CMP_SC 3050: Elementary Data structures

Rohit Chadha

September 3, 2014

Data structures

- A data structure is a structure to organize data
 - By data, we mean input, output and intermediate data used to compute the output
- Efficiency of algorithms depends on choosing the right data structure for the computational problem the algorithm is solving
- Some common data structures
 - Arrays
 - Linked lists
 - Records
 - Stacks
 - Queues
 - Binary trees
 - Heaps
 - And many more . . .

Stack

A stack is a sequence of elements which supports the following operations:

Push: Inserts an element to the front of the sequence

Pop: Delete an element from the front of the sequence

EMPTY: Checks if the sequence is empty

Elements are extracted in last-in-first-out (LIFO) order, i.e., elements are picked in the reverse order of when they were inserted.

Implementing Stacks

- A stack of size n can be implemented as an array S[1..n]
- A stack S has an attribute S. top that indexes the most recently inserted element
- *S. top* = 0 iff the stack is empty

Example: Stack S with 4 elements 9, 2, 6, 15


```
STACK-EMPTY(S)

if S. top == 0

return True
else return FALSE
```

Push(
$$S$$
, x)
if S . $top == n$
error "overflow"
else S . $top = S$. $top + 1$
 $S[S$. $top] = x$

```
STACK-EMPTY(S)
   if S.top == 0
       return True
   else return False
Pop(S)
   if S.top == 0
       error "underflow"
   else S.top = S.top - 1
       return S[S.top + 1]
```

Push(
$$S$$
, x)

if S . $top == n$

error "overflow"

else S . $top = S$. $top + 1$
 $S[S$. $top] = x$

Pop(S)
if
$$S.top == 0$$

error "underflow"
else $S.top = S.top - 1$
return $S[S.top + 1]$

$$PUSH(S,x)$$
if $S.top == n$
error "overflow"
else $S.top = S.top + 1$

$$S[S.top] = x$$

• All the stack operations are O(1) with this implementation (i.e., constant time)

$$Pop(S)$$

if $S.top == 0$
error "underflow"
else $S.top = S.top - 1$
return $S[S.top + 1]$

Push(
$$S$$
, x)
if S . $top == n$
error "overflow"
else S . $top = S$. $top + 1$
 $S[S$. $top] = x$

- All the stack operations are O(1) with this implementation (i.e., constant time)
- Never forget the corner cases!

Example

Stack S with 4 elements 9, 2, 6, 15

Push(S, 17) followed by Push(S, 3)

	7
	6
	5
9	$\leftarrow S. top = 4$
2	3
	•
6	2

Example

Stack S with 4 elements 9, 2, 6, 15

	7
	6
	5
9	$\leftarrow S. top = 4$
2	3
6	2
15	1

Push(S, 17) followed by Push(S, 3)

	7
3	$\leftarrow S$. $top = 6$
17	5
9	4
2	4 3 2
6	2
15	1

Example continued

Stack S with elements 3,17,9,2,6,15

	7
3	$\leftarrow S. top = 6$
17	5
9	4
2	4 3 2
6	2
15	1

Popping results in

Example continued

Stack S with elements 3, 17, 9, 2, 6, 15

	7
3	$\leftarrow S$. $top = 6$
17	5
9	4
2	4 3 2
6	2
15	1

Popping results in

Example continued

Stack S with elements 3, 17, 9, 2, 6, 15

	7
3	$\leftarrow S. top = 6$
17	5
9	4 3
2	
6	2
15	1

Popping results in

Be careful, S[6] has some value which is now meaningless!

Queue

A queue is a sequence of elements which supports the following operations:

ENQUEUE: Inserts an element to the back of the sequence

DEQUEUE: Delete an element from the front of the sequence

EMPTY: Checks if the sequence is empty

Elements are extracted in First-in-first-out (FIFO) order, i.e., elements are picked in the same order of when they were inserted.

Queue

A queue is a sequence of elements which supports the following operations:

ENQUEUE: Inserts an element to the back of the sequence

DEQUEUE: Delete an element from the front of the sequence

EMPTY: Checks if the sequence is empty

Elements are extracted in First-in-first-out (FIFO) order, i.e., elements are picked in the same order of when they were inserted.

ullet Can be implemented with arrays with all operations O(1)

 A linked list is a data structure in which objects are arranged in a linear order

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050
 - ▶ Each element of a linked list *L* has at least two attributes
 - key which contains data such as integers
 - 2 next pointer which points to the next element in the list

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050
 - ▶ Each element of a linked list *L* has at least two attributes
 - 1 key which contains data such as integers
 - a next pointer which points to the next element in the list
 - ► There might be some other attributes also

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050
 - ▶ Each element of a linked list *L* has at least two attributes
 - 1 key which contains data such as integers
 - 2 next pointer which points to the next element in the list
 - ► There might be some other attributes also
 - ► For a list *L*, the attribute *L. head* points to the first element of the list

