# Supplementary Information for Elevated risk of drug-drug interactions while easing COVID-19 restrictions in China

Qingpeng Zhang<sup>1,2</sup>, Jiannan Yang<sup>1</sup>, Daniel Dajun Zeng<sup>3</sup>, Ian C.K. Wong<sup>2</sup>

### 1. Methods

We applied a deep learning-based DDI prediction model to identify the potential DDIs in addition to known DDIs. The deep learning model adopted a Graph Convolutional Network framework proposed by (Zitnik et al., 2018), and was trained by identifying the complex relationships of drugs based on the protein-protein interaction (PPI) network. The details are shown as follows

## 1.1. Datasets for Training

- 1.1.1. **Protein-protein interaction (PPI) network.** For our current study, we employed the same PPI network as in our previous research. This network comprises 614,970 interactions among 13,758 proteins and was sourced from two datasets, including (Cheng et al., 2019) and STRING (Szklarczyk et al., 2021).
- 1.1.2. Drug-protein interactions (DPI). The DPIs used in our study contains the interactions between western drugs and proteins, also Traditional Chinese medicines (TCM) drugs and their protein targets. For western drugs, we curated 29,419 drug-protein interactions from DrugBank (Wishart et al., 2018) and the dataset used in (Cheng et al., 2019), which covers 6,484 western drugs. And for TCM drugs, the DPI information comes from HERB (Fang et al., 2021) and Chinese Pharmacopoeia 2020 (https://www.bopuyun.com/pc/book/4?zch=seoggs,seooth), which contains 142,821 interactions covers 1,573 TCM drugs. We first collected their component herbs and find the related protein targets of these herbs and then aggregate all these protein targets together as the related proteins of certain TCM drug.
- **1.1.3. Drug-drug interactions (DDI).** The training of the deep learning model for DDI prediction is performed on the western drugs. The negative drug-drug interactions (label is 1) are collected from DrugBank (Wishart et al., 2018) and DDInter (Xiong et al., 2022), which contains 592,986 negative interactions and 455,150 "unknown" and "positive" interactions among

4,446 drugs. Besides the negative DDIs, these public datasets also provide us with the "unknown" DDIs and "positive" DDIs, which we used as the negative label (0) during training.

### 1.2. Training

Based on the data we collected, we built a graph G = (V, E), where V and E are the node set and edge set, respectively. The nodes V are the proteins and drugs, including both western drugs and TCM drugs. The edges E are the PPIs and DPIs among these nodes. The training of the deep learning model is performed on the western drugs since we have no DDI data for the TCM drugs. Specifically, given the adjacency matrix A of the graph, we first initialized the numeric representations  $E \in \mathbb{R}^{N \times d}$  of all the nodes to a 64-dimional embeddings and then perform a 3-layer GCN to get the output. One layer of GCN is shown below:

$$E^{l+1} = \sigma_G (D^{-1}(A+I)D^{-1}E^lW^l), \tag{1}$$

where D is the diagonal node degree matrix, I is the identity matrix,  $\sigma_G$  is the activation function (relu) and,  $W^l$  is the learning weights at layer l.

Then, given the embeddings of two drugs  $D_1$  and  $D_2$ , we utilized the inner product  $\otimes$  and Softmax activation function  $\sigma$  to get the output:

$$\hat{\mathbf{y}} = \sigma(D_1 \otimes D_2),\tag{2}$$

We treated the prediction of negative DDIs as a binary classification task and used a binary cross entropy loss

$$\mathbb{L} = \sum (-y \log \hat{y} - (1 - y) \log(1 - \hat{y})),\tag{3}$$

The parameters of the deep learning model are optimized by the Adam algorithm. For the hyper-parameters, we set the learning rate as 0.001, the dropout ratio as 0.1. The layer size of the 3-layer GCN are 64-128-64.

## 1.3. Inferencing

We introduced the trained deep learning model trained to make inference on all the drug-drug pairs of 18 OTC drugs. Specifically, given two drugs, we get the embeddings of these two drugs and then applied equation (2) to get the probability of whether these two drugs will have negative DDI.

