Московский авиационный институт

(Национальный исследовательский университет)

Факультет: «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Дисциплина: «Машинное обучение»

Лабораторная работа № 1, 2

Студент: Камеш Михаил

Группа: М80-307Б-18

Преподаватель: Ахмед Самир Халид

Постановка задания

- 1) Найти себе набор данных (датасет) для следующей лабораторной работы и проанализировать его. Выявить проблемы набора данных, устранить их. Визуализировать зависимости, показать распределение некоторых признаков. Реализовать алгоритмы К ближайших соседа с использованием весов и Наивный Байесовский классификатор и сравнить с реализацией библиотеки sklearn.
- 2) Необходимо реализовать алгоритмы машинного обучения. Применить данные алгоритмы на наборы данных, подготовленных в первой лабораторной работе. Провести анализ полученных моделей, вычислить метрики классификатора. Произвести тюнинг параметров в случае необходимости. Сравнить полученные результаты с моделями реализованными в scikit-learn. Аналогично построить метрики классификации. Показать, что полученные модели не переобучились. Также необходимо сделать выводы о применимости данных моделей к вашей задаче.

Описание алгоритмов

1. Алгоритм n-ближайших соседей (KNN)

Для классификации каждого из объектов тестовой выборки необходимо последовательно выполнить следующие операции:

- А)Вычислить расстояние до каждого из объектов обучающей выборки
- Б)Отобрать к объектов обучающей выборки, расстояние до которых минимально

С)Класс классифицируемого объекта — это класс, наиболее часто встречающийся среди k ближайших соседей

При взвешенном способе во внимание принимается не только количество попавших в область определённых классов, но и их удалённость от нового значения. Для каждого класса ј определяется оценка близости:

$$Q_j = \sum_{i=1}^n \frac{1}{d(x, a_i)^2},$$

где $d(x,a_i)$ — расстояние от нового значения x до объекта a_i .

У какого класса выше значение близости, тот класс и присваивается новому объекту.

2. Гауссовский Наивный Байесовский классификатор

Основная идея — построить классификатор в предположении того, что функция p(Xi, Cj) известна для каждого класса и равна плотности многомерного нормального (гауссовского) распределения:

$$p(x_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{i,j}^2}} e^{-\frac{1}{2}\left(\frac{x_i - \mu_{i,j}}{\sigma_{i,j}}\right)^2}$$
 for $i = 1, 2$ and $j = 1, 2, 3$

где μ - среднее значение, а σ - стандартное отклонение, которое мы должны оценить по данным. Это означает, что мы получаем одно среднее значение для каждого признака і в паре с классом с.

3. Логистическая регрессия

Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится так называемая зависимая переменная у, принимающая лишь одно из двух значений — как правило, это числа 0 (событие не произошло) и 1 (событие произошло), и множество независимых переменных (также называемых признаками, предикторами или регрессорами) — вещественных х, на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной. Как и в случае линейной регрессии, для простоты записи вводится фиктивный признак х0 = 1

Делается предположение о том, что вероятность наступления события у = 1 равна:

$$\mathbb{P}\{y=1\mid x\}=f(z),$$
 где $z=\theta^Tx=\theta_0+\theta_1x_1+\ldots+\theta_nx_n, x$ и θ — векторы-столбцы значений независимых переменных и параметров (коэффициентов регрессии) — вещественных чисел θ , соответственно, а f(z) — так называемая логистическая функция (иногда также называемая сигмоидом или логит-функцией):

$$f(z) = \frac{1}{1 + e^{-z}}.$$

Так как принимает лишь значения 0 и 1, то вероятность принять значение 0 равна:

$$\mathbb{P}\{y = 0 \mid x\} = 1 - f(z) = 1 - f(\theta^T x).$$

Для краткости функцию распределения при заданном можно записать в таком виде:

$$\mathbb{P}\{y \mid x\} = f(heta^T x)^y (1 - f(heta^T x))^{1-y}, \quad y \in \{0,1\}.$$

Фактически, это есть распределение Бернулли с параметром, равным $f(heta^T x)$.

Логистическая функция: $f(x)=rac{1}{1+e^{-x}}.$

4. Дерево решений

Дерево решений — в основном жадное, нисходящее, рекурсивное разбиение. Энтропия — это мера случайности или неопределенности. Уровень энтропии колеблется от 0 до 1. Для меры энтропии используют примесь Джини. Узел чистый, если все его выборки принадлежат одному и тому же классу, в то время как узел с множеством выборок из разных классов будет иметь Джини ближе к 1.

$$G = 1 - \sum_{k=1}^{n} p_k^2$$

Каждый узел делит выборку таким образом, что примесь Джини у детей (точнее, среднее значение Джини у детей, взвешенных по их размеру) сводится к минимуму. Рекурсия останавливается, когда, достигается максимальная глубина, или когда нет разделения, которое может привести к двум детям, чище, чем их родитель.

