Date
THEORY OF COMPUTATION
MC-304
ASSIGNMENT-1
SUBMITTED BY: AIMAN SIDDIQUA
2K18 MC 008
(1) DEA HOOK accords in the time (2)
(1) DFA that accepts all strings over {0,1} except those containing the substring ool:
Containing the substring 001:
(q_0) (q_1) (q_2) (q_3) (q_4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
State Table:
0 1
\rightarrow (q_0) q_1 q_0
92 90
$\frac{q_2}{q_3}$
43 43
(2) NOFA accepting the strings over Earby ending in aba
$\rightarrow (a_0)$
$\longrightarrow (q_0) \qquad (q_1) \qquad (q_2) \qquad (q_3)$

let 0 = 290,91,92,93}

AIMAN SIDDISUA - 2K18/MC/008 Date Date
A DFA accepting the same set of strings is: M' = (29, 2a, b3, 8', [90], F)
where F = ([93], [93, 90], [93, 91], [93, 92], [93, 90, 91], [93, 90, 92], [93, 91, 92], [93, 90, 91, 92])
State Table: State S a b $ \begin{array}{cccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$M = \{Q, \{0,1\}, S, q_0, \{q, \}\}\}$ where $Q = \{q_0, q_1, q_2\}$
State Table State $ \Sigma $ 0 1 $\rightarrow q_0$ q_0, q_1 q_1 q_1 q_2 q_2 q_2 q_2
Corresponding DFA: $M' = (29, 50, 13, 8', [90], F)$ where $F = (5923, [92, 90], [92, 92], [91, 90, 92])$ Spiral

		Date
AIMAN SIDDIQUA - 2K18/MC/008		
Corresponding Moore Machine:		
Next State	,	Output
Present State Stat	a=1	Ourput
$\rightarrow q$, q	920	1
^	94	0
	94	1
	(931	0
930 921	931	1
931 921	9,	1
		
(6.) Mealy Machine:		
Next State	7	
Present State State Output	a=1 State	Output
$\rightarrow 90$ 91 0	92	
91 93 1	92	7.
q_2 q_2 1	91	0
90 1	93	
15		
f.		
(F) State a Input b		
$\rightarrow q_0$ q_0 q_3		
91 0 0		
02 02		
92 90 95		
		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
11 43		
T = 550-2 500 0 0 0	2.77	
$\pi_0 = \frac{2963}{2963}, \frac{290}{290}, \frac{91}{92}, \frac{93}{94}, \frac{94}{94}$	[5]	

AMAN SIDDIQUA - 2K18/Mc/008 Date
$T_1 = \left\{ \{ 96\}, \{ 99, 91, 92, 93, 95\}, \{ 94\} \right\}$
TZ = { [96], [90, 91, 93, 2 92, 95], { 94}}
Tz = { ?967, ?967, {934, ?934, ?91, 959, {94} }
Ty = { {96}, {90}, {91}, {92}, {92}, {954, {94}}
Hence the minimum state automaton is same as the given automata.
8. Transition table for the given automata. State b Input 1 Inpu

Alman Siddiqua - 2K18/MC/008 Date	
Minimum State Automata:	
M' = (0', 50, 13, 6', 90', F')	
where	
P' = { [93,95], [90,91], [92], [94] }	
90' = [90.91]	
$F' = \begin{bmatrix} 93, 95 \end{bmatrix}$	
and	
8' is defined by the following table:	
State & 0 1	
$\longrightarrow [q_0, q_1] [q_0, q_1] [q_3, q_5]$	
[92] [90, 9,] [94]	
(93,95) $(93,95)$ $(93,95)$	
[94] [93,95] [93,95]	
Transition diagram:	
(92)	
$\longrightarrow ([q_0, q_1])$ $\downarrow \qquad \qquad \downarrow \qquad \qquad ([q_3, q_5])$	
	-
([gy]) × 0,1	
	
(6) DFAS can be used for deficial Intelligence language	
O) DFAs can be used for Artificial Intelligence Language Stale machines are certainly not the most sophisticale	<u> </u>
means of implementing artificially intelligent agents	<u> </u>
in games, but many games include chasa these	
with simple, state-based behaviours that are easily	1
and effectively modeled using stali machines.	
For example, the classic game of Pac-Man-	
U V .	
Spiral	

Transition diagram:

Spiral