BACHELORARBEIT

Arbeitstitel: Eisenhypothese Dust-Event 2009

Marco Schulz - Matrikelnummer 7345692 Fassung vom 08.04.2021

bilder/unilogo.png

Institut für Geophysik und Meteorologie Universität zu Köln

Erstgutachter: Prof. Yaping Shao (yshao@meteo.uni-koeln.de)

Zweitgutachter: Dr. Hendrik Elbern (he@eurad.uni-koeln.de)

1.	Einleitung					
2.	Gabric.2016	3				
3.	Theorie 3.1. Kohlendioxid und Klima 3.2. Der südliche Ozean 3.3. Wachstum von Phytoplankton 3.4. Eisenhypothese 3.4.1. Düngung funktioniert nicht 3.4.2. Biologische Pumpe 3.5. Staubkreislauf 3.5.1. Staubquellen in Australien 3.5.2. Eisen in Staub 3.5.3. Emissions- und Depositionsmodelle 3.5.4. Deposition 3.6. Wind und Oberflächenströmungen	4 4 6 7 8 9 9 10 10 10 10				
4.	Beschreibung des Staubsturms in September 2009	10				
5.	Wetter 1					
6.	Staubtransport					
7.	Methoden 7.1. iron residence time modell 7.2. phytoplankton response time modell 7.3. WRF Modell 7.3.1. Emissions Schema 7.4. Phytoplankton 7.5. EOF? 7.6. Riegers Principal Components?	11 11 11 11 11 12 12 12				
8.	Auswertung und Diskussion8.1. Anpassungen nach der ersten Simulation	12 12 15				
9.	Staubquellen und Emissionen	16				
10	10. Zusammenfassung und Ausblick					
Α.	A. Anhang					
Ab	Abbildungsverzeichnis					
Ta	Tabellenverzeichnis					
В.	3. Danksagung					

DIESEN QUATSCH HABE ICH MIT DEM IPAD GESCHRIEBEN Das kann ich erst am Ende schreiben!

1. Einleitung

Klima verändert sich. Aktuell Eiszeitalter. Glaziale, Interglaziale abwechselnd. Bekannt (aus Eisbohrkernen), dass geringe CO₂-Konzentration in Atmosphäre während Glazialen. Deckt sich mit den geringen Temperaturen. Wohin das ganze CO₂? Phytoplankton sorgt für 50% des jährlichen CO₂-Austauschs (Field.1998) und erzeugen etwa 50 gt organischen Kohlenstoff pro Jahr (Emerson. 2009). Phytoplankton benötigt CO₂ zum Wachsen, wodurch dieses zu Biomasse konvertiert wird. Somit bei erhöhten Phytoplankton weniger CO₂. Warum wächst Phytoplankton dann nicht beständig, bis alles CO₂ aufgebraucht? Weitere limitierende Faktoren, da zur Fotosynthese weitere Nährstoffe benötigt werden. Nitrat und Phosphate als Nährstoffe, auch von Tiefsee. Martin und Fitzwater (Martin.1988) zeigen, dass Eisen limitierender Faktor. Eiseneintrag hauptsächlich aus Staub. Wenige Staubquellen in Südhemisphäre bzw. südl. Ozean (vgl. China/Sahara). Dadurch Eisenmangel, hingegen reich an Nitraten und Phosphaten aufgrund Upwelling (aufgrund Ekmantransport der zyklonalen Zirkumpolarströmung). Falls dann doch größere Eisendeposition, Phytoplankton-Blüten. Dies als mögliche Erklärung für geringe CO₂-Konzentrationen während Glazialen (Modelle zeigen, dass dies ungefähr die Hälfte des CO₂ Rückgangs erklären könnte. Etwa 16 gt Kohlenstoff werden aktuell pro Jahr durch die biologische Pumpe im Ozean archiviert (Falkowski.1998). Wenn diese Hypothese angenommen, dann bei größeren Staub-Events (kleine Zeitskala) vermehrtes Phytoplankton Wachstum wahrscheinlich. Ein großes Event 2009 in Australien. Dieses soll in dieser Arbeit genauer untersucht werden. Abgleich Staub- bzw. Eisendeposition mit Entwicklung Phytoplankton (bzw. Chlorophyll- α). Dazu benutze Kölner WRF-Staub-Weiterentwicklung. Vergleich mit Satellitenbildern. Nutze verschiedene Verfahren der Statistik. Berücksichtige Ozeanzirkulation und Wind. Falls Zusammenhang gezeigt werden kann dann Hypothese wahrscheinlich. Wäre weiteres Indiz für Eisenhypothese. Wurde schonmal gemacht (Gabric.2016). Prüfung des Kölner Modells. Zusammenhang \Rightarrow ggf. ebenfalls Hinweis dass Modell gut.

2. Gabric.2016

- Tasman Sea 25° S bis 40° S Untersuchungsareal
- data: Chl + aeorosol optical depth (AOD)
 - chl data: daily + 8 day MODIS-AQUA
 - AOD data: 550 nm, 4km resolution
- divided into 5° lattitude band
- DVR kumulativ
- Hovmoller Plots (x: zeit, y: latidude, longitude)
- cloud processing / wet deposition wichtig
- Response hauptsächlich südlich der tasmanischen Front ($\approx 32^{\circ}$ S)

