Solutions to the book: do Carmo, Differential Geometry of Curves and Surfaces

Meng-Gen Tsai plover@gmail.com

April 30, 2021

Contents

Chapter 1: Curves	2
1-1. Introduction	2
1-2. Parametrized Curves	2
Exercise 1-2.1	2
Exercise 1-2.2	2
Exercise 1-2.3	3
Exercise 1-2.4	3
Exercise 1-2.5	3
1-3. Regular Curves; Arc Length	4
Exercise 1-3.1	4
Exercise 1-3.2. (Cycloid)	5
Exercise 1-3.3. (Cissoid of Diocles)	6
Exercise 1-3.4. (Tractrix)	7
Exercise 1-3.8	8
Exercise 1-3.9	9
Exercise 1-3.10. (Straight Lines as Shortest)	11
1-4. The Vector Product in \mathbb{R}^3	12
Exercise 1-4.1	12
Exercise 1-4.2	12
Exercise 1-4.3	13
Exercise 1-4.13	14
1-5. The Local Theory of Curves Parametrized by Arc Length	15
Exercise 1-5.2	15
1-6. The Local Canonical Form	15
1-7. Global Properties of Plane Curves	15

Chapter 1: Curves

1-1. Introduction

Classical differential geometry: the study of local properties of curves and surfaces.

Global differential geometry: the study of the influence of the local properties on the behavior of the entire curve and surface.

No exercises.

1-2. Parametrized Curves

Exercise 1-2.1.

Find a parametrized curve $\alpha(t)$ whose trace is the circle $x^2 + y^2 = 1$ such that $\alpha(t)$ runs clockwise around the circle with $\alpha(0) = (0,1)$.

Proof. $\alpha(t) = (\sin t, \cos t), t \in \mathbb{R}$. \square

Exercise 1-2.2.

Let $\alpha(t)$ be a parametrized curve which does not pass through the origin. If $\alpha(t_0)$ is the point of the trace of α closest to the origin and $\alpha'(t_0) \neq 0$, show that the position vector $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.

Proof. Let $f(t) = |\alpha(t)|^2 = \alpha(t) \cdot \alpha(t)$. f(t) is differentiable and f(t) has a local minimum at a point $t = t_0 \in I$. So $f'(t_0) = 0$. [Theorem 5.8 in W. Rudin, Principles of Mathematical Analysis, 3rd edition.] Since

$$f'(t) = 2\alpha(t) \cdot \alpha'(t),$$

 $f'(t_0) = 2\alpha(t_0) \cdot \alpha'(t_0) = 0$, or $\alpha(t_0) \cdot \alpha'(t_0) = 0$. Since $\alpha(t_0) \neq 0$ and $\alpha'(t_0) \neq 0$, $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$. \square

Exercise 1-2.3.

A parametrized curve $\alpha(t)$ has a property that its second derivative $\alpha''(t)$ is identically zero. What can be said about α ?

Proof.

- (1) $\alpha(t)$ is a straight line.
- (2) Since $\alpha''(t)$ is identically zero, $\alpha'(t) = a$ is a constant. [Theorem 5.11 in W. Rudin, Principles of Mathematical Analysis, 3rd edition.] Define $f(t) = \alpha(t) at$ (on I). Since $f'(t) = \alpha'(t) a = 0$, $f(t) = \alpha(t) at = b$ is a constant again. Therefore, $\alpha(t) = at + b$, which is a straight line (on I).

Exercise 1-2.4.

Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve and let $v \in \mathbb{R}^3$ be a fixed vector. Assume that $\alpha'(t)$ is orthogonal to v for all $t \in I$ and that $\alpha(0)$ is orthogonal to v. Prove that $\alpha(t)$ is orthogonal to v for all $t \in I$.

Need to assume that $\alpha(t) \neq 0$ for all $t \in I$.

Proof. Given any $t \neq 0 \in I$. (Nothing to do at t = 0.) Define $f: I \to \mathbb{R}$ by $f(t) = \alpha(t) \cdot v$. By the mean value theorem, there exists a point ξ between 0 and t such that

$$f(t) - f(0) = f'(\xi)(t - 0),$$

where $f'(t) = \alpha'(t) \cdot v + \alpha(t) \cdot v' = \alpha'(t) \cdot v$. Note that f(0) = 0 since $\alpha(0)$ is orthogonal to v, and $f'(\xi) = 0$ since $\alpha'(t)$ is orthogonal to v. So the identity is reduced to

$$f(t) = 0$$
,

or $\alpha(t) \cdot v = 0$, or $\alpha(t)$ is orthogonal to v. \square

Exercise 1-2.5.

Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

The same trick in Exercise 1-2.2.

Proof. It is equivalent to show that $|\alpha(t)|^2$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$. Let

$$f(t) = |\alpha(t)|^2 = \alpha(t) \cdot \alpha(t).$$

Notice that $\alpha'(t) \neq 0$, and thus

 $|\alpha(t)|$ is a nonzero constant $\iff f(t) = |\alpha(t)|^2$ is a nonzero constant $\iff f'(t) = 0$ and f(t) is a nonzero constant $\iff \alpha(t) \cdot \alpha'(t) = 0$ and $\alpha(t)$ is a nonzero constant $\iff \alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

1-3. Regular Curves; Arc Length

Exercise 1-3.1.

Show that the tangent lines to the regular parametrized curve $\alpha(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x.

Proof. $\alpha'(t) = (3, 6t, 6t^2)$. The line y = 0, z = x is $\beta(t) = (1, 0, 1)$. The cosine of the angle θ between these to curves is

$$\cos \theta = \frac{(3, 6t, 6t^2) \cdot (1, 0, 1)}{|(3, 6t, 6t^2)||(1, 0, 1)|}$$

$$= \frac{3 + 6t^2}{\sqrt{3^2 + (6t)^2 + (6t^2)^2} \sqrt{2}}$$

$$= \frac{3 + 6t^2}{\sqrt{9 + 36t^2 + 36t^4} \sqrt{2}}$$

$$= \frac{3 + 6t^2}{\sqrt{(3 + 6t^2)^2} \sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}.$$

(Notice $3+6t^2>0$ for all $t\in\mathbb{R}$.) That is, the angle between α' and β is a constant $(=\pi/4)$. \square

Exercise 1-3.2. (Cycloid)

A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described by a point of the circumference of of the disk is called a **cycloid** (Figure 1-7 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces).

- (a) Obtain a parametrized curve $\alpha : \mathbb{R} \to \mathbb{R}^2$ the trace of which is the cycloid and determine its singular points.
- (b) Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Proof of (a).

(1) Since

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t, \end{cases}$$

we define $\alpha(t) = (t - \sin t, 1 - \cos t)$.

(2) $\alpha'(t) = (1 - \cos t, \sin t)$. $\alpha'(t) = 0$ if and only if $t = 2n\pi$ where $n \in \mathbb{Z}$. That is, all singular points are $\alpha(2n\pi) = (2n\pi, 0)$ where $n \in \mathbb{Z}$.

 $Proof\ of\ (b).$ The arc length of the cycloid corresponding to a complete rotation of the disk is

$$\int_0^{2\pi} |\alpha'(t)| dt = \int_0^{2\pi} \sqrt{(1 - \cos t)^2 + (\sin t)^2} dt$$

$$= \int_0^{2\pi} \sqrt{2} \sqrt{1 - \cos t} dt$$

$$= \int_0^{2\pi} 2 \sin \frac{t}{2} dt$$

$$= \left[-4 \cos \frac{t}{2} \right]_{t=0}^{t=2\pi}$$

$$= 8.$$

Supplement. The cycloid is not an algebraic curve.

Exercise 1-3.3. (Cissoid of Diocles)

Let 0A = 2a be the diameter of a circle \mathbb{S}^1 and 0Y and AV be the tangents to \mathbb{S}^1 at 0 and A, respectively. A half-line r is drawn from 0 which meets the circle \mathbb{S}^1 at C and the line AV at B. On 0B mark off the segment 0p = CB. If we rotate r about 0, the point p will describe a curve called the **cissoid of Diocles**. By taking 0A as the x axis and 0Y as the y axis, prove that

(a) The tract of

$$\alpha(t) = \left(\frac{2at^2}{1+t^2}, \frac{2at^3}{1+t^2}\right), \qquad t \in \mathbb{R},$$

is the cissoid of Diocles ($t = \tan \theta$; see Figure 1-8 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces).

(b) The origin (0,0) is a singular point of the cissoid.

(c)

Proof of (a).

(1) The polar equations of the circle \mathbb{S}^1 and the half-line r is

$$r = 2a\cos\theta,$$
$$r = 2a\sec\theta,$$

respectively.

