1 对称特征值问题

关于对称特征值问题的常用算法有(直接法):

- Jacobi 迭代: 最古老, 收敛速度较慢, 但精度较高, 且很适合并行计算。
- Rayleigh 商迭代: 一般具有三次收敛性, 但需要解方程组。
- 对称 QR 迭代: 对称矩阵的 QR 方法. 对于对称三对角矩阵, 若只计算特征值, 则速度最快 (运算量为 $\mathcal{O}(n^2)$)。如果还需要计算特征向量,则运算量约为 $6n^3$ 。
- 分而治之法: 同时计算特征值和特征向量的一种快速算法。基本思想时将大矩阵分解形成小矩阵, 然后利用递归思想求特征值。在最坏的情形下, 运算量为 $\mathcal{O}(n^3)$ 。在实际应用中, 平均为 $\mathcal{O}(n^{2\cdot3})$ 。如果使用快速多极子算法 (FMM) 后, 理论上的运算量可降低到 $\mathcal{O}(n\log^p n)$, 其中 p 时一个较小的整数, 这使得分而治之算法陈给目前计算对称三对角矩阵的 特征值和特征向量的首选方法。
- 对分法和反迭代: 对分法主要用于求解对称三交矩阵在某个区间中的特征值,运算量约为 $\mathcal{O}(kn)$ 。其中 k 为所需计算的特征值的个数。反迭代用于计算特征向量,在最佳情况下,即特征值"适当分离"时,运算量约为 $\mathcal{O}(kn)$,但在最差情况下,即特征值成串的紧靠在一起时,运算量约为 $\mathcal{O}(k^2n)$,而且不能保证特征向量的精度(虽然实际上它几乎是精确的)。

处理 Jacobi 迭代和 Rayleigh 商迭代外,其余算法都需要先将对称矩阵三对角化,这个过程大约需花费 $\frac{4}{3}n^3$ 的工作量,如果需要计算特征向量的话,则运算量约为 $\frac{8}{3}n^3$ 。

1.1 Jacobi 迭代

基本思想 通过一系列的 Jacobi 旋转将 A 正交相似于一个对角矩阵:

$$A^{(0)} = A, A(K+1) = J_k^T A^{(k)} J_k, k = 0, 1, ...,$$

且 A(0) 收敛到一个对角矩阵,其中 J^k 为 Jacobi 旋转,即 Givens 变换:

$$J_{k} = G(i_{k}, j_{k}, \theta_{k}) = \begin{bmatrix} I & & & & \\ & cos\theta_{k} & \cdots & -sin\theta_{k} \\ & \vdots & \ddots & \vdots \\ & sin\theta_{k} & \cdots & cos\theta_{k} \end{bmatrix}$$
(1)

$$J_k = G(i_k, j_k, \theta_k) = \begin{bmatrix} I & & & & \\ I & & & & \\ & \cos \theta_k & \cdots & -\sin \theta_k & \\ & \vdots & \ddots & \vdots & \\ & \sin \theta_k & \cdots & \cos \theta_k & \\ & & & I \end{bmatrix} i_k$$

引理 设 $A \in \mathbb{R}^{2 \times 2}$ 是对角矩阵。则存在 Givens 变换 $G \in \mathbb{R}^{2 \times 2}$ 使得 G^TAG 为对角阵。

为了使 $A^{(K)}$ 收敛到一个对角矩阵,其非对角素必须趋向于 0。

记 off(A) 为所有非对角元素的平方和,即

$$off(A) = \sum_{i \neq j} a_{ij}^2 = ||A^2||_F^2 - \sum_{i=1}^n a_{ii}^2$$

我们的目标就是使得 off(A) 尽快趋向于 0。

引理 设 $A=[a_{ij}]_{n\times n}\in\mathbb{R}^{n\times n}$ 是对称矩阵。 $\widehat{A}=[a_{ij}]_{n\times n}=J^TAJ$, $J=G(i.j,\theta)$,其中 θ 的选取使得 $\widehat{a}_{ij}=\widehat{a}_{ji}=0$,则

$$off(\widehat{A}) = off(A) - 2a_{ij}^2$$

算法 1.1 Jacobi 迭代算法

1: Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$

2: if eigenvectors are desired then

3: set J = I and shift = 1

4: end if

5: while not converge do

6: choose an index pair (i, j) such that $a_{ij} \neq 0$

7: $\tau = (a_{ii} - a_{ji})/(2a - jj)$

8: $t = sign(\tau/(|\tau| + \sqrt{1 + \tau^2}))$

9: $c = 1/\sqrt{1+t^2}, s = c \cdot t$

10: $A = G(i, j, \theta)^T A G(i, j, \theta)$

11: if shift = 1 then

12:
$$J = J \cdot G(i, j, \theta)$$

13: end if

14: end while

 a_{ij} 的选取问题

一种直观的选取方法就是使得 a_{ij} 为所有非对角元素中绝对值最大的一个,这就是 经典 Jacobi 算法。

算法 1.2 经典 Jacobi 迭代算法

1: Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$

2: if eigenvectors are desired then

3: set
$$J = I$$
 and $shift = 1$

4: end if

5: while of f(A) > tol do

6: choose (i, j) such that $a_{ij} = max_{k \neq l} |a_{kl}|$

7:
$$\tau = (a_{ii} - a_{jj})/(2a - jj)$$

8:
$$t = sign(\tau/(|\tau| + \sqrt{1+\tau^2}))$$

9:
$$c = 1/\sqrt{1+t^2}, s = c \cdot t$$

10:
$$A = G(i, j, \theta)^T A G(i, j, \theta)$$

11: if shift = 1 then

12:
$$J = J \cdot G(i, j, \theta)$$

13: end if

14: end while

可以证明,经典 Jacobi 算法至少是线性收敛的。

定理 经典 Jacobi 算法1.2是 N 步局部二次收敛的,即对足够大的 k,有

$$off(A^{(k+N)}) = \mathcal{O}(off^2(A^{(k)})$$

循环 Jacobi 经典 Jacobi 算法的每一步都要寻找绝对值最大的非对角元,费时不实用。改进:逐行扫描。

算法 1.3 经典 Jacobi 迭代算法 (逐行扫描)

1: Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$

2: if eigenvectors are desired then

3: set
$$J = I$$
 and $shift = 1$

4: end if

5: while
$$of f(A) > tol do$$

6: for
$$i = 1$$
 to $n - 1$ do

7:
$$for j = i + 1 to n do$$

8: if
$$a_{ij} \neq 0$$
 then

9:
$$\tau = (a_{ii} - a_{ji})/(2a - jj)$$

10:
$$t = sign(\tau/(|\tau| + \sqrt{1 + \tau^2}))$$

11:
$$c = 1/\sqrt{1+t^2}, s = c \cdot t$$

12:
$$A = G(i, j, \theta)^T A G(i, j, \theta)$$

13: if
$$shift = 1$$
 then

14:
$$J = J \cdot G(i, j, \theta)$$

15: end if

16: end if

17: end for

18: end for

19: end while

循环 Jacobi 也具有局部二次收敛性。

1.2 Raylaogh 商迭代

反迭代方法中,以 Rayleigh 商作为位移。

关于 Rayleigh 商迭代的收敛性,我们有下面的结论。

定理 设 $A \in \mathbb{R}^{n \times n}$ 对称,且特征值都是单重的。则当误差足够小时,Rayleigh 商 迭代中每步迭代所得的正确数字的位数曾至三倍,即 Rayleigh 商迭代是局部三次收敛。

1.3 对称 QR 迭代

将带位移的隐式 QR 方法运用到对称矩阵,就得到对称 QR 迭代方法。基础步骤:

- 1. 对称三对角化: 利用 Householder 变换,将 A 化为对称三对角矩阵,即计算正交矩阵 Q 使得 $T = QAQ^T$ 为对称三对角矩阵;
- 2. 使用带(单)位移的隐式 QR 迭代算法计算 T 的特征值与特征向量;
- 3. 计算 A 的特征向量。

对称三对角化

任何一个对称矩阵 $A \in \mathbb{R}^{n \times n}$ 都可以通过正交变换转化成一个对称三对角矩阵 T。这个过程可以通过 Householder 变换来实现,也可以通过 Givens 变换来实现。 对称 QR 迭代算法的运算量

