Package 'funModeling'

April 1, 2024

Type Package

Title Exploratory Data Analysis and Data Preparation Tool-Box

Description Around 10% of almost any predictive modeling project is spent in predictive modeling, 'funModeling' and the book Data Science Live Book (https://livebook.datascienceheroes.com/) are intended to cover remaining 90%: data preparation, profiling, selecting best variables 'dataViz', assessing model per-

Version 1.9.5

Date 2024-03-30

formance and other functions.

License GPL-2

BugReports https://github.com/pablo14/funModeling/issues

URL https://livebook.datascienceheroes.com

LazyData true

Encoding UTF-8

Imports ROCR, ggplot2, gridExtra, pander, reshape2, scales, dplyr, lazyeval, utils, RColorBrewer, moments, entropy, cli, stringr

Depends R (>= 3.4.0), Hmisc (>= 3.17.1)

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation no

Author Pablo Casas [aut, cre]

Repository CRAN

Date/Publication 2024-04-01 08:00:05 UTC

33

Index

R topics documented:

ınModeling-package	3
uto_grouping	3
ateg_analysis	4
ompare_df	5
oncatenate_n_vars	6
onvert_df_to_categoric	7
oord_plot	7
orrelation_table	8
ross_plot	9
ata_country	10
ata_golf	10
ata_integrity	11
ata_integrity_model	12
esc_groups	12
esc_groups_rank	13
f_status	14
iscretize_df	15
iscretize_get_bins	16
iscretize_rgr	16
ntropy_2	17
qual_freq	18
xport_plot	19
bonacci	19
req	20
ain_lift	20
ain_ratio	21
et_sample	22
ampel_outlier	22
eart_disease	23
nformation_gain	24
nfor_magic	24
netadata_models	25
lotar	25
lot_num	26
rep_outliers	27
rofiling_num	29
ange01	29
atus	30
ıkey_outlier	31
ar_rank_info	31
_compare	32

funModeling-package 3

 $\begin{tabular}{ll} fun Modeling-package & fun Modeling: Exploratory \ data \ analysis, \ data \ preparation \ and \ model \ performance \end{tabular}$

Description

funModeling is intimately related to the Data Science Live Book -Open Source- (2017) in the sense that most of its functionality is used to explain different topics addressed by the book.

Details

To start using funModeling you can start by the vignette: 'browseVignettes(package = "funModeling")'

Or you can read the Data Science Live Book, fully accessible at: https://livebook.datascienceheroes.com

Author(s)

Maintainer: Pablo Casas <pcasas.biz@gmail.com>

See Also

Useful links:

- https://livebook.datascienceheroes.com
- Report bugs at https://github.com/pablo14/funModeling/issues

auto_grouping

Reduce cardinality in categorical variable by automatic grouping

Description

Reduce the cardinality of an input variable based on a target -binary by now- variable based on attribitues of accuracy and representativity, for both input and target variable. It uses a cluster model to create the new groups.

Usage

```
auto_grouping(data, input, target, n_groups, model = "kmeans", seed = 999)
```

4 categ_analysis

Arguments

data frame source

input categorical variable indicating

target string of the variable to optimize the re-grouping

n_groups number of groups for the new category based on input, normally between 3 and

10.

model is the clustering model used to create the grouping, supported models: "kmeans"

(default) or "hclust" (hierarchical clustering).

seed optional, random number used internally for the k-means, changing this value

will change the model

Value

A list containing 3 elements: recateg_results which contains the description of the target variable with the new groups; df_equivalence is a data frame containing the input category and the new category; fit_cluster which is the cluster model used to do the re-grouping

Examples

```
# Reducing quantity of countries based on has_flu variable
auto_grouping(data=data_country, input='country', target="has_flu", n_groups=8)
```

categ_analysis Profiling

Profiling analysis of categorical vs. target variable

Description

Retrieves a complete summary of the grouped input variable against the target variable. Type of target variable must be binary for now. A positive case will be the less representative one. It returns the total positive cases (sum_target)); pecentage of total positive cases (perc_target) that fell in that category (this column sums 1); likelihood or mean of positive cases (mean_target) measured by the total positive cases over total cases in that category; quantity of rows of that category (q_rows) and in percentage (perc_rows) -this column sums 1.

Usage

```
categ_analysis(data, input, target)
```

Arguments

data input data containing the variable to describe

input string input variable (if empty, it runs for all categorical variable), it can take a

single character value or a character vector.

target string target variable. Binary or two class is only supported by now.

compare_df 5

Value

if input has 1 variable, it retrurns a data frame indicating all the metrics, otherwise prints in console all variable results.

