

### **Create Data Tables**

## **Excel Step-by-Step How-to for PC**

| Table of             | Contents |
|----------------------|----------|
| One-way Data Table   | Page 2   |
| Two-way Data Table   | Page 8   |
| Three-way Data Table | Page 14  |
| n-way Data Table     | Page 20  |



## **Create a One-way Data Table**

### **Excel Step-by-Step How-to for PC**

**Instructions:** Use this guide to create a one-way data table using Excel.

**Data requirement:** Probability distribution for a scenario, simulations of the scenario (enough for stable data output)





This example includes probability distributions for standard and luxury cars. The one-way table will represent the standard car variables effect on profit.

|    | STANDARD  |                |                 |             |           |           |          |           |       |          |        |
|----|-----------|----------------|-----------------|-------------|-----------|-----------|----------|-----------|-------|----------|--------|
|    | Frequency | Relative Freq. | Cumlative Prob. | _           |           |           |          |           |       | -        |        |
| 10 | 2         | 0.02           | 0               |             |           | Fleet     | Upgrades |           |       |          |        |
| 11 | 1         | 0.01           | 0.02            | _           | Standard  | 15        | 5        | 33        |       | AVG      | 449.92 |
| 12 | 6         | 0.06           |                 |             | Luxury    | 10        |          | 39        | 14    | }        |        |
| 13 | 3         | 0.03           |                 | Replication | S- Demand | L- Demand | S-Sales  | S-Surplus | S-Ups | L -sales | Profit |
| 14 | 6         | 0.06           |                 | Replication | 17 Demand |           |          |           | -     | L -sales | 478    |
| 15 | 3         |                |                 | _           | 2 23      |           |          |           |       | 2        | 442    |
| 16 | 7         | 0.07           | 0.21            |             | 23        |           |          |           |       | -        | 442    |
| 17 | 7         | 0.07           | 0.28            | -           | 1 20      | 11        | 15       | 5         | 5     | 5        | 460    |
| 18 | 6         | 0.06           |                 |             | 17        | 12        | 15       | 2         | 2     | . 8      | 478    |
| 19 | 14        | 0.14           |                 | - (         | 5 24      | 10        | 15       | 9         | 9     | 1        | 436    |
| 20 | 6         | 0.06           |                 | -           | 7 18      |           |          |           | 3     | 7        | 472    |
| 21 | 9         | 0.09           |                 |             | 3 20      |           |          |           | 5     | 5        | 460    |
| 22 | 10        |                | 0.7             | - !         |           |           |          |           | 6     | 4        | 454    |
|    |           |                |                 | 10          |           |           |          |           | 4     | 1 6      |        |
| 23 | 13        | 0.13           | 0.8             | 1:          | l 15      | 13        | 15       | 0         | 0     | 10       | 490    |
| 24 | 7         | 0.07           | 0.93            | 1           | 2 22      | . 11      | 15       | 7         | 7     | 3        | 448    |
|    |           |                | 1               | 1           | 16        | 11        | 15       | 1         | 1     | 9        | 484    |

2. Enter the range of variables being evaluated in this table in a column to the right of your data.

For this example, the range of 10 to 24 standard cars is being evaluated. Reference the average profit above the column to the right.

|             |           | Fleet     | Upgrades |           |       |          |         |    |      |
|-------------|-----------|-----------|----------|-----------|-------|----------|---------|----|------|
|             | Standard  | 15        | 5        | 33        | 12    | AVG      | 451.252 |    |      |
|             | Luxury    | 10        |          | 39        | 14    |          |         |    |      |
|             |           |           |          |           |       |          |         |    | =010 |
| Replication | S- Demand | L- Demand | S-Sales  | S-Surplus | S-Ups | L -sales | Profit  | 10 |      |
| 1           | 20        | 11        | 15       | 5         | 5     | 5        | 460     | 11 |      |
| 2           | 13        | 11        | 13       | 0         | 0     | 10       | 430     | 12 |      |
| 3           | 16        | 12        | 15       | 1         | 1     | 9        | 484     | 13 |      |
| 4           | 13        | 11        | 13       | 0         | 0     | 10       | 430     | 14 |      |
| 5           | 17        | 12        | 15       | 2         | 2     | 8        | 478     | 15 |      |
| 6           | 17        | 13        | 15       | 2         | 2     | 8        | 478     | 16 |      |
| 7           | 18        | 10        | 15       | 3         | 3     | 7        | 472     | 17 |      |
| 8           | 12        | 13        | 12       | 0         | 0     | 10       | 400     | 18 |      |
| 9           | 21        | . 12      | 15       | 6         | 6     | 4        | 454     | 19 |      |
| 10          | 17        | 10        | 15       | 2         | 2     | 8        | 478     | 20 |      |
| 11          | 24        | . 9       | 15       | 9         | 9     | 1        | 436     | 21 |      |
| 12          | 19        | 12        | 15       | 4         | 4     | 6        | 466     | 22 |      |
| 13          | 23        | 13        | 15       | 8         | 8     | 2        | 442     | 23 |      |
| 14          | 19        | 12        | 15       | 4         | 4     | 6        | 466     | 24 |      |
| 15          | 17        | 11        | 15       | 2         | 2     | 0        | 170     |    |      |



