

PatentWeb
HomeEdit
SearchReturn to
Patent List

Help

 Include in patent order

MicroPatent® Worldwide PatSearch: Record 1 of 1

[no drawing available]

[Family Lookup](#)

JP2000168016

LIQUID CRYSTAL DISPLAY SURFACE PROTECTIVE FILM

MITSUBISHI POLYESTER FILM COPP

Inventor(s): ;INAGAKI MASASHI ;OZAKI YOSHIHIDE ;IZAKI KIMIHIRO

Application No. 10351123 , Filed 19981210 , Published 20000620

Abstract:

PROBLEM TO BE SOLVED: To provide a liquid crystal display panel surface protective film excellent in handling properties, easy in the inspection of a liquid crystal display panel accompanied by optical evaluation and having excellent characteristics preventing the adhesion of dust to the liquid crystal display panel.

SOLUTION: This liquid crystal display panel surface protective film bonded to the surface of the polarizing panel or phase difference panel of a liquid crystal display panel, comprises a laminated film wherein an abrasion-resistant layer is provided on one surface of a biaxially oriented polyester film of which the refractive index difference within a film plane is 0-0.005 and the surface resistivity of the abrasion-resistant layer is below 151010 Ω.

Int'l Class: B32B02736 G02B00110 G02F0011335

MicroPatent Reference Number: 001508814

COPYRIGHT: (C) 2000 JPO

PatentWeb
HomeEdit
SearchReturn to
Patent List

Help

For further information, please contact:
[Technical Support](#) | [Billing](#) | [Sales](#) | [General Information](#)

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-168016

(P2000-168016A)

(43)公開日 平成12年6月20日 (2000.6.20)

(51)Int.Cl. ⁷	識別記号	F I	テマコード*(参考)
B 32 B 27/36		B 32 B 27/36	2 H 0 9 1
G 02 B 1/10		G 02 F 1/1335	5 1 0 2 K 0 0 9
G 02 F 1/1335	5 1 0	G 02 B 1/10	Z 4 F 1 0 0

審査請求 未請求 請求項の数10 O L (全 9 頁)

(21)出願番号 特願平10-351123

(22)出願日 平成10年12月10日 (1998.12.10)

(71)出願人 000108856

三菱化学ポリエステルフィルム株式会社
東京都港区芝四丁目2番3号

(72)発明者 稲垣 昌司

滋賀県坂田郡山東町井之口 347番地 三
菱化学ポリエステルフィルム株式会社滋賀
事業所内

(72)発明者 尾崎 廉英

滋賀県坂田郡山東町井之口 347番地 三
菱化学ポリエステルフィルム株式会社滋賀
事業所内

(74)代理人 100103997

弁理士 長谷川 晓司

最終頁に続く

(54)【発明の名称】 液晶表示板表面保護フィルム

(57)【要約】

【課題】 取扱性に優れ、光学的評価を伴う液晶表示板の検査が容易であり、液晶表示板へのゴミの付着防止に優れる等の特性を有する、液晶表示板表面保護フィルムを提供する。

【解決手段】 液晶表示板の偏光板または位相差板の表面に貼着して使用される液晶表示板表面保護フィルムであつて、フィルム面内の屈折率差が0~0.005である二軸配向ポリエステルフィルムの一方の表面に耐摩耗性層が設けられた積層フィルムからなり、耐摩耗性層表面の表面抵抗率が $1 \times 10^{10} \Omega$ 未満であることを特徴とする液晶表示板表面保護フィルム。

【特許請求の範囲】

【請求項 1】 液晶表示板の偏光板または位相差板の表面に貼着して使用される液晶表示板表面保護フィルムであって、フィルム面内の屈折率差が $0 \sim 0.005$ である二軸配向ポリエスチルフィルムの一方の表面に耐摩耗性層が設けられた積層フィルムからなり、耐摩耗性層表面の表面抵抗率が $1 \times 10^{10} \Omega$ 未満であることを特徴とする液晶表示板表面保護フィルム。

【請求項 2】 耐摩耗性層が活性エネルギー線硬化樹脂からなることを特徴とする請求項 1 記載の液晶表示板表面保護フィルム。

【請求項 3】 帯電防止層を介して耐摩耗性層が設けられていることを特徴とする請求項 1 または 2 記載の液晶表示板表面保護フィルム。

【請求項 4】 耐摩耗性層が帯電防止剤を含有することを特徴とする請求項 1 ~ 3 のいずれかに記載の液晶表示板表面保護フィルム。

【請求項 5】 耐摩耗性層中にシリコーン系化合物を含有することを特徴とする請求項 1 ~ 4 のいずれかに記載の液晶表示板表面保護フィルム。

【請求項 6】 耐摩耗性層表面のポリエスチルフィルムに対する摩擦係数が 0.3 以下であることを特徴とする請求項 1 ~ 5 のいずれかに記載の液晶表示板表面保護フィルム。

【請求項 7】 耐摩耗性層の表面粗度 (R_a) が $0.03 \mu m$ 以下であることを特徴とする請求項 1 ~ 6 のいずれかに記載の液晶表示板表面保護フィルム。

【請求項 8】 耐摩耗性層と反対側のフィルム面に粘着剤層が積層していることを特徴とする請求項 1 ~ 7 のいずれかに記載の液晶表示板表面保護フィルム。

【請求項 9】 粘着層が、アクリル系粘着剤、ゴム系粘着剤、ブロックコポリマー系粘着剤、ポリイソブチレン系粘着剤およびシリコーン系粘着剤の群から選ばれる少なくとも 1 種で構成されていることを特徴とする請求項 8 に記載の液晶表示板表面保護フィルム。

【請求項 10】 粘着層の表面に離型フィルムが積層されていることを特徴とする請求項 1 ~ 9 のいずれかに記載の液晶表示板表面保護フィルム。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、液晶表示板表面保護フィルムに関するものであり、詳しくは、液晶表示板の偏光板または位相差板の表面に粘着剤等を介して貼着することにより、偏光板または位相差板の表面を保護するために使用される液晶表示板表面保護フィルムに関するものである。

【0002】

【従来の技術】通常、液晶表示板は、2枚の基板の間に液晶を封入した液晶セルの両面に偏光板または位相差板を積層することによって作製される。そして、流通過程

やコンピューター、ワープロ、テレビ等の各種表示機器の組み立て工程における偏光板または位相差板の表面の擦傷防止や塵芥付着防止のため、偏光板または位相差板の表面には保護フィルムが貼着される。保護フィルムは、偏光板または位相差板の保護の役目を果たした後においては不要物として剥離除去される。通常、保護フィルムの剥離除去は、保護フィルムに粘着テープを押し付けて当該粘着テープを持ち上げる方法により行われる。

【0003】従来、上記の保護フィルムとして、ポリエチレンフィルム、エチレン-酢酸ビニル共重合体フィルム等が使用されている。しかしながら、これらの保護フィルムは、液晶表示板の表示能力、色相、コントラスト、異物混入などの光学的評価を伴う検査には支障を来すことがあるため、検査時に一旦剥離し、検査終了後に再度貼付しなければならない欠点がある。

【0004】特開平4-30120号公報には、光学的評価を伴う検査時に剥離する必要がない保護フィルムとして、光等方性基材フィルムに光等方性粘着性樹脂層を積層した保護フィルムが提案されている。しかしながら、この保護フィルムは、基材フィルムとして、流延法により製膜され、ほとんど配向しておらずに非晶質に近い状態のフィルムを使用しているため、耐薬品性、耐擦傷性などの点で十分とは言えない。

【0005】

【発明が解決しようとする課題】本発明は、上記実情に鑑みされたものであり、その目的は、耐薬品性、耐擦傷性、取扱性に優れ、クロスニコル状態の2枚の偏光板の間で光学的評価を伴う液晶表示板の検査で消光状態が保つことができ、その結果、検査を容易にすることができる、かつ、液晶表示板へのゴミの付着防止に優れる等の特性を有する、また、偏光板または位相差板の保護の役目を果たした後に不要物として剥離除去される際、剥離帶電を抑制する効果があり、剥離帶電により液晶表示板と接続されている回路の破損等が防止できる液晶表示板表面保護フィルムを提供することにある。

【0006】

【課題を解決するための手段】本発明者らは、上記課題に鑑み鋭意検討した結果、特定のフィルムによれば、上記課題が容易に解決されることを見いだし、本発明を完成するに至った。すなわち、本発明の要旨は、液晶表示板の偏光板または位相差板の表面に貼着して使用される液晶表示板表面保護フィルムであって、フィルム面内の屈折率差が $0 \sim 0.005$ である二軸配向ポリエスチルフィルムの一方の表面に耐摩耗性層が設けられた積層フィルムからなり、耐摩耗性層表面の表面抵抗率が $1 \times 10^{10} \Omega$ 未満であることを特徴とする液晶表示板表面保護フィルムに存する。

【0007】

【発明の実施の形態】以下、本発明を詳細に説明する。本発明の液晶表示板表面保護フィルムは、液晶表示板の

偏光板または位相差板の表面に粘着剤等を介して貼着し、使用され、面内屈折率等方性二軸配向ポリエスチルフィルムの一方の表面に耐摩耗性層が設けられた積層フィルムからなる。そして、本発明の好ましい態様においては、他方の表面に粘着層が設けられ、粘着層の表面に離型フィルムが積層される。斯かる本発明の液晶表示板表面保護フィルムは、一般的には、耐摩耗性層形成工程、粘着層形成工程、離型フィルム積層工程を順次に経て製造される。

【0008】本発明において、面内屈折率等方性二軸配向ポリエスチルフィルム（以下フィルムと略記する）とは、フィルム面内での屈折率差が0～0.005、好ましくは0～0.003であって、いわゆる押出法に従い押出口金から溶融押出しされたシートを延伸して配向させたフィルムである。上記のフィルムを構成するポリエスチルとは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるポリエスチルを指す。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエスチルとしては、ポリエチレンテレフタレート（PET）、ポリエチレン-2,6-ナフタレンジカルボキシレート（PEN）等が例示される。

【0009】上記のポリエスチルは、第三成分を含有した共重合体であってもよい。共重合ポリエスチルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸（例えば、P-オキシ安息香酸など）が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等が挙げられる。これらのジカルボン酸成分およびグリコール成分は、二種以上を併用してもよい。

