概率论

Time Machine

2022年9月8日

目录

第一章	条件概率与独立性	1
1.1	两种概型与概率空间的简单介绍	1
	1.1.1 古典概型	1
	1.1.2 几何概型	1
	1.1.3 概率空间	1
1.2	定义和链式法则	2
1.3	全概率公式	2
1.4	贝叶斯公式	3
1.5	事件独立性	3
	1.5.1 两个事件的独立性	3
	1.5.2 多个事件的独立性	4
<i>۲</i> ۲ — ن	随机变量	5
第二章	旭机支 星	J
第二 草 2.1	随机变量的概念	5
• • •		
2.1	随机变量的概念	5 5
2.1 2.2	随机变量的概念	5 5 6
2.1 2.2	随机变量的概念	5
2.1 2.2	随机变量的概念	5 5 6 6
2.1 2.2 2.3	随机变量的概念	5 5 6 6 7
2.1 2.2 2.3	随机变量的概念. 离散型随机变量. 分布函数与连续型随机向量. 2.3.1 分布函数. 2.3.2 连续型随机变量.	5 5 6 6 7 9
2.1 2.2 2.3 第三章 3.1	随机变量的概念. 离散型随机变量. 分布函数与连续型随机向量. 2.3.1 分布函数 2.3.2 连续型随机变量. 随机向量 随机向量 离散型随机向量.	5 5 6 6 7 9

目录 ii

第四章	条件分布与独立性	13
4.1	随机变量的独立性	13
4.2	离散型随机变量的独立性	13
4.3	连续型随机变量的独立性	14
4.4	离散型随机变量的条件分布	15
4.5	连续性随机变量的条件分布	15
第五章	数学期望	17
5.1	离散型随机变量的数学期望	17
5.2	连续型随机变量的数学期望	17
5.3	一般随机变量的数学期望	18
5.4	数学期望的性质	18
5.5	条件期望	21
5.6	全期望公式	21
第六章	方差、协方差与相关系数	23
6.1	方差及其性质	23
	6.1.1 方差	23
	6.1.2 切比雪夫 (Chebyshev) 不等式	23
	6.1.3 方差的性质	24
6.2	协方差及其性质	26
	6.2.1 协方差	26
	6.2.2 协方差的性质	26
6.3	Pearson 相关系数及其性质	28
	6.3.1 Pearson 相关系数	28
	6.3.2 Pearson 相关系数的性质	28
第七章	矩	30
第八章	特征函数	31
8.1	常见特征函数	31
	8.1.1 退化分布	31
	8.1.2 二项分布	31
	8.1.3 泊松分布	31
	8.1.4 均匀分布	32

目录	iii
----	-----

8.2	8.1.5 正态分布 32 可微性 33 8.2.1 预备知识 33
	8.2.2 可微性
第九章	概率极限定理 36
9.1	Bernoulli 大数律
	9.1.1 内容
9.2	De Moive-Laplace 中心极限定理 36
	9.2.1 内容
9.3	Poisson 极限定理
9.4	Chebyschev 大数律
	9.4.1 内容
	9.4.2 推广
	9.4.3 回忆 Chebyschev 不等式
9.5	Khinchine 大数律
	9.5.1 内容
9.6	Levy-Feller 中心极限定理
	9.6.1 内容
	9.6.2 意义
	9.6.3 证明
9.7	Lyapunov 中心极限定理
0.1	9.7.1 内容
	отп <u>т</u> 13 д
第十章	概率论的收敛 40
10.1	依概率收敛
	10.1.1 定义
	10.1.2 敛散性判别法则
	10.1.3 性质
10.2	依分布收敛
	10.2.1 定义
	10.2.2 依概率收敛强于依分布收敛
	10.2.3 敛散性判别法则

	录	•
FI	<u> </u>	į
\neg	~1~	1

第十一章 正态分布	44
11.1 一元正态分布密度函数的规范性	44
11.2 二元正态分布的边际分布与线性变换	45
11.2.1 二元正态分布的边际分布	45
11.2.2 二元正态分布的线性变换	46
11.3 二元正态分布的条件分布和独立性	47
11.3.1 二元正态分布的条件分布	47
11.3.2 二元正态分布的独立性等价条件	47
11.4 一元正态分布的期望与方差	49
11.5 二元正态分布的协方差、Pearson 相关系数	50

第一章 条件概率与独立性

1.1 两种概型与概率空间的简单介绍

1.1.1 古典概型

古典概型的特征:

- 1、样本空间中样本点有限, $\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}$
- 2、各基本事件等可能,即 $P(\omega) = \frac{1}{n}$ 古典概型的计算:

$$P(A) = \frac{m}{n} = \frac{A \text{ 包含的样本点数}}{\text{样本空间中样本点总数}}$$

1.1.2 几何概型

几何概型的特征:

- 1、样本空间中样本点无限
- 2、样本点落在等测度 (长度、面积、体积 ···) 区域的概率相等几何概型的计算: $(A_g = \{ \text{任取样本点,位于区域} g \in \Omega \text{的概率} \})$

$$P(A_g) = \frac{g$$
的测度 Ω 的测度

1.1.3 概率空间

- 一个概率空间可以表示为 (Ω, \mathcal{F}, P) , 其中
- Ω : 样本空间,即样本点 ω 的全体。有 $\Omega = \{\omega_1, \omega_2, \cdots\}$ 。

 \mathcal{F} : 事件域,包括所有的事件。

- P: 定义的概率。概率的公理化定义如下:
- (1)(非负性) $\forall A \in \mathcal{F}, P(A) \geqslant 0$

- $(2)(规范性)P(\Omega) = 1$
- (3)(可列可加性) $A_i \cap A_j = \emptyset, i \neq j$ (即 A_1, \dots, A_n, \dots 为两两不相容的事件)

$$P\left(\sum_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

1.2 定义和链式法则

条件概率 P(A|B): 事件 B 发生条件下事件 A 发生的概率,称为事件 A 关于事件 B 的条件概率 (conditional probability)

有基本公式:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

也可以表示为链式法则 (乘法公式) 的形式:

$$P(AB) = P(A|B)P(B)$$

推广到 n 个事件,有链式法则:

$$P\left(\prod_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P\left(A_i \middle| \prod_{j=1}^{i-1} A_j\right)$$

特别定义 a > b 时, $\prod_{i=a}^{b} A_i$ 为必然事件。或者这样写可能更容易看懂:

$$P(A_1 A_2 \cdots A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

1.3 全概率公式

在概率空间 (Ω, \mathcal{F}, P) 中,若 $\{A_1, A_2, \cdots, A_n\} (n < \infty$ 或 $n = \infty)$ 构成 Ω 的一个 **分 割** (完备事件组),满足:

 $(1)A_i$ 两两互不相容 (不可能同时发生),且 $P(A_i) > 0$

$$(2)\sum_{i=1}^{\infty}A_{i}=\Omega$$

则有全概率 (total probability) 公式: $\forall B \in \mathcal{F}$, 有

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

证明:

$$P(B) = P(B\Omega) \tag{1.1}$$

$$= P\left(B\sum_{i=1}^{n} A_i\right) \tag{1.2}$$

$$=P\left(\sum_{i=1}^{n}BA_{i}\right) \tag{1.3}$$

$$=\sum_{i=1}^{n}P(BA_{i})\tag{1.4}$$

$$= \sum_{i=1}^{n} P(A_i)P(B|A_i)$$
 (1.5)

1.4 贝叶斯公式

贝叶斯 (Bayes) 公式如下:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{k=1}^{\infty} P(A_k)P(B|A_k)}$$

证明: $P(A_i|B) = \frac{P(A_iB)}{P(B)}$, 分子用链式法则展开,分母用全概率公式展开。 深入了解条件概率的意义:

 $P(A_i)$: 不知 B 是否发生, 称为先验 (priori) 概率

 $P(A_i|B)$: 以 B 发生为已知条件, 称为后验 (posteriori) 概率

1.5 事件独立性

1.5.1 两个事件的独立性

定义: 事件 A 与事件 B 相互独立(统计独立,statistical independence),如果满足

$$P(AB) = P(A) \cdot P(B)$$

因为此时有

$$P(A|B) = \frac{P(AB)}{P(B)} = P(A)$$

且

$$P(B|A) = \frac{P(AB)}{P(A)} = P(B)$$

如果 A 与 B 不相互独立,也称为统计相依 (statistical dependence)

1.5.2 多个事件的独立性

对于一组事件 A_1, A_2, \dots, A_n ,存在两两独立和整体的相互独立两种概念。不妨先以 三个事件 A, B, C 为例进行研究。

两两独立: 即 A 与 B 相互独立, B 与 C 相互独立, C 与 A 相互独立。

$$\begin{cases} P(AB) = P(A) \cdot P(B) \\ P(AC) = P(A) \cdot P(C) \\ P(BC) = P(B) \cdot P(C) \end{cases}$$

整体相互独立: 即满足

$$P(ABC) = P(A) \cdot P(B) \cdot P(C)$$

推广到 n 个事件, A_1,A_2,\cdots,A_n 相互独立需要满足: $\forall r < n$, A_1,A_2,\cdots,A_n 中任意 r 个事件都相互独立,且

$$P\left(\prod_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i)$$

或者可以直接这么定义: A_1, A_2, \cdots, A_n 相互独立, 如果

$$\forall r \leqslant n(r \in \mathbb{N}_+), P\left(\prod_{i=1}^r A_{n_i}\right) = \prod_{i=1}^r P(A_{n_i}), 1 \leqslant n_1 < n_2 < \dots < n_r \leqslant n$$

2.1 随机变量的概念

定义概率空间 (Ω, \mathcal{F}, P) 上的单值实函数 $\xi(\omega)$, 即

$$\xi:\Omega\to\mathbb{R}$$

还要求 $\xi(\omega)$ 的任意取值组合对应的样本点集合构成的事件在事件域 \mathcal{F} 中,这样就可以称 $\xi(\omega)$ 为 **随机变量** (random variable)

实在太过抽象, 暂且可以认为随机变量就是一个随机值。

2.2 离散型随机变量

离散型随机变量:随机变量 ξ 可取的值至多可列个。 分布列 (distribution sequence):

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_n & \cdots \\ p(x_1) & p(x_2) & \cdots & p(x_n) & \cdots \end{bmatrix}$$

第一行是 ξ 可能取的值,第二行是 ξ 取这些值的概率。 分布列有性质:

$$p(x_i) > 0, i = 1, 2 \cdots$$

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

对一些常见离散型随机变量举例如下:

