方差分析

- 1 单因素方差分析
- 2 双因素方差分析
 - 无交互作用的双因素方差分析
 - 有交互作用的双因素方差分析

方差分析

实际问题中影响某个(或某些)指标的**因素有**很多,而这些因素由于试验条件的限制,往往只可以取有限种状态或只能定性地描述(称为**水平**,取**离散值**),要找出在众多因素中找出有**显著影响**的因素。

例如:影响农作物的单位面积产量有品种、施肥种类、施肥量等许多因素,需要找出对农作物的单位面积产量有显著影响的因素。

为解决这类问题,需要先做试验,然后对实验结果进行分析,作出判断。

- (1)试验设计:要求试验方案能很好地反映观测因素的影响作用,且试验 次数尽可能少,以节约人力、物力和时间;
- (2)方差分析: 通过观测数据**推断某个因素的影响是否显著,**这类统计方 法称为**方差分析**(ANalysis Of Variance, ANOVA).

所关心的试验结果称为试验指标(因变量);

试验中可以变化的、影响试验指标的因素称为因素(因子) (自变量),用大写字母A、B、C、···表示;

因素在试验中所取的不同状态或等级称为**水平,因素A** 的 r 个不同水平用 A_1, \dots, A_r 表示.

- 单因素方差分析: 只考虑一个因素的不同水平的影响
- 双因素方差分析: 考虑两个因素的不同水平的影响
- 多因素方差分析: 考虑两个以上因素的不同水平的影响

例 三名实验员各用四种不同型号的仪器对同一物理常数进行测定,希望了解不同实验员及不同型号的仪器对测定值有何影响.

这时,实验员和测量仪器是因素,分别记为 A 和 B,

因素 A 有 3 个水平,记为 A_1 , A_2 , A_3 ;

因素 B 有 4 个水平,记为 B_1 , B_2 , B_3 , B_4 .

这是双因素方差分析问题。

1 单因素方差分析

例 某灯泡厂用四种不同的灯丝生产灯泡. 从每种灯泡中随机抽取若干个灯泡测其寿命(单位:小时), 得数据如表. 问这四种灯丝生产的灯泡的使用寿命是否有显著差异?

	1	2	3	4	5	6	7	8	平均值
甲	1600	1610	1650	1680	1700	1700	1780		1674
Z	1500	1640	1400	1700	1750				1598
丙	1640	1550	1600	1620	1640	1600	1740	1800	1649
丁	1510	1640	1530	1570	1520	1680			1575

这里试验指标为灯泡的使用寿命,因素为灯丝,有四个水平。

从表中可以看出

- 采用同一种灯丝生产的灯泡,其使用寿命也有差异,说明使用寿命是随机变量;
- 采用不同灯丝生产的灯泡,其使用寿命的均值有一定差异.

本例中仅考虑灯丝这一因素对灯泡寿命的影响,上述数据不能认为出自同一个总体,而是把每个水平下所关心的因变量看作一个总体,这里认为同一种灯丝生产的灯泡就是一个总体,分别从四个总体*X*⁽¹⁾, *X*⁽²⁾, *X*⁽³⁾, *X*⁽⁴⁾抽取容量分别为7,5,8,6的样本观测值.

在方差分析中假定各总体相互独立, 且服从同方差的正态分布, 即第i 种灯丝生产的灯泡寿命 $X^{(i)}$ 是一随机变量 $X^{(i)}\sim N(\mu_i,\sigma^2)$, i=1,2,3,4

- 随机因素既可能造成同一总体内各样本的差异(组内差异), 也可能造成不同总体各样本的差异(组间差异).
 - 若灯丝对灯泡寿命的影响不显著,则上述两种差异都 主要来源于随机因素的影响,二者的差别不会很大;
 - 若灯丝对灯泡寿命的影响是显著的,则组间差异主要来源于可控因素的影响,应该远大于组内差异。
- 可以通过比较这两种差异的大小来检验因素(灯丝)是 否对试验结果(寿命)有显著影响。

试验的目的就是检验假设:

$$H_0: \mu_1 = \dots = \mu_4, \qquad H_1: \mu_1, \dots, \mu_4$$
不全相同

若原假设 H_0 成立,则认为不同灯丝的灯泡寿命 X_i 没有显著差异,即灯泡寿命差异只是由其它随机因素引起的.

- 数据的差异经常用**方差**来描述,这种考察均值之间差异的方法称为"**方差分析**".
- **方差分析**是将所有样本表现出来的差异(方差)按照来源分解为多个组成部分,然后进行比较,用以检验某种因素是否对试验结果产生显著的影响.总体来看,方差分析的核心就是**变异分解**.

问题: 方差分析是比较各组的均值是否有差异, t检验也可以用于比较两组均值是否有差异, 可否将t检验应用于方差分析的问题?

