SÉRIES ENTIÈRES

Sommaire

Séries entières

Sommaire

I	Gér	néralités sur les séries entières
	I.1	Rayon de convergence
	I.2	Disque ouvert de convergence
	I.3	Opérations sur les séries entières
	I.4	Dérivation et intégration d'une série entière
II	Dév	veloppements en série entière
	II.1	Fonctions développables en série entière
	II.2	Série de MacLaurin
	II.3	Opérations sur les applications "DSE"
	II.4	Développements usuels

Dans ce chapitre, ${\rm I\!K}$ désigne ${\rm I\!R}$ ou $\,{\rm C\!\!\!\! C}.$

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Généralités sur les séries entières Ι

I.1 Rayon de convergence

Définition (Séries entières réelles ou complexes)

- On appelle série entière complexe toute série $\sum_{n\geq 0} f_n$ de fonctions définies de $\mathbb C$ dans $\mathbb C$ par $f_n(z)=a_n\,z^n$, où (a_n) est une suite de $\mathbb K$. $n\geq 0$ On appelle série entière réelle toute série $\sum_{n\geq 0} f_n$ de fonctions définies de $\mathbb R$ dans $\mathbb K$ par $f_n(t)=a_n\,t^n$, où (a_n) est une suite de $\mathbb K$.

Remarque

Dans toute la suite, on considère surtout des séries entières complexes.

Les propriétés des séries entières réelles s'en déduisent, à quelques changements de vocabulaire près, comme remplacer disque de convergence par intervalle de convergence.

Définition (Rayon de convergence)

Soit (a_n) une suite de IK. L'ensemble des réels r positifs ou nuls pour lesquels la suite $(a_n r^n)$ est bornée est non vide car il contient 0.

Sa borne supérieure R, éventuellement infinie, est appelée $rayon\ de\ convergence$ de la série entière complexe $\sum_{n\geq 0} a_n z^n$, ou de la série entière réelle $\sum_{n\geq 0} a_n t^n$.

Premiers exemples

- Le rayon de convergence de $\sum_{n>0} n! z^n$ est R=0.
- Celui de $\sum_{n\geq 0} z^n$ est R=1. Celui de $\sum_{n\geq 0} \frac{z^n}{n!}$ est $R=+\infty$.

Remarques

- On ne change pas le rayon de convergence d'une série entière $\sum_{n>0} a_n z^n$ en modifiant la valeur d'un nombre fini de coefficients a_n .
- Par définition $\sum_{n\geq 0} a_n z^n$, $\sum_{n\geq 0} (-1)^n a_n z^n$ ou $\sum_{n\geq 0} |a_n| z^n$, ont le même rayon de convergence.
- Soient R et R' les rayons de convergence respectifs de $\sum_{n\geq 0} a_n z^n$ et de $\sum_{n\geq 0} b_n z^n$.

On suppose que $|a_n| \leq |b_n|$, au moins à partir d'un certain rang. Alors $R' \leq R$.

– Pour tout $\lambda \neq 0$, les séries $\sum_{n\geq 0} a_n z^n$ et de $\sum_{n\geq 0} \lambda a_n z^n$ ont même rayon de convergence. S'il existe $\lambda > 0$ et $\mu > 0$, tels que, pour n assez grand $\lambda |a_n| \le |b_n| \le \mu |a_n|$, alors $\sum_{n \ge 0} a_n z^n$

et $\sum_{n\geq 0} b_n z^n$ ont le même rayon de convergence. C'est le cas si $|a_n| \sim |b_n|$.

©EduKlub S.A. Page 2 Jean-Michel Ferrard www.klubprepa.net

I.2 Disque ouvert de convergence

Proposition (convergence d'une série entière)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière, et soit R son rayon de convergence.

- Si $|z_0| < R$, alors la série $\sum_{n\geq 0} a_n z_0^n$ est absolument convergente, donc convergente.

Cela implique que la suite $(a_n z_0^n)$ est convergente vers 0 et donc qu'elle est bornée.

- Si $|z_0| > R$, alors la suite $(a_n z_0^n)$ n'est pas bornée, et donc n'est pas convergente.

La série $\sum_{n\geq 0} a_n z_0^n$ est donc grossièrement divergente.

