

Due Date

Assignment 1.03: Fluid Continuity

1.	Water flows in a pipe of radius 2 cm at a speed of 1 m/s. The water then enters a thinner pipe, with a radius of 1 cm. What is the speed of the water in the thinner pipe?
2.	A water tank springs a leak in the bottom, and water begins to flow out of a 1-cm radius hole at a speed of 17 m/s. If the tower has a radius of 4 meters, speed that the water level drops?
3.	A fuel line in a car has a radius of 0.635 cm. The gasoline flows to a fuel injector that has an opening of 0.00045 cm in radius. If the fuel travels at 0.004 m/s in the fuel line, how fast does it come out of the injector opening?
4.	Water flows at a speed of 3 m/s in a hose of radius 1 cm. You want the water to go farther, so you place your thumb over the end of the hose. If the water comes out at 15 m/s, what is the effective radius of the hole where the water comes out? (Assume the hole is circular)
5.	A sprinkler system has 6 sprinklers connected to a 1.27cm radius pipe. Each sprinkler has a 2mm opening from which water sprays. If the speed of the water coming out of the opening is 15m/s, what is the speed of the water in the pipe?

Name: Due Date

6.	A	water	line	with	an int	ernal	radius	of 6.5	10	3 m	ı is co	nnecte	ed to	a sh	ower h	nead t	hat l	has	12 l	holes.
	T	he spe	ed of	the '	water	in the	line i	s 1.2 m	1/s.	At	what	${\rm speed}$	does	the	water	leave	one	of	the	holes
	(effective hole radius = $4.6 \cdot 10^{-4}$ m) in the shower head?																			

- 7. Water is exiting a garden hose (r=1.25 cm) at a speed of 2 m/s. The garden hose is held horizontally, at a height of 4.9 meters above the ground.
 - (a) Calculate the time it takes for the water to fall to the ground.
 - (b) You wish to water a plant that is 7 meters away from the hose (horizontally).
 - (c) What is the speed the water would need to fall at the base of the plant?
 - (d) You put your thumb over the hose to cause the water to travel faster. What radius should the exit-hole of the hose be in order for the water to reach the plant? (Assume the exit-hole is circular).