Paper review

EfficientDet: Scalable and Efficient Object Detection

Google Brain (CVPR 2020)

Quick View

CONTRIBUTES

- Better Efficiency
- Higher Accuracy

Figure 1: **Model FLOPs vs. COCO accuracy** – All numbers are for single-model single-scale. Our EfficientDet achieves new state-of-the-art 52.2% COCO AP with much fewer parameters and FLOPs than previous detectors. More studies on different backbones and FPN/NAS-FPN/BiFPN are in Table 4 and 5. Complete results are in Table 2.

lmage Classification

EfficientNet

- 1) Model Scaling(Depth, Width, Resolution)
- 2) Compound scaling method

2 Challenges

- 1) BiFPN (weighted bi-directional feature pyramid network): easy and fast multi-scale feature fusion 가능
- 1) Compund Scaling method
 backbone, feature network & box/class prediction Networks에 대해
 동시에 해상도, 깊이 및 폭을 균일하게 스케일링하는 방법

Prior Knowledge

EfficientNet

Figure 3. Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients. Bigger networks with larger width, depth, or resolution tend to achieve higher accuracy, but the accuracy gain quickly saturate after reaching 80%, demonstrating the limitation of single dimension scaling. Baseline network is described in Table 1.

EfficientNet

Model Scaling

Compound Scaling

고해상도의 이미지의 경우,

Network의 depth을 높여 큰 receptive field를 확보하는 것이 중요

Network의 width을 높여 더욱 정제된 feature들을 얻는 것이 중요

이와 같은 이유때문에 저자는 depth, width, resolution coefficient 중 하나의 coefficient만 조정하는 것이 아닌, scaling의 균형을 맞추는 조정이 필요함

EfficientNet

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNe
EfficientNet-B0	77.3%	93.5%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.2%	94.5%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.3%	95.0%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.7%	95.6%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	83.0%	96.3%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.7%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.2%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	_

The EfficientDet model

Is it possible to build a scalable detection architecture with both **higher accuracy** and **better efficiency** across a wide spectrum of resource constraints?

BiFPN

1. Problem Fomulation

$$\overrightarrow{P^{in}} = (P^{in}_{l1}, P^{in}_{l2}, \ldots,)$$

$$\left|\overrightarrow{P^{out}}
ight.=\left.f\left(\overrightarrow{P^{in}}
ight.
ight)
ight.$$

2. Cross Scale Connections

Figure 2: **Feature network design** – (a) FPN [16] introduces a top-down pathway to fuse multi-scale features from level 3 to 7 $(P_3 - P_7)$; (b) PANet [19] adds an additional bottom-up pathway on top of FPN; (c) NAS-FPN [5] use neural architecture search to find an irregular feature network topology; (d)-(f) are three alternatives studied in this paper. (d) adds expensive connections from all input feature to output features; (e) simplifies PANet by removing nodes if they only have one input edge; (f) is our BiFPN with better accuracy and efficiency trade-offs.

Ablation Study

	mAP	Parameters	FLOPS
ResNet50 + FPN	37.0	34M	97B
EfficientNet-B3 + FPN	40.3	21M	75B
EfficientNet-B3 + BiFPN	44.4	12M	24B

Table 3: **Disentangling backbone and BiFPN** – Starting from the standard RetinaNet (ResNet50+FPN), we first replace the backbone with EfficientNet-B3, and then replace the baseline FPN with our proposed BiFPN.

	mAP	#Params ratio	#FLOPS ratio
Top-Down FPN [16]	42.29	1.0x	1.0x
Repeated PANet [19]	44.08	1.0x	1.0x
NAS-FPN [5]	43.16	0.71x	0.72x
Fully-Connected FPN	43.06	1.24x	1.21x
BiFPN (w/o weighted)	43.94	0.88x	0.67x
BiFPN (w/ weighted)	44.39	0.88x	0.68x

Table 4: Comparison of different feature networks – Our weighted BiFPN achieves the best accuracy with fewer parameters and FLOPS.

BiFPN

3. Weighted Feature Fusion

- 1) Unbounded Fusion: unbounded 되어있기 때문에 학습에 불안정성 유발
- 2) SoftMax-based Fusion: GPU 하드웨어에서 slowdown을 유발
- 3) **Fast normalized Fusion**: weight들을 ReLU를 거치기 때문에 non-zero 분모가 0이 되는 것을 막기 위해 입실론 추가 weigh값이 0~1사이로 normalize가 되는 것은 Softmax와 유사하다

$$O = \sum_{i} I_{i}$$

$$O = \sum_{i} w_i \cdot I_i$$

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{i} e^{w_j}} \cdot I_i$$
.

$$O = \sum_{i} \frac{w_i}{\epsilon + \sum_{j} w_j} \cdot I_i$$

Conventional Feature Fusion Unbounded Feature Fusion SoftMax-based Feature Fusion Fast normalized Feature Fusion

Ablation Study

Figure 5: **Softmax vs. fast normalized feature fusion** – (a) - (c) shows normalized weights (i.e., importance) during training for three representative nodes; each node has two inputs (input1 & input2) and their normalized weights always sum up to 1.

Model	Softmax Fusion AP	Fast Fusion AP (delta)	Speedup	
Model1	33.96	33.85 (-0.11)	1.28x	
Model2	43.78	43.77 (-0.01)	1.26x	
Model3	48.79	48.74 (-0.05)	1.31x	

Table 6: Comparison of different feature fusion – Our fast fusion achieves similar accuracy as softmax-based fusion, but runs 28% - 31% faster.

EfficientDet

1. EfficientDet Architecture

Figure 3: EfficientDet architecture – It employs EfficientNet [36] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

EfficientDet

2. Compound Scaling Method

- 1) Backbone Network: EfficientNet-B0부터 B6까지 확대
- 2) **BiFPN Network**: BiFPN의 width와 depth를 아래와 같이 확장

$$W_{bifpn} = 64 \cdot (1.35^{\phi}), \qquad D_{bifpn} = 3 + \phi$$

3) Class/box Network: width는 항상 BiFPN과 동일한 값으로 지정

$$D_{box} = D_{class} = 3 + \lfloor \phi/3 \rfloor$$

4) **Resolution**: Resolution은 아래와 같이 확장

$$R_{input} = 512 + \phi \cdot 128$$

EfficientDet

2. Compound Scaling Method

	Input	Backbone	BiFF	Box/class	
	size Rénput	Network	#channels Whifpe	#layers Dbifpn	#layers D _{class}
$D0 (\phi = 0)$	512	B0	64	3	3
$D1 (\phi = 1)$	640	B1	88	4	3
$D2 (\phi = 2)$	768	B2	112	5	3
$D3 (\phi = 3)$	896	B3	160	6	4
$D4 (\phi = 4)$	1024	B4	224	7	4
$D5 (\phi = 5)$	1280	B5	288	7	4
$D6 (\phi = 6)$	1280	B6	384	8	5
$D6 (\phi = 7)$	1536	B6	384	8	5

Table 1: Scaling configs for EfficientDet D0-D6 – ϕ is the compound coefficient that controls all other scaling dimensions; *BiFPN*, *box/class net*, and input size are scaled up using equation 1, 2, 3 respectively.

Experiments

Mark 100 co	t	est-de	ev	val					Late	ncy
Model	AP	AP_{50}	AP_{75}	AP	Params	Ratio	FLOPs	Ratio	GPU_{ms}	CPU
EfficientDet-D0 (512)	33.8	52.2	35.8	33.5	3.9M	1x	2.5B	1x	16	0.32
YOLOv3 [31]	33.0	57.9	34.4	-	_	-	71B	28x	51 [†]	-
EfficientDet-D1 (640)	39.6	58.6	42.3	39.1	6.6M	1x	6.1B	1x	20	0.74
RetinaNet-R50 (640) [21]	37.0	-	-	- 1	34M	6.7x	97B	16x	27	2.8
RetinaNet-R101 (640)[21]	37.9	-	-	- 1	53M	8.0x	127B	21x	34	3.6
Mask R-CNN [11]	37.9	-	-	-	44M	6.7x	149B	25x	92†	-
EfficientDet-D2 (768)	43.0	62.3	46.2	42.5	8.1M	1x	11B	1x	24	1.2
RetinaNet-R50 (1024) [21]	40.1	-	-	-	34M	4.3x	248B	23x	51	7.5
RetinaNet-R101 (1024) [21]	41.1	-	-	- 1	53M	6.6x	326B	30x	65	9.7
ResNet-50 + NAS-FPN (640) [8]	39.9	-	-	-	60M	7.5x	141B	13x	41	4.1
EfficientDet-D3 (896)	45.8	65.0	49.3	45.9	12M	1x	25B	1x	42	2.5
ResNet-50 + NAS-FPN (1024) [8]	44.2	_	_	-	60M	5.1x	360B	15x	79	11
ResNet-50 + NAS-FPN (1280) [8]	44.8	-	-	-	60M	5.1x	563B	23x	119	17
ResNet-50 + NAS-FPN (1280@384)[8]	45.4	-	-	-	104M	8.7x	1043B	42x	173	27
EfficientDet-D4 (1024)	49.4	69.0	53.4	49.0	21M	1x	55B	1x	74	4.8
AmoebaNet+ NAS-FPN +AA(1280)[42]	-	-	-	48.6	185M	8.8x	1317B	24x	259	38
EfficientDet-D5 (1280)	50.7	70.2	54.7	50.5	34M	1x	135B	1x	141	11
EfficientDet-D6 (1280)	51.7	71.2	56.0	51.3	52M	1x	226B	1x	190	16
AmoebaNet+ NAS-FPN +AA(1536)[42]	-	-	-	50.7	209M	4.0x	3045B	13x	608	83
EfficientDet-D7 (1536)	52.2	71.4	56.3	51.8	52M	1x	325B	1x	262	24

We omit ensemble and test-time multi-scale results [27, 10].

Table 2: EfficientDet performance on COCO [22] - Results are for single-model single-scale. test-dev is the COCO test set and val is the validation set. Params and FLOPs denote the number of parameters and multiply-adds. Latency denotes inference latency with batch size 1. AA denotes auto-augmentation [42]. We group models together if they have similar accuracy, and compare their model size, FLOPs, and latency in each group.

[†]Latency marked with † are from papers, and others are measured on the same machine with Titan V GPU.

Figure 4: Model size and inference latency comparison – Latency is measured with batch size 1 on the same machine equipped with a Titan V GPU and Xeon CPU. AN denotes AmoebaNet + NAS-FPN trained with auto-augmentation [42]. Our EfficientDet models are 4x - 9x smaller, 2x - 4x faster on GPU, and 5x - 11x faster on CPU than other detectors.