Review of Lecture 13

Validation

 $E_{
m val}(g^-)$ estimates $E_{
m out}(g)$

Data contamination

 $\mathcal{D}_{ ext{val}}$ slightly contaminated

• Cross validation

10-fold cross validation

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 14: Support Vector Machines

Outline

Maximizing the margin

• The solution

• Nonlinear transforms

Better linear separation

Linearly separable data

Different separating lines

Which is best?

Two questions:

- 1. Why is bigger margin better?
- 2. Which **w** maximizes the margin?

Remember the growth function?

All dichotomies with any line:

Dichotomies with fat margin

Fat margins imply fewer dichotomies

Finding w with large margin

Let \mathbf{x}_n be the nearest data point to the plane $\mathbf{w}^\mathsf{T}\mathbf{x} = 0$. How far is it?

2 preliminary technicalities:

- 1. Normalize \mathbf{w} : $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n| = 1$
- 2. Pull out w_0 : $\mathbf{w} = (w_1, \cdots, w_d) \quad \text{apart from} \quad b$ The plane is now $\boxed{\mathbf{w}^\mathsf{T} \mathbf{x} + b = 0} \quad (\text{no } x_0)$

6/20

Computing the distance

The distance between \mathbf{x}_n and the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ where $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

Take \mathbf{x}' and \mathbf{x}'' on the plane

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$$
 and $\mathbf{w}^{\mathsf{T}}\mathbf{x}'' + b = 0$

$$\Longrightarrow \mathbf{w}^{\mathsf{T}}(\mathbf{x}' - \mathbf{x}'') = 0$$

and the distance is ...

Distance between \mathbf{x}_n and the plane:

Take any point \mathbf{x} on the plane

Projection of $\mathbf{x}_n - \mathbf{x}$ on \mathbf{w}

$$\bigcirc$$

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \mathsf{distance} = \left|\hat{\mathbf{w}}^\mathsf{T}(\mathbf{x}_n - \mathbf{x})\right|$$

$$\text{distance} \ = \ \frac{1}{\|\mathbf{w}\|} \left| \mathbf{w}^\mathsf{T} \mathbf{x}_n - \mathbf{w}^\mathsf{T} \mathbf{x} \right| \ = \ \frac{1}{\|\mathbf{w}\|} \left| \mathbf{w}^\mathsf{T} \mathbf{x}_n + b - \mathbf{w}^\mathsf{T} \mathbf{x} - b \right| \ = \ \frac{1}{\|\mathbf{w}\|} \, \mathbf{v}^\mathsf{T} \mathbf{v}_n + b - \mathbf{w}^\mathsf{T} \mathbf{v}_n + b - \mathbf{v}^\mathsf{T} \mathbf{v}_n + b -$$

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$

subject to
$$\min_{n=1,2,...,N} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b| = 1$$

Notice:
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$$

Minimize
$$\frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w}$$

subject to
$$y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1$$
 for $n = 1, 2, \dots, N$

Outline

Maximizing the margin

• The solution

Nonlinear transforms

Constrained optimization

Minimize
$$\frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w}$$

subject to
$$y_n\left(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x}_n+b\right)\geq 1$$
 for $n=1,2,\ldots,N$

$$\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}$$

Lagrange? inequality constraints ⇒ KKT

We saw this before

Remember regularization?

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

subject to: $\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$

 $\nabla E_{\rm in}$ normal to constraint

 \bigcirc

constrain

Regularization:

 E_{in}

 $\mathbf{W}^\mathsf{T} \mathbf{W}$

SVM:

 $\mathbf{W}^\mathsf{T}\mathbf{W}$

 $E_{
m in}$

Lagrange formulation

w.r.t. w and b and maximize w.r.t. each $\alpha_n \geq 0$

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = \mathbf{0}$$

Substituting ...

$$\mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$
 and $\sum_{n=1}^N \alpha_n y_n = 0$

in the Lagrangian

$$\mathcal{L}(\mathbf{w}, \boldsymbol{b}, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n \left(y_n \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + \boldsymbol{b} \right) - 1 \right)$$

we get

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

Maximize w.r.t. to α subject to $\alpha_n \geq 0$ for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

The solution - quadratic programming

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \, \boldsymbol{\alpha}^{\mathsf{T}} \begin{bmatrix} y_1 y_1 \, \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_1 & y_1 y_2 \, \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & \dots & y_1 y_N \, \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_N \\ y_2 y_1 \, \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_1 & y_2 y_2 \, \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_2 & \dots & y_2 y_N \, \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_N \\ \dots & \dots & \dots & \dots \\ y_N y_1 \, \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_1 & y_N y_2 \, \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_2 & \dots & y_N y_N \, \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_N \end{bmatrix} \boldsymbol{\alpha} \, + \, \left(\begin{array}{c} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\$$

quadratic coefficients

subject to

$$\mathbf{y}^{\mathsf{T}} \boldsymbol{\alpha} = 0$$
linear constraint

$$oldsymbol{0} oldsymbol{0} \leq lpha \leq oldsymbol{\infty}$$
ower bounds upper bounds

QP hands us α

Solution: $\alpha = \alpha_1, \cdots, \alpha_N$

$$\Longrightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

KKT condition: For $n=1,\cdots,N$

We saw this before!

$$\alpha_n > 0 \implies \mathbf{x}_n$$
 is a support vector

Support vectors

Closest \mathbf{x}_n 's to the plane: achieve the margin

$$\implies y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) = 1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for **b** using any SV:

$$y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b\right)=1$$

Outline

Maximizing the margin

• The solution

Nonlinear transforms

z instead of x

"Support vectors" in $\mathcal X$ space

Support vectors live in ${\mathcal Z}$ space

In ${\mathcal X}$ space, "pre-images" of support vectors

The margin is maintained in ${\mathcal Z}$ space

Generalization result

$$\mathbb{E}[E_{\mathrm{out}}] \leq \frac{\mathbb{E}[\# \text{ of SV's}]}{N-1}$$