#### 2. Results

Figure 1 presents the predicted probability of negative DDIs between a pair of drugs as a heatmap. We label the drug pairs as high-risk if the predicted probability of DDI is over 90%. Among 18 drugs, we find 82 high-risk drug pairs. Specifically, there are 25 high-risk drug pairs between Western medicine drugs, 16 between TCM drugs, and 41 between Western medicine and TCM drugs. Among these high-risk drug pairs, only seven were clinically verified (acetylcysteine-cetirizine, acetylcysteine-loratadine, aspirin-ibuprofen, aspirin- xylometazoline, cetirizine-chlorpheniramine, cetirizine-loratadine, and chlorpheniramine-loratadine).



**Figure 1.** The heatmap of the predicted probability of negative DDIs between a pair of OTC drugs recommended by (National Health Commission of China, 2022b). TCM drugs are listed in the first 8 rows/columns and Western medicine drugs are listed in the rest. Within each category, drugs are aligned according to the probability of having DDIs with other drugs.

The predicted probability of the negative DDIs for all the drug-drug pairs among the 18 OTC drugs are shown in Table below.

| Drug1            | Drug2            | ŷ    | Drug1        | Drug2           | ŷ    | Drug1          | Drug2           | ŷ    |
|------------------|------------------|------|--------------|-----------------|------|----------------|-----------------|------|
| Jinhuaqinggan    | Chlorpheniramine | 0.02 | Qingyandiwan | Aspirin         | 0.23 | Aspirin        | Ambroxol        | 0.56 |
| Jinhuaqinggan    | Paracetamol      | 0.49 | Qingyandiwan | Qingfeipaidu    | 0.00 | Aspirin        | Acetylcysteine  | 0.67 |
| Jinhuaqinggan    | Qingyandiwan     | 1.00 | Qingyandiwan | Xuanfeibaidu    | 0.20 | Aspirin        | Cetirizine      | 0.19 |
| Jinhuaqinggan    | Ibuprofen        | 0.94 | Qingyandiwan | Xylometazoline  | 0.01 | Aspirin        | Shufengjiedu    | 0.15 |
|                  | Dequalinium      |      |              |                 |      |                |                 |      |
| Jinhuaqinggan    | chloride         | 0.00 | Qingyandiwan | Huoxiangzhengqi | 1.00 | Aspirin        | Lianhuaqingwen  | 1.00 |
| Jinhuaqinggan    | Loratadine       | 0.67 | Qingyandiwan | Ambroxol        | 0.78 | Aspirin        | Liushenwan      | 0.98 |
| Jinhuaqinggan    | Aspirin          | 0.97 | Qingyandiwan | Acetylcysteine  | 0.99 | Qingfeipaidu   | Xuanfeibaidu    | 0.71 |
| Jinhuaqinggan    | Qingfeipaidu     | 1.00 | Qingyandiwan | Cetirizine      | 0.01 | Qingfeipaidu   | Xylometazoline  | 0.01 |
| Jinhuaqinggan    | Xuanfeibaidu     | 1.00 | Qingyandiwan | Shufengjiedu    | 1.00 | Qingfeipaidu   | Huoxiangzhengqi | 0.27 |
| Jinhuaqinggan    | Xylometazoline   | 0.98 | Qingyandiwan | Lianhuaqingwen  | 0.83 | Qingfeipaidu   | Ambroxol        | 1.00 |
| Jinhuaqinggan    | Huoxiangzhengqi  | 0.26 | Qingyandiwan | Liushenwan      | 0.11 | Qingfeipaidu   | Acetylcysteine  | 0.11 |
|                  |                  |      |              | Dequalinium     |      |                |                 |      |
| Jinhuaqinggan    | Ambroxol         | 0.02 | Ibuprofen    | chloride        | 0.84 | Qingfeipaidu   | Cetirizine      | 0.11 |
| Jinhuaqinggan    | Acetylcysteine   | 1.00 | Ibuprofen    | Loratadine      | 0.83 | Qingfeipaidu   | Shufengjiedu    | 0.24 |
| Jinhuaqinggan    | Cetirizine       | 0.17 | Ibuprofen    | Aspirin         | 0.99 | Qingfeipaidu   | Lianhuaqingwen  | 0.05 |
| Jinhuaqinggan    | Shufengjiedu     | 0.00 | Ibuprofen    | Qingfeipaidu    | 0.22 | Qingfeipaidu   | Liushenwan      | 1.00 |
| Jinhuaqinggan    | Lianhuaqingwen   | 1.00 | Ibuprofen    | Xuanfeibaidu    | 0.87 | Xuanfeibaidu   | Xylometazoline  | 0.00 |
| Jinhuaqinggan    | Liushenwan       | 1.00 | Ibuprofen    | Xylometazoline  | 0.99 | Xuanfeibaidu   | Huoxiangzhengqi | 1.00 |
| Chlorpheniramine | Paracetamol      | 0.08 | Ibuprofen    | Huoxiangzhengqi | 0.60 | Xuanfeibaidu   | Ambroxol        | 1.00 |
| Chlorpheniramine | Qingyandiwan     | 0.01 | Ibuprofen    | Ambroxol        | 0.22 | Xuanfeibaidu   | Acetylcysteine  | 0.94 |
| Chlorpheniramine | Ibuprofen        | 0.90 | Ibuprofen    | Acetylcysteine  | 0.97 | Xuanfeibaidu   | Cetirizine      | 0.60 |
|                  | Dequalinium      |      |              |                 |      |                |                 |      |
| Chlorpheniramine | chloride         | 0.11 | Ibuprofen    | Cetirizine      | 0.10 | Xuanfeibaidu   | Shufengjiedu    | 0.00 |
| Chlorpheniramine | Loratadine       | 0.99 | Ibuprofen    | Shufengjiedu    | 0.06 | Xuanfeibaidu   | Lianhuaqingwen  | 0.00 |
| Chlorpheniramine | Aspirin          | 0.13 | Ibuprofen    | Lianhuaqingwen  | 0.99 | Xuanfeibaidu   | Liushenwan      | 1.00 |
| Chlorpheniramine | Qingfeipaidu     | 0.99 | Ibuprofen    | Liushenwan      | 0.38 | Xylometazoline | Huoxiangzhengqi | 0.71 |
|                  |                  |      | Dequalinium  |                 |      |                |                 |      |
| Chlorpheniramine | Xuanfeibaidu     | 0.72 | chloride     | Loratadine      | 0.14 | Xylometazoline | Ambroxol        | 0.00 |
|                  |                  |      | Dequalinium  |                 |      |                |                 |      |
| Chlorpheniramine | Xylometazoline   | 0.76 | chloride     | Aspirin         | 0.06 | Xylometazoline | Acetylcysteine  | 0.05 |

