PRODUCTION OF ETHYLENE/ alpha-OLEFIN COPOLYMER

Patent number:

JP6298824

Publication date:

1994-10-25

Inventor:

HASEGAWA AYAKI; others: 03

Applicant:

TOSOH CORP

Classification:

- international:

C08F4/642; C08F4/647; C08F10/00

- european:

Application number:

JP19930257074 19931014

Priority number(s):

Abstract of JP6298824

PURPOSE:To efficiently produce an ethylene/alpha-olefin copolymer at a high temp. by using a polymn. catalyst comprising a specific metallocene compd., an ionizing ionic compd., and an organoaluminum compd. CONSTITUTION: A polymn. catalyst is prepd. by combining a metallocene compd. consisting of a hafnium compd. of formula I or II (wherein Cp<1> and Cp<2> are each cyclopentadienyl, etc.; R<1> is a lower alkylene group, a dialkylsilicon group, etc.; and R<2> and R<3> are each H, halogen, etc.) [e.g. bis (cyclopentadienyl)hafnium dichloride], an ionizing ionic compd. which can convert the metallocene compd. into a cationic metallocene compd. [e.g. (n-butyl)ammonium tetrakis(p-tolyl) borate], and an organoaluminum compd. (e.g. triethylaluminum). The catalyst is used to copolymerize ethylene with an alpha-olefin at 120 deg.C or higher to produce a copolymer.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特計庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-298824

(43)公開日 平成6年(1994)10月25日

(51)Int.Cl.5

識別記号 MFG

庁内整理番号

9053-4 J

FΙ

技術表示箇所

C 0 8 F 4/642

4/647 10/00

審査請求 未請求 請求項の数1 OL (全 14 頁)

(21)出願番号

特願平5-257074

(22)出願日

平成5年(1993)10月14日

(31)優先権主張番号 特願平5-32008

(32)優先日

平5(1993)2月22日

(33)優先権主張国

日本(JP)

(71)出願人 000003300

東ソー株式会社

山口県新南陽市開成町4560番地

(72)発明者 長谷川 彩樹

三重県四日市市別名3丁目4-1

(72)発明者 曽根 誠

三重県三重郡菰野町菰野2529

(72)発明者 安田 彼佐美

三重県三重郡菰野町大羽根園呉竹町10-4

(72)発明者 矢野 明広

三重県四日市市別名3丁目4-1

(54)【発明の名称】 エチレン/αーオレフィン共重合体の製造方法

(57)【要約】

【目的】 高温下において効率よくエチレン/αーオレ フィン共重合体を製造する方法を提供する。

【構成】 a) メタロセン化合物、b) イオン化イオン 性化合物及びc)有機アルミニウム化合物を構成成分と するオレフィン重合用触媒を用いて、エチレン及び炭素 数3以上のαーオレフィンを共重合するエチレン/αー オレフィン共重合体の製造方法において、b) イオン化 イオン性化合物として上記a)メタロセン化合物をカチ オン性のメタロセン化合物にしうる化合物であり、かつ 生成したカチオン性のメタロセン化合物とは反応しない 化合物を用い、120℃以上の重合温度下で重合を行な うことを特徴とするエチレン/αーオレフィン共重合体 の製造方法。

【特許請求の範囲】

【請求項1】 a)メタロセン化合物、b)イオン化イオン性化合物及びc)有機アルミニウム化合物を構成成分とするオレフィン重合用触媒を用いて、エチレン及び炭素数3以上のαーオレフィンを共重合するエチレン/αーオレフィン共重合体の製造方法において、a)メタロセン化合物として下記一般式(1)又は(2)

1

【化1】

[化2] Cp¹ R²

 $\begin{array}{cccc}
C p & R \\
C p & R & 3
\end{array}$

(式中、Cp¹, Cp²は各々独立してシクロペンタジエニル基又は置換シクロペンタジエニル基であり、R¹は低級アルキレン基、置換アルキレン基、ジアルキルシリコン基、ジアルキルゲルマニウム基、アルキルホスフィン基又はアルキルアミン基であり、R¹はCp¹及びCp²を架橋するように作用しており、R², R³は各々独立して水素原子、ハロゲン原子、炭素数1~12の炭化水素基、アルコキシ基又はアリーロキシ基である)で示されるハフニウム化合物を用い、b)イオン化イオン性化合物として上記a)メタロセン化合物をカチオン性のメタロセン化合物にしうる化合物であり、かつ生成したカチオン性のメタロセン化合物とは反応しない化合物を用い、c)有機アルミニウム化合物として下記一般式

(3)

$$\begin{bmatrix} \{1 \le 3\} \\ R^4 \\ A_1 - R^{4'} \\ R^{4'} \end{bmatrix}$$
 (3)

(式中、R⁴, R⁴, R⁴ は各々独立して水素原子、ハロゲン原子、アミド基、アルキル基、アルコキシ基又はアリール基であり、かつ少なくとも1つはアルキル基である)で示される化合物を用い、120℃以上の重合 40温度下で重合を行なうことを特徴とするエチレン/αーオレフィン共重合体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、メタロセン化合物、有機アルミニウム化合物及びイオン化イオン性化合物を構成成分とするオレフィン重合用触媒を用いたエチレン/ αーオレフィン共重合体の製造方法に関する。

[0002]

【従来の技術】エチレン又は一般のαーオレフィンを低 50

圧チーグラー法によって重合する方法は当該技術分野では公知である。この目的のために使用される触媒は、周期表第1A属から第3A属元素の有機金属化合物又は水素化物と混合した遷移金属(周期表第3B属から第2B属元素)の化合物から、懸濁液又は溶液中で操作して、あるいは溶媒又は希釈剤の不在下に操作することにより一般に調製されている。