(1) 退化 (degenerate) 分布

$$\begin{bmatrix} c \\ 1 \end{bmatrix}$$

6

(2) 两点分布 (伯努利分布, bernoulli distribution)

$$\begin{bmatrix} 1 & 0 \\ p & 1-p \end{bmatrix}, p \in (0,1)$$

(3) 二项 (binomial) 分布

$$P(\xi = k) = \binom{n}{k} p^k (1 - p)^{n - k}, p \in (0, 1), k = 0, 1, \dots, n$$

记为 $\xi \sim B(n, p)$

(4) 泊松 (Poisson) 分布

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k \in \mathbb{N}$$

记为 $\xi \sim \mathcal{P}(\lambda)$

(5) 几何 (geometry) 分布

$$P(\xi = k) = p(1-p)^{k-1}, p \in (0,1), k \in \mathbb{N}_+$$

(6) 超几何 (hypergeometry) 分布

$$P(\xi = k) = \frac{\binom{M}{k} \binom{N - M}{n - k}}{\binom{N}{n}}, n \leqslant N, M \leqslant N, k = 0, 1, \dots, \min\{n, M\}$$

2.3 分布函数与连续型随机向量

2.3.1 分布函数

$$F(x) = P(\xi \leqslant x), -\infty < x < +\infty$$

为随机变量 $\xi(\omega)$ 的**分布函数** (distribution function)

分布函数有公理化定义:

- (1) 单调递增 (不要求严格): $a < b, F(a) \le F(b)$
- $(2)\lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$

(3) 处处左极限存在,右连续。即

$$\exists F(x-0) = \lim_{h \to 0^+} F(x-h)$$

$$F(x+0) = \lim_{h \to 0^+} F(x+h) = F(x)$$

注意,如果修改分布函数定义为

$$F(x) = P(\xi < x), -\infty < x < +\infty$$

那么(3)应该修改为处处右极限存在,左连续。

2.3.2 连续型随机变量

 \exists 一个非负的可积函数 p(x)s.t. 分布函数 F(x) 满足

$$F(x) = \int_{-\infty}^{x} p(y) dy, -\infty < x < +\infty$$

则以 F(X) 为分布函数的 ξ 称为连续型 (continuous) 随机变量。

p(x) 称为 ξ 的概率密度函数,简称 **密度函数** (density function)

F(x) 是一个变上限积分,可以证明,在 p(x) 的连续点处,有

$$F'(x) = p(x)$$

ξ 落于 (a, b] 的概率为

$$P(a < \xi \leqslant b) = F(b) - F(a) \tag{2.1}$$

$$= \int_{-\infty}^{b} p(y) dy - \int_{-\infty}^{a} p(y) dy$$
 (2.2)

$$= \int_{a}^{b} p(y) \mathrm{d}y \tag{2.3}$$

然而需注意,联系几何概型有类似结论:

$$P(\xi = c) = F(c) - \lim_{h \to 0^+} F(c - h)$$
 (2.4)

$$= \lim_{h \to 0^+} \int_{c-h}^{c} p(y) dy = 0$$
 (2.5)

类似离散型随机变量,连续性随机变量的密度函数有如下性质: (1) 非负性

$$p(x) \geqslant 0$$

8

(2) 规范性

$$\int_{-\infty}^{+\infty} p(x) \mathrm{d}x = 1$$

注意,随机变量包括连续型随机变量和离散型随机变量,但随机变量并不总是连续性 随机变量或离散型随机变量。如

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1+x}{2}, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

根据分布函数的公理化定义可以判断它确实是一个分布函数。但是对应的随机变量取值在 $[\frac{1}{2},1)$,取值并不可列,因此不是离散型随机变量。它也不是连续型随机变量,因为 F(x) 不连续,比如可以看出应有 $P(\xi=0)=\frac{1}{2}$,与连续性随机变量 $P(\xi=c)=0$ 的性质矛盾。

常见连续性随机变量举例:

(1) 均匀 (uniform) 分布

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, &$$
其他.

记作 $\xi \sim U(a,b)$

(2) 一元正态 (normal) 分布

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty, \quad \sigma > 0$$

记作 $\xi \sim N(\mu, \sigma^2)$

(3) 指数 (exponential) 分布

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0 \end{cases} \quad \lambda > 0$$

记作 $\xi \sim \exp(\lambda)$

第三章 随机向量

3.1 随机向量

在同一概率空间 (Ω, \mathcal{F}, P) 上,有随机变量 $\xi_1(\omega), \xi_2(\omega), \cdots, \xi_n(\omega)$ 称

$$\xi(\omega) = (\xi_1(\omega), \xi_2(\omega), \cdots, \xi_n(\omega))$$

为 n 维随机向量。

3.2 离散型随机向量

考虑离散型随机向量 (ξ,η) , 其**联合分布**为:

$$P(\xi = x_i, \eta = y_j) = p_{ij}$$

其边际分布为:

$$P(\xi = x_i) = p_{i.} = \sum_{j} p_{ij}$$
$$P(\eta = y_j) = p_{.j} = \sum_{i} p_{ij}$$

其分布列可以这么画:

$\xi \setminus \eta$	y_1	y_2		y_n		p_{i} .
x_1	p_{11}	p_{11}		p_{1n}		p_1 .
x_2	p_{21}	p_{22}	• • •	p_{2n}	• • •	p_2 .
÷	:	:	:	:	:	:
x_m	p_{m1}	p_{m2}		p_{mn}		p_{m} .
÷	:	:	:	:	:	:
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{.2}$:	$p_{\cdot n}$:	

给出一道练习用的例题:

口袋中有 2 个白球 3 个黑球, 连取两次, 每次任取一球. 设 ξ 为第一次得白球数, η 为第二次得白球数. 对 (1) 有放回, (2) 无放回两种情况, 分别求 (ξ,η) 的联合分布.

解: (1)

$$P(\xi = 0, \eta = 0) = P(\xi = 0)P(\eta = 0) = \frac{3}{5} \cdot \frac{3}{5}$$

同理

$$P(\xi = 0, \eta = 1) = \frac{3}{5} \cdot \frac{2}{5}$$

$$P(\xi = 1, \eta = 0) = \frac{2}{5} \cdot \frac{3}{5}$$

$$P(\xi = 1, \eta = 1) = \frac{2}{5} \cdot \frac{2}{5}$$

得

$\xi \setminus \eta$	0	1	p_{i} .
0	$\frac{3}{5} \cdot \frac{3}{5}$	$\frac{3}{5} \cdot \frac{2}{5}$	$\frac{3}{5}$
1	$\frac{3}{5} \cdot \frac{3}{5}$ $\frac{2}{5} \cdot \frac{3}{5}$	$\frac{2}{5} \cdot \frac{2}{5}$	3 5 2 5
$\overline{p_{\cdot j}}$	$\frac{3}{5}$	$\frac{2}{5}$	

(2)

$\overline{\xi \setminus \eta}$	0	1	p_i .
0	$\frac{3}{5} \cdot \frac{2}{4}$	$\frac{3}{5} \cdot \frac{2}{4}$	$\frac{3}{5}$
1	$\begin{array}{ c c }\hline \frac{3}{5} \cdot \frac{2}{4} \\ \frac{2}{5} \cdot \frac{3}{4} \end{array}$	$\frac{2}{5} \cdot \frac{1}{4}$	$\frac{3}{5}$ $\frac{2}{5}$
$p_{\cdot j}$	$\frac{3}{5}$	$\frac{2}{5}$	

3.3 n 元分布函数

 $\forall (x_1, \dots, x_n) \in \mathbf{R}^n, \ \text{n} \ \text{n} \ \text{n} \ \text{n} \ \text{n}$

$$F(x_1, \dots, x_n) = P(\xi_1(\omega) \le x_1, \xi_2(\omega) \le x_2, \dots, \xi_n(\omega) \le x_n)$$

为随机向量 $\xi(\omega) = (\xi_1(\omega), \xi_2(\omega), \dots, \xi_n(\omega))$ 的 **(联合)分布函数**. 以二元联合分布函数为例,其有性质:

- (1) 对每个变量单调递增 (不严格)
- (2) 对每个变量右连续, 左极限存在

 $(3)\forall(x,y)$

$$F(x, -\infty) = 0$$
, $F(-\infty, y) = 0$, $F(\infty, \infty) = 1$

第三章 随机向量 11

 $(4) \forall a_1, a_2, b_1, b_2 \in R, a_1 < b_1, a_2 < b_2$

$$F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2) \ge 0$$

考虑边际分布函数 $F_{\varepsilon}(x)$ 与 $F_{\eta}(y)$

$$F_{\xi}(x) = P(\xi < x) \tag{3.1}$$

$$= P(\xi < x, -\infty < y < +\infty) \tag{3.2}$$

$$= F(x, +\infty) \tag{3.3}$$

同理 $F_{\eta}(y) = F(+\infty, y)$

3.4 连续型随机向量

若存在 n 元可积的非负函数 $p(x_1, \dots, x_n)$, 使 n 元分布函数可表示为

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p(y_1, \dots, y_n) dy_1 \dots dy_n$$

则称它是连续型分布, 并称 $p(x_1, \dots, x_n)$ 为 (联合) 密度函数. 显然, 密度函数满足如下条件:

(1)
$$p(x_1, \dots, x_n) \geq 0$$

(2)

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(y_1, \cdots, y_n) dy_1 \cdots dy_n = 1$$

在这里不多加赘述,只是需要提及一下 n 维正态分布的形式。

设 $\boldsymbol{B} = (b_{ij})$ 为 n 维正定对称矩阵, $|\boldsymbol{B}|$ 为其行列式, \boldsymbol{B}^{-1} 为其逆,

又设
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$
, $\mathbf{a} = (a_1, a_2, \dots, a_n)^T$, 则称

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{B}|^{1/2}} \exp\left\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{a})^T \boldsymbol{B}^{-1} (\boldsymbol{x} - \boldsymbol{a})\right\}$$

为 n 维正态密度函数. 若随机向量 ξ 具有此密度函数, 则称 ξ 服从 n 维正态分布, 记作 $\xi \sim N(\boldsymbol{a}, \boldsymbol{B})$

n=1 时,
$$B = \sigma^2, a = \mu$$
, 得

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

第三章 随机向量

12

n=2 时,记

$$m{B} = \left(egin{array}{cc} \sigma_1^2 & r\sigma_1\sigma_2 \ r\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight)$$

其中 $\sigma_1, \sigma_2 > 0, |r| < 1.\boldsymbol{x} = (x, y)', \boldsymbol{a} = (a, b)'.$ 则

$$m{B}^{-1} = rac{1}{|m{B}|} \left(egin{array}{cc} \sigma_2^2 & -r\sigma_1\sigma_2 \ -r\sigma_1\sigma_2 & \sigma_1^2 \end{array}
ight)$$

故可得

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(x-a)^2}{\sigma_1^2} - \frac{2r(x-a)(y-b)}{\sigma_1\sigma_2} + \frac{(y-b)^2}{\sigma_2^2} \right] \right\}$$

简记作 $(\xi, \eta) \sim N(a, b, \sigma_1^2, \sigma_2^2, r)$.

