UFV- CCE - DET

EST 105 – 3^a avaliação - 2^0 semestre de 2013 – $18/\mathrm{dez}/13$

Nome:	Matrícula:
Assinatura:	Favor apresentar documento com foto.
• São 5 questões, total de 40 ponte FAVOR CONFERIR ANTES	os, duas tabelas, em páginas numeradas de 1 a 8. S DE INICIAR .
• Interpretar corretamente as quest questionamentos durante a prova	ões é parte da avaliação, portanto não é permitido.!
 É OBRIGATÓRIO APRESENTA reito à revisão. 	AR OS CÁLCULOS organizadamente para ter di-
-	osta correta nas questões de múltipla escolha e não sentar valores incorretos utilizados nos cálculos.
• ATENÇÃO: Sua nota será divul qual turma está matriculado.	lgada no sistema SAPIENS: informe a seguir em
TURMA HORÁRIO SALA	
T1 2 ^a 10-12 5 ^a 08-10 PVB310 Ana 0	Carolina
T2 2 ^a 16-18 5 ^a 14-16 PVB310 Ana C	
T3 2 ^a 08-10 4 ^a 10-12 PVB310 Moyse	es
T4 3 ^a 10-12 6 ^a 08-10 PVB310 Paulo	Cecon
T5 3 ^a 16-18 6 ^a 14-16 PVB310 Pol	icarpo
T7 4 ^a 08-10 6 ^a 10-12 PVB206 Moyse	es
T8 4ª 18:30-20:10 6ª 20:30-22:10	PVB306 Paulo Emiliano
T9 3 ^a 14-16 5 ^a 16-18 PVB310 CHOS	(coordenador)
T10 4ª 14-16 6ª 16-18 PVB107 CHOS	3

T20 - Tutoria Especial - Janeo (monitor II)

FORMULÁRIO

$$\begin{aligned} & \text{Para } k = 1, 2, \dots, n < \infty \qquad E(X^k) = \sum_x x^k P(x) \quad \text{ou} \quad E(X^k) = \int x^k f(x) dx \\ & E(XY) = \sum_x \sum_y xy P(x,y) \quad \text{ou} \quad E(XY) = \int \int xy f(x,y) dx dy \\ & COV(X,Y) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - |E(X)|^2 \\ & X \sim N(\mu,\sigma^2), \quad E(X) = \mu \quad \text{e} \quad V(X) = \sigma^2 \quad Z = \frac{X-\mu}{\sigma}, \quad Z \sim N(0,\ 1) \\ & P(x) = \binom{N}{x} p^x (1-p)^{N-x} \qquad \binom{N}{x} = \frac{N!}{x!(N-x)!} \qquad E(X) = Np \quad V(X) = Np(1-p) \\ & P(x) = \frac{e^{-m} m^x}{x!} \qquad E(X) = V(X) = m \\ & \overline{X} = \frac{\sum_{i=1}^n X_i}{n} \qquad \text{ou} \qquad \overline{X} = \frac{\sum_{i=1}^k f_i X_i}{\sum_{i=1}^k f_i} \\ & SQD_X = \sum_{i=1}^n X_i^2 - \frac{\left(\sum_{i=1}^n X_i\right)^2}{n} \qquad \text{ou} \quad SQD_X = \sum_{i=1}^k f_i X_i^2 - \frac{\left(\sum_{i=1}^k f_i X_i\right)^2}{\sum_{i=1}^k f_i} \\ & S_X^2 = \frac{SQD_X}{n-1} \quad \text{ou} \quad S_X^2 = \frac{SQD_X}{\sum_{i=1}^k f_i - 1} \\ & X^2 = \sum_{i=1}^k \sum_{j=1}^k \frac{(FO_{ij} - FE_{ij})^2}{FE_{ij}} \qquad \text{ou} \quad \chi^2 = \sum_{i=1}^k \frac{(FO_i - FE_i)^2}{FE_i} \\ & Z = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \qquad t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{s^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \end{aligned}$$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	$0,\!1064$	0,1103	$0,\!1141$
0,3	0,1179	$0,\!1217$	$0,\!1255$	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	$0,\!1517$
0,4	0,1554	$0,\!1591$	0,1628	0,1664	$0,\!1700$	$0,\!1736$	0,1772	$0,\!1808$	$0,\!1844$	$0,\!1879$
0,5	0,1915	0,1950	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	$0,\!2703$	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	$0,\!2967$	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	$0,\!3289$	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	$0,\!3531$	0,3554	0,3577	$0,\!3599$	0,3621
1,1	0,3643	0,3665	0,3686	$0,\!3708$	$0,\!3729$	$0,\!3749$	0,3770	$0,\!3790$	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	$0,\!4115$	0,4131	$0,\!4147$	$0,\!4162$	0,4177
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	0,4319
1,5	0,4332	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	$0,\!4394$	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	$0,\!4545$
1,7	0,4554	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	0,4608	$0,\!4616$	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	$0,\!4678$	$0,\!4686$	0,4693	0,4699	$0,\!4706$
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$	$0,\!4750$	$0,\!4756$	$0,\!4761$	$0,\!4767$
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	$0,\!4798$	$0,\!4803$	$0,\!4808$	$0,\!4812$	0,4817
2,1	0,4821	$0,\!4826$	$0,\!4830$	0,4834	0,4838	$0,\!4842$	$0,\!4846$	$0,\!4850$	0,4854	0,4857
2,2	0,4861	$0,\!4864$	$0,\!4868$	0,4871	0,4875	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	$0,\!4960$	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	$0,\!4970$	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	$0,\!4978$	0,4979	0,4979	$0,\!4980$	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	$0,\!4984$	0,4985	0,4985	$0,\!4986$	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	$0,\!4989$	0,4989	0,4989	0,4990	0,4990

