清华大学本科生考试试题专用纸(B)

考试课程

2015-2016 线性代数 - II 2016 年 4 月 28 日

- 一 填空题 (每空 4 分):
 - 1. 设 n 阶方阵 A 有 n 个特征值分别为 $2,3,4,\cdots,n,n+1$, 且方阵 B 与 A 相似,则 |B - E| =_

答案: n!. 由相似矩阵有相同的特征值, 故 B 的特征值为 $2,3,4,\cdots,n,n+$ 1, 从而 B-E 的特征值为 $1,2,3,\dots,n$. 故 $|B-E|=1\cdot 2\cdot 3 \cdots n=n!$.

2. 给定矩阵 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$,则 A 的奇异值分解为 _______.

答案: $A = \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$

3. 已知 $A = \begin{pmatrix} 1 & 2 & -1 \\ a & 5 & 0 \\ -1 & 0 & b \end{pmatrix}$ 是正定矩阵,则 a, b 满足的条件是 ______.

答案: a = 2, b > 5.

由 A 是正定矩阵, 故 A 对称, a=2;

A 的各阶顺序主子式大于 0, 故 $\begin{vmatrix} 1 & 2 & -1 \\ 2 & 5 & 0 \\ -1 & 0 & b \end{vmatrix} > 0$, 即 b > 5

4. 设 3×3 矩阵 A 有特征值 0,-1,1 及相应特征向量 x_1,x_2,x_3 , 则 A 的 列空间 C(A) =_________,对向量 u(0) = (1,1,1),方程 $\frac{du}{dt} = Au$ 的 解为 _____

答案: $C(A) = \{kx_2 + lx_3 | k, l$ 为任意实数}.

 $u(t) = c_1 x_1 + c_2 e^{-t} x_2 + c_3 e^{t} x_3, \quad \sharp \psi \quad \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix}.$

5. 已知矩阵 $H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -3 & 1 \end{pmatrix}$, 则 $H^{-1} =$ _____.
 答案: $H^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{3} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{6} & -\frac{3}{10} \\ 1 & 1 & 1 & 1 \end{pmatrix}$. 注意 H 的列向量相互正交.

6. 平面中所有满足 $5x^2 + 6xy + 5y^2 = 1$ 的所有点的集合构成的图形是

答案: 长轴方向为 $\frac{1}{\sqrt{2}}(1,1)$, 长半轴长为 $2\sqrt{2}$, 短轴方向为 $\frac{1}{\sqrt{2}}(-1,1)$, 短半轴长为 √2 的椭圆

7. 设矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

是 _____.

答案: C, D; D.

8. 矩阵
$$A = \begin{pmatrix} 3 & 0 & 2 & -1 \\ 0 & 3 & -2 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 的 Jordan 标准形是 ______.

答案:
$$J = \begin{pmatrix} 3 & 1 & & \\ & 3 & & \\ & & 3 & 1 \\ & & & 3 \end{pmatrix}$$
.

二 (15 分) 设矩阵 A 有如下奇异值分解 $A = U\Sigma V^T$, 其中 U,V 为正交阵:

$$A = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \\ v_4^T \end{pmatrix}.$$

(1) 写出方程组 $Ax = u_1$ 的通解; (2) 求方程组长度最短的解,并证明.

解: (1) 方程组通解为 $x = v_1 + k_3v_3 + k_4v_4$, 其中 k_3, k_4 为任意常数.

(2) 长度最短的解为 $x^+ = A^+b = v_1$ 或直接由 v_1, v_3, v_4 相互正交得 $x = v_1$ 是长度最短的解.

$$\Xi$$
 (15 分) 求解初值问题 $\frac{du}{dt} = Au, u(0) = \begin{pmatrix} 2\\1\\-\frac{2}{3} \end{pmatrix}$, 其中 $A = \begin{pmatrix} 1 & 1 & 1\\1 & 1 & 2\\0 & 0 & 0 \end{pmatrix}$.

解:
$$u(t) = e^{At}u(0) = \begin{pmatrix} e^{2t} + \frac{t}{3} + 1 \\ e^{2t} - \frac{t}{3} \\ -\frac{2}{3} \end{pmatrix}$$
.

四 $(12 \ \beta)$ 设 A,B 均为 n 阶正定矩阵,证明:AB 的特征值为正数.

证明: A 为正定矩阵, 故存在可逆矩阵 P 使得 $A = PP^t$.

$$AB = PP^TB = PP^TBPP^{-1},$$

故 AB 与对陈矩阵 P^TBP 相似,二者有相同的特征值。而 P^TBP 合同于正定矩阵 B,也是正定矩阵,其特征值都是正数,因此 AB 的特征值是正数。

证法二:设 λ 为 AB 的任意特征值, $x \neq 0$ 是 AB 的属于特征值 λ 的特征向量,即有 $ABx = \lambda x$.于是

$$x^T (B^T A B) x = (B x)^T A B x = \lambda x^T B x.$$

由于 B 正定,故 B 可逆,则对称矩阵 B^TAB 合同于正定阵 A,也是正定阵,从而上式左端 $x^T(B^TAB)x > 0$. 而由 B 正定知上式右端中 $x^TBx > 0$,所以 $\lambda > 0$,得证。

五(15 分)设 $V = \{ \text{次数小于等于4的多项式集合} \}$,对任意 $f \in V$, $\sigma: V \to V$ 定义为 $\sigma(f)(x) = (x+1)\frac{df(x)}{dx}$.(1)证明 σ 是线性变换;(2)求 σ 在 V 的一组基 $\{1, x, x^2, x^3, x^4\}$ 下的矩阵表示.

(1) 证明: 由于

$$\sigma(f_1 + f_2)(x) = (x+1)\frac{d(f_1 + f_2)(x)}{dx} = (x+1)\frac{df_1(x)}{dx} + (x+1)\frac{df_2(x)}{dx}
= \sigma(f_1)(x) + \sigma(f_2)(x)
\sigma(cf)(x) = (x+1)\frac{d(cf)(x)}{dx} = c(x+1)\frac{df(x)}{dx} = c\sigma(f)(x)$$

对任意 f_1 , f_2 , $f \in V$ 和 $c \in \mathbb{R}$ 成立, 故 $\sigma: V \to V$ 是线性变换.

(2)
$$\mathbf{M}$$
:
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} .$$

六 (7 分) 设
$$A = \begin{pmatrix} k & 1 \\ 1 & k & 1 \\ & 1 & k & 1 \\ & & \ddots & \ddots & \ddots \\ & & & 1 & k & 1 \\ & & & & 1 & k \end{pmatrix}$$
 , 其中 $k \in \mathbb{R}$, 又 λ_{min}

和 λ_{max} 分别表示 A 的最小和最大特征值. 试证: $\lambda_{min} \leq k-1$, 且 $k+1 \leq \lambda_{max}$.

证明: 取
$$x = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \end{pmatrix}^T$$
 或 $x = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \end{pmatrix}^T$,用
$$\lambda_{min} \leq \frac{x^T A x}{x^T x} \leq \lambda_{max}$$

得证.