DEVOIR SURVEILLÉ 1

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 3 pages et est constitué de 5 exercices. Bon courage!

Exercice 1 – On définit les quatre matrices carrées d'ordre 2 suivantes :

$$A = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

On considère également la suite $(u_n)_{n\geqslant 0}$ définie par

$$u_0 = 2$$
 et $\forall n \ge 0$, $u_{n+1} = \frac{3u_n + 1}{u_n + 3}$.

- 1. Calculer les produits $P \times Q$ et $Q \times P$.
- 2. Calcul de A^n . On pose B = QAP.
 - a) Vérifier que $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. (Les calculs intermédiaires doivent être indiqués sur la copie.)
 - b) **En déduire** que A = PBQ.
 - c) Donner les quatre coefficients de la matrice B^n .
 - d) Démontrer par récurrence que pour tout entier $n \ge 0$, $A^n = PB^nQ$.
 - e) En déduire les quatre coefficients de la matrice A^n .
- 3. Convergence de la suite $(u_n)_{n \ge 0}$.
 - a) Démontrer par récurrence que pour tout entier $n \ge 0$, $u_n \ge 1$.
 - b) Déterminer le signe de $u_{n+1} u_n$. En déduire le sens de variation de la suite $(u_n)_{n \ge 0}$.
 - c) Prouver que la suite $(u_n)_{n\geqslant 0}$ converge. On note L la limite de la suite $(u_n)_{n\geqslant 0}$.
 - d) Montrer que $L = \frac{3L+1}{L+3}$, résoudre cette équation puis déterminer L.
- 4. **Calcul de** u_n **et de sa limite.** Pour tout entier n, on considère les deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ définies par

$$\begin{cases} a_0 = 2 \\ b_0 = 1 \end{cases} \text{ et } \forall n \geqslant 0, \begin{cases} a_{n+1} = \frac{3}{2}a_n + \frac{1}{2}b_n \\ b_{n+1} = \frac{1}{2}a_n + \frac{3}{2}b_n \end{cases}$$

On admet que pour tout entier $n \ge 0$, $a_n > 0$ et $b_n > 0$.

- a) Prouver par récurrence que pour tout entier $n \ge 0$, $u_n = \frac{a_n}{b_n}$.
- b) On pose pour tout $n \ge 0$, $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$. Donner l'expression de U_{n+1} en fonction de A et U_n puis donner (sans démonstration) l'expression de U_n en fonction de A, n et U_0 .
- c) Donner l'expression de u_n en fonction de n puis retrouver ainsi la limite de la suite $(u_n)_{n\geqslant 0}$.

Exercice 2 – On considère les fonctions f et g définies sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = 2x + \frac{3\ln(x)}{x^2} \quad \text{ et } \quad g(x) = 2x^3 - 6\ln(x) + 3.$$

On note C_f la courbe représentative de f.

- 1. Étude du signe de g(x).
 - a) Calculer g'(x) lorsque $x \in \mathbb{R}_+^*$.
 - b) Vérifier que l'équation g'(x) = 0 admet une unique solution p que l'on précisera et construire le tableau de variation de g.
 - c) Calculer g(p) puis donner le signe de g(x) lorsque $x \in \mathbb{R}_+^*$.
- 2. Étude asymptotique de f.
 - a) Déterminer la limite de f(x) quand $x \to 0^+$ et quand $x \to +\infty$.
 - b) Montrer que la droite \mathcal{D} d'équation y = 2x est asymptote oblique de \mathcal{C}_f quand $x \to +\infty$ et préciser la position de cette asymptote par rapport à \mathcal{C}_f .
- 3. Représentation graphique de f.
 - a) Démontrer que

$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{g(x)}{r^3}.$$

- b) Dresser le tableau de variation de f sur \mathbb{R}_+^* en indiquant dans celui-ci les limites de f en 0^+ et en $+\infty$.
- c) Tracer sur un même dessin le graphe de C_f ainsi que celui de son asymptote \mathcal{D} .
- 4. **Étude d'une équation.** Soit $n \ge 1$ un entier naturel non nul, on considère l'équation

$$(E_n)$$
: $f(x) = 2n$.

