# 1. Определение линейного оператора.

Линейным оператором в векторном пространстве V (эндоморфизмом пространства V ) называется отображение  $A: V \to V$  , удовлетворяющее условиям:

- 1. A(x + y) = Ax + Ay для любых x, y ∈ V;
- 2.  $A(\lambda x) = \lambda Ax$  для любых  $x \in V$ ,  $\lambda \in F$ .

# 2. Перечислите операции в множестве End(X).

#### 1. Сложение эндоморфизмов

Для двух эндоморфизмов  $A,B\in \mathrm{End}(X)$ , их сумма C=A+B также будет эндоморфизмом в X, действующим по правилу:

$$C(v) = A(v) + B(v)$$

для всех  $v \in X$ .

## 2. Умножение на скаляр

Для эндоморфизма  $A\in \mathrm{End}(X)$  и скаляра lpha из поля над которым определено пространство X, произведение lpha A определяется как:

$$(\alpha A)(v) = \alpha \cdot A(v)$$

для всех  $v \in X$ .

#### 3. Композиция (умножение) эндоморфизмов

Для двух эндоморфизмов  $A,B\in \mathrm{End}(X)$ , их композиция AB (иногда обозначаемая как  $A\circ B$ ) является эндоморфизмом, действующим по правилу:

$$(AB)(v) = A(B(v))$$

для всех  $v \in X$ .

#### 4. Тождественный эндоморфизм

В  $\operatorname{End}(X)$  существует специальный элемент, тождественный эндоморфизм  $\operatorname{Id}_X$  , который действует как:

$$\mathrm{Id}_X(v)=v$$

для всех  $v \in X$ . Он играет роль единицы для операции композиции.

#### 5. Обратный эндоморфизм

Для некоторых эндоморфизмов  $A\in \mathrm{End}(X)$  существует обратный эндоморфизм  $A^{-1}\in \mathrm{End}(X)$ , такой что:

$$AA^{-1}=A^{-1}A=\mathrm{Id}_X$$

Однако не все эндоморфизмы обратимы.

## 3. Определение образа оператора.

Образ отражает, в какие элементы целевого пространства могут быть трансформированы элементы исходного пространства при действии оператора.

образ Im (A) = = 
$$\{Ax \mid x \in V\}$$

# 4. Определение ядра оператора.

ядро линейного оператора включает в себя все векторы, которые "исчезают" или преобразуются в ноль при применении этого оператора. ядро  $Ker(A) = \{x \in V \mid Ax = 0\}$ 

# 5. Сформулируйте теорему о ядре и образе.

Пусть

 $A: V \longrightarrow W$  — линейный оператор между векторными пространствами V и W над полем F. Тогда сумма размерностей ядра и образа этого оператора равна размерности домена оператора: dim Im A + dim Ker A = dim V

## 6. При каком(их) условии(ях) является изоморфизмом?

умножения вектора на скаляр. Линейное преобразование A:V o W между двумя векторными пространствами V и W над одним и тем же полем считается изоморфизмом, если оно удовлетворяет следующим условиям:

- 1. Биективность (взаимно однозначное соответствие):
  - Инъективность (однозначность): Не существует двух различных векторов  $v_1,v_2\in V$ , таких что  $A(v_1)=A(v_2)$ . Эквивалентно, A(v)=0 (где 0 нулевой вектор в W) тогда и только тогда, когда v=0. Это также означает, что ядро  $\mathrm{Ker}(A)$  состоит только из нулевого вектора.
  - ullet Сюръективность (на): Для каждого вектора  $w\in W$  существует по крайней мере один вектор  $v\in V$ , такой что A(v)=w. Это означает, что образ  ${
    m Im}(A)$  совпадает с всем пространством W.
- 2. Сохранение линейных операций: Для всех  $v_1, v_2 \in V$  и всех скаляров  $\alpha, \beta$  из поля, над которым определены пространства, должны выполняться следующие условия:
  - $A(v_1 + v_2) = A(v_1) + A(v_2)$
  - $A(\alpha v_1) = \alpha A(v_1)$

#### 7. Определение матрицы линейного оператора.

Определение 2.1. *Матрицей линейного оператора*  $\mathcal{A}$  в базисе  $e_1, e_2, \dots, e_n$  называется матрица  $A = (a_{ij})$ , определяемая из равенств  $\mathcal{A}e_j = \sum_{i=1}^n a_{ij}e_i$ .

# 8. Чему равна размерность пространства End(X)?

**Замечание 2.1.** Если  $\dim V = n$ , то размерность  $\operatorname{End}(V)$  как векторного пространства равна  $n^2$ .

9. Сформулируйте закон преобразования матрицы оператора при смене базиса.

## Формулировка закона

Пусть A — матрица линейного оператора в исходном базисе, и A' — матрица того же оператора в новом базисе. Тогда матрица A' может быть найдена как:

$$A' = P^{-1}AP$$

где:

- $^ullet$  P матрица перехода от старого базиса к новому,
- $P^{-1}$  обратная матрица к P.

