# Jordan Algebras of Symmetric Matrices

**Arthur Bik** 



## Applied Algebra and Analysis Online Seminar

15 January 2021

joint work with Henrik Eisenmann and Bernd Sturmfels



## **Spaces of Symmetric Matrices**



Let  $\mathbb{S}^n$  be the space of symmetric  $n \times n$  matrices over  $\mathbb{C}$ .

The Grassmannian  $Gr(m, \mathbb{S}^n)$  consists of m-dimensional  $\mathcal{L} \subseteq \mathbb{S}^n$ .

We here consider *regular* subspaces  $\mathcal{L} \subseteq \mathbb{S}^n$ :

$$\mathcal{L}_{inv} := \{ X \in \mathcal{L} \mid \det(X) \neq 0 \} \neq \emptyset$$

#### **Definition**

The reciprocal variety  $\mathcal{L}^{-1}$  is  $\overline{\{X^{-1} \mid X \in \mathcal{L}_{inv}\}} \subseteq \mathbb{S}^n$ .

#### Goal

Understand the  $\mathcal{L}$  where the variety  $\mathcal{L}^{-1}$  is a linear space in  $\mathbb{S}^n$ .

The motivation for this goal arises in optimization (semidefinite programming) and in statistics (Gaussian models that are linear in covariance matrices and concentration matrices).

## **Spaces of Symmetric Matrices**



#### **Examples**

## **Jordan Spaces of Symmetric Matrices**



### Theorem (B-Eisenmann-Sturmfels 2020, Jensen 1988)

For  $\mathcal{L} \in Gr(m, \mathbb{S}^n)$  and  $U \in \mathcal{L}_{inv}$ , the following are equivalent:

- (a) The reciprocal variety  $\mathcal{L}^{-1}$  is also a linear space in  $\mathbb{S}^n$ .
- (b)  $\mathcal{L}$  is a subalgebra of the Jordan algebra  $(\mathbb{S}^n, \bullet_U)$ .
- (c)  $\mathcal{L}^{-1}$  equals  $\mathcal{L}$  up to congruence; namely  $\mathcal{L}^{-1} = U^{-1} \mathcal{L} U^{-1}$ .

We say that  $\mathcal{L}$  is a *Jordan space* when these equivalent conditions are satisfied.

#### **Definition**

For  $U \in \mathbb{S}_{\mathrm{inv}}^n$ , we define an algebra structure on  $\mathbb{S}^n$  by

$$X \bullet_U Y := (XU^{-1}Y + YU^{-1}X)/2$$

for all  $X,Y\in\mathbb{S}^n$ . This makes  $\mathbb{S}^n$  into a (unital) Jordan algebra:

$$X^{\bullet 2} \bullet (X \bullet Y) = X \bullet (X^{\bullet 2} \bullet Y).$$

## **Jordan Spaces of Symmetric Matrices**



### Theorem (B-Eisenmann-Sturmfels 2020, Jensen 1988)

For  $\mathcal{L} \in Gr(m, \mathbb{S}^n)$  and  $U \in \mathcal{L}_{inv}$ , the following are equivalent:

- (a) The reciprocal variety  $\mathcal{L}^{-1}$  is also a linear space in  $\mathbb{S}^n$ .
- (b)  $\mathcal{L}$  is a subalgebra of the Jordan algebra  $(\mathbb{S}^n, \bullet_U)$ .
- (c)  $\mathcal{L}^{-1}$  equals  $\mathcal{L}$  up to congruence; namely  $\mathcal{L}^{-1} = U^{-1} \mathcal{L} U^{-1}$ .

We say that  $\mathcal L$  is a *Jordan space* when these equivalent conditions are satisfied.

#### Remark 1

For congruent subspaces  $\mathcal{L}$  and  $\mathcal{L}' = P \mathcal{L} P^{\top}$ :  $\mathcal{L}$  is a Jordan space  $\Leftrightarrow \mathcal{L}'$  is also a Jordan space

#### Remark 2

All choices of unit U lead to isomorphic Jordan algebras  $(\mathcal{L}, \bullet_U)$ .

## **Projective spaces**



Let V be a vector space.

