WHAT IS CLAIMED IS:

- 1. A silver halide photographic element comprising a support bearing a cyan dye image forming unit comprised of at least one red sensitive silver halide emulsion, a magenta dye image forming unit comprised of at least one green sensitive silver halide emulsion, and a yellow dye image forming unit comprised of at least one blue sensitive silver halide emulsion; wherein the at least one green sensitive silver halide emulsion comprises two absorptance peaks, the first peak being between 515 and 540 nm (short wavelength peak) and the second peak being between 565 and 590 nm, (long wavelength peak) and wherein
- (a) the ratio of the absorptance peak value of the short wavelength peak to the absorptance peak value of the long wavelength peak is from 0.65 to 1.55,
- (b) the absorptance minimum between the two absorptance peaks is between 530 and 560 nm,
- (c) the ratio of the absorptance value at the absorptance minimum to that of the smaller absorptance peak is 0.86 or less,
- (d) the ratio of the absorptance at 490 nm to that of the highest absorptance peak is 0.60 or less.
- 2. The silver halide photographic element of claim 1 wherein the short wave length peak is between 515 and 535 and the long wavelength peak is between 565 and 585.
- 3. The silver halide photographic element of claim 1 wherein the short wavelength peak is between 515 and 530 and the long wavelength peak is between 565 and 580.
- 4. The silver halide photographic element of claim 1 wherein the ratio of the absorptance peak value of the short wavelength peak to the absorptance peak value of the long wavelength peak is from 0.75 to 1.45.

- 5. The silver halide photographic element of claim 1 wherein the absorptance minimum between the two absorptance peaks is between 535 and 555 nm.
- 6. The silver halide photographic element of claim 1 wherein the absorptance minimum between the two absorptance peaks is between 540 and 550 nm.
- 7. The silver halide photographic element of claim 1 wherein the at least one green sensitive emulsion has been sensitized with at least one green sensitizing dye represented by formula (I):

wherein each of R_1 and R_2 independently represents a substituted or unsubstituted alkyl group or substituted or unsubstituted aryl group; each of Z_1 and Z_2 independently represents the atoms necessary to complete a 5- or 6-membered heterocyclic ring system; each L is a substituted or unsubstituted methine group; each of p, q, and n is independently 0 or 1; and X is a counterion as necessary to balance the charge.

8. The silver halide photographic element of claim 1 wherein the at least one green sensitive emulsion has been sensitized with at least one green sensitizing dye represented by formula (II):

$$(Z_3)$$
r X_1 $CH = CR_3 - CH = X_2$ (Z_4) s (II) R_{1a} X R_{2a}

wherein each of R_{1a} and R_{2a} independently represents a substituted or unsubstituted alkyl group or substituted or unsubstituted aryl group; each of r and s is independently 0 or 1; each of Z_3 and Z_4 independently represents the atoms necessary to complete a fused benzene, naphthalene, pyridine, or pyrazine ring, which can be further substituted; R_3 is a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group; X_1 and X_2 can each individually be O, S, or Se, , N-R₄, where R₄ is a substituted or unsubstituted alkyl group, or substituted or unsubstituted aryl group, with the proviso that X_1 and X_2 are not both S or Se; and when r or s is 0, the 5-membered ring containing X_1 or X_2 , respectively, may be further substituted at the 4 and/or 5 position and X is a counterion as necessary to balance the charge.

9. The silver halide photographic element of claim 1 wherein the at least one green sensitive emulsion has been sensitized with at least one green sensitizing dye represented by formula SG-I, SG-II, SG-III, or SG-IV:

$$V_2$$
 V_3
 V_4
 V_{1b}
 V_{1b}
 V_{1b}
 V_{1b}
 V_{2b}
 V_{2b}
 V_{3b}
 V_{4}
 V_{5}
 V_{6}

wherein each of R_{1b} and R_{2b} independently represents a substituted or unsubstituted alkyl group or substituted or unsubstituted aryl group; X_3 is S or Se, and each of V_1 to V_8 independently represents hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, a halogen atom, a cyano group, a sulfamyl, an alkoxycarbonyl, an acylamino group, a

carbamoyl group, a carboxy group, or a substituted or unsubstituted alkoxy group and adjacent pairs of substituents V_1 to V_7 may be joined to form a fused carbocyclic, heterocyclic, aromatic, or heteroaromatic ring, which may be substituted and X is a counterion as necessary to balance the charge;

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$R_{1b}$$

$$R_{5}$$

$$R_{6}$$

$$N$$

$$N$$

$$R_{2b}$$

$$V_{5}$$

$$N$$

$$R_{2b}$$

$$V_{5}$$

wherein R_{1b} , R_{2b} , V_1 - V_8 and X have the same meaning as in structure SG-I; and each of R_5 and R_6 independently represents a substituted or unsubstituted alkyl group or substituted or unsubstituted aryl group;

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{4}$$

$$V_{5}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1b}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1b}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1b}$$

$$V_{$$

SG-III

wherein R_{1b}, R_{2b}, V₁-V₄ and X, have the same meaning as in formula SG-I; Z₄ represents the atoms necessary to complete a fused benzene, naphthalene, pyridine, or pyrazine ring, which can be further substituted; and R₇ represents a substituted or unsubstituted alkyl group, or substituted or unsubstituted aryl group;

$$Z_{5} \xrightarrow{R_{11}} O \xrightarrow{R_{12}} C \xrightarrow{R_{10}} C \xrightarrow{R_{10}} C \xrightarrow{R_{12}} C \xrightarrow{R_{12}}$$

SG-IV

wherein R_{10} is hydrogen or a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group; R_8 and R_9 are both independently

substituted or unsubstituted alkyl groups; R_{11} and R_{12} are independently hydrogen or a substituted or unsubstituted alkyl group; Z_5 and Z_6 each individually represents a substituted or unsubstituted aromatic group and X is one or more ions needed to balance the charge on the molecule.

10. The silver halide photographic element of claim 9 wherein the at least one green sensitive emulsion has been sensitized with at least one green sensitizing dye represented by formula SG-IV;

$$Z_{5} \xrightarrow{R_{11}} O \xrightarrow{Q} C \xrightarrow{R_{10}} C \xrightarrow{R$$

SG-IV

wherein R_{10} is hydrogen or a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group; R_8 and R_9 are both independently substituted or unsubstituted alkyl groups; R_{11} and R_{12} are independently hydrogen or a substituted or unsubstituted alkyl group; Z_5 and Z_6 each individually represents a substituted or unsubstituted aromatic group and X is one or more ions needed to balance the charge on the molecule..

- 11. The silver halide photographic element of claim 1 wherein the short wavelength dye is a J-aggregate dye.
- 12. The silver halide photographic element of claim 7 wherein the at least one green sensitizing dye is a J-aggregate dye.
- 13. The silver halide photographic element of claim 8 wherein the at least one green sensitizing dye is a J-aggregate dye.

- 14. The silver halide photographic element of claim 9 wherein the at least one green sensitizing dye is a J-aggregate dye.
- 15. The silver halide photographic element of claim 10wherein the at least one green sensitizing dye is a J-aggregate dye.
- 16. The silver halide photographic element of claim 1 wherein the at least one green sensitive emulsion has been sensitized with at least one of the following green sensitizing dyes:

٠,