ARTICLE TITLE

MIROSLAV BURÝŠEK*

1 APLIKACE PRVNÍ A DRUHÉ DERIVACE

1.1 Lineární a kvadratická aproximace

Hlavní význam derivací spočívá v tom, že pokud existují (říkáme, že funkce jsou "dostatečně hladké"), můžeme pomocí nich funkce lokálně aproximovat. Představme si funkci f(x), která má první i druhou derivaci. Uvažujme nějaký **pevný bod** x_0 . Na jeho **malém okolí** můžeme funkci aproximovat přímkou

$$T_1(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$$
(1)

nebo parabolou

$$T_2(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{f''(x_0)}{2} \cdot (x - x_0)^2$$
 (2)

Příklad 1. Aproximujme funkci $f(x)=\sin(x)$ okolo bodu $x_0=\pi/4$. Platí $f'(x)=\cos(x)$ a $f''(x)=-\sin(x)$, takže $f(\pi/4)=\sin(\pi/4)=\sqrt{2}/2$, $f'(\pi/4)=\cos(\pi/4)=\sqrt{2}/2$ a $f''(\pi/4)=-\sin(\pi/4)=-\sqrt{2}/2$. Na nějakém malém okolí tedy můžeme aproximovat přímkou

$$T_1(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$
 (3)

 $T_1(x)$

0.8

anebo parabolou

$$T_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2. \tag{4}$$

^{*} Kontakt: miroslav@burysek.eu

1.2

Příklad 2. Pomocí aproximace spočítejme $\sqrt{14}$. Víme, že $\sqrt{16} = 4$. Zkusme proto odmocninu aproximovat kolem bodu 4.

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}, \quad (\sqrt{x})'' = -\frac{3}{2\sqrt{x^3}}.$$
 (5)

Můžeme tedy aproximovat parabolou

$$\sqrt{x} \stackrel{\text{na okolí kolem } 16}{\approx} \sqrt{16} + \frac{x - 16}{2\sqrt{16}} - \frac{3(x - 16)^2}{4\sqrt{16^3}} = 4 + \frac{x - 16}{8} - \frac{3(x - 16)^2}{256}.$$
 (6)

Nyní snadno spočteme

$$\sqrt{14} = 4 - \frac{2}{8} - \frac{8}{256} = 3,72. \tag{7}$$

V porovnání se skutečnou hodnotou $\sqrt{14} = 3,7416$ vidíme, že jsme se o spletli o pouhých 6 promile.

Můžeme samozřejmě pokračovat a rozvíjet funkce do tzv. **Taylorovova polynomu** $T_n(x)$ pomocí vyšších a vyšších derivací. Nicméně to ve většině praktických případů není příliš potřeba, bohatě si vystačíme s parabolickou aproximací $T_2(x)$.

Rostoucí, nebo klesající?

Podle lineární aproximace $T_1(x)$ snadno poznáme, jestli je funkce na daném okolí rostoucí nebo klesající. V aproximaci totiž $f'(x_0)$ zastupuje lineární koeficient přímky. Je-li tedy $f'(x_0) > 0$, pak se jedná o rostoucí lineární aproximaci a tedy i o rostoucí funkci. Obdobně, je-li $f'(x_0) < 0$, pak je aproximace klesající přímka a funkce je jistě klesající.

Minimum a maximum 1.3

Z rozvojů $T_1(x)$ a $T_2(x)$ také snadno můžeme rozpoznat minimum a maximum funkce. Jestliže je nějaký bod x_0 extrémem funkce f(x), pak musí být $f'(x_0) = 0$, protože jinak bychom měli lineární aproximaci $T_1(x)$ s nenulovou směrnicí, tj. rostoucí nebo klesající přímku. To znamená, že nějaký bod na okolí by měl jistě nižší anebo vyšší funkční hodnotu, takže by bod x_0 jistě nebyl extremální. Chceme-li tedy hledat minimum a maximum hladkých funkcí, jedinými kandidáty jsou tzv. stacionární body, tj. body x_0 , ve kterých je $f(x_0)$.

Teď se podívejme na kvadratický rozvoj $T_2(x)$. Jestliže $f'(x_0) = 0$ a $f''(x_0) > 0$, pak se jedná o parabolu

$$T_2(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$
(8)

s kladným kvadratickým koeficientem, takže bude "typu \cup ". Tím pádem je v x_0 minimum, protože parabola od něj "roste napravo i nalevo".

Podobně, představme si, že $f''(x_0) < 0$. Pak se jedná o parabolu "typu \cap " a x_0 tedy musí být maximum, protože parabola "napravo i nalevo klesá".

