

GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts

CVPR2023 Highlight

Haoran Geng 1,2,3* Helin Xu 4* Chengyang Zhao ^{1*} Chao Xu ⁵ Li Yi ⁴ He Wang 1,2† Siyuan Huang³

¹CFCS, Peking University ²School of EECS, Peking University ³Beijing Institute for General Artificial Intelligence ⁴Tsinghua University ⁵University of California, Los Angeles

Motivation

Key insight: Parts are fundamental building blocks of our daily objects. We humans can identify a set of commonly used parts, which can generalize to unseen object categories. Some part classes are more elementary and fundamental Buttons on Remote than object categories and thus

Goal: Learning cross-category skills via Generalizable and Actionable Parts (GAParts).

worthy of more research efforts.

Handles on Furniture

Tasks: Part Perception (Segmentation & Pose Estimation), Partbased Object Manipulation

Contribution

Dataset: A novel concept GAPart, a large-scale interactive dataset, GAPartNet, with rich part semantics and pose annotations.

Perception: A first-ever pipeline for domain-generalizable 3D part segmentation and pose estimation

Manipulation: A new solution to generalizable object manipulation by leveraging the concept of GAPart

Dataset

GAPart Concept Rigorous Definition:

Geometric similarity, actionability alignment **Semantics:**

9 common GAPart classes

Poses:

Canonicalized part position and orientation in NPCS (Normalized Part Coordinate Space)

GAPartNet Dataset

- A large-scale part-centric interactive dataset
- 9 GAPart classes, 27 object categories, 8,489 part instances, 1,166 objects
- Rich, part-level annotations (semantics, poses)

Methods

Part Segmentation and Pose Estimation

- A part-oriented domain adversarial training strategy.
- Part-oriented feature query, multi-resolution, and leveraging focal loss Part-based Object Manipulation
- Actionability in GAPart pose definition → a simple yet efficient heuristic algorithm

Results

		Ln.F.Hl.	Rd.F.Hl.	Hg.Hl.	Hg.Ld.	Sd.Ld.	Sd.Bn	Sd.Dw.	Hg.Dr.	Hg.Kb.	Avg.AP	Avg.AP50
Seen (%)	PG [17]	86.1	23.0	84.6	80.01	88.3	49.3	62.6	92.8	34.6	57.3	66.8
	SG [48]	57.8	93.6	81.2	76.0	89.3	25.2	50.8	93.9	51.5	58.5	68.8
	AGP [31]	86.8	20.3	87.7	79.7	89.4	62.3	61.6	92.5	16.7	57.2	66.3
	Ours	89.2	54.9	90.4	84.8	89.8	66.7	67.2	94.7	52.9	67.6	76.5
Unseen (%)	PG [17]	32.44	9.8	2.1	26.8	0.0	42.6	57.0	63.9	1.7	21.9	26.3
	SG [48]	25.8	5.0	0.4	33.9	0.6	51.5	51.2	69.0	12.1	22.0	27.7
	AGP [48]	45.6	4.8	3.1	34.3	0.0	47.8	64.1	63.1	11.5	25.7	30.5
	Ours	45.6	40.0	3.1	40.2	5.0	49.1	64.2	69.1	23.4	32.0	37.2

7			$R_e\downarrow$	$T_e \downarrow$	$S_e \!\!\downarrow$	$ heta_e \!\!\downarrow$	$d_e\!\!\downarrow$	mIoU ↑	$\mathbf{A}_5 \uparrow$	$\mathbf{A}_{10}\uparrow$
	Seen	PG [17]								
		AGP [31]	14.4	0.036	0.039	7.955	0.021	48.7	40.9	64.8
		Ours	8.8	0.028	0.035	7.4	0.014	52.2	45.6	71.5
	Unseen	PG [17]	18.2	0.056	0.073	12.0	0.031	36.2	28.0	50.9
		AGP [31]	18.2	0.57	0.076	11.9	0.029	36.3	28.6	51.2
		Ours	14.8	0.051	0.067	11.3	0.024	43.1	32.0	55.7

China3DV 2023

Cross-category Part Segmentation and Pose Estimation

the Simulator

Cross-category Part-based Object Manipulation in the Real World

Scan the QR code for more information and to contact us!

