EXERCISE EQUIPMENT

WITH AUTOMATIC ADJUSTMENT OF STRIDE LENGTH AND/OR STRIDE HEIGHT BASED UPON DIRECTION OF FOOT SUPPORT ROTATION

FIELD OF THE INVENTION

[0001] This invention relates to exercise equipment, more specifically to stationary cardiovascular exercise equipment, and most specifically to elliptical exercise equipment.

BACKGROUND

[0002] One type of stationary cardiovascular exercise equipment which has become extremely popular based predominantly upon its low-impact and natural motion is the elliptical exercise machine. A wide variety of elliptical exercise machines have been developed. Briefly, elliptical exercise machines include foot supports supported upon foot links with the foot links pivotally connected at a first end through a linkage system to a drive shaft for travel along a defined closed loop path (e.g., circular, elliptical, oval, etc.) and connected at the other end for reciprocating motion along a defined path as the first end travels along the closed loop path. This combination of looping and reciprocating paths of travel at opposite ends of the foot links impart an "elliptical" type motion to the foot supports attached to the foot links.

[0003] Some elliptical exercise machines permit a user to exercise in both a forward and a backward motion. While this feature enhances the value of the machine by permitting a user to employ a completely different motion which emphasizes different muscle and muscle groups, the machines do not alter the path of travel of the foot supports to accommodate the inherent difference in stride between a forward walking/running motion and a backward walking/running motion.

[0004] Accordingly, a need exists for elliptical exercise machines which permit a user to exercise in both a forward and a backward motion and alters the path of travel of the foot supports dependant upon whether the user is moving in a forward and backward direction in order to accommodate the inherent difference in stride between a forward walking/running motion and a backward walking/running motion.

SUMMARY OF THE INVENTION

[0005] A first embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling in a forward and backward direction along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the direction of travel of the foot supports along the closed loop path as between the forward and the backward directions, and (iv) a means for automatically adjusting the stride length of the closed loop path traveled by the foot supports based upon the sensed direction of travel of the foot supports.

[0006] A second embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling in a forward and backward direction along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the direction of travel of the foot supports along the closed loop path as between the forward and the backward directions, and (iv) a means for automatically adjusting the stride height of the closed loop path traveled by the foot supports based upon the sensed direction of travel of the foot supports.

[0007] A third embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling in a forward and backward direction along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the direction of travel of the foot supports along the closed loop path as between the forward and the backward directions, and (iv) a means for

automatically adjusting the stride length and stride height of the closed loop path traveled by the foot supports based upon the sensed direction of travel of the foot supports.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0008] Figure 1 is a perspective view of one embodiment of the invention.
- [0009] Figure 2 is a side view of the invention shown in Figure 1 with the protective housing removed and depicting a single foot link and associated components.
- [0010] Figure 3 is an enlarged view of the forward portion of the invention shown in Figure 2 depicting the first end portion of the foot link and associated dynamic components.
- [0011] Figure 4 is an enlarged view of the rearward portion of the invention shown in Figure 2 depicting the second end portion of the foot link and associated supporting components.
- [0012] Figure 5 is a side view of an alternate embodiment of the rear portion of the invention shown in Figure 2 depicting a single foot link and associated components.
- [0013] Figure 6 is a side view of a second embodiment of the invention with protective housing removed and depicting a single foot link and associated components.
- [0014] Figure 7 is an enlarged view of the forward portion of the invention shown in Figure 6 depicting the first end portion of the foot link and associated dynamic components.
- [0015] Figure 8 is an enlarged view of the rearward portion of the invention shown in Figure 6 depicting the second end portion of the foot link and associated supporting components.
- [0016] Figure 9 is a perspective view of a third embodiment of the invention with the protective housing removed to facilitate viewing of other components.

[0017] Figure 10 is a side view of the invention shown in Figure 9 with the protective housing removed and depicting a single foot link and associated components.

[0018] Figure 11 is an enlarged view of the forward portion of the invention shown in Figure 10 depicting the first end portion of the foot link and associated dynamic components.

