Optimización de viajes compartidos en taxis utilizando algoritmos evolutivos

Gabriel Fagúndez de los Reyes Renzo Massobrio

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Contenido

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Motivación

Los viajes compartidos (Car Pooling)

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas:
 - Carriles exclusivos
 - Campañas para compartir los viajes al trabajo
 - Aplicaciones para encontrar compañeros de viaje

Los viajes compartidos en taxis (*Taxi Pooling*)

- Los taxis son un medio de transporte rápido y confiable.
- Raramente viajan a capacidad completa.
- Impactan en la congestión del tráfico y en la contaminación.
- Tarifas altas desalientan a los usuarios.

Motivación

Los viajes compartidos (Car Pooling)

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas:
 - Carriles exclusivos
 - Campañas para compartir los viajes al trabajo
 - Aplicaciones para encontrar compañeros de viaje

Los viajes compartidos en taxis (Taxi Pooling)

- Los taxis son un medio de transporte rápido y confiable.
- Raramente viajan a capacidad completa.
- Impactan en la congestión del tráfico y en la contaminación.
- Tarifas altas desalientan a los usuarios.

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para *N* pasajeros es *N*.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi}} \right) \right]$$

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi}} \right) \right]$$

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \ldots, t_M\}$; con $M \leq N$; y una función $C: T \rightarrow \{0, 1, \ldots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi}} \right) \right]$$

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \rightarrow \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi}} \right) \right]$$

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \rightarrow \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destines consecutives on all receiving deal tax in the properties of the proper$$

- Un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- Un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \rightarrow \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- Una constante B indica el costo inicial del taxi ("bajada de bandera")
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h-1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \left(tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$\begin{split} DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time\Big(dest\big(f^{-1}(t_i,h-1)\big), dest\big(f^{-1}(t_i,h)\big) \right) \right. \\ \left. - \left(\underbrace{tol\big(f^{-1}(t_i,j)\big) + time\Big(O, dest\big(f^{-1}(t_i,j)\big) \Big)}_{times tolerade as all positions as large in a position of large in the large in the$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time\left(dest\left(f^{-1}(t_i, h-1)\right), dest\left(f^{-1}(t_i, h)\right)\right) - \left(tol\left(f^{-1}(t_i, j)\right) + time\left(O, dest\left(f^{-1}(t_i, j)\right)\right)\right) \right] \right]$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi i

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time\left(dest\left(f^{-1}(t_i, h-1)\right), dest\left(f^{-1}(t_i, h)\right)\right) - \left(tol\left(f^{-1}(t_i, j)\right) + time\left(O, dest\left(f^{-1}(t_i, j)\right)\right)\right) \right] \right]$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi t

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \left(tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi ti

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t_i

$$\begin{split} DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \Big(dest \big(f^{-1}(t_i, h-1) \big), dest \big(f^{-1}(t_i, h) \big) \right) \right. \\ \left. - \left(\underbrace{tol \big(f^{-1}(t_i, j) \big) + time \Big(O, dest \big(f^{-1}(t_i, j) \big) \Big)}_{} \right] \right] \end{split}$$

tiempo tolerado por el pasajero en la posicion j del taxi t_i

- Se busca minimizar simultáneamente el costo total y la demora total.
- Se incorporan dos variables:
 - Cada pasajero tiene un "nivel de apuro" asociado.
 - Se consideran vehículos con diferentes capacidades.

destinos consecutivos en el recorrido del taxi t_i

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h-1) \right), dest \left(f^{-1}(t_i, h) \right) \right) \right. \\ \left. - \left(\underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiempo tolerado por el pasajero en la posición } j \text{ del taxi } t_i \right] \right]$$

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

- Con instancias de tamaños realistas los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.
- Heurísticas y metaheurísticas son necesarias para calcular soluciones de calidad aceptable en tiempos razonables.

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

- Con instancias de tamaños realistas los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.
- Heurísticas y metaheurísticas son necesarias para calcular soluciones de calidad aceptable en tiempos razonables.