5. Случайный лес

RF (random forest) — это множество решающих деревьев. В задаче регрессии их ответы усредняются, в задаче классификации принимается решение голосованием по большинству. Все деревья строятся независимо по следующей схеме:

- Выбирается подвыборка обучающей выборки размера samplesize (м.б. с возвращением) по ней строится дерево (для каждого дерева своя подвыборка).
- Для построения каждого расщепления в дереве просматриваем max_features случайных признаков (для каждого нового расщепления свои случайные признаки).
- Выбираем наилучшие признак и расщепление по нему (по заранее заданному критерию). Дерево строится, как правило, до исчерпания выборки (пока в листьях не останутся представители только одного класса), но в современных реализациях есть параметры, которые ограничивают высоту дерева, число объектов в листьях и число объектов в подвыборке, при котором проводится расщепление.

Используемый датасет

Признаки болезни альцгеймера (взят с kaggle)

▲ Group	=	A M/F	=	# Age	=	# EDUC	=	# SES	=
Class		Male - Female		Age		Years of Education		Socioeconomic S 5 1 - Low 5 - Hig	
Nondemented	51%	F	57%		L				
Demented	39%	М	43%						
Other (37)	10%			60	98	6	23	1	5

Group --> Class
Age --> Age
EDUC --> Years of Education
SES --> Socioeconomic Status / 1-5
MMSE --> Mini Mental State Examination
CDR --> Clinical Dementia Rating
eTIV --> Estimated total intracranial volume
nWBV --> Normalize Whole Brain Volume
ASF --> Atlas Scaling Factor

В данном датасете отсутствуют пропущенные значения, поэтому сразу можно выделить два значимых параметра — психическое состояние (MMSE) и объем мозга (eTIV). Разбиение на тестовые и тренировочные данные происходит случайным образом. Также разделим данные на две части.

Проанализируем, в какие периоды деменция прогрессирует в мужчинах и женщинах.

У мужчин наибольшее количество случаев деменции регистрируется в возрасте около 80 лет, в то время как в у женщин пик деменции в 75 лет. Еще график показывает, что у мужчин деменция может начаться, когда они моложе 60, в то время как деменция у женщин обычно начинается после 65 лет.

Из графика выше можно понять, что у пациентов с деменцией объем мозга с возрастом значительно отличается от здоровых людей, и с среднем он значительно меньше.

Для анализа данных возьмем две группы пациентов по 100 человек – с альцгеймером и без в качестве даты.

Построим распределение психического состояния пациентов до соответствующего разделения.

Если произвести разделения и построить соответствующие графики для пациентов с и без деменции, то можно заметить, что психическое состояние больных людей значительно хуже здоровых в среднем.

Выше мы установили, что объем мозга у пациентов с деменцией меньше, чем у здоровых. Проиллюстрируем это на разделенных данных.

Возьмем оба набора данных – психическое состояние и объем мозга для дальнейшего анализа данных. Ниже приведена модель, на которой происходит анализ. Красным показаны больные пациенты, а зеленым – здоровые.

Как видно, данные значительно различаются для двух групп и их можно довольно успешно разделить между собой.

Результаты:

Лабораторная 1

```
1.1 Custom KNeighborsClassifier
Custom KNN accuracy = 0.8484848484848485
Custom KNN precision = 0.8
Custom KNN recall = 0.8571428571428571
1.2 SKlearn KNN
SKlearn KNN accuracy = 0.8787878787878788
SKlearn KNN precision = 0.8125
SKlearn KNN recall = 0.9285714285714286
2.1 Custom Naive Bayes classifier
Custom NB accuracy = 0.81818181818182
Custom NB precision = 0.75
Custom NB recall = 0.8571428571428571
2.2 SKlearn Naive Bayes classifier
SKlearn NB accuracy = 0.81818181818182
SKlearn NB precision = 0.75
SKlearn NB recall = 0.8571428571428571
```

Лабораторная 2

```
1.1: SKlearn Logistic Regression
SKlearn log accuracy: 0.9642857142857143
SKlearn log preciston = 1.0
SKlearn log recall = 0.9285714285714286
1.2: Custom Logistic Regression
Custom log accuracy: 0.9642857142857143
Custom log precision = 1.0
Custom log recall = 0.9285714285714286
Custom log train accuracy: 0.8197674418604651
2.1: SKlearn DecisionTreeClassifier
SKlearn Dtree accuracy: 0.8928571428571429
SKlearn Dtree precision = 1.0
SKlearn Dtree recall = 0.9285714285714286
2.2: Custom Decision Tree Classifier
Custom Dtree accuracy: 0.8928571428571429
Custom Dtree precision = 0.866666666666666667
Custom Dtree recall = 0.9285714285714286
Custom Dtree train accuracy: 0.9069767441860465
3.1: SKlearn Random Forest Classifier
SKlearn RF accuracy: 0.9285714285714286
SKlearn RF precision = 0.875
SKlearn RF recall = 1.0
3.2: Custom Random Forest Classifier
Custom RF accuracy: 0.9285714285714286
Custom RF precision = 0.875
Custom RF recall = 1.0
Custom RF train accuracy: 0.9651162790697675
```

Выводы:

В результате выполнения работы были изучены различные алгоритмы машинного обучения. При повторной генерации тестовых данных вручную имплиментированные алгоритмы иногда допускают на несколько ошибок больше, чем sklearn аналоги, но в общем работают с одинаковой точностью.

По применимости алгоритмов больше всего подходят логическая регрессия из-за разделения аргументов на 2 класса и маленького размера датасета.