Universität zu Köln Institut für Festkörperphysik

Versuchsprotokoll

B2.2: Überstruktur in Cu_3Au

Autoren: Jesco Talies¹

 ${\rm Timon\ Danowski^2}$

Durchgefuehrt am: 19.05.2021

Betreuer: Julian Wagner

 $^{^{1}}$ jtalies@smail.uni-koeln.de, Matrikel-Nr.: 7348338

² tdanowsk@smail.uni-koeln.de, Matrikel-Nr.: 7348629

Inhaltsverzeichnis

1	Einleitung	1
2	Theoretische Vorbereitung2.1 Reziprokes Gitter2.2 Ordnungsparameter und Phasenübergänge2.3 Überstrukturen2.4 Legierung2.4.1 $CuZn$ - Legierung2.4.2 $CuAu$ - Legierung2.4.3 Cu_3Au - Legierung2.5 Die röntgenographische Methode2.5.1 Röntgenstrahlung	2 2 2 3 3 3 3 3 3
	2.5.2 Aufbau eines Röntgendiffraktometers 2.5.3 Intensität der gestreuten Röntgenstrahlung 2.6 Reflexindizierung im Röntgendiffraktogramm 2.7 Die resistive Methode 2.7.1 Elektrische Leitfähigkeit 2.7.2 Temperaturabhängigkeit 2.7.3 Vierpunktmethode	4 4 5 5 6 6
3	Versuchsafbau	7
4	Durchführung	8
5	Auswertung 5.1 Die röntgenographische Methode 5.1.1 Gitterkonstante 5.1.2 Bestimmung des Ordnungsgrades 5.2 resistives Verfahren	
6	Diskussion	17
7	Anhang	18

1 Einleitung

In vielen Legierungen bildet sich zusätzlich zu der Gitterstruktur des Festkörpers eine übergeordnete Struktur, die sogenannte Überstruktur. Sie lässt sich in vergleichsweise makroskopischen Systemen über die Minimierung der Energie erreichen und ist häufig beeinflusst durch Fehlstellen und Deformationen. Diese Überstrukturen lassen sich beeinflussen bzw. erzeugen, sie treten nur unterhalb einer kritischen Temperatur auf, sodass sich durch gezieltes Erhitzen und Abkühlen eines Systems, Proben mit mehr oder weniger Ordnung erzeugen lassen, sodass im resultierenden Spektrum die Unterschiede zu erkennen sind. Im folgenden Versuch werden wir uns genau dieses Phänomen zu nutze machen, indem drei verschieden geordnete Proben miteinander verglichen werden. Dazu wird zunächst die röntgenographische Methode und anschließend das resistive Verfahren verwendet.

Abbildung 1: Basiszelle Cu₃Au [1]

2 Theoretische Vorbereitung

2.1 Reziprokes Gitter

Das reziproke Gitter ist ein mathematisches Konstrukt, welches besonders geeignet ist um Beugung von Wellen an periodischem Gittern zu beschreiben, da es durch die Beugungen von Wellen an diesem bzw. durch die Fouriertransformation beschrieben wird. Es wird häufig in Zusammenhang mit den Miller'schen Indizes verwendet um die Netzebenen (hkl) zu beschreiben. Es bietet sich an diese im Reziproken zu definieren, da die Länge eines Vektors der die Position eines Gitterpunkts beschreibt gleich dem Reziproken des Abstands der Netzebenen entspricht. Aus den Basisvektoren des Punktgitter $(\vec{a_1}, \vec{a_2}, \vec{a_3})$ ergeben sich über folgende Beziehung die Basisvektoren $(\vec{b_1}, \vec{b_2}, \vec{b_3})$ des reziproken Gitters.

$$\vec{b_1} = 2\pi \frac{\vec{a_2} \times \vec{a_3}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

$$\vec{b_2} = 2\pi \frac{\vec{a_3} \times \vec{a_1}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

$$\vec{b_3} = 2\pi \frac{\vec{a_1} \times \vec{a_2}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

Über diese Definition der Basisvektoren lassen sich die Koordinaten eines Punktes im reziproken Gitter über die Miller'schen indizes (hkl) beschreiben.

Bragg Gleichung

Die Bragg Gleichung liefert einen Zusammenhang zwischen dem Netzebenenabstand d_{hkl} und dem Beugungswinkel θ . Damit dieser Zusammenhang gilt, muss jedoch der einfallende und gebeugte Strahl symmetrisch zur reflektierende Netzebene verlaufen. Damit die beiden Strahlen konstruktiv inteferieren können, muss der Wellenlängenunterschied $n\lambda$ betragen (destruktive $n\frac{\lambda}{2}$) Dann lässt sich der Zusammenhang beschreiben durch

$$n\lambda = 2d_{hkl}\sin(\theta) \tag{1}$$

aus dieser lässt sich die äquivalente Laue Bedingung ableiten, welche aussagt, dass ein Röntgenstrahl genau dann gestreut wird, wenn der Beugungsvektor \vec{k} gleich dem reziproken Gittervektor ist.

2.2 Ordnungsparameter und Phasenübergänge

Bei einem Phasenübergang handelt es sich um eine Umwandlung einer Phase eines Stoffes in eine andere Phase. Diese Übergänge treten meist in Abhängigkeit von einem oder mehrerer Zustandsvariablen wie Druck oder Temperatur auf.