- 三对角化 $4n^3/3 + \mathcal{O}(n^2)$, 若需计算特征向量,则为 $8n^3/3 + \mathcal{O}(n^2)$;
- 对 T 做带位移的隐式 QR 迭代,每次迭代的运算量为 6n;
- 计算特征值,假定每个平均迭代 2 步,则总运算量为 12n²;
- 若要计算 T 的所有特征值和特征向量,则运算量为 $6n^3 + \mathcal{O}(n^2)$;
- 若只要计算 A 的所有特征值,运算量为 $4n^3/3 + \mathcal{O}(n^2)$;
- 若计算 A 的所有特征值和特征向量,则运算量为 $26n^3/3 + \mathcal{O}(n^2)$;

位移的选取——Wilkinson 位移

位移的好坏直接影响到算法的收敛速度。我们可以通过下面的方式来选取位移。设

$$A^{(k)} = \begin{bmatrix} a_1^{(k)} & b_1^{(k)} \\ b_1^{(k)} & \ddots & \ddots \\ & \ddots & \ddots & b_{n-1}^k \\ & & b_{n-1}^{(k)} & a_n^{(k)} \end{bmatrix}$$

一种简单的位移选取策略就是令 $\sigma_k = a_n(K)$ 。事实上, $a_n^{(k)}$ 就是收敛到特征向量的 迭代向量的 Rayleigh 商。这种位移选取方法几乎对所有的矩阵都有三次渐进收敛速度。但也存在不收敛的例子,故我们需要对其做改进。

Wilkinson 位移: 取 $\begin{bmatrix} a_{n-1}^{(k)} & b_{n-1}^{(k)} \\ b_{n-1}^{(k)} & a_n^{(k)} \end{bmatrix}$ 的最接近 $a_n^{(k)}$ 的特征值作为位移。通过计算可

得 Wilkinson 位移为

$$\sigma = a_n^{(k)} + \delta - sign(\delta)\sqrt{\delta^2 + (b_{n-1}^{(k)})^2}$$

,其中 $\delta = frac12(a_{n-1}^{(k)} - a_n^{(K)})$ 出于稳定性方面的考虑,我们通常用下面的计算公式

$$\sigma = a_n^{(k)} - \frac{(b_{n-1}(k))^2}{\delta + sign(\delta)\sqrt{\delta^2 + (b_{n-1}^{(k)})^2}}$$
 (2)

定理 采用 Wilkinson 位移的 QR 迭代时整体收敛的,且至少是线性收敛。事实上,几乎所有的矩阵都是渐进三次收敛的。

例 带 Wilkinson 位移的隐式 QR 迭代算法收敛性演示。

MATLAB 代码: Eig_rriQR.m

1.4 分而治之法

分而治之法由 Cuppen 于 1981 年首次提出,但直到 1995 年才出现稳定的实现方式,是目前计算所有特征值和特征向量的最快算法。

考虑不可约对称三对角矩阵

其中 $v=[0,...,0,1,1,0,...,0]^T$ 。假定 T_1 和 T_2 的特征值已经计算出来,即 $T_1=Q_1\mathbf{\Lambda}_1Q_1^T$,

 $T_2 = Q_2 \Lambda_2 Q_2^T$,下面考虑 T 的特征值分解。

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix} + b_m v v^{\mathsf{T}} = \begin{bmatrix} Q_1 \Lambda_1 Q_1^{\mathsf{T}} & 0 \\ 0 & Q_2 \Lambda_2 Q_2^{\mathsf{T}} \end{bmatrix} + b_m v v^{\mathsf{T}}$$
$$= \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} \left(\begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix} + b_m u u^{\mathsf{T}} \right) \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}^{\mathsf{T}}$$

其中

$$u = \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}^{\mathsf{T}}, v = \begin{bmatrix} Q_1^T$$
的最后一列 Q_2^T 的第一列 Q_2^T

令 $a=b_m$, $D=diag(\Lambda_1,\Lambda_2)=diag(d_1,d_2,...,d_n)$, 并假定 $d_1\geq d_2\geq ...\geq d_n$, 则 T 的特征值于 $D+\alpha uu^T$ 的特征值相同。考虑 $D+\alpha uu^T$ 的特征值

设 $\lambda \in D + \alpha u u^T$ 的一个特征值,若 $D - \lambda I$ 非奇异,则

$$det(D + \alpha uu^T - \lambda I) = det(D - \lambda I) \cdot det(I + \alpha (D - \lambda I)^{-1} uu^T)$$

故 $det(D + \alpha uu^T - \lambda I) = 0$ 。

引理 设 $x, y \in \mathbb{R}^n$,则 $det(I + xy^T) = 1 + y^T x$ 。

于是

$$det(I + \alpha(D - \lambda I)^{-1}uu^T) = 1 + \alpha u^T(D - \lambda I)^{-1}u = 1 + \alpha \sum_{i=1}^n \frac{u_i^2}{d_i - \lambda} \triangleq f(\lambda)$$

故求 A 的特征值等价于求特征方程 $f(\lambda) = 0$ 的根。由于

$$f'(\lambda) = \alpha \sum_{i=1}^{n} \frac{u_i^2}{(d_i - \lambda)}$$

当所有的 d_i 都互不相同,且所有的 u_i 都不为零时, $f(\lambda)$ 在 $\lambda \neq d_i$ 处都是严格单调的。

所以 $f(\lambda)$ 在每隔区间 (d_{i+1}, d_i) 内都有一个根,共 n-1 个,另一个根在 (d_1, ∞) (若 $\alpha > 0$)或 $(-\infty, d_n)$ 若 $\alpha < 0$)中。

由于 $f(\lambda)$ 在每个区间 (d_{i+1},d_i) 内光滑且严格单调递增 $(\alpha>0)$ 或递减 $(\alpha<0)$,所以在实际计算中,可以使用对分法,牛顿法及其变形,或有理逼近等算法求解。通常都很快收敛,一般只需迭代几步即可。

因此,计算一个特征值的运算量约为 $\mathcal{O}(n)$,计算 $D + \alpha uu^T$ 的所有特征向量。

引理 设 $D \in \mathbb{R}^{n \times n}$ 为对角矩阵, $u \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, 若 $\lambda \not\equiv D + \alpha uu^T$ 的特征值, 且 $\lambda \neq d_i$, i = 1, 2, ..., n, 则 $(D - \lambda I)^{-1}u$ 是其对应的特征向量。

算法 4.1 计算对称三对角矩阵的特征值和特征向量的分而治之法

1: function $[Q, \Lambda] = dc_eig(T)$ % $T = Q\Lambda Q^T$

2: if T is of 1×1 then

3: $Q = 1, \Lambda = T$

4: return

5: end if

6: form $T = \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix} + b_m v v^{\top}$

7: $[Q_1, \Lambda_1] = \mathbf{d}c_- \operatorname{eig}(T_1)$

8: $[Q_2, \Lambda_2] = dc_- \operatorname{eig}(T_2)$

9: form $D + \alpha uu^T$ from $\Lambda_1, \Lambda_2, Q_1, Q_2$

10: compute the eigenvalues Λ and eigenvectors \hat{Q} of $D + \alpha uu^T$

11: compute the eigenvalues of
$$T$$
 with $Q = \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} \cdot \hat{Q}$

12: end

在分而治之法中, 计算特征值和计算特征向量是同时进行的。下面我们详细讨论分而治之算法的几个细节问题:

- (1) 如何减少运算量;
- (2) 如何求解特征方程 $f(\lambda) = 0$;
- (3) 如何稳定的计算特征向量。
- (1) 如何减小运算量——收缩技巧(deflation)

分而治之算法的计算复杂性分析如下: 用 t(n) 表示对 n 阶矩阵调用函数 dc_{eig} 的运算量,则

$$t(n) = 2t(n/2)$$
 递归调用 $dc_e ig$ 两次
+ $\mathcal{O}(n^2)$ 计算 $D + \alpha u u^T$ 的特征值和特征向量
+ $c \cdot n^3$ 计算 Q

如果计算 Q 时使用的是稠密矩阵乘法,则 c=2; 若不计 $\mathcal{O}(n^2)$ 项,则由递归公式 $t(n)=2t(n/2)+c\cdot n^3$ 可得 $t(n)\approx c\cdot 4n^3/3$ 。

但事实上,由于收缩现象的存在,常熟 c 通常比 1 小得多。

在前面的算法描述过程中,我们假定 d_i 互不相等且 u_i 不能等于零。

事实上, 当 $d_i = d_{i+1}$ 或 $u_i = 0$ 时, d_i 即为 $D + \alpha u u^T$ 的特征值, 这种现象我们成为收缩。

