom: flat tax favors high productivity entrepreneurs + redistribution and GE effects lead to welfare gains

What We Do

- Data: infer entrepreneurial learning process with micro subjective belief data on expectation formation of business performances
 - size & dynamics of uncertainty
- Model: GE life cycle with heterogeneous agents choosing to
 - work for someone else or
 - run own private business and
 - gradually learn about innate productivity s.t. ex-post transitory shocks
 - accumulate wealth & produce s.t. financial friction
- Policy: benchmark progressive tax system v.s. counterfactual flat tax reform
 - aggregate & distributional effects across age and entre. productivity types
 - compare with a case of perfect information, where agents perfectly know innate type since period 0 thus do not need to learn

Model: Overview

• Time is discrete, age $j \in \{21, ..., 100\}$, stochastic mortality shocks

Determinants of occupational choice over the life cycle:

- Entrepreneurial productivity learning in a Bayesian fashion
 - enter economy with innate productivity, which is unobserved to agents
 - gradually learn innate productivity **only** by actively working as entrep.
 - occ. choice made at the end of each period (before shocks realize)
- Asset accumulation & bequests & incomplete markets
- · Permanent non-pecuniary utilities of being an entrepreneur
- Progressive personal income tax on wage/business incomes a la HSV

States & Flow Utility

- Individual states $\mathbf{x}_j = (x_e, a_j, \ \epsilon_{w,j}, \ \chi_w, \ \tilde{\mu}_{e,j}, \ \tilde{\nu}_{e,j}, \ \epsilon_{e,j})$
 - x_e: (permanent) love of business characteristic
 - a: assets
 - ϵ_w : wage income shock for worker
 - χ_w : permanent types as worker
 - $ilde{\mu}_e$: belief about innate entrep. productivity, mean
 - $\tilde{\nu}_e$: belief about innate entrep. productivity, std. dev.
 - ϵ_e : entrep. productivity realization shock (signal)
- Flow utility

$$u(c, I; x_e) = \frac{(c^{\gamma} I^{1-\gamma})^{1-\nu}}{1-\nu}, \quad \gamma \in (0, 1), \nu > 0$$
$$I = 1 - h \mathbb{1}_{\{o = W\}} - \phi_e(x_e) \mathbb{1}_{\{o = E\}}$$

- c: consumption
- 1: leisure affected by occupational choice & hours (h)

States & Flow Utility

- Individual states $\mathbf{x}_j = (x_e, a_j, \ \epsilon_{w,j}, \ \chi_w, \ \tilde{\mu}_{e,j}, \ \tilde{\nu}_{e,j}, \ \epsilon_{e,j})$
 - x_e : (permanent) love of business characteristic
 - a: assets
 - ϵ_w : wage income shock for worker
 - χ_w : permanent types as worker
 - $\tilde{\mu}_e$: belief about innate entrep. productivity, mean
 - $\tilde{\nu}_e$: belief about innate entrep. productivity, std. dev.
 - ϵ_e : entrep. productivity realization shock (signal)
- Flow utility

$$u(c, I; x_e) = \frac{(c^{\gamma} I^{1-\gamma})^{1-\nu}}{1-\nu}, \quad \gamma \in (0, 1), \nu > 0$$
$$I = 1 - h \mathbb{1}_{\{o = W\}} - \phi_e(x_e) \mathbb{1}_{\{o = E\}}$$

- c: consumption
- I: leisure affected by occupational choice & hours (h)

Entrepreneurial Productivity: Information Structure

- Uncertainty about innate productivity:
 prior to entering the labor market (model period 0)
 - agents draw innate entrep. productivity from $\mu \sim \textit{N}(\mu_{e}, \nu_{e}^{2})$
 - agents belief about their innate productivity follows $N(\mu_e, \nu_e^2)$
- Learning about innate productivity in following periods: agents observe a productivity shock (signal) ϵ_e
 - only in periods actively working as entrepreneurs
 - $\epsilon_e = {\sf true} \ {\sf type} \ (\mu) + {\sf transitory} \ {\sf shock}$
 - transitory shock $\overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_e^2)$
 - ϵ_e is also the productivity shock for production

