## Math 112 LQuiz 14

2022-03-29 (T)

| Your name: |  |
|------------|--|
|            |  |

## **Exercise**

(4 pt) Let  $f : \mathbf{R} \to \mathbf{R}$  be the function whose rule of assignment is

$$f(x) = \begin{cases} 2x - x^2 & \text{if } x \leq 2\\ \sin\left(\frac{\pi}{2}x\right) & \text{if } x \geq 2 \end{cases}$$

The function f is graphed below. This exercise explores the signed area under the graph of f from x = 0 to x = 4.

- (a) (1 pt) Briefly (!) explain why we can't use finite geometry to find the exact value of  $\int_0^4 f(x) \ dx$ .
- (b) (1 pt) On separate graphs below, draw a lower sum and an upper sum, each with four intervals of width 1. Use these to compute a lower and upper estimate for  $\int_0^4 f(x) dx$ .





(c) (2 pt) Find an antiderivative  $F_i(x)$  for each "piece" of f(x). Use these antiderivatives and the fundamental theorem of calculus to compute the integrals on the right side of

$$\int_0^4 f(x) \, dx = \int_0^2 f(x) \, dx + \int_2^4 f(x) \, dx \tag{1}$$

Add your results to determine the integral on the left side. Show that  $L\leqslant \int_0^4 f(x)\;dx\leqslant U..$