【0010】本発明においては、その取扱性を考慮した場合、透明性を損なわない条件でフィルムに粒子を含有させることができ。粒子としては、例えば、二酸化ケイ素、炭酸カルシウム、酸化アルミニウム、二酸化チタン、カオリン、タルク、ゼオライト、フッ化リチウム、硫酸バリウム、カーボンブラック、特公昭59-5216号公報に記載されているような、耐熱性高分子微粉体などが挙げられる。これらの粒子は、2種以上を併用してもよい。粒子の平均粒径は、通常0.02～2μm、好ましくは0.05～1.5μm、さらに好ましくは0.05～1μmである。粒子の含有量は、通常0.01～2重量%、好ましくは0.02～1重量%である。

【0011】フィルムに粒子を含有させる方法としては、公知の方法を採用し得る。例えば、ポリエスチル製

造工程の任意の段階で粒子を添加することができる。特に、エステル化の段階またはエステル交換反応終了後重縮合反応開始前の段階において、エチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付混練押出機を使用し、エチレングリコールまたは水に粒子を分散させたスラリーとポリエスチル原料とをブレンドする方法、混練押出機を使用し、乾燥させた粒子とポリエスチル原料とをブレンドする方法なども採用し得る。

【0012】フィルムの製造は、押出法に従い押出口金から溶融押出しされたシートを縦および横方向の二軸方向に延伸して配向させる方法によって行われる。押出法においては、ポリエスチルを押出口金から溶融押出し、冷却ロールで冷却固化して未延伸シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高める必要があり、静電印加密着法または液体塗布密着法が好ましく採用される。静電印加密着法とは、通常、シートの上面側にシートの流れと直行する方向に線状電極を張架し、該電極に約5～10kVの直流電圧を印加することにより、シートに静電荷を付与してシートとドラムとの密着性を向上させる方法である。また、液体塗布密着法とは、回転冷却ドラム表面の全体または一部（例えはシート両端部と接触する部分のみ）に液体を均一に塗布することにより、ドラムとシートとの密着性を向上させる方法である。本発明においては必要に応じ両者を併用してもよい。

【0013】フィルムの二軸方向の延伸配向方法については特に限定されるものではないが、同時二軸延伸法、逐次二軸延伸法等が採用される。フィルム面内の屈折率等方性を得るために、同時二軸延伸法の方が好ましい。同時二軸延伸法としては、前記の未延伸シートを通常70～120°C、好ましくは80～110°Cで温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法で、延伸倍率としては、面積倍率で4～50倍、好ましくは7～35倍、さらに好ましくは10～20倍である。そして、引き続き、170～250°Cの温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。逐二軸延伸法としては、前記の未延伸シートを一方向にロールまたはテンタ方式の延伸機により延伸する。延伸温度は、通常70～120°C、好ましくは80～110°Cであり、延伸倍率は、通常2.5～7倍、好ましくは3.0～6倍である。次いで、一段目の延伸方向と直交する方向に延伸を行う。延伸温度は、通常70～120°C、好ましくは80～115°Cであり、延伸倍率は、通常3.0～7倍、好ましくは3.5～6倍である。そして、引き続き、170～250°Cの温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。

【0014】上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場

合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。また、必要に応じて熱処理を行う前または後に再度縦および／または横方向に延伸してもよい。本発明において、フィルム厚さは特に限定されるものではないが、通常5～150μm、好ましくは10～100μm、さらに好ましくは25～75μmである。フィルムの厚さが5μm未満の場合は、液晶表示板の表面保護性が低下する恐れがあり、耐摩耗性層形成工程や粘着層形成工程における取扱性なども悪くなる傾向がある。また、フィルムの厚さが150μmを超える場合は、可撓性の低下、全光線透過率の低下により、保護フィルムとしての取り扱い作業性、液晶表示板の表示能力、色相、コントラスト、異物混入などの光学的評価を伴う検査を行う場合に支障を来す場合がある。

【0015】本発明において、耐摩耗性層の構成材料としては、例えば、各種の架橋性樹脂、金属酸化物、硬質炭素材料などが挙げられるが、通常は、架橋性樹脂が好適に使用される。架橋性樹脂の具体例としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート系樹脂のほか、含ケイ素化合物と含フッ素化合物との共重合体樹脂などが挙げられる。

【0016】本発明においては、生産性などの観点から、活性エネルギー線硬化樹脂が好適に使用される。活性エネルギー線硬化樹脂としては、不飽和ポリエステル系樹脂、アクリル系樹脂、付加重合系樹脂、チオール・アクリルのハイブリッド系樹脂、カチオン重合系樹脂、カチオン重合とラジカル重合のハイブリッド系樹脂などが挙げられる。これらの中では、硬化性、耐擦傷性、表面硬度、可撓性および耐久性などの点でアクリル系樹脂が好ましい。

【0017】上記のアクリル系樹脂は、活性エネルギー線重合成分としてのアクリルオリゴマーと反応性希釈剤などを含有する。そして、必要に応じ、光重合開始剤、光重合開始助剤、改質剤などを含有する。アクリルオリゴマーとしては、代表的には、アクリル系樹脂骨格に反応性のアクリロイル基またはメタアクリロイル基が結合されたオリゴマーが挙げられる。その他のアクリルオリゴマーとしては、ポリエステル（メタ）アクリレート、エポキシ（メタ）アクリレート、ウレタン（メタ）アクリレート、ポリエーテル（メタ）アクリレート、シリコン（メタ）アクリレート、ポリブタジエン（メタ）アクリレート等が挙げられる。さらに、剛直な骨格であるアクリロイル基またはメタアクリロイル基に、メラミン、イソシアヌール酸、環状ホスファゼン等が結合したオリゴマーが挙げられる。