3. Select the two columns and navigate to the data tab. Select What-If Analysis and Data Table.



4. Populate the data table with the correspondin g column data.

In this case, it is the Standard Fleet cell.

|             |           | Fleet     | Upgrades |           |          |      |                   |        |    |        |
|-------------|-----------|-----------|----------|-----------|----------|------|-------------------|--------|----|--------|
|             | Standard  | 15        | 5        | 33        |          | 12   | AVG               | 447.82 |    |        |
|             | Luxury    | 10        |          | 39        |          |      | Table             | ? X    |    |        |
|             |           |           |          |           | L        | Jata | lable             | 1 ^    |    | 447.82 |
| Replication | S- Demand | L- Demand | S-Sales  | S-Surplus | S-Ups R  | ow i | input cell:       | Î      | 10 | )      |
| 1           | 17        | 14        | 15       | 2         |          |      | nn input cell:    | Ť      | 11 |        |
| 2           | 19        | 9         | 15       | 4         | <u>_</u> | olui | iiii iiiput teii. |        | 12 | 2      |
| 3           | 20        | 10        | 15       | 5         |          |      | OK                | Cancel | 13 |        |
| 4           | 22        | 14        | 15       | 7         |          |      |                   |        | 14 | l .    |
| 5           | 12        | 13        | 12       | 0         |          | 0    | 10                | 400    | 15 |        |
| 6           | 21        | 12        | 15       | 6         |          | 6    | Λ                 | 454    | 16 |        |







TIP: If the data table is not populating with new numbers...



press F9 to recalculate your data tables.

|    | 452.428 |
|----|---------|
| 10 | 352.576 |
| 11 | 371.824 |
| 12 | 393.436 |
| 13 | 412.036 |
| 14 | 430.576 |
| 15 | 449.68  |
| 16 | 464.632 |
| 17 | 474.46  |
| 18 | 486.064 |
| 19 | 498.46  |
| 20 | 504.4   |
| 21 | 502.528 |
| 22 | 497.032 |
| 23 | 496.312 |
| 24 | 482.248 |

5. Visualize the data table. Select the one-way table and navigate to Insert. Select Scatter and customize the labels.

Change the number of standard cars that will be stocked and recalculate the table. The numbers in the table and charts should adjust based on probability.









# Create a Two-way Data Table Excel Step-by-Step How-to for PC

**Instructions:** Use this guide to create a two-way data table using Excel.

Data requirement: Probability distributions for at least two scenarios, simulations of the scenario (enough for stable data

output)





|    | STANDARD  |                |                 |             |           |          |          |           |       |          |         |
|----|-----------|----------------|-----------------|-------------|-----------|----------|----------|-----------|-------|----------|---------|
|    | Frequency | Relative Freq. | Cumlative Prob. |             |           |          |          |           |       |          |         |
| 10 | 2         | 0.02           | 0               |             |           |          |          |           |       |          |         |
| 11 | 1         | 0.01           | 0.02            |             |           |          |          |           |       |          |         |
| 12 | 6         | 0.06           | 0.03            |             |           |          |          |           |       |          |         |
| 13 | 3         | 0.03           | 0.09            |             |           |          |          |           |       |          |         |
| 14 | 6         | 0.06           | 0.12            |             |           | Fleet    | Upgrades |           |       |          |         |
| 15 | 3         | 0.03           | 0.18            |             | Standard  | 19       | 5 5      | 33        | 12    | AVG      | 450.052 |
| 16 | 7         | 0.07           | 0.21            |             | Luxury    | 10       | )        | 39        | 14    |          |         |
| 17 | 7         | 0.07           | 0.28            |             |           |          |          |           |       |          |         |
| 18 | 6         | 0.06           | 0.35            | Replication | S- Demand | L-Demand | S-Sales  | S-Surplus | S-Ups | L -sales | Profit  |
| 19 | 14        | 0.14           | 0.41            | 1           | 17        | 1        | 15       | 2         | 2     | 8        | 478     |
| 20 | 6         | 0.06           | 0.55            | 2           | 17        | :        | 15       |           | 2     | 8        | 478     |
| 21 | 9         | 0.09           | 0.61            | 3           | 21        | 14       | 1 15     | 6         | 6     | 4        | 454     |
| 22 | 10        | 0.1            | 0.7             | 4           | 16        | 1        | 15       | 1         | 1     | 9        | 484     |
| 23 | 13        | 0.13           | 0.8             | 5           | 19        | 1        |          |           | 4     | €        | 466     |
| 24 | 7         | 0.07           | 0.93            | 6           | 16        | 1        | L 15     | 1         | 1     | 9        | 484     |
|    |           |                | 1               | 7           | 23        | 1        | 15       | 8         | 8     | 2        | 442     |
|    | LUXURY    |                |                 | 8           |           | 14       | 1 15     | 3         | 3     | 7        | 472     |
|    | Frequency | Relative Freq. | Cumlative Prob. | 9           |           | 1:       | l 15     | 8         | 8     | 2        | 442     |
| 6  | 1         | 0.01           | 0               | 10          | 22        | 1        |          |           |       | 3        | 448     |
| 7  | 4         | 0.04           | 0.01            | 11          |           | _        |          |           |       | 4        | 737     |
| 8  | 2         |                | 0.05            | 12          |           | _        |          |           |       | _        |         |
| 9  | 6         | 0.06           | 0.07            | 13          | 24        | 1        | 2 15     | 9         | 9     | 1        | 436     |
| 10 | 13        | 0.13           | 0.13            | 14          | 18        | 1        | 3 15     | 3         | 3     | 7        | 472     |

