

FACULDADE DE TECNOLOGIA SENAC RIO			
Curso: Análise e Desenvolvimento de Sistemas	Semestre letivo: 2022.2		
Unidade Curricular: Estatística Aplicada	Módulo: 3		
Professor: Agnaldo Cieslak	Data:		
Competências a serem avaliadas:	Indicadores de Competência:		
 Desenvolver sistemas computacionais aplicando boas práticas de Qualidade de Software 			
Aluno:	Conceito:		

Atividade de fechamento ciclo 2 – parte 2 – COM CONSULTA LIVRE

- A prova pode ser resolvida a mão livre, em word, bloco de notas ou outro que melhor convir, mas a postagem deve ser preferencialmente em arquivo .pdf ou .jpg ou .xlx.
- A prova será de 18:00 às 20h.
- O sistema fechará às 20:10h para postagem.

Baseado nos conceitos trabalhados de probabilidade e estatística, resolver os problemas abaixo apresentando o desenvolvimento dos cálculos, os diagramas se necessário, fórmula aplicada, visando mostrar o seu conhecimento:

1) A qualidade dos carros pintados em uma montadora foi avaliada em termos de resistência ao arranhão e adequação das camadas de tinta. Os resultados obtidos estão representados na tabela abaixo:

Resistência ao	Adequação	Total	
arranhão	Aprovado	Reprovado	
Alta	700	140	840
Baixa	100	60	160
Total	800	200	1000

Se um carro for selecionado ao acaso desse lote de 1000, qual a probabilidade de:

- a) Ter resistência ao arranhão alta e ser aprovada na avaliação da adequação?
- b) Ter resistência ao arranhão alta ou ser aprovada na avaliação da adequação?
- c) Ser aprovada na avaliação da adequação, dado que tem alta resistência ao arranhão?
- d) Ter alta resistência ao arranhão, dado que foi reprovada na avaliação da adequação?
- 2) A área comercial de uma empresa recebe pedidos de três representantes classificados como A, B e C. Os dados históricos indicam que os pedidos se encontram distribuídos da seguinte forma: 150 do representante A, 250 do B e 300 do C. Quando o representante não efetua o pedido da forma correta, o sistema apresentará erro.

Considere que ocorreram os seguintes pedidos inadequados (com erros): 48 do representante A, 29 do B e 34 do C. Escolhe-se ao acaso um pedido da população

de 700 pedidos enviados pelos representantes. Qual a probabilidade de se tratar de um pedido do representante A ou de se ter um pedido com erro?

3) Os dados históricos da área comercial registram que o percentual dos pedidos dos representantes que apresentam erros são 7,3% do representante A, 3,8% do B e 4,6% do C.

Da população de 700 processamentos:

- a) Qual a probabilidade do processamento apresentar erro? (desenhar o espaço amostral e suas partições)
- b) Qual a probabilidade de que o processamento tenha sido pedido pelo representante C, sabendo-se que apresentou erro. (Usar regra de Bayes)
- 4) Uma fundição de lâminas de alumínio para fabricação de aviões é frequentemente solicitada por seus clientes a produzir estas lâminas, com dureza na faixa de 170 HB a 210 HB. (HB é a unidade de medida da dureza do material). Os testes realizados em corpos de prova apresentam uma média de 184 HB e um desvio padrão de 9.
- a) Calcule a probabilidade de a dureza ser menor do que 170 HB.
- b) Um determinado cliente aceita um risco de 2% das lâminas terem valor de dureza menor que 160 HB. Assim, calcule a probabilidade do valor ser menor que 160 e dê seu parecer se este cliente compraria deste fornecedor, nas condições mencionadas.
- 5) Um fabricante de rolamentos possui dados históricos sobre a temperatura de aquecimento de seus rolamentos. Sabe-se que a temperatura média de aquecimento de 77 rolamentos, que foram testados no laboratório de controle, é de 54,30 °C e que a amostragem da população segue uma distribuição normal e tem desvio padrão populacional de 1,34 °C.
- a) construa o intervalo de confiança para a estimação da temperatura média da população considerando um nível de confiança de 95%.
- b) qual a probabilidade de a verdadeira média exceder a 54 80 °C?
- 6) Comente o que sabe sobre a relação Margem de erro x tamanho de amostras.

Formulário:

Teoria clássica da probabilidade

$$P(A) = \frac{n \text{\'umero de resultados favor\'aveis a A}}{n \text{\'umero de resultados poss\'iveis}} = \frac{n(A)}{n(\Omega ouS)}$$

Mutuamente excludentes

$$P(AUB) = P(A) + P(B)$$

Não-mutuamente excludentes

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Condicional – eventos independentes $P(A \cap B) = P(A)P(B)$

Condicional – eventos dependentes

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \underline{\text{dado}} P(B) > 0$$

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} \underline{\text{dado}} P(A) > 0$$

Valor z ou score z

$$z = \frac{x - \mu}{\sigma}$$

Intervalo de confiança

$$\bar{x} - e \le \mu \le \bar{x} + e$$
 ou $\mu = \bar{x} \pm e$ $P(\bar{x} - e \le \mu \le \bar{x} + e) = 1 - \alpha$

$$P(\bar{x} - e \le u \le \bar{x} + e) = 1 - \alpha$$

Margem de Erro

$$e = z.\frac{\sigma}{\sqrt{n}}$$

Tabela 57 – Distribuição Normal Padronizada

		-	NO PERSONAL PROPERTY.	200 ESSECTION CONTRACTOR	z adror	nzada	- 00		μ 2	
	z 0,0			0,03	0,04	0,05	0,06	0.07	nigrasion.	ATTENDED TO A THE PARTY.
0,					0,0160	0,0199	0,0239	0,07	0,08	0,09
0,				1	0,0557	0,0596	0,0636	0,0279	0,0319	0,0359
0,	0.44			0,0910	0,0948	0,0987	0,1026	0,1064	0,0714	0,0753
0,	0.450			-	0,1331	0,1368	0,1406	0,1004	0,1103	0,1141
0,4	- 10			-	0,1700	0,1736	0,1772	0,1808	0,1480	0,1517
0,5				0,2019	0,2054	0,2088	0,2123	0,2157	0,1044	0,1879
0,6				0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2224
0,7				0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,288		-	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,315			0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,341			0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,364			0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849			0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032			0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192		-	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332		0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8					0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4974	0,4975	0,4976	0,4977		0,4984	0,4985	0,4985	0,4986	0,4986
THE RESERVE	0,4981	0,4982	0,4982	0,4983	0,4984		0,4989	0,4989	0,4990	0,4990
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4992	0,4992	0,4993	0,4993
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992		0,4995	0,4995	0,4995
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4996	0,4996	0,4997
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4997	0,4997	0,4998
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997			0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	_
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
				0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999		0,5000	0,5000	0,5000	0,5000	0,5000	0,5000
3,9	0,5000	0,5000	0,5000	0,5000	0,000			11/2		

N	_	-	•	^	•
174		ш		r.	1

Folha de resolução 1:

,						
	N	n	m	n	Δ	•

Folha de resolução 2: