

Kapitel 8

Das Traveling Salesman Problem

Effiziente Algorithmen, SoSe 2018

Professor Dr. Petra Mutzel Dr. Bernd Zey

VO 19 am 26. Juni 2018

Übersicht

- I. Effiziente Graphalgorithmen
 - 2 Starke Zusammenhangskomponenten
 - 3 Matching-Probleme
 - 4 Maximale Flussprobleme
 - 6 Amortisierte Analyse
 - 6 Minimale Schnitte
- II. Approximationsalgorithmen
 - Rucksackproblem, Bin Packing Problem
 - 8 Traveling Salesman Problem
 - 9 Erfüllbarkeitsprobleme
 - Schnittprobleme

Design-Techniken im Verlauf der Vorlesung

- Die Greedy-Methode: Rucksackproblem (Kap. 7)
- 2 Dynamische Programmierung: Rucksackproblem (FPTAS) (Kap. 7)
- 3 Inkrementelle Algorithmen für Partitionsprobleme: Bin Packing Problem (Kap. 7)
- 4 Spezielle, problemabhängige Verfahren: Traveling Salesman Problem (Kap. 8)
- **5** LP-basierte Verfahren, randomisiert: MaxkSAT (Kap. 9)
- 6 Lokale Suchverfahren, randomisiert: Max Cut (Kap. 10)

Petra Mutzel

Wiederholung

Definition Güte

Sei
$$s \in S(w)$$
 (zul. Lösung) zu $w \in I$ $r := \max\left\{\frac{v(s)}{\mathsf{OPT}(w)}, \frac{\mathsf{OPT}(w)}{v(s)}\right\}$ heißt Güte der Lösung s

Definition

Polynomialzeitalgorithmus A, der immer Lösung mit Güte $\leq r_A$ liefert, heißt r_A -Approximation

Definition

Optimierungsproblem mit r-Approximation für konstantes $r \geq 1$ heißt (konstant) approximierbar und gehört zur Klasse \mathcal{APX}

Literatur zum Traveling Salesman Problem (TSP)

- Lawler, Lenstra, Kan, Shmoys: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (der Klassiker)
- Applegate, Bixby, Chvatal, Cook: The Traveling Salesman Problem: A Computational Study (das Aktuelle)
- Website: http://www.math.uwaterloo.ca/tsp/ (hier findet man alles)

Gegeben Vollständiger, ungerichteter Graph G=(V,E), n:=|V|, mit Kantengewichten (Kosten) $w:E\to\mathbb{N}\cup\{\infty\}$ Gesucht Hamiltonkreis ("Rundreise", "Tour") $C\subseteq E$ mit $\min\sum_{e\in C}w(e)$

 $G = (V, E) \text{ mit } w(e), \forall e \in E$

Tour C: A, B, E, C, D, AKosten w(C) = 8

Motivation

Viele Anwendungen, z.B.:

- Tourenplanung, Vehicle Routing, ...
- Bohrprobleme, Plotterprobleme
- Genome Sequencing (Bioinformatik)
- ightarrow Grundlegendes, gut untersuchtes Optimierungsproblem

Das Traveling Salesman Problem (TSP)

äquivalente Definition

```
Eingabe Symmetrische n \times n Distanzmatrix D = (d_{i,j}) mit d_{i,j} \in \mathbb{N} \cup \{\infty\} Ausgabe "Rundreise", "Tour": Permutation \pi von \{1,2,\ldots,n\} mit \sum\limits_{i=0}^{n-1} d_{\pi((i \bmod n)+1),\pi(((i+1) \bmod n)+1))} minimal
```

klar $\mathsf{TSP} \in \mathcal{NPO}$

bekannt Entscheidungsvariante vom TSP ist \mathcal{NP} -vollständig

Wie sieht es mit Approximationen aus?

