Proofs from Group Theory

December 8, 2009

Let G be a group such that $a, b \in G$. Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$.

Proof [We need to show that $(a*b)*(b^{-1}*a^{-1}) = e$.] By the associative property of groups, $(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1}$. By definition of identity element, we obtain $a*a^{-1}$. Again, by property of identity, we obtain e as desired.

Cancellation Law: Let G be a group such that $a, b, c \in G$. If a*c = b*c, then a = b.

Proof Suppose a*c=b*c. Since $c \in G$, it follows that an element d exists such that c*d=e. Now, if we multiply both sides by d on the right, we obtain (a*c)*d=(b*c)*d. By associativity, we obtain a*(c*d)=b*(c*d). Since c*d=e, we obtain a*e=b*e, and by definition of identity element, we obtain a=b as desired. \blacksquare

Let G be a group. Then G has a unique identity element e.

Proof Suppose that there exist two identity elements, d and e. Let $a \in G$. Since d is an identity element, then a * d = a = d * a. Likewise, a * e = a = e * a. Now, this implies that d = d * e = e. Hence, e = d, proving that there can only be one identity element. \blacksquare

Let G be a group, and let $a \in G$. Then a has a unique inverse.

Proof Suppose that there exist two elements, b and c, which serve as inverses to a. Since b is an inverse to a, then a * b = e = b * a. Likewise, a * c = e = c * a. Now, since e = b * a and e = c * a, it follows that b * a = c * a. By the Cancellation Law, it follows that b = c. Thus, there can only be one inverse of a.

Let G be a group. If $g \in G$ and $g^2 = g$, then g = e.

Proof Suppose that $g^2 = e$. By laws of exponents, this implies that g * g = g. Now, if we multiply both sides by g^{-1} on the left, we obtain $g^{-1} * g * g = g^{-1} * g$. By associativity, we obtain $(g^{-1} * g) * g = g^{-1} * g$. By the identity, we obtain e * g = e, implying that g = e as desired.

Let G be a group. If $x \in G$ and $x^2 = e$, then G is abelian.

Proof Let $a, b \in G$. Then we may assume that $a^2 = e$ and $b^2 = e$. Now, $(a * b)^2 = (a * b) * (a * b)$. By associativity, we obtain a * b * a * b. The equality a * b * a * b = e can be implied by our assumption. If we multiply by a on the left and b on the right on both sides of the equality, we obtain $a * a * b * a * b * b = a * e * b \iff a^2 * b * a * b^2 = ab \iff b * a = a * b$. Hence, G is abelian.

Prove that any cyclic group is abelian.

Proof Let G be a cyclic group with a generator c. Let $a, b \in G$. Then $a = c^j$ and $b = c^k$ for some integers j and k. Hence, $a * b = c^j * c^k$. By laws of exponents and commutativity of addition, we obtain $c^{j+k} = c^{k+j} = c^k * c^j = b * a$. This implies that a * b = b * a, so G is abelian.

Let G be a group such that a*b*c=e for all $a,b,c\in G$. Prove that b*c*a=e as well.

Proof Suppose that a*b*c=e. If we multiply by a^{-1} on the left and a on the right, then we obtain $a^{-1}*(a*b*c)*a=a^{-1}*e*a$. By associativity and definition of the identity element, we obtain $(a^{-1}*a)*b*c*a=e \iff e*b*c*a=e \iff b*c*a=e$.

Let G be a group such that $a \in G$. Define a function $f_a : G \to G$ where $f_a(x) = a * x$. Prove that f_a is bijective.

Proof

Let $x, y \in G$. [We need to show that $f_a(x) = f_a(y)$ implies the equality x = y.] Suppose $f_a(x) = f_a(y)$. It follows that a * x = a * y. By the Cancellation Law, we can cancel the a to obtain x = y, thus showing that f_a is one-to-one.

Now, let $z \in G$. [We need to show that $f_a(x) = z$ for some $x \in G$.] Suppose $f_a(x) = z$ for some $x \in G$. It follows that a*x = z. By multiplying both sides by a^{-1} , we obtain $x = z*a^{-1}$. Now, since $a \in G$, then $a^{-1} \in G$ by the existence of an inverse. Also, by closure, since $z \in G$ and $a^{-1} \in G$, then $z*a^{-1} \in G$. Hence, we have found an $x \in G$ such that $f_a(x) = z$, and this proves that f_a is onto.

Therefore, we have proven that f_a is bijective as desired.

Let G be a group and let H and K be subgroups of G. Prove that $H \cap K$ is also a subgroup.

