Prova scritta di Ricerca Operativa

Corso di Laurea in Ingegneria Informatica e Automatica

11 giugno 2020

Istruzioni

- Usate i fogli bianchi allegati per calcoli, ragionamenti e quanto altro reputiate necessario fare per rispondere alle 10 domande seguenti.
- Per ciascuna delle 10 domande indicare in corrispondenza di ciascuna delle affermazioni a), b),
 c) e d) se essa è VERA o FALSA, apponendo un segno sul rettangolo VERO o sul rettangolo FALSO sul foglio risposte.
- Ricordatevi di scrivere su tale *foglio risposte* tutte le informazioni richieste ed in particolare il vostro nome e cognome (i fogli senza nome e cognome saranno cestinati e dovrete ripetere l'esame in un'altra sessione).
- Avete un'ora esatta di tempo per svolgere gli esercizi. Al termine del tempo dovete consegnare il solo foglio risposte (potete tenere il testo delle domande e i fogli bianchi).
- Ricordatevi di segnare esattamente sui fogli che rimarranno a voi le risposte che avete dato in modo da potervi autovalutare una volta che vi verrà fornita la soluzione.
- Scaduta l'ora rimanete seduti. Passeremo a raccogliere i fogli risposte. Chi non consegna immediatamente il foglio al nostro passaggio non avrà altra possibilità di consegna e dovrà ripetere l'esame in un altro appello.
- ATTENZIONE. Durante la prova di esame:
 - Non è possibile parlare, per nessuna ragione, con i vostri colleghi.
 - Non è possibile allontanarsi dall'aula.
 - Non si possono usare telefoni cellulari
 - Non si possono usare calcolatrici, palmari o simili
 - Non è possibile usare dispense, libri o appunti.

Chi contravviene anche a una sola di queste regole dovrà ripetere la prova di esame in altro appello.

Valutazione

- Per ogni affermazione VERO/FALSO correttamente individuata viene assegnato 1 punto
- Per ogni affermazione VERO/FALSO non risposta vengono assegnati 0 punti
- Per ogni affermazione VERO/FALSO NON correttamente individuata viene assegnato un punteggio negativo pari a -0.25 punti

Supera la prova chi totalizza un punteggio pari ad almeno 28 punti

- 1. Sia dato un poliedro $P \subseteq \mathbb{R}^n$.
- \mathbf{V} (a) P può essere illimitato.
- \mathbf{F} \mathbf{F} (b) P può avere infiniti vertici.
- \checkmark \checkmark (c) P può essere l'insieme vuoto.
- \mathbf{F} \mathbf{F} (d) se P non contiene rette allora non ammette vertici.
 - 2. Al termine della Fase I del metodo del Simplesso si ha $x_B = (\alpha_2, x_2, x_4)^T$, $x_N = (\alpha_1, x_1, \alpha_3, x_3)^T$, $B^{-1}b = (0, 1, 6)^T$,

$$B^{-1}N = \left(\begin{array}{cccc} -7 & 0 & 3 & 0 \\ 2 & 1 & 7 & 0 \\ 11 & 0 & 4 & 1 \end{array}\right).$$

- \digamma (a) Una prima base ammissibile da cui far partire la Fase II del metodo del Simplesso è $\{x_2, x_4\}$.
- \checkmark (b) Una prima base ammissibile da cui far partire la Fase II del metodo del Simplesso è $\{x_3, x_2, x_4\}$.
- \digamma \digamma (c) La matrice A del problema originario ha rango massimo.
- V (d) Sulla base delle informazioni date, si può concludere che il problema originario non è ammissibile.
 - 3. Si consideri un problema di Programmazione Lineare (PL) in forma di minimo.
- √ f (a) L'insieme delle soluzioni ottime di (PL) è un poliedro.
- ✓ (b) L'insieme delle soluzioni ottime di (PL) è un iperpiano.
- F (c) L'insieme delle soluzioni ottime di (PL) è un politopo.
- \digamma \lor (d) Se (PL) non è illimitato inferiormente allora ammette certamente soluzione ottima.
 - 4. Si considerino un insieme convesso $C \subseteq \mathbb{R}^n$ ed un poliedro $P \subseteq \mathbb{R}^n$.
- \digamma \digamma (a) $P \cap C$ è un poliedro.
- \bigvee \bigvee (b) $P \cap C$ è un insieme convesso.
- \digamma \wp (c) $P \cup C$ è un politopo.
- \mathbf{F} \mathbf{F} (d) $P \cup C$ è un insieme convesso.
 - 5. Si consideri il problema di Programmazione Lineare $\min\{c^Tx: Ax \geq b\}$, con $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, ed un punto ammissibile \bar{x} .
- \digamma (a) In \bar{x} sono sicuramente attivi almeno n vincoli.
- \digamma (b) Il problema non può essere illimitato inferiormente.
- \checkmark \vdash (c) Se m < n allora il problema non può ammettere soluzione ottima.
- (d) Se in \bar{x} sono attivi n vincoli allora \bar{x} è un vertice del poliedro che descrive l'insieme ammissibile.
 - 6. Si consideri un problema di Programmazione Lineare Intera $\min\{c^Tx \mid x \in P \cap \mathbf{Z}^n\}$ con $P = \{x \in \mathbb{R}^n \mid Ax \geq b, \ x \geq 0\}$ e $x \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n}, \ c \in \mathbb{R}^n, \ b \in \mathbb{R}^m$
- \bigvee (a) P è una formulazione lineare del problema.

