Analisi 3

Esercitazioni di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

1	\mathbf{Ese}	rcitazione del 4 ottobre	3	
	1.1	Esercizi di teoria della misura	3	
	1.2	Funzioni misurabili rispetto alla misura di Lebesgue	4	
	1.3	Formula di cambio di variabile applicata a funzioni radiali	5	
2	Esercitazione del 13 ottobre			
	2.1	Esercizi su spazi $L^p(X)$ al variare di p e dello spazio X	8	
	2.2	Spazi ℓ^p	11	
3	Ese	rcitazione del 21 ottobre	12	
	3.1	Convoluzione	15	
	3.2	Separabilità degli spazi L^p	16	
4	Ese	rcitazione del 3 Novembre 2021	17	
	4.1	Basi Hilbertiane e proiezioni	17	
	4.2	Approssimazioni per convoluzione	19	
5	Ese	mpi di basi Hilbertiane	20	
	5.1	Polinomi	20	
	5.2	Base di Haar	20	
6	Ese	rcitazione del 11 novembre	21	
7	Ese	rcitazione del 18 Novembre 2021	23	
	7.1	Esercizi preliminari	23	
8	Ese	rcitazione del 25 Novembre 2021	27	

9	Esercitazione del 2 dicembre	29	9
10	Esercitazione del 13 Dicembre 2021	3	1
	10.1 Operatori autoaggiunti	. 3	1
	10.2 Calcolo Trasformate di Fourier	. 3	3
	10.2.1 Trasformata della Gaussiana	. 3	4

1 Esercitazione del 4 ottobre

1.1 Esercizi di teoria della misura

Di seguito riportiamo alcune proprietà di base di teoria della misura.

Proprietà.

i) Se $A \subset B$, allora $\mu(A) \leq \mu(B)$.

Dimostrazione. Scomponiamo $B = (B \setminus A) \cup (A \cap B)$. Per ipotesi $A \cap B = A$ ed essendo la misura positiva segue che

$$\mu(B) = \underbrace{\mu(B \setminus A)}_{\geq 0} + \mu(A) \geq \mu(A).$$

ii) Dati due insiemi A, B misurabili, vale

$$\mu(A \cup B) \le \mu(A) + \mu(B).$$

Dimostrazione. La disuguaglianza segue dalle seguenti uguaglianze.

$$\mu(A) = \mu(A \setminus B) + \mu(A \cap B)$$

$$\mu(B) = \mu(B \setminus A) + \mu(A \cap B)$$

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(B \setminus A) + \mu(A \cap B).$$

iii) Data una successione di insiemi $E_1 \subset E_2 \subset \cdots \subset \cdots$, si ha

$$\mu\left(\bigcup_{i} E_{i}\right) = \sup_{i} \mu(E_{i}) = \lim_{i} \mu(E_{i}).$$

iv) Data una successione di insiemi $E_1\supset E_2\supset\cdots\supset\cdots$ e $\mu(E_1)<+\infty,$ si ha

$$\mu\left(\bigcap_{i} E_{i}\right) = \lim_{i} \mu(E_{i}).$$

Esercizio (Numerabile subaddittività). Dato $E \in \mathcal{A}, E \subset \bigcup_i E_i$ dove $E_i \in \mathcal{A}$. Allora

$$\mu(E) \leq \sum_{i} \mu(E_i).$$

Dimostrazione (Idea). Basta dimostrare che $\mu\left(\bigcup_{i} E_{i}\right) \leq \sum_{i} \mu(E_{i})$. Infatti per quanto visto prima $\mu(E) \leq \mu\left(\bigcup_{i} E_{i}\right)$. Prima dimostriamo per induzione $\mu\left(\bigcup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} \mu(E_{i})$.

Il passo base n=2 è stato visto al punto ii). Una volta dimostrata la proprietà sopra, si nota che $\sum_{i=1}^{N} \mu(E_i)$ è limitata per ogni N, e dunque è limitato anche il suo limite, da cui la tesi. \square

1.2 Funzioni misurabili rispetto alla misura di Lebesgue

Si ricorda che le funzioni continue, semplici e semicontinue sono classi di funzioni misurabili. Due osservazioni sulle funzioni semicontinue.

- Le funzioni semicontinue sono boreliane.
- La proprietà di misurabilità delle funzioni semicontinue è necessaria per l'enunciato della disuguaglianza di Jensen.

Controesempio (disuguaglianza di Jensen). Notiamo che l'ipotesi di semicontinuità inferiore della funzione f è necessaria per la validità della disuguaglianza di Jensen. Infatti, definiamo f come segue

$$f(x) = \begin{cases} 0 & x \in (0,1) \\ +\infty & \text{altrimenti} \end{cases}.$$

Osserviamo che la funzione f così definita è convessa ma non semicontinua inferiormente.

Ora definiamo la funzione $u: X \to \mathbb{R}$ con X = (0, 2), come la funzione costante di valore 1/2. Calcoliamo l'integrale di u(x) su X.

$$\int_X u(x) \, \mathrm{d}x = 1.$$

In tal caso vale $f\left(\int_X u(x) dx\right) = +\infty$. D'altra parte $\int_X f \circ u dx = 0$, dunque l'ipotesi di semicontinuità inferiore è necessaria.

Fatto. Date φ_1, φ_2 funzioni semplici su \mathbb{R} con misura di Lebesgue. Allora $\varphi_1 \vee \varphi_2$ e $\varphi_1 \wedge \varphi_2$ sono ancora funzioni semplici.

Lemma. Data $f: X \to [0, +\infty]$ misurabile

$$\int_X f \, \mathrm{d}\mu = 0 \quad \Longleftrightarrow \quad f = 0 \text{ q.o. su } X$$

Dimostrazione.

 \implies Dato che f è non negativa, il dominio X può essere riscritto come

$$X = \{x \in X \mid f(x) \ge 0\} = \{x \in X \mid f(x) > 0\} \cup \{x \in X \mid f(x) = 0\}$$

ricordiamo che $(0, +\infty) = \bigcup_{n\geq 1} (\frac{1}{n}, +\infty)$, dunque possiamo riscrivere una parte di X come segue e poi passare alle misure

$$\left\{x \in X \mid f(x) > 0\right\} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \left\{x \in X \mid f(x) \ge \frac{1}{n}\right\}$$

$$\implies \mu\left(\left\{x \in X \mid f(x) > 0\right\}\right) = \lim_{n \to +\infty} \mu\left(\left\{x \in X \mid f(x) \ge \frac{1}{n}\right\}\right)$$

in questo modo otteniamo la seguente caratterizzazione dell'insieme su cui f è positiva

$$\mu\left(\left\{x \in X \mid f(x) > 0\right\}\right) > 0 \iff \exists \bar{n} \text{ tale che } \mu\left(\left\{x \in X \mid f(x) \geq 1/\bar{n}\right\}\right) > 0$$

A questo punto possiamo maggiorare come segue

$$0 = \int_X f \, \mathrm{d}\mu \ge \int_{\left\{f \ge \frac{1}{n}\right\}} f \, \mathrm{d}\mu \ge \frac{1}{n} \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right).$$

da cui ricaviamo che $\forall n$ vale

$$\mu\left(\left\{x \mid f(x) \ge \frac{1}{n}\right\}\right) = 0$$

e si conclude osservando che

$$\mu\left(\left\{x\mid f(x)>0\right\}\right) = \lim_{n} \mu\left(\left\{x\mid f(x)\geq \frac{1}{n}\right\}\right) = 0$$

 \sqsubseteq Dal fatto che f è positiva possiamo scrivere

$$\int_X f \, \mathrm{d}\mu = \sup_{\substack{g \le f \\ g \text{ semplice}}} \int_X g \, \mathrm{d}\mu = \sup_i \sum_i \alpha_i \mu(E_i) = 0.$$

Osservazione (sup essenziale di funzioni misurabili). Data f misurabile, definiamo

$$\|f\|_{\infty,X}\coloneqq\inf\left\{m\in[0,+\infty]\mid|f(x)|\leq m\quad\text{quasi ovunque}\right\}.$$

Se $||f||_{\infty} < +\infty$, allora diciamo che esiste una costante L > 0 con $L = ||f||_{\infty,X}$, tale che

$$|f(x)| \le L$$

quasi ovunque. Infatti, per definizione di inf, $L = \lim_n m_n$, dove m_n verificano

$$|f(x)| \le m_n \quad \forall x \in X \setminus N_m, \quad \mu(N_m) = 0.$$

Definiamo $N = \bigcup_m N_m$, da cui si ottiene

$$\mu(N) \le \sum_{m=1}^{\infty} \mu(N_m) = 0.$$

Ovvero N è trascurabile. Preso $x \in X \setminus N$, vale

$$|f(x)| < m_n \quad \forall n \in \mathbb{N}.$$

1.3 Formula di cambio di variabile applicata a funzioni radiali

Sia $f: [0, +\infty) \to \mathbb{R}$ misurabile (di solito si richiede misurabile e positiva oppure sommabile). Allora per il teorema di cambio di variabili vale la seguente

$$\int_{\mathbb{R}^n} f(|x|) dx = c_n \cdot \int_0^{+\infty} f(\rho) \rho^{n-1} d\rho,$$

dove $c_n = n \mathcal{L}^n (\mathcal{B}(0,1)).$

Applichiamo questa formula alla stima di integrali di funzioni positive.

Esercizio. Sia

$$\psi(x) = \frac{1}{\|x\|^{\alpha}}$$

su $\mathcal{B}(0,1) \in \mathbb{R}^n$. Notiamo che $\psi(x) = f(\|x\|)$ con $f = 1/t^{\alpha}$. Usiamo la formula appena introdotta per determinare gli $\alpha \in \mathbb{R}$ per i quali ψ è sommabile su $\mathcal{B}(0,1)$.

$$\int_{\mathcal{B}(0,1)} \psi(x) \, \mathrm{d}x = c_n \int_0^1 \frac{1}{\rho^{\alpha}} \rho^{n-1} \, \mathrm{d}\rho = c_n \int_0^1 \rho^{n-1-\alpha} \, \mathrm{d}\rho = \begin{cases} \log(\rho) & n = \alpha \\ \frac{\rho^{n-\alpha}}{n-\alpha} & \text{altrimenti} \end{cases}$$

Concludendo,

$$\int_{\mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \iff n > \alpha.$$

Esercizio. Con passaggi analoghi al precedente otteniamo

$$\int_{\mathbb{R}^{n}\setminus\mathcal{B}(0,1)}\frac{1}{\|x\|^{\alpha}}\,\mathrm{d}x<+\infty\Longleftrightarrow n<\alpha.$$

Esercizio. Vediamo per quali valori di β il seguente integrale converge

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x$$

Vale la seguente catena di uguaglianze.

$$\int_{\mathbb{R}^n} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x = \int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x + \int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x.$$

Studiamo separatamente i due pezzi dell'integrale.

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} dx = c_n \int_{\mathcal{B}(0,1)} \frac{1}{(\rho + \rho^2)^{\beta}} \rho^{n-1} d\rho = c_n \int_0^1 \frac{1}{\rho^{\beta}} \cdot \frac{\rho^{n-1}}{(1+\rho)^{\beta}} d\rho$$
$$\approx \int_0^1 \rho^{n-1-\beta} d\rho < +\infty \iff \beta < n.$$

Inoltre,

$$\int_{\mathbb{R}^{n} \setminus \mathcal{B}(0,1)} \frac{1}{\left(\left\|x\right\| + \left\|x\right\|^{2}\right)^{\beta}} \, \mathrm{d}x = \int_{\mathbb{R}^{n} \setminus \mathcal{B}(0,1)} \frac{1}{\rho^{2\beta}} \cdot \frac{\rho^{n-1}}{\left(\frac{1}{\rho} + 1\right)^{\beta}} \, \mathrm{d}\rho \approx \int_{1}^{+\infty} \frac{\rho^{n-1}}{\rho^{2\beta}} \, \mathrm{d}\rho < +\infty \Longleftrightarrow 2\beta > n.$$

In conclusione, l'integrale è finito se $n > \beta > n/2$.

Esercizio. Studiare l'insieme di finitezza al variare del parametro α dell'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x.$$

Osserviamo che la norma 1 e 2 sono legate dalle seguenti disuguaglianze

$$\frac{\|x\|_1}{n} \le \|x\|_2 \le \|x\|_1.$$

Studiamo una maggiorazione per l'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx \le \int_{[0,1]^n} \frac{1}{\|x\|^{\alpha}} dx \le \int_{B(0,\sqrt{n})} \frac{1}{\|x\|^{\alpha}} dx < +\infty \iff \alpha < n,$$

dunque

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x < +\infty \quad \text{se } \alpha < n.$$

Vediamo ora una minorazione.

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx = \frac{1}{2^n} \int_{[-1,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx \ge \frac{1}{2^n} \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|_1^{\alpha}} dx \approx \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} dx < +\infty \Longleftrightarrow \alpha < n.$$

Dunque l'integrale $\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx$ converge se solo se $\alpha < n$.

Esercizi per casa.