Will man nun den Zustand eines physikalischen Systems nicht nur vor und nach einem Übergang beschreiben, so dienen die Ordnungsparameter zur eben dieser. Geht man beispielsweise von einem Übergang von einer flüssigen in eine feste Phase, wie beispielweise bei Gefrierung von Wasser, so geht das System von einer hohen Symmetrie in eine Phase in der lediglich die Gittersymetrie verbleibt. Dieser Übergang lässt sich anhand des Ordnungsparameters als Übergang von absoluter Unordnung (s=0) zur absoluten Ordnung (s=1) beschreiben. Diese Beschreibung lässt sich auf beliebige Übergänge übertragen, bei denen gegebenenfalls kein eindeutiger Phasenwechsel auftritt, je nach dem verändert sich der Ordnungsparameter entweder plötzlich oder kontinuierlich. Anhand der Thermondynamik lässt sich über

$$F = E - TS \tag{2}$$

zeigen, dass der Ordnungsparameter stehts versucht die freie Energie zu minimieren um schlussendlich einen Gleichgewichtszustand mit minimmaler freien Energie zu erreichen. noch nicht verbessert

2.3 Überstrukturen

noch nicht verbessert Eine Überstruktur beschreibt eine Elementarzelle die größer ist als die des Kristallgitters selbst. Nimmt man beispielsweise eine reine Oberfläche/Kristalline Struktur an, so gäbe es keine Überstrukturen, diese kommen erst dann zustande wenn beispielweise Adsorbatome an einer Oberfläche eine weiteres geordnetes Gitter bilden welches größer ist als das des reinen ursprünglichen Gitters. Überstrukturen werden nach Wood, über ein vielfaches der reziproken Gittervektoren angegeben, beispielweise

 (2×1) die Überstruktur ist in x-Richtung doppelt so groß wie die Elementar Zelle $(\sqrt{2} \times \sqrt{2})R45$ um 45° rotierte quadratische Zelle[2]

2

Überstrukturen lassen sich beispielsweise direkt mit dem Rastertunnelmikroskop sichtbar machen. Andererseits lässt sich über Beugungsverfahren das reziproke Gitter der Oberfläche abbilden, bei der die Überstruktur zu anderen Periodizitäten im reziproken Gitter führt. Was sich in Form von zusätzlichen Beugungsmaxima Beugungsmaxima bemerkbar macht.

2.4 Legierung

Eine Legierung ist ein Gemisch aus mindestens einem Metall (Basismetall) und einem anderen Element (Komponente). Im Allgemeinen haben Legierungen einen kristallinen Aufbau. Die Legierung weist andere chemische Eigenschaften, wie Härte oder elektrische Leitfähigkeit, auf als das Basismetall. Künstliche Legierungen können dazu verwendet werden, um Werkstoffeigenschaften auf gewünschte Weise zu ändern.

2.4.1 CuZn - Legierung

Die CuZn Legierung (Messing) kristallisiert in einem bcc-Gitter. Beide Elemente kristallisieren in einem sc-Gitter, wobei die beiden Gitter so verschoben sind, dass in einer Zelle sich ein Eckatom des anderen Gitters befindet \Rightarrow bcc-Gitter

2.4.2 CuAu - Legierung

Wird Kupfer und Gold zu gleichen Teilen gemischt, so bildet sich im ungeordneten Fall eine fcc-Struktur. Die Gitterplätze sind gleichermaßen mit Kupfer- und Goldatomen besetzt. Bei der geordneten Struktur sind in der [001]-Ebene die Gitterplätze abwechselnd von Kupfer- und Goldatomen besetzt. Durch diese abwechselnde Besetzung wird das fcc-Gitter verzerrt, so dass $\frac{a_3^2}{a_3^2} = 0.93$ beobachtet wird.

2.4.3 Cu_3Au - Legierung

Wird nun Kupfer und Gold 3:1 gemischt, entsteht im ungeordneten Fall wieder ein fcc-Gitter, aber diesmal mit anderen Wahrscheinlichkeiten (75% Kupfer-, 25% Goldatome). Die geordnete Struktur ist nun deutlich komplizierter. Auf den ersten Blick sieht es wie ein fcc-Gitter aus, jedoch zeichnet sich die Cu_3Au Kristallstruktur dadurch aus, dass sowohl Gold als auch Kupfer in sc-Gittern kristallisieren. Somit liegen vier sc-Gitter ineinander. Die Goldatome formen ein sc-Gitter, welches mit den bisherigen fcc-Gitter Eckatomen übereinstimmt. Die übrigbleibenden zentrierten Flächenplätze können nun durch drei sc-Gitter von Kupferatomen beschrieben werden.

2.5 Die röntgenographische Methode

2.5.1 Röntgenstrahlung

Röntgenstrahlung gehört zum elektromagnetischen Spektrum und entspricht einer Energie von etwa 100eV oder einer Wellenlänge 10nm. In diesem Versuch benötigt man eine Wellenlänge von $\lambda \sim 0.1nm$, da die Wellenlaenge ungefaehr mit den Groessen der Streuobjekte uebereinstimmen muss. Es gibt unterschiedliche Möglichkeiten Röntgenstrahlung zu erzeugen. Durch Elektronen kann Röntgenstrahlung erzeugt werden, bei starkem Beschleunigen (meist Abbremsen oder Umlenken) von Elektronen entsteht die sogenannte Bremsstrahlung, welche im Energiebereich von Röntgenstrahlung liegt. Somit lässt sich Röntgenstrahlung in einer Röntgenröhre ohne großen Aufwand erzeugen. Eine Röntgenröhre besteht aus einer evakuierten Röhre, einer Glühkathode und einer Anode. Bei der Glühkathode werden freie Elektronen erzeugt und durch einen Spannungsunterschied zur Anode hinbeschleunigt. Beim Auftreffen auf die Anode der Elektronen entsteht Röntgenstrahlung. Die erzeugte Röntgenstrahlung besteht aus zwei Komponenten, dem kontinuierlichen Spektrum und einem diskreten Linienspektrum. Das kontinuierliche Spektrum wird erzeugt, durch die unterschiedlich starken Umlenkungen oder das unterschiedlich starke Abbremsen der Elektronen an der Anode. Das diskrete Linienspektrum entsteht durch das Material der Anode. Wenn die auftreffenden Elektronen die richtige Energie haben, können diese die Atome der Anode anregen, welche wiederum Röntgenstrahlung emittieren.

Abbildung 2: Spektrum Röntgenröhre [8]

2.5.2 Aufbau eines Röntgendiffraktometers

Es gibt drei verschiedene Methoden der Röntgendiffraktometrie. Alle drei Methoden bauen auf der Bragg-Bedingung auf.

