MEMORIAL DESCRITIVO

PROJETO DE GERAÇÃO DISTRIBUÍDA

PROJETO PARA IMPLANTAÇÃO DE GERADOR FOTOVOLTAICO NA ÁREA Residencial DO(A) Cliente: Diego Tavares Canafistula

Local: Fortaleza

09/05/2025

SUMÁRIO

1 - INTRODUÇÃO 3
1.1 - Identificação do cliente 3
2 - LOCALIZAÇÃO DO GERADOR FOTOVOLTAICO3
2.1 - Planta de situação do gerador3
3 -CARGA INSTALADA 4
3.1 - Cálculo da Demanda Média 4
3.2 - Cálculo do Fator de Carga Médio 4
4 - GERADOR FOTOVOLTAICO 4
4.1 - Cálculo da Energia Média Gerad55
5 - DIAGRAMAS BÁSICOS 5
5.1 - Parametrização do inverso5
5.1.x - tabelas de parametrização do inversor6
6 - INSTALAÇÃO ELÉTRICA 6
6.1 – Diagrama unifilar Geral 6
6.2 – Dimensionamento da Proteção 6
6.3 – Coordenação entre os Disjuntores7
7 – SINALIZAÇÃO 7
8 – RESPONSÁVEL TÉCNICO 7

1 - INTRODUÇÃO

O presente relatório técnico tem por objetivo apresentar o memorial descritivo para implantação de um Gerador Fotovoltaico de fabricação da **PHB PHB3000-DS**. Este modelo e quantidade de gerador foi previamente aprovado pelo proprietário da residência. Este gerador fotovoltaico se conectará ao sistema de baixa tensão, após a medição de energia da ENEL. O mesmo terá como objetivo suprir parte das cargas desta residencia. A previsão de ligação do sistema elétrico é para **09 de junho de 2025**.

1.1 - Identificação do cliente

UC:21122212
Classe:Residencial monofasico
Nome do Cliente: Diego Tavares Canafistula
Endereço: Rua das laranjas, 979 casa A, Fortaleza, Ceara.
CEP:6000090
CPF/CNPJ: 0090921

2 - LOCALIZAÇÃO DO GERADOR FOTOVOLTAICO

2.1 -Planta de situação do gerador

No diagrama de situação é ilustrada a planta de situação da residência onde será implantado na Rua das laranjas, 979 casa A, Fortaleza, Ceara. A tabela 2.1 mostra o georeferenciamento da localidade de instalação e do gerador.

COORDENADAS - coordenadas decimais - WGS 84		
Lacel de implementação de Caradar fetavaltais	Lat:	Long:
Local de implantação do Gerador fotovoltaico	-23.00000	-46.00001

A área de telhado da residência foi escolhida por apresentar vantagens de insolação permanente durante todas as horas do dia para evitar o sombreamento dos painéis fotovoltaicos e segurança dos equipamentos

3 - CARGA INSTALADA

A carga instalada é típica de um estabelecimento Residencial, constituído de iluminação e eletrodomésticos diversos, sendo 8 kW. A energia media de consumo é de 1000 kWh.

3.1 - Cálculo da Demanda Média

Considerando um mês comercial com 720 horas, pode-se calcular a demanda média mensal através da equação:

$$D_{\text{media}} = \frac{\text{Energia media}}{N^{\circ} \text{ de horas}} = \frac{1000}{720} = 1.39 \text{ kW}$$

Esta demanda média está dentro do limite da potência máxima injetada no sistema da ENEL, de acordo com a norma NT - 010.

3.2 - Cálculo do Fator de Carga Médio

O fator de carga médio desta residência é calculado através da equação:

$$FC = \frac{\text{Energia}}{\text{Potencia instalada x 720h}} = \frac{1000}{8 \ x \ 720} = 0.17 \ kW$$

4 - GERADOR FOTOVOLTAICO

O Gerador Fotovoltaico escolhido para compor a geração suplementar da residência Alvo deste projeto é composto de 12 módulos Fotovoltaicos Leapton LP126610 560 de 560 Wp a e 1 inversor PHB PHB3000-DS . O modulo solar fotovoltaico monocristalino (560 Wp) possui as características técnicas apresentado na tabela a seguir. Considerando que os módulos instalados são os de 560 , e que eles tem uma tensão elétrica de máxima potência (Vmp) de 50.45 Vmp. A solução prevista para ser instalada tem 1 arranjo com 6 módulos. Tendo um sistema total com 12 módulos que resultam numa potência total de 6.72 kWp.

Potência nominal máx. (Pmax)	560 Wp
Tensão operacional opt. (Vmp)	50.45 V
Corrente operacional opt. (Imp)	14.3 A
Tensão circuito aberto (Voc)	55.2 V
Corrente curto-circuito (Isc)	16.3 A

O georeferenciamento do local da instalação do Gerador Fotovoltaico estabelece o valor de 74,5% das Condições de Teste padrão (STC) do modulo Fotovoltaico. Por essa premissa, terei uma Potencia resultante do meu Gerador Fotovoltaico (GF) também de 74,5% da Potencia instalada (6.72 kW). Assim, a Potencia efetiva do GF é de 5.01kW, oque satisfaz a demanda média calculada.