(1) Dimostrare che date f, g misurabili ed $r, p_1, p_2 > 0$ tali che $1/r = 1/p_1 + 1/p_2$. Allora vale

$$||f \cdot g||_r \le ||f||_{p_1} \cdot ||g||_{p_2}$$
.

Suggerimento. Usare Hölder osservando che $1 = \frac{r}{p_1} + \frac{r}{p_2} = \frac{1}{(p_1/r)} + \frac{1}{(p_2/r)}$.

Dimostrazione. Vale quanto segue.

$$\begin{split} \|f \cdot g\|_r^r &= \int_X |f \cdot g|^r \, \, \mathrm{d}\mu = \int_X |f| \cdot |g| \, \mathrm{d}\mu \overset{\text{Holder}}{\leq} \|f^r\|_{p_1/r} \cdot \|f^r\|_{p_2/r} \\ &= \left(\int_X |f|^{r \cdot p_1/r} \right)^{r/p_1} \cdot \left(\int_X |g|^{r \cdot p_2/r} \right)^{r/p_2} = \|f\|_{p_1}^r \cdot \|g\|_{p_2}^r = \left(\|f\|_{p_1} \cdot \|g\|_{p_2} \right)^r \\ &\Longrightarrow \|f \cdot g\|_r \leq \|f\|_{p_1} \cdot \|g\|_{p_2} \, . \end{split}$$

(2) Dimostrare che date f_1, \ldots, f_n misurabili e $p_i > 0$ tali che $1/p_1 + \ldots + 1/p_n = 1$ si ha

$$||f_1 \cdots f_n||_1 \le ||f_1||_{p_1} \cdots ||f_n||_{p_n}$$
.

Suggerimento. Fare il primo passo dell'induzione e usare la formula precedente scegliendo r in modo corretto.

Dimostrazione. Dimostriamo per induzione la seguente proprietà più generale.

Siano f_1, \ldots, f_n misurabili e r > 1. Allora, per i $p_i > 0$ tali che $1/p_1 + \ldots + 1/p_n = r$ si ha

$$||f_1 \cdots f_n||_r \le ||f_1||_{p_1} \cdots ||f_n||_{p_n}$$
.

Passo base. Vero per il punto (1).

 $Passo\ induttivo\ [n-1\Rightarrow n].$ Supponiamo di aver dimostrato per ognir>1la disuguaglianza sopra. Allora

$$||f_1 \cdots f_n||_r = ||(f_1 \cdots f_{n-1}) \cdot f_n||_r \stackrel{(1)}{\leq} ||f_1 \cdots f_{n-1}||_p \cdot ||f_n||_{p_n}, \quad \text{dove } r = 1/p + 1/p_n.$$

Notando che $1/p=1/r-1/p_{n-1}=1/p_1+\cdots+1/p_{n-1}$ e usando l'ipotesi induttiva otteniamo la tesi.

2 Esercitazione del 13 ottobre

2.1 Esercizi su spazi $L^p(X)$ al variare di p e dello spazio X

Sia $X \subset \mathbb{R}^n$, μ la misura di Lebesgue e $1 \leq p_1 \leq p_2$.

Domanda. Possiamo confrontare gli spazi $L^{p_1}(X)$ e $L^{p_2}(X)$? In generale no.

Vediamo informalmente perché. Posto $X = (0, +\infty)$, gli integrali

$$\int_0^{+\infty} \frac{1}{(1+x)^{\beta p}} \, \mathrm{d}x, \qquad \int_0^{+\infty} \frac{1}{x^{\beta p}} \cdot \mathbb{1}_{[0,1]}(x) \, \mathrm{d}x = \int_0^1 \frac{1}{x^{\beta p}} \, \mathrm{d}x$$

sono maggiorati dall'integrale di $1/x^{\alpha}$ dove l'esponente α è rispettivamente più piccolo e più grande di $\beta \cdot p$.

Utilizziamo questa intuizione per vedere formalmente che gli spazi $L^p(0,+\infty)$ non sono confrontabili.

Cerchiamo una funzione $f \in L^{p_1}(0,+\infty) \setminus L^{p_2}(0,+\infty)$ e una funzione $g \in L^{p_2}(0,+\infty) \setminus L^{p_1}(0,+\infty)$. La funzione f definita come segue

$$f(x) := \begin{cases} 1/x^{\beta} & x \in (0,1) \\ 0 & x \ge 1 \end{cases}$$

ha integrale

$$\int_0^{+\infty} f(x)^{p_1} dx = \int_0^1 \frac{1}{x^{\beta p_1}} dx < +\infty \iff \beta \cdot p_1 < 1$$

е

$$\int_0^{+\infty} f(x)^{p_2} dx = \int_0^1 \frac{1}{x^{\beta p_2}} dx = +\infty \iff \beta \cdot p_2 \ge 1.$$

Dunque, basta prendere $\beta \in [1/p_2, 1/p_1)$.

Ora cerchiamo $g \in L^2(0,+\infty) \setminus L^{p_1}(0,+\infty)$. Definiamo g(x) come segue

$$g(x) \coloneqq \frac{1}{(1+x)^{\alpha}}$$

da cui

$$\int_0^{+\infty} g(x)^{p_2} dx < +\infty \iff \alpha \cdot p_2 > 1 \quad \text{e} \quad \int_0^{+\infty} g(x)^{p_1} dx = +\infty \iff \alpha \cdot p_1 \le 1$$

Conclusione. In generale non c'è confrontabilità fra gli spazi L^p . La confrontabilità, dipende infatti dall'insieme X su cui sono definiti.

Nota. Un caso particolare è dato ponendo $p_1 < p_2$ e $\mu(X) < +\infty$. In tal caso $L^{p_2}(X) \subset L^{p_1}(X)$. Data $f \in L^{p_2}(X)$, cioè con $\int_X |f|^{p_2} d\mu < +\infty$ vediamo che $\int_X |f|^{p_1} d\mu < +\infty$.

$$\int_{X} |f|^{p_{1}} d\mu \leq \left(\int_{X} \underbrace{|h(x)|^{p_{1}p_{1}}}_{|h(x)|^{p}} d\mu \right)^{1/p} \cdot \left(\int_{X} 1^{q} d\mu \right)^{1/q} \underbrace{\leq}_{p=p_{1}/p_{2}} \left(\int_{X} |f|^{p_{2}} d\mu \right)^{p_{2}/p_{1}} \left(\int_{X} 1^{q} d\mu \right)^{1/q}$$

$$\underbrace{=}_{q=\left(1-\frac{1}{p}\right)^{-1} = \frac{p}{p-1} = \frac{p_{2}/p_{1}}{p_{2}-p_{1}}}_{p_{2}-p_{1}}}_{}.$$

Dunque

$$||f||_{L^{p_1}(X)} \le ||f||_{L^{p_2}(X)} \cdot \mu(X)^{\frac{p_2-p_1}{p_1p_2}}.$$

L'inclusione

Usiamo Hölder:

$$i \colon L^{p_2} \to L^{p_1}(X)$$

 $f \mapsto f$

è ben definita per quanto fatto sopra.

Esercizio. [TO DO] Vedere con quale topologia l'inclusione risulta continua.

Esercizio. [TO DO] Dato $p \ge 1$, stabilire se esistono $X, \mu, f \in L^p(X)$ e $f \notin L^q(X)$ per ogni $q \ne p, q \ge 1$.

Suggerimento. Pensare a $X=(0,+\infty)$, μ misura di Lebesgue.

Osservazione. $L^p(X)$ è uno spazio vettoriale di dimensione infinita, ossia ogni base algebrica ha cardinalità infinita. Vediamo il caso X=(0,1). Per trovare una base infinita, cerchiamo per ogni $N \in \mathbb{N}$, un insieme di funzioni $f_1, \ldots, f_N \in L^p(0,1)$ tali che siano linearmente indipendenti. Vale a dire, presi $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ vale $\lambda_1 f_1 + \ldots + f_N = 0$ se solo se $\lambda_1 = \ldots = \lambda_N = 0$.

Ad esempio, definiamo $f_i := \mathbb{1}_{i/N,(i+1)/N}$ (questa costruzione si può riprodurre per ogni $N \in \mathbb{N}$). Ricordiamo che, essendo $L^p(X)$ uno spazio metrico, dato $Y \subset L^p$ vale la seguente caratterizzazione:

Y è compatto \iff Y è compatto per successioni \iff Y chiuso e totalmente limitato.

Osservazione. $Y \subset L^p(X)$ è un sottoinsieme che eredita la norma $\|\cdot\|_{L^p}$:

Y è completo \iff Y è chiuso.

Osservazione. In L^p i sottoinsiemi chiusi e limitati non sono compatti¹! In particolare le palle

$$Y = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte.

Ad esempio, mostriamo che in $L^p(0,1)$ le palle

$$B = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte. Per farlo, esibiamo una successione $\{f_n\}_{n\in\mathbb{N}}\subset B$ che non ammette sottosuccessioni convergenti. La costruiamo in modo che non abbia sottosuccessioni di Cauchy

$$f_n: (0,1) \to \mathbb{R}, \quad ||f_n - f_m||_{L^p} \ge c_0 > 0 \quad \forall n \ne m.$$

Cerco $A_n \subset (0,1)$ tale che $|A_n \cap A_m| = 0$ per ogni $n \neq m$. Definiamo f_n come segue

$$f_n(x) := \begin{cases} 0 & \text{se } x \in (0,1) \setminus (1/(n+1), 1/n) \\ c_n > 0 & \text{altrimenti} \end{cases}$$

dove c_n è tale che

$$\left(\int_{1/n+1}^{1/n} c_n^p\right)^{1/p} = 1 \iff c_n^p \cdot (1/n - 1/(n+1)) = 1 \iff c_n^p = n \cdot (n+1).$$

Calcoliamo ora $||f_n - f_m||_{L^p}^p \operatorname{con} n \neq m$:

$$\int_0^1 |f_n(x) - f_m(x)|^p dx = \int_{(1/n, 1/n+1) \cup (1/m+1, 1/m)} |f_n|^p dx = \int_{1/n+1}^{1/n} |f_n|^p dx + \int_0^1 |f_m|^p dx = 1 + 1 = 2.$$

Si osserva che quanto detto sopra vale anche per $p = +\infty$.

Esercizio. [TO DO] Sia
$$E = \{ f \in L^1(1, +\infty) \mid |f(x)| \le 1/x^2 \text{ e } x \in [1, +\infty) \}.$$

Uno spazio metrico è compatto se solo se è completo e totalmente limitato. Inoltre, uno spazio metrico X si dice totalmente limitato se $\forall \varepsilon > 0$ esiste $B_{\varepsilon}^1, \ldots, B_{\varepsilon}^n$ tale che $X \subset \bigcup_{i=1}^n B_{\varepsilon}^i$.

- E è limitato in L^1 ?
- E è chiuso in L^1 ?
- E è compatto in L^1 ?

Soluzione.

i) Dimostriamo che $||f||_{L^1} < C$ per ogni $f \in E$.

$$||f||_{L^1} = \int_1^\infty |f(x)| \, \mathrm{d}x \le \int_1^\infty 1/x^2 \, \mathrm{d}x < C.$$

- ii) E è chiuso. Ci basta dimostrare che se $\{f_n\} \in E$ è convergente a f allora $f \in E$. Questo equivale a dimostrare che $|f(x)| < 1/x^2$. Dal fatto che $\{f_n\} \in E$ è convergente in L^1 , abbiamo che esiste una sottosuccessione $\{f_{n_k}\}$ che converge puntualmente a f. Essendo che $|f_{n_k}| < 1/x^2$ per ogni $x \in [1, +\infty)$, per la continuità del modulo segue la tesi.
- iii) Da fare [TO DO]

Esercizio. [TO DO]

- Dire se $f_n(x) = x^n$, n = 0, ..., N è un insieme di funzioni linearmente indipendenti in $L^p([0,1])$.
- Dire se $\{f_n\} \subset L^p(0,1)$ è compatta in $L^p(0,1)$.

Suggerimento. Studiare il limite puntuale.

Soluzione.

i) Dimostriamolo per induzione. Passo base. [TO DO]

Passo induttivo. $(n-1 \ge n)$ Vediamo che se $a_1 \cdot 1 + a_2 \cdot x + \cdots + a_{n-1} \cdot x^{n-1} + a_n \cdot x^n = 0 \Longrightarrow a_1 = \ldots = a_n = 0.$

$$a_1 \cdot 1 + a_2 \cdot x + \dots + a_{n-1} \cdot x^{n-1} = -a_n \cdot x^n$$

$$\downarrow +a_n \cdot x^n$$

$$(a_1 + a_n) \cdot 1 + (a_2 + a_n) \cdot x + \dots + (a_{n-1} + a_n) \cdot x^{n-1} = 0$$

essendo che $1, x^1, \ldots, x^{n-1}$ sono linearmente indipendenti per ipotesi induttiva, vale $(a_i + a_n) = 0$ per ogni $i = 1, \ldots, n-1$, da cui $a_i = 0$ per ogni $i = 1, \ldots, n$.

ii) Dimostriamo che non è compatto. Se per assurdo lo fosse, dalla successione (f_n) potremmo estrarre una sottosuccessione convergente (f_{n_k}) in $L^p([0,1])$; denotiamo il limite con f. Per i risultati visti sulla convergenza, da (f_{n_k}) potremmo estrarre una sottosuccessione convergente quasi ovunque a f. Ma questo è assurdo perché $\lim_n f_n = +\infty$.

