

Altera GPIO IP Core User Guide

ug-altera_gpio 2017.05.08

Last updated for Intel® Quartus® Prime Design Suite: 17.0

Contents

Altera GPIO IP Core User Guide	3
Altera GPIO IP Core Features	3
Altera GPIO IP Core Data Paths	
Input Path	
Output and Output Enable Paths	
Altera GPIO Interface Signals	
Shared Signals	
Data Bit-Order for Data Interface	
Input and Output Bus High and Low Bits	11
Data Interface Signals and Corresponding Clocks	12
Verifying Resource Utilization and Design Performance	
Altera GPIO Parameter Settings	13
Register Packing	15
Altera GPIO Timing	15
Timing Components	15
Delay Elements	17
Timing Analysis	17
Timing Closure Guidelines	20
Altera GPIO IP Core Design Examples	
Altera GPIO Synthesizable Quartus Prime Design Example	21
Altera GPIO IP Core Simulation Design Example	
IP Migration Flow for Arria V, Cyclone V, and Stratix V Devices	22
Migrating Your ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, and ALTIOBUF IP	
Cores	
Guideline: Swap datain_h and datain_l Ports in Migrated IP	
Altera GPIO IP Core User Guide Archives	
Document Revision History	23

Altera GPIO IP Core User Guide

The Altera GPIO IP core supports the general purpose I/O (GPIO) features and components. You can use GPIOs in general applications that are not specific to transceivers, memory interfaces, or LVDS.

The Altera GPIO IP core is available for Intel® Arria® 10 devices only. If you are migrating designs from Stratix® V, Arria V, or Cyclone® IV devices, you must migrate the ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, or ALTIOBUF IP cores.

Related Links

- IP Migration Flow for Arria V, Cyclone V, and Stratix V Devices on page 22
 The IP migration flow allows you to migrate the ALTDDIO_IN, ALTDDIO_OUT,
 ALTDDIO_BIDIR, and ALTIOBUF IP cores of Arria V, Cyclone V, and Stratix V
 devices to the Altera GPIO IP core of Arria 10 devices.
- Introduction to Intel FPGA IP Cores
 Provides general information about all Intel FPGA IP cores, including parameterizing, generating, upgrading, and simulating IP cores.
- Creating Version-Independent IP and Qsys Simulation Scripts
 Create simulation scripts that do not require manual updates for software or IP
 version upgrades.
- Project Management Best Practices
 Guidelines for efficient management and portability of your project and IP files.
- Altera GPIO IP Core User Guide Archives on page 23
 Provides a list of user guides for previous versions of the Altera GPIO IP core.
- Double Data Rate I/O (ALTDDIO_IN, ALTDDIO_OUT, and ALTDDIO_BIDIR) IP Cores User Guide
- I/O Buffer (ALTIOBUF) IP Core User Guide

Altera GPIO IP Core Features

The Altera GPIO IP core includes features to support the device I/O blocks. You can use the Quartus[®] Prime parameter editor to configure the Altera GPIO IP core.

The Altera GPIO IP core provides these components:

- Double data rate input/output (DDIO)—a digital component that doubles or halves the data rate of a communication channel.
- Delay chains—configure the delay chains to perform specific delay and assist in I/O timing closure.
- I/O buffers—connect the pads to the FPGA.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera GPIO IP Core Data Paths

Figure 1. High-Level View of Single-Ended GPIO

Table 1. Altera GPIO Data Path Modes

Data Path	Register Mode						
Bypass Sim		Simple Register	DDR I/O				
			Full-Rate	Half-Rate			
Input	Data goes from the delay element to the core, bypassing all double data rate I/Os (DDIOs).	The full-rate DDIO operates as a simple register, bypassing half-rate DDIOs. The Fitter chooses whether to pack the register in the I/O or implement the register in the core, depending on the area and timing trade-offs.	The full-rate DDIO operates as a regular DDIO, bypassing the half-rate DDIOs.	The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate data.			
Output	Data goes from the core straight to the delay element, bypassing all DDIOs.	The full-rate DDIO operates as a simple register, bypassing half-rate DDIOs. The Fitter chooses whether to pack the register in the I/O or implement the register in the core, depending on the area and timing trade-offs.	The full-rate DDIO operates as a regular DDIO, bypassing the half-rate DDIOs.	The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate data.			
Bidirectional	The output buffer drives both an output pin and an input buffer.	The full-rate DDIO operates as a simple register. The output buffer drives both an output pin and an input buffer.	The full-rate DDIO operates as a regular DDIO. The output buffer drives both an output pin and an input buffer. The input buffer drives a set of three flip-flops.	The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate. The output buffer drives both an output pin and an input buffer. The input buffer drives a set of three flip-flops.			