【0018】反応性希釈剤は、塗布剤の媒体として塗布工程での溶剤の機能を担うとともに、それ自体が多官能性または単官能性のアクリルオリゴマーと反応する基を有するため、塗膜の共重合成分となる。反応性希釈剤の具体例としては、ペンタエリスリトールトリ（メタ）ア

クリレート、ペンタエリスリトールテトラ（メタ）アクリレート、ジペンタエリスリトールトリ（メタ）アクリレート、ジペンタエリスリトールテトラ（メタ）アクリレート、ジペンタエリスリトールペンタ（メタ）アクリレート、ジペンタエリスリトールヘキサ（メタ）アクリレート、トリメチロールプロパントリ（メタ）アクリレート、エチレングリコール（メタ）アクリレート、プロピレングリコールジ（メタ）アクリレート、（メタ）アクリロイルオキシプロピルトリエトキシシラン、（メタ）アクリロイルオキシプロピルトリメトキシシラン等が挙げられる。

【0019】光重合開始剤としては、例えば、2,2-エトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、ジベンゾイル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、p-クロロベンゾフェノン、p-メトキシベンゾフェノン、ミヒラーケトン、アセトフェノン、2-クロロチオキサントン、アントラキノン、フェニルジスルフィド、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパン等が挙げられる。

【0020】光重合開始助剤としては、トリエチルアミン、トリエタノールアミン、2-ジメチルアミノエタノール等の3級アミン、トリフェニルホスフィン等のアルキルホスフィン、β-チオジグリコール等のチオエーテル等が挙げられる。改質剤としては、塗布性改良剤、消泡剤、増粘剤、無機系粒子、有機系粒子、潤滑剤、有機高分子、染料、顔料、安定剤などが挙げられる。これらは、活性エネルギー線による反応を阻害しない範囲で使用され、活性エネルギー線硬化樹脂層の特性を用途に応じて改良することができる。活性エネルギー線硬化樹脂層の組成物には、塗工時の作業性向上、塗工厚さのコントロールのため、有機溶剤を配合することができる。

【0021】本発明においては、液晶表示板表面保護フィルムに帯電防止性を付与させるために、下記のような方法を採用することができる。すなわち、（1）フィルムにクロム蒸着などの導電性材料を蒸着する方法、（2）フィルムに帯電防止剤を練り込む方法、（3）フィルムに帯電防止剤含有塗布層を設ける方法、（4）耐摩耗性層に帯電防止剤を含有させる方法などを採用することができる。これらの中では、（3）または（4）の方法が推奨される。

【0022】帯電防止剤としては、例えば、第4級アンモニウム塩、ピリジニウム塩、第1～3級アミノ基などのカチオン性基を有する各種のカチオン性帯電防止剤、スルホン酸塩基、硫酸エステル塩基、リン酸エステル塩基、ホスホン酸塩基などのアニオン性基を有するアニオン性帯電防止剤、アミノ酸系、アミノ硫酸エステル系などの両性帯電防止剤、アミノアルコール系、グリセリン系、ポリエチレングリコール系などのノニオン性帯電防

止剤などの各種界面活性剤型帶電防止剤、さらには、上記のような帶電防止剤を高分子量化した高分子型帶電防止剤などが挙げられる。

【0023】耐摩耗性層中には、適切な剥離性を付与するため、シリコーン系化合物が含有させるのが好ましい。シリコーン系化合物の種類としては、シリコーンオイル、シリコーン樹脂、シリコーンゴム等が挙げられる。シリコーンが主成分である化合物が好ましい。シリコーンを主成分とする化合物としては、例えば、直鎖状ジメチルポリシロキサンガム、有機変性ポリシロキサン等が挙げられる。

【0024】耐摩耗性層中のシリコーン系化合物の含有量は、通常0.5～60重量%、好ましくは0.5～50重量%、さらに好ましくは1～40重量%である。シリコーン系化合物の含有量が60重量%を超える場合は、粘着テープとの接着力が低下し保護フィルムを除去する際、粘着テープに粘着し難くなる傾向があり、0.5重量%未満の場合は、目標の偏光角または位相角に合わせてカットされたものが積み重ねられて取り扱われる際、カットされたエッジの粘着剤が他の偏光板または位相差板の保護フィルムの表面に付着することがある。

【0025】耐摩耗性層の形成は、フィルムの一方の表面に硬化性樹脂組成物を塗布して硬化させる方法により行われる。塗布方法としては、リバースロールコート法、グラビアロールコート法、ロッドコート法、エアーナイフコート法などを採用し得る。塗布された硬化性樹脂組成物の硬化は、例えば、活性エネルギー線や熱により行われる。活性エネルギー線としては、紫外線、可視光線、電子線、X線、 α 線、 β 線、 γ 線などが使用される。熱源としては、赤外線ヒーター、熱オーブン等が使用される。活性エネルギー線の照射は、通常、塗布層側から行うが、フィルムとの密着を高めるため、塗布層の反対面側から行ってもよい。必要に応じ、活性エネルギー線を反射し得る反射板を利用してもよい。活性エネルギー線により硬化された皮膜は、特に耐摩耗性が良好である。

