```
In [1]: # Modules
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
```

```
In [6]: import pandas as pd

data=pd.read_csv("D:\\rohit.csv")
df = pd.DataFrame(data)
print(df)
```

butue	(ui)				
	Ic	l groupId	ma	tchId assists	boosts \
0	2f262dd9795e60			b2955 0	0
1	a32847cf5bf34b	85b7ce5a12e10b	65223f05c	7fdb4 0	0
2	1b1900a9990396				
3	f589dd03b60bf2			91604 0	0
4	c23c4cc5b78b35	b3e2cd169ed920	cd595700a	01bfa 0	0
• • •	• • •	• • •		• • • • • • • • • • • • • • • • • • • •	
9995	ef4f474acd8e85				
9996	cf0bf82fb4d80e				
997	a0a31a0b1dcbe1				
998	f6874657399d69				
9999	90359b0b8f8b0d	l 61d5b1bb8da43f	258bfa48d	88014 0	0
	damageDealt D	DBNOs headshotKi	lls heals	killPlace	. revives \
9	0.0	0	0 0	92	. 0
1	163.2	1	1 0	42	. 0
2	278.7	2	1 8	16	. 3
3	191.9	1	0 0	31	. 0
1	100.0	1	0 0	87	. 0
	•••	• • •			
9995	204.5	1	0 0	17	. 3
9996	0.0	0	0 0	49	. 0
9997	0.0	0	0 0	83	. 0
9998	0.0	0	0 0	82	. 0
9999	0.0	0	0 0	78	. 0
	rideDistance	roadKills swimD	istance te	amKills vehicl	eDestrovs \
0	0.0	0	0.0	0	0
1	0.0	0	0.0	0	0
2	0.0	0	0.0	0	0
3	0.0	0	0.0	0	0
1	0.0	0	0.0	0	0
	• • •	• • •	• • •	• • •	•••
995	0.0	0	0.0	0	0
996	0.0	0	0.0	0	0
997	0.0	0	0.0	0	0
9998	0.0	0	0.0	0	0
999	0.0	0	0.0	0	0
	walkDistance	weaponsAcquired	winPoints	winPlacePerc	
)	0.00		1470	0.0000	
L	132.70	2	1531	0.2222	
2	3591.00	10	0	0.8571	
3	332.70	3	0	0.3462	
ļ	252.70	3	1557	0.0690	
		•••	•••		
9995	1648.00	4	1471	0.8333	
9996	897.10	6	1500	0.7174	
9997	188.20	2	1434	0.2083	
9998	108.10	5	1534	0.2449	
9998	108.10	5	1534	0.2449	

9999 53.36 1 0 0.1875

[10000 rows x 29 columns]

Task-2

In [7]: #Check the datatype of all the columns
data_type = df.dtypes
data_type

Out[7]: Id object object groupId matchId object assists int64 boosts int64 damageDealt float64 **DBNOs** int64 headshotKills int64 int64 heals killPlace int64 killPoints int64 kills int64 killStreaks int64 longestKill float64 matchDuration int64 matchType object maxPlace int64 numGroups int64 rankPoints int64 revives int64 rideDistance float64 roadKills int64 swimDistance float64 teamKills int64 int64 vehicleDestroys walkDistance float64 int64 weaponsAcquired winPoints int64 winPlacePerc float64 dtype: object

```
In [8]: #Find the summary of all the numerical columns and write your findings about it.
num_summary = df.describe()
num_summary
```

Out[8]:

	assists	boosts	damageDealt	DBNOs	headshotKills	heals	ki
count	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.0
mean	0.234600	1.088500	129.211264	0.64400	0.221700	1.354000	47.0
std	0.575149	1.703279	167.193945	1.09562	0.577046	2.629102	27.4
min	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	1.0
25%	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	24.0
50%	0.000000	0.000000	83.805000	0.00000	0.000000	0.000000	48.0
75%	0.000000	2.000000	185.325000	1.00000	0.000000	2.000000	71.0
max	7.000000	18.000000	3469.000000	11.00000	14.000000	31.000000	100.0

8 rows × 25 columns

Task-4

```
In [9]: #The average person kills how many players
avg = df['kills'].mean()
print("\nThe average person kills :", avg,"player")
```