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Car pooling problem (CPP)

Yan et al. (2011) CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP** estático con ventanas de tiempo Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one—to—many** y many—to—one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

13% de ahorro en distancia con un algoritmo ávido en instancias realistas

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

13% de ahorro en distancia con un algoritmo ávido en instancias realistas.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumen

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (**generación**) que aplica operadores estocásticos sobre un conjunto de individuos (**población**).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (**generación**) que aplica operadores estocásticos sobre un conjunto de individuos (**población**).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

Algoritmos evolutivos

Definición

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de operadores evolutivos.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

Algoritmos evolutivos

Definición

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de operadores evolutivos.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva: desplaza ceros para romper secuencias de dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva: desplaza ceros para romper secuencias de dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva: desplaza ceros para romper secuencias de dígitos inválidas.
- Implementados en Malva.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca mejorar el desempeño mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE Secuencial (seqEA)

Selección proporcional.

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.
- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

Aspectos comunes

- Propósitos en AEs multiobjetivos:
 - Acercarse al frente de Pareto del problema (convergencia).
 - Muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización de la población ávida y selección por torneo.

AE Multiobjetivo Distribuido $(p\mu MOEA/D)$

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT,$$

 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$

AE Multiobjetivo Explícito (*NSGA–II*)

- Ordenamiento no-dominado (elitista).
- Crowding para preservar diversidad.

Aspectos comunes

- Propósitos en AEs multiobjetivos:
 - Acercarse al frente de Pareto del problema (convergencia).
 - Muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización de la población ávida y selección por torneo.

AE Multiobjetivo Distribuido ($p\mu MOEA/D$)

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT,$$

 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$

AE Multiobjetivo Explícito (*NSGA–II*)

- Ordenamiento no–dominado (elitista).
- Crowding para preservar diversidad.

Aspectos comunes

- Propósitos en AEs multiobjetivos:
 - Acercarse al frente de Pareto del problema (convergencia).
 - Muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización de la población ávida y selección por torneo.

AE Multiobjetivo Distribuido (pμMOEA/D)

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT,$$

 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$

AE Multiobjetivo Explícito (*NSGA–II*)

- Ordenamiento no–dominado (elitista).
- Crowding para preservar diversidad.

Aspectos comunes

- Propósitos en AEs multiobjetivos:
 - Acercarse al frente de Pareto del problema (convergencia).
 - Muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización de la población ávida y selección por torneo.

AE Multiobjetivo Distribuido ($p\mu MOEA/D$)

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT$$
,
 $w_C = [0 : \frac{1}{4i klas} : 1], w_D = 1 - w_C$.

$$w_C = [0 : \frac{1}{\# islas} : 1], w_D = 1 - w_C.$$

- Ordenamiento no–dominado (elitista).
- Crowding para preservar diversidad.

Aspectos comunes

- Propósitos en AEs multiobjetivos:
 - Acercarse al frente de Pareto del problema (convergencia).
 - Muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización de la población ávida y selección por torneo.

AE Multiobjetivo Distribuido ($p\mu MOEA/D$)

Agregación lineal de los objetivos: $F = w_C \times CT + w_D \times DT$,

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

AE Multiobjetivo Explícito (NSGA-II)

- Ordenamiento no–dominado (elitista).
- Crowding para preservar diversidad.

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: 10.000 generaciones.

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro–Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal–Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: 10.000 generaciones.

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro–Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal–Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: 10.000 generaciones.

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro-Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal–Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

PVCT monoobjetivo

Entorno de ejecución

- seqEA: Dell Power Edge 2950, 1 núcleo de Intel Xeon E5430 2.66GHz, 8GB RAM.
- pμEA: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.

Configuración paramétrica

- **seqEA**: $\#P \in \{150, 200, 250\}$; $p_C \in \{0,6, 0,75, 0,95\}$; $p_M \in \{0,001, 0,01, 0,1\}$.
- **p** μ **EA**: micro–población de 15 individuos, torneo (m = 2, k = 1), migración cada 500 generaciones.

PVCT monoobjetivo

Entorno de ejecución

- seqEA: Dell Power Edge 2950, 1 núcleo de Intel Xeon E5430 2.66GHz, 8GB RAM.
- pμEA: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.