【0026】耐摩耗性層の塗布量は、通常0.1～10g/m²、好ましくは0.5～5g/m²の範囲である。厚さが0.1g/m²未満の場合は、耐摩耗性が低下する傾向があり、10g/m²を超える場合は、耐摩耗性層の硬化収縮が大きくなり、フィルムが耐摩耗性層側にカールすることがある。本発明において、耐摩耗性層は表面抵抗率が $1 \times 10^{10} \Omega$ 未満でなければならない。耐摩耗性層の表面抵抗率が上記の値を超える場合は静電気が発生しやすくなり、ゴミの付着が多くなる。耐摩耗性層の表面抵抗率は、好ましくは $5 \times 10^9 \Omega$ 未満、さらに好ましくは $1 \times 10^9 \Omega$ 未満である。

【0027】本発明において、耐摩耗性層のポリエスチルフィルムに対する摩擦係数は0.3以下、さらには0.25以下であることが好ましい。その理由は次のと

おりである。耐摩耗性層形成工程を経たフィルムは、粘着層形成工程に搬入される前に積み重ねた状態で保管される。耐摩耗性層の摩擦係数が0.3を超える場合は、上記の保管の際、上下で接触している耐摩耗性層とフィルムとがブロッキング（固着）して取扱性が悪化することがある。

【0028】本発明において、耐摩耗性層の表面粗度(Ra)は0.03μm以下であることが好ましい。すなわち、耐摩耗性層の表面粗度(Ra)が0.03μmを超える場合は、透明性の低下に伴い、保護フィルムを貼付した状態での光学的評価を伴う検査において問題を起こすことがある。そこで、本発明においては、保護フィルムを貼付した状態での上記の検査を全く問題なしに行うため、耐摩耗性層の表面粗度(Ra)を調節することが推奨される。耐摩耗性層の表面粗度(Ra)は、さらに好ましくは0.025μm以下である。

【0029】本発明において、耐摩耗性層の後述する粘着剤に対する剥離力が500gf/50mm以下であることが好ましい。その理由は次のとおりである。本発明の液晶表示板表面保護フィルムは、積み重ねた状態で保管される。この保管の際、所定寸法への裁断工程において、ポリエスチルフィルムと離型フィルムとの間から偶発的にはみ出した粘着層が他の保護フィルムの耐摩耗性層に接触することがある。そして、粘着層の耐摩耗性層への接触は、粘着剤の接着力が大きくなると、耐摩耗性層に対する粘着剤の付着汚れの原因となる。

【0030】本発明において、粘着層は、公知の粘着剤、例えば、アクリル系粘着剤、ゴム系粘着剤、ブロックコポリマー系粘着剤、ポリイソブチレン系粘着剤、シリコーン系粘着剤などから構成される。一般に、斯かる粘着剤は、エラストマー、粘着付与剤、軟化剤（可塑剤）、劣化防止剤、充填剤、架橋剤などの組成物として構成される。

【0031】エラストマーとしては、上記の各粘着剤の種類に従って、例えば、天然ゴム、合成イソブレンゴム、再生ゴム、SBR、ブロックコポリマー、ポリイソブチレン、ブチルゴム、ポリアクリル酸エステル共重合体、シリコーンゴム等が挙げられる。粘着付与剤としては、例えば、ロジン、水添ロジンエステル、テルペン樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂、テルペンフェノール樹脂、脂肪族系石油樹脂、芳香族系石油樹脂、脂環族系水添石油樹脂、クマロン・インデン樹脂、スチレン系樹脂、アルキルフェノール樹脂、キシレン樹脂などが挙げられる。

【0032】軟化剤としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、液状ポリブテン、液状ポリイソブチレン、液状ポリイソブレン、ジオクチルフタレート、ジブチルフタレート、ひまし油、トール油等が挙げられる。劣化防止剤としては、例えば、芳香族アミン誘導体、フ

エノール誘導体、有機チオ酸塩等が挙げられる。

【0033】充填剤としては、例えば、亜鉛華、チタン白、炭酸カルシウム、クレー、顔料、カーボンブラック等が挙げられる。充填剤が含有される場合は保護フィルムの全光線透過率に大きく影響を与えない範囲で使用される。架橋剤としては、例えば、天然ゴム系粘着剤の架橋には、イオウと加硫助剤および加硫促進剤（代表的なものとして、ジブチルチオカーバメイト亜鉛など）が使用される。天然ゴムおよびカルボン酸共重合ポリイソブレンを原料とした粘着剤を室温で架橋可能な架橋剤として、ポリイソシアネート類が使用される。ブチルゴムおよび天然ゴムなどの架橋剤に耐熱性と非汚染性の特色がある架橋剤として、ポリアルキルフェノール樹脂類が使用される。ブタジエンゴム、ステレンブタジエンゴムおよび天然ゴムを原料とした粘着剤の架橋に有機過酸化物、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイドなどがあり、非汚染性の粘着剤が得られる。架橋助剤として、多官能メタクリルエステル類を使用する。その他紫外線架橋、電子線架橋などの架橋による粘着剤の形成がある。