Examples

```
categ_analysis(data_country, "country", "has_flu")
```

compare_df

Compare two data frames by keys

Description

Obtain differences between two data frames

Usage

```
compare_df(dfcomp_x, dfcomp_y, keys_x, keys_y = NA, compare_values = FALSE)
```

Arguments

dfcomp_x first data frame to compare

dfcomp_y second data frame to compare

keys_x keys of the first dataframe

keys_y (optional) keys of the second dataframe, if missing both data frames will be compared with the keys_x

compare_values (optional) if TRUE it will not only compare keys, but also will check if the

(optional) if TRUE it will not only compare keys, but also will check if the values of non-key matching columns have the same values

Value

Differences and coincident values

```
data(heart_disease)
a=heart_disease
b=heart_disease
b=heart_disease
a=subset(a, age >45)
b=subset(b, age <50)
b$gender='male'
b$chest_pain=ifelse(b$chest_pain ==3, 4, b$chest_pain)
res=compare_df(a, b, c('age', 'gender'))
# Print the keys that didn't match
res
# Accessing the keys not present in the first data frame
res[[1]]$rows_not_in_X</pre>
```

6 concatenate_n_vars

```
# Accessing the keys not present in the second data frame
res[[1]]$rows_not_in_Y
# Accessing the keys which coincide completely
res[[1]]$coincident
# Accessing the rows whose values did not coincide
res[[1]]$different_values
```

 $concatenate_n_vars$

Concatenate 'N' variables

Description

Concatenate 'N' variables using the char pipe: <|>. This function is used when there is the need of measuring the mutual information and/or the information gain between 'N' input variables an against a target variable. This function makes sense when it is used based on categorical data.

Usage

```
concatenate_n_vars(data, vars)
```

Arguments

data data frame containing the two variables to concatenate vars character vector containing all variables to concatenate

Value

vector containing the concatenated values for the given variables

```
new_variable=concatenate_n_vars(mtcars, c("cyl", "disp"))
# Checking new variable
head(new_variable)
```

```
convert_df_to_categoric
```

Convert every column in a data frame to character

Description

It converts all the variables present in 'data' to character. Criteria conversion is based on two functions, discretize_get_bins plus discretize_df, which will discretize all the numerical variables based on equal frequency criteria, with the number of bins equal to 'n_bins'. This only applies for numerical variables which unique values are more than 'n_bins' parameter. After this step, it may happen that variables remain non-character, so these variables will be converting directly into character.

Usage

```
convert_df_to_categoric(data, n_bins)
```

Arguments

data input data frame to discretize

n_bins number of bins/segments for each variable

Value

data frame containing all variables as character

Examples

```
# before
df_status(heart_disease)

# after
new_df=convert_df_to_categoric(data=heart_disease, n_bins=5)
df_status(new_df)
```

coord_plot

Coordinate plot

Description

Calculate the means (or other function defined in 'group_func' parameter) per group to analyze how each segment behave. It scales each variable mean inti the 0 to 1 range to easily profile the groups according to its mean. It also calculate the mean regardless the grouping. This function is also useful when you want to profile cluster results in terms of its means.

8 correlation_table

Usage

```
coord_plot(data, group_var, group_func = mean, print_table = FALSE)
```

Arguments

data input data source

group_var variable to make the group by

group_func the data type of this parameter is a function, not an string, this is the function to

be used in the group by, the default value is: mean

print_table False by default, if true it retrieves the mean table used to generate the plot.

Value

coordinate plot, if print_table=T it also prints a table with the average per column plus the average of the whole column

Examples

```
# calculating the differences based on function 'mean'
coord_plot(data=mtcars, group_var="cyl")
# printing the table used to generate the coord_plot
coord_plot(data=mtcars, group_var="cyl", print_table=TRUE)
# printing the table used to generate the coord_plot
coord_plot(data=mtcars, group_var="cyl", group_func=median, print_table=TRUE)
```

correlation_table

Get correlation against target variable

Description

Obtain correlation table for all variables against target variable. Only numeric variables are analyzed (factor/character are skippted automatically).

Usage

```
correlation_table(data, target)
```

Arguments

data data frame

target string variable to predict

Value

Correlation index for all data input variable

cross_plot 9

Examples

```
correlation_table(data=heart_disease, target="has_heart_disease")
```

cross_plot

Cross-plotting input variable vs. target variable

Description

The cross_plot shows how the input variable is correlated with the target variable, getting the like-lihood rates for each input's bin/bucket .