Proof Since H and K are subgroups, then $e \in H$ and $e \in K$, implying that $e \in H \cap K$. Now, let $a, b \in H \cap K$. This implies that $a, b \in H$, and since H is a subgroup, then $a * b \in H$ and $a^{-1} \in H$. Likewise, $a, b \in K$, and since K is a subgroup, then $a * b \in K$ and $a^{-1} \in K$. It follows then that $a * b \in H \cap K$ and $a^{-1} \in H \cap K$. Hence, $H \cap K$ is a subgroup of G.

Theorem: Let G be a group and let a and b be elements of the group. If G is abelian, then $(a*b)^n = a^n*b^n$ for any integer $n \ge 2$.

Proof (by induction):

Base Step: Let n=2. Then $(a*b)^2=(a*b)*(a*b)=a*b*a*b$. Since G is abelian, we obtain $a*b*b*a=a*b^2*a=a*a*b^2=a^2*b^2$. Since P_2 is true, then we may assume that P_n is true. Hence, we may form the inductive hypothesis that $(a*b)^n=a^n*b^n$ for any integer $n\geq 2$.

Induction Step: [We must prove that $(a * b)^{n+1} = a^{n+1} * b^{n+1}$.]

Now we will substitute n+1 for n. By commutativity, associativity, and the laws of exponents, $(a*b)^{n+1}=(a*b)^n*(a*b)=(a*b)^n*b*a$. By our inductive hypothesis, we obtain $a^n*b^n*b*a=a^n*b^{n+1}*a=a*a^n*b^{n+1}=a^{n+1}*b^{n+1}$, thus proving the P_{n+1} assertion true. By the Principle of Mathematical Induction, it follows that P_n is true, so we have shown that $(a*b)^n=a^n*b^n$ if G is abelian. \blacksquare

Let G be a group. The set $Z(G) = \{x \in G | xg = gx \text{ for all } g \in G\}$ of all elements that commute with every other element of G is called the *center* of G. Prove that Z(G) is a subgroup of G.

Proof The identity element is a trivial member of the subgroup, so Z(G) is non-empty. Now we must show that Z(G) is closed and has an inverse. To see that the group is closed, let $z_1, z_2 \in Z(G)$ and $g \in G$. [We must prove that $(z_1z_2)x = x(z_1z_2)$.] By associativity and the definition of center, $(z_1z_2)x = z_1(z_2x) = z_1(z_2x)$

 $z_1(xz_2)=(z_1x)z_2=(xz_1)z_2=x(z_1z_2)$, so $z_1z_2\in Z(G)$. Now, $z_1x=xz_1$ implies that $z_1^{-1}x=xz_1^{-1}$, so $z_1^{-1}\in Z(G)$. So we have shown that Z(G) has an identity element, is closed under binary operations, and has the inverse element. Hence, Z(G) is a subgroup of G.

Let G be a group. The set $C(a) = \{x \in G | xa = ax\}$ of all elements that commute with a is called the *centralizer* of a. Prove that C(a) is a subgroup of G.

Proof The subgroup is not empty, as $a \in G$. The identity element is a trivial member of the subgroup, so all we really have to show is that C(a) is closed and has an inverse. To see that the group is closed, let $x, y \in G$ so that xa = ax and ya = ay. [We must prove that (xy)a = a(xy).] By associativity and the definition of centralizer, (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), so $xy \in C(a)$. Now, xa = ax implies that $x^{-1}a = ax^{-1}$, so $x^{-1} \in C(a)$. So we have shown that C(a) has an identity element, is closed under binary operations, and has the inverse element. Hence, C(a) is a subgroup of G.

Let G be an abelian group, and let $H = \{a \in G | a^5 = e\}$. Prove that H is a subgroup of G.

Proof The identity element is trivially a member of H since $e^5 = e$, making H a nonempty set. To show closure, let $a, b \in H$ so that $a^5 = e$ and $b^5 = e$. Since G is abelian, we have that $(a*b)^5 = a^5*b^5 = e*e = e$, so $a*b \in H$. The inverse element is in H since $(a^{-1})^5 = a^{-5} = (a^5)^{-1} = e^{-1} = e$. So we have shown that H has an identity element, is closed under binary operations, and has the inverse element. Hence, H is a subgroup of G.

Theorem: Every subgroup of a cyclic group is cyclic.

Proof Let G be a cyclic group with generator a and let H be a subgroup of G. Let m be the smallest positive integer so that $a^m \in H$. Since G is cyclic, then every element of H has the form a^k for some integer k. By the quotient-remainder theorem, k = mq + r for some $q, r \in \mathbb{Z}$ such that $0 \le r < m$. It follows that $a^k = a^{mq+r} = (a^m)^q a^r$. Now, we can manipulate the equality to obtain $a^r = (a^m)^{-q} a^k$. Since a^m and a^k are in H, then $a^r \in H$. Since r < m, then r = 0 since a^m is the smallest positive power of a in H. Therefore, k = mq and every element of H is of the form $(a^m)^q$, implying that $H = \langle a^m \rangle$ and H is cyclic.

Let G and H be two abelian groups. Prove that $G \times H$ is abelian.

Proof Let (g_1, h_1) and (g_2, h_2) be two elements of the group $G \times H$. Then $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$. Since G and H are abelian, then we obtain $(g_2g_1, h_2h_1) = (g_2, h_2)(g_1, h_1)$. Hence, $(g_1, h_1)(g_2, h_2) = (g_2, h_2)(g_1, h_1)$, proving that $G \times H$ is abelian.

A group K is considered *idempotent* if $a^2 = e$ for all $a \in K$. Prove that if G and H are idempotent, then $G \times H$ is also idempotent.

Proof Let $g \in G$ and $h \in H$ such that $g^2 = e$ and $h^2 = e$. Also, let $(g,h) \in G \times H$. Then $(g,h)^2 = (g,h)(g,h) = (g^2,h^2) = (e,e)$. We have shown that $(g^2,h^2) = (e,e)$, proving that $G \times H$ is idempotent.

Lagrange's Theorem: If G is a finite group and H is a subgroup of G, then |G| is divisible by |H|.

Let H and K be subgroups of a group G such that |H| = 5 and |K| = 12. Prove that $H \cap K = \{e\}$, where e is the identity element.

Proof As shown above, $H \cap K$ is a subgroup of G. By inclusion of intersection, we know that $H \cap K \subseteq H$ and $H \cap K \subseteq K$. By Lagrange's Theorem, it follows that |H| and |K| are both divisible by $|H \cap K|$. By

substitution, we can say that 5 and 12 are both divisible by $|H \cap K|$. Since 5 and 12 are relatively prime, then $|H \cap K| = 1$, implying that $H \cap K$ only has the identity element e.

Theorem: Let G be a finite group. If $a \in G$, then o(a) divides |G|.

Proof Let K be a subgroup of G such that $K = \langle a \rangle$. By a previous theorem, |K| = o(a). By Lagrange's Theorem, |K| divides |G|, implying that o(a) divides |G|.

Theorem: Any group of prime order is cyclic.

Proof Let G be a group of prime order p, where p is a prime number. Let a be a non-identity element of G. This implies that the cyclic subgroup $\langle a \rangle$ has an order greater than 1. By Lagrange's Theorem, $|\langle a \rangle|$ divides |G|. Now, since |G| is prime, then it is divisible only by 1 and p. Since $|\langle a \rangle| \neq 1$, then $|\langle a \rangle| = p$. Since |G| = p, then $G = \langle a \rangle$, so G is cyclic.

Theorem: Any group of order 5 or less is abelian.

Proof Any group of order 1 has only the identity element, so it is trivially abelian. By the above theorem, any groups of order 2, 3, or 5 are cyclic. Since it has been proven that cyclic groups are abelian, then it follows that any groups of order 2, 3, or 5 are also abelian. Now, by a previous theorem, if a group has order 4, then for any element a, o(a) = 2 or o(a) = 4. In order to show that a group of order 4 is abelian, we must consider two cases.

Case 1: Suppose that G has an element of order 4. Then G is cyclic, implying that G is abelian in this case.

Case 2: Suppose that G does not have an element of order 4. Then o(a) = 2 for any element a. We have already proven that a group with this property is abelian. So G is abelian in this case as well.

Hence, any group of order 5 or less is abelian. ■

Prove that an abelian group of order 21 must be cyclic.

Proof By Cauchy's Theorem, there exist elements x and y in the group G such that o(x) = 3 and o(y) = 7. We need to show that o(xy) = 21. By a previous theorem, o(xy) divides |G|, implying that the order of xy must be 1, 3, 7, or 21. Now, if o(xy) = 1, then xy = e, implying that $x = y^{-1}$, which contradicts our assumption that $x^3 = e = y^7$. Now, if o(xy) = 3, then $(xy)^3 = x^3y^3 = e$ and $x^3 = y^{-3}$. Since we assumed that $x^3 = e$, then we would obtain $y^{-3} = e$. It would follows that $y = y^7(y^{-3})^2 = ee = e$, which contradicts our assumption. If we let o(xy) = 7, then a similar contradiction would follow. Hence, the order of xy is 21 and G is cyclic.