Instructor: Chris Peikert

Scribe: Jacob Alperin-Sheriff

1 SIS Lattices

In this lecture we give properties and applications of SIS (short integer solution) lattices. We first recall the SIS problem.

Definition 1.1 (Shortest Integer Solution Problem). For a positive integer modulus q, dimensions n, m and a norm bound $\beta > 0$, the $\mathsf{SIS}_{n,q,\beta,m}$ problem is defined as follows: given uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a nonzero "short" solution $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{z} = \mathbf{0} \in \mathbb{Z}_q^n$ and $\|\mathbf{z}\| \leq \beta$.

Equivalently, the goal is to find a non-zero vector of norm at most β in the following integer "SIS lattice" (it is easy to verify that this set is a discrete additive subgroup):

$$\mathcal{L}^{\perp}(\mathbf{A}) := \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{Az} = \mathbf{0} \}.$$

Borrowing a term from coding theory, matrix **A** is often called a *parity-check matrix* for the lattice $\mathcal{L}^{\perp}(\mathbf{A})$.

We begin with some mathematical properties of SIS lattices. First, these lattices are called "q-ary" because they contain every integer vector whose entries are all multiples of q:

$$q\mathbb{Z}^m \subseteq \mathcal{L}^{\perp}(\mathbf{A}) \subseteq \mathbb{Z}^m.$$

So, a vector's membership in $\mathcal{L}^{\perp}(\mathbf{A})$ is determined solely by its entries modulo q.

Cosets. Borrowing another term from coding theory let $\mathbf{y} \in \mathbb{Z}_q^n$ be a "syndrome" in the image of \mathbf{A} , i.e., there exists some $\mathbf{x} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{y}$. Then we can define the corresponding lattice coset

$$\mathcal{L}_{\mathbf{v}}^{\perp}(\mathbf{A}) := \{ \mathbf{x}' \in \mathbb{Z}^m : \mathbf{A}\mathbf{x}' = \mathbf{y} \} = \mathbf{x} + \mathcal{L}^{\perp}(\mathbf{A}),$$

where the equality holds because every $\mathbf{x}' \in \mathbf{x} + \mathcal{L}^{\perp}(\mathbf{A})$ satisfies $\mathbf{A}\mathbf{x}' = \mathbf{A}\mathbf{x} = \mathbf{y}$, and for any $\mathbf{x}' \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{x}' = \mathbf{y}$, we have $\mathbf{x}' = \mathbf{x} + (\mathbf{x}' - \mathbf{x}) \in \mathbf{x} + \mathcal{L}^{\perp}(\mathbf{A})$ because $\mathbf{A}(\mathbf{x}' - \mathbf{x}) = \mathbf{0}$.

Determinant. By the bijective correspondence between integer cosets and syndromes in the image of A, we have that

$$\det(\mathcal{L}^{\perp}(\mathbf{A})) = |\mathbb{Z}^m/\mathcal{L}^{\perp}(\mathbf{A})| = |\operatorname{Image}(\mathbf{A})| \le q^n,$$

with equality if the image of **A** is all of \mathbb{Z}_q^n (i.e., the columns of **A** generate \mathbb{Z}_q^n), which will be the setting we are almost always interested in.

If q is prime, then $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ generates all of \mathbb{Z}_q^n if and only if it contains an $n \times n$ submatrix that is invertible modulo q. (It is not too hard to show that when, say, $m \geq (1+\delta)n$ for a constant $\delta > 0$, this holds with high probability over the uniformly random choice of \mathbf{A} .) However, if q is composite, this condition is sufficient but not necessary. For example, $\mathbf{A} = (2,3) \in \mathbb{Z}_6^{1 \times 2}$ generates all of \mathbb{Z}_6 , even though neither 2 nor 3 are invertible modulo 6.

Minimum distance. The minimum distance can be bounded using Minkowski's Theorem and the above bound on the determinant:

$$\lambda_1(\mathcal{L}^{\perp}(\mathbf{A})) \leq \sqrt{m} \cdot \det(\mathcal{L}^{\perp}(\mathbf{A}))^{1/m}$$

 $\leq \sqrt{m} \cdot q^{n/m}.$

However, observe that we are not required to use all m dimensions: by fixing some of the vectors' coordinates to zero (equivalently, dropping some columns of \mathbf{A}), we can instead work with a lattice of any dimension less than m. Assuming that the original dimension is any $m = \Omega(n \log q)$, the above bound is optimized for some dimension $\Theta(n \log q)$, and yields a minimum distance of $O(\sqrt{n \log q})$.

Also recall from last lecture that if $m > n \log_2 q$, then there exists a nonzero $\{0, \pm 1\}^m$ -vector in $\mathcal{L}^{\perp}(\mathbf{A})$, so the ℓ_p minimum distance is $\lambda_1^{(p)}(\mathcal{L}^{\perp}(\mathbf{A})) \leq m^{1/p}$ for any finite p, and $\lambda_1^{(\infty)}(\mathcal{L}^{\perp}(\mathbf{A})) \leq 1$.

Equivalent representations and lattices. We observe that many different matrices \mathbf{A} can define (essentially) the same lattice. The proofs of the following two lemmas are straightforward exercises.

Lemma 1.2. Let $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ be invertible. Then

$$\mathcal{L}^{\perp}(\mathbf{H} \cdot \mathbf{A}) = \mathcal{L}^{\perp}(\mathbf{A}).$$

Lemma 1.3. Let A' be a column permutation of A, i.e., A' = AP, where $P \in \{0,1\}^{m \times m}$ is a permutation matrix. Then

$$\mathcal{L}^{\perp}(\mathbf{A}') = \mathbf{P}^{-1} \cdot \mathcal{L}^{\perp}(\mathbf{A}),$$

i.e., the lattice $\mathcal{L}^{\perp}(\mathbf{A}')$ is just a coordinate permutation of the lattice $\mathcal{L}^{\perp}(\mathbf{A})$, so it has the same determinant, successive minima, etc.