Relacije

Naj boAneka množica. Podmnožici $R\subseteq A\times A$ rečemo relacijana množici A. Če je $(x,y)\in R,$ pišemo xRy.

$$R(x) = \{ y \in A : xRy \}$$
$$R^{-1}(y) = \{ x \in A : yRx \}$$

Definicijsko območje:

$$D_R = \{ x \in A : R(x) \neq 0 \}$$

Zaloga vrednosti:

$$Z_R = \{ y \in A : R^{-1}(y) \neq 0 \}$$

Graf relacije $R \subseteq A^2$ je slika na kateri vsakemu elementu iz A pripada svoja točka za vask par $(x,y) \in R$ pa naredimo puščico iz $x \to y$.

Operacije na relacijah

Komplement

$$\overline{R} = A^2 - R$$

Inverz

$$xR^{-1}y \Leftrightarrow yRy$$

Kompozitum

$$x(R \circ T)y \Leftrightarrow \exists z \in A : xTz \land zRy$$

Lastnosti relacij

R je $refleksinva \Leftrightarrow \forall x \in A : xRx$

R je irefleksinva $\Leftrightarrow \forall x \in A : \neg(xRx)$

R je simetrična $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow yRx$

R je asimetrična $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow \neg(yRx)$

R je antisimetrična $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow \neg(yRx) \lor x = y$

R je $tranzitivna \Leftrightarrow \forall x, y, z \in A : xRy \land yRz \Rightarrow xRz$

10 Je 01 010000000 (7 10, 9, 2 C 11 1 0109 7 9102 7 0

Rje sovisna $\Leftrightarrow \forall x,y \in A: xRy \vee yRx \vee x = y$

R je strogosovisna $\Leftrightarrow \forall x, y \in A : xRy \vee yRx$

R je enolična $\Leftrightarrow \forall x, y, z \in A : xRy \land xRz \Rightarrow y = z$

Ekvivalenčne relacije

Relacija je ekvivalenčna, če je refleksivna, simetrična in tranzitivna.

Ekvivalenčni razred

Naj bo R ekvivalenčna relacija. R(a) je ekvivalenčni razred elementa a.

$$a \in A : R(a) = \{b \in A : aRb\}$$

Množica ekvivalenčnih razredov glede na R:

$$A_{/R} = \{R(a) : a \in A\}$$

Relacije urejenosti

Vsaki tranzitivni relaciji rečemo relacija urejenosti. Naj bo ${\cal R}$ tranzitivno:

- R je delna urejenost, če je refleksivna in antisimetrična
- R je linearna urejenost, če je antisimetrična in strogo sovisna (in zato tudi refleksivna)
- R je stroga delna urejenost, če je asimetrilna (in zato irefleksivna)
- R je stroga linearna urejenost, če je asimetrilna in sovisna
- R je dobra urejenost, če je linearna urejenost in ima vasaka podmnožica svoj minimum

Naj boRrelacija urejenosti na A in $X\subseteq A$:

- Element $a \in A$ je **zgornja meja** za X, če velja $\forall x \in X : xRa$.
- Element $a \in A$ je spodnja meja za X, če velja $\forall x \in X : aRx$.
- Zgornja meja a ∈ X je natančna zgornja meja/supremum, če za vsako zgornjo mejo b množice X velja a = b ∨ aRb.
- Spodnja meja $a \in X$ je natančna spodnja meja/infimum, če za vsako spodnjo mejo b množice X velja $a = b \lor bRa$.
- maksimum je taka *natančna zgornja meja*, ki je vsebovana v množici X
- minimum je taka *natančna spodnja meja*, ki je vsebovana v množici X.