2.2 Spazi ℓ^p

Prendiamo $X = \mathbb{N}$ e $\mu = \#$ la misura che conta i punti.

Osservazione. Definiamo

$$\ell^p = L^p(\mathbb{N}, \#) = \left\{ (x_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{+\infty} |x_n|^p < +\infty \right\}$$

11

con $p \ge 1$ e $p \ne +\infty$, e

$$l^{\infty} = \{\text{successioni limitate}\} = \left\{ (x_n) \mid \sup_{n \in \mathbb{N}} |x_n| < +\infty \right\}.$$

Esempio (di insieme non compatto in ℓ^1). Consideriamo la successione (e_i) definita come

$$(e_i)_n \coloneqq \begin{cases} 0 & \text{se } n \neq i \\ 1 & \text{se } n = i \end{cases}$$

si osserva inoltre che le successioni così definite sono linearmente indipendenti e generano se sono infiniti.

Esempio (di insieme compatto in ℓ^1). Sia $F = \{(x_n)_n \in \ell^1 \mid |x_n| \le 1/n^2 \quad \forall n \in \mathbb{N}\}$. Noto subito che F è limitato, infatti, presa

$$\underline{x} = (x_n) \in F, \quad \|\underline{x}\|_{\ell^1} = \sum_{n=0}^{+\infty} |x_n| \le \sum_{n=0}^{+\infty} 1/n^2 < +\infty.$$

F è anche chiuso.

Osservazione. Data una successione $(\underline{x}^k) \subset \ell^1$, se $\underline{x}^k \xrightarrow{\ell^1} \underline{x}^\infty$, vuol dire che

$$\left\|\underline{x}^k - \underline{x}^{\infty}\right\|_{\ell^1} = \sum_{n=0}^{+\infty} \left|x_n^k - x_n^{\infty}\right| \xrightarrow{k} 0.$$

In particolare, per ogni $n \in \mathbb{N}$ fissato, $\lim_{k} (x_n^k - x_n^{\infty}) = 0$.

F è chiuso perché se $(\underline{x}^k) \subset F$ e $\underline{x}^k \xrightarrow{\ell^1} \underline{x}^\infty$, allora per ogni $n \in \mathbb{N}$ vale

$$\left|x_n^k\right| \le 1/n^2 \quad \text{e} \quad \underbrace{\lim_{n \to +\infty} \left|x_n^k\right|}_{x_n^\infty} \le 1/n^2.$$

Dimostriamo che è compatto per successioni. Prendiamo $(\underline{x}^k) \subset F$, ogni componente x_n è equilimitata, quindi a meno di sottosuccessioni $x_n^{k_j}$ converge a x_n^{∞} . A meno di diagonalizzare, possiamo supporre che le successione k_j non dipenda da n. Inoltre gli elementi $x_n^{k_j}$ sono dominati da $y = (1/n^2)$. Concludiamo usando il teorema di convergenza dominata di Lebesgue.

3 Esercitazione del 21 ottobre

Data $T: X \to Y$ lineare tra X, Y spazi normati, allora T è continua se solo se esiste C > 0 tale che $||T(x)||_Y \le C ||x||_X$ per ogni $x \in X$.

Applichiamo questo risultato.

i) Sia $X = \mathbb{R}^d$. L'applicazione $L^1(\mathbb{R}^d) \ni u \xrightarrow{T} \int_{\mathbb{R}^d} u \, dx$ è lineare e continua in quanto limitata. Infatti:

$$|T(u)| = \left| \int_{\mathbb{R}^d} u \, dx \right| \le \int_{\mathbb{R}^d} |u| \, dx = ||u||_{L^1(\mathbb{R}^d)}.$$

ii) Studiamo ora il caso per p > 1. Data $u \in L^p(\mathbb{R}^d)$, l'applicazione

$$u \mapsto \int_{\mathbb{R}^d} u \, \mathrm{d}x$$

potrebbe non essere ben definita.

Ad esempio se restringiamo il dominio a $L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ l'applicazione sopra è ben definita, ma in generale non è continua. Più formalmente, la mappa

$$T: \left(L^p \cap L^1(\mathbb{R}^d), \|\cdot\|_{L^p}\right) \to \mathbb{R}$$

è lineare ma non continua.

Studiamo il caso reale, ovvero d=1.

Per verificare quanto sopra, utilizziamo la definizione di continuità per successioni. Definiamo una successione di funzioni a supporto compatto u_n , che sappiamo essere in tutti gli spazi L^p , e verifichiamo che $\lim_n T(u_n) \neq T(u_\infty)$ dove $u_\infty := \lim_n u_n$.

Definiamo la successione come segue (fare disegno):

$$u_n(x) = \frac{1}{n} \mathbb{1}_{[n,2n]} = \begin{cases} \frac{1}{n} & \text{se } n \leq x \leq 2n \\ 0 & \text{altrimenti.} \end{cases}$$

Dunque, $T(u_n) = \int_{\mathbb{R}} u_n \, \mathrm{d}x = \frac{1}{n} |E_n| = 1$, dove $E_n = [n, 2n]$. Segue che $T(u_n) \equiv 1$ ma rispetto alla convergenza in L^p , $T(u_n) \not\to T(u_\infty) = T(0) = 0$.

Più in generale, quando $u \in L^p(\mathbb{R}^d)$ con p > 1, una costruzione come sopra non funziona, infatti

$$||u_n||_{L^p(\mathbb{R})}^p = \int_{\mathbb{R}} u_n^p(x) \, \mathrm{d}x = \frac{1}{n^p} \cdot |E_n| = \frac{n}{n^p} = \frac{1}{n^{p-1}} \xrightarrow{n \to \infty} 0.$$

Un altro modo per dimostrare quanto sopra è verificare che, per ogni C > 0, esiste una funzione $u \in L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ tale per cui

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| > C \left(\int_{\mathbb{R}} |u|^p \, \mathrm{d}x \right)^{1/p}.$$

Notiamo che questo è proprio l'esercizio che segue.

Esercizio. Fissato C > 0, trovare $u \in L^p \cap L^1(\mathbb{R})$ tale che

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| > C \, \|u\|_{L^p(\mathbb{R})} \tag{*}$$

Dimostrazione. Fissato C > 0, cerchiamo una funzione in L^p il cui integrale in modulo sia maggiore di C per la sua norma L^p . Per trovare u consideriamo la successione di funzioni definita come segue

$$f_n = \begin{cases} 1/x & 1 \le x \le n \\ 0 & \text{altrimenti} \end{cases}.$$

Le funzioni f_n sono a supporto compatto e stanno in ogni L^p . Notiamo che $f_n \uparrow f$ definita come

$$f = \begin{cases} 1/x & x > 1\\ 0 & \text{altrimenti} \end{cases}$$

ed
$$f \in L^p$$
 per ogni $p > 1$. In particolare, $\left(\int_{\mathbb{R}} |f_n|^p\right)^{1/p} \leq \left(\int_{\mathbb{R}} |f|^p\right)^{1/p} \leq +\infty$ per ogni $p > 1$.

Quindi il secondo membro di (\star) è maggiorato da una costante che non dipende da n. D'altra parte, per Beppo Levi $\lim_n \int_{\mathbb{R}} f_n \, \mathrm{d}x = \int_{\mathbb{R}} f \, \mathrm{d}x$ che non sta in L^1 . In conclusione, esiste un n abbastanza grande per cui vale (\star) .

Esercizio. Sia
$$p \ge 1$$
 e $E = \left\{ u \in L^p(-1,1) : \int_{-1}^1 u \, dx = 0 \right\}.$

- i) Dire se E è limitato in $L^p(-1,1)$.
- ii) Dire se E è chiuso in $L^p(-1,1)$.

Soluzione.

i) Dimostrare che E è limitato in $L^p(-1,1)$ equivale a dimostrare che esiste M>0 tale che ogni $u\in L^p(-1,1),$ $\int_{-1}^1 u\,\mathrm{d}x=0$ verifica $\|u\|_{L^p}\leq M.$

Vediamo che E non è limitato. Preso M>0, riesco sempre a trovare una funzione maggiore di M in norma. Ad esempio la funzione definita come

$$u(x) := \begin{cases} M & \text{se } x \in (0,1) \\ -M & \text{se } x \in (-1,0) \end{cases}$$

ha norma $||u||_{L^p}^p = 2M^p$.

Nota. Aveva senso cercare il controesempio nella classe delle funzioni dispari e limitate, perché hanno media zero, e perché sono in tutti gli L^p .

ii) Vediamo che E è chiuso.

Nota. Possiamo dimostrarlo usando i teoremi di convergenza, ma seguiremo un'altra strada.

• Caso p > 1. Definiamo l'operatore

$$T: L^p(-1,1) \to \mathbb{R}$$

$$u \mapsto \int_{-1}^1 u \, \mathrm{d}x$$

è ben definito. Infatti, per Hölder vale

$$\left| \int_{-1}^{1} 1 \cdot u \, dx \right| \le \left(\int_{-1}^{1} |u|^{p} \, dx \right)^{1/p} (1^{q})^{1/q}$$

dove $q = \frac{p}{p-1}$. Allora

$$|T(u)| \le ||u||_{L^p(-1,1)} \cdot 2^{\frac{p}{p-1}}.$$

14

Dunque T è continuo in L^p per ogni p > 1.

• Caso p = 1. L'operatore sopra è continuo anche per p = 1. Grazie alla stima vista prima

$$|T(u)| = \left| \int_{-1}^{1} u \, dx \right| \le \int_{-1}^{1} |u| \, dx = \|u\|_{L^{1}}.$$

Dunque T è continua e $T^{-1}(0) = E$, dunque E è chiuso.

Esercizio. [TO DO] Sia $p \ge 1$. Definiamo

$$F = \left\{ v \in L^p(\mathbb{R}) \mid \int_0^1 v(x) \, dx - 2 \int_{-1}^0 v(x) \, dx = 3 \right\}.$$

Dire se F è chiuso in $(L^p(\mathbb{R}), \|\cdot\|_{L^p(\mathbb{R})})$.

Esercizio. [TO DO] Sia

$$G = \left\{ v \in L^p(0, 2\pi) \mid \int_0^{2\pi} v(x) \sin(x) dx = 1 \right\}.$$

Dire se G è chiuso in $L^2(0,2\pi)$.

Domanda. Dato $L^p(X,\mu)$ e V sottospazio di $L^p(X,\mu)$, posso dire che V è chiuso?

In generale no! Infatti esistono sottospazi densi in $L^p(X,\mu)$.

Ad esempio in ℓ^2 consideriamo l'insieme denso

$$V = \{\{x_n\} \mid x_n = 0 \text{ definitivamente}\}.$$

Vediamo che non è chiuso. Sia $\underline{x} \in \ell^2$, definita come $\underline{x} = \{1/n\}_{n \in \mathbb{N} \setminus \{0\}}$, diciamo che $\underline{x} = \lim_{n \to +\infty} \underline{x}^n$ dove

$$x_n^k = \begin{cases} \frac{1}{n} & 1 \le n \le k \\ 0 & n > k, n = 0 \end{cases}$$

abbiamo che

$$\left\| \underline{x} - \underline{x}^k \right\|_{\ell^2}^2 = \sum_{n=1}^{\infty} \left| x_n - x_n^k \right|^2 = \sum_{n=k+1}^{+\infty} \left| x_n \right|^2 = \sum_{n=k+1}^{\infty} \frac{1}{n^2} \xrightarrow{k \to +\infty} 0.$$

Vediamo un altro esempio. Siano $X = \mathbb{R}$, μ la misura di Lebesgue e p > 1. In tal caso, l'insieme $L^p \cap L^1(\mathbb{R})$ è un sottospazio denso in $(L^1(\mathbb{R}), \|\cdot\|_{L^1})$ e $(L^p(\mathbb{R}), \|\cdot\|_{L^p})$.

Nota. L'insieme $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ è un sottospazio proprio di $L^1(\mathbb{R})$. Diciamo che non è chiuso in $\|\cdot\|_{L^1(\mathbb{R})}$ perché è denso. Infatti,

$$\mathcal{C}^0_C(\mathbb{R}) \subset L^2(\mathbb{R}) \cap L^1(\mathbb{R}).$$

3.1 Convoluzione

Sia $f \in L^1(\mathbb{R}^d)$ e sia $g \colon \mathbb{R}^d \to \mathbb{R}$ continua a supporto compatto¹.

$$|g(x) - g(y)| \le M |x - y|_{\mathbb{R}^d}.$$

¹In tal caso g è lipschitziana.

