MATH-241 Calculus	Ι
Worksheet 04	

Created by Pierre-O. Parisé Fall 2021, 22/10/2021

Last name: _	
First name:	
Section:	

Question:	1	2	Total
Points:	10	10	20
Score:			

Instructions: You must answer all the questions below and give your solutions to the TA at the end of the recitation. Write your solutions on a different sheet of paper. No late worksheet will be accepted.

Suppose that
$$f(0) = 2$$
, $g(2) = 5$, $h(0) = -1$, $f'(0) = -3$, $g'(2) = 4$, and $h'(0) = 4$. (10 pts)

(a) (5 points) If $F = g \circ f$, then find the value of F'(0).

Solution: For a), we use the chain rule to get $F'(0) = g'(f(0))f'(0) = g'(2)f'(0) = 4 \cdot (-3) = -12$.

(b) (5 points) If H = 2f/h, then find the value of F'(0).

Solution: For b), we use the quotient rule to get $H'(0) = 2\left(\frac{f'(0)h(0) - f(0)h'(0)}{h(0)^2}\right) = 22$.

QUESTION 2	 (10	pts)
	· — -	1	,

A person would like to build a rectangular wall and paint it. The material available only garentees that the wall will have a perimeter of 200 foot. The cost of the painting is $10\$/ft^2$. What is the dimensions that will maximize his cost?

Solution: Let x and y be the width and the height of the wall. Then, we have 2x + 2y = 200, or equivalently, x + y = 100. The cost function to optimize is C = 10xy and so $C(x) = 10x(100 - x) = 1000x - 10x^2$. We compute the derivative to find out that C'(x) = 1000 - 20x and so C'(x) = 0 if and only if x = 50. We were that C'(x) > 0 if x < 50 and C'(x) < 0 if x > 50. So x = 50 is a absolute maximum. Finally, the dimensions of the wall that maximize the cost is x = 50ft and y = 50ft.