Staubdeposition weiter im Norden

3. Theorie

3.1. Kohlendioxid und Klima

Der statistische Zusammenhang zwischen Kohlenstoffdioxidkonzentrationen und der mittleren Temperatur an der Erdoberfläche ist klar. Durch die Analyse von Eisbohrkernen kann seit den 1980'er Jahren gezeigt werden, dass die CO₂Konzentrationen stark mit der Temperaturentwicklung korrelieren. Auf Abb. 3.1 erkennt man den Zusammenhang bereits optisch, ohne weitere statistische Verfahren. Andere Methoden für die Zeiten davor und insbesondere die immer genauer werdenden Ableitungen und Messungen der jüngeren Vergangenheit bestätigen diese Beobachtung. Darüber hinaus kann der sogenannte Treibhauseffekt für CO₂und andere Treibhausgase (insbesondere relevant und häufig genannt: Wasser, Methan, Stickoxide) unzweifelhaft experimentell nachgewiesen werden. Trotz dieser eindeutigen Indizien ist es allerdings weiterhin schwierig, aus den verfügbaren Zeitreihen statistisch eine klare Kausalität zu beweisen. Dies impliziert, dass die beobachtete Korrelation theoretisch auch aufgrund eines anderen externen Treibers verursacht sein könnte, der beide Größen CO₂-Konzentration und mittlere Temperaturen beeinflusst. Allerdings geben auch neuere statistische Methoden (Stips. 2016) weitere Indizien für die ohnehin offensichtlich erscheinende Annahme, dass beide Variablen kausal zusammenhängen. Für die jüngere Vergangenheit seit Beginn des Industriezeitalters gilt als praktisch sicher, dass die anthropogenen Emissionen von Treibhausgasen zu der gemessenen Erhöhung der globalen Durchschnittstemperatur geführt haben. Untersuchungen geben Hinweise darauf, dass der kausale Zusammenhang über größere Zeiträume in der Vergangenheit umgekehrt gewesen sein könnte, dass also steigende oder sinkende Temperaturen zu einer Zu- bzw. Abnahme der CO₂Konzentrationen geführt haben. Dies impliziert einen wechselseitigen Zusammenhang, wobei der Einfluss von Temperaturen auf Treibhausgaskonzentrationen wesentlich träger, also auf geologischen Zeitskalen funktioniert, andersherum aber kurzfristige Reaktionen möglich sind. - Auf sehr großen Zeitskalen (10-100 Millionen Jahre) soll insbesondere die Plattentektonik und die damit verbundenen veränderten Verwitterungsprozesse zu Veränderungen in der CO₂ -Balance geführt haben. Die jüngeren und regelmäßigen Veränderungen von CO₂ und Temperatur auf Zeitskalen von eher 10 bis 100.000 Jahren, die aus den Untersuchungen der Eisbohrkerne abgleitet werden konnten, werden hingegen auf kurzfristigere Prozesse aufgrund von Modifikationen in der Ozeanzirkulation und biologischen Prozessen (an Land und in Meer) zurückgeführt (Emerson.2009). -

- Der Ozean kann deutlich mehr Kohlenstoffdioxid aufnehmen als die Atmosphäre (Martin.1990) und funktioniert als Kohlendioxid-Speicher. Etwa 20-30% der anthropogenen Emissionen (Portner.2019) hat er seit 2018 aufgenommen, wodurch eine zunehmende Versauerung begünstigt wird. Der pH-Wert wird durch diese Entwicklung in diesem Jahrhundert weiter deutlich sinken.

3.2. Der südliche Ozean

Schätzungsweise 45-62 % der gesamten Wärmezunahme zwischen 2005 und 2017 in den oberen 2000m des globalen Ozeans entfielen auf den südlichen Ozean (**Portner.2019**). Auch im tiefen Ozean > 2000m fand wahrscheinlich eine Erwärmung statt. Zusammen

Abbildung 3.1: Zeitreihe der letzten 800.000 Jahre für die abgeleiteten Größen CO₂, Temperatur, Methan (CH₄) und Staubkonzentrationen. Erstellt aus den Datensätzen von **Jouzel.2007**, **Lambert.2008**, **Loulergue.2008**, **Luthi.**2008, zur Verfügung gestellt über das National Climatic Data Center (NCDC)

mit dem steigenden Eintrag von Süßwasser durch abschmelzende Eisschilde führt diese Erwärmung zu einer zunehmenden Stratifizierung der oberen Ozeanschichten. Durch diese höhere hydrodynamische Stabilität wird der Austausch von Nährstoffen in lichtdurchflutete Schichten erschwert, sodass die dortige Produktion von Phytoplankton beeinträchtigt ist. In der Arktis führten die Veränderungen in der Eisbedeckung zu einer erhöhten Nettoprimärproduktion, Phytoplankton-Blüten treten früher im Jahr auf. Rund um die Antarktis kann dies allerdings nicht pauschal beobachtet werden (Portner.2019). Allerdings wird eine Südwärtsverlagerung des antarktischen Krillvorkommens vermutet. Derzeitige Klimaprognosen deuten daraufhin, dass die Nettoprimärproduktion in Arktis und Antarktis erhöhen , aber gleichzeitig in tropischen Gewässer deutlich sinken wird. Grundsätzlich bietet der südliche bzw. antarktische Ozean ein hohes Potential für die Produktion von Phytoplankton. Im (südhemisphärischen) Sommer sind große Teile der oberen Ozeanschichten ausreichend lichtdurchflutet und Nährstoffe (mit Ausnahme von löslichem Eisen) können durch das allgemeine Aufströmen aus der Tiefe an die Oberfläche transportiert werden (Martin.1990).

3.3. Wachstum von Phytoplankton

Durchschnittlich ungefähr 10 μg pro Liter bzw. 10^{-6} Prozent des Oberflächenwassers bestehen aus lebenden Organismen (Emerson. 2009). Diese Konzentration ist weitaus schwächer als an Land. Die Lebenserwartung von Phytoplankton beträgt gerade einmal Stunden bis hin zu Tagen. Dieses Mikroleben entspricht aufgrund der sehr kurzen Zeitspanne in der Zusammensetzung praktisch ausschließlich dem Zustand des lokalen Ozeanwassers und kann besser durch die hinterlassenen chemischen Spuren beobachtet werden als durch direkte Untersuchung. - Phytoplankton sind Einzeller. - Die das Picophytoplankton ($< 2\mu m$) in vielen Teilen des Ozeans dominierenden Cyanobakterien Synechococcus und Prochlorococcus enthalten vermutlich am meisten der grünen, Licht absorbierenden Pigmente (Chlorophyll) (Emerson. 2009). Kieselalgen dominieren in Regionen, wo aufsteigendes Wasser nennenswerten Einfluss nimmt, wie bspw. im südlichen Ozean. Dort besteht das Sediment größtenteils aus den Frusteln der Kieselalgen. - Organische Meerwasser-Bestandteile werden der Größe nach in zwei verschiedene Klassen eingeteilt: feste Materie in Form von Partikeln und im Meerwasser gelöste organische Materie. I.d.R. liegt die Grenze für die experimentelle Unterscheidung bei 0.5μ m. Kleinere Partikel werden durch die Schwerebeschleunigung nur so schwach beeinflusst, dass sie (wie die tatsächlich gelöste Materie) ohne weitere Einflüsse praktisch nicht absinken. Phytoplankton liegt allerdings praktisch ausschließlich in Form von Partikeln oberhalb dieser Grenze vor (Emerson.2009). Wachstumsbeeinflussende Faktoren sind (Falkowski.1998)):

