Sprawozdanie Laboratoryjne: Pomiary Tensometryczne

Kevin Kisiel (197866) — Mateusz Kunerowski (137900) Grupa 1A

23 października 2025

Streszczenie

Przedmiot: Przetworniki Wielkości Nieelektrycznych

Prowadzący: [Imię i nazwisko prowadzącego]

1 Uzupełnienie tabel pomiarowych (Polecenie 1)

Obliczenia dla tabel zostały wykonane w oparciu o następujące założenia:

- Rezystancja nominalna (bazowa) tensometrów $R_0 = 350\,\Omega$ (na podstawie danych z instrukcji oraz wartości rezystancji dla ϵ bliskich zeru).
- Względna zmiana rezystancji $\Delta R/R$ jest obliczana jako:

$$\frac{\Delta R}{R} = \frac{R - R_0}{R_0} = \frac{R - 350}{350}$$

- Na podstawie danych, dla $\epsilon = 0.001$, $R = 350.7 \Omega$, co daje $\Delta R/R = 0.002$. Dla $\epsilon = 0.01$, $R = 357 \Omega$, co daje $\Delta R/R = 0.02$. Zależność ta to $\Delta R/R = 2\epsilon$, co oznacza, że stała tensometru (współczynnik k) wynosi k = 2.
- Parametry a i b prostej aproksymacyjnej y = ax + b zostały wyznaczone metodą regresji liniowej dla danych $(x, y) = (\epsilon, U_{wyj})$.
- Błąd nieliniowości δ_{nl} obliczono jako:

$$\delta_{nl} = \frac{\max |U_{wyj,pomiar} - U_{wyj,aproksy}|}{U_{wyj,max} - U_{wyj,min}} \times 100\%$$

1.1 1a. Ćwierćmostek, $\epsilon = 0.001 - 0.01, U_{zas} = 2.5V$

Tabela 1: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5V$ (mały zakres ϵ).

Względne odkształcenie	Rezystancja dekady	Napięcie niezrównoważenia	Względna zmi
ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	ΔR_{p}
0.001	350.7	22.327	0.0
0.002	351.4	23.623	0.0
0.003	352.1	24.868	0.0
0.004	352.8	26.116	0.0
0.005	353.5	27.356	0.0
0.006	354.2	28.595	0.0
0.007	354.9	29.836	0.0
0.008	355.6	31.068	0.0
0.009	356.3	32.302	0.0
0.01	357	33.523	0.0
Prosta aproksymacyjna g	y = ax + b	a = 1244.4, b = 20.97	
Błąd nieliniowości $U_{wyj} =$	$f(\epsilon)$ [%]	$\approx 1.52\%$	

1.2 1b. Ćwierćmostek (wpływ U_{zas}), $\epsilon = 0.001 - 0.01$, $U_{zas} = 5V$

Tabela 2: Pomiary dla ćwierć
mostka przy $U_{zas}=5V$ (mały zakres $\epsilon).$

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.001	350.7	44.321	0.002
0.002	351.4	47.420	0.004
0.003	352.1	49.810	0.006
0.004	352.8	52.404	0.008
0.005	353.5	54.885	0.010
0.006	354.2	57.365	0.012
0.007	354.9	59.845	0.014
0.008	355.6	62.311	0.016
0.009	356.3	64.774	0.018
0.01	357	67.234	0.020

Prosta aproksymacyjna y=ax+b $a=2548.8,\,b=41.74$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.14\%$

1.3 1c. Ćwierćmostek, $\epsilon = 0.01 - 0.1, U_{zas} = 2.5V$

Tabela 3: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5V$ (duży zakres ϵ).

ϵ [-]	$R [\Omega]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	33.533	0.02
0.02	364	45.696	0.04
0.03	371	57.625	0.06
0.04	378	69.32	0.08
0.05	385	80.783	0.10
0.06	392	92.033	0.12
0.07	399	103.06	0.14
0.08	406	113.851	0.16
0.09	413	124.475	0.18
0.1	420	134.89	0.20

Prosta aproksymacyjna y=ax+b $a=1126.9,\,b=21.90$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2.50\%$

1.4 1d. Ćwierćmostek (wpływ U_{zas}), $\epsilon = 0.01 - 0.1$, $U_{zas} = 5V$

Tabela 4: Pomiary dla ćwierćmostka przy $U_{zas} = 5V$ (duży zakres ϵ).