2. To the right of the data simulations, outline the two variables being evaluated. Put one variable in a column and one in a row, creating a matrix.

This example evaluates the stocking of standard cars in the column and the stocking of luxury cars in the row.

|        | Standard |   |   |   |   |    |    |    |    |    |
|--------|----------|---|---|---|---|----|----|----|----|----|
| Luxury |          | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|        | 10       |   |   |   |   |    |    |    |    |    |
|        | 11       |   |   |   |   |    |    |    |    |    |
|        | 12       |   |   |   |   |    |    |    |    |    |
|        | 13       |   |   |   |   |    |    |    |    |    |
|        | 14       |   |   |   |   |    |    |    |    |    |
|        | 15       |   |   |   |   |    |    |    |    |    |
|        | 16       |   |   |   |   |    |    |    |    |    |
|        | 17       |   |   |   |   |    |    |    |    |    |
|        | 18       |   |   |   |   |    |    |    |    |    |
|        | 19       |   |   |   |   |    |    |    |    |    |
|        | 20       |   |   |   |   |    |    |    |    |    |
|        | 21       |   |   |   |   |    |    |    |    |    |
|        | 22       |   |   |   |   |    |    |    |    |    |
|        | 23       |   |   |   |   |    |    |    |    |    |
|        | 24       |   |   |   |   |    |    |    |    |    |
|        |          |   |   |   |   |    |    |    |    |    |



3. Reference the dependent in the cell between the two variables.



4. Highlight the entire matrix and navigate to the Data tab. Select What-If Analysis and Data Table.





5. Populate the row input cell field with the variable represented at the top of the data table. Populate the column input cell with the variable represented along the side of data table.

For this example, the row input cell is the number of luxury cars to stock (J11) and the column input cell is the number of standard cars to stock (J10). Click OK.

| Н           | 1        | J        | K        | L         | M          | N        |       | 0      | P        | AF     | AG       |
|-------------|----------|----------|----------|-----------|------------|----------|-------|--------|----------|--------|----------|
|             |          |          |          |           |            |          |       |        |          |        |          |
|             |          | Fleet    | Upgrades |           |            |          |       |        |          |        |          |
|             | Standard | 15       |          | 33        | 12         | AVG      |       | 448.9  |          |        |          |
|             | Luxury   | 10       |          | 39        | 14         |          |       |        |          |        | Standard |
|             |          |          |          |           |            |          |       |        |          | Luxury | 448.9    |
| Replication | S-Demand | L-Demand | S-Sales  | S-Surplus | Data Table |          |       | ?      | ×        |        | 10       |
| 1           | 22       | 11       | 15       | 1         |            |          |       |        |          |        | 11       |
| 2           | 12       | 11       | 12       | (         | Row input  | relli:   | SJS1  | 1      | <u> </u> |        | 12       |
| 3           | 15       | 13       | 15       | (         | Now impact |          | 3731  | 1      |          |        | 13       |
| 4           | 14       | 12       | 14       | (         | Column inp | ut cell: | SJ\$1 | 0      | <u>+</u> |        | 14       |
| 5           | 23       | 12       | 15       | 4         |            |          |       |        |          |        | 15       |
| 6           | 19       | 10       | 15       | 4         |            | OK       |       | Cancel |          |        | 16       |
| 7           | 20       | 11       | 15       | 1         |            |          | _     |        |          |        | 17       |
| 8           | 23       | 13       | 15       | 8         | 8          |          | 2     | 442    |          |        | 18       |
| 9           | 20       | 12       | 15       | 5         | 5          |          | 5     | 460    |          |        | 19       |
| 10          | 18       | 10       | 15       | 3         | 3          |          | 7     | 472    |          |        | 20       |
| 11          | 20       | 13       | 15       | 5         | 5          |          | 5     | 460    |          |        | 21       |

