SEQUENCE LISTING

<110> Takara Shuzo Co., Ltd.

 $\langle 120 \rangle$ A method for amplification of nucleic acids 5

1 1	<130>
Jon Jones Jon Maril Jones Jones Jones	<150> JP 11-076966
uj 10 uj	<151> 1999-03-19
#	<150> JP 11-370035
	<151> 1999-12-27
15	<150> JP 2000-25198

31

<151> 2000-08-23

<150> JP 2000-284419

<151> 2000-09-19

20

<150> JP 2000-288750

<151> 2000-09-22

<150> JP 2001-104191

<151> 2001-04-03 25

<150> PCT/JP00/01534 <151> 2000-03-14 <160> 290 5 <210> 1 <211> 99 <212> DNA Ų. 10 <213> Artificial Sequence ui ai The first that the first <220> $\langle 223 \rangle$ Synthetic DNA corresponding to a portion of human transferrin receptor-encoding sequence used as a template 15 <400> 1 ggacagcaac tgggccagca aagttgagaa actcacttta gagaattctg ctttcccttt 60 99 ccttgcatat tctgagcagt ttctttctgt ttttgcgag <210> 2 20 <211> 22 <212> DNA <213> Artificial Sequence

25

<220>

		<223> Designed oligonucleotide primer to amplify a portion of h	numan
		transferrin receptor-encoding sequence	
		<400> 2	
	5	cagcaactgg gccagcaaag tt	22
The state of the s		<210> 3	
		<211> 22	
4		<212> DNA	
u u	10	<213> Artificial Sequence	
II) s			
L! Q) R:		<220>	
		<223> Designed oligonucleotide primer to amplify a portion of h	uman
		transferrin receptor-encoding sequence	
	15		
		<400> 3	
		gcaaaaacag aaagaaactg ct	22
		<210> 4	
	20	<211> 22	
		<212> DNA	
		<213> Artificial Sequence	
		(900)	
	2.5	<220>	
	25	(223) Designed chimeric oligonucleotide primer to amplify a portion	٥f

		human transferrin receptor-encoding sequence. "nucleotide 21	is
		ribonucleotide-other nucleotides are deoxyribonucleotides"	
		<400> 4	
	5	cagcaactgg gccagcaaag ut	22
= 1		<210> 5	
L) L)		<211> 22	
		<212> DNA	
A.	10	<213> Artificial Sequence	
I)			
=1 11		<220>	
1		<223> Designed chimeric oligonucleotide primer to amplify a portion	of
= }		human transferrin receptor-encoding sequence. "nucleotide 21	is
	15	ribonucleotide-other nucleotides are deoxyribonucleotides"	
		<400> 5	
		gcaaaaacag aaagaaactg ct	22
	20	<210> 6	
		<211> 22	
		<212> DNA	

<213> Artificial Sequence

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotide 22 is ribonucleotide-other nucleotides are deoxyribonucleotides"

5 <400> 6

cagcaactgg gccagcaaag tu

22

<210> 7

<211> 22

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotide 22 is ribonucleotide-other nucleotides are deoxyribonucleotides"

<400> 7

gcaaaaacag aaagaaactg cu

22

20

<210> 8

<211> 22

<212> DNA

<213> Artificial Sequence

41
L)
IJ.
U
L.
Ų
Ū
:3
Ľ!
Ũ1
N
IJ
<u></u>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5

<400> 8

cagcaactgg gccagcaaag uu

22

<210> 9

10

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

15

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 9

20 gcaaaaacag aaagaaactg cu

22

<210> 10

<211> 22

<212> DNA

25 <213> Artificial Sequence

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 10

cagcaactgg gccagcaaag tt

22

10 <210> 11

5

The first condition from the first feet from the from the first fr

<211> 22

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 11

gcaaaaacag aaagaaacug ct

22

<210> 12

<211> 26

25 <212> DNA

<213>	Artificial	Sequence
-------	------------	----------

<223> Designed oligonucleotide used as a probe for detecting an amplified portion of human transferrin receptor-encoding sequence

<400> 12

tgctttccct ttccttgcat attctg

26

10 <210> 13

5

Ų

W M

<211> 25

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as pUC19
upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to
25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 13

attgcttaat cagtgaggca cctau

25

<210> 14

<211> 25

25 <212> DNA

and the first section was the section of the first first territory.

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC195 lower NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 14

gataacactg cggccaactt actuc

25

10

<210> 15

<211> 25

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20

<400> 15

actggcgaac tacttactct agcuu

25

<210> 16

25 〈211〉 25

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as pUC19 lower 542 to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 16

10 agtcaccagaa aagcatctta cggau

25

<210> 17

<211> 25

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 17

gctcatgaga caataaccct gataa

25

25 <210> 18

<211> 25

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed oligonucleotide primer designated as pUC19 upper 150 to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 18

ggtgtcacgc tcgtcgtttg gtaug

25

<210> 19

<211> 25

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 lower NN to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 19

gataacactg cggccaactt acuuc

25

12/158

[]
4)
Ľ!
Į.
U1
L
Ų.
ij
æ
(I)
M
L.
ļ=:

<210> 2	20
---------	----

<211> 25

<212> DNA

<213> Artificial Sequence

5

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper 249 to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10

<400> 20

cgcctccatc cagtctatta atugu

25

<210> 21

15 〈211〉 22

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 21

25 ctgattgaga ggattcctga gu

L)
J)
ļij
VI
L.
Ų
D)
æ
a)
T.
IJ
-

<210> 22

<211> 22

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 22

tagggagaga ggaagtgata cu

22

15 <210> 23

<211> 25

<212> DNA

<213> Artificial Sequence

20 <220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

25 <400> 23

		attgcttaat cagtgaggca cctau	25
		(0.1.0.)	
		<210> 24	
		<211> 25	
	5	<212> DNA	
		<213> Artificial Sequence	
<u></u>			
4) 4)		<220>	
ų Į		<223> Designed chimeric oligonucleotide primer designated as p	oUC19
W W	10	upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 2	4 to
		25 are ribonucleotides-other nucleotides are deoxyribonucleotides"	. •
		<400> 24	
		attgcttaat cagtgaggca cctaa	25
	15		
		<210> 25	
		<211> 25	
		<212> DNA	
		<213> Artificial Sequence	
	20		

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 25

attgcttaat cagtgaggca cctac

25

<210> 26

5 <211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19
upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to"
25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 26

15 attgcttaat cagtgaggca cctag

25

<210> 27

<211> 22

<212> DNA

20 <213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

		<400> 27	
		ctgattgaga ggattcctga gu	22
	5	<210> 28	
		<211> 22	
, ,,,,,		<212> DNA	
		<213> Artificial Sequence	
1	10	<220>	
D)		 <223> Designed chimeric oligonucleotide primer to amplify a portion	of
[] Yi		human transferrin receptor-encoding sequence. "nucleotides 21 to	22
I I I I I I I I I I I I I I I I I I I		are ribonucleotides-other nucleotides are deoxyribonucleotides"	
s i	15	<400> 28	
		tagggagaga ggaagtgata cu 2	22
		<210> 29	
		<211> 24	
	20	<212> DNA	
		<213> Artificial Sequence	
		⟨220⟩	
		<pre><223> Designed chimeric oligonucleotide primer designated as MF2N3(</pre>	24)

to amplify a portion of plasmid pUC19-249 or plasmid pUC19-911.

E)
4J
4)
W
U
L.
Ų.
(I)
Œ
C)
D)
N
Ш

"nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 29

5 gctgcaaggc gattaagttg ggua

24

<210> 30

<211> 24

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as MR1N3(24) to amplify a portion of plasmid pUC19-249 or plasmid pUC19-911.

nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 30

ctttatgctt ccggctcgta tguu

24

20

<210> 31

<211> 25

<212> DNA

<213> Artificial Sequence

		$\langle 223 angle$ Designed chimeric oligonucleotide primer designated as	pUC19
		upper 249 to amplify a portion of plasmid pUC19. "nucleotides 24	1 to 25
		are ribonucleotides-other nucleotides are deoxyribonucleotides"	
	5		
		<400> 31	
		cgcctccatc cagtctatta attgu	25
W W		<210≻ 32	
W W	10	<211> 25	
ī)		<212> DNA	
		<213> Artificial Sequence	· .
Zi Li		<220>	
	15	<223> Designed oligonucleotide primer designated as pUC19 upper	150 to
		amplify a portion of plasmid pUC19	
		<400> 32	
		ggtgtcacgc tcgtcgtttg gtatg	25
	20		
	,	<210> 33	
		<211> 25	
		<212> DNA	
		<213> Artificial Sequence	

		<220>		
		<223> Designed oligonucleotide primer designated as pUC19 upper 2	249 1	to
		amplify a portion of plasmid pUC19		
	5	<400> 33		
		cgcctccatc cagtctatta attgt	25	
J.		<210> 34		
L!		<211> 25		
U	10	<212> DNA		
I)		<213> Artificial Sequence		
I The soul had been the soul from the soul f		<220>		
		<223> Designed oligonucleotide primer designated as pUC19 lower	NN t	Ю
	15	amplify a portion of plasmid pUC19		
		<400> 34		
		gataacactg cggccaactt acttc	25	
	20	<210> 35		
		<211≻ 30		
		<212> DNA		
		<213> Artificial Sequence		

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 28 to 30 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 35

ggatgtgctg caaggcgatt aagttgggua

30

<210> 36

<211> 30

10 <212> DNA

IJ.

Ų. ۵ì

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as MR1N3 to amplify a portion of plasmid pUC19. "nucleotides 28 to 30 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 36

tttacacttt atgcttccgg ctcgtatguu

30

20

15

<210> 37

<211> 30

<212> DNA

<213> Artificial Sequence

21/158

		<220>	
		<223> Designed oligonucleotide primer to amplify a portion of plas	mid
		pUC19	
	5	<400> 37	
		ggatgtgctg caaggcgatt aagttgggta 3	0
7) 7)		<210> 38	
		<211> 30	
ul ul	10	<212> DNA	
		<213> Artificial Sequence	• , .
[] []			
		<220>	
		<223> Designed oligonucleotide primer designated as MR1N3 to amplify	y a
	15	portion of plasmid pUC19	
		<400> 38	
		tttacacttt atgcttccgg ctcgtatgtt 3	0
	20	<210> 39	
		<211> 30	
		<212> RNA	
		<213> Artificial Sequence	
	25	<220>	

₽.
W.
L)
Ų.
Ul
Ш
Ų,
Ĩ)
iB
(I)
M,
2 5
Ш

 $\langle 223 \rangle$ Synthetic RNA used as a probe for detecting an amplified portion of plasmid pUC19

<400> 39

5 ugauccccca uguugugcaa aaaagcgguu

30

<210> 40

<211> 25

<212> DNA

10 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as pUC19 upper 150 to amplify a portion of plasmid pUC19. "nucleotides 24 to 25

are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 40

ggtgtcacgc tcgtcgtttg gtaug

25

20 <210> 41

<211> 30

<212> DNA

<213> Artificial Sequence

25 <220>

23/158

<223> Designed chimeric oligonucleotide primer designated as MR1N3 to amplify a portion of plasmid pUC19. "nucleotides 28 to 30 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 41

 $tttacacttt\ atgcttccgg\ ctcgtatguu$

30

<210> 42

<211> 17

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as M13M4

15

<400> 42

gttttcccag tcacgac

17

<210> 43

20 <211> 18

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer to amplify a portion of

vero toxin 1-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 43

agttaatgtg gtggcgaa

18

<210> 44
<211> 17

10 <212> DNA

E. E. F.

U

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 1-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 15 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 44

20 gactetteca tetgeca

17

<210> 45

<211> 18

<212> DNA

25 <213> Artificial Sequence

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5

<400> 45

ttcggtatcc tattcccg

18

<210> 46

<211> 18

<212> DNA

<213> Artificial Sequence

15

20

-

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 46

tctctggtca ttgtauua

18

25 〈210〉 47

а

a

		<211> 22
		<212> DNA ·
		<213> Artificial Sequence
	5	<220>
		$\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide primer designated as MCR-F to amplify
rì		long DNA fragment
w; W) W)		
w W		<400> 47
	10	ccattcaggc tgcgcaactg tt 22
Q)		
I) (1)		<210> 48
		⟨211⟩ 22
		<212> DNA
	15	<213> Artificial Sequence
		⟨220⟩
		$\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide primer designated as MCR-R to amplify
		long DNA fragment
	20	
		⟨400⟩ 48
		tggcacgaca ggtttcccga ct 22
		<210> 49
	25	Z211\ 24

u C

20

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as MF2N3(24) to amplify a long DNA fragment. "nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

