cq: Cached quotients for fast lookups

Liam Eagen Dario Fiore Ariel Gabizon

13. januar 2023

Outline

► PCS/KZG review

Outline

- PCS/KZG review
- KZG shenanigans
 - 1. Committing to sparse polys.
 - 2. "cached quotients"

Outline

- PCS/KZG review
- KZG shenanigans
 - 1. Committing to sparse polys.
 - 2. "cached quotients"
- Lookups
 - 1. Motivation
 - 2. log derivative protocol[Eagen, Haböck,..]
 - 3. cq

Prover send short commitment cm(f) to polynomial.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $i \in \mathbb{F}$.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $i \in \mathbb{F}$.
- Prover sends back z = f(i); together with proof **open**(f, i) that z is correct.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $i \in \mathbb{F}$.
- Prover sends back z = f(i); together with proof **open**(f, i) that z is correct.

KZG give us PCS with commitments and openings are practically 32-48 bytes.

Notation: $[x] = x \cdot g$ where g generator of (an additive) elliptic curve group.

 $\mathsf{srs} \coloneqq [1]$, [x] , . . . , $[x^d]$, for random $x \in \mathbb{F}$.

 $\mathsf{srs} \coloneqq [1]$, [x] , . . . , $[x^d]$, for random $x \in \mathbb{F}$.

cm(f) := [f(x)]

 $\operatorname{srs} := [1], [x], \dots, [x^d], \text{ for random } x \in \mathbb{F}.$

cm(f) := [f(x)]

open(f, i) := [h(x)], where h(X) := $\frac{f(X)-f(i)}{X-i}$

 $\mathsf{srs} \coloneqq [1], [x], \dots, [x^d], \text{ for random } x \in \mathbb{F}.$

cm(f) := [f(x)]

 $\mathbf{open}(\mathsf{f},\mathfrak{i}) \coloneqq [h(x)], \text{ where } h(X) \coloneqq \tfrac{\mathsf{f}(X) - \mathsf{f}(\mathfrak{i})}{X - \mathfrak{i}}$

verify(cm, π , z, i):

$$e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$$

Shenanigan #1: Committing to sparse polys

notation: parameters $n \ll N$, d := N - 1.

$$\mathbb{V} = \{\omega, \ldots, \omega^{\mathbb{N}}\} \subset \mathbb{F}$$
 subgroup of size \mathbb{N} .

Shenanigan #1: Committing to sparse polys

notation: parameters $n \ll N$, d := N - 1.

$$\mathbb{V} = \{\omega, \ldots, \omega^{N}\} \subset \mathbb{F} \text{ subgroup of size } N.$$

Say $A \in \mathbb{F}_{\langle N}[X]$ is n-sparse if has at most n non-zeroes on \mathbb{V} .

Shenanigan #1: Committing to sparse polys

notation: parameters $n \ll N$, d := N - 1.

$$\mathbb{V} = \left\{ \omega, \dots, \omega^N \right\} \subset \mathbb{F}$$
 subgroup of size N .

Say $A \in \mathbb{F}_{< N}[X]$ is n-sparse if has at most n non-zeroes on \mathbb{V} .

For $i \in [N]$, denote $A_i := A(\omega^i)$ $L_1(X), \dots, L_N(X)$ - Lagrange basis of \mathbb{V} - $(L_i)_j = \mathbf{0}$ when $i \neq j$.

Committing to sparse polys

```
From \operatorname{srs} := [1], [x], \ldots, [x^d], we can precompute in O(N \log N) operations the KZG commitments of \mathbb{V}'s Lagrange Base: \operatorname{srs}_L := \{[L_1(x)], \ldots, [L_N(x)]\}
```

Committing to sparse polys

From $\operatorname{srs} := [1], [x], \dots, [x^d]$, we can precompute in $O(N \log N)$ operations the KZG commitments of \mathbb{V} 's Lagrange Base:

$$\mathsf{srs}_L \coloneqq \{[L_1(x)]\,, \ldots\,, [L_N(x)]\}$$

Now for n-sparse A(X) of degree N compute

$$cm(A) = [A(x)] = \sum_{i \in [N], A_i \neq 0} A_i \cdot [L_i(x)]$$

Shenanigan #2: "Cached quotients" method

Scenario: $T(X) \in \mathbb{F}_{\langle N}[X]$ preprocessed poly. $Z_{\mathbb{V}}(X)$ -vanishing poly of \mathbb{V} . Input: n-sparse $A(X) \in \mathbb{F}_{\langle N}[X]$.

Shenanigan #2: "Cached quotients" method

Scenario: $T(X) \in \mathbb{F}_{\lt N}[X]$ preprocessed poly. $Z_{\mathbb{V}}(X)$ -vanishing poly of \mathbb{V} . Input: n-sparse $A(X) \in \mathbb{F}_{\lt N}[X]$.

V has cm(A). Want to prove to V that: $Z_V(X)$ divides A(X)T(X) using O(n) prover operations.

There exists quotient $Q_A(X)$ such that $A \cdot T \equiv Z_V \cdot Q_A$.

There exists quotient $Q_A(X)$ such that $A \cdot T \equiv Z_V \cdot Q_A$.

We'll compute $[Q_A(x)]$ in O(n) operations:

There exists quotient $Q_A(X)$ such that $A \cdot T \equiv Z_V \cdot Q_A$.