Usage

```
cross_plot(data, input, target, path_out, auto_binning, plot_type = "both")
```

Arguments

data frame source

input input variable name (if empty, it runs for all numeric variable), it can take a

single character value or a character vector.

target variable name to predict

path_out path directory, if it has a value the plot is saved

auto_binning indicates the automatic binning of input variable based on equal frequency (func-

tion 'equal_freq'), default value=TRUE

plot_type indicates if the output is the 'percentual' plot, the 'quantity' or 'both' (default).

Value

cross plot

```
## Example 1:
cross_plot(data=heart_disease, input="chest_pain", target="has_heart_disease")
## Example 2: Disabling auto_binning:
cross_plot(data=heart_disease, input="oldpeak",
target="has_heart_disease", auto_binning=FALSE)
## Example 3: Saving the plot into a folder:
#cross_plot(data=heart_disease, input="oldpeak",
# target="has_heart_disease", path_out = "my_folder")
## Example 4: Running with multiple input variables at the same time:
cross_plot(data=heart_disease, input=c("age", "oldpeak", "max_heart_rate"),
target="has_heart_disease")
```

10 data_golf

data_country

People with flu data

Description

Each row represents a person from different countries indicating if he or she has or not flu. Colmuns person: unique id country: country of the person, 70 different countries has_flu: character variable with values "yes" or "no" indicating if the person has flu

Usage

data_country

Format

A data frame with 910 rows and 3 variables

data_golf

Play golf

Description

This well known small data frame containst 14 cases indicating wheter or not play golf based on wheather conditions. Target variable: 'play_golf.'

Usage

data_golf

Format

A data frame with 14 rows and 3 variables

data_integrity 11

Description

A handy function to return different vectors of variable names aimed to quickly filter NA, categorical (factor / character), numerical and other types (boolean, date, posix). It also returns a vector of variables which have high cardinality. It returns an 'integrity' object, which has: 'status_now' (comes from status function), and 'results' list, following elements can be found:

vars_cat: Vector containing the categorical variables names (factor or character)

vars_num: Vector containing the numerical variables names

vars_char: Vector containing the character variables names

vars_factor: Vector containing the factor variables names

vars_other: Vector containing the other variables names (date time, posix and boolean)

vars_num_with_NA: Summary table for numerical variables with NA

vars_cat_with_NA: Summary table for categorical variables with NA

vars_cat_high_card: Summary table for high cardinality variables (where thershold = MAX_UNIQUE parameter)

vars_one_value: Vector containing the variables names with 1 unique different value

Explore the NA and high cardinality variables by doing summary(integrity_object), or a full summary by doing print(integrity_object)

Usage

```
data_integrity(data, MAX_UNIQUE = 35)
```

Arguments

data frame or a single vector

MAX_UNIQUE max unique threshold to flag a categorical variable as a high cardinality one.

Normally above 35 values it is needed to reduce the number of different values.

Value

An 'integrity' object.

```
# Example 1:
data_integrity(heart_disease)
# Example 2:
# changing the default minimum threshold to flag a variable as high cardiniality
data_integrity(data=data_country, MAX_UNIQUE=50)
```

12 desc_groups

data_integrity_model Check data integrity model

Description

Given a data frame, we need to create models (xgboost, random forest, regression, etc). Each one of them has its constraints regarding data types. Many errors appear when we are creating models just because of data format. This function returns, given a certain model, which are the constraints that the data is not satisfying. This way we can anticipate and correct errors before we call for model creation. This function is quite related to data_integrity.

Usage

```
data_integrity_model(data, model_name, MAX_UNIQUE = 35)
```

Arguments

data frame or a single vector

model_name model name, you can check all the available models by printing 'metadata_models'

data frame.

MAX_UNIQUE max unique threshold to flag a categorical variable as a high cardinality one.

Normally above 35 values it is needed to reduce the number of different values. # Example 1: data_integrity_model(data=heart_disease, model_name="pca") # Example 2: # changing the default minimum threshold to flag a variable as high

cardiniality data_integrity_model(data=iris, model_name="xgboost", MAX_UNIQUE=50)

Value

an 'integritymodel' object

Description

Calculate the means (or other function) per group to analyze how each segment behave. It scales each variable mean inti the 0 to 1 range to easily profile the groups according to its mean. It also calculate the mean regardless the grouping. This function is also useful when you want to profile cluster results in terms of its means. It automatically adds a row representing the sumarization of the column regardless the group_var categories, this is useful to compare each segement with the whole population. It will exclude all factor/character variables.

