- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

Literatura

- Baron B., Piątek Ł., Metody numeryczne w C++ Builder, Helion, Gliwice, 2004
- 2 Fortuna Z., Macukow B., Wąsowski J., Metody numeryczne, WNT, Warszawa, 1993
- Sosma Z., Metody numeryczne dla zastosowań inżynierskich, Politechnika Radomska, Radom, 2008
- Povstenko J., Wprowadzenie do metod numerycznych, Akademicka Oficyna Wydawnicza Exit, Warszawa, 2005
- 5 Ralston A., Wstęp do analizy numerycznej, PWN, Warszawa, 1983
- Sącki E., Małolepszy A., Romanowicz A., Metody numeryczne dla inżynierów, Wyższa Szkoła Informatyki w Łodzi, Łódź, 2005
- Vetterling W.T., Teukolsky S.A., Press W.H., Flannery B.P., Numerical Recipes, Cambridge University Press, 2003
- Wikipedia

Sformułowanie zagadnienia interpolacji

Rys. 1: F(x) – funkcja interpolująca funkcję f(x)

Interpolacja – co to takiego?

To zagadnienie odwrotne do tablicowania funkcji: mając zbiór węzłów znaleźć wszystkie pozostałe wartości funkcji.

Funkcji interpolującej poszukuje się najczęściej w postaci:

- wielomianów algebraicznych
- wielomianów trygonometrycznych
- funkcji sklejanych (splines)

Interpolacja wielomianami

Twierdzenie 1

Istnieje dokładnie jeden wielomian interpolacyjny stopnia co najwyżej n ($n \geq 0$), który w punktach x_0, x_1, \ldots, x_n przyjmuje wartości y_0, y_1, \ldots, y_n .

Poszukujemy wielomianu spełniającego nasze oczekiwania!

Wzór interpolacyjny Newtona dla nierównych odstępów argun Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumen Zbieżność procesów interpolacyjnych

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

Gdy znamy wartości funkcji f(x) w n węzłach, to poszukujemy wielomianu, stopnia co najwyżej n, w postaci

$$W_n(x) = y_0 \Phi_0(x) + y_1 \Phi_1(x) + \ldots + y_n \Phi_n(x)$$
 (1)

gdzie $\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)$ – wielomiany stopnia co najwyżej n. Dla każdego $i=1,2,3,\ldots,n$ mamy

$$W_n(x_i) = y_0 \Phi_0(x_i) + y_1 \Phi_1(x_i) + \ldots + y_n \Phi_n(x_i)$$
 (2)

skąd wynika

$$\Phi_j(x_i) = \begin{cases} 0, & \text{gdy } j \neq i \\ 1, & \text{gdy } j = i \end{cases}$$
 (3)

Poszukajmy wielomianu spełniającego ten warunek.

Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Postać kanoniczna takiego wielomianu:

$$\Phi_{j}(x) = \lambda(x - x_{0})(x - x_{1}) \dots (x - x_{j-1})(x - x_{j+1}) \dots (x - x_{n})$$
 (4)

Ponieważ $\Phi_j(x_j)=1$, więc

$$1 = \lambda(x_j - x_0)(x_j - x_1) \dots (x_j - x_{j-1})(x_j - x_{j+1}) \dots (x_j - x_n)$$
 (5)

skąd wyznaczmy λ . Zatem

$$\Phi_{j}(x) = \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{j-1})(x - x_{j+1}) \dots (x - x_{n})}{(x_{j} - x_{0})(x_{j} - x_{1}) \dots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \dots (x_{j} - x_{n})}$$
(6)

Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Poszukiwany wielomian ma postać

$$W_{n}(x) = y_{0} \frac{(x - x_{1})(x - x_{2}) \dots (x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2}) \dots (x_{0} - x_{n})} + + y_{1} \frac{(x - x_{0})(x - x_{2}) \dots (x - x_{n-1})}{(x_{1} - x_{0})(x_{1} - x_{2}) \dots (x_{1} - x_{n})} + \dots + + y_{n} \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{n})}{(x_{n} - x_{0})(x_{n} - x_{1}) \dots (x_{n} - x_{n-1})} = = \sum_{j=0}^{n} y_{j} \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{j-1})(x - x_{j+1}) \dots (x - x_{n})}{(x_{j} - x_{0})(x_{j} - x_{1}) \dots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \dots (x_{j} - x_{n})}$$

$$(7)$$

Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Po podstawieniu $\omega_n(x)=(x-x_0)(x-x_1)\dots(x-x_n)$ mamy

$$W_n(x) = \sum_{j=0}^n y_j \frac{\omega_n(x)}{(x - x_j)\omega'_n(x_j)}$$
 (8)

gdzie $y_j = y(x_j)$, a $\omega'_n(x_j)$ – pochodna wielomianu $\omega_n(x_j)$ w punkcie x_i .