Behauptung TSP $\notin \mathcal{APX}$, sonst $\mathcal{P} = \mathcal{NP}$ d.h. Falls $\mathcal{P} \neq \mathcal{NP}$: TSP nicht approximierbar

Beweis: TSP nicht approximierbar

Annahme $\exists r$ -Approximation A für TSP

Betrachte Eingabe G = (V, E) für Hamiltonkreis (HC)

Transformiere (in Polynomialzeit) G zu TSP-Eingabe: Matrix $D^{n\times n}$ mit $d_{i,j} = \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ \frac{r \cdot n + 1}{r \cdot n + 1} & \text{sonst} \end{cases}$

Beobachtung:

also
$$\exists r$$
-Approximation für TSP \Rightarrow HC $\in \mathcal{P} \Rightarrow \mathcal{P} = \mathcal{NP}$

Definition: Metrisches TSP:

zusätzlich Δ -Ungleichung: $\forall i, j, k : d_{i,k} \leq d_{i,j} + d_{j,k}$ (hier betrachtet)

Definition: Fuklidisches TSP:

Eingabe: n Punkte $x_1, x_2, \ldots, x_n \in \mathbb{R}^2$ Distanzen $d_{i,j}$ implizit gegeben durch $d_{i,j} := \sqrt{(x_i[1] - x_j[1])^2 + (x_i[2] - x_j[2])^2}$

Vorsicht: reelle Zahlen

Aber: im Kontext der Approximation *nicht so kritisch*

Approximationen für das metrische TSP

Was hilft beim metrischen TSP?

Beobachtung "Mehrfachbesuche" kostenlos reparierbar

klar Knoten auslassen geht immer

aber nur beim metrischen TSP $d_{4,5} \leq d_{4,2} + d_{2,5} \text{ wegen } \Delta\text{-Ungleichung}$ also Gesamtkosten nicht größer

Idee zur Approximation

Wie finden wir günstiges Tourgerüst?

Beobachtung Touren enthalten interessante bekannte Komponenten


```
Beobachtung Tour enthält Spannbaum
         \mathsf{OPT} \geq v(\mathsf{MST})
       nehme minimalen Spannbaum als "Gerüst"
"Gerüst" → Tour? mit Hilfe von Multigraph und Eulerkreis
```

Einschub: Multigraph, Eulerkreis

Definition 8.1

Ein ungerichteter Multigraph G = (V, E) ist definiert durch eine endliche Knotenmenge V und eine endliche Multimenge (die Kanten) über $(V \times V) \setminus \{\{v, v\} \mid v \in V\}$.

Definition 8.2

Sei G = (V, E) ein ungerichteter Multigraph. Ein *Eulerkreis* ist ein Kreis in G, der jede Kante genau einmal enthält.

Anmerkung Eulerkreise in $\mathcal{O}(|V| + |E|)$ berechenbar ldee für Algorithmen MST → Eulerkreis → Tour

Lemma 8.3

Ein zusammenhängender Multigraph G = (V, E) enthält einen Eulerkreis \Leftrightarrow alle Knoten in G haben geraden Grad

Beweis von Lemma 8.3

 $"\Rightarrow"$: Eulerkreis \rightsquigarrow alle Knotengrade gerade

Berechne Knotengrade Durchlaufe Eulerkreis:

zähle jedes Betreten und Verlassen eines Knotens

Beobachtung \forall Knoten: #Betreten = #Verlassen also alle Knotengrade gerade \checkmark

" \downarrow "
alle Grade gerade \downarrow Eulerkreis vollständige Induktion über m := |E|

Induktionsanfang $ext{ leer für } m \in \{0,1\}$

für m=2

Beweis von Lemma 8.3: ∀ Grade gerade → Eulerkreis

Haben zusammenhängenden Graph G=(V,E) alle Knotengrade gerade, Induktionsschritt mit m>2

Konstruiere einen Kreis:

- 1. Starte in beliebigem Knoten v
- 2. Falls $\exists w$ unbesucht mit $\{v, w\}$ unbenutzt
- 3. Dann markiere v und $\{v, w\}$; $v \leftarrow w$; Weiter bei 2;
- 4. Sonst wechsle zu bereits besuchtem Nachbarn w; STOP;

Beobachtung Möglich? Ja, da alle Knotengrade gerade Beobachtung Endstück des Pfades ist ein Kreis K

Betrachte $G' = (V, E \setminus K)$

Beobachtung bei jedem Knoten auf K ändert sich Grad um -2 also jeder Knoten in G^\prime hat geraden Grad

darum Induktionsannahme auf G' grundsätzlich anwendbar

Lemma 8.3: G' und die Induktionsannahme

klar $G' = (V, E \setminus K)$ enthält weniger Kanten

lst G' auch zusammenhängend?

Einsicht muss nicht sein!

Aber Induktionsannahme auf Zusammenhangskomponenten C_i von G' anwendbar \leadsto jedes C_i enthält einen Eulerkreis

Beobachtung jedes C_i berührt K

also Eulerkreise aus C_i in K einfügen \leadsto Eulerkreis in G

Minimum Spanning Tree Approximation

Algorithmus 8.3

- 1. Berechne MST $T = (V, E_T)$ auf G.
- 2. Erzeuge Multigraphen G' = (V, E') mit $E' = \{e, e \mid e \in E_T\}$.
- 3. Berechne Eulerkreis K auf G'.
- 4. Berechne π : durchlaufe K und entferne mehrfach vorkommende Knoten.
- 5. Ausgabe π

MST Approximation – Beispiel

 $\mathsf{MST}\ T$

Multigraph G'

Eulerkreis *K*: 1,2,1,3,4,3,1,5,6,7,6,5,1

Tour π : 1,2,3,4,5,6,7,1

Minimum Spanning Tree Approximation

Algorithmus 8.3

- Berechne MST $T = (V, E_T)$ auf G. 1.
- Erzeuge Multigraphen G' = (V, E') mit $E' = \{e, e \mid e \in E_T\}$.
- 3. Berechne Eulerkreis K auf G'.
- Berechne π : durchlaufe K und entferne mehrfach 4. vorkommende Knoten.
- 5. Ausgabe π

Theorem 8.4

Algorithmus 8.3 hat Laufzeit $\mathcal{O}(n^2)$ und ist eine 2-Approximation für das metrische TSP.

Beweis von Theorem 8.4

Was ist zu zeigen?

- Laufzeit
- 2 Korrektheit
- Güte

zur Laufzeit

- **1** MST-Berechnung in Zeit $\mathcal{O}(n^2)$ (Algorithmus von Prim mit Fibonacci-Heaps)
- **2** Multigraphberechnung in Zeit $\mathcal{O}(n)$
- **3** Eulerkreisberechnung in Zeit $\mathcal{O}(n)$
- **4** Tourberechnung in Zeit $\mathcal{O}(n)$
- **6** Ausgabe in Zeit $\mathcal{O}(n)$

Gesamtlaufzeit $\mathcal{O}(n^2)$

zur Korrektheit

nur kritisch: ist G' zusammenhängend, alle Knotengrade gerade?

Beobachtung wegen $MST + Verdopplung gesichert \bigvee$

Beweis von Theorem 8.4: Zur Güte

Betrachte Wert einer optimalen Lösung OPT

Betrachte Wert des Spannbaums
$$v(T) = \sum_{\{i,j\} \in E_T} d_{i,j}$$

 $\begin{array}{ll} {\sf Erinnerung} & v(T) \leq {\sf OPT} \\ & {\sf weil (optimale) Tour Spannbäume enthält} \end{array}$

also
$$v(\pi) \leq \sum_{\{i,j\} \in K} d_{i,j} = \sum_{\{i,j\} \in E'} d_{i,j} = 2v(T) \leq 2\mathsf{OPT}$$
 also
$$\frac{v(\pi)}{\mathsf{OPT}} \leq 2$$