**TIP:** If the data table is not populating with new numbers...



press F9 to recalculate your data tables.

|        | Standard |       |       |       |       |       |        | Standard |         |         |         |         |         |
|--------|----------|-------|-------|-------|-------|-------|--------|----------|---------|---------|---------|---------|---------|
| Luxury | 449.608  | 6     | 7     | 8     | 9     | 10    | Luxury | 448.864  | 6       | 7       | 8       | 9       | 10      |
|        | 10       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 10       | 266.136 | 287.032 | 310.292 | 329.892 | 353.056 |
|        | 11       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 11       | 283.488 | 305.296 | 328.508 | 351.444 | 371.176 |
|        | 12       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 12       | 305.28  | 327.316 | 350.144 | 370.8   | 392.704 |
|        | 13       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 13       | 326.736 | 349.192 | 372.032 | 390.828 | 413.812 |
|        | 14       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 14       | 346.608 | 368.368 | 389.324 | 409.956 | 429.136 |
|        | 15       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 15       | 364.428 | 384.628 | 407.624 | 428.424 | 450.46  |
|        | 16       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 16       | 378.6   | 401.56  | 422.936 | 444.996 | 467.404 |
|        | 17       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 17       | 394.836 | 418.72  | 434.372 | 458.592 | 479.008 |
|        | 18       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 18       | 406.236 | 426.484 | 451.52  | 468.072 | 482.5   |
|        | 19       | 448.9 | 448.9 | 448.9 | 448.9 | 448.9 |        | 19       | 413.1   | 438.832 | 459.536 | 473.532 | 501.736 |



6. Identify the best outcome from the scenarios.

Identify the maximum profit using the =MAX() function.

|    | AH    |     | AI      | AJ      | AK      | AL      | AM      | AN      | AO      | AP      |
|----|-------|-----|---------|---------|---------|---------|---------|---------|---------|---------|
|    |       |     |         |         |         |         |         |         |         |         |
|    |       |     |         |         |         |         |         |         |         |         |
| 12 | 2     | 6   | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14      |
| 10 | 266.1 | 36  | 287.032 | 310.292 | 329.892 | 353.056 | 374.528 | 394.092 | 415.228 | 435.584 |
| 11 | 283.4 | 88  | 305.296 | 328.508 | 351.444 | 371.176 | 394.652 | 412.824 | 434.38  | 452.192 |
| 12 | 305.  | 28  | 327.316 | 350.144 | 370.8   | 392.704 | 411.692 | 433.224 | 450.628 | 467.336 |
| 13 | 326.7 | 36  | 349.192 | 372.032 | 390.828 | 413.812 | 432.188 | 450.636 | 467.728 | 481.304 |
| 14 | 346.6 | 80  | 368.368 | 389.324 | 409.956 | 429.136 | 451.976 | 470.832 | 485.704 | 494.504 |
| 15 | 364.4 | 28  | 384.628 | 407.624 | 428.424 | 450.46  | 468.572 | 484.908 | 498.052 | 508.052 |
| 16 | 378   | 3.6 | 401.56  | 422.936 | 444.996 | 467.404 | 481.7   | 502.224 | 513.04  | 523.7   |
| 17 | 394.8 | 36  | 418.72  | 434.372 | 458.592 | 479.008 | 495.644 | 507.564 | 521.788 | 528.608 |
| 18 | 406.2 | 36  | 426.484 | 451.52  | 468.072 | 482.56  | 507.032 | 517.932 | 523.408 | 531.908 |
| 19 | 41    | 3.1 | 438.832 | 459.536 | 473.532 | 501.736 | 517.424 | 523.74  | 527.644 | 523.592 |
| 20 | 416.  | 28  | 441.688 | 466.064 | 481.344 | 504.04  | 520.184 | 525.468 | 521.824 | 528.704 |
| 21 | 417.3 | 12  | 446.536 | 461.276 | 481.44  | 508.18  | 518.876 | 515.52  | 527.704 | 509.336 |
| 22 | 426.8 | 52  | 438.22  | 466.424 | 478.416 | 500.656 | 510.344 | 525.876 | 520.42  | 503.312 |
| 23 | 414.3 | 12  | 440.92  | 446.852 | 475.764 | 494.2   | 509.624 | 509.64  | 507.784 | 502.52  |
| 24 | 404.  | 46  | 424.78  | 445.148 | 463.644 | 494.02  | 500.864 | 514.068 | 489.256 | 482.36  |
|    |       | 46  |         |         |         |         |         |         |         |         |

Navigate to the Home tab and select Conditional Formatting. Set the condition to highlighting cells that equal the maximum profit.







