ΕΜΒΟΛΙΜΗ ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥΡΙΟΥ 2015 ΣΤΟΝ ΑΠΕΙΡΟΣΤΙΚΟ ΛΟΓΙΣΜΟ ΙΙ

ΘΕΜΑ 10. (1,5) (α) Να αποδειχθεί οτι η συνάρτηση $f: \mathbb{R}^2 \to \mathbb{R}$ με

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{ \'atan } (x,y) \neq (0,0), \\ 0, & \text{ \'atan } (x,y) = (0,0). \end{cases}$$

είναι συνεχής στο σημείο (0,0).

(β) Να υπολογιστούν όλες οι κατευθυνόμενες παράγωγοι της f στο σημείο (0,0), αν υπάρχουν.

(γ) Είναι η f διαφορίσιμη στο σημείο (0,0);

 $\Theta EMA \ 2o. \ (1,5)$ Να ευρεθούν τα σημεία τοπικών ακροτάτων και τα σαμάρια της συνάρτησης $f: \mathbb{R}^2 \to \mathbb{R}$ με τύπο

$$f(x,y) = x^3 + xy^2 - 2x - y.$$

ΘΕΜΑ 30. (2) Να αποδειχθεί οτι το σύνολο $S = \{(x,y,z) \in \mathbb{R}^3 : z^2 - xy - 1 = 0\}$ είναι λεία επιφάνεια στον \mathbb{R}^3 και να ευρεθούν τα σημεία της που βρίσκονται πλησιέστερα στο (0,0,0).

 Θ EMA 40. (1,5) Αν $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2x\}$, να υπολογιστεί το ολοκλήρωμα

$$\int_{B} (x^2 + y^2) dx dy.$$

ΘΕΜΑ 50. (2) Αν $K = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le 1 - \sqrt{x^2 + y^2}\}$ να υπολογιστεί το ολοκλήρωμα

$$\int_K (x+y+z)dxdydz.$$

 Θ EMA 6ο. (1,5) Αν R > 0, να υπολογιστεί ο όγχος του στερεού

$$K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le R^2 \quad \text{ for } 0 \le y \le x, \quad z \ge 0\}.$$

ΚΑΛΗ ΕΠΙΤΥΧΙΑ