Curs 1: Sisteme de Numeratie. Coduri

Vlad-Cristian Miclea

Universitatea Technica din Cluj-Napoca

October 5, 2022

Cuprins

- Introducere
- Sisteme de numeratie
 - Generalitati
 - Conversia bazei de numeratie
- 3 Coduri
 - Coduri Binare
 - Coduri binare ponderate
 - Coduri binare neponderate
 - Coduri detectoare si corectoare de erori
 - Coduri detectoare de eroro
 - Coduri corectoare de erori
- 4 Concluzii

Cursul de ASDN

Informatii generale

- Vlad.Miclea@cs.utcluj.ro;
- ullet users.utcluj.ro/ \sim vmiclea ightarrow Teaching
- Cursuri in H11 sau folosind platforma Teams
- Carte teorie + probleme
- Subject destul de complex → Incremental
- Puneti intrebari oricand!!

Notare

- Examen final: 70 puncte
 - Examen scris sau probleme pe Moodle
 - Fara examen partial (Covid19)
- Test Lab: 30 puncte
- Posibil: probleme/quiz-uri in timpul semestrului

3 / 31

Cursuri - program

- Sisteme de numerație și coduri
- Aritmetica binara
- Algebra booleana
- Metode de minimizare a functiilor booleene
- Circuite logice combinationale
- Sinteza circuitelor digitale cu SSI, MSI, LSI and VLSI circuits
- Circuite logice secventiale. Bistabile
- Numaratoare
- Registre. Memorii
- Sinteza circuitelor digitale folosind bistabile
- Sinteza circuitelor digitale folosind memorii, numaratoare etc.
- Sisteme secventiale sincrone
- Sinteza circuitelor digitale folosind circuite logice programabile
- Probleme finale

4 / 31

Laboratorul de ASDN

Informatii generale

- Prezenta la laborator este obligatorie!!!
- Cerinta obligatorie: Cititi laboratorul si desenati circuitele!!

Simulator

- In general, la laborator veti folosi circuite reale
- Pentru anumite laburi, veti folosi simulatoare
- Implementarea se va face folosind Logisim (veti primi info de instalare)

5 / 31

Mai mute detalii – la primul lab!

Laboratoare - program

- Introducere
- ② Circuite Logice Fundamentale
- 3 ActiveHDL Editor and Simulator (I, II)
- Minimizarea functiilor logice
- ⑤ Circuite Logice Combinationale CLC
- © Circuite Logice Combinationale MSI
- Bistabile
- Numaratoare I
- Numaratoare II
- Registre si Registre de deplasare
- Implementarea circuitelor folosind FPGA (1)
- Implementarea circuitelor folosind FPGA (2)
- Recuperari
- Test de laborator

Cuprins

- Introducere
- Sisteme de numeratie
 - Generalitati
 - Conversia bazei de numeratie
- 3 Coduri
 - Coduri Binare
 - Coduri binare ponderate
 - Coduri binare neponderate
 - Coduri detectoare si corectoare de erori
 - Coduri detectoare de eroro
 - Coduri corectoare de erori
- 4 Concluzii

Sistem de numeratie

Numerele in design-ul digital

- Datele sunt stocate/utilizate ca numere
- Informatia e codificata e nevoie de o forma de reprezentare

Sistem de numeratie: Totalitatea regulilor de reprezentare a numerelor cu ajutorul unor simboluri numite cifre.

In functie de tipul reprezentarii

- SN Pozitionale valoarea unei cifre e determinata de pozitia sa in cadrul numarului
- SN Nepozitionale pozitia unei cifre are o alta semnificatie

 Vlad Miclea
 (UTC-N)
 Curs 1
 October 5, 2022
 8 / 31

Sistem de numeratie

Numarul \mathbf{N} , in sistem pozitional, in baza \mathbf{b} e reprezentat:

$$(N)_b = a_{q-1}b^{q-1} + \dots + a_0b^0 + \dots + a_{-p}b^{-p} = \sum_{i=-p}^{q-1} a_ib^i$$
 (1)

Detalii

- Baza b e un nr intreg, in general b > 1
- Coeficientul (cifra) a_i e un intreg, $0 \le a \le b-1$
- Notatia $(N)_b$ inseamna "numarul N in baza b"
- Daca baza nu e specificata, in general e 10
- Complementul unei cifre a (notat \bar{a} in baza b) e definit in eq. (2):

$$\bar{a} = (b-1) - a \tag{2}$$

9 / 31

Vlad Miclea (UTC-N) Curs 1 October 5, 2022

Sistem de numeratie

Sisteme Binare

- Baza b e 2
- Cifrele posibile sunt 1 si 0 ("biti")
- Complemente: $\bar{0} = 1$ si $\bar{1} = 0$

Alte sisteme utile

- Exista alte sisteme foarte intalnite
- Octal, Hexazecimal de ce?