Usage

```
desc_groups(data, group_var, group_func = mean, add_all_data_row = T)
```

desc_groups_rank 13

Arguments

data input data source

group_var variable to make the group by

group_func the data type of this parameter is a function, not an string, this is the function to

be used in the group by, the default value is: mean

add_all_data_row

flag indicating if final data contains the row: 'All_Data', which is the function applied regardless the grouping. Useful to compare with the rest of the values.

Value

grouped data frame

Examples

```
# default grouping function: mean
desc_groups(data=mtcars, group_var="cyl")

# using the median as the grouping function
desc_groups(data=mtcars, group_var="cyl", group_func=median)

# using the max as the grouping function
desc_groups(data=mtcars, group_var="gear", group_func=max)
```

desc_groups_rank

Profiling categorical variable (rank)

Description

Similar to 'desc_groups' function, this one computes the rank of each value in order to quickly know what is the value in each segment that has the highest value (rank=1). 1 represent the highest number. It will exclude all factor/character variables.

Usage

```
desc_groups_rank(data, group_var, group_func = mean)
```

Arguments

data input data source

group_var variable to make the group by

group_func the data type of this parameter is a function, not an string, this is the function to

be used in the group by, the default value is: mean

Value

grouped data frame, showing the rank instead of the absolute values/

14 df_status

Examples

```
# default grouping function: mean
desc_groups_rank(data=mtcars, group_var="gear")

# using the median as the grouping function
desc_groups(data=mtcars, group_var="cyl", group_func=median)

# using the max as the grouping function
desc_groups_rank(data=mtcars, group_var="gear", group_func=max)
```

df_status

Get a summary for the given data frame (o vector).

Description

For each variable it returns: Quantity and percentage of zeros (q_zeros and p_zeros respectevly). Same metrics for NA values (q_NA/p_na), and infinite values (q_inf/p_inf). Last two columns indicates data type and quantity of unique values. This function print and return the results.

Usage

```
df_status(data, print_results)
```

Arguments

```
data data frame or a single vector

print_results if FALSE then there is not a print in the console, TRUE by default.
```

Value

Metrics data frame

```
df_status(heart_disease)
```

discretize_df 15

discretize_df Discretize a data frame

Description

Converts all numerical variables into factor or character, depending on 'stringsAsFactors' parameter, based on equal frequency criteria. The thresholds for each segment in each variable are generated based on the output of discretize_get_bins function, which returns a data frame containing the threshold for each variable. This result is must be the 'data_bins' parameter input. Important to note that the returned data frame contains the non-transformed variables plus the transformed ones. More info about converting numerical into categorical variables can be found at: https://livebook.datascienceheroes.com/data-preparation.html#data_types

Usage

```
discretize_df(data, data_bins, stringsAsFactors = TRUE)
```

Arguments

data Input data frame

data_bins data frame generated by 'discretize_get_bins' function. It contains the variable

name and the thresholds for each bin, or segment.

stringsAsFactors

Boolean variable which indicates if the discretization result is character or factor.

When TRUE, the segments are ordered. TRUE by default.

Value

Data frame with the transformed variables

```
# Getting the bins thresholds for each. If input is missing,
# will run for all numerical variables.
d_bins=discretize_get_bins(data=heart_disease,
input=c("resting_blood_pressure", "oldpeak"), n_bins=5)

# Now it can be applied on the same data frame,
# or in a new one (for example in a predictive model that
# change data over time)
heart_disease_discretized=
discretize_df(data=heart_disease,
data_bins=d_bins,
stringsAsFactors=TRUE)
```

16 discretize_rgr

discretize_get_bins

Get the data frame thresholds for discretization

Description

It takes a data frame and returns another data frame indicating the threshold for each bin (or segment) in order to discretize the variable.

Usage

```
discretize_get_bins(data, n_bins = 5, input = NULL)
```

Arguments

data Data frame source

n_bins The number of desired bins (or segments) that each variable will have.

input Vector of string containing all the variables that will be processed. If empty

it will run for all numerical variables that match the following condition, the number of unique values must be higher than the ones defined at 'n_bins' parameter. NAs values are automatically handled by converting them into another category (more info about it at https://livebook.datascienceheroes.com/

data-preparation.html#treating-missing-values-in-numerical-variables).

