Logarithmic Regret Algorithms for Online Convex Optimization

Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal

Presenter: Zhe Li

October 23, 2015

- Introduction
 - Background
 - Outline
- Online Gradient Descent
- 3 Online Newton Step
- 4 Summary

Background

Online Convex Optimization (OCO)

For $t = 1, 2, \dots T$

- Learner (decision-maker) picks $\mathbf{x}_t \in K \subset \mathbb{R}^n$, where K is fixed convex set
- Environment responds with convex loss $f_t: K \to \mathbb{R}$
- Learner suffers loss $f_t(\mathbf{x}_t)$

The goal is to minimize

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x} \in K} \sum_{t=1}^{T} f_{t}(\mathbf{x}) = o(T)$$
 (1)

Outline

- Online Gradient Descent: $GD\sqrt{T}$
- Online Gradient Descent for strongly convex $f_t(\cdot)$: $\frac{G^2}{2\alpha}(1 + \log T)$
- Online Newton Step: $3(\frac{1}{\alpha} + 4GD)n \log T$
- ullet Exponentially Weighted Online Opt: $rac{n}{lpha}(1+\log(1+T))$

Where $||\nabla f_t(\mathbf{x})|| \leq G$ for all $\mathbf{x} \in K$, α is strongly convex constant for all $f_t(\mathbf{x})$ and D is the diameter of convex set $K, D = \sup_{\mathbf{x}, \mathbf{y} \in K} ||x - y||$

Online Gradient Descent

Gradient Descent(GD)

Input: convex set K, T, $\mathbf{x}_1 \in K$, and step sizes $\{\eta_t\}$ For $t = 1, 2, \dots, T$

update and project

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \triangledown f(\mathbf{x}_t)$$
 update step $\mathbf{x}_{t+1} = \Pi_K[\mathbf{y}_{t+1}]$ project step

End for

Online Gradient Descent

Online Gradient Descent (OGD)

Input: convex set $K, T, \mathbf{x}_1 \in K$, and step sizes $\{\eta_t\}$ For $t = 1, 2, \dots T$

- play \mathbf{x}_t and suffer loss $f_t(\mathbf{x}_t)$
- update and project

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)$$
 update step $\mathbf{x}_{t+1} = \Pi_K[\mathbf{y}_{t+1}]$ project step

End for

How to prove OGD can achieve $GD\sqrt{T}$?

Key points for analysis:

•
$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*) \leq \nabla_t^T(\mathbf{x}_t - \mathbf{x}^*)$$
 from convexity of function $f_t(\cdot)$

•
$$||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 = ||\Pi_K[\mathbf{x}_t - \eta_t \nabla_t] - \mathbf{x}^*||^2 \le ||\mathbf{x}_t - \eta_t \nabla_t - \mathbf{x}^*||^2$$

• Set step size as $\frac{D}{G\sqrt{t}}$

Why?

If restrict $f_t(\cdot)$ to be α -strongly convex?

Under this restriction, the regret bound can be improved to $\frac{G^2}{2\alpha}(1 + \log T)$. $O(\sqrt{T}) \to O(\log T)$

- $f_t(\mathbf{x}_t) f_T(\mathbf{x}^*) \leq \nabla_t^T(\mathbf{x}_t \mathbf{x}^*) \frac{\alpha}{2}||\mathbf{x}_t \mathbf{x}^*||^2$ from α -strongly convexity of function $f_t(\cdot)$
- Set step size $\frac{1}{\alpha t}$

Q: can we improve the regret bound if we make further assumption that $f_t(\cdot)$ is β -smooth?

Online Gradient Descent

Some extensions:

Online mirror descent

$$\begin{split} & \Phi(\mathbf{y}_{t+1}) = \Phi(\mathbf{x}_t) - \eta_t \nabla f_t(\mathbf{x}_t) & \text{update step} \\ & \mathbf{x}_{t+1} = \underset{\mathbf{x} \in K}{\operatorname{argmin}} D_{\Phi}(\mathbf{x} || \mathbf{y}_{t+1}) & \text{project step} \end{split}$$

For example: $\Phi(\mathbf{x}) = \frac{1}{2}||\mathbf{x}||^2$, Online Mirror Descent \iff Online Gradient Descent

Stochastic Gradient Descent

Consider Portfolio management: $f_t(\mathbf{x}) = -\log(\mathbf{r}_t^T \mathbf{x})$,

- convex function but not strongly convex, Why?
- How to achieve regret bound $O(\log T)$?

Definition: α -exp-concave function

A convex function $f: \mathbb{R}^n \to \mathcal{R}$ is α -exp-concave over $K \subset \mathbb{R}^n$ if the function g is concave, where $g: K \to \mathbb{R}$ is defined as

$$g(\mathbf{x}) = e^{-\alpha f(\mathbf{x})}$$

Lemma

A twice differentiable function $f: \mathbb{R}^n \to \mathcal{R}$ is α -exp-concave over $K \subset \mathbb{R}^n$ if and only if

$$\nabla^2 f(\mathbf{x}) \succcurlyeq \alpha \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T$$

Lemma

Let $f:K\to\mathbb{R}$ be an α -concave function, and D,G denote the diameter of K and a bound on the (sub)-gradient of f respectively. The following holds for all $\gamma\leq \frac{1}{2}\min\{\frac{1}{4GD},\alpha\}$

$$\forall \mathbf{x}, \mathbf{y} \in K : f(\mathbf{x}) \geq f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{\gamma}{2} (\mathbf{x} - \mathbf{y})^T \nabla f(\mathbf{y}) \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y})$$

Looks similar? to what? How to use it?