#### **Definition**

The projective space

$$\mathbb{P}(V) := \{ [v] \mid v \in V \setminus \{0\} \}$$

where [v] = [w] when  $v = \lambda w$  for some  $\lambda \neq 0$ .

A subvariety of  $\mathbb{P}(V)$  is defined by homogeneous polynomials:

for some 
$$d \geq 0$$
:  $f(\lambda v) = \lambda^d f(v)$  for all  $\lambda \in \mathbb{C}$  and  $v \in V$ 

#### **Theorem**

Projective spaces are complete. So projections of closed subsets  $Y\subseteq X\times \mathbb{P}(V)$  to X are closed. In particular, images from projective spaces are closed.

### **Projective spaces**



#### **Example**

The image of the map

$$\begin{array}{cccc} \mathbb{P}(\mathbb{C}^2) \times \mathbb{P}(\mathbb{C}^n) & \to & \mathbb{P}(\mathbb{C}^n \times \mathbb{C}^n) \\ \\ ([\lambda, \mu], [v]) & \mapsto & [\lambda v, \mu v] \end{array}$$

is closed.

In fact, it is the set of linearly dependent vectors in  $\mathbb{C}^n \times \mathbb{C}^n$ . So a point  $[(x_1, \ldots, x_n), (y_1, \ldots, y_n)]$  is in the image of the map if and only if the matrix

$$\begin{pmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{pmatrix}$$

has rank  $\leq 1$ . The polynomials  $x_iy_j - x_jy_i$  are homogeneous.



Let V be a vector space of dimension n.

### Coordinate systems for the Grassmannian

A subspace  $\mathcal{L} \in Gr(m, V)$  can be represented by:

|         | primal                                                     | dual                                             |
|---------|------------------------------------------------------------|--------------------------------------------------|
|         | $(H_1,\ldots,H_{n-m})\in (V^*)^{n-m}$                      |                                                  |
| Plücker | $H_1 \wedge \cdots \wedge H_{n-m} \in \bigwedge^{n-m} V^*$ | $X_1 \wedge \cdots \wedge X_m \in \bigwedge^m V$ |

Here

$$\mathcal{L} = \{ v \in V \mid H_1(v), \dots, H_{n-m}(v) = 0 \} = \operatorname{span}(X_1, \dots, X_m)$$

#### **Proposition**

The subset  $\mathrm{Jo}(m,\mathbb{S}^n)$  consisting of all Jordan spaces  $\mathcal{L}$  is a subvariety of  $\mathrm{Gr}(m,\mathbb{S}^n)$ .



#### **Proof**

The subspace  $\mathcal{L} \in \mathrm{Gr}(m,\mathbb{S}^n)$  is a Jordan space  $\Leftrightarrow$ 

(b)  $\mathcal L$  is a subalgebra of the Jordan algebra  $(\mathbb S^n, ullet_U).$ 

for all  $U \in \mathcal{L}_{inv}$ .

Let  $X_1, \ldots, X_m$  be a basis of  $\mathcal{L}$ . (Dual Stiefel coordinates)

Then (b) for all  $U \in \mathcal{L}_{inv} \Leftrightarrow$ 

$$X_1,\ldots,X_m,X_i\bullet_U X_j$$

are linearly dependent for all  $1 \leq i \leq j \leq m$  and  $U \in \mathcal{L}_{\mathrm{inv}}$ 



#### **Proof**

The subspace  $\mathcal{L} \in \mathrm{Gr}(m,\mathbb{S}^n)$  is a Jordan space  $\Leftrightarrow$ 

(b)  $\mathcal L$  is a subalgebra of the Jordan algebra  $(\mathbb S^n, ullet_U).$ 

for all  $U \in \mathcal{L}_{inv}$ .

Let  $X_1, \ldots, X_m$  be a basis of  $\mathcal{L}$ .

