Conditional Random Field (CRF) Model

Problem with Maximum Entropy Models

Per-state normalization:

All the mass that arrives at a state must be distributed among the possible successor states

Problem with Maximum Entropy Models

Per-state normalization:

All the mass that arrives at a state must be distributed among the possible successor states

This gives a 'label bias' problem:

Let's see the intuition

What do you mean by normalization at each state

Noun-Verb

Noun-Adjective

Similarly,

Det – Adjective

Det - Verb

Hypothetical Example

Hypothetical Example

Problem of MEMM

CRF

- CRFs are conditionally trained, undirected graphical models.
- Let's look at the linear chain structure

CRF: Feature Functions

Feature functions

Express some characteristics of the empirical distribution that we wish to hold in model distribution

Conditional Random Fields: Distribution

Label sequence modelled as normalized product of feature functions

$$P(\mathbf{y} \mid \mathbf{x}, \lambda) = \frac{1}{Z(\mathbf{x})} \exp \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i)$$

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in Y} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1, j}, \mathbf{x}, i)$$

CRFs

- 1. Have the advantages of MEMM but avoid the label bias problem
- 2. CRFs are globally normalized, whereas MEMMs are locally normalized.
- 3. Widely used and applied. CRFs have been (close to) state-of-the-art in many sequence labeling tasks.