Análisis Numérico para Ingeniería

APROXIMACIÓN DE FUNCIONES

Ing. Carla D. Di Monno

Aproximación de funciones

Problema: estimar valores intermedios entre datos definidos por puntos ---- Aproximar función dada en forma discreta (puntos datos) con función continua PMMA Raman response [A.U.]

- Función aproximante: sencilla --- polinomio
- Criterio de aproximación:
 - polinomio interpolante que pasa Interpolación por los nodos $f(x_i) = p_n(x_i)$
 - Spline Cúbico
 - Mínimos Cuadrados

x100 dry

Aproximación de funciones

Unicidad del polinomio aproximante

Dado n+1 puntos, <u>hay uno y sólo un polinomio de grado n que</u> <u>pasa a través de todos los puntos.</u>

Interpolación y extrapolación

Encontrar polinomio único de n-ésimo grado que ajuste los n+1 puntos.

La *extrapolación* consiste en estimar un valor de la función fuera del dominio de los valores conocidos usando el polinomio interpolante. El error puede ser muy grande, dado que la curva real puede diverger fácilmente de la predicción

Aproximación de funciones | Métodos de Interpolación

- Aplicación directa del criterio → para n grandes el sistema resulta mal condicionado, por lo tanto no es buen método para hallar los coeficientes del polinomio.
- Newton Ascendente
- Newton Descendente
- Lagrange
- Newton Divididas

nodos equiespaciados

nodos no equiespaciados

• **Spline cúbico** aproximación suave polinómica segmentaria (divido intervalo de aproximación y construyo polinomios de grado 3 diferentes, en general, en cada subintervalo). Copia la forma.

Aproximación de funciones | Ejemplo

Dada la siguiente tabla de valores encuentre el polinomio interpolante

Nodos equiespaciados

Busco polinomio de grado 3 que pase por los 4 puntos.

1) Aplicación directa del criterio

$$f(x_i) = p_n(x_i)$$

$$P_3(x)=a_0+a_1*x+a_2*x^2+a_3*x^3$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \\ 1 & 4 & 16 & 64 \\ 1 & 6 & 36 & 216 \end{pmatrix}$$

Aproximación de funciones | Ejemplo

2) Por el Método de Newton Divididas

A₀ A₁ A₂ A₃

$$P_n(x)=f(x_0)+f(x_0,x_1)(x-x_0)+f(x_0,x_1,x_2)(x-x_0)(x-x_1)+f(x_0,x_1,x_2,x_3)(x-x_0)(x-x_1)(x-x_2)$$

X	y = A0	A1	A2	А3
0	0,25	0,175	-0,00625	-3,125E-3
2	0,6	0,15	-0,025	
4	0,9	0,05		
6	1			

POLINOMIO RESULTANTE POR AMBOS MÉTODOS

$$P_3(x)=0.25+0.1625*x+0.0125*x^2-0.003125*x^3$$

Aproximación de funciones | Código

Núcleo subrutina que genera coeficientes de Newton Div.

```
ldo j=2,n
l do i=1,n+1-j
mat(i,j)=(mat(i+1,j-1)-mat(i,j-1))/(x(i+j-1)-x(i))
end do
end do
end do
```

Núcleo subrutina para calcular el valor del polinomio de Newton en un punto

```
aux=1.
nwdiv=y(1)

do i=2,n
    aux=aux*(var-x(i-1))
    nwdiv=y(i)*aux+nwdiv
end do
```

Aproximación de funciones | Código

Núcleo subrutina que genera coeficientes de Newton Ascendente

```
do j=2,n
  do i=1,n+1-j
    mat(i,j)=mat(i+1,j-1)-mat(i,j-1)
  end do
end do
```

Núcleo subrutina que genera coeficientes de Newton Descendente

```
do j=2,n
  do i=j,n
    mat(i,j)=mat(i,j-1)-mat(i-1,j-1)
    print*, mat(i,j)
  end do
```

Aproximación de funciones | Método de Lagrange

$$p_{n}(x) = \sum_{k=0}^{n} L_{k}(x) f(x_{k}) = \sum_{k=0}^{n} \left[\prod_{i=0}^{n} \frac{(x - x_{i})}{(x_{k} - x_{i})} \right] y_{k}$$

Ver ejemplo de aplicación Clase 9 de Teoría

Núcleo subrutina interpolación por Lagrange en un punto

```
lagrange=0
do j=1,n
  aux=1
  do i=1,n
   if (i.NE.j) then
    aux=((var-x(i))/(x(j)-x(i)))*aux
  end if
  end do
  lagrange=aux*y(j)+lagrange
end do
```

Aproximación de funciones | Spline Cúbico

A > cantidad de puntos → >grado polinomio (naturaleza oscilatoria)

Alternativa: dividir el intervalo de aproximación y construir un polinomio diferente (en general) en cada intervalo.