在实际计算时, 当 $d_i - d_{i+1}$ 或 $|u_i|$ 小于一个给定的阈值时, 我们就金斯认为 d_i 为 $D + \alpha u u^T$ 的特征值, 即出现收缩现象。

在实际计算中,收缩现象会经常发生,而且会非常频繁,所以我们可以而且应该利用这种有点加快分而治之算法的速度。

由于主要的计算量集中在计算 Q,即算法的最后一步的矩阵的乘积。如果 $u_i=0$,则 d_i 为特征值,其对应的特征向量 e_i ,即 \hat{Q} 的第 i 列为 e_i ,故计算 Q 的第 i 列时不需要做任何的计算。

当 $d_i = d_{i+1}$ 时,也存在一个类似的简化。

(2) 特征方程求解

通常我们可以使用牛顿法来计算特征方程 $f(\lambda)=0$ 的解。当 $d_i\neq d_{i+1}$ 且 $u_i\neq 0$ 时,用牛顿法计算 $f(\lambda)$ 在 (d_{i+1},d_i) 中的零点 λ_i 。如果 $|u_i|$ 小于给定的阈值时,我们可直接将 d_i 作为特征值 λ_i 的一个近似。但当 u_i 很小(却大于给定的阈值)时,此时 $f(\lambda)$ 在区间 $[d_{i+1},d_i]$ 中的大部分处的斜率几乎为 $\mathbf{0}$ (见下图)。这是,如果任取 $[d_{i+1},d_i]$ 中的一个点作为迭代初始点,经过一次牛顿迭代后,迭代解可能会跑到区间 $[d_{i+1},d_i]$ 的外面,造成不收敛。

图 1:
$$f(\lambda) = 1 + 0.005(\frac{1}{4 - \lambda} + \frac{1}{3 - \lambda} + \frac{1}{2 - \lambda} + \frac{1}{1 - \lambda})$$
 的图像

这时需要采用修正的牛顿法。假设我们已经计算出 λ_i 的一个近似 $\tilde{\lambda}$,下面我们需要从 $\tilde{\lambda}$ 出发,利用牛顿迭代计算下一个近似,直至收敛。我们知道牛顿法的基本原理是使用 $f(\lambda)$ 在点 $\tilde{\lambda}$ 的切线来近似 $f(\lambda)$,并将切线的零点作为下一个近似,即用直线来近似曲线 $f(\lambda)$ 。

当 u_i 很小时,这种近似方法会出现问题,此时不能使用直线来近似 $f(\lambda)$ 。这时我们可以寻找其他简单函数 $h(\lambda)$ 来近似 $f(\lambda)$,然后用 $h(\lambda)$ 的零点作为 $f(\lambda)$ 零点的近似,并不断迭代下去,直至收敛。

当然, $h(\lambda)$ 需要满足一定的要求:

- (1) 必须容易构造;
- (2) 其零点容易计算;
- (3) 尽可能与 $f(\lambda)$ 相近。

下面给出构造 $h(\lambda)$ 的一种方法。

因为 d_i 和 d_{i+1} 是 $f(\lambda)$ 的奇点,所以我们令

$$h(\lambda) = \frac{c_1}{d_{i-\lambda}} + \frac{c_2}{d_{i+1} - \lambda} + c_3$$

其中 c_1, c_2, c_3 为参数。显然, $h(\lambda)$ 的零点很容易计算(与 Newton 法相差无几)。在选取 这些参数时, 要使得 $h(\lambda)$ 在 $\tilde{\lambda}$ 附近尽可能地接近 $f(\lambda)$ 。记

$$f(\lambda) = 1 + \alpha \sum_{k=1}^{n} \frac{u_k^2}{d_k - \lambda} = 1 + \alpha \left(\sum_{k=1}^{i} \frac{u_k^2}{d_k - \lambda} + 1 + \alpha \sum_{k=i+1}^{n} \frac{u_k^2}{d_k - \lambda} \right)$$

$$\triangleq 1 + \alpha \left(\Psi_1(\lambda) + \Psi_2(\lambda) \right)$$

当 $\lambda \in (d_{i+1}, d_i)$ 时, $\Psi_1(\lambda)$ 为正项和, $\Psi_2(\lambda)$ 为负项的和,因此它们都可以较精确地计算。但如果把它们加在一起时可能会引起对消,从而失去相对精度。因此我们也将 $h(\lambda)$ 写成

$$h(\lambda) = 1 + \alpha(h_1(\lambda) + h_2(\lambda))$$

其中

$$h_1(\lambda) = \frac{c_1}{d_i - \lambda} + \hat{c}_1, \quad h_2(\lambda) = \frac{c_2}{d_{i+1} - \lambda} + \hat{c}_2$$

满足

$$h_1(\tilde{\lambda}) = \Psi_1(\tilde{\lambda}), \quad h'_1(\tilde{\lambda}) = \Psi'_1(\tilde{\lambda})$$

$$h_2(\tilde{\lambda}) = \Psi_2(\tilde{\lambda}), \quad h'_2(\tilde{\lambda}) = \Psi'_2(\tilde{\lambda})$$

即 $h_1(\lambda)$ 和 $h_2(\lambda)$ 分别在点 $\tilde{\lambda}$ 与 $\Psi_1(\lambda)$ 和 $\Psi_2(\lambda)$ 相切。这在数值插值中是常见的条件。容易计算可得

$$\begin{cases}
c_1 = \Psi_1'(\tilde{\lambda}) \left(d_i - \tilde{\lambda} \right)^2, & \hat{c}_1 = \Psi_1(\tilde{\lambda}) - \Psi_1'(\tilde{\lambda}) \left(d_i - \tilde{\lambda} \right) \\
c_2 = \Psi_2'(\tilde{\lambda}) \left(d_{i+1} - \tilde{\lambda} \right)^2, & \hat{c}_2 = \Psi_2(\tilde{\lambda}) - \Psi_2'(\tilde{\lambda}) \left(d_{i+1} - \tilde{\lambda} \right)
\end{cases}$$
(3)

所以,最后取

$$h(\lambda) = 1 + \alpha \left(\hat{c}_1 + \hat{c}_2\right) + \alpha \left(\frac{c_1}{d_i - \lambda} + \frac{c_2}{d_{i+1} - \lambda}\right)$$

$$\tag{4}$$

这就是迭代函数。算法 4.2 修正的 Newton 算法

1: set k = 0

2: choose an initial guess $\lambda_0 \in [d_{i+1}, d_i]$

3: while not convergence do

4: $\operatorname{let} \tilde{\lambda} = \lambda_k$ and compute $c_1, c_2, \hat{c}_1, \hat{c}_2$ from 3

5: set k = k + 1

6: compute the solution λ_k of $h(\lambda)$ defined by 4

7: end while

(3) 计算特征向量的稳定算法

设 λ_i 是 $D + \alpha u u^T$ 的特征值,则根据引理 **4.2**,可利用公式 $(D - \lambda_i I)^{-1} u$ 来计算其对应的特征向量。但遗憾的是,当相邻的两个特征值非常接近时,这个公式可能不稳定。即当 λ_i 与 λ_{i+1} 非常接近时,他们都靠近 d_{i+1} (这里假定 $\lambda_i \in (d_{i+1}, d_i)$),在计算 $d_{i+1} - \lambda_i$ 和 $d_{i+1} - \lambda_{i+1}$ 时会存在对消,这就可能损失有效数字,产生较大的相对误差,从而导致 $(D - \lambda_i I)^{-1} u$ 与 $(D - \lambda_{i+1} I)^{-1} u$ 的计算时不准确的,正交性也会失去。下面的定理可以解决这个问题。

定理(Löwner) 设对角阵 $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ 满足 $d_1 > d_2 > \dots > d_n$, 若矩阵 $\hat{D} = D + \hat{u}\hat{u}^{\mathsf{T}}$ 的特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$ 满足交错性质

$$\lambda_1 > d_1 > \lambda_2 > d_2 > \dots > \lambda_n > d_n \tag{5}$$

则向量 û 的分量满足

$$|\hat{u}_i| = \left(\frac{\prod_{k=1}^n (\lambda_k - d_i)}{\prod_{k=1, k \neq i}^n (d_k - d_i)}\right)^{1/2}$$
(6)

