Random functions and MLE

Lecturer: Michael I. Jordan Scribe: Richard Shin

1 Random functions with random arguments

Last time, we were in the middle of talking about what happens if we have random functions with random arguments.

Theorem 1 (Theorem 9.4 of Keener (2010)). $G_n \in C(K)$. Suppose that we have $||G_n - g||_{\infty} \xrightarrow{p} 0$ and $g \in C(k)$. Then

- If $t_n \xrightarrow{p} t^* \in K$, then $G_n(t_n) \xrightarrow{p} g(t^*)$.
- If g achieves its maximum at a unique value t^* , and if t_n maximizes G_n , then $t_n \xrightarrow{p} t^*$.

Proof. For the first part:

$$|G_n(t_n) - g(t^*)| \le |G_n(t_n) - g(t_n)| + |g(t_n) - g(t^*)|$$
 (triangle inequality)
 $\le ||G_n - g||_{\infty} + |g(t_n) - g(t^*)|$

We also know that $g(t_n) \xrightarrow{p} g(t^*)$. Then

$$\Rightarrow P(|G_n(t_n) - g(t^*)| > \epsilon) \le P(\|G_n - g\|_{\infty} + |g(t_n) - g(t^*)| > \epsilon)$$

$$\le P(\underbrace{\|G_n - g\|_{\infty}}_{Z_1} > \frac{\epsilon}{2}) + P(\underbrace{|g(t_n) - g(t^*)|}_{Z_2} > \frac{\epsilon}{2})$$

From assumptions we have that $||G_n - g||_{\infty} \xrightarrow{p} 0$ and $g(t_n) \xrightarrow{p} g(t^*)$, so we are done.

We used the union bound to break up the probability. Recall the the union bound is $P(A \cup B) \le P(A) + P(B)$.

$$P(Z_1 + Z_2) > \epsilon$$

$$\{Z_1 + Z_2 > \epsilon\} \Rightarrow \{Z_1 > \frac{\epsilon}{2}\} \cup \{Z_2 > \frac{\epsilon}{2}\}$$

For the second part:

Fix $\epsilon > 0$. Let $K_{\epsilon} = K - B_{\epsilon}(t^*)$, and

$$M = g(t^*)$$

$$M_{\epsilon} = \sup_{t \in K_{\epsilon}} g(t)$$

$$K_{\epsilon} \text{ compact} \Rightarrow M_{\epsilon} = g(t_{\epsilon}^*) \quad t_{\epsilon}^* \in K_{\epsilon}$$
and $M_{\epsilon} < M$

Let $\delta = M - M_{\epsilon}$, and suppose $||G_n - g||_{\infty} < \frac{\delta}{2}$.

$$\begin{split} (*) &\Rightarrow \sup_{K_{\epsilon}} G_n < \sup_{K_{\epsilon}} g + \frac{\delta}{2} = M_{\epsilon} + \frac{\delta}{2} = M - \frac{\delta}{2} \\ &\Rightarrow \sup_{K} G_n \geq G_n(t^*) > g(t^*) - \frac{\delta}{2} = M - \frac{\delta}{2} \\ &\Rightarrow \sup_{K} G_n \geq M - \frac{\delta}{2} > \sup_{K_{\epsilon}} G_n \\ &\Rightarrow t_n, \text{ which maximizes } G_n, \text{ lies in } B_{\epsilon}(t^*) \\ &\Rightarrow P(\|G_n - g\|_{\infty} < \frac{\delta}{2}) \leq P(\|t_n - t^*\| < \epsilon) \\ &\Rightarrow P(\|t_n - t^*\| \geq \epsilon) \leq P(\|G_n - g\|_{\infty} \geq \frac{\delta}{2}) \to 0 \end{split}$$

2 Consistency of MLE

Assume that X, X_1, X_2, \cdots are i.i.d. from f_{θ} (continuous in θ).

$$l_n(\omega) = \log \prod_{i=1}^n f_{\omega}(X_i) = \sum_i \log f_{\omega}(X_i)$$
$$\hat{\theta}_n \in \arg \max l_n(\omega)$$

The Kullback-Leibler divergence is

$$I(\theta, \omega) = E_{\theta} \log \frac{f_{\theta}(X)}{f_{\omega}(X)}$$
$$I(\theta, \omega) > 0 \quad \text{unless } \theta = \omega$$

Let us also define

$$W(\omega) = \log \frac{f_{\omega}(X)}{f_{\theta}(X)}$$

Theorem 2 (Theorem 9.9 of Keener (2010)). Ω compact, $E_{\theta} \|\omega\|_{\infty} < \infty$, $f_{\omega}(x)$ is continuous in w a.e. x, and $P_{\omega} \neq P_{\theta}$ if $\theta \neq \omega$ (identifiability). Then

$$\hat{\theta}_n \xrightarrow{p} \theta$$
.

Proof. Let $W_i(\omega) = \log \frac{f_{\omega}(X_i)}{f_{\theta}(X_i)} \in C(\Omega)$. $W_i(\omega)$ are i.i.d. with mean $-I(\theta, \omega) = \mu(\omega)$. This has a unique maximum at θ .

