解析 I 演習 (2学期:ベクトル解析)

- 第9回 積分公式 -

担当: 佐藤 弘康

未発表問題: 3,7(3), 4.3(2), 4.7, 4.11, 5.3, 5.4, 6.4(2), 6.6, 7.2(2)(3), 7.3~7.5, 8.1~8.4

問題 9.1. 次の ${f R}^2$ 上で定義された一次微分形式 ω と閉曲線 C に対し,定義に従って線積分 $\int_C \omega$ を計算せよ.また, ${f Stokes}$ の定理を使って $\int_C \omega$ を C の内部の領域 D 上の面積分になおして計算し,前の結果と比較せよ.

(1)
$$\omega = (e^x y + \cos x) dx + (x^3 + 3xy^2 + e^x) dy$$
, $C: x^2 + y^2 = 1$

(2)
$$\omega = 2xy^2 dx + 3x^2y dy$$
, $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

問題 9.2. 次の ${f R}^3$ 上で定義された一次微分形式 ω と滑らかな曲面 S に対し,S の境界 C 上での線積分 $\int_C \omega$ を定義にしたがって計算せよ.また,Stokes の定理を使って $\int_C \omega$ を S 上の面積分になおして計算し,前の結果と比較せよ.

- (1) $\omega = (3x^2 y)dx + 4xy \ dy + (xyz + 2z^2)dz$, $S: 曲面 z = 4 - x^2 - y^2 \ \mathcal{O} \ z \ge 0 \ \mathcal{O}$ 部分 (原点の側が裏)
- (2) $\omega=x^2dx+x^3dy+z\ dz,$ S: 円柱 $x^2+y^2=1$ と平面 2x+y+z=1 との交線で囲まれた円盤 (原点の側が裏)

問題 9.3. 次の ${f R}^3$ 上で定義された二次微分形式 ω と滑らかな閉曲面 S に対し,面積分 $\int_S \omega$ を定義にしたがって計算せよ.また, ${f Stokes}$ の定理を使って $\int_S \omega$ を S の内部の領域 D 上の体積分になおして計算し,前の結果と比較せよ.

- (1) $\omega = 2x \ dy \wedge dz + 3y \ dz \wedge dx + 4z \ dx \wedge dy$, S: 原点を中心とする半径 1 の球面で表面を表とする曲面
- (2) $\omega = x^3 dy \wedge dz + y^3 dz \wedge dx + z^3 dx \wedge dy$, S: 原点を中心とする半径 a の球面で表面を表とする曲面

問題 9.4. ω を ${f R}^3$ 上の一次微分形式とする.このとき,向きのついた任意の閉曲面 S に対して

$$\int_{S} d\omega = 0$$

が成り立つことを示せ.

問題 9.5. 滑らかな閉曲面 S で囲まれた領域の体積を V とするとき

$$\int_{S} x \, dy \wedge dz = \int_{S} y \, dz \wedge dx = \int_{S} z \, dx \wedge dy = V$$

が成り立つことを示せ.

問題 ${\bf 9.6.}$ C_1 を $y=x^2$ に沿って原点から (1,1) までの曲線 , C_2 を $y=\sqrt{x}$ に沿って (1,1) から原点までの曲線とする .

- (1) \mathbf{R}^2 上の一次微分形式 $\omega=(x^2-y^2)dx+(y-xy)dy$ に対して , 線積分 $I_1=\int_{C_1}\omega$ および $I_2=\int_{C_2}\omega$ を求めよ .
- (2) C_1 と C_2 で囲まれる領域を D とするとき,面積分 $I=\int_D d\omega$ を計算し, $I=I_1+I_2$ となることを確かめよ.

問題 9.7. 3 点 $A_1 = (1,0,0)$, $A_2 = (0,1,0)$, $A_3 = (0,0,1)$ に対し, A_1 から A_2 までの線分を C_1 , A_2 から A_3 までの線分を C_2 , A_3 から A_1 までの線分を C_3 とする.

- (1) \mathbf{R}^3 上の一次微分形式 $\omega=z\;dx+x\;dy+y\;dz$ に対して , 線積分 $I_i=\int_{C_i}\omega$ (i=1,2,3) を求めよ .
- (2) A_1,A_2,A_3 を頂点とする三角形で,原点の無い側を表とする曲面を S とするとき面積分 $I=\int_S d\omega$ を計算し, $I=\sum_{1=1}^3 I_i$ となることを確かめよ.

