ALGORITMI I STRUKTURE PODATAKA

STUDIJSKI PROGRAMI:

SOFTVERSKO INŽENJERSTVO, RAČUNARSKA TEHNIKA, INFORMATIKA I MATEMATIKA

NASTAVNIK: DOC. DR ULFETA MAROVAC, UMAROVAC@NP.AC.RS

HEŠIRANJE

- Obično performanse kod pretraživanja zavise od broja ključeva u skupu
- Idealno pretraživanje na osnovu ključa direktan pristup.
 - bez poređenja sa drugim ključevima
- Moguće sa dovoljno velikom tabelom,
 - ali često nepraktično za prirodne ključeve
- Heš funkcija mapira skup ključeva
 - na opseg indeksa u heš tabeli (samo ključevi ili zapisi)
- Direktno ili rasuto adresiranje

HEŠIRANJE

- heš tabela T[i], $0 \le i \le n 1$
- matična adresa i = h(K)

HEŠIRANJE

- Zadatak heš funkcije kompresija skupa ključeva na manji opseg indeksa tabele
- - ✓ degradacija performanse
- Poželjne osobine za efikasnost pristupa
 - ✓ uniformnost P(i = h(K)) = 1/n, $0 \le i \le n 1$
 - ✓ održavanje poretka $h(K_i) > h(K_j)$ za $K_i > K_j$
- Izbor
 - ✓ efikasne heš funkcije
 - ✓ efikasnog metoda za razrešavanje kolizija

HEŠ FUNKCIJE

- Kriterijumi za izbor heš funkcije
 - ✓ jednostavnost ⇒ brže izračunavanje
 - ✓ uniformnost ⇒ ređe kolizije
- Ključevi numerički, alfanumerički, alfabetski
- Metod ekstrakcije
- Poželjno da heš funkcija zavisi od svih znakova ključa, kao i njihovih pozicija
- Heš funkcije
 - ✓ nezavisne od raspodele ključeva
 - ✓ zavisne od raspodeleključeva

- $Metod deljenja h(K) = K \mod n$
 - √ n ≤ veličina heš tabele
 - ✓ jednostavan i često korišćen
 - \checkmark ne preporučuje se da nbude:
 - parno,
 - stepen broja 2 ili 10
 - neprosto sa modulom kongruencije
 ✓ u praksi se preporučuje da bude prost broj ne previše blizu stepena broja 2

0 < c < 1

- Metod množenja $h(K) = n(cK \mod 1)$,
 - ✓ izbor *n* nije kritičan (može i $n = 2^p$)
 - \checkmark $c \approx 0.61803$ ("zlatni presek")

Metod sredine kvadrata

Metod sklapanja

	<u>5894 * 5894</u>		19	19
K=5894	23576	K = 19653014	65	56
	53046		30	30
	47152		14	41
	29470		128	146
	34739236		28	46
	39		a)	b)

- Metod konverzije osnove
 - ✓ ključ u sistemu sa osnovom p
 - interpretira se u sistemu sa osnovom q(q>p)
 - ✓ bira se q uzajamno prosto sa p
 - ✓ npr. 615 $\overline{4}$ (p = 10) \Rightarrow 13420 (q = 13)
- Metod algebarskog kodovanja
 - ✓ ključ $(k_{r-1}...k_0) \Rightarrow K(x) = k_{r-1}x^{r-1} + ... + k_0$
 - ✓ za $n = 2^m$, odabere se $P(x) = x^m + p_{m-1}x^{m-1} + ... + p_0$
 - $\sqrt{K(x) \mod P(x)} = h_{m-1}x^{m-1} + ... + h_0$
 - \checkmark rezultat $(h_{m-1}..h_0)$
 - √ hardverska implementacija.

- Savršena heš funkcija
 - ✓ nema kolizija
 - ✓ nije lako pronaći, pogotovo za dinamičan skup
 - ✓ lakše za manje popunjene tabele
 - \checkmark npr. H(K) = (K + s)/d (Sprugnoli)
 - ✓ minimalna savršena *n* ključeva u *n* ulaza
 - \checkmark npr. H(K) = c/p(K) (Chang)
- Univerzalna klasa heš funkcija
 - ✓ slučajan izbor heš funkcije iz konačnog skupa nezavisan od skupa ključeva
 - √ dobre prosečne performanse i zaštita od najgoreg slučaja

- Moguće za unapred poznatu raspodelu ključeva
- Metod analize cifara
- Diskretna kumulativna funkcija raspodele
 - $\checkmark F_{z}(x) = P(Z \leq x)$
 - ✓ ključevi $K_1 < ... < K_m$
 - ✓ diskretna uniformna raspodela
 - $P(F_z(Z) \le i/m) = i/m$, za $0 \le i \le m$
 - \checkmark $F_z(K_1) = 1/m, F_z(K_2) = 2/m, ..., F_z(K_m) = 1$
 - ✓ cilj P(h(K) = i) = 1/n, za $0 \le i \le n 1$
 - $\checkmark H(K) = [nF_z(K)]-1$