## 10. Какой оператор называют невырожденным?

- 1. Оператор A инъективен (однозначен): Это значит, что если A(v)=A(w), то v=w. Иными словами, различные элементы домена отображаются в различные элементы области значений. Эквивалентное условие ядро оператора A состоит только из нулевого вектора:  $\mathrm{Ker}(A)=\{0\}$ .
- 2. Оператор A сюръективен (на): Каждый элемент векторного пространства V является образом некоторого элемента этого же пространства при действии оператора A. Это означает, что образ оператора A совпадает со всем пространством  $V\colon {
  m Im}(A)=V$ .

Другими словами, линейный оператор невырожден, если он биективен — то есть, для него можно найти обратный оператор  $A^{-1}$ , такой что  $A^{-1}A=AA^{-1}=I$ , где I — тождественный оператор. В контексте матричного

11. Определение инвариантного подпространства.

Определение 3.1. Подпространство  $U \leq V$  называется **инвариантным** относительно оператора  $\mathcal{A}$  ( $\mathcal{A}$ -инвариантным), если  $\mathcal{A}U \leq U$ , то есть для любого  $x \in U$  его образ  $\mathcal{A}x \in U$ .

## 12. Определение собственного вектора.

Определение 4.1. Ненулевой вектор  $x \in V$  называется собственным вектором оператора  $\mathcal{A}$ , если  $\mathcal{A}x = \lambda x$ . Число  $\lambda \in F$  называется при этом собственным значением (собственным числом) оператора  $\mathcal{A}$ , отвечающим собственному вектору x.

## 13. Определение собственного значения.

**тором** оператора  $\mathcal{A}$ , если  $\mathcal{A}x = \lambda x$ . Число  $\lambda \in F$  называется при этом **собственным значением** (**собственным числом**) оператора  $\mathcal{A}$ , отвечающим собственному вектору x.

# 14. Определение собственного подпространства.

Определение 4.2. Подпространство  $Ker(A - \lambda \mathcal{E})$  называется **собственным подпространством** оператора A, соответствующим собственному значению  $\lambda$  и обозначается  $V_{\lambda}$ . Помимо собственных векторов, оно содержит нулевой.

#### 15. Определение геометрической кратности.

Определение 4.3. Геометрической кратностью  $g(\lambda)$  собственного значения  $\lambda$  называется размерность соответствующего ему собственного подпространства:  $g(\lambda) = \dim V_{\lambda}$ .

#### 16. Как находится характеристический полином?

Определение 5.1. Многочлен  $\chi_{\mathcal{A}}(t) = (-1)^t \det(\mathcal{A} - t\mathcal{E}) = \det(t\mathcal{E} - \mathcal{A})$  называется *характеристическим многочленом* оператора  $\mathcal{A}$ .

$$p(\lambda) = \det(A - \lambda I)$$

## 17. Определение алгебраической кратности.

Определение 5.2. *Алгебраической кратностью*  $m(\lambda)$  собственного значения  $\lambda$  называется его кратность как корня характеристического многочлена.

## 18. Определение линейной независимости подпространств.

Определение 6.1. Подпространства  $V_1, \ldots, V_k$  называются *линейной независимыми*, если равенства  $v_1 + \ldots + v_k = 0, v_k \in V_k$  следует, что  $v_1 = \ldots = v_k = 0$ .

## 19. Определение оператора с простым спектром.

Оператор с простым спектром — это линейный оператор, все собственные значения которого имеют кратность один, то есть каждому собственному значению соответствует ровно один линейно независимый собственный вектор. Это означает, что для каждого собственного значения  $\lambda$  существует только одно одномерное собственное подпространство, порожденное собственным вектором, соответствующим  $\lambda$ .

# 20. Как выглядит матрица оператора с простым спектром?

Предположим, у линейного оператора A с простым спектром есть три различных собственных значения  $\lambda_1$ ,  $\lambda_2$ , и  $\lambda_3$ , каждое из которых имеет кратность один. Тогда, в базисе, составленном из соответствующих собственных векторов  $v_1$ ,  $v_2$ , и  $v_3$ , матрица оператора A будет выглядеть так:

$$A=egin{pmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{pmatrix}$$

Здесь  $\lambda_1,\lambda_2$ , и  $\lambda_3$  — собственные значения, расположенные на главной диагонали, и они являются единственными ненулевыми элементами матрицы.

# 21. Определение диагонализуемого оператора (оператора скалярного типа).

**Определение 6.2.** Линейный оператор в конечномерном векторном пространстве называется *диагонализируемым*, если существует базис, в котором матрицам этого оператора имеет диагональный вид.