⟨400⟩ 49

10 gctgcaaggc gattaagttg ggua

24

<210> 50

<211> 24

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as MR1N3(24)
to amplify a long DNA fragment. "nucleotides 22 to 24 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 50

ctttatgctt ccggctcgta tguu

24

25 〈210〉 51

28/158

		<211> 20
		<212> DNA
		<213> Artificial Sequence
	5	<220>
		$\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of
E. E. II		bacteriophage lambda DNA
Ų! VI		<400> 51
	10	aacaacaaga aactggtttc 20
		<210> 52
		<211> 20
_1 		<212> DNA
	15	<213> Artificial Sequence
		<220>
		<223> Designed oligonucleotide primer to amplify a portion of
		bacteriophage lambda DNA
	20	
		<400> 52
		gcaatgcatg acgactgggg 20
		<210> 53
	25	<211> 17

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of bacteriophage lambda DNA. "nucleotides 16 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 53

10 gttttcccag tcacgac

17

<210> 54

<211> 17

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of bacteriophage lambda DNA. "nucleotides 16 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 54

caggaaacag ctatgac

17

25 〈210〉 55

20

		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
	5	⟨220⟩	
		<223> Designed oligonucleotide primer to amplify a portio	n of
C)		bacteriophage lambda DNA	
T.			
		<400> 55	
	10	gtacggtcat catctgacac	20
:5			
Q) N		<210> 56	
		<211> 20	
		<212> DNA	
	15	<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer to amplify a portion	of
		bacteriophage lambda DNA	
	20		
		<400> 56	
		gcaatcggca tgttaaacgc	20

<210> 57

<211> 20

<21	2>	DNA

<213> Artificial Sequence

<220>

5 <223> Designed oligonucleotide primer to amplify a portion of bacteriophage lambda DNA

<400> 57

cgccatcctg ggaagactcc

20

10

<210> 58

<211> 44

<212> DNA

<213> Artificial Sequence

15

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as R1-S1 to amplify a portion of bacteriophage lambda DNA

20 <400> 58

tttcacacag gaaacagcta tgacaacaac aagaaactgg tttc

44

<210> 59

<211> 44

25 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as R1-A3 to amplify a portion of bacteriophage lambda DNA

<400> 59

tttcacacag gaaacagcta tgacgcaatg catgacgact gggg

44

10 <210> 60

5

<211> 62

<212> DNA

<213> Artificial Sequence

15 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as R2-S1 to amplify a portion of bacteriophage lambda DNA

<400> 60

20 attgtgagcg gataacaatt tcacacagga aacagctatg acaacaacaa gaaactggtt 60 tc 62

<210> 61

<211> 62

25 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as R2-A3 to amplify a portion of bacteriophage lambda DNA

<400> 61

attgtgagcg gataacaatt tcacacagga aacagctatg acgcaatgca tgacgactgg 60 gg

10

5

<210> 62

<211> 95

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed oligonucleotide primer designated as R3-S1 to amplify a portion of bacteriophage lambda DNA

20 <400> 62

cactttatgc ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca 60 ggaaacagct atgacaacaa caagaaactg gtttc 95

⟨210⟩ 63

25 〈211〉 95

4)
4Î)
L.
U
Ų.
Ш
Q)
15
Ĩ)
Ŋ
IJ
<u></u>

20

19	1	2>	n	A I A
٧Z	1	41	- IJ	NA

<213> Artificial Sequence

<220>

5 <223> Designed oligonucleotide primer designated as R3-A3 to amplify a portion of bacteriophage lambda DNA

<400> 63

cactttatgc ttccggctcg tatgttgtg ggaattgtga gcggataaca atttcacaca 60 ggaaacagct atgacgcaat gcatgacgac tgggg 95

<210> 64

<211> 17

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as M13RV-2N 17mer. "nucleotides 16 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 64

caggaaacag ctatgac

17

25 <210> 65

<211> 20

<212> DNA

<213> Artificial Sequence

5 〈220〉

<223> Designed chimeric oligonucleotide primer designated as M13RV-2N 20mer. "nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 65

acacaggaaa cagctatgac

20

<210> 66

<211> 70

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of CDC2related protein kinase PISSLRE gene

<400> 66

gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacccaac aagagcctat 60 agcttcgctc 70

36/158

tgtggtg			<210> 67	
<pre></pre>			<211> 44	
(220) (223) Designed oligonuclectide primer to amplify a portion of CI related protein kinase PISSLRE gene (400) 67 tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacccgct gtctttgagt 6 tgtggtg (210) 68 (211) 44 (212) DNA (213) Artificial Sequence (220) (223) Designed oligonuclectide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 ctttccagac			<212> DNA	
<220> <223> Designed oligonucleotide primer to amplify a portion of CI related protein kinase PISSLRE gene 10 <400> 67 tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacccgct gtctttgagt 6 tgtggtg 6 210> 68 15 <211> 44 <212> DNA <213> Artificial Sequence <220 <223> Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene <400> 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac			<213> Artificial Sequence	
(223) Designed oligonucleotide primer to amplify a portion of CI related protein kinase PISSLRE gene (3) to related protein kinase PISSLRE gene (400) 67 (5) togaaatcag ccacagegec atttcacaca ggaaacaget atgacceget gtetttgagt 6 (5) tgtggtg (6) tgtggtg (6) tgtggtg (7) (210) 68 (8) (211) 44 (212) DNA (213) Artificial Sequence (220) (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacaget atgacgetat tctgacatca 60 25 ctttccagac		5		
related protein kinase PISSLRE gene tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacccgct gtctttgagt 6 tgtggtg 6 tgtggtg 6 (210) 68 15 (211) 44 (212) DNA (213) Artificial Sequence (220) 20 (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac			⟨220⟩	
related protein kinase PISSLRE gene tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacccgct gtctttgagt 6 tgtggtg 6 tgtggtg 6 (210) 68 15 (211) 44 (212) DNA (213) Artificial Sequence (220) 20 (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac	F		<223> Designed oligonucleotide primer to amplify a portion of	CDC2
tgtggtg 6 tgtggtg 6 (210) 68 15 (211) 44 (212) DNA (213) Artificial Sequence (220) 20 (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac				
tgtggtg 6 tgtggtg 6 (210) 68 15 (211) 44 (212) DNA (213) Artificial Sequence (220) 20 (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac		10	<400> 67	
tgtggtg 6 (210) 68 (211) 44 (212) DNA (213) Artificial Sequence (220) (223) Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene (400) 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 25 ctttccagac			tegaaateag eeacagegee attteacaca ggaaacaget atgaceeget gtetttgagt	: 60 ±
<pre>15</pre>	1) 1)			67
<pre> <212> DNA <213> Artificial Sequence <220> 20</pre>			<210> 68	
<pre><213> Artificial Sequence <220> 20</pre>		15	<211> 44	
<pre><220> 20 <223> Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene <400> 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 ctttccagac</pre>			<212> DNA	
20 <223> Designed oligonucleotide primer to amplify a portion of Type cytoskeltal 11 keratin gene <400> 68 gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca 60 ctttccagac			<213> Artificial Sequence	
cytoskeltal 11 keratin gene <a href="mail</td><td></td><td></td><td><220></td><td></td></tr><tr><td>cytoskeltal 11 keratin gene 				

<2	10>	69

<211> 44

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of Type II cytoskeltal 11 keratin gene

10

<400> 69

tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacgaatt ccactggtgg 60 cagtag 66

15 <210> 70

<211> 62

<212> DNA

<213> Artificial Sequence

20 <220>

<223> Designed oligonucleotide primer to amplify a portion of bacteriophage lambda DNA

<400> 70

25 attgtgagcg gataacaatt tcacacagga aacagctatg acgtacggtc atcatctgac 60

ac 62 <210> 71 <211> 62 5 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide primer to amplify a portion of 10 bacteriophage lambda DNA <400>: 71 attgtgagcg gataacaatt tcacacagga aacagctatg acatgcgccg cctgaaccac 60 ca 62 15 <210> 72 <211> 62 <212> DNA <213> Artificial Sequence 20 <220> Designed oligonucleotide primer to amplify a portion of <223> bacteriophage lambda DNA

25 <400> 72

		attgtgagcg gataacaatt tcacacagga aacagctatg acctgctctg ccgcttcacg	60
		ca	62
		<210> 73	
	5	<211> 62	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
ai Li Yi	10	<223> Designed oligonucleotide primer to amplify a portion	of
11. I I I I I I I I I I I I I I I I I I		bacteriophage lambda DNA	
7 mg mg, 1mg,		<400> 73	
m is		attgtgagcg gataacaatt tcacacagga aacagctatg acgcaatcgg catgttaaac	60
	15	gg	62
		<210> 74	
		<211> 24	
		<212> DNA	
	20	<213> Artificial Sequence	
		<220>	
		<pre><223> Designed oligonucleotide primer designated as MF2N3(24)</pre>	to
		amplify a portion of plasmid pUC19-249 or plasmid pUC19-911	
	25		

	<400> 74	
	gctgcaaggc gattaagttg ggta	24
	<210> 75	
5	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> Designed oligonucleotide primer designated as MR1N3(24) t
	amplify a portion of plasmid pUC19-249 or plasmid pUC19-911	
	<400> 75	
	ctttatgctt ccggctcgta tgtt	24
15		
	<210> 76	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
20		

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as M13M4-3N 20mer. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 76

agggttttcc cagtcacgac

20

<210> 77

5 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed chimeric oligonucleotide primer designated as M13RV-3N 20mer. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 77

15 acacaggaaa cagctatgac

20

<210> 78

<211> 24

<212> DNA

20 <213> Artificial Sequence

<220>

25

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as M13M4-3N 24mer. "nucleotides 22 to 24 are ribonucleotides—other nucleotides are deoxyribonucleotides"

portion of cyclin A DNA

		(400) 78	
		cgccagggtt ttcccagtca cgac	24
	_		
	5	<210> 79	
= 1		<211> 24	
:8 [] :4		<212> DNA	
trail then then the table then the trail trail trails		<213> Artificial Sequence	
()	10 '	<220>	•
1		<223> Designed oligonucleotide primer designated as M13RV-3N	24mer
!# [] : 1		"nucleotides 22 to 24 are ribonucleotides-other nucleotide	es are
ii. darib them three study trush		deoxyribonucleotides"	
	15	<400> 79	
		tttcacacag gaaacagcta tgac	24
		<210> 80	
		<211> 70	
	20	<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer designated as 5'ID to amp	lify a

		<400> 80	
		tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacatgtt ttgggagaa 6	60
		ttaagtctga 7	0
	5		
		<210> 81	
=; f)		⟨211⟩ 44	
#		<212> DNA	
Jeef Jee Jee Just Just Hert Prof. Just tom them most time tent tome tent		<213> Artificial Sequence	
1) []	10 .		
=======================================	1 10	<220>	
		<223> Designed oligonucleotide primer designated as 3'ID to amplify	7 · 8
H. Tank Sam Ama Sant H. H.		portion of cyclin A DNA	
= =			
	15	<400> 81	
		gagttcgtgc cgtacaacta tttcacacag gaaacagcta tgacttacag atttagtgtc 60)
		tctggtggg 69	}
		<210> 82	
	20	<211> 16	
		<212> DNA	
		<213> Artificial Sequence	
		⟨220⟩	
	25	<223> Designed oligonucleotide primer designated as MI3RV-2N 16mes	r