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores χ^2 na distribuição de qui-quadrado com n graus de liberdade tais que $P\left(\chi_n^2 \geq \chi^2\right) = p \times 100\%$.

n	p=99%	98%	$97,\!5\%$	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	$2,\!5\%$	2%	1%	$0,\!2\%$	$0,\!1\%$	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	5,024	5,412	6,635	$9,\!550$	10,827	1
2	0,020	0,040	0,051	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,378	7,824	9,210	12,429	$13,\!815$	2
3	0,115	$0,\!185$	0,216	0,352	0,584	1,005	1,424	2,366	3,665	4,642	6,251	7,815	8,311	9,348	9,837	11,345	14,796	16,266	3
4	0,297	0,429	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	10,026	11,143	11,668	13,277	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	$11,\!644$	$12,\!832$	13,388	15,086	18,907	20,515	5
6	0,872	1,134	1,237	1,635	2,204	3,070	3,828	5,348	7,231	$8,\!558$	10,645	$12,\!592$	13,198	14,449	15,033	$16,\!812$	20,791	22,457	6
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	18,475	22,601	24,322	7
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	$15,\!507$	16,171	$17,\!534$	18,168	20,090	$24,\!352$	26,125	8
9	2,088	2,532	2,700	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	21,666	26,056	$27,\!877$	9
10	2,558	3,059	3,247	3,940	4,865	$6,\!179$	7,267	9,342	11,781	13,442	15,987	$18,\!307$	19,021	20,483	21,161	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	$5,\!578$	6,989	8,148	10,341	12,899	14,631	17,275	19,675	20,412	21,920	22,618	24,725	29,354	$31,\!264$	11
12	3,571	$4,\!178$	4,404	5,226	6,304	7,807	9,034	11,340	14,011	$15,\!812$	18,549	21,026	21,785	23,337	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	$22,\!362$	23,142	24,736	25,472	27,688	$32,\!535$	$34,\!528$	13
14	4,660	$5,\!368$	5,629	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	$23,\!685$	$24,\!485$	26,119	26,873	29,141	34,091	36,123	14
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	$25,\!816$	$27,\!488$	28,259	$30,\!578$	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	$11,\!152$	12,624	15,338	18,418	20,465	$23,\!542$	$26,\!296$	27,136	$28,\!845$	29,633	32,000	37,146	39,252	16
17	6,408	7,255	7,564	8,672	10,085	12,002	13,531	16,338	19,511	21,615	24,769	$27,\!587$	28,445	30,191	30,995	33,409	38,648	40,790	17
18	7,015	7,906	8,231	9,390	$10,\!865$	$12,\!857$	14,440	17,338	$20,\!601$	22,760	25,989	$28,\!869$	29,745	$31,\!526$	32,346	$34,\!805$	40,136	42,312	18
19	7,633	$8,\!567$	8,906	10,117	$11,\!651$	13,716	15,352	18,338	$21,\!689$	23,900	27,204	30,144	31,037	$32,\!852$	$33,\!687$	36,191	41,610	$43,\!820$	19
20	8,260	9,237	9,591	10,851	$12,\!443$	$14,\!578$	16,266	19,337	22,775	25,038	$28,\!412$	$31,\!410$	32,321	34,170	35,020	$37,\!566$	43,072	$45,\!315$	20
21	8,897	9,915	10,283	11,591	13,240	15,445	17,182	20,337	$23,\!858$	26,171	29,615	$32,\!671$	33,597	$35,\!479$	36,343	38,932	44,522	46,797	21
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	34,867	36,781	$37,\!659$	40,289	45,962	48,268	22
23	10,196	11,293	11,688	13,091	$14,\!848$	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	38,076	38,968	41,638	47,391	49,728	23
24	10,856	11,992	12,401	13,848	$15,\!659$	18,062	19,943	23,337	27,096	29,553	33,196	36,415	$37,\!389$	39,364	$40,\!270$	42,980	$48,\!812$	$51,\!179$	24
25	11,524	12,697	13,120	14,611	$16,\!473$	18,940	20,867	24,337	28,172	30,675	$34,\!382$	37,652	38,642	40,646	$41,\!566$	44,314	50,223	$52,\!620$	25
26	12,198	13,409	13,844	15,379	$17,\!292$	19,820	21,792	25,336	29,246	31,795	$35,\!563$	$38,\!885$	39,889	41,923	42,856	45,642	51,627	54,052	26
27	12,879	14,125	$14,\!573$	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	$55,\!476$	27
28	13,565	$14,\!847$	$15,\!308$	16,928	18,939	$21,\!588$	23,647	27,336	$31,\!319$	34,027	37,916	$41,\!337$	$42,\!370$	44,461	$45,\!419$	48,278	$54,\!411$	56,893	28
29	14,256	$15,\!574$	16,047	17,708	19,768	$22,\!475$	24,577	28,336	$32,\!461$	35,139	39,087	$42,\!557$	43,604	45,722	46,693	49,588	55,792	$58,\!302$	29
30	14,953	16,306	16,791	18,493	$20,\!599$	23,364	$25,\!508$	29,336	$33,\!530$	36,250	$40,\!256$	43,773	44,834	46,979	47,962	50,892	57,167	59,703	30
n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	$2,\!5\%$	2%	1%	0,2%	0,1%	n

