1

Discrete Assignment EE1205 Signals and Systems

Kurre Vinay EE23BTECH11036

Question 11.9.3.8: Find the sum to indicated number of term in each of the geometric progressions in $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$, n terms

Solution: Sum of the geometric progression of $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$, n terms is The common ratio of geometric progression is

$$r = \frac{a_2}{a_1} \tag{1}$$

common ratio

$$r = \frac{\sqrt{21}}{\sqrt{7}}\tag{2}$$

$$=\sqrt{3}$$

first term of the geometric progression is

$$u(n) = \sqrt{7} \tag{4}$$

x(n) is the n^{th} term of the geometric progression

$$x(n) = u(n) * r^{(n-1)}$$
 (5)

$$x(n) = u(n) * \sqrt{3^{(n-1)}}$$
 (6)

$$x(n) = \sqrt{7 * 3^{(n-1)}} \tag{7}$$

sum of n term in geometric progression is

$$S_n = \frac{u(n)(r^n - 1)}{r - 1} \tag{8}$$

Then, Sum of n term of given geometric progression is

$$S_n = \frac{\sqrt{7}(\sqrt{3}^n - 1)}{(\sqrt{3} - 1)}$$

$$= \frac{\sqrt{7}(\sqrt{3}^n - 1)}{(\sqrt{3} - 1)}$$
(10)

$$=\frac{\sqrt{7}(\sqrt{3}^n-1)}{(\sqrt{3}-1)}\tag{10}$$

Input Table:

Term	geometric progression
1^{th}	$\sqrt{7}$
2^{th}	$\sqrt{21}$
3^{th}	$3\sqrt{7}$
4^{th}	$3\sqrt{21}$
5^{th}	9 √7
6^{th}	$9\sqrt{21}$
n th	$\sqrt{7 * 3^{n-1}}$