Лекция №7

Влияние изменения коэффициентов целевой функции на устойчивость решения

 $C' = C + \delta_{Cr}e$

$$F(C^r) = C^TX + \delta_{Cr}e^TX$$

Пусть изменяется переменная, коэффициент целевой функции которой

соответствует переменной, входящей в базис

$$0 \le \delta_j = a_{rj}\delta_{Cr} + \delta_j; j = 1..(n+m)$$

Таким образом новые симплекс разности будут связываться со старыми значениями приведённым выше выражением

$$\max[a_{rj}>0]\{-\delta_j/a_{rj}\} \leq \delta_{Cr} \leq \min[a_{rj}<0]\{-\delta_j/a_{rj}\}$$

$$\delta_i = \delta_i + \delta_{Cr}$$

$$-\infty < \delta_{Cr} < \delta_{i}$$

$$\delta'_j = \delta_j + SUM[r=1..m](\delta_{Cr}^* a_{jr}) \ge 0$$

			Cj	2	1	0	0	0
Τ	Б	Сь	Α0	A 1	A2	А3	A 4	A 5
/ 1	A 1	2	2/3	1	0	1/3	3/9	0
	A2	1	1/3	0	1	-1/3	5/9	0
	A 5	0	0	0	0	1	-7/3	1
		δ	5/3	0	0	1/3	1	0

Влияние на устойчивость изменения элементов матрицы системы ограничений

Как правило элементы матрицы ограничений А являются технологическими коэффициентами (нормалями). Т.е. нормами выхода готовой продукции из сырья.

Как правило отсутствуют явные зависимости между приращениями и их вкладами в симплекс-разности либо оптимальное значение. Данное исследование может быть применено только для не базисных переменных, они соответствуют не выпускаемой или не рентабельной продукции, и речь в исследовании идёт об ужесточении нормалей.

$$A_k = A_k + \delta_{ark} e_r$$

 $\delta_i + C_r \delta_{ark} \ge 0$

 $\delta_{ark} \ge - \delta_i/C_r$

Параметрическое программирование

<u>Параметрическое программирование</u> – это раздел математического программирования, рассматривающий зависимости компонентов задач от параметров.

Решение задачи парамерического изменения вектора свободных членов

 $B^{`}=B+Pt,$ где $B_0=[b_1,\,b_2,\,...,\,b_m],$ $P=[p_1,\,p_2,\,...,\,p_m],$ p_i- параметрические коэффициенты, $t\in [0,1]$

 $[\alpha, \beta]$, t – параметр, а α и β – границы его изменения

 $X = A^{-1}B$

 $X^ = A^{-1}B + A^{-1}Pt$

 $B^{\sim} = A^{-1}B$

 $P^{\sim} = A^{-1}P$

Параметрическую задачу можно решать без параметра: решить задачу известным методом и после подключить параметр

$$x^*_i = x^*_i + p^*_i t; x^*_i = b^*_i$$

$$b_i^+ + p_i^- t \ge 0$$
; $t \in [\alpha, \beta]$

В реальности интервалы разбиваются на несколько, на каждом из которых будет своё оптимальное решение и своё значение целевой функции.