Линейная алгебра. Коллоквиум 2 семестр. Основано на реальных событиях. v2.0

26 мая 2017

Ченжлоги

```
v0.0~(16.05.2017) - ucxoдное~(cnacubo~Bopucy, Глебу, Александру Г.~(Ц.))
```

v0.1~(16.05.2017) — nonpaвлены графические недочёты и 5-й номер

v0.2~(17.05.2017) — поправлены мелкие недочёты. Добавлен 4-й, 7-й номера, а также поправлен 10-й, 13-й, 24-й (спасибо Наташе)

 $v0.3\ (18.05.2017)$ — поправил 60, 61, 67, 68, 71, 72, 74, 82, 100, 107 (спасибо Наташе, Стасу)

 $v0.4\ (20.05.2017)$ — перенумерованы вопросы, т.к. убран 5-й (про 5 эквивалентных условий). Поправил 5, 6, 7, 14, 16 (спасибо Соне, Наташе, Стасу). Добавил 112-123 определения

v0.5 (20.05.2017) — поправил 5, 9 (обратно), 25 (спасибо Соне, Владу, Стасу, Наташе)

 $v0.6\ (21.05.2017)$ — поправил 16, 18, 62, 63 (спасибо Соне, Стасу, Сергею)

v0.7 (22.05.2017) — поправил 49, 50 (спасибо Борису)

 $v0.8 \; (23.05.2017) - дополнил 5, 28, 49 \; (спасибо Соне, Hamawe)$

 $v0.9\ (24.05.2017)$ — поправил 72, 86, 90, 106 (спасибо Алексею)

 $v1.0\ (24.05.2017)$ — поправлено: 5–8, 12, 13, 17, 23, 25–34, 36, 40–53. 56–59 (спасибо Роману Сергеевичу, Станиславу Николаевичу, Мовсесу, Соне, Мире)

v2.0 (27.05.2017) — поправил всякое с опорой на список определений Никиты Орлова (также спасибо Ace)

Определения

1. Сумма двух подпространств векторного пространства

Сумма двух подпространств U и W — это множество

$$U+W=\{u+w\mid u\in U,\,w\in W\}.$$

2. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Пусть U, W — подпространства некоторого пространства. **Теорема**. $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$

3. Сумма нескольких подпространств векторного пространства

Пусть U_1, \ldots, U_k — подпространства векторного пространства V.

Суммой нескольких подпространств называется

$$U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$$

4. Линейная независимость нескольких подпространств векторного пространства

Подпространства U_1, \ldots, U_k векторного пространства V линейно независимы тогда и только тогда, когда: $u_1 + \ldots + u_k = 0 \Longrightarrow u_1 = \ldots = u_k = 0, \ u_i \in U_i.$

5. Разложение векторного пространства в прямую сумму подпространств

Пусть U_1, \dots, U_k — подпространства векторного пространства V. $V = U_1 \oplus \dots \oplus U_k$ называется **прямой суммой** тогда и только тогда, когда $\begin{cases} V = U_1 + \dots + U_k; \\ U_1, \dots, U_k - \text{ линейно независимы} \end{cases}$

6. При каких условиях на подпространства U_1, U_2 , векторного пространства V имеет место разложение $V = U_1 \oplus U_2$?

Пусть U_1, U_2 — подпространства векторного пространства V.

Тогда
$$V=U_1\oplus U_2\Longleftrightarrow \begin{cases} V=U_1+U_2, \\ U_1\cap U_2=\{0\}, \text{ т.е. } (U_1\ \text{и } U_2)-\text{ линейно независимы}. \end{cases}$$

7. Описание всех базисов п-мерного векторного пространства в терминах одного базиса и матриц координат

Пусть V — векторное пространство, dim V = n, a (e_1, \ldots, e_n) — базис V. То есть $\forall v \in V: \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$ где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) .

Пусть также есть набор векторов e'_1,\ldots,e'_n : $e'_1=c_{11}e_1+c_{21}e_2+\ldots+c_{n1}e_n,$

$$e'_2 = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n,$$

 \vdots
 $e'_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n.$

Обозначим матрицу $C=(c_{ij})$. Тогда $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot C.$

3амечание. e'_1, \ldots, e'_n образуют базис $\iff \det C \neq 0$.

8. Матрица перехода от одного базиса векторного пространства к другому

Пусть V — векторное пространство, dim V = n, (e_1, \ldots, e_n) — один базис, a (e'_1, \ldots, e'_n) — другой базис V. Тогда каждый вектор из e' линейно выражается через базис:

$$e_j' = \sum_{i=1}^n c_{ij} e_i, \quad c_{ij} \in F$$

 $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot C$, где $C=(c_{ij})$. То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e_j' в базисе (e_1, \dots, e_n) .

Матрица C называется **матрицей перехода** от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

9. Формула преобразования координат вектора при замене базиса векторного пространства

Пусть C — матрица перехода от базиса е = (e_1,\ldots,e_n) к базису е' = (e'_1,\ldots,e'_n) пространства V. Пусть $x \in V$ — вектор, имеющий координаты (x_1, \dots, x_n) в базисе е и (x'_1,\ldots,x'_n) в базисе е' соответственно. Тогда:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \quad \text{или} \quad x_i = \sum_{j=1}^n c_{ij} x_j'$$

10. Линейное отображение векторных пространств, его простейшие свойства.

Пусть V, W — векторные пространства над полем F.

Отображение $\varphi: V \to W$ называется **линейным**, если:

1.
$$\varphi(v+w) = \varphi(v) + \varphi(w), \ \forall v \in V, \forall w \in W$$

2.
$$\varphi(\alpha v) = \alpha \varphi(v), \forall \alpha \in F, \forall v \in V$$

Простейшие свойства линейного отображения:

$$\dot{1}. \ \varphi(\vec{0}_V) = \vec{0}_W$$

$$2. \ \varphi(-v) = -\varphi(v), \forall v \in V$$

11. Изоморфизм векторных пространств. Изоморфные векторные пространства

Пусть V, W — векторные пространства над полем F.

