Midwest Big Data Summer School: Introduction to Statistics

Kris De Brabanter

kbrabant@iastate.edu

Iowa State University
Department of Statistics
Department of Computer Science

June 20, 2016

Outline

- What is Statistics?
- Measures of central tendency and variance
- 3 Data types
- 4 How to visualize data?
 - Boxplot
 - Histogram
- 6 Regression
 - Linear regression
 - Nonparametric regression

Renewable Energy: Next Generation Solar Cells

Technologies for the intelligent environment

• Google: "The practice or science of collecting and analyzing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample."

- Google: "The practice or science of collecting and analyzing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample."
- Wikipedia: "The study of the collection, analysis, interpretation, presentation, and organization of data."

- Google: "The practice or science of collecting and analyzing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample."
- Wikipedia: "The study of the collection, analysis, interpretation, presentation, and organization of data."
- Sir Arthur Lyon Bowley: "Numerical statements of facts in any department of inquiry placed in relation to each other."

- Google: "The practice or science of collecting and analyzing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample."
- Wikipedia: "The study of the collection, analysis, interpretation, presentation, and organization of data."
- Sir Arthur Lyon Bowley: "Numerical statements of facts in any department of inquiry placed in relation to each other."
- BusinessDictionary.com: "Branch of mathematics concerned with collection, classification, analysis, and interpretation of numerical facts, for drawing inferences on the basis of their quantifiable likelihood. Statistics can interpret aggregates of data too large to be intelligible by ordinary observation because such data tend to behave in regular, predictable manner..."

Descriptive vs. Inferential Statistics

- Descriptive statistics: "Analysis of data that helps describe, show or summarize data in a meaningful way such that, for example, patterns might emerge from the data."
- Inferential statistics: "...makes inferences about populations using data drawn from the population. Instead of using the entire population to gather the data, the statistician will collect a sample or samples from the millions of residents and make inferences about the entire population using the sample.."

Sample vs. Population

The results from the sample are generalized to the population

The sample is selected from the population

THE SAMPLE
The individuals selected to participate in the research study

Measures of central tendency and variance

- What is Statistics?
- Measures of central tendency and variance
- 3 Data types
- 4 How to visualize data?
 - Boxplot
 - Histogram
- 6 Regression
 - Linear regression
 - Nonparametric regression

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Length, in cm, of Left Forearm

	Mean	Variance
No outlier	24.733	1.792
With outlier	25.625	3.964

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

mean & variance NOT robust

Length, in cm, of Left Forearm

	Mean	Variance
No outlier	24.733	1.792
With outlier	25.625	3.964

$$\mathrm{median}(X) = \begin{cases} X_{((n+1)/2)}, & \text{if } n \text{ is odd;} \\ \frac{1}{2}(X_{(n/2)} + X_{(1+n/2)}), & \text{if } n \text{ is even.} \end{cases}$$

$$MAD = median(|X_i - median(X)|)$$

$$\mathrm{median}(X) = \begin{cases} X_{((n+1)/2)}, & \text{if } n \text{ is odd;} \\ \frac{1}{2}(X_{(n/2)} + X_{(1+n/2)}), & \text{if } n \text{ is even.} \end{cases}$$

$$MAD = median(|X_i - median(X)|)$$

$$MAD = median(|X_i - median(X)|)$$

	Mean	Variance	Median	MAD
No outlier				1
With outlier	25.625	3.964	25	1

		Variance	Median	MAD
No outlier			25	1
With outlier	25.625	3.964	25	1

Data types

- What is Statistics?
- 2 Measures of central tendency and variance
- Oata types
- 4 How to visualize data?
 - Boxplot
 - Histogram
- 6 Regression
 - Linear regression
 - Nonparametric regression