Esercizio. Dimostrare che f * g è ben definita e lipschitziana, dove $f \in L^1(\mathbb{R}^d)$ e $g \in \mathcal{C}^0_C(\mathbb{R}^d)$. Verifichiamo che la convoluzione è ben definita. Dal fatto che $g \in \mathcal{C}^0_C(\mathbb{R}^d)$ abbiamo in particolare che g è limitata, da cui

$$f * g = \int_{\mathbb{R}^d} f(x - y) \cdot g(y) \, \mathrm{d}y \stackrel{|g| \le M}{\le} M \cdot \int_{\mathbb{R}^d} f(x - y) \, \mathrm{d}y \stackrel{f \in L^1(\mathbb{R}^d)}{<} + \infty.$$

Ora verifichiamo che f * g è lipschitziana. Consideriamo $x_1, x_2 \in \mathbb{R}^d$

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} f(x_1 - x)g(y) \, dy - \int_{\mathbb{R}^d} f(x_2 - y)g(y) \, dy \right|$$

Usiamo la proprietà che, essendo f*g ben definita, si ha f*g(x)=g*f(x). Da cui

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} g(x_1 - y) f(y) \, \mathrm{d}y \int_{\mathbb{R}^d} g(x_2 - y) f(y) \, \mathrm{d}y \right|$$

$$= \left| \int_{\mathbb{R}^d} \left(g(x_1 - y) - g(x_2 - y) \right) f(y) \, \mathrm{d}y \right|$$

$$\leq \int_{\mathbb{R}^d} |g(x_1 - y) - g(x_2 - y)| |f(y)| \, \mathrm{d}y$$

$$\leq \int_{\mathbb{R}^d} M \left| (x_1 - y) - (x_2 - y) \right| |f(y)| \, \mathrm{d}y \leq M |x_1 - x_2| \cdot ||f||_{L^1(\mathbb{R}^d)}.$$

Esercizio. [TO DO] Se $f \in L^1(\mathbb{R}^d)$ e g a supporto compatto è α -Hölderiana allora anche f * g lo è.

Esercizio. [TO DO] Presa $f(x) = \mathbb{1}_{[0,1]}$ in \mathbb{R} , calcolare f * f.

3.2 Separabilità degli spazi L^p

Proposizione. Si ha che $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue, è separabile se solo se $p \neq +\infty$. Lo stesso risultato vale per ℓ^p .

Osservazione. La proposizione è valida anche per $L^p(X,\mu)$ con $X\subset\mathbb{R}^d$ aperto.

Sia $1 \leq p < +\infty$, $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue. Le funzioni semplici costituite da somme finite di insiemi di misura finita sono dense in $L^p(\mathbb{R}^d)$.

Prendiamo una base numerabile di \mathbb{R}^d e la indichiamo con \mathcal{B} . L'insieme

$$Y = \left\{ \sum_{i=1}^{n} \alpha_i \mathbb{1}_{B_i} \mid B_i \in \mathcal{B}, \alpha_i \in \mathbb{Q} \right\}$$

è numerabile. Vediamo che è denso in $L^p(\mathbb{R}^d)$.

Idea. È sufficiente approssimare le funzioni semplici a somma finita $\sum_{i=1}^{N} \alpha_i \mathbb{1}_{E_i}$. In particolare, ci basta approssimare $\alpha \cdot \mathbb{1}_E$. Essendo $\alpha \in \mathbb{R}$ troviamo una successione di razionali α_j tali che $\alpha_j \xrightarrow{j \to \infty} \alpha$. Dunque, rimane da approssimare l'insieme E.

Fissiamo E e supponiamo dapprima E aperto. Possiamo scrivere E come unione arbitraria di elementi della base $\mathcal B$

$$E = \bigcup_{i=1}^{\infty} B_i.$$

Per approssimare E consideriamo gli insiemi $E_N = \bigcup_{i=1}^N B_i$. Otteniamo $|E| = \lim_N |E_N|$, da cui $|E \setminus E_N| \xrightarrow{N \to +\infty} 0$. Concludiamo notando che il caso E arbitrario si fa approssimandolo con una famiglia di aperti.

Per ℓ^p con $p < +\infty$ definiamo

$$Y = \{\{x_n\} \mid x_n = 0 \text{ definitivamente}, x_n \in \mathbb{Q}\}$$

e verifico che è numerabile e separabile.

Domanda. Cosa succede per $p = +\infty$?

Consideriamo $L^{\infty}([0,+\infty],\mu)$ con μ di Lebesgue e $E_n=[n,n+1]$. Definiamo l'insieme

$$Z = \left\{ \forall J \subset \mathbb{N} \quad u = \sum_{j \in J} \mathbb{1}_{E_j} \right\}.$$

Z ha la cardinalità delle parti di $\mathbb N$ cioè è più che numerabile. Osserviamo che per ogni $u,v\in Z$, $u\neq v$ si ha che $\|u-v\|_{L^\infty(\mathbb R)}=1$. Se per assurdo esistesse un insieme denso e numerabile D in ℓ^∞ , per definizione di insieme denso dovremmo trovare per ogni palla di raggio minore di 1 e centro in un qualsiasi elemento di Z, un elemento di D. Ma questo è impossibile in quanto D ha cardinalità numerabile e Z la cardinalità del continuo.

Vediamo in un altro modo che l^{∞} non è separabile. Se per assurdo $Y = \left\{\underline{x}^k\right\}_{k \in \mathbb{N}}$ fosse denso in L^{∞} , allora potremmo definire un elemento $z \in l^{\infty}$ tale che $\left\|\underline{x}^k - \underline{z}\right\|_{l^{\infty}} \geq 1$ per ogni k.

Definiamo $z = \{z_n\}$ come segue

$$z_n = \begin{cases} 0 & \text{se } |x_n^n| > 1 \\ 2 & \text{se } |x_n^n| \le 1 \end{cases}.$$

4 Esercitazione del 3 Novembre 2021

4.1 Basi Hilbertiane e proiezioni

Esercizio. Sia $H = L^2(-1,1)$ e sia $V = \text{Span}\{1,x,x^2\}$. Verificare che V è un sottospazio chiuso e calcolare la proiezione di sin x su V.

Notazione. Indichiamo con $\|\cdot\|$ la norma $\|\cdot\|_{L^2(-1,1)}$ e con $\langle\,\cdot\,,\,\cdot\,\rangle$ il prodotto scalare su $L^2.$

Soluzione. Vediamo come risolvere questo esercizio in tre modi diversi.

- i) Dato H spazio di Hilbert separabile, e dato un sottospazio $V \subset H$, vediamo come trovare la proiezione di un elemento $x \in H$ su V. Procediamo come segue.
 - \bullet Controlliamo che V sia chiuso.
 - Calcoliamo una base hilbertiana di V che indichiamo con $\{e_1, \ldots, e_n, \ldots\}$.

Il tal caso, la proiezione di un elemento $x \in H$ su V è data da

$$p_V(x) = \sum_{n} \langle x, e_n \rangle e_n.$$

Esercizio. [TO DO: per casa] Ogni sottospazio di dimensione finita di uno spazio di Hilbert o di L^p è chiuso (e in particolare ha parte interna vuota).

Abbiamo una base di V data da $\{1, x, x^2\}$ (è una base in quanto sono linearmente indipendenti: si può verificare mostrando che $\forall x \in [-1, 1] \ \lambda_1 + \lambda_2 x + \lambda_3 x^2 = 0 \implies \lambda_1 = \lambda_2 = \lambda_3 = 0$ usando la teoria sulle equazioni di II grado oppure si può derivare e man mano ottenere più informazioni su $\lambda_3, \lambda_2, \lambda_1$).

Volendo usare la base scritta sopra per calcolare la proiezione di sin x su V, dovremmo prima applicare Gram-Schmidt alla base $\{1, x, x^2\}$ per determinare una base Hilbertiana:

$$e_{1} = \frac{1}{\|1\|} = \frac{1}{\sqrt{2}}$$

$$e_{2} = \frac{x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1}{\|x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1\|}$$

$$e_{3} = \frac{x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}}{\|x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}\|}$$

e successivamente calcolare $p_V(\sin x)$ con la formula scritta sopra.

ii) Alternativamente, possiamo direttamente cercare la proiezione di sin x su V. Determiniamo a, b, c tali che $a + bx + cx^2$ sia $p_V(x) = \sin x$ allora posto $f(x) := \sin x - a - bx - cx^2$ abbiamo $f(x) \in V^{\perp} \iff$ si verificano le seguenti condizioni

$$\langle f(x), 1 \rangle = 0$$
 $\langle f(x), x \rangle = 0$ $\langle f(x), x^2 \rangle = 0$

Ad esempio da $\langle f(x), 1 \rangle = 0$ otteniamo

$$0 = \int_{-1}^{1} (\sin x - a - bx - cx^{2}) \cdot 1 \, dx = \underbrace{\int_{-1}^{1} \sin x \, dx}_{=0} - 2a - b \underbrace{\int_{-1}^{1} x \, dx}_{=0} - c \int_{-1}^{1} x^{2} \implies 0 = -2a - \frac{2}{3}c$$

ed analogamente si procede con x e x^2 ... [TODO: Da finire]

iii) Un altro modo è considerare la funzione $g(a,b,c) := \|\sin x - a - bx - cx^2\|_{L^2(-1,1)}$ che è continua, coerciva, etc. e imponendo $\nabla_{a,b,c,g} = 0$ si minimizza e si ottengono \bar{a},\bar{b},\bar{c} che verificano $p_V(\sin x)$.

Esercizio. Sia $X = \{u \in L^2(\mathbb{R}) \mid \int_0^2 u \, \mathrm{d}x = 0\}$, dire se è un sottospazio chiuso, calcolare X^{\perp} per una generica $u \in L^2(\mathbb{R})$ e determinare le proiezioni $p_X(u)$ e $p_{X^{\perp}}(u)$.

Soluzione. La mappa T lineare data da

$$u \mapsto \int_0^2 u \, \mathrm{d}x$$

è ben definita, lineare e continua, allora X è proprio $T^{-1}(0)$ dunque è un sottospazio chiuso.

Osservazione. Notiamo che

$$T(u) = \int_{\mathbb{R}} u(x) \cdot \mathbb{1}_{[0,2]}(x) dx = \langle u, g \rangle_{L^2(\mathbb{R})}, \qquad g = \mathbb{1}_{[0,2]}(x) \in L^2(\mathbb{R}).$$

Calcoliamo ora X^{\perp} e le proiezioni p_X , $p_{X^{\perp}}$. Abbiamo che $X = \{u \in L^2(\mathbb{R}) \mid \langle u, g \rangle = 0\}$ dove $g = \mathbb{1}_{[0,2]}(x)$, dunque $X^{\perp} = \operatorname{Span}(g)$. Notiamo¹ che

$$L^2(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}} \left\{ \frac{g}{\|g\|_{L^2}} \right\} \oplus \left\{ \frac{g^{\perp}}{\|g^{\perp}\|_{L^2}} \right\}.$$

Calcoliamo $p_X(u)$ come segue

$$p_X(u) = u - \left\langle u, \frac{g}{\|g\|_{L^2}} \right\rangle \cdot \frac{g}{\|g\|_{L^2}},$$

dove

$$||g||_{L^2} = \left(\int_{\mathbb{R}} \mathbb{1}_{[0,2]}(x)^2 dx\right)^{1/2} = \sqrt{2}$$

e dunque

$$p_X(u) = u - \left(\int_0^2 u \, dx\right) \cdot \frac{\mathbb{1}_{[0,2]}}{2}$$

Un controllo veloce per verificare di aver fatto i conti corretti è quello di vedere che $p_X(u) \in X$, dunque di verificare che $\int_0^2 p_X(u) dx = 0$.

Per calcolare $p_{X^{\perp}}(u)$ usiamo la seguente.

Osservazione. Vale $u = p_X(u) + p_{X^{\perp}}(u)$.

In conclusione,

$$p_{X^{\perp}}(u) = u - p_X(u) = \left(\int_0^2 u \, \mathrm{d}x\right) \cdot \frac{\mathbb{1}_{[0,2]}}{2}.$$

Esercizio. [TO DO: per casa.] Sia $V = \{\underline{x} = (x_n)_{n \in \mathbb{N}} \in \ell^2 \mid x_1 + x_3 + x_5 = 0\}$. Dire se V è chiuso in ℓ^2 e calcolare p_V e $p_{V^{\perp}}$.

4.2 Approssimazioni per convoluzione

Abbiamo visto che data $g \in L^1(\mathbb{R}^d)$ con $\int g \, dx = 1$ allora per ogni $f \in L^p(\mathbb{R}^d)$ abbiamo $f_{\delta} := f * \sigma_{\delta} g \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ per $p \neq \infty$.

Esercizio. Dire se esiste $v \in L^1(\mathbb{R})$ tale che sia elemento neutro della convoluzione, ovvero

$$\forall f \in L^1(\mathbb{R}) \qquad f * v = f.$$

Una tale v non esiste, per vederlo scegliamo opportunamente \bar{f} e usiamo l'equazione. Scelgo $g \in C_C(\mathbb{R})$ e defiamo $\sigma_{\delta}g = 1/\delta g(1/\delta)$. Abbiamo che $\sigma_{\delta}g * v = \sigma_{\delta}g$ per ogni δ . Per il teorema abbiamo che $\sigma_{\delta}g * v = \sigma_{\delta}g \xrightarrow{\delta \to 0} v$ in $L^1(\mathbb{R})$, ma $\sigma_{\delta}g \xrightarrow{\delta \to 0} 0$ quasi ovunque in $L^1(\mathbb{R})$. Allora v = 0 q.o. in $L^1(\mathbb{R})$, dunque non può valere f * v = v per ogni $f \in L^1(\mathbb{R})$.