(2) By construction, the polar equation of the cissoid is

$$r = 2a \sec \theta - 2a \cos \theta = 2a \frac{\sin^2 \theta}{\cos \theta} = 2a \sin \theta \tan \theta.$$

(3) Put $t = \tan \theta$, we have

$$x = r\cos\theta = 2a\sin^2\theta = \frac{2at^2}{1+t^2},$$
$$y = r\sin\theta = tx = \frac{2at^3}{1+t^2}.$$

So

$$\alpha(t) = (x,y) = \left(\frac{2at^2}{1+t^2}, \frac{2at^3}{1+t^2}\right).$$

Supplement. The cissoid is an algebraic curve $=V((x^2+y^2)x=2ay^2)$.

Proof of (b). Note that $\alpha(0) = (0,0)$ and

$$\alpha'(t) = \left(\frac{4at}{(t^2+1)^2}, \frac{2at^2(t^2+3)}{(t^2+1)^2}\right).$$

Hence $\alpha'(0) = (0,0)$. That is, (0,0) is a singular point of the cissoid. (In fact, the origin is the unique singular point of the cissoid.) \square

Exercise 1-3.4. (Tractrix)

Let $\alpha:(0,\pi)\to\mathbb{R}^2$ be given by

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2}\right),$$

where t is the angle that the y axis makes with the vector $\alpha(t)$. The trace of α is called the **tractrix**. (Figure 1-9 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces). Show that

- (a) α is a differentiable parametrized curve, regular except at $t = \frac{\pi}{2}$.
- (b) The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

Proof of (a).

$$\alpha'(t) = \left(\cos t, -\sin t + \frac{1}{\tan\frac{t}{2}} \frac{1}{\cos^2\frac{t}{2}} \frac{1}{2}\right)$$
$$= \left(\cos t, -\sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}}\right)$$
$$= \left(\cos t, \frac{\cos^2 t}{\sin t}\right)$$

exists. And $\alpha'(t) = 0$ if and only if $t = \frac{\pi}{2}$. That is, there is an unique singular point at $t = \frac{\pi}{2}$. \square

Proof of (b). The the tangent line of the tractrix through the regular point t is parametrized by $\beta : \mathbb{R} \to \mathbb{R}^2$ which is defined by

$$\begin{split} \beta(u) &= u\alpha'(t) + \alpha(t) \\ &= \left(u\cos t + \sin t, u\frac{\cos^2 t}{\sin t} + \cos t + \log\tan\frac{t}{2}\right). \end{split}$$

By construction, this tangent line $\beta(u)$ meets the tractrix at u=0, and meets the y-axis when $u\cos t + \sin t = 0$ or $u=-\tan t$. So the length of the segment

is

$$|\beta(0) - \beta(-\tan t)| = \sqrt{(-\tan t \cos t)^2 + \left(-\tan t \frac{\cos^2 t}{\sin t}\right)^2}$$
$$= \sqrt{(\sin t)^2 + (\cos t)^2}$$
$$= 1.$$

Exercise 1-3.8.

Let $\alpha: I \to \mathbb{R}^3$ be a differentiable curve and let $[a,b] \subseteq I$ be a closed interval. For every partition

$$a = t_0 < t_1 < \dots < t_n = b$$

of [a,b], consider the sum

$$\sum_{i=1}^{n} |\alpha(t_i) - \alpha(t_{i-1})| = l(\alpha, P),$$

where P stands for the given partition. The norm |P| of a partition P is defined as

$$|P| = \max(t_i - t_{i-1}), i = 1, \dots, n.$$

Geometrically, $l(\alpha, P)$ is the length of a polygon inscribed in $\alpha([a, b])$ with vertices in $\alpha(t_i)$ (see Figure 1-3 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces). The point of the exercise is to show that the arc length of $\alpha([a, b])$ is, in some sense, a limit of lengths of inscribed polygons. Prove that given $\varepsilon > 0$ there exists $\delta > 0$ such that if $|P| < \delta$ then

$$\left| \int_a^b |\alpha'(t)| dt - l(\alpha, P) \right| < \varepsilon.$$

Assume that $\alpha'(t)$ is continuous.

Proof. Given $\varepsilon > 0$.

(1) Since $\alpha'(t)$ is continuous on a compact set [a, b], $\alpha'(t)$ is uniformly continuous, that is, there there exists $\delta > 0$ such that

$$|\alpha'(s) - \alpha'(t)| < \frac{\varepsilon}{2(b-a)}$$
 whenever $|s-t| < \delta$.

