TRABAJO OPENMP – PRÁCTICA 4 ORDENACIÓN DE VECTORES

ARQUITECTURA DE COMPUTADORES CURSO ACADÉMICO 2020/2021

Sergio Jiménez Roncero (Laboratorio B1) Javier Álvarez Páramo (Laboratorio B1)

El procesador que se ha usado para la toma de tiempos es un Intel Core i7-8750H, que comprende entre 2,2 y 4,1 GHz de frecuencia, disponiendo a su vez de 6 núcleos y 12 hilos.

Para que los tamaños creciesen de manera uniforme, y con ello se pudiese observar fielmente de qué forma crecen los tiempos, se ha utilizado una función matemática de una recta lineal, de tal forma que el valor de tamaño más pequeño fuese 10, y el valor de tiempo del tamaño más grande fuese al menos 1 minuto en algún algoritmo (algoritmo C):

$$f(x) = 40.000x + 10, x \in [0, 4] \in \mathbb{Z}$$

Apartado 1. Tarea 1: Tiempos de los métodos secuenciales

Los valores resultantes han sido los que se muestran a continuación. La columna de la izquierda de cada algoritmo representa todos los valores de tiempo, mientras que la de la derecha representa la media de los 3 valores intermedios.

Tamaño vector		sec_A		sec_B		sec_C		sec_D	
VCCIO	t1	0.0037		0.0018		0.0025		0.0027	•
	t2	0.0029		0.0016		0.002	0.001733333	0.0028	
10	t3	0.0026	0.002466667	0.0014	0.0014	0.0017		0.0022	0.002233333
	t4	0.0019		0.0012		0.0015		0.0017	
	t5	0.0016		0.001		0.0013		0.0018	
	t1	592.8474		898.2625		4119.9272		3102.0366	
	t2	589.8323		901.3146	902.7557667	4068.0801	4132.993233	3144.0684	3157.0783
40010	t3	668.8624	597.5971	906.5502		4192.5962		3109.0415	
	t4	595.631		906.5514		4226.7002		3218.125	
	t5	604.3129		900.4025		4086.4563		3315.8613	
	t1	2380.0049	2409.0845	3671.7383		17838.0273	17339.1465	13263.6934	
	t2	2419.5403		3748.7173	3706.2063	17688.5918		12825.2373	
80010	t3	2477.2742		3698.1633		17116.1875		13512.0059	12900.74187
	t4	2427.7083		3981.2625		17212.6602		12613.2949	
	t5	2333.2144		3568.0684	_	16702.2168	_	12513.2471	
	t1	5328.2563		8215.9092		40199.3945		30087.1895	
	t2	5581.8643		8535.4795		39034.375		29518.5508	
120010	t3	5460.9585	5460.799633	8363.4199	8388.892567	39970.2266	39430.47657	29028.2617	29290.97073
	t4	5427.7485		8267.7783		38637.5352		29090.3809	
	t5	5493.6919		8642.4062	_	39286.8281	_	29263.9805	_
	t1	9507.8281		15428.6016		71231.6719		51899.3906	
	t2	9655.9434		15255.2656		67771.2266		50262.4453	
160010	t3	9406.7715	9655.7741	15371.709	15351.85873	68998.3438	69662.02607	53187.207	52080.4518
	t4	9803.5508		14947.376		68756.0625		51154.7578	
	t5	10329.5596		15998.0801		71685.7344		54037.7656	

Datos en bruto

Tamaño vector	Sec_A	Sec_B	Sec_C	Sec_D
10	0.002466667	0.0014	0.001733333	0.002233333
40010	597.5971	902.7557667	4132.993233	3157.0783
80010	2409.0845	3706.2063	17339.1465	12900.74187
120010	5460.799633	8388.892567	39430.47657	29290.97073
160010	9655.7741	15351.85873	69662.02607	52080.4518

Media de los tiempos excluyendo el menor y mayor tiempo

Tamaño vector	Pendiente A	Sec_A	Pendiente B	Sec_B	Pendiente C	Sec_C	Pendiente D	Sec_D	
10	n/a	0.002466667	n/a	0.0014	n/a	0.001733333	n/a	0.002233333	
40010	0.014939866	597.5971	0.022568859	902.7557667	0.103324788	4132.993233	0.078926902	3157.0783	
80010	0.045287185	2409.0845	0.070086263	3706.2063	0.330153832	17339.1465	0.243591589	12900.74187	
120010	0.076292878	5460.799633	0.117067157	8388.892567	0.552283252	39430.47657	0.409755722	29290.97073	
160010	0.104874362	9655.7741	0.174074154	15351.85873	0.755788738	69662.02607	0.569737027	52080.4518	
	Diferencias entre pendientes								
FORMULA PEDIENTES	0.030347319		0.047517404		0.226829044		0.164664688		
	0.031005693		0.046980893		0.22212942		0.166164133		
m=ΔY/ΔX	0.0285	81483	0.057006997		0.203505486		0.159981305		
	Relaciones entre pendientes								
$\Delta Y = Y(i+1) - Y(i)$	0.3298	0.329891686		0.322015443		0.312959529		0.324013247	
$\Delta X = X(i+1) - X(i)$	0.5935	0.593596493		0.598684254		0.597798015		0.594480019	
	0.727469299		0.672513144		0.730737605		0.719201496		

