Formulas Used in Cost and Economics in Pricing Strategy

Week 1

Markup Percentage

markup percent = (selling price - cost)/cost

Margin

margin = selling price - cost

Margin Percent

margin percent = (selling price - cost)/selling price

Selling price

selling price = cost/ (1 - margin %)

Use this formula when you have a target margin.

Profit

profit=quantity * (price - cost)

This is an example of a profit function with the quantity expressed as a functional form Profit = (15 - 3P) * (price - cost)

Functional form

Q = f(p)

Week 2

Cost-plus Pricing

Cost + markup = selling price

Target-cost Pricing

Target cost = market price - target margin

Unit Margin

Unit margin = margin/unit quantity

Consumption-adjusted margins

(unit margin) * (1 + % consumption expansion)

Break-even analysis

(1 + % consumption expansion) * (margin per unit on larger size) = smaller size unit margin

Week 3

Linear Regression

~Q = a + b * Pi

~Q = Predicted quantity sales

a = intercept

b = slope

Pi = price

Multiple Regression

$$^{\sim}Q = a + b_1^*Pi_1 + b_2^*Pi_2$$

~Q = Estimate or forecast of unit sales

a = intercept

 b_1 = slope of variable 1

Pi₁ = price of variable 1

 b_2 = slope of variable 2

Linear Model or Demand Model

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Q = dependent variable of quantity sold

 $X_1 = my own price$

X₂ = price of a related good

 X_3 = measure of disposable income

 X_4 = trend variable

 e_1 = error term

Price Elasticity

Definition of price elasticity E = $\%\Delta Q/\%\Delta P$ can also be written as E = $\Delta Q/\Delta P * P_1/Q_1$

E = elasticity

 Δ = change

Q = quantity

P = price

Cross-Price Elasticity

Definition of cross-price elasticity $E_c = \%\Delta Q/\%\Delta P$ can also be written as $E_c = \Delta Q/\Delta P_o * P_o/Q$

 \mathbf{E}_{c} = cross-price elasticity

 Δ = change

Q = quantity

 P_o = competitor price

Income Elasticity

$$E_{I} = \Delta Q / \Delta I * I / Q$$

E_I = income elasticity

 Δ = change

Q = quantity

I = income

Price Optimization Using Demand Information

$$\pi$$
 = (P - MC)Q

 π = price

MC = marginal cost

Q = quantity sold

Week 4

\$GP (contribution per period from active customers)

Contribution = Sales Price - Variable Costs

Simple CLV Model

t = 0	\$GP - \$R
t = 1	r \$GP - r \$R
t = 2	r² \$GP - r² \$R
t = 3	r³ \$GP - r³ \$R
	etc.

\$GP = contribution per period from active customers

\$R = retention spending per period per active customer

r = retention rate

d = discount rate per period

Measurement of CLV

CLV = present value of contribution margin - present value of marketing cost

$$CLV = \sum_{t=1}^{n} \frac{r^{(t-1)} M_t}{(1+i)^{(t-1)}}$$

M = amount of money you make per customer per period
r = retention rate
i = discount rate per period
n = number of periods to forecast

3-year CLV

CLV = M + Year 2 retention rate * (M/Year 2 discount rate) + (Year 3 retention rate*Year 2 retention rate) * (M/Year 3 discount rate)

Marginal Cost

Marginal cost = change in cost/change in quantity