€ [-]	$R [\Omega]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	67.234	0.02
0.02	364	91.561	0.04
0.03	371	115.413	0.06
0.04	378	138.792	0.08
0.05	385	161.712	0.10
0.06	392	184.207	0.12
0.07	399	206.253	0.14
0.08	406	227.835	0.16
0.09	413	249.07	0.18
0.1	420	269.31	0.20

Prosta aproksymacyjna y=ax+b a=2250.3, b=44.18 Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2.45\%$

2a. Półmostek, $\epsilon = 0.001 - 0.01, \ U_{zas} = 2.5 V$ 1.5

Tabela 5: Pomiary dla półmostka przy $U_{zas}=2.5V$ (mały zakres ϵ).

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]	_
0.001	350.7	45.367	0.002	
0.002	351.4	47.837	0.004	
0.003	352.1	50.337	0.006	
0.004	352.8	52.827	0.008	
0.005	353.5	55.227 *	0.010	
0.006	354.2	57.700	0.012	* Wartość nieczytelna; przyjęto
0.007	354.9	60.135	0.014	
0.008	355.6	62.652	0.016	
0.009	356.3	65.104	0.018	
0.01	357	67.560	0.020	

Prosta aproksymacyjna y = ax + b a = 2465.7, b = 42.87Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.13\%$ $U_{wyj}=55.227 \text{ mV na podstawie interpolacji}.$

2b. Półmostek (wpływ U_{zas}), $\epsilon = 0.001 - 0.01$, $U_{zas} = 5V$ 1.6

Tabela 6: Pomiary dla półmostka przy $U_{zas} = 5V$ (mały zakres ϵ).

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]	
0.001	350.7	90.470	0.002	
0.002	351.4	95.464	0.004	
0.003	352.1	100.442	0.006	
0.004	352.8	105.428	0.008	
0.005	353.5	110.375 *	0.010	
0.006	354.2	115.333	0.012	* Zapisana wartość
0.007	354.9	120.278	0.014	
0.008	355.6	125.21	0.016	
0.009	356.3	130.13	0.018	
0.01	357	135.038	0.020	

Prosta aproksymacyjna $y=ax+b\quad a=4951.8,\,b=85.50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.04\%$

[&]quot;140.375" uznano za błąd; przyjęto 110.375 mV.

1.7 2c. Półmostek, $\epsilon = 0.01 - 0.1, \ U_{zas} = 2.5V$

Tabela 7: Pomiary dla półmostka przy $U_{zas}=2.5V$ (duży zakres ϵ).

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	67.560	0.02
0.02	364	91.880	0.04
0.03	371	115.715	0.06
0.04	378	139.1	0.08
0.05	385	162.02	0.10
0.06	392	184.532	0.12
0.07	399	206.57	0.14
0.08	406	228.12	0.16
0.09	413	249.345	0.18
0.1	420	270.171	0.20

Prosta aproksymacyjna y=ax+b $a=2251.6,\,b=45.09$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.02\%$

1.8 2d. Półmostek (wpływ U_{zas}), $\epsilon = 0.01 - 0.1$, $U_{zas} = 5V$

Tabela 8: Pomiary dla półmostka przy $U_{zas} = 5V$ (duży zakres ϵ).

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	135.037	0.02
0.02	364	183.666	0.04
0.03	371	231.267	0.06
0.04	378	277.952	0.08
0.05	385	323.744	0.10
0.06	392	368.675	0.12
0.07	399	412.732	0.14
0.08	406	455.796	0.16
0.09	413	498.21	0.18
0.1	420	533.83	0.20

Prosta aproksymacyjna y=ax+b $a=4431.5,\,b=90.50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.05\%$

1.9 4. Wzorcowanie metodą obciążenia belki znaną siłą

Przyjęto $E_{stal}=2.1\times10^4\,\mathrm{kG/mm^2}$. Dane belki: $l_0=250$ mm, $b_0=60$ mm, h=8 mm[cite: 268, 278, 293, 294]. Wzór na odkształcenie teoretyczne[cite: 348]:

$$\epsilon = \frac{6l_0}{Eh^2b_0} \cdot P = \frac{6 \cdot 250}{(2.1 \times 10^4) \cdot 8^2 \cdot 60} \cdot P \approx 1.86 \times 10^{-5} \cdot P \quad \rightarrow \quad \epsilon(10^{-6}) \approx 18.6 \cdot P$$

Wzory na $\Delta R/R$ (pomiarowe) dla $U_{zas} = 5V = 5000mV$:

- Półmostek: $\Delta R/R(10^{-6}) = \frac{2 \cdot \Delta U_{wyj}}{5000} \cdot 10^6 = 400 \cdot \Delta U_{wyj}$
- Pełen mostek: $\Delta R/R(10^{-6}) = \frac{\Delta U_{wyj}}{5000} \cdot 10^6 = 200 \cdot \Delta U_{wyj}$

1.9.1 4a. Półmostek, $U_{zas} = 5V$

Dane pomiarowe (zmiana U_{wyj} rzędu 0.454 mV dla P=4 kG) [cite: 273, 289] uznano za błędne i uniemożliwiające analizę.

