Random and Systematic Errors
Dart Board Example
Types of Errors
Sample Uncertainty Data

Module 2 - To Err is Human

ME3023 - Measurements in Mechanical Systems

June 02, 2020

Topic 2 - Errors and Uncertainty

Random and Systematic Errors
Dart Board Example
Types of Errors
Sample Uncertainty Data

Topic 2 - Errors and Uncertainty

- Random and Systematic Errors
- Dart Board Example
- Types of Errors
- Sample Uncertainty Data

Random and Systematic Errors Dart Board Example Types of Errors Sample Uncertainty Data

Random and Systematic Errors

"Errors are effect	s that cause a measured	value to differ from its
true value	error causes a	variation in
measured values	found during repeated m	easurements of a
variable.		
erroi	causes an offset between	n the mean value of the
data set and its	true value. Both	and
erroi	rs affect a systems	

Text: Theory and Design of Mech. Meas.

Dart Board Example

"The concept of accuracy and the effects of _____and ___errors in instruments and measurement systems can be illustrated by the throw of darts."

(a) High repeatability gives low random error but no direct indication of accuracy.

(b) High accuracy means low random and systematic errors.

(c) Systematic and random errors lead to poor accuracy.

"The ability of a measurement system to indicate the

the same input provides a measure of the instrument _____."

Text, Image: Theory and Design of Mech. Meas.

Types of Errors

Common categories of errors in measurements are shown below. This is not an exhaustive list.

- Linearity Error
- Sensitivity
- Zero (offset) Error
- Hysteresis Error
- Overall Instrument Error

$$u_c = \sqrt{u_1^2 + u_2^2 + \dots + u_M^2}$$

Sample Uncertainty Data

Table 1.1 Manufacturer's Specifications: Typical Pressure Transducer

Operation	
Input range	$0-1000 \text{ cm H}_2\text{O}$
Excitation	$\pm 15~\mathrm{V}~\mathrm{DC}$
Output range	0–5 V
Performance	
Linearity error	$\pm 0.5\%$ FSO
Hysteresis error	Less than $\pm 0.15\%$ FSO
Sensitivity error	$\pm 0.25\%$ of reading
Thermal sensitivity error	$\pm 0.02\%$ /°C of reading
Thermal zero drift	$\pm 0.02\%$ /°C FSO
Temperature range	0–50 °C

FSO, full-scale operating range.

Text, Image, Data: Theory and Design of Mech. Meas.