1.
$$g.m_BS = F_A.S + \frac{1}{2}m_AU^2 + \frac{1}{2}m_BU^2$$

 $S=2m.$ $F_A=m_Ag.m_K=470N$
hence $U=4.43 \text{ m/s}$

The mithal velocity of the bucket equals to the velocity of the crane.

For bucket: $U_{HHZ} = -mg \triangle h$ $T_1 = \frac{1}{2}mv^2$ $T_2 = 0$. $\Rightarrow -m(32.2fols^2)[30ft - \sqrt{80ft}]^2 = 0 - \frac{1}{2}mv^2$ $\Rightarrow V = [0.51 ft/s]$.

 $U_{H+2} = W \cdot \Delta h - f \cdot \chi$ $= mg \cdot \chi \sin 15^{\circ} - mg \cos 15^{\circ} \cdot u_{k} \cdot \chi$ $U_{H+2} = T_{2} - T_{1}$ $\Rightarrow mg \times \sin 15^{\circ} - mg u_{k} \cos 15^{\circ} \chi = 0 - \frac{1}{2} m v_{0}^{2}$ $\Rightarrow v_{0} = 12.82 \text{ ft/s}.$