方差分析不能用t检验。t检验只能用于比较两组的均值是否有差异,采用t检验检验多组均值需要进行两两比较,这样犯第一类错误的概率就会增大。

例如:设α=0.05,则两组均值进行检验时,犯第一类错误的概率为0.05;但若是进行三组均值的两两比较,则需要进行三次t检验,此时犯错误的概率为1-(1-0.05)³=0.1426,该值远大于0.05.

多次检验的错误率

假设进行 n 次独立的假设检验,每次检验 I 类错误率是 α .

 $P(\text{at least 1 Type I Error}) = 1 - P(\text{no Type I Errors}) = 1 - (1 - \alpha)^n$ 例如 n = 20, $\alpha = 0.05$, $1 - (0.95)^{20} \approx 64.2\%$

p值篡改(p-hacking)指研究人员每次使用不同的数据,不断的统计直到统计结果满意。

例如,在统计时根据p值进行取舍,统计分析后发现结果不满意,然后删除一些数据再统计,直到结果满意。

p-hacking有太多的人为因素参与,很易导致结果的不准确性,也就是假阳性。

这也会引起实验结果的不可重复性,另外一个实验室甚至研究者本人再做一遍也得不到同样的结果。

数学模型

一般地设因素A有r个不同水平 $A_1,...,A_r$,在 A_i 下试验结果 $X^{(i)}\sim N(\mu_i,\sigma^2)$, i=1,...,r. 在 A_i 下做了 $n_i(\geq 2)$ 次试验,相当于从总体 $X^{(i)}$ 中抽取一组样本 $X_{i1},...,X_{in;r}$ 相互独立,方差分析模型为:

$$X_{ij} = \mu_i + \varepsilon_{ij}$$

$$\varepsilon_{ij} \sim N(0; \sigma^2)$$

$$\begin{cases} X_{ij} \sim N(\mu_i, \sigma^2) \\ X_{ij} \quad 相互独立 \quad , i = 1, 2, \cdots, r \quad ; j = 1, 2, \cdots, n_i \\ \mu_i, \sigma^2 \, 未知 \end{cases}$$

 ε_{ij} 表示随机因素对 A_i 下第j个指标的影响,称为随机误差.

检验问题: $H_0: \mu_1 = \cdots = \mu_r \leftrightarrow H_1: \mu_1, \cdots, \mu_r$ 不全相同 拒绝 H_0 表示因素A的作用显著, 否则认为因素A不显著. 对模型作等价变形

$$\varepsilon_{ij} = X_{ij} - \mu_i, \quad n = \sum_{i=1}^r n_i, \quad \mu = \frac{1}{n} \sum_{i=1}^r n_i \cdot \mu_i \, \text{ % 为理论总均值;}$$

 $\alpha_i = \mu_i - \mu$, $(i = 1, \dots, r; j = 1, \dots, n_i)$ 称为该因素的第i水平 A_i 的效应 等价方差分析模型为

等价检验问题为 H_0 : $\alpha_1 = \cdots = \alpha_r = 0$, H_1 : α_1 , \cdots , α_r 不全为0

试验指标数据可列成下表形式

因素水平	总体	样本观测数据
A_1	$X^{(1)} \sim N(\mu + \alpha_1, \sigma^2)$	$X_{11}, X_{12}, \dots, X_{1n_1}$
A_2	$X^{(2)} \sim N(\mu + \alpha_2, \sigma^2)$	$X_{21}, X_{22}, \dots, X_{2n_2}$
:	:	•
A_r	$X^{(r)} \sim N(\mu + \alpha_r, \sigma^2)$	$X_{r1}, X_{r2}, \dots, X_{rn_r}$

平方和分解公式

$$\exists Z X_i = \sum_{j=1}^{n_i} X_{ij} , \quad \overline{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij} , \quad \overline{X} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij} , \quad n = \sum_{i=1}^r n_i$$

$$S_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} [(X_{ij} - \overline{X}_i) + (\overline{X}_i - \overline{X})]^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 + \sum_{i=1}^{r} \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2 + 2 \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i) (\overline{X}_i - \overline{X})$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 + \sum_{i=1}^{r} \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 + \sum_{i=1}^{r} n_i \cdot (\overline{X}_i - \overline{X})^2 = S_e + S_A$$

平方和分解公式 $S_T = S_e + S_A$

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2 = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 + \sum_{i=1}^{r} n_i \cdot (\overline{X}_i - \overline{X})^2$$

- $S_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} \overline{X})^2$ 总偏差平方和
- $S_e = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} \overline{X}_i)^2$ 误差平方和(组内平方和) 完全由随机因素决定。
- $S_A = \sum_{i=1}^r n_i \cdot (\overline{X}_i \overline{X})^2$ 因素平方和(组间平方和),
 - 若假设 H_0 成立, S_A 完全由随机因素决定;
 - 若假设 H_0 不成立, S_A 除反映随机因素引起的波动之外, 还反映了因素不同水平效应的差异所引起的波动.

