Информационная безопасность. Отчет по лабораторной работе № 5

Вероятностные алгоритмы проверки чисел на простоту

Мухамеджанов Исматулло Иззатуллоевич

Содержание

1	Цель работы	5
2	Указание к работе	6
3	Выводы	10
4	Список литературы	11

List of Figures

2.1	Программа (1)															7
	Программа (2)															
2.3	Программа (3)															8
2.4	Программа (4)														_	ç

List of Tables

1 Цель работы

Освоить на практике применение вероятностные алгоритмы проверки чисел на простоту

2 Указание к работе

Тест Ферма Символ Якоби Тест Соловея-Штрассена Тест Миллера-Рибена # Выполнение лабораторной работы 1. Тест Ферма Вход. Нечетное целое число n >= 5. Выход. «Число n, вероятно, простое» или «Число n составное».

Выбрать случайное целое число a, $2 \le a \le n-2$. Вычислить $r = a \land n-1 \pmod n$. При r = 1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

- 2. Алгоритм вычисления символа Якоби. Положить g +- 1.
 - При $\pi = 0$ результат: 0. При $\pi = 1$ результат: g. Представить π в виде o 2'n , где число o нечетное. При четном k положить s \leftarrow 1, при нечетном k положить s +- 1, если π 1 (mod 8); положить s —1, если π π -33 (mod 8). При π = 1 результат: Φ s. Если π ж 3 (mod 4) и о ж 3 (mod 4), то s +- —s. Положить π +— π (mod m), π +- a , g +- g- s и вернуться на шаг 2.
- 3. Алгоритм реализующий тест Соловея-Штрассена Вход. Нечетное целое число п й 5. Выход. «Число п, вероятно, простое» или «Число п составное». Выбрать случайное целое число п, 2 N п < п 2. ВычислиТь г с- д 2 (mod п). При г Т 1 и г Т п 1 результат: «Число п составное». Вычислить символ Якоби s +- (). При г ж s {mod п) результат: «Число п составное». В противном случае результат: «Число п, вероятно, простое». На сегодняшний день для проверки чисел на простоту чаще всего используется тест Миллера-Рабина, основанный на следующем наблюдении. Пусть число п нечетное и

- $\pi 1 2$ Sг, где г нечетное. Если п простое, то для любого п й 2, взаимно простого с π , выполняется условие π^{***} 1 {mod p).
- 4. Алгоритм реализующий тест Миллера-Рабина. Вход. Нечетное целое число п й 5. Выход. «Число n, вероятно, простое» или «Число n составное».

Представить n-1 в виде n-1 = 2'r, где число г нечетное. Выбрать случайное целое число n, 2 й n < n-2.

Вычислить у +- a^(mod п). При у У 1 и у Т п — 1 вышолнить следующие действия. Положить J +- 1. Если J й s - 1 и у Т п — 1, то Положить у \leftarrow у2 (mod п). При у = 1 результат: «Число п составное». Положить J +- J -1- 1. При у Т п — 1 результат: «Число п составное». Результат: «Число п, вероятно, простое».

Figure 2.1: Программа (1)

Figure 2.2: Программа (2)

```
Tect Coлobes-Шtpacceнa

def solovey_shtrassen(n):
    if n < 5:
        return "Enter another number"
    a = random.randint(2, n-3)
    r = math.pow(a, (n-1)//2) % n
    if r!= 1 and r!= n-1:
        return "N is not prime"
    s = a / n
    if r % n == s:
        return "N is not prime"
    return "N is most probably prime"
    solovey_shtrassen(12)

Python

"N is not prime'
```

Figure 2.3: Программа (3)

```
Tect Миллера-Рабина

def miller_rabin(n):
    if n < 5:
        return "Enter another number"
    r = n - 1
    s = 0
    while r % 2 == 0:
        r = r / 2
        s ** 1
    a = nandom.randint(2, n=3)
    y = math.pow(a, r) % n
    if y! = 1 and y! = n-1:
        j = 1
    if j <= s - 1 and y! = n - 1:
        y = math.pow(y,2) % n
    if y == 1:
        | return "Number is not prime"
        j = j + 1
    if y! = n - 1:
        return "Number is not prime"
    return "Number is prime"

miller_rabin(8)

**Wumber is not prime*
```

Figure 2.4: Программа (4)

3 Выводы

Освоены алгоритмы проверки чисел на простоту

4 Список литературы

1. Методические материалы курса