(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 April 2001 (05.04.2001)

PCT

(10) International Publication Number WO 01/23604 A2

(51) International Patent Classification⁷: C12Q 1/68, C07K 14/00, C12N 15/63, 05/10

(21) International Application Number: PCT/CA00/01150

(22) International Filing Date:

28 September 2000 (28.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

2,283,458 28 September 1999 (28.09.1999) CA 2,307,010 19 May 2000 (19.05.2000) CA

(71) Applicant (for all designated States except US): INFECTIO DIAGNOSTIC (I.D.I.) INC. [CA/CA]; 2050 René-Lévesque Blvd., West, 4th Floor, Sainte-Foy, Quebec G1V 2K8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BERGERON, Michel, G. [CA/CA]; 1145 des Érables, Quebec, Quebec G2K 1T8 (CA). BOISSINOT, Maurice [CA/CA]; 109 Jean Bruchési, St-Augustin-de-Desmaures, Quebec G3A 2N2 (CA). HULETSKY, Ann [CA/CA]; 1231 des Pins Avenue, Sillery, Quebec G1S 4J3 (CA). MÉNARD, Christian [CA/CA]; 1174 du Pont, St-Lambert-de-Lévis, Quebec G0S 2W0 (CA). OUELLETTE, Marc [CA/CA];

1035 de Ploermel, Sillery, Quebec G1S 3S1 (CA). **PI-CARD, François, J.** [CA/CA]; 1245 de la Sapinière, Cap-Rouge, Quebec G1Y 1A1 (CA). **ROY, Paul, H.** [CA/CA]; 28 Charles Garnier, Loretteville, Quebec G2A 2X8 (CA).

- (74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc, The Stock Exchange Tower, 800 Place Victoria, Suite 3400, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

7

(54) Title: HIGHLY CONSERVED GENES AND THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY ALGAL, ARCHAEAL, BACTERIAL, FUNGAL AND PARASITICAL MICROORGANISMS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

(57) Abstract: Four highly conserved genes, encoding translation elongation factor Tu, translation elongation factor G, the catalytic subunit of proton-translocating ATPase and the RecA recombinase, are used to generate a sequence repertory or bank and species-specific, genus-specific, family-specific, group-specific and universal nucleic acid probes and amplification primers to rapidly detect and identify algal, archaeal, bacterial, fungal and parasitical microorganisms from specimens for diagnosis. The detection of associated antimicrobial agents resistance and toxin genes are also under the scope of the present invention.

TITLE OF THE INVENTION

HIGHLY CONSERVED GENES AND THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY ALGAL, ARCHAEAL, BACTERIAL, FUNGAL AND PARASITICAL MICROORGANISMS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

BACKGROUND OF THE INVENTION

Classical methods for the identification of microorganisms

Microorganisms are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20ETM system (bioMérieux). For susceptibility testing, clinical microbiology laboratories use methods including disk diffusion, agar dilution and broth microdilution. Although identifications based on biochemical tests and antibacterial susceptibility tests are cost-effective, generally two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to identify the bacteria from clinical specimens as well as to determine their susceptibility to antimicrobial agents. There are some commercially available automated systems (i.e. the MicroScanTM system from Dade Behring and the VitekTM system from bioMérieux) which use sophisticated and expensive apparatus for faster microbial identification and susceptibility testing (Stager and Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These systems require shorter incubation periods, thereby allowing most bacterial identifications and susceptibility testing to be performed in less than 6 hours. Nevertheless, these

faster systems always require the primary isolation of the bacteria or fungi as a pure culture, a process which takes at least 18 hours for a pure culture or 2 days for a mixed culture. So, the shortest time from sample reception to identification of the pathogen is around 24 hours. Moreover, fungi other than yeasts are often difficult or very slow to grow from clinical specimens. Identification must rely on labor-intensive techniques such as direct microscopic examination of the specimens and by direct and/or indirect immunological assays. Cultivation of most parasites is impractical in the clinical laboratory. Hence, microscopic examination of the specimen, a few immunological tests and clinical symptoms are often the only methods used for an identification that frequently remains presumptive.

The fastest bacterial identification system, the autoSCAN-Walk-AwayTM system (Dade Behring) identifies both gram-negative and gram-positive bacterial species from standardized inoculum in as little as 2 hours and gives susceptibility patterns to most antibiotics in 5 to 6 hours. However, this system has a particularly high percentage (i.e. 3.3 to 40.5%) of non-conclusive identifications with bacterial species other than *Enterobacteriaceae* (Croizé J., 1995, Lett. Infectiol. **10**:109-113; York *et al.*, 1992, J. Clin. Microbiol. **30**:2903-2910). For *Enterobacteriaceae*, the percentage of non-conclusive identifications was 2.7 to 11.4%. The list of microorganisms identified by commercial systems based on classical identification methods is given in Table 15.

A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiology laboratories. Tables 1 and 2 give the incidence for the most commonly isolated bacterial and fungal pathogens from various types of clinical specimens. These pathogens are the main organisms associated with nosocomial and community-acquired human infections and are therefore considered the most clinically important.

Clinical specimens tested in clinical microbiology laboratories

Most clinical specimens received in clinical microbiology laboratories are urine and blood samples. At the microbiology laboratory of the Centre Hospitalier de l'Université Laval (CHUL), urine and blood account for approximately 55% and 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Infections of the urinary tract, the respiratory tract and the bloodstream are usually of bacterial etiology and require antimicrobial therapy. In fact, all clinical samples received in the clinical microbiology laboratory are tested routinely for the identification of bacteria and antibiotic susceptibility.

Conventional pathogen identification from clinical specimens

Urine specimens

The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains the classical semi-quantitative plate culture method in which 1 µL of urine is streaked on agar plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is normally associated with a bacterial count of 10⁷ CFU/L or more in urine. However, infections with less than 10⁷ CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative (i.e. bacterial count of less than 10⁷ CFU/L; Table 3). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics. The biochemical and susceptibility testing normally require 18-24 hours of incubation.

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative specimens and a more efficient treatment and care management of patients. Several rapid identification methods (UriscreenTM, UTIscreenTM, Flash TrackTM DNA probes and others) have been compared to slower standard biochemical methods, which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and poor specificities as well as a high number of false negative and false positive results (Koening *et al.*, 1992, J. Clin. Microbiol. **30**:342-345; Pezzlo *et al.*, 1992, J. Clin. Microbiol. **30**:640-684).

Blood specimens

The blood specimens received in the microbiology laboratory are always submitted for culture. Blood culture systems may be manual, semi-automated or completely automated. The BACTECTM system (from Becton Dickinson) and the BacTAlertTM system (from Organon Teknika Corporation) are the two most widely used automated blood culture systems. These systems incubate blood culture bottles under optimal conditions for growth of most bacteria. Bacterial growth is monitored continuously to detect early positives by using highly sensitive bacterial growth detectors. Once growth is detected, a Gram stain is performed directly from the blood culture and then used to inoculate nutrient agar plates. Subsequently, bacterial identification and susceptibility testing are carried out from isolated bacterial colonies with automated systems as described previously. Blood culture bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, the vast majority of blood cultures are reported negative. For example, the percentage of negative blood cultures at the microbiology laboratory of the CHUL for the period February 1994-January 1995 was 93.1% (Table 3).

Other clinical samples

Upon receipt by the clinical microbiology laboratory, all body fluids other than blood and urine that are from normally sterile sites (i.e. cerebrospinal, synovial, pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture (Table 3). In all these normally sterile sites, tests for the universal detection of algae, archaea, bacteria, fungi and parasites would be very useful.

Regarding clinical specimens which are not from sterile sites such as sputum or stool specimens, the laboratory diagnosis by culture is more problematic because of the contamination by the normal flora. The bacterial or fungal pathogens potentially associated with the infection are grown and separated from the colonizing microbes using selective methods and then identified as described previously. Of course, the DNA-based universal detection of bacteria would not be useful for the diagnosis of bacterial infections at these non-sterile sites. On the other hand, DNA-based assays for species or genus or family or group detection and identification as well as for the detection of antimicrobial agents resistance genes from these specimens would be very useful and would offer several advantages over classical identification and susceptibility testing methods.

DNA-based assays with any specimen

There is an obvious need for rapid and accurate diagnostic tests for the detection and identification of algae, archaea, bacteria, fungi and parasites directly from clinical specimens. DNA-based technologies are rapid and accurate and offer a great potential to improve the diagnosis of infectious diseases (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Bergeron and Ouellette, 1995, Infection 23:69-72; Bergeron and Ouellette, 1998, J Clin Microbiol. 36:2169-72). The DNA probes and amplification primers which are objects of the present invention are applicable for the detection and identification of algae, archaea, bacteria, fungi, and parasites directly from any clinical specimen such as blood,

urine, sputum, cerebrospinal fluid, pus, genital and gastro-intestinal tracts, skin or any other type of specimens (Table 3). These assays are also applicable to detection from microbial cultures (e.g. blood cultures, bacterial or fungal colonies on nutrient agar, or liquid cell cutures in nutrient broth). The DNA-based tests proposed in this invention are superior in terms of both rapidity and accuracy to standard biochemical methods currently used for routine diagnosis from any clinical specimens in microbiology laboratories. Since these tests can be performed in one hour or less, they provide the clinician with new diagnostic tools which should contribute to a better management of patients with infectious diseases. Specimens from sources other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock, food products, environment such as water or soil, and others) may also be tested with these assays.

A high percentage of culture-negative specimens

Among all the clinical specimens received for routine diagnosis, approximately 80% of urine specimens and even more (around 95%) for other types of normally sterile clinical specimens are negative for the presence of bacterial pathogens (Table 3). It would also be desirable, in addition to identify bacteria at the species or genus or family or group level in a given specimen, to screen out the high proportion of negative clinical specimens with a DNA-based test detecting the presence of any bacterium (i.e. universal bacterial detection). As disclosed in the present invention, such a screening test may be based on DNA amplification by PCR of a highly conserved genetic target found in all bacteria. Specimens negative for bacteria would not be amplified by this assay. On the other hand, those that are positive for any bacterium would give a positive amplification signal. Similarly, highly conserved genes of fungi and parasites could serve not only to identify particular species or genus or family or group but also to detect the presence of any fungi or parasite in the specimen.

WO 01/23604 PCT/CA00/01150 Towards the development of rapid DNA-based diagnostic tests

A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for the identification of pathogens and antimicrobial agents resistance genes from clinical samples (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCRbased Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). There is no need for culture of the pathogens, hence the organisms can be detected directly from clinical samples, thereby reducing the time associated with the isolation and identification of pathogens. Furthermore, DNA-based assays are more accurate for microbial identification than currently used phenotypic identification systems which are based on biochemical tests and/or microscopic examination. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of fastidious bacterial pathogens such as Mycobacterium tuberculosis, Chlamydia trachomatis, Neisseria gonorrhoeae as well as for the detection of a variety of viruses (Tang Y. and Persing D. H., Molecular detection and identification of microorganisms, In: P. Murray et al., 1999, Manual of Clinical Microbiology, ASM press, 7th edition, Washington D.C.). There are also other commercially available DNA-based assays which are used for culture confirmation assays.

Others have developed DNA-based tests for the detection and identification of bacterial pathogens which are objects of the present invention, for example: Staphylococcus sp. (US patent serial no. 5,437,978), Neisseria sp. (US patent serial no. 5,162,199 and European patent serial no. 0,337,896,131) and Listeria monocytogenes (US patent serial nos. 5,389,513 and 5,089,386). However, the diagnostic tests described in these patents are based either on rRNA genes or on genetic targets different from those described in the present invention. To our knowledge there are only four patents published by others mentioning the use of

any of the four highly conserved gene targets described in the present invention for diagnostic purposes (PCT international publication number WO92/03455 and WO00/14274, European patent publication number 0 133 671 B1, and European patent publication number 0 133 288 A2). WO92/03455 is focused on the inhibition of Candida species for therapeutic purposes. It describes antisense oligonucleotide probes hybridizing to Candida messenger RNA. Two of the numerous mRNA proposed as targets are coding for translation elongation factor 1 (tef1) and the beta subunit of ATPase. DNA amplification or hybrization are not under the scope of their invention and although diagnostic use is briefly mentioned in the body of the application, no specific claim is made regarding diagnostics. WO00/14274 describes the use of bacterial recA gene for identification and speciation of bacteria of the Burkholderia cepacia complex. Specific claims are made on a method for obtaining nucleotide sequence information for the recA gene from the target bacteria and a following comparison with a standard library of nucleotide sequence information (claim 1), and on the use of PCR for amplification of the recA gene in a sample of interest (claims 4 to 7, and 13). However, the use of a discriminatory restriction enzyme in a RFLP procedure is essential to fulfill the speciation and WO00/14274 did not mention that multiple recA probes could be used simultaneously. Patent EP 0 133 288 A2 describes and claims the use of bacterial tuf (and fus) sequence for diagnostics based on hybridization of a tuf (or fus) probe with bacterial DNA. DNA amplification is not under the scope of EP 0 133 288 A2. Nowhere it is mentioned that multiple tuf (or fus) probes could be used simultaneously. No mention is made regarding speciation using tuf (or fus) DNA nucleic acids and/or sequences. The sensitivities of the tuf hybrizations reported are $1x10^6$ bacteria or 1-100 ng of DNA. This is much less sensitive than what is achieved by our assays using nucleic acid amplification technologies.

Although there are phenotypic identification methods which have been used for more than 125 years in clinical microbiology laboratories, these methods do not provide information fast enough to be useful in the initial management of patients.

There is a need to increase the speed of the diagnosis of commonly encountered bacterial, fungal and parasitical infections. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the microbial genotype (e.g. DNA level) is more stable than the phenotype (e.g. physiologic level).

Bacteria, fungi and parasites encompass numerous well-known microbial pathogens. Other microorganisms could also be pathogens or associated with human diseases. For example, achlorophylious algae of the *Prototheca* genus can infect humans. Archae, especially methanogens, are present in the gut flora of humans (Reeve, J.H., 1999, J. Bacteriol. **181**:3613-3617). However, methanogens have been associated to pathologic manifestations in the colon, vagina, and mouth (Belay *et al.*, 1988, Appl. Enviro. Microbiol. **54**:600-603; Belay *et al.*, 1990, J. Clin. Microbiol. **28**:1666-1668; Weaver *et al.*, 1986, Gut **27**:698-704).

In addition to the identification of the infectious agent, it is often desirable to identify harmful toxins and/or to monitor the sensitivity of the microorganism to antimicrobial agents. As revealed in this invention, genetic identification of the microorganism could be performed simultaneously with toxin and antimicrobial agents resistance genes.

Knowledge of the genomic sequences of algal, archaeal, bacterial, fungal and parasitical species continuously increases as testified by the number of sequences available from public databases such as GenBank. From the sequences readily available from those public databases, there is no indication therefrom as to their potential for diagnostic purposes. For determining good candidates for diagnostic purposes, one could select sequences for DNA-based assays for (i) the species-specific detection and identification of commonly encountered bacterial, fungal and parasitical pathogens, (ii) the genus-specific detection and identification of commonly encountered bacterial, fungal or parasitical pathogens, (iii) the family-specific detection and identification of commonly encountered bacterial, fungal or parasitical pathogens, (v) the group-specific detection and identification of commonly encountered bacterial, fungal or parasitical pathogens, (v) the

universal detection of algal, archaeal, bacterial, fungal or parasitical pathogens, and/or (vi) the specific detection and identification of antimicrobial agents resistance genes, and/or (vii) the specific detection and identification of bacterial toxin genes. All of the above types of DNA-based assays may be performed directly from any type of clinical specimens or from a microbial culture.

In our assigned U.S. patent 6,001,564 and our WO98/20157 patent publication, we described DNA sequences suitable for (i) the species-specific detection and identification of clinically important bacterial pathogens, (ii) the universal detection of bacteria, and (iii) the detection of antimicrobial agents resistance genes.

The WO98/20157 patent publication describes proprietary tuf DNA sequences as well as tuf sequences selected from public databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers derived from these sequences. All the nucleic acid sequences described in that patent publication can enter in the composition of diagnostic kits or products and methods capable of a) detecting the presence of bacteria and fungi b) detecting specifically at the species, genus, family or group levels, the presence of bacteria and fungi and antimicrobial agents resistance genes associated with these pathogens. However, these methods and kits need to be improved, since the ideal kit and method should be capable of diagnosing close to 100% of microbial pathogens and associated antimicrobial agents resistance genes and toxins genes. For example, infections caused by Enterococcus faecium have become a clinical problem because of its resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their resistance profiles are desirable. Besides that, novel DNA sequences (probes and primers) capable of recognizing the same and other microbial pathogens or the same and additional antimicrobial agents resistance genes are also desirable to aim at detecting more target genes and complement our earlier patent applications.

The present invention improves the assigned application by disclosing new proprietary tuf nucleic acids and/or sequences as well as describing new ways to

obtain *tuf* nucleic acids and/or sequences. In addition we disclose new proprietary *atpD* and *recA* nucleic acids and/or sequences. In addition, new uses of *tuf*, *atpD* and *recA* DNA nucleic acids and/or sequences selected from public databases (Table 11) are disclosed.

Highly conserved genes for identification and diagnostics

Highly conserved genes are useful for identification of microorganisms. For bacteria, the most studied genes for identification of microorganisms are the universally conserved ribosomal RNA genes (rRNA). Among those, the principal targets used for identification purposes are the small subunit (SSU) ribosomal 16S rRNA genes (in prokaryotes) and 18S rRNA genes (in eukaryotes) (Relman and Persing, Genotyping Methods for Microbial Identification, *In*: D.H. Persing, 1996, PCR Protocols for Emerging Infectious Diseases, ASM Press, Washington D.C.). The rRNA genes are also the most commonly used targets for universal detection of bacteria (Chen *et al.*, 1988, FEMS Microbiol. Lett. **57**:19-24; McCabe *et al.*, 1999, Mol. Genet. Metabol. **66**:205-211) and fungi (Van Burik *et al.*, 1998, J. Clin. Microbiol. **36**:1169-1175).

However, it may be difficult to discriminate between closely related species when using primers derived from the 16S rRNA. In some instances, 16S rRNA sequence identity may not be sufficient to guarantee species identity (Fox et al., 1992, Int. J. Syst. Bacteriol. 42:166-170) and it has been shown that inter-operon sequence variation as well as strain to strain variation could undermine the application of 16S rRNA for identification purposes (Clayton et al., 1995, Int. J. Syst. Bacteriol. 45:595-599). The heat shock proteins (HSP) are another family of very conserved proteins. These ubiquitous proteins in bacteria and eukaryotes are expressed in answer to external stress agents. One of the most described of these HSP is HSP 60. This protein is very conserved at the amino acid level, hence it has been useful for phylogenetic studies. Similar to 16S rRNA, it would be difficult to

discriminate between species using the HSP 60 nucleotide sequences as a diagnostic tool. However, Goh et al. identified a highly conserved region flanking a variable region in HSP 60, which led to the design of universal primers amplifying this variable region (Goh et al., US patent serial no. 5,708,160). The sequence variations in the resulting amplicons were found useful for the design of species-specific assays.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and/or amplification primers for determining the presence and/or amount of nucleic acids:

- from any algal, archaeal, bacterial, fungal or parasitical species in any sample suspected of containing said nucleic acids, and optionally,
- from specific microbial species or genera selected from the group consisting of the species or genera listed in Table 4, and optionally,
- from an antimicrobial agents resistance gene selected from the group consisting of the genes listed in Table 5, and optionally,
- from a toxin gene selected from the group consisting of the genes listed in Table 6,

wherein each of said nucleic acids or a variant or part thereof comprises a selected target region hybridizable with said probes or primers;

said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said any

microbial species, specific microbial species or genus or family or group and antimicrobial agents resistance gene and/or toxin gene.

In a specific embodiment, a similar method directed to each specific microbial species or genus or family or group detection and identification, antimicrobial agents resistance genes detection, toxin genes detection, and universal bacterial detection, separately, is provided.

In a more specific embodiment, the method makes use of DNA fragments from conserved genes (proprietary sequences and sequences obtained from public databases), selected for their capacity to sensitively, specifically and ubiquitously detect the targeted algal, archaeal, bacterial, fungal or parasitical nucleic acids.

In a particularly preferred embodiment, oligonucleotides of at least 12 nucleotides in length have been derived from the longer DNA fragments, and are used in the present method as probes or amplification primers. To be a good diagnostic candidate, an oligonucleotide of at least 12 nucleotides should be capable of hybridizing with nucleic acids from given microorganism(s), and with substantially all strains and representatives of said microorganism(s); said oligonucleotide being species-, or genus-, or family-, or group-specific or universal.

In another particularly preferred embodiment, oligonucleotides primers and probes of at least 12 nucleotides in length are designed for their specificity and ubiquity based upon analysis of our databases of *tuf*, *atpD* and *recA* sequences. These databases are generated using both proprietary and public sequence information. Altogether, these databases form a sequence repertory useful for the design of primers and probes for the detection and identification of algal, archaeal, bacterial, fungal and parasitical microorganisms. The repertory can also be subdivided into subrepertories for sequence analysis leading to the design of various primers and probes.

The *tuf*, *atpD* and *recA* sequences databases as a product to assist the design of oligonucleotides primers and probes for the detection and identification of algal, archaeal, bacterial, fungal and parasitical microorganisms are also covered.

The proprietary oligonucleotides (probes and primers) are also another object of this invention.

Diagnostic kits comprising probes or amplification primers such as those for the detection of a microbial species or genus or family or phylum or group selected from the following list consisting of Abiotrophia adiacens, Acinetobacter baumanii, Actinomycetae, Bacteroides, Cytophaga and Flexibacter phylum, Bacteroides fragilis, Bordetella pertussis, Bordetella sp., Campylobacter jejuni and C. coli, Candida albicans, Candida dubliniensis, Candida glabrata, Candida guilliermondii, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Candida sp., Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium sp., Corynebacterium sp., Crypococcus neoformans, Cryptococcus sp., Cryptosporidium parvum, Entamoeba sp., Enterobacteriaceae group, Enterococcus casseliflavus-flavescens-gallinarum group, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus sp., Escherichia coli and Shigella sp. group, Gemella sp., Giardia sp., Haemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Legionella sp., Leishmania sp., Mycobacteriaceae family, Mycoplasma pneumoniae, Neisseria gonorrhoeae, platelets contaminants group (see Table 14), Pseudomonas aeruginosa, Pseudomonads group, Staphylococcus Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus Staphylococcus saprophyticus, Staphylococcus sp., Streptococcus hominis. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus sp., Trypanosoma brucei, Trypanosoma cruzi, Trypanosoma sp., Trypanosomatidae family, are also objects of the present invention.

Diagnostic kits further comprising probes or amplification primers for the detection of an antimicrobial agents resistance gene selected from the group listed in Table 5 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of a toxin gene selected from the group listed in Table 6 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of any other algal, archaeal, bacterial, fungal or parasitical species than those specifically listed herein, comprising or not comprising those for the detection of the specific microbial species or genus or family or group listed above, and further comprising or not comprising probes and primers for the antimicrobial agents resistance genes listed in Table 5, and further comprising or not comprising probes and primers for the toxin genes listed in Table 6 are also objects of this invention.

In a preferred embodiment, such a kit allows for the separate or the simultaneous detection and identification of the above-listed microbial species or genus or family or group; or universal detection of algae, archaea, bacteria, fungi or parasites; or antimicrobial agents resistance genes; or toxin genes; or for the detection of any microorganism (algae, archaea, bacteria, fungi or parasites).

In the above methods and kits, probes and primers are not limited to nucleic acids and may include, but are not restricted to analogs of nucleotides such as: inosine, 3-nitropyrrole nucleosides (Nichols *et al.*, 1994, Nature **369**:492-493), Linked Nucleic Acids (LNA) (Koskin *et al.*, 1998, Tetrahedron **54**:3607-3630), and Peptide Nucleic Acids (PNA) (Egholm *et al.*, 1993, Nature **365**:566-568).

In the above methods and kits, amplification reactions may include but are not restricted to: a) polymerase chain reaction (PCR), b) ligase chain reaction (LCR), c) nucleic acid sequence-based amplification (NASBA), d) self-sustained sequence replication (3SR), e) strand displacement amplification (SDA), f) branched DNA signal amplification (bDNA), g) transcription-mediated amplification (TMA), h) cycling probe technology (CPT), i) nested PCR, j) multiplex PCR, k) solid phase amplification (SPA), l) nuclease dependent signal amplification (NDSA), m) rolling circle amplification technology (RCA), n) Anchored strand displacement amplification, o) Solid-phase (immobilized) rolling circle amplification.

In the above methods and kits, detection of the nucleic acids of target genes may include real-time or post-amplification technologies. These detection

technologies can include, but are not limited to, fluorescence resonance energy transfer (FRET)-based methods such as adjacent hybridization to FRET probes (including probe-probe and probe-primer methods), TaqMan, Molecular Beacons, scorpions, nanoparticle probes and Sunrise (Amplifluor). Other detection methods include target genes nucleic acids detection via immunological methods, solid phase hybridization methods on filters, chips or any other solid support, whether the hybridization is monitored by fluorescence, chemiluminescence, potentiometry, mass spectrometry, plasmon resonance, polarimetry, colorimetry, or scanometry. Sequencing, including sequencing by dideoxy termination or sequencing by hybridization, e.g. sequencing using a DNA chip, is another possible method to detect and identify the nucleic acids of target genes.

In a preferred embodiment, a PCR protocol is used for nucleic acid amplification, in diagnostic method as well as in method of construction of a repertory of nucleic acids and deduced sequences.

In a particularly preferred embodiment, a PCR protocol is provided, comprising, an initial denaturation step of 1-3 minutes at 95 °C, followed by an amplification cycle including a denaturation step of one second at 95 °C and an annealing step of 30 seconds at 45-65°C, without any time allowed specifically for the elongation step. This PCR protocol has been standardized to be suitable for PCR reactions with most selected primer pairs, which greatly facilitates the testing because each clinical sample can be tested with universal, species-specific, genus-specific, antimicrobial agents resistance gene and toxin gene PCR primers under uniform cycling conditions. Furthermore, various combinations of primer pairs may be used in multiplex PCR assays.

It is also an object of the present invention that *tuf*, *atpD* and *recA* sequences could serve as drug targets and these sequences and means to obtain them revealed in the present invention can assist the screening, design and modeling of these drugs.

It is also an object of the present invention that *tuf*, *atpD* and *recA* sequences could serve for vaccine purposes and these sequences and means to obtain them

revealed in the present invention can assist the screening, design and modeling of these vaccines.

We aim at developing a universal DNA-based test or kit to screen out rapidly samples which are free of algal, archaeal, bacterial, fungal or parasitical cells. This test could be used alone or combined with more specific identification tests to detect and identify the above algal and/or archaeal and/or bacterial and/or fungal and/or parasitical species and/or genera and/or family and/or group and to determine rapidly the bacterial resistance to antibiotics and/or presence of bacterial toxins. Although the sequences from the selected antimicrobial agents resistance genes are available from public databases and have been used to develop DNAbased tests for their detection, our approach is unique because it represents a major improvement over current diagnostic methods based on bacterial cultures. Using an amplification method for the simultaneous or independent or sequential microbial detection-identification and antimicrobial resistance genes detection, there is no need for culturing the clinical sample prior to testing. Moreover, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one hour under uniform amplification conditions. This procedure should save lives by optimizing treatment, should diminish antimicrobial agents resistance because less antibiotics will be prescribed, should reduce the use of broad spectrum antibiotics which are expensive, decrease overall health care costs by preventing or shortening hospitalizations, and side effects of drugs, and decrease the time and costs associated with clinical laboratory testing.

In another embodiment, sequence repertories and ways to obtain them for other gene targets are also an object of this invention, such is the case for the *hexA* nucleic acids and/or sequences of Streptococci.

In yet another embodiment, for the detection of mutations associated with antibiotic resistance genes, we built repertories to distinguish between point mutations reflecting only gene diversity and point mutations involved in resistance. Such repertories and ways to obtain them for *pbp1a*, *pbp2b* and *pbp2x* genes of sensitive and penicillin-resistant *Streptoccoccus pneumoniae* and also for *gyrA* and

parC gene fragments from various bacterial species are also an object of the present invention.

The diagnostic kits, primers and probes mentioned above can be used to identify algae, archaea, bacteria, fungi, parasites, antimicrobial agents resistance genes and toxin genes on any type of sample, whether said diagnostic kits, primers and probes are used for *in vitro* or *in situ* applications. The said samples may include but are not limited to: any clinical sample, any environment sample, any microbial culture, any microbial colony, any tissue, and any cell line.

It is also an object of the present invention that said diagnostic kits, primers and probes can be used alone or in conjunction with any other assay suitable to identify microorganisms, including but not limited to: any immunoassay, any enzymatic assay, any biochemical assay, any lysotypic assay, any serological assay, any differential culture medium, any enrichment culture medium, any selective culture medium, any specific assay medium, any identification culture medium, any enumeration cuture medium, any cellular stain, any culture on specific cell lines, and any infectivity assay on animals.

In the methods and kits described herein below, the oligonucleotide probes and amplification primers have been derived from larger sequences (i.e. DNA fragments of at least 100 base pairs). All DNA fragments have been obtained either from proprietary fragments or from public databases. DNA fragments selected from public databases are newly used in a method of detection according to the present invention, since they have been selected for their diagnostic potential.

In another embodiment, the amino acid sequences translated from the repertory of *tuf*, *atpD* and *recA* nucleic acids and/or sequences are also an object of the present invention.

It is clear to the individual skilled in the art that other oligonucleotide sequences appropriate for (i) the universal detection of algae, archaea, bacteria, fungi or parasites, (ii) the detection and identification of the above microbial species or genus or family or group, and (iii) the detection of antimicrobial agents resistance genes, and (iv) the detection of toxin genes, other than those listed in

Annexes I to III, XXI to XXII, XXXII to XXXVII, XXXIX to XLI, and XLIII to LIV may also be derived from the proprietary fragments or selected public database sequences. For example, the oligonucleotide primers or probes may be shorter or longer than the ones chosen; they may also be selected anywhere else in the proprietary DNA fragments or in the sequences selected from public databases; they may be also variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified by a given oligonucleotide PCR primer pair, the converse is also true; a given target DNA may hybridize to a variant oligonucleotide probe or be amplified by a variant oligonucleotide PCR primer. Alternatively, the oligonucleotides may be designed from any DNA fragment sequences for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of universal, species-specific, genus-specific, family-specific, group-specific, resistance gene-specific, toxin gene-specific genomic or non-genomic DNA fragments which are used as a source of specific and ubiquitous oligonucleotide probes and/or amplification primers. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires much effort, it is quite possible for the individual skilled in the art to derive, from the selected DNA fragments, oligonucleotides other than the ones listed in Annexes I to III, XXI to XXII, XXXII to XXXVII, XXXIX to XLI, and XLIII to LIV which are suitable for diagnostic purposes. When a proprietary fragment or a public databases sequence is selected for its specificity and ubiquity, it increases the probability that subsets thereof will also be specific and ubiquitous.

Since a high percentage of clinical specimens are negative for bacteria (Table 3), DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and public database sequences. The amplification primers were selected from genes highly conserved in algae, archaea, bacteria, fungi and parasites, and are used to detect the presence of any algal, archaeal, bacterial, fungal or parasitical pathogen in clinical specimens in order to determine rapidly whether it is positive or negative for algae,

archaea, bacteria, fungi or parasites. The selected genes, designated *tuf*, *fus*, *atpD* and *recA*, encode respectively 2 proteins (elongation factors Tu and G) involved in the translational process during protein synthesis, a protein (beta subunit) responsible for the catalytic activity of proton pump ATPase and a protein responsible for the homologous recombination of genetic material. The alignments of *tuf*, *atpD* and *recA* sequences used to derive the universal primers include both proprietary and public database sequences. The universal primer strategy allows the rapid screening of the numerous negative clinical specimens (around 80% of the specimens received, see Table 3) submitted for microbiological testing.

Table 4 provides a list of the archaeal, bacterial, fungal and parasitical species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are revealed in the present invention. Tables 5 and 6 provide a list of antimicrobial agents resistance genes and toxin genes selected for diagnostic purposes. Table 7 provides the origin of *tuf*, *atpD* and *recA* nucleic acids and/or sequences listed in the sequence listing. Tables 8-10 and 12-14 provide lists of species used to test the specificity, ubiquity and sensitivity of some assays described in the examples. Table 11 provides a list of microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases. Table 15 lists the microorganisms identified by commercial systems. Tables 16-18 are part of Example 42, whereas Tables 19-20 are part of Example 43. Tables 21-22 illustrate Example 44, whereas Tables 23-25 illustrate Example 45.

In accordance with the present invention is provided a method for generating a repertory of nucleic acids of *tuf*, *fus*, *atpD* and/or *recA* genes from which are derived probes or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the step of:

- amplifying the nucleic acids of a plurality of determined algal, archaeal, bacterial, fungal and parasitical species with any combination of the primer pairs defined in SEQ ID NOs.: 558-561, 562-574, 636-655, 664, 681-683, 696-697, 699-700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999- 2003, 2282-2285.

The terms "related microorganisms" are intended to cover microorganisms that share a common evolutive profile up to the speciation e.g. those that belong to a species, a genus, a family or a phyllum. The same terms are also intended to cover a group of different species that are grouped for a specific reason, for example, because they all have a common host tissue or cell. In one specific example, a group of microorganims potentially found in platelet preparations are grouped together and are considered "related" organisms for the purpose of their simultaneous detection in that particular type of sample.

The repertories *per se* of nucleic acids and of sequences derived therefrom are also provided, as well as "gene banks" comprising these repertories.

For generating sequences of probes or primers, the above method is reproduced or one may start from the sequence repertory or gene bank itself, and the following steps are added:

- aligning a subset of nucleic acid sequences of said repertory,
- locating nucleic acid stretches that are present in the nucleic acids of strains or representatives of said one, more than one related microorganisms, or substantially all microorganisms of said group, and not present in the nucleic acid sequences of other microorganisms, and

deriving consensus nucleic acid sequences useful as probes or primers from said stretches.

Once the sequences of probes or primers are designed, they are converted into real molecules by nucleic acid synthesis.

From the above methods and resulting repertories, probes and primers for the universal detection of any one of alga, archaeon, bacterium, fungus and parasite are obtainable.

More specifically, the following probes or primers having the sequence defined in SEQ ID NOs.: 543, 556-574, 636-655, 658-661, 664, 681-683, 694, 696, 697, 699, 700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999-2000, 2282-2285 or any variant of at least 12 nucleotides capable of hybridizing with the targeted microorganism(s) and these sequences and a diagnostic method using the same are provided.

Further, probes or primers having specific and ubiquitous properties for the detection and identification of any one of an algal, archaeal, bacterial, fungal and parasitital species, genus, family and group are also designed and derived from the same methods and repertories.

More specifically, are provided definite probes or primers having specific and ubiquitous properties for the detection and identification of microorganisms.

Indeed, a general method is provided for detecting the presence in a test sample of any microorganism that is an alga, archaeum, bacterium, fungus or parasite, which comprises:

a) putting in contact any test sample *tuf* or *atpD* or *recA* sequences and nucleic acid primers and/or probes, said primers and/or probes having been selected to be sufficiently complementary to hybridize to

one or more *tuf* or *atpD* or *recA* sequences that are specific to said microorganism:

- b) allowing the primers and/or probes and any test sample *tuf* or *atpD* or *recA* sequences to hybridize under specified conditions such as said primers and/or probes hybridize to the *tuf* or *atpD* or *recA* sequences of said microorganism and does not delectably hybridize to *tuf* or *atpD* or *recA* sequences from other microorganisms; and,
- c) testing for hybridization of said primers and/or probes to any test sample *tuf* or *atpD* or *recA* sequences.

In the latter, step c) is based on a nucleic acid target amplification method, or on a signal amplification method.

The terms "sufficiently complementary" cover perfect and imperfect complementarity.

In addition to the universal or the specific detection and/or identification of microorganisms, the simultaneous detection of antimicrobial agent resistance gene or of a toxin gene is provided in compositions of matter as well as in diagnostic methods. Such detection is brought by using probes or primers having at least 12 nucleotides in length capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene, a definite set thereof being particularly provided.

Of course, any propriatory nucleic acid and nucleotide sequence derived therefrom, and any variant of at least 12 nucleotides capable of a selective hybridization with the following nucleic acids are within the scope of this invention as well as derived recombinant vectors and hosts:

SEQ ID NOs.: 1-73, 75-241, 399-457, 498-529, 612-618, 621-624, 675, 677, 717-736, 779-792, 840-855, 865, 868-888, 897-910, 932, 967-989 992, 1266-1297, 1518-1526, 1561-1575, 1578-1580, 1662-1664, 1666-1667, 1669-1670, 1673-1683, 1685-1689, 1786-1843, 1874-1881, 1956-1960, 2183-2185, 2187-2188, 2193-2201, 2214-2249, 2255-2272, which are all *tuf* sequences;

SEO ID NOs.: 242-270, 272-398, 458-497, 530-538, 663, 667, 673-676, 678-680, 737-778, 827-832, 834-839, 856-862, 866-867, 889-896, 929-931, 941-966, 1245-1254, 1256-1265, 1527, 1576-1577, 1600-1604,1638-1647, 1649-1660, 1671, 1684, 1844-1848, 1849-1865, 2189-2192, which are all *atpD* sequences;

SEQ ID NOs.: 990-991, 1003, 1288-1289, 1714, 1756-1763, 1866-1873 and 2202-2212, which are all *recA* sequences; and

SEQ ID NOs.: 1004-1075, 1255, 1607-1608, 1648, 1764-1785, 2013-2014, 2056-2064, 2273-2280, which are antimicrobial agent resistance or toxin gene sequences found to be suitable for the detection and identification of microbial species.

To complement the following repertories, another one comprising *hexA* nucleic acids and derived sequences have been construed through amplification of nucleic acids of any streptococcal species with any combination of primers SEO ID NOs.: 1179, 1181, 1182 and 1184 to 1191. From this particular repertory, primers and/or probes for detecting *Streptococcus pneumoniae* have been designed and obtained. Particularly, a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with *Streptococcus pneumoniae* and with any one of SEQ ID NOs.: 1184 to 1187 or with SEQ ID NOs.: 1179, 1180, 1181 or 1182 are provided.

The remarkable sequence diversity of nucleic acids that encode proteins also provides diversity of peptide sequences which constitute another repertory that is also within the scope of this invention. From the protein and nucleic acid sequence repertories is derived a use therefrom for the design of a therapeutic agent effective against a target microorganism, for example, an antibiotic, a vaccine or a genic therapeutic agent.

Due to the constant evolution in the diagnostic methods, here is finally provided a method for the identification of a microorganism in a test sample, comprising the steps of:

a) obtaining a nucleic acid sequence from a *tuf*, *fus*, *atpD*, and/or *recA* genes of said microorganisms, and

b) comparing said nucleic acid sequence with the nucleic acid sequences of a bank as defined in claim 5, said repertory comprising a nucleic acid sequence obtained from the nucleic acids of said microorganism, whereby said microorganism is identify when there is a match between the sequences.

In this method, any way by which the specified given sequence is obtained is contemplated, and this sequence is simply compared to the sequences of a bank or a repertory. If the comparison results in a match, e.g. if bank comprises the nucleic acid sequence of interest, the identification of the microorganism is provided.

DETAILED DESCRIPTION OF THE INVENTION

HIGHLY CONSERVED GENES AND THEIR USE TO GENERATE SPECIESSPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND
UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO
RAPIDLY DETECT AND IDENTIFY ALGAL, ARCHAEAL, BACTERIAL,
FUNGAL AND PARASITICAL MICROORGANISMS FROM CLINICAL
SPECIMENS FOR DIAGNOSIS

The present inventors reasoned that comparing the published *Haemophilus* influenzae and *Mycoplasma genitalium* genomes and searching for conserved genes could provide targets to develop useful diagnostic primers and probes. This sequence comparison is highly informative as these two bacteria are distantly related and most genes present in the minimal genome of *M. genitalium* are likely to be present in every bacterium. Therefore genes conserved between these two bacteria are likely to be conserved in all other bacteria.

Following the genomic comparison, it was found that several protein-coding genes were conserved in evolution. Highly conserved proteins included the translation elongation factors G (EF-G) and Tu (EF-Tu) and the β subunit of F0F1 type ATP-synthase, and to a lesser extent, the RecA recombinase. These four proteins coding genes were selected amongst the 20 most conserved genes on the basis that they all possess at least two highly conserved regions suitable for the design of universal amplification and sequencing primers. Moreover, within the fragment amplified by these primers, highly conserved and more variable regions are also present hence suggesting it might be possible to rapidly obtain sequence information from various microbial species to design universal as well as species, genus-, family-, or group-specific primers and probes of potential use for the detection and identification and/or quantification of microorganisms.

Translation elongation factors are members of a family of GTP-binding proteins which intervene in the interactions of tRNA molecules with the ribosome machinery during essential steps of protein synthesis. The role of elongation factor Tu is to facilitate the binding of aminoacylated tRNA molecules to the A site of the ribosome. The eukaryotic, archaeal (archaebacterial) and algal homolog of EF-Tu is called elongation factor 1 alpha (EF-1α). All protein synthesis factors originated from a common ancestor via gene duplications and fusions (Cousineau *et al.*, 1997, J. Mol. Evol. **45**:661-670). In particular, elongation factor G (EF-G), although having a functional role in promoting the translocation of aminoacyl-tRNA molecules from the A site to the P site of the ribosome, shares sequence homologies with EF-Tu and is thought to have arisen from the duplication and fusion of an ancestor of the EF-Tu gene.

In addition, EF-Tu is known to be the target for antibiotics belonging to the elfamycin's group as well as to other structural classes (Anborgh and Parmeggiani, 1991, EMBO J. 10:779-784; Luiten et al., 1992, European patent application serial No. EP 0 466 251 A1). EF-G for its part, is the target of the antibiotic fusidic acid. In addition to its crucial activities in translation, EF-Tu has chaperone-like functions in protein folding, protection against heat denaturation of proteins and interactions with unfolded proteins (Caldas et al., 1998, J. Biol. Chem 273:11478-11482). Interestingly, a form of the EF-Tu protein has been identified as a dominant component of the periplasm of Neisseria gonorrhoeae (Porcella et al., 1996, Microbiology 142:2481-2489), hence suggesting that at least in some bacterial species, EF-Tu might be an antigen with vaccine potential.

F0F1 type ATP-synthase belongs to a superfamily of proton-translocating ATPases divided in three major families: P, V and F (Nelson and Taiz, 1989, TIBS 14:113-116). P-ATPases (or E₁-E₂ type) operate via a phosphorylated intermediate and are not evolutionarily related to the other two families. V-ATPases (or V₀V₁ type) are present on the vacuolar and other endomembranes of eukaryotes, on the plasma membrane of archaea (archaebacteria) and algae, and also on the plasma membrane of some eubacteria especially species belonging to the order

Spirochaetales as well as to the Chlamydiaceae and Deinococcaceae families. F-ATPases (or F0F1 type) are found on the plasma membrane of most eubacteria, on the inner membrane of mitochondria and on the thylakoid membrane of chloroplasts. They function mainly in ATP synthesis. They are large multimeric enzymes sharing numerous structural and functional features with the V-ATPases. F and V-type ATPases have diverged from a common ancestor in an event preceding the appearance of eukaryotes. The β subunit of the F-ATPases is the catalytic subunit and it possesses low but significant sequence homologies with the catalytic A subunit of V-ATPases.

The translation elongation factors EF-Tu, EF-G and EF-1 α , and the catalytic subunit of F or V-types ATP-synthase, are highly conserved proteins sometimes used for phylogenetic analysis and their genes are also known to be highly conserved (Iwabe *et al.*, 1989, Proc. Natl. Acad. Sci. USA **86**:9355-9359, Gogarten *et al.*, 1989, Proc. Natl. Acad. Sci. USA **86**:6661-6665, Ludwig *et al.*, 1993, Antonie van Leeuwenhoek **64**:285-305). A recent BLAST (Altschul *et al.*, 1997, J. Mol. Biol. **215**:403-410) search performed by the present inventors on the GenBank, European Molecular Biology Laboratory (EMBL), DNA Database of Japan (DDBJ) and specific genome project databases indicated that throughout bacteria, the EF-Tu and the β subunit of F0F1 type ATP-synthase genes may be more conserved than other genes that are well conserved between *H. influenzae* and *M. genitalium*.

The RecA recombinase is a multifunctional protein encoded by the *recA* gene. It plays a central role in homologous recombination, it is critical for the repair of DNA damage and it is involved in the regulation of the SOS system by promoting the proteolytic digestion of the LexA repressor. It is highly conserved in bacteria and could serve as a useful genetic marker to reconstruct bacterial phylogeny (Miller and Kokjohn, 1990, Annu. Rev. Microbiol. 44:365-394). Although RecA possesses some highly conserved sequence segments that we used to design universal primers aimed at sequencing the *recA* fragments, it is clearly not as well conserved EF-G, EF-Tu and β subunit of F0F1 type ATP-synthase.

Hence, RecA may not be optimal for universal detection of bacteria with high sensitivity but it was chosen because preliminary data indicated that EF-G, EF-Tu and β subunit of F0F1 type ATP-synthase may sometimes be too closely related to find specific primer pairs that could discriminate between certain very closely related species and genera. While RecA, EF-G, EF-Tu and β subunit of F0F1 type ATP-synthase genes, possesses highly conserved regions suitable for the design of universal sequencing primers, the less conserved region between primers should be divergent enough to allow species-specific and genus-specific primers in those cases.

Thus, as targets to design primers and probes for the genetic detection of microorganisms, the present inventors have focused on the genes encoding these four proteins: tuf, the gene for elongation factor Tu (EF-Tu); fus, the gene for the elongation factor G (EF-G); atpD, the gene for β subunit of F₀F₁ type ATPsynthase; and recA, the gene encoding the RecA recombinase. In several bacterial genomes tuf is often found in two highly similar duplicated copies named tufA and tufB (Filer and Furano, 1981, J. Bacteriol. 148:1006-1011, Sela et al., 1989, J. Bacteriol. 171:581-584). In some particular cases, more divergent copies of the tuf genes can exist in some bacterial species such as some actinomycetes (Luiten et al. European patent application publication No. EP 0 446 251 A1; Vijgenboom et al., 1994, Microbiology 140:983-998) and, as revealed as part of this invention, in several enterococcal species. In several bacterial species, tuf is organized in an operon with its homolog gene for the elongation factor G (EF-G) encoded by the fusA gene (Figure 3). This operon is often named the str operon. The tuf, fus, atpD and recA genes were chosen as they are well conserved in evolution and have highly conserved stretches as well as more variable segments. Moreover, these four genes have eukaryotic orthologs which are described in the present invention as targets to identify fungi and parasites. The eukaryotic homolog of elongation factor Tu is called elongation factor 1-alpha (EF-1α) (gene name: tef, tef1, ef1, ef-1 or EF-1). In fungi, the gene for $EF-1\alpha$ occurs sometimes in two or more highly

similar duplicated copies (often named tef1, tef2, tef3...). In addition, eukaryotes have a copy of elongation factor Tu which is originating from their organelle genome ancestry (gene name: tuf1, tufM or tufA). For the purpose of the current invention, the genes for these four functionally and evolutionarily linked elongation factors (bacterial EF-Tu and EF-G, eukaryotic EF-1α, and organellar EF-Tu) will hereafter be designated as «tuf nucleic acids and/or sequences». The eukaryotic (mitochondrial) F0F1 type ATP-synthase beta subunit gene is named atp2 in yeast. For the purpose of the current invention, the genes of catalytic subunit of either F or V-type ATP-synthase will hereafter be designated as «atpD nucleic acids and/or sequences». The eukaryotic homologs of RecA are distributed in two families, typified by the Rad51 and Dmc1 proteins. Archaeal homologs of RecA are called RadA. For the purpose of the current invention, the genes corresponding to the latter proteins will hereafter be designated as «recA nucleic acids and/or sequences».

In the description of this invention, the terms «nucleic acids» and «sequences» might be used interchangeably. However, «nucleic acids» are chemical entities while «sequences» are the pieces of information derived from (inherent to) these «nucleic acids». Both nucleic acids and sequences are equivalently valuable sources of information for the matter pertaining to this invention.

Analysis of multiple sequence alignments of tuf and atpD sequences permitted the design of oligonucleotide primers (and probes) capable of amplifying (or hybridizing to) segments of tuf (and/or fus) and atpD genes from a wide variety of bacterial species (see Examples 1 to 4, 24 and 26, and Table 7). Sequencing and amplification primer pairs for tuf nucleic acids and/or sequences are listed in Annex I and hybridization probes are listed in Annexes III and XLVII. Sequencing and amplification primer pairs for atpD nucleic acids and/or sequences are listed in Annex II. Analysis of the main subdivisions of tuf and atpD sequences (see Figures 1 and 2) permitted to design sequencing primers amplifying specifically each of these subdivisions. It should be noted that these sequencing primers could also be used as universal primers. However, since some of these sequencing primers

include several variable sequence (degenerated) positions, their sensitivity could be lower than that of universal primers developed for diagnostic purposes. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

Similarly, analysis of multiple sequence alignments of *recA* sequences present in the public databases permitted the design of oligonucleotide primers capable of amplifying segments of *recA* genes from a wide variety of bacterial species. Sequencing and amplification primer pairs for *recA* sequences are listed in Annex XXI. The main subdivisions of *recA* nucleic acids and/or sequences comprise *recA*, *rad51* and *dmc1*. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

The present inventor's strategy is to get as much sequence data information from the four conserved genes (tuf, fus, atpD and recA). This ensemble of sequence data forming a repertory (with subrepertories corresponding to each target gene and their main sequence subdivisions) and then using the sequence information of the sequence repertory (or subrepertories) to design primer pairs that could permit either universal detection of algae or archaea or bacteria or fungi or parasites, detection of a family or group of microorganism (e.g. Enterobacteriaceae), detection of a genus (e.g. Streptococcus) or finally a specific species (e.g. Staphylococcus aureus). It should be noted that for the purpose of the present invention a group of microorganisms is defined depending on the needs of the particular diagnostic test. It does not need to respect a particular taxonomical grouping or phylum. See Example 12 where primers were designed to amplify a group a bacteria consisting of the 17 major bacterial species encountered as contaminants of platelet concentrates. Also remark that in that Example, the primers are not only able to sensitively and rapidly detect at least the 17 important bacterial species, but could also detect other species as well, as shown in Table 14. In these circumstances the primers shown in Example 12 are considered universal for platelet-contaminating bacteria. To develop an assay specific for the latter, one or more primers or probes specific to each species could be designed. Another

example of primers and/or probes for group detection is given by the Pseudomonad group primers. These primers were designed based upon alignment of tuf sequences from real Pseudomonas species as well as from former Pseudomonas species such as Stenotrophomonas maltophilia. The resulting primers are able to amplify all Pseudomonas species tested as well as several species belonging to different genera, hence as being specific for a group including Pseudomonas and other species, we defined that group as Pseudomonads, as several members were former Pseudomonas.

For certain applications, it may be possible to develop a universal, group, family or genus-specific reaction and to proceed to species identification using sequence information within the amplicon to design species-specific internal probes or primers, or alternatively, to proceed directly by sequencing the amplicon. The various strategies will be discussed further below.

The ensembles formed by public and proprietary *tuf*, *atpD* and *recA* nucleic acids and/or sequences are used in a novel fashion so they constitute three databases containing useful information for the identification of microorganisms.

Sequence repertories of other gene targets were also built to solve some specific identification problems especially for microbial species genetically very similar to each other such as *E. coli* and *Shigella* (see Example 23). Based on *tuf*, *atpD* and *recA* sequences, *Streptococcus pneumoniae* is very difficult to differentiate from the closely related species *S. oralis* and *S. mitis*. Therefore, we elected to built a sequence repertory from *hexA* sequences (Example 19), a gene much more variable than our highly conserved *tuf*, *atpD* and *recA* nucleic acids and/or sequences.

For the detection of mutations associated with antibiotic resistance genes, we also built repertories to distinguish between point mutations reflecting only gene diversity and point mutations involved in resistance. This was done for *pbp1a*, *pbp2b* and *pbp2x* genes of penicillin-resistant and sensitive *Streptoccoccus* pneumoniae (Example 18) and also for *gyrA* and *parC* gene fragments of various bacterial species for which quinolone resistance is important to monitor.

Oligonucleotide primers and probes design and synthesis

The tuf, fus, atpD and recA DNA fragments sequenced by us and/or selected from public databases (GenBank and EMBL) were used to design oligonucleotides primers and probes for diagnostic purposes. Multiple sequence alignments were made using subsets of the tuf or atpD or recA sequences repertory. Subsets were chosen to encompass as much as possible of the targetted microorganism(s) DNA sequence data and also include sequence data from phylogenetically related microorganisms from which the targetted microorganism(s) should be distinguished. Regions suitable for primers and probes should be conserved for the targetted microorganism(s) and divergent for the microorganisms from which the targetted microorganism(s) should be distinguished. The large amount of tuf or atpD or recA sequences data in our repertory permits to reduce trial and errors in obtaining specific and ubiquitous primers and probes. We also relied on the corresponding peptide sequences of tuf, fus, atpD and recA nucleic acids and/or sequences to facilitate the identification of regions suitable for primers and probes design. As part of the design rules, all oligonucleotides (probes for hybridization and primers for DNA amplification by PCR) were evaluated for their suitability for hybridization or PCR amplification by computer analysis using standard programs (i.e. the Genetics Computer Group (GCG) programs and the primer analysis software OligoTM 5.0). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide and a high proportion of G or C residues at the 3' end (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Society for Microbiology, Washington, D.C.). Applications, American Oligonucleotide probes and amplification primers were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division).

The oligonucleotide sequence of primers or probes may be derived from either strand of the duplex DNA. The primers or probes may consist of the bases

A, G, C, or T or analogs and they may be degenerated at one or more chosen nucleotide position(s). The primers or probes may be of any suitable length and may be selected anywhere within the DNA sequences from proprietary fragments or from selected database sequences which are suitable for (i) the universal detection of algae or archaea or bacteria or fungi or parasites, (ii) the speciesspecific detection and identification of any microorganism, including but not limited to: Abiotrophia adiacens, Bacteroides fragilis, Bordetella pertussis, albicans. Candida dubliniensis, Candida glabrata, guilliermondii, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Campylobacter jejuni and C. coli, Chlamydia pneumoniae, Chlamydia trachomatis, Cryptococcus neoformans, Cryptosporidium parvum, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Escherichia coli, Haemophilus influenzae, Legionella pneumophila, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus Staphylococcus hominis, Staphylococcus saprophyticus, haemolyticus, Streptococcus agalactiae, Streptococcus pneumoniae, Trypanosoma brucei, Trypanosoma cruzi, (iii) the genus-specific detection of Bordetella species, Candida species, Clostridium species, Corynebacterium species, Cryptococcus species, Entamoeba species, Enterococcus species, Gemella species, Giardia species, Legionella species, Leishmania species, Staphylococcus species, Streptococcus species, Trypanosoma species, (iv) the family-specific detection of Enterobacteriaceae family members, Mycobacteriaceae family Trypanosomatidae family members, (v) the detection of Enterococcus casseliflavus-flavescens-gallinarum Gemella group, Enterococcus, and group, Pseudomonads extended group, Abiotrophia adiacens Plateletcontaminating bacteria group, (vi) the detection of clinically important antimicrobial agents resistance genes listed in Table 5, (vii) the detection of clinically important toxin genes listed in Table 6.

Variants for a given target microbial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Watson et al., 1987, Molecular Biology of the Gene, 4th ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same microbial species may have a single or more nucleotide variation(s) at the oligonucleotide hybridization site. The person skilled in the art is well aware of the existence of variant algal, archaeal, bacterial, fungal or parasitical DNA nucleic acids and/or sequences for a specific gene and that the frequency of sequence variations depends on the selective pressure during evolution on a given gene product. The detection of a variant sequence for a region between two PCR primers may be demonstrated by sequencing the amplification product. In order to show the presence of sequence variants at the primer hybridization site, one has to amplify a larger DNA target with PCR primers outside that hybridization site. Sequencing of this larger fragment will allow the detection of sequence variation at this site. A similar strategy may be applied to show variants at the hybridization site of a probe. Insofar as the divergence of the target nucleic acids and/or sequences or a part thereof does not affect the specificity and ubiquity of the amplification primers or probes, variant microbial DNA is under the scope of this invention. Variants of the selected primers or probes may also be used to amplify or hybridize to a variant DNA.

Sequencing of *tuf* nucleic acids and/or sequences from a variety of archaeal, bacterial, fungal and parasitical species

The nucleotide sequence of a portion of *tuf* nucleic acids and/or sequences was determined for a variety of archaeal, bacterial, fungal and parasitical species. The amplification primers (SEQ ID NOs. 664 and 697), which amplify a *tuf* gene portion of approximately 890 bp, were used along with newly designed sequencing primer pairs (See Annex I for the sequencing primers for *tuf* nucleic acids and/or

sequences). Most primer pairs can amplify different copies of tuf genes (tufA and tufB). This is not surprising since it is known that for several bacterial species these two genes are nearly identical. For example, the entire tufA and tufB genes from E. coli differ at only 13 nucleotide positions (Neidhardtet al., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., American Society for Microbiology Press, Washington, D.C.). Similarly, some fungi are known to have two nearly identical copies of tuf nucleic acids and/or sequences (EF-1α). These amplification primers are degenerated at several nucleotide positions and contain inosines in order to allow the amplification of a wide range of tuf nucleic acids and/or sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The tuf sequencing primers even sometimes amplified highly divergent copies oftuf genes (tufC) as illustrated in the case of some enterococcal species (SEQ ID NOs.: 73, 75, 76, 614 to 618, 621 and 987 to 989). To prove this, we have determined the enterococcal tuf nucleic acids and/or sequences from PCR amplicons cloned into a plasmid vector. Using the sequence data from the cloned amplicons, we designed new sequencing primers specific to the divergent (tufC) copy of enterococci(SEQ ID NOs.: 658-659 and 661) and then sequenced directly the tufC amplicons. The amplification primers (SEQ ID NOs.: 543, 556, 557, 643-645, 660, 664, 694, 696 and 697) could be used to amplify the tuf nucleic acids and/or sequences from any bacterial species. The amplification primers (SEQ ID NOs.: 558, 559, 560, 653, 654, 655, 813, 815, 1974-1984, 1999-2003) could be used to amplify thetuf (EF-1α) genes from any fungal and/or parasitical species. The amplification primers SEQ ID NOs. 1221-1228 could be used to amplify bacterial tuf nucleic acids and/or sequences of the EF-G subdivision (fusA) (Figure 3). The amplification primers SEQ ID NOs. 1224, and 1227-1229 could be used to amplify bacterial tuf nucleic acids and/or sequences comprising the end of EF-G (fusA) and the beginning of EF-Tu (tuf), including the intergenic region, as shown in Figure 3. Most tuf fragments to be sequenced were amplified using the following amplification protocol: One µl of cell suspension (or of purified genomic DNA

0.1-100 ng/ μ l) was transferred directly to 19 μ l of a PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1 μ M of each of the 2 primers, 200 μ M of each of the four dNTPs, 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 min at 94-96 °C followed by 30-45 cycles of 1 min at 95 °C for the denaturation step, 1 min at 50-55 °C for the annealing step and 1 min at 72 °C for the extension step. Subsequently, twenty microliters of the PCR-amplified mixture were resolved by electrophoresis in a 1.5% agarose gel. The amplicons were then visualized by staining with methylene blue (Flores et al., 1992, Biotechniques, 13:203-205). The size of the amplification products was estimated by comparison with a 100-bp molecular weight ladder. The band corresponding to the specific amplification product was excised from the agarose gel and purified using the QIAquickTM gel extraction kit (QIAGEN Inc., Chatsworth, CA). The gel-purified DNA fragment was then used directly in the sequencing protocol. Both strands of the tuf genes amplification product were sequenced by the dideoxynucleotide chain termination sequencing method by using an Applied Biosystems automated DNA sequencer (model 377) with their Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA). The sequencing reactions were performed by using the same amplification primers and 10 ng/100 bp of the gel-purified amplicon per reaction. For the sequencing of long amplicons such as those of eukaryotic tuf (EF-1α) nucleic acids and/or sequences, we designed internal sequencing primers (SEO ID NOs.: 654, 655 and 813) to be able to obtain sequence data on both strands for most of the fragment length. In order to ensure that the determined sequence did not contain errors attributable to the sequencing of PCR artefacts, we have sequenced two preparations of the gel-purified tuf amplification product originating from two independent PCR amplifications. For most target microbial species, the sequences determined for both amplicon preparations were identical. In case of discrepancies, amplicons from a third independent PCR amplification

were sequenced. Furthermore, the sequences of both strands were 100% complementary thereby confirming the high accuracy of the determined sequence. The *tuf* nucleic acids and/or sequences determined using the above strategy are described in the Sequence Listing. Table 7 gives the originating microbial species and the source for each *tuf* sequence in the Sequence Listing.

The alignment of the *tuf* sequences determined by us or selected from databases revealed clearly that the length of the sequenced portion of the *tuf* genes is variable. There may be insertions or deletions of several amino acids. In addition, in several fungi introns were observed. Intron nucleic acids and/or sequences are part of *tuf* nucleic acids and/or sequences and could be useful in the design of species-specific primers and probes. This explains why the size of the sequenced *tuf* amplification products was variable from one fungal species to another. Consequently, the nucleotide positions indicated on top of each of Annexes IV to XX, XXIII to XXXI, XXXVIII and XLII do not correspond for sequences having insertions or deletions.

It should also be noted that the various *tuf* nucleic acids and/or sequences determined by us occasionally contain base ambiguities. These degenerated nucleotides correspond to sequence variations between *tufA* and *tufB* genes (or copies of the EF-G subdivision of *tuf* nucleic acids and/or sequences, or copies of EF-1 α subdivision of *tuf* nucleic acids and/or sequences for fungi and parasites) because the amplification primers amplify both *tuf* genes. These nucleotide variations were not attributable to nucleotide misincorporations by the *Taq* DNA polymerase because the sequence of both strands was identical and also because the sequences determined with both preparations of the gel-purified *tuf* amplicons obtained from two independent PCR amplifications were identical.

The selection of amplification primers from tuf nucleic acids and/or sequences

The tuf sequences determined by us or selected from public databases were used to select PCR primers for universal detection of bacteria, as well as for genus-

specific, species-specific family-specific or group-specific detection and identification. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of various *tuf* sequences. For more details about the selection of PCR primers from *tuf* sequences please refer to Examples 5, 7-14, 17, 22, 24, 28, 30-31, 33, 36, and 38-40, and to Annexes VI-IX, XI-XIX and XXV.

Sequencing of *atpD* and *recA* nucleic acids and/or sequences from a variety of archaeal, bacterial, fungal and parasitical species

The method used to obtain *atpD* and *recA* nucleic acids and/or sequences is similar to that described above for *tuf* nucleic acids and/or sequences.

The selection of amplification primers from atpD or recA nucleic acids and/or sequences

The comparison of the nucleotide sequence for the *atp*D or *rec*A genes from various archaeal, bacterial, fungal and parasitical species allowed the selection of PCR primers (refer to Examples 6, 13, 29, 34 and 37, and to Annexes IV, V, X, and XX).

DNA amplification

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived from proprietary DNA fragments or from database sequences. Prior to synthesis, the potential primer pairs were analyzed by using the OligoTM 5.0 software to verify that they were good candidates for PCR amplification.

During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the heat-denatured target DNA from the microbial

genome are used to amplify exponentially *in vitro* the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing *et al*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Briefly, the PCR protocols were as follows: Treated clinical specimens or standardized bacterial or fungal or parasitical suspensions (see below) or purified genomic DNA from bacteria, fungi or parasites were amplified in a 20 µl PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega) combined with the TagStartTMantibody (Clontech Laboratories Inc., Palo Alto, CA). The TagStartTM antibody, which is a neutralizing monoclonal antibody to Taq DNA polymerase, was added to all PCR reactions to enhance the specificity and the sensitivity of the amplifications (Kellogg et al., 1994, Biotechniques 16:1134-1137). The treatment of the clinical specimens varies with the type of specimen tested, since the composition and the sensitivity level required are different for each specimen type. It consists in a rapid protocol to lyse the microbial cells and eliminate or neutralize PCR inhibitors. For amplification from bacterial or fungal or parasitical cultures or from purified genomic DNA, the samples were added directly to the PCR amplification mixture without any pre-treatment step. An internal control was derived from sequences not found in the target microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. Alternatively, an internal control derived from rRNA was also useful to monitor the efficiency of microbial lysis protocols.

PCR reactions were then subjected to thermal cycling (3 min at 94-96°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 seconds at 50-65°C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc.). The number of cycles performed for the PCR assays varies

according to the sensitivity level required. For example, the sensitivity level required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens because the concentration of microorganisms associated with a septicemia can be much lower than that associated with a urinary tract infection. Consequently, more sensitive PCR assays having more thermal cycles are probably required for direct detection from blood specimens. Similarly, PCR assays performed directly from bacterial or fungal or parasitical cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is normally much lower in clinical specimens than in microbial cultures.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), branched DNA (bDNA), cycling probe technology (CPT), solid phase amplification (SPA), rolling circle amplification technology (RCA), solid phase RCA, anchored SDA and nuclease dependent signal amplification (NDSA) (Lee et al., 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Westin et al., 2000, Nat. Biotechnol. 18:199-204). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other procedure which may be used to increase the sensitivity and/or the rapidity of nucleic acid-based diagnostic tests. The scope of the present invention also covers the use of any nucleic acids amplification and detection technology including real-time or post-amplification detection technologies, any amplification technology combined with detection, any hybridization nucleic acid chips or arrays technologies, any amplification chips or combination of amplification and

hybridization chips technologies. Detection and identification by any sequencing method is also under the scope of the present invention.

Any oligonucleotide suitable for the amplification of nucleic acids by approaches other than PCR or for DNA hybridization which are derived from the species-specific, genus-specific and universal DNA fragments as well as from selected antimicrobial agents resistance or toxin gene sequences included in this document are also under the scope of this invention.

Detection of amplification products

Classically, detection of amplification is performed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after or during amplification. One simple method for monitoring amplified DNA is to measure its rate of formation by measuring the increase in fluorescence of intercalating agents such as ethidium bromide or SYBR® Green I (Molecular Probes). If more specific detection is required, fluorescence-based technologies can monitor the appearance of a specific product during the reaction. The use of dual-labeled fluorogenic probes such as in the TaqManTM system (Applied Biosystems) which utilizes the 5'-3' exonuclease activity of the Taq polymerase is a good example (Livak K.J. et al. 1995, PCR Methods Appl. 4:357-362). TaqManTM can be performed during amplification and this "real-time" detection can be done in a single closed tube hence eliminating post-PCR sample handling and consequently preventing the risk of amplicon carryover. Several other fluorescence-based detection methods can be performed in real-time. Fluorescence resonance energy transfer (FRET) is the principle behind the use of adjacent hybridization probes (Wittwer, C.T. et al. 1997. BioTechniques 22:130-138), molecular beacons (Tyagi S. and Kramer F.R. 1996. Nature Biotechnology 14:303-308) and scorpions (Whitcomb et al. 1999. Nature

Biotechnology 17:804-807). Adjacent hybridization probes are designed to be internal to the amplification primers. The 3' end of one probe is labelled with a donor fluorophore while the 5' end of an adjacent probe is labelled with an acceptor fluorophore. When the two probes are specifically hybridized in closed proximity (spaced by 1 to 5 nucleotides) the donor fluorophore which has been excited by an external light source emits light that is absorbed by a second acceptor that emit more fluorescence and yields a FRET signal. Molecular beacons possess a stem-and-loop structure where the loop is the probe and at the bottom of the stem a fluorescent moiety is at one end while a quenching moiety is at the other end. The beacons undergo a fluorogenic conformational change when they hybridize to their targets hence separating the fluorochrome from its quencher. The FRET principle is also used in an air thermal cycler with a built-in fluorometer (Wittwer, C.T. et al. 1997. BioTechniques 22:130-138). The amplification and detection are extremely rapid as reactions are performed in capillaries: it takes only 18 min to complete 45 cycles. Those techniques are suitable especially in the case where few pathogens are searched for. Boehringer-Roche Inc. sells the LightCyclerTM, and Cepheid makes the SmartCycler. These two apparatus are capable of rapid cycle PCR combined with fluorescent SYBR® Green I or FRET detection. We recently demonstrated in our laboratory, real-time detection of 10 CFU in less than 40 minutes using adjacent hybridization probes on the LightCyclerTM. Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are very rapid, quantitative and can be automated.

Microbial pathogens detection and identification may also be performed by solid support or liquid hybridization using species-specific internal DNA probes hybridizing to an amplification product. Such probes may be generated from any sequence from our repertory and designed to specifically hybridize to DNA amplification products which are objects of the present invention. Alternatively, the internal probes for species or genus or family or group detection and identification may be derived from the amplicons produced by a universal, family-, group-, genus- or species-specific amplification assay(s). The oligonucleotide

probes may be labeled with biotin or with digoxigenin or with any other reporter molecule (for more details see below the section on hybrid capture). Hybrization on a solid support is amendable to miniaturization.

At present the oligonucleotide nucleic acid microarray technology is appealing. Currently, available low to medium density arrays (Heller *et al.*, An integrated microelectronics hybridization system for genomic research and diagnostic applications. *In*: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems '98, Kluwer Academic Publisher, Dordrecht.) could specifically capture fluorescent-labelled amplicons. Detection methods for hybridization are not limited to fluorescence; potentiometry, colorimetry and plasmon resonance are some examples of alternative detection methods. In addition to detection by hybridization, nucleic acid microarrays could be used to perform rapid sequencing by hybridization. Mass spectrometry could also be applicable for rapid identification of the amplicon or even for sequencing of the amplification products (Chiu and Cantor, 1999, Clinical Chemistry **45**:1578; Berkenkamp *et al.*, 1998, Science **281**:260).

For the future of our assay format, we also consider the major challenge of molecular diagnostics tools, *i.e.*: integration of the major steps including sample preparation, genetic amplification, detection, data analysis and presentation (Anderson *et al.*, Advances in integrated genetic analysis. *In*: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems '98, Kluwer Academic Publisher, Dordrecht.).

To ensure PCR efficiency, glycerol, dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of a target DNA having a high GC content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v/v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and $MgCl_2$ are 0.1-1.5 μ M and

1.0-10.0 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods, see Examples.

Hybrid capture and chemiluminescence detection of amplification products

Hybridization and detection of amplicons by chemiluminescence were adapted from Nikiforov *et al.* (1994, PCR Methods and Applications 3:285-291 and 1995, Anal. Biochem. **227**:201-209) and from the DIGTM system protocol of Boehringer Mannheim. Briefly, 50 μl of a 25 picomoles solution of capture probe diluted in EDC {1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride} are immobilized in each well of 96-wells plates (MicroliteTM 2, Dynex) by incubation overnight at room temperature. The next day, the plates are incubated with a solution of 1% BSA diluted into TNTw (10 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.05% TweenTM 20) for 1 hour at 37 °C. The plates are then washed on a Wellwash AscentTM (Labsystems) with TNTw followed by Washing Buffer (100 mM maleic acid pH7.5; 150 mM NaCl; 0.3% TweenTM 20).

The amplicons were labelled with DIG-11-dUTP during PCR using the PCR DIG Labelling Mix from Boehringer Mannheim according to the manufacturer's instructions. Hybridization of the amplicons to the capture probes is performed in triplicate at stringent temperature (generally, probes are designed to allow hybrization at 55 °C, the stringent temperature) for 30 minutes in 1.5 M NaCl; 10 mM EDTA. It is followed by two washes in 2 X SSC; 0.1% SDS, then by four washes in 0.1X SSC; 0.1% SDS at the stringent temperature (55 °C). Detection with 1,2 dioxetane chemiluminescent alkaline phosphatase substrates like CSPD® (Tropix Inc.) is performed according to the manufacturer's instructions but with shorter incubations times and a different antibody concentration. The plates are

agitated at each step, the blocking incubation is performed for only 5 minutes, the anti-DIG-AP1 is used at a 1:1000 dilution, the incubation with antibody lasts 15 minutes, the plates are washed twice for only 5 minutes. Finally, after a 2 minutes incubation into the detection buffer, the plates are incubated 5 minutes with CSPD® at room temperature followed by a 10 minutes incubation at 37 °C without agitation. Luminous signal detection is performed on a Dynex Microtiter Plate Luminometer using RLU (Relative Light Units).

Specificity, ubiquity and sensitivity tests for oligonucleotide primers and probes

The specificity of oligonucleotide primers and probes was tested by amplification of DNA or by hybridization with bacterial or fungal or parasitical species selected from a panel comprising closely related species and species sharing the same anatomo-pathological site (see Annexes and Examples). All of the bacterial, fungal and parasitical species tested were likely to be pathogens associated with infections or potential contaminants which can be isolated from clinical specimens. Each target DNA could be released from microbial cells using standard chemical and/or physical treatments to lyse the cells (Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or alternatively, genomic DNA purified with the GNOMETM DNA kit (Bio101, Vista, CA) was used. Subsequently, the DNA was subjected to amplification with the primer pairs. Specific primers or probes amplified only the target microbial species, genus, family or group.

Oligonucleotides primers found to amplify specifically the target species, genus, family or group were subsequently tested for their ubiquity by amplification (i.e. ubiquitous primers amplified efficiently most or all isolates of the target species or genus or family or group). Finally, the sensitivity of the primers or probes was determined by using 10-fold or 2-fold dilutions of purified genomic DNA from the targeted microorganism. For most assays, sensitivity levels in the

46

range of 1-100 copies were obtained. The specificity, ubiquity and sensitivity of the PCR assays using the selected amplification primer pairs were tested either directly from cultures of microbial species or from purified microbial genomic DNA.

Probes were tested in hybrid capture assays as described above. An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus or family or group from which it was selected. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes detected efficiently most or all isolates of the target species or genus or family or group) by hybridization to microbial DNAs from different clinical isolates of the species or genus or family or group of interest including ATCC reference strains. Similarly, oligonucleotide primers and probes could be derived from antimicrobial agents resistance or toxin genes which are objects of the present invention.

Reference strains

The reference strains used to build proprietary *tuf*, *atpD* and *recA* sequence data subrepertories, as well as to test the amplification and hybridization assays were obtained from (i) the American Type Culture Collection (ATCC), (ii) the Laboratoire de santé publique du Québec (LSPQ), (iii) the Centers for Disease Control and Prevention (CDC), (iv) the National Culture Type Collection (NCTC) and (v) several other reference laboratories throughout the world. The identity of our reference strains was confirmed by phenotypic testing and reconfirmed by analysis of *tuf*, *atpD* and *recA* sequences (see Example 13).

Antimicrobial agents resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of

microbial resistance. Our goal is to provide clinicians, in approximately one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal algal, archaeal, bacterial, fungal or parasitical detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians also need timely information about the ability of the microbial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly microbial resistance to antimicrobials is to detect directly from the clinical specimens the most common and clinically important antimicrobial agents resistance genes (i.e. DNA-based tests for the specific detection of antimicrobial agents resistance genes). Since the sequence from the most important and common antimicrobial agents resistance genes are available from public databases, our strategy is to use the sequence from a portion or from the entire resistance gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of sensitive and rapid DNA-based tests. The list of each of the antimicrobial agents resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in Table 5; descriptions of the designed amplification primers and internal probes are given in Annexes XXXIV-XXXVII, XXXIX, XLV, and L-LI. Our approach is unique because the antimicrobial agents resistance genes detection and the microbial detection and identification can be performed simultaneously, or independently, or sequentially in multiplex or parallel or sequential assays under uniform PCR amplification conditions. These amplifications can also be done separately.

Toxin genes

Toxin identification is often very important to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a

specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians sometimes need timely information about the ability of certain bacterial pathogens to produce toxins. Since the sequence from the most important and common bacterial toxin genes are available from public databases, our strategy is to use the sequence from a portion or from the entire toxin gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of sensitive and rapid DNAbased tests. The list of each of the bacterial toxin genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in Table 6; descriptions of the designed amplification primers and internal probes are given in Annexes XXII, XXXII and XXXIII. Our approach is unique because the toxin genes detection and the bacterial detection and identification can be performed simultaneously, or independently, or sequentially, in multiplex or parallel or assays under uniform PCR amplification conditions. sequential amplifications can also be done separately.

Universal bacterial detection

In the routine microbiology laboratory, a high percentage of clinical specimens sent for bacterial identification are negative by culture. Testing clinical samples with universal amplification primers or universal probes to detect the presence of bacteria prior to specific identification and screening out the numerous negative specimens is thus useful as it reduces costs and may rapidly orient the clinical management of the patients. Several amplification primers and probes were therefore synthesized from highly conserved portions of bacterial sequences from the *tuf*, *atpD* and *recA* nucleic acids and/or sequences. The universal primers selection was based on a multiple sequence alignment constructed with sequences from our repertory.

All computer analysis of amino acid and nucleotide sequences were performed by using the GCG programs. Subsequently, optimal PCR primers for

the universal amplification of bacteria were selected with the help of the Oligo™ program. The selected primers are degenerated at several nucleotide positions and contain several inosines in order to allow the amplification of all clinically relevant bacterial species. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Degenerated oligonucleotides consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches. The inclusion of inosine and/or of base ambiguities in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY).

The amplification conditions with the universal primers are very similar to those used for the species- and genus-specific amplification assays except that the annealing temperature is slightly lower. The original universal PCR assay described in our assigned WO98/20157 (SEQ ID NOs. 23-24 of the latter application) was specific and nearly ubiquitous for the detection of bacteria. The specificity for bacteria was verified by amplifying genomic DNA isolated from the 12 fungal species as well as genomic DNA from Leishmania donovani, Saccharomyces cerevisiae and human lymphocytes. None of the above eukaryotic DNA preparations could be amplified by the universal assay, thereby suggesting that this test is specific for bacteria. The ubiquity of the universal assay was verified by amplifying genomic DNAs from 116 reference strains which represent 95 of the most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Table 4. We found that at least 104 of these strains could be amplified. However, the assay could be improved since bacterial species which could not be amplified with the original tuf nucleic acids and/or sequences-based assay included species belonging to the following genera: Corynebacterium (11 species) and Stenotrophomonas (1 species). Sequencing of the tuf genes from these bacterial species and others has been performed in the scope of the present invention in order to improve the universal assay. This

sequencing data has been used to select new universal primers which may be more ubiquitous and more sensitive. Also, we improved our primer and probes design strategy by taking into consideration the phylogeny observed in analysing our repertory of tuf, atpD and recA sequences. Data from each of the 3 main subrepertories (tuf, atpD and recA) was subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group, inc.). This analysis indicated the main branches or phyla reflecting the relationships between sequences. Instead of trying to design primers or probes able to hybridize to all phyla, we designed primers or probes able to hybridize to the main phyla while trying to use the largest phylum possible. This strategy should allow less degenerated primers hence improving sensitivity and by combining primers in a mutiplex assay, improve ubiquity. Universal primers SEQ ID NOs. 643-645 based on tuf sequences have been designed to amplify most pathogenic bacteria except Actinomyceteae, Clostridiaceae and the Cytophaga, Flexibacter and Bacteroides phylum (pathogenic bacteria of this phylum include mostly Bacteroides, Porphyromonas and Prevotella species). Primers to fill these gaps have been designed for Actinomyceteae (SEQ ID NOs. 646-648), Clostridiaceae (SEQ ID NOs. 796-797, 808-811), and the Cytophaga, Flexibacter and Bacteroides phylum (SEQ ID NOs. 649-651), also derived from tuf nucleic acids and/or sequences. These primers sets could be used alone or in conjuction to render the universal assay more ubiquitous.

Universal primers derived from *atpD* sequences include SEQ ID NOs. 562-565. Combination of these primers does not amplify human DNA but should amplify almost all pathogenic bacterial species except proteobacteria belonging to the epsilon subdivision (*Campylobacter* and *Helicobacter*), the bacteria from the *Cytophaga*, *Flexibacter* and *Bacteroides* group and some actinomycetes and corynebacteria. By analysing *atpD* sequences from the latter species, primers and probes to specifically fill these gaps could be designed and used in conjuction with primers SEQ ID NOs. 562-565, also derived from *atpD* nucleic acids and/or sequences.

In addition, universality of the assay could be expanded by mixing atpD sequences-derived primers with tuf sequences-derived primers. Ultimately, even recA sequences-derived primers could be added to fill some gaps in the universal assay.

It is important to note that the 95 bacterial species selected to test the ubiquity of the universal assay include all of the most clinically relevant bacterial species associated with a variety of human infections acquired in the community or in hospitals (nosocomial infections). The most clinically important bacterial and fungal pathogens are listed in Tables 1 and 2.

Amino acid sequences derived from tuf, atpD and recA nucleic acids and/or sequences

The amino acid sequences translated from the repertory of tuf, atpD and recA nucleic acids and/or sequences are also an object of the present invention. The amino acid sequence data will be particularly useful for homology modeling of three-dimensional (3D) structure of the elongation factor Tu, elongation factor G, elongation factor 1a, ATPase subunit beta and RecA recombinase. For all these proteins, at least one structure model has been published using X-ray diffraction data from crystals. Based on those structural informations it is possible to use computer sofware to build 3D model structures for any other protein having peptide sequence homologies with the known structure (Greer, 1991, Methods in Enzymology, 202:239-252; Taylor, 1994, Trends Biotechnol., 12(5):154-158; Sali, 1995, Curr. Opin. Biotechnol. 6:437-451; Sanchez and Sali, 1997, Curr. Opin. Struct. Biol. 7:206-214; Fischer and Eisenberg, 1999, Curr. Opin. Struct. Biol. 9:208-211; Guex et al., 1999, Trends Biochem. Sci. 24: 364-367). Model structures of target proteins are used for the design or to predict the behavior of ligands and inhibitors such as antibiotics. Since EF-Tu and EF-G are already known as antibiotic targets (see above) and since the beta subunit of ATPase and RecA recombinase are essential to the survival of the microbial cells in natural

conditions of infection, all four proteins could be considered antibiotic targets. Sequence data, especially the new data generated by us could be very useful to assist the creation of new antibiotic molecules with desired spectrum of activity. In addition, model structures could be used to improve protein function for commercial purposes such as improving antibiotic production by microbial strains or increasing biomass.

53

The following detailed embodiments and appended drawings are provided as illustrative examples of his invention, with no intention to limit the scope thereof.

DESCRIPTION OF THE DRAWINGS

Figures 1 and 2 illustrate the principal subdivisions of the tuf and atpD sequences repertories, respectively. For the design of primers and probes, depending on the needs, one may want to use the complete data set illustrated on the top of the pyramid or use only a subset illustrated by the different branching points. Smaller subdivisions, representing groups, families, genus and species, could even be made to extend to the bottom of the pyramid. Because the tuf and atpD sequences are highly conserved and evolved with each species, the design of primers and probes does not need to include all the sequences within the database or its subdivisions. As illustrated in Annexes IV to XX, XXIII to XXXI, XXXVIII and XLII, depending on the use, sequences from a limited number of species can be carefully selected to represent: i) only the main phylogenetic branches from which the intended probes and primers need to be differentiating, and ii) only the species for which they need to be matching. However, for ubiquity purposes, and especially for primers and probes identifying large groups of species (genus, family, group or universal, or sequencing primers), the more data is included into the sequence analysis, the better the probes and primers will be suitable for each particular intended use. Similarly, for specificity purposes, a larger data set (or repertory) ensures optimal primers and probes design by reducing the chance of employing nonspecific oligonucleotides.

Figure 3 illustrates the approach used to design specific amplification primers from fusA as well as from the region between the end of fusA and the beginning of tuf in the streptomycin (str) operon (referred to as the fusA-tuf intergenic spacer in Table 7).

Figures 4 to 6 are illustrations to Example 42, whereas Figures 7 to 10 illustrate Example 43. Figures 11 and 12 illustrate Example 44.

FIGURE LEGENDS

Figure 3. Schematic organization of universal amplification primers (SEQ ID NOs. 1221-1229) in the *str* operon. Amplicon sizes are given in bases pairs. Drawing not to scale, as the *fusA-tuf* intergenic spacer size varies depending on the bacterial species. Indicated amplicon lengths are for *E. coli*.

Figure 4. Abridged multiple amino acid sequence alignment of the partial tuf gene products from selected species illustrated using the program Alscript. Residues highly conserved in bacteria are boxed in grey and gaps are represented with dots. Residues in reverse print are unique to the enterococcal tufB as well as to streptococcal and lactococcal tuf gene products. Numbering is based on E. coli EF-Tu and secondary structure elements of E. coli EF-Tu are represented by cylinders (α -helices) and arrows (β -strands).

Figure 5. Distance matrix tree of bacterial EF-Tu based on amino acid sequence homology. The tree was constructed by the neighbor-joining method. The tree was rooted using archeal and eukaryotic EF- 1α genes as the outgroup. The scale bar represents 5% changes in amino acid sequence, as determined by taking the sum of all of the horizontal lines connecting two species.

Figure 6. Southern hybridization of *BglII/XbaI* digested genomic DNAs of some enterococci (except for *E. casseliflavus* and *E. gallinarum* whose genomic DNA was digested with *BamHI/PvuII*) using the *tufA* gene fragment of *E. faecium* as probes. The sizes of hybridizing fragments are shown in kilobases. Strains tested are listed in Table 16.

Figure 7. Pantoea and Tatumella species specific signature indel in atpD genes. The nucleotide positions given are for E. coli atpD sequence (GenBank accession no. V00267). Numbering starts from the first base of the initiation codon.

Figure 8: Trees based on sequence data from *tuf* (left side) and *atpD* (right side). The phylogenetic analysis was performed using the Neighbor-Joining method calculated using the Kimura two-parameter method. The value on each branch indicates the occurrence (%) of the branching order in 750 bootstrapped trees.

Figure 9: Phylogenetic tree of members of the family *Enterobacteriaceae* based on tuf (a), atpD (b), and 16S rDNA (c) genes. Trees were generated by neighborjoining method calculated using the Kimura two-parameter method. The value on each branch is the percentage of bootstrap replications supporting the branch. 750 bootstrap replications were calculated.

Figure 10: Plot of *tuf* distances versus 16S rDNA distances (a), *atpD* distances versus 16S rDNA distances (b), and *atpD* distances versus *tuf* distances (c). Symbols: \bigcirc , distances between pairs of strains belonging to the same species; \bigcirc , distances between *E. coli* strains and *Shigella* strains; \square , distances between pairs belonging to the same genus; \square , distances between pairs belonging to different genera; \triangle , distances between pairs belonging to different families.

EXAMPLES AND ANNEXES

For sake of clarity, here is a list of Examples and Annexes:

Example 1: Sequencing of bacterial atpD (F-type and V-type) gene fragments.

Example 2: Sequencing of eukaryotic atpD (F-type and V-type) gene fragments.

Example 3: Sequencing of eukaryotic *tuf* (EF-1) gene fragments.

Example 4: Sequencing of eukaryotic *tuf* (organelle origin, M) gene fragments.

- Example 5: Specific detection and identification of *Streptococcus agalactiae* using *tuf* sequences.
- Example 6: Specific detection and identification of *Streptococcus agalactiae* using *atpD* sequences.
- Example 7: Development of a PCR assay for detection and identification of staphylococci at genus and species levels.
- Example 8: Differentiating between the two closely related yeast species Candida albicans and Candida dubliniensis.
- Example 9: Specific detection and identification of *Entamoeba histolytica*.
- Example 10: Sensitive detection and identification of *Chlamydia trachomatis*.
- Example 11: Genus-specific detection and identification of enterococci.
- Example 12: Detection and identification of the major bacterial platelets contaminants using *tuf* sequences with a multiplex PCR test.
- Example 13: The resolving power of the *tuf* and *atpD* sequences databases is comparable to the biochemical methods for bacterial identification.
- Example 14: Detection of group B streptococci from clinical specimens.
- Example 15: Simultaneous detection and identification of *Streptococcus* pyogenes and its pyrogenic exotoxin A.
- Example 16: Real-time detection and identification of Shiga toxin-producing bacteria.
- Example 17: Development of a PCR assay for the detection and identification of staphylococci at genus and species levels and its associated *mecA* gene.
- Example 18: Sequencing of pbp1a, pbp2b and pbp2x genes of Streptoccoccus pneumoniae.
- Example 19: Sequencing of hexA genes of Streptococcus species.
- Example 20: Development of a multiplex PCR assay for the detection of Streptococcus pneumoniae and its penicillin resistance genes.

Example 21: Sequencing of the vancomycin resistance *vanA*, *vanC1*, *vanC2* and *vanC3* genes.

- Example 22: Development of a PCR assay for the detection and identification of enterococci at genus and species levels and its associated resistance genes *vanA* and *vanB*.
- Example 23: Development of a multiplex PCR assay for detection and identification of vancomycin-resistant Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus casseliflavus, and Enterococcus flavescens.
- Example 24: Universal amplification involving the EF-G (*fusA*) subdivision of *tuf* sequences.
- Example 25: DNA fragment isolation from *Staphylococcus saprophyticus* by arbitrarily primed PCR.
- Example 26: Sequencing of prokaryotic tuf gene fragments.
- Example 27: Sequencing of procaryotic recA gene fragments.
- Example 28: Specific detection and identification of *Escherichia coli/Shigella* sp. using *tuf* sequences.
- Example 29: Specific detection and identification of *Klebsiella pneumoniae* using *atpD* sequences.
- Example 30: Specific detection and identification of *Acinetobacter baumanii* using *tuf* sequences.
- Example 31: Specific detection and identification of *Neisseria gonorrhoeae* using *tuf* sequences.
- Example 32: Sequencing of bacterial gyrA and parC gene fragments.
- Example 33: Development of a PCR assay for the specific detection and identification of *Staphylococcus aureus* and its quinolone resistance genes *gyrA* and *parC*.
- Example 34: Development of a PCR assay for the detection and identification of Klebsiella pneumoniae and its quinolone resistance genes gyrA and parC.

Example 35: Development of a PCR assay for the detection and identification of Streptococcus pneumoniae and its quinolone resistance genes gyrA and parC.

- Example 36: Detection of extended-spectrum TEM-type β-lactamases in Escherichia coli.
- Example 37: Detection of extended-spectrum SHV-type β-lactamases in Klebsiella pneumoniae.
- Example 38: Development of a PCR assay for the detection and identification of Neisseria gonorrhoeae and its associated tetracycline resistance gene tetM.
- Example 39: Development of a PCR assay for the detection and identification of Shigella sp. and their associated trimethoprim resistance gene dhfrla.
- Example 40: Development of a PCR assay for the detection and identification of Acinetobacter baumanii and its associated aminoglycoside resistance gene aph(3')-VIa.
- Example 41: Specific detection and identification of *Bacteroides fragilis* using *atpD* (V-type) sequences.
- Example 42: Evidence for horizontal gene transfer in the evolution of the elongation factor Tu in Enterococci.
- Example 43: Elongation factor Tu (tuf) and the F-ATPase beta-subunit (atpD) as phylogenetic tools for species of the family Enterobacteriaceae.
- Example 44: Testing new pairs of PCR primers selected from two species-specific genomic DNA fragments which are objects of US patent 6,001,564.
- Example 45: Testing modified versions of PCR primers derived from the sequence of several primers which are objects of US patent 6,001,564.

The various Annexes show the strategies used for the selection of a variety of DNA amplification primers, nucleic acid hybridization probes and molecular beacon internal probes:

- (i) Annex I shows the amplification primers used for nucleic acid amplification from *tuf* sequences.
- (ii) Annex II shows the amplification primers used for nucleic acid amplification from *atpD* sequences.
- (iii) Annex III shows the internal hybridization probes for detection of *tuf* sequences.
- (iv) Annex IV illustrates the strategy used for the selection of the amplification primers specific for *atpD* sequences of the F-type.
- (v) Annex V illustrates the strategy used for the selection of the amplification primers specific for *atpD* sequences of the V-type.
- (vi) Annex VI illustrates the strategy used for the selection of the amplification primers specific for the *tuf* sequences of organelle lineage (M, the letter M is used to indicate that in most cases, the organelle is the mitochondria).
- (vii) Annex VII illustrates the strategy used for the selection of the amplification primers specific for the *tuf* sequences of eukaryotes (EF-1).
- (viii) Annex VIII illustrates the strategy for the selection of *Streptococcus* agalactiae-specific amplification primers from tuf sequences.
- (ix) Annex IX illustrates the strategy for the selection of *Streptococcus* agalactiae-specific hybridization probes from tuf sequences.
- (x) Annex X illustrates the strategy for the selection of *Streptococcus* agalactiae-specific amplification primers from atpD sequences.
- (xi) Annex XI illustrates the strategy for the selection from *tuf* sequences of *Candida albicans/dubliniensis*-specific amplification primers, *Candida albicans*-specific hybridization probe and *Candida dubliniensis*-specific hybridization probe.

(xii) Annex XII illustrates the strategy for the selection of *Staphylococcus*-specific amplification primers from *tuf* sequences.

- (xiii) Annex XIII illustrates the strategy for the selection of the *Staphylococcus*-specific hybridization probe from *tuf* sequences.
- (xiv) Annex XIV illustrates the strategy for the selection of *Staphylococcus* saprophyticus-specific and *Staphylococcus* haemolyticus-specific hybridization probes from tuf sequences.
- (xv) Annex XV illustrates the strategy for the selection of *Staphylococcus* aureus-specific and *Staphylococcus* epidermidis-specific hybridization probes from tuf sequences.
- (xvi) Annex XVI illustrates the strategy for the selection of the *Staphylococcus* hominis-specific hybridization probe from *tuf* sequences.
- (xvii) Annex XVII illustrates the strategy for the selection of the *Enterococcus*-specific amplification primers from *tuf* sequences.
- (xviii) Annex XVIII illustrates the strategy for the selection of the Enterococcus faecalis-specific hybridization probe, of the Enterococcus faecium-specific hybridization probe and of the Enterococcus casseliflavus-flavescens-gallinarum group-specific hybridization probe from tuf sequences.
- (xix) Annex XIX illustrates the strategy for the selection of primers from *tuf* sequences for the identification of platelets contaminants.
- (xx) Annex XX illustrates the strategy for the selection of the universal amplification primers from *atpD* sequences.
- (xxi) Annex XXI shows the amplification primers used for nucleic acid amplification from recA sequences.
- (xxii) Annex XXII shows the specific and ubiquitous primers for nucleic acid amplification from *speA* sequences.
- (xxiii) Annex XXIII illustrates the first strategy for the selection of Streptococcus pyogenes-specific amplification primers from speA sequences.

(xxiv) Annex XXIV illustrates the second strategy for the selection of Streptococcus pyogenes-specific amplification primers from speA sequences.

- (xxv) Annex XXV illustrates the strategy for the selection of *Streptococcus* pyogenes-specific amplification primers from tuf sequences.
- (xxvi) Annex XXVI illustrates the strategy for the selection of stx_1 -specific amplification primers and hybridization probe.
- (xxvii) Annex XXVII illustrates the strategy for the selection of stx_2 -specific amplification primers and hybridization probe.
- (xxviii) Annex XXVIII illustrates the strategy for the selection of vanA-specific amplification primers from van sequences.
- (xxix) Annex XXIX illustrates the strategy for the selection of *vanB*-specific amplification primers from *van* sequences.
- (xxx) Annex XXX illustrates the strategy for the selection of *vanC*-specific amplification primers from *vanC* sequences.
- (xxxi) Annex XXXI illustrates the strategy for the selection of *Streptococcus* pneumoniae-specific amplification primers and hybridization probes from pbp1a sequences.
- (xxxii) Annex XXXII shows the specific and ubiquitous primers for nucleic acid amplification from toxin gene sequences.
- (xxxiii) Annex XXXIII shows the molecular beacon internal hybridization probes for specific detection of toxin sequences.
- (xxxiv) Annex XXXIV shows the specific and ubiquitous primers for nucleic acid amplification from *van* sequences.
- (xxxv) Annex XXXV shows the internal hybridization probes for specific detection of *van* sequences.
- (xxxvi) Annex XXXVI shows the specific and ubiquitous primers for nucleic acid amplification from *pbp* sequences.
- (xxxvii) Annex XXXVII shows the internal hybridization probes for specific detection of *pbp* sequences.

(xxxviii)Annex XXXVIII illustrates the strategy for the selection of *vanAB*-specific amplification primers and *vanA*- and *vanB*-specific hybridization probes from *van* sequences.

- (xxxix) Annex XXXIX shows the internal hybridization probe for specific detection of *mecA*.
- (xl) Annex XL shows the specific and ubiquitous primers for nucleic acid amplification from *hexA* sequences.
- (xli) Annex XLI shows the internal hybridization probe for specific detection of *hexA*.
- (xlii) Annex XLII illustrates the strategy for the selection of *Streptococcus* pneumoniae species-specific amplification primers and hybridization probe from hexA sequences.
- (xliii) Annex XLIII shows the specific and ubiquitous primers for nucleic acid amplification from *pcp* sequences.
- (xliv) Annex XLIV shows specific and ubiquitous primers for nucleic acid amplification of S. saprophyticus sequences of unknown coding potential.
- (xlv) Annex XLV shows the molecular beacon internal hybridization probes for specific detection of antimicrobial agents resistance gene sequences.
- (xlvi) Annex XLVI shows the molecular beacon internal hybridization probe for specific detection of *S. aureus* gene sequences of unknown coding potential.
- (xlvii) Annex XLVII shows the molecular beacon hybridization internal probe for specific detection of *tuf* sequences.
- (xlviii) Annex XLVIII shows the molecular beacon internal hybridization probes for specific detection of *ddl* and *mtl* sequences.
- (xlix) Annex XLIX shows the internal hybridization probe for specific detection of S. aureus sequences of unknown coding potential.
- (1) Annex L shows the amplification primers used for nucleic acid amplification from antimicrobial agents resistance genes sequences.

(li) Annex LI shows the internal hybridization probes for specific detection of antimicrobial agents resistance genes sequences.

- (lii) Annex LII shows the molecular beacon internal hybridization probes for specific detection of *atpD* sequences.
- (liii) Annex LIII shows the internal hybridization probes for specific detection of *atpD* sequences.
- (liv) Annex LIVI shows the internal hybridization probes for specific detection of *ddl* and *mtl* sequences.

As shown in these Annexes, the selected amplification primers may contain inosines and/or base ambiguities. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Alternatively, degenerated oligonucleotides which consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches were used. The inclusion of inosine and/or of degeneracies in the amplification primers allows mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).

EXAMPLES

EXAMPLE 1:

Sequencing of bacterial *atpD* (F-type and V-type) gene fragments. As shown in Annex IV, the comparison of publicly available *atpD* (F-type) sequences from a variety of bacterial species revealed conserved regions allowing the design of PCR primers able to amplify *atpD* sequences (F-type) from a wide range of bacterial species. Using primers pairs SEQ ID NOs. 566 and 567, 566 and 814, 568 and 567, 570 and 567, 572 and 567, 569 and 567, 571 and 567, 700 and 567, it was possible to amplify and sequence *atpD* sequences SEQ ID NOs. 242-270, 272-398, 673-

WO 01/23604 PCT/CA00/01150 674, 737-767, 866-867, 942-955, 1245-1254, 1256-1265, 1527, 1576, 1577, 1600-1604, 1640-1646, 1649, 1652, 1655, 1657, 1659-1660, 1671, 1844-1845, and 1849-1865.

Similarly, Annex V shows the strategy to design the PCR primers able to amplify atpD sequences of the V-type from a wide range of archaeal and bacterial species. Using primers SEQ ID NOs. 681-683, it was possible to amplify and sequence atpD sequences SEQ ID NOs. 827-832, 929-931, 958 and 966. As the gene was difficult to amplify for several species, additional amplification primers were designed inside the original amplicon (SEQ ID NOs. 1203-1207) in order to obtain sequence information for these species. Other primers (SEQ ID NO. 1212, 1213, 2282-2285) were also designed to amplify regions of the atpD gene (V-type) in archaebacteria.

EXAMPLE 2:

Sequencing of eukaryotic *atpD* (F-type and V-type) gene fragments. The comparison of publicly available *atpD* (F-type) sequences from a variety of fungal and parasitical species revealed conserved regions allowing the design of PCR primers able to amplify *atpD* sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NOs. 568 and 573, 574 and 573, 574 and 708, and 566 and 567, it was possible to amplify and sequence *atpD* sequences SEQ ID NOs. 458-497, 530-538, 663, 667, 676, 678-680, 768-778, 856-862, 889-896, 941, 1638-1639, 1647, 1650-1651, 1653-1654, 1656, 1658, 1684, 1846-1848, and 2189-2192.

In the same manner, the primers described in Annex V (SEQ ID NOs. 681-683) could amplify the *atpD* (V-type) gene from various fungal and parasitical species. This strategy allowed to obtain SEQ ID NOs. 834-839, 956-957, and 959-965.

EXAMPLE 3:

Sequencing of eukaryotic tuf (EF-1) gene fragments. As shown in Annex VII, the comparison of publicly available tuf (EF-1) sequences from a variety of fungal and parasitical species revealed conserved regions allowing the design of PCR primers able to amplify tuf sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NOs. 558 and 559, 813 and 559, 558 and 815, 560 and 559, 653 and 559, 558 and 655, and 654 and 559, 1999 and 2000, 2001 and 2003, 2002 and 2003, it was possible to amplify and sequence tuf sequences SEQ ID NOs. 399-457, 509-529, 622-624, 677, 779-790, 840-842, 865, 897-903, 1266-1287, 1561-1571 and 1685.

EXAMPLE 4:

Sequencing of eukaryotic *tuf* (organelle origin, M) gene fragments. As shown in Annex VI, the comparison of publicly available *tuf* (organelle origin, M) sequences from a variety of fungal and parasitical organelles revealed conserved regions allowing the design of PCR primers able to amplify *tuf* sequences of several organelles belonging to a wide range fungal and parasitical species. Using primers pairs SEQ ID NOs. 664 and 652, 664 and 561, 911 and 914, 912 and 914, 913 and 915, 916 and 561, 664 and 917, it was possible to amplify and sequence *tuf* sequences SEQ ID NOs. 498-508, 791-792, 843-855, 904-910, 1664, 1666-1667, 1669-1670, 1673-1683, 1686-1689, 1874-1876, 1879, 1956-1960, and 2193-2199.

EXAMPLE 5:

Specific detection and identification of Streptococcus agalactiae using tuf sequences. As shown in Annex VIII, the comparison of tuf sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The strategy used to design the PCR primers was based on the analysis

of a multiple sequence alignment of various tuf sequences. The multiple sequence alignment includes the tuf sequences of four bacterial strains from the target species as well as tuf sequences from other species and bacterial genera, especially representatives of closely related species. A careful analysis of this alignment allowed the selection of oligonucleotide sequences which are conserved within the target species but which discriminate sequences from other species and genera, especially from the closely related species, thereby permitting the species-specific, ubiquitous and sensitive detection and identification of the target bacterial species.

The chosen primer pair, oligos SEQ ID NO. 549 and SEQ ID NO. 550, gives an amplification product of 252 bp. Standard PCR was carried out using 0.4 μ M of each primer, 2.5 mM MgCl₂, BSA 0.05 mM, 1X Taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 0,5 U *Taq* DNA polymerase (Promega) coupled with TaqStartTM antibody (Clontech Laboratories Inc., Palo Alto), 1 μ l of genomic DNA sample in a final volume of 20 μ l using a PTC-200 thermocycler (MJ Research Inc.). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 62 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide.

Specificity of the assay was tested by adding into the PCR reactions, 0.1 ng of genomic DNA from each of the bacterial species listed in Table 8. Efficient amplification was observed only for the 5 S. agalactiae strains listed. Of the other bacterial species, including 32 species representative of the vaginal flora and 27 other streptococcal species, only S. acidominimus yielded amplification. The signal with 0.1 ng of S. acidominimus genomic DNA was weak and the detection limit for this species was 10 pg (corresponding to more than 4000 genome copies) while the detection limit for S. agalactiae was 2.5 fg (corresponding to one genome copy) of genomic DNA.

To increase the specificity of the assay, internal probes were designed for FRET (Fluorescence Resonance Energy Transfer) detection using the LightCycler™ (Idaho Technology). As illustrated in Annex IX, a multiple sequence alignment of streptococcal *tuf* sequence fragments corresponding to the 252 bp region amplified by primers SEQ ID NO. 549 and SEQ ID NO. 550, was used for the design of internal probes TSagHF436 (SEQ ID NO. 582) and TSagHF465 (SEQ ID NO. 583). The region of the amplicon selected for internal probes contained sequences unique and specific to *S. agalactiae*. SEQ ID NO. 583, the more specific probe, is labelled with fluorescein in 3', while SEQ ID NO. 582, the less discriminant probe, is labelled with CY5 in 5' and blocked in 3' with a phosphate group. However, since the FRET signal is only emitted if both probes are adjacently hybridized on the same target amplicon, detection is highly specific.

Real-time detection of PCR products using the LightCyclerTM was carried out using 0.4 μ M of each primer (SEQ ID NO. 549-550), 0.2 μ M of each probe (SEQ ID NO. 582-583), 2.5 mM MgCl₂, BSA 450 μg/ml, 1X PC2 Buffer (AB Peptides, St-Louis, MO), dNTP 0.2 mM (Pharmacia), 0.5 U KlenTaq1TM DNA polymerase (AB Peptides) coupled with TagStartTM antibody (Clontech Laboratories Inc., Palo Alto), 0.7 μ l of genomic DNA sample in a final volume of 7 μ l using a LightCycler thermocycler (Idaho Technology). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 94 °C for initial denaturation, then forty cycles of three steps consisting of 0 second (this setting meaning the LightCycler will reach the target temperature and stay at it for its minimal amount of time) at 94 °C, 10 seconds at 64 °C, 20 seconds at 72 °C. Amplification was monitored during each annealing steps using the fluorescence ratio. The streptococcal species having close sequence homologies with the tuf sequence of S. agalactiae (S. acidominimus, S. anginosus, S. bovis, S. dysgalactiae, S. equi, S. ferus, S. gordonii, S. intermedius, S. parasanguis, S. parauberis, S. salivarius, S. sanguis, S. suis) as well as S. agalactiae were tested in the

LightCycler with 0.07 ng of genomic DNA per reaction. Only *S. agalactiae* yielded an amplification signal, hence demonstrating that the assay is species-specific. With the LightCyclerTM assay using the internal FRET probes, the detection limit for *S. agalactiae* was 1-2 genome copies of genomic DNA.

EXAMPLE 6:

Specific detection and identification of Streptococcus agalactiae using atpD sequences. As shown in Annex X, the comparison of atpD sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The primer design strategy is similar to the strategy described in the preceding Example except that atpD sequences were used in the alignment.

Four primers were selected, ASag42 (SEQ ID NO. 627), ASag52 (SEQ ID NO. 628), ASag206 (SEQ ID NO. 625) and ASag371 (SEQ ID NO. 626). The following combinations of these four primers give four amplicons; SEQ ID NO. 627 + SEQ ID NO. 625 = 190 bp, SEQ ID NO. 628 + SEQ ID NO. 625 = 180 bp, SEQ ID NO. 627 + SEQ ID NO. 626 = 355 bp, and SEQ ID NO. 628 + SEQ ID NO. 626 = 345 bp.

Standard PCR was carried out on PTC-200 thermocyclers (MJ Research Inc) using 0.4 μM of each primers pair, 2.5 mM MgCl₂, BSA 0.05 mM, 1X taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 0.5 U Taq DNA polymerase (Promega) coupled with TaqStartTM antibody (Clontech Laboratories Inc., Palo Alto), 1 μl of genomic DNA sample in a final volume of 20 μL. The optimal cycling conditions for maximum sensitivity and specificity were adjusted for each primer pair. Three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at the optimal annealing temperature specified below were followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing

 $0.25 \mu g/ml$ of ethidium bromide. Since *atpD* sequences are relatively more specific than *tuf* sequences, only the most closely related species namely, the steptococcal species listed in Table 9, were tested.

