## **Transfer Orbits: Lambert Arcs**

Two approaches to mission planning:

- (a) Given the transfer orbit → initial and final positions are specified; relate to the time of flight
- (b) Given the initial (departure) and final (target) points → determine the orbit that passes through the points

Transfer Orbit Design (special class of boundary value problem)



- 2. Analytical Relationships
- 3. Lambert's Theorem

#### **Geometrical Relationships:** Ellipse

Given two fixed points  $P_1, P_2$ ; center of force at point O

Find: ellipse with focus at point O that connects  $P_1$ ,  $P_2$ 



If F is not specified  $\Longrightarrow$ 

Thus, find the locus of all possible F locations Pick one of the F sites and the ellipse is determined



Since  $P_1$  and  $P_2$  must both lie on the same ellipse, F must be selected such that



For ellipse with major axis 2a, point F determined as the intersection of two circles centered at  $P_1$  and  $P_2$  with radii  $2a - r_1$  and  $2a - r_2$ 

$$P_1F = 2a - r_1$$

$$P_2F = 2a - r_2$$



For a given "a" two possible intersection points

Closest to  $O \longrightarrow$ 

Given "a" distance between foci O and F = 2ae



 $\therefore \tilde{F}$  associated with

Choose 3 different values of "a"

Note: there is a smallest value of "a" ( $a_m$ ) below which there is no ellipse that connects  $P_1$  and  $P_2$  because the circles do not intersect





$$(2a_m - r_1) + (2a_m - r_2) = c$$
  
 $4a_m = r_1 + r_2 + c$  OR

 $F_m$  defines minimum energy elliptic path from  $P_1$  to  $P_2$ 

$$\left(\mathbf{\mathcal{E}} = -\frac{\mu}{2a_m} \quad \text{when } a_m \text{ small as possible, } \mathbf{\mathcal{E}} \text{ is min}\right)$$

Note: choosing different values of "a", produces pairs of vacant foci  $(F, \tilde{F})$ 

Sketch curve through all vacant foci *F*'s What does curve look like?



Equations for circles  $\begin{cases} P_1F = 2a - r_1 \\ P_2F = 2a - r_2 \end{cases}$ 

Subtract equations

Equation of a hyperbola: F is point on hyperbola  $P_1, P_2$  are foci

constant on right side:  $2|a_F|$ 



## <u>Geometrical Relationships</u>: Hyperbola

Given two fixed points  $P_1$ ,  $P_2$ ; center of force at point OFind: hyperbola with focus at point O that connects  $P_1$ ,  $P_2$ 





Since  $P_1$  and  $P_2$  must both lie on the same hyperbola, F must be selected such that

$$P_1F - \overrightarrow{OP_1} = 2|a| = P_2F - \overrightarrow{OP_2}$$

always true for hyperbola

OR

$$P_1F = 2|a| + r_1$$
  
 $P_2F = 2|a| + r_2$ 



For hyperbola, with major axis 2|a|, point F determined as the intersection of two circles centered at  $P_1$  and  $P_2$  with radii  $2|a|+r_1$  and  $2|a|+r_2$ 

$$P_1F = 2|a| + r_1$$

$$P_2F = 2|a| + r_2$$



For a given |a|, two possible intersection points

 $\rightarrow$  2 possible hyperbolic paths between  $P_1$  and  $P_2$  F,  $\tilde{F}$ 

Given |a| distance between foci O and F = 2|a|e



 $\therefore F$  associated with  $\left\{\right.$ 

Choose 3 different values of |a| $\Rightarrow$  as |a| gets smaller, circles shrink

Note: smallest value of |a| that is possible is (then circles have radii  $r_1$  and  $r_2$ )



Note: Now sketch a curve through all vacant *F*'s What does the curve look like?



Locus of vacant foci is branch of a hyperbola

Equations for circles 
$$\begin{cases} P_1F = 2a + r_1 \\ P_2F = 2a + r_2 \end{cases}$$

Subtract equations  $P_2F - P_1F = r_2 - r_1$  unknown is F again!

Equation of a hyperbola: other branch of same hyperbola  $P_1, P_2$  are foci constant on right side:  $2|a_F|$ 



# **Geometrical Relationships: Parabola**

Only two possible parabolas  $\leftarrow$   $a = \infty$ ; F at  $\infty$ 



Definition of parabola:

OP = distance to perpendicular intersection with directrix







To construct parabolas: requires normals N and vertices V



#### **Geometrical Relationships: Summary**

Once F is selected or otherwise identified, particular conic section is known

Necessary to define a method to categorize or classify transfers

Legend: A - Ellipse (F NOT between chord and arc)

B – Ellipse (F between chord and arc)

H – Hyperbola

 $1 - Transfer Angle < 180^{\circ}$ 

2 - Transfer Angle > 180°











# Various Orbits Between Two Points P<sub>1</sub>, P<sub>2</sub>

#### Locus of Vacant Focus F



Legend: A - Ellipse (F not between chord and focus)
B - Ellipse (F between chord and focus)
H - Hyperbola
1 - Transfer Angle < 180°

2 - Transfer Angle >  $180^{\circ}$ 

We may suppose  $r_2 \ge r_1$ .