This function must be used with discretize_df. If it is needed a different number

of bins per variable, then the function must be called more than once.

Value

Data frame containing the thresholds or cuts to bin every variable

discretize_rgr

Variable discretization by gain ratio maximization

Description

Discretize numeric variable by maximizing the gain ratio between each bucket and the target variable.

Usage

```
discretize_rgr(input, target, min_perc_bins = 0.1, max_n_bins = 5)
```

entropy_2

Arguments

input numeric input vector to discretize

target character or factor multi-calss target variable

min_perc_bins minimum percetange of rows for each split or segment (controls the sample

size), 0,1 (or 10 percent) as default

max_n_bins maximum number of bins or segments to split the input variable, 5 bins as de-

fault

Value

discretized variable (factor)

Examples

```
library(funModeling)
data=heart_disease
input=data$oldpeak
target=as.character(data$has_heart_disease)
input2=discretize_rgr(input, target)

# checking:
summary(input2)
```

entropy_2

Computes the entropy between two variables

Description

It calculates the entropy between two categorical variables using log2. This log2 is mentioned in most of the Claude Shannon bibliography. Input/target can be numeric or character.

Usage

```
entropy_2(input, target)
```

Arguments

input numeric/character vector target numeric/character vector

Value

Entropy measured in bits

18 equal_freq

Examples

```
# Measuring entropy between input and target variable
entropy_2(input=data_golf$outlook, target=data_golf$play_golf)
```

equal_freq

Equal frequency binning

Description

Equal frequency tries to put the same quantity of cases per bin when possible. It's a wrapper of function cut2 from Hmisc package.

Usage

```
equal_freq(var, n_bins)
```

Arguments

var input variable

n_bins number of bins to split 'var' by equal frequency, if it not possible to calculate

for the desired bins, it returns the closest number

Value

The binned variable.

```
## Example 1
summary(heart_disease$age)
age_2=equal_freq(var=heart_disease$age, n_bins = 10)
summary(age_2)
## Example 2
age_3=equal_freq(var=heart_disease$age, n_bins = 5)
summary(age_3)
```

export_plot 19

export_plot

Export plot to jpeg file

Description

Export 'object_plot' to jpeg file under the name 'file_name' in the directory 'path_out'

Usage

```
export_plot(object_plot, path_out, file_name)
```

Arguments

object_plot Object plot to export (like ggplot2)

path_out path directory to export the output, if it has a value the plot is saved, if the

directory doesn't existis it will try to create it. To save in current directory path

must be dot: "."

file_name output file name

Value

none

fibonacci

Fibonacci series

Description

It retrieves a vector containing the first N numbers specified in 'length' parameter of the Fibonacci series.

Usage

```
fibonacci(length, remove_first = FALSE)
```

Arguments

length data frame

remove_first removes the first value of the series, because first 2 elements are the same (num-

ber=1). False by default.

Value

vector

20 gain_lift

Examples

```
# Get the first 4 elements of Fibonacci series
fibonacci(4)
```

freq

Frequency table for categorical variables

Description

Retrieves the frequency and percentage for input

Usage

```
freq(data, input = NA, plot = TRUE, na.rm = FALSE, path_out)
```

Arguments

data	input data containing the variable to describe
input	string input variable (if empty, it runs for all numeric variable), it can take a single character value or a character vector.
plot	flag indicating if the plot is desired, TRUE by default
na.rm	flag indicating if NA values must be included in the analysis, FALSE by default
path out	path directory, if it has a value the plot is saved

Value

vector with the values scaled into the 0 to 1 range

Examples

```
freq(data=heart_disease$thal)
freq(data=heart_disease, input = c('thal','chest_pain'))
```

gain_lift

Generates lift and cumulative gain performance table and plot

Description

It retrieves the cumulative positive rate -gain curve- and the lift chart & plot when score is divided in 5, 10 or 20 segments. Both metrics give a quality measure about how well the model predicts. Higher values at the beginning of the population implies a better model. More info at: https://livebook.datascienceheroes.com/model-performance.html#scoring_data

gain_ratio 21

Usage

```
gain_lift(data, score, target, q_segments = 10)
```

Arguments

data input data source

score the variable which contains the score number, or likelihood of being positive

class

target binary variable indicating class label

q_segments quantity of segments to split score variable, valid values: 5, 10 or 20

Value

lift/gain table, column: gain implies how much positive cases are catched if the cut point to define the positive class is set to the column "Score Point"

Examples

```
fit_glm=glm(has_heart_disease ~ age + oldpeak, data=heart_disease, family = binomial)
heart_disease$score=predict(fit_glm, newdata=heart_disease, type='response')
gain_lift(data=heart_disease, score='score', target='has_heart_disease')
```

gain_ratio Gain ratio

Description

Computes the information gain between an 'input' and 'target' variable (using log2). Similar to information gain but less sensitive to high cardinality variables.