Définition (disque ouvert de convergence)

Avec les notations de la définition précédente, et en supposant $R \neq 0$: $-\{z \in \mathbb{C}, |z| < R\} \text{ est appelé disque ouvert de convergence de } \sum_{n \geq 0} a_n z^n.$ $-] - R, R[\text{ est appelé intervalle ouvert de convergence de } \sum_{n \geq 0} a_n t^n.$

Remarques

- Une série entière de rayon de convergence R > 0 est absolument convergente, donc convergente, sur son disque ou intervalle ouvert de convergence. On peut donc parler de la somme $S(z) = \sum_{n=0}^{\infty} a_n z^n$ (resp. $S(t) = \sum_{n=0}^{\infty} a_n t^n$) sur ce disque (resp. sur cet intervalle) ouvert.

 – Une série entière $\sum_{n>0} a_n z^n$ de rayon de convergence R=0 ne converge qu'en z=0.

Cette situation ne présente pas beaucoup d'intérêt.

Proposition (règle de d'Alembert)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière, et soit R son rayon de convergence.

On suppose que les coefficients a_n sont non nuls, au moins à partir d'un certain rang.

Si
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lambda \in \mathbb{R}^+ \cup \{+\infty\}, \text{ alors } R = \frac{1}{\lambda}.$$

(avec $R = +\infty$ si $\lambda = 0$ et $R = 0$ si $\lambda = +\infty$).

Remarques

- Si a_n est une fraction rationnelle de n, alors le rayon de convergence de $\sum_{n\geq 0} a_n z^n$ vaut 1.
- Le rayon de convergence R d'une série entière $\sum_{n\geq 0} a_n z^n$ existe toujours.

En revanche $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$ peut ne pas exister. Il faudra alors utiliser d'autres méthodes que la règle de d'Alembert et par exemple revenir tout simplement à la définition.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

- Un cas fréquent est celui des séries entières $\sum_{n\geq 0} a_n z^n$ lacunaires, ainsi nommées parce que l'ensemble des indices n tels que $a_n = 0$ est infini

Exemples:
$$\sum_{n\geq 0} \alpha_n z^{2n}$$
, $\sum_{n\geq 0} \alpha_n z^{2n+1}$, ou $\sum_{n\geq 0} \alpha_n z^{n!}$...

On pourra alors utiliser la forme initiale du critère de d'Alembert :

- \diamond On considère le terme général u_n de la série, par exemple $u_n = \alpha_n z^{n!}$.
- \diamond On compare la limite éventuelle du rapport $\left|\frac{u_{n+1}}{u_n}\right|$ avec 1.
- \diamond On sait alors pour quelles valeurs de |z| la série est convergente.

Proposition (Continuité de la somme sur le disque ouvert de convergence)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0. Cette série est normalement convergente sur tout compact inclus dans son disque ouvert de convergence.

Conséquence : la somme $S(z) = \sum_{n=0}^{\infty} a_n z^n$ est continue sur le disque ouvert de convergence.

Remarque

Il se peut qu'une série entière $\sum_{n\geq 0} a_n\,z^n$ ne soit pas uniformément convergente (et à fortiori pas normalement convergente) sur son disque ouvert de convergence.

C'est le cas par exemple pour la série entière $\sum_{n\geq 0} z^n$.

Remarques: (Comportement sur le bord du disque ouvert de convergence)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0.

- Le comportement de $\sum_{n\geq 0}a_nz^n$ sur le cercle de centre 0 et de rayon R peut être quelconque (convergence en tous les points du cercle, ou en certains points, ou en aucun point.)
- Si la série $\sum_{n\geq 0} |a_n| \ R^n$ est convergente, alors la série $\sum_{n\geq 0} a_n \, z^n$ est normalement convergente sur le disque fermé de centre 0 et de rayon R

La somme S(z) de cette série est alors continue sur ce disque fermé.

Opérations sur les séries entières **I.3**

Proposition (Somme de deux séries entières

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayons de convergence R et R'.

Soit ρ le rayon de convergence de la série entière somme $\sum_{n>0} (a_n + b_n) z^n$.

Alors
$$\rho \ge \min(R, R')$$
, avec égalité si $R \ne R'$.
Pour $|z| < \min(R, R')$, on a : $\sum_{n=0}^{\infty} (a_n + b_n) z^n = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Proposition (Produit de Cauchy de deux séries entières)

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayons de convergence R et R'.

Soit r le rayon de convergence de $\sum_{n\geq 0} c_n z^n$ où, pour tout entier n, $c_n = \sum_{k=0}^n a_k b_{n-k}$. (on dit que la série $\sum_{n\geq 0} c_n z^n$ est le produit de Cauchy des séries $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$).

Alors $r \ge \min(R, R')$. Pour $|z| < \min(R, R')$, on a : $\sum_{n=0}^{\infty} c_n z^n = \sum_{n=0}^{\infty} a_n z^n \sum_{n=0}^{\infty} b_n z^n$.