2

【0003】ところで、上記触媒の他に、最近オレフィンの重合において活性のある特殊な種類の触媒が開発されてきており、その触媒としてチタン、ジルコニウム又はハフニウム(周期表第4B属)等の金属のシクロペンタジエニル誘導体とアルミノキサンとを組み合わせたものが知られている(例えば、J. Boor著「チーグラー・ナッタ触媒および重合」Acadeーmic Press. New York(1979)あるいはH. Sinn及びW. Kaminsky著 Adv. Organoーmet. Chem. 1899(1980))。そして、これらの触媒は、触媒活性が高いという利点と立体規則性オレフィン重合体を生成する能力を有するものである。

【0004】しかし、これらの触媒を大規模に産業上使用することを妨げてきた主たる原因は、基本的にはアルミノキサンを再現性ある形態で合成することが困難であり、そのため適切な再現特性を備えた触媒ならびに重合体類を調製することが困難である点と、アルモキサンは高価であるにもかかわらず、充分な活性を得るためには遷移金属化合物に対するアルモキサンの使用比率を著しく高くしなければならないという点であった。

【0005】そこで、この欠点を解決するために、特開 平3-207704号公報にはメタロセン化合物とイオン化イオン性化合物を反応させることにより製造したイオン性メタロセン化合物を触媒として用いることが提案されている。また、再公表特許92-1723号公報には、ハロゲン化メタロセン化合物と有機金属化合物とを反応せしめ、更に反応物にイオン化イオン性化合物を接触させてなる触媒系を用いたαーオレフィンの重合方法が記載されており、このような触媒系がオレフィン重合触媒として有利に使用されることが開示されている。しかしながら、これらの触媒を用いて高温下でエチレンとαーオレフィンの共重合を行なった場合、生成する共重合体は分子最が低いという問題があった。

【0006】更に、特開平60-217209号公報等には、メタロセン化合物としてハフニウム化合物を触媒の構成成分として用いることにより、高分子量であるオレフィン重合体を製造し得ることが開示されている。しかしながら、この触媒をエチレンとαーオレフィンの共重合において用いた場合、同じ配位子を保持するジルコニウム化合物を用いた触媒と比較して活性がかなり劣り、共重合体の製造効率の点で問題があった。

[0007]

【発明が解決しようとする課題】本発明はこの課題を解決するためになされたものであり、その目的は高温下において効率よくエチレン/αーオレフィン共重合体を製造する方法を提供することにある。

[0008]

【課題を解決するための手段】本発明者等は上記課題を解決するために鋭意検討を行った結果、特定のイオン性メタロセン触媒を用いて重合温度120℃以上でエチレンとαーオレフィンを共重合することにより、高活性でエチレン/αーオレフィン共重合体が得られることを見 10出し、本発明を完成するに至った。すなわち本発明は、a)メタロセン化合物、b)イオン化イオン性化合物及びc)有機アルミニウム化合物を構成成分とするオレフィン重合用触媒を用いて、エチレン及び炭素数3以上のαーオレフィンを共重合するエチレン/αーオレフィン共重合体の製造方法において、a)メタロセン化合物として下記一般式(1)又は(2)

[0009]

【化4】

$$R^{1} \xrightarrow{C p^{1}} H \xrightarrow{R^{2}} R^{3}$$

[0010]

【化5】

$$\begin{array}{c} C p \stackrel{1}{\longrightarrow} R^2 \\ C p \stackrel{2}{\longrightarrow} R^3 \end{array} \tag{2}$$

【0011】(式中、Cp¹, Cp²は各々独立してシクロペンタジエニル基又は置換シクロペンタジエニル基であり、R¹は低級アルキレン基、置換アルキレン基、ジアルキルシリコン基、ジアルキルゲルマニウム基、アルキルホスフィン基又はアルキルアミン基であり、R¹はCp¹及びCp²を架橋するように作用しており、R², R³は各々独立して水素原子、ハロゲン原子、炭素数1~12の炭化水素基、アルコキシ基又はアリーロキシ基である)で示されるハフニウム化合物を用い、b)イオン化イオン性化合物として上記a)メタロセン化合物をカチオン性のメタロセン化合物にしうる化合物であり、かつ生成したカチオン性のメタロセン化合物とは反応しない化合物を用い、c)有機アルミニウム化合物として下記一般式(3)

[0012]

【化6】

【0013】 (式中、R⁴, R⁴, R⁴ は各々独立し

て水素原子、ハロゲン原子、アミド基、アルキル基、アルコキシ基又はアリール基であり、かつ少なくとも1つはアルキル基である)で示される化合物を用い、120 ℃以上の重合温度下で重合を行なうことを特徴とするエチレン/αーオレフィン共重合体の製造方法である。

【0014】本発明で用いられるa) メタロセン化合物 は一般式(1)又は(2)で示されるハフニウム化合物 であり、その具体的な化合物としては、ビス(シクロペ ンタジエニル) ハフニウムジクロライド、ビス (メチル シクロペンタジエニル) ハフニウムジクロライド、ビス (ブチルシクロペンタジエニル) ハフニウムジクロライ ド、エチレンビス (インデニル) ハフニウムジクロライ ド、ジメチルシリルビス(2,4,5-トリメチルシク ロペンタジエニル) ハフニウムジクロライド、ジメチル シリルビス (3-メチルシクロペンタジエニル) ハフニ ウムジクロライド、ジメチルシリルビス (4-t-ブチ ル, 2-メチルシクロペンタジエニル) ハフニウムジク ロライド、ジエチルシリルビス(2,4,5-トリメチ ルシクロペンタジエニル) ハフニウムジクロライド、ジ 20 エチルシリルビス (2, 4-ジメチルシクロペンタジエ ニル) ハフニウムジクロライド、ジエチルシリルビス (3-メチルシクロペンタジエニル) ハフニウムジクロ ライド、ジエチルシリルビス (4-t-ブチル, 2-メ チルシクロペンタジエニル)ハフニウムジクロライド、 イソプロピル (シクロペンタジエニル) (フルオレニ ル) ハフニウムジクロライド、ジフェニルメチレン(シ クロペンタジエニル) (フルオレニル) ハフニウムジク ロライド、メチルフェニルメチレン (シクロペンタジエ ニル) (フルオレニル) ハフニウムジクロライド、イソ プロピル (シクロペンタジエニル) (2, 7-ジェーブ チルフルオレニル) ハフニウムジクロライド、ジフェニ ルメチレン (シクロペンタジエニル) (2, 7-ジェー ブチルフルオレニル) ハフニウムジクロライド、メチル フェニルメチレン (シクロペンタジエニル) (2.7-ジェーブチルフルオレニル)ハフニウムジクロライド、 イソプロピリデンビス (シクロペンタジエニル) ハフニ ウムジクロライド、ジフェニルメチレンビス (シクロペ ンタジエニル) ハフニウムジクロライド、メチルフェニ ルメチレンビス (シクロペンタジエニル) ハフニウムジ クロライド、イソプロピリデン(シクロペンタジエニ ル) (テトラメチルシクロペンタジエニル) ハフニウム ジクロライド、ジフェニルメチレン (シクロペンタジエ ニル) (テトラメチルシクロペンタジエニル) ハフニウ ムジクロライド、イソプロピリデンビス (インデニル) ハフニウムジクロライド、ジフェニルメチレンビス (イ ンデニル) ハフニウムジクロライド、メチルフェニルメ チレンビス (インデニル) ハフニウムジクロライド等が 挙げられるが、これらに限定されるものではない。