"nucleotides 15 to 16 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 82

5 aggaaacagc tatgac

16

<210> 83

<211> 27

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 83

cagcaactgg gccagcaaag uugagaa

27

20 <210> 84

<211> 27

<212> DNA

<213> Artificial Sequence

25 <220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides $21\ \text{to}\ 22$ are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 84

gcaaaaacag aaagaaactg cucagaa

27

<210> 85

<211> 26

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides $21\ \text{to}\ 22$ 15 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 85

cagcaactgg gccagcaaag uugaga

26

20

<210> 86

<211> 26

<212> DNA

<213> Artificial Sequence

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5

<400> 86

gcaaaaacag aaagaaactg cucaga

26

<210> 87

10 <

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

15

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 87

20 cagcaactgg gccagcaaag uugag

25

<210> 88

<211> 25

<212> DNA

25 <213> Artificial Sequence

Control of the second

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 88

gcaaaaacag aaagaaactg cucag

25

10 <210> 89

5

<211⁵ 24

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 89

cagcaactgg gccagcaaag uuga

24

<210> 90

<211> 24

25 <212> DNA

<213> Artificial Sequence

<220>

(223) Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 90

gcaaaaacag aaagaaactg cuca

24

10

<210> 91

<211> 23

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20

<400> 91

cagcaactgg gccagcaaag uug

23

<210> 92

25 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 92

10 gcaaaaacag aaagaaactg cuc

. 23

<210> 93

<211> 22

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 93

cagcaactgg gccagcaaag uu

22

25 〈210〉 94

<211> 22

<212> DNA

<213> Artificial Sequence

5 〈220〉

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 94

gcaaaaacag aaagaaactg cu

22

<210> 95

<211> 22

15 <212> DNA

<213> Artificial Sequence

<220>

20

<223> Designed oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence

<400> 95

caacttcaag gtttctgcca gc

22

25 〈210〉 96

		<213> Artificial Sequence	
Many limit flow flows flower dunct	5	<223> Designed oligonucleotide primer to amplify a pot transferrin receptor-encoding sequence	ortion of human
	1.0	<400> 96	
Œ	10	aatagtccaa gtagctagag c	21
		<210> 97	·
L)		<211> 20	
		<212> DNA	
	15	<213> Artificial Sequence	
		<220>	
		<223> PCR primer BsuII-3 for cloning a gene encoding	a polypentide
		having a RNaseHII activity from Bacillus caldotenax	respectation
	20		
		<400> 97	
		gtcgccagcg cagtnathyt 20	

<211> 21

<212> DNA

<210> 98

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

5 <223> PCR primer BsuII-6 for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

<400> 98

cggtccctcg tcacyttngc 20

10

<210> 99

<211> 20

<212> DNA

<213> Artificial Sequence

15

<220>

<223> PCR primer RNII-S1 for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

20 <400> 99

cgcgcttttc cggcgtcagc 20

<210> 100

<211> 20

25 <212> DNA

<220>

 $\langle 223 \rangle$ PCR primer RNII-S2 for cloning a gene encoding a polypeptide

5 having a RNaseHII activity from Bacillus caldotenax

<400> 100

acggcgcacg cttcaatttg 20

<213> Artificial Sequence

10 <210> 101

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> PCR primer RNII-S5 for cloning a gene encoding a polypeptide
having a RNaseHII activity from Bacillus caldotenax

<400> 101

20 acgcctattt gccggggctt 20

<210> 102

<211> 20

<212> DNA

25 <213> Artificial Sequence

<220>

<223> PCR primer RNII-S6 for cloning a gene encoding a polypeptide
having a RNaseHII activity from Bacillus caldotenax

5

<400> 102

atgaccgacg cagcggcgat 20

<210> 103

10 〈211〉 39

<212> DNA

<213> Artificial Sequence

<220>

15 <223> PCR primer RNII-Nde for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

<400> 103

tagaagaggg agaggcatat gaagcggtat acggtgaaa 39

20

<210> 104

<211> 780

<212> DNA

<213> Bucillus caldotenax

	<400> 104						
	atgaagcggt	atacggtgaa	agacattgaa	gcgctgcttc	cgaagcttgg	cgcggacgac	60
	ccgcgctggg	agatgctgcg	gcaggatgag	cgaaaaaagcg	tgcaggcgct	tcttgcccgt	120
	tttgaaaggc	agaaagcgcg	ccggcacgcc	atcgagcagc	ggtgggaaga	actaatgcgt	180
5	tatgagaggg	aactatacgc	cgctggcgtt	agacggatcg	ccggcattga	tgaggccggg	240
	cgcggcccgc	tggccggccc	ggtcgtcgcc	gccgcggtca	tcttgccgaa	agacgcctat	300
	ttgccggggc	ttgacgactc	gaagcggctg	acgccggaaa	agcgcgaggc	attgtttgcg	360
	caaattgaag	cgtgcgccgt	cgccatcggc	atcggcatcg	tcagcgcggc	ggagatcgat	420
	gaaaggaata	tttacgaagc	gacaaggcaa	gcgatggcga	aagcggtgaa	cgccctttcc	480
10	ccgccgcctg	aacatttgct	tgttgatgcg	atggcggtgc	cgtgcccact	gccgcaacag	540
	cgcctcataa	aaggagacgc	caacagcgct	tcaatcgccg	ctgcgtcggt	catcgccaaa	600 -
	gtgacgcgcg	accggtggat	gaaagaactg	gatcgccgct	atccacaata	cgggttcgcg	660
	cgccatatgg	gctacggaac	gccggaacat	ttcgaggcga	tccgccgcta	cggcgttacg	720
	cctgagcacc	gtcgttcgtt	cgcaccggtg	agggaggtgc	tgaaggcgag	cgagcagctc	780
15							
	<210> 105						
	<211> 260						

20

25

<400> 105

<212> PRT

<213> Bucillus caldotenax

Met Lys Arg Tyr Thr Val Lys Asp Ile Glu Ala Leu Leu Pro Lys

1 5 10 10 15

Leu Gly Ala Asp Asp Pro Arg Trp Glu Met Leu Arg Gln Asp Glu
20 25 30

	Arg	g Ly:	s Sei	r Val	G1r	n Ala	Lei	ı Leu	ı Ala	a Arg	g Phe	Glu	ı Arg	g Glı	n Lys
					35	5				40)				45
	Ala	a Arg	g Ar	g His	s Ala	lle	Glu	Glr	n Arg	g Trp	Glu	Glı	Leu	Met	t Arg
					50)				55	5				60
5	Tyr	Glu	ı Arg	g Glu	Leu	Tyr	Ala	Ala	Gly	v Val	Arg	Are	Ile	Ala	a Gly
					65	,				70)				75
	Ile	Asp	Glı	ı Ala	G1y	Arg	Gly	Pro	Leu	ı Ala	Gly	Pro	Val	Val	Ala
					80					85					90
	Ala	Ala	val	Ile	Leu	Pro	Lys	Asp	Ala	Tyr	Leu	Pro	Gly	Leu	Asp
10					95	-				100					105
	Asp	Ser	Lys	Arg	Leu	Thr	Pro	Glu	Lys	Arg	Glu	Ala	Leu	Phe	Ala
				•	110					115					120
	Gln	Ile	Glu	Ala	Cys	Ala	Val	Ala	Ile	Gly	Ile	G1y	Ile	Val	Ser
					125					130					135
15	Ala	Ala	Glu	Ile	Asp	Glu	Arg	Asn	Ile	Tyr	Glu	Ala	Thr	Arg	Gln
					140					145					150
	Ala	Met	Ala	Lys	Ala	Val	Asn	Ala	Leu	Ser	Pro	Pro	Pro	Glu	His
					155					160					165
	Leu	Leu	Val	Asp	Ala	Met	Ala	Val	Pro	Cys	Pro	Leu	Pro	Gln	G1n
20					170					175					180
	Arg	Leu	Ile	Lys	Gly	Asp	Ala	Asn	Ser	Ala	Ser	Ile	Ala	Ala	Ala
					185					190					195
	Ser	Val	Ile	Ala	Lys	Val	Thr	Arg	Asp	Arg	Trp	Met	Lys	Glu	Leu
					200					205					210
25	Asp	Arg	Arg	Tyr	Pro	Gln	Tyr	Gly	Phe	Ala	Arg	His	Met	Glv	Tvr

	:	215	220	225
	Gly Thr Pro Glu	His Phe Glu Ala Ile	Arg Arg Tyr Gly Val	Thr
	:	230	235	240
	Pro Glu His Arg	Arg Ser Phe Ala Pro	Val Arg Glu Val Leu	Lys
5	:	245	250	255
	Ala Ser Glu Gln I	Leu		
	2	260		
	<210> 106			
10	<211> 20			
	<212> DNA		·	
	<213> Artificial	Sequence		
	<220>			
15	<223> PCR primer	BsuIII-1 for clon	ing a gene encoding	a polypeptide
	having a RNaseHII	II activity from Bac	illus caldotenax	
				•
	<400> 106			
	ggtaaggtct tgttyc	eargg 20		
20				
	<210> 107			
	<211> 20			
	<212> DNA			
	<213> Artificial	Sequence		

<220>

 $\langle 223 \rangle$ PCR primer BsuIII-3 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

5 <400> 107

ggaaccggag attayttygg 20

<210> 108

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ PCR primer BsuIII-6 for cloning a gene encoding a polypeptide

having a RNaseHIII activity from Bacillus caldotenax

<400> 108

atgattgaag cagengenae 20

20 <210> 109

<211> 20

<212> DNA

<213> Artificial Sequence

25 〈220〉

<223> PCR primer BsuIII-8 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

<400> 109

5 gtattggcga aatgnarytt 20

<210> 110

<211> 20

<212> DNA

10 (213) Artificial Sequence

<220>

<223> PCR primer RNIII-S3 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

15

<400> 110

cccgatcgtc gtcgccgccg 20

<210> 111

20 <211> 20

<212> DNA

<213> Artificial Sequence

⟨220⟩

 $\langle 223 \rangle$ PCR primer BcaRNIII-3 for cloning a gene encoding a polypeptide

having a RNaseHIII activity from Bacillus caldotenax

<400> 111

gatacgtgga cactttccgc 20

5

<210> 112

<211> 915

<212> DNA

<213> Bucillus caldotenax

10

15

20

25

<400> 112

gtgattcaag	ccgaccaaca	gctgcttgac	gccttgcgcg	cccactacca	agacgcctta	60
tccgaccggc	ttccggctgg	agcgttgttt	gccgtcaagc	gcccggatgt	cgtcatcacc	120
gcctaccgct	caggcaaagt	gctgtttcaa	gggaaagcgg	cggagcaaga	agcagcgaaa	180
tggatatcag	gggcgagcgc	ctcaaacgaa	acagctgacc	accagccgtc	cgctttggca	240
gctcatcaac	tcgggtctct	ttccgccatc	ggttccgatg	aagtcggcac	cggcgattat	300
ttcggcccga	tcgtcgtcgc	cgccgcctac	gtggatcggc	cgcatatcgc	caaaatcgcg	360
gcgcttggcg	tgaaagattc	gaaacaattg	aacgatgagg	caatcaaacg	gatcgccccc	420
gccatcatgg	aaaccgtgcc	gcatgcggtc	accgtgttgg	acaatgccga	atacaaccgc	480
tggcagcgaa	gcggcatgcc	gcagacgaaa	atgaaagcgc	tccttcacaa	ccggacgctc	540
gtgaaactcg	ttgacgccat	cgcgcccgcc	gaaccagaag	caatcatcat	cgacgaattt	600
ttaaaacggg	attcgtattt	ccgttacctt	tccgatgaag	atcgcattat	ccgcgagcgg	660
gtgcactgcc	ttcccaaggc	ggaaagtgtc	cacgtatcag	tcgccgccgc	ctcgatcatc	720
gcccgctatg	tgtttttaga	ggagatggag	caattatccc	gcgccgtcgg	cctcctgctt	780
ccaaaaggcg	ccggcgccat	tgtcgatgaa	gccgcggcca	acatcatccg	cgcgcggggg	840

gcggaagcgc ttgagacatg cgccaagctt catttcgcca atacaaaaaa ggcgctggac 900 atcgccaaac gccgg 915