Funkcije

Enolični relaciji R na A rečemo tudi funkcija.

$$R:D_R\to A$$

Relacija $R \subseteq A^2$ je:

- injektivna $\Leftrightarrow \forall x, y, z \in A : xRy \land zRy \Rightarrow x = z$
- surjektivna $\Leftrightarrow Z_R = A$
- bijektivna ⇔ injektivna in surjektivna

Funkcija R ima inverz \Leftrightarrow ko je R injektivna

Moč množic

Množici A, B sta eneko močni (ekvipotentni, imata isto kardinalnost), če obstaja bijektivna preslikava iz A v B. Pišemo |A| = |B|.

Množica A je neskončna $\Leftrightarrow \exists B \subset A : |A| = |B|$

$$|A| \le |B| \Leftrightarrow \exists f : A \to B$$
, ki je injektivna $|A| \le |B| \Leftrightarrow \exists f : B \to A$, ki je surjektivna

Teorija števil

$$a|b \Leftrightarrow \exists k : b = ka$$

Deleitelji števila a:

$$D(a) = \{ m \in \mathbb{Z} : m|a \}$$

$$D^+(a) = \{ m \in \mathbb{N} : m|a \}$$

Večkratniki števila a:

$$V(a) = \{b \in \mathbb{Z} : a|b\} = \{ka : k \in \mathbb{Z}\}\$$

Največji skupni delitelj

$$\gcd(a,b) = \max(D^+(a) \cap D^+(b))$$

Najmanjši skupni večkratniki

$$lcm(a,b) = min(V^+(a) \cup V^+(b))$$

Če za $a,b\in\mathbb{Z}-\{0\}$ velja $\gcd(a,b)=1,$ sta si a in b **tuji** števili.

$$gcd(a, b) \cdot lcm(a, b) = a \cdot b$$

$$a, b, c \in \mathbb{Z} - \{0\} : \gcd(a, b) = 1 \land a | bc \Rightarrow a | c$$

$$a, b, c \in \mathbb{Z} - \{0\} : c | a \land c | b \Rightarrow \gcd\left(\frac{a}{c}, \frac{b}{c}\right) = \frac{\gcd(a, b)}{c}$$

$$\gcd\left(\frac{a}{\gcd(a, b)}, \frac{b}{\gcd(a, b)}\right) = 1$$

Praštevila

Če sta edina pozitivna delitelja naravnega števila $n \geq 2$ 1 in n, je n praštevilo. Množica preštevil:

$$\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}$$

Razcep na prafaktorje

Vsak $n \geq 2$ lahko zapišemo kot produkt praštevil $p_1, ..., p_m$:

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_m^{\alpha_m}$$

Linearne diofantske enačbe

Diofantska enačba ax+by=c ima rešitev $\Leftrightarrow gcd(a,b)|c$. Če ima eno rešitev $(x_0,y_0)\in\mathbb{Z}^2$ ima neskončno množico rešitev:

$$\{(x_k, y_k) : k \in \mathbb{Z}\}$$

$$x_k = x_0 - k \frac{b}{\gcd(\mathbf{a}, \mathbf{b})}$$

$$y_k = y_0 + k \frac{a}{\gcd(\mathbf{a}, \mathbf{b})}$$

Razširjen evklidov algoritem

$$\begin{array}{l} \textit{vhod}\colon (a,b) \\ (r_0\,,\,\,x_0\,,\,\,y_0\,) \,=\, (a\,,\,\,1\,,\,\,0) \\ (r_1\,,\,\,x_1\,,\,\,y_1\,) \,=\, (b\,,\,\,0\,,\,\,1) \\ i \,=\, 1 \\ \\ \textit{dokler}\ r_i \,\neq\, 0\colon \\ i \,=\, i{+}1 \\ k_i \,=\, r_{i-2}//r_{i-1} \\ (r_i,x_i,y_i) \,=\, (r_{i-2},x_{i-2},y_{i-2}) - k_i(r_{i-1},x_{i-1},y_{i-1}) \\ \textit{konec}\ \ \textit{zanke} \\ \textit{vrni}\colon (r_{i-1},x_{i-1},y_{i-1}) \end{array}$$

