What is Communication?

- Communication: transmission of information from one point to another.
- Four Basic Elements
 - Information source: voice, music, picture, video, ...
 - Transmitter: converts information in the source into a form suitable for transmission over the channel
 - Channel: the physical medium, introduces distortion, noise, interference
 - Receiver: reconstruct a recognizable form of the source signal

Energy, Average Power, Bandwidth

Energy:

$$E = \int_{-\infty}^{+\infty} |s(t)|^2 dt = \int_{-\infty}^{+\infty} |S(f)|^2 df$$

Average Power = time average of energy, computed over a large interval

$$P = \frac{1}{T} \int_{-T/2}^{+T/2} |s(t)|^2 dt$$

Average Power of a Random Signal: Assemble average as following

$$P = E\left\{s^{2}\left(t\right)\right\} = \int_{-\infty}^{\infty} x^{2} f_{s(t)}\left(x,t\right) dx$$

Average Power of a Signal consisting of random and deterministic components:

Both time and assemble average

One-sided bandwidth: only consider positive frequencies when computing bandwidth for *physical* (real) signals

Complex-valued (in the time domain) signals: Complex envelope of a real-valued passband signal. The two-sided bandwidth of the complex envelope equals the physical (one-sided) bandwidth of the passband signal

Baseband and Passband Signals/Channels

Band-pass Noise

- n(t) in canonical form: $n(t) = n_I(t)\cos(2\pi f_c t) n_Q(t)\sin(2\pi f_c t)$
- $n_l(t)$ and $n_O(t)$ are fully representative of the band-pass noise.
 - Given band-pass noise, one may extract in-phase and quadrature components (using LPF of bandwidth B).
 - Given the two components, one may generate band-pass noise. This is useful in computer simulation.

Properties of Baseband Noise

- Usually noise n(t) has zero mean, then so do $n_l(t)$ and $n_Q(t)$.
- $n_i(t)$ and $n_Q(t)$ have the same variance (i.e., same power) as n(t)
- If noise n(t) is Gaussian, then so are $n_l(t)$ and $n_Q(t)$ and the envelope $r(t) = \sqrt{n_I^2(t) + n_Q^2(t)}$ is Rayleigh distribution.
- Both in-phase and quadrature components have the same PSD:

$$S_{N_{I}}(f) = S_{N_{Q}}(f) = \begin{cases} S_{N}(f - f_{c}) + S_{N}(f + f_{c}), & |f| \leq B \\ 0, & \text{otherwise} \end{cases}$$

Analog Communication Systems

Model of an analog communication system

Signal-to-Noise Ratio (SNR) at the output of the receiver:

$$SNR_o = \frac{\text{average power of message signal at the receiver output}}{\text{average power of noise at the receiver output}} = \frac{P_S}{P_N}$$

Normally expressed in decibels (dB): $SNR (dB) = 10 log_{10}(SNR)$

A Baseband Communication System

- It does not use modulation
- Transmit power is identical to message power:

$$P_T = P$$

If the unit channel gain or no propagation loss, then

$$P_S = P_T = P$$

Average noise power at receiver

$$P_N = 2W \times N_0/2 = WN_0$$

SNR at receiver output:

$$SNR_{\text{baseband}} = \frac{P_T}{N_0 W}$$

Double Sideband-Suppressed Carrier (DSB-SC) Modulation

General form of a DSB-SC signal (suppressed carrier AM):

$$s(t) = m(t)A\cos(2\pi f_c t)$$

- A: amplitude of the carrier; f_c : carrier frequency
- m(t): message signal with bandwidth W and average power, P- s(t): DSB modulated signal: bandwidth 2W, average power $P_T = \frac{1}{2}A^2P$
- Demodulation:

Coherent detector

- Bandwidth of band-pass filter: 2W
- Bandwidth of the low-pass filter: W
- SNR at the receiver output:

$$SNR_{baseband} = \frac{P_T}{N_0 W} \implies SNR_{DSB-SC} = SNR_{baseband}$$

Single Sideband (SSB) Modulation

General form of a SSB-SC signal:

$$s(t) = \frac{A}{2}m(t)\cos(2\pi f_c t) - \frac{A}{2}\hat{m}(t)\sin(2\pi f_c t)$$