If you use asynchronous clear and preset signals, all DDIOs share these same signals.

Half-rate and full-rate DDIOs connect to separate clocks. When you use half-rate and full-rate DDIOs, the full-rate clock must run at twice the half-rate frequency. You can use different phase relationships to meet timing requirements.

Related Links

Input and Output Bus High and Low Bits on page 11

The high and low bits in the input or output signals are included in the din and dout input and output buses.

Input Path

The pad sends data to the input buffer, and the input buffer feeds the delay element. After the data goes to the output of the delay element, the programmable bypass multiplexers select the features and paths to use. Each input path contains two stages of DDIOs, which are full-rate and half-rate.

Figure 2. Simplified View of Single-Ended GPIO Input Path

- 1. The pad receives data.
- 2. DDIO IN (1) captures data on the rising and falling edges of CLK_FR and sends the data, signals (A) and (B) in the following waveform figure, at single data rate.
- 3. DDIO IN (2) and DDIO IN (3) halve the data rate.
- 4. DATAOUT[3:0] presents the data as a half-rate bus.

Figure 3. Input Path Waveform in DDIO Mode with Half-Rate Conversion

In this figure, the data goes from full-rate clock at double data rate to half-rate clock at single data rate. The data rate is divided by four and the bus size is increased by the same ratio. The overall throughput through the Altera GPIO IP core remains unchanged.

The actual timing relationship between different signals may vary depending on the specific design, delays, and phases that you choose for the full-rate and half-rate clocks.

Note:

The Altera GPIO IP core does not support dynamic calibration of the input path. For applications that require dynamic calibration of the input path, refer to the related information.

Related Links

Altera PHYLite for Parallel Interfaces IP Core User Guide

Provides more information for applications that require dynamic calibration of the input path.

Output and Output Enable Paths

The output delay element sends data to the pad through the output buffer.

Each output path contains two stages of DDIOs, which are half-rate and full-rate.

Figure 4. Simplified View of Single-Ended GPIO Output Path

The output path waveform is symmetrical to the input path waveform.

Figure 5. Simplified View of Output Enable Path

The difference between the output path and output enable (OE) path is that the OE path does not contain full-rate DDIO. To support packed-register implementations in the OE path, a simple register operates as full-rate DDIO. For the same reason, only one half-rate DDIO is present.

The OE path operates in the following three fundamental modes:

- Bypass—the core sends data directly to the delay element, bypassing all DDIOs.
- Packed Register—bypasses half-rate DDIO.
- SDR output at half-rate—half-rate DDIOs convert data from full-rate to half-rate.

Note:

The Altera GPIO IP core does not support dynamic calibration of the output path. For applications that require dynamic calibration of the output path, refer to related information.

Related Links

- Altera PHYLite for Parallel Interfaces IP Core User Guide
 - Provides more information for applications that require dynamic calibration of the output path.
- Input Path on page 5

The pad sends data to the input buffer, and the input buffer feeds the delay element. After the data goes to the output of the delay element, the programmable bypass multiplexers select the features and paths to use.

Altera GPIO Interface Signals

Depending on parameter settings you specify, different interface signals are available for the Altera GPIO IP core.

Figure 6. Altera GPIO IP Core Interfaces

Figure 7. Altera GPIO Interface Signals

Table 2. Pad Interface Signals

The pad interface is the physical connection from the Altera GPIO IP core to the pad. This interface can be an input, output or bidirectional interface, depending on the IP core configuration. In this table, *SIZE* is the data width specified in the IP core parameter editor.