关于正态分布的更多详细内容见附录 C。

第四章 条件分布与独立性

4.1 随机变量的独立性

设 F(x,y), $F_{\xi}(x)$ 和 $F_{\eta}(y)$ 分别为 (ξ,η) 的联合分布函数及其边际分布函数, 如果对一切 x,y 都有

$$F(x,y) = F_{\varepsilon}(x)F_n(y)$$

成立, 则称 ξ 与 η 相互独立.

4.2 离散型随机变量的独立性

如果离散型随机向量 (ξ,η) 的联合分布列满足

$$P(\xi = x_i, \eta = y_i) = P(\xi = x_i) P(\eta = y_i), \quad i, j = 1, 2, \dots,$$

即

$$p_{ij} = p_{i\cdot} \cdot p_{\cdot j}$$

则称 ξ 与 η 相互独立 (independent). 否则, 称 ξ 与 η 相依 (dependent). 可以这么推导:

$$F(x,y) = P(\xi \le x, \eta \le y) = \sum_{x_i \le x} \sum_{y_j \le y} P(\xi = x_i, \eta = y_j)$$
$$F_{\xi}(x)F_{\eta}(y) = \sum_{x_i \le x} P(\xi = x_i) \sum_{y_j \le y} P(\eta = y_j)$$

根据

$$F(x,y) = F_{\varepsilon}(x)F_{\eta}(y)$$

$$F(x_1, y_1) = F_{\varepsilon}(x_1) F_n(y_1)$$

即

$$p_{11} = p_{1.} \cdot p_{.1}$$

考虑数学归纳,如果 $p_{ij}=p_{i\cdot}\cdot p_{\cdot j}$ 对 $\forall i\leqslant m,j\leqslant n(i,j\in\mathbb{N}_+)$ 成立那么根据

$$F(x_{m+1}, y_n) = F_{\xi}(x_{m+1})F_{\eta}(y_n)$$

有

$$\sum_{i \leqslant m+1} \sum_{j \leqslant n} p_{ij} = \sum_{i \leqslant m+1} p_{i \cdot} \sum_{j \leqslant n} p_{\cdot j}$$

根据已有条件,除去相等项,可以得到

$$p_{m+1,n} = p_{m+1,\cdot} \cdot p_{\cdot,n}$$

同理,根据

$$F(x_m, y_{n+1}) = F_{\xi}(x_m) F_{\eta}(y_{n+1})$$

可以得到

$$p_{m,n+1} = p_{m,\cdot} \cdot p_{\cdot,n+1}$$

因此对于离散型随机变量,用分布函数定义的随机变量的独立性条件

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

可以通过数学归纳推出其特有独立性条件

$$p_{ij} = p_{i.} \cdot p_{.j}$$

同理,很方便地可以用后者反推出前者。因此在离散型随机变量中,这两种定义是等价的。

4.3 连续型随机变量的独立性

设 p(x,y) 与 $p_{\xi}(x), p_{\eta}(y)$ 分别为连续型随机向量 (ξ,η) 的联合密度和边际密度,则 ξ,η 相互独立的充要条件是

$$p(x,y) = p_{\xi}(x)p_{\eta}(y)$$

证明: $\forall x, y,$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\iff \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$\iff \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{\xi}(u)p_{\eta}(v)dudv$$

$$\iff p(x,y) = p_{\xi}(x)p_{\eta}(y)$$

4.4 离散型随机变量的条件分布

设 (ξ, η) 的联合分布列为 $P(\xi = x_i, \eta = y_j) = p_{ij}, i, j = 1, 2, \cdots$. 若已知 $\xi = x_i(P(\xi = x_i > 0),$ 则

$$P(\eta = y_j \mid \xi = x_i) = \frac{P(\xi = x_i, \eta = y_j)}{P(\xi = x_i)} = \frac{p_{ij}}{p_i}, \quad j = 1, 2, \dots$$

即

$$p_{\eta|\xi}(y_j|x_i) = \frac{p_{ij}}{p_{i.}}$$

如果令事件 $A = \{\eta = y_j\}$, $B = \{\xi = x_i\}$,由乘法公式可知这是很自然的。可见, ξ 和 η 相互独立的等价条件是

$$P(\eta = y_i \mid \xi = x_i) = P(\eta = y_i)$$

定义 $\xi = x_i$ 的条件下 η 的条件分布函数:

$$P(\eta \leqslant y | \xi = x_i) = \sum_{i: u_i \leqslant y} p_{\eta | \xi}(y_j | x_i)$$

4.5 连续性随机变量的条件分布

首先获得条件分布函数,通过条件分布函数求导获得概率密度函数。

$$P(Y \leqslant y | X = x) = \lim_{\epsilon \to 0} P(Y \leqslant y | x - \epsilon < X \leqslant x + \epsilon)$$
(4.1)

$$= \lim_{\epsilon \to 0} \frac{P(Y \leqslant y, x - \epsilon < X \leqslant x + \epsilon)}{P(x - \epsilon < X \leqslant x + \epsilon)}$$

$$\tag{4.2}$$

$$= \lim_{\epsilon \to 0} \frac{\frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} \int_{-\infty}^{y} p(u, v) du dv}{\frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} p_X(u) du}$$
(4.3)

$$= \frac{\int_{-\infty}^{y} p(x, v) dv}{p_X(x)} \tag{4.4}$$

求导得到

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$

同理可以得到

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

5.1 离散型随机变量的数学期望

设离散型随机变量 ξ~

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_n & \cdots \\ p(x_1) & p(x_2) & \cdots & p(x_n) & \cdots \end{bmatrix}$$

如果满足前提条件 $\sum_k x_k p_k$ 绝对收敛 $(\sum_k x_k p_k < \infty)$,则定义 **数学期望** (mathematical expectation) 或 均值 (mean) 为

$$E\xi = \sum_{k} x_k p_k$$

(前提条件为了保证 Εξ 的和不受求和次序的影响)

习题: 计算泊松分布 $(\xi \sim \mathcal{P}(\lambda))$ 的数学期望

答案: $E\xi = \lambda$

5.2 连续型随机变量的数学期望

设连续型随机变量 ξ 有密度函数 p(x), 且满足前提条件

$$\int_{-\infty}^{+\infty} |x| p(x) \mathrm{d}x < \infty$$

(即 $\int_{-\infty}^{+\infty} xp(x) dx$ 绝对收敛) 则称

$$E\xi = \int_{-\infty}^{+\infty} x p(x) \mathrm{d}x$$

为ξ的数学期望。

无论是连续型还是离散型随机变量,如果前提条件 (绝对收敛)不满足,都称数学期望不存在。

习题: 计算指数分布 ($\xi \sim \exp(\lambda)$) 的数学期望

答案: $E\xi = \frac{1}{\lambda}$

习题 *: 计算正态分布 $(\xi \sim N(a, \sigma^2))$ 的数学期望

答案: $E\xi = a$, 过程可见附录 C

5.3 一般随机变量的数学期望

设连续型随机变量 ξ 有分布函数 F(x), 且满足前提条件

$$\int_{-\infty}^{+\infty} |x| \mathrm{d}Fx < \infty$$

则称

$$E\xi = \int_{-\infty}^{+\infty} x \mathrm{d}F(x)$$

为 ξ 的数学期望。前提条件若不满足,则数学期望不存在。

需要注意的是,这里的积分不是黎曼 (Riemann) 积分,而是新定义的一种积分,名为斯梯尔吉斯 (Stieltjes) 积分,在此不加赘述。所以在此处可以稍稍看一看它的形式,而不必直接计算,因为很容易把黎曼积分的思想套在这个积分上,而这是有可能出错的。(大佬可以忽视)

5.4 数学期望的性质

性质 $\mathbf{1}a \leq \xi \leq b \Rightarrow \exists E\xi, a \leq E\xi \leq b$

特别地, $\xi = c \Rightarrow E\xi = Ec = c$

性质 $\mathbf{1'}|\xi| < \eta, \exists E\eta \Rightarrow \exists E\xi, |E\xi| \leqslant E|\xi| \leqslant E\eta$

性质 $2 \exists E\xi_1, \cdots, E\xi_n \Rightarrow \forall$ 常数 c_1, \cdots, c_n, b ,

$$\exists E \left(\sum_{i=1}^{n} c_i \xi_i + b \right)$$

且

$$E\left(\sum_{i=1}^{n} c_i \xi_i + b\right) = \sum_{i=1}^{n} c_i E \xi_i + b$$

特别地,

$$E\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} E\xi_i, \quad E(c\xi) = cE\xi$$