定理 在单因素方差分析问题中,

(1) S_A 与 S_e 相互独立

(2)
$$S_e/\sigma^2$$
 服从 $\chi^2(n-r)$, $E(S_e) = (n-r)\sigma^2$

(3)
$$E(S_A) = (r-1)\sigma^2 + \sum_{i=1}^r n_i \alpha_i^2$$

当
$$H_0$$
: $\alpha_1 = \cdots = \alpha_r = 0$ 成立时, S_A/σ^2 服从 $\chi^2(r-1)$

证 (1) 对每一个 $i(i = 1, 2, \dots, r)$,总体 $X^{(i)}$ 的样本均值 \bar{X}_i 与样本方差 $\frac{1}{n_i-1}\sum_{j=1}^{n_i} \left(X_{ij} - \bar{X}_i\right)^2$ 相互独立;又由全体样本相互独立知

随机变量
$$\bar{X}_1, \dots, \bar{X}_r, \sum_{j=1}^{n_1} (X_{1j} - \bar{X}_1)^2, \dots, \sum_{j=1}^{n_r} (X_{rj} - \bar{X}_r)^2$$
 相互独立.

从而
$$(\bar{X}_1, \bar{X}_2, \dots, \bar{X}_r)$$
 与 $S_e = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2$ 相互独立,由此

$$S_A = \sum_{i=1}^r n_i \cdot (\overline{X}_i - \overline{X})^2$$
 与 S_e 相互独立.

(2) 对于第i个总体,有 $\sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2 / \sigma^2 \sim \chi^2(n_i - 1), i = 1, 2, \cdots, r$,因而得到

$$\frac{S_e}{\sigma^2} = \sum_{i=1}^{r} \frac{\sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2}{\sigma^2} \sim \chi^2(n-r)$$

(3) 由于
$$\bar{X}_i \sim N\left(\mu + \alpha_i, \frac{\sigma^2}{n_i}\right)$$
,且 $\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_r$ 相互独立,所以

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{r} n_i \bar{X}_i \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad cov(\bar{X}_i, \bar{X}) = \frac{\sigma^2}{n}$$

$$E(\bar{X}_i - \bar{X}) = \alpha_i, \ D(\bar{X}_i - \bar{X}) = \frac{n - n_i}{nn_i} \sigma^2$$

$$E(\bar{X}_i - \bar{X})^2 = \alpha_i^2 + \frac{n - n_i}{nn_i}\sigma^2$$

$$E(S_A) = E\left[\sum_{i=1}^r n_i (\bar{X}_i - \bar{X})^2\right] = \sum_{i=1}^r n_i \left(\alpha_i^2 + \frac{n - n_i}{nn_i}\sigma^2\right)$$

$$= (r-1)\sigma^2 + \sum_{i=1}^r n_i \alpha_i^2$$

$$E\left(\frac{S_e}{n-r}\right) = \sigma^2$$
, $E\left(\frac{S_A}{r-1}\right) = \sigma^2 + \frac{1}{r-1}\sum_{i=1}^r n_i\alpha_i^2$.

- 当 H_0 成立时,统计量 $S_e/(n-r)$ 与 $S_A/(r-1)$ 都是 σ^2 的无偏估计,比值 $\frac{S_A/(r-1)}{S_e/(n-r)}$ 应接近于 1;
- 当 H_0 不成立时,有 $E\left(\frac{S_A}{r-1}\right) > \sigma^2$,比值 $\frac{S_A/(r-1)}{S_e/(n-r)}$ 应比 1 明显的偏大

统计量 $F = \frac{S_A/(r-1)}{S_e/(n-r)}$ 可作为 H_0 的检验统计量.

检验统计量
$$F = \frac{S_A/(r-1)}{S_e/(n-r)} \stackrel{{\rm Z}_{H_0} \to {\rm Z}}{\sim} F(r-1,n-r)$$

检验水平a下的拒绝域

$$W = \{(x_1, ..., x_n): F > F_{\alpha}(r - 1, n - r)\}$$

若 $F > F_{\alpha}(r-1,n-r)$,认为因素取不同水平对试验指标有显著影响.

针对不同的检验水平a取值情况:

 $F > F_{0.01}(r-1,n-r)$ 认为因素A的影响高度显著,用**表示

 $F_{0.05} < F \le F_{0.01}(r-1,n-r)$ 认为因素A的影响**显著**,用*表示

 $F_{0.1} < F \le F_{0.05}(r-1,n-r)$ 认为因素A有一定影响,用(*)表示

 $F \leq F_{0,1}(r-1,n-r)$ 认为因素A的影响**不显著**

说明:利用方差分析检验因素取不同水平对试验结果的影响是否显著,是相对随机因素而言的"显著".如果随机因素的影响很小,即使判断出因素不同水平的影响具有"显著性",其绝对意义下的影响也可能较小.