DETAILED DESCRIPTION OF THE INVENTION INCLUDING A BEST MODE

Nomenclature

Foot Support

70

Exercise Device
Frame
Front Stanchion Portion of Frame
Rear Stanchion Portion of Frame
Drive Shaft
Crank Arm
First End of Crank Arm
Second End of Crank Arm
Drive Pulley
Front Drive Pulley
Rear Drive Pulley
Foot Link
First End of Foot Link
Second End of Foot Link
Closed Loop Path of Travel for One End Portion of Foot Link
Path of Travel for Other End Portion of Foot Link
Roller on Foot Link

- 70p Closed Loop Path of Travel for Foot Support
- 80 Rocker Link
- 80a First End of Rocker Link
- 80b Second End of Rocker Link
- 90 Connector Link
- 90a First End of Connector Link
- 90b Second End of Connector Link
- 100 Brake
- 110 Braking Control System
- 120 Guide Rail
- 121 Rear Guide Arm
- 121a First End of Rear Guide Arm
- 121b Second End of Rear Guide Arm
- 130 Incline Adjustment System
- 140 Master Control Unit
- 150 User Interface Panel
- 160 Rotational Direction Sensing System
- 161 Magnet
- 162 Magnetic Sensing Element
- 171 First Pivot Point Repositioning Unit
- 172 Pivot Point Repositioning Unit
- 173 Pivot Point Repositioning Unit
- 174 Pivot Point Repositioning Unit
- 180 Inertia Generation System
- 181 Flywheel
- 182 Pulley (small diameter)
- 183 Shaft
- 184 Drive Belt
- 221 Front Guide Arm
- 221a First End of Front Guide Arm
- 221b Second End of Front Guide Arm

- 230 Linear Actuator
- 310 Support Shaft
- 320 Rocker Link
- 320a First End of Rocker Link
- 320b Second End of Rocker Link
- 330 Drawbar
- 330a First End of Drawbar
- 330b Second End of Drawbar
- 340 Timing Belt
- p₁ First End Foot Link Pivot Point
- **p₂** Second End Foot Link Pivot Point
- p₃ Rocker Pivot Point
- p₄ Crank Pivot Point
- **p**₅ Front Guide Arm Pivot Point
- **p₆** Rear Guide Arm Pivot Point
- **p**₇ Rocker-Foot Pad Pivot Point
- p₈ Rocker-Frame Pivot Point
- p₉ Drawbar-Rocker Pivot Point
- FWD Forward Rotation
- **REV** Backward Rotation
- SH Stride Height
- SL Stride Length
- x Lateral Axis
- x₁ First Lateral Direction
- x₂ Second Lateral Direction
- y Longitudinal Axis
- z Transverse Axis
- z₁ First Transverse Axis
- z₂ Second Transverse Axis

Definitions

[0019] As utilized herein, including the claims, the phrase "extension element" includes any component attached to and extending substantially orthogonally from a drive shaft by which circular motion is imparted to the drive shaft. Exemplary extension elements include specifically, but not exclusively, a bent portion of a drive shaft, a crank arm, a drive pulley, and rigidly or pivotally attached combinations thereof.

[0020] As utilized herein, including the claims, the phrase "stride height" means the vertical distance between highest and lowest vertical points along the path traveled by a foot support.

[0021] As utilized herein, including the claims, the phrase "stride length" means the linear distance between forward most and rearward most points along the path traveled by a foot support.

Construction

[0022] As shown in FIGs. 1-11, the invention is an exercise device 10 including at least (i) a frame 20 defining a transverse axis z, (ii) first and second foot supports 70 operably associated with the frame 20 for traveling in a forward FWD and backward REV direction along a closed loop path 70p relative to the transverse axis z wherein the closed loop path 70p defines a stride length SL and stride height SH, (iii) a means 160 effective for sensing the direction of travel of the foot supports 70 along the closed loop path 70p as between the forward FWD and backward REV directions, and (iv) a means (not collectively numbered) for automatically adjusting the stride length SL and/or the stride height SH of the closed loop path 70p traveled by the foot supports 70 based upon the sensed direction of travel of the foot supports 70.

[0023] As shown in FIGs. 1, 2, 6, 9 and 10, the frame 20 includes a base (not separately numbered) for stably supporting the exercise device 10 on a floor (not shown), and a plurality of

stiles, rails, stanchions and other supporting members (not separately numbered) as necessary and appropriate to operably support the components of the exercise device 10.