- 1. mixed-layer depth
- 2. nutrient fluxes
 - a) Phospor (REDFIELD.1960)
- 3. food-web structure

Boyce et al. (**Boyce.2010**) folgern, dass der Reichtum an Phytoplankton insgesamt seit Beginn der Messungen (1899) aufgrund der Erwärmung der Ozeane abgenommen hat. Es wird geschätzt, dass das globale Median jährlich um etwa 1% abnimmt. Da die Klimamodelle steigende (Meeres-)Temperaturen prognostizieren ist es wahrscheinlich und problematisch, dass die Menge an Phytoplankton, der Basis aller Nahrungsketten im Ozean,

zukünftig noch weiter abnimmt (Siegel.2010). Klimaänderungen werden direkt (andere Ozeanchemie) und indirekt (Änderungen in der Ozeanzirkulation) die Verteilung des Phytoplanktons verändern (Falkowski.1998). Mithilfe Temperatur des Oberflächenwassers, einfallender Sonnenstrahlung, mixed-layer-depth, Up- und Downwellingzonen kann aus CHL-a Konzentration die NPP abgeleitet werden (Falkowski.1998). Für Kieselalgen ist Zufuhr von Kieselsäure essenziell; diese tritt fast ausschließlich südlich der Südpolarfront auf (Falkowski.1998).

Vereinfacht und unter bestimmten Bedingungen besteht Phytoplankton größtenteils aus den Elementen Kohlenstoff, Stickstoff und Phospor im folgenden Verhältnis (106C/16N/1P)

(Falkowski.1998). Daraus kann eine (näherungsweise, nicht allgemeingültige) Formel für die Fotosynthese abgleitet werden (Emerson.2009):

$$106\text{CO}_2 + 16\text{HNO}_3 + \text{H}_3\text{PO}_4 + 122\text{H}_2\text{O} \rightarrow (\text{CH}_2\text{O})_{106}(\text{NH}_3)_{16}\text{H}_3\text{PO}_4 + 138\text{O}_2$$
 (3.1)

Diese Komposition beinhaltet noch keine Spurenelemente wie Mangan, Eisen, Kobalt, Nickel, Kupfer und Zink die zwar in viel geringeren Konzentrationen auftreten, aber für das Wachstum limitierend sein können. Ein Teil dieser Metalle wird durch (mutmaßlich aus biologischen Prozessen entstandenen) Liganden komplexifiziert bzw. besetzt. Die Natur dieser Liganden ist noch nicht vollumfänglich verstanden, allerdings wird davon ausgegangen, dass ausschließlich die weiterhin freien Metalle biologisch verfügbar sind (Emerson.2009). Berücksichtigt man die weiteren Nährstoffe, lässt sich wieder ein stöchiometrisches Verhältnis ableiten, dass an dieser Stelle wieder nicht exakt oder allgemein gilt, sondern nur die Größenordnungen der Beiträge exemplarisch aufzeigen soll (Emerson.2009):

$$(C_{106}N_{16}P)_{1000}Fe_8Mn_4Zn_{0.8}Cu_{0.4}Co_{0.2}Cd_{0.2}$$
 (3.2)

3.4. Eisenhypothese

- Es wird geschätzt, dass bei etwa 40 % des ozeanischen Oberflächenwassers Eisen ein limitierender Faktor für die Produktion von Phytoplankton sein kann (Emerson.2009), Sekundärquelle. - Eisen und andere Nährstoffe sind an der Ozeanoberfläche häufig im Vergleich zu tieferen Schichten reduziert (Martin.1990). - Andere Nährstoffe für Phytoplankton können durch aufsteigendes Tiefenwasser bereitgestellt werden. Eisen und Mangan werden hingegen hauptsächlich durch äolischen Staub eingebracht. Ansonsten sind grundsätzlich Flüsse die Hauptquelle für gelösten Eintrag von Elementen (Emerson. 2009) Die Konzentrationen des Elements Eisen im Meerwasser sind verglichen mit den häufigsten Stoffen wie Natrium, Chlorid, Sulfat und Magnesium sehr gering. Dennoch ist es das dritthäufigste Element in marinen Sedimenten. (Emerson. 2009) - Verweildauer von etwa 6 Monaten in oberflächennahem Wasser bis ca. 150m Tiefe (Hayes.2015). Nitrogenase (Enzymkomplex) kann N₂ reduzieren und Stickstoff somit biologisch verfügbar machen. Laut Emerson und Hedges (Emerson. 2009) ist dies das extremste Beispiel, für die Limitierung durch Eisen, da diese Enzyme zu einem großen Teil aus Eisen bestehen. Nitrogenase selbst benötigt (bzw. besteht aus) Eisen. Meistens Trichdesmiumspp., das N₂ bindet (**Falkowski.1998**). In nährstoffarmen Gewässern haben extrem kleine Phytoplankton-Organisamen bei der Verarbeitung von Nährstoffen (Exkrementen der Verbraucher) einen Wettbewerbsvorteil, da großes Oberflächen zu Volumen- Verhältnis (Falkowski.1998). Wenn hingegen neue Nährstoffe bspw. durch Upwelling nach oben gelangen, hat größeres Phytoplankton, insbesondere Kieselalgen einen Wettbewerbsvorteil

(aufgrund Vakuole, schnellere Aufahme). -Dementsprechend wurde beobachtet, dass in mit löslichem Eisen gedüngten Arealen Kieselalgen im Vergleich zu anderem Phytoplankton besonders stark reagieren, also wachsen. Die Zugabe von Eisen fördert, dass Nitrate (NO_3^-) zu Ammonium-Ionen (NH_4^+) reduziert werden, welche bei der Fotosynthese von Plankton mit hohem Bedarf an Nitraten besonders schnell verwendet werden können. (**Emerson.2009**). -Das Plankton, das sich wiederum von diesen ernährt, ist typischerweise größer, benötigt für Entwicklung (Larvenstadium) mehr Zeit; dadurch im gegensatz zu obigen Arealen Blooms möglich und stärkere biologische Pumpe.