单因素方差分析表

来源	平方和	自由度	均方和	F 比	临界值	显著性
(组间) 因素 A	S_A	r-1	$S_A/(r-1)$	$F = \frac{S_A/(r-1)}{S_e/(n-r)}$	$F_{\alpha}(r-1,n-r)$	
(组内) 误差 <i>e</i>	$S_e = S_T - S_A$	n-r	$S_e/(n-r)$	$S_e/(n-r)$		
总和	S_{T}	n-1				

计算 S_T 、 S_A 和 S_e 的公式:

$$S_T = \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij}^2 - n \ (\overline{X})^2$$

$$S_A = \sum_{i=1}^r n_i (\overline{X}_i)^2 - n \cdot (\overline{X})^2$$

$$S_e = S_T - S_A$$

例 某灯泡厂用四种不同的灯丝生产四种灯泡. 从每种灯泡中随机抽取若干个灯泡测其寿命(单位:小时), 得如下数据. 试问这四种灯丝生产的灯泡的使用寿命是否有显著差异? (α=0.05)

	1	2	3	4	5	6	7	8	平均值
甲	1600	1610	1650	1680	1700	1700	1780		1674
Z	1500	1640	1400	1700	1750				1598
丙	1640	1550	1600	1620	1640	1600	1740	1800	1649
丁	1510	1640	1530	1570	1520	1680			1575

这里试验指标为灯泡的使用寿命, 因素为灯丝, 有四个水平

$$r = 4$$
, $n_1 = 7$, $n_2 = 5$, $n_3 = 8$, $n_4 = 6$, $n = n_1 + n_2 + n_3 + n_4 = 26$
方差分析表

来源	平方和	自由度	均方和	F比	临界值	显著性
因素A	39776.4	3	13258.3	1 620	F _{0.1} =	
误差e	178089	22	8095	1.638	2.35	
总和	217865.4	25				

由于 $F=1.638 < 2.35 = F_{0.1}(3, 22)$, 故接受 H_0 ,即认为灯丝对灯泡的寿命没有显著影响.

```
from scipy.stats import f_oneway
group_A = np.array([1600,1610,1650,1680,1700,1700,1780])
group_B = np.array([1500,1640, 1400, 1700, 1750])
group_C = np.array([1640, 1550, 1600, 1620, 1640, 1600, 1740, 1800])
group_D = np.array([1510, 1520, 1530, 1570, 1640, 1680]);
# One-way ANOVA
f_stat, p_val = f_oneway(group_A, group_B, group_C, group_D)
```

print(f"ANOVA test: F={f_stat}, p={p_val}")

例 考查燃烧温度对砖的密度的影响,观测 4 种燃烧温度下砖的密度,得如下数据

	1	2	3	4	5
100℃	21.8	21.9	21.7	21.6	21.7
125℃	21.7	21.4	21.5	21.4	
150°C	22.9	22.8	22.8	22.6	22.5
175℃	21.9	21.7	21.8	21.4	

问燃烧温度对砖密度的影响是否显著? (α=0.01)

解
$$r = 4$$
, $n_1 = 5$, $n_2 = 4$, $n_3 = 5$, $n_4 = 4$
 $n = n_1 + n_2 + n_3 + n_4 = 18$

方差分析表

来源	平方和	自由度	均方和	F比	临界值	显著性
因素A	424.5	3	141.5	55.03	$F_{0.01} =$	**
误差e	36	14	2.571	33.03	$F_{0.01} = 5.56$	
总和	460.5	17				

由于 $F = 55.03 > 5.56 = F_{0.01}(3,14)$, 故拒绝 H_0 , 即认为温度对砖密度的影响高度显著

2 双因素方差分析

设因素 A 取 a 个不同的水平 A_1, A_2, \cdots, A_a ,因素 B 取 b 个不同的水平 B_1, B_2, \cdots, B_b . 把因素 A 取水平 A_i 且因素 B 取水平 B_j 时,所关心的因变量 看作一个总体 $X^{(ij)}$,并设 $X^{(ij)} \sim N(\mu_{ij}; \sigma^2)$.

从每个总体 $X^{(ij)}$ 抽取一个容量为 m 的样本 $(X_{ij1}, X_{ij2}, \cdots, X_{ijm})$, $i = 1,2,\cdots,a,j = 1,2,\cdots,b$,并且假定所有 X_{ijk} 相互独立.