【0034】粘着層の形成は、フィルムの他方の表面に粘着剤を塗布する方法により行われる。塗布方法としては、耐摩耗性層の形成に使用したのと同様の方法を採用し得る。粘着層の厚さは、通常 $0.5 \sim 1.0 \mu\text{m}$ 、好ましくは $1 \sim 5 \mu\text{m}$ の範囲である。本発明において、粘着層の粘着力は、耐摩耗性層に粘着テープを押し付けて当該粘着テープを持ち上げた際、偏光板または位相差板の表面から粘着層が一軸配向ポリエスチルフィルムとともに剥離除去されるような範囲に調節される。この場合、偏光板または位相差板と粘着層との間の粘着力は、 $5 \sim 200 \text{ g f} / 50 \text{ mm}$ の範囲にするのが好ましい。そして、粘着層の表面には、その取扱いの便宜を図る観点から、公知の離型フィルムが積層される。

【0035】上記のように構成された本発明の積層フィルム（液晶表示板表面保護フィルム）の全光線透過率（TL）は特に限定されるものではないが、通常80%以上、好ましくは85%以上である。その結果、液晶表示板の表示能力、色相、コントラスト、異物混入などの光学的評価を伴う検査は、偏光板または位相差板の表面に保護フィルムを貼付したまま行うことができる。

【0036】

【実施例】以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例中「部」とあるのは「重量部」を示す。また、本発明で使用した測定法および評価基準は次のとおりである。

(1) フィルム面内屈折率差

アタゴ光学社製アッペ式屈折計を用い、フィルムから10度の角度をずらしながら、幅10mm、長さ50mm

のサンプルを採取し各サンプルについて採取角度方向の屈折率を測定した。なお、屈折率の測定はナトリウムD線を用い、23°Cで行った。測定において得られた屈折率の最大値と最低値の差（屈折率の最大値-屈折率の最低値）を計算し、屈折率差とした。

(2) フィルムの厚さ

シチズン時計社製ミューメトロン「4M-100PTYPE V-2」を使用してフィルムの厚さを測定した。

10 (3) 耐摩耗性層の表面抵抗率（Ω）

三菱油化社製「Hireste MODEL HT-210」を使用し、23°C/50%RHの雰囲気下で試料を設置し、500Vの電圧を印加し、1分間充電後（電圧印加時間1分）の表面抵抗（Ω）を測定した。ここで使用した電極の型は、主電極の外径16mm、対電極の内径40mmの同心円電極である。測定した表面抵抗（Ω）に10を乗じた値を表面抵抗率（Ω）とした。

(4) 耐摩耗性層の摩擦係数

平滑なガラス板上に、幅15mm、長さ150mmに切り出した試料フィルムの耐摩耗性層面とポリエスチルフィルム（三菱化学ポリエスチルフィルム社製T100-38）を重ね、その上にゴム板を載せ、さらにその上に荷重を載せ、2枚のフィルムの接圧を 0.5 g/mm^2 として、20mm/分の速度でフィルム同志を滑らせて摩擦力を測定した。5mm滑らせた点での値を計算し摩擦係数とした。なお、測定は、温度23°C、湿度50%RHの雰囲気で行った。

(5) 耐摩耗性層の表面粗度（Ra）

中心線平均粗さRa（μm）をもって表面粗さとする。表面粗さ測定機（（株）小坂研究所社製「SE-3F」）を使用し、次のようにして求めた。すなわち、フィルム断面曲線からその中心線の方向に基準長さL（2.5mm）の部分を抜き取り、この抜き取り部分の中心線をx軸、縦倍率の方向をy軸として粗さ曲線 $y = f(x)$ で表わした際に次の式で与えられた値を[μm]で表す。中心線平均粗さは、試料フィルム表面から10本の断面曲線を求め、これらの断面曲線から求めた抜き取り部分の中心線平均粗さの平均値で表わした。なお、触針の先端半径は $2 \mu\text{m}$ 、荷重は30mgとし、カットオフ値は 0.08 mm とした。

【0037】

【数1】

$$Ra = 1/L \int_0^L |f(x)| dx$$

(6) 耐摩耗性層の粘着剤に対する剥離力

耐摩耗性層上に両面粘着テープ（日東電工社製「No.502」）を貼り、ゴムローラーを使用し 450 g/cm の線圧で圧着し、50mm幅に切り出し剥離力測定用試料とした。圧着してから1時間放置後インストロン型

引張試験機を用いて、180度方向に引張速度300m/mで剥し、その応力の平均値をその試料の剥離力とした。この試験を10回繰り返し行い、10回の相加平均をもって剥離力とした。なお、この試験を行った雰囲気は、23°C、50%RHの標準状態である。

(7) 積層フィルムの全光線透過率 (TL)

JIS-K7105に準じ、積分球式濁度計（日本電色工業社製「NDH-300A」）により、全光線透過率 (TL) を測定した。

(8) 消光状態

クロスニコル状態の2枚の偏光板の間に試料フィルムを配置し、下からの光線により上から全体を見て、試料フィルムを面方向に回転させた際の消光状態の変化を観察し下記ランクに分けた。