# 22. Перечислите свойства проекторов.

- 1. **Самопроекционность:** Проектор P называется самопроектором, если  $P^2=P$  . Это означает, что если применить проектор дважды, результат не изменится.
- 2. **Образ и ядро:** Образ проектора P равен подпространству, на которое он проецирует векторное пространство, то есть Im(P)=U. Ядро проектора P состоит из всех векторов, которые отображаются в нулевой вектор, то есть  $Ker(P)=U^\perp$ , где  $U^\perp$  ортогональное дополнение к U.
- 3. **Сумма образов и ядер:** Для проектора P на подпространство U справедливо, что  $V=Im(P)\oplus Ker(P)$ , то есть любой вектор из V представляется в виде суммы вектора из образа и вектора из ядра проектора, причем эти вектора являются ортогональными.
- 4. **Дополнение к образу:** Если P проектор на подпространство U, то I-P проектор на ортогональное дополнение  $U^\perp$ . Таким образом, I-P также называется дополнительным проектором.
- 5. Собственные значения: У самопроектора P собственные значения равны 0 и 1.
- 6. **След проектора:** След проектора P равен размерности его образа, то есть след  $P = \dim(Im(P)).$
- 7. Норма проектора: Норма проектора P равна единице, то есть  $\|P\|=1$ .

## 23. Что такое спектральное разложение диагонализуемого оператора?

 $\mathcal{A}$  действует на любой вектор так же, как оператор  $\sum\limits_{i=1}^k \lambda_i \mathcal{P}_i$ . Выражение  $\mathcal{A} = \sum\limits_{i=1}^k \lambda_i \mathcal{P}_i$  называется  $cnekmpaльным \ pasnowcehuem$  оператора  $\mathcal{A}$ .

## 24. Сформулируйте критерий диагонализуемости.

**Теорема 6.2.** (критерий диагонализируемости) Оператор диагонализируем тогда и только тогда, когда выполняются следующие два условия:

- 1) Характеристический многочлен раскладывается на линейные сомножители (то есть все его корни лежат в поле F);
- 2) Геометрическая кратность каждого собственного значения равна его алгебраической кратности.

#### 25. Определение корневого вектора высоты к

Определение 7.1. Вектор  $x \in V$  называется **корневым вектором** оператора  $\mathcal{A}$ , отвечающим собственному значению  $\lambda \in F$ , если существует такое целое неотрицательное число k, что  $(\mathcal{A} - \lambda \mathcal{E})^k x = 0$ . Наименьшее такое k называется **высотой** корневого вектора x.

## 26. Какую высоту имеет собственный вектор? (не факт что оно)

Высота собственного вектора в контексте нильпотентного оператора обозначает количество раз, которое нужно применить оператор к этому вектору, чтобы получить нулевой вектор.

Пусть T — нильпотентный оператор на векторном пространстве V, и пусть v — собственный вектор оператора T, соответствующий собственному значению  $\lambda$ . Высота собственного вектора v определяется как наименьшее натуральное число k, такое что  $T^k(v)=0$ , где  $T^k$  обозначает k-кратное применение оператора T к вектору v.

## 27. Определение корневого подпространства. (не факт что то)

Корневое подпространство оператора — это подпространство векторного пространства, состоящее из всех собственных векторов, соответствующих определенному собственному значению этого оператора.

Пусть T — линейный оператор на векторном пространстве V. Корневое подпространство  $V_{\lambda}$ , соответствующее собственному значению  $\lambda$ , определяется следующим образом:

$$V_{\lambda} = \{v \in V \, | \, Tv = \lambda v \}$$

#### 28. Перечислите свойства корневых подпространств.

# Теорема 7.1. (свойства корневых подпространств)

- 1)  $V^{\lambda}$   $\mathcal{A}$ -инвариантно;
- 2)  $(A \lambda \mathcal{E})|_{V^{\lambda}} = \mathcal{N}$ **нильпотентный** оператор, то есть существует такое неотрицательное целое m, то  $\mathcal{N}^m = \mathcal{O}$ ;
- 3)  $(A \mu \mathcal{E})|_{V^{\lambda}}$  невырожден при  $\mu \neq \lambda$ ;
- 4)  $\dim V^{\lambda} = m(\lambda)$  (геометрический смысл алгебраической кратности).

#### 29. Определение нильпотентного оператора.

2)  $(A - \lambda \mathcal{E})|_{V^{\lambda}} = \mathcal{N} -$ **нильпотентный** оператор, то есть существует такое неотрицательное целое m, то  $\mathcal{N}^{m} = \mathcal{O}$ ;

# 30. Определение циклического подпространства.

Определение 8.1. Подпространство  $U = \langle x, \mathcal{N}x, \mathcal{N}^2x, \dots, \rangle$  называется *цик*лическим подпространством нильпотентного оператора  $\mathcal{N}$ , порождённым вектором x.

## 31. Что находится в клетках диаграммы Юнга?



 ${\bf C}$  помощью такой диаграммы нильпотентный оператор задаётся однозначно. Квадратики — векторы жорданова базиса, нильпотентный оператор действует на них сверху вниз.

## 32. Что находится в столбцах диаграммы Юнга? (ХЗ)

• i-тый столбец соответствует жордановой цепочке — базису циклического пространства  $U_i$ 

# 33. Напишите общий вид матрицы жордановой клетки.

$$J(\lambda) = J(0) + \lambda E = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix},$$

## 34. Как выглядит жорданова нормальная форма?

**Определение 9.1.** *Жордановой матрицей* называется блочно-диагональная матрица

$$J = \begin{pmatrix} J_1 & & & \mathbf{O} \\ & J_2 & & \\ & & \ddots & \\ \mathbf{O} & & & J_k \end{pmatrix},$$