建立下面的正态线性模型来讨论双因素方差分析问题:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$k = 1, 2, \dots, m; i = 1, 2, \dots, a, j = 1, 2, \dots, b$$

其中 ε_{111} , ε_{112} , …, ε_{11m} ; …; ε_{ab1} , ε_{db2} , …, ε_{abm} 是独立同分布的随机变量,且每一个 $\varepsilon_{ijk} \sim N(0; \sigma^2)$

总平均
$$\mu = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}$$
,

$$\mu_{i.} = \frac{1}{b} \sum_{j=1}^{b} \mu_{ij}, \ \alpha_{i} = \mu_{i.} - \mu, i = 1, 2, \cdots, a,$$

$$\mu_{.j} = \frac{1}{a} \sum_{i=1}^{a} \mu_{ij}, \ \beta_{j} = \mu_{.j} - \mu, j = 1, 2, \cdots, b.$$

 α_i 称为因素A 在第 i 个水平 A_i 下的<mark>效应</mark>, β_j 称为因素B 在第 j 个水 平 B_j 下的<mark>效应</mark>. 显然 $\sum_{i=1}^a \alpha_i = \sum_{j=1}^b \beta_j = 0$.

$$\gamma_{ij} = \mu_{ij} - (\mu + \alpha_i + \beta_j) = \mu_{ij} - \mu_{i.} - \mu_{.j} + \mu, \quad i = 1, 2, \dots, a, j = 1, 2, \dots, b,$$

$$\begin{cases} \sum_{j=1}^{b} \gamma_{ij} = 0, i = 1, 2, \dots, a, \\ \sum_{i=1}^{a} \gamma_{ij} = 0, j = 1, 2, \dots, b, \end{cases}$$

 γ_{ij} 称为因素A 的第 i 个水平 A_i 与因素B 的第 j 个水平 B_j 之间的**交互效应**.

• 如果 $\gamma_{ij} = 0$,为**无交互作用的双因素方差分析问题**.这时两个因素的联合作用可以由每个因素效应的简单迭加来表示. 26

2.1 无交互作用的双因素方差分析

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, i = 1, 2, \dots, a, j = 1, 2, \dots, b;$$

$$\sum_{i=1}^{a} \alpha_i = \sum_{j=1}^{b} \beta_j = 0;$$

 $\varepsilon_{11}, \varepsilon_{12}, \cdots, \varepsilon_{ab}$ 是独立同分布的随机变量,且每一个 $\varepsilon_{ij} \sim N(0; \sigma^2)$

对两个因素A 和 B的每一对水平搭配 (A_i, B_j) , 有容量为 1 的样本.通常称其为**双因素每对水平搭配只观测一次(或非重复)试验的方差分析**.

$$\bar{X}_{i\cdot} = \frac{1}{b} \sum_{j=1}^{b} X_{ij}, i = 1, 2, \dots, a,$$

$$\bar{X}_{\cdot j} = \frac{1}{a} \sum_{i=1}^{a} X_{ij}, j = 1, 2, \dots, b,$$

$$\bar{X}_{\cdot j} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} X_{ij} = \frac{1}{a} \sum_{i=1}^{a} \bar{X}_{i\cdot} = \frac{1}{b} \sum_{j=1}^{b} \bar{X}_{\cdot j} \qquad n = ab$$

平方和分解公式 在无交互作用的双因素方差分析模型中,

$$SS = SS_A + SS_B + SS_e.$$

- SS = $\sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} \bar{X})^2 \dot{a} = \bar{x}$ 反映全体数据中的波动
- $SS_A = b\sum_{i=1}^a (\bar{X}_i \bar{X})^2$ 由因素 A 引起的离差平方和,反映由于因素 A 在各个水平下的不同作用而引起的波动
- $SS_B = a \sum_{j=1}^b (\bar{X}_{.j} \bar{X})^2$ 由因素 B 引起的离差平方和,反映由于因素 B 在各个水平下的不同作用而引起的波动
- $SS_e = \sum_{i=1}^a \sum_{j=1}^b (X_{ij} \bar{X}_{i.} \bar{X}_{.j} + \bar{X})^2$ 误差平方和,反映由于随机误差的作用而在数据中引起的波动

要分别检验假设

$$H_{0A}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0 \ \text{\ensuremath{\mbox{\not}\ensuremath{\mbox{\not}}}}\ H_{0B}$: $\beta_1 = \beta_2 = \cdots = \beta_b = 0$.

定理 在无交互作用的双因素方差分析模型中,

(1)
$$SS_A$$
, SS_B , SS_e 相互独立
(2) $SS_e/\sigma^2 \sim \chi^2(n-a-b+1)$.

(3) 当
$$H_{0A}$$
 成立, 即 $\alpha_1=\alpha_2=\cdots=\alpha_a=0$ 时, $SS_A/\sigma^2\sim\chi^2(a-1)$;

(4) 当
$$H_{0B}$$
 成立, 即 $\beta_1 = \beta_2 = \cdots = \beta_b = 0$ 时, $SS_B/\sigma^2 \sim \chi^2(b-1)$.

假设检验 H_{0A} : $\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$

取检验统计量为

$$F_A = \frac{SS_A/(a-1)}{SS_e/(n-a-b+1)},$$

- 当 H_{0A} 成立时, $F_A \sim F(a-1, n-a-b+1)$,
- 当 H_{0A} 不成立时, 由于

$$E(SS_A) = bE\left[\sum_{i=1}^a (\bar{X}_i - \bar{X})^2\right] = b\sum_{i=1}^a E[(\bar{X}_i - \bar{X})^2] = (a-1)\sigma^2 + b\sum_{i=1}^a \alpha_i^2,$$

所以 SS₄ 有偏大的趋势, 从而由

$$F_A > F_\alpha(a - 1, n - a - b + 1)$$

所确定的拒绝域给出了显著性水平 α 下的一个检验.

