Projekt do MSP 2022/2023

- Jan Zbořil
- xzbori20
- xzbori20@stud.fit.vutbr.cz

Pro práci si nejprve importujeme potřebné moduly a data. Data jsem si předem transformoval z excelu do .csv , který jsem importoval do pythonu pomocí knihovny Panda. Využívám těchto knihoven:

- matplotlib pro kreslení grafů
- numpy pro numerické operace
- pandas pro práci s datovou sadou a tabulkami
- scipy stats pro provádění statistických testů
- statsmodels pro lineární regresi

```
In [1]: # import knihoven
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        from scipy import stats as st
        import statsmodels.api as sm
        # inicializace datove say
        df1 = pd.read csv('dataset 1.csv')
        df2 = pd.read_csv('dataset_2.csv')
        # ulozeni nazvu mest pro dalsi pouziti
        MESTA = df1['misto']
        MESTA.add(str(0))
        # vygeneruje tabulku pro dataset 1
        # print(df1.to markdown())
        # print(df1)
        # pro zadny vystup
        print('')
```

	pocet	zimni	letni	stridat	beznazoru	misto
0	1327	510	352	257	208	praha
1	915	324	284	178	129	brno
2	681	302	185	124	70	znojmo
3	587	257	178	78	74	tisnov
4	284	147	87	44	6	paseky
5	176	66	58	33	19	horni_lomna
6	215	87	65	31	32	dolni_vestonice
7	23	7	12	6	4	okoli

Úkol 1

Z nahraných dat jsem si vygeneroval graf ukazující počet odpovědí v jednotlivých městech.

```
In [2]: df11 = df1.drop(labels='pocet', axis=1)
    ax = df11.plot.bar(xlabel='misto', ylabel='pocet hlasu', \
        title='Průzkum střídání času')
    ax.set_xticklabels(df1['misto'], rotation=45)

plt.show()
```


Pro posouzení stejného procentuálního zastoupení - tedy pravděpodobnosti, že obyvatelé podporují střídání časů, letní čas nebo zimní čas - použijeme testy hypotézy homogenity v kontingenční tabulce. Takový test lze také nazvat testem dobré shody nebo χ^2 test.

Pro provedení takového testu potřebujeme nejprve znát sumy řádků a sloupců. Následující kód tyto sumy počítá a navíc provádí různé další pomocné transformace

```
In [3]: df11 = df1.drop(labels='misto', axis=1)
        dfl1.drop(labels='pocet', axis=1, inplace=True)
        sum rows = df11.sum(axis=0)
        sum cols = df11.sum(axis=1)
        try:
            dfl.insert(len(dfl.columns), 'sum_misto', sum cols, allow duplicates=False)
            df temp = pd.DataFrame(sum rows)
        except:
            pass
        df1.rename(columns={'pocet': 'pocet_'}, inplace=True)
        dfl.drop(labels='pocet_', axis=1, inplace=True)
        dfl.rename(index={i: MESTA[i] for i in range(0,len(MESTA))}, inplace=True)
        df1 = df1.append(df_temp.T, ignore_index=False)
        df1.drop(labels='misto', axis=1, inplace=True)
        df1['sum_misto'] = df1['sum_misto'].replace(np.nan, sum_cols.sum())
        df1.rename({0: 'sum cas'}, inplace=True, axis=0)
        df f = df1.copy()
        # print(df1.to markdown())
```

/tmp/ipykernel_34476/3414897264.py:16: FutureWarning: The frame.append method is d eprecated and will be removed from pandas in a future version. Use pandas.concat i nstead.