問題 9.8. 次の ${f R}^3$ 上の二次微分形式 ω と閉曲面 $S({f \xi}$ 面が表) に対して, $({f i})$ S を有限個の滑らかな曲面 S_i に分解し,各曲面上で ω の面積分 $I_i=\int_{S_i}\omega$ を求めよ.また, $({f i}i)$ S の内部の領域を D とするとき, $I=\int_D dw$ を計算し $I=\sum_i I_i$ となることを確かめよ.

- (1) $\omega = yz^2 dy \wedge dz + 3xy^2 dz \wedge dx + x^2y dx \wedge dy$, S: 直方体 $0 < x < 1, \ 0 < y < 2, \ 0 < z < 3$ の表面
- (2) $\omega = e^x dy \wedge dz ye^x dz \wedge dx + 3z dx \wedge dy$, S: 円柱 $x^2 + y^2 = 4$ と平面 z = 0, z = 2 に囲まれた領域の表面

□ 未発表問題の解

問題 3.7(3) $\frac{\pi}{16}$

問題 $\mathbf{4.3(2)}$ $\mathbf{r}(t)=f(t)\mathbf{a}-\frac{t}{\|\mathbf{a}\|^2}\mathbf{a}\times\mathbf{b}+\mathbf{c}$ (f(t) は滑らかな関数. \mathbf{c} は定ベクトル)問題 $\mathbf{4.7}$ $\mathbf{x}=(x(t),y(t),z(t))$ を等位面 f(x,y,z)=c 内の任意の曲線とする.すなわち,

$$f(x(t), y(t), z(t)) = c.$$

上式の両辺を t で微分すると

$$0 = \frac{d}{dt}c = \frac{d}{dt}f(\boldsymbol{x}) = \langle \operatorname{grad} f_{\boldsymbol{x}(t)}, \boldsymbol{x}'(t) \rangle$$

となり、このことからベクトル $\operatorname{grad} f$ は等位面内の曲線の接ベクトルと常に直交していることがわかる.すなわち, $\operatorname{grad} f$ は等位面の法線ベクトルである.

問題 4.11 (1) $\boldsymbol{x}(t) = (c_1 e^t, c_2 e^{-t}, c_3 e^{2t}), \quad (c_i$ は定数)

$$(2)$$
 $\boldsymbol{x}(t) = \left(-\frac{c_1}{c_1t+c_2}, c_1t+c_2, -\frac{(c_1)^2}{3}t^3 - c_1c_2t^2 - (c_2)^2t + c_3\right), \quad (c_i$ は定数)

問題 5.3 保存ベクトル場である、ポテンシャルはそれぞれ

$$(1)$$
 $f(x) = \langle a, x \rangle + c$, (2) $f(x) = \frac{1}{2} ||x||^2 + c$. $(c$ は定数)

問題 $5.4 X_A$ のポテンシャルは $f(x) = \frac{1}{2}xAx^t + c$. (c は定数)

問題 7.2 (2) $\frac{15\pi}{4}$ (2) $-\frac{a^4}{4}$

問題 7.3 $(2xy+z^3)dx+x^2dy+3xz^2dz=d(x^2y+xz^3+c)$ (c は定数) と書けるので,命題 2.3.6 より

$$\int_C \left((2xy + z^3)dx + x^2dy + 3xz^2dz \right) = (9 + 192 + c) - (-1 + 1 + c) = 201.$$

問題 $7.4~\mathrm{R}^3$ の点 p を固定し,スカラー場 f を

$$f(x) = \int_{C_{p,x}} \omega$$
,(ただし, $C_{p,x}$ は点 p から x までを結ぶ滑らかな曲線)

と定義する $.\omega$ が満たす条件 (仮定) から , 上式の右辺は曲線 C の選び方に依らない . このとき , a,b を結ぶ任意の曲線 $C_{a,b}$ に対し ,

$$\int_{C_{a,b}} df = f(b) - f(a) = \int_{C_{p,b}} \omega - \int_{C_{p,a}} \omega = \int_{C_{p,b}} \omega + \int_{C_{a,p}} \omega = \int_{C_{a,b}} \omega$$

となり,このfが求めたいスカラー場であることがわかる.

問題 7.5 (1) 3 (2) $\frac{\pi}{6}$ (3) $\frac{\sqrt{2}\pi}{4}$ 問題 8.1 (1) π (2) 0 (3) $-\frac{99}{2}$ (4) $\frac{2\pi}{5}$

問題 **8.4** -4π 問題 **9.1** (1) $\frac{3}{2}\pi$ (2) 0 問題 **9.2** (1) 4π (2) $\frac{5}{4}\pi$

問題 9.3 (1) 12π (2) $\frac{12}{5}a^5\pi$ 問題 9.6 $\frac{3}{20}$ 問題 9.7 $\frac{3}{2}$

問題 **9.8** (1) 18 (2) 24π