Dada una función f definida en [a,b], y un grupo de nodos a = x0 < x1 < ... < xn = b, se denomina Polinomio Cúbico Interpolante Spline o trazador cúbico al polinomio denotado P_k , en el subintervalo [x_k , x_{k+1}], para cada k=0, 1, ... n-1.

$$P_k(x) = a_k + b_k(x - x_k) + c_k(x - x_k)^2 + d_k(x - x_k)^3$$

Aproximación de funciones | Spline Cúbico

Satisface las siguientes condiciones:

(I)Criterio de interpolación: polinomio interpolante pasa por todos los puntos datos

$$P_k(x_k) = f(x_k) k = 0, 1, ..., n-1 y P_{n-1}(x_n) = f(x_n)$$

(II) Continuidad en los nodos interiores:

$$P_k(x_{k+1}) = P_{k+1}(x_{k+1}) k=0, 1, ..., n-2$$

(III) Derivabilidad en los nodos interiores (igual pendiente):

$$P'_k(x_{k+1}) = P'_{k+1}(x_{k+1}) k=0, 1, ..., n-2$$

(IV) Continuidad de la primera derivada para conservar concavidad en la vecindad de los nodos internos:

$$P''_k(x_{k+1}) = P''_{k+1}(x_{k+1}) k=0, 1, ..., n-2$$

Aproximación de funciones | Spline Cúbico

Además dicha función debe satisfacer **alguna de las** siguientes condiciones de frontera o borde:

i. FRONTERA LIBRE o NATURAL

$$P_0"(x_0) = P_{n-1}"(x_n) = 0$$

ii. FRONTERA SUJETA

$$P_0'(x_0) = f'(x_0) y P_{n-1}'(x_n) = f'(x_n)$$

Trayectoria de una ruta

Imagen satelital ruta

Planteo directo

Expresiones Generales

$$a_k = f(x_k)$$

$$b_k = \frac{a_{k+1} - a_k}{h_k} - \frac{h_k}{3} (2c_k + c_{k+1})$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & 0 & \dots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \vdots \\ 0 \end{bmatrix}$$

$$d_k = \frac{c_{k+1} - c_k}{3h_k}$$

Procedimiento de Cálculo

1.Los valores de **a**_k **y h**_k **se obtienen a partir de los** datos y con ellos se arma el sistema anterior.

$$P_k(x_k) = a_k = f(x_k) => a_k \text{ es dato}$$

$$\triangleright$$
 h_k= x_{k+1} - x_k => h_k es dato

k	X	f(x)=a	h
0	415	450	80
1	495	460	65
2	560	560	30
3	590	450	

2. Resolviendo el sistema tri-diagonal planteado, se obtienen los valores de ck.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 80 & 2 \cdot (80 + 65) & 65 & 0 \\ 0 & 65 & 2 \cdot (65 + 30) & 30 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{65} \cdot (560 - 520) - \frac{3}{80} \cdot (520 - 450) \\ \frac{3}{30} \cdot (450 - 560) - \frac{3}{65} \cdot (560 - 520) \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 80 & 290 & 65 & 0 \\ 0 & 65 & 190 & 30 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.7788 \\ -12.8462 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.0135 \\ -0.0722 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 80 & 290 & 65 & 0 \\ 0 & 65 & 190 & 30 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.7788 \\ -12.8462 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.0135 \\ -0.0722 \\ 0 \end{bmatrix}$$

3. Con los valores de **a**k, **h**k **y c**k **se calculan los valores** de **b**k según la expresión vista anteriormente:

$$b_k = \frac{a_{k+1} - a_k}{h_k} - \frac{h_k}{3}(2c_k + c_{k+1})$$

$$b_0 = 0.5150$$

$$b_1 = 1.5952$$

$$b_2 = -2.2220$$

4.Con los valores de **c**k **y h**k **se calculan los valores** de **d**k según la expresión vista anteriormente:

$$d_k = \frac{c_{k+1} - c_k}{3h_k}$$

$$d_0 = 0.000056$$

$$d_1 = -0.00044$$

$$d_2 = 0.000802$$

Resolviendo para los 4 puntos dados por GPS con planteo resuelto a mano

$$P_0(x) = 450 + 0.5148 \cdot (x - 415) - 0.0000 \cdot (x - 415)^2 + 0.00056 \cdot (x - 415)^3$$

$$P_1(x) = 520 + 1.5952 \cdot (x - 495) + 0.0135 \cdot (x - 495)^2 - 0.000440 \cdot (x - 495)^3$$

$$P_2(x) = 560 - 2.2220 \cdot (x - 560) - 0.07223 \cdot (x - 560)^2 + 0.000803 \cdot (x - 560)^3$$

Resolviendo para los 23 puntos dados por GPS

Χĵ	Αj	<i>B</i> j	cj	ָלָם
0.000000	235.000000	0.392227	0.000000	0.000030
35.000000	250.000000	0.501261	0.003115	-0.000102
150.000000	193.000000	-2.847731	-0.032237	0.001481
170.000000	135.000000	-2.359799	0.056634	-0.000422
215.000000	105.000000	0.171088	-0.000392	0.000082
315.000000	200.000000	2.546988	0.024151	-0.000903
350.000000	280.000000	0.917893	-0.070696	0.001666
395.000000	330.000000	4.678876	0.154274	-0.004411
415.000000	450.000000	5.556775	-0.110379	0.000648
495.000000	520.000000	0.341743	0.045191	-0.000630
560.000000	560.000000	-1 <i>.774732</i>	-0.077752	0.000490
590.000000	450.000000	-5.11 <i>7977</i>	-0.033690	0.000576
615.000000	310.000000	-5.721 <i>807</i>	0.009536	0.002572
630.000000	235.000000	-3.699432	0.125289	-0.001959
665.000000	175.000000	-2.129097	-0.080422	0.001503
690.000000	95.000000	-3.331257	0.032336	-0.000062
900.000000	245.000000	2.014912	-0.006 <i>878</i>	0.000020
990.000000	385.000000	1.255825	-0.001557	0.000049
1040.000000	450.000000	1.466186	0.005764	-0.000340
1070.000000	490.000000	0.894709	-0.024 <i>8</i> 13	0.000160
1145.000000	485.000000	-0.12 <i>8</i> 429	0.011171	-0.000022
1240.000000	555.000000	1.406106	0.004982	-0.000037
1285.000000	625.000000			

Para datos con errores sustanciales (medidas físicas) la interpolación polinomial es inapropiada. Debo obtener función de aproximación que se ajuste a la tendencia general de los datos o la forma, sin coincidir necesariamente en los puntos.

Criterio: Se busca minimizar la siguiente función

$$F(a_0, a_1, \dots, a_n) = \sum_{k=1}^{M} (y_k - p(x_k))^2 = \sum_{k=1}^{M} \varepsilon_k^2$$

Se debe derivar la función con respecto a cada uno de los coeficientes desconocidos del polinomio e igualarlos a cero (minimizo).

$$\frac{\partial F}{\partial a_i} = 0$$
 para $i = 0, 1, 2, ..., n$

Obtengo sistema de ecuaciones lineales cuyas incógnitas son los coeficientes.

$$\sum_{j=0}^{n} a_{j} \left(\sum_{k=1}^{M} x_{k}^{j+i} \right) = \sum_{k=1}^{M} y_{k} x_{k}^{i}; \quad i = 0, 1, 2, ..., n$$

Para elegir la aproximación óptima elegimos el criterio de varianza mínima (dispersión mínima de datos):

M: cantidad de puntos

N: grado del polinomio de aproximación

Método de naturaleza predictiva, que muestra la tendencia de comportamiento de un gran volumen de datos físicos o químicos que deseo caracterizar. Para modelo sencillo, polinomio de grado bajo.

ALGORITMO PARA IMPLEMENTAR MÍNIMOS CUADRADOS

- Introducir grado del polinomio aproximante (n)
- Introducir el número de datos (m)
- Si n>m+1, mensaje de error. Si n<=m+1, continuar.
- Calcular elementos del sistema normal en forma de matriz aumentada.
- Usar la matriz aumentada para determinar los coeficientes mediante algún método de eliminación (vistos para el Primer Parcial, Guía Nº3).
- Imprimir coeficientes.

Muchas gracias por su atención!

