Linear Regression with One Predictor Variable

Zhenisbek Assylbekov

Department of Mathematics

Regression Analysis

Model

Convexity

Parameter Estimation

Least Squares Estimation (LSE)
Maximum Likelihood Estimation (MLE)

Introduction

Simple regression is about modeling one variable as a function of another variable

$$y = f(x)$$

given some data $(x_1, y_1), \ldots, (x_n, y_n)$.

Introduction

Simple regression is about modeling one variable as a function of another variable

$$y = f(x)$$

given some data $(x_1, y_1), \ldots, (x_n, y_n)$.

Usually f(x) is parameterized:

$$y = f(x; \theta)$$

Introduction

Simple regression is about modeling one variable as a function of another variable

$$y = f(x)$$

given some data $(x_1, y_1), \ldots, (x_n, y_n)$.

Usually f(x) is parameterized:

$$y = f(x; \theta)$$

The goal is to tweak θ so that $y = f(x; \theta)$ fits the data in the best possible way.

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y)

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y) % in poverty

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y) % in poverty

Explanatory variable (x)

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y) % in poverty

Explanatory variable (x) % HS grad

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y) % in poverty

Explanatory variable (x) % HS grad

Relationship

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Response variable (y) % in poverty

Explanatory variable (x) % HS grad

Relationshiplinear, negative, moderately strong

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

► To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

where

 $ightharpoonup Y_i$ is the value of the **response variable** in the i^{th} example,

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

► To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

- Y_i is the value of the **response variable** in the i^{th} example,
- x_i is the value of the **predictor variable** in the i^{th} example.

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

► To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

- Y_i is the value of the **response variable** in the i^{th} example,
- x_i is the value of the **predictor variable** in the i^{th} example.

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

- Y_i is the value of the **response variable** in the i^{th} example,
- x_i is the value of the **predictor variable** in the i^{th} example.
- Assumptions on ϵ_i 's:
 - ightharpoonup $\mathrm{E}[\epsilon_i] = 0$

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

- $ightharpoonup Y_i$ is the value of the **response variable** in the i^{th} example,
- x_i is the value of the **predictor variable** in the i^{th} example.
- Assumptions on ϵ_i 's:
 - ightharpoonup $\mathrm{E}[\epsilon_i] = 0$
 - $\operatorname{Var}[\epsilon_i] = \sigma^2$

► The simplest relationship between two variables *x* and *y* is linear:

$$y = \beta_0 + \beta_1 x$$

To allow variability around the line we add random noise:

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{deterministic}} + \epsilon_i, \quad i = 1, \dots, n,$$

- Y_i is the value of the **response variable** in the i^{th} example,
- x_i is the value of the **predictor variable** in the i^{th} example.
- Assumptions on ϵ_i 's:
 - ightharpoonup $\mathrm{E}[\epsilon_i] = 0$
 - $\operatorname{Var}[\epsilon_i] = \sigma^2$
 - $ightharpoonup \operatorname{Cov}[\epsilon_i, \epsilon_j] = 0 \text{ for } i \neq j$

Given the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

 $E[\epsilon_i] = 0, \quad Var[\epsilon_i] = \sigma^2, \quad Cov[\epsilon_i, \epsilon_j] = 0 \text{ for } i \neq j$

Given the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

$$E[\epsilon_i] = 0, \quad Var[\epsilon_i] = \sigma^2, \quad Cov[\epsilon_i, \epsilon_j] = 0 \text{ for } i \neq j$$

$$\triangleright \ \mathrm{E}[Y_i] = \beta_0 + \beta_1 x_i,$$

Given the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

$$E[\epsilon_i] = 0, \quad Var[\epsilon_i] = \sigma^2, \quad Cov[\epsilon_i, \epsilon_j] = 0 \text{ for } i \neq j$$

- $\triangleright \ \mathrm{E}[Y_i] = \beta_0 + \beta_1 x_i,$
- $\operatorname{Var}[Y_i] = \sigma^2,$