Esercizio. [TO DO: per casa.] Sia f misurabile su \mathbb{R}^d tale che $\int_E f \, dx = 0$ per ogni E misurabile di \mathbb{R}^d . Dimostrare che f = 0 q.o. su \mathbb{R}^d .

Suggerimento. Considerare l'integrale sull'insieme $\{x \in \mathbb{R}^d \mid f(x) = 0\} \cup \{x \in \mathbb{R}^d \mid f(x) \neq 0\}$ e verificare che, se denotiamo $A = \{x \in \mathbb{R}^d \mid f(x) \neq 0\}$, allora |A| = 0.

 $^{^{1}\}mathrm{Con}\ g/\left\|g^{\perp}\right\|_{L^{2}}$ indichiamo una base normalizzata di $g^{\perp}.$

Esercizio. [TO DO: per casa.] Sia f Lebesgue-misurabile su \mathbb{R}^d tale che $\forall B$ palla su \mathbb{R}^d

$$\int_{B} f \, \mathrm{d}x = 0$$

Dimostrare che che f = 0 quasi ovunque su \mathbb{R}^d .

Suggerimenti. Usare la convoluzione con opportuni nuclei; notare che $\int_B f = 0 \iff f * \mathbb{1}_B = 0$ per ogni palla B.

5 Esempi di basi Hilbertiane

5.1 Polinomi

La base data da $\{1, x, x^2, \dots, x^n, \dots\}$ opportunamente ortonormalizzata è una base¹ di $L^2[0, 1]$ (anche di $L^2(\mathbb{R})$).

5.2 Base di Haar

Vediamo la base di Haar data da due indici n, k dove n indica l'ampiezza delle "onde" (anche dette wavelet) e k il posizionamento dell'onda. Sia $n \in \mathbb{N}$ e $k = 1, \ldots, 2^n$ e poniamo

$$g^{0,0} \coloneqq \mathbb{1}_{[0,1]} \qquad g^{n,k} \coloneqq 2^{\frac{n-1}{2}} \left(\mathbb{1}_{\left[\frac{2k-2}{2^n}, \frac{2k-1}{2^n}\right]} - \mathbb{1}_{\left[\frac{2k-1}{2^n}, \frac{2k}{2^n}\right]} \right)$$

Inoltre $||g^{n,k}||_{L^2[0,1]} = 1$ ed anche $||g^{0,0}||_{L^2[0,1]} = 1$. Vedremo che $\{g^{n,k} \mid n \ge 1, k = 1, \dots, 2^n\} \cup \{g^{0,0}\}$ formano un sistema ortonormale.

- $\langle g^{n,k}, g^{0,0} \rangle = 0$: È ovvio in quanto le $g^{n,k}$ hanno media nulla.
- $\langle g^{n,k}, g^{n',k'} \rangle = 0$: Se n = n' i supporti sono sempre disgiunti altrimenti $n \neq n'$, se supponiamo n < n' allora i supporti o sono disgiunti e si conclude come prima o il supporto di $g^{n',k'}$ è contenuto in quello di $g^{n,k}$. In tal caso però $g^{n,k}$ è costante su $g^{n',k'}$ e dunque l'integrale è sempre nullo.

Inoltre è anche una base hilbertiana, per combinazioni algebriche si ottengono tutti gli intervalli $-2\sqrt{2}$ della forma

$$I_k := \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]$$

¹Teorema di Stone-Weierstrass: i polinomi sono densi nello spazio delle funzioni continue.

ad esempio normalizzando $g^{n,k}+2^{\frac{n-1}{2}}g^{0,0}$ otteniamo uno degli intervalli di sopra di lunghezza $1/2^{n+1}$.

Vedremo che possiamo estendere la base di Haar a tutto \mathbb{R} però è più difficile... [TODO: Ehm aggiungere la parte dopo quando verrà fatta]

Esercizio. Sia $p \ge 1$ allora $\{u \in L^p(\mathbb{R}) \mid \int u \, \mathrm{d}x = 0\} \subseteq L^p(\mathbb{R})$ è denso in $L^p(\mathbb{R})$?

6 Esercitazione del 11 novembre

Consideriamo $L^2([-\pi, \pi], \mathbb{C})$. Ricordiamo che $e^{inx} = \cos(nx) + i\sin(nx)$. Abbiamo

$$\sum_{n=-N}^{N} c_n e^{inx} = c_0(f) + \sum_{n=1}^{N} \left(c_n(f) e^{inx} + c_{-n} e^{inx} \right)$$

$$= c_0(f) + \sum_{n=1}^{N} \left[(c_n(f) + c_{-n}(f)) \cos(nx) + i \left(c_n(f) - c_{-n}(f) \right) \sin(nx) \right]$$

$$= c_0(f) + \sum_{n=1}^{N} a_n(f) \cos(nx) + b_n(f) \sin(nx)$$

con

$$\begin{cases} a_n(f) = c_n(f) + c_{-n}(f) \\ b_n(f) = ic_n(f) - ic_{-n}(f) \\ a_0(f) = c_0(f) \end{cases}$$

Passando al limite per $N \to +\infty$

$$f(x) \stackrel{L^2}{=} \sum_{n=-N}^{N} c_n e^{inx} \stackrel{(\star)}{=} c_0(f) + \sum_{n=1}^{+\infty} a_n(f) \cos(nx) + b_n(f) \sin(nx)$$

Nota. L'uguaglianza (\star) ha bisogno di qualche spiegazione: come sappiamo che la serie a destra converge? Usiamo il fatto, che mostriamo sotto, che $\{1, \cos(nx), \sin(nx), n > 1\}$ sono un sistema ortogonale, dunque per la disuguaglianza di Bessel segue la convergenza.

Osservazione. Gli elementi $\{1, \sin(nx), \cos(nx)\}$ sono ortogonali per $n \ge 1$ in $L^2([-\pi, \pi], \mathbb{C})$. Infatti, ricordiamo che

$$\cos(nx) = \frac{e^{inx} + e^{-inx}}{2}$$
$$\sin(nx) = \frac{e^{inx} - e^{-inx}}{2i}.$$

- È banale verificare che $\langle 1, \cos(nx) \rangle = \langle 1, \sin(nx) \rangle = 0;$
- Verifichiamo ora che valga $\langle \cos(nx), \sin(mx) \rangle = 0$ per ogni n, m, dunque calcoliamo:

$$\langle \sin(nx), \sin(mx) \rangle = \frac{1}{4} \langle e^{-inx} - e^{inx}, e^{-imx} - e^{imx} \rangle = 0.$$

Ora normalizziamo:
$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}}, n \geq 1\right\}$$
.

In conclusione, abbiamo ottenuto che

- $L^2([-\pi,\pi],\mathbb{C})$ ha base Hilbertiana $\left\{\frac{1}{\sqrt{\pi}},\frac{\cos(nx)}{\sqrt{\pi}},\frac{\sin(nx)}{\sqrt{\pi}}\right\}_{\mathbb{C}}$
- $L^2([-\pi, \pi], \mathbb{R})$ ha base Hilbertiana $\left\{\frac{1}{\sqrt{\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}}\right\}_{\mathbb{R}}$

Esercizio. Se f è a valori reali, dimostrare che $a_n(f)$ e $b_n(f)$ sono anch'essi reali. [TO DO] Sketch. Si dimostra che $a_n(f) = \overline{a_n(f)}, b_n(f) = \overline{b_n(f)}$ e per farlo si usano le espressioni di a_n, b_n in funzione dei coefficienti di Fourier complessi scritte sopra.

Esercizio. Trovare la base di Fourier complessa e reale di $L^2([a,b],\mathbb{C})$.

Soluzione. Data $f(x) \in L^2([a,b],\mathbb{C})$, definiamo la funzione

$$F(y) := f\left((y+\pi)\frac{b-a}{2\pi} + a\right) = f(x).$$

Notiamo che $F \in L^2([-\pi, \pi], \mathbb{C})$, dunque ha espansione in serie di Fourier:

$$F(y) = \sum_{n \in \mathbb{Z}} c_n(F) e^{iny}, \qquad c_n(F) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(y) e^{-iny} \, dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left((y + \pi) \frac{b - a}{2\pi} + a \right) e^{-iny} \, dy.$$

Usando il cambio di variabile $y = (x - a)\frac{2\pi}{b - a} - \pi$ si ottiene

$$c_n(f) = \frac{1}{b-a} \int_a^b f(x) \exp\left[\left((x-a)\frac{2\pi}{b-a} - \pi\right)(-in)\right] dx$$
$$= \frac{(-1)^n}{b-a} \exp\left[\frac{2\pi a}{b-a}in\right] \int_a^b f(x) \exp\left[\frac{2\pi x}{b-a}(-in)\right] dx$$

Da cui

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) \exp\left[\frac{2\pi}{b-a}xin\right], \qquad c_n(f) = \frac{1}{b-a} \int_a^b f(x) \exp\left[-\frac{2\pi}{b-a}xin\right].$$

Esercizio. Sia $f \in L^2([-\pi, \pi], \mathbb{C})$ (l'estensione di) $f \in 2\pi/N$ periodica. Dimostrare che $c_n(f) \neq 0$ se solo se n multiplo di N. [TO DO]

Esercizi classici. Fissata una funzione $f \in L^2$, calcolare i coefficienti di Fourier complessi (e reali).

Calcoliamo i coefficienti di $f(x) = x^2$.

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} \, dx = \frac{1}{2\pi} \left| \frac{e^{-inx}}{-in} x^2 \right|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} 2x \, dx$$

$$= -\int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} 2x \, dx = -\frac{i}{\pi n} \left[\left| \frac{e^{-inx}}{-in} \right|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} \, dx \right]$$

$$= \frac{-i\pi}{\pi n} \frac{\cos(-n\pi) + \cos(-n(-\pi))}{-in} + \frac{i}{\pi n} \int_{-\pi}^{\pi} \frac{e^{-inx}}{-inx} \, dx$$

$$= \frac{2}{n^2} + \frac{i}{\pi n} \cdot 0 = \frac{2}{n^2} (-1)^n$$

$$\implies c_n(f) = \frac{2}{n^2} (-1)^n.$$

Infine

$$c_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{2\pi} \frac{2}{3} \pi^3 = \frac{1}{3} \pi^2.$$

Per Parseval $||f||_{L^2}^2 = 2\pi \sum_{n \in \mathbb{Z}} |c_n(f)|^2$. Da cui

$$\int_{-\pi}^{\pi} x^4 \, \mathrm{d}x = \left\| x^2 \right\|_{L^2}^2 = 2\pi \cdot \left[\sum_{n=1}^{+\infty} \frac{4}{n^4} + \frac{\pi^2}{3} \right].$$

Nota. Potevamo ottenere i coefficienti di $f(x) = x^2$, applicando il teorema della derivata. Domande.

- Abbiamo visto che $c_n(x^2) = \frac{2(-1)^n}{n^2}$ e dedotto che $c_n(2x) = in \frac{2(-1)^n}{n^2} = \frac{2(-1)^n i}{n}$.
- \bullet Vorremmo calcolare $c_n(2)$, possiamo applicare il teorema sulla formula della derivata?

Esercizio.

- i) Calcolare i coefficienti di Fourier complessi di x^3 e vedere se vale $c_n(3x^2) = inc_n(x^3)$.
- ii) Calcolare i coefficienti reali di x^2 .

Esercizio. Sia
$$f(x)$$
 definita da $\sum_{n\in\mathbb{Z}} \gamma_n e^{inx}$ con
$$\begin{cases} \gamma_n = \frac{\cos(n)}{|n|^{3/2}} \\ \gamma_0 = 1 \end{cases}$$

Domande.

- i) f è ben definita?
- ii) f è continua?
- iii) f è derivabile?

Dimostrazione.

i) Sì, infatti
$$2\sum_{n=1}^{+\infty} |\gamma_n|^2 \le 2\sum_{n=1}^{+\infty} \frac{1}{n^3} < +\infty.$$

ii) Suggerimento. Usare la Proposizione 3 della parte della regolarità dei coefficienti della serie di Fourier.

7 Esercitazione del 18 Novembre 2021

7.1 Esercizi preliminari

Data $f: [-\pi, \pi] \to \mathbb{R}$ o \mathbb{C} uno degli esercizi più comuni è doverne calcolare lo sviluppo di Fourier complesso o reale.

Osservazione. Ricordiamo che $c_n(f)$ può essere calcolato anche solo se $f \in L^1$ inoltre

$$SF_{\mathbb{C}}(f) = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx} \qquad c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$
e con base hilbertiana $\left\{ \frac{e^{inx}}{\sqrt{2\pi}} \middle| n \in \mathbb{Z} \right\}$

invece nel caso reale abbiamo visto

$$\operatorname{SF}_{\mathbb{R}}(f) = \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] + a_0$$

$$a_n(f) = c_n(f) + c_{-n}(f) \qquad b_n(f) = i(c_n(f) - c_{-n}(f)) \qquad a_0(f) = c_0(f)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{d}x \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, \mathrm{d}x$$

$$\text{e con base hilbertiana} \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}} \, \middle| \, n \ge 1 \right\}$$

Esercizio. Sia $f(x) = \cos^2(x)\sin(3x)$, calcolare i coefficienti di Fourier¹.