MST Approximation – Beispiel

 \Rightarrow Dieses Beispiel führt zum Worst-Case: für n Knoten Kosten n vs. 2n-2 \Rightarrow Güte $(2n-2)/n \rightsquigarrow 2$, d.h. Güte 2 ist *scharf*

Uberlegungen zur 2-Approximation

Wir haben 2-Approximation für das metrische TSP \Rightarrow metrisches TSP $\in \mathcal{APX}$

Geht es nicht besser?

Wo verlieren wir viel?

Problem durch Spannbaumverdopplung Faktor 2

Problematisch Abschätzung des Gewinns durch Abkürzungen

Folgerung Können wir Spannbaumverdopplung einsparen?

Einsparen der Spannbaumverdopplung

Warum verdoppeln wir den Spannbaum überhaupt?

Erinnerung damit alle Knoten geraden Grad haben für Fulerkreis-Konstruktion

Beobachtung zusätzliche Kanten nur nötig für Knoten mit ungeradem Grad

Idee Identifiziere Knoten mit ungeradem Grad in T→ verbinde paarweise durch möglichst günstige Kanten

Erinnerung ", verbinde paarweise" \leftrightarrow Matching

Suche kostenminimales perfektes Matching M

- → perfekt: alle Knoten sind besetzt
- \rightarrow kostenminimal: Summe der Kantengewichte in M ist minimal Fakt in Zeit $O(n^3)$ berechenbar

Algorithmus von Christofides

Algorithmus 8.5

- Berechne MST $T = (V, E_T)$ auf G. 1.
- Berechne Menge V' der Knoten mit ungeradem Grad in T.
- 3. Berechne kostenmin. perfektes Matching M auf Knoten in V'.
- Erzeuge Multigraph G' = (V, E') mit $E' = E_T \cup M$. 4.
- Berechne Eulerkreis K auf G'. 5.
- 6. Berechne π : durchlaufe K und entferne mehrfach vorkommende Knoten.
- 7. Ausgabe π

Petra Mutzel

Algorithmus von Christofides – Beispiel

Multigraph G'Eulerkreis K: 1,2,3,1,4,1,5,6,1

Tour $\pi, v(\pi) = 8$

schon gesehen: $v(\pi_{\mathsf{OPT}}) = 6$ Petra Mutzel

Algorithmus von Christofides

Algorithmus 8.5

- Berechne MST $T = (V, E_T)$ auf G. 1.
- 2. Berechne Menge V' der Knoten mit ungeradem Grad in T.
- 3. Berechne kostenmin. perfektes Matching M auf Knoten in V'.
- Erzeuge Multigraph G' = (V, E') mit $E' = E_T \cup M$. 4.
- Berechne Eulerkreis K auf G'. 5.
- 6. Berechne π : durchlaufe K und entferne mehrfach vorkommende Knoten.
- 7. Ausgabe π

Theorem 8.6

Der Algorithmus von Christofides hat Laufzeit $\mathcal{O}(n^3)$ und ist eine (3/2)-Approximation für das metrische TSP.

Beweis von Theorem 8.6

Was ist zu zeigen?

- 1 Laufzeit
- 2 Korrektheit
- Güte

zur Laufzeit

- **1** MST-Berechnung in Zeit $\mathcal{O}(n^2)$ (Algorithmus von Prim)
- **2** Berechnung von V' in Zeit $\mathcal{O}(n)$
- **3** Matchingberechnung in Zeit $\mathcal{O}(n^3)$
- 4 Multigraphberechnung in Zeit $\mathcal{O}(n)$
- **5** Eulerkreisberechnung in Zeit $\mathcal{O}(n)$
- **6** Tourberechnung in Zeit $\mathcal{O}(n)$

Gesamtlaufzeit $\mathcal{O}(n^3)$

Beweis von Theorem 8.6: Korrektheit

lst G' zusammenhängend und sind alle Knotengrade gerade?

```
Zusammenhang folgt aus Spannbaum√
```

```
gerade Knoten in T: unverändert in G' \checkmark
gerade Knotengrade
                         ungerade Knoten in T: je 1 neue Kante in G' \checkmark
```

Perfektes Matching berechenbar? Ist |V'| gerade?