[0024] As shown in FIGs. 2, 3, 6, 8, 10 and 11, a drive shaft 30 is supported by the frame 20 for rotation about a transverse axis z. An extension element(s) (not collectively numbered) is rigidly attached to the drive shaft 30 and extends substantially orthogonally from the drive shaft 30. A variety of suitable extension element(s) are known to those skilled in the art, including specifically, but not exclusively, bent end portions (not shown) of the drive shaft 30, a pair of crank arms 40, a drive pulley 50, etc.

[0025] As shown in FIGs. 2 and 3, when the extension elements are crank arms 40 each crank arm 40 has a first end 40a rigidly attached proximate a transverse end (not separately numbered) of the drive shaft 30 for imparting rotational motion of the crank arms 40 about the transverse axis z to the drive shaft 30 and interlocking the crank arms 40.

[0026] As shown in FIGs. 6, 8, 10 and 11, when the extension element is a drive pulley 50 the drive pulley 50 is rigidly attached the drive shaft 30 at the center (not separately numbered) of the drive pulley 50 for imparting rotational motion of the drive pulley 50 about the transverse axis z to the drive shaft 30.

[0027] Foot supports 70 are supported upon first and second foot links 60. The foot supports 70 may be supported upon the foot links 60 at any point along the length (unnumbered) of the foot links 60 so long as the foot link 60 moves in a closed loop path at the point of connection (unnumbered). For example, the embodiment of the invention shown in FIGs. 1-4 laterally positions the foot supports 70 in the second lateral direction x_2 from the point (not numbered) at which the foot link 60 is supported by the guide rail 120. The embodiment of the invention shown in FIGs. 6-8 positions the foot supports 70 between the point (unnumbered) at which the foot link 60 is pivotally connected to the crank arm 40 and the point p_1 at which the foot link 60 is pivotally connected to the front guide arm 221. The embodiment of the invention shown in FIGs. 9-11 positions the foot supports 70 between the point (unnumbered) at which the foot link 60 is pivotally connected to the front drive pulley 50a and the point (unnumbered) at which the

foot link 60 is pivotally connected to the rear drive pulley 50b. Other embodiments are also possible.

[0028] The first and second foot links 60 may be associated with the frame 20 in a variety of different ways to accomplish and impart the necessary closed loop path of travel to the foot supports 70 attached to the foot links 60. Exemplary connective structures and arrangements are disclosed in United States Patent Nos. 3,316,898 issued to Brown, 5,242,343 issued to Miller, 5,352,169 issued to Eschenbach, 5,383,829 issued to Miller, 5,423,729 issued to Eschenbach, 5,518,473 issued to Miller, 5,529,554 issued to Eschenbach, 5,562,574 issued to Miller, 5,577,985 issued to Miller, 5,611,756 issued to Miller, 5,685,804 issued to Whan-Tong et al., 5,692,994 issued to Eschenbach, 5,707,321 issued to Maresh, 5,725,457 issued to Maresh, 5,735,774 issued to Maresh, 5,755,642 issued to Miller, 5,788,609 issued to Miller, 5,788,610 issued to Eschenbach, 5,792,026 issued to Maresh et al., 5,803,871 issued to Stearns et al., 5,836,854 issued to Kuo, 5,836,855 issued to Eschenbach, 5,846,166 issued to Kuo, 5,848,954 issued to Stearns et al., 5,857,941 issued to Maresh et al., 5,876,307 issued to Stearns et al., 5,876,308 issued to Jarvie, 5,879,271 issued to Stearns et al., 5,882,281 issued to Stearns et al., 5,882,281 issued to Stearns et al., 5,893,820 issued to Maresh et al., 5,895,339 issued to Maresh, 5,897,463 issued to Maresh, 5,911,649 issued to Miller, 5,916,064 issued to Eschenbach, 5,919,118 issued to Stearns et al., 5,921,894 issued to Eschenbach, 5,924,963 issued to Maresh et al., 5,935,046 issued to Maresh, 5,938,568 issued to Maresh et al., 5,938,570 issued to Maresh, 5,947,872 issued to Eschenbach, 5,957,814 issued to Eschenbach, 5,993,359 issued to Eschenbach, 5,997,445 issued to Maresh et al., 6, 126,574 issued to Stearns et al., 6, 248,044 issued to Stearns et al., 6,024,676 issued to Eschenbach, 6,027,430 issued to Stearns et al., 6,027,431 issued to Stearns et al., 6,030,320 issued to Stearns et al., 6,042,512 issued to Eschenbach, 6,045,487 issued to Miller, 6,045,488 issued to Eschenbach, 6,053,847 issued to Stearns et al., 6,063,009 issued to Stearns et al., 6,077,196 issued to Eschenbach, 6,077,197 issued to Stearns et al., 6,077,198 issued to Eschenbach, 6,080,086 issued to Stearns et al., 6,083,143 issued to Maresh, 6,090,013 issued to Eschenbach, 6,090,014 issued to Eschenbach, 6,099,439 issued to Eschenbach, 6,113,518 issued to Maresh et al., 6,123,650 issued to Birrell, 6,135,923 issued to Stearns et al., 6,142,915 issued to Eschenbach, 6,146,313 issued to Whan-Tong et al., 6,165,107 issued to Birrell, 6,168,552 issued to Eschenbach, 6,171,215 issued to