【0015】また、本発明において用いられるb) イオ 50 ン化イオン性化合物は上記a) メタロセン化合物をカチ

オン性のメタロセン化合物にしうる化合物であり、かつ 生成したカチオン性のメタロセン化合物とは反応しない 化合物であり、具体的にはトリ(n-ブチル)アンモニ ウムテトラキス (p-トリル) ボレート、トリ (nーブ チル) アンモニウムテトラキス (m-トリル) ボレー ト、トリ (n-ブチル) アンモニウムテトラキス (2, 4-ジメチルフェニル) ボレート、トリ (n-ブチル) アンモニウムテトラキス (3, 5-ジメチルフェニル) ボレート、トリ (n-ブチル) アンモニウムテトラキス (ペンタフルオロフェニル) ボレート、N, N-ジメチ ルアニリニウムテトラキス (p-トリル) ボレート、 N, N-ジメチルアニリニウムテトラキス (m-トリ ル) ボレート、N、N-ジメチルアニリニウムテトラキ ス (2, 4-ジメチルフェニル) ボレート、N, N-ジ メチルアニリニウムテトラキス (3, 5-ジメチルフェ ニル) ボレート、N, N-ジメチルアニリニウムテトラ キス (ペンタフルオロフェニル) ボレート、トリフェニ ルカルベニウムテトラキス (p-トリル) ボレート、ト リフェニルカルベニウムテトラキス (m-トリル) ボレ ート、トリフェニルカルベニウムテトラキス(2,4-20 ジメチルフェニル) ボレート、トリフェニルカルベニウ ムテトラキス (3, 5-ジメチルフェニル) ボレート、 トリフェニルカルベニウムテトラキス (ペンタフルオロ フェニル) ボレート、トロピリウムテトラキス (p-ト リル) ボレート、トロピリウムテトラキス (m-トリ ル) ボレート、トロピリウムテトラキス (2, 4ージメ チルフェニル) ボレート、トロピリウムテトラキス (3, 5-ジメチルフェニル) ボレート、トロピリウム テトラキス (ペンタフルオロフェニル) ボレート、リチ ウムテトラキス (ペンタフルオロフェニル) ボレート、 リチウムテトラキス (フェニル) ボレート、リチウムテ トラキス (p-トリル) ボレート、リチウムテトラキス (m-トリル) ボレート、リチウムテトラキス (2, 4) ージメチルフェニル) ボレート、リチウムテトラキス (3, 5-ジメチルフェニル) ボレート、リチウムテト ラフルオロボレート、ナトリウムテトラキス (ペンタフ ルオロフェニル) ボレート、ナトリウムテトラキス (フ ェニル) ボレート、ナトリウムテトラキス (p-トリ ル) ボレート、ナトリウムテトラキス (m-トリル) ボ レート、リチウムテトラキス(2, 4-ジメチルフェニ 40 ル) ボレート、ナトリウムテトラキス (3, 5-ジメチ ルフェニル) ボレート、ナトリウムテトラフルオロボレ ート、カリウムテトラキス (ペンタフルオロフェニル) ボレート、カリウムテトラキス (フェニル) ボレート、 カリウムテトラキス (p-トリル) ボレート、ナトリウ ムテトラキス (m-トリル) ボレート、カリウムテトラ キス (2, 4-ジメチルフェニル) ボレート、カリウム テトラキス (3, 5ージメチルフェニル) ボレート、カ リウムテトラフルオロボレートなどのホウ素化合物、ト リ (n-ブチル) アンモニウムテトラキス (p-トリ