All four primer pairs only amplified the six *S. agalactiae* strains. With an annealing temperature of 63 °C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 625 had a sensitivity of 1-5 fg (equivalent to 1-2 genome copies). At 55 °C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 625 had a sensitivity of 2.5 fg (equivalent to 1 genome copy). At 60 °C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 626 had a sensitivity of 10 fg (equivalent to 4 genome copies). At 58 °C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 626 had a sensitivity of 2.5-5 fg (equivalent to 1-2 genome copies). This proves that all four primer pairs can detect *S. agalactiae* with high specificity and sensitivity. Together with Example 5, this example demonstrates that both *tuf* and *atpD* sequences are suitable and flexible targets for the identification of microorganisms at the species level. The fact that 4 different primer pairs based on *atpD* sequences led to efficient and specific amplification of *S. agalactiae* demonstrates that the challenge is to find target genes suitable for diagnostic purposes, rather than finding primer pairs from these target sequences.

EXAMPLE 7:

Development of a PCR assay for detection and identification of staphylococci at genus and species levels.

Materials and Methods

Bacterial strains. The specificity of the PCR assay was verified by using a panel of ATCC (America Type Culture Collection) and DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; German Collection of

Microorganisms and Cell Cultures) reference strains consisting of 33 gramnegative and 47 gram-positive bacterial species (Table 12). In addition, 295 clinical isolates representing 11 different species of staphylococci from the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL) (Ste-Foy, Québec, Canada) were also tested to further validate the *Staphylococcus*-specific PCR assay. These strains were all identified by using (i) conventional methods or (ii) the automated MicroScan Autoscan-4 system equipped with the Positive BP Combo Panel Type 6 (Dade Diagnostics, Mississauga, Ontario, Canada). Bacterial strains from frozen stocks kept at -80 °C in brain heart infusion (BHI) broth containing 10% glycerol were cultured on sheep blood agar or in BHI broth (Quelab Laboratories Inc, Montréal, Québec, Canada).

PCR primers and internal probes. Based on multiple sequence alignments, regions of the *tuf* gene unique to staphylococci were identified. *Staphylococcus*-specific PCR primers TStaG422 (SEQ ID NO. 553) and TStaG765 (SEQ ID NO. 575) were derived from these regions (Annex XII). These PCR primers are displaced by two nucleotide positions compared to original *Staphylococcus*-specific PCR primers described in our patent publication WO98/20157 (SEQ ID NOs. 17 and 20 in the said patent publication). These modifications were done to ensure specificity and ubiquity of the primer pair, in the light of new *tuf* sequence data revealed in the present patent application for several additional staphylococcal species and strains.

Similarly, sequence alignment analysis were performed to design genus and species-specific internal probes (see Annexes XIII to XVI). Two internal probes specific for *Staphylococcus* (SEQ ID NOs. 605-606), five specific for *S. aureus* (SEQ ID NOs. 584-588), five specific for *S. epidermidis* (SEQ ID NO. 589-593), two specific for *S. haemolyticus* (SEQ ID NOs. 594-595), three specific for *S. hominis* (SEQ ID NOs. 596-598), four specific for *S. saprophyticus* (SEQ ID NOs. 599-601 and 695), and two specific for coagulase-negative *Staphylococcus* species including

S. epidermidis, S. hominis, S. saprophyticus, S. auricularis, S. capitis, S. haemolyticus, S. lugdunensis, S. simulans, S. cohnii and S. warneri (SEQ ID NOs. 1175-1176) were designed. The range of mismatches between the Staphylococcusspecific 371-bp amplicon and each of the 20-mer species-specific internal probes was from 1 to 5, in the middle of the probe when possible. No mismatches were present in the two Staphylococcus-specific probes for the 11 species analyzed: S. aureus, S. auricularis, S. capitis, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. simulans and S. warneri. In order to verify the intra-specific sequence conservation of the nucleotide sequence, sequences were obtained for the 371-bp amplicon from five unrelated ATCC and clinical strains for each of the species S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus. The OligoTM (version 5.0) primer analysis software (National Biosciences, Plymouth, Minn.) was used to confirm the absence of selfcomplementary regions within and between the primers or probes. When required, the primers contained inosines or degenerated nucleotides at one or more variable positions. Oligonucleotide primers and probes were synthesized on a model 394 DNA synthesizer (Applied Biosystems, Mississauga, Ontario, Canada). Detection of the hybridization was performed with the DIG-labeled dUTP incorporated during amplification with the Staphylococcus-specific PCR assay, and the hybridization signal was detected with a luminometer (Dynex Technologies) as described above in the section on luminescent detection of amplification products. Annexes XIII to XVI illustrate the strategy for the selection of several internal probes.

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA or from a bacterial suspension whose turbidity was adjusted to that of a 0.5 McFarland standard, which corresponds to approximately 1.5 x 10⁸ bacteria per ml. One nanogram of genomic DNA or 1 µl of the standardized bacterial suspension was transferred directly to a 19 µl PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM

MgCl₂, 0.2 μ M (each) of the two *Staphylococcus* genus-specific primers (SEQ ID NOs. 553 and 575), 200 μ M (each) of the four deoxynucleoside triphosphates (Pharmacia Biotech), 3.3 μ g/ μ l bovine serum albumin (BSA) (Sigma-Aldrich Canada Ltd, Oakville, Ontario, Canada), and 0.5 U *Taq* polymerase (Promega) coupled with *Taq*StartTM Antibody (Clontech). The PCR amplification was performed as follows: 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, plus a terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide. Visualization of the PCR products was made under UV at 254 nm.

For determination of the sensitivities of the PCR assays, two-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

Results

Amplifications with the Staphylococcus genus-specific PCR assay. The specificity of the assay was assessed by performing 30-cycle and 40-cycle PCR amplifications with the panel of gram-positive (47 species from 8 genera) and gramnegative (33 species from 22 genera) bacterial species listed in Table 12. The PCR assay was able to detect efficiently 27 of 27 staphylococcal species tested in both 30-cycle and 40-cycle regimens. For 30-cycle PCR, all bacterial species tested other than staphylococci were negative. For 40-cycle PCR, Enterococcus faecalis and Macrococcus caseolyticus were slightly positive for the Staphylococcus-specific PCR assay. The other species tested remained negative. Ubiquity tests performed on a collection of 295 clinical isolates provided by the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL), including Staphylococcus aureus (n=34), S. auricularis (n=2), S. capitis (n=19), S. cohnii (n=5), S. epidermidis (n=18), S. haemolyticus

(n=21), S. hominis (n=73), S. lugdunensis (n=17), S. saprophyticus (n=6), S. simulans (n=3), S. warneri (n=32) and Staphylococcus sp. (n=65), showed a uniform amplification signal with the 30-cycle PCR assays and a perfect relation between the genotype and classical identification schemes.

The sensitivity of the *Staphylococcus*-specific assay with 30-cycle and 40-cycle PCR protocols was determined by using purified genomic DNA from the 11 staphylococcal species previously mentioned. For PCR with 30 cycles, a detection limit of 50 copies of genomic DNA was consistently obtained. In order to enhance the sensitivity of the assay, the number of cycles was increased. For 40-cycle PCR assays, the detection limit was lowered to a range of 5-10 genome copies, depending on the staphylococcal species tested.

Hybridization between the Staphylococcus-specific 371-bp amplicon and species-specific or genus-specific internal probes. Inter-species polymorphism was sufficient to generate species-specific internal probes for each of the principal species involved in human diseases (S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus). In order to verify the intra-species sequence conservation of the nucleotide sequence, sequence comparisons were performed on the 371-bp amplicon from five unrelated ATCC and clinical strains for each of the 5 principal staphylococcal species: S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus. Results showed a high level of conservation of nucleotide sequence between different unrelated strains from the same species. This sequence information allowed the development of staphylococcal species identification assays using species-specific internal probes hybridizing to the 371bp amplicon. These assays are specific and ubiquitous for those five staphylococcal species. In addition to the species-specific internal probes, the genus-specific internals probes were able to recognize all or most Staphylococcus species tested.

EXAMPLE 8:

Differentiating between the two closely related yeast species Candida albicans and Candida dubliniensis. It is often useful for the clinician to be able to differentiate between two very closely related species of microorganisms. Candida albicans is the most important cause of invasive human mycose. In recent years, a very closely related species, Candida dubliniensis, was isolated in immunosuppressed patients. These two species are difficult to distinguish by classic biochemical methods. This example demonstrates the use of tuf sequences to differentiate Candida albicans and Candida dubliniensis. PCR primers SEQ ID NOs. 11-12, from previous patent publication WO98/20157, were selected for their ability to specifically amplify a tuf (elongation factor 1 alpha type) fragment from both species (see Annex XI for primer positions). Within this tuf fragment, a region differentiating C. albicans and C. dubliniensis by two nucleotides was selected and used to design two internal probes (see Annex XI for probe design, SEQ ID NOs. 577 and 578) specific for each species. Amplification of genomic DNA from C. albicans and C. dubliniensis was carried out using DIG-11-dUTP as described above in the section on chemiluminescent detection of amplification products. Internal probes SEQ ID NOs. 577 and 578 were immobilized on the bottom of individual microtiter plates and hybridization was carried out as described above in the above section on chemiluminescent detection of amplification products. Luminometer data showed that the amplicon from C. albicans hybridized only to probe SEQ ID NO. 577 while the amplicon from C. dubliniensis hybridized only to probe SEQ ID NO. 578, thereby demonstrating that each probe was species-specific.

EXAMPLE 9:

Specific identification of *Entamoeba histolytica*. Upon analysis of *tuf* (elongation factor 1 alpha) sequence data, it was possible to find four regions where

Entamoeba histolytica sequences remained conserved while other parasitical and eukaryotic species have diverged. Primers TEntG38 (SEQ ID NO. 703), TEntG442 (SEQ ID NO. 704), TEntG534 (SEQ ID NO. 705), and TEntG768 (SEQ ID NO. 706) were designed so that SEQ ID NO. 703 could be paired with the three other primers. On PTC-200 thermocyclers (MJ Research), the cycling conditions for initial sensitivity and specificity testing were 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μg/ml of ethidium bromide. The three primer pairs could detect the equivalent of less than 200 E. histolytica genome copies. Specificity was tested using 0.5 ng of purified genomic DNA from a panel of microorganisms including Babesia bovis, Babesia microtti, Candida albicans, Crithidia fasciculata, Leishmania major, Leishmania hertigi and Neospora caninum. Only E. histolytica DNA could be amplified, thereby suggesting that the assay was species-specific.

EXAMPLE 10:

Sensitive identification of *Chlamydia trachomatis*. Upon analysis of *tuf* sequence data, it was possible to find two regions where *Chlamydia trachomatis* sequences remained conserved while other species have diverged. Primers Ctr82 (SEQ ID NO. 554) and Ctr249 (SEQ ID NO. 555) were designed. With the PTC-200 thermocyclers (MJ Research), the optimal cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 60 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μg/ml of ethidium bromide. The assay could detect the equivalent of 8 *C. trachomatis* genome copies. Specificity was tested with 0.1 ng of purified genomic DNA from a panel of microorganisms including 22 species commonly encountered

in the vaginal flora (Bacillus subtilis, Bacteroides fragilis, Candida albicans, Clostridium difficile, Corynebacterium cervicis, Corynebacterium urealyticum, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Fusobacterium nucleatum, Gardnerella vaginalis, Haemophilus influenzae, Klebsiella oxytoca, Lactobacillus acidophilus, Peptococcus niger, Peptostreptococcus prevotii, Porphyromonas asaccharolytica, Prevotella melaninogenica, Propionibacterium acnes, Staphylococcus aureus, Streptococcus acidominimus, and Streptococcus agalactiae). Only C. trachomatis DNA could be amplified, thereby suggesting that the assay was species-specific.

EXAMPLE 11:

Genus-specific detection and identification of enterococci. Upon analysis of tuf sequence data and comparison with the repertory of tuf sequences, it was possible to find two regions where Enterococcus sequences remained conserved while other genera have diverged (Annex XVII). Primer pair Encg313dF and Encg599c (SEQ ID NOs. 1137 and 1136) was tested for its specificity by using purified genomic DNA from a panel of bacteria listed in Table 10. Using the PTC-200 thermocycler (MJ Research), the optimal cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide. Visualization of the PCR products was made under UV at 254 nm. The 18 enterococcal species listed in Table 10 were all amplified efficiently. The only other species amplified were Abiotrophia adiacens, Gemella haemolysans and Gemella morbillorum, three gram-positive species. Sensitivity tested with several strains of E. casseliflavus, E. faecium, E. faecalis, E. flavescens and E. gallinarum and with one strain of each other Enterococcus species listed in Table 10 ranged from 1 to 10 copies of genomic DNA. The sequence variation

within the 308-bp amplicon was sufficient so that internal probes could be used to speciate the amplicon and differenciate enterococci from Abiotrophia adiacens, Gemella haemolysans and Gemella morbillorum, thereby allowing to achieve excellent specificity. Species-specific internal probes were generated for each of the clinically important species, E. faecalis (SEQ ID NO. 1174), E. faecium (SEQ ID NO. 602), and the group including E. casseliflavus, E. flavescens and E. gallinarum (SEQ ID NO. 1122) (Annex XVIII). The species-specific internal probes were able to differentiate their respective Enterococcus species from all other Enterococcus species. These assays are sensitive, specific and ubiquitous for those five Enterococcus species.

EXAMPLE 12:

Identification of the major bacterial platelets contaminants using tuf sequences with a multiplex PCR test. Blood platelets preparations need to be monitored for bacterial contaminations. The tuf sequences of 17 important bacterial contaminants of platelets were aligned. As shown in Annex XIX, analysis of these sequences allowed the design of PCR primers. Since in the case of contamination of platelet concentrates, detecting all species (not just the more frequently encountered ones) is desirable, perfect specificity of primers was not an issue in the design. However, sensitivity is important. That is why, to avoid having to put too much degeneracy, only the most frequent contaminants were included in primer design, knowing that the selected primers would anyway be able to amplify more species than the 17 used in the design because they target highly conserved regions of tuf sequences. Oligonucleotide sequences which are conserved in these 17 major bacterial contaminants of platelet concentrates were chosen (oligos Tplaq 769 and Tplaq 991, respectively SEQ ID NOs. 636 and 637) thereby permitting the detection of these bacterial species. However, sensitivity was slightly deficient with staphylococci. To ensure maximal sensitivity in the detection of all the more frequent bacterial contaminants, a multiplex assay also including oligonucleotide

primers targetting the *Staphylococcus* genera (oligos Stag 422, SEQ ID NO. 553; and Stag 765, SEQ ID NO. 575) was developed. The bacterial species detected with the assay are listed in Table 14.

The primer pairs, oligos SEQ ID NO. 636 and SEQ ID NO. 637 that give an amplification product of 245 pb, and oligos SEQ ID NO. 553 and SEQ ID NO. 575 that give an amplification product of 368 pb, were used simultaneously in the multiplex PCR assay. Detection of these PCR products was made on the LightCycler thermocycler (Idaho Technology) using SYBR® Green I (Molecular Probe Inc.). SYBR® Green I is a fluorescent dye that binds specifically to double-stranded DNA.

Fluorogenic detection of PCR products with the LightCycler was carried out using $1.0~\mu\text{M}$ of both Tplaq primers (SEQ ID NOs. 636-637) and $0.4~\mu\text{M}$ of both TStaG primers (SEQ ID NOs. 553 and 575), 2.5 mM MgCl₂, BSA 7.5 μ M , dNTP 0.2 mM (Pharmacia), 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.5 U Taq DNA polymerase (Boerhinger Mannheim) coupled with TagStartTM antibody (Clontech), and 0.07 ng of genomic DNA sample in a final volume of 7 μ l. The optimal cycling conditions for maximum sensitivity and specificity were 1 minute at 94 °C for initial denaturation, then forty-five cycles of three steps consisting of 0 second at 95 °C, 5 seconds at 60 °C and 9 seconds at 72 °C. Amplification was monitored during each elongation cycle by measuring the level of SYBR® Green I. However, real analysis takes place after PCR. Melting curves are done for each sample and transformation of the melting peak allows determination of Tm. Thus primer-dimer and specific PCR product are discriminated. With this assay, all prominent bacterial contaminants of platelet concentrates listed in Annex XIX and Table 14 were detected. Sensitivity tests were performed on the 9 most frequent bacterial contaminants of platelets. The detection limit was less than 20 genome copies for E. cloacae, B. cereus, S. choleraesuis and S. marcescens; less than 15 genome copies for P. aeruginosa; and 2 to 3 copies were detected for S. aureus, S.

epidermidis, E. coli and K. pneumoniae. Further refinements of assay conditions should increase sensitivity levels.

EXAMPLE 13:

The resolving power of the tuf and atpD sequences databases is comparable to the biochemical methods for bacterial identification. The present gold standard for bacterial identification is mainly based on key morphological traits and batteries of biochemical tests. Here we demonstrate that the use of tuf and atpD sequences combined with simple phylogenetic analysis of databases formed by these sequences is comparable to the gold standard. In the process of acquiring data for the tuf sequences, we sequenced the tuf gene of a strain that was given to us labelled as Staphylococcus hominis ATCC 35982. That tuf sequence (SEQ ID NO. 192) was incorporated into the tuf sequences database and subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group). This analysis indicated that SEQ ID NO. 192 is not associated with other S. hominis strains but rather with the S. warneri strains. The ATCC 35982 strain was sent to the reference laboratory of the Laboratoire de santé publique du Québec (LSPQ). They used the classic identification scheme for staphylococci (Kloos and Schleifer, 1975., J. Clin. Microbiol. 1:82-88). Their results shown that although the colonial morphology could correspond to S. hominis, the more precise biochemical assays did not. These assays included discriminant mannitol, mannose and ribose acidification tests as well as rapid and dense growth in deep thioglycolate agar. The LSPQ report identified strain ATCC 35982 as S. warneri which confirms our database analysis. The same thing happened for S. warneri (SEQ ID NO. 187) which had initially been identified as S. haemolyticus by a routine clinical laboratory using a low resolving power automated system (MicroScan, AutoScan-4TM). Again, the tuf and LSPQ analysis agreed on its identification as S. warneri. In numerous other instances, in the course of acquiring tuf and atpD sequence data from various species and genera,

analysis of our *tuf* and/or *atpD* sequence databases permitted the exact identification of mislabelled or erroneously identified strains. These results clearly demonstrate the usefulness and the high resolving power of our sequence-based identification assays using the *tuf* and *atpD* sequences databases.

EXAMPLE 14:

Detection of group B streptococci from clinical specimens.

Introduction

Streptococcus agalactiae, the group B streptococcus (GBS), is responsible for a severe illness affecting neonate infants. The bacterium is passed from the healthy carrier mother to the baby during delivery. To prevent this infection, it is recommended to treat expectant mothers susceptible of carrying GBS in their vaginal/anal flora. Carrier status is often a transient condition and rigorous monitoring requires cultures and classic bacterial identification weeks before delivery. To improve the detection and identification of GBS we developed a rapid, specific and sensitive PCR test fast enough to be performed right at delivery.

Materials and Methods

GBS clinical specimens. A total of 66 duplicate vaginal/anal swabs were collected from 41 consenting pregnant women admitted for delivery at the Centre Hospitalier Universitaire de Québec, Pavillon Saint-François d'Assise following the CDC recommendations. The samples were obtained either before or after rupture of membranes. The swab samples were tested at the Centre de Recherche en Infectiologie de l'Université Laval within 24 hours of collection. Upon receipt, one swab was cut and then the tip of the swab was added to GNS selective broth for identification of group B streptococci (GBS) by the standard culture methods

recommended by the CDC. The other swab was processed following the instruction of the IDI DNA extraction kit (Infectio Diagnotics (IDI) Inc.) prior to PCR amplification.

Oligonucleotides. PCR primers, Tsag340 (SEQ ID NO. 549) and Tsag552 (SEQ ID NO. 550) complementary to the regions of the *tuf* gene unique for GBS were designed based upon a multiple sequence alignment using our repertory of *tuf* sequences. Oligo primer analysis software (version 5.0) (National Biosciences) was used to analyse primers annealing temperature, secondary structure potential as well as mispriming and dimerization potential. The primers were synthesized using a model 391 DNA synthesizer (Applied Biosystems).

A pair of fluorescently labeled adjacent hybridization probes Sag465-F (SEQ ID NO. 583) and Sag436-C (SEQ ID NO. 582) were synthesized and purified by Operon Technologies. They were designed to meet the recommendations of the manufacturer (Idaho Technology) and based upon multiple sequence alignment analysis using our repertory of *tuf* sequences to be specific and ubiquitous for GBS. These adjacent probes, which are separated by one nucleotide, allow fluorescence resonance energy transfer (FRET), generating an increased fluorescence signal when both hybridized simultaneously to their target sequences. The probe SEQ ID NO. 583 was labeled with FITC in 3 prime while SEQ ID NO. 582 was labeled with Cy5 in 5 prime. The Cy5-labeled probes contained a 3'-blocking phosphate group to prevent extension of the probes during the PCR reactions.

PCR amplification. Conventional amplifications were performed either from 2 μ l of a purified genomic DNA preparation or cell lysates of vaginal/anal specimens. The 20 μ l PCR mixture contained 0.4 μ M of each GBS-specific primer (SEQ ID NOs. 549-550), 200 μ M of each deoxyribonucleotide (Pharmacia Biotech), 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2.5 mM MgCl₂, 3.3 mg/ml bovine serum albumin (BSA) (Sigma), and 0.5 U of Taq polymerase (Promega) combined with the TaqStartTM antibody (Clontech). The TaqStartTM antibody, which is a neutralizing monoclonal antibody of Taq DNA

polymerase, was added to all PCR reactions to enhance the efficiency of the amplification. The PCR mixtures were subjected to thermal cycling (3 min at 95 °C and then 40 cycles of 1 s at 95 °C, and 30 s at 62 °C with a 2-min final extension at 72 °C) with a PTC-200 DNA Engine thermocycler (MJ research). The PCR-amplified reaction mixture was resolved by agarose gel electrophoresis.

The LightCyclerTM PCR amplifications were performed with 1 μ l of a purified genomic DNA preparation or cell lysates of vaginal/anal specimens. The 10µl amplification mixture consisted of 0.4 µM each GBS-specific primer (SEQ ID NOs. 549-550), 200 μM each dNTP, 0.2 μM each fluorescently labeled probe (SEO ID NOs. 582-583), 300 μ g/ml BSA (Sigma), and 1 μ l of 10x PC2 buffer (containing 50 mM Tris-HCl (pH 9.1), 16 mM ammonium sulfate, 3.5 mM Mg²⁺, and 150 µg/ml BSA) and 0.5 U KlenTaq1TM (AB Peptides) coupled with TaqStartTM antibody (Clontech). KlenTaq1TM is a highly active and more heatstable DNA polymerase without 5'-exonuclease activity. This prevents hydrolysis of hybridized probes by the 5' to 3' exonuclease activity. A volume of 7 μ l of the PCR mixture was transferred into a composite capillary tube (Idaho Technology). The tubes were then centrifuged to move the reaction mixture to the tips of the capillaries and then cleaned with optical-grade methanol. Subsequently the capillaries were loaded into the carousel of a LC32 LightCyclerTM (Idaho Technology), an instrument that combines rapid-cycle PCR with fluorescence analysis for continuous monitoring during amplification. The PCR reaction mixtures were subjected to a denaturation step at 94 °C for 3 min followed by 45 cycles of 0 s at 94 °C, 20 s at 64 °C and 10 s at 72 °C with a temperature transition rate of 20 °C/s. Fluorescence signals were obtained at each cycle by sequentially positioning each capillary on the carousel at the focus of optical elements affiliated to the built-in fluorimeter for 100 milliseconds. Complete amplification and analysis required about 35 min.

Specificity and sensitivity tests. The specificity of the conventional and LightCyclerTM PCR assays was verified by using purified genomic DNA (0.1 ng/reaction) from a battery of ATCC reference strains representing 35 clinically

gram-positive species (Abiotrophia defectiva relevant ATCC 49176, Bifidobacterium breve ATCC 15700, Clostridium difficile ATCC 9689, Corynebacterium urealyticum ATCC 43042, Enterococcus casseliflavus ATCC 25788, Enterococcus durans ATCC 19432, Enterococcus faecalis ATCC 29212, Enterococcus faecium ATCC 19434, Enterococcus gallinarum ATCC 49573, Enterococcus raffinosus ATCC 49427, Lactobacillus reuteri ATCC 23273. Lactococcus lactis ATCC 19435, Listeria monocytogenes ATCC 15313, Peptococcus niger ATCC 27731, Peptostreptococcus anaerobius ATCC 27337, Peptostreptococcus prevotii ATCC 9321, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Staphylococcus haemolyticus ATCC 29970, Staphylococcus saprophyticus ATCC 15305, Streptococcus agalactiae ATCC 27591, Streptococcus anginosus ATCC 33397, Streptococcus bovis ATCC 33317, Streptococcus constellatus ATCC 27823, Streptococcus dysgalactiae ATCC 43078, Streptococcus gordonii ATCC 10558, Streptococcus mitis ATCC 33399, Streptococcus mutans ATCC 25175, Streptococcus oralis ATCC 35037, Streptococcus parauberis ATCC 6631, Streptococcus pneumoniae ATCC 6303, Streptococcus pyogenes ATCC 19615, Streptococcus salivarius ATCC 7073, Streptococcus sanguinis ATCC 10556, Streptococcus uberis ATCC 19436). These microbial species included 15 species of streptococci and many members of the normal vaginal and anal floras. In addition, 40 GBS isolates of human origin, whose identification was confirmed by a latex agglutination test (Streptex, Murex), were also used to evaluate the ubiquity of the assay.

For determination of the sensitivities (i.e., the minimal number of genome copies that could be detected) for conventional and LightCyclerTM PCR assays, serial 10-fold or 2-fold dilutions of purified genomic DNA from 5 GBS ATCC strains were used.

Results

Evaluation of the GBS-specific conventional and LightCyclerTM PCR assays. The specificity of the two assays demonstrated that only DNAs from GBS

strains could be amplified. Both PCR assays did not amplify DNAs from any other bacterial species tested including 14 streptococcal species other than GBS as well as phylogenetically related species belonging to the genera *Enterococcus*, *Peptostreptococcus* and *Lactococcus*. Important members of the vaginal or anal flora, including coagulase-negative staphylococci, *Lactobacillus* sp., and *Bacteriodes* sp. were also negative with the GBS-specific PCR assay. The LightCyclerTM PCR assays detected only GBS DNA by producing an increased fluorescence signal which was interpreted as a positive PCR result. Both PCR methods were able to amplify all of 40 GBS clinical isolates, showing a perfect correlation with the phenotypic identification methods.

The sensitivity of the assay was determined by using purified genomic DNA from the 5 ATCC strains of GBS. The detection limit for all of these 5 strains was one genome copy of GBS. The detection limit of the assay with the LightCyclerTM was 3.5 fg of genomic DNA (corresponding to 1-2 genome copies of GBS). These results confirmed the high sensitivity of our GBS-specific PCR assay.

Direct Detection of GBS from vaginal/anal specimens. Among 66 vaginal/anal specimens tested, 11 were positive for GBS by both culture and PCR. There was one sample positive by culture only. The sensitivity of both PCR methods with vaginal/anal specimens for identifying colonization status in pregnant women at delivery was 91.7% when compared to culture results. The specificity and positive predictive values were both 100% and the negative predictive value was 97.8%. The time for obtaining results was approximately 45 min for LightCyclerTM PCR, approximately 100 min for conventional PCR and 48 hours for culture.

Conclusion

We have developed two PCR assays (conventional and LightCyclerTM) for the detection of GBS, which are specific (i.e., no amplification of DNA from a variety of bacterial species other than GBS) and sensitive (i.e., able to detect around 1

genome copy for several reference ATCC strains of GBS). Both PCR assays are able to detect GBS directly from vaginal/anal specimens in a very short turnaround time. Using the real-time PCR assay on LightCyclerTM, we can detect GBS carriage in pregnant women at delivery within 45 minutes.

EXAMPLE 15:

Simultaneous detection and identification of Streptococcus pyogenes and its pyrogenic exotoxin A. The rapid detection of Streptococcus pyogenes and of its pyrogenic exotoxin A is of clinical importance. We developed a multiplex assay which permits the detection of strains of S. pyogenes carrying the pyrogenic toxin A gene, which is associated with scarlet fever and other pathologies. In order to specifically detect S. pyogenes, nucleotide sequences of the pyrrolidone carboxylyl peptidase (pcp) gene were aligned to design PCR primers Spy291 (SEQ ID NO. 1211) and Spy473 (SEQ ID NO. 1210). Next, we designed primers for the specific detection of the pyrogenic exotoxin A. Nucleotide sequences of the speA gene, carried on the bacteriophage T12, were aligned as shown in Annex XXIII to design PCR primers Spytx814 (SEQ ID NO. 994) and Spytx 927 (SEQ ID NO. 995).

The primer pairs: oligos SEQ ID NOs. 1210-1211, yielding an amplification product of 207 bp, and oligos SEQ ID NOs. 994-995, yielding an amplification product of 135 bp, were used in a multiplex PCR assay.

PCR amplification was carried out using 0.4 μ M of both pairs of primers, 2.5 mM MgCl₂, BSA 0.05 μ M , dNTP 0.2 μ M (Pharmacia), 10mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.5 U *Taq* DNA polymerase (Promega) coupled with TaqStartTM antibody (Clontech Laboratories Inc.), and 1 μ l of genomic DNA sample in a final volume of 20 μ l. PCR amplification was performed using a PTC-200 thermal cycler (MJ Research). The optimal cycling conditions for maximum specificity and sensitivity were 3 minutes at 94 °C for

initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 63 °C, followed by a final step of 2 minutes at 72 °C. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide. Visualization of the PCR products was made under UV at 254 nm.

The detection limit was less than 5 genome copies for both *S. pyogenes* and its pyrogenic exotoxin A. The assay was specific for pyrogenic exotoxin A-producing *S. pyogenes*: strains of the 27 other species of *Streptococcus* tested, as well as 20 strains of various gram-positive and gram-negative bacterial species were all negative.

A similar approach was used to design an alternative set of *speA*-specific primers (SEQ ID NOs. 996 to 998, see Annex XXIV). In addition, another set of primers based on the *tuf* gene (SEQ ID NOs. 999 to 1001, see Annex XXV) could be used to specifically detect *Streptococcus pyogenes*.

EXAMPLE 16:

Real-time detection and identification of Shiga toxin-producing bacteria. Shiga toxin-producing Escherichia coli and Shigella dysenteriae cause bloody diarrhea. Currently, identification relies mainly on the phenotypic identification of S. dysenteriae and E. coli serotype O157:H7. However, other serotypes of E. coli are increasingly found to be producers of type 1 and/or type 2 Shiga toxins. Two pairs of PCR primers targeting highly conserved regions present in each of the Shiga toxin genes stx_1 and stx_2 were designed to amplify all variants of those genes (see Annexes XXVI and XXVII). The first primer pair, oligonucleotides 1SLT224 (SEQ ID NO. 1081) and 1SLT385 (SEQ ID NO. 1080), yields an amplification product of 186 bp from the stx_1 gene. For this amplicon, the 1SLTB1-Fam (SEQ ID NO. 1084) molecular beacon was designed for the specific detection of stx_1

using the fluorescent label 6-carboxy-fluorescein. The 1SltS1-FAM (SEQ ID NO. 2012) molecular scorpion was also designed as an alternate way for the specific detection of stx_1 . A second pair of PCR primers, oligonucleotides 2SLT537 (SEQ ID NO. 1078) and 2SLT678b (SEQ ID NO. 1079), yields an amplification product of 160 bp from the stx_2 gene. Molecular beacon 2SLTB1-Tet (SEQ ID NO. 1085) was designed for the specific detection of stx_2 using the fluorescent label 5-tetrachloro-fluorescein. Both primer pairs were combined in a multiplex PCR assay.

PCR amplification was carried out using 0.8 μM of primer pair SEQ ID NOs. 1080-1081, 0.5 μM of primer pair SEQ ID NOs. 1078-1079, 0.3 μM of each molecular beacon, 8 mM MgCl₂, 490 μg/mL BSA, 0.2 mM dNTPs (Pharmacia), 50 mM Tris-HCl, 16 mM NH₄SO₄, 1X TaqMaster (Eppendorf), 2.5 U KlenTaq1 DNA polymerase (AB Peptides) coupled with TaqStartTM antibody (Clontech Laboratories Inc.), and 1 μl of genomic DNA sample in a final volume of 25 μl. PCR amplification was performed using a SmartCycler thermal cycler (Cepheid). The optimal cycling conditions for maximum sensitivity and specificity were 60 seconds at 95 °C for initial denaturation, then 45 cycles of three steps consisting of 10 seconds at 95 °C, 15 seconds at 56 °C and 5 seconds at 72 °C. Detection of the PCR products was made in real-time by measuring the fluorescent signal emitted by the molecular beacon when it hybridizes to its target at the end of the annealing step at 56 °C.

The detection limit was the equivalent of less than 5 genome copies. The assay was specific for the detection of both toxins, as demonstrated by the perfect correlation between PCR results and the phenotypic characterization performed using antibodies specific for each Shiga toxin type. The assay was successfully performed on several Shiga toxin-producing strains isolated from various geographic areas of the world, including 10 O157:H7 *E. coli*, 5 non-O157:H7 *E. coli* and 4 *S. dysenteriae*.

EXAMPLE 17:

Development of a PCR assay for the detection and identification of staphylococci at genus and species levels and its associated mecA gene. The Staphylococcusspecific PCR primers described in Example 7 (SEQ ID NOs. 553 and 575) were used in multiplex with the mecA-specific PCR primers and the S. aureus-specific primers described in our assigned US patent no. 5,994,066 (SEQ ID NOs. 261 and 262 for mecA and SEQ ID NOs. 152 and 153 for S.aureus in the said patent). Sequence alignment analysis of 10 publicly available mecA gene sequences allowed to design an internal probe specific to mecA (SEQ ID NO. 1177). An internal probe was also designed for the S. aureus-specific amplicon (SEQ ID NO 1234). PCR amplification and agarose gel electrophoresis of the amplified products were performed as described in Example 7, with the exception that 0.4 μ M (each) of the two Staphylococcus-specific primers (SEQ ID NOs. 553 and 575) and 0.4 μM (each) of the mecA-specific primers and 0.4 μM (each) of the S. aureusspecific primers were used in the PCR mixture. The specificity of the multiplex assay with 40-cycle PCR protocols was verified by using purified genomic DNA from five methicillin-resistant and fifteen methicillin-sensitive staphylococcal strains. The sensitivity of the multiplex assay with 40-cycle PCR protocols was determined by using purified genomic DNA from twenty-three methicillinresistant and twenty-eight methicillin-sensitive staphylococcal strains. The detection limit was 2 to 10 genome copies of genomic DNA, depending on the staphylococcal species tested. Furthermore, the mecA-specific internal probe, the S. aureus-specific internal probe and the coagulase-negative staphylococci-specific internal probe (described in Example 7) were able to recognize twenty-three methicillin-resistant staphylococcal strains and twenty-eight methicillin-sensitive staphylococcal strains with high sensitivity and specificity.

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1232 for detection of the S. aureus-specific amplicon, SEQ ID NO. 1233 for detection of coagulase-negative staphylococci and SEQ ID NO. 1231 for detection of mecA.

Alternatively, a multiplex PCR assay containing the Staphylococcus-specific PCR primers described in Example 7 (SEQ ID NOs. 553 and 575) and the mecAspecific PCR primers described in our assigned US patent no. 5,994,066 (SEQ ID NOs. 261 and 262 in the said patent) were developed. PCR amplification and agarose gel electrophoresis of the amplified products were performed as described in Example 7, with the exception that 0.4 μ M (each) of the Staphylococcus-specific primers (SEQ ID NOs. 553 and 575) and 0.4 µM (each) of the mecA-specific primers described in our assigned US patent no. 5,994,066 (SEQ ID NOs. 261 and 262 in the said patent) were used in the PCR mixture. The sensitivity of the multiplex assay with 40-cycle PCR protocols was determined by using purified genomic DNA from two methicillin-resistant and five methicillin-sensitive staphylococcal strains. The detection limit was 2 to 5 copies of genomic DNA, depending on the staphylococcal species tested. The specificity of the multiplex PCR assay coupled with capture-probe hybridization was tested with two strains of methicillin-resistant S. aureus, two strains of methicillin-sensitive S. aureus and seven strains of methicillin-sensitive coagulase-negative staphylococci. The mecAspecific internal probe (SEQ ID NO. 1177) and the S. aureus-specific internal probe (SEQ ID NO. 587) described in Example 7 were able to recognize all the strains with high specificity showing a perfect correlation with susceptibility to methicillin. The sensitivity of the PCR assay coupled with capture-probe hybridization was tested with one strain of methicillin-resistant S. aureus. The detection limit was around 10 copies of genomic DNA.

EXAMPLE 18:

Sequencing of pbp1a, pbp2b and pbp2x genes of Streptoccoccus pneumoniae. Penicillin resistance in Streptococcus pneumoniae involves the sequential alteration of up to five penicillin-binding proteins (PBPs) 1A, 1B, 2A, 2X and 2B in such a way that their affinity is greatly reduce toward the antibiotic molecule. The altered PBP genes have arisen as the result of interspecies recombination events from related streptococcal species. Among the PBPs usually found in S. pneumoniae, PBPs 1A, 2B, and 2X play the most important role in the development of penicillin resistance. Alterations in PBP 2B and 2X mediate low-level resistance to penicillin while additional alterations in PBP 1A plays a significant role in full penicillin resistance.

In order to generate a database for pbp sequences that can be used for design of primers and/or probes for the specific and ubiquitous detection of β-lactam resistance in S. pneumoniae, pbp1a, pbp2b and pbp2x DNA fragments sequenced by us or selected from public databases (GenBank and EMBL) from a variety of S. pneumoniae strains were used to design oligonucleotide primers. This database is essential for the design of specific and ubiquitous primers and/or probes for detection of \beta-lactam resistance in S. pneumoniae since the altered PBP 1A, PBP 2B and PBP 2X of β-lactam resistant S. pneumoniae are encoded by mosaic genes with numerous sequence variations among resistant isolates. The PCR primers were located in conserved regions of pbp genes and were able to amplify pbpla, pbp2b, and pbp2x sequences of several strains of S. pneumoniae having various levels of resistance to penicillin and third-generation cephalosporins. Using primer pairs SEQ ID NOs. 1125 and 1126, SEQ ID NOs. 1142 and 1143, SEQ ID NOs. 1146 and 1147, it was possible to amplify and determine pbp1a sequences SEQ ID NOs. 1004-1018, 1648, 2056-2060 and 2062-2064, *pbp2b* sequences SEQ ID NOs. 1019-1033, and pbp2x sequences SEQ ID NOs. 1034-1048. Six other PCR primers

(SEQ ID NOs. 1127-1128, 1144-1145, 1148-1149) were also designed and used to complete the sequencing of pbp1a, pbp2b and pbp2x amplification products. The described primers (SEQ ID NOs. 1125 and 1126, SEQ ID NOs. 1142 and 1143, SEQ ID NOs. 1146 and 1147, SEQ ID NOs. 1127-1128, 1144-1145, 1148-1149) represent a powerful tool for generating new pbp sequences for design of primers and/or probes for detection of β -lactam resistance in S. pneumoniae.

EXAMPLE 19:

Sequencing of hexA genes of Streptococcus species. The hexA sequence of S. pneumoniae described in our assigned US patent no. 5,994,066 (SEQ ID NO. 31 in the said patent, SEQ ID NO. 1183 in the present application) allowed the design of a PCR primer (SEQ ID NO. 1182) which was used with primer Spn1401 described in our assigned US patent no. 5,994,066 (SEQ ID NO. 156 in the said patent, SEQ ID NO. 1179 in the present application) to generate a database for hexA sequences that can be used to design primers and/or probes for the specific identification and detection of S. pneumoniae (Annex XLII). Using primers SEQ ID NO. 1179 and SEQ ID NO. 1182 (Annex XLII), it was possible to amplify and determine the hexA sequence from S. pneumoniae (4 strains) (SEQ ID NOs. 1184-1187), S. mitis (three strains) (SEQ ID NOs. 1189-1191) and S. oralis (SEQ ID NO. 1188).

EXAMPLE 20:

Development of multiplex PCR assays coupled with capture probe hybridization for the detection and identification of *Streptococcus pneumoniae* and its penicillin resistance genes.

Two different assays were developed to identify S. pneumoniae and its susceptibility to penicillin.

ASSAY I:

Bacterial strains. The specificity of the multiplex PCR assay was verified by using a panel of ATCC (American Type Culture Collection) reference strains consisting of 33 gram-negative and 67 gram-positive bacterial species (Table 13). In addition, a total of 98 strains of *S. pneumoniae*, 16 strains of *S. mitis* and 3 strains of *S. oralis* from the American Type Culture Collection, the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL), (Ste-Foy, Québec, Canada), the Laboratoire de santé publique du Québec, (Sainte-Anne-de-Bellevue, Québec, Canada), the Sunnybrook and Women's College Health Sciences Centre (Toronto, Canada), the Infectious Diseases Section, Department of Veterans Affairs Medical Center, (Houston, USA) were also tested to further validate the *Streptococcus pneumoniae*-specific PCR assay. The penicillin MICs (minimal inhibitory concentrations) were measured by the broth dilution method according to the recommended protocol of NCCLS.

PCR primers and internal probes. The analysis of hexA sequences from a variety of streptococcal species from the publicly avalaible hexA sequence and from the database described in Example 19 (SEQ ID NOs. 1184-1191) allowed the selection of a PCR primer specific to S. pneumoniae, SEQ ID NO. 1181. This primer was used with the S. pneumoniae-specific primer SEQ ID NO. 1179 to generate an amplification product of 241 bp (Annex XLII). The PCR primer SEQ ID NO. 1181 is located 127 nucleotides downstream on the hexA sequence compared to the original S. pneumoniae-specific PCR primer Spn1515 described in our assigned US patent no. 5,994,066 (SEQ ID NO. 157 in the said patent). These modifications were done to ensure the design of the S. pneumoniae-specific internal probe according to the new hexA sequences of several streptococcal species from the database described in Example 19 (SEQ ID NOs. 1184-1191).

The analysis of pbp1a sequences from *S. pneumoniae* strains with various levels of penicillin resistance from public databases and from the database described in Example 18 allowed the identification of amino acid substitutions Ile-459 to Met and Ser-462 to Ala that occur in isolates with high-level penicillin resistance (MICs $\geq 1 \mu g/ml$), and amino acid substitutions Ser-575 to Thr, Gln-576 to Gly and Phe-577 to Tyr that are common to all penicillin-resistant isolates with MICs \geq 0.25 $\mu g/ml$. As shown in Annex XXXI, PCR primer pair SEQ ID NOs. 1130 and 1131 were designed to detect high-level penicillin resistance (MICs $\geq 1 \mu g/ml$), whereas PCR primer pair SEQ ID NOs. 1129 and 1131 were designed to detect intermediate- and high-level penicillin resistance (MICs \geq 0.25 $\mu g/ml$).

The analysis of hexA sequences from the publicly avalable hexA sequence and from the database described in Example 19 allowed the design of an internal probe specific to S. pneumoniae (SEQ ID NO. 1180) (Annex XLII). The range of mismatches between the S. pneumoniae-specific 241-bp amplicon was from 2 to 5, in the middle of the 19-bp probe. The analysis of pbpla sequences from public databases and from the database described in Example 18 allowed the design of five internal probes containing all possible mutations to detect the high-level penicillin resistance 383-bp amplicon (SEQ ID NOs. 1197, 1217-1220). Alternatively, two other internal probes (SEQ ID NOs. 2024-2025) can also be used to detect the high-level penicillin resistance 383-bp amplicon. Five internal probes containing all possible mutations to detect the 157-bp amplicon which includes intermediate- and high-level penicillin resistance were also designed (SEQ ID NOs. 1094, 1192-1193, 1214 and 1216). Design and synthesis of primers and probes, and detection of the probe hybridization were performed as described in Example 7. Annex XXXI illustrates one of the internal probe for detection of the high-level penicillin resistance 383-bp amplicon (SEQ ID NO. 1197) and one of the internal probe for detection of the intermediate- and high-level penicillin resistance 157-bp amplicon (SEQ ID NO. 1193).

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA using a PTC-200 thermocycler (MJ Research). 1 μ l of genomic DNA at 0.1 ng/ μ l, or 1 μ l of a bacterial lysate, was transferred to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (H 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.1 μ M (each) of the *S. pneumoniae*-specific primers SEQ ID NO. 1179 and SEQ ID NO. 1181, 0.2 μ M of primer SEQ ID NO. 1129, 0.7 μ M of primer SEQ ID NO. 1131, and 0.6 μ M of primer SEQ ID NO. 1130, 0.05 mM bovine serum albumin (BSA), and 0.5 U *Taq* polymerase (Promega) coupled with TaqStartTM antibody. In order to generate Digoxigenin (DIG)-labeled amplicons for capture probe hybridization, 0.1X PCR DIG labeling four deoxynucleoside triphosphates mix (Boehringer Mannheim GmbH) was used for amplification.

For determination of the sensitivity of the PCR assays, 10-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

Capture probe hybridization. The DIG-labeled amplicons were hybridized to the capture probes bound to 96-well plates. The plates were incubated with anti-DIG-alkaline phosphatase and the chemiluminescence was measured by using a luminometer (MLX, Dynex Technologies Inc.) after incubation with CSPD and recorded as Relative Light Unit (RLU). The RLU ratio of tested sample with and without captures probes was then calculated. A ratio ≥ 2.0 was defined as a positive hybridization signal. All reactions were performed in duplicate.

Results

Amplifications with the multiplex PCR assay. The specificity of the assay was assessed by performing 40-cycle PCR amplifications with the panel of grampositive (67 species from 12 genera) and gram-negative (33 species from 17

genera) bacterial species listed in Table 13. All bacterial species tested other than S. pneumoniae were negative except S. mitis and S. oralis. Ubiquity tests were performed using a collection of 98 S. pneumoniae strains including high-level penicillin resistance (n=53), intermediate resistance (n=12) and sensitive (n=33) strains. There was a perfect correlation between PCR and standard susceptibility testing for 33 penicillin-sensitive isolates. Among 12 S. pneumoniae isolates with intermediate penicillin resistance based on susceptibility testing, 11 had intermediate resistance based on PCR, but one S. pneumoniae isolate with penicillin MIC of 0.25 μ g/ml showed a high-level penicillin resistance based on susceptibility testing, 51 had high-level penicillin resistance based on susceptibility testing, 51 had high-level penicillin resistance based on PCR but two isolates with penicillin MIC > 1 μ g/ml showed an intermediate penicillin resistance based on genotyping. In general, there was a good correlation between the genotype and classical culture method for bacterial identification and susceptibility testing.

The sensitivity of the *S. pneumoniae*-specific assay with 40-cycle PCR protocols was determined by using purified genomic DNA from 9 isolates of *S. pneumoniae*. The detection limit was around 10 copies of genomic DNA for all of them.

Post-PCR hybridization with internal probes. The specificity of the multiplex PCR assay coupled with capture-probe hybridization was tested with 98 strains of S. pneumoniae, 16 strains of S. mitis and 3 strains of S. oralis. The internal probe specific to S. pneumoniae (SEQ ID NO. 1180) detected all 98 S. pneumoniae strains but did not hybridize to the S. mitis and S. oralis amplicons. The five internal probes specific to the high-level resistance amplicon (SEQ ID NOs. 1197, 1217-1220) detected all amplification patterns corresponding to high-level resistance. The two S. pneumoniae strains with penicillin MIC > 1 μ g/ml that showed an intermediate penicillin resistance based on PCR amplification were also intermediate resistance based on probe hybridization. Similarly, among 12 strains

with intermediate-penicillin resistance based on susceptibility testing, 11 showed intermediate-penicillin resistance based on hybridization with the five internal probes specific to the intermediate and high-level resistance amplicon (SEQ ID NOs. 1094, 1192-1193, 1214 and 1216). The strain described above having a penicillin MIC of 0.25 µg/ml which was high-level penicillin resistance based on PCR amplification was also high-level resistance based on probe hybridization. In summary, the combination of the multiplex PCR and hybridization assays results in a highly specific test for the detection of penicillin-resistant *Streptococcus pneumoniae*.

ASSAY II:

Bacterial strains. The specificity of the multiplex PCR assay was verified by using the same strains as those used for the development of Assay I. The penicillin MICs (minimal inhibitory concentrations) were measured by the broth dilution method according to the recommended protocol of NCCLS.

PCR primers and internal probes. The analysis of pbp1a sequences from S. pneumoniae strains with various levels of penicillin resistance from public databases and from the database described in Example 18 allowed the design of two primers located in the constant region of pbp1a. PCR primer pair (SEQ ID NOs. 2015 and 2016) was designed to amplify a 888-bp variable region of pbp1a from all S. pneumoniae strains. A series of internal probes were designed for identification of the pbp1a mutations associated with penicillin resistance in S. pneumoniae. For detection of high-level penicillin resistance (MICs $\geq 1 \mu g/ml$), three internal probes were designed (SEQ ID NOs. 2017-2019). Alternaltively, ten other internal probes were designed that can also be used for detection of high-level resistance within the 888-bp pbp1a amplicon: (1) three internal probes for identification of the amino acid substitutions Thr-371 to Ser or Ala within the motif S370TMK (SEQ ID NOs. 2031-2033); (2) two internal probes for detection

of the amino acid substitutions Ile-459 to Met and Ser-462 to Ala near the motif S428RN (SEQ ID NOs. 1135 and 2026); (3) two internal probes for identification of the amino acid substitutions Asn-443 to Asp (SEQ ID NOs. 1134 and 2027); and (4) three internal probes for detection of all sequence variations within another region (SEQ ID NOs. 2028-2030). For detection of high-level and intermediate penicillin resistance (MICs \geq 0.25 µg/ml), four internal probes were designed (SEQ ID NOs. 2020-2023). Alternatively, six other internal probes were designed for detection of the four consecutive amino acid substitutions T574SQF to A574TGY near the motif K557TG (SEQ ID NOs. 2034-2039) that can also be used for detection of intermediate- and high-level resistance within the 888-bp pbp1a amplicon.

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA using a PTC-200 thermocycler (MJ Research). 1 μ l of genomic DNA at 0.1 ng/ μ l, or 1 μ l of a bacterial lysate, was transferred to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.08 μ M (each) of the *S. pneumoniae*-specific primers SEQ ID NO. 1179 and SEQ ID NO. 1181, 0.4 μ M of the *pbp1a*-specific primer SEQ ID NO. 2015, 1.2 μ M of *pbp1a*-specific primer SEQ ID NO. 2016, 0.05 mM bovine serum albumin (BSA), and 0.5 U *Taq* polymerase (Promega) coupled with TaqStartTM antibody. In order to generate Digoxigenin (DIG)-labeled amplicons for capture probe hybridization, 0.1X PCR DIG labeling four deoxynucleoside triphosphates mix (Boehringer Mannheim GmbH) was used for amplification.

For determination of the sensitivities of the PCR assays, 10-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

Capture probe hybridization. The DIG-labeled amplicons were hybridized to the capture probes bound to 96-well plates as described for Assay I.

Results

Amplifications with the multiplex PCR assay. The specificity of the assay was assessed by performing 40-cycle PCR amplifications with the panel of grampositive (67 species from 12 genera) and gram-negative (33 species from 17 genera) bacterial species listed in Table 13. All bacterial species tested other than *S. pneumoniae* were negative except *S. mitis* and *S. oralis*. Ubiquity tests were performed using a collection of 98 *S. pneumoniae* strains including high-level penicillin resistance (n=53), intermediate resistance (n=12) and sensitive (n=33) strains. All the above *S. pneumoniae* strains produced the 888-bp amplicon corresponding to *pbp1a* and the 241-bp fragment corresponding to *hexA*.

The sensitivity of the *S. pneumoniae*-specific assay with 40-cycle PCR protocols was determined by using purified genomic DNA from 9 isolates of *S. pneumoniae*. The detection limit was around 10 copies of genomic DNA for all of them.

Post-PCR hybridization with internal probes. The specificity of the multiplex PCR assay coupled with capture-probe hybridization was tested with 98 strains of *S. pneumoniae*, 16 strains of *S. mitis* and 3 strains of *S. oralis*. The internal probe specific to *S. pneumoniae* (SEQ ID NO. 1180) detected all 98 *S. pneumoniae* strains but did not hybridize to the *S. mitis* and *S. oralis* amplicons. The three internal probes (SEQ ID NOs 2017-2019) specific to high-level resistance detected all the 43 strains with high-level penicillin resistance based on susceptibility testing. Among 12 isolates with intermediate-penicillin resistance based on susceptibility testing, 11 showed intermediate-penicillin resistance based on hybridization with 4 internal probes (SEQ ID NOs. 2020-2023) and one strain

having penicillin MIC of $0.25 \mu g/ml$ was misclassified as high-level penicillin resistance. In summary, the combination of the multiplex PCR and hybridization assays results in a highly specific test for the detection of penicillin-resistant *Streptococcus pneumoniae*.

EXAMPLE 21:

Sequencing of the vancomycin resistance vanA, vanC1, vanC2 and vanC3 genes. The publicly available sequences of the vanH-vanA-vanX-vanY locus of transposon Tn1546 from E. faecalis, vanC1 sequence from one strain of E. gallinarum, vanC2 and vanC3 sequences from a variety of E. casseliflavus and E. flavescens strains, respectively, allowed the design of PCR primers able to amplify the vanA, vanC1, vanC2 and vanC3 sequences of several Enterococcus species. Using primer pairs van6877 and van9106 (SEQ ID NOs. 1150 and 1155), vanC1-122 and vanC1-1315 (SEQ ID NOs. 1110 and 1109), and vanC2C3-1 and vanC2C3-1064 (SEQ ID NOs. 1108 and 1107), it was possible to amplify and determine vanA sequences SEQ ID NOs. 1049-1057, vanC1 sequences SEQ ID NOs. 1058-1059, vanC2 sequences SEQ ID NOs. 1060-1063 and vanC3 sequences SEQ ID NOs. 1151-1154) were also designed and used to complete the sequencing of vanA amplification products.

EXAMPLE 22:

Development of a PCR assay for the detection and identification of enterococci at genus and species levels and its associated resistance genes vanA and vanB. The comparison of vanA and vanB sequences revealed conserved regions allowing the design of PCR primers specific to both vanA and vanB sequences (Annex XXXVIII). The PCR primer pair vanAB459 and vanAB830R (SEQ ID NOs. 1112 and 1111) was used in multiplex with the Enterococcus-specific primers Encg313dF and Encg599c (SEQ ID NOs. 1137 and 1136) described in Example

11. Sequence alignment analysis of vanA and vanB sequences revealed regions suitable for the design of internal probes specific to vanA (SEQ ID NO. 1170) and vanB (SEO ID NO. 1171). PCR amplification and agarose gel electropheresis of the amplified products were performed as described in Example 11. The optimal cycling conditions for maximum sensitivity and specificity were found to be 3 min. at 94 °C, followed by forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 62°C, plus a terminal extension at 72 °C for 2 minutes. The specificity of the multiplex assay with 40-cycle PCR was verified by using 0.1 nanogram of purified genomic DNA from a panel of bacteria listed in Table 10. The sensitivity of the multiplex assay with 40-cycle PCR was verified with three strains of E. casseliflavus, eight strains of E. gallinarum, two strains of E. flavescens, two vancomycin-resistant strains of E. faecalis and one vancomycinsensitive strain of E. faecalis, three vancomycin-resistant strains of E. faecium, one vancomycin-sensitive strain of E. faecium and one strain of each of the other enterococcal species listed in Table 10. The detection limit was 1 to 10 copies of genomic DNA, depending on the enterococcal species tested. The vanA- and vanBspecific internal probes (SEQ ID NOs. 1170 and 1171), as well as the E. faecalisand E. faecium-specific internal probes (SEQ ID NOs. 1174 and 602) and the internal probe specific to the group including E. casseliflavus, E. gallinarum and E. flavescens (SEQ ID NO. 1122) described in Example 11, were able to recognize vancomycin-resistant enterococcal species with high sensitivity, specificity and ubiquity showing a perfect correlation between the genotypic and phenotypic analysis.

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1236 for the detection of *E. faecalis*, SEQ ID NO. 1235 for the detection of *E. faecium*, SEQ ID NO. 1240 for the detection of *vanA*, and SEQ ID NO. 1241 for the detection of *vanB*.

EXAMPLE 23:

Development of a multiplex PCR assay for detection and identification of vancomycin-resistant Enterococcus faecalis, Enterococcus faecium and the group including Enterococcus gallinarum, Enterococcus casseliflavus, and Enterococcus flavescens. The analysis of vanA and vanB sequences revealed conserved regions allowing design of a PCR primer pair (SEQ ID NOs. 1089 and 1090) specific to vanA sequences (Annex XXVIII) and a PCR primer pair (SEQ ID NOs. 1095 and 1096) specific to vanB sequences (Annex XXIX). The vanA-specific PCR primer pair (SEQ ID NOs. 1089 and 1090) was used in multiplex with the vanB-specific PCR primer pair described in our assigned US patent 5,994,066 (SEQ ID NOs. 1095 and 1096 in the present patent and SEQ ID NOs. 231 and 232 in the said patent). The comparison of vanC1, vanC2 and vanC3 sequences revealed conserved regions allowing design of PCR primers (SEQ ID NOs. 1101 and 1102) able to generate a 158-bp amplicon specific to the group including E. gallinarum, E. casseliflavus and E. flavescens (Annex XXX). The vanC-specific PCR primer pair (SEQ ID NOs. 1101 and 1102) was used in multiplex with the E. faecalisspecific PCR primer pair described in our assigned US patent 5,994,066 (SEQ ID NOs. 40 and 41 in the said patent) and with the E. faecium-specific PCR primer pair described in our patent publication WO98/20157 (SEQ ID NOs. 1 and 2 in the said publication). For both multiplexes, the optimal cycling conditions for maximum sensitivity and specificity were found to be 3 min. at 94 °C, followed by forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 58 °C, plus a terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide. The vanA-specific PCR primer pair (SEQ ID NOs. 1089 and 1090), the vanB-specific primer pair (SEQ ID NOs. 1095 and 1096) and the vanCspecific primer pair (SEQ ID NOs. 1101 and 1102) were tested for their specificity by using 0.1 nanogram of purified genomic DNA from a panel of 5 vancomycin-

sensitive Enterococcus species, 3 vancomycin-resistant Enterococcus species, 13 other gram-positive bacteria and one gram-negative bacterium. Specificity tests were performed with the E. faecium-specific PCR primer pair described in our patent publication WO98/20157 (SEQ ID NOs. 1 and 2 in the said publication) and with the E. faecalis-specific PCR primer pair described in our assigned US patent 5,994,066 (SEQ ID NOs. 40 and 41 in the said patent) on a panel of 37 gram-positive bacterial species. All Enterococcus strains were amplified with high specificity showing a perfect correlation between the genotypic and phenotypic analysis. The sensitivity of the assays was determined for several strains of E. gallinarum, E. casseliflavus, E. flavescens and vancomycin-resistant E. faecalis and E. faecium. Using each of the E. faecalis- and E. faecium-specific PCR primer pairs as well as vanA-, vanB- and vanC-specific PCR primers used alone or in multiplex as described above, the sensitivity ranged from 1 to 10 copies of genomic DNA.

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1238 for the detection of *E. faecalis*, SEQ ID NO. 1237 for the detection of *E. faecium*, SEQ ID NO. 1239 for the detection of *vanA*, and SEQ ID NO. 1241 for the detection of *vanB*.

Alternatively, another PCR assay was developed for the detection of vancomycin-resistant *E. faecium* and vancomycin-resistant *E. faecalis*. This assay included two multiplex: (1) the first multiplex contained the *vanA*-specific primer pair (SEQ ID NOs. 1090-1091) and the *vanB*-specific PCR primer pair described in our assigned US patent 5,994,066 (SEQ ID NOs. 1095 and 1096 in the present patent and SEQ ID NOs. 231 and 232 in the said patent), and (2) the second multiplex contained the *E. faecalis*-specific PCR primer pair described in our assigned US patent 5,994,066 (SEQ ID NOs. 40 and 41 in the said patent) and the *E. faecium*-specific PCR primer pair described in our patent publication WO98/20157 (SEQ ID NOs. 1

and 2 in the said publication). For both multiplexes, the optimal cycling conditions for maximum sensitivity and specificity were found to be 3 min. at 94 °C, followed by forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 58 °C, plus a terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 µg/ml of ethidium bromide. The two multiplexes were tested for their specificity by using 0.1 nanogram of purified genomic DNA from a panel of two vancomycin-sensitive E. faecalis strains, two vancomycin-resistant E. faecalis strains, two vancomycinsensitive E. faecium strains, two vancomycin-resistant E. faecium strains, 16 other enterococcal species and 31 other gram-positive bacterial species. All the E. faecium and E. faecalis strains were amplified with high specificty showing a perfect correlation between the genotypic analysis and the susceptibility to glycopeptide antibiotics (vancomycin and teicoplanin). The sensitivity of the assay was determined for two vancomycin-resistant E. faecalis strains and two vancomycin-resistant E. faecium strains. The detection limit was 5 copies of genomic DNA for all the strains.

This multiplex PCR assay was coupled with capture-probe hybridization. Four internal probes were designed: one specific to the *vanA* amplicon (SEQ ID NO. 2292), one specific to the *vanB* amplicon (SEQ ID NO. 2294), one specific to the *E. faecalis* amplicon (SEQ ID NO. 2291) and one specific to the *E. faecium* amplicon (SEQ ID NO. 2287). Each of the internal probes detected their specific amplicons with high specificity and sensitivity.

EXAMPLE 24:

<u>Universal amplification involving the EF-G (fusA)</u> subdivision of tuf sequences. As shown in Figure 3, primers SEQ ID NOs. 1228 and 1229 were designed to amplify the region between the end of fusA and the beginning of tuf genes in the str operon. Genomic DNAs from a panel of 35 strains were tested for PCR amplification with those primers. In the initial experiment, the following strains showed a positive

result: Abiotrophia adiacens ATCC 49175, Abiotrophia defectiva ATCC 49176, Bacillus subtilis ATCC 27370, Closridium difficile ATCC 9689, Enterococcus avium ATCC 14025, Enterococcus casseliflavus ATCC 25788, Enterococcus cecorum ATCC 43198, Enterococcus faecalis ATCC 29212, Enterococcus faecium ATCC 19434, Enterococcus flavescens ATCC 49996, Enterococcus gallinarum ATCC 49573, Enterococcus solitarius ATCC 49428, Escherichia coli ATCC 11775, Haemophilus influenzae ATCC 9006, Lactobacillus acidophilus ATCC 4356, Peptococcus niger ATCC 27731, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 43300, Staphylococcus auricularis ATCC 33753, Staphylococcus capitis ATCC 27840, Staphylococcus epidemidis ATCC 14990, Staphylococcus haemolyticus ATCC 29970, Staphylococcus hominis ATCC 27844, Staphylococcus lugdunensis ATCC 43809, Staphylococcus saprophyticus ATCC 15305, Staphylococcus simulans ATCC 27848, and Staphylococcus warneri ATCC 27836. This primer pair could amplify additional bacterial species; however, there was no amplification for some species, suggesting that the PCR cycling conditions could be optimized or the primers modified. For example, SEQ ID NO. 1227 was designed to amplify a broader range of species.

In addition to other possible primer combinations to amplify the region covering fusA and tuf, Figure 3 illustrates the positions of amplification primers SEQ ID NOs. 1221-1227 which could be used for universal amplification of fusA segments. All of the above mentioned primers (SEQ ID NOs. 1221-1229) could be useful for the universal and/or the specific detection of bacteria.

Moreover, different combinations of primers SEQ ID NOs. 1221-1229, sometimes in combination with *tuf* sequencing primer SEQ ID NO. 697, were used to sequence portions of the *str* operon, including the intergenic region. In this manner, the following sequences were generated: SEQ ID NOs. 1518-1526, 1578-1580, 1786-1821, 1822-1834, 1838-1843, 2184, 2187, 2188, 2214-2249, and 2255-2269.

EXAMPLE 25:

DNA fragment isolation from *Staphylococcus saprophyticus* by arbitrarily primed PCR. DNA sequences of unknown coding potential for the species-specific detection and identification of *Staphylococcus saprophyticus* were obtained by the method of arbitrarily primed PCR (AP-PCR).

AP-PCR is a method which can be used to generate specific DNA probes for microorganisms (Fani et al., 1993, Molecular Ecology 2:243-250). A description of the AP-PCR protocol used to isolate a species-specific genomic DNA fragment from Staphylococcus saprophyticus follows. Twenty different oligonucleotide primers of 10 nucleotides in length (all included in the AP-PCR kit OPAD (Operon Technologies, Inc., Alameda, CA)) were tested systematically with DNAs from 5 bacterial strains of Staphylococcus saprophyticus as well as with bacterial strains of 27 other staphylococcal (non-S. saprophyticus) species. For all bacterial species, amplification was performed directly from one μL (0.1 ng/ μL) of purified genomic DNA. The 25 μ L PCR reaction mixture contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1.2 μ M of only one of the 20 different AP-PCR primers OPAD, 200 µM of each of the four dNTPs, 0.5 U of Taq DNA polymerase (Promega Corp., Madison, Wis.) coupled with TaqStartTM antibody (Clontech Laboratories Inc., Palo Alto, CA). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler as follows: 3 min at 96 °C followed by 42 cycles of 1 min at 94 °C for the denaturation step, 1 min at 31 °C for the annealing step and 2 min at 72 °C for the extension step. A final extension step of 7 min at 72 °C followed the 42 cycles to ensure complete extension of PCR products. Subsequently, twenty microliters of the PCR-amplified mixture were resolved by electrophoresis on a 1.5 % agarose gel containing 0.25 µg/ml of ethidium bromide. The size of the amplification products was estimated by comparison with a 50-bp molecular weight ladder.

Amplification patterns specific for *Staphylococcus saprophyticus* were observed with the AP-PCR primer OPAD-16 (sequence: 5'-AACGGGCGTC-3'). Amplification with this primer consistently showed a band corresponding to a

DNA fragment of approximately 380 bp for all *Staphylococcus saprophyticus* strains tested but not for any of the other staphylococcal species tested.

The band corresponding to the 380 bp amplicon, specific and ubiquitous for *S. saprophyticus* based on AP-PCR, was excised from the agarose gel and purified using the QIAquickTM gel extraction kit (QIAGEN Inc.). The gel-purified DNA fragment was cloned into the T/A cloning site of the pCR 2.1TM plasmid vector (Invitrogen Inc.) using T4 DNA ligase (New England BioLabs). Recombinant plasmids were transformed into *E. coli* DH5α competent cells using standard procedures. All reactions were performed according to the manufacturer's instructions. Plasmid DNA isolation was done by the method of Birnboim and Doly (Nucleic Acid Res., 1979, 7:1513-1523) for small-scale preparations. All plasmid DNA preparations were digested with the EcoRI restriction endonuclease to ensure the presence of the approximately 380 bp AP-PCR insert into the plasmid. Subsequently, a large-scale and highly purified plasmid DNA preparation was performed from two selected clones shown to carry the AP-PCR insert by using the QIAGEN plasmid purification kit (midi format). These large-scale plasmid preparations were used for automated DNA sequencing.

The 380 bp nucleotide sequence was determined for three strains of *S. saprophyticus* (SEQ ID NOs. 74, 1093, and 1198). Both strands of the AP-PCR insert from the two selected clones were sequenced by the dideoxynucleotide chain termination sequencing method with SP6 and T7 sequencing primers by using the Applied Biosystems automated DNA sequencer (model 373A) with their PRISMTM Sequenase^{RTM} Terminator Double-stranded DNA Sequencing Kit (Applied Biosystems, Foster City, CA).

Optimal species-specific amplification primers (SEQ ID NOs. 1208 and 1209) have been selected from the sequenced AP-PCR Staphylococcus saprophyticus DNA fragments with the help of the primer analysis software OligoTM 5.0 (National BioSciences Inc.). The selected primers were tested in PCR assays to verify their specificity and ubiquity. Data obtained with DNA preparations from reference ATCC strains of 49 gram-positive and 31 gram-negative bacterial

species, including 28 different staphylococcal species, indicate that the selected primer pairs are specific for *Staphylococcus saprophyticus* since no amplification signal has been observed with DNAs from the other staphylococcal or bacterial species tested. This assay was able to amplify efficiently DNA from all 60 strains of *S. saprophyticus* from various origins tested. The sensitivity level achieved for three *S. saprophyticus* reference ATCC strains was around 6 genome copies.

EXAMPLE 26:

Sequencing of prokaryotic *tuf* gene fragments. The comparison of publicly available *tuf* sequences from a variety of bacterial species revealed conserved regions, allowing the design of PCR primers able to amplify *tuf* sequences from a wide range of bacterial species. Using primer pair SEQ ID NOs. 664 and 697, it was possible to amplify and determine *tuf* sequences SEQ ID NOs.: 1-73, 75-241, 607-618, 621, 662, 675, 717-736, 868-888, 932, 967-989, 992, 1002, 1572-1575, 1662-1663, 1715-1733, 1835-1837, 1877-1878, 1880-1881, 2183, 2185, 2200, 2201, and 2270-2272.

EXAMPLE 27:

Sequencing of procaryotic recA gene fragments. The comparison of publicly available recA sequences from a variety of bacterial species revealed conserved regions, allowing the design of PCR primers able to amplify recA sequences from a wide range of bacterial species. Using primer pairs SEQ ID NOs. 921-922 and 1605-1606, it was possible to amplify and determine recA sequences SEQ ID NOs.: 990-991, 1003, 1288-1289, 1714, 1756-1763, 1866-1873 and 2202-2212.

EXAMPLE 28:

Specific detection and identification of Escherichia coli/Shigella sp. using tuf sequences. The analysis of tuf sequences from a variety of bacterial species allowed the selection of PCR primers (SEQ ID NOs. 1661 and 1665) and of an internal probe (SEQ ID NO. 2168) specific to Escherichia coli/Shigella sp. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. The multiple sequence alignment included the tuf sequences of Escherichia coli/Shigella sp. as well as tuf sequences from other species and bacterial genera, especially representatives of closely related species. A careful analysis of this alignment allowed the selection of oligonucleotide sequences which are conserved within the target species but which discriminate sequences from other species, especially from the closely related species, thereby permitting the species-specific and ubiquitous detection and identification of the target bacterial species.

The chosen primer pair, oligos SEQ ID NOs. 1661 and 1665, gives an amplification product of 219 bp. Standard PCR was carried out using 0.4 μ M of each primer, 2.5 mM MgCl₂, BSA 0.05 mM, 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1 % Triton X-100, dNTPs 0.2 mM (Pharmacia), 0,5 U *Taq* DNA polymerase (Promega) coupled with TaqStartTM antibody (Clontech Laboratories Inc.), 1 μ l of genomic DNA sample in a final volume of 20 μ l using a PTC-200 thermocycler (MJ Research). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 60 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing 0.25 μ g/ml of ethidium bromide. Visualization of the PCR products was made under UV at 254 nm.

Specificity of the assay was tested by adding to the PCR reactions 0.1 ng of genomic DNA from each of the following bacterial species: *Escherichia coli* (7

strains), Shigella sonnei, Shigella flexneri, Shigella dysenteriae, Salmonella typhimyurium, Salmonella typhi, Salmonella enteritidis, Tatumella ptyseos, Klebsiella pneumoniae (2 strains), Enterobacter aerogenes, Citrobacter farmeri, Campylobacter jejuni, Serratia marcescens. Amplification was observed only for the Escherichia coli and Shigella sp. strains listed and Escherichia fergusonii. The sensitivity of the assay with 40-cycle PCR was verified with one strain of E. coli and three strains of Shigella sp. The detection limit for E. coli and Shigella sp. was 1 to 10 copies of genomic DNA, depending on the strains tested.

EXAMPLE 29:

Specific detection and identification of *Klebsiella pneumoniae* using *atpD* sequences. The analysis of *atpD* sequences from a variety of bacterial species allowed the selection of PCR primers specific to *K. pneumoniae*. The primer design strategy is similar to the strategy described in Example 28 except that *atpD* sequences were used in the alignment.

Two *K. pneumoniae*-specific primers were selected, (SEQ ID NOs. 1331 and 1332) which give an amplification product of 115 bp. Standard PCR was carried out on PTC-200 thermocyclers (MJ Research) using 0.4 μ M of each primer as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were as follow: three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55°C, followed by terminal extension at 72 °C for 2 minutes.

Specificity of the assay was tested by adding to the PCR reactions 0.1 ng of genomic DNA from each of the following bacterial species: Klebsiella pneumoniae (2 strains), Klebsiella ornitholytica, Klebsiella oxytoca (2 strains), Klebsiella planticola, Klebsiella terrigena, Citrobacter freundii, Escherichia coli, Salmonella cholerasuis typhi, Serratia marcescens, Enterobacter aerogenes, Proteus vulgaris,

Kluyvera ascorbata, Kluyvera georgiana, Kluyvera cryocrescens and Yersinia enterolitica. Amplification was detected for the two K. pneumoniae strains, K. planticola, K. terrigena and the three Kluyvera species tested. Analysis of the multiple alignment sequence of the atpD gene allowed the design of an internal probe SEQ ID NO. 2167 which can discrimate Klebsiella pneumoniae from other Klebsiella sp. and Kluyvera sp. The sensitivity of the assay with 40-cycle PCR was verified with one strain of K. pneumoniae. The detection limit for K. pneumoniae was around 10 copies of genomic DNA.

EXAMPLE 30:

Specific detection and identification of Acinetobacter baumannii using atpD sequences. The analysis of atpD sequences from a variety of bacterial species allowed the selection of PCR primers specific to Acinetobacter baumannii. The primer design strategy is similar to the strategy described in Example 28.

Two A. baumannii-specific primers were selected, SEQ ID NOs. 1690 and 1691, which give an amplification product of 233 bp. Standard PCR was carried out on PTC-200 thermocyclers (MJ Research) using 0.4 μ M of each primer as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were as follow: three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 60°C, followed by terminal extension at 72 °C for 2 minutes.

Specificity of the assay was tested by adding to the PCR reactions 0.1 ng of genomic DNA from each of the following bacterial species: Acinetobacter baumannii (3 strains), Acinetobacter anitratus, Acinetobacter lwoffi, Serratia marcescens, Enterobacter cloacae, Enterococcus faecalis, Pseudomonas aeruginosa, Psychrobacter phenylpyruvicus, Neisseria gonorrheoae, Haemophilus haemoliticus, Yersinia enterolitica, Proteus vulgaris, Eikenella corrodens,

Escherichia coli. Amplification was detected only for A. baumannii, A anitratus and A. lwoffi. The sensitivity of the assay with 40-cycle PCR was verified with two strains of A. baumannii. The detection limit for the two A. baumannii strains tested was 5 copies of genomic DNA. Analysis of the multiple alignment sequence of the atpD gene allowed the design of a A. baumannii-specific internal probe (SEQ ID NO. 2169).

EXAMPLE 31:

Specific detection and identification of *Neisseria gonorrhoeae* using *tuf* sequences. The analysis of *tuf* sequences from a variety of bacterial species allowed the selection of PCR primers specific to *Neisseria gonorrhoeae*. The primer design strategy is similar to the strategy described in Example 28.

Two *N. gonorrhoeae*-specific primers were selected, SEQ ID NOs. 551 and 552, which give an amplification product of 139 bp. PCR amplification was carried out on PTC-200 thermocyclers (MJ Research) using 0.4 μ M of each primer as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were as follow: three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 65°C, followed by terminal extension at 72 °C for 2 minutes.

Specificity of the assay was tested by adding into the PCR reactions, 0.1 ng of genomic DNA from each of the following bacterial species: Neisseria gonorrhoeae (19 strains), Neisseria meningitidis (2 strains), Neisseria lactamica, Neisseria flavescens, Neisseria animalis, Neisseria canis, Neisseria cuniculi, Neisseria elongata, Neisseria mucosa, Neisseria polysaccharea, Neisseria sicca, Neisseria subflava, Neisseria weaveri. Amplification was detected only for N. gonorrhoeae, N. sicca and N. polysaccharea. The sensitivity of the assay with 40-cycle PCR was verified with two strains of N. gonorrhoeae. The detection limit for the N.

gonorrhoeae strains tested was 5 copies of genomic DNA. Analysis of the multiple alignment sequence of the *tuf* gene allowed the design of an internal probe, SEQ ID NO. 2166, which can discriminate *N. gonorrhoeae* from *N. sicca* and *N. polysaccharea*.

EXAMPLE 32:

Sequencing of bacterial gyrA and parC gene fragments. Sequencing of bacterial gyrA and parC fragments. One of the major mechanism of resistance to quinolone in various bacterial species is mediated by target changes (DNA gyrase and/or topoisomerase IV). These enzymes control DNA topology and are vital for chromosome function and replication. Each of these enzymes is a tetramer composed of two subunits: GyrA and GyrB forming A₂B₂ complex in DNA gyrase; and ParC and ParE forming and C₂E₂ complex in DNA topoisomerase IV. It has been shown that they are hotspots, called the quinolone-resitance-determining region (QRDR) for mutations within gyrA that encodes for the GyrA subunit of DNA gyrase and within parC that encodes the parC subunit of topoisomerase IV.

In order to generate a database for gyrA and parC sequences that can be used for design of primers and/or probes for the specific detection of quinolone resistance in various bacterial species, gyrA and parC DNA fragments selected from public database (GenBanK and EMBL) from a variety of bacterial species were used to design oligonucleotide primers.

Using primer pair SEQ ID NOs. 1297 and 1298, it was possible to amplify and determine gyrA sequences from Klebsiella oxytoca (SEQ ID NO. 1764), Klebsiella pneumoniae subsp. ozaneae (SEQ ID NO. 1765), Klebsiella planticola (SEQ ID NO. 1766), Klebsiella pneumoniae (SEQ ID NO. 1767), Klebsiella pneumoniae subsp. pneumoniae (two strains) (SEQ ID NOs. 1768-1769), Klebsiella

pneumoniae subsp. rhinoscleromatis (SEQ ID NO. 1770), Klebsiella terrigena (SEQ ID NO. 1771), Kluyvera ascorbata (SEQ ID NO. 2013), Kluyvera georgiana (SEQ ID NO. 2014) and Escherichia coli (4 strains) (SEQ ID NOs. 2277-2280). Using primer pair SEQ ID NOs. 1291 and 1292, it was possible to amplify and determine gyrA sequences from Legionella pneumophila subsp. pneumophila (SEQ ID NO. 1772), Proteus mirabilis (SEQ ID NO. 1773), Providencia rettgeri (SEQ ID NO. 1774), Proteus vulgaris (SEQ ID NO. 1775) and Yersinia enterolitica (SEQ ID NO. 1776). Using primer pair SEQ ID NOs. 1340 and 1341, it was possible to amplify and determine gyrA sequence from Staphylococcus aureus (SEQ ID NO. 1255).

Using primers SEQ ID NOs. 1318 and 1319, it was possible to amplify and determine parC sequences from K. oxytoca (two strains) (SEQ ID NOs. 1777-1778), Klebsiella pneumoniae subsp. ozaenae (SEQ ID NO. 1779), Klebsiella planticola (SEQ ID NO. 1780), Klebsiella pneumoniae (SEQ ID NO. 1781), Klebsiella pneumoniae subsp. pneumoniae (two strains) (SEQ ID NOs. 1782-1783), Klebsiella pneumoniae subsp. rhinoscleromatis (SEQ ID NOs. 1784) and Klebsiella terrigena (SEQ ID NOs. 1785).

EXAMPLE 33:

Development of a PCR assay for the specific detection and identification of Staphylococcus aureus and its quinolone resistance genes gyrA and parC. The analysis of gyrA and parC sequences from a variety of bacterial species revealed conserved regions allowing the design of PCR primers specific to the quinolone-resistance-determining region (QRDR) of gyrA and parC from Staphylococcus aureus. PCR primer pair SEQ ID NOs. 1340 and 1341 was designed to amplify the gyrA sequence of S. aureus, whereas PCR primer pair SEQ ID NOs. 1342 and 1343 was designed to amplify S. aureus parC. The comparison of gyrA and parC sequences from S. aureus strains with various levels of quinolone resistance

allowed the identification of amino acid substitutions Ser-84 to Leu, Glu-88 to Gly or Lys in the GyrA subunit of DNA gyrase encoded by gyrA and amino acid changes Ser-80 to Phe or Tyr and Ala-116 to Glu in the ParC subunit of topoisomerase IV encoded by parC. These amino acid substitutions in GyrA and ParC subunits occur in isolates with intermediate- or high-level quinolone resistance. Internal probes for the specific detection of wild-type S. aureus gyrA (SEQ ID NO. 1940) and wild-type S. aureus parC (SEQ ID NO. 1941) as well as internal probes for the specific detection of each of the gyrA (SEQ ID NOs. 1333-1335) and parC mutations identified in quinolone-resistant S. aureus (SEQ ID NOs. 1336-1339) were designed.

The gyrA- and parC-specific primer pairs (SEQ ID NOs. 1340-1341 and SEQ ID NOs. 1342-1343) were used in multiplex. PCR amplification was carried out on PTC-200 thermocyclers (MJ Research) using 0.3, 0.3, 0.6 and 0.6 μ M of each primers, respectively, as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 62 °C, followed by terminal extension at 72 °C for 2 minutes. Detection of the PCR products was made by electrophoresis in agarose gels (2 %) containing $0.25 \mu g/ml$ of ethidium bromide. The specificity of the multiplex assay with 40cycle PCR was verified by using 0.1 ng of purified genomic DNA from a panel of gram-positive bacteria. The list included the following: Abiotrophia adiacens, Abiotrophia defectiva, Bacillus cereus, Bacillus mycoides, Enterococcus faecalis (2 strains), Enterococcus flavescens, Gemella morbillorum, Lactococcus lactis, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus (5 strains), Staphylococcus auricalis, Staphylococcus capitis subsp. urealyticus, Staphylococcus Staphylococcus chromogenes, Staphylococcus carnosus, epidermidis (3 strains), Staphylococcus gallinarum, Staphylococcus haemolyticus (2 strains), Staphylococcus hominis, Staphylococcus hominis subsp hominis, Staphylococcus Staphylococcuslentus, Staphylococcus lugdunensis,

saccharolyticus, Staphylococcus saprophyticus (3 strains), Staphylococcus simulans, Staphylococcus warneri, Staphylococcus xylosus, Streptococcus agalactiae, Streptococcus pneumoniae. Strong amplification of both gyrA and parC genes was only detected for the S. aureus strains tested. The sensitivity of the multiplex assay with 40-cycle PCR was verified with one quinolone-sensitive and four quinolone-resistant strains of S. aureus. The detection limit was 2 to 10 copies of genomic DNA, depending on the strains tested.

Detection of the hybridization with the internal probes was performed as described in Example 7. The internal probes specific to wild-type gyrA and parC of S. aureus and to the gyrA and parC variants of S. aureus were able to recognize two quinolone-resistant and one quinolone-sensitive S. aureus strains showing a perfect correlation with the susceptibility to quinolones.

The complete assay for the specific detection of *S. aureus* and its susceptibility to quinolone contains the *Staphylococcus*-specific primers (SEQ ID NOs. 553 and 575) described in Example 7 and the multiplex containing the *S. aureus gyrA*- and *parC*-specific primer pairs (SEQ ID NOs. 1340-1341 and SEQ ID NOs. 1342-1343). Amplification is coupled with post-PCR hybridization with the internal probe specific to *S. aureus* (SEQ ID NO. 587) described in Example 7 and the internal probes specific to wild-type *S. aureus gyrA* and *parC* (SEQ ID NOs. 1940-1941) and to the *S. aureus gyrA* and *parC* variants (SEQ ID NOs. 1333-1338).

An assay was also developed for the detection of quinolone-resistant *S. aureus* using the SmartCycler (Cepheid). Real-time detection is based on the use of *S. aureus parC*-specific primers (SEQ ID NOs. 1342 and 1343) and the *Staphylococcus*-specific primers (SEQ ID NOs. 553 and 575) described in Example 7. Internal probes were designed for molecular beacon detection of the wild-type *S. aureus parC* (SEQ ID NO.1939), for detection of the Ser-80 to Tyr or

Phe amino acid substitutions in the ParC subunit encoded by S. aureus parC (SEQ ID NOs. 1938 and 1955) and for detection of S. aureus (SEQ ID NO. 2282).

EXAMPLE 34:

Development of a PCR assay for the detection and identification of Klebsiella pneumoniae and its quinolone resistance genes gyrA and parC. The analysis of gyrA and parC sequences from a variety of bacterial species from the public databases and from the database described in Example 32 revealed conserved regions allowing the design of PCR primers specific to the quinolone-resistancedetermining region (QRDR) of gyrA and parC from K. pneumoniae. PCR primer pair SEQ ID NOs. 1936 and 1937, or pair SEQ ID NOs. 1937 and 1942, were designed to amplify the gyrA sequence of K. pneumoniae, whereas PCR primer pair SEQ ID NOs. 1934 and 1935 was designed to amplify K. pneumoniae parC sequence. An alternative pair, SEQ ID NOs. 1935 and 1936, can also amplify K. pneumoniae parC. The comparison of gyrA and parC sequences from K. pneumoniae strains with various levels of quinolone resistance allowed the identification of amino acid substitutions Ser-83 to Tyr or Phe and Asp-87 to Gly or Ala and Asp-87 to Asn in the GyrA subunit of DNA gyrase encoded by gyrA and amino acid changes Ser-80 to Ile or Arg and Glu-84 to Gly or Lys in the ParC subunit of topoisomerase IV encoded by parC. These amino acid substitutions in the GyrA and ParC subunits occur in isolates with intermediate- or high-level quinolone resistance. Internal probes for the specific detection of wild-type K. pneumoniae gyrA (SEQ ID NO. 1943) and wild-type K. pneumoniae parC (SEQ ID NO. 1944) as well as internal probes for the specific detection of each of the gyrA (SEQ ID NOs. 1945-1949) and parC mutations identified in quinoloneresistant K. pneumoniae (SEQ ID NOs. 1950-1953) were designed.

Two multiplex using the K. pneumoniae gyrA- and parC-specific primer pairs were used: the first multiplex contained K. pneumoniae gyrA-specific primers (SEQ ID

NOs. 1937 and 1942) and K. pneumoniae parC-specific primers (SEQ ID NOs. 1934 and 1935) and the second multiplex contained K. pneumoniae gyrA/parCspecific primer (SEQ ID NOs. 1936), K. pneumoniae gyrA-specific primer (SEQ ID NO. 1937) and K. pneumoniae parC-specific primer (SEQ ID NO. 1935). Standard PCR was carried out on PTC-200 thermocyclers (MJ Research) using for the first multiplex 0.6, 0.6, 0.4, 0.4 μ M of each primer, respectively, and for the second multiplex 0.8, 0.4, 0.4 µM of each primer, respectively. PCR amplification and agarose gel electrophoresis of the amplified products were performed as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 62 °C, followed by terminal extension at 72 °C for 2 minutes. The specificity of the two multiplex assays with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from a panel of gram-negative bacteria. The list included: Acinetobacter baumannii, Citrobacter freundii, Eikenella corrodens, Enterobacter aerogenes, Enterobacter cancerogenes, Enterobacter cloacae, Escherichia coli (10 strains), Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella ornitholytica, Klebsiella oxytoca (2 strains), Klebsiella planticola, Klebsiella terrigena, Kluyvera ascorbata, Kluyvera cryocrescens, Kluyvera georgiana, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella choleraesuis subsp. typhimurium, Salmonella enteritidis, Serratia liquefaciens, Serratia marcescens and Yersinia enterocolytica. For both multiplex, strong amplification of both gyrA and parC was observed only for the K. pneumoniae strain tested. The sensitivity of the two multiplex assays with 40-cycle PCR was verified with one quinolone-sensitive strain of K. pneumoniae. The detection limit was around 10 copies of genomic DNA.

The complete assay for the specific detection of *K. pneumoniae* and its susceptibility to quinolone contains the *Klebsiella*-specific primers (SEQ ID NOs. 1331 and 1332) described in Example 29 and either the multiplex containing the *K*.

pneumoniae gyrA- and parC-specific primers (SEQ ID NOs. 1935, 1936, 1937) or the multiplex containing the K. pneumoniae gyrA- and parC-specific primers (SEQ ID NOs. 1934, 1937, 1939, 1942). Amplification is coupled with post-PCR hybridization with the internal probe specific to K. pneumoniae (SEQ ID NO. 2167) described in Example 29 and the internal probes specific to wild-type K. pneumoniae gyrA and parC (SEQ ID NOs. 1943, 1944) and to the K. pneumoniae gyrA and parC variants (SEQ ID NOs. 1945-1949 and 1950-1953).

An assay was also developed for the detection of quinolone-resistant *K. pneumoniae* using the SmartCycler (Cepheid). Real-time detection is based on the use of resistant *K. pneumoniae gyrA*-specific primers (SEQ ID NOs. 1936 and 1937) and the *K. pneumoniae*-specific primers (SEQ ID NOs. 1331 and 1332) described in Example 29. Internal probes were designed for molecular beacon detection of the wild-type *K. pneumoniae gyrA* (SEQ ID NO. 2251), for detection of the Ser-83 to Tyr or Phe and/or Asp-87 to Gly or Asn in the GyrA subunit of DNA gyrase encoded by *gyrA* (SEQ ID NOs. 2250) and for detection of *K. pneumoniae* (SEQ ID NO. 2281).

EXAMPLE 35:

Development of a PCR assay for detection and identification of S. pneumoniae and its quinolone resistance genes gyrA and parC. The analysis of gyrA and parC sequences from a variety of bacterial species revealed conserved regions allowing the design of PCR primers able to amplify the quinolone-resistance-determining region (QRDR) of gyrA and parC from all S. pneumoniae strains. PCR primer pair SEQ ID NOs. 2040 and 2041 was designed to amplify the QRDR of S. pneumoniae gyrA, whereas PCR primer pair SEQ ID NOs. 2044 and 2045 was designed to amplify the QRDR of S. pneumoniae parC. The comparison of gyrA and parC sequences from S. pneumoniae strains with various levels of quinolone resistance allowed the identification of amino acid substitutions Ser-81 to Phe or

Tyr in the GyrA subunit of DNA gyrase encoded by gyrA and amino acid changes Ser-79 to Phe in the ParC subunit of topoisomerase IV encoded by parC. These amino acid substitutions in the GyrA and ParC subunits occur in isolates with intermediate- or high-level quinolone resistance. Internal probes for the specific detection of each of the gyrA (SEQ ID NOs. 2042 and 2043) and parC (SEQ ID NO. 2046) mutations identified in quinolone-resistant S. pneumoniae were designed.

For all bacterial species, amplification was performed from purified genomic DNA. 1 μ l of genomic DNA at 0.1 ng/ μ L was transferred directly to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M (each) of the above primers SEQ ID NOs. 2040, 2041, 2044 and 2045, 0.05 mM bovine serum albumin (BSA) and 0.5 U Taq polymerase coupled with TaqStartTM antibody. The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 58 °C, followed by terminal extension at 72 °C for 2 minutes. In order to generate Digoxigenin (DIG)-labeled amplicons for capture probe hybridization, 0.1X PCR DIG labeling four deoxynucleoside triphosphates mix (Boehringer Mannheim GmbH) was used for amplification.

The DIG-labeled amplicons were hybridized to the capture probes bound to 96-well plates. The plates were incubated with anti-DIG-alkaline phosphatase and the chemiluminescence was measured by using a luminometer (MLX, Dynex Technologies Inc.) after incubation with CSPD and recorded as Relative Light Unit (RLU). The RLU ratio of tested sample with and without captures probes was then calculated. A ratio ≥ 2.0 was defined as a positive hybridization signal. All reactions were performed in duplicate.

The specificity of the multiplex assay with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from a panel of bacteria listed in Table 13. Strong amplification of both gyrA and parC was detected only for the S. pneumoniae strains tested. Weak amplification of both gyrA and parC genes was detected for Staphylococcus simulans. The detection limit tested with purified genomic DNA from 5 strains of S. pneumoniae was 1 to 10 genome copies. In addition, 5 quinolone-resistant and 2 quinolone-sensitive clinical isolates of S. pneumoniae were tested to further validate the developed multiplex PCR coupled with capture probe hybridization assays. There was a perfect correlation between detection of S. pneumoniae gyrA and parC mutations and the susceptibility to quinolone.

The complete assay for the specific detection of *S. pneumoniae* and its susceptibility to quinolone contains the *S. pneumoniae*-specific primers (SEQ ID NOs. 1179 and 1181) described in Exemple 20 and the multiplex containing the *S. pneumoniae gyrA*-specific and *parC*-specific primer pairs (SEQ ID NOS. 2040 and 2041 and SEQ ID NOs. 2044 and 2045). Amplification is coupled with post-PCR hybridization with the internal probe specific to *S. pneumoniae* (SEQ ID NO. 1180) described in Example and the internal probes specific to each of the *S. pneumoniae gyrA* and *parC* variants (SEQ ID NOs. 2042, 2043 and 2046).

EXAMPLE 36:

Detection of extended-spectrum TEM-type β-lactamases in *Escherichia coli*. The analysis of TEM sequences which confer resistance to third-generation cephalosporins and to β-lactamase inhibitors allowed the identification of amino acid substitutions Met-69 to Ile or Leu or Val, Ser-130 to Gly, Arg-164 to Ser or His, Gly-238 to Ser, Glu-240 to Lys and Arg-244 to Ser or Cys or Thr or His or Leu. PCR primers SEQ ID NOs. 1907 and 1908 were designed to amplify TEM sequences. Internal probes for the specific detection of wild-type TEM (SEQ ID NO. 2141) and for each of the amino acid substitutions (SEQ ID NOs. 1909-1926) identified in TEM variants were designed to detect resistance to third-generation

cephalosporins and to β -lactamase inhibitors. Design and synthesis of primers and probes, and detection of the hybridization were performed as described in Example 7.

For all bacterial species, amplification was performed from purified genomic DNA. One μ l of genomic DNA at $0.1 \text{ng}/\mu$ l was transferred directly to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0); 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M of the TEM-specific primers SEQ ID NOs. 1907 and 1908, 200 μ M (each) of the four deoxynucleoside triphosphates, 0.05 mM bovine serum albumin (BSA) and 0.5 U *Taq* polymerase (Promega) coupled with TaqStartTM antibody. PCR amplification and agarose gel analysis of the amplified products were performed as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of three steps consisting of 5 seconds at 95 °C, 30 seconds at 55 °C and 30 seconds at 72 °C, followed by terminal extension at 72 °C for 2 minutes.

The specificity of the TEM-specific primers with 40-cycle PCR was verified by using 0.1 ng of purified genomic from the following bacteria: three third-generation cephalosporin-resistant *Escherichia coli* strains (one with TEM-10, one with TEM-28 and the other with TEM-49), two third-generation cephalosporin-sensitive *Escherichia coli* strain (one with TEM-1 and the other without TEM), one third-generation cephalosporin-resistant *Klebsiella pneumoniae* strain (with TEM-47), and one β -lactamase-inhibitor-resistant *Proteus mirabilis* strain (with TEM-39). Amplification with the TEM-specific primers was detected only for strains containing TEM.

The sensitivity of the assay with 40-cycle PCR was verified with three *E. coli* strains containing TEM-1 or TEM-10 or TEM-49, one *K. pneumoniae* strain containing TEM-47 and one *P. mirabilis* strain containing TEM-39. The detection

limit was 5 to 100 copies of genomic DNA, depending on the TEM-containing strains tested.

The TEM-specific primers SEQ ID NOs. 1907 and 1908 were used in multiplex with the *Escherichia coli/Shigella sp.*-specific primers SEQ ID NOs. 1661 and 1665 described in Example 28 to allow the complete identification of *Escherichia coli/Shigella sp.* and the susceptibility to β -lactams. PCR amplification with 0.4 μ M of each of the primers and agarose gel analysis of the amplified products was performed as described above.

The specificity of the multiplex with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from the following bacteria: three third-generation cephalosporin-resistant *Escherichia coli* strains (one with TEM-10, one with TEM-28 and the other with TEM-49), two third-generation cephalosporin-sensitive *Escherichia coli* strain (one with TEM-1 and the other without TEM), one third-generation cephalosporin-resistant *Klebsiella pneumoniae* strain (with TEM-47), and one β-lactamase-inhibitor-resistant *Proteus mirabilis* strain (with TEM-39). The multiplex was highly specific to *Escherichia coli* strains containing TEM.

The complete assay for detection of TEM-type β-lactamases in *E. coli* includes PCR amplification using the multiplex containing the TEM-specific primers (SEQ ID NOs. 1907 and 1908) and the *Escherichia coli/Shigella* sp.-specific primers (SEQ ID NOs. 1661 and 1665) coupled with post PCR-hybridization with the internal probes specific to wild-type TEM (SEQ ID NO. 2141) and to the TEM variants (SEQ ID NOs. 1909-1926).

EXAMPLE 37:

Detection of extended-spectrum SHV-type β-lactamases in *Klebsiella pneumoniae*. The comparison of SHV sequences, which confer resistance to third-generation

cephalosporins and to β -lactamase inhibitors, allowed the identification of amino acid substitutions Ser-130 to Gly, Asp-179 to Ala or Asn, Gly-238 to Ser , and Glu-240 to Lys. PCR primer pair SEQ ID NOs. 1884 and 1885 was designed to amplify SHV sequences. Internal probes for the specific identification of wild-type SHV (SEQ ID NO. 1896) and for each of the amino acid substitutions (SEQ ID NOs. 1886-1895 and 1897-1898) identified in SHV variants were designed to detect resistance to third-generation cephalosporins and to β -lactamase inhibitors. Design and synthesis of primers and probes, and detection of the hybridization were performed as described in Example 7.

For all bacterial species, amplification was performed from purified genomic DNA. One μ l of of genomic DNA at $0.1 \text{ng}/\mu$ l was transferred directly to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M of the SHV-specific primers SEQ ID NO. 1884 and 1885, 200 μ M (each) of the four deoxynucleoside triphosphates, 0.05 mM bovine serum albumin (BSA) and 0.5 U *Taq* polymerase (Promega) coupled with TaqStartTM antibody. PCR amplification and agarose gel analysis of the amplified products were performed as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of three steps consisting of 5 seconds at 95 °C, 30 seconds at 55 °C and 30 seconds at 72 °C, followed by terminal extension at 72 °C for 2 minutes.

The specificity of the SHV-specific primers with 40-cycle PCR was verified by using 0.1 ng of purified genomic from the following bacteria: two third-generation cephalosporin-resistant *Klebsiella pneumoniae* strains (one with SHV-2a and the other with SHV-12), one third-generation cephalosporin-sensitive *Klebsiella pneumoniae* strain (with SHV-1), two third-generation cephalosporin-resistant *Escherichia coli* strains (one with SHV-8 and the other with SHV-7), and two third-generation cephalosporin-sensitive *Escherichia coli* strains (one with SHV-1

and the other without any SHV). Amplification with the SHV-specific primers was detected only for strains containing SHV.

The sensitivity of the assay with 40-cycle PCR was verified with four strains containing SHV. The detection limit was 10 to 100 copies of genomic DNA, depending on the SHV-containing strains tested.

The amplification was coupled with post-PCR hybridization with the internal probes specific for identification of wild-type SHV (SEQ ID NO. 1896) and for each of the amino acid substitutions (SEQ ID NOs. 1886-1895 and 1897-1898) identified in SHV variants. The specificity of the probes was verified with six strains containing various SHV enzymes, one *Klebsiella pneumoniae* strain containing SHV-1, one *Klebsiella pneumoniae* strain containing SHV-2a, one *Klebsiella pneumoniae* strain containing SHV-12, one *Escherichia coli* strain containing SHV-7 and one *Escherichia coli* strain containing SHV-8. The probes correctly detected each of the SHV genes and their specific mutations. There was a perfect correlation between the SHV genotype of the strains and the susceptibility to β-lactam antibiotics.

The SHV-specific primers SEQ ID NOs. 1884 and 1885 were used in multiplex with the K. pneumoniae-specific primers SEQ ID NOs. 1331 and 1332 described in Example 29 to allow the complete identification of K. pneumoniae and the susceptibility to β -lactams. PCR amplification with 0.4 μ M of each of the primers and agarose gel analysis of the amplified products were performed as described above.

The specificity of the multiplex with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from the following bacteria: three *K. pneumoniae* strains containing SHV-1, one *Klebsiella pneumoniae* strain containing SHV-2a, one

Klebsiella pneumoniae strain containing SHV-12, one K. rhinoscleromatis strain containing SHV-1, one Escherichia coli strain without SHV. The multiplex was highly specific to Klebsiella pneumoniae strain containing SHV.

EXAMPLE 38:

Development of a PCR assay for the detection and identification of *Neisseria* gonorrhoeae and its associated tetracycline resistance gene tetM. The analysis of publicly available tetM sequences revealed conserved regions allowing the design of PCR primers specific to tetM sequences. The PCR primer pair SEQ ID NOs. 1588 and 1589 was used in multiplex with the Neisseria gonorrhoeae-specific primers SEQ ID NOs. 551 and 552 described in Example 31. Sequence alignment analysis of tetM sequences revealed regions suitable for the design of an internal probe specific to tetM (SEQ ID NO. 2254). PCR amplification was carried out on PTC-200 thermocyclers (MJ Research) using 0.4 μ M of each primer pair as described in Example 28. The optimal cycling conditions for maximum sensitivity and specificity were as follow: three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 60°C, followed by terminal extension at 72 °C for 2 minutes.

The specificity of the multiplex PCR assay with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from the following bacteria: two tetracycline-resistant *Escherichia coli* strains (one containing the tetracycline-resistant gene *tetB* and the other containing the tetracycline-resistant gene *tetC*), one tetracycline-resistant *Pseudomonas aeruginosa* strain (containing the tetracycline-resistant gene *tetA*), nine tetracycline-resistant *Neisseria gonorrhoeae* strains, two tetracycline-sensitive *Neisseria meningitidis* strains, one tetracycline-sensitive *Neisseria polysaccharea* strain, one tetracycline-sensitive *Neisseria sicca* strain and one tetracycline-sensitive *Neisseria subflava* strain. Amplification with both the *tetM*-specific and *Neisseria gonorrhoeae*-specific primers was detected

only for *N. gonorrhoeae* strains containing *tetM*. There was a weak amplification signal using *Neisseria gonorrhoeae*-specific primers for the following species: *Neisseria sicca, Neisseria polysaccharea* and *Neisseria meningitidis*. There was a perfect correlation between the *tetM* genotype and the tetracycline susceptibility pattern of the *Neisseria gonorrhoeae* strains tested. The internal probe specific to *N. gonorrhoeae* SEQ ID NO. 2166 described in Example 31 can discriminate *Neisseria gonorrhoeae* from the other *Neisseria* sp.

The sensitivity of the assay with 40-cycle PCR was verified with two tetracycline resistant strains of *N. gonorrhoeae*. The detection limit was 5 copies of genomic DNA for both strains.

EXAMPLE 39:

Development of a PCR assay for the detection and identification of Shigella sp. and their associated trimethoprim resistance gene dhfrla. The analysis of publicly available dhfrla and other dhfr sequences revealed regions allowing the design of PCR primers specific to dhfrIa sequences. The PCR primer pair (SEQ ID NOs. 1459 and 1460) was used in multiplex with the Escherichia coli/Shigella sp.specific primers SEQ ID NOs. 1661 and 1665 described in Example 28. Sequence alignment analysis of dhfrla sequences revealed regions suitable for the design of an internal probe specific to dhfrla (SEQ ID NO. 2253). PCR amplification and agarose gel analysis of the amplified products were performed as described in Example 28 with an annealing temperature of 60 °C. The specificity of the multiplex assay with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from a panel of bacteria. The list included the following trimethoprim-sensitive strains, Salmonella typhimyurium, Salmonella typhi, Salmonella enteritidis, Tatumella ptyseos, Klebsiella pneumoniae, Enterobacter aerogenes, Citrobacter farmeri, Campylobacter jejuni, Serratia marcescens, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, six trimethoprim-resistant Escherichia coli strains (containing dhfrIa or dhfrV or dhfrVII or dhfrXII or

dhfrXIII or dhfrXV), four trimethoprim-resistant strains containing dhfrIa (Shigella sonnei, Shigella flexneri, Shigella dysenteriae and Escherichia coli). There was a perfect correlation between the dhfrIa genotype and the trimethoprim susceptibility pattern of the Escherichia coli and Shigella sp. strains tested. The dhfrIa primers were specific to the dhfrIa gene and did not amplify any of the other trimethoprim-resistant dhfr genes tested. The sensitivity of the multiplex assay with 40-cycle PCR was verified with three strains of trimethoprim-resistant strains of Shigella sp. The detection limit was 5 to 10 genome copies of DNA, depending on the Shigella sp. strains tested.

EXAMPLE 40:

Development of a PCR assay for the detection and identification of Acinetobacter baumannii and its associated aminoglycoside resistance gene aph(3')-VIa. The comparison of publicly available aph(3')-VIa sequence revealed regions allowing the design of PCR primers specific to aph(3')-VIa. The PCR primer pair (SEQ ID NOs. 1404 and 1405) was used in multiplex with the Acinetobacter baumanniispecific primers SEQ ID NOs. 1692 and 1693 described in Example 30. Analysis of the aph(3')-VIa sequence revealed region suitable for the design of an internal probe specific to aph(3')-VIa (SEQ ID NO. 2252). PCR amplification and agarose gel analysis of the amplified products were performed as described in Example 28. The specificity of the multiplex assay with 40-cycle PCR was verified by using 0.1 ng of purified genomic DNA from a panel of bacteria including: two aminoglycoside-resistant A. baumanni strains (containing aph(3')-VIa), one aminoglycoside-sensitive A. baumani strain, one of each of the following aminoglycoside-resistant bacteria, one Serratia marcescens strain containing the aminoglycoside-resistant gene aacC1, one Serratia marcescens strain containing the aminoglycoside-resistant gene aacC4, one Enterobacter cloacae strain containing the aminoglycoside-resistant gene aacC2, one Enterococcus faecalis containing the aminoglycoside-resistant gene aacA-aphD, one Pseudomonas

aeruginosa strain containing the aminoglycoside-resistant gene aac6IIa and one of each of the following aminoglycoside-sensitive bacterial species, Acinetobacter anitratus, Acinetobacter lwoffi, Psychobbacter phenylpyruvian, Neisseria gonorrhoeae, Haemophilus haemolyticus, Haemophilus influenzae, Yersinia enterolitica, Proteus vulgaris, Eikenella corrodens, Escherichia coli. There was a perfect correlation between the aph(3')-VIa genotype and the aminoglycoside susuceptibility pattern of the A. baumannii strains tested. The aph(3')-VIa-specific primers were specific to the aph(3')-VIa gene and did not amplify any of the other aminoglycoside-resistant genes tested. The sensitivity of the multiplex assay with 40-cycle PCR was verified with two strains of aminoglycoside-resistant strains of A. baumannii. The detection limit was 5 genome copies of DNA for both A. baumannii strains tested.

EXAMPLE 41:

Specific identification of Bacteroides fragilis using atpD (V-type) sequences. The comparison of atpD (V-type) sequences from a variety of bacterial species allowed the selection of PCR primers for Bacteroides fragilis. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignement of various atpD sequences from B. fragilis, as well as atpD sequences from the related species B. dispar, bacterial genera and archaea, especially representatives with phylogenetically related atpD sequences. A careful analysis of this alignment allowed the selection of oligonucleotide sequences which are conserved within the target species but which discriminate sequences from other species, especially from closely related species B. dispar, thereby permitting the species-specific and ubiquitous detection and identification of the target bacterial species.

The chosen primer pair, SEQ ID NOs. 2134-2135, produces an amplification product of 231 bp. Standard PCR was carried out on PTC-200 thermocyclers (MJ Research Inc.) using $0.4\mu\text{M}$ of each primers pair as described in Example 28. The

PCT/CA00/01150

optimal cycling conditions for maximum sensitivity and specificity were as follows: three minutes at 95°C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95°C and 30 seconds at 60°C, followed by terminal extension at 72°C for 2 minutes.

