Projet Algorithmique et Programmation

Lacaze Yon, Loya Dylan

16 Décembre 2022

Table des matières

_	Arbre 2-3-4	2
	1.1 Question 1:	2
	1.2 Question 2:	
	1.3 Question 4:	3
	1.4 Question 5:	3
2	Arbre Rouge-Noir	3
3	Bonus	3

1 Arbre 2-3-4

1.1 Question 1:

FIGURE 1 - arbres 2-3-4.

1.2 Question 2:

On sait que dans un arbre 2-3-4 toutes les feuilles ont la même profondeur, ce qui implique qu'un arbre 2-3-4 est un arbre parfait et plus précisément un arbre complet. On sait que l'arbre binaire complet est de taille $2^{h+1}-1$ avec h la hauteur de l'arbre. Sachant qu'un arbre 2-3-4 est de hauteur maximale si tout ses noeuds internes ont 2 fils, on peut dire que la hauteur maximale est la hauteur d'un arbre binaire complet soit $log_2(n+1)$ avec n le nombre de noeuds. On a donc $h+1 \le log_2(n+1)$.

On sait que l'arbre 2-3-4 de la plus petite hauteur est l'arbre où tout les noeuds internes ont 4 fils. Donc de manière analogue, on peut prouver que sa hauteur est $log_4(n+1)$ avec n le nombre de noeuds. On a donc, pour un arbre 2-3-4 : $log_4(n+1) \le h+1 \le log_2(n+1)$.

1.3 Question 4:

La complexité de l'opération de recherche dans un arbre 2-3-4 de recherche est en fonction de la hauteur de l'arbre. Donc la complexité est, dans le pire des cas, en $O(log_2(n))$, et dans le meilleur des cas en $O(log_4(n))$.

1.4 Question 5:

FIGURE 2 – Éclatement d'un 4-noeud dont le père est un 4-noeud.

FIGURE 3 – Éclatement d'un 4-noeud étant la racine.

2 Arbre Rouge-Noir

3 Bonus