Signal Name	Direction	Description
pad_in[SIZE-1:0]	Input	Input signal from the pad.
pad_in_b[SIZE-1:0]	Input	Negative node of the differential input signal from the pad. This port is available if you turn on the Use differential buffer option.
pad_out[SIZE-1:0]	Output	Output signal to the pad.
	<u>'</u>	continued

Signal Name	Direction	Description
pad_out_b[SIZE-1:0]	Output	Negative node of the differential output signal to the pad. This port is available if you turn on the Use differential buffer option.
pad_io[SIZE-1:0]	Bidirectional	Bidirectional signal connection with the pad.
pad_io_b[SIZE-1:0]	Bidirectional	Negative node of the differential bidirectional signal connection with the pad. This port is available if you turn on the Use differential buffer option.

Table 3. Data Interface Signals

The data interface is an input or output interface from the Altera GPIO IP core to the FPGA core. In this table, *SIZE* is the data width specified in the IP core parameter editor.

Signal Name	Direction	Description
din[DATA_SIZE-1:0]	Input	Data input from the FPGA core in output or bidirectional mode. DATA_SIZE depends on the register mode: Bypass or simple register—DATA_SIZE = SIZE DDIO without half-rate logic—DATA_SIZE = 2 × SIZE DDIO with half-rate logic—DATA_SIZE = 4 × SIZE
dout[DATA_SIZE-1:0]	Output	Data output to the FPGA core in input or bidirectional mode, DATA_SIZE depends on the register mode: Bypass or simple register—DATA_SIZE = SIZE DDIO without half-rate logic—DATA_SIZE = 2 × SIZE DDIO with half-rate logic—DATA_SIZE = 4 × SIZE
oe[<i>OE_SIZE-</i> 1:0]	Input	OE input from the FPGA core in output mode with Enable output enable port turned on, or bidirectional mode. OE is active high. When transmitting data, set this signal to 1. When receiving data, set this signal to 0. <i>OE_SIZE</i> depends on the register mode: • Bypass or simple register— <i>DATA_SIZE</i> = <i>SIZE</i> • DDIO without half-rate logic— <i>DATA_SIZE</i> = <i>SIZE</i> • DDIO with half-rate logic— <i>DATA_SIZE</i> = 2 × <i>SIZE</i>

Table 4. Clock Interface Signals

The clock interface is an input clock interface. It consists of different signals, depending on the configuration. The Altera GPIO IP core can have zero, one, two, or four clock inputs. Clock ports appear differently in different configurations to reflect the actual function performed by the clock signal.

Signal Name	Direction	Description
ck	Input	In input and output paths, this clock feeds a packed register or DDIO if you turn off the Half Rate logic parameter.
		In bidirectional mode, this clock is the unique clock for the input and output paths if you turn off the Separate input/output Clocks parameter.
ck_fr	Input	In input and output paths, these clocks feed the full-rate and half-rate DDIOs if your turn on the Half Rate logic parameter.
ck_hr		In bidirectional mode, the input and output paths use these clocks if you turn off the Separate input/output Clocks parameter.
ck_in	Input	In bidirectional mode, these clocks feed a packed register or DDIO in the input and output paths if you specify both these settings:
ck_out		Turn off the Half Rate logic parameter.
		Turn on the Separate input/output Clocks parameter.

Signal Name	Direction	Description
ck_fr_in	Input	In bidirectional mode, these clocks feed a full-rate and half-rate DDIOS in the input and output paths if you specify both these
ck_fr_out		settings
	1	Turn on the Half Rate logic parameter.
ck_hr_in		Turn on the Separate input/output Clocks parameter.
ck_hr_out		For example, ck_fr_out feeds the full-rate DDIO in the output path.
cke	Input	Clock enable.

Table 5. Termination Interface Signals

The termination interface connects the Altera GPIO IP core to the I/O buffers.

Signal Name	Direction	Description
seriesterminationcontrol	Input	Input from the termination control block (OCT) to the buffers. It sets the buffer series impedance value.
parallelterminationcontro 1	Input	Input from the termination control block (OCT) to the buffers. It sets the buffer parallel impedance value.

Table 6. Reset Interface Signals

The reset interface connects the Altera GPIO IP core to the DDIOs.

Signal Name	Direction	Description
sclr	Input	Synchronous clear.
aclr	Input	Asynchronous clear.
aset	Input	Asynchronous set.
sset	Input	Synchronous set.