.1.6.1	.1.6.1		c	_	2	2 - 1 1	\
att =	att.a	abbena(a	τ temp).I.	lanore	index=Fal	se

	zimni	letni	stridat	beznazoru	sum_misto
praha	510	352	257	208	1327
brno	324	284	178	129	915
znojmo	302	185	124	70	681
tisnov	257	178	78	74	587
paseky	147	87	44	6	284
horni_lomna	66	58	33	19	176
dolni_vestonice	87	65	31	32	215
okoli	7	12	6	4	29
sum_cas	1700	1221	751	542	4214

Pro testování jednotlivých hypotéz ze zadání datovou sadu transformuju na tabulku se dvěma sloupci - počet respodnentů, co preferuje daný čas; a počet respondetů, jež uvedli jinou odpověď. Tabulka také obsahuje sloupec a řádek sum. Následují řešení jednotlivých poúkolů.

a) V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

```
\alpha = 0.05
```

 H_0 : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

 H_A : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co NEpreferují zimní čas.

```
In [4]: df_z = dfl.filter(items=['zimni'])
    df_z.insert(len(df_z.columns), 'jiny', dfl.iloc[:,[1,2,3]].sum(axis=1),\
        allow_duplicates=False)
    df_z.insert(len(df_z.columns), 'sum_misto', dfl.iloc[:,[4]].sum(axis=1),\
        allow_duplicates=False)

# print(df_z.to_markdown())
```

	zimni	jiny	sum_misto
praha	510	817	1327
brno	324	591	915
znojmo	302	379	681
tisnov	257	330	587
paseky	147	137	284
horni_lomna	66	110	176
dolni_vestonice	87	128	215
okoli	7	22	29
0	1700	2514	4214

Z tabulky odpovědí vypočítám tabulku procent pomocí vzorce

$$\frac{x_{i,j}}{\sum_{i} x_i} * 100$$

, kde $\sum_i x_i$ je v tabulce vyjádřen sloupcem sum_misto . Správnost dokazuje fakt, že sloupec pro sumu obsahuje v tabulce procent pouze hodnoty 100.

```
In [5]: def dfzPerc(df_z, to_print=False):
            N = df z.at['sum cas','sum misto']
            df_z_perc = pd.DataFrame(data=np.zeros((9, len(df_z.columns))),\
               columns=df_z.columns)
            df_z_perc.rename(index={i: MESTA[i] for i in range(0,len(MESTA))},\
               inplace=True)
            df_z_perc.rename({8: 'sum_cas'}, inplace=True, axis=0)
            suma = 0
           try:
               for i in range(0,9):
                   for j in range(0,2):
                       df_z_perc.iat[i,j] = (df_z.iat[i,j] / df_z.iat[i,2]) * 100
                       suma = suma + df z perc.iat[i,j]
                   df_z_perc.iat[i,2] = suma
                   suma = 0
            except:
               pass
           if to_print:
               print("----")
               print("dfz procenta:")
               print(df_z_perc.to_markdown())
               print("----")
            return df_z_perc
        df_z_perc = df_zPerc(df_z)
```

Tabulka procent pro zimní/jiný čas:

	zimni	jiny	sum_misto
praha	38.4326	61.5674	100
brno	35.4098	64.5902	100
znojmo	44.3465	55.6535	100
tisnov	43.7819	56.2181	100
paseky	51.7606	48.2394	100
horni_lomna	37.5	62.5	100
dolni_vestonice	40.4651	59.5349	100
okoli	24.1379	75.8621	100
sum_cas	40.3417	59.6583	100

S pomocí tabulky procent jsem spočítal tabulku očekávaných četností. Požil jsem následující vzorec

$$m_{i,j} = rac{n_i n_j}{n}$$

```
In [6]: def ocekavaneDfz(df_z, df_z_perc, to_print=False):
           dfm z = pd.DataFrame(data=np.zeros((8, len(df z.columns))),\
               columns=df_z.columns)
           dfm z.rename(index={i: MESTA[i] for i in range(0,len(MESTA))},\
               inplace=True)
           dfm_z.drop(labels='sum_misto', axis=1, inplace=True)
           for i in range(0,len(df z.index)-1):
               for j in range(0,len(df z.columns)-1):
                   dfm_z.iat[i,j] = (df_z_perc.iat[len(df_z.index)-1,j] / 100)
                       * df_z.iat[i,len(df_z.columns)-1]
           if to_print:
               print("----")
               print("ocekavane (m) dfm z")
               print(dfm_z.to_markdown())
               print("----")
            return dfm_z
        dfm z = ocekavaneDfz(df z, df z perc)
```