性质 $3\xi_1, \dots, \xi_n$ 相互独立, $\exists E\xi_i, i=1,\dots,n$, 则

$$E\left(\xi_{1}\cdots\xi_{n}\right)=E\xi_{1}\cdots E\xi_{n}$$

性质 **4**(有界收敛定理) 假设对任意 $\omega \in \Omega$ 有 $\lim_{n\to\infty} \xi_n(\omega) = \xi(\omega)$, 并且对一切 $n \ge 1$, $|\xi_n| \le M$, 其中 M 为常数, 则

$$\lim_{n \to \infty} E\xi_n = E\xi$$

感兴趣的话可以自己证明一下。在这里象征性地证明一下最常用的性质 2:

$$E\left(\sum_{i=1}^{n} c_i \xi_i + b\right) = E(\xi + b) \cdot \dots \cdot \xi = \sum_{i=1}^{n} c_i \xi_i$$

$$(5.1)$$

$$= \int_{-\infty}^{+\infty} (x+b)p_{\xi}(x)dx \tag{5.2}$$

$$= \int_{-\infty}^{+\infty} x p_{\xi}(x) dx + b \cdot \cdot \cdot \cdot \cdot \int_{-\infty}^{+\infty} p_{\xi}(x) dx = 1$$
 (5.3)

$$= \int_{R^n} \left(\sum_{i=1}^n c_i x_i \right) p_{\xi_1, \xi_2, \dots, \xi_n}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n + b$$
 (5.4)

$$= \sum_{i=1}^{n} \left(c_i \int_{\mathbb{R}^n} x_i p_{\xi_1, \xi_2, \dots, \xi_n}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n \right) + b$$
 (5.5)

$$= \sum_{i=1}^{n} \left(c_i \int_{-\infty}^{+\infty} x_i p_{\xi_i}(x_i) \mathrm{d}x_i \right) + b \tag{5.6}$$

$$= \sum_{i=1}^{n} c_i E \xi_i + b \tag{5.7}$$

以上证明是针对连续型随机变量。下面对离散型随机变量进行证明:

$$E\left(\sum_{i=1}^{n} c_i \xi_i + b\right) = E(\xi + b) \cdot \dots \cdot \xi = \sum_{i=1}^{n} c_i \xi_i$$

$$(5.8)$$

$$=\sum_{k}(x_k+b)p_k\tag{5.9}$$

$$= \sum_{k} x_k p_k + b \cdot \cdot \cdot \cdot \cdot \sum_{k} p_k = 1 \tag{5.10}$$

$$= \sum_{k} \left(\sum_{i=1}^{n} c_i x_{ik} \right) p_k + b \tag{5.11}$$

$$= \sum_{i=1}^{n} c_i \sum_{k} x_{ik} p_k + b \tag{5.12}$$

$$= \sum_{i=1}^{n} c_i E \xi_i + b \tag{5.13}$$

注意到,性质 2 其实就是线性性质。那么我们浮想联翩,线性代数的 DNA 动了。建立一个线性空间 V,V 包括所有存在数学期望的一元随机变量。那么 $E:V\to R$ 就是一个线性变换。

进一步地, 我们定义一个内积: $\forall \alpha, \beta \in V, (\alpha, \beta) = E\alpha\beta$

首先根据内积的公理化定义验证它是内积。 $\forall \alpha, \beta, \gamma \in V, \forall \lambda \in \mathbb{R}$

- (1) 正定性: $E\alpha^2 \ge 0$, 当且仅当 α 服从 $P(\alpha=0)=1$ 的退化分布时(定义这种随机变量为这个线性空间的零元),有 $E\alpha^2=0$
 - (2) 对称性: 显然有 $E\alpha\beta = E\beta\alpha$
 - (3) 加性: $E(\alpha + \beta)\gamma = E\alpha\gamma + E\beta\gamma$
 - (4) 齐性: $E(\lambda \alpha)\beta = \lambda E \alpha \beta$

加性和齐性由性质 2 证得。因此 $E\alpha\beta$ 可以成为线性空间 V 上的一个内积,那么就有 Cauchy-Schwarz 不等式:

$$(E\alpha\beta)^2 \leqslant E\alpha^2 \cdot E\beta^2$$

特别地, $\forall X,Y\in V$,有 $\exists EX,EY$,则 $\exists E(X-EX),E(Y-EY)$,则 $X-EX,Y-EY\in V$,有

$$E(X - EX)(Y - EY) \le (E(X - EX)^2 E(Y - EY)^2)^{1/2}$$

这将是下一节 Pearson 相关系数一个重要性质的依据。

5.5 条件期望

21

进入二元关联的考虑,给定不同的 $\eta = y$, $\xi = x$ 的后验概率有所不同,因而会影响其期望。这种情况下的期望就成为条件期望。

当然,需要注意这里是用离散型随机变量举例进行的一个理解,并不严格。如连续型 随机变量的期望还需定义。

一般地,若 $\eta=y$ 时, ξ 有条件分布函数 $F_{\xi|\eta}(x|y)$,那么定义随机变量 ξ 的此时的条件期望为

$$E(\xi|\eta=y) = \int_{-\infty}^{+\infty} x dF_{\xi|\eta}(x|y)$$

对于离散型随机变量,可以导出其条件期望:

$$E(\xi|\eta = y) = \sum_{i} x_{i} p_{\xi|\eta}(x|y) = \sum_{i} x_{i} P(\xi = x|\eta = y)$$

对于连续型随机变量,可以导出其条件期望:

$$E(\xi|\eta=y) = \int_{-\infty}^{+\infty} x p_{\xi|\eta}(x|y) dx$$

5.6 全期望公式

全期望公式是一个很有趣的公式,它可以写成

$$E(\xi) = E[E(\xi|\eta)]$$

在连续型随机变量的情况下,我们可以做一个简单的推导

$$E[E(\xi|\eta)] = \int_{-\infty}^{+\infty} E(\xi|\eta) p_Y(y) dy$$
 (5.14)

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x p_{\xi|\eta}(x|y) dx \right) p_Y(y) dy$$
 (5.15)

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \frac{p(x,y)}{p_Y(y)} \cdot p_Y(y) dx dy$$
 (5.16)

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x p(x, y) dx dy$$
 (5.17)

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x p(x, y) dy dx$$
 (5.18)

$$= \int_{-\infty}^{+\infty} x p_X(x) \mathrm{d}x = E(\xi) \tag{5.19}$$

在离散型随机变量的情况下,

$$E[E(\xi|\eta)] = \sum_{j} E(\xi|\eta)P(\eta = y_j)$$
(5.20)

$$= \sum_{i} (\sum_{i} x_{i} P(\xi = x_{i} | \eta = y_{j})) P(\eta = y_{j})$$
(5.21)

$$= \sum_{i} \sum_{i} x_{i} P(\xi = x_{i} | \eta = y_{j}) P(\eta = y_{j})$$
(5.22)

$$= \sum_{i} x_i \left(\sum_{j} P(\xi = x_i | \eta = y_j) P(\eta = y_j) \right)$$
 (5.23)

$$= \sum_{i} x_{i} P(\xi = x_{i}) = E(\xi)$$
 (5.24)

条件期望也有一系列性质,在此不再列举,只举其比较有趣的性质: Cauchy-Schwarz 不等式:

$$E(XY|Z) \leqslant \sqrt{E(X^2|Z)}\sqrt{E(Y^2|Z)}$$

条件期望是具有线性的(显然,可以自己写写),那么内积的齐性和加性就满足了。对 称性和正定性当然也满足。那么定义二元运算

$$(X,Y) = E(XY|Z)$$

就成为一种 V 上的内积。(V 就是 5.5.4 末尾定义的线性空间)所以根据内积的 Cauchy-Schwarz 不等式就可以得证。

第六章 方差、协方差与相关系数

6.1 方差及其性质

6.1.1 方差

一切为了描述数据的离散程度!

离差 (deviation): $\xi - E\xi$

离差取期望时,只要 ξ 期望存在,那么将会正负相消。因此考虑 **方差 (variance)**: $E(\xi - E\xi)^2$ 来描述期望的离散程度,即

$$Var\xi(D\xi) = E(\xi - E\xi)^2$$
, 当它存在且为有限值时

为统一量纲,有时使用**标准差 (standard deviation)**: $\sqrt{Var\xi}$ 计算方差可以直接使用定义,也可以使用重要的**方差公式**:

$$Var\xi = E\xi^2 - (E\xi)^2$$

证明:

$$E(\xi - E\xi)^2 = E(\xi^2 - 2\xi E\xi + (E\xi)^2)$$
(6.1)

$$= E\xi^2 - 2E\xi \cdot E\xi + (E\xi)^2 \tag{6.2}$$

$$= E\xi^2 - (E\xi)^2 \tag{6.3}$$

6.1.2 切比雪夫 (Chebyshev) 不等式

若随机变量 ξ 的方差存在, 则 $\forall \varepsilon > 0$ 有

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{Var\xi}{\varepsilon^2}$$

证明设 ξ 的分布函数为 F(x), 则

$$P(|\xi - E\xi| \ge \varepsilon) = \int_{|x - E\xi| \ge \varepsilon} dF(x)$$

$$\le \int_{|x - E\xi| \ge \varepsilon} \frac{(x - E\xi)^2}{\varepsilon^2} dF(x)$$

$$\le \frac{1}{\varepsilon^2} \int_{-\infty}^{\infty} (x - E\xi)^2 dF(x)$$

$$= \frac{Var\xi}{\varepsilon^2}$$

根据切比雪夫不等式,可以利用方差粗糙估计随机变量落在偏离均值一定范围内的概率。

6.1.3 方差的性质

性质 $1 Var \xi = 0$ 的充要条件是 $P(\xi = c) = 1$, 其中 c 是常数.

证明:显然条件充分。反之,如果 $Var\xi = 0$,记 $E\xi = c$,由切贝雪夫不等式

$$P(|\xi - E\xi| \ge \varepsilon) = 0$$

对 $\forall \varepsilon > 0$ 成立。从而

$$P(\xi = c) = 1 - P(|\xi - c| > 0) \tag{6.4}$$

$$= 1 - \lim_{n \to \infty} P\left(|\xi - c| > \frac{1}{n}\right) = 1 \tag{6.5}$$

性质 2 设 c,b 都是常数,则

$$Var(c\xi + b) = c^2 Var \xi$$

证明:

$$Var(c\xi + b) = E(c\xi + b - E(c\xi + b))^{2}$$
(6.6)

$$= E(c\xi + b - cE\xi - b)^{2}$$
(6.7)

$$= c^{2}E(\xi - E\xi)^{2} = c^{2}Var\xi \tag{6.8}$$

性质 3 若 $c \neq E\xi$, 则 $Var\xi < E(\xi - c)^2$.

证明:注意到

$$Var\xi = E\xi^2 - (E\xi)^2$$

和

$$E(\xi - c)^{2} = E\xi^{2} - 2cE\xi + c^{2}$$

两边相减得

$$Var\xi - E(\xi - c)^2 = -(E\xi - c)^2 < 0$$

这说明随机变量 ξ 对数学期望 $E\xi$ 的离散度最小.