ル) アルミネート、トリ (n-ブチル) アンモニウムテ トラキス (m-トリル) アルミネート、トリ (n-ブチ ル) アンモニウムテトラキス (2, 4-ジメチルフェニ ル) アルミネート、トリ (n-ブチル) アンモニウムテ トラキス (3, 5-ジメチルフェニル) アルミネート、 トリ (n-ブチル) アンモニウムテトラキス (ペンタフ ルオロフェニル)アルミネート、N、N-ジメチルアニ リニウムテトラキス (p-トリル) アルミネート、N, N-ジメチルアニリニウムテトラキス (m-トリル) ア ルミネート、N, N-ジメチルアニリニウムテトラキス (2, 4-ジメチルフェニル) アルミネート、N, N-ジメチルアニリニウムテトラキス(3,5-ジメチルフ ェニル) アルミネート、N, N-ジメチルアニリニウム テトラキス (ペンタフルオロフェニル) アルミネート、 トリフェニルカルベニウムテトラキス (p-トリル) ア ルミネート、トリフェニルカルベニウムテトラキス (m ートリル)アルミネート、トリフェニルカルベニウムテ トラキス(2,4-ジメチルフェニル)アルミネート、 トリフェニルカルベニウムテトラキス (3,5-ジメチ ルフェニル)アルミネート、トリフェニルカルベニウム テトラキス (ペンタフルオロフェニル) アルミネート、 トロピリウムテトラキス (p-トリル) アルミネート、 トロピリウムテトラキス (m-トリル) アルミネート、 トロピリウムテトラキス(2,4-ジメチルフェニル) アルミネート、トロピリウムテトラキス (3, 5ージメ チルフェニル)アルミネート、トロピリウムテトラキス (ペンタフルオロフェニル) アルミネート、リチウムテ トラキス (ペンタフルオロフェニル) アルミネート、リ チウムテトラキス (フェニル) アルミネート、リチウム テトラキス ·(p-トリル) アルミネート、リチウムテト ラキス (m-トリル) アルミネート、リチウムテトラキ ス(2,4-ジメチルフェニル)アルミネート、リチウ ムテトラキス (3、5-ジメチルフェニル) アルミネー ト、リチウムテトラフルオロアルミネート、ナトリウム テトラキス (ペンタフルオロフェニル) アルミネート、 ナトリウムテトラキス (フェニル) アルミネート、ナト リウムテトラキス (p-トリル) アルミネート、ナトリ ウムテトラキス (m-トリル) アルミネート、リチウム テトラキス(2,4-ジメチルフェニル)アルミネー ト、ナトリウムテトラキス(3,5-ジメチルフェニ ル) アルミネート、ナトリウムテトラフルオロアルミネ ート、カリウムテトラキス (ペンタフルオロフェニル) アルミネート、カリウムテトラキス (フェニル) アルミ ネート、カリウムテトラキス (p-トリル) アルミネー ト、ナトリウムテトラキス (m-トリル) アルミネー ト、カリウムテトラキス(2,4-ジメチルフェニル) アルミネート、カリウムテトラキス(3,5-ジメチル フェニル) アルミネート、カリウムテトラフルオロアル ミネートなどのアルミニウム化合物等が挙げられるが、 これらに限定されない。

【0016】更に、本発明において用いられる c)有機アルミニウム化合物は一般式 (3)で示される化合物であり、これらの具体的な化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、ジイソプロピルアルミニウム、ジイソプロピルアルミニウム、ドリイソブチルアルミニウム、トリイソブチルアルミニウム、ジイソブチルアルミニウムクロライド、イソブチルアルミニウムクロライド、イソブチルアルミニウムジクロライド、トリ (tーブチル)アルミニウム、ジ(tーブチル)アルミニウムクロライド、トリアミルアルミニウムジクロライド、トリアミルアルミニウムジクロライド、アミルアルミニウムジクロライド、アミルアルミニウムジクロライド、アミルアルミニウムジクロライド等が挙げられるが、これらに限定されない。

【0017】本発明において、上記のa)メタロセン化合物、b)イオン化イオン性化合物及びc)有機アルミニウム化合物から触媒を調製する方法としては、例えば、これら化合物を不活性な溶媒下で混合する方法が挙げられるが、これに限定されるものではない。

【0018】また、用いるb) イオン化イオン性化合物の量はa) メタロセン化合物に対して0.1~100倍mol程度用いられ、特に0.5~30倍mol程度とすることが好ましい。

【0019】更に、c) 有機アルミニウム化合物の量は特に限定されないが、好ましくはa) メタロセン化合物に対して $1\sim10000$ 倍mol程度用いられる。

【0020】本発明において用いられる炭素数3以上の α -オレフィンとしては、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン又はスチレン等を挙げることができるが、これらに限定されることなく、これらの1種を用いても2種以上混合して用いてもよい。

【0021】重合方法としては、溶媒を用いた溶液重合 法と公知の手段である高温高圧法等が挙げられる。

【0022】溶液重合法としては、重合条件は以下のように挙げられる。重合温度は120 $^{\circ}$ 以上であれば特に限定されないが、120 $^{\circ}$ 300 $^{\circ}$ が好ましい。また、重合時の圧力についても特に限定されないが、大気圧 $^{\circ}$ 200 k g/c m $^{\circ}$ が好ましい。

【0023】高圧法としては、重合条件は以下のように 挙げられる。重合温度は120 C以上であれば特に限定 40 されないが、 $120\sim300$ Cが好ましい。また、重合 時の圧力についても特に限定されないが、 $500\sim35$ 00 kg/cm^2 が好ましい。

[0024]

【実施例】以下、実施例により本発明を更に詳細に説明 するが、本発明はこれらの実施例に限定されるものでは ない。

【0025】なお、重合操作、反応及び溶媒精製は、すべて不活性ガス雰囲気下で行った。また反応に用いた溶媒等は、すべて予め公知の方法で精製、乾燥及び/又は 50

脱酸素を行ったものを用い、反応に用いた化合物は、公 知の方法により合成、同定したものを用いた。

【0026】更に、実施例で得られたエチレン/ α -オレフィン共重合体は、ゲルパーミエーションクロマトグラフィー(GPC)(WATERS社製150C型)を用い、カラムとしてTSK-GEL GMHHR-H(S)(東ソー(株)製)、溶離液として α -ジクロロベンゼンを用い、測定温度140 $^{\circ}$ C、測定濃度7 $^{\circ}$ mgサンプル/10 $^{\circ}$ ml、 α -ジクロロベンゼンの条件下で測定した。

【0027】実施例1

溶媒として脂肪族系炭化水素(IPソルベント1620 (出光石油化学社製))600mlを1l反応器に加 え、これにヘキセン20mlを加え、反応器の温度を1 50℃に設定した。そして、この反応器にエチレン圧2 0kg/cm²となるようにエチレンを導入した。

【0028】一方、別の容器においてエチレンビス(インデニル)ハフニウムジクロライド $1\mu mole$ トルエンに溶解し、そこにトリイソブチルアルミニウムのトルエン溶液(アルミニウム20wt%)をアルミニウム当り $250\mu molm$ 元で1時間撹拌した。次に、この混合物を、N,Nージメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート $2\mu mole$ トルエン2mlに溶解した溶液に加え10分間撹拌し、ここで得られた混合物を窒素圧で前記反応器に導入した。