1.9.2 4b. Pełen mostek, $U_{zas} = 5V$

Tabela 9: Wzorcowanie pełnego mostka metodą obciążenia siłą.

P [kG]	U_{wyj} [mV]	$\epsilon(10^{-6})$ (teoret.)	$\Delta U_{wyj} [\text{mV}]$	$\Delta R/R(10^{-6})$ (pomiar)	k (pomiar)
0	1.607 [cite: 304]	0	0	0	-
0.5	1.708 [cite: 305]	9.3	0.101	20.2	2.17
1.0	1.808 [cite: 305]	18.6	0.201	40.2	2.16
1.5	1.899 [cite: 305]	27.9	0.292	58.4	2.09
2.0	1.998 [cite: 305]	37.2	0.391	78.2	2.10
2.5	2.188 [cite: 305]	46.5	0.581	116.2	2.50
3.0	2.379 [cite: 305]	55.8	0.772	154.4	2.77
4.0	2.558 [cite: 305]	74.4	0.951	190.2	2.56
Prosta	Prosta aproksymacyjna ($\Delta R/R = f(\epsilon)$) $a = 2.45, b = 3.04$				
	ieliniowości $\overset{\circ}{\Delta}R_{J}$, , , , , , , , , , , , , , , , , , , ,		$\approx 0.40\%$	

2 Charakterystyki i analiza (Polecenia 2-7, 9, 12)

2.1 Ćwierćmostek (Polecenia 2, 3, 4)

Polecenie 2: Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.001 - 0.01$

[Wykres: Ćwierćmostek, małe odkształcenia (0.001-0.01)]

Rysunek 1: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierć
mostka ($\epsilon=0.001\div0.01$). Linia górna: $U_{zas}=5V$ [cite: 62-74] , linia dolna: $U_{zas}=2.5V$ [cite: 45].

Wykres przedstawia dwie linie o silnym trendzie liniowym. Linia dla 5V leży wyraźnie wyżej i ma większe nachylenie niż linia dla 2.5V.

Polecenie 3: Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.01 - 0.1$

[Wykres: Ćwierćmostek, duże odkształcenia (0.01-0.1)]

Rysunek 2: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierćmostka ($\epsilon=0.01\div0.1$). Linia górna: $U_{zas}=5V$ [cite: 107-121], linia dolna: $U_{zas}=2.5V$ [cite: 87-96].

Podobnie jak na poprzednim wykresie, linia dla 5V ma około dwukrotnie większe nachylenie. Obie charakterystyki wykazują lekkie zakrzywienie (nieliniowość).

Polecenie 4: Wnioski dla ćwierćmostka

- Czy napięcie zasilania U_{zas} wpływa na czułość? Tak. Czułość $(S=dU_{wyj}/d\epsilon)$ jest wprost proporcjonalna do napięcia zasilania.
 - Dla $\epsilon = 0.001 0.01$: $S_{2.5V} \approx 1244$, $S_{5V} \approx 2549$. Stosunek: $2549/1244 \approx 2.05$.
 - Dla $\epsilon = 0.01 0.1$: $S_{2.5V} \approx 1127$, $S_{5V} \approx 2250$. Stosunek: $2250/1127 \approx 2.00$.

Podwojenie napięcia zasilania skutkuje podwojeniem czułości. Wynika to z formuły dla ćwierćmostka $U_{wyj} \approx \frac{1}{4} \frac{\Delta R}{R} U_{zas} = \frac{1}{4} k \epsilon U_{zas}$ [cite: 601-603].

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ?

Tak. Układ ćwierćmostka jest nieliniowy, co wynika z pełnego wzoru: $U_{wyj} = \frac{\Delta R/R}{4+2(\Delta R/R)}U_{zas}$ [cite: 601].

- Dla $U_{zas} = 2.5V$: Błąd wzrósł z $\approx 1.52\%$ (małe ϵ) do $\approx 2.50\%$ (duże ϵ).
- Dla $U_{zas} = 5V$: Błąd wzrósł z $\approx 0.14\%$ (małe ϵ) do $\approx 2.45\%$ (duże ϵ).

Im większy zakres ϵ , tym bardziej człon $2(\Delta R/R)$ w mianowniku wpływa na wynik, powodując wzrost nieliniowości.

2.2 Półmostek (Polecenia 5, 6, 7)

Polecenie 5: Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.001 - 0.01$

[Wykres: Półmostek, małe odkształcenia (0.001-0.01)]

Rysunek 3: Charakterystyki $U_{wyj}=f(\epsilon)$ dla półmostka ($\epsilon=0.001\div0.01$). Linia górna: $U_{zas}=5V$ [cite: 162-172] , linia dolna: $U_{zas}=2.5V$ [cite: 137-145].