Отображение $\varphi: V \to W$ называется **изоморфизмом**, если φ линейно и биективно.

Два векторных пространства называются **изоморфными**, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $W \xrightarrow{\sim} V$ по предположению).

Обозначение: $V \simeq W$.

12. Какими свойствами обладает отношение изоморфности на множестве всех векторных пространств?

Следствие из теоремы. Изоморфизм — это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F (рефлексивность, симметричность, транзитивность).

13. Критерий изоморфности двух конечномерных векторных пространств

Два конечномерных векторных пространства V и W над одним и тем же полем F изоморфны тогда и только тогда, когда $\dim V = \dim W$.

14. Матрица линейного отображения

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Пусть:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Тогда матрица $A(\varphi, e, f) = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$ называется матрицей линейного отображения φ в базисах e и f (или по отношению к базисам e и f). Иными словами, в столбцах $A(\varphi, e, f)$ записаны координаты образов базисных векторов V.

Справедливо равенство: $(\varphi(e_1), \dots, \varphi(e_n)) = (f_1, \dots, f_m)A$

15. Связь между координатами вектора и его образа при линейном отображении

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. $A = A(\varphi, e, f)$ — матрица линейного отображения φ .

Если
$$v = x_1e_1 + \ldots + x_ne_n$$
 и $\varphi(v) = y_1f_1 + \ldots + y_mf_m$, то

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

16. Формула изменения матрицы линейного отображения при замене базисов

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ и $e' = (e'_1, \ldots, e'_n)$ — базисы V, $f = (f_1, \ldots, f_m)$ и $f' = (f'_1, \ldots, f'_m)$ — базисы W, e' = eC, f' = fD, A — матрица линейного отображения $\varphi : V \to W$ по отношению к e и f, A' — матрица линейного отображения по отношению к базисам e' и f'. Тогда

$$A' = D^{-1}AC$$

17. Сумма двух линейных отображений и ее матрица. Произведение линейного отображения на скаляр и его матрица

Пусть V, W — векторные пространства.

 $\operatorname{Hom}(V, W)$ — множество всех линейных отображений из V в W. $\mathbb{e} = (e_1, \dots, e_n)$ — базис V, $\mathbb{f} = (f_1, \dots, f_m)$ — базис W, φ , $\psi \in \operatorname{Hom}(V, W)$, $\alpha \in F$, $A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f})$ — матрица линейного отображения φ , $A_{\psi} = A(\psi, \mathbb{e}, \mathbb{f})$ — матрица ψ .

- 1. Сумма $\varphi + \psi$ это линейное отображение, такое что $\forall v \in V : (\varphi + \psi)(v) = \varphi(v) + \psi(v)$. Матрица суммы линейных отображений: $A(\varphi + \psi, e, f) = A_{\varphi + \psi} = A_{\varphi} + A_{\psi}$.
- 2. Произведение $\alpha \varphi$ это линейное отображение, такое что $\forall v \in V : (\alpha \varphi)(v) = \alpha \varphi(v)$. Матрица умножения линейного отображения на скаляр: $A(\alpha \varphi, \mathfrak{e}, \mathfrak{f}) = A_{\alpha \varphi} = \alpha A_{\varphi}$.

18. Композиция двух линейных отображений и ее матрица

Пусть U, V, W — векторные пространства. n, m, k — их размерности соответственно. $\varphi: U \to V$ — линейное отображение с матрицей $A(\varphi, e, f)$. $\psi: V \to W$ — линейное отображение с матрицей $B(\psi, f, g)$. Тогда матрица $C(\varphi \circ \psi, e, g)$ вычисляется как:

$$C = BA$$

19. Ядро и образ линейного отображения

Пусть V, W — векторные пространства с линейным отображением $\varphi: V \to W$.

Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Образ φ — это множество $\mathrm{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}.$

20. Критерий инъективности линейного отображения в терминах его ядра. Критерий изоморфности линейного отображения в терминах ядра и образа

Пусть $\varphi:V \to W$ — линейное отображение.

- 1. Отображение φ инъективно тогда и только тогда, когда $\mathrm{Ker} \varphi = \{0\}.$
- 2. Отображение φ является **изоморфизмом** тогда и только тогда, когда $\mathrm{Ker} \varphi = \{0\}$ и $\mathrm{Im} \varphi = W$.

21. Связь между рангом матрицы линейного отображения и размерностью его образа

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_n)$ — базис $W, A(\varphi, e, f)$ — матрица линейного отображения $\varphi : V \to W$ в F. Тогда справедливо равенство: $\dim \operatorname{Im} \varphi = \operatorname{rk} A$.

22. Оценки на ранг произведения двух матриц

Пусть $A \in \operatorname{Mat}_{k \times m}, B \in \operatorname{Mat}_{m \times n}$. Тогда

$$rkAB \leq min(rkA, rkB)$$
.

Также, если

- 1. n = m и $\det A \neq 0$, то $\mathrm{rk}AB = \mathrm{rk}B$
- 2. m = k и $\det B \neq 0$, то $\operatorname{rk} AB = \operatorname{rk} A$

23. Каким свойством обладает набор векторов, дополняющий базис ядра линейного отображения до базиса всего пространства?

Свойство. Пусть $\varphi: V \to W$ — линейное отображение, (e_1, \dots, e_k) — базис $\operatorname{Ker} \varphi$. Дополним базис ядра до базиса всего пространства векторами e_{k+1}, \dots, e_n . Тогда векторы $\varphi(e_{k+1}), \dots, \varphi(e_n)$ — базис $\operatorname{Im} \varphi$.

24. Теорема о связи размерностей ядра и образа линейного отображения

Пусть $\varphi:V \to W$ — линейное отображение. Тогда справедливо:

$$\dim \operatorname{Im} \varphi = \dim V - \dim \operatorname{Ker} \varphi$$

25. К какому простейшему виду можно привести матрицу линейного отображения путем замены базисов?