假设检验 H_{0B} : $\beta_1 = \beta_2 = \cdots = \beta_b = 0$

取检验统计量为

$$F_B = \frac{SS_B/(b-1)}{SS_e/(n-a-b+1)},$$

- 当 H_{0B} 成立, 即 $\beta_1 = \beta_2 = \cdots = \beta_b = 0$ 时, $F_B \sim F(b-1, n-a-b+1)$;
- 当 H_{OB} 不成立时, 由于

$$E(SS_B) = aE\left[\sum_{j=1}^b (\bar{X}_{.j} - \bar{X})^2\right] = a\sum_{j=1}^b E\left[(\bar{X}_{.j} - \bar{X})^2\right] = (b-1)\sigma^2 + a\sum_{j=1}^b \beta_j^2,$$

所以 SS_B 有偏大的趋势, 从而由

$$F_B > F_{\alpha}(b-1, n-a-b+1)$$

所确定的拒绝域给出了显著性水平 α 下的一个检验.

无交互作用的双因素方差分析表

方差 来源	平方和	自由度	均方和	F 值
因素A	$SS_A = b\sum_{i=1}^a (\bar{X}_{i\cdot} - \bar{X})^2$	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_A = \frac{MS_A}{MS_e}$
因素B	$SS_B = a\sum_{j=1}^b (\bar{X}_{\cdot j} - \bar{X})^2$	b - 1	$MS_B = \frac{SS_B}{b-1}$	$F_B = \frac{MS_B}{MS_e}$
误差	$SS_e = \sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \bar{X}_i) - \bar{X}\bar{X}_{ij} + \bar{X}$	n-a $-b+1$	$MS_e = \frac{S_e}{n - a - b + 1}$	
总和	$SS = \sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \bar{X})^2$	n-1		

例 某型号火箭使用了四种燃料、三种推进器做射程试验. 每种燃料与每种推进器搭配做一次试验, 测得的火箭射程(单位: km)如下, 在显著性水平 α =0.05 下, 燃料与推进器对射程是否有显著影响?

射程 推进器 B 燃料 A	B_1	B_2	B_3	\overline{x}_i .
A_1	158.2	156.2	165.3	159.90
A_2	149.1	154.1	151.6	151.60
A_3	160.1	170.9	139.2	156.73
A_4	175.8	158.2	148.7	160.90
$\overline{x}_{\cdot j}$	160.80	159.88	151, 20	$\bar{x} = 157.28$

解 由所给数据列出方差分析表 (a = 4, b = 3, n = 12):

方差来源	平方和	自由度	均方和	F 值
因素 A	157.59	3	52.53	0.43
因素 B	223.85	2	111.93	0.92
误差	731.98	6	121.99	
总和	1113.42	11		

- 对于假设检验 H_{0A} , 查表得临界值 $F_{0.05}(3,6) = 4.76 > 0.43$, 因此不能拒绝 H_{0A} , 即各种燃料的差异对火箭射程的影响不显著.
- 对于假设检验 H_{0B} , 查表得临界值 $F_{0.05}(2,6) = 5.14 > 0.92$, 因此也不能拒绝 H_{0B} , 即各种推进器的差异对火箭射程的影响并不显著.

本例中误差均方和 MS_e 出现较大的值, 这可能是没有考虑因素 A 与 B 的不同水平搭配所引起的交互作用的缘故.

2.2 有交互作用的双因素方差分析

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$i = 1, 2, \dots, a, j = 1, 2, \dots, b, k = 1, 2, \dots, m$$

有两个因素 A 和 B, 因素 A 取 a 个不同水平, 因素 B 取 b 个不同水平, 对这两个因素的每一对水平搭配(A_i , B_i), 有容量为m(> 1)的样本.

$$\bar{X}_{ij.} = \frac{1}{m} \sum_{k=1}^{m} X_{ijk}, i = 1, 2, \dots, a, j = 1, 2, \dots, b;$$

$$\bar{X}_{i..} = \frac{1}{bm} \sum_{j=1}^{b} \sum_{k=1}^{m} X_{ijk} = \frac{1}{b} \sum_{j=1}^{b} \bar{X}_{ij.}, i = 1, 2, \dots, a;$$

$$\bar{X}_{.j.} = \frac{1}{am} \sum_{i=1}^{a} \sum_{k=1}^{m} X_{ijk} = \frac{1}{a} \sum_{i=1}^{a} \bar{X}_{ij.}, j = 1, 2, \dots, b;$$

$$n = abm$$

$$\bar{X} = \frac{1}{abm} \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{k=1}^{m} X_{ijk} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{a} \bar{X}_{ij.} = \frac{1}{a} \sum_{i=1}^{a} \bar{X}_{i..} = \frac{1}{b} \sum_{i=1}^{b} \bar{X}_{.j.},$$