Naj bosta $a, b \in \mathbb{Z}$. Tedaj trojica (d, x, y), ki jo vrne razširjen evklidov algoritem z vhodnim podatkomk (a, b), zadošča:

$$ax + by = d$$
 in $d = \gcd(a, b)$

Modularna aritmetika

Kongurenca

$$a \equiv_m b \Leftrightarrow m|(b-a)$$

 $a \equiv_m b \Leftrightarrow a \mod m = b \mod m$

$$r=x \bmod m \Leftrightarrow r\equiv_m x \text{ in } r\in\{0,1,...,m-1\}$$
 Če je $x_1\equiv_m y_1$ in $x_2\equiv_m y_2$:

$$x_1 + x_2 \equiv_m y_1 + y_2$$
$$x_1 x_2 \equiv_m y_1 y_2$$
$$x_1^r \equiv_m y_1^r$$

Če je $ax \equiv_m ay$:

$$x \equiv y \left(\bmod \frac{m}{\gcd(a, m)} \right)$$

Kolobar ostankov

$$\mathbb{Z}_m = \{0, 1, ..., m - 1\}$$
$$a, b \in \mathbb{Z}_m$$

 $a \bigoplus b = (a+b) \mod m \sim a+b$ $a \bigoplus b = (ab) \mod m \sim ab$

 $(\mathbb{Z}_m,+,\cdot)$ je kolobar ostankov po mod m

- Operaciji + in \cdot sta asociativni, distributivni in komutativni
- 0 je enota za + in 1 je enota za ·
- vsak $a \in \mathbb{Z}_m$ ima nasprotni element (-a)

$$-a = \begin{cases} m - a; a \neq 0 \\ 0; a = 0 \end{cases}$$

Naj bo $a \in \mathbb{Z}_m$. Če obstaja $b \in \mathbb{Z}_m$, za katerega je ab = 1 v \mathbb{Z}_m potem je a obrnljiv in b njegov inverz (v \mathbb{Z}_m). Množico vseh obrnljivih elementov v \mathbb{Z}_m označimo \mathbb{Z}_m^* .

$$a \in \mathbb{Z}_m^* \Leftrightarrow a \text{ je tuj } m$$

Inverz od a je tisti $x\in\mathbb{Z}_m$, ki (skupaj z nekim y) reši diofantsko enačbo ax+(-m)y=1Vsak element \mathbb{Z}_m^* ima natanko en inverz. Označimo ga z a^{-1} .

Euljerjeva funkcija

Euljerjeva funkcija nam pove koliko je obrnlivih elementov v $\mathbb{Z}_m.$

$$\varphi(m) = \begin{cases} |\{a \in \mathbb{Z}_m - \{0\} : \gcd(a, m) = 1\}|; m \ge 2\\ 1; m = 1 \end{cases}$$

$$\varphi(p^k) = (p-1)p^{k-1} = p^k \left(1 - \frac{1}{p}\right); p \in \mathbb{P}$$

Za $n \in \mathbb{N}$ s paraštevilskim razcepom $n = p_1^{\alpha_1} \cdot \ldots \cdot p_m^{\alpha_m}$ velja:

$$\varphi(n) = \varphi(p_1^{\alpha_1}) \cdot \ldots \cdot \varphi(p_m^{\alpha_m}) = n \prod_{p_k \in \mathbb{P}} \left(1 - \frac{1}{p_k}\right)$$

Euljerjev izrek:

$$\gcd(a,m) = 1 \Leftrightarrow a^{\varphi(m)} \equiv_m 1; a \in \mathbb{Z}_m^*$$
$$a, m \in \mathbb{N} \land \gcd(a,m) = 1 \Rightarrow a^{\varphi(m)} \equiv_m 1$$
$$a^{\varphi(m)} = 1 \lor \mathbb{Z}_m^*$$

Mali Fermatov izrek: če je $m \in \mathbb{P} \ (\varphi(m) = m-1)$ in $\gcd(a,m) = 1,$ potem:

$$a^{m-1} \equiv_m 1$$

RSA

A želi varno prejeti sporočilo od B.