<21	Λ	1	13
$\setminus Z$	U/	- 1	ıο

5 〈211〉 305

<212> PRT

<213> Bucillus caldotenax

<400> 113

Met Ile Gln Ala Asp Gln Gln Leu Leu Asp Ala Leu Arg Ala His

1 5 10 15

Tyr Gln Asp Ala Leu Ser Asp Arg Leu Pro Ala Gly Ala Leu Phe

20 25 30

Ala Val Lys Arg Pro Asp Val Val Ile Thr Ala Tyr Arg Ser Gly

15 35 40 45

Lys Val Leu Phe Gln Gly Lys Ala Ala Glu Gln Glu Ala Ala Lys

50 55 60

Trp Ile Ser Gly Ala Ser Ala Ser Asn Glu Thr Ala Asp His Gln

65 70 75

20 Pro Ser Ala Leu Ala Ala His Gln Leu Gly Ser Leu Ser Ala Ile

80 85 90

Gly Ser Asp Glu Val Gly Thr Gly Asp Tyr Phe Gly Pro Ile Val

95 100 105

Val Ala Ala Ala Tyr Val Asp Arg Pro His Ile Ala Lys Ile Ala

25 110 115 120

	Ala	Leu	Gly	Val	Lys	Asp	Ser	Lys	Gln	Leu	Asn	Asp	Glu	Ala	Ιlε
		•			125					130					135
	Lys	Arg	Ile	Ala	Pro	Ala	Ile	Met	Glu	Thr	Val	Pro	His	Ala	Val
					140					145					150
5	Thr	Val	Leu	Asp	Asn	Ala	Glu	Tyr	Asn	Arg	Trp	Gln	Arg	Ser	G1y
					155					160					165
	Met	Pro	Gln	Thr	Lys	Met	Lys	Ala	Leu	Leu	His	Asn	Arg	Thr	Leu
					170					175					180
	Val	Lys	Leu	Val	Asp	Ala	Ile	Ala	Pro	Ala	Glu	Pro	Glu	Ala	I1ε
10				× .	185					190					195
	Ile	Ile	Asp	Glu	Phe	Leu	Lys	Arg	Asp	Ser	Tyr	Phe	Arg	Tyr	Leu
				•	200					205					210
	Ser	Asp	Glu	Asp	Arg	Ile	Ile	Arg	Glu	Arg	Val	His	Cys	Leu	Pro
					215					220					225
15	Lys	Ala	Glu	Ser	Val	His	Val	Ser	Val	Ala	Ala	Ala	Ser	Ile.	Πe
					230					235					240
	Ala	Arg	Tyr	Val	Phe	Leu	Glu	Glu	Met	Glu	Gln	Leu	Ser	Arg	Ala
					245					250					255
	Val	Gly	Leu	Leu	Leu	Pro	Lys	Gly	Ala	G1y	Ala	Ile	Val	Asp	Glu
20					260					265					270
	Ala	Ala	Ala	Asn	Ile	Ile	Arg	Ala	Arg	G1y	Ala	Glu	Ala	Leu	Glu
					275					280					285
	Thr	Cys	Ala	Lys	Leu	His	Phe	Ala	Asn	Thr	Lys	Lys	Ala	Leu	Asp
					290					295					300
25	Ile	Ala	Lys	Arg	Arg										

	<210> 114
	<211> 39
. 5	<212> DNA
	<213> Artificial Sequence
	<220>
	<223> PCR primer BcaRNIIINde for amplifying a gene encoding a
10	polypeptide having a RNaseHIII activity from Bacillus caldotenax
· :	
•	<400> 114
	cgaacgttgt caaaccatat gattcaagcc gaccaacag 39
15	<210> 115
	<211> 663
	<212> DNA
	<213> Pyrococcus horikoshii
20	<400> 115
	atgaaggttg ctggagttga tgaagcgggg agggggccgg taattggccc gttagtaatt 60
	ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120
	tccaaacaat taactcctgg gcaacgtgaa aaactattta gcaaattaat agatatccta 180
	gacgattatt atgttcttct cgttaccccc aaggaaatag atgagaggca tcattctatg 240
25	aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 300

aagatata	tg tggactctgc	cgatgtagat	cctaagaggt	ttgctagtct	aataaaggct	360
gggttgaaa	at atgaagccac	ggttatcgcc	gagcataaag	ccgatgcaaa	gtatgagata	420
gtatcggca	ag catcaataat	tgcaaaggtc	actagggata	gagagataga	gaagctaaag	480
caaaagta1	ng gggaatttgg	ttctggctat	ccgagtgatc	cgagaactaa	ggagtggctt	540
gaagaatat	t acaaacaata	tggtgacttt	cctccaatag	ttaggagaac	ttgggaaacc	600
gctaggaag	ga tagaggaaag	gtttagaaaa	aatcagctaa	cgcttgataa	attccttaag	660
tga 663	•					

10 <210> 116

<211> 33

<212> DNA

<213> Artificial Sequence

15 <220>

<223> PCR primer 1650Nde for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus furiosus

<400> 116

20 caggaggaga gacatatgaa aataggggga att 33

<210> 117

<211> 33

<212> DNA

25 <213> Artificial Sequence

15

20

25

5		
		<

<223> PCR primer 1650Bam for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus furiosus

<400> 117 gaaggttgtg gatccacttt ctaaggtttc tta 33

<210> 118 ⟨211⟩ 672 -

<220>

<212> DNA

<213> Pyrococcus furiosus

<400> 118

60 atgaaaatag ggggaattga cgaagcagga agaggaccag cgatagggcc attagtagta 120 gctactgtcg tcgttgatga gaaaaacatt gagaagctca gaaacattgg agtaaaagac 180 tccaaacaac taacaccca tgaaaggaag aatttatttt cccagataac ctcaatagcg 240 gatgattaca aaatagtgat agtatcccca gaagaaatcg acaatagatc aggaacaatg 300 aacgagttag aggtagagaa gtttgctctc gccttaaatt cgcttcagat aaaaccagct 360 cttatatacg ctgatgcagc ggatgtagat gccaatagat ttgcaagctt gatagagaga 420 agactcaatt ataaggcgaa gattattgcc gaacacaagg ccgatgcaaa gtatccagta 480 gtttcagcag cttcaatact tgcaaaggtt gttagggatg aggaaattga aaaattaaaa 540 aagcaatatg gagactttgg ctctgggtat ccaagtgatc caaaaaccaa gaaatggctt 600 gaagagtact acaaaaaaca caactettte cetecaatag teagacgaac etgggaaact 660 gtaagaaaaa tagaggaaag cattaaagcc aaaaaatccc agctaacgct tgataaattc

tttaagaaac ct 672

	<21	0> 1	19												
	<21	1> 2	24												
5	<21	2> P	RT												
	<21	3> P	yroc	occu	s fu	rios	us								
	<40	0> 1	19												
	Met	Lys	Ile	Gly	Gly	Ile	Asp	Glu	Ala	Gly	Arg	G1y	Pro	Ala	Ile
10	1				5				-	10					15
	G1y	Pro	Leu	Val	Val	Ala	Thr	Val	Val	Val	Asp	Glu	Lys	Asn	Ile
					20					25					30
	Glu	Lys	Leu	Arg	Asn	Ile	Gly	Val	Lys	Asp	Ser	Lys	Gln	Leu	Thr
					35					40					45
15	Pro	His	Glu	Arg	Lys	Asn	Leu	Phe	Ser	Gln	Ile	Thr	Ser	Ile	Ala
					50					55					60
	Asp	Asp	Tyr	Lys	Ile	Val	Ile	Val	Ser	Pro	Glu	Glu	Ile	Asp	Asn
					65					70					75
	Arg	Ser	Gly	Thr	Met	Asn	Glu	Leu	Glu	Va1	Glu	Lys	Phe	Ala	Leu
20					80					85					90
	Ala	Leu	Asn	Ser	Leu	G1n	Ile	Lys	Pro	Ala	Leu	Ile	Tyr	Ala	Asp
					95					100					105
	Ala	Ala	Asp	Val	Asp	Ala	Asn	Arg	Phe	Ala	Ser	Leu	Ile	Glu	Arg
					110					115					120

Arg Leu Asn Tyr Lys Ala Lys Ile Ile Ala Glu His Lys Ala Asp

i.

					125					130					135
	Ala	Lys	Tyr	Pro	Val	Val	Ser	Ala	Ala	Ser	Ile	Leu	Ala	Lys	Val
					140					145					150
	Val	Arg	Asp	Glu	Glu	Ile	Glu	Lys	Leu	Lys	Lys	Gln	Tyr	G1y	Asp
5					155					160					165
	Phe	Gly	Ser	Gly	Tyr	Pro	Ser	Asp	Pro	Lys	Thr	Lys	Lys	Trp	Leu
					170					175					180
	Glu	Glu	Tyr	Tyr	Lys	Lys	His	Asn	Ser	Phe	Pro	Pro	Ile	Val	Arg
			-		185					190					195
. 10	Arg	Thr	Trp	Glu	Thr	Val	Arg	Lys	Ile	G1u	Glu	Ser	Ile	Lys	Ala
					200					205					210
	Lys	Lys	Ser	Gln	Leu	Thr	Leu	Asp	Lys	Phe	Phe	Lys	Ŀys	Pro	
					215					220					

15 <210> 120

<211> 28

<212> DNA

<213> Artificial Sequence

20 <220>

<223> PCR primer 915-F1 for cloning a gene encoding a polypeptide having a RNaseHII activity from Thermotoga maritima

<400> 120

25 aaaaagcttg ggaatagatg agctttac 28

H., H., H., H.,

<210> 121 <211> 26 <212> DNA <213> Artificial Sequence 5 <220> $\langle 223 \rangle$ PCR primer 915-F2 for cloning a gene encoding a polypeptide having a RNaseHII activity from Thermotoga maritima - 1.0 <400> 121

<210> 122

15 <211> 29

<212> DNA

<213> Artificial Sequence

aaaccatggg aatagatgag ctttac

<220>

 $\langle 223 \rangle$ PCR primer 915-R1 for cloning a gene encoding a polypeptide 20 having a RNaseHII activity from Thermotoga maritima

26

<400> 122

aaatctagat cctcaacttt gtcgatgtg 29

<210> 123

<211> 30

<212> DNA

<213> Artificial Sequence

5

<220>

<223> PCR primer 915-R2 for cloning a gene encoding a polypeptide having a RNaseHII activity from Thermotoga maritima

10

<400> 123

aatctagatt aaaaaagagg gagattatgg 30

<210> 124

<211> 22

15 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as MCS-F to amplify a

20 long DNA fragment

<400> 124

ccattcaggc tgcgcaactg tt

22

25

<210> 125

<211> 22 <212> DNA

<213> Artificial Sequence

5 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as MCS-R to amplify a long DNA fragment

<400> 125

10 tggcacgaca ggtttcccga ct 22

<210> 126

<211> 24

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as MF2N3(24)
to amplify a long DNA fragment. "nucleotides 22 to 24 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 126

gctgcaaggc gattaagttg ggua

24

25 <210> 127

<211> 24

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer designated as MR1N3(24)
to amplify a long DNA fragment. "nucleotides 22 to 24 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 127

ctttatgctt ccggctcgta tguu

24

⟨210⟩ 128

<211> 20

15 <212> DNA

<213> Artificial Sequence

<220>

(223) Designed oligonucleotide primer to amplify a portion of lambda
DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 128

cctttctctg tttttgtccg

Len Len Hin Hen Hin W W

10

(210)	129
<211>	20

<212> DNA

<213> Artificial Sequence

<220>

5

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 129

aagcacctca ttaccctugc 20

<210> 130

15 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of lambda 20 DNA

<400> 130

gggcggcgac ctcgcgggtt ttcg

24

4) Ų Ul Ų. 1

10

15

5

<210> 131 <211> 24 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Designed oligonucleotide primer to amplify a portion of lambda DNA <400> 131 24 gctgcttatg ctctataaag tagg <210> 132 <211> 20 <212> DNA <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 20 Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotidesother nucleotides are deoxyribonucleotides"

<400> 132

aggaatcttt atttaccaug

DYVIERIA CACALL

<210> 133
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed chimeric oligonucleotide primer to amplify a portion of
Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotides
other nucleotides are deoxyribonucleotides"
<400> 133
tggtgtttaa acttattgcg 20
<210> 134
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
$\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of
Flavobacterium species DNA.
<400> 134

ccatcagcta taaacacaaa cagc

⟨210⟩ 135

<211> 24

<212> DNA

<213> Artificial Sequence

5

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of

Flavobacterium species DNA.