Entrepreneurial Productivity: Learning Process

- The *n*-th observed realized entrep. prod. shock (signal): $\epsilon_{e,n}$
 - n: number of periods being an entrepreneur
- Let the posterior belief after observing nth signals be $\mathcal{N}(\tilde{\mu}_{e,n}, \tilde{\nu}_{e,n}^2)$
- Recursive Bayesian updating formula:

$$\begin{split} \tilde{\nu}_{e,n}^2 &= \frac{\nu_e^2 \sigma_e^2}{n \nu_e^2 + \sigma_e^2} = \frac{1}{n/\sigma_e^2 + 1/\nu_e^2} \\ \tilde{\mu}_{e,n} &= \tilde{\nu}_{e,n}^2 (\frac{\tilde{\mu}_{e,n-1}}{\tilde{\nu}_{e,n-1}^2} + \frac{\epsilon_{e,n}}{\sigma_e^2}) \end{split}$$

- v_e^2 and σ_e^2 together determines forecast precision
- ν_e^2 relative to σ_e^2 determines learning speed \implies identification: size of uncertainty & learning speed to identify ν_e^2 and σ_e^2 jointly

Identifying Learning Parameters from Data

Data from Panel Studies of Entrepreneurial Dynamics Wave1 (PSED 1998-2004)

- Sample of nascent entrepreneurs (NE) in U.S., 4 waves
- Survey questions: NE's expectations regarding the future of the new firm
 - Wave 1 (before becoming an entrepreneur) ask (1) expected sales in the first full year of operation and (2) in the fifth full year of operation
 - Wave 2-4 (currently operating as an entrepreneur) ask (1) realized sales in current year and (2) predicted sales in the fifth full year of operation

Identifying Learning Parameters from Data

With raw data variables:

- ESale: forecasts on sales in a future year
- RSale: realized sales in current year

we further define:

- Forecast errors: deviation of RSale from ESale
- Forecast revisions: updates in ESale (on same objective)

Fact 1: Forecast Errors are Dispersed

Forecasting error: forecast in year 0, reveal in year s = 1

$$\mathtt{FError}_0^s = rac{\mathtt{RSale}_s - \mathtt{ESale}_0^s}{\mathtt{RSale}_s + \mathtt{ESale}_0^s}$$

Fact 2: Forecast Errors Predict Future Forecast Revisions

Year-1 forecast revision on year-5 sales $FRev_1^5 = \frac{ESale_1^5 - ESale_0^5}{RSale_1 + ESale_0^5}$

 \longrightarrow Entrepreneurs update their expectation on their business performances using new observed info

Recursive Problem: Working Periods

• Normal working ages: $1 \le j < J^V$, for $o \in \{W, E\}$

$$\begin{split} V_j^o(x_e, a, \epsilon_w, \chi_w, \tilde{\mu}_e, \tilde{\nu}_e, \epsilon_e) &= \max_{l, a', o'} \{ u(c, l; x_e) + \beta \mathbb{E} V_{j+1}^{o'}(a', \epsilon_w', \chi_w, \tilde{\mu}_e', \tilde{\nu}_e', \epsilon_e') \} \\ s.t. \quad a' + c(1 + \tau_c) &= a(1 + r) + (1 - \tau_{ss}) y_{o,j} - T_o(y_{o,j}) \\ \tilde{\mu}_e', \tilde{\nu}_e' &= \begin{cases} \Pi(\tilde{\mu}_e', \tilde{\nu}_e' | \tilde{\mu}_e, \tilde{\nu}_e, \epsilon_e) & \text{for } o = E \\ \tilde{\mu}_e, \tilde{\nu}_e & \text{otherwise} \end{cases} \\ a' \geq \underline{a} \end{split}$$