性质 4

$$Var\left(\sum_{i=1}^{n} \xi_{i}\right) = \sum_{i=1}^{n} Var\xi_{i} + 2\sum_{1 \leq i < j \leq n} E\left(\xi_{i} - E\xi_{i}\right)\left(\xi_{j} - E\xi_{j}\right)$$

特别地, 若 $\xi_1, \xi_2, \dots, \xi_n$ 两两独立, 则

$$Var\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} Var\xi_i$$

证明:

$$Var\left(\sum_{i=1}^{n} \xi_{i}\right) = E\left(\sum_{i=1}^{n} \xi_{i} - E\sum_{i=1}^{n} \xi_{i}\right)^{2} = E\left(\sum_{i=1}^{n} (\xi_{i} - E\xi)\right)^{2}$$
(6.9)

$$= E\left[\sum_{i=1}^{n} (\xi_i - E\xi_i)^2 + 2\sum_{1 \le i < j \le n} (\xi_i - E\xi_i)(\xi_j - E\xi_j)\right]$$
(6.10)

$$= \sum_{i=1}^{n} Var\xi_i + 2 \sum_{1 \le i \le j \le n} E(\xi_i - E\xi_i) (\xi_j - E\xi_j)$$
(6.11)

当 $\xi_1, \xi_2, \dots, \xi_n$ 两两独立时, 易证 $\xi_1 - E\xi_1, \dots, \xi_n - E\xi_n$ 也两两独立, 故

$$E(\xi_i - E\xi_i)(\xi_j - E\xi_j) = E(\xi_i - E\xi_i) \cdot E(\xi_j - E\xi_j) = 0$$

交叉项为 0,则成立

$$Var\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} Var\xi_i$$

习题: 求二项分布 ($\xi \sim B(n,p)$) 的方差

答案: $Var\xi = npq$ (提示: $\xi = \sum_{i=1}^{n} \xi_i, \xi_i$ 服从两点分布且相互独立)

习题 *: 求一元正态分布 ($\xi \sim N(a, \sigma^2)$) 的方差

答案: $Var\xi = \sigma^2$, 详细过程见附录 C

6.2 协方差及其性质

6.2.1 协方差

对于随机向量,需要研究各分量之间的关系。

设 ξ_i 和 ξ_j 的联合分布函数为 $F_{ij}(x,y)$. 若 $E|(\xi_i - E\xi_i)(\xi_j - E\xi_j)| < \infty$, 称

$$E\left(\xi_{i} - E\xi_{i}\right)\left(\xi_{j} - E\xi_{j}\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(x - E\xi_{i}\right)\left(y - E\xi_{j}\right) dF_{ij}(x, y)$$

为 ξ_i 和 ξ_i 的**协方差** (covariance), 记作 $Cov(\xi_i, \xi_i)$.

因此协方差就是方差性质 4 当中的交叉项, 因此方差性质 4 可以改写为

$$Var\left(\sum_{i=1}^{n} \xi_{i}\right) = \sum_{i=1}^{n} Var\xi_{i} + 2\sum_{1 \leq i < j \leq n} Cov\left(\xi_{i}, \xi_{j}\right)$$

6.2.2 协方差的性质

性质 1 $Cov(\xi, \eta) = Cov(\eta, \xi) = E\xi\eta - E\xi E\eta$

性质 2 设 a,b 是常数,则

$$Cov(a\xi, b\eta) = abCov(\xi, \eta)$$

性质 3
$$Cov\left(\sum_{i=1}^{n} \xi_i, \eta\right) = \sum_{i=1}^{n} Cov\left(\xi_i, \eta\right).$$

协方差阵

对于 n 维随机向量 $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)'$, 可定义它的协方差阵如

$$\boldsymbol{B} = E(\boldsymbol{\xi} - E\boldsymbol{\xi})(\boldsymbol{\xi} - E\boldsymbol{\xi})^T = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

其中

$$b_{ij} = \begin{cases} Cov(\xi_i, \xi_j), & i \neq j \\ Var(\xi_i), & i = j \end{cases}$$

由上面的性质可知 **B** 是一个对称阵, 且对任何实数 $t_i, j = 1, 2, \dots, n$, 二次型

$$[t_1, t_2, \cdots, t_n] \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix} = \sum_{j,k} b_{jk} t_j t_k$$

$$\sum_{j,k} b_{jk} t_j t_k = \sum_{j,k} t_j t_k E(\xi_j - E\xi_j) (\xi_k - E\xi_k)$$
(6.12)

$$= E\left(\sum_{j=1}^{n} t_{j} \left(\xi_{j} - E\xi_{j}\right)\right)^{2} \ge 0 \tag{6.13}$$

即随机向量 ε 的协方差阵 B 是非负定的.

性质 4 设

$$egin{aligned} \xi = \left(\xi_1, \xi_2, \cdots, \xi_n
ight)^T, \quad oldsymbol{C} = \left[egin{array}{cccc} C_{11} & C_{12} & \cdots & C_{1n} \ C_{21} & C_{22} & \cdots & C_{2n} \ dots & dots & dots & dots \ C_{n1} & C_{n2} & \cdots & C_{nn} \end{array}
ight] \end{aligned}$$

则 $C\xi$ 的协方差阵为 CBC^T , 其中 $B \in \xi$ 的协方差阵。因为

$$EC(\xi - E\xi)(C(\xi - E\xi))^{T} = CBC^{T}$$

性质 5 设 $\xi = (\xi_1, \xi_2, \dots, \xi_n)^T \sim N(\mu, B)$, 其中 μ 为 n 维向量,B 为 $n \times n$ 正定对称 矩阵, 则 ξ 的数学期望为 μ , 协方差矩阵为 B。

特别地, 当 $\mu = 0, B = I$ 时, $\xi_1, \xi_2, \dots, \xi_n$ 为相互独立的标准正态随机变量,

有 $E\xi_i = 0$, $Var(\xi_i) = 1$, $Cov(\xi_i, \xi_j) = 0$, $i \neq j$ 。即 $E\xi = 0_{n \times 1}$,协方差矩阵为 I。

一般地,设 $T:V\to V, \mathcal{M}(T)=B$,V 是所有 n 元服从正态分布的随机向量构成的线性空间。由于 B 为正定对称矩阵, \exists 正的实特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 和正交矩阵 Q 使得

$$B = Q^T \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\} Q \tag{6.14}$$

$$= Q^T D^2 Q(\diamondsuit D = \operatorname{diag}\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\})$$
(6.15)

$$= Q^T D(QQ^T) DQ (6.16)$$

$$= (Q^T D Q)(Q^T D Q) \tag{6.17}$$

令 $L = Q^T D Q$,则 $B = L^2$ 。考虑 L 的特征多项式 $f(\lambda)$:

$$f(\lambda) = |\lambda E - L| = |\lambda Q^T Q - Q^T D Q| = |Q^T| \cdot |\lambda E - D| \cdot |Q| = \prod_{i=1}^n (\lambda - \sqrt{\lambda_i})$$

因此 $\sqrt{\lambda_1}$, $\sqrt{\lambda_2}$, \cdots , $\sqrt{\lambda_n}$ 是 L 的 n 个正的实特征值,可知 L 也是正交对称矩阵。 所以 $B=L^2=LL^T=LIL^T$ 。令 $\eta=L^{-1}(\xi-\mu)$,则 ξ 可以分解为 $\xi=L\eta+\mu$ 。 可以证明,这样分解得到的 η 服从标准正态分布,即 $\eta=L^{-1}(\xi-\mu)\sim N(0,I)$, $E\eta=0$, 协方差矩阵为单位矩阵 I.

6.3 Pearson 相关系数及其性质

6.3.1 Pearson 相关系数

为 ξ, η 的 Pearson 相关系数 (correlation coefficient)。

6.3.2 Pearson 相关系数的性质

上一节的末尾,已经证明得到

$$E(X - EX)(Y - EY) \le (E(X - EX)^2 E(Y - EY)^2)^{1/2}$$

因此显然可以得到性质 1。

性质 1 对相关系数 $r_{\xi n}$ 有

$$|r_{\varepsilon_n}| \leq 1$$

结合空间向量几何相关知识, $r_{\xi n}=1$ 当且仅当

$$P\left(\frac{\xi - E\xi}{\sqrt{\operatorname{Var}\xi}} = \frac{\eta - E\eta}{\sqrt{\operatorname{Var}\eta}}\right) = 1$$

 $r_{\varepsilon n} = -1$ 当且仅当

$$P\left(\frac{\xi - E\xi}{\sqrt{\operatorname{Var}\xi}} = -\frac{\eta - E\eta}{\sqrt{\operatorname{Var}\eta}}\right) = 1$$

由性质 1, $r_{\xi\eta} = \pm 1$ 时, ξ 与 η 存在线性关系。

另一个极端情形,定义 $r_{\xi\eta} = 0$ 时, ξ 与 η 不相关 (uncorrelated).

性质 2 对随机变量 ξ 和 η , 如果它们的方差有限, 则下列事实等价:

- (1) $Cov(\xi, \eta) = 0;$
- (2) ξ 与 η 不相关;
- (3) $E\xi\eta = E\xi E\eta$;
- (4) $Var(\xi + \eta) = Var \xi + Var \eta$.

证明: 显然 (1) 与 (2) 等价. 又由协方差的性质 1 得 (1) 与 (3) 等价.

 $Var(\xi + \eta) = Var(\xi) + Var(\eta) + Cov(\xi, \eta)$ (方差性质 4), 得 (1) 与 (4) 等价.

性质 3 若 ξ 与 η 独立, 且它们的方差有限, 则 ξ 与 η 不相关.

显然, 由 ξ 与 η 独立知 (3) 成立, 从而 ξ 与 η 不相关. 但其逆不真。

例设随机变量 θ 服从均匀分布 $U(0,2\pi).\xi=\cos\theta,\eta=\sin\theta$. 显然 $\xi^2+\eta^2=1$, 故 ξ 与 η 不独立. 但

$$E\xi = E\cos\theta = \int_0^{2\pi} \frac{1}{2\pi}\cos\varphi d\varphi = 0$$

$$E\eta = E\sin\theta = \int_0^{2\pi} \frac{1}{2\pi}\sin\varphi d\varphi = 0$$

$$E\xi\eta = E\sin\theta\cos\theta = \int_0^{2\pi} \frac{1}{2\pi}\sin\varphi\cos\varphi d\varphi = 0$$

即 $E\xi\eta = E\xi E\eta$, ξ 与 η 不相关。因此独立条件强于不相关,独立一定不相关,不相关不一定独立。

性质 4 对二元正态随机向量,两个分量不相关与独立是等价的 习题 *: 证明性质 4。详解可见附录 C。

第七章矩

定义 k 阶原点矩

$$m_k = E\xi^k$$

数学期望就是一阶原点矩,另外在方差公式 $Var\xi=E\xi^2-(E\xi)^2$ 中我们经常用到的 $E\xi^2$ 就是二阶原点矩。

原点矩简称为矩,可以对比力学中计算力矩时参考点选在原点时的情况,不过力学的 力矩仅是一阶原点矩,二阶原点矩或许要用能量进行类比。但我们这里并不尝试直接阐明 其应用(因为我目前也还不知道),仅先讲清楚这些抽象概念。

