Group A(Physics Group)

Year:2022-23

First Semester Group-A Contact Hrs.: 24 Course Code	Course Type	Course Title	Load A	llocations		Marks Distributio	on	Total Marks	Credits
L		T		P		Internal		External	
BTPHXX -18	Basic Science Course	Physics	3	1	0	40	60	100	4
BTPHXX -18	Basic Science Course	Physics (Lab)	0	0	3	30	20	50	1.5
BTAMX X-18	Basic Science Course	Maths-I	3*	1	0	40	60	100	4
BTEE101 -18	Engineeri ng Science Course	Basic Electrical Engineeri ng	3	1	0	40	60	100	4
BTEE102 -18	Engineeri ng Science Course	Basic Electrical Engineeri ng (Lab)	0	0	2	30	20	50	1
BTME10 1-18	Engineeri ng Science Courses	Engineeri ng Graphics & Design	1	0	4	60	40	100	3
BMPD101-	Pr	entoring and ofessional evelopment	0		0	2		Satisfactory / Un-Satisfactory	Non-Credit
TOTAL	10	3		11	220	280		500	17.5

SEM 1

COURSE OUTCOMES(SEM -1) CIVIL ENGINEERING

COURSE NAME (MECHANICS OF SOLID) Physics-1 (Theory)

Year- 2022-23

COURSE OUTCOMES					
AFTER COMPLET	AFTER COMPLETION OF COURSE, STUDENTS WILL BE ABLE TO:-				
BTPH101-18	Understand the vector mechanics for a classical system.				
BTPH101-18	Identify various types of forces in nature, frames of references, and conservation				
	laws.				
BTPH101-18	Know the simple harmonic, damped, and forced simple harmonic oscillator for a				
	mechanical system.				
BTPH101-18	Analyze the planar rigid body dynamics for a mechanical system.				
BTPH101-18	Apply the knowledge obtained in this course to the related problems.				

COURSE OUTCOMES (SEM -1)

COURSE NAME (MECHANICS OF SOLID Physics-1 (LAB)

Year- Year- 2022-23

COURSE OUTCOMES					
AFTER COMPLET	AFTER COMPLETION OF COURSE,STUDENTS WILL BE ABLE TO:-				
BTPH111-18	Able to understand the concepts learned in the mechanics of solids.				
BTPH111-18	Learning the skills needed to verify some of the concepts of theory courses.				
BTPH111-18	Trained in carrying out precise measurements and handling sensitive equipme				
BTPH111-18	Able to understand the principles of error analysis and develop skills in experimental				
	design				
BTPH111-18	Able to document a technical report which communicates scientific information in a				
	clear and concise manner				

COURSE OUTCOMES (SEM -1)

COURSE NAME (CALCULUS AND LINEAR ALGEBRA) (Maths) Year- 2022-23

COURSE OUTCOMES					
AFTER COMPLET	AFTER COMPLETION OF COURSE, STUDENTS WILL BE ABLE TO:-				
BTAM101-18	TAM101-18 The fallouts of Rolle's Theorem that is fundamental to application of analysis to				
	Engineering problems.				
BTAM101-18	To apply differential and integral calculus to evaluate definite, improper integrals				
	and its applications.				
BTAM101-18	The convergence of sequence and series and to apply different tests of convergence				
BTAM101-18	To deal with functions of several variables that are essential in most branches of				
	engineering.				

COURSE OUTCOMES(SEM -1)

COURSE NAME (BASIC ELECTRICAL ENGINEERING)

Year- 2022-23

COURSE OUTCOMES						
AFTER COMPLET	AFTER COMPLETION OF COURSE, STUDENTS WILL BE ABLE TO:-					
BTEE101-18	Have the knowledge of DC circuits, AC Circuits, basic magnetic circuits, working principles of electrical machines, and components of low voltage electrical					
	installations					
BTEE101-18	Be able to analyze of DC circuits, AC Circuits					
BTEE101-18	Understand the basic magnetic circuits and apply it to the working of electrical					
	machines					
BTEE101-18	Be introduced to types of wiring, batteries, and LT switchgear.					