Tabulka očekávaných četností $m_{i,j}$:

	zimni	jiny
praha	535.335	791.665
brno	369.127	545.873
znojmo	274.727	406.273
tisnov	236.806	350.194
paseky	114.57	169.43
horni_lomna	71.0014	104.999
dolni_vestonice	86.7347	128.265
okoli	11.6991	17.3009

Pro otestování hypotézy H_0 jsem vyžil testu dobré shody, pro nějž je potřeba spočítat hodnotu χ^2 následujícím vzorcem.

$$\chi^2 = \sum_{i=1}^R \sum_{i=1}^S \frac{(n_{i,j} - m_{i,j})^2}{m_{i,j}}$$

Doplněk kritického oboru je < 0 ; $\chi^2_{0.95}(v)>$, kde v=(r-1)*(s-1) představuje počet stupňů volnosti, kde s je počet sloupců tabulky a r je počet řádků v tabulce. Pokud hodnota χ^2 náleží kritickému oboru, pak hypotézu H_0 nezamítám, jinak hypotézu H_0 zamítám na hladině významnosti α a platí alternativní hypotéza.

```
In [7]: def chiCalc(df_z, dfm_z):
            chi z = 0
            alpha = 0.05
            for i in range(0, len(dfm z.index)):
               for j in range(0, len(dfm_z.columns)):
                   chi_z = chi_z + (((df_z.iat[i,j] - dfm_z.iat[i,j]) ** 2))
                       / dfm_z.iat[i,j])
            print("----")
           print("CHI^2 = {}, stupne volnosti = {}".format(chi_z,\)
                (len(dfm_z.index)-1)*(len(dfm_z.columns)-1)))
            critical_value = st.chi2.ppf(1-alpha, \
                (len(dfm_z.index)-1)*(len(dfm_z.columns)-1))
           print("Doplnek kritickeho oboru = < 0 ; {} >"\
                .format(critical value))
            if chi z > critical value:
               print("H0 zamitam")
            else:
               print("H0 nezamitam")
           print("----")
        chiCalc(df_z, dfm_z)
```

CHI^2 = 37.82410668971246, stupne volnosti = 7 Doplnek kritickeho oboru = < 0 ; 14.067140449340169 > H0 zamitam

Obdobně jako u příkladu a) postupujeme také v příkladech b) a c)

b) V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují letní čas.

```
\alpha = 0.05
```

 H_0 : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

 H_A : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co NEpreferují letní čas.

```
In [8]: df_z = df1.filter(items=['letni'])
    df_z.insert(len(df_z.columns), 'jiny', df1.iloc[:,[0,2,3]].sum(axis=1),\
        allow_duplicates=False)
    df_z.insert(len(df_z.columns), 'sum_misto', df1.iloc[:,[4]].sum(axis=1),\
        allow_duplicates=False)

# print(df_z.to_markdown())
```

	letni	jiny	sum_misto
praha	352	975	1327
brno	284	631	915
znojmo	185	496	681
tisnov	178	409	587
paseky	87	197	284
horni_lomna	58	118	176
dolni_vestonice	65	150	215
okoli	12	17	29
sum_cas	1221	2993	4214

c) V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují střídání času.

```
\alpha = 0.05
```

 H_0 : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co preferují střídání času.

 H_A : V městech, obcích a v okolí studenta (8. průzkumů) je stejné procentuální zastoupení obyvatel, co NEpreferují střídání času.

```
In [10]: df_z = df1.filter(items=['stridat'])
    df_z.insert(len(df_z.columns), 'jiny', df1.iloc[:,[0,1,3]].sum(axis=1),\
        allow_duplicates=False)
    df_z.insert(len(df_z.columns), 'sum_misto', df1.iloc[:,[4]].sum(axis=1),\
        allow_duplicates=False)

# print(df_z.to_markdown())
```

	stridat	jiny	sum_misto
praha	257	1070	1327
brno	178	737	915
znojmo	124	557	681
tisnov	78	509	587
paseky	44	240	284
horni_lomna	33	143	176
dolni_vestonice	31	184	215
okoli	6	23	29
sum_cas	751	3463	4214

