

UNIVERSITY OF GHANA

(All right reserved)

FACULTY OF ENGINEERING SCIENCES

BSc. (ENG) SECOND SEMESTER EXAMINATIONS: 2011/2012 MTEN 204 THERMODYNAMICS OF MATERIALS (2 CREDITS)

TIME ALLOWED: 2 HOURS

Answer ALL Questions

Note: Some of the equations needed are provided on page 5, R=8.314 J/molK

Section A (Circle the correct answer)

1.	OI	Of the following only is not a state function.							
	a)	E	b) H	c) S	d) q	E) T			
2.	a)b)c)d)	The entro $\Delta E = q + w$ $\Delta H_{rxn}^{0} = \Sigma$ For any sp	py of a pure , (n∆H ⁰ (<i>produ</i> e	crystalline $c(ts) - \sum (m\Delta H_0)$ process the	substanc $f_f^o(reac an$	ren ase at absolute zero ts)) of the universe inc	is zero		
3.			_			ne degree of disord d) internal energy	ler in a system is e) bond energy		
4.	a)b)c)d)	The second Law of thermodynamics can be given as							
re 1	of	5				EXAN	IINER: E. NYANKSON		

5. ΔS is positive for the reaction
--

- a) $CO_{2(g)} \rightarrow CO_{2(s)}$
- b) $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$
- c) $BaF_{2(s)} \to Ba_{(aq)}^{2+} + 2F_{(aq)}^{-}$
- d) $2Hg_{(I)} + O_{2(g)} \rightarrow 2HgO_{(s)}$
- e) $2NO_{(g)} \rightarrow N_2O_{4(g)}$

6. A reaction that is spontaneous as written

- a) Will proceed without outside intervention
- b) Is very slow
- c) Has an equilibrium position that lies far to the left
- d) Is very rapid
- e) Is also spontaneous in the reverse direction

7. A reverse process is one that.....

- a) Must be carried out at high temperature
- b) Can be reversed with no net change in either system or surroundings
- c) Happens spontaneously
- d) Must be carried out at low temperature
- e) Is spontaneous in both directions

8. Which of the following is a reverse process?

- a) Freezing of water at -10°C and 1 atm
- b) Melting of ice at 0°C and 1 atm
- c) Freezing of water at -25°C at 1 atm
- d) Melting of ice at 25°C at 1 atm
- e) Evaporation of water at 25°C at 1 atm

9. Which of the following can be seen as the condition for equilibrium?

- a) $\Delta S > 0$
- b) ΔS<0
- c) $\Delta G > 0$
- d) $\Delta G < 0$
- e) $\Delta G=0$

10. Consider the reaction $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$, given the following table of thermodynamic data at 298K

Substance	ΔH ⁰ (kJ/mǫl)	S ⁰ (J/Kmol)	
$Ag^+_{(aq)}$	105.9	73.93	
$Cl_{(aq)}^{-}$	-167.2	- 56.5	
$AgCl_{(s)}$	-127.0	96.11	

Calculate the value of the equilibrium constant K for the reaction at 298K

- a) 1.8×10^4
- b) 810
- c) 1.9×10^{-10}
- d) $3.7x10^{10}$
- e) 5.4×10^9

20 MARKS

Section B

Question 1

- a. A 50 kg iron block and a 20 kg copper block, both initially at 80°C, are dropped into a large lake at 15°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and the lake water.
 - Determine
 - I. The entropy change of the Iron
 - II. The entropy change of the Copper
 - III. The entropy change of the lake
 - IV. The entropy change for the process

[The specific heats of iron and copper at room temperature are $C_{iron} = 0.45 \text{ kJ/kg.K}$ and $C_{copper} = 0.386 \text{ kJ/kg.K}$

- b. One mole of ideal gas at 25°C and 1 atm undergoes the following reversible process:
 - > Isothermal expansion to 0.5 atm, followed by
 - > Isobaric expansion to 100°C, followed by

- > Isothermal compression to 1 atm, followed by
- > Isobaric compression to 25°C

Calculate the total work done by the reversible process described above.

c. A closed system consisting of elastic membrane enclosing a colloidal suspension is squeezed. The compressive pressure is 10 Pa and the volume of the system changes from 100 L to 80 L. During this process 1J of heat is released. Calculate the change in internal energy of the system. [1000L=1m³]

25MARKS

Question 2

a. Hot liquid Sodium at 400°C flows through a solid Plutonium pipe, also at 400°C. Naturally, one should worry about the amount of Plutonium that can be dissolved in liquid Sodium. Assume that the system is at 1 atm pressure and that the Sodium is virtually insoluble in solid plutonium; but plutonium forms an ideal solution with liquid sodium. Find a thermodynamic estimate of the maximum composition of plutonium in

the liquid Sodium. [at 400° C, $\frac{Solid}{G_{Plutonium,o}} = 42.436 \, kJ/mol$ and $\frac{Liquid}{G_{Plutonium,o}} = 42.233 \, kJ/mol$]

b. The global reaction for the aluminum-air corrosion cell at 60°C is written below:

$$4Al+4OH^-+3O_2 \rightarrow 4AlO_2^-+2H_2O$$

- I. Using the thermodynamic data provided in the table below, calculate the Gibbs energy for each specie in the reaction above.
- II. Calculate the $\triangle G$ for the cell
- III. Calculate the electrode potential (E) for the cell

Specie	G° (60°C), J/mol	Activity (a _i)
Al	-1,040.43	1
OH.	-157,849	1
O ₂	-7,234.04	0.2
AlO ₂	-841,778	0.1
H ₂ O	-239,483	1

25 MARKS

Page 4 of 5.....EXAMINER: E. NYANKSON

The following equations may be helpful

$$\Delta G = -nFE$$

$$G_{i(T)} = G_{i(T)}^{0} + RT \ln a_{i}$$

$$\mu_i^{\alpha} = \mu_{i,\alpha}^{\alpha} + RT \ln X_i^{\alpha}$$

$$G_i^{\alpha} = G_{i,\theta}^{\alpha} + RT \ln X_i^{\alpha}$$

$$E_{in} - E_{out} = \Delta E_{system}$$

$$\Delta U = mC(T_2 - T_1)$$

$$\Delta S = mC_{avg}ln\frac{T_2}{T_1}$$

$$\Delta S = \frac{Q}{T}$$

$$dU = \delta Q - \delta W$$

$$PV = nRT$$