(2) Let $P=\{a=t_0,t_1,\ldots,t_n=b\}$ be a partition of [a,b], with $\Delta t_i=t_i-t_{i-1}<\delta$ for all $i=1,\ldots,n$. If $t_{i-1}\leq t\leq t_i$, it follows that

$$|\alpha'(t_i)| - \frac{\varepsilon}{2(b-a)} \le |\alpha'(t)| \le |\alpha'(t_i)| + \frac{\varepsilon}{2(b-a)}.$$

Hence,

$$\int_{t_{i-1}}^{t_i} |\alpha'(t)| dt$$

$$\geq |\alpha'(t_i)| \Delta t_i - \frac{\varepsilon}{2(b-a)} \Delta t_i$$

$$= \left| \int_{t_{i-1}}^{t_i} [\alpha'(t) + \alpha'(t_i) - \alpha'(t)] dt \right| - \frac{\varepsilon}{2(b-a)} \Delta t_i$$

$$\geq \left| \int_{t_{i-1}}^{t_i} \alpha'(t) dt \right| - \left| \int_{t_{i-1}}^{t_i} [\alpha'(t_i) - \alpha'(t)] dt \right| - \frac{\varepsilon}{2(b-a)} \Delta t_i$$

$$\geq |\alpha(t_i) - \alpha(t_{i-1})| - \frac{\varepsilon}{b-a} \Delta t_i$$

and

$$\int_{t_{i-1}}^{t_{i}} |\alpha'(t)| dt$$

$$\leq |\alpha'(t_{i})| \Delta t_{i} + \frac{\varepsilon}{2(b-a)} \Delta t_{i}$$

$$= \left| \int_{t_{i-1}}^{t_{i}} [\alpha'(t) + \alpha'(t_{i}) - \alpha'(t)] dt \right| + \frac{\varepsilon}{2(b-a)} \Delta t_{i}$$

$$\leq \left| \int_{t_{i-1}}^{t_{i}} \alpha'(t) dt \right| + \left| \int_{t_{i-1}}^{t_{i}} [\alpha'(t_{i}) - \alpha'(t)] dt \right| + \frac{\varepsilon}{2(b-a)} \Delta t_{i}$$

$$\leq |\alpha(t_{i}) - \alpha(t_{i-1})| + \frac{\varepsilon}{b-a} \Delta t_{i}.$$

(3) If we add these inequalities, we obtain

$$l(\alpha, P) - \varepsilon \le \int_a^b |\alpha'(t)| dt \le l(\alpha, P) + \varepsilon.$$

Exercise 1-3.9.

(a) Let $\alpha: I \to \mathbb{R}^3$ be a curve of class C^0 (compare Exercise 1-3.7). Use the approximation by polygons described in Exercise 1-3.8 to give a reasonable definition of arc length of α .

(b) (A Nonrectifiable Curve.) The following example shows that, with any reasonable definition, the arc length of a C^0 curve in a closed interval may be unbounded. Let $\alpha:[0,1]\to\mathbb{R}^2$ be given as $\alpha(t)=(t,t\sin(\frac{\pi}{t}))$ if $t\neq 0$, and $\alpha(0)=(0,0)$. Show, geometrically, that the arc length of the portion of the curve corresponding to $\frac{1}{n+1}\leq t\leq \frac{1}{n}$ is at least $\frac{2}{n+\frac{1}{2}}$. Use this to show that the length of curve in the interval $\frac{1}{N}\leq t\leq 1$ is greater than $2\sum_{n=1}^{N-1}\frac{1}{n+1}$, and thus it tends to infinity as $N\to\infty$.

Proof of (a). Define

$$l(\alpha) = \sup\{l(\alpha, P) : P \text{ is a partition of } [a, b]\}.$$

Note. (Theorem 6.17 in Tom. M. Apostol, Mathematical Analysis, 2nd edition.). α is rectifiable if and only α is of bounded variation on [a, b].

Proof of (b).

- (1) Consider a partition $P = \left\{\frac{1}{n+1}, \frac{1}{n+\frac{1}{2}}, \frac{1}{n}\right\}$ of $\left[\frac{1}{n+1}, \frac{1}{n}\right]$. So that $\alpha(\frac{1}{n+1}) = \alpha(\frac{1}{n}) = 0$ and $\alpha(\frac{1}{n+\frac{1}{2}}) = \pm 1$.
- (2) Thus,

The arc length of the portion of α over $\left[\frac{1}{n+1}, \frac{1}{n}\right]$