- Primer:
 - ključevi 6, 7, 12, 14, 15 i 16 u tabeli sa 8 ulaza

RAZREŠAVANJE KOLIZIJA

- Kolizija dva ili više ključeva ima istu matičnu adresu
- Veća tabela ⇒ ređe kolizije,
 - ali dodatni prostor i manja popunjenost
- Faktor popunjenosti
- Varijante razrešavanja kolizija
 - ✓ otvoreno adresiranje u okviru tabele
 - ✓ ulančavanje lista sinonima

OTVORENO ADRESIRANJE

- Ispitni niz

 v niz adresa za ključ pri pretraživanju ili umetanju
 v generisanje niza ponovno heširanje

 - ✓ poželjno permutacija od (0 .. n-1)
- Problem brisanja

 '"poluslobodne" lokacije

 selektivno pomeranje
- Varijante otvorenog adresiranja
 - ✓ linearno pretraživanje

 - ✓ slučajno pretraživanje
 ✓ kvadratno pretraživanje
 ✓ dvostruko heširanje

OTVORENO ADRESIRANJE

```
HASH-INSERT(T, K)
i = 0
repeat
j = h(K)
if (T[j] = empty) then
T[j] = K
return j
else
i = i + 1
end_if
until i = n
ERROR(Tabela puna)
```

```
HASH-SEARCH(T, K)

i = 0

repeat

j = h_i(K)

if (T[j] = K) then

return j

else

i = i + 1

end_if

until (T[j] = empty) or (i = n)

return empty
```

LINEARNO PRETRAŽIVANJE

•
$$h_i(K) = (h_0(K) + i) \mod n$$
, $i = 1, 2, ..., n - 1$

•
$$h_i(K) = (h_{i-1}(K) + 1) \mod n$$

DVOSTRUKO HEŠIRANJE

- $h_i(K) = (h_0(K) + i g(K)) \mod n$, i = 1, 2, ..., n-1
- $h_i(K) = (h_{i-1}(K) + g(K)) \mod n$
- \triangleright Za nezavisne h(K) i g(K)verovatnoća sekundarnog grupisanja vrlo mala
- prost broj, a $g(K) \Rightarrow (1, n-1)$ Obično *n*
- Knuth predlaže
 - $\checkmark h_0(K) = K \mod n$

 - \checkmark $g(K) = 1 + K \mod (n-2)$ \checkmark n i n-2 prosti brojevi

DVOSTRUKO HEŠIRANJE

- $h_0(K) = K \mod 7$
- $g(K) = 1 + K \mod 5$

ULANČAVANJE

- Problemi otvorenog adresiranja

 brisanje ključeva

 - ispitni niz ne mora da sadrži samo sinonime
- Ulančavanje sinonima u liste van oblasti tabele
- Lista klasa ekvivalencije
- Pretraživanje, umetanje i brisanje efikasnije
- Nema ponovnog heširanja
- Ne ograničava broj ključeva veličinom tabele

ODVOJENO ULANČAVANJE

• $h(K) = K \mod 7$

STANDARDNE TEHNIKE

- Popunjenost $\alpha = m / nb$
- Izbor heš funkcije kritičan uniformnost!
- Adresiranje baketa *b* ključeva bez kolizije
- Ključevi unutar baketa mogu biti i uređeni
 - pa može i binarno pretraživanje
- Neuspešno pretraživanje kada ključ nije u baketu, a on nije pun
- lsti metodi razrešavanja kolizija

SPOLJAŠNJE HEŠIRANJE

- U datotekama sa direktnim pristupom
- Slične heš funkcije i metodi razrešavanja kolizija
- Mnogo bitnije vreme nego prostor
- Cilj smanjiti broj kolizija
- Ulazi heš tabele kao baketi,
- Baket može sadržati samo ključeve
 - ili cele zapise (nema posebne heš tabele)

FLEKSIBILNE TEHNIKE

- Datoteke relativno dugovečne strukture
- Veličina može nepredvidljivo da raste
- Standardne tehnike mogu da budu neefikasne
- > Fleksibilne tehnike
 - ✓ dinamičko heširanje
 - ✓ proširljivo heširanje

DINAMIČKO HEŠIRANJE

- Primarna oblast *m* baketa *m* ulaza heš tabele
- Heš tabela se adresira sa $b = \log m$ bita
- Umetanje u pun baket izaziva prelom.
- Reheširanje i preraspodela po *b* + 1-vom bitu
- Binarna stabla sa korenima u heš tabeli.
- Pretraživanje i brisanje

DINAMIČKO HEŠIRANJE

PROŠIRLJIVO HEŠIRANJE

- Prelom i preraspodela kao kod dinamičkog heširanja
- Dubina baketa i dubina heš tabela (d)
- Pri povećanju dubine baketa razdvajanje ulaza
- Pri povećanju dubine heš tabele dupliranje
- Heš tabela se adresira sa *d* bita
- Kad se pri brisanju smanji dubina tabele,
 - tabela se prepolovi

PROŠIRLJIVO HEŠIRANJE

TEST PITANJA