Search for Contact Interactions @ 8 TeV Status Report

Suman Beri¹, Supriya Jain², Greg Myers³, <u>Harrison B. Prosper</u>³

¹Panjab University, ²SUNY Buffalo, ³Florida State University Exotica-Multijets Meeting 27 June 2013

Outline

- 1. Overview
- 2. Analysis Overview
- 3. Status
- 4. Plans

Overview

Goal

• Using the full 8 TeV data set, compare measured inclusive jet p_T spectrum of central jets to QCD+CI models aiming for a preliminary result by this summer.

Experimental input

- Measured inclusive jet p_T spectrum above 500 GeV where trigger efficiency is flat
- Jet energy resolution (JER) σ vs. (true) jet p_T
- Jet energy scale uncertainty (JES) (2% 4%)
- Jet energy resolution uncertainty (10%)

Overview

Theoretical input

- Program to calculate QCD @ NLO fastNLO (v2.1.0-1360 + fnl3323y0.tab)
- Program to calculate CI @ NLO CIJET (v1.0, Gao, arXiv:1301.7263v1)

Overview: Models

At next-to-leading order (NLO), the effective Lagrangian describing QCD-like interactions may be written as

$$L = L_{QCD} + 2\pi\lambda \sum_{i=1}^{6} \kappa_i O_i$$

where $\lambda = 1/\Lambda^2$ and κ_i are free parameters*, and each O_i is a sum over dimension six operators:

$$O_{1,2} \sim \bar{\mathbf{u}}_{\mathrm{L}} \gamma_{\mu} \mathbf{u}_{\mathrm{L}} \ \bar{\mathbf{u}}_{\mathrm{L}} \gamma^{\mu} \mathbf{u}_{\mathrm{L}} \ O_{3,4} \sim \bar{\mathbf{u}}_{\mathrm{L}} \gamma_{\mu} \mathbf{u}_{\mathrm{L}} \ \bar{\mathbf{u}}_{\mathrm{R}} \gamma^{\mu} \mathbf{u}_{\mathrm{R}} \ O_{5,6} \sim \bar{\mathbf{u}}_{\mathrm{R}} \gamma_{\mu} \mathbf{u}_{\mathrm{R}} \ \bar{\mathbf{u}}_{\mathrm{R}} \gamma^{\mu} \mathbf{u}_{\mathrm{R}}$$

* In order to avoid confusion with $\lambda = 1/\Lambda^2$, we use κ_i instead of λ_i as in Gao et al.'s paper

Overview: Models

At NLO, the cross section per jet p_T bin is of the form

$$\sigma = \sigma_{\text{OCD}} + [b + b' - b'' \ln \lambda] \lambda + [a + a' - a'' \ln \lambda] \lambda^2$$

where $\sigma_{\rm OCD}$ is the SM cross section at NLO.

Notes:

- 1. The primed terms vanish at leading order.
- 2. The cross section is *linear* in the terms involving λ .

Analysis Overview

We are following the approach of the 7 TeV analysis, but with the following changes:

- 1. Compute all model spectra at NLO and smeared with the jet response function given in SMP-12-012
- 2. Compute (QCD+CI)/QCD bin-by-bin using fastNLO and CIJET. (Ansatz no longer needed.)
- 3. Assume a *constant* 4% uncertainty in JES
- 4. Compute limits using a Bayesian method *only*

As in the 7 TeV analysis, we are doing a pure *shape* analysis

Analysis Overview

Analysis Steps

1. Generate 100 MSTW2008 PDF sets using the procedure described at

http://mstwpdf.hepforge.org/random/.

Do same for CT10.

NNPDF21 already available as a sample.

2. For each PDF set and renormalization and factorization scales, calculate $\sigma_{\rm QCD}$ and all coefficients required to calculate inclusive jet $p_{\rm T}$ spectrum for given values of λ and $\kappa_{\rm i}$.

Analysis Overview

Analysis Steps

3. Convolve σ_{QCD} and these coefficients with the jet response function for randomly sampled pairs (x, z) of the JES and JER,

$$c_{obs}(p_T \mid x, z) = \int_0^\infty \text{Gaussian}(xp_T \mid p_T', z\sigma(p_T'))c(p_T')dp_T'$$

where c is a coefficient. Given the smeared coefficients, we can calculate the model spectra for any choice of λ and κ_i .

4. Compute limits using 7 TeV analysis procedure

Status

- We have calculated the QCD and CI spectra for the nominal choices of renormalization and factorization scales, different values of Λ and two sets of values for the coefficients κ_i . (Myers, Beri, HP)
- ➤ The RooFit/RooStats implementation of the likelihood has been completed (Jain, HP)

Left-Left Model

Left-Left Model

Vector-like Model

Vector-like Model

Plans

- > Smear all models with jet response function for randomly sampled JES and JER
- > Compute preliminary limit
 - Without and with JES and JER systematics
 - With JES, JER, PDF and renormalization and factorization scale variations
- > Timescale
 - 1 to 2 months