- A: amplitude of the carrier; f_c : carrier frequency
- m(t): message signal with bandwidth W and average power, P
- s(t): SSB modulated signal: bandwidth W and average power $P_T = \frac{1}{4}A^2P$
- Demodulatio

- Bandwidth of band-pass filter: W
- Bandwidth of the low-pass filter: W
- SNR at the receiver output:

$$SNR_{SSB} = SNR_{baseband} = SNR_{DSB-SC}$$

Standard AM

- Standard AM: $s_{AM}(t) = [A + m(t)]\cos(2\pi f_c t)$
 - Usually $A \ge m_p = \max |m(t)|$, modulation index $\mu = \frac{m_p}{A} \le 1$
 - -m(t): message signal with bandwidth W and average power, P
 - AM modulated signal: bandwidth 2W and average power $\frac{A^2 + P}{2}$
- Synchronous Detection Coherent detector

 Band-pass filter Product modulator v(t) Low-pass filter v(t) Noise v(t)
 - Bandwidth of band-pass filter: 2W
 - Bandwidth of the low-pass filter: W
 - SNR at the receiver output: $SNR_{AM} = \frac{P}{A^2 + P}SNR_{baseband}$

Non-coherent Receiver

Receiver:

- Bandwidth of band-pass filter: 2W
- $\mu = \frac{m_p}{A} \le 1, \text{ or } m_p \le A$
- SNR at the receiver output for small noise case: $SNR_{env} \approx \frac{P}{A^2 + P} SNR_{baseband}$

Frequency Modulation

Instantaneous frequency is varied linearly with message:

$$f_i(t) = f_c + k_f m(t)$$

- $-k_f$ is the frequency sensitivity of the modulator.
- frequency deviation: $\Delta f = k_f m_p$
- deviation ratio/modulation index:

$$\beta = \Delta f / W$$
, W: message bandwidth

Modulated signal:

$$s(t) = A\cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau)d\tau\right]$$

- The envelope is constant
- Signal s(t) is a non-linear function of the message signal m(t)
- Bandwidth using Carson's rule of thumb: $B_T = 2W(\beta+1) = 2(\Delta f + W)$

FM Receiver

- Bandwidth of bandpass filter: $B_T = 2W(\beta+1) = 2(\Delta f + W)$
- Discriminator: instantaneous amplitude is proportional to instantaneous frequency
- Bandwidth of baseband low-pass filter: W
- SNR at the receiver output:

$$SNR_{FM} = 3\beta^2 \frac{P}{m_p^2} SNR_{baseband}$$

Sampling, Quantization, PCM

- Sampling Theorem: A signal whose spectrum is band-limited to W Hz, can be reconstructed exactly from its samples if they are taken uniformly at a rate of $R \ge 2W$ Hz.
- Nyquist frequency: $f_s = 2W$ Hz

- Quantization
 - Uniform quantization: $SNR_o(dB) = 6n + 10\log_{10}\left(\frac{3P}{m_p^2}\right)$ (dB) Non-uniform quantization: improving SNR
- PCM: Pulse code modulation
- Grey Mapping
- Line Code

Matched Filter

$$x(t) = g(t) + w(t) \qquad 0 \le t \le T_b$$

- w(t): white noise with zero mean and PSD $\frac{N_o}{2}$
- Receiver wants to detect the pulse in presence of additive noise
 - Receiver knows what pulse shape it is looking for
- Goal: Design a receive (linear) filter that minimizes the effect of noise
 - Optimize the design of the filter

Properties of Matched Filters

• Impulse response is

$$h_{\rm opt}(t) = k g(T_b - t)$$

 T_h : symbol period,

g(t): transmitter pulse shape, k: gain

- scaled, time-reversed and shifted version of g(t)
- duration and shape determined by pulse shape g(t)
- Maximizes peak pulse SNR

$$\eta_{\text{max}} = \frac{2}{N_0} \int_{-\infty}^{\infty} |G(f)|^2 df = \frac{2}{N_0} \int_{-\infty}^{\infty} |g(t)|^2 dt = \frac{2E}{N_0} = \text{SNR}$$

- does not depend on pulse shape g(t)
- proportional to signal energy (energy per bit) E
- inversely proportional to noise power spectral density

Basic Forms: ASK, PSK, and FSK

(a) Amplitude-shift keying (ASK).