Insbesondere im südlichen Ozean kann auch Mangan limitierender Faktor sein (**Browning. 2021**). Bisher wurde Mangan diesbezüglich nicht verdächtigt. Die Besonderheit bei Mangan ist, dass dieses Spurenmetall im Gegensatz zu Eisen kaum durch Liganden besetzt wird und damit wesentlich mehr biologisch verfügbar ist (**Emerson.2009**). Untersuchungen von Eisbohrkernen zeigen, dass Eisenzufuhr durch äolischen Staub in glazialen Perioden um eine Größenordnung größer war als in Interglazialen (**Falkowski.1998**). - Es gab großskalige Experimente, in denen in Phosphor- und Nitratreichen Gewässern Eisen hinzugefügt wurde (**Emerson.2009**). -

bilder/Stoll2020/antarctic-iron-global-co2.png

Abbildung 3.2: Antikorrelation von **a** globaler CO₂ Konzentration und **b** Eisendeposition in der Antarktis (**Stoll.2020**)

3.4.1. Düngung funktioniert nicht

verschiedene Ursachen. Verweilzeit in Oberflächenwasser (Hayes.2015). Aufnahmefähigkeit / Rezeptivität ist saisonal variabel (Gabric.2016), Sekundärquelle.(Falkowski.1998). Zeitreihen für Messungen der Ozeanbiologie sind im Vergleich zu Land sehr kurz, wodurch Schätzen auch unzuverlässiger sein können (Falkowski.1998). Häufigste Beschränkung ist durch Verfügbarkeit von gebundenem anorganischem Stickstoff (Falkowski.1998). Daneben wurde aber auch für viele weitere Metalle wie Ni, Zn, Co, Cd, Cu ein mess-

barer Einfluss auf die Phytoplanktonproduktion bzw. die dafür erforderlichen Enzyme beobachtet.

3.4.2. Biologische Pumpe

- Der Export von organischer Materie aus der euphotischen Zone ist für den Hauptteil der chemischen Prozesse in der Tiefsee verantwortlich (Emerson.2009). - Niedriger Sauerstoffgehalt in der Tiefsee weist auf starke biologische Pumpe hin (dortige durch mehr absinkendes Plankton angereicherte Organismen verbrauchen mehr Sauerstoff?). Im aktuellen Ozean beträgt der (Sink)Fluss ca. 16 Pg Kohlenstoff pro Jahr (Falkowski.1998) (laut Emerson und Hedges (**Emerson.2009**) Größenordnung 5 Pg??). In Küstengebieten (Upwelling) sehr deutlich ⇒ Fischerei profitiert. Hoher Sauerstoffgehalt führt zu oxidiertem Eisen; oxidiertes Eisen ist nicht löslich und sinkt \Rightarrow geringer Eisengehalt (Falkowski. 1998). Es wird angenommen, dass die Leistung der biologischen Pumpe aufgrund der Klimaveränderungen insgesamt global abnehmen wird. - Aufgrund der höheren Dichte von Mineralen (vereinfachend angenommen ca. 2.5 g cm⁻³) im Gegensatz zu organischer Materie (ca. 1.1 g cm⁻³) und Meerwasser (ca. 1 g cm⁻³) kann abgeschätzt werden, dass anorganische Partikel etwa 15 mal schneller sinken als rein organische. Entsprechend kann abgeleitet werden, dass Organismen ohne zusätzlichen mineralischen Ballast aufgrund der geringen Sinkgeschwindigkeit die euphotische Zone praktisch kaum verlassen können. Zusätzlich bietet eine mineralische Hülle entsprechenden Schutz vor Oxidation der organischen Materie, die ansonsten bereits innerhalb der ersten 2000m während des Sinkens einsetzen würde(Emerson.2009).

3.5. Staubkreislauf

Wichtige Verbindung zu Energie- und Kohlenstoffkreislauf (Shao. 2011) - Staub entstammt nicht nur ariden Wüstengebieten. Ein nennenswerter Anteil (>5%) entsteht in kalten/glazialen Regionen hauptsächlich durch die Bewegungen von Gletschermassen und den damit verbundenen Abreibungen. Verwitterungsprozesse spielen im Gegensatz zu ariden Gebieten eine untergeordnete Rolle (Marx. 2018). -

3.5.1. Staubquellen in Australien

Staub, der durch entsprechende Quellen emittiert wird, entstammt häufig einem anderen Ort. Dies sind i.d.R. benachbarte Regionen höherer Feuchte, in denen chemische und physikalische Verwitterung stattfindet. Während des Transports zur Region der Emission wird die Partikelgröße weiter reduziert (zermahlen, Separation durch Wind). Dementsprechend kann die Verfügbarkeit von Staub paradoxerweise von einem ausreichend hohen (Feuchte)Fluss in die Region abhängen. Dies trifft insbesondere auf die endorheischen Systeme rund um das Lakre Eyre Becken in Australien zu (Marx.2018). - größte Teil Zentralaustralien (Shao.2011) siehe auch Lake Eyre basin.

Laut Deckker (**Deckker . 2019**) sind *Kati Thanda-Lake Eyre* Region und *Darling Riverine Plain* (Oberlauf des Darling River) Hauptquellen. Der Kontinent deckt insgesamt ein breites Spektrum an Oberflächengeologie ab, sehr alte Landmasse; einige Flächen sind mehr als 2.5 Milliarden Jahre alt (aus dem Archean). Durch die Besiedelung und Landnutzung durch den Menschen haben sich signifikante Änderungen ergeben, die bis 1945

mutmaßlich zu einer höheren Frequenz an Staubstürmen geführt haben. Nach verbesserter Landnutzung nahmen auch die Staubstürme wieder ab (**Deckker.2019**). Vgl. größte Staubereignisse vor 2009 waren in den 1940'ern.