Stearns et al., 6,171,217 issued to Cutler, 6,176,814 issued to Eschenbach, 6,183,397 issued to Stearns et al., 6,183,398 issued to Rufino et al., 6,190,289 issued to Pyles et al., 6,196,948 issued to Stearns et al., 6,206,804 issued to Maresh, 6,210,305 issued to Eschenbach, 6,217,485 issued to Maresh, 6,248,045 issued to Stearns et al., 6,248,046 issued to Maresh et al., 6,254,514 issued to Maresh et al., 6,277,054 issued to Kuo, 6,283,895 issued to Stearns et al., 6,302,825 issued to Stearns et al., 6,312,362 issued to Maresh et al., 6,338,698 issued to Stearns et al., 6,340,340 issued to Stearns et al., 6,361,476 issued to Eschenbach, 6,387,017 issued to Maresh, 6,390,953 issued to Maresh et al., 6,398,695 issued to Miller, 6,409,632 issued to Eschenbach, 6,409,635 issued to Maresh et al., 6,416,442 issued to Stearns et al., 6,422,976 issued to Eschenbach, 6,422,977 issued to Eschenbach, 6,436,007 issued to Eschenbach, 6,440,042 issued to Eschenbach, 6,454,682 issued to Kuo, 6,461,277 issued to Maresh et al., 6,482,130 issued to Pasero et al., 6,482,132 issued to Eschenbach, 6,500,096 issued to Farney, 6,527,677 issued to Maresh, 6,527,680 issued to Maresh, 6,540,646 issued to Stearns et al., 6,544,146 issued to Stearns et al., 6,547,701 issued to Eschenbach, 6,551,217 issued to Kaganovsky, 6,551,218 issued to Goh, 6,554,750 issued to Stearns et al., 6,565,486 issued to Stearns et al., 6,569,061 issued to Stearns et al., 6,575,877 issued to Rufino et al., 6,579,210 issued to Stearns et al., 6,612,969 issued to Eschenbach, 6,629,909 issued to Stearns et al., and United States Patent Application Publication Nos. 2001/0011053 filed by Miller, 2001/0051562 filed by Stearns et al., 2002/0019298 filed by Eschenbach, 2002/0055420 filed by Stearns et al., 2002/0128122 filed by Miller, 2002/0142890 filed by Ohrt et al., 2002/0155927 filed by Corbalis et al., 2003/0022763 filed by Eschenbach, which disclosure is hereby incorporated by reference.

[0029] One specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in FIGs. 1-4. This embodiment has (i) a first end portion 60a of each foot link 60 indirectly pivotally attached, through a connecting system (not collectively numbered) to the second end 40b of a crank arm 40 at a point spaced from the transverse axis z for travel along a closed loop path 61p relative to the transverse axis z, and (ii) a second end portion 60b of each foot link 60 supported by a roller 69 upon a guide rail 120 for reciprocating travel of the second end portion 60b of the foot link 60 along a lateral path 62p. An alternate embodiment for supporting the second end portion 60b of each foot link 60 to the frame 20 is shown in FIG 5, wherein the a second end portion 60b of each foot link 60 is

pivotally attached proximate the second end 121b of a rear guide arm 121, which is pivotally attached proximate a first end 121a of the rear guide arm 121 to the frame 20 at a rear guide arm pivot point p_6 located above the foot link 60, for reciprocating travel of the second end portion 60b of the foot link 60 along a lateral path 62p.

