ETH zürich

Framework for stochastic analysis of mixedcriticality scheduling

Luca Stalder

Advisors: Stefan Drašković, Dr. Rehan Ahmed

Supervising Professor: Prof. Dr. Lothar Thiele,

Computer Engineering and Networks Laboratory

Mixed Criticality

```
■ Task = \tau_i(
\chi_i: Criticality ∈ {LO, HI}
T_i: Period,
C(LO): LO-mode Worst-case execution time (WCET),
C(HI): HI-mode WCET,
D_i: Deadline)
```


Stochastic Analysis

Motivation

«Build an extensible framework

offering a wide range of analysis tools,

covering and comparing different scheduling

schemes.»

The Framework

Task Set Synthesis

Task Set Synthesis

MC-FairGen with Weibull Distributions

Task Set 0: #Tasks LO/HI: (2/4) Utils LO/HI/Avg: (0.8/0.601/0.273)

Exceedance Probabilities

 $C(LO): 10^{-5}$

C(HI): 10^{-9}

Stochastic Analysis

Convolution

Shrinking

Backlog Analysis

→ Animation: Iterative backlog computation

pAMC-BB

pAMC-BB

Mode switch

- Triggered on C(LO) budget overrun
- Kill all LO-critical jobs

LO-mode

Monitor execution times

Black Box

Degradation

After fixed duration, reset system

pAMC-BB

Analysis:

- Find response time distribution for every job using convolution and shrinking.
- 2. Compare resulting response time PMF with job deadline to get job-specific deadline miss probability.
- 3. For every task, check: $reltime_{LO} \times DMP_{LO} + reltime_{HI} \times DMP_{BB} \leq Threshold$

Lines of Python Code: ~30 + reusable methods

Visualization

Visualization: Deterministic vs. Probabilistic

Evaluation: MC-Fairgen (n=1000)

Time measured: 1h 21min 28s, Intel i5-7600K, 4 cores @ 3.8 GHz

Monte-Carlo Simulation

Visualization: Monte-Carlo Simulation

Evaluation: Monte Carlo Schemes (n=1000)

Time measured: 23h 20min 13s, Intel i5-7600K, 4 cores @ 3.8 GHz

Conclusion

- Still at the beginning!
- Future work:
 - Task Set Synthesis (distributions, influence of different parameters)
 - Stochastic HI-mode analysis
 - Expand on related topics (e.g. energy uncertainty)

Discussion