Note: occupational choice is predetermined from previous period

Recursive Problem: Working Periods

• Normal working ages: $1 \le j < J^V$, for $o \in \{W, E\}$

$$\begin{split} V_j^o(x_e, a, \epsilon_w, \chi_w, \tilde{\mu}_e, \tilde{\nu}_e, \epsilon_e) &= \max_{l, a', o'} \{ u(c, l; x_e) + \beta \mathbb{E} V_{j+1}^{o'}(a', \epsilon_w', \chi_w, \tilde{\mu}_e', \tilde{\nu}_e', \epsilon_e') \} \\ s.t. \quad a' + c(1 + \tau_c) &= a(1 + r) + (1 - \tau_{ss}) y_{o,j} - T_o(y_{o,j}) \\ \tilde{\mu}_e', \tilde{\nu}_e' &= \begin{cases} \Pi(\tilde{\mu}_e', \tilde{\nu}_e' | \tilde{\mu}_e, \tilde{\nu}_e, \epsilon_e) & \text{for } o = E \\ \tilde{\mu}_e, \tilde{\nu}_e & \text{otherwise} \end{cases} \\ a' \geq \underline{a} \end{split}$$

Note: occupational choice is predetermined from previous period

 \implies income tax imposed on total pre-tax personal income $y_{o,j}(a, \epsilon_w, \epsilon_e)$

• wage incomes for workers: GE wage + age profile + perm. prod. + shocks

$$\log y_{w,j} = \log \omega + \log \theta_j + \log \chi_w + \log \epsilon_{w,j}$$

business incomes for entrepreneurs

$$y_b = \pi(a, \epsilon_e) = \max_{k, n_b} \{ \epsilon_e f(k, n_b) - \omega n_b - (r + \delta) k \}$$

$$s.t \qquad 0 \le k \le \lambda a, \quad n_b \ge 0$$

Recursive Problem: Working Periods

• Normal working ages: $1 \le j < J^V$, for $o \in \{W, E\}$

$$\begin{split} V_{j}^{o}(x_{e}, a, \epsilon_{w}, \chi_{w}, \tilde{\mu}_{e}, \tilde{\nu}_{e}, \epsilon_{e}) &= \max_{l, a', o'} \{u(c, l; x_{e}) + \beta \mathbb{E} V_{j+1}^{o'}(a', \epsilon'_{w}, \chi_{w}, \tilde{\mu}'_{e}, \tilde{\nu}'_{e}, \epsilon'_{e})\} \\ s.t. \quad a' + c(1 + \tau_{c}) &= a(1 + r) + (1 - \tau_{ss})y_{o,j} - T_{o}(y_{o,j}) \\ \tilde{\mu}'_{e}, \tilde{\nu}'_{e} &= \begin{cases} \Pi(\tilde{\mu}'_{e}, \tilde{\nu}'_{e} | \tilde{\mu}_{e}, \tilde{\nu}_{e}, \epsilon_{e}) & \text{for } o = E \\ \tilde{\mu}_{e}, \tilde{\nu}_{e} & \text{otherwise} \end{cases} \end{split}$$

 $a' \geq \underline{a}$ liquidity constraint binding for low realization/productivity entre.

Note: occupational choice is predetermined from previous period

- \implies income tax imposed on total pre-tax personal income $y_{o,j}(a, \epsilon_w, \epsilon_e)$
 - wage incomes for workers: GE wage + age profile + perm. prod. + shocks

$$\log y_{w,j} = \log \omega + \log \theta_j + \log \chi_w + \log \epsilon_{w,j}$$

• business incomes for entrepreneurs

$$y_b = \pi(a, \epsilon_e) = \max_{k, n_b} \{\epsilon_e f(k, n_b) - \omega n_b - (r + \delta)k\}$$

s.t
$$0 < k < \lambda a$$
, $n_b > 0$

collateral constraint binding for high productivity entre. $_{_{11/19}}$

Model Fit: Exit and Recurrent Entre. Activities

(a) Exit Rate by Entre. Duration

(b) Recurrent Entre. Activities

Model Fit: Entrepreneurship over the Life Cycle

value of learning and the cost of uncertainty

Model implications on:

Q1: How Does Value of Learning Vary by Age

- Counterfactual: what if agents do not update belief at specific age?
- Lifetime outcomes: (1) entre. share (2) discounted business inc. (3) discounted total inc.