因此,我们可以采用公式6来计算特征向量。这样就尽可能的避免了出现分母很小的情形。

箭型分而治之法

分而治之算法于 1981 年被首次提出,但直到 1995 年才由 Gu 和 Eisenstat 给出了一种快速稳定的实现方式,称为箭型分而治之法 (Arrowhead Divide-and-Conquer, ADC). 他们做了大量的数值试验,在试验中,当矩阵规模不超过 6 时,就采用对称 QR 迭代来计算特征值和特征向量。在对特征方程求解时,他们采用的是修正的有理逼近法。数值结果表明, ADC 算法的计算精度可以与其他算法媲美,而计算速度通常比对称 QR 迭代快 5 至 10 倍,比 Cuppen 的分而治之法快 2 倍。详细介绍参见相关文献。

1.5 对分法和逆迭代

对分法的基本思想是利用惯性定理来计算所需的部分特征值。

定义 设A为对称矩阵,则其惯性定义为

$$(A) = (\nu, \zeta, \pi)$$

其中 ν , ζ , π 分别表示 A 的负特征值, 零特征值和正特征值的个数。

定理 (Sylvester 惯性定理) 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵, $X \in \mathbb{R}^{n \times n}$ 非奇异,则 $X^T A X$ 与 A 有相同的惯性。

利用 LU 分解可得 $A - zI = LDL^{T}$,其中 L 为奇异下三角矩阵, D 为对角阵,则

$$(A - zI) = Inertia(D)$$

由于 D 时对角矩阵,所以 Inertia (D) 很容易计算。

设 $\alpha \in \mathbb{R}^n$,记 Negcount(A, α) 为小于 α 的 A 的特征值的个数,即

$$Negcount(A, \alpha) = \#(\lambda(A) < \alpha)$$

设 $\alpha_1 < \alpha_2$,则 A 在区间 $[\alpha_1, \alpha_2)$ 中的特征值个数为

$$(A, \alpha_2)$$
 – Negcount (A, α_1)

如果 $\alpha_2 - \alpha_1 < tol$ (其中 $tol \ll 1$ 为事先给定的阈值),且 A 在 $[\alpha_1, \alpha_2)$ 中有特征值,则我们可将 $[\alpha_1, \alpha_2)$ 中的任意一个值作为 A 在该区间中的特征值的近似。

由此我们可以给出下面的对分法。

算法 5.1 计算 A 在 [a,b) 中的所有特征值

1: Let *tol*be a given threshold

- 2: compute $n_a = Negcount(A, a)$
- 3: compute $n_b = \text{Negcount}(A, b)$
- 4: if $n_a = n_b$ then
- 5: return % 此时 [a,b) 中没有 A 的特征值
- 6: end if
- 7: put (a, n_a, b, n_b) onto worklist
- 8: %worklist 中的元素时"四元素对,即由四个数组成的数对
- 9: while worklist not empty do
- 10: remove(low, n_{low}, up, n_{up})from the worklist
- 11: %(low, n_{low}, up, n_{up}) 是 worklisth 中的任意一个元素
- 12: if(up low) < tol then
- 13: print "There are $n_{up} n_{low}$ eigenvalues in [low,up)"
- 14: else
- 15: compute mid = (low + up)/2
- 16: compute $n_{mid} = Negcount(A, mid)$
- 17: if $(n_{mid} > n_{low})$ then
- 18: put $(low, n_{low}, mid, n_{mid})$ onto worklist
- 19: end if
- 20: if $(n_{up} > n_{mid})$ then
- 21: $(mid, n_{mid}, up, n_{up})$ onto worklist
- 22: end if
- 23: end if
- 24: end while

对分法的主要运算量集中在计算 Negcount (A, z)。通常是事先将 A 转化成对称 三对角矩阵,这样计算 A-zI 的 LDL^{T} 分解就非常简单:

$$A - zI = \begin{bmatrix} a_1 - z & b_1 \\ b_1 & \ddots & \ddots \\ & \ddots & \ddots & b_{n-1} \\ & & b_{n-1} & a_n - z \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ l_1 & \ddots & \\ & \ddots & \ddots \\ & & l_{n-1} & 1 \end{bmatrix} \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \begin{bmatrix} 1 & l_1 & & \\ & \ddots & \ddots & \\ & & \ddots & l_{n-1} \\ & & & 1 \end{bmatrix} \triangleq LDL^{\top}$$

利用待定系数法,可以得到下面的递推公式

$$d_1 = a_1 - z, \quad d_i = (a_i - z) - \frac{b_{i-1}^2}{d_{i-1}}, \quad i = 2, 3, \dots, n$$
 (7)

用上面的公式计算 d_i 的运算量约为 4n。

注意这里没有选主元,但针对对称三对角矩阵,该算法是非常稳定的,即使当 d_i 有可能很小时,算法依然很稳定。

定理 [Demmel '97]利用公式7计算所得的 d_i 与精确计算 \hat{A} 的 $\hat{d_i}$ 有相同的符号,故有相同的惯性。这里 \hat{A} 与 A 非常接近,即

$$\hat{A}(i,i) = a_i, \quad \hat{A}(i,i+1) = b_i (1+\varepsilon_i)$$

其中, $|\varepsilon_i| \le 2.5\varepsilon + O(\varepsilon^2)$,这里 ε 为机器精度。

- 由于单独调用一次 Negcount 的运算量为 4n, 故计算 k 个特征值的总运算量约为 O(kn);
- 当当特征值计算出来后, 我们可以使用带位移的逆迭代来计算对应的特征向量。通常只需迭代 $1 \subseteq 2$ 次即可, 由于 A 是三对角矩阵, 故计算每个特征向量的运算量为 O(n);
- 当特征值紧靠在一起时, 计算出来的特征向量可能会失去正交性, 此时需要进行再正交化, 可通过 MGS 的 QR 分解来实现。

1.6 奇异值分解

奇异值分解 (SVD) 具有十分广泛的应用背景,因此,如何更好更快地计算一个给定矩阵的 SVD 是科学与工程计算领域中的一个热门研究课题,吸引了众多专家进行这方面的研究,也涌现出了许多奇妙的方法.本章主要介绍计算 SVD 的常用算法。

对任意矩阵 $A \in \mathbb{R}^{m \times n}$,其奇异值与对称矩阵 A^TA , AA^T 和 $\begin{bmatrix} 0 & A^\top \\ A & 0 \end{bmatrix}$ 的特征值是

密切相关的,故理论上计算对称特征值的算法都可以用于计算奇异值。但在实际计算中,我们通过可以利用 SVD 的特殊结构使得算法更加有效和准确。

与计算对称矩阵的特征值累死,计算一个矩阵 A 的奇异值分解的算法通常分为一下几个步骤(Jacobi 算法除外):

- 1. 将 A 二对角化: $B = U_1^T A V_1$, 其中 B 为上二对角矩阵, U_1, V_1 为正交阵;
- 2. 计算 B 的 SVD: $B = U_2 \sum V_2^T$, 其中 \sum 为对角阵, U_2, V_2 为正交阵;
- 3. 合并得到 A 的 SVD: $A = U_1 B V_1^T = (U_1 U_2) B (V_1 V_2)^T$ 。

1.6.1 二对角化

我们知道。对称矩阵可以通过一系列 Householder 变换转化为对称三对角矩阵。对于一般矩阵 $A \in \mathbb{R}^{m \times n}$,我们也可以通过 Householder 变换,将其转化为而对角矩阵,即计算正交矩阵 U_1 和 V_1 使得

$$U_1^T A V_1 = B (8)$$

其中 B 是一个实(上)二对角矩阵。这个过程就称为二对角化。

需要注意的是,与对称矩阵的对称三对角化不同,A与B是不相似的。

设 $A \in \mathbb{R}^{m \times n}$, 二对角化过程大致如下:

(1) 首先确定一个 Household 矩阵 $H_1 \in \mathbb{R}^{m \times n}$, 使得 H_1A 的第一节除第一个元素外,其他分量都为零,即

$$H_1 A = \begin{bmatrix} * & * & * & * & * \\ 0 & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & * & * & \cdots & * \end{bmatrix}$$

(2) 再确定一个 Household 矩阵 $\tilde{H}_1 \in \mathbb{R}^{(n-1)\times(n-1)}$,把 H_1A 的第一行的第 3 至第 n 个元素化为零,即

$$H_1 A \begin{bmatrix} 1 & 0 \\ 0 & \tilde{H}_1 \end{bmatrix} = \begin{bmatrix} * & * & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \cdots & * \end{bmatrix}$$