 \geq The sum of each length of the individual chords

$$\begin{split} &= \sqrt{\left(\frac{1}{n+\frac{1}{2}} - \frac{1}{n+1}\right)^2 + \left(\frac{1}{n+\frac{1}{2}}\right)^2} \\ &+ \sqrt{\left(\frac{1}{n} - \frac{1}{n+\frac{1}{2}}\right)^2 + \left(\frac{1}{n+\frac{1}{2}}\right)^2} \\ &\geq \frac{2}{n+\frac{1}{2}}. \end{split}$$

(3) So

The arc length of
$$\alpha$$
 over $\left[\frac{1}{N}, 1\right]$

$$= \sum_{n=1}^{N-1} \left\{ \text{The arc length of } \alpha \text{ over } \left[\frac{1}{n+1}, \frac{1}{n}\right] \right\}$$

$$\geq \sum_{n=1}^{N-1} \frac{2}{n+\frac{1}{2}}$$

$$> 2 \sum_{n=1}^{N-1} \frac{1}{n+1}.$$

It tends to infinity as $N \to \infty$, or α is nonrectifiable.

Exercise 1-3.10. (Straight Lines as Shortest)

Let $\alpha:I\to\mathbb{R}^3$ be a parametrized curve. Let $[a,b]\subseteq I$ and set $\alpha(a)=p,$ $\alpha(b)=q.$

(a) Show that, for any constant vector v, |v| = 1,

$$(q-p) \cdot v = \int_a^b \alpha'(t) \cdot v dt \le \int_a^b |\alpha'(t)| dt.$$

(b) Set

$$v = \frac{q - p}{|q - p|}$$

and show that

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt;$$

that is, the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line joining these points.

Assume $p \neq q$ (otherwise $v = \frac{q-p}{|q-p|}$ is meaningless).

Proof of (a). Let $f(t) = \alpha(t) \cdot v$ defined on I. By the fundamental theorem of calculus,

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Since $f'(t) = \alpha'(t) \cdot v$,

$$(\alpha(b) - \alpha(a)) \cdot v = \int_a^b \alpha'(t) \cdot v dt.$$

Therefore,

$$(q-p) \cdot v = \int_{a}^{b} \alpha'(t) \cdot v dt$$

$$\leq \int_{a}^{b} |\alpha'(t) \cdot v| dt$$

$$\leq \int_{a}^{b} |\alpha'(t)| |v| dt$$

$$= \int_{a}^{b} |\alpha'(t)| dt.$$

Proof of (b). $|v| = \frac{|q-p|}{|q-p|} = 1$. So,

$$(q-p) \cdot \frac{q-p}{|q-p|} \le \int_a^b |\alpha'(t)| dt,$$

 $|q-p| \le \int_a^b |\alpha'(t)| dt.$

1-4. The Vector Product in \mathbb{R}^3

Exercise 1-4.1.

Check whether the following bases are positive:

- (a) The basis $\{(1,3),(4,2)\}\ in \mathbb{R}^2$.
- (b) The basis $\{(1,3,5),(2,3,7),(4,8,3)\}$ in \mathbb{R}^3 .

Proof of (a). Write u = (1,3) and v = (4,2). Then

$$\det(u, v) = \begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix} = -10 < 0.$$

Thus $\{u,v\}$ is negative w.r.t. the natural order basis $\{e_1=(1,0),e_2=(0,1)\}$. \square

Proof of (b). Write u = (1, 3, 5), v = (2, 3, 7), w = (4, 8, 3). Then

$$\det(u, v, w) = \begin{vmatrix} 1 & 3 & 5 \\ 2 & 3 & 7 \\ 4 & 8 & 3 \end{vmatrix} = 39 > 0.$$

Thus $\{u, v, w\}$ is positive w.r.t. the natural order basis $\{e_1, e_2, e_3\}$. \square

Exercise 1-4.2.

A plane P contained in \mathbb{R}^3 is given by the equation ax+by+cz+d=0. Show that the vector v=(a,b,c) is perpendicular to the plane and that $|d|/\sqrt{a^2+b^2+c^2}$ measures the distance from the plane to the origin (0,0,0).

Say v is a normal vector of E.

In general, the distance from the plane E to any point $(x_0, y_0, z_0) \in \mathbb{R}^3$ is

$$\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Proof.

