Uniform convergence (Section 24)

Definition (24.1-2)

Suppose f, f_1, f_2, \ldots are functions from $S \subset \mathbb{R}$ to \mathbb{R} . $f_n \to f$ pointwise on S if $f_n(x) \to f(x)$, $\forall x \in S$: $\forall \varepsilon > 0, x \in S$ $\exists N = N(\varepsilon, x) \in \mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon$ for $n \ge N$. $f_n \to f$ uniformly on S if $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) \in \mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon$ for $n \ge N$, $\forall x \in S$. Equivalently, $\lim_n \sup_{x \in S} |f_n(x) - f(x)| = 0$.

Uniform convergence \Rightarrow pointwise convergence.

The converse is false.

Uniform convergence preserves continuity

Theorem (24.3)

Suppose $f_n \to f$ uniformly on S, and $\forall n$, f_n is continuous at $x_0 \in S$. Then f is continuous at x_0 .

Proof by " $\frac{\varepsilon}{3}$ **argument".** Fix $\varepsilon > 0$. Need to find $\delta > 0$ s.t. $|f(x_0) - f(x)| < \varepsilon$ whenever $x \in S$, $|x - x_0| < \delta$. Find n s.t. $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$, $\forall x \in S$. f_n is continuous at x_0 , hence $\exists \delta > 0$ s.t. $|f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$ whenever $x \in S$, $|x - x_0| < \delta$. This δ works for us: if $|x - x_0| < \delta$, then $|f(x_0) - f(x)| \le |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x)| + |f_n(x) - f(x)| < 3\frac{\varepsilon}{3} = \varepsilon$.

More examples of convergence

 $f_n(x) = \frac{x}{1+nx^2}$. Does the sequence (f_n) converge pointwise on \mathbb{R} ? If yes, find the limit, and determine whether the convergence is uniform. (Example 7 from p. 198)

$$f_n(0) = 0$$
 for any n . If $x \neq 0$, then $f_n(x) = \frac{x/n}{1/n + x^2}$, so $\lim_n f_n(x) = 0$. $f_n \to f$ pointwise, where $f(x) = 0$.

$$f_n \to f$$
 uniformly iff $\lim_n \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$.

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \frac{|x|}{1 + nx^2}.$$

AGM Inequality: for
$$a, b \ge 0, \sqrt{ab} \le \frac{a+b}{2}$$
.

Take
$$a = 1$$
, $b = nx^2$: $\sqrt{n}|x| \leqslant \frac{1 + nx^2}{2}$, hence $\frac{|x|}{1 + nx^2} \leqslant \frac{1}{2\sqrt{n}}$.

$$\lim_n \frac{1}{2\sqrt{n}} = 0$$
, hence $\lim_n \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$.

Conclusion: $f_n \to f$ uniformly (f(x) = 0).

More examples of convergence

 $f_n(x) = n^2 x^n (1-x)$. Does the sequence (f_n) converge pointwise on [0,1]? If yes, find the limit, and determine whether the convergence is uniform. (Example 8 from p. 198)

$$f_n(0) = f_n(1) = 0$$
. Recall Exercise 9.12: if $\lim_n \left| \frac{s_{n+1}}{s_n} \right| < 1$, then $\lim s_n = 0$. Take $s_n = f_n(x) = n^2 x^n (1-x)$ $(0 < x < 1)$, then $\lim_n \left| \frac{s_{n+1}}{s_n} \right| = x$, hence $\lim f_n(x) = 0$.

 $f_n \to f$ pointwise, where f(x) = 0. $f_n \to f$ uniformly iff $\lim_n \sup_{x \in [0,1]} |f_n(x) - f(x)| = 0$.

To find $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \max_{0 \le x \le 1} f_n(x)$, differentiate: $f'_n(x) = n^2 (nx^{n-1} - (n+1)x^n) = n^2 (n+1)x^{n-1} (x - \frac{n}{n+1})$. $f_n(\frac{n}{n+1}) = n^2 (\frac{n}{n+1}) \frac{1}{n+1} = \frac{n^{n+1}}{(n+1)^n} = \frac{n^2}{n+1} \cdot (\frac{n}{n+1})^n$. $\lim_{n \to \infty} (\frac{n}{n+1})^n = \frac{1}{n}$, hence $\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| = +\infty$.

Conclusion: $f_n \to f$ pointwise, but not uniformly (f(x) = 0).

Uniformly Cauchy sequences (Section 25)

Definition (25.3)

A sequence (f_n) of functions $S \to \mathbb{R}$ is called <u>uniformly Cauchy</u> if $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ s.t. $|f_i(x) - f_j(x)| < \varepsilon \ \forall x \in S$ whenever $i, j \geqslant N$.

Equivalently: $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.} \ \text{for} \ i,j \geqslant N, \ \sup_{x \in S} |f_i(x) - f_j(x)| < \varepsilon.$

If the functions (f_i) are bounded, then (f_i) is uniformly Cauchy iff it is Cauchy in the metric space (B(S), d).