Wzór interpolacyjny Newtona dla nierównych odstępów argun Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumen Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Zadanie domowe

Znaleźć wielomian interpolacyjny funkcji przyjmującej w punktach -2, 2, 1, 4 wartości 3, 1, -3, 8.

Odpowiedź:
$$W_3(x) = \frac{2}{3}x^3 - \frac{3}{2}x^2 - \frac{25}{6}x + 6$$

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni

Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Oszacowanie błędu wzoru interpolacyjnego

Z jaka dokładnością wzór interpolacyjny (7) przybliża funkcję f(x) poza węzłami?

Odpowiedź daje wzór

$$|f(x) - W_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_n(x)|$$
 (9)

gdzie

$$M_{n+1} = \sup_{x \in [a;b]} |F^{n+1}(x)| \tag{10}$$

kres górny modułu (n+1)-szej pochodnej funkcji F(x) na przedziale [a;b].

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argun Wzór interpolacyjny Newtona dla równych odstępów argumen

Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Optymalny dobór węzłów

Wykorzystamy podejście P.L. Czebyszewa do znajdowania wielomianu algebraicznego najlepiej przybliżającego zero w zadanym przedziale. W tym zadaniu wykorzystuje się wielomiany Czebyszewa w postaci

$$T_n(x) = \cos(n \arccos x) \tag{11}$$

Wielomian ten jest identyczny z pewnym wielomianem algebraicznym na przedziale [-1; 1]:

$$T_0(x) = 1$$

$$T_1(x) = \cos(\arccos x) = x$$
...
(12)

$$T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x), \quad n = 2, 3, 4, ...$$

Wielomiany Czebyszewa

Każdy wielomian (11) stopnia n ma n różnych pierwiastków w punktach

$$x_m = \cos\left(\frac{2m+1}{2n}\right), \quad m = 0, 1, 2, \dots, n-1$$
 (13)

zawartych w przedziale [-1;1]. Współczynnik przy najwyższej potędze w $T_n(x)$ wynosi 2^{n-1} . My szukamy wielomianu, którego współczynnik przy najwyższej potędze jest równy 1, więc

$$T_{n+1}^{\star} = \frac{1}{2^n} T_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$
 (14)

gdzie x_m – pierwiastki wielomianu $T_{n+1}(x)$.

Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni

Wzór interpolacyjny Lagrange'a

Wielomiany Czebyszewa

Sprowadzenie każdego $x \in [a; b]$ do $z \in [-1; 1]$ i odwrotnie:

$$x = \frac{1}{2}[(b-a)z + (b+a)], \quad z = \frac{1}{b-a}(2x-b-a)$$
 (15)

Węzły w przedziale [-1;1] nie są niestety rozmieszczone w równych odstępach, ale zagęszczone przy końcach przedziału:

$$x_{m} = \frac{1}{2} \left[(b-a) \cos \frac{2m+1}{2n+2} \pi + (b+a) \right]$$
 (16)

dla m = 0, 1, 2, ..., n.

Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Wzór interpolacyjny Lagrange'a

Wielomiany Czebyszewa

Z tymi węzłami dostajemy lepsze oszacowanie błędu

$$|f(x) - W_n(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}$$
 (17)

ale błąd nie ulega zmniejszeniu (na ogół).

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

dla nierównych odstępów argumentu

Założenie: w dyskretnym zbiorze punktów x_0, x_1, \ldots, x_n funkcja f(x) przyjmuje wartości $f(x_0), f(x_1), \ldots, f(x_n)$. Odległości miedzy punktami na ogół są zmienne, oraz $x_i \neq x_j$, dla $i \neq j$:

$$\Delta x_i = x_{i+1} - x_i, \quad i = 0, 1, 2, \dots, n$$
 (18)

$$f(x_0; x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \dots, f(x_{n-1}; x_n) = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
(19)

to ilorazy różnicowe pierwszego rzędu. Analogicznie definiujemy ilorazy różnicowe drugiego rzędu.

dla nierównych odstępów argumentu

Ilorazy różnicowe drugiego rzędu

$$f(x_0; x_1; x_2) = \frac{f(x_1; x_2) - f(x_0; x_1)}{x_2 - x_0}$$
(20)