(Dual Stiefel coordinates)

Then (b) for all  $U \in \mathcal{L}_{inv} \Leftrightarrow$ 

$$X_1, \dots, X_m, (X_i U^{-1} X_j + X_j U^{-1} X_i)/2$$

are linearly dependent for all  $1 \leq i \leq j \leq m$  and  $U \in \mathcal{L}_{\mathrm{inv}}$ 



#### **Proof**

The subspace  $\mathcal{L} \in \mathrm{Gr}(m,\mathbb{S}^n)$  is a Jordan space  $\Leftrightarrow$ 

(b)  $\mathcal L$  is a subalgebra of the Jordan algebra  $(\mathbb S^n, ullet_U).$ 

for all  $U \in \mathcal{L}_{inv}$ .

Let  $X_1, \ldots, X_m$  be a basis of  $\mathcal{L}$ .

(Dual Stiefel coordinates)

Then (b) for all  $U \in \mathcal{L}_{inv} \Leftrightarrow$ 

$$X_1, \ldots, X_m, (X_i \operatorname{adj}(U)X_j + X_j \operatorname{adj}(U)X_i)$$

are linearly dependent for all  $1 \leq i \leq j \leq m$  and  $U \in \mathcal{L}_{\mathrm{inv}}$ 



#### **Proof**

The subspace  $\mathcal{L} \in Gr(m, \mathbb{S}^n)$  is a Jordan space  $\Leftrightarrow$ 

(b)  $\mathcal{L}$  is a subalgebra of the Jordan algebra  $(\mathbb{S}^n, \bullet_U)$ . for all  $U \in \mathcal{L}_{inv}$ .

Let  $X_1, \ldots, X_m$  be a basis of  $\mathcal{L}$ .

(Dual Stiefel coordinates)

Then (b) for all  $U \in \mathcal{L}_{inv} \Leftrightarrow$ 

$$X_1, \ldots, X_m, (X_i \operatorname{adj}(U)X_j + X_j \operatorname{adj}(U)X_i)$$

are linearly dependent for all  $1 \le i \le j \le m$  and

$$U = c_1 X_1 + \ldots + c_m X_m \in \mathcal{L}$$

for all  $c_1, \ldots, c_m \in \mathbb{C}$ .

### Jordan pencils, nets, webs, ...



We call elements of  $Gr(2, \mathbb{S}^n)$  pencils of symmetric matrices.

Congruence orbits of regular pencils are classified by Segre symbols.

#### **Definition**

Let  $\mathcal{L} \in Gr(2, \mathbb{S}^n)$  be a regular pencil. The Segre symbol  $\sigma$  of  $\mathcal{L}$  is a multiset of partitions adding up to n.

Pick a basis X,Y of  $\mathcal{L}$  with  $Y\in\mathcal{L}_{\mathrm{inv}}$ . Then the Segre symbol of  $\mathcal{L}$  is given by sizes of Jordan blocks of  $XY^{-1}$ .

#### **Examples**

have Segre symbols [(1,1),(1,1,1)] and [(2),(1,1,1)].

### Jordan pencils, nets, webs, ...



We know which Segre symbols correspond to Jordan pencils.

### Theorem (Fevola-Mandelshtam-Sturmfels 2020)

A pencil is a Jordan space exactly when its Jordan symbol is of the form  $\sigma = [(1, \dots, 1), (1, \dots, 1)]$  or  $\sigma = [(2, \dots, 2, 1 \dots, 1)]$ .

The irreducible components of  $Jo(2, \mathbb{S}^n)$  are the orbits closures of the diagonalizable pencils.

### Jordan pencils, nets, webs, ...



We call elements of  $Gr(3, \mathbb{S}^n)$  nets of symmetric matrices.

For n=2, we have  $\mathrm{Gr}(3,\mathbb{S}^2)=\{\mathbb{S}^2\}$  and  $\mathbb{S}^2$  is a Jordan net.

For n=3, all Jordan nets are congruent to one of:

$$\begin{pmatrix} x & & \\ & y & \\ & & z \end{pmatrix} \rightarrow \begin{pmatrix} x & & \\ & z & y \\ & y \end{pmatrix} \rightarrow \begin{pmatrix} z & y & x \\ y & x & \\ x & & \end{pmatrix}$$

For n=4, the diagram becomes more interesting.





