CS/ECE 374 P02

Pengxu Zheng, Junquan Chen, Jiawei Tang

TOTAL POINTS

100 / 100

QUESTION 1

1 Problem 2 100 / 100

√ - 0 pts Correct

Submitted by:

- «Pengxu Zheng»: «pzheng5»
- \ll Junquan Chen \gg : \ll junquan $2\gg$
- «Jiawei Tang»: «jiaweit2»

2

Solution:

Proof: for any $w \in L$ and any prefix u of w, we have $\#_0(u) \geq \#_1(u)$.

Base Case: Let $w = \varepsilon$, the prefix u of w is also ε by definition. $\#_0(u) = \#_1(u) = 0$. Hence, the statement holds for $w = \varepsilon$.

Version: 1.0

Inductive Hypothesis: Let w be an arbitrary string in L, and let u be its prefix. There exists $\#_0(u) \ge \#_1(u)$.

Induction (w = 0y1):

Let u be the prefix of w, w = 0y1, where y is not empty and $y \in L$.

Case 1: If $u = \varepsilon$, then $\#_0(u) = \#_1(u) = 0$.

Case 2: If $0 < |\mathbf{u}| < |\mathbf{w}|$, then let $\mathbf{u} = 0\mathbf{x}$, $x \in L$,

$$\#_0(u) = \#_0(0) + \#_0(x) + \#_0(1) = 1 + \#_0(x)$$

$$\#_1(u) = \#_1(0) + \#_1(x) + \#_1(1) = \#_1(x)$$

$$\#_0(u) - \#_1(u) = 1 + \#_0(x) - \#_1(x)$$

By inductive hypothesis, $\#_0(x) \ge \#_1(x)$, thus

$$\#_0(u) - \#_1(u) \ge 1 > 0$$

Case 3: If $|\mathbf{u}| = |\mathbf{w}|$, then $\mathbf{u} = \mathbf{w} = 0$ y1.

$$\#_{\mathbf{0}}(u) = 1 + \#_{\mathbf{0}}(y),$$

$$\#_1(u) = 1 + \#_1(y),$$

$$\#_0(u) - \#_1(u) = \#_0(y) - \#_1(y).$$

By inductive hypothesis, $\#_0(y) > \#_1(y)$.

Hence, $\#_0(u) > \#_1(u)$.

The inductive hypothesis holds for w = 0y1.

Induction (w = xy):

Let u be the prefix of w, w = xy, where x, y are not empty and $x, y \in L$. Let a be the prefix of x, b be the prefix of y, $a, b \in L$.

Case 1: If |u| = |a| < |w|, u = a, by inductive hypothesis, $\#_0(a) \ge \#_1(a)$.

Case 2: If $|a| = |x| < |u| \le |w|$, u = xb, by inductive hypothesis, $\#_0(x) \ge \#_1(x)$.

$$\#_0(u) = \#_0(x) + \#_0(b); \#_1(u) = \#_1(x) + \#_1(b).$$

By inductive hypothesis, $\#_0(u) \geq \#_1(u)$. Hence, the inductive hypothesis holds for w = xy.

Conclusion: The inductive hypothesis holds true for any $w \in L$.

1 Problem 2 100 / 100

√ - 0 pts Correct