COURSE OUTCOMES(SEM -1)

COURSE NAME (BASIC ELECTRICAL ENGINEERING LAB)

Year- Year- 2021-22

COURSE OUT	COURSE OUTCOMES				
AFTER COMPLETION OF COURSE,STUDENTS WILL BE ABLE TO:-					
BTEE102-18	-18 The ability to use common electrical measuring instruments and understand the				
	fundamentals of electrical engineering.				
BTEE102-18	2-18 The ability to make electrical connections, and measure power, power factor using				
	appropriate equipments				
BTEE102-18	Have the knowledge of electrical machines, components and their ratings.				
BTEE102-18	Understand the operation of transformers and electrical machines.				

COURSE OUTCOMES (SEM 1) COMMON FOR GROUP(A & B) Year- 2022-23

COURSE NAME (MENTORING AND PROFESSIONAL DEVELOPMENTG (THEORY +LAB)

The STUDENTS WILL LEARN:-			
BMPD101-18	Introduction to engineering design and its place in society		
BMPD101-18	Exposure to the visual aspects of engineering design		
BMPD101-18	Exposure to engineering graphics standards		
BMPD101-18	Exposure to solid modeling		
BMPD101-18	Exposure to computer-aided geometric design		
BMPD101-18	Exposure to creating working drawings		
BMPD101-18	Exposure to engineering communication		

Branch-Computer science and engineering

COURSE OUTCOMES (SEM -1)

COURSE NAME (SEMICONDUCTOR PHYSICS)(THEORY)

Year- 2022-23

COURSE OUTCOMES					
AFTER COMPLE	AFTER COMPLETION OF COURSE,STUDENTS WILL BE ABLE TO:-				
BTPH104-18	Understand and explain the fundamental principles and properties of electronic materials and semiconductors				
BTPH104-18	Understand and describe the interaction of light with semiconductors in terms of fermi golden rule				
BTPH104-18	Understand and describe the impact of solid-state device capabilities and limitations on electronic circuit performance.				
BTPH104-18	Understand the design, fabrication, and characterization techniques of Engineered semiconductor materials				
BTPH104-18	Develop the basic tools with which they can study and test the newly developed devices and other semiconductor applications.				

COURSE OUTCOMES (SEM -1)

COURSE NAME (SEMICONDUCTOR PHYSICS)(LAB)

Year- 2022-23

COURSE OUT	COURSE OUTCOMES				
AFTER COMP	LETION OF COURSE,STUDENTS WILL BE ABLE TO:-				
BTPH114-1	Able to verify some of the theoretical concepts learnt in the theory courses.				
8					
BTPH114-1	Trained in carrying out precise measurements and handling sensitive equipment.				
8					
BTPH114-1	Introduced to the methods used for estimating and dealing with experimental				
8	uncertainties and systematic "errors."				
BTPH114-1	Learn to draw conclusions from data and develop skills in experimental design				
8					
BTPH114-1	Write a technical report which communicates scientific information in a clear and				
8	concise manner				

COURSE OUTCOMES (SEM -1)

COURSE NAME (MATHEMATICS PAPER-1)

Year- 2022-23

COURSE OUTCOMES

AFTER COMPLETION OF COURSE, STUDENTS WILL BE ABLE TO:-

BTAM104-18	To apply differential and integral calculus to notions of curvature and to improper
	integrals.
BTAM104-18	Apart from various applications, they will have a basic understanding of Beta and
	Gamma functions.
BTAM104-18	The essential tools of matrices and linear algebra including linear transformations,
	eigen values, diagonalization and orthogonalization.

COURSE OUTCOMES(SEM 1)

COURSE NAME :- BASIC ELECTRONIC ENGINEERING(THEORY)

Year-	2	n	2	2.	-2	3

The STUDENTS	The STUDENTS WILL LEARN:-			
BTEE101-18	Have the knowledge of DC circuits, AC Circuits, basic magnetic circuits, working principles of electrical machines, and components of low voltage electrical installations			
BTEE101-18	Be able to analyze of DC circuits, AC Circuits			
BTEE101-18	Understand the basic magnetic circuits and apply it to the working of electrical machine			
BTEE101-18	Be introduced to types of wiring, batteries, and LT switchgear.			