#### **Theorem**

Every (unital) Jordan algebra  $\mathcal A$  of dimension 3 over  $\mathbb C$  is isomorphic to the Jordan algebra  $\mathbb C\{U,X,Y\}$  with unit U, where the product is given by

- 1 (a):  $X^{\bullet 2} = X, Y^{\bullet 2} = Y \text{ and } X \bullet Y = 0,$ (b):  $X^{\bullet 2} = U, Y^{\bullet 2} = U \text{ and } X \bullet Y = 0.$
- 2 (a):  $X^{\bullet 2} = X, Y^{\bullet 2} = 0$  and  $X \bullet Y = 0$ ,
  - (b):  $X^{\bullet 2} = X, Y^{\bullet 2} = 0$  and  $X \bullet Y = Y/2$ ,
- 3 (a):  $X^{\bullet 2} = Y$ ,  $Y^{\bullet 2} = 0$  and  $X \bullet Y = 0$ ,
  - (b):  $X^{\bullet 2} = 0$ ,  $Y^{\bullet 2} = 0$  and  $X \bullet Y = 0$ .

### How to get all orbits isomorphic to 1(a)?

- (1) Apply a congruence: we get  $U = \mathbf{1}_n$
- (2) Apply an orthogonal congruence: we get  $X = \text{Diag}(\mathbf{1}_k, \mathbf{0}_{n-k})$
- (3) Now we see that  $Y = \text{Diag}(\mathbf{0}_k, Z)$  with  $Z^2 = Z$
- (4) Apply an orthogonal congruence: we get  $Z = \mathrm{Diag}(\mathbf{1}_\ell, \mathbf{0}_{n-k-\ell})$





#### Theorem

Every (unital) Jordan algebra  $\mathcal A$  of dimension 3 over  $\mathbb C$  is isomorphic to the Jordan algebra  $\mathbb C\{U,X,Y\}$  with unit U, where the product is given by

1 (a):  $X^{\bullet 2} = X, Y^{\bullet 2} = Y \text{ and } X \bullet Y = 0,$ (b):  $X^{\bullet 2} = U, Y^{\bullet 2} = U \text{ and } X \bullet Y = 0,$ 2 (a):  $X^{\bullet 2} = X, Y^{\bullet 2} = 0 \text{ and } X \bullet Y = 0,$ (b):  $X^{\bullet 2} = X, Y^{\bullet 2} = 0 \text{ and } X \bullet Y = Y/2,$ 3 (a):  $X^{\bullet 2} = Y, Y^{\bullet 2} = 0 \text{ and } X \bullet Y = 0,$ (b):  $X^{\bullet 2} = 0, Y^{\bullet 2} = 0 \text{ and } X \bullet Y = 0.$ 

### Question - orbits of type 3(b)

- (1) Apply a congruence: we get  $U = \mathbf{1}_n$
- (2) Now we see that  $X^2 = Y^2 = XY + YX = 0$
- (3) Can we classify  $\mathbb{C}\{X,Y\}$  up to orthogonal congruence?



#### **Degenerating orbits**

Go to nets of quadrics:  $\mathcal{L} \leadsto (a,b,c,d) \mathcal{L}(a,b,c,d)^{\top} \subseteq \mathbb{C}[a,b,c,d]_2$ 

$$\operatorname{Diag}(x\mathbf{1}_2, y, z) \leadsto \operatorname{span}(a^2 + b^2, c^2, d^2)$$

The group GL(4) now acts using coordinate transformations.

The orbit of  $span(a^2 + b^2, c^2, d^2)$  contains

$$span(a^{2} + b^{2}, (d + tc)^{2}, d^{2}) = span(a^{2} + b^{2}, 2cd + tc^{2}, d^{2})$$

for all  $t \neq 0$ . Letting  $t \rightarrow 0$ , we get

$$\operatorname{span}(a^2 + b^2, 2cd, d^2) \leadsto \begin{pmatrix} x & & \\ & x & \\ & & z & y \\ & & y & \end{pmatrix}$$





$$\begin{pmatrix} x & & & \\ & y & & \\ & & y & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = 1$$
 codim 12 
$$\begin{pmatrix} x & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$



#### **Proposition**

$$\begin{pmatrix} x & & & \\ & x & & \\ & & y & \\ & & & z \end{pmatrix} \text{ does not degenerate to } \begin{pmatrix} & x & z & \\ x & & & \\ z & & & y \\ & & y & \end{pmatrix}.$$

#### Proof.

The closed set

$$\{(\mathcal{L}, X) \in Gr(m, \mathbb{S}^n) \times \mathbb{P}(\mathbb{S}^n) \mid X \in \mathcal{L}, \operatorname{rk}(X) \leq 1\}$$

projects to  $Gr(m, \mathbb{S}^n)$  along the complete variety  $\mathbb{P}(\mathbb{S}^n)$ .

