Homework 2 - Combinatorics

1. Let $\lambda = (\lambda_1, \lambda_2, \ldots), \mu = (\mu_1, \mu_2, \ldots) \vdash n$ be partitions of n. Recall that the lexicographic order \prec on partitions of n is given by $\mu \prec \lambda$ iff there is some j such that $\mu_i = \lambda_i$ for all i < jand $\mu_i < \lambda_i$. It is a total order: we either have $\mu \prec \lambda$ or $\lambda \prec \mu$ or $\lambda = \mu$.

A different order on partitions of n is the dominance order. The dominance order \leq is defined by $\mu \leq \lambda$ iff $\mu_1 + \mu_2 + \cdots + \mu_j \leq \lambda_1 + \lambda_2 + \cdots + \lambda_j$ for all j. The dominance order is only partial order: we might have neither $\mu \leq \lambda$ nor $\lambda \leq \mu$.

- (a) Show that the lexicographic order extends the dominance order in the sense that if we have partitions $\lambda, \mu \vdash n$ with $\mu \leq \lambda$ and $\mu \neq \lambda$ then necessarily $\mu \prec \lambda$.
- (b) Give an example of partitions $\lambda, \mu \vdash n$ with $\mu \prec \lambda$ but $\mu \not\leq \lambda$.

Consider the partitions λ , $\mu \vdash n$ where $\mu \subseteq \lambda$ and $\mu \neq \lambda$ 10/10 WIOG note that if the length of m = 5 > t = length of x, then m < x or prise't a partition of the same number since there is present, ..., us Now we know that $\mu, \leq \lambda, \mu, + \mu_2 \leq \lambda, + \lambda_2$ µ, + µ2 + µ3 4 >, + >2 + >3, etc. Observe that if $\mu_1 = \lambda_1$ and $\mu_1 + \mu_2 = \lambda_1 + \lambda_2$, then $\mu_1 = \lambda_1$, and if also $\mu_1 + \mu_2 + \mu_3 = \lambda_1 + \lambda_2 + \lambda_3$, then $\mu_5 = \lambda_3$, and so on If we continue this pattern, then we'll get u + uz + ... + un = x + xz + ... + \ and \ \mu, + \ \mu_2 + ... + \ \mu_n \ \le \ \lambda + \ \lambda_2 + ... + \ \ \ But recall that $\mu \neq \lambda$, so $\mu_1 + \mu_2 + ... + \mu_n = \lambda_1 + \lambda_2 + ... + \lambda_n$ can't be true because then ti, $\mu_i = \lambda_i = \lambda = \lambda$. Thus, $\mu_1 + \mu_2 + ... + \mu_n + \lambda_n + \lambda_n$. And m, + m2 + ... + m, = >, + >2 + ... + >n, => m, < >, => m < >... Let M = 67333 and X = 682222, then M, X + n since 6+7+3+3+3 = 6) 6 + 8 + 2 + 2 + 2 + 2 = 22μ 6 6 The partial sums for in and I are as follows: 13 14 16 16 Observe that for the second one, u < \ and for 19 18 22 20 the fourth one u > \ => u 4 \. Also, 6 = 6 and Good.

2. Show that we could've used dominance order instead of lexicographic order in our arguments about the triangularity of the transition matrices from p_{λ} or e_{λ} to m_{μ} . That is, show that

$$p_{\lambda} = \sum_{\lambda \leq \mu} \alpha_{\mu}^{\lambda} m_{\mu}$$
 and $e_{\lambda} = \sum_{\mu \leq \lambda^{t}} \beta_{\mu}^{\lambda} m_{\mu}$ for coefficients $\alpha_{\mu}^{\lambda}, \beta_{\mu}^{\lambda} \in \mathbb{C}$

for any $\lambda \vdash n$, where \leq is dominance order and λ^t is the transpose (a.k.a. conjugate) of λ .

Show $\rho_{\lambda} = \propto_{\lambda}^{\lambda} n_{\lambda} + \prod_{p \geq 1}^{n} \propto_{p}^{\mu} n_{p}$ for $\alpha_{p}^{\mu} \in \mathbb{C}$.

By expanding ρ_{λ} , we get $(x^{\lambda}_{\lambda} + x^{\lambda}_{\lambda} + \dots)(x^{\lambda}_{\lambda}^{\lambda} + x^{\lambda}_{\lambda}^{\lambda} + \dots) \dots (x^{\lambda}_{\lambda}^{\mu} + x^{\lambda}_{\lambda}^{\mu} + \dots)$ => there will be a term of $x^{\lambda}_{\lambda} | x^{\lambda}_{\lambda} | x^{\lambda}_{\lambda} | x^{\lambda}_{\lambda} = x^{\lambda}_{\lambda} \neq 0$. The exponent vectors for $\mu \neq \lambda$ can all be obtained by summing up the parts of λ , and $\lambda = \lambda = \lambda$ for $\lambda = \lambda$ for all be obtained by summing up parts of $\lambda = \lambda$ for $\lambda = \lambda$ for $\lambda = \lambda$ for all be obtained by summing up parts of $\lambda = \lambda$ for $\lambda = \lambda$ for $\lambda = \lambda$ for all be obtained by summing up parts of $\lambda = \lambda$ for $\lambda = \lambda$ fo

3. Let $\lambda \vdash n$ and define f^{λ} to be the coefficient of $x_1x_2\cdots x_n$ in the Schur function $s_{\lambda}(x_1, x_2, \ldots)$. Explain why $f^{\lambda} = f^{\lambda^t}$. Give an example showing that this is not true for other coefficients of Schur functions (i.e., that $s_{\lambda} \neq s_{\lambda^t}$ in general).