Data types

Data Type	Possible Values	Example	Permissible Statistics
binary	0,1	yes/no	mode, χ^2
categorial	1,2,, <i>K</i>	blood type, color	mode, χ^2
ordinal	integer/real/order	score/rank	mode, median,
binomial	$0,1,\ldots,N$	# successes	mean, median,
count	integers (+)	# items	Interval scales
real valued additive	real number	location parameter	mean, mode,
real valued multiplicative	real number (+)	scale parameter	Interval scales

Data types

Data Type	Possible Values	Example	Permissible Statistics
binary	0,1	yes/no	mode, χ^2
categorial	1,2,, <i>K</i>	blood type, color	mode, χ^2
ordinal	integer/real/order	score/rank	mode, median,
binomial	$0,1,\ldots,N$	# successes	mean, median,
count	integers $(+)$	# items	Interval scales
real valued additive	real number	location parameter	mean, mode,
real valued multiplicative	real number (+)	÷r	Interval scales
		Mathematical Statistics	

and Data Analysis
John A. Rice

11/27

How to visualize data?

- What is Statistics?
- 2 Measures of central tendency and variance
- 3 Data types
- 4 How to visualize data?
 - Boxplot
 - Histogram
- 6 Regression
 - Linear regression
 - Nonparametric regression

Definition (quartiles)

Definition (quartiles)

The quartiles of a ranked set of data values are the three points that divide the data set into four equal groups, each group comprising a quarter of the data.

• First quartile (Q_1) : splits off the lowest 25% of data from the highest 75%

Definition (quartiles)

- First quartile (Q_1) : splits off the lowest 25% of data from the highest 75%
- **Second quartile** (Q_2 or median): cuts data set in half

Definition (quartiles)

- First quartile (Q_1) : splits off the lowest 25% of data from the highest 75%
- **Second quartile** (Q_2 or median): cuts data set in half
- Third quartile (Q_3) : splits off the highest 25% of data from the lowest 75%

Definition (quartiles)

- First quartile (Q_1) : splits off the lowest 25% of data from the highest 75%
- **Second quartile** $(Q_2$ or median): cuts data set in half
- Third quartile (Q_3) : splits off the highest 25% of data from the lowest 75%
- Interquartile range: $IQR = Q_3 Q_1$

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49$$

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49$$

• $Q_1 = 15$

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49$$

- $Q_1 = 15$
- $Q_2 = 40$

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49\\$$

- $Q_1 = 15$
- $Q_2 = 40$
- $Q_3 = 43$

Boxplot & quartiles: Example

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49$$

- $Q_1 = 15$
- $Q_2 = 40$
- $Q_3 = 43$
- $IQR = Q_3 Q_1 = 43 15 = 28$

Boxplot & quartiles: Example

Consider the following ordered data set:

$$6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49$$

- $Q_1 = 15$
- $Q_2 = 40$
- $Q_3 = 43$
- $IQR = Q_3 Q_1 = 43 15 = 28$

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

Binwidth h is crucial

- Graphical representation of the density of the data
- Available in each statistical software package (Matlab, R, etc.)

Effect of binwidth: Annual snowfall in Buffalo (NY) from 1910 to 1972

Effect of different origin: Annual snowfall in Buffalo (NY) from 1910 to 1972 with binwidth h=13.5

More advanced methods

In order to overcome the choice of origin, one could use average shifted histograms or kernel density estimation. Both have a parameter similar to the binwidth.

More advanced methods

In order to overcome the choice of origin, one could use average shifted histograms or kernel density estimation. Both have a parameter similar to the binwidth.

Regression

- What is Statistics?
- 2 Measures of central tendency and variance
- Operation Data types
- 4 How to visualize data?
 - Boxplot
 - Histogram
- 6 Regression
 - Linear regression
 - Nonparametric regression

Formulation of the problem statement

Formulation of the problem statement

Formulation of the problem statement

How to find the black line?

• Model: $Y_i = \beta_0 + \beta_1 x_i + e_i, 1, ..., n$

- Model: $Y_i = \beta_0 + \beta_1 x_i + e_i, 1, ..., n$
- How to find parameters β_0 and β_1 given data?

