Music Genre Classification Using Machine Learning

Brahim Erraji

Supervisors: Professeurs Ikram Chairi And Hasnae Zerouaoui

February 7, 2021

1/21

Table of contents

- Introduction
- 2 Dataset
 - Features
 - Sound Visualization
 - Data visualization
 - Feature extraction
 - Data exploring
 - PCA
- Classification
 - Splitting the data
 - Training the models
- Conclusion

Introduction

Nowadays music is everywhere, therefore having a good music classifier is crucial. The applications of music classification are endless:

- Music recommendation (Spotify, Youtube Music ..)
- Music generation
- ...

Dataset

The dataset that will be used in this project is the GTZAN dataset.

- over 9990 sound clips with the same duration 30 seconds
- each clip has a label (genre)

which makes it a supervised learning problem.

Dataset

	filename	length	chroma_stft_mean	chroma_stft_var	rms_mean	rms_var	spectral_centroid_mean	spectral_centroid_var	spectral_bandwidth_mea
0	blues.00000.0.wav	66149	0.335406	0.091048	0.130405	0.003521	1773.065032	167541.630869	1972.74438
1	blues.00000.1.wav	66149	0.343065	0.086147	0.112699	0.001450	1816.693777	90525.690866	2010.05150
2	blues.00000.2.wav	66149	0.346815	0.092243	0.132003	0.004620	1788.539719	111407.437613	2084.56513
3	blues.00000.3.wav	66149	0.363639	0.086856	0.132565	0.002448	1655.289045	111952.284517	1960.03998
4	blues.00000.4.way	66149	0.335579	0.088129	0.143289	0.001701	1630.656199	79667.267654	1948.50388

Each sound clip has a set of features (Chroma feature, Audio power, Spectral centroid, Tempo ..). The GTZAN dataset has 58 sound features, all numerical. We can mention the following features:

chroma stft mean

rms mean

spectral centroid mean

spectral bandwidth mean

Sound Visualization

Sound is represented in the form of an audio signal having parameters such as frequency, bandwidth, decibel, etc. A typical audio signal can be expressed as a function of Amplitude and Time shown below:

Boxplot of BPM

Below we can see the distribution of the Tempo in each genre:

Histogram of each varible

It is also important to see the distribution of each variable seperately:

8/21

Correlation Matrix

One more useful plot is the correlation matrix:

Librosa library in python is used the feature extraction from audio.

Feature extraction from Audio signal

```
In [235]: audio path = 'genres/blues/blues.00001.wav'
          x,sr = librosa.load(audio path)
In [124]: spectral centroids = librosa.feature.spectral centroid(x, sr=sr)[0]
In [125]: spectral centroids.mean()
Out[125]: 1530,1766787460795
In [126]: spectral centroids.var()
Out[126]: 375850.0736486866
In [127]: chroma stft = librosa.feature.chroma stft(x,sr=sr)[0]
In [128]: rms = librosa.feature.rms(x)
In [129]: rms[0]
Out[129]: array([0.06771811. 0.10716628. 0.14316952. .... 0.13760294. 0.1339183 .
                 0.129763661, dtvpe=float32)
In [130]: spectral bandwith = librosa.feature.spectral bandwidth(x)
In [131]: len(spectral centroids)
Out[131]: 1293
```

Dataset has two columns that are irrelevant to the genre of the music : *filename* and *length*. Therefore they should be dropped:

	chroma_stft_mean	chroma_stft_var	rms_mean	rms_var	spectral_centroid_mean	spectral_centroid_var	spectral_bandwidth_mean	spectra
0	0.335406	0.091048	0.130405	0.003521	1773.065032	167541.630869	1972.744388	
1	0.343065	0.086147	0.112699	0.001450	1816.693777	90525.690866	2010.051501	
2	0.346815	0.092243	0.132003	0.004620	1788.539719	111407.437613	2084.565132	
3	0.363639	0.086856	0.132565	0.002448	1655.289045	111952.284517	1960.039988	
4	0.335570	0.088129	0 1/3289	0.001701	1630 656100	79667 267654	1948 503884	

Missing values

Let's see if there are any missing values:

```
In [98]: useful_data.isna().sum().sum()
Out[98]: 0
```

Fortunately, there aren't any missing values

PCA projection

Let's project our data on the first two principal components:

PCA

Explained variance

The cumulative explained variance isn't high enough (equal to 0.33), the threshold is 0.80, therefore we can't rely only on the first two principal components.

```
In [42]: sum(pca.explained_variance_ratio_)
Out[42]: 0.3359769718422832
```

Splitting the data

A challenge I faced whilest splitting the data is to have the same number of observations (sound clips) from each genre in the training set. A simple solution for this is the following program:

```
In [51]: cutoff = 800
labels = useful_data['label'].unique()
trainDF = pd.DataFrame()
testDF = pd.DataFrame()
for label in labels:
    dfoflabel = useful_data[useful_data['label'] == label]
    nrows = dfoflabel.shape[0]
    #appending the first 800 sample of each label to train set
    trainDF = trainDF.append(dfoflabel.head(cutoff))
    #appending the rest to test set
    testDF =testDF.append(dfoflabel.tail(nrows - cutoff))
```

