

VIBRATING WIRE PIEZOMETERS

WHEN AND WHERE VWPZ ARE USED

Where its used

- Used for monitoring dams' concrete integrity
- Used in areas with high risk of sink holes
- Used for measuring ground water level in boreholes
- Used for measuring pressure in industrial water flowing pipes

Borehole installation

INTERNAL DIAGRAM OF VWPZ

HOW IT WORKS

EQUATIONS

frequency of the wire=
$$\left[\frac{\sigma \cdot g}{p}\right] \cdot \frac{\frac{1}{2}}{2 \cdot l}$$

- L = original length of the wire
- P = volumetric weight of the wire
- g = gravitational constant
- σ = strain of the wire

Pressure conversion from digits calculation = $(digits_1 - digits_0) * G$

• G = linear gauge factor (dependent on manufacturer)

Linear Units (Digits calculation) = $\frac{H_Z^2}{1000}$

- Hz = resonant frequency of the wire
- Use this equation for converting to pressure

B.1 3KΩ THERMISTOR RESISTANCE

Thermistor Types include YSI 44005, Dale #1C3001–B3, Alpha #13A3001–B3, and Honeywell 192–302LET–A01

Resistance to Temperature Equation:

$$T = \frac{1}{A + B(LnR) + C(LnR)^3} - 273.15$$

EQUATION 6: 3KΩ Thermistor Resistance

Where:

T = Temperature in °C

LnR = Natural Log of Thermistor Resistance

 $A = 1.4051 \times 10^{-3}$

 $B = 2.369 \times 10^{-4}$

 $C = 1.019 \times 10^{-7}$

Note: Coefficients calculated over the -50 to +150 °C span.

HOW ITS READ

Frequency Response and SNR Comparison

Frequency Response and SNR Comparison

CALIBRATION EXAMPLE

Vibrating Wire Pressure Transducer Calibration Report

Model Number: 4500S-350 kPa Date of Calibration: November 09, 2023

Serial Number: 2317618 This calibration has been verified/validated as of 11/13/2023 Temperature: 20.80 °C

Calibration Instruction: CI-Pressure Transducer (7 kPa~3.5 MPa)

Barometric Pressure: 990.5 mbar

Technician: Dean O. Cowdray

Cable Length:

Applied Pressure (kPa)	Gauge Reading 1st Cycle	Gauge Reading 2nd Cycle	Average Gauge Reading	Calculated Pressure (Linear)	Error Linear (%FS)	Calculated Pressure (Polynomial)	Error Polynomial (%FS)
0.0	8888	8888	8888	0.467	0.13	0.008	0.00
70.0	8293	8293	8293	69.96	-0.01	69.99	0.00
140.0	7696	7696	7696	139.7	-0.07	140.0	0.01
210.0	7096	7097	7097	209.7	-0.09	210.0	-0.01
280.0	6494	6495	6495	280.0	0.00	280.1	0.01
350.0	5891	5892	5892	350.5	0.13	350.0	-0.01

(kPa) Linear Gauge Factor (G): -0.1168 (kPa/digit)

Polynomial Gauge factors:

A: -3.415E-07

B: -0.1118

Thermal Factor (K): -0.1028 (kPa/°C)

Calculate C by setting P=0 and R₁ = initial field zero reading into the polynomial equation

(psi) Linear Gauge Factor (G): -0.01694 (psi/digit)

Polynomial Gauge Factors:

A: -4.953E-08

B: -0.01621

Pressure calculation Example:

Pressure conversion = $(digits_1 - digits_0) * G$

$$(8293 - 8888) * (-0.1168) = 69.5 \text{ kPa}$$

WORK CITED

- Model 4500 Series Vibrating Wire Piezometer GEOKON,
 www.geokon.com/content/manuals/4500_Piezometer.pdf.Accessed 21 Mar. 2024.
- "Reading Vibrating Wire Sensors: Spectral Analysis a Method to Determine the Resonant Frequency of Vibrating Wire Sensors with Improved Noise Immunity." Reading Vibrating Wire Sensors: Spectral Analysis: A Method To..., www.campbellsci.com/vspect/spectral-analysis. Accessed 21 Mar. 2024.
- "André Coyne." Wikipedia, Wikimedia Foundation, 24 Aug. 2022, en.wikipedia.org/wiki/Andr%C3%A9_Coyne.