【0029】混合物を反応器に導入した後、反応器を150℃に保持したまま1500rpmで1時間攪拌し、反応生成物を得、更に、この得られた反応生成物を真空下、100℃で6時間乾燥したところ、31gのエチレン/へキセン共重合体が得られた。得られた共重合体の重量平均分子量(Mw)などの測定結果を表1に示す。

【0030】比較例1

エチレンビス(インデニル)ハフニウムジクロライドの 代わりにエチレンビス(インデニル)ジルコニウムジク ロライドを用いた以外は実施例1と同様の方法により共 重合体を得た。その結果を表1に示す。

【0031】実施例2

重合温度を170℃にした以外は実施例1と同様の方法 により共重合体を得た。その結果を表1に示す。

【0032】比較例2

重合温度を170℃にした以外は比較例1と同様の方法により共重合体を得た。その結果を表1に示す。

【0033】実施例3

エチレンビス (インデニル) ハフニウムジクロライドの 代わりにビス (シクロペンタジエニル) ハフニウムジクロライドを用いた以外は実施例1と同様の方法により共 重合体を得た。その結果を表1に示す。

【0034】比較例3

ビス (シクロペンタジエニル) ハフニウムジクロライド の代わりにビス (シクロペンタジエニル) ジルコニウム

ジクロライドを用いた以外は実施例3と同様の方法により共重合体を得た。その結果を表1に示す。

【0035】実施例4

ビス (シクロペンタジエニル) ハフニウムジクロライド の代わりにイソプロピリデン (フルオレニル) (シクロペンタジエニル) ハフニウムジクロライドを用いた以外 は実施例3と同様の方法により共重合体を得た。その結果を表1に示す。

【0036】比較例4

ビス(シクロペンタジエニル)ハフニウムジクロライドの代わりにイソプロピリデン(フルオレニル)(シクロペンタジエニル)ジルコニウムジクロライドを用いた以外は実施例3と同様の方法により共重合体を得た。その結果を表1に示す。

10

[0037]

【表 1 】

10

20

30

40

	重合条	苹						
	使用メタロセン化合物	温度 (*C)	へキセン (m 1)	圧力 (kg/cm ²)	(8)	Mw	Mw/Mn	融点(で)
実施例1	Et (inde) 2HfC12	150	2 0	2.0	3.1	64400	2.5	102, 120
実施例2	Et (inde) 2HfC12	170	2 0	20	1.7	38500	2. 6	107, 121
无数室1	Et (inde) 2 r c 1 2	150	2 0	2 0	4 0	20400	2. 2	124
比較例2	Et (inde) 2 Zr C1 2	170	2 0	. 20	2 8	16500	2.0	124
実施例3	CP2HfC12	150	2 0	20	1 8	57300	2. 2	122
比較例3	Cp2ZrC12	150	2 0	20	2 4	14200	1.9	126
実施例4	iPr (Cp) (Flu) HfCl 2	150	2 0	2.0	4	170000	3, 2	79, 119
比較例4	iPr (Cp) (Flu) ZrCl ₂	150	2 0	2.0	9	40000	2. 5	118, 125

【0038】実施例5

本例においては、高温高圧重合用に装備された反応器を用いて重合を行った。エチレン、ヘキセンを連続的反応器内に圧入し、全圧を $950 \, k \, g/c \, m^2$ に、ヘキセン 濃度を34.0 モル%になるように設定した。そして、この反応器を $1500 \, r \, p \, m$ で撹拌した。

【0039】一方、別の容器においてエチレンビス (イ 50 加え、触媒を得た。

ンデニル) ハフニウムジクロライドのトルエン溶液に、トリイソブチルアルミニウムのトルエン溶液をアルミニウムがジルコニウム当り250倍モルになるように加えた。さらに、そこにN、Nージメチルアニリニウムテトラキス (ペンタフルオロフェニル) ボレートのトルエン溶液をホウ素がジルコニウム当り2倍モルになるように加え 触媒を得た。

【0040】その後、得られた触媒溶液を反応器へ連続的に供給し、反応器の温度を180℃になるように設定して重合を行った。その結果を表2に示す。

【0041】実施例6

重合温度を175℃ならびにヘキセン濃度を36.0モル%にした以外は実施例5と同様の方法で重合を行った。その結果を表2に示す。

【0042】実施例7

重合温度を165℃ならびにヘキセン濃度を35.0モル%にした以外は実施例5と同様の方法で重合を行っ

た。その結果を表2に示す。

【0043】比較例5

エチレンビス(インデニル)ハフニウムジクロライドの 代わりにエチレンビス(インデニル)ジルコニウムジク ロライドを用い、重合温度を155℃ならびにヘキセン 激度を32.0モル%にした以外は実施例5と同様の方 法で重合を行った。その結果を表2に示す。

14

[0044]

【表2】

20

30

S 0

0 9 8 6

0 0 0 വവവ 9 9

0 0 0

വവവവ

2 2 2 2 2

4 4 4

3 3 3 m m m

ကကက

<

1 1 1

--

1 ı -1

 ∞

S

1 t ĺ

m m m

н н

2 2 2

9 2

海路 海路 海路 海路 多种 新路 多种 新路 多比较 多,比较 多,

6 6

ß

က

2

恤媒溶液供給速度 (ロロ/ロロ)

Zr蚰媒濃度 (µmol)

Z r / B / A 1

A1化合物

B化合物

錯体

單合温度

<u>ည</u>

(モル比)

福祉(2)	116 95, 11 98, 11
密度 (g/cm ³)	0.91.9 0.907 0.912 0.932
MFR (8/10 4)	3. 3 1. 2 1. 1 70. 0
Mw (*10 ⁻⁴)	7. 2 10. 2 10. 5 3. 7
生産性(kg/hr)	12.3 10.9 11.0 26.2
エチレン圧 (kg/cm ²)	9 20 9 50 5 0
1 - ヘキセン (mo 1%)	34.0 36.0 35.0
	実態図5 実態図6 実態図7 比較図5