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 10 / 31

Sisteme de numeratie

	0	
	1	
Sistemul Octal	2	
■ Baza b e 8	3	
• Cifrele posibile sunt 07	4	
Cinicio posibile sunt on	5	
	6	

	Octal	Binary
	0	000
	1	001
ı	2	010
ı	3	011
ı	4	100
,	5	101
	6	110
	7	111

Vlad Miclea (UTC-N) Curs 1 11 / 31 October 5, 2022

Sisteme de numeratie

Sistemul Octal	Hexadecimal	
 Baza b e 8 	0	

Cifrele posibile sunt 0..7

Sistemul Hexazecimal

Baza b e 16

• 16 cifre: 0 - 9 si A - F

• Foarte util pentru reprezentarea folosind un singur caracter

Reprezentarea Byte

1 byte = 8 biti!!!

Vlad Miclea (UTC-N)

Care e intervalul de numere?

Cel mai utilizat pentru reprezentare

3

5 6

В

0110

0111 1000 1001

> 1101 1110 1111

Binary 0000 0001

0010

0011

0100

0101

1010

1011

1100

11 / 31

- ullet De multe ori, se doreste trecerea dintr-o baza b_1 in baza b_2
- In sisteme pozitionale: se foloseste un set de inmultiri si impartiri
- Exista 2 cazuri principale:
 - $b_1 < b_2$
 - $b_1 > b_2$
- https://www.rapidtables.com/convert/number/base-converter.html

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 12 / 31

Cazul 1: $b_1 < b_2$

- ullet $(N)_{b1}$ e exprimat ca un polinom cu coeficienti in baza b_1
- Rezultatul (alaturi de operatiile asociate: adunare si inmultire) e evaluat in baza b_2
- Exemplu: $b_1 = 3$, $b_2 = 10$ si $(N)_3 = 2120.1$

$$(N)_{10} = 2 \times 3^{3} + 1 \times 3^{2} + 2 \times 3^{1} + 0 \times 3^{0} + 1 \times 3^{-1}$$

= 54 + 9 + 6 + 0 + 0.3 = 69.3 (3)

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 13 / 31

Cazul 2: $b_1 > b_2$

- ullet Operatiile aritmetice sunt realizate in baza b_1
- Exista 2 algoritmi diferiti, pentru partea Intreaga si partea Fractionara

Case 2.1: Partea Intreaga

- Numarul se imparte la baza b_2
- Resulta un Cat si un Rest
- Restul e stocat
- Catul e impartit mai departe la baza b₂
- Algoritmul continua pana cand Catul e 0
- Partea Intreaga a numarului convertit e obtinuta prin citirea
 Resturilor in ordine inversa (incepand de la ultima impartire)

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 14 / 31

Cazul 2: $b_1 > b_2$

- ullet Operatiile aritmetice sunt realizate in baza b_1
- Exista 2 algoritmi diferiti, pentru partea Intreaga si partea Fractionara

Case 2.2: Fractional part

- Numarul se inmulteste cu baza b₂
- Rezulta un nou numar, cu parte Intreaga si parte Fractionara
- Partea Intreaga se stocheaza
- ullet Noua parte Fractionara e mai departe inmultita cu baza b_2
- Algoritmul continua pana cand Precizia dorita e obtinuta
- Partea Fractionara a numarului convertit e obtinuta prin citirea partilor Intregi rezultate, in ordine directa (incepand cu prima inmultire)

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 15 / 31

Exemplu: $b_1 = 10$, $b_2 = 4$ si $(N)_{10} = 347.4$

Partea Intreaga

$$347 \div 4 = 86 \text{ rest } 3$$

$$86 \div 4 = 21 \, rest \, 2$$

$$21 \div 4 = 5 \text{ rest } 1$$

$$5 \div 4 = 1 \, rest \, 1$$

$$1 \div 4 = 0$$
 rest 1

Rezultat (intreg): (11123)₄

Partea Fractionara

$$0.4 \times 4 = 1.6 \rightarrow 1$$

$$0.6\times4=2.4\rightarrow2$$

$$0.4\times4=1.6\rightarrow1$$

$$0.6\times4=2.4\rightarrow2$$

...