35

(平方和分解公式) 在有交互作用的双因素方差分析模型

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, k = 1, 2, \dots, m; i = 1, 2, \dots, a, j = 1, 2, \dots, b,$$

 ψ , $SS = SS_A + SS_B + SS_{A \times B} + SS_e$

- $SS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{m} (X_{ijk} \bar{X})^2$ 总离差平方和,反映全体数据中的波动
- $SS_A = bm\sum_{i=1}^a (\bar{X}_i...-\bar{X})^2$ 因子 A 的离差平方和,反映因素A 在各个水平下的不同作用而在数据中引起的波动
- $SS_B = am \sum_{j=1}^b (\bar{X}_{.j.} \bar{X})^2 \mathbf{B} + \mathbf{B}$
- $SS_{A\times B} = m \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{X}_{ij}. \bar{X}_{i..} \bar{X}_{.j.} + \bar{X})^2$ 交互效应的离差平方和,反映由于交互效应的存在而在数据中引起的波动
- $S_e = \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^m (X_{ijk} \bar{X}_{ij})^2$ 误差平方和,反映由于随机误差的作用而在数据中引起的波动

要分别检验假设

$$\begin{aligned} \mathsf{H}_{0A} &: \alpha_1 = \alpha_2 = \dots = \alpha_a = 0; \\ \mathsf{H}_{0B} &: \beta_1 = \beta_2 = \dots = \beta_b = 0; \\ \mathsf{H}_{0A \times B} &: \gamma_{11} = \dots = \gamma_{1b} = \dots = \gamma_{a1} = \dots = \gamma_{ab} = 0. \end{aligned}$$

定理 在有交互作用的双因素方差分析模型 $X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$ $k = 1, 2, \cdots, m; i = 1, 2, \cdots, a, j = 1, 2, \cdots, b$ 中,

- SS_A、SS_B、SS_{A×B}、SS_e 相互独立
- $SS_e/\sigma^2 \sim \chi^2(n-ab)$.
- 当 H_{0A} 成立, 即 $\alpha_1=\alpha_2=\cdots=\alpha_a=0$ 时, $SS_A/\sigma^2\sim\chi^2(a-1)$;
- 当 $H_{0A\times B}$ 成立, 即 $\gamma_{11} = \cdots = \gamma_{1b} = \cdots = \gamma_{a1} = \cdots = \gamma_{ab} = 0$ 时, $SS_{A\times B}/\sigma^2 \sim \chi^2((a-1)(b-1))$.

假设检验问题 H_{0A} : $\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$

取检验量为
$$F_A = \frac{SS_A/(a-1)}{SS_e/(n-ab)}$$
,

- 当 H_{0A} 成立时, $F_A \sim F(a-1, n-ab)$;
- 当 H_{0A} 不成立时, 由于

$$E(SS_A) = bmE\left[\sum_{i=1}^{a} (\bar{X}_i..-\bar{X})^2\right] = bm\sum_{i=1}^{a} E[(\bar{X}_i..-\bar{X})^2]$$

$$= (a-1)\sigma^2 + bm \sum_{i=1}^a \alpha_i^2,$$

所以 SS_A 有偏大的趋势. 因此, 由 $F_A > F_\alpha(a-1,n-ab)$ 所确定的拒绝域给出了显著性水平 α 下的一个检验.

假设检验问题 H_{0B} : $\beta_1 = \beta_2 = \cdots = \beta_b = 0$

取检验量为
$$F_B = \frac{SS_B/(b-1)}{SS_e/(n-ab)}$$
,

- 当 H_{0B} 成立时, $F_B \sim F(b-1, n-ab)$;
- 当 H_{0B} 不成立时, 由于

$$E(SS_B) = amE\left[\sum_{j=1}^{b} (\bar{X}_{.j.} - \bar{X})^2\right] = am\sum_{j=1}^{b} E\left[(\bar{X}_{.j.} - \bar{X})^2\right]$$

$$= (b-1)\sigma^2 + am \sum_{j=1}^b \beta_j^2,$$

所以 SS_B 有偏大的趋势. 因此, 由 $F_B > F_\alpha(b-1,n-ab)$ 所确定的拒绝域给出了显著性水平 α 下的一个检验.

假设检验问题 $H_{0A\times B}$: $\gamma_{11}=\cdots=\gamma_{1b}=\cdots=\gamma_{a1}=\cdots=\gamma_{ab}=0$

取检验统计量为

$$F_{A\times B} = \frac{SS_{A\times B}/(a-1)(b-1)}{SS_e/(n-ab)},$$

- 当 $H_{0A\times B}$ 成立时, $F_{A\times B}\sim F((a-1)(b-1),n-ab)$;
- 当 H_{0A×B} 不成立时, 由于

$$E(S_{A\times B}) = (a-1)(b-1)\sigma^2 + m\sum_{i=1}^{a}\sum_{j=1}^{b}\gamma_{ij}^2,$$

所以 $SS_{A\times B}$ 有偏大的趋势. 因此, 由 $F_{A\times B} > F_{\alpha}((a-1)(b-1), n-ab)$ 所确定的拒绝域给出了显著性水平 α 下的一个检验.