Given the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

$$E[\epsilon_i] = 0, \quad Var[\epsilon_i] = \sigma^2, \quad Cov[\epsilon_i, \epsilon_j] = 0 \text{ for } i \neq j$$

- $\triangleright \ \mathrm{E}[Y_i] = \beta_0 + \beta_1 x_i,$
- $\operatorname{Var}[Y_i] = \sigma^2,$
- $\quad \operatorname{Cov}[Y_i, Y_j] = 0.$

Suppose we somehow estimated β_0 and β_1 in the Poverty vs HS grads example:

$$Y_i = 64.68 - 0.62 \cdot x_i + \epsilon_i$$

Suppose we somehow estimated β_0 and β_1 in the Poverty vs HS grads example:

$$Y_i = 64.68 - 0.62 \cdot x_i + \epsilon_i$$

What does 64.68 represent here?

Suppose we somehow estimated β_0 and β_1 in the Poverty vs HS grads example:

$$Y_i = 64.68 - 0.62 \cdot x_i + \epsilon_i$$

What does 64.68 represent here? Poverty rate for states with no high-school grads. Not sensible/interpretable.

Suppose we somehow estimated β_0 and β_1 in the Poverty vs HS grads example:

$$Y_i = 64.68 - 0.62 \cdot x_i + \epsilon_i$$

What does 64.68 represent here? Poverty rate for states with no high-school grads. Not sensible/interpretable.

How is 0.62 interpreted here?

Suppose we somehow estimated β_0 and β_1 in the Poverty vs HS grads example:

$$Y_i = 64.68 - 0.62 \cdot x_i + \epsilon_i$$

What does 64.68 represent here? Poverty rate for states with no high-school grads. Not sensible/interpretable.

How is 0.62 interpreted here? Increasing % of high-school grads by 1% is associated with 0.62% decrease in poverty rate *on average*.

Simple linear regression using matrices

Note the simple linear regression model for all examples

$$Y_1 = \beta_0 + \beta_1 x_1 + \epsilon_1,$$

$$\vdots$$

$$Y_n = \beta_0 + \beta_1 x_n + \epsilon_n$$

can be written in matrix terms as

$$\underbrace{\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}}_{\boldsymbol{\beta}} + \underbrace{\begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}}_{\boldsymbol{\epsilon}},$$

or equivalently

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Remark on $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Notice that

$$\mathbf{X}^{\top}\mathbf{X} = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$
$$= \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}$$

Model

Convexity

Parameter Estimation

Least Squares Estimation (LSE) Maximum Likelihood Estimation (MLE)

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ is **convex** (**concave up**) if

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ is convex (concave **up**) if

$$f(tx_1 + (1-t)x_2)$$

 $\leq tf(x_1) + (1-t)f(x_2)$

for all $x_1, x_2 \in \text{dom} f$ and all $t \in [0, 1]$.

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ is convex (concave **up**) if

$$f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$$

for all $x_1, x_2 \in \text{dom} f$ and all $t \in [0, 1]$.

How do we usually check convexity for a twice-differentiable function?

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ is convex (concave **up**) if

$$f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$$

for all $x_1, x_2 \in \text{dom} f$ and all $t \in [0, 1]$.

How do we usually check convexity for a twice-differentiable function?

Theorem. If $f'' \ge 0$, then f is convex.

Hessian

The **Hessian** matrix of $f: \mathbb{R}^d \to \mathbb{R}$ is a matrix of second-order partial derivatives:

$$\mathbf{H}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix} \quad \text{i.e.} \quad \mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Hessian

The **Hessian** matrix of $f: \mathbb{R}^d \to \mathbb{R}$ is a matrix of second-order partial derivatives:

$$\mathbf{H}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix} \quad \text{i.e.} \quad \mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

If the partial derivatives are continuous, the order of differentiation can be interchanged, so the Hessian matrix will be symmetric.