COURSE OUTCOMES(SEM 1)

COURSE NAME (BASIC ELECTRONIC ENGINEERING) (LAB)

The STUDENTS	The STUDENTS WILL LEARN:-		
BTEE102-18	The ability to use common electrical measuring instruments and understand the		
	fundamentals of electrical engineering.		
BTEE102-18	The ability to make electrical connections, and measure power, power factor using		
	appropriate equipments.		
BTEE102-18	Have the knowledge of electrical machines, components and their ratings.		
BTEE102-18	Understand the operation of transformers and electrical machines.		

COURSE OUTCOMES (SEM -1)

Year- 2022-23

Year: 2022-23

COURSE NAME (ENGINEERING GRAPHICS AND DESIGN)(THEORY+ LAB)

All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) in which the skills of the CAD technicians play major roles in the design

and developme	and development of new products or construction. Students prepare for actual work situations			
through practic	cal training in a new state-of-the-art computer designed CAD laboratory using			
engineering so	ftware. This course is designed toaddress:			
BTME101-18	to prepare you to design a system, component, or process to meet desired needs			
	within realistic constraints such as economic, environmental, social, political, ethical,			
	health and safety, manufacturability, and sustainability			
BTME101-18	to prepare you to communicate effectively			
BTME101-18	BTME101-18 to prepare you to use the techniques, skills, and modern engineering tools necessary			
for engineering practice				

Group B(Chemistry Group)

Cours e Code	Course Type	Course Title	Load A	llocations		Marks Distributio n	Total Ma	ırks Cı	edits
couc			L	T	P	Internal		External	
BTCH10		Chemistry	3	1	0	40	60	100	4
1-18	Science Course	-I							
BTCH10	Basic	Chemistry	0	0	3	30	20	50	1.5
2-18	Science Course	-I (Lab)							
BTAMX	Basic	Maths-I	3*	1	0	40	60	100	4
X-18	Science Course								
BTPS10	Engineeri	Programm	3	0	0	40	60	100	3
1-18	ng Science Course	ing for Problem Solving							
BTPS10	Engineeri	Programm	0	0	4	30	20	50	2
2-18	ng Science Course	ing for Problem Solving (Lab)	v	U	7	30	20	30	2
BTMP1	Engineeri	Workshop	1	0	4	60	40	100	3
01-18	ng Science Courses	/ Manufactu ring Practices							
BTHU1 01-18	Humaniti es and Social Sciences including Managem	English	2	0	0	40	60	100	2

TOTAL	12	2		15	290	360	650	20.5
	Profession al Developm ent						y	
BMPD 101-18	Sciences including Managem ent courses Mentoring and	0	0			2	Satisfactory / Un-Satisfactor	Non-Credit
BTHU1 02-18	ent courses Humaniti es and Social	English (Lab)	0	0	2	30	20 50	1

Branch(ECE/ME)

COURSE OUTCOMES (SEM -1)

COURSE NAME (CHEMISTRY-1)(THEORY)

Year-2022-23

have been introd electronic, atomi	The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical		
· ·	ecular levels. The course will enable the student to:		
BTCH-101-18	Analys microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.		
BTCH101-18	Rationalise bulk properties and processes using thermodynamic considerations		
BTCH101-18	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques		
BTCH101-18	Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.		
BTCH101-18	List major chemical reactions that are used in the synthesis of molecules.		

COURSE OUTCOMES (SEM -1)

COURSE NAME (CHEMISTRY-1)(LAB)

Year- 2022-23

The chemistry la	The chemistry laboratory course will consist of experiments illustrating the principles of chemistry			
relevant to the study of science and engineering. The students will learn to:				
BTCH102-18	BTCH102-18 Estimate rate constants of reactions from concentration of reactants/products function of time			

BTCH102-18	Measure molecular/system properties such as surface tension, viscosity,
	conductance of solutions, redox potentials, chloride content of water, etc
BTCH102-18	Synthesize a small drug molecule and analyse a salt sample

COURSE OUTCOMES (SEM -1)

Year-2022-23

COURSE NAME (PROGRAMMING FOR PROBLEM SOLVING)(THEORY)