Ilorazy różnicowe n-tego rzędu

$$f(x_{i}; x_{i+1}; ...; x_{i+n}) = \frac{f(x_{i+1}; x_{i+2}; ...; x_{i+n}) - f(x_{i}; x_{i+1}; ...; x_{i+n-1})}{x_{i+n} - x_{i}}$$
(21)

dla n = 1, 2, ... oraz i = 0, 1, 2, ...

dla nierównych odstępów argumentu

Można pokazać, że

$$W_n(x) = f(x_0) + f(x_0; x_1)\omega_0(x) + f(x_0; x_1; x_2)\omega_1(x) + \dots + f(x_0; x_1; \dots; x_n)\omega_{n-1}(x)$$
(22)

gdzie, jak pamiętamy

$$\omega_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Zadanie domowe: Napisać wzór interpolacyjny Newtona dla funkcji określonej tablicą wartości:

$$f(0) = 1$$
, $f(2) = 3$, $f(3) = 2$, $f(4) = 5$, $f(6) = 7$.

Odp:
$$f(x) = -\frac{2}{9}x^4 + \frac{8}{3}x^3 - \frac{88}{9}x^2 + \frac{35}{3}x + 1$$

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

Różnice progresywne i wsteczne

Różnice progresywne

$$x_1 = x_0 + h$$
, $x_2 = x_0 + 2h$, ..., $x_n = x_0 + nh$

Różnica progresywna funkcji f(x) rzędu 1

$$\Delta f(x) = f(x+h) - f(x) \tag{23}$$

Różnica progresywna funkcji f(x) rzędu n

$$\Delta^n f = \Delta(\Delta^{n-1} f), \quad n = 2, 3, \dots$$
 (24)

Zadanie domowe: Obliczyć różnice progresywne wielomianu $W_4(x) = x^4 - x - 1$ aż do osiągnięcia zera. Jakiego rzędu jest ta zerowa różnica?

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Różnice progresywne i wsteczne

Różnice progresywne – właściwości

$$\Delta(g_k \pm f_k) = \Delta(g_k) \pm \Delta(f_k)$$

$$\Delta(af_k) = a \Delta(f_k)$$

$$\Delta^m(\Delta^n f_k) = \Delta^{m+n} f_k$$

$$\Delta[g(x_k) \cdot f(x_k)] = g(x_{k+1}) \Delta f(x_k) + f(x_{k+1}) \Delta g(x_k)$$

$$\Delta \frac{f(x_k)}{g(x_k)} = \frac{\Delta f(x_k) g(x_k) - f(x_k) \Delta g(x_k)}{g(x_{k+1}) g(x_k)}$$

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Różnice progresywne i wsteczne

Różnice wsteczne

Różnica wsteczna funkcji f(x) rzędu 1

$$\nabla f(x_i) = \Delta f(x_{i-1}) = f(x_i) - f(x_{i-1}), \quad \text{dla } i = 1, 2, \dots, n$$
 (25)

Różnica wsteczna funkcji f(x) rzędu n

$$\nabla^{k} f(x_{i}) = \nabla^{k-1} f(x_{i}) - \nabla^{k-1} f(x_{i-1})$$
 (26)

gdzie $k=1,2,3,\ldots,n$; $i=k,k+1,\ldots,n$, przy czym $\nabla^0 f(x_i)=f(x_i)$. Ponadto

$$\nabla^k f(x_i) = \Delta^k f(x_i - k), \quad k = 0, 1, \dots, n$$
 (27)

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

dla równych odstępów argumentu

Założenia: zadana jest tablica dyskretnych wartości funkcji f(x)

$$y_i = f(x_i), \quad i = 0, 1, \ldots, n$$

przy czym punkty (x_i) są rozmieszczone w jednakowych od siebie odległościach $h={\sf const}$

$$x_i = x_0 + i h$$
, $i = 0, 1, 2, ..., n$

dla równych odstępów argumentu

Jeśli powyższe założenia są spełnione, to otrzymujemy pierwszy wzór interpolacyjny Newtona (na interpolację wprzód)

$$W_n(x) = W_n(x_0 + qh) = y_0 + \frac{q}{1!} \Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \ldots + \frac{q(q-1)\dots(q-n+1)}{n!} \Delta^n y_0$$
(28)

gdzie

$$q = \frac{x - x_0}{h}$$

Wzór interpolacyjny Lagrange'a Wzór interpolacyjny Newtona dla nierównych odstępów argum Różnice progresywne i wsteczne Wzór interpolacyjny Newtona dla równych odstępów argumeni Zbieżność procesów interpolacyjnych