10 <400> 135

tgttttgacc aaacatagta atgc

24

<210> 136

<211> 21

15 <212> DNA

<213> Artificial Sequence

<220>

20

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of

vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

"nucleotides 19 to 21 are ribonucleotides-other nucleotides are

deoxyribonucleotides"

<400> 136

25 tcgttaaata gtatacggac a

Æ)
4
Ų
U
IJ.
IJ
a)
Œ.
رد سنور
Q)
Q)
Q) Nj

<210> 137 <211> 20 <212> DNA 5 <213> Artificial Sequence <220> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. 10 "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides" <400> 137 tgctcaataa tcagacgaag 20 15 <210> 49 <211> 24 <212> DNA <213> Artificial Sequence 20 <220> <223> Designed oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. 25 <400> 138

aaatggggta ctgtgcctgt tact

24

<210> 139

<211> 24

5 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 139

ctctgtatct gcctgaagcg taag

24

15 <210> 140

<211> 21

<212> DNA

<213> Artificial Sequence

20 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

F

78/158

11	Δ.	< 0	1	10
< 4		112	1 4	4()

tacctgggtt tttcttcggu a

20

<210> 141

5 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

15 <400> 141

atagactttt cgacccaaca

20

<210> 142

<211> 20

20 <212> DNA

<213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

"nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

79/158

<400> 142

5 atagacatca agccctcgua

20

<210> 143

⟨211⟩ 21

<212> DNA

10 <213> Artificial Sequence

and the second second

<220>

<223> Designed oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

15

⟨400⟩ 143

tcgttaaata gtatacggac a

21

<210> 144

20 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed oligonucleotide primer to amplify a portion of vero

00/150

toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 144

atagacatca agccctcgta

20

5

<210> 145

<211> 20

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

15

<400> 145

gaacaatgga agtcaacaaa

20

<210> 146

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed oligonucleotide primer to amplify a portion of viroid

CSVd. <400> 146 tacttgtggt tcctgtggtg 20 5 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence 10 <220> N $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of viroid CSVd. 15 <400> 147 atactaaggt tccaagggct 20 <210> 148 <211> 18 20 <212> DNA <213> Artificial Sequence <220> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of

25

viroid

CSVd.

"nucleotides

16

to

18

are

ribonucleotides-other

nucleotides are deoxyribonucleotides"

<400> 148

ggaaacctgg aggaaguc

18

5

<210> 149

<211> 20

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

15

<400> 149

gtgaaaaccc tgtttaggau

20

<210> 150

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer to amplify a portion of

02/150

Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotidesother nucleotides are deoxyribonucleotides"

<400> 150

5 acctagatat aagctctaca

20

<210> 151

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 151

aaatagatgt tttagcagag

20

20 <210> 152

<211> 20

<212> DNA

<213> Artificial Sequence

25 〈220〉

<223> Designed chimeric oligonucleotide primer to amplify a portion of Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 152

atagataaaa aaaactccac

20

<210> 153

<211> 21

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 19 to 21 are ribonucleotides-nucloetide 18 is inosineother nucleotides are deoxyribonucleotides"

<400> 153

20 tcgttaaata gtatacgiac a

21

<210> 154

<211> 21

<212> DNA

25 <213> Artificial Sequence

/	റ	റ	Λ	`
`	/	1	11	

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 19 to 21 are ribonucleotides-nucleotide 17 is inosine other nucleotides are deoxyribonucleotides"

<400> 154

tcgttaaata gtatacigac a

21

10

5

<210> 155

<211> 21

<212> DNA

<213> Artificial Sequence

15

20

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 19 to 21 are ribonucleotides-nucleotide 16 is inosineother nucleotides are deoxyribonucleotides"

<400> 155

tcgttaaata gtataiggac a

21

25 <210> 156 Jan Lan Jan Jose Fres Hill Hill Ŭ)

<211> 20

<212> DNA

<213> Artificial Sequence

<220> 5

> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-nucleotide 17 is inosineother nucleotides are deoxyribonucleotides"

10

<400> 156

tgctcaataa tcagaciaag

20

<210> 157

15 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 20 vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-nucleotide 16 is inosineother nucleotides are deoxyribonucleotides"

25 <400> 157

tgctcaataa tcagaigaag

	<210> 158
	<211> 20
5	<212> DNA
	<213> Artificial Sequence
	<220>
, 100 mar	$\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of
10	vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
	"nucleotides 18 to 20 are ribonucleotides-nucleotide 15 is inosine-
יוויון, נושה לחומן שהיו לחומן אוויון להושה לחומן לחומן לחומן	other nucleotides are deoxyribonucleotides"
5, mars, pros,	<400> 158
15	tgctcaataa tcagicgaag 20
	<210> 159
	<211> 21
	<212> DNA
20	<213> Artificial Sequence
	<220>
	<223> Designed chimeric oligonucleotide primer to amplify a portion of
	vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
25	"nucleotides Q to 11 and 10 to 21 are riberuslastides attack

T.

nucleotides are deoxyribonucleotides"

<400> 159

tacctggguu uttcttcggu a

21

5

<210> 160

<211> 20

<212> DNA

<213> Artificial Sequence

10 .

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
"nucleotides 8 to 10 and 18 to 20 are ribonucleotides-other
nucleotides are deoxyribonucleotides"

<400> 160

atagacauca agccctcgua

20

20

<210> 161

<211> 20

<212> DNA

<213> Artificial Sequence

25

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5

<400> 161

gtcccctgag atatatguuc

20

<210> 162

<211> 30 10

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide probe to 15 detect a DNA fragment amplifing a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 162

20 ccaacaaagt tatgtctctt cgttaaatag

30

<210> 163

<211> 20

<212> DNA

25 <213> Artificial Sequence

<220>

5

<223> Designed chimeric oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 163

atgccattga gttcatcaac

20

10 <210> 164

<211> 19

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse. "nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 164

tcttggtggc aaagatgag

19

<210> 165

<211> 20

25 <212> DNA

<213> Artificial Sequence

<220>

5

<223> Designed oligonucleotide primer to amplify a portion of iNOSencoding sequence from mouse.

<400> 165

atgccattga gttcatcaac

20

10 <210> 166

<211> 19

<212> DNA

<213> Artificial Sequence

15 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse

⟨400⟩ 166

20 tcttggtggc aaagatgag

19

<210> 167

<211> 20

<212> DNA

25 <213> Artificial Sequence

		⟨220⟩
		<223> Designed oligonucleotide primer designated as GMO-PCR-F 20mer
	5	<400> 167
		atcgttgaag atgcctctgc 20
a) A)	•	<210> 168
4		<211> 20
Land then there have tract tract tract	10	<212> DNA
		<213> Artificial Sequence
		<220>
		<223> designed oligonucleotide primer designated as GMO-PCR-R 20mer
	15	
		<400> 168
		tccgtatgat cgcgcgtcat 20
		<210> 169
	20	<211> 20
		<212> DNA
		<213> Artificial Sequence
		<220>
	25	<223> Designed chimeric oligonucleotide primer designated as GMO-S1

20mer. "nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 169

5 tttggagagg acacgctgac

20

<210> 170

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as GMO-S2 20mer.
"nucleotides 19 to 20 are ribonucleotides-other nucleotides are

15 deoxyribonucleotides"

<400> 170

ggacacgctg acaagctgac

20

20 <210> 171

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

4Î)
41
Ų.
Ul
L.
I)
12
(i)
T.
L.

<223> Designed oligonucleotide primer designated as GMO-A1 20mer.
*nucleotides 19 to 20 are ribonucleotides-other nucleotides are
deoxyribonucleotides"

5 <400> 171

ggctgtagcc actgatgcug

20

<210> 172

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as GMO-A2 20 mer.

"nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 172

ttccggaaag gccagaggau

20

20

<210> 173

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are (alpha-thio)ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 173

tactgggtt tttcttcggu a

20

10 <210> 174

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are (alpha-thio)ribonucleotides-other nucleotides are deoxyribonucleotides"

20

<400> 174

atagacatca agccctcgua

20

<210> 175

25 〈211〉 22

〈212〉	DNA
(212)	DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of INOS-encoding sequence from mouse. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 175

10 tcatgccatt gagttcatca ac

22

<210> 176

<211> 22

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of INOS-encoding sequence from mouse. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 176

tggtaggttc ctgttgtttc ua

22

25 〈210〉 177

ine i
4)
41
Ų.
U
Ш
u
Ц
æ
I)
Ŋ
W
<u> -</u> 1

<211> 20

<211> 22

		<212> DNA
		<213> Artificial Sequence
	5	<220>
		<223> Designed oligonucleotide primer to amplify a portion of INOS
that that		encoding sequence from mouse.
tand these than		<400> 177
- erati' tivel' 'leel'	10	tcatgccatt gagttcatca ac 22
r Lug		
Tarre Terret		<210> 178
er ipari fuan itana inust itani		<211> 22
		<212> DNA
	15	<213> Artificial Sequence
		<220>
		<223> Designed oligonucleotide primer to amplify a portion of INOS
		encoding sequence from mouse.
	20	
		<400> 178
		tggtaggttc ctgttgtttc ta 22
		<210> 179

a) <212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 179

10 ctgcgaggcg gtggcaaggg 20

<210> 180

<211> 21

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 180

ctgcctcgct ggccgtgccg c

21

25 <210> 181

<212>	DNA
<213>	Art

<211> 23

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of INOS-encoding sequence from mouse. "nucleotides 21 to 23 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 181

ctcatgccat tgagttcatc aac

23

<210> 182

<211> 22

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
INOS-encoding sequence from mouse. "nucleotides 20 to 22 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

⟨400⟩ 182

gctggtaggt tcctgttgtu uc

22

100/158

C1
ű)
4
Ш
U
L.
[i]
(I)
18
(I)
M.
Ų.
<u> </u>

= 1
4)
4)
Цį
U
Ų.
Ų.
I)
18

5

⟨210⟩ 183

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of ribonucleotides-other 19 are DNA. "nucleotides 17 to pDON-AI nucleotides are deoxyribonucleotides"

10

agctctgtat ctggcggac

. 19

<210> 184

<400> 183

<211> 21 15

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of 20 ribonucleotides-other DNA. "nucleotides 19 21 are to DDON-AI nucleotides are deoxyribonucleotides"

<400> 184

25 gatcgggatt tttggactca g Fr. Fr. [] J

10

<210> 185

<211> 21

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of type16 DNA. "nucleotides 19 to 21 are ribonucleotides-other HPV nucleotides are deoxyribonucleotides"

<400> 185

caaaagagaa ctgcaatguu u

21

<210> 186 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220> 20

> <223> Designed chimeric oligonucleotide primer to amplify a portion of HPV type16 DNA. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

25 <400> 186

21

gttgcttgca gtacacacau u <210> 187 <211> 27

5 <212> DNA <213> Artificial Sequence

<220>

<223> Designed oligonucleotide probe to detect a DNA fragment
amplifying a portion of HPV DNA.

<400> 187

gaggacccac aggagcgacc cagaaag 27

15 <210> 188 <211> 20

<212> DNA

<213> Artificial Sequence

20 <220>

 $\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide primer to amplify a portion of HCV.

<400> 188

cactccacca tgaatcactc

<210> 189

```
<211> 20
        <212> DNA
        <213> Artificial Sequence
  5
        <220>
        \langle 223 \rangle Designed oligonucleotide primer to amplify a portion of HCV.
        <400> 189
10
       ggtgcacggt ctacgagacc
                                                                   20
       <210> 190
       <211> 21
       <212> DNA
15
       <213> Artificial Sequence
       <220>
       <223> Designed chimeric oligonucleotide primer to amplify a portion of
       HCV. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are
20
       deoxyribonucleotides"
       <400> 190
       ctgtgaggaa ctactgtcuu c
                                                                         21
25
       <210> 191
```

30

The first face that the first		<212> DNA
		<213> Artificial Sequence
	5	<220>
		<223> Designed chimeric oligonucleotide primer to amplify a portion of
		HCV. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are
		deoxyribonucleotides"
, , , , , , , , , , , , , , , , , , ,	10	<400> 191
		gcagaccact atggcucu 18
N.		<210> 192
		<211> 30
•	15	<212> DNA
		<213> Artificial Sequence
		⟨220⟩
		<223> Designed oligonucleotide probe to detect a DNA fragment
	20	amplifing portion of HCV.