- \rightarrow Summe aller Knotengrade in T gerade $(2 \cdot |E|)$
- → Summe aller Knotengrade der Knoten mit geradem Grad in T gerade
- → Summe aller Knotengerade der Knoten mit ungeradem Grad in T gerade
- ightarrow Anzahl der Knoten mit ungeradem Grad in T gerade \checkmark

Petra Mutzel

Beweis von Theorem 8.6: Giite

wie vorhin
$$v(\pi) \leq v(K) = v(T) + v(M) \leq \mathsf{OPT} + v(M)$$
 zu zeigen
$$v(\pi) \leq \tfrac{3}{2}\mathsf{OPT} \Rightarrow v(M) \leq \mathsf{OPT}/2$$

Betrachte Knoten aus V' in optimaler Tour π_{OPT} : Benenne so, dass Knoten in π_{OPT} in Reihenfolge $v_1, v_2, \ldots, v_{|V'|}$ durchlaufen werden

Kreis $C = (v_1, v_2, \dots, v_{|V'|}, v_1)$ Betrachte Beobachtung $v(C) \leq v(\pi_{\mathsf{OPT}}) = \mathsf{OPT}$ (wegen Δ -Ungleichung)

Wir haben

- kostenminimales perfektes Matching M auf Knoten in V^\prime
- $V' = \{v_1, v_2, \dots, v_{|V'|}\}$
- Kreis $C=(v_1,v_2,\ldots,v_{|V'|})$ mit $v(C)\leq v(\pi_{\mathsf{OPT}})=\mathsf{OPT}$

Matching
$$M_1 = \{\{v_1, v_2\}, \{v_3, v_4\}, \ldots\}$$

Matching $M_2 = \{\{v_2, v_3\}, \{v_4, v_5\}, \ldots\}$

```
\begin{array}{ll} \text{Beobachtung} & v(M_1) + v(M_2) = v(C) \\ \text{Beobachtung} & \min\{v(M_1), v(M_2)\} \leq v(C)/2 \\ \text{Beobachtung} & v(M) \leq \min\{v(M_1), v(M_2)\} \\ \text{also} & v(M) < v(C)/2 < \mathsf{OPT}/2 \quad \Box \end{array}
```

Anmerkungen zum metrischen TSP

- Algorithmus von Christofides beste bekannte Approximation seit 1976 (!)
- obere Schranke scharf: entsprechende Worst-Case-Instanzen bekannt
- Existenz besserer Approximationen offen
- bekannt: $P \neq \mathcal{NP} \Rightarrow$ metrisches TSP $\notin \mathcal{PTAS}$
- aber: für euklidisches TSP existiert ein PTAS (siehe Skript, aber nicht Teil unserer Vorlesung)

Design-Techniken für Approximationsalgorithmen im Verlauf der Vorlesung

- 1 Die Greedy-Methode: Rucksackproblem (Kap. 7)
- 2 Dynamische Programmierung: Rucksackproblem (FPTAS) (Kap. 7)
- 3 Inkrementelle Algorithmen für Partitionsprobleme: Bin Packing Problem (Kap. 7)
- 4 Spezielle, problemabhängige Verfahren: Traveling Salesman Problem (Kap. 8)
- **5** LP-basierte Verfahren, randomisiert: MaxkSAT (Kap. 9)
- 6 Lokale Suchverfahren, randomisiert: Max Cut (Kap. 10)