- \checkmark (b) La formulazione ottima del problema è costituita dal più piccolo insieme convesso che contiene $P \cap \mathbf{Z}^n$
- \bigvee (c) Se P è la formulazione ottima del problema, allora P ha tutti i vertici interi.
- **V** (d) <u>Per qualsiasi valore di b</u> la unimodularità della matrice A è condizione necessaria e sufficiente affiché P abbia tutti i vertici interi.
 - 7. Si consideri un poliedro $P \subseteq \mathbb{R}^n$, un problema di Programmazione Lineare $\min\{c^T x : x \in P\}$ ed un punto $\bar{x} \in P$.
- **f F** (a) È sempre possibile determinare un vertice $v \in P$ tale che $c^T v \leq c^T \bar{x}$.
- rackleft (b) Se P non contiene rette, è sempre possibile determinare un vertice $v \in P$ tale che $c^T v \leq c^T \bar{x}$.
- ✓ (c) Se P non è illimitato, è sempre possibile determinare un vertice $v \in P$ tale che $c^T v \le c^T \bar{x}$.
- V (d) Se il problema è illimitato inferiormente, è sempre possibile determinare un punto $\tilde{x} \in P$ tale che $c^T \tilde{x} < c^T \bar{x}$.
 - 8. Sia Dato un problema di Programmazione Lineare in forma standard.
- V (a) Ad esso è sempre possibile applicare la Fase I del metodo del Simplesso.
- **V** (b) Non sempre è necessario applicare la Fase I del metodo del Simplesso per risolvere il problema.
- **F** (c) La Fase I del metodo del Simplesso può terminare con l'indicazione di problema illimitato inferiormente.
- **F** (d) La Fase I del metodo del Simplesso determina sempre una prima SBA del problema originario.
 - 9. In una iterazione della Fase I del metodo del Simplesso si ha $x_B = (x_3, \alpha_1, x_5)^T$, $x_N = (x_1, x_2, \alpha_3, \alpha_2, x_4)^T$ e $B^{-1}b = (3, 0, 1)^T$.
- 🗲 🌔 (a) Si può concludere che la SBA attuale del problema artificiale è ottima.
- F (b) Il criterio di ottimalità è certamente verificato.
- (c) Si può concludere che il problema originario ammette almeno una soluzione ammissibile.
- F (d) Si può concludere che il problema originario non ammette soluzione.
 - 10. In una iterazione della Fase II del metodo del Simplesso si ha $x_B = (x_1, x_3, x_5)^T$, $x_N = (x_2, x_6, x_4, x_7)^T$, $\gamma^T = (\beta, 2, 4, 1)$, $\beta^{-1}b = (3, 0, 0)^T$,

$$B^{-1}N = \left(\begin{array}{rrrr} -7 & 0 & 3 & 0 \\ 2 & 1 & 7 & 0 \\ 11 & 0 & 4 & 1 \end{array}\right).$$

- ϵ (a) Per ogni $\beta \geq 0$ la SBA corrente è l'unica soluzione ottima.
- \mathbf{V} (b) Per $\beta = -1$ la successiva SBA sarà certamente degenere.
- \mathbf{f} \mathbf{g} (c) Per $\beta = -1$ il valore del $\bar{\rho}$ ottenuto mediante il criterio del rapporto minimo è negativo.
- V (d) Per $\beta < 0$ le variabili candidate ad uscire dalla base sono x_3 e x_5 .