Related Links

Input and Output Bus High and Low Bits on page 11

The high and low bits in the input or output signals are included in the \dim and \det input and output buses.

Shared Signals

- The input, output, and OE paths share the same clear and preset signals.
- The output and OE path shares the same clock signals.

Data Bit-Order for Data Interface

Figure 8. Data Bit-Order Convention

This figure shows the bit-order convention for the din, dout and oe data signals.

- If the data bus size value is SIZE, the LSB is at the right-most position.
- If the data bus size value is $2 \times SIZE$, the bus is made of two words of SIZE.
- If the data bus size value 4 × SIZE, the bus is made of four words of SIZE.
- The LSB is in the right-most position of each word.
- The right-most word specifies the first word going out for output buses and the first word coming in for input buses.

Related Links

Input Path on page 5

The pad sends data to the input buffer, and the input buffer feeds the delay element. After the data goes to the output of the delay element, the programmable bypass multiplexers select the features and paths to use.

Input and Output Bus High and Low Bits

The high and low bits in the input or output signals are included in the \dim and dout input and output buses.

Input Bus

For the din bus, if datain_h and datain_l are the high and low bits, with each width being datain_width:

- datain_h = din[(2 × datain_width 1):datain_width]
- datain_l = din[(datain_width 1):0]

For example, for din[7:0] = 8'b11001010:

- datain_h = 4'b1100
- datain_l = 4'b1010

Output Bus

For the dout bus, if dataout_h and dataout_l are the high and low bits, with each width being dataout_width:

- dataout_h = dout[(2 × dataout_width 1):dataout_width]
- dataout_l = dout[(dataout_width 1):0]

For example, for dout[7:0] = 8b11001010:

- dataout_h = 4'b1100
- dataout_1 = 4'b1010

Data Interface Signals and Corresponding Clocks

Table 7. Data Interface Signals and Corresponding Clocks

Signal Name	Par	rameter Configura	Clock	
	Register Mode	Half Rate	Separate Clocks	
din	• Simple Register • DDIO	Off	Off	ck
	DDIO	On	Off	ck_hr
	• Simple Register • DDIO	Off	On	ck_in
	DDIO	On	On	ck_hr_in
• dout • oe	• Simple Register • DDIO	Off	Off	ck
	DDIO	On	Off	ck_hr
	• Simple Register • DDIO	Off	On	ck_out
	DDIO	On	On	ck_hr_out
• sclr • sset • All pad signals	Simple Register DDIO	Off	Off	ck
	DDIO	On	Off	ck_fr
	• Simple Register • DDIO	Off	On	Input path: ck_in Output path: ck_out
	DDIO	On	On	Input path: ck_fr_in Output path: ck_fr_out

Verifying Resource Utilization and Design Performance

You can refer to the Quartus Prime compilation reports to get details about the resource usage and performance of your design.

- 1. On the menu, click **Processing ➤ Start Compilation** to run a full compilation.
- 2. After compiling the design, click **Processing** ➤ **Compilation Report**.
- 3. Using the **Table of Contents**, navigate to **Fitter ➤ Resource Section**.
 - a. To view the resource usage information, select **Resource Usage Summary**.
 - To view the resource utilization information, select Resource Utilization by Entity.

Altera GPIO Parameter Settings

You can set the parameter settings for the Altera GPIO IP core in the Quartus Prime software. There are three groups of options: **General**, **Buffer**, and **Registers**.

Table 8. Altera GPIO Parameters - General

Parameter	Condition	Allowed Values	Description
Data Direction	_	InputOutputBidir	Specifies the data direction for the GPIO.
Data width	_	1 to 128	Specifies the data width.
Use legacy top-level port names	_	• On • Off	Use same port names as in Stratix V, Arria V, and Cyclone V devices.
			For example, dout becomes dataout_h and dataout_l, and din becomes datain_h and datain_l.
			Note: The behavior of these ports are different than in the Stratix V, Arria V, and Cyclone V devices. For the migration guideline, refer to the related information.