(3) 重复上面的过程,直到把 A 最终化为而对角矩阵。

有了分解8以后,我们可得

$$A^{\top}A = \left(U_1 B V_1^{\top}\right)^{\top} U_1 B V_1^{\top} = V_1 B^{\top} B V_1^{\top}$$

即 $V_1^{\mathsf{T}} A^{\mathsf{T}} A V_1 = B^{\mathsf{T}} B$ 。由于 $B^{\mathsf{T}} B$ 是对称三对角的,所以这就相当于将 $A^{\mathsf{T}} A$ 三对角化。

整个二对角化过程的运算量约为 $4mn^2 + 4m^2n - 4n^3/3$ 。若不需要计算 U_1 和 V_1 ,则运算量约为 $4mn^2 - 4n^3/3$ 。

二对角矩阵的奇异值分解

设
$$B \in \mathbb{R}^{n \times n}$$
 是一个而对角矩阵 $B = \left[egin{array}{cccc} a_1 & b_1 & & & & \\ & \ddots & \ddots & & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & a_n & \end{array}
ight]$,则下面三种方法均

可将计算 B 的 SVD 转化成计算对称三对角矩阵的特征分解:

(1) 令
$$A = \begin{bmatrix} 0 & B^{\top} \\ B & 0 \end{bmatrix}$$
,置换阵 $P = [e_1, e_{n+1}, e_2, e_{n+2}, \dots, e_n, e_{2n}]$,则 $T_{ps} = P^{\top}AP$ 是对

称三对角矩阵,且 T_{ps} 的主对角线元素全为 0,次对角线元素为 $a_1,b_1,a_2,b_2,\ldots,a_{n-1},b_{n-1},a_n$ 。 若 (λ_i,x_i) 是 T_{ps} 的一个特征对,则

$$\lambda_i = \pm \sigma_i, \quad Px_i = \frac{1}{\sqrt{2}} \begin{bmatrix} v_i \\ \pm u_i \end{bmatrix}$$

,其中 σ_i 为 B 一个奇异值, u_i 和 v_i 分别为对应的左和右奇异向量。

(2) $\diamondsuit T_{BB^{\top}} = BB', 则$

$$T_{BB^{ op}} = \left[egin{array}{cccc} a_1^2 + b_1^2 a_2 b_1 & & & & & \\ & a_2 b_1 & \ddots & \ddots & & \\ & & \ddots & a_{n-1}^2 + b_{n-1}^2 a_n b_{n-1} & & \\ & & & a_n b_{n-1} & a_n^2 \end{array}
ight]$$

 $T_{BB^{\top}}$ 的特征值为 B 的奇异值的平方,且 $T_{BB^{\top}}$ 的特征向量为 B 的左奇异向量。

(3) 令 $T_{BB^{\top}} = BB'$,则

$$T_{B^{\top}B} = \begin{bmatrix} a_1^2 & a_1b_1 \\ a_1b_1 & a_2^2 + b_1^2 & \ddots \\ & \ddots & \ddots & a_{n-1}b_{n-1} \\ & & a_{n-1}b_{n-1} & a_n^2 + b_{n-1}^2 \end{bmatrix}$$

 $T_{B^{\top}B}$ 的特征值为 B 的奇异值的平方,且 $T_{B^{\top}B}$ 的特征向量为 B 的右奇异向量。

理论上,我们可以直接使用 QR 迭代、分而治之法或带反迭代的对分法,计算三对角矩阵的 T_{ps} , $T_{BB^{\top}}$ 和 $T_{B^{\top}B}$ 的特征值和特征向量。但一般来说,这种做法并不是最佳的,原因如下:

- (1) 对 T_{ps} 做 QR 迭代并不划算,因为 QR 迭代计算所有的特征值和特征向量,而事实上只要计算正的特征值即可:
- (2) 直接构成 $T_{BB^{\top}}$ 或 $T_{B^{\top}B}$ 是数值不稳定的。事实上,这样做可能会使得 B 的小奇异值的精度丢失一半。

下面是一些奇异值分解的比较实用的算法。

- 1. Golub-Kahan SVD 算法: 由 Golub 和 Kahan 于 1965 年提出,是一种十分稳定 且高效的计算 SVD 的算法。主要思想是将带位移的对称 QR 迭代算法隐式地用到 B^TB 上,在该算法中,并不需要显示地把 B^TB 计算出来。该算法也通常就称为 SVD 算法,是一个基本且实用的算法,目前仍然是计算小规模矩阵奇异值分解的常用算法。
- 2. $\frac{dqds}{g}$ 算法: 由 Fernando 和 Parlett 于 1994 年提出,是计算二对角矩阵所有奇异值的最快算法,而且能达到很高的相对精度,包括奇异值很小的情形。该算法主要基于对 B^TB 的 Cholesky 迭代,可以看作是 LR 迭代算法的改进。由于 LR 迭代算法在一定条件下与对称 QR 算法是等价的,因此该算法也可以看作是 QR 迭代的变形。
- 3. 分而治之法: 该算法是计算维数 $n \geq 25$ 的矩阵的所有奇异值和奇异向量的最快算法,但不能保证小奇异值的相对精度,即 σ_i 的相对精度为 $O(\varepsilon)\sigma_1$,而不是 $O(\varepsilon)\sigma_i$ 。
- **4.** 对分法和反迭代: 主要用于计算某个区间内的奇异值及对应的奇异向量, 能保证较高的相对精度。
- 5. Jacobi 迭代: 可隐式地对 AA^T 或 A^TA 实施对称 Jacobi 迭代,能保证较高的相对精度。最近, Z.Drmac 和 K.Veselić 改进了最初的 Jacobi 算法,使其变成一个速度快、精度高的实用算法。

在这里,我们简要介绍 Golub-Kahan SVD 算法, dgds 算法和 Jacobi 迭代。

1.6.2 **Golub-Kahan SVD** 算法

该算法主要思想是将带位移的对称 QR 迭代算法隐式地用到 B^TB 上,而无需将 B^TB 显示的计算出来。

算法基本框架

Golub-Kahan SVD 算法有时也简称 SVD 算法, 其基本框架是:

- 将矩阵 A 二对角化,得到上二对角矩阵 B;
- 用隐式 QR 迭代计算 B^TB 的特征值分解,即

$$B^{\mathsf{T}}B = Q\Lambda Q^{\mathsf{T}}, \quad \Lambda = \operatorname{diag}\left(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2\right)$$
 (9)

• 计算 BQ 的列主元 QR 分解,即

$$(BQ)P = UR ag{10}$$

其中 P 是置换矩阵,U 是正交矩阵,R 是上三角矩阵。

由9可知

$$(BQ)^{\top}BQ = \Lambda$$

因此 BQ 是列正交矩阵 (但不是单位列正交)。再由 $\mathbf{10}$ 可知 $R = U^T(BQ)P$ 也是列正交矩阵。又 R 是上三角矩阵,所以 R 必定是对角矩阵。令 V = QP,则由 $\mathbf{10}$ 可知

$$U^TBV = R$$

这就是二对角矩阵 B 的奇异值分解。

算法的具体实现参见相关文献

1.6.3 **dqds** 算法

我们首先介绍针对实对称正定矩阵的 LR 算法, 该算法思想与 QR 迭代算法类似, 但提出时间更早。

算法 6.1 带位移的 LR 算法

1: Let T_0 be a given real symmetric positive definite matrix

2: set i = 0

3: while not converge do

4: choose a shift τ_i^2 satisfying $\tau_i^2 < \min \{ \lambda(T_i) \}$

5: compute B_i such that $T_i - \tau_i^2 I = B_i^{\top} B_i$ %Cholesky factorization

6: $T_{i+1} = B_i B_i^{\top} + \tau_i^2 I$

7: i = i + 1

8: end while

LR 迭代算法在形式上与 QR 迭代算法非常类似。事实上,对于不带位移的 LR 迭代算法,我可以证明,两步 LR 迭代等价于一步 QR 迭代。

引理 设 \hat{T} 是不带位移的 LR 算法迭代两步后生成的矩阵, \hat{T} 是不带唯一的 QR 算法迭代一步后生成的矩阵,则 $\hat{T}=\hat{T}$ 。