[0030] One suitable connecting system is shown in FIGs. 1-4. The depicted connection system includes (i) a connector link 90 pivotally attached at a first end 90a to the first end 60a of the foot link 60 at a first end foot link pivot point p_1 and pivotally attached at a second end 90b to a second end 80b of a rocker link 80 at a rocker pivot point p_3 , and (ii) a rocker link 80 pivotally attached at a first end 80a to the frame 20 and pivotally attached at the second end 80b to the connector link 90 at the rocker pivot point p_3 , wherein the crank arm 40 is pivotally attached at the second end 40b to the connector link 90 at a crank pivot point p_4 which is positioned intermediate the first end foot link pivot point p_1 and the rocker pivot point p_3 .

[0031] A second specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in FIGs. 6-8. This embodiment has (i) a first end portion 60a of each foot link 60 pivotally attached proximate the second end 221b of a front guide arm 221, and pivotally attached proximate a first end 221a to the frame 20 at a front guide arm pivot point p_5 located above the foot link 60, for reciprocating travel of the first end portion 60a of the foot link 60 along a lateral path 62p and (iii) a second end portion 60b of each foot link 60 directly pivotally attached to a drive pulley 50 at a point (not numbered) spaced from the transverse axis z for travel along a closed loop path 61p about the transverse axis z.

[0032] A third specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in FIGs. 9-11. This embodiment is shown and described in detail in United States Patent Application Publication No. 2002/0055420, the disclosure of which is hereby incorporated by reference. Briefly, this embodiment has (i) a first end portion 60a of each foot link 60 pivotally supported upon a support shaft 310 which is attached to a front drive pulley 50a at a point (not numbered) spaced from a first transverse axis z_1 for travel along a first closed loop path 61p about the first transverse axis z_1 , and (ii) a second end portion 60b of each foot link 60 pivotally supported upon a support shaft 310 which is

attached to a rear drive pulley **50b** at a point (not numbered) spaced from a second transverse axis **z**₂ for travel along a closed loop path **62p** about the second transverse axis **z**₂. A foot support **70** is slidably supported upon each foot link **60** and operably engaged by a rocker link **320** for effecting a reciprocating motion of the foot support **70** along the length of the foot link **60**. Each rocker link **320** has a first end portion **320a** pivotally connected to a respective foot support **70** and a second end portion **320b** pivotally mounted on the frame **20**. Movement of each rocker link **320** is controlled by a drawbar **330**. Each drawbar **330** has a first end portion **330a** constrained to travel in association with the respective foot link **60** relative to the first and second closed loop paths **61p** and **62p** and a second end portion **330b** connected to a respective rocker link **320**. The combination of a rocker link **320** and associated drawbar **330** cooperate to transfer and link travel of the foot link **60** along the first and second closed loop paths **61p** and **62p** to longitudinal sliding of the respective foot support **70** along the respective foot link **60**.

[0033] The exercise device 10 preferably include a system attached to the frame 20 and in communication with the system through which the foot supports 70 are operably associated with the frame 20, such as a brake 100 and braking control system 110, for exerting a controlled variable resistive force against movement of the foot supports 70 along the closed loop path of travel 70p. It is preferred to provide a separate resistance device for each foot support 70. Many types of resistance devices are known such as pivoting devices, sliding devices, weights on cables or levers, braking motors, generators, brushless generators, eddy current systems, magnetic systems, alternators, tightenable belts, friction rollers, etc., any of which could be effectively utilized in the present invention. Exemplary resistance devices suitable for use in this invention include those disclosed in United States Patents Nos. 5,423,729 issued to Eschenbach, 5,685,804 issued to Whan-Tong et al., 5,788,610 issued to Eschenbach, 5,836,854 issued to Kuo, 5,836,855 issued to Eschenbach, 5,846,166 issued to Kuo, 5,895,339 issued to Maresh, 5,947,872 issued to Eschenbach, 5,957,814 issued to Eschenbach, 6,042,512 issued to Eschenbach, 6,053,847 issued to Stearns et al., 6,090,013 issued to Eschenbach, 6,146,313 issued to Whan-Tong et al., 6,217,485 issued to Maresh, 6,409,632 issued to Eschenbach, 6,482,130 issued to Pasero et al., 6,544,146 issued to Stearns et al., 6,575,877 issued to Rufino et al., and 6,612,969 issued to Eschenbach, which disclosure is hereby incorporated by reference.

