ASSIGNMENT I: THE AIYGARI MODEL

Vision: This project teaches you to solve for the *stationary equilibrium* in a neoclassical-style heterogeneous agent model and analyze the economic results.

- **Problem:** The problem consists of
 - 1. A number of questions (page 2)
 - 2. A model (page 3 onward, incl. solution tricks)
- **Code:** The problem is designed to be solved with the *GEModelTools* package.
- Structure: Your project should consist of
 - 1. A single self-contained pdf-file with all results
 - 2. A single Jupyter notebook showing how the results are produced
 - 3. Well-documented .py files
- **Hand-in:** Upload a single zip-file on Absalon (and nothing else)
- Deadline: 14th of October 2022
- Exam: Your Aiygari-project will be a part of your exam portfolio. You can incorporate feedback before handing in the final version.

Questions

1. Define the stationary equilibrium for the model on the next page

2. Solve for the stationary equilibrium

Show aggregate quantities and prices

Illustrate household behavior

Note: You can restrict attention to equilibria with a positive real interest rate

3. Illustrate how changes in the tax rates affect the stationary equilibrium

4. Discuss the social optimal level of taxation

Begin with average household utility as a social welfare criterion

Other aspects of social welfare can also be introduced

Note: Searching over a fixed grid of tax rates is fine

5. Suggest and implement an extension which improves the tax system

The definition of »improves« is up to you

1. Model

Households. The model has a continuum of infinitely lived households indexed by $i \in [0,1]$. Households are *ex ante* heterogeneous in terms of their dis-utility of labor, φ_i , and their time-invariant productivity, ζ_i . Households are *ex post* heterogeneous in terms of their time-varying stochastic productivity, z_t , and their (end-of-period) savings, a_{t-1} . The distribution of households over idiosyncratic states is denoted \underline{D}_t before shocks are realized and D_t afterwards. Households choose to supply labor, ℓ_t , and consumption, c_t . Households are not allowed to borrow. The real interest rate is r_t , the real wage is w_t , and real-profits are Π_t . Interest-rate income is taxed with the rate $\tau_t^a \in [0,1]$ and labor income is taxed with the rate $\tau_t^\ell \in [0,1]$.

The household problem is

$$v_{t}(z_{t}, a_{t-1}) = \max_{c_{t}, \ell_{t}} \frac{c_{t}^{1-\sigma}}{1-\sigma} - \varphi_{i} \frac{\ell_{t}^{1+\nu}}{1+\nu} + \beta \mathbb{E} \left[v_{t+1}(z_{t+1}, a_{t}) \mid z_{t}, a_{t} \right]$$
s.t. $a_{t} + c_{t} = (1 + \tilde{r}_{t}) a_{t-1} + \tilde{w}_{t} \ell_{t} \zeta_{i} z_{t} + \Pi_{t}$

$$\log z_{t+1} = \rho_{z} \log z_{t} + \psi_{t+1} , \psi_{t} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \mathbb{E}[z_{t}] = 1$$

$$a_{t} \geq 0$$

$$(1)$$

where $\tilde{r}_t = (1 - \tau_t^a)r_t$ and $\tilde{w}_t = (1 - \tau_t^\ell)w_t$. Aggregate quantities are

$$L_t^{hh} = \int \ell_t \zeta_i z_t d\mathbf{D}_t \tag{2}$$

$$C_t^{hh} = \int c_t dD_t \tag{3}$$

$$A_t^{hh} = \int a_t dD_t \tag{4}$$

Firms. A representative firm rents capital, K_{t-1} , and hire labor, L_t , to produce goods, with the production function

$$Y_t = \Gamma K_{t-1}^{\alpha} L_t^{1-\alpha} \tag{5}$$

where Γ is technology. Capital depreciates with the rate $\delta \in (0,1)$. The real rental price of capital is r_t^K and the real wage is w_t . Profits are

$$\Pi_t = Y_t - w_t L_t - r_t^K K_{t-1} \tag{6}$$

The law-of-motion for capital is

$$K_t = (1 - \delta)K_{t-1} + I_t \tag{7}$$

The households own the representative firm in equal shares.

