Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday Feb 17, 2028

In this file:

Proof of Smith Normal Form Theorem.

Idea:

- ullet Perform row or column operations to diagonalize a matrix $A \in M_{m,n}$.
- Row operations \Leftrightarrow changing A to PA for some $P \in GL(m, R)$;
- Column operations \Leftrightarrow changing A to AQ for some $Q \in GL(n, R)$.

Recall Smith Normal Form Theorem (SNF).

Theorem

Let R be a PID Let $A \in M_{m,n}(R)$ be non-zero.

1 There exist $P \in GL(m,R)$ and $Q \in GL(n,R)$, an integer $1 \le s \le n$, and $d_1,\ldots,d_s \in R\setminus\{0\}$ with $d_1|d_2|\cdots|d_s$, such that

$$PAQ = \operatorname{diag}(d_1, d_2, \ldots, d_s, 0, \ldots, 0).$$

② The integer s is unique and the elements d_1, \ldots, d_s of R are unique up to associates: $s = \max\{1 \le k \le n : I_k(A) \ne \emptyset\}$, and

$$d_k = m_k(A)/m_{k-1}(A), \quad 1 \le k \le s,$$

where $I_k(A)$ is the ideal generated by all $k \times k$ minors of A, and

$$m_k(A) = a$$
 generator of $I_k(A)$.

We have proved the second part of the SNF Theorem.

Row operations.

• Type I. Replace Row_i by $Row_i + \alpha Row_j$, $\alpha \in R$;

• Type II. Replace some Row_i by $uRow_i$, where u is a unit in R;

Type III. Interchange two rows;

$$\begin{pmatrix} a & b \\ e & d \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Type IV. (PID assumption on R needed!.)

- Assume that $\alpha \in R \setminus \{0\}$, $\beta \in R$, and $\alpha \nmid \beta$.
 Let $\delta = \gcd(\alpha, \beta)$.
- As R is a PID, there exist $s, t \in R$ such that $\delta = s\alpha + t\beta$. Then

$$\det\left(\begin{array}{cc} s & t \\ -\beta/\delta & \alpha/\delta \end{array}\right) = 1 \quad \text{ and } \quad \left(\begin{array}{cc} s & t \\ -\beta/\delta & \alpha/\delta \end{array}\right) \underline{\left(\begin{array}{c} \alpha \\ \beta \end{array}\right)} = \left(\begin{array}{c} \delta \\ 0 \end{array}\right).$$

• Performing this operation to the *i*'th and the *j*'th entries in a given column replaces the original entries α and β respectively by δ and 0.

Similar four types of column operations.

Definition. Say $A, B \in M_{m,n}(R)$ are equivalent if there is a sequence of row or column operations of the above four types that starts with A and ends with B.

Restatement of first part of Smith Normal Form Theorem: Every non-zero $A \in M_{m,n}(R)$ is equivalent to a

$$\operatorname{diag}(d_1,\ldots,d_s,0,\ldots,0),$$

where $d_i \neq 0$ for every $1 \leq i \leq s$ and $d_1|d_2|\cdots|d_s$.

A tool:

- Recall for $a \in R \setminus \{0\}$, length I(a) is the number of prime factors (counting multiplicity) in the prime decomposition of a.
- For $a, b \in R \setminus \{0\}$, we say that a is smaller than b if I(a) < I(b).

Properties: for $a, b \in R \setminus \{0\}$,

- **1** $I(ab) \ge \max(I(a), I(b));$
- (a) = I(b) if a and b are associates;
- 3 If $I(a) \le I(b)$ and a does not divide b, then any greatest common divisor c of a and b satisfies I(c) < I(a).

Lemma 0. Suppose that A has a nonzero (1,1)-entry α .

- If there is an element β in the first row or column of A such that $\alpha \nmid \beta$, then A is equivalent to a matrix with smaller (1,1)-entry.
- 2 If α divides all entries in the first row and column, then A is equivalent to a matrix with (1,1)-entry equal to α and all other entries in the first row and column equal to zero.

Main step in proving the Smith Normal Form Theorem.

Lemma. For any non-zero $A \in M_{m,n}(R)$, there exists $B \in M_{m,n}(R)$ which is equivalent to A and is of the form

$$B = \left(\begin{array}{cc} d_1 & 0 \\ 0 & C \end{array}\right),$$

where $d_1 \in R \setminus \{0\}$, $C \in M_{m-1,n-1}(R)$, and d_1 divides all the non-zero entries of C.

Outline of proof.

• Let A be the set of all matrices in $M_{m,n}(R)$ equivalent to A. Let

$$E = \{e \in R : e \text{ is a non-zero entry of some } A' \text{ in } A\}.$$

- Then there exists $d_1 \in E$ such that $I(d_1) = \min\{I(e) : e \in E\}$.
- Let $A' \in \mathcal{A}$ be such that d_1 is an entry of A'.

Proof cont'd:

- Switching the rows and columns of A' if necessary, may assume that d_1 is the (1,1)-entry of A'.
- By 1) of Lemma 0, d₁ divides entries of the first row and the first column of A';
- By 2) of Lemma 0, can find $B = \begin{pmatrix} d_1 & 0 \\ 0 & C \end{pmatrix}$;
- d_1 must divide every non-zero entry of C: otherwise get $B' \in \mathcal{A}$ whose (1,1)-entry is smaller than d_1 , contradiction.

Q.E.D.

Proof of Smith Normal Form Theorem. Induction on m + n:

- If m + n = 2, i.e., m = n = 1, nothing to prove.
- Assume m+n>2. Then there exist $P_1\in GL(m,R)$, $Q_1\in GL(n,R)$ and $C\in M_{m-1,n-1}$ such that

$$P_1AQ_1=\left(\begin{array}{cc}d_1&0\\0&C\end{array}\right).$$

- If C = 0, or if m = 1 or n = 1, done.
- Assume $C \neq 0$ and $m \geq 2$ and $n \geq 2$.
- By induction assumption, there exist an integer $2 \le s \le \min(m, n)$, elements $d_2, \ldots, d_s \in R \setminus \{0\}$ with $d_2 \mid \cdots \mid d_s$, and matrices $P_2 \in GL(m-1,R), Q_2 \in GL(n-1,R)$ such that

$$P_2CQ_2=\operatorname{diag}(d_2,\ldots,d_s,0,\ldots,0).$$

Proof of Smith Normal Form Theorem, cont'd:

- As d_1 divides every entry of C, have $d_1|d_2|\cdots|d_s$.
- Let

$$P=\left(egin{array}{cc} 1 & 0 \ 0 & P_2 \end{array}
ight) P_1 \quad ext{ and } \quad Q=Q_1 \left(egin{array}{cc} 1 & 0 \ 0 & Q_2 \end{array}
ight).$$

• Then $P \in GL(m, R)$, $Q \in GL(n, R)$ and $PAQ = \operatorname{diag}(d_1, \ldots, d_s, 0, \ldots, 0)$ as desired.

Q.E.D.