Strumenti Matematici di Base per Ingegneria Meccanica

Filippo Corvaro GitHub — LinkedIn

Dipartimento di Ingegneria Industriale, Elettronica e Meccanica Università degli Studi ROMA TRE Anno Accademico 2024/2025

Figura 1: Immagine generata con Image Creator di Bing, basata sulla tecnologia DALL·E 3.

Introduzione

Questo documento è un piccolo riassunto concettuale degli strumenti di base utili per affrontare corsi più avanzati. Si consiglia di consultarlo frequentemente durante la preparazione degli esami.

^{© 2025 |} Filippo Corvaro. Tutti i diritti riservati. Documento scaricabile e consultabile, ma non vendibile né riproducibile a nome di terzi.

1 Derivate

• Derivata di una costante: $\frac{d}{dx}C = 0$.

• Derivata di x^n : $\frac{d}{dx}x^n = nx^{n-1}$.

• Derivata di e^x : $\frac{d}{dx}e^x = e^x$.

• Derivata di $\ln(x)$: $\frac{d}{dx} \ln(x) = \frac{1}{x}$.

• Derivata di $\sin(x)$: $\frac{d}{dx}\sin(x) = \cos(x)$.

• Derivata di $\cos(x)$: $\frac{d}{dx}\cos(x) = -\sin(x)$.

• Derivata di tan(x): $\frac{d}{dx} tan(x) = \frac{1}{\cos^2(x)}$.

• Derivata di $\cot(x)$: $\frac{d}{dx}\cot(x) = -\frac{1}{\sin^2(x)}$.

• Derivata di a^x : $\frac{d}{dx}a^x = a^x \ln(a)$.

• Derivata di $\log_a(x)$: $\frac{d}{dx}\log_a(x) = \frac{1}{x\ln(a)}$.

• Derivata del prodotto: $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$.

• Derivata del quoziente: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$.

• Derivata di una costante moltiplicata per una funzione: $\frac{d}{dx}[Cf(x)] = Cf'(x)$.

2 Integrali

• Integrale di una costante: $\int C dx = Cx + C_1$.

• Integrale di x^n : $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (per $n \neq -1$).

• Integrale di e^x : $\int e^x dx = e^x + C$.

• Integrale di a^x : $\int a^x dx = \frac{a^x}{\ln(a)} + C$.

• Integrale di $\frac{1}{x}$: $\int \frac{1}{x} dx = \ln|x| + C$.

• Integrale di $\sin(x)$: $\int \sin(x) dx = -\cos(x) + C$.

• Integrale di cos(x): $\int cos(x) dx = sin(x) + C$.

• Integrale di $\frac{1}{\cos^2(x)}$: $\int \frac{1}{\cos^2(x)} dx = \tan(x) + C$.

• Integrale di $\frac{1}{\sin^2(x)}$: $\int \frac{1}{\sin^2(x)} dx = -\cot(x) + C$.

2.1 Tecniche Risolutive di Integrali

2.1.1 Integrazione per Parti

La formula di integrazione per parti è:

$$\int f(x) g'(x) dx = f(x) g(x) - \int g(x) f'(x) dx$$

dove f(x) è una funzione da derivare e g(x) è una funzione da integrare.

2.1.2 Integrazione per Sostituzione

Per integrare mediante sostituzione, si usa:

$$\int f(g(x))g'(x) dx = \int f(u) du$$

dove u = g(x) e quindi du = g'(x)dx.

3 Trigonometria

3.1 Identità Trigonometriche Fondamentali

- $\tan \theta = \frac{\sin \theta}{\cos \theta}$.
- $\cot \theta = \frac{\cos \theta}{\sin \theta}$.
- $\sin^2(x) + \cos^2(x) = 1 \implies 1 + \tan^2(x) = \frac{1}{\cos^2(x)} \implies 1 + \cot^2(x) = \frac{1}{\sin^2(x)}$.

3.2 Formule di Duplicazione

$$\sin(2x) = 2\sin(x)\cos(x).$$

$$\cos(2x) = \cos^2(x) - \sin^2(x).$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}.$$

3.3 Formule di Bisezione

$$\sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos(x)}{2}}.$$

$$\cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1+\cos(x)}{2}}.$$

$$\tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}.$$

dove il segno \pm dipende dal quadrante in cui si trova l'angolo x/2.

3.4 Seno e Coseno degli Angoli Comuni

$$\sin(30^\circ) = \frac{1}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2}.$$
$$\sin(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(45^\circ) = \frac{\sqrt{2}}{2}.$$
$$\sin(60^\circ) = \frac{\sqrt{3}}{2}, \quad \cos(60^\circ) = \frac{1}{2}.$$

3.5 Legge dei Seni

La legge dei seni afferma che:

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

dove a, b, c sono i lati di un triangolo e α, β, γ sono gli angoli opposti ai rispettivi lati.

3.6 Legge dei Coseni

La legge dei coseni afferma che:

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

dove a, b, c sono i lati di un triangolo e γ è l'angolo tra i lati a e b.