Midterm Exam I Microelectronics NCKUEE 10/21/2008 系級班別: 學號: 姓名:

- (20%) 1. (a) With less than 25 words to list the name of the four feedback amplifiers (e.g. Trans... amplifier) and their corresponding topologies (e.g. series-shunt). (12%) (b) Show how to derive A circuit and β circuit for a voltage amplifier. Please give detailed procedure from two-port feedback network to A circuit and β circuit. (8%)
- (15%) 2. The noninverting op-amp configuration is shown in Fig. P2. (a) Assume that the OPAMP has infinite input resistance and zero output resistance. Find an expression for the feedback factor β. (5%) (b) If the open-loop voltage gain $A = 10^3$, find R_2/R_1 to obtain a close-loop voltage gain A_f of 10. (5%) (c) If A decreases by 30%, what is the corresponding decrease in A_f ? (5%)

- (15%) 3. With illustrations, please give definitions for the following items of a two-pole OPAMP.
 - (a) -3dB bandwidth (5%)
 - (b) Unity-gain bandwidth (5%)
 - (c) Gain-bandwidth product (5%)
- (20%) 4. A cascode current mirror is shown in Fig. P4(a) and a wide-swing current mirror is shown in Fig. P4(b). The $|V_{OV}|$ for all transistors is 0.3 V and the $|V_t|$ is 0.7 V. All transistors are identical.
 - (a) Please calculate V_{bias1} voltage, V_{bias2} voltage and the minimum voltage of V_O swing in Fig. P4(a). (10%)
 - (b) Please calculate V_{bias3} voltage, V_{bias4} voltage and the minimum voltage of V_O swing in Fig. P4(b). (10%)

第1頁,共2頁

(20%) 5. A folded-cascode OPAMP is shown in Fig. P5 where I_{M11} = 200 uA, I_{M10} = 250 uA, and $|V_{OV}|$ for all transistors is 0.25 V. Assume that the fabrication process $u_n C_{ox}$ = 200 uA/V², $u_p C_{ox}$ = 80 uA/V², λ_n = 0.1 um/V, λ_p = 0.2 um/V, V_{DD} = 3.3, V_{tn} = 0.7 V, and $|V_{tp}|$ = 0.8 V. Please find (a) The voltage gain and output resistance. (10%) (b) The input common-mode range and output voltage swing. (10%)

- (15%) 6. V₋, V_+ , and V_O are the inverting input voltage, noninverting input voltage, and output voltage of the OPAMP, respectively 0 V<output swing of V_O <3.3 V.
- (a) Calculate V_a and V_O of the circuit shown in Fig. P6(a) where the OPAMP gain $A_a = 10$. (5%)
- (b) Calculate V_+ and V_0 of the circuit shown in Fig. P6(b) where the OPAMP gain $A_b = 10$. (5%)
- (c) Calculate V_+ and V_0 of the circuit shown in Fig. P6(c) where the OPAMP gain $A_c = 1$. (5%)