3.5.2. Eisen in Staub

Nicht jede Form von Eisen kann als Dünger dienen. Muss entsprechend gelöstes (?) Eisen sein. Transportprozesse und Wolkenbildungen können die Transformation zu diesem tauglichen Eisen fördern (Shao.2011). Die Planktonart Trichodesmium kann die Rate des Eisenauflösens von Oxiden und Staub beschleunigen (im Gegensatz zu anderem Phytoplankton) (Gabric.2016). In Sediment enthält Staub häufig die Fe³⁺ Minerale Hämatit und Goethit (Reynolds.2014). Die Ergebnisse von Reynolds et al. (Reynolds.2014) legen nahe, dass der Eisengehalt (Magnetit) des Staubes beim Red-Dawn durch die dichten urbanen Gebiete an der Küste weiter erhöht wurde.

Eisenoxid(hydrate)	Verhältnisformel	Vorkommen
Hämatit	$\mathrm{Fe_2O_3}$	Mineral, trigonales Kristallsystem
Maghemit	$\mathrm{Fe_2O_3}$	Mineral, kubisches Kristallsystem
Magnetit	$\mathrm{Fe_2O_4}$	Mineral, kubisches Kristallsystem
Goethit	α -Fe ³⁺ O(OH)	Mineral, orthorhombisches Kristallsystem

Tabelle 1: Beschreibung

3.5.3. Emissions- und Depositionsmodelle

ggf. lieber in Kapitel Methoden

3.5.4. Deposition

Hauptursache für die Deposition/Ablagerung von weit transportiertem Staub ist das Auswaschen durch Regen (Marx.2018), Sekundärquelle. -

3.6. Wind und Oberflächenströmungen

Verkleinerung der Tiefe der Oceanic Mixed Layer von September auf Oktober (**Tilburg. 2002**) (abchecken, dass der Bloom nicht daher kommt!). Einteilung in *nördlich der Tasmanischen Front* und *südlich der tasmanischen Front*? Phytoplanktonproduktion hängt von Up- und downwelling-Prozessen durch mesoskalige Wirbel ab (**Tilburg. 2002**) ⇒ Vorticity der Ozeanströmungen berechnen?Besser sea surface height (SSH) Anonmalien angucken. Was, wenn Blüte bei Gabric et al. (**Gabric. 2016**) aufgrund von tieferen mixed-layer aufgrund des Sturms? ⇒ Winddaten vergleichen.

4. Beschreibung des Staubsturms in September 2009

stärkstes (in Bezug auf Sichtweitenreduzierung) Staubevent über Sydney seit es verlässliche Aufzeichnungen gibt (1940, Leys et al. (**Leys.2011**)). Staubstürme üblich im ariden Inland. Vorangegangen sind Monate und Jahre mit im Vergleich zum Durchschnitt höheren Temperaturen und unterdurchschnittlichem Niederschlag; dadurch schwache Vegetation

und trockene Erdböden (**Leys.2011**). Aufgrund der hohen Intensität wird dieser Zeitraum *Millenium Drought* getauft (**Deckker.2014**), Sekundärquelle.

5. Wetter

6. Staubtransport

Wird Staub über mehrere tausend Kilometer transportiert, verleiben i.d.R. nur Staubpartikel mit Größen von $<20\mu m$ (Marx.2018), Sekundärquelle.

7. Methoden

hole Zeitreihe Chlorophyll alpha Entwicklung von September bis Oktober (bzw. falls saisonale Veränderung, den Zeitraum, welcher der Kurve Dust-Event-Zeitraums entspricht) gemittelt über bspw. 10 Jahre. Berechne daraus Anomalie 2009 und vergleiche diese mit Staubdeposition.

7.1. iron residence time modell

7.2. phytoplankton response time modell

turn-over time ist von Größenordnung einer Woche oder weniger (Falkowski.1998): abgeleitet durch: 45 bis 50 Pg Kohlenstoff produzieren Phytoplankton pro Jahr, aktuell im Ozean sind aber immer nur ca. 1 Pg, das heißt dass das jeweils aktuelle Phytoplankton immer nach ca. einer Woche *umgesetzt* wurde. Die Proben von Martin und Fitzwater (Martin.1988) zeigten an Tag 4 des Experiments eine signifikante Reaktion auf die Zugabe von Eisen (im Vergleich zu den unbehandelten Kontrollen).

7.3. WRF Modell

nur kurze Vorstellung, da grundsätzlich nur der Output verwendet werden soll. Vergleich mit von Gabric.2016 genutzem Modell CEMSYS

	Kategorie	Größe
1		$0.5~\mu\mathrm{m}$ effektiver Radius
2		$1.4~\mu\mathrm{m}$ effektiver Radius
3		$2.4~\mu\mathrm{m}$ effektiver Radius
4		$4.5~\mu\mathrm{m}$ effektiver Radius
5		$8.0~\mu\mathrm{m}$ effektiver Radius

Tabelle 2: Die Staubpartikel wurden in verschiedene Korngrößen unterteilt

7.3.1. Emissions Schema

Zur Modellierung der Staubemissionen wurde das Schema von Shao (Shao.2004) verwendet und in WRF implementiert. Als Auslöser für Emissionen werden grundsätzlich

zwei Mechanismen erwogen: Beschuss durch Salz und der Zerfall von Aggregaten. Zusammengefasst setzt sich das Emissionsschema (Shao.2004) aus folgenden Gleichungen zusammen:

$$\tilde{F}(d_i, d_s) = c_y \eta_{fi} \left[(1 - \gamma) + \gamma \sigma_p \right] (1 + \sigma_m) \frac{g \cdot Q}{u_*^2}$$
(7.3)

$$\gamma = \exp\left[-\left(u_* - u_{*t}\right)^3\right] \tag{7.4}$$

$$\sigma_m = 12 \cdot u_*^2 \frac{\rho_b}{p} \left(1 + 14 \cdot u_* \sqrt{\frac{\rho_b}{p}} \right) \tag{7.5}$$