Pro příklad d) a e) je nutné vytvořit nové kategorie mšst - větší, menší a vesnice, a pracovat s nimi. Hodnoty nových kategorií vzniknou sečtením hodnot původních měst patřících do stejné kategorie.

d) U větších měst, menších měst a obcí (3. průzkumy) je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

```
\alpha = 0.05
```

 H_0 : U větších měst, menších měst a obcí (3. průzkumy) je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

 H_A : U větších měst, menších měst a obcí (3. průzkumy) je stejné procentuální zastoupení obyvatel, co N $\rm Epreferují$ zimní čas.

```
In [12]: df_z = df1.filter(items=['zimni'])
    df_z.insert(len(df_z.columns), 'jiny', df1.iloc[:,[1,2,3]].sum(axis=1),\
        allow_duplicates=False)

df_z.insert(len(df_z.columns), 'sum_misto', df1.iloc[:,[4]].sum(axis=1),\
        allow_duplicates=False)

vetsi = df_z.iloc[[0,1],:].sum(axis=0)
mensi = df_z.iloc[[2,3],:].sum(axis=0)
vesnice = df_z.iloc[[4,5,6],:].sum(axis=0)
x = df_z.iloc[[8],:].sum(axis=0)

df_z = pd.DataFrame(([vetsi, mensi, vesnice, x]), columns=df_z.columns)
df_z.rename(index={0: 'vetsi', 1: 'mensi', 2: 'vesnice', 3: 'sum_cas'},\
        inplace=True)

# print(df_z.to_markdown())
```

	zimni	jiny	sum_misto
vetsi	834	1408	2242
mensi	559	709	1268
vesnice	300	375	675
sum_cas	1700	2514	4214

```
In [13]: def dfzPerc2(df z, toprint = False):
             N = df z.at['sum cas','sum misto']
             df z perc = pd.DataFrame(data=np.zeros((4, len(df z.columns))),\
                columns=df_z.columns)
             df_z_perc.rename(\
                index={0: 'vetsi', 1: 'mensi', 2: 'vesnice', 3: 'sum_cas'}\
                     , inplace=True)
             suma = 0
            try:
                for i in range(0,4):
                    for j in range(0,2):
                        df z perc.iat[i,j] = \
                            ( df_z.iat[i,j] / df_z.iat[i,2] ) * 100
                        suma = suma + df_z_perc.iat[i,j]
                    df_z_perc.iat[i,2] = suma
                    suma = 0
            except:
                pass
            if toprint:
                print("-----")
                print("dfz procenta:")
                print(df_z_perc.to_markdown())
                print("----")
             return df z perc
         def ocekavaneDfz2(df_z, df_z_perc, toprint = False):
             dfm z = pd.DataFrame(data=np.zeros((3, len(df z.columns))), \
                columns=df z.columns)
            dfm_z.rename(\
                index={0: 'vetsi', 1: 'mensi', 2: 'vesnice', 3: '0'},\
                    inplace=True)
             # dfm.drop(labels='misto', axis=1, inplace=True)
            dfm z.drop(labels='sum misto', axis=1, inplace=True)
            for i in range(0,3):
                for j in range(0,2):
                    # print(df z perc.iat[8,j] / 100 , df z.iat[i,2] )
                    dfm_z.iat[i,j] = (df_z_perc.iat[3,j] / 100) \setminus
                        * df z.iat[i,2]
            if toprint:
                print("-----")
                print("ocekavane (m) dfm z")
                print(dfm z.to markdown())
                print("----")
             return dfm z
         def chiCalc2(df z, dfm z):
             chi z = 0
            alpha = 0.05
            for i in range(0,3):
                for j in range(0,2):
                    chi_z = chi_z + (((df_z.iat[i,j] - dfm_z.iat[i,j]) ** 2)
                        / dfm z.iat[i,j])
            print("----")
```