|                  |                 |      | Dequalinium |                 |      |                 |                |      |
|------------------|-----------------|------|-------------|-----------------|------|-----------------|----------------|------|
| Chlorpheniramine | Huoxiangzhengqi | 0.97 | chloride    | Qingfeipaidu    | 0.00 | Xylometazoline  | Cetirizine     | 0.48 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Ambroxol        | 0.78 | chloride    | Xuanfeibaidu    | 0.69 | Xylometazoline  | Shufengjiedu   | 0.30 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Acetylcysteine  | 0.99 | chloride    | Xylometazoline  | 0.01 | Xylometazoline  | Lianhuaqingwen | 1.00 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Cetirizine      | 1.00 | chloride    | Huoxiangzhengqi | 0.95 | Xylometazoline  | Liushenwan     | 0.04 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Shufengjiedu    | 0.94 | chloride    | Ambroxol        | 0.00 | Huoxiangzhengqi | Ambroxol       | 0.96 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Lianhuaqingwen  | 0.00 | chloride    | Acetylcysteine  | 0.00 | Huoxiangzhengqi | Acetylcysteine | 1.00 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Chlorpheniramine | Liushenwan      | 0.00 | chloride    | Cetirizine      | 0.99 | Huoxiangzhengqi | Cetirizine     | 0.00 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Paracetamol      | Qingyandiwan    | 0.29 | chloride    | Shufengjiedu    | 1.00 | Huoxiangzhengqi | Shufengjiedu   | 0.63 |
|                  |                 |      | Dequalinium |                 |      |                 |                |      |
| Paracetamol      | Ibuprofen       | 0.87 | chloride    | Lianhuaqingwen  | 0.00 | Huoxiangzhengqi | Lianhuaqingwen | 1.00 |
|                  | Dequalinium     |      | Dequalinium |                 |      |                 |                |      |
| Paracetamol      | chloride        | 0.18 | chloride    | Liushenwan      | 0.73 | Huoxiangzhengqi | Liushenwan     | 0.98 |
| Paracetamol      | Loratadine      | 0.81 | Loratadine  | Aspirin         | 0.56 | Ambroxol        | Acetylcysteine | 0.01 |
| Paracetamol      | Aspirin         | 0.83 | Loratadine  | Qingfeipaidu    | 0.72 | Ambroxol        | Cetirizine     | 0.53 |
| Paracetamol      | Qingfeipaidu    | 0.90 | Loratadine  | Xuanfeibaidu    | 0.98 | Ambroxol        | Shufengjiedu   | 0.00 |
| Paracetamol      | Xuanfeibaidu    | 0.17 | Loratadine  | Xylometazoline  | 0.69 | Ambroxol        | Lianhuaqingwen | 0.04 |
| Paracetamol      | Xylometazoline  | 0.27 | Loratadine  | Huoxiangzhengqi | 0.72 | Ambroxol        | Liushenwan     | 0.01 |
| Paracetamol      | Huoxiangzhengqi | 0.97 | Loratadine  | Ambroxol        | 0.41 | Acetylcysteine  | Cetirizine     | 0.99 |
| Paracetamol      | Ambroxol        | 0.91 | Loratadine  | Acetylcysteine  | 0.97 | Acetylcysteine  | Shufengjiedu   | 1.00 |
| Paracetamol      | Acetylcysteine  | 0.21 | Loratadine  | Cetirizine      | 0.99 | Acetylcysteine  | Lianhuaqingwen | 1.00 |
| Paracetamol      | Cetirizine      | 0.32 | Loratadine  | Shufengjiedu    | 0.34 | Acetylcysteine  | Liushenwan     | 0.00 |
| Paracetamol      | Shufengjiedu    | 0.21 | Loratadine  | Lianhuaqingwen  | 0.71 | Cetirizine      | Shufengjiedu   | 0.71 |
| Paracetamol      | Lianhuaqingwen  | 0.92 | Loratadine  | Liushenwan      | 0.00 | Cetirizine      | Lianhuaqingwen | 0.00 |
| Paracetamol      | Liushenwan      | 0.94 | Aspirin     | Qingfeipaidu    | 0.69 | Cetirizine      | Liushenwan     | 0.00 |
| Qingyandiwan     | Ibuprofen       | 0.01 | Aspirin     | Xuanfeibaidu    | 0.42 | Shufengjiedu    | Lianhuaqingwen | 0.96 |
|                  | Dequalinium     |      |             |                 |      |                 |                |      |
| Qingyandiwan     | chloride        | 0.94 | Aspirin     | Xylometazoline  | 0.96 | Shufengjiedu    | Liushenwan     | 0.08 |
|                  | L               | 0.14 | Aspirin     | Huoxiangzhengqi | 0.01 | Lianhuagingwen  | Liushenwan     | 0.00 |