Assume $f: \mathbb{R}^d \to \mathbb{R}$. A function f is **convex** if

Assume $f: \mathbb{R}^d \to \mathbb{R}$. A function f is **convex** if

$$f(t\mathbf{x} + (1-t)\mathbf{y})$$

 $\leq tf(\mathbf{x}) + (1-t)f(\mathbf{y})$

for all $\mathbf{x}, \mathbf{y} \in \mathrm{dom} f$ and all $t \in [0,1].$

Assume $f: \mathbb{R}^d \to \mathbb{R}$. A function f is **convex** if

$$f(t\mathbf{x} + (1-t)\mathbf{y})$$

 $\leq tf(\mathbf{x}) + (1-t)f(\mathbf{y})$

for all $\mathbf{x}, \mathbf{y} \in \mathrm{dom} f$ and all $t \in [0,1]$.

Theorem. If $\mathbf{H} \succeq \mathbf{0}$, then f is convex.

Assume $f: \mathbb{R}^d \to \mathbb{R}$. A function f is **convex** if

$$f(t\mathbf{x} + (1-t)\mathbf{y})$$

$$\leq tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathrm{dom} f$ and all $t \in [0, 1]$.

Theorem. If $\mathbf{H} \succeq \mathbf{0}$, then f is convex.

 $H \succeq 0$ denotes that H is a **positive semi-definite** matrix. What does this mean?

Assume $f: \mathbb{R}^d \to \mathbb{R}$. A function f is **convex** if

$$f(t\mathbf{x} + (1-t)\mathbf{y})$$

$$\leq tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathrm{dom} f$ and all $t \in [0, 1]$.

Theorem. If $\mathbf{H} \succ \mathbf{0}$, then f is convex.

 $\mathbf{H} \succeq \mathbf{0}$ denotes that \mathbf{H} is a **positive semi-definite** matrix. What does this mean? $\mathbf{a}^{\top}\mathbf{H}\mathbf{a} \geq 0$ for any $\mathbf{a} \in \mathbb{R}^d$.

Convex functions do not have saddle points or local minima.

Convex functions do not have saddle points or local minima.

Theorem. If f is convex, then any local minimum of f is also a global minimum.

Convex functions do not have saddle points or local minima.

Theorem. If f is convex, then any local minimum of f is also a global minimum.

 \Rightarrow We can find any stationary point and guarantee that it is the global minimum.

Convex functions do not have saddle points or local minima.

Theorem. If f is convex, then any local minimum of f is also a global minimum.

 \Rightarrow We can find any stationary point and guarantee that it is the global minimum.

What is a stationary point? A point \mathbf{x}_0 is called **stationary** if $\nabla f(\mathbf{x}_0) = 0$.

Model

Convexity

Parameter Estimation

Least Squares Estimation (LSE) Maximum Likelihood Estimation (MLE)

Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad?

Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad?

(a)

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$,

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$, **Residuals** are *estimated* errors: $e_i = Y_i - (b_0 + b_1 x_i)$ once β_0 and β_1 have been replaced by their estimates b_0 and b_1 .

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$, **Residuals** are *estimated* errors: $e_i = Y_i - (b_0 + b_1 x_i)$ once β_0 and β_1 have been replaced by their estimates b_0 and b_1 .

We want a line that has smallest possible residuals:

$$\min_{b_0,b_1}\sum_{i=1}^n e_i^2$$

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$, **Residuals** are *estimated* errors: $e_i = Y_i - (b_0 + b_1 x_i)$ once β_0 and β_1 have been replaced by their estimates b_0 and b_1 .

We want a line that has smallest possible residuals:

$$\min_{b_0,b_1} \sum_{i=1}^n e_i^2$$

This is called **least squares estimation** (LSE).

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$, **Residuals** are *estimated* errors: $e_i = Y_i - (b_0 + b_1 x_i)$ once β_0 and β_1 have been replaced by their estimates b_0 and b_1 .

