Μάθηση Εννοιών

Μάθηση εννοιών

- Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή
 - Αληθής, για εισόδους που ανήκουν στην έννοια
 - Ψευδής, για εισόδους που δεν ανήκουν στην έννοια.
- Επαγωγική μάθηση εννοιών: το σύστημα μαθαίνει μια έννοια Q(x)
 (συνάρτηση στόχου) από παραδείγματα x που ανήκουν ή δεν ανήκουν στην έννοια.
- Το πρόβλημα είναι παρόμοιο με αυτό της μάθησης δέντρων απόφασης, απλά περιορίζουμε το ενδιαφέρον μας σε λογικές συναρτήσεις στόχου.

Αναπαράσταση συνόλου εκπαίδευσης

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	T	Full	\$	F	F	Burger	30–60	Т

Τα παραδείγματα και η ταξινόμησή τους περιγράφονται ως λογικές προτάσεις.

$$alt(x_1) \land \neg bar(x_1) \land \neg fri(x_1) \land hun(x_1) \land pat(x_1, some) \land price(x_1, 3) \land \neg rain(x_1) \land res(x_1) \land type(x_1, f) \land est(x_1, 0 - 10)$$

Ταξινόμηση $wait(x_1)$ θετική (αρνητική ταξινόμηση: $\neg wait(X)$ για κάποιο παράδειγμα X)

Υποθέσεις

- Στόχος η εύρεση μιας ισοδύναμης προς την Q(X) πρότασης.
- Κάθε υπόθεση προτείνει μια τέτοια έκφραση, δηλαδή προτείνει έναν υποψήφιο ορισμό:

Υπόθεση
$$H_i \equiv \forall x \ Q(x) \Leftrightarrow C_i(x)$$

• Παράδειγμα:

```
\forall R \ wait(R) \Leftrightarrow pat(R, some)
\lor (pat(R, full) \land hun(R) \land type(R, f))
\lor (pat(R, full) \land hun(R) \land type(R, t) \land fri(R))
\lor (pat(R, full) \land hun(R) \land type(R, b))
```

Εναλλακτική (συμπαγέστερη) αναπαράσταση

- Τα παραδείγματα περιγράφονται ως διατεταγμένες πλειάδες των τιμών των χαρακτηριστικών τους.
- Το σχήμα περιγραφής για το παράδειγμα του εστιατορίου: (Alt, Bar, Fri, Hun, Pat, Price, Rain, Res, Type, Est)
- Το παράδειγμα X1:

$$(T,F,F,T,some,3,F,T,f,0-10)$$

• Οι υποψήφιοι ορισμοί περιγράφονται ως σύνολα διατεταγμένων πλειάδων τιμών χαρακτηριστικών, όπου T= αληθές, F=ψευδές, ?=δεν με νοιάζει και 0=δεν επιτρέπεται τιμή. Υποννοείται ότι οι πλειάδες του υποψήφιου ορισμού είναι σε διάζευξη μεταξύ τους.

```
H: {(?,?,?,?,some,?,?,?,?), (?,?,?,T, full, ?,?,?,f,?), (?,?,T,T, full, ?,?,?,t,?), (?,?,?,T, full, ?,?,?,b,?)}
```

Επέκταση υπόθεσης

- Επέκταση υπόθεσης: Το σύνολο των παραδειγμάτων που η υπόθεση θεωρεί θετικά.
- Για μια τυχαία υπόθεση H_i, ένα παράδειγμα μπορεί να είναι:
 - Σωστά θετικό: το παράδειγμα ανήκει (ορθά) στην επέκταση της υπόθεσης.
 - Εσφαλμένα θετικό: η υπόθεση το ταξινομεί ως θετικό ενώ στην πραγματικότητα είναι αρνητικό. Το παράδειγμα ανήκει (εσφαλμένα) στην επέκταση της υπόθεσης. Η υπόθεση πρέπει να τροποποιηθεί ώστε να αποκλειστεί το παράδειγμα.
 - Σωστά αρνητικό. Το παράδειγμα δεν ανήκει (ορθά) στην επέκταση της υπόθεσης.
 - Εσφαλμένα αρνητικό: η υπόθεση το ταξινομεί ως αρνητικό ενώ στην πραγματικότητα είναι θετικό. Π.χ. Το παράδειγμα X13 είναι εσφαλμένα αρνητικό για την υπόθεση Η. Το παράδειγμα (εσφαλμένα) δεν ανήκει στην επέκταση της υπόθεσης. Η υπόθεση πρέπει να τροποποιηθεί ώστε να το συμπεριλάβει.
- Ο χώρος υποθέσεων περιέχει όλες τις υποθέσεις (υποψήφιους ορισμούς) και ο αλγόριθμος μάθησης πιστεύει στην αλήθεια της διάζευξής τους.
- Τα εσφαλμένα παραδείγματα οδηγούν στον αποκλεισμό υποθέσεων από αυτή τη διάζευξη.

