# 의료 Artificial Intelligence

통계적방식 인공지능 / 데이터 마이닝

2022.04.28

### 오늘 배울 내용 …

- 1. 통계 기초 표준정규분포
- 2. 데이터 마이닝
- 3. 데이터 마이닝 실습
- 4. mblock 실습

어렵지 않다 쉬운 것도 아니다



# 인공지능 이론

- Q: 현실에서의 여러가지 변수들의 분포를 잘 설명하는 확률밀도함수는 없을까?
- Q: 현실에서 일어나는 사건들에 대해 확률을 계산하는 공통적인 방법은?



#### 중심극한 정리: 표본의 크기가 충분히 크다면, 표본평균들의 분포는 정규분포를 이룬다

- 표본의 크기가 커질 수록 (보통 30 이상), 표본이 이루는 분포가 〈모집단의 평균 μ, 표준편차가ơ/√n인 정규분포〉에 근접
- 모집단이 어떤 분포를 가지고 있던지 간에 (모집단 분포가 모양이던 상관없이) 표본의 크기가 충분히 크면 성립
- 이를 이용하면 특정 사건(내가 수집한 표본의 평균)이 일어날 확률값을 계산할 수 있게 된다.



"모집단 분포에 상관없이" 큰 표본들의 "표본평균의 분포"가 정규분포로 수렴한다는 점을 이용하여, Z값을 구해 확률값을 구할 수 있게 된다. 즉, 수학적 확률 판단(추정)을 할 수 있다!



- **표준정규분포** N(0,1): 평균이 0, 표준편차가 1인 정규분포

정리

#### 표준정규분포

연속확률변수 X가 정규분포  $\mathrm{N}(m,\,\sigma^2)$ 을 따를 때, 확률변수  $Z=\frac{X-m}{\sigma}$ 은 표준정 규분포  $\mathrm{N}(0,\,1)$ 을 따릅니다.

1 **Z값 구하기** : 확률변수 X에 대해 Z값을 구하기

$$Z = \frac{X - \mu}{\sigma}$$

2 **확률변수 구하기** : Z값에 대해 확률변수 X값을 구하기

$$X = \mu + Z \times \sigma$$
  $X = \overline{X} + Z \times \frac{\sigma}{\sqrt{n}}$ 

평균  $\mu$ =150 이고, 표준편차  $\sigma$ =10 인 정규분포 N(150, 10 $^2$ )에 대해 X=170에 대한 Z 점수를 계산하시오.

표준화 식  $Z = \frac{X - \mu}{\sigma}$ 을 이용하면  $Z = \frac{170 - 150}{10}$  이므로 점수는 2.



### 3 Z값에 대한 확<del>률</del> 구하기



$$P(0 \le Z \le 2) = 0.4772$$
  
 $P(0 \le Z \le 2.58) = 0.4951$ 





| Z   | 0.00   | 0.01   | 0.02   | 0.03   |  |
|-----|--------|--------|--------|--------|--|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 |  |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 |  |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 |  |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 |  |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 |  |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 |  |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 |  |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 |  |
| 8.0 | 0.7881 | 0.7910 | 0.7939 | 0.7967 |  |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 |  |

| Z   | 0.00   | 0.01   | 0.02   | 0.03   |  |
|-----|--------|--------|--------|--------|--|
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 |  |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 |  |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 |  |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 |  |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 |  |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 |  |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 |  |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 |  |
| 8.0 | 0.2881 | 0.2910 | 0.2939 | 0.2967 |  |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 |  |



| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 80.0   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 8.0 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
|     |        |        |        |        |        |        |        |        |        |        |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1,1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1,2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1,3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1,5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1,6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1,8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
|     |        |        |        |        |        |        |        |        |        |        |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |

#### Case1







#### Case2

$$P(Z \le -1) = P(Z \ge 1)$$





#### [계산]

$$P(Z \ge 1) = 0.5 - P(0 \le Z \le 1)$$





#### Case3



#### [계산]

$$P(-1.5 \le Z \le 0)$$
  
= $P(0 \le Z \le 1.5)$ 

$$P(-1.5 \le Z \le 0.5) = P(0 \le Z \le 1.5) + P(0 \le Z \le 0.5)$$



한 회사의 건전지 수명은 평균이 110시간, 표준편차가 10인 정규분포를 따른다

1) 건전지의 수명이 90시간 이하일 확률은

2) 건전지 수명이 100시간 이상, 110시간 이하일 확률은

주요 확률





### 데이터 마이닝

데이터 마이닝(data mining)은 대규모로 저장된 데이터 안에서 체계적이고 <u>자동적으로 통계적 규칙이나 패턴을 분석하여 가치있는 정보를 추출</u>하는 과정

- 데이터를 탐색하고 모델을 구축하는데 주안점을 둠
- 자료의 수집, 분류, 가공 등의 전처리 작업이 필요함



### 데이터 마이닝 과정



- 1. 데이터 정제(Data Cleaning) : 불필요하거나 일치하지 않는 데이터를 제거
- 2. 데이터 통합(Data Integration) : 다수의 데이터 소스들을 결합
- 3. 데이터 선택(Data Selection) : 필요한 데이터들을 데이터베이스로부터 검색
- 4. 데이터 변환(Data Transformation) : 요약이나 집계 등을 수행해 데이터마이닝을 위한 적합한 형태로 데이터 가공
- 5. 데이터 마이닝(Data Mining : 지능적 방법들을 적용하여 데이터 패턴이나 지식을 축출
- 6. 데이터 검증(Data Evaluation): 데이터 마이닝으로 찾아낸 패턴이나 지식을 검증
- 7. 데이터 시각화(Data Presentation): 발견한 패턴이나 지식을 사용자에게 효과적으로 보여주기 위해 시각화