Usage

```
gain_ratio(input, target)
```

Arguments

input numeric/character vector target numeric/character vector

Value

gain ratio

```
gain_ratio(input=data_golf$outlook, target=data_golf$play_golf)
```

22 hampel_outlier

get_sample

Sampling training and test data

Description

Split input data into training and test set, retrieving always same sample by setting the seed.

Usage

```
get_sample(data, percentage_tr_rows = 0.8, seed = 987)
```

Arguments

data input data source percentage_tr_rows

percentage of training rows, range value from 0.1 to 0.99, default value=0.8 (80

percent of training data)

seed

to generate the sample randomly, default value=987

Value

TRUE/FALSE vector same length as 'data' param. TRUE represents that row position is for training data

Examples

```
# Training and test data. Percentage of training cases default value=80%.
index_sample=get_sample(data=heart_disease, percentage_tr_rows=0.8)
# Generating the samples
data_tr=heart_disease[index_sample,]
data_ts=heart_disease[-index_sample,]
```

hampel_outlier

Hampel Outlier Threshold

Description

Retrieves the bottom and top boundaries to flag outliers or extreme values, according to the Hampel method. This technique takes into account the median and MAD value, which is a is a robust measure of the variability of a univariate sample of quantitative data (Wikipedia). Similar to standard deviation but less sensitve to outliers. This function is used in 'prep_outliers' function. All 'NA's values are automatically excluded. More information at: https://livebook.datascienceheroes.com/data-preparation.html#how_to_deal_with_outliers_in_r.

heart_disease 23

Usage

```
hampel_outlier(input, k_mad_value = 3)
```

Arguments

input Numeric variable vector

k_mad_value 'K' multiplier for the median absolute deviation. The higher the value, the more

outliers will be detected. Default value=3 (it's an standad)

Value

A two-item vector, the first value represents the bottom threshold, while the second one is the top threshold

Examples

hampel_outlier(heart_disease\$age)

heart_disease

Heart Disease Data

Description

There are variables related to patient clinic trial. The variable to predict is 'has_heart_disease'.

Usage

heart_disease

Format

A data frame with 303 rows and 16 variables:

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

24 infor_magic

information_gain

Information gain

Description

Computes the information gain between an 'input' and 'target' variable (using log2). In general terms, the higher the more predictable the input is.

Usage

```
information_gain(input, target)
```

Arguments

input numeric/character vector target numeric/character vector

Value

information gain

Examples

```
information_gain(input=data_golf$outlook, target=data_golf$play_golf)
```

infor_magic

Computes several information theory metrics between two vectors

Description

It retrieves the same as var_rank_info but receiving two vectors. Metrics are: entropy (en), mutual information (mi), information gain (ig) and gain ratio (gr).

Usage

```
infor_magic(input, target)
```

Arguments

input vector to be evaluated against the variable defined in 'target' parameter

target vector containing the output variable.

metadata_models 25

Value

Matrix of 1 row and 4 columns, where each column represent the mentioned metrics

Examples

```
infor_magic(data_golf$outlook, data_golf$play_golf)
```

metadata_models

Metadata models data integrity

Description

Metadata models data integrity

Usage

 $metadata_models$

Format

Tibble

plotar

Correlation plots

Description

Visual correlation analysis. Plot different graphs in order to expose the inner information of any numeric variable against the target variable

Usage

```
plotar(data, input, target, plot_type, path_out)
```

Arguments

data	data frame source
input	string input variable (if empty, it runs for all numeric variable), it can take a single character value or a character vector.
target	string of the variable to predict, it supports binary or multinominal values.
plot_type	Indicates the type of plot to retrieve, available values: "boxplot" or "histdens".
path_out	path directory, if it has a value the plot is saved. To save in current directory path must be dot: "."

26 plot_num

Value

Single or multiple plots specified by 'plot_type' parameter

Examples

```
## It runs for all numeric variables automatically
plotar(data=heart_disease, target="has_heart_disease", plot_type="histdens")

plotar(heart_disease, input = 'age', target = 'chest_pain', plot_type = "boxplot")
```

plot_num

Plotting numerical data

Description

Retrieves one plot containing all the histograms for numerical variables. NA values will not be displayed.

