24 December 2024 14:0

Throughput mean data transfer speed ----(copy past/ Downloads speed)

EBC

SSD HDD

In AWS, **EBS Volume Types** are categorized based on performance and cost, allowing users to select storage optimized for their workload requirements. Below is a detailed explanation of each volume type you listed:

1. General Purpose SSD (gp2):

- Purpose: Balances price and performance for a wide variety of workloads.
- Performance:
 - o Provides baseline performance of 3 IOPS per GB.
 - o Can burst up to 3,000 IOPS for volumes under 1 TB.
- Use Cases:
 - System boot volumes.
 - o Low-latency interactive applications.
 - o Development and testing environments.
- Capacity: 1 GiB to 16 TiB.
- Throughput: Up to 250 MiB/s.

2. General Purpose SSD (gp3):

- Purpose: Next-generation general-purpose SSD offering predictable performance and lower cost compared to gp2.
- Performance:
 - o Delivers a baseline performance of 3,000 IOPS and 125 MiB/s.
 - o Performance can be provisioned up to 16,000 IOPS and 1,000 MiB/s, independent of volume size.
- Use Cases:
 - o Databases, boot volumes, and applications requiring consistent performance.
- Capacity: 1 GiB to 16 TiB.
- Throughput: Up to 1,000 MiB/s.
- Key Benefit: More cost-effective and flexible compared to gp2.

3. Provisioned IOPS SSD (io1):

- · Purpose: High-performance SSD for mission-critical workloads that require low-latency and high IOPS.
- Performance:
 - $\circ~$ Provision IOPS from 100 to 64,000 (max 50 IOPS per GiB for volumes up to 64 TiB).
 - o Designed for latency-sensitive workloads.
- Use Cases:
 - o Large-scale databases (e.g., Oracle, SQL Server, MySQL).
 - o Applications requiring high transactional workloads.
- Capacity: 4 GiB to 16 TiB.
- **Key Benefit**: Customizable performance for demanding workloads.

4. Provisioned IOPS SSD (io2):

- Purpose: Enhanced version of io1 with higher durability and better performance.
- Performance:
 - $\circ~$ Provision up to 64,000 IOPS (max 500 IOPS per GiB for volumes up to 64 TiB).
 - o 99.999% durability (compared to io1's 99.9%).
- Use Cases:
 - o Critical applications requiring very high durability and performance.
 - o Enterprise-grade databases and ERP systems.
- Capacity: 4 GiB to 64 TiB.
- Key Benefit: Higher durability and efficiency for high-performance workloads.

5. Cold HDD (sc1):

- Purpose: Low-cost, infrequent access storage for data that is rarely accessed.
- Performance:
 - o Baseline throughput of 12 MiB/s per TiB.
 - Max throughput of 250 MiB/s.
- Use Cases:

- o Cold data storage.
- Log storage or backups that are rarely accessed.
- Capacity: 125 GiB to 16 TiB.
- Key Benefit: Cost-efficient storage for rarely accessed data.

6. Throughput Optimized HDD (st1):

- Purpose: Optimized for workloads requiring high throughput rather than IOPS.
- Performance:
 - o Baseline throughput of 40 MiB/s per TiB.
 - o Max throughput of 500 MiB/s.
- Use Cases:
 - Big data processing (e.g., Hadoop).
 - o Data warehouses.
 - Streaming workloads requiring high throughput.
- Capacity: 125 GiB to 16 TiB.
- Key Benefit: Cost-effective for high-throughput workloads.

7. Magnetic (Standard):

- Purpose: Legacy storage option for workloads requiring cost-effective, low-performance storage.
- Performance:
 - Average IOPS of 100.
 - Suitable for sequential read/write operations.
- Use Cases:
 - o Archive storage.
 - Non-critical workloads or boot volumes for older instance types.
- Capacity: Up to 1 TiB.
- **Key Benefit**: Simple and cost-effective, but mostly replaced by newer options.

Comparison Summary:

Volume Type	Max IOPS	Max Throughput	Durability	Cost	Use Case
General Purpose SSD (gp2)	16,000	250 MiB/s	Standard	Moderate	Balanced workloads
General Purpose SSD (gp3)	16,000	1,000 MiB/s	Standard	Low	Databases, boot volumes
Provisioned IOPS SSD (io1)	64,000	1,000 MiB/s	High	High	Critical databases
Provisioned IOPS SSD (io2)	64,000	1,000 MiB/s	Very High	High	Enterprise applications
Cold HDD (sc1)	~500	250 MiB/s	Standard	Very Low	Rarely accessed data
Throughput Optimized HDD (st1)	~500	500 MiB/s	Standard	Low	Streaming, big data
Magnetic (Standard)	~100	Low	Standard	Very Low	Legacy, basic storage

Notes:

- IOPS (Input/Output Operations Per Second): Measures the performance of a volume in handling read/write operations.
- Durability: Higher durability reduces the risk of data loss.
- Throughput: Indicates the data transfer rate, often critical for workloads like streaming or big data.
- Cost Optimization: Match the volume type to your workload to avoid unnecessary costs.

Let me know if you need further clarification!

Step of how to Attach volume EBS

- Create a instance Lunch the instance
- Go to EBS Volume
- Create the Volume
 - Select the Volume types
 - General Purpose SSD (gp2)
 - General Purpose SSD (gp3)
 - Provisioned IOPS SSD (io1)
 - Provisioned IOPS SSD (io2) ----- (input output per sec.)
 - Cold HDD (Sc1)
 - Throughput Optimized HDD (st1)
 - Magnetic (standard)
 - Select Size (GiB)
 - Select IOPS
 - Select throughput -----(data transfer speed MB per sec.)

