CS F364: Design & Analysis of Algorithm

Huffman Algorithm

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 03, 2021

ONLINE

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Huffman code

Algorithm 1: HUFFMAN(C)

- 1 Q = C
- 2 for i=1 to length(C) -1 do
- 3 | Allocate New node z
- 4 z.left = x = EXTRACT-Min(Q)
- 5 z.right = y = EXTRACT-Min(Q)
- z.freq = x.freq + y.freq
- Insert (Q, z)
- 8 return EXTRACT-Min(Q)

Design & Analysis of Algo. (BITS F364)

M W F (3-4PM) online@BITS-Pilani

Lecture-07(Feb 03, 2021) 3

Complexity

Algorithm 2: HUFFMAN(C)

- 1 Q = C
- ² for i=1 to length(C) -1 do
- Allocate New node z
 z.left = x = EXTRACT-Min(Q)
- 5 z.right = y = EXTRACT-Min(Q)
- z.freq = x.freq + y.freq
- 7 Insert (Q, z)
- 8 return EXTRACT-Min(Q)
- If you assume EXTRACT-Min takes $O(\log n)$
- Inner block is called n-1 times

So total the time is $O(n \log n)$

Huffman codes

Huffman invented a **greedy algorithm** that constructs an optimal prefix code called a Huffman code.

 It is a variable-length prefix code, useful for lossless data compression

Consider for example, a data file of 100,000 characters only containing six characters a, b, c, d, e, f

	a	b	С	d	е	f
Frequency(in k)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Huffman code	0	101	100	111	1101	1100

- Fixed length code takes 300k bits
- Huffman code needs 224k bits (~25% compression)

Design & Analysis of Algo. (BITS F364)	M W F (3-4PM) online@BITS-F	Pilani	Lecture-07(Feb 03, 2021)	2/8
Huffman code				
(a) f :5 e :9 c :12 b :13	d:16 a:45 (b)	[c:12] [b:13]	14 d:16 a:45 0 1 f:5 e:9	
(c) 4 a:16 2: 0/1 0/ f:5 e:9 c:12	a:45 (d) \1 \b:13	25) 0/ l c:12 b:13	30) a:45 0 1 14 d:16 0 1 f:5 e:9	
0/ 1 0/ c:12 b:13 0/	(f) 30) 1 2:16 1 1:99		30 0 14 c:16 0 1:5 e:9	-೧೭೬
Design & Analysis of Algo. (BITS F364)	M W F (3-4PM) online@BITS-F		Lecture-07(Feb 03, 2021)	4/8

Correctness - greedy choice property

There exists optimal prefix code, with two lowest frequency characters having same length codewords, differing only in the last bit.

• Let x, y be two lowest freq items. And a, b are at bottom

$$B(T) - B(T') = \sum_{c \in C} c.f \times d_T(c) - \sum_{c \in C} c.f \times d_{T'}(c)$$

$$= x.f \times d_T(x) + a.f \times d_T(a) - x.f \times d_{T'}(x) - a.f \times d_{T'}(a)$$

$$= x.f \times d_T(x) + a.f \times d_T(a) - x.f \times d_T(a) - a.f \times d_T(x)$$

$$= (a.f - x.f) \times (d_T(a) - d_T(x)) \ge 0$$

- Similarly $B(T') B(T'') \ge 0$
- Since T is optimal $B(T) \leq B(T'')$ So B(T) = B(T'')

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-07(Feb 03, 2021) 6/8

Correctness - Optimal Substructure (using induction)

Assume it produces optimal tree for size *n*

- Consider C of size n + 1, Let us make C' as $C \{x, y\} + z$ where x and y are minimum frequency item, and z.f = x.f + y.f
- As the size of C' is n, so one can get optimal tree T_0 using the algorithm. Expand z in T_0 to get T_1 for C. T_1 is optimal how?
- Prove by contradiction. Note that $B(T_1) = B(T_0) + x.f + y.f$
- Let T_2 is optimal tree instead of T_1 . Does T_2 has x and y at the deepest leaf? If not make it using greedy choice property.
- In T_2 contract x and y in z using z.f = x.f + y.f. Let it becomes T_3

$$B(T_3) = B(T_2) - x \cdot f - y \cdot f$$

 $< B(T_1) - x \cdot f - y \cdot f$ due to our assumption that T_2 is optimal
 $= B(T_0)$

• Contradiction as T_3 and T_0 both are of size n, and at this size algorithm produces optimal tree, two optimal tree can not differ

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani

Thank You!

Thank you very much for your attention! (Reference¹) Queries?

¹[1] Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN