MTH 101A- 2021 -2022

Quiz -II: Tentative Marking Scheme

1. Discuss the differentiability of the function $f(x,y) = \sin(x)\sqrt{|xy|}$ at all points on the x-axis.

[7]

2. (a) Is the improper integral $\int_{\pi}^{\infty} \sin^2 x \ dx$ convergent? Justify your answer.

[2]

(b) Determine all values of $p \in \mathbb{R}$ for which the improper integral $\int_{\pi}^{\infty} \frac{\sin^2 x}{x^p} dx$ is convergent.

[5]

3. Let C be the cone generated by revolving the line $y = \frac{x}{\sqrt{8}}$ starting from (0,0) around y-axis. Let S be the solid sphere of radius 3 i.e., $x^2 + y^2 + z^2 \le 9$. Find the volume of the portion of S that lies inside C.

[6]

Question 1 solution:

• Let (A,0) be any arbitrary point on the x-axis.

$$f_x(A,0) = \lim_{h \to 0} \frac{f(A+h,0) - f(0,0)}{h} = 0.$$

[1]

$$f_y(A,0) = \lim_{k \to 0} \frac{f(A,k) - f(0,0)}{k} = \lim_{k \to 0} \sin(A) \frac{\sqrt{|A||k|}}{k}.$$

- The partial derivative $f_y(A,0) = 0$ if $A = n\pi$. [1]
- The partial derivative $f_y(A,0)$ does not exist if $A \neq n\pi$. [1]
- Since $f_y(A,0)$ does not exist if $A \neq n\pi$, therefore total derivative cannot exist at these points.

[1]

• Now for the points $A = n\pi$, let us look at the error function

$$|e(h,k)| = \left| \frac{f(A+h,k) - f(A,0) - (h,k) \cdot \nabla f(A,0)}{\sqrt{h^2 + k^2}} \right|$$

$$= |\sin(n\pi + h)| \frac{\sqrt{|n\pi + h||k|}}{\sqrt{h^2 + k^2}} = |\sin(h)| \frac{\sqrt{|n\pi + h||k|}}{\sqrt{h^2 + k^2}}.$$

[1]

• Now using the inequality for |h| small enough, we know $|\sin h| \le |h| \le \sqrt{h^2 + k^2}$.

[1]

• Therefore we get $|e(h,k)| \le \sqrt{|n\pi + h||k|} \to 0$ as $(h,k) \to (0,0)$. Hence f is differentiable at $(n\pi,0)$.

Question 2 solution:

• By definition
$$\int_{\pi}^{M} \sin^2 x \ dx = \frac{1}{2} \int_{\pi}^{M} (1 - \cos(2x)) \ dx = \frac{M}{2} - \frac{\pi}{2} - \frac{\sin 2M}{4}$$
 [1]

- Thus $\lim_{M\to\infty} \int_{\pi}^{M} \sin^2 x \ dx = \infty$. Hence the intergal is divergent. [1]
- $p \le 0$. In this case $\frac{\sin^2 x}{x^p} \ge \sin^2 x$ since $x \ge \pi$. Hence by comparison test $\int_{\pi}^{\infty} \frac{\sin^2 x}{x^p} dx$ is divergent.
- p > 1. We use the inequality $0 \le \frac{\sin^2 x}{x^p} \le \frac{1}{x^p}$. Hence by comparison test $\int_{\pi}^{\infty} \frac{\sin^2 x}{x^p} dx$ is convergent.
- $0 . Now <math>\frac{\sin^2 x}{x^p} = \frac{1}{2x^p} \frac{\cos 2x}{2x^p}$. In this case, $\int_{\pi}^{\infty} \frac{1}{x^p} dx$ is divergent. [1]
- In this case, $\int_{\pi}^{\infty} \frac{\cos 2x}{x^p} dx$ is convergent by Dirichlet test. [1]
- Therefore $\int_{\pi}^{\infty} \frac{\sin^2 x}{x^p} dx$ is divergent for 0 ..

Question 3 solution:

- Volume of the upper hemisphere = $\frac{4}{6}\pi 3^3 = 18\pi$. [1]
- Intersection point of the circle on xy-plane $x^2 + y^2 = 9$ and and line $x = \sqrt{8}y$ is $(\sqrt{8}, 1)$.

[2]

- Volume of the portion outside the cone and inside the sphere is $=\int_{0}^{1} \pi(9-y^2-8y^2) dy = 6\pi$.
- The required volume = $18\pi 6\pi = 12\pi$.

[1]

Alternative solution:

• Intersection point of the circle on xy-plane $x^2 + y^2 = 9$ and and line $x = \sqrt{8}y$ is $(\sqrt{8}, 1)$.

[2]

- Volume of the cone = $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi .8.1 = 8\pi/3.$ [1]
- Volume of the upper curved portion = $\int_{1}^{3} \pi x^{2} dy = \int_{1}^{3} \pi (9 y^{2}) dy = \frac{28}{3}\pi$.

[2]

• The required volume. $=\frac{8}{3}\pi + \frac{28}{3}\pi = 12\pi$

[1]