The STUDENTS V	VILL LEARN:-
BTPS101-18	To formulate simple algorithms for arithmetic and logical problems.
BTPS101-18	To translate the algorithms to programs (in C language).
BTPS101-18	To test and execute the programs and correct syntax and logical errors.
BTPS101-18	To implement conditional branching, iteration and recursion
BTPS101-18	To decompose a problem into functions and synthesize a complete program using
	divide and conquer approach.
BTPS101-18	To use arrays, pointers and structures to formulate algorithms and programs
BTPS101-18	To apply programming to solve matrix addition and multiplication problems and
	searching and sorting problems.
BTPS101-18	To apply programming to solve simple numerical method problems, namely rot
	finding of function, differentiation of function and simple integration.

COURSE OUTCOMES (SEM -1)

Year- 2022-23

COURSE NAME (PROGRAMMING FOR PROBLEM SOLVING)(LAB)

The STUDENTS WILL LEARN:-				
BTPS102-18	To formulate the algorithms for simple problem			
BTPS102-18	To translate given algorithms to a working and correct program			
BTPS102-18	To be able to correct syntax errors as reported by the compilers			
BTPS102-18	To be able to identify and correct logical errors encountered at run time			
BTPS102-18	To be able to write iterative as well as recursive program			
BTPS102-18	To be able to represent data in arrays, strings and structures and manipulate them			
	through a program			
BTPS102-18	To be able to declare pointers of different types and use them in defining self			
	referential structures			
BTPS102-18	To be able to create, read and write to and from simple text files.			

COURSE OUTCOMES (SEM -1)

The STUDENTS	The STUDENTS WILL LEARN:-		
BTHU101-18	Become independent users of English language.		
BTHU101-18	Understand spoken and written English language of varied complexity on most including some abstract topics; particularly the language of their chosen technical field.		
BTHU101-18	Show awareness of appropriate format and a capacity for explaining their views in a rational manner.		
BTHU101-18	Converse fluently, without strain with international speakers of English in an accent and lexis that is widely understood across the globe.		
BTHU101-18	Produce on their own texts which are clear and coherent.		

COURSE OUTCOMES (SEM -1)

COURSE NAME (Communicative English) (Lab)

Year- 2022-23

The STUDENTS WILL LEARN:-				
BTHU101-18	Become familiar with the standard spoken English.			
BTHU101-18	Develop a high degree of understanding of spoken material as used in			
	academic and professional environment.			
BTHU101-18	Be able to produce long turns without much hesitation in an accent that is			
	understood all around.			
BTHU101-18	Have ready access to a large lexis and conventional expressions to speak			
	fluently on a variety of topics.			
BTHU101-18	Have a knack for structured conversation or talk to make his transitions			
	clear and natural to his listeners.			

COURSE OUTCOMES (SEM -1)

Year- 2022-23

COURSE NAME (WORKSHOP AND MANUFACTURING PRACTICE)(THEORY+LAB)

The STUDENTS WILL LEARN:-		
BTMP101-18	Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.	
BTMP101-18	Upon completion of this laboratory course, students will be able to fabricate components with their own hands.	

BTMP101-18	They will also get practical knowledge of the dimensional accuracies and dimensional
	tolerances possible with different manufacturing processes
BTMP101-18	By assembling different components, they will be able to produce small devices of
	their interest.

SEM 2

Group A(Physics Group)

Second Semester Gi		oup-B				Contact Hrs.: 24			
Course Code	Course Type	Course Title	Load Allocations				arks ibution	Total Marks	Credits
			L	T	P	Internal	External		
BTPHXX-18	Basic Science Course	Physics	3	1	0	40	60	100	4
		Physics (Lab)	0	0	3	30	20	50	1.5
BTAMXX-18	Basic Science Course	Maths-II	3*	1	0	40	60	100	4
	Engineering Science Course	Basic Electrical Engineering	3	1	0	40	60	100	4
BTEE102-18	Engineering Science Course	Basic Electrical Engineering (Lab)	0	0	2	30	20	50	1
	Engineering Science Courses	Engineering Graphics & Design	1	0	4	60	40	100	3
BMPD201-18		Mentoring and Professional Development	0	0	2		Satisfactory Jn-Satisfact		Non- Credit
TOTAL			10	3	11	220	280	500	17.5