Svolgimento. Usiamo lo sviluppo complesso

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$

Dunque possiamo riscrivere f(x) come

$$= \frac{i}{8} \left(e^{i2x} + e^{-i2x} + 2 \right) \left(e^{-i3x} - e^{i3x} \right) =$$

$$= \frac{i}{8} \left(e^{-ix} + e^{-i5x} + 2e^{-i3x} - e^{i5x} - e^{ix} - 2e^{i3x} \right) =$$

$$= \frac{i}{8} e^{-ix} + \frac{i}{8} e^{-i5x} + \frac{i}{4} e^{-i3x} - \frac{i}{8} e^{i5x} - \frac{i}{8} e^{ix} - \frac{i}{4} e^{i3x}.$$

Dunque possiamo già scrivere i coefficienti di Fourier complessi di f(x)

$$c_n(f) \neq 0 \iff n = \pm 1, \pm 3, \pm 5$$

 $c_{\pm 1}(f) = \mp \frac{i}{8} \quad c_{\pm 3}(f) = \mp \frac{i}{4} \quad c_{\pm 5}(f) = \mp \frac{i}{8}.$

Continuiamo ora il conto precedente e ricostruiamo la serie di Fourier reale ricomponendo i termini

$$= -\frac{1}{4} \left(\frac{e^{ix} - e^{-ix}}{2i} \right) - \frac{i^2}{4} \left(\frac{e^{i3x} - e^{-i3x}}{2i} \right) - \frac{i^2}{4} \left(\frac{e^{i5x} - e^{-i5x}}{2i} \right) =$$

$$= \frac{1}{4} \sin(x) + \frac{1}{2} \sin(3x) + \frac{1}{4} \sin(5x),$$

in particolare possiamo notare che $f(\pi) = f(-\pi) = 0$ dunque potevamo già dedurre che la serie di Fourier reale sarebbe stata composta solo da seni.

Esercizio. Caratterizzare i coefficienti $c_n(f)$ di una $f: [-\pi, \pi] \to \mathbb{C}$ in L^2 tale che $\mathrm{Im}(f) \subseteq \mathbb{R}$. Suggerimento. Si usa che per $z \in \mathbb{C}$ vale $z \in \mathbb{R} \iff z = \overline{z}$.

¹Con funzioni ottenute come combinazioni di prodotti di potenze di funzioni trigonometriche (anche con argomento moltiplicato per un naturale) conviene calcolare lo sviluppo complesso e poi passare a quello reale.

Esercizio. Determinare la soluzione di (P) e stabilire unicità e regolarità della soluzione $u: [0,T) \times [-\pi,\pi] \to \mathbb{R}$ o \mathbb{C} .

$$\begin{cases} u_t = 4u_{xx} \\ u(\cdot, -\pi) = u(\cdot, \pi) \\ u_x(\cdot, -\pi) = u_x(\cdot, \pi) \\ u(0, x) = \cos^2(x)\sin(3x) \end{cases}$$
 (P)

Svolgimento. Per prima cosa troviamo formalmente una soluzione in serie di Fourier $u(t,x) = \sum_{n \in \mathbb{Z}} c_n(t)e^{inx}$ dove $c_n(t)$ è il coefficiente di $u(t,\cdot)$.

Per il teorema di derivazione sotto il segno di integrale abbiamo

$$u_t(t,x) = \sum_{n \in \mathbb{Z}} \dot{c}_n(t)e^{inx} \qquad \text{con } c_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t,x)e^{-inx} \, \mathrm{d}x$$

Le condizioni al bordo assicurano che $c_n(u_{xx}(t,\cdot)) = -4n^2c_n(u(t,\cdot))$ da cui otteniamo il seguente problema di Cauchy sui coefficienti

$$\begin{cases} \dot{c}_n(t) = -4n^2 c_n(t) \\ c_n(0) = c_n(u(0, \cdot)) = c_n(\cos^2(x)\sin(3x)) \end{cases} \forall n \in \mathbb{Z}$$

Inoltre dato che $c_n^0=0$ se $n\neq \pm 1, \pm 3, \pm 5 \implies c_n(t)=0$ per questi n, dunque complessivamente i sistemi sono

$$\begin{cases} \dot{c}_1(t) = -4c_1(t) \\ c_1(0) = -\frac{i}{8} \end{cases} \begin{cases} \dot{c}_3(t) = -36c_3(t) \\ c_3(0) = -\frac{i}{4} \end{cases} \begin{cases} \dot{c}_5(t) = -100c_5(t) \\ c_5(0) = -\frac{i}{8} \end{cases}$$

con la condizione $c_{-n}(t) = \overline{c_n(t)}$, così otteniamo

$$c_{1}(t) = -\frac{i}{8}e^{-4t} \qquad c_{3}(t) = -\frac{i}{4}e^{-36t} \qquad c_{5}(t) = -\frac{i}{8}e^{-100t}$$

$$c_{-1}(t) = \frac{i}{8}e^{-4t} \qquad c_{-3}(t) = \frac{i}{4}e^{-36t} \qquad c_{-5}(t) = \frac{i}{8}e^{-100t}$$

ed infine fattorizzando

$$u(t,x) = \frac{e^{-4t}}{4} \left(-\frac{i}{2} e^{ix} + \frac{i}{2} e^{-ix} \right) + \frac{e^{-36t}}{2} \left(-\frac{i}{2} e^{i3x} + \frac{i}{2} e^{-i3x} \right) + \frac{e^{-100t}}{4} \left(-\frac{i}{2} e^{i5x} + \frac{i}{2} e^{-i5x} \right) =$$

$$= \frac{1}{4} e^{-4t} \sin(x) + \frac{1}{2} e^{-36t} \sin(3x) + \frac{1}{2} e^{-100t} \sin(5x)$$

Esercizio. Consideriamo il problema (P) dato da

$$\begin{cases}
 u_t = u_{xx} + u \\
 u(\cdot, -\pi) = u(\cdot, \pi) \\
 u_x(\cdot, -\pi) = u_x(\cdot, \pi) \\
 u(0, \cdot) = u_0
\end{cases}$$
(P)

dove $u_0(x)$ è $\cos^2(x)\sin(3x)$ oppure $\sum_{n\in\mathbb{Z}}\frac{1}{2^{|n|}}e^{inx}$.

Svolgimento. Per ora lavoriamo con $u_0(x) = \cos^2(x)\sin(3x)$, notiamo subito che i coefficienti soddisfano l'equazione

$$\begin{cases} \dot{c}_n(t) = -n^2 c_n(t) + c_n(t) = (1 - n^2) c_n(t) \\ c_n(0) = c_n(\cos^2(x)\sin(3x)) \end{cases}$$

da cui $\dot{c}_n(t) = (1 - n^2)c_n$ con soluzione $c_n(t) = \gamma e^{(1-n^2)t}$, quindi ad esempio abbiamo

$$c_{\pm 1}(t) = \mp \frac{i}{8}$$
 $c_{\pm 3}(t) = \mp \frac{i}{4}e^{-8t}$ $c_{\pm 5}(t) = \mp \frac{i}{8}e^{-24t}$

Dunque la soluzione finale è

$$\begin{split} u(t,x) &= \frac{i}{8}e^{-ix} - \frac{i}{8}e^{ix} + \frac{i}{4}e^{3t}e^{-i3x} + \frac{i}{4}e^{3t}e^{i3x} + \frac{i}{8}e^{-24t}e^{-i5x} + \frac{i}{8}e^{-24t}e^{i5x} = \\ &= -\frac{i}{4}\left(\frac{e^{ix} - e^{-ix}}{2}\right) - \frac{i}{2}e^{-3t}\left(\frac{e^{i3x} - e^{-i3x}}{2}\right) - \frac{i}{4}e^{-24t}\left(\frac{e^{i5x} - e^{-i5x}}{2}\right) = \\ &= \frac{1}{4}\sin(x) - \frac{1}{2}e^{-3t}\sin(3x) - \frac{1}{4}e^{-24t}\sin(5x) \end{split}$$

Invece considerando la condizione iniziale $u_0(x) = \sum_{n \in \mathbb{Z}} e^{inx}/2^{|n|}$ abbiamo che $c_n(u_0) = 1/2^{|n|}$, notiamo che i coefficienti sono sommabili

$$\sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} = 2\sum_{n=1}^{\infty} \frac{1}{2^n} + 1 < +\infty \qquad u(t, x) := \sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} e^{(1-n)^2 t} e^{inx}$$

in particolare formalmente possiamo scriverla meglio come

$$= \sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} e^{(1-n)^2 t} e^{inx} = e^t \left(1 + \sum_{n > 0} \frac{1}{2^{|n|}} e^{(1-n)^2} \cos(nx) \cdots \right)$$

[TODO: Finire meglio questo conto]

Esercizio. (della volta scorsa) Consideriamo la funzione

$$f(x) = \sum_{n \neq 0} \frac{\cos(n)}{|n|^{3/2}} e^{inx}$$

- Dire se f è ben definita e continua.
- Dire se f è derivabile.

Svolgimento.

$$\sum_{n \neq 0} |c_n| = 2\sum_{n=1}^{\infty} \frac{|\cos(n)|}{|n|^{3/2}} \le 2\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} < +\infty$$

dunque la serie di Fourier converge uniformemente a $f \implies$ è continua e periodica.

Se $\sum |n| \cdot |c_n| < +\infty$ si potrebbe dire che f è derivabile però

$$\sum_{n \neq 0} |n| \cdot |c_n| = 2 \sum_{n=1}^{\infty} \frac{|\cos(n)|}{\sqrt{n}} = +\infty \text{ non converge assolutamente}$$

Ma la candidata derivata ha coefficienti inc_n e non starebbe in L^2 ovvero

$$\sum n^2 |c_n|^2 = +\infty \implies \sum inc_n e^{inx} \notin L^2$$

8 Esercitazione del 25 Novembre 2021

Esercizio. Consideriamo l'equazione alle derivate parziali

$$\begin{cases} u_{ttt}(t,x) = u_{xx}(t,x) & x \in [-\pi,\pi] \\ u(\cdot,\pi) = u(\cdot,-\pi) \\ u_{x}(\cdot,\pi) = u_{x}(\cdot,-\pi) \\ u(0,\cdot) = u_{0} \\ u_{x}(0,\cdot) = u_{1} \\ u_{xx}(0,\cdot) = u_{2} \end{cases}$$
(P)

ponendo $c_n^i := c_n(u_i)$ per $n \in \mathbb{Z}$ per i = 1, 2, 3. Segue subito che il problema di Cauchy sui coefficienti è

$$\begin{cases} \ddot{c}_n(t) = -n^2 c_n(t) \\ c_n(0) = c_n^0 \\ \dot{c}_n(0) = c_n^1 \\ \ddot{c}_n(0) = c_n^2 \end{cases} \quad \forall n \in \mathbb{Z}$$

$$(P')$$

che ha polinomio caratteristico $p(\lambda) = \lambda^3 + n^2 \implies \lambda^3 = -n^2$ e dunque le soluzioni sono $\lambda_i = n^{2/3} \zeta_6^{2i-1}$ con ζ_6 una radice sesta dell'unità. Per comodità per i=1,2,3 poniamo $z_i \coloneqq n^{2/3} \omega_i$ con ω_i soluzioni di $\omega^3 = -1$ che possiamo anche riscrivere come

$$\omega_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 $\omega_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ $\omega_3 = -1$

Dunque per $n \in \mathbb{Z}$ e $n \neq 0$ la soluzione sarà

$$\begin{cases}
c_n(t) = A_n e^{-z_1^n t} + B_n e^{-z_2^n t} + C_n e^{-z_3^n t} \\
c_n(0) = c_n^0 = A_n + B_n + C_n \\
c_n(1) = c_n^1 = A_n z_1^n + B_n z_2^n + C_n z_3^n \\
c_n(2) = c_n^2 = A_n (z_1^n)^2 + B_n (z_2^n)^2 + C_n (z_3^n)^2
\end{cases}$$

e quindi otteniamo il sistema

$$\implies \begin{cases} c_n^0 = A_n + B_n + C_n \\ n^{-2/3} c_n^1 = A_n \omega_1 + B_n \omega_2 + C_n \omega_3 \\ n^{-4/3} c_n^2 = A_n \omega_1^2 + B_n \omega_2^2 + C_n \omega_3^2 \end{cases} \longrightarrow \begin{pmatrix} 1 & 1 & 1 \\ \omega_1 & \omega_2 & \omega_3 \\ \omega_1^2 & \omega_2^2 & \omega_3^2 \end{pmatrix} \begin{pmatrix} A_n \\ B_n \\ C_n \end{pmatrix} = \begin{pmatrix} c_n^0 \\ n^{-2/3} c_n^1 \\ n^{-4/3} c_n^2 \end{pmatrix}$$

e facendo conti si ottengono A_n, B_n e C_n e si scopre che [TODO: Controllare i conti con Mathematica]

$$A_n e^{n^{2/3}(t/2 + i\sqrt{3}t/2)} \sim e^{n^{2/3}t/2} \xrightarrow{t \to \infty} \infty$$

$$B_n e^{n^{2/3}(t/2 - i\sqrt{3}t/2)} \sim e^{n^{2/3}t/2} \xrightarrow{t \to \infty} \infty$$

$$C_n e^{-n^{2/3}} \sim e^{-n^{2/3}t} \xrightarrow{t \to -\infty} \infty$$

dunque in realtà anche se il problema in partenza sembrava ben definito in realtà non ha soluzione per alcun $t \in \mathbb{R}$.