Usage

```
plot_num(data, bins = 10, path_out = NA)
```

Arguments

data data frame

bins number of bars (bins) to plot each histogram, 10 by default

path_out path directory to export the output, if it has a value the plot is saved, if the

directory doesn't existis it will try to create it. To save in current directory path

must be dot: "."

Value

plot containing all numerical variables

```
plot_num(mtcars)
# changing the bins parameter and exporting the plot
# plot_num(data=mtcars, bins=5, path_out="my_folder")
```

prep_outliers 27

|--|

Description

Deal with outliers by setting an 'NA value' or by 'stopping' them at a certain. There are three supported methods to flag the values as outliers: "bottom_top", "tukey" and "hampel". The parameters: 'top_percent' and/or 'bottom_percent' are used only when method="bottom_top".

For a full reference please check the official documentation at: https://livebook.datascienceheroes.com/data-preparation.html#treatment_outliers> Setting NA is recommended when doing statistical analysis, parameter: type='set_na'. Stopping is recommended when creating a predictive model without biasing the result due to outliers, parameter: type='stop'.

The function can take a data frame, and returns the same data plus the transformations specified in the input parameter. Or it can take a single vector (in the same 'data' parameter), and it returns a vector.

Usage

```
prep_outliers(
  data,
  input = NA,
  type = NA,
  method = NA,
  bottom_percent = NA,
  top_percent = NA,
  k_mad_value = NA
)
```

Arguments

data	a data frame or a single vector. If it's a data frame, the function returns a data frame, otherwise it returns a vector.
input	string input variable (if empty, it runs for all numeric variable).
type	can be 'stop' or 'set_na', in the first case all falling out of the threshold will be converted to the threshold, on the other case all of these values will be set as NA.
method	indicates the method used to flag the outliers, it can be: "bottom_top", "tukey" or "hampel".
bottom_percent	value from 0 to 1, represents the lowest X percentage of values to treat. Valid only when method="bottom_top".
top_percent	value from 0 to 1, represents the highest X percentage of values to treat. Valid only when method="bottom_top".
k_mad_value	only used when method='hampel', 3 by default, might seem quite restrictive. Set a higher number to spot less outliers.

28 prep_outliers

Value

A data frame with the desired outlier transformation

```
# Creating data frame with outliers
set.seed(10)
df=data.frame(var1=rchisq(1000,df = 1), var2=rnorm(1000))
df=rbind(df, 1135, 2432) # forcing outliers
df$id=as.character(seq(1:1002))
# for var1: mean is ~ 4.56, and max 2432
summary(df)
### PREPARING OUTLIERS FOR DESCRIPTIVE STATISTICS
#### EXAMPLE 1: Removing top 1%% for a single variable
# checking the value for the top 1% of highest values (percentile 0.99), which is \sim 7.05
quantile(df$var1, 0.99)
# Setting type='set_na' sets NA to the highest value specified by top_percent.
# In this case 'data' parameter is single vector, thus it returns a single vector as well.
var1_treated=prep_outliers(data = df$var1, type='set_na', top_percent = 0.01,method = "bottom_top")
# now the mean (\sim 1) is more accurate, and note that: 1st, median and 3rd
# quartiles remaining very similar to the original variable.
summary(var1_treated)
#### EXAMPLE 2: Removing top and bottom 1% for the specified input variables.
vars_to_process=c('var1', 'var2')
df_treated3=prep_outliers(data = df, input = vars_to_process, type='set_na',
bottom_percent = 0.01, top_percent = 0.01, method = "bottom_top")
summary(df_treated3)
### PREPARING OUTLIERS FOR PREDICTIVE MODELING
data_prep_h=funModeling::prep_outliers(data = heart_disease,
input = c('age', 'resting_blood_pressure'),
method = "hampel", type='stop')
# Using Hampel method to flag outliers:
summary(heart_disease$age);summary(data_prep_h$age)
# it changed from 29 to 29.31, and the max remains the same at 77
hampel_outlier(heart_disease$age) # checking the thresholds
data_prep_a=funModeling::prep_outliers(data = heart_disease,
input = c('age', 'resting_blood_pressure'),
```

profiling_num 29

```
method = "tukey", type='stop')
max(heart_disease$age);max(data_prep_a$age)
# remains the same (77) because the max thers for age is 100
tukey_outlier(heart_disease$age)
```

profiling_num

Profiling numerical data

Description

Get a metric table with many indicators for all numerical variables, automatically skipping the non-numerical variables. Current metrics are: mean, std_dev: standard deviation, all the p_XX: percentile at XX number, skewness, kurtosis, iqr: inter quartile range, variation_coef: the ratio of sd/mean, range_98 is the limit for which the 98

Usage

```
profiling_num(data)
```

Arguments

data

data frame

Value

metrics table

Examples

```
profiling_num(mtcars)
```

range01

Transform a variable into the [0-1] range

Description

Range a variable into [0-1], assigning 0 to the min and 1 to the max of the input variable. All NA values will be removed.