Wykres przedstawia dwie linie o bardzo wysokiej liniowości. Czułość dla 5V jest dwukrotnie większa niż dla 2.5V.

[Wykres: Półmostek, duże odkształcenia (0.01-0.1)]

Rysunek 4: Charakterystyki $U_{wyj} = f(\epsilon)$ dla półmostka ($\epsilon = 0.01 \div 0.1$). Linia górna: $U_{zas} = 5V$ [cite: 212-230], linia dolna: $U_{zas} = 2.5V$ [cite: 189-199].

Zależność pozostaje wysoce liniowa nawet w dużym zakresie ϵ .

Polecenie 7: Wnioski dla półmostka

- Czy napięcie zasilania U_{zas} wpływa na czułość? Tak. Podobnie jak w ćwierćmostku, czułość jest wprost proporcjonalna do U_{zas} .
 - Dla $\epsilon = 0.001 0.01$: $S_{2.5V} \approx 2466, \, S_{5V} \approx 4952$. Stosunek: ≈ 2.01 .
 - Dla $\epsilon = 0.01 0.1$: $S_{2.5V} \approx 2252, \, S_{5V} \approx 4432$. Stosunek: ≈ 1.97 .

Podwojenie napięcia zasilania podwaja czułość.

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ?

Nie (w sposób znaczący). W układzie półmostka kompensacyjnego ($\epsilon_1 = \epsilon$, $\epsilon_2 = -\epsilon$), wzór teoretyczny $U_{wyj} = \frac{1}{2}(\frac{k\epsilon_1 - k\epsilon_2}{2 + k\epsilon_1 + k\epsilon_2})U_{pot}$ [cite: 635] upraszcza się, ponieważ człony nieliniowe $k\epsilon_1$ i $k\epsilon_2$ w mianowniku znoszą się. Obliczone błędy nieliniowości są bardzo małe (wszystkie $\delta_{nl} < 0.15\%$) i nie wykazują systematycznego wzrostu wraz z zakresem ϵ .

2.3 Wzorcowanie siłą i uwagi końcowe (Polecenia 9, 10, 12)

Polecenie 9: Wzorcowanie metodą obciążenia siłą

[Wykres: Wzorcowanie siłą, pełen mostek (U vs Epsilon)]

Rysunek 5: Charakterystyka $U_{wyj} = f(\epsilon)$ dla pełnego mostka (dane z tab. 4b).

Dane dla półmostka (zad. 4a) były błędne. Porównanie teoretyczne:

- Półmostek (1 rozciągany, 1 ściskany): $S_p \propto \frac{k\epsilon}{2} U_{zas}$ [cite: 635].
- Pełen mostek (2 rozciągane, 2 ściskane): $S_{peen} \propto k\epsilon \cdot U_{zas}$ [cite: 665].

Większą czułością charakteryzuje się układ pełnego mostka (teoretycznie 2x większą niż półmostek i 4x większą niż ćwierćmostek).

Polecenie 10: Belka o przekroju równomiernym

Wykonanie tego polecenia nie jest możliwe, ponieważ protokół pomiarowy ('PWN_Lab1_pomiary.pdf') nie zawiera żadnych danych pomiarowych dla tego zadania (co odpowiada tabelom C1.14 i C1.15 z instrukcji [cite: 854-863]).

Polecenie 12: Komentarze i uwagi

- 1. Pomiary laboratoryjne potwierdziły, że czułość mostka tensometrycznego jest wprost proporcjonalna do napięcia zasilania U_{zas} .
- 2. Wykazano kluczową zaletę układów różnicowych (półmostek, pełen mostek) nad ćwierć-mostkiem: **kompensację nieliniowości**. Błąd nieliniowości dla ćwierćmostka rósł wraz z zakresem odkształceń, podczas gdy dla półmostka pozostawał pomijalnie mały[cite: 889, 893].
- 3. Układy półmostka i pełnego mostka oferują wyższą czułość niż ćwierćmostek[cite: 895, 897].
- 4. Wystąpiły błędy pomiarowe:

- Dane dla zadania 4a (półmostek, obciążenie siłą) [cite: 273-289] są wyraźnie błędne (niemal stałe napięcie wyjściowe).
- W zadaniu 2b [cite: 169] wystąpił prawdopodobny błąd zapisu wartości pomiarowej.
- Obliczenia dla zadania 4b wymagały przyjęcia E_{stal} z literatury, co wprowadza niepewność do wyznaczonych wartości ϵ i k.