Tabulka procent:

	zimni	jiny	sum_misto
vetsi	37.1989	62.8011	100
mensi	44.0852	55.9148	100
vesnice	44.4444	55.5556	100
sum_cas	40.3417	59.6583	100

Tabulka očekávaných četností $m_{i,j}$

		zimni	jiny
V	vetsi	904.461	1337.54
n	nensi	511.533	756.467
٧	esnice	272.307	402.693

e) H_0 : U větších měst, menších měst a obcí (3. průzkumy) je stejné procentuální zastoupení nerozhodnutelných obyvatel.

```
\alpha = 0.05
```

 H_0 : U větších měst, menších měst a obcí (3. průzkumy) je stejné procentuální zastoupení nerozhodnutelných obyvatel

 H_A : U větších měst, menších měst a obcí (3. průzkumy) NENÍ stejné procentuální zastoupení nerozhodnutelných obyvatel

```
In [15]: df_z = df1.filter(items=['beznazoru'])
    df_z.insert(len(df_z.columns), 'jiny', df1.iloc[:,[1,2,0]].sum(axis=1),\
        allow_duplicates=False)
    df_z.insert(len(df_z.columns), 'sum_misto', df1.iloc[:,[4]].sum(axis=1),\
        allow_duplicates=False)

    vetsi = df_z.iloc[[0,1],:].sum(axis=0)
    mensi = df_z.iloc[[2,3],:].sum(axis=0)
    vesnice = df_z.iloc[[4,5,6],:].sum(axis=0)
    x = df_z.iloc[[8],:].sum(axis=0)

    df_z = pd.DataFrame(([vetsi, mensi, vesnice, x]), columns=df_z.columns)
    df_z.rename(index={0: 'vetsi', 1: 'mensi', 2: 'vesnice', 3: 'sum_cas'},\
        inplace=True)

# print(df_z.to_markdown())

df_z.perc = dfzPerc2(df_z)
    dfm_z = ocekavaneDfz2(df_z, df_z_perc)
```

Tabulka četností:

	beznazoru	jiny	sum_misto
vetsi	337	1905	2242
mensi	144	1124	1268
vesnice	57	618	675
sum_cas	542	3672	4214

Tabulka četností v procentech:

		beznazoi	ſU	jiny	sum_	misto
vet	si	15.031	L2	84.9688		100
me	nsi	11.356	35	88.6435		100
ves	snice	8.4444	14	91.5556		100
sur	n_cas	12.861	L9	87.1381		100

Tabulka očekávanýc četností $m_{i,j}$:

	beznazoru	jiny
vetsi	288.364	1953.64
mensi	163.089	1104.91
vesnice	86.8178	588.182

f) Na základě odpovědí z okolí studenta zkuste určit z dat, zda student prováděl výzkum ve větším městě, menším městě nebo v obci.

Porovnejte výsledek se skutečností a okomentujte.

Příklad jsem počítal pomocí párového T-testu.

```
In [17]: vetsi = df_f.iloc[[0,1],:].sum(axis=0)
         mensi = df_f.iloc[[2,3],:].sum(axis=0)
         vesnice = df_f.iloc[[4,5,6],:].sum(axis=0)
         okoli = df f.iloc[[7],:].sum(axis=0)
         df_fvet = pd.DataFrame(([vetsi, okoli]), columns=df_f.columns)
         df_fmen = pd.DataFrame(([mensi, okoli]), columns=df_f.columns)
         df_fves = pd.DataFrame(([vesnice, okoli]), columns=df_f.columns)
         df_fvet.rename(index={0: 'vetsi', 1: 'okoli'}, inplace=True)
         df fmen.rename(index={0: 'mensi', 1: 'okoli'}, inplace=True)
         df_fves.rename(index={0: 'vesnice', 1: 'okoli'}, inplace=True)
         # for i in [df_fvet, df_fmen, df_fves]:
               i.loc[len(i.index)] = i.sum(axis=0)
               i.rename(index={2: 'sum cas'}, inplace=True)
         #
               print("{}: ".format(i.columns[0]))
         #
               print(i.to_markdown())
```

