Default Matrix Orientation

Ng Yen Kaow

Inner product notations

- A vector is by default a column
 - For vectors x and y, inner (or dot) product $\langle x, y \rangle = x^{\mathrm{T}} y$
 - Some texts use row vectors and $\langle x, y \rangle = xy^T$
- For a matrix
 - Each row represents an example or datapoint
 - Each column is a feature
 - □ Why so? Imagine a spreadsheet
 - For matrices X and Y, $\langle X, Y \rangle = XY^{\mathrm{T}}$ or $(x_i y_i^{\mathrm{T}})$
 - Some texts define columns as examples and use $X^{T}Y$ as the inner product
- \square Just write x^Tx , x^TMx , and XX^T , $Q\Lambda Q^T$, K?

Inner product notations

- Examples of inner products
 - Given an $n \times m$ matrix X where the rows are datapoints and columns are features
 - □ The $n \times n$ matrix XX^T is the Gram matrix
 - Used in MDS
 - □ The $m \times m$ matrix X^TX is the covariance matrix
 - Used in PCA

Outer product notations

The outer product of two vectors is a matrix

$$\begin{pmatrix} a \\ b \end{pmatrix} (c \quad d) = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix}$$

- The outer product (or Kronecker product)
 of two matrices is a tensor
- We don't deal with outer products yet, cowboy

Python inner product

- Inner products are performed with np. dot()
 - When called on two arrays, the arrays are automatically oriented to perform inner product
 - \square But note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot(x, X), and column for np. dot(X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
- If you write x * y or X * Y, what you get is an element-wise multiplication