18.06 Recitation May 12

Kai Huang

Linear Transformations

- 1. A linear transformation T is a linear map between two vector spaces $T: V \to W$. We say T is linear if T(av + bw) = aT(v) + bT(w) for any $v, w \in V$ and $a, b \in \mathbb{R}$.
- 2. We can use a matrix to denote the linear transffmration. Choose a basis $v = (v_1, \ldots, v_n)^T$ of V and a basis $w = (w_1, \ldots, w_m)^T$ of W, then we will have $T(v_i) = a_{i1}w_1 + \cdots + a_{im}w_m$. The matrix $A = (a_{ij})$ satisfies Tv = Aw.
- 3. When V=W, it is called an endormorphism. In this case Tv=Av, and A is an n \times n matrix.
- 4. If we change the basis, say $v' = (v'_1, \dots, v'_n)$ is another basis for V. We will have Tv' = A'v'. if we denote v' = Qv where Q is an $n \times n$ invertible matrix. Then $A = Q^{-1}A'Q$. So the matrix of T under different base are similar. (Prove it!)

Summary on similar matrices

Consider an $n \times n$ matrix A.

- 1. B is similar to A if $B = Q^{-1}AQ$ for some $n \times n$ matrix Q.
- 2. Similar matrices have the same eigenvalues, determinant, trace.
- 3. (Jordan form) Any $n \times n$ matrix is similar to a matrix called its Jordan form.
- 4. Similar matrices stand for the same linear transformation under different base.

Problems

- 1. Why does every linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ takes squares to paralleograms? Rectangles also go to paralleograms (squashed if T is not invertible)?
- 2. If we change the basis, say $v' = (v'_1, \dots, v'_n)$ is another basis for V. We will have Tv' = A'v'. if we denote v' = Qv where Q is an $n \times n$ invertible matrix. Show that $A = Q^{-1}A'Q$.
- 3. (a) On the xy-plane, let S be reflection across the 45-degree line, and T be reflection across the y axis. Show that $ST \neq TS$.
 - (b) Let T' be rotating 180 degrees (centered at the origin). Does T' commute with S?

- (c) What about in the 3-dimensional case? i.e. S is relection across the xy-plane, and T be mapping $x \to -x$. Does ST = TS?
- 4. True or false? Explain why or why not.
 - (a) If we know T(v) for a different nonzero vectors $v \in \mathbb{R}^n$, then we know T(v) for any v.
 - (b) A cannot be similar to -A unless A = 0.
 - (c) If A is similar to A^{-1} , then all the eigenvalues of A must be 1 or -1.
 - (d) If A and B are similar, then A B has trace 0.
- 5. For a positive definite symmetric matrix A. Show that we can always find a symetric matrix B such that $B^2 = BB^T = A$.