- 1. Laue-Verfahren: Hier wird ein kontinuierliches Röntgenspektrum mit fester Orientierung zu einem Einkristall verwendet, jede Ebenenschar sucht sich genau die Wellenlänge raus, für die die Bragg-Bedingung bei vorgegebenen Winkel erfüllt ist.
- 2. Drehkristall-Verfahren: In diesem Verfahren wird monochromatische Röntgenstrahlung an einem Einkristall gebeugt. Der Einkristall wird mit einem Detektor gedreht. Immer wenn bei einer Wellenlänge die Bragg-Bedingung erfüllt ist, tritt ein Beugungsreflex auf.
- 3. Debye-Scherrer-Verfahren: Bei dem Debye-Scherrer-Verfahren wird monochromatische Röntgenstrahlung verwendet. Im Unterschied zum Drehkristall-Verfahren besteht hier unsere Probe aus einem Pulver. In diesem Pulver sind die einzelnen Kristalle in alle möglichen Richtungen gerichtet.

2.5.3 Intensität der gestreuten Röntgenstrahlung

Die Intensität der Röntgenstrahlen ist proportional zum Betragsquadrat des Strukturfaktor.

$$I_{hkl} \propto |F|^2 p L_P A_t \tag{3}$$

mit F = Strukturfaktor, p = Flächenhäufigkeitsfaktor, L_P = Lorentz-Polarisationsfaktor und A_T = Absorptionsfaktor Der Strukturfaktor gibt die Streudichte einer Elementarzelle an. Er lässt sich aus der Fouriertransformierten der Ladungsverteilung bestimmen.

$$F_{hkl} = \sum_{i} f_i e^{i\vec{G} \cdot \vec{r_i}} \tag{4}$$

 $\vec{r_i}$ ist der Ortsvektor der i-ten Atoms, f_i der Atomformfaktor und G der reziproke Gittervektor des vorliegenden Bravais-Gitters Für ein kubisches Gitter vereinfacht sich die Formel zu:

$$F_{hkl} = \sum_{i} f_i e^{i2\pi(hx + ky + lz)_i} \tag{5}$$

Für den Strukturfaktor ergibt sich somit, für Cu₃Au im geordneten Fall:

$$\begin{split} F^g_{hkl} &= f_{Au} \cdot e^{2\pi i (h \cdot 0 + k \cdot 0 + l \cdot 0)} + f_{Cu} \cdot (e^{2\pi i (\frac{h}{2} + \frac{k}{2} + l \cdot 0)} + e^{(2\pi i (\frac{h}{2} + k \cdot 0 + \frac{l}{2})} + e^{(2\pi i (h \cdot 0 + \frac{k}{2} + \frac{l}{2})})) \\ \Rightarrow F^g_{khl} &= \begin{cases} f_{Au} + 3 f_{Cu}, \text{ wenn h,k,l gerade oder ungerade sind} \\ f_{Au} - f_{Cu}, sonst \end{cases} \end{split}$$

Im ungeordneten Fall gilt:

$$F_{hkl}^{ug} = \left(\frac{f_{AU} + 3 \cdot f_{Cu}}{4}\right) \cdot \left(e^{2\pi i(h \cdot 0 + k \cdot 0 + l \cdot 0)} + e^{2\pi i\left(\frac{h}{2} + \frac{k}{2} + l \cdot 0\right)} + e^{2\pi i\left(\frac{h}{2} + k \cdot 0 + \frac{l}{2}\right)} + e^{2\pi i(h \cdot 0 + \frac{k}{2} + \frac{l}{2})}\right)$$

$$\Rightarrow F_{khl}^{ug} = \begin{cases} f_{Au} + 3f_{Cu}, \text{ wenn h,k,l gerade oder ungerade sind} \\ 0, sonst \end{cases}$$

Als Fundamentalreflex werden jene Reflexe bezeichnet, welche im geordneten sowie ungeordneten Fall auftreten und identisch sind. Im geordneten Fall treten die sogenannten Überstrukturreflexe auf, welche im ungeordneten Fall verboten wären.

Der Lorentz-Polarisationsfaktor ist ein Korrekturterm, welcher die Winkelabhängigkeit der Intensität berücksichtigt. Außerdem, dass die beobachteten Peaks keine scharfen Linien bilden.

$$L_P = \frac{1 + \cos^2(2\theta)}{8 \cdot \sin^2(\theta)\cos(\theta)} \tag{6}$$

Eine weitere Korrektur ist der Absorptionsfaktor. Er berücksichtigt die Absorption von Strahlung innerhalb des Materials. Dieser ist stark von der Probengeometrie abhängig, da die Intensität der Röntgenstrahlung in einer Probe mit

$$I = I_0 exp(-\mu d)$$
$$\mu = n\sigma$$

abfällt, dabei beschreibt σ den effektiven Wirkungsquerschnitt der Probe, n die Anzahl der Atome pro Kubikmeter und d die Probendicke selbst. Um nun den Faktor A_T vernachlässigen zu können, werden stehts nur Reflexe mit kleinem θ Unterschied verglichen, da über Winkelabhängigkeit von A_T so angenommen werden kann, dass A_T für diesen Fall identisch ist.

2.6 Reflexindizierung im Röntgendiffraktogramm

Um die Reflexe im Röntgendiffraktogramm zuordnen zu können lassen sich zunächst mithilfe der Gitterkonstante a für kubische Gitter die Netzebenenabstände schreiben als

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \tag{7}$$

Da $h, k, l \in \mathbb{N}$ folgt mit

$$n\lambda = 2d_{hkl}sin(\theta_{hkl}) \tag{8}$$

, dass sich bei bekannter Wellenlänge so jedem gemessenen Peak, bei Winkel θ , ein Satz millersche Indizes zuordnen lässt.

2.7 Die resistive Methode

Die zweite Methode zur Proben charakterisierung, die hier Anwendung findet, ist die resistive Methode. Dabei erhält man informationen über die Ordnung s im Kristall über die Messung des Widerstands.

