DOCUMENTACIÓN TÉCNICA SISTEMA DE CONVERSIÓN DE COLOR AVANZADO

Ing. Juan Sandoval

1. Introducción

Aplicación desarrollada en Python para conversión entre espacios de color (RGB, CMYKW, HSL), integrando:

Captura de imágenes (cámara/archivos)

Comunicación industrial vía Modbus TCP/Serial

Interfaz gráfica intuitiva

2. Especificaciones Técnicas

2.1. Requisitos del Sistema

Componente	Versión
Python	3.8+
OpenCV (cv2)	4.5+
Pillow (PIL)	9.0+
pymodbus (opcional)	3.0+
pyserial (opcional)	3.5+

3. Arquitectura del Sistema

3.1. Diagrama de Componentes

 	ColorConverterApp	I
Г .	- GUI (Tkinter)	

3.2. Flujo de Datos

Entrada: Imagen/Cámara/Selectores → RGB

Conversión: RGB ↔ CMYKW ↔ HSL

Salida: Envío a PLC/Visualización

4. Algoritmos Clave

4.1. RGB \rightarrow CMYKW

```
python
```

def rgb_to_cmykw(r, g, b):

$$c = 1 - r/255$$

$$m = 1 - g/255$$

$$y = 1 - b/255$$

$$k = min(c, m, y)$$

Ajuste componentes

return c, m, y, k, 0 if k < 1 else 100

4.2. $HSL \rightarrow RGB$

python

$$q = 1*(1 + s) \text{ if } 1 < 0.5 \text{ else } 1 + s - 1*s$$

$$p = 2*1 - q$$
Conversión a RGB via hue return r, g, b

5. Comunicación Industrial

5.1. Protocolos Soportados

Protocolo	Configuración	Mensaje Ejemplo
Modbus TCP	IP: 192.168.0.10, Port:502	WriteRegisters(addr=0, [C,M,Y,K,W])
Serial RS232	9600 baud, 8N1	"C:100 M:050 Y:000 K:000\n"

5.2. Control de Errores

Timeout: 1 seg

Reintentos: 0 (gestión manual)

Throttling: 100ms entre envíos

6. Interfaz Gráfica

6.1. Componentes Principales

Canvas: Visualización imagen/cámara (450x350 px)

Selectores:

Sliders CMYKW (0-100%)

Círculo cromático HSL

Paletas: Colores predefinidos (RGB)

Historial: Últimos 10 colores seleccionados

6.2. Modos de Operación

Modo	Descripción
Cámara	Captura en tiempo real
Imagen	Carga desde archivo

Modo	Descripción
Selector HSL	Ajuste manual en círculo HSL

7. Configuración y Persistencia

7.1. Archivo JSON (color_app_config.json)

```
json
{
   "dark_mode": false,
   "plc_ip": "192.168.0.10",
   "serial_port": "COM3",
   "baudrate": 9600
}
```

8. Consideraciones de Rendimiento

Hilos: Comunicación PLC en segundo plano

Optimizaciones:

Redimensión de imágenes manteniendo aspect ratio

Caching de conversiones de color

9. Manejo de Errores

Código	Descripción	Solución
CAM-001	Cámara no accesible	Verificar dispositivos USB
PLC-002	Fallo conexión Modbus	Revisar IP/puerto/firewall
SER-003	Error puerto serial	Chequear baudrate/cableado

10. Conclusiones y Recomendaciones

Ventajas:

Soporte multiplataforma (Windows/Linux)

Integración con sistemas industriales

Mejoras Futuras:

Añadir soporte para perfiles ICC

Implementar comunicación MQTT

Anexo A: Instalación de Dependencias

bash

pip install opency-python pillow numpy pymodbus pyserial

Anexo B: Capturas de Pantalla