

Санкт-Петербургский государственный университет Кафедра системного программирования

Определение реберной k-связности: детерминированные алгоритмы

Демченко Артем Евгеньевич, группа 22.Б11-мм

Введение, определения

- Будем рассматривать **неориентированные** графы G = (V, E).
- ullet Граф называется реберно k-связным, если удаление любых (k-1) ребер оставляет граф связным.
- Реберной связностью графа называется

$$\lambda(\mathit{G}) = \max\{ k \mid \mathit{G} \ \mathsf{peбернo} \ \mathit{k}\text{-cвязен} \}.$$

- Для тривиального графа считаем: $\lambda(K_1) = 0$.
- Тривиальный граф это граф, состоящий из одной вершины и не имеющий рёбер.

Пример

Рис.: Рёберная связность $\lambda=3$

Применение алгоритмов определения k-связности

- Определение минимального числа каналов связи, при потере которых датацентр распадается на изолированные части.
- Проверка, сколько мостов в дорожной сети можно закрыть, прежде чем отдельные районы города потеряют соединение.
- Анализ резервных маршрутов в топологии облачного кластера, чтобы гарантировать доступность сервисов.
- Вычисление устойчивости сети электропередач: сколько линий можно вывести из строя без отключения потребителей.

Связь с теоремой Менгера

Theorem (Менгер, рёберная версия)

Между вершинами и и v существует L рёберно непересекающихся путей тогда и только тогда, когда после удаления любых (L-1) рёбер в графе остаётся путь из и в v.

- Каждое ребро $\{u,v\} \in E$ заменяем на два ориентированных рёбра (u,v) и (v,u).
- Каждому ориентированному ребру приписываем пропускную способность c(u, v) = 1.
- Необходимо найти глобальный минимальный разрез в получившейся сети.

Решение задачи минимального разреза

После перехода к сети с единичными пропускными способностями задача сводится к нахождению **минимального разреза**. Существуют два основных подхода:

Через max-flow:

- ightharpoonup Для каждой пары вершин (s,t) вычисляем максимальный поток $\max \mathrm{flow}(s,t).$
- ▶ По теореме max-flow/min-cut это значение равно минимальному s-t-разрезу, то есть $\lambda(s,t)$.
- ▶ Глобальная рёберная связность: $\lambda(G) = \min_{s \neq t} \lambda(s, t)$.

Алгоритм Штор-Вагнера:

- Итеративно объединяет вершины, вычисляя разрезы в упрощённой последовательности графов.
- Находит глобальный минимальный разрез эффективнее, чем полный перебор всех пар.

Подход 1: через max-flow

- ullet Для каждой пары вершин $(s,t) \in V$:
 - ▶ Вычисляем максимальный поток $\max flow(s,t)$ с помощью алгоритма Форда-Фалкерсона, Эдмондса-Карпа или push-relabel.
 - ▶ Значение потока совпадает с минимальным *s*–*t*-разрезом: $\lambda(s,t) = \max \text{flow}(s,t).$
- Глобальная связность:

$$\lambda(G) = \min_{s \neq t} \lambda(s, t).$$

- Недостаток: требуется запускать max-flow для $O(|V|^2)$ пар, что дорого для больших графов.
- Преимущество: простая и концептуально наглядная связь с классическими алгоритмами потоков.

Определения (метод проталкивания предпотока)

- **Предпоток:** функция $f: V \times V \to \mathbb{R}$, для которой:

 - ③ $\forall u \in V \setminus \{s,t\}: \sum_{v \in V} f(v,u) \ge 0$ (ослабленное сохранение потока)
- Избыточный поток: $e(u) = \sum_{v \in V} f(v, u)$. Вершина u переполнена, если e(u) > 0.
- Высота вершины: функция $h: V \to \mathbb{Z}_+$:
 - **1** h(s) = |V|, h(t) = 0
 - ② $h(u) \le h(v) + 1$ для всех ребер (u, v) в остаточной сети.

Описание и идея алгоритма

- Дан граф G = (V, E) с истоком s и стоком t, на рёбрах заданы пропускные способности c(u, v).
- Поток f(u,v) интерпретируем как «жидкость», текущую по трубам.
- Алгоритм работает с предпотоком, допускающим избыток в промежуточных вершинах.
- Интуитивная модель: резервуары на разных высотах, соединённые трубами.
- Пока есть переполненные вершины:
 - ► Проталкивание (push) переливание избытка в более низкую вершину.
 - ▶ Подъём (relabel) если проталкивать нельзя, вершина поднимается на 1.
- Когда переполненных вершин не остаётся, предпоток становится максимальным потоком.

Операция push

Условия применения проталкивания *и* в *v*:

- Вершина *u* переполнена: e(u) > 0.
- Остаточная пропускная способность $c_f(u, v) > 0$.
- Высота h(u) = h(v) + 1.

Действия:

- $\delta = \min(e(u), c_f(u, v))$ по ребру (u, v).
- Обновляем $f(u, v) := f(u, v) + \delta$, $f(v, u) := f(v, u) \delta$.
- ullet Уменьшаем e(u) на δ , увеличиваем e(v) на δ .

Операция relabel

Условия применения:

- Вершина *и* переполнена.
- Для всех соседей v с $c_f(u,v)>0$ условие $h(u)\leq h(v)$.

