Mathematical Relations

$a \triangleq b$	a is equal to b by definition
$a \stackrel{D}{=} b$	a is equal to b in distribution
$a \propto b$	a is proportional to b , i. e., $a = \text{const} \cdot b$
$a \approx b$	a is approximately equal to b , i.e., $ a - b < \epsilon$
	for small real number $\epsilon>0$

Numbers, Arrays & Sets

а	A scalar (integer or real)			
a	A vector			
A	A matrix			
0_n , 0	A vector of zeros of length n or implied by con-			
	text			
\mathbf{I}_n , \mathbf{I}	Identity matrix with n rows and columns or			
	dimensionality implied by context			
diag a	A square, diagonal matrix with diagonal entries			
	given by a			
\mathbb{N},\mathbb{Z}	The set of natural numbers and integers, respec-			
	tively			
\mathbb{R},\mathbb{C}	The set of real and complex numbers, respec-			
	tively			
\mathbb{R}^d	The <i>d</i> -dimensional vector space of real numbers			

Linear Algebra

Transpose of a matrix or vector
Inverse of square matrix
Determinant of square matrix
Trace of square matrix
Matrix A is positive semidefinite
Square root of a matrix, specifically the Cholesky
decomposition: a lower-triangular matrix L that
satisfies $\mathbf{L}\mathbf{L}^{\top} = \mathbf{A}$

Functions & Functional Analysis

$f:\mathcal{X} o\mathcal{Y}$	A function with domain ${\mathcal X}$ and range ${\mathcal Y}$
$f: \mathbf{x} \mapsto g(\mathbf{x})$	A function that maps x to $g(x)$; i. e., $f(\mathbf{x}) \triangleq g(\mathbf{x})$
$f \circ g$	Composition of functions f and g ; $f \circ g : \mathbf{x} \mapsto$
	$f(g(\mathbf{x}))$

$\mathcal{O}(\cdot)$	Asymptotic upper bound ("big O"); $f(n) = \mathcal{O}(g(n))$		
	for $f,g: \mathbb{N} \to \mathbb{N}$ if $f(n)/g(n)$ is bounded as		
	$n \to \infty$		
$\mathbb{R}^{\mathcal{X}}$	The space of functions $f: \mathcal{X} \to \mathbb{R}$		
$\mathcal{H}_k, \mathcal{H}$	Reproducing kernel Hilbert space associated with		
	kernel <i>k</i> or implied by context		
$\langle\cdot,\cdot angle_{\mathcal{H}},\langle\cdot,\cdot angle$	Inner product associated with Hilbert space ${\cal H}$		
	or implied by context		
$\ \cdot\ $, $\ \cdot\ _p$	L^2 norm of a vector; L^p norm if subscript p is specified		

Calculus

$\frac{dy}{dx}$ $\frac{\partial y}{\partial x}$ $\frac{\partial f}{\partial x}$	Total derivative of y with respect to x
$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
$\frac{\partial f}{\partial \mathbf{x}}$	Jacobian matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$
$\int f(\mathbf{x}) d\mathbf{x}$	Definite integral over the entire domain of x
$\int_{\mathcal{X}} f(\mathbf{x}) d\mathbf{x}$	Definite integral with respect to x over the set \mathcal{X}

Probability and Information Theory

A probability density, latter used to emphasise approximation			
Random variable x is distributed according to			
$p(\mathbf{x})$			
Expectation of $f(\mathbf{x})$ under $p(\mathbf{x})$ or implied by			
context			
Covariance between random variables			
Shannon entropy of a random variable			
<i>f</i> -divergence between distributions with densi-			
ties p and q			
Kullback-Leibler divergence between distribu-			
tions with densities p and q			
Uniform distribution with lower and upper bounds			
a and b			
Bernoulli distribution with parameter ρ			
Multivariate Gaussian distribution (on x) with			
mean μ and covariance Σ			
Gaussian process; $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ de-			
notes $f(\mathbf{x})$ is a distributed as a Gaussian process			
with mean function m and covariance function			
(kernel) k			
Kronecker delta; $\delta_{ij} = 1$ iff $i = j$ and 0 otherwise			
Dirac delta on x with point mass at x_0			

Optimisation

$$f^* = \min_{\mathbf{x}} f(\mathbf{x})$$
 A minimum of function $f(\mathbf{x})$

 $\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$ A minimiser of function $f(\mathbf{x})$

Special Functions

 $\sigma(x)$ Sigmoid function, typically the logistic sigmoid

 $x \mapsto (1 + \exp(-x))^{-1}$

RELU(x) Rectified linear unit activation; positive part of

x, i. e., $x \mapsto \max(0, x)$

Softplus (x) Softplus activation; $x \mapsto \log(1 + \exp(x))$