attached to the frame 20 and in communication with the system through which the foot supports 70 are operably associated with the frame 20. Such inertia generation system 180 are widely known and commonly utilized on stationary exercise equipment. An exemplary inertia generation system 180 is disclosed in United States Patent Application Publication No. 2002/0055420, the disclosure of which is hereby incorporated by reference. This system is shown in FIGs 1-3 and 9-11. Briefly, the system 180 includes a flywheel 181 and a relatively smaller diameter pulley 182 which are rotatably mounted on opposite sides (unnumbered) of the front stanchion 21. The flywheel 181 is keyed to the small pulley 182 by a central shaft 183. A belt 184 is looped about the drive pulley 50 (FIGs 1-3) or 50a (FIGs 9-11) and the small pulley 182 to effect rotation of the small pulley 182 when the drive pulley 50 (FIGs 1-3) or 50a (FIGs 9-11) is rotated by operation of the foot links 60. As a result, the flywheel 181 rotates at a relatively faster speed than the drive pulley 50 (FIGs 1-3) or 50a (FIGs 9-11) and adds inertia to the linkage assemblies.

[0035] The direction of travel of the foot supports 70 along the closed loop path 70p as between the forward and the backward directions can be determined by a variety of systems known to those skilled in the art including specifically, but not exclusively, audible (sensing tone emitted when air moves through a device which emits different tones when air enters from different directions), electrical (e.g., sensing polarity of voltage), magnetic (e.g., sequence in which magnets on rotating element are sensed), mechanical (e.g., sensing position of biased toggle switch which is moved against the bias only when rotation is effected in one direction), visual (e.g., sequence in which reflective patches on rotating element are sensed), etc.

[0036] Referring to FIGs. 2 and 3, one suitable system 160 for sensing the direction of travel of the foot supports 70 along the closed loop path 70p as between the forward and the backward directions includes a magnet 161 attached to a face (unnumbered) of the flywheel 181 at a point radially spaced from the shaft 183, and a pair of circumferentially offset magnetic sensing elements 162 (e.g., reed switches) positioned proximate the face (unnumbered) of the flywheel 181 for sensing the magnet 161 as the magnet 161 passes the magnetic sensing element 162. Circumferential offsetting of the magnetic sensing elements 162 (hereinafter referenced as A and

B) means that the length of the arc between A and B when moving from A to B in the forward direction is sensibly less (short pause) than the length of the arc between A and B when moving from A to B in the backward direction (long pause). By circumferentially offsetting the magnetic sensing elements 162, the direction of rotation can be determined from the sequence of detecting activation of A, activation of B, long pause, and short pause. In the example set forth above, a detected sequence of "A - short pause - B - long pause" indicates forward rotation FWD, while a detected sequence of "A - long pause - B - short pause" indicates backward rotation REV.

[0037] Adjustment of stride height SH and/or stride length SL may be accomplished in various ways. Two preferred methods, which may be employed individually or in combination, are (i) adjusting the angle of incline of the guide rail 120, and (ii) adjusting the position of one or more of the pivot points (not collectively referenced) about which an arm or link (not collectively referenced) pivots as the foot supports 70 travel along the closed loop path of travel 70p.