After that we extract our Xtrain , Ytrain , Xtest and Ytest:

```
In [170]: df Y_train = trainDF.pop('label')
df_X_train = trainDF

In [171]: df Y_test = testDF.pop('label')
df_X_test = testDF.
In [172]: from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

In [173]: sts = skp.StandardScaler()
le = skp.LabelEncoder()

X = sts.fit_transform(df_X_train)
Y = le.fit_transform(df_Y_train)
Xtest = sts.fit_transform(df_Y_test)
Ytest = le.fit_transform(df_Y_test)
```

Logistic Regression

Logistic regression

```
In [178]: from sklearn.linear_model import LogisticRegression
In [179]: clf = LogisticRegression(random_state=0, max_iter = 10000).fit(X, Y)
In [180]: clf.score(X,Y)
Out[180]: 0.763625
In [181]: clf.score(Xtest, Ytest)
Out[181]: 0.5346733668341709
```

Accuracy for training data: 76%

Accuracy for test data: 50%

KNeighborsClassifier

Finding the best value for k

```
In [185]: from sklearn.model selection import GridSearchCV
In [187]:
          grid params = {
              'n neighbors' : [3,5,7,9,11,19],
              'weights' : ['uniform', 'distance'].
              'metric' : ['euclidean','.manhattan']
          qs = GridSearchCV(KNeighborsClassifier(), grid params, verbose = 1, cv = 3, n jobs = -1)
          gs results = gs.fit(X,Y)
          Fitting 3 folds for each of 24 candidates, totalling 72 fits
          [Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
          [Parallel(n jobs=-1)]: Done 42 tasks
                                                     I elapsed: 56.4s
          [Parallel(n jobs=-1)]: Done 72 out of 72 | elapsed: 56.8s finished
In [194]: print("the best score is {} and the best parameters are {}".format(gs results.best score , gs results.best params)
          the best score is 0.5032469684725268 and the best parameters are {'metric': 'euclidean', 'n neighbors': 9, 'weight
          s': 'distance'}
```

• Accuracy for training data: 98%

• Accuracy for test data: 50%

4 D > 4 D > 4 E > 4 E > 4 D >

Deep Neural Networks Classifier 1

Two neural networks, First one with 2 hidden layers: the first has 128 nodes, the second has 64 nodes.

```
In [229]: def baseline mode run cell, select below
              # create model
              model = Sequential()
              model.add(Dense(128, input dim=X.shape[1],activation='relu'))
              model.add(Dense(64. activation='relu'))
              model.add(Dense(10, activation='softmax'))
              # Compile model
              model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
              return model
In [230]: estimator2 = KerasClassifier(build fn=baseline model2, verbose=0)
In [233]: batch size = [10, 20, 40, 60, 80, 100]
          epochs = [10, 50, 100]
          param grid = dict(batch size=batch size, epochs=epochs)
          grid2 = GridSearchCV(estimator=estimator2, param grid=param grid, n jobs=-1, cv=3)
          grid result2 = grid2.fit(X, dummy y)
          print("Best: %f using %s" % (grid result2.best score , grid result2.best params ))
          Best: 0.116247 using {'batch size': 10, 'epochs': 10}
In [234]: kfold = KFold(n splits=10, shuffle=True)
          results2 = cross val score(grid result2.best estimator , X, dummy y, cv=kfold)
          print("Average Accuracy and its std: %.2f%% (%.2f%%)" % (results2.mean()*100, results2.std()*100))
          Average Accuracy and its std: 88.31% (1.63%)
```

Accuracy for test data: 88%

Deep Neural Networks Classifier 2

Second one with 3 hidden layers: the first has 256 nodes, the second has 128 nodes and the third has 64 nodes.

```
In [211]: def baseline model():
              # create model
              model = Sequential()
              model.add(Dense(256, input dim=X.shape[1], activation='relu'))
              model.add(Dense(128. activation='relu'))
              model.add(Dense(64. activation='relu'))
              model.add(Dense(10, activation='softmax'))
              model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
              return model
```

Grid Search to find the best values for batch size and epochs:

```
In [225]: batch size = [10, 20, 40, 60, 80, 100] epochs = [10, 50, 100] param grid = dist(batch size-batch size, epochs=epochs) = [10, 50, 100] param grid = dist(batch size-batch size, epochs=epochs) grid = GridSearchX(estimator=estimator, param grid=param_grid, n_jobs=-1, cv=3) grid = GridSearchX(estimator=estimator, param grid=param_grid, n_jobs=-1, cv=3) grid = Grid =
```

• Accuracy for test data: 89%

Conclusion

The deep neural networks method has proven to be the most adequate method for the music genre classification problem.

Now we can easily extract features from a given song and predict its genre via our saved model with an accuracy of 89%.