Optimierung – Dynamische Programmierung

Algorithmen und Datenstrukturen VU 186.866, 5.5h, 8 ECTS, 2023S Letzte Änderung: 25. Mai 2023 Quiz

Vorlesungsfolien

Optimierung: Roadmap

Branch-and-Bound

Dynamische Programmierung: Dynamische Programmierung kann dann eingesetzt werden, wenn das Problem aus vielen gleichartigen Teilproblemen besteht und eine optimale Lösung sich aus optimalen Lösungen der Teilprobleme zusammensetzt.

Approximation(salgorithmen)

Heuristische Verfahren

Grundlagen

Dynamische Programmierung: Teile das Problem in eine Folge von überlappenden Teilproblemen auf und erstelle und speichere Lösungen für immer größere Teilprobleme unter Verwendung der abgespeicherten Lösungen.

Optimalitätsprinzip von Bellman: Dynamische Programmierung führt zu einem optimalen Ergebnis genau dann, wenn es sich aus den optimalen Ergebnissen der Subprobleme zusammensetzt.

Effizienz: Hängt von der Vorgehensweise bei der Aufteilung und Ermittlung der Lösungen für die einzelnen Teilprobleme ab.

Wesentlicher Aspekt: Speicherung (memoization) von Ergebnissen für Subprobleme zur Wiederverwendung.

Beispiel: Weighted Independent Set auf Bäumen

Geschichte der dynamischen Programmierung

Bellman: [1950er] Leistete Pionierarbeit bei der systematischen Untersuchung der dynamischen Programmierung.

Etymologie:

- Dynamische Programmierung = Zeitablauf planen.
- Verteidigungsminister war ablehnend gegenüber mathematischer Forschung.
- Bellman suchte einen eindrucksvollen Namen, um eine Konfrontation zu vermeiden.

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Referenz: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Anwendung der dynamischen Programmierung

Bereiche:

- Bioinformatik
- Informationstheorie
- Operations Research
- Informatik: Theorie, Grafik, Künstliche Intelligenz, Compilerbau . . .

Einige bekannte Algorithmen:

- Bellman-Ford-Algorithmus für das Finden kürzester Pfade in Graphen
- Effiziente Methode für das Rucksack-Problem
- Needleman-Wunsch und Smith-Waterman Algorithmen für Genomsequenz-Alignment

Überblick

Einführendes Beispiel: Fibonacci

Gewichtetes Interval Scheduling

Segmented Least Squares

Rucksackproblem

Kürzeste Pfade

Einführendes Beispiel

Fibonacci-Zahlen

Folge von Fibonacci-Zahlen: $F_1 = F_2 = 1$ $F_n = F_{n-1} + F_{n-2}$ $\forall n \geq 3$

Einfacher rekursiver Algorithmus:

```
\begin{aligned} & \text{Fibonacci}(n)\colon\\ & \text{if } n=1 \text{ oder } n=2\\ & \text{return } 1\\ & \text{else}\\ & \text{return Fibonacci}(n-1) \,\,+\,\, \text{Fibonacci}(n-2) \end{aligned}
```

Fibonacci-Zahlen: Laufzeit

Gesamtanzahl der Aufrufe für die i-te Fibonacci-Zahl entspricht der i-ten Fibonacci-Zahl (Beispiele: $F_{10}=55$, $F_{20}=6765$, $F_{30}=832040$,

I: = # Blakes in Adorfbaum

#rch Adrafe = # innere Knoten =

Dynamische Programmierung (Rekursiv)

Speicherung: Die berechneten Fibonacci-Zahlen zwischenspeichern (z.B. in einem Array F) und in der Berechnung wiederverwenden.

```
for i \leftarrow 1 bis n
                             , top down"
  F[i] \leftarrow leer
                             ~ memoization
if F[n] ist leer F Mur, wenn Fn noch nie bentzt wurde
  if n=1 oder n=2
     \mathsf{F} \lceil n \rceil \leftarrow 1
  else
     F[n] \leftarrow Fibonacci(n-1) + Fibonacci(n-2)
return F[n]
```

Laufzeit: O(n) (maximal zwei rekursive Aufrufe pro Arrayeintrag)

Dynamische Programmierung (Iterativ)