Простейшим видом матрицы линейного отображения является её канонический вид — диагональная матрица A', где e' = eC, f' = fD вида

$$A'=egin{pmatrix}1&&&&&\\&\ddots&&&0\\&&1&&&\\\hline&&0&&\ddots&\\&&0&&0\end{pmatrix},\;$$
где количество единиц $=\operatorname{rk} A$

задаваемая формулой

$$A' = D^{-1}AC$$

26. Линейная функция на векторном пространстве

Линейной функцией на векторном пространстве V над полем F называется всякое линейное отображение $\varphi:V\to F.$

27. Сопряженное (двойственное) векторное пространство и его размерность

Пространство V^* (т.е. множество всех линейных функций на V) называется **сопряженным** (двойственным) к пространству V, причем $\dim V^* = \dim V$.

28. Базис сопряженного пространства, двойственный к данному базису исходного векторного пространства

Пусть е = (e_1, \ldots, e_n) — базис V. Рассмотрим линейные функции $\varepsilon_1, \ldots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, \ i = j, \\ 0, \ i \neq j \end{cases}$. То есть $\varepsilon_i = (\delta_{i1}, \ldots, \delta_{ii}, \ldots, \delta_{in}) = (0, \ldots, 1, \ldots, 0)$. $(\varepsilon_1, \ldots, \varepsilon_n)$ — базис V^* , **двойственный** к базису е.

29. Билинейная форма на векторном пространстве

Билинейная форма на векторном пространстве V над полем F — это отображение $\beta: V \times V \to F$, линейное по каждому аргументу:

- 1. $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$
- 2. $\beta(\lambda x, y) = \lambda \beta(x, y)$
- 3. $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2)$
- 4. $\beta(x, \lambda y) = \lambda \beta(x, y)$

30. Матрица билинейной формы

Пусть $e = (e_1, \dots, e_n)$ — базис V (dim $V < \infty$), $\beta : V \times V \to F$ — билинейная форма. Матрицей билинейной формы β в базисе e называется матрица $B(\beta, e) = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$.

31. Формула для вычисления значений билинейной формы в координатах

Пусть $e = (e_1, \dots, e_n)$ — базис V $(\dim V < \infty), \beta : V \times V \to F$ — билинейная форма, B — её матрица в базисе e.

Тогда для любых векторов $x = x_1e_1 + \ldots + x_ne_n \in V$ и $y = y_1e_1 + \ldots + y_ne_n \in V$:

$$\beta(x, y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

32. Формула изменения матрицы билинейной формы при переходе к другому базису

Пусть $B(\beta, e)$ — матрица билинейной формы β в базисе e. Пусть f — другой базис g том же пространстве V. C — матрица перехода от e g g g. Тогда матрица билинейной формы $B'(\beta, f)$ а базисе g вычисляется как

$$B' = C^T B C.$$

33. Ранг билинейной формы

Рангом билинейной формы β называется ранг её матрицы B в базисе е:

$$\operatorname{rk}\beta = \operatorname{rk}B(\beta, e)$$

34. Симметричная билинейная форма. Критерий симметричности билинейной формы в терминах её матрицы

Билинейная форма β называется **симметричной**, если

$$\beta(x, y) = \beta(y, x) \ \forall x, y \in V.$$

Также β симметрична тогда и только тогда, когда B симметрична (т.е. $B=B^T$), где B — матрица билинейной формы.

35. Квадратичная форма

Пусть V — векторное пространство над полем F. Пусть $\beta: V \times V \to F$ — билинейная форма.

Отображение $Q_{\beta}: V \to F$, заданное формулой $Q_{\beta}(x) = \beta(x, x)$ называется **квадратичной формой**, ассоциированной с билинейной формой β .

36. Соответствие между симметричными билинейными формами и квадратичными формами

Пусть в поле F выполняется условие: $1+1\neq 0$ (т.е. $2\neq 0$).

Теорема. Отображение $\beta \to Q_{\beta}$, где $Q_{\beta}(x) = \beta(x, x)$ является биекцией между симметричными билинейными и квадратичными формами.

37. Симметризация билинейной формы

Билинейная форма $\sigma(x, y) = \frac{1}{2}(\beta(x, y) + \beta(y, x))$ называется **симметризацией билинейной формы** β .

38. Поляризация квадратичной формы

Симметричная билинейная форма $\beta(x, y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ называется поляризацией квадратичной формы Q.

39. Матрица квадратичной формы

Пусть V — векторное пространство, dim $V < \infty$.

Матрицей квадратичной формы $Q:V\to F$ в базисе е называется матрица соответствующей ей симметричной билинейной формы (т.е. поляризации Q) $\beta:V\times V\to F$ в том же базисе.

40. Канонический вид квадратичной формы

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$ (т.е. матрица квадратичной формы Q в этом базисе диагональна).

41. Нормальный вид квадратичной формы над $\mathbb R$

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ нормальный вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in \{-1, 0, 1\}$ (т.е. матрица квадратичной формы Q в этом базисе диагональна, где элементы на диагонали $\in \{-1, 0, 1\}$).

42. Индексы инерции квадратичной формы над $\mathbb R$

Пусть Q — квадратичная форма над R, которая в базисе e имеет нормальный вид:

$$Q(x_1, \ldots, x_n) = x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2,$$

где s — количество положительных слагаемых, t — количество отрицательных слагаемых. Тогда

 $i_{+} := s -$ положительный индекс инерции квадратичной формы Q,

 $i_{-} := t -$ отрицательный индекс инерции квадратичной формы Q,

n-s-t — **нулевой индекс инерции** квадратичной формы Q.

43. Закон инерции для квадратичной формы над R

Теорема. Индексы инерции (i_+, i_-) не зависят от базиса, в котором Q принимает нормальный вид.

44. Положительно/неотрицательно определенная квадратичная форма

Квадратичная форма Q называется положительно определённой (Q>0), если $Q(x)>0 \ \forall x\neq 0.$

Квадратичная форма Q называется **неотрицательно определённой** $(Q\geqslant 0),$ если $Q(x)\geqslant 0$ $\forall x.$

45. Отрицательно/неположительно определенная квадратичная форма

Квадратичная форма Q называется **отрицательно определённой** (Q < 0), если $Q(x) < 0 \ \forall x \neq 0$.