The format of this assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 2136 for the detection of the *B. fragilis* amplicon.

EXAMPLE 42:

WO 01/23604

Evidence for horizontal gene transfer in the evolution of the elongation factor Tu in Enterococci.

ABSTRACT

The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present depending on the bacterial species. Most low G+C gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, E. casseliflavus, E. dispar, E. durans, E. faecium, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, and E. raffinosus. For the other six enterococcal species (E. cecorum, E. columbae, E. faecalis, E. sulfureus, E.

saccharolyticus, and E. solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all share a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and L. lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes.

INTRODUCTION

The elongation factor Tu (EF-Tu) is a GTP binding protein playing a central role in protein synthesis. It mediates the recognition and transport of aminoacyl-tRNAs and their positioning to the A-site of the ribosome. The highly conserved function and ubiquitous distribution render the elongation factor a valuable phylogenetic marker among eubacteria and even throughout the archaebacterial and eukaryotic kingdoms. The *tuf* genes encoding elongation factor Tu are present in various copy numbers per bacterial genome. Most gram-negative bacteria contain two *tuf* genes. As found in *Escherichia coli*, the two genes, while being almost identical in sequence, are located in different parts of the bacterial chromosome. However, recently completed microbial genomes revealed that only one *tuf* gene is found in *Helicobacter pylori* as well as in some obligate parasitic bacteria, such as *Borrelia burgdorferi*, *Rickettsia prowazekii*, and *Treponema pallidum*, and in some cyanobacteria. In most gram-positive bacteria studied so far, only one *tuf* gene was found. However, Southern hybridization showed that there are two *tuf* genes in

some clostridia as well as in *Streptomyces coelicolor* and *S. lividans*. Up to three *tuf*-like genes have been identified in *S. ramocissimus*.

Although massive prokaryotic gene transfer is suggested to be one of the factors responsible for the evolution of bacterial genomes, the genes encoding components of the translation machinery are thought to be highly conserved and difficult to be transferred horizontally due to the complexity of their interactions. However, a few recent studies demonstrated evidence that horizontal gene transfer has also occurred in the evolution of some genes coding for the translation apparatus, namely, 16S rRNA and some aminoacyl-tRNA synthetases. No further data suggest that such a mechanism is involved in the evolution of the elongation factors. Previous studies concluded that the two copies of *tuf* genes in the genomes of some bacteria resulted from an ancient event of gene duplication. Moreover, a study of the *tuf* gene in *R. prowazekii* suggested that intrachromosomal recombination has taken place in the evolution of the genome of this organism.

To date, little is known about the *tuf* genes of enterococcal species. In this study, we analyzed partial sequences of *tuf* genes in 17 enterococcal species, namely, *E. avium*, *E. casseliflavus*, *E. cecorum*, *E. columbae*, *E. dispar*, *E. durans*, *E. faecalis*, *E. faecium*, *E. gallinarum*, *E. hirae*, *E. malodoratus*, *E. mundtii*, *E. pseudoavium*, *E. raffinosus*, *E. saccharolyticus*, *E. solitarius*, and *E. sulfureus*. We report here the presence of two divergent copies of *tuf* genes in 11 of these enterococcal species. The 6 other species carried a single *tuf* gene. The evolutionary implications are discussed.

MATERIALS AND METHODS

Bacterial strains. Seventeen enterococcal strains and other gram-positive bacterial strains obtained from the American Type Culture Collection (ATCC, Manassas, Va.) were used in this study (Table 16). All strains were grown on sheep blood agar or in brain-heart infusion broth prior to DNA isolation.

DNA isolation. Bacterial DNAs were prepared using the G NOME DNA extraction kit (Bio101, Vista, Calif.) as previously described.

Sequencing of putative tuf genes. In order to obtain the tuf gene sequences of enterococci and other gram-positive bacteria, two sequencing approaches were used: 1) sequencing of cloned PCR products and 2) direct sequencing of PCR products. A pair of degenerate primers (SEQ ID NOs. 664 and 697) were used to amplify an 886-bp portion of the tuf genes from enterococcal species and other gram-positive bacteria as previously described. For E. avium, E. casseliflavus, E. dispar, E. durans, E. faecium, E. gallinarum, E. hirae, E. mundtii, E. pseudoavium, and E. raffinosus, the amplicons were cloned using the Original TA cloning kit (Invitrogen, Carlsbad, Calif.) as previously described. Five clones for each species were selected for sequencing. For E. cecorum, E. faecalis, E. saccharolyticus, and E. solitarius as well as the other gram-positive bacteria, the sequences of the 886bp amplicons were obtained by direct sequencing. Based on the results obtained from the earlier rounds of sequencing, two pairs of primers were designed for obtaining the partial tuf sequences from the other enterococcal species by direct sequencing. One pair of primers (SEQ ID NOs. 543 and 660) were used to amplify the enterococcal tuf gene fragments from E. columbae, E. malodoratus, and E. sulfureus. Another pair of primers (SEQ ID NOs. 664 and 661) were used to amplify the second tuf gene fragments from E. avium, E. malodoratus, and E. pseudoavium.

Prior to direct sequencing, PCR products were electrophoresed on 1% agarose gel at 120V for 2 hours. The gel was then stained with 0.02% methylene blue for 30 minutes and washed twice with autoclaved distilled water for 15 minutes. The gel slices containing PCR products of the expected sizes were cut out and purified with the QIAquick gel extraction kit (QIAgen Inc., Mississauga, Ontario, Canada) according to the manufacturer's instructions. PCR mixtures for sequencing were prepared as described previously. DNA sequencing was carried out with the Big DyeTM Terminator Ready Reaction cycle sequencing kit using a 377 DNA sequencer (PE Applied Biosystems, Foster City, Calif.). Both strands of the

amplified DNA were sequenced. The sequence data were verified using the SequencerTM 3.0 software (Gene Codes Corp., Ann Arbor, Mich.).

Sequence analysis and phylogenetic study. Nucleotide sequences of the tuf genes and their respective flanking regions for E. faecalis, Staphylococcus aureus, and Streptococcus pneumoniae, were retrieved from the TIGR microbial genome database and S. pyogenes from the University of Oklahoma database. DNA sequences and deduced protein sequences obtained in this study were compared with those in all publicly available databases using the BLAST and FASTA programs. Unless specified, sequence analysis was conducted with the programs from GCG package (Version 10; Genetics Computer Group, Madison, Wisc.). Sequence alignment of the tuf genes from 74 species representing all three kingdoms of life (Tables 16 and 17) were carried out by use of Pileup and corrected upon visual analysis. The N- and C-termini extremities of the sequences were trimmed to yield a common block of 201 amino acids sequences and equivocal residues were removed. Phylogenetic analysis was performed with the aid of PAUP 4.0b4 written by Dr. David L. Swofford (Sinauer Associates, Inc., Publishers, Sunderland, Mass.). The distance matrix and maximum parsimony were used to generate phylogenetic trees and bootstrap resampling procedures were performed using 500 and 100 replications in each analysis, respectively.

Protein structure analysis. The crystal structures of (i)*Thermus aquaticus* EF-Tu in complex with Phe-tRNA^{Phe} and a GTP analog and (ii) *E. coli* EF-Tu in complex with GDP served as templates for constructing the equivalent models for enterococcal EF-Tu. Homology modeling of protein structure was performed using the SWISS-MODEL server and inspected using the SWISS-PDB viewer version 3.1.

Southern hybridization. In a previous study, we amplified and cloned an 803-bp PCR product of the *tuf* gene fragment from *E. faecium*. Two divergent sequences of the inserts, which we assumed to be *tufA* and *tufB* genes, were obtained. The recombinant plasmid carrying either *tufA* or *tufB* sequence was used to generate two probes labeled with Digoxigenin (DIG)-11-dUTP by PCR

incorporation following the instructions of the manufacturer (Boehringer Mannheim, Laval, Québec, Canada). Enterococcal genomic DNA samples (1-2 µg) were digested to completion with restriction endonucleases BglII and XbaI as recommended by the supplier (Amersham Pharmacia Biotech, Mississauga, Ontario, Canada). These restriction enzymes were chosen because no restriction sites were observed within the amplified tuf gene fragments of most enterococci. Southern blotting and filter hybridization were performed using positively charged nylon membranes (Boehringer Mannheim) and QuikHyb hybridization solution (Stratagene Cloning Systems, La Jolla, Calif.) according to the manufacturers' instructions with modifications. Twenty ul of each digestion were electrophoresed for 2 h at 120V on a 0.8% agarose gel. The DNA fragments were denatured with 0.5 M NaOH and transferred by Southern blotting onto a positively charged nylon membrane (Boehringer Mannheim). The filters were pre-hybridized for 15 min and then hybridized for 2 h in the QuikHyb solution at 68°C with either DIG-labeled probe. Posthybridization washings were performed twice with 0.5x SSC, 1% SDS at room temperature for 15 min and twice in the same solution at 60°C for 15 min. Detection of bound probes was achieved using disodium 3- (4-methoxyspiro (1,2dioxetane-3,2'- (5'-chloro) tricyclo(3,3.1.1^{3.7}) decan)-4-yl) phenyl phosphate (CSPD) (Boehringer Mannheim) as specified by the manufacturer.

GenBank submission. The GenBank accession numbers for partial *tuf* gene sequences generated in this study are given in Table 16.

RESULTS

Sequencing and nucleotide sequence analysis. In this study, all gram-positive bacteria other than enterococci yielded a single *tuf* sequence of 886 bp using primers SEQ ID NOs. 664 and 697 (Table 16). Each of four enterococcal species including *E. cecorum*, *E. faecalis*, *E. saccharolyticus*, and *E. solitarius* also yielded one 886-bp *tuf* sequence. On the other hand, for *E. avium*, *E. casseliflavus*, *E. dispar*, *E. durans*, *E. faecium*, *E. gallinarum*, *E. hirae*, *E. mundtii*, *E. pseudoavium*,

and E. raffinosus, direct sequencing of the 886-bp fragments revealed overlapping peaks according to their sequence chromatograms, suggesting the presence of additional copies of the tuf gene. Therefore, the tuf gene fragments of these 10 species were cloned first and then sequenced. Sequencing data revealed that two different types of tuf sequences (tufA and tufB) are found in eight of these species including E. casseliflavus, E. dispar, E. durans, E. faecium, E. gallinarum, E. hirae, E. mundtii, and E. raffinosus. Five clones from E. avium and E. pseudoavium yielded only a single tuf sequence. These new sequence data allowed the design of new primers specific for the enterococcal tufA or tufB sequences. Primers SEQ ID NOs. 543 and 660 were designed to amplify only enterococcal tufA sequences and a 694-bp fragment was amplified from all 17 enterococcal species. The 694-bp sequences of tufA genes from E. columbae, E. malodoratus, and E. sulfureus were obtained by direct sequencing using these primers. Primers SEQ ID NOs. 664 and 661 were designed for the amplification of 730-bp portion of tufB genes and yielded the expected fragments from 11 enterococcal species, including E. malodoratus and the 10 enterococcal species in which heterogeneous tuf sequences were initially found. The sequences of the tufB fragments for E. avium, E. malodoratus and E. pseudoavium were determined by direct sequencing using the primers SEQ ID NOs. 664 and 661. Overall, tufA gene fragments were obtained from all 17 enterococcal species but tufB gene fragments were obtained with only 11 enterococcal species (Table 16).

The identities between *tufA* and *tufB* for each enterococcal species were 68-79% at the nucleotide level and 81 to 89% at the amino acid level. The *tufA* gene is highly conserved among all enterococcal species with identities varying from 87% to 99% for DNA and 93% to 99% for amino acid sequences, while the identities among *tufB* genes of enterococci varies from 77% to 92% for DNA and 91% to 99% for amino acid sequences, indicating their different origins and evolution (Table 18). Since *E. solitarius* has been transferred to the genus *Tetragenococcus*, which is also a low G+C gram-positive bacterium, our sequence comparison did not include this species as an enterococcus. G+C content of enterococcal *tufA*

sequences ranged from 40.8% to 43.1%, while that of enterococcal tufB sequences varied from 37.8% to 46.3%. Based on amino acid sequence comparison, the enterococcal tufA gene products share higher identities with those of Abiotrophia adiacens, Bacillus subtilis, Listeria monocytogenes, S. aureus, and S. epidermidis. On the other hand, the enterococcal tufB gene products share higher percentages of amino acid identity with the tuf genes of S. pneumoniae, S. pyogenes and Lactococcus lactis (Table 18).

In order to elucidate whether the two enterococcal tuf sequences encode genuine EF-Tu, the deduced amino acid sequences of both genes were aligned with other EF-Tu sequences available in SWISSPROT (Release 38). Sequence alignment demonstrated that both gene products are highly conserved and carry all conserved residues present in this portion of prokaryotic EF-Tu (Figure 4). Therefore, it appears that both gene products could fulfill the function of EF-Tu. The partial tuf gene sequences encode the portion of EF-Tu from residues 117 to 317, numbered as in $E.\ coli$. This portion makes up of the last four α -helices and two β -strands of domain I, the entire domain II and the N-terminal part of domain III on the basis of the determined structures of $E.\ coli$ EF-Tu.

Based on the deduced amino acid sequences, the enterococcal *tufB* genes have unique conserved residues Lys129, Leu140, Ser230, and Asp234 (*E. coli* numbering) that are also conserved in streptococci and *L. lactis*, but not in the other bacteria (Figure 4). All these residues are located in loops except for Ser230. In other bacteria the residue Ser230 is substituted for highly conserved Thr, which is the 5th residue of the third β-strand of domain II. This region is partially responsible for the interaction between the EF-Tu and aminoacyl-tRNA by the formation of a deep pocket for any of the 20 naturally occurring amino acids. According to our three-dimensional model (data not illustrated), the substitution Thr230→Ser in domain II of EF-Tu may have little impact on the capability of the pocket to accommodate any amino acid. However, the high conservation of Thr230 comparing to the unique Ser substitution found only in streptococci and 11 enterococci could suggest a subtle functional role for this residue.

The tuf gene sequences obtained for E. faecalis, S. aureus, S. pneumoniae and S. pyogenes were compared with their respective incomplete genome sequence. Contigs with more than 99% identity were identified. Analysis of the E. faecalis genome data revealed that the single E. faecalis tuf gene is located within an str operon where tuf is preceded by fus that encodes the elongation factor G. This str operon is present in S. aureus and B. subtilis but not in the two streptococcal genomes examined. The 700-bp or so sequence upstream the S. pneumoniae tuf gene has no homology with any known gene sequences. In S. pyogenes, the gene upstream of tuf is similar to a cell division gene, ftsW, suggesting that the tuf genes in streptococci are not arranged in a str operon.

Phylogenetic analysis. Phylogenetic analysis of the *tuf* amino acid sequences with representatives of eubacteria, archeabacteria, and eukaryotes using neighborjoining and maximum parsimony methods showed three major clusters representing the three kingdoms of life. Both methods gave similar topologies consistent with the rRNA gene data (data not shown). Within the bacterial clade, the tree is polyphyletic but *tufA* genes from all enterococcal species always clustered with those from other low G+C gram-positive bacteria (except for streptococci and lactococci), while the *tufB* genes of the 11 enterococcal species form a distinct cluster with streptococci and *L. lactis* (Figure 5). Duplicated genes from the same organism do not cluster together, thereby not suggesting evolution by recent gene duplication.

Southern hybridization. Southern hybridization of BglII/XbaI digested genomic DNA from 12 enterococcal species tested with the tufA probe (DIG-labeled tufA fragment from E. faecium) yielded two bands of different sizes in 9 species, which also carried two divergent tuf sequences according to their sequencing data. For E. faecalis and E. solitarius, a single band was observed indicating that one tuf gene is present (Figure 6). A single band was also found when digested genomic DNA from S. aureus, S. pneumoniae, and S. pyogenes were hybridized with the tufA probe (data not shown). For E. faecium, the presence of three bands can be explained by the existence of a XbaI restriction site in the

middle of the *tufA* sequence, which was confirmed by sequencing data. Hybridization with the *tufB* probe (DIG-labeled *tufB* fragment of *E. faecium*) showed a banding profile similar to the one obtained with the *tufA* probe (data not shown).

DISCUSSION

In this study, we have shown that two divergent copies of genes encoding the elongation factor Tu are present in some enterococcal species. Sequence data revealed that both genes are highly conserved at the amino acid level. One copy (tufA) is present in all enterococcal species, while the other (tufB) is present only in 11 of the 17 enterococcal species studied. Based on 16S rRNA sequence analysis, these 11 species are members of three different enterococcal subgroups (E. avium, E. faecium, and E. gallinarum species groups) and a distinct species (E. dispar). Moreover, 16S rDNA phylogeny suggests that these 11 species possessing 2 tuf genes all share a common ancestor before they further evolved to become the modern species. Since the six other species having only one copy diverged from the enterococcal lineage before that common ancestor, it appears that the presence of one tuf gene in these six species is not attributable to gene loss.

Two clusters of low G+C gram-positive bacteria were observed in the phylogenetic tree of the *tuf* genes: one contains a majority of low G+C gram-positive bacteria and the other contains lactococci and streptococci. This is similar to the finding on the basis of phylogenetic analysis of the 16S rRNA gene and the *hrcA* gene coding for a unique heat-shock regulatory protein. The enterococcal *tufA* genes branched with most of the low G+C gram-positive bacteria, suggesting that they originated from a common ancestor. On the other hand, the enterococcal *tufB* genes branched with the genera *Streptococcus* and *Lactococcus* that form a distinct lineage separated from other low G+C gram-positive bacteria (Figure 5). The finding that these EF-Tu proteins share some conserved amino acid residues unique to this branch also supports the idea that they may share a common ancestor. Although these conserved residues might result from convergent

evolution upon a specialized function, such convergence at the sequence level, even for a few residues, seems to be rare, making it an unlikely event. Moreover, no currently known selective pressure, if any, would account for keeping one versus two *tuf* genes in bacteria. The G+C contents of enterococcal *tufA* and *tufB* sequences are similar, indicating that they both originated from low G+C grampositive bacteria, in accordance with the phylogenetic analysis.

The tuf genes are present in various copy numbers in different bacteria. Furthermore, the two tuf genes are normally associated with characteristic flanking genes. The two tuf gene copies commonly encountered within gram-negative bacteria are part of the bacterial str operon and tRNA-tufB operon, respectively. The arrangement of tufA in the str operon was also found in a variety of bacteria, including Thermotoga maritima, the most ancient bacteria sequenced so far, Aquifex aeolicus, cyanobacteria, Bacillus sp., Micrococcus luteus, Mycobacterium tuberculosis, and Streptomyces sp. Furthermore, the tRNA-tufB operon has also been identified in Aquifex aeolicus, Thermus thermophilus, and Chlamydia trachomatis. The two widespread tuf gene arrangements argue in favor of their ancient origins. It is noteworthy that most obligate intracellular parasites, such as Mycoplasma sp., R. prowazekii, B. burgdorferi, and T. pallidum, contain only one tuf gene. Their flanking sequences are distinct from the two conserved patterns as a result of selection for effective propagation by an extensive reduction in genome size by intragenomic recombination and rearrangement.

Most gram-positive bacteria with low G+C content sequenced to date contain only a single copy of the *tuf* gene as a part of the *str* operon. This is the case for *B. subtilis*, *S. aureus* and *E. faecalis*. PCR amplification using a primer targeting a conserved region of the *fus* gene and the *tufA*-specific primer SEQ ID NO. 660, but not the *tufB*-specific primer SEQ ID NO. 661, yielded the expected amplicons for all 17 enterococcal species tested, indicating the presence of the *fus-tuf* organization in all enterococci (data not shown). However, in the genomes of *S. pneumoniae* and *S. pyogenes*, the sequences flanking the *tuf* genes varies although the *tuf* gene itself remains highly conserved. The enterococcal *tufB* genes are

clustered with streptococci, but at present we do not have enough data to identify the genes flanking the enterococcal *tufB* genes. Furthermore, the functional role of the enterococcal *tufB* genes remains unknown. One can only postulate that the two divergent gene copies are expressed under different conditions.

The amino acid sequence identities between the enterococcal tufA and tufB genes are lower than either i) those between the enterococcal tufA and the tuf genes from other low G+C gram-positive bacteria (streptococci and lactococci excluded) or ii) those between the enterococcal tufB and streptococcal and lactococcal tuf genes. These findings suggest that the enterococcal tufA genes share a common ancestor with other low G+C gram-positive bacteria via the simple scheme of vertical evolution, while the enterococcal tufB genes are more closely related to those of streptococci and lactococci. The facts that some enterococci possess an additional tuf gene and that the single streptococcal tuf gene is not clustered with other low G+C gram-positive bacteria cannot be explained by the mechanism of gene duplication or intrachromosomal recombination. According to sequence and phylogenetic analysis, we propose that the presence of the additional copy of the tuf genes in 11 enterococcal species is due to horizontal gene transfer. The common ancestor of the 11 enterococcal species now carrying tufB genes acquired a tuf gene from an ancestral streptococcus or a streptococcus-related species during enterococcal evolution through gene transfer before the diversification of modern enterococci. Further study of the flanking regions of the gene may provide more clues for the origin and function of this gene in enterococci.

Recent studies of genes and genomes have demonstrated that considerable horizontal transfer occurred in the evolution of aminoacyl-tRNA synthetases in all three kingdoms of life. The heterogeneity of 16S rRNA is also attributable to horizontal gene transfer in some bacteria, such as *Streptomyces*, *Thermomonospora chromogena* and *Mycobacterium celatum*. In this study, we provide the first example in support of a likely horizontal transfer of the *tuf* gene encoding the elongation factor Tu. This may be an exception since stringent functional constraints do not allow for frequent horizontal transfer of the *tuf* gene as with

other genes. However, enterococcal tuf genes should not be the only such exception as we have noticed that the phylogeny of Streptomyces tuf genes is equally or more complex than that of enterococci. For example, the three tuf-like genes in a high G+C gram-positive bacterium, S. ramocissimus, branched with the tuf genes of phylogenetically divergent groups of bacteria (Figure 5). Another example may be the tuf genes in clostridia, which represent a phylogenetically very broad range of organisms and form a plethora of lines and groups of various complexities and depths. Four species belonging to three different clusters within the genus Clostridium have been shown by Southern hybridization to carry two copies of the tuf gene. Further sequence data and phylogenetic analysis may help interpreting the evolution of the elongation factor Tu in these gram-positive bacteria. Since the tuf genes and 16S rRNA genes are often used for phylogenetic study, the existence of duplicate genes originating from horizontal gene transfer may alter the phylogeny of microorganisms when the laterally acquired copy of the gene is used for such analysis. Hence, caution should be taken in interpreting phylogenetic data. In addition, the two tuf genes in enterococci have evolved separately and are distantly related to each other phylogenetically. The enterococcal tufB genes are less conserved and unique to the 11 enterococcal species only. We previously demonstrated that the enterococcal tufA genes could serve as a target to develop a DNA-based assay for identification of enterococci. The enterococcal tufB genes would also be useful in identification of these 11 enterococcal species.

EXAMPLE 43:

Elongation Factor Tu (tuf) and the F-ATPase beta-subunit (atpD) as phylogenetic tools for species of the family Enterobacteriaceae.

SUMMARY

The phylogeny of enterobacterial species commonly found in clinical samples was analyzed by comparing partial sequences of their elongation factor Tu (tuf) genes and their F-ATPase beta-subunit (atpD) genes. A 884-bp fragment for tuf and a 884- or 871-bp fragment for atpD were sequenced for 88 strains of 72 species from 25 enterobacterial genera. The atpD sequence analysis revealed a specific indel to Pantoea and Tatumella species showing for the first time a tight phylogenetic affiliation between these two genera. Comprehensive tuf and atpD phylogenetic trees were constructed and are in agreement with each other. Monophyletic genera are Yersinia, Pantoea, Edwardsiella, Cedecea, Salmonella, Serratia, Proteus, and Providencia. Analogous trees were obtained based on available 16S rDNA sequences from databases. tuf and atpD phylogenies are in agreement with the 16S rDNA analysis despite the smaller resolution power for the latter. In fact, distance comparisons revealed that tuf and atpD genes provide a better resolution for pairs of species belonging to the family Enterobacteriaceae. However, 16S rDNA distances are better resolved for pairs of species belonging to different families. In conclusion, tuf and atpD conserved genes are sufficiently divergent to discriminate different species inside the family Enterobacteriaceae and offer potential for the development of diagnostic tests based on DNA to identify enterobacterial species.

INTRODUCTION

Members of the family *Enterobacteriaceae* are facultatively anaerobic gramnegative rods, catalase-positive and oxydase-positive (Brenner, 1984). They are found in soil, water, plants, and in animals from insects to man. Many enterobacteria are opportunistic pathogens. In fact, members of this family are responsible for about 50 % of nosocomial infections in the United States (Brenner, 1984). Therefore, this family is of considerable clinical importance.

Major classification studies on the family *Enterobacteriaceae* are based on phenotypic traits (Brenner et al., 1999; Brenner et al., 1980; Dickey & Zumoff,

1988; Farmer III et al., 1980; Farmer III et al., 1985b; Farmer III et al., 1985a) such as biochemical reactions and physiological characteristics. However, phenotypically distinct strains may be closely related by genotypic criteria and may belong to the same genospecies (Bercovier et al., 1980; Hartl & Dykhuizen, 1984). Also, phenotypically close strains (biogroups) may belong to different genospecies, like Klebsiella pneumoniae and Enterobacter aerogenes (Brenner, 1984) for example. Consequently, identification and classification of certain species may be ambiguous with techniques based on phenotypic tests (Janda et al., 1999; Kitch et al., 1994; Sharma et al., 1990).

More advances in the classification of members of the family Enterobacteriaceae have come from DNA-DNA hybridization studies (Brenner et al., 1993; Brenner et al., 1986; Brenner, et al., 1980; Farmer III, et al., 1980; Farmer III, et al., 1985b; Izard et al., 1981; Steigerwalt et al., 1976). Furthermore, the phylogenetic significance of bacterial classification based on 16S rDNA sequences has been recognized by many workers (Stackebrandt & Goebel, 1994; Wayne et al., 1987). However, members of the family Enterobacteriaceae have not been subjected to extensive phylogenetic analysis of 16S rDNA (Sproer et al., 1999). In fact, this molecule was not thought to solve taxonomic problems concerning closely related species because of its very high degree of conservation (Brenner, 1992; Sproer, et al., 1999). Another drawback of the 16S rDNA gene is that it is found in several copies within the genome (seven in Escherichia coli and Salmonella typhimurium) (Hill & Harnish, 1981). Due to sequence divergence between the gene copies, direct sequencing of PCR products is often not suitable to achieve a representative sequence (Cilia et al., 1996; Hill & Harnish, 1981). Other genes such as gap and ompA (Lawrence et al., 1991), rpoB (Mollet et al., 1997), and infB (Hedegaard et al., 1999) were used to resolve the phylogeny of enterobacteria. However, none of these studies covered an extensive number of species.

tuf and atpD are the genes encoding the elongation factor Tu (EF-Tu) and the F-ATPase beta-subunit, respectively. EF-Tu is involved in peptide chain formation (Ludwig et al., 1990). The two copies of the tuf gene (tufA and tufB) found in enterobacteria (Sela et al., 1989) share high identity level (99 %) in Salmonella typhimurium and in E. coli. The recombination phenomenon could explain sequence homogenization between the two copies (Abdulkarim & Hughes, 1996; Grunberg-Manago, 1996). F-ATPase is present on the plasma membranes of eubacteria (Nelson & Taiz, 1989). It functions mainly in ATP synthesis (Nelson & Taiz, 1989) and the beta-subunit contains the catalytic site of the enzyme. EF-Tu and F-ATPase are highly conserved throughout evolution and shows functional constancy (Amann et al., 1988; Ludwig, et al., 1990). Recently, phylogenies based on protein sequences from EF-Tu and F-ATPase beta-subunit showed good agreement with each other and with the rDNA data (Ludwig et al., 1993).

We elected to sequence 884-bp fragments of *tuf* and *atpD* from 88 clinically relevant enterobacterial strains representing 72 species from 25 genera. These sequences were used to create phylogenetic trees that were compared with 16S rDNA trees. These trees revealed good agreement with each others and demonstrated the high resolution of *tuf* and *atpD* phylogenies at the species level.

MATERIALS AND METHODS

Bacterial strains and genomic material. All bacterial strains used in this study were obtained from the American Type Culture Collection (ATCC) or the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ). These enterobacteria can all be recovered from clinical specimens, but not all are pathogens. Whenever possible, we choose type strains. Identification of all strains was confirmed by classical biochemical tests using the automated system MicroScan WalkAway-96 system equipped with a Negative BP Combo Panel Type 15 (Dade Behring Canada). Genomic DNA was purified using the G NOME

DNA kit (Bio 101). Genomic DNA from *Yersinia pestis* was kindly provided by Dr. Robert R. Brubaker. Strains used in this study and their descriptions are shown in Table 19.

PCR primers. The eubacterial *tuf* and *atpD* gene sequences available from public databases were analyzed using the GCG package (version 8.0) (Genetics Computer Group). Based on multiple sequence alignments, two highly conserved regions were chosen for each genes, and PCR primers were derived from these regions with the help of Oligo primer analysis software (version 5.0) (National Biosciences). A second 5' primer was design to amplify the gene *atpD* for few enterobacteria difficult to amplify with the first primer set. When required, the primers contained inosines or degeneracies to account for variable positions. Oligonucleotide primers were synthesized with a model 394 DNA/RNA synthesizer (PE Applied Biosystems). PCR primers used in this study are listed in Table 20.

DNA sequencing. An 884-bp portion of the *tuf* gene and an 884-bp portion (or alternatively an 871-bp portion for a few enterobacterial strains) of the *atpD* gene were sequenced for all enterobacteria listed in the first strain column of Table 19. Amplification was performed with 4 ng of genomic DNA. The 40-μl PCR mixtures used to generate PCR products for sequencing contained 1·0 μM each primer, 200 μM each deoxyribonucleoside triphosphate (Pharmacia Biotech), 10 mM Tris-HCl (pH 9·0 at 25 °C), 50 mM KCl, 0·1 % (w/v) Triton X-100, 2·5 mM MgCl₂, 0·05 mM BSA, 0·3 U of *Taq* DNA polymerase (Promega) coupled with TaqStartTM antibody (Clontech Laboratories). The TaqStartTM neutralizing monoclonal antibody for *Taq* DNA polymerase was added to all PCR mixtures to enhance efficiency of amplification (Kellogg *et al.*, 1994). The PCR mixtures were subjected to thermal cycling (3 min at 95 °C and then 35 cycles of 1 min at 95 °C, 1 min at 55 °C for *tuf* or 50 °C for *atpD*, and 1 min at 72 °C, with a 7-min final extension at 72 °C) using a PTC-200 DNA Engine thermocycler (MJ Research).

PCR products having the predicted sizes were recovered from an agarose gel stained for 15 min with 0.02 % of methylene blue followed by washing in sterile distilled water for 15 min twice (Flores *et al.*, 1992). Subsequently, PCR products having the predicted sizes were recovered from gels using the QIAquick gel extraction kit (QIAGEN).

Both strands of the purified amplicons were sequenced using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems) on an automated DNA sequencer (Model 377). Amplicons from two independent PCR amplifications were sequenced for each strain to ensure the absence of sequencing errors attributable to nucleotide miscorporations by the *Taq* DNA polymerase. Sequence assembly was performed with the aid of Sequencher 3.0 software (Gene Codes).

Phylogenetic analysis. Multiple sequence alignments were performed using PileUp from the GCG package (Version 10.0) (Genetics Computer Group) and checked by eye with the editor SeqLab to edit sequences if necessary and to note which regions were to be excluded for phylogenetic analysis. *Vibrio cholerae* and *Shewanella putrefaciens* were used as outgroups. Bootstrap subsets (750 sets) and phylogenetic trees were generated with the Neighbor Joining algorithm from Dr. David Swofford's PAUP (Phylogenetic Analysis Using Parsimony) Software version 4.0b4 (Sinauer Associates) and with tree-bisection branch-swapping. The distance model used was Kimura (1980) two-parameter. Relative rate test was performed with the aid of Phyltest program version 2.0 (c).

RESULTS AND DISCUSSION

DNA amplification, sequencing and sequence alignments

A PCR product of the expected size of 884 bp was obtained for *tuf* and of 884 or 871 bp for *atpD* from all bacterial strains tested. After subtracting for biased

primer regions and ambiguous single strand data, sequences of at least 721 bp for tuf and 713 bp for atpD were submitted to phylogenetic analyses. These sequences were aligned with tuf and atpD sequences available in databases to verify that the nucleotide sequences indeed encoded a part of tested genes. Gaps were excluded to perform phylogenetic analysis.

Signature sequences

From the sequence alignments obtained from both tested genes, only one insertion was observed. This five amino acids insertion is located between the positions 325 and 326 of *atpD* gene of *E. coli* strain K-12 (Saraste *et al.*, 1981) and can be considered a signature sequence of *Tatumella ptyseos* and *Pantoea* species (Fig. 7). The presence of a conserved indel of defined length and sequence and flanked by conserved regions could suggest a common ancestor, particularly when members of a given taxa share this indel (Gupta, 1998). To our knowledge, high relatedness between the genera *Tatumella* and *Pantoea* is demonstrated for the first time.

Enterobacter agglomerans ATCC 27989 sequence does not possess the five amino acid indel (Fig. 7). This indel could represent a useful marker to help resolve the Enterobacter agglomerans and Pantoea classification. Indeed, the transfer of Enterobacter agglomerans to Pantoea agglomerans was proposed in 1989 by Gavini et al. (Gavini et al., 1989). However, some strains are provisionally classified as Pantoea sp. until their interrelatedness is elucidated (Gavini, et al., 1989). Since the transfer was proposed, the change of nomenclature has not yet been made for all Enterobacter agglomerans in the ATCC database. The absence of the five amino acids indel suggests that some strains of Enterobacter agglomerans most likely do not belong to the genus Pantoea.

Phylogenetic trees based on partial *tuf* sequences, atpD sequences, and published 16S rDNA data of members of the *Enterobacteriaceae*.

Representative trees constructed from tuf and atpD sequences with the neighbor-joining method are shown in Fig. 8. The phylogenetic trees generated from partial tuf sequences and atpD sequences are very similar. Nevertheless, atpD tree shows more monophyletic groups corresponding to species that belong to the same genus. These groups are more consistent with the actual taxonomy. For both genes, some genera are not monophyletic. These results support previous phylogenies based on the genes gap and ompA (Lawrence, et al., 1991), rpoB (Mollet, et al., 1997), and infB (Hedegaard, et al., 1999) which all showed that the genera Escherichia and Klebsiella are polyphyletic. There were few differences in branching between tuf and atpD genes.

Even though *Pantoea agglomerans* and *Pantoea dispersa* indels were excluded for phylogenetic analysis, these two species grouped together and were distant from *Enterobacter agglomerans* ATCC 27989, adding another evidence that the latter species is heterogenous and that not all members of this species belong to the genus *Pantoea*. In fact, the *E. agglomerans* strain ATCC 27989 exhibits branch lengths similar to others *Enterobacter* species with both genes. Therefore, we suggest that this strain belong to the genus *Enterobacter* until further reclassification of that genus.

tuf and atpD trees exhibit very short genetic distances between taxa belonging to the same genetic species including species segregated for clinical considerations. This first concern E. coli and Shigella species that were confirmed to be the same genetic species by hybridization studies (Brenner et al., 1972; Brenner et al., 1972; Brenner et al., 1982) and phylogenies based on 16S rDNA (Wang et al., 1997) and rpoB genes (Mollet, et al., 1997). Hybridization studies (Bercovier, et al., 1980) and phylogeny based on 16S rDNA genes (Ibrahim et al., 1994) demonstrated also that Yersinia pestis and Y. pseudotuberculosis are the same genetic species. Among

Yersinia pestis and Y. pseudotuberculosis, the three Klebsiella pneumoniae subspecies, E. coli-Shigella species, and Salmonella choleraesuis subspecies, Salmonella is a less tightly knit species than the other genetic species. The same is true for E. coli and Shigella species.

Escherichia fergusonii is very close to E. coli-Shigella genetic species. This observation is corroborated by 16S rDNA phylogeny (McLaughlin et al., 2000) but not by DNA hybridization values. In fact, E. fergusonii is only 49% to 63% related to E. coli-Shigella (Farmer III, et al., 1985b). It was previously observed that very recently diverged species may not be recognizable based on 16S rDNA sequences although DNA hybridization established them as different species (Fox et al., 1992). Therefore, E. fergusonii could be a new "quasi-species".

atpD phylogeny revealed Salmonella subspecies divisions consistent with the actual taxonomy. This result was already observed by Christensen et al. (Christensen & Olsen, 1998). Nevertheless, tuf partial sequences discriminate less than atpD between Salmonella subspecies.

Overall, tuf and atpD phylogenies exhibit enough divergence between species to ensure efficient discrimination. Therefore, it could be easy to distinguish phenotypically close enterobacteria belonging to different genetic species such as Klebsiella pneumoniae and Enterobacter aerogenes.

Phylogenetic relationships between Salmonella, E. coli and C. freundii are not well defined. 16S rDNA and 23S rDNA sequence data reveals a closer relationship between Salmonella and E. coli than between Salmonella and C. freundii (Christensen et al., 1998), while DNA homology studies (Selander et al., 1996) and infB phylogeny (Hedegaard, et al., 1999) showed that Salmonella is more closely related to C. freundii than to E. coli. In that regard, tuf and atpD phylogenies are coherent with 16S rDNA and 23S rDNA sequence analysis.

Phylogenetic analyses were also performed using amino acids sequences. *tuf* tree based on amino acids is characterized by a better resolution between taxa outgroup and taxa ingroup (enterobacteria) than tree based on nucleic acids whereas *atpD* trees based on amino acids and nucleic acids give almost the same resolution between taxa outgroup and ingroup (data not shown).

Relative rate test (or two cluster test (Takezaki et al., 1995)) evaluates if evolution is constant between two taxa. Before to apply the test, the topology of a tree is determined by tree-building method without the assumption of rate constancy. Therefore, two taxa (or two groups of taxa) are compared with a third taxon that is an outgroup of the first two taxa (Takezaki, et al., 1995). Few pairs of taxa that exhibited a great difference between their branch lengths at particular nodes were chosen to perform the test. This test reveals that tuf and atpD are not constant in their evolution within the family Enterobacteriaceae. For tuf, for example, the hypothesis of rate constancy is rejected (Z value higher than 1.96) between Yersinia species. The same is true for Proteus species. For atpD, for example, evolution is not constant between *Proteus* species, between *Proteus* species and Providencia species, and between Yersinia species and Escherichia coli. For 16S rDNA, for example, evolution is not constant between two E. coli, between E. coli and Enterobacter aerogenes, and between E. coli and Proteus vulgaris. These results suggest that tuf, atpD and 16S rDNA could not serve as a molecular clock for the entire family Enterobacteriaceae.

Since the number and the nature of taxa can influence topology of trees, phylogenetic trees from *tuf* and *atpD* were reconstructed using sequences corresponding to strains for which 16S rDNA genes were published in GenEMBL. These trees were similar to those generated using 16S rDNA (Fig. 9). Nevertheless, 16S rDNA tree gave poorer resolution power than *tuf* and *atpD* gene trees. Indeed, these latter exhibited less multifurcation (polytomy) than the 16S rDNA tree.

Comparison of distances based on tuf, atpD, and 16S rDNA data.

tuf, atpD, and 16S rDNA distances (i.e. the number of differences per nucleotide site) were compared with each other for each pair of strains. We found that the tuf and atpD distances were respectively 2.268 ± 0.965 and 2.927 ± 0.896 times larger than 16S rDNA distances (Fig. 10a and b). atpD distances were 1.445 ± 0.570 times larger than tuf distances (Fig. 10c). Figure 10 also shows that the tuf, atpD, and 16S rDNA distances between members of different species of the same genus $(0.053 \pm 0.034, 0.060 \pm 0.020, \text{ and } 0.024 \pm 0.010, \text{ respectively})$ were in mean smaller than the distances between members of different genera belonging to the same family $(0.103 \pm 0.053, 0.129 \pm 0.051, \text{ and } 0.044 \pm 0.013, \text{ respectively}).$ However, the overlap exhibits with standard deviations add to a focus of evidences that some enterobacterial genera are not well defined (Brenner, 1984). In fact, many distances for pairs of species especially belonging to the genera Escherichia, Shigella, Enterobacter, Citrobacter, Klebsiella, and Kluyvera overlap distances for pairs of species belonging to the same genus (Fig. 10). For example, distances for pairs composed by species of Citrobacter and species of Klebsiella overlap distances for pairs composed by two Citrobacter or by two Klebsiella.

Observing the distance distributions, 16S rDNA distances reveal a clear separation between the families *Enterobacteriaceae* and *Vibrionaceae* despite the fact that the family *Vibrionaceae* is genetically very close to the *Enterobacteriaceae* (Fig. 10a and b). Nevertheless, *tuf* and *atpD* show higher discriminating power below the family level (Fig. 10a and b).

There were some discrepancies in the relative distances for the same pairs of taxa between the two genes studied. First, distances between *Yersinia* species are at least two times lower for *atpD* than for tuf (Fig. 10c). Also, distances at the family level (between *Enterobacteriaceae* and *Vibrionaceae*) show that *Enterobacteriaceae* is a tightlier knit family with *atpD* gene (Proteus genus

excepted) than with *tuf* gene. Both genes well delineate taxa belonging to the same species. There is one exception with *atpD*: *Klebsiella planticola* and *K. ornithinolithica* belong to the same genus but fit with taxa belonging to the same species (Fig. 10a and c). These two species are also very close genotypically with *tuf* gene. This suggest that *Klebsiella planticola* and *K. ornithinolithica* could be two newborn species. *tuf* and *atpD* genes exhibit little distances between *Escherichia fergusonii* and *E. coli-Shigella* species. Unfortunately, comparison with 16S rDNA could not be achieved because the *E. fergusonii* 16S rDNA sequence is not yet accessible in GenEMBL database. Therefore, the majority of phenotypically close enterobacteria could be easily discriminated genotypically using *tuf* and *atpD* gene sequences.

In conclusion, tuf and atpD genes exhibit phylogenies consistent with 16S rDNA genes phylogeny. For example, they reveal that the family Enterobacteriaceae is monophyletic. Moreover, tuf and atpD distances provide a higher discriminating power than 16S rDNA distances. In fact, tuf and atpD genes discriminate well between different genospecies and are conserved between strains of the same genetic species in such a way that primers and molecular probes for diagnostic purposes could be designed. Preliminary studies support these observations and diagnostic tests based on tuf and atpD sequence data to identify enterobacteria are currently under development.

EXAMPLE 44:

Testing new pairs of PCR primers selected from two species-specific genomic DNA fragments which are objects of our assigned US patent 6,001,564

Objective: The goal of these experiments is to demonstrate that it is relatively easy for a person skilled in the art to find other PCR primer pairs from the species-specific

fragments used as targets for detection and identification of a variety of microorganisms. In fact, we wish to prove that the PCR primers previously tested by our group and which are objects of the present patent application are not the only possible good choices for diagnostic purposes. For this example, we used diagnostic targets described in our assigned US patent 6,001,564.

Experimental strategy: We have selected randomly two species-specific genomic DNA fragments for this experiment. The first one is the 705-bp fragment specific to Staphylococcus epidermidis (SEQ ID NO: 36 from US patent 6,001,564) while the second one is the 466-bp fragment specific to Moraxella catarrhalis (SEQ ID NO: 29 from US patent 6,001,564). Subsequently, we have selected from these two fragments a number of PCR primer pairs other than those previously tested. We have chosen 5 new primer pairs from each of these two sequences which are well dispersed along the DNA fragment (Figures 11 and 12). We have tested these primers for their specificity and compared them with the original primers previously tested. For the specificity tests, we have tested all bacterial species closely related to the target species based on phylogenetic analysis with three conserved genes (rRNA) genes, tuf and atpD). The rational for selecting a restricted number of bacterial species to evaluate the specificity of the new primer pairs is based on the fact that the lack of specificity of a DNA-based assay is attributable to the detection of closely related species which are more similar at the nucleotide level. Based on the phylogenetic analysis, we have selected (i) species from the closely related genus Staphylococcus, Enterococcus, Streptococcus and Listeria to test the specificity of the S. epidermidis-specific PCR assays and (ii) species from the closely related genus Moraxella, Kingella and Neisseria to test the specificity of the M. catarrhalisspecific PCR assays.

Materials and methods

Bacterial strains. All bacterial strains used for these experiments were obtained from the American Type Culture Collection (ATCC, Rockville, MD).

Genomic DNA isolation. Genomic DNA was purified from the ATCC reference strains by using the G-nome DNA kit (Bio 101 Inc., Vista, CA).

Oligonucleotide design and synthesis. PCR primers were designed with the help of the OligoTM primer analysis software Version 4.0 (National Biosciences Inc., Plymouth, Minn.) and synthesized using a model 391 DNA synthesizer (Applied Biosystems, Foster City, CA).

PCR assays. All PCR assays were performed by using genomic DNA purified from reference strains obtained from the ATCC. One μl of purified DNA preparation (containing 0.01 to 1 ng of DNA per μ I) was added directly into the PCR reaction mixture. The 20 µL PCR reactions contained final concentrations of 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega, Madison, WI) combined with the TaqStartTM antibody (Clontech Laboratories Inc., Palo Alto, CA). An internal control was integrated into all amplification reactions to verify the efficiency of the amplification reaction as well as to ensure that significant PCR inhibition was absent. Primers amplifying a region of 252 bp from a control plasmid added to each amplification reaction were used to provide the internal control. PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 seconds at 50 to 65°C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc., Watertown, MA). PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 0.25 μ g/mL of ethidium bromide under UV at 254 nm.

Results

Tables 21 and 22 show the results of specificity tests with the 5 new primer pairs selected from SEQ ID NO: 29 (specific to *M. catarrhalis* from US patent 6,001,564) and SEQ ID NO: 36 (specific to *S. epidermidis* from US patent 6,001,564), respectively. In order to evaluate the performance of these new primers pairs, we compared them in parallel with the original primer pairs previously tested.

For *M. catarrhalis*, all of the 5 selected PCR primer pairs were specific for the target species because none of the closely related species could be amplified (Table 21). In fact, the comparison with the original primer pair SEQ ID NO: 118 + SEQ ID NO: 119 (from US patent 6,001,564) revaled that all new pairs showed identical results in terms of specificity and sensitivity thereby suggesting their suitability for diagnostic purposes.

For S. epidermidis, 4 of the 5 selected PCR primer pairs were specific for the target species (Table 22). It should be noted that for 3 of these four primer pairs the annealing temperature had to be increased from 55 °C to 60 or 65 °C to attain specificity for S. epidermidis. Again the comparison with the original primer pair SEQ ID NO: 145 + SEQ ID NO: 146 (from US patent 6,001,564) revealed that these four primer pairs were as good as the original pair. Increasing the annealing temperature for the PCR amplification is well known by persons skilled in the art to be a very effective way to improve the specificity of a PCR assay (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCRbased Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). In fact, those skilled in the art are well aware of the fact that the annealing temperature is critical for the optimization of PCR assays. Only the primer pair VBsep3 + VBsep4 amplified bacterial species other than S. epidermidis including the staphylococcal species S. capitis, S. cohnii, S. aureus, S. haemolyticus and S. hominis (Table 22). For this non-specific primer pair, increasing the annealing temperature

from 55 to 65 °C was not sufficient to attain the desired specificity. One possible explanation for the fact that it appears sligthly easier to select species-specific primers for *M. catarrhalis* than for *S. epidermidis* is that *M. catarrhalis* is more isolated in phylogenetic trees than *S. epidermidis*. The large number of coagulase negative staphylococcal species such as *S. epidermidis* is largely responsible for this phylogenetic clustering.

Conclusion

These experiment clearly show that it is relatively easy for a person skilled in the art to select, from the species-specific DNA fragments selected as target for identification, PCR primer pairs suitable for diagnostic purposes other than those previously tested. The amplification conditions can be optimize by modifying critical variables such as the annealing temperature to attain the desired specificity and sensitivity. Consequently, we consider that it is legitimate to claim any possible primer sequences selected from the species-specific fragment and that it would be unfair to grant only the claims dealing with the primer pairs previously tested. By extrapolation, these results strongly suggest that it is also relatively easy for a person skilled in the art to select, from the species-specific DNA fragments, DNA probes suitable for diagnostic purposes other than those previously tested.

EXAMPLE 45:

Testing modified versions of PCR primers derived from the sequence of several primers which are objects of US patent 6,001,564.

Objective: The purpose of this project is to verify the efficiency of amplification by modified PCR primers derived from primers previously tested. The types of primer modifications to be tested include (i) variation of the sequence at one or more nucleotide positions and (ii) increasing or reducing the length of the primers. For this example, we used diagnostic targets described in US patent 6,001,564.

Experimental strategy:

a) Testing primers with nucleotide changes

We have designed 13 new primers which are derived from the *S. epidermidis*-specific SEQ ID NO: 146 from US patent 6,001,564 (Table 23). These primers have been modified at one or more nucleotide positions. As shown in Table 23, the nucleotide changes were introduced all along the primer sequence. Furthermore, instead of modifying the primer at any nucleotide position, the nucleotide changes were introduced at the third position of each codon to better reflect potential genetic variations *in vivo*. It should be noted that no nucleotide changes were introduced at the 3' end of the oligonucleotide primers because those skilled in the art are well aware of the fact that mimatches at the 3' end should be avoided (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). All of these modified primers were tested in PCR assays in combination with SEQ ID NO: 145 from US patent 6,001,564 and the efficiency of the amplification was compared with the original primer pair SEQ ID NO: 145 + SEQ ID NO: 146 previously tested in US patent 6,001,564.

b) Testing shorter or longer versions of primers

We have designed shorter and longer versions of the original *S. epidermidis*-specific PCR primer pair SEQ ID NO: 145 + 146 from US patent 6,001,564 (Table 24) as well as shorter versions of the original *P. aeruginosa*-specific primer pair SEQ ID NO: 83 + 84 from US patent 6,001,564 (Table 25). As shown in Tables 24 and 25, both primers of each pair were shortened or lengthen to the same length. Again, those skilled in the art know that the melting temperature of both primers from a pair should be similar to avoid preferential binding at one primer binding site which is

detrimental in PCR (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). All of these shorter or longer primer versions were tested in PCR assays and the efficiency of the amplification was compared with the original primer pair SEQ ID NOs 145 and 146.

Materials and methods

See the Materials and methods section of Example 44.

Results

a) Testing primers with nucleotide changes

The results of the PCR assays with the 13 modified versions of SEQ ID NO: 146 from US patent 6,001,564 are shown in Table 23. The 8 modified primers having a single nucleotide variation showed an efficiency of amplification identical to the original primer pair based on testing with 3 different dilutions of genomic DNA. The four primers having two nucleotide variations and primer VBmut12 having 3 nucleotide changes also showed PCR results identical to those obtained with the original pair. Finally, primer VBmut13 with four nucleotide changes showed a reduction in sensitivity by approximately one log as compared with the original primer pair. However, reducing the annealing temperature from 55 to 50 °C gave an efficiency of amplification very similar to that observed with the original primer pair (Table 23). In fact, reducing the annealing temperature of PCR cycles represents an effective way to reduce the stringency of hybridization for the primers and consequently allows the binding of probes with mismatches (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). Subsequently, we have confirmed the

specificity of the PCR assays with each of these 13 modified versions of SEQ ID NO: 146 from US patent 6,001,564 by performing amplifications from all bacterial species closely related to *S. epidermidis* which are listed in Table 22.

b) Testing shorter or longer versions of primers

For these experiments, two primer pairs were selected: i) SEQ ID NO: 145 + 146 from US patent 6,001,564 (specific to *S. epidermidis*) which are AT rich and ii) SEQ ID NO: 83 + 84 (specific to *P. aeruginosa*) which are GC rich. For the AT rich sequence, primers of 15 to 30 nucleotide in length were designed (Table 24) while for the GC rich sequences, primers of 13 to 19 nucleotide in length were designed (Table 25).

Table 24 shows that, for an annealing temperature of 55 °C, the 30-25-, 20- and 17-nucleotide versions of SEQ ID NO: 145 and 146 from US patent 6,001,564 all showed identical results as compared with the original primer pair except that the 17-nucleotide version amplified slightly less efficiently the *S. epidermidis* DNA. Reducing the annealing temperature from 55 to 45 °C for the 17-nucleotide version allowed to increase the amplification efficiency to a level very similar to that with the original primer pair (SEQ ID NO: 145 + 146 from US patent 6,001,564). Regarding the 15-nucleotide version, there was amplification of *S. epidermidis* DNA only when the annealing temperature was reduced to 45 °C. Under those PCR conditions the assay remained *S. epidermidis*-specific but the amplification signal with *S. epidermidis* DNA was sligthly lower as compared with the original primer pair. Subsequently, we have further confirmed the specificity of the shorter or longer versions by amplifying DNA from all bacterial species closely related to *S. epidermidis* which are listed in Table 22.

Table 25 shows that, for an annealing temperature of 55 °C, all shorter versions of SEQ ID NO: 83 and 84 from US patent 6,001,564 showed identical PCR results as

compared with the original primer pair. As expected, these results show that it is simpler to reduce the length of GC rich as compared with AT rich. This is attributable to the fact that GC binding is more stable than AT binding.

Conclusion

a) Testing primers with nucleotide changes

The above experiments clearly show that PCR primers may be modified at one or more nucleotide positions without affecting the specificity and the sensitivity of the PCR assay. These results strongly suggest that a given oligonucleotide can detect variant genomic sequences from the target species. In fact, the nucleotide changes in the selected primers were purposely introduced at the third position of each codon to mimic nucleotide variation in genomic DNA. Thus we conclude that it is justified to claim "a variant thereof" for i) the SEQ IDs of the fragments and oligonucleotides which are object of the present patent application and ii) genomic variants of the target species.

b) Testing shorter or longer versions of primers

The above experiments clearly show that PCR primers may be shorter or longer without affecting the specificity and the sensitivity of the PCR assay. We have showed that oligonucleotides ranging in sizes from 13 to 30 nucleotides may be as specific and sensitive as the original primer pair from which they were derived. Consequently, these results suggest that it is not exaggerated to claim sequences having at least 12 nucleotide in length.

This invention has been described herein above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These modifications are under the scope of this invention, as defined in the appended claims.

Table 1. Distribution (%) of nosocomial pathogens for various human infections in USA (1990-1992)¹.

5	Pathogen	UTI ²	SSI ³	BSI⁴	Pneumonia	CSF ⁵
3	Escherichia coli	. 27	9	5	4	2
	Staphylococcus aureus	2	21	17	21	2
	Staphylococcus epidermidis	2	6	20	0	1
	Enterococcus faecalis	16	12	9	2	0
10	Enterococcus faecium	1	1	0	0	0
	Pseudomonas aeruginosa	12	9	3	18	0
	Klebsiella pneumoniae	7	3	4	9	0
	Proteus mirabilis	5	3	1	2	0
	Streptococcus pneumoniae	0	0	3	1	18
15	Group B Streptococci	1	1	2	1	6
	Other streptococci	3	5	2	1	3
	Haemophilus influenzae	0	0	0	6	45
	Neisseria meningitidis	0	0	0	0	14
	Listeria monocytogenes	0	0	0	0	3
20	Other enterococci	1	1	0	0	0
	Other staphylococci	2	8	13	2	0
	Candida albicans	9	3	5	5	0
	Other <i>Candida</i>	2	1	3	1	0
	Enterobacter sp.	5	7	4	12	2
25	Acinetobacter sp.	1	1	2	4	2
	Citrobacter sp.	2	1	1	1	0
	Serratia marcescens	1	1	1	3	1
	Other <i>Klebsiella</i>	1	1	1	2	1
	Others	0	6	4	5	0

³⁰

35

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, *Clin. Microbiol. Rev.*, **6**:428-442).

Urinary tract infection.

Surgical site infection.

Bloodstream infection.

Cerebrospinal fluid.

Table 2. Distribution (%) of bloodstream infection pathogens in Quebec (1995), Canada (1992), UK (1969-1988) and USA (1990-1992).

Organism	Quebec ¹	Canada ²	UK ³		USA⁴
			Community- acquired	Hospital- acquired	Hospital- acquired
E. coli	/ 15.6	53.8	24.8	20.3	5.0
S. <i>epidermidis</i> and other CoNS	25.8	-	0.5	7.2	31.0
S. aureus	9.6	-	9.7	19.4	16.0
S. pneumoniae	6.3	-	22.5	2.2	-
E. faecalis	3.0		1.0	4.2	-
E. faecium	2.6	-	0.2	0.5	-
Enterococcus sp.	-	-		9.0	
H. influenzae	1.5	-	3.4	0.4	-
P. aeruginosa	1.5	8.2	1.0	8.2	3.0
K. pneumoniae	3.0	11.2	3.0	9.2	4.0
P. mirabilis	-	3.9	2.8	5.3	1.0
S. pyogenes	-	-	1.9	0.9	-
Enterobacter sp.	4.1	5.5	0.5	2.3	4.0
Candida sp.	8.5	-	_	1.0	8.0
Others	18.5	17.4	28.7	18.9	19.0

²⁵

Data obtained for 270 isolates collected at the Centre Hospitalier de l'Université Laval (CHUL) during a 5 month period (May to October 1995).

Data from 10 hospitals throughout Canada representing 941 gram-negative isolates. (Chamberland *et al.*, 1992, *Clin. Infect. Dis.*, **15**:615-628).

³⁰ Data from a 20-year study (1969-1988) for nearly 4000 isolates. (Eykyn *et al.*, 1990, *J. Antimicrob. Chemother.*, Suppl. C, **25**:41-58).

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, *Clin. Microbiol. Rev.*, **6**:428-442).

Coagulase-negative staphylococci.

Table 3. Distribution of positive and negative clinical specimens tested at the microbiology laboratory of the CHUL (February 1994 – January 1995).

5	Clinical specimens and/or sites	No. of samples tested (%)	% of positive specimens	% of negative specimens
·	Urine	17,981 (54.5)	19.4	80.6
	Blood culture/marrow	10,010 (30.4)	6.9	93.1
	Sputum	1,266 (3.8)	68.4	31.6
0	Superficial pus	1,136 (3.5)	72.3	27.7
	Cerebrospinal fluid	553 (1.7)	1.0	99.0
	Synovial fluid	523 (1.6)	2.7	97.3
	Respiratory tract	502 (1.5)	56.6	43.4
	Deep pus	473 (1.4)	56.8	43.2
.5	Ears	289 (0.9)	47.1	52.9
	Pleural and pericardial fluid	132 (0.4)	1.0	99.0
	Peritoneal fluid	101(0.3)	28.6	71.4
	Total:	32,966 (100.0)	20.0	80.0

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention.

5	Bact	terial spe	ecies
	Abiotrophia adiacens		Brevibacterium flavum
	Abiotrophia defectiva		Brevundimonas diminuta
	Achromobacter xylosoxidans subsp. denitrificans	65	Buchnera aphidicola
10	Acetobacterium woodi		Budvicia aquatica
	Acetobacter aceti		Burkholderia cepacia
	Acetobacter altoacetigenes		Burkholderia mallei
	Acetobacter polyoxogenes		Burkholderia pseudomallei
	Acholeplasma laidlawii	70	Buttiauxella agrestis
15	Acidothermus cellulolyticus		Butyrivibrio fibrisolvens
	Acidiphilum facilis		Campylobacter coli
	Acinetobacter baumannii		Campylobacter curvus
	Acinetobacter calcoaceticus		Campylobacter fetus subsp. fetus
	Acinetobacter lwoffii	75	Campylobacter fetus subsp. venerealis
20	Actinomyces meyeri		Campylobacter gracilis
	Aerococcus viridans		Campylobacter jejuni
	Aeromonas hydrophila		Campylobacter jejuni subsp. doylei
	Aeromonas salmonicida		Campylobacter jejuni subsp. jejuni
	Agrobacterium radiobacter	80	Campylobacter lari
25	Agrobacterium tumefaciens		Campylobacter rectus
	Alcaligenes faecalis subsp. faecalis		Campylobacter sputorum subsp. sputorum
	Allochromatium vinosum		Campylobacter upsaliensis
	Anabaena variabilis	0.5	Cedecea davisae
• •	Anacystis nidulans	85	Cedecea lapagei
30	Anaerorhabdus furcosus		Cedecea neteri
	Aquifex aeolicus		Chlamydia pneumoniae
	Aquifex pyrophilus		Chlamydia psittaci
	Arcanobacterium haemolyticum	00	Chlamydia trachomatis
25	Archaeoglobus fulgidus	90	Chlorobium vibrioforme
35	Azotobacter vinelandii		Chloroflexus aurantiacus
	Bacillus anthracis		Chryseobacterium meningosepticum
	Bacillus cereus		Citrobacter amalonaticus
	Bacillus firmus	95	Citrobacter braakii
40	Bacillus halodurans	93	Citrobacter farmeri
40	Bacillus megaterium		Citrobacter freundii Citrobacter koseri
	Bacillus mycoides		Citrobacter sedlakii
	Bacillus pseudomycoides Bacillus stearothermophilus		Citrobacter sediakti Citrobacter werkmanii
	Bacillus subtilis	100	Citrobacter werkmanii Citrobacter youngae
45	Bacillus thuringiensis	100	Clostridium acetobutylicum
73	Bacillus weihenstephanensis		Clostridium beijerinckii
	Bacteroides distasonis		Clostridium bifermentans
	Bacteroides fragilis		Clostridium botulinum
	Bacteroides forsythus	105	Clostridium difficile
50	Bacteroides ovatus	100	Clostridium innocuum
50	Bacteroides vulgatus		Clostridium histolyticum
	Bartonella henselae		Clostridium novyi
	Bifidobacterium adolescentis		Clostridium septicum
	Bifidobacterium breve	110	Clostridium perfringens
55	Bifidobacterium dentium		Clostridium ramosum
-	Bifidobacterium longum	•	Clostridium sordellii
	Blastochloris viridis		Clostridium tertium
	Borrelia burgdorferi		Clostridium tetani
	Bordetella pertussis	115	Comamonas acidovorans
60	Bordetella bronchiseptica		Corynebacterium accolens
	Brucella abortus		Corynebacterium bovis
	Brevibacterium linens		Corynebacterium cervicis

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

-	Bacterial species (continued)					
5						
	Corynebacterium diphtheriae		Eubacterium lentum			
	Corynebacterium flavescens	65	Eubacterium nodatum			
	Corynebacterium genitalium		Ewingella americana			
10	Corynebacterium glutamicum		Francisella tularensis			
10	Corynebacterium jeikeium		Frankia alni			
	Corynebacterium kutscheri	70	Fervidobacterium islandicum			
	Corynebacterium minutissimum	70	Fibrobacter succinogenes			
	Corynebacterium mycetoides		Flavobacterium ferrigeneum			
1.5	Corynebacterium pseudodiphtheriticum		Flexistipes sinusarabici			
15	Corynebacterium pseudogenitalium		Fusobacterium gonidiaformans			
	Corynebacterium pseudotuberculosis	75	Fusobacterium necrophorum subsp. necrophorum			
	Corynebacterium renale	73	Fusobacterium nucleatum subsp. polymorphum			
	Corynebacterium striatum		Gardnerella vaginalis			
20	Corynebacterium ulcerans		Gemella haemolysans Gemella morbillorum			
20	Corynebacterium urealyticum					
	Corynebacterium xerosis Coxiella burnetii	80	Globicatella sanguis Gloeobacter violaceus			
		00	Gloeothece sp.			
	Cytophaga lytica Deinococcus radiodurans		Gluconobacter oxydans			
25	Deinococcus raaioaurans Deinonema sp.		Haemophilus actinomycetemcomitans			
23	Edwardsiella hoshinae		Haemophilus aphrophilus			
	Edwardsiella tarda	85	Haemophilus ducreyi			
	Ehrlichia canis	0.5	Haemophilus haemolyticus			
	Ehrlichia risticii		Haemophilus influenzae			
30	Eikenella corrodens		Haemophilus parahaemolyticus			
50	Enterobacter aerogenes		Haemophilus parainfluenzae			
	Enterobacter agglomerans	90	Haemophilus paraphrophilus			
	Enterobacter amnigenus	, ,	Haemophilus segnis			
	Enterobacter asburiae		Hafnia alvei			
35	Enterobacter cancerogenus		Halobacterium marismortui			
	Enterobacter cloacae		Halobacterium salinarum			
	Enterobacter gergoviae	95	Haloferax volcanii			
	Enterobacter hormaechei		Helicobacter pylori			
	Enterobacter sakazakii		Herpetoshiphon aurantiacus			
40	Enterococcus avium		Kingella kingae			
	Enterococcus casseliflavus		Klebsiella ornithinolytica			
	Enterococcus cecorum	100	Klebsiella oxytoca			
	Enterococcus columbae		Klebsiella planticola			
	Enterococcus dispar		Klebsiella pneumoniae subsp. ozaenae			
45	Enterococcus durans		Klebsiella pneumoniae subsp. pneumoniae			
	Enterococcus faecalis	105	Klebsiella pneumoniae subsp.			
	Enterococcus faecium	105	rhinoscleromatis			
	Enterococcus flavescens		Klebsiella terrigena			
50	Enterococcus gallinarum		Kluyvera ascorbata			
50	Enterococcus hirae		Kluyvera cryocrescens			
	Enterococcus malodoratus	110	Kluyvera georgiana			
	Enterococcus mundtii	110	Kocuria kristinae			
	Enterococcus pseudoavium		Lactobacillus acidophilus			
55	Enterococcus raffinosus		Lactobacillus garvieae Lactobacillus paracasei			
33	Enterococcus saccharolyticus		Lactobacillus casei subsp. casei			
	Enterococcus solitarius Enterococcus sulfureus	115	Lactococcus garvieae			
	Enterococcus sulfureus Envinia anylovora	113	Lactococcus garvieae Lactococcus lactis			
	Erwinia amylovora Erwinia carotovora		Lactococcus lactis subsp. lactis			
60	Escherichia coli		Leclercia adecarboxylata			
50	Escherichia fergusonii		Legionella micdadei			
	Escherichia hermannii					
	Escherichia vulneris					
	Education to the February Control of the Control of					

Table 4.

Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

5	Bacterial species (continued)					
	Legionella pneumophila subsp. pneumophila		Neisseria gonorrhoeae			
	Leminorella grimontii		Neisseria lactamica			
	Leminorella richardii	65	Neisseria meningitidis			
10	Leptospira biflexa		Neisseria mucosa			
	Leptospira interrogans		Neisseria perflava			
	Leuconostoc mesenteroides subsp.		Neisseria pharyngis var. flava			
	dextranicum		Neisseria polysaccharea			
	Listeria innocua	70	Neisseria sicca			
15	Listeria ivanovii		Neisseria subflava			
	Listeria monocytogenes		Neisseria weaveri			
	Listeria seeligeri		Obesumbacterium proteus			
	Macrococcus caseolyticus		Ochrobactrum anthropi			
	Magnetospirillum magnetotacticum	75	Pantoea agglomerans			
20	Megamonas hypermegale		Pantoea dispersa			
	Methanobacterium thermoautotrophicum		Paracoccus denitrificans			
	Methanococcus jannaschii		Pasteurella multocida			
	Methanococcus vannielii	00	Pectinatus frisingensis			
0.5	Methanosarcina barkeri	80	Peptococcus niger			
25	Methanosarcina jannaschii		Peptostreptococcus anaerobius			
	Methylobacillus flagellatum		Peptostreptococcus asaccharolyticus			
	Methylomonas clara		Peptostreptococcus prevotii			
	Micrococcus luteus	85	Phormidium ectocarpi			
20	Micrococcus lylae	83	Pirellula marina			
30	Mitsuokella multacidus		Planobispora rosea			
	Mobiluncus curtisii subsp. holmesii		Plesiomonas shigelloides			
	Moellerella thermoacetica		Plectonema boryanum			
	Moerella wisconsensis Moorella thermogentica	90	Porphyromonas asaccharolytica			
35	Moorella thermoacetica Moraxella catarrhalis	90	Porphyromonas gingivalis Pragia fontium			
33	Moraxella osloensis		Prevotella buccalis			
	Morganella morganii subsp. morganii		Prevotella melaninogenica			
	Mycobacterium avium		Prevotella oralis			
	Mycobacterium bovis	95	Prevotella ruminocola			
40	Mycobacterium gordonae	, ,	Prochlorothrix hollandica			
	Mycobacterium kansasii		Propionibacterium acnes			
	Mycobacterium leprae		Propionigenium modestum			
	Mycobacterium terrae		Proteus mirabilis			
	Mycobacterium tuberculosis	100	Proteus penneri			
45	Mycoplasma capricolum		Proteus vulgaris			
	Mycoplasma gallisepticum		Providencia alcalifaciens			
	Mycoplasma genitalium		Providencia rettgeri			
	Mycoplasma hominis		Providencia rustigianii			
	Mycoplasma pirum	105	Providencia stuartii			
50	Mycoplasma mycoides		Pseudomonas aeruginosa			
	Mycoplasma pneumoniae		Pseudomonas fluorescens			
	Mycoplasma pulmonis		Pseudomonas putida			
	Mycoplasma salivarium	110	Pseudomonas stutzeri			
	Myxococcus xanthus	110	Psychrobacter phenylpyruvicum			
55	Neisseria animalis		Pyrococcus abyssi			
	Neisseria canis		Rahnella aquatilis			
	Neisseria cinerea		Rickettsia prowazekii			
	Neisseria cuniculi	115	Rhizobium leguminosarum			
60	Neisseria elongata subsp. elongata	115	Rhizobium phaseoli			
60	Neisseria elongata subsp. intermedia		Rhodobacter capsulatus			
	Neisseria flava		Rhodobacter sphaeroides			
	Neisseria flavescens					

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

Bacterial species (continued)

5

	Dhadana ar daman ag maluatnia		Strontono agra condenii
	Rhodopseudomonas palustris	65	Streptococcus gordonii Streptococcus macacae
10	Rhodospirillum rubrum Ruminococcus albus	03	
10	Ruminococcus aibus Ruminococcus bromii		Streptococcus mitis Streptococcus mutans
	Salmonella bongori Salmonella choleraesuis subsp. arizonae		Streptococcus oralis
		70	Streptococcus parasanguinis
15	Salmonella choleraesuis subsp	70	Streptococcus pneumoniae
13			Streptococcus pyogenes Streptococcus ratti
	Salmonella choleraesuis subsp. diarizonae		Streptococcus ratii Streptococcus salivarius
	Salmonella choleraesuis subsp.		Streptococcus salivarius subsp. thermophilus
	houtenae	75	Streptococcus sanguinis
20	Salmonella choleraesuis subsp. indica	75	Streptococcus sobrinus
20	Salmonella choleraesuis subsp. salamae		Streptococcus suis
	Serpulina hyodysenteriae		Streptococcus suis
	Serratia ficaria		Streptococcus vestibularis
	Serratia ficaria Serratia fonticola	80	Streptomyces anbofaciens
25	Serratia grimesii	00	Streptomyces aureofaciens
23	Serratia liquefaciens		Streptomyces cinnamoneus
	Serratia marcescens		Streptomyces coelicolor
	Serratia odorifera		Streptomyces collinus
	Serratia oliorijera Serratia plymuthica	85	Streptomyces lividans
30	Serratia rubidaea	0.5	Streptomyces netropsis
50	Shewanella putrefaciens		Streptomyces ramocissimus
	Shigella boydii		Streptomyces rimosus
	Shigella dysenteriae		Streptomyces venezuelae
	Shigella flexneri	90	Succinivibrio dextrinosolvens
35	Shigella sonnei	, ,	Synechococcus sp.
55	Sinorhizobium meliloti		Synechocystis sp.
	Spirochaeta aurantia		Tatumella ptyseos
	Staphylococcus aureus		Taxeobacter occealus
	Staphylococcus aureus subsp. aureus	95	Tetragenococcus halophilus
40	Staphylococcus auricularis	, ,	Thermoplasma acidophilum
. •	Staphylococcus capitis subsp. capitis		Thermotoga maritima
	Staphylococcus cohnii subsp. cohnii		Thermus aquaticus
	Staphylococcus epidermidis		Thermus thermophilus
	Staphylococcus haemolyticus	100	Thiobacillus ferrooxidans
45	Staphylococcus hominis		Thiomonas cuprina
	Staphylococcus hominis subsp. hominis		Trabulsiella guamensis
	Staphylococcus lugdunensis		Treponema pallidum
	Staphylococcus saprophyticus		Ureaplasma urealyticum
	Staphylococcus sciuri subsp. sciuri	105	Veillonella parvula
50	Staphylococcus simulans		Vibrio alginolyticus
	Staphylococcus warneri		Vibrio anguillarum
	Stigmatella aurantiaca		Vibrio cholerae
	Stenotrophomonas maltophilia		Vibrio mimicus
	Streptococcus acidominimus	110	Wolinella succinogenes
55	Streptococcus agalactiae		Xanthomonas citri
	Streptococcus anginosus		Xanthomonas oryzae
	Streptococcus bovis		Xenorhabdus bovieni
	Streptococcus cricetus		Xenorhabdus nematophilus
	Streptococcus cristatus	115	Yersinia bercovieri
60	Streptococcus downei		Yersinia enterocolitica
	Streptococcus dysgalactiae		Yersinia frederiksensii
	Streptococcus equi subsp. equi		Yersinia intermedia
	Streptococcus ferus		Yersinia pestis

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

Bacterial species (continued)

Yersinia pseudotuberculosis Yersinia rohdei Yokenella regensburgei Zoogloea ramigera

5

10

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

5		Fungal spec	cies
	Absidia corymbifera		Fusarium moniliforme
	Absidia glauca		Fusarium oxysporum
	Alternaria alternata	65	Fusarium solani
10	Arxula adeninivorans		Geotrichum sp.
	Aspergillus flavus		Histoplasma capsulatum
	Aspergillus fumigatus		Hortaea werneckii
	Aspergillus nidulans		Issatchenkia orientalis Kudrjanzev
	Aspergillus niger	70	Kluyveromyces lactis
15	Aspergillus oryzae		Malassezia furfur
	Aspergillus terreus		Malassezia pachydermatis
	Aspergillus versicolor		Malbranchea filamentosa
	Aureobasidium pullulans		Metschnikowia pulcherrima
	Basidiobolus ranarum	75	Microsporum audouinii
20	Bipolaris hawaiiensis		Microsporum canis
	Bilophila wadsworthia		Mucor circinelloides
	Blastoschizomyces capitatus		Neurospora crassa
	Blastomyces dermatitidis		Paecilomyces lilacinus
	Candida albicans	80	Paracoccidioides brasiliensis
25	Candida catenulata		Penicillium marneffei
	Candida dubliniensis		Phialaphora verrucosa
	Candida famata		Pichia anomala
	Candida glabrata		Piedraia hortai
	Candida guilliermondii	85	Podospora anserina
30	Candida haemulonii		Podospora curvicolla
	Candida inconspicua		Puccinia graminis
	Candida kefyr		Pseudallescheria boydii
	Candida krusei		Reclinomonas americana
	Candida lambica	90	Rhizomucor racemosus
35	Candida lusitaniae		Rhizopus oryzae
	Candida norvegica		Rhodotorula minuta
	Candida norvegensis		Rhodotorula mucilaginosa
	Candida parapsilosis	^ -	Saccharomyces cerevisiae
4.0	Candida rugosa	95	Saksenaea vasiformis
40	Candida sphaerica		Schizosaccharomyces pombe
	Candida tropicalis		Scopulariopsis koningii
	Candida utilis		Sordaria macrospora
	Candida viswanathii	100	Sporobolomyces salmonicolor
4.5	Candida zeylanoides	100	Sporothrix schenckii
45	Cladophialophora carrionii		Stephanoascus ciferrii
	Coccidioides immitis		Syncephalastrum racemosum
	Coprinus cinereus		Trichoderma reesei
	Cryptococcus albidus	105	Trichophyton mentagrophytes
50	Cryptococcus humicolus	103	Trichophyton rubrum
50	Cryptococcus laurentii		Trichophyton tonsurans
	Cryptococcus neoformans		Trichosporon cutaneum
	Cunninghamella bertholletiae		Ustilago maydis
	Curvularia lunata	110	Wangiella dermatitidis Yarrowia lipolytica
55	Emericella nidulans	110	Tarrowia upotytica
33	Emmonsia parva		
	Eremothecium gossypii Exophiala dermatitidis		
	-		
	Exophiala jeanselmei Exophiala moniliae		
60	Exserohilum rostratum		
00	Exserontium rostratum Eremothecium gossypii		
	Fonsecaea pedrosoi		
	2 oneceucu peuroson	. = 4	

Table 4. Example of microbial species for which *tuf* and/or *atpD* and/or *recA* nucleic acids and/or sequences are used in the present invention (continued).

5	Parasitical species	_
3	Babesia bigemina	
	Babesia bovis	
	Babesia microti	
	Blastocystis hominis	
10	Crithidia fasciculata	
10	Cryptosporidium parvum	
	Entamoeba histolytica	
	Giardia lamblia	
	Kentrophoros sp.	
15	Leishmania aethiopica	
13	Leishmania amazonensis	
	Leishmania braziliensis	
	Leishmania donovani	
	Leishmania infantum	
20	Leishmania enriettii	
20	Leishmania gerbilli	
	Leishmania guyanensis	
	Leishmania hertigi	
	Leishmania major	
25	Leishmania mexicana	
	Leishmania panamensis	
	Leishmania tarentolae	
	Leishmania tropica	
	Neospora caninum	
30	Onchocerca volvulus	
	Plasmodium berghei	
	Plasmodium falciparum	
	Plasmodium knowlesi	
	Porphyra purpurea	
35	Toxoplasma gondii	
	Treponema pallidum	
	Trichomonas tenax	
	Trichomonas vaginalis	
	Trypanosoma brucei	
40	Trypanosoma brucei subsp. brucei	
	Trypanosoma congolense	
	Trypanosoma cruzi	

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes.

Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO.	SEQ ID NO
aac(3)-Ib ²	Aminoglycosides	Enterobacteriaceae Pseudomonads	L06157	
aac(3)-IIb ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M97172	
aac(3)-IVa ²	Aminoglycosides	Enterobacteriaceae	X01385	
aac(3)-IVa ² aac(3)-VIa ²	Aminoglycosides	Enterobacteriaceae,	M88012	
aac(2')-1a ²	Aminoglycosides	Pseudomonads Enterobacteriaceae,	X04555	
aac(6')-aph(2'') ²	Aminoglycosides	Pseudomonads Enterococcus sp.,		83-86 ³
aac(6')-Ia, ²	Aminoglycosides	Staphylococcus sp. Enterobacteriaceae,	M18967	
		Pseudomonads		
aac(6')-Ic ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M94066	•
aac(6')-IIa ²	Aminoglycosides	Pseudomonads		112 4
$aadB [ant(2")-Ia^{2}]$	Aminoglycosides	Enterobacteriaceae		53-54 3
aacCl [aac(3)-la 2]	Aminoglycosides	Pseudomonads		55-56 ³
$aacC2 [aac(3)-IIa^{2}]$	Aminoglycosides	Pseudomonads		57-58 ³
aacC3 [aac(3)-III2]	Aminoglycosides	Pseudomonads		59-60 ³
aacA4 [aac(6')-Ib ²] ant(3")-Ia ²	Aminoglycosides	Pseudomonads		65-66 ³
ant(3")-Ia ²	Aminoglycosides	Enterobacteriaceae,	X02340	
_		Enterococcus sp., Staphylococcus sp.	M10241	
$ant(4')$ -Ia $\frac{2}{3}$	Aminoglycosides	Staphylococcus sp.	V01282	
aph(3')-Ia 2	Aminoglycosides	Enterobacteriaceae, Pseudomonads	J01839	
aph(3')-IIa ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	V00618	
aph(3')-IIIa ²	Aminoglycosides	Enterococcus sp., Staphylococcus sp.	V01547	
aph(3')-VIa ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	X07753	
rpsL ²	Streptomycin	M. tuberculosis,	X80120	
•	1 2	M. avium complex	U14749	
		•	X70995	
			L08011	
blaOXA 5,6	ß-lactams	Enterobacteriaceae,	Y10693	110 4
		Pseudomonads	AJ238349	
			AJ009819	
			X06046	
			X03037	
			X07260	
			U13880	
			X75562	
			AF034958	
			J03427	
			Z22590	
			U59183	
			L38523	
			U63835	
			AF043100	
			AF060206	
			U85514	
			AF043381	
			AF024602	
blaROB 5	ß-lactams	Haemophilus sp.	AF064820	45-48 ³

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

	Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO.	SEQ ID NO.
5	blaSHV 5,6	B-lactams	Enterobacteriacea, Pseudomonas aeruginosa	AF124984 AF148850 M59181	41-44 3
10				X98099 M33655 AF148851 X53433	
15				L47119 AF074954 X53817 AF096930	
20				X55640 Y11069 U20270 U92041 S82452	
25				X98101 X98105 AF164577 AJ011428	
30				AF116855 AB023477 AF293345 AF227204 AF208796	
35	blaTEM 5,6	ß-lactams	Enterobacteriaceae, Neisseria sp., Haemophilus sp.	AF132290 AF012911 U48775 AF093512	37-40 ³
				AF052748 X64523 Y13612 X57972 AF157413	
40				U31280 U36911 U48775 V00613	
45				X97254 AJ012256 X04515 AF126482 U09188	
50				M88143 Y14574 AF188200 AJ251946	
55				Y17581 Y17582 Y17583 M88143 U37195	
60				Y17584 X64523 U95363 Y10279	
65				Y10280 Y10281 AF027199 AF104441	
70				AF104442 AF062386 X57972 AF047171 AF188199	
				AF157553 AF190694 AF190695 AF190693	
75				AF190692	

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO.	SEQ ID NO
blaCARB 5	ß-lactams	Pseudomonas sp.,	J05162	
CIND		Enterobacteriaceae	S46063	
			M69058	
			U14749	
			D86225	
			D13210	
			Z18955	
			AF071555	
			AF153200 AF030945	
5	0.1	T		
bla _{CTX-M-1} 5	ß-lactams	Enterobacteriaceae	X92506	
bla _{CTX-M-2} 5	ß-lactams	Enterobacteriaceae	X92507	
bla _{CMY-2} 7	ß-lactams	Enterobacteriaceae	X91840	
OMI L		i	AJ007826	
			AJ011293	
			AJ011291	
			Y17716	
			Y16783	
			Y16781	
			Y15130	
			U77414	
			\$83226 Y15412	
			X78117	
bla _{IMP} 5	B-lactams	Enterobacteriaceae,	AJ223604	
11/11		Pseudomonas aeruginoso	s71932	
		1 Bettas montas de la seria	D50438	
			D29636	
			X98393	
			AB010417	
			D78375	
bla _{PER-1} 5	ß-lactams	Enterobacteriaceae,	Z21957	
7		Pseudomodanaceae		
bla _{PER-2} 7	ß-lactams	Enterobacteriaceae	X93314	
blaZ ¹²	ß-lactams	Enterococcus sp., Staphylococcus sp.		111 4
mecA ¹²	B-lactams	Staphylococcus sp.		97-98 ³

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	Antimicrobial agent	Bacteria ^I	ACCESSION NO.	SEQ ID NO.
pbp1a ¹³	ß-lactams	Streptococcus pneumoniae	2	1004-1018,
r -r			M90527	1648,2056-2064
			X67872	2273-2276
			AB006868	
			AB006874	
			X67873	
			AB006878	
			AB006875 AB006877	
			AB006877 AB006879	
			AF046237	
			AF046235	
			AF026431	
			AF046232	
			AF046233	
			AF046236	
			X67871	
			Z49095	
			AF046234	
			AB006873 X67866	
			X67868	
			AB006870	
			AB006869	
			AB006872	
			X67870	
			AB006871	
			X67867	
			X67869	•
			AB006876	
			AF046230	
			AF046238	
pbp2b.13	ß-lactams	Streptococcus pneumoniae	Z49094	1019-1033
POPEO	as and marked	2 oprococono pricamonia	X16022	
			M25516	
			M25518	
			M25515	
			U20071	
			U20084	
			U20082	
			U20067	
			U20079 Z22185	
			U20072	
pbp2b 13	B-lactams	Streptococcus pneumoniae	20072 U20083	
ρυμέυ	n-iactailis	ын сриссоссия рнешнонии	U20083	
			M25522	
			U20075	
			U20070	
			U20077	
			U20068	
			Z22184	
			U20069	
			U20078	
			M25521	
			M25525	
			M25519	
			Z21981 M25523	
			M25526	
			U20076	
			U20074	
			M25520	
			M25517	
			M25524	
			Z22230	
			U20073	
			U20073 U20080	

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	:	Antimicrobial agent	Bacteria ¹	ACCESSION NO.	SEQ ID N
pbp2	_x 13	ß-lactams	Streptococcus pneumoniae		1034-1048
F -F				X16367	-02 . 20 .0
				X65135	
				AB011204	
				AB011209	
				AB011199	
				AB011200	
				AB011201 AB011202	
				AB011202 AB011198	
				AB011208	
				AB011205	
				AB015852	
				AB011210	
				AB015849	
				AB015850	
				AB015851	
				AB015847	
				AB015846 AB011207	
				AB011207 AB015848	
				Z49096	
int		-lactams, trimethoprim	Enterobacteriaceae,	2.7070	99-102 ³
sul		aminoglycosides,	Pseudomonads		103-106 ³
Sui	anniogrycosides, antiseptic,	rseudomonads		103-100	
		chloramphenicol			
ermA	14	Macrolides,	Staphylococcus sp.		113 ⁴
	-	lincosamides,			
	1.4	streptogramin B			4
ermB	14	Macrolides,	Enterobacteriaceae,		114 ⁴
			Staphylococcus sp.		
		lincosamides,	Enterococcus sp.		
ermC	- 14	streptogramin B	Streptococcus sp.		115 4
ermC	, - •	Macrolides, lincosamides,	Enterobacteriaceae, Staphylococcus sp.		115
		streptogramin B	siapnyiococcus sp.		
ereA	12	Macrolides	Enterobacteriaceae.	M11277	
			Staphylococcus sp.	E01199	
	10		• •	AF099140	
ereB	12	Macrolides	Enterobacteriaceae	A15097	
			Staphylococcus sp.	X03988	2
msrA		Macrolides	Staphylococcus sp.		77-80 ³
mefA,	, mefE ⁸	Macrolides	Streptococcus sp.	U70055	
mphA	4.8	Macrolides	Enterobacteriaceae,	U83667	
трпА	1 -	Macrondes	Staphylococcus sp.	D16251 U34344	
			ышрнуюсьский вр.	U36578	
linA/	linA , 9	Lincosamides	Staphylococcus sp.	J03947	
manma1		company op.	M14039		
			A15070		
	10		_	E01245	
linB	10	Lincosamides	Enterococcus faecium	AF110130 AJ238249	
vga 1	15	Streptrogramin	Staphylococcus sp.	M90056	89-90 3
		Sucpuogramm	supriyiococcus sp.	U82085	37 70
vgb 1	15	Streptrogramin	Staphylococcus sp.	M36022	
.00			F >	M20219	
			AF015628		

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO	O. SEQ ID NO.
vat 15	Streptrogramin	Staphylococcus sp.	L07778	87-88 ³
vatB 15	Streptrogramin	Staphylococcus sp.	U19459	
satA 15	Streptrogramin	Enterococcus faecium	L38809 L12033	81-82 3
mupA 12	Mupirocin	Staphylococcus aureus	X75439	
			X59478 X59477	
gyrA 16	Quinolones	Gram-positive and	X95718	1255, 1607-1608,
		gram-negative bacteria	X06744 X57174	1764-1776, 2013-2014,
			X16817	2277-2280
			X71437	
			AF065152 AF060881	
1			D32252	
parC/grlA ¹	6 Quinolones	Gram-positive and	AB005036	1777-1785
		gram-negative bacteria	AF056287 X95717	
			AF129764	
			AB017811 AF065152	
			M 003132	
parE/grlB 1	Quinolones	Gram-positive bacteria	X95717 AF065153	
			AF05133 AF058920	
norA 16	Quinolones	Staphylococcus sp.	D90119	
			M80252 M97169	
mexR (nalB) nfxB 16	16 Quinolones	Pseudomonas aeruginosa	U23763	
nfxB 16 cat 12	Quinolones Chloramphenicol	Pseudomonas aeruginosa Gram-positive and	X65646 M55620	
cui	Chloramphenicor	gram-negative bacteria	X15100	
			A24651	
			M28717 A00568	
			A00569	
			X74948 Y00723	
			A24362	
			A00569	
			M93113 M62822	
			M58516	
			V01277 X02166	
			M77169	
			X53796	
			J01841 X07848	
<i>ppflo</i> -like <i>embB</i> 17	Chloramphenicol Ethambutol	Mycobacterium tuberculosis	AF071555 U68480	
pncA 17	Pyrazinamide	Mycobacterium tuberculosis	U59967	
rpoB 17	Rifampin	Mycobacterium tuberculosis	AF055891	
			AF055892 S71246	
			L27989	
inhA 17		The second of the second	AF055893	
to A /	Isoniazid	Mycobacterium tuberculosis	AF106077	

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO.	SEQ ID NO.
vanA 12	Vancomycin	Enterococcus sp.		67-70 ³
	•	1		1049-1053
vanB 12	Vancomycin	Enterococcus sp.		116 ⁴
vanCI 12	Vancomycin	Enterococcus gallinarum		117 ⁴
12				1058-1059
vanC2 12	Vancomycin	Enterococcus casseliflavus		1060-1063
			U94521	
			U94522	
			U94523	
			U94524	
			U94525	
vanC3 12	Vancomycin	Enterococcus flavescens	L29638	1064-1066
vanes	v ancomyciii	Emerococcus juvescens	L29639	1004-1000
			U72706	
vanD 18	Vancomycin	Enterococcus faecium	AF130997	
vanE 12	Vancomycin	Enterococcus faecium	AF136925	
tetB 19	Tetracycline	Gram-negative bacteria	J01830	
			AF162223	
			AP000342	
			S83213	
			U81141	
40			V00611	
tetM ¹⁹	Tetracycline	Gram-negative and	X52632	
		Gram-positive bacteria	AF116348	
			U50983	
			X92947	
			M211136	
			U08812	
sul II ²⁰	C-16	C b	X04388	
sui II 20	Sulfonamides	Gram-negative bacteria	M36657	
			AF017389 AF017391	
dhfrIa ²⁰	Trimethoprim	Gram-negative bacteria	AJ238350	
	Timemopimi	Grani-negative bacteria	X17477	
			K00052	
			U09476	
			X00926	
dhfrIb ²⁰	Trimethoprim	Gram-negative bacteria	Z50805	
		<u> </u>	Z50804	
dhfrV ²⁰	Trimethoprim	Gram-negative bacteria	X12868	
dhfrVI 20	Trimethoprim	Gram-negative bacteria	Z86002	
dhfrVII ²⁰	Trimethoprim	Gram-negative bacteria	U31119	
			AF139109	
			X58425	
dhfrVIII ²⁰	Trimethoprim	Gram-negative bacteria	U10186	
n a mr 20	and the second		U09273	
dhfrIX ²⁰	Trimethoprim	Gram-negative bacteria	X57730	
dhfrXII ²⁰	Trimethoprim	Gram-negative bacteria	Z21672	
			AF175203	
			AF180731 M84522	
dhfryiri 20	Trimethoprim	Gram-negative bacteria	X184522 Z50802	
dhfrXIII ²⁰ dhfrXV ²⁰	Trimethoprim	Gram-negative bacteria	Z83331	
dhfrXV ²⁰ dhfrXVII ²⁰	Trimethoprim	Gram-negative bacteria	AF170088	
wigi 22 1 11	IIIIIouiopiiii	Grain hogalive bacteria	AF180469	
			AF169041	

Table 5. Antimicrobial agents resistance genes selected for diagnostic purposes (continued).

Gene	Antimicrobial agent	Bacteria ¹	ACCESSION NO. SEQ ID NO.
${dfrA}$ 20	Trimethoprim	Staphylococcus sp.	AF045472
•	•		U40259
			AF051916
			X13290
0			Y07536
			Z16422
			Z48233

15

20

25

45

- 1 Bacteria having high incidence for the specified antibiotic resistance gene. The presence of the antibiotic resistance genes in other bacteria is not excluded.
- 2 Shaw, K. J., P. N. Rather, R. S. Hare, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-163.
- Antibiotic resistance genes from our assigned US patent no. 6,001,564 for which we have selected PCR primer pairs.
- These SEQ ID NOs. refer to a previous patent (publication WO98/20157).
- 5 Bush, K., G.A. Jacoby and A. Medeiros. 1995. A functional classification scheme for ß-lactamase and its correlation with molecular structure. Antimicrob. Agents. Chemother. 39:1211-1233.
 - 6 Nucleotide mutations in blashy, blatem, and blaoxa, are associated with extended-spectrum β-lactamase or inhibitor-resistant β-lactamase.
- 7 Bauerfeind, A., Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 ears after discovery? Yonsei Med. J. 39:520-525.
- 30 8 Sutcliffe, J., T. Grebe, A. Tait-Kamradt, and L. Wondrack. 1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agent Chemother. 40:2562-2566.
 - 9 Leclerc, R., A., Brisson-Noël, J. Duval, and P. Courvalin. 1991. Phenotypic expression and genetic heterogeneity of lincosamide inactivation in Staphylococcus sp. Antimicrob. Agents. Chemother. 31:1887-1891.
- 35 10 Bozdogan, B., L. Berrezouga, M.-S. Kuo, D. A. Yurek, K. A. Farley, B. J. Stockman, and R. Leclercq. 1999. A new gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents. Chemother. 43:925-929.
 - ¹ Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212.
- 40 12 Tenover, F. C., T. Popovic, and O Olsvik. 1996. Genetic methods for detecting antibacterial resistance genes. pp. 1368-1378. In Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, R. H. Yolken (eds). Manual of clinical microbiology. 6th ed., ASM Press, Washington, D.C. USA
 - 13 Dowson, C. G., T. J. Tracey, and B. G. Spratt. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to ß-lactam antibiotics. Trends Molec. Microbiol.2: 361-366.
 - 14 Jensen, L. B., N. Frimodt-Moller, F. M. Aarestrup. 1999. Presence of erm gene classes in Grampositive bacteria of animal and human origin in Denmark. FEMS Microbiol. 170:151-158.
 - Thal, L. A., and M. J. Zervos. 1999. Occurrence and epidemiology of resistance to virginimycin and streptrogramins. J. Antimicrob. Chemother. 43:171-176.
- Martinez J. L., A. Alonso, J. M. Gomez-Gomez, and F. Baquero. 1998. Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg? J. Antimicrob. Chemother. 42:683-688
 - 17 Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212.
- 55 18 Casadewall, B. and P. Courvalin. 1999 Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM 4339. J. Bacteriol. 181:3644-3648.
 - 19 Roberts, M.C. 1999. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found. Symp. 207:206-222.
- Huovinen, P., L. Sundström, G. Swedberg, and O. Sköld. 1995. Trimethoprim and sulfonamide resistance. Antimicrob. Agent Chemother. 39:279-289.

Table 6. List of bacterial toxins selected for diagnostic purposes.

Organism	Toxin	Accession number
Actinobacillus actinomycetemcomitans	Cytolethal distending toxin (cdtA, cdtB, cdtC)	AF006830
	Leukotoxin (ltxA)	M27399
Actinomyces pyogenes	Hemolysin (pyolysin)	U84782
Aeromonas hydrophila	Aerolysin (aerA)	M16495
	Haemolysin (hlyA)	U81555
	Cytotonic enterotoxin (alt)	L77573
Bacillus anthracis Bacillus cereus	Anthrax toxin (cya)	M23179 D17312
Bacillus cereus	Enterotoxin (bceT)	AF192766, AF192767
	Enterotoxic hemolysin BL	AJ237785
	Non-haemolytic enterotoxins A,B and C (nhe)	Y19005
Bacillus mycoides	Hemolytic enterotoxin HBL	AJ243150 to AJ243153
Bacillus pseudomycoides Bacteroides fragilis	Hemolytic enterotoxin HBL Enterotoxin (bftP)	AJ243154 to AJ243156 U67735
	Matrix metalloprotease/enterotoxin (fragilysin)	\$75941, AF038459
	Metalloprotease toxin-2	U90931 AF081785
	Metalloprotease toxin-3	AF056297
Bordetella bronchiseptica	Adenylate cyclase hemolysin (cyaA)	Z37112, U22953
	Dermonecrotic toxin (dnt)	U59687
D = = 1 - 4 - 11 = = = = - 2 2	Destrucia terria (C1 suburait tors)	AB020025
Bordetella pertussis	Pertussis toxin (S1 subunit, tox)	AJ006151 AJ006153
		AJ006155
		AJ006157
		AJ006159
		AJ007363
		M14378, M16494 AJ007364
		M13223
		X16347
	Adenyl cyclase (cya)	18323
	Dermonecrotic toxin (dnt)	U10527
Campylobacter jejuni Citrobacter freundii	Cytolethal distending toxin (cdtA, cdtB, cdtC) Shiga-like toxin (slt-IIcA)	U51121 X67514, S53206
Clostridium botulinum	Botulism toxin (BoNT) (A,B,E and F serotypes	
Ciosii uum bouumum	are neurotoxic for humans; the other serotypes	X73423
	have not been considered)	M30196
		X70814
		X70819 X71343
		Z11934
		X70817
		M81186
		X70818
		X70815
		X62089 X62683
		\$76749
		X81714 X70816

Table 6. List of bacterial toxins selected for diagnostic purposes (continued).

<u>O</u> 1	rganism	Toxin	Accession number
C	lostridium botulinum (continued)		X70820
Ci	ostriatum botuttum (continucu)		
			X70281
			L35496
			M92906
Cl	lostridium difficile	A toxin (enterotoxin) (tcdA) (cdtA)	AB012304
			AF053400
			Y12616
			X51797
			X17194
			M30307
		B toxin (cytotoxin) (toxB) (cdtB)	Z23277
		b tokin (cytotokin) (tokb) (cuib)	X53138
	la atmi divena manfrina a ana	Almha (mhaamhalimaga C) (ang)	
Ci	lostridium perfringens	Alpha (phospholipase C) (cpa)	L43545
			L43546
			L43547
			L43548
			X13608
			X17300
			D10248
		Beta (dermonecrotic protein) (cpb)	L13198
		20m (dormonostono protein) (cpo)	X83275
			L77965
			L/1903
		Enterotoxin (cpe)	AJ000766
			M98037
			X81849
			X71844
			Y16009
		Potential and described	A 15027220
		Enterotoxin pseudogene (not expressed)	AF037328
			AF037329
			AF037330
		Epsilon toxin (etxD)	M80837
			M95206
			X60694
		Iota (Ia and Ib)	X73562
		Lambda (metalloprotease)	D45904
		Theta (perfringolysin O)	M36704
Cl	lostridium sordellii	Cytotoxin L	X82638
	lostridium tetani	Tetanos toxin	X06214
			X04436
Ca	orynebacterium diphtheriae	Diphtheriae toxin	X00703
Ca	orynebacterium pseudotuberculosis	Phospholipase C	A21336
Ei.	kenella corrodens	lysine decarboxylase (cadA)	U89166
	nterobacter cloacae	Shiga-like toxin II	Z50754, U33502
	nerovacier civacue nerococcus faecalis	Cytolysin B (cylB)	M38052
EK.	nerococcus juecuis	Usualysin b (cylb)	AF043471
ES	scherichia coli (EHEC)	Hemolysin toxin (hlyA and ehxA)	
			X94129
			X79839
			X86087
			AB011549
			AF074613

Table 6. List of bacterial toxins selected for diagnostic purposes (continued).

Organism	Toxin	Accession number
Escherichia coli (EHEC)	Shiga-like (Vero cytotoxin) (stx)	X81418, M36727 M14107, E03962 M10133, E03959 M12863, X07865
		X81417, Y10775 X81416, Z50754 X81415, X67515 Z36900, AF04362 L11078, M19473
		L04539, M17358 L11079, M19437 X65949, M24352 M21534, X07903 M29153, Z36899
		Z37725 Z36901 X61283 AB017524 U72191
Escherichia coli (ETEC)	Enterotoxin (heat-labile) (eltB)	X61283 M17874 M17873 J01605 AB011677
	Enterotoxin (heat-stable) (astA) (estA1)	L11241 M58746 M29255 V00612 J01831
Escherichia coli (other)	Cytolethal-distending toxin (cdt) (3 genes)	<i>U03293</i> U04208 U89305
	Cytotoxic necrotizing factor 1 (cnf1)	U42629
Haemophilus ducreyi Helicobacter pylori	Microcin 24 (mtfS) Autotransporter enterotoxin (Pet) (cytotoxin) Cytolethal distending toxin (cdtA, cdtB, cdtC) Vacuolating toxin (vacA)	U47048 AF056581 U53215 U07145
неисовисиет руион	vacuolating toxin (vacx)	U80067 U80068 AF077938 AF077939 AF077940
Legionella pneumophila Listeria monocytogenes	Structural toxin protein (rtxA) Listeriolysin O (lisA, hlyA)	AF077941 AF057703 X15127 M24199
		X60035 U25452 U25443 U25446
Pasteurella multocida	Mitogenic toxin (dermonecrotic toxin)	U25449 X57775, Z28388 X51512 X52478
Proteus mirabilis Pseudomonas aeruginosa Salmonella typhimurium	Hemolysin (hpmA) Cytotoxin (Enterotoxin A) Calmodulin-sensitive adenylate cyalase toxin (cya)	M30186 X14956 AF060869
	Cytolysin (salmolysin) (slyA)	U03842
	Enterotoxin (stn)	L16014

Table 6. List of bacterial toxins selected for diagnostic purposes (continued).

Organism	Toxin	Accession number
Serratia marcescens	Hemolysin (shlA)	M22618
Shigella dysenteriae type 1	Shiga toxin (stxA and stxB)	X07903, M32511
		M19437
		M24352, M21947
Shigella flexneri	ShET2 enterotoxin (senA)	Z54211
.		Z47381
	Enterotoxin 1 (set1A and set1B)	U35656
	Hemolysin E (hlyE, clyA, sheA)	AF200955
Shigella sonnei	Shiga toxin (stxA and stxB)	AJ132761
Sphingomonas paucimobilis	Beta-hemolysin (hlyA)	L01270
Staphylococcus aureus	Gamma-hemolysin (hlg2)	D42143
		L01055
	Enterotoxin	U93688
	Enterotoxin A (sea)	L22565, L22566
	` '	M18970
	Enterotoxin B	M11118
	Enterotoxin C1 (entC1)	X05815
	Enterotoxin C2 (entC2)	P34071
	Enterotoxin C3 (entC3)	X51661
	Enterotoxin D (sed)	M94872
	Enterotoxin E	M21319
	Enterotoxin G (seg)	AF064773
	Enterotoxin H (seh)	U11702
	Enterotoxin I (sei)	AF064774
	Enterotoxin J	AF053140
	Exfoliative toxin A (ETA, Epidermolytic toxin A)	M17347
		M17357 L25372, M20371
	Exfoliative toxin B (ETB)	M17348, M13775
	Leukocidin R (F and S component, lukF and lukS;	X64389, S53213
	Hemolysin B and C)	X72700
		L01055
	Toxic shock syndrome toxin 1 (TSST-1,	X01645
	alpha toxin, alpha hemolysin)	M90536
	arpina tokini, arpina nemorysini,	J02615
Gamelanda and a state of the st	D-14- 4 (I-I-I)	U93688
Staphylococcus epidermidis Staphylococcus intermedius	Delta toxin (hld) Enterotoxin 1	AF068634 U91526
	Leukocidin R (F and S component, <i>luk</i> F and <i>luk</i> S; synergohymenotropic toxin)	X79188
Streptococcus pneumoniae	Pneumolysin	X52474

Table 6. List of bacterial toxins selected for diagnostic purposes (continued).

Organism	Toxin	Accession number
Streptococcus pyogenes	Streptococcus pyrogenic exotoxin A (speA)	X61553 to X61573 X03929 U40453, M19350
	Pyrogenic exotoxin B (speB) M86905, M35110	U63134
Vibrio cholerae	Cholerae toxin (ctxA and ctxB subunits)	X00171 X76390 X58786 X58785, S55782 D30052 D30053 K02679 AF175708
	Accessory cholera enterotoxin (ace)	Z22569, AF17570
	Heat-stable enterotoxin (sto)	X74108, M85198 M97591, L03220
	Zonula occludens toxin (zot)	M83563, AF1757
Vibrio parahaemolyticus	Thermostable direct hemolysin (tdh)	S67841
Vibrio vulnificus	Cytolysin (vvhA)	M34670
Yersinia enterocolitica	Heat-stable enterotoxin (yst)	U09235, X65999
	Heat-stable enterotoxin type B (ystB)	D88145
	Heat-stable enterotoxin type C (ystC)	D63578
Yersinia kristensenii	Enterotoxin X69218	
Yersinia pestis	Toxin	X92727

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing.

