Module 3: Classification

Index -

Lecture 12 – Basic Concepts	4
Lecture 13 –Decision Tree Induction	12
Lecture 14 –Attributes Selection Measures and Pruning	23
Lecture 15 - Measuring similarity and dissimilarity.	35

Basic Concepts

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
 - Training set is the one on which we train and fit our model basically to fit the
 parameters whereas test data is used only to assess the performance of model.
 Training data's output is available to model whereas testing data is the unseen
 data for which predictions have to be made.

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Attribute types

Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		V	V	•
"Counts," aka "Frequency of Distribution"	•	~	V	•
Mode	✓	V	V	~
Median		~	~	V
Mean			✓	~
Can quantify the difference between each value			V	•
Can add or subtract values			✓	V
Can multiple and divide values				•
Has "true zero"				V

Nominal and ordinal

Nominal Data

What is your gender?	What is your hair color?	Where do you live?				
M − Male	 1 - Brown 	 A - North of the equator 				
F - Female	O 2 – Black	B - South of the equator				
Ordinal Data	3 - Blonde	C - Neither: In the international space station				
	4 - Gray					
How do you feel today?		How satisfied are you with our service?				
● 1 - V	/ery Unhappy	 1 - Very Unsatisfied 				
O 2 - L	Jnhappy	 2 - Somewhat Unsatisfied 				
○ 3 - OK		3 - Neutral				
		 4 - Somewhat Satisfied 				
5 - Very Happy		5 - Very Satisfied				

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If *the test set* is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

Decision Tree Induction

Decision Tree Induction: An Example

The data set follows an example of Ouinlan's ID3 (Playing Tennis)

fair

fair

fair

fair

fair

fair

fair

fair

excellent

excellent

excellent

excellent

excellent

excellent

no

no

ves

ves

ves

no

yes

no

yes

yes

ves

yes

yes

no

	Quillic	כטו כ ווג	\i la	yıııg	Cillin	? <i>J</i>
	Result	ing tree	e:			
				age?		
		<=30		3140	;	>
	stu	dent?		yes		
	no	ye	es		ez	xcel
/	/					
no	12		yes		1	no
		•				

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,

•
$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
 , where $p_i = P(Y = y_i)$

- Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty
- Conditional Entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

m = 2

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split $D^i \dagger h$ to v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Class P: buys_computer = "yes"
$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

Class N: buys_computer = "no" $+\frac{5}{14}log_2(\frac{9}{14}) - \frac{5}{14}log_2(\frac{5}{14}) = 0.940$ $+\frac{5}{14}I(3,2) = 0.694$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,
 $Gain(income) = 0.029$
 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - The point with the minimum expected information requirement for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex.

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) = 1.557$$

- gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, gini index, gini(D) is defined as $gini(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class j in D

• If a data set D is split $Q_{i} h(i) t_{Q_{i}} t_{WD}$ subsets D_{1} and D_{2} , the gini index gini(D) is defined as

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

- Reduction in Impurity:
- The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

- Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"
- Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂ $gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$ $gini(D) = 1 = \frac{10}{14}\left(1 \left(\frac{7}{10}\right)^2 \left(\frac{3}{10}\right)^2\right) + \frac{4}{14}\left(1 \left(\frac{2}{10}\right)^2 \left(\frac{2}{10}\right)^2\right)$

$$\begin{aligned} gini(D) &= 1 \cdot = \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) \\ &= 0.443 \\ &= Gini_{income} \in \{high\}(D). \end{aligned}$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- •20 Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Attribute Selection Measures and Pruning

Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ² test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - <u>CART</u>: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Pruning

- Pruning is a technique in machine learning that reduces the size
 of decision trees by removing sections of the tree that provide little power
 to classify instances. Pruning reduces the complexity of the final classifier,
 and hence improves predictive accuracy by the reduction of Overfitting
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Pruning Example

Unpruned Tree

Pruned Tree

Enhancements to Basic Decision Tree Induction

Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals

Handle missing attribute values

- Assign the most common value of the attribute
- Assign probability to each of the possible values

Attribute construction

- Create new attributes based on existing ones that are sparsely represented
- This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why is decision tree induction popular?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)

Scalability Framework for RainForest

- Separates the scalability aspects from the criteria that determine the quality of the tree
- Builds an AVC-list: AVC (Attribute, Value, Class_label)
- AVC-set (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts of individual class label are aggregated
- AVC-group (of a node n)
 - Set of AVC-sets of all predictor attributes at the node n