Proposition (Unicité des coefficients d'une série entière)

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$, deux séries entières de rayons R>0 et R'>0. On suppose que les sommes de ces deux séries coïncident sur un voisinage de 0.

Alors ces deux séries sont identiques : $\forall n \in \mathbb{N}, a_n = b_n$.

Conséquence

La somme S(z) de la série entière $\sum_{n\geq 0} a_n z^n$ est une fonction paire (resp. impaire) \Leftrightarrow les a_n de rang impair (resp. pair) sont nuls.

I.4 Dérivation et intégration d'une série entière

Définition (Série entière dérivée)

$$\|$$
 La série entière $\sum_{n\geq 0} (n+1)a_{n+1}z^n$ est appelée série dérivée de $\sum_{n\geq 0} a_n z^n$.

Remarque

A un changement d'indice près, la série dérivée peut s'écrire : $\sum_{n\geq 1} na_n z^{n-1}$.

Proposition

Une série entière et sa série dérivée ont le même rayon de convergence.

Généralisation

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0.

- La série entière $\sum_{n\geq 0} (n+p)(n+p-1)\cdots(n+1) \, a_{n+p} \, z^n = \sum_{n\geq 0} \frac{(n+p)!}{n!} \, a_{n+p} \, z^n$ est appelée série dérivée p-ième de la série entière $\sum_{n\geq 0} a_n \, z^n$. Son rayon de convergence est R.

Cette série peut aussi s'écrire : $\sum_{n\geq p} \frac{n!}{(n-p)!} \, a_n \, z^{n-p}$.

- La série $\sum_{n\geq 0} \frac{1}{n+1} \, a_n \, z^{n+1} = \sum_{n\geq 1} \frac{1}{n} \, a_{n-1} \, z^n$ obtenue par "intégration terme à terme" de $\sum_{n\geq 0} a_n \, z^n$ a le même rayon de convergence R.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Remarques

Une série entière et ses séries dérivées, tout en ayant le même rayon de convergence, peuvent avoir des comportements différents sur le bord du disque ouvert de convergence.

Proposition (Dérivabilité de la somme d'une série entière réelle)

Soit $\sum_{n\geq 0} a_n t^n$ une série entière réelle, de rayon de convergence R>0, de somme S(t).

Alors
$$S$$
 est dérivable sur $]-R,R[$, et sur tout cet intervalle : $S'(t)=\sum_{n=0}^{\infty}(n+1)a_{n+1}\,t^n=\sum_{n=1}^{\infty}na_n\,t^{n-1}.$

Généralisation

Soit $\sum_{n\geq 0} a_n t^n$ une série entière réelle, de rayon de convergence R>0, de somme S(t).

L'application S est de classe \mathcal{C}^{∞} sur]-R,R[, et sur tout cet intervalle :

$$\forall p \ge 0, S^{(p)}(t) = \sum_{n=0}^{\infty} (n+p)(n+p-1)\cdots(n+1) a_{n+p} t^n = \sum_{n=0}^{\infty} \frac{(n+p)!}{n!} a_{n+p} t^n$$
$$= \sum_{n=p}^{\infty} n(n-1)\cdots(n-p+1) a_n t^{n-p} = \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n t^{n-p}.$$

Remarque

Lesénoncés précédents signifient qu'on peut dériver autant de fois que nécessaire, et terme à terme, la somme d'une série entière, sur tout son intervalle ouvert de convergence, sans avoir à invoquer le théorème de dérivation des séries de fonctions.

Conséquence

Soit $\sum_{n\geq 0} a_n t^n$ une série entière réelle, de rayon de convergence R>0, de somme S(t).

Pour tout entier n, le coefficient a_n est égal à $\frac{1}{n!} S^{(n)}(0)$.

Proposition (Intégrabilité de la somme d'une série entière réelle)

Soit $\sum_{n\geq 0} a_n t^n$ une série entière réelle, de rayon de convergence R>0, de somme S(t).

Une primitive de la fonction S, sur l'intervalle]-R,R[, est la somme de la série $\sum_{n>0} \frac{1}{n+1} a_n t^{n+1}$ obtenue par intégration terme à terme.

Sur tout segment $[\alpha, \beta]$ inclus dans]-R,R[, on peut donc écrire :

$$\int_{\alpha}^{\beta} \sum_{n=0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} \int_{\alpha}^{\beta} a_n t^n dt = \sum_{n=0}^{\infty} \frac{1}{n+1} a_n (\alpha^{n+1} - \beta^{n+1}).$$

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

II Développements en série entière

II.1 Fonctions développables en série entière

Définition

Soit f une application définie sur un ouvert Ω de \mathbb{R} , à valeurs dans \mathbb{K} (\mathbb{R} ou \mathbb{C}).

