Problems

Problem 1

求证

$$\oint_{|z|=r>1} \frac{1}{1+z^n} dz = \oint_{|z|=r>1} \frac{z^{2n}}{1+z^n} dz = \begin{cases} 2\pi i & n=1\\ 0 & n \ge 2 \end{cases}$$

Solution 1

$$\oint_{|z|=r>1} \frac{1}{1+z^n} dz = 2\pi i \sum_{k=1}^n \text{Res}\left[\frac{1}{1+z^n}, z_k\right]$$
$$= 2\pi i \sum_{k=1}^n \frac{1}{nz_k^{n-1}}$$
$$= \frac{2\pi i}{n} \sum_{k=1}^n \frac{1}{z_k^{n-1}}$$

注意到

$$z_k^n = 1$$

则

$$-z_k = \frac{1}{z_k^{n-1}}$$

因此

$$\begin{split} &\oint_{|z|=r>1} \frac{1}{1+z^n} \mathrm{d}z \\ &= \frac{2\pi i}{n} \sum_{k=1}^n \frac{1}{z_k^{n-1}} \\ &= -\frac{2\pi i}{n} \sum_{k=1}^n z_k \end{split}$$

若 n=1, 即

$$1 + z^n = 1 + z = 0$$

解得

$$z = -1$$

因此

$$\oint_{|z|=r>1} \frac{1}{1+z^n} \mathrm{d}z = 2\pi i$$

否则

$$\sum_{k=1}^{n} z_k = 0$$

即

$$\oint_{|z|=r>1} \frac{1}{1+z^n} \mathrm{d}z = 0$$

所以

$$\frac{z^{2n}}{1+z^n} = \frac{(z^{2n}-1)+1}{1+z^n}$$

$$= \frac{(z^n-1)(z^n+1)}{1+z^n} + \frac{1}{1+z^n}$$

$$= z^n - 1 + \frac{1}{1+z^n}$$

又

$$\oint_{|z|=r>1} z^n - 1 = 0$$

所以

$$\oint_{|z|=r>1} \frac{1}{1+z^n} dz = \oint_{|z|=r>1} \frac{z^{2n}}{1+z^n} dz$$

综上,

$$\oint_{|z|=r>1} \frac{1}{1+z^n} dz = \oint_{|z|=r>1} \frac{z^{2n}}{1+z^n} dz = \begin{cases} 2\pi i & n=1\\ 0 & n \ge 2 \end{cases}$$

Solution 2

$$\ \diamondsuit \ z=re^{i\theta} \quad 0\leq \theta <\pi, t=\frac{1}{z}, \ \$$
 则

$$|t|=\frac{1}{r}<1$$

$$t=\frac{1}{r}e^{-i\theta}$$

$$\mathrm{d}z=\mathrm{d}(\frac{1}{t})=-\frac{1}{t^2}\mathrm{d}t \qquad 0\leq \theta<\pi \quad 积分方向为顺时针$$

此时原积分

$$\oint_{|z|=r>1} \frac{1}{1+z^n} dz = -\oint_{|t|=\frac{1}{r}<1} \frac{1}{1+\frac{1}{t^2}} (-\frac{1}{t^2}) dt$$

$$= \oint_{|t|=\frac{1}{s}<1} \frac{t^{n-2}}{1+t^n} dt$$

只有一个奇点 t=0。因此

$$I_n = \oint_{|t| = \frac{1}{r} < 1} \frac{t^{n-2}}{1 + t^n} dt$$

$$= \begin{cases} 0 & n \ge 2 \\ \oint_{|t| = \frac{1}{r} < 1} \frac{1}{t(t+1)} dt = 2\pi i & n = 1 \end{cases}$$
 (Cauchy-Goursat 定理)