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	SourceGene*	
5	1	Acinetobacter baumannii	This patent	tuf
-	$\overline{2}$	Actinomyces meyeri	This patent	tuf
	3	Aerococcus viridans	This patent	tuf
	4	Achromobacter xylosoxidans subsp. denitrificans	This patent	tuf
	5	Anaerorhabdus furcosus	This patent	tuf
10	6	Bacillus anthracis	This patent	tuf
10	6 7	Bacillus cereus	This patent	tuf
	8	Bacteroides distasonis	This patent	tuf
	9	Enterococcus casseliflavus	This patent	tuf
	10	Staphylococcus saprophyticus	This patent	tuf
15	11	Bacteroides ovatus	This patent	tuf tuf
13	12	Bacterolaes ovalus Bartonella henselae		
	13		This patent	tuf tuf
		Bifidobacterium adolescentis	This patent	tuf
	14	Bifidobacterium dentium	This patent	tuf
20	15	Brucella abortus	This patent	tuf
20	16	Burkholderia cepacia	This patent	tuf
	17	Cedecea davisae	This patent	tuf
	18	Cedecea neteri	This patent	tuf
	19	Cedecea lapagei	This patent	tuf __
	20	Chlamydia pneumoniae	This patent	tuf
25	21	Chlamydia psittaci	This patent	tuf
	22	Chlamydia trachomatis	This patent	tuf
	23	Chryseobacterium meningosepticum	This patent	tuf
	24	Citrobacter amalonaticus	This patent	tuf
	25	Citrobacter braakii	This patent	tuf
30	26	Citrobacter koseri	This patent	tuf
	27	Citrobacter farmeri	This patent	tuf
	28	Citrobacter freundii	This patent	tuf
	29	Citrobacter sedlakii	This patent	tuf
	30	Citrobacter werkmanii	This patent	tuf
35	31	Citrobacter youngae	This patent	tuf
,,	32	Clostridium perfringens	This patent	tuf
	33	Comamonas acidovorans	This patent	tuf
	34	Corynebacterium bovis	This patent	tuf
	35	Corynebacterium cervicis	This patent	tuf
40	36	Corynebacterium flavescens	This patent	tuf
+0	30 37		This patent	tuf tuf
	38	Corynebacterium kutscheri	This patent	
	36 39	Corynebacterium minutissimum		tuf tuf
		Corynebacterium mycetoides	This patent	tuf tuf
45	40	Corynebacterium pseudogenitalium	This patent	tuf tuf
+3	41	Corynebacterium renale	This patent	tuf
	42	Corynebacterium ulcerans	This patent	tuf +£
	43	Corynebacterium urealyticum	This patent	tuf tuf
	44	Corynebacterium xerosis	This patent	tuf +-£
50	45	Coxiella burnetii	This patent	tuf
50	46	Edwardsiella hoshinae	This patent	tuf
	47	Edwardsiella tarda	This patent	tuf
	48	Eikenella corrodens	This patent	tuf
	49	Enterobacter aerogenes	This patent	tuf
	50	Enterobacter agglomerans	This patent	tuf
55	51	Enterobacter amnigenus	This patent	tuf
	52	Enterobacter asburiae	This patent	tuf
	53	Enterobacter cancerogenus	This patent	tuf
	54	Enterobacter cloacae	This patent	tuf
	55	Enterobacter gergoviae	This patent	tuf
60	56	Enterobacter hormaechei	This patent	tuf
	57	Enterobacter sakazakii	This patent	tuf
	58	Enterococcus casseliflavus	This patent	tuf
	59	Enterococcus cecorum	This patent	tuf
	60	Enterococcus dispar	This patent	tuf
65	61	Enterococcus durans	This patent	tuf
~~	•		P	

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	62	Enterococcus faecalis	This patent	tuf
	63	Enterococcus faecalis	This patent	tuf
	64	Enterococcus faecium	This patent	tuf
	65	Enterococcus flavescens	This patent	tuf
	66	Enterococcus gallinarum	This patent	tuf
0	67	Enterococcus hirae	This patent	tuf
•	68	Enterococcus mundtii	This patent	tuf
	69	Enterococcus pseudoavium	This patent	tuf
	70	Enterococcus raffinosus	This patent	tuf
	71	Enterococcus saccharolyticus	This patent	tuf
5	72	Enterococcus solitarius	This patent	tuf
	73	Enterococcus casseliflavus	This patent	tuf (C)
	7 4	Staphylococcus saprophyticus	This patent	unknown
	75	Enterococcus flavescens	This patent	tuf (C)
	76	Enterococcus gallinarum	This patent	tuf (C)
0	. 77	Ehrlichia canis	This patent	tuf (C)
•	78	Escherichia coli	This patent	tuf
	79	Escherichia fergusonii	This patent	tuf
	80	Escherichia hermannii	This patent	tuf
	81	Escherichia vulneris	This patent	tuf
5	82	Eubacterium lentum	This patent	tuf
_	83	Eubacterium temum Eubacterium nodatum	This patent	tuf tuf
	84	Ewingella americana	This patent	tuf
	85	Francisella tularensis		• -
	86		This patent	tuf tuf
0	87	Fusobacterium nucleatum subsp. polymorphum Gemella haemolysans	This patent This patent	tuf tuf
U	88	Gemella morbillorum	This patent	tuf tuf
	89		This patent	tuf tuf
	90	Haemophilus actinomycetemcomitans		
	90 91	Haemophilus aphrophilus	This patent	tuf tuf
5	92	Haemophilus ducreyi	This patent	tuf tuf
,	93	Haemophilus haemolyticus	This patent	tuf tuf
	93 94	Haemophilus parahaemolyticus	This patent	tuf tuf
	9 4 95	Haemophilus parainfluenzae	This patent	tuf tuf
	95 96	Haemophilus paraphrophilus	This patent	tuf tuf
0	90 97	Haemophilus segnis Hafnia alvei	This patent This patent	tuf tuf
U	98	Kingella kingae	This patent	tuf tuf
	99	Kingetta kingue Klebsiella ornithinolytica	This patent	tuj tuf
	100	Klebsiella oxytoca	This patent	tuf tuf
	101	Klebsiella planticola	This patent	tuf tuf
5	102	Klebsiella pneumoniae subsp. ozaenae	This patent	tuf tuf
,	102		This patent	tuf tuf
	103	Klebsiella pneumoniae pneumoniae Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	tuj tuf
	105	Kluyvera ascorbata	This patent	tuf
	106		This patent	tuf tuf
0	107	Kluyvera cryocrescens Kluyvera georgiana	This patent	tuj tuf
U	107		This patent	tuf tuf
	109	Lactobacillus casei subsp. casei Lactococcus lactis subsp. lactis	This patent	tuf tuf
	110			tuf tuf
	111	Leclercia adecarboxylata	This patent	
5		Legionella micdadei	This patent	tuf tuf
J	112	Legionella pneumophila subsp. pneumophila	This patent	tuf tuf
	113	Leminorella grimontii	This patent	tuf tuf
	114	Leminorella richardii	This patent	tuf tuf
	115	Leptospira interrogans Magamonas hypermagala	This patent	tuf tuf
Λ	116	Megamonas hypermegale	This patent	tuf tuf
0	117	Mitsuokella multacidus	This patent	tuf tuf
	118	Mobiluncus curtisii subsp. holmesii	This patent	tuf tuf
	119	Moellerella wisconsensis	This patent	tuf tuf
	120	Moraxella catarrhalis	This patent	tuf tuf
_	121	Morganella morganii subsp. morganii	This patent	tuf ***
5	122	Mycobacterium tuberculosis	This patent	tuf

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

5 0	123 124	Neisseria cinerea	This patent	46
				tuf
0	•	Neisseria elongata subsp. elongata	This patent	tuf
Λ	125	Neisseria flavescens	This patent	tuf
Λ	126	Neisseria gonorrhoeae	This patent	tuf
Λ	127	Neisseria lactamica	This patent	tuf
U	128	Neisseria meningitidis	This patent	tuf
•	129	Neisseria mucosa	This patent	tuf tuf
	130	Neisseria sicca	This patent	tuf
	131	Neisseria subflava	This patent	tuf
	132	Neisseria weaveri	This patent	tuf tuf
5	133	Ochrobactrum anthropi	This patent	tuf tuf
	134	Pantoea agglomerans	This patent	tuf tuf
	135	Pantoea dispersa	This patent	• •
	136	Pasteurella multocida		tuf tuf
	137		This patent	tuf tuf
0		Peptostreptococcus anaerobius	This patent	tuf
U	138	Peptostreptococcus asaccharolyticus	This patent	tuf
	139	Peptostreptococcus prevotii	This patent	tuf
	140	Porphyromonas asaccharolytica	This patent	tuf
	141	Porphyromonas gingivalis	This patent	tuf
_	142	Pragia fontium	This patent	tuf
5	143	Prevotella melaninogenica	This patent	tuf
	144	Prevotella oralis	This patent	tuf
	145	Propionibacterium acnes	This patent	tuf
	146	Proteus mirabilis	This patent	tuf
_	147	Proteus penneri	This patent	tuf
0	148	Proteus vulgaris	This patent	tuf
	149	Providencia alcalifaciens	This patent	tuf
	150	Providencia rettgeri	This patent	tuf
	151	Providencia rustigianii	This patent	tuf
	152	Providencia stuartii	This patent	tuf
5	153	Pseudomonas aeruginosa	This patent	tuf
	154	Pseudomonas fluorescens	This patent	tůf
	155	Pseudomonas stutzeri	This patent	túf
	156	Psychrobacter phenylpyruvicum	This patent	tuf
	157	Rahnella aquatilis	This patent	tuf
0 .	158	Salmonella choleraesuis subsp.arizonae	This patent	tuf
•	159	Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
	107	serotype Choleraesuis	Time parent	9
	160	Salmonella choleraesuis subsp. diarizonae	This patent	tuf
	161	Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
5	101	serotype Heidelberg	ims patent	iuj
_	162	Salmonella choleraesuis subsp. houtenae	This patent	tuf
	163	Salmonella choleraesuis subsp. indica	This patent	tuf
	164	Salmonella choleraesuis subsp. traica Salmonella choleraesuis subsp. salamae	This patent	tuf tuf
	165	Salmonella choleraesuis subsp. choleraesuis serotyp	a Tunhi — Thic na	tent tuf
0		Samula fonticola	This patent	tuf
U	166	Serratia fonticola		tuf
	167	Serratia liquefaciens	This patent	tuf +
	168	Serratia marcescens	This patent	tuf
	169	Serratia odorifera	This patent	tuf
_	170	Serratia plymuthica	This patent	tuf
5	171	Serratia rubidaea	This patent	tuf
	172	Shigella boydii	This patent	tuf
	173	Shigella dysenteriae	This patent	tuf
	174	Shigella flexneri	This patent	tuf
^	175	Shigella sonnei	This patent	tuf
0	176	Staphylococcus aureus	This patent	tuf
	177	Staphylococcus aureus	This patent	tuf_
	178	Staphylococcus aureus	This patent	tuf
	179	Staphylococcus aureus	This patent	tuf
	180	Staphylococcus aureus subsp. aureus	This patent	tuf
	181	Staphylococcus auricularis	This patent	túf
5				

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

_	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
	183	Macrococcus caseolyticus	This patent	tuf
	184	Staphylococcus cohnii subsp. cohnii	This patent	tuf
	185			
		Staphylococcus epidermidis	This patent	tuf
	186	Staphylococcus haemolyticus	This patent	tuf
	187	Staphylococcus warneri	This patent	tuf
	188	Staphylococcus haemolyticus	This patent	tuf
	189	Staphylococcus haemolyticus	This patent	tuf
	190	Staphylococcus haemolyticus	This patent	tuf
	191	Staphylococcus hominis subsp. hominis	This patent	tuf
	192	Staphylococcus warneri	This patent	tuf
	193	Staphylococcus hominis	This patent	tuf
	194	Staphylococcus hominis	This patent	tuf
	195	Staphylococcus hominis	This patent	tuf
	196	Staphylococcus hominis	This patent	tuf
	197			
		Staphylococcus lugdunensis	This patent	tuf
	198	Staphylococcus saprophyticus	This patent	tuf
	199	Staphylococcus saprophyticus	This patent	tuf
	200	Staphylococcus saprophyticus	This patent	tuf
	201	Staphylococcus sciuri subsp. sciuri	This patent	tuf
	202	Staphylococcus warneri	This patent	tuf
	203	Staphylococcus warneri	This patent	tuf
	204	Bifidobacterium longum	This patent	tuf
	205	Stenotrophomonas maltophilia	This patent	tuf
	206	Streptococcus acidominimus	This patent	tuf
	207	Streptococcus agalactiae	This patent	tuf
	208	Streptococcus agalactiae		
			This patent	tuf
	209	Streptococcus agalactiae	This patent	tuf
	210	Streptococcus agalactiae	This patent	tuf
	211	Streptococcus anginosus	This patent	tuf
	212	Streptococcus bovis	This patent	tuf
	213	Streptococcus anginosus	This patent	tuf
	214	Streptococcus cricetus	This patent	tuf
	215	Streptococcus cristatus	This patent	tuf
	216	Streptococcus downei	This patent	tuf
	217	Streptococcus dysgalactiae	This patent	tuf
	218	Streptococcus equi subsp. equi	This patent	tuf
	219			
		Streptococcus ferus	This patent	tuf
	220	Streptococcus gordonii	This patent	tuf
	221	Streptococcus anginosus	This patent	tuf
	222	Streptococcus macacae	This patent	tuf
	223	Streptococcus gordonii	This patent	tuf
	224	Streptococcus mutans	This patent	tuf
	225	Streptococcus parasanguinis	This patent	tuf
	226	Streptococcus ratti	This patent	tuf
	227	Streptococcus sanguinis	This patent	tuf
	228	Streptococcus sobrinus	This patent	tuf
	229	Streptococcus suis	This patent	tuf
	230	Streptococcus uberis	This patent	tuf
	231			
		Streptococcus vestibularis	This patent	tuf
	232	Tatumella ptyseos	This patent	tuf
	233	Trabulsiella guamensis	This patent	tuf
	234	Veillonella parvula	This patent	tuf
	235	Yersinia enterocolitica	This patent	tuf
	236	Yersinia frederiksenii	This patent	tuf
	237	Yersinia intermedia	This patent	tuf
	238	Yersinia pestis	This patent	tuf
	239	Yersinia pseudotuberculosis	This patent	tuf
	240	Yersinia rohdei	This patent	tuf
	240 241	Yokenella regensburgei	This patent	tuf
	242	Achromobacter xylosoxidans subsp. denitrificans	This patent	atpD
	243	Acinetobacter baumannii	This patent	atpD
	244	Acinetobacter lwoffii	This patent	atpD

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	245	Staphylococcus saprophyticus	This patent	atpD
	246	Alcaligenes faecalis subsp. faecalis	This patent	atpD
	247	Bacillus anthracis	This patent	atpD
	248	Bacillus cereus	This patent	atpD
	249	Bacteroides distasonis	This patent	atpD
10	250	Bacteroides ovatus	This patent	$a\overline{t}pD$
	251	Leclercia adecarboxylata	This patent	atpD
	252	Stenotrophomonas maltophilia	This patent	atpD
	253	Bartonella henselae	This patent	atpD
	254	Bifidobacterium adolescentis	This patent	atpD
15	255	Brucella abortus	This patent	atpD
	256	Cedecea davisae	This patent	atpD
	257	Cedecea lapagei	This patent	atpD
	258	Cedecea neteri	This patent	atpD
00	259	Chryseobacterium meningosepticum	This patent	atpD
20	260	Citrobacter amalonaticus	This patent	atpD
	261	Citrobacter braakii	This patent	atpD
	262	Citrobacter koseri	This patent	atp <u>D</u>
	263	Citrobacter farmeri	This patent	atpD
25	264	Citrobacter freundii	This patent	atpD
25	265	Citrobacter koseri	This patent	atpD
	266	Citrobacter sedlakii	This patent	atpD
	267	Citrobacter werkmanii	This patent	atpD
	268	Citrobacter youngae	This patent	atpD
30	269	Clostridium innocuum	This patent	atpD
30	270	Clostridium perfringens	This patent	atpD
	272	Corynebacterium diphtheriae	This patent	atpD
	273 274	Corynebacterium pseudodiphtheriticum Corynebacterium ulcerans	This patent	atpD atpD
	274 275	Corynebacterium utceruns Corynebacterium urealyticum	This patent This patent	• _
35	275 276	Coxiella burnetii		atpD atpD
33	270 277	Edwardsiella hoshinae	This patent This patent	atpD atpD
	278	Edwardsiella tarda	This patent	atpD atpD
	279	Eikenella corrodens	This patent	atpD
	280	Enterobacter agglomerans	This patent	atpD
40	281	Enterobacter annigenus	This patent	atpD
	282	Enterobacter ashuriae	This patent	atpD
	283	Enterobacter cancerogenus	This patent	atpD
	284	Enterobacter cloacae	This patent	atpD
	285	Enterobacter gergoviae	This patent	atpD
45	286	Enterobacter hormaechei	This patent	atpD
	287	Enterobacter sakazakii	This patent	atpD
	288	Enterococcus avium	This patent	atpD
	289	Enterococcus casseliflavus	This patent	atpD
	290	Enterococcus durans	This patent	atpD
50	291	Enterococcus faecalis	This patent	atpD
	292	Enterococcus faecium	This patent	atpD
	293	Enterococcus gallinarum	This patent	$a\overline{t}pD$
	294	Enterococcus saccharolyticus	This patent	atpD
	295	Escherichia fergusonii	This patent	atpD
55	296	Escherichia hermannii	This patent	atpD
	297	Escherichia vulneris	This patent	atpD
	298	Eubacterium lentum	This patent	atpD
	299	Ewingella americana	This patent	atpD
	300	Francisella tularensis	This patent	atpD
60	301	Fusobacterium gonidiaformans	This patent	atpD
	302	Fusobacterium necrophorum subsp. necrophorum	This patent	atpD
	303	Fusobacterium nucleatum subsp. polymorphum	This patent	atpD
	304	Gardnerella vaginalis	This patent	atpD
	305	Gemella haemolysans	This patent	atpD
65	306	Gemella morbillorum	This patent	atpD

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

 SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
 307	Haemophilus ducreyi	This patent	atpD
308	Haemophilus haemolyticus	This patent	
			atpD
309	Haemophilus parahaemolyticus	This patent	atpD
310	Haemophilus parainfluenzae	This patent	atpD
311	Hafnia alvei	This patent	atpD_
312	Kingella kingae	This patent	atpD
313	Klebsiella pneumoniae subsp. ozaenae	This patent	atpD
314	Klebsiella ornithinolytica	This patent	atpD
315	Klebsiella oxytoca	This patent	atpD
316	Klebsiella planticola	This patent	$\widehat{atp}D$
317	Klebsiella pneumoniae subsp. pneumoniae	This patent	atpD
318	Kluyvera ascorbata	This patent	atpD
319	Kluyvera cryocrescens	This patent	atpD
320	Kluyvera georgiana	This patent	atpD
321	Lactobacillus acidophilus		
		This patent	atpD
322	Legionella pneumophila subsp. pneumophila	This patent	atpD
323	Leminorella grimontii	This patent	atpD
324	Listeria monocytogenes	This patent	atpD
325	Micrococcus lylae	This patent	atpD
326	Moellerella wisconsensis	This patent	atpD
327	Moraxella catarrhalis	This patent	atpD
328	Moraxella osloensis	This patent	atpD
329	Morganella morganii subsp. morganii	This patent	atpD
330	Pantoea agglomerans	This patent	atpD
331	Pantoea dispersa	This patent	atpD
332	Pasteurella multocida	This patent	atpD
333	Pragia fontium	This patent	atpD
334	Proteus mirabilis	This patent	atpD
335	Proteus vulgaris	This patent	atpD atpD
336	Providencia alcalifaciens	This patent	atpD
337	Providencia rettgeri	This patent	atpD
338	Providencia rustigianii	This patent	atpD
339	Providencia stuartii	This patent	atpD
340	Psychrobacter phenylpyruvicum	This patent	atpD
341	Rahnella aquatilis	This patent	atpD
342	Salmonella choleraesuis subsp. arizonae	This patent	atpD
343	Salmonella choleraesuis subsp. choleraesuis serotype Choleraesuis	This patent	atpD
344	Salmonella choleraesuis subsp. diarizonae	This patent	atpD
345	Salmonella choleraesuis subsp. houtenae	This patent	atpD
346	Salmonella choleraesuis subsp. indica	This patent	atpD
347	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
348	serotype Paratyphi A Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
	serotype Paratyphi B	E	
349	Salmonella choleraesuis subsp. salamae	This patent	atpD
350	Salmonella choleraesuis subsp. choleraesuis serotype Ty		atpD
351	Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium	This patent	atpD
352	Salmonella choleraesuis subsp. choleraesuis serotype Virchow	This patent	atpD
353	Serratia ficaria	This patent	atpD
354			•
	Serratia fonticola	This patent	atpD
355	Serratia grimesii	This patent	atpD
356	Serratia liquefaciens	This patent	atpD
357	Serratia marcescens	This patent	atpD
358	Serratia odorifera	This patent	atpD
359	Serratia plymuthica	This patent	atpD
360	Serratia rubidaea	This patent	atpD
361	Pseudomonas putida	This patent	atpD
362	Shigella boydii	This patent	atpD

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	SourceGene*	
5	364	Shigella flexneri	This patent	atpD
•	365	Shigella sonnei	This patent	atpD
	366	Staphylococcus aureus	This patent	atpD
	367	Staphylococcus auricularis	This patent	atpD
	368	Staphylococcus capitis subsp. capitis	This patent	$a\dot{t}pD$
0	369	Staphylococcus cohnii subsp. cohnii	This patent	$\hat{atp}D$
	370	Staphylococcus epidermidis	This patent	$a\hat{t}pD$
	371	Staphylococcus haemolyticus	This patent	atpD
	372	Staphylococcus hominis subsp. hominis	This patent	atpD
_	373	Staphylococcus hominis	This patent	atpD
5	374	Staphylococcus lugdunensis	This patent	atpD
	375	Staphylococcus saprophyticus	This patent	atpD
	376	Staphylococcus simulans	This patent	atpD
	377 378	Staphylococcus warneri	This patent	atpD
0	378 379	Streptococcus acidominimus	This patent	atpD
U	380	Streptococcus agalactiae Streptococcus agalactiae	This patent This patent	atpD atpD
	381	Streptococcus agalactiae	This patent	atpD
	382	Streptococcus agalactiae	This patent	atpD
	383	Streptococcus agalactiae	This patent	atpD
5	384	Streptococcus dysgalactiae	This patent	atpD
_	385	Streptococcus equi subsp. equi	This patent	$a\overline{t}pD$
	386	Streptococcus anginosus	This patent	$a\dot{t}pD$
	387	Streptococcus salivarius	This patent	$\hat{atp}D$
_	388	Streptococcus suis	This patent	atpD
0	389	Streptococcus uberis	This patent	atpD
	390	Tatumella ptyseos	This patent	atpD
	391	Trabulsiella guamensis	This patent	atpD
	392	Yersinia bercovieri	This patent	atpD
5	393	Yersinia enterocolitica	This patent	atpD
5	394	Yersinia frederiksenii	This patent	atpD
	395 396	Yersinia intermedia Yersinia pseudotuberculosis	This patent This patent	atpD atpD
	397	Yersinia rohdei	This patent	atpD atpD
	398	Yokenella regensburgei	This patent	atpD
0	399	Yarrowia lipolytica	This patent	tuf (EF-1)
•	400	Absidia corymbifera	This patent	tuf (EF-1)
	401	Alternaria alternata	This patent	tuf (EF-1)
	402	Aspergillus flavus	This patent	tuf (EF-1)
_	403	Aspergillus fumigatus	This patent	tuf (EF-1)
5	404	Aspergillus fumigatus	This patent	tuf (EF-1)
	405	Aspergillus niger	This patent	tuf (EF-1)
	406	Blastoschizomyces capitatus	This patent	tuf (EF-1)
	407	Candida albicans	This patent	tuf (EF-1)
Λ	408	Candida albicans	This patent	tuf (EF-1)
0	409	Candida albicans	This patent	tuf (EF-1)
	410 411	Candida albicans Candida albicans	This patent This patent	tuf (EF-1)
	411	Candida dibicans Candida dubliniensis	This patent	tuf (EF-1) tuf (EF-1)
	412	Candida catenulata	This patent	tuf (EF-1)
5	414	Candida dubliniensis	This patent	tuf (EF-1)
_	415	Candida dubliniensis	This patent	tuf (EF-1)
	416	Candida famata	This patent	tuf (EF-1)
	417	Candida glabrata	WO98/20157	tuf (EF-1)
	418	Candida guilliermondii	This patent	tuf (EF-1)
0	419	Candida haemulonii	This patent	tuf (EF-1)
	420	Candida inconspicua	This patent	tuf (EF-1)
	421	Candida kefyr	This patent	tuf (EF-1)
	422	Candida krusei	WO98/20157	tuf (EF-1)
_	423	Candida lambica	This patent	tuf (EF-1)
5	424	Candida lusitaniae	This patent	tuf (EF-1)
	425	Candida norvegensis	This patent	tuf (EF-1)

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	426	Candida parapsilosis	WO98/20157	tuf (EF-1)
	427	Candida rugosa	This patent	tuf (EF-1)
	428	Candida sphaerica	This patent	tuf (EF-1)
	429	Candida tropicalis	WO98/20157	tuf (EF-1)
	430	Candida utilis	This patent	túf (EF-1)
10	431	Candida viswanathii	This patent	tuf (EF-1)
	432	Candida zeylanoides	This patent	tuf (EF-1)
	433	Coccidioides immitis	This patent	tuf (EF-1)
	434	Cryptococcus albidus	This patent	tuf (EF-1)
	435	Exophiala jeanselmei	This patent	tuf (EF-1)
15	436	Fusarium oxysporum	This patent	<i>tuf</i> (EF-1)
	437	Geotrichum sp.	This patent	tuf (EF-1)
	438	Histoplasma capsulatum	This patent	tuf (EF-1)
	439	Issatchenkia orientalis Kudrjanzev	This patent	tuf (EF-1)
	440	Malassezia furfur	This patent	tuf (EF-1)
20	441	Malassezia pachydermatis	This patent	<i>tuf</i> (EF-1)
	442	Malbranchea filamentosa	This patent	tuf (EF-1)
	443	Metschnikowia pulcherrima	This patent	tuf (EF-1)
	444	Paecilomyces lilacinus	This patent	tuf (EF-1)
25	445	Paracoccidioides brasiliensis	This patent	tuf (EF-1)
25	446	Penicillium marneffei	This patent	tuf (EF-1)
	447	Pichia anomala	This patent	tuf (EF-1)
	448	Pichia anomala	This patent	tuf (EF-1)
	449	Pseudallescheria boydii	This patent	tuf (EF-1)
20	450	Rhizopus oryzae	This patent	tuf (EF-1)
30	451	Rhodotorula minuta	This patent	tuf (EF-1)
	452	Sporobolomyces salmonicolor	This patent	tuf (EF-1)
	453	Sporothrix schenckii	This patent	tuf (EF-1)
	454	Stephanoascus ciferrii	This patent	tuf (EF-1)
25	455	Trichophyton mentagrophytes	This patent	tuf (EF-1)
35	456 457	Trichosporon cutaneum	This patent	tuf (EF-1)
	457	Wangiella dermatitidis	This patent	tuf (EF-1)
	458 450	Aspergillus fumigatus	This patent	atpD
	459 460	Blastoschizomyces capitatus Candida albicans	This patent	atpD
40	461	Candida dibicans Candida dubliniensis	This patent This patent	atpD atpD
40	462	Candida famata	This patent	atpD
	463	Candida glabrata	This patent	atpD
	464	Candida guilliermondii	This patent	atpD
	465	Candida haemulonii	This patent	atpD
45	466	Candida inconspicua	This patent	atpD
	467	Candida kefyr	This patent	atpD
	468	Candida krusei	This patent	atpD
	469	Candida lambica	This patent	atpD
	470	Candida lusitaniae	This patent	atpD
50	471	Candida norvegensis	This patent	atpD
	472	Candida parapsilosis	This patent	$\hat{atp}D$
	473	Candida rugosa	This patent	atpD
	474	Candida sphaerica	This patent	$\widehat{atp}D$
	475	Candida tropicalis	This patent	atpD
55	476	Candida utilis	This patent	atpD
	477	Candida viswanathii	This patent	atpD
	478	Candida zeylanoides	This patent	atpD
	479	Coccidioides immitis	This patent	atpD
	480	Cryptococcus albidus	This patent	atpD
60	481	Fusarium oxysporum	This patent	atpD
	482	Geotrichum sp.	This patent	atpD
	483	Histoplasma capsulatum	This patent	atpD
	484	Malassezia furfur	This patent	atpD
. .	485	Malassezia pachydermatis	This patent	atpD_
65	486	Metschnikowia pulcherrima	This patent This patent	atpD
	487	Penicillium marneffei		atpD

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	488	Pichia anomala	This patent	atpD
	489	Pichia anomala	This patent	atpD
	490	Rhodotorula minuta	This patent	atpD
	491	Rhodotorula mucilaginosa	This patent	atpD
	492	Sporobolomyces salmonicolor	This patent	atpD
10	493	Sporothrix schenckii	This patent	atpD
	494	Stephanoascus ciferrii	This patent	atpD
	495	Trichophyton mentagrophytes	This patent	atpD
	496	Wangiella dermatitidis	This patent	atpD
	497	Yarrowia lipolytica	This patent	atpD
15	498	Aspergillus fumigatus	This patent	tuf (M)
	499	Blastoschizomyces capitatus	This patent	tuf (M)
	500	Candida rugosa	This patent	tuf (M)
	501	Coccidioides immitis	This patent	tuf (M)
20	502	Fusarium oxysporum	This patent	tuf (M)
20	503	Histoplasma capsulatum	This patent	tuf (M)
	504 505	Paracoccidioides brasiliensis	This patent	tuf (M)
	505 506	Penicillium marneffei Pichia anomala	This patent This patent	tuf (M) tuf (M)
	507	Ticha anomaia Trichophyton mentagrophytes	This patent	tuf (M)
25	508	Yarrowia lipolytica	This patent	tuf (M)
25	509	Babesia bigemina	This patent	tuf (EF-1)
	510	Babesia bovis	This patent	tuf (EF-1)
	511	Crithidia fasciculata	This patent	tuf (EF-1)
	512	Entamoeba histolytica	This patent	tuf (EF-1)
30	513	Giardia lamblia	This patent	tuf (EF-1)
	514	Leishmania tropica	This patent	tuf (EF-1)
	515	Leishmania aethiopica	This patent	tuf (EF-1)
	516	Leishmania tropica	This patent	tuf (EF-1)
	517	Leishmania donovani	This patent	tuf (EF-1)
35	518	Leishmania infantum	This patent	tuf (EF-1)
	519	Leishmania enriettii	This patent	tuf (EF-1)
	520	Leishmania gerbilli	This patent	tuf (EF-1)
	521	Leishmania hertigi	This patent	tuf (EF-1)
40	522 523	Leishmania major	This patent	tuf (EF-1)
40	523 524	Leishmania amazonensis Leishmania mexicana	This patent	tuf (EF-1)
	525	Leishmania tarentolae	This patent This patent	tuf (EF-1) tuf (EF-1)
	526	Leishmania tropica	This patent	tuf (EF-1)
	527	Neospora caninum	This patent	tuf (EF-1)
45	528	Trichomonas vaginalis	This patent	tuf (EF-1)
	529	Trypanosoma brucei subsp. brucei	This patent	tuf (EF-1)
	530	Crithidia fasciculata	This patent	atpĎ
	531	Leishmania tropica	This patent	atpD
	532	Leishmania aethiopica	This patent	atpD
50	533	Leishmania donovani	This patent	atpD
	534	Leishmania infantum	This patent	atpD
	535	Leishmania gerbilli	This patent	atpD
	536	Leishmania hertigi	This patent	atpD
<i>5 5</i>	537	Leishmania major	This patent	atpD
55	538	Leishmania amazonensis	This patent	atpD
	607	Enterococcus faecalis	WO98/20157	tuf ****
	608	Enterococcus faecium	WO98/20157 WO98/20157	tuf tuf
	609 610	Enterococcus gallinarum Haemophilus influenzae	WO98/20157 WO98/20157	tuf tuf
60	611	Staphylococcus epidermidis	WO98/20157 WO98/20157	tuf
00	612	Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
	012	serotype Paratyphi A	ims patent	·uj
	613	Serratia ficaria	This patent	tuf
	614	Enterococcus malodoratus	This patent	tuf (C)
65	615	Enterococcus durans	This patent	tuf (C)
	616	Enterococcus pseudoavium	This patent	tuf (C)

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	617	Enterococcus dispar	This patent	tuf (C)
	618	Enterococcus avium	This patent	tuf (C)
	619	Saccharomyces cerevisiae	Database	tuf (M)
	621	Enterococcus faecium	This patent	tuf (C)
	622	Saccharomyces cerevisiae	This patent	tuf (EF-1)
10	623	Cryptococcus neoformans	This patent	tuf (EF-1)
	624	Candida albicans	WO98/20157	tuf (EF-1)
	662	Corynebacterium diphtheriae	WO98/20157	tuf (21 1)
	663	Candida catenulata	This patent	atpD
	665	Saccharomyces cerevisiae	Database	tuf (EF-1)
15	666	Saccharomyces cerevisiae	Database	atpD
	667	Trypanosoma cruzi	This patent	atpD
	668	Corynebacterium glutamicum	Database	tuf
	669	Escherichia coli	Database	atpD
	670	Helicobacter pylori	Database	atpD
20	671	Clostridium acetobutylicum	Database	atpD
	672	Cytophaga lytica	Database	atpD
	673	Ehrlichia risticii	This patent	atpD
	674	Vibrio cholerae	This patent	atpD
	675	Vibrio cholerae	This patent	tuf
25	676	Leishmania enriettii	This patent	atpD
	677	Babesia microti	This patent	tuf (EF-1)
	678	Cryptococcus neoformans	This patent	atpD
	679	Cryptococcus neoformans	This patent	atpD
	680	Cunninghamella bertholletiae	This patent	atpD
30	684	Candida tropicalis	Database	atpD (V)
20	685	Enterococcus hirae	Database	atpD (V)
	686	Chlamydia pneumoniae	Database	atpD(V)
	687	Halobacterium salinarum	Database	atpD(V)
	688	Homo sapiens	Database	atpD (V)
35	689	Plasmodium falciparum	Database	atpD (V)
	690	Saccharomyces cerevisiae	Database	atpD(V)
	691	Schizosaccharomyces pombe	Database	atpD (V)
	692	Trypanosoma congolense	Database	atpD (V)
	693	Thermus thermophilus	Database	atpD (V)
40	698	Escherichia coli	WO98/20157	tuf
	709	Borrelia burgdorferi	Database	atpD (V)
	710	Treponema pallidum	Database	atpD (V)
	711	Chlamydia trachomatis	Genome project	atpD(V)
	712	Enterococcus faecalis	Genome project	atpD(V)
45	713	Methanosarcina barkeri	Database	atpD(V)
	714	Methanococcus jannaschii	Database	atpD(V)
	715	Porphyromonas gingivalis	Genome project	atpD(V)
	716	Streptococcus pneumoniae	Genome project	atpD(V)
	717	Burkholderia mallei	This patent	tuf
50	718	Burkholderia pseudomallei	This patent	tuf
	719	Clostridium beijerinckii	This patent	tuf
	720	Clostridium innocuum	This patent	tuf
	721	Clostridium novyi	This patent	tuf
	722	Clostridium septicum	This patent	tuf
55	723	Clostridium tertium	This patent	tuf
	724	Clostridium tetani	This patent	tuf
	725	Enterococcus malodoratus	This patent	tuf
	726	Enterococcus sulfureus	This patent	tuf
	727	Lactococcus garvieae	This patent	tuf
60	728	Mycoplasma pirum	This patent	tuf
	729	Mycoplasma salivarium	This patent	tuf
	730	Neisseria polysaccharea	This patent	tuf
	731	Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
		serotype Enteritidis		
65				
	*			

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	732	Salmonella choleraesuis subsp. choleraesuis serotype Gallinarum	This patent	tuf
	733	Salmonella choleraesuis subsp. choleraesuis serotype Paratyphi B	This patent	tuf
10	734	Salmonella choleraesuis subsp. choleraesuis serotype Virchow	This patent	tuf
- 0	735	Serratia grimesii	This patent	tuf
	736	Clostridium difficile	This patent	tuf
	737	Burkholderia pseudomallei	This patent	atpD
	738	Clostridium bifermentans	This patent	atpD
15	739	Clostridium beijerinckii	This patent	atpD
10	740	Clostridium difficile	This patent	atpD
	741	Clostridium ramosum	This patent	atpD
	742	Clostridium septicum	This patent	atpD
	743	Clostridium tertium	This patent	atpD
20	744	Comamonas acidovorans	This patent	atpD
	745	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	atpD
	746	Neisseria canis	This patent	atpD
	747	Neisseria cinerea	This patent	atpD
	748	Neisseria cuniculi	This patent	atpD
25	749	Neisseria elongata subsp. elongata	This patent	atpD
	750	Neisseria flavescens	This patent	atpD
	751	Neisseria gonorrhoeae	This patent	atpD
	752	Neisseria gonorrhoeae	This patent	atpD
	753	Neisseria lactamica	This patent	atpD
30	754	Neisseria meningitidis	This patent	atpD
	755	Neisseria mucosa	This patent	atpD
	756	Neisseria subflava	This patent	atpD
	757	Neisseria weaveri	This patent	atpD
	758	Neisseria animalis	This patent	atpD
35	759	Proteus penneri	This patent	atpD
	760	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
		serotype Enteritidis	-	-
	761	Yersinia pestis	This patent	atpD
	762	Burkholderia mallei	This patent	atpD
40	763	Clostridium sordellii	This patent	atpD
	764	Clostridium novyi	This patent	atpD
	765	Clostridium botulinum	This patent	atpD
	766	Clostridium histolyticum	This patent	atpD
	767	Peptostreptococcus prevotii	This patent	atpD
45	768	Absidia corymbifera	This patent	atpD
	769	Alternaria alternata	This patent	atpD
	770	Aspergillus flavus	This patent	atpD
	771	Mucor circinelloides	This patent	atpD
7 0	772	Piedraia hortai	This patent	atpD
50	773	Pseudallescheria boydii	This patent	atpD
	774	Rhizopus oryzae	This patent	atpD
	775	Scopulariopsis koningii	This patent	atpD
	776	Trichophyton mentagrophytes	This patent	atpD
	777	Trichophyton tonsurans	This patent	atpD
55	778	Trichosporon cutaneum	This patent	atpD
	7 7 9	Cladophialophora carrionii	This patent	tuf (EF-1)
	780	Cunninghamella bertholletiae	This patent	tuf (EF-1)
	781	Curvularia lunata	This patent	tuf (EF-1)
60	782	Fonsecaea pedrosoi	This patent	tuf (EF-1)
60	783	Microsporum audouinii	This patent	tuf (EF-1)
	784 785	Mucor circinelloides	This patent	tuf (EF-1)
	785 786	Phialophora verrucosa	This patent	tuf (EF-1)
	786	Saksenaea vasiformis	This patent	tuf (EF-1)
6 F	787	Syncephalastrum racemosum	This patent	tuf (EF-1)
65	788	Trichophyton tonsurans	This patent	tuf (EF-1)
	789	Trichophyton mentagrophytes	This patent	tuf (EF-1)

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	790	Bipolaris hawaiiensis	This patent	tuf (EF-1)
	79 1	Aspergillus fumigatus	This patent	tuf (M)
	792	Trichophyton mentagrophytes	This patent	tuf (M)
	827	Clostridium novyi	This patent	$atp\hat{D}$ (V)
	828	Clostridium difficile	This patent	atpD(V)
10	829	Clostridium septicum	This patent	atpD (V)
	830	Clostridium botulinum	This patent	atpD(V)
	831	Clostridium perfringens	This patent	atpD (V)
	832	Clostridium tetani	This patent	atpD(V)
	833	Streptococcus pyogenes	Database	atpD (V)
15	834	Babesia bovis	This patent	atpD(V)
	835	Cryptosporidium parvum	This patent	atpD(V)
	836	Leishmania infantum	This patent	atpD(V)
	837	Leishmania major	This patent	atpD(V)
••	838	Leishmania tarentolae	This patent	atpD(V)
20	839	Trypanosoma brucei	This patent	atpD(V)
	840	Trypanosoma cruzi	This patent	<i>tuf</i> (EF-1)
	841	Trypanosoma cruzi	This patent	<i>tuf</i> (EF-1)
	842	Trypanosoma cruzi	This patent	tuf (EF-1)
25	843	Babesia bovis	This patent	tuf (M)
25	844	Leishmania aethiopica	This patent	tuf (M)
	845	Leishmania amazonensis	This patent	tuf (M)
	846	Leishmania donovani	This patent	tuf (M)
	847	Leishmania infantum	This patent	tuf (M)
20	848	Leishmania enriettii	This patent	tuf (M)
30	849	Leishmania gerbilli	This patent	tuf (M)
	850	Leishmania major	This patent	tuf (M)
	851	Leishmania mexicana	This patent	tuf (M)
	852	Leishmania tarentolae	This patent	tuf (M)
25	853	Trypanosoma cruzi	This patent	tuf (M)
35	854	Trypanosoma cruzi	This patent	tuf (M)
	855	Trypanosoma cruzi	This patent	tuf (M)
	856	Babesia bigemina	This patent	atpD
	857 858	Babesia bovis Babesia microti	This patent	atpD
40	859		This patent	atpD
1 0	860	Leishmania guyanensis Leishmania mexicana	This patent This patent	atpD atpD
	861	Leishmania tropica	This patent	atpD atpD
	862	Leishmania tropica	This patent	atpD atpD
	863	Bordetella pertussis	Database	tuf
45	864	Trypanosoma brucei brucei	Database	tuf (EF-1)
15	865	Cryptosporidium parvum	This patent	tuf (EF-1)
	866	Staphylococcus saprophyticus	This patent	atpD
	867	Zoogloea ramigera	This patent	atpD
	868	Staphylococcus saprophyticus	This patent	tuf
50	869	Enterococcus casseliflavus	This patent	tuf
50	870	Enterococcus casseliflavus	This patent	tuf
	871	Enterococcus flavescens	This patent	tuf
	872	Enterococcus gallinarum	This patent	tuf
	873	Enterococcus gallinarum	This patent	tuf
55	874	Staphylococcus haemolyticus	This patent	tuf
	875	Staphylococcus epidermidis	This patent	tuf
	876	Staphylococcus epidermidis	This patent	túf
	877	Staphylococcus epidermidis	This patent	tuf
	878	Staphylococcus epidermidis	This patent	tuf
60	879	Enterococcus gallinarum	This patent	tuf
	880	Pseudomonas aeruginosa	This patent	tuf
	881	Enterococcus casseliflavus	This patent	túf
	882	Enterococcus casseliflavus	This patent	tuf
	883	Enterococcus faecalis	This patent	túf
65	884	Enterococcus faecalis	This patent	tuf
			This potent	tuf
	885	Enterococcus faecium	This patent	tuf

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEC	Q ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
_					
5	886		cus faecium	This patent	tuf
	887	Zoogloea		This patent	tuf
	888		cus faecalis	This patent	tuf
	889		s fumigatus	This patent	atpD
10	890		n marneffei	This patent	atpD
10	891		ces lilacinus	This patent	atpD
	892 893		n marneffei	This patent	atpD
	894	Sporothrix	i schenckii nea filamentosa	This patent	atpD
	895		ces lilacinus	This patent	atpD
15	896	-		This patent	atpD
13	897	Aspergillu.	s niger s fumigatus	This patent	atpD tuf (EF-1)
	898		n marneffei	This patent This patent	tuf (EF-1)
	899	Piedraia h		This patent	tuf (EF-1)
	900		ces lilacinus	This patent	tuf (EF-1)
20	901		dioides brasiliensis	This patent	tuf (EF-1)
20	902	Sporothrix		This patent	tuf (EF-1)
	903		n marneffei	This patent	tuf (EF-1)
	904	Curvularia		This patent	tuf (M)
	905	Aspergillu		This patent	tuf (M)
25	906		hawaiiensis	This patent	tuf (M)
	907	Aspergillu.		This patent	tuf (M)
	908	Alternaria		This patent	tuf (M)
	909		n marneffei	This patent	tuf (M)
	910		n marneffei	This patent	tuf (M)
30		918	Escherichia coli	Database	recÀ ´
		929	Bacteroides fragilis	This patent	atpD(V)
		930	Bacteroides distasonis	This patent	atpD(V)
		931	Porphyromonas asaccharolytica	This patent	atpD(V)
		932	Listeria monocytogenes	This patent	tuf
35		939	Saccharomyces cerevisiae	Database	recA (Rad51)
		940	Saccharomyces cerevisiae	Database	recA (Dmc1)
		941	Cryptococcus humicolus	This patent	atpD
		942	Escherichia coli	This patent	atpD
40		943	Escherichia coli	This patent	atpD
40		944	Escherichia coli	This patent	atpD
		945	Escherichia coli	This patent	atpD
		946	Neisseria polysaccharea	This patent	atpD
		947	Neisseria sicca	This patent	atpD
45		948	Streptococcus mitis	This patent	atpD
40		949	Streptococcus mitis	This patent	atpD
		950 951	Streptococcus mitis	This patent	atpD atpD
		952	Streptococcus oralis	This patent This patent	atpD atpD
		952	Streptococcus pneumoniae Streptococcus pneumoniae	This patent	atpD
50		955 954	Streptococcus pneumoniae	This patent	atpD atpD
50		955	Streptococcus pneumoniae	This patent	atpD
		956	Babesia microti	This patent	atpD (V)
		957	Entamoeba histolytica	This patent	atpD(V)
		958	Fusobacterium nucleatum subsp. polymorphum	This patent	atpD(V)
55		959	Leishmania aethiopica	This patent	atpD(V)
		960	Leishmania tropica	This patent	atpD(V)
		961	Leishmania guyanensis	This patent	atpD(V)
		962	Leishmania donovani	This patent	atpD(V)
		963	Leishmania hertigi	This patent	atpD(V)
60		964	Leishmania mexicana	This patent	atpD(V)
		965	Leishmania tropica	This patent	atpD(V)
		966	Peptostreptococcus anaerobius	This patent	atpD(V)
		967	Bordetella pertussis	This patent	tuf
		968	Bordetella pertussis	This patent	tuf
65		969	Enterococcus columbae	This patent	tuf

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source Gene*	
5	970	Enterococcus flavescens	This patent	tuf
	971	Streptococcus pneumoniae	This patent	tuf
	972	Escherichia coli	This patent	tuf
	973	Escherichia coli	This patent	tuf
	974	Escherichia coli	This patent	tuf
10	975	Escherichia coli	This patent	tuf
	976	Mycobacterium avium	This patent	tuf
	977	Streptococcus pneumoniae	This patent	tuf
	978	Mycobacterium gordonae	This patent	túf
	979	Streptococcus pneumoniae	This patent	túf
15	980	Mycobacterium tuberculosis	This patent	tuf
	981	Staphylococcus warneri	This patent	tuf
	982	Streptococcus mitis	This patent	tuf
	983	Streptococcus mitis	This patent	tuf
	984	Streptococcus mitis	This patent	tuf
20	985	Streptococcus oralis	This patent	tuf
	986	Streptococcus pneumoniae	This patent	tuf
	987	Enterococcus hirae	This patent	tuf (C)
	988	Enterococcus mundtii	This patent	tuf (C)
	989	Enterococcus raffinosus	This patent	tuf (C)
25	990	Bacillus anthracis	This patent	recA
	991	Prevotella melaninogenica	This patent	recA
	992	Enterococcus casseliflavus	This patent	tuf
	993	Streptococcus pyogenes	Database	speA
20	1002	Streptococcus pyogenes	WO98/20157	tuf
30	1003	Bacillus cereus	This patent	recA
	1004	Streptococcus pneumoniae	This patent	pbp1a
	1005	Streptococcus pneumoniae	This patent	pbp1a
	1006	Streptococcus pneumoniae	This patent	pbp1a
25	1007	Streptococcus pneumoniae	This patent	pbp1a
35	1008	Streptococcus pneumoniae	This patent	pbpla
	1009	Streptococcus pneumoniae	This patent	pbpla
	1010	Streptococcus pneumoniae	This patent	pbp1a
	1011	Streptococcus pneumoniae	This patent	pbpla
40	1012	Streptococcus pneumoniae	This patent	pbpla
40	1013	Streptococcus pneumoniae	This patent	pbpla
	1014 1015	Streptococcus pneumoniae	This patent	pbpla
	1015	Streptococcus pneumoniae Streptococcus pneumoniae	This patent This patent	pbpla pbpla
	1017	•	This patent	pbpla pbpla
45	1017	Streptococcus pneumoniae Streptococcus pneumoniae	This patent	pbpla
7.7	1019	Streptococcus pneumoniae	This patent	pbp2b
	1020	Streptococcus pneumoniae	This patent	pbp2b
	1020	Streptococcus pneumoniae	This patent	pbp2b
	1022	Streptococcus pneumoniae	This patent	pbp2b
50	1023	Streptococcus pneumoniae	This patent	pbp2b
	1024	Streptococcus pneumoniae	This patent	pbp2b
	1025	Streptococcus pneumoniae	This patent	pbp2b
	1026	Streptococcus pneumoniae	This patent	pbp2b
	1027	Streptococcus pneumoniae	This patent	pbp2b
55	1028	Streptococcus pneumoniae	This patent	pbp2b
	1029	Streptococcus pneumoniae	This patent	pbp2b
	1030	Streptococcus pneumoniae	This patent	pbp2b
	1031	Streptococcus pneumoniae	This patent	pbp2b
	1032	Streptococcus pneumoniae	This patent	pbp2b
60	1033	Streptococcus pneumoniae	This patent	pbp2b
•	1034	Streptococcus pneumoniae	This patent	pbp2x
	1035	Streptococcus pneumoniae	This patent	pbp2x
	1036	Streptococcus pneumoniae	This patent	pbp2x
	1037	Streptococcus pneumoniae	This patent	pbp2x
65		=	_	

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
1038	Streptococcus pneumoniae	This patent	pbp2x
1039	Streptococcus pneumoniae	This patent	pbp2x
1040	Streptococcus pneumoniae	This patent	pbp2x
1041	Streptococcus pneumoniae	This patent	pbp2x
1042	Streptococcus pneumoniae	This patent	pbp2x
1042	Streptococcus pneumoniae	This patent	pbp2x pbp2x
1044	Streptococcus pneumoniae	This patent	pbp2x pbp2x
1045	Streptococcus pneumoniae	This patent	pbp2x pbp2x
1046	Streptococcus pneumoniae	This patent	pbp2x pbp2x
1047	Streptococcus pneumoniae	This patent	pbp2x pbp2x
1048	Streptococcus pneumoniae	This patent	pbp2x
1049	Enterococcus faecium	This patent	vanA
1050	Enterococcus gallinarum	This patent	vanA vanA
1050			
1051	Enterococcus faecium	This patent	vanA
	Enterococcus faecium	This patent	vanA
1053	Enterococcus faecium	This patent	vanA
1054	Enterococcus faecalis	This patent	vanA
1055	Enterococcus gallinarum	This patent	vanA
1056	Enterococcus faecium	This patent	vanA
1057	Enterococcus flavescens	This patent	vanA
1058	Enterococcus gallinarum	This patent	vanC1
1059	Enterococcus gallinarum	This patent	vanC1
1060	Enterococcus casseliflavus	This patent	vanC2
1061	Enterococcus casseliflavus	This patent	vanC2
1062	Enterococcus casseliflavus	This patent	vanC2
1063	Enterococcus casseliflavus	This patent	vanC2
1064	Enterococcus flavescens	This patent	vanC3
1065	Enterococcus flavescens	This patent	vanC3
1066	Enterococcus flavescens	This patent	vanC3
1067	Enterococcus faecium	This patent	vanXY
1068	Enterococcus faecium	This patent	vanXY
1069	Enterococcus faecium	This patent	vanXY
1070	Enterococcus faecalis	This patent	vanXY
1071	Enterococcus gallinarum	This patent	vanXY
1072	Enterococcus faecium	This patent	vanXY
1073	Enterococcus flavescens	This patent	vanXY
1074	Enterococcus faecium	This patent	vanXY
1075	Enterococcus gallinarum	This patent	vanXY
1076	Escherichia coli	Database	stx_{l}
1077	Escherichia coli	Database	stx_2
1093	Staphylococcus saprophyticus	This patent	unknow
1117	Enterococcus faecium	Database	vanB
1138	Enterococcus gallinarum	Database	vanC1
1139	Enterococcus faecium	Database	vanA
1140	Enterococcus casseliflavus	Database	vanC2
1141	Enterococcus faecium	Database	vanHAX
1169	Streptococcus pneumoniae	Database	pbp1a
1172	Streptococcus pneumoniae	Database	pbp2b
1173	Streptococcus pneumoniae	Database	pbp2x
1178	Staphylococcus aureus	Database	mecA
1183	Streptococcus pneumoniae	Database	hexA
1184	Streptococcus pneumoniae	This patent	hexA
1185	Streptococcus pneumoniae	This patent	hexA
1186	Streptococcus pneumoniae	This patent	hexA
1187	Streptococcus pneumoniae	This patent	hexA

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
1188	Streptococcus oralis	This patent	hexA
1189	Streptococcus mitis	This patent	hexA
1190	Streptococcus mitis	This patent	hexA
1191	Streptococcus mitis	This patent	hexA
1198	Staphylococcus saprophyticus	This patent	unknown
1215	Streptococcus pyogenes	Database	pcp
1230	Escherichia coli	Database	tuf (EF-G)
1242	Enterococcus faecium	Database	ddl
1243	Enterococcus faecalis	Database	mtlF, mtlD
1244	Staphylococcus aureus subsp. aureus	This patent	unknown
1245	Bacillus anthracis	This patent	atpD
1246	Bacillus mycoides	This patent	atpD atpD
1247	Bacillus thuringiensis	This patent	atpD atpD
1248	Bacillus thuringiensis	This patent	atpD atpD
1249	Bacillus thuringiensis	This patent	atpD atpD
1250	Bacillus weihenstephanensis	This patent	atpD atpD
1251	Bacillus thuringiensis	This patent	atpD
1252	Bacillus thuringiensis	This patent	atpD atpD
1253	Bacillus cereus	This patent	atpD atpD
1254	Bacillus cereus	This patent	atpD atpD
1255		This patent	
1256	Staphylococcus aureus Bacillus weihenstephanensis	•	gyrA atpD
1257	Bacillus anthracis	This patent This patent	atpD atpD
1257		This patent	atpD atpD
1259	Bacillus thuringiensis	•	•
1260	Bacillus cereus	This patent This patent	atpD atpD
1261	Bacillus cereus	•	atpD atpD
1262	Bacillus thuringiensis	This patent	aιρD atpD
1263	Bacillus thuringiensis	This patent	atpD atpD
	Bacillus thuringiensis	This patent	•
1264	Bacillus thuringiensis	This patent	atpD
1265 1266	Bacillus anthracis	This patent	atpD
1267	Paracoccidioides brasiliensis	This patent	tuf (EF-1) tuf (EF-1)
1268	Blastomyces dermatitidis	This patent This patent	tuf (EF-1)
1269	Histoplasma capsulatum	•	tuf (EF-1)
1270	Trichophyton rubrum	This patent This patent	tuf (EF-1)
1270	Microsporum canis		
1271	Aspergillus versicolor	This patent	tuf (EF-1)
1272	Exophiala moniliae	This patent	tuf (EF-1)
1273	Hortaea werneckii	This patent	tuf (EF-1)
1274	Fusarium solani	This patent This patent	tuf (EF-1)
1276	Aureobasidium pullulans	·	tuf (EF-1) tuf (EF-1)
	Blastomyces dermatitidis	This patent	tuf (EF-1)
1277 1278	Exophiala dermatitidis Fusarium moniliforme	This patent	tuf (EF-1)
1279	Aspergillus terreus	This patent	
1279	• •	This patent	tuf (EF-1) tuf (EF-1)
	Aspergillus fumigatus	This patent	• •
1281	Cryptococcus laurentii	This patent This patent	tuf (EF-1)
1282	Emmonsia parva	•	tuf (EF-1)
1283	Fusarium solani	This patent	tuf (EF-1)
1284	Sporothrix schenckii	This patent	tuf (EF-1)
1285	Aspergillus nidulans	This patent	tuf (EF-1)
1286	Cladophialophora carrionii	This patent	tuf (EF-1)
1287	Exserohilum rostratum	This patent	tuf (EF-1)
1288	Bacillus thuringiensis	This patent	recA
1289	Bacillus thuringiensis	This patent	recA
1299	Staphylococcus aureus	Database	gyrA
1300	Escherichia coli	Database	gyrA
1307	Staphylococcus aureus	Database	gyrB
1320	Escherichia coli	Database	parC (grlA)
1321	Staphylococcus aureus	Database	parC (grlA)
1328	Staphylococcus aureus	Database	parE (grlB)

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
<	1348	unidentified bacterium	Database	aac2la
5	1351	Pseudomonas aeruginosa	Database	aac21a aac31b
	1356		Database	aac3llb
	1361	Serratia marcescens	_	
		Escherichia coli	Database	aac3iVa
^	1366	Enterobacter cloacae	Database	aac3Vla
0	1371	Citrobacter koseri	Database	aac6la
	1376	Serratia marcescens	Database	aac6lc
	1381	Escherichia coli	Database	ant3la
	1386	Staphylococcus aureus	Database	ant4la
_	1391	Escherichia coli	Database	aph3la
5	1396	Escherichia coli	Database	aph3lla
	1401	Enterococcus faecalis	Database	aph3IIIa
	1406	Acinetobacter baumannii	Database	aph3Vla
	1411	Pseudomonas aeruginosa	Database	blaCARB
	1416	Klebsiella pneumoniae	Database	blaCMY-2
0	1423	Escherichia coli	Database	blaCTX-M-1
	1428	Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium	Database	blaCTX-M-2
	1433	Pseudomonas aeruginosa	Database	blaIMP
	1438	Escherichia coli	Database	blaOXA2
5	1439		Database	blaOXA10
ט	1442	Pseudomonas aeruginosa		blaPER1
		Pseudomonas aeruginosa	Database	blaPER2
	1445	Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium	Database	
	1452	Staphylococcus epidermidis	Database	dfrA
0	1461	Escherichia coli	Database	dhfrla
	1470	Escherichia coli	Database	dhfrlb
	1475	Escherichia coli	Database	dhfrV
	1480	Proteus mirabilis	Database	dhfrVI
	1489	Escherichia coli	Database	dhfrVII
5	1494	Escherichia coli	Database	dhfrVIII
	1499	Escherichia coli	Database	dhfrlX
	1504	Escherichia coli	Database	dhfrXII
	1507	Escherichia coli	Database	dhfrXIII
	1512	Escherichia coli	Database	dhfrXV
)	1517	Escherichia coli	Database	dhfrXVII
_	1518	Acinetobacter Iwoffii	This patent	fusA
	1519	Acinetobacter Iwoffii	This patent	fusA-tuf spacer
	1520	Acinetobacter Iwoffii	This patent	tuf
	1521	Haemophilus influenzae	This patent	fusA
5	1522	Haemophilus influenzae	This patent	fusA-tuf spacer
•	1523	Haemophilus influenzae	This patent	tuf
	1524	Proteus mirabilis	This patent	fusA
	1525	Proteus mirabilis	This patent	fusA-tuf spacer
	1526	Proteus mirabilis	This patent	tuf
)	1527	Campylobacter curvus	This patent	atpD
,	1530	Escherichia coli	Database	ereA
	1535	Escherichia coli	Database	ereB
	1540			linA
		Staphylococcus haemolyticus	Database	
-	1545	Enterococcus faecium	Database	linB
5	1548	Streptococcus pyogenes	Database	mefA
	1551	Streptococcus pneumoniae	Database	mefE
	1560	Escherichia coli	Database	mphA
	1561	Candida albicans	This patent	tuf (EF-1)
	1562	Candida dubliniensis	This patent	tuf (EF-1)
)	1563	Candida famata	This patent	tuf (EF-1)
	1564	Candida glabrata	This patent	tuf (EF-1)
	1565	Candida guilliermondii	This patent	tuf (EF-1)
	1566	Candida haemulonii	This patent	tuf (EF-1)
	1567	Candida kefyr	This patent	tuf (EF-1)
5	1568	Candida lusitaniae	This patent	<i>tuf</i> (EF-1)

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
	1569	Candida sphaerica	This patent	tuf (EF-1)
	1570	Candida tropicalis	This patent	tuf (EF-1)
	1571	Candida viswanathii	This patent	tuf (EF-1)
	1572	Alcaligenes faecalis subsp. faecalis	This patent	tuf
	1573	Prevotella buccalis	This patent	tuf
	1574	Succinivibrio dextrinosolvens	This patent	tuf
	1575	Tetragenococcus halophilus	This patent	tuf
	1576	Campylobacter jejuni subsp. jejuni		_
	1577		This patent	atpD
		Campylobacter rectus	This patent	atpD fue A
	1578 1579	Enterococcus casseliflavus	This patent	fusA fusA
		Enterococcus gallinarum	This patent	
	1580	Streptococcus mitis	This patent	fusA
	1585	Enterococcus faecium	Database	satG
	1590	Cloning vector pFW16	Database	tetM
	1594	Enterococcus faecium	Database	vanD
	1599	Enterococcus faecalis	Database	vanE
	1600	Campylobacter jejuni subsp. doylei	This patent	atpD
	1601	Enterococcus sulfureus	This patent	atpD
	1602	Enterococcus solitarius	This patent	atpD
	1603	Campylobacter sputorum subsp. sputorum	This patent	atpD
	1604	Enterococcus pseudoavium	This patent	atpD
	1607	Klebsiella omithinolytica	This patent	gyrA
	1608	Klebsiella oxytoca	This patent	gyrA
	1613	Staphylococcus aureus	Database	vatB
	1618	Staphylococcus cohnii	Database	vatC
	1623	Staphylococcus aureus	Database	vga
	1628	Staphylococcus aureus	Database	vgaB
	1633	Staphylococcus aureus	Database	vgb
	1638	Aspergillus fumigatus	This patent	atpD
	1639	Aspergillus fumigatus	This patent	atpD
	1640	Bacillus mycoides	This patent	atpD
	1641	Bacillus mycoides	This patent	atpD
	1642	Bacillus mycoides	This patent	atpD
	1643	Bacillus pseudomycoides	This patent	atpD
	1644	Bacillus pseudomycoides	This patent	atpD
	1645	Budvicia aquatica	This patent	atpD
	1646	Buttiauxella agrestis	This patent	atpD
	1647	Candida norvegica	This patent	atpD
	1648	Streptococcus pneumoniae	This patent	pbp1a
	1649	Campylobacter lari	This patent	atpD
	1650	Coccidioides immitis	This patent	atpD
	1651	Emmonsia parva	This patent	atpD
	1652	Erwinia amylovora	This patent	atpD
•	1653	Fonsecaea pedrosoi	This patent	atpD
	1654	Fusarium moniliforme	This patent	atpD
	1655	Klebsiella oxytoca	This patent	atpD
	1656	Microsporum audouinii	This patent	atpD
	1657	Obesumbacterium proteus	This patent	atpD
	1658	Paracoccidioides brasiliensis	This patent	atpD
	1659	Plesiomonas shigelloides	This patent	atpD
	1660	Shewanella putrefaciens	This patent	atpD
	1662	Campylobacter curvus	This patent	tuf
	1663	Campylobacter curvus Campylobacter rectus	This patent	tuf
			•	_
	1664 1666	Fonsecaea pedrosoi	This patent	tuf tuf
	1666 1667	Microsporum audouinii	This patent	tuf +f
	1667	Piedraia hortai	This patent	tuf +f
	1668	Escherichia coli	Database	tuf
	1669	Saksenaea vasiformis	This patent	tuf
	1670	Trichophyton tonsurans	This patent	tuf
	1671	Enterobacter aerogenes	This patent	atpD
	1672	Bordetella pertussis	Database	atpD
	1673	Arcanobacterium haemolyticum	This patent	tuf

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

 SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
1674	Butyrivibrio fibrisolvens	This patent	tuf
1675	Campylobacter jejuni subsp. doylei	This patent	tuf
1676	Campylobacter lan		tuf
		This patent	
1677	Campylobacter sputorum subsp. sputorum	This patent	tuf
1678	Campylobacter upsaliensis	This patent	tuf
1679	Globicatella sanguis	This patent	tuf
1680	Lactobacillus acidophilus	This patent	tuf
1681	Leuconostoc mesenteroides subsp. dextranicum	This patent	tuf
1682	Prevotella buccalis	This patent	tuf
1683	Ruminococcus bromii	This patent	tuf
1684	Paracoccidioides brasilierisis	This patent	atpD
1685	Candida norvegica	This patent	tuf (EF-1)
1686	Aspergillus nidulans	This patent	tuf
1687	Aspergillus terreus	This patent	tuf
1688	Candida norvegica	This patent	tuf
1689	Candida parapsilosis	This patent	tuf
1702	Streptococcus gordonii	WO98/20157	recA
1703	Streptococcus mutans	WO98/20157	recA
1704	Streptococcus pneumoniae	WO98/20157	recA
1705	Streptococcus pyogenes	WO98/20157	recA
1706	Streptococcus salivarius subsp. thermophilus	WO98/20157	recA
1707	Escherichia coli	WO98/20157	oxa
1708	Enterococcus faecalis	WO98/20157	blaZ
1709	Pseudomonas aeruginosa	WO98/20157	aac6'-lla
1710	Staphylococcus aureus	WO98/20157	ermA
1711	Escherichia coli	WO98/20157	ermB
1712			
1712	Staphylococcus aureus	WO98/20157	ermC
	Enterococcus faecalis	WO98/20157	vanB
1714	Campylobacter jejuni subsp. jejuni	This patent	recA
1715	Abiotrophia adiacens	WO98/20157	tuf
1716	Abiotrophia defectiva	WO98/20157	tuf
1717	Corynebacterium accolens	WO98/20157	tuf
1718	Corynebacterium genitalium	WO98/20157	tuf
1719	Corynebacterium jeikeium	WO98/20157	tuf_
1720	Corynebacterium pseudodiphtheriticum	WO98/20157	tuf
1721	Corynebacterium striatum	WO98/20157	tuf
1722	Enterococcus avium	WO98/20157	tuf
1723	Gardnerella vaginalis	WO98/20157	tuf
1724	Listeria innocua	WO98/20157	tuf
1725	Listeria ivanovii	WO98/20157	tuf
1726	Listeria monocytogenes	WO98/20157	tuf
1727	Listeria seeligeri	WO98/20157	tuf
1728	Staphylococcus aureus	WO98/20157	tuf
1729	Staphylococcus saprophyticus	WO98/20157	tuf
1730	Staphylococcus simulans	WO98/20157	tuf
1731	Streptococcus agalactiae	WO98/20157	tuf
1732	Streptococcus pneumoniae	WO98/20157	tuf
1733	Streptococcus salivarius	WO98/20157	tuf
1734	Agrobacterium radiobacter	WO98/20157	tuf
1735	Bacillus subtilis	WO98/20157	tuf
1736	Bacteroides fragilis	WO98/20157 WO98/20157	tuf
1737		WO98/20157 WO98/20157	tuf
	Borrelia burgdorferi		
1738 1730	Brevibacterium linens	WO98/20157	tuf +f
1739	Chlamydia trachomatis	WO98/20157	tuf *****
1740	Fibrobacter succinogenes	WO98/20157	tuf
1741	Flavobacterium ferrugineum	WO98/20157	tuf
1742	Helicobacter pylori	WO98/20157	tuf
1743	Micrococcus luteus	WO98/20157	tuf
1744	Mycobacterium tuberculosis	WO98/20157	tuf
1745	Mycoplasma genitalium	WO98/20157	tuf
1746	Neisseria gonorrhoeae	WO98/20157	tuf

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

_	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
	1747	Rickettsia prowazekii	WO98/20157	tuf
	1748	Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium	WO98/20157	tuf
	1749	Shewanella putrefaciens	WO98/20157	tuf
	1750	Stigmatella aurantiaca	WO98/20157	tuf
	1751	Thiomonas cuprina	WO98/20157	tuf
	1752	Treponema pallidum	WO98/20157	tuf
	1753	Ureaplasma urealyticum	WO98/20157	tuf
	1754	Wolinella succinogenes	WO98/20157	tuf
	1755	Burkholderia cepacia	WO98/20157	tuf
	1756	Bacillus anthracis	This patent	recA
	1757	Bacillus anthracis	This patent	recA
	1758	Bacillus cereus	This patent	recA
	1759	Bacillus cereus	This patent	recA
	1760	Bacillus mycoides	This patent	recA
	1761	Bacillus pseudomycoides	This patent	recA
	1762	Bacillus thuringiensis	This patent	recA
	1763	Bacillus thuringiensis	This patent	recA
	1764	Klebsiella oxytoca	This patent	gyrA
	1765	Klebsiella pneumoniae subsp. ozaenae	This patent	gyrA
	1766	Klebsiella planticola	This patent	gyrA
	1767	Klebsiella pneumoniae	This patent	gyrA
	1768	Klebsiella pneumoniae subsp. pneumoniae	This patent	gyrA
	1769	Klebsiella pneumoniae subsp. pneumoniae	This patent	gyrA
	1770	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	gyrA
	1771	Klebsiella terrigena	This patent	gyrA
	1772	Legionella pneumophila subsp. pneumophila	This patent	gyrA
	1773	Proteus mirabilis	This patent	gyrA gyrA
	1774	Providencia rettgeri	This patent	
	1775	Proteus vulgaris	This patent	gyrA gyrA
	1776	Yersinia enterocolitica	This patent	gyrA gyrA
	1777			
	1778	Klebsiella oxytoca	This patent	parC (grlA)
	1779	Klebsiella oxytoca	This patent	parC (grlA)
	1779	Klebsiella pneumoniae subsp. ozaenae	This patent	parC (grlA)
	1781	Klebsiella planticola	This patent This patent	parC (grlA)
		Klebsiella pneumoniae		parC (grlA)
	1782	Klebsiella pneumoniae subsp. pneumoniae	This patent	parC (grlA)
	1783	Klebsiella pneumoniae subsp. pneumoniae	This patent	parC (grlA)
	1784	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	parC (grlA)
	1785	Klebsiella terrigena	This patent	parC (grlA)
	1786	Bacillus cereus	This patent	fusA
	1787	Bacillus cereus	This patent	fusA
	1788	Bacillus anthracis	This patent	fusA
	1789	Bacillus cereus	This patent	fusA
	1790	Bacillus anthracis	This patent	fusA
	1791	Bacillus pseudomycoides	This patent	fusA
	1792	Bacillus cereus	This patent	fusA
	1793	Bacillus anthracis	This patent	fusA
	1794	Bacillus cereus	This patent	fusA
	1795	Bacillus weihenstephanensis	This patent	fusA
	1796	Bacillus mycoides	This patent	fusA
	1797	Bacillus thuringiensis	This patent	fusA
	1798	Bacillus weihenstephanensis	This patent	fusA-tuf space
	1799	Bacillus thuringiensis	This patent	fusA-tuf space
	1800	Bacillus anthracis	This patent	fusA-tuf space
	1801	Bacillus pseudomycoides	This patent	fusA-tuf space
	1802	Bacillus anthracis	This patent	fusA-tuf space
	1803	Bacillus cereus	This patent	fusA-tuf space
	1804	Bacillus cereus	This patent	fusA-tuf space
	1805	Bacillus mycoides	This patent	fusA-tuf space
	1806	Bacillus cereus	This patent	fusA-tuf space

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	1807	Bacillus cereus	This patent	fusA-tuf spacer
	1808	Bacillus cereus	This patent	fusA-tuf spacer
	1809	Bacillus anthracis	This patent	fusA-tuf spacer
	1810	Bacillus mycoides	This patent	tuf
	1811	Bacillus thuringiensis	This patent	tuf
10	1812	Bacillus cereus	This patent	tuf
	1813	Bacillus weihenstephanensis	This patent	tuf
	1814	Bacillus anthracis	This patent	tuf
	1815	Bacillus cereus	This patent	tuf
	1816	Bacillus cereus	This patent	tuf
15	1817	Bacillus anthracis	This patent	tuf
IJ	1818	Bacillus cereus	This patent	tuf
	1819	Bacillus anthracis	This patent	tuf
	1820	Bacillus pseudomycoides	This patent	tuf
	1821	Bacillus cereus	This patent	tuf
20	1822		This patent	fusA
20		Streptococcus oralis	•	fusA
	1823	Budvicia aquatica	This patent	
	1824	Buttiauxella agrestis	This patent	fusA
	1825	Klebsiella oxytoca	This patent	fusA
	1826	Plesiomonas shigelloides	This patent	fusA
25	1827	Shewanella putrefaciens	This patent	fusA
	1828	Obesumbacterium proteus	This patent	fusA
	1829	Klebsiella oxytoca	This patent	fusA-tuf spacer
	1830	Budvicia aquatica	This patent	fusA-tuf spacer
	1831	Plesiomonas shigelloides	This patent	fusA-tuf spacer
30	1832	Obesumbacterium proteus	This patent	fusA-tuf spacer
	1833	Shewanella putrefaciens	This patent	fusA-tuf spacer
	1834	Buttiauxella agrestis	This patent	fusA-tuf spacer
	1835	Campylobacter coli	This patent	tuf
	1836	Campylobacter fetus subsp. fetus	This patent	tuf
35	1837	Campylobacter fetus subsp. venerealis	This patent	tuf
	1838	Buttiauxella agrestis	This patent	tuf
	1839	Klebsiella oxytoca	This patent	tuf
	1840	Plesiomonas shigelloides	This patent	tuf
	1841	Shewanella putrefaciens	This patent	tuf
10	1842	Obesumbacterium proteus	This patent	tuf
	1843	Budvicia aquatica	This patent	tuf
	1844	Abiotrophia adiacens	This patent	atpD
	1845	Arcanobacterium haemolyticum	This patent	atpD
	1846	Basidiobolus ranarum	This patent	atpD
15	1847	Blastomyces dermatitidis	This patent	atpD
	1848	Blastomyces dermatitidis	This patent	atpD
	1849	Campylobacter coli	This patent	atpD
	1850	Campylobacter fetus subsp. fetus	This patent	atpD
	1851	Campylobacter fetus subsp. venerealis	This patent	atpD
50	1852	Campylobacter gracilis	This patent	atpD
	1853	Campylobacter jejuni subsp. jejuni	This patent	atpD
	1854	Enterococcus cecorum	This patent	atpD
	1855	Enterococcus columbae	This patent	atpD
	1856	Enterococcus dispar	This patent	atpD
55	1857	Enterococcus malodoratus	This patent	atpD
	1858	Enterococcus mundtii	This patent	atpD
	1859	Enterococcus raffinosus	This patent	atpD
	1860	Globicatella sanguis	This patent	atpD
	1861	Lactococcus garvieae	This patent	atpD
50	1862	Lactococcus lactis	This patent	atpD
,,	1863	Listeria ivanovii	This patent	atpD
	1864	Succinivibrio dextrinosolvens	This patent	atpD atpD
	1865	Tetragenococcus halophilus	This patent	atpD atpD
	1866	Campylobacter fetus subsp. fetus	This patent	recA
55	1867	Campylobacter fetus subsp. retus Campylobacter fetus subsp. venerealis	This patent	recA
,,	1868	Campylobacter leius subsp. verlerealis Campylobacter jejuni subsp. jejuni	This patent	recA
		vanutyionaciai iainii suusu. Itiilii	THE RESIDENCE	1000

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
1869	Enterococcus avium	This patent	recA
1870	Enterococcus faecium		recA
1871		This patent	
	Listeria monocytogenes	This patent	recA
1872	Streptococcus mitis	This patent	recA
1873	Streptococcus oralis	This patent	recA
1874	Aspergillus fumigatus	This patent	tuf (M)
1875	Aspergillus versicolor	This patent	tuf (M)
1876	Basidiobolus ranarum	This patent	tuf (M)
1877	Campylobacter gracilis	This patent	tuf
1878	Campylobacter jejuni subsp. jejuni	This patent	tuf
1879	Coccidioides immitis	This patent	tuf (M)
1880	Erwinia amylovora	This patent	tuf
1881	Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium	This patent	tuf
1899	Klebsiella pneumoniae	Database	blaSHV
1900	Klebsiella pneumoniae	Database	blaSHV
1901	Escherichia coli	Database	blaSHV
1902	Klebsiella pneumoniae	Database	blaSHV
1903	Klebsiella pneumoniae	Database	blaSHV
1904	Escherichia coli	Database	blaSHV
1905	Pseudomonas aeruginosa	Database	blaSHV
1927	Neisseria meningitidis	Database	blaTEM
1928	Escherichia coli	Database	blaTEM
1929	Klebsiella oxytoca	Database	blaTEM
1930	Escherichia coli	Database	blaTEM
1931	Escherichia coli	Database	blaTEM
1932	Escherichia coli	Database	blaTEM
1933	Escherichia coli	Database	blaTEM
1954	Klebsiella pneumoniae subsp. pneumoniae	Database	gyrA
1956	Candida inconspicua	This patent	tuf (M)
1957	Candida utilis	This patent	tuf (M)
1958	Candida zeylanoides	This patent	tuf (M)
1959	Candida catenulata	This patent	tuf (M)
1960	Candida krusei	This patent	tuf (M)
1965		Database	sulli
1970	Plasmid pGS05	Database	tetB
1985	Transposon Tn10		tuf (EF-1)
	Cryptococcus neoformans	Database	
1986	Cryptococcus neoformans	Database	tuf (EF-1)
1987	Saccharomyces cerevisiae	Database	tuf (EF-1)
1988	Saccharomyces cerevisiae	Database	tuf (EF-1)
1989	Eremothecium gossypii	Database	tuf (EF-1)
1990	Eremothecium gossypii	Database	tuf (EF-1)
1991	Aspergillus oryzae	Database	tuf (EF-1)
1992	Aureobasidium pullulans	Database	tuf (EF-1)
1993	Histoplasma capsulatum	Database	tuf (EF-1)
1994	Neurospora crassa	Database	tuf (EF-1)
1995	Podospora anserina	Database	tuf (EF-1)
1996	Podospora curvicolla	Database	tuf (EF-1)
1997	Sordaria macrospora	Database	tuf (EF-1)
1998	Trichoderma reesei	Database	tuf (EF-1)
2004	Candida albicans	Database	tuf (M)
2005	Schizosaccharomyces pombe	Database	tuf (M)
2010	Klebsiella pneumoniae	Database	blaTEM
2011	Klebsiella pneumoniae	Database	blaTEM
2013	Kluyvera ascorbata	This patent	gyrA
2014	Kluyvera georgiana	This patent	gyrA
2047	Streptococcus pneumoniae	Database	pbp1A
2048	Streptococcus pneumoniae	Database	pbp1A
2049	Streptococcus pneumoniae	Database	pbp1A

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
2050	Streptococcus pneumoniae	Database	pbp1A
2051	Streptococcus pneumoniae	Database	pbp1A
2052		Database	
	Streptococcus pneumoniae		pbp1A
2053	Streptococcus pneumoniae	Database	pbp1A
2054	Streptococcus pneumoniae	Database	gyrA
2055	Streptococcus pneumoniae	Database	parC
2056	Streptococcus pneumoniae	This patent	pbp1A
2057	Streptococcus pneumoniae	This patent	pbp1A
2058	Streptococcus pneumoniae	This patent	pbp1A
2059	Streptococcus pneumoniae	This patent	pbp1A
2060	Streptococcus pneumoniae	This patent	pbp1A
2061	Streptococcus pneumoniae	This patent	pbp1A
2062	Streptococcus pneumoniae	This patent	pbp1A
2063	Streptococcus pneumoniae	This patent	pbp1A
2064	Streptococcus pneumoniae	This patent	pbp1A
2072	Mycobacterium tuberculosis	Database	проВ
2097	Mycoplasma pneumoniae	Database	tuf
2101	Mycobacterium tuberculosis	Database	inhA
2105	Mycobacterium tuberculosis	Database	embB
	•		
2129	Clostridium difficile	Database	cdtA
2130	Clostridium difficile	Database	cdtB
2137	Pseudomonas putida	Genome project	tuf
2138	Pseudomonas aeruginosa	Genome project	
2139	Campylobacter jejuni	Database	atpD
2140	Streptococcus pneumoniae	Database	pbp1a
2144	Staphylococcus aureus	Database	mupA
2147	Escherichia coli	Database	cati
2150	Escherichia coli	Database	catil
2153	Shigella flexneri	Database	catili
2156	Clostridium perfringens	Database	catP
2159	Staphylococcus aureus	Database	cat
2162	Staphylococcus aureus	Database	cat
2165	Salmonella typhimurium	Database	ppflo-like
2183	Alcaligenes faecalis subsp. faecalis	This patent	tuf
2184	Campylobacter coli	This patent	fusA
2185	Succinivibrio dextrinosolvens	This patent	tuf
2186	Tetragenococcus halophilus	This patent	tuf
2187	Campylobacter jejuni subsp. jejuni	This patent	fusA
2188		This patent	fusA
	Campylobacter jejuni subsp. jejuni		
2189	Leishmania guyanensis	This patent	atpD atpD
2190	Trypanosoma brucei brucei	This patent	atpD atpD
2191	Aspergillus nidulans	This patent	atpD
2192	Leishmania panamensis	This patent	atpD
2193	Aspergillus nidulans	This patent	tuf (M)
2194	Aureobasidium pullulans	This patent	tuf (M)
2195	Emmonsia parva	This patent	tuf (M)
2196	Exserohilum rostratum	This patent	tuf (M)
2197	Fusarium moniliforme	This patent	tuf (M)
2198	Fusarium solani	This patent	tuf (M)
2199	Histoplasma capsulatum	This patent	tuf (M)
2200	Kocuria kristinae	This patent	tuf` ′
2201	Vibrio mimicus	This patent	tuf
2202	Citrobacter freundii	This patent	recA
2203	Clostridium botulinum	This patent	recA
2204	Francisella tularensis	This patent	recA
2205	Peptostreptococcus anaerobius	This patent	recA
		This patent	recA
2206	Peptostreptococcus asaccharolyticus		_
2207	Providencia stuartii	This patent	recA

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

	SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
5	2208	Salmonella choleraesuis subsp. choleraesuis		
		serotype Paratyphi A	This patent	recA
	2209	Salmonella choleraesuis subsp. choleraesuis		
		serotype Typhimurium	This patent	recA
	2210	Staphylococcus saprophyticus	This patent	recA
10	2211	Yersinia pseudotuberculosis	This patent	recA
	2212	Zoogloea ramigera	This patent	recA
	2214	Abiotrophia adiacens	This patent	fusA
	2215	Acinetobacter baumannii	This patent	fusA
15	2216 2217	Actinomyces meyeri	This patent	fusA
13	2217	Clostridium difficile Corynebacterium diphtheriae	This patent This patent	fusA fusA
	2219	Enterobacter cloacae	This patent	fusA
	2220	Klebsiella pneumoniae subsp. pneumoniae	This patent	fusA
	2221	Listeria monocytogenes	This patent	fusA
20	2222	Mycobacterium avium	This patent	fusA
	2223	Mycobacterium gordonae	This patent	fusA
	2224	Mycobacterium kansasii	This patent	fusA
	2225	Mycobacterium terrae	This patent	fusA
	2226	Neisseria polysaccharea	This patent	fusA
25	2227	Staphylococcus epidermidis	This patent	fusA
	2228	Staphylococcus haemolyticus	This patent	fusA
	2229	Succinivibrio dextrinosolvens	This patent	fusA
	2230	Tetragenococcus halophilus	This patent	fusA
	2231	Veillonella parvula	This patent	fusA
30	2232	Yersinia pseudotuberculosis	This patent	fusA
	2233	Zoogloea ramigera	This patent	fusA
	2234	Aeromonas hydrophila	This patent	fusA
	2235 2236	Abiotrophia adiacens	This patent	fusA-tuf spacer
35	2237	Actinomyces meyeri	This patent This patent	fusA-tuf spacer fusA-tuf spacer
33	2238	Actinomyces meyeri Clostridium difficile	This patent	fusA-tuf spacer
	2239	Corynebacterium diphtheriae	This patent	fusA-tuf spacer
	2240	Enterobacter cloacae	This patent	fusA-tuf spacer
	2241	Klebsiella pneumoniae subsp. pneumoniae	This patent	fusA-tuf spacer
40	2242	Listeria monocytogenes	This patent	fusA-tuf spacer
	2243	Mycobacterium avium	This patent	fusA-tuf spacer
	2244	Mycobacterium gordonae	This patent	fusA-tuf spacer
	2245	Mycobacterium kansasii	This patent	fusA-tuf spacer
	2246	Mycobacterium terrae	This patent	fusA-tuf spacer
45	2247	Neisseria polysaccharea	This patent	fusA-tuf spacer
	2248	Staphylococcus epidermidis	This patent	fusA-tuf spacer
	2249	Staphylococcus haemolyticus	This patent	fusA-tuf spacer
	2255	Abiotrophia adiacens	This patent	tuf
50	2256	Acinetobacter baumannii	This patent	tuf
50	2257	Actinomyces meyeri	This patent	tuf
	2258 2259	Clostridium difficile	This patent	tuf tuf
	2260	Corynebacterium diphtheriae Enterobacter cloacae	This patent This patent	tuf
	2261	Klebsiella pneumoniae subsp. pneumoniae	This patent	tur tuf
55	2262	Listeria monocytogenes	This patent	tuf
33	2263	Mycobacterium avium	This patent	tuf
	2264	Mycobacterium gordonae	This patent	tuf
	2265	Mycobacterium kansasii	This patent	tuf
	2266	Mycobacterium terrae	This patent	tuf
60	2267	Neisseria polysaccharea	This patent	tuf
	2268	Staphylococcus epidermidis	This patent	tuf
	2269	Staphylococcus haemolyticus	This patent	tuf
	2270	Aeromonas hydrophila	This patent	tuf
	2271	Bilophila wadsworthia	This patent	tuf
65	2272	Brevundimonas diminuta	This patent	tuf
	2273	Streptococcus mitis	This patent	pbp1a

Table 7. Origin of the nucleic acids and/or sequences in the sequence listing (continued).

SEQ ID NO.	Archaeal, bacterial, fungal or parasitical species	Source	Gene*
2274	Streptococcus mitis	This patent	pbp1a
2275	Streptococcus mitis	This patent	pbp1a
2276	Streptococcus oralis	This patent	pbp1a
2277	Escherichia coli	This patent	gyrA
2278	Escherichia coli	This patent	gyrA
2279	Escherichia coli	This patent	gyrA
2280	Escherichia coli	This patent	gyrA
2288	Enterococcus faecium	Database	ddl
2293	Enterococcus faecium	Database	vanA
2296	Enterococcus faecalis	Database	vanB

^{*} tuf indicates tuf sequences, tuf (C) indicates tuf sequences divergent from main (usually A and B) copies of the elongation factor-Tu, tuf (EF-1) indicates tuf sequences of the eukaryotic type (elongation factor 1a), tuf (M) indicates tuf sequences from organellar (mostly mitochondrial) origin.

20

fusA indicates fusA sequences; fusA-tuf spacer indicates the intergenic region between fusA and tuf.

atpD indicates atpD sequences of the F-type, atpD (V) indicates atpD sequences of the V-type.

recA indicates recA sequences, recA(Rad51) indicates rad51 sequences or homologs and recA(Dmc1) indicates dmc1 sequences or homologs.

Table 8. Bacterial species used to test the specificity of the *Streptococcus agalactiae*-specific amplification primers derived from *tuf* sequences.

Strain	Reference number	Strain F	Reference number
Streptococcus acidominimus	ATCC 51726	Bacteroides caccae	ATCC 43185
Streptococcus agalactiae	ATCC 12403	Bacteroides vulgatus	ATCC 8482
Streptococcus agalactiae	ATCC 12973	Bacteroides fragilis	ATCC 25285
Streptococcus agalactiae	ATCC 13813	Candida albicans	ATCC 11006
Streptococcus agalactiae	ATCC 27591	Clostridium innoculum	ATCC 14501
Streptococcus agalactiae	CDCs 1073	Clostridium ramosum	ATCC 25582
Streptococcus anginosus	ATCC 27335	Lactobacillus casei subsp. case	i ATCC 393
Streptococcus anginosus	ATCC 33397	Clostridium septicum	ATCC 12464
Streptococcus bovis	ATCC 33317	Corynebacterium cervicis	NCTC 10604
Streptococcus anginosus	ATCC 27823	Corynebacterium genitalium	ATCC 33031
Streptococcus cricetus	ATCC 19642	Corynebacterium urealyticum	ATCC 43042
Streptococcus cristatus	ATCC 51100	Enterococcus faecalis	ATCC 29212
Streptococcus downei	ATCC 33748	Enterococcus faecium	ATCC 19434
Streptococcus dysgalactiae	ATCC 43078	Eubacterium lentum	ATCC 43055
Streptococcus equi subsp. equi	ATCC 9528	Eubacterium nodutum	ATCC 33099
Streptococcus ferus	ATCC 33477	Gardnerella vaginalis	ATCC 14018
Streptococcus gordonii	ATCC 10558	Lactobacillus acidophilus	ATCC 4356
Streptococcus macacae	ATCC 35911	Lactobacillus crispatus	ATCC 33820
Streptococcus mitis	ATCC 49456	Lactobacillus gasseri	ATCC 33323
Streptococcus mutans	ATCC 25175	Lactobacillus johnsonii	ATCC 33200
Streptococcus oralis	ATCC 35037	Lactococcus lactis subsp. lactis	ATCC 19435
Streptococcus parasanguinis	ATCC 15912	Lactococcus lactis subsp. lactis	
Streptococcus parauberis	DSM 6631	Listeria innocua	ATCC 33090
Streptococcus pneumoniae	ATCC 27336	Micrococcus luteus	ATCC 9341
Streptococcus pyogenes	ATCC 19615	Escherichia coli	ATCC 25922
Streptococcus ratti	ATCC 19645	Micrococcus Iylae	ATCC 27566
Streptococcus salivarius	ATCC 7073	Porphyromonas asaccharolytica	ATCC 25260
Streptococcus sanguinis	ATCC 10556	Prevotella corporis	ATCC 33547
Streptococcus sobrinus	ATCC 27352	Prevotella melanogenica	ATCC 25845
Streptococcus suis	ATCC 43765	Staphylococcus aureus	ATCC 13301
Streptococcus uberis	ATCC 19436	Staphylococcus epidermidis	ATCC 14990
Streptococcus vestubularis	ATCC 49124	Staphylococcus saprophyticus	ATCC 15305

40

Table 9. Bacterial species used to test the specificity of the *Streptococcus agalactiae*-specific amplification primers derived from *atpD* sequences.

Strain	Reference number	Strain	Reference number
Streptococcus acidominimus	ATCC 51726	Streptococcus gordonii	ATCC 10558
Streptococcus agalactiae	ATCC 12400	Streptococcus macacae	ATCC 35911
Streptococcus agalactiae	ATCC 12403	Streptococcus mitis	ATCC 49456
Streptococcus agalactiae	ATCC 12973	Streptococcus mutans	ATCC 25175
Streptococcus agalactiae	ATCC 13813	Streptococcus oralis	ATCC 35037
Streptococcus agalactiae	ATCC 27591	Streptococcus parasanguinis	ATCC 15912
Streptococcus agalactiae	CDCs-1073	Streptococcus parauberis	DSM 6631
Streptococcus anginosus	ATCC 27335	Streptococcus pneumoniae	ATCC 27336
Streptococcus anginosus	ATCC 27823	Streptococcus pyogenes	ATCC 19615
Streptococcus bovis	ATCC 33317	Streptococcus ratti	ATCC 19645
Streptococcus cricetus	ATCC 19642	Streptococcus salivarius	ATCC 7073
Streptococcus cristatus	ATCC 51100	Streptococcus sanguinis	ATCC 10556
Streptococcus downei	ATCC 33748	Streptococcus sobrinus	ATCC 27352
Streptococcus dysgalactiae	ATCC 43078	Streptococcus suis	ATCC 43765
Streptococcus equi subsp. equi	ATCC 9528	Streptococcus uberis	ATCC 19436
Streptococcus ferus	ATCC 33477	Streptococcus vestibularis	ATCC 49124

Table 10. Bacterial species used to test the specificity of the *Enterococcus*-specific amplification primers derived from *tuf* sequences.

Strain	Reference number	Strain R	eference numbe
Gram-positive species (n=74)		
Abiotrophia adiacens	ATCC 49176	Listeria innocua	ATCC 33090
Abiotrophia defectiva	ATCC 49175	Listeria ivanovii	ATCC 19119
Bacillus cereus	ATCC 14579	Listeria mónocytogenes	ATCC 15313
Bacillus subtilis	ATCC 27370	Listeria seeligeri	ATCC 35967
Bifidobacterium adolescentis	ATCC 27534	Micrococcus luteus	ATCC 9341
Bifidobacterium breve	ATCC 15700	Pediococcus acidilacti	ATCC 33314
Bifidobacterium dentium	ATCC 27534	Pediococcus pentosaceus	ATCC 3331
Bifidobacterium longum	ATCC 15707	Peptococcus niger	ATCC 2773
Clostridium perfringens	ATCC 3124	Peptostreptococcus anaerobi	us ATCC 27337
Clostridium septicum	ATCC 12464	Peptostreptococcus indolicus	ATCC 2924
Corynebacterium aquaticus	ATCC 14665	Peptostreptococcus micros	ATCC 33270
Corynebacterium	ATCC 10700	Propionibacterium acnes	ATCC 6919
pseudodiphtheriticum		Staphylococcus aureus	ATCC 4330
Enterococcus avium	ATCC 14025	Staphylococcus capitis	ATCC 2784
Enterococcus casseliflavus	ATCC 25788	Staphylococcus epidermidis	ATCC 1499
Enterococcus cecorum	ATCC 43199	Staphylococcus haemolyticus	ATCC 2997
Enterococcus columbae	ATCC 51263	Staphylococcus hominis	ATCC 2784
Enterococcus dispar	ATCC 51266	Staphylococcus lugdunensis	ATCC 4380
Enterococcus durans	ATCC 19432	Staphylococcus saprophyticu	s ATCC 1530
Enterococcus faecalis	ATCC 29212	Staphylococcus simulans	ATCC 2784
Enterococcus faecium	ATCC 19434	Staphylococcus warneri	ATCC 2783
Enterococcus flavescens	ATCC 49996	Streptococcus agalactiae	ATCC 1381:
Enterococcus gallinarum	ATCC 49573	Streptococcus anginosus	ATCC 3339
Enterococcus hirae	ATCC 8044	Streptococcus bovis	ATCC 33311
Enterococcus malodoratus	ATCC 43197	Streptococcus constellatus	ATCC 27823
Enterococcus mundtii	ATCC 43186	Streptococcus cristatus	ATCC 5110
Enterococcus pseudoavium	ATCC 49372	Streptococcus intermedius	ATCC 2733
Enterococcus raffinosus	ATCC 49427	Streptococcus mitis	ATCC 4945
Enterococcus saccharolyticus	ATCC 43076	Streptococcus mitis	ATCC 3639
Enterococcus solitarius	ATCC 49428	Streptococcus mutans	ATCC 2717
Enterococcus sulfureus	ATCC 49903	Streptococcus parasanguinis	ATCC 15912
Eubacterium lentum	ATCC 49903	Streptococcus pneumoniae	ATCC 2773
Gemella haemolysans	ATCC 10379	Streptococcus pneumoniae	ATCC 6303
Gemella morbillorum	ATCC 27842	Streptococcus pyogenes	ATCC 1961
Lactobacillus acidophilus	ATCC 4356	Streptococcus salivarius	ATCC 7073
Leuconostoc mesenteroides	ATCC 19225	Streptococcus sanguinis	ATCC 1055
Listeria grayi	ATCC 19120	Streptococcus suis	ATCC 4376
Listeria grayi	ATCC 19123		

45

Table 10. Bacterial species used to test the specificity of the *Enterococcus*-specific amplification primers derived from *tuf* sequences (continued).

Strain	Reference number	Strain	Reference number
Gram-negative species (n=39	9)		
Acidominococcus fermentans	ATCC 2508	Hafnia alvei	ATCC 13337
Acinetobacter baumannii	ATCC 19606	Klebsiella oxytoca	ATCC 13182
Alcaligenes faecalis	ATCC 8750	Meganomonas hypermegas	ATCC 25560
Anaerobiospirillum	ATCC 29305	Mitsukoella multiacidus	ATCC 27723
succiniproducens		Moraxella catarrhalis	ATCC 43628
Anaerorhabdus furcosus	ATCC 25662	Morganella morganii	ATCC 25830
Bacteroides distasonis	ATCC 8503	Neisseria meningitidis	ATCC 13077
Bacteroides thetaiotaomicron	ATCC 29741	Pasteurella aerogenes	ATCC 27883
Bacteroides vulgatus	ATCC 8482	Proteus vulgaris	ATCC 13315
Bordetella pertussis	LSPQ 3702	Providencia alcalifaciens	ATCC 9886
Bulkholderia cepacia	LSPQ 2217	Providencia rettgeri	ATCC 9250
Butyvibrio fibrinosolvens	ATCC 19171	Pseudomonas aeruginosa	ATCC 27853
Cardiobacterium hominis	ATCC 15826	Salmonella typhimurium	ATCC 14028
Citrobacter freundii	ATCC 8090	Serratia marcescens	ATCC 13880
Desulfovibrio vulgaris	ATCC 29579	Shigella flexneri	ATCC 12022
Edwardsiellae tarda	ATCC 15947	Shigella sonnei	ATCC 29930
Enterobacter cloacae	ATCC 13047	Succinivibrio dextrinosolven	s ATCC 19716
Escherichia coli	ATCC 25922	Tissierella praeacuta	ATCC 25539
Fusobacterium russii	ATCC 25533	Veillonella parvula	ATCC 10790
Haemophilus influenzae	ATCC 9007	Yersinia enterocolitica	ATCC 9610

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases.