- Model: $Y_i = \beta_0 + \beta_1 x_i + e_i, 1, ..., n$
- How to find parameters β_0 and β_1 given data?

- Model: $Y_i = \beta_0 + \beta_1 x_i + e_i, 1, ..., n$
- How to find parameters β_0 and β_1 given data?

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{\beta_0, \beta_1 \in \mathbb{R}^2}{\arg \min} \frac{1}{n} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 x_i)^2$$

Definition

The **residual** \hat{e} of an observed value is the difference between the observed value and the estimated value of the quantity of interest. Mathematically

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

Definition

The residual \hat{e} of an observed value is the difference between the observed value and the estimated value of the quantity of interest. Mathematically

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

Check visually for constant variance (homoskedasticity)

Definition

The **residual** \hat{e} of an observed value is the difference between the observed value and the estimated value of the quantity of interest. Mathematically

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

Check visually for constant variance (homoskedasticity)

Definition

The **residual** \hat{e} of an observed value is the difference between the observed value and the estimated value of the quantity of interest. Mathematically

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

• Check visually for constant variance (homoskedasticity)

Definition

The **residual** \hat{e} of an observed value is the difference between the observed value and the estimated value of the quantity of interest. Mathematically

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

• Check visually for constant variance (homoskedasticity)

• Plot autocorrelation function of residuals

Plot autocorrelation function of residuals

Plot autocorrelation function of residuals

- Visual inspection is sometimes hard
- Hypothesis test: Breusch-Pagan, Engle's test,...
- Hypothesis test: Runs test (test of randomness)
- Cook's distance for leverage points

- Visual inspection is sometimes hard
- Hypothesis test: Breusch-Pagan, Engle's test,...
- Hypothesis test: Runs test (test of randomness)
- Cook's distance for leverage points

One outlier can completely destroy the OLS estimate!!!!

- Visual inspection is sometimes hard
- Hypothesis test: Breusch-Pagan, Engle's test,...
- Hypothesis test: Runs test (test of randomness)
- Cook's distance for leverage points

One outlier can completely destroy the OLS estimate!!!!

- Why nonparametric regression?
 - Not always easy to find a suitable parametric model to explain some phenomena
 - Flexibility in data analysis

- Why nonparametric regression?
 - Not always easy to find a suitable parametric model to explain some phenomena
 - Flexibility in data analysis

- Why nonparametric regression?
 - Not always easy to find a suitable parametric model to explain some phenomena
 - Flexibility in data analysis

Let the data speak for itself

- Why nonparametric regression?
 - Not always easy to find a suitable parametric model to explain some phenomena
 - Flexibility in data analysis

- Let the data speak for itself
- Mainly developed in 1950s and 1960s
- Combination of parametric and nonparametric methods

Nonparametric regression (Cont'd)

References

- Fan J. & Gijbels I. (1996). Local Polynomial Regression and Its Applications, Chapman & Hall
- Györfi L, Kohler M., Krzyżak A. & Walk H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer
- Hampel F. R., Ronchetti E. M., Rousseeuw P. J. & Werner A. (1986), Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons
- Kutner M., Natchtsheim C., Neter J. (2004), Applied Linear Statistical Models (5th Ed.), McGraw-Hill/Irwin
- Maronna R., Martin D. & Yohai V. (2006). Robust Statistics: Theory and Methods, Wiley
- Rice J.A. (2007). Mathematical Statistics and Data Analysis, 3rd Ed., Brooks/Cole
- Rousseeuw P. J. & Leroy A. M. (2003), Robust Regression and Outlier Detection, Wiley
- Scott D. W., Multivariate Density Estimation: Theory, Practice and Visualization (2nd Ed.), Wiley, 2016
- Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman & Hall, 1986
- Simonoff J.S. (1996), Smoothing Methods in Statistics, Springer
- Wasserman L. (2006). All of Nonparametric Statistics, Springer