Value of learning is monotonically decreasing in age

Q2: Who Bears Larger Costs of Uncertainty by Innate Entrepreneur Types

Innate ability types	-3 sd	-2 sd	-1 sd	0 sd	+1 sd	+2 sd	+3 sd	
Benchmark with Info. friction and learning								
Lifetime entrepreneur share	0.01	0.01	0.02	0.04	0.14	0.34	0.39	
Lifetime y^b in total y	0.00	0.00	0.01	0.02	0.12	0.40	0.61	
Lifetime incomes (normalized)	1.00	1.00	1.00	1.00	1.06	1.35	1.87	

- Entrepreneur share & business income/total income increase by type
 - but ... still plenty of time working as workers even for the high types

Q2: Who Bears Larger Costs of Uncertainty by Innate Entrepreneur Types

Innate ability types	-3 sd	-2 sd	-1 sd	0 sd	+1 sd	+2 sd	+3 sd	
Benchmark with Info. friction and learning								
Lifetime entrepreneur share	0.01	0.01	0.02	0.04	0.14	0.34	0.39	
Lifetime y^b in total y	0.00	0.00	0.01	0.02	0.12	0.40	0.61	
Lifetime incomes (normalized)	1.00	1.00	1.00	1.00	1.06	1.35	1.87	

- Entrepreneur share & business income/total income increase by type
 - but ... still plenty of time working as workers even for the high types
- What if agents have perfect information about innate ability?
 - since period 0, individuals know their innate entre. ability
 - no need to learn
 - only transitory shocks when working as entrepreneurs

Lifetime Outcomes by Innate Entrepreneur Types

Innate ability types	-3 sd	-2 sd	-1 sd	0 sd	+1 sd	+2 sd	+3 sd	
Benchmark with Info. friction and learning								
Lifetime entrepreneur share	0.01	0.01	0.02	0.04	0.14	0.34	0.39	
Lifetime y^b in total y	0.00	0.00	0.01	0.02	0.12	0.40	0.61	
Lifetime incomes (normalized)	1.00	1.00	1.00	1.00	1.06	1.35	1.87	
Perfect information (PI)								
Lifetime entrepreneur share	0.00	0.00	0.00	0.00	0.12	0.71	0.94	
Lifetime y^b in total y	0.00	0.00	0.00	0.00	0.09	0.64	0.99	
Lifetime incomes(normalized)	1.00	1.00	1.00	1.00	1.04	1.48	2.56	

• In PI case: only high type choose to be entrepreneurs

Lifetime Outcomes by Innate Entrepreneur Types

Innate ability types	-3 sd	-2 sd	-1 sd	0 sd	+1 sd	+2 sd	+3 sd	
Benchmark with Info. friction and learning								
Lifetime entrepreneur share	0.01	0.01	0.02	0.04	0.14	0.34	0.39	
Lifetime y^b in total y	0.00	0.00	0.01	0.02	0.12	0.40	0.61	
Lifetime incomes (normalized)	1.00	1.00	1.00	1.00	1.06	1.35	1.87	
Perfect information (PI)								
Lifetime entrepreneur share	0.00	0.00	0.00	0.00	0.12	0.71	0.94	
Lifetime y^b in total y	0.00	0.00	0.00	0.00	0.09	0.64	0.99	
Lifetime incomes(normalized)	1.00	1.00	1.00	1.00	1.04	1.48	2.56	

- Switching to PI makes high types gain more (relative to middle/low types)
 - \rightarrow value of learning higher for high types

Q3: How Important is Asset Accumulation Channel?