相对应地,参考点可以不选在原点,这样参考点和原点就会有偏移。此时就需要定义 k 阶中心距

$$c_k = E(\xi - E\xi)^k$$

从定义可以知道,一阶中心距总是 0,二阶中心矩就是方差。其他常用的中心距有三 阶中心距和四阶中心距,可以用来表示随机变量分布函数的形状。

如偏态系数 (Coefficient of Skewness),衡量随机变量分布的对称性。大于 0 表示正偏态,小于 0 表示负偏态。

$$Cs = \frac{c_3}{c_2^{1.5}}$$

峰态系数 (Coefficient of Kurtosis), 衡量均值处峰值高低, 若大于 0 表明比正态分布更尖峭。

$$Ck = \frac{c_4}{c_2^2} - 3$$

对于正态分布 $\xi \sim N(\mu, \sigma^2)$,其偏态系数和峰态系数都是 0。其 k 阶中心矩都存在。考虑到正态分布 $\xi \sim N(\mu, \sigma^2)$ 的 k 阶中心距其实就是 $\eta \sim N(0, \sigma^2)$ 的 k 阶原点矩,因此有

$$E(\xi - \mu)^{2k} = E\eta^{2k} = (2k - 1)!!\sigma^2, E(\xi - \mu)^{2k+1} == E\eta^{2k+1} = 0$$

第八章 特征函数

8.1 常见特征函数

8.1.1 退化分布

$$P(\xi = c) = 1$$

$$\varphi(t) = e^{ict}$$

8.1.2 二项分布

$$\xi \sim B(n,p)$$

$$\varphi(t) = (pe^{it} + q)^n$$

证明:

$$\varphi(t) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} e^{itk}$$
(8.1)

$$= \sum_{k=0}^{n} \binom{n}{k} \left(p e^{it} \right)^k q^{n-k} \tag{8.2}$$

$$= (pe^{it} + q)^n (8.3)$$

(8.2) 到 (8.3) 使用了二项式定理。

8.1.3 泊松分布

$$\xi \sim \mathcal{P}(\lambda)$$

$$\varphi(t) = e^{\lambda(e^{it} - 1)}$$

第八章 特征函数 32

证明:

$$\varphi(t) = \sum_{k=0}^{\infty} e^{itk} \frac{\lambda^k}{k!} e^{-\lambda}$$
(8.4)

$$=\sum_{k=0}^{\infty} \frac{\left(\lambda e^{it}\right)^k}{k!} e^{-\lambda} \tag{8.5}$$

$$=e^{\lambda e^{it}} \cdot e^{-\lambda} = e^{\lambda (e^{it}-1)} \tag{8.6}$$

8.1.4 均匀分布

$$\xi \sim U(a,b)$$

$$\varphi(t) = \frac{e^{ibt} - e^{iat}}{i(b-a)t}$$

证明:

$$\varphi(t) = \int_{a}^{b} e^{itx} \frac{1}{b-a} dx \tag{8.7}$$

$$= \frac{1}{i(b-a)t} e^{itx} \bigg|_a^b \tag{8.8}$$

$$=\frac{e^{ibt} - e^{iat}}{i(b-a)t} \tag{8.9}$$

8.1.5 正态分布

$$\xi \sim N(\mu, \sigma^2)$$

$$\varphi(t) = e^{it\mu - \frac{\sigma^2 t^2}{2}}$$

证明:

$$\varphi(t) = \int_{-\infty}^{+\infty} e^{itx} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \tag{8.10}$$

$$\frac{y=\frac{x-\mu}{\sigma}}{-\infty} \sigma e^{it\mu} \int_{-\infty}^{+\infty} e^{i(\sigma t)y} e^{-\frac{y^2}{2}} dy$$
 (8.11)

考虑标准正态分布需要的积分

$$\int_{-\infty}^{+\infty} e^{itx} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cos tx dx + i \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \sin tx dx$$
 (8.12)

$$= \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cos tx dx (第二个积分因奇函数为0)$$
 (8.13)

第八章 特征函数 33

设
$$g(t) = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cos tx dx$$
, 考虑求导

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cos tx \mathrm{d}x \right)$$
 (8.14)

$$= -\int_{-\infty}^{+\infty} xe^{-\frac{x^2}{2}} \sin tx dx \tag{8.15}$$

$$= \int_{-\infty}^{+\infty} \sin tx de^{-\frac{x^2}{2}} \tag{8.16}$$

$$= e^{-\frac{x^2}{2}} \sin tx \Big|_{-\infty}^{+\infty} - t \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cos tx dx = -tg(t)$$
 (8.17)

解微分方程

$$g'(t) = -tg(t) \tag{8.18}$$

$$\frac{\mathrm{d}g}{g} = -t\mathrm{d}t\tag{8.19}$$

$$g = Ae^{-\frac{t^2}{2}} \tag{8.20}$$

$$g(0)=\int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}}\mathrm{d}x=1,\ \ 定得\ A=1$$
 因此有

$$\int_{-\infty}^{+\infty} e^{itx} e^{-\frac{x^2}{2}} dx = e^{-\frac{t^2}{2}}$$

则原 $\varphi(t)$ 有

$$\varphi(t) = e^{it\mu} \cdot e^{-\frac{\sigma^2 t^2}{2}} = e^{it\mu - \frac{\sigma^2 t^2}{2}}$$

8.2 可微性

8.2.1 预备知识

记

$$F(t) = \int_{\mathcal{B}} f(x, t) p(x) dx$$

假定其存在, 然后以下的 $g \ge 0$ 需满足要求

$$\int_{R} g(x)p(x)dx < \infty$$

 $(1) \exists g, s.t. \forall x, t$

$$|f(x,t)| < g(x)$$

对某个 x, 若

$$\lim_{t \to t_0} f(x, t) = f(x, t_0)$$

则

$$\lim_{t \to t_0} F(t) = F(t_0)$$

即 f 连续 \Rightarrow F 关于 t 连续

 $(2)\exists g, s.t. \forall x, t$

$$\left|\frac{\partial f(x,t)}{\partial t}\right| < g(x)$$

则

$$F'(t) = \int_{R} \frac{\partial f(x,t)}{\partial t} p(x) dx$$

8.2.2 可微性

现在令 g(x) = |x|,由于预设 X 期望存在,则

$$\int_{-\infty}^{+\infty} g(x)dF(x) = \int_{-\infty}^{+\infty} |x|dF(x) < \infty$$

对于特征函数

$$\varphi(t) = Ee^{itX} = \int_{-\infty}^{+\infty} e^{itx} dF(x)$$

 $f(x,t) = e^{itx}$,则

$$\left| \frac{\partial f(x,t)}{\partial t} \right| = \left| ixe^{itx} \right| \leqslant |x| = g(x)$$

那么就有

$$\varphi'(t) = \int_{-\infty}^{+\infty} \frac{\partial f(x,t)}{\partial t} dF(x) = i \int_{-\infty}^{+\infty} x e^{itx} dF(x)$$

特别地,有

$$\varphi'(0) = i \int_{-\infty}^{+\infty} x dF(x) = i\mu$$

同理, 考虑 k 阶 (原点) 矩, 则若 $E|X|^k < \infty$, 则

$$\varphi^{(k)}(t) = i^k \int_{-\infty}^{+\infty} x^k e^{itx} dF(x)$$

第八章 特征函数 35

那么原点处 $\varphi(x)$ 可做 k 次 Taylor 展开

$$\varphi(x) = \varphi(0) + \varphi'(0)x + \frac{\varphi''(0)}{2!}x^2 + \dots + \frac{\varphi^{(k)}(0)}{k!}x^n + o(t^k)$$
$$= 1 + iEXt - \frac{1}{2}EX^2t^2 + \dots + i^k\frac{EX^k}{k!}t^k + o(t^k)$$

第九章 概率极限定理

9.1 Bernoulli 大数律

9.1.1 内容

 $p \in (0,1), S_n \sim B(n,p)$,则 $\frac{S_n}{n} \to p, \quad n \to \infty$

即

$$P\left(\omega: \left| \frac{S_n(\omega)}{n} - p \right| > \varepsilon \right) \to 0, \quad n \to \infty$$

若引入依概率收敛的概念,那么其实就是

$$\frac{S_n}{n} \xrightarrow{P} p, \quad n \to \infty$$

9.2 De Moive-Laplace 中心极限定理

9.2.1 内容

 $p \in (0,1), S_n \sim B(n,p),$ 则

$$\frac{S_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\longrightarrow} N(0,1)$$

这里是依分布收敛的概念。

9.3 Poisson 极限定理

$$p_n \in (0,1), S_n \sim B(n,p_n), np_n \to \lambda, \lambda \in (0,1), \quad \mathbb{M}$$

$$P(S_n = k) \to \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \cdots, \quad n \to \infty$$

我猜想这里应该是依概率收敛。不过我也猜想这里不是重点。

Chebyschev 大数律

9.4.1 内容

$$\xi_k$$
 是一列随机变量。 $E\xi_k = \mu, S_n = \sum_{k=1}^n \xi_k$,如果有

$$\frac{Var(S_n)}{n^2} \to 0, \quad n \to \infty$$

那么

$$\frac{S_n}{n} \xrightarrow{P} \mu, n \to \infty$$

9.4.2 推广

 $E\xi_k = \mu_k$,则满足方差条件后有

$$\frac{S_n}{n} - \frac{\sum_{k=1}^n \mu_k}{n} \xrightarrow{P}, n \to \infty$$

回忆 Chebyschev 不等式

 $\exists EX, EX^2, \ \mathbb{M} \ \forall \varepsilon > 0$

$$P(|X - EX| > \varepsilon) \leqslant \frac{Var(X)}{\varepsilon^2}$$

可以用以证明 Bernoulli 大数律

$$P\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \leqslant \frac{Var(\frac{S_n}{n})}{\varepsilon^2} \tag{9.1}$$

$$=\frac{Var(\sum_{k=1}^{n}\xi_k)}{n^2\varepsilon^2} \tag{9.2}$$

$$= \frac{Var(\sum_{k=1}^{n} \xi_k)}{n^2 \varepsilon^2}$$

$$= \frac{\sum_{k=1}^{n} Var(\xi_k)}{n^2 \varepsilon^2}$$
(9.2)

$$= \frac{p(1-p)}{n\varepsilon^2} \to 0, \quad n \to \infty \tag{9.4}$$

9.5 Khinchine 大数律

9.5.1 内容

 ξ_k 独立同分布, $E\xi_k = \mu$,则

$$\frac{S_n}{n} \to \mu, \quad n \to \infty$$

9.6 Levy-Feller 中心极限定理

9.6.1 内容

 $\xi_k, k \geqslant 1$ 是一列 独立同分布随机变量, $E\xi_k = \mu, Var(\xi_k) = \sigma^2$. 记 $S_n = \sum_{k=1}^n \xi_k$,则 $\forall x$,

$$P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \leqslant x\right) \to \varphi(x)$$