Αναζήτηση τρέχουσας βέλτιστης υπόθεσης (1)

- Η βασική ιδέα περιγράφηκε από τον John Stuart Mill (1843).
- Ο αλγόριθμος διατηρεί συνεχώς την καλύτερη υπόθεση,
 - γενικεύοντας την για τα εσφαλμένα αρνητικά παραδείγματα, και
 - εξειδικεύοντάς την για τα εσφαλμένα θετικά παραδείγματα.
- Κάθε φορά που γενικεύεται ή εξειδικεύεται η υπόθεση, πρέπει να ελέγχεται η συνέπειά της με τα προϋπάρχοντα παραδείγματα.

Αναζήτηση τρέχουσας βέλτιστης υπόθεσης (2)

• Γενίκευση/Εξειδίκευση

- ο Μια υπόθεση H_1 με ορισμό C_1 είναι γενίκευση μιας υπόθεσης H_2 με ορισμό C_2 αν και μόνο αν $\forall X C_2(X) \Rightarrow C_1(X)$.
- ο Αντίστροφα, η H_2 λέγεται εξειδίκευση της H_1 .
- Για να κατασκευάσουμε τη γενίκευση μιας υπόθεσης, πρέπει να παραλείψουμε συνθήκες από τον ορισμό της.
- Για να κατασκευάσουμε εξειδίκευση μιας υπόθεσης, πρέπει να **προσθέσουμε** συνθήκες στον ορισμό της.

Αναζήτηση τρέχουσας βέλτιστης υπόθεσης: ο αλγόριθμος

function Current-Best-Learning(παραδείγματα) returns μια υπόθεση

Η ← κάθε υπόθεση που συμφωνεί με το πρώτο παράδειγμα στα παραδείγματα

for each παράδειγμα που απομένει στα παραδείγματα do

if *e* είναι εσφαλμένα θετικό για την *H* **then**

 $H \leftarrow \mathbf{choose}$ μια εξειδίκευση της H συνεπή με τα παραδείγματα

else if e είναι εσφαλμένα αρνητικό για το H then

 $H \leftarrow \mathbf{choose}$ μια γενίκευση της H συνεπή με τα παραδείγματα

if δεν μπορεί να βρεθεί συνεπής γενίκευση ή εξειδίκευση then fail

return H

Παράδειγμα (1)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	T
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	T	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Το παράδειγμα, X1 είναι θετικό. Το πρώτο χαρακτηριστικό του είναι αληθές, οπότε μια αρχική υπόθεση μπορεί να είναι η

 Το παράδειγμα Χ2 είναι αρνητικό, αλλά είναι εσφαλμένα θετικό σύμφωνα με την υπόθεση Η1. Οπότε πρέπει να εξειδικεύσουμε την Η1, προσθέτοντας μια συνθήκη, έστω

Παράδειγμα (2)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	ltalian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Το X3 είναι θετικό, αλλά είναι εσφαλμένα αρνητικό σύμφωνα με την H2. Οπότε πρέπει να γενικεύσουμε την H2, παραλείποντας κάποια συνθήκη, έστω

• Το Χ4 είναι θετικό, αλλά εσφαλμένα αρνητικό σύμφωνα με την Η3. Πρέπει να γενικεύσουμε την Η3, αλλά δεν μπορούμε να άρουμε τη συνθήκη pat=some γιατί η νέα υπόθεση δεν θα είναι συνεπής με το Χ2. Οπότε προσθέτουμε διαζευκτέο στην υπόθεσή μας, έστω

Παράδειγμα (3)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	T	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Γενικεύθηκε ως:

• Υπάρχουν κι άλλες υποψήφιες υποθέσεις που συμφωνούν με τα παραδείγματα ως τώρα, όπως για παράδειγμα

Παράδειγμα (4)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	T
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	T	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

