

Fundamentos Físicos y Tecnológicos (G.I.I.)

Curso 2012/2013

Problemas Diagrama de Bode

- 1. Para el circuito de la Figura 1, $R=20k\Omega$ y L=10mH.
 - a) Calcule la función de transferencia.
 - b) Calcule la expresión para el módulo de la función de transferencia.
 - c) Calcule la expresión para el argumento de la función de transferencia.
 - d) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - e) Pinte el diagrama de Bode del argumento de la función de transferencia.

Figura 1:

- 2. Para el circuito de la Figura 2, $R=20k\Omega$ y L=10mH.
 - a) Calcule la función de transferencia.
 - b) Calcule la expresión para el módulo de la función de transferencia.
 - c) Calcule la expresión para el argumento de la función de transferencia.
 - d) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - e) Pinte el diagrama de Bode del argumento de la función de transferencia.

Figura 2:

- 3. Para el circuito de la Figura 3, $R = 20k\Omega$ y C = 100nF.
 - a) Calcule la función de transferencia.
 - b) Calcule la expresión para el módulo de la función de transferencia.
 - c) Calcule la expresión para el argumento de la función de transferencia.
 - d) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - e) Pinte el diagrama de Bode del argumento de la función de transferencia.

Figura 3:

- 4. Para el circuito de la Figura 4, $R = 20k\Omega$ y C = 100nF.
 - a) Calcule la función de transferencia.
 - b) Calcule la expresión para el módulo de la función de transferencia.
 - c) Calcule la expresión para el argumento de la función de transferencia.
 - d) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - e) Pinte el diagrama de Bode del argumento de la función de transferencia.

Figura 4:

- 5. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega) = 2 \cdot 10^4 + j\omega \cdot 10^3$.
 - a) Calcule la expresión para el módulo de la función de transferencia.
 - b) Calcule la expresión para el argumento de la función de transferencia.
 - c) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - $d)\,$ Pinte el diagrama de Bode del argumento de la función de transferencia.
- 6. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega) = \frac{7 \cdot 10^6}{2 \cdot 10^4 + j \omega 10^3}$.
 - a) Calcule la expresión para el módulo de la función de transferencia.
 - b) Calcule la expresión para el argumento de la función de transferencia.
 - c) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - d) Pinte el diagrama de Bode del argumento de la función de transferencia.
- 7. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega)=\omega^210^8$.
 - a) Calcule la expresión para el módulo de la función de transferencia.
 - b) Calcule la expresión para el argumento de la función de transferencia.
 - c) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - $d)\,$ Pinte el diagrama de Bode del argumento de la función de transferencia.
 - e)¿En qué cambiar
án los apartados anteriores si la cambiara el signo de la función de transferencia
 $T(\omega)=-\omega^210^8?$
- 8. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega)=1+2j\omega 10^{-4}-\omega^2 10^{-8}$.

- a) Calcule la expresión para el módulo de la función de transferencia.
- b) Calcule la expresión para el argumento de la función de transferencia.
- c) Pinte el diagrama de Bode del módulo de la función de transferencia.
- d) Pinte el diagrama de Bode del argumento de la función de transferencia.
- 9. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega) = \frac{1}{1+8j\omega 10^{-4}-7\omega^2 10^{-8}}$.
 - a) Calcule la expresión para el módulo de la función de transferencia.
 - b) Calcule la expresión para el argumento de la función de transferencia.
 - c) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - d) Pinte el diagrama de Bode del argumento de la función de transferencia.
- 10. Al analizar un circuito, se ha otenido la función de transferencia $T(\omega) = \frac{j\omega 10^{-2}(2\ 10^4 + j\omega 10^3)}{1 + j\omega 10^{-4}}$.
 - a) Calcule la expresión para el módulo de la función de transferencia.
 - b) Calcule la expresión para el argumento de la función de transferencia.
 - c) Pinte el diagrama de Bode del módulo de la función de transferencia.
 - d) Pinte el diagrama de Bode del argumento de la función de transferencia.