For this example, the highest profit is yielded when 14 luxury and 18 standard cars are stocked. Test that you have a stable data set by recalculating your data table. If the optimal cell is the same, then you have enough simulations. If it changes, then create more replications for your data set.

|       |          | _       |         |         |         | •       |         |         | T.      |         |
|-------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|       | Standard |         |         |         |         |         |         |         |         |         |
| uxury | 446.368  | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14      |
|       | 10       | 266.136 | 287.032 | 310.292 | 329.892 | 353.056 | 374.528 | 394.092 | 415.228 | 435.584 |
|       | 11       | 283.488 | 305.296 | 328.508 | 351.444 | 371.176 | 394.652 | 412.824 | 434.38  | 452.192 |
|       | 12       | 305.28  | 327.316 | 350.144 | 370.8   | 392.704 | 411.692 | 433.224 | 450.628 | 467.336 |
|       | 13       | 326.736 | 349.192 | 372.032 | 390.828 | 413.812 | 432.188 | 450.636 | 467.728 | 481.304 |
|       | 14       | 346.608 | 368.368 | 389.324 | 409.956 | 429.136 | 451.976 | 470.832 | 485.704 | 494.504 |
|       | 15       | 364.428 | 384.628 | 407.624 | 428.424 | 450.46  | 468.572 | 484.908 | 498.052 | 508.052 |
|       | 16       | 378.6   | 401.56  | 422.936 | 444.996 | 467.404 | 481.7   | 502.224 | 513.04  | 523.7   |
|       | 17       | 394.836 | 418.72  | 434.372 | 458.592 | 479.008 | 495.644 | 507.564 | 521.788 | 528.608 |
|       | 18       | 406.236 | 426.484 | 451.52  | 468.072 | 482.56  | 507.032 | 517.932 | 523.408 | 531.908 |
|       | 19       | 413.1   | 438.832 | 459.536 | 473.532 | 501.736 | 517.424 | 523.74  | 527.644 | 523.592 |
|       | 20       | 416.28  | 441.688 | 466.064 | 481.344 | 504.04  | 520.184 | 525.468 | 521.824 | 528.704 |
|       | 21       | 417.312 | 446.536 | 461.276 | 481.44  | 508.18  | 518.876 | 515.52  | 527.704 | 509.336 |
|       | 22       | 426.852 | 438.22  | 466.424 | 478.416 | 500.656 | 510.344 | 525.876 | 520.42  | 503.312 |
|       | 23       | 414.312 | 440.92  | 446.852 | 475.764 | 494.2   | 509.624 | 509.64  | 507.784 | 502.52  |
|       | 24       | 404.46  | 424.78  | 445.148 | 463.644 | 494.02  | 500.864 | 514.068 | 489.256 | 482.36  |
|       |          |         |         |         |         |         |         |         |         |         |
|       | Maximum: | 531.908 |         |         |         |         |         |         |         |         |
|       | 24       | 404.46  |         |         |         |         |         |         |         |         |



### **Create a Three-way Data Table**

#### **Excel Step-by-Step How-to for PC**

**Instructions:** Use this guide to create a three-way data table using Excel.

Data requirement: Probability distributions for at least two scenarios, simulations of the scenario (enough for stable data

output)