Adaptada de Bussab, W. O. e Morettin, P. A. Estatística Básica - Métodos Quantitativos, Editora Atual.

1.(8 pontos) A Universidade Federal de Viçosa realiza anualmente o processo de Autoavaliação Institucional, coordenado pela Comissão Própria de Avaliação (CPA) visando, dentre outras coisas: a melhoria da qualidade da educação superior e o aumento de sua eficácia institucional. Um dos quesitos avaliados é a Contribuição da UFV para a melhoria da qualidade de vida da população. Realizado um estudo com a comunidade acadêmica no ciclo 2009/2010 obteve-se os seguintes resultados:

	Opi		
Segmento	Melhorou	Não alterou	Total
Estudante Graduação	832 (811,81)	616 (636,19)	1448
Estudante Pós-graduação	239 (254,53)	215 (199,47)	454
Professor	399 (403,66)	321 (316,34)	720
Total	1470	1152	2622

Fonte: http://www.cpa.ufv.br/doc/Relatorio_CPA_Completo.pdf

Pede-se: Realize um teste de qui-quadrado com os dados obtidos na tabela acima, para decidir se a opinião e o segmento são independentes. Use $\alpha = 0.05$.

a.(2%) Hipóteses estatísticas.

 $\begin{cases} H_0: & \text{Opinião e Segmento são independentes} \\ H_1: & \text{Opinião e Segmento não são independentes} \end{cases}$

b.(4%) Valor calculado.

$$\chi_{\text{cal}}^2 = \frac{(832 - 811, 81)^2}{811, 81} + \frac{(616 - 636, 19)^2}{636, 19} + \dots + \frac{(321 - 316, 34)^2}{316, 34} \cong 3, 42$$

com 2 graus de liberdade

c.(2%) Valor tabelado= 5,991 (complete) e decisão do teste (assinale uma opção).

- (X) Não rejeitar H_0 e concluir que são independentes.
-) Rejeitar H₀ e concluir que são independentes.
-) Não rejeitar H₀ e concluir que não são independentes.
-) Rejeitar H_0 e concluir que não são independentes.

2.(8 pontos) Uma certa doença pode ser curada por meio de um procedimento cirúrgico em 80% dos casos. Dentre os que tem essa doença, serão sorteados aleatoriamente 15 pacientes para serem submetidos a este procedimento cirúrgico. Pede-se: utilize o modelo binomial para calcular a probabilidade de pelo menos dois **não** serem curados.

