RESTRICTION D'UNE FONCTION MESURABLE

Soit E une partie mesurable de \mathbb{R}^n et $f: E \to \mathbb{R}$ une fonction. Soit $g: \mathbb{R}^n \to \mathbb{R}$ une fonction définie par g(x) = f(x) si $x \in E$ et g(x) = 0 sinon. Prouver que f est mesurable si et seulement si g mesurable.

Soit B une partie mesurable de \mathbb{R} , deux cas se présentent. Ou bien $0 \in B$, dans ce cas $g^{-1}(B) = f^{-1}(B) \cup E^c$, il s'en suit que si f est mesurable alors la partie $f^{-1}(B)$ est mesurable, puis il en est de même pour $g^{-1}(B)$ et alors g est mesurable, d'autre part $f^{-1}(B) = g^{-1}(B) \cap E$, donc par un argument similaire au précédent si g est mesurable il en est de même pour f. Ou bien $0 \notin B$, dans ce cas on a $g^{-1}(B) = f^{-1}(B)$, donc f est mesurable si et seulement si g est mesurable. En conclusion, f est mesurable si et seulement si g l'est.