Drugi wzór interpolacyjny Newtona

na interpolacje wstecz

Pierwszy wzór interpolacyjny Newtona jest niedogodny w pobliżu końca tablicy dyskretnych wartości funkcji. By to ulepszyć stosuje się inny wzór: drugi wzór interpolacyjny Newtona (na interpolacje wstecz)

$$W_n(x) = f(x_0) - q\nabla f(x_0) + \frac{q(q-1)}{2}\nabla^2 f(x_0) - \dots + (-1)^n \frac{q(q-1)(q-2)\dots(q-n+1)}{n!}\nabla^n f(x_0)$$
(29)

gdzie

$$q=\frac{x_0-x}{h}$$

- Sformułowanie zagadnienia interpolacji
- 2 Interpolacja wielomianami
 - Wzór interpolacyjny Lagrange'a
 - Wzór interpolacyjny Newtona dla nierównych odstępów argumentu
 - Różnice progresywne i wsteczne
 - Wzór interpolacyjny Newtona dla równych odstępów argumentu
 - Zbieżność procesów interpolacyjnych
- 3 Funkcje sklejane

Zwiększenie liczby węzłów nie zawsze polepsza jakość interpolacji.

Przykład: f(x) = |x|, dla $x \in [-1; 1]$.

Wielomiany interpolacyjne

$$n=2 \ x_0=-1, \ h=1$$

$$W_2(x)=x^2$$

$$n = 4 \ x_0 = -1, \ h = 1/2$$

$$W_4(x) = -\frac{4}{3}x^4 + \frac{7}{3}x^2$$

n=10
$$x_0 = -1$$
, $h = 1/5$

$$W_{10} = \frac{390625}{5184}x^{10} - \frac{1015625}{6048}x^8 + \frac{221875}{1728}x^6 + \frac{6835}{162}x^4 + \frac{11527}{1792}x^2$$

Zwiększanie stopnia wielomianu interpolacyjnego 0.5 Rys. 2: Wykresy wielomianów $W_2(x)$ i $W_4(x)$

Zwiększanie stopnia wielomianu interpolacyjnego

Rys. 3: Wykres wielomianu $W_{10}(x)$

Zwiększanie stopnia wielomianu interpolacyjnego

Rys. 4: Wykres wielomianu $W_{20}(x)$

Wada funkcji f(x) = |x| – pochodna w punkcie x = 0 nie istnieje.

Ale inna funkcja bez tej wady, np. $y = \frac{1}{1 + 25x^2}$ zachowuje się równie źle na końcach przedziału.

Obserwowany efekt to tzw. **efekt Rungego**. Ale jak widać, interpolacja w środkowych częściach przedziału $[x_0; x_n]$ jest bardzo dobra i bardzo użyteczna.

Ulepszenie: interpolacja przedziałowa (np. wielomianami stopnia drugiego).

Przedział [a; b] dzielimy na n podprzedziałów. Podział ten określamy symbolem Δ_n .

Funkcję $S_m \ni s(x) = s(x, \Delta_n)$ określona na przedziale [a; b] nazywamy funkcją sklejaną stopnia $m \ (m \ge 1)$, jeżeli

- s(x) jest wielomianem stopnia co najwyżej m na każdym podprzedziale $(x_i; x_{i+1}), i = 0, 1, 2, ..., n-1$
- $s(x) \in C^{m-1}([a;b])$

Punkty x_i nazywamy węzłami funkcji sklejanej.

Zbudujemy $\Phi_i^3(x)$ bazę przestrzeni $S_3(\Delta_n)$ funkcji s(x) stopnia trzeciego z węzłami równoodległymi

$$x_i = x_0 + i h$$
, $h = \frac{b-a}{n}$, $i = 0, 1, ..., n$

Definicja funkcji
$$\Phi_i^3(x)$$
, $i = -1, 0, 1, \dots, n, n + 1$

$$\begin{pmatrix} (x - x_{i-2})^2 & \text{dla } x \in [x_{i-2}; x_{i-1}] \\ h^3 + 3h^2(x - x_{i-1}) + 3h(x - x_{i-1})^2 - 3(x - x_{i-1})^3 \\ & \text{dla } x \in [x_{i-1}; x_i] \\ h^3 + 3h^2(x_{i+1} - x) + 3h(x_{i+1} - x)^2 - 3(x_{i+1} - x)^3 \\ & \text{dla } x \in [x_i; x_{i+1}] \\ & (x_{i+2} - x)^3 & \text{dla } x \in [x_{i+1}; x_{i+2}] \\ & 0 & \text{dla pozostałych } x \in \mathbb{R} \\ & (30) \end{pmatrix}$$

	x_{j-2}	x_{j-1}	Xj	x_{j+1}	x_{j+2}
$\Phi_j^3(x)$	0	1	4	1	0
$(\Phi_i^3(x))'$	0	3/h	0	-3/h	0
$(\Phi_j^3(x))''$	0	$6/h^2$	$-12/h^2$	$6/h^2$	0

