Fonctions trigonométriques

1. Repérage sur le cercle trigonométrique

Hypothèse. On se place dans le plan muni d'un repère orthonormé (0, I, J).

Définition. Cercle trigonométrique

On appelle **cercle trigonométrique** le cercle C de centre l'origine O du repère et de rayon OI = 1.

Remarque. Le périmètre du cercle trigonométrique est 2π .

Définition. Orientation d'un cercle.

Un cercle peut être orienté dans l'un des deux sens suivants :

Le **sens direct** (ou positif ou encore trigonométrique) est le sens contraire au sens de rotation des aiguilles d'une montre.

Le **sens indirect** est le sens de rotation des aiguilles d'une montre.

Propriété et définition. Pour repérer un point M du cercle trigonométrique, on « enroule » autour du cercle dans le sens direct, un axe vertical orienté vers le haut, gradué, d'origine le point I. On peut alors associer un réel x à ce point M, x étant l'abscisse d'un point de l'axe qui vient se superposer au point M. On dit alors que ce point M est **le point-image de** x sur le cercle trigonométrique, ce que l'on peut noter M_x .

Tout point sur le cercle trigonométrique se repère donc par plusieurs nombres réels, distants d'un multiple de 2π (le périmètre du cercle trigonométrique), selon le nombre de tours complets de l'enroulement de l'axe.

Exemple. Les points de la droite des réels 0; 2π ; 4π , et plus généralement de la forme $2k\pi$ (avec $k \in \mathbb{Z}$) ont pour image le même point : I.

Exemple. Les points $\frac{\pi}{2}$; $\frac{\pi}{2} + 2\pi$ (soit $\frac{5\pi}{2}$); $\frac{\pi}{2} + 4\pi$ (soit $\frac{9\pi}{2}$), et plus généralement

de la forme $\frac{\pi}{2} + 2k\pi$ (avec $k \in \mathbb{Z}$) ont pour image le même point : J.

Définition et propriété. Soit M un point du cercle trigonométrique \mathcal{C} . **L'angle orienté** $(\overrightarrow{OI}, \overrightarrow{OM})$ est la longueur de l'arc \widehat{IM} , comptée positivement dans le sens direct, négativement dans le sens indirect. L'unité associée à cette mesure est **le radian** noté rad. Il y a une infinité de façons d'aller de I à M le long de \mathcal{C} , mais tous ces

Il y a une infinité de façons d'aller de I à M le long de \mathcal{C} , mais tous ces arcs ont une longueur qui diffère d'un multiple de 2π . On choisit comme **mesure principale de** $(\overrightarrow{OI}, \overrightarrow{OM})$ la longueur du seul arc \widehat{IM} de longueur

comprise dans $]-\pi;\pi]$. Les calculs d'angles se font « modulo 2π » (à un multiple de 2π près).

Exemple. Un tour de cercle admet pour mesure d'angle 2π rad puisque le périmètre de \mathcal{C} est 2π . Cependant la mesure principale de cet angle est 0 rad, car $0 \times 2\pi$ est l'unique multiple de 2π compris dans $]-\pi;\pi]$.

Définition.
$$1^{\circ} = \frac{2\pi}{360} = \frac{\pi}{180} \ rad.$$

Remarque.
$$30^{\circ} = \frac{\pi}{6} \ rad$$
; $45^{\circ} = \frac{\pi}{4} \ rad$; $90^{\circ} = \frac{\pi}{2} \ rad$; $180^{\circ} = \pi \ rad$; $360^{\circ} = 2\pi \ rad$

0

 $\alpha = 1 \text{ rad}$

2. Coordonnées d'un point du cercle trigonométrique

Définition. Sinus et cosinus.

Pour tout réel x, on appelle **cosinus de** x et **sinus de** x, notés $\cos(x)$ et $\sin(x)$ les coordonnées du point M_x image de x sur le cercle trigonométrique. On peut donc écrire $M_x(\cos(x);\sin(x))$.

Propriétés. Sinus et cosinus.