We'll compute $[Q_A(x)]$ in O(n) operations:

preprocessing: For each $i \in [N]$, compute $[Q_i(x)]$ such that for some $R_i(X) \in \mathbb{F}_{< N}[X]$

$$L_{i}(X) \cdot T(X) = Q_{i}(X) \cdot Z_{V}(X) + R_{i}(X)$$

There exists quotient $Q_A(X)$ such that $A \cdot T \equiv Z_V \cdot Q_A$.

We'll compute $[Q_A(x)]$ in O(n) operations:

preprocessing: For each $i \in [N]$, compute $[Q_i(x)]$ such that for some $R_i(X) \in \mathbb{F}_{< N}[X]$

$$L_{i}(X) \cdot T(X) = Q_{i}(X) \cdot Z_{V}(X) + R_{i}(X)$$

Also precompute $[\mathbf{Z}_{\mathbb{V}}(\mathbf{x})]$, $[\mathsf{T}(\mathbf{x})]$

After preprocessing, prover can compute

$$[Q_A(x)] = \sum_{i \in [N], A_i \neq 0} A_i \cdot [Q_i(x)]$$

After preprocessing, prover can compute

$$[Q_A(x)] = \sum_{i \in [N], A_i \neq 0} A_i \cdot [Q_i(x)]$$

Verifier can check:

$$e([A(x)],[T(x)]) = e([Q_A(x)],[Z_{\mathbb{V}}(x)])$$

After preprocessing, prover can compute

$$[Q_A(x)] = \sum_{i \in [N], A_i \neq 0} A_i \cdot [Q_i(x)]$$

Verifier can check:

$$e([\mathsf{A}(x)]\text{,}[\mathsf{T}(x)]) = e([\mathsf{Q}_\mathsf{A}(x)]\text{,}[\mathsf{Z}_\mathbb{V}(x)])$$

In algebraic group model[FKL] can prove this is sound.

Lookup protocols

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraint approach: \mathcal{P} sends x_0, \ldots, x_{n-1} Proves

- $ightharpoonup \forall i, x_i \in \{0, 1\}$

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraint approach: \mathcal{P} sends x_0, \ldots, x_{n-1} Proves

- $ightharpoonup \forall i, x_i \in \{0, 1\}$

Requires n + 1 "gates".

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$ Devise protocol to check $x \in T$.

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$ Devise protocol to check $x \in T$.

Thm-informal [Arya..plookup]: Check can be done in amortized O(1) constraints per check, when have O(|T|) checks.

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$ Devise protocol to check $x \in T$.

Thm-informal [Arya..plookup]: Check can be done in amortized O(1) constraints per check, when have O(|T|) checks.

Thm [Caulk.. \mathfrak{cq}]: Can be done in O(1) constraints without need of amortization!

The question in polynomials:

Preprocessed: $\mathbb{V} \subset \mathbb{F}$ subgroup of size \mathbb{N} . $\mathbb{H} \subset \mathbb{F}$ subgroup of size \mathbb{n} . $\mathbb{T} \in \mathbb{F}_{<\mathbb{N}}[X]$.

The question in polynomials:

Preprocessed: $\mathbb{V} \subset \mathbb{F}$ subgroup of size N. $H \subset \mathbb{F}$ subgroup of size n. $T \in \mathbb{F}_{< N}[X]$.

Input: $f \in \mathbb{F}_{n}[X]$. **cm**(f) given to V.

The question in polynomials:

Preprocessed: $\mathbb{V} \subset \mathbb{F}$ subgroup of size N. $H \subset \mathbb{F}$ subgroup of size n. $T \in \mathbb{F}_{\langle N}[X]$.

Input: $f \in \mathbb{F}_{n}[X]$. **cm**(f) given to V.

Want to convince V that $f|_H \subset T|_{\mathbb{V}}$ in O(n) prover operations.

Log-derivative approach:

Lemma[Haböck]: $f|_H \subset T|_{\mathbb{V}}$ if and only if there exists $m(X) \in \mathbb{F}_{\lt N}[X]$ s.t. as rational functions

$$\sum_{i \in [N]} \frac{m_i}{X + T_i} = \sum_{\alpha \in H} \frac{1}{X + f(\alpha)}$$

Log-derivative approach:

Lemma[Haböck]: $f|_H \subset T|_V$ if and only if there exists $m(X) \in \mathbb{F}_{N}[X]$ s.t. as rational functions

$$\sum_{i \in [N]} \frac{m_i}{X + T_i} = \sum_{\alpha \in H} \frac{1}{X + f(\alpha)}$$

Strategy: check this identity at random $\beta \in \mathbb{F}$.

Main prover task: Compute polynomial A(X) that interpolates RHS on \mathbb{V} , and prove it correct:

$$A_i = \frac{m_i}{\beta + T_i}, \forall i \in [N]$$

Main prover task: Compute polynomial A(X) that interpolates RHS on \mathbb{V} , and prove it correct:

$$A_i = \frac{m_i}{\beta + T_i}, \forall i \in [N]$$

Can be done via the "KZG shenanigans" we described before.

Main prover task: Compute polynomial A(X) that interpolates RHS on \mathbb{V} , and prove it correct:

$$A_i = \frac{m_i}{\beta + T_i}, \forall i \in [N]$$

Can be done via the "KZG shenanigans" we described before.

Must compute $[Q_A(x)]$ where

$$A(X)(\beta + T(X)) - m(X) = Q_A(X)Z_{V}(X).$$