Solução 2: Seja X: "Número de indivíduos não curados." $X \sim \text{Binomial}(N; p)$ sendo, p = P(não curar) = 0, 20 e N = 5. $P(\text{Pelo menos 2 não curados}) = <math>P(X \ge 2)$

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$$

 $\cong 1 - 0,0352 - 0,1319$
 $= 0,8329$

3.(8 pontos) Um fio de cobre apresenta em média 0,05 defeitos de fabricação por metro linear. Considere que este fio seja comercializado em rolos de 10 metros. Pede-se: utilize o modelo Poisson para calcular a percentagem esperada de rolos com no mínimo 3 defeitos.

Seja X: "Número de defeitos em 10 metros". $X \sim \text{Poisson}(m)$, sendo $m = 0.05 \times 10 = 0.5$. Solução 1: a.(X) ≈ 0.0144 b.() ≈ 0.0126 $P(X \ge 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$ $\approx 1 - 0.6065 - 0.3033 - 0.0758$ c.(≈ 0.9856 ≈ 0.0144 d.(≈ 0.9874 Solução 2: e.() n.d.r.a. $P(X \ge 3) = 1 - e^{-m} \left(\frac{m^0}{0!} + \frac{m^1}{1!} + \frac{m^2}{2!} \right) \cong 0,0144$

4.(8 pontos) Um fabricante informa que, com o processo atual de fabricação, seus cabos de aço inoxidável apresentam uma tensão média de ruptura igual $\mu=500$ quilogramas (kg), com um desvio padrão $\sigma=20$ kg. Para avaliar se uma nova técnica de fabricação é melhor ou pior no sentido de aumentar ou diminuir a tensão média de ruptura dos cabos, avaliou-se uma amostra aleatória de n=16 cabos produzidos com esta nova técnica de fabricação e obteve-se uma tensão média de ruptura igual $\overline{X}=509$ kg. Pede-se: o que deve ser concluído a 5% de significância.

a.(2%) Hipóteses estatísticas.

$$\begin{cases} H_0: & \mu = 500 \\ H_1: & \mu \neq 500 \end{cases}$$

b.(2%) Valor calculado.

$$Z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{509 - 500}{\frac{20}{\sqrt{16}}} = 1,80$$

c.(2%) Valor tabelado.

$$Z_{5\%} = 1,96$$

d.(2%) Decisão do teste (assinale uma opção).

- (X) Não rejeitar H_0 e concluir que a nova técnica é melhor.
- () Rejeitar H_0 e concluir que a nova técnica é melhor.
- (X) Não rejeitar H_0 e concluir que a nova técnica é pior.
- () Rejeitar H_0 e concluir que a nova técnica é pior.

As duas respostas são consideradas corretas pois, a hipótese H_0 não deve ser rejeitada, entretanto não pode-se concluir acerca de qual é melhor (ou pior).

A resposta correta seria:

(X) Não rejeitar H_0 e concluir que a nova técnica é igual à atual.

5.(8 pontos) Sejam X_1 , X_2 e X_3 variáveis aleatórias independentes e normalmente distribuídas com média $\mu=10$ e desvio padrão $\sigma=3$. Seja $Y=2(X_1-X_2)+X_3$. Calcule a seguinte probabilidade: $P(Y\geq 12)$.

a.()
$$\approx 0,3520$$

b.(
$$X$$
) $\approx 0,4129$

c.()
$$\approx 0,0871$$

d.()
$$\approx 0,2514$$

Solução: Temos que $X_i \sim N(\mu; \sigma^2 = 9)$ e

$$E(Y) = 2[E(X_1) - E(X_2)] + E(X_3)$$

= $2(10 - 10) + 10 = 10$

$$V(Y) = 4[V(X_1) + V(X_2)] + V(X_3),$$
 (*)
= 4(9+9) + 9 = 81

(*) Como as variáveis aleatórias são independentes temos que

$$Cov(X_i, X_j) = 0, \quad \forall i \neq j = 1, 2, 3.$$

Além disso pela propriedade de variância temos:

$$V(X - Y) = V(X) + V(Y).$$

Portanto

$$P(Y \ge 12) = P\left(Z \ge \frac{12 - 10}{\sqrt{81}}\right) \cong P(Z \ge 0, 22)$$

 $\cong 0, 5 - 0, 0871 = 0, 4129$