【0038】

A：消光状態の変化なし

B：消光状態が若干変化する（実用上問題ないレベル）

C：消光状態から明るくなる所が存在する（実用上問題のあるレベル）

(9) 耐摩耗性

大平理化工業社製「RUBBING TESTER」を使用し、65mm×50mmの金属製平板圧子に長纖維のセルロース不織布を巻き付け、酢酸エチル1mlをしみ込ませて耐摩耗性層表面を100往復こすった。その後、表面を観察し、耐摩耗性層がほとんど変化していない場合を良好、耐摩耗性層が脱落している場合を不良として評価した。

(10) ゴミ付着

積層フィルムの耐摩耗性層の表面にタバコの灰を落とし、1回転（360度の回転）させた際の灰の付着状態を観察し、ゴミ付着の有無を評価した。

(11) 検査容易性

クロスニコル状態の2枚の偏光板の間に試料フィルムを配置し、面方向に試料フィルムを回転させて、一番明るくなった状態で上から全体を見た際の異物の見えやすさを評価した。

(12) 粘着剤付着性

耐摩耗性層の表面にアクリル系粘着剤を擦り付け、粘着剤の付着性の有無を評価した。

【0039】製造例1（ポリエステルA）

ジメチルテレフタレート100部、エチレングリコール60部および酢酸マグネシウム・4水塩0.09部を反応器にとり、加熱昇温とともにメタノールを留去し、エステル交換反応を行い、反応開始から4時間をして230°Cに昇温し、実質的にエステル交換反応を終了した。次いで、平均粒径1.54μmのシリカ粒子を0.1部含有するエチレングリコールスラリーを反応系に添加し、さらに、エチルアシッドフォスフェート0.04部、酸化ゲルマニウム0.01部を添加した後、100分で温度を280°C、圧力を15mmHgに達せし

め、以後も徐々に圧力を減じて最終的に0.3mmHgとした。4時間後に系内を常圧に戻しポリエステルAを得た。ポリエステルAのシリカ粒子の含有量は0.1重量%であった。

【0040】製造例2（ポリエステルフィルムA1）

ポリエステルAを180°Cで4時間不活性ガス雰囲気中で乾燥し、溶融押出機により290°Cで溶融押出し、静電印加密着法を使用し、表面温度を40°Cに設定した冷却ロール上で冷却固化して未延伸シートを得た。得られ

10 たシートをT.M.Long社製ロング延伸機を用いて95°Cで面積倍率が1.6倍になるように同時二軸延伸を行った。その後、230°Cにて熱固定し、厚さ25μmのポリエステルフィルムA1を得た。得られたフィルムの屈折率差は0.001であった。

【0041】製造例3（ポリエステルフィルムA2）

製造例2において、延伸倍率を面積倍率で1.2倍になるように同時二軸延伸を行う以外は製造例2と同様にポリエステルフィルムA2を得た。得られたフィルムの屈折率差は0.001であった。

20 製造例4（ポリエステルフィルムA3）

製造例2において、延伸倍率を面積倍率で2.0倍になるように同時二軸延伸を行う以外は製造例2と同様にポリエステルフィルムA3を得た。得られたフィルムの屈折率差は0.001であった。

【0042】製造例5（ポリエステルフィルムA4）

製造例4において、縦方向に延伸した後、次の分散体塗布液を延伸乾燥後の塗布厚さが0.1μmになるように塗布し、95°Cで乾燥後熱固定を行った以外は製造例4と同様にして、ポリエステルフィルムA4を得た。得られたフィルムの屈折率差は0.001であった。

【0043】上記の分散体塗布液は次のようにして調製した。すなわち、まず、p-スチレンスルホン酸ナトリウム塩（40部）、ビニルスルホン酸ナトリウム塩（40部）、N,N'-ジメチルアミノメタクリレート（20部）を蒸留水中に溶解させ、60°Cで加熱攪拌しながら重合開始剤として2,2'-アゾビス(2-アミノジプロパン)2塩酸塩を添加して重合を行い、帯電防止性樹脂を得た。

【0044】次いで、上記の帯電防止性樹脂30部に、

40 ポリウレタン樹脂（イソシアネート成分：イソホロジイソシアネート、ポリオール成分：テレフタル酸、イソフタル酸、エチレングリコール、ジエチレングリコールより構成されるポリエステルポリオール、鎖延長剤：2,2-ジメチロールプロピオン酸）50部、アクリル樹脂（構成単位：メチルメタクリレート、N,N'-ジメチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクリレート、ブチルアクリレート）10部、3官能水溶性エポキシ化合物5部、平均粒径0.1μmのコロイダルシリカを5部を配合して分散体塗布液を調製した。

【0045】 製造例6 (ポリエステルフィルムA5)
ポリエステルAを180°Cで4時間不活性ガス雰囲気中で乾燥し、溶融押出機により290°Cで溶融押し出し、静電印加密着法を使用し、表面温度を40°Cに設定した冷却ロール上で冷却固化して未延伸シートを得た。得られたシートを85°Cで3.5倍縦方向に延伸した後、100°Cで3.7倍横方向に延伸し、さらに、230°Cにて熱固定し中央部分のみ採取し、厚さ38μmのポリエステルフィルムA5を得た。当該フィルムの屈折率差は0.025であった。

