3.2.2 Electromagnetic radiation and quantum phenomena

3.2.2.1 The photoelectric effect

- The photoelectric effect
 - Photoelectrons are emitted from the surface of a metal after light above a certain frequency (threshold frequency) is shown on it
- Work function
 - The minimum energy to remove an electron from the metal surface when the metal is at **zero potential**
 - Denoted by ϕ
- Stopping potential (*V_s*)
 - The PD needed to apply across the metal to stop the photoelectrons with the maximum KE $(E_{\rm k(max)})$
 - Minimum energy needed to stop photoelectric emissions
 - $E_{k(\text{max})} = e \times V_s$
- Threshold frequency
 - The minimum frequency of the radiation / light / photon needed to liberate an electron from the surface of a material
 - $hf > \phi$
 - $f_{\min} = \frac{\phi}{h}$
- Why wave theory doesn't work
 - There is no photoemission below the threshold frequency even with bright light
 - Wave theory would allow gradual accumulation of energy to cause emission
 - o Any frequency of light should be able to cause electron emission
 - Electrons are emitted with no noticeable decay
 - In wave theory time would elapse while an electron gains sufficient energy to leave the surface
 - Intensity of the light does not affect the KE of the emitted electrons
 - High intensity waves would be expected to give higher KE to an electron
- Explanation with the photon model
 - When light is incident on a metal surface an electron at the surface absorbs **a single photon** from the incident light and gains energy equal to *hf*
 - An electron can leave the metal surface if the energy gained > the work function of the metal
 - Excess energy gained becomes KE of the photoelectron
- · Effect of increasing the intensity of light
 - There are more photons striking the surface per second
 - Current increases as the number of electrons emitted per second increases
- Photoelectric equation
 - $E = hf = \phi + E_{k(max)}$
 - $E_{k(max)} = hf \phi$
 - Graph

- \circ Gradient = h
- \circ y-intercept = $-\phi$
- Energy level of emitted electrons

- · There exists a maximum value of energy
- Energy of photons are constant (E = hf)
- One to one interaction between photon and electron so a fixed amount of KE is transferred
- The energy required to remove an electron varies so the KE of electrons varies
 - Max KE = photon energy work function
 - \circ Deeper electrons require more energy to remove than ϕ

3.2.2.2 Collisions of electrons with atoms

- The electron volt
 - The work done when 1 electron is moved through a potential difference of 1 V
 - work done = charge \times potential difference moved through = qV
 - 1 eV = 1.6×10^{-19} J
- Electron energy level
 - Electrons in atoms can only exist in discrete energy levels
 - These electrons can gain energy from collisions with free electrons
 - Excitation
 - o Electrons move up in energy level
 - It will quickly return to its original energy level (the ground state) and release energy gained as a photon
 - Ionisation
 - o Electrons gain enough energy to be removed from the atom entirely
 - Occurs if the energy of the free electron is greater than the ionisation energy
- Excitation energies
 - The energy values at which an atom absorbs energy
- Flourescent tube
 - Filled with mercury vapour
 - · High voltage applied which accelerates free electrons through the tube
 - Free electrons collide with the mercury atoms
 - Electrons in the mercury atoms are raised to a higher level
 - The mercury atom become ionised → release more free electrons
 - The new free electrons collide with the mercury atoms, causing them to become excited
 - Mercury atoms de-excites and relaxes to a lower energy level
 - They release photons of energy equal to the energy difference between the levels
 - o Frequency is mostly in the UV range
 - The fluorescent coating on the inside of the tube absorbs these UV photons and therefore
 electrons in the atoms of the coating become excited and de-excite releasing photons of
 visible light
 - Emitted radiation consists of (a range of) lower photon energies / frequencies or longer wavelengths

3.2.2.3 Energy levels and photon emission

- · Ground state
 - When electrons / atoms are in there lowest energy state / most stable state
- Excited state
 - Electron (in ground state) has moved to higher energy level / shell

- Ionisation energy
 - The minimum energy to remove an electron from an atom from the ground state
- Possible energy level of atoms
 - An atom can only have certain levels of energy
 - Each allowed energy level = a certain electron configuration of the atom

- · Line spectrum
 - Obtained by passing the light from a fluorescent tube through a diffraction grating or prism
 - Each line = different wavelength of light emitted by the tube = corresponding to the different photon energies emitted
 - Show that electrons in atoms can only transition between discrete energy levels

- Line absorption spectrum
 - Continuous spectrum with black lines at certain intervals
 - Obtained by passing white light through a cooled gas
 - Black lines represent the possible differences in energy levels
 - The atoms in the gas can only absorb photons of an energy equal to the exact difference between two energy levels
- Why only certain frequencies of light can be absorbed
 - Electrons occupy discrete energy levels
 - They need to absorb an exact amount of energy to move to a higher level
 - Photons need to have certain frequency to provide this energy (E = hf)
 - Energy required is the same for a particular atom
 - All energy of the photon is absorbed in 1 to 1 interaction between photon + electron
- De-excitation
 - The electron configuration in an excited atom is unstable due to a vacancy in the shell that the excited electron left
 - The vacancy is filled by an electron from an outer shell transferring to it
- Energy level difference
 - Difference between two energy levels in line spectrum = a specific photon energy emitted by a fluorescent tube / absorbed in a line absorption spectrum
 - Energy of photon emitted = energy lost by the electron = energy lost by the atom
 - Energy of the emitted photon $hf = E_1 E_2$

3.2.2.4 Wave-particle duality

- Evidence for wave-particle duality of light / EM waves
 - Acting as wave: diffraction and interference
 - Acting as particle: photoelectric effect
- De Broglie hypothesis
 - Matter particles have a dual wave-particle nature
- Evidence for de Broglie hypothesis
 - Collisions by incident electrons move electrons in atoms between energy levels
 - Photon emitted when atoms de-excite or electrons move to lower energy levels
 - Wave properties of electrons
 - o Electrons can be diffracted, shown as concentric rings on scree (also diffraction of

- electrons by a metal crystal)
- Foil causes electrons to travel in particular directions
- o Bright rings / maximum intensity occurs where waves interfere constructively
- o Particle behaviour would only produce a circle of light as particles scatter randomly
- Only waves can experience diffraction → electrons also have a dual wave-particle nature
- Particle properties of electrons
 - o Electrons must provide enough kinetic energy for light to be emitted
 - o Instant light as electron can provide the energy in discrete amounts
 - Waves → energy will accumulate gradually so time is needed until light is emitted & light will always be emitted no matter how low the energy is
- Property later also shown for other particles

- De Broglie wavelength
 - The wavelength of the wave-like behaviour of a matter particle

- Higher particle momentum = shorter wavelength = less diffraction = concentric rings of the interference pattern become closer
- Change in understanding of matter
 - Knowledge and understanding of the nature of matter changes over time in line with new experimental evidence gathered
 - Such changes need to be evaluated through peer review and validated by the scientific community before being accepted