25 <210> 193

<400> 192

gtatgagtgt cgtgcagcct ccaggacccc

<211> 18

<211> 21

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of adenovirus. "nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides"

10 <400> 193

tgagacatat tatctgccac g

21

<210> 194

<211> 21

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 20 adenovirus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 194

aaatggctag gaggtggaag a

ui)	
Ţ)	
Ų	
IJ	
u)	
Ų.	
(I)	
Œ	

<210> 195

<211> 21

	<212> DNA
	<213> Artificial Sequence
5	
	⟨220⟩
	<223> Designed chimeric oligonucleotide primer to amplify a portion of
	adenovirus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides
	are deoxyribonucleotides"
10	
	<400> 195
	ttatcagcca gtacctctuc g 21
	<210> 196
15	<211> 21
	<212> DNA
	<213> Artificial Sequence
	⟨220⟩
20	<223> Designed oligonucleotide primer to amplify a portion of
	adenovirus
	<400> 196
	tgagacatat tatctgccac g 21
25	

107/158

1 If If the sould blood it is the limit to the limit the		<210> 197
		<211> 21
		<212> DNA
		<213> Artificial Sequence
	5	
		<220>
		<223> Designed oligonucleotide primer to amplify a portion of
		adenovirus.
	10	<400> 197
		aaatggctag gaggtggaag a 21
		⟨210⟩ 198
		<211> 20
	15	<212> DNA
		<213> Artificial Sequence
		<220> .
		<223> Designed oligonucleotide primer to amplify a portion of viroid
	20	CSVd.
		<400> 198
		ggggaaacct ggaggaagtc 20
	25	<210> 199

<211> 20

25

<211> 21

109/158

<2	1	9.	DNA
· /		/./	INVA

<213> Artificial Sequence

<220>

 $\,$ $\,$ $\,$ $\,$ $\,$ Designed oligonucleotide primer to amplify a portion of pDON-AI DNA.

<400> 201

gatcgggatt tttggactca g

21

10

Ш

D)

M

u L <210> 202

<211> 20

<212> DNA

<213> Artificial Sequence

15

20

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 202

ggggataatt tgtttgcagu

20

25 <210> 203

<211> 20

<212> DNA

<213> Artificial Sequence

<220> 5

> <223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10

<400> 203

tcgttcaaca ataagccgua

20

<210> 204

15 <211> 30

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed oligonucleotide probe to DNA fragment detect amplifying a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 204

25 cgcccttcct ctggatctac ccctctgaca 30

4)

10

<210> 205

<211> 21

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of botulinum Α encoding toxin sequence from Clostridium botulinum. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 205

caccagaagc aaaacaaguu c

21

15

<210> 206

<211> 23

<212> DNA

<213> Artificial Sequence

20

25

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of botulinum Α toxin encoding sequence from Clostridium botulinum. "nucleotides 21 to 23 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 206

ctattgatgt taacaacatt cuu

23

5 〈210〉 207

<211> 30

<212> DNA

<213> Artificial Sequence

10 <220>

<223> Designed oligonucleotide probe to detect a DNA fragments amplifying a portion of botulinum toxin A encoding sequence from Clostridium botulinum.

15 <400> 207

gggagttaca aaattatttg agagaattta

30.

<210> 208

<211> 21

20 <212> DNA

<213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 19 to 21 are ribonucleotides-other

Designed oligonucleotide probe to detect

nucleotides are deoxyribonucleotides"

⟨400⟩ 208

<220>

<223>

25

caccetteet ttagttteeu u

21

20

fragment

DNA

amplifying a portion of viroid CSVd.

<400> 210

ccttcctctc ctggagaggt cttctgccct

30

5

<210> 211

<211> 21

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides"

15

<400> 211

caccetteet ttagttteeu u

21

<210> 212

20 <211> 21

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer to amplify a portion of

0.000

to

21

are

19

ribonucleotides-other

		<400> 212	
	5	cgttgaagct tcagttgtuu c	21
		<210> 213	
for for the two that the for the first that		<211> 21	
u U		<212> DNA	
	10	<213> Artificial Sequence	;
		<220>	
		$\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of	viroid
		CSVd.	
	15		
		<400> 213	
		caccetteet ttagttteet t	21
		<210> 214	
	20	<211> 21	
		<212> DNA	
		<213> Artificial Sequence	
		⟨220⟩	

 $\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide primer to amplify a portion of viroid

viroid

CSVd. "nucleotides

nucleotides are deoxyribonucleotides"

25

CSVd.

<400> 214

cgttgaagct

tcagttgttt

С

5 21

<210> 215

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of c-ki-ras oncogene. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 215

gactgaatat aaacttgugg

20

20 <210> 216

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of c-ki-ras oncogene. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 216

ctattgttgg atcatatucg

20

<210> 217

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of c-ki-ras

15 oncogene.

<400> 217

gactgaatat aaacttgtgg

20

20 <210> 218

<211> 20

<212> DNA

<213> Artificial Sequence

25 〈220〉

<223> Designed oligonucleotide primer to amplify a portion of c-ki-ras oncogene.

<400> 218

5 ctattgttggatcatattcg

20

<210> 219

<211> 20

<212> DNA 10

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 15 verotoxin-2 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 219

20 gacttttcga cccaacaaag 20

<210> 220

<211> 20

<212> DNA

25 <213> Artificial Sequence

119/158

	<220>	
	<223> Designed chimeric oligonucleotide primer to amplify a	portion of
	verotoxin-2 encoding sequence from hemorrhagic Escherichi	a coli O-
5	157. "nucleotides 18 to 20 are ribonucleotides-other nucleo	otides are
	deoxyribonucleotides"	
	<400> 220	
	atatccacag caaaataacu	20
10		
	<210> 221	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
15		
	⟨220⟩	
	<223> Designed oligonucleotide primer to amplify a portion	of INOS-
	encoding sequence from mouse.	
20	<400> 221	
	cacaaggcca catcggattt c	21
	<210> 222	
	<211> 20	

CYVEDANA GERTALI

<212> DNA

25

$\langle 213 \rangle$ Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of INOS5 encoding sequence from mouse.

<400> 222

tgcataccac ttcaacccga g

21

10 <210> 223

<211> 25

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed oligonucleotide primer designated as pUC19 upper 150 to amplify a portion of plasmid pUC19.

⟨400⟩ 223

20 ggtgtcacgc tcgtcgtttg gtatg

25

<210> 224

<211> 25

<212> DNA

25 <213> Artificial Sequence

4I)
4)
IJ
IJ)
إيا
إيأ
(I)
:3
(I)
N
Ų,

15

20

25

<213> Artificial Sequence

5

<220> <223> Designed chimeric oligonucleotide primer designated as pUC19 lower NN to amplify a portion of plasmid pUC19. <400> 224 25 gataacactg cggccaactt acttc <210> 225 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Designed chimeric oligonucleotide primer designated as SEA-1 to amplify a portion of Staphylococcus aureus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides" <400> 225 tgtatgtatg gtggtgtaac g 21 <210> 226 <211> 21 <212> DNA

<220>

<223> Designed chimeric oligonucleotide primer designated as SEA-2 to amplify a portion of Staphylococcus aureus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 226

taaccgtttc caaaggtacu g

21

10 <210> 227

<211> 19

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as HCV-F3 to amplify a portion of HCV. "nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 227

gcgtctagcc atggcguua

19

<210> 228

<211> 18

25 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as HCV-R1 to amplify a portion of HCV. "nucleotides 16 to 18 are ribonucleotidesother nucleotides are deoxyribonucleotides"

<400> 228

gcagaccact atggcucu

18

10

<210> 229

<211> 30

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed oligonucleotide primer designated as MF2 to amplify a portion of pUC19 plasmid DNA.

20 <400> 229

ggatgtgctg caaggcgatt aagttgggta

30

<210> 230

<211> 30

25 <212> DNA

<213> Artificial Sequence

<220>

5

(223) Designed oligonucleotide primer designated as MR1 to amplify a portion of pUC19 plasmid DNA.

<400> 230

tttacacttt atgcttccgg ctcgtatgtt

30

10 <210> 231

<211> 21

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed oligonucleotide primer to amplify a portion of adenovirus.

<400> 231

20 ttatcagcca gtacctcttc g

21

<210> 232

<211> 714

<212> DNA

25 <213> Thermotoga maritima

125/158

<400> 232 atgggaata

60 atgggaatag atgagettta caaaaaagag tttggaateg tageaggtgt ggatgaageg 120 ggaagagggt gcctcgcagg tcccgttgtg gcggccgctg tcgttctgga aaaagaaata gaaggaataa acgattcaaa acagctttcc cctgcgaaga gggaaagact tttagatgaa 180 ataatggaga aggcagcagt tgggttagga attgcgtctc cagaggaaat agatctctac 240 aacatattca atgccacaaa acttgctatg aatcgagcac tggagaacct gtctgtgaaa 300 ccatcatttg tactcgttga cgggaaagga atcgagttga gcgttcccgg tacatgctta 360 420 gtgaagggag accagaaaag caaattgata ggagcagctt ccattgttgc gaaggtcttc agagatagat tgatgagcga gtttcacagg atgtatccac agttttcctt ccacaaacac 480 aaaggttacg ccacaaaaga acatetgaac gaaatcagaa agaacggagt tttaccaatc 540 caccggctga gttttgaacc tgttttagaa cttctgaccg atgatttgtt gagggagttc 600 ttcgaaaaag gcctcatctc cgaaaatcga ttcgaacgaa tattgaatct tctgggggcg 660 agaaaaagtg tggttttccg gaaagaaaga acaaaccata atctccctct tttt

15

10

5

<210> 233

<211> 238

<212> PRT

<213> Thermotoga maritima

20

<400> 233

Met Gly Ile Asp Glu Leu Tyr Lys Lys Glu Phe Gly Ile Val Ala

1 5 10 15

Gly Val Asp Glu Ala Gly Arg Gly Cys Leu Ala Gly Pro Val Val

25 20 25 30

126/158

	Ala	Ala	Ala	Val	Val	Leu	Glu	Lys	Glu	Ile	Glu	Gly	Ile	Asn	Asp
					35					40					45
	Ser	Lys	G1n	Leu	Ser	Pro	Ala	Lys	Arg	Glu	Arg	Leu	Leu	Asp	Glu
					50					55					60
5	Ile	Met	Glu	Lys	Ala	Ala	Val	Gly	Leu	G1y	Ile	Ala	Ser	Pro	Glu
					65					70					75
	Glu	Ile	Asp	Leu	Tyr	Asn.	·Ile	Phe	Asn	Ala	Thr	Lys	Leu	Ala	Met
					80					85					90
	Asn	Arg	Ala	Leu	Glu	Asn	Leu	Ser	Val	Lys	Pro	Ser	Phe	Val	Leu
10		:		-	95		•			100			• .		105
	Val	Asp	Gly	Lys	Gly	Ile	Glu	Leu	Ser	Val	Pro	Gly	Thr	Cys	Leu
		÷	•		110	:				115					120
	Val	Lys	G1y	Asp	Gln	Lys	Ser	Lys	Leu	Ile	Gly	Ala	Ala	Ser	Ile
					125					130					135
15	Val	Ala	Lys	Val	Phe	Arg	Asp	Arg	Leu	Met	Ser	Glu	Phe	His	Arg
					140					145					150
	Met	Tyr	Pro	Gln	Phe	Ser	Phe	His	Lys	His	Lys	Gly	Tyr	Ala	Thr
					155					160					165
	Lys	Glu	His	Leu	Asn	Glu	Ile	Arg	Lys	Asn	Gly	Val	Leu	Pro	Ile
20					170					175					180
	His	Arg	Leu	Ser	Phe	Glu	Pro	Val	Leu	Glu	Leu	Leu	Thr	Asp	Asp
					185					190					195
	Leu	Leu	Arg	Glu	Phe	Phe	Glu	Lys	G1y	Leu	Ile	Ser	Glu	Asn	Arg
					200					205					210
25	Phe	Glu	Arg	Ile	Leu	Asn	Leu	Leu	Gly	Ala	Arg	Lys	Ser	Val	Val

20

127/158

215

220

225

Phe Arg Lys Glu Arg Thr Asn His Asn Leu Pro Leu Phe

230

235

5 〈210〉 234

<211> 663

<212> DNA

<213> Pyrococcus horikoshii

10 <400> 234

atgaaggttg ctggagttga tgaagcgggg agggggccgg taattggccc gttagtaatt 60 · ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120 tccaaacaat taactcctgg gcaacgtgaa aaactattta gcaaattaat agatatccta 180 240 gacgattatt atgttcttct cgttaccccc aaggaaatag atgagaggca tcattctatg aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 300 360 aagatatatg tggactctgc cgatgtagat cctaagaggt ttgctagtct aataaaggct gggttgaaat atgaagccac ggttatcgcc gagcataaag ccgatgcaaa gtatgagata 420 480 gtatcggcag catcaataat tgcaaaggtc actagggata gagagataga gaagctaaag 540 caaaagtatg gggaatttgg ttctggctat ccgagtgatc cgagaactaa ggagtggctt 600 gaagaatatt acaaacaata tggtgacttt cctccaatag ttaggagaac ttgggaaacc gctaggaaga tagaggaaag gtttagaaaa aatcagctaa cgcttgataa attccttaag 660 tga 663