Problem 2

求积分

$$\oint_{|z|=r>0} \frac{1-\cos 4z^3}{z^n} dz \qquad n \in \mathbb{Z}$$

Solution

当 $n \leq 0$ 时

$$\oint_{|z|=r>0} \frac{1-\cos 4z^3}{z^n} \mathrm{d}z = 0$$

当 n > 0 时

$$\frac{1 - \cos 4z^3}{z^n} = z^{-n} \left(1 - \sum_{k=0}^n (-1)^k \frac{(4z^3)^{2k}}{(2k)!}\right)$$
$$= z^{-n} \left(1 - \sum_{k=0}^n (-1)^k \frac{4^{2k}z^{6k}}{(2k)!}\right)$$
$$= z^{-n} \sum_{k=1}^n (-1)^{k-1} \frac{4^{2k}z^{6k}}{(2k)!}$$

 $\frac{1-\cos 4z^3}{z^n}$ 在奇点 z=0 的 Laurent 级数 $\sum_{n=-\infty}^{+\infty} C_n z^n$ 中, C_{-1} 对应上式中

$$6k - n = -1$$

此时

$$C_{-1} = (-1)^{k-1} \frac{4^{2k}}{(2k)!} \qquad k = \frac{n-1}{6}$$
$$= (-1)^{\frac{n-7}{6}} \frac{4^{\frac{n-1}{3}}}{(\frac{n-1}{3})!}$$

所以 n > 0 时

$$\oint_{|z|=r>0} \frac{1 - \cos 4z^3}{z^n} dz = 2\pi i \text{Res}\left[\frac{1 - \cos 4z^3}{z^n}, 0\right]$$
$$= 2\pi i C_{-1}$$
$$= 2\pi i (-1)^{\frac{n-7}{6}} \frac{4^{\frac{n-1}{3}}}{\left(\frac{n-1}{3}\right)!}$$

综上,

$$\oint_{|z|=r>0} \frac{1-\cos 4z^3}{z^n} dz = \begin{cases} 2\pi i (-1)^{\frac{n-7}{6}} \frac{4^{\frac{n-1}{3}}}{(\frac{n-1}{3})!} & n=6k+1, k \in \mathbb{N} \\ 0 & n \neq 6k+1, k \in \mathbb{N} \end{cases}$$

Problem 3

求积分

$$\oint_{|z|=r>1} \frac{z^3 e^{\frac{1}{z}}}{1+z} \mathrm{d}z$$

Solution

Problem 4

求积分

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b\cos\theta}$$

Problem 5

求积分

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b\sin\theta}$$

Problem 6

求积分

$$I_p = \int_0^{2\pi} \frac{\mathrm{d}\theta}{1 - 2p\cos\theta + p^2} \qquad p \in (-1, 1)$$

Problem 7

求积分

$$I_{A,B} = \int_0^{2\pi} \mathrm{d}\theta A^2 \cos^2\theta + B^2 \sin^2\theta \qquad A, B \in \mathbb{R}$$
and $A, B > 0$

Problem 8

求积分

$$I_{A,B} = \int_0^{2\pi} \frac{\mathrm{d}\theta}{A^2 \cos^2 \theta + B^2 \sin^2 \theta} \qquad A, B \in \mathbb{R} \text{and} AB > 0$$

Problem 9

求积分

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^{2n}} \qquad n \in \mathbb{N}$$

Problem 10

求积分

$$I_{n,r} = \int_0^{+\infty} \frac{\mathrm{d}x}{r^{2n} + x^{2n}} \qquad n \in \mathbb{N}$$

Problem 11

求积分

$$J_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^n} \qquad n \in \mathbb{N}$$

Problem 12

求积分

$$J_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(r^2 + x^2)^n} \qquad n \in \mathbb{N}$$

Problem 13

求积分

$$I_{a,b,k} = \int_0^{+\infty} \frac{x \sin kx}{(x^2 + a^2)(x^2 + b^2)} dx$$

Problem 14

求积分

$$I_{a,b,k} = \int_0^{+\infty} \frac{x^2 \cos kx}{(x^2 + a^2)(x^2 + b^2)} dx$$