Konkavita, konvexita, inflexní bod

Matematická definice těchto pojmů je složitější, nicméně se dají názorně představit. Uvažujme funkci f a nějaké dva libovolné body x_1 a x_2 . Představme si, že spojíme body na grafu $[x_1, f(x_1)]$ a $[x_2, f(x_2)]$ úsečkou. **Jestliže celá tato úsečka leží nad** grafem funkce, nazývá se funkce konvexní. Jestliže leží úsečka celá pod grafem funkce, nazývá se funkce konkávní.

Představíme-li si paraboly x^2 a $-x^2$, pak je jasné, že x^2 je konvexní a $-x^2$ je konkávní. U parabol tedy o konkávitě nebo konvexitě rozhoduje znaménko kvadratického koeficientu.

Ale my již víme, že i složitější funkce umíme kvadraticky aproximovat do paraboly $T_2(x)$ s kvadratickým koeficientem $f''(x_0)$. Jestliže je tedy $f''(x_0) > 0$, pak je jistě funkce konkávní, jestliže je $f''(x_0) < 0$, pak je funkce konvexní.

Inflexní bod je takový, kde $f''(x_0) = 0$. Tam žádný kvadratický koeficient není a funkce se lokálně chová jako obyčejná přímka.

1.5 Sedlový bod

Může samozřejmě nastat případ, kdy najdeme stacionární bod x_0 splňující nejen $f'(x_0)$, ale i $f''(x_0) = 0$. V takovém případě nemůžeme pomocí tohoto přístupu rozhodnout, zda se jedná o minimum, maximum, nebo sedlový bod. Sedlový bod je takový, kde se lokálně funkce chová jako konstanta, ale nejedná se ani o minimum nebo maximum.

Příklad 3. Funkce $g(x)=x^3$ má zjevně stacionární bod $x_0=0$. V tomto bodě první i druhá derivace g jsou rovny nule. Jedná se o sedlový bod, ale to "na papíře" nepoznáme, pokud nepoužijeme nějaké další techniky. (Samozřejmě to ihned poznáme z grafu.)

1.6 Shrnutí

Obrázek 2: Ilustrace průběhu funkce, její první a druhé derivace.

vlastnost funkce	první derivace	druhá derivace
rostoucí	+	jakákoli
klesající	_	jakákoli
konvexní	jakákoli	+
konkávní	jakákoli	_

Tabulka 1: Charakterizace funkce podle první a druhé derivace.

speciální bod	první derivace	druhá derivace
lokální minimum	0	+
lokální maximum	0	_
sedlový bod	0	0
inflexní bod	jakákoli	0

Tabulka 2: Charakterizace speciálních bodů funkcí. U sedlového bodu nejsou podmínky postačující.

2 PŘÍKLADY

Příklad 4.

APLIKOVANÉ PŘÍKLADY 3

Příklad 5 (Maximální profit). Dejme tomu, že náklady TC na výrobu produktu o množství Q jsou dány funkcí

$$TC(Q) = 2Q^3 - 3Q^2 + 400Q + 5000 (9)$$

a cena produktu P je dána funkcí

$$P(Q) = 4000 - 33Q. (10)$$

Profitová funkce Π (čti "velké pí") je dána rozdílem celkového příjmu a celkového nákladu

$$\Pi = TR - TC$$
, kde $TR = P \cdot Q$. (11)

Určeme maximální profit.

Platí

$$\Pi(Q) = 4000Q - 33Q^2 - 2Q^3 + 3Q^2 - 400Q - 5000 = -2Q^3 - 30Q^2 + 3600Q - 5000.$$
 (12)

Naším úkolem je nalézt maxima a minima takové funkce. K tomu spočteme derivaci

$$\Pi'(Q) = -6Q^2 - 60Q + 3600 \tag{13}$$

a určíme její nulové body Q_0 . Musíme tedy vyřešit rovnici

$$Q_0^2 + 10Q_0 - 600 = 0, (14)$$

což není žádný problém:

$$Q_0 = \frac{-10 \pm \sqrt{100 + 2400}}{2} = -5 \pm 25 = -30, +20.$$
 (15)

Zjevně nás zajímá bod $Q_0 = 20$. Pomocí druhé derivace ověříme, o jaký stacionární bod se jedná.

$$\Pi''(Q) = -12Q - 60$$
, $\Pi''(Q_0) = -12 \cdot 20 - 60 < 0$, (16)

takže se jedná o lokální maximum.

Maximální profit tedy nastává při množství $Q_0=20$ a je roven

$$\Pi_{\text{max}} = \Pi(Q_0) = -2 \cdot 20^3 - 30 \cdot 20^2 + 3600 \cdot 20 - 5000 = 39600. \tag{17}$$