Sprint 1:

1) Crear el repositorio público y compartirlo con el equipo:

El primer paso del proyecto, fue la creación de un repositorio público en GitHub, que centraliza todas las actividades de desarrollo y colaboración entre los integrantes del equipo. Este repositorio actúa como un espacio de trabajo compartido donde se almacenan todos los recursos relacionados con el proyecto, como scripts, notebooks, documentación, imágenes y otros elementos esenciales para el avance adecuado.

El repositorio fue creado bajo el nombre PremiumDrinks, accesible en el siguiente enlace: https://github.com/PremiumDrinks/PremiumDrinks. Desde este punto, todos los miembros del equipo fueron invitados como colaboradores para asegurar el acceso adecuado.

Se crearon dos logos: El de la consultora "The Borcelle" que será la encargada de ayudar a "DrinksPremium" en la toma de decisiones, y el logo de "DrinksPremium" que es una distribuidora de bebidas alcohólicas.

Se crean carpetas de "Dashboard y Presentación","Data sets","Queries SQL",Phyton con el fin de organizar de manera estructurada el proyecto.

Transformación y Análisis de Datos de Ventas e Inventario para Premium Drinks:

1. Carga y exploración de los datos

Los datos han sido cargados en un DataFrame de pandas. A través del método df.info(), se verificaron las columnas, los tipos de datos y los valores no nulos. Se encontraron 9 columnas, que incluyen campos como Brand, Description, Price, PurchasePrice, y VendorName, con diferentes tipos de datos: int64, float64 y object.

2. Transformaciones de datos

Conversión de fechas: Las fechas en la columna SalesDate se han convertido al tipo datetime usando pd.to_datetime(). Esto permite un manejo más eficiente de las fechas en análisis futuros, como tendencias de ventas a lo largo del tiempo.

Conversión a numéricos: Varias columnas clave relacionadas con ventas y precios, como SalesQuantity, SalesDollars, SalesPrice, Volume, y ExciseTax, se han convertido a tipo numérico mediante pd.to_numeric(). Esto se hizo para corregir valores no válidos y permitir un análisis numérico. Valores no convertibles se convirtieron en NaN usando el parámetro errors='coerce'.

3. Limpieza y validación

Se exportaron varios DataFrames a archivos CSV, como:

InvoicePurchases12312016_Clean.csv

2017PurchasePricesDec Clean.csv

PurchasesFINAL12312016_Clean.csv

EndInvFINAL12312016_Clean.csv

SalesFINAL12312016_Clean.csv

BegInvFINAL12312016_Clean.csv Esto sugiere que los datos fueron procesados y guardados para futuras referencias, asegurando que se mantenga un registro de los datos limpios y listos para su uso.

4. Análisis de precios y gráficos

Se realizaron visualizaciones, como un boxplot de precios y precios de compra (Price y PurchasePrice), para analizar la distribución de estos dos valores clave. Los boxplots permiten identificar visualmente los valores atípicos y la dispersión de los precios en el dataset.

Se generaron gráficos de dispersión (scatter plots) para explorar relaciones entre diversas variables, como precio de ventas vs cantidad de ventas.

5. Conclusiones preliminares

Limpieza exitosa de datos: Se han manejado datos faltantes o errores en las columnas numéricas, garantizando que el análisis posterior sea preciso y no se vea afectado por datos corruptos.

Transformaciones clave: Convertir las fechas y asegurar que las columnas numéricas sean adecuadas ha sido una parte esencial del proceso, preparando el terreno para análisis futuros como la segmentación por tiempo o cálculos financieros.

Exportación: Los DataFrames procesados han sido exportados a archivos CSV, lo que indica que el trabajo está listo para su uso o análisis más detallado en otros contextos.