<210> 235

25 〈211〉 30

15

20

25

<211> 663

<212> DNA

5

<212> DNA <213> Artificial Sequence <220> <223> PCR primer PhoNde for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus horikoshii <400> 235 30 aggaggaaaa tcatatgaag gttgctggag <210> 236 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PCR primer PhoBam for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus horikoshii <400> 236 ttacatgaag gatccaagat cacttaagga 30 <210> 237

15

5

129/158

<213> Pyrococcus horikoshii

<40	$\Lambda \lambda$	237
< 4U	いノノ	7.37

60 atgaaggttg ctggagttga tgaagcgggg agggggccgg taattggccc gttagtaatt ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120 180 tccaaacaat taactcctgg gcaacgtgaa aaactattta gcaaattaat agatatccta 240 gacgattatt atgttcttct cgttaccccc aaggaaatag atgagaggca tcattctatg 300 aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 360 aagatatatg tggactctgc cgatgtagat cctaagaggt ttgctagtct aataaaggct 420 gggttgaaat atgaagccac ggttatcgcc gagcataaag ccgatgcaaa gtatgagata 480 gtatcggcag catcaataat tgcaaaggtc actagggata gagagataga gaagctaaag caaaagtatg gggaatttgg ttctggctat ccgagtgatc cgagaactaa ggagtggctt 540 gaagaatatt acaaacaata tggtgacttt cctccaatag ttaggagaac ttgggaaacc 600 660 gctaggaaga tagaggaaag gtttagaaaa aatcagctaa cgcttgataa attccttaag 663 tgatcttgga tcc

<210> 238

<211> 220

<212> PRT

20 (213) Pyrococcus horikoshii

<400> 238

Met Lys Val Ala Gly Val Asp Glu Ala Gly Arg Gly Pro Val Ile

1 5 10 15

25 Gly Pro Leu Val Ile Gly Val Ala Val Ile Asp Glu Lys Asn Ile

130/158

					20					25					30
	Glu	Arg	Leu	Arg	Asp	Ile	Gly	Val	Lys	Asp	Ser	Lys	Gln	Leu	Thr
					35					40					45
	Pro	Gly	Gln	Arg	Glu	Lys	Leu	Phe	Ser	Lys	Leu	Ile	Asp	Ile	Leu
5					50			•		55					60
	Asp	Asp	Tyr	Tyr	Val	Leu	Leu	Val	Thr	Pro	Lys	G1u	Ile	Asp	Glu
					65					70					75
	Arg	His	His	Ser	Met	Asn	G1u	Leu	G1u	Ala	Glu	Lys	Phe	Val	Val
					80					85					90
10	Ala	Leu	Asn	Ser	Leu	Arg	Ile	Lys	Pro	G1n	Lys	Ile	Tyr	Val	Asp
					- 95					100				•	105
	Ser	Ala [.]	Asp	Val	Asp	Pro	Lys	Arg	Phe	Ala	Ser	Leu	Ile	Lys	Ala
					110					115					120
	G1y	Leu	Lys	Tyr	Glu	Ala	Thr	Val	Ile	Ala	Glu	His	Lys	Ala	Asp
15					125					130					135
	Ala	Lys	Tyr	Glu	Ile	Val	Ser	Ala	Ala	Ser	Ile	Ile	Ala	Lys	
					140					145					150
	Thr	Arg	Asp	Arg	Glu	Ile	Glu	Lys	Leu		Gln	Lys	Tyr	Gly	
					155					160				_	165
20	Phe	Gly	Ser	Gly		Pro	Ser	Asp	Pro		Thr	Lys	Glu	Trp	
			_		170		_			175		D	T 1	11 1	180
	Glu	Glu	Tyr	Tyr		Gln	Tyr	Gly	Asp		Pro	Pro	He	Val	
			_		185				T 1	190	0.1		D!		195
	Arg	Thr	Trp	Glu		Ala	Arg	Lys	lle		Glu	Arg	Phe	Arg	
25					200					205					210

15

20

5

131/158

Asn Gln Leu Thr Leu Asp Lys Phe Leu Lys 215 220

<211>	626	
<212>	DNA	
<213>	Archaeoglobus	fulgidus

<400> 239

argaaggcag	gcatcgatga	ggctggaaag	ggergegrea	teggeecaet	ggilgligea	00
ggagtggctt	gcagcgatga	ggataggctg	agaaagcttg	gtgtgaaaga	ctccaaaaaag	.120
ctaagtcagg	ggaggagaga	ggaactagcc	gaggaaataa	ggaaaatctg	cagaacggag	180
gttttgaaag	tttctcccga	aaatctcgac	gaaaggatgg	ctgctaaaac	cataaacgag	240
attttgaagg	agtgctacgc	tgaaataatt	ctcaggctga	agccggaaat	tgcttatgtt	300
gacagtcctg	atgtgattcc	cgagagactt	tcgagggagc	ttgaggagat	tacggggttg	360
agagttgtgg	ccgagcacaa	ggcggacgag	aagtatcccc	tggtagctgc	ggcttcaatc	420
atcgcaaagg	tggaaaggga	gcgggagatt	gagaggctga	aagaaaaatt	cggggatttc	480
ggcagcggct	atgcgagcga	tccgaggaca	agagaagtgc	tgaaggagtg	gatagcttca	540
ggcagaattc	cgagctgcgt	gagaatgcgc	tggaagacgg	tgtcaaatct	gaggcagaag	600
acgettgacg	atttctaaac	gaaacc 626	5			

<210> 240

<211> 30

<212> DNA

25 <213> Artificial Sequence

ŧ. ..

⟨220⟩	
<223> PCR primer AfuNde for cloning a gene encoding	g a polypeptide
having a RNaseHII activity from Archaeoglobus fulgidus	
<400> 240	
aagctgggtt tcatatgaag gcaggcatcg	30
<210> 241	
⟨211⟩ 30	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> PCR primer AfuBam for cloning a gene encoding	g a polypeptide
having a RNaseHII activity from Archaeoglobus fulgidus	
<400> 241	
tggtaataac ggatccgttt agaaatcgtc	30
	•
<210> 242	
⟨211⟩ 638	
<212> DNA	
(213) Archaeoglobus fulgidus	

10

133/158

/ 40	\sim	242
<i>(/</i> 111	112	141

catatgaagg	caggcatcga	tgaggctgga	aagggctgcg	tcatcggccc	actggttgtt	60
gcaggagtgg	cttgcagcga	tgaggatagg	ctgagaaagc	ttggtgtgaa	agactccaaa	120
aagctaagtc	aggggaggag	agaggaacta	gccgaggaaa	taaggaaaat	ctgcagaacg	180
gaggttttga	aagtttctcc	cgaaaatctc	gacgaaagga	tggctgctaa	aaccataaac	240
gagattttga	aggagtgcta	cgctgaaata	attctcaggc	tgaagccgga	aattgcttat	300
gttgacagtc	ctgatgtgat	tcccgagaga	ctttcgaggg	agcttgagga	gattacgggg	360
ttgagagttg	tggccgagca	caaggcggac	gagaagtatc	ccctggtagc	tgcggcttca	420
atcatcgcaa	aggtggaaag	ggagcgggag	attgagaggc	tgaaagaaaa	attcggggat	480
ttcggcagcg	gctatgcgag	cgatccgagg	acaagagaag	tgctgaagga	gtggatagct	540
tcaggcagaa	ttccgagctg	cgtgagaatg	cgctggaaga	cggtgtcaaa	tctgaggcag	.600
aagacgcttg	acgatttcta	aacggatccc	cgggtacc	638		

<210> 243

<211> 205 15

<212> PRT

<213> Archaeoglobus fulgidus

<400> 243

Met Lys Ala Gly Ile Asp Glu Ala Gly Lys Gly Cys Val Ile Gly 20 10 15 5 1 Pro Leu Val Val Ala Gly Val Ala Cys Ser Asp Glu Asp Arg Leu 30 25 20 Arg Lys Leu Gly Val Lys Asp Ser Lys Lys Leu Ser Gln Gly Arg

40 35

25

45

134/158

	Arg	Glu	Glu	Leu	Ala	Glu	Glu	Ile	Arg	Lys	Ile	Cys	Arg	Thr	Glu
					50					55					60
	Val	Leu	Lys	Val	Ser	Pro	Glu	Asn	Leu	Asp	Glu	Arg	Met	Ala	Ala
					65					70					75
5	Lys	Thr	Ile	Asn	Glu	Ile	Leu	Lys	Glu	Cys	Tyr	Ala	G1u	Ile	Ile
					80					85					90
	Leu	Arg	Leu	Lys	Pro	G1u	Ile	Ala	Tyr	Val	Asp	Ser	Pro	Asp	Val
					95					100					105
	Ile	Pro	Glu	Arg	Leu	Ser	Arg	Glu	Leu	Glu	Glu	Ile	Thr	Gly	Leu
10					110		٠			115					120
	Arg	Val	Val	Ala	Glu	His	Lys A	Ala A	Asp (Glu l	Lys :	ſyr 1	Pro I	Leu 1	/al·
•.					125					130					135
	Ala	Ala	Ala	Ser	Ile	Ile	Ala	Lys	Val	Glu	Arg	Glu	Arg	Glu	Ile
					140					145					150
15	Glu	Arg	Leu	Lys	Glu	Lys	Phe	G1y	Asp	Phe	G1y	Ser	G1y	Tyr	Ala
					155					160					165
	Ser	Asp	Pro	Arg	Thr	Arg	Glu	Val	Leu	Lys	G1u	Trp	Ile	Ala	Ser
					170					175					180
	G1y	Arg	Ile	Pro	Ser	Cys	Val	Arg	Met	Arg	Trp	Lys	Thr	Val	Ser
20					185					190					195
	Asn	Leu	Arg	G1n	Lys	Thr	Leu	Asp	Asp	Phe					
			-		200					205					

<210> 244

25 〈211〉 18

INA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as MTIS2F to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 244

10 tctcgtccag cgccgcuu

·18

<210> 245

<211> 21

<212> DNA

15 <213> Artificial Sequence

<220>

20

<223> Designed chimeric oligonucleotide primer designated as MTIS2R to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 245

gacaaaggcc acgtaggcga a

21

25 <210> 246

<211> 20

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer designated as CT2F to amplify a portion of Chlamydia trachomatis cryptic plasmid DNA."nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

10

<400> 246

ctggatttat cggaaaccuu

 20°

<210> 247

15 〈211〉 18

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed chimeric oligonucleotide primer designated as CT2R to amplify a portion of Chlamydia trachomatis cryptic plasmid DNA."nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides."

25 <400> 247

1133 (62)

25

18 aggcctctga aacgacuu <210> 248 <211> 19 <212> DNA 5 <213> Artificial Sequence <220> <223> Designed chimeric oligonucleotide primer designated as K-F-Mycobacterium tuberculosis of portion 1033 (60) amplify 10 to DNA."nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides." <400> 248 19 cacatcgatc cggttcagc 15 <210> 249 <211> 20 <212> DNA <213> Artificial Sequence 20 <220> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as K-R-

portion

DNA."nucleotides 18 to 20 are ribonucleotides-other nucleotides are

amplify

to

a

of

Mycobacterium

tuberculosis

deoxyribonucleotides."

<400> 249

tgatcgtctc ggctagtgca

20

5

<210> 250

<211> 22

<212> DNA

<213> Artificial Sequence

10

15

<220>

<223> Designed chimeric oligonucleotide primer designated as K-F1033(68) to amplify a portion of Mycobacterium tuberculosis
DNA."nucleotides 20 to 22 are ribonucleotides-other nucleotides are
deoxyribonucleotides."

