Machine Learing

Matteo Secco

 $March\ 7,\ 2021$

Contents

1	Sup	pervised Learning
	1.1	Tasks
	1.2	When to use supervised learning?
	1.3	Steps
	1.4	Representation, Evaluation, Optimization
		Supervised learning taxonomy
	1.6	Learning approaches
2	\mathbf{Lin}	ear regression
	2.1	Linear models

1 Supervised Learning

input x also called features or attributes

 ${\bf output} \ {\bf t} \quad {\bf also} \ {\bf called} \ {\bf targets} \ {\bf or} \ {\bf labels}$

Goal find a good approximation for $f: x \to t$

1.1 Tasks

Classification t is discrete

Regression t is continuous

Probability estimation t is a probability

1.2 When to use supervised learning?

- Human cannot perform the task
- Human can perform the task but cannot explain how
- Task changes over time
- Task is user-specific

1.3 Steps

To approximate f over the dataset \mathcal{D}

- 1. Define a loss function \mathcal{L}
- 2. Choose the hypothesis space \mathcal{H}
- 3. find $h \in \mathcal{H}$ that minimizes \mathcal{L} over \mathcal{D}

1.4 Representation, Evaluation, Optimization

Examples of representation

- Linear models
- Instance-based
- Decision trees
- Set of rules
- Graphical models
- Neural networks

- Gaussian Processes
- Support vector machines
- Model ensembles

Examples of evaluation

- Accuracy
- Precision and recall
- Squared Error
- Likelihood
- Posterior probability
- Cost/Utility
- Margin
- Entropy
- KL divergence

Examples of optimization

- Combinatorial optimization
 - e.g.: Greedy search
- Convex optimization
 - e.g.: Gradient descent
- Constrained optimization
 - e.g.: Linear programming

1.5 Supervised learning taxonomy

- Parametric vs Nonparametric
 - Parametric: fixed and finite number of parameters
 - Nonparametric: the number of parameters depends on thetraining set
- Frequentist vs Bayesian
 - Frequentist: use probabilities to model the sampling process
 - Bayesian: use probability to model uncertainty about the estimate

- Empirical Risk Minimization vs Structural Risk Minimization
 - Empirical Risk: Error over the training set
 - Structural Risk: Balance training error with model complexity
- Direct vs Generative vs Discriminative
 - Generative: learns the joint probability distribution p(x,t)
 - Discriminative: learns the conditional probability distribution p(t|x)

1.6 Learning approaches

Direct approach Learn directly f from D

Discriminative approach

- Model p(t|x)
- Marginalize to find $E[t|x] = \int t \cdot p(t|x) dt$

Generative approach

- Model p(x,t)
- Infer p(t|x) (Bayes rule)
- Marginalize to find $E[t|x] = \int t \cdot p(t|x) dt$

2 Linear regression

Regression Learn an approximation of $f(x): X \to \mathbb{R}$

- How to model f?
- How to optimize the approximation?
- How to evaluate the approximation?

Linear regression models f with linear functions

- easy to explain
- analytically solvable
- extendable to model non-linear relations
- base for more sophisticated models

First linear model

$$y(\vec{x}, \vec{w}) = \underbrace{w_0}_{\text{bias parameter}} + \sum_{j=1}^{D-1} w_j x_j = \vec{w}^T \cdot \underbrace{\vec{x}}_{(1, x_1, \dots, x_{D-1})}$$

Sum of Squared Errors Error loss for linear regression

$$L(\vec{w}) = \frac{1}{2} \underbrace{\sum_{n=1}^{N} [y(x_n, \vec{w}) - t_n]^2}_{\text{Residual Sum of Squares}}$$

Residual Sum of Squares

$$RSS(\vec{w}) = \|\vec{\epsilon}\|_2^2 = \sum_{i=1}^N \epsilon_i^2$$

2.1 Linear models

We can define more complex models modeling non linearity: the regression model must be <u>linear in the parameters</u>, but the parameters can be non linear wrt the data.

Basis function is a function ϕ mapping data to parameters:

$$y(\vec{x}, \vec{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\vec{x}) = \vec{w}^T \cdot \underbrace{\vec{\phi}(\vec{x})}_{(1, \phi_1(\vec{x}), \dots, \phi_{M-1}(\vec{x}))}$$

Some examples of basis functions:

.[Polynomial:]
$$\phi_j(x) = x^j$$

Gaussian:
$$\phi_j(x) = e^{-\frac{(x-\mu_j)^2}{2\sigma^2}}$$

Sigmoidal:
$$\phi_j(x) = \frac{1}{1+e^{\frac{\mu_j-x}{\sigma}}}$$

Least Squares

$$\begin{split} L(\vec{w}) &= \frac{1}{2}RSS(\vec{2}) = \frac{1}{2}(\vec{t} - \vec{\phi}\vec{w})^T(\vec{t} - \vec{\phi}\vec{w}) \\ \frac{\partial L(\vec{w})}{\partial \vec{w}} &= -\vec{\phi}^T(\vec{t} - \vec{\phi}\vec{w}) \qquad \frac{\partial^2 L(\vec{w})}{\partial \vec{w}\partial \vec{w}^T} = \vec{\phi}^T\vec{\phi} \\ &\hat{\vec{w}}_{OLS} = \left(\vec{\phi}^T\vec{\phi}\right)^{-1}\vec{\phi}^T\vec{t} \end{split}$$