Д. В. Карпов

# Теория графов. Теорема Татта

Д. В. Карпов

Extended edition

2023

#### Содержание теоремы

- ▶ Паросочетание в графе G называется совершенным, если оно покрывает все вершины графа G.
- lacktriangle Обозначим за odd(G) (или o(G)) количество компонент связности графа, содержащих нечётное количество вершин.
- Мы готовы сформулировать теорему.

#### Теорема (W. T. Tutte, 1947)

В графе G существует совершенное паросочетание тогда и только тогда, когда для любого  $S\subset V(G)$  выполняется условие  $odd(G-S)\leqslant |S|.$ 

меньше, чем odd(G-S)

Туда

 $\Longrightarrow \mathsf{\Pi}\mathsf{усть}\ M - \mathsf{совершенноe}\ \mathsf{паросочетаниe},\ S \subset V(G).\ \mathsf{Тогда}\ \mathsf{граф}\ G - S$  разобьётся на чётные и нечётные компоненты. Тогда для каждой нечётной компоненты C существует вершина, которая не покрыта рёбрами из  $M \cap C$ , но она была покрыта. Значит, одна вершина из нечётной компоненты связности смежна ребром из паросочетания M с вершиной из множества S (потому что только его мы и удаляли). Все вершины, с которыми соединены вершины из нечётных компонент, разные, потому что из вершины

паросочетания выходит ровно 1 ребро. Отсюда следует, что в S вершин не

Обратно



- ▶ Предположим, что граф удовлетворяет условию, но не имеет совершенного паросочетания. Тогда, в частности (подставим  $S=\varnothing$ ),  $odd(G)\leqslant |\varnothing|=0$ , то есть, v(G) чётно (потому что в G нет нечётных компонент).
- ▶ Пусть  $G^*$  максимальный надграф G на том же множестве вершин, не имеющий совершенного паросочетания (то есть, добавив любое ребро, совершенное паросочетание уже будет). Мы построим совершенное паросочетание в  $G^*$  и придем к противоречию (фактически главная идея доказательства).

• Пусть  $U=\{u\in V(G): d_{G^*}(u)=v(G)-1\}$  (множество вершин, соединённых со всеми остальными).  $G^*$  – не полный граф, а значит,  $U\neq V(G)$ . Удалим эти вершины из  $G^*$ .



ightharpoonup (Лемма) Утверждается, что получившийся граф  $G^*-U$  – это объединение нескольких несвязанных полных графов. Доказывать будем от противного.

#### Доказательство леммы

#### Доказательство.

- ▶ Предположим, что это не так. Тогда существуют такие вершины  $x,y,z\in V(G)\backslash U$ , что  $xy,yz\in E(G^*)$ , но  $xz\notin E(G^*)$ .
- lacktriangle Так как  $y \notin U$ , существует такая вершина  $w \notin U$ , что  $yw \notin E(G^*)$ .
- Ввиду максимальности графа  $G^*$  существует совершенное паросочетание  $M_1$  в графе  $G^* + xz$  и совершенное паросочетание  $M_2$  в графе  $G^* + yw$ . Так как в графе  $G^*$  нет совершенного паросочетания,  $xz \in M_1$  и  $yw \in M_2$ .



▶ Пусть  $H=(V(G),M_1\triangle M_2)$ . Граф H — несвязное объединение циклов чётной длины, потому что из каждой вершины графа H выходит или 0, или 2 ребра (можно вспомнить критерий двудольности графа и применить его для каждой из компонент). Очевидно, в каждом из циклов чередуются рёбра паросочетаний  $M_1$  и  $M_2$ . Из-за чередования рёбер диагоналей в циклах быть не может. 2 случая:

**С**лучай 1. xz и yw в разных компонентах  $C_1$  и  $C_2$  графа H





- Тогда на вершинах  $C_1$  мы выберем рёбра паросочетания  $M_2$ , на вершинах  $C_2$  мы выберем рёбра паросочетания  $M_1$ , а в остальных компонентах графа H любое из этих паросочетаний (на рисунке  $M_1$ ).
- ightharpoonup В итоге получится совершенное паросочетание графа  $G^*$  , противоречие.



- В силу симметричности x и z можно считать, что вершины расположены в чётном цикле C в порядке ywxz.
- Рассмотрим простой путь P=zCyxCw, который состоит из двух дуг цикла C и ребра xy (оно не в графе H, но точно у нас было в  $G^*!$ ). Тогда V(P)=V(C) и  $E(P)\subset E(G^*)$ . Количество рёбер между точками z,y и x,w чётно (иначе рёбра не чередуются). Итак, мы получили путь, убрав ребра xz,yw из чётного цикла и добавив ребро  $xy\Rightarrow$  осталось нечётное количество рёбер. Очевидно, в простом пути нечётной длины существует совершенное паросочетание.



### Доказательство теоремы

- ▶ По лемме  $G^* U$  объединение несвязных полных графов. В силу условия, среди них не более чем |U| имеет нечётное число вершин  $(odd(G^* U) \leqslant |U|)$ .
- В каждой чётной компоненте графа  $G^*-U$  существует совершенное паросочетание, в каждой нечётной паросочетание, покрывающее все вершины, кроме одной. Соединим её с вершиной из U (используем различные, и их точно хватит, т. к.  $odd(G^*-U)\leqslant |U|$ ).
- Разбиваем оставшиеся вершины в U: они разобьются на пары: это возможно всегда, потому что в изначальном графе (а значит и в  $G^*$ , потому что  $V(G^*) = V(G)$  по построению) количество вершин чётно, а вершины из U это T вершины, которые соединены T остальными по построению.

## Рисунок к последним пунктам

Мы молодцы



Теория графов. Теорема Татта

Д. В. Карпов