Current Research

Edmund Miller

April 8, 2022

Background

Enhancer intro

Central Dogma of Biology

A Simple View of Gene Expression

Gene Expression

Central Dogma

Enhancers Image

Enhancers Fun facts

 \bullet Cis-acting DNA sequences that can increase the transcription of genes 1

¹(Pennacchio et al. 2013)

Multiple Enhancers can regulate one gene

Figure 1: [fn:1: (Kim et al. 2018)]

Enhancers can regulate multiple genes

Topologically Associating Domain (TAD)

Why are Enhancers difficult to identify?

- Scattered across the 98% of the human genome that does not encode proteins ¹
- Enhancers location relative to their target gene (or genes) is highly variable. They can be upstream, downstream, or within introns. ¹
- Enhancers do not necessarily act on the respective closest promoter but can bypass neighbouring genes to regulate genes located more distantly along a chromosome¹

eRNAs Introduction

Global Transcriptional Activity dynamics reveal functional enhancer rnas

GRO-seq Overview

Figure 2: (Yao et al. 2022)

Reproduction with IMR

Hypothesis

Aims

Aim 1 Create a best practice secondary analysis pipeline for nascent transcripts

Aim 2 Take advantage of New Developments to improve eRNA annotation

New developments

CHM13

Epigenetic patterns in a complete human genome - PubMed

PINTS

NT vs TSS

12

Aim 3 Compare eRNA dynamics between cell lines