Análisis de los resultados obtenidos

Llevando a cabo un análisis de los resultados obtenidos, se puede observar en las distintas gráficas tamaño-tiempo que el crecimiento de los tiempos (eje Y), en función del crecimiento del tamaño (eje X), creemos que comprende una función de tipo parabólica x^n o exponencial n^x , de tal forma que las pendientes de los segmentos formados entre el resultado de una muestra y el resultado de la siguiente muestra crece cada vez más de manera general, tal como se puede observar en las gráficas.

Aún así, para tener una mayor certeza de lo afirmado en el anterior párrafo, hemos calculado las pendientes de cada segmento, y, la diferencia y relaciones entre cada pendiente y su anterior, para ver cómo se iban desarrollando.

Observamos que, de manera general, las pendientes crecen cada vez más, con una diferencia entre ellas oscilante para cada algoritmo.

La función como tal no es derivable porque no contempla todos los números reales, sino que va dando ciertos saltos entre las distintas muestras de un mismo algoritmo, y se producen cambios de pendientes instantáneos, bruscos (por eso no es derivable). Si a esto le añadimos que se pueden producir márgenes de error en las mediciones, se nos dificulta obtener la función matemática representativa, pero sí que creemos afirmar que es generalmente creciente, salvo los errores producidos. Apostaríamos por que se trate de una función parabólica puesto que la función de las pendientes (derivada) se sitúa en torno a una recta de Pearson, y porque la integral de una recta (derivada) es una parábola (función primitiva).

Podemos afirmar por tanto que, en la mayoría de las ocasiones, la función del tiempo crece cada vez más, aunque no con una tasa de crecimiento (derivada) exactamente constante o lineal, sino oscilante, pero creciente y decreciente en torno a una recta de Pearson.

Resultados particulares de los métodos secuenciales:

En algunos métodos de ordenación observamos que la tasa de crecimiento es mayor que en otros. En el caso de los algoritmos secuenciales, observamos que el método que tarda más tiempo es el algoritmo C, mientras que el que tarda menos es el A, seguido del B:

Apartado 2. Tarea 3: ¿Mejora de tiempos al paralelizar?

Tamaño vector		par_A		par_B		par_C		par_D		par_Dm	
	t1	1.3169		0.0095		0.0121		0.0805		0.0768	
	t2	0.1412		0.0109		0.0119		0.0809		0.0324	
10	t3	0.0243	0.064333333	0.002	0.0046	0.0024	0.0055	0.017	0.038166667	0.0166	0.021866667
	t4	0.0252		0.0022		0.002		0.017		0.0166	
	t5	0.0266		0.0021		0.0022		0.0157		0.0165	
	t1	3496.0752		902.8544		4106.2759		857.5446		1110.3362	"
	t2	3595.5171		916.2509		4136.4751		692.3494		1045.5396	
40010	t3	3563.4478	3551.680033	1034.5415	921.7709667	4048.4695	4075.1758	879.3686	838.2965	1063.9813	1072.523867
	t4	3625.8647		927.3298		4030.5176		806.1686		950.2445	
	t5	3425.0525		921.7322		4070.782		851.1763		1108.0507	
	t1	13716.0322		3596.0171		16669.1895		3395.8203		4966.5053	
	t2	14603.8105		3699.2559		17910.3105		3580.8865		3893.3708	
80010	t3	14191.0635	14501.20703	4121.5889	3840.270767	17761.5938	17468.222	3531.2617	3564.9611	3758.4956	4956.0295
	t4	14952.5625		3866.3191		16876.0234		3582.7351		6008.2124	
	t5	14708.7471		3955.2373	_	17767.0488	_	6393.9277		7424.6738	
	t1	31431.1523		8231.7656		38697.5703		8413.0127		10542.377	[
	t2	31291.3379		8914.8926		40760.0547		10393.2109		11690.4736	
120010	t3	32675.3145	30867.65623	9475.9785	8545.181	38464.2656	39307.29687	7571.1074	8729.283667	9311.04	10283.23763
	-	29680.0488		8488.8848		42142.6992		8081.7778		8696.2256	
	t5	29880.4785		8157.1763		37496.3672		9693.0605		10996.2959	
	t1	54900.7969		15316.6748		68506.9062		12910.6914		18061.8613	[
	-	57196.6797		15766.2559		68911.4766		12318.5625		18508.3789	
160010		56298.5859	56339.39973	14395.4004	14738.58953	67745.2891	68586.34113	13642.3936	12781.0065	16057.6729	17283.34243
		56342.0625		14305.6387		69186.7188		13033.7666		16451.8086	
	t5	56377.5508		14503.6934		68340.6406		12398.5615		17336.3574	