### References

Cheng, F., Kovács, I. A., & Barabási, A.-L. (2019). Network-based prediction of drug combinations. *Nature Communications*, *10*(1), Article 1. https://doi.org/10.1038/s41467-019-09186-x

Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., Bu, D., Liu, X., Huo, P., Cao, W., Dong, Q., Wu, J., Zeng, X., Wu, Y., & Zhao, Y. (2021). HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. *Nucleic Acids Research*, *49*(D1), D1197–D1206. https://doi.org/10.1093/nar/gkaa1063

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research*, 49(D1), D605–D612.

https://doi.org/10.1093/nar/gkaa1074

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., ... Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. *Nucleic Acids Research*, 46(D1), D1074–D1082.

Xiong, G., Yang, Z., Yi, J., Wang, N., Wang, L., Zhu, H., Wu, C., Lu, A., Chen, X., Liu, S., Hou, T., & Cao, D. (2022). DDInter: An online drug–drug interaction database towards improving clinical decision-making and patient safety. *Nucleic Acids Research*, *50*(D1), D1200–D1207.

https://doi.org/10.1093/nar/gkab880

https://doi.org/10.1093/nar/gkx1037

Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks. *Bioinformatics*, *34*(13), i457–i466.

https://doi.org/10.1093/bioinformatics/bty294