Uniswap 简明导论

怀菁

武汉大学

2023年12月3日

这是什么?

Uniswap 简介

- 一个去中心化交易协议
- V1 上线时间: 2018 年 11 月 2 日
- 恒定积自动做市商
- 去中心化交易所的奠基者和领军者

中心化交易所的订单簿

例子: 可乐自动售货机

- 机器中有 x₀ 瓶可乐与 y₀ 枚一元硬币
- 一瓶可乐 3 元
- 交易若干次后, 机器中有 x 瓶可乐与 y 枚一元硬币

$$3x + y = 3x_0 + y_0 (1)$$

设 $k = 3x_0 + y_0$,有 y = -3x + k

为可乐交易所添加流动性

向交易所中投放更多的可乐和硬币,得到 k > k

这个可乐交易所就是一个恒定和自动做市商 (CSAMM)

Uniswap 恒定积自动做市商

- X: 计价货币 (Quote Currency)
- Y: 基准货币 (Base Currency)
- Y/X: 交易对
- x₀: X 的储备量
- y₀: Y 的储备量

$$xy = k \tag{2}$$

$$p_X = \frac{y_1}{x_1} = \tan \theta \tag{3}$$

图: Y/X 交易对储备图

交易改变价格

假设交易者用 Δx 个货币 X 购买一 些货币 Y

$$x' = x_0 + \Delta x$$

$$x'y'=k \tag{4}$$

$$y' = \frac{k}{x'} = \frac{k}{x_0 + \Delta x} < y_0 \qquad (5)$$

交易者买到的 Y 的数量即为

$$\Delta y = y_0 - y' = y_0 - \frac{k}{x_0 + \Delta x}$$
 (6)

图: 交易改变了价格

◆ロト ◆個ト ◆意ト ◆意ト · 意 · 釣り○

添加或移除流动性

流动性提供者(Liquidity Provider) 为流动性池提供资金,并赚取交易 手续费。

$$x' = x_1 + x_2, y' = y_1 + y_2$$

$$k' = x'y'$$

那么新的恒定积公式就是

$$xy = k'$$

图: 添加流动性引起储备曲线缩放

9/24

添加流动性的好处

• 降低交易者的滑点 (Slippage)

$$\left| \frac{\Delta x}{\Delta y} - \frac{x_0}{y_0} \right| = \left| \frac{\Delta x}{y_0} \right| \tag{7}$$

• 减弱价格推动效应

$$|p_X' - p_X| = \left| \frac{x_0 y_0}{(x_0 + \Delta x)^2} - \frac{y_0}{x_0} \right| = \left| \frac{2x_0 y_0 \Delta x - y_0 (\Delta x)^2}{x_0 (x_0 + \Delta x)^2} \right|$$
(8)

收益分配的依据:流动性代币

流动性代币(Liquidity Token)是一种特殊的代币,它衡量了 LP 对流动性池的贡献。它是所有者权益的凭证,或者简单理解为流动性池的股票。

- LP 存入 X 和 Y 时, 流动性池铸造一种名为 "YX" 的代币发送给 LP
- LP 将 YX 发送至流动性池销毁掉,就可以按份额提取出自己的 X 和 Y

对于第一位 LP ,其获得的流动性代币数量为

$$s = \sqrt{x_0 y_0} \tag{9}$$

对于之后的 LP ,其获得的流动性代币数量为

$$\Delta s = \frac{x_1}{x_0} s_0 = \frac{y_1}{y_0} s_0 \tag{10}$$

并使用 $s_0 \leftarrow s_0 + \Delta s$ 更新 s_0 的值

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

风险 1: 流动性不足——三明治攻击

	价格	数量
卖 2	1.2	1
卖 1	0.9	1

订单簿中的三明治攻击: 经纪商买入 -> 经纪商挂卖单 -> 交易者买入

日期~	类型○▼	价格USD♡▼	全部的♡▼	价格 ETH ♡▼	金额 BTC21 ○▼	共计ETHO▼	保留无翻译 ▼	其他
Oct 10 22:00:11		\$0.0003525	\$21.01	0.062239	59,608.5	0.0133 🏦		∴ 🕡 💈 🔻
Oct 10 22:00:11		\$0.0002377	\$1,573.93	0.061510	6,620,244	1.00		# 🕡 🔟 ₹
Oct 10 22:00:11		\$0.0001583	\$9.43	0.061006	59,608.5	0.0060 🏦		 .