Квадратичная форма Q называется **неположительно определённой** $(Q\leqslant 0),$ если $Q(x)\leqslant 0 \ \forall x.$

46. Неопределенная квадратичная форма

Квадратичная форма называется **неопределенной**, если $\exists x, y : Q(x) > 0, \ Q(y) < 0.$

47. Следствие метода Якоби о нахождении индексов инерции квадратичной формы

Пусть $B=B(Q,\,\mathrm{e}),\,\delta_k-k$ -й угловой минор матрицы B.

Теорема. Пусть $\delta_k \neq 0 \ \forall k = 1, \ldots, n$. Тогда i_- равен числу перемен знака в последовательности $1, \, \delta_1, \, \delta_2, \, \ldots, \, \delta_n$

48. Критерий Сильвестра положительной определённости квадратичной формы

Теорема. Q>0 тогда и только тогда, когда $\delta_i>0$ для всех i, где δ_i-i -й угловой минор матрицы квадратичной формы.

49. Критерий отрицательной определенности квадратичной формы

Пусть Q — квадратичная форма, δ_i-i -й угловой минор матрицы квадратичной формы Q. $Q<0\Longleftrightarrow \begin{cases} \delta_i>0,\ i\ \vdots\ 2,\\ \delta_i<0,\ i\not :\ 2. \end{cases}$

50. Евклидово пространство

Евклидово пространство — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметричная билинейная функция $(\cdot,\cdot): \mathbb{E} \times \mathbb{E} \to \mathbb{R}$, которую мы будем называть скалярным произведением.

51. Длина вектора в евклидовом пространстве

 \mathbb{E} — евклидово пространство, dim $\mathbb{E} < \infty$.

Длиной вектора $x \in \mathbb{E}$ называется число $|x| = \sqrt{(x, x)}$.

52. Неравенство Коши-Буняковского

Пусть
$$x, y \in \mathbb{E}$$
. Тогда

$$|(x, y)| \leqslant |x||y|,$$

причем равенство достигается тогда и только тогда, когда x и y пропорциональны.

53. Угол между ненулевыми векторами евклидова пространства

Углом между ненулевыми векторами x и y называют такое число $\alpha \in [0, \pi]$, что

$$\cos \alpha = \frac{(x, y)}{|x||y|}.$$

54. Матрица Грама системы векторов евклидова пространства

 $v_1, \ldots, v_k \in \mathbb{E}$ — система векторов.

Матрицей Грама системы векторов $v_1, \dots, v_k \in \mathbb{E}$ называется матрица их попарных скалярных произведений:

$$G(v_1, \ldots, v_k) := \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \ldots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \ldots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \ldots & (v_k, v_k) \end{pmatrix} := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

55. Свойства определителя матрицы Грама

- 1. $\det G(v_1, \ldots, v_k) \ge 0$
- 2. $\det G(v_1, \ldots, v_k) = 0$ тогда и только тогда, когда v_1, \ldots, v_k линейно зависимы.

56. Ортогональное дополнение подмножества евклидова пространства

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E}=n$. $S\subseteq\mathbb{E}$ — произвольное подпространство. Ортогональным дополнением к S называется множество $S^\perp=\{x\in\mathbb{E}\mid (x,y)=0\ \forall y\in S\}.$

57. Чему равна размерность ортогонального дополнения к подпространству?

Пусть $S \subseteq \mathbb{E}$, dim $\mathbb{E} = n$. Тогда

$$\dim S^{\perp} = n - \dim S.$$

58. Каким свойством обладают подпространство евклидова пространства и его ортогональное дополнение?

Пусть $S \subseteq \mathbb{E}$. Тогда:

- 1. $\mathbb{E} = S \oplus S^{\perp}$ евклидово пространство разлагается в прямую сумму подпространства и его ортогонального дополнения.
- 2. $(S^{\perp})^{\perp} = S$ ортогональное дополнение ортогонального дополнения пространства есть само пространство.

59. Ортогональная проекция вектора на подпространство

Пусть $S\subseteq\mathbb{E}$. Тогда $\forall x\in E$ единственным образом разбивается на сумму x=y+z, где $y\in S,$ а $z\in S^\perp.$

Вектор y называется **ортогональной проекцией** вектора x на подпространство S. Обозначение: pr_sx .

60. Ортогональная составляющая вектора относительно подпространства

Пусть $S\subseteq\mathbb{E}$. Тогда $\forall x\in E$ единственным образом разбивается на сумму x=y+z, где $y\in S,$ а $z\in S^\perp.$

Вектор z называется **ортогональной составляющей** вектора x вдоль подпространства S. Обозначение: $ort_s x$.

61. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением. $S \subseteq \mathbb{R}^n$ — подпространство, (e_1, \ldots, e_k) — базис в S. Образуем матрицу $A \in \operatorname{Mat}_{n \times k}(\mathbb{R})$, где $A^{(i)} = e_i$. Тогда

$$\forall v \in \mathbb{E} : pr_s v = A(A^T A)^{-1} A^T v$$

62. Ортогональная система векторов. Ортогональный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется ортогональной, если все её векторы попарно ортогональны, т.е. $(v_i, v_j) = 0 \ \forall i \neq j$.

Базис (e_1, \ldots, e_n) в \mathbb{E} называется **ортогональным**, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

63. Ортонормированная система векторов. Ортонормированный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется ортонормированной, если все её векторы попарно ортогональны, т.е. $(v_i, v_j) = 0 \ \forall i \neq j$, и длина (норма) каждого вектора системы равна 1.

Базис (e_1,\ldots,e_n) в $\mathbb E$ называется **ортонормированным**, если $(e_i,\,e_j)=0 \ \forall i\neq j$ и длина каждого вектора равна 1: $\left(\frac{e_1}{|e_1|},\,\ldots,\,\frac{e_n}{|e_n|}\right)$. Это равносильно тому, что $G(e_1,\ldots,e_k)$ единична.