Dabei ist $\tilde{F}(d_i, d_s)$ die Emissionsrate für die Staubpartikelgröße d_i und das Salz der Partikelgröße d_s ; c_y ein dimensionsloser Koeffizient; η_{fi} der Anteil des insgesamt emittierbaren Staubs; $\sigma_p = \frac{\eta_{mi}}{\eta_{fi}} = \frac{p_m(d_i)}{p_f(d_i)}$ das Verhältnis zwischen der Massenverteilung freien Staubs η_{mi} zu der des ingesamt emissionsfähigen Staubs η_{fi} pro Einheitsbodenmasse für die Partikelgrößenklasse i bzw. den entsprechenden Verteilungen für die Partikelgrößenverteilungen $p_m(d_i)$ und $p_f(d_i)$; $\sigma_m = \frac{m_\Omega}{m}$ das Verhältnis zwischen der Masse m des einschlagenden Partikels und der durch Bombardement ausgeworfenen Masse m_Ω ; g die Erdschwerebeschleunigung; Q der stromweise Salzfluss; u_*^2 die Reibungsgeschwindigkeit; u_{*t}^2 der Schwellenwert für die Reibungsgeschwindigkeit; ρ_b die Bodenschüttdichte und p der plastische Bodendruck.

7.4. Phytoplankton

Climate Data Store

Messungen des Chlorphyll- α geben Rückschluss auf Phytoplankton (**RYTHER.1957**)(muss ich noch lesen)

7.5. EOF?

7.6. Riegers Principal Components?

8. Auswertung und Diskussion

8.1. Anpassungen nach der ersten Simulation

Die Ergebnisse der WRF-Simulation sollten in einem ersten Schritt durch eine grobe Übersicht auf Plausibilität, d.h. der wahrscheinlichen Abweichung von der Realität überprüft werden. Da ein relativ langer Zeitraum von 12 Tagen simuliert wird, sind auch größere Abweichungen wahrscheinlich. Ganz allgemein sind Wetterprognosen i.d.R. nur für die ersten Tage wirklich präzise. Die Wahrscheinlichkeit, dass das berechnete Wetter eintritt nimmt dann aufgrund des chaotischen Verhaltens der Atmosphäre und den beschränkt zur Verfügung stehenden diskreten Startwerten stark ab (Quelle ergänzen). Beobachtungsbzw. Reanalysedaten werden dem Modell zum Startzeitpunkt und an den Rändern geliefert. Die Zustände der zeitlich und räumlich dazwischen liegenden Gitterpunkte sind dann (ausschließlich) vom Modell simuliert (Quelle Sven, nochmal checken). Für den Großteil des untersuchten Gebietes liegen ohnehin keine Beobachtungsdaten vor. Der australische Kontinent ist relativ dünn mit Wetterstationen besetzt und Beobachtungen

durch Satelliten sind hinsichtlich zeitlicher und räumlicher Auflösung ebenfalls häufig relativ grob. Darüber hinaus können die interessanten Parameter meist nur indirekt ermittelt werden.

Dennoch können einfache Vergleiche einen ersten Eindruck von der Qualität der Simulation vermitteln. Hierzu wurden die simulierten Staubkonzentrationen und Emissionen mit Satellitenbildern, Beobachtungsdaten und Schätzungen aus der diesbezüglichen Literatur verglichen. Der Abgleich mit den (Echt-Farben-) Satellitenbildern zeigt, dass die Fortbewegung und Ausdehnung der Staubwolke vom Modell grundsätzlich erfasst wird. Auf Abbildung 8.1 ist jedoch ebenfalls gut sichtbar, dass das Modell zu späteren Zeiten eine deutlich höhere Staubkonzentration im Nordwesten Australiens simuliert, als von den Satellitenbildern direkt ableitbar wäre. Dabei ist zu beachten, dass die (Echt-Farben-) Satellitenbilder keine direkten Rückschlüsse auf die Staubkonzentration zulassen. Es können durchaus höhere Staubkonzentrationen vorliegen, die auf Satellitenbildern nicht erkannt werden können (Behauptung Shao, Quelle ergänzen). Aufgrund der dort simulierten sehr hohen Konzentrationen wird allerdings vermutet, dass entsprechende Emissionen überschätzt werden.

Abbildung 8.1: Das muss ich irgendwie noch schöner machen....

Der Großteil des Staubs wird laut WRF-Modell aus der Region Channel Country im Westen Queensland in der Nähe der Diamantina Lakes emittiert. Diese Region wird grundsätzlich als Quelle für das Red-Dawn-Event vermutet (sh. Kapitel XY, Leys.2011), allerdings bislang nicht als dominierende. Auf Abbildung 8.2 wird deutlich, dass diese im Modell aber deutlich dominiert. Die Vermutung liegt nahe, dass ebendiese Emissionen zu den erhöhten (möglicherweise unrealistischen) modellierten Staubkonzentrationen im Nordwesten führen. Die Staubemissionen können im Modell aus verschiedenen Gründen überschätzt werden. Ein offensichtlicher Nachteil des im Modell implementierten Schemas zur Staubemission ist, dass nicht berücksichtigt wird, wie viel Staub am jeweiligen Gitterpunkt maximal emittiert werden kann. Ist eine Region also einmal als Staubquelle mit einer entsprechenden Größenordnung definiert, kann bei entsprechenden Windstärken theoretisch beliebig viel Staub emittiert werden. Dies soll in späteren Versionen durch eine Budgetierung des maximal emissionsfähigen Staubs an der Oberfläche implementiert werden, sodass die Emission stoppt, nachdem das Budget aufgebraucht ist. Durch neue Ablagerungen von Staub (Deposition) kann das Budget dann wieder aufgefüllt werden. Anschließend wären die Emissionen zeitlich limitiert.

Abbildung 8.2: Darstellung der maximalen Staubemissionen über alle Zeiten je Gitterpunkt. Die Variablen DUST_EMIS_ACC1..5 beschreiben die über den letzten Zeitschritt (hier 3 Stunden) gemittelten Werte der Staubemissionen und wurden hier aufsummiert.