Conti esatti con Mathematica:

$$A_n \to \frac{c_n^0}{3} - \frac{c_n^2}{3n^{4/3}} - \frac{(-1)^{2/3}c_n^2}{3n^{4/3}} - \frac{(-1)^{2/3}c_n^1}{3n^{2/3}},$$

$$B_n \to \frac{c_n^0}{3} - \frac{c_n^2}{6n^{4/3}} + \frac{ic_n^2}{2\sqrt{3}n^{4/3}} + \frac{c_n^1}{6n^{2/3}} + \frac{ic_n^1}{2\sqrt{3}n^{2/3}},$$

$$C_n \to \frac{c_n^0}{3} + \frac{c_n^2}{3n^{4/3}} - \frac{c_n^1}{3n^{2/3}}$$

Esercizio. (Equazione del calore senza una condizione al bordo)

$$\begin{cases} u_t = u_{xx} & x \in [-\pi, \pi] \\ u(\cdot, -\pi) = u(\cdot, \pi) & \\ u(0, \cdot) = u_0 = \cos(x/2) \end{cases}$$
 (P)

i) Esiste una soluzione?

Sì in quanto esiste anche con una condizione in più

ii) È unica?

Senza periodicità per u_x non è vero in generale che $c_n(u_{xx}(t,\,\cdot\,))=-n^2c_n(u(t,\,\cdot\,))$.

Cerchiamo una soluzione della forma $u(t,x) = \cos(x/2)\psi(t)$. Abbiamo che $u_t(t,x) = \dot{\psi}(t)\cos(x/2)$ e $u_{xx}(t,x) = -\cos(x/2)\psi(t)/4$. Dunque $\dot{\psi}(t) = -\psi(t)/4$ e $\psi(0) = 1 \implies \psi(t) = e^{-t/4}$.

Esercizio.

$$\begin{cases} u_t = u_{xx} & x \in [0, \pi] \\ u(t, 0) = 0 & t \in \mathbb{R} \\ u(t, \pi) = t & t \in \mathbb{R} \\ u(0, \cdot) = u_0 \end{cases}$$
(P)

L'equazione è lineare, cerchiamo $u(t,x)=v(t,x)+\psi(t,x)$ in modo che v(t,x)=0 se $x=0,\pi$ e $\psi(t,0)=0$ e $\psi(t,\pi)=t$ e $\psi(t,x)=tx/\pi$.

Esercizio.

$$\begin{cases}
 u_t = u_{xxxx} & x \in [-\pi, \pi] \\
 u(\cdot, \pi) = u(\cdot, -\pi) \\
 u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\
 u_{xx}(\cdot, \pi) = u_{xx}(\cdot, -\pi) \\
 u_{xxx}(\cdot, \pi) = u_{xxx}(\cdot, -\pi) \\
 u(0, \cdot) = u_0
\end{cases}$$
(P)

Esercizio.

$$\begin{cases} u_{t} = u_{xxxx} & x \in [0, \pi] \\ u(\cdot, 0) = u(\cdot, \pi) = 0 \\ u_{xx}(\cdot, 0) = u_{xx}(\cdot, \pi) = 0 \\ u(0, \cdot) = u_{0} \end{cases}$$
(P)

Esercizio. Sia V il seguente insieme

$$V \coloneqq \left\{ f \in L^1([1, +\infty]) \mid |f(x)| \le \frac{1}{x^2} \text{ per q.o. } x \right\}$$

è compatto in L^1 ? e se al posto di L^1 avessimo L^2 ?

[TODO: Espandere]

Intuitivamente $V \supseteq \{f \mid |f(x)| \le 1/2 \text{ q.o. in } [1,2]\}$ che non è compatto in quanto contiene famiglie di funzioni che "oscillano molto" costruite sull'idea della base di Haar.

Esercizio. Trovare una funzione in $L^p([0,+\infty))$ tale però che $f \notin L^q$ per $q \neq p$.

Cercare f della forma

$$f(x) = \frac{1}{x^{\alpha}(a + (\ln x)^{\beta})}$$

9 Esercitazione del 2 dicembre

Ricordiamo la definizione della trasformata di Fourier

$$\mathcal{F}(f) = \widehat{f}(y) = \int_{\mathbb{R}} f(x)e^{-ixy} dx, \quad f \in L^1(\mathbb{R}; \mathbb{C}), \quad f \in L^1(\mathbb{R})$$

dove $\mathcal{F}: L^1(\mathbb{R}; \mathbb{C}) \to L^{\infty}(\mathbb{R}) \cap C_0(\mathbb{R})$, in quanto $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.

Proprietà. Ricordiamo le proprietà viste a lezione.

i)
$$\widehat{\tau_h f}(y) = e^{-iyh} \widehat{f}(y)$$
 per ogni $h \in \mathbb{R}$, dove $\sigma_h f(x) = f(x-h)$

ii)
$$\widehat{e^{ihx}}f(y) = \tau_h \widehat{f}(y)$$

iii) Legame tra trasformata e derivata.

- $f \in C^1(\mathbb{R}), f, f' \in L^1(\mathbb{R}, \mathbb{C}), \text{ allora } \hat{f}'(y) = iy\hat{f}(y).$
- $f \in L^1(\mathbb{R}; \mathbb{C})$ e $xf(x) \in L^1(\mathbb{R}; \mathbb{C})$, $(1 + |x|)f(x) \in L^1(\mathbb{R}; \mathbb{C})$, allora $\widehat{f} \in C^1(\mathbb{R})$ e $(\widehat{f})' = -i\widehat{xf(x)}$.

Nota. Le ipotesi $f \in L^1(\mathbb{R}; \mathbb{C})$ e $xf(x) \in L^1(\mathbb{R}; \mathbb{C})$ sono equivalenti a $(1 + |x|)f(x) \in L^1(\mathbb{R}; \mathbb{C})$.

iv) Vale
$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}$$
.

Riportiamo un esercizio già posto con una soluzione alternativa.

Esercizio. Dire se esiste $v \in L^1$ non banale tale che

- v * v = v
- g * v = g per ogni $g \in L^1$.

Soluzione. La risposta è no per entrambi i punti. Infatti,

• Se per assurdo valesse tale identità, passando alle trasformate si avrebbe

$$\widehat{v * v} = (\widehat{v})^2 \Longrightarrow \widehat{v}(\widehat{v} - 1) = 0.$$

Ovvero, $\hat{v} = \{0, 1\}$. Osserviamo subito che non è possibile che \hat{v} assuma entrambi i valori in quanto funzione continua; d'altra parte non è possibile che $\hat{v} = 1$, in quanto è anche infinitesima, dunque $\hat{v} = 0 \Longrightarrow v = 0$.

• Analogamente al punto precedente si avrebbe $\hat{v}=1$ ma ciò non è possibile.

Esercizio 1. Calcolare la trasformata di Fourier della funzione $f(x) = e^{-|x|}$.

Soluzione. Abbiamo

$$\widehat{f}(y) = \int_{-\infty}^{\infty} e^{-|x|} e^{-ixy} \, dx = \int_{-\infty}^{\infty} e^{-|x|} \cos(xy) \, dx - i \int_{-\infty}^{\infty} \underbrace{e^{-|x|} \sin(xy)}_{\text{diffusione dispari}}^{\text{integrale definito}} = 0$$

$$= 2 \int_{0}^{\infty} e^{-x} \operatorname{Re} e^{ixy} \, dx = 2 \int_{0}^{\infty} \operatorname{Re} \left(e^{-x} \cdot e^{ixy} \right) \, dx = 2 \operatorname{Re} \left[\int_{0}^{\infty} e^{-x} e^{ixy} \right] \, dx = 2 \operatorname{Re} \left[\frac{e^{x(iy-1)}}{(iy-1)} \Big|_{0}^{\infty} \right]$$

$$= 2 \operatorname{Re} \left[-\frac{1}{iy-1} + \underbrace{\lim_{x \to \pm \infty} \frac{e^{x(iy-1)}}{iy-1}}_{=0} \right] = 2 \operatorname{Re} \left[-\frac{1}{iy-1} \cdot \frac{iy+1}{iy+1} \right]$$

$$= 2 \operatorname{Re} \left[\frac{iy+1}{1+y^{2}} \right].$$

In conclusione, $\hat{f}(y) = \frac{2}{1+y^2}$.

Esercizio 2. Calcolare la trasformata di Fourier della funzione $f(x) = \frac{1}{1+x^2}$.

Soluzione. Calcoliamo $\hat{f}(y) = \int_{\mathbb{R}} \frac{e^{-ixy}}{1+x^2} dx$. Dal fatto che $f \in L^1$ e usando il teorema di convergenza dominata, possiamo scrivere $\hat{f}(y)$ come

$$\widehat{f}(y) = \lim_{R \to +\infty} \int_{-R}^{R} \frac{e^{-ixy}}{1+x^2} \, \mathrm{d}x$$

Idea. Calcolare questo integrale con il metodo dei residui, ponendo $\frac{e^{-ixy}}{1+x^2} = \frac{e^{-izy}}{1+z^2}\bigg|_{z \text{ reale}}$

Per il teorema dei residui:

$$\int_{B_r} g(z) dz = 2\pi i \sum_{\substack{z_i \text{ singolarità} \\ \text{di } g \text{ in } B_r}} \text{res}(g, z_i)$$

Inoltre
$$\int_{B_r} g(z) dz = \int_{I_r := \text{bordo sotto}} g(z) dx + \int_{\gamma_r := \text{semicirconferenza}} g(z) = \int_{-r}^r \frac{e^{-ixy}}{1 + x^2} dx.$$

• Verifichiamo che $\int_{\gamma_r} g(x) \xrightarrow{r \to \infty} 0$ dove $[0, \pi] \ni \theta \xrightarrow{\gamma_r} re^{i\theta}$.

Poniamo z=x+it, dunque yz=xy+yit, da cui $g(z)=g(x+it)=\left(e^{-ixy}e^{ty}\right)/(1+(x+it)^2)$. Dunque,

$$\int_0^{\pi} g(e^{i\theta}r)r \,d\theta \Longrightarrow \int_0^{\pi} \frac{e^{-ri\cos\theta}e^{r\sin\theta y}}{(1+r^2e^{i2\theta})}r \,d\theta \xrightarrow{r\to\pm\infty} 0 \quad \text{se } y<0.$$

Per il caso y > 0 si ripercorre lo stesso procedimento ma si utilizza la curva $[\pi, 2\pi] \ni \theta \xrightarrow{\gamma_r} re^{i\theta}$.

• Calcoliamo i residui: l'unico residuo di g è nel punto i che si tratta di una singolarità semplice (nel caso y > 0 la singolarità è in -i).

$$\lim_{r \to \pm \infty} 2\pi i \operatorname{res}(g, i) = \pi e^y$$

Considerando anche il caso y > 0 la trasformata di Fourier diviene $\pi e^{-|y|}$.

[TO DO]. Riportare il teorema dei residui con i metodi di base per calcolare i residui?

10 Esercitazione del 13 Dicembre 2021

10.1 Operatori autoaggiunti

[TODO: Pezzo iniziale mancante]

Esercizi.

- 1) Esempio classico di $H = L^2([-\pi, \pi]; \mathbb{C})$ e $D = \{u \in C^1([-\pi, \pi]; \mathbb{C}) \mid u(-\pi) = u(\pi)\}$ e Tu = iu allora T è un operatore autoaggiunto ed ha autovalori $\lambda = n \in \mathbb{Z}$.
- 2) $H = L^2([0,\pi];\mathbb{R})$ e $D = \{u \in C^2([0,\pi]) \mid u(0) = 0 \text{ e } u(\pi) = 0\}$ sono dette condizioni di Dirichlet con $Tu = -\ddot{u}$.

Ora usiamo sempre $Tu = -\ddot{u}$ ma su domini differrenti.

- 3) $D_3 = \{u \in C^2([0,\pi]) \mid \dot{u}(0) = 0 \text{ e } \dot{u}(\pi) = 0\}$ sono dette condizioni di Neumann.
- 4) $D_4 = \{u \in C^2([0,\pi]) \mid u(0) = 0 \text{ e } \dot{u}(\pi) = 0\}$ sono dette condizioni di Robin.