[0038] A wide variety of systems effective for adjusting the angle of incline of the guide rail 120 are known to those skilled in the art. Exemplary systems suitable for use in this invention are disclosed in United States Patent Nos. Des. 372,282 issued to Passero et al., Des. 388,847 issued to Whan-Tong et al., 5,685,804 issued to Whan-Tong et al., 5,803,871 issued to Stearns et al., 5,836,854 issued to Kuo, 5,836,855 issued to Eschenbach, 5,848,954 issued to Stearns et al., 5,857,941 issued to Maresh et al., 5,882,281 issued to Stearns et al., 5,882,281 issued to Stearns et al., 5,893,820 issued to Maresh et al., 5,938,568 issued to Maresh et al., 5,957,814 issued to Eschenbach, 5,993,359 issued to Eschenbach, 5,997,445 issued to Maresh et al., 6,042,512 issued to Eschenbach, 6,063,009 issued to Stearns et al., 6,090,014 issued to Eschenbach, 6,126,574 issued to Stearns et al., 6,146,313 issued to Whan-Tong et al., 6,168,552 issued to Eschenbach, 6,171,215 issued to Stearns et al., 6,210,305 issued to Eschenbach, 6,254,514 issued to Maresh et al., 6,277,054 issued to Kuo, 6,302,825 issued to Stearns et al., 6,334,836 issued to Segasby, 6,340,340 issued to Stearns et al., 6,422,977 issued to Eschenbach, 6,440,042 issued to Eschenbach, 6,450,925 issued to Kuo, 6,454,682 issued to Kuo, 6,554,750 issued to Stearns et al., 6,612,969 issued to Eschenbach, 6,629,909 issued to Stearns et al., and United States Patent

Application Publication Nos. 2002/0019298 filed by Eschenbach, and 2002/0142890 filed by Ohrt et al, which disclosures are hereby incorporated by reference.

[0039] A wide variety of systems effective for adjusting the position of one or more of the pivot points about which an arm or link pivots as the foot supports 70 travel along the closed loop path of travel 70p are known to those skilled in the art. Exemplary systems suitable for use in this invention are disclosed in United States Patent Nos. 5,562,574 issued to Miller, 5,788,610 issued to Eschenbach, 5,836,854 issued to Kuo, 5,836,855 issued to Eschenbach, 5,882,281 issued to Stearns et al., 5,893,820 issued to Maresh et al., 5,895,339 issued to Maresh, 5,919,118 issued to Stearns et al., 5,921,894 issued to Eschenbach, 5,957,814 issued to Eschenbach, 5,993,359 issued to Eschenbach, 6,027,430 issued to Stearns et al., 6,027,431 issued to Stearns et al., 6,030,320 issued to Stearns et al., 6,045,488 issued to Eschenbach, 6,053,847 issued to Stearns et al., 6,077,196 issued to Eschenbach, 6,077,197 issued to Stearns et al., 6,077,198 issued to Eschenbach, 6,080,086 issued to Stearns et al., 6,090,013 issued to Eschenbach, 6,113,518 issued to Maresh et al., 6,135,923 issued to Stearns et al., 6,171,215 issued to Stearns et al., 6,196,948 issued to Stearns et al., 6,217,485 issued to Maresh, 6,248,044 issued to Stearns et al., 6,248,045 issued to Stearns et al., 6,248,046 issued to Maresh et al., 6,254,514 issued to Maresh et al., 6,277,054 issued to Kuo, 6,283,895 issued to Stearns et al., 6,334,836 issued to Segasby, 6,338,698 issued to Stearns et al., 6,361,476 issued to Eschenbach, 6,387,017 issued to Maresh, 6,390,953 issued to Maresh et al., 6,416,442 issued to Stearns et al., 6,440,042 issued to Eschenbach, 6,450,925 issued to Kuo, 6,547,701 issued to Eschenbach, 6,554,750 issued to Stearns et al., 6,565,486 issued to Stearns et al., 6,579,210 issued to Stearns et al., 6,612,969 issued to Eschenbach, 6,629,909 issued to Stearns et al., and United States Patent Application Publication Nos. 2001/0051562 filed by Stearns et al., 2002/0019298 filed by Eschenbach, 2002/0055420 filed by Stearns et al., and 2002/0142890 filed by Ohrt et al., which disclosures are hereby incorporated by reference.

[0040] Other systems for adjusting stride height SH and/or stride length SL which may be utilized include specifically, but not exclusively, (a) adjusting the position of the foot supports 70 along the length of the foot links 60, such as shown and described in United States Patent No. 6,171,217 issued to Cutler, the disclosure of which is hereby incorporated by reference (b)

adjusting the position of the roller 69 along the length of the foot link 60, and (c) adjusting the lateral x and/or longitudinal y position of the drive shaft 30, such as shown and described in United States Patent No. 6,146,313 issued to Whan-Tong et al., the disclosure of which is hereby incorporated by reference.