Government. The budget constraint for the government is

$$B_{t} = (1 + r_{t}^{B})B_{t-1} + G_{t} - \int \left[\tau_{t}^{a}r_{t}a_{t-1} + \tau_{t}^{\ell}w_{t}\ell_{t}\zeta_{i}z_{t}\right]d\mathbf{D}_{t}$$

$$= (1 + r_{t}^{B})B_{t-1} + G_{t} - \tau_{t}^{a}r_{t}A_{t}^{hh} - \tau_{t}^{\ell}w_{t}L_{t}^{hh}$$
(8)

where G_t is exogenous government spending not entering household utility, B_t is (end-of-period) government bonds, and r_t^B is the real interest rate on government bonds.

Market clearing. Arbitrage implies that all assets must give the same rate of return

$$r_t = r_t^B = r_t^K - \delta \tag{9}$$

Market clearing implies

- 1. Labor market: $L_t = L_t^{hh}$
- 2. Goods market: $Y_t = C_t^{hh} + I_t + G_t$
- 3. Asset market: $K_t + B_t = A_t^{hh}$

2. Calibration

The parameters and steady state government behavior are as follows:

1. Preferences and abilities: $\beta = 0.96$, $\sigma = 2$, $\varphi_i \in \{0.9, 1.1\}$, $\nu = 1.0$, $\zeta_i \in \{0.9, 1.1\}$

$$Pr[\varphi_i = 0.9, \zeta_i = 0.9] = 0.25$$

$$Pr[\varphi_i = 1.1, \zeta_i = 0.9] = 0.25$$

$$Pr[\varphi_i = 0.9, \zeta_i = 1.1] = 0.25$$

$$Pr[\varphi_i = 1.1, \zeta_i = 1.1] = 0.25$$

2. **Income:** $\rho_z = 0.96$, $\sigma_{\psi} = 0.15$

3. **Production:** $\Gamma = 1$, $\alpha = 0.3$, $\delta = 0.1$

4. **Government:** $G_{ss} = 0.30$, $\tau_{ss}^{a} = 0.1$, $\tau_{ss}^{\ell} = 0.30$

3. Finding the steady state

Let $K_{ss} = K_{ss}/L_{ss}$ denote the steady state capital-labor ratio.

From a guess on \mathcal{K}_{ss} we can derive:

- 1. Calculate $r_{ss}^K = \alpha \Gamma \left(\mathcal{K}_{ss} \right)^{\alpha 1}$
- 2. Calculate $w_{ss} = (1 \alpha)\Gamma (\mathcal{K}_{ss})^{\alpha}$
- 3. Calculate $r_{ss} = r_{ss}^B = r_{ss}^K \delta$
- 4. Solve and simulate household problem to obtain A_{ss}^{hh} and L_{ss}^{hh}
- 5. Calculate $B_{ss} = \frac{\tau_{ss}^a r_{ss} A_{ss}^{hh} + \tau_{ss}^\ell w_{ss} L_{ss}^{hh} G_{ss}}{r_{ss}^B}$
- 6. Calculate $L_{ss} = L_{ss}^{hh}$
- 7. Calculate $K_{ss} = \mathcal{K}_{ss} L_{ss}$

We then only need to check the asset market clearing condition:

$$K_{ss} + B_{ss} - A_{ss}^{hh} = 0$$

We can also derive a *lower* and an *upper* bound on K_{ss} . From ensuring a positive real interest rate, we get

$$r_{ss} > 0 \Leftrightarrow r_{ss}^{K} - \delta > 0 \Leftrightarrow \mathcal{K}_{ss} > \left(\frac{\delta}{\alpha \Gamma}\right)^{\frac{1}{\alpha - 1}}$$

From ensuring the real interest rate is not too high relative to the household discount factor, we get

$$1 + r_{ss} < rac{1}{eta} \Leftrightarrow r_{ss}^K - \delta < rac{1}{eta} - 1 \Leftrightarrow \mathcal{K}_{ss} < \left(rac{rac{1}{eta} - 1 + \delta}{lpha \Gamma}
ight)^{rac{1}{lpha - 1}}$$

4. Solving the household problem

The following provides a recipe for solving the household problem for fixed $\varphi_i = \varphi$ and $\zeta_i = \zeta$.

