Data and Computer Communications

Chapter 6 – Digital Data Communications Techniques

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Digital Data Communications Techniques

- A conversation forms a two-way communication link; there is a measure of symmetry between the two parties, and messages pass to and fro. There is a continual stimulus-response, cyclic action; remarks call up other remarks, and the behavior of the two individuals becomes concerted, co-operative, and directed toward some goal. This is true communication.
 - —On Human Communication, Colin Cherry

Asynchronous and Synchronous Transmission

- > timing problems require a mechanism to synchronize the transmitter and receiver
 - receiver samples stream at bit intervals
 - if clocks not aligned and drifting will sample at wrong time after sufficient bits are sent
- two solutions to synchronizing clocks
 - asynchronous transmission
 - synchronous transmission

Asynchronous Transmission

Asynchronous - Behavior

- simple
- > cheap
- overhead of 2 or 3 bits per char (~20%)
- good for data with large gaps (keyboard)

Synchronous Transmission

- block of data transmitted sent as a frame
- clocks must be synchronized
 - can use separate clock line
 - or embed clock signal in data
- need to indicate start and end of block
 - use preamble and postamble
- more efficient (lower overhead) than async

Types of Error

- an error occurs when a bit is altered between transmission and reception
- single bit errors
 - only one bit altered
 - caused by white noise
- burst errors
 - contiguous sequence of B bits in which first last and any number of intermediate bits in error
 - caused by impulse noise or by fading in wireless
 - effect greater at higher data rates

Error Detection

- > will have errors
- detect using error-detecting code
- added by transmitter
- recalculated and checked by receiver
- still chance of undetected error
- parity
 - parity bit set so character has even (even parity) or odd (odd parity) number of ones
 - even number of bit errors goes undetected

Error Detection Process

Cyclic Redundancy Check

- one of most common and powerful checks
- for block of k bits transmitter generates an n bit frame check sequence (FCS)
- transmits k+n bits which is exactly divisible by some number
- receiver divides frame by that number
 - if no remainder, assume no error
 - for math, see Stallings chapter 6

Modulo 2 Arithmetic (XOR)

- > Define:
 - T = (k+n)-bit frame to be transmitted, n < k
 - M = k-bit message, the first k bits of T
 - F = n-bit FCS, the last n bits of T
 - P = pattern of n+1 bits, the predetermined divisor
- We would like T/P to have no remainder
 - $T = 2^{n}M + F$
 - 2ⁿM/P = Q + R/P, R is at least one bit less than P
 - Use R as the FCS (i.e. F), i.e. T = 2ⁿM + R
 - Examine if T/P have no remainder?
 - $T/P = (2^nM + R)/P = Q + R/P + R/P = Q + (R+R)/P = Q$

Modulo 2 Arithmetic (cont)

- Occurrence of errors
 - \bullet T_r = T + E
 - T = transmitted frame
 - E = error pattern with 1s in positions of error
 - T_r = received frame
- Fail to detect an error if and only if T_r is divisible by P
 - i.e. if and only if E is divisible by P

Error Correction

- correction of detected errors usually requires data block to be retransmitted
- not appropriate for wireless applications
 - bit error rate is high causing lots of retransmissions
 - when propagation delay long (satellite) compared with frame transmission time, resulting in retransmission of frame in error plus many subsequent frames
- instead need to correct errors on basis of bits received
- error correction provides this

Error Correction Process

How Error Correction Works

- adds redundancy to transmitted message
- can deduce original despite some errors
- > eg. block error correction code
 - map k bit input onto an n bit codeword
 - each distinctly different
 - if get error assume codeword sent was closest to that received
- for math, see Stallings chapter 6
- means have reduced effective data rate

Line Configuration - Topology

- physical arrangement of stations on medium
 - point to point two stations
 - such as between two routers / computers
 - multi point multiple stations
 - traditionally mainframe computer and terminals
 - now typically a local area network (LAN)

Line Configuration - Topology

Line Configuration - Duplex

- classify data exchange as half or full duplex
- half duplex (two-way alternate)
 - only one station may transmit at a time
 - requires one data path
- full duplex (two-way simultaneous)
 - simultaneous transmission and reception between two stations
 - requires two data paths
 - separate media or frequencies used for each direction
 - or echo canceling

Summary

- asynchronous verses synchronous transmission
- error detection and correction
- line configuration issues