Rezultat (fractionar): (1212..)₄

Numarul Rezultat: (11123.1212...)₄

Cazuri speciale de conversie

- Conversia din octal/hexazecimal in binar (si invers)
- Doar grupam/separam biti (cate 3 sau 4)
- Octal/hexa in binar (atentie la 0-uri pt formatare)

$$(123.4)_8 = (001\,010\,011.100)_2 = (1010011.1)_2$$

 $(2C5F)_{16} = (0010\,1100\,0101\,1111)_2 = (10110001011111)_2$

Binar in octal/hexa

```
(1010110,010,010,010110.010110.010100)_2 = (126.24)_8
(1011100110,010.1)_2 = (001011100110.1010.1000)_2 = (2E6A.8)_{16}
```

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 17 / 31

Cuprins

- Introducere
- 2 Sisteme de numeratie
 - Generalitati
 - Conversia bazei de numeratie
- 3 Coduri
 - Coduri Binare
 - Coduri binare ponderate
 - Coduri binare neponderate
 - Coduri detectoare si corectoare de erori
 - Coduri detectoare de eroro
 - Coduri corectoare de erori
- 4 Concluzii

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 18 / 31

Coduri Binare

Generalitati

- In viata reala, folosim coduri zecimale (precum si in interfata om-masina)
- Numerele zecimale sunt si ele reprezentate in binar in sistemele digitale
- Fiecare cifra zecimala (0-9) e reprezentata pe? biti?
- Codurile binare:
 - Ponderate
 - Neponderate

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 19 / 31

- Fiecare cifra binara are o pondere
- Numarul e codificat prin insumarea ponderilor cifrelor 1

$$N = \sum_{i=0}^{K-1} a_i b_i \tag{4}$$

- unde K este numarul de cifre si $a_i \in \{0, 1\}$
- caz particular al eq. (1) (slide 9)

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 20 / 31

BCD

- Codificarea normala binara
- Ponderile corespund puterilor lui 2: 1, 2, 4, 8, ...

Decimal	<i>b</i> ₃	b_2	b_1	b_0
D (8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
1 2 3 4 5	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

21 / 31

BCD

- Codificarea normala binara
- Ponderile corespund puterilor lui 2: 1, 2, 4, 8, ...

Coduri auto-complementare

- Conditie: suma ponderilor trebuie sa fie
 9
- Complementul unui nr N e 9 N
- Coduri auto-complementare pozitive (2421)

Decimal	b_3	<i>b</i> ₂	b_1	b_0
D	2	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
2 3 4 5	0	1	0	0
	1	0	1	1
6	1	1	0	0
7	1	1	0	1
8	1	1	1	0
9	1	1	1	1

BCD

- Codificarea normala binara
- Ponderile corespund puterilor lui 2: 1, 2, 4, 8, ...

Coduri auto-complementare

- Conditie: suma ponderilor trebuie sa fie
 9
- Complementul unui nr N e 9 N
- Coduri auto-complementare pozitive (2421)
- Coduri auto-complementare negative

Decimal	<i>b</i> ₃	<i>b</i> ₂	b_1	<i>b</i> ₀
D	6	4	2	-3
0	0	0	0	0
1	0	1	0	1
	0	0	1	0
2 3	1	0	0	1
4	0	1	0	0
4 5	1	0	1	1
6	0	1	1	0
7	1	1	0	1
8	1	0	1	0
9	1	1	1	1
	11		1	

Aceste tipuri de coduri urmaresc alte reguli.