64. Описание всех ортонормированных базисов евклидова пространства в терминах одного такого базиса и матриц перехода

Пусть (e_1,\ldots,e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1,\ldots,e'_n) , причём $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$. (e'_1,\ldots,e'_n) — ортонормированный тогда и только тогда, когда $C^TC=E$ $(C^{-1}=C^T)$.

65. Ортогональная матрица

Матрица $C \in \mathrm{Mat}_n(\mathbb{R})$ называется **ортогональной**, если $C^TC = E$ $(C^{-1} = C^T)$.

66. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \ldots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

$$pr_S x = \sum_{i=1}^k \frac{(x,\,e_i)}{(e_i,\,e_i)} e_i$$
 — для ортогонального базиса.

$$pr_S x = \sum_{i=1}^k (x, e_i) e_i$$
 — для ортонормированного базиса.

67. Теорема Пифагора в евклидовом пространстве

Пусть
$$x,y\in\mathbb{E}$$
 и $x\bot y$ (т.е. $(x,y)=0$). Тогда
$$|x+y|^2=|x|^2+|y|^2.$$

68. Расстояние между векторами евклидова пространства

Пусть $x, y \in \mathbb{E}$ — векторы.

Расстоянием между двумя векторами называется величина

$$\rho(x, y) := |x - y|.$$

69. Неравенство треугольника в евклидовом пространстве

$$\rho(a, b) + \rho(b, c) \geqslant \rho(a, c), \ \forall a, b, c \in \mathbb{R}.$$

Или, что то же самое

$$|x| + |y| \geqslant |x + y|, \ \forall x, y \in \mathbb{E}$$

70. Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей

Пусть $x \in \mathbb{E}$ и $S \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x, S) = |ort_S x|$, причём $pr_S x$ – единственный ближайший к x вектор из S.

71. Псевдорешение несовместной системы линейных уравнений

Пусть (Ax = b) — несовместная система линейных уравнений. Тогда вектор $x_0 \in \mathbb{R}^n$ называется **псевдорешением**, если $\rho(Ax_0, b) = |Ax_0 - b|$ минимально.

72. Формула для расстояния от вектора до подпространства в терминах матриц Грама

Пусть $S \subset \mathbb{E}$ — подпространство, $x \in \mathbb{E}$, (e_1, \dots, e_k) — базис S. Тогда

$$(\rho(x, S))^2 = \frac{\det G(e_1, \dots, e_k, x)}{\det G(e_1, \dots, e_k)}$$

73. к-мерный параллелепипед и его объём

k-мерным параллелепипедом, натянутым на векторы a_1, \dots, a_k , называется подмножество

$$P(a_1, \dots, a_k) := \left\{ x = \sum_{i=1}^k x_i a_i \mid 0 \leqslant x_i \leqslant 1 \right\}.$$

Объем k-мерного параллелепипеда — это величиина $volP(a_1,\ldots,a_k)$, определяемая индуктивно:

$$k=1\Rightarrow volP(a_1):=|a_1|,$$
 $k>1\Rightarrow volP(a_1,\ldots,a_k):=\underbrace{volP(a_1,\ldots,a_{k-1})}_{\text{основание}}\cdot\underbrace{|h|}_{\text{высота}}$, где $h=\operatorname{ort}_{\langle a_1,\ldots,a_{k-1}\rangle}a_k$

Также объём k-мерного параллелепипеда можно посчитать по следующим формулам:

- 1. $volP(a_1, ..., a_k)^2 = \det G(a_1, ..., a_k)$.
- 2. Пусть (e_1, \ldots, e_k) ортонормированный базис в \mathbb{E} . $(a_1, \ldots, a_k) = (e_1, \ldots, e_k)A$, где $A \in \mathrm{M}_n(\mathbb{R})$ матрица координат векторов a_1, \ldots, a_k . $volP(a_1, \ldots, a_k) = \det A$.

74. В каком случае два базиса евклидова пространства называются одинаково ориентированными?

Пусть e, e' — два базиса пространства.

Будем говорить, что базисы e, e' **ориентированны одинаково**, если определитель матрицы перехода от e к e' больше нуля (det C > 0).

75. Смешанное произведение векторов трёхмерного евклидова пространства, формула для его вычисления в терминах координат в правом ортонормированном базисе

Правый ортонормированный базис — положительно ориентированный.

Смешанным произведением векторов a, b, c называется величина

$$(a, b, c) = Vol(a, b, c).$$

Если (e_1, e_2, e_3) — правый ортонормированный базис и

$$a = a_1 e_1 + a_2 e_2 + a_3 e_3$$

$$b = b_1 e_1 + b_2 e_2 + b_3 e_3$$

$$c = c_1 e_1 + c_2 e_2 + c_3 e_3,$$

то

$$(a, b, c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

76. Критерий компланарности трёх векторов трёхмерного евклидова пространства

Векторы a, b, c компланарны (линейно зависимы) $\iff (a, b, c) = 0$.

77. Векторное произведение в трёхмерном евклидовом пространстве

Векторным произведением векторов $a,b\in\mathbb{E}$ называется вектор c такой, что:

- 1. $c \perp \langle a, b \rangle$
- 2. $|c| = |a||b| \sin \alpha$ (или же |c| = площади параллелограмма, образованного (a,b))
- 3. $(a, b, c) \ge 0$ (т.е. векторы образуют правую тройку)

Oбозначение: [a,b] или $a \times b$.