- Ο αλγόριθμος αναζήτησης της τρέχουσας βέλτιστης υπόθεσης είναι μη αιτιοκρατικός γιατί σε κάθε σημείο μπορεί να υπάρξουν πολλές ενδεχόμενες εξειδικεύσεις/γενικεύσεις μιας υπόθεσης.
- Όταν, με τις επιλογές που γίνονται, οδηγηθούμε σε υπόθεση τέτοια ώστε καμιά απλή τροποποίησή της δεν είναι πλέον δυνατό να την καταστήσει σύμφωνη με όλο το σύνολο εκπαίδευσης, ο αλγόριθμος υπαναχωρεί σε προηγούμενο σημείο επιλογής.
- Πρόβλημα: χρονοβόρος ο έλεγχος συνέπειας κάθε υπόθεσης με όλα τα προηγούμενα παραδείγματα. Πιθανόν να υπάρχουν πολλές υπαναχωρήσεις.

Αναζήτηση ελάχιστης δέσμευσης

- Στόχος η αποφυγή της υπαναχώρησης. Λύση, μια αυξητική προσέγγιση.
- Ο χώρος όλων των υποθέσεων μπορεί να θεωρηθεί ότι αντιστοιχεί στη διάζευξη όλων των υποθέσεων.

$$H1 \vee H2 \vee ... \vee Hn$$

- Κάθε μια υπόθεση που διαπιστώνεται ότι δεν είναι συνεπής με τα παραδείγματα απαλοίφεται, οπότε ο χώρος των υποθέσεων συρρικνώνεται.
- Διατηρούνται μόνο όλες οι υποθέσεις που είναι συνεπείς με όλα τα παραδείγματα (χώρος εκδοχών, version space).
- Δύο εναλλακτικές ονομασίες για τον αλγόριθμο:
 - Αλγόριθμος μάθησης χώρου εκδοχών
 - Αλγόριθμος απαλοιφής υποψηφίων
- Πρόβλημα: Πώς απεικονίζουμε, με συμπαγή τρόπο, τον χώρο εκδοχών;
 - Ο χώρος εκδοχών μπορεί να είναι εκθετικά μεγάλος ως προς το πλήθος των χαρακτηριστικών.

Οριακά σύνολα

- Αναπαριστάνουμε τον χώρο εκδοχών με δύο σύνολα:
 - Το σύνολο G (G-set, general): Το σύνολο των πλέον γενικών συνεπών υποθέσεων.
 - Το σύνολο S (S-set, specific): Το σύνολο των πλέον ειδικών συνεπών υποθέσεων.
- Μια υπόθεση Η ανήκει στο χώρο εκδοχών αν και μόνο αν είναι εξειδίκευση κάποιας υπόθεσης του G και γενίκευση κάποιας υπόθεσης του S.
- Για να συμπεριλαμβάνει ο χώρος εκδοχών όλες τις δυνατές υποθέσεις, ορίζουμε το G να περιέχει την τιμή Αληθές (τις υποθέσεις που περιλαμβάνουν τα πάντα, όλα τα παραδείγματα) και το S να περιέχει την τιμή Ψευδές (τις υποθέσεις με κενή επέκταση, που δεν περιλαμβάνουν κανένα παράδειγμα).

Χώρος εκδοχών

Ενημέρωση οριακών συνόλων

- Εξετάζουμε ένα-ένα τα παραδείγματα του συνόλου εκπαίδευσης. Κάθε ένα από αυτά μπορεί να είναι εσφαλμένα θετικό ή εσφαλμένα αρνητικό για τα μέλη S_i και G_i των συνόλων S και G αντίστοιχα.
- Εσφαλμένα θετικό για το S_i: Απόρριψη S_i από το S.
- Εσφαλμένα αρνητικό για το S_i : Αντικατάσταση S_i από όλες τις άμεσες γενικεύσεις του που καλύπτουν το νέο παράδειγμα, με την προϋπόθεση ότι είναι πιο εξειδικευμένες από κάποιο μέλος του G.
- Εσφαλμένα θετικό για το G_i : Αντικατάσταση G_i από όλες τις άμεσες εξειδικεύσεις του που απορρίπτουν το νέο παράδειγμα, με την προϋπόθεση ότι είναι πιο γενικές από κάποιο μέλος του S.
- Εσφαλμένα αρνητικό για το G_i: Απόρριψη G_i από το G.