Speicherung: Die berechneten Fibonacci-Zahlen zwischenspeichern (z.B. in einem Array F) und in der Berechnung wiederverwenden.

```
Linear-Fibonacci(n):

F[1] \leftarrow 1

F[2] \leftarrow 1

for i \leftarrow 3 bis n

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Laufzeit: O(n) (konstanter Aufwand für jeden Schleifendurchlauf)

Quiz

Frage 1:In welchem Bereich bewegt sich der Beschleunigungsfaktor des iterativen Algorithmus Linear-Fibonacci gegenüber dem einfachen rekursiven Algorithmus Fibonacci bei der Berechnung von F_{40} ?

- zwischen 10 und 1.000
- zwischen 1.000 und 100.000
- zwischen 100.000 und 10.000.000

■ zwischen 10.000.000 und 1.000.000.000

gemessen ca. 250.000

Quiz Auflösung

Frage 1:In welchem Bereich bewegt sich der Beschleunigungsfaktor des iterativen Algorithmus Linear-Fibonacci gegenüber dem einfachen rekursiven Algorithmus Fibonacci bei der Berechnung von F_{40} ?

- × zwischen 10 und 1.000
- × zwischen 1.000 und 100.000
- ✓ zwischen 100.000 und 10.000.000
- × zwischen 10.000.000 und 1.000.000.000

Gewichtetes Interval Scheduling

Gewichtetes Interval Scheduling

Gewichtetes Interval Scheduling:

- Job j startet zum Zeitpunkt s_j , endet zum Zeitpunkt f_j und hat ein Gewicht $w_j > 0$. \longrightarrow 2. S. Profit, wenn ausgeführt
- Zwei Jobs sind kompatibel, wenn sie sich nicht überlappen.
- Ziel: Finde eine Teilmenge maximalen Gewichts von paarweise kompatiblen Jobs.

Interval Scheduling: Rückblick

Wiederholung: Greedy-Algorithmus funktioniert, wenn alle Gewichte gleich 1 sind.

- Berücksichtige Jobs in aufsteigender Reihenfolge der Beendigungszeit.
- Füge Job zur Teilmenge hinzu, wenn er kompatibel mit dem zuvor ausgewählten Job ist.

Beobachtung: Greedy-Algorithmus scheitert, wenn beliebige Gewichte erlaubt sind.

Gewichtetes Interval Scheduling

2055 da, de, ..., da

Notation: Ordne Jobs aufsteigend sortiert nach Beendigungszeit: $f_1 \leq f_2 \leq \cdots \leq f_n$.

 $\mbox{ Definition: } p(j) = \mbox{gr\"{o}Bter Index } i < j \mbox{, sodass Job } i \mbox{ kompatibel zu Job } j \mbox{ ist.}$

Dynamische Programmierung: Binäre Auswahl

Notation: $OPT(j) = \text{Wert der optimalen L\"osung f\"ur das Problem, bestehend aus den Jobs } 1, 2, \dots, j.$

Wir unterscheiden zwei Fälle:

- Fall 1: OPT(j) wird erreicht mit einer Lösung, die den Job j enthält.
- Fall 2: OPT(j) wird erreicht mit einer Lösung, die den Job j nicht enthält.

Konsequenz:

- Fall 1: Die Lösung kann nicht die inkompatiblen Jobs $\{p(j)+1,p(j)+2,\ldots,j-1\}$ enthalten. Daher gilt dann $OPT(j)=w_j+OPT(p(j))$.
- Fall 2: Es gilt OPT(j) = OPT(j-1), da wir wissen, dass die Lösung den Job j nicht enthält. Also gilt:

$$OPT(j) = \left\{ \begin{array}{ll} 0 & \text{wenn } j = 0 \\ \max{\{w_j + OPT(p(j)), OPT(j-1)\}} & \text{sonst} \end{array} \right.$$

Gewichtetes Interval Scheduling: Brute-Force-Ansatz

Brute-Force-Algorithmus:

- Eingabe: n, s_1, \ldots, s_n , f_1, \ldots, f_n , w_1, \ldots, w_n
- Sortiere Jobs nach Beendigungszeit, sodass $f_1 \leq f_2 \leq \cdots \leq f_n$.
- Berechne $p(1), p(2), \ldots, p(n)$