ပ H Z r H] NZ () e) Ф U C ь Ħ H 2

ഹ

9

[B

C)

e)

 $\mathbf{\Sigma}$

모

[0045]

【発明の効果】上述のハフニウム金属含有イオン性メタ ロセン触媒を用い、かつ重合温度120℃以上の重合条 件においてエチレンとαーオレフィンの共重合を行う と、触媒の活性は著しく優れ、効率的に共重合体を製造 することができる。

【手続補正書】

【提出日】平成6年2月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項1】 a)メタロセン化合物、b)イオン化イオン性化合物及びc)有機アルミニウム化合物を構成成分とするオレフィン重合用触媒を用いて、エチレン及び炭素数3以上のαーオレフィンを共重合するエチレン/αーオレフィン共重合体の製造方法において、a)メタロセン化合物として下記一般式(1)又は(2)

【化1】

$$\begin{array}{c|c}
C & p & 1 & R & 2 \\
R & 1 & P & R & 3
\end{array}$$
(1)

【化2】

(式中、Cp¹, Cp²は各々独立して置換又は非置換のシクロペンタジエニル基、インデニル基又はフルオレニル基であり、R¹は置換又は非置換のアルキレン基、ジアルキルシランジイル基、ジアルキルゲルマンジイル基、アルキルホスフィンジイル基又はアルキルイミノ基であり、R¹はCp¹及びCp²を架橋するように作用しており、R²、R³は各々独立して水素原子、ハロゲン原子、炭素数1~12の炭化水素基、アルコキシ基であてり、ロゲン原子、炭素数1~12の炭化水素基、アルコキシ基である)で示されるハフニウム化合物を用い、b)イオン化イオン性化合物として上記a)メタロセン化合物をカチオン性のメタロセン化合物にしうる化合物であり、かつ生成したカチオン性のメタロセン化合物とは反応しない化合物を用い、c)有機アルミニウム化合物として下記一般式(3)

【化3】

$$R^{4}$$
 $A_{1}-R^{4}$
 A_{3}
 A_{4}
(3)

(式中、 R^4 , $R^{4'}$, $R^{4'}$ は各々独立して水素原子、ハロゲン原子、 \underline{r} ミノ基、アルキル基、アルコキシ基又はアリール基であり、かつ少なくとも1つはアルキル基である)で示される化合物を用い、120℃以上の重合温度下で重合を行なうことを特徴とするエチレン/ α –

オレフィン共重合体の製造方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0003

【補正方法】変更

【補正内容】

【0003】ところで、上記触媒の他に、最近オレフィンの重合において活性のある特殊な種類の触媒が開発されてきており、その触媒としてチタン、ジルコニウム又はハフニウム(周期表第4B属)等の金属のシクロペンタジエニル誘導体とアルミノキサンとを組み合わせたものが知られている(例えば、J. Boor著「チーグラー・ナッタ触媒および重合」Academic Press. New York(1979)あるいはH. Sinn及びW. Kaminsky著 Adv. Organomet. Chem. 1899(1980))。そして、これらの触媒は、触媒活性が高いという利点と立体規則性オレフィン重合体を生成する能力を有するものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0004

【補正方法】変更

【補正内容】

【0004】しかし、これらの触媒を大規模に産業上使用することを妨げてきた主たる原因は、基本的にはアルミノキサンを再現性ある形態で合成することが困難であり、そのため適切な再現特性を備えた触媒ならびに重合体類を調製することが困難である点と、アルミノキサンは高価であるにもかかわらず、充分な活性を得るためには遷移金属化合物に対するアルミノキサンの使用比率を著しく高くしなければならないという点であった。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0005

【補正方法】変更

【補正内容】

【0005】そこで、この欠点を解決するために、特開 平3-207704号公報にはメタロセン化合物とイオン化イオン性化合物を反応させることにより製造したイオン性メタロセン化合物を触媒として用いることが提案されている。また、WO92-1723号公報には、ハロゲン化メタロセン化合物と有機金属化合物とを反応せしめ、更に反応物にイオン化イオン性化合物を接触させてなる触媒系を用いたαーオレフィンの重合方法が記載されており、このような触媒系がオレフィン重合触媒として有利に使用されることが開示されている。しかしながら、これらの触媒を用いて高温下でエチレンとαーオレフィンの共重合を行なった場合、生成する共重合体は

分子量が低いという問題があった。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】(式中、Cp¹, Cp²は各々独立して置換 又は非置換のシクロペンタジエニル基、インデニル基又 はフルオレニル基であり、R¹は置換又は非置換のアル キレン基、ジアルキルシランジイル基、ジアルキルゲル マンジイル基、アルキルホスフィンジイル基又はアルキ ルイミノ基であり、R¹はCp¹及びCp²を架橋するよ うに作用しており、R², R³は各々独立して水素原子、ハロゲン原子、炭素数1~12の炭化水素基、アルコキシ基又はアリーロキシ基である)で示されるハフニウム 化合物を用い、b)イオン化イオン性化合物として上記 a)メタロセン化合物をカチオン性のメタロセン化合物 にしうる化合物であり、かつ生成したカチオン性のメタロセン化合物とは反応しない化合物を用い、c)有機アルミニウム化合物として下記一般式(3)

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

【0013】(式中、R⁴、R⁴、R⁴、は各々独立して水素原子、ハロゲン原子、アミノ基、アルキル基、アルコキシ基又はアリール基であり、かつ少なくとも1つはアルキル基である)で示される化合物を用い、120 ℃以上の重合温度下で重合を行なうことを特徴とするエチレン/αーオレフィン共重合体の製造方法である。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】本発明で用いられるa)メタロセン化合物は一般式(1)又は(2)で示されるハフニウム化合物であり、その具体的な化合物としては、ビス(シクロペンタジエニル)ハフニウムジクロライド、ビス(メチルシクロペンタジエニル)ハフニウムジクロライド、ビス(ブチルシクロペンタジエニル)ハフニウムジクロライド、ビス(ブチルシクロペンタジエニル)ハフニウムジクロライド、ジメチルシランジイルビス(2,4,5ートリメチルシウロペンタジエニル)ハフニウムジクロライド、ジメチルシランジイルビス(3ーメチルシクロペンタジエニル)ハフニウムジクロライド、ジメチルシランジイルビス(4ーtーブチル,2ーメチルシクロペンタジエニル)ハフニウムジクロライド、ジエチルシランジイルビス(4,5ートリメチルシクロペンタジエニル)ハフニウムジクロライド、ジエチルシランジイルビス(2,4,5ートリメチルシクロペンタジエニル)ハ