|             | STANDARD         |                              |                           |                      |                      |                      |                      |                  |             |             |                          |             |
|-------------|------------------|------------------------------|---------------------------|----------------------|----------------------|----------------------|----------------------|------------------|-------------|-------------|--------------------------|-------------|
|             | Frequency        | Relative Freq.               | Cumlative Prob.           |                      |                      |                      |                      |                  |             |             |                          |             |
| 10          | 2                | 0.02                         | 0                         |                      |                      |                      |                      |                  |             |             |                          |             |
| 11          | 1                | 0.01                         | 0.02                      |                      |                      |                      |                      |                  |             |             |                          |             |
| 12          | 6                | 0.06                         | 0.03                      |                      |                      |                      |                      |                  |             |             |                          |             |
| 13          | 3                | 0.03                         | 0.09                      |                      |                      |                      |                      |                  |             |             |                          |             |
| 14          | 6                | 0.06                         | 0.12                      |                      |                      | Fleet                | Upgrades             |                  |             |             |                          |             |
| 15          | 3                | 0.03                         | 0.18                      |                      | Standard             | 15                   | 5                    | 33               | 12          | AVG         | 450.052                  |             |
| 16          | 7                | 0.07                         | 0.21                      |                      | Luxury               | 10                   |                      | 39               | 14          |             |                          |             |
| 17          | 7                | 0.07                         | 0.28                      |                      |                      |                      |                      |                  |             |             |                          |             |
| 18          | 6                | 0.06                         | 0.35                      | Replication          | S-Demand             | L-Demand             | S-Sales              | S-Surplus        | S-Ups       | L -sales    | Profit                   |             |
| 19          | 14               | 0.14                         | 0.41                      | 1                    | 17                   | 11                   | 15                   | 2                | 2           | 8           | 478                      |             |
| 20          | 6                | 0.06                         | 0.55                      | 2                    | 17                   | 8                    | 15                   | 2                | 2           | 8           | 478                      |             |
| 21          | 9                | 0.09                         | 0.61                      | 3                    | 21                   | 14                   | 15                   | 6                | 6           | 4           | 454                      |             |
| 22          | 10               | 0.1                          | 0.7                       | 4                    | 16                   | 13                   | 15                   | 1                | 1           | 9           | 484                      |             |
| 23          | 13               | 0.13                         | 0.8                       | 5                    | 19                   | 13                   | 15                   | 4                | 4           | 6           | 466                      |             |
| 24          | 7                | 0.07                         | 0.93                      | 6                    | 16                   | 11                   | 15                   | 1                | 1           | 9           | 484                      |             |
|             |                  |                              | 1                         | 7                    | 23                   | 13                   | 15                   | 8                | 8           | 2           | 442                      |             |
|             | LUXURY           |                              |                           | 8                    | 18                   | 14                   | 15                   | 3                | 3           | 7           | 472                      |             |
|             | Frequency        | Relative Freq.               | Cumlative Prob.           | 9                    | 23                   | 11                   | 15                   | 8                | 8           | 2           | 442                      |             |
| 6           | 1                | 0.01                         | 0                         | 10                   | 22                   | 12                   | 15                   | 7                | 7           | 3           | 448                      |             |
| 7           | 4                | 0.04                         | 0.01                      | 11                   | 21                   | 12                   | 15                   | 6                | 6           | 4           | 454                      |             |
| 8           | 2                | 0.02                         | 0.05                      | 12                   | 19                   | 10                   | 15                   | 4                | 4           | 6           | 466                      |             |
| 9           | 6                | 0.06                         | 0.07                      | 13                   | 24                   | 12                   | 15                   | 9                | 9           | 1           | 436                      |             |
| 10          | 13               | 0.13                         | 0.13                      | 14                   | 18                   | 13                   | 15                   | 3                | 3           | 7           | 472                      |             |
| 7<br>8<br>9 | 1<br>4<br>2<br>6 | 0.01<br>0.04<br>0.02<br>0.06 | 0<br>0.01<br>0.05<br>0.07 | 10<br>11<br>12<br>13 | 22<br>21<br>19<br>24 | 12<br>12<br>10<br>12 | 15<br>15<br>15<br>15 | 7<br>6<br>4<br>9 | 7<br>6<br>4 | 3<br>4<br>6 | 448<br>454<br>466<br>436 | 8<br>4<br>6 |

2. To the right of the data simulations. outline the variables that will be evaluated. This will be achieved by creating a table of possible combinations of two of the variables and a matrix of the third variable

and counter.

Start by creating a table with each possible combination of two of the variables that should be evaluated. In this case, a combination of 12-13 luxury cars and 2-5 upgrades are being tested.

| Luxury   | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 13 |  |
|----------|----|----|----|----|----|----|----|----|--|
| Upgrades | 2  | 3  | 4  | 5  | 2  | 3  | 4  | 5  |  |
|          |    |    |    |    |    |    |    |    |  |

#### **=OFFSET(reference, rows, columns)**

Use the offset function to allow the data table to count through these combinations that have been laid out. Label the offset and give it a starting value of 1.

| Luxury   | 12 | 12 |  |
|----------|----|----|--|
| Upgrades | 2  | 3  |  |
| Offset   |    |    |  |
| 1        |    |    |  |
|          |    |    |  |

Populate the variable decision cell (in this example, luxury fleet cell) with the offset function. The reference is the cell labeled "Luxury" beside the combinations table, the rows is zero, and the number of columns is the number below the label "Offset."