(1) To show v=(a,b,c) is perpendicular to the plane, it suffices to show that $v\cdot u=0$ for any vector u lying on the plane E. Write $u=\overrightarrow{PQ}$ where $P=(x_1,y_1,z_1)\in E$ and $Q=(x_2,y_2,z_2)\in E$. Hence $u=(x_2-x_1,y_2-y_1,z_2-z_1)$.

$$v \cdot u = (a, b, c) \cdot (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$= a(x_2 - x_1) + b(y_2 - y_1) + c(z_2 - z_1)$$

$$= (ax_2 + by_2 + cz_2) - (ax_1 + by_1 + cz_1)$$

$$= (-d) - (-d)$$

$$= 0.$$

(2) Pick any point $(x_1, y_1, z_1) \in E$. The distance from the plane E to the

point (x_0, y_0, z_0) is

$$\begin{split} & \left| (x_1 - x_0, y_1 - y_0, z_1 - z_0) \cdot \frac{v}{|v|} \right| \\ &= \left| (x_1 - x_0, y_1 - y_0, z_1 - z_0) \cdot \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} \right| \\ &= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}} \\ &= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}} \\ &= \frac{|-d - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}} \\ &= \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}. \end{split}$$

Exercise 1-4.3.

Determine the angle of intersection of the two planes 5x + 3y + 2z - 4 = 0 and 3x + 4y - 7z = 0.

Proof.

- (1) The angle of intersection of the two planes is equal to a angle between two normal vectors of planes.
- (2) Let
 - (a) the angle of intersection of the two planes be θ .
 - (b) the normal vector of 5x + 3y + 2z 4 = 0 be $n_1 = (5, 3, 2)$.
 - (c) the normal vector of 3x + 4y 7z = 0 be $n_2 = (3, 4, -7)$.
- (3) Hence,

$$\cos \theta = \frac{n_1 \cdot n_2}{|n_1||n_2|} = \frac{13}{2\sqrt{703}}.$$

$$\theta = \cos^{-1}\left(\frac{13}{2\sqrt{703}}\right).$$

Exercise 1-4.13.

Let $u(t) = (u_1(t), u_2(t), u_3(t))$ and $v(t) = (v_1(t), v_2(t), v_3(t))$ be differentiable maps from the interval (a, b) into \mathbb{R}^3 . If the derivatives u'(t) and v'(t) satisfy the conditions

$$u'(t) = au(t) + bv(t), \qquad v'(t) = cu(t) - av(t),$$

where a, b, and c are constants, show that $u(t) \wedge v(t)$ is a constant vector.

Proof. Since

$$\begin{split} \frac{d}{dt}(u(t) \wedge v(t)) &= u'(t) \wedge v(t) + u(t) \wedge v'(t) \\ &= (au(t) + bv(t)) \wedge v(t) + u(t) \wedge (cu(t) - av(t)) \\ &= au(t) \wedge v(t) + u(t) \wedge (-av(t)) \\ &= a(u(t) \wedge v(t)) + (-a)(u(t) \wedge v(t)) \\ &= (0, 0, 0), \end{split}$$

 $u(t) \wedge v(t)$ is a constant vector. \square

1-5. The Local Theory of Curves Parametrized by Arc Length

Exercise 1-5.2.

Show that the torsion τ of α is given by

$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|\kappa(s)|^2}.$$

Proof.

(1) Take inner product n(s) to the definition of torsion $\tau(s)n(s)=b'(s)$, we have

$$\tau(s) = b'(s) \cdot n(s).$$

Since $b'(s) = t(s) \wedge n'(s)$, we have to compute n'(s) first.

(2) Compute n'(s).

$$n'(s) = \frac{d}{ds} \left(\frac{\alpha''(s)}{\kappa(s)} \right) = \frac{\alpha'''(s)}{\kappa(s)} - \frac{\alpha''(s)\kappa'(s)}{\kappa(s)^2}.$$

(3) By (1)(2),

$$\begin{split} \tau(s) &= b'(s) \cdot n(s) \\ &= (t(s) \wedge n'(s)) \cdot n(s) \\ &= \left(\alpha'(s) \wedge \left(\frac{\alpha'''(s)}{\kappa(s)} - \frac{\alpha''(s)\kappa'(s)}{\kappa(s)^2}\right)\right) \cdot \frac{\alpha''(s)}{\kappa(s)} \\ &= \left(\alpha'(s) \wedge \frac{\alpha'''(s)}{\kappa(s)}\right) \cdot \frac{\alpha''(s)}{\kappa(s)} \\ &= \frac{\alpha'(s) \wedge \alpha'''(s) \cdot \alpha''(s)}{|\kappa(s)|^2}, \end{split}$$

or

$$\tau(s) = \frac{\alpha'(s) \wedge \alpha'''(s) \cdot \alpha''(s)}{\alpha''(s)^2}.$$

1-6. The Local Canonical Form

1-7. Global Properties of Plane Curves