Excess3

- Obtinut prin adunarea 0011

 (reprezentarea binara a cifrei 3) la fiecare numar in reprezentare BCD
- Rezulta un cod auto-complementar
- Nu contine combinatia 0000

Decimal	b_3	b_2	b_1	b_0
0	0	0	1	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
1 2 3 4 5 6	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

Gray

- Codificare ciclica: cifrele succesive difera printr-o singura cifra binara
- Codificare reflectiva: codificarea de n-biti va fi formata prin reflectarea codului pe n-1-biti si adaugarea unui bit suplimentar pe prima pozitie
- Ex: codificare pe 2-biti obtinuta prin reflectarea a 2 coduri de 1-bit

0	0
0	1
1	1
1	0

Decimal	<i>b</i> ₃	b ₂	b_1	b_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
2 3 4 5	0	1	1 1	
6	0	1	1 0	
7	0	1 0		0
8	1	1 0		0
9	1	1	0	1

Detectia si corectia codurilor

Generalitati

- Codificarea e f importanta la transmiterea informatiei
- In sistemele numerice, informatia se poate altera in procesul de transmitere
- Trebuie sa asiguram corectitudinea informatiei transmise
 - Detectam daca informatia a fost modificata
 - Corectam codul transmis

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 24 / 31

Coduri detectoare de erori – CDE

Aparitia unei singure erori transforma un cuvant de cod valid in cuvant de cod invalid.

Metoda bitului de paritate

- Adaugam un singur bit supllimentar la fiecare cuvant
- Acest bit ne va "spune" daca numarul de biti de 1 in cuvantul transmis a fost par sau impar
- Exemplu: trimitem cuvantul (bitstring) 1011
 - Pentru paritate impara: vom adauga un 1, noul cuvant fiind 1 1011
 - Pentru paritate para: vom adauga un 0, noul cuvant fiind 0 1011

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 25 / 31

Coduri detectoare de erori

Codul "2 din 5"

- Foloseste ponderile 1, 2, 4, 7
- Exceptie: codificarea pentru cifra 0
- Ponderea asociata bit-ului 0 –
 va spune daca numarul de valori de 1 e par sau impar

0	1	2	4	7
0	0	0	1	1
1	1	0	0	0
1	0	1	0	0
0	1	1	0	0
1	0	0	1	0
0	1	0	1	0
0	0	1	1	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
	0 1 1 0 1 0 0 1	0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1	0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0	0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

26 / 31

Vlad Miclea (UTC-N) Curs 1 October 5, 2022

27 / 31

Coduri corectoare de erori - CCE

Un cod e corector de erori (CCE) daca intotdeauna cuvantul de cod corect poate fi dedus din cuvantul eronat.

Coduri Hamming

- Coduri corectoare de erori singulare: permit corectarea unei singure erori!
- Diferenta minima intre 2 cuvinte de cod (numarul de biti diferiti) trebuie sa fie 3
- Relatia lui Hamming: Numarul de "biti de control" (biti suplimentari, necesari pt corectie) e dat de:

$$2^k \ge m + k + 1$$

- m e numarul de biti de informatie utila
- k e numarul de biti de control

Vlad Miclea (UTC-N) Curs 1 October 5, 2022

Coduri corectoare de erori

Coduri Hamming - exemplu

- Codul Hamming pentru un mesaj de lungime m=4, in codificare BCD
- ullet Daca aplicam relatia lui Hamming o k=3
- Bitii de control vor fi inserati pe pozitiile cu valoare de putere a lui 2

Bitii de control sunt generati folosind relatiile:

$$c_1=b_1\oplus b_2\oplus b_4$$

$$c_2 = b_1 \oplus b_3 \oplus b_4$$

$$c_3 = b_2 \oplus b_3 \oplus b_4$$

• unde ⊕ e operatorul xor – ce calculeaza acest operator?

Vlad Miclea (UTC-N) Curs 1 October 5, 2022 28 / 31

Coduri corectoare de erori

Codificare Hamming - exemplu

- $b_1b_2b_3b_4 = 0100 (trimitem 4, in BCD)$
- Calculam bitii de control: $c_1 = 1$; $c_2 = 0$; $c_3 = 1$.
- Mesajul trimis va fi: 1001100

Curs 1 October 5, 2022 29 / 31

Concluzii

Rezumat

- Sisteme de Numeratie
 - Binar, Octal, Hexazecimal
- Conversia bazei de numeratie
 - 2 cazuri, in functie de relatia dintre baze
- Coduri binare
 - Ponderate: BCD, Auto-complementare
 - Neponderate: Excess3, Gray
- Coduri detectoare de erori
- Coduri corectoare de erori

Saptamana viitoare

- Reprezentarea numerelor
- Aritmetica binara

Multumesc pentru atentie!