USEFUL WATER and WASTEWATER FORMULAS

Dosage mg/l = (chemical feed, lbs/day) \div (MGD x 8.34)

Chemical feed, $lbs/day = MGD \times 8.34 \times mg/l$ Note: Divide your answer by the % purity of the chemical if it is not 100%.

1% = 10,000 mg/l

$$^{\circ}F = (^{\circ}C \times 9 \div 5) + 32^{\circ} - \text{or-} (^{\circ}C \times 1.8) + 32^{\circ}$$

$$^{\circ}$$
C = ($^{\circ}$ F - 32 $^{\circ}$) x 5 ÷ 9 -or- ($^{\circ}$ F - 32 $^{\circ}$) ÷ 1.8

Efficiency, $\% = [(in - out) \div in] \times 100$

1 HP = 0.746 Kw

Water HP = (gpm x head, ft) \div 3960

Brake HP = (gpm x head, ft) \div (3960 x pump efficiency)

Motor HP = (gpm x head, ft) \div (3960 x pump efficiency x motor efficiency)

Motor efficiency = (gpm x head, ft x 0.746) \div (3960 x Kw)

Average (geometric mean) = [(X1)(X2)(X3)(X4)(Xn)] 1/n [The nth root of the product of n numbers]

Detention time = volume \div flow

Flow, $ft^3/sec = (area, ft^2) \times (velocity, ft/sec)$

Velocity = distance \div time

Surface Loading, $gpd/ft^2 = (flow, gpd) \div surface area, ft^2$

Weir overflow, $gpd/ft = flow/gpd \div weir length$, feet

Lagoon organic loading, lbs BOD/acre = BOD applied, lbs ÷ surface area, acres

Trickling filter organic loading, lbs BOD/day/1,000 ft³ = BOD applied, lbs per day \div 1,000 ft³

MLVSS, lbs = (BOD, mg/l x flow, MGD x 8.34) \div F/M desired

 $F/M = BOD lbs/day \div MLVSS$, lbs

 $SVI = (settleability, ml/l \times 1000) \div MLSS, mg/l$

TSS, mg/l = [(crucible & dry sample wt, g - crucible wt, g) ÷ sample volume, ml] x 1,000,000

BOD, $mg/l = [(initial DO, mg/L - final DO, mg/l) \div sample volume, ml] x sample size (1000 or 300)$

Concentration: concentration (1) x volume (1) = concentration (2) x volume (2) $V_2 = (C_1 \times V_1) \div C_2$ $C_2 = (C_1 \times V_1) \div V_2$

Filtration rate $gpm/ft^2 = flow$, $gpm \div surface$ area, ft^2

Backwash rate, $gpm/ft^2 = backwash flow$, $gpm \div surface$ area, ft^2

Specific capacity = yield ÷ drawdown

yield = gpm drawdown = static level – pumping level