- (1) LR 算法中要求 T_0 对称正定,但并不一定是三对角矩阵;
- (2) 由该引理可知, QR 算法与 LR 算法有相同的收敛性。

dqds 算法

该算法是针对三对角的对称正定矩阵 B^TB ,其中 B 是而对角矩阵。在数学上, dqds 算法与 LR 算法是等价的, 但在该算法中, 我们是直接通过 B_i 来计算 B_{i+1} , 从而避免计算中间矩阵 T_{i+1} ,这样也就尽可能的避免了由于计算 $B_iB_i^T$ 而可能带来的数值不稳定性。

下面推导如何从 B_i 直接计算 B_{i+1} 。设

$$B_{i} = \begin{bmatrix} a_{1} & b_{1} & & & \\ & a_{2} & \ddots & & \\ & & \ddots & b_{n-1} \\ & & & a_{n} \end{bmatrix}, \quad B_{i+1} = \begin{bmatrix} \tilde{a}_{1}\tilde{b}_{1} & & \\ \tilde{a}_{2} & \ddots & & \\ & \ddots & \tilde{b}_{n-1} \\ \tilde{a}_{n} & & \end{bmatrix}$$

为了书写方便,我们记 $b_0=b_n=\tilde{b}_0=\tilde{b}_n=0$ 。由 LR 算法 6.1 可知

$$B_{i+1}^{\top} B_{i+1} + \tau_{i+1}^2 I = B_i B_i^{\top} + \tau_i^2 I$$

比较等式两边矩阵的对角线和上对角线元素,可得

$$\tilde{a}_k^2 + \tilde{b}_{k-1}^2 + \tau_{i+1}^2 = a_k^2 + b_k^2 + \tau_i^2, \quad k = 1, 2, \dots, n$$

$$\tilde{a}_k \tilde{b}_k = a_{k+1} b_k$$
 $\vec{g}_k \tilde{b}_k^2 = a_{k+1}^2 b_k^2, \quad k = 1, 2, \dots, n-1$

记 $\delta = \tau_{i+1}^2 - \tau_i^2, p_k = a_k^2, q_k = b_k^2, \tilde{p}_k = \tilde{a}_k^2, \tilde{q}_k = \tilde{b}_k^2$,则可得 **qds** 算法:算法 **6.2 qds** 算法的单步 $(B_i \to B_{i+1})$

1:
$$\delta = \tau_{i+1}^2 - \tau_i^2$$

2: for
$$k = 1$$
 to $n - 1$ do

3:
$$\tilde{p}_k = p_k + q_k - \tilde{q}_{k-1} - \delta$$

4:
$$\tilde{q}_k = q_k \cdot (p_{k+1}/\tilde{p}_k)$$

5: end for

6:
$$\tilde{p}_n = p_n - \tilde{q}_{n-1} - \delta$$

qds 算法中的每个循环仅需 5 个浮点运算,所以运算量较少。

为了体验算法的精确性,我们引入一个辅助变量 $d_k \triangleq p_k - \tilde{q}_{k-1} - \delta$,则

$$\begin{split} d_k &= p_k - \tilde{q}_{k-1} - \delta \\ &= p_k - \frac{q_{k-1}p_k}{\tilde{p}_{k-1}} - \delta \\ &= p_k \cdot \frac{\tilde{p}_{k-1} - q_{k-1}}{\tilde{p}_{k-1}} - \delta \\ &= p_k \cdot \frac{p_{k-1} - q_{k-2} - \delta}{\tilde{p}_{k-1}} - \delta \\ &= \frac{p_k}{\tilde{p}_{k-1}} \cdot d_{k-1} - \delta \end{split}$$

于是就可得到 dqds 算法。 算法 6.3 dqds 算法的单步 $(B_i \rightarrow B_{i+1})$

1:
$$\delta = \tau_{i+1}^2 - \tau_i^2$$

2:
$$d_1 = p_1 - \delta$$

3: for
$$k = 1$$
 to $n - 1$ do

4:
$$\tilde{p}_k = d_k + q_k$$

5:
$$t = p_{k+1}/\tilde{p}_k$$

6:
$$\tilde{q}_i = q_k \cdot t$$

7:
$$d_{k+1} = d_k \cdot t - \delta$$

8: end for

9:
$$\tilde{p}_n = d_n$$

dqds 算法的运算量与 dqs 差不多,但更精确。

下面的定理显示了 dqds 算法的高精度性质。

定理 以浮点运算对 B 做单步 dqds 迭代,得到矩阵 \tilde{B} ,该过程等价于

- 1. 对 B 的每个元素座椅而小德相对扰动(不超过 1.5ε), 得到 \tilde{B} ;
- 2. 对 \tilde{B} 应用精确的 dqds 算法的单步,得到 \overline{B} ;
- 3. 对 \overline{B} 的每个元素做一个小的相对扰动(不超过 ε),得到 \tilde{B} 。

因此,B 和 \tilde{B} 的奇异值满足高的相对精度。

关于 dqds 算法中位移的选取,以及如何判断收敛性,可以参见相关文献。

1.6.4 **Jacobi** 算法

本节讨论对矩阵 $M = A^T A$ 实施隐式的 Jacoi 算法来计算 A 的奇异值。

我们知道,Jacobi 算法的每一步就是对矩阵作 Jacobi 旋转,即 $A^TA \to J^TA^TAJ$,其中 J 的选取将两个非对角元化为 0。在实际计算中,我们只需计算 AJ,故该算法称为单边 Jacobi 旋转。

算法 6.4 单边 Jacobi 旋转的单步

% 对 $M = A^T A$ 作 Jacobi 旋转,将 M(i.j), M(j,i) 化为 0

1: Compute
$$m_{ii} = (A^T A)_{ii}, m_{ij} = (A^T A)_{ij}, m_{jj} = (A^T A)_{jj}$$

2: if m_{ij} is not small enough then

3:
$$\tau = (m_{ii} - m_{jj}) / (2 \cdot m_{ij})$$

4:
$$t = \text{sign}(\tau) / (|\tau| + \sqrt{1 + \tau^2})$$

5:
$$c = 1/\sqrt{1+t^2}$$

6: $s = c \cdot t$

7: $A = AG(i, j, \theta)$ % $G(i, j, \theta)$ 为 Givens 变换

8: if eigenvectors are desired then

9: $J = J \cdot G(i, j, \theta)$

10: end if

11: end if

在上面算法的基础上,我们可以给出完整的单边 Jacobi 算法。 blue算法 6.5 单边 Jacobi 算法: 计算 $A=U\sum V^T$

1: while A^TA is not diagonal enough do

2: for i = 1 to n - 1do

3: for j = i + 1to n do

4: 调用单边 Jacobi 旋转

5: end for

6: end for

7: end while

8: compute $\sigma_i = ||A(:,i)||_2, i = 1, 2, \dots n$

9: $U = [u_1, ..., u_n]$ with $u_i = A(:, i) / \sigma_i$

10: V = J

Jacobi 算法的特点

- 不需要双对角化,这样可以避免双对角化引入的误差;
- 可以达到相对较高的计算精度;
- 速度较慢。(目前已有快速的改进算法)

定理 设 $A = DX \in \mathbb{R}^{n \times n}$,其中 D 为非奇异对角阵,X 非奇异。设 \hat{A} 是按浮点运算单边 **Jacobi** 旋转 m 次后所得到的矩阵。若 A 和 \hat{A} 的奇异值分别为 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$ 和 $\hat{\sigma}_1 \geq \hat{\sigma}_2 \geq \ldots \geq \hat{\sigma}_n$,则

$$\frac{|\hat{\sigma}_i - \sigma_i|}{\sigma_i} \le O(m\varepsilon)\kappa(X)$$

故 X 的条件数越小,计算矩阵 A 的奇异值时相对误差越小。

1.7 扰动分析

设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵,则存在一个蒸饺矩阵 Q 使得

$$A = Q\Lambda Q^T$$

其中 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ 是一个实对角矩阵。

这里的 λ_i 就是 A 的特征值,我们假设 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 。令 $Q = [q_1, q_2, \ldots, q_n]$,则 q_i 就是 λ_i 对应的单位正交特征向量。

关于对称矩阵特征值问题的扰动理论,这里只做一些简单介绍,若要深入了解这方面的信息,可以参考相关文献。

1.7.1 特征值与 Rayleigh 商

定义 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵,向量 $x \in \mathbb{R}^n$ 非零,则 x 关于 A 的Rayleigh 商定义为:

 $\rho(x, A) = \frac{x^{\top} A x}{x^{\top} x}$

有时简记为 $\rho(x)$ 。

下面是关于 Rayleigh 商的一些基本性质:

- (1) $\rho(\alpha x) = \rho(x), \forall \alpha \in \mathbb{R}, \alpha \neq 0$;
- (2) $\rho(q_i) = \lambda_i, i = 1, 2, \dots, n;$
- (3) 设 $x = \alpha_1 q_1 + \alpha_2 q_2 + \cdots + \alpha_n q_n$,则

$$\rho(x) = \frac{\alpha_1^2 \lambda_1 + \alpha_2^2 \lambda_2 + \dots + \alpha_n^2 \lambda_n}{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

(4) $\lambda_n \le \rho(x) \le \lambda_1, |\rho(x)| \le ||A||_2$.