<400> 250

gtacacatcg atccggttca gc

22

20 <210> 251

<211> 22

<212> DNA

<213> Artificial Sequence

25 〈220〉

<223> Designed chimeric oligonucleotide primer designated as K-R1133(68) to amplify a portion of Mycobacterium tuberculosis
DNA."nucleotides 20 to 22 are ribonucleotides-other nucleotides are
deoxyribonucleotides."

5

<400> 251

gttgatcgtc tcggctagtg ca

22

<210> 252

10 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

15 <223> Designed oligonucleotide primer designated as F26 to amplify a portion of Mycobacterium tuberculosis DNA.

<400> 252

ccggagactc cagttcttgg

20

20

<210> 253

<211> 20

<212> DNA

<213> Artificial Sequence

25

/	2	ŋ	Λ	`
`	4	۷	v	/

<223> Designed oligonucleotide primer designated as R1310 to amplify a portion of Mycobacterium tuberculosis DNA.

5 <400> 253

gtctctggcg ttgagcgtag

20

<210> 254

⟨211⟩ 22

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as pDON-AI- 68-1 to amplify a portion of pDON-AI."nucleotides 20 to 22 are

ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 254

actagctctg tatctggcgg ac

22

20

15

(I)

<210> 255

<211> 23

<212> DNA

<213> Artificial Sequence

25

. _

08	
ri	

<220>

<223> Designed chimeric oligonucleotide primer designated as pDON-AI-68-2 to amplify a portion of pDON-AI." nucleotides 21 to 23 are bonucleotides-other nucleotides are deoxyribonucleotides."

<400> 255

acgatcggga tttttggact cag

23

<210> 256

<211> 300 10

<212> DNA

<213> Homo sapiens proto-oncogene Wnt-5a

<400> 256

cactagattt tttgtttggg gaggttggct tgaacataaa tgaaatatcc tgtattttct 60 120 tagggatact tggttagtaa attataatag tagaaataat acatgaatcc cattcacagg tttctcagcc caagcaacaa ggtaattgcg tgccattcag cactgcacca gagcagacaa 180 240 cctatttgag gaaaaacagt gaaatccacc ttcctcttca cactgagccc tctctgattc 300 ctccgtgttg tgatgtgatg ctggccacgt ttccaaacgg cagctccact gggtcccctt

20

15

<210> 257

<211> 300

<212> DNA

<213> Homo sapiens ribosomal protein S5

25

142/158

	<400> 257						
	cgccgagtga	cagagacgct	caggctgtgt	tctcaggatg	accgagtggg	agacagcagc	60
	accagcggtg	gcagagaccc	cagacatcaa	gctctttggg	aagtggagca	ccgatgatgt	120
	gcagatcaat	gacatttccc	tgcaggatta	cattgcagtg	aaggagaagt	atgccaagta	180
5	cctccctcac	agtgcagggc	ggtatgccgc	aaacgctttc	cgcaaagctc	agtgtcccat	240
	tgtggagcgc	ctcactaact	ccatgatgat	gcacggccgc	aacaacggca	agaagctcat	300
	<210> 258						
	<211> 300						
10	<212> DNA	•					
	<213> Homo	sapiens dia	aphorase		•		
	<400> 258						
	tctatacaaa	ttttcagaag	gttattttct	ttatcattgc	taaactgatg	acttaccatg	60
15	ggatggggtc	cagtcccatg	accttggggt	acaattgtaa	acctagagtt	ttatcaactt	120
	tggtgaacag	ttttggcata	atagtcaatt	tctacttctg	gaagtcatct	cattccactg	180
	ttggtattat	ataattcaag	gagaatatga	taaaacactg	ccctcttgtg	gtgcattgaa	240
	agaagagatg	agaaatgatg	aaaaggttgc	ctgaaaaatg	ggagacagcc	tcttacttgc	300
20	<210> 259						
	<211> 300						
	<212> DNA						
	<213> Human	n protocadhe	erin				

25 <400> 259

agtctcttgg	gatcccctaa	ccagagcctt	tttgccatag	ggctgcacac	tggtcaaatc	60
agtactgccc	gtccagtcca	agacacagat	tcacccaggc	agactctcac	ggtcttgatc	120
aaagacaatg	gggagccttc	gctctccacc	actgctaccc	tcactgtgtc	agtaaccgag	180
gactctcctg	aagcccgagc	cgagttcccc	tctggctctg	cccccggga	gcagaaaaaa	240
aatctcacct	tttatctact	tctttcccta	atcctggttt	ctgtggggtt	tgtggtcaca	300

<210> 260

<211> 80

<212> DNA

10 <213> Artificial Sequence

<220>

 $\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide for making of pIC62.

15 <400> 260

catgtacate acagtagteg tteacagggt ttteeggeea taatggeett teetgtgt 60 gtgetacage tagteagtea 80

<210> 261

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer designated as

ICAN2."nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 261

5 actgactagc tgtagcacac

20

<210> 262

<211> 20

<212> DNA

10 <213 Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as ICAN6."nucleotides 19 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides."

<400> 262

acatcacagt agtcgttcac

20

20 <210> 263

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as ICAN2 DNA."

<400> 263

actgactage tgtagcacae

20

5

<210> 264

<211> 20

<212> DNA

<213> Artificial Sequence

10

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as ICAN6 DNA.

<400> 264

15 acatcacagt agtcgttcac

20

<210> 265

<211> 23

<212> DNA

20 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of ribosomal protein S18-encoding sequence from mouse.

<400> 265

gtctctagtg atccctgaga agt

23

<210> 266

5 〈211〉 23

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed oligonucleotide primer to amplify a portion of ribosomal protein S18-encoding sequence from mouse.

<400> 266

tggatacacc cacagttcgg ccc

. 23

15

<210> 267

<211> 23

<212> DNA

<213> Artificial Sequence

20

<220>

<223> Designed oligonucleotide primer to amplify a portion of transferrin receptor (TFR)-encoding sequence from mouse.

25 <400> 267

tctgatggat gcaaccgcta gac

	ccgcgctccg acaagtagat gga	23
	<210> 268	
	⟨211⟩ 23	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer to amplify a	portion of
10	transferrin receptor (TFR)-encoding sequence from mouse.	
	<400> 268	
	ccaaagagtg caaggtctgc ctc	23
15	<210> 269	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
0.0	7990 \	
20	<220> <223> Designed oligonucleotide primer to amplify a portion	of stromal
		or stromar
	cell derived factor 4 (Sdf4)-encoding sequence from mouse.	
	<400> 269	
	\400/ 400	

4)
L)
Ų.
IJ1
u
IJ
(I)
15
(I)
أبيأ
j= i

		<210> 270			
		⟨211⟩ 23			
		<212> DNA			
	5	<213> Artificial Sequence			
		· · · · · · · · · · · · · · · · · · ·			
, , , , , , , , , , , , , , , , , , ,		<223> Designed oligonucleotide primer to amplify a portion of stromal			
just trac trac track than trad trad trad	cell derived factor 4 (Sdf4)-encoding sequence from mouse.				
	10				
1		<400> 270			
		gaactettea tgeaegttge ggg 23			
H. H. M. Anna Amen Seast Vents					
1) =)		<210> 271			
= 1	15	<211> 23			
		<212> DNA			
		<213> Artificial Sequence			
		<220>			
	20	<pre><223> Designed oligonucleotide primer to amplify a portion of</pre>			
		cytoplasmic beta-actin encoding sequence from mouse.			
•					
		<400> 271			
		tgatggtggg aatgggtcag aag 23			

= 1
Z)
4 1
ul
Ü
L.
Li)
T)
æ
(I)
TI
<u>11</u>
]= L

	<210> 272	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
5		
	⟨220⟩	
	<223> Designed oligonucleotide primer to amplify a portion	of
	cytoplasmic beta-actin encoding sequence from mouse.	
10	<400> 272	
	agaagcactt gcggtgcacg atg 23	
	<210> 273	
	<211> 23	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer to amplify a portion	of
20	ornithine decarboxylase-encoding sequence from mouse.	
	<400> 273	
	gatgaaagtc gccagagcac atc 23	
25	<210> 274	

(1)
<u>()</u>
A
Jī
L.
L.
(I)
Œ
IJ)

	⟨211⟩ 23	
	<212> DNA	
	<213> Artificial Sequence	
5	<220>	
	<223> Designed oligonucleotide primer to amplify a por	rtion of
	ornithine decarboxylase-encoding sequence from mouse.	
	<400> 274	
10	ttgatcctag cagaagcaca ggc	. 23
	⟨210⟩ 275	
	<211≻ 23	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	(222) Designed eligenucleatide primer to amplify a new	tion of

<223> Designed oligonucleotide primer hypoxanthine guanine phosphoribosyl (HPRT) -encoding transferase sequence from mouse.

<400> 275

ggacaggact gaaagacttg ctc

23

25 <210> 276

L)
41
Į.
IJ
L.
Ų.
D)
Œ
(I)
N
u

791	1 \	റാ
\mathcal{L}	1/	23

<212> DNA

<213> Artificial Sequence

5 <220>

> <223> Designed oligonucleotide primer to amplify a portion of hypoxanthine guanine phosphoribosyl transferase (HPRT) - encoding sequence from mouse.

<400> 276 10

gtctggcctg tatccaacac ttc

23

<210> 277

<211> 23

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of tyrosine

20 3-monooxygenase encoding sequence from mouse.

<400> 277

atgagctggt gcagaaggcc aag

23

25 <210> 278

21

<210> 280

<211> 22

<212> DNA

25

<211> 23 <212> DNA <213> Artificial Sequence <220> 5 <223> Designed oligonucleotide primer to amplify a portion of tyrosine 3-monooxygenase encoding sequence from mouse. <400> 278 ttcccctcct tctcctgctt ctg 10 <210> 279 <211> 21 <212> DNA <213> Artificial Sequence . 15 <220> $\ensuremath{\texttt{\langle 223\rangle}}$ Designed oligonucleotide primer designated as MCS-F. <400> 279 20 ccattcaggc tgcgcaatgt t

<213> Artificial Sequence

⟨220⟩

<223> Designed oligonucleotide primer designated as MCS-R

5

<400> 280

tggcacgaca ggtttcccga ct

22

<210> 281 ⋅

10 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

15 <223> Designed chimeric oligonucleotide primer designated as MF2N3(24).
"nucleotides 22 to 24 are ribonucleoitdes-other nucleotides are deoxyribonucleotides."

<400> 281

20 gctgcaaggc gattaagttg ggua

24

<210> 282

<211> 24

<212> DNA

25 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as MR1N3(24). "nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 282

ctttatgctt ccggctcgta tguu

24

10 〈210〉 283

5

<211> 16

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as MTIS2F-16 to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 14 to 16 are ribonucleotides-other nucleotides are deoxyribonucleotides."

20 <400> 283

tcgtccagcg ccgcuu

16

<210> 284

<211> 20

25 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as MTIS2R5 ACC to amplify a portion of Mycobacterium tuberculosis
DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 284

10 caaaggccac gtaggcgaac

20

<210> 285

<211> 20

<212> DNA

15 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as MTIS-PCR-F-2 to amplify a portion of Mycobacterium tuberculosis DNA.

20

<400> 285

cgaccgcatc aaccgggagc

20

⟨210⟩ 286

25 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed oligonucleotide primer designated as MTIS-PCR-R-2 to amplify a portion of Mycobacterium tuberculosis DNA.

<400> 286

cccaggatcc tgcgagcgta

20

10

<210> 287

<211> 45

<212> DNA

<213> Artificial Sequence

15

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as SP6-HCV-F to amplify a portion of HCV.

20 <400> 287

ccatttaggt gacactatag aatactgatg ggggcgacac tccac

45

<210> 288

<211> 45

25 <212> DNA

157/158

<213> Artificial Sequence

<220>

5

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as SP6-HCV-R to amplify a portion of HCV

<400> 288

agetetaata egaeteaeta tagggtegea ageaeeetat eagge

45

10 <210> 289

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as HCV-A S to amplify a portion of HCV."nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

20 <400> 289

gggtcctttc ttggatcaac

20

<210> 290

<211> 20

25 <212> DNA

<213> Artificial Sequence

<220>

5

<223> Designed chimeric oligonucleotide primer designated as HCV-A A to amplify a portion of HCV. "nucleotides 18 to 20 are ribonuc leotides-other nucleotides are deoxyribonucleotides."

<400 > 290

gacccaacac tactcggcua