Topic Models [Solution by Karthikeyan.S]

LATEST SUBMISSION GRADE

1.Question 1

How many parameters does PLSA topic model have?

Let us denote	the vocabulary	size by $ \mathbf{W} W$, the numbe	r of documents b	y $ \mathrm{D} D $, the	e length of
the corpus by	N N , and the	number of top	ics by $ T T $.			

C $ T \cdot T \cdot N $
\mathbb{C} $ \mathbf{W} \cdot \mathbf{D} $
Correct 2.Question 2 Which assumptions are made in PLSA topic model?
▶ Bag of words assumption
Topic distributions are sparse and diverse
Conditional independence: $p(w \mid t, d) = p(w \mid t)p(w \mid t, d) = p(w \mid t)$
Distributions of words in topics have Dirichlet prior
Conditional independence: $p(t \mid w, d) = p(t \mid d)p(t \mid w, d) = p(t \mid d)$
Correct

3.Question 3

Let's see how EM-algorithm for PLSA works.

Consider the following tiny document: One fly flies, two flies fly.

Before building a topic model, one would usually apply lemmatization and obtain the following: **One fly fly, two fly fly.** So let us use this version of the text below.

Consider $\Phi\Phi$ matrix from the latest M-step:

	topic 1	topic 2	topic 3
fly	0.1	0.8	0.2
one	0.4	0.1	0.3
two	0.5	0.1	0.5

And $\Theta\Theta$ column for the document:

	document
topic 1	0.2
topic 2	0.7
topic 3	0.1

- 1) Compute posterior topic probabilities of E-step for the word fly.
- 2) Compute $n_{wt} n_{wt}$ count for the word **fly** and **topic 2.** (Assume there are no other documents in the corpus).

Enter n_{wt} value with 2 digits after the decimal point.

If you have difficulties with this question, get back to the last in-video question in the corresponding video. There is a full explanation of the solution there.

3.73

Correct

4	$\overline{}$					- 4
л і	()	11	est	\cap	n	_/I
┱.	w	u	COL	ıv		-

Imagine you are analysing news flow for a company. You want to know what topics are being mentioned when people discuss the company, and how they change over time.

For each news article there are several modalities that you want to use: English text, time, author and category. Your final goal is to track, how topics change over time.

Which additive regularizers would you add to your topic model?
Visualizable
✓ Multimodal
Dynamic Dynamic
Multilingual Multilingual
Hierarchical
Correct