Online Newton Step (ONS)

Input: convex set K, T, $\mathbf{x}_1 \in K$, and parameter $\gamma, \epsilon > 0$, $A_0 = \epsilon I_n$ For $t = 1, 2, \dots, T$

- play \mathbf{x}_t and suffer loss $f_t(\mathbf{x}_t)$
- update $A_t = A_{t-1} + \nabla_t \nabla_t^T$ and project

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \frac{1}{\gamma} A_t^{-1} \nabla_t$$
 update step

$$\mathbf{x}_{t+1} = \Pi_K^{A_t}[\mathbf{y}_{t+1}]$$
 project step

End for

Theorem

Online Newton Step algorithm with parameters

$$\gamma=\frac{1}{2}{\rm min}\{\frac{1}{GD},\alpha\}, \epsilon=\frac{1}{\gamma^2D^2} \ {\rm and} \ T>$$
 4 guarantees

$$Regret_{T}(ONS) \le 5(\frac{1}{\alpha} + GD)n \log T$$
 (2)

In order to prove the above regret bound,

Lemma

Online Newton Step algorithm with parameters

$$\gamma=\frac{1}{2}{\rm min}\{\frac{1}{GD},\alpha\}, \epsilon=\frac{1}{\gamma^2D^2} \ {\rm and} \ T>4 \ {\rm guarantees}$$

$$\mathsf{Regret}_{\mathcal{T}}(\mathsf{ONS}) \le 4(\frac{1}{\alpha} + \mathsf{GD})(\sum_{t=1}^{I} \nabla_{t}^{T} A_{t}^{-1} \nabla_{t} + 1) \tag{3}$$

Key point for analysis:

- $f_t(\mathbf{x}_t) f_t(\mathbf{x}^*) \leq R_t := \nabla_t^T(\mathbf{x}_t \mathbf{x}^*) \frac{\gamma}{2}(\mathbf{x}^* \mathbf{x}_t)^T \nabla_t \nabla_t^T(\mathbf{x}^* \mathbf{x}_t)$ from α -exp-concave function $f_t(\cdot)$
- $\mathbf{0} (\mathbf{y}_{t+1} \mathbf{x}^*)^T A_t (\mathbf{y}_{t+1} \mathbf{x}^*) = \\ (\mathbf{x}_t \mathbf{x}^*)^T A_t (\mathbf{y}_t \mathbf{x}^*) \frac{2}{\gamma} \nabla_t^T (\mathbf{x}_t \mathbf{x}^*) + \frac{1}{\gamma^2} \nabla_t^T A_t^{-1} \nabla_t$
- $(\mathbf{y}_{t+1} \mathbf{x}^*)^T A_t (\mathbf{y}_{t+1} \mathbf{x}^*) \ge (\mathbf{x}_{t+1} \mathbf{x}^*)^T A_t (\mathbf{x}_{t+1} \mathbf{x}^*)$
- $\nabla_t^T (\mathbf{x}_t \mathbf{x}^*) \le \frac{1}{2\gamma} \nabla_t^T A_t^{-1} \nabla_t + \frac{\gamma}{2} (\mathbf{x}_t \mathbf{x}^*)^T A_t (\mathbf{x}_t \mathbf{x}^*) \frac{\gamma}{2} (\mathbf{x}_{t+1} \mathbf{x}^*)^T A_t (\mathbf{x}_{t+1} \mathbf{x}^*)$

Remaining part:

•
$$\sum_{t=1}^{T} \nabla_t^T A_t^{-1} \nabla_t \leq n \log T$$

Technical Lemma

Let $A \succcurlyeq B \succ 0$ be positive definite matrices. Then

$$A^{-1} \cdot (A - B) \le \log \frac{|A|}{|B|} \tag{4}$$

Implementation and running time:

•
$$(A + \mathbf{x}\mathbf{x}^T)^{-1} = A^{-1} - \frac{A^{-1}\mathbf{x}\mathbf{x}^TA^{-1}}{1+\mathbf{x}^TA^{-1}\mathbf{x}}$$

• Given A_{t-1}^{-1} and ∇_t , computing A_t^{-1} is $O(n^2)$.

Regret Bound summary

Table: Regret Bound Summary

	general	lpha-strongly convex	eta-smooth	δ -exp-concave
upper bound	\sqrt{T}	$\frac{1}{\alpha} \log T$	\sqrt{T}	$\frac{n}{\delta}$
average bound	$\frac{1}{\sqrt{T}}$	$\frac{\log T}{\alpha T}$	$\frac{1}{\sqrt{T}}$	$\frac{n \log T}{\delta T}$
lower bound				

Question

- If $f_t(\cdot)$ is not convex?
- if we received $f_t(\mathbf{x}_t)$ instead of $f_t(\cdot)$?