- a) Prouver que l'équation (E_n) admet une unique solution (que l'on ne cherche pas à calculer). On note x_n cette solution.
- b) Calculer puis classer par ordre croissant les réels $f(x_n)$, f(1) et f(n). En déduire l'encadrement

$$\forall n \geqslant 1, \quad 1 \leqslant x_n \leqslant n.$$

- c) Justifier que pour tout entier $n \ge 1$, $1 \frac{x_n}{n} = \frac{3\ln(x_n)}{2n(x_n)^2}$.
- d) Prouver que pour tout entier $n \ge 1$, $0 \le \frac{\ln(x_n)}{n(x_n)^2} \le \frac{\ln(n)}{n}$.
- e) En déduire $\lim_{n \to +\infty} \frac{x_n}{n}$.

Exercice 3 – Soient A, K et I les trois matrices carrées d'ordre 3 définies par

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. a) Calculer K^2 et K^3 .
 - b) Déterminer K^n pour tout entier n supérieur ou égal à 3.
- 2. a) Exprimer A en fonction de I et K.
 - b) À l'aide de la formule du binôme de Newton, exprimer pour tout entier n supérieur ou égal à 2, A^n en fonction des matrices I, K, K^2 et de n.

DEVOIR SURVEILLÉ

- c) En déduire pour tout entier n supérieur ou égal à 2, l'expression explicite de la matrice A^n en fonction de n.
- d) Vérifier que le résultat trouvé est encore valable pour n = 0 et n = 1.

Exercice 4 – On dispose d'un dé cubique classique équilibré et d'une pièce équilibrée. On lance le dé et on observe son résultat :

- Si celui-ci est un 6, on lance la pièce deux fois.
- Dans tous les autres cas, on lance la pièce une seule fois.

On note X la variable aléatoire égale au résultat du dé.

On note Y la variable aléatoire égale au nombre de PILE apparus au cours de cette expérience.

- 1. a) Justifier que *X* suit une loi uniforme que l'on précisera en détail.
 - b) Donner l'espérance E(X) et la variance V(X).
- 2. Montrer que $P(Y = 2) = P([Y = 2] \cap [X = 6]) = \frac{1}{24}$.
- 3. a) Montrer que pour $k \in \{1, 2, 3, 4, 5\}$, $P_{[X=k]}(Y=0) = \frac{1}{2}$.
 - b) Que vaut $P_{[X=6]}(Y=0)$? En déduire, en utilisant la formule des probabilités totales, que $P(Y=0)=\frac{11}{24}$.
 - c) Donner finalement la loi de la variable *Y* et calculer son espérance.
- 4. a) Recopier et compléter le tableau suivant afin qu'il fournisse la loi du couple (X, Y). (Aucune justification supplémentaire n'est demandée.)

	X = 1	X = 2	X = 3	X = 4	X = 5	X = 6
Y = 0						
Y = 1						
Y = 2						

b) Calculer alors la covariance de *X* et de *Y* .

Exercice 5 (BONUS) - Soient les matrices

$$A = \begin{pmatrix} -2 & -6 & 6 \\ 0 & 0 & 0 \\ -1 & -3 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 3 & -2 \\ 1 & 3 & -2 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. a) Calculer les produits matriciels A(A-I) et B(B-I).
 - b) En déduire que $A^2 = A$ et que $B^2 = B$.
 - c) Calculer AB ainsi que BA.
- 2. On note dans toute la suite W = A + 2B.
 - a) En utilisant les relations obtenues à la question précédente, montrer que $W^2 = A + 4B$.
 - b) Plus généralement, montrer par récurrence que pour tout entier naturel n non nul,

3

$$W^n = A + 2^n B.$$