Problem Sets 19

isakhammer

2020

Contents

1	Exercise 1															2									
	1.1	Problem	2 .																						2
	1.2	Problem	3.																						2
	1.3	Problem	4 .																						3
	1.4	Problem	5.																						3
_	2 References																								
2	- K.et	erences																							

1 Exercise 1

1.1 Problem 2

Define functions $\mathbb R$ with values in $\mathbb R$.

- 1. A function that is not left invertible.
- 2. A function that is not right invertible.

Show that the given functions have their respective properties.

function is left inverrtible if there exists a function f_l^{-1} such that

$$x = f\left(f_l^{-1}\left(x\right)\right)$$

or formally

$$id_x = f \circ f_l^{-1}$$

Same for right invertible function which can be written as

$$id_x = f_r^{-1} \circ f$$

A function $h=x^2$ is a function that does not support both right and left invertible.

1.2 Problem 3

Given the linear mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by Tx = Ax with

$$A = \begin{pmatrix} 3 & -4 \\ 1 & 6 \\ 1 & 1 \end{pmatrix}$$

1. Show that the matrix

$$A_l^{-1} = \frac{1}{9} \begin{pmatrix} -11 & -10 & 16\\ 7 & 8 & -11 \end{pmatrix}$$

Is inducing a left inverse ${\cal T}_l^{-1}$ of ${\cal T}$. This left inverse is not unique. show that

$$\frac{1}{2} \begin{pmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{pmatrix}$$

gives another left inverse.

(a) We can show it by computing $T \circ T_l^{-1}$ such that

$$A \cdot A_l^{-1} = I$$

(b) The right inverse can be computed be analysing the transpose of A.

$$AA_l^{-1} = I \quad \leftrightarrow \quad I = I^T = \left(AA_l^{-1}\right)^T = A_{lT}^{-1}A^T$$

At least this is the solution given. Not sure since finding an right inverse to A^T answer the question.

1.3 Problem 4

Show that cartesion product of two (infinite) countable sets is countable.

Solution. A set is countable if it exist a integer which can be allocated for every \mathbb{N}^+ . Let $A = \{a_1, a^2, a^3, \ldots\}$ and $B = \{b_1, b_2, \ldots\}$ be two infinite countable sets. Let us define the product $C = B \times A$ such that

$$C = \{a_1b_1, a_2b_2, \ldots\}$$

If we compare it with N^+ can we observe that

$$C = \{a_1b_1, a_2b_2, \ldots\}$$

 $N^+ = \{1, 2, \ldots\}$

Which means that there exists one element in \mathbb{N} for every element in C, which shows that C has to be countable.

1.4 Problem 5

Show that the sets $\mathbb Z$ of integers and $\mathbb Q$ of rational numbers are countable. Solutions.

ullet To show that $\mathbb Z$ is countable can we describe the set such that

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2 \ldots\}$$

By comparing every element in N^+ such that

$$N^+ = \{1, 2, \dots\}$$

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2 \dots\}$

Lets every odd element in N^+ be $N_{\rm ODD}$ and every even element be $N_{\rm EVEN},$ then can we make

$$N^{ODD} = \{1, 3, \ldots\} \mathbb{Z}^- = \{\ldots, -2, -1, 0\}$$

and

$$N^{EVEN} = \{2, 4, 6, \ldots\} \mathbb{Z}^+ = \{1, 2, 3, \ldots \}$$

We have then showed it exists a element in \mathbb{N}^+ for every element in \mathbb{Z} , which makes it countable.

• For the rational numbers \mathbb{Q} such that $\frac{a_1}{a_2} \in \mathbb{Q}$ where $a_1, a_2 \in \mathbb{Z}$. We can then use the fact that \mathbb{Z} is countable such that both the nominator and demonitor is countable. In practice can we write the rational numbers as a set such that is

.

2 References