|        |                           | TOTIL                           | 131                         |                         | Allyllille            | IIL               | 13(1)             | MININE | 1911                         | 31    | lie?  |
|--------|---------------------------|---------------------------------|-----------------------------|-------------------------|-----------------------|-------------------|-------------------|--------|------------------------------|-------|-------|
|        | × √ f:                    | =OFFS                           | SET(AF10,0,                 | AF13)                   |                       |                   |                   |        |                              |       |       |
| н      | 1                         | J                               | К                           | L                       | М                     | N                 | О                 | Р      | AF                           | AG    | АН    |
|        |                           |                                 |                             |                         |                       |                   |                   |        |                              |       |       |
|        |                           | Fleet                           | Upgrades                    |                         |                       |                   |                   |        |                              |       |       |
|        | Standard                  | 1                               | 5                           | 5 3                     | 3 1                   | 2 AVG             | 485.436           |        | Luxury                       | 1     | 2 12  |
|        | Luxury                    | 1                               | 2                           | 3                       | 9 1                   | 4                 |                   |        | Upgrades                     |       | 2 3   |
|        |                           |                                 |                             |                         |                       |                   |                   |        | Offset                       |       |       |
| icatio | n S- Demand               | L- Demand                       | S-Sales                     | S-Surplus               | S-Ups                 | L -sales          | Profit            |        |                              | 1     |       |
|        | 1 22                      | 2 1                             | <b>1</b> 1                  | 5                       | 7                     | 5                 | 7 504             |        |                              |       |       |
|        | 2 <b>2</b> 3              | 3 1                             | <mark>3</mark> 1            | 5                       | 8                     | 8                 | 486               |        |                              |       |       |
|        |                           |                                 | with Upg                    | iaacs.                  |                       |                   |                   |        |                              |       |       |
| ×      | √ f <sub>x</sub>          |                                 | T(AF11,0,AF                 |                         |                       |                   |                   |        |                              |       |       |
| ×      | √ f <sub>x</sub>          |                                 |                             |                         | M                     | N                 | 0                 | P      | AF                           | AG    | АН    |
| ×      | 1                         | =OFFSE                          | T(AF11,0,AF                 | 13)                     | M                     | N                 | 0                 | P      | AF                           | AG    | АН    |
| ×      | 1                         | =OFFSE                          | T(AF11,0,AF                 | 13)                     | M 12                  |                   | O<br>487.248      |        | AF                           | AG 12 | AH 12 |
| ×      | 1                         | =OFFSE<br>J                     | T(AF11,0,AF                 | 13)<br>L                |                       |                   |                   | ı      |                              |       |       |
| ×      | l<br>Standard             | =OFFSE  J Fleet                 | T(AF11,0,AF                 | 13)<br>L                | 12                    |                   |                   | l l    | uxury                        | 12    | 12    |
| 1      | l<br>Standard             | =OFFSE  J  Fleet  15  12        | T(AF11,0,AF  K  Upgrades    | 13)<br>L<br>33<br>39    | 12 /<br>14            | AVG               |                   | l l    | uxury<br>Jpgrades            | 12    | 12    |
| 1      | I<br>Standard<br>Luxury   | =OFFSE  J  Fleet  15  12        | T(AF11,0,AF  K  Upgrades    | 13)<br>L<br>33<br>39    | 12 /<br>14            | AVG               | 487.248           | l l    | .uxury<br>Jpgrades<br>Offset | 12    | 12    |
| dation | Standard Luxury S- Demand | =OFFSE  J Fleet 15 12 L- Demand | T(AF11,0,AF  K  Upgrades  2 | 13)  L  33 39 S-Surplus | 12 /<br>14<br>S-Ups I | AVG<br>L -sales P | 487.248<br>Profit | l l    | .uxury<br>Jpgrades<br>Offset | 12    | 12    |

Create a second table below the combinations table. The table should mimic those created for two-way data tables. The column of the table holds the possibilities for the third variable. In this case, that is the standard car stock. The row of the table holds an index for each column of the combinations table.