Četnost ve větších městech a okolí: :

	zimni	letni	stridat	beznazoru	sum_misto
vetsi	834	636	435	337	2242
okoli	7	12	6	4	29
sum_cas	841	648	441	341	2271

Četnost v menších městech a okolí:

	zimni	letni	stridat	beznazoru	sum_misto
mensi	559	363	202	144	1268
okoli	7	12	6	4	29
sum_cas	566	375	208	148	1297

Četnost ve vesnicích a okolí:

	zimni	letni	stridat	beznazoru	sum_misto
vesnice	300	210	108	57	675
okoli	7	12	6	4	29
sum cas	307	222	114	61	704

```
VetS1
Statistika = 2.5836536202800007, P-Hodnota = 0.06109140982819672
mensi
Statistika = 2.4889989206823886, P-Hodnota = 0.06755677625424947
vesnice
Statistika = 2.454121510787069, P-Hodnota = 0.0701334654846285
```

Po provedení párového T-testu ani jedna z P-hodnot není menší než $\alpha=0.05$, proto nemůžeme potvrdit, že platí H_0 , tedy že jsem prováděl výzkum vě větším/menším městě nebo na vesnici. Nejblíže se však hodnotě $\alpha=0.05$ blíží P-hodnota pro větší města. Svůj výzkum jsem ve skutečnosti prováděl částečně v Brně (větší město) a v Přerově (menší město, ale počtem obyvatel větší než Znojmo nebo Tišnov). Výsledky testu tedy celkem odpovídají realitě.

2. Regrese

a) Určete vhodný model pomocí zpětné metody a regresní diagnostiky.

Pro výpočet vhodného modelu jsem použil metodu, kdy nejprve vypočítám regresní model se všemi parametry a následně odeberu z modelu ten parametr, pro který vyšla ve Studentově T-testu největší P-hodnota. Pro tento test jsem volil hypotézy:

 H_0 parametr $\beta_i=0$

 H_A parametr $\beta_i \neq 0$ Parametr β_i s největší P-hodnotou jsem odstranil, protože označuje koeficient, který není pro můj příklad statisticky signifikantní. Nikdy jsem ale neodtstanil konstantu β_1 , i když měla největší P-hodnotu. Nastal-li tento případ, odstranil jsem parametr s druhou největší hodnotou. Po každém odstranění nějakého parametru jsem model přepočítal. Takto jsem opakoval, dokud nezbyly statisticky významné koeficienty ($P-hodnota \leq \alpha$) a konstanta β_1

```
In [19]: x = (df2.iloc[:,0]).to_numpy()
         y = (df2.iloc[:,1]).to_numpy()
         z = (df2.iloc[:,2]).to_numpy()
         xx = []
         yy = []
         zz = []
         for j in x:
             j = j.replace(',',','.')
             xx.append(float(j))
         for j in y:
             j = j.replace(',','.')
             yy.append(float(j))
         for j in z:
             j = j.replace(',','.')
             zz.append(float(j))
         x = np.array(xx)
         y = np.array(yy)
         z = np.array(zz)
         def calcModel(F, print_summary=False, useConstant=False):
             if useConstant:
                 F = sm.add_constant(F)
             model = sm.OLS(z, F).fit()
             if print_summary:
                 print(model.summary())
                 print(model.rsquared)
             return model
         F = np.column_stack((x, y, x**2, y**2, x*y))
         model = calcModel(F, True, True)
```