AMM 中的三明治攻击: 攻击者买入 -> 交易者买入 -> 攻击者卖出

- 都是依靠自己的单边信息优势, 获取无风险利润
- 提高流动性可以使这种攻击无利可图

风险 1: 流动性不足——撤池跑路

撤池跑路 (Rug Pull) 是指 LP 突然撤出全部的流动性使交易者无法再交易的行为

锁仓可以降低 Rug Pull 风险

风险 2: 无常损失

- 恒定积自动做市商存在着"劣币驱逐良币"的倾向
- 这意味着更有价值的货币将持续流出
- 而劣币的占比和绝对数额将会提高
- LP 可能因此受到财产损失

$$\begin{cases} X/USD = a_0 \\ Y/USD = b_0 \\ Y/X = \frac{x_0}{y_0} \\ x_0y_0 = k \end{cases} \rightarrow \begin{cases} X/USD = a_1 \\ Y/USD = b_1 \\ Y/X = \frac{x_1}{y_1} \\ x_1y_1 = k \end{cases}$$
(11)

$$r = \frac{B_1}{B_0} = \frac{a_1 x_1 + b_1 y_1}{a_0 x_0 + b_0 y_0} = \frac{\sqrt{a_1 b_1}}{\sqrt{a_0 b_0}}$$
(12)

$$r^* = \frac{B^*}{B_0} = \frac{a_1 x_0 + b_1 y_0}{a_0 x_0 + b_0 y_0} \tag{13}$$

怀菁 (武汉大学) Uniswap 简明导论 2023 年 12 月 3 日

风险 2: 无常损失

无常损失(Impermanent Loss)是由于流动性池中两种代币的**相对**价格变化导致的、相较于单纯持有代币的机会损失

$$\delta = r - r^{*}$$

$$= \frac{a_{1}(x_{1} - x_{0}) + b_{1}(y_{1} - y_{0})}{a_{0}x_{0} + b_{0}y_{0}}$$

$$= \frac{2\sqrt{a_{1}b_{1}} - \left(a_{1}\sqrt{\frac{b_{0}}{a_{0}}} + b_{1}\sqrt{\frac{a_{0}}{b_{0}}}\right)}{2\sqrt{a_{0}b_{0}}}$$

$$\leq \frac{2\sqrt{a_{1}b_{1}} - 2\sqrt{a_{1}\sqrt{\frac{b_{0}}{a_{0}}} \cdot b_{1}\sqrt{\frac{a_{0}}{b_{0}}}}}{2\sqrt{a_{0}b_{0}}}$$

$$= \frac{2\sqrt{a_{1}b_{1}} - 2\sqrt{a_{1}b_{1}}}{2\sqrt{a_{0}b_{0}}}$$

$$= 0$$
(14)

当且仅当
$$a_1\sqrt{\frac{b_0}{a_0}}=b_1\sqrt{\frac{a_0}{b_0}}$$
即 $\frac{a_0}{b_0}=\frac{a_1}{b_1}$ 时取等号

- 也就是说只要相对价格 与初始相对价格不一致, 就会产生无常损失
- 而当二者回归一致时, 无常损失就为 0

风险 2: 无常损失

当 $a_0 = b_0$ 时,无常损失的图像与 z = 0 平面相切于 y = x 直线

图: 无常损失 δ 图像

风险 3: 诈骗、假币与洗钱犯罪

任何人都可以创建假的 USDT 、BTC 和 ETH 代币并建立流动性池

利用 Uniswap 进行洗钱犯罪难以追查

风险 4: 价格预言机失灵

- 预言机(Oracle)使得链上合约可以读取链下信息,比如某个代币的价格
- 因为套利者的存在,Uniswap 可以扮演价格预言机,但早期版本容易被操纵
- V2 更新:在每一个区块开始就计算并确定报价,此后的交易改变实时价格,但不再改变报价,从而保证报价的相对稳定性

风险 5: 黑客攻击

- 屎山代码, bug 连篇
- 留下后门, 监守自盗
- Uniswap V2 将存放资金的"核心合约"与实现其他功能的"边缘合约"分隔开,从而最小化攻击面

新特性:集中流动性

缩小价格值域,只给某一个区间提供流动性,而不是整个正实数域

图: 集中流动性使储备曲线平移

新特性: 单例和闪电记账

- 单例 (Singleton): 使用一个合约管理链上所有的流动性池
- 闪电记账 (Flash Accounting): 多重交换的过程只需要支付资金进出系统的两次 gas fee

新特性: 挂钩

- 挂钩 (Hooks): 一个与流动性池相匹配的外部合约,其中实现了当流动性池在特定时间检查是否满足特定条件,并执行相应操作
- 特定时间包括: 初始化、调整持仓、交换和支付的之前和之后

图: 挂钩示意图

结论与思考讨论

- 了解了 Uniswap 的利弊之后,你是更愿意选择中心化交易所还是去中心化交易所? 为什么?
- 交易费过高会提升交易者的交易成本,过低又会打击 LP 的积极性。 你认为什么水平的交易费才是最合适的?你是根据什么原则来确定 交易费水平的?
- 在你看来,相较于旧版的多池,单例模式是否违背了 Web3 去中心 化的核心价值观?用一个合约管理所有的流动性池会造成多大的风 险?这种风险相比于它带来的方便性是值得我们去承担的吗?
- 从宏观经济角度来看,为了保持交易所的流动性,社会总是需要在流动性池中锁定一笔价值不菲的资金。在你看来,这笔资金应当被视为储蓄还是投资?假如一个实力雄厚的巨鲸(或者称之为"政府")向流动性池注入大笔资金,会对经济系统造成什么影响?
- 你认为还有哪些值得思考的问题?

Thanks for Listening!