| Р     | AF       | AG | AH | Al | AJ | AK | AL | AM | AN |
|-------|----------|----|----|----|----|----|----|----|----|
|       |          |    |    |    |    |    |    |    |    |
|       | Luxury   | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 13 |
|       | Upgrades | 2  | 3  | 4  | 5  | 2  | 3  | 4  | 5  |
|       | Offset   |    |    |    |    |    |    |    |    |
|       | 1        |    |    |    |    |    |    |    |    |
|       | Standard |    |    |    |    |    |    |    |    |
| Index | 481.476  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|       | 10       |    |    |    |    |    |    |    |    |
|       | 11       |    |    |    |    |    |    |    |    |
|       | 12       |    |    |    |    |    |    |    |    |
|       | 13       |    |    |    |    |    |    |    |    |
|       | 14       |    |    |    |    |    |    |    |    |
|       | 15       |    |    |    |    |    |    |    |    |
|       | 16       |    |    |    |    |    |    |    |    |
|       | 17       |    |    |    |    |    |    |    |    |
|       | 18       |    |    |    |    |    |    |    |    |
|       | 19       |    |    |    |    |    |    |    |    |
|       | 20       |    |    |    |    |    |    |    |    |
|       | 21       |    |    |    |    |    |    |    |    |
|       | 22       |    |    |    |    |    |    |    |    |
|       | 23       |    |    |    |    |    |    |    |    |
|       | 24       |    |    |    |    |    |    |    |    |
|       |          |    |    |    |    |    |    |    |    |



3. Highlight the matrix and navigate to the Data tab.
Select What-If Analysis and Data Table.



4. Populate the row input cell and the column input cell with the appropriate data.

The row input cell should reference the offset counter (the cell below the label offset) and the column input cell should reference the standard fleet cell.





23 517.128

24

503.772

513.3

483.816

522.276

511.792

485,464

498.244

505.228

510.004

489,532

TIP: If the data table is not populating with new numbers...



23

24

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

press F9 to recalculate your data tables.



6. Identify the best outcome from the scenarios.

Use the same methods that are found in "Create Two-way Data Table" to identify the maximum profit.

| Luxury   | 12      | 12      | 12      | 12      | 13      | 13      | 13      | 13      |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Upgrades | 2       | 3       | 4       | 5       | 2       | 3       | 4       | 5       |
| Offset   |         |         |         |         |         |         |         |         |
| 1        |         |         |         |         |         |         |         |         |
| Standard |         |         |         |         |         |         |         |         |
| 486      | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       |
| 10       | 394.98  | 394.68  | 396.972 | 395.484 | 415.156 | 415.552 | 416.212 | 417.124 |
| 11       | 415.356 | 412.392 | 415.08  | 414.804 | 434.08  | 434.224 | 432.508 | 433.024 |
| 12       | 432.648 | 432.12  | 430.968 | 432.6   | 450.28  | 450.364 | 450.448 | 448.78  |
| 13       | 449.22  | 451.776 | 449.58  | 451.452 | 471.736 | 469.492 | 470.296 | 469.084 |
| 14       | 468.744 | 467.832 | 469.896 | 468.732 | 487.504 | 486.676 | 486.232 | 484.48  |
| 15       | 483.924 | 483.336 | 484.212 | 485.328 | 500.608 | 498.484 | 493.192 | 501.592 |
| 16       | 498.528 | 501.84  | 499.404 | 500.82  | 509.536 | 509.308 | 511.108 | 506.572 |
| 17       | 514.752 | 508.08  | 508.212 | 512.916 | 516.82  | 518.056 | 520.54  | 515.956 |
| 18       | 521.58  | 516.06  | 520.956 | 519.612 | 516.712 | 527.596 | 523.564 | 521.296 |
| 19       | 521.292 | 522.84  | 519.576 | 520.152 | 533.236 | 527.8   | 529.576 | 525.328 |
| 20       | 525.432 | 513.912 | 525.336 | 520.344 | 522.952 | 531.34  | 531.436 | 525.82  |
| 21       | 526.608 | 525.576 | 518.58  | 519.588 | 521.164 | 524.968 | 525.556 | 517.78  |
| 22       | 524.568 | 516.528 | 516.42  | 520.116 | 518.656 | 519.016 | 517.864 | 520.636 |
| 23       | 521.88  | 509.076 | 507.492 | 512.808 | 513.484 | 510.772 | 508.168 | 514.972 |
| 24       | 499.332 | 489     | 495.948 | 505.716 | 496.96  | 493.348 | 489.088 | 492.532 |
| Maximum: | 533.236 |         |         |         |         |         |         |         |

For this example, the highest profit is yielded when 13 luxury and 19 standard cars are stocked and 2 upgrades are available. Test that you have a stable data set by recalculating your data table. If the optimal cell is the same, then you have enough simulations. If it changes, then create more replications for your data set.



# Create an n-way Data Table Excel Step-by-Step How-to for PC

**Instructions:** Use this guide to create an n-way data table using Excel.

Data requirement: Probability distributions for at least two scenarios, simulations of the scenario (enough for stable data

output)





2. Edit the combinations table in order to factor in the desired number of variables.

For each additional variable, add a row to the combination table. Then add each possibility for that row. You will need to add to the number of columns of this table if the options for the additional variable are greater than or equal to the smallest number of options present so far in the table.



Repeat the process of setting up the offset function, and the rest of the process follows that of the three-way table.