Species	Strain	Accession number	Coding gene
	tuf sequences		
Bacteria			
Actinobacillus actinomycetemcomita		Genome project ²	· tuf
Actinobacillus actinomycetemcomita	ans HK1651	Genome project ²	tuf (EF-G)
Agrobacterium tumefaciens		X99673	tuf
Agrobacterium tumefaciens		X99673	tuf (EF-G)
Agrobacterium tumefaciens		X99674	tuf
Anacystis nidulans	PCC 6301	X17442	tuf
Aquifex aeolicus	VF5	AE000669	tuf
Aquifex aeolicus	VF5	AE000669	tuf (EF-G)
Aquifex pyrophilus		Genome project ²	tuf (EF-G)
Aquifex pyrophilus		Y15787	tuf
Bacillus anthracis	Ames	Genome project ²	tuf
Bacillus anthracis	Ames	Genome project ²	tuf (EF-G)
Bacillus halodurans	C-125	AB017508	tuf
Bacillus halodurans	C-125	AB017508	tuf (EF-G)
Bacillus stearothermophilus	CCM 2184	AJ000260	tuf
Bacillus subtilis	168	D64127	tuf
Bacillus subtilis	168	D64127	tuf (EF-G)
Bacillus subtilis	DSM 10	Z99104	tuf
Bacillus subtilis	DSM 10	Z99104	tuf (EF-G)
Bacteroides forsythus	ATCC 43037	AB035466	tuf
Bacteroides fragilis	DSM 1151	_1	tuf
Bordetella bronchiseptica	RB50	Genome project ²	tuf
Bordetella pertussis	Tohama 1	Genome project ²	tuf
Bordetella pertussis	Tohama 1	Genome project ²	tuf (EF-G)
Borrelia burdorgferi	B31	U78193	tuf
Borrelia burgdorferi		AE001155	tuf (EF-G)
Brevibacterium linens	DSM 20425	X76863	tuf
Buchnera aphidicola	Ар	Y12307	tuf
Burkholderia pseudomallei	K96243	Genome project ²	tuf (EF-G)
Campylobacter jejuni	NCTC 11168	Y17167	tuf
Campylobacter jejuni	NCTC 11168	CJ11168X2	tuf (EF-G)
Chlamydia pneumoniae	CWL029	AE001592	tuf` ´
Chlamydia pneumoniae	CWL029	AE001639	tuf (EF-G)
Chlamydia trachomatis		M74221	tuf
Chlamydia trachomatis	D/UW-3/CX	AE001317	tuf (EF-G)
Chlamydia trachomatis	D/UW-3/CX	AE001305	tuf
Chlamydia trachomatis	F/IC-Cal-13	L22216	tuf
Chlorobium vibrioforme	DSM 263	X77033	tuf
Chloroflexus aurantiacus	DSM 636	X76865	tuf
Clostridium acetobutylicum	ATCC 824	Genome project ²	tuf
Clostridium difficile	630	Genome project ²	tuf
Clostridium difficile	630	Genome project ²	tuf (EF-G)
Corynebacterium diphtheriae	NCTC 13129	Genome project ²	tuf
Corynebacterium diphtheriae	NCTC 13129	Genome project ²	tuf (EF-G)
Corynebacterium glutamicum	ASO 19	X77034	tuf
Corynebacterium glutamicum	MJ-233	E09634	tuf
Coxiella burnetii	Nine Mile phase I	AF136604	tuf
Cytophaga lytica	DSM 2039	X77035	tuf
Deinococcus radiodurans	R1	AE001891	tuf (EF-G)
Deinococcus radiodurans	R1	AE180092	tuf (Li -a)
Demococus radiodularis	111	/L:0002	tur:

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Deinococcus radiodurans	R1	AE002041	tuf
Deinonema sp.		_1	tuf
Eikenella corrodens	ATCC 23834	Z12610	tuf
Eikenella corrodens	ATCC 23834	Z12610	tuf (EF-G)
Enterococcus faecalis	A100 20004	Genome project ²	tuf (EF-G)
Escherichia coli		J01690	tuf
Escherichia coli		J01717	tuf
Escherichia coli			
		X00415	tuf (EF-G)
Escherichia coli	14 40 140 40 5	X57091	tuf
Escherichia coli	K-12 MG1655	U00006	tuf
Escherichia coli	K-12 MG1655	U00096	tuf
Escherichia coli	K-12 MG1655	AE000410	tuf (EF-G)
Fervidobacterium islandicum	DSM 5733	Y15788	tuf
Fibrobacter succinogenes	S85	X76866	tuf
Flavobacterium ferrigeneum	DSM 13524	X76867	tuf
Flexistipes sinusarabici		X59461	tuf
Gloeobacter violaceus	PCC 7421	U09433	tuf
Gloeothece sp.	PCC 6501	U09434	tuf
Haemophilus actinomycetemcomitans	HK1651	Genome project ²	tuf
Haemophilus ducreyi	35000	AF087414	tuf (EF-G)
Haemophilus influenzae	Rd	U32739	tuf
Haemophilus influenzae	Rd	U32746	tuf
Haemophilus influenzae	Rd	U32739	tuf (EF-G)
			tuf
Helicobacter pylori	26695	AE000511	
Helicobacter pylori	J99	AE001539	tuf (EF-G)
Helicobacter pylori	199	AE001541	tuf
Herpetosiphon aurantiacus	Hpga1	X76868	tuf
Klebsiella pneumoniae	M6H 78578	Genome project ²	tuf
Klebsiella pneumoniae	M6H 78578	Genome project ²	tuf (EF-G)
Lactobacillus paracasei		E13922	tuf
Legionella pneumophila	Philadelphia-1	Genome project ²	tuf
Leptospira interrogans		AF115283	tuf
Leptospira interrogans		AF115283	tuf (EF-G)
Micrococcus luteus	IFO 3333	M17788	tuf (EF-G)
Micrococcus luteus	IFO 3333	M17788	tuf
Moraxella sp.	TAC II 25	AJ249258	tuf
Mycobacterium avium	104	Genome project ²	tuf
Mycobacterium avium	104	Genome project ²	tuf (EF-G)
Mycobacterium bovis		Conomo project	tuf
	AF2122/97	Genome project ²	
Mycobacterium bovis	AF2122/97	Genome project ²	tuf (EF-G)
Mycobacterium leprae		L13276	tuf
Mycobacterium leprae		Z14314	tuf
Mycobacterium leprae		Z14314	tuf (EF-G)
Mycobacterium leprae	Thai 53	D13869	tuf
Mycobacterium tuberculosis	Erdmann	S40925	tuf
Mycobacterium tuberculosis	H37Rv	AL021943	tuf (EF-G)
Mycobacterium tuberculosis	H37Rv	Z8 4395	tuf
Mycobacterium tuberculosis	y42	AD000005	tuf
Mycobacterium tuberculosis	CSU#93	Genome project ²	tuf
Mycobacterium tuberculosis	CSU#93	Genome project ²	tuf (EF-G)
Mycoplasma capricolum	PG-31	X16462	tuf
Mycoplasma genitalium	G37	U39732	tuf
	G37 G37	U39689	tuf (EF-G)
Mycoplasma genitalium	G31		
Mycoplasma hominis	DC04	X57136	tuf
Mycoplasma hominis	PG21	M57675	tuf

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene
Mycoplasma pneumoniae	M129	AE000019	tuf
Mycoplasma pneumoniae	M129	AE000058	tuf (EF-G)
Neisseria gonorrhoeae	MS11	L36380	tuf (El -G)
Neisseria gonorrhoeae	MS11	L36380	tuf (EF-G)
Neisseria meningitidis	Z2491	Genome project ²	tuf (EF-G)
Neisseria meningitidis	Z2491	Genome project ²	tuf
Pasteurella multocida	Pm70	Genome project ²	tuf
Peptococcus niger	DSM 20745	X76869	tuf
Phormidium ectocarpi	PCC 7375	U09443	tuf
Planobispora rosea	ATCC 53773	U67308	tuf
Planobispora rosea	ATCC 53733	X98830	tuf
Planobispora rosea	ATCC 53733	X98830	tuf (EF-G)
Plectonema boryanum	PCC 73110	U09444	tuf
Porphyromonas gingivalis	W83	Genome project ²	tuf
Porphyromonas gingivalis	W83	Genome project ²	tuf (EF-G)
Porphyromonas gingivalis	FDC 381	AB035461	tuf
Porphyromonas gingivalis	W83	AB035462	tuf
Porphyromonas gingivalis	SUNY 1021	AB035463	tuf
Porphyromonas gingivalis	A7A1-28	AB035464	tuf
	ATCC 33277		tui tuf
Porphyromonas gingivalis		AB035465	
Porphyromonas gingivalis	ATCC 33277	AB035471	tuf (EF-G)
Prochlorothrix hollandica	546.4	U09445	tuf
Pseudomonas aeruginosa	PAO-1	Genome project ²	tuf
Pseudomonas putida		Genome project ²	tuf
Rickettsia prowazekii	Madrid E	AJ235272	tuf
Rickettsia prowazekii	Madrid E	AJ235270	tuf (EF-G)
Rickettsia prowazekii	Madrid E	Z54171	tuf (EF-G)
Salmonella choleraesuis subsp.			
choleraesuis serotype Typhimurium		X64591	tuf (EF-G)
Salmonella choleraesuis subsp.			
choleraesuis serotype Typhimurium	LT2 trpE91	X55116	tuf
Salmonella choleraesuis subsp.	-		
choleraesuis serotype Typhimurium	LT2 trpE91	X55117	tuf
Serpulina hyodysenteriae	B204	U51635	tuf
Serratia marcescens		AF058451	tuf
Shewanella putrefaciens	DSM 50426	_1	tuf
Shewanella putrefaciens	MR-1	Genome project ²	tuf
Spirochaeta aurantia	DSM 1902	X76874	tuf
Staphylococcus aureus	DOM 1302	AJ237696	tuf (EF-G)
	EMDQA-16		• •
Staphylococcus aureus	EMRSA-16	Genome project ²	tuf +f
Staphylococcus aureus	NCTC 8325	Genome project ²	tuf
Staphylococcus aureus	COL	Genome project ²	tuf
Staphylococcus aureus	EMRSA-16	Genome project ²	tuf (EF-G)
Stigmatella aurantiaca	DW4	X82820	tuf
Stigmatella aurantiaca	Sg a1	X76870	tuf
Streptococcus mutans	GS-5 Kuramitsu	U75481	tuf
Streptococcus mutans	UAB159	Genome project ²	tuf
Streptococcus oralis	NTCC 11427	P331701	tuf
Streptococcus pyogenes		Genome project ²	tuf (EF-G)
Streptococcus pyogenes	M1-GAS	Genome project ²	tuf`
Streptomyces aureofaciens	ATCC 10762	AF007125	tuf
Streptomyces cinnamoneus	Tue89	X98831	tuf
Streptomyces coelicolor	A3(2)	AL031013	tuf (EF-G)
or the second se	A3(2)	X77039	tuf (EF-G)
Streptomyces coelicolor	A.31/1		

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene
Streptomyces collinus	BSM 40733	S79408	tuf
Streptomyces netropsis	Tu1063	AF153618	tuf
Streptomyces ramocissimus	147000	X67057	tuf
Streptomyces ramocissimus		X67058	tu! tuf
Streptomyces ramocissimus		X67057	tuf (EF-G)
Synechococcus sp.	PCC 6301	X17442	tuf (EF-G)
Synechococcus sp.	PCC 6301	X17442	tuf
Synechocystis sp.	PCC 6803	D90913	tuf (EF-G)
Synechocystis sp.	PCC 6803	D90913	tuf (E, G)
Synechocystis sp.	PCC 6803	X65159	tuf (EF-G)
Taxeobacter occealus	Myx 2105	X77036	tuf (El G)
Thermotoga maritima	Wiyx 2100	Genome project ²	tuf (EF-G)
Thermotoga maritima		M27479	tuf (El -G)
Thermologa manuma Thermus aquaticus	EP 00276	X66322	tuf
Thermus aquaticus Thermus thermophilus	HB8	X16278	tuf (EF-G)
Thermus thermophilus	HB8	X05977	tuf
Thermus thermophilus	HB8	X06657	tuf
	DSM 5495	U78300	tui tuf
Thiomonas cuprina Thiomonas cuprina	DSM 5495 DSM 5495	U78300 U78300	tuf (EF-G)
Thiomonas cuprina Thiomonas cuprina	Hoe5	X76871	tuf
Treponema denticola	поер	Genome project ²	tuf
Treponema denticola Treponema denticola		Genome project ²	tuf (EF-G)
Treponema defiticola Treponema pallidum		AE001202	tur (Er -G) tuf
Treponema pallidum		AE001202 AE001222	tuf (EF-G)
Treponema pallidum		AE001248	tuf (EF-G)
Ureaplasma urealyticum	ATCC 33697	Z34275	tur (El -G)
Ureaplasma urealyticum	serovar 3 biovar 1	AE002151	tuf
Ureaplasma urealyticum	serovar 3 biovar 1	AE002151	tuf (EF-G)
Vibrio cholerae	N16961	Genome project ²	tuf
Wolinella succinogenes	DSM 1740	X76872	tuf
Yersinia pestis	CO-92	Genome project ²	tuf
Yersinia pestis	CO-92	Genome project ²	tuf (EF-G)
Archaebacteria			
Archaeoglobus fulgidus		Genome project ²	tuf (EF-G)
Halobacterium marismortui		X16677	tuf
Methanobacterium thermoautrophicum	delta H	AE000877	tuf
Methanococcus jannaschii	ATCC 43067	U67486	tuf
Methanococcus vannielii		X05698	tuf
Pyrococcus abyssi	Orsay	AJ248285	tuf
Thermoplasma acidophilum	DSM 1728	X53866	tuf
Fungi			
Aboidia alouan	CBC 101 40	V54700	<i>tuf (</i> EE 4)
Absidia glauca	CBS 101.48	X54730	tuf (EF-1)
Arxula adeninivorans	Ls3	Z47379	tuf (EF-1)
Aspergillus oryzae	KBN616	AB007770	tuf (EF-1)
Aureobasidium pullulans	R106	U19723	tuf (EF-1)
Candida albicans	SC5314	Genome project ²	tuf (M)
Candida albicans	SC5314	M29934 M20035	tuf (EF-1)
Candida albicans Cryptococcus neoformans	SC5314 B3501	M29935 U81803	tuf (EF-1) tuf (EF-1)
GIVDIOCOCCUS NEOIORMANS	D33U I	U010U3	<i>(UI</i> (CT-1)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Cryptococcus neoformans	M1-106	U81804	<i>tuf</i> (EF-1)
Eremothecium gossypii	ATCC 10895	X73978	tuf (EF-1)
Eremothecium gossypii	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A29820	tuf (EF-1)
Fusarium oxysporum	NRRL 26037	AF008498	tuf (EF-1)
Histoplasma capsulatum	186AS	U14100	tuf (EF-1)
Podospora anserina	.00/10	X74799	tuf (EF-1)
Podospora curvicolla	VLV	X96614	tuf (EF-1)
Prototheca wickerhamii	263-11	AJ245645	tuf (EF-1)
Puccinia graminis	race 32	X73529	tuf (EF-1)
Reclinomonas americana	ATCC 50394	AF007261	tuf (M)
Rhizomucor racemosus	ATCC 30394 ATCC 1216B	X17475	
			tuf (EF-1)
Rhizomucor racemosus	ATCC 1216B	J02605	tuf (EF-1)
Rhizomucor racemosus	ATCC 1216B	X17476	tuf (EF-1)
Rhodotorula mucilaginosa		AF016239	tuf (EF-1)
Saccharomyces cerevisiae		K00428	tuf (M)
Saccharomyces cerevisiae		M59369	tuf (EF-G)
Saccharomyces cerevisiae		X00779	tuf (EF-1)
Saccharomyces cerevisiae		X01638	<i>tuf</i> (EF-1)
Saccharomyces cerevisiae		M10992	tuf (EF-1)
Saccharomyces cerevisiae	Alpha S288	X78993	tuf (EF-1)
Saccharomyces cerevisiae	•	M15666	tuf (EF-1)
Saccharomyces cerevisiae		Z35987	tuf (EF-1)
Saccharomyces cerevisiae	S288C (AB972)	U51033	tuf (EF-1)
Schizophyllum commune	1-40	X94913	tuf (EF-1)
Schizosaccharomyces pombe	972h-	AL021816	tuf (EF-1)
Schizosaccharomyces pombe	972h-	AL021813	tuf (EF-1)
Schizosaccharomyces pombe	972h-	D82571	tuf (EF-1)
Schizosaccharomyces pombe	07211	U42189	tuf (EF-1)
Schizosaccharomyces pombe	PR745	D89112	tuf (EF-1)
Sordaria macrospora	000	X96615	tuf (EF-1)
Trichoderma reesei	QM9414	Z23012	tuf (EF-1)
Yarrowia lipolytica	QMOTIT	AF054510	tuf (EF-1)
Parasites			
Blastocystis hominis	HE87-1	D64080	tuf (EF-1)
Cryptosporidium parvum	1.010	U69697	tuf (EF-1)
Eimeria tenella	LS18	Al755521	tuf (EF-1)
Entamoeba histolytica	HM1:IMSS	X83565	tuf (EF-1)
Entamoeba histolytica	NIH 200	M92073	tuf (EF-1)
Giardia lamblia		D14342	tuf (EF-1)
Kentrophoros sp.		AF056101	<i>tuf</i> (EF-1)
Leishmania amazonensis	IFLA/BR/67/PH8	M92653	<i>tuf</i> (EF-1)
Leishmania braziliensis		U72244	<i>tuf</i> (EF-1)
Onchocerca volvulus		M64333	tuf (EF-1)
Porphyra purpurea	Avonport	U08844	tuf (EF-1)
Plasmodium berghei	ANKÁ	AJ224150	tuf (EF-1)
Plasmodium falciparum	K1	X60488	tuf (EF-1)
Plasmodium knowlesi	line H	AJ224153	tuf (EF-1)
Toxoplasma gondii	RH	Y11431	tuf (EF-1)
Trichomonas tenax	ATCC 30207	D78479	tuf (EF-1)
Trypanosoma brucei	LVH/75/ USAMRU-K/18	U10562	tuf (EF-1)
Trypanosoma cruzi	Y	L76077	<i>tuf</i> (EF-1)
		L/UU//	<i>(UI</i> (CC-1)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Human and plants			
Arabidopsis thaliana	Columbia	X89227	<i>tuf</i> (EF-1)
Glycine max	Ceresia	X89058	tuf (EF-1)
Glycine max	Ceresia	Y15107	tuf (EF-1)
Glycine max	Ceresia	Y15108	tuf (EF-1)
Glycine max	Maple Arrow	X66062	tuf (EF-1)
Homo sapiens	mapio / mon	X03558	tuf (EF-1)
Pyramimonas disomata		AB008010	tuf
	atpD seque	ences	
Bacteria			
Acetobacterium woodi	DSM 1030	U10505	atpD
Actinobacillus actinomycetemcomitans	HK1651	Genome project ²	atpD
Bacillus anthracis	Ames	Genome project ²	atpD
Bacillus firmus	OF4	M60117	atpD
Bacillus megaterium	QM B1551	M20255	atpD
Bacillus stearothermophilus		D38058	atpD
Bacillus stearothermophilus	IFO1035	D38060	atpD
Bacillus subtilis	168	Z28592	atpD
Bacteroides fragilis	DSM 2151	M22247	atpD
Bordetella bronchiseptica	RB50	Genome project ²	atpD
Bordetella pertussis	Tohama 1	Genome project ²	atpD
Borrelia burgdorferi	B31	AE001122	atpD (V)
Burkholderia cepacia	DSM50181	X76877	atpD
Burkholderia pseudomallei	K96243	Genome project ²	atpD
Campylobacter jejuni	NCTC 11168	CJ11168X1	atpD
Chlamydia pneumoniae		Genome project ²	atpD (V)
Chlamydia trachomatis	MoPn	Genome project ²	atpD (V)
Chlorobium vibrioforme	DSM 263	X76873	atpD
Citrobacter freundii	JEO503	AF037156	atpD
Clostridium acetobutylicum	ATCC 824	Genome project ²	atpD
Clostridium acetobutylicum	DSM 792	AF101055	atpD
Clostridium difficile	630	Genome project ²	atpD
Corynebacterium diphtheriae	NCTC13129	Genome project ²	atpD
Corynebacterium glutamicum	ASO 19	X76875	atpD
Corynebacterium glutamicum	MJ-233	E09634	atpD
Cytophaga lytica	DSM 2039	M22535	atpD
Enterobacter aerogenes	DSM 30053	_3	atpD
Enterococcus faeçalis	V583	Genome project ²	atpD (V)
Enterococcus hirae	- 000	M90060	atpD
Enterococcus hirae	ATCC 9790	D17462	atpD (V)
Escherichia coli	00 0/00	J01594	atpD (V)
Escherichia coli		M25464	atpD atpD
Escherichia coli		V00267	atpD atpD
Escherichia coli		V00267 V00311	atpD atpD
Escherichia coli	K12 MG1655	L10328	atpD atpD
		L10326	
Flavobacterium ferrugineum	DSM 13524		atpD
Haemophilus actinomycetemcomitans	Dd	Genome project ²	atpD
Haemophilus influenzae Helicobacter pylori	Rd NCTC 11638	U32730 AF004014	atpD atpD
	INC. I.C. LIDSA	AFULAUIA	airii 1

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Helicobacter pylori	26695	Genome project ²	atpD
Helicobacter pylori	J99	Genome project ²	atpD
Klebsiella pneumoniae	M6H 78578	Genome project ²	atpD
Lactobacillus casei	DSM 20021	X64542	atpD
Legionella pneumophila	Philadelphia-1	Genome project ²	atpD
Moorella thermoacetica	ATCC 39073	U64318	atpD
Mycobacterium avium	104	Genome project ²	atpD atpD
Mycobacterium bovis	AF2122/97	Genome project ²	atpD
Mycobacterium leprae	711 212207	U15186	atpD
Mycobacterium leprae		Genome project ²	atpD
Mycobacterium tuberculosis	H37Rv	Z73419	atpD
Mycobacterium tuberculosis	CSU#93	Genome project ²	atpD atpD
Mycoplasma gallisepticum	OOO#30	X64256	atpD atpD
Mycoplasma genitalium	G37	U39725	atpD atpD
Mycoplasma pneumoniae	M129	U43738	atpD atpD
Neisseria gonorrhoeae	FA 1090	Genome project ²	atpD atpD
Neisseria meningitidis	Z2491	Genome project ²	atpD atpD
Pasteurella multocida	Pm70	Genome project ²	atpD atpD
Pectinatus frisingensis	DSM 20465	X64543	atpD atpD
Peptococcus niger	DSM 20405	X76878	
Pirellula marina	IFAM 1313	X57204	atpD atpD
Porphyromonas gingivalis	W83	Genome project ²	atpD (V)
Propionigenium modestum	DSM 2376	X58461	
Pseudomonas aeruginosa	PAO1	Genome project ²	atpD atpD
Pseudomonas putida	FAUI	Genome project ²	atpD atpD
Rhodobacter capsulatus	B100	X99599	atpD atpD
Rhodospirillum rubrum	D100	X02499	
Rickettsia prowazekii	F-12	AF036246	atpD
Rickettsia prowazekii	Madrid	Genome project ²	atpD
Ruminococcus albus	7ATCC	AB006151	atpD
Salmonella bongori	JEO4162	AF037155	atpD
Salmonella bongori	BR1859	AF037154	atpD
Salmonella choleraesuis	S83769	AF037134 AF037146	atpD
subsp. arizonae	303/09	AF037146	atpD
Salmonella choleraesuis	u24	AE027147	otnD
	u24	AF037147	atpD
subsp. arizonae Salmonella choleraesuis subsp.	K228	AF037140	atnD
choleraesuis serotype Dublin	NEED	AI 037 140	atpD
Salmonella choleraesuis subsp.	K771	AF037139	atnD
choleraesuis serotype Dublin	IX/ / I	VL021129	atpD
Salmonella choleraesuis subsp.	Div36-86	AF037142	atpD
choleraesuis serotype Infantis	D1430-00	AI 03/ 142	aipu
Salmonella choleraesuis subsp.	Div95-86	AF037143	atpD
choleraesuis serotype Tennessee	DIV30-00	AE03/143	aipu
Salmonella choleraesuis subsp.	LT2	AE027141	otoD
choleraesuis serotype Typhimurium	LIZ	AF037141	atpD
Salmonella choleraesuis	DS210/89	AF037149	atnD
subsp. <i>diarizonae</i>	D3210/03	AF037 143	atpD
Salmonella choleraesuis	JEO307	AE027149	atnD
	JEUSUI	AF037148	atpD
subsp. diarizonae	C100671	AE027150	oto.D
Salmonella choleraesuis	S109671	AF037150	atpD
subsp. diarizonae	CBASEE	AE027151	otoD
Salmonella choleraesuis	S84366	AF037151	atpD
subsp. houtenae	C94009	AE027150	ata D
Salmonella choleraesuis	S84098	AF037152	atpD

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
subsp. <i>houtenae</i>			
Salmonella choleraesuis	BR2047	AF037153	atpD
subsp. indica			
Salmonella choleraesuis	NSC72	AF037144	atpD
subsp. <i>salamae</i>			
Salmonella choleraesuis	S114655	AF037145	atpD
subsp. <i>salamae</i>			
Shewanella putrefaciens	MR-1	Genome project ²	atpD
Staphylococcus aureus	COL	Genome project ²	atpD
Stigmatella aurantiaca	Sga1	X76879	atpD
Streptococcus bovis	JB-1	AB009314	atpD
Streptococcus mutans	GS-5	U31170	atpD
Streptococcus mutans	UAB159	Genome project ²	atpD
Streptococcus pneumoniae	Type 4	Genome project ²	atpD (V)
Streptococcus pneumoniae	Type 4	Genome project ²	atpD (1)
Streptococcus pyogenes	M1-GAS	Genome project ²	atpD (V)
Streptococcus pyogenes	M1-GAS	Genome project ²	atpD (V)
Streptococcus pyogenes Streptococcus sanguinis	10904	AF001955	atpD atpD
Streptomyces lividans	1326	Z22606	atpD atpD
Thermus thermophilus	HB8	D63799	atpD (V)
Thiobacillus ferrooxidans	ATCC 33020	M81087	atpD (v)
Trilobacilius ferrooxidans Treponema pallidum	Nichols	AE001228	aιρD atpD (V)
Vibrio alginolyticus	MICHOIS	X16050	atpD (v) atpD
Vibrio alginolyticus Vibrio cholerae	N16961	Genome project ²	
		X76880	atpD
Wolinella succinogenes	DSM 1470		atpD
Yersinia enterocolitica	NCTC 10460	AF037157	atpD
Yersinia pestis	CO-92	Genome project ²	atpD
Archaebacteria			
Archaeoglobus fulgidus	DSM 4304	AE001023	atpD (V)
Halobacterium salinarum		S56356	atpD (V)
Haloferax volcanii	WR 340	X79516	atpD
Methanococcus jannaschii	DSM 2661	U67477	atpD (V)
Methanosarcina barkeri	DSM 800	J04836	atpD (V)
			,
Fungi			
Candida albicans	SC5314	Genome project ²	atpD
Candida tropicalis		M64984	atpD (V)
Kluyveromyces lactis	2359/152	U37764	atpD `
Neurospora crassa		X53720	atpD
Saccharomyces cerevisiae		M12082	atpD
Saccharomyces cerevisiae	X2180-1A	J05409	atpD (V)
Schizosaccharomyces pombe	972 h-	S47814	atpD (V)
Schizosaccharomyces pombe	972 h-	M57956	atpD `
Parasites			
V 4-2		144000	
Giardia lamblia	WB	U18938	atpD
Plasmodium falciparum	3D7	L08200	atpD (V)
Trypanosoma congolense	IL3000	Z25814	atpD (V)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

	Species	Strain	Accession number	Coding gene*	
	Human and plants				
5	Homo sapiens		L09234	atpD (V)	
	Homo sapiens	•	M27132	atpD	
		recA seque	ences		
10	Bacteria				
	Acetobacter aceti	no. 1023	S60630	recA	
	Acetobacter altoacetigenes	MH-24	E05290	recA	
15	Acetobacter polyoxogenes	NBI 1028	D13183	recA	
	Acholeplasma laidlawii	8195	M81465	recA	
	Acidiphilium facilis	ATCC 35904	D16538	recA	
	Acidothermus cellulolyticus	ATCC 43068	AJ006705	recA	
	Acinetobacter calcoaceticus	BD413/ADP1	L26100	recA	
20	Actinobacillus actinomycetemcomitans	HK1651	Genome project ²	recA	
20	Aeromonas salmonicida	A449	U83688	recA	
	Agrobacterium tumefaciens	C58	L07902	recA	
	Allochromatium vinosum	000	AJ000677	recA	
	Aquifex aeolicus	VF5	AE000775	recA	
25	Aquifex pyrophilus	Kol5a	L23135	recA	
23	Azotobacter vinelandii	Nuisa	S96898	recA	
		10			
	Bacillus stearothermophilus	10 DD4004	Genome project ²	recA	
	Bacillus subtilis	PB1831	U87792	recA	
••	Bacillus subtilis	168	Z99112	recA	
30	Bacteroides fragilis		M63029	recA	
	Bifidobacterium breve	NCFB 2258	AF094756	recA	
	Blastochloris viridis	DSM 133	AF022175	recA	
	Bordetella pertussis	165	X53457	recA	
	Bordetella pertussis	Tohama I	Genome project ²	recA	
35	Borrelia burgdorferi	Sh-2-82	U23457	recA	
	Borrelia burgdorferi	B31	AE001124	recA	
	Brevibacterium flavum	MJ-233	E10390	recA	
	Brucella abortus	2308	L00679	recA	
	Burkholderia cepacia	ATCC 17616	U70431	recA	
40	Burkholderia cepacia		D90120	recA	
	Burkholderia pseudomallei	K96243	Genome project ²	recA	
	Campylobacter fetus subsp. fetus	23D	AF020677	recA	
	Campylobacter jejuni	81-176	U03121	recA	
	Campylobacter jejuni	NCTC 11168	AL139079	recA	
45	Chlamydia trachomatis	L2	U16739	recA	
43	Chlamydia trachomatis	D/UW-3/CX	AE001335	recA	
	Chlamydophila pneumoniae	CWL029	AE001658	recA	
	Chloroflexus aurantiacus	J-10-fl	AF037259	recA	
		3-10-11			
50	Clostridium acetobutylicum	10	M94057	recA	
50	Clostridium perfringens	13	U61497	recA	
	Corynebacterium diphtheriae	NCTC13129	Genome project ²	recA	
	Corynebacterium glutamicum	AS019	U14965	recA	
	Corynebacterium pseudotuberculosis	C231	U30387	recA	
	Deinococcus radiodurans	KD8301	AB005471	recA	
55	Deinococcus radiodurans	R1	U01876	recA	

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene
Enterobacter agglomerans	339	L03291	recA
Enterococcus faecalis	OGIX	M81466	recA
Erwinia carotovora	o and	X55554	recA
Escherichia coli		J01672	recA
Escherichia coli		X55552	recA
Escherichia coli	K-12	AE000354	recA
Frankia alni	Arl3	AJ006707	recA
Gluconobacter oxydans	7.11.0	U21001	recA
Haemophilus influenzae	Rd	U32687	recA
Haemophilus influenzae	Rd	U32741	recA
Haemophilus influenzae	Rd	L07529	recA
Helicobacter pylori	69A	Z35478	recA
Helicobacter pylori	26695	AE000536	recA
Helicobacter pylori	J99	AE001453	recA
Klebsiella pneumoniae	M6H 78578	Genome project ²	recA
Lactococcus lactis	ML3	M88106	recA
Legionella pneumophila	IVILO	X55453	recA recA
Leptospira biflexa	sorovar patoo	U32625	recA
	serovar patoc	U29169	recA
Leptospira interrogans Magnetospirillum magnetotacticum	serovar pomona MS-1	X17371	recA
Methylobacillus flagellatus	MFK1	M35325	
	ATCC 31226	X59514	recA
Methylomonas clara	104		recA
Mycobacterium avium	·	Genome project ²	recA
Mycobacterium bovis	AF122/97	Genome project ²	recA
Mycobacterium leprae	LIOZD.	X73822	recA
Mycobacterium tuberculosis	H37Rv	X58485	recA
Mycobacterium tuberculosis	CSU#93	Genome project ²	recA
Mycoplasma genitalium	G37	U39717	recA
Mycoplasma mycoides	GM9	L22073	recA
Mycoplasma pneumoniae	ATCC 29342	MPAE000033	recA
Mycoplasma pulmonis	KD735	L22074	recA
Myxococcus xanthus		L40368	recA
Myxococcus xanthus		L40367	recA
Neisseria animalis	NCTC 10212	U57910	recA
Neisseria cinerea	LCDC 81-176	AJ223869	recA
Neisseria cinerea	LNP 1646	U57906	recA
Neisseria cinerea	NCTC 10294	AJ223871	recA
Neisseria cinerea	Vedros M601	AJ223870	recA
Neisseria elongata	CCUG 2131	AJ223882	recA
Neisseria elongata	CCUG 4165A	AJ223880	recA
Neisseria elongata	NCTC 10660	AJ223881	recA
Neisseria elongata	NCTC 11050	AJ223878	recA ·
Neisseria elongata	NHITCC 2376	AJ223877	recA
Neisseria elongata	CCUG 4557	AJ223879	recA
subsp. intermedia			
Neisseria flava	Bangor 9	AJ223873	recA
Neisseria flavescens	LNP 444	U57907	recA
Neisseria gonorrhoeae	CH95	U57902	recA
Neisseria gonorrhoeae	FA19	X64842	recA
Neisseria gonorrhoeae	MS11	X17374	recA
Neisseria gonorrhoeae		Genome project ²	recA
Neisseria lactamica	CCUC 7757	AJ223866	recA
Neisseria lactamica	CCUG 7852	Y11819	recA
Neisseria lactamica	LCDC 77-143	Y11818	recA
	LCDC 80-111	AJ223864	recA

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Sp	ecies	Strain	Accession number	Coding gene
Neisseri	a lactamica	LCDC 845	AJ223865	recA
	a lactamica	NCTC 10617	U57905	recA
	a lactamica	NCTC 10618	AJ223863	recA
	a meningitidis	44/46	X64849	recA
	a meningitidis	Bangor 13	AJ223868	recA
	a meningitidis	HF116	X64848	recA
	a meningitidis	HF130	X64844	recA
	a meningitidis a meningitidis	HF46	X64847	recA
	a meningitidis	M470	X64850	recA
		N94II	X64846	
	a meningitidis			recA
	a meningitidis	NCTC 8249	AJ223867	recA
	a meningitidis	P63	X64845	recA
	a meningitidis	S3446	U57903	recA
	a meningitidis	FAM18	Genome project ²	recA
	a mucosa	LNP 405	U57908	recA
	a mucosa	Vedros M1801	AJ223875	recA
Neisseri	a perflava	CCUG 17915	AJ223876	recA
Neisseri	a perflava	LCDC 85402	AJ223862	recA
Neisseri	a pharyngis var. flava	NCTC 4590	U57909	recA
Neisseri	a polysaccharea	CCUG 18031	Y11815	recA
	a polysaccharea	CCUG 24845	Y11816	recA
	a polysaccharea	CCUG 24846	Y11814	recA
	a polysaccharea	INS MA 3008	Y11817	recA
	a polysaccharea	NCTC 11858	U57904	recA
Neisseri		NRL 30016	AJ223872	recA
	a subflava	NRL 30017	AJ223874	recA
	cus denitrificans	DSM 413	U59631	recA
	ella multocida	20	X99324	recA
	omonas gingivalis	W83	U70054	recA
	lla ruminicola	JCM 8958	U61227	recA
	mirabilis	pG1300	X14870	recA
		PG 1500	X55555	recA
Proteus			X05691	
	monas aeruginosa	DAM 7		recA
	monas aeruginosa	PAM 7	X52261	recA
	monas aeruginosa	PAO12	D13090	recA
	monas fluorescens	OE 28.3	M96558	recA
	nonas putida		L12684	recA
	nonas putida	PpS145	U70864	recA
	ım leguminosarum	VF39	X59956	recA
biovar vi				
Rhizobiu	ım phaseoli	CNPAF512	X62479	recA
Rhodoba	acter capsulatus	J50	X82183	recA
Rhodoba	acter sphaeroides	2.4.1	X72705	recA
	seudomonas palustris	N 7	D84467	recA
	ia prowazekii [*]	Madrid E	AJ235273	recA
	ia prowazekii	Madrid E	U01959	recA
	marcescens		M22935	recA
Shigella			X55553	recA
Shigella		KNIH104S	AF101227	recA
	obium meliloti	2011	X59957	recA
	ococcus aureus	2011	L25893	recA
	occus gordonii	Challis V288	L20574	recA
		UA96	M81468	recA
	occus mutans occus mutans	GS-5	M61897	recA recA
Ctronton				/ (=) . (4)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Streptococcus pneumoniae	R800	Z34303	recA
Streptococcus pyogenes	NZ131	U21934	recA
Streptococcus pyogenes	D471	M81469	recA
Streptococcus salivarius	D471	M94062	recA
subsp. thermophilus		11104002	
Streptomyces ambofaciens	DSM 40697	Z30324	recA
Streptomyces amboraciens Streptomyces coelicolor	A3(2)	AL020958	recA
Streptomyces coelicolol Streptomyces lividans	TK24	X76076	recA
Streptomyces rimosus	R6	X94233	recA recA
	ATCC10712	U04837	recA recA
Streptomyces venezuelae	PR6	M29495	recA recA
Synechococcus sp.			recA recA
Synechocystis sp.	PCC6803	D90917	
Thermotoga maritima		L23425	recA
Thermotoga maritima		AE001823	recA
Thermus aquaticus		L20095	recA
Thermus thermophilus	HB8	D17392	recA
Thiobacillus ferrooxidans		M26933	recA
Treponema denticola		Genome project ²	recA
Treponema pallidum	Nichols	AE001243	recA
Vibrio anguillarum		M80525	recA
Vibrio cholerae	017	X71969	recA
Vibrio cholerae	2740-80	U10162	recA
Vibrio cholerae	569B	L42384	recA
Vibrio cholerae	M549	AF117881	recA
Vibrio cholerae	M553	AF117882	recA
Vibrio cholerae	M645	AF117883	recA
Vibrio cholerae	M793	AF117878	recA
Vibrio cholerae	M794	AF117880	recA
Vibrio cholerae	M967	AF117879	recA
Xanthomonas citri	XW47	AF006590	recA
Xanthomonas oryzae		AF013600	recA
Xenorhabdus bovienii	T228/1	U87924	recA
Xenorhabdus nematophilus	AN6	AF127333	recA
Yersinia pestis	231	X75336	recA
Yersinia pestis	CO-92	Genome project ²	recA
Fungi, parasites, human and plants	5		
Anabaena variabilis	ATCC 29413	M29680	recA
Arabidopsis thaliana		U43652	<i>recA</i> (Rad51)
Candida albicans		U39808	recA (Dmc1)
Coprinus cinereus	Okayama-7	U21905	<i>recA</i> (Rad51)
Emericella nidulans		Z80341	<i>recA</i> (Rad51)
Gallus gallus		L09655	recA (Rad51)
Homo sapiens		D13804	recA (Rad51)
Homo sapiens		D63882	recA (Dmc1)
Leishmania major	Friedlin	AF062379	recA (Rad51)
Leishmania major	Friedlin	AF062380	recA (Dmc1)
Mus musculus		D58419	recA (Dmc1)
Neurospora crassa	74-OR23-1A	D29638	recA (Rad51)
· · - · · · - · · · · · · · · · · · · ·		D10023	recA (Rad51)
Saccharomyces cerevisiae		_ ·	
Saccharomyces cerevisiae Schizosaccharomyces pombe		Z22691	recA (Rad51)
Saccharomyces cerevisiae Schizosaccharomyces pombe Schizosaccharomyces pombe	972h-	Z22691 AL021817	recA (Rad51) recA (Dmc1)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Trypanosoma brucei	stock 427	Y13144	recA (Rad51)
Ustilago maydis		U62484	recA (Rad51)
Xenopus laevis		D38488	recA (Rad51)
Xenopus laevis		D38489	recA (Rad51)

^{*} tuf indicates tuf sequences, including tuf genes, fusA genes and fusA-tuf intergenic spacers.
tuf (C) indicates tuf sequences divergent from main (usually A and B) copies of the elongation factor-Tu
tuf (EF-1) indicates tuf sequences of the eukaryotic type (elongation factor 1α)
tuf (M) indicates tuf sequences from organellar (mostly mitochondrial) origin
atpD indicates atpD sequences of the F-type
atpD (V) indicates atpD sequences of the V-Type
recA indicates recA sequences
recA (Rad51) indicates rad51 sequences or homologs

5

10

15

recA (Dmc1) indicates dmc1 sequences or homologs

Nucleotides sequences published in Arch. Microbiol. 1990 153:241-247

These sequences are from the TIGR database (http://www.tigr.org/tdb/tdb.html)
Nucleotides sequences published in FEMS Microbiology Letters 1988 50:101-106

Table 12. Bacterial species used to test the specificity of the *Staphylococcus*-specific amplification primers derived from *tuf* sequences.

Strain	Reference number	Strain F	Reference number
Staphylococcal species (n=27	7	Other Gram-positive bacte	ria (n=20)
_		•	•
Staphylococcus arlettae Staphylococcus aureus subsp. anaerobius	ATCC 43957 ATCC 35844	Bacillus subtilis Enterococcus avium	ATCC 27370 ATCC 14025
Staphylococcus aureus subsp. aureus	ATCC 43300	Enterococcus durans	ATCC 19432
Staphylococcus auricularis	ATCC 33753	Enterococcus faecalis	ATCC 19433
Staphylococcus capitis subsp. capitis	ATCC 27840	Enterococcus faecium	ATCC 19434
Staphylococcus caprae	ATCC 35538	Enterococcus flavescens	ATCC 49996
Staphylococcus carnosus	ATCC 51365	Enterococcus gallinarum	ATCC 49573
Staphylococcus chromogenes	ATCC 43764	Lactobacillus acidophilus	ATCC 4356
Staphylococcus cohnii subsp. urealyticum	DSM 20260	Lactococcus lactis	ATCC 11454
Staphylococcus delphini	ATCC 49171	Listeria innocua	ATCC 33090
Staphylococcus epidermidis	ATCC 14990	Listeria ivanovii	ATCC 19119
Staphylococcus equorum	ATCC 43958	Listeria monocytogenes	ATCC 15313
Staphylococcus felis	ATCC 49168	Macrococcus caseolyticus	ATCC 13548
Staphylococcus gallinarum	ATCC 35539	Streptococcus agalactiae	ATCC 13813
Staphylococcus haemolyticus	ATCC 29970	Streptococcus anginosus	ATCC 33397
Staphylococcus hominis	ATCC 27844	Streptococcus bovis	ATCC 33317
Staphylococcus hyicus	ATCC 11249	Streptococcus mutans	ATCC 25175
Staphylococcus intermedius	ATCC 29663	Streptococcus pneumoniae	ATCC 6303
Staphylococcus kloosis	ATCC 43959 ATCC 29070	Streptococcus pyogenes	ATCC 7072
Staphylococcus lentus Staphylococcus lugdunensis	ATCC 29070 ATCC 43809	Streptococcus salivarius	ATCC 7073
Staphylococcus ragaunensis Staphylococcus saprophyticus	ATCC 45809 ATCC 15305		
Staphylococcus schleiferi	ATCC 49545		
subsp. <i>coagulans</i>	A100 43343		
Staphylococcus sciuri subsp. sciuri	ATCC 29060		
Staphylococcus simulans	ATCC 27848		
Staphylococcus warneri	ATCC 27836		
Staphylococcus xylosus	ATCC 29971		
Gram-negative bacteria (n=33			
Acinetobacter baumannii	ATCC 19606	Morganella morganii	ATCC 25830
Bacteroides distasonis	ATCC 8503	Neisseria gonorrhoeae	ATCC 35201
Bacteroides fragilis	ATCC 25285	Neisseria meningitidis	ATCC 13077
Bulkholderia cepacia	ATCC 25416	Proteus mirabilis	ATCC 25933
Bordetella pertussis	ATCC 9797	Proteus vulgaris	ATCC 9350
Citrobacter freundii	ATCC 8090 ATCC 13048	Providencia rettgeri Providencia stuartii	ATCC 9250
Enterobacter aerogenes Enterobacter cloacae	ATCC 13046 ATCC 13047	Pseudomonas aeruginosa	ATCC 29914 ATCC 27853
Enteropacier cioacae Escherichia coli	ATCC 15047 ATCC 25922	Pseudomonas fluorencens	ATCC 27655 ATCC 13525
Haemophilus influenzae	ATCC 8907	Salmonella choleraesuis	ATCC 7001
Haemophilus midenzae Haemophilus parahaemolyticus	ATCC 10014	Salmonella typhimurium	ATCC 14028
Haemophilus parainfluenzae	ATCC 7901	Serratia marcescens	ATCC 14028
Hafnia alvei	ATCC 13337	Shigella flexneri	ATCC 12022
Kingella indologenes	ATCC 25869	Shigella sonnei	ATCC 29930
Kingelia indologenes Klebsiella oxytoca	ATCC 13182	Stenotrophomonas maltophil	
Klebsiella pneumoniae	ATCC 13883	Yersinia enterocolitica	ATCC 9610
Moraxella catarrhalis	ATCC 25240		55 5510

Table 13. Bacterial species used to test the specificity of the penicillin-resistant *Streptococcus pneumoniae* assay.

	Strain	Reference number	Strain R	eference numb
Gram-posit	ive species (n=67)			
Abiotrophia	adiacens	ATCC 49175	Staphylococcus hominis	ATCC 27844
Abiotrophia		ATCC 49176	Staphylococcus lugdunensis	ATCC 43809
Actinomyce		ATCC 19411	Staphylococcus saprophyticu	
Bacillus anti		ATCC 4229	Staphylococcus simulans	ATCC 27848
Bacillus cere	eus	ATCC 14579	Staphylococcus. warneri	ATCC 27836
Bifidobacter		ATCC 15700	Streptococcus acidominimus	ATCC 51726
Clostridium		ATCC 9689	Streptococcus agalactiae	ATCC 12403
Enterococcu	ıs avium	ATCC 14025	Streptococcus anginosus	ATCC 33397
Enterococcu	ıs casseliflavus	ATCC 25788	Streptococcus bovis	ATCC 33317
Enterococcu		ATCC 51266	Streptococcus constellatus	ATCC 27823
Enterococcu		ATCC 19432	Streptococcus cricetus	ATCC 19624
Enterococcu		ATCC 29212	Streptococcus cristatus	ATCC 51100
Enterococcu		ATCC 19434	Streptococcus downei	ATCC 33748
	is flavescens	ATCC 49996	Streptococcus dysgalactiae	ATCC 43078
	is gallinarum	ATCC 49573	Streptococcus equi	ATCC 9528
Enterococcu		ATCC 8043	Streptococcus ferus	ATCC 33477
Enterococcu		ATCC 43186	Streptococcus gordonii	ATCC 10558
	ıs raffinosus	ATCC 49427	Streptococcus intermedius	ATCC 27335
Lactobacillu		ATCC 19435	Streptococcus mitis	ATCC 903
	s monocytogenes	ATCC 15313	Streptococcus mitis	LSPQ 2583
Mobiluncus		ATCC 35242	Streptococcus mitis	ATCC 49456
Peptococcu:		ATCC 27731	Streptococcus mutans	ATCC 27175
	ococcus acones	ATCC 6919	Streptococcus oralis	ATCC 10557
	ococcus anaerobius	ATCC 27337	Streptococcus oralis	ATCC 9811
Peptostrepto		ATCC 2639	Streptococcus oralis	ATCC 35037
asaccharoly			Streptococcus parasanguinis	ATCC 15912
	ococcus lactolyticus	ATCC 51172	Streptococcus parauberis	ATCC 6631
	ococcus magnus	ATCC 15794	Streptococcus rattus	ATCC 15912
	ococcus prevotii	ATCC 9321	Streptococcus salivarius	ATCC 7073
	ococcus tetradius	ATCC 35098	Streptococcus sanguinis	ATCC10556
Staphylococ		ATCC 25923	Streptococcus suis	ATCC 43765
Staphylococ		ATCC 27840	Streptococcus uberis	ATCC 19436
	cus epidermidis	ATCC 14990	Streptococcus vestibularis	ATCC 49124
	cus haemolyticus	ATCC 29970	Ciropicococci Tochbalano	71100 4012
	tive species (n=33)			
_	er baumannii	ATCC 19606	Moraxella morganii	ATCC 13077
Bordetella p		ATCC 9797	Neisseria gonorrhoeae	ATCC 35201
Citrobacter of		ATCC 27028	Neisseria meningitidis	ATCC 13077
Citrobacter i		ATCC 8090	Proteus mirabilis	ATCC 25933
	r aerogenes	ATCC 13048	Proteus vulgaris	ATCC 13315
	r agglomerans	ATCC 27155	Providencia alcalifaciens	ATCC 9886
Enterobacte		ATCC 13047	Providencia rettgeri	ATCC 9250
Escherichia		ATCC 25922	Providencia rustigianii	ATCC 33673
Haemophilu		ATCC 33940	Providencia stuartii	ATCC 33672
	s haemolyticus	ATCC 33390	Pseudomonas aeruginosa	ATCC 35554
Haemophilu		ATCC 9007	Pseudomonas fluorescens	ATCC 13525
	s parainfluenzae	ATCC 7901	Pseudomonas stutzeri	ATCC 17588
Hafnia alvei	parailmutiizat	ATCC 13337	Salmonella typhimurium	ATCC 14028
rianna aivei Klebsiella ox	rutoca	ATCC 13337 ATCC 13182	Serratia marcescens	ATCC 13880
Klebsiella pi		ATCC 13162 ATCC 13883	Shigella flexneri	ATCC 12022
i viensiella M			Yersina enterocolitica	ATCC 9610
Moraxella at	iontoo	ATCC 29525		A I I J . White

Table 14. Bacterial species (n=104) detected by the platelet contaminants assay. Bold characters indicate the major bacterial contaminants found in platelet concentrates.

- 5 Abiotrophia adiacens Abiotrophia defectiva Acinetobacter baumannii Acinetobacter Iwoffi Aerococcus viridans
- 10 Bacillus anthracis
 Bacillus cereus
 Bacillus subtilis
 Brucella abortus
 Burkholderia cepacia
- 15 Citrobacter diversus
 Citrobacter freundii
 Enterobacter aerogenes
 Enterobacter agglomerans
 Enterobacter cloacae
- 20 Enterococcus avium
 Enterococcus casseliflavus
 Enterococcus dispar
 Enterococcus durans
 Enterococcus faecalis
- 25 Enterococcus faecium Enterococcus flavescens Enterococcus gallinarum Enterococcus mundtii Enterococcus raffinosus
- 30 Enterococcus solitarius
 Escherichia coli
 Gemella morbillorum
 Haemophilus ducreyi
 Haemophilus haemolyticus
- 35 Haemophilus influenzae
 Haemophilus
 parahaemolyticus
 Haemophilus parainfluenzae
 Hafnia alvei
- 40 Kingella kingae

- Klebsiella oxytoca Klebsiella pneumoniae Legionella pneumophila Megamonas hypermegale
- 45 Moraxella atlantae Moraxella catarrhalis Morganella morganii Neisseria gonorrheae Neisseria meningitidis
- 50 Pasteurella aerogenes
 Pasteurella multocida
 Peptostreptococcus magnus
 Proteus mirabilis
 Providencia alcalifaciens
- 55 Providencia rettgeri
 Providencia rustigianii
 Providencia stuartii
 Pseudomonas aeruginosa
 Pseudomonas fluorescens
- 60 Pseudomonas stutzeri Salmonella bongori Salmonella choleraesuis Salmonella enteritidis Salmonella gallinarum
- 65 Salmonella typhimurium Serratia liquefaciens Serratia marcescens Shigella flexneri Shigella sonnei
- 70 Staphylococcus aureus
 Staphylococcus capitis
 Staphylococcus epidermidis
 Staphylococcus haemolyticus
 Staphylococcus hominis
- 75 Staphylococcus lugdunensis Staphylococcus saprophyticus

- Staphylococcus simulans Staphylococcus warneri Stenotrophomonas maltophilia
- 80 Streptococcus acidominimus Streptococcus agalactiae Streptococcus anginosus Streptococcus bovis Streptococcus constellatus
- 85 Streptococcus cricetus
 Streptococcus cristatus
 Streptococcus dysgalactiae
 Streptococcus equi
 Streptococcus ferus
- 90 Streptococcus gordonii Streptococcus intermedius Streptococcus macacae Streptococcus mitis Streptococcus mutans
- 95 Streptococcus oralis
 Streptococcus parasanguinis
 Streptococcus parauberis
 Streptococcus pneumoniae
 Streptococcus pyogenes
- 100 Streptococcus ratti
 Streptococcus salivarius
 Streptococcus sanguinis
 Streptococcus sobrinus
 Streptococcus uberis
- 105 Streptococcus vestibularis
 Vibrio cholerae
 Yersinia enterocolitica
 Yersinia pestis
 Yersinia pseudotuberculosis

Table 15. Microorganism entified by commercial systems¹.

	Abiotrophia adiacens (Streptococcus	75	Alcaligenes xylosoxidans subsp.		Brevibacterium species
	adjacens)		xylosoxidans	150	Brevundimonas (Pseudomonas)
	Abiotrophia defectiva (Streptococcus		Alloiococcus otitis		diminuta
	defectivus)		Anaerobiospirillum succiniciproducens		Brevundimonas (Pseudomonas)
5	Achromobacter species		Anaerovibrio lipolytica		vesicularis
	Acidaminococcus fermentans	80	Arachnia propionica		Brevundimonas species
	Acinetobacter alcaligenes		Arcanobacterium (Actinomyces)	155	Brochothrix thermosphacta
	Acinetobacter anitratus		bemardiae		Brucella abortus
	Acinetobacter baumannii		Arcanobacterium (Actinomyces)		Brucella canis
10	Acinetobacter calcoaceticus		pyogenes		Brucella melitensis
	Acinetobacter calcoaceticus biovar	85	Arcanobacterium haemolyticum		Brucella ovis
	anitratus		Arcobacter cryaerophilus	160	Brucella species
	Acinetobacter calcoaceticus biovar		(Campylobacter cryaerophila)		Brucella suis
	lwoffi		Arthrobacter globiformis		Budvicia aquatica
15	G	00	Arthrobacter species		Burkholderia (Pseudomonas) cepacia
	Acinetobacter haemolyticus	90	· · · · · · · · · · · · · · · · · · ·	1.00	Burkholderia (Pseudomonas) gladioli
	Acinetobacter johnsonii		pintolopesii)	165	
	Acinetobacter junii		Atopobium minutum (Lactobacillus		Burkholderia (Pseudomonas)
20	Acinetobacter Iwoffii		minutus)		pseudomallei
20		05	Aureobacterium species		Burkholderia species
	Acinetobacter species	95		170	Buttiauxella agrestis
	Actinobacillus actinomycetemcomitans		Bacillus anthracis	170	Campylobacter coli
	Actinobacillus capsulatus		Bacillus badius		Campylobacter concisus
25	Actinobacillus equuli		Bacillus cereus		Campylobacter fetus
23	Actinobacillus hominis	100	Bacillus circulans		Campylobacter fetus subsp. fetus
	Actinobacillus lignieresii Actinobacillus pleuropneumoniae	100	Bacillus coagulans Bacillus firmus	175	Campylobacter fetus subsp. venerealis
	Actinobacillus species		Bacillus Ientus	175	Campylobacter hyointestinalis
	Actinobacillus suis		Bacillus licheniformis		Campylobacter jejuni subsp. doylei
30			Bacillus megaterium		Campylobacter jejuni subsp. jejuni
50	Actinomyces bovis	105			Campylobacter lari
	Actinomyces israelii	103	Bacillus pantothenticus	180	Campylobacter lari subsp. UPTC
	Actinomyces meyeri		Bacillus pumilus	100	Campylobacter mucosalis
	Actinomyces naeslundii		Bacillus species		Campylobacter species
35			Bacillus sphaericus		Campylobacter sputorum
55	Actinomyces neuii subsp. neuii	110			Campylobacter sputorum subsp.
	Actinomyces odontolyticus	110	Bacillus subtilis	185	bubulus
	Actinomyces pyogenes		Bacillus thuringiensis		Campylobacter sputorum subsp.
	Actinomyces radingae		Bacteroides caccae		fecalis
40	Actinomyces species		Bacteroides capillosus		Campylobacter sputorum subsp.
	Actinomyces turicensis	115	Bacteroides distasonis		sputorum
	Actinomyces viscosus		Bacteroides eggerthii	190	
	Aerococcus species		Bacteroides fragilis		Candida (Clavispora) lusitaniae
	Aerococcus viridans		Bacteroides merdae		Candida (Pichia) guilliermondii
45	Aeromonas caviae		Bacteroides ovatus		Candida (Torulopsis) glabrata
	Aeromonas hydrophila	120	Bacteroides species		Candida albicans
	Aeromonas hydrophila group		Bacteroides splanchnicus	195	Candida boidinii
	Aeromonas jandaei		Bacteroides stercoris		Candida catenulata
	Aeromonas salmonicida		Bacteroides thetaiotaomicron		Candida ciferrii
50	Aeromonas salmonicida subsp.		Bacteroides uniformis		Candida colliculosa
	achromogenes	125	Bacteroides ureolyticus (B. corrodens)		Candida conglobata
	Aeromonas salmonicida subsp.		Bacteroides vulgatus	200	Candida curvata (Cryptococcus
	masoucida		Bergeyella (Weeksella) zoohelcum		curvatus)
	Aeromonas salmonicida subsp.		Bifidobacterium adolescentis		Candida dattila
55	salmonicida		Bifidobacterium bifidum		Candida dubliniensis
	Aeromonas schubertii	130		005	Candida famata
	Aeromonas sobria		Bifidobacterium dentium	205	Candida globosa
	Aeromonas species		Bifidobacterium infantis		Candida hellenica
	Aeromonas trota		Bifidobacterium species		Candida holmii
60	Aeromonas veronii	125	Blastoschizomyces (Dipodascus)		Candida humicola
	Aeromonas veronii biovar sobria	135	capitatus	210	Candida inconspicua
	Aeromonas veronii biovar veronii		Bordetella avium	210	Candida Intermedia
	Agrobacterium radiobacter		Bordetella bronchiseptica		Candida kefyr
45	Agrobacterium species		Bordetella parapertussis		Candida krusei
65	Agrobacterium tumefaciens	140	Bordetella pertussis		Candida lambica
	Alcaligenes denitrificans	140	Bordetella species	215	Candida magnoliae Candida maris
	Alcaligenes faecalis		Borrelia species Branhamelia (Moravella) cetambelis	213	Candida maris Candida melibiosica
	Alcaligenes odorans		Branhamella (Moraxella) catarrhalis Branhamella species		Candida meribiosica Candida membranaefaciens
70	Alcaligenes odorans (Alcaligenes faecalis)		Brevibacillus brevis		Candida norvegensis
70	Alcaligenes species	145			Candida norvegica
	Alcaligenes xylosoxidans	1-1-7	Brevibacterium casei	220	Candida norvegica Candida parapsilosis
	Alcaligenes xylosoxidans subsp.		Brevibacterium epidermidis		Candida paratropicalis
	denitrificans		Brevibacterium linens		Candida pelliculosa

Table 15. Microorganism

intified by commercial systems (continued)

					
	Candida pseudotropicalis		Clostridium hastiforme		Corynebacterium urealyticum (group
	Candida pulcherrima	80	Clostridium histolyticum		D2)
	Candida pulcherrima Candida ravautii	80	Clostridium innocuum		Corynebacterium xerosis
	Candida rugosa		Clostridium limosum	160	
5	Candida sake		Clostridium novyi	100	Cryptococcus ater
_	Candida silvicola		Clostridium novyi A		Cryptococcus cereanus
	Candida species	85	Clostridium paraputrificum		Cryptococcus gastricus
	Candida sphaerica		Clostridium perfringens		Cryptococcus humicolus
	Candida stellatoidea		Clostridium putrificum	165	
10	Candida tenuis		Clostridium ramosum		Cryptococcus laurentii
	Candida tropicalis		Clostridium septicum		Cryptococcus luteolus
	Candida utilis	90	Clostridium sordellii		Cryptococcus melibiosum
	Candida valida		Clostridium species		Cryptococcus neoformans
1.5	Candida vini		Clostridium sphenoides	170	
15	Candida viswanathii		Clostridium sporogenes		Cryptococcus terreus
	Candida zeylanoides	0.5	Clostridium subterminale		Cryptococcus uniguttulatus
	Capnocytophaga gingivalis	95	Clostridium tertium		Debaryomyces hansenii
	Capnocytophaga ochracea		Clostridium tetani	175	Debaryomyces marama
20	Capnocytophaga species Capnocytophaga sputigena		Clostridium tyrobutyricum Comamonas (Pseudomonas)	1/3	Debaryomyces polymorphus Debaryomyces species
20	Cardiobacterium hominis		acidovorans		Dermabacter hominis
	Camobacterium divergens	100	Comamonas (Pseudomonas)		Dermacoccus (Micrococcus)
	Carnobacterium piscicola	100	testosteroni		nishinomiyaensis
	CDC group ED-2		Comamonas species	180	
25	CDC group EF4 (Pasteurella sp.)		Corynebacterium accolens		Edwardsiella hoshinae
	CDC group EF-4A		Corynebacterium afermentans		Edwardsiella ictaluri
	CDC group EF-4B	105	Corynebacterium amycolatum		Edwardsiella species
	CDC group EQ-Z		Corynebacterium aquaticum		Edwardsiella tarda
	CDC group HB-5		Corynebacterium argentoratense	185	Eikenella corrodens
30	CDC group II K-2		Corynebacterium auris		Empedobacter brevis (Flavobacterium
	CDC group IV C-2 (Bordetella-like)		Corynebacterium bovis		breve)
	CDC group M5	110	Corynebacterium coyleae		Enterobacter aerogenes
	CDC group M6		Corynebacterium cystitidis	100	Enterobacter agglomerans
25	Cedecea davisae		Corynebacterium diphtheriae	190	
35			Corynebacterium diphtheriae biotype		Enterobacter amnigenus asburiae
	Cedecea neteri	115	belfanti		(CDC enteric group 17)
	Cedecea species	115	Corynebacterium diphtheriae biotype		Enterobacter amnigenus biogroup 1
	Cellulomonas (Oerskovia) turbata Cellulomonas species		gravis Corynebacterium diphtheriae biotype	195	Enterobacter amnigenus biogroup 2 Enterobacter asburiae
40			intermedius	193	Enterobacter cancerogenus
40	Chromobacterium violaceum		Corynebacterium diphtheriae biotype		Enterobacter cloacae
	Chryseobacterium (Flavobacterium)	120	mitis		Enterobacter gergoviae
	indologenes		Corynebacterium flavescens		Enterobacter hormaechei
	Chryseobacterium (Flavobacterium)		Corynebacterium glucuronolyticum	200	
45	meningosepticum		Corynebacterium glucuronolyticum-		Enterobacter sakazakii
	Chryseobacterium gleum		seminale		Enterobacter species
	Chryseobacterium species	125	Corynebacterium group A		Enterobacter taylorae
	Chryseomonas indologenes		Corynebacterium group A-4		Enterobacter taylorae (CDC enteric
	Citeromyces matritensis		Corynebacterium group A-5	205	group 19)
50			Corynebacterium group ANF		Enterococcus (Streptococcus)
	Citrobacter braakii	120	Corynebacterium group B		cecorum
	Citrobacter diversus	130	Corynebacterium group B-3		Enterococcus (Streptococcus) faecalis
	Citrobacter farmeri Citrobacter freundii		Corynebacterium group F Corynebacterium group F-1	210	(Group D) Enterococcus (Streptococcus)
55	Citrobacter freundii complex		Corynebacterium group F-2	210	faecium(Group D)
JJ	Citrobacter koseri		Corynebacterium group G		Enterococcus (Streptococcus)
	Citrobacter sedlakii	135	Corynebacterium group G-1		saccharolyticus
	Citrobacter species		Corynebacterium group G-2		Enterococcus avium (Group D)
	Citrobacter werkmanii		Corynebacterium group I	215	
60			Corynebacterium group 1-2		(Steptococcus faecium subsp.
	Clostridium acetobutylicum		Corynebacterium jeikeium (group JK)		casseliflavus)
	Clostridium barati	140	Corynebacterium kutscheri (C.		Enterococcus durans (Streptococcus
	Clostridium beijerinckii		murium)		faecium subsp. durans) (Group D)
	Clostridium bifermentans		Corynebacterium macginleyi	220	Enterococcus gallinarum
65	Clostridium botulinum		Corynebacterium minutissimum		Enterococcus hirae
	Clostridium botulinum (NP) B&F	1 4 5	Corynebacterium pilosum		Enterococcus malodoratus
	Clostridium botulinum (NP) E	145	Corynebacterium propinquum		Enterococcus mundtii Enterococcus raffinosus
	Clostridium botulinum (P) A&H		Corynebacterium pseudodiphtheriticum	225	
70	Clostridium botulinum (P) F Clostridium botulinum G1			223	Enterococcus species Erwinia amylovora
70	Clostridium botulinum G1		Corynebacterium pseudotuberculosis Corynebacterium pyogenes		Erwinia arriyiovora Erwinia carotovora
	Clostridium butyricum	150	Corynebacterium renale		Erwinia carotovora subsp. atroseptica
	Clostridium cadaveris	150	Corynebacterium renale group		Erwinia carotovora subsp. arreseptica
	Clostridium chauvoei		Corynebacterium seminale	230	betavasculorum
75	Clostridium clostridiiforme		Corynebacterium species		Erwinia carotovora subsp. carotovora
-	Clostridium difficile		Corynebacterium striatum (C.		Erwinia chrysanthemi
	Clostridium fallax	155	flavidum)		Erwinia cypripedii
	Clostridium glycolicum		Corynebacterium ulcerans		Erwinia mallotivora

Table 15. Microorganism entified by commercial systems (continued)

	· · · · · · · · · · · · · · · · · · ·				
	Erwinia nigrifluens		VII		Lactobacillus paracasei subsp.
	Erwinia quercina	80	Haemophilus parainfluenzae biotype		paracasei
	Erwinia rhapontici		VIII	1.00	Lactobacillus pentosus
_	Erwinia rubrifaciens		Haemophilus paraphrohaemolyticus	160	
5	Erwinia salicis		Haemophilus paraphrophilus		Lactobacillus salivarius
	Erwinia species	05	Haemophilus segnis		Lactobacillus salivarius var. salicinius
	Erysipelothrix rhusiopathiae	85	Haemophilus somnus		Lactobacillus species
	Erysipelothrix species		Haemophilus species	165	Lactococcus diacitilactis
10	Escherichia blattae Escherichia coli		Hafnia alvei Hanseniaspora guilliermondii	105	Lactococcus garvieae
10	Escherichia coli A-D		Hanseniaspora uvarum		Lactococcus lactis subsp. cremoris Lactococcus lactis subsp. diacitilactis
	Escherichia coli O157:H7	٩n	Hanseniaspora valbyensis		Lactococcus lactis subsp. hordniae
	Escherichia fergusonii	70	Hansenila anomala		Lactococcus lactis subsp. lactis
	Escherichia hermannii		Hansenula holstii	170	
15			Hansenula polymorpha	1,0	Lactococcus raffinolactis
15	Escherichia vulneris		Helicobacter (Campylobacter) cinaedi		Leclercia adecarboxylata
	Eubacterium aerofaciens	95	Helicobacter (Campylobacter)		Legionella species
	Eubacterium alactolyticum		fennelliae		Leminorella species
	Eubacterium lentum		Helicobacter (Campylobacter) pylori	175	Leptospira species
20	Eubacterium limosum		Issatchenkia orientalis		Leptotrichia buccalis
	Eubacterium species		Kingella denitrificans		Leuconostoc (Weissella)
	Ewingella americana	100	Kingella indologenes		paramesenteroides
	Filobasidiella neoformans		Kingella kingae		Leuconostoc camosum
	Filobasidium floriforme		Kingella species	180	Leuconostoc citreum
25	Filobasidium uniguttulatum		Klebsiella omithinolytica		Leuconostoc gelidum
	Flavimonas oryzihabitans		Klebsiella oxytoca		Leuconostoc lactis
	Flavobacterium gleum	105	Klebsiella planticola		Leuconostoc mesenteroides
	Flavobacterium indologenes		Klebsiella pneumoniae subsp.		Leuconostoc mesenteroides subsp.
	Flavobacterium odoratum		ozaenae	185	cremoris
30	Flavobacterium species		Klebsiella pneumoniae subsp.		Leuconostoc mesenteroides subsp.
	Francisella novicida		pneumoniae		dextranicum
	Francisella philomiragia	110	Klebsiella pneumoniae subsp.		Leuconostoc mesenteroides subsp.
	Francisella species		rhinoscleromatis	100	mesenteroides
~~	Francisella tularensis		Klebsiella species	190	Leuconostoc species
35	Fusobacterium moniferum		Kiebsiella terrigena		Listeria grayi
	Fusobacterium necrogenes	115	Kloeckera apiculata		Listeria innocua
	Fusobacterium necrophorum	115	Kloeckera apis		Listeria ivanovii
	Fusobacterium nucleatum		Kloeckera japonica	195	Listeria monocytogenes
40	Fusobacterium species		Kloeckera species	193	
40	Fusobacterium varium		Kluyvera ascorbata		Listeria species
	Gaffkya species Gardnerella vaginalis	120	Kluyvera cryocrescens Kluyvera species		Listeria species Listeria welshimeri
	Gemella haemolysans	120	Kluyveromyces lactis		Megasphaera elsdenii
	Gemella morbillorum		Kluyveromyces marxianus	200	Methylobacterium mesophilicum
45	Gemella species		Kluyveromyces thermotolerans	200	Metschnikowia pulcherrima
	Geotrichum candidum		Kocuria (Micrococcus) kristinae		Microbacterium species
	Geotrichum fermentans	125	Kocuria (Micrococcus) rosea		Micrococcus luteus
	Geotrichum penicillarum		Kocuria(Micrococcus) varians		Micrococcus Iylae
	Geotrichum penicillatum		Koserella trabulsii	205	Micrococcus species
50	Geotrichum species		Kytococcus (Micrococcus) sedentarius		Mobiluncus curtisii
	Gordona species		Lactobacillus (Weissella) viridescens		Mobiluncus mulieris
	Haemophilus aegyptius	130	Lactobacillus A		Mobiluncus species
	Haemophilus aphrophilus		Lactobacillus acidophilus		Moellerella wisconsensis
	Haemophilus ducreyi		Lactobacillus B	210	Moraxelia (Branhamelia) catarrhalis
55	Haemophilus haemoglobinophilus		Lactobacillus brevis		Moraxella atlantae
	Haemophilus haemolyticus		Lactobacillus buchneri		Moraxella bovis
	Haemophilus influenzae	135	Lactobacillus casei		Moraxella lacunata
	Haemophilus influenzae biotype I		Lactobacillus casei subsp. casei	~	Moraxella nonliquefaciens
	Haemophilus influenzae biotype II		Lactobacillus casei subsp. lactosus	215	Moraxelia osloensis
60	Haemophilus influenzae biotype III		Lactobacillus casei subsp. rhamnosus		Moraxella phenylpyruvica
	Haemophilus influenzae biotype IV	1.40	Lactobacillus catenaformis		Moraxella species
	Haemophilus influenzae biotype V	140	Lactobacillus cellobiosus		Morganella morganii
	Haemophilus influenzae biotype VI		Lactobacillus collinoides	220	Morganella morganii subsp. morganii
45	Haemophilus influenzae biotype VII		Lactobacillus coprophilus	220	Morganella morganii subsp. sibonii
65	Haemophilus influenzae biotype VIII		Lactobacillus crispatus		Mycobacterium africanum
	Haemophilus paragallinarum	145	Lactobacillus curvatus		Mycobacterium asiaticum
	Haemophilus parahaemolyticus	143	Lactobacillus delbrueckii subsp.		Mycobacterium avium
	Haemophilus parainfluenzae Haemophilus parainfluenzae biotype l		bulgaricus Lactobacillus delbareckii subsp	225	Mycobacterium bovis
70			Lactobacillus delbrueckii subsp.	223	Mycobacterium chelonae
70	Haemophilus parainfluenzae biotype II		delbrueckii Lactobacillus delbrueckii subsp. lactis		Mycobacterium fortuitum Mycobacterium gordonae
	Haemophilus parainfluenzae biotype	150	Lactobacillus fermentum		Mycobacterium kansasii
	Haomonhilus parainfluenzae hiotune	150	Lactobacillus fructivorans		Mycobacterium malmoense
	Haemophilus parainfluenzae biotype		Lactobacillus helveticus	230	Mycobacterium marinum
75	Haemophilus parainfluenzae biotype V		Lactobacillus helveticus subsp. jugurti	200	Mycobacterium phlei
	Haemophilus parainfluenzae biotype		Lactobacillus jensenii		Mycobacterium scrofulaceum
	VI	155	Lactobacillus lindneri		Mycobacterium smegmatis
	Haemophilus parainfluenzae biotype		Lactobacillus minutus		Mycobacterium species
					•

Table 15. Microorganisms ntified by commercial systems (continued)¹.

	Mycobacterium tuberculosis		Pichia fermentans	•	Saccharomyces exiguus
	Mycobacterium ulcerans	80	Pichia membranaefaciens		Saccharomyces kluyverii
	Mycobacterium xenopi		Pichia norvegensis		Saccharomyces species
	Mycoplasma fermentans		Pichia ohmeri	160	Sakaguchia dacryoides
5	Mycoplasma hominis		Pichia spartinae		(Rhodosporidium dacryoidum)
	Mycoplasma orale		Pichia species		Salmonella arizonae
	Mycoplasma pneumoniae	85			Salmonella choleraesuis
	Mycoplasma species		Porphyromonas asaccharolytica		Salmonella enteritidis
	Myroides species		Porphyromonas endodontalis	165	Salmonella gallinarum
10	Neisseria cinerea		Porphyromonas gingivalis		Salmonella paratyphi A
	Neisseria elongata subsp. elongata		Porphyromonas levii		Salmonella paratyphi B
	Neisseria flava	90	Prevotella (Bacteroides) buccae		Salmonella pullorum
	Neisseria flavescens		Prevotella (Bacteroides) buccalis		Salmonella species
	Neisseria gonorrhoeae		Prevotella (Bacteroides) corporis	170	Salmonella typhi
15	Neisseria lactamica		Prevotella (Bacteroides) denticola		Salmonella typhimurium
	Neisseria meningitidis		Prevotella (Bacteroides) loescheii		Salmonella typhisuis
	Neisseria mucosa	95	Prevotella (Bacteroides) oralis		Salmonella/Arizona
	Neisseria perflava		Prevotella (Bacteroides) disiens		Serratia ficaria
	Neisseria polysaccharea		Prevotella (Bacteroides) oris	175	Serratia fonticola
20	Neisseria saprophytes		Prevotella bivia (Bacteroides bivius)		Serratia grimesii
	Neisseria sicca		Prevotella intermedia (Bacteroides	•	Serratia liquefaciens
	Neisseria subflava	100	intermedius)		Serratia marcescens
	Neisseria weaveri		Prevotella melaninogenica		Serratia odorifera
	Neisseria weaveri (CDC group M5)		(Bacteroides melaninogenicus)	180	Serratia odorifera type 1
25	Nocardia species		Prevotella ruminicola		Serratia odorifera type 2
	Ochrobactrum anthropi		Propionibacterium acnes		Serratia plymuthica
	Oerskovia species	105	Propionibacterium avidum		Serratia proteamaculans
	Oerskovia xanthineolytica		Propionibacterium granulosum		Serratia proteamaculans subsp.
	Oligella (Moraxella) urethralis		Propionibacterium propionicum	185	proteamaculans
30	Oligella species		Propionibacterium species		Serratia proteamaculans subsp.
	Oligella ureolytica		Proteus mirabilis		quinovora
	Paenibacillus alvei	110	Proteus penneri		Serratia rubidaea
	Paenibacillus macerans		Proteus species		Serratia species
	Paenibacillus polymyxa		Proteus vulgaris	1 9 0	Shewanella (Pseudomonas,
35	Pantoea aggiomerans		Prototheca species		Alteromonas) putrefaciens
	Pantoea ananas (Erwinia uredovora)		Prototheca wickerhamii		Shigella boydii
	Pantoea dispersa	115	Prototheca zopfii		Shigella dysenteriae
	Pantoea species		Providencia alcalifaciens		Shigella flexneri
	Pantoea stewartii		Providencia heimbachae	195	Shigella sonnei
40	Pasteurella (Haemophilus) avium		Providencia rettgeri		Shigella species
	Pasteurella aerogenes		Providencia rustigianii		Sphingobacterium multivorum
	Pasteurella gallinarum	120	Providencia species		Sphingobacterium species
	Pasteurella haemolytica		Providencia stuartii		Sphingobacterium spiritivorum
	Pasteurella haemolyticus		Providencia stuartii urea +	200	Sphingobacterium thalpophilum
45	Pasteurella multocida		Pseudomonas (Chryseomonas)		Sphingomonas (Pseudomonas)
	Pasteurella multocida SF		luteola		paucimobilis
	Pasteurella multocida subsp.	125	Pseudomonas acidovorans		Sporidiobolus salmonicolor
	multocida		Pseudomonas aeruginosa		Sporobolomyces roseus
	Pasteurella multocida subsp. septica		Pseudomonas alcaligenes	205	Sporobolomyces salmonicolor
50	Pasteurella pneumotropica		Pseudomonas cepacia		Sporobolomyces species
	Pasteurella species		Pseudomonas chlororaphis (P.		Staphylococcus (Peptococcus)
	Pasteurella ureae	130	aureofaciens)		saccharolyticus
	Pediococcus acidilactici		Pseudomonas fluorescens		Staphylococcus arlettae
	Pediococcus damnosus		Pseudomonas fluorescens group	210	Staphylococcus aureus
55	Pediococcus pentosaceus		Pseudomonas mendocina		Staphylococcus aureus (Coagulase-
	Pediococcus species		Pseudomonas pseudoalcaligenes		negative)
	Peptococcus niger	135	•		Staphylococcus auricularis
	Peptococcus species		Pseudomonas species		Staphylococcus capitis
	Peptostreptococcus anaerobius		Pseudomonas stutzeri	215	Staphylococcus capitis subsp. capitis
60	Peptostreptococcus asaccharolyticus		Pseudomonas testosteroni		Staphylococcus capitis subsp.
	Peptostreptococcus indolicus		Pseudomonas vesicularis		ureolyticus
	Peptostreptococcus magnus	140	•		Staphylococcus caprae
	Peptostreptococcus micros		alactolyticus	***	Staphylococcus carnosus
	Peptostreptococcus parvulus		Psychrobacter (Moraxella)	220	Staphylococcus caseolyticus
65	Peptostreptococcus prevotii		phenylpyruvicus		Staphylococcus chromogenes
	Peptostreptococcus productus		Rahnella aquatilis		Staphylococcus cohnii
	Peptostreptococcus species	145	Ralstonia (Pseudomonas,		Staphylococcus cohnii subsp. cohnii
	Peptostreptococcus tetradius		Burkholderia) pickettii	00-	Staphylococcus cohnii subsp.
	Phaecoccomyces exophialiae		Rhodococcus (Corynebacterium) equi	225	urealyticum
70	Photobacterium damselae		Rhodococcus species		Staphylococcus epidermidis
	Pichia (Hansenula) anomala		Rhodosporidium toruloides		Staphylococcus equorum
	Pichia (Hansenula) jadinii	150	Rhodotorula glutinis		Staphylococcus gallinarum
	Pichia (Hansenula) petersonii		Rhodotorula minuta		Staphylococcus haemolyticus
	Pichia angusta (Hansenula		Rhodotorula mucilaginosa (R. rubra)	230	Staphylococcus hominis
75	polymorpha)		Rhodotorula species		Staphylococcus hominis subsp.
	Pichia carsonii (P. vini)	1.5.5	Rickettsia species		hominis
	Pichia etchellsii	155	Rothia dentocariosa		Staphylococcus hominis subsp.
	Pichia farinosa		Saccharomyces cerevisiae		novobiosepticus

Table 15. Microorganisms identified by commercial systems (continued)¹.

		60	Streptococcus Gamma (non)-		Tetragenococcus (Pediococcus)
	Staphylococcus hyicus		hemolytic	120	halophilus
	Staphylococcus intermedius		Streptococcus gordonii		Torulaspora delbrueckii
	Staphylococcus kloosii		Streptococcus Group B		(Saccharomyces rosei)
5	Staphylococcus lentus		Streptococcus Group C		Torulopsis candida
	Staphylococcus lugdunensis	65	Streptococcus Group D		Torulopsis haemulonii
	Staphylococcus saprophyticus	05	Streptococcus Group E	125	Torulopsis inconspicua
	Staphylococcus schleiferi		Streptococcus Group F	125	Treponema species
	Staphylococcus sciuri		Streptococcus Group G		Trichosporon asahii
10	Staphylococcus simulans		Streptococcus Group L		Trichosporon asteroides
10	Staphylococcus species	70			Trichosporon beigelii
	Staphylococcus warneri	70	Streptococcus Group U	130	Trichosporon cutaneum
	Staphylococcus xylosus		Streptococcus intermedius	130	Trichosporon inkin
	Stenotrophomonas (Xanthomonas)		Streptococcus intermedius		Trichosporon mucoides
15	maltophilia		(Streptococcus milleri II)		Trichosporon ovoides
15		75			
	Stephanoascus ciferrii	13		135	Trichosporon pullulans
	Stomatococcus mucilaginosus		Streptococcus)	133	Trichosporon species
	Streptococcus acidominimus		Streptococcus milleri group		Turicella otitidis
20	Streptococcus agalactiae		Streptococcus mitis		Ureaplasma species
20	Streptococcus agalactiae (Group B)	90	Streptococcus mitis (viridans		Ureaplasma urealyticum
	Streptococcus agalactiae hemolytic	80	Streptococcus)	140	Veillonella parvula (V. alcalescens)
	Streptococcus agalactiae non-		Streptococcus mitis group	140	Veillonella species
	hemolytic		Streptococcus mutans		Vibrio alginolyticus
05	Streptococcus alactolyticus		Streptococcus mutans (viridans		Vibrio cholerae
25	Streptococcus anginosus	0.5	Streptococcus)		Vibrio damsela
	Streptococcus anginosus (Group D,	85		1 4 5	Vibrio fluvialis
	nonenterococci)		Streptococcus parasanguis	145	Vibrio furnissii
	Streptococcus beta-hemolytic group A		Streptococcus pneumoniae		Vibrio harveyi
	Streptococcus beta-hemolytic non-		Streptococcus porcinus		Vibrio hollisae
30	group A or B	00	Streptococcus pyogenes		Vibrio metschnikovii
	Streptococcus beta-hemolytic non-	90	Streptococcus pyogenes (Group A)	150	Vibrio mimicus
	group A		Streptococcus salivarius	150	Vibrio parahaemolyticus
	Streptococcus beta-hemolytic		Streptococcus salivarius (viridans		Vibrio species
	Streptococcus bovis (Group D,		Streptococcus)		Vibrio species SF
35	nonenterococci)	0.5	Streptococcus salivarius subsp.		Vibrio vulnificus
	Streptococcus bovis I	95	salivarius		Weeksella (Bergeylla) virosa
	Streptococcus bovis II		Streptococcus salivarius subsp.	155	Weeksella species
	Streptococcus canis		thermophilus		Weeksella virosa
	Streptococcus constellatus		Streptococcus sanguis		Williopsis (Hansenula) saturnus
40	Streptococcus constellatus		Streptococcus sanguis I (viridans		Xanthomonas campestris
	(Streptococcus milleri I)	100	Streptococcus)		Xanthomonas species
	Streptococcus constellatus (viridans		Streptococcus sanguis II	160	Yarrowia (Candida) lipolytica
	Streptococcus)		Streptococcus sanguis II (viridans		Yersinia aldovae
_	Streptococcus downei		Streptococcus)		Yersinia enterocolitica
45	Streptococcus dysgalactiae subsp.		Streptococcus sobrinus		Yersinia enterocolitica group
	dysgalactiae	105	Streptococcus species		Yersinia frederiksenii
	Streptococcus dysgalactiae subsp.		Streptococcus suis I	165	Yersinia intermedia
	equisimilis		Streptococcus suis II		Yersinia intermedius
	Streptococcus equi (Group C/Group G		Streptococcus uberis		Yersinia kristensenii
50	Streptococcus)		Streptococcus uberis (viridans		Yersinia pestis
	Streptococcus equi subsp. equi	110			Yersinia pseudotuberculosis
	Streptococcus equi subsp.		Streptococcus vestibularis	170	Yersinia pseudotuberculosis SF
	zooepidemicus		Streptococcus zooepidemicus		Yersinia ruckeri
	Streptococcus equinus		Streptococcus zooepidemicus (Group		Yersinia species
55	Streptococcus equinus (Group D,		C)		Yokenella regensburgei
	nonenterococci)	115	Streptomyces somaliensis		Yokenella regensburgei (Koserella
	Streptococcus equisimilis		Streptomyces species	175	trabulsii)
	Streptococcus equisimulis (Group		Suttonella (Kingella) indologenes		Zygoascus hellenicus
	C/Group G Streptococcus)		Tatumelia ptyseos		Zygosaccharomyces species

The list includes microorganisms that may be identified by API identification test systems and VITEK® automated identification system from bioMérieux Inc., or by the MicroScan® - WalkAway® automated systems from Dade Behring. Identification relies on classical identification methods using batteries of biochemical and other phenotypical tests.

Table 16. tuf gene sequences obtained in our laboratory (Example 42).

Species	Strain no.	Gene	GenBank Accession no.*
Abiotrophia adiacens	ATCC49175	tuf	AF124224
Enterococcus avium	ATCC14025	tufA	AF124220
		tufB	AF274715
Enterococcus casseliflavus	ATCC25788	tufA	AF274716
		tufB	AF274717
Enterococcus cecorum	ATCC43198	tuf	AF274718
Enterococcus columbae	ATCC51263	tuf	AF274719
Enterococcus dispar	ATCC51266	tufA	AF274720
·		tufB	AF274721
Enterococcus durans	ATCC19432	tufA	AF274722
		tufB	AF274723
Enterococcus faecalis	ATCC29212	tuf	AF124221
Enterococcus faecium	ATCC 19434	tufA	AF124222
		tufB	AF274724
Enterococcus gallinarum	ATCC49573	tufA	AF124223
· ·		tufB	AF274725
Enterococcus hirae	ATCC8043	tufA	AF274726
		tufB	AF274727
Enterococcus malodoratus	ATCC43197	tufA	AF274728
		tufB	AF274729
Enterococcus mundtii	ATCC43186	tufA	AF274730
		tufB	AF274731
Enterococcus pseudoavium	ATCC49372	tufA	AF274732
·		tufB	AF274733
Enterococcus raffinosus	ATCC49427	tufA	AF274734
		tufB	AF274735
Enterococcus saccharolyticus	ATCC43076	tuf	AF274736
Enterococcus solitarius	ATCC49428	tuf	AF274737
Enterococcus sulfureus	ATCC49903	tuf	AF274738
Lactococcus lactis	ATCC11154	tuf	AF274745
Listeria monocytogenes	ATCC15313	tuf	AF274746
Listeria seeligeri	ATCC35967	tuf	AF274747
Staphylococcus aureus	ATCC25923	tuf	AF274739
Staphylococcus epidermidis	ATCC14990	tuf	AF274740
Streptococcus mutans	ATCC25175	tuf	AF274741
Streptococcus pneumoniae	ATCC6303	tuf	AF274742
Streptococcus pyogenes	ATCC19615	tuf	AF274743
Streptococcus suis	ATCC43765	tuf	AF274744

^{*}Corresponding sequence ID NO. for the above ATCC strains are given in table 7.

Table 17. tuf gene sequences selected from databases for Example 42.

Species	Gene	Accession no.*
Agrobacterium tumefaciens	tufA	X99673
	tufB	X99674
Anacystis nidulans	tuf	X17442
Aquifex aeolicus	tufA	AE000657
•	tufB	AE000657
Bacillus stearothermophilus	tuf	AJ000260
Bacillus subtilis	tuf	AL009126
Bacteroides fragilis	tuf	P33165
Borrelia burgdorferi	tuf	AE000783
Brevibacterium linens	tuf ·	X76863
Bulkholderia cepacia	tuf	P33167
Campylobacter jejuni	tufB	Y17167
Chlamydia pneumoniae	tuf	AE001363
Chlamydia trachomatis	tuf	M74221
Corynebacterium glutamicum	tuf	X77034
	tuf	X77034 X77035
Cytophaga lytica Doingeogus radiodurans		∙AE000513
Deinococcus radiodurans Esphariabia pali	tuf tufA	
Escherichia coli		J01690
Family by a to obtain the family of the same	tufB	J01717
Fervidobacterium islandicum	tuf	Y15788
Haemophilus influenzae	tufA	L42023
	tufB	L42023
Helicobacter pylori	_tuf	AE000511
Homo sapiens (Human)	$\pmb{EF} extsf{-}1\pmb{lpha}$	X03558
Methanococcus jannaschii	EF-1α	U67486
Mycobacterium leprae	tuf	D13869
Mycobacterium tuberculosis	tuf	X63539
Mycoplasma genitalium	tuf	L43967
Mycoplasma pneumoniae	tuf	U00089
Neisseria gonorrhoeae	tufA	L36380
Nicotiana tabacum (Tobacco)	EF -1 α	U04632
Peptococcus niger	tuf	X76869
Planobispora rosea	. tuf1	U67308
Saccharomyces cerevisiae (Yeast)	EF-1α	X00779
Salmonella typhimurium	tufA	X55116
	tufB	X55117
Shewanella putrefaciens	tuf	P33169
Spirochaeta aurantia	tuf	X76874
Spirulina platensis	tufA	X15646
Streptomyces aureofaciens	tuf1	AF007125
Streptomyces cinnamoneus	tuf 1	X98831
Streptomyces coelicolor	tuf 1	X77039
Streptornyces coefficion	tuf3	X77040
Strontomyoos collinus		
Streptomyces collinus	tuf1	S79408
Streptomyces ramocissimus	tuf1	X67057
	tuf2	X67058
0	tuf3	X67059
Synechocystis sp.	tuf	AB001339
Taxeobacter ocellatus	tuf	X77036
Thermotoga maritima	tuf	AE000512
Thermus aquaticus	tuf	X66322
Thermus thermophilus	tuf	X06657
Thiobacillus cuprinus	tuf	U78300
Treponema pallidum	tuf	AE000520
Wolinella succinogenes	tuf	X76872

^{*} Sequence data were obtained from GenBank, EMBL, and SWISSPROT databases. Genes were designated as appeared in the references.

Table 18. Nucleotide and amino acid sequence identities of EF-Tu between different enterococci and other low G+C gram-positive bacteria.

The upper right triangle represents the deduced amino acid sequence identities of gram-positive bacterial EF-Tu, while the lower left triangle represents the DNA sequence identities of the corresponding *tuf* genes. The sequence identities between different enterococcal *tufA* genes are boxed while those between enterococcal *tufB* genes are shaded.

2. E. cassen/flamus tu/A 3. E. dispari tu/A 3. S. adspari tu/B 3. S. adsparitu/B 3. S	Bacterial tul gene	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 1	7 18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 3	5 36	37	38	39
3. E. cispari riul/A 4. E. cispari riul/A 5. E. fiscolum ful/A	1. E. avium tulA		96	98		96	96		97	95	98	99		95						85	86	86	86	86		86	87	86	92	91	90	90	90 :	92 8	4 85	84	82	83
## A. E. drams full A. B. C. padinanum Lu/A. 90 89 90 90 99 99 99 99 99 99 99 99 99 99 99	2. E. casseliflavus lufA	90		97	96	96	99	96	95	96	96	96	95	95	96	96 1	94 9	3 67	88	86	87	87	86	87	87	67	88	88	84	91	90	91	91 !	92 8	6 87	85	85	85
8. E. fieldown flufA 9. F. Burdoi mufA 9. F. Bur	3. E. dispar tufA	93	90		95	95	96	95	96		97	97	91	90	95			3 86	87				86	87	86	87	87	87	93	90	88	90	90 1	92 8	5 88	84	85	84
8. E. galifinarum tuffs 8. E. galifinarum tuffs 8. E. malochoralus t	4. E. durans tulA	90	89	90		98	96	99	93	99	95	96	90	91	94	95 9	9 24	2 87	87	86	86	86	85	86	87	87	88	87	94	90	90	90	90 !	91 B	5 86	84	84	84
7. E. Fivale bullA 8. E. maleoticipuls tulA 9.		89	90	89			96				95	96		91	88			2 87	88	66	86		87			87	88	87	94	92	91	91	81 1	93 B	5 86	64	84	84
8. E. mallocdoralus tul/A 96. E. Tunnditi ful/A 10.E. psaucharium tul/A 10.E. psaucharium tul/A 11.E. psaucharium tul/B 11.E.	6. E. gallinarum tulA	90	97	89	89	89		96			96	96	68	89	89	96 9	93 9	2 87	87	86	87				87		88	87	93	92	90	90	90 1	93 B	5 86	84	83	84
8. Emundaii IuliA 11. E. radinosus turiA 11. E. radinosus turiA 97 92 93 90 89 91 89 97 88 97 89 89 97 89 89 97 89 97 89 89 97 89 97 89 89 97 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 97 89 89 89 89 89 89 89 89 89 89 89 89 89	7. E. hirao tufA	90	90	89	99	96	89		93	99	95	96	91	91	89	95 9	94 9	2 86	87		88	86	85	86	86	87	87	87	94	90	90	90	90 1	91 B	5 86	84	84	84
10.E. psiudonavium tu/A 11.E. psiudonavium tu/B 11.E.	8. E. maiodoratus tulA	96	91	94	90	89	90	89		92	97	97	89	89	90	93 9	96 9	2 86	85	82	85	85	85	85	83	85	86	86	92	90	88	88	89 9	91 8	3 84	83	83	82
11.E. cocumbe tulA 11.E. cocumbe	9. E. mundtii tufA	89	89	88	96	93	89	96	88		94	95	88	90	88	94 9	9 1	2 87	87	86	86	86	85	86	87	87	88	87	94	90	89	90	89 1	91 8	5 86	84	84	84
12.E. cecoum turl A 90 90 95 96 97 96 96 97 96 98 97 96 98 97 96 98 97 96 98 97 96 98 97 96 98 97 96 98 97 96 98 97 96 98 97 98 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98	10.E. pseudoavium tutA	97	92	93	90	89	91	89	97	89		98	90	90	91	95 8	8 9	4 87	87	86	87	87	86	87	86	87	88	88	93	90	89	90	90 9	91 8	5 86	85	85	84
12.E. Decourum turk! 90 90 95 96 96 96 96 96 97 94 94 94 95 95 97 95 98 98 98 98 99 90 91 91 92 93 86 86 88 88 87 81 14.E. telancaba turk 91 91 90 89 96 97 98 98 99 95 97 95 98 99 94 94 92 92 88 88 87 87 87 88 88 87 87 88 98 94 99 91 89 80 91 91 89 80 91 89 80 91 91 89 80 91 89 80 91 91 89 80 91 80 80 91 80	11.E. raffinosus tutA	97	91	93	90	89	89	89	97	88	97		91	90	90	94 9	96 B	3 86	87	85	86	86	85	86	85	87	87	87	93	89	89	90	89 9	91 B	4 85	84	84	83
11.E.E. blaceaths fulf 91 90 89 96 87 94 94 94 94 95 96 90 89 81 89 89 92 91 89 92 91 89 92 91 89 89 92 91 89 89 92 91 89 89 92 91 89 92 91 89 89 92 91 89 89 92 91		90		95	96	96		96	92	95	95	95		98	95	93 9	9 60	3 88	88	67	87	87	86	86	89	87	89	89	93	90	90	91	91 1	93 B	6 86	64	85	84
14.E. Bancabs tufA 15.E. Bancabs	13.E. columbae tufA	90	90	95	96	97	96	96	93	95	95	95	97		95	94 9	2 8	2 88	88	86	87	88	88	87	87	67	89	89	94	92	91	91	92 1	33 B	6 86	85	86	85
18.E. surfureus fulfs	14.E. laocalis tufA	91	91	90	89	96		94	94	94	95	96	90	89		94 9	4 9	3 87	87	86	87	27	86	86	87	87	88	87	93	91	89	90	91 5	93 B	6 86	86	85	85
18.E. sulfureux LuIA 19. 89 69 91 88 89 91 82 83 83 84 84 83 84 84 84 83 84 84 84 84 84 84 84 84 84 84 84 84 84	15.E. saccharolyticus tufA	91	91	91	90	87	90	89	91	89	92	91	89	89	92	8	4 9	2 86	87	85	87	86	84	86	85	87	87	87	92	90	89	89	88 9	90 B	4 65	84	84	84
18.E. ansum turB 177 77 78 78 78 76 77 78 78 77 78 78 77 78 77 78 77 77 77		91	89	90	91	88	88	90	91	89	92	91	88	89	91	94	9	1 85	84	81	84	85	84	84	81	84	85	85	91	80	87	68	89 1	91 8	2 83	83	82	82
19.E. casserillevus tufB 71 72 72 72 70 72 72 70 71 72 72 72 70 71 72 72 72 70 70 72 72 68 72 79 93 93 95 95 96 96 95 93 95 96 94 87 86 88 88 48 55 90 90 89 82 21.E. chrans tufB 22.E. chrans tufB 22.E. chrans tufB 22.E. chrans tufB 23.E. chrans tufB 24.E. chrans tufB 25.E. chrans tufB 26.E. chrans tufB 27 77 87 87 87 87 87 87 87 87 87 87 87 87		83			83				84		84	84			84		33	88	87	86	87	87	86	87	88	88	88	89	92	91	89	90	90 !	91 B	5 85	85	85	84
19.E. cassentileavus tu/B 20.E. dispar tu/B 77 78 77 77 77 78 77 77 78 77 77 78 77 77	18.E. avum tuf8	77	77	78	78	76	77	78	78	77	78	77	78	78	78	77 7	76 7	7: '	93	83	94	94	94	92	98	93	99	.97	87	86	87	86	85 1	36 B	9 88	87	85	86
21.E. durans tuffB 77 78 78 78 78 77 77 78 78 78 77 78 78 7		71	72	72	72	70	72	72	70	71	72	72	72	70	72	72 (5B 7	2 79)	93	95	95	96	95	93	95	94	94	87	86	88	88	84	95 9	90	89	88	88
21.E. durans tufB 77 78 78 78 78 78 78 77 77 78 78 77 78 77 78 78	20.E. dispar tufB	76	78	77	77	77	77	77	76	77	76	77	77	77	77	78	75 7	8 82	79	4,1	91	91	92	91	94	92	93	93	86	83	85	85	82 1	34 8	9 89	87	87	86
22.E. palfinelum Iu/B		77	78	78	78	76	77	78	77	78	77	78	77	77	78	78 7	75 7	5 83	80	82	4.	98	95	97	94	97	95	94	87	86	88	88	84 1	35 9	91	89	88	89
22.1.E. fixing tuffs 22.1.E. fixing tuffs 22.1.E. fixing tuffs 23.1.E. fixing tuffs 23.1.E. fixing tuffs 24.1.E. fixing tuffs 25.1.E. malcoloratus tuffs 25.2.E. malcoloratus tuffs 25.	22.E. taecium tufB	76	75	76	76	75	77	76	76	76	75	76	77	77	77	76 7	74 7	4 80	78	79	86		· 96 ·	97	95	97	95	94	87	87	88	88	84 (96 9	90	89	87	87
24.E. firate ht/III		72	73	72	73	72	74	72	71	72	72	72	72	72	73	73 7	72 7	2 78	81	77	81	82		94	94	95	95	94	85	87	89	89	84 1	36 9	90	89	87	88
25.E. malodoralus tuffs 76 76 76 77 77 77 74 77 76 76 76 77 77 77 73 78 90 79 83 81 80 77 79 99 98 87 87 85 86 88 88 88 88 88 82 82 82 82 81 81 81 82 82 82 81 8		75	74	75	75	75	75	75	75	76	75	75	74	74	74	75 7	72 7	4 .80	79	79	84	83	79		93	97	93	94	87	85	86	88	83 1	35 8	9 90	88	88	87
221.E. pseudosenum tutB 222.E. pseudosenum tutB 223.E.			76					77	74				77	75	77					83	81	80	77	.79		93	98	97	87	86	87	87	85 1	36 B	8 8	87	85	86
27.E. pseudoenum luf8	26.F. mundhi tufB	74	74	74	75	73	74	74	74	74	74	74	74	74	75	74 3	71 7	3.80	80	78	85	85	80	84	60		94	94	87	86	88	88	84 1	36 9	90	89	88	89
28.E. raffinosus tufB				78		76	78	77	77	76	78	78	77	77	78					85			79	80	91	80		98	88	87	88	87	85 (37 9	98 0	88	86	87
81 60 79 79 80 80 79 79 80 81 81 81 80 78 78 73 69 73 73 71 70 71 72 71 74 74 78 91 92 90 90 82 82 83 83 81 81 81 81 81 81 79 79 76 71 75 75 73 74 75 73 77 76 79 82 99 88 91 84 85 85 83 82 82 82 82 82 82 82 82 82 83 81 81 81 81 79 79 76 71 76 75 75 73 74 75 73 75 76 79 82 99 88 91 84 85 85 83 82 83 83 84 84 82 81 82		78	79	79	7B	77	77	78	78	77	79	79	78	78	78	79 7	77 7	9 90	79	84	84	81	77.	80	90	81	92		87	85	87	88	84 1	36 9	98 0	88	88	87
30.B. subtails tut 81 80 79 79 80 80 79 79 80 81 80 81 80 81 81 81 80 78 78 73 89 73 73 71 70 71 72 71 74 74 78 89 19 90 90 82 82 83 83 31.L. monocytogenes tut 33.S. aureus tut 33.S. aureus tut 34. S. printumonals tut 35.S. mutans tut 76 77 76 76 76 77 77 77 77 77 78 76 76 77 76 76 77 78 78 76 77 78 78 78 78 79 82 99 88 90 84 84 84 84 83 83 85 83 84 84 82 84 83 83 84 84 82 81 79 75 69 75 75 73 69 72 74 72 74 74 83 79 81 81 98 81 98 81 82 8	29. A advacens tut	88	87	87	86	88	86	86	89	86	88	88	87	88	88	88 9	10 в	2 77	70	76	77	76	71	73	77	73	78	78		90	88	89	90 9	91 8	5 86	84	85	83
31.L. monocytogenes tul 32. 81 82 82 82 82 82 81 81 81 81 81 81 82 81 81 81 81 77 79 76 71 75 75 73 74 75 73 77 76 79 82 99 88 90 84 84 84 84 83 33.S. auteus tul 33.S. auteus tul 34.S. epidermidis tul 35.S. mutans tul 36.S. pneumonae tut 37.S. poyogenes tul 38. 87 77 76 77 77 77 77 77 77 77 77 77 77 77				79	79	80		79	79	79	80	81			81	80 7	78 7	B 73		73	73	71	70	71	72	71	74	74	78		91	92	90 9	90 B	2 82	83	82	84
32.L. soelogem ful 33.S. aureus tul 82 81 82 82 81 82																												76		82	•						84	84
33.5. aureus tul 84 84 83 83 83 84 84 82 84 83 84 84 82 84 83 88 84 84 82 81 79 75 69 75 75 73 69 72 74 72 74 78 83 79 81 81 96 81 82 82 80 34.5. mutans tul 35.5. mutans tul 36.5. progenes tul 76 77 76 77 77 77 77 77 77 76 76 76 77 76 75 76 75 77 77 77 77 77 77 77 77 77 77 77 77																								75							99		88 9)1 B	4 85	85	84	85
34.S. epidermidis tul 83 85 83 84 84 83 84 84 82 84 83 83 86 87 85 83 82 79 75 89 75 76 73 78 72 74 75 81 79 82 81 94 83 83 83 83 83 83 83 83 83 85. Sundans tul 87 77 76 76 76 77 77 77 77 77 75 78 76 76 76 76 76 76 76 77 75 74 75 78 77 74 75 78 78 77 77 77 77 77 77 77 77 77 78 77 75 77 75 77 75 77 75 77 75 77 75 77 77																																81						
35.S. mutans tul 76 77 76 76 77 77 77 77 75 76 76 76 77 76 76 76 77 76 76 76 77 77								-		-																												
36.S. pneumoniae tit 76 77 76 77 77 77 77 75 78 76 76 77 75 74 77 76 75 77 76 77 75 74 75 76 72 76 78 76 73 74 77 75 75 78 75 76 77 76 77 76 77 77 77 77 78 79 99 99 99 99 99 99 99 99 99 99 99 99															===																	-						
37.5 pyogenes tul 76 77 76 77 76 77 76 77 74 77 76 75 76 75 77 75 73 75 74 71 75 78 75 73 74 75 75 75 77 76 77 76 76 76 73 72 87 93 94 38.5. aus tul 74 78 76 76 74 75 76 76 74 78 76 77 77 77 77 77 77 77 77 78 88 93 91								-	75															-														
38.S. aus tul 74 78 76 76 74 75 76 74 78 76 77 77 75 78 76 73 75 74 71 75 78 74 71 75 78 74 71 75 78 74 70 74 75 73 77 77 77 77 77 72 73 88 93 91									74																												94	
																																					-	88
39.L. lactis tul 75 76 75 76 75 76 75 76 76 76 76 76 76 77 76 76 75 72 74 75 72 75 77 76 71 75 74 75 75 75 75 77 76 74 74 80 83 82 81																																					A 1	

Table 19. Strains analyzed in Example 43.

Taxon	Strain*	Strain†	16S rDNA sequence accession number
Cedecea	ATCC 33431 ^T		
Cedecea lapagei	ATCC 33432 ^T		
Cedecea neteri	ATCC 33855 ^T		
Citrobacter amalonaticus	ATCC 25405 ^T	CDC 9020-77 ^T	AF025370
Citrobacter braakii	ATCC 43162		
		CDC 080-58 ^T	AF025368
Citrobacter farmeri	ATCC 51112 ^T	CDC 2991-81 ^T	AF025371
Citrobacter freundii	ATCC 8090 ^T	DSM 30039 ^T	AJ233408
Citrobacter koseri	ATCC 27156 ^T		
Citrobacter sedlakii	ATCC 51115 ^T	CDC 4696-86 ^T	AF025364
Citrobacter werkmanii	ATCC 51114 ^T	CDC 0876-58 ^T	AF025373
Citrobacter youngae	ATCC 29935 ^T		
Edwardsiella hoshinae	ATCC 33379 ^T		
Edwardsiella tarda	ATCC 15947 ^T		
		CDC 4411-68	AF015259
Enterobacter aerogenes	ATCC 13048 ^T	JCM 1235 [™]	AB004750
Enterobacter agglomerans	ATCC 27989		
Enterobacter amnigenus	ATCC 33072 ^T	JCM 1237 [™]	AB004749
Enterobacter asburiae	ATCC 35953 ^T	JCM 6051 [™]	AB004744
Enterobacter cancerogenus	ATCC 35317 ^T		
Enterobacter cloacae	ATCC 13047 ^T		
Enterobacter gergoviae	ATCC 33028 ^T	JCM 1234 ^T	AB004748
Enterobacter hormaechei	ATCC 49162 ^T		
Enterobacter sakazakii	ATCC 29544 ^T	JCM 1233 [™]	AB004746
Escherichia coli	ATCC 11775 ^T	ATCC 11775 ^T	X80725
Escherichia coli	ATCC 25922	ATCC 25922	X80724
Escherichia coli (ETEC)	ATCC 35401		
Escherichia coli (O157:H7)	ATCC 43895	ATCC 43895	Z83205
Escherichia fergusonii	ATCC 35469 ^T		
Escherichia hermanii	ATCC 33650 ^T		
Escherichia vulneris	ATCC 33821 ^T	ATCC 33821 ^T	X80734
Ewingella americana	ATCC 33852 ^T		
		NCPPB 3905	X88848
Hafnia alvei	ATCC 13337 ^T	ATCC 13337 ^T	M59155
Klebsiella omithinolytica	ATCC 31898	= = = = .	
		CIP 103.364	U78182
Klebsiella oxytoca	ATCC 33496		•
		ATCC 13182 ^T	U78183
Klebsiella planticola	ATCC 33531 ^T	JCM 7251 [™]	AB004755
Klebsiella pneumoniae			
subsp. pneumoniae	ATCC 13883 ^T	DSM 30104 ^T	AJ233420
subsp. ozaenae	ATCC 11296 ^T	ATCC 11296 ^T	Y17654
subsp. rhinoscleromatis	ATCC 13884 ^T	· · · ·	

Table 19. Strains analyzed in Example 43 (continued).

Taxon	Strain*	Strain†	16S rDNA sequence accession number
Kluyvera ascorbata	ATCC 33433 ^T		
		ATCC 14236	Y07650
Kluyvera cryocrescens	ATCC 33435 ^T		
Kluyvera georgiana	ATCC 51603 ^T		
Leclercia adecarboxylata	ATCC 23216 ^T		
Leminorella grimontii	ATCC 33999 ^T	DSM 5078 ^T	AJ233421
Moellerella wisconsensis	ATCC 35017 ^T		
Morganella morganii	ATCC 25830 ^T		
Pantoea agglomerans	ATCC 27155 ^T	DSM 3493 ^T	AJ233423
Pantoea dispersa	ATCC 14589 ^T		
Plesiomonas shigelloïdes	ATCC 14029 ^T		
Pragia fontium	ATCC 49100 ^T	DSM 5563 ^T	AJ233424
Proteus mirabilis	ATCC 25933		
Proteus penneri	ATCC 33519 ^T		
Proteus vulgaris	ATCC 13315 ^T	DSM 30118 ^T	AJ233425
Providencia alcalifaciens	ATCC 9886 ^T		
Providencia rettgeri	ATCC 9250		
Providencia rustigianii	ATCC 33673 [™]		
Providencia stuartii	ATCC 33672		
Rahnella aquatilis	ATCC 33071 ^T	DSM 4594 ^T	AJ233426
Salmonella choleraesuis			
subsp. arizonae	ATCC 13314 ^T		
subsp. <i>choleraesuis</i>			
serotype Choleraesuis	ATCC 7001		
serotype Enteritidis‡	ATCC 13076 ^T		
		SE22	SE22
serotype Gallinarum	ATCC 9184		
serotype Heidelberg	ATCC 8326		
serotype Paratyphi A	ATCC 9150		
serotype Paratyphi B	ATCC 8759		
serotype Typhi‡	ATCC 10749		
••		St111	U88545
serotype Typhimurium‡	ATCC 14028		•
serotype Virchow	ATCC 51955		
subsp. diarizonae	ATCC 43973 ^T		
subsp. houtenae	ATCC 43974 ^T		
subsp. indica	ATCC 43976 ^T		
subsp. <i>salamae</i>	ATCC 43972 ^T		
Serratia fonticola	DSM 4576 ^T	DSM 4576 ^T	AJ233429
Serratia grimesii	ATCC 14460 ^T	DSM 30063 ^T	AJ233430
Serratia liquefaciens	ATCC 27592 ^T		
Serratia marcescens	ATCC 13880 ^T	DSM 30121 ^T	AJ233431
Serratia odorifera	ATCC 33077 ^T	DSM 4582 ^T	AJ233432
Serratia plymuthica	DSM 4540 ^T	DSM 4540 ^T	AJ233433
Serratia rubidaea	DSM 4480 ^T	DSM 4480 ^T	AJ233436
Shigella boydii	ATCC 9207	ATCC 9207	X96965
Shigella dysenteriae	ATCC 11835		
		ATCC 13313 ^T	X96966
		ATCC 25931	X96964

PCT/CA00/01150 WO 01/23604

Table 19. Strains analyzed in Example 43 (continued).

Taxon	Strain*	Strain†	16S rDNA sequence accession number
Shigella flexneri	ATCC 12022	ATCC 12022	X96963
Shigella sonnei	ATCC 29930 ^T		
Tatumella ptyseos	ATCC 33301 ^T	DSM 5000 ^T	AJ233437
Trabulsiella guamensis	ATCC 49490 ^T		
Yersinia enterocolitica	ATCC 9610 ^T	ATCC 9610 ^T	M59292
Yersinia frederiksenii	ATCC 33641 ^T		•
Yersinia intermedia	ATCC 29909 ^T		
Yersinia pestis	RRB KIMD27		
		ATCC 19428 ^T	X75274
Yersinia pseudotuberculosis	ATCC 29833 ^T		
Yersinia rohdei	ATCC 43380 ^T	ER-2935 ^T	X75276
Shewanella putrefaciens	ATCC 8071 ^T		
Vibrio cholerae	ATCC 25870		
		ATCC,14035 ^T	X74695

5

T Type strain *Strains used in this study for sequencing of partial *tuf* and *atpD* genes. SEQ ID NOs. for *tuf* and *atpD* sequences corresponding to the above reference strains are given in table 7.

[†]Strains used in other studies for sequencing of 16S rDNA gene. When both strain numbers are on the same row, both strains are considered to be the same although strain numbers may be different.

[‡]Phylogenetic serotypes considered species by the Bacteriological Code (1990 Revision).

Table 20. PCR primer pairs used in this study

Primer	Sequence	Nucleotide	Amplicon
SEQ ID NO.		positions*	length (bp)
tuf			
664	5'-AAYATGATIACIGGIGCIGCICARATGGA- 3'	271-299	884
697	5'-CCIACIGTICKICCRCCYTCRCG-3'	1132-1156	
atpD			
568	5'-RTIATIGGIGCIGTIRTIGAYGT-3'	25-47	884
567	5'-TCRTCIGCIGGIACRTAIAYIGCYTG-3'	883-908	
700	5'-TIRTIGAYGTCGARTTCCCTCARG-3'	38-61	871
567	5'-TCRTCIGCIGGIACRTAIAYIGCYTG-3'	883-908	

^{*}The nucleotide positions given are for *E. coli tuf* and *atpD* sequences (GenBank accession no. AE000410 and V00267, respectively). Numbering starts from the first base of the initiation codon.

Table 21. Selection of *M. catarrhalis*-specific primer pairs from SEQ ID NO: 29¹ (466 pb DNA fragment) other than those previously tested².

Primer	Sequence	Amplicon size (bp)	Moraxella catarrhalis ATCC 43628	Moraxella catarrhalis ATCC 53879 Moraxella nonliquetaciens	Moraxella lacunata	Moraxella osloensis	Moraxella atlantae	Moraxella phenyipyruvica	Kingella indologenes	Kingella kingea	Veisserla meningitidis	Neisseria gonorrhoeae	Escherichia coli	Staphylococcus aureus
SEQ ID NO:118	CGCTGACGCCTTGTTTGTACCA	,	67							-		-		
SEQ ID NO:119	TGTTTTGAGCTTTTTATTTTTGA	811	+	+		•	•	•		•		•	•	•
VBmcat1	TGCTTAAGATTCACTCTGCCATTTT	8												
VBmcat2	TAAGTCGCTGACGGCTTGTTT	56	+	+		•	•		•			•		
VBmcat3	CCTGCACCACAGTCATCAT	9,									-			·
VBmcat4	AATTCACCAACAATGTCAAAGC	041	+	+	<u>. </u>	<u>. </u>		•			•			•
VBmcat5	AATGATAACCAGTCAAGC					-							_	<u> </u>
VBmcat6	GGTGCATGGTGATTTGTAAAA	219	+	+	<u>. </u>	<u>. </u>	-		-	,	,		•	•
VBmcat7	GTGTGCGTTCACTTTTACAAAT		ļ			-	_							
VBmcat8	GGTGTTAAGCTGATGATGAGAG	160	+	+	<u>'</u>	•	•	•	•		,	•		
VBmcat9	TGACCATGCACACCTTATT	į												
VBmcat10	TCATTGGGATGAAAGTATCGTT	16/	+	+	<u>. </u>	•	•	•	•					
														1

¹ SEQ ID NO. from US patent 6,001,564.

² All PCR assays were performed with 1 ng of purified genomic DNA by using an annealing temperature of 55°C and 30 cycles of amplification. The genomic DNA from the various bacterial species above was always isolated from reference strains obtained from ATCC.

³ All positive results showed a strong amplification signal with genomic DNA from the target species M. catarrhalis.

Table 22. Selection of S. epidermidis-specific primer pairs from SEQ ID NO: 361 (705 pb DNA fragment) other than those previously tested.

Primer	Sequence (all 25 nucleotides)	Amplicon size (bp)	Staphylococcus epidermidis ATCC 14990	Staphylococcus epidermidis Staphylococcus epidermidis	Staphylococcus cohnli	Staphylococcus aureus	Staphylococcus auricularis	Staphylococcus hominis	Staphylococcus	Staphylococcus	Staphylococcus warneri	Bacillus subtilis	Enterococcus faecalis Enterococcus faecium	Enterococcus gallinarum	Listeria monocytogenes	Streptococcus agalactiae	Streptococcus pyogenes	Annealing temperature ² (°C)
SEQ ID NO:145	ATCAAAAAGTTGGCGAACCTTTTCA					$oxed{\Box}$	-		 	-		\vdash	+	<u> </u>		-	╄	
SEQ ID NO:146	CAAAAGAGCGTGGAGAAAAGTATCA	125	m+	+		•	-	•	•	•	•	÷	•	•	•	•		22
VBsep3	CATAGTCTGATTGCTCAAAGTCTTG	000	+	+		·	+	·	i.		Ŀ	i i	<u>'</u>	·	·	·	<u>'</u>	55
VBsep4	GCGAATAGTGAACTACATTCTGTTG	802	+	+	•	'	-	Ī	<u> </u>	<u>'</u>	Ŀ	 	<u> </u>	<u> </u>	·	•	<u>'</u>	99
VBsep5	CACGCTCTTTTGCAATTTCCATTGA	000	+	+	+	+	+	+	·	<u> </u>	Ŀ	i i	-	٠	·	H	1	55
VBsep6	GAAGCAAATATTCAAAATGCACCAG	208	+	+	+	+	+	+	•	<u> </u>	눌	Z Z	IN N	Z	Ę	Z L Z	N FN	92
VBsep7	AAAGTCTTTTGCTTCTTCAGATTCA		+	+	•	•	+		•	+	•	i i	•	·	·	 	<u> </u>	22
VBsep8	GTGTTCACAGGTATGGATGCTCTTA	177	+	<u>₩</u>	Σ	<u>г</u>	, F	눌	•	+	뉟	N	NT NT	Ž V	Ā	NT	TN TN	09
			+	<u>'Z</u> +	NT NT	Z	, TN	Ę	•	•	F	N N	NT NT	Z	F	z Ż	N TN	. 65
VBsep9	GAGCATCCATACCTGTGAACACAGA		+	+	•	•	+	·	+	+	٠	•	-1	٠	•	•	•	22
VBsep10	TTTTCCAATTACAAGAGACATCAGT	153	+	¥ ₩	T NT		+ TN	N	+	•	뉟	Z F	NT NT	Z	Ϋ́	N N	NT NT	09
-			+	+ NT	T NT		NT .	뒫	•	•	Ā	N T	NT NT	N N	Ν	N T	NT NT	. 65
VBsep11	TTTGAATTCGCATGTACTTTGTTTG	135		-	-				,	'							'	5.5
VBsep12	CCCCGGGTTCGAAATCGATAAAAAG	3	-															3
					ļ					ł	1	1	ŀ	ļ		l	ł	

¹ SEQ ID NO. from US patent 6,001,564.

NT = not tested.

² All PCR assays were performed with 1 ng of purified genomic DNA by using an annealing temperature of 55 to 65°C and 30 cycles of amplification. The genomic DNA from the various bacterial species above was always isolated from reference strains obtained from ATCC.

³ All positive results showed a strong amplification signal with genomic DNA from the target species S. epidemidis. The instensity of the positive amplification signal with species other than S. epidemidis was variable.

Influence of nucleotide variation(s) on the efficiency of the PCR amplification: Example with SEQ ID NO: 146 from S. epidermidis.