有交互作用的双因素方差分析表

方差来 源	平方和	自由度	均方和	F值
因素A	$SS_A = bm\sum_{i=1}^a (\bar{X}_i \bar{X})^2$	<i>a</i> − 1	$MS_A = \frac{SS_A}{a-1}$	$F_A = \frac{MS_A}{MS_e}$
因素B	$SS_B = am \sum_{j=1}^b (\bar{X}_{\cdot j} - \bar{X})^2$	<i>b</i> – 1	$MS_B = \frac{SS_B}{b-1}$	$F_B = \frac{MS_B}{MS_e}$
交互效 应A×B	$SS_{A\times B}$ $= m\sum_{i=1}^{a} \sum_{j=1}^{b} \left((\bar{X}_{ij} - \bar{X}_{i} - \bar{X}_{i} - \bar{X}_{j} + \bar{X} \right)^{2}$	(a-1) $(b-1)$	$= \frac{SS_{A \times B}}{(a-1)(b-1)}$	$F_{A\times B} = \frac{MS_{A\times B}}{MS_e}$
误差	SS_e $= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{m} (X_{ijk} - \bar{X}_{ij.})^2$	n-ab	$MS_e = \frac{SS_e}{n - ab}$	
总和	$SS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{m} (X_{ijk} - \bar{X})^{2}$	n-1		

例 在前例中,对于燃料与推进器的每一对水平搭配,各发射火箭两次,测得射程 (单位: km)如下,在显著性水平 $\alpha = 0.05$ 下,分别检验各种燃料、各种推进器、交互效应是否对火箭射程有显著性影响.

推进器 然料	B_1	B_2	B_3	\overline{x}_i
A_1	158. 2 152. 6	152. 6 141. 2	165.3 160.8	155.72
A_2	149.1 142.8	154.1 150.5	151. 6 148. 4	149.42
A_3	160.1 158.3	170, 9 173, 2	139. 2	157.07
A_4	175.8 171.5	158, 2 151, 0	148. 7 141. 4	157.77
$\overline{x}_{\cdot j}$.	158, 55	156, 91	149.51	$\overline{x} = 154.99$

解 按所给数据列出方差分析表(a = 4, b = 3, m = 2, n = abm = 24):

方差来源	平方和	自由度	均方和	F 值
因素 A	261.68	3	87.23	4.42
因素 <i>B</i>	因素B 370.98		185.49	9.39
交互效应 $A \times B$	交互效应A×B 1768.69		294.78	14.93
误差	236.95	12	19.75	
总和	2638.30	23		

- 对于假设检验 H_{0A} : $\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$, 查表得临界值 $F_{0.05}(3,12) = 3.49 < 4.42$, 故拒绝 H_{0A} , 即可以认为不同燃料对火箭射程有显著差异.
- 对于假设检验 H_{0B} : $\beta_1 = \beta_2 = \cdots = \beta_b = 0$, 查表得临界值 $F_{0.05}(2,12) = 3.89 < 9.39$, 故拒绝 H_{0B} , 即可以认为不同推进器对火箭射程有显著差异.
- 对于假设检验 $H_{0A\times B}$: $\gamma_{11}=\dots=\gamma_{1b}=\dots=\gamma_{a1}=\dots=\gamma_{a1}=\dots=\gamma_{ab}=0$, 查表得临界值 $F_{0.05}(6,12)=3.00<14.93$, 故拒绝 $H_{0A\times B}$, 即可以认为交互效应显著.

由于交互效应 $A \times B$ 的 F 值为 14.93, 与因素 $A \setminus B$ 的 F 值相比要大得多, 所以本例的交互作用特别显著, 也就是说要注意燃料与推进器的搭配.

例 某公司欲研究3种内容的广告宣传对某种大型机械的销售量的影响,第1种广告强调运输方便性,第2种广告强调节省燃料,第3种广告强调噪音低.在经过广告广泛宣传后,抽取了一部分订单,按订单上的订购量计算的销售量如表所示:

	第1季度	第2季度	第3季度	第4季度
广告 1	163	176	170	185
广告 2	184	198	179	190
广告 3	206	191	218	224

试根据以上资料判断广告内容不同对销售量是否有显著影响 ($\alpha = 0.05$).

方差来源	平方和	自由度	方差	F 值	临界值
因素	2668.17	2	1334.085		$F_{0.05}(2,9)$ = 4.26
误差	1098.5	9	122.056		
总和	3766.67	11			

F= [填空1] (保留2位小数),认为广告内容不同对销售量 [填空2] (有/无)显著影响.

作答