Configuración paramétrica

- **seqEA**: $\#P \in \{150, 200, 250\}$; $p_C \in \{0,6, 0,75, 0,95\}$; $p_M \in \{0,001, 0,01, 0,1\}$.
- **p** μ **EA**: micro–población de 15 individuos, torneo (m=2, k=1), migración cada 500 generaciones. **p** $_C \in \{0.6, 0.75, 0.95\}$: $p_M \in \{0.001, 0.01, 0.1\}$.

PVCT monoobjetivo

Entorno de ejecución

- seqEA: Dell Power Edge 2950, 1 núcleo de Intel Xeon E5430 2.66GHz, 8GB RAM.
- pμEA: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.

Configuración paramétrica

- **seqEA**: $\#P \in \{150, 200, 250\}$; $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$.
- $p\mu$ EA: micro-población de 15 individuos, torneo (m=2, k=1), migración cada 500 generaciones.

```
p_C \in \{0,6,\frac{0,75}{0},0,95\}; p_M \in \{0,001,0,01,\frac{0,1}{0}\}.
```


Algoritmo ávido

Toma decisiones localmente óptimas y emula el comportamiento de un grupo de usuarios humanos. Utiliza ideas de los trabajos relacionados.

Algoritmo ávido

Toma decisiones localmente óptimas y emula el comportamiento de un grupo de usuarios humanos. Utiliza ideas de los trabajos relacionados.

Algoritmo ávido

Toma decisiones localmente óptimas y emula el comportamiento de un grupo de usuarios humanos. Utiliza ideas de los trabajos relacionados.

Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados *pµEA*

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados $p\mu EA$

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados $p\mu EA$

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Mejoras seqEA sobre algoritmo ávido

Se alcanzaron mejoras en **todas** las instancias. En el mejor caso se mejoró el costo del algoritmo ávido en un 35.9 % (instancia grandes #4).

Mejoras $p\mu EA$ sobre algoritmo ávido

Se alcanzaron mejoras en **todas** las instancias. En el mejor caso se mejoró el costo del algoritmo ávido en un 41.0 % (instancia grandes #4).

Comparativa seqEA vs. $p\mu EA$

instancia			seqEA		μΕΑ	pvK-W
		min(c)	$\overline{c} \pm std$	min(c)	$\overline{c} \pm std$	
	#1	164.4	165.6 ± 2.0	164.4	164.4±0.0	0.2×10^{-3}
	#2	220.7	225.7±5.0	220.7	220.7±0.0	9.7×10^{-6}
chicas	#3	160.4	160.4 ± 0.0	160.4	160.4 ± 0.0	1.0
cnicas	#4	181.3	181.3 ± 0.1	181.3	182.4 ± 1.9	0.5×10^{-1}
	#5	152.1	155.6 ± 4.5	152.1	152.1 ± 0.0	5.1×10^{-6}
	#6	118.4	119.6 ± 2.5	118.4	118.4 ± 0.0	0.1×10^{-1}
-	#1	211.9	216.0±4.2	211.9	211.9±0.0	5.2×10 ⁻¹¹
	#2	428.6	444.1±11.7	427.9	429.4±1.6	7.0×10^{-10}
medianas	#3	361.7	378.7 ± 6.5	364.5	370.4±4.5	1.6×10^{-6}
medianas	#4	267.5	279.8 ± 5.5	266.8	266.8 ± 0.0	7.6×10^{-12}
	#5	479.3	487.1±6.5	479.6	479.8±0.2	5.1×10^{-7}
	#6	306.0	321.2 ± 7.7	306.0	307.7±3.4	2.0×10^{-9}
	#1	421.9	435.1±5.0	425.9	437.7±3.2	0.1×10^{-1}
	#2	479.3	489.9±4.3	477.0	481.1±2.3	1.9×10^{-9}
grandes	#3	332.8	349.7±7.7	326.3	331.7±4.0	2.6×10^{-10}
granues	#4	351.1	390.7±26.3	338.4	344.8 ± 6.1	5.1×10^{-11}
	#5	395.9	429.6±16.2	370.2	380.0±4.4	2.7×10^{-11}
	#6	360.8	382.4 ± 8.1	343.8	350.6±3.8	2.6×10^{-11}
	#1	168.4	168.4±0.0	168.4	168.4±0.0	1.0
Montevideo	#2	319.3	331.2 ± 3.8	324.9	328.6 ± 3.2	5.6×10^{-6}
ivioritevideo	#3	266.7	269.1 ± 2.3	266.7	266.7±0.0	3.1×10^{-7}
	#4	303.2	304.7±0.5	304.1	304.5±0.4	0.1

