BICRITERION SCHEDULING PROBLEM

The main idea of the algorithm is that at each decision point the set of schedulable jobs is inspected (i.e. these jobs that can be scheduled <u>without violating their due dates</u>). Then, the largest job is selected to be scheduled next. Note that the algorithm uses <u>backward loading</u> in other words it always decides upon a job to be placed in the last position.

The steps of the algorithm are as follows:

Step 0: Set
$$\Delta = \sum_{i=1}^{n} p_i$$

Step 1: Let
$$D_i = d_i + \Delta$$
 for all i

Step 2: Set
$$R = \sum_{i=1}^{n} p_i$$
, $k = n$

Step 3: Find a job i^* such that $p_{i^*} \ge p_i$ from all i satisfying $D_i \ge R$, and if there are multiple i^* satisfying $p_{i^*} \ge p_i$, then select the one that satisfying $D_{i^*} \ge D_i$ for all i (Break ties arbitrarily).

Assign job i^* to position k.

If there is no job satisfies these conditions, go to Step 8.

Step 4: Set
$$R = R - p_{i^*}$$

$$I = I - \{i^*\}$$

$$k = k - 1$$

If k = 0, go to Step 5. Else go to Step 3.

Step 5: Compute completion time of jobs (C_i) .

$$C_i = C_{i-1} + p_i$$

Step 6: Compute $T(i) = \max(0, C_i - d_i)$ for all i.

Then, compute
$$T(\pi^*) = \max_{i=1,\dots,n} \{T(i)\}$$
 and $H(\pi^*) = \sum_{i=1}^n C_i$

(An iteration is completed.)

Step 7: Set
$$\Delta = T(\pi^*) - 1$$
. Go to Step 1.

Step 8: Stop.

Consider there are n jobs to be sequenced on a single processor. All jobs are simultaneously available and they have **processing time** (p_i) and **due date** (d_i).

The objective functions are:

- Minimizing the flow time (H)
- Minimizing the maximum tardiness (T)

This problem (P) is formulated as follows (Wassenhove and Gelders, 1978):

 Π : the set of schedules

I: the set of jobs, $i = \{1, 2, ..., n\}$

 π : a schedule

 C_i : the completion time of job i (given a schedule)

 $T(\pi)$: the maximum tardiness of schedule π

 $H(\pi)$: the total flow time of schedule π

$$\min_{\pi \in \Pi} \sum_{i=1}^{n} C_{i} = \min_{\pi \in \Pi} H(\pi)$$
 (1)

$$\min_{\pi \in \Pi} \max_{i=1,\dots,n} \left\{ \max \left(0, C_i - d_i \right) \right\} = \min_{\pi \in \Pi} T(\pi)$$
 (2)

A schedule $\pi^* \in \prod$ is <u>efficient</u> in problem (P) if there exists no $\pi \in \prod$ such that $H(\pi) \le H(\pi^*)$ and $T(\pi) \le T(\pi^*)$ where at least one relation holds with strict inequality.

A schedule π_i is said to <u>dominate</u> a schedule π_m when $H(\pi_i) \le H(\pi_m)$ and $T(\pi_i) \le T(\pi_m)$ where at least one relation holds with strict inequality.

There are 10 jobs to be scheduled. The processing times and due dates are given in the following table.

Table 1: Processing times and due dates of jobs

Job ID	p_i	d_i
1	9	32
2	9	49
3	6	7
4	7	25
5	2	55
6	4	9
7	7	54
8	2	40
9	7	52
10	8	51

You will be using **SchedulingProblem.xlsx** including the following sheets.

- **a. Jobs:** This sheet includes the processing time (p_i) and due date (d_i) information for each job.
- **b. Iterations:** This sheet includes the iteration steps of the algorithm. There are blocks for iterations, i.e. range A1:M16 consists the output of the first iteration. In each iteration block you should fill the following rows by coding the algorithm:
 - **1.** Δ should be calculated.
 - **2.** p_i and d_i values should be taken from "Jobs" sheet.
 - **3.** D_i values should be calculated.
 - **4.** R should be calculated, and corresponding job ID and processing time should be written in *Job ID* and p_i rows, respectively.
 - **5.** *Order* row stands for the order of jobs in the schedule. For example, if the first job is in third order, then for the first job, 3 should be written in the *Order* row.
 - **6.** C_i values should be calculated.
 - **7.** d_i values should be taken from "Jobs" sheet.
 - **8.** T(i) values should be calculated.
 - **9.** Finally, $H(\pi^*)$ and $T(\pi^*)$ should be calculated.