Homework 1 feedback

14/20

- 1. (1/2) I don't recognize the graph that was drawn on the page, was it drawn horizontally? Even then, it still doesn't look quite right... I suspect a typo was made when the function was input to a graphing calculator. The function $f(x) = e^{x^2} \sin(4x)$ is odd, because $f(-x) = e^{(-x)^2} \sin(4(-x)) = e^{x^2} (-\sin(4x)) = -f(x)$.
- 2. (1/2) For (b), the function $\cos(x^5)$ is *not* invertible, in particular because the graph does not pass the horizontal line test on the domain $[0, \pi/2]$. Another way to see this is that the largest possible range for the "inverse" $\sqrt[5]{\cos^{-1}(y)}$ is $[0, \sqrt[5]{\pi/2}]$, but $\sqrt[5]{\pi/2} \approx 1.09$. That means that there are values of x between 1.09 and $\pi/2 \approx 1.57$ such that $g(f(x)) \neq x$, since g can only ever output a value that is at most $\sqrt[5]{\pi/2}$. For (c), the function is *not* invertible because the domain is too large; again, the easiest way to see this is that the graph of $\sin(x)$ fails the horizontal line test on the domain $[0,\pi]$. However, if we were to restrict the domain to $[0,\pi/2]$, then the function would be invertible. For (d), I don't understand the comment about the function increasing on $[0,\infty)$. I think the function is always decreasing on $[0,\infty)$.

3. Good!

- 4. (1/2) The correct answer was given for (a) using a valid technique, but the purpose of the homework is to illustrate how to use the techniques from that week of instruction. L'Hospital's rule has not been introduced yet.
 - Insufficient detail provided for (d).
- 5. (1/2) For (a), it appears the limit was written incorrectly; the denominator is missing?
 - For (c), what does it mean to cancel out (x-1) from the numerator and denominator? (The x-1 in the numerator was the input to the sine function.) What does $\frac{\sin^2}{x-1}$ mean?
- 6. Good!
- 7. For (a), to say that there is a discontinuity at x = 1 but then the function can be rewritten so that it is continuous is actually the definition of a removable discontinuity. In other words, "there was a discontinuity (when

the function had $\frac{x^3-1}{x-1}$), but now (when the function is rewritten as x^2+x+1) there isn't; it was *removed*." This is why we call these points removable discontinuities.

- 8. (1/2) f(-2) = 32, so there was a typo somewhere. However, just calculating f(2) = -16 is not enough, because this only demonstrates that f changed sign once; this only guarantees the function has at least one root. The question asks for more than one root. One way to do this is to check f(-1.5) < 0, so that there is a root between -2 and -1.5, and then check f(1) = 2 > 0, so there is a root between 1 and 2. Thus, there are at least two roots. (Also, the given polynomial f has degree 8, not degree 3, so the statement about odd polynomials always having roots does not apply.)
- 9. (1/2) For (a), the way the argument should be presented for full credit is something like: define $f(x) = 2023 \sin(x) x$. Then, f(0) = 2023 > 0, but f(2025) < 0. Therefore, by the intermediate value theorem, f has a root between 0 and 2023. This gives a solution to $2023 \sin(x) = x$. (I do not understand what "2023 $-\sin(x)$ covers all real numbers" means, because this expression can only take values in 2023 ± 1 , since $\sin(x)$ is between -1 and 1.)
 - For (b), no additional points deducted because this was my mistake, but there is actually a typo $(\exp(2023x) = x \text{ actually does not have a solution,})$ but $\exp(2023x) = -x \text{ does}$; this is what I meant to write).
 - For (c), the reasoning is insufficient. A valid argument would take the form of the one in (a), using the intermediate value theorem as was done in class. For example, defining $f(x) = \sin(x) x^{2023}$ and checking f(1) > 0, f(-1) < 0 guarantees there is a root of f between -1 and f. A root of f is the same as a solution to $\sin(x) = x^{2023}$.