 $p\mu EA$ supera a seqEA en 17 de 22 instancas. Únicamente en 1 instancia seqEA supera a $p\mu EA$.

Evolución del costo a lo largo de una ejecución

 $p\mu EA$ alcanza mejores soluciones que seqEA en menos tiempo. En el mejor caso alcanza una aceleración de 7,5x (4,6x en promedio).

PVCT multiobjetivo

Entorno de ejecución

- **p**μ**MOEA/D**: HP Proliant DL585, **24 núcleos** de AMD Opteron 6272 2.09GHz, 48GB RAM.
- NSGA-II: HP Proliant DL385 G7, 1 núcleo de AMD Opteron 6172 2.10GHz, 72GB RAM.

Configuración paramétrica

- **p** μ **MOEA/D**: #P=15; selección por torneo (m=2, k=1); migración cada 1000 generaciones reemplazando a los peores individuos $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$
- **NSGA-II**: #P = 80; selección por torneo (m = 2, k = 1); $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$.

PVCT multiobjetivo

Entorno de ejecución

- **p**μ**MOEA/D**: HP Proliant DL585, **24 núcleos** de AMD Opteron 6272 2.09GHz, 48GB RAM.
- NSGA-II: HP Proliant DL385 G7, 1 núcleo de AMD Opteron 6172 2.10GHz, 72GB RAM.

Configuración paramétrica,

- **p** μ **MOEA/D**: #P = 15; selección por torneo (m = 2, k = 1); migración cada 1000 generaciones reemplazando a los peores individuos $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$
- **NSGA-II**: #P = 80; selección por torneo (m = 2, k = 1); $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$.

PVCT multiobjetivo

Entorno de ejecución

- **p**μ**MOEA/D**: HP Proliant DL585, **24 núcleos** de AMD Opteron 6272 2.09GHz, 48GB RAM.
- NSGA-II: HP Proliant DL385 G7, 1 núcleo de AMD Opteron 6172 2.10GHz, 72GB RAM.

Configuración paramétrica,

- **p** μ **MOEA/D**: #P = 15; selección por torneo (m = 2, k = 1); migración cada 1000 generaciones reemplazando a los peores individuos $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$
- **NSGA-II**: #P = 80; selección por torneo (m = 2, k = 1); $p_C \in \{0,6,\frac{0,75}{0},0,95\}$; $p_M \in \{0,001,0,01,\frac{0,1}{0}\}$.

Algoritmos ávidos

Algoritmo ávido para minimizar el costo

Similar al de la variante monoobjetivo pero considerando las distintas capacidades de los vehículos.

Algoritmo ávido para minimizar la demora

- Se crea un taxi vacío para cada pasajero con nivel máximo de apuro y se los ubica en la primera posición.
- Luego, se recorre la lista de pasajeros no asignados en orden de apuro, colocándolos en el taxi que minimice su demora.
- Si el taxi alcanza la máxima capacidad disponible, se lo considera completo y no acepta más pasajeros.

Algoritmos ávidos

Algoritmo ávido para minimizar el costo

Similar al de la variante monoobjetivo pero considerando las distintas capacidades de los vehículos.

Algoritmo ávido para minimizar la demora

- Se crea un taxi vacío para cada pasajero con nivel máximo de apuro y se los ubica en la primera posición.
- Luego, se recorre la lista de pasajeros no asignados en orden de apuro, colocándolos en el taxi que minimice su demora.
- Si el taxi alcanza la máxima capacidad disponible, se lo considera completo y no acepta más pasajeros.

