VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY UNIVERSITY OF SCIENCE COMPUTER VISION

APPLIED DIGITAL IMAGE & VIDEO PROCESSING

$PRACTICE\#1\ REPORT$

Teacher: Nguyen Manh Hung

Student: Duong Minh Anh Khoi – 20127212

Ho Chi Minh city - 2023

Contents

1	Bina	y image 3
	1.1	Dilation
		.1.1 Idea
		.1.2 Result
	1.2	Erosion
		.2.1 Idea
		.2.2 Result
	1.3	Opening
		.3.1 Idea
		.3.2 Result
	1.4	Closing
		.4.1 Idea
		.4.2 Result
	1.5	Hit or miss
		.5.1 Idea
		.5.2 Result
	1.6	Boundary extraction
		.6.1 Idea
		.6.2 Result
	1.7	Thinning
		.7.1 Idea
		.7.2 Result
	1.8	Grayscale image
	1.9	Dilation
	1.0	.9.1 Idea
		.9.2 Result
	1 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1.10	.10.1 Idea
		.10.2 Result
	1 11	Opening
	1.11	.11.1 Idea
		.11.2 Result
	1 19	Closing
	1.12	.12.1 Idea
		.12.1 Result
	1 19	
	1.13	
	1 1 1	.13.2 Result
	1.14	Cop Hat
		.14.1 Idea
	1 1 5	.14.2 Result
	1.15	Black Hat
		.15.1 Idea

Ur	niversity of Science	APPLIED DIGITAL IMAGE & VIDEO PROCESSIN		
	1.15.2 Result		10	
2	Self-scoring table]	10	

1 Binary image

1.1 Dilation

1.1.1 Idea

$$X \oplus B = \{ p \in \varepsilon^2 : p = x + b, x \in X, b \in B \}$$

Where:

- X: binary image
- B: structure matrix

1.1.2 Result

 $??^{1}$

1.2 Erosion

1.2.1 Idea

$$X \ominus B = \{ p \in \varepsilon^2 : p + b \in X, \forall b \in B \}$$

- X: binary image
- B: structure matrix

 $^{^1{\}rm Convention:}$ in result section, image from left to right: Original image, Morphology by OpenCV, Morphology by self-code

1.2.2 Result

1.3 Opening

1.3.1 Idea

$$X \circ B = (X \ominus B) \oplus B$$

Where:

- X: binary image
- B: structure matrix

1.3.2 Result

1.4 Closing

1.4.1 Idea

$$X \bullet B = (X \oplus B) \ominus B$$

- X: binary image
- B: structure matrix

1.4.2 Result

1.5 Hit or miss

1.5.1 Idea

$$X \otimes B = (X \ominus B_1) \cap (X^c \ominus B_2)$$

Where:

- X: binary image
- B_1, B_2 : structure matrix
- $\bullet \ B_2 = B_1^c$

1.5.2 Result

1.6 Boundary extraction

1.6.1 Idea

$$\beta(X) = X - (X \ominus B)$$

- X: binary image
- B: structure matrix

1.6.2 Result

1.7 Thinning

1.7.1 Idea

$$X \oslash B = X - (X \otimes B)$$

Where:

- X: binary image
- B: structure matrix

1.7.2 Result

1.8 Grayscale image

1.9 Dilation

1.9.1 Idea

$$(f \oplus b)(s,t) = \max\{f(s-x,t-y) + b(x,y) | (s-x), (t-y) \in D_f; (x,y) \in D_b\}$$

- f(x,y): gray-scale image
- b(x,y): structuring element

1.9.2 Result

1.10 Erosion

1.10.1 Idea

$$(f \ominus b)(s,t) = \max\{f(s+x,t+y) - b(x,y) | (s+x), (t+y) \in D_f; (x,y) \in D_b\}$$

Where:

• f(x, y): gray-scale image

• b(x,y): structuring element

1.10.2 Result

1.11 Opening

1.11.1 Idea

$$f \circ b = (f \ominus b) \oplus b$$

Where:

• f(x, y): gray-scale image

• b(x,y): structuring element

1.11.2 Result

1.12 Closing

1.12.1 Idea

$$f \bullet b = (f \oplus b) \ominus b$$

Where:

• f(x,y): gray-scale image

• b(x,y): structuring element

1.12.2 Result

1.13 Gradient

1.13.1 Idea

$$h = (f \oplus b) - (f \ominus b)$$

Where:

• f(x,y): gray-scale image

• b(x,y): structuring element

1.13.2 Result

1.14 Top Hat

1.14.1 Idea

$$h = f - (f \circ b)$$

Where:

- f(x,y): gray-scale image
- b(x,y): structuring element

1.14.2 Result

1.15 Black Hat

1.15.1 Idea

$$h = (f \bullet b) - f$$

- f(x, y): gray-scale image
- b(x,y): structuring element

1.15.2 Result

2 Self-scoring table

No.	Type	Morphology	Percent	Note
1	Binary image	Dilation	100%	
2		Erosion	100%	
3		Opening	100%	
4		Closing	100%	
5		Hit or miss	100%	
6		Boundary extraction	100%	
7		Thinning	100%	
8	Grayscale image	Dilation	100%	
9		Erosion	100%	
10		Opening	100%	
11		Closing	100%	
12		Boundary extraction	100%	
13		Top-hat	100%	
14		Black-hat	100%	