Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrifl
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkei
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Das Postsche Korrespondenzproblem
- 10. Komplexität Einführung
- 11. NP-Vollständigkei
- 12. PSPACE

Kodierung von Turing-Maschinen

Kodierung von Turing-Maschinen als Wort über $\{0, 1, \#\}$:

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, \{z_e\})$$
 mit $Z = \{z_0, z_1, \dots, z_n = z_e\}$ $\Sigma = \{0, 1\}$ $\Gamma = \{a_0 = \square, a_1, \dots, a_k\}$ beschreibe jede Transition $\delta(z_i, a_i) = (z_{i'}, a_{i'}, y)$ als Wort über $\{0, 1, \#\}$:

$$w_{i,j,i',j',y} := \# \text{BIN}(i) \# \text{BIN}(j) \# \text{BIN}(i') \# \text{BIN}(j') \# \text{BIN}(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

- \sim beschreibe M als beliebige Konkatenation aller ihrer "Ubergangswörter" $w_{i,j,i',j',y}$.
- Kodierung von $\{0,1,\#\}$ mit $\{0,1\}$ (zum Beispiel durch $0 \to 00, 1 \to 01, \# \to 11$).
- \sim Kodierung von M ist $\langle M \rangle \in \{0,1\}^*$.
- \sim Kodierung umkehrbar aber nicht alle Wörter über $\{0,1\}^*$ kodieren eine Turing-Maschine.

$$M_w := egin{cases} M & \mathsf{falls} \ w = \langle M
angle \ M_\Omega & \mathsf{sonst} \end{cases}$$

 $w \in \{0,1\}^*$ keine valide Kodierung \sim feste Maschine M_{Ω} , die die nigends

definierte Funktion berechnet
(Un-)Entscheidbarkeit, Halteproblem

Spezielles Halteproblem

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M. Erweitere M zu M', sodass M' genau dann hält, wenn M eine 0 ausgibt.

Sei $w' := \langle M' \rangle$, d.h. $M' = M_{w'}$.

$$\sim$$
 M' hält bei Eingabe w'

$$\Leftrightarrow M$$
 gibt bei Eingabe w' eine 0 aus

$$\Leftrightarrow \chi_K(w') = 0$$

$$\Leftrightarrow w' \notin K$$

$$\Leftrightarrow M'$$
 hält nicht bei Eingabe $\langle M' \rangle = w'$. \nleq