Usage

```
range01(var)
```

30 status

Arguments

var

numeric input vector

Value

vector with the values scaled into the 0 to 1 range

Examples

```
range01(mtcars$cyl)
```

status

Get a summary for the given data frame (o vector).

Description

For each variable it returns: Quantity and percentage of zeros (q_zeros and p_zeros respectevly). Same metrics for NA values (q_NA/p_na), and infinite values (q_inf/p_inf). Last two columns indicates data type and quantity of unique values. 'status' function is the evolution of 'df_status'. Main change is to have the decimal points as it is, except in percentage. For example now p_na=0.04 means 4 This time it's easier to embbed in a data process flow and to take actions based on this number.

Usage

status(data)

Arguments

data

data frame, tibble or a single vector

Value

Tibble with metrics

```
status(heart_disease)
```

tukey_outlier 31

tukey_outlier

Tukey Outlier Threshold

Description

Retrieves the bottom and top boundaries to flag outliers or extreme values, according to the Tukey's test. More info at https://en.wikipedia.org/wiki/Outlier#Tukey.27s_test This function is used in 'prep_outliers' function. All 'NA's values are automatically excluded. More information at: https://livebook.datascienceheroes.com/data-preparation.html#how_to_deal_with_outliers_in_r.

Usage

```
tukey_outlier(input)
```

Arguments

input

Numeric variable vector

Value

A two-item vector, the first value represents the bottom threshold, while the second one is the top threshold

Examples

```
tukey_outlier(heart_disease$age)
```

var_rank_info

Importance variable ranking based on information theory

Description

Retrieves a data frame containing several metrics related to information theory. Metrics are: entropy (en), mutual information (mi), information gain (ig) and gain ratio (gr).

Usage

```
var_rank_info(data, target)
```

Arguments

data input data frame, all the variables will be evaluated against the variable defined

in 'target' parameter

target string variable name containing the output variable.

v_compare

Value

data frame ordered by gain ratio metric

Examples

```
var_rank_info(data_golf, "play_golf")
```

v_compare

Compare two vectors

Description

Obtaing coincident and not coincident elements between two vectors.

Usage

```
v_compare(vector_x, vector_y)
```

Arguments

vector_x 1st vector to compare vector_y 2nd vector to compare

Value

Correlation index for all data input variable

```
v1=c("height","weight","age")
v2=c("height","weight","location","q_visits")
res=v_compare(vector_x=v1, vector_y=v2)
# Print the keys that didn't match
res
# Accessing the keys not present in
```

Index

* datasets	heart_disease, 23
data_country, 10	
data_golf, 10	infor_magic, 24
heart_disease, 23	information_gain, 24
metadata_models, 25	metadata_models, 25
auto_grouping, 3	plot_num, 26
categ_analysis, 4	plotar, 25
compare_df, 5	prep_outliers, 27
concatenate_n_vars, 6	profiling_num, 29
convert_df_to_categoric, 7	
coord_plot, 7	range01, <mark>29</mark>
correlation_table, 8	
cross_plot, 9	status, 30
C1 033_p101, 7	4.1
data_country, 10	tukey_outlier,31
data_golf, 10	v_compare, 32
data_integrity, 11, 12	var_rank_info, 24, 31
data_integrity_model, 12	vai _i alik_1iii 0, 24, 31
desc_groups, 12	
desc_groups_rank, 13	
df_status, 14	
discretize_df, 7, 15, 16	
discretize_get_bins, 7, 15, 16	
discretize_rgr, 16	
discretize_rgr, 10	
entropy_2, 17	
equal_freq, 18	
export_plot, 19	
fibonacci, 19	
freq, 20	
<pre>funModeling (funModeling-package), 3</pre>	
funModeling-package, 3	
. 1.0. 20	
gain_lift, 20	
gain_ratio, 21	
get_sample, 22	
hamnel outlier 22	