C5-Supplementary Information

Answer: -2, $200 \mu A$.

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2 \text{ M}\Omega$, and output resistance of 50Ω . The op amp is used in the circuit of Fig. 5.6(a). Find the closed-loop gain v_o/v_s . Determine current i when $v_s = 2 \text{ V}$.

Figure 5.6 For Example 5.1: (a) original circuit, (b) the equivalent circuit.

Example 5.1

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2 \text{ M}\Omega$, and output resistance of 50Ω . The op amp is used in the circuit of Fig. 5.6(a). Find the closed-loop gain v_o/v_s . Determine current i when $v_s = 2 \text{ V}$.

Figure 5.6
For Example 5.1: (a) original circuit, (b) the equivalent circuit.

• 1. The equivalent circuit

• 2. KCL@node 1
$$\frac{v_s - v_1}{10 \times 10^3} = \frac{v_1}{2000 \times 10^3} + \frac{v_1 - v_0}{20 \times 10^3}$$

$$200v_s = 301v_1 - 100v_o$$

$$2v_s \simeq 3v_1 - v_o \quad \Rightarrow \quad v_1 = \frac{2v_s + v_o}{3}$$
 (5.1.1)

• 3. KCL@node O $\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_d}{50}$

$$\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_o}{50}$$

$$v_d = -v_1$$
 and $A = 200,000$

$$v_1 - v_o = 400(v_o + 200,000v_1)$$
 (5.1.2)

- 4.
 - 3 unknowns (v_s , v_1 , v_o); need to get relation between v_s and v_o → eliminate v1
 - Substitute Eq. (5.1.2) into Eq. (5.1.1)

$$0 \approx 26,667,067v_o + 53,333,333v_s \Rightarrow \frac{v_o}{v_s} = -1.9999699$$

This is closed-loop gain, because the 20-k feedback resistor closes the loop between the output and input terminals.

- 5.
 - When $v_s=2V$, $v_o=-3.9999398V$.
 - From Eq. (5.1.1), we obtain v_1 =20.066667 μ V.
 - Thus, $i = \frac{v_1 v_o}{20 \times 10^3} = 0.19999 \text{ mA}$

Question: What if there is no feedback loop?

Answer:

$$-v_1=v_s\times (2/0.01+2)$$

- E.g., for
$$v_s=2V$$
, $v_1\cong 2V$, $|v_o|=|Av_d|>>|Vcc|$, in saturation region

The feedback loop is helpful to operate an op amp in linear region.

Problem 5.2

Repeat Example 5.1 using the ideal op amp model.

Practice Problem 5.2

Answer: -2, 200 μ A.

$$V_1=0V$$

 $(v_s-0)/10k=(0-V_0)/20k$
 $V_0/V_s=-2$

For
$$V_s = 2V$$
, $V_o = -4V$
 $i = (0+4)/20k = 200\mu A$

Comparisons

	Real op amp	Ideal op amp
Gain v _o /v _s	-1.9999699	-2
V_1	20.066667 μV	0 V
V _o	–3.9999398V μV	-4V
i	199.999 μΑ	200 μΑ
i _{Ro} (i through R _o)	199.999 μΑ	200 μΑ
$v_d = 0 - v_1$	–20.066667 μV	0V
Av_d	-4.0133 V	$v_o - i_{Ro} \times R_o = -4V \neq 0$ *

^{*} cannot be calculated by $A \times v_d$ since $\infty \times 0$ is not defined.