```
Compute-Opt(j): if j=0 return 0 else return \max(w_j+\text{Compute-Opt}(p(j)), Compute-Opt(j-1))  \text{Tall } \land \text{Tall } \ge 1
```

Gewichtetes Interval Scheduling: Brute-Force-Ansatz

Beobachtung: Rekursiver Algorithmus ist ineffizient wegen redundanter Subprobleme \Rightarrow exponentieller Algorithmus.

Beispiel: Anzahl der rekursiven Aufrufe für eine Gruppe von schichtweise angeordneten Instanzen wächst wie eine Fibonacci-Folge.

Gewichtetes Interval Scheduling: Speicherung Memoization

Speicherung: Speichere Ergebnisse jedes Teilproblems in einem Cache. Berechnung nur, wenn noch nicht gespeichert.

Allgemein:

- Eingabe: n, s_1, \ldots, s_n , f_1, \ldots, f_n , w_1, \ldots, w_n
- Sortiere Jobs nach Beendigungszeit, sodass $f_1 \leq f_2 \leq \cdots \leq f_n$.
- Berechne $p(1), p(2), \ldots, p(n)$

globales Array

Gewichtetes Interval Scheduling: Laufzeit

Mijeden Vest p(i) eine bin. Sod

Behauptung: Version mit Speicherung benötigt $O(n \log n)$ Zeit.

- Sortiere nach Beendigungszeit: $O(n \log n)$.
- Berechne $p(\cdot)$: $O(n \log n)$ mittels binärer Suche (für jedes Intervall) auf der nach Beendigungszeit sortierten Folge.
- $\qquad \text{M-Compute-Opt(j): Jeder Aufruf ben\"{o}tigt } O(1) \text{ Zeit (ohne die Rekursion) und}$
 - (i) liefert entweder einen existierenden Wert M[j]
 - (ii) oder berechnet einen neuen Eintrag M[j] und macht zwei rekursive Aufrufe.
- Maß für den Fortschritt $\varphi = \text{die Anzahl der nicht leeren Einträge in M[]}.$
 - Am Anfang gilt $\varphi = 0$, danach $\varphi \leq n$.
 - (ii) Erhöht φ um 1. -> In((ii) frit new n-mal auf => 42n res.
- Die gesamte Laufzeit von M-Compute-Opt(n) ist O(n).

Gewichtetes Interval Scheduling: Bottom-up

Bottom-up dynamische Programmierung: Iterative Lösung.

Allgemein:

- Eingabe: n, s_1, \ldots, s_n , f_1, \ldots, f_n , w_1, \ldots, w_n .
- Sortiere Jobs nach Beendigungszeit, sodass $f_1 \leq f_2 \leq \cdots \leq f_n$.
- Berechne $p(1), p(2), \ldots, p(n)$

Idee: alle Vorgango- Iterative-Compute-Opt(): es gilt
$$p(j) < j$$
 $j-1 < j$ eintrage sind school berechnet $M[0] \leftarrow 0$ for $j \leftarrow 1$ bis n $M[j] \leftarrow \max(w_j + M[p(j)], M[j-1])$ there is a grift $M[j] \leftarrow \max(w_j + M[p(j)], M[j-1])$

Laufzeit: Die Laufzeit von Iterative-Compute-Opt liegt in O(n) (Schleife von 1 bis n).

ink l. Vosberchnung von p(.) und Sortieren dann O(n logn)

Gegeben:

- n = 6 Jobs mit Gewichten $w_i, i = 1 \dots n$.
- Jobs sind schon sortiert nach Beendigungszeit.

Quiz

Frage 2: Welche Jobs bilden die Lösungsmenge des Beispiels?

- **2**,5}
- \blacksquare $\{1, 2, 4, 5\}$
- **4**
- **4** {3, 6}

Quiz Auflösung

Frage 2:Welche Jobs bilden die Lösungsmenge des Beispiels?

- \checkmark {2,5}
- $\times \{1, 2, 4, 5\}$
- \times {4}
- \times $\{3,6\}$

Gewichtetes Interval Scheduling: Finden einer Lösung

Frage: Algorithmus berechnet den optimalen Wert. Wie bekommen wir aber die Lösung? Antwort: Durch eine Nachbearbeitung (Backtracking).

Ablauf:

- M-Compute-Opt(n) oder Iterative-Compute-Opt(n) ausführen
- Find-Solution(n) ausführen

