

GEM-Selektor v.3-PSI Program Package – a Tool to Model Aqueous/Solid Solution Partitioning Equilibria

Dmitrii Kulik, Geochemical Modelling Group_

- Sorption and co-precipitation are important mechanisms of redoxdependent chemical partitioning leading to retardation of radionuclides at waste repository conditions
- Adequate and efficient tools are needed for the equilibrium thermodynamic modelling of partitioning phenomena in aquatic geoenvironments
- That's why we develop the <u>Gibbs Energy Minimization approach</u>, implement it in GEM-Selektor program package, and use it!

Now available for downloading at http://les.web.psi.ch/Software/GEMS-PSI/

Thermodynamic Modelling

Thermodynamics is:

Easy to mention;

Difficult to understand;

Impossible to apply.

D.M.Shaw

is a <u>prediction</u> of <u>equilibrium speciation</u> at certain <u>physicochemical conditions</u> and constraints in the system using methods of <u>chemical thermodynamics</u>

Reactions:

$$r \rightarrow$$

Chemical mass transfer

$$\leftarrow r = r \rightarrow$$

$$A + B \leftrightarrow C + D$$

$$\leftarrow$$
r \neq r \rightarrow

at equilibrium

no equilibrium

To describe equilibria:

Chemical reactions are not necessary to be considered

The Equilibrium Problem Setup:

In reality

In terms of chemical thermodynamics:

at T,P of interest

Possible phases and components

Initial state (bulk composition mix, b)

Equilibration, chemical mass transfer

Final state *x* (meta)stable phases

To solve for the equilibrium state

means to split the input bulk composition b into mole quantities x of species in all phases so that the total Gibbs energy of the system $G(x) = x^T \cdot \mu$ becomes minimal ($\mu = \mu^o + RT \ln(C\gamma)$, C = f(x) is concentration):

subject to Ax = b (mass balance)

For multi-component systems, computer-aided numerical methods are required to solve for chemical equilibria. <u>Available techniques:</u>

Law of Mass Action (LMA) method of speciation modelling (e.g.

PHREEQC code)

$$|b - Ax| \Rightarrow \min \text{ at } LMA = f(K)$$

Gibbs Energy Minimization (GEM) method of thermodynamic modelling (GEM-Selektor, ChemSage, GIBBS/Hch codes)

Complementarity of LMA and GEM techniques

LMA

- Gains in simplicity, balance precision, and speed
- Requires thermodynamic data (logK) for product species only
- <u>Phases</u> are not considered; a single solution phase assumed
- <u>Sacrifices</u> generality (difficult to set up and solve multi-phase, redoxdependent and SSAS equilibria).

GEM

- Gains in generality (easy to set up and directly solve multi-phase redoxor SSAS equilibria);
- Yields in balance precision and speed when using the automatic (simplex) initial approximation
- Requires thermodynamic data (G_o) for all species in all phases
- Phases are explicitly considered in finding species concentrations
- •Recently, speed and mass balance precision of GEM algorithm have been strongly improved.
- •Now, precision in many cases is in GEM as good as in LMA codes.
- •Attainable precision depends on the internal consistency of input thermodynamic data and also on the bulk composition (buffering capacity) of chemical systems.

GEM example: C-O-H-e aquatic system

In the lab

T, P of interest: $T = 25 \, ^{\circ}\text{C}$ P = 1 bar

Ingredients:

Initial State

(recipe)

Equilibration

Final State (speciation)

Water H₂O

 CO_2

Carbon C

300 g

3 g

1 g

рΗ

pe/Eh

 $\{CO_3^{-2}\}$

 $f(CH_{\Delta})$

Water - Carbon System (C-H-O-e), input data + GEM results: I = 1.25e-4 pH=3.91 pe=-0.407

Input CSD	P= 1 bar, T= 25 °C	b vector, moles total	0.15143	33.305	16.7888	0	Primal solution (IPM)	
Phases	Species	g ⁰ /(RT) , mol/mol	С	Н	0	е	Vector X,	Vector v, mol/mol
Aqueous	CO2(aq)	-155.716	1	0	2	0	1.021e-2	-159.09
(8 + 1)	CO3-2	-212.984	1	0	3	-2	1.48e-11	-236.765
	HCO3-	-236.767	1	1	3	-1	3.747e-5	-245.77
	CH4(aq)	-13.859	1	4	0	0	3.075e-9	-32.26
	H2(aq)	+7.152	0	2	0	0	2.32e-11	-16.13
	O2(aq)	+6.635	0	0	2	0	0	-159.09
	OH-	-63.442	0	1	1	-1	2.47e-11	-86.674
	H+	0	0	1	0	1	3.747e-5	-9.003
	H2O(aq)	-95.677	0	2	1	0	16.6525	-95.677
Gas	CO2	-159.095	1	0	2	0	5.792e-2	-159.09
(4)	CH4	-20.4355	1	4	0	0	4.27e-7	-32.26
	H2	0	0	2	0	0	5.71e-9	-16.13
	O2	0	0	0	2	0	0	-159.09
Graphite	С	0	1	0	0	0	8.326e-2	0
Dual solution	u vector, mole/mole		0	-8.065	-79.545	-0.938	G(x) = -1604.12354 mol	

GEM-Selektor: A thermodynamic partitioning modelling tool

- Solves for phase speciation in heterogeneous systems involving any number of multi-component (non)ideal phases
- Considers surface species similarly to solid-solution end members, gases or aqueous species
- Gives a deep insight into mathematical structure of chemical equilibria expressed in terms of chemical elements, phases and species
- Two types of results (*primal x* and *dual u*) are obtained in one run of the convex programming algorithm

DualT

$$\sum_{i \in N} a_{ji} u_i = \frac{g_{j,T}^o}{RT} + \ln C_j + \ln \gamma_j$$

Total Gibbs energy

$$G(x) = \sum_{\Phi} \sum_{l_k} \mu_j x_j \quad \Rightarrow \min$$

$$\mu$$
 - $A^T u \geq 0$;

$$A\hat{x} = b; \quad \hat{x} \ge 0;$$

$$\hat{x}^T(\mu - A^T u) = 0.$$

Karpov (Kuhn-Tucker) conditions

Chemical Thermodynamic Database: Consistency

tedious never-ending work...

Ionic strength corrections (aq): Debye-Hueckel; SIT; Pitzer

Extensions: more elements; surface species; organic complexes; SSAS ...

Dual Thermodynamics?

Surface complexes of radionuclides;

Constants for hostmineral surfaces

GEM-Selektor v.3-PSI: What's next?

- Yet more user-friendly; Full tutorial suite; More input databases
- GEM: Coupling GEM IPM into mass transport codes
- Intensive and diverse applications at LES (waste management)
- Worldwide community of GEMS users; Going open-source GPL

Users feedback: a vital contribution for improving GEMS quality!