

lineal

reputentación afín

$$\rightarrow r(A \cup b) = r(A)$$

- 3. (a) S genera a M <=> S ≥ B para alguna base B de M <=> E-S ⊆ E-B para alguna base E-B de M*

 <=> E-S es independiente en M*
 - (6) E-S y E-T son independients en M^* y |E-S| < |E-T|Por (I3), existe $S \in ((E-T) - (E-S)) = S-T$ to 1 que (E-S) us es independient en $M^* \rightarrow S-s$ genera o M.
- 4. C,D dependiente $\Rightarrow r(C) \le |C| 1$ $r(D) \le |D| 1$ $C\cap D$ independiente $\Rightarrow r(C\cap D) = |C\cap D|$ for submodularidad, $r(C\cup D) \le r(C) + r(D) r(C\cap D)$ $\le |C| 1 + |D| 1 |C\cap D| = |C\cup D| 2$, de dande $r(C\cup D-x) \le r((\cup D) \le |C\cup D| 2 < |C\cup D-x|$.
- 5. (a) Sea B una base de M/A \Rightarrow Si BA es una base de A, BuBA es Independiente en M \Rightarrow B es independiente en M y B \cap A = \emptyset \Rightarrow B es independiente en M\A \Rightarrow $r(M/A) = |B| \le r(M\setminus A)$.
 - (b) (B(M/A) \subseteq B(M\A): fea B una base de M/A. Repitiendo el argumento de (a), B er indep. en M\A y $|B| = M \land A \rightarrow B \in B(M \land A)$.

 (2) $r(M^*/A) = r(M^* \land A)$: $r(M^*/A) = r((M \land A)^*) = |E-A| r(M \land A) = r(M/A) = r(M^*/A)$
 - 3 (B(M/A) 2 B(M/A))
 - Por 2 podemos usar 1 con $M^* y A, y$ obtener que $\mathcal{B}(M^*/A) \subseteq \mathcal{B}(M^*/A) \xrightarrow{dial} \mathcal{B}(M \setminus A) \subseteq \mathcal{B}(M/A)$.