Dire per 2), 3) e 4) rispondere alle seguenti

- L'operatore T è autoaggiunto e controllare se il relativo D è denso in L^2
- Controllare se esistono autovalori ed eventualmente dire chi sono gli autovettori.
- Stabilire se esiste una base Hilbertiana di autovettori.

Risoluzione.

2) D_2 è denso. Vediamo l'operatore è autoaggiunto

$$\langle Tu, v \rangle = \int_0^{\pi} (-\ddot{u}(x))v(x) \, \mathrm{d}x = \underbrace{-\dot{u}(x)v(x)}_{v(0)=v(\pi)=0}^{\pi} - \int_0^{\pi} (-\dot{u}(x))\dot{v}(x) \, \mathrm{d}x = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, \mathrm{d}x$$

$$\langle u, Tv \rangle = \int_0^{\pi} u(x)(-\ddot{v}(x)) \, \mathrm{d}x = \underbrace{u(x)(-\dot{v}(x))}_{u(0)=u(\pi)=0}^{\pi} - \int_0^{\pi} \dot{u}(x))(-\dot{v}(x)) \, \mathrm{d}x = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, \mathrm{d}x$$

dunque $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle = \langle u, Tv \rangle$.

Inoltre T è anche definito positivo infatti $\langle Tu, u \rangle = \langle \dot{u}, \dot{u} \rangle = ||\dot{u}||_{L^2} \ge 0.$

Cerchiamo gli autovalori quindi poniamo $-\ddot{u} = Tu = \lambda u$ con $\lambda \geq 0$ e $u \in D_2$. Segue $p(t) = t^2 + \lambda \implies t = \pm i\sqrt{\lambda}$ se $\lambda \neq 0$.

Se $\lambda = 0$ invece otteniamo $\ddot{u} = 0 \implies u(x) = ax + b$ ma per le condizioni al bordo segue a, b = 0 e dunque $u = 0 \implies \lambda = 0$ non è autovalore.

Invece se $\lambda > 0$ abbiamo $u(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$ e segue A = 0 e $\lambda = n^2$ per $n \in \mathbb{N} \setminus \{0\}$.

3) D_2 è denso e similmente si vede che anche in questo caso T è autoaggiunto. Anche in questo caso T è definito positivo perché vale sempre $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle$.

Per cercare gli autovalori risolviamo il seguente sistema

$$\begin{cases}
-\ddot{u} = \lambda u \\
\dot{u}(0) = 0 \\
\dot{u}(\pi) = 0
\end{cases}$$

Se $\lambda = 0$ allora $u(x) = \cos t$. è un autovettore per l'autovalore 0.

Se invece $\lambda \neq 0$ allora $u(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x) \implies \cos(nx)$ è un autovettore e $\lambda = n^2$ per $n = 1, 2, \dots$

4) In questo caso vediamo che vale sempre $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle$ ma per motivi diversi infatti

$$\langle Tu, v \rangle = \int_0^{\pi} (-\ddot{u}(x))v(x) \, \mathrm{d}x = \underbrace{-\dot{u}(x)v(x)}_{\dot{u}(\pi)=0, \ v(0)=0}^{\pi} - \int_0^{\pi} (-\dot{u}(x))\dot{v}(x) \, \mathrm{d}x = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, \mathrm{d}x$$

$$\langle u, Tv \rangle = \int_0^{\pi} u(x)(-\ddot{v}(x)) \, \mathrm{d}x = \underbrace{u(x)(-\dot{v}(x))}_{0} \Big|_0^{\pi} - \int_0^{\pi} \dot{u}(x))(-\dot{v}(x)) \, \mathrm{d}x = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, \mathrm{d}x$$

Considerando il sistema $-\ddot{u} = \lambda u$ con le condizioni al bordo di Robin caso $\lambda = 0$ non è un autovalore mentre se $\lambda \neq 0$ abbiamo che $\dot{u}(x) = \sqrt{\lambda}B\cos(\sqrt{\lambda}x) = 0$ per $x = \pi$ dunque $\sqrt{\lambda} = n + 1/2$ per $n = 0, 1, 2, \ldots$ e gli autovettori sono

$$u_n(x) = \sin\left(\left(n + \frac{1}{2}\right)x\right)$$

Osservazione. $T: D \to L^2$ operatore lineare e continuo $\iff \exists M > 0$ tale che $||Tu||_2 \le M ||u||$ per ogni $u \in D$.

Vediamo ad esempio che D_1 non è continuo infatti gli autovalori sono $\lambda_n = n^2 \implies n^2 \|u_n\|_2 \le M \|u_n\|_2 \implies M \ge n^2$ per ogni n. Dunque M è illimitato e l'operatore non può essere continuo.

Esempio. Se ad esempio abbiamo $Tu=-\ddot{u}$ con $\widetilde{D}=\{u\in C^2\mid u(0)=u(\pi)=1\}$ allora T non è autoaggiunto e basta trovare u,v tali che

$$\langle Tu, v \rangle \neq \langle u, Tv \rangle$$

Esercizio.

i) Sia $T_1 \colon \ell^2 \to \ell^2$ dato da

$$T_1((x_n)_{n>0}) = (0, x_1, x_2, \dots)$$

ii) Sia $T_2 \colon \ell^2 \to \ell^2$ dato da

$$T_2((x_n)_{n>0}) = (x_2, x_3, \dots)$$

Dire se sono autoaggiunti ed eventualmente chi sono gli autovalori.

Esericizi più da compito sono invece cose del tipo...

Esercizio. Sia $H=L^2([0,\pi]\times[0,\pi];\mathbb{R})$ e $Tu=-\Delta u=-u_{xx}-u_{yy}$

- $D_1 = \{ u \in C^2([0, \pi] \times [0, \pi]; \mathbb{R}) \mid u|_{\partial Q} = 0 \}$
- $D_2 = \{ u \in C^2([0, \pi] \times [0, \pi]; \mathbb{R}) \mid \nabla u|_{\partial Q} = 0 \}$
- $D_3 = \{u \in C^2([0,\pi] \times [0,\pi]; \mathbb{R}) \mid u = 0 \text{ su due lati paralleli e } \nabla u = 0 \text{ sugli altri due} \}$

e dire se l'operatore è autoaggiunto ed eventualmente trovare gli autovalori.

10.2 Calcolo Trasformate di Fourier

Abbiamo visto che le trasformate di $f(x) = e^{-|x|}$ e $g(x) = 1/(1+x^2)$ sono rispettivamente

$$\widehat{f}(y) = \frac{2}{1 + y^2} \qquad \widehat{g}(y) = \pi e^{-|y|}$$

Vorremo provare a trovare ora le trasformate funzioni come $x^2e^{-|x|}$ o $x/(1+x^2)$ usando le proprietà delle trasformate con le derivate. Ricordiamo che

$$f, f' \in L^1 \implies \widehat{f'}(y) = iy\widehat{f}(y)$$

 $f, xf \in L^1 \implies \widehat{f'}(y) = \widehat{-ixf}(y)$

dunque intuitivamente per $x^2e^{-|x|}$ possiamo fare

$$x^{2}e^{-|x|} = i(-i)x(xe^{-|x|}) \implies \mathcal{F}(i(-i)x(xe^{-|x|})) = i(\mathcal{F}(xe^{-|x|}))'(y)$$

ora dobbiamo calcolare $\mathcal{F}(xe^{-|x|})(y)$

$$\mathcal{F}(xe^{-|x|})(y) = i\mathcal{F}(-ixe^{-|x|}) = i\mathcal{F}(e^{-|x|})'(y) = i\left(\frac{2}{1+y^2}\right)' = \frac{-4iy}{(1+y^2)^2}$$

dunque in conclusione abbiamo

$$\mathcal{F}(x^2 e^{-|x|})(y) = i \left(\frac{-4iy}{(1+y^2)^2}\right)' = 4 \left(\frac{y}{(1+y^2)^2}\right)'$$

Invece per quanto riguarda

$$g(x) = \frac{x}{1+x^2} \notin L^1$$

però è in L^2 ma per poterne calcolare la trasformata di Fourier dovremmo passare per delle troncate di g(x). Possiamo però vedere chi dovrebbe essere il candidato formale usando le tecniche di prima

$$\frac{x}{1+x^2} = \frac{i(-ix)}{1+x^2} \leadsto i\mathcal{F}\left((-ix)\frac{1}{1+x^2}\right)(y) = i\mathcal{F}\left(\frac{1}{1+x^2}\right)'(y) = i\pi(e^{-|y|})'(y)$$

però notiamo che la derivata di $e^{-|y|}$ non è ben definita in 0.

Esercizio. Calcolare la trasformata di Fourier di

$$f(x) = \mathbb{1}_{[-r,r]}(x)$$

Iniziamo a svolgere il conto

$$\widehat{f}(y) = \int_{-\infty}^{\infty} \mathbb{1}_{[-r,r]}(x)e^{-ixy} \, dx = \int_{-r}^{r} e^{-ixy} \, dx = \begin{cases} 2r & xy = 0\\ \int_{-r}^{r} e^{-ixy} \, dx & xy \neq 0 \end{cases}$$

nel caso $xy \neq 0$ contiuiamo a svolgere il conto

$$\int_{-ry}^{ry} \frac{e^{-it}}{y} dt = \frac{1}{y} \int_{-ry}^{ry} [\cos(t) - i \underbrace{\sin(t)}_{\text{dispari}}] dt = \frac{2}{y} \sin(ry)$$

dunque in conclusione abbiamo

$$\mathcal{F}(\mathbb{1}_{[-r,r]}(x)) = \begin{cases} 2r & y = 0\\ \frac{2}{y}\sin(ry) & y \neq 0 \end{cases}$$

Esercizio. Un esercizio simile è calcolare $\mathcal{F}(\mathbb{1}_{[0,r]}(x))$, ovvero il caso non centrato e poi provare a calcolare (come integrale improprio di Analisi 1) l'integrale

$$\int_0^\infty \frac{\sin(t)}{t} dt = \lim_{r \to \infty} \int_0^r \frac{\sin(t)}{t} dt$$

10.2.1 Trasformata della Gaussiana

Calcoliamo ora la trasformata della funzione gaussiana $e^{-x^2/2}$.

• Metodo I: Troviamo un'equazione differenziale (lineare) risolta dalla gaussiana, sia $f(x) = e^{-x^2/2}$ allora vale

$$f'(x) = -xe^{-x^2/2} = -xf(x)$$

e per il decadimento della gaussiana abbiamo che $f, f' \in L^1$ dunque

$$iy\widehat{f}(y) = \widehat{f'(x)}(y) = -i\mathcal{F}(-ixf(x))(y) = i(\widehat{f})'(y)$$

dunque $\hat{f} = h(y)$ con h tale che $h'(y) = -yh(y) \implies h(y) = ke^{-y^2/2}$, rimane da trovare k. Calcoliamo direttamente h(0)

$$h(0) = e^{-x^2/2}(0) = \int_{-\infty}^{\infty} e^{-x^2/2} e^{-ix \cdot 0} dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$
$$\implies \widehat{e^{-x^2/2}} = \sqrt{2\pi} e^{-y^2/2}$$

• Metodo II: Studiamo la funzione di variabile complessa $g(z) = e^{-z^2/2}$ e integriamola lungo un percorso che passi per $[-r, r] \times \{0\} \subset \mathbb{R}^2 \approx \mathbb{C}$.

$$\mathcal{F}(\widehat{-x^2/2})(y) = \int_{\mathbb{R}} e^{-x^2/2} \cdot e^{-ixy} \, dx = \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy)} \, dx$$

$$= \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2 - y^2)} \, dx = \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2)} \cdot e^{-y^2/2} \, dx$$

$$= e^{-y^2/2} \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2)} \, dx = e^{-y^2/2} \lim_{r \to \infty} \int_{-r}^{r} \underbrace{e^{-\frac{1}{2}(x + iy)^2}}_{g(x + iy)} \, dx$$

Consideriamo ora il rettangolo $D_r := \{z \mid \text{Im } z \in [0,iy] \text{ e } \text{Re } z \in [-r,r] \}$ dunque poiché g(z) non ha poli su D_r abbiamo

$$\int_{\partial D_r} g = \sum \text{Res. su } D_r = 0$$

$$0 = \int_{-r}^r g(x+it) \, dx - \int_{-r}^r g(x+iy) \, dx + \int_0^{iy} g(r+iy) \, dt - \int_0^{iy} \underbrace{g(-r+iy)}_{\sim e^{-(r+it)^2} \xrightarrow{r \to \infty} 0} dt$$

infatti più precisamente i termini verticali vanno a zero

$$\int_0^y e^{-(r+it)^2/2} dt = e^{-r^2/2} \int_0^y e^{-itr-t^2/2} dt = ye^{-r^2/2} \xrightarrow{r \to +\infty} 0$$

In conclusione abbiamo

$$\widehat{e^{-x^2/2}}(y) = \lim_{r \to +\infty} \int_{-r}^{r} e^{-y^2/2} e^{-(x+iy)^2/2} dx = e^{-y^2/2} \left[\lim_{r \to +\infty} \int_{-r}^{r} e^{-x^2/2} dx + o(1) \right] = e^{-y^2/2} \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi} e^{-y^2/2}$$