Wartości funkcji $\Phi_i^3(x)$ oraz jej pierwszej i drugiej pochodnej

Funkcje $\Phi_j^3(x)$, $i=-1,0,1,\ldots,n+1$ określone na przedziale [a,b] stanowią bazę przestrzeni funkcji sklejanych trzeciego stopnia $S_3(\Delta_n)$. Każdą funkcję $s(x) \in S_3(\Delta_n)$ można zatem przedstawić w postaci kombinacji liniowej

$$s(x) = \sum_{i=-1}^{n+1} c_i \, \Phi_i^3(x) \,, \quad a \le x \le b \tag{31}$$

gdzie c_i – liczby rzeczywiste.

Rys. 5: Wykres funkcji sklejanej $\Phi_i^3(x)$

Interpolacja funkcjami sklejanymi

Funkcję $s(x) \in S_3(\Delta_n)$ nazywamy interpolacyjną funkcją sklejaną trzeciego stopnia dla funkcji f(x), jeżeli

$$s(x_i) = f(x_i) = y_i, \quad i = 0, 1, ..., n; \quad n \ge 2$$
 (32)

Z warunków dotyczących samych funkcji sklejanych trzeciego stopnia oraz ich pierwszych i drugich pochodnych wynika, że interpolacyjną funkcją sklejaną dla węzłów rozłożonych nierównomiernie można przedstawić w postaci

$$s(x) = M_{j-1} \frac{(x_j - x)^3}{6h_i} + M_j \frac{(x - x_{j-1})^3}{6h_j} + A_j (x - x_{j-1}) + B_j$$
 (33)

Interpolacja funkcjami sklejanymi

gdzie
$$M_j = s''(x_j)\,, \quad j = 0, 1, \ldots, n$$
, oraz

$$A_{j} = \frac{y_{j} - y_{j-1}}{h_{j}} - \frac{h_{j}}{6} (M_{j} - M_{j-1}), \quad B_{j} = y_{j-1} - M_{j} \frac{h_{j}^{2}}{6}$$
 (34)

Ponadto M_i musza spełniać jeszcze (n-1) równań

$$\mu_j M_{j-1} + 2M_j + \lambda_j M_{j+1} = d_j, \quad j = 1, \dots, n-1$$
 (35)

$$\begin{aligned} &\text{gdzie } \lambda_j = \frac{h_{j+1}}{h_j + h_{j+1}}, \ \mu_j = 1 - \lambda_j, \\ &d_j = \frac{6}{h_j + h_{j+1}} \left(\frac{y_{j+1} - y_j}{h_{j+1}} - \frac{y_j - y_{j-1}}{h_j} \right) = 6 \ f(x_{j-1}; x_j; x_{j+1}) \end{aligned}$$

Interpolacja funkcjami sklejanymi

Ostatecznie można je zapisać w postaci równania macierzowego.

$$\begin{bmatrix} 2 & \lambda_{1} & 0 & \dots & 0 & \mu_{1} \\ \mu_{2} & 2 & \lambda_{2} & \dots & 0 & 0 \\ 0 & \mu_{3} & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2 & \lambda_{n-1} \\ \lambda_{n} & 0 & 0 & \dots & \mu_{n} & 2 \end{bmatrix} \cdot \begin{bmatrix} M_{0} \\ M_{1} \\ M_{2} \\ \vdots \\ M_{n-1} \\ M_{n} \end{bmatrix} = \begin{bmatrix} d_{0} \\ d_{1} \\ d_{2} \\ \vdots \\ d_{n-1} \\ d_{n} \end{bmatrix}$$
(36)

Macierz współczynników jest trójdiagonalna, silnie diagonalnie dominująca (moduły elementów leżących na głównej przekątnej są większe od sumy pozostałych elementów) co gwarantuje jednoznaczność rozwiązania.

Koniec? :-(

Koniec wykładu 6