Let $\lambda + n$ and define f^{λ} to be the coefficient of $x, x_2, ... x_n$ in the Schur function $s_{\lambda}(x_1, x_2, ...)$.

By definition, the Semistandard Young Tableau is a filling of the Young Tableau where the rows are weathy increasing and the columns are strictly increasing. And since f^{λ} is the coefficient of $x_1, x_2, ..., x_n$ where $x_1, x_2, ..., x_n$ all have order 1, each element appears in the Semistandard Young Tableau

10/10

8/10

only once. This me	are that the	rows are strictly in	creasing.
Now observe that	filling the rows	in A equates to	o filling the columns in Xt
and filling the colu	mas in A equa	ates to filling the 1	ows in Xt. So since
every element appear	s once, making	y it so that the	rows of λ and λ^t are
strictly increasing, gi	ving 2 and 2	It the same restr	\rightarrow λ and λ^{t} can
be filled the same	. way $= > f^{\times}$	= f ^{xt} Good. But what	about an example of unequal coefficients? [-2pts

4. The Cauchy–Binet formula says that if $A = (A_{i,j})$ is an $m \times n$ matrix and $B = (B_{i,j})$ is an $n \times m$ matrix, then the determinant of the $m \times m$ matrix AB can be computed by

$$\det(AB) = \sum_{I \subseteq [n], \#I = m} \det(A \mid_{\text{cols} = I}) \det(B \mid_{\text{rows} = I}).$$

Here, as always, $[n] := \{1, 2, ..., n\}$, and $A \mid_{\text{cols}=I} (\text{resp.}, B \mid_{\text{rows}=I}) \text{ means the } m \times m \text{ matrix we get by restricting } A \text{ to the columns in } I (\text{resp.}, \text{by restricting } B \text{ to the rows in } I).$

Deduce the Cauchy–Binet formula from the Lindström–Gessel–Viennot formula.

Hint: Consider the network with source vertices s_1, \ldots, s_m , target vertices t_1, \ldots, t_m , and internal vertices k_1, \ldots, k_n , and edges $s_i \to k_j$ with weight $A_{i,j}$ and $k_i \to t_j$ with weight $B_{i,j}$.

Let $A = (A_{i,j})$ be an m x n matrix and $B = (B_{i,j})$ be an n x n matrix.

Consider the network with source vertices S_1, \ldots, S_m , target vertices t_1, \ldots, t_m , and internal vertices t_1, \ldots, t_m , and edges $S_i \rightarrow k_j$ with weight $A_{i,j}$ and $k_i \rightarrow t_j$ with weight $B_{i,j}$. Then $AB_{i,j} = \sum_{i=1}^{n} A_{i,i} \times B_{j,i} \times \dots$ Let $I \subset [n]$.

Let P_{SI} be the set of all disjoint paths from the source vertices to exclusively internal vertices with indices in I, and let P_{II} be the set of all disjoint paths from internal vertices with indices in I to any target vertices.

Using the Lindström-Gessel-Viennet formula, we get that $\det(A) = \sum_{R \in P_{II}} \operatorname{sign}(R) \times I(R)$ and $\det(B) = \sum_{S \in P_{II}} \operatorname{sign}(S) \times I(S) = \operatorname{det}(A) \det(B) = \sum_{R \in P_{II}} \operatorname{sign}(R) \times I(R) = \operatorname{det}(A) \cdot \operatorname{det}(B) = \operatorname{det}(A) \cdot \operatorname{det}(A) =$

pathe	۷	pessi	مع	4	Mo	وس	h	H	۰	ìv	J۵	m	ال	Ve	rtic	es	-1	hc	Ŧ	h	JL.	i	nd	æ	-	Γ.	Т	سا	ς,_	
I=[r],	⊭I=	e de) (4/2	ءام	= I) ત	et	(B	ro	ധ്യ	= I) =	= I	رم] در]	Σ ,#1	= n-	Ĺ	PEP,	Z I × l	īт	Sig	, (I	>)	w(P)]	-	da	J
∴ d																														
					,																									
		, -					1				_		1							1		ı	_			_		1's		
	t:	$=(\lambda_1, 1)$ Your ultipli	for	mu	ıla	can	us	e t	he	ler	igtl	'n ℓ((λ)	:=	ma															
Then																√ts		Nou	ر ا	if	W	ڡ	W	مین	 	to	fi,	مل	\mathcal{H}	_
wnb																														
CK-1	CC	Σi α	Nou	S	of		doin	ع	+	تم	ŀ .	Bu	+	Se	مدا		of	+	he	f	er	3	ه(')		كصد	19	ط	e ·	H
same	,	and	Si	nce	_	it	d	ಂಬ	n't	-	me	tte	v	W	hai	+	٥rz	der	-	Hu	y'r	٥	in	,	we		au	د	to	
by.																														
																				-					7			٢		_
m;()	、))	, i.e	,	ذ≥	ιĽ	m	<u>;</u> ()	\)	IJ.	K	l's								 -											
: T	he	for	m	la	f	or	n	ጎኢ	(T	Ι,		(1,		iS	(K-	L((7))! ;	∏ ≥1	(m	٠ <u>.</u> (<i>\</i>)!] (1					
																	Goo	d, aı	nd n	ice	expl	anat	ion.							
																					fo: t			also	be v	vritte	en a	s a c	ertai	n