- A izbere praštevili p in q
- A izračuna n = pq in $\varphi = \varphi(n) = (p-1)(q-1)$
- A izbere $e \in \mathbb{Z}_{\varphi}^*$, ki je tuje φ
- A izračuna $d=e^{-1}$ (reši diofantsko enačbo $ex-\varphi y=1$ za x=d in y)
- \bullet A javno objavi (n, e) in si naskrivaj zapomni d
- $\bullet \;\; B$ sestavi sporočilo m
- B izračuna $m' = m^e \mod n$
- B pošlje m'
- A izračuna $m'' = m'^d \mod n$

Izkaže se, da je m'' enak m

Permutacije

Permutacija množice Ω je bijektivna preslikava $\pi:\Omega\to\Omega$ Sym (Ω) je množica vseh permutacij na Ω .

$$|\operatorname{Sym}(\Omega)| = |\Omega|!$$

$$S_n = \text{Sym}(\Omega); \Omega = \{1, 2, ..., n\}$$

Ciklična struktura

Multimnožica doložin ciklov.

• negibne točke: cilki dolžine 1

• transpozicije: cilki dolžine 2

• k-cikli: cilki dolžine k

Ciklična premutacija je taka premutacija kjer je največ en cikel dolžine več kot 1. (ostali pa so dolžine 1)

Produkt permutacij

$$(\pi \cdot \varphi)(\omega) = (\varphi \circ \pi)(\omega) = \varphi(\pi(\omega))$$
$$\pi(\omega) = \omega^{\pi}$$
$$(\pi \cdot \varphi)(\omega) = \omega^{(\pi \cdot \varphi)} = (\omega^{\pi})^{\varphi} = \omega^{\pi \varphi}$$

Nosilec

Naj bo $\pi \in \operatorname{Sym}(\Omega)$

$$supp(\pi) = \{ \omega \in \Omega : \omega^{\pi} \neq \omega \}$$

$$\omega \in \operatorname{supp}(\pi) \Leftrightarrow \omega^{\pi} \in \operatorname{supp}(\pi)$$

 $\pi, \varphi \in \operatorname{Sym}(\Omega)$ sta **disjunktni** permutaciji, če

$$\operatorname{supp}(\pi) \cap \operatorname{supp}(\varphi) = \emptyset$$

Če sta permutaciji $\pi, \varphi \in \operatorname{Sym}(\Omega)$ disjunktni, **komutirata** $(\pi \cdot \varphi = \varphi \cdot \pi)$.

Red permutacije

Red permutacije $\alpha \in S_n$ je najmanjše število k, da je

$$\alpha^k = id$$

${\bf Inverzije}$

 $\varphi \in S_n$, par števil i,j $(1 \leq i < j \leq n)$ je v inverzu v permutaciji φ , če se v spodnji vrstici zapisa parmutacije φ s tabelo pojavita v "napačnem" vrstnem redu: večje število je zapisano bolj levo od manjšega.

Število inverzi permutacije φ označimo z inv (φ) .

Denimo, da je φ permutacija in τ transpozicija, potem velja:

$$\operatorname{inv}(\varphi) \not\equiv_2 \operatorname{inv}(\varphi \cdot \tau)$$

Permutacija $\varphi \in S_n$ je soda $\Leftrightarrow \operatorname{inv}(\varphi)$ sodo. Permutacija $\varphi \in S_n$ je liha $\Leftrightarrow \operatorname{inv}(\varphi)$ liho.

Vsako permutacijo lahko zapišemo kot produkt transpozicij.

$$\pi = (13927)(4658) = (13)(19)(12)(17)(46)(45)(48)$$
$$(1\ 2\ 3\ ...\ n) = (1\ 2)(1\ 3)...(1\ n)$$

Permutacija je **soda**, če je n lih.

Permutacija je **liha**, če je n sod.