2.7.1 Elektrische Leitfähigkeit

Möchte man die elektrische Leitung von Elektronen durch ein Metall beschreiben bietet sich unter anderem das Modell von Arnold Sommerfeld und Paul Drude, auch gennant Drude-Sommerfeld-Modell, an. In diesem Modell wird ein elektrischer Leiter mit frei beweglichen Elektronen als Elektronengas betrachtet. Durch ein äußeres elektrisches Feld erfahren die freien Elektronen im Leiter eine Kraft $F_{el} = qE$ und es kommt zu einem Stromfluss. Das Problem der unbegrenzten Beschleunigung wird durch das Drude-Modell durch Stöße zwischen den Elektronen und Gitterionen beschrieben, durch die das Elektron abgebremst werden und die Energie als Wärme abgegeben wird. Diese Bewegung lässt sich beschreiben über

$$ma + \frac{m}{\tau}v_D = -eE \tag{9}$$

mit m
 der Elektronenmasse, v die Elektronengeschwindigkeit, e der Elementarladung, τ der Stoßzeit, v_D der Driftgeschwindigkeit und E der elektrischen Feldstärke. wobei ma die Bewegung ohne Stöße beschreibt und $\frac{m}{\tau}v_D$ genau diese berücksichtigt.

2.7.2 Temperaturabhängigkeit

Der spezifische Wiederstand einer Kristallstruktur wie z.B. einer Legierung lässt sich schreiben als

$$\rho = \rho_D + \rho_L(T) \tag{10}$$

wobei ρ_D den sogenannten temperaturunabhängigen Restwiderstand und ρ_L den temperaturabhängigen Widerstand beschreibt.

Geht man nun von einem reinen Metall zu einer Legierung ändert sich die Gitterstruktur und damit auch die Defektstellen im ursprünglichen Gitter, wodurch über das Phononenspektrum auch die Temperaturabhängigkeit beeinflusst wird. Für kleine Konzentrationen an Fremdatomen ist die Zahl der zusätzlichen Defektstellen proportional zur Konzentration. Im falle von $Cu_1 -_x Au_x$ ergibt sich die folgende quadratische Konzentrationsabhängigkeit für den Restwiderstand

$$\rho_D(x) = \rho_D(0) + Ax(1-x) \tag{11}$$

mit einer Materialkonstante A.

Für Ordnungsfähige legierungen wie CuAu und Cu_3Au muss zusätzlich noch die Abhängigkeit vom Ordnungsgrad S der langreichweitigen Ordnung berücksichtigt werden, da diese ebenfalls ein regelmäßiges Gitter bilden.

$$\rho_D(x) = \rho_D(0) + Ax(1-x)(1-S^2) \tag{12}$$

Mit bekanntem Restwiderstand und Materialkonstante lässt sich so der Ordnungsparameter bestimmen.

2.7.3 Vierpunktmethode

Um nun aus dem Widerstand den Ordnungsparameter S zu extrahieren lässt sich die Vierpunktmethode zur Widerstandsmessung nutzen. Bei dieser werden vier elektrische Kontakte bzw. Messspitzen auf die Oberfläche gebracht. Nun wird über die äußeren Kontakte ein bekannter/messbarer Strom auf die Oberfläche geführt wodurch sich im Material ein elektrisches Feld ausbildet, welches sich in Form einer Potentialdifferenz aus den mittleren Spitzen bestimmen lässt. Wichtig bei dieser Messung ist es möglichst weit von den Rändern der Probe entfernt zu sein, da durch die Randbedingungen der Strom dort stehts parallel zum Rand fließt. Im Falle der idealisierten Annahme und vier Messspitzen mit gleichem Abstand erhält man den Flächenwiderstand R_{sq} über [3]

$$R_{sq} = \frac{\pi}{\ln 2} \frac{U}{I} \tag{13}$$

wobei U die Potentialdifferenz der mittleren Spitzen und I der Strom der äusseren Spitzen ist. Aus dem Flächenwiderstand lässt sich nun der gewünschte spezifische Widerstand berechnen

$$\rho = dR_{sq} \tag{14}$$

mit dals Schichtdicke der Probe.

3 Versuchsafbau

Röntgenographische Methode

Für die röntgenographische Methode steht im Versuch ein Röntgendiffraktometer zur Verfügung. Dabei sitzt die Probe in der Mitte eines Detektors welcher Röntgenstrahlung detektieren kann. Die Probe wird dann mit einer von einer Röntgenröhre erzeugter Röntgenstrahlung bestrahlt, welche an den Gitterebenen der Probe reflektiert und auf dem Detektorschirm abgebildet wird.

Abbildung 3: a) Schematischer Aufbau eines Röntgendiffraktometers [4] b) Foto des Röntgendiffraktometers [5]

Resistives Verfahren

Bei dem resistiven Verfahren müssen zunächst die Proben auf einem Stab fixiert werden, anschließen werden an der Probe die Leitungen mit Silberpaste leitend befestigt. Anschließend wird der Stab mit der fixierten Probe an einem Schrittmotor befestigt, um die Probe in einen Heliumbehälter auf variable Höhen zu bewegen. Beim befestigen der Leiter auf der Probe ist dabei zu achten, dass der Abstand zwischen den Kontakten möglichst homogen ist und, dass die Kontakte richtig verschaltet sind um die Messung nicht durch die Innenwiderstände der Messelektronik zu beeinflussen. Dazu nutzt man folgenden Schaltplan

Abbildung 4: a) Beschaltung des 4-Punkt Messstabes b) Bild des Messaufbaus mit Motor, Probenmesstab und Heliumbehälter [5]

4 Durchführung

Es werden drei Cu_3Au Proben auf ihre Ordnungsparameter untersucht. Um einen unterschiedlichen Ordnungsparameter zu erzeugen, wurden die drei Proben auf über 500 °C ($>T_C=386$ °C) erhitzt und danach unterschiedlich abgekühlt. Um eine vollständige Ordnung zu erzeugen, wird eine der Proben sehr langsam abgekühlt. Für Unordnung wird eine Probe in Wasser abgeschreckt. Die teilweise Ordnung wird durch ca. zweistündiges halten bei 370 °C mit anschließendem Abkühlen erreicht. Von jeder dieser Proben wird nun ein Röntgendiffraktogramm aufgenommen, sowie der elektrische Widerstand mittels der Vierpunktmethode bestimmt um anschließend mit beiden Verfahren den Ordnungsparameter der Proben zu ermitteln. Bei dieser Durchführung ist jedoch auf ein paar Punkte zu achten um bei der Auswertung die bestmöglichen Ergebnisse zu erhalten.