Neben der zeitlichen Beschränkung beeinflussen verschiedene Parameter die zeitunabhängige Größenordnung der Emissionen. Insbesondere entscheidend für das Emissionspotential ist die Rauheit des Geländes. Dies stellt in Simulationen stets ein Problem dar, da die räumliche Auflösung eines diskreten Modells nie alle beliebig kleinen Elemente abdecken kann. Stattdessen wird jedem Gitterpunkt ein Parameter zugeordnet, der die Rauheit repräsentiert und die Emissionen stellvertretend regulieren soll. Im vorliegenden

WRF-Modell werden dazu die Vegetationsparameter angepasst LAI oder VEGFRA?, da Vegetation einen vergleichbaren Einfluss nimmt wie Rauheit, bzw. ebenfalls eine gewisse Rauheit darstellt. Diese Informationen, welche Größe die Parameter an welchem Gitterpunkt annehmen, werden durch Geogrid-Daten in das WRF-Modell gegeben. In Abbildung sind einige der relevanten Parameter dargestellt. Es wird deutlich, dass die Zelle mit den höchsten Emissionen (1) im Vergleich zu den Nachbarzellen etwas andere Werte erreicht, was zu verstärkten Emissionen führt. Da angenommen wird, dass die sehr hohen Emissionen unrealistisch sind, wurde der Blattflächenindex (LAI) an den 10 Gitterpunkten mit den höchsten Emissionen gezielt korrigiert. Dies führt zu einer veränderten Rauheit und soll die Emissionen auf ein adäquates Level limitieren.

Abbildung 8.3: Absolute Werte einiger konstanter Parameter im WRF-Modell für die Region mit hohen Emissionen, die die Staubemissionen regulieren können. Die Zahlenwerte 1 bis 20 geben die Rangordnung der Staubemissionen an. Das heißt, Gitterpunkt 1 erreicht die höchste Emission, 2 die zweithöchste usw.

8.2. Staubkonzentrationen

- Hohe Konzentrationen an der Oberfläche werden durch Modell ungenügend beschrieben (siehe DUST_ACC_ auf zlevel 0 (geländefolgend)). DUSTLOAD über ganze Atmo-

sphärensäule allerdings schon eher. Sehr sehr hohe Konzentrationen (> 10kg pro qm) später im Norden.

9. Staubquellen und Emissionen

Staubquellen gemäß (Leys.2011)

- 1. lower Lake Eyre Basin
- 2. grazing lands of north western NSW
- 3. mining areas around Cobar und Broken Hill
- 4. Channel Country of western Queensland

Laut Modell enorm hohe Emissionen zwischen Diamantara Lakes und Boulia (western Queensland). Laut Deckker et al. (**Deckker.2014**) konnte Lake Torrins als Quelle für Staub der bei Canberra gefallen ist identifiziert werden. Diese Region ebenfalls Bestandteil des Modells. Die *Fingerabdruckanalyse* von Deckker et al. (**Deckker.2014**) ist leider dadurch beschränkt, dass nur Proben aus den beiden (im Vergleich zur Ausdehnung der Staubwolke) sehr südlich gelegenen Städten Canberra und Eden verwendet werden konnten. Die damit abgeleiteten Staubquellen sind also vermutlich für den Großteil des Ereignisses nicht repräsentativ. - Benutzt man die Unterteilung in O'Loingsigh et al. (**OLoingsigh.2017**), dann laut Modell Region (2) Channel Country mit Abstand größte Quelle, aber auch (3) Lake Eyre (A) and South Simpson desert ephemeral lakes region, (4) South Strzelecki desert and Lake Frome (B) subbasin, (5) Lakes Torrens (C). - Staub beschreibt eine bestimmte Signatur, die von den Eigenschaften des Sediments unterschieden werden kann, in welchem sich der Staub abgelagert hat. Die besondere Signatur kann nach Marx et al. (**Marx.2018**) durch verschiedene Mechanismen verursacht werden:

- 1. Transport
- 2. geochemisch oder mineralogisch
- 3. Fingerabdruck der Herkunftsregion
- 4. anthropogene Effekte

10. Zusammenfassung und Ausblick

Literatur

- Anderson.2005 Robert Anderson und Gideon Henderson. "PROGRAM UPDATE GEOTRACES—A Global Study of the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes". In: *Oceanography* 18.3 (2005), S. 76–79. DOI: 10.5670/oceanog.2005.31.
- Boyce.2010 Daniel G. Boyce et al. "Global phytoplankton decline over the past century". In: *Nature* 466.7306 (2010), S. 591–596. DOI: 10.1038/nature09268.
- **Browning.2021** Thomas J. Browning et al. "Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean". In: *Nature communications* 12.1 (2021), S. 884. DOI: 10.1038/s41467-021-21122-6.
- Cropp.2013 R. A. Cropp et al. "The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent". In: *Journal of Marine Systems* 117-118 (2013), S. 43-52. DOI: 10.1016/j.jmarsys.2013.02.013.
- **Deckker.2014** Patrick de Deckker et al. "Characterisation of the major dust storm that traversed over eastern Australia in September 2009; a multidisciplinary approach". In: *Aeolian Research* 15 (2014), S. 133–149. DOI: 10.1016/j.aeolia.2014.07.003.
- **Deckker.2019** Patrick de Deckker. "An evaluation of Australia as a major source of dust". In: *Earth-Science Reviews* 194 (2019), S. 536–567. DOI: 10.1016/j.earscirev. 2019.01.008.
- Emerson.2009 Steven Emerson und John Hedges. Chemical oceanography and the marine carbon cycle. Reprint. with corr. Cambridge: Cambridge Univ. Press, 2009.
- ESR.2009 ESR. OSCAR third degree resolution ocean surface currents. 2009. DOI: 10. 5067/OSCAR-03D01.
- Falkowski.1998 Falkowski et al. "Biogeochemical Controls and Feedbacks on Ocean Primary Production". In: *Science (New York, N.Y.)* 281.5374 (1998), S. 200–207. DOI: 10.1126/science.281.5374.200.
- **Field.1998** Field et al. "Primary production of the biosphere: integrating terrestrial and oceanic components". In: *Science (New York, N.Y.)* 281.5374 (1998), S. 237–240. DOI: 10.1126/science.281.5374.237.
- Gabric.2016 A. J. Gabric et al. "Tasman Sea biological response to dust storm events during the austral spring of 2009". In: *Marine and Freshwater Research* 67.8 (2016), S. 1090. DOI: 10.1071/MF14321.
- Hayes.2015 Christopher T. Hayes et al. "Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA". In: *Geochimica et Cosmochimica Acta* 169 (2015), S. 1–16. DOI: 10.1016/j.gca.2015.07.019.
- **Jouzel.2007** J. Jouzel et al. "Orbital and millennial Antarctic climate variability over the past 800,000 years". In: *Science (New York, N.Y.)* 317.5839 (2007), S. 793–796. DOI: 10.1126/science.1141038.
- **Lambert.2008** F. Lambert et al. "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core". In: *Nature* 452.7187 (2008), S. 616–619. DOI: 10.1038/nature06763.