Courant-Fischer 极小极大定理

实对称矩阵的特征值与 Rayleigh 商之间的一个基本性质是 Courant-Fischer 极小极大定理。

定理 (Courant-Fischer) 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵,其特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$,则有

$$\lambda_k = \max_{\mathbf{U} \in \mathbb{S}_k^n} \min_{x \in \mathbb{U}, x \neq 0} \frac{x^\top A x}{x^\top x} = \min_{\mathbf{V} \in \mathbb{S}_{n-k+1}^n} \max_{x \in \mathbb{V}, x \neq 0} \frac{x^\top A x}{x^\top x}$$

其中 S_i^n 表示 \mathbb{R}^n 中所欲 i 维子空间构成的集合,当

$$\mathbb{U} = \operatorname{span} \{q_1, \dots, q_k\}, \quad \mathbb{V} = \operatorname{span} \{q_k, \dots, q_n\}, \quad x = q_k$$

时,上式中的等号成立。

Rayleigh-Ritz 定理

当 k=1 和 k=n 时, 就可以得到下面的定理.

定理 (Rayleigh-Ritz) 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵, 其特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, 则有

$$\lambda_1 = \max_{x \in \mathbb{R}^n, x \neq 0} \frac{x^\top A x}{x^\top x}, \quad \lambda_n = \min_{x \in \mathbb{R}^n, x \neq 0} \frac{x^\top A x}{x^\top x}$$

特征值分割定理

由极大极小定理,我们可以得到下面的特征值分隔定理。

定理(分割定理) 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵, $B = Q^T A Q$, 其中 $Q \in \mathbb{R}^{4^{n \times (n-1)}}$ 满足 $Q^T Q = I_{n-1}$ 。再设 A 和 B 的特征值分别为

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \cdots \geq \tilde{\lambda}_{n-1}$

则有

$$\lambda_1 \geq \tilde{\lambda}_1 \geq \lambda_2 \geq \tilde{\lambda}_2 \cdots \geq \tilde{\lambda}_{n-1} \geq \lambda_n$$

0

特别地,在上述定理中,取 $Q = [e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n]$,则可以得到下面的结论。

推论 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵, \tilde{A} 是 A 的一个 n-1 阶主子矩阵, A 和 \tilde{A} 的特征 值分别为

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$
 和 $\tilde{\lambda}_1 \ge \tilde{\lambda}_2 \ge \cdots \ge \tilde{\lambda}_{n-1}$

则有

$$\lambda_1 \geq \tilde{\lambda}_1 \geq \lambda_2 \geq \tilde{\lambda}_2 \cdots \geq \tilde{\lambda}_{n-1} \geq \lambda_n$$

0

反复应用上面的推论,即可得到下面的结论。

推论 设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵, \tilde{A} 是 A 的一个 k 阶主子矩阵 $(1 \le k \le n-1)$, A 和 \tilde{A} 的特征值分别为

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$$
 $\tilde{\lambda}_1 \ge \tilde{\lambda}_2 \ge \dots \ge \tilde{\lambda}_{n-1}$

则有

$$\lambda_i \ge \tilde{\lambda}_i \ge \lambda_{n-k+i}, \quad i = 1, 2, \dots, k$$

0

1.7.2 对称矩阵特征值的扰动分析

设 $A \in \mathbb{R}^{n \times n}$ 是对称矩阵,扰动矩阵 $E \in \mathbb{R}^{n \times n} E \in \mathbb{R}^{n \times n}$ 都是对火车呢就在,下面讨论 A + E 的特征值与 A 的特征值之间的关系。

由极小极大定理,我们可以证明下面的性质。

定理 设 $A \in \mathbb{R}^{n \times n}$ 和 $B = A + E \in \mathbb{R}^{n \times n}$ 都是对称矩阵,其特征值分别为

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$$
 $\tilde{\lambda}_1 \ge \tilde{\lambda}_2 \ge \dots \ge \tilde{\lambda}_{n-1}$

假定 E 的最大特征值和最小特征值分别为 μ_1 和 μ_n ,则有

$$\lambda_i + \mu_1 \ge \tilde{\lambda}_i \ge \lambda_i + \mu_n, \quad i = 1, 2, \dots, n$$

Weyl 定理

根据这个定理,我们可以得到下面的 Weyl 定理。

定理(Weyl) 设 $A \in \mathbb{R}^{n \times n}$ 和 $B = A + E \in \mathbb{R}^{n \times n}$ 都是对称矩阵,其特征值分别为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 和 $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \cdots \geq \tilde{\lambda}_{n-1}$,则

$$\left|\tilde{\lambda}_j - \lambda_j\right| \le ||E||_2, \quad j = 1, 2, \dots, n$$

该定理的结论可以推广到奇异值情形。

我们首先给出下面的引理。

引理 设 $A \in \mathbb{R}^{m \times n} (m \geq n)$ 的奇异值分解为 $A = U \sum V$,其中 $U = [u_1, ..., u_n] \in \mathbb{R}^{m \times n}$ 为列正交矩阵, $V = [v_1, ...v_n] \in \mathbb{R}^{n \times n}$ 为正交矩阵, $\sum = diag(\sigma_1, ..., \sigma_n)$ 。将 U 扩展成 $n \times n$ 的正交矩阵 $[U, \check{U}] = [u_1, ..., u_n, \tilde{u}_1, ..., \tilde{u}_{m-n}]$,令

$$H = \begin{bmatrix} 0 & A^{\top} \\ A & 0 \end{bmatrix} \in \mathbb{R}^{(m+n)\times(m+n)} 4$$

则 H 对称,且特征值为 $\pm \sigma_i$ 和 0(其中 0 至少为 m-n 重特征值),对应的特征向量分别

为
$$\frac{\sqrt{2}}{2}$$
 $\begin{bmatrix} v_i \\ \pm u_i \end{bmatrix}$, $i = 1, 2, \dots, n$, $\begin{bmatrix} 0 \\ \tilde{u}_j \end{bmatrix}$, $j = 1, 2, \dots, m - n$.

由上面的引理和 Weyl 定理立即可得

定理 设 $A \square B \in \mathbb{R}^{m \times n} (m \geq n)$, 他们的奇异值分解为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ 和 $\tilde{\sigma}_1 \geq \tilde{\sigma}_2 \geq \cdots \geq \tilde{\sigma}_n$,则

$$|\tilde{\sigma}_j - \sigma_j| \le ||B - A||_2, \quad j = 1, 2, \dots, n$$

1.7.3 对称矩阵特征向量的扰动

定义 设 $A \in \mathbb{R}^{n \times n}$ 的特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$,则 λ_i 与其余特征值之间的间隙 (gap)定义为

$$\operatorname{gap}(\lambda_i, A) = \min_{j \neq i} |\lambda_j - \lambda_i|$$

有时简记为 $gap(\lambda_i)$ 。

特征向量的没干系那个依赖于其对应的特征值得 gap,一般来说,gap 越小,特征向量越敏感。

例 设

$$A = \begin{bmatrix} 1+g \\ 1 \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ \varepsilon \\ \varepsilon \end{bmatrix}, \quad (0 < \varepsilon < g)$$