We want a line that has smallest possible residuals:

$$\min_{b_0,b_1} \sum_{i=1}^n e_i^2$$

This is called **least squares estimation (LSE)**.

Why don't we minimize the sum $\sum_{i=1}^{n} e_i$ instead?

Errors are simply $\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$, **Residuals** are *estimated* errors: $e_i = Y_i - (b_0 + b_1 x_i)$ once β_0 and β_1 have been replaced by their estimates b_0 and b_1 .

We want a line that has smallest possible residuals:

$$\min_{b_0,b_1} \sum_{i=1}^n e_i^2$$

This is called **least squares** estimation (LSE).

Why don't we minimize the sum $\sum_{i=1}^{n} e_i$ instead? Positive and negative residuals will compensate each other \Rightarrow we won't be sure that the magnitudes $|e_i|$ are small.

Least squares estimation of β_0 and β_1

Theorem. The function $Q(\beta_0, \beta_1) = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i)]^2$ has the global minimum at

$$b_1 := \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 := \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

Least squares estimation of β_0 and β_1

Theorem. The function $Q(\beta_0, \beta_1) = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i)]^2$ has the global minimum at

$$b_1 := \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 := \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

Proof. First derivatives of Q:

$$\frac{\partial Q}{\partial \beta_1} = \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 x_i)(-x_i) = -2 \left[\sum_{i=1}^n x_i Y_i - \beta_0 \sum_{i=1}^n x_i - \beta_1 \sum_{i=1}^n x_i^2 \right]$$

Least squares estimation of β_0 and β_1

Theorem. The function $Q(\beta_0, \beta_1) = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i)]^2$ has the global minimum at

$$b_1 := \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 := \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

Proof. First derivatives of Q:

$$\frac{\partial Q}{\partial \beta_1} = \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 x_i)(-x_i) = -2 \left[\sum_{i=1}^n x_i Y_i - \beta_0 \sum_{i=1}^n x_i - \beta_1 \sum_{i=1}^n x_i^2 \right]$$

$$\frac{\partial Q}{\partial \beta_0} = \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 x_i)(-1) = -2 \left[\sum_{i=1}^n Y_i - n\beta_0 - \beta_1 \sum_{i=1}^n x_i \right].$$

Two equations in two unknowns

Setting these equal to zero, we have

$$\sum x_i Y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2 \tag{1}$$

$$\sum Y_i = n\beta_0 + \beta_1 \sum x_i \tag{2}$$

Two equations in two unknowns

Setting these equal to zero, we have

$$\sum x_i Y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2 \tag{1}$$

$$\sum Y_i = n\beta_0 + \beta_1 \sum x_i \tag{2}$$

Multiply (1) by n and multiply (2) by $\sum x_i$ and subtract yielding

$$n\sum x_iY_i - \sum x_i\sum Y_i = \beta_1\left[n\sum x_i^2 - \left(\sum x_i\right)^2\right].$$

Two equations in two unknowns

Setting these equal to zero, we have

$$\sum x_i Y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2 \tag{1}$$

$$\sum Y_i = n\beta_0 + \beta_1 \sum x_i \tag{2}$$

Multiply (1) by n and multiply (2) by $\sum x_i$ and subtract yielding

$$n\sum x_iY_i - \sum x_i\sum Y_i = \beta_1\left[n\sum x_i^2 - \left(\sum x_i\right)^2\right].$$

Solving for β_1 we get

$$\hat{\beta}_1 = \frac{n \sum x_i Y_i - \sum x_i \sum Y_i}{n \sum x_i^2 - (\sum x_i)^2} = \frac{\sum x_i Y_i - n \bar{Y} \bar{x}}{\sum x_i^2 - n \bar{x}^2}.$$

Plugging this into (2), we have $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$.

How can we show that $Q(\beta_0, \beta_1)$ is convex?

How can we show that $Q(\beta_0, \beta_1)$ is convex? Its Hessian should be positive semi-definite.