即

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\longrightarrow} N(0,1)$$

9.6.2 意义

- (1) 应用于一般随机变量,是 de Moivre-Laplace 中心极限定理的推广
- (2) 说明测量误差可用正态分布描述

随机测量值 X_i ,均值 μ ,每次误差为 $X_i-\mu$,n 次观测叠加误差 (注意是离差不是方差,可以相消) 为 $\sum_{i=1}^n (X_i-\mu)$,则

$$\sum_{i=1}^{n} (X_i - \mu) \sim N(0, n\sigma^2), \quad n \gg 1$$

9.6.3 证明

组合计算失效,使用特征函数方法。

9.7 Lyapunov 中心极限定理

9.7.1 内容

 $\xi_k,k\geqslant 1$ 是一列 独立随机变量 (不一定同分布), $E\xi_k=\mu_k,Var(\xi_k)=\sigma_k^2$. 记 $S_n=\sum_{k=1}^n\xi_k,B_k=\sum_{k=1}^n\sigma_k^2$,如果

$$(1)B_n \to \infty$$

$$(2)E(|X_k|^3) < \infty, \, \coprod$$

$$\frac{\sum_{k=1}^{n} E|X_k|^3}{B_n^{\frac{3}{2}}} \to 0, \quad n \to \infty$$

则 $\forall x$,

$$P\left(\frac{\sum_{k=1}^{n}(\xi_k - \mu_k)}{\sqrt{B_n}} \leqslant x\right) \to \phi(x)$$

则

$$\frac{\sum_{k=1}^{n} (\xi_k - \mu_k)}{\sqrt{B_n}} \xrightarrow{d} N(0,1)$$

第十章 概率论的收敛

10.1 依概率收敛

10.1.1 定义

在概率空间 (Ω, Σ, P) 中

10.1.2 敛散性判别法则

10.1.3 性质

4. 连续映射保持依概率收敛性

设 $f: \mathbf{R} \to \mathbf{R}$ 是连续映射,则

$$X_n \xrightarrow{P} X \Rightarrow f(X_n) \xrightarrow{P} f(X)$$

10.2 依分布收敛

10.2.1 定义

 $X, X_n, n \ge 1$ 是一列随机变量,其分布函数分别为 $F, F_n, n \ge 1$ 若对 $\forall F$ 的连续点 x,

$$F_n(x) \to F(x), \quad n \to \infty$$

则有

$$X_n \stackrel{d}{\longrightarrow} X$$

(1) 回顾 F 的基本条件: 左极限存在, 右连续

- (2)F 若在 **R** 上连续,则 F_n 处处收敛于 F
- (3) 如果 F 单调有界,则不连续点最多可数个。

$$D_F = \{x : F(x) - F(x - 0) > 0\} = \bigcup_{n=1}^{\infty} \{x : F(x) - F(x - 0) \ge \frac{1}{n}\}$$

因为有界, $\{x: F(x) - F(x-0) \ge \frac{1}{n}\}$ 就是有限集; n 从 1 数到 ∞ ,则可数。 (4)F 的连续点集在 **R** 上稠密

10.2.2 依概率收敛强于依分布收敛

(1) 依概率收敛 ⇒ 依分布收敛

即

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

证明: $\forall x \in \mathbf{R}, \varepsilon > 0$,

$$P(X_n \leqslant x) = P(X_n \leqslant x, X_n - X \geqslant -\varepsilon) + P(X_n \leqslant x, X_n - X < -\varepsilon)$$

然而,

$$P(X_n \leqslant x, X_n - X < -\varepsilon) \leqslant P(X_n - X < -\varepsilon) \to 0$$

则

$$\lim_{n \to \infty} \sup P(X_n \leqslant x) = P(X_n \leqslant x, X_n - X \geqslant -\varepsilon)$$

$$= P(-\varepsilon \leqslant X_n - X \leqslant x - X)$$

$$\leqslant P(X \leqslant x + \varepsilon) \to P(X \leqslant x), \varepsilon \to 0$$

因为分布函数右连续所以可以直接这么趋向。然而分布函数只是左极限存在,并不一 定左连续,所以有

同理,

$$\lim_{n \to \infty} \inf P(X_n \leqslant x) \geqslant P(X \leqslant x - \varepsilon) \to P(X \leqslant x), \varepsilon \to 0$$

但是在连续点,就也左连续了,那么就可以得到

$$\lim_{n \to \infty} P(X_n \leqslant x) = P(X \leqslant x)$$

也就得到了依分布收敛。

(2) 依概率收敛 ⇒ 依分布收敛

有反例:

设 Y 为非退化对称随机变量,则显然有

$$Y \stackrel{d}{=} -Y$$

那么令 $X_n = Y, X = Y$, 则 $X, X_n, n \ge 1$ 分布相同, 有

$$X_n \stackrel{d}{\longrightarrow} X$$

然而

$$P(|X_n - X| - \varepsilon) = P(2|Y| > \varepsilon)$$

Y 不恒等于 0 (否则就是退化分布了),那么 X_n 不依概率收敛到 X 对于退化分布,特别地,有

$$X_n \stackrel{d}{\longrightarrow} c \Rightarrow X_n \stackrel{P}{\longrightarrow} c$$

即退化分布情况下,依概率收敛和依分布收敛是等价的。证明:

10.2.3 敛散性判别法则

Levy 连续性定理

 $X, X_n, n \ge 1$ 是一列随机变量, 其特征函数分别为 $\phi, \phi_n, n \ge 1$, 则

$$X_n \stackrel{d}{\longrightarrow} X \Rightarrow \phi_n(t) \to \phi(t), \quad t \in \mathbf{R}$$

另一种形式,如果

$$\phi_n(t) \to \phi(t), \quad t \in \mathbf{R}$$

且 ϕ 在 0 处连续,那么 ϕ 一定是特征函数,其对应的随机变量 X 满足

$$X_n \stackrel{d}{\longrightarrow} X$$

可以认为是等价条件。

证明 Khinchine 大数律

分析: 频数除以次数依概率收敛于期望,由于期望可以看成退化分布的随机变量,所以和按分布收敛于期望是等价的。

 $\xi_k, k \geqslant 1$ 独立同分布, $E\xi_k = \mu$ 时,令 $X_n = \frac{1}{n} \sum_{k=1}^n \xi_n$,由独立性有

$$\phi_n(t) = E \exp\left\{i\frac{1}{n}\sum_{k=1}^n \xi_n t\right\}$$

$$= \prod_{k=1}^n \left[E \exp\left\{i\frac{1}{n}\xi_k t\right\}\right] (独立性)$$

$$= \left[E \exp\left\{i\frac{1}{n}\xi_1 t\right\}\right]^n (同分布)$$

对 $E \exp \left\{ i \frac{1}{n} \xi_1 t \right\}$ 进行泰勒展开,有

$$E\exp\left\{i\frac{1}{n}\xi_1t\right\} = 1 + i\frac{t}{n}\mu + o(\frac{t}{n})$$

那么, $\forall t \in \mathbf{R}$,

$$\phi_n(t) = \left[1 + \frac{it\mu}{n} + o(\frac{t}{n})\right]^n \to e^{it\mu}$$

显然 $e^{it\mu}$ 在 0 处连续,且对应常数为 μ 的退化分布,那么得证依分布收敛

证明 Levy-Feller 中心极限定理

 $\xi_k, k \ge 1$ 独立同分布, $E\xi_k = \mu, Var(\xi_k) = \sigma^2$,那么

$$X_n = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^{n} (\xi_k - \mu) \stackrel{d}{\longrightarrow} N(0, 1)$$

证明: 只需证

$$\phi_n(t) = E \exp\left\{itX_n\right\} \to exp\left\{-\frac{t^2}{2}\right\}$$

易得

$$\phi_n(t) = \left[E \exp \left\{ it \frac{\xi_1 - \mu}{\sigma \sqrt{n}} \right\} \right]^n$$

泰勒展开,有

$$E \exp \left\{ i \frac{t}{\sigma \sqrt{n}} (\xi_1 - \mu) \right\} = 1 + i \frac{t}{\sigma \sqrt{n}} E(\xi_1 - \mu) - \frac{t^2}{\sigma^2 n} E(\xi_1 - \mu)^2 + o(\frac{1}{n})$$

第十一章 正态分布

11.1 一元正态分布密度函数的规范性

先考虑重要积分 $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx$ 的值

$$\left(\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx\right)^2 = \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx \tag{11.1}$$

$$= \iint_{\mathbb{R}^2} e^{-\frac{x^2 + y^2}{2}} dx dy \tag{11.2}$$

$$= \iint_{\mathbb{R}^2} e^{-\frac{\rho^2}{2}} \rho \mathrm{d}\rho \mathrm{d}\theta \tag{11.3}$$

$$= \int_0^{2\pi} d\theta \int_0^{+\infty} e^{-\frac{\rho^2}{2}} \rho d\rho \tag{11.4}$$

$$= \int_0^{2\pi} d\theta \int_0^{+\infty} -e^{-\frac{\rho^2}{2}} d(-\frac{\rho^2}{2})$$
 (11.5)

$$=2\pi\tag{11.6}$$

可得
$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \mathrm{d}x = \sqrt{2\pi}$$

下证一元正态分布密度函数 $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ 的规范性

$$\int_{-\infty}^{+\infty} p(x) dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$
 (11.7)

$$\frac{t = \frac{x - \mu}{\sigma}}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt = 1$$
 (11.8)

得证。

11.2 二元正态分布的边际分布与线性变换

11.2.1 二元正态分布的边际分布

考虑 $(X,Y) \sim N(a,\sigma_1,b,\sigma_2;r)$,求 $p_X(x),p_Y(y)$ 在二元正态分布的密度函数

$$p(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(x-a)^2}{\sigma_1^2} - \frac{2\rho(x-a)(y-b)}{\sigma_1\sigma_2} + \frac{(y-b)^2}{\sigma_2^2}\right]\right\}$$

的指数中对 y 配方, 可把 p(x,y) 写成

$$p(x,y) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-a)^2}{2\sigma_1^2}\right\} \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{\left[y-b-\frac{r\sigma_2}{\sigma_1}(x-a)\right]^2}{2\sigma_2^2(1-r^2)}\right\}$$