Branch: Mechanical Engineering

COURSE OUTCOMES(SEM 2)

COURSE NAME (ELECTROMAGNETISM) Physics-1 (THEORY)

The STUDENTS WILL LEARN:-		
BTPH103-18	Specify the constitutive relationships for fields and understand their important.	
BTPH103-18	Describe the static and dynamic electric and magnetic fields for technologically	
	important structures.	
BTPHU03-18	Measure the voltage induced by time varying magnetic flux	

Year: 2022-23

BTPH103-18	acquire the knowledge of Maxwell equation and electromagnetic field theory and
	propagation and reception of electro-magnetic wave systems.
BTPH103-18	have a solid foundation in engineering fundamentals required to solve problems and
	also to pursue higher studies.

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME (ELECTROMAGNETISM) Physics (LAB)

The STUDENTS	The STUDENTS WILL LEARN:-		
BTPH113-18	Able to verify some of the theoretical concepts learnt in the theory courses.		
BTPH113-18	Trained in carrying out precise measurements and handling sensitive equipment		
BTPH113-18	understand the methods used for estimating and dealing with experimental		
	uncertainties and systematic "errors."		
BTPH113-18	Learn to draw conclusions from data and develop skills in experimental design.		
BTPH113-18	Write a technical report which communicates scientific information in a clear and		
	concise manner.		

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME (MATHS-2) Ordinary Differential Equations

The STUDENTS WILL LEARN:-			
BTAM-18	The effective mathematical tools for the solutions of differential equations that		
	model physical processes.		
BTAM-18	The tools of differentiation and integration of functions of a complex variable that are		
	used in various techniques dealing engineering problems.		

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME(MENTORING AND PROFESSIONAL DEVELOPMENTG (THEORY +LAB)

The STUDENTS WILL LEARN:-		
BMPD101-18	Introduction to engineering design and its place in society	
BMPD101-18	Exposure to the visual aspects of engineering design	
BMPD101-18	Exposure to engineering graphics standards	
BMPD101-18	Exposure to solid modeling	
BMPD101-18	Exposure to computer-aided geometric design	
BMPD101-18	Exposure to creating working drawings	
BMPD101-18	Exposure to engineering communication	

COURSE NAME(ENGINEERING GRAPHICS AND DESIGN) (THEORY +LAB)

1 '	All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical,		
	nd industrial) in which the skills of the CAD technicians play major roles in the design		
and developme	ent of new products or construction. Students prepare for actual work situations		
through practic	through practical training in a new state-of-the-art computer designed CAD laboratory using		
engineering so	engineering software. This course is designed toaddress:		
BTME101-18 to prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability			
BTME101-18 to prepare you to communicate effectively			
BTME101-18	to prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice		

Branch: Electronics and communication Engineering

Sem:2

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME: Semiconductor and optoelectronics Physics(THEORY)

The STUDENTS WILL LEARN:-		
BTPH105-18	Understand and explain the fundamental principles and properties of electronic	
	materials and semiconductors.	
BTPH105-18	Understand and describe the interaction of light with semiconductors in terms of	
	fermi golden rule.	
BTPH105-18	Understand and describe the impact of solid-state device capabilities and limitations	
	on electronic circuit performance	
BTPH105-18	Understand the design, fabrication, characterization techniques, and measurements of	
	Engineered semiconductor materials	
BTPH105-18	Learn the basics of the optoelectronic devices, LEDs, semiconductor lasers, and photo	
	detectors	

COURSE NAME: Semiconductor and optoelectronics Physics(LAB)

The STUDENTS WILL LEARN:-		
BTPH115-18	Able to verify some of the theoretical concepts learnt in the theory courses.	
BTPH115-18	Trained in carrying out precise measurements and handling sensitive equipment	
BTPH115-18	Introduced to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."	
BTPH115-18	Learn to draw conclusions from data and develop skills in experimental design.	
BTPH115-18	Write a technical report which communicates scientific information in a clear and concise manner.	