On dit que f est développable en série entière en un point x_0 de Ω s'il existe une série entière $\sum_{n\geq 0} a_n x^n$ et un réel $\rho > 0$ tels que : $|x-x_0| < \rho \Rightarrow f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$.

Remarques

- On abrège souvent "développable en série entière" en DSE.
- La définition sous-entend que le rayon de convergence R de $\sum_{n\geq 0} a_n \, x^n$ est au moins égal à ρ .

On peut avoir $R > \rho$. D'ailleurs, si ρ convient, tout réel $\rho' < \rho$ convient encore.

- Importance des DSE en 0 :

Le changement $x = x_0 + h$ ramène le problème en 0. C'est ce qu'on supposera dans la suite.

Trois exemples

- L'application
$$x \mapsto \exp x$$
 est DSE en $0 : \forall x \in \mathbb{R}, \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Plus généralement :

$$\forall x_0 \in \mathbb{R}, \forall x \in \mathbb{R}, \exp(x) = \exp(x_0) \exp(x - x_0) = \exp(x_0) \sum_{n=0}^{\infty} \frac{(x - x_0)^n}{n!}.$$

On voit donc que $x \mapsto \exp(x)$ est DSE en tout point de \mathbb{R} .

- L'application
$$x \mapsto f(x) = \frac{1}{1-x}$$
 est DSE en $0 : \forall x \in]-1, 1[, \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$

Plus généralement, soit x_0 un élément de]-1,1[.

Alors, en posant $a_n = \frac{1}{(1-x_0)^{n+1}}$:

$$\frac{1}{1-x} = \frac{1}{1-x_0} \frac{1}{1-\frac{x-x_0}{1-x_0}} = \frac{1}{1-x_0} \sum_{n=0}^{\infty} \left(\frac{x-x_0}{1-x_0}\right)^n = \sum_{n=0}^{\infty} a_n (x-x_0)^n.$$

Le rayon de convergence du développement précédent est $|1-x_0|$.

On voit donc que f est DSE en tout point de] -1,1[.

- Pour tout
$$x$$
 de $]-1,1[, \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$

On voit donc que f est DSE en 0, avec un rayon de convergence égal à 1.

On voit aussi que le domaine de définition de f déborde de] -1,1[.

En dehors de cet intervalle f(x) existe toujours mais ne peut plus être représenté par cette série entière.

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Remarque (Fonctions DSE sur un intervalle)

Si f est DSE en 0, et si le rayon de convergence de ce développement est r, on montre que f est DSE en tout point de]-r,r[(on l'a vu sur les deux premiers exemples).

Cela permet de dire que f est DSE sur l'intervalle]-r,r[.

Ainsi $x \mapsto \exp(x)$ est DSE sur \mathbb{R} , et $x \mapsto \frac{1}{1-x}$ est DSE sur]-1,1[.

II.2 Série de MacLaurin

Définition

Soit Ω un ouvert de IR contenant 0, et f une application de Ω dans IK.

On suppose que f est de classe \mathcal{C}^{∞} à l'origine.

La série entière $\sum_{n \ge 0} \frac{1}{n!} f^{(n)}(0) t^n$ est appelée série de MacLaurin de f.

Proposition (Caractère nécessaire de la série de MacLaurin)

Si f est DSE en 0, alors f est de classe C^{∞} à l'origine.

La série entière égale à f au voisinage de 0 est nécessairement la série de MacLaurin de f.

Autrement dit, il existe un réel r > 0 tel que sur $]-r,r[:f(t) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) t^n.$

Remarque (Caractère non suffisant de la série de MacLaurin)

Même si f est de classe \mathcal{C}^{∞} à l'origine, et même si la série de MacLaurin de f a un rayon de convergence strictement positif, on ne peut pas affirmer que f est DSE en 0.

Le contre-exemple classique est fourni par l'application $f: x \mapsto \exp(-\frac{1}{x^2})$.

Proposition (Une condition suffisante de développement en série entière)

Soit Ω un ouvert de IR contenant 0, et f une application de Ω dans IK.

On suppose que f est de classe \mathcal{C}^{∞} à l'origine.

On suppose d'autre part qu'il existe r > 0 et $M \ge 0$ tels que :

$$\forall x \in]-r, r[, \forall p \in \mathbb{N}, \left| f^{(p)}(x) \right| \le M.$$

Alors f est DSE en 0, avec un rayon de convergence au moins égal à r.

