Han Zhao, May 1, 2017

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Introduction

Concept

LPN: Learning Parity with Noise

- 1. Randomly select a secret s in GF(2)
- 2. Randomly select A from GF(2)
- 3. Select a noise $e \longrightarrow Ber_e$
- 4. Output $b = \langle A^*s + e \rangle$ as a sample $b_i = A_i^*s + e_i \mod 2$ with i = 0, 1, ..., m

The goal:

Find s given only the values of b and A.

Introduction Motivation

Fundamental in theory

- A close connection to the problem of decoding binary random linear codes.
- Believed to be hard: no polynomial time algorithm is known.

Motivation

LPN - Problem

BKW Algorithm¹

labeled examples:
$$2^{\Omega(\frac{n}{logn})}$$

time consuption:
$$2^{\Omega(\frac{n}{logn})}$$

2. Algorithm of Lyubashevsky²

labeled examples: $n^{1+\epsilon}$

time consuption:
$$2^{\Omega(\frac{n}{\log \log n})}$$

3. LF1 Algorithm³

labeled examples: polynomial number of trials

time consuption: exponential time

Introduction

Motivation

- Fundamental in theory
 - A close connection to the problem of decoding binary random linear codes.
 - Believed to be hard: no polynomial time algorithm is known.
- Many cryptographic applications in practice
 - User authentication, encryption, etc.
 - Post-quantum cryptography.

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase
Authentication phase

Conclusion

Schedule

Bibliography

The construction of the authentication system

Enrollment phase:

- Collecting response and chanllenge pairs (RCPs)
 - Encoding module

Authentication phase:

- Matching the extracted RCPs with the reference RCPs
 - Decoding module

The construction of the authentication system Enrollment phase

The construction of the authentication system Authentication phase

The construction of the authentication system Authentication phase

Extracting s from the decoding module:

- Gaussian elimination algorithm
- Error correction algorithm

Authentication phase Error correction codes

Possible Candidates:

Hamming Code

Repetition Code

BCH Code

Reed-Muller Code

LDPC Code

Error correction code Reed Muller Code

Characteristics:

- the simple construction
- no parity check matrix
- good error correction property

Encoding Algorithm

The Plotkin-Construction⁴

Characterization of RM(r,m) codes with the parameters r and m:

$$n=2^m$$

$$k = \sum_{i=1}^{r} \binom{m}{i}$$

$$d = 2^{m-r}$$

Plotkin construction with two subcodes for RM(r,m):

$$|u| u + v|$$
: $u \in RM(r,m-1)$, $v \in RM(r-1,m-1)$

Reed Muller Code

RM(1,7)

Decoding Algorithm

The Recursive Decoding Algorithm⁴

- 1) SDML-Decoding for Repetition Code or Parity-Check Code
- 2a) Decoding for the first outer codeword RM(r-1,m-1)
- 2b) Decoding for the second outer codeword RM(r,m-1)
 - 3) Reconstructing the codeword RM(r,m) with the two subcodes

Decoding AlgorithmThe Recursive Decoding Algorithm

Decoding Algorithm

The Recursive Decoding Algorithm

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Conclusion

Trapdoor

Encoding based on PUF-response

The hardness of LPN problem

Hash Function

Decoding with error correction algorithm

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Schedule

WBS	Name	Start	Finish	Work
1	Implementation in software(Python)	May 5	May 12	6d
2	Design the hardware structure of encoder	May 15	May 17	3d
3	Implementation of encoder (VHDL)	May 18	Jun 2	14d
4	Implementation of hash function(VHDL)	Jun 5	Jun 9	5d
5	Design the hardware structure of decoder	Jun 12	Jun 16	5d
6	Implementation of decoder(VHDL)	Jun 19	Jul 21	25d
7	Implementation of the rest part(VHDL)	Jul 24	Aug 4	10d
8	Writing master paper	Jul 10	Sep 1	40d

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Bibliography

- [1] A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," J. ACM, vol. 50, no. 4, pp. 506–519, 2003.
- [2] V. Lyubashevsky, "The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem," in Proc. 8th Int. Workshop Approximation, Randomization Combinatorial Optimization Algorithms Techn., 2005, pp. 378–389.
- [3] E. Levieil, and P.-A. Fouque, "An improved LPN algorithm," in Proc. 5th Int. Conf. Security Cryptography Networks, 2006, pp. 348–359.
- [4] Bossert, Martin: Kanalcodierung. 3., überarb. Aufl. München: Oldenbourg, 2013. XVIII, 531 S.: graph. Darst.. ISBN 978–3–486–72128–7 978–3–486–75516–9

Introduction

Concept

Motivation

The construction of the authentication system

Enrollment phase

Authentication phase

Conclusion

Schedule

Bibliography

Discussion

Question?

Post-quantum cryptography

Post-quantum cryptography refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against an attack by a quantum computer.

Post-quantum cryptography is distinct from quantum cryptography, which refers to using quantum phenomena to achieve secrecy and detect eavesdropping.

When calculate the subcode of RM-Code, the information-bits s can also be calculated;

the analysis of decoding complexity of RM-Code

Contact Information

Han Zhao

Group Product Protection
Department Security and Trusted OS

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4

85748 Garching (near Munich)

Germany

Internet: http://www.aisec.fraunhofer.de

Phone: +49 16 25231418 Fax: +49 89 3229986-222 E-Mail: ga84fif@mytum.de