令

$$q(x,y) = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{\left[y-b-\frac{r\sigma_2}{\sigma_1}(x-a)\right]^2}{2\sigma_2^2\left(1-r^2\right)}\right\}$$

$$\int_{-\infty}^{+\infty} q(x,y) dy = \frac{1}{\sqrt{2\pi}\sigma_2 \sqrt{1-r^2}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\left[y - b - \frac{r\sigma_2}{\sigma_1}(x-a)\right]^2}{2\sigma_2^2 (1-r^2)}\right\} dy$$
 (11.9)

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt \cdots t = \frac{y - b - \frac{r\sigma_2}{\sigma_1}(x - a)}{\sigma_2 \sqrt{1 - r^2}}$$
 = 1 (11.10)

(11.11)

则

$$p_X(x) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-a)^2}{2\sigma_1^2}\right\} q(x,y) dy$$
 (11.12)

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-a)^2}{2\sigma_1^2}\right\}$$
 (11.13)

同理

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-b)^2}{2\sigma_2^2}\right\}$$

11.2.2 二元正态分布的线性变换

假设 $(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)$ 。 定义

$$\left(\begin{array}{c} U \\ V \end{array} \right) = A \cdot \left(\begin{array}{c} X \\ Y \end{array} \right), \quad A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$$
可逆

求 (U,V) 的分布密度

A 可逆,则

$$\begin{pmatrix} X \\ Y \end{pmatrix} = A^{-1} \begin{pmatrix} U \\ V \end{pmatrix}$$

Jacobi 行列式

$$J = |A^{-1}| = |A|^{-1}$$

协方差矩阵 Σ , 随机向量 \vec{x} , 期望向量 $\vec{\mu}$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}, \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \vec{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

则

$$p_{X,Y}(x,y) = \frac{1}{2\pi|\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})\right\}$$

随机向量 $\vec{u} = \begin{pmatrix} u \\ v \end{pmatrix}$

$$p_{U,V}(u,v) = \frac{1}{2\pi |\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(A^{-1}\vec{u} - \vec{\mu})^T \Sigma^{-1}(A^{-1}\vec{u} - \vec{\mu})\right\} |J|$$
(11.14)

$$= \frac{1}{2\pi |A^T \Sigma A|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\vec{u} - A\vec{\mu})^T (A\Sigma A^T)^{-1} (\vec{u} - A\vec{\mu})\right\}$$
(11.15)

则

$$(U, V) \sim N(A\vec{\mu}, A\Sigma A^T)$$

$$A\vec{\mu} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} a\mu_1 + b\mu_2 \\ c\mu_1 + d\mu_2 \end{pmatrix}$$

 $A\Sigma A^T$ 不再展开,那将会是个很长的可怕式子。

第十一章 正态分布 47

11.3 二元正态分布的条件分布和独立性

11.3.1 二元正态分布的条件分布

考虑 $(X,Y) \sim N(\mu_1, \sigma_1, \mu_2, \sigma_2; \rho)$, 求 $p_{X|Y}(x|y), p_{Y|X}(y|x)$

当然,如果直接使用 C.2 中的配方结果,就不需要下面这么麻烦地化简了。因为 C.2 中没有给出配方过程,因此在这里稍微写得详细一点。

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$\frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2} \right\}$$
(11.16)

(11.17)

$$= \frac{\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}}{\sqrt{2\pi(1-\rho^2)}\sigma_1\exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}}$$
(11.18)

$$= \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2(1-\rho^2)\sigma_1^2} + \frac{2\rho(x-\mu_1)(y-\mu_2)}{2(1-\rho^2)\sigma_1\sigma_2} - \frac{\rho^2(y-\mu_2)^2}{2(1-\rho^2)\sigma_2^2}\right\}$$
(11.19)

$$= A_1 \exp\left\{A_2 \left[(x - \mu_1)^2 - 2k\rho(x - \mu_1)(y - \mu_2) + k^2\rho^2(y - \mu_2)^2 \right] \right\}$$
(11.20)

$$(A_1 = \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1}, A_2 = -\frac{1}{2(1-\rho^2)\sigma_1^2}, k = \frac{\sigma_1}{\sigma_2})$$
(11.21)

$$= A_1 \exp\{A_2[(x - \mu_1) - \rho k(y - \mu_2)]^2\}$$
(11.22)

$$= \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1} \exp\left\{-\frac{[(x-\mu_1)-\rho\frac{\sigma_1}{\sigma_2}(y-\mu_2)]^2}{2(1-\rho^2)\sigma_1^2}\right\}$$
(11.23)

同理

$$p_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_2} \exp\left\{-\frac{[(y-\mu_2)-\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)]^2}{2(1-\rho^2)\sigma_2^2}\right\}$$

11.3.2 二元正态分布的独立性等价条件

考虑独立性,有结论

$$\rho = 0 \iff X, Y$$
相互独立 $\iff p(x,y) = p_X(x)p_Y(y), \forall x, y$

因为

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\}$$
 (11.24)

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}$$
 (11.25)

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2(1-\rho^2)}. (11.26)$$

$$\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$$
(11.27)

$$p(x,y) = p_X(x)p_Y(y) \iff (11.28)$$

$$\frac{1}{(1-\rho^2)} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{\rho^2(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{\rho^2(y-\mu_2)^2}{\sigma_2^2} \right] \right\} = 1$$
(11.29)

$$\iff \rho^2 a^2 - 2\rho ab + \rho^2 b^2 = -2\sigma_1^2 (1 - \rho^2) \ln(1 - \rho^2), \forall a = (x - \mu_1), b = \frac{\sigma_1}{\sigma_2} (y - \mu_2)$$
(11.30)

 $\rho = 0$ 时, 显然反推成立。则考虑正推, 用反证法, 若 $\rho \in (-1,0) \cup (0,1)$

有

$$\rho a^2 - 2ab + \rho b^2 = -2\frac{\sigma_1^2}{\rho}(1 - \rho^2)\ln(1 - \rho^2) = C$$

设

$$f(a,b) = \rho a^2 - 2ab + \rho b^2, f(a,b) = C \Rightarrow \frac{\partial f}{\partial a} = 0, \frac{\partial f}{\partial b} = 0$$

$$\therefore \begin{cases} \frac{\partial f}{\partial a} = 2\rho a - 2b = 0 \\ \Rightarrow b = \rho a = \rho(\rho b) = \rho^2 b, (1 - \rho^2)b = 0, b = 0 \\ \frac{\partial f}{\partial b} = 2\rho b - 2a = 0 \end{cases}$$

同理 a=0

这与 a,b 任取, $f \equiv C$ 矛盾,则假设不成立,必有 $\rho = 0$

11.4 一元正态分布的期望与方差

设 $\xi \sim N(\mu, \sigma^2)$, 则其密度函数为

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

首先预备求两个积分: $\int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} \, \Pi \int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{2}} \, \mathrm{d}x$ 对于第一个积分,由于被积函数是奇函数,有:

$$\int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} \mathrm{d}x = 0$$

对于另外一个积分,有:

$$\int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{2}} dx = -\int_{-\infty}^{+\infty} x d(e^{-\frac{x^2}{2}}) = -xe^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

因为

$$\lim_{x \to \infty} x e^{-\frac{x^2}{2}} = \lim_{x \to \infty} \frac{x}{e^{\frac{x^2}{2}}} = \lim_{x \to \infty} \frac{1}{x e^{\frac{x^2}{2}}} = 0$$

考虑其期望,有

$$EX = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$
 (11.31)

$$= \frac{x-\mu}{\sigma} \int_{-\infty}^{+\infty} (\sigma t + \mu) \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 (11.32)

$$= \sigma \int_{-\infty}^{+\infty} t \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt + \mu \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 (11.33)

$$=\mu\tag{11.34}$$

考虑方差,有

$$EX^{2} = \int_{-\infty}^{+\infty} x^{2} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right\} dx$$
 (11.35)

$$\frac{t = \frac{x - \mu}{\sigma}}{\int_{-\infty}^{+\infty} (\sigma t + \mu)^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 (11.36)

$$= \frac{1}{\sqrt{2\pi}} \left(\sigma^2 \int_{-\infty}^{+\infty} t^2 e^{-\frac{t^2}{2}} dt + 2\sigma \mu \int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2}} dt + \mu^2 \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt \right)$$
(11.37)

$$=\sigma^2 + \mu^2 \tag{11.38}$$

则 $Var\xi = EX^2 - (EX)^2 = \sigma^2$

11.5 二元正态分布的协方差、Pearson 相关系数

 $(\xi, \eta) \sim N(a, b, \sigma_1^2, \sigma_2^2, r)$, 求 $Cov(\xi, \eta)$ 和 $r_{\xi, \eta}$. 解

$$Cov(\xi, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - a)(y - b)p(x, y)dxdy$$
(11.39)

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-a)(y-b)$$
 (11.40)

$$\cdot \exp\left\{-\frac{1}{2(1-r^2)} \left(\frac{x-a}{\sigma_1} - r\frac{y-b}{\sigma_2}\right)^2 - \frac{(y-b)^2}{2\sigma_2^2}\right\} dxdy \tag{11.41}$$

(11.42)

令

$$z = \frac{x-a}{\sigma_1} - r\frac{y-b}{\sigma_2}, \quad t = \frac{y-b}{\sigma_2}$$

则

$$\frac{x-a}{\sigma_1} = z + rt, \quad J = \frac{\partial(x,y)}{\partial(z,t)} = \sigma_1 \sigma_2$$

于是

$$Cov(\xi, \eta) = \frac{\sigma_1 \sigma_2}{2\pi\sqrt{1 - r^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(zt + rt^2\right) e^{-\frac{z^2}{2(1 - r^2)}} e^{-\frac{t^2}{2}} dz dt \tag{11.43}$$

$$=\sigma_1 \sigma_2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-\frac{t^2}{2}} dt \frac{1}{\sqrt{2\pi}\sqrt{1-r^2}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2(1-r^2)}} dz$$
 (11.44)

$$+\frac{r\sigma_1\sigma_2}{\sqrt{2\pi}}\int_{-\infty}^{\infty}t^2e^{-\frac{t^2}{2}}dt\frac{1}{\sqrt{2\pi}\sqrt{1-r^2}}\int_{-\infty}^{\infty}e^{-\frac{s^2}{2(1-r^2)}}dz\tag{11.45}$$

$$=r\sigma_1\sigma_2\tag{11.46}$$

故得

$$r_{\xi\eta} = \frac{Cov(\xi,\eta)}{\sqrt{\operatorname{Var}\xi\operatorname{Var}\eta}} = r$$

因此, ξ 与 η 不相关等价于 r=0, 也就等价于 ξ 与 η 相互独立。