			Stap	hyloccus ATCC	Staphyloccus epidermidis² ATCC 14990	dis²	Staphylococ aureus³
- Lowing	Continued of the Contin	Number of	20°C		25°C		20°C
<u> </u>	Sequence (all 23 lincieodides)	mutation	-	-	0,1	0,01	-
SEQ ID NO:145	ATCAAAAGTTGGCGAACCTTTTCA	0					
SEQ ID NO:146	CAAAAGAGCGTGGAGAAAAGTATCA	0	3+4	ŧ	5+	+	
VBmut1	CAAAAGAGCGTGGAGAAAAGTACCA	-	3+	3+	2+	+	•
VBmut2	CAAAAGAGCGTGGAGAAAAATCA	1	3+	3+	2+	+	
VBmut3	CAAAAGAGCGTGGAGAAAGTATCA	Н	÷	3+	2+	+	•
VBmut4	CAAAAGAGCGTGGTGAAAAGTATCA	П	÷	3+	2+	+	•
VBmut5	CAAAAGAGCGCGGAGAAAAGTATCA	Н	3+	3+	2+	+	•
VBmut6	CAAAAGAACGTGGAGAAAAGTATCA	-	3+	3+	2+	+	
VBmut7	CAAAGGAGCGTGGAGAAAAGTATCA	Т	3+	#	5+	+	
VBmut8	CIJAAAGAGCGTGGAGAAAAGTATCA	1	÷6	÷	2+	+	•
VBmut9	CAAAAGAGCGTGGAGAAGTAQCA	2	3+	3+	2+	+	•
VBmut10	CAAAAGAGCGCGGAGAGAAGTATCA	2	3+	÷	2+	+	
VBmut11	CAAAGGAGCGCGGAGAAAAGTATCA	2	÷6	÷	2+	+	•
VBmut12	саладда в сет септел в премет п	3	3+	÷	2+	+	•
VBmut13	CAAAGGAGCGCGGAGAGAAGTACCA	4	÷	2+	+	•	•

All PCR tests were performed with SEQ ID NO:145 without modification combined with SEQ ID NO:146 or 13 modified versions of SEQ ID NO:146. Boxed nucleotides indicate changes in SEQ ID NO:146. All SEQ ID NOs. are from US patent 6,001,564. ² The tests with S. epidermidis were performed by using an annealing temperature of 55°C with 1, 0,1 and 0,01 ng of purified genomic DNA or at 50°C with 1 ng of purified genomic DNA.

³ The tests with S. aureus were performed only at 50°C with 1 ng of genomic DNA.

4 The intensity of the positive amplification signal was quantified as follows: 3+ = strong signal, 2+ = intermediate signal and + = weak signal.

Effect of the primer length on the efficiency of the PCR amplification¹: Example with the AT-rich SEQ ID NO: 145² and SEQ ID NO: 146² from S. epidermidis. Table 24.

				Staphylococcus epidermidis³ ATCC 14990	aphylococcu epidermidis³ ATCC 14990	40	•	phylococcus aureus	ουγίοτος της ηθερικής της συγίης της συγήμης συγήμης συγήμης συγήμης της συγήμης συγήμης συγήμης συγήμης συγήμη		pylococcus capitis		phylococcus warneri
. (Lenath	45°C	၁		55°C		leic	Stal		Stal		lere
713e	Sequence	m)	1 0,1	1 0,01	-	0,1 0,01	1 45	55	45	25	45 55	. 45	55
VBsep301	ATATCATCAAAAAGTTGGCGAACCTTTTCA	30	_	<u> </u>	 	ļ	 - 		!		-		
VBsep302	AATTGCAAAAGAGCGTGGAGAAAAGTATCA	30	Z Z	z	+	3 + 	Z	•	 \	<u>-</u> ,	· \=	Ż	•
SEQ ID NO:145	ATCAAAAGTTGGCGAACCTTTTCA	25			 	ļ							
SEQ ID NO:146	CAAAAGAGCGTGGAAAAAGTATCA	25	4+, + +	+ 2+	‡	3+ 2+ 	-	•		•	<u>.</u> +	<u>. </u>	•
VBsep201	AAAGTTGGCGAACCTTTTCA	8		<u> </u>									
VBsep202	GAGCGTGGAGAAAGTATCA	20		Ż –	+	3 + 2+	Z	•	Ę	<u>-</u>	<u>.</u> È	<u> </u>	,
VBsep171	GTTGGCGAACCTTTTCA	17	<u> </u>		├							_	
VBsep172	CGTGGAGAAAGTATCA	17	4 + 	+ 	,	2+ +	•	•	,	•		•	,
VBsep151	TGGCGAACCTTTTCA	15							I				
VBsep152	. TGGAGAAAGTATCA	15	3+ 2+	+			•		•		<u>.</u>	•	•

¹ All PCR tests were performed using an annealing temperature of 45 or 55°C and 30 cycles of amplification.

All SEQ ID NOs. in this Table are from US patent 6,001,546.

³ The tests with *S. epidermidis* were made with 1, 0,1 and 0,01 ng of purified genomic DNA.

⁵ The intensity of the positive amplification signal was quantified as follows: 4+ = very strong signal, 3+ = strong signal, 2+ = intermediate signal and + = weak signal. ⁴ The tests with all other bacterial species were made only with 1 ng of purified genomic DNA.

NT = not tested.

Effect of the primer length on the efficiency of the PCR amplification : Example with the GC-rich SEQ ID NO: 832 and SEQ ID NO: 842 from P. aeruginosa. Table 25.

70							
philus parahaemolyticus	тает		•		•		•
eibitigninəm sin	essieN		•		•		•
silidqotlsm sanomodqor	Stenot				•		
nella putida	Shewa		•		•		•
olderia cepacia	Burkh						•
omonas fluorescens*	pnəsd				1		•
onas Sa 554	0,01		•		•		•
Pseudomonas aeruginosa³ ATCC 35554	0,1		+		+		+
Ps. A. A.	-	رب در	, + 		<u></u>		*
	Length (nt)	19	19	16	16	13	13
	Sequence	CGAGCGGGTGGTTCATC	CAAGTCGTCGGAGGGA	CGAGCGGGTGGTTC	GTCGTCGGAGGGA	GCGGGTGTTC	GTCGTCGGAGGGA
	Primer	SEQ ID NO 83	SEQ ID NO 84	Pse554-16a	Pse674-16a	Pse554-13b	Pse674-13a

All PCR tests were performed using an annealing temperature of 55°C and 30 cycles of amplification.

² All SEQ ID NOs. in this Table are from US patent 6,001,546.

³ The tests with P. aeruginosa were made with 1, 0,1 and 0,01 ng of purified genomic DNA.

⁴ The tests with all other bacterial species were made only with 1 ng of purified genomic DNA.

 $^{^{5}}$ The intensity of the positive amplification signal was quantified as follows: 2+ = strong signal and + = moderately strong signal.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences).

									Originating	DNA fragment
SEQ ID NO.	Nucleoti	ide	sequ	ence	€				SEQ ID NO.	Nucleotide position
Bacterial	species:		Ac.	ine	toba	cte	r be	aumanni	i	
1692	5'-GGT (GAG	AAC	TGT	GGT	ATC	тта	CTT	1.	478-501
1693 ^a	5'-CAT 1	ГТС	AAC	GCC	TTC	TTT	CAA	CTG	1	691-714
Bacterial	species:		Ch.	l <i>am</i> y	ydia	pn	eumo	oniae		
630	5'-CGG <i>F</i>	AGC	TAT	CCT	AGT	CGT	TTC	A	20	2-23
629 ^a	5'-AAG 7	ГТС	CAT	CTC	AAC	AAG	GTC	AAT A	20	146-170
2085	5'-CAA A	ACT	AAA	GAA	CAT	ATC	TTG	CTA	20	45-68
2086 ^a	5'-ATA 1	ГAA	TTT	GCA	TCA	CCT	TCA	AG	20	237-259
2087	5'-TCA (ЭСТ	CGT	GGG	ATT	AGG	AGA	G	20	431-452
2088 ^a	5'-AGG (CTT	CAC	GCT	GTT	AGG	CTG	A	20	584-605
Bacterial	species:		Ch.	lamy	<i>r</i> dia	tr	ach	omatis		
554	5'-GTT (CCT	TAC	ATC	GTT	GTT	TTT	CTC	22	82-105
555ª	5'-TCT (CGA	ACT	TTC	TCT	ATG	TAT	GCA	22	249-272
<u>Parasitica</u>	l species:		Cr	ypto	spc	rid	ium	parvum	1	
798	5'-TGG 7	ГТG	TCC	CAG	CCG	ATC	GTT	т	865	158-179
804 ^a	5'-CCT (GGG	ACG	GCC	TCT	GGC	AΤ		865	664-683
799	5'-ACC 1	rgt	GAA	TAC	AAG	CAA	тст		865	280-300
805 ^a	5'-CTC 1	ГТG	TCC	ATC	TTA	GCA	GT		865	895-914
800	5'-GAT (GAA	ATC	TTC	AAC	GAA	GTT	GAT	865	307-330
806 ^a	5'-AGC A	ATC	ACC	AGA	CTT	GAT	AAG		865	946-966
801	5'-ACA A	ACA	CCG	AGA	AGA	TCC	CA		865	353-372
803a	5'-ACT 1	ГСА	GTG	GTA	ACA	CCA	GC		865	616-635
802	5'-TTG (CCA	TTT	CTG	GTT	TCG	$\mathbf{T}\mathbf{T}$		865	377-396
807 ^a	5'-AAA (GTG	GCT	TCA	AAG	GTT	GC		865	981-1000
Bacterial :	species:		En	tero	coc	cus	fac	ecium		
1696	5'-ATG 1	гтс	CTG	TAG	TTG	CTG	GA		64	189-208
1697 ^a	5'-TTT C	TT	CAG	CAA	TAC	CAA	CAA	С	64	422-443
Bacterial :	species:		K1	ebs:	iell	a p	new	noniae		
1329	5'-TGT A	AGA	GCG	CGG	TAT	CAT	CAA	AGT A	103	352-377
1330ª	5'-AGA 1									559-571

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

60

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

_				Originating D	NA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID	Nucleotide position
10	Bacterial	species:	Mycoplasma pneumoniae		
	2093 2094 ^b		CAA TCG AAG ACA CC TTC TTG ACC TAC TTT CAA	2097 ^a 2097 ^a	635-654 709-732
15	Bacterial	species:	Neisseria gonorrhoeae		
	551 552 ^b		AAA ATC TTC GAA CTG GCT A GCC GGT GAC TAC G	126 126	256-280 378-396
20	2173 2174 ^b		AAA TCT TCG AAC TGG CTA CGG CCG GTG	126 126	257-280 384-398
25	2175 2176 ^b		TAC CCC GTT T TAC CAT TTC CAC ACC TTT	126 126	654-669 736-759
	Bacterial	species:	Pseudomonas aeruginosa	1	
30	1694 1695 ^b		AGG ATG ACA ACG GC TCC ACT TCT TCC TGG	153 153	231-250 418-438
	<u>Bacterial</u>	species:	Streptococcus agalact:	iae	
35	549 550 ^b		GAT ACT GAC AAA CCT TTA GAA CAC CAA CGT TG	207-210 ^c 207-210 ^c	308-331 ^d 520-539 ^d
33	Bacterial	species:	Streptococcus pyogenes	3	
40	999 1000 ^b		TTG TTG ATG ACG AAG AG TGT GGG TTG ATT GAA CT	1002 1002	143-165 622-644
40	1001 1000 ^b		TGC TTG AAT TAG TTG AG TGT GGG TTG ATT GAA CT	1002 1002	161-183 622-644
45	<u>Parasitica</u>	l species:	Trypanosoma brucei		
4 3	820 821 ^b		GGT GTC TGC TTA CAC AAC GTC ACC ACA TCA	864 864	513-533 789-809
50	820 822 ^b		GGT GTC TGC TTA CAC ATG TCC TTA ACA GAA	864 864	513-533 909-929

a Sequence from databases.

55

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}mbox{\scriptsize C}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{\}mbox{\scriptsize d}}$ The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

			·································				Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence				SEQ ID NO.	Nucleotide position
10	Parasitical	species:	Trypan	osoma	cruz	:i		
	794	5'-GAC GAC	AAG TCG	GTG AAC	\mathbf{TT}		840-842ª	281-300 ^C
	795 ^b	5'-ACT TGC	ACG CGA	TGT GGC	AG		840-842 ^a	874-893 ^C
15	Bacterial ge	enus:	Clostr	idium	sp.			
	796	5'-GGT CCA	ATG CCW	CAA ACW	AGA		32,719- 724,736 ^a	32-52 ^d
20	797b	5'-CAT TAA	GAA TGG	YTT ATC	TGT	SKC TCT	32,719- 724,736 ^a	320-346 ^d
	808	5'-GCI TTA	IWR GCA	TTA GAA	RAY	CCA	32,719- 724,736 ^a	224-247 ^d
25	809p	5'-TCT TCC	TGT WGC .	AAC TGT	TCC	TCT	32,719- 724,736 ^a	337-360 ^d
25	810	5'-AGA GMW	ACA GAT	AAR SCA	TTC	TTA	32,719- 724,736 ^a	320-343 ^d
	811 ^b	5'-TRA ART	AGA ATT	GTG GTC	TRT	ATC C	32,719- 724,736 ^a	686-710 ^d
30	Bacterial ge	enus:	Coryne	bacter	ium	sp.		
	545	5'-TAC ATC	CTB GTY	GCI CTI	AAC	AAG TG	34-44,662 ^a	89-114 ^e
	546b	5'-CCR CGI	CCG GTR	ATG GTG	AAG	AT	34-44,662 ^a	350-372 ^e
35	Bacterial ge	enus:	Entero	coccus	sp.			
	656	5'-AAT TAA	TGG CTG	CAG TTG	AYG	A	58-72 ^a	273-294 ^f
40	657 ^b	5'-TTG TCC	ACG TTC	GAT RTC	TTC	A	58-72 ^a	556-577 [£]
40	656	5'-AAT TAA	TGG CTG	CAG TTG	AYG	A	58-72 ^a	273-294 ^f
	271 ^b	5'-TTG TCC	ACG TTG	GAT RTC	TTC	A	58-72 ^a	556-577 ^f
	1137	5'-AAT TAA	TGG CTG	CWG TTG	AYG	AA	58-72 ^a	273-295 ^f
45	1136 ^b	5'-ACT TGT	CCA CGT	TSG ATR	TCT		58-72ª	559-579 [£]

a These sequences were aligned to derive the corresponding primer.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}rm C}$ The nucleotide positions refer to the $\it T.~cruzi~tuf$ sequence fragment (SEQ ID NO. 842).

 $^{^{}m d}$ The nucleotide positions refer to the C. perfringens tuf sequence fragment (SEQ ID NO. 32).

 $^{^{\}rm e}$ The nucleotide positions refer to the C. diphtheriae tuf sequence fragment (SEQ ID NO. 662).

f The nucleotide positions refer to the *E. durans tuf* sequence fragment (SEQ ID NO. 61).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

_					Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	e sequence		SEQ ID NO.	Nucleotide position
10	Bacterial o	enus:	Legione	lla sp.		
	2081 2082 ^C			G GTG AGG AAG T TCG TAC C	111-112 ^a 111-112 ^a	
15	Bacterial g	enus:	Staphylo	coccus sp.		
	553 575 ^C			T GGT CAA ATC A C CTT CTG GTA A		
20	553 707 ^C			T GGT CAA ATC A C CTT CTG GTA A		
	Bacterial g	enus:	Strepto	coccus sp.		
25	547 548 ^C		G TTG CTT CA	G GAC GTA TC C ACG TTG	206-231 ^a 206-231 ^a	
	Fungal genu	<u>s</u> :	Candida	sp.		
30	576	5'-AAC TTO	RTC AAG AA	G GTY GGT TAC A	A 407-426, 428-432 ^a	332-357 ^f
	632 ^c	5'-CCC TTT	GGT GGR TC	S TKC TTG GA	407-426, 428-432 ^a	791-813 ^f
35	631	5'-CAG ACC	C AAC YGA IA	A RCC ATT RAG A	T 407-426, 428-432 ^a	523-548 ^f
	632 ^c	5'-CCC TTT	GGT GGR TC	S TKC TTG GA	407-426, 428-432 ^a	791-813 [£]
40	633	5'-CAG ACC	AAC YGA IA	A RCC ITT RAG A	T 407-426, 428-432ª	523-548 [£]
	632 ^c	5'-CCC TTT	GGT GGR TC	S TKC TTG GA	428-432 ^a	791-813 [£]

^a These sequences were aligned to derive the corresponding primer.

45

b The nucleotide positions refer to the *L. pneumophila tuf* sequence fragment (SEQ ID NO. 112).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

 $^{^{\}rm e}$ The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

 $^{^{\}rm f}$ The nucleotide positions refer to the C. albicans $tuf({\it EF-1})$ sequence fragment (SEQ ID NO. 408).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

_							Originating D	NA fragment
5	SEQ ID NO.	Nucleotide	e sequen	ce			SEQ ID NO.	Nucleotide position
10	Fungal genus	i:	Cryp	toco	ccus	sp.		
	1971	5'-CYG ACT	GYG CC	A TCC	TYA	TCA	434,623,1281, 1985,1986 ^a	150-170 ^b
15	1973 ^C	5'-RAC ACC	RGI YT	T GGW	ITC	CTT	434,623,1281, 1985,1986 ^a	464-484 ^b
	1972	5'-MGI CAG	CTC AT	Y ITT	GCW	KSC	434,623,1281, 1985,1986 ^a	260-280 ^b
20	1973 ^C	5'-RAC ACC	RGI YT	T GGW	ITC	CTT	434,623,1281, 1985,1986 ^a	464-484 ^b
	<u>Parasitical</u>	genus:	Entai	noeba	sp	•		
25	703 704 ^C	5'-TAT GGA 5'-AGT GCT					512 512	38-57 442-461
	703 705 [©]	5'-TAT GGA 5'-GTA CAG	_				512 512	38-57 534-553
30	703 706 ^C	5'-TAT GGA 5'-TGA AAT					512 512	38-57 768-787
35	793 704 ^C	5'-TTA TTO 5'-AGT GCT					512 512	149-168 442-461
33	<u>Parasitical</u>	genus:	Giard	ia s	p.			
40	816 819 ^c	5'-GCT ACG 5'-TCG AGG					513 513	305-324 895-914
40	817 818 ^C	5'-TGG AAG 5'-AGC CGG					513 513	355-374 825-844
45	<u>Parasitical</u>	genus:	Leis	hmani	a s	p.		
43	701 702 ^c	5'-GTG TTC					514-526 ^a 514-526 ^a	94-114 ^d 913-932 ^d

 $^{^{\}mathrm{a}}$ These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the *C. neoformans tuf* (EF-1) sequence fragment (SEQ ID NO. 623).

 $^{^{}m C}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

⁵⁵ d The nucleotide positions refer to the L. tropica tuf(EF-1) sequence fragment (SEQ ID NO. 526).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

_					Originating D	NA fragment
5	SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
10	Parasitica	l genus:	Trypanoso	oma sp.		
	823	5'-GAG CGG	TAT GAY GAG	ATT GT	529,840- 842,864 ^a	493-512 ^b
15	824 ^C	5'-GGC TTC	TGC GGC ACC	ATG CG	529,840- 842,864 ^a	1171-1190 ^b
	Bacterial	family:	Enterobac	cteriaceae		
20	933	5'-CAT CAT	CGT ITT CMT	GAA CAA RTG	78,103,146, 168,238,698 ^a	390-413 ^đ
	934 ^C	5'-TCA CGY	TTR RTA CCA	CGC AGI AGA	78,103,146, 168,238,698 ^a	831-854 ^d
	Bacterial :	family:	Mycobacte	eriaceae		
25	539 540 ^C		ATC CTB GTY TCY TCR TCG	GCI CTI AAC AAG	122 122	85-111 181-203
	Bacterial o			nia coli and Sl		
30	1661 1665 ^c		GCG AAA ATC AGG TAG ACT	· ·	1668 ^e 1668 ^e	283-300 484-502
	Bacterial o	group:	Pseudomon	ads group		
35	541 542 ^C		ATG TTC CGC TAG AAC TGS		153-155 ^a 153-155 ^a	476-498 [£] 679-702 [£]
40	541 544 [©]		ATG TTC CGC TCG CCM GGC		153-155 ^a 153-155 ^a	476-498 ^f 749-771 ^f

^a These sequences were aligned to derive the corresponding primer.

⁴⁵ b The nucleotide positions refer to the *T. brucei tuf* (EF-1) sequence fragment (SEQ ID NO. 864).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 698).

e Sequence from databases.

 $^{^{\}rm f}$ The nucleotide positions refer to the P. aeruginosa tuf sequence fragment (SEQ ID NO. 153).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

				Originating DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
10	Parasitical	group:	Trypanosomatidae famil	У
	923	5'-GAC GCI	GCC ATC CTG ATG ATC	511,514-526, 166-188 ^b 529,840-842,
15	924 ^C	5'-ACC TCA	GTC GTC ACG TTG GCG	864 ^a 511,514-526, 648-668 ^b 529,840-842, 864 ^a
20	925	5'-AAG CAG	ATG GTT GTG TGC TG	511,514-526, 274-293 ^b 529,840-842, 864 ^a
	926 ^c	5'-CAG CTG	CTC GTG GTG CAT CTC GAT	511,514-526, 676-699 ^b 529,840-842,
25	927	5'-ACG CGG	AGA AGG TGC GCT T	864 ^a 511,514-526, 389-407 ^b 529,840-842,
30	928 ^C	5'-GGT CGT	TCT TCG AGT CAC CGC A	864 ^a 511,514-526, 778-799 ^b 529,840-842, 864 ^a
			Universal primers (bac	teria)
35	636	5'-ACT GGY	GTT GAI ATG TTC CGY AA	7,54,78, 470-492 ^d 100,103,159, 209,224,227 ^b
40	637 ^C	5'-ACG TCA	GTI GTA CGG AAR TAG AA	7,54,78, 692-714 ^d 100,103,159, 209,224,227 ^b
	638	5'-CCA ATG	CCA CAA ACI CGT GAR CAC AT	7,54,78, 35-60 ^e 100,103,159, 209,224,227 ^b
45	639 ^C	5'-TTT ACG	GAA CAT TTC WAC ACC WGT IAC	_

⁵⁰ a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the $L.\ tropica\ tuf\ (EF-1)$ sequence fragment (SEQ ID NO. 526).

 $^{^{}m C}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

⁵⁵ d The nucleotide positions refer to the $E.\ coli\ tuf$ sequence fragment (SEQ ID NO. 78).

 $^{^{\}mathrm{e}}$ The nucleotide positions refer to the B. cereus tuf sequence fragment (SEQ ID NO. 7).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
	Universal primers (bacteria) (continued)
643	5'-ACT GGI GTI GAR ATG TTC CGY AA	1,3,4,7,12, 470-492b 13,16,49,54, 72,78,85,88, 91,94,98,103, 108,112,115, 116,120,121, 126,128,134, 136,146,154, 159,179,186, 205,209,212, 224,238a
644 ^C	5'-ACG TCI GTI GTI CKG AAR TAG AA	same as SEQ $692-714^{\mathrm{b}}$ ID NO. 643
643	5'-ACT GGI GTI GAR ATG TTC CGY AA	1,3,4,7,12, 470-492b 13,16,49,54, 72,78,85,88, 91,94,98,103, 108,112,115, 116,120,121, 126,128,134, 136,146,154, 159,179,186,
		205,209,212, 224,238 ^a
645 ^C	5'-ACG TCI GTI GTI CKG AAR TAR AA	same as SEQ 692-714 ^b ID NO. 643
646	5'-ATC GAC AAG CCI TTC YTI ATG SC	2,13,82 317-339 ^d 122,145 ^a
647 ^C	5'-ACG TCC GTS GTR CGG AAG TAG AAC TO	; 2,13,82 686-711 ^d 122,145 ^a
646	5'-ATC GAC AAG CCI TTC YTI ATG SC	2,13,82 317-339d 122,145 ^a
648 ^C	5'-ACG TCS GTS GTR CGG AAG TAG AAC TG	э.

^a These sequences were aligned to derive the corresponding primer.

50

 $^{^{\}rm b}$ The nucleotide positions refer to the $^{\rm E.}$ coli tuf sequence fragment (SEQ ID NO. 78).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the A. meyeri tuf sequence fragment (SEQ ID NO. 2)

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
	Universal primers (bacteria) (co	ntinued)
649	5'-GTC CTA TGC CTC ARA CWC GIG AGC AC	8,86,141,143 ^a 33-58 ^b
650 ^C	5'-TTA CGG AAC ATY TCA ACA CCI GT	8,86,141,143 ^a 473-495 ^b
636	5'-ACT GGY GTT GAI ATG TTC CGY AA	8,86,141,143 ^a 473-495 ^b
651 ^C	5'-TGA CGA CCA CCI TCY TCY TTY TTC A	8,86,141,143 ^a 639-663 ^b
	Universal primers (fungi)	
1974	5'-ACA AGG GIT GGR MSA AGG AGA C	404,405,433, 443-464 ^d 445,898,1268,
1975 ^C	5'-TGR CCR GGG TGG TTR AGG ACG	1276,1986 ^a 404,405,433, 846-866 ^d 445,898,1268, 1276,1986 ^a
1976		407-412, 286-306 ^e 414-426,428- 431,439,443,447, 448,622,624,665,
	· ·	1685,1987-1990 ^a
1978 ^C	5'-CAT CIT GYA ATG GYA ATC TYA AT	same as SEQ 553-575 ^e ID NO. 1976
1977	5'-GAT GGA YTC YGT YAA RTG GGA	same as SEQ 286-306 ^e ID NO. 1976
1979 ^C	5'-CAT CYT GYA ATG GYA ASC TYA AT	same as SEQ 553-575 ^e ID NO. 1976
1981	:	401-405, 281-301 ^d 433,435,436, 438,444,445,449, 453,455,457,779, 781-783,785,786,
	120	788-790,897-903, 67-1272,1274-1280,
1980 ^C	128 5'-TCR ATG GCI TCI AIR AGR GTY T	32-1287,1991-1998 ^a same as SEQ 488-509 ^d ID NO. 1981

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the B. distasonis tuf sequence fragment (SEQ ID NO. 8).

⁵⁵ C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}rm d}$ The nucleotide positions refer to the A. fumigatus tuf (EF-1) sequence fragment (SEQ ID NO. 404).

 $^{^{}m e}$ The nucleotide positions refer to the *C. albicans tuf* (EF-1) sequence fragment (SEQ ID NO. 407).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

			Originat	ing DNA fragment
SEQ ID NO.	Nucleotide sequence		SEQ I	D Nucleotide position
	Universal primers	(fungi)	(continued)	
1982	5'-TGG ACA CYI SCA AGI	GGK CYG	same as ID NO.	
1980 ^b	5'-TCR ATG GCI TCI AIR	AGR GTY	T same as ID NO.	
1983	5'-CYG AYT GCG CYA TIC	TCA TCA	same as ID NO.	_
1980 ^b	5'-TCR ATG GCI TCI AIF	AGR GTY		SEQ 488-509 ^a
1984	5'-CYG AYT GYG CYA TYC	TSA TCA	same as ID NO.	
1980 ^b	5'-TCR ATG GCI TCI AIR	AGR GTY	T same as ID NO.	
	Sequencing primers			
556	5'-CGG CGC NAT CYT SGI	TGT TGC	668 ^C	306-326
557 ^b	5'-CCM AGG CAT RAC CAT	CTC GGT	G 668 ^C	1047-1068
694	5'-CGG CGC IAT CYT SGT	TGT TGC	668 ^C	306-326
557b	5'-CCM AGG CAT RAC CAT	CTC GGT	G 668 ^C	1047-1068
664	5'-AAY ATG ATI ACI GGI	GCI GCI	CAR ATG GA 619 ^C	604-632
652 ^b	5'-CCW AYA GTI YKI CCI		· · · · · · · · · · · · · · · · · · ·	
664	5'-AAY ATG ATI ACI GGI	GCI GCI	CAR ATG GA 619 ^C	604-632
561 ^b	5'-ACI GTI CGG CCR CCC	TCA CGG	AT 619 ^C	1483-1505
543	5'-ATC TTA GTA GTT TCT	GCT GCT	GA 607	8-30
660 ^b	5'-GTA GAA TTG AGG ACG	GTA GTT	AG 607	678-700
658	5'-GAT YTA GTC GAT GAT	GAA GAA	TT 621	116-138
659 ^b	5'-GCT TTT TGI GTT TCW	GGT TTR	AT 621	443-465
658	5'-GAT YTA GTC GAT GAT	GAA GAA	TT 621	116-138
661 ^b	5'-GTA GAA YTG TGG WCG	ATA RTT	RT 621	678-700
558	5'-TCI TTY AAR TAY GCI	TGG GT	665 ^C	157-176
559b	5'-CCG ACR GCR AYI GTY	TGI CKC	AT 665 ^C	
813	5'-AAT CYG TYG AAA TGC	AYC ACG	A 665 ^C	687-708
559b	5'-CCG ACR GCR AYI GTY			

 $^{^{\}rm a}$ The nucleotide positions refer to the A. fumigatus tuf (EF-1) sequence fragment (SEQ ID NO. 404).

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

^C Sequences from databases.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

		Originating DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
	Sequencing primers (continued)	
558	5'-TCI TTY AAR TAY GCI TGG GT	665 ^a 157-176
815 ^b	5'-TGG TGC ATY TCK ACR GAC TT	665 ^a 686-705
560	5'-GAY TTC ATY AAR AAY ATG ATY AC	665 ^a 289-311
559 ^b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a 1279-1301
653	5'-GAY TTC ATI AAR AAY ATG AT	665 ^a 289-308
559b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a 1279-1301
558	5'-TCI TTY AAR TAY GCI TGG GT	665 ^a 157-176
655 ^b	5'-CCR ATA CCI CMR ATY TTG TA	665 ^a 754-773
654	5'-TAC AAR ATY KGI GGT ATY GG	665 ^a 754-773
559 ^b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a 1279-1301
696	5'-ATI GGI CAY RTI GAY CAY GGI AAR AC	698 ^a 52-77
697 ^b	5'-CCI ACI GTI CKI CCR CCY TCR CG	698 ^a 1132-1154
911	5'-GAC GGM KKC ATG CCG CAR AC	853 22-41
914 ^b	5'-GAA RAG CTG CGG RCG RTA GTG	853 700-720
912	5'-GAC GGC GKC ATG CCG CAR AC	846 20-39
914 ^b	5'-GAA RAG CTG CGG RCG RTA GTG	846 692-712
913	5'-GAC GGY SYC ATG CCK CAG AC	843 251-270
915b	5'-AAA CGC CTG AGG RCG GTA GTT	843 905-925
916	5'-GCC GAG CTG GCC GGC TTC AG	846 422-441
561 ^b	5'-ACI GTI CGG CCR CCC TCA CGG AT	619 ^a 1483-1505
664	5'-AAY ATG ATI ACI GGI GCI GCI CAR ATG	G GA 619 ^a 604-632
917 ^b	5'-TCG TGC TAC CCG TYG CCG CCA T	846 593-614

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

-									-		Originating I	NA fragment
:	SEQ ID NO.	Nucleo	tide	seq	uenc	9					SEQ ID NO.	Nucleotide position
_		Seque	ncir	ng þ	rim	ers	(co	nti	nueċ	i)		
	1221	5′-GAY	ACI	CCI	GGI	CAY	GTI	GAY	TT		1230 ^a	292-314
	1226 ^b	5'-GTI	RMR	TAI	CCR	AAC	ATY	тC			1230 ^a	2014-2033
	1222	5'-ATY	GAY	ACI	CCI	GGI	CAY	GTI	GAY	TT	1230 ^a	289-314
	1223 ^b	5'-AYI	TCI	ARR	TGI	ARY	TCR	CCC	ATI	CC	1230 ^a	1408-1433
	1224	5'-CCI	GYI	нті	YTI	GAR	CCI	ATI	ATG		1230 ^a	1858-1881
	1225 ^b	5'-TAI	CCR	AAC	ATY	TCI	SMI	ARI	GGI	AC	1230 ^a	2002-2027
	1227	5'-GTI	CCI	YTI	KCI	GAR	ATG	TTY	GGI	TA	1230 ^a	2002-2027
	1229 ^b	5'-TCC	ATY	TGI	GCI	GCI	CCI	GTI	ATC	ΑT	698 ^a	4-29
	1228	5'-GTI	CCI	YTI	KCI	GAR	ATG	TTY	GGI	TAY	GC 1230 ^a	2002-2030
	1229 ^b	5'-TCC	ATY	TGI	GCI	GCI	CCI	GTI	ATC	ΑT	698 ^a	4-29
	1999	5′-CAT	GTC	AAY	ATT	GGT	ACT	ATT	GGT	CAT	GT 498-500, 502,505,506,	25-53 ^d
	,										08,619,2004,20	_
	2000 ^b	5′-CCA	CCY	TCI	CTC	AMG	TTG	AAR	CGT	T	same as SEQ ID NO. 1999	1133-1157 ^a
	2001	5'-ACY	ACI	TTR	ACI	GCY	GCY	АТҮ	AC		same as SEQ ID NO. 1999	67-89d
	2003 ^b	5'-CAT	YTC	RAI	RTT	GTC	ACC	TGG			same as SEQ ID NO. 1999	1072-1092 ^d
	2002	5'-CCI	GAR	GAR	AGA	GCI	MGW	GGT			same as SEQ ID NO. 1999	151-171 ^d
	2003 ^b	5'-CAT	YTC	RAI	RTT	GTC	ACC	TGG			same as SEQ ID NO. 1999	1072-1092 ^d

a Sequences from databases.

 $^{^{}m b}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}mbox{\scriptsize C}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm d}$ The nucleotide positions refer to the C. albicans tuf sequence fragment (SEQ ID NO. 2004).

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences).

_				Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
10	Bacterial :	species:	Acinetobacter baumannii		
	1690	5'-CAG GTC	CTG TTG CGA CTG AAG AA	243	186-208
	1691 ^b	5'-CAC AGA	TAA ACC TGA GTG TGC TTT C	243	394-418
15	Bacterial :	species:	Bacteroides fragilis		
	2134	5'-CGC GTG	AAG CTT CTG TG	929	184-200
	2135 ^b	5'-TCT CGC	CGT TAT TCA GTT TC	929	395-414
20	Bacterial s	species:	Bordetella pertussis		
	2180	5'-TTC GCC	GGC GTG GGC	1672 ^C	544-558
	2181 ^b	5'-AGC GCC	ACG CGC AGG	1672 ^C	666-680
25	Bacterial :	species:	Enterococcus faecium		
	1698	5'-GGA ATC	AAC AGA TGG TTT ACA AA	292	131-153
	1699 ^b	5'-GCA TCT	TCT GGG AAA GGT GT	292	258-277
30	1700	5'-AAG ATG	CGG AAA GAA GCG AA	292	271-290
	1701 ^b	5'-ATT ATG	GAT CAG TTC TTG GAT CA	292	439-461
	Bacterial s	species:	Klebsiella pneumoniae		
35	1331	5'-GCC CTT	GAG GTA CAG AAT GGT AAT GAA	GTT 317	88-118
	1332 ^b	5'-GAC CGC	GGC GCA GAC CAT CA	317	183-203

a These sequences were aligned to derive the corresponding primer.

⁴⁰ b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

^C Sequence from databases.

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences).

						Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence			SEQ ID NO.	Nucleotide position
10	Bacterial spe	cies:	Strept	ococcus	s agalac	tiae	
	627	5'-ATT GTC	TAT AAA	AAT GGC	GAT AAG I		· · · · · · · · · · · · · · · · · · ·
	625 ^C	5'-CGT TGA	AGA CAC	GAC CCA	AAG TAT C	C 379-383ª	206-231 ^b
15	628	5'-AAA ATG	GCG ATA	AGT CAC	AAA AAG T	'A 379-383 ^a	
	625 ^C	5'-CGT TGA	AGA CAC	GAC CCA	AAG TAT C	C 379-383 ^a	206-231 ^b
	627	5'-ATT GTC	TAT AAA	AAT GGC	GAT AAG I	c 379-383 ^a	42-67 ^b
••	626 ^C	5'-TAC CAC	CTT TTA	AGT AAG	GTG CTA A	T 379-383 ^a	371-396 ^b
20	628	5'-AAA ATG	GCG ATA	AGT CAC	AAA AAG I	A 379-383 ^a	52-77 ^b
	626 ^C	5'-TAC CAC					_
25	Bacterial gro	oup:	Campy1	obactei	r jejuni	and C. coli	
25	2131	5'-AAG CMA	TTG TTG	TAA ATT	TTG AAA G	3 1576,1600 1849,1863,213	, 7-31 ^e 9d,a
	2132 ^c .	5'-TCA TAT	CCA TAG	CAA TAG	TTC TA		, 92-114 ^e
30	Bacterial gen	ius:	Bordet	ella sp	·		
	825	5'-ATG AGC	ARC GSA	ACC ATC	GTT CAG T	rG 1672 ^d	1-26
35	826 ^C	5'-TCG ATC	GTG CCG	ACC ATG	TAG AAC	C 1672 ^d	1342-1367
33	Fungal genus:		Candid	la sp.			
	634	5'-AAC ACY	GTC AGR	RCI ATT	GCY ATG	GA 460-472, 474-478 ^a	
40	635 ^C	5'-AAA CCR	GTI ARR	GCR ACT	CTI GCT C		-

a These sequences were aligned to derive the corresponding primer.

⁴⁵ b The nucleotide positions refer to the S. agalactiae atpD sequence fragment (SEQ ID NO. 380).

 $^{^{} extsf{C}}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequence from databases.

⁵⁰ e The nucleotide positions refer to the *C. jejuni atpD* sequence fragment (SEQ ID NO. 1576).

f The nucleotide positions refer to the C. albicans atpD sequence fragment (SEQ ID NO. 460).

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences) (continued).

	•								Originating I	NA fragment
SEQ ID 1	10.	Nucleot	ide sequ	ence					SEQ ID NO.	Nucleotide position
			Univer	sal	pri	mers	3			
562	5′-CAR	ATG RAY	GAR CCI	CCI	GGI	GYI	MGI	ATG	243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364- 366,370,375, 379,393a	528-557 ^b
563 ^C	5′-GGY	TGR TAI	CCI ACI	GCI	GAI	GGC	AT		243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364-	687-712 ^b
									366,370,375, 379,393 ^a	
564	5'-TAY	GGI CAR	ATG AAY	GAR	CCI	CCI	GGI	AA	243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351,	522-550 ^b
									356,357,364- 366,370,375, 379,393 ^a	
565 ^C	5 ′ -GGY	TGR TAI	CCI ACI	GCI	GAI	GGD	АТ		243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364-	687-712 ^b
									366,370,375, 379,393 ^a	

⁵⁵ a These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm b}$ The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

 $^{^{\}mathtt{C}}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences) (continued).

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
	Universal primers (continued)	
640	5'-TCC ATG GTI TWY GGI CAR ATG AA	248,284,315, 513-535 ^b 317,343,357,
		366,370,379,393 ^a
641 ^C	5'-TGA TAA CCW ACI GCI GAI GGC ATA C	248,284,315, 684-709 ^b 317,343,357,
		366,370,379,393 ^a
642	5'-GGC GTI GGI GAR CGI ACI CGT GA	248,284,315, 438-460 ^b 317,343,357,
		366,370,379,393 ^a
641 ^C	5'-TGA TAA CCW ACI GCI GAI GGC ATA C	248,284,315, 684-709 ^b 317,343,357,
		366,370,379,393 ^a
	Sequencing primers	
566	5'-TTY GGI GGI GCI GGI GTI GGI AAR A	.C 669 ^d 445-470
567 ^C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908
566	5'-TTY GGI GGI GCI GGI GTI GGI AAR A	.C 669 ^d 445-470
814	5'-GCI GGC ACG TAC ACI GCC TG	666d 901-920
568	5'-RTI ATI GGI GCI GTI RTI GAY GT	669 ^d 25-47
567 ^C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908
570	5'-RTI RYI GGI CCI GTI RTI GAY GT	672 ^d 31-53
567C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908
572	5'-RTI RTI GGI SCI GTI RTI GA	669 ^d 25-44
567 ^C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908
569	5'-RTI RTI GGI SCI GTI RTI GAT AT	671 ^d 31-53
567 ^C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908
571	5'-RTI RTI GGI CCI GTI RTI GAT GT	670 ^d 31-53
567 ^C	5'-TCR TCI GCI GGI ACR TAI AYI GCY T	G 669 ^d 883-908

⁵⁰ a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

 $^{^{} extsf{C}}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

⁵⁵ d Sequences from databases.

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences) (continued).

_										Originating	DNA fragment	
5	SEQ ID NO.	Nucleotide	seq	uenc	e					SEQ ID NO.	Nucleotide position	
10		Sequenci	ng I	rim	ers	(co	nti	nueć	1)			
	700	5'-TIR TIG	AYG	TCG	ART	TCC	CTC	ARG		669 ^a	38-61	
	567 ^b	5'-TCR TCI	GCI	GGI	ACR	TAI	AYI	GCY	TG	669 ^a	883-908	
15	568	5'-RTI ATI	GGI	GCI	GTI	RTI	GAY	GT		669 ^a	25-47	
	573 ^b	5'-CCI CCI	ACC	ATR	TAR	AAI	GC			666 ^a	1465-1484	
	574	5'-ATI GCI	ATG	GAY	GGI	ACI	GAR	GG		666 ^a	283-305	
20	573 ^b	5'-CCI CCI	ACC	ATR	TAR	AAI	GC			666 ^a	1465-1484	
20	574	5'-ATI GCI	ATG	GAY	GGI	ACI	GAR	GG		666 ^a	283-305	
	708 ^b	5'-TCR TCC							ΑT	666 ^a	1258-1283	
	681	5'-GGI SSI	TTY	GGI	ISI	GGI	AAR	AC		685	694-716	
25	682 ^b	5'-GTI ACI	GGY	TCY	TCR	AAR	TTI	CCI	CC	686	1177-1202	
	681	5'-GGI SSI	TTY	GGI	ISI	GGI	AAR	AC		685	694-716	
	683p	5'-GTI ACI	GGI	TCI	SWI	AWR	TCI	CCI	CC	685	1180-1205	
30	681	5'-GGI SSI							00	685	694-716	
	699	5'-GTI ACI							CC	686	1177-1202	
	681 812 ^b	5'-GGI SSI 5'-GTI ACI						•	CC	685 685	694-716 1180-1205	
35	012	5 -GII ACI	GGI	101	IIK	AKK	111	CCI	CC	085	1100-1205	
	1213	5'-AAR GGI							GG	714 ^a	697-722	
	1212 ^b	5'-CCI CCI	RGI	GGI	GAI	ACI	GCW	CC		714 ^a	1189-1211	
	1203	5'-GGI GAR								709 ^a	724-744	
40	1207 ^b	5'-CCI TCI	TCW	CCI	GGC	ATY	TC			709 ^a	985-1004	
	1204	5'-GCI AAY	AAC	ITC	IWM	YAT	GCC			709 ^a	822-842	
	1206 ^b	5'-CKI SRI	GTI	GAR	TCI	GCC	A			709 ^a	926-944	
45	1205	5'-AAY ACI	TCI	AWY	ATG	CCI	GT			709 ^a	826-845	
	1207 ^b	5'-CCI TCI	TCW	CCI	GGC	ATY	TC			709 ^a	985-1004	
	2282	5'-AGR RGC	IMA	RAT	GTA	TGA				714 ^a	84-101	
50	2284 ^b	5'-TCT GWG	TRA	CIG	GYT	CKG	AGA			714 ^a	1217-1237	
50	2283	5'-ATI TAT	GAY	GGK	ITT	CAG	AGG	C		714 ^a	271-292	
	2285 ^b	5'-CMC CIC								714 ^a	1195-1213	

^a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex III: Internal hybridization probes for specific detection of tuf sequences.

_			Originating I	NA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Bacterial s	pecies:	Abiotrophia adiacens		
2170	5'-ACG TGA	CGT TGA CAA ACC A	1715	313-331
Bacterial s	pecies:	Chlamydia pneumoniae	·	
2089	5'-ATG CTG	AAC TTA TTG ACC TT	20	136-155
		TGG AGT CGA AAT G	20	467-485
Bacterial s	pecies:	Enterococcus faecalis	•	
580	5'-GCT AAA	CCA GCT ACA ATC ACT CCA C	62-63,607 ^a	584-608 ^b
603	5'-GGT ATT	AAA GAC GAA ACA TC		
		GGT GAA GTT CGC		
Bacterial s	pecies:	Enterococcus faecium		
602	5'-AAG TTG	AAG TTG TTG GTA TT	64,608 ^a	426-445 ^C
Bacterial s	pecies:	Enterococcus gallinar	rum	
604	5'-GGT GAT	GAA GTA GAA ATC GT	66,609 ^a	419-438 ^d
Bacterial s	pecies:	Escherichia coli		
579	5'-GAA GGC	CGT GCT GGT GAG AA	78	503-522
2168	5'-CAT CAA	AGT TGG TGA AGA AGT TG	78	409-431
Bacterial s	pecies:	Neisseria gonorrhoeae		
2166	5'-GAC AAA	CCA TTC CTG CTG	126	322-339 ^e
Fungal spec	ies:	Candida albicans		
577	5'-CAT GAT	TGA ACC ATC CAC CA	407-411 ^a	406-425 ^f
Fungal spec	ies:	Candida dubliniensis		
578	5'-CAT GAT	TGA AGC TTC CAC CA	412,414-415 ^a	418-4379
a These sequen	ces were aligned	d to derive the corresponding	primer.	
b The nucleoti 607).	ide positions re	efer to the E. faecalis tuf	sequence fragment	(SEQ ID NO
c The nucleot	ide positions re	efer to the E. faecium tuf s	sequence fragment	(SEQ ID NO
608). ^d The nucleoti 609).	de positions re	fer to the E. gallinarum tuf	sequence fragmen	t (SEQ ID NO
e The nucleoti	de positions re	fer to the N. gonorrhoeae tuf	sequence fragmen	t (SEQ ID NO
126). f The nucleoti NO. 408).	de positions re	fer to the C. albicans tuf(EF	F-1) sequence fra	gment (SEQ I
	de positions re	fer to the C. dubliniensis tu	f(EF-1) sequence	fragment (SE

Annex III: Internal hybridization probes for specific detection of tuf sequences (continued).

_					-			Originating D	NA fragment
5	SEQ ID NO.	Nucleotió	e sequ	ence				SEQ ID NO.	Nucleotide position
10	Bacterial	species:	Нае	mophi.	lus	ini	fluenzae		
	581	5'-ACA TO	G GTG	ÇAT TAT	TAC	GT	G G	610 ^a	551-572
15	Bacterial	species:	Myc	oplası	na <u>r</u>	nei	<i>ımoniae</i>		
13	2095	5'-CGG TC	G GGT	TGA ACG	TGG			2097ª	687-704
	Bacterial	species:	Sta	phylo	cocc	us	aureus		
20	584	5'-ACA TG	A CAC	ATC TAA	AAC	AA		176-180 ^b	369-388 ^C
	585	5'-ACC AC	A TAC '	TGA ATT	CAA	AG		176-180 ^b	525-544 ^C
	586	5'-CAG AA	G TAT	ACG TAT	TAT	CA		176-180 ^b	545-564 ^C
	587	5'-CGT AT	T ATC	AAA AGA	CGA	AG		176-180 ^b	555-574 ^C
25	588	5'-TCT TC	T CAA	ACT ATC	GTC	CA		176-180 ^b	593-612 ^C
23	Bacterial	species:	Sta	phylo	cocc	us	epidermi	idis	
	589	5'-GCA CG	A AAC '	TTC TAA	AAC	AΑ		185,611 ^b	445-464 ^d
	590	5'-TAT AC	G TAT '	TAT CTA	AAG	ΑT		185,611 ^b	627-646 ^d
30	591	5'-TCC TG	G TTC '	TAT TAC	ACC	AC		185,611 ^b	586-605 ^d
	592	5'-CAA AG	C TGA	AGT ATA	CGT	AΤ		185,611 ^b	616-635 ^d
	593	5'-TTC AC	T AAC '	TAT CGC	CCA	CA		185,611 ^b	671-690 ^d
35	Bacterial	species:	Sta	phylo	cocc	us	haemolyt	icus	
33	594	5'-ATT GG	T ATC	CAT GAC	ACT	тC		186,188-190 ^b	
	595	5'-TTA AA	G CAG	ACG TAT	ACG	TT		186,188-190 ^b	615-634 ^e
40	Bacterial	species:	Sta	phylo	cocc	us	hominis		
+∪	596	5'-GAA AT	T ATT (GGT ATC	AAA	GA		191,193-196 ^b	
	597	5'-ATT GG	T ATC	AAA GAA	ACT	TC		191,193-196 ^b	
	598	5'-AAT TA	ר אכר י	דיכא כאכי	7 7 7	አጥ		191,193-196 ^b	595_611£

a Sequences from databases.

45

b These sequences were aligned to derive the corresponding probe.

 $^{^{\}rm C}$ The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

 $^{^{\}rm d}$ The nucleotide positions refer to the S. epidermidis tuf sequence fragment (SEQ ID NO. 611).

 $^{^{\}rm e}$ The nucleotide positions refer to the S. <code>haemolyticus</code> tuf sequence fragment (SEQ ID NO. 186).

 $^{^{}m f}$ The nucleotide positions refer to the S. hominis tuf sequence fragment (SEQ ID NO. 191).

Annex III: Internal hybridization probes for specific detection of tuf sequences (continued).

						Or	iginating	DNA fragment
5	SEQ ID NO. Nu	cleotide	sequence				SEQ ID NO.	Nucleotide position
10	Bacterial specie	es:	Staphy.	100000	us sapr	ophyt i	cus	
	599 5,	-CGG TGA	AGA AAT (CGA AAT	CA		198-200ª	406-425 ^b
	600 5′	-ATG CAA	GAA GAA	TCA AGC	AA		198-200ª	
	601 5′	-GTT TCA	CGT GAT	GAT GTA	CA		198-200 ^a	536-555 ^b
15	695 5'	-GTT TCA	CGT GAT (GAC GTA	CA		198-200 ^a	563-582 ^b
	Bacterial specie	<u>es</u> :	Strepto	ococcu	s agala	ctiae		
	582° 5'-TTT CAA	CTT CGT	CGT TGA C	CAC GAA	CAG T		207-210 ^a	404-431 ^d
20	583° 5'-CAA CTG	CTT TTT	GGA TAT C	CTT CTT	TAA TAC	CAA CG	207-210 ^a	433-467 ^d
	1199 5'-GTA TTA						207-210 ^a	
	Bacterial specie	es:	Strept	ococcu	s pneum	oniae		
25	1201 5,	-TCA AAG	AAG AAA (CTA AAA	AAG CTG	T	971,977, 979,986 ^a	513-537 ^e
	Bacterial specie	<u>es</u> :	Strepto	ococcu:	s pyoge:	nes		
30	1200 5,	-TCA AAG	AAG AAA (CTA AAA	AAG CTG	T	1002	473-497
	Bacterial group	:	Entero	coccus	cassel.	iflavu	s-flaves	cens-
			gallin	arum g	roup			
35	620 5′	-ATT GGT	GCA TTG (CTA CGT			58,65,66ª	527-544 [£]
	1122 5'	-TGG TGC	ATT GCT A	ACG TGG			58,65,66ª	_
	Bacterial group	: Ent	erococc	us sp.	, Gemel	la sp.	, A. adi	acens
40	2172 5′	-GTG TTG	AAA TGT 1	ICC GTA	AA	87-	8-62,67-71 -88,607-60 -727,871 -715,1722 ^a	

a These sequences were aligned to derive the corresponding primer.

45

50

b The nucleotide positions refer to the S. saprophyticus tuf sequence fragment (SEQ ID NO. 198).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

 $^{^{\}mathrm{e}}$ The nucleotide positions refer to the *S. pneumoniae tuf* sequence fragment (SEQ ID NO. 986).

 $^{^{}m f}$ The nucleotide positions refer to the $\it E.~flavescens$ tuf sequence fragment (SEQ ID NO. 65).

 $^{{\}tt g}$ The nucleotide positions refer to the E. faecium tuf sequence fragment (SEQ ID NO. 608).

Annex III: Internal hybridization probes for specific detection of tuf sequences (continued).

Nucleotide			
	sequence	SEQ ID NO.	Nucleotide position
genus:	Gemella		
5'-TCG TTG	GAT TAA CTG AAG AA	87,88ª	430-449 ^b
genus:	Staphylococcus sp.		
5'-GAA ATG	TTC CGT AAA TTA TT	176-203 ^a	403-422 ^C
5'-ATT AGA	CTA CGC TGA AGC TG	176-203 ^a	420-439 ^C
5'-GTT ACT	GGT GTA GAA ATG TTC	176-203 ^a	391-411 ^C
5'-TAC TGG	TGT AGA AAT GTT C	176-203 ^a	393-411 ^C
genus:	Streptococcus sp.		
5'-GTG TTG	AAA TGT TCC GTA AAC A		
ecies:	Candida albicans		
5'-GTT GAA	ATG CAT CAC GAA CAA TT	407-412,624 ^a	680-702 ^e
oup:	Candida albicans an	d C. tropicalis	3
5'-CGT TTC	TGT TAA AGA AAT TAG AAG	407-412, 429,624 ^a	748-771 ^e
ecies:	Candida dubliniensi	s	
5'-ACG TTA	AGA ATG TTT CTG TCA A	414-415 ^a	750-771 ^f
5'-GAA CAA	TTG GTT GAA GGT GT	414-415 ^a	707-726 [£]
ecies:	Candida glabrata		
		417 417	781-799 718-735
ecies:	Candida krusei		
5'-TCC AGG	TGA TAA CGT TGG	422	720-737
	5'-TCG TTG Genus: 5'-GAA ATG 5'-ATT AGA 5'-GTT ACT 5'-TAC TGG Genus: 5'-GTG TTG Pecies: 5'-GTT GAA SOUD: 5'-CGT TTC Pecies: 5'-ACG TTA 5'-GAA CAA Pecies: 5'-AAG AGG 5'-TGA AGG	Candida albicans and S'-CGT TTC TGT TAA AGA AAT TAG AAG SECIES: Candida dubliniensi 5'-ACG TTA AGA ATG TTT CTG TCA A 5'-GAA CAA TTG GTT GAA GGT GT SECIES: Candida glabrata 5'-AAG AGG TAA TGT CTG TGG T 5'-TGA AGG TTT GCC AGG TGA	5'-TCG TTG GAT TAA CTG AAG AA 87,88a Genus: Staphylococcus sp. 5'-GAA ATG TTC CGT AAA TTA TT 176-203a 5'-ATT AGA CTA CGC TGA AGC TG 176-203a 5'-GTT ACT GGT GTA GAA ATG TTC 176-203a 5'-TAC TGG TGT AGA AAT GTT C 176-203a 5'-TAC TGG TGT AGA AAT GTT C 176-203a Genus: Streptococcus sp. 5'-GTG TTG AAA TGT TCC GTA AAC A 206-231,971, 977,979,982-98 GCIES: Candida albicans 5'-GTT GAA ATG CAT CAC GAA CAA TT 407-412,624a COUP: Candida albicans and C. tropicalis 5'-CGT TTC TGT TAA AGA AAT TAG AAG 407-412, 429,624a GCIES: Candida dubliniensis 5'-ACG TTA AGA ATG TTT CTG TCA A 414-415a 5'-GAA CAA TTG GTT GAA GGT GT 414-415a ECIES: Candida glabrata 5'-AAG AGG TAA TGT CTG TGG T 417 5'-TGA AGG TTT GCC AGG TGA 417

These sequences were aligned to derive the corresponding primer.

50

b The nucleotide positions refer to the *G. haemolysans tuf* sequence fragment (SEQ ID NO. 87).

 $^{^{\}rm C}$ The nucleotide positions refer to the *S. aureus tuf* sequence fragment (SEQ ID NO. 179).

 $[\]mbox{\bf d}$ The nucleotide positions refer to the S. pneumoniae tuf sequence fragment (SEQ ID NO. 986).

 $^{^{\}rm e}$ The nucleotide positions refer to the C. albicans tuf(EF-1) sequence fragment (SEQ ID NO. 408).

 $^{^{}m f}$ The nucleotide positions refer to the $\it C.~dubliniensis~tuf(EF-1)$ sequence fragment (SEQ ID NO. 414).

Annex III: Internal hybridization probes for specific detection of tuf sequences (continued).

			•	Originating DN	A fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID 1	Nucleotide position
10	Fungal group:		Candida lusitaniae and	C. guillermo	ondii
	1162	5'-CAA GTC	CGT GGA AAT GCA	418,424 ^a	682-699 ^b
15	Fungal specie	<u>s</u> :	Candida parapsilosis		
15	1157	5'-AAG AAC	GTT TCA GTT AAG GAA AT	426	749-771
	Fungal specie	<u>s</u> :	Candida zeylanoides		
20	1165	5'-GGT TTC	AAC GTG AAG AAC	432	713-730
	Fungal genus:		Candida sp.		
25	1163	5'-GTT GGT	TTC AAC GTT AAG AAC	407-412,414- 415,417,418, 422,429 ^a	728-748 ^C
	1164	5'-GGT TTC	AAC GTC AAG AAC	413,416,420, 421,424,425, 426,428,431a	740-757 ^b
30	1167	5'-GTT GGT	TTC AAC GT	406-426, 428- 432, 624 ^a	728-741 ^C

a These sequences were aligned to derive the corresponding primer.

³⁵ b The nucleotide positions refer to the *C. lusitaniae* tuf(EF-1) sequence fragment (SEQ ID NO. 424).

 $^{^{\}rm C}$ The nucleotide positions refer to the C. albicans tuf(EF-1) sequence fragment (SEQ ID NO. 408).

PAGE INTENTIONALY LEFT BLANK

the

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

This sequence is the reverse-complement of the selected primer.

40

The sequence numbering refers to the Escherichia coli atpD gene fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

(F. Strategy for the selection of amplification/sequencing primers from atpD type) sequences. Annex IV:

Accession	***	X76877	Genome project	Genome project	J01594	Genome project	U64318	X76879	273419	M22247	M22535	U10505	AF101055	U43738	AF004014	**************************************
SEQ ID	910 NO.:	ı	ı	1	1	1	ı	1	ı	1	672	1	671	1	670	568 570 572 571 566 567
	91(CCCTGC GGACGACT	SCCTSC CCACGACT	TCCCGC GGACGACC	ACCTIGC GGATGACT	ACCTGC GGATGACT	GCCGGC CGACGACC	GCCCGC CGACGACC	GCCCGC CGACGACT	ACCGGC TGATGACT	ACCTGC GGATGALT	TCCAGC CGATGACT	TCCTGC TGATGACC	GCCAGC TGATGACT	GCCAGC AGACGACT	TICCIGC IGAYGA
	472 881	3 ACCGTCCA GCCCGTGT ACGT	3 ACCGTCCA GCCCGTGT ACGT	3 ACCGTCCA GGCCGTAT ACGT	A ACCGTACA GCCAGTAT ACGT	A ACCGTCCA AGCCGTAT ATGT	3 ACGGTGCA AGCTATCT ATGT	3 ACGGTGCA GCCCATCT ACGT	GCGGTGCCGG GGTGGCCAAG ACGGTGCA AGCCGTCT ACGTGCCCGC CGACGACT	A ACTGTGCA GGCTGTTT ACGTACCGGC TGATGACT	A ACAGTACA GCCGGTTT ACGT	A ACCGTICA GCCCGITT ACGA	A ACAGTTCA GGCTGTAT ATGT	A ACGGTGCA AGCGATCT ATGT	A ACGGTTCA AGCGGTGT ATGT	R AC CA RGCIRTIT AYGTICCIGC IGAYGA
	49 443	AGIGCAI CGGCGCCGII AICGACGIGGIGIICG GCGGIGCIGG CGIGGGCAAG ACCGICCA GGCCGIGI ACGICCCIGC GGACGACI	AGIGCAT CGGCGCGTG GTGGATATTCTGTTCG GCGGCGCGG CGTGGGCAAG ACCGTCCA GGCGTGT ACGTGCCTGC CGACGACT	CGGCGCCGTG ATCGACGTGGTGTTCG GCGCGCCGG CGTGGGCAAG ACCGTCCA GGCCGTAT ACGTTCCCGC GGACGACC	cgececeta etteacetectettee etectecege tetagetaaa accetaca gecagtat acetacetec geateact	CGGTGCGGTT GTTGACGTGGTGTTCG GCGGTGCCGG TGTGGGTAAA ACCGTCCA AGCCGTAT ATGTACCTGC	TGGCCCGGTG GTTGACGTCGTCTTCG GCGCGCCGG GGTCGGCAAG ACGGTGCA AGCTATCT ATGTGCCGGC CGACGACC	AGGITOT CGGICCCCGIG AIIGACGIGGIGIICG GCGCGCCGG CGIGGGCAAG ACGGIGCA GGCCAICI ACGIGCCCGC CGACGAC	TGTTCG GCGGTGCCGG GGTGGGCAAG	TGTTTG GCGGGCCGG AGTGGGTAAA ACTG	arattat tgecccagtt atagatgiggtattig gaggigccgg agtaggiaaa acagtaga ggcggitt acgtaccigc ggaigatt	TGGACCAGTA GICGAIGITAIITITCG GIGGIGCCGG AGIIGGIAAA ACCGIICA GGCCGIII ACGAICCAGC CGAIGACI	aggirai aggaccigii giggaiaitaigiicg giggigccgg igiiggiraa acagitca ggcigiai aigiiccigc igaigacc	aagtgat tggcccggta gttgatgtcaTatttg gtggtgctgg tgttggtaaa acggTgca agcgatct atgtgccagc tgatgact	AGGIILI AGGCCCGGIG GIAGAIGIGGIGIIIG GIGGGGCIGG CGIAGGCAAA ACGGITCA AGCGIGI AIGIGCCAGC AGACGACI	TTYG GIGGIGCIGG IGTIGGIAAR AC
	23	AGTGCAT CGGCGCCGTT ATCGACGTGG.	AGTGCAT CGCCCCGTG GTGCATATTC.	AAATCAT CGCCCCGTG ATCGACGTGG.	AGGTAAT CGCCCCTA GITGACGTCG.	AAATTAT CGGTGCGGTT GTTGACGTGG.	AGGTTAT TGGCCCGGTG GTTGACGTCG.	AGGTTCT CGGTCCCGTG ATTGACGTGG.	GGGTCAC TGGGCCGGTC GTCGACGTCGTGTTCG	AGGTAAT IGGCCCIGIG GICGAIGIGIIGTITG	AAATTAT TGGCCCAGTT ATAGATGTGG.	AGGTTAT TGGACCAGTA GTCGATGTTA.	AGGTAAT AGGACCTGTT GTGGATATTA.	AAGTGAT TGGCCCGGTA GTTGATGTCA.	AGGITT AGGCCCGGIG GIAGAIGIGG	Selected sequences for universal primers RTIAT IGGIGCIGTI RTIGANGT RTIRT IGGISCIGTI RTIGANGT RTIRT IGGICCIGTI RTIGANGT Selected sequence for universal primer ^a
		B. cepacia	B. pertussis	P. aeruginosa	E. coli	N. qonorrhoeae	M. thermoacetica	S. aurantiaca	M. tuberculosis	B. fragilis	C. lytica	A. woodii	C. acetobutylicum			
5					10					15					20	271 °C

681

682 683

GGIGGIA AYTTYGARGA RCCIGTIAC GGIGGIG AYWTIWSIGA ICCIGTIAC

GGISSITTY GGIISIGGIA ARAC

encing primer	
amplification/seque	
universal	
of	
lection	9000000000
Se	
the se	100
for the se	(V-+vme)
Strategy for the se	from stan (V-time)

v		
,	691 771 1177 1208	SEQ ID NO.:
E. hirae	CC AGGICCGITI GGIGCAGGGA AGACAGIICTGGIGGAG AIAICtctga ACCAGIGACT CA	685
H. salinarum	CC GGGGCCGTTC GGGTCCGGGA AGACGGTCCCGGCGGGG ACTTCtccGA GCCGGTCACC CA	289
T. thermophilus	CC IGGGCCCTIC GGCAGCGGCA AGACCGICCGGGGGGGG ACAIGtcoGA GCCCGIGACC CA	693
10 Human	CC TGGGGCCTIC GGAIGIGGCA AGACTGICCCGGIGGAG ACTICtcaGA tcccGIGACG AC	889
T. congolense	CC TGGCGCGTTT GGATGCGGAA AGACGGTCCTGGAGGTG ACTTTtctGA CCCAGTGACG TC	692
P. falciparum	CC TGGTGCATTT GGTTGTGGAA AAACTTGCCAGGTGGTG ATTTCtctGA CCCTGTAACT AC	689
C. pneumoniae	CC AGGACCTITI GGTGCAGGGA AAACAGTGCAGGAGGAA ACTITGAAGA ACCAGTCACT CA	989

The sequence numbering refers to the Enterococcus hirae atpD gene fragment (SEQ ID NO. 685). Nucleotides in capitals are case letters. Mismatches for SEQ ID NO. 683 are indicated by underlined nucleotides. Dots indicate gaps in the sequences identical to the selected sequences or match those sequences. Mismatches for SEQ ID NOs. 681 and 682 are indicated by lowerdisplayed. 25

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 30

a These sequences are the reverse-complement of the selected primers.

for universal primers^a

20

Selected sequences

"I.,

amplification/sequencing (organelle origin) universal oĘ sednences selection primers from tuf (M) theforStrategy Annex VI:

SEQ ID	.# ::ON	- U81803	665 X00779	- M64333	- X03558	- Y15107	- Y15108	78 –	- AF007125	- AI755521	- Y11431	619 K00428	- X89227
1511		GGTaCCtCCC AGgetGACTGCGCogTCcGA GAcatGcGAC AGACcGTTGc CGT	GGTaCTtCTC AAgetGACTGCGCTGTCAGA GACAtGaGAC AAACTGTcGc TGT	GGTaCTtCTC AGgetGACTGTGCTgTGcGt GAtatGaGAC AAACaGTTGc GGT	GGGaCAtCIC AGgetGACIGIGCIGITCGt GAtatGaGAC AGACAGIIGe IGI	GCCCCTGCCC AGATGGACGGTGCTATTAGA GAAGGAGGCA AAACTGTTGG AGC	GCCCCCCC AGATGGACGGTGCTATTAGA GAAGGAGGCA AAACTGTTGG AGC	GGTGCTGCTC AGATGGACGGCGCaATCcGt GAAGGCGGCC GTACcGTTGG CGC	GGTGCCGCCC AGATGGACGGCGCcATCcGt GAGGGTGGTC GTACcGTgGG CGC	GGAGCAGCAC AAATGGATGGTGCTATAAGA GAAGGAGGAA AAACTATAGG AGC	GGAGCCGCAC AAATGGATGGTGCTATTAGA GAAGGAGGTC GTACTATAGG AGC	GGTGCTGCTC AAATGGATGGCAATATCAGA GAGGGTGGAA GAACTGTTGG TAC	GCAGCTGCGC AAATGGATGGTGCCtTAAGG GAAGGAGGTA GAACAGTTGG AGC
635 1479		CGCcgTCcG	CGCTgTCAC	TGCTgTGCG	TGCTgTTcG	TGCTATTAG	TGCTATTAG	CGCaATCcG	CGCCAICCG	TGCTATAAG	. TGCTATTAG	CAATATCAG	TGCctTAAG
635													T GGAGCTGCGC AAATGGATGG.
601		AAGAA CATGATCACC	AAGAA CATGATTACT	AAGAA TATGATCACA	AAAAA CATGATTACA	AAGAA CATGATCACC	AAAAA CATGATCACC	AAAAA CATGATCACC	AAGAA CATGATCACC	AAAAA TATGATTACA	AAGAA TATGATTACT	AAGAA TATGATTACC	AAAAA TATGATTACT
	ς.	C. neoformans ^a	S. cerevisiae ^a	O. volvulus ^a	Human ^a	10 G. max $B1^{D}$	G. max B2 ^b	$E.\ coli^{C}$	S. aureofaciens ^C	$E.$ tenella $^{\mathcal{D}}$	15 T. gondiib	S. cerevisiae ^b	A. thaliana ^b

652 561 TATIAGR CARGCIGGIM RIACTRIWGG^d Arccer caggeygecc gircierd for universal primers Selected sequences universal primer 20 25

AA YATGATIACI GGIGCIGCIC ARATGGA

for

Selected sequence

664

The sequence numbering refers to the Saccharomyces cerevisiae tuf (M) gene (SEQ ID NO. 619). Nucleotides in are indicated by lower-case letters. Mismatches for SEQ ID NO. 561 are indicated by underlined nucleotides. Dots capitals are identical to the selected sequences or match those sequences. Mismatches for SEQ ID NOs. 652 and 664 indicate gaps in the sequences displayed.

., ი stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or 30

 $^{^{\}rm a}$ This sequence refers to $tuf({\rm EF}{-}1)$ gene. 35

b This sequence refers to tuf (M) or organelle gene. c This sequence refers to tuf gene from bacteria.

^d These sequences are the reverse-complement of the selected primers.

tuf from sequencing primers eukaryotic selection of Annex VII: Strategy for the sequences. (EF-1)

6 314 SEQ ID Accession NO.: #:	TTTCATCAAG AACATGATTA CTGG CTTCATAAAG AACATGATCA CGGG	TCTTAGAGA TITCAICAAG AAIAIGAICA CTGG M29934 TTCTCGAGA CTICAICAAG AACAIGAICA CCGG U81803	AGA GA ITICAITAAG AACAIGAITA C TGG M92073 CGC GA CITCAICAAG AACAIGAICA C GGG D14342	TGA CITCAICAAG AACAIGAICA CIGG U14100 AGA CITLAICAAA AACAIGAITA CAGG X03558	TGCTCGC GA CTTCATCAAG AACATGATCA C CGG U72244 TATTCGT GA TITCATTAAG AATATGATCA C AGG M64333	TITLEATIARA ATRICATIA CIGG A	IIICAILAAA AAIAICAIIA CCGG IIICAICAAG AACAIGAIIA CCGG	TCTTCGCGA CTTCATCAAG AACATGATCA CGGG L76077	5 2 8 6 2 9
154 179 286	GG TICITICAAG TACGCTIGGG TITTAGAGA GG CICCITCAAG TACGCGIGGG TGCTCGTGA	GG TICITICAAA TACGCIIGGG ICTIAGAGA TC TICITICAAG TACGCIIGGG ITCICGAGA	ATCATTCAAA TATGCTTGGG CTCCTTCAAG TACGCGTGGG	AA ATCCTTCAAA TATGCGTGGG TCTCGTGA GG CTCCTTCAAG TATGCCTGGG TCTTAGAGA	GICCITCAAG IACGCGIGGG	TATGCATGG	GG TICCITICAS TACGCCIGGG TITTCGTGA	TICTITICAAG TACGCGIGGG	TCITTYAAR TAYGCITGGG
5			E. histolytica G. lamblia			P. berghei	P. knowlesı $S.$ pombe		es for imers
		_	•				274		(7

those sequences. Mismatches for SEQ ID no. 558 and 560 are indicated by lower-case letters. Mismatches for SEQ ID NØ. or match (SEQ ID NO. 560 or 653, gene fragment 653 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed. 558, Nucleotides in capitals are identical to the selected sequences SEQ ID NOs. (EF-1)The sequence numbering refers to the Saccharomyces cerevisiae tuf 30

stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or 35

tuf from primers sequencing eukaryotic of selection $(\mathtt{EF-1})$ sequences $^-(\mathtt{continued})$ Annex VII: Strategy for the

SEQ ID Accession	** *#= !	X00779	D64080	M29934	U81803	M92073	D14342	014100	X03558	U72244	M64333	AJ224150	AJ224153	U42189	L76077	AF054510		
SEQ I	 0	665	ı	1	1	ı	ı	ı	1	ı	ı	ı	1	1	1	ı	654	655 559
1304		GTTTACAA GATCGGTGGT ATTGGTACGACATG AGACAACTG TCGCTGTCGG TGT	ATTGGTACGATATG AGACAGACTG TCGCTGTCGG TAT	ATTGGTACGATATG AGACAAACCG TTGCTCGT TGT	CGACAGACCG TIGCCGItGG IGI	ATTGGAACGATATG AAACAAACCG TTGCTCGT AGT	· · · · · · · · · · · · · · · · · · ·	AGACAAACCG TCGCTGTCGG TGT	AGACAGACAG TTGCGGTGGG TGT	CGCagAACGG TCGCCGTCGG CAT	ATTGGAACGATATG AGACAAACAG TTGCTGTtGG CGT	ATTGGTACGATATG AGACAAACAA TTGCTGTCGG TAT	ATTGGTACGATATG AGACAAACCA TTGCTGTCGG TAT	ATTGGTACGACATG CGTCAAACCG TCGCTGTCGG TGT	ATCGGCACGACATG CGCCAGACGG TCGCCGTCGG CAT	AICGGCACGACAIG CGACAGACCG IIGCIGICGG IGI		ATG MGICARACIR TYGCYGTCGG
1276		. GACAIG	GATATG	GATATG	GACATG	GATATG	****	.GACATG	.GATATG	.GACATG	GATATG	GATATG	.GATATG	.GACATG	.GACATG	. GACATG		ATG
776	,	ATTGGTAC	ATTGGTAC		ATCGGCACGACATG		gTCGGGAC.	ATTGGCACGACATG	ATTGGTACGATATG	ATCGCACGACATG	-	•			ATCGCCAC	ATCGGCAC	ATYGG	ATYGG
751		GTTTACAA GATCGGTGGT	GTGTACAA GATTGGCGGT	GITIACAA GAICGGIGGI	GICIACAA GAICGGIGGI	GITTACAA GATTTCAGGT	GTCTACAA GATCTcGGGc	GTGTACAA AATCTCTGGT	GTCTACAA AATTGGTGGT	GTGTACAA GATCGGCGGT	GITIACAA AAIIGGAGGI	GTATACAA AATTGGTGGT	GTATACAA AATCGGTGGT	GITTACAA GATCGGIGGI	GTGTACAA GATCGGCGGT	GICIACAA GAICGGIGGI	TACAA RATYKGIGGT ATYGG	TACAA RATYKGIGGT ATYGG
		S. cerevisiae	B. hominis	C. albicans	C. neoformans	E. histolytica	G. lamblia	H. capsulatum	Human	L. braziliensis	O. volvulus	P. berghei	P. knowlesi	S. pombe	T. cruzi	Y. lipolytica	Selected sequence for amplification primer	Selected sequences for amplification primers ^a
5					10					15					27:		25	ł

Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated (SEQ ID NO. by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed. gene fragment cerevisiae tuf (EF-1) The sequence numbering refers to the Saccharomyces 30

stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or 35

a This sequences are the reverse-complement of the selected primers.

agalactiae-specific Streptococcus sequences. Strategy for the selection of amplification primers from tuf Annex VIII:

Accession #:		1 1 1	233165 299104 - - -	
SEQ ID NO.: 207 208 209 210	211 221 223 223 224	145 ⁴ 227 228 16	- 662 22 78 135ª	549
CGTGATACTG ACAAACCTTT ACTTGGAC AACGTTGGTG T	CGTGACACTG ACAAACCATT GCTTAGAt AACGTAGGGG TTCTTCTTCG CGTGATACTG ACAAACCATT GCTTAGAt AACGTAGGGG TTCTTCTTCG CGTGATACTG ACAAACCATT GCTTGGAt AACGTTGGTG TTCTTCTTCG CGTGACTG ACAAACCATT GCTTAGAt AACGTAGGTG TCTTCTTCG CGTGAAACTG ACAAACCATT GCTTAGAt AACGTAGGTG TCTTCTTCG CGTGATACTG ACAAACCGCT CCTTGGAt AACGTTGGTG TTCTCTTCG	CGTGACACTG ACAAACCATT GCTTAGAt AACGTAGGTG TCCTTCTTCG CGCGATACTG ACAAGCCATT GCTTGGAC AACGTAGGTG TGCTTCTCCG CGCGATACTG ALAAGCCATT GCTTAGAt AACGTTGGTG TGCTTCTTCG CGTGCAGTTG ACAGGCGTT CCTGCGAC AACGTTGGTA TCCTGCTGCG	CCTOCG CGCGATGTIG ATARACCITT CTIGTGAC AACGTAGGTC TGTIGCTICG TG CCAGAA CGCGAAACCATT CTIGTGAC AACATTGGTG CCTTCTTCG CG CCAGAA CGCGAAACCATT CTCCGAC AACTTGGTC CCTTCTTCG CG CCAGAA GGAGAALTG ACAAGCCATT CTTAAGAG AACGTTGGAT TGCTCTCCG TG CCAGAA GGAGAALTG ACAAGCCTTT CTTAAGAG AACGTTGGAT TGCTCCTCAG AG CCAGAA CGTGCGATTG ACAAGCCGTT CTTGTGAG AACGTAGGTG TTCTGCTTGC TG CCAGAA CGAACTTG ACAAGCCATT CTTGCGAL RACACTGGTC TTCTTCTCCG CG CCAGAA CGTGATCTTG ACAAACCATT CTTGTGAC AACATTGGTG CATTATTACG TG	GAA CGTGATACTG ACAAACCTTT A C AACGTTGGTG TTCTTCTTC
S. agalactiae S. agalactiae S. agalactiae S. agalactiae	S. anginosus S. anginosus S. bovis S. gordonii S. mutans	S. pneumoniae S. sanguinis S. sobrinus B. cepacia	B. fragilis B. subtilis C. diphtheriae C. trachomatis E. coli G. vaginalis S. aureus	Selected sequence for species-specific primer Selected sequence for species-specific primer ^b
3	10	15	276	30

Streptococcus agalactiae tuf gene fragment (SEQ ID NO. 209). Nucleotides in capitals are or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C identical to the selected sequences gaps in the sequences displayed.

The sequence numbering refers to the

T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "K" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 35

The SEQ ID NO. refers to previous patent publication WO98/20157. This sequence is the reverse-complement of the selected primer. a Q

Strategy for the selection of Streptococcus agalactiae-specific hybridization probes from tuf sequences. Annex IX:

5	s.	431 433 TaaaGTtAAt GACGAAGTIG AAATCGTIGG TATCAAAGAC GAAATCtctA AAGCAGTIGT	SEQ ID NO.: Accession #:
	S. agalactiae S. agalactiae	GGTACTGT TCGTGTCAAC GACGAAGTIG AAATCGTIGG TATTAAAGAA GATATCCAAA AAGCAGTIGT TA GGTACTGT TCGTGTCAAC GACGAAGTIG AAATCGTIGG TATTAAAGAA GATATCCAAA AAGCAGTIGT TA	209 144ª
		TCGTCTCAAC GACGAAGTTG AAATCGTTGG TATTAAAGAA GATATCCAAA AAGCAGTTGT	207
,	s.	GACGAAGTIG AAAICGTIGG TATTAAAGAA GATATCCAAA AAGCAGTIGI	210
O.	S. agalactiae	GACGAAGTIG AAAICGIIGG IAITAAAGAA GAIAICCAAA AAGCAGIIGI	208
	S. anginosus	TaaaGTCAAC GACGAAGTIG AAAICGTIGG TAIccgtGAt GAAAICCAAA AAGCAGTIGI	211
	S. anginosus	GGTACTGT TARAGTCAAC GAtGAAGTTG AAATCGTTGG TATCCGCGAG GAAATCCAAA AAGCAGTTGT TA	221
	S. bovis	GGTACTGT TAAAGTCAAC GACGAAGTTG AAATCGTTGG TATCCGTGAC GACATCCAAA AAGCtGTTGT TA	212
,	S. anginosus	GATCAAGTIG	213
15	S. cricetus	GGTACTGT TAAGGTCAAL GACGAAGTTG AAATCGTTGG TATCAAGGAC GAAATCCAAA AAGCGGTTGT TA	214
	S. cristatus	GGTACTGT TCGTGTCAAC GAtGAAATCG AAATCGTTGG TATCAAAGAA GAAATCCAAA AAGCAGTTGT TA	215
	S. downei	GGTACTGT TAAGGTCAAC GACGAAGTTG AAATCGTTGG TATCAAGGAC GAAATCCAAA AAGCAGTTGT TA	216
	S. dysgalactiae	GGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA GAAActaAAA AAGCtGTTGT TA	217
	S. equi equi	GGTACTGT TCGTGTtAAC GACGAAATCG AAATCGTTGG TATCAGAGAC GAGATCAAAA AAGCAGTTGT TA	218
20	s.	GGTACTGT aaGaGTCAAC GAtGAAGTTG AAATCGTTGG TATCAAAGAC GAAATCacta AAGCAGTTGT TA	219
	S. qordonii	GGTAtoGT TaaaGTCAAt GACGAAaToG AAATCGTTGG TATCAAAGAA GAAATCCAAA AAGCAGTTGT TA	220
2	S. macacae	GGTACTGT TaagGTtAAt GAtGAAGTTG AAATCGTTGG TATTCGTGAC GATATtCAAA AAGCAGTTGT TA	222
27	S. gordonii	GGTAteGT TaaaGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA GAAActCAAA AAGCAGTTGT TA	223
	s.	GALGAAGTIG AAAICGTIGG TAIccgtGAt GACAItCAAA AAGCtGTIGI	224
25	S. oralis	GGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA GAAACtCAAA AAGCAGTTGT TA	- P33170
	S. parasanguinis	GGTGTTGT TCGTGTCAAL GALGAAATCG AAATCGTTGG TATCAAAGAA GAAATCCAAA AAGCAGTTGT TA	225
		GGTAtoGT TaaaGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA GAAACtCAAA AAGCAGTTGT TA	145ª
		GGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA GAAACtAAAA AAGCtGTTGT TA	- Genome project
	s.	GGTACTGT TARAGTCAAŁ GACGAAGTTG AAATCGTTGG TATCCGTGAŁ GACATCCAAA AAGCTGTTGT TA	226
30	s.	GGTgttgt tcgtgtcaat gacgaagttg aaatcgttgg tcttaaagaa gacatccaaa aagcagttgt ta	146ª
	S. sanguinis	GGTAteGT TaaaGTCAAC GACGAAATEG AAATCGTTGG TATCAAAGAA GAAATCCAAA AAGCAGTTGT TA	227
	S. sobrinus	GGTACTGT TAAGGTLAAC GACGAAGTTG AAATCGTTGG TATCOGTGAC GATATCCAAA AAGCAGTTGT TA	228
	S. suis	GGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TCTTCAAGAA GAAAAAtCtA AAGCAGTTGT TA	229
,	S. uberis	GGTACTGT TCGTGTCAAC GACGAAATTG AAATCGTTGG TATCAAAGAA GAAActaAAA AAGCAGTTGT TA	230
35	S. vestibularis	GGTGTTGT TCGTGTLAAL GACGAAGTTG AAATCGTTGG TCTTAAAGAA GAAATCCAAA AAGCAGTTGT TA	231
	solouted semionose for		
	species-specific hybri-		
40		ACTGT TCGTGTACC GACGAAGITG AAA CGTTGG TATTAAAGAA GATATCCAAA AAGCAGTTG	582 583

The sequence numbering refers to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO. 209). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

The SEQ ID NO. refers to previous patent publication WO98/20157. These sequences are the reverse-complement of the selected probes. 45

agalactiae-specific Streptococcus sequences. oŧ amplification primers from atpD selection the forStrategy Annex X:

SEQ ID 399		GTGGTAAAG 387 GTGGTAAAG - GTGGTAAAG - GTGGGAAAG 386 GTGGGAAAG - GTGGGAAAG -	GTGGTAAGA 247 GTGGTAAGA 248 GTGGTAAAG 293 GTGGTAAAG 291 GCGTAAAG - CTGGTAAAG - CTGGTAAAG - CTGGTAAAG 324 GTGGTAAAA 324 GTGGTAAAA 366	627 628 625 625
		T TACCTTAAGG T TACCTTAAAG T TACCTTAAAG C TACCTCAAAG T TATCTGAAAG T TATCTGAAAG		ATTAGCACCT TACTTABAAG GTGGTA
368		.CTT geTAGGGGCT .CCT teTtGGGGCT .CCT teTtGGGGCT .CCT tTTAGGGCCC .CCT tTTAGGGCCCC .CCT tTTAGGGCCCC .CCT tTTAGGCCCCT		ATTAGG
234	GTTCCTT GTTCCTT GTTCCTT GTTCCTT GTTCCTT	677CC 677CC 678CC 677CC 677CC		ဖ
		TGTCTTTAAC TGTCTTCAAC GGTCTTTAAT CGTCTTTAAC GGTCTTTAAC TGTCTTTAAC		
	ATAAGTCACA AAAAGTAGTATAAGGATA CITTGGGTCG TGTCTTCAAC ATAAGTCACA AAAAGTAGTATAAGGATA CTTTGGGTCG TGTCTTCAAC ATAAGTCACA AAAAGTAGTATAAGGATA CTTTGGGTCG TGTCTTCAAC ATAAGTCACA AAAAGTAGTATAAGGATA CTTTGGGTCG TGTCTTCAAC ATAAGTCACA AAAAGTAGTATAAGGATA CTTTGGGTCG TGTCTTCAAC	GGTCGTLTAT ActgATGaac AaAACTCtaA AcgtaTcCTgTAAaGATA CCTTGGaCG tgTcGTCTAc AAAAATGaCG AaAgaaaAac AAAAATCGTcTAAaGAAA CTTTGGGaCG GATTGTLTAT AAAGATGCG ATAAaaagCA AAAAATCGTcTAAGGAA CTTTGGGACG tgTaGTCTAT AAAAATGACG AAAAaAAAATCGTcgAAAGAAA CTTTGGCCG tgTaGTCTAT AAAAATGACG AGAAAAAATCATCAAAAGAAAAAAAAAAAAAAAAAAAA	AACGAAAACG GAACAACCTAACA. TGALGCAA CACTLGGTCG TGTATTLAAC AACGAAAACG G TGACTTAACA. TGALGCAA CACTLGGACG TGTATTLAAC AAAAATGACG AAAAAATGACG AAAAAATGACG AAAAAATGACG AAAAAATGACG AAAAAAAAAA	GGATA CTTTGGGTCG TGTCTTCAAC
203	TAAGGATA TAAGGATA TAAGGATA TAAGGATA	TAAaGATA TAAaGAAA TAAaGAAA gAAaGAAA	TgAtGcaA TgAtGcaA TAAaGAAA AACaGATA TAAAGGAA TAAAGGAA TAAAGGAA	
80	TAAGTCACA AAAAGTAGTATAAGGATA TAAGTCACA AAAAGTAGTATAAGGATA TAAGTCACA AAAAGTAGTATAAGGATA TAAGTCACA AAAAGTAGTATAAGGATA TAAGTCACA AAAAGTAGTATAAGGATA TAAGTCACA AAAAATGGTGTAAGGATA	AcgtarcGTG AAAAarcGTC AAAAarcGTC AAAAarcGTC AAAAarcGTC	tarctraca. Tgatgean gaactraca. Tgatgean Aaaagragte. Taaagaan Aaaagragta. aacagara Aaaagragta. Taaagara gcgtcrgggg. Taaagara ccaacrtact. Tacagtaa Acaacrtact. Tacagtaa tcaatraca. Tgatgaa	CA AAAAGTA
	GATTCTCTAT AAAAATGCCG ATAAGTCACA AAAAGTAGTA. TAAGGATA GATTGTCTAT AAAAATGCCG ATAAGTCCCA AAAAATCGTG. TAAAGAAA	GGTCGTLTAT ActgATGaac AaAAGTCtaA AcgtaTCGTgTAAaGATA tgTcGTCTAc AAAATGaCG AaAgaaaAac AAAAATGGTcTAAaGAAA GATTGTTAT AAAAATGGCG ATAAaaaGCA AAAAATGGTCTAAAGAAA tgTaGTCTAT AAAAATGACG AAAAAAAAC AAAAATCGTCgAAGAAA tgTGGTCTAT AAAAATGACG AQAAAAAAC AAAAATGTTaAAAGGAAA GGTCGTTATA AAAAATGGCG AQAAGTCCCA AAAAATGTTaAAAGAAAA	adaacagagc AAcghaaaCG gaAcaagcat aAaacaaagc AAcghaaaCG gaagcat agTTGTLTAT AAAAATGaCG AAAAtaaAtc GATCGTLTAC AAAAAAGGCG AAGcaaaAac agTCGTLTAT AAAAATGGCG AAGcaaaACA cgaTGCtCtT GAGGTGCG AAGCaaaACA tAaatctgAT gcAgAaGaaG caccaaCtag tATTGatgtg cctAAaGaaG AAggagCgCt cATCGaagtT cctAAaGaaG ATggagCgCt	aaaatggcg ataagtcaca aaaagta aaaatggcg ataagtcaca aaaagta
		ActgATGaac A AAAATGaCG A AAAGATaGtG A AAAAATGaCG A AAAAATGAtG A	AncghaaacG gaAcaagcat AhcghaaacG gaagcat AhAhATGaCG AaAtaaAtc AhAhAAGGCG AgAaaaAac AhAHATGGCG AgcaaaACA GAgtgcaaa ATggtaatgA gcAgAaGaaG caccaaCtag cctAhaGaaG AgggaGCGCt	ATTGECTAE AAAAATGGCG ATAAGTC AAAATGGCG ATAAGTC
	GATTCTCTAT AAAAATGGCG A GATTCTCTAT AAAAATGGCG A GATTCTCTAT AAAAATGGCG A GATTCTCTAT AAAAATGGCG A GATTCTCTAT AAAAATGGCG A	Ggrestrar tgrestrar Garrstrar tgrastcrar tgrastcrar Gorestrar	adaacagagc AAcghaaaCG gaAcaagcat ahaacaaagc AAcghaaaCG gaagcat agTTGTLTAT AAAAATGaCG AAAAtaaAtc GATCGTLTAC AAAAAGGCG AGAAaaaAac agTCGTLTAT AAAAATGGCG AAGCaaaACA cgaTGctctT GAggtgcaaa ATggtaatgA tAaatctgAT gcAgAaGaaG caccaaCtag tATTGatgtg cctAAaGaaG AaggtaCAat cATCGaagtT cctAAaGaaG ATggagCGCt	Attgrot
39			grant de la company de la comp	nces ecific nces ecific
	S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis	salivarius pneumoniae pyogenes anginosus sanguinis		Selected sequences for species-specific primer Selected sequences for species-specific primers9
~	10 s.s.	15 	20 BB. 25	30 fc pr pr Se fc
	• •		278	

The sequence numbering refers to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO. 380). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

40 ***** These sequences were obtained from Genbank and have accession #: a=AB009314, d=AF001955, e=U31170, and f=V00311.

These sequences were obtained from genome sequencing projects. These sequences are the reverse-complement of the selected primers.

ដ្ឋា

Annex XI:	Strategy	for the	selection	of Candid	la albicans/du	bliniens	is-specific	s selection of Candida albicans/dubliniensis-specific amplification
	primers,	Candida	albicans-	specific	hybridization	probe	ind Candida	dubliniensis-
	energi fir	hwhridi	ration prob	o from tuf	zation probe from tuf segmendes	•		

acton asis-	Accession	·· ***	ı	1	1	ı	1	1	1	ı		1		1	1	1	1	1		X03558			U42189	
olinier Sinier	SEQ ID Acc	NO.:	624	409	410	407	408	412	414	415	417	418	421	422	424	623	426	429	404	×	447	622	n -	
a de la companya de l	491 SI	-	TTG T	TTG T	TTG T	TTG T	TTG T	TIG I	TTG T	E	E	Ħ	TTC T	TTA T	TIG I	ပည္သင	TTG T	TTG T	CTC A	CTG C	TTA T	T DLT	CIT I	
pecii. Candio			TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACCTTG	TAAGACLTTG	TAAGACCTTG	TAAGACCTTA	TAAGACCTTG	TAAGACCCTC	TAAGACCTTG	TAAGACTIG	TAAGACCCTC	aAccACgcTG	TAAAACtTTA	TAAGACTIG	TAAGACtCTT	
and (AGTTACTGG	GTTACTGG	AGTTACTEG	AGTTACTGG	GTTACTGG	GTTACTGG	GTTACTGG	GTTACTGG	SCTCAAGGG	tccACc66	GTcAagGG	CTTAAGG	ytecACcGG	tccAagGG	GTTACCGG	GTTACCGG	GTCACTGG	GccAgTGG	GcTAaaGG	GTcAagGG	cGTcAagGG	
prope			CCGGTA A	CCGGTA A	AAATCCGGTA AAGTTACTGG	AAATCCGGTA AAGTTACTGG	CCGGTA A	AAAICCGGIA AGGTIACTGG	AAATCCGGTA AGGTTACTGG	CCGGTA A	AAggCtGGTg tcGTcAagGG	AAggCtGGTA AgtccACcGG	AAggCtGGTA ccGTcAagGG	AAggCaGGTg ttGTTAagGG	AAgreyggra Agtecaceg	AAgrctGGrg tttccAagGG	AAAgctGGTA AgGTTACcGG	AAggCtGGTA AgGTTACcGG	AAggCCGGCA AGGTCACTGG	AAggatGGcA AtGccAgTGG	CtGGTg M	AAggCCGGTg tcGTcAagGG	AAggCtGGTg tcGTcAagGG	
tion es.	460		C AAAT	C AAAT	C AAAT	C AAAT	CACCAACTC AAATCCGGTA AAGTTACTGG	C AAAT	C AAAT	CACCAACTC AAATCCGGTA AGGTTACTGG	C AAgg	C AAgg	C AAgg		C AAgT	C AAgT		<u>ن</u>			C AAAg	C AAgg	C AAgg	
ridiza guenc	428		CACCAACTC AAATCCGGTA AAGTTACTGG	CACCAACTC AAATCCGGTA AAGTTACTGG	CACCAACTC	CACCAACTC	CACCAACT.	CACCAACTC	CACCAACTC	CACCAACT.	CACCAACGC	LACCA ACTC	CACCAACGC	CACCAACTC	YACCAACTC	CACCAAGTC	AACCAACTT	LACCA ACT.	Ctccaactc	tgCtAACAT	AWCTAACTC AAAGCTGGTG AAGCTAAAGG	CACCAACG.	CACCAACA.	
c hyb			TTGAACCATC	TTGAACCATC	TTGAACCATC	TTGAACCATC	TTGAACCATC	TTGAAGCTTC	TIGAAGCUIC	TIGAAGCTIC	TTGAAGCcaC	TTGAggCtTC	TTGAAGCCaC	TTGAAGCATC	TTGAGCCATC	TgGAggagaC	TTGAACCATC	TTGAAGCtTC	TTGAGCCCTC	TgGAgCCAag	TTGAACCATC	Treadgctac CACCAACGC	TTGAGCCGAC CACCAACAC	
serection of canonia arbicans/uminimensis-specific amplification albicans-specific hybridization probe and Candida dubliniensis- ation probe from tuf sequences.	403		ACATGA TT						.CAACATGA TT		CAACATGA IT	CAACATGA TT			CAACATGA TT		CAALAIGA II	CAACATGA TT		CAACATGC TG	TAACATGA TT		AACATGA TT	
icans-	368 4(AAAGACTGCAACATGA	AAAGACTGCAACATGA	AAAGACTGCAACATGA	AAAGACTGCAACATGA	AAAGACTGCAACATGA	AAAGACTGCAACATGA	AAAGACTGC	AAAGACTGCAACATGA	AAAGACTGC	LAAGACTGC	AAAGAATGCAACATGA	AAAGACTGCAACATGA	LAAGA CTGC	CAAGGCTGCAACATGt	tAAagCTGC	taagcigc	CAAGGCCGCAACATGC	cgAcACAGC	AAAAACTGTA	AAAGACTGCAACATGA	CAAGACCGTAACATGA	લ
a alb:			ACCC AAAG																					ACCC AAAGA
Lor the S Candida a hybridizat			AAGAAGGTTG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTIG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGIIG GITACAACCC	AAGAAGGTCG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTCG GTTACAACCC	AAGAAGGTTG GTTACAACCC	AAGAAGGTCG GCTACAACCC	AAGAAATTG GCTACAACCC	TATC AAGAAGTTG GTTACAACCC	AAGAAGGTTG GTTACAACCC	CATC AAGAAGGTCG GTTtCAACCC	rg gitaca				
Stategy primers, (specific h			AAGAAGGT	AAGAAGGT	AAGAAGGT	AAGAAGGT		AAGAAGGT	AAGAAGGT	AAGAAGGI	AAGAAGGT	AAGAAGGT	AAGAAGGT	AAGAAGGT		AAGAAGGT	AAGAAGGT	AAGAAGGT		AAGAAaaT	AAGAAAGT	AAGAAGGT	AAGAAGGT	AAGAAGGT
prim spec	337		CGIC	CGIC	CGTC	CGTC	CGTC	CGTC	CGTC	CGTC	CATC	ii cGTC	CATC	CATC	CGTC	CATC	CGIC	CGTC	CATC	CATt	TATC	TATC	CATC	cific rimerª C
Annex Al.			albicans	albicans	albicans	albicans	albicans	C. dubliniensis	C. dubliniensis	C. dubliniensis	glabrata	guilliermondii	/r	sei	C. lusitaniae	neoformans	parapsilosis	sicalis	igatus		nala	S. cerevisiae)e	Selected sequence for species-specific amplification primer ^a C AAGAAGGTTG GTTACAACCC
Anne			C. albi	C. albı	C. albi	C. albi	C. albi	C. dub	C. dub.	C. dub.	C. glat	C. gui	C. kefyr	C. krusei	C. lusi	C. neof	C. pare	C. tropicalis	A. fumigatus	Human	P. anomala	S. cere	S. pombe	
					,	10				,	15				,	20			2	27	52 9			30
											Ç	SI.	IR	s.	TI-	Τl	ΙT	F	SI	-JF	F	т	(R	UI F 26)

ATCCGGTA AAGTTACTGG TAAGACCT

amplification primer^{a,b} for species-specific

35

Selected sequence

Selected sequences

40

577 578 CATGA TTGAACCATC CACCA (C. albicans)
CATGA TTGAAGCTTC CACCA (C. dubliniensis) for species-specific hybridization probes

une sequence numbering rerers to the Candida albicans tuf gene fragment (SEQ ID NO. 408). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches for SEQ ID NO. 577 are indicated by lower-case letters. Mismatches for SEQ ID NO. 578 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed.
"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind The sequence numbering refers to the Candida albicans tuf gene fragment (SEQ ID NO. 408). Nucleotides in capitals are identical to any of the four nucleotides A, C, G or T. 45

a.C. albicans primers have been described in a previous patent (publication W098/20157, SEQ ID NOS. 11-12)

Ğ

Annex XII: Strategy for the selection of <i>Staphylococcus-s</i> primers from tuf sequences.	coccus-specific amplification
XII: Strategy for the selection primers from tuf sequences.	Staphylo
XII: Strategy for the sprimers from tuf se	0
XII: Strategy for primers from t	υψ
xII: Strategy primers	the tuf
xII: Strategy primers	for
	Strategy primers f
	: ::
	Pς

			į	
-		340 652	v	v
•	S. aureus	A CAGGCCGIGI IGAACGIGGI CAAAICAAAGCACIIACCA GAAGGIACIG AAAIGGIAAI	ATGGTAAT GC	
	S. aureus	A CAGGCCGIGI IGAACGIGGI CAAAICAAAGCACIIACC~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	29 ~~~~~~~	
	S. aureus	A CAGGCCGIGI IGAACGIGGI CAAAICAAAGCACITACCA GAAGGIMCIG AAAIGGIAAI	TAAT GC	
	S. aureus aureus	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT	AAT GC	
•	S. auricularis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGActTTACCA GAAGGTACAG AAATGGTAAT	AAT GC	25
二	S. capitis capitis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT	AT GC	ည္
	M. caseolyticus	A CTGGaCGTGT TGAGCGTGGa CAAGTtAAAGAACTTACCA GAAGGTACTG AAATGGTAAT	AT GC	2 9
	S. cohnii	A CAGGGCGTGT TGAACGTGGT CAAATCAAAGActTTACCA GAAGGTACTG AAATGGTTAT	T GC	29
	S. epidermidis	A CAGGCOGTOT TGAACGTGGT CAAATCAAAG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	?	? ?
•	S. epidermidis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACAG AAATGGTTAT	r GC	<u>છ</u>
<u> </u>	S. haemolyticus	A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT	ည	39
	S. haemolyticus	A CAGGEOGIGI IGAACGIGGI CAAAICAAAGAACIIACCA GAAG~~~~~ ~~~~~~~~~~	~ ~	.~~ 188
	S. haemolyticus	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGG~~~~	\$	~~ 189
	S. hominis hominis	A CAGGCCGTGT TGRACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT	႘	ပ္ပ
(S. hominis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT	ည္ပ	
2	S. hominis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	?	
	S. hominis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT	ပ္ပ	
	S. hominis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT	ည	
	S. lugdunensis	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACAG AAATGGTTAT	ပ္ပ	
	s.	A CAGGCCGIGI IGAACGIGGI CAAAICAAAG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	?	
ነጋ 28	s.	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT	ည္ပ	
	S. saprophyticus	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT	ည	
	S. sciuri sciuri	A CAGGCCGIGI TGAACGIGGI CAAAICACIGAACIIACCA GAAGGIACIG AAAIGGIIAI	ပ္ပ	
	S. warneri	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCAATTACCA GAAGGTACTG ~~~~~~~~	<i>1 1 1</i>	
•	S. warneri	A CAGGCCGIGT TGAACGIGGT CAAATCAAAG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	~~ 192
30) S. warneri	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCAATTACCA GAAGGTACTG AAATGGTTAT	ပ္ပ	GC 202
	B. subtilis	A CTGGCCGTGT aGAACGCGGa CAAGTLAAAGCAtcTtCCA GAAGGCgtaG AAATGGTTAT	ည္ပ	
	E. coli	A CCGGtCGTGT aGAACGCGGT atcATCAAAGGAacTgCCg GAAGGcgtaG AgATGGTAAT	ဌ	GC 78
	L. monocytogenes	A CIGGACGIGI IGAACGIGGA CAAGILAAAGAcacItCCA GAAGGIACIG AAAIGGIAAY	ည္	GC 138ª
35	Selected sequence for	GGCCGTGT TGAAGGT CAAATCA		n v
	יייייייייייייייייייייייייייייייייייייי			1
	Selected sequences for			

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.

575 707

TIACCA GAAGGIACTG AAATGGTIA TIACCA GAAGGIACTG AAATGGTWA

genus-specific primers^b

4

"R" "Y" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bipd to any of the four nucleotides A, C, G or T. 45

 $^{\circ}$ The SEQ 1D NO. refers to previous patent publication W098/20157. These sequences are the reverse-complement of the selected primers.

Annex XIII: Strategy for the selection of the Staphylococcus-specific hybridization probe from tuf sequences.

5

		4(00		425	SEO ID NO.:	Accession #:
	S. aureus	G	TTGAAATGTT	CCGTAAATTA	TT AGA	179	_
10	S. aureus	G	TTGAAATGTT	CCGTAAATTA	TT AGA	176	-
	S. aureus	G	TTGAAATGTT	CCGTAAATTA	TT AGA	177	_
	S. aureus	G	TTGAAATGTT	CCGTAAATTA	TT AGA	178	_
	S. aureus aureus	G	TTGAAATGTT	CCGTAAATTA	TT AGA	180	=
	S. auricularis	G	$\mathrm{TA}\mathbf{GAAATGTT}$	CCGTAAATTA	TTAGA	181	-
15	S. capitis capitis	G	TAGAAATGTT	CCGTAAATTA	TT AGA	182	_
	M. caseolyticus	G	TAGAAATGTT	CCGTAAATTA	TT AGA	183	-
	S. cohnii	G	TAGAAATGTT	CCGTAAATTA	TT AGA	184	-
	S. epidermidis	G	TAGAAATGTT	CCGTAAATTA	TT AGA	185	_
	S. haemolyticus	G	TA GAAATGTT	CCGTAAATTA	TT AGA	186	-
20	S. haemolyticus	G	TA GAAATGTT	CCGTAAATTA	TT AGA	189	-
	S. haemolyticus	G	TA GAAATGTT	CCGTAAATTA	TT AGA	190	. =
	S. haemolyticus	G	TA GAAATGTT	CCGTAAATTA	TT AGA	188	_
	S. hominis	G	TA GAAATGTT	CCGTAAATTA	TT AGA	196	-
	S. hominis	G		CCGTAAATTA		194	-
25	S. hominis hominis	G		CCGTAAATTA		191	-
	S. hominis	G		CCGTAAATTA		193	-
	S. hominis	G		CCGTAAATTA		195	-
	S. lugdunensis	G		CCGTAAATTA		197	_
	S. saprophyticus	G		CCGTAAATTA		198	-
30	S. saprophyticus	G		CCGTAAATTA		200	-
	S. saprophyticus	G		CCGTAAATTA		199	-
	S. sciuri sciuri	G		CCGTAAATTA		201	_
	S. warneri	G		CCGTAAgTTA		187	_
	S. warneri	G		CCGTAAgTTA		192	-
35	S. warneri	G		CCGTAAgTTA		202	-
	S. warneri		TAGAAATGTT	_		203	_
	B. subtilis		TTGAAATGTT			-	Z99104
	E. coli	G		CCGcAAAcTg		78	_
	L. monocytogenes	G	TA GAAATGTT	CCGTAAATTA	ctaga	138ª	-
40							
	Selected sequence for						
	genus-specific hybridi-					605	
	zation probe		GAAATGTT	CCGTAAATTA	TT	605	

The sequence numbering refers to the *Staphylococcus aureus tuf* gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower-case letters.

⁵⁰ a The SEQ ID NO. refers to previous patent publication WO98/20157.

Annex XIV: Strategy for the selection of Staphylococcus saprophyticus-specific and of Staphylococcus haemolyticus-specific hybridization probes from tuf sequences.

5

			5	SEQ ID
10		339	383	NO.:
	S. aureus	AG TtGGTGAAGA AgTtGAAATC ATCGGTTTAC ATGACACATC	TAA	179
	S. aureus	AG TtGGTGAAGA AgTtGAAATC ATCGGTtTaC ATGACACATC	TAA	176
	S. aureus	AG TtGGTGAAGA AgTtGAAATC ATCGGTTTAC ATGACACATC	TAA	177
	S. aureus	AG TtGGTGAAGA AgTtGAAATC ATCGGTtTaC ATGACACATC	TAA	178
15	S. aureus aureus	AG TtGGTGAAGA AgTtGAAATC ATCGGTtTaC ATGACACaTC		180
	S. auricularis	AG TCGGTGAAGA AgTtGAAATC ATCGGTATGA AAGACggTTC	AAA	181
	S. capitis capitis	AG TtGGTGAAGA AGTtGAAATC ATCGGTATCC ACGAAACTTC		182
	M. caseolyticus	AG TtGGTGAAGA AgTtGAAATC ATTGGTtTaa cTGAagaacC		183
	S. cohnii	AG TCGGTGAAGA AGTtGAAATC ATCGGTATGC AAGAAGATTC		184
20	S. epidermidis	AG TtGGTGAAGA AgTtGAAATC ATCGGTATGC ACGAAACTTC		185
	S. haemolyticus	AG TEGGTGAAGA AGTEGAAATC ATTGGTATCC ATGACACTTC		186
	S. haemolyticus	AG Ttggtgaaga agttgaaatc attggtatcc atgacacttc '		189
	S. haemolyticus	AG TtGGTGAAGA AGTtGAAATC ATTGGTATCC ATGACACTTC		190
	S. haemolyticus	AG TtGGTGAAGA AGTtGAAATt ATTGGTATCA AAGAAACTTC		188
25	S. hominis	AG TtGGTGAAGA AgTtGAAATt ATTGGTATCA AAGAAACTTC		194
	S. hominis hominis	AG TtGGTGAAGA AgTtGAAATt ATTGGTATCa AaGAaACTTC		191
	S. hominis	AG TtGGTGAAGA AGTtGAAATt ATTGGTATCA AAGAAACTTC		193
	S. hominis	AG TtGGTGAAGA AgTtGAAATt ATTGGTATCA AAGAAACTTC		195
	S. hominis	AG TtGGTGAAGA AgTtGAAATt ATTGGTATCa AAGAtACTTC '		196
30	S. lugdunensis	AG TCGGTGAAGA AGTtGAAATt ATTGGTATCC ACGAtACTaC		197
	S. saprophyticus	AG TCGGTGAAGA AATCGAAATC ATCGGTATGC AAGAAgaaTC		198
	S. saprophyticus	AG TCGGTGAAGA AATCGAAATC ATCGGTATGC AAGAAgaaTC		200
	S. saprophyticus	AG TCGGTGAAGA AATCGAAATC ATCGGTATGC AAGAAGABTC		199
	S. sciuri sciuri	TG TtGGTGAAGA AgTtGAAATC ATCGGTtTaa cTGAagaaTC '		201
35	S. warneri	AG TtGGTGAAGA AGTtGAAATC ATCGGTtTaC ATGACACTTC		187
	S. warneri	AG TtGGTGAAGA AgTtGAAATC ATCGGTtTaC ATGACACTTC		192
	S. warneri	AG TtGGTGAAGA AgTtGAAATC ATCGGTtTaC ATGACACTTC		202
	S. warneri	AG TtGGTGAAGA AGTTGAAATC ATCGGTTTAC ATGACACTTC		203
•	B. subtilis	AG TCGGTGACGA AgTtGAAATC ATCGGTCTtC AaGAagagag		_a
40	E. coli	AG TtGGTGAAGA AgTtGAAATC gTTGGTATCa AaGAgACTca		78
	L. monocytogenes	AG TtGGTGAcGA AgTaGAAgTt ATcGGTATCg AaGAagaaag	AAA	138 ^b
45	Selected sequences for species-specific hybridization probes	CGGTGAAGA AATCGAAATC A (S. saprophyticus)		599
		(S. haemolyticus) ATTGGTATCC ATGACACTTC		594

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters.

