Logica de primer orden: Calculo

Prof. Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Motivación

- Solamente hemos estudiado que significa que una expresión es cierta.
- No tenemos herramientas para encotrar una demostración que dicha expresión es cierta.
- Existen varias de encontrar demostraciones.
- En esta clase estudiaremos un calculo sequencial para ello.
- La belleza de la lógica no solamente es que podemos determinar si algo es verdad o no, sino que tambien podemos encontrar una demostración (si existe).
- El calculo que se presentara en esta clase es un calculo completo

Calculo sequencial

Ejemplo: Demostración por contradicción.

- **1** Queremos demostrar que φ es verdad.
- ② Assumir premisas $\varphi_1 \dots \varphi_n$ cuya consequencia es φ
- **3** Ahora asumir que φ es falso $\neg \varphi$
- Encontrar una expressión ψ que pueda demostrarse cierta y falsa.

$$\begin{array}{c}
\varphi_1 \dots \varphi_n \neg \varphi \ \psi \\
\varphi_1 \dots \varphi_n \neg \varphi \neg \psi \\
\varphi_1 \dots \varphi_n \ \varphi
\end{array}$$

Abreviación

Es possible abreviar una secuencia (posiblemente vacia) de suposiciones como Γ.

$$\begin{array}{ccc}
\Gamma \neg \varphi \psi & \varphi_1 \dots \varphi_n \neg \varphi \psi \\
\Gamma \neg \varphi \neg \psi & \Leftrightarrow & \varphi_1 \dots \varphi_n \neg \varphi \neg \psi \\
\hline
\Gamma \varphi & & \varphi_1 \dots \varphi_n \varphi
\end{array}$$

Regla del Antecedente

$$\frac{ \ \Gamma \ \varphi}{ \ \Gamma' \ \varphi} \ \mathrm{si} \ \Gamma \subset \Gamma'$$

• Dice que si asumimos más cosas, no podemos probar menos cosas

Regla de la premisa

$$\overline{\ \Gamma \ \varphi} \ \text{if} \ \varphi \in \Gamma$$

• Simplemnte dice que si asumimos φ , podemos probar φ

Separación de casos

$$\begin{array}{ccc} \Gamma & \psi & \varphi \\ \Gamma & \neg \psi & \varphi \\ \hline \Gamma & & \varphi \end{array}$$

• La expresión φ es consequencia de Γ existe una formula ψ tal que φ es consequencia de $\Gamma \cup \psi$ y $\Gamma \cup \neg \psi$

Contradicción

$$\begin{array}{ccc} \Gamma & \psi \\ \underline{\Gamma} & \neg \psi & \forall \varphi \end{array}$$

- El conjunto de premisas es inconsistente ya pue se puede demostrar ψ y $\neg \psi$ con el.
- A partir de un conjunto de premisas inconsistente, se puede demostrar cualquier cosa.

Introducción de \vee en el antecedente

$$\begin{array}{ccc} \Gamma & \varphi & \xi \\ \Gamma & \psi & \xi \\ \hline \Gamma & \varphi \lor \psi & \xi \end{array}$$

• Esta regla dice que si podemos demostrar ξ utilizando Γ y φ o utilizando Γ y ψ , tambien lo podemos demostrar utilizando Γ y $\varphi \lor \psi$

Introducción de V en la conclusión

$$\frac{\Gamma \quad \varphi}{\Gamma \quad \psi \vee \varphi}$$

ullet Si podemos probar ψ , tambien podemos probar $\psi \lor \varphi$

Introducción de ∃ en la conclusión

- Dadas las premisas Γ
- Si encontramos un termino, el cula resulta cierto al substituirlo por la variable libre x en una expression φ , demostramos la existencia de dicho x.

Introducción de ∃ en las premisas

$$\Gamma \quad \varphi \frac{t}{x} \quad \psi$$

$$\Gamma \quad \exists x \varphi \quad \psi$$

- Si asumimos Γ
- La expressión ψ es verdadera al reemplazar la variable x con un ejemplo particular t en la expressión φ .
- ullet Se puede concluir que ψ tambien es verdadero con la expressión $\exists x arphi$

Reflexividad de (=)

$$t = t$$

• Todo valor es igual a si mismo.

13 / 18

Substitución por iguladad

$$\frac{\Gamma \qquad \varphi}{\Gamma \quad x = t \quad \varphi \frac{t}{x}}$$

• Si un termino se substituye por un termino equivalente, la expresión no pierde su validez

Observaciones

- Esta es la lista completa del calculo para derivar expressiones.
- Utilizando estas reglas, se pueden derivar reglas nuevas.
- A pesar que las expressiones hablan sobre objetos reales y semantica, estas derivaciones son puramente sintacticas.
- Una computadora (con suficiente tiempo), podria aplicar estas reglas en toda permutación possible y eventualmente probar o rechazar cualquier expressión de logica de primer orden.
- A partir de la manipulación de simbolos, podemos enconrar conocimiento del mundo real.

Ejemplo

Derivación de la regla cadena:

$$\begin{array}{ccc} \Gamma & \psi \\ \underline{\Gamma} & \varphi & \psi \\ \hline \Gamma & & \psi \end{array}$$

February 12, 2018

Referencias