How can we show that $Q(\beta_0, \beta_1)$ is convex? Its Hessian should be positive semi-definite.

Second-order partial derivatives of Q:

$$\frac{\partial^2 Q}{\partial \beta_0^2} = 2n, \quad \frac{\partial^2 Q}{\partial \beta_1^2} = 2\sum_i x_i^2, \quad \frac{\partial^2 Q}{\partial \beta_1 \partial \beta_0} = 2\sum_i x_i$$

How can we show that $Q(\beta_0, \beta_1)$ is convex? Its Hessian should be positive semi-definite.

Second-order partial derivatives of Q:

$$\frac{\partial^2 Q}{\partial \beta_0^2} = 2n, \quad \frac{\partial^2 Q}{\partial \beta_1^2} = 2\sum_i x_i^2, \quad \frac{\partial^2 Q}{\partial \beta_1 \partial \beta_0} = 2\sum_i x_i$$

Hessian of Q:

$$\mathbf{H} = 2 \cdot \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = 2\mathbf{X}^{\top}\mathbf{X}$$

How can we show that $Q(\beta_0, \beta_1)$ is convex? Its Hessian should be positive semi-definite.

Second-order partial derivatives of *Q*:

$$\frac{\partial^2 Q}{\partial \beta_0^2} = 2n, \quad \frac{\partial^2 Q}{\partial \beta_1^2} = 2\sum x_i^2, \quad \frac{\partial^2 Q}{\partial \beta_1 \partial \beta_0} = 2\sum x_i$$

Hessian of Q:

$$\mathbf{H} = 2 \cdot \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = 2\mathbf{X}^{\top}\mathbf{X}$$

For an arbitrary $\mathbf{a} = (a_1, a_2)$ we have

$$\mathbf{a}^{\top} \mathbf{H} \mathbf{a} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \cdot 2 \cdot \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \mathbf{a}^{\top} 2 \mathbf{X}^{\top} \mathbf{X} \mathbf{a}$$
$$= 2(\mathbf{X} \mathbf{a})^{\top} (\mathbf{X} \mathbf{a}) = 2 \|\mathbf{X} \mathbf{a}\|^2 \ge 0 \quad \Rightarrow \quad \mathbf{H} \succeq \mathbf{0}$$

Assume

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

Assume

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Assume

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

This is equivalent to

$$Y_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$
 (Why?)

Assume

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

This is equivalent to

$$Y_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$
 (Why?)

This means that p.d.f. of Y_i is

$$f_{Y_i}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[y - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right)$$

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Exercise. Show that

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

$$\sum_{i=1}^{n} e_i = 0$$

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

•
$$\sum_{i=1}^{n} e_i = 0$$
 (follows from (2)),

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

- $ightharpoonup \sum_{i=1}^{n} \hat{Y}_{i}e_{i} = 0$ (from the previous two),

Denote
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
.

Residuals are differences between observed and predicted responses:

$$e_i = Y_i - \hat{Y}_i$$

- $\sum_{i=1}^{n} \hat{Y}_i e_i = 0$ (from the previous two),
- ▶ Least squares line always goes through (\bar{x}, \bar{Y}) .

The *likelihood function* for the sample Y_1, \ldots, Y_n given parameters β_0 , β_1 , σ is

$$\mathcal{L}(\beta_0, \beta_1, \sigma^2) = \prod_i f_{Y_i}(Y_i) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[Y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right)$$

The *likelihood function* for the sample Y_1, \ldots, Y_n given parameters β_0, β_1, σ is

$$\mathcal{L}(\beta_0, \beta_1, \sigma^2) = \prod_i f_{Y_i}(Y_i) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[Y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right)$$

Exercise. Find the MLE for β_0 and β_1 :

$$(\hat{eta}_{0,\mathsf{MLE}},\hat{eta}_{1,\mathsf{MLE}}) = rgmax_{eta_0,eta_1} \mathcal{L}(eta_0,eta_1,\sigma^2)$$