フニウムジクロライド、ジエチルシランジイルビス (2, 4-ジメチルシクロペンタジエニル) ハフニウム ジクロライド、ジエチルシランジイルビス (3-メチル シクロペンタジエニル) ハフニウムジクロライド、ジエ チル<u>シランジイル</u>ビス(4 - t - ブチル, 2 - メチルシ クロペンタジエニル) ハフニウムジクロライド、イソプ ロピリデン (シクロペンタジエニル) (フルオレニル) ハフニウムジクロライド、ジフェニルメチレン (シクロ ペンタジエニル) (フルオレニル) ハフニウムジクロラ イド、メチルフェニルメチレン (シクロペンタジエニ ル) (フルオレニル) ハフニウムジクロライド、イソプ ロピリデン (シクロペンタジエニル) (2, 7-ジー t ーブチルフルオレニル)ハフニウムジクロライド、ジフ エニルメチレン(シクロペンタジエニル)(2,7ージ -t-ブチルフルオレニル)ハフニウムジクロライド、 メチルフェニルメチレン (シクロペンタジエニル) (2, 7-ジーt-ブチルフルオレニル) ハフニウムジ クロライド、イソプロピリデンビス (シクロペンタジエ ニル) ハフニウムジクロライド、ジフェニルメチレンビ ス (シクロペンタジエニル) ハフニウムジクロライド、 メチルフェニルメチレンビス (シクロペンタジエニル) ハフニウムジクロライド、イソプロピリデン(シクロペ ンタジエニル) (テトラメチルシクロペンタジエニル) ハフニウムジクロライド、ジフェニルメチレン (シク ロペンタジエニル) (テトラメチルシクロペンタジエニ ル) ハフニウムジクロライド、イソプロピリデンビス (インデニル) ハフニウムジクロライド、ジフェニルメ チレンビス (インデニル) ハフニウムジクロライド、メ チルフェニルメチレンビス (インデニル) ハフニウムジ クロライド等が挙げられるが、これらに限定されるもの ではない。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】また、本発明において用いられるb)イオン化イオン性化合物は上記a)メタロセン化合物をカチオン性のメタロセン化合物にしうる化合物であり、かつ生成したカチオン性のメタロセン化合物とは反応しない化合物であり、具体的にはトリ(nーブチル)アンモニウムテトラキス(pートリル)ボレート、トリ(nーブチル)アンモニウムテトラキス(2,4ージメチルフェニル)ボレート、トリ(nーブチル)アンモニウムテトラキス(3,5ージメチルフェニル)ボレート、トリ(nーブチル)アンモニウムテトラキス(3,5ージメチルフェニル)ボレート、トリ(nーブチル)アンモニウムテトラキス(パンタフルオロフェニル)ボレート、N,Nージメチルアニリニウムテトラキス(mートリル)ボレート、N,Nージメチルアニリニウムテトラキス(mートリ

ル) ボレート、N, N-ジメチルアニリニウムテトラキ ス (2, 4-ジメチルフェニル) ボレート、N, N-ジ メチルアニリニウムテトラキス (3, 5-ジメチルフェ ニル) ボレート、N, N-ジメチルアニリニウムテトラ キス (ペンタフルオロフェニル) ボレート、トリフェニ ルカルベニウムテトラキス (p-トリル) ボレート、ト リフェニルカルベニウムテトラキス (m-トリル) ボレ ート、トリフェニルカルベニウムテトラキス (2, 4-ジメチルフェニル) ボレート、トリフェニルカルベニウ ムテトラキス (3, 5-ジメチルフェニル) ボレート、 トリフェニルカルベニウムテトラキス (ペンタフルオロ フェニル) ボレート、トロピリウムテトラキス (p-ト リル) ボレート、トロピリウムテトラキス (m-トリ ル) ボレート、トロピリウムテトラキス(2,4-ジメ チルフェニル) ボレート、トロピリウムテトラキス (3, 5-ジメチルフェニル) ボレート、トロピリウム テトラキス (ペンタフルオロフェニル) ボレート、リチ ウムテトラキス (ペンタフルオロフェニル) ボレート、 リチウムテトラキス (フェニル) ボレート、リチウムテ トラキス (p-トリル) ボレート、リチウムテトラキス (m-トリル) ボレート、リチウムテトラキス (2, 4 -ジメチルフェニル) ボレート、リチウムテトラキス (3, 5-ジメチルフェニル) ボレート、リチウムテト ラフルオロボレート、ナトリウムテトラキス (ペンタフ ルオロフェニル) ボレート、ナトリウムテトラキス (フ ェニル) ボレート、ナトリウムテトラキス (p-トリ ル) ボレート、ナトリウムテトラキス (m-トリル) ボ レート、ナトリウムテトラキス(2,4-ジメチルフェ ニル) ボレート、ナトリウムテトラキス (3,5-ジメ チルフェニル) ボレート、ナトリウムテトラフルオロボ レート、カリウムテトラキス (ペンタフルオロフェニ ル) ボレート、カリウムテトラキス (フェニル) ボレー ト、カリウムテトラキス (p-トリル) ボレート、カリ ウムテトラキス (m-トリル) ボレート、カリウムテト ラキス (2, 4-ジメチルフェニル) ボレート、カリ ウムテトラキス (3, 5-ジメチルフェニル) ボレー ト、カリウムテトラフルオロボレートなどのホウ素化合 物、トリ (n-ブチル) アンモニウムテトラキス (p-トリル) アルミネート、トリ (n-ブチル) アンモニウ ムテトラキス (m-トリル) アルミネート、トリ (n-ブチル) アンモニウムテトラキス (2, 4-ジメチルフ ェニル) アルミネート、トリ (n-ブチル) アンモニウ ムテトラキス (3, 5-ジメチルフェニル) アルミネー ト、トリ (n-ブチル) アンモニウムテトラキス (ペン タフルオロフェニル)アルミネート、N, N-ジメチル アニリニウムテトラキス (p-トリル) アルミネート、 N, N-ジメチルアニリニウムテトラキス (m-トリ ル) アルミネート、N, N-ジメチルアニリニウムテト ラキス(2,4-ジメチルフェニル)アルミネート、 N, N-ジメチルアニリニウムテトラキス (3, 5-ジ