Pour tout nombre réel x, $(\cos(x))^2 + (\sin(x))^2 = 1$

Pour tout nombre réel x, $-1 \le \cos(x) \le 1$

Pour tout nombre réel x, $-1 \le \sin(x) \le 1$

Remarque. On note parfois $\cos^2(x)$ au lieu de $(\cos(x))^2$ et $\sin^2(x)$ au lieu de $(\sin(x))^2$.

Propriété. Valeurs remarquables

Soit M_x un point du cercle trigonométrique, image d'un réel x. Alors :

Angle \widehat{IOM}	0°	30°	45°	60°	90°
Réel x	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$
		6	4	3	2
$\cos(x) = \cos(\widehat{IOM})$	1	$\sqrt{3}$	$\sqrt{2}$	1	0
, ,		2	2	$\overline{2}$	
$\sin(x) = \sin(\widehat{IOM})$	0	1	$\sqrt{2}$	$\sqrt{3}$	1
		2	2	2	
. ,	0	$\frac{\sqrt{3}}{2}$ $\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	1

Propriété. Symétries du cosinus et du sinus.

3. Fonctions cosinus et sinus

Définition. Fonction cosinus

La fonction cosinus, notée cos, est la fonction définie sur \mathbb{R} par $cos: x \mapsto cos(x)$

Définition. Fonction sinus

La fonction cosinus, notée sin, est la fonction définie sur \mathbb{R} par sin: $x \mapsto sin(x)$

Propriété (admis). Les fonctions cosinus et sinus ont les variations suivantes sur $[-\pi; \pi]$

Graphe. Fonctions cosinus et sinus.

Propriété. Pour tout réel x, les points M_x et $M_{x+2\pi}$ sont confondus. Plus généralement, M_x et $M_{x+2k\pi}$ sont confondus pour tout $k \in \mathbb{Z}$.

Propriété. Périodicité des fonctions cosinus et sinus.

Les fonctions sinus et cosinus sont des fonctions périodiques de période 2π , dites « 2π -périodiques » :

Pour tout $x \in \mathbb{R}$, $\cos(x + 2\pi) = \cos(x)$

Pour tout $x \in \mathbb{R}$, $\sin(x + 2\pi) = \sin(x)$

Propriété. Parité.

La fonction cosinus est paire. Sa courbe représentative est symétrique par rapport à l'axe des ordonnées. Pour tout $x \in \mathbb{R}$, $\cos(-x) = \cos(x)$

La fonction sinus est impaire. Sa courbe représentative est symétrique par rapport à l'origine du repère. Pour tout $x \in \mathbb{R}$, $\sin(-x) = -\sin(x)$

Remarque. Les courbes représentatives du cosinus et du sinus sont « décalées » de $\frac{\pi}{2}$.

Cela découle des propriétés de symétrie : $\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ et $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$.

Propriété. Table des valeurs du cosinus et du sinus autour du cercle trigonométrique.

<i>ÎOM</i>	-150	-135	-120	- 90	-60	-45	-30	0	30	45	60	90	120	135	150	180
(°)																
x	5π	3π	2π	$-\frac{\pi}{}$	$-\frac{\pi}{}$	$-\frac{\pi}{}$	$-\frac{\pi}{}$	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	2π	3π	5π	π
	6	4	3	2	3	4	6		6	4	3	2	3	4	6	
cos(x)	$\sqrt{3}$	$\sqrt{2}$	_ 1	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	_ 1	$\sqrt{2}$	$\sqrt{3}$	-1
	$-{2}$	$-{2}$	_ 2		2	2	2		2	2	2		_ 2	<u>-</u>	$-{2}$	
sin(x)	1	$\sqrt{2}$	$\sqrt{3}$	-1	$\sqrt{3}$	$\sqrt{2}$	1	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0
	$-{2}$	$-{2}$	$-{2}$		$-{2}$	$-{2}$	$-{2}$		$\frac{\overline{2}}{2}$	2	2		2	2	2	