Действие:

• Устанавливаем $h(u) := 1 + \min\{h(v) : c_f(u, v) > 0\}.$

Смысл: поднять «резервуар» так, чтобы появилось хотя бы одно допустимое ребро для проталкивания.

Схема алгоритма push-relabel

- **①** Инициализация: h(s) = |V|, h(v) = 0 для $v \neq s$, проталкиваем по рёбрам (s, v) максимальный поток.
- ② Пока существует переполненная вершина $u \neq s, t$:
 - ► Если возможно, выполнить операцию push.
 - ▶ Иначе выполнить операцию relabel.
- Когда переполненных вершин нет, полученный предпоток максимальный поток.

Итог подхода 1

- Алгоритм работает за $O(V^2E)$ в общем случае.
- За счет выбора порядка обработки вершин можно добиться $O(V^3)$.
 - ▶ Используем стратегию Relabel-to-Front, которая задает определенный порядок обработки вершин.
- Получаем, что мы можем решить задачу определения k-связности за время $O(V^5)$.

Подход 2: алгоритм Штор-Вагнера

- Будем n-1 раз повторять следующий процесс: находить минимальный разрез между какой-нибудь парой вершин s и t, а затем объединять эти две вершины в одну.
- ullet Минимум по всем n-1 найденным разрезам является ответом.

Алгоритм

- Старт: $A = \{a\}$ (любая вершина). Для $v \notin A$ поддерживаем $w_A(v) = \sum_{u \in A} w(u, v)$.
- Пока $A \neq V$: добавить в A вершину с максимальным $w_A(\cdot)$. Обновить $w_A(\cdot)$ для соседей.
- Пусть t последняя добавленная вершина, s предпоследняя.
- Обновить ответ весом разреза s-t; затем **склеить** s и t в одну вершину.

Асимптотика

- **1** Нахождение вершины с наибольшей w за O(n), n-1 фаза по n-1 итерации в каждой. В итоге имеем $O(n^3)$.
- Если использовать двоичные кучи, то асимптотика составит $O(nm\log n + n^2)$.

Корректность алгоритма

Theorem

Если добавлять в множество A по очереди все вершины, каждый раз добавляя вершину, наиболее сильно связанную с A, то пусть предпоследняя добавленная вершина — s, а последняя — t. Тогда минимальный s—t разрез состоит из единственной вершины — t.

Доказательство (шаг 1)

Рассмотрим произвольный $s\!-\!t$ разрез C и покажем, что его вес не может быть меньше веса разреза, состоящего из единственной вершины t:

$$w(\{t\}) \leq w(C).$$

Пусть v — вершина, которую мы хотим добавить в A, тогда A_v — состояние множества A в этот момент. Пусть C_v — разрез множества $A_v \cup v$, индуцированный разрезом C. Назовем вершину v активной, если она и предыдущая добавленная вершина в A принадлежат разным частям разреза C, тогда для любой такой вершины, если мы докажем дополнительное условие ниже:

$$w(v, A_v) \leq w(C_v).$$

Доказательство (шаг 2)

То если t — активная вершина, для неё выполняется:

$$w(t, A_t) \leq w(C_t), \quad w(t, A_t) = w(\{t\}), \quad w(C_t) = w(C).$$

Получили утверждение теоремы. Для доказательства воспользуемся методом математической индукции. Для первой активной вершины v это неравенство выполнено, так как все вершины A_v принадлежат одной части разреза, а v — другой. Пусть неравенство выполнено для всех активных вершин до v, включая v, докажем его для следующей активной вершины u.

Доказательство (шаг 3)

$$w(u, A_u) = w(u, A_v) + w(u, A_u \setminus A_v). \quad (*)$$

Заметим, что

$$w(u,A_v) \leq w(v,A_v). \quad (**)$$

Вершина v имела большее значение w, чем u, так как была добавлена в A раньше. По предположению индукции:

$$w(v, A_v) \leq w(C_v).$$

Следовательно из (**):

$$w(u, A_v) \leq w(C_v).$$

А из (*):

$$w(u, A_u) \leq w(C_v) + w(u, A_u \setminus A_v).$$

Доказательство (шаг 4)

А из (*) имеем:

$$w(u, A_u) \leq w(C_v) + w(u, A_u \setminus A_v).$$

Вершина u и $A_u \setminus A_v$ находятся в разных частях разреза C, значит $w(u,A_u\setminus A_v)$ равна сумме весов рёбер, которые не входят в C_v , но входят в C_u .

Таким образом:

$$w(u, A_u) \leq w(C_v) + w(u, A_u \setminus A_v) \leq w(C_u),$$

что и требовалось доказать.

Измерения, эксперименты

Были реализованы два подхода на языке Go 1.22, а именно:

- ullet Max-flow (а именно push-relabel) для каждый пары вершин за $O(V^5)$.
- Алгоритм Штор-Вагнера без оптимизаций за $O(V^3)$.

Характеристики машины

- OC Ubuntu 22.04.5 LTS
- Процессор 13th Gen Intel Core i7-13700Н @ 2.4GHz
- L1d 544KiB; L1i 704KiB; L2 11.5MiB; L3 24MiB
- 32 GB RAM

Результаты с max-flow

Рис.: Рёберная связность $\lambda=3$

Результаты с алгоритмом Штор-Вагнера

Рис.: Рёберная связность $\lambda=3$