- Select Availability Zone
- Click the cleck the Create Volume
- After create the Volume click the Actions
- and select the Attach Volume
 - Provide the default Volume ID
 - Default Availability Zone
 - Select the Running Instance show available in Availability Zone
 - Provide the device name
 - Click the Attach Volume
- Go to the terminal

Command

- Isblk
 - display information about block devices. Block devices include hard drives, SSDs, USB drives, and partitions
 - Syntax | Isblk [option]
 - Option

```
    Isblk -a
    Isblk -I
    Isblk -F
    Isblk -F<
```

Example of output

```
SIZE RO
           MAJ:MIN
                                           MOUNTPOINTS
NAME
                                     TYPE
                       RM
                          26.3M
73.9M
                                            /snap/amazon-ssm-agent/9881
/snap/core22/1663
             7:0
                        0
loop0
                                      loop
                                   1
             7:1
loop1
                        0
                                   1
                                      loop
             7:2
                          38.8M
loop2
                        0
                                   1
                                     loop
                                            /snap/snapd/21759
                        0
                                   0
xvda
           202:0
                              8G
                                     disk
  -xvda1
           202:1
                        0
                              76
                                   0
                                     part
  -xvda14
          202:14
                        0
                              4M
                                   0
                                      part
                            106M
                                            /boot/efi
  xvda15
          202:15
                        0
                                   0
                                     part
  xvda16
          259:0
                        0
                            913M
                                   0
                                      part
                                            /boot
xvdbd
           202:14080
                        0
                            160G
                                     disk
```

Explanation of Output:

- NAME: The name of the block device (e.g., xvda, xvdf).
- MAJ:MIN: Major and minor device numbers.
- RM: Indicates whether the device is removable (1 for removable, 0 otherwise).
- **SIZE**: The size of the device or partition.
- RO: Indicates whether the device is read-only (1 for read-only, 0 otherwise).
- TYPE: The type of device (e.g., disk, part for partition, rom for CD-ROM).
- MOUNTPOINT: The directory where the device is mounted.
- mkfs.ext4 /dev/xvdbd
 - is used to format a block device (in this case, /dev/xvdbd) with the ext4 file system on a Linux system, such as one running on an AWS EC2 instance

Breakdown of the Command:

- mkfs.ext4: Creates an ext4 file system on the specified device.
- /dev/xvdbd: Specifies the block device to be formatted. This might represent an attached EBS volume or another storage device.

- mkdir /test
- mount /dev/xvdbd /test

```
root@ip-172-31-6-109:/# lsblk
NAME
        MAJ:MIN
                  RM SIZE RO TYPE MOUNTPOINTS
                   0 26.3M
          7:0
                            1 loop /snap/amazon-ssm-agent/9881
loop0
                   0 73.9M 1 loop /snap/core22/1663
loop1
          7:1
          7:2
                   0 38.8M 1 loop /snap/snapd/21759
loop2
                   0
                        8G 0 disk
xvda
         202:0
                   0
                        7G
 -xvda1 202:1
                           0 part /
 -xvda14 202:14
                   0
                        4M
                           0 part
                   0 106M
                            0 part /boot/efi
 -xvda15 202:15
 -xvda16 259:0
                   0 913M
                            0 part /boot
         202:14080 0 160G
                            0 disk /test
xvdbd
root@ip-172-31-6-109:/#
```

- mountpoint /test
 - The EBS volume are allot to the test directory

```
root@ip-172-31-6-109:/# mountpoint /test/
/test/ is a mountpoint
root@ip-172-31-6-109:/# |
```

- umount /test
 - Remove the mount

```
root@ip-172-31-6-109:/# umount /test/
root@ip-172-31-6-109:/# lsblk
                RM SIZE RO TYPE MOUNTPOINTS
        MAJ:MIN
loop0
          7:0
                  0 26.3M 1 loop /snap/amazon-ssm-agent/9881
                  0 73.9M 1 loop /snap/core22/1663
loop1
          7:1
loop2
          7:2
                 0 38.8M 1 loop /snap/snapd/21759
                 0
                       8G 0 disk
xvda
        202:0
                 0
                       7G
 -xvda1 202:1
                           0 part /
 -xvda14 202:14
                  0
                       4M
                           0 part
                  0 106M
 -xvda15 202:15
                           0 part /boot/efi
                  0 913M 0 part /boot
 -xvda16 259:0
        202:14080 0 160G 0 disk
xvdbd
root@ip-172-31-6-109:/#
```

- file -s /dev/xvdbd
- how to increase the size of EBS volume
 - Select the volume click the actions
 - Click Modify volume
 - Change the size increase in GB
 - And click modify
 - After increase the volume
 - Go to the terminal
 - Write the command
 - resize2fs /dev/xvdbd ---()
 - df -h --- (Use df -h to confirm the file system has been resized)
 - fdisk /dev/xvdbd
 - n ----(new partition)p -----(primary partition)
 - w ----(save) - q ----(quit)
 - mkfs.ext4 dev/xvdbd1 ----(make a file system)
 - mkdir ebs
 - mount /dev/xvdbd1 ebs
 - df -h
 - mountpoint
 - umount -----(remove the mount)