Remarque

Cette condition n'est pas nécessaire, comme le montre l'exemple de $f(x) = \frac{1}{1-x}$

II.3 Opérations sur les applications "DSE"

Proposition (Somme et produit de deux applications DSE)

Soient f et g deux applications DSE en 0.

- Pour tous scalaires α et β , l'application $\alpha f + \beta g$ est DSE en 0. L'application fg est DSE en 0.

©EduKlub S.A. Page 8 Jean-Michel Ferrard www.klubprepa.net

Proposition (Composition d'applications DSE)

 \parallel Soient f et g deux applications DSE en 0. Si f(0) = 0, alors $g \circ f$ est DSE en 0.

Proposition (Inverse d'une applications DSE)

Si f est DSE en 0, et si $f(0) \neq 0$, alors $\frac{1}{f}$ est DSE en 0.

Proposition (Dérivées et primitives d'une application DSE)

Soit f une application DSE en 0 :

- Les dérivées successives de f sont également DSE en 0. Le développement de $f^{(p)}$ s'obient en dérivant p fois celui de f terme à terme. Toute primitive F de f est DSE en 0. Le développement de F s'obtient par intégration terme à terme de celui de f.

II.4 Développements usuels

Fonction Exponentielle

$$-e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (R = +\infty)$$

$$- \forall a > 0, \quad a^x = \sum_{n=0}^{\infty} \frac{\ln^n(a)}{n!} x^n \quad (R = +\infty)$$

$$- \forall z \in \mathbb{C}, \quad e^{xz} = \sum_{n=0}^{\infty} \frac{z^n}{n!} x^n \quad (R = +\infty)$$

Fonctions trigonométriques directes

– En prenant la partie réelle de
$$\exp(ix)$$
 : $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $(R = +\infty)$

– En prenant la partie imaginaire de
$$\exp(ix)$$
: $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ $(R = +\infty)$

– En prenant la partie paire de
$$\exp(x)$$
 : $\operatorname{ch}(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ $(R = +\infty)$

– En prenant la partie impaire de
$$\exp(x)$$
 : $\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ $(R = +\infty)$

©EduKlub S.A. Page 9 Jean-Michel Ferrard www.klubprepa.net

Développement de $(1+x)^{\alpha}$ et cas particuliers

- Ce développement est obtenu en utilisant l'équation différentielle $(1+x)y' = \alpha y$, qui est vérifiée par l'application $x \mapsto (1+x)^{\alpha}$:

$$\forall \alpha \in \mathbb{R}, \quad (1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n \quad (R=1).$$

– Avec le cas particulier
$$\alpha = 1$$
: $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \quad (R=1).$

– Après le changement
$$x \mapsto -x : \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 $(R=1).$

Logarithme népérien

Le développement de ln(1+x) peut être obtenu par primitivation :

$$-\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} \quad (R=1).$$

Le développement précédent est encore valable si x = 1.

– Après le changement
$$x \mapsto -x : \ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 $(R=1).$

Le développement précédent est encore valable si x = -1.

Fonctions trigonométriques réciproques

Les deux développements suivants sont obtenus par primitivation.

$$-\arctan(x) = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1} \quad (R=1).$$

Le développement précédent est encore valable si $x=\pm 1$.

$$-\arcsin(x) = \int_0^x \frac{1}{\sqrt{1-t^2}} dt = \int_0^x (1-t^2)^{-1/2} dt$$
$$= x + \sum_{n=1}^\infty \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \frac{x^{2n+1}}{2n+1} \quad (R=1).$$

Le développement précédent est encore valable si $x=\pm 1$.

Fraction rationnelles

$$- \ \forall a \in \ \mathbb{C}^*, \quad \frac{1}{a-x} = \frac{1}{a} \frac{1}{1-\frac{x}{a}} = \frac{1}{a} \sum_{n=0}^{\infty} \left(\frac{x}{a}\right)^n = \sum_{n=0}^{\infty} \frac{x^n}{a^{n+1}} \quad (R = |a|).$$

Page 10 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

- Après p-1 dérivations du développement précédent par rapport à x:

$$\forall a \in \mathbb{C}^*, \forall p \in \mathbb{N}^*, \quad \frac{1}{(a-x)^p} = \sum_{n=0}^{\infty} C_{n+p-1}^{p-1} \frac{x^n}{a^{n+p}} \quad (R = |a|).$$

- Si f est une fraction rationnelle, n'admettant pas 0 pour pôle, alors f est DSE en 0, le rayon de convergence du développement étant le plus petit module d'un pôle de f.

Page 11 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.