 Impact on entre share by age when increase collateral param. λ from 1.5 to 2.0, i.e. borrowing up to 50% (100%) of own's assets

Relaxing collateral constraint

- PI: high types to enter immediately collateral constraint binding for high types
- benchmark: much slower increase liquidity constraint is still potentially binding with uncertainty

Tax Policy

Tax Experiments Overview

- Revenue-neutral flat business income tax reform
 - stationary equilibrium comparisons
 - fix wage income tax schedule as in the benchmark
 - apply flat tax rate to business income
 - compare with the case of perfect information
 - ightarrow aggregate & distributional outcomes

Impact under Revenue Neutral Reform

Revenue neutral flat rate = 20%

close to the peak of revenue Laffer curve

Overall impacts

- entre. share $9.0\% \rightarrow 6.0\%$
- AMTR $26.0\% \rightarrow 24.1\%$
- wage rate -1.1%, GDP -1.6%, CEV -2.0%

Impact under Revenue Neutral Reform

Revenue neutral flat rate = 20%

• close to the peak of revenue Laffer curve

Overall impacts

- entre. share $9.0\% \rightarrow 6.0\%$
- AMTR $26.0\% \rightarrow 24.1\%$
- wage rate -1.1%, GDP -1.6%, CEV -2.0%

Age	Entre. Share	ATR	Assets	Output
25-34	-33.6	29.4	5.0	4.7
35-44	-35.7	-1.7	14.2	10.4
45-54	-35.0	-9.0	17.9	11.3
55-64	-38.0	-16.0	26.0	16.4
65-74	-43.0	-20.0	36.9	22.6

Table: Percentage change relative to benchmark, %

Compare with Perfect Info.: Change in Entre. Share by Age

Impact of flat tax reform on entrepreneur share over the life cycle — deviation relative to economy under progressive income tax

Much less persistent dynamic effect in the case of PI

Comparing with Perfect Info.: Lifetime Outcomes by Innate Type

Flat tax reform relative to benchmark

Innate ability types	-3 sd	-2 sd	-1 sd	0 sd	+1 sd	+2 sd	+3 sd		
Benchmark with learning	Benchmark with learning, GE								
Lifetime entre share, p.p.	-0.52	-0.72	-1.18	-2.59	-4.44	-7.15	-7.76		
Lifetime incomes, %	-1.15	-1.15	-1.30	-2.11	-3.82	-6.93	-8.00		

⇒ losses monotonically increasing in types

Comparing with Perfect Info.: Lifetime Outcomes by Innate Type

Flat tax reform relative to benchmark

-3 sd	-2 sd	-1 sd	0 sd	$+1 \ sd$	+2 sd	+3 sd		
Benchmark with learning, GE								
-0.52	-0.72	-1.18	-2.59	-4.44	-7.15	-7.76		
-1.15	-1.15	-1.30	-2.11	-3.82	-6.93	-8.00		
increasi	ng in typ	oes						
increasi	ng in typ	oes						
increasi 0	ng in typ O	oes 0	-0.91	-4.35	-9.12	-4.30		
	, GE -0.52	, GE -0.52 -0.72	, GE -0.52 -0.72 -1.18	, GE -0.52 -0.72 -1.18 -2.59	, GE -0.52 -0.72 -1.18 -2.59 -4.44	, GE -0.52 -0.72 -1.18 -2.59 -4.44 -7.15		

Data Sources

PSID: life cycle

- Entrepreneur entry/exit
- Moments on assets, earnings, and bequests Prob. of Receiving Bequest

PSED Wave 1 (1998-2004): **NE (entrants)**

- Love of business (LoB) characteristic:
 - use Principal Component Analysis (PCA) to convert 25 survey questions into 6 personality traits:

love of business + 'Big 5' (OCEAN)

- stable over life, no gender difference
- only LoB is found to affect the entrepreneur choice

► Details

► Regression

• Entrepreneurial productivity learning

Functional Specifications

Utility cost of being an entrepreneur:

$$\phi_e(x_e) = \phi_{e,0} + \phi_{e,1} x_e$$

Production functions:

$$f(k, n_b) = (k^{\alpha} n_b^{1-\alpha})^{\eta}, \quad \eta < 1$$
$$F_C(K_C, N_C) = A_C K_C^{\mu} N_C^{1-\mu}$$

