CS201

MATHEMATICS FOR COMPUTER SCIENCE I

Lecture 17

SEVEN BRIDGES OF KÖNIGSBERG

SEVEN BRIDGES OF KÖNIGSBERG

- Is there a way to traverse all the bridges without repetition?
- Formulate as graph problem: graph is not simple as there are multiple edges between two vertices.
- Such graphs are called multigraphs.
- Find a path that passes through all edges exactly once.

EULER WALKS

An Euler walk of a graph is a path that passes through every edge exactly once.

THEOREM (EULER)

A multigraph G = (V, E) has an Euler walk if and only if the graph is connected and at most two vertices have odd degree.

Manindra Agrawal CS201: Lecture 17 5/13

Proof

- Let $W = u_0, u_1, \dots, u_k$ be an Euler walk of graph G.
- Every vertex of G of degree > 0 must be on the path since Euler walk visits all edges.
- Let $v \in V$ occur ℓ times in the walk.
- If $v \neq u_0, u_k$, then $\deg(v) = 2\ell$.
- If $v = u_0 = u_k$, then $\deg(v) = 2\ell 2$.
- If $v \in \{u_0, u_k\}$ and $u_0 \neq u_k$, then $\deg(v) = 2\ell 1$.

PROOF

- Suppose G has two vertices of odd degree: v_1 and v_2 .
- Start a walk from v_1 and keep extending it as long as an unvisited edge can be found.
- Suppose the walk is extended up to vertex u and that it cannot be extended any further.
- Then deg(u) must be odd and $u \neq v_1$.
- Hence, $u = v_2$.
- Denote the walk by W_1 and remove all the edges from G that are visited by W_1 .
- The degree of all vertices becomes even now.

Proof

- If no edges left, we are done.
- Otherwise, pick any vertex with non-zero degree and remove one of the edges incident on it.
- We now have exactly two vertices with odd degree and so repeat the construction of a walk as before.
- This walk will end in the other odd degree vertex.
- Add to the walk the deleted edge, thus making it end at starting vertex.
- Denote the walk by W_2 and remove all edges from G visited by W_2 , and repeat.
- Eventually, we get a sequence of walks W_1 , W_2 , ..., W_r such that (i) their edge sets are disjoint, (ii) union of their edge sets equals E.

Proof

- Moreover, all walks except W_1 start and end at the same vertex.
- Extend W_1 as follows: take a vertex in W_1 that occurs as first vertex of another walk W_i .
- Insert entire W_i in W_1 at this point.
- Repeat until no other walk is left since G is connected, it can be
 done.
- The case when no vertex of G has odd degree is already addressed above – we get an Euler walk with same start and end vertex.

- K_5 is not planar.
 - Assume that K₅ is planar.
 - ▶ Recall that for a connected planar graph G = (V, E): |V| |E| + f = 1where f is the number of faces in a planar embedding of G.
 - K_5 has |V| = 5, |E| = 10.
 - ▶ We also showed in last lecture that $3f \le 2|E|$.
 - ▶ This can be improved by observing that in a planar embedding of a connected graph, the outer boundary will have at least three edges and each of these will be an external edge.
 - ▶ Hence, 3f < 2|E| 3.
 - ▶ This implies that f < 17/3, implying f < 5.
 - ► Therefore, $|V| |E| + f \le 5 10 + 5 \le 0 < 1$.

- $K_{3,3}$ is not planar.
 - ► Assume that K_{3,3} is planar.
 - $ightharpoonup K_{3,3}$ has |V| = 6, |E| = 9.
 - Faces in a planar embedding of K_{3,3} are bounded by at least four vertices.
 - ▶ Hence, $4f \le 2|E| 3$.
 - ▶ This implies that $f \le 15/4$ implying $f \le 3$.
 - ► Therefore, $|V| |E| + f \le 6 9 + 3 \le 0 < 1$.

MINORS

H is a minor of G if H can be obtained from G by removing and contracting edges. Edge contraction is operation in which two endpoint of the edge are made to coincide.

KURATOWSKI'S THEOREM

Graph G is planar if and only if neither K_5 nor $K_{3,3}$ are its minors.