Datos en bruto

Tamaño vector	Par_A	Par_B	Par_C	Par_D	Par_Dm
10	0.06433333	0.0046	0.0055	0.03816667	0.02186667
40010	3551.68003	921.770967	4075.1758	838.2965	1072.52387
80010	14501.207	3840.27077	17468.222	3564.9611	4956.0295
120010	30867.6562	8545.181	39307.2969	8729.28367	10283.2376
160010	56339.3997	14738.5895	68586.3411	12781.0065	17283.3424

Media de los tiempos excluyendo el menor y el mayor tiempo

Tamaño vector	Pendiente A	Par_A	Pendiente B	Par_B	Pendiente C	Par_C	Pendiente D	Par_D	Pendiente Dm	Par_Dm	
10	n/a	0.064333333	n/a	0.0046	n/a	0.0055	n/a	0.038166667	n/a	0.021866667	
40010	0.088790393	3551.680033	0.023044159	921.7709667	0.101879258	4075.1758	0.020956458	838.2965	0.02681255	1072.523867	
80010	0.273738175	14501.20703	0.072962495	3840.270767	0.334826155	17468.222	0.068166615	3564.9611	0.097087641	4956.0295	
120010	0.40916123	30867.65623	0.117622756	8545.181	0.545976872	39307.29687	0.129108064	8729.283667	0.133180203	10283.23763	
160010	0.636793588	56339.39973	0.154835213	14738.58953	0.731976107	68586.34113	0.101293071	12781.0065	0.17500262	17283.34243	
FORMULA	Diferencias entre pendientes										
PEDIENTES	0.1849	947783	0.049918336		0.232946898		0.047210157		0.0702	0.070275091	
	0.1354	123055	0.044660261		0.211150717		0.0609	941449	0.0360	0.036092563	
$m=\Delta Y/\Delta X$	0.2276	32358	0.037212458		0.185999235		-0.027814993		0.041822417		
					Relaciones en	tre pendientes					
$\Delta Y = Y(i+1) - Y(i)$	0.324362477		0.315835679		0.304275087		0.30742994		0.276168519		
$\Delta X = X(i+1) - X(i)$	0.669022759		0.620309348		0.613260694		0.527981079		0.728994538		
	0.642533527		0.759664118		0.74589439		1.274599172		0.76101834		

Análisis de los resultados obtenidos

Continuamos con todos los argumentos desarrollados en el anterior apartado, pero destacamos que, en el momento en el que decimos que la diferencia entre pendientes es generalmente creciente, indicamos que se trata en general en la mayoría de los casos, pero particularmente en el algoritmo D paralelo, existe un momento en el que no es así. La diferencia pasa a ser negativa, es decir, ha disminuido la pendiente con respecto a la anterior, para el caso del 4º segmento.

Hemos encontrado esa diferencia en el algoritmo D, cuya pendiente es menor (más plana), y, que probablemente el decrecimiento de la derivada se deba a errores producidos en las mediciones.

Resultados particulares de los métodos paralelos:

Lamentablemente, los resultados de los tiempos del algoritmo A paralelizado no han mejorado con respecto a los tiempos del algoritmo A secuencial. Empeoran considerablemente.

En el caso del algoritmo D paralelizado no mejorado, sí que mejora con respecto al D secuencial. El algoritmo D paralelizado mejorado con respecto al algoritmo D paralelizado no mejorado, empeora. Creemos que los algoritmos B y C no se pueden paralelizar por los motivos señalados en los comentarios del código.

En este caso particular de tomar los algoritmos paralelos o secuenciales en el caso de no ser paralelizables, el algoritmo C secuencial/no paralelizable continúa siendo el que más tiempo tarda, seguido del A paralelo; mientras que el que menos es el algoritmo D paralelo seguido del B no paralelizable. Entre medias se encuentra el algoritmo D paralelo mejorado.

$$t(C) > t(A) > t(Dm) > t(B) > t(D)$$

Se hace entrega en Ciudad Real, a martes, 1 de diciembre de 2020. (Fecha límite de entrega para el Laboratorio B1: jueves, 3 de diciembre a las 19:59 horas)