北京大学数学科学学院《数学分析I》期中试题(20211110)

授课教师: 王冠香

- 1. (25分)判断下列陈述是否正确,并给出简要理由.
 - (1) 定义在 $(-\infty, +\infty)$ 上的函数, 如果满足 $f(f(x)) = x, \forall x \in \mathbb{R}$, 则 f 是一一对 应的.
 - (2) 元素个数无穷的集合,若有确界,则确界必是集合的聚点.
 - (3) 若数列 $\{x_n\}$ 收敛,则 $\{|x_n|\}$ 也收敛.
 - (4) f(x) 定义在 $(-\infty, +\infty)$,若 $\lim_{x\to\infty} f(x)$ 存在,则 f(x) 有界.
 - (5) 某区间上的两个一致连续的函数的乘积一致连续.
- 2. (25分) 计算下列极限:
 - $(1) \quad \lim_{n\to\infty} \sin(\pi\sqrt{n^2+1});$

(2)
$$\lim_{n\to\infty} \sum_{k=2}^{n} \ln(1-\frac{1}{k^2});$$

(3)
$$\lim_{x \to \infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x;$$

(4) $\lim_{x \to 0} \frac{\sqrt[3]{1 + 3x} - \sqrt{1 + 2x}}{4x};$

(4)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+3x} - \sqrt{1+2x}}{4x}$$

(5) 对
$$p(\geqslant 2)$$
 个正数 a_1, \dots, a_p , 计算 $\lim_{x\to 0+0} \left(\frac{1}{p}\sum_{k=1}^p a_k^x\right)^{\frac{1}{x}}$.

3. (10分)证明下列命题:

(1) 设
$$\lim_{n \to \infty} a_n = a$$
, 证明 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n a_k = a$;

(2) 设
$$\lim_{n \to \infty} a_n = a$$
, $\lim_{n \to \infty} b_n = b$, 证明 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^n a_k b_{n-k} = ab$.

- 4. (10分) 设数列 $\{x_n\}$ 是一列两两不同的实数, 试构造一个定义在 $(-\infty, +\infty)$ 上 的函数,是的它的间断点集恰好是 $\{x_n\}$,并解释为何 $f(x) = \begin{cases} 1, \exists n \ s.t. x = x_n \\ 0, \not\exists n \ s.t. x = x_n \end{cases}$ 不是该题的解。
- 5. (10分) 设 $x_n > 0, n = 1, 2, \cdots$,记 $L = \overline{\lim} n \left(\frac{1 + x_{n+1}}{x_n} 1 \right)$. (1) 证明 $L \geqslant 1$; (2) 是否存在收敛正数列 $\{x_n\}$ 使得 $L<+\infty$? 为什么? (3) 给出一个正数列 $\{x_n\}$ 使 得 L=1.

- 6. (10分)(1) 设 f(x) 在 $[0,\infty)$ 上一致连续,且对任意的 $x \in [0,1]$, $\lim_{n \to \infty} f(x+n) = 0$. 证明 $\lim_{x \to +\infty} f(x) = 0$. (2) 上一结论中," f(x) 在 $[0,\infty)$ 上一致连续"是否必要?如果不是必要的,给出无此条件的证明,如果是必要的,举出反例。
- 7. (10分)证明下列命题:
 - (1) 设数列 $\{x_n\}_{n=1}^{\infty}$ 有界,证明必存在两个子列 $\{x_{n_k}\}_{k=1}^{\infty}$, $\{x_{n_{k+1}}\}_{k=1}^{\infty}$ 同时收敛;
 - (2) 利用"有界数列必有收敛子列"证明"闭区间上的连续函数是一致连续的."