Trig Final (SLTN v638)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.6 radians. The radius is 24 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 38.4 meters.

Question 2

Consider angles $\frac{9\pi}{4}$ and $\frac{-7\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{9\pi}{4}\right)$ and $\sin\left(\frac{-7\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(-7\pi/3)$

$$\sin(-7\pi/3) = \frac{-\sqrt{3}}{2}$$

Question 3

If $\cos(\theta) = \frac{20}{29}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$20^{2} + B^{2} = 29^{2}$$

$$B = \sqrt{29^{2} - 20^{2}}$$

$$B = 21$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-21}{29}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 8.32 meters, a midline at y = -4.05 meters, and a frequency of 2.37 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -8.32\sin(2\pi 2.37t) - 4.05$$

or

$$y = -8.32\sin(4.74\pi t) - 4.05$$

or

$$y = -8.32\sin(14.89t) - 4.05$$