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME (MATHS-2) Ordinary Differential Equations

The STUDENTS WILL LEARN:-		
BTAM103-18	The effective mathematical tools for the solutions of differential equations that	
	model physical processes.	
BTAM103-18	The tools of differentiation and integration of functions of a complex variable that	
	are used in various techniques dealing engineering problems.	

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME (MENTORING AND PROFESSIONAL DEVELOPMENTG (THEORY +LAB)

The STUDENTS	The STUDENTS WILL LEARN:-		
BTME101-18	Introduction to engineering design and its place in society		
BTME101-18	Exposure to the visual aspects of engineering design		
BTME101-18	Exposure to engineering graphics standards		
BTME101-18	Exposure to solid modeling		
BTME101-18	Exposure to computer-aided geometric design		
BTME101-18	Exposure to creating working drawings		
BTME101-18	Exposure to engineering communication		

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME(ENGINEERING GRAPHICS AND DESIGN) (THEORY +LAB)

All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical,

	architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products or construction. Students prepare for actual work situations		
through praction	cal training in a new state-of-the-art computer designed CAD laboratory using		
engineering so	ftware. This course is designed toaddress:		
BTME101-18	to prepare you to design a system, component, or process to meet desired needs		
	within realistic constraints such as economic, environmental, social, political, ethical,		
	health and safety, manufacturability, and sustainability		
BTME101-18	to prepare you to communicate effectively		
BTME101-18	to prepare you to use the techniques, skills, and modern engineering tools necessary		
	for engineering practice		

GROUP B(CHEMISTRY GROUP)

SEM 2

Second Semester	Group-A	Contact Hrs.: 29
Second Semester	Group 11	Contact III 3 27

Course Code	Course Type	Course Title	Load Allocations		Marks Distribution		Total Marks	Credits	
			L	T	P	Internal	External		
BTCH101-18	Basic Science Course	Chemistry-I	3	1	0	40	60	100	4
		Chemistry-I (Lab)	0	0	3	30	20	50	1.5
BTAMXX-18	Basic Science Course	Maths-II	3*	1	0	40	60	100	4
	Course	Programming for Problem Solving	3	0	0	40	60	100	3
BTPS102-18		Programming for Problem Solving (Lab)	0	0	4	30	20	50	2
		Workshop / Manufacturing Practices	1	0	4	60	40	100	3
	Humanities and Social Sciences including Management courses	English	2	0	0	40	60	100	2
	Humanities and Social Sciences including Management courses	English (Lab)	0	0	2	30	20	50	1
BMPD201-18		Mentoring and Professional Development	0	0	2	1	atisfactor n-Satisfac	•	Non- Credit
	TO	ΓAL	12	2	15	290	360	650	20.5

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

COURSE NAME (CHEMISTRY-1)(THEORY)

	veloped in this course will aid in quantification of several concepts in chemistry that			
have been introd	luced at the 10+2 levels in schools. Technology is being increasingly based on the			
electronic, atomi	ic and molecular level modifications. Quantum theory is more than 100 years old and			
to understand ph	nenomena at nanometer levels, one has to base the description of all chemical			
processes at mol	ecular levels. The course will enable the student to:			
BTCH-101-18	Analys microscopic chemistry in terms of atomic and molecular orbitals and			
	intermolecular forces.			
BTCH101-18	Rationalise bulk properties and processes using thermodynamic considerations			
BTCH101-18	CH101-18 Distinguish the ranges of the electromagnetic spectrum used for exciting different			
molecular energy levels in various spectroscopic techniques				
BTCH101-18	Rationalise periodic properties such as ionization potential, electronegativity,			
	oxidation states and electronegativity.			
BTCH101-18	List major chemical reactions that are used in the synthesis of molecules.			