The envelope condition implies

$$\underline{v}_{a,t+1}(z_{t-1}, a_{t-1}) = \mathbb{E}\left[(1 + \tilde{r}_t)c_t^{-\rho} \,|\, z_{t-1}, a_{t-1} \right]$$
(10)

The first order conditions imply

$$c_t = (\beta \underline{v}_{a,t+1}(z_t, a_t))^{-\frac{1}{\sigma}}$$
(11)

$$\ell_t = \left(\frac{\tilde{w}_t \zeta_i z_t}{\varphi_i}\right)^{\frac{1}{\nu}} c_t^{-\sigma/\nu} \tag{12}$$

The household problem can be solved with an extended EGM:

- 1. Calculate c_t and ℓ_t over end-of-period states from FOCs
- 2. Construct endogenous grid $m_t = c_t + a_t \tilde{w}_t \ell_t \zeta_i z_t$
- 3. Use linear interpolation to find consumption $c^*(z_t, a_{t-1})$ and labor supply $\ell^*(z_t, a_{t-1})$ with $m_t = (1 + \tilde{r}_t)a_{t-1}$
- 4. Calculate savings $a^*(z_t, a_{t-1}) = (1 + \tilde{r}_t)a_{t-1} + \tilde{w}_t \ell_t^* \zeta_i z_t c_t^*$
- 5. If $a^*(z_t, a_{t-1}) < 0$ set $a^*(z_t, a_{t-1}) = 0$ and search for ℓ_t such that $f(\ell_t) \equiv \ell_t \left(\frac{\tilde{w}_t z_t}{\varphi_i}\right)^{\frac{1}{\nu}} c_t^{-\sigma/\nu} = 0$ holds and $c_t = (1 + \tilde{r}_t) a_{t-1} + \tilde{w}_t \ell_t \zeta_i z_t$. This can be done with a Newton solver with an update from step j to step j+1 by

$$\begin{split} \ell_t^{j+1} &= \ell_t^j - \frac{f(\ell_t)}{f'(\ell_t)} \\ &= \ell_t^j - \frac{\ell_t - \left(\frac{\tilde{w}_t z_t}{\varphi_i}\right)^{\frac{1}{\nu}} c_t^{-\sigma/\nu}}{1 - \left(\frac{\tilde{w}_t z_t}{\varphi_i}\right)^{\frac{1}{\nu}} \left(-\sigma/\nu\right) \frac{\partial c_t}{\partial \ell_t}} \\ &= \ell_t^j - \frac{\ell_t - \left(\frac{\tilde{w}_t z_t}{\varphi_i}\right)^{\frac{1}{\nu}} c_t^{-\sigma/\nu}}{1 - \left(\frac{\tilde{w}_t z_t}{\varphi_i}\right)^{\frac{1}{\nu}} \left(-\sigma/\nu\right) c_t^{-\sigma/\nu - 1} \tilde{w}_t \zeta_i z_t} \end{split}$$

The next page contains a code snippet with $\zeta_i z_t = 1$ you can base your code on.

```
1 # a. prepare
2 | fac = (wt/varphi)**(1/nu)
3
4 # b. use FOCs
5 c_endo = (beta*vbeg_a_plus)**(-1/sigma)
6 ell_endo = fac*(c_endo)**(-sigma/nu)
8 # c. interpolation
9 m_endo = c_endo + a_grid - wt*ell_endo
10 \mid m_{exo} = (1+rt)*a_{grid}
11 c = np.zeros(Na)
12 interp_1d_vec(m_endo,c_endo,m_exo,c)
13 ell = np.zeros(Na)
14 interp_1d_vec(m_endo,ell_endo,m_exo,ell)
15
16 \mid a = m_exo + wt*ell - c
17
18 # d. refinement at borrowing constraint
19 for i_a in range(Na):
20
21
      if a[i_a] < 0.0:
22
23
           # i. binding constraint for a
24
           a[i_a] = 0.0
25
           # ii. solve FOC for ell
26
27
           elli = ell[i_a]
28
29
           it = 0
30
           while True:
31
32
               ci = (1+rt)*a_grid[i_a] + wt*elli
33
34
               error = elli - fac*ci**(-sigma/nu)
35
               if np.abs(error) < tol_ell:</pre>
36
                    break
37
                    derror = 1 - fac*(-sigma/nu)*ci**(-sigma/nu-1)*wt
38
39
                    elli = elli - error/derror
40
41
               it += 1
42
               if it > max_iter_ell: raise ValueError('too many iterations')
43
           # iii. save
44
45
           c[i_a] = ci
           ell[i_a] = elli
46
```

Listing 1: Extended EGM