The average person kills : 0.9134 player

Task-5

```
In [10]: #99% of people have how many kills
nn_per = df["kills"].quantile(0.99)
print("\n99% of people have",nn_per,"kills")
```

99% of people have 7.0 kills

```
In [11]: most_kill = df["kills"].max()
print("\nThe most kill ever recorded are :",most_kill)
```

The most kill ever recorded are: 35

Task-7

Task-8

```
In [13]: #Comment on distribution of the match's duration. Use seaborn.
import seaborn as sns
sns.distplot( df['matchDuration'] );
```


In [14]: #Comment on distribution of the walk distance. Use seaborn.
sns.distplot(df['walkDistance']);


```
In [15]: #Plot distribution of the match's duration vs walk distance one below the other.

%matplotlib inline
plt.style.use('classic')
plt.figure()

# ploting for matchDuration
plt.subplot(2,1,1)
plt.plot(df["matchDuration"],"-")
plt.xlabel("Match Duration")

# ploting for walkDistance
plt.subplot(2,1,2)
plt.plot(df["walkDistance"],"--")
plt.xlabel("Walk Distance")
```

Out[15]: Text(0.5, 0, 'Walk Distance')

Task-11

```
In [16]: #Plot distribution of the match's duration vs walk distance side by side.
%matplotlib inline
plt.style.use('classic')
plt.figure(figsize=(10,5))

# ploting for matchDuration
plt.subplot(1,2,1)
plt.plot(df["matchDuration"])
plt.xlabel("Match Duration")

# ploting for walkDistance
plt.subplot(1,2,2)
plt.plot(df["walkDistance"])
plt.xlabel("Walk Distance")
```

Out[16]: Text(0.5, 0, 'Walk Distance')

In [17]: #Pairplot the dataframe. Comment on kills vs damage dealt, Comment on maxPlace vs
sns.pairplot(df.head(700));


```
In [18]: #How many unique values are there in 'matchType' and what are their counts

uni = pd.unique(df['matchType'])
print("\nUnique value in matchType is :",uni)
n_uni = len(uni)
print("\nCount of unique value in matchType is :",n_uni)

Unique value in matchType is : ['squad-fpp' 'squad' 'duo-fpp' 'solo-fpp' 'duo' 'solo' 'crashfpp'
```

'flaretpp' 'normal-squad-fpp' 'normal-duo-fpp' 'flarefpp' 'normal-squad'

Count of unique value in matchType is : 14

'normal-solo-fpp' 'crashtpp']

Task-14

```
In [19]: #Plot a barplot of 'matchType' vs 'killPoints'. Write your inferences.
sns.barplot(df['matchType'],df['killPoints']);
```



```
In [20]: # Plot a barplot of 'matchType' vs 'weaponsAcquired'. Write your inferences.
sns.barplot(df['matchType'],df['weaponsAcquired']);
```


In [22]: # Plot a boxplot of 'matchType' vs 'winPlacePerc'. Write your inferences.
sns.boxplot(x='matchType', y='winPlacePerc', data=df);

Task-18

In [31]: #Plot a boxplot of 'matchType' vs 'matchDuration'. Write your inferences.
sns.boxplot(x='matchType', y='matchDuration', data=df);

Task-19

In [23]: # Change the orientation of the above plot to horizontal.
sns.boxplot(x='matchDuration', y='matchType',data=df);

Task-20

```
In [24]: # Add a new column called 'KILL' which contains the sum of following columns viz.
         df['KILL'] = df['headshotKills'] + df['teamKills'] + df['roadKills']
         df['KILL']
Out[24]: 0
                  0
         1
                  1
         2
                  1
         3
                  0
                  0
         4
         9995
                  0
         9996
                  0
         9997
         9998
                  0
         9999
                  0
         Name: KILL, Length: 10000, dtype: int64
```

```
In [25]: # Round off column 'winPlacePerc' to 2 decimals.
         df['winPlacePerc'].round(decimals=2)
Out[25]: 0
                  0.00
         1
                  0.22
         2
                  0.86
         3
                  0.35
         4
                  0.07
         9995
                  0.83
         9996
                  0.72
         9997
                  0.21
         9998
                  0.24
         9999
                  0.19
         Name: winPlacePerc, Length: 10000, dtype: float64
```


In []:

800

1000

600

400

200

0.2

0.0