Sanket Shah

Website: sanketkshah.github.io Email: sanketshah@g.harvard.edu

EDUCATION

Harvard University

2020 - Current

Ph.D., Computer Science, Advisor: Milind Tambe

Cambridge, MA

Birla Institute of Technology and Science, Pilani

2013 - 2017

BE (Hons.), Computer Science

Rajasthan, India

- GPA: 9.02/10, Merit Scholarship, Graduated with Distinction

EXPERIENCE

Harvard University

2020 - Current

Graduate Research Assistant, Advisor: Prof. Milind Tambe

Cambridge, MA

- Conducting research in algorithmic decision-making, especially as it applies to challenges in public health.

Amazon Research

Summer 2024

Applied Scientist Intern

Seattle, WA

- Working on Reinforcement Learning and Decision-Focused Learning for Supply Chain Optimization.

Google Research India

Summer 2023

Research Intern, Advisor: Aparna Taneja

Bangalore, India

 Authored a methods paper that will allow the scaling of machine learning-based mobile health interventions to millions of beneficiaries.

ARMMAN Spring 2023

Research Intern, Advisor: Neha Madhiwalla

Mumbai, India

 Authored a workshop paper on 'low-listenership prediction' for the NGO's Kilkari program, one of the largest mobile health programs in the world.

Singapore Management University

2018 - 2020

Research Engineer, Advisor: Prof. Pradeep Varakantham

Singapore

 Authored two first-author research papers that use Reinforcement Learning (RL) to address Sequential Decision Making problems that underlie societal challenges in Transportation and Security.

Microsoft Research India

Spring 2017

Research Intern, Advisor: Dr. Colin Scott and Dr. Bill Thies

Bangalore, India

— Helped build an Android app to augment local peer-to-peer file transfer like Bluetooth (a substitute to the internet for media acquisition in low resource communities) by creating a barter economy. Helped pilot the application in a village in Bihar, India along with my advisor and local partners from the region.

Microsoft Research India

Fall 2016

Research Intern, Advisor: Dr. Sundararajan Sellamanickam

Bangalore, India

Investigated the 'explainability' of Recurrent Neural Networks in terms of compositional linguistic structures like
'and' and 'but' for the task of Sentiment Analysis in English.

Work in Progress

[WiP1] N. Boehmer*, Y. Nair*, S. Shah*, L. Janson, A. Taneja, and M. Tambe, "Evaluating the Effectiveness of Index-Based Treatment Allocation", In Submission, 2024.

Rigorously Reviewed Conference Publications

- [C11] S. Verma, Y. Zhao, S. Shah, N. Boehmer, A. Taneja, and M. Tambe, "Group Fairness in Predict-Then-Optimize Settings for Restless Bandits", The Conference on Uncertainty in Artificial Intelligence (UAI), 2024.
- [C10] S. Shah, A. Suggala, M. Tambe, and A. Taneja, "Efficient Public Health Intervention Planning Using Decomposition-Based Decision-Focused Learning", International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2024.
 - [C9] S. Shah, A. Perrault, B. Wilder, and M. Tambe, "Leaving the Nest: Going Beyond Local Loss Functions for Predict-Then-Optimize", Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI), 2024.
 - [C8] K. Wang, S. Verma, A. Mate, S. Shah, A. Taneja, N. Madhiwalla, A. Hegde, and M. Tambe, "Decision-Focused Learning in Restless Multi-Armed Bandits with Application to Maternal and Child Care Domain", Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 2023.
 - [C7] S. Shah, B. Wilder, A. Perrault, and M. Tambe, "Decision-Focused Learning without Differentiable Optimization: Learning Locally Optimized Decision Losses", Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [C6] S. Shah, M. Lowalekar, and P. Varakantham, "Joint Pricing and Matching for City-Scale Ride-Pooling", in *International Conference on Automated Planning and Scheduling (ICAPS)*, 2022.
- [C5] K. Wang, S. Shah, H. Chen, A. Perrault, F. Doshi-Velez, and M. Tambe, "Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Problems by Reinforcement Learning", Advances in Neural Information Processing Systems (NeurIPS), 2021.
- [C4] J. A. Killian, A. Biswas, S. Shah, and M. Tambe, "Q-Learning Lagrange Policies for Multi-Action Restless Bandits", in *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD)*, 2021.
- [C3] N. Raman, S. Shah, and J. Dickerson, "Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling", in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI), 2021.
- [C2] S. Shah, M. Lowalekar, and P. Varakantham, "Neural Approximate Dynamic Programming for On-Demand Ride-Pooling", in *Proceedings of 34rd AAAI Conference on Artificial Intelligence* (AAAI), 2020.
- [C1] S. Shah, A. Sinha, P. Varakantham, A. Perrault, and M. Tambe, "Solving Online Threat Screening Games using Constrained Action Space Reinforcement Learning", in *Proceedings of 34rd AAAI Conference on Artificial Intelligence (AAAI)*, 2020.

^{*} indicates equal contribution

Workshop Papers

[W1] S. Shah, S. Verma, A. Mahale, K. M. Sudan, A. Hegde, A. Taneja, and M. Tambe, "Preliminary results in low-listenership prediction in one of the largest mobile health programs in the world", in *Autonomous Agents for Social Good Workshop (AAMAS)*, 2023.

Demonstrations

[D1] A. Kumar, S. Shah, M. Lowalekar, P. Varakantham, A. Ottley, and W. Yeoh, "FairVizARD: A Visualization System for Assessing Fairness of Ride-Sharing Matching Algorithms", in *International Conference on Automated Planning and Scheduling (ICAPS)*, 2021.

Professional Service

- Conference PC Member: AAAI ('23, '24), IJCAI ('23, '24), NeurIPS ('23), ICLR ('23), ICML ('24), EAAMO ('22)
- Workshop PC Member: Autonomous Agents for Social Good at AAMAS ('20, '21), AI for Social Good at Harvard CRCS ('20)
- Top Reviewer recognition for NeurIPS '23

TEACHING

• **Head Teaching Fellow**, Harvard University CS 120: Algorithms and their Limitations

Fall 2021

- This was the first offering of the course. Helped design the course, managed undergraduate course assistants and course logistics, lead section, held office hours, designed and graded problem sets.