- 3 平面上の $\triangle OA_1A_2$ は $\angle OA_2A_1=90^\circ$, $OA_1=1$, $OA_2=\frac{1}{\sqrt{3}}$ を満たすとする . A_2 から OA_1 へ垂線を下ろし , 交点を A_3 とする . A_3 から OA_2 へ垂線を下ろし , 交点を A_4 とする . 以下同様に , k=4 , 5 , \cdots について , A_k から OA_{k-1} へ垂線を下ろし , 交点を A_{k+1} として , 順番に A_5 , A_6 , \cdots を定める . このとき , 以下の問いに答えよ .
- (1) $A_k A_{k+1} \; (k=1,\,2,\,\cdots)$ を求めよ.
- (2) $\overrightarrow{h_k} = \overrightarrow{A_k A_{k+1}}$ とおくとき,自然数 n に対して $\sum_{k=1}^n \overrightarrow{h_k} \cdot \overrightarrow{h_{k+1}}$ を求めよ.ただし, $\overrightarrow{h_k} \cdot \overrightarrow{h_{k+1}}$ は $\overrightarrow{h_k}$ と $\overrightarrow{h_{k+1}}$ の内積を表す.