This projection is therefore closed. It consists of all spaces  ${\cal L}$  where

$$\min\{\operatorname{rk}(X) \mid X \in \mathcal{L} \setminus \{0\}\} \le 1$$

This condition holds for the space on the left. So also for all its degenerations. And, it does not hold for the space on the right.







#### **Proposition**

$$\begin{pmatrix} x & & & \\ & x & & \\ & & z & y \\ & & y & \end{pmatrix} \text{ does not degenerate to } \begin{pmatrix} y & & & x \\ & z & x \\ & x & & \\ x & & \end{pmatrix}.$$

#### Proof.

The closed subset

$$\left\{ (\mathcal{L}, \mathcal{P}) \in \operatorname{Gr}(3, \mathbb{S}^n) \times \operatorname{Gr}(2, \mathbb{S}^n) \left| \begin{array}{c} \mathcal{P} \subseteq \mathcal{L}, \ \det(\mathcal{P}) = 0, \\ \forall Q \in \mathbb{C}^{2 \times 4} : \det(Q \, \mathcal{P} \, Q^\top) = \square \end{array} \right. \right\}$$

projects to a closed subset of  $Gr(m, \mathbb{S}^n)$ .

The orbit of the space on the left is in this subset. The space on the right is not.





#### Proposition

$$\begin{pmatrix} x & y & & \\ y & z & & & \\ & & x & y \\ & & y & z \end{pmatrix} \text{ does not degenerate to } \begin{pmatrix} z & y & x & \\ y & x & & \\ x & & & x \end{pmatrix};$$

#### Proof.

Let X,Y,Z be a basis of  $\mathcal L$  and consider the following condition: For all  $x,y,z\in\mathbb C$  and all  $U\in\mathcal L_{\mathrm{inv}}$ ,

$$U$$
,  $W$ ,  $W \bullet_U W$ 

are linearly dependent for W = xX + yY + zZ.

This condition is closed, is satisfied by the orbit of the space on the left and not satisfied by the space on the right.





#### **Proposition**

The condition "determinant of form  $fg^3$  with f,g linear" is closed?

#### Proof.

The condition states that

$$(X, Y, Z) \mapsto \det(xX + yY + zZ) \in \mathbb{C}[x, y, z]_4$$

maps a basis X,Y,Z of  $\mathcal{L}$  into  $\{fg^3 \mid f,g \in \mathbb{C}[x,y,z]_1\}$ .

This set is (the cone of) the image of the map

$$\mathbb{P}(\mathbb{C}[x,y,z]_1) \times \mathbb{P}(\mathbb{C}[x,y,z]_1) \rightarrow \mathbb{P}(\mathbb{C}[x,y,z]_4)$$

$$([f],[g]) \mapsto [fg^3]$$

and hence closed.

#### **Future directions**



- (1) Study m-dimensional subspaces of  $\mathbb{S}^n$  for other (m, n).
  - Classification of Jordan nets in  $\mathbb{S}^n$ .
  - Finding all the degenerations.
  - Are (variations of) the closed conditions we looked at enough to show that these degenerations are the only ones?
- (2) Study nonregular subspaces (pencils)  $\mathcal{L}$ , i.e. where  $\det(\mathcal{L}) = 0$ .

#### Thank you for your attention!

#### References





Arthur Bik, Henrik Eisenmann, Bernd Sturmfels Jordan Algebras of Symmetric Matrices preprint



Claudia Fevola, Yelena Mandelshtam, Bernd Sturmfels

Pencils of Quadrics: Old and New

preprint