Table 9. Altera GPIO Parameters - Buffer

Use pseudo differential buffer • Data Direction = Output • Use differential buffer • On Off • Of	Parameter	Condition	Allowed Values	Description
buffer Output Use differential buffer Off Off Off differential output buffers. This option is automatically turned on bidirectional mode if you turn on Use differential buffer. Use bus-hold circuitry • Data Direction = Input • On If turned on, the bus hold circuitry care	Use differential buffer	_	-	If turned on, enables differential I/O buffers.
, but the state of	•	Output Use differential buffer	_ · · ·	This option is automatically turned on for bidirectional mode if you turn on Use
Use differential buffer last-driven state where the output buf	Use bus-hold circuitry	or Bidir Use differential buffer	• On • Off	If turned on, the bus hold circuitry can weakly hold the signal on an I/O pin at its last-driven state where the output buffer state will be 1 or 0 but not high-impedance.

Parameter	Condition	Allowed Values	Description
Use open drain output	Data Direction = Output or Bidir Use differential buffer = Off	• On • Off	If turned on, the open drain output enables the device to provide system-level control signals such as interrupt and write enable signals that can be asserted by multiple devices in your system.
Enable output enable port	Data Direction = Output	• On • Off	If turned on, enables user input to the OE port. This option is automatically turned on for bidirectional mode.
Enable seriestermination / paralleltermination ports	-	• On • Off	If turned on, enables the seriesterminationcontrol and parallelterminationcontrol ports of the output buffer.

Table 10. Altera GPIO Parameters - Registers

Parameter	Condition	Allowed Values	Specifies the register mode for the Altera GPIO IP core: • None—specifies a simple wire connection from/to the buffer. • Simple register—specifies that the DDIO is used as a simple register in single datarate mode (SDR). The Fitter may pack this register in the I/O. • DDIO— specifies that the IP core uses the DDIO.	
Register mode	_	None Simple register DDIO		
Enable synchronous clear / preset port	Register mode = DDIO	None Clear Preset	Specifies how to implement synchronous reset port. None—Disables synchronous reset port. Clear—Enables the SCLR port for synchronous clears. Preset—Enables the SSET port for synchronous preset.	
Enable asynchronous clear / preset port	Register mode = DDIO	None Clear Preset	Specifies how to implement asynchronous reset port. None—Disables asynchronous reset port. Clear—Enables the ACLR port for asynchronous clears. Preset—Enables the ASET port for asynchronous preset.	
Enable clock enable ports	Register mode = DDIO	• On • Off	On—exposes the clock enable (CKE) port to allow you to control when data is clocked in or out. This signal prevents data from being passed through without your control. Off—clock enable port is not exposed and data always pass through the register automatically.	
Half Rate logic	Register mode = DDIO	• On • Off	If turned on, enables half-rate DDIO.	
Separate input / output Clocks	Data Direction = Bidir Register mode = Simple register or DDIO	• On • Off	If turned on, enables separate clocks (CK_IN and CK_OUT) for the input and output paths in bidirectional mode.	

Related Links

- Input and Output Bus High and Low Bits on page 11
 The high and low bits in the input or output signals are included in the din and dout input and output buses.
- Guideline: Swap datain_h and datain_I Ports in Migrated IP on page 23
 When you migrate your GPIO IP to the Altera GPIO IP core, you can turn on
 Use legacy top-level port names option in the Altera GPIO IP core
 parameter editor. However, the behavior of these ports in the Altera GPIO IP
 core is different than in the IP cores used for the Stratix V, Arria V, and
 Cyclone V devices.

Register Packing

The Altera GPIO IP core allows you to pack register into the periphery to save area and resource utilization.

You can configure the full-rate DDIO on the input and output path as a flip flop. To do so, add the .qsf assignments listed in this table.

Table 11. Register Packing QSF Assignments

Path	QSF Assignment	
Input register packing	set_instance_assignment -name FAST_INPUT_REGISTER ON -to <pre>register></pre>	
Output register packing	set_instance_assignment -name FAST_OUTPUT_REGISTER ON -to <pre>register></pre>	
Output enable register packing	set_instance_assignment -name FAST_OUTPUT_ENABLE_REGISTER ON -to <pre><pre><pre>register></pre></pre></pre>	

Note:

These assignments do not guarantee register packing. However, these assignments enable the Fitter to find a legal placement. Otherwise, the Fitter will keep the flip flop in the core.

Altera GPIO Timing

The performance of the Altera GPIO IP core depends on the I/O constraints and clock phases. To validate the timing for your Altera GPIO configuration, Intel recommends that you use the TimeQuest Timing Analyzer.

