

Education

Research

Diagnostics

What does your gut say?

- Colorectal cancer one of leading causes of cancer death in the U.S
- Early diagnosis prevents surgery and low quality of life
- More check-ups and regular scopes increase workload of pathologists

Applications

- Interactive website as support tool
- Improve diagnosis accuracy
- Training/Education purposes
- Research Purposes

Data Sets Used

Capstone (Diagnosis):

Colorectal Cancer Image Data

Extension (Treatment):

Clinical Evidence Text Data

Colorectal Cancer Image Dataset:

Background Information

Patient samples (tissue) are fixed in wax

Thin sections of wax with tissue are sliced

Sliced sections are stained and examined

Colorectal Cancer Dataset

8 types of tissues from colorectal cancer image data

Pixel Data Analysis

INTENSITY

INTENSITY

Tumour VS Stroma

Tumour VS Stroma Classification Model

- More accurate diagnosis by differentiating between tumour and stroma tissues
- Stroma-rich tissues have

overall survival

Stroma-rich tissues have

disease-free state

Stroma: Tumour ratio

Modelling for colorectal cancer image pixel data

Models	Accuracy Score	Baseline Score	
Random Forests	0.947	0.5 0.5	
Convulated Neural Network	0.960		
Support Vector Machines	0.925	0.5	

Pixel values Data VS Images Data

Pixel Data	Image Data	
0.96 accuracy score with CNN	0.71 score using CNN	
Lesser memory space since numbers	More memory space with images stored	
More data can be added for various types of cancers	Lesser data results in limited use of website created for classification	

Deploy classification model on website in future

- Interactive Software developed in future
- Upload Image
- Annotate the area of interest
- Software converts image to pixel values
- Model classifies into Tumour or Stroma
- Software provide Tumour: Stroma ratio

Capstone Extension: Clinical Evidence Text data

Clinical Evidence Text Data

- Pathologists <u>classify mutations</u> from patient samples' gene sequencing data
- Review <u>Clinical Literature</u>
- Try to personalize treatments if it's available
- Reviewing and classifying is time-consuming

- This process can be automated to safe time
- Natural Language Processing for classification
- Platform to identify the class of mutation in a more standardised manner
- Provide personalised treatment if available
- Researchers can use the platform to find novel treatments

Clinical Evidence Text Data is classified into 9 classes of mutations

- Naiive Bayes perform better
- F1 score used due for imbalance classes
- Use Flask for prediction on website

		Accuracy	F1 Score	Baseline Score for Largest Class
1	Naiive Bayes	0.600	0.580	0.379
2	KNN	0.527	0.510	0.379
3	SVC	0.600	0.571	0.379
4	Random Forest	0.584	0.562	0.379
5	Logistic Regression	0.578	0.551	0.379

Executive Summary:

- Machine learning models to classify clinical text and image data
- Support tools for diagnosis and education purposes
- Spearhead research to find novel treatments for personalised medicine

Modelling:

- Pixel Data takes less memory
- Classification of tumour and stroma using Convulated Neural Networks gives an accuracy score of <u>0.96</u>
- Naiive Bayes performs better for NLP data for imbalanced classes

Future Work:

- Image classification interactive platform to be productionised
- Clinical Evidence Text Model to be improved by increasing colorectal cancer dataset

Website:

R.E.A.D

Research Education and Diagnostics

You've come to the right place: a platform to share images and text data to get answers to your questions and all the discussions in between. Take a look at each channel and start your own engaging conversation today!

Thank you for your attention!