The *likelihood function* for the sample Y_1, \ldots, Y_n given parameters β_0, β_1, σ is

$$\mathcal{L}(\beta_0, \beta_1, \sigma^2) = \prod_i f_{Y_i}(Y_i) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[Y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right)$$

Exercise. Find the MLE for β_0 and β_1 :

$$(\hat{eta}_{0,\mathsf{MLE}},\hat{eta}_{1,\mathsf{MLE}}) = rgmax_{eta_0,eta_1} \mathcal{L}(eta_0,eta_1,\sigma^2)$$

Show that

$$\max_{\beta_0,\beta_1} \mathcal{L}(\beta_0,\beta_1,\sigma^2) \qquad \Leftrightarrow \qquad \min_{\beta_0,\beta_1} Q(\beta_0,\beta_1)$$

The *likelihood function* for the sample Y_1, \ldots, Y_n given parameters β_0 , β_1 , σ is

$$\mathcal{L}(\beta_0, \beta_1, \sigma^2) = \prod_i f_{Y_i}(Y_i) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[Y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right)$$

Exercise. Find the MLE for β_0 and β_1 :

$$(\hat{eta}_{0,\mathsf{MLE}},\hat{eta}_{1,\mathsf{MLE}}) = rgmax_{eta_0,eta_1} \mathcal{L}(eta_0,eta_1,\sigma^2)$$

Show that

$$\max_{\beta_0,\beta_1} \mathcal{L}(\beta_0,\beta_1,\sigma^2) \qquad \Leftrightarrow \qquad \min_{\beta_0,\beta_1} Q(\beta_0,\beta_1)$$

 \Rightarrow MLE is a probabilistic justification for the LSE.

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (e_i - \bar{e})^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (e_i - \bar{e})^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$ (why $\bar{e} = 0$?

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (e_i - \bar{e})^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$ (why $\bar{e} = 0$? because $\sum e_i = 0$)

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (e_i - \bar{e})^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$ (why $\bar{e} = 0$? because $\sum e_i = 0$)

In Chapter 5, we will show that $\frac{\sum e_i^2}{\sigma^2} \sim \chi_{n-2}^2$. This implies $\mathrm{E}[\hat{\sigma}^2] = \frac{n-2}{n} \sigma^2$.

Recall that $\sigma^2 = \operatorname{Var}[\epsilon_i]$.

A natural estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (e_i - \bar{e})^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$ (why $\bar{e} = 0$? because $\sum e_i = 0$)

In Chapter 5, we will show that $\frac{\sum e_i^2}{\sigma^2} \sim \chi_{n-2}^2$. This implies $\mathrm{E}[\hat{\sigma}^2] = \frac{n-2}{n}\sigma^2$. I.e., $\hat{\sigma}^2$ is a biased estimator of σ^2 , and we prefer the unbiased version:

$$\frac{n}{n-2}\hat{\sigma}^2 = \frac{1}{n-2}\sum_{i=1}^n e_i^2 = \frac{1}{n-2}\sum_{i=1}^n (Y_i - b_0 - b_1x_i)^2 := \text{MSE}.$$

which is referred to as mean squared error (MSE).

Parameter estimation in R: Poverty vs HS grad rate

https://raw.githubusercontent.com/zh3nis/MATH440/main/chp01/poverty.R

Coefficients:

Estimate

(Intercept) 64.78097

Graduates -0.62122

Residual standard error: 2.082

Parameter estimation in R: Poverty vs HS grad rate

https://raw.githubusercontent.com/zh3nis/MATH440/main/chp01/poverty.R

Coefficients:

Estimate

(Intercept) 64.78097

Graduates -0.62122

Residual standard error: 2.082

The regression line is
$$y = \underbrace{64.78}_{b_0} - \underbrace{0.62}_{b_1} x$$
.

 $\sqrt{\mathrm{MSE}} = 2.08$ is an estimate of σ .