Related Links

The Quartus Prime TimeQuest Timing Analyzer

Timing Components

The Altera GPIO IP core timing components consist of three paths.

- I/O interface paths—from the FPGA to external receiving devices and from external transmitting devices to the FPGA.
- Core interface paths of data and clock—from the I/O to the core and from the core to I/O.
- Transfer paths—from half-rate to full-rate DDIO, and from full-rate to half-rate DDIO.

Note: The TimeQuest Timing Analyzer treats the path inside the DDIO_IN and DDIO_OUT blocks as black boxes.

Figure 9. Input Path Timing Components

Figure 10. Output Path Timing Components

Figure 11. Output Enable Path Timing Components

Delay Elements

The Quartus Prime software does not automatically set delay elements to maximize slack in the I/O timing analysis. To close the timing or maximize slack, set the delay elements manually in the Quartus Prime settings file (.qsf).

Table 12. Delay Elements .qsf Assignments

Specify these assignments in the .qsf to access the delay elements.

Delay Element	.qsf Assignment
Input Delay Element	
Input Beldy Element	set_intance_assignment -to <pin> -name INPUT_DELAY_CHAIN <063></pin>
Output Delay Element	
Suspensional Lientens	set_intance_assignment -to <pin> -name OUTPUT_DELAY_CHAIN <015></pin>
Output Enable Delay	
Element	set_intance_assignment -to <pin> -name OE_DELAY_CHAIN <015></pin>

Timing Analysis

The Quartus Prime software does not automatically generate the SDC timing constraints for the Altera GPIO IP core. You must manually enter the timing constraints.

Follow the timing guidelines and examples to ensure that the TimeQuest Timing Analyzer analyzes the I/O timing correctly.

- To perform proper timing analysis for the I/O interface paths, specify the system level constraints of the data pins against the system clock pin in the .sdc file.
- To perform proper timing analysis for the core interface paths, define these clock settings in the .sdc file:
 - Clock to the core registers
 - $-\,\,\,$ Clock to the I/O registers for the simple register and DDIO modes

Related Links

AN 433: Constraining and Analyzing Source-Synchronous Interfaces

Describes techniques for constraining and analyzing source-synchronous interfaces.

Single Data Rate Input Register

Figure 12. Single Data Rate Input Register

Table 13. Single Data Rate Input Register .sdc Command Examples

Command	Command Example	Description
create_clock	create_clock -name sdr_in_clk -period "100 MHz" sdr_in_clk	Creates clock setting for the input clock.
set_input_delay	set_input_delay -clock sdr_in_clk 0.15 sdr_in_data	Instructs the TimeQuest timing analyzer to analyze the timing of the input I/O with a 0.15 ns input delay.

Full-Rate or Half-Rate DDIO Input Register

The input side of the full-rate and half-rate DDIO input registers are the same. You can properly constrain the system by using a virtual clock to model the off-chip transmitter to the FPGA.

Figure 13. Full-Rate or Half-Rate DDIO Input Register

Table 14. Full-Rate or Half-Rate DDIO Input Register .sdc Command Examples

Command	Command Example	Description
create_clock	create_clock -name virtual_clock -period "200 MHz" create_clock -name ddio_in_clk -period "200 MHz" ddio_in_clk	Create clock setting for the virtual clock and the DDIO clock.
set_input_delay	set_input_delay -clock virtual_clock 0.25 ddio_in_data set_input_delay -add_delay -clock_fall -clock virtual_clock 0.25 ddio_in_data	Instruct the TimeQuest Timing Analyzer to analyze the positive clock edge and the negative clock edge of the transfer. Note the -add_delay in the second set_input_delay command.
set_false_path	set_false_path -fall_from virtual_clock -rise_to ddio_in_clk set_false_path -rise_from virtual_clock -fall_to ddio_in_clk	Instruct the TimeQuest Timing Analyzer to ignore the positive clock edge to the negative edge triggered register, and the negative clock edge to the positive edge triggered register. Note: The CLK_HR frequency must be half the CLK_FR frequency. If the I/O PLL drives the clocks, you can consider using the derive_pll_clocks .sdc command.