78. Критерий коллинеарности двух векторов трёхмерного евклидова пространства

a, b коллинеарны (т.е. линейно зависимы) $\iff [a, b] = 0.$

79. Выражение смешанного произведения через векторное и скалярное в трёхмерном евклидовом пространстве

$$(a, b, c) = (a, [b, c]) \forall a, b, c \in \mathbb{R}^3$$

80. Формула для двойного векторного произведения в трёхмерном евклидовом пространстве

$$[a, [b, c]] = (a, c)b - (a, b)c =$$

$$= b(a, c) - c(a, b)$$

81. Формула для вычисления векторного произведения в терминах координат в правом ортонормированном базисе

Пусть (e_1, e_2, e_3) — ортонормированный базис.

$$a = a_1e_1 + a_2e_2 + a_3e_3$$
$$b = b_1e_1 + b_2e_2 + b_3e_3$$

Тогда

$$[a, b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = e_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - e_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + e_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} =$$

$$= (a_2b_3 - b_2a_3)e_1 - (a_1b_3 - b_1a_3)e_2 + (a_1b_2 - b_1a_2)e_3 =$$

$$= ((a_2b_3 - b_2a_3), (b_1a_3 - a_1b_3), (a_1b_2 - b_1a_2))$$

82. Линейное многообразие. Характеризация линейных многообразий как сдвигов подпространств

Линейное многообразие в \mathbb{R}^n — множество решений некоторой совместной СЛУ. Если $L \subseteq \mathbb{R}^n$ — непустое множество $\Longrightarrow L$ — линейное многообразие $\Longrightarrow L = v_0 + S$ для некоторых $v_0 \in L$ и подпространства $S \subseteq \mathbb{R}^n$, откуда и следует, что линейные многообразия — в точности **сдвиги подпространств**.

83. Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия

 $L_1, L_2 \subseteq \mathbb{R}^n$ — множества всех решений. $S_1, S_2 \subseteq \mathbb{R}^n$ — множество решений однородной СЛУ Ax = 0.

 $L_1 = v_1 + S_1$ и $L_2 = v_2 + S_2$ — два линейных многообразия.

$$L_1 = L_2 \Longleftrightarrow \begin{cases} S_1 = S_2 \ (= S), \\ v_1 - v_2 \in S \end{cases}$$

S называется направляющим подпространством линейного многообразия L.

84. Теорема о плоскости, проходящей через точку k+1 в \mathbb{R}^n

Теорема. a) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$

б) Если k+1 точек не лежат в плоскости размерности < k, то через них проходит ровно одна плоскость размерности k

85. Три способа задания прямой в \mathbb{R}^2 . Уравнение прямой в \mathbb{R}^2 , проходящей через две различные точки

- 1. Уравнение в координатах: Ax + By = C, $(A, B) \neq (0, 0)$
- 2. Векторное уравнение: $(n, v v_0) = 0$, где n вектор нормали, $v v_0$ вектор на прямой
- 3. Параметрическое уравнение: $v = v_0 + \vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор прямой, λ коэффициент

Уравнение прямой, проходящей через две точки (x_0, y_0) и (x_1, y_1) :

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0 \quad \text{или} \quad \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

86. Три способа задания плоскости в \mathbb{R}^3 . Уравнение плоскости в \mathbb{R}^3 , проходящей через три точки, не лежащие на одной прямой

- 1. Уравнение в координатах: Ax + By + Cz = D, $(A, B, C) \neq (0, 0, 0)$
- 2. Векторное уравнение: $(n, v v_0) = 0$, где n вектор нормали плоскости, $v v_0$ вектор на плоскости
- 3. Параметрическое уравнение: $v = v_0 + \vec{a}\alpha + \vec{b}\beta$, где v_0 радиус-вектор фиксированной точки на плоскости, a, b направляющие векторы на плоскости, α, β коэффициенты.

Уравнение плоскости, проходящей через точки $(x_0,y_0,z_0),\,(x_1,y_1,z_1),\,(x_2,y_2,z_2)$:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$

87. Три способа задания прямой в \mathbb{R}^3 . Уравнения прямой в \mathbb{R}^3 , проходящей через две различные точки

1. **CJIV**:
$$\begin{cases} A_1x + B_1y + C_1z = D_1 \\ A_2x + B_2y + C_2z = D_2 \end{cases}$$
, rk
$$\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2.$$

- 2. Векторное уравнение: $[v-v_0, a] = 0$, где, a направляющий вектор, $v-v_0$ принадлежит прямой
- 3. Параметрическое уравнение: $v = v_0 + \vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор
- 4. Каноническое уравнение прямой: $\frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}$, где $a_1,\ a_2,\ a_3$ направляющий вектор, $x_0,\ y_0,\ z_0$ координаты точки на прямой

Уравнение прямой, проходящей через две различные точки (x_0, y_0, z_0) и (x_1, y_1, z_1) :

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

88. Случаи взаимного расположения двух прямых в \mathbb{R}^3

Пусть $a_1,\ a_2$ — направляющие прямых $l_1,\ l_2,\ a\ v_1,\ v_2$ — точки, лежащие на данных прямых. Тогда прямые l_1, l_2 :

- 1. совпадают ке $\left. \begin{array}{l} \end{array} \right\}$ лежат в одной плоскости $\Rightarrow (a_1,\,a_2,\,v_2-v_1)=0$ 2. параллельны
- 4. скрещиваются (не лежат в одной плоскости)

89. Случаи взаимного расположения трёх попарно различных плоскостей в \mathbb{R}^3

Пусть имеются три плоскости P_1, P_2, P_3 .

- 1. Среди P_1, P_2, P_3 есть две параллельных
 - (a) $P_1 \parallel P_2 \parallel P_3$
 - (b) Две параллельны, а третья их пересекает
- 2. Никакие две плоскости не параллельны
 - (а) Все три пересекаются по одной прямой
 - (b) Прямые пересечения параллельны
 - (c) P_1, P_2, P_3 пересекаются в одной точке

90. Формула для расстояния от точки до прямой в \mathbb{R}^3

Пусть l — прямая, заданная точкой v_0 и направляющим вектором a. v — точка, не лежащая на данной прямой.

$$\rho(v, l) = |ort_{\langle a \rangle}(v - v_0)| = \frac{|[v - v_0, a]|}{|a|}$$

91. Формула для расстояния от точки до плоскости в \mathbb{R}^3

Пусть P — плоскость, n — вектор нормали, v_0 — точка, лежащая на плоскости, v — точка, не лежащая на плоскости, $S = \langle n \rangle^{\perp}$ — направляющее подпространство.

$$\rho(v, P) = |ort_S(v - v_0)| = |pr_{\langle n \rangle}(v - v_0)| = \left| \frac{(v - v_0, n)}{(n, n)} n \right| = \frac{|(v - v_0, n)|}{|n|}$$

92. Формула для расстояния между двумя скрещивающимися прямыми в \mathbb{R}^3

Пусть l_1 , l_2 — прямые. v_1 , v_2 — точки, лежащие на каждой из данных прямых. a_1 , a_2 — их направляющие векторы.