```
\begin{aligned} & \text{Find-Solution}(j) \colon \\ & \text{if } j = 0 \\ & \text{Keine Ausgabe} \\ & \text{elseif } w_j + \text{M}[p(j)] > \text{M}[j-1] \\ & \text{Gib } j \text{ aus} \\ & \text{Find-Solution}(p(j)) \end{aligned} \qquad \\ & \text{hobey } \int_{\mathbb{T}} \text{ ansgranklf} \\ & \text{else} \\ & \text{Find-Solution}(j-1) \end{aligned} \qquad \\ & \text{J} j \text{ with ausgranklf} \end{aligned}
```

■ Anzahl der rekursiven Aufrufe $\leq n \Rightarrow$ Laufzeit O(n).

Ergebnis: 2 und 5.

Segmented Least Squares

Least Squares

~> Regressions gevade

- Fundamentales Problem in der Statistik und der Numerischen Analyse.
- Gegeben: n Punkte in der Ebene: $(x_1, y_1), \ldots, (x_n, y_n)$.
- Finde eine Gerade y = ax + b, welche die Summe des quadrierten Fehlers minimiert:

$$\mathsf{Err} = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Analytische Lösung: der minimale Fehler ist erreicht, wenn

$$a = \frac{n\sum_{i} x_{i}y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, b = \frac{\sum_{i} y_{i} - a\sum_{i} x_{i}}{n}$$

Segmented Least Squares

- Punkte durch eine Folge von Geradensegmenten annähern.
- Gegeben: n Punkte in der Ebene $(x_1, y_1), \ldots, (x_n, y_n)$ so dass $x_1 < x_2 < \cdots < x_n$,
- finde eine Folge von Geraden welche eine bestimmte Funktion f(x) minimiert.

Frage: Was ist eine angemessene Wahl für f(x)? Die Funktion f(x) sollte sowohl Genauigkeit als auch Sparsamkeit gewährleisten.

■ Höhe des Fehlers ■ Anzahl der Geraden

Segmented Least Squares

- Punkte durch eine Folge von Geradensegmenten annähern.
- Gegeben: n Punkte in der Ebene $(x_1,y_1),\ldots,(x_n,y_n)$ so dass $x_1 < x_2 < \cdots < x_n$,
- finde eine Folge von Geraden welche:
 - die Summe der quadrierten Fehler E in jedem Segment
 - die Anzahl der Geraden ${\it L}$

minimiert.

minimiert.

sestimat den trade-of

■ Tradeoff Funktion: E + cL, für eine Konstante c > 0.

Dynamischer Ansatz: Segmented Least Squares

Notation

Berechnen von OPT(j):

- OPT(j) = minimale Kosten für die Punkte $p_1, p_{i+1}, \ldots, p_j$
- \bullet $e(i,j) = \text{minimale Summe des quadrierten Fehlers für } p_i, p_{i+1}, \dots, p_j$

- letztes Segment nutzt die Punkte $p_i, p_{i+1}, \ldots, p_j$ für ein bestimmtes iKoston OPT(i-1) + e(i-i) + c(wir suchen das beste i) • Kosten = OPT(i-1) + e(i, j) + c

$$OPT(j) = \left\{ \begin{array}{ll} 0 & \text{falls } j = 0 \\ \min_{1 \leq i \leq j} \left\{ OPT(i-1) + e(i,j) + c \right\} & \text{sonst} \end{array} \right.$$
 have the short As letter to some bis j

Segmented Least Squares: Algorithmus

Segmented-Least-Squares(
$$P = \{p_1, p_2, \ldots, p_n\}$$
)
$$M[0] = 0$$

$$O(n^2) \begin{cases} \text{for } j \leftarrow 1 \text{ bis } n \\ \text{for } i \leftarrow 1 \text{ bis } j \end{cases}$$

$$\text{berechne Fehler } e(i,j) \text{ für Punkte } p_i, \ldots, p_j \end{cases}$$

$$O(n) \begin{cases} \text{for } j \leftarrow 1 \text{ to } n \\ \text{M[j]} = \min_{1 \leq i \leq j} \text{ (M[i-1]} + e(i,j) + c) \end{cases}$$

$$\text{return M[n]} O(n) Mös(.$$

Laufzeit. $O(n^3)$.

- Flaschenhals ist das Berechnen von e(i,j) für $O(n^2)$ Paare, O(n) pro Paar mit der Formel für Least Squares.
- Finden einer Lösung analog zu Interval Scheduling durch Rückverfolgen der Minimierung
 - \blacksquare Kann mithilfe geschickterer Vorberechnung und Wiederverwendung von Zwischenergebnissen zu $O(n^2)$ verbessert werden.

Zwischenfazit

- · wir betrachten polynomielle Anzahl Teilprobleme (Arraygröße)
- optimale Lösung lässt sich ans opt. Lösungen geeigneter Teilprobleme zu sammen setzen
- · Teilprobleme lassen sich von klein mich groß anfzühlen und rekursir lösen, d.h.

for
$$j=1,...,n$$

$$[M[j] = \int (M[n],...,M[j-1]) //2.B. \text{ binare Answahl oder}$$

$$[M[n] = M[n]$$

$$[M[n] = M[n]$$

a Rehonstruktion des besten lösung (nicht nes des Westes) darch Backtracking