• Personal income tax: same for W, E

$$T(y) = y - (1 - \kappa_0)y^{(1 - \kappa_1)}$$

• Bequest: following De Nardi (2004) and Lockwood (2018)

$$\mathcal{V}(b) = (rac{\phi_b}{1-\phi_b})^{ ilde{
u}} rac{(rac{\phi_b}{1-\phi_b}c_b+b)^{1- ilde{
u}}}{1-
u}$$

▶ Properties of V(b)

Calibration

• Benchmark steady state: matching moments of year 1996

Key parameters of entrepreneurs

Parameter	Description	Value	Target
Non-pecuni	ary utility		
$(\beta_{e,1},\beta_{e,2})$	Beta distribution: LoB state x_e	(3.2, 2.8)	PSED-LoB score Detail
$\phi_{e,0}$	Fixed util. cost of entrep.: intercept	0.60	Share of entrepreneur $=9.0\%$
$\phi_{e,1}$	Fixed util. cost of entrep.: slope	-0.09	Diff. in mean LoB score:
			entrep. & worker= 0.20
Bayesian le	earning of entrep. productivity		
μ_e	Mean: dist. of innate entrep. prod.	1.25	$\label{eq:Median business to wage income} \ = 1.3$
$ u_{\rm e}$	Std: dist. of innate entrep. prod.	0.37	Std. dev. of forecasting error $= 0.40$
σ_e	Std: i.i.d.shocks	0.50	Slope of forecast revision $= 0.66$
Financial fri	ction & bequest function		
λ	Collateral parameter	1.50	Median wealth entrep. to worker $=6.0$
Cb	Threshold consump. level	0.30	17000 USD (2010\$)
ϕ_b	Marginal propensity to bequeath	0.95	Bequest as a share of total wealth $= 0.60$

Calibration: other parameters

Parameter	Description	Value	Source/Target
Preferences			
ζ	Risk aversion	4	IES = 0.5
γ	Intensity of consumption	0.38	2,000 annual hours for workers
β	Discount factor	0.96	K/Y= 2.7
ϕ_{ω}	Fixed cost of working	0.25	Employment rate
Wage incom	e		
$\{\theta_j\}_{j=1,,60}$	Age-dependent labor productivity	▶ Figure	Hansen (1993)
$\rho_{\rm w}$	Wage income shock: persistence	0.98	Consea, Kitao, Krueger (2009)
$\sigma_{\rm w}$	Wage income shock: std. dev	0.17	Consea, Kitao, Krueger (2009)
σ_{χ}	Permanent types dist.: std. dev	0.37	Consea, Kitao, Krueger (2009)
Technology			
ξ	Capital share: corporate	0.36	Corporate labor share
α	Capital share: entrepreneurs	0.36	-
η	Scale parameters: entrepreneurs	0.79	Buera, Kaboski, Shin (2011)
δ	Capital depreciation rate	0.06	BEA fixed asset tables
Government	policy		
$ au_c$	Consumption tax rate	0.065	Bhandari and McGrattan (2020)
$ au_{\mathrm{ss}}$	Payroll tax rate	0.124	Consea, Kitao, Krueger (2009)
κ_0	Personal income tax: level shifter	0.09	Estimated by PSID
κ_1	Personal income tax: progressivity	0.15	Estimated by PSID

Model Fit: Income & Wealth Distribution

	Benchmark			
Gini coefficient				
Income - all	0.54	0.55		
Income - worker	0.29	0.38		
Income - entre	0.59	0.66		
Wealth - all	0.64	0.85		
Income/wealth ra	tios: entrepreneu	r to worker		
Income median	1.60	1.30		
Income mean	2.60	2.50		
Wealth median	5.90	6.00		
Fraction of entrep	reneurs in wealth	percentiles		
Top 1%	0.56	0.54		
Top 5%	0.48	0.39		
Top 10%	0.31	0.32		
Top 20%	0.22	0.22		

► Aggregate Moments

▶ First Time Entry