^a This sequence was obtained from Genbank accession #299104.

b The SEQ ID NO. refers to previous patent publication W098/20157.

Annex XV: Strategy for the selection of Staphylococcus aureus-specific and of Staphylococcus epidermidis-specific hybridization probes from tuf sequences.

5

SEQ ID 547 592 NO.: 521 617 10 S. aureus TACACCACA TACTGAATTC AAAGCAG...TTCTTCtCa AACTATCGtC CACAATT 179 S. aureus TACACCACA TACTGAATTC AAAGCAG...TTCTTCtC- ----- ----178 S. aureus TACACCACA TACTGAATTC AAAGCAG...TTCTTCtCa AACTATCGtC CACAATT 176 TACACCACA TACTGAATTC AAAGCAG...TTCTTCtCa AACTATCGtC CACAATT 177 S. aureus S. aureus aureus TACACCACA TACTGAATTC AAAGCAG...TTCTTCtCa AACTATCGtC CACAATT 180 TACACCACA CACTAAATTC ACTGCAG...TTCTTCTCT AACTACCGTC CACAATT 15 S. auricularis 181 CACACCACA CACTAAATTC AAAGCGG...TTCTTCAgT AACTACCGCC CACAATT S. capitis capitis 182 M. caseolyticus TACECCACA TACTAAATTC AAAGCTG...TTCTTCACT AACTACCGCC CECAGTT 183 S. cohnii TACACCACA CACAAACTTT AAAGCGG...TTCTTCAgT AACTATCGCC CACAATT S. epidermidis TACACCACA CACAAATTC AAAGCTG...TTCTTCACT AACTATCGCC CACAATT 185 S. haemolyticus 20 CACACCTCA CACAGAATTT AAAGCAG...TTCTTCACA AACTATCGTC CACAATT 186 S. haemolyticus CACACCECA CACABATTE ANAGCAG...TTCTTCACA AACTATCGEC CACAATT 189 S. haemolyticus CACACCTCA CACAGAATTT AAAGCAG...TTCTTCACA AACTATCGTC CACAATT 190 S. haemolyticus TACACCTCA CACAGAATTC AAAGCAG...TTCTTCACT AACTATCGTC CACAATT S. hominis CACACCECA CACAGAATTC AAAGCAG...TTCTTCACT AACTATCGEC CACAATT S. hominis 25 TACACCECA CACABAATTC AAAGCAG...TTCTTCACT AACTATCGEC CACAATT 196 S. hominis hominis TACACCECA CACABARTIC ARAGCAG...TTCTTCECT RACTATCGEC CACAATT 191 TACACCECA CACABAATTC AAAGCAG...TTCTTCECT AACTATCGEC CACAATT S. hominis 193 S. hominis TACACCTCA CACAGATTC AAAGCAG...TTCTTCTCT AACTATCGTC CACAATT 194 S. lugdunensis TACACCECA CACTAAATTE AAAGCTG...TTCTTCECA AACTACCGCC CACAATT 30 TACACCACA TACAAAATTC AAAGCGG...TTCTTCACT AACTACCGCC CACAATT 198 S. saprophyticus S. saprophyticus TACACCACA TACAAAATTC AAAGCGG...TTCTTCACT AACTACCGCC CACAATT 199 S. saprophyticus TACACCACA TACAAAATTC AAAGCGG...TTCTTCACT AACTACCGCC CACAATT 200 S. sciuri sciuri CACACCTCA CACTAAATTC AAAGCTG...TTCTTCACA AACTACCGCC CACAATT 201 S. warneri TACACCACA TACABAATTC AAAGCGG...TTCTTCAgT AACTACCGCC CACAATT 35 S. warneri 187 S. warneri TACACCACA TACAAAATTC AAAGCGG...TTCTTCAgT AACTACCGCC CACAATT 202 S. warneri TACACCACA TACAAAATTC AAAGCGG...TTCTTCAgT AACTACCGCC CACAATT 203 _a B. subtilis CACTCCACA CAGCAAATTC AAAGCTG...TTCTTCTCT AACTACCGTC CTCAGTT CAAGCCGCA cACcaAgTTC gAAtCTG...TTCTTCAaa ggCTAcCGtC CgCAGTT 78 E. coli 138^b 40 TACTCCACA CACTAACTTC AAAGCTG...TTCTTCAAC AACTACCGCC CACAATT L. monocytogenes Selected sequences for species-specific hybridization 45 ACCACA TACTGAATTC AAAG (S. aureus) 585 probes

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.

(S. epidermidis) TTCACT AACTATCGCC CACA

This sequence was obtained from Genbank accession #Z99104.

b The SEQ ID NO. refers to previous patent publication W098/20157.

Annex XVI: Strategy for the selection of the Staphylococcus hominis-specific hybridization probe from tuf sequences.

5

		358			383	SEO	ID NO.:
	S. aureus		ATCGGTtTac	AtGACACaTC	TAA		179
10	S. aureus	ATC	ATCGGTtTac	AtGACACaTC	TAA		176
-	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		177
	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		178
	S. aureus aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		180
	S. auricularis	ATC	ATCGGTATGA	AAGAcggTTC	AAA		181
15	S. capitis capitis	ATC	ATCGGTATCC	ACGAAACTTC	TAA		182
	M. caseolyticus	ATC	ATTGGTTTAA	ctGAAgaacC	AAA		183
	S. cohnii	ATC	ATCGGTATgc	AAGAAgaTTC	CAA		184
	S. epidermidis	ATC	ATCGGTATgc	ACGAAACTTC	TAA		185
	S. haemolyticus	ATC	ATTGGTATCC	AtGACACTTC	TAA		186
20	S. haemolyticus	ATC	ATTGGTATCc	AtGACACTTC	TAA		189
	S. haemolyticus	ATC	ATTGGTATCc	AtGACACTTC	TAA		190
	S. haemolyticus	ATT	ATTGGTATCA	AAGAAACTTC	AAT		188
	S. hominis	ATT	ATTGGTATCA	AAGAtACTTC	TAA		196
	S. hominis	ATT	ATTGGTATCA	AAGAAACTTC	TAA		194
25	S. hominis hominis	TTA	ATTGGTATCA	AAGAAACTTC	TAA		191
	S. hominis	ATT	ATTGGTATCA	AAGAAACTTC	TAA		193
	S. hominis	ATT	ATTGGTATCA	AAGAAACTTC	TAA		195
	S. lugdunensis	ATT	ATTGGTATCC	AcGAtACTaC	TAA		197
	S. saprophyticus			AAGAAgaaTC			198
30	S. saprophyticus	ATC	ATCGGTATgc	AAGAAgaaTC	CAA		200
	S. saprophyticus		_	AAGAAgaaTC			199
	S. sciuri sciuri	ATC	ATCGGTtTaA	ctGAAgaaTC	TAA		201
	S. warneri			Atgacacttc			187
	S. warneri			AtGACACTTC			192
35	S. warneri	ATC	ATCGGTTTAC	AtGACACTTC	TAA		202
	S. warneri	ATC	ATCGGTTTac	AtGACACTTC	TAA		203
	B. subtilis			AAGAAgagag			_a
	E. coli		_	AAGAGACTCA			78 ୂ
	L. monocytogenes	GTT	ATCGGTATCg	AAGAAgaaag	AAA		138 ^b
40							
	Selected sequence for						
	species-specific						
	hybridization probe		ATTGGTATCA	AAGAAACTTC			597

45

The sequence numbering refers to the *Staphylococcus aureus* tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

⁵⁰

^a This sequence was obtained from Genbank accession #Z99104.

b The SEQ ID NO. refers to previous patent publication WO98/20157.

amplification Enterococcus-specific of the selection primers from tuf sequences. Strategy for Annex XVII:

		270	298	556	582	SEO ID NO.:	Accession #:
V	E. avium	TAGAATTAAT GGCTC	GGCTGCTGTT GACGAATAT	TGAA GATATCCAAC GTGGACAAGT	ልፐጥ	131ª	ı
				GACATCCAAC	ATT	28	ı
			GGCTGCAGTT GACGAATAC	TGAA GATATCCAAC GTGGtCAAGT	ATT	59	,
			GGCTGCAGTT GACGAATAT	. TGAA GATATCCAAC GTGGtCAAGT	ATT	09	ı
	E. durans	TTGAATTAAT GGCT	GGCTGCAGTT GACGAATAT	. TGAA GACATCCAAC GTGGACAAGT	TTT	61	
10	E. flavescens	TGGAATTAAT GGCT	GGCTGCAGTT GACGAATAC	. TGAA GACATCCAAC GTGGACAAGT	ATT	65	•
	E. faecium	TTGAATTAAT GGCTC	GGCTGCAGTT GACGAATAC	. TGAA GACATCCAAC GTGGACAAGT	TTT	809	,
	E. faecalis	TAGAATTAAT GGCTC	GGCTGCAGTT GACGAATAT	TGAA GATATCGAAC GTGGACAAGT	ATT	607	ı
	E. gallinarum	TGGAATTGAT GGCT	GGCTGCAGTT GACGAATAC	.TGAA GACATCCAAC GTGGACAAGT	ATT	609	ı
	E. hirae	TTGAATTGAT GGCT	GGCTGCAGTT GACGAATAT	. TGAA GACATCCAAC GTGGACAAGT	TTT	29	1
15	E. mundtii	TTGAATTGAT GGCT	GGCTGCAGTT GACGAATAT	. TGAA GACATCCAAC GTGGtCAAGT	TTT	89	1
	E. pseudoavium	TAGAATTAAT GSCT	GSCTGCTGTT GACGAATAC	. TGAA GACATCCAAC GTGGACAAGT	ATT	69	ı
	E. raffinosus	TAGAATTAAT GGCT	GGCTGCTGTT GATGAATAC	. TGAA GACATCCAAC GTGGACAAGT	ATT	70	ı
	E. saccharolyticus	TCGAATTAAT GGCT	GGCTGCAGTT GACGAATAT	. TGAA GACATCCAAC GTGGACAAGT	ATT	71	ı
	E. solitarius	TGGACTTAAT GGaTK	GGaTGCAGTT GATGACTAC	.TGAt GATATCGAAC GTGGtCAAGT	ATT	72	ı
20	E. coli	TGGAACTggc tGgct	tegetteerg GArtetTAY	.TGAA GAAATCGAAC GTGGtCAgGT	ACT	78	1
	B. cepacia	TGAgccTggc cGac	cGacGCgcTg GACacgTAC	. TGAA GACGTGGAGC GTGGCCAGGT	TCT	16	ı
	B. fragilis	TGGAACTGAT GGaa	GGaaGCTGTT GATactTGG	.GAAC GAAATCAAAC GTGGtatgGT	TCT	1	M22247
	B. subtilis	TCGAACTTAT GGaT	GGaTGCgGTT GATGAGTAC	.TGAA GAAATCCAAC GTGGtCAAGT	ACT	ı	299104
	C. diphtheriae	TCGAccTcAT Gcag	GCAGGCTLGC KATGALTCC	.CGAA GACGILGAGC GIGGCCAGGI	TGT	662	1
25	C. trachomatis	GAGAGCTAAT GCBB(GCBBGCCGTC GATGAtAAT	GAAC GATGTGGAAA GAGGAAtgGT	TGT	22	ı
-	G. vaginalis	AGGAACTCAT Gaag	GAAGGCTGTT GACGAGTAC	.TACC GACGITGAGC GIGGLCAGGI	TGT	135	ı
	S. aureus	TAGAATTART GGaa(GGaaGCTGTa GATactTAC	.TGAA GACGTACAAC GTGGtCAAGT	ATT	179	1
	S. pneumoniae	TGGAATTGAT GAAC	GAACACAGTT GATGAGTAT	.TGAt GAAATCGAAC GTGGACAAGT	TAT	145	ı
	A. adiacens	TAGAATTAAT GGCT	GGCTGCTGTT GACGAATAC	.TGAA AACATCGAAC GIGGACAAGI	TCT	118^{a}	
30	G. haemolysans	TCGAATTAAT GGaa	GGRAGCAGTT GACGAATAC TGAA	. TGAA GACATCGAAC GTGGACAAGT	TTT	87	ı
	G. morbillorum	TCGAATTAAT GGRA	GGARACAGTT GACGAGTACTGAA	. TGAA GATATCGAAC GTGGACAAGT	TTT	88	ı
	Selected sequence for						
36	amplification primer	AATTAAT GGCT	aattaat ggctgcwgtt gaygaa			1137	
S	Selected sequence for amplification primer ^b			A GAYATCSAAC GTGGACAAGT		. 1136	

to the selected "I" stands The sequence numbering refers to the *Enterococcus durans tuf* gene fragment (SEQ ID NO. 61). Nucleotides in capitals are identical to the sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.
"Y" "W" and "S" designate nucleotide positions which are degenerated. "Y" stands for C or T; "W" stands for A or T; "S" stands for C or G. for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

The SEQ ID NO. refers to previous patent publication WO98/20157. This sequence is the reverse-complement of the selected primer.

⁴⁵

602 1122

T GGTGCATTGC TACGTGG

AAGT TGAAGTTGTT GGTATT (E. faecium)

hybridization probes

group-specific

32

faecalis-specific faecium-specific hybridization probe and of the Enterococcus casseliflawus-flavescens-gallinarum group-Enterococcus specific hybridization probe from tuf sequences. Enterococcus the of selection the hybridization probe, of the for Strategy Annex XVIII:

S

		395	448526	549 SEQ I	SEQ ID NO.: Acce	Accession #:
	E. avium	GTTGA ACGIGGACAA GITCGCGTTG GTGACGAAGI TGAAATCGIA G	GGTATCGCTCATC GGTGCtTTGt 1	TACGTGGTGT 1	131ª	1
	E. casseliflavus	GTTGA ACGTGGGCAA GTTCGCGTTG GTGACGAAGT TGAAATCGTT G	GGTATTGCTCATT GGTGCATTGC 1	TACGTGGTGT	58	ı
9	E. cecorum	GTTGA ACGTGGaCAA GTaCGtGTTG GTGACGAAGT TGAAATAGTT G	GGTATCCATCATC GGTGCATTAt 1	TACGTGGTGT	59	•
	E. dispar	GTTGA ACGTGGaCAA GTTCGCGTTG GTGACGAAGT TGAAATCGTA G	GGTATCGCTCAIT GGTGCATTAt 1	TACGTGGTGT	09	ı
	E. durans	GTTGA ACGTGGacAA GTTCGCGTTG GTGACGttGT aGAtaTcGTT G	GGTATCGCACAIT GGTGCtTTaC 1	TACGTGGTGT	61	1
	E. faecalis	GTTGA ACGTGGTGAA GTTCGCGTTG GTGACGAAGT TGAAATCGTT G	GGTATTAAACTTc GGTGCtTTat 1	TACGIGGIGT	62	ı
	E. faecium	GTTGA ACGIGGACAA GITCGCGTTG GTGACCAAGI TGAAGTIGIT G	GGTATTGCT CAIT GGTGCtTTaC 1	TACGTGGTGT 6	809	ı
15	E. flavescens	GTTGA ACGTGGGCAA GTTCGCGTTG GTGACGAAGT TGAAATCGTT G	GGTATTGCTCAIT GGTGCATTGC 1	TACGTGGGGT	65	ı
	E. gallinarum	GIIGA ACGIGGACAA GIICGCGIIG GIGAIGAAGI AGAAAICGII G	GGTATTGCTCATT GGTGCATTGC 1	TACGTGGGGT 6	609	ı
	E. hirae	GTIGA ACGIGGACAA GIICGCGIIG GIGACGLLGI AGALAICGII G	GGTATCGCACAIT GGTGCtTTaC 1	TACGTGGTGT	29	1
	E. mundtii	GTTGA ACGTGGacAA GYTCGtGTTG GTGACGttar cGAtarcGTT G	GGTATCGCACAIT GGTGCGTTaC 1	TACGTGGTGT	89	1
	E. pseudoavium	CTICA ACCTGGacAA CTTCCCCTTC CTCACCAAGT TGAAATCCTA G	GGTATCGCTCATC GGTGCATTAL 1	TACGIGGTGT	69	1
23	E. raffinosus	GTTGA ACGIGGACAA GIICGCGTTG GTGACGAAGI TGAAATCGIA G	GGTATTGCTCATT GGTGCATTAL 1	TACGTGGTGT	70	,
86	E. saccharolyticus	CTTGA ACGTGGacAA GTTCGCGTTG GTGACGttGT aGAAATCGTT G	GGTATCGACCATC GGTGCtTTat 1	TACGTGGGGT	71	,
5	E. solitarius	GTTGA ACGCGGgact arcaagTCG GCGATGAAGT TGACATTATT G	GGTATTCAT CAIT GGTACLTTGt 1	TACGIGGIGT	72	1
	C. diphtheriae	GTTGA gCGTGGctcc cTgaagGTCA ACGAGGAcGT cGAgaTcaTc G	GGTATCCGCCTGT GGTctgcTtC 1	TCCGTGGCGT 6	162	1
	G. vaginalis	GITGA GCGIGGIAAG CICCCAATCA ACACCCCAAGI IGAGAICGII G	GGTtIgCGCCACT GGTcttcTtC 1	TcCGcGGTAT 1	135	ı
25	B. cepacia	GTCGA gCGcGcatc GrgaagGTCG GCGAAGAAar cGAAarcGrc G	GGTATCAAGCGTT GGTatccTGC	TgCGcGGCAC	16	1
	S. aureus	GTTGA ACGTGGTCAA ATCAAGTTG GTGAAGAAGT TGAAATCATC G	GGTtTaCATCATT GGTGCATTAt 1	TACGTGGTGT 1	179	,
	B. subtilis	GTAGA ACGCGGaCAA GTTaaaGTCG GTGACGAAGT TGAAaTcaTc G	GGTCTTCAACAIT GGTGCccTtC 1	TtcGcGGTGT	1	Z99104
	S. pneumoniae	ATCGA cCGTGGTatc GTTaaaGTCA ACGACGAAAT cGAAATCGTT G	GGTATCAAACGTa GGTGtccTtC	TECGTGGTGT 1	145ª	•
	E. coli	GTAGA ACGCOGTAto aTcaaaGTTG GTGAAGAAGT TGAAATCGTT G	GGTATCAAACGTa GGTGttcTGC 1	TGCGTGGTAT	78	,
93	B. fragilis	ATCGA AacTGGTGtt aTcCatGTAG GTGATGAAaT cGAAATCCTC G	GGTtTgGGTCGTa GGTctgTTGC 1	TECGIGGTGT		M22247
	C. trachomatis	ATTGA gCGrGGaatt GTTaaaGTTT CCGATAAAGT TCAgtTgGTC G	GGTCTTAGA CGIT GGattgcTcC 1	TcaGaGGTAT	22	1
	Selected sequences for species-specific or	or Ga acgregreaa Gricec (E. faecalis)		Ħ	1174	

to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the The sequence numbering refers to the Enterococcus faecium tuf gene fragments (SEQ ID NO. 608). Nucleotides in capitals are identical sequences displayed.

The SEQ ID NO. refers to previous patent publication WO98/20157.

the selection of primers for the identification of platelets contaminants from tuf sequences. Strategy for Annex XIX:

S		467 495 689	717	SEQ ID NO.:	Accession #:
	B. cereus	GTA ACTGGTGTAG AGATGTTCCG TAAACTC AGTTCTACTT CCGTACAACT GACGTAAAC	AACT GACGTAAC	7	
	B. subtilis	GTT ACAGGTGTTG AAATGTTCCG TAAGCTC AGTTCTACTT CCGTACAACT	NACT GACGTAAC	ı	Z99104
	E. cloacae	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACAACT	NACT GACGTGAC	54	1
	E. coli	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACTACT	TACT GACGTGAC	78	ı
10	K. oxytoca	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACAACT	AACT GACGTGAC	100	ı
	K. pneumoniae	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACTACT	PACT GACGTGAC	103	1
	P. aeruginosa	TGC ACGGGGGTTG AAATGTTCCG CAAGCTC AGTTCTACTT CCGTACCACK	SACK GACGTGAC	153	ı
	S. agalactiae	GIT ACTGGTGTTG AAATGTTCCG TAAACAC AATTCTACTT CCGTACAACT	AACT GACGTAAC	209	ì
	S. aureus	GIT ACAGGIGITG AAAIGITCCG TAAAITC AAITCIAITI CCGIACIACI	FACT GACGTAAC	140ª	1
15	S. choleraesuis	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACTACT	PACT GACGTGAC	159	ļ
	S. epidermidis	GIT ACTGGTGTAG AAATGTTCCG TAAATTC AATTCTATTT CCGTACTACT	TACT GACGTAAC	611	ì
	S. marcescens	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACCACT	CACT GACGTGAC	168	I
2	S. mutans	GIT ACTGGTGTTG AAATGTTCCG TAAACAC AATTCTACTT CCGTACAACT	AACT GACGTAAC	224	ı
87	S. pyogenes	GIT ACTEGRICITG AAAIGITCCG TAAACAC AATICTACIT CCGIACAACI	AACT GACGTAAC	ı	U40453
, 20	S. salivarius	GIT ACTGGTGT AAATGITCCG TAAACAC AGTICTACII CCGTAC	CCGTACAACT GACGTAAC	146^{a}	1
	S. sanguinis	GIT ACTGGTGTTG AAAIGITCCG TAAACAC AGTTCTACTT CCGTACAACT	AACT GACGTTAC	227	ſ
	Y. enterocolitica	TGT ACTGGCGTTG AAATGTTCCG CAAACTC AGTTCTACTT CCGTACAACT	AACT GALGTAAC	235	ı
	Selected sequence for	Or.			
22	amplification primer	C ACTGGYGTTG ALATGTTCCG YAA		636	
	Selected sequence for amplification primer ^b	or Thetayth cestaciaet gaest	IACT GACGT	637	
30	The sequence numbering refers to the	The sequence numbering refers to the E . $coli tuf$ gene fragment (SEQ ID NO. 78). Nucleotides in capitals are identical the solution of match those someones with solution by lower-rese letters. Dute indicate the). Nucleotides	in capitals a	re identical t

to ပ "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for indicate gaps Dots lower-case letters. selected sequences or match those sequences. Mismatches are indicated by the selected sequences the sequences displayed.

or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 35

The SEQ ID NO. refers to previous patent publication WO98/20157. a The SEQ ID NO. refers to previous parent from the selected primer.

A This sequence is the reverse-complement of the selected primer.

Strategy for the selection of the universal amplification primers from atpD sednences. Annex XX:

5	C. glutamicum	616 GTGTTCGGTC		GCCACCAGGA	GICCGTAIG		_			SEQ ID NO.:	Acc
	M. tuberculosis	GTATTCGGAC	AGATGGACGA	35555555555555555555555555555555555555	CCCGTATG	CGTCGGATG	rg ccarcaacca	G TGGGATACCA	GCCCAC	- 201	273419
		GTCTTTGGTC	AAATGAATGA		GCACGTATG		_		-	380	1
	B. subtilis	GTATTCGGAC	AAATGAACGA	၁၅၅၁၁၅၁၁၅	GCACGTATG	CGTCGTATG	IS CCTTCAGCGG	G TTGGTTATCA	GCCGAC	ı	228592
01	L. monocytogenes		AAATGAACGA	GCCACCAGGT	GCGCGTATG	CGTCGTATG	IS CCATCTGCGG	G TAGGTTACCA	ACCAAC	324	į
	S. aureus	GTATTCGGGC	AAATGAATGA	GCCACCTGGT	GCACGTATG	CGTCGTATG	'g CCTTCTGCAG	G TAGGTTACCA	ACCAAC	366	ı
	A. baumannii	GTCTACGGTC	AGATGAACGA	GCCACCAGGT	aaccertra	CGCCGTATG	rg CCATCTGCGG	G TAGGTTACCA	ACCTAC	243	ı
	N. gonorrhoeae	GTGTATGGCC	AAATGAACGA	ACCTCCAGGC	aaccerere	CGCCGTATG	rg ccrrcracag	G TGGGTTACCA	ACCGAC		Genome project
	C. freundii	GTATATGGCC	AGATGAACGA	GCCGCCTGGA	aaccercf	CGTCGTAT9	PS CCATCAGCGG	G TAGGCTACCA	GCCGAC	264	•
15	E. cloacae	GTTTACGGCC	AGATGAACGA	GCCACCAGGA	AACCGTCTG	CGCCGTATG	PS CCTTCAGCGG	G TAGGTTATCA	GCCTAC	284	ı
	E. coli	GTGTATGGCC	AGATGAACGA	GCCGCCGGGA	BACCGTCTG	CGCCGTATG	PS CCTTCAGCGG	G TAGGTTATCA	GCCGAC	699	V00267
	S. typhimurium	GTGTATGGCC	AGATGAACGA	GCCGCCGGGA	BACCGTCTG	CGCCGTATG	PS CCTTCCGCAG	G TAGGTTACCA	GCCGAC	351	ı
	K. pneumoniae	GTGTACGGCC	AGATGAACGA	GCCGCCGGGA	AACCGTcTG	CGCCGTATG	PG CCTTCAGCGG	G TAGGTTATCA	GCCGAC	317	ı
	S. marcescens	GTTTACGGCC	AGATGAACGA	GCCACCAGGT	aaccercfe	CGCCGTATG	Pg CCATCCGCGG	G TAGGTTATCA	GCCAAC	357	ı
20	Y. enterocolitica	GTTTATGGCC	STITATGGCC AAATGAATGA	GCCACCAGGT	BACCGICTG	CGCCGTATG	Pg CCATCTGCCG	G TAGGTTACCA	GCCAAC	393	1
	B. cepacia	GTGTACGGCC	AGATGAACGA	ವಿಶಾರವಿದ್ದಾರವಿ	BACCGTCTG	CGCCGTATG	rg ccerceecae	G TGGGCTATCA	GCCGAC	ı	X76877
2	H. influenzae	GTTTATGGTC	AAATGAACGA	GCCACCAGGT	aaccertra	CGTCGTATG	Pg CCATCCGCGG	G TAGGTTACCA	ACCGAC	ı	U32730
283	M. pneumoniae	GTGTTTGGTC	AGATGAACGA	ACCCCCAGGA	GCACGGATG	CGGCGGATG	P CCATCAGCCG	G TGGGTTACCA	ACCAAC	ŀ	U43738
8	H. pylori	TGCTATGGGC	TGCTATGGGC AAATGAATGA	GCCACCAGGT	GCAAGGAAt	CGCCGTATC	C CCTTCAGCGG	G TGGGGTATCA	GCCCAC	640	V00267
23	B. fragilis	GTGTTCGGAC	GTGTTCGGAC AGATGAACGA	ACCTCCTGGA	GCACGIgct	TCACGTATG	rg ccrrcreced	G TAGGTTATCA ACCTAC	ACCTAC		M22247
	Colorted common for										
		U	C ARATGRAYGA RCCICCIGGI	RCCICCIGGI	GYIMGIATG					562	
	la l	TAYGGIC	TAYGGIC ARATGAAYGA	RCCICCIGGI						564	
30											
	Selected sequences for										
	universal primersa					¥	ATH CCITCIGCIG	G TIGGITAYCA RCC	RCC.	565	
						řě	ATG CCITCIGCIG	G TIGGITAYCA	RCC .	563	
35	The sequence numbering refers to the Escherichia coli atpD gene fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to selected sequences or match those sequences. Mismatches for SEQ ID NOs. 562 and 565 are indicated by lower-case letters. Mismatches	refers to t	he <i>Escheric</i> sequences.	hia coli at Mismatches	<i>pD</i> gene fra for SEQ ID	fragment (SEQ ID NO. 669). Nucleotides in capi ID NOs. 562 and 565 are indicated by lower-cas	ID NO. 669 nd 565 are). Nucleotide	es in cap lower-ca	itals are : se letters	this $coli\ atpD$ gene fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to the Mismatches for SEQ ID NOs. 562 and 565 are indicated by lower-case letters. Mismatches for

"Y" stands for C or "R" "Y" "M" "K" "W" and "S" letters designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "H" stands for A, C or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

These sequences are the reverse-complement of the selected primers. SEQ ID NOs. 564 and 563 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed.

⁸

Annex XXI: Specific and ubiquitous primers for nucleic acid amplification (recA sequences).

		Originatin	g DNA fragmer
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
	Universal primers (recA)		
919	5'-GGI CCI GAR TCI TMI GGI AAR AC	918 ^a	437-459
920 ^b	5'-TCI CCV ATI TCI CCI TCI AIY TC	918 ^a	701-723
921	5'-TIY RTI GAY GCI GAR CAI GC	918ª	515-534
922 ^b	5'-TAR AAY TTI ARI GCI YKI CCI CC	918 ^a	872-894
	Sequencing primers (recA)		
1605	5'-ATY ATY GAA RTI TAY GCI CC	1704a	220-239
1606 -	5'-CCR AAC ATI AYI CCI ACT TTT TC	1704 ^a	628-650
	Universal primers (rad51)		
935	5'-GGI AAR WSI CAR YTI TGY CAY AC	939a	568-590
936 ^b	5'-TCI SIY TCI GGI ARR CAI GG	939 a	1126-1145
	Universal primers (dmc1)		
937	5'-ATI ACI GAR GYI TTY GGI GAR TT	940ª	1038-1060
938p	5'-CYI GTI GYI SWI GCR TGI GC	940a	1554-1573

a Sequences from databases.

35

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXII: Specific and ubiquitous primers for nucleic acid amplification (speA sequences).

		Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Bacterial	species: Streptococcus pyogenes		
994	5'-TGG ACT AAC AAT CTC GCA AGA GG	993a	60-82
995 ^b	5'-ACA TTC TCG TGA GTA ACA GGG T	993 ^a	173-194
996	5'-ACA AAT CAT GAA GGG AAT CAT TTA G	993 a	400-424
997b	5'-CTA ATT CTT GAG CAG TTA CCA TT	993 a	504-526
998	5'-GGA GGG GTA ACA AAT CAT GAA GG	993 a	391-413
997Þ	5'-CTA ATT CTT GAG CAG TTA CCA TT	993ª	504-526

a Sequence from databases.

²⁵ b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

pyogenes-specific Streptococcus amplification primers from speA sequences. oŧ selection the for strategy First Annex XXIII:

		Accession #	57	85 170	197	SEQ ID NO.:
' '	spea	X61573	CCTT GGGCTAACAA CCTCACAAGA	AGTAT GTGAtCCT.GT cgtTCAtGAG	Atgag AATGTAAA	ı
	speA	AF029051	GGGCTAACAA CCTCACAGA	aGTAT GTGAtCCT.GT cgtTCAtGAG	Atgag aatgtaa	ı
	speA	X61571	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
	spea	X61570	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
	spea	X61568	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	t
2	spea	X61569	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	ı
	spea	X61572	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	IACTCACGAG AATGTGAA	1
	speA	X61560	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	ı
	speA	U40453	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	993
	speA	X61554	TCIT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
15	speA	X61557	TCIT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	ı
	spea	X61559	TCIT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
	speA	X61558	TCIT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	ı
	speA	X61556	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	ı
	speA	X61555	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
20	speA	X61560	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
	speA	X61561	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	IACTCACGAG AATGTGAA	1
20	speA	X61566	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	TACTCACGAG AATGTGAA	1
1	speA	X61567	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	TACTCACGAG AATGTGAA	ı
	speA	X61562	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTCACGAG	ACGAG AATGTGAA	1
52	speA	X61563	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	IACTCACGAG AATGTGAA	ı
	speA	X61564	TCTT GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	TACTCACGAG AATGTGAA	1
	speA	X61565	TCTT GGACTAACAA TCTCGCAAGA	GGTAT GTGACCCT. GT TACTC	IACTCACGAG AATGTGAA	t
	speA	AF055698	GGACTAACAA TCTCGCAAGA	GGTATGTGACCCT.GT TACTC	TACTCACGAG AATGTGAA	ı
	speA	X03929ª	TCTT GGACTAACAA TCTtGCCAAA	AGGTAGTGACCCTGGT TACTCACGAG	ACGAG AATGTGAA	1
30						
	Select	Selected sequence for				
	specie	species-specific primer	T GGACTAACAA TCTCGCAAGA	99		766
	Select	Selected sequence for				
32	specie	species-specific primer ^b		ACCCT.GT TACTCACGAG AATGT	ACGAG AATGT	995
	17 9 9	mionce nimbering refers	The semience numbering refers to the Strentococcus nuogenes and gene fragment (SRO ID NO	os snøå dene fradment (SRC	9931	Will postides in seritals are sidenti-

The sequence numbering refers to the Streptococcus pyogenes speA gene fragment (SEQ ID NO. 993). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.

The extra G nucleotide introducing a gap in the sequence is probably a sequencing error. This sequence is the reverse-complement of the selected primer.

pyogenes-specific	
Streptococcus	
of	nces
selection	speA sequences
the	from
for	rimers
strategy	Ĭ
Second	amplification
Annex XXIV:	

		Accession #	388	427 501 529	SEQ ID NO.:
S	speA	X61573	TA TEGAGGESTA ACAAATCATE	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	AF029051	TA TGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ſ
	spea	X61571	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X61570	TA CGGAGGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	1
	spea	X61568	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
01	spea	X61569	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	1
	spea	X61572	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	spea	X61560	TA CGGAGGGTA ACAAATCATG	AIG AAGGGAAICA ITIAGAAAAAAAAIGGI AACIGCICAA GAAITAGACT	1
	speA	U40453	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAATGGT AACTGCTCAA GAATTAGACT	993
	speA	X61554	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAATGGT AACTGCTCAA GAATTAGACT	•
15	speA	X61557	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X61559	TA CGGAGGGGTA ACAAATCATG	ATG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X61558	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	1
	spea	X61556	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	spea	X61555	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	•
ର 29	spea	X61560	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	1
2	speA	X61561	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	SpeA	X61566	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X61567	TA CGGAGGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	•
	spea	X61562	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
25	spea	X61563	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X61564	TA CGGAGGGTA ACANATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	i
	speA	X61565	TA CGGAGGGTA ACAAATCATG	NTG AAGGGAATCA TITAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	1
	speA	AF055698	TA CGGAGGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAGACT	ı
	speA	X03929	TA CGGAGGGTA ACAAATCATG	ATG AAGGGAATCA TTTAGAAAAAAAATGGT AACTGCTCAA GAATTAG.CT	1
30					
	Select	Selected sequences for species-specific primers	GGAGGGTA ACAAATC	ACAMATCATG AAGG	866
	•	•	ACAAATC	acaaatcatg aagggaatca titag	966
35	Select	Selected sequence for species-specific primer ^a		AATGGT AACTGCTCAA GAATTAG	
	•	1 .			

The sequence numbering refers to the Streptococcus pyogenes speA gene fragment (SEQ ID NO. 993). Dots indicate gaps in the sequences displayed.

This sequence is the reverse-complement of the selected primer.

	Annex XXV:	Strategy	- 1			n of	Strep	Streptococcus	pyogenes-specific	cific
		amplification	cation p	rimers	from tuf	seguence	es.			SEO TD
		140					186 619		647	NO. :
S	S. anginosus	A AG	A AGTTGACTTG GT	GTTGACGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GARATGCC	AGGTTCAATE CA	CATCCACACA CTAAATT	211
	S. bovis	A AG	A AGTTGACCTT GT	GTTGATGACG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	AGGTTCAATC CA	CACCCACACA CTAAATT	212
	S. dysgalactiae	A AAT	AATTGACCTT GI	GTTGAcGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	Aggricaarc a	AACCCACACA CTAAATT	217
	S. pyogenes	A AGI	AGTTGACCTT GI	GTTGATGACG A	AAGAGTTGCT TG	TGAATTAGIT G	GAGATGCC	AAGTTCAATC AA	AACCCACACA CTAAATT	1002
	S. agalactiae	A AGT	AGTTGACCTT GT	GTTGATGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GARATGCC	Aggricaarc as	AACCCACACA CTAAATT	144ª
10	S. oralis	A AAT	AATTGACTTG GI	GTAGACGACG 1	AAGAATTGCT TG	TGAATTGGTT G	GARATGCC	AGGTTCAATC A	AACCCACACA CTAAATT	985
	S. pneumoniae	A AG	AGTTGACTTG GI	GTTGACGACG 1	AAGAATTGCT TG	TGAATTGGTT 6	GAAATGCC	AGGTTCAATC A	AACCCACACA CTAAATT	145ª
	S. cristatus	A GA	GATCGACTTG GT	GTTGATGACG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	AGGTTCAATC AN	AACCCACACA CTAAATT	215
	S. mitis	A GA	GATCGACTTG GI	GTTGATGACG 1	AAGAATTGCT TG	TCAATTGGTT G	GAAATGCC	Aggrecaarc a	NACCCACACA CTAAATT	982
	S. gordonii	A AG	AGTTGACTTG GT	GTTGAcGAtG 1	AAGAATTGCT TG	rcagrrggrr g	GAAATGCC	AGGTTCAATC A	AACCCACACA CTAAATT	200
15	S. sanguinis	A AG	AGTTGACTTG GT	GTTGAcGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	Aggrecaarc a	AACCCACACA CTAAATT	227
	S. parasanguinis	A AG	AGTTGACTTG GI	GTTGATGAtG 1	AAGAATTGCT TG	TGAATTGGTT 6	GAAATGCC	Aggricaarc a	AACCCACACA CTAAATT	225
	S. salivarius	A AG	AGTTGACTTG GT	GTTGACGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	TEGTTCAATC A	AACCCACACA CTAAATT	146ª
	S. vestibularis	A AG	AGTTGACTTG GT	GTTGAcGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATG CC	TEGTTCAATC A	AACCCACACA CTAAATT	231
2	S. suis	A AG	AGTTGACTTG GT	GTTGAcGAtG 1	AAGAATTGCT TG	TGAGTTGGTT G	GAAATGCC	Aggrrctarc A	AACCCACACA CTAAATT	229
293 293	S. mutans	A AG	AGTTGALLTG GT	GTTGACGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	Aggrrcaart ca	CACCCACACA CTAAATT	224
3	S. ratti	A GG	GGTTGACtTg GI	GTTGATGAtG	AAGAATTGCT TG	TGAATTGGTT G	GARATGCC	Aggricaart ca	CATCCGCACA CTAAATT	226
	S. macacae	A AG	AGTTGACTTA GI	GTTGATGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	AgGATCAATt cl	CATCCACACA CTAAATT	222
	S. cricetus	A GG	GGTTGACTTG GT	GTTGAcGAtG 1	AAGAATTGCT TG	TGAATTGGTT G	GAAATGCC	TEGTTCAATC CA	CATCCACACA CTAAATT	214
	E. faecalis	A AA	AATGGAtaTg GI	GTTGATGACG A	AAGAATTAtT aG	aGAATTAGTA G	GAAATGCC	AgcTaCAATC Ac	ACTCCACACA CAAAATT	607
25	S. aureus	A AG	AGTTGACATG GT	GTTGAcGAtG 1	AAGAATTAtT aG	aGAATTAGTA G	GAAATGCC	TGGTTCAATE AC	ACACCACACA CTGAATT	176
	B. cereus	A AT	ATGCGACATG GT	GTAGATGACG 1	AAGAATTAtT AG	aGAATTAGTa G	GAAATGAG	CgGTTCtgTa A	AAagCtCACg CTAAATT	7
	E. coli	A AT	ATGCGACaTG GI	GTTGATGACG 1	AAGAGCTGCT gG	ggaactggtr 6	GAAATGCC	GgGCaCcATC A	AAGCCGCACA CCAAGTT	78
	Selected sequences for	; for								
30	species-specific primers		TTGACCTT GI	GTTGATGACG			3			999
	•	·		•	AAGAGITIGCI IG	TCAALTAGIT 6	GAG			TOOT
	Selected sequence for species-specific primer ^b	tor orimer ^b						AGTTCAATC AACCCACACA	ACCCACACA CTAA	1000
35	The sequence numbering refers to the Streptococcus pyogenes tuf	ing refers to	the Strepto	ococcus pyo		gene fragment ((SEQ ID NO.	1002). Nucleoti	1002). Nucleotides in capitals are	identical

The sequence numbering refers to the Streptococcus pyogenes tuf gene fragment (SEQ ID NO. 1002). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

The SEQ ID NO. refers to previous patent publication W098/20157.

⁴⁰ b This sequence is the reverse-complement of the selected primer.

1080

ACAT TGTCTGGTGA CAGTAGCTAT A

Annex XXVI: Strategy for the selection stx_i -specific amplification primers and hybridization probe.

		1
# uo:	230 263 343 375 391 421	NO.:
- es	TYGAIGIC AGAGGGAIAG AICCAGAGGA AGGGCGTAICG CITIGCIGAI TITICACAIG ITACCITIGITACAI IGICIGA CAGIAGCIAT ACCA	ı
-	TYGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	ı
M17358 T	ITGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	ı
	TTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTAGTGA CAGTAGCTAT ACCA	ı
L04539 T	FTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	ı
-	TTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	ı
M24352 T	TTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	ı
X07903 T	TTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	1
Z36899 T	ITGATGIC AGAGGGAIAG AICCAGAGGA AGGGCGTATGG CITTGCIGAI ITTTCACAIG ITACCITTGITACAI TGICIGGIGA CAGIAGCIAI ACCA	ı
Z36901 T	TTGATGTC AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTGCTGAT TTTTCACATG TTACCTTTGTTACAT TGTCTGGTGA CAGTAGCTAT ACCA	1076
	NGGATATA CGAGGGCTLG ATG1CLALCA gGcGCGTACCG tTTTCCAGAT TTTACACATA TAtCaGTGGTTLCCA TGACAACGA CAGCAGTTAT ACCA	1
-	NGGATATA CGAGGGCTLG ATGLCLALCA gGcGCGTACCG tTTTCCAGAT TTTACAATA TALCAGTGGTTLCCA TGACAACGAGGA CAGCAGLTAT ACCA	1
M21534 T.	TAGGTATA CGAGGGCTLG ATGTLLALCA gGaGCGTACaG aTTTLCaGAT TTTGCACATA TAtCATTGATTLCCA TGACAACGA CAGCAGTTAT ACCA	ı
M36727 T	PAGGIBIR CGAGGGCTLG ATGLTLALCA GGGCCGTACGG STTTLCGGAT TTTGCACATR TALCATTGATTLCOR TGACARGGA CAGCAGLTAT ACCA	1
X81415 T	PAGGIBIR CGAGGGCTLG AIGLTLALCA GGRGCGTACRG RITTLCRGAT TITGCACATR TRICCATIGAITLCCR TGACRARGGA CAGCAGLTAT ACCA	ı
X81416 T.	PAGGTBTE CGAGGGTTG ATGTLLALCA gGaGCGTACeG aTTTLCeGAT TTTGCACATE TELCETTGATTLCCe TGaCeacgGA CAGCAGLTAT ACCA	ı
X81417 T	TAGGTBIR CGAGGGCTCG AIGTLLALCA GGAGCGTACAG ATTTCAGAT TTTGCACAIR TALCATTGATTLCOR TGACRARGGA CAGCAGLTAT ACCA	ı
	PAGGIBIR CGAGGGCTLG AIGLLLALCA GGAGCGTACAG ATTTLCAGAT TTTGCACATA TALCATTGATTLCCA TGACRACGAG CAGAGLTAT ACCA	ı
-	NGGATATA CGAGGGCTLG ATGLCLALCA gGCGCGTACCG tTTTCCGGAT TTTRCACATA TALCAGTGGTTLCCA TGACAACGAA CAGCAGLTAT ACCA	t
-	INGATATA CGAGGGTTG ATGICIALCA GGCGCGTACCG ITTTCAGAT TTTACACATA TAICAGTGGTTLCOA TGACAACGA CAGCAGITAT ACCA	ì
	NGGATATA CGAGGGCTLG ATGLCLALCA gGCGCGTACCG tTTTCCGGAT TTTACACATA TALCAGTGGTTLCca TGACAAOGA CAGCAGLTAT ACCA	ı
	IGGATATA CHAGGGTTG ATGTCLALCA gGGGCGTACCG TITTTCAGAT TITACACATA TALCAGIGGITLCCA TGACAAOGA CAGAAGTTAT ACCA	ł
Z37725 TM	NGGATATA CGAGGGCTLG ATGLCLALCA gGcGCGTACCG LTTTLCAGAT TTTACACATA TALCAGTGGTTLCCA TGACAACGA CAGCAGTTAT ACCA	1077
-	NGGATATA CGAGGGTTG ATGTCLATCA GGCGCGTACCG tTTTCGGAT TTTACACATA TATCACTTGGTTCCa TGACAACGACGGA CAGCAGTTAT ACCA	1
X67514 TA	NGGATATA CGAGGGCTLG ATG1CLAtcA gGcGCGTACCG tTTTCGGAT TTTACACATA TAtCAGTGGTTLCca TGaCaacgGA CAGCAGTTAT ACCA	1
	TGGATATA cGAGGGGTLG ATGLCLAtcA gGcGCGTACCG tTTTCGGAT TTTRCACATA TALCAGTGGTTLCca TGaCaacgGA CAGCAGTTAT ACCA	1
X65949 TA	TGGATATA CGAGGGTTG ATGTCLATCA gGcGCGTACCG TTTTCGGAT TTTACACATA TAtCaGTGGTTtCca TGaCaacgGA CAGCAGTTAT ACCA	ı
AF043627 TV	GTTtCca TGaCaacgGA CAGcAGtTAT	1
Selected sequence for amplification primer	ATGTC AGAGGGATAG ATCCAGAGGA AGG	1081
Selected sequence for	COLUM CHROSCHAMM MECHICAMME SC	9
n prope		

The sequence numbering refers to the Escherichia coli stx, gene fragment (SEQ ID NO. 1076). Nucleotides in capitals are identical to selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

This sequence is the reverse-complement of the selected primer.

Selected sequence for amplification primer

4

and	
primers	
amplification	
stx,-specific	
of	
selection	
the	orobe
for th	Lion
Strategy	hybridization
KXVII:	
Annex 3	

		Accession #	543 570 614	641 684 708 8	SEO ID NO.
v	ctv.	M19473	ACCOR TOTTE CANTON TOTTE POPULATOR ACAD CARD ACTUAL	nate may be acted at the acted of the training the second of the second	
)	z tx	M16625	TOTTACGOTT TOTTACTGTG ACA. CAAC ACTGGATGAL CLCAGTGGGC	A AGATTAAGTA ACGTACTACC	•
	, the	M17358	THE TRACES TO THE ACTION OF A CAME ACTION OF THE CONTRACT OF T	AGATTOAGTA ACGTOCTOC	ĺ
	מלני.	236900	THE TRACES TO THE TANK ACTUAL TO THE ACTUAL	ACATTAAGLA OTGTOCTOC	1
	4 4	104530	1941-1950 CONTRACT TO THE PROPERTY OF THE PROP		í
2	ביין	LO4013	The sacetime month sales and the constraint of the sales	Controlle Appropriate	I
2	SCX	M1943/	rgtracegri reitachere Acacaac achegaleat ctcagleggc	A Acgrigact giercrige	
	stx_1	M24352	Tgtraccgrr rertacrere ACACAAC Acregareat ctcAgregge	A AGGTTGAGTA GTGTCCTGCC	1
	stx_{I}	x07903	TgtTaCGgTT TGTtACTGTG ACACAAC ACTGgaTGAt ctcAgTGggC	gitcita A AggtigAgta gigiccigco tgac	1
	stxi	Z36899	AGCga TgtTaCGgTT TGTtACTGTG ACACAAC ACTGgaTGAt ctcAgTGggC gTt	grtcTTAA AGgtTgAGtA grGTcCTgCC tGAC	1
	stxi	Z36901	AGCga rgtracGgrr rgrtAcrGrG ACACAAC ACrtgarGAt ctcAgrGggC grt	grterra A AggtrgAgtA grercergee tGAC	1076
15	stx2	X61283	AGCAG TICTGCGTIT IGTCACTGTC ACAAGGC ACTGTCTGA AACTGCTC CTC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	1
	stx2	L11079	AGCAG ITCTGCGITT IGICACTGTC ACAAGGC ACTGTCTGAAACTGCTC CIC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	ı
	stx2	M21534	AGCAG ITCTGCGITT IGICACTGTC ACATGGC ACTGTCTGAAACTGCTC CTG	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	•
	stx2	M36727	AGCAG TTCTGCGTTT TGTCACTGTC ACATGGC ACTGTCTGAAACTGCTC CTC	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	ı
	stx2	U72191	AGCAG TTCTGCGTTT TGTCACTGTC ACATGGC ACTGTCTGAAACTGCTC CTG	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	1
20	stx2	X81415	AGCAG TICIGCOTTI TGICACTGIC ACATGGC ACTGICTGAAACTGCIC CIC	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	•
	stx2	X81416	AGCAG ITCTGCGITT IGTCACTGTC ACATGGC ACTGTCTGAAACTGCTC CTG	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	•
	stx	X81417	TICTGCGITI IGICACTGIC ACAIGGC ACTGICIGAAACTGCIC	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	1
	stx2	X81418	TGTCACTGTC ACATGGC ACTGTCTGAAACTGCTC	CTGTITIA G AGAATCAGCA ATGTGCTTCC GGAG	ı
:	Stx2	E03962	AGCAG TICTGCGTIT TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	•
۲۶ 29	stx2	E03959	AGCAG ITCTGCGITT IGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	1
5	stx2	X07865	AGCAG ITCTGCGITT IGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	ī
	stx2	X10775	AGCAG TRURGEGITT TGREACTGRE ACAAGGE ACTGRETGAAACTGCRE CT	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	•
	stx2	237725	AGCAG TICTGCGTIT TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CT	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	1077
	stx2	Z50754	AGCAG TICTGCGTIT TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTV	CTOTGTAG CGAATCAGCA ATGTGCTTCC GGAG	•
30	stx2	X67514	AGCAG TYCTGCGTTY TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTC	CTGTGTAG CGAATCAGCA ATGTGCTTCC GGAG	•
	stx2	L11078	AGCAG TICTGCGTIT TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTK	CTGTGTAG AGAATCAGCA ATGTGCTTCC GGAG	
	stx2	X65949	AGCAG TYCTGCGTTY TGTCACTGTC ACAAGGC ACTGTCTGAAACTGCTC CTC	CTGTGTAG AGAATCAGCA ATGTGCTTCC GGAG	1
	stx2	AF043627	AGCAG INCRECEPTIF IGREACTER ACA TEGE ACTERCIOA AACTECTC CIC	CTGTTTAG AGAATCAGCA ATGTGCTTCC GGAG	I
35	Selec	Selected sequence for amplification primer	for er ag tycygcgtyt tgycacygyc		1078
Ę	Selec	Selected sequence for hybridization probe	for C ACTGTCTGAAACTGCTC CTGT	T91	1085
ţ	Selec	Selected sequence for amplification primer	for er	AATCAGCA ATGTGCTTCC G	1079
	1				
45	The s sequer	The sequence numbering refers sequences or match those sequen	to the <i>Escherichia coli stx</i> , gene fragment (SEQ ID NO. ces. Mismatches are indicated by lower-case letters. Dots -complement of the selected primer.	1077). Nucleotides in capitals are identical to the indicate gaps in the sequences displayed.	he selected

1089

GAGGTCTAG CCCGTGTGGA T

Selected sequence for amplification primera

35

from	
primers	
amplification	
vanA-specific	
of	
selection	
he	
for 1	ces
Strategy f	van sequence
Annex XXVIII:	

SEQ ID NO.: 1139 1141	1051 1052 1053 1055 1055	1057 1049 1050 1117	1 1 1 1 1 1	1 1 1 1	1090
AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA	AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA	GIUAAT AGGGGGGACG AATIGGACIA UGT AGAGGIUIAG CUGGIGIGGA TAIG GIUAAT AGGGGGACG AATIGGACIA UGT AGAGGIUIAG CUGGIGIGGA TAIG GIUAAT AGGGGGACG AATIGGACIA UGT AGAGGIUIAG CUCGIGIGGA TAIG GIAAAC GGLACGGAAG AACILAACGU IGC AGAGGGUIG CUCGIGILGA IUIT	AACTEAACGC TGC AGAGGGCTEG CCCGTGTEGA AACTEAAACGC TGC AGAGGGCTEG CCCGTGTEGA	gGtaCGGAaG AACTtaACGC TGC AGAGGGCTtG CCCGTGTtGA AGtaCGGAaG AACTaAACGC TGC AGAGGGCTtG CtCGTGTtGA gGtaCGGAaG AACTtaACGC TGC AGAGGGCTtG CCCGTGTtGA AGtaCGGAAG AACTAAACGC TGC AGAGGGCTtG CCCGTGTtGA	GTATGC ABGGCAGAAG AACTGCAAGGC AGC AGAGGATTGG CCCGCATTGA CCTG GTAGAA CAAAAAAQTTTALALAAA AGC AAAGGATTAG CGAGAATCGA CTTT Or R AAT AGCGCGACG AATTGGAC
Accession # A X56895 A M97297		14 - 14 - 14 - 15 U94526 18 U94527			vanD AF13099/ vanE AF136925 Selected sequence for amplification primer
5 vanA vanA	vanA vanA vanA 10 vanA vanA vanA	vanA vanA 15 vanA vanB	vanB vanB vanB equation (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	vanB 25 vanB vanB	vanD vanE 30 Selec ampli

The sequence numbering refers to the *Enterococcus faecium vanA* gene fragment (SEQ ID NO. 1139), Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

This sequence is the reverse-complement of the above selected primer.

from vanB-specific amplification primers of Strategy for the selection van sequences. Annex XXIX:

SECTION .	ייסיי עד לייסיי לייסי	1141	1051	1052	1053	1054	1055	1056	1057	1049	1050	1117	ı	ı	f	1	1	1		ı		1	ı	1	ı		1095	1096
5 608	DOO DEPARTMENT TO THE PART OF THE	ACG GAATCTTCG CATCATCAG	ACG GAATCTTtCG tATtCATCAG	TACG GAATCTTtCG tATtCATCAG GAA	TACG GAATCTTtCG tATtCATCAG GAA	TACG GAATCTTCG tATCCATCAG GAA	TACG GAATCTTTCG TATTCATCAG GAA	TACG GAATCTTTCG LATTCATCAG GAA	TACG GAATCTTTCG LATTCATCAG GAA	TACG GAATCTTtCG tATtCATCAG GAA	TACG GAATCTTTCG TATTCATCAG GAA	TACG GTATCTTCCG CATCCATCAG GAA	TATG GTATCTTCCG CATCCATCAG GAA	TACG GctTtTTtaa gATtCATCAG GAA	TATG GctTtTTCga CtatgAagAG AAA			GTATCTTCCG CATCCATCAG										
470 495	Cabutcha tondinance	tCdGCAaGAC	tGAA	A CGCAATLGAA tCGGCAAGAC AATAT	A CGCAATtGAA tCgGCAAGAC AATAT	A CGCaATtGAA tCgGCAaGAC AATAT.	A CGCAATLGAA tCGGCAAGAC AATAT	A CGCAATLGAA tCGGCAAGAC AATAT.	A CGCAATTGAA TCGGCAAGAC AATAT.	A CGCAATtGAA tCgGCAAGAC AATAT	A CGCAATTGAA TCGGCAAGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT	C TGCGATAGAA GCAGCAGGAC AATAT.	C TGCGATAGAA GCGGCAGGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT.	C TGCGATAGAA GCGGCAGGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT	C TGCGATAGAA GCAGCAGGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT.	C TGCGATAGAA GCAGCAGGAC AATAT	C TGCGATAGAA GCGGCAGGAC AATAT.	C TGCGATAGAA GCAGCAGGAC AATAT.	C AGCAATCGAA GAAGCAAGAA AATAT.	A AGCaATAGAC GAAGCttcAa AATAT		CGATAGAA GCAGCAGGAC AA	
# 00.0000				vanA -	vanB U94526	vanB U94527	vanB U94528	vanB U94529	vanB U94530	vanB Z83305	vanB U81452	vanB U35369	vanB U72704	vanB L06138	vanB L15304	vanB U00456	vanD AF130997	vanE AF136925	Selected sequence for	amplification primer	Selected sequence for amplification primera							
	v)				01					15				;	02 29	7				22				;	30		35

The sequence numbering refers to the Enterococcus faecium vanB gene fragment (SEQ ID NO. 1117). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

a This sequence is the reverse-complement of the above vanB sequence.

Strategy for the selection of vanC-specific amplification primers from vanC sednences. Annex XXX:

SEQ ID NO.:	1058	1059	1138	1060	1061	1062	1063	1	1	1064	1065	1066	1	1101	1102
957 1064 1092	GT CGACGGTTTT TTTGATTTTG AAGAGAAACGGGTC TGGCTCGAAT CGATTTTTTC GT	TITGATTITIG AAGAGAAACGGGIC IGGCICGAAI CGAITTITITC GI	TTTGATTTTG AAGAGAAACGGGTC TGGCTCGAAT CGATTTTTTC GT	TTCGATTTTG AAGAAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGADAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGAAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGAAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	TTCGATTTTG AAGAAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	TTCGATTTTG AAGAAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	TTCGATTTTG AAGAAAAAAAGGAC TTGCTCGCAT CGACTTTTTT GT	TICGATITITG AAGAAAAAAGGIC TIGCICGCAI CGACTITITIT GT	GACGGYTTT TTYGATTTTG AAGA	GGTC TRGCTCGMAT CGAYTTTT
929	GT CGACGGTTTT 1	GT CGACGGTTTT 1	GT CGACGGTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GT AGACGCCTTT 1	GT AGACGCCTTT 1	GT AGACGGCTTT 1	GT AGACGGCTTT 1	GACGGYTTT 1	
Accession #	ı	ı	M75132	ı	1	1	ı	L29638	L29638	ı	1	ı	L29639	Selected sequence for resistance primer	Selected sequence for resistance primer ^a
	vanC1	vanC1	vanCl	vanC2	vanC2	vanC2	vanC2	vanC2	vanC2	vanC3	vanC3	vanC3	vanC3	Selecte for res	Selecte for res
	S					10				29	8e 8e			20	

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 39

The sequence numbering refers to the vanCl gene fragment (SEQ ID NO. 1138). Nucleotides in capitals are identical to selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps

sequence displayed.

a This sequence is the reverse-complement of the selected sequence.

pneumoniae-specific and hybridization probes from pbpla sequences. Streptococcus of selection amplification primers Strategy Annex XXXI:

•				SEQ ID
n	e i	Accession #		 NO.:
	pbpla M	M90528	A TTGACTACCC AAGCATACAC TATGCLAALG CLATTTCAAG TAATACAACC GATATATG ATGACAGALA TGATGAAAAC CGT	ı
	ppp1a X	x67873	A TCGACTAGCC AAGLATECAG TAGECAAAEG CCATTECAAG TAAGACAACC GATATATG AFGACCGAAA FGAFGAAAAC AGT	1
	pbp1a A	AB006868	A TUGACTACCC AAGLATECAC TACECAAAEG CCATITCAAG TAACACAACC GATATAIG AIGACCGACA IGAIGAAAAC AGT	•
	pbp1a A	AF046234	A TUBACTACCC AAGLATECAC TACECAAAEG CCATTECAAG TAACACAACC GATATATG ATGACCGAAA TGATGAAAAC TGT	ı
9	pbpla		A TUGACTACCC AAGLAITCAC IACTCAAALG CCATITCAAG TAACACAACC GATAIAIG AIGACCGACA IGAIGAAAAC TGT	1014
	pppla		A TUGACTACCC AAGLATECAC TACECAAAEG CCATTECAAG TAACACAACC GATACATG ATGACCGAAA TGATGAAAAC TGT	1017
	pbpla A	AB006873	A TCGACTACCC AAGLCTTCAC TACLCAAALG CCATTTCAAG TAACACAACC GATATATG ATGACCGACA TGATGAAAAC AGT	•
	pbp1a A	AF139883	A TOGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1169
	pppla		A TOGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1004
15	pbpla		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1007
	ppp1a		TAIGCAAACG CCATITCAAG TAATACAACA GATATAIG AIGACCGACA IGAIGAAAAC	1008
	pbp1a		TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC	1009
			AAGCATGCAT TATGCAAACG CCATTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC	1011
;		AF159448	AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC	1
8	ppp1a		AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA	1005
	pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	1015
2	pbpla		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	1006
29	pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	1012
9	pbp1a X	X67867	A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	
22	pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAACACAACT GATATATG AFGACTGAAA TGATGAAAAC TGT	1010
	pbp1a 2	249094	A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAACACAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	ı
	pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAACACAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	1013
	pbp1a		A TCGACTATCC AAGCAFGCAT TATGCAAACG CCATTTCAAG TAACACAACT GATATATG AFGACTGAAA FGAFGAAAAC TGT	1016
	ppp1a X	X67870	A TCGACTATCC AAGLATGCAT TAGGCAAACG CCATTTCAAG TAACACAACT GATATATG ATGACCGAAA TGATGAAAAC TGT	ı
39	pbp1a		A TTGACTATCC AAGLATECAG TAGECAAALG CLATTTCAAG TAATAGAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	1018
	pbp1a P	AJ002290	A TIGATIACCC AACTAIGGIC IAIGCIAACG CLAITICAAG TAAIACAACI GAIACAIG AIGACIGAAA IGAIGAAAAC AGT	•
	pbp1a >>	X67871	A TOGACTACC ANGECTECNO TACECNANES CONTITCANS TANCANCO GATACATO ATGACAGAAN TGATGAANAC AGT	ı
35	Selected	Selected sequences for amplification primers	GACTATCC AAGCATGTATG	1130
			ATG ATGACHGAMA TGATGAAAAC	1129
	Selected hybridiza	Selected sequence for hybridization probe	CAAACG CCATTTCAAG TAATACAAC	1197
40	. 1			7

The sequence numbering refers to the Streptococcus pneumoniae pbpla gene fragment (SEQ ID NO. 1004). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower- case letters. Dotes indicate gaps in the sequences displayed.

"R" "Y" "W" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "W" stands for A or T; "W" stands for A or T; "W" stands for B or T; "W" stands for B or T; "W stands for B or T or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

pneumoniae-specific sednences ppp1a from Streptococcus and hybridization probes of selection primers the for amplification (continued). Strategy Annex XXXI:

SEO ID NO.:	ı	1	1	ı	1014	1017	1	1169	1004	1007	1008	1009	1011	1	1005	1015	1006	1012	ı	1010	ı	1013	1016	ı	1018	ı	ı		1193		1131	
756 783 813 840	GCTGGTAA AACtGGTACG TCAAACTATAA ATACGGGTTA TGTAGCTCCG GACGAAA	GCTGGTAA AACAGGAACC TCTAACTATAA CCtCTCAATt TGTAGCACCt GATGAAC	GCTGGTAA AACAGGAACC TCTAACTATAA CCtCTCAATt TGTAGCACCt GACGAAC	GCAGGTAA AACAGGTACT TCTAACTATAA ACACTGGTTA CGTAGCTCCA GATGAAA	GCAGGIAA AACAGGIACI ICTAACIATAA ACACIGGIIA CGIAGCICCA GAIGAAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGCTA CGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAACC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAACC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAACC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA BACAGGBACC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAAC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAACO TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA AACAGGAACC TCTAACTATAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCTGGTAA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA GATGAAA	GCAGGIAA GACAGGIACI ICINACIAIAA ACACIGGIIA CGIAGCICCA GAIGAAA	GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGTTA CGTAGCTCCA GATGAAA	GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGCTA CGTAGCTCCA GATGAAA	GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGCTA CGTAGCTCCA GATGAA	GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGCTA CGTAGCTCCA GATGAAA	. GCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGCTA CGTAGCTCCA GATGAAA	.GCAGGINA GACGGGIACA TCTAACTACAA ACACTGGCTA C	GCTGGTAA AACAGGTACG TCTAACTATAA ACACTGGTTA CGTAGCTCCA GATGAAA		GGTAA GACAGGTACT TCTAACT		ACTGGYTA YGTAGCTCCA GATG	
Accession # 7	M90528	x67873	AB006868 .	AF046234	•		AB006873	AF139883	•	•	•			AF159448	•				X67867		249094			x67870	:	AJ002290	X67871	Selected sequence for	hybridization probe	Selected sequence for	amplification primer	
'n	pppla	pppla	pbp1a	pbp1a	10 pbp1a	pppla	pbp1a	ppp1a	ppp1a	15 pbp1a	ppp1a	ppp1a	ppp1a	ppp1a	20 pbp1a	pbp1a	ppp1a		00 pbpla	_ 25 pbp1a	ppp1a	pbp1a	pbpla	pbp1a	30 pbp1a	ppp1a	pbp1a	Selec	35 hybri	Selec	ampl	

The sequence numbering refers to the Streptococcus pneumoniae pbpla gene fragment (SEQ ID NO. 1004). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower- case letters. Dots indicate gaps in the sequences displayed.

ដ selected sequences or match those sequences. Mismatches are indicated by lower- case letters. Dots indicate gaps in the sequences display "."indicates incomplete sequence data.
"R" "Y" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "W" stands for A or T; stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.
" This sequence is the reverse-complement of the selected primer.

5

\$

Annex XXXII: Specific and ubiquitous primers for nucleic acid amplification (toxin sequences).

		Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
Toxin gene:	cđtA		
2123	5'-TCT ACC ACT GAA GCA TTA C	2129 ^a	442-460
2124b	5'-TAG GTA CTG TAG GTT TAT TG	2129 ^a	580-599
Toxin gene:	cdtB		
2126	5'-ATA TCA GAG ACT GAT GAG	2130 ^a	2665-2682
2127 ^b	5'-TAG CAT ATT CAG AGA ATA TTG T	2130 ^a	2746-2767
Toxin gene:	stx,		
1081	5'-ATG TCA GAG GGA TAG ATC CA	1076 ^a	233-252
1080 ^b	5'-TAT AGC TAC TGT CAC CAG ACA ATG T	1076 ^a	394-418
Toxin gene:	stx,		
1078	5'-AGT TCT GCG TTT TGT CAC TGT C	1077ª	546-567
1079 ^b	5'-CGG AAG CAC ATT GCT GAT T	1077ª	687-705
Toxin genes:	stx, and stx,		
1082	5'-TTG ARC RAA ATA ATT TAT ATG TG	1076 ^a	278-300
1083b	5'-TGA TGA TGR CAA TTC AGT AT	1076 ^a	781-800

^a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXXIII: Molecular beacon internal hybridization probes for specific detection of toxin sequences.

5			Originating	DNA fragment
	SEQ ID NO.	Nucleotide sequence ^a	SEQ ID NO.	Nucleotide position
10	Toxin gen	ne: cdtA		
15	2125 ^b	5'- <u>CAC GC</u> G GAT TTT GAA TCT CTT CCT CTA GTA GC <u>G CGT G</u>	2129 ^C	462-488
13	Toxin gen	ne: cdtB		
20	2128	5'- <u>CAA CG</u> C TGG AGA ATC TAT ATT TGT AGA AAC TG <u>C GTT G</u>	2130 ^C	2714-2740
20	Toxin gen	<u>ne</u> : stx ₁		
25	1084	5'- <u>CCA</u> <u>CGC</u> CGC TTT GCT GAT TTT TCA CAT GTT ACC <u>GCG</u> <u>TGG</u>	1076 ^C	337-363
23	2012 ^d	5'- <u>CCG CGG</u> ATT ATT AAA CCG CCC TT <u>C CGC</u> <u>GG</u> -MR-HEG-ATG TCA GAG GGA TAG ATC CA	1076 ^C	248-264
30	Toxin gen	<u>ne</u> : stx,		
30	1085	5'- <u>CCA CGC</u> CAC TGT CTG AAA CTG CTC CTG T <u>G</u> <u>CGT</u> <u>GG</u>	1077 ^C	617-638

^a Underlined nucleotides indicate the molecular beacon's stem.

 $^{^{\}rm b}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

^C Sequences from databases.

⁴⁰ d Scorpion primer.

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van sequences).

_				<u></u>	Originating	DNA fragment
5	SEQ ID NO	. Nucleotide s	sequence		SEQ ID NO.	Nucleotide position
10	Resistar	nce gene:	vanA			
	1086	5'-CTA CTC C	CCG CCT TTT GGG	$ extbf{T}$ T	1049-1057 ^a	513-532 ^b
	1087 ^C	5'-CTC ACA G	SCC CGA AAC AGC	CT	1049-1057 ^a	699-718 ^b
15	1086	5'-CTA CTC C	CCG CCT TTT GGG	TT	1049-1057 ^a	513-532 ^b
	1088 ^C	5'-TGC CGT I	TTC CTG TAT CCG	TC	1049-1057 ^a	885-904 ^b
	1086	5'-CTA CTC C	CCG CCT TTT GGG	тт	1049-1057 ^a	513-532 ^b
20	1089 ^C	5'-ATC CAC A	ACG GGC TAG ACC	TC	1049-1057 ^a	933-952 ^b
20	1090	5'-AAT AGC G	CG GAC GAA TTG	GAC	1049-1057 ^a	629-649 ^b
	1091 ^C		CA CTG TTT CCC		1049-1057 ^a	734-753 ^b
	1090	5'-AAT AGC G	SCG GAC GAA TTG	GAC	1049-1057 ^a	629-649 ^b
25	1089 ^C		ACG GGC TAG ACC		1049-1057 ^a	933-952 ^b
	1092	5'-TCG GCA A	AGA CAA TAT GAC	AGC	1049-1057 ^a	662-682 ^b
	1088 ^C		TTC CTG TAT CCG		1049-1057 ^a	885-904 ^b
30	Resistar	ice gene:	vanB			
	1095	5'-CGA TAG A	AAG CAG CAG GAC	ΔΔ	1117 ^d	473-492
	1096 ^C		BAT GCG GAA GAT		1117 ^d	611-630
35	Resistar	nce genes:	vanA, va	пВ		
	1112	5/_GGC TGV G	SAT ATT CAA AGC	тС	1049-1057,1117	a 437-456b
	1112 1113 ^C		CTC ACA GCC CGA		1049-1057,1117	
40	1110	E COO MOV C	SAT ATT CAA AGC	TC.	1049-1057,1117	a 137_156b
40	1112 1114 ^c		CCT TTT TCC GGC		1049-1057,1117	
						1
	1115 1114 ^C		r gtg agg tcg g: r ttt tcc ggc to		1049-1057,1117 ^d 1049-1057,1117 ^a	
5	1114	5 - TCW GAG CCI	I III ICC GGC I	C.G		
	1116		r GTG AGG TCG G	_	1049-1057,1117 ^a 1049-1057,1117 ^a	
	1114 ^C	5'-TCW GAG CC'	T TTT TCC GGC T	uG.		_
'A	1112	· •	T ATT CAA AGC TO		1049-1057,1117 ^a	
0	1118 ^C	5'-TTT TCW GAC	G CCT TTT TCC G	GC TCG	1049-1057,1117 ^a	81/-840~

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the vanA sequence fragment (SEQ ID NO. 1051).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from databases.

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van sequences) (continued).

_					Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
10	Resistan	ce genes:	vanA,	vanB (contin	ued)	
	1115	5'-TTT CGG	GCT GTG AGG	TCG GBT GHG CG	1049-1057,1117	
	1118 ^C	5'-TTT TCW	GAG CCT TTT	TCC GGC TCG	1049-1057,1117 ⁸	817-840b
15	1116	5'-TTT CGG	GCT GTG AGG	TCG GBT GHG CGG	1049-1057,1117 ^a	705-731 ^b
	1118 ^C	5'-TTT TCW	GAG CCT TTT	TCC GGC TCG	1049-1057,1117 [©]	817-840 ^b
	1119	5'-TTT CGG	GCT GTG AGG	TCG GBT GHG C	1049-1057,1117 ⁸	705-729 ^b
00	1118 ^C	5'-TTT TCW	GAG CCT TTT	TCC GGC TCG	1049-1057,1117 ⁸	817-840 ^b
20	1120	5'-TTT CGG	GCT GTG AGG	TCG GBT GHG	1049-1057,1117 ⁵	705-728b
	1118 ^c			TCC GGC TCG	1049-1057,1117	
	1121	5′-ጥርጥ ጥጥG	WAT TGT CYG	GYA TCC C	1049-1057,1117 ^ā	408-429 ^b
25	1111 ^C			YTT CCT GAT G	1049-1057,1117 ⁵	
	1112	5'-GGC TGV	GAT ATT CAA	AGC TC	1049-1057,1117 ^e	437-456 ^b
	1111 ^C	000	-	YTT CCT GAT G	1049-1057,1117	
30	1123	57_ምምም <u>ር</u> ሮር	GCT GTG AGG	TCC CRT C	1049-1057,1117 ^a	705-726b
30	1111 ^c			YTT CCT GAT G	1049-1057,1117 ⁶	
	1112	E/ CCC TCV	GAT ATT CAA	ACC TC	1049-1057,1117 ⁵	437-456b
	1112 1124 ^c		RTC CAC YTC		1049-1057,1117	
35	Resistan	ce gene:	vanC1			
	1103	5'-ATC CCG	CTA TGA AAA	CGA TC	1058-1059 ^a	519-538 ^d
	1104 ^C		ACA CAG TAG		1058-1059 ^a	678-697 ^d
40	<u>Resistan</u>	ce genes:	vanC1	, vanC2, vanC	3	
	1097	5'-TCY TCA	AAA GGG ATC	ACW AAA GTM AC	1058-1066 ^a	607-632 ^d
	1098 ^C	5'-TCT TCA A	AA TCG AAA A	AG CCG TC	1058-1066 ^a	787-809 ^d
45	1099	5'-TCA AAA GO	בר אתר ארש א:	AN COM AC	1058-1066 ^a	610-632 ^d
	1100 ^C			TR TTG ATT TC		976-1001 ^d
	1101	5'-GAC GGY TO			1058-1066 ^a	787-809 ^d
50		5'-AAA AAR TO				922-944 ^d
	Resistance	e genes:	vanC2,	vanC3		
	1105	5'-CTC CTA CC	A TTC TCT T	GA YAA ATC A	1060-1066,1140 ^a	487-511 ^e
55					1060-1066,1140 ^a	

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the vanA sequence fragment (SEQ ID NO. 1051).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $[\]hat{d}$ The nucleotide positions refer to the vanC1 sequence fragment (SEQ ID NO. 1058).

e The nucleotide positions refer to the vanC2 sequence fragment (SEQ ID NO. 1140).

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van sequences) (continued).

_							Origi	nating	DNA fragment
5	SEQ ID NO.	Nucleoti	de seq	uence			SEQ NO		Nucleotide position
10	Resistanc	ce gene:		vanD					
	. 1591	5'-ATG A	GG TAA	TAG AAC	GGA TT		15	94	797-837
	1592 ^b	5'-CAG T	AT TTC	AGT AAG	CGT AAA		15	94	979-999
15	Resistanc	e gene:		vanE					
	1595	5'-AAA T	AA TGC	TCC ATC	AAT TTG	CTG A	159	ga .	74-98
	1596 ^b	5'-ATA G	TC GAA	AAA GCC	ATC CAC	AAG	159	9a	394-417
20	1597	5'-GAT G	ልል ጥጥጥ	GCG AAA	ATA CAT	GGA	159	, ga	163-186
	1598 ^b				CCT TTC		159	_	319-341
				Seque	encing p	rimers	(vanAB)		
25	1112	5'-CCC T	GY GAT	ATT CAA	AGC TC		113	,9a	737-756
رے		J GGC I					111		131 130
رے	1111 ^b		TT CCG	GCT CGW	YTT CCT	GAT G	113	,9a	1106-1130
	<u>-</u>		TT CCG				113		1106-1130
-	<u>-</u>			Seque	YTT CCT		113	vanX,	1106-1130
-	1111 ^b	5'-CTT T	AA TCA	Seque	YTT CCT		113 (<i>vanA</i> ,	vanX,	1106-1130 vanY)
-	1111 ^b	5'-CTT T	AA TCA GT CAT	Seque CAC CGC ATT GTC	YTT CCT PROPRIETE ATA CG TTG CC		113 (vanA,	vanX,	1106-1130 vanY) 860-879
-	1111b 1150 1151b	5'-TGA T. 5'-TGC T	AA TCA GT CAT AG ATG	Seque CAC CGC ATT GTC	YTT CCT PRICING P ATA CG TTG CC CGG TG		113 (<i>vanA</i> , 114	vanX,	1106-1130 vanY) 860-879 1549-1568
30 35	1111b 1150 1151b 1152	5'-TGA T 5'-TGC T 5'-ATA A	AA TCA GT CAT AG ATG TA TGT	Seque CAC CGC ATT GTC ATA GGC CCC TAC	YTT CCT PRICING P ATA CG TTG CC CGG TG AAT GC		113 (vanA, 114 114	vanX, 11a 11a 11a 11a	1106-1130 vanY) 860-879 1549-1568 1422-1441

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van sequences) (continued).

_			Originating DNA fragment
5	SEQ ID NO.	Nucleotide sequence SEQ ID	Nucleotide NO. position
10		Sequencing primer	s (vanC1)
	1110	5'-ACG AGA AAG ACA ACA GGA AGA CC	1138 ^a 122-144
	1109 ^b	5'-ACA TCG TGA TCG CTA AAA GGA GC	1138 ^a 1315-1337
15		Sequencing primer	s (vanC2, vanC3)
	1108	5'-GTA AGA ATC GGA AAA GCG GAA GG	1140 ^a 1-23
	1107 ^b	5'-CTC ATT TGA CTT CCT CCT TTG CT	1140 ^a 1064-1086
20			

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXXV: Internal hybridization probes for specific detection of van sequences.

5				Originating	DNA fragment
	SEQ ID N	O. Nucleoti	de sequence	SEQ ID NO.	Nucleotide position
10	Resista	ance gene:	vanA		
15	1170 2292	5'-ACG AAT TGG 5'-GAA TCG GCA	,	1049-1057 ^a 2293 ^c	639-658 ^b 583-601
	Resista	ance gene:	vanB		
20	1171 2294 2295	5'-ACG AGG ATG 5'-AAA CGA GGA 5'-TTG AGC AAG	TGA TTT GAT TG	1117 ^C 2296 ^a 2296 ^a	560-579 660-679 614-631
	Resista	ance gene:	vanD		
25	2297	5'-TTC AGG AGG	GGG ATC GC	1594 ^C	458-474

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the vanA sequence fragment (SEQ ID NO. 1051).

^C Sequences from databases.

Annex XXXVI: Specific and ubiquitous primers for nucleic acid amplification (pbp sequences).

_			Originating DNA fragment
5	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
10	Resistance	gene: pbpla	
	1129	5'-ATG ATG ACH GAM ATG ATG AAA AC	1004-1018 ^a 681-703 ^b
	1131 ^C	5'-CAT CTG GAG CTA CRT ARC CAG T	1004-1018 ^a 816-837 ^b
15	1130	5'-GAC TAT CCA AGC ATG CAT TAT G	1004-1018 ^a 456-477 ^b
	1131	5'-CAT CTG GAG CTA CRT ARC CAG T	1004-1018 ^a 816-837 ^b
	2015	5'-CCA AGA AGC TCA AAA ACA TCT G	2047 ^d 909-930
20	2016 ^C	5'-TAD CCT GTC CAW ACA GCC AT	2047 ^d 1777-1796
20		Sequencing primers	(<i>pbp</i> 1a)
	1125	5'-ACT CAC AAC TGG GAT GGA TG	1169 ^d 873-892
25	1126 ^C	5'-TTA TGG TTG TGC TGG TTG AGG	1169 ^d 2140-2160
23	1125	5'-ACT CAC AAC TGG GAT GGA TG	1169 ^d 873-892
	1128 ^C	5'-GAC GAC YTT ATK GAT ATA CA	1169 ^d 1499-1518
	1127	5'-KCA AAY GCC ATT TCA AGT AA	1169 ^d 1384-1403
30	1126 ^C	5'-TTA TGG TTG TGC TGG TTG AGG	1169 ^d 2140-2160
		Sequencing primers	(<i>pbp</i> 2b)
	1142	5'~GAT CCT CTA AAT GAT TCT CAG GTG	G 1172 ^d 1-25
35	1143 ^C	5'-CAA TTA GCT TAG CAA TAG GTG TTG	G 1172 ^d 1481-1505
	1142	5'-GAT CCT CTA AAT GAT TCT CAG GTG	G 1172 ^d 1-25
	1145 ^C	5'-AAC ATA TTK GGT TGA TAG GT	1172 ^d 793-812
40	1144	5'-TGT YTT CCA AGG TTC AGC TC	1172 ^d 657-676
	1143 ^C	5'-CAA TTA GCT TAG CAA TAG GTG TTG	G 1172 ^d 1481-1505
		Sequencing primers (p	obp2x)
15			
,,,	1146	5'-GGG ATT ACC TAT GCC AAT ATG AT	1173 ^d 219-241
	1147 ^C	5'-AGC TGT GTT AGC VCG AAC ATC TTG	1173 ^d 1938-1961
	1146	5'-GGG ATT ACC TAT GCC AAT ATG AT	1173 ^d 219-241
50	1149 ^C	5'-TCC YAC WAT TTC TTT TTG WG	1173 ^d 1231-1250
	1148	5'-GAC TTT GTT TGG CGT GAT AT	1173 ^d 711-730
	1147 ^C	5'-AGC TGT GTT AGC VCG AAC ATC TTG	1173 ^d 1938-1961

 $^{^{\}mbox{\scriptsize a}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{}m b}$ The nucleotide positions refer to the pbpla sequence fragment (SEQ ID NO. 1004).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing. 50

 $^{^{\}rm d}$ Sequences from databases.

Annex XXXVII: Internal hybridization probes for specific detection of pbp sequences.

									Originating	g DNA fragment
SEQ II	NO.	Nucleotide	e sequ	ence	€				SEQ ID NO.	Nucleotide position
Resis	stance c	ene:	pbj	p1a						
113	2	5'-AGT GAA	AAR	ATG	GCT	GCT	GC		1004-1018 ^a	531-550 ^b
113	3	5'-CAT CA	GAA	CAC	TGG	CTA	YGT	AG	1004-1018 ^a	806-828 ^b
113	4	5'-CTA GAT	AGA	GCT	AAA	ACC	TTC	CT	1004-1018 ^a	417-439 ^b
113	5	5'-CAT TAT	GCA	AAC	GCC	ATT	TCA	AG	1004-1018 ^a	471-493 ^b
119	2	5'-GGT AA	ACA	GGA	ACC	TCT	AAC	T	1004-1018 ^a	759-780 ^b
119	3	5'-GGT AAG	ACA	GGT	ACT	TCT	AAC	T	1004-1018 ^a	759-780 ^b
119	4	5'-CAT TTO	AAG	TAA	TAC	AAC	AGA	ATC	1004-1018 ^a	485-508 ^b
119	5	5'-CAT TTO	AAG	AAT	CAC	AAC	TGA	ATC	1004-1018 ^a	485-508 ^b
119	6	5'-GCC ATT	TCA	AGT	AAT	ACA	ACA	GAA	1004-1018 ^a	483-506 ^b
119	7	5'-CAA ACC	CCA	$\mathbf{T}\mathbf{T}\mathbf{T}$	CAA	GTA	ATA	CAA C	1004-1018 ^a	478-502 ^b
109	4	5'-GGT AA	A ACA	GGT	\mathtt{ACT}	TCT	AAC	TA	1004-1018 ^a	759-781 ^b
121	4	5'-GGT AAA	A ACA	GGT	ACC	TCT	AAC	TA	1004-1018 ^a	759-781 ^b
121	6	5'-GGT AAG	ACT	GGT	ACA	TCA	AAC	TA	1004-1018 ^a	759-781 ^b
121	7	5'-CAA ATO	CCA	TTT	CAA	GTA	ACA	CAA C	1004-1018 ^a	478-502 ^b
121	8	5'-CAA ACC	CCA	TTT	CAA	GTA	ACA	CAA C	1004-1018 ^a	478-502 ^b
121	9	5'-CAA ATO	CTA	TTT	CAA	GTA	ATA	CAA C	1004-1018 ^a	478-502 ^b
122	0	5'-CAA ACC	CCA	TTT	CAA	GTA	ATA	CGA C	1004-1018 ^a	478-502 ^b
201	7	5'-ACT TTO	TAA	AAG	GTC	GGT	CTA	G	2047 ^C	1306-1327
201	8	5'-ACA CTA	AAC	AAG	GTT	GGT	TTA	G	2063	354-375
201	9	5'-ACA CTA	AAC	AAG	GTC	GGT	CTA	G	2064	346-367
202	0	5'-GTA GCT	CCA	GAT	GAA	ATG	TTT	G	2140 ^C	1732-1753
202	1	5'-GTA GCT	CCA	GAC	GAA	ATG	TTT	G	2057	831-852
202	2	5'-GTA GCT	CCA	GAT	GAA	ACG	TTT	G	2053 ^C	805-826
202	3	5'-GTA ACT	CCA	GAT	GAA	\mathtt{ATG}	TTT	G	2056	819-840
202	4	5'-AGT GAA	AAG	ATG	${\tt GCT}$	GCT	GC		2048 ^C	1438-1457
202	5	5'-AGT GAG	S AAA	ATG	GCT	GCT	GC		2047 ^C	1438-1457
202	6	5'-TCC AAG	CAT	GCA	TTA	TGC	AAA	CG	2047 ^C	1368-1390
2027		5'-TCG GTC	rag an	'A G	AG C	ra a	AA C	G	2047 ^C	1319-1341
2028		5'-TAT GCT (TT CA	A C	AA TO	CA C	G		2047 ^C	1267-1286
2029		5'-AGC CGT	rga ga	C T	rr G	AA T	AA G		2047 ^C	1296-1317
2030		5'-CTT AAT							2047 ^C	1345-1366
2031		5'-CGT GAC					TG A		2049 ^C	1096-1117
2032		5'-CGT GAC							2047 ^c	1096-1117
2033	•	5'-CGT GAC							2057	195-216
2034		5'-ATC AAG							2050 ^C	787-808

a These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm b}$ The nucleotide positions refer to the $pbp{\rm la}$ sequence fragment (SEQ ID NO. 1004).

^C Sequence from databases.

Annex XXXVII: Internal hybridization probes for specific detection of pbp sequences (continued).

					_			Originatin	g DNA fragment
SEQ ID NO.	Nucleotic	le seq	uenc	e				SEQ ID NO.	Nucleotide position
Resistance	gene:	pŁ	p1a	(cc	nti	nued	1)		
2035	5'-ATC AA	G AAC	ACT	GGC	TAC	GTA	G	2051 ^C	787-808
2036	5'-ATC AA	G AAC	ACT	GGT	TAC	GTA	G	2047	1714-1735
2037	5'-ATC AA	TAA AA	ACT	GGT	TAT	GTA	G	2057	813-834
2038	5'-ATC AA	G AAT	ACT	GGC	TAC	GTA	G	2052 ^C	757-778
2039	5'-ATC AA	ממ מ	АСТ	GGC	ТАТ	GTA	G	2053 ^C	787-808

	and	
	amplification primers	from van sequences.
Strategy for	$van A-$ and v_c the selection of $van AB-$ specific amplification primers and	inB- specific hybridization probes from van sequences.
Annex XXXVIII:		

	#	GCGATAT! GCGATAT! CA AAGCTCAGC CGGACGAATT GGACTACGCA GCGATAT! CA AAGCTCCGC CGGACGAATT GGACTACGCA GCGATAT! CA AAGCTCCGC CGGAGGAATT GAACGCGCG GTGATAT! CA AAGCTCCGC CGGAGGAATT GAACGCGCG GTGATAT! CA AAGCTCCGC CGGAAGAAT TAACGCTGCG	SEQ ID NO.: 1139 1141 1051 1052 1053 1054 1056 1057 1049 1050 1117
vanb U35369 vanb U72704 vanb L06138 vanb L15304	GTAGGCT GTGGGCT GTAGGCT GTGGGCT	GCGATAT' ICA AAGCTCCGCCGGAAGAACT GCGATAT' ICA AAGCTCCGCCGGAAGAACT GCGATAT' ICA AAGCTCCGCCGGAAGAACT GTGATAT' ICA AAGCTCCGCCGGAAGAACT	
vanB U00456 vanD AF130997 vanE AF136925 Selected sequence for amplification primer	GTAGGCT GCG 77 GTGGGAT GCG 55 GTAGGLT GTG 60c for primer GGGT GYG	GCGATAT" CA AAGCTCCGCCGGAAGAACT tAACGCtGCG ATAGAA GCGATAT" CA AAGCTCCGCCGGAAGAACT AAAGCTGCG ATAGAA GTGGTAT' CA AAGCTCCGTCAGAAGAACT GCAGGCAGCA ATCGAA :99 AgctgCAGCAAAgtGAtT atataAaGCA ATAGAC	1 1 1 1
Selected sequence for hybridization probe	nce for probe	ICA AAGCTC	1112

The sequence numbering refers to the *Ente* to the those srococcus faecium vanA gene fragment (SEQ ID NO. 1139). Nucleotides in capitals are identical displayed.

ACGAATT GGACTACGCA ATT (VADA)

stands for A or C; "K" stands for G or T;:leotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" analog that can bind to any of the four nu "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nu "W" stands for T. "R" "Y" "M" "K" "W" and "S" designate nuc

6

sednences and the selection of vanAB-specific amplification primers and from probes hybridization specific ranB-Strategy for (continued). vanA-Annex XXXVIII:

1133 SEQ ID NO.: TCGAGCCGGA AAAAGGCT 1139 TCGAGCCGGA AAAAGGCT 1141 TCGAGCCGGA AAAAGGCT 1051 TCGAGCCGGA AAAAGCT 1052	AAAAGCT AAAAGCT AAAAGCT AAAAGCT AAAAGCT AAAAGCT		ACGAGCCGGA ANANGGCT	CCGGA	1139). Nucleotides
GCCGCGTT 1063 1103 GCCGCGTT'ag TTGTLGGCATT CATCAGGAAG GCCGCGTT'ag TTGTLGGCATT CATCAGGAAG GCCGCGTT'ag TTGTLGGCATT CATCAGGAAG GCCGCGTT'ag TTGTLGGCATT CATCAGGAAG	CTGTEGGCATT CATCAGGAAG TTGTEGGCATT CATCAGGAAG CTGTEGGCATT CATCAGGAAG CTGTEGGCATT CATCAGGAAG CTGTEGGCATT CATCAGGAAG CTGTEGGCATT CATCAGGAAG CTGTEGGCATT CATCAGGAAG	GATGATIT '8G CTCTEGGC ATT CATCAGGAAG GATGATIT 'GA TTCTCGCC ATC CATCAGGAAA GATGATIT 'GA TTCTCGGC ATC CATCAGGAAA	GATGATT GA ITGICGGCATC CATCAGGAAA GATGATTT GA ITGICGGCATC CATCAGGAAA	GARCARTT CA TEGET GGCATT CATCAGGAAG 'GG TCGTTGGATAT GARGAGAAAT GATGATT	ooco
Accession # vanA X56895 vanA M97297 vanA vanA	vanA vanA vanA vanA vanA vanA vanA		Vanb 001192 Vanb U72704 Vanb L06138 Vanb L15304 Vanh N813097	di di	Selected sequence for amplification primer. The sequence numbering refers to the Enter to the selected sequences or match those sedisplayed.
5 10	15	8 312	25	30	35

which are degenerated. "R" stands for A or G; "W" stands for A or a This sequence is the reverse-complement

"R" and "W" designate nucleotide positions

of the above selected primer.

	Annex XXXIX:	detection of mecA.	probe	ior	specific
_			Origina	ating	DNA fragment
5	SEQ ID NO.	Nucleotide sequence	SEQ I	ID	Nucleotide position
10	Resistance ge	ene: mecA			
	1177	5'-GCT CAA CAA GTT CCA GAT TA	1178	a	1313-1332

a Sequence from databases.

Annex XL: Specific and ubiquitous primers for nucleic acid amplification (hexA sequences).

5				Originating	DNA fragment
	SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
10	Bacterial s	species:	Streptococcus pr	neumoniae	
15		ATT TGG TGA CGG AGC AGC TTA CTA		1183 ^a 1183-1191 ^c	431–450 652–671 ^đ
15			Sequencing prime	ers	•
20		ATT TGG TGA CGG AAC TGC AAG AGA		1183 ^a 1183 ^a	431-450 1045-1064

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}mbox{\scriptsize c}}$ These sequences were aligned to derive the corresponding primer.

d The nucleotide positions refer to the hexA sequence fragment (SEQ ID NO. 1183).

Annex XLI: Internal hybridization probe for specific detection of hexA sequences.

5				Originating	DNA fragment
	SEQ ID NO.	Nucleotide s	equence	SEQ ID NO.	Nucleotide position
10	Bacterial s	species:	Streptococcus pne	eumoniae	
	1180 ^a	5'-TCC ACC G	TT GCC AAT CGC A	1183-1191 ^b	629-647 ^C
15					

^a This sequences is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the ${\it hexA}$ sequence fragment (SEQ ID NO. 1183).

selected primer.

This sequence is the reverse-complement of the

35

pneumoniae species-specific imers and hybridization probe from hexA sequences. Streptococcus amplification proe selection of th Annex XLII: Strategy for

		428				SEQ ID	
	S. pneumoniae	TGG ATTYGGTGAC GGGTGACTTY	453	626	674 1042 1	1067 NO.:	
10	S. pneumoniae	TGAC GGGTGACTTT		TATATTTG CGATTGGCAA CGGTGGAGCA AACGGCATCT AGTAAGCTGC TCCAAATCCAAAG GATCTTTGC AGTTGGC	CCA AATCCAAAG GATCTCTTGC AGTT	GC 1183	
	S. pneumoniae	~~~TGAC GGGTGACTTT		TATATTTG CGATTGGCAA CGGTGGAGCA AACGGCATCT AGTAAGCTGC TCCAAATCCAAAG GATCTCTTG~	CCAAATCCAAAG GATCTCTTG	1184	
	S. pneumoniae	TGAC GGGTGACTTT	TAT.	TATATTTG CGATTGGCAA CGGTGGAGCA AACGGCATCT AGTAAGCTGC TCCAAATCCAAAG GATCTCT~~~	CCAAATCCAAAG GATCTCT~~~ ~~~	1185	
	S. pneumoniae	TGAC GGGTGACTTT	TAT.	TATATTTG CGATTGGCAA CGGTGGAGCA AACGGCATCT AGTAAGCTGC TCCAAATCCAAAG GATCTTT~~	CCAAATCCAAAG GATCTCTT	1186	
	S. oralis	GGGTGACTTT		TATATTTG CGATTGGCAA CGGTGGAGCA AACGGCATCT AGTAAGCTGC TCCGAATCCAAAG GATCTCT	CCG AATCCAAAG GATCTCTT	1187	
15	S. mitis	GOTGAC GGGTGACTTT		TATATCes CGACTGGCAG CtGTGGAGCA AGCGGCAGCT AGTAAGCTCC TCCA	CCA	1188	
3	S. mitis	TITLE GGGTGACTITT		TATATTCE CGATTGGCAG CtGTGGAGCA AGCGGCATCT AGTAABCTGC TTCAAATCCAAAG GATCTCTT~~	PCAAATCCAAAG GATCTCTT	1189	
16	S. mitis	TGAC GGGTGACTTT		CAGGCGaG gagerGtctc CtarGGAGCG TcaGGCAgCa gGgAAaCTGC TGGA	3GA	1190	
		-	CAG	CAGGCGaG gaAcTGtCtc CtaTGGAGCG TeaGGCAGCg gGgAAatTGC TAGAAATCCAAAG GATCTCT-~	AGAAATCCAAAG GATCTCTT	1191	
20	Selected sequence for amplification primer	ATTTGGTGAC GGGTGACTTT					
	Selected sequences for amplification primers	-				1179	
25				ACGGCATCT AGTAAGCTGC T		1181	
	Selected sequence for hybridization probe*				CCAAAG GATCTCTTGC AGTT	1182	
30				TG CGATTGGCAA CGGTGGA		1180	
35	The sequence numbering refers to selected sequences or match thos indicate incomplete sequence data.	The sequence numbering refers to the Streptocoselected sequences or match those sequences. $\mathbb{N}_{\mathbb{C}}$ indicate incomplete sequence data.	ismatc	The sequence numbering refers to the <i>Streptoco</i> selected sequences or match those sequences. Nace pneumoniae hexA gene fragment (SEQ ID NO. 1183). Not indicate incomplete sequence data.	1183). Nucleotides in capitals are identical to Dots indicate gaps in the sequences displayed.	ntical to the isplayed. "~"	

Annex XLIII: Specific and ubiquitous primers for nucleic acid amplification (pcp sequence).

		Originati	ng DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Bacterial s	species: Streptococcus	pyogenes	
1211	5'-ATT CTT GTA ACA GGC TTT GA	T CCC 1215 ^a	291-314
1411			

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XLIV: Specific and ubiquitous primers for nucleic acid amplification of S. saprophyticus sequences of unknown coding potential.

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Bacterial s	pecies:	Staphylococcus sapro	phyticus	
1208	5'-TCA AAA	AGT TTT CTA AAA AAT TTA (74,1093, 1198 ^b	169-193 ^C
1209ª	5'-ACG GGC	GTC CAC AAA ATC AAT AGG A	74,1093, 1198 ^b	355-379 ^C

^a This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the S. saprophyticus unknown gene sequence fragment (SEQ ID NO. 1198).

Annex XLV: Molecular beacon internal hybridization probes for specific detection of antimicrobial agents resistance gene sequences.

						Originating	DNA fragment
SEQ ID NO	. Nucleotide	sequence ^a				SEQ ID	Nucleotide position
Resistar	ice gene:	gyrA					
2250	5'- <u>CCG TCG</u> GCC <u>GAC</u>	GAT GGT GTC	GTA TAC	CGC GG	A GTC	1954 ^b	218-243
2251		CGT TCT CGC	TGC GTT	ACA TG	C TGG	1954 ^b	259-286
Resistan	ce gene:	mecA					
1231	5'- <u>GCG</u> <u>AGC</u> T <u>GC</u> TCG	CCG AAG ATA	AAA AAG	AAC CTO	C TGC	1178 ^b	1291-1315
Resistan	ce gene:	parC					
1938 ^b	5'- <u>CCG</u> <u>CGC</u> TCT CC <u>G</u>	ACC ATT GCT CGC GG	TCG TAC	ACT GAG	g gag	1321 ^C	232-260
1939		GGA TGG TAG GGC CGG GTC		TAA TG	A TCC	1321 ^C	317-346
1955 ^b	5'- <u>CGC GCA</u> TC <u>T GCG</u>	ACC ATT GCT	TCG TAC	ACT GAG	G GAG	1321 ^C	235-260
Resistan	ce gene:	vanA					
1239	5'- <u>GCG AGC</u> <u>CGC</u>	GCA GAC CTT	TCA GCA	GAG GAG	G GCT	1051	860-880
1240	5'- <u>GCG</u> <u>AGC</u> TC <u>G</u> <u>CTC</u>	CGG CAA GAC GC	AAT ATG	ACA GC	A AAA	1051	663-688
Pacietan Cotocuic	ra rana.	A COTTO ALD MB					
1241	5'-GCG AGC GC CTC GC	eg gaa cga go	GA TGA T	T GAT	TG <u>G</u>	1117	555-577
<u>lesistance</u>	e gene:	vanD					
1593	5'- <u>CCG</u> <u>AGC</u> <u>G</u> <u>CTC</u> <u>GG</u>	AT TTA CCG GA	AT ACT TO	G CTG :	I <u>CG</u>	1594	835-845

^a Underlined nucleotides indicate the molecular beacon's stem.

 $^{^{\}mbox{\scriptsize b}}$ This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

^C Sequence from databases.

Annex XLVI: Molecular beacon internal hybridization probe for specific detection of *S. aureus* gene sequences of unknown coding potential.

									Originating	g DNA fragment
SEQ ID NO.	Nucleotide sequencea					SEQ ID	Nucleotide position			
Bacterial	species:	S	. au	reu	s					
1232	5'- <u>GGA GCC</u> ATA AC <u>C</u>			ТАТ	AAA	TGA	ATG	TTG	1244	53-80

^a Underlined nucleotides indicate the molecular beacon's stem.

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences.

			Originating	DNA fragment			
SEQ ID NO.	Nucleotide	sequence ^a	SEQ ID NO.	Nucleotide position			
Bacterial	species:	Chlamydia pneumoniae					
2091		TTG AGA TGG AAC TTA GTG AGC GTC GCG	20	157-183			
2092	5'- <u>CGC GAC</u> TGC AGG	GAA AGA ACT TCC TGA AGG TCG TCC AG	20	491-516			
<u>Bacterial</u>	species:	Chlamydia trachomatis					
2213		ATT GAC ATG ATT TCC GAA GAA GAA GGC ACG	1739 ^b	412-441			
<u>Bacterial</u>	species:	Enterococcus faecalis					
1236	5'-GCG AGC GGC TCG	CGT GGT GAA GTT CGC GTT GGT	883	370-391			
Bacterial species: Enterococcus faecium							
1235	5'- <u>GCG</u> AGC TGC TG <u>G</u>	CGA AGT TGA AGT TGT TGG TAT CTC GC	64	412-437			
Bacterial	species:	Legionella pneumophil	а				
2084 ^C	5'- <u>CAC GCG</u> TTT TG <u>C</u>	TCA ACA CCC GTA CAA GTC GTC GCG TG	112	461-486			
Bacterial species: Mycoplasma pneumoniae							
2096 ^C	5'- <u>CGC GAC</u> T <u>GT CGC</u>	CGG TAC CAC GGC CAG TAA TCG \underline{G}	2097 ^b	658-679			
Bacterial species: Neisseria gonorrhoeae							
2177 5	'- <u>GGC ACG G</u> ATC GAA A	AC AAA CCA TTC CTG CTG CCT CG TGT TC <u>C CGT GCC</u>	126	323~357			
2178 5	'- <u>GGC ACG</u> AC TCG AA <u>C</u> C	CA AAC CAT TCC TGC TGC CTA TG CC	126	323-348			
2179 5	'- <u>GGC AGC</u> TO TAA CCG <u>G</u> O		126	692-718			

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

 $^{^{} extsf{C}}$ This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences (continued).

				Originating I	ONA fragment		
SEQ ID NO.	Nucleotide se	quence ^a		SEQ ID NO.	Nucleotide position		
Bacterial	species:	Pseudomonas	aerugino	sa			
2122	5'- <u>CCG AGC</u> GA CT <u>G CTC G</u> G	A TGT AGG AGT CCA	GGG TCT	153,880,2138 ^k	o,c ₂₈₀₋₃₀₂ d		
Bacterial	species:	Staphylococ	cus aureu	s			
2186		A AAG CAG AAG TAT G AC <u>G CGC GT</u>	ACG TAT	1728	615-646		
Bacterial	group:	Staphylococ	cus sp. o	ther than S.	aureus		
1233	5'- <u>GCG AGC</u> GT CG <u>G</u> CTC GC	T ACT GGT GTA GAA	ATG TTC	878	372-394		
Fungal sp	ecies:	Candida alb	icans				
2073	5'- <u>CCG AGC</u> AA AAC TG <u>G</u> <u>CT</u>	C ATG ATT GAA CCA C <u>G</u> G	TCC ACC	408	404-429		
Fungal sp	ecies:	Candida dub	liniensis				
2074	5'- <u>CCG</u> <u>AGC</u> AA AAC TGG <u>CT</u>	C ATG ATT GAA GCT C <u>GG</u>	TCC ACC	414	416-441		
Fungal species: Candida glabrata							
2110 ^b	5'- <u>GCG GGC</u> CC TGG ATT CA	T TAA CGA TTT CAG G <u>CCC GC</u>	CGA ATC	417	307-335		
2111	5'-GCG GGC AT CTT CCT GG	G TTG AAG CCA CCA C CCG C	CCA ACG	417	419-447		
Fungal sr	ecies:	Candida kru	sei				
2112 ^b 5	'- <u>GCG GGC</u> TTG TGA CAA TT <u>G</u>	ATG AAG TTT GGG 1 CCC GC	TT CCT	422	318-347		
2113	'- <u>GCG</u> <u>GGC</u> ACA CCA AGG CA <u>G</u>	AGG GTT GGA CTA A CCC GC	GG AAA	422	419-447		
2114 5	6'- <u>GCG</u> <u>GGC</u> ATC GTC AGA CC <u>G</u>	GAT GCT ATT GAA (CCC GC	CCA CCT	422	505-533		

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

 $^{^{\}mathtt{C}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{}m d}$ The nucleotide positions refer to the P. aeruginosa tuf sequence fragment (SEQ ID NO. 153).

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences (continued).

 -				Originating	DNA fragment
SEQ ID NO.	Nucleotide s	sequence ^a			Nucleotide position
Fungal s	pecies:	Candida lu	sitaniae		
2115 ^b	5'- <u>GCG GGC</u> C	GGT AAG TCC ACC GG	GT AAG ACC	424	304-330
2116	5'- <u>GCG GGC</u> (GTT G <u>GC</u> (STA AGT CAC CGG TA	AA GAC CTT	424	476-502
2117	5'- <u>GCG GGC</u> (AGA <u>GCC</u> (GAC GCC ATT GAG CC	CA CCT TCG	424	512-535
Fungal s	pecies:	Candida pa	rapsilosis		
2118 ^b		TCC TTG ACA ATT TO	CT TCG TAT	426	301-330
Fungal s	pecies:	Candida tr	opicalis		
2119	5'- <u>GCG GGC</u> T	TTA CAA CCC TAA GO F <u>GC CCG</u> C	GC TGT TCC	429	357-384
2120	5'- <u>GCG GGC</u> A	AGA AAC CAA GGC TO AGC CCG C	GG TAA GGT	429	459-487
Fungal s	pecies:	Cryptococc	us neoforma	ns	
2106	5'- <u>GCG AGC</u> A	AGA GCA CGC CCT CC	CT CGC C <u>GC</u>	623,1985,198	6 ^C 226-244 ^C
2107	5'- <u>GCG AGC</u> T CTC GC	CC CCA TCT CTG GT	TT GGC A <u>CG</u>	623,1985,198	6 ^C 390-408 ^d
Bacteria	l genus:	Legionella	sp.		
2083	5'- <u>CCG</u> <u>CCG</u> ATC GAA GGT CGA	G TTC CGT AAA TTA A GC <u>C GGC GG</u>	CTT GAI	111-112ª ³	488-519 ^e

a Underlined nucleotides indicate the molecular beacon's stem.

b This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}mbox{\scriptsize c}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm d}$ The nucleotide positions refer to the C. neoformans tuf (EF-1) sequence fragment (SEQ ID NO. 623).