则 A 的特征值为 $\lambda_1 = 1 + g$, $\lambda_2 = 1$, 对应的单位特征向量为 $q_1 = e_1 \square q_2 = e_2$ 。 A + E 的特征值为 $\hat{\lambda}_{1,2} = 1 + \left(g \pm \sqrt{g^2 + 4\varepsilon^2}\right)/2$, 对应的单位特征向量为

$$\hat{q}_1 = \beta_1 \begin{bmatrix} \frac{1}{\sqrt{1 + 4\varepsilon^2/g^2 - 1}} \end{bmatrix} = \beta_1 \begin{bmatrix} \frac{1}{\sqrt{(1 + 2\varepsilon^2/g^2)^2 - 4(\varepsilon/g)^4} - 1} \\ \approx \beta_1 \begin{bmatrix} 1\\ \frac{(1 + 2\varepsilon^2/g^2) - 1}{2\varepsilon/g} \end{bmatrix} \end{bmatrix}$$

$$= \frac{1}{\sqrt{1 + \varepsilon^2/g^2}} \begin{bmatrix} 1\\ \varepsilon/g \end{bmatrix}$$

$$\hat{q}_2 = \beta_2 \cdot \left[\frac{1}{\frac{1}{2\varepsilon/g}} \right] \approx \frac{1}{\sqrt{1 + \varepsilon^2/g^2}} \begin{bmatrix} -\varepsilon/g\\ 1 \end{bmatrix}$$

其中 β_1,β_2 为规范化因子。故特征向量的扰动约为 ε/g ,与特征值的间隙 $\operatorname{gap}(\lambda_i,A)=g$ 成反比。

定理 设 $A = Q\Lambda Q^T he$ 和 $A + E = \tilde{Q}\tilde{\Lambda}\tilde{Q}^T$ 分别为对称矩阵 $A \in \mathbb{R}^{n \times n}$ 和 $A + E \in \mathbb{R}^{n \times n}$ 的特征值分解,其中 $Q = [q_1, q_2, \dots, q_n]$ 和 $\tilde{Q} = [\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_n]$ 均为正交矩阵,且 \tilde{q}_i 为 q_i 对应的扰动特征向量。用 θ_i 表示 q_i 和 \tilde{q}_i 之间的锐角,则当 $\operatorname{gap}(\lambda_i, A) > 0$ 时

$$\frac{1}{2}\sin 2\theta_i \le \frac{\|E\|_2}{\operatorname{\mathsf{gap}}\left(\lambda_i, A\right)}$$

类似的,当 gap $(\tilde{\lambda}_i, A + E) > 0$ 时

$$\frac{1}{2}\sin 2\theta_i \leq \frac{\|E\|_2}{\operatorname{\mathsf{gap}}\left(\tilde{\lambda}_i, A + E\right)}$$

0

- $\stackrel{\text{def}}{=} \theta_i \ll 1 \text{ fl}, \frac{1}{2} \sin 2\theta_i \approx \theta_i \approx \sin \theta_i;$
- 当 $||E||_2 \ge \frac{1}{2} \operatorname{gap}(\lambda_i, A)$ 时,定理中给出的上界就失去了实际意义;
- 在该定理中,没有对特征值进行排序;
- 在实际计算中,我们通常所知道的是 $\operatorname{gap}\left(\tilde{\lambda}_{i}, A + E\right)$ 。

1.7.4 Rayleigh 商逼近

定理 设对称矩阵 $A \in \mathbb{R}^{n \times n}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 。

(1) 若 $x \in \mathbb{R}^n$ 是单位向量, $\beta \in \mathbb{R}$, 则

$$\min_{1 \le i \le n} |\lambda_i - \beta| \le ||Ax - \beta x||_2 \tag{11}$$

(2) 给定非零向量 $x \in \mathbb{R}^n$, 当 $\beta = \rho(x)$ 时, $||Ax - \beta x||_2$ 达到最小, 即

$$\min_{\beta \in \mathbb{R}} \|Ax - \beta x\|_2 = \|Ax - \rho(x)x\|_2$$
 (12)

(3) 令 $r = Ax - \rho(x)x$, 设 λ_i 是离 $\rho(x)$ 最近的特征值, $\operatorname{\mathsf{gap}}' = \min_{j \neq i} |\lambda_j - \rho(x)|$, θ 是 x 和 q_i 之间的锐角, 其中 q_i 是 λ_i 对应的单位特征向量,则

$$\sin \theta \le \frac{\|r\|_2}{gap'} \quad \mathbb{H} \quad |\lambda_i - \rho(x)| \le \frac{\|r\|_2^2}{gap'} \tag{13}$$

由11可知,在幂迭代和反迭代中可以使用残量 $\|Ax - \tilde{\lambda}x\|_2 < tol$ 作为停机准则,这里 $\tilde{\lambda}$ 是迭代过程中计算得到的近似特征值。等式12则解释了为什么用 Rayleigh 商来近似特征值。

不等式13表明 $|\lambda_i - \rho(x)|$ 的值与残量范数 $||r||_2$ 的平方成正比,这个结论是 Rayleigh 商迭代局部三次收敛的基础。

1.7.5 相对扰动分析

这里主要讨论 A 和 X^TAX 的特征值和特征向量之间的扰动关系,其中 X 非奇异且满足 $\|X^\top X - I\|_2 = \varepsilon$ 。这是因为在计算特征向量时,由于舍入误差的原因,最后得到的正交矩阵 Q 会带有误差,从而失去正交性。

定理 (相对 Weyl 定理) 设对称矩阵 A 和 X^TAX 的特征值分别为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 和 $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \cdots \geq \tilde{\lambda}_n$,令 $\varepsilon = \|X^\top X - I\|_2$,则

$$\left|\tilde{\lambda}_{i} - \lambda_{i}\right| \leq \varepsilon \left|\lambda_{i}\right| \stackrel{\sim}{\exists} \frac{\left|\tilde{\lambda}_{i} - \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \varepsilon \quad (\text{ if } \lambda_{i} \neq 0)$$

当 X 正交时, $\varepsilon = 0$,故 X^TAX 与 A 有相同的特征值。当 X 几乎正交时, ε 很小,此时 X^TAX 与 A 的特征值几乎相同。

推论 设 G 和 Y^TGX 的奇异值分别为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ 和 $\tilde{\sigma}_1 \geq \tilde{\sigma}_2 \geq \cdots \geq \tilde{\sigma}_n$, 令 $\varepsilon = \max \{ \|X^\top X - I\|_2, \|Y^\top Y - I\|_2 \}$,则

$$|\tilde{\sigma}_i - \sigma_i| \le \varepsilon |\sigma_i| \stackrel{\circ}{\not \boxtimes} \frac{|\tilde{\sigma}_i - \sigma_i|}{|\sigma_i|} \le \varepsilon \quad (\text{ if } \sigma_i \ne 0)$$

下面给出特征向量的相对扰动性质。

定义 设 $A \in \mathbb{R}^{n \times n}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,若 $\lambda_i \neq 0$,则 λ_i 与其余特征值之间的相对间隙 (relative gap)定义为

$$\operatorname{relgap}\left(\lambda_{i},A\right)=\min_{j\neq i}\frac{\left|\lambda_{j}-\lambda_{i}\right|}{\left|\lambda_{i}\right|}$$

定理 设 $A \in \mathbb{R}^{n \times n}$ 和 $X^{\top}AX \in \mathbb{R}^{n \times n}$ 的特征值分解分别为 $A = Q\Lambda Q^{\top}$ 和 $X^{\top}AX = \tilde{Q}\tilde{\Lambda}\tilde{Q}^{T}$,其中 $Q = [q_1, q_2, \dots, q_n]$ 和 $\tilde{Q} = [\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_n]$ 均为正交矩阵,

 $\Lambda = \operatorname{diag}\left(\lambda_{1},\lambda_{2},\ldots,\lambda_{n}\right)$, $\tilde{\Lambda} = \operatorname{diag}\left(\tilde{\lambda}_{1},\tilde{\lambda}_{2},\ldots,\tilde{\lambda}_{n}\right)$ 且 $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{n}$ 。设 θ_{i} 表示 q_{i} 和 \tilde{q}_{i} 之间的锐角,令 $\varepsilon_{1} = \left\|I - X^{-T}X^{-1}\right\|_{2}$, $\varepsilon_{2} = \|X - I\|_{2}$, 若 $\varepsilon_{1} < 1$ 且 $\operatorname{relgap}\left(\tilde{\lambda}_{i},X^{\top}AX\right) > 0$,则

$$\frac{1}{2}sin2\theta_i \leq \frac{\varepsilon_1}{1-\varepsilon_1} \cdot \frac{1}{\mathrm{relgap}\left(\tilde{\lambda}_i, X^\top A X\right)} + \varepsilon_2$$