Τερματισμός αλγορίθμου

- Στο χώρο εκδοχών απομένει ακριβώς μια υπόθεση.
 - Ιδανική περίπτωση
- Ο χώρος εκδοχών καταρρέει είτε το S είτε το G αδειάζει. Αυτό μπορεί να οφείλεται σε δύο λόγους:
 - Δεν υπάρχει υπόθεση συνεπής με τα παραδείγματα στον επιλεγμένο χώρο υποθέσεων.
 - Τα παραδείγματα περιέχουν θόρυβο.
- Τελειώνουν τα παραδείγματα ενώ έχουμε πολλές υποθέσεις στο χώρο εκδοχών.
 - Υπάρχουν πολλές υποθέσεις συνεπείς με τα παραδείγματα.

Παράδειγμα (1)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	ltalian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

- Αρχικά ισχύει $G=\{G_1\}$ με $G_1=$ True και $S=\{S_1\}$ με $S_1=$ False
 - Ο χώρος των εκδοχών περιλαμβάνει όλες τις υποθέσεις.
- Το παράδειγμα X₁ είναι θετικό.
- Η υπόθεση G₁ το κατατάσσει σωστά.
- Η υπόθεση S_1 το κατατάσσει λαθεμένα (εσφαλμένα αρνητικό), άρα πρέπει να γενικευτεί.

Παράδειγμα (2)

• Αντικαθιστούμε την S₁ με την πιο εξειδικευμένη γενίκευσή της, που είναι συμβατή με το παράδειγμα:

Ή σε συμπαγή μορφή S2=(T, F, F, T, some, \$\$\$, F, T, f, 0-10)

Παράδειγμα (3)

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	T
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	T	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

- Το παράδειγμα X₂ είναι αρνητικό.
- Η υπόθεση G_1 το κατατάσσει εσφαλμένα θετικά, άρα πρέπει να αντικατασταθεί από τις άμεσες εξειδικεύσεις της που είναι συμβατές με το παράδειγμα:
 - $-G_2=\{alt=F\}$
 - $G_3 = \{bar = T\}$
 - $-G_4=\{fri=T\}$
 - $-G_5=\{hun=F\}$
 - G₆={pat=some ∨ pat=none}

Παράδειγμα (4)

```
• (συνέχεια...)

- G_7={price=$$ \( \) price=$$$}

- G_8={rain=T}

- G_9={res=T}

- G_{10}={type=f \( \) type=i \( \) type=ff}

- G_{11}={est=0-10 \( \) est=10-30 \( \) est=>60}
```

- Από τις παραπάνω υποθέσεις, οι G_2 , G_3 , G_4 , G_5 , G_8 και G_9 απορρίπτονται γιατί ταξινομούν εσφαλμένα το X_1 .
- Η υπόθεση S_2 ταξινομεί σωστά αρνητικά το X_2 .

Παράδειγμα (5)

- Το παράδειγμα X₃ είναι θετικό.
- Ελέγχουμε καταρχήν για υποθέσεις του G οι οποίες κατατάσσουν το X_3 εσφαλμένα αρνητικά.
 - Οι υποθέσεις G₇ και G₉ απορρίπτονται.
- Ελέγχουμε στη συνέχεια για υποθέσεις του S, οι οποίες κατατάσσουν το X_3 εσφαλμένα αρνητικά.
- Πράγματι, η S_2 κατατάσσει το X_3 εσφαλμένα αρνητικά, άρα πρέπει να γενικευτεί, προσέχοντας όμως να μην καλύψει και το X_2 .
 - Το \mathbf{X}_1 καλύπτεται ήδη από την \mathbf{S}_2 και θα συνεχίσει να καλύπτεται και μετά τη γενίκευση.

Παράδειγμα (6)

- Η S₂ πριν τις γενικεύσεις της έχει ως εξής:
 - S_2 = { alt=T \land bar=F \land fri=F \land hun=T \land pat=some \land price=\$\$\$ \land rain=F \land res=T \land type=f \land est=0-10 }
- Άμεσες γενικεύσεις μπορούν να γίνουν με προσθήκη διαζευκτέων.
 - Σε περίπτωση δίτιμων χαρακτηριστικών, αντί για προσθήκη του εναλλακτικού διαζευκτέου μπορούμε να αφαιρέσουμε τον υπάρχοντα συζευκτέο.
- Η παρακάτω είναι η γενίκευση της S₂:
 - $S_3 = \{fri=F \land pat=some \land (price=\$\$\$ \lor price=\$) \land \Box rain=F \land (type=f \lor type=ff) \land est=0-10 \}$
- Η S₃ δεν είναι πιο γενική από κάποιο μέλος του G.