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050
 - ▶ Each element of a linked list *L* has at least two attributes
 - 1 key which contains data such as integers
 - 2 next pointer which points to the next element in the list
 - ► There might be some other attributes also
 - ▶ For a list *L*, the attribute *L. head* points to the first element of the list
 - ▶ *L* is empty iff *L*. head == NIL

- A linked list is a data structure in which objects are arranged in a linear order
- Unlike the array, the linear order is determined by a pointer in each object
- We have seen singly linked lists in CMP_SC 2050
 - ▶ Each element of a linked list *L* has at least two attributes
 - 1 key which contains data such as integers
 - next pointer which points to the next element in the list
 - ▶ There might be some other attributes also
 - ► For a list *L*, the attribute *L. head* points to the first element of the list
 - ▶ *L* is empty iff *L*. head == NIL
- Stacks and queues can be implemented as singly linked lists

Doubly-linked lists

Doubly-linked lists

- Each element of a linked list L has at least three attributes
 - 4 key which contains data such as integers
 - a next pointer which points to the next element in the list
 - prev pointer which points to the previous element in the list

Doubly-linked lists

- Each element of a linked list L has at least three attributes
 - 4 key which contains data such as integers
 - next pointer which points to the next element in the list
 - prev pointer which points to the previous element in the list

Some standard operations on lists

LIST-SEARCH: Searches for an element in the list

LIST-INSERT: Inserts an element at the beginning of the list

LIST-DELETE: Deletes a specified element from the list

LIST-EMPTY: Checks if the list is empty

Example

- (a) A doubly linked list L
- (b) The result of inserting 25 to the list in (a)
- (c) Result of deleting 4 from the list in (b)

Algorithm for searching in a doubly-linked list

```
LIST-SEARCH(S, k)

x = L. head

while x \neq \text{NIL} and x. key \neq k

x = L. next

return x
```

• Runs in $\Theta(n)$ time

Algorithm for searching in a doubly-linked list

```
LIST-SEARCH(S, k)

x = L.head

while x \neq NIL and x.key \neq k

x = L.next

return x
```

- Runs in $\Theta(n)$ time
- Algorithms for inserting and deleting from the list?

A binary tree T is a data structure defined on a finite collection of nodes such that

- Either the collection is empty (also called the NIL) tree
- or the nodes can be divided into three disjoint sets
 - ► A root node
 - A binary tree called its left subtree
 - A binary tree called its right subtree

A binary tree T is a data structure defined on a finite collection of nodes such that

- Either the collection is empty (also called the NIL) tree
- or the nodes can be divided into three disjoint sets
 - ► A root node
 - A binary tree called its left subtree
 - A binary tree called its right subtree

A binary tree T is a data structure defined on a finite collection of nodes such that

- Either the collection is empty (also called the NIL) tree
- or the nodes can be divided into three disjoint sets
 - ► A root node
 - A binary tree called its left subtree
 - A binary tree called its right subtree

This is a recursive definition!

Binary Trees continued

Left child: Left child of a node is the root of the left subtree

Right child: Right child of a node is the root of the right subtree

Parent: A node n_1 is a parent of n_2 if n_2 is a child of n_1

Degree: Degree of a node is the number of its children Can be 0, 1 or 2

Leaf node: A node n is a leaf node if its degree is 0

Internal node: A node n is a leaf

node if its degree is > 0

Binary Trees continued

Depth: Depth of a node is its distance from the root

Height: Height of a node is the maximum distance from the node to a leaf in its subtree

Height of the tree: is the height of the root

Complete Binary Trees

 A complete binary tree is a tree in which all leaves have the same depth and all internal nodes have degree 2

Complete Binary Trees

- A complete binary tree is a tree in which all leaves have the same depth and all internal nodes have degree 2
- A complete tree of height h has
 - ▶ 1 node at depth 0
 - 2 nodes at depth 1
 - 4 nodes at depth 2
 - • •
 - ▶ 2^h nodes at depth h

Thus a complete tree of height h has 2^h leaf nodes

Complete Binary Trees

- A complete binary tree is a tree in which all leaves have the same depth and all internal nodes have degree 2
- A complete tree of height h has
 - 1 node at depth 0
 - 2 nodes at depth 1
 - 4 nodes at depth 2
 - . . .
 - 2^h nodes at depth h

Thus a complete tree of height h has 2^h leaf nodes

 The total number of nodes of a complete tree of height h is

$$1 + 2 + 2^2 \cdot \cdot \cdot + 2^h = 2^{h+1} - 1$$

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

Example

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

 Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

 Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

Min-heap property: The value stored at every node must be less than the value stored in its children

Example

A heap is a nearly complete binary tree:

- The tree must be completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

Min-heap property: The value stored at every node must be less than the value stored in its children Not a heap:

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

• Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

Min-heap property: The value stored at every node must be less than the value stored in its children Not a heap:

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

Min-heap property: The value stored at every node must be less than the value stored in its children Not a heap:

A question about heaps

What is the height of a heap with *n* nodes?

 $\Theta(logn)$

A question about heaps

What is the height of a heap with n nodes?

 $\Theta(logn)$

Please read Sections 10.1, 10.2 and Appendix B.5 from the book. We have started Chapter 6.