### 데이터 형태

- 데이터의 형태 구조 유무
  - 정형(structured) 데이터
    - 일정한 구조 보유
    - 데이터베이스 테이블(table, relation)
    - 시장바구니 데이터(market basket data)
      - 매출별 구매 항목 목록에 대한 데이터
      - 행(row)이 항목(item)의 리스트 구성

#### - 비정형(unstructured) 데이터

- 구조가 일정하지 않은 데이터
- **텍스트**(text) **데이터** : 신문기사, SNS 메시지 등
- 스트림(stream) 데이터 : 지속적으로 관측되어 생성되는 데이터
- **서열**(sequence) **데이터**: 염기 서열, 아미노산 서열 데이터
- 클릭(click) 데이터 : 홈페이지 방문자들의 순차적인 클릭
- **시스템 로그**(log) 데이터
- **그래프**(graph) 데이터

#### - 반정형(semi-structured) 데이터

- 구조화되어 있지만 관계형 데이터베이스의 테이블과 같은 형태로 저장되기 곤란한 데이터
- XML(eXtensible Markup Language), JSON(JavaScript Object Notation) 등으로 표현

### 데이터 형태

#### 데이터설명과 데이터가 구조화 된 데이터

#### XML 데이터



```
<?xml version="1.0" encoding="iso-8859-8" standalone="yes" ?>
<CURRENCIES>
 <LAST_UPDATE>2004-07-29</LAST_UPDATE>
 <CURRENCY>
   <NAME>dollar</NAME>
   <UNIT>1</UNIT>
   <CURRENCYCODE>USD</CURRENCYCODE>
   <COUNTRY>USA</COUNTRY>
   <RATE>4.527</RATE>
   <CHANGE>0.044</CHANGE>
 </CURRENCY>
 <CURRENCY>
   <NAME>euro</NAME>
   <UNIT>1</UNIT>
   <CURRENCYCODE>EUR</CURRENCYCODE>
   <COUNTRY>European Monetary Union</COUNTRY>
   <RATE>5.4417</RATE>
   <CHANGE>-0.013</CHANGE>
 </CURRENCY>
</CURRENCIES>
```

#### JSON 데이터



### 데이터 마이닝 모델

- classification : 분류
- regression (a.k.a. value estimation) : 회귀 (value 추정)
- similarity matching : 유사도 매칭
- clustering : 군집화
- co-occurrence grouping (a.k.a. association rule discovery) : 동시발생 (관계 규칙 발견)
- **profiling** (a.k.a. behavior description) : 프로파일링 (행동 묘사)
- **link prediction**: 연관성 예측 (ex. recommendation)
- data reduction : 데이터 사이즈 줄이기 (불필요한 데이터 제거, 형태 변환 등)
- causal modeling : 인과관계 모델링

### http://myselph.de/neuralNet.html

Draw a digit in the box below and click the "recognize" button.



- ✓ Display Preprocessing
- ✓ Scale Stroke Width

recognize

https://quickdraw.withgoogle.com



머신 러닝 기술이 학습을 통해 낙서를 인식할 수 있을까요?

여러분의 그림으로 머신 러닝의 학습을 도와주세요. Google은 머신 러닝 연구를 위해 세계 최대의 낙서 데이터 세트를 오픈소스로 공유합니다

https://orangedatamining.com/

https://orangedatamining.com/download/#windows







- 1. 데이터 입력
  - Datasets
- File / CSV File



#### 2. 데이터 보기

- Data Table
- Data Info
- Feature Statistics



### 3. 데이터 차트

- Visualize 위젯





### 실습 1

- 데이터 불러오기: math\_test.tab



### - 차트 그리기





#### 실습 2

- 데이터 불러오기: '시도별 출생 성비' 읽어 오기
- 데이터 보기: Data Table, Data Info, Feature Statistics
- 데이터 차트: Box plot, Distributions







# MBlock 실습

### 총알 피하기 게임 (최종)



#### 1단계: 분해

- 1. 펜더 객체
- 달리기 모션
- 점프 : 1단, 2단
- 숙이기
- 2. 하단/상단 포탄 객체
- 포탄 생성
- 좌로 이동
- 모양 변함
- 3. 배경
- 횡스트롤
- 4. 대포 객체
- 거리가 30미터이면 모양 변경

#### 5. 게임 룰

- 펜더가 포탄에 닿으면 수명이 줄어 듬
- 수명이 3개 이상 줄어 들면 게임 끝
- 펜더는 달리면서 이동 거리를 계산해서 말함
- 거리가 30미터 이면 게임 클리어
- 게임이 끝나면 'Game Over' 게임 클리어시에는 'You win the Game' 출력

### 게임 만들기 - 사용자 이벤트 만들기

- 이벤트 정의



- 이벤트 반응 로직 만들기



- 이벤트 발생 시키기





#### - 생명 관리





```
🔪 클릭했을 때
크기를 (55) % 로 정하기
         -140 로(으로) 이동하기
  90 도 방향 보기
타이머 초기화
   거리 ▼ 을(를) 0 로(으로) 설정하기
   생명 ▼ 을(를) 3 로(으로) 설정하기
              타이머 의 반올림
                           로(으로) 설정하기
    거리 와(과) m 을(를) 결합한 문자열 을(를) 말하기
     아래쪽 화살표 ▼ 키를 눌렸는가?
 모양을 Panda_down ▼ (으) 로 바꾸기
 아니면
 모양을 Panda1 ▼ (으) 로 바꾸기
     0.05 초 기다리기
 모양을 Panda2 ▼ (으) 로 바꾸기
            0
    5 초 기다리기
```

### - 포탄 맟음 처리







- 메세지





### - 메시지 스프라이트









- 게임 종료