$p\mu MOEA/D$

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	$7.9\pm3.4(2.0)$		
Montevideo		663.5±542.4 (61.5)	

Buena convergencia y diversidad. Pocas soluciones no dominadas

NSGA-I.

Hasta 105.2% de mejora en demora y 75.1% en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	$54.5\pm4.2~(67.0)$	$1.0\pm0.7\ (0.0)$	193.6 ± 202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	0.4±0.5 (0.0)	142.3±143.2 (20.8)	0.8±0.1 (0.5)	1.0±0.0 (1.0)

$p\mu MOEA/D$

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	9.1±2.2 (19.0)	5.7±2.5 (0.0)	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-L

Hasta 105.2% de mejora en demora y 75.1% en costo sobre ávidos

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7\ (0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	$0.4 \pm 0.5 \; (0.0)$	142.3±143.2 (20.8)	$0.8 \pm 0.1 \; (0.5)$	$1.0\pm0.0\ (1.0)$

$p\mu MOEA/D$

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	$9.1\pm2.2\ (19.0)$	$5.7\pm2.5~(0.0)$	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	$8.5\pm2.2\ (17.0)$	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-II

Hasta 105.2 % de mejora en demora y 75.1 % en costo sobre ávidos.

				RHV
				1.0±0.0 (1.0)
	54.5±4.2 (67.0)		193.6±202.4 (26.2)	$1.0\pm0.0\ (1.0)$
		$1.8\pm1.1\ (0.4)$		$1.0\pm0.0\ (1.0)$
Montevideo				$1.0\pm0.0\ (1.0)$

$p\mu MOEA/D$

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	9.1±2.2 (19.0)	5.7±2.5 (0.0)	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-II

Hasta 105.2 % de mejora en demora y 75.1 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7\ (0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	$0.4{\pm}0.5~(0.0)$	142.3±143.2 (20.8)	$0.8\pm0.1\ (0.5)$	1.0 ± 0.0 (1.0)

Frentes de Pareto: $p\mu MOEA/D$ vs. NSGA-II

NSGA–II alcanza mejores soluciones: mayor cantidad de puntos no dominados distribuidos homogéneamente a lo largo del frente.

Mejora frente a algoritmos ávidos vs. tiempo de ejecución

NSGA-II alcanza mejores soluciones pero requiere de un mayor tiempo de ejecución que $p\mu MOEA/D$.

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Planificador de viajes compartidos en línea

 Se ingresa el origen, los destinos y la tarifa (diurna/nocturna).

 Se ejecuta el AE y se muestra la planificación calculada.

- Servidor implementado en Ruby on Rails siguiendo MVC.
- Las aplicaciones móviles consumen la API del servidor.
- Aplicaciones móviles: desarrollo híbrido vs. desarrollo nativo.

Planificador de viajes compartidos en línea

 Se ingresa el origen, los destinos y la tarifa (diurna/nocturna).

 Se ejecuta el AE y se muestra la planificación calculada.

- Servidor implementado en Ruby on Rails siguiendo MVC.
- Las aplicaciones móviles consumen la API del servidor.
- Aplicaciones móviles: desarrollo híbrido vs. desarrollo nativo.

Planificador de viajes compartidos en línea

 Se ingresa el origen, los destinos y la tarifa (diurna/nocturna).

 Se ejecuta el AE y se muestra la planificación calculada.

- Servidor implementado en Ruby on Rails siguiendo MVC.
- Las aplicaciones móviles consumen la API del servidor.
- Aplicaciones móviles: desarrollo híbrido vs. desarrollo nativo.

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada (CPP, DARP, TPP) y se presentaron dos variantes del problema.
- Se implementaron cuatro AE: dos para cada variante del problema.
- El análisis experimental se realizó sobre instancias realistas.
- Los AE implementados fueron comparados contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis, disponible públicamente en www.mepaseaste.uy.
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA–II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico para considerar rutas alternativas.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de los usuarios.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Fin

Gracias

Sitio web del proyecto:

www.fing.edu.uy/inco/grupos/cecal/hpc/AG-Taxi/