Recall $d(f,g) = \sup_{x \in S} |f(x) - g(x)|$.

Theorem (25.4)

 (f_n) is uniformly Cauchy iff it converges uniformly to some f.

Corollary. B(S) is a complete metric space.

Proof: uniformly Cauchy ⇔ uniformly converges

Theorem 25.4. (f_n) is uniformly Cauchy iff it converges uniformly to some f.

Proof. (1) If $f_n \to f$ uniformly, then (f_n) is uniformly Cauchy. For $\varepsilon > 0$, find $N \in \mathbb{N}$ s.t., for $i \geqslant N$, $|f_i(x) - f(x)| < \frac{\varepsilon}{2}$, $\forall x \in S$. If $i, j \geqslant N$, $x \in S$, then $|f_i(x) - f_j(x)| \leqslant |f_i(x) - f(x)| + |f_j(x) - f(x)| < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$.

- (2) Suppose (f_n) is uniformly Cauchy. Find uniform limit f.
- (i) $\forall x \in S$, $(f_n(x))$ is Cauchy, hence convergent. Let $f(x) = \lim_n f_n(x)$, then $f_n \to f$ pointwise.
- (ii) Show: $f_n \to f$ uniformly. Fix $\varepsilon > 0$; we need to find $N \in \mathbb{N}$ s.t. $|f_n(x) f(x)| \le \varepsilon \ \forall x \in S$, $\forall n \ge N$. Find N s.t. $|f_n(x) f_m(x)| < \varepsilon \ \forall x \in S$ when $n, m \ge N$. If $n \ge N$, then $|f_n(x) f(x)| = \lim_m |f_n(x) f_m(x)| \le \varepsilon \ \forall x \in S$.

Uniform convergence for series of functions

We are given functions $g_n: S \to \mathbb{R}$. A series of functions $\sum_{n=1}^{\infty} g_n(x)$ converges (uniformly) if the sequence $s_k(x) = \sum_{n=1}^k g_n(x)$ of partial sums converges (uniformly).

Theorem (25.5)

If the functions (g_n) are continuous on S, and $\sum_n g_n$ converges uniformly on S, then $\sum_n g_n$ is continuous.

Proof. If the functions (g_n) are continuous on S, then so are the partial sums s_k . $\sum_{n=1}^{\infty} g_n(x) = \lim_k s_k(x)$, and the convergence is uniform; uniform limits of continuous functions are continuous.

The Cauchy criterion for series

Definition (p. 205)

 $\sum_{n} g_n(x)$ satisfies the Cauchy criterion uniformly on S if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ s.t. $\left| \sum_{n=i}^{j} g_n(x) \right| < \varepsilon \ \forall x \in S$ whenever $j \geqslant i > N$.

Theorem (25.6)

If $\sum_n g_n$ satisfies the Cauchy criterion uniformly on S, then the series converges uniformly.

Remark. The converse is also true.

Proof. We need to verify that the sequence of partial sums

$$s_k(x) = \sum_{n=1}^k g_n(x)$$
 is uniformly Cauchy: $\forall \varepsilon > 0 \ \exists N \ \text{s.t.}$

$$|s_i(x) - \overline{s_i(x)}| < \varepsilon$$
 for any $x \in S$, whenever $j > i \ge N$.

N is in the definition works: if $j > i \geqslant N$, then, for $x \in S$,

$$|s_j(x) - s_i(x)| = |\sum_{n=1}^j g_n(x) - \sum_{n=1}^i g_n(x)| = |\sum_{n=i+1}^j g_n(x)| < \varepsilon.$$

Weierstrass *M*-test for uniform convergence

Theorem (25.7)

Suppose $M_1, M_2, \ldots \in [0, \infty)$, and $\sum_k M_k < \infty$. If $|g_k| \leq M_k$ on S for any k, then $\sum g_k$ converges uniformly on S.

Proof. Fix
$$\varepsilon > 0$$
. Find N s.t. $\sum_{k=i}^{j} M_k < \varepsilon$ for $j \ge i \ge N$. Then for $x \in S$, $\left| \sum_{k=i}^{j} g_k(x) \right| \le \sum_{k=i}^{j} |g_k(x)| \le \sum_{k=i}^{j} M_k < \varepsilon$.

Corollary

A power series $\sum_k a_k x^k$ converges uniformly (to a continuous function) on [-b,b], if b < R ($R = \left(\lim \sup |a_n|^{1/n} \right)^{-1}$).

Proof. Let
$$M_k = |a_k|b^k$$
; $\limsup_k M_k^{1/k} = b \limsup_k |a_k|^{1/k} = b/R < 1$, so $\sum_k M_k < \infty$. Apply Weierstrass M -Test.

Remark. Convergence need not be uniform on (-R,R). Indeed, $\sum_{k=0}^{\infty} x^k = f(x) = \frac{1}{1-x}$ for $x \in (-1,1)$; the convergence is not uniform, since partial sums are bounded, but f is not.