Die zu Röntgendiffraktometrie genutzte Röntgenröhre emittiert K_{α} Strahlung mit bekannter Wellenlänge, diese ist jedoch nicht eindeutig, da durch die Spin-Bahn-Kopplung zwei verschiedene Relaxionsenergien auftreten können woraus Röntgenstrahlung verschiedener Wellenlänge auftritt. Diese muss zunächst charakterisiert werden (hier gegeben) um den Einfluss des Linienspektrums auf das Diffraktogramm zu bestimmen. In diesem Fall lassen sich die Wellenlängen $\lambda_1=1.5406\mathring{A}$ und $\lambda_2=1.5444\mathring{A}$ über ihr Verhältnis $\frac{K_2}{K_1}=0.52$ mitteln, um mögliche Doppelpeaks zu erkennen und interpretieren zu können.

Desweiteren ist bei der Vierpunktmethode für die Widerstandsmessung darauf zu achten das der Strom alle paar Messpunkte umgepolt wird um die Messungenauigkeit des Messgeräts durch anschließende Mittelung der Messwerte negieren zu können. Ebenfalls ist darauf zu achten, dass die Probengeometrie bzw. die Maße der Probe bekannt sind, da der spezifische Wiederstand sich wie folgt aus dem gemessenen Flächenwiderstand bestimmen lässt

 $R_{sq} = \frac{\rho \cdot l}{d \cdot b} \tag{15}$

.

5 Auswertung

5.1 Die röntgenographische Methode

5.1.1 Gitterkonstante

Die verwendete K_{α} -Strahlung beinhaltet zwei verschiedene Wellenlängen ($\lambda_{\alpha 1} = 1.5406 \mathring{A}, \lambda_{\alpha 2} = 1.5444 \mathring{A}$), daraus wird eine Wellenlänge für die Auswertung gemittelt. Die beiden Strahlungen haben ein Intensitätsverhältnis von $\frac{K_{\alpha 2}}{K_{\alpha 1}} = 0.52$

$$\lambda = \frac{1 \cdot \lambda_{\alpha 1} + 0.52 \cdot \lambda_{\alpha 2}}{1.52} \tag{16}$$

$$\lambda = 1.5419 \mathring{A}$$

Aus der Bragg-Bedingung geht hervor, mit $\Psi = h^2 + l^2 + k^2$ und $d = \frac{a}{\sqrt{M}}$

$$n\lambda = 2dsin(\theta) = \frac{2asin(\theta)}{\sqrt{\Psi}} \Leftrightarrow \frac{n\lambda}{2a} = \frac{sin(\theta)}{\sqrt{\Psi}}$$
 (17)

Die linke Seite $\frac{n\lambda}{2a}$ ist eine Konstante, da wir n=1 annehmen, die Wellenlänge haben wir oben bestimmt und die Gitterkonstante verändert sich nicht bei einer Probe. Der Fundamentalreflex mit dem kleinsten Winkel 2θ entspricht den Indizes (111), da Reflexe ≤ 3 in diesem Gitter verboten sind. Dadurch können wir auch die weiteren Reflexe finden mit der Relation:

$$\frac{\sin^2(\theta_1)}{\Psi_1} = \frac{\sin^2(\theta_2)}{\Psi_2} \tag{18}$$

$$\Leftrightarrow \Psi_2 = \frac{\sin^2(\theta_2)\Psi_1}{\sin^2(\theta_1)} \tag{19}$$

mit $\Psi_1 = 3$ und die Winkel $\theta_{1,2}$ können aus den Messwerten entnommen werden. Theoretisch müsste $\Psi_2 \in \mathbb{N}$, durch Messungenauigkeiten stimmt dies nicht ganz. Daher runden wir Ψ_2 immer auf die nächste natürliche Zahl. Dieser Zahl kann nun eine Kombination von Indizes zugeordnet werden, da: $\Psi_2 = h^2 + k^2 + l^2$ die Wahl der Indizes nicht eindeutig ist z.B für $\Psi_2 = 2$, würden (110), (011) und (101) passen.

Um daraus nun die Gitterkonstante a zu bestimmen, wird wieder die Bragg-Bedingung genutzt:

$$\Leftrightarrow a = \frac{n\lambda\sqrt{\Psi}}{2sin(\theta)} \tag{20}$$

wobei $n=1,\,\lambda=1.54190 \mathring{A},\,\Psi$ wie oben beschrieben bestimmt und 2θ wurde gemessen.

D (I)	0.0[0]	₁ Tz	" 1 D a	ا ا
Reflexart	$2\theta[\degree]$	Ψ_2	mögl. Reflex	a[A]
\mathbf{F}	41.92	3	(111)	3.733
\mathbf{F}	48.7	4	(002)	3.740
\mathbf{F}	71.36	8	(022)	3.739
\mathbf{F}	86.2	11	(113)	3.742
\mathbf{F}	91.02	12	(222)	3.744
Ü	23.84	1	(001)	3.733
Ü	33.96	2	(011)	3.733
Ü	54.8	5	(012)	3.746
Ü	60.5	6	(112)	3.749
Ü	76	9	(122)	3.757
Ü	81.56	10	(013)	3.733
Ü	96.26	13	(023)	3.733
Ü	100.76	14	(123)	3.745

Tabelle 1: tab:Gitterkonstanten Probe 2

Reflexart	$2\theta[°]$	Ψ_2	mögl. Reflex	$a[\mathring{A}]$
F	41.06	3	(111)	3.808
\mathbf{F}	47.86	4	(002)	3.801
\mathbf{F}	71.08	8	(022)	3.751
\mathbf{F}	85.98	11	(113)	3.750
\mathbf{F}	90.5	12	(222)	3.760
Ü	23.5	1	(001)	3.786
Ü	33.74	2	(011)	3.757
Ü	54.6	5	(012)	3.759
Ü	60.3	6	(112)	3.760
Ü	76	9	(122)	3.757
Ü	95.76	13	(023)	3.748
Ü	100.5	14	(123)	3.752

Tabelle 2: tab:Gitterkonstanten Probe 3

Reflexart	$2\theta[^{\circ}]$	Ψ_2	mögl. Reflex	$a[\mathring{A}]$
F	40.46	3	(111)	3.862
\mathbf{F}	47.08	4	(002)	3.861
\mathbf{F}	68.88	8	(022)	3.856
\mathbf{F}	82.9	11	(113)	3.863
\mathbf{F}	87.6	12	(222)	3.859

Tabelle 3: tab:Gitterkonstanten Probe 4

Für jede Probe wird jetzt der Mittelwert der Gitterkonstante mit zugehörigem Fehler berechnet, nach den Formeln:

$$\bar{a} = \frac{1}{n} \sum_{i}^{n} a_i \tag{21}$$

$$\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_{i}$$

$$\Delta \bar{a} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\bar{a} - a_{i})^{2}}$$
(21)

es ergibt sich:

$$\bar{a}_{Probe2} = (3,74 \pm 0,002)[\mathring{A}]$$

$$\bar{a}_{Probe3} = (3,77 \pm 0,006)[\mathring{A}]$$

$$\bar{a}_{Probe4} = (3, 86 \pm 0, 001) [\mathring{A}]$$

Probe2

Abbildung 5: Röntgendiffraktogramm Probe2

Probe3

Abbildung 6: Röntgendiffraktogramm Probe3

Netzebene	(00l)	(hhh)	(0kk)	(0kl)	(hhl)
p	6	8	12	24	24

Abbildung 8: Flächenhäufigkeitsfaktor

Probe4

Abbildung 7: Röntgendiffraktogramm Probe 4

5.1.2 Bestimmung des Ordnungsgrades

Um den Ordnungsgrad der Proben zu bestimmen nutzen wir die Formel:

$$S^{2} = \frac{I^{\ddot{\mathbf{U}}}}{I^{F}} \left(\frac{(f_{Au} + 3f_{Cu})^{F}}{(f_{Au} - f_{Cu})^{\ddot{\mathbf{U}}}} \right)^{2} \frac{(pL_{p})^{F}}{(pL_{p})^{\ddot{\mathbf{U}}}}$$
(23)

Beim bestimmen der Intensität musste darauf geachtet werden, dass das Untergrundrauschen möglichst gut entfernt wird. Dazu haben wir probiert den Untergrund mit einem Fit zu beschreiben, und diesen dann von den Messwerten abzuziehen. Um die Intensität nun zu berechnen, haben wir über die Gaußkurven der Peaks integriert. Den Flächenhäufigkeitsfaktor kann man aus folgender Tabelle der Anleitung für die möglichen Reflexe ablesen. Da man das Verhältnis eines Überstrukturreflexes und einem Fundamentalreflex betrachtet, entfällt der zweite Korrekturterm (Absorbtionsfaktor). Die Atomformfaktoren haben wir mit Hilfe der Tablle und Formel aus der Anleitung bestimmt.

Intensität	2θ	f_{Cu}	f_{Au}	p	L_p	S^2
199	23.84	72.66	25.93	6	5.5	0.33
70	33.96	68.14	23.93	12	2.587	0.14
1868	41.92	64.66	22.36	8	1.625	-
1646	48.7	61.87	21.06	6	1.159	-
89	54.8	59.53	19.93	24	0.886	0.18
89	60.5	57.49	18.93	24	0.708	0.46
514	71.36	53.98	17.19	12	0.499	-
69	76	52.64	16.53	24	0.443	0.65
79	81.56	51.15	15.79	24	0.395	0.66
814	86.2	50.00	15.22	24	0.368	-
176	91.02	48.89	14.68	8	0.351	-
59	96.26	47.79	14.14	24	0.342	0.87
74	100.76	46.91	13.72	0	0.342	-

Tabelle 4: Ordnungsgrad Probe 2

Intensität	2θ	f_{Cu}	f_{Au}	p	L_p	S^2
104	23.5	72.81	26	6	5.668	0.137
50	33.74	68.23	23.97	12	2.624	0.080
2437	41.06	65.02	22.53	8	1.702	-
1334	47.86	62.21	21.22	6	1.205	-
37	54.6	59.6	19.97	24	0.89	0.094
40	60.3	57.56	18.96	24	0.714	0.188
564	71.08	54.07	17.24	12	0.502	-
44	76	52.64	16.53	24	0.443	0.380
575	85.98	50.05	15.25	24	0.369	-
89	90.5	49.01	14.74	8	0.352	-
49	95.76	47.89	14.19	24	0.342	1.445
79	100.5	46.96	13.75	0	0.342	-

Tabelle 5: Ordnungsgrad Probe 3

Aus diesen Werten wird der mittlere Ordnungsgrad mit Fehler, wie schon bei der Gitterkonstanten, bestimmt:

$$\bar{S}_2 = 0.47 \pm 0.09 \tag{24}$$

$$\bar{S}_3 = 0.39 \pm 0.22$$
 (25)

In den beiden Tabellen gibt es zwei Auffälligkeiten. Bei den Winkeln $\approx 100^\circ$ ist $\Psi_2=14$, welches keinem Flächenhäufigkeitsfaktor zugeordnet werden kann. Daher fallen die beiden Werte bei unserer Berechnung raus. Was außerdem auffällt ist, dass bei der Probe 3 der Ordnungsgrad des Winkels 95,76° größer als 1 ist. Da $0 \le S \le 1$ sein muss, ist dies vermutlich ein Messfehler.

5.2 resistives Verfahren

Um in diesem Abschnitt den Ordnungsparameter bestimmen zu können, wurde zunächst der Widerstand der verschiedenen Proben mit unterschiedlichem Ordnungsparameter S gemessen. Um daraus den Ordnungsparameter der Proben zu bestimmen wurden die Daten zunächst durch eine lineare Abhängigkeit des Widerstands von der Temperatur approximiert, welches for $T \Rightarrow 0$ in einen konstanten Restwiderstand übergeht (für die weitere Auswertung wird jedoch lediglich der konstante Bereich betrachtet).

Abbildung 9: Plot der gemessenen Widerstände in Abhängigkeit von der Temperatur, in rot das gefittete Model (f(x) = ax + b für T > 5K, g(x) = c für T < 5K), links von der grauen Linie wird ein konstantes Restwiderstandsverhalten angenommen, rechts davon ein lineares Wachstum

Für den Widerstand einer Legierung kann für den Restwiderstand folgendes Verhalten angenommen werden

$$\rho_D(x) = \rho_D(T=0) + A \cdot x(1-x)(1-S^2)$$
(26)

wobei A eine zu bestimmende Materialkonstante ist.

Um A zu bestimmen wurde zunächst angenommen, dass aufgrund der Gitterstruktur die Probe mit dem höchsten Restwiderstand ebenfalls die größste Unordnung aufweist, dort wurde S=0 angenommen. Ebenso wurde angenommen, dass die Probe mit dem geringsten Restwiderstand die geordnetste ist. Dort gilt S=1. Diese Annahmen sind notwendig, um die Materialkonstante aus den Daten zu ermitteln, da sonst unser Gleichungssystem unterbestimmt wäre, jedoch sollten alle daraus resultierenden Ergebnisse mit Vorsicht betracht werden, da sowohl ein Ordnungsparameter von ~ 1 , als auch von ~ 0 äussert schwer zu erreichen sind. Nutzt man jedoch diese Annahme, lässt sich die Materialkonstante mithilfe der gefitteten Modelle bestimmen. Dazu wird angenommen, dass es sich bei den Proben um Cu_3Au handelt, womit aus der Anleitung über $Cu_{1-x}Au_x$ ein Anteil von 75% Kupfer und 25% Gold, und damit x=0.25 folgt. Damit folgt weiter

$$\rho_{D_{max}}(0.25) = \rho_D(T=0) + A \cdot 0.25(1 - 0.25)(1 - S^2) \tag{27}$$

 $\rho_D(T=0)$ gibt hierbei einen Konstanten Restwiderstand einer reinen Probe bei 0K an. Ferner folgt

$$\rho_{(S=1)} = \rho_D(T=0)$$

$$\rho_{(S=0)} = \rho_D(T=0) + Ax(1-x)$$

$$A = \frac{\rho_{(S=0)} - \rho_{(S=1)}}{x(1-x)} \tag{28}$$

$$\Delta A = \frac{1}{x(1-x)} \sqrt{\Delta \rho_{(S=0)}^2 + \Delta \rho_{(S=1)}^2}$$
 (29)

$$S = \sqrt{\frac{\rho_{(S=0)} - \rho_{(S=?)}}{\rho_{(S=0)} - \rho_{(S=1)}}}$$
(30)

$$\Delta S = \sqrt{(\Delta \rho_{(S=0)} \frac{\rho_{(S=?)} - \rho_{(S=1)}}{2(\rho_{(S=0)} - \rho_{(S=1)})^2 S})^2 + (\frac{\Delta \rho_{(S=?)}}{2(\rho_{(S=0)} - \rho_{(S=1)}) S})^2 + (\Delta \rho_{(S=1)} \frac{(\rho_{(S=0)} - \rho_{(S=?)})}{2(\rho_{(S=0)} - \rho_{(S=1)})^2 S})^2}$$
(31)

Um nun S bestimmen zu können muss zunächst aus den Wiederstandswerten zusammen mit den Geometrien der Proben der zugehörige spezifische Widerstand bestimmt werden. Dafür gilt folgende Relation:

$$\rho = \frac{b \cdot d \cdot R}{l} \tag{32}$$

$$\Delta \rho = \sqrt{\left(\frac{dR\Delta b}{l}\right)^2 + \left(\frac{bR\Delta d}{l}\right)^2 + \left(\frac{db\Delta R}{l}\right)^2 + \left(\frac{dbR\Delta l}{l^2}\right)^2}$$
(33)

für die Probengeometrien

	Länge l [mm]	Breite b [mm]	Dicke d [mm]
Probe 2	6.7 ± 0.05	5.1 ± 0.03	0.2 ± 0.05
Probe 3	4.3 ± 0.05	5.2 ± 0.03	0.2 ± 0.05
Probe 4	4.1 ± 0.05	5.1 ± 0.03	0.2 ± 0.05

Tabelle 6: Probengeometrien tabellarisch dargestellt

und damit folgt

Abbildung 10: Plot der Spez Widerstände

aus der Modellbetrachtung folgen Restwiderstände von

Probe	Widerstand R $[\Omega]$	spezifischer Widerstand $[\Omega m]$
Probe 2	$(3.9 \pm 0.0099)e - 4$	$(5.9 \pm 1.5)e - 08$
Probe 3	$(2.6 \pm 0.015)e - 4$	$(6.3 \pm 1.6)e - 08$
Probe 4	$(2.6 \pm 0.00091)e - 3$	$(6.5 \pm 1.6)e - 07$

Tabelle 7: Tabellarische Auflistung der Widerstände und spezifischen Widerstände der 3 Proben

Darauf folgt entsprechend $A=(7.85\pm 8.7)e-7\Omega m$ und damit für Probe 3 auch $S=0.997\pm 0.018$. Dieses Resultat entspricht unseren Erwartungen, da Probe 3 und 2 etwa den selben Restwiderstand bei T=5K besitzen. Es fällt auf, dass dieses Ergebniss nur für kleine Temperaturen gilt. Würde man diese Auswertung bei Raumtemperatur ($\sim 272K$) durchführen würden wir kein verwertbares Ergebnis erwarten.

6 Diskussion

Abschließend noch eine Zusammenfassung des Versuchs und eine Diskussion unserer Ergebnisse. Ziel des Versuchs war es, von drei Proben von Cu_3Au mit einem unterschiedlichen Ordnungsgrad, diesen zu bestimmen. Dies wurde mit zwei verschiedenen Messmethoden erreicht:

- Der Röntgendiffraktometrie
- dem resistiven Verfahren

Bei der Röntgendiffraktometrie wurde sich die Bragg-Bedingung zunutze gemacht indem man die Fundamentalreflexe mit den Überstrukturreflexen verglichen und daraus der Ordnungsgrad bestimmen konnte, sowie auch die Gitterkonstante von Cu_3Au . Bei dem resistiven Verfahren wurden die Ordnungsgrade durch Widerstandsmessung bei kleinen Temperaturen bestimmt.

Unsere Ergebnisse für die Gitterkonstanten der 3 Proben $\bar{a}_{Probe2} = (3,74 \pm 0,002) [\mathring{A}]$, $\bar{a}_{Probe3} = (3,77 \pm 0,006) [\mathring{A}]$ und $\bar{a}_{Probe4} = (3,86 \pm 0,001) [\mathring{A}]$ liegen alle nicht im Fehlerbereich des Literaturwerts: $a_{Cu_3Au} = 3.7490\mathring{A}$ [7] jedoch ist eine Abweichung von 0,2 % sehr gut (Probe 2), bei Probe 4 ist die Abweichung schon 3%, was aber auch noch sehr zufriedenstellend ist. Eine mögliche Abweichung der Proben könnte aus der Annahme der perfekten Ordnung und der kubischen Gitterstruktur kommen. Außerdem war es schwierig und relativ ungenau die Überstrukturpeaks zu bestimmen und zu fitten. Die Fundamentalreflexe waren bei jeder Probe deutlich ausgeprägt und leicht zu identifizieren, die Überstrukturpeaks waren jedoch teilweise kaum vom Rauschen zu unterscheiden.

Bei der Bestimmung des Ordnungsgrades der beiden Proben mit der röntgenographischen Methode kam heraus, dass Probe 2 um ca. 18% geordneter ist, als Probe 3. Jedoch ist der Fehler des Ordnungsgrades von Probe 3 sehr groß ($S_3 = 0.39 \pm 0.22$). Dieser große Fehler wird durch den einen fehlerhaften Messwert bzw. errechneten Ordnungsgrad > 1 verursacht. Eine mögliche Erklärung für diesen Wert ist, wie oben schon beschrieben, die schwer zu erkennenden Überstrukturpeaks. Dass Probe 4 vollständig ungeordnet ist, war schon klar als nur die Fundamentalreflexe aufgetreten sind. Dies wurde auch bei der resistiven Methode erkannt. Insgesamt sind die Ergebnisse der röntgenographischen Methode zufriedenstellend genau.

Bei der Auswertung der resistiven Methode haben wir angenommen, dass die Probe 4 vollständig ungeordnet und die Probe 2 vollständig geordnet ist. Dadruch konnten wir dann, durch umstellen einiger Formeln auf einen Ordnungsgrad der Probe 3 von $S_{Probe3} = 0.997 \pm 0.018$ errechnen. Dies würde einer Probe, welche nahezu vollständig geordnet ist, entsprechen. Der Literaturwert für den spezifischen Widerstand einer geordneten Cu₃Au Probe beträgt: $4.2 \cdot 10^{-8}\Omega$, von einer ungeordneten Probe: $11, 4 \cdot 10^{-8}\Omega$ [6]. Unser errechneten Werte der spezifischen Widerstände weichen um einiges an dem Literaturwert ab. Probe 2 um 40%, Probe 3 um 50% und Probe 4 um 70%. Diese Abweichungen lassen sich durch unsere vorher getroffenen Annahmen erklären. Anscheinend sind weder Probe 2 noch Probe 4 vollständig geordnet bzw. ungeordnet. Dies ist eine mögliche Fehlerquelle, auch für unsere Bestimmung des Ordnungsgrades.

Alles in allem lässt sich sagen, dass wir nur für die Probe 4 feststellen konnten, dass diese vollständig ungeordnet sein muss (nur Fundamentalreflexe und größter Widerstand). Für die Proben 2 und 3 konnten wir jedoch keine wirklich zufriedenstellende Ordnungsgrade bestimmen. Laut Versuchsteil 1 sind die Proben weder vollständig geordnet noch ungeordnet, sondern in einem Zwischenzustand. In Versuchsteil 2 jedoch nehmen wir Probe 2 als vollständig geordnet an und bestimmen dann einen Ordnungsgrad von 0.997 für Probe 3, was nahezu vollständig geordnet entspricht. Unsere bestimmten Gitterkonstanten sind jedoch sehr genau und sehr zufriedenstellend.

7 Anhang

Literatur

- $[1] \ https://docplayer.org/53918022-Versuchsan leitung-fuer-das-fortgeschrittenen praktikum-ordnung seinstellung-in-cu 3 auch 1998 au$
- $[2] \ https://de.wikipedia.org/wiki/\%C3\%9Cberstruktur$
- [3] https://de.wikipedia.org/wiki/Vier-Punkt-Methode
- $[4] \ https://de.wikipedia.org/wiki/R\%C3\%B6ntgenbeugung\#/media/Datei:Roentgenbeugung_in_einer_Fluessigkeit.svg$
- [5] 01-07-20: B2.2 Krist, Mittelbach, Pütz bereitgestellt von Julian Wagner
- [6] https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.19334100504
- [7] http://som.web.cmu.edu/structures/S005-Cu3Au.html
- [8] https://www.spektrum.de/lexikon/geowissenschaften/roentgenroehre/13744