[0041] One specific embodiment of a system for adjusting stride height SH and stride length SL is shown in FIGs. 1-4. This embodiment includes a combination of (i) a first pivot point repositioning unit 171 in communication with the master control unit 140 and operably engaging the foot link 60 and the connector link 90 so as to define the first end foot link pivot point p_1 and permit repositioning of the first end foot link pivot point p_1 along the length of the foot link 60 and/or the connector link 90 based upon a control signal from the master control unit 140, and (ii) an incline adjustment system 130 in communication with the master control unit 140 and operably engaging the guide rail 120 for changing the angle of incline of the guide rail 120 based upon a control signal from the master control unit 140.

This embodiment of a system for adjusting stride height SH and stride length SL may also include (iii) a second pivot point repositioning unit (not shown) in communication with the master control unit 140 and operably engaging the rocker link 80 and the connector link 90 so as to define the rocker pivot point p_3 and permit repositioning of the rocker pivot point p_3 along the length of the rocker link 80 and/or the connector link 90 based upon a control signal from the master control unit 140, and (iv) a third pivot point repositioning unit (not shown) in communication with the master control unit 140 and operably engaging the crank arm 40 and the connector link 90 so as to define the crank pivot point p_4 and permit repositioning of the crank pivot point p_4 along the length of the crank arm 40 and/or the connector link 90 based upon a control signal from the master control unit 140.

[0043] The alternative embodiment for supporting the second end portion 60b of each foot link 60 to the frame 20 shown in FIG 5 may include a pivot point repositioning unit 172 similar to the pivot point repositioning unit 171 shown in FIGs 1-3 (shown in block format in FIG 5) in communication with the master control unit 140 and operably engaging the second end portion 60b of the foot link 60 and the rear guide arm 121 so as to define the second end foot link pivot

point p_2 and permit repositioning of the second end foot link pivot point p_2 along the length of the foot link 60 and/or the length of the rear guide arm 121 based upon a control signal from the master control unit 140.

length SL is shown in FIGs. 6-8. This embodiment includes a combination of (i) a pivot point repositioning unit 173 similar to the pivot point repositioning unit 171 shown in FIGs 1-3 (shown in block format in FIGs 6 and 7) in communication with the master control unit 140 and operably engaging the foot link 60 and the front guide arm 221 so as to define the first end foot link pivot point \mathbf{p}_1 and permit repositioning of the first end foot link pivot point \mathbf{p}_1 along the length of the foot link 60 and/or the length of the front guide arm 221 based upon a control signal from the master control unit 140, and (ii) a linear actuator 230 in communication with the master control unit 140 with a first end of the linear actuator 230 attached to a fixed position portion of the frame 20 and a second end the linear actuator 230 attached to vertically adjustable portion of the frame 20 upon which the drive shaft 30 is rotatably mounted, for permitting longitudinal y repositioning of the drive shaft 30 relative to the fixed position portion of the frame 20 based upon a control signal from the master control unit 140.

[0045] Yet another specific embodiment of a system for adjusting stride height SH and stride length SL is shown in FIGs. 9-11. This embodiment includes a pivot point repositioning unit 174 similar to the pivot point repositioning unit 171 shown in FIGs 1-3 (shown in block format in FIGs 9 and 10) in communication with the master control unit 140 and operably engaging the rocker link 320 and the second end 330b of the drawbar 330 so as to define a drawbar-rocker pivot point p₉ and permit repositioning of the second end 330b of the drawbar 330 along the length of the rocker link 320 based upon a control signal from the master control unit 140.

[0046] A master control unit 140 communicates with the incline adjustment system 130, rotational direction sensing system 160, the pivot point repositioning unit 171, and the linear actuator 230 for receiving signals from the rotational direction sensing system 160, processing those signals to determine direction of travel of the foot supports 70, and adjusting the stride length SL and/or stride height SH of the closed loop path 70p traveled by the foot supports 70

according to a preprogrammed adjustment in incline and/or pivot point locations, based upon the direction of travel of the foot supports 70.

[0047] The master control unit 140 is also in communication with a user interface panel 150 as is typical for stationary exercise equipment.