Rainforest: Training Set and Its AVC Sets

fair

excellent

yes

no

_													
		Trair	atingstEx	amples		AVC-set on <i>Age</i> AV®			√ ₿₽ ₰₽ ₽₽	naytaco	ome	2	
ag	e ir	ncome	student	redit rating	com	yes		no	income	I ₽HV_	Esm	BH t er	
<=30) hi	igh	no	fair	no	6		1		yes		no	
<=30) hi	igh	no	excellent	no	3		4	high	yes	\blacksquare	no	
31	40 hi	igh	no	fair	yes	Ü		\top	high ₃₀	22	╬	23	
>40	m	nedium	no	fair	yes				meglinizato	44		20	
>40	lo	w	yes	fair	yes				lo₹40	33		12	
>40	lo	w	yes	excellent	no								
31	40 lo	w	yes	excellent	yes	AVC-set on				n			
<=30) m	nedium	no	fair	no	AVC-set on Student		ΛMC sot on Student					
<=30) lo	w	yes	fair	yes				Crea		119		
>40	m	nedium	yes	fair	yes			Ι.	Credit	Buy_	Com	puter	
<=30) m	nedium	yes	excellent	yes				rating	yes	r	no	
31	40 m	nedium	no	excellent	yes				fair	6		2	

excellent

3

3

yes

no

high

medium

31...40

>40

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction)

- Use a statistical technique called bootstrapping to create several smaller samples (subsets), each fits in memory
- Each subset is used to create a tree, resulting in several trees
- These trees are examined and used to construct a new tree T'
 - It turns out that T' is very close to the tree that would be generated using the whole data set together
- Adv: requires only two scans of DB, an incremental alg.

Visualization of a Decision Tree in SGI/MineSet

Interactive Visual Mining by Perception-Based Classification (PBC)

Bayesian Classification

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance:</u> A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

P(B)=
$$\sum_{i=1}^{M} P(B|A_i)P(A_i)$$
Total probability Theorem: $i=1$

- Bayes' Theorem: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H|X), (i.e., posteriori probability): the
 probability that the hypothesis holds given the observed data sample X
 - P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as posteriori = likelihood x prior/evidence
- Predicts X belongs to C_i iff the probability P(C_i|X) is the highest among all the P(C_k|X) for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_8, \mathbf{x$ $X_2, ..., X_n$
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|X)$ $P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$ • This can be derived from Bayes theorem

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

- This greatly reduces the computation cost: Only counts the
- class distribution $P(X|C_i) = \prod_{i=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$ If A_k is categorical, $P(x_k^k | C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_{l} is continous-valued, $P(x_{l} | C_{i})$ is usually computed based on **Gaussian distribution** with a mean μ and standard deviation σ

and
$$P(\mathbf{x}_k | C_i)$$
 is
$$g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$P(\mathbf{X} | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes Classifier: Training Dataset

	age	income	<mark>studen</mark> 1	<mark>redit ratin</mark> ç	com
Class	<=30	high	no	fair	no
Class:	<=30	high	no	excellent	no
C1:buys_computer	34.: y40 5	′ high	no	fair	yes
· —	~ 40°	medium	no	fair	yes
C2:buys_computer	> 4 0110	low	yes	fair	yes
	>40	low	yes	excellent	no
Data to be alossifie	3140	low	yes	excellent	yes
Data to be classifie	Q=30	medium	no	fair	no
X = (age <= 30,	<=30	low	yes	fair	yes
, •	>40	medium	yes	fair	yes
Income = medium,	<=30	medium	yes	excellent	yes
Student = yes	3140	medium	no	excellent	yes
Cuadit mating [a:	3140	high	yes	fair	yes
Credit_rating = Fai	740	medium	no	excellent	no

Naïve Bayes Classifier: An Example

```
P(C_i): P(buys computer = "yes") = 9/14 = 0.643
         P(buys computer = "no") = 5/14 = 0.357
Compute P(X|C<sub>i</sub>) for each class
         P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
         P(age = "<= 30" | buys computer = "no") = 3/5 = 0.6
         P(income = "medium" | buys computer = "yes") = 4/9 = 0.444
         P(income = "medium" | buys computer = "no") = 2/5 = 0.4
         P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
         P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
         P(credit rating = "fair" | buys computer = "yes") = 6/9 = 0.667
         P(credit rating = "fair" | buys computer = "no") = 2/5 = 0.4
X = (age <= 30, income = medium, student = yes, credit_rating = fair)
P(X|C_i): P(X|buys computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
        P(X|buvs computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
P(X|C_i)*P(C_i): P(X|buys computer = "yes") * P(buys computer = "yes") = 0.028
              P(X|buys computer = "no") * P(buys computer = "no") = 0.007
```

age	income	<mark>student</mark>	redit_rating	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Therefore, X belongs to class ("buys computer = ves")

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero.
 Otherwise, the predicted prob. will be zero

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

• Thank You

