(d) V= Ud & Wd. Sei A Basis con Ud and

B Basis con Wd. Dann ist (cA, B) Basis con V.

Pann ist P= PF(ABS) = det [tI-FA O]

den F(Ud) = Ud

F(We) = Wa

= MA [tI-SA O]

 $= dUt \begin{bmatrix} tI - S_A & O \\ O & tI - T_B \end{bmatrix} = dur(tI - S_A) dur(tI - T_B)$ $= PS'P_T.$

Um ps = t' an zeigen histeren wir eine Basis van Cld

auch eine besondere Weise. Es gill: Un que que en que le

Wir tirieren eine Basis oh, von Cl, und eone kon

diesen durch Welchoren aus, Cle rue eine Basis

(A, A,) von Cl, und so weiser, bis wir

eine Basis A = (A, A, ..., oh) von Cla

konstruiest haben. Die clatrie S, hat dace

die flogende Straleher:

Es bleitt an seign, dess d = r ist. Weyn U1 & U2 & ... & Ud 81l2 = dim(Ua) > dim(Ud-1) > dim(Ud-2) ... > dim(U1) \geq_{d} $\geq_{d\cdot 1}$ $3Sp \quad G = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$ $P_{G}(t) = dir(tI - G) = \begin{cases} t+1 & -1 & 0 \\ 0 & t+1 & -1 \\ -1 & 0 & t+1 \end{cases}$ $= (t+1)^3 - 1 = t^3 + 3t^2 + 3t = t(t^2 + 3t + 1)$ O mit als. Vieledheit 1. 103 = ker(G°) = ker(G²) = ker(G²) = ker(G³) = ... $\mathbb{R}^3 = \operatorname{im}(G^0) \neq \operatorname{im}(G^1) = \operatorname{im}(G^2) = \operatorname{im}(G^3) =$ $\mathbb{R}^3 = \ker(G^1) \oplus \operatorname{im}(G^1).$ $\begin{array}{c}
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) \\
\text{lin} \left(\frac{1}{2} \right) & \text{lin} \left(\frac{1}{2} \right) &$ $G\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} + (-1) \cdot \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$ BSp. G(x, x2, x3, x4) = (x2, x3, x3 + x4, x4)

6.4.5 Hauptracione

The Shi F: V-> V lineare Abbildure, any linear n-dimensionally Vertherranon V voit n F.M. S. 2 Eigenwest con F onit der algebraischen Vielfachbeit r. Shi H = Ker (F- xid).

Deun gilt:

(i) = (H) = H

(ii) Das derakterstische Polynon von $Fl_H: H \rightarrow H$ ist $(t-\lambda)^T$.

Recors: Da 2 ligernett con Fish onit des algebraisuer vielfadleit r ist

Désenvert son F-2 id, onit des subbre ciquéraiselen Vielfechheit. Wir könner clus des lamac con Fitting en G=F-2 id anwanden:

103= Uo q U1 q --- q Ud = -- = U1

la de Bezidnage des Commas con

First ist $H = U_r = U_{01}$

Ned (2) gier co. G(H) = H.

P.L. F(v) - Av EH his see of EH

 $= \sum_{n \in \mathbb{N}} f(n) = \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$ $= \sum_{n \in \mathbb{N}} f(n) + f(n) - \lambda c \in \mathbb{N}$

2.
$$2e^{i}gal: V_{i} = V_{2} = V_{3} = 0$$
 $0 = (F - \lambda_{1} id)^{r_{1}} (V_{1} + V_{2} + V_{3})$
 $= (F - \lambda_{1} id)^{r_{1}} (V_{1} + V_{2} + V_{3})$
 $= (F - \lambda_{2} id)^{r_{1}} ((F - \lambda_{1} id)^{r_{1}} (V_{2} + V_{3}))$
 $= (F - \lambda_{1} id)^{r_{2}} ((F - \lambda_{2} id)^{r_{1}} (V_{2} + V_{3}))$
 $= (F - \lambda_{1} id)^{r_{2}} ((F - \lambda_{2} id)^{r_{1}} (V_{2} + V_{3}))$
 $= (F - \lambda_{1} id)^{r_{2}} ((F - \lambda_{2} id)^{r_{1}} (V_{2} + V_{3}))$
 $= (F - \lambda_{1} id)^{r_{2}} (F - \lambda_{2} id)^{r_{3}} (A - I) (A - 2I) = A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A - 4 + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} - 3A + 2I$
 $= A^{r_{1}} - A - 2A + 2I = A^{r_{1}} -$

D.L. $H_1 + H_2 + H_3$ ist direkte Summa Weger dim $(H_1) + dim (H_2) + dim (H_3) = r_1 + r_2 + r_3 = h$ = din (V)gilt $H_1 \oplus H_2 \oplus H_3 = V$.