 $^{^{}m e}$ The nucleotide positions refer to the L. pneumophila tuf (EF-1) sequence fragment (SEQ ID NO. 112).

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences (continued).

					Originating DN	A fragment
SEQ ID NO.	Nucleotide	sequence ^a				ucleotide position
Fungal ge	nus:	Candi	da sp.			
2108		AAC TTC RTC	AAG AAG GTI	GGT	414,417, 422,424, 426,429,624 ^b	52-80 ^C
2109	5'- <u>GCG</u> <u>GGC</u> GAC AA <u>G</u>	CCA ATC TCT	GGT TGG AAY	GGT	Same as SEQ ID NO. 2108	100-125 ^C
Bacterial	group:	Pseudo	omonads			
2121	5'- <u>CGA CCG</u> <u>GTC</u> <u>G</u>	CIA GCC GCA	CAC CAA GTT	CCG	153-155, 205,880,2137 ^d 2138 ^d ,b	598-616 ^e

a Underlined nucleotides indicate the molecular beacon's stem.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the C. albicans tuf (EF-1) sequence fragment (SEQ ID NO. 624).

d Sequence from databases.

 $^{^{\}rm e}$ The nucleotide positions refer to the *P. aeruginosa tuf* sequence fragment (SEQ ID NO. 153).

Annex XLVIII: Molecular beacon internal hybridization probes for specific detection of ddl and mtl gene sequences.

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence ^a	SEQ ID Nucleotide NO. position
Bacterial	species: E. faecium (ddl)	
1237	5'-GCG AGC CGC GAA ATC GAA GTT GCT GTA TTA GGG CTC GC	1242 ^b 334-359
Bacterial	species: E. faecalis (mtl)	
1238	5'-GCG AGC GGC GTT AAT TTT GGC ACC GAA GAA GAG CTC GC	1243 ^b 631-656

^a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

Annex XLIX: Internal hybridization probe for specific detection of S. aureus sequences of unknown coding potential.

			Originatin	g DNA fragment
SEQ ID NO.	Nucleotic	e sequence	SEQ ID NO.	Nucleotide position
Bacterial s	pecies:	Staphylococcus aure	us	
1234	5'-ACT A	A TAA ACG CTC ATT CG	1244	35-54

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences).

		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: aac(2')-Ia		
1344	5'-AGC AGC AAC GAT GTT ACG CAG	CAG 1348 ^a	163-186
1345 ^b	5'-CCC GCC GAG CAT TTC AAC TAT	TG 1348 ^a	392-414
1346	5'-GAT GTT ACG CAG CAG GGC AGT	C 1348 ^a	172-193
1347 ^b	5'-ACC AAG CAG GTT CGC AGT CAA	GTA 1348 ^a	467-490
Resistance	gene: aac(3')-Ib		
1349	5'-CAG CCG ACC AAT GAG TAT CTT	GCC 1351 ^a	178-201
1350 ^b	5'-TAA TCA GGG CAG TTG CGA CTC	CTA 1351 ^a	356-379
Resistance	gene: aac(3')-IIb		
1352	5'-CCA CGC TGA CAG AGC CGC ACC	G 1356 ^a	383-404
1353 ^b	5'-GGC CAG CTC CCA TCG GAC CCT		585-606
1354	5'-CAC GCT GAC AGA GCC GCA CCG	1356 ^a	384-404
1355 ^b	5'-ATG CCG TTG CTG TCG AAA TCC	TCG 1356 ^a	606-629
Resistance	gene: aac(3')-IVa		
1357	5'-GCC CAT CCA TTT GCC TTT GC	1361 ^a	295-314
1358 ^b	5'-GCG TAC CAA CTT GCC ATC CTG	AAG 1361 ^a	517-540
1359	5'-TGC CCC TGC CAC CTC ACT C	1361 ^a	356-374
1360 ^b	5'-CGT ACC AAC TTG CCA TCC TGA	AGA 1361 ^a	516-539
Resistance	gene: aac(3')-VIa		
1362	5'-CGC CGC CAT CGC CCA AAG CTG G	1366 ^a	285-306
1363 ^b	5'-CGG CAT AAT GGA GCG CGG TGA CT		551-574
1364	5'-TTT CTC GCC CAC GCA GGA AAA AT	C 1366ª	502-525
1365 ^b	5'-CAT CCT CGA CGA ATA TGC CGC G	1366ª	681-702
esistance ge	ene: aac(6')-Ia		
1367 .	5'-CAA ATA TAC TAA CAG AAG CGT TC	A 1371 ^a	56-79
1368 ^b	5'-AGG ATC TTG CCA ATA CCT TTA T	1371 ^a	269-290
1379	5'-AAA CCT TTG TTT CGG TCT GCT AA	т 1371 ^а	153-176
1380b	5'-AAG CGA TTC CAA TAA TAC CTT GC	_	320-343

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		Originating DNA fragme
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleoti NO. positio
Resistance	gene: aac(6')-Ic	
1372	5'-GCT TTC GTT GCC TTT GCC GAG GT	°C 1376 ^a 157-180
1373 ^b	5'-CAC CCC TGT TGC TTC GCC CAC TC	1376 ^a 304-32
1374	5'-AGA TAT TGG CTT CGC CGC ACC AC	'A 1376 ^a 104-12'
1375 ^b	5'-CCC TGT TGC TTC GCC CAC TCC TG	1376 ^a 301-32:
Resistance	gene: ant(3')-Ia	
1377	5'-GCC GTG GGT CGA TGT TTG ATG TT	'A 1381 ^a 100-123
1378 ^b	5'-GCT CGA TGA CGC CAA CTA CCT CT	rG 1381 ^a 221-24
1379	5'-AGC AGC AAC GAT GTT ACG CAG CA	.G 1381 ^a 127-150
1380b	5'-CGC TCG ATG ACG CCA ACT ACC TC	
Resistance	gene: ant(4')-Ia	
1382	5'-TAG ATA TGA TAG GCG GTA AAA AG	C 1386 ^a 149-17:
1383 ^b	5'-CCC AAA TTC GAG TAA GAG GTA TT	1386 ^a 386-408
1384	5'-GAT ATG ATA GGC GGT AAA AAG C	1386 ^a 151-17:
1385 ^b	5'-TCC CAA ATT CGA GTA AGA GGT A	1386 ^a 388-409
Resistance	gene: aph(3')-Ia	
. 1387	5'-TTA TGC CTC TTC CGA CCA TCA AG	C 1391 ^a 233-250
1338 ^b	5'-TAC GCT CGT CAT CAA AAT CAC TC	_
1389	5'-GAA TAA CGG TTT GGT TGA TGC GA	.G 1391 ^a 468-493
1390b	5'-ATG GCA AGA TCC TGG TAT CGG TCT	1391 ^a 669-692
esistance ge	ene: aph(3')-IIa	
1392	5'-TGG GTG GAG AGG CTA TTC GGC TAT	1396 ^a 43-66
1393b	5'-CAG TCC CTT CCC GCT TCA GTG AC	1396 ^a 250-272
1394	5'-GAC GTT GTC ACT GAA GCG GGA AGG	1396 ^a 244-267
1395 ^b	5'-CTT GGT GGT CGA ATG GGC AGG TAG	1396 ^a 386-409

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: aph(3')-IIIa		
1397	5'-GTG GGA GAA AAT GAA AAC CTA	T 1401 ^a	103-124
1398 ^b	5'-ATG GAG TGA AAG AGC CTG AT	1401 ^a	355-374
1399	5'-ACC TAT GAT GTG GAA CGG GAA	AAG 1401 ^a	160-183
1400 ^b	5'-CGA TGG AGT GAA AGA GCC TGA	TG 1401 ^a	354-376
Resistance	gene: aph(3')-VIa		
1402	5'-TAT TCA ACA ATT TAT CGG AAA	CAG 1406 ^a	18-41
1403 ^b	5'-TCA GAG AGC CAA CTC AAC ATT	TT 1406 ^a	175-197
1404	5'-AAA CAG CGT TTT AGA GCC AAA	TAA 1406 ^a	36-59
1405 ^b	5'-TTC TCA GAG AGC CAA CTC AAC	ATT 1406 ^a	177-200
Resistance	gene: blaCARB		
1407	5'-CCC TGT AAT AGA AAA GCA AGT	AGG 1411 ^a	351-374
1408 ^b	5'-TTG TCG TAT CCC TCA AAT CAC	C 1411 ^a	556-577
1409	5'-TGG GAT TAC AAT GGC AAT CAG	CG 1411 ^a	205-227
1410 ^b	5'-GGG GAA TAG GTC ACA AGA TCT	GCT T 1411 ^a	329-353
Resistance	gene: blaCMY-2		
1412	5'-GAG AAA ACG CTC CAG CAG GGC	1416 ^a	793-813
1413 ^b	5'-CAT GAG GCT TTC ACT GCG GGG	1416 ^a	975-995
1414	5'-TAT CGT TAA TCG CAC CAT CAC	1416 ^a	90-110
1415 ^b	5'-ATG CAG TAA TGC GGC TTT ATC	1416 ^a	439-459
<u>esistance ge</u>	enes: blaCTX-M-1, blaCTX	K-M-2	
1417	5'-TGG TTA ACT AYA ATC CSA TTG CG	G A 1423 ^a	314-338
1418 ^b	5'-ATG CTT TAC CCA GCG TCA GAT T	1423 ^a	583-604
esistance ge	ene: blaCTX-M-1		
1419	5'-CGA TGA ATA AGC TGA TTT CTC AC	G 1423 ^a	410-433
1420b	5'-TGC TTT ACC CAG CGT CAG ATT AC		580-603
1421	5'-AAT TAG AGC GGC AGT CGG GAG GA	A 1423ª	116-139
1422 ^b	5'-GAA ATC AGC TTA TTC ATC GCC AC		405-428

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originating	DNA fragmen
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Resistance	gene:	blaCTX-M-2		
1424	5'-GTT AAC	GGT GAT GGC GAC GCT AC	1428 ^a	30-52
1425 ^b	5'-GAA TTA	TCG GCG GTG TTA ATC AGC	1428 ^a	153-176
1426	5'-CAC GCT	CAA TAC CGC CAT TCC A	1428 ^a	510-531
1427 ^b	5'-TTA TCG	CCC ACT ACC CAT GAT TTC	1428 ^a	687-710
Resistance	gene:	blaIMP		
1429	5'-TTT ACG	GCT AAA GAT ACT GAA AAG	r 1433 ^a	205-229
1430 ^b	5'-GTT TAA	TAA AAC AAC CAC CGA ATA .	AT 1433 ^a	513-538
1431	5'-TAA TTG	ACA CTC CAT TTA CGG CTA	A 1433 ^a	191-215
1432 ^b	5'-ACC GAA	TAA TAT TTT CCT TTC AGG	CA 1433ª	497-522
Resistance	gene:	blaOXA2		
1434	5'-CAC AAT	CAA GAC CAA GAT TTG CGA	r 1438 ^a	319-343
1435 ^b	5'-GAA AGG	GCA GCT CGT TAC GAT AGA	3 1438 ^a	532-556
Resistance	gene:	blaOXA10		
1436	5'-CAG CAT	CAA CAT TTA AGA TCC CCA	1439 ^a	194-217
1437 ^b	5'-CTC CAC	TTG ATT AAC TGC GGA AAT	rc 1439 ^a	479-504
Resistance	gene:	blaPER-1		
1440	5'-AGA CCG	TTA TCG TAA ACA GGG CTA	AG 1442 ^a	281-306
1441 ^b	5'-TTT TTT	GCT CAA ACT TTT TCA GGA	rc 1442 ^a	579-604
esistance ge	ene: 1	olaPER-2		
1443	5'-CTT CTG CT	TC TGC TGA TGC TTG GC	1445 ^a	32-54
1444 ^b	5'-GGC GAC C	AG GTA TTT TGT AAT ACT GC	1445 ^a	304-329
<u>esistance ge</u>	enes:	olaPER-1, blaPER-2		
1446	5'-GGC CTG YO	GA TTT GTT ATT TGA ACT GG	r 1442 ^a	414-440
1447 ^b	5'-CGC TST G	FT CCT GTG GTG GTT TC	1442 ^a	652-674
1448	5'-GAT CAG G	G CAR TAT CAA AAC TGG AC	1442 ^a	532-557
1449b		A CAA YCC TTT TAA CCG CT		671-696

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

11 COS - 1 COS		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
Resistance	gene: blaSHV		
1883	5'-AGC CGC TTG AGC AAA TTA AAC TA	1900 ^a	71-93
1884 ^b	5'-GTA TCC CGC AGA TAA ATC ACC AC	1900ª	763-785
1885	5'-AGC GAA AAA CAC CTT GCC GAC	1900 ^a	313-333
1884 ^b	5'-GTA TCC CGC AGA TAA ATC ACC AC	1900 ^a	763-785
Resistance	gene: blaTEM	,	
1906	5'-CCT TAT TCC CTT TTT TGC GG	1927 ^a	27-46
1907 ^b	5'-CAC CTA TCT CAG CGA TCT GTC T	1927 ^a	817-838
1908	5'-AAC AGC GGT AAG ATC CTT GAG AG	1927 ^a	148-170
1907b	5'-CAC CTA TCT CAG CGA TCT GTC T	1927 ^a	817-838
Resistance	gene: catI		
2145	5'-GCA AGA TGT GGC GTG TTA CGG T	2147ª	363-384
2146 ^b	5'-GGG GCG AAG AAG TTG TCC ATA TT	2147 ^a	484-506
Resistance	gene: catII		
2148	5'-CAG ATT AAA TGC GGA TTC AGC C	2150 ^a	67-88
2149 ^b	5'-ATC AGG TAA ATC ATC AGC GGA TA	2150 ^a	151-173
Resistance	gene: catIII		
2151	5'-ATA TTT CAG CAT TAC CTT GGG TT	2153ª	419-441
2152 ^b	5'-TAC ACA ACT CTT GTA GCC GAT TA	2153 ^a	603-625
esistance ge	ene: catP		
2154	5'-CGC CAT TCA GAG TTT AGG AC	2156 ^a	178-197
2155 ^b	5'-TTC CAT ACC GTT GCG TAT CAC TT	2156 ^a	339-361
esistance ge	ene: cat		
2157	5'-CCA CAG AAA TTG ATA TTA GTG TTT TA	т 2159 ^а	89-115
2158b	5'-TCG CTA TTG TAA CCA GTT CTA	2159 ^a	201-221
2160	5'-TTT TGA ACA CTA TTT TAA CCA GC	2162 ^a	48-70
2161 ^b	5'-GAT TTA ACT TAT CCC AAT AAC CT	2162 ^a	231-253

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID	Nucleotide position
Resistance	gene:	dfrA	· · · · · · · · · · · · · · · · · · ·	
1450		GGG AAT ACA CTT GTA ATG GC		106-131
1451 ^b	5'-ATC TAC	CTG GTC AAT CAT TGC TTC GT	1452 ^a	296-321
Resistance	gene:	dhfrIa		
1457	5'-CAA AGG	TGA ACA GCT CCT GTT T	1461 ^a	75-96
1458 ^b	5'-TCC GTT	ATT TTC TTT AGG TTG GTT AA	A 1461 ^a	249-275
1459	5'-AAG GTG	AAC AGC TCC TGT TT	1461 ^a	77-96
1560 ^b	5'-GAT CAC	TAC GTT CTC ATT GTC A	1461 ^a	207-228
Resistance	genes:	dhfrIa, dhfrXV		
1453	5'-ATC GAA	GAA TGG AGT TAT CGG RAA TG	1461 ^a	27-52
1454 ^b		AYT RCT GGG GAT TTC WGG A	1461 ^a	384-408
1455	5'-CAG GTG	GTG GGG AGA TAT ACA AAA	1461 ^a	290-313
1456 ^b		AGA SRC GAA GTC TTG GKT AA		
Resistance	gene:	dhfrIb		
1466	5'-AAG CAT	TGA CCT ACA ATC AGT GT	1470 ^a	98-120
1467 ^b		ACT ACA TTG TCA TCA TTT GA		204-230
1468	5'-CGT TAC	CCG CTC AGG TTG GAC ATC AA	1470 ^a	183-208
1469 ^b		CCT CTG GCT CGA TGT CG	1470 ^a	354-376
Resistance	gene:	dhfrV		
1471	5 (_Cእጥ አእጥ C	AC AAC GTA ATA GTA TTC CC	1475ª ^	208-233
1472 ^b		AT CAA TCG TCG ATA TA	1475 ^a	342-364
1473	E / mmn	CT TGA CGT ACA ACC AGT GG	1475ª	95-120
1474 ^b		TG TTT CTC TGT AAA TCT CC	1475 ^a	300-325
esistance g	enes:	dhfrIb, dhfrV		
1462	5'-GCA CTC C	CY AAT AGG AAA TAC GC	1470 ^a	157-179
		CT CAA AAA CAA CTT CG	1470 ^a	405-427
			1470ª	
1464 1465 ^b		AA TCT ATG GGM GCA CT AG TGG AGC GTA GAG GC	1470ª 1470ª	139-161 328-350
1100	5 -GIC GAI A	10 100 AGC GIA GAG GC	7210	520 550

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originating	DNA fragmen
SEQ ID NO.	Nucleotide seq	quence	SEQ ID NO.	Nucleotide position
Resistance	gene: dh	ıfrVI		
1476	5'-GGC GAG CAG	CTC CTA TTC AAA G	1480 ^a	79-100
1477 ^b	5'-TAG GTA AGC	TAA TGC CGA TTC AAC A	1480 ^a	237-261
1478	5'-GAG AAT GGA	GTA ATT GGC TCT GGA TT	1480 ^a	31-56
1479 ^b	5'-GCG AAA TAC	ACA ACA TCA GGG TCA T	1480ª	209-233
Resistance	gene: dh	nfrVII		
1485	5'-AAA ATG GCG	TAA TCG GTA ATG GC	1489 ^a	32-54
1486 ^b	5'-CAT TTG AGC	TTG AAA TTC CTT TCC TC	1489 ^a	189-214
1487	5'-AAT CGA AAA	TAT GCA GTA GTG TCG AG	1489 ^a	166-191
1488 ^b	5'-AGA CTA TTG	TAG ATT TGA CCG CCA	1489 ^a	294-317
Resistance	genes: dh	nfrVII, dhfrXVII		
1481	5'-RTT ACA GAT	CAT KTA TAT GTC TCT	1489 ^a	268-291
1482 ^b	5'-TAA TTT ATA	TTA GAC AWA AAA AAC TG	1489 ^a	421-446
1483	5'-CAR YGT CAG	AAA ATG GCG TAA TC	1489 ^a	23-45
1484 ^b	5'-TKC AAA GCR	WTT TCT ATT GAA GGA AA	1489 ^a	229-254
Resistance	gene: dh	efrVIII		
1490	5'-GAC CTA TGA	GAG CTT GCC CGT CAA A	1494 ^a	144-168
1491 ^b	5'-TCG CCT TCG	TAC AGT CGC TTA ACA AA	1494 ^a	376-401
1492	5'-CAT TTT AGC	TGC CAC CGC CAA TGG TT	1494 ^a	18-43
1493 ^D	5'-GCG TCG CTG A	CG TTG TTC ACG AAG A	1494ª ^	245-269
esistance ge	ene: dhf:	rIX		
1495	5'-TCT CTA AAC A	ATG ATT GTC GCT GTC	1499 ^a	7-30
1496 ^b	5'-CAG TGA GGC A	AAA AGT TTT TCT ACC	1499 ^a	133-156
1497	5'-CGG ACG ACT T	CA TGT GGT AGT CAG T	1499 ^a	171-195
1498b		GT AAT GGT CGG GAC CT	1499 ^a	446-471

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

				•	
				Originating	DNA fragmen
SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
Resistance	gene:	dhfrXII			
1500	5'-ATC GGG	TTA TTG GC.	A ATG GTC CTA	1504 ^a	50-73
1501 ^b	5'-GCG GTA	GTT AGC TT	G GCG TGA GAT T	. 1504 ^a	201-225
1502	5'-GCG GGC	GGA GCT GA	G ATA TAC A	1504 ^a	304-325
1503 ^b	5'-AAC GGA	GTG GGT GT	A CGG AAT TAC AG	1504ª	452-477
Resistance	gene:	dhfrXIII	:		
1505	5'-ATT TTT	CGC AGG CT	C ACC GAG AGC	1507 ^a	106-129
1506 ^b	5'-CGG ATG	AGA CAA CC	r CGA ATT CTG CTG	1507 ^a	413-439
Resistance	gene:	dhfrXV			
1508	5'-AGA ATG	TAT TGG TA	T TTC CAT CTA TCC	1512 ^a	215-241
₁₅₀₉ b	5'-CAA TGT	CGA TTG TTG	G AAA TAT GTA AA	1512 ^a	336-361
1510	5'-TGG AGT	GCC AAA GG	G GAA CAA T	1512 ^a	67-88
1511 ^b	5'-CAG ACA	CAA TCA CA	F GAT CCG TTA TCG	1512 ^a	266-292
Resistance	gene:	dhfrXVII	•		
1513	5'-TTC AAG	CTC AAA TG	A AAA CGT CC	1517ª	201-223
1514 ^b	5'-GAA ATT	CTC AGG CA	TAT AGG GAA T	1517 ^a	381-405
1515	5'-GTG GTC	AGT AAA AG	G TGA GCA AC	1517 ^a	66-88
1516 ^b			TCT ATT GAA GG	1517 ^a	232-257
Resistance d		mhR			
2102	5'-CAC CTT C	AC CCT GAC (CGA CG	2105 ^a	822-841
2103 ^b	5'-CGA ACC A	SC GGA AAT	AGT TGG AC	2105 ^a	948-970
esistance ge	nes:	ereA, ere	12		
1528	5'-AAC TTG AG	GC GAT TTT (CGG ATA CCC TG	1530 ^a	80-105
1529 ^b	5'-TTG CCG A			1530ª	317-340

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Resistance	gene:	ereB		
1531	5'-TCT TTT	TGT TAC GAC ATA CGC TTT T	1535a	152-176
1532 ^b	5'-AGT GCT	TCT TTA TCC GCT GTT CTA	1535 ^a	456-479
1533	5'-CAG CGG	ATA AAG AAG CAC TAC ACA TI	1535ª	461-486
1534 ^b	5'-CCT CCT	GAA ATA AAG CCC GAC AT	1535 ^a	727-749
Resistance	gene:	gyrA		
1340	5'-GAA CAA	GGT ATG ACA CCG GAT AAA T	1299 ^a	163-188
1341 ^b	5'-GAT AAC	TGA AAT CCT GAG CCA TAC G	1299a	274-299
1936	5'-TAC CAC	CCG CAC GGC	1954 ^a	205-219
1937b	5'-CGG AGT	CGC CGT CGA TG	1954 ^a	309-325
1942	5'-GAC TGG	AAC AAA GCC TAT AAA AAA TO	A 1954 ^a	148-174
1937b	5'-CGG AGT	CGC CGT CGA TG	1954 ^a	309-325
2040	5′ጥርጥ ርልር	CCC AGA CAA ACC C	2054 ^a	33-51
2041 ^b		CGG CAG CAC TAT CT	2054ª	
Resistance	gene:	inhA		
2098	5'-CTG AGT	CAC ACC GAC AAA CGT C	2101 ^a	910-931
2099b	5'-CCA GGA	CTG AAC GGG ATA CGA A	2101 ^a	1074-1095
Resistance	genes:	linA, linA'		
1536	5'-AGA TGT AT	TT AAU TGG AAA ACA ACA A	1540 ²	99-123
1537b		AT TAG TTT CTG AAA ACC A	1540ª	352-376
1538	5'-TTA GAA GA	AT ATA GGA TAC AAA ATA GAA	G 1540ª	187-214
1539 ^b	5'-GAA TGA AA	AA AGA AGT TGA GCT T	1540 ^a	404-425
esistance q	ene: 1	linB		
1541	5'-TGA TAA TO	T TAT ACG TGG GGA ATT T	1545 ^a	246-270
1542 ^b	5'-ATA ATT T	TO TAA TTG CCC TGT TTC AT	1545 ^a	359-384
1543	5'-GGG CAA TI	TA GAA AAT TAT TTA TCA GA	1545ª	367-392
1544 ^b	5'-TTT TAC TO	CA TGT TTA GCC AAT TAT CA	1545 ^a	579-604

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

				Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
Resistance o	gene:	mefA			
1546			GCT GTA CTA C		625-646
1547b	5'-TAA TTC	CCA AAT A	AAC CCT AAT AAT AGA	1548 ^a	816-842
<u>Resistance (</u>	gene:	mefE			
1549	5'-GCT TAT	TAT TAG	GAA GAT TAG GGG GC	1551ª	815-840
1550 ^b	5'-TAG CAA	GTG ACA	rga tac ttc cga	1551 ^a	1052-1075
Resistance o	genes:	mefA, 1	mefE		
1552	5'-GGC AAG	CAG TAT (CAT TAA TCA CTA	1548 ^a	50-73
1553 ^b	5'-CAA TGC	TAC GGA	TAA ACA ATA CTA TC	1548 ^a	318-343
1554	5'-AGA AAA	TTA AGC (CTG AAT ATT TAG GAC	1548 ^a	1010-1039
₁₅₅₅ b	5'-TAG TAA	AAA CCA A	ATG ATT TAC ACC G	1548 ^a	1119-1143
Resistance o	genes:	mphA, ı	mphK		
1556	5'-ACT GTA	CGC ACT	rgc agc ccg aca t	1560 ^a	33-57
1557 ^b	5'-GAA CGG	CAG GCG A	ATT CTT GAG CAT	1560 ^a	
1558	5'-GTG GTG	GTG CAT (GC GAT CTC T	1560 ^a	583-604
1559 ^b	5'-GCC GCA	GCG AGG	TAC TCT TCG TTA	1560 ^a	855-878
Resistance o	gene:	mupA			
2142	5'-GCC TTA	ATT TCG (GAT AGT GC	2144ª	1831-1850
2143 ^D	5'-GAG AAA G	AG CCC AA	T TAT CTA ATG T	2144ª ^	2002-2026
esistance ge	ne: 1	parC			
1342	5'-GAT GTT A	TT GGT CA	A TAT CAT CCA	1321 ^a	205-229
1343 ^b			r tat taa tat cac gi		396-425
1934	5'-GAA CGC C	AG CGC GA	A ATT CAA AAA G	1781	67-91
1935 ^b	5'-AGC TCG G	CA TAC TTO	C GAC AGG	1781	277-297
	5'-ACC GTA A	GT CGG CC	A AGT CA	2055 ^a	176-195
2045 ^b	5'-GTT CTT TO	CT CCG TA	r CGT C	2055 ^a	436-454

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Resistance	gene:	ppflo-like		
2163		ATC CTA CCG ATG TGG GTT	2165ª	
2164 ^b	5'-CAA CGA	CAC CAG CAC TGC CAT TG	2165 ^a	1136-1158
Resistance	gene:	гров		
2065	5'-CCA GGA	CGT GGA GGC GAT CAC A	2072 ^a	1218-1239
2066 ^b	5'-CAC CGA	CAG CGA GCC GAT CAG A	2072 ^a	1485-1506
Resistance	gene:	satG		
1581	5'-AAT TGG	GGA CTA CAC CTA TTA TGA TG	1585 ^a	93-118
1582 ^b	5'-GGC AAA	TCA GTC AGT TCA GGA GT	1585 ^a	310-332
1583	5'-CGA TTG	GCA ACA ATA CAC TCC TG	1585 ^a	294-316
1584 ^b		ATT TTT ACG CCT GGT AGG AC	1585 ^a	388-413
Resistance	gene:	sulII		
1961	5'-GCT CAA	GGC AGA TGG CAT TCC C	1965 ^a	222-243
1962 ^b	5'-GGA CAA	GGC GGT TGC GTT TGA T	1965 ^a	496-517
1963	5'-CAT TCC	CGT CTC GCT CGA CAG T	1965 ^a	237-258
1964 ^b	5'-ATC TGC	CTG CCC GTC TTG C	1965 ^a	393-411
Resistance	gene:	tetB		
1966	5'-CAT GCC	AGT CTT GCC AAC G	1970 ^a	66-84
1967 ^b	5'-CAG CAA	TAA GTA ATC CAG CGA TG	1970 ^a	242-264
1968	5'-GGA GAG A'	TT TCA CCG CAT AG	1970 ^a	457-476
		CA TCA TGC TAT TCC A	1970 ^a	721-742
esistance ge	ene:	tetM		
1586	5'-ATT CCC A	CA ATC TTT TTT ATC AAT AA	1590 ^a	361-386
1587 ^b		CA GAT TCG GTA AAG TTC	1590 ^a	501-524
1588	5'-GTT TTT G	AA GTT AAA TAG TGT TCT T	1590 ^a	957-981
1589 ^b		TT GTA CTT TCC CTA	1590 ^a	1172-1192

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originating	DNA fragmen
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Resistance	gene:	vatB		
1609	5'-GCC CTG	ATC CAA ATA GCA TAT A	1613 ^a	11-32
1610 ^b	5'-CCT GGC	ATA ACA GTA ACA TTC TG	1613 ^a	379-401
1611	5'-TGG GAA	AAA GCA ACT CCA TCT C	1613 ^a	301-322
1612 ^b	5'-ACA ACT	GAA TTC GCA GCA ACA AT	1613 ^a	424-446
Resistance (gene:	vatC		
1614	5'-CCA ATC	CAG AAG AAA TAT ACC C	1618 ^a	26-47
1615 ^b	5'-ATT AGT	TTA TCC CCA ATC AAT TCA	1618 ^a	177-200
1616	5'-ATA ATG	AAT GGG GCT AAT CAT CGT A	лт 1618 ^а	241-266
1617 ^b		AAC TGA ATA AGG ATC AAC	1618 ^a	463-486
Resistance (gene:	vga		
1619	5'-AAG GCA	AAA TAA AAG GAG CAA AGC	1623 ^a	641-664
1620 ^b	5'-TGT ACC	CGA GAC ATC TTC ACC AC	1623 ^a	821-843
1621	5'-AAT TGA	AGG ACG GGT ATT GTG GAA	1623 ^a	843-868
1622 ^b	5'-CGA TTT	TGA CAG ATG GCG ATA ATG A	A 1623 ^a	975-1000
Resistance	gene:	vgaB		
1624	5'-TTC TTT	AAT GCT CGT AGA TGA ACC T	'A 1628 ^a	354-379
1625 ^b	5'-TTT TCG	TAT TCT TCT TGT TGC TTT C	1628 ^a	578-602
1626	5'-AGG AAT	GAT TAA GCC CCC TTC AAA A	A 1628 ^a	663-688
1627 ^b		SC GAC CAT GAA ATT GCT CT	1628 ^a	849-874
esistance ge	nes:	gb, vgh		
1629	5'-AAG GGG A	AA GTT TGG ATT ACA CAA CA	1633 ^a	73-98
1630 ^b		AG GGC ATT ATC AGA ACC	1633ª	445-468
1631	5'-CGA CGA TO	GC TTT ATG GTT TGT	1633 ^a	576-596
1632 ^b		G CCT ATC TTG TCA CAC TC	1633 ^a	850-875

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		•
<u> </u>		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
Resistance	gene: vgbB	
1634	5'-TTA ACT TGT CTA TTC CCG ATT CAG	G 1882 ^a 23-47
1635 ^b	5'-GCT GTG GCA ATG GAT ATT CTG TA	1882 ^a 267-289
1636	5'-TTC CTA CCC CTG ATG CTA AAG TGA	1882 ^a 155-178
1637 ^b	5'-CAA AGT GCG TTA TCC GAA CCT AA	1882 ^a 442-464
	Sequencing primers	•
Resistance	gene: gyrA	
1290	5'-GAY TAY GCI ATG ISI GTI ATH GT	1299 ^a 70-83
₁₂₉₂ b	5'-ARI SCY TCI ARI ATR TGI GC	1299 ^a 1132-1152
1291	5'-GCI YTI CCI GAY GTI MG1 GAY GG	1299 ^a 100-123
1292 ^b	5'-ARI SCY TCI ARI ATR TGI GC	1299 ^a 1132-1152
1293	5'-ATG GCT GAA TTA CCT CAA TC	1299 ^a 1-21
1294 ^b	5'-ATG ATT GTT GTA TAT CTT CTA	C 1299 ^a 2626-2651
1295 ^b	5'-CAG AAA GTT TGA AGC GTT GT	1299 ^a 1255-1275
1296	5'-AAC GAT TCG TGA GTC AGA TA	1299 ^a 1188-1208
1297	5'-CGG TCA ACA TTG AGG AAG AGC T	1300 ^a 29-51
1298 ^b	5'-ACG AAA TCG ACC GTC TCT TTT TC	1300 ^a 415-437
Resistance	gene: gyrB	
1301	5'-GTT MGT AWT MGT CCT GST ATG TA	1307 ^a
1302 ^b	5'-TAI ADI GGI GGI KKI GCI ATR TA	1307 ^a 1600-1623
1303	5'-GGI GAI GAI DYI MGI GAR GG	1307 ^a 955-975
1304 ^b	5'-CIA RYT TIK YIT TIG TYT G	1307 ^a 1024-1043
1305	5'-ATG GTG ACT GCA TTG TCA GAT G	1307 ^a 1-23
1306 ^b	5'-GTC TAC GGT TTT CTA CAA CGT C	1307 ^a 1858-1888

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
	Sequencing primers (continued)		
Resistance o	gene: parC		
1308	5'-ATG TAY GTI ATI ATG GAY MGI GC	1320 ^a	67-90
1309b	5'-ATI ATY TTR TTI CCY TTI CCY TT	1320 ^a	1993-2016
1310	5'-ATI ATI TSI ATI ACY TCR TC	1320 ^a	1112-1132
1311 ^b	5'-GAR ATG AAR ATI MGI GGI GAR CA	1320 ^a	1288-1311
1312	5'-AAR TAY ATI ATI CAR GAR MGI GC	1321 ^a	67-90
1313b	5'-AMI AYI CKR TGI GGI TTI TTY TT	1321 ^a	2212-2235
1314	5'-TAI GAI TTY ACI GAI SMI CAR GC	1321 ^a	1228-1251
1315 ^b	5'-ACI ATI GCI TCI GCY TGI KSY TC	1321 ^a	1240-1263
1316	5'-GTG AGT GAA ATA ATT CAA GAT T	1321 ^a	1-23
1317 ^b	5'-CAC CAA AAT CAT CTG TAT CTA C	1321 ^a	2356-2378
1318	5'-ACC TAY TCS ATG TAC GTR ATC ATG GA	1320 ^a	58-84
1319 ^b	5'-AGR TCG TCI ACC ATC GGY AGY TT	1320 ^a	832-855
Resistance of	gene: parE		
1322	5'-RTI GAI AAY ISI GTI GAY GAR G	1328 ^a	133-155
1325 ^b	5'-RTT CAT YTC ICC IAR ICC YTT	1328 ^a	1732-1752
1323	5'-ACI AWR SAI GGI GGI ACI CAY G	1328 ^a	829-850
13242^h	5 (-CCTTCCTTGCTTSWRTTCTTCCTTCTT	1328207	1720-1305
1326 1327 ^b	5'-TGA TTC AAT ACA GGT TTT AGA G 5'-CTA GAT TTC CTC CTC ATC AAA T	1328 ^a 1328 ^a	27-49 1971-1993

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex LI: Internal hybridization probes for specific detection of antimicrobial agents resistance genes sequences.

SEQ ID NO. Nucleotide sequence SEQ ID No. Position			Originating I	DNA fragment
Resistance gene: blashv	SEQ ID NO.	Nucleotide sequence	~	
Resistance Gene	Resistance	gene: aph3'VIa		
1886 5'-GAC GCC CGC GCC ACC ACT 1900a 484-501 1887 5'-GAC GCC CGC GAC ACC ACT A 1889a 514-532 1888 5'-GAC GCC CGC GAC ACC ACT A 1901a 514-532 1889 5'-GTT CGC AAC TGC ACT TGC TG 1889a 593-612 1890 5'-TTC GCA ACC GCC GC GC GC GC GCT GCT G 1889a 593-612 1891 5'-CCG GAC CTG CCG GC GCT GCT G 1899a 594-612 1891 5'-CCG GAC CTG CCG ACC GCT GCT G 1899a 692-709 1892 5'-GGA GCT GCC GAT CGG G 1902a 692-709 1893 5'-GGA GCT GCC GAT CGG GGT 1903a 693-710 1893 5'-GGA GCT GCC GAT CGG GGT 1889a 694-711 1894 5'-GAC CGG AGC TGC CGA ACC GG GT 1904a 690-707 1895 5'-CAG AGC TAG CAA RCG GGG T 1905a 693-711 1896 5'-GAA ACG GAC TAG CAA RCG GGG T 1905a 693-711 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899a 484-504 1897 5'-CAT TAC CAT GGC GAT AA CAG 1899a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA CAG 1899a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA CAG 1899a 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTA AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT CAT TGG GAA CC 1929a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC ATT 1930a 172-731 1917 5'-CGT GGG TCT TGC GGT ATC ATT 1930a 712-731 1918 5'-CGT GGG TCT TGC GGT ATC ATT 1930a 712-731 1919 5'-CGT GGG TCT TGC GGT ATC ATT 1930a 712-732 1920 5'-CGT GGT CTC ACG GTA ACT ATT 1930a 712-733 1922 5'-CGT GGT CTC ACG GGT ATC ATT 1932a 713-733 1923 5'-GTT TTC CAA TGA TTA GCC TT TT 1932a 188-211 1923 5'-CGT TTC CAA TGA TTA ATC ATT 1932a 188-211 1924 5'-CGT TTC CAA TGA TTA AGA CC TT TT 1932a 188-210 1926 5'-CGT TTC CAA TGA TTA AGC CTT TT 1932a 188-210	2252	5'-CCA CAT ACA GTG TCT CTC	1406 ^a	149-166
1887	Resistance	gene: blaSHV		
1888	1886	5'-GAC GCC CGC GCC ACC ACT	1900 ^a	484-501
1889 5'-GTT CGC AAC TGC AGC TGC TG 1899ª 593-612 1890 5'-TTC GCA ACG GCA GCT GCT G 1899ª 594-612 1891 5'-CCG GAG CTG CCG AIC GGG 1902ª 692-709 1892 5'-CGG AGC TGC CAA RCG GGG 1903ª 693-710 1893 5'-GGA GCT GGC GAR CGG GGT 1889ª 694-711 1894 5'-GAC CGG AGC TAG CAA RCG GGT 1899ª 690-707 1895 5'-CGG AGC TAG CAA RCG GGG 1904ª 690-707 1895 5'-CGA ACG GAC TAG CAA RCG GGG T 1905ª 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899ª 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899ª 366-386 1898 5'-CCA TTA CCAT GAG GCG ATAA CAG 1899ª 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928ª 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927ª 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928ª 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACA C 1928ª 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1927ª 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927ª 475-494 1915 5'-CGC CTT GAT CGT TGG GAA CC 1928ª 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927ª 712-731 1917 5'-CGT GGG TCT TGC GGT ATC AT 1927ª 712-731 1918 5'-CGT GGG TCT CC GGT ATC AT 1927ª 712-731 1919 5'-CGT GGG TCT CC GGT ATC AT 1930ª 712-731 1920 5'-CGT GGG TCT CC GGT ATC AT 1930ª 712-731 1921 5'-CGT GGG TCT CC GGT ATC ATT 1930ª 712-731 1922 5'-GTT TCC CAG GTA ACA TTT 1932ª 188-211 1923 5'-CGT TCC CAG TAC ATC ATT 1932ª 188-210 1926 5'-GTT TTC CAA TGA TGA GAC CTT TT 1932ª 188-210 1925 5'-CGT TTC CAA TGA TGA GCA CTT TT 1932ª 188-210	1887	5'-GAC GCC CGC GAC ACC ACT A	1899 ^a	514-532
1890 5'-TTC GCA ACG GCA GCT GCT G 1899 ^A 594-612 1891 5'-CCG GAG CTG CCG AIC GGG 1902 ^A 692-709 1892 5'-CGG AGC TGC CAA RCG GGG 1902 ^A 692-709 1893 5'-GGA GCT GC CAA RCG GGG 1903 ^A 693-710 1893 5'-GGA GCT GGC GAR CGG GGT 1899 ^A 694-711 1894 5'-GAC CGG AGC TAG CAA RCG GG T 1899 ^A 690-707 1895 5'-CGA ACG GAA CTG AAT GAG GGG T 1905 ^A 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899 ^A 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899 ^A 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899 ^A 365-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899 ^A 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ^A 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927 ^A 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACAC 1928 ^A 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACAC 1928 ^A 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1927 ^A 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927 ^A 475-494 1915 5'-CGC CTT GAT CGT TGG GAA CC 1927 ^A 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1930 ^A 712-731 1917 5'-CGT GGG TCT TGC GGT ATC AT 1930 ^A 712-731 1918 5'-CGT GGG TCT CAC GGT ATC ATT 1931 ^A 712-732 1920 5'-CGT GGG TCT CAC GGT ATC ATT 1931 ^A 712-732 1920 5'-CGT GGG TCT CAC GGT ATC ATT 1927 ^A 173-733 1922 5'-CGT TTC CAC GGT ATC ATT 1932 ^A 713-733 1922 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927 ^A 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927 ^A 188-211 1924 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927 ^A 188-210 1925 5'-CGT TTC CCA TGA GCA CCTT TT 1932 ^A 188-210	1888	5'-GAC GCC CGC AAC ACC ACT A	1901 ^a	514-532
1891 5'-CCG GAG CTG CCG AIC GGG 1902 ^a 692-709 1892 5'-CGG AGC TGC CAA RCG GGG 1903 ^a 693-710 1893 5'-GGA GCT GCC GAR CGG GGT 1899 ^a 694-711 1894 5'-GAC CGG AGC TAG CGA RCG 1990 ^a 690-707 1895 5'-CGC AGC TAG CAA RCG GGG T 1905 ^a 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899 ^a 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899 ^a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899 ^a 366-386 1898 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ^a 293-314 1910 5'-ATG ACT TGG TTA AGT ACT CAC C 1927 ^a 293-314 1911 5'-CCA TAA CCA TGA GTG ATA ACAC 1927 ^a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACAC 1928 ^a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1927 ^a 371-392 1914 5'-CCC CTT GAT CAT TGG GAA CC 1927 ^a 475-494 1915 5'-CGC CTT GAT CGT TGG GAA CC 1929 ^a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 475-494 1917 5'-CGC CTT GAT CGT TGG GAA CC 1929 ^a 712-731 1917 5'-CGT GGG TCT CGC GGT ATC AT 1930 ^a 712-731 1918 5'-CGT GGG TCT CGC GGT ATC AT 1931 ^a 712-731 1919 5'-CGT GGG TCT CGC GGT ATC AT 1931 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC AT 1931 ^a 712-731 1922 5'-CGT GGG TCT CGC GGT ATC AT 1931 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC AT 1931 ^a 712-731 1922 5'-CGT TTC CAA TGA CAT TGT TTT 1932 ^a 713-733 1922 5'-CGT TTC CAC GGT ATC ATT 1932 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC ATT 1931 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC ATT 1931 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC ATT 1931 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC ATT 1931 ^a 712-731 1922 5'-CGT TTC CAA TGA TAA GCA CTT TTA 1927 ^a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1932 ^a 188-210 1925 5'-CGT TTC CCA TGA GAC CTT TT 1933 ^a 188-210	1889	5'-GTT CGC AAC TGC AGC TGC TG	1899 ^a	593-612
1892 5'-CGG AGC TGC CAA RCG GGG 1903 ⁸ 693-710 1893 5'-GGA GCT GGC GAR CGG GGT 1899 ^a 694-711 1894 5'-GAC CGG AGC TAG CGA RCG 1904 ^a 690-707 1895 5'-CGG AGC TAG CAA RCG GGG T 1905 ^a 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899 ^a 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899 ^a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899 ^a 365-386 RESISTANCE GENE: DIATEM 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ^a 293-314 1910 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ^a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACAC 1928 ^a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACAC 1928 ^a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928 ^a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1929 ^a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 475-494 1917 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 712-731 1917 5'-CGC GGT TGC GGT ATC AT 1930 ^a 712-731 1919 5'-CGT GGG TCT CCG GGT ATC AT 1930 ^a 712-731 1920 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1921 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1922 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1923 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1924 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1925 5'-CGT GGG TCT CGC GGT ATC AT 1927 ^a 712-731 1926 5'-CGT TTC CAA TGA TAG CAC TTT 1927 ^a 188-211 1923 5'-GTT TTC CAA TGA TAG CAC TTT 1927 ^a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACTT TT 1927 ^a 188-210	1890	5'-TTC GCA ACG GCA GCT GCT G	1899 ^a	594-612
1893 5'-GGA GCT GGC GAR CGG GGT 1899 ⁸ 694-711 1894 5'-GAC CGG AGC TAG CGA RCG 1904 ⁸ 690-707 1895 5'-CGG AGC TAG CAA RCG GGG T 1905 ⁸ 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899 ⁸ 484-504 1897 5'-CAT TAC CAT GGG CGA ATA CAG 1899 ⁸ 366-386 1898 5'-CCA TTA CCA TGG CGA ATA ACAG 1899 ⁸ 365-386 RESISTANCE GENE: DIATEM 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ⁸ 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1928 ⁸ 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACAC 1928 ⁸ 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACAC 1927 ⁸ 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1927 ⁸ 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927 ⁸ 475-494 1915 5'-CGC CTT GAT CGT TGG GAA CC 1922 ⁸ 475-494 1916 5'-CGC CTT GAT CGT TGG GAA CC 1927 ⁸ 712-731 1917 5'-CGT GGG TCT TGC GGT ATC AT 1930 ⁸ 712-731 1918 5'-CGT GGG TCT GC GGT ATC AT 1930 ⁸ 712-731 1919 5'-CGT GGG TCT CC GGT ATC AT 1931 ⁸ 712-732 1920 5'-CGT GGG TCT CC GGT ATC AT 1931 ⁸ 712-731 1921 5'-CGT GGG TCT CC GGT ATC AT 1932 ⁸ 712-731 1920 5'-CGT GGG TCT CC GGT ATC AT 1931 ⁸ 712-732 1920 5'-CGT GGG TCT CC GGT ATC AT 1927 ⁸ 713-733 1922 5'-CGT TTC CAA TGA TGA CAT TT 1931 ⁸ 712-731 1923 5'-CGT TTC CAA TGA TAA GCA CTT TT 1932 ⁸ 713-733 1924 5'-CGT TTC CAA TGA TTA GCA CTT TT 1932 ⁸ 188-211 1923 5'-CGT TTC CAA TGA TAA GCA CTT TT 1932 ⁸ 188-210 1925 5'-CGT TTT CCAA TGA TGA GCA CTT TT 1932 ⁸ 188-210	1891	5'-CCG GAG CTG CCG AIC GGG	1902 ^a	692-709
1894 5'-GAC CGG AGC TAG CGA RCG 1904 ^a 690-707 1895 5'-CGG AGC TAG CAA RCG GGG T 1905 ^a 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899 ^a 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899 ^a 366-386 1898 5'-CCA TTA CCA TGG GCG ATA ACAG 1899 ^a 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928 ^a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927 ^a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928 ^a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACA C 1928 ^a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928 ^a 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927 ^a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929 ^a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1930 ^a 712-731 1917 5'-CGT GGG TCT CACG GTA TCAT 1930 ^a 712-731 1918 5'-CGT GGG TCT CACG GTA TCAT 1930 ^a 712-731 1920 5'-CGT GGG TCT CACG GTA ACCAT TGAT 1931 ^a 712-732 1920 5'-CGT GGG TCT CACG GTA TCAT 1932 ^a 713-733 1921 5'-CGT GGG TCT ACC GGT ATC AT 1932 ^a 713-733 1922 5'-GTT TCC CAA TGA TAA GCA CTT TTA 1932 ^a 713-733 1922 5'-GTT TCC CAA TGA TAA GCA CTT TTA 1932 ^a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927 ^a 188-211 1924 5'-GTT TTC CAA TGA TGA GCA CTT TTA 1932 ^a 188-210 1925 5'-CGT TTT CCAA TGA TGA GCA CTT TTA 1932 ^a 188-210	1892	5'-CGG AGC TGC CAA RCG GGG	1903 ^a	693-710
1895 5'-CGG AGC TAG CAA RCG GGG T 1905a 693-711 1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899a 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899a 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACAC 1927a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1927a 371-392 1914 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1915 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-CGT GGG TCT CAC GTA TC ATT 1930a 712-731 1919 5'-CGT GGG TCT CAC GTA TC ATT 1931a 712-732 1920 5'-CGT GGG TCT CAC GGT ATC AT 1931a 712-732 1920 5'-CGT GGG TCT CAC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT ACC GGT ATC AT 1932a 712-731 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGA TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCAA TGA TGA GCA CTT TT 1932a 188-210	1893	5'-GGA GCT GGC GAR CGG GGT	1899 ^a	694-711
1896 5'-GAA ACG GAA CTG AAT GAG GCG 1899a 484-504 1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899a 365-386 Resistance Gene: blatem blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGG GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CAT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1927a 712-731 1918 5'-CGT GGG TCT CGC GGT ATC AT 1930a 712-731 1920 5'-CGT GGT TCT CGC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGT TTC CGC GGT ATC ATT 1927a	1894	5'-GAC CGG AGC TAG CGA RCG	1904 ^a	690-707
1897 5'-CAT TAC CAT GGG CGA TAA CAG 1899a 366-386 1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899a 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-CGT GGG TCT CGC GGT ATC AT 1937a 712-732 1920 5'-CGT GGG TCT CGC GGT ATC AT 1937a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923	1895	5'-CGG AGC TAG CAA RCG GGG T	1905 ^a	693-711
1898 5'-CCA TTA CCA TGA GCG ATA ACAG 1899a 365-386 Resistance gene: blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TT 1931a 712-732 1920 5'-CGT GGG TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC AT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211	1896	5'-GAA ACG GAA CTG AAT GAG GCG	1899 ^a	484-504
Blatem 1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT GGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-CGT GGG TCT AGC GTA TCA TT 1937a 712-731 1919 5'-CGT GGG TCT CCG GGT ATC ATT 1931a 712-732 1920 5'-CGT GGG TCT CCG GGT ATC ATT 1931a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA	1897	5'-CAT TAC CAT GGG CGA TAA CAG	1899 ^a	366-386
1909 5'-ATG ACT TGG TTA AGT ACT CAC C 1928a 293-314 1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1928a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-CGT GGC TCT CAC GTA TCA TTG 1927a 713-733 1919 5'-CGT GGC TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGT TCT CGC GGT ATC AT 1931a 712-732 1920 5'-CGT GGT TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGC TCT AGC GGT ATC ATT 1932a 712-731 1922 5'-CGT TCC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TCC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-CGT TTC CAA TGA TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCAA TGA GCA CCT TT 1932a 188-210	1898	5'-CCA TTA CCA TGA GCG ATA ACAG	1899 ^a	365-386
1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT AGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-731 1920 5'-CGT GGT TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TT 1932a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1	Resistance	gene: blaTEM		
1910 5'-ATG ACT TGG TTG AGT ACT CAC C 1927a 293-314 1911 5'-CCA TAA CCA TGG GTG ATA ACA C 1928a 371-392 1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT AGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-731 1920 5'-CGT GGT TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TT 1932a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1	1909	5'-ATG ACT TGG TTA AGT ACT CAC C	1928 ^a	293-314
1912 5'-CCA TAA CCA TGA GTG ATA ACA C 1927a 371-392 1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGG TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC AT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1932a 713-733 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGA TAA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1910	5'-ATG ACT TGG TTG AGT ACT CAC C	1927 ^a	293-314
1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC AT 1927a 712-731 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1937a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1937a 188-210	1911	5'-CCA TAA CCA TGG GTG ATA ACA C	1928 ^a	371-392
1913 5'-CGC CTT GAT CAT TGG GAA CC 1928a 475-494 1914 5'-CGC CTT GAT CGT TGG GAA CC 1927a 475-494 1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1912	5'-CCA TAA CCA TGA GTG ATA ACA C	1927 a	371-392
1915 5'-CGC CTT GAT AGT TGG GAA CC 1929a 475-494 1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1913	5'-CGC CTT GAT CAT TGG GAA CC	1928 ^a	475-494
1916 5'-CGT GGG TCT TGC GGT ATC AT 1927a 712-731 1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 712-731 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1937a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1914	5'-CGC CTT GAT CGT TGG GAA CC	1927 ^a	475-494
1917 5'-CGT GGG TCT GGC GGT ATC AT 1930a 712-731 1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1915	5'-CGC CTT GAT AGT TGG GAA CC	1929 ^a	475-494
1918 5'-GTG GGT CTC ACG GTA TCA TTG 1927a 713-733 1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1916	5'-CGT GGG TCT TGC GGT ATC AT	1927ª -	712-731
1919 5'-CGT GGG TCT CTC GGT ATC ATT 1931a 712-732 1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1917	5'-CGT GGG TCT GGC GGT ATC AT	1930 ^a	712-731
1920 5'-CGT GGI TCT CGC GGT ATC AT 1927a 712-731 1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1918	5'-GTG GGT CTC ACG GTA TCA TTG	1927 ^a	713-733
1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1919	5'-CGT GGG TCT CTC GGT ATC ATT	1931 a	712-732
1921 5'-CGT GGG TCT AGC GGT ATC ATT 1932a 713-733 1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1920	5'-CGT GGI TCT CGC GGT ATC AT	1927 ^a	712-731
1922 5'-GTT TTC CAA TGA TTA GCA CTT TTA 1927a 188-211 1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210		·		713-733
1923 5'-GTT TTC CAA TGA TAA GCA CTT TTA 1927a 188-211 1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1922			188-211
1924 5'-GTT TTC CAA TGC TGA GCA CTT TT 1932a 188-210 1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933a 188-210	1923	5'-GTT TTC CAA TGA TAA GCA CTT TTA		188-211
1925 5'-CGT TTT CCA ATG ATG AGC ACT TT 1927 ^a 187-209 1926 5'-GTT TTC CAA TGG TGA GCA CTT TT 1933 ^a 188-210	1924	5'-GTT TTC CAA TGC TGA GCA CTT TT	_	188-210
_		5'-CGT TTT CCA ATG ATG AGC ACT TT	1927 ^a	187-209
_	1926	5'-GTT TTC CAA TGG TGA GCA CTT TT	1933ª	188-210
		5'-TGG AGC CGG TGA GCG TGG	1927 ^a	699-716

a Sequence from databases.

Annex LI: Internal hybridization probes for specific detection of antimicrobial agents resistance genes sequences (continued).

		Originating DNA frag	ment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleo NO. posit	
Resistance	gene: blaTEM (continue	đ)	
2007	5'-TGG AGC CAG TGA GCG TGG	2010 ^a 699-7	16
2008	5'-TCT GGA GCC GAT GAG CGT G	1929 ^a 697-7	15
2009	5'-CTG GAG CCA GTA AGC GTG G	2011 ^a 698-7	16
2141	5'-CAC CAG TCA CAG AAA AGC	1927 ^a 311-3	28
Resistance	gene: dhfrIa		
2253	5'-CAT TAC CCA ACC GAA AGT A	1461 ^a 158-1	.76
Resistance	gene: embB		
2104	5'-CTG GGC ATG GCI CGA GTC	2105 ^a 910-9	27
Resistance	gene: gyrA		,
1333	5'-TCA TGG TGA CTT ATC TAT TTA	TG 1299 ^a 240-2	63
1334	5'-CAT CTA TTT ATA AAG CAA TGG '	TA 1299 ^a 251-2	74
1335	5'-CTA TTT ATG GAG CAA TGG T	1299 ^a 254-2	273
1940	5'-GTA TCG TTG GTG ACG TAA T	1299 ^a 206-2	24
1943	5'-GCT GGT GGA CGG CCA G	1954 ^a 279-2	94
1945	5'-CGG CGA CTA CGC GGT AT	1954 ^a 216-2	32
1946	5'-CGG CGA CTT CGC GGT AT	1954 ^a 216-2	32
1947	5'-CGG TAT ACG GCA CCA TCG T	1954 ^a 227-2	45
1948	5'-GCG GTA TAC AAC ACC ATC G	1954 ^a 226-2	244
1949	5'-CGG TAT ACG CCA CCA TCG T	1954 ^a 227-2	45
2042	5'-CAC GGG GAT TTC TCT ATT TA	2054 ^a 103-1	.22
2043	5'-CAC GGG GAT TAC TCT ATT TA	2054 ^a 103-1	.22
esistance ge	ene: inhA	•	
2100	5'-GCG AGA CGA TAG GTT GTC	2101 ^a 1017-103	34
esistance ge	ene: parC		
1336	5'-TGG AGA CTA CTC AGT GT	1321 ^a 232-249	}
1337	5'-TGG AGA CTT CTC AGT GT	1321 ^a 232-249	•
1338	5'-GTG TAC GGA GCA ATG	1321 ^a 245-260	
1339	5'-CCA GCG GAA ATG CGT	1321 ^a 342-357	
1941	5'-GCA ATG GTC CGT TTA AGT	1321 ^a 253-270)
1944	5'-TTT CGC CGC CAT GCG TTA C	1781 247-265	5
1950	5'-GGC GAC ATC GCC TGC	1781 137-151	-
1951	5'-GGC GAC AGA GCC TGC TA	1781 137-153	

a Sequence from databases.

Annex LI: Internal hybridization probes for specific detection of antimicrobial agents resistance genes sequences (continued).

					Originating DNA fragment			
SEQ ID NO.	Nucleo	Nucleotide sequence					SEQ ID	Nucleotide position
Resistance	gene:		parC	(cor	tin	ued)		
1952	5'-CCT	GCT	ATG GA	G CGA	TGG	T	1781	147-165
1953	5'-CGC	CTG	CTA TA	A AGC	GAT	GGT	1781	145-165
2046	5′-ACG	GGG	ATT · TT	T CTA	TCT	AT	2055 ^a	227-246
Resistance	gene:		rpoB					
2067	5′-AGC	TGA	GCC AA	т тса	TGG		2072 ^a	1304-1321
2068	5'-ATT	CAT	GGA CC	a gaa	CAA	С	2072 ^a	1314-1332
2069	5′-CGC	TGT	CGG GG	T TGA	CCC		2072 ^a	1334-1351
2070	5'-GTT	GAC	CCA CA	A GCG	CCG		2072 ^a	1344-1361
2071	5′-CGA	CTG	TCG GC	G CTG	GGG		2072 ^a	1360-1377
Resistance	gene:		tetM					
2254	5'-ACC	TGA	ACA GA	g aga	AAT	G	1590 ^a	1062-1080

a Sequence from databases.

Annex LII: Molecular beacon internal hybridization probes for specific detection of atpD sequences.

,			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence ^a	SEQ ID NO.	Nucleotide position
Bacterial	species:	Bacteroides fragilis	-	
2136		CGT CCT CAA TCA TTT CTA ACT TCT GGC GTT GG	929	353-382
Bacterial	species:	Bordetella pertussis		
2182	5'- <u>GCG CGC</u> AGA GTC	CAA CGA CTT CTA CCA CGA AAT GGA	1672	576-605
Bacterial	group:	Campylobacter jejuni	and C. col	i
2133			1576, 1600,1849, 863,2139 ^{b,c}	44-73 ^d
Fungal sp	ecies:	Candida glabrata		
2078	5'- <u>CCG</u> <u>AGC</u> <u>TCG</u> <u>G</u>	CTT GGT CTT CGG CCA AAT GAA CGC	463	442-463
Fungal sp	ecies:	Candida krusei		
2075	5'- <u>CCG AGC</u> TAG GT <u>G</u>	CAG GTT CTG AAG TCT CTG CAT TAT CTC GG	468	720-748
Fungal sp	ecies:	Candida lusitaniae		
2080	5'- <u>CCG</u> <u>AGC</u> <u>G</u>	CGA AGA GGG CCA AGA TGT CGC TCG	470	520-538
Fungal sp	ecies:	Candida parapsilosis		
2079 5	'-CCG AGC G' GCT CGG	TT CAG TTA CTT CAG TCC AAG CCG	472	837-860
ungal spec	cies:	Candida tropicalis		
2077 5	'- <u>CCG AGC</u> A	AC CGA TCC AGC TCC AGC TAC GCT	475	877-897
acterial s	species:	Klebsiella pneumoniae		
2281 5	'-CCC CCA G	CT GGG CGG CGG TAT CGA T <u>GG</u> <u>GGG</u>	317	40-59

 $^{^{\}mbox{\scriptsize a}}$ Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

 $^{^{\}mbox{\scriptsize C}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm d}$ The nucleotide positions refer to the C. jejuni atpD sequence fragment (SEQ ID NO. 1576).

Annex LII: Molecular beacon internal hybridization probes for specific detection of atpD sequences (continued).

		O ₂	riginatino	DNA fragment
SEQ ID NO	. Nucleotide sequence ^a		SEQ ID NO.	Nucleotide position
Fungal c	genus: Candida sp.			
2076	5'- <u>CCG AGC</u> YGA YAA CAT TTT CAG RGC <u>GCT CGG</u>	ATT CAC CCA 4	460-478, 663 ^b	697-723 ^C

a Underlined nucleotides indicate the molecular beacon's stem.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the C. albicans atpD sequence fragment (SEQ ID NO. 460).

Annex LIII: Internal hybridization probes for specific detection of atpD sequences.

			Originating DN	NA fragment
SEQ ID NO.	Nucleotid	e sequence	SEQ ID NO.	Nucleotide position
Bacterial s	species:	Acinetobacter bauman	nii	
2169	5'-CCC GT	T TGC GAA AGG TGG	243	304-321
Bacterial s	pecies:	Klebsiella pneumonia	8	
2167	5'-CAG CA	G CTG GGC GGC	317	36-53

Annex LIV: Internal hybridization probes for specific detection of ddl and mtl sequences.

							Originating	DNA fragment
SEQ ID NO. N	ucleotide se	equence					SEQ ID NO.	Nucleotide position
Bacterial s	pecies:	En	tero	ococ	cus	faecium	(đđ1)	
2286	5'-AGT T	GC TGT	ATT	AGG	AAA	TG	2288 ^a	784-803
2287	5'-TCG A	AG TTG	CTG	TAT	TAG	GA	2288 ^a	780-799
Bacterial s	pecies:	En	ter	0000	cus	faecalis	s mt1)	
2289	5'-CAC C	GA AGA	AGA	TGA	AAA	AA	1243 ^a	264-283
2290	5'-TGG C	AC ÇGA	AGA	AGA	TGA		1243 ^a	261-278
2291	5'-ATT T	TG GCA	CCG	AAG	AAG	A	1243 ^a	257-275

a Sequence from databases.

What is claimed is:

1. A method for generating a repertory of nucleic acids of *tuf*, *fus*, *atpD* and/or *recA* genes from which are derived probes or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the step of:

- amplifying the nucleic acids of a plurality of determinedalgal, archaeal, bacterial, fungal and parasitical species with any combination of the primer pairs defined in SEQ ID NOs.: 543, 556-574, 636-655, 664, 681-683, 694, 696-697, 699-700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999-2003, 2282-2285.
- 2. A method for generating a repertory of nucleic acid sequences, which comprises the steps of:
 - reproducing the method of claim 1, and
 - adding the step of:
 - sequencing said nucleic acids.
- 3. A method for generating sequences of probes, or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of:
 - reproducing the metabod of chalming, and
 - adding the steps of:
 - aligning a subset of nucleic acid sequences of said repertory,
 - locating nucleic acid stretches that are present in the nucleic acids of strains or representatives of said one, more than one related microorganisms, or substantially all microorganisms of said group, and not present in the nucleic acid sequences of other microorganisms, and

• deriving consensus nucleic acid sequences useful as probes or primers from said stretches.

- 4. A bank of nucleic acids comprising the repertory of nucleic acids obtained from the method of claim 1.
- 5. A bank of nucleic acid sequences comprising the repertory of nucleic acid sequences obtained from the method of claim 2.
- 6. A method for generating sequences of probes, or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of.
 - aligning a subset of nucleic acid sequences of the bank as defined in claim 5,
 - locating nucleic acid sequence stretches that are present in the nucleic acid sequences of strains or representatives of said one, more than one related microorganisms, or substantially all microorganisms of said group, and not present in the nucleic acid sequences of other microorganisms, and
 - deriving consensus nucleic acid sequences useful as probes or primers from said stretches.
- 7. A method for generating probes, or primers or both, useful for the addetection of an inortal through related increasing or a substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of:
 - reproducing the method of claim 3 or 6, and
 - adding the step of:
 - synthesising said probes or primers upon the nucleic acid sequences thereof.
- 8. A nucleic acid used for universal detection of any one of alga, archaeon, bacterium, fungus and parasite which is obtained from the method of claim 7.

9. A nucleic acid used for universal detection as set forth in claim 8, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any one of alga, archaeon, bacterium, fungus and parasite and with any one of SEQ ID NOs.: 543, 556-574, 636-655, 658-661, 664, 681-683, 694, 696, 697, 699, 700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999-2003, 2282-2285.

- 10. A nucleic acid used for the specific and ubiquitous detection and for identification of any one of a algal, archaeal, bacterial, fungal and parasitital species, genus, family and group, which is obtained from the method of claim 7.
- 11. A nucleic acid as set forth in claim 10 having any one of the nucleotide sequences which are defined in SEQ ID NOs.:

539, 540	for the detection and/or identification of <i>Mycobacteriaceae</i> family
541, 542, 544,	for the detection and/or identification of Pseudomonads
2121	group
545, 546	for the detection and/or identification of Corynebacterium
	sp.
547, 548, 1202	for the detection and/or identification of Streptococcus sp.
549, 550, 582, 583,	for the detection and/or identification of Streptococcus
625, 626, 627, 628,	agalactiae
1100 1177	
551, 552, 2166, f	for the detection and/or identification of Neisseria
2173, 2174, 2175, g	gonorrhoeae
2176, 2177, 2178,	
2179	
553, 575, 605, 606, f	for the detection and/or identification of Staphylococcus sp.
707, 1175, 1176	
, ,	for the detection and/or identification of Chlamydia rachomatis

576, 631, 632, 633, 634, 635, 1163, 1164, 1167, 2076, 2108, 2109	for the detection and/or identification of Candida sp.
577, 1156, 1160 2073	for the detection and/or identification of Candida albicans
578, 1166, 1168, 2074	for the detection and/or identification of Candida dubliniensis
579, 2168	for the detection and/or identification of Escherichia coli
580, 603, 1174,	for the detection and/or identification of Enterococcus
1236, 1238, 2289, 2290, 2291	faecalis
581	for the detection and/or identification of <i>Haemophilus</i> influenzae
584, 585, 586, 587,	for the detection and/or identification of Staphylococcus
588, 1232, 1234,	aureus
2186	
589, 590, 591, 592,	for the detection and/or identification of Staphylococcus
593	epidermidis
594, 595	for the detection and/or identification of Staphylococcus haemolyticus
596, 597, 598	for the detection and/or identification of Staphylococcus hominis
599, 600, 601, 695,	for the detection and/or identification of Staphylococcus
1208, 1209	saprophyticus
602, 1235, 1237,	for the detection and/or identification of Enterococcus
1696, 1697, 1698,	faecium
1699, 1700, 1701,	
2286, 2287	
604	for the detection and/or identification of Enterococcus
go	allinarum
	or the detection and/or identification of Enterococcus asseliflavus, E. flavescens and E. gallinarum
	or the detection and/or identification of Chlamydia
, , ,	neumoniae .
2089, 2090, 2091,	
2092	

636, 637, 638, 639, for the detection and/or identification of at least the 640, 641, 642 following:

Abiotrophia adiacens, Abiotrophia defectiva, Acinetobacter baumannii, Acinetobacter lwoffi, Aerococcus viridans, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Brucella abortus, Burkholderia_ cepacia, Citrobacter diversus, Citrobacter freundii, Enterobacter aerogenes, agglomerans, Enterobacter Enterobacter cloacae, Enterococcus Enterococcus avium, casseliflavus, Enterococcus dispar, Énterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus flavescens, gallinarum, Enterococcus mundtii. Enterococcus raffinosus, Enterococcus solitarius. Enterococcus Gemella morbillorum, Haemophilus Escherichia coli, ` Haemophilus haemolyticus, Haemophilus ducrevi. influenzae, Haemophilus parahaemolyticus, Haemophilus parainfluenzae, Hafnia alvei, Kingella kingae, Klebsiella oxytoca, Klebsiella pneumoniae, Legionella pneumophila, Megamonas hypermegale, Moraxella atlantae, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrheae, Neisseria meningitidis, Pasteurella aerogenes, Pasteurella multocida, Peptostreptococcus magnus, Proteus mirabilis, Providencia alcalifaciens, Providencia rettgeri, Providencia rustigianii, Providencia stuartii, Pseudomonas aeruginosa, Pseudomonas Pseudomonas fluorescens, Salmonella bongori, Salmonella choleraesuis, Salmonella enteritidis. Salmonella gallinarum, Salmonella typhimurium, Serratia liquefaciens, Serratia marcescens, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, epidermidis, capitis Staphylococcus Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus Staphylococcus lugdunensis, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri. maltophilia, Stenotrophomonas Streptococcus Streptococcus agalactiae, Streptococcus acidominimus, anginosus, Streptococcus bovis, Streptococcus constellatus, Streptococcus Streptococcus cristatus, cricetus, Streptococcus dysgalactiae, Streptococcus Streptococcus ferus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus macacae, Streptococcus mitis Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus uberis, Streptococcus Vibrio cholerae, Yersinia enterocolitica, vestibularis, Yersinia pestis, Yersinia pseudotuberculosis.

656, 657, 271,

for the detection and/or identification of Enterococcus sp.

1136, 1137

for the detection and/or identification of *Leishmania* sp.

703, 704, 705, 706 793	, for the detection and/or identification of Entamoeba sp.
794, 795	for the detection and/or identification of Trypanosoma cruzi
•	, for the detection and/or identification of <i>Clostridium</i> sp.
810, 811	•
798, 799, 800, 801	, for the detection and/or identification of Cryptosporidium
802, 803, 804, 805	, parvum
806, 807	
816, 817, 818, 819	for the detection and/or identification of Giardia sp.
820, 821, 822	for the detection and/or identification of <i>Trypanosoma</i> brucei
823, 824	for the detection and/or identification of Trypanosoma sp.
825, 826	for the detection and/or identification of Bordetella sp.
923, 924, 925, 926	, for the detection and/or identification of Trypanosomatidae
927, 928	family
933, 934	for the detection and/or identification of Enterobacteriaceae
	group
994, 995, 996, 997	, for the detection and/or identification of Streptococcus
998, 999, 1000,	pyogenes
1001, 1200, 1210,	
1211	
1157, 2079, 2118	for the detection and/or identification of Candida parapsilosis
1158, 1159, 2078,	for the detection and/or identification of Candida glabrata
2110, 2111	
1160, 2077, 2119,	for the detection and/or identification of Candida tropicalis
2120	
1161, 2075, 2112,	for the detection and/or identification of Candida krusei
2113, 2114	
1162	for the detection and/or identification of Candida
	guilliermondii
1162, 2080, 2115	for the detection and/or identification of Candida lusitaniae
2116, 2117	
1165	for the detection and/or identification of Candida zeylanoides
1201	for the detection and/or identification of Streptococcus
1201	
	pneumoniae

1233	for the detection and/or identification of Staphylococcus sp.
	other than S. aureus
1329, 1330, 1331,	for the detection and/or identification of Klebsiella
1332, 2167, 2281	pneumoniae
1661, 1665	for the detection and/or identification of Escherichia coli
	and <i>Shigella</i> sp.
1690, 1691, 1692,	for the detection and/or identification of Acinetobacter
1693, 2169	baumanii
1694, 1695, 2122	for the detection and/or identification of <i>Pseudomonas</i> aeruginosa
1071 1072 1072	for the detection and/or identification of <i>Cryptococcus sp.</i>
1971, 1972, 1973	-
2081, 2082, 2083	for the detection and/or identification of Legionella sp.
2084	for the detection and/or identification of Legionella pneumophila
2093, 2094, 2095,	for the detection and/or identification of Mycoplasma
2096	pneumoniae
2106, 2107	for the detection and/or identification of Cryptococcus
	neoformans
2131, 2132, 2133	for the detection and/or identification of Campylobacter
	jejuni and C. coli
2134, 2135, 2136	for the detection and/or identification of Bacteroides fragilis
2170	for the detection and/or identification of Abiotrophia
	adiacens
2171 41/1	for the detection and/or identification of Gemeila sp.
2172	for the detection and/or identification of Enterococcus sp.,
	Gemella sp., A. adiacens
2180, 2181, 2182	for the detection and/or identification of Bordetella
•	pertussis.

- 12. A method for detecting the presence in a test sample of a microorganism that is an alga, archaeum, bacterium, fungus or parasite, which comprises:
 - a) putting in contact any test sample tuf or atpD or recA nucleic acids and nucleic acid primers and/or probes, said primers and/or probes having

been selected to be sufficiently complementary to hybridize to one or more tuf or atpD or recA nucleic acids that are specific to said group of microorganisms;

- b) allowing the primers and/or probes and any test sample tuf or atpD or recA nucleic acids to hybridize under specified conditions such as said primers and/or probes hybridize to the tuf or atpD or recA nucleic acids of said microorganism and does not detectably hybridize to tuf or atpD or recA sequences from other microorganisms; and,
- c) testing for hybridization of said primers and/or probes to any test sample *tuf* or *atpD* or *recA* nucleic acids.
- 13. The method of claim 12 wherein c) is based on a nucleic acid target amplification method.
- 14. The method of claim 12 wherein c) is based on a signal amplification method.
- 15. The method of any one of claims 12 to 14 wherein said primers and/or probes that are sufficiently complementary are perfectly complementary.
- 16. The method of any one of claims 12 to 14 wherein said primers and/or probes that are sufficiently complementary are not perfectly complementary.
- microorganism that is an algal, archaeal, bacterial, fungal or parasitical species, genus, family or group in any sample, using a panel of probes or amplification primers or both, each individual probe or primer being derived from a nucleic acid which has a nucleotide sequence of at least 12 nucleotides in length capable of hybridizing with the nucleic acids of said microorganism and with a nucleic acid having any one of the nucleotide sequences defined in SEQ ID NOs.:
- for the detection and/or identification of *Mycobacteriaceae* family
- 541, 542, 544, 2121 for the detection and/or identification of Pseudomonads group

545, 546	for the detection and/or identification of Corynebacterium sp.
547, 548, 1202 549, 550, 582, 583, 625, 626, 627, 628, 1199	for the detection and/or identification of <i>Streptococcus</i> sp. for the detection and/or identification of <i>Streptococcus</i>
551, 552, 2166, 2173, 2174, 2175, 2176, 2177, 2178, 2179	for the detection and/or identification of Neisseria gonorrhoeae
553, 575, 605, 606, 707, 1175, 1176	for the detection and/or identification of Staphylococcus sp.
554, 555, 2213	for the detection and/or identification of <i>Chlamydia</i> trachomatis
576, 631, 632, 633, 634, 635, 1163, 1164, 1167, 2076, 2108, 2109	for the detection and/or identification of Candida sp.
577, 1156, 1160 2073	for the detection and/or identification of Candida albicans
578, 1166, 1168, 2074	for the detection and/or identification of Candida dubliniensis
579, 2168 580, 603, 1174, 1236, 1238, 2289, 2290, 2291	for the detection and/or identification of <i>Escherichia coli</i> for the detection and/or identification of <i>Enterococcus faecalis</i>
581	for the detection and/or identification of <i>Haemophilus</i> influenzae
584, 585, 586, 587, 588, 1232, 1234, 2186	for the detection and/or identification of Staphylococcus aureus
589, 590, 591, 592, 593	for the detection and/or identification of Staphylococcus epidermidis
594, 595	for the detection and/or identification of Staphylococcus haemolyticus
596, 597, 598	for the detection and/or identification of Staphylococcus hominis

599, 600, 601, 695, 1208, 1209 602, 1235, 1237, 1696, 1697, 1698, 1699, 1700, 1701, 2286, 2287 604

620, 1122

629, 630, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2092 636, 637, 638, 639, 640, 641, 642 for the detection and/or identification of Staphylococcus saprophyticus

for the detection and/or identification of *Enterococcus* faecium

for the detection and/or identification of *Enterococcus* gallinarum for the detection and/or identification of *Enterococcus* casseliflavus, E. flavescens and E. gallinarum for the detection and/or identification of *Chlamydia* pneumoniae

for the detection and/or identification of at least the following: Abiotrophia adiacens, Abiotrophia defectiva, Acinetobacter baumannii, Acinetobacter lwoffi, Aerococcus viridans, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Brucella abortus. Burkholderia cepacia, Citrobacter diversus. Citrobacter freundii, Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter cloacae, Enterococcus avium, Enterococcus casseliflavus. Enterococcus Enterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus flavescens, Enterococcus gallinarum, Enterococcus mundtii. Enterococcus raffinosus. Escherichia coli. Gemella Enterococcus solitarius. Haemophilus morbillorum, Haemophilus ducreyi, haemolyticus, Haemophilus influenzae, Haemophilus parahaemolyticus, Haemophilus parainfluenzae, Hafnia alvei, Kingella kingae, Klebsiella oxytoca, Klebsiella pneumoniae, pneumophila, Megamonas hypermegale, Legionella Moraxella atlantae, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrheae, Neisseria meningitidis, multocida Pasteurella Pasteurella aerogenes Peptostreptococcus magnus, Proteus mirabilis, Providencia alcalifaciens, Providencia rettgeri, Providencia rustigianii, Pseudomonas Providencia stuartii, aeruginosa, Pseudomonas Pseudomonas fluorescens, stutzeri. Salmonella bongori, Salmonella choleraesuis, Salmonella enteritidis, Salmonella gallinarum, Salmonella typhimurium, Serratia liquefaciens, Serratia marcescens, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Staphylococcus Staphylococcus Staphylococcus epidermidis, capitis Staphylococcus hominis, Staphylococcus haemolyticus, lugdunensis, Staphylococcus saprophyticus, Staphylococcus simulans. Staphylococcus warneri, Stenotrophomonas

PCT/CA00/01150 WO 01/23604

> maltophilia, Streptococcus acidominimus, Streptococcus agalactiae, Streptococcus anginosus, Streptococcus bovis, Streptococcus constellatus, Streptococcus cricetus, Streptococcus Streptococcus cristatus, dysgalactiae, Streptococcus equi, Streptococcus ferus, Streptococcus Streptococcus intermedius, Streptococcus gordonii, macacae, Streptococcus mitis, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus uberis, Streptococcus vestibularis, Vibrio cholerae, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis.

656, 657, 271,	for the detection and/or identification of Enterococcus sp.
1136, 1137	for the detection and/or identification of <i>Leishmania</i> sp.
701, 702	-
703, 704, 705, 706	, for the detection and/or identification of <i>Entamoeba</i> sp.
793	
794, 795	for the detection and/or identification of Trypanosoma cruzi
796, 797, 808, 809	, for the detection and/or identification of <i>Clostridium</i> sp.
810, 811	
798, 799, 800, 801	, for the detection and/or identification of Cryptosporidium
802, 803, 804, 805	, parvum
806, 807	
816, 817, 818, 819	for the detection and/or identification of Giardia sp.
820, 821, 822	for the detection and/or identification of Trypanosoma
,,	brucei
823, 824	for the detection and/or identification of Trypanosoma sp.
275 276	for the detection and/or identification of Rardetalla sn
923, 924, 925, 926,	for the detection and/or identification of Trypanosomatidae
927, 928	family
933, 934	for the detection and/or identification of Enterobacteriaceae
	group
994, 995, 996, 997,	for the detection and/or identification of Streptococcus
998, 999, 1000,	pyogenes
1001, 1200, 1210,	
1211	
1157, 2079, 2118	for the detection and/or identification of Candida parapsilosis

1158, 1159, 2078, 2110, 2111	for the detection and/or identification of Candida glabrata
1160, 2077, 2119, 2120	for the detection and/or identification of Candida tropicalis
1161, 2075, 2112, 2113, 2114	for the detection and/or identification of Candida krusei
1162	for the detection and/or identification of <i>Candida</i> guilliermondii
1162, 2080, 2115 2116, 2117	for the detection and/or identification of Candida lusitaniae
1165	for the detection and/or identification of <i>Candida</i> zeylanoides
1201	for the detection and/or identification of Streptococcus pneumoniae
1233	for the detection and/or identification of <i>Staphylococcus</i> sp. other than <i>S. aureus</i>
1329, 1330, 1331,	for the detection and/or identification of Klebsiella
1332, 2167, 2281	pneumoniae
1661, 1665	for the detection and/or identification of <i>Escherichia coli</i> and <i>Shigella</i> sp.
1690, 1691, 1692,	for the detection and/or identification of Acinetobacter
1693, 2169	baumanii
1694, 1695, 2122	for the detection and/or identification of <i>Pseudomonas</i> aeruginosa
1971, 1972, 1973	for the detection and/or identification of Cryptococcus sp.
2081, 2082, 2083	for the detection and/or identification of Legionella sp.
2084	for the detection and/or identification of Legionella pneumophila
2093, 2094, 2095,	for the detection and/or identification of Mycoplasma
2004 2090	pneumoniae
2106, 2107	for the detection and/or identification of Cryptococcus neoformans
2131, 2132, 2133	for the detection and/or identification of Campylobacter jejuni and C. coli
2134, 2135, 2136	for the detection and/or identification of Bacteroides fragilis

2170	for the detection and/or identification of Abiotrophia adiacens
2171	for the detection and/or identification of Gemella sp.
2172	for the detection and/or identification of Enterococcus sp.,
	Gemella sp., A. adiacens
2180, 2181, 2182	for the detection and/or identification of Bordetella pertussis,

said method comprising the step of contacting the nucleic acids of the sample with said primers or probes under suitable conditions of hybridization or of amplification and detecting the presence of hybridized probes or amplified products as an indication of the presence of said specificalgal, archaeal, bacterial, fungal or parasitical species, genus, family or group.

- 18. A method for the universal detection of any bacterium, fungus or parasite in a sample, using a panel of probes or amplification primers or both, each individual probe or primer being derived from a nucleic acid as defined in claims 8 or 9, the method comprising the step of contacting the nucleic acids of the sample with said primers or probes under suitable conditions of hybridization or of amplification and detecting the presence of any alga, archaeon, bacterium, fungus or parasite.
- 19. A method as set forth in claim 17 or 18, which further comprises probes or primers, or both, for the detection of at least one antimicrobial agent resistance gene.
- 20. A method as set forth in claim 1,7 18 or 10, which further comprises probes or primers, or both, for the detection of at least one toxin gene.
- 21. A method as set forth in claim 19 or 20, wherein the probes or primers for the detection of said antimicrobial agent resistance gene or toxin gene have at least 12 nucleotides in length capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene selected from SEQ ID NOs.:
- 1078, 1079, 1085 for the detection and/or identification of the *E. coli* Shigalike toxin 2 (stx₂) gene

1080, 1081, 1084, 2012 1082, 1083	for the detection and/or identification of the E . $coli$ Shigalike toxin 1 (stx_1) gene for the detection and/or identification of E . $coli$ Shiga-like
	toxins 1 and 2 (stx) genes
1086, 1087, 1088,	for the detection and/or identification of the vanA resistance
1089, 1090, 1091,	gene
1092, 1170, 1239,	
1240, 2292	
1095, 1096, 1171,	for the detection and/or identification of the vanB resistance
1241, 2294, 2295	gene
1111, 1112, 1113,	for the detection and/or identification of the vanAB
1114, 1115, 1116,	resistance genes
1118, 1119, 1120,	
1121, 1123, 1124	
1103, 1104, 1109,	for the detection and/or identification of the vanC1
1110	resistance gene
1105, 1106, 1107,	for the detection and/or identification of the <i>vanC2</i> and
1108	vanC3 resistance genes
1097, 1098, 1099,	for the detection and/or identification of the vanC1, vanC2
1100, 1101, 1102	and vanC3 resistance genes
1150, 1153, 1154,	for the detection and/or identification of the vanAXY
1155	resistance genes
1094, 1125, 1126,	for the detection and/or identification of the S. pneumoniae
1127, 1128, 1129,	pbp1a gene
1130, 1131, 1132,	
1133, 1134, 1135,	
1192, 1193, 1194,	
1195, 1196, 1197,	
1214, 1216, 1217,	
1210 1210 1220 1410, 1417, 1440,	
2015, 2016, 2017,	
2018, 2019, 2020,	
2021, 2022, 2023,	
2024, 2025, 2026,	
2027, 2028, 2029,	
2030, 2031, 2032,	
2033, 2034, 2035,	
2036, 2037, 2038,	
2039	

1142 <u>,</u> 1143, 1144, 1145	for the detection and/or identification of the S. pneumoniae pbp2b gene
1146, 1147, 1148, 1149	
1177, 1231	for the detection and/or identification of the <i>mecA</i> resistance gene
1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1333, 1334, 1335, 1340, 1341, 1936,	for the detection and/or identification of the gyrA resistance gene
1937, 1940, 1942, 1943, 1945, 1946, 1947, 1948, 1949, 2040, 2041, 2042, 2043, 2250, 2251	
1301, 1302, 1303, 1304, 1305, 1306	for the detection and/or identification of the <i>gyrB</i> resistance gene
1308, 1309, 1310,	for the detection and/or identification of the parC resistance
1311, 1312, 1313,	gene
1314, 1315, 1316,	
1317, 1318, 1319,	
1336, 1337, 1338,	
1339, 1342, 1343,	
1934, 1935, 1938,	
1939, 1941, 1944,	
1950, 1951, 1952,	
1953, 1955, 2044,	
2045, 2046	
1222 1222 1224 1344, 1343, 134 4 ,	for the detection and/or identification of the new E resistance
1325, 1326, 1327	gene
1344, 1345, 1346,	for the detection and/or identification of the aac(2')-Ia
1347	resistance gene
1349, 1350	for the detection and/or identification of the $aac(3')$ -Ib resistance gene
1352, 1353, 1354,	for the detection and/or identification of the $aac(3')$ -IIb
1355	resistance gene
1357, 1358, 1359,	for the detection and/or identification of the $aac(3')$ -IVa
1360	resistance gene
1362, 1363, 1364,	for the detection and/or identification of the $aac(3')$ -VIa
1365	resistance gene

1367, 1368, 1369,	for the detection and/or identification of the aac(6')-Ia
1370	resistance gene
1372, 1373, 1374,	for the detection and/or identification of the $aac(6')$ -Ic
1375	resistance gene
1377, 1378, 1379,	for the detection and/or identification of the ant(3')-Ia
1380	resistance gene
1382, 1383, 1384,	for the detection and/or identification of the ant(4')-Ia
1385	resistance gene
1387, 1388, 1389,	for the detection and/or identification of the aph(3')-Ia
1390	resistance gene
1392, 1393, 1394,	for the detection and/or identification of the aph(3')-IIa
1395	resistance gene
1397, 1398, 1399,	for the detection and/or identification of the aph(3')-IIIa
1400	resistance gene
1402, 1403, 1404,	for the detection and/or identification of the aph(3')-VIa
1405, 2252	resistance gene
1407, 1408, 1409	for the detection and/or identification of the blaCARB
1410	resistance gene
1412, 1413, 1414,	for the detection and/or identification of the blaCMY-2
1415	resistance gene
1417, 1418	for the detection and/or identification of the blaCTX-M-
	land blaCTX-M -2 resistance genes
1419, 1420, 1421,	for the detection and/or identification of the blaCTX-M-1
1422	resistance gene
1424, 1425, 1426,	for the detection and/or identification of the blaCTX-M-2
1427	resistance gene
1429, 1430, 1431,	for the detection and/or identification of the blaIMP
1432	resistance gene
1434, 1435	for the detection and/or identification of the blaOXA2
	resistance gene
1436, 1437	for the detection and/or identification of the blaOXA10
	resistance gene
1440, 1441	for the detection and/or identification of the blaPER-1
	resistance gene

1443, 1444	for the detection and/or identification of the <i>blaPER-2</i> resistance gene
1446, 1447, 1448,	
1449	blaPER -2 resistance genes
1450, 1451	for the detection and/or identification of the dfrA resistance
	gene
1453, 1454, 1455,	for the detection and/or identification of the dhfrIa and
1456	dhfrXV resistance genes
1457, 1458, 1459,	for the detection and/or identification of the dhfrIa
1460, 2253	resistance gene
1462, 1463, 1464,	for the detection and/or identification of the dhfrIb and
1465	dhfrV resistance genes
1466, 1467, 1468,	for the detection and/or identification of the dhfrIb
1469	resistance gene
1471, 1472, 1473,	for the detection and/or identification of the dhfrVresistance
1474	gene
1476, 1477, 1478,	for the detection and/or identification of the dhfrVI
1479	resistance gene
1481, 1482, 1483,	for the detection and/or identification of the dhfrVII and
1484	dhfrXVII resistance genes
1485, 1486, 1487,	for the detection and/or identification of the dhfrVII
1488	resistance gene
1490, 1491, 1492,	for the detection and/or identification of the dhfrVIII
1 <i>1</i> 02 1 1 73	resistance gene
1495, 1496, 1497,	for the detection and/or identification of the dhfrIX
1498	resistance gene
1500, 1501, 1502,	for the detection and/or identification of the dhfrXII
1503	resistance gene
1505, 1506	for the detection and/or identification of the dhfrXIII
	resistance gene
1508, 1509, 1510,	for the detection and/or identification of the dhfrXV
1511	resistance gene
1513, 1514, 1515,	for the detection and/or identification of the dhfrXVII
1516	resistance gene

1528, 1529	for the detection and/or identification of the ereA and ereA2 resistance genes
1531, 1532, 1533,	for the detection and/or identification of the ereB resistance
1534	gene
1536, 1537, 1538,	for the detection and/or identification of the linA and linA'
1539	resistance genes
1541, 1542, 1543,	for the detection and/or identification of the linB resistance
1544	gene
1546, 1547	for the detection and/or identification of the <i>mefA</i> resistance gene
1549, 1550	for the detection and/or identification of the mefE resistance
	gene
1552, 1553, 1554,	for the detection and/or identification of the mefA and mefE
1555	resistance genes
1556, 1557, 1558,	for the detection and/or identification of the mphA and
1559	mphK resistance genes
1581, 1582, 1583,	for the detection and/or identification of the satG resistance
1584	gene
1586, 1587, 1588,	for the detection and/or identification of the tetM resistance
1589, 2254	gene
1591, 1592, 1593,	for the detection and/or identification of the vanD resistance
2297	gene
1595, 1596, 1597,	for the detection and/or identification of the vanE resistance
1500 1370	gene
1609, 1610, 1611,	for the detection and/or identification of the vatB resistance
1612	gene
1614, 1615, 1616,	for the detection and/or identification of the vatC resistance
1617	gene
1619, 1620, 1621,	for the detection and/or identification of the vga resistance
1622	gene
1624, 1625, 1626,	for the detection and/or identification of the vgaB resistance
1627	gene
1629, 1630, 1631,	for the detection and/or identification of the vgb and vgh
1632	resistance genes

1634, 1635, 1636, 1637	for the detection and/or identification of the vgbB resistance gene
1883, 1884, 1885,	for the detection and/or identification of the blaSHV
1886, 1887, 1888,	resistance gene
1889, 1890, 1891,	
1892, 1893, 1894,	
1895, 1896, 1897,	
1898	
1906, 1907, 1908,	for the detection and/or identification of the blaTEM
1909, 1910, 1911,	resistance gene
1912, 1913, 1914,	
1915, 1916, 1917,	
1918, 1919, 1920,	
1921, 1922, 1923,	
1924, 1925, 1926,	
2006, 2007, 2008,	
2009, 2141	
1961, 1962, 1963,	for the detection and/or identification of the sulII resistance
1964	gene
1966, 1967, 1968,	for the detection and/or identification of the tetB resistance
1969	gene
2065, 2066, 2067,	for the detection and/or identification of the rpoB resistance
2068, 2069, 2070,	gene
2071	
2098, 2099, 2100	for the detection and/or identification of the <i>inhA</i> resistance gene
2102, 2103, 2104	for the detection and/or identification of the embB resistance
, ,	gene
2123, 2124, 2125	for the detection and/or identification of the C. difficile cdtA
	ioxiii gene
2126, 2127, 2128	for the detection and/or identification of the C. difficile cdtB
, ,	toxin gene
2142, 2143	for the detection and/or identification of the mupA
	resistance gene
2145, 2146	for the detection and/or identification of the catI resistance
•	gene
2148, 2149	for the detection and/or identification of the catII resistance
	gene

2151, 2152	for the detection and/or identification of the catIII resistance
	gene
2154, 2155	for the detection and/or identification of the catP resistance
	gene
2157, 2158, 2160,	for the detection and/or identification of the cat resistance
2161	gene
2163, 2164	for the detection and/or identification of the ppflo-like
	resistance gene.

- 22. A composition of matter comprising a specific nucleic acid as set forth in claim 10 or 11, which is specific for a bacterial, fungal or parasitical species, genus, family, or group, or a nucleic acid as set forth in claim 8 or 9 which is universal for a bacterium, fungus or parasite, or both specific and universal nucleic acids, in conjunction with a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene.
- 23. A composition as set forth in claim 22, wherein the nucleic acid capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene is any one of:

1078, 1079, 1085	for the detection and/or identification of the E . $coli$ Shigalike toxin 2 (stx_2) gene
1080, 1081, 1084,	for the detection and/or identification of the E. coli Shiga-
2012	like toxin 1 (stx_l) gene
1082, 1083	for the detection and/or identification of E. coli Shiga-like
	toxins 1 and 2 (stx) genes
1086, 1087, 1088,	for the detection and/or identification of the vanA resistance
1089, 1090, 1091,	gene
1092, 1170, 1239,	
1240, 2292	
1095, 1096, 1171,	for the detection and/or identification of the vanB resistance
1241, 2294, 2295	gene
1111, 1112, 1113,	for the detection and/or identification of the vanAB
1114, 1115, 1116,	resistance genes
1118, 1119, 1120,	•
1121, 1123, 1124	

1102 1104 1100	Con the detection and/on identification of the condi-
1103, 1104, 1109,	for the detection and/or identification of the vanC1
1110	resistance gene
1105, 1106, 1107,	for the detection and/or identification of the vanC2 and
1108	vanC3 resistance genes
1097, 1098, 1099,	for the detection and/or identification of the vanC1, vanC2
1100, 1101, 1102	and vanC3 resistance genes
1150, 1153, 1154,	for the detection and/or identification of the vanAXY
1155	resistance genes
1094, 1125, 1126,	for the detection and/or identification of the S. pneumoniae
1127, 1128, 1129,	pbp1a gene
1130, 1131, 1132,	
1133, 1134, 1135,	
1192, 1193, 1194,	
1195, 1196, 1197,	
1214, 1216, 1217,	
1218, 1219, 1220,	
2015, 2016, 2017,	
2018, 2019, 2020,	
2021, 2022, 2023,	
2024, 2025, 2026,	
2027, 2028, 2029,	
2030, 2031, 2032,	
2033, 2034, 2035,	
2036, 2037, 2038,	
2039	
1142, 1143, 1144,	for the detection and/or identification of the S. pneumoniae
1145	pbp2b gene
1146, 1147, 1148,	for the detection and/or identification of the S. pneumoniae
1149	pbp2x gene
1177 1021 1177, 1231	for the detection and/or identification of the meca resistance
,	gene
1290, 1291, 1292,	for the detection and/or identification of the gyrA resistance
1293, 1294, 1295,	gene
1296, 1297, 1298,	
1333, 1334, 1335,	
1340, 1341, 1936,	
1937, 1940, 1942,	
1943, 1945, 1946,	
1947, 1948, 1949,	
2040, 2041, 2042,	
2043, 2250, 2251	
, ,	

1301, 1302, 1303, 1304, 1305, 1306 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1336, 1337, 1338, 1339, 1342, 1343, 1934, 1935, 1938, 1939, 1941, 1944, 1050, 1051, 1052	for the detection and/or identification of the gyrB resistance gene for the detection and/or identification of the parC resistance gene
1950, 1951, 1952, 1953, 1955, 2044,	
2045, 2046	
1322, 1323, 1324,	for the detection and/or identification of the parE resistance
1325, 1326, 1327	gene
1344, 1345, 1346,	for the detection and/or identification of the $aac(2')$ -Ia
1347 1349, 1350	resistance gene for the detection and/or identification of the <i>aac(3')-Ib</i>
1349, 1330	resistance gene
1352, 1353, 1354, 1355	for the detection and/or identification of the $aac(3')$ -IIb resistance gene
1357, 1358, 1359,	for the detection and/or identification of the aac(3')-IVa
1360	resistance gene
1362, 1363, 1364,	for the detection and/or identification of the aac(3')-VIa
1365	resistance gene
1367, 1368, 1369,	for the detection and/or identification of the $aac(6')$ -Ia
1370	resistance gene
1372, 1373, 1374,	for the detection and/or identification of the $aac(6')$ -Ic
1375	resistance gene for the detection and/or identification of the ant(3')-Ia
1377, 1378, 1379,	·
1380 1382, 1383, 1384,	resistance gene for the detection and/or identification of the ant(4')-Ia
1385	resistance gene
1387, 1388, 1389,	for the detection and/or identification of the $aph(3')$ -Ia
1390	resistance gene
1392, 1393, 1394,	for the detection and/or identification of the aph(3')-IIa
1395	resistance gene
1397, 1398, 1399,	for the detection and/or identification of the aph(3')-IIIa
1400	resistance gene

1402, 1403, 1404,	for the detection and/or identification of the aph(3')-VIa
1405, 2252	resistance gene
1407, 1408, 1409	for the detection and/or identification of the blaCARB
1410	resistance gene
1412, 1413, 1414,	for the detection and/or identification of the blaCMY-2
1415	resistance gene
1417, 1418	for the detection and/or identification of the blaCTX-M-
	land blaCTX-M -2 resistance genes
1419, 1420, 1421,	for the detection and/or identification of the blaCTX-M-1
1422	resistance gene
1424, 1425, 1426,	for the detection and/or identification of the blaCTX-M-2
1427	resistance gene
1429, 1430, 1431,	for the detection and/or identification of the blaIMP
1432	resistance gene
1434, 1435	for the detection and/or identification of the blaOXA2
	resistance gene
1436, 1437	for the detection and/or identification of the blaOXA10
	resistance gene
1440, 1441	for the detection and/or identification of the blaPER-1
	resistance gene
1443, 1444	for the detection and/or identification of the blaPER-2
	resistance gene
1446, 1447, 1448,	for the detection and/or identification of the blaPER-1 and
1 <i>11</i> 10 1447	UIAPED 2 registeres consc
1450, 1451	for the detection and/or identification of the dfrA resistance
	gene
1453, 1454, 1455,	for the detection and/or identification of the dhfrIa and
1456	dhfrXV resistance genes
1457, 1458, 1459,	for the detection and/or identification of the dhfrla
1460, 2253	resistance gene
1462, 1463, 1464,	for the detection and/or identification of the dhfrIb and
1465	dhfrV resistance genes
1466, 1467, 1468,	for the detection and/or identification of the dhfrIb
1469	resistance gene
	·

1471, 1472, 1473,	for the detection and/or identification of the dhfrVresistance
1474	gene
1476, 1477, 1478,	for the detection and/or identification of the dhfrVI
1479	resistance gene
1481, 1482, 1483,	for the detection and/or identification of the dhfrVII and
1484	dhfrXVII resistance genes
1485, 1486, 1487,	for the detection and/or identification of the dhfrVII
1488	resistance gene
1490, 1491, 1492,	for the detection and/or identification of the dhfrVIII
1493	resistance gene
1495, 1496, 1497,	for the detection and/or identification of the dhfrIX
1498	resistance gene
1500, 1501, 1502,	for the detection and/or identification of the dhfrXII
1503	resistance gene
1505, 1506	for the detection and/or identification of the dhfrXIII
	resistance gene
1508, 1509, 1510,	for the detection and/or identification of the dhfrXV
1511	resistance gene
1513, 1514, 1515,	for the detection and/or identification of the dhfrXVII
1516	resistance gene
1528, 1529	for the detection and/or identification of the ereA and ereA2
	resistance genes
1531, 1532, 1533,	for the detection and/or identification of the ereB resistance
152A 1334	gene
1536, 1537, 1538,	for the detection and/or identification of the linA and linA'
1539	resistance genes
1541, 1542, 1543,	for the detection and/or identification of the linB resistance
1544	gene
1546, 1547	for the detection and/or identification of the mefA resistance
	gene
1549, 1550	for the detection and/or identification of the mefE resistance
	gene
1552, 1553, 1554,	for the detection and/or identification of the mefA and mefE
1555	resistance genes

1556 1557 1550	for the detection and/or identification of the much A and
1556, 1557, 1558, 1559	for the detection and/or identification of the <i>mphA</i> and <i>mphK</i> resistance genes
	for the detection and/or identification of the satG resistance
1581, 1582, 1583, 1584	
	gene for the detection and/or identification of the tetM resistance
1586, 1587, 1588,	
1589, 2254	gene for the detection and/or identification of the vanD resistance
1591, 1592, 1593, 2297	
	gene for the detection and/or identification of the war Francistance
1595, 1596, 1597,	for the detection and/or identification of the vanE resistance
1598	gene for the detection and/or identification of the <i>vatB</i> resistance
1609, 1610, 1611, 1612	
	gene for the detection and/or identification of the <i>vatC</i> resistance
1614, 1615, 1616, 1617	
	gene for the detection and/or identification of the <i>vga</i> resistance
1619, 1620, 1621, 1622	
1624, 1625, 1626,	gene for the detection and/or identification of the <i>vgaB</i> resistance
1627, 1623, 1626,	gene
1629, 1630, 1631,	for the detection and/or identification of the vgb and vgh
1632	resistance genes
1634, 1635, 1636,	for the detection and/or identification of the vgbB resistance
1637	gene
1883, 1884, 1885,	for the detection and/or identification of the blaSHV
1886, 1887, 1888,	resistance gene
1889, 1890, 1891,	200000000000000000000000000000000000000
1892, 1893, 1894,	
1895, 1896, 1897,	
1898	
1906, 1907, 1908,	for the detection and/or identification of the blaTEM
1000 1010 1011 1707, 1710, 1711,	resistance gene
1912, 1913, 1914,	
1915, 1916, 1917,	
1918, 1919, 1920,	
1921, 1922, 1923,	
1924, 1925, 1926,	
2006, 2007, 2008,	
2009, 2141	
1961, 1962, 1963,	for the detection and/or identification of the sulII resistance
1964	gene

1966, 1967, 1968,	for the detection and/or identification of the tetB resistance
1969	gene
2065, 2066, 2067,	for the detection and/or identification of the rpoB resistance
2068, 2069, 2070,	gene
2071	
2098, 2099, 2100	for the detection and/or identification of the inhA resistance
	gene
2102, 2103, 2104	for the detection and/or identification of the embB resistance
	gene
2123, 2124, 2125	for the detection and/or identification of the C. difficile cdtA
	toxin gene
2126, 2127, 2128	for the detection and/or identification of the C. difficile cdtB
	toxin gene
2142, 2143	for the detection and/or identification of the mupA
	resistance gene
2145, 2146	for the detection and/or identification of the catI resistance
	gene
2148, 2149	for the detection and/or identification of the catII resistance
	gene
2151, 2152	for the detection and/or identification of the catIII resistance
	gene
2154, 2155	for the detection and/or identification of the catP resistance
	gene
2157, 2158, 2160,	for the detection and/or identification of the cat resistance
2161	gene
2163, 2164	for the detection and/or identification of the ppflo-like
I	esistance gene.

24. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the tuf sequences defined in SEQ ID NOs.: 1-73, 75-241, 399-457, 498-529, 612-618, 621-624, 675, 677, 717-736, 779-792, 840-855, 865, 868-888, 897-910, 932, 967-989, 992, 1266-1287, 1518-1526, 1561-1575, 1578-1580, 1662-1664, 1666-1667, 1669-1670, 1673-1683, 1685-1689, 1786-1843, 1874-1881, 1956-1960, 2183-2185, 2187-2188, 2193-2201, 2214-2249, 2255-2272.

25. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the *atpD* sequences defined in SEQ ID NOs.: 242-270, 272-398, 458-497, 530-538, 663, 667, 673, 674, 676, 678-680, 737-778, 827-832, 834-839, 856-862, 866-867, 889-896, 929-931, 941-966, 1245-1254, 1256-1265, 1527, 1576-1577, 1600-1604,1638-1647, 1649-1660, 1671, 1684, 1844-1848, 1849-1865, 2189-2192.

- 26. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the *recA* sequences defined in SEQ ID NOs.: 990-991, 1003, 1288-1289, 1714, 1756-1763, 1866-1873 and 2202-2212.
- 27. A nucleic acid having at least 12 nucleotides in length, capable of selectively hybridizing with the nucleotide sequence of any one of the antimicrobial agent resistance gene sequences defined in SEQ ID NOs.: 1004-1075, 1255, 1607-1608, 1648, 1764-1785, 2013-2014, 2056-2064, 2273-2280.
- 28. The nucleic acid sequences of the nucleic acids of any one of claims 24 to 27.
- 29. The use of a nucleic acid having at least 12 nucleotides in length capable of hybridizing with the nucleic acids of any one of the antimicrobial agent resistance genes sequences defined in SEQ ID NOs.: 1004-1075, 1255, 1007-1006, 1046, 1704-1703, 2013-2014, 2035-2004, 2023-2020 1010 utbacketion and identification of microbial species.
- 30. The use of a nucleic acid having at least 12 nucleotides in length capable of hybridizing with the nucleic acids of any one of the toxin genes defined in SEQ ID NOs.: 1078-1085, 2012 and 2123 to 2128 for the detection and identification of microbial species.
- 31. A repertory of hexA nucleic acids used for the detection and/or identification of Streptococcus pneumoniae, which repertory is created by amplifying

the nucleic acids of any streptococcal species with any combination of primers SEQ ID NOs.: 1179, 1181 and 1182.

- 32. A repertory as defined in claim 31, which comprises the nucleic acids having a nucleotide sequence defined in SEQ ID NOs.: 1184 to 1191.
- 33. A repertory of nucleic acid sequences derived from the repertory of claim 31 or 32.
- 34. A nucleic acid used for the specific and ubiquitous detection and for identification of *Streptococcus pneumoniae*, which is derived from the repertory of claim 31.
- 35. A nucleic acid as set forth in claim 34 which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any *Streptococcus pneumoniae* and with any one of SEQ ID NOs.: 1184 to 1187.
- 36. A nucleic acid as set forth in claim 34, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with the nucleic acids of *Streptococcus pneumoniae* and with any one of the nucleic acids having SEQ ID NOs.: 1179, 1180, 1181, 1182.
- 37. A peptide derived from the translation of the nucleic acids from the repertory obtained from the method of claim 1, 31 or 32, or of the nucleic acids underived in any uneverted chalaises 24 to 27,735 and 36
 - 38. A peptide sequence derived from the peptide of claim 37.
- 39. A recombinant vector comprising a nucleic acid obtained from the method of claim 1, 31 or 32, or from the nucleic acids defined in any one of claims 24 to 27, 35 and 36.
- 40. A recombinant vector as defined in claim 39 which is an expression vector.

41. A recombinant host cell comprising the recombinant vector defined in claim 39 or 40.

- 42. The use of the nucleic acid sequences defined in claim 28 or 33, or obtained from the method of claim 2 and of the protein sequences deduced from said nucleic acid sequences, for the design of a therapeutic agent effective against said microorganisms.
- 43. The use as defined in claim 42, wherein said therapeutic agent is an antimicrobial agent, a vaccine or a genic therapeutic agent.
- 44. A method for identification of a microorganism in a test sample, comprising the steps of:
 - a) obtaining a nucleic acid sequence for a *tuf*, *atpD*, and/or *recA* genes of said microorganisms, and
 - b) comparing said nucleic acid sequence with the nucleic acid sequences of a bank as defined in claim 5, said repertory comprising a nucleic acid sequence obtained from the nucleic acids of said microorganism, whereby said microorganism is identified when said comparison results in a match between said sequences.