メチルフェニル) アルミネート、N, N-ジメチルアニ リニウムテトラキス (ペンタフルオロフェニル) アルミ ネート、トリフェニルカルベニウムテトラキス (p-ト リル)アルミネート、トリフェニルカルベニウムテトラ キス (m-トリル) アルミネート、トリフェニルカルベ ニウムテトラキス(2,4-ジメチルフェニル)アルミ ネート、トリフェニルカルベニウムテトラキス (3.5) -ジメチルフェニル)アルミネート、トリフェニルカル ベニウムテトラキス (ペンタフルオロフェニル) アルミ ネート、トロピリウムテトラキス (p-トリル) アルミ ネート、トロピリウムテトラキス (m-トリル) アルミ ネート、トロピリウムテトラキス(2,4-ジメチルフ ェニル)アルミネート、トロピリウムテトラキス (3. 5-ジメチルフェニル)アルミネート、トロピリウムテ トラキス (ペンタフルオロフェニル) アルミネート、リ チウムテトラキス (ペンタフルオロフェニル) アルミネ ート、リチウムテトラキス(フェニル)アルミネート、 リチウムテトラキス (p-トリル) アルミネート、リチ ウムテトラキス (m-トリル) アルミネート、リチウム テトラキス(2,4-ジメチルフェニル)アルミネー ト、リチウムテトラキス (3,5-ジメチルフェニ ル) アルミネート、リチウムテトラフルオロアルミネー ト、ナトリウムテトラキス (ペンタフルオロフェニル) アルミネート、ナトリウムテトラキス (フェニル) アル ミネート、ナトリウムテトラキス (p-トリル) アルミ ネート、ナトリウムテトラキス (m-トリル) アルミネ ート、ナトリウムテトラキス(2,4-ジメチルフェニ ル) アルミネート、ナトリウムテトラキス (3, 5-ジ メチルフェニル)アルミネート、ナトリウムテトラフル オロアルミネート、カリウムテトラキス (ペンタフルオ ロフェニル) アルミネート、カリウムテトラキス (フェ ニル) アルミネート、カリウムテトラキス (p-トリ ル) アルミネート、<u>カリウム</u>テトラキス (m-トリル) アルミネート、カリウムテトラキス(2,4-ジメチル フェニル)アルミネート、カリウムテトラキス(3,5 ージメチルフェニル) アルミネート、カリウムテトラフ ルオロアルミネートなどのアルミニウム化合物等が挙げ られるが、これらに限定されない。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0027

【補正方法】変更

【補正内容】

【0027】実施例1

溶媒として脂肪族系炭化水素(IPソルベント1620(出光石油化学社製))600mlを11反応器に加え、これにヘキセン20mlを加え、反応器の温度を150℃に設定した。そして、この反応器に圧力が20kg/cm²となるようにエチレンを供給した。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】混合物を反応器に導入した後、反応器を150℃に保持したまま1500rpmで1時間攪拌し、 共重合反応を行わせ、得られた反応生成物を真空下、100℃で6時間乾燥したところ、31gのエチレン/へ キセン共重合体が得られた。得られた共重合体の重量平均分子最 (Mw) などの測定結果を表1に示す。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0039

【補正方法】変更

【補正内容】

【0039】一方、別の容器においてエチレンビス(インデニル)ハフニウムジクロライドのトルエン溶液に、トリイソブチルアルミニウムのトルエン溶液をアルミニウムがハフニウム当り250倍モルになるように加えた。さらに、そこにN、Nージメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液をホウ素がハフニウム当り2倍モルになるように加え、触媒溶液を得た。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】 0044

【補正方法】変更

【補正内容】

[0044]

【表2】

	重合温度(℃)	19067	けのもy B化合物	Al化合物	19ntv/B/Al 19ntv地線濃度 (モル比) (μmol/1	1906/勉媒濃度 D模熔液供給近 (μmol/1) (cc/時間)	触媒溶液供給速度 (cc/時間)
東施例5	180	H - 1	H-1 B-1	i - Bu ₃ Al	i - Bu 3 A 1 1/2/250	650	165
実施例6	175	H-1	B - 1	$i - B u \frac{3}{3} A l$	-Bu3A1 1/2/250	650	290
実施例7	165	H - 1	B - 1	$i - B u \frac{3}{3} A I$	-BugA1 1/2/250	650	180
比較到5	165	Z - 1	B - 1	1 - B u 3 A 1	-Bu3A1 1/2/250	0 2 9	290

c) エチレン圧 生産性 Mw MFR 密度 融点 6) (kg/cm ²) (kg/hr) (×10 ⁴) (g/10分) (g/cm ³) (C)	950 12.3 7.2 3.3 0.919 116 950 10.9 10.2 1.2 0.907 95.114 950 11.0 10.5 1.1 0.912 98.114 950 26.2 3.7 70.0 0.932 124
キセン エチレン圧 1%) (kg/cm	0
1 - ~ (m o	実施例5 34 実施例6 36 実施例7 35 比較例5 32

 $H-1:Et (inde) {}_{2}HfC1 {}_{2}$ $Z-1:Et (inde) {}_{2}ZrC1 {}_{2}$ $B-1:[Ph (Me) {}_{2}NH][B (C_{|}$