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

COURSE NAME (CHEMISTRY-1)(LAB)

Year- 2022-23

The chemistry laboratory course will consist of experiments illustrating the principles of chemistry				
relevant to the st	relevant to the study of science and engineering. The students will learn to:			
BTCH102-18	Estimate rate constants of reactions from concentration of reactants/products			
	function of time			
BTCH102-18	Measure molecular/system properties such as surface tension, viscosity,			
	conductance of solutions, redox potentials, chloride content of water, etc			
BTCH102-18	Synthesize a small drug molecule and analyse a salt sample			

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

Year- 2022-23

COURSE NAME (PROGRAMMING FOR PROBLEM SOLVING)(THEORY)

The STUDENTS W	/ILL LEARN:-
BTPS101-18	To formulate simple algorithms for arithmetic and logical problems.
BTPS101-18	To translate the algorithms to programs (in C language).
BTPS101-18	To test and execute the programs and correct syntax and logical errors.
BTPS101-18	To implement conditional branching, iteration and recursion
BTPS101-18	To decompose a problem into functions and synthesize a complete program using
	divide and conquer approach.
BTPS101-18	To use arrays, pointers and structures to formulate algorithms and programs
BTPS101-18	To apply programming to solve matrix addition and multiplication problems and
	searching and sorting problems.
BTPS101-18	To apply programming to solve simple numerical method problems, namely rot
	finding of function, differentiation of function and simple integration.

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

Year-2022-23

COURSE NAME (PROGRAMMING FOR PROBLEM SOLVING)(LAB)

The STUDENTS	The STUDENTS WILL LEARN:-		
BTPS102-18	To formulate the algorithms for simple problem		
BTPS102-18	To translate given algorithms to a working and correct program		
BTPS102-18	To be able to correct syntax errors as reported by the compilers		
BTPS102-18	To be able to identify and correct logical errors encountered at run time		
BTPS102-18	To be able to write iterative as well as recursive program		
BTPS102-18	To be able to represent data in arrays, strings and structures and manipulate them		
	through a program		
BTPS102-18	To be able to declare pointers of different types and use them in defining self		
	referential structures		
BTPS102-18	To be able to create, read and write to and from simple text files.		

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

COURSE NAME (Communicative English) (Theory)

Year- 2022-23

The STUDENTS '	WILL LEARN:-
BTHU101-18	Become independent users of English language.
BTHU101-18	Understand spoken and written English language of varied complexity on most including some abstract topics; particularly the language of their chosen technical field.
BTHU101-18	Show awareness of appropriate format and a capacity for explaining their views in a rational manner.
BTHU101-18	Converse fluently, without strain with international speakers of English in an accent and lexis that is widely understood across the globe.
BTHU101-18	Produce on their own texts which are clear and coherent.

COURSE OUTCOMES (SEM -2) BRANCH: CSE/CE

COURSE NAME (Communicative English) (Lab)

Year- 2022-23

The STUDENTS WILL LEARN:-		
BTHU102-18	Become familiar with the standard spoken English.	
BTHU102-18	Develop a high degree of understanding of spoken material as used in	

	academic and professional environment.
BTHU102-18	Be able to produce long turns without much hesitation in an accent that is
	understood all around.
BTHU102-18	Have ready access to a large lexis and conventional expressions to speak
	fluently on a variety of topics.
BTHU102-18	Have a knack for structured conversation or talk to make his transitions
	clear and natural to his listeners.

COURSE OUTCOMES (SEM 2) BRANCH: CSE/CE

Year- 2022-23

COURSE NAME (WORKSHOP AND MANUFACTURING PRACTICE)(THEORY+LAB)

The STUDENTS	WILL LEARN:-
BTMP101-18	Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.
BTMP101-18	Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
BTMP101-18	They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes
BTMP101-18	By assembling different components, they will be able to produce small devices of their interest.

COURSE OUTCOMES(SEM 2)

Year- 2022-23

COURSE NAME (MENTORING AND PROFESSIONAL DEVELOPMENTG (THEORY +LAB)

The STUDENTS WILL LEARN:-				
BMPD101-18	Introduction to engineering design and its place in society			
BMPD101-18	Exposure to the visual aspects of engineering design			
BMPD101-18	Exposure to engineering graphics standards			
BMPD101-18	Exposure to solid modeling			
BMPD101-18	Exposure to computer-aided geometric design			
BMPD101-18	Exposure to creating working drawings			
BMPD101-18	Exposure to engineering communication			