Single Data Rate Output Register

Figure 14. Single Data Rate Output Register

Table 15. Single Data Rate Output Register .sdc Command Examples

Command	Command Example	Description
create_clock and create_generated_ clock	create_clock -name sdr_out_clk -period "100 MHz" sdr_out_clk create generated clock -source	Generate the source clock and the output clock to transmit.
	sdr_out_clk -name sdr_out_outclk sdr_out_outclk	
set_output_delay	set_output_delay -clock sdr_out_clk 0.45 sdr_out_data	Instructs the TimeQuest Timing Analyzer to analyze the output data to transmit against the output clock to transmit.

Full-Rate or Half-Rate DDIO Output Register

The output side of the full-rate and half-rate DDIO output registers are the same.

Table 16. DDIO Output Register .sdc Command Examples

Command	Command Example	Description
create_clock and create_generated_ clock	create_clock -name ddio_out_fr_clk -period "200 MHz" ddio_out_fr_clk create_generated_clock -source ddio_out_fr_clk -name ddio_out_fr_outclk ddio_out_fr_outclk	Generate the clocks to the DDIO and the clock to transmit.
set_output_delay	set_output_delay -clock ddio_out_fr_outclk 0.55 ddio_out_fr_data set_output_delay -add_delay -clock_fall -clock ddio_out_fr_outclk 0.55 ddio_out_fr_data	Instruct the TimeQuest Timing Analyzer to analyze the positive and negative data against the output clock.
set_false_path	set_false_path -rise_from ddio_out_fr_clk -fall_to ddio_out_fr_outclk set_false_path -fall_from ddio_out_fr_clk -rise_to ddio_out_fr_outclk	Instruct the TimeQuest Timing Analyzer to ignore the rising edge of the source clock against the falling edge of the output clock, and the falling edge of source clock against rising edge of output clock

Timing Closure Guidelines

For the Altera GPIO input registers, the input I/O transfer is likely to fail the hold time if you do not set the input delay chain. This failure is caused by the clock delay being larger than the data delay.

To meet the hold time, add delay to the input data path using the input delay chain. In general, the input delay chain is around 60 ps per step at the -1 speed grade. To get an approximate input delay chain setting to pass the timing, divide the negative hold slack by 60 ps.

However, if the I/O PLL drives the clocks of the GPIO input registers (simple register or DDIO mode), you can set the compensation mode to source synchronous mode. The Fitter will attempt to configure the I/O PLL for a better setup and hold slack for the input I/O timing analysis.

For the Altera GPIO output and output enable registers, you can add delay to the output data and clock using the output and output enable delay chains.

- If you observe setup time violation, you can increase the output clock delay chain setting.
- If you observe hold time violation, you can increase the output data delay chain setting.

Altera GPIO IP Core Design Examples

The Altera GPIO IP core can generate design examples that match your IP configuration in the parameter editor. You can use these design examples as references for instantiating the IP core and the expected behavior in simulations.

You can generate the design examples from the Altera GPIO IP core parameter editor. After you have set the parameters that you want, click **Generate Example Design**. The IP core generates the design example source files in the directory you specify.

Figure 15. Source Files in the Generated Design Example Directory

Note:

The .qsys files are for internal use during design example generation only. You cannot edit these .qsys files.

Altera GPIO Synthesizable Quartus Prime Design Example

The synthesizable design example is a compilation-ready Qsys system that you can include in a Quartus Prime project.

Generating and Using the Design Example

To generate the synthesizable Quartus Prime design example from the source files, run the following command in the design example directory:

```
quartus_sh -t make_qii_design.tcl
```

To specify an exact device to use, run the following command:

```
quartus_sh -t make_qii_design.tcl [device_name]
```

The TCL script creates a qii directory that contains the ed_synth.qpf project file. You can open and compile this project in the Quartus Prime software.

Altera GPIO IP Core Simulation Design Example

The simulation design example uses your Altera GPIO IP core parameter settings to build the IP instance connected to a simulation driver. The driver generates random traffic and internally checks the legality of the out going data.

Using the design example, you can run a simulation using a single command, depending on the simulator that you use. The simulation demonstrates how you can use the Altera GPIO IP core.