Построим плоскости

$$P_1 = v_1 + \langle a_1, a_2 \rangle \supseteq l_1$$

$$P_2 = v_2 + \langle a_1, a_2 \rangle \supseteq l_2$$

Тогда

$$\rho(l_1, l_2) = \rho(P_1, P_2) = \frac{|(a_1, a_2, v_2 - v_1)|}{|[a_1, a_2]|}$$

93. Линейный оператор

Пусть V — конечномерное векторное пространство.

Линейным оператором называется всякое линейное отображение $\varphi: V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V, V)$.

94. Матрица линейного оператора

Пусть V — векторное пространство, $e = (e_1, \dots, e_n)$ — его базис и φ — его линейный оператор.

Матрицей линейного оператора φ называется такая матрица, в j-ом столбце которой стоят координаты вектора $\varphi(e_i)$ в базисе e.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A, A\in \mathrm{Mat}_n.$$

95. Формула преобразования координат вектора при действии линейного оператора

Пусть
$$\varphi \in L(V), A = A(\varphi, e)$$
 — матрица φ в базисе e . Тогда
$$v = x_1e_1 + \ldots + x_ne_n,$$

$$\varphi(v) = y_1e_1 + \ldots + y_ne_n,$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

96. Формула изменения матрицы линейного оператора при переходе к другому базису

Пусть φ — линейный оператор векторного пространства $V, A = A(\varphi, e)$ — матрица φ в базисе $e = (e_1, \ldots, e_n)$. Пусть $e' = (e'_1, \ldots, e'_n)$ — другой базис, причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$.

Тогда

$$A' = C^{-1}AC,$$

где C — матрица перехода к новому базису e', $A' = A'(\varphi, e')$ — матрица φ в базисе e'.

97. Подобные матрицы

Две матрицы A', $A \in M_n(F)$ называются **подобными**, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

98. Подпространство, инвариантное относительно линейного оператора

Подпространство $U\subseteq V$ называется **инвариантным** относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$. То есть $\forall u\in U: \varphi(u)\in U$.

99. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства

Пусть $\varphi:V\to V$ — линейный оператор.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть e_1, \ldots, e_k — базис в U. Дополним его до базиса $V: e = (e_1, \ldots, e_n)$. Тогда

$$A(\varphi, e)$$
 = $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$, где $B \in \mathcal{M}_k$.

100. Собственный вектор линейного оператора

Пусть $\varphi: V \to V$ — линейный оператор.

Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторого $\lambda \in F$.

101. Собственное значение линейного оператора

Элемент $\lambda \in F$ называется **собственным значением** линейного оператора $\varphi: V \to V$, если существует такой ненулевой вектор $v \in V$, что $\varphi(v) = \lambda v$.

102. Спектр линейного оператора

Множество всех собственных значений линейного оператора φ называется **спектром**. *Обозначение*: Spec(φ).

103. Диагонализуемый линейный оператор

Линейный оператор φ называется **диагонализуемым**, если существует такой базис \mathbb{C} , что $A(\varphi, \mathbb{C})$ — диагональная матрица, т.е. $A(\varphi, \mathbb{C}) = diag(\lambda_1, \dots, \lambda_n)$, где $\lambda_i \in \operatorname{Spec}(\varphi)$.

104. Критерий диагонализуемости линейного оператора в терминах собственных векторов

Линейный оператор φ диагонализуем тогда и только тогда, когда в V существует базис из собственных векторов для φ .

105. Собственное подпространство линейного оператора

Пусть $\lambda \in \operatorname{Spec}(\varphi)$.

Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется **собственным подпространством** линейного оператора, отвечающим собственному значению λ .

106. Характеристический многочлен линейного оператора

Пусть $A_{\varphi} = A(\varphi, e)$ — матрица линейного оператора $\varphi, t \in F, n$ — размерность пространства.

Многочлен $\chi_{\varphi}(t) := (-1)^n \det(A_{\varphi} - tE)$ называется **характеристическим многочленом** линейного оператора φ .

107. Связь спектра линейного оператора с его характеристическим многочленом

Пусть $\lambda \in \operatorname{Spec}(\varphi)$.

$$\chi_{\varphi}(\lambda) = 0,$$

то есть λ — корень характеристического многочлена.

108. Алгебраическая кратность собственного значения линейного оператора

Пусть $\varphi:V\to V$ — линейный оператор, λ — его собственное значение.

Алгебраической кратностью собственного значения λ линейного оператора φ называется такое число k, которое равняется кратности λ как корня характеристического многочлена.

109. Геометрическая кратность собственного значения линейного оператора

Пусть $\varphi:V\to V$ — линейный оператор, λ — его собственное значение, $V_{\lambda}(\varphi)$ — соответствующее собственное подпространство.

Геометрической кратностью собственного значения λ называется число dim $V_{\lambda}(\varphi)$, т.е. размерность соответствующего собственного подпространства.

110. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Пусть a_i — алгебраическая кратность собственного значения, s_i — геометрическая кратность. Тогда справедливо неравенство

$$s_i \leqslant a_i$$
.

111. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей его собственных значений

Линейный оператор $\varphi: V \to V$ диагонализуем тогда и только тогда, когда:

- $\chi_{\varphi}(t)$ разлагается на линейные множители
- Для любого собственного значения линейного оператора φ геометрическая кратность равна алгебраической

112. Линейный оператор в евклидовом пространстве, сопряженный к данному

Пусть \mathbb{E} — евклидово пространство, φ — его линейный оператор. Тогда ему можно сопоставить две билинейные функции на \mathbb{E} :

$$\beta_{\varphi}(x, y) = (x, \varphi(y))$$
$$\beta_{\varphi}^{T}(x, y) = (\varphi(x), y)$$

Линейный оператор $\psi \in L(\mathbb{E})$ называется **сопряженным** к φ , если для всех векторов $x, y \in \mathbb{E}$ верно, что $(\psi(x), y) = (x, \varphi(y))$. Это также равносильно тому, что $\beta_{\psi}^T = \beta_{\varphi}$. Обозначение: $\psi = \varphi *$.

