EVOLUTION AND DEVELOPMENT (EVODEVO)

Evolution and the Natural World

Lecture 11

13/10/2021

Vasili Pankratov

Body plans (animal examples)

https://en.wikipedia.org/wiki/Body_plan# By Nina Sesina - https://commons.wikimedia.org/wiki/File:Zygote.tif, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67459911

Questions in Developmental Biology

- How is development controlled?
- What is the link between development and evolution? (this
 is studied by evolutionary developmental biology or
 EvoDevo)

CONTROL OF ORGANISM DEVELOPMENT

Genetics + Environment

Genetics of development

- Search for mutants (mutation screens)
- Homeotic mutations

Wild type Mutant
Antennapedia mutation

Bithorax mutation

Genetics of development

- Examples above are due to mutations changing the place of expression of homeotic genes
- Loss-of-function mutations are lethal but studying the embryos shows interesting patterns

Oh, those names!

- Homeotic genes mutations lead to homeosis (one structure develops in place of another)
- Homeobox genes genes with a specific 180 bp long sequence motif coding for the homeobox domain. This is the DNA-binding domain of these proteins.
- Hox-genes a special case of Homeobox genes involved in identity along AP axis

Genetics of development

 Conclusion: there are individual genes that regulate certain developmental process (i.e. segment identity in Drosophila regulated by the Hox-genes)

But how do they work?

Regulation of gene expression

Genes controlling development (like Hox-genes) code for TF

TF regulating transcription of many genes incl other TF are called **Master Regulators**

More mechanisms

https://www.whatisepigenetics.com/chromatin-remodeling/

By User:JWSchmidt CC BY-SA 2.5, https://en.wikiversity.org/w/index.php?curid=6770

Hox-proteins distribution

- Each Hox-protein has its' specific localization in the fly's embryo (and hence activates corresponding genes only in those body parts)
- Changes in this pattern lead to homeotic mutations

Hox-proteins distribution

- Segment's fate is determined by local concentrations of different Hox-proteins
- There is a AP gradient of each of the Hox-proteins in the embryo
- BTW, the order of Hox-genes on the chromosome corresponds to their expression along the AP axis

https://www.pbs.org/wgbh/nova/genes/fate-03.html

But how is the gradient established?

- Asymmetric transfer of mRNA into the egg cell from surrounding cells
- Asymmetric distribution of proteins and mRNA during cell division

https://www.researchgate.net/figure/ Asymmetric-segregation-of-Numb-innon-differentiating-satellite-cell-derivedmyoblasts fig3 23670250

https://en.wikipedia.org/wiki/ Drosophila embryogenesis

Bicoid mutant (homozygote)

Courtesy of S. Luschnig and F. Schnorrer, Max-Planck-Institut for Developmental Biology, Tübingen. Noncommercial, educational use only.

Why care about the fly?

- Genes, homologous to Drosophila Hox-genes are found in all Metazoa
- In all cases they play a role in providing local identity along the AP axis
- Pathways of animal development are highly conserved

Hox genes in mammals

One more example of high conservation: *Pax6* gene

The principle is universal

- Homeotic mutations affecting flower parts were observed
- ABC model of flower development (A, B and C are groups of genes)

The principle is universal

- Homeotic mutations affecting flower parts were observed
- ABC model of flower development (A, B and C are groups of genes)

Environment

- Developmental abnormalities without mutations
 - Teratogens (for example alcohol)
 - Vitamins and nutrients deficiency
 - etc.

DEVELOPMENT AND EVOLUTION

Evolutionary developmental biology (EvoDevo)

Link between development and evolution

Haeckel Development stages recapitulate adult evolutionary stages Adult Fish Frog Bird Frog Embryo Fish Fish Egg

Von Baer

No recapitulation: embryo's development increasingly diverse

- Early (19th century)
 comparative studies
 of embryonic
 development
- Modern
 evolutionary
 developmental
 biology (EvoDevo)
 since late 70s

Homeotic mutations (again)

Hypothetical ancestors of arthropods had identical segments with a pair of legs each

Wild type

Mutant

Fly ancestors had 4 wings

https://infograph.venngage.com/p/219814/homeotic-genes

4 wings -> 2 wings

Current hypothesis

Current hypothesis

Changes in Hox-genes expression

- Ancestrally in crustaceans head appendages (mandibula and maxillas) are involved in feeding and thoracic ones are involved in locomotion.
- Some groups have
 maxillipeds T1 (and some
 T2 and T3) appendages
 looking and acting as maxillas

Changes in Hox-genes expression

 The evolution of maxillipedes can be explained by changes in Ubx expression patterns

Development and Evolution

- New phenotypes can evolve through changes in development – evolution and development are linked
- Development is controlled by time- and space-specific gene expression
- Master regulator genes (Hox-genes are just 1 example)
 play a crucial role in it
- Changes in GRN via mutations in master regulator genes or regulatory sequences can be involved in profound morphological changes