- **Leys.2011** John F. Leys et al. "PM10 concentrations and mass transport during "Red Dawn" Sydney 23 September 2009". In: *Aeolian Research* 3.3 (2011), S. 327–342. DOI: 10.1016/j.aeolia.2011.06.003.
- **Loulergue.2008** Laetitia Loulergue et al. "Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years". In: *Nature* 453.7193 (2008), S. 383–386. DOI: 10.1038/nature06950.
- **Luthi.2008** Dieter Lüthi et al. "High-resolution carbon dioxide concentration record 650,000-■ 800,000 years before present". In: *Nature* 453.7193 (2008), S. 379–382. DOI: 10.1038/nature06949.
- Martin.1988 John H. Martin und Steve E. Fitzwater. "Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic". In: *Nature* 331.6154 (1988), S. 341–343. DOI: 10.1038/331341a0.
- Martin.1990 John H. Martin. "Glacial-interglacial CO 2 change: The Iron Hypothesis". In: *Paleoceanography* 5.1 (1990), S. 1–13. DOI: 10.1029/PA005i001p00001.
- Marx.2018 Samuel K. Marx et al. "Palaeo-dust records: A window to understanding past environments". In: *Global and Planetary Change* 165 (2018), S. 13–43. DOI: 10.1016/j.gloplacha.2018.03.001.
- OLoingsigh.2017 Tadhg O'Loingsigh et al. "Sources and pathways of dust during the Australian "Millennium Drought" decade". In: *Journal of Geophysical Research:* Atmospheres 122.2 (2017), S. 1246–1260. DOI: 10.1002/2016JD025737.
- **Portner.2019** H.-O. Pörtner et al. "IPCC: Summary for Policymakers: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate". In: (2019).
- **REDFIELD.1960** A. C. REDFIELD. "The biological control of chemical factors in the environment". In: *Science progress* 11 (1960), S. 150–170.
- Reynolds.2014 Richard L. Reynolds et al. "Iron oxide minerals in dust of the Red Dawn event in eastern Australia, September 2009". In: *Aeolian Research* 15 (2014), S. 1–13. DOI: 10.1016/j.aeolia.2014.02.003.
- RYTHER.1957 J. H. RYTHER und C. S. YENTSCH. "The Estimation of Phytoplankton Production in the Ocean from Chlorophyll and Light Data1". In: *Limnology and Oceanography* 2.3 (1957), S. 281–286. DOI: 10.1002/lno.1957.2.3.0281.
- **Shao.2004** Yaping Shao. "Simplification of a dust emission scheme and comparison with data". In: *Journal of Geophysical Research* 109.D10 (2004). DOI: 10.1029/2003JD004372.
- Shao.2011 Yaping Shao et al. "Dust cycle: An emerging core theme in Earth system science". In: *Aeolian Research* 2.4 (2011), S. 181–204. DOI: 10.1016/j.aeolia. 2011.02.001.
- Siegel.2010 David A. Siegel und Bryan A. Franz. "Oceanography: Century of phytoplankton change". In: *Nature* 466.7306 (2010), S. 569, 571. DOI: 10.1038/466569a.
- Stips.2016 Adolf Stips et al. "On the causal structure between CO2 and global temperature". In: *Scientific reports* 6 (2016), S. 21691. DOI: 10.1038/srep21691.
- **Stoll.2020** Heather Stoll. "30 years of the iron hypothesis of ice ages". In: *Nature* 578.7795 (2020), S. 370–371. DOI: 10.1038/d41586-020-00393-x.

Tagliabue.2017 Alessandro Tagliabue et al. "The integral role of iron in ocean biogeochemistry". In: *Nature* 543.7643 (2017), S. 51–59. DOI: 10.1038/nature21058.

Tilburg.2002 Charles E. Tilburg et al. "Ocean color variability in the Tasman Sea". In: Geophysical Research Letters 29.10 (2002). DOI: 10.1029/2001GL014071.

A. Anhang

Abbildungsverzeichnis

3.1.	Zeitreihe der letzten 800.000 Jahre für die abgeleiteten Größen CO ₂ , Temperatur, Methan (CH ₄) und Staubkonzentrationen. Erstellt aus den Da-	
	tensätzen von Jouzel. 2007, Lambert. 2008, Loulergue. 2008, Luthi.	
	2008, zur Verfügung gestellt über das National Climatic Data Center (NCDC)	
	5	
3.2.	Antikorrelation von a globaler CO ₂ Konzentration und b Eisendeposition	
	in der Antarktis (Stoll.2020)	8
8.1.	Das muss ich irgendwie noch schöner machen	13
8.2.	Darstellung der maximalen Staubemissionen über alle Zeiten je Gitter-	
	punkt. Die Variablen DUST_EMIS_ACC15 beschreiben die über den letz-	
	ten Zeitschritt (hier 3 Stunden) gemittelten Werte der Staubemissionen	
	und wurden hier aufsummiert	14
8.3.	0	
	gion mit hohen Emissionen, die die Staubemissionen regulieren können. Die	
	Zahlenwerte 1 bis 20 geben die Rangordnung der Staubemissionen an. Das	
	heißt, Gitterpunkt 1 erreicht die höchste Emission, 2 die zweithöchste usw.	15
Tabe	llenverzeichnis	
1.	Beschreibung	10
2.	Die Staubpartikel wurden in verschiedene Korngrößen unterteilt	11

B. Danksagung