113. Матрица сопряженного линейного оператора в произвольном и ортонормированном базисах

Пусть $e = (e_1, \dots, e_n)$ — базис в \mathbb{E} , $G = G(e_1, \dots, e_n)$ — матрица Грама, $A_{\varphi} = A(\varphi, e)$ — матрица линейного оператора φ . Тогда матрица сопряженного линейного оператора выражается как

$$A_{\varphi^*}=G^{-1}A_{\varphi}^TG$$
, где $A_{\varphi^*}=A(\varphi^*,\,\mathrm{e})$ — в произвольном базисе, $A_{\varphi^*}=A_{\varphi}^T$ — в ортонормированном базисе.

114. Самосопряженный линейный оператор в евклидовом пространстве

Линейный оператор φ называется **самосопряженным** (симметрическим) в том случае, если $\varphi^* = \varphi$. Это равносильно тому, что $(\varphi(x), y) = (x, \varphi(y))$ для любых векторов $x, y \in \mathbb{E}$.

Замечание. В случае, когда е — ортонормированный базис в $\mathbb E$ и $A_{\varphi}=A(\varphi,\,\mathbb e)$, то самосопряженность линейного оператора φ равносильна $A_{\varphi}=A_{\varphi}^T.$ Отсюда берётся название — симметрический.

115. Теорема о каноническом виде самосопряженного линейного оператора

Теорема. Пусть φ — самосопряженный линейный оператор. Тогда в \mathbb{E} существует ортонормированный базис \mathfrak{e} из собственных векторов такой, что

$$A(\varphi, e) = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \ \lambda_i \in \operatorname{Spec}(\varphi).$$

116. Каким свойством обладают собственные подпространства самосопряженного линейного оператора, отвечающие попарно различным собственным значениям?

Пусть φ — самосопряженный линейный оператор и λ, μ — его собственные значения. Тогда $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi), \ \ \lambda \neq \mu.$

117. Приведение квадратичной формы к главным осям

Для любой квадратичной формы Q над $\mathbb E$ существует ортонормированный базис, в котором Q имеет канонический вид

$$Q(x_1, \ldots, x_n) = \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2,$$

причём числа $\lambda_1,\ldots,\lambda_n$ определены однозначно с точностью до перестановки.

118. Ортогональный линейный оператор в евклидовом пространстве

Пусть \mathbb{E} — евклидово пространство, $\dim \mathbb{E} < \infty$. Линейный оператор $\varphi \in L(\mathbb{E})$ называется **ортогональным**, если

$$(\varphi(x), \varphi(y)) = (x, y), \ \forall x, y \in \mathbb{E}.$$

119. Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах

Пусть \mathbb{E} — евклидово пространство.

- 1. Ортогональные операторы при $\dim \mathbb{E} = 1$. φ ортогонален $\iff \varphi = \pm \mathrm{Id}$
- 2. Ортогональные операторы при $\dim \mathbb{E} = 2$. $\mathbb{E} = (e_1, e_2)$ ортонормированный базис. Возможны два случая:
 - (а) φ поворот на угол α , тогда $A(\varphi, e) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$
 - (b) φ поворот на угол α + отражение относительно прямой $\langle \varphi(e_1) \rangle$, тогда $A(\varphi, e) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$

120. Теорема о каноническом виде ортогонального оператора

Для любого ортогонального оператора $\varphi \in L(\mathbb{E})$ существует ортонормированный базис €, в котором

$$A(\varphi, e) = \begin{pmatrix} \Pi(\alpha_1) & & & & & \\ & \ddots & & & & \\ & & \Pi(\alpha_k) & & & \\ & & & -1 & & \\ & & & \ddots & & \\ & & & & -1 & \\ & & & & 1 \end{pmatrix}, \text{ где } \Pi(\alpha_i) = \begin{pmatrix} \cos \alpha_i & -\sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix}$$

121. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве

Для любого ортогонального линейного оператора в Е существует такой ортонормированный базис е, такой что

- либо $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$, где φ это поворот на угол α вокруг оси $\langle e_3 \rangle$;
 либо $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$, где φ поворот на угол α вокруг прямой e_3 , но зеркально отражённый относительно $\langle e_1, e_2 \rangle = \langle e_3 \rangle^{\perp}$

122. Теорема о сингулярных базисах для линейного отображения евклидовых пространств. Сингулярные значения линейного отображения

Пусть \mathbb{E} , \mathbb{E}' — евклидовы пространства, $\varphi: \mathbb{E} \to \mathbb{E}'$ — линейное отображение. Существуют ортонормированные базисы $e \in \mathbb{E}$ и $e' \in \mathbb{E}'$, такие что

$$A(\varphi, e, e') = \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & 0 \\ & & \sigma_r & & \\ & & & 0 \\ & & & 0 \end{pmatrix}, \ \sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0.$$

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно и называются **сингулярными значениями** линейного оператора φ .

123. Сингулярное разложение матрицы и её сингулярные значения

SVD = "singular value decomposition"

 $\forall A \in \mathrm{Mat}_{m \times n}(\mathbb{R})$ существует ортогональные матрицы $U \in \mathrm{M}_m(\mathbb{R})$ и $V \in \mathrm{M}_n(\mathbb{R})$ и диагональная матрица $\Sigma \in \mathrm{Mat}_{m \times n}(\mathbb{R})$, такие что

$$A=U\Sigma V^T$$
, где $\Sigma=egin{pmatrix}\sigma_1&&&&&0\ &\ddots&&&&&\ &&\sigma_r&&&&&\ &&&0&&&&\ &&&0&&&&\ &&&&0&&&\ &&&&&0\end{pmatrix},\;\;\sigma_1\geqslant\sigma_2\geqslant\ldots\geqslant\sigma_r>0.$

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно.