Mathematische Grundlagen(1141)

SoSe 2012

Kurseinheit 2:

Einsendeaufgaben – Einsendetermin: 30.4.2012

Aufgabe 2.1

Die folgenden linearen Gleichungssysteme sind alle über \mathbb{R} definiert.

Wahr oder falsch?

wahr falsch

- (1) Das lineare Gleichungssystem $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \text{ hat keine Lösung.}$
- (2) Das lineare Gleichungssystem $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ hat unendlich viele Lösungen.
- (3) Eine spezielle Lösung von $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ist $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
- (4) Sei $A \in M_{mn}(\mathbb{R})$, und sei m < n. Dann hat $Ax = b, b \in M_{m1}(\mathbb{R})$, immer eine Lösung.
- (5) Ein homogenes lineares Gleichungssystem hat immer eine Lösung.
- (6) Sind λ und λ' verschiedene Lösungen von Ax=b, so hat dieses lineare Gleichungssystem unendlich viele Lösungen.
- (7) Ein lineares Gleichungssystem Ax = b mit $A \in M_{mn}(\mathbb{R})$ und m > n hat nie mehr als eine Lösung.
- (8) In $M_{12}(\mathbb{R})$ gibt es nur endlich viele Matrizen in Treppennormalform.
- (9) In $M_{21}(\mathbb{R})$ gibt es nur endlich viele Matrizen in Treppennormalform.
- (10) Wenn λ und λ' verschiedene Lösungen von Ax=0 sind, dann ist $\lambda + \lambda'$ auch eine Lösung von Ax=0.

 $[\max(0, r - f)]$ Punkte, wobei r die Anzahl der richtigen und f die Anzahl der falschen Antworten ist. Nicht beantwortete Fragen gehen nicht in die Bewertung ein.

Einsendeaufgaben MG EA 2

Diese Seite bleibt aus technischen Gründen frei!

Einsendeaufgaben MG EA 2

Aufgabe 2.2

Bestimmen Sie die Lösungsmenge des folgenden linearen Gleichungssystems über R:

[10 Punkte]

Aufgabe 2.3

Untersuchen Sie folgende Teilmengen von $M_{22}(\mathbb{R})$ darauf, ob sie Unterräume von $M_{22}(\mathbb{R})$ sind:

(Begründung bitte nicht vergessen!)

- 1. Die Teilmenge X_1 der Matrizen vom Rang 1.
- 2. Die Teilmenge X_2 der Matrizen vom Rang 0.
- 3. Die Teilmenge X_3 der Matrizen A, die die Gleichung $A \cdot A + A = I_2$ erfüllen.
- 4. Die Teilmenge X_4 der Matrizen $\left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$.

 $[2 + 2 + 2 + 4 = 10 \ Punkte]$

Aufgabe 2.4

Untersuchen Sie, ob
$$\begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix} \in \left\langle \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \right\rangle$$
 in $M_{22}(\mathbb{R})$ gilt.

[10 Punkte]

Aufgabe 2.5

Sei \mathbb{K} ein Körper, und sei $A \in \mathcal{M}_{mn}(\mathbb{K})$. Beweisen Sie, dass folgende Aussagen äquivalent sind:

- 1. Es gibt eine Matrix $B \in \mathcal{M}_{nn}(\mathbb{K})$, $B \neq 0$, sodass alle Einträge von AB null sind.
- 2. $\operatorname{Rg}(A) < n$.

[5+5 Punkte]

Einsendeaufgaben MG EA 2

Aufgabe 2.6

[10 Punkte]