ASpedia-R

November 22, 2023

asr_converter

Generate ASpedia-R input format from DAS analysis tools result.

Description

result of DAS analysis tools convert to ASpedia-R input format.

Usage

```
asr_converter(
  das.analysis.result = "",
  program = "",
  pvalue.cutoff = 0.05,
  dpsi.cutoff = 0.1,
  gene.model = "Ensembl",
  genome.version = "GRCh38",
  as.type = "",
  gtf.file.name = "",
  ioe.file.name = "")
```

Arguments

```
das.analysis.result
```

name of DAS analysis tools result file.

program name of DAS analysis tool. one of rMATS, SUPPA, or spliceR

pvalue.cutoff value of pvalue cutoff. default value is 0.05 dpsi.cutoff value of dPSI cutoff. default value is 0.1

gene model of reference. One of Refseq, Ensembl, or GENCODE. (spliceR

only)

genome.version genome version of reference. One of hg18, GRCh19, or GRCh38. (spliceR

only)

as.type AS event type. One of A3SS, A5SS, SE, MXE, or RI. (rMATS only)

gtf.file.name a GTF format file of reference. (SUPPA only)

ioe.file.name name of ioe file generated by SUPPA generateEvents command. (SUPPA)

2 rMATS.converter

Value

converter.result

Examples

rMATS.converter

Generate ASpedia-R input format from rMATS result.

Description

rMSTS result convert to ASpedia-R input format.

Usage

```
rMATS.converter(
  rMATS.result = "",
  as.type = "",
  pvalue.cutoff = 0.05,
  dpsi.cutoff = 0.1
)
```

Arguments

```
rMATS.result name of rMATS result file.

as.type AS event type. One of A3SS, A5SS, SE, MXE, or RI.

pvalue.cutoff value of pvalue cutoff. default value is 0.05

dpsi.cutoff value of dPSI cutoff. default value is 0.1
```

Value

converting.result

Examples

SUPPA.converter 3

SUPPA.converter

Generate ASpedia-R input format from SUPPA result.

Description

SUPPA result convert to ASpedia-R input format.

Usage

```
SUPPA.converter(
  SUPPA.result = "",
  pvalue.cutoff = 0.05,
  dpsi.cutoff = 0.1,
  gtf.file.name = "",
  ioe.file.name = ""
)
```

Arguments

```
suppa.result name of suppa result file.

pvalue.cutoff value of pvalue cutoff. default value is 0.05

dpsi.cutoff value of dPSI cutoff. default value is 0.1

gtf.file.name a GTF format file of reference.

ioe.file.name name of ioe file generated by SUPPA generateEvents command.
```

Value

converting.result

Examples

spliceR.converter

Generate ASpedia-R input format from spliceR result.

Description

spliceR result convert to ASpedia-R input format.

4 asr_annotation

Usage

```
spliceR.converter(
  spliceR.result = "",
  pvalue.cutoff = 0.05,
  gene.model = "Ensembl",
  genome.version = "GRCh38"
)
```

Arguments

```
spliceR.result name of spliceR result file.

pvalue.cutoff value of pvalue cutoff. default value is 0.05

gene.model gene model of reference. One of Refseq, Ensembl, or GENCODE.

genome.version genome version of reference. One of hg18, GRCh19, or GRCh38.
```

Value

converting.result

Examples

asr_annotation

converting result mapping to ASDB

Description

DNA and RNA annotation related to aliternative splicing from ASpedia DB(ASDB) add to asr_converter (rMATS_converter, SUPPA_converter, or spliceR_converter) result. And gene enrichment test result are provided between annotation result gene list and knowledge-based database gene list

Usage

```
asr_annotation(
  converter.result = "",
  gene.model = "Ensembl",
  genome.version = "GRCh38",
  gsea.gene.list = "",
  result.dir = ""
)
```

Arguments

mining_gsea 5

```
genome.version genome version of reference. One of hg18, GRCh19, or GRCh38.

gsea.gene.list optional. reference gene list for gene enrichment test with annotation result gene list and knowledge-based database gene list. If gene list is empty, use all genes in reference.

result.dir directory where annotation result(.tsv file) is saved
```

Value

annotation result

Examples

mining_gsea

gene enrichment test between annotation gene list and knowledgebased database gene list.

Description

Gene enrichment test result are provided to tsv and plot format between annotation gene list and knowledge-based database gene list.

Usage

```
mining_gsea(
  annotation.gene.list = "",
  gsea.gene.list = "",
  gene.model = "",
  genome.version = "",
  result.dir = ""
)
```

Arguments

```
annotation.gene.list
gene list from asr_annotation function result
gsea.gene.list gene list from reference
gene.model gene model of reference. One of Refseq, Ensembl, or GENCODE.
genome.version genome version of reference. One of hg18, GRCh19, or GRCh38.
result.dir directory where GSEA result(.tsv and .png file) are saved
```

6 asr_plot

Examples

asr_plot

visualization of annotation result

Description

DNA and RNA features in result of asr_annotation function to be visualize.

Usage

```
asr_plot(
  annotation.result = "",
  gtf.file.name = "",
  gene.model = "Ensembl",
  genome.version = "GRCh38",
  gene.name = "",
  as.id = "",
  heights.list = "",
  list.of.plot = "",
  result.dir = ""
```

Arguments

```
annotation.result
                  asr_annotation function result.
gtf.file.name a GTF format file of reference.
                  gene model of reference. One of Refseq, Ensembl, or GENCODE.
gene.model
genome.version genome version of reference. One of hg18, GRCh19, or GRCh38.
gene.name
                  gene name to be visualization.
as.id
                  list of AS ID to be visualization.
                  positive integer vectors for track heights include height of ideogram and gene
heights.list
list.of.plot
                  list of DNA or RNA feature to be visualization. choose from "conservation",
                  "NMD", "repeats", "domain", "PTM", or "RBP".
                  directory where plots(.png files) are saved
result.dir
```

asr_plot_ppi 7

Examples

asr_plot_ppi

visualization of PPI network

Description

If asr_annotation function result has protein protein interaction(PPI) information, we provide PPI network plot.

Usage

```
asr_plot_ppi(
  annotation.result = "",
  gene.name = "",
  as.id = "",
  result.dir = ""
)
```

Arguments

Examples

```
ppi.result.dir <- system.file("extdata/ppi_result", package="ASpediaR")
##using gene name
asr_plot_ppi(annotation.result, gene.name="FGFR2", result.dir=ppi.result.dir)
##using AS ID</pre>
```

8 asr_plot_ppi

Index

```
asr_annotation, 4
asr_converter, 1
asr_plot, 6
asr_plot_ppi, 7
mining_gsea, 5
rMATS.converter, 2
spliceR.converter, 3
SUPPA.converter, 3
```