1.3 函数概念

一、函数的概念

定义: 设 D, $M \subset R$, 若存在对应法则 f, 使得对任意 $x \in D$, 都存在唯一 $y \in M$ 与之对应,则称 f 是定义在 D上的函数,记作

$$f: D \to M,$$
 $x \mapsto y.$

D 称为 f 的定义域;

 $f(D)=\{y \mid y=f(x), x \in D\}$ 称为f 的值域。

函数的两要素: 定义域与对应法则.

约定: 定义域是自变量所能取的使算式有意义 的一切实数值。

如:
$$y = \sqrt{1-x^2}$$
, $D:[-1,1]$; $y = \frac{1}{\sqrt{1-x^2}}$, $D:(-1,1)$.

◆ $G = \{(x,y) | y = f(x), x \in D\}$ 称为 f 的图象.

二、几个特殊的函数

1、常值函数 y = c.

2、绝对值函数
$$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$
.

3、符号函数
$$y = \operatorname{sgn} x = \begin{cases} 1, & \exists x > 0 \\ 0, & \exists x = 0. \\ -1, & \exists x < 0 \end{cases}$$

$$x = \operatorname{sgn} x \cdot |x|$$

4、取整函数 y = [x], 其中[x]表示不超过 x 的最大整数。

阶梯曲线

、非负小数部分函数 y = x - [x].

6、狄利克雷函数
$$y = D(x) = \begin{cases} 1, x \in Q \\ 0, x \notin Q \end{cases}$$
.

狄利克雷(Dirichlet, P.G.L. 1805—1859, 德国)

7、黎曼函数

$$R(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q} \left(\frac{p}{q} \right) \text{既约真分数} \right) \\ 0, & x = 0, 1 \text{ 或 } x \in (0,1) \setminus Q \end{cases}$$

黎曼(Riemann,B. 1826—1866,德国)

8、取最值函数 $y = \max\{f(x), g(x)\}$

8、取最值函数 $y = \min\{f(x), g(x)\}$

9、分段函数

如:
$$f(x) = \begin{cases} 2x-1, & x>0\\ x^2-1, & x\leq 0 \end{cases}$$
.

三、函数的四则运算

设函数 f的定义域为 D_f ,函数 g的定义域为 D_g .

$$1. f \pm g$$
 的定义域为 $D_{f \pm g} = D_f \cap D_g$.

对任意 $x \in D_{f \pm g}$:

$$(f \pm g)(x) = f(x) \pm g(x).$$

 $2. f \cdot g$ 的定义域为 $D_{f \cdot g} = D_f \cap D_g$.

对任意 $x \in D_{f \cdot g}$: $(f \cdot g)(x) = f(x) \cdot g(x)$.

3.
$$\frac{f}{g}$$
的定义域为 $D_{\frac{f}{g}} = D_f \cap D^*$, 其中
$$D^* = \left\{ x \mid x \in D_g \perp g(x) \neq 0 \right\}.$$

对任意
$$x \in D_{\frac{f}{g}}$$
: $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$.

四、复合函数

定义: 设
$$\forall x \in D \mapsto u = g(x) \in g(D)$$

$$\forall u \in D_1 \mapsto y = f(u) \in Y = f(D_1)$$

则当g(D) $\subset D_1$ 时,由上述映射链可定义由D到Y 的复合映射,记作 y = f[g(x)],或 $f \circ g(x)$, $x \in D$.

五、反函数

定义: 设函数 $y = f(x), x \in D$ 满足:对任意 $y \in f(D),$ 存在唯一 $x \in D$,使得 f(x) = y,记此对应法则为 f^{-1} ,即 $f^{-1}: f(D) \to D$,

称 f^{-1} 为函数 f 的反函数.

注: 若f有反函数,则f为D到f(D)的单满射。

注: 习惯上,记 f 的反函数为 $y = f^{-1}(x)$.

反三角函数

三角函数包含 $(0,\pi/2)$ 的最大单调区间的反函数.

单调区间: $[-\pi/2,\pi/2]$

 $y = \arcsin x$ 定义域 [-1,1], 值域 [- $\pi/2,\pi/2$].

单调区间: [0,π]

 $y = \arccos x$ 定义域 [-1,1], 值域 [0, π].

单调区间: $(-\pi/2,\pi/2)$

 $y = \arctan x$ 定义域 $(-\infty, +\infty)$, 值域 $(-\pi/2, \pi/2)$.

 $y = \cot x$

单调区间: $(0,\pi)$

 $y = \operatorname{arc} \cot x$ 定义域 $(-\infty, +\infty)$, 值域 $(0,\pi)$.

思考:下列等式是否成立?

(1) $tan(arctan x) = x, x \in R$;

(2)
$$\arctan(\tan x) = x, x \neq k\pi + \frac{\pi}{2}(k \in \mathbb{Z}).$$

作 业

习题1-3: 4(3)(4)、6、12