Let
$$\bar{W}_n(\omega) = \frac{1}{n} \sum_i W_i(\omega) = \frac{1}{n} l_n(\omega) - \frac{1}{n} l_n(\theta)$$
. $\hat{\theta}_n$ maximizes $\bar{\omega}_n(\omega)$.

Theorem 9.2 implies $\|\bar{W}_n - \mu\|_{\infty} \xrightarrow{p} 0$ and Theorem 9.4(1) implies $\hat{\theta}_n \xrightarrow{p} \theta$.

Theorem 3 (Theorem 9.9, without compactness). Let $\Omega = \mathbf{R}^p$, let $f_{\omega}(x)$ be continuous in ω a.e. x. Let $P_{\theta} \neq P_{\omega}$ for $\theta \neq \omega$, let $f_{\omega}(x) \to 0$ as $\omega \to \infty$ a.e. x. If $E_{\theta} \|\mathbf{1}_K W\|_{\infty} < \infty$ for all compact $K \subseteq \mathbf{R}^p$, and if $E_{\theta} \sup_{\|\omega\|>a} W(\omega) < \infty$ for some a, then

$$\hat{\theta}_n \xrightarrow{p} \theta$$
.

See Keener (2010) for the proof.

3 Distributional results

Lemma 4 (Lemma 9.15 of Keener (2010)). Suppose $Y_n \Rightarrow Y$ and $P(B_n) \to 1$. Then, for arbitrary RVs n,

$$Y_n \mathbf{1}_{B_n} + Z_n \mathbf{1}_{B_n^C} \Rightarrow Y$$
.

Proof. Let $\epsilon > 0$.

$$P(|Z_n \mathbf{1}_{B_n^C}| > \epsilon) \le P(B_n^C) = 1 - P(B_n) \to 0$$

$$P(|\mathbf{1}_{B_n} - \mathbf{1}| > \epsilon) \le P(B_n^C) \to 0$$

$$\Rightarrow \mathbf{1}_{B_n} \xrightarrow{p} 1$$

Using Slutsky, $Y_n \mathbf{1}_{B_n} + Z_n \mathbf{1}_{B_n^C} \Rightarrow Y$.

We now define the following notation:

- $W(\theta) = \log f_{\theta}(X)$
- $I(\theta) = E_{\theta}(W'(\theta))^2 = -E_{\theta}W''(\theta)$
- $E_{\theta}W'(\theta) = 0$

Remark 5 (Statement 5 of Theorem 9.14). $\forall \theta \in \Omega^0, \exists \epsilon > 0 \text{ s.t. } E_{\theta} \| \mathbf{1}_{(\theta - \epsilon, \theta + \epsilon)} W'' \|_{\infty} < \infty$. Then

$$\Rightarrow \sqrt{n}(\hat{\theta}_n - \theta) \Rightarrow N\left(0, \frac{1}{I(\theta)}\right) \quad \theta \in \Omega^0$$

Proof. Use this statement to choose $\epsilon > 0$ s.t. $E_{\theta} \| \mathbf{1}_{(\theta - \epsilon, \theta + \epsilon)} W'' \|_{\infty} < \infty$ and $[\theta - \epsilon, \theta + \epsilon] \subset \Omega^{0}$. Let B_{n} denote the event that $\hat{\theta}_{n} \in (\theta - \epsilon, \theta + \epsilon)$.

Consistency
$$\Rightarrow P(B_n) \to 1$$
.

Define $\bar{W}_n(\omega) = \frac{1}{n} l_n(\omega) = \frac{1}{n} \sup_i \log f_\omega(X_i)$. Taking the Taylor expansion of \bar{W}'_n ,

$$\begin{split} \bar{W}_n'(\hat{\theta}_n) &= \bar{W}_n'(\theta) + \bar{W}_n''(\tilde{\theta}_n)(\hat{\theta}_n - \theta) = 0 \\ \sqrt{n}(\hat{\theta}_n - \theta) &= \frac{\sqrt{n}\bar{W}_n'(\theta)}{-\bar{W}_n''(\tilde{\theta}_n)} \\ \text{CLT} &\Rightarrow \sqrt{n}\bar{W}_n'(\theta) \Rightarrow N(0, I(\theta)) \end{split}$$

If the denominator converges in probability to $I(\theta)$, we're done (Slutsky), since if Y = aX then $VarY = a^2VarX$.

On
$$B_n$$
 $|\tilde{\theta}_n - \theta| \leq |\hat{\theta}_n - \theta| \Rightarrow \tilde{\theta}_n \stackrel{p}{\to} \theta$
Theorem $9.2 \Rightarrow \|\mathbf{1}_{(\theta - \epsilon, \theta + \epsilon)}(\bar{W}_n'' - \mu)\|_{\infty} \stackrel{p}{\to} 0$
 $\mu(\omega) = E_{\theta}W''(\omega)$
Theorem 9.4 part $(1) \Rightarrow \bar{W}_n''(\tilde{\theta}_n) \to \mu(\theta) = -I(\theta)$

This was a taste of the harder parts of empirical process theory.

References

Keener, R. (2010). Theoretical Statistics: Topics for a Core Course. Springer, New York, NY.