Generating and Using the Design Example

To generate the simulation design example from the source files for a Verilog simulator, run the following command in the design example directory:

```
quartus_sh -t make_sim_design.tcl
```


To generate the simulation design example from the source files for a VHDL simulator, run the following command in the design example directory:

quartus_sh -t make_sim_design.tcl VHDL

The TCL script creates a sim directory that contains subdirectories—one for each supported simulation tool. You can find the scripts for each simulation tool in the corresponding directories.

IP Migration Flow for Arria V, Cyclone V, and Stratix V Devices

The IP migration flow allows you to migrate the ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, and ALTIOBUF IP cores of Arria V, Cyclone V, and Stratix V devices to the Altera GPIO IP core of Arria 10 devices.

This IP migration flow configures the Altera GPIO IP core to match the settings of the ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, and ALTIOBUF IP cores, allowing you to regenerate the IP core.

Note:

Some IP cores support the IP migration flow in specific modes only. If your IP core is in a mode that is not supported, you may need to run the IP Parameter Editor for the Altera GPIO IP core and configure the IP core manually.

Migrating Your ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, and ALTIOBUF IP Cores

To migrate your ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, and ALTIOBUF IP cores to the Altera GPIO IP core, follow these steps:

- 1. Open your ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, or ALTIOBUF IP core in the IP Parameter Editor.
- 2. In the Currently selected device family, select Arria 10.
- 3. Click **Finish** to open the Altera GPIO IP Parameter Editor.
 - The IP Parameter Editor configures the Altera GPIO IP core settings similar to the ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, or ALTIOBUF IP core settings.
- If there are any incompatible settings between the two, select new supported settings.
- 5. Click **Finish** to regenerate the IP core.
- 6. Replace your ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, or ALTIOBUF IP core instantiation in RTL with the Altera GPIO IP core.

Note:

The Altera GPIO IP core port names may not match the ALTDDIO_IN, ALTDDIO_OUT, ALTDDIO_BIDIR, or ALTIOBUF IP core port names. Therefore, simply changing the IP core name in the instantiation may not be sufficient.

Related Links

Input and Output Bus High and Low Bits on page 11

The high and low bits in the input or output signals are included in the din and dout input and output buses.

Guideline: Swap datain_h and datain_1 Ports in Migrated IP

When you migrate your GPIO IP to the Altera GPIO IP core, you can turn on **Use legacy top-level port names** option in the Altera GPIO IP core parameter editor. However, the behavior of these ports in the Altera GPIO IP core is different than in the IP cores used for the Stratix V, Arria V, and Cyclone V devices.

The Altera GPIO IP core drives these ports to the output registers on these clock edges:

- datain_h—on the falling edge of outclock
- datain_l—on the rising edge of outclock

If you migrated your GPIO IP from Stratix V, Arria V, and Cyclone V devices, swap the datain_h and datain_l ports when you instantiate the IP generated by the Altera GPIO IP core.

Related Links

Input and Output Bus High and Low Bits on page 11

The high and low bits in the input or output signals are included in the din and dout input and output buses.

Altera GPIO IP Core User Guide Archives

If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version	User Guide
16.1	Altera GPIO IP Core User Guide
16.0	Altera GPIO IP Core User Guide
14.1	Altera GPIO Megafunction User Guide
13.1	Altera GPIO Megafunction User Guide

Document Revision History

Date	Version	Changes
May 2017	2017.05.08	 Updated the table listing the Altera GPIO buffer parameters to specify the conditions for the Use bus-hold circuitry parameter option. Rebranded as Intel.
October 2016	2016.10.31	 Updated the input path waveform. Added a topic describing the high and low bits in the din and dout buses.
		continued

Date	Version	Changes
August 2016	2016.08.05	 Added notes about dynamic OCT support in the Altera GPIO IP core. Updated the topic about parameter settings to improve accuracy and clarity. Updated the section about generating the design example. Added a guideline topic about behavior of the legacy ports when you migrate to the Altera GPIO IP core from Stratix V, Arria V, and Cyclone V devices. Rewrote and restructured the document to improve clarity and for ease of reference. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.
August 2014	2014.08.18	 Added timing information. Added register packing information. Added Use legacy top-level port names parameter. This is a new parameter. Added register packing information. Replaced the term megafunction with IP core.
November 2013	2013.11.29	Initial release.