

Insertion vs. Merge sort

- For big n, merge sort (with $\theta(nlogn)$) beat insertion sort (with $\theta(n^2)$)
- we can sometimes determine the exact running time of an algorithm (as we did for insertion sort)
- the extra precision is not usually worth the effort of computing it
- Neglectable:
 - multiplicative constants
 - lower-order terms
- We use several notations to compare various functions complexity $(o, O, \theta, \Omega, \omega)$

Complexity notations

- We use several notations to compare various functions complexity $(o, O, \theta, \Omega, \omega)$
- We use equivalent notations for comparison numbers: < ≤ = ≥ >
- e.g. $a \le b$ for numbers and f(n) = O(g(n)) for functions

$$f(n) = O(g(n))$$
 is like $a \le b$
 $f(n) = \Omega(g(n))$ is like $a \ge b$
 $f(n) = \Theta(g(n))$ is like $a = b$
 $f(n) = o(g(n))$ is like $a < b$
 $f(n) = \omega(g(n))$ is like $a > b$

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

$$f(n) = O(g(n))$$

O-notation-Example

•
$$f(n) = 2n^2 - 3n + 4$$

•
$$g(n) = n^3$$

•
$$f(n) \stackrel{?}{=} O(g(n))$$

•
$$g(n) \stackrel{?}{=} O(f(n))$$

$$2n^{2} - 3n + 4 \le cn^{3}$$

$$2n^{2} < 2n^{3}$$

$$-3n + 4 < 0 \qquad n \ge 2$$

 $2n^2 - 3n + 4 \le 2n^3$

$$n_0 = 2$$

 $C = 2$

O-notation-Example

•
$$g(n) \stackrel{?}{=} O(f(n))$$

$$\nexists n_0$$
, $c > 0$

$$n > n_0$$

$$n^3 < c(n^2 - 3n + 4)$$

$$0 < -n^3 + cn^2 - 3cn + 4c$$

$$n = n_0 + c$$

O-notation-Example

•
$$f(n) = 2^{10^9} n^2$$

•
$$g(n) = n^2$$

•
$$g(n) \stackrel{?}{=} O(f(n))$$

•
$$f(n) \stackrel{?}{=} O(g(n))$$

Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

$$f(n) = \Omega(g(n))$$

- $f(n) = 2n^2 3n + 4$
- $g(n) = n^3$
- $\bullet \quad f(n) = O(g(n))$
- $g(n) = \Omega(f(n))$

سمانه حسيني سمناني

هیات علمی دانشکده برق و کامپیوتر - دانشگاه صنعتی اصفهان

 $f(n) = \Omega(g(n))$

Ω -notation-Example

•
$$f(n) = 2^{10^9} n^2$$

•
$$g(n) = n^2$$

•
$$g(n) = \Omega(f(n))$$

•
$$f(n) \stackrel{?}{=} \Omega(g(n))$$

θ -notation

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

A function f(n) belongs to the set g(n) if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.

$$f(n) = \Theta(g(n))$$

θ -notation-Example

•
$$f(n) = 2^{10^9} n^2$$

•
$$g(n) = n^2$$

•
$$g(n) \stackrel{?}{=} \theta (f(n))$$

•
$$f(n) \stackrel{?}{=} \theta(g(n))$$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

- $\bullet \ an^2 + bn + c = \ \theta(n^2)$
- $\bullet an^2 + bn + c = O(n^2)$
- $an^2 + bn + c = \Omega(n^2)$

Theorem

$$f(n) = a_k n^k + \dots + a_1 n + a_0 \qquad \to \qquad f(n) = \theta (n^k) \qquad a_k > 0$$

$$f(n) = O(n^k) \qquad \to \exists c, n_0 > 0 \qquad a_k n^k + \dots + a_1 n + a_0 \le c n^k$$

$$c = \sum_{i=0}^k |a_i| \ , \ n_0 = 1$$

$$f(n) = \Omega(n^k) \qquad \to \exists c, n_0 > 0$$

$$a_k n^k + \dots + a_1 n + a_0 \ge c n^k$$

o-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

 $o(g(n)) = \{ f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$

o-notation-Example

 $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- $f(n) = 2n^2$
- $g(n) = 3n^2 + 5n + 6$
- $f(n) \neq o(g(n))$

برهان خلف:
$$\forall \ c \ \exists n_0 \ n > n_0 \qquad 2n^2 < c(3n^2 + 5n + 6)$$

$$C = 1/3$$

ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

 $\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$.

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \quad \text{For example, } n^2/2 = \omega(n), \text{ but } n^2/2 \neq \omega(n^2)$$

Comparing functions

 Many of the relational properties of real numbers apply to asymptotic comparisons as well:

• Transitivity: تعدى

• Reflexivity: انعكاسى

• Symmetry: تقارني

Transpose symmetry

Transitivity یا تعدی

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$
 $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$
 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$
 $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$
 $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$

Reflexivity یا انعکاسی

$$f(n) = \Theta(f(n))$$

 $f(n) = O(f(n))$
 $f(n) = \Omega(f(n))$

Symmetry یا تقارن

F

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

Transpose symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$

$$f(n) = \begin{cases} 2^n \\ 100n \end{cases}$$

$$n \le 10^{10} \\ n > 10^{10}$$

$$g(n) = 2n^2 + n$$

•
$$g(n) \stackrel{?}{=} O(f(n))$$

n! (2^n)

 $3^n (2^n)$

 $\log n!$ (nlogn)

$$n! = \omega \qquad (2^n)$$

 $3^n (2^n)$

 $\log n!$ (nlogn)

$$n! = o \qquad (n^n)$$

$$n! = \omega \qquad (2^n)$$

$$3^n = \omega \qquad (2^n)$$

 $\log n!$ (nlogn)

$$n! = o \qquad (n^n)$$

$$n! = \omega \qquad (2^n)$$

$$3^n = \omega \qquad (2^n)$$

 $\log n! = \theta \qquad (nlogn)$

Which one has the lowest complexity?

 n^2

n!

 $\log n!$

 2^n

 $(^{3}/_{2})^{n}$

 n^3

$$n^{\frac{1}{\log n}}$$

 $n^{0.0001}$

 $\log n^{1000}$

$$f(n) = O(g(n)) \xrightarrow{?} 2^{f(n)} = O(2^{g(n)})$$

$$f(n) = 2n$$

$$g(n) = n$$

$$f(n) = O(g(n)) \xrightarrow{?} \log f(n) = O(\log(g(n)))$$