Practical exercise 4

Aim: To verify the De-morgans Theorems by forming the circuit on the bread-board.

Theory:- The famous Mathematician De-morgans derived the two most important theorems of an Boolean Algebra.

In the Equation form they are:-

1]
$$\overline{A.B} = \overline{A} + \overline{B}$$

2]
$$\overline{A+B} = \overline{A \cdot B}$$

Now lets see the De-morgan Theorem in the detail:-

1] De-morgans first Theorem :-

Theorem: Complement of product of all the terms is equal to the sum of the complement of the each term.

$$\overline{A.B} = \overline{A} + \overline{B}$$

Bubbled OR

- The LHS Side of the Theorem represents the NAND Gate that has the input A and B.
- RHS Side of the theorem represents the inverted OR gate with its inputs.

Lets Prove the theorem :-

LHS RHS

A	В	A.B	A.B
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

A	В	A + B
1	1	1
1	0	1
0	1	1
0	0	0

Hence proved the De-morgans 1st Theorem:-

A.B = A + B

The top logic gate arranged of $\overline{A.B}$ can be implemented by using the standard NAND gate with the inputs A and B. The logic gate arranged at the lower side first inverts the two inputs producing the \overline{A} and \overline{B} then it became the inputs for the OR gate hence the output from the OR gate becames $\overline{A+B}$.

Then we can see here that standard OR gate function with the inverter on each of its inputs is equivalent to the NAND gate function .

2] De-morgans second Theorem :-

Theorem: The Complement of sum of all term is equal to the product of the complement of each term.

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

NOR ≡ Bubbled AND

Bubbled AND

- The left hand side of the theorem represents the NOR gate that has the inputs A and B.
- On the Right hand side Represents the AND gate with the inverted inputs .

LHS

A	В	A+B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

RHS

A	В	A.B
1	1	1
1	0	0
0	1	0
0	0	0

$\overline{A+B} = \overline{A} \cdot \overline{B}$

The top logic gate arrangement of $\overline{A+B}$ can be implemented by inputs A and B. The lower logic gate arrangement first inverts the two inputs and then provide A and B then they became the inputs for AND gate hence outputs became $\overline{A}.\overline{B}$.

Conclusion:- Hence we have successfully verified the De-morgans Theorem.