4.1 - Cálculo da Energia Média Gerada

Considerando a potência média disponível de 5.01 kW e a média anual do ponto georeferenciado do sistema Horas de Sol a Pico (HSP) que é de 5,84 kWh/m2/dia, como parâmetro de medição da radiação solar em um mês comercial, pode-se calcular a energia média através do produto destas duas grandezas, que resulta em 877 kWh.

5 - DIAGRAMAS BÁSICOS

A figura a seguir apresenta o esquema básico de ligação de um Gerador Fotovoltaico. Nesta figura pode ser ver todas as partes que compõem o sistema, desde o Gerador Fotovoltaico até a conexão à carga e à rede.

5.1 - Parametrização do inversor

O inversor para cumprir sua função de proteção, é parametrizado com os seguintes valores, de modo a não exceder os limites recomendados pela norma NT – 010 Coelce.

5.1.1 - Ajuste de sobre e Subtensão

Faixa de tensão no ponto de conexão [V]	Tempo de desconexão [s]
TL > 231	0,2 s
189 ≤ TL ≤ 231	Operação Normal
TL < 195,5	0,2 s

5.1.2 - Ajustes dos Limites de Freqüência (sobre e subfreqüência)

Faixa de freqüência no ponto de conexão (Hz)	Tempo de desconexão [s]
f ≤ 57,5	0,2
59,9 < f ≤ 60,1	Operação normal
f > 62,5	0,2

5.1.3 - Ajustes do Limite do Fator de Potência

Potência Nominal (W) - Pn	Faixa de fator de potência	Fator de potência configuração em fábrica
3000	0,95 indutivo – 0,95 capacitivo	1

6 - INSTALAÇÃO ELÉTRICA

A residência é alimentada através da rede de baixa tensão da ENEL em 220V. O ponto de entrega se dá em um quadro instalado junto ao muro da propriedade.

6.1 – Diagrama unifilar Geral

O diagrama unifilar geral se encontra em anexo.

6.2 – Dimensionamento da Proteção e Alimentação do Gerador Fotovoltaico

Este Gerador Fotovoltaico será conectado ao barramento de baixa tensão do consumidor, logo abaixo da proteção geral, que é constituída por um disjuntor monofasico de 32 A. Por sua vez, o ramal de interligação do Gerador Fotovoltaico ao quadro de medição é feito por um disjuntor monofasico 16 de A. Esta capacidade de condução foi calculada através da seguinte equação.

$$I_{AG} = \frac{\text{potencia nominal}}{\text{Tensao nominal}} = \frac{3000}{220} = 13.64 \text{ A}$$

A interligação entre o Gerador Fotovoltaico e o quadro de medição será feito através de um cabo de cobre flexível, isolado em PVC com uma seção reta de 2.5 mm², e sua proteção se dará através de um disjuntor de 16 A. O dimensionamento do condutor de 2.5 mm² atende aos critérios de máxima capacidade de corrente, já que o mesmo tem capacidade térmica de conduzir até 20 A; e atende também ao critério de máxima queda de tensão. Como trata-se da interligação de um gerador, a máxima queda de tensão permitida é de 3%. A equação abaixo apresenta o cálculo desta queda.

$$\Delta V\% = \frac{200 * \rho * L_c * I_c * \cos\varphi}{S_c * V_f}$$

ρ - resistividade do cobre	0,0173
L _c - comprimento do condutor	10 m
I _c - corrente do condutor	13.64 A
Cosφ - fator de potencia	1
S _c - Seção reta do condutor	2.5 mm²
V _f - tensão	220

Introduzindo estes valores na equação anterior resulta em uma queda de tensão de 0.86 %, o que satisfaz plenamente o limite máximo de queda que é de 3%.

6.3 - Coordenação entre o Disjuntor do Gerador Fotovoltaico e da Proteção Geral

A proteção geral é feita através de um disjuntor monofasico de 32 A, com curva direta de atuação C, e o Gerador Fotovoltaico terá a sua proteção realizada por um disjuntor monofasico de 16 A, curva de atuação B. A seletividade é garantida observando o valor maior de corrente nominal do disjuntor principal em relação ao disjuntor para proteção do cabo do inversor, e suas curvas de atuação.

7 – SINALIZAÇÃO

No padrão de entrada será instalada placa de sinalização, confeccionada em PVC 2,0 mm com tratamento anti-UV, conforme Figura a seguir, fixada de acordo com o desenho D010.01 dá NT Br-010 R-01, sem que haja a perfuração da caixa para fixação da sinalização.

Figura 2: Padrão de entrada de BT de unidade consumidora que se conecta à rede através de inversor.

CUIDADO RISCO DE CHOQUE ELÉTRICO GERAÇÃO PRÓPRIA

8 – RESPONSÁVEL TÉCNICO

ASSINATURA