【0046】実施例1

ジペンタエリスリトールヘキサクリレート30部、4官能ウレタンアクリレート40部、ビスフェノールA型エポキシアクリレート27部および1-ヒドロキシシクロヘキシルフェニルケトン3部よりなる活性エネルギー線硬化樹脂組成物と帯電防止剤として4級アンモニウム塩基含有メタクリルイミド共重合体を95対5の重量比で配合し、ポリエステルフィルムA1の一方の表面に、硬化後の厚さが2g/m²になるように塗布し、120W/cmのエネルギーの高圧水銀灯を使用し、照射距離100mmにて15秒間照射し硬化皮膜を形成した。そして、硬化皮膜塗設面と反対側の面にアクリル系粘着剤を塗設し積層フィルムを得た。

【0047】実施例2

実施例1において、硬化後の厚さが1g/m²になるように耐摩耗性硬化皮膜を形成した以外は、実施例1と同様にして積層フィルムを得た。

実施例3

実施例1において、硬化後の厚さが0.5g/m²にな*

*るよう耐摩耗性硬化皮膜を形成した以外は、実施例1と同様にして積層フィルムを得た。

【0048】実施例4

実施例1において、ポリエステルフィルムA1をポリエステルフィルムA2に変更した以外は、実施例1と同様にして積層フィルムを得た。

実施例5

実施例1において、ポリエステルフィルムA1をポリエステルフィルムA3に変更した以外は、実施例1と同様にして積層フィルムを得た。

【0049】実施例6

実施例1において、ポリエステルフィルムA1をポリエステルフィルムA4に変更し、活性エネルギー線硬化樹脂組成物に帯電防止剤として4級アンモニウム塩基含有メタクリルイミド共重合体を配合しなかった以外は、実施例1と同様にして積層フィルムを得た。

【0050】比較例1

実施例1において、帯電防止剤を配合しない以外は、実施例1と同様にして積層フィルムを得た。

比較例2

実施例1において、硬化皮膜を形成しなかった以外は、実施例1と同様にして積層フィルムを得た。

【0051】比較例3

実施例1において、ポリエステルフィルムA1をポリエステルフィルムA5に変更した以外は、実施例1と同様にして積層フィルムを得た。以上、得られた結果をまとめて下記表1に示す。

【0052】**【表1】****表1**

	実 施 例					
	1	2	3	4	5	6
塗布量 g/m ²	2	1	0.5	2	2	2
屈折率差	0.001	0.001	0.001	0.001	0.001	0.001
表面抵抗率 Ω	1×10 ⁸	5×10 ⁸	1×10 ⁹	1×10 ⁸	1×10 ⁸	5×10 ⁸
表面粗度 μm	0.015	0.019	0.021	0.015	0.015	0.015
摩擦係数 μd	0.18	0.22	0.29	0.18	0.18	0.18
剥離力 g/50mm	430	460	480	430	430	430
全光線透過率	89	89	89	89	89	89
消光状態	A	A	A	A	A	A
耐摩耗性	良好	良好	良好	良好	良好	良好
ゴミ付着	なし	なし	なし	なし	なし	なし
易検査性	良好	良好	良好	良好	良好	良好
粘着剤付着性	なし	なし	なし	なし	なし	なし

【0053】**【表2】**

表1つづき

	比 較 例		
	1	2	3
塗布量 g/m ²	2	—	2
屈折率差	0.001	0.001	0.025
表面抵抗率 Ω	>1×10 ¹³	>1×10 ¹³	1×10 ⁸
表面粗度 μm	0.015	0.036	0.015
摩擦係数 μd	0.18	0.28	0.18
剥離力 g/50mm	430	2000	430
全光線透過率	89	88	89
消光状態	A	A	C
耐摩耗性	良好	不良	良好
ゴミ付着	あり	あり	なし
易検査性	良好	良好	不良
粘着剤付着性	なし	あり	なし

【0054】

*20

10

* 【発明の効果】本発明によれば、取扱いに優れ、光学的評価を伴う液晶表示板の検査が容易であり、液晶表示板へのゴミの付着防止に優れる等の特性を有する、液晶表示板表面保護フィルムを提供することができ、本発明の工業的価値は高い。

フロントページの続き

(72)発明者 井崎 公裕

滋賀県坂田郡山東町井之口 347番地 三
菱化学ポリエステルフィルム株式会社滋賀
事業所内

F ターム(参考) 2H091 FA08X FA08Z FA11X FA11Z
 FC30 GA16 KA01 LA02 LA07
 2K009 AA00 AA15 BB24 CC42 DD05
 EE00
 4F100 AA20 AK01B AK08D AK08G
 AK25 AK25D AK25G AK25H
 AK25J AK41A AK42 AK49H
 AK49J AK52B AK52D AK52G
 AL01H AL02D AL02G AN00D
 AN00G AR00C AT00E BA02
 BA03 BA04 BA05 BA07 BA10A
 BA10B BA10D BA10E CA22B
 CB00 DD07B EJ08 EJ38A
 EJ52 GB41 JB14B JG03C
 JG04B JK06 JK09B JK16B
 JL05 JL06 JL13D JL14E
 JN18A YY00A YY00B