OLS Regression Results

	======		=====	=====			
Dep. Variable:			У	R-sq	uared:		0.999
Model:			0LS	Adj.	R-squared:		0.999
Method:		Least Squa	ares	F-st	atistic:		1.036e+04
Date:		Sun, 04 Dec 3	2022	Prob	(F-statistic)	:	1.21e-91
Time:		15:10	6:38	Log-	Likelihood:		-335.87
No. Observatio	ns:		70	AIC:			683.7
Df Residuals:			64	BIC:			697.2
Df Model:			5				
Covariance Typ	e:	nonrol	bust				
				=====			
	coef	std err		t	P> t	[0.025	0.975]
		14.601					
const	0.7385			.050	0.960	-28.610	30.087
x1	1.0324				0.654		5.611
x2	4.3030			.994	0.324	-4.342	12.948
x3	4.0399			.524	0.000	3.836	4.244
x4	4.8417			.697	0.000	4.080	5.603
x5	6.0869	0.172	35	.303	0.000	5.742	6.431
Omnibus:	=====		===== .829		======== in-Watson:		1.954
			.661				0.824
<pre>Prob(Omnibus): Skew:</pre>			.019		ue-Bera (JB): (JB):		0.662
Kurtosis:			.470		. No.		839.
Kui (US1S:			.4/U =====		. NO.		039.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [20]: F = np.column_stack((y, x**2, y**2, x*y))
model = calcModel(F, True, True)

OLS Regression Results

Dep. Variable:	у	R-squared:	0.999
Model:	0LS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	1.311e+04
Date:	Sun, 04 Dec 2022	<pre>Prob (F-statistic):</pre>	1.10e-93
Time:	15:16:39	Log-Likelihood:	-335.98
No. Observations:	70	AIC:	682.0
Df Residuals:	65	BIC:	693.2
Df Model:	4		

Df Model: 4
Covariance Type: nonrobust

covariance ry	pe.	110111 050				
	coef	std err	t	P> t	[0.025	0.975]
const x1 x2 x3 x4	5.2817 4.0109 4.0810 4.8417 6.1161	10.616 4.252 0.046 0.379 0.159	0.498 0.943 88.867 12.775 38.521	0.621 0.349 0.000 0.000 0.000	-15.921 -4.481 3.989 4.085 5.799	26.484 12.503 4.173 5.599 6.433
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.0 0.0		,		1.945 0.768 0.681 623.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [21]: F = np.column_stack((x**2, y**2, x*y))
model = calcModel(F, True, True)
```

OLS Regression Results

		ULS RE	gress.	Ke	succs 		
Dep. Variab	 ole:		у	R-squ	 ared:		0.999
Model:			0LS	Adj. I	R-squared:		0.999
Method:		Least Squa	ares	_	tistic:		1.751e+04
Date:		Sun, 04 Dec 2	2022	Prob	(F-statistic)	:	1.18e-95
Time:		15:16	5:39	Log-L	ikelihood:		-336.46
No. Observa	ations:		70	AIC:			680.9
Df Residual	ls:		66	BIC:			689.9
Df Model:			3				
Covariance	Type:	nonrob	oust				
	coef	std err	=====	t	P> t	[0.025	0.975]
const	12.8588	6.935	1.	. 854	0.068	-0.988	26.706
x1	4.0681	0.044	92	. 912	0.000	3.981	4.155
x2	5.1603	0.172	30	. 054	0.000	4.817	5.503
x3	6.1720	0.147	41	. 939	0.000	5.878	6.466
Omnibus: 1.262 Durbin-Watson: 1.					1.931		

Notes:

Skew:

Kurtosis:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.532 Jarque-Bera (JB):

Prob(JB):

Cond. No.

1.218

0.544

389.

```
In [22]: F = np.column_stack((x**2, y**2, x*y))
model = calcModel(F, True, True)
```

0.194

2.484

OLS Regression Results

			:=====				
Dep. Variable:			У	R-sq	uared:		0.999
Model:			0LS	Adj.	R-squared:		0.999
Method:		Least Squ	ares		atistic:		1.751e+04
Date:	Su	n, 04 Dec	2022	Prob	(F-statistic):		1.18e-95
Time:		15:1	6:39	Log-	Likelihood:		-336.46
No. Observations	:		70	AIC:			680.9
Df Residuals:			66	BIC:			689.9
Df Model:			3				
Covariance Type:		nonro	bust				
===========	coef	std err		===== t	P> t	[0.025	0.975]
const 12	.8588	6.935	1	.854	0.068	-0.988	26.706
x1 4	.0681	0.044	92	.912	0.000	3.981	4.155
x2 5	.1603	0.172	30	. 054	0.000	4.817	5.503
x3 6	.1720	0.147	41	.939	0.000	5.878	6.466
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====	6 6	.262 .532 .194 .484	Jarq Prob	========= in-Watson: ue-Bera (JB): (JB): . No.	======	1.931 1.218 0.544 389.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Po opakovaném výpoču modelu a odstraňování nevýznamných parametrlů jsem získal model:

$$Z=eta_1+eta_2X^2+eta_3Y^2+eta_4XY$$
 \equiv $z=12.8588+4.0681x^2+5.1603y^2+6.1720xy$

Výsledný regresní model vykreslíme:

```
In [23]: fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(x, y, z, marker='.', color='red')
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")

beta1 = model.params[0]
    beta2 = model.params[1]
    beta3 = model.params[2]
    beta4 = model.params[3]

z_line = beta2 * x**2 + beta3 * y**2 + beta4 * x*y + beta1

surf = ax.plot_trisurf(x, y, z_line, alpha=0.5, linewidth=0, antialiased=True)

plt.show()
```



```
In [24]: fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(x, y, z, marker='.', color='red')
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")

surf = ax.plot_trisurf(x, y, z_line, alpha=0.5, linewidth=0, antialiased=True)
    ax.view_init(0, 0)

plt.show()
```



```
In [25]: fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(x, y, z, marker='.', color='red')
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")

surf = ax.plot_trisurf(x, y, z_line, alpha=0.5, linewidth=0, antialiased=True)
    ax.view_init(0, -90)

plt.show()
```


b) Pro takto získaný model (dostatečný submodel) uveďte v jedné tabulce odhady regresních parametrů metodou nejmenších čtverců a jejich 95% intervaly spolehlivosti.

```
In [26]: df_param = pd.DataFrame(model.params, columns=['parametry'])
    df_param.index = ['beta0', 'beta1', 'beta2', 'beta3']
    df_param.insert(1, 'interval L', model.conf_int()[:,0])
    df_param.insert(2, 'interval P', model.conf_int()[:,1])
# print(df_param.to_markdown())
```

Tabulka získaných koeficientů β modelu a jejich 95% intervaly spolehlivosti:

	parametry	interval L	interval P
β_1	12.8588	-0.987861	26.7055
eta_2	4.06806	3.98064	4.15548
eta_3	5.16028	4.81747	5.5031
eta_4	6.17201	5.87819	6.46584

c) Nestranně odhadněte rozptyl závisle proměnné.

```
In [27]: print("Rozptyl závislé proměnné Z = ", model.mse_resid)
```

Rozptyl závislé proměnné Z = 928.8752852687966

d) Vhodným testem zjistěte, že vámi zvolené dva regresní parametry jsou současně nulové.

Pro ověření hypotézy, že dva regresní parametry jsou současně nulové jsem využil jsem F-test (Fisherovo-Snedecorovo rozdělení).

Vybrané parametry - β_2 a β_3

 $H_0:$ dva regresní parametry jsou současně nulové

 H_A : dva regresní parametry NEjsou současně nulové

```
In [28]: f = model.f_test("x1=x2=0")
    print((f))

if(f.pvalue > 0.05):
        print("H0 nezamitame")
else:
        print("H0 zamitame")
```

<F test: F=4912.283415242425, p=1.594596743515046e-72, $df_denom=66$, $df_num=2>$ H0 zamitame

e) Vhodným testem zjistěte, že vámi zvolené dva regresní parametry jsou stejné.

Vybrané parametry - β_3 a β_4

 $H_0:$ dva regresní parametry jsou stejné

 $H_A:$ dva regresní parametry NEjsou stejné

```
In [29]: print(model.f_test("x2 = x3"))
    if(model.f_test("x2 = x3").pvalue > 0.05):
        print("H0 nezamitame")
    else:
        print("H0 zamitame")
```

<F test: F=11.233116388450709, p=0.0013330450705401292, df_denom=66, df_num=1>
H0 zamitame

Výsledky tohoto testu jsou očekávané, protože β_3 = 5.16028, interval = <4.81747 ; 5.5031> a β_4 = 6.17201 , interval = <5.87819 ; 6.46584>