(b) Phase-shift keying (PSK).

(c) Frequency-shift keying (FSK).

Performance Comparison

Scheme	Bit-Error Rate (BER)
Coherent ASK	$Q\left(\frac{A}{2\sigma}\right) = Q\left(\sqrt{\frac{E_b}{N_o}}\right)$
Coherent FSK	$Q\left(\frac{A}{\sqrt{2}\sigma}\right) = Q\left(\sqrt{\frac{E_b}{N_o}}\right)$
Coherent PSK	$Q\left(\frac{A}{\sigma}\right) = Q\left(\sqrt{\frac{2E_b}{N_o}}\right)$
Noncoherent ASK	$\frac{1}{2} \exp\left(-\frac{A^2}{8\sigma^2}\right) = \frac{1}{2} \exp\left(-\frac{E_b}{2N_o}\right)$
Noncoherent FSK	$\frac{1}{2} \exp\left(-\frac{A^2}{4\sigma^2}\right) = \frac{1}{2} \exp\left(-\frac{E_b}{2N_o}\right)$
DPSK	$\frac{1}{2}\exp\left(-\frac{A^2}{2\sigma^2}\right) = \frac{1}{2}\exp\left(-\frac{E_b}{N_o}\right)$

ASK:
$$\frac{E_b}{N_o} = \frac{A^2}{4\sigma^2}$$
; FSK: $\frac{E_b}{N_o} = \frac{A^2}{2\sigma^2}$; PSK: $\frac{E_b}{N_o} = \frac{A^2}{2\sigma^2}$

Source Entropy

• If symbol s_k has occurred, this corresponds to

$$I(s_k) = \log_2 \frac{1}{p_k} = -\log_2 p_k$$

bits of information.

• Expected value of $I(s_k)$ over the source alphabet

$$E\{I(s_k)\} = \sum_{k=1}^{K} p_k I(s_k) = -\sum_{k=1}^{K} p_k \log_2 p_k$$

• Source entropy: average amount of information per source symbol:

$$H(S) = -\sum_{k=1}^{K} p_k \log_2 p_k$$

Units: bits/symbol.

Average Code Length and Coding Theorem

Average Length: For system/source with N symbols, $\{a_n\}_{n=1}^N$, the average length of a coding will be

$$\bar{L} = \sum_{n=1}^{N} l_n p_n$$

where l_n is the length of the codeword corresponding to a_n and p_n is the probability of a_n .

Coding Theorem

Given a discrete memoryless source of entropy H(S), average codeword length for any <u>uniquely decodable source coding</u> scheme, \overline{L} , is bounded by H(S), that is, $\overline{L} \geq H(S)$

Huffman Code

Average Length of the Huffman Code, \overline{L} : $H(S) \leq \overline{L} < H(S) + 1$

Conditional Entropy

Conditional Entropy

$$H(X|Y = y_k) = \sum_{j=0}^{J-1} p(x_j | y_k) \log_2 \left[\frac{1}{p(x_j | y_k)} \right] \quad H(X|Y) = \sum_{k=1}^{K-1} p(y_k) H(X|Y = y_k)$$

Mutual Information

$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y,X)$$

• Channel Capacity: For a given channel, $p(x_i|y_k)$, its capacity will be

$$C = \max_{\{p(x_j)\}} I(X, Y)$$

• Channel Coding Theorem: If the transmission rate *R* ≤ *C*, then there exists a coding scheme such that *R* bits per channel use can be transmitted over the channel with an arbitrarily small probability of error.

Conversely, if *R>C*, error probability is always bounded above zero when the transmission rate is above the capacity.

Linear Block Codes

- An (n, k) binary linear block code takes a block of k bits of source data and encodes them using n bits.
 - Ratio between the number of source bits and the number of bits used in the code, R=k/n, is referred to as the code rate.
- G is a $k \times n$ matrix (k rows, n columns), that takes a source block u (a binary vector of length k), to a code word x (a binary vector of length n),

Hamming distance, Hamming weight, and error detection, error correction