

Adaptation of inertial navigation systems in robot's positioning systems

Master's diploma seminar

Wojciech Gajda, Eng.

January 23rd, 2023

Warsaw University of Technology

Agenda

- 1. Introduction
- 2. The state of knowledge
- 3. Summary

Motivation

Motivation

Multi-body system with 1 DOF

Politechnika Warszawska

Motivation

Multi-body system with 1 DOF

Politechnika Warszawska

Render of MBS

▶ Adaptation of inertial navigation system in robot positioning systems.

- ▶ Adaptation of inertial navigation system in robot positioning systems.
- ▶ Utilizing knowledge of design and constraints of the multi-body system.

- ▶ Adaptation of inertial navigation system in robot positioning systems.
- ▶ Utilizing knowledge of design and constraints of the multi-body system.
- ▶ Review of sensor measurements filtration and fusion methods.

- ▶ Adaptation of inertial navigation system in robot positioning systems.
- ▶ Utilizing knowledge of design and constraints of the multi-body system.
- ▶ Review of sensor measurements filtration and fusion methods.
- ▶ Design of testing platform and prototype.

► Accelerometer – linear acceleration

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field
- ► GNSS position & velocity

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field
- ► GNSS position & velocity

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field
- ► GNSS position & velocity
- ► Rangefinder

- ► Accelerometer linear acceleration
- ► Gyroscope angular velocity
- ► Magnetometer magnetic field
- ► GNSS position & velocity
- ► Rangefinder Distance sensor

Error components:

Error components:

► Noise

Error components:

- ► Noise
- ► Bias

Error components:

- ► Noise
- ► Bias

Sensors have finite resolution and sampling time.

Error components:

- ► Noise
- ► Bias

Sensors have finite resolution and sampling time.

Bias is especially harmful, if measurements are integrated!

Data filtration:

Data filtration:

► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling
- ► Adaptive methods

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling
- ► Adaptive methods

Sensor fusion:

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling
- ► Adaptive methods

Sensor fusion:

▶ Position: numerical integration

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling
- ► Adaptive methods

Sensor fusion:

- ▶ Position: numerical integration
- ▶ Orientation: Complementary filter, DCM

Data filtration:

- ► Conventional filter: LPF, HPF, Notch filters, Smoothing filter.
- ► Oversampling
- ► Adaptive methods

Sensor fusion:

- ▶ Position: numerical integration
- ▶ Orientation: Complementary filter, DCM
- ▶ Both: Kalman filter

Extended Kalman Filter

Extended Kalman Filter

► The Extended Kalman Filter is an extension of the Kalman Filter for nonlinear systems.

Extended Kalman Filter

- ► The Extended Kalman Filter is an extension of the Kalman Filter for nonlinear systems.
- ▶ It is widely used in various fields, such as aviation, robotics, navigation, and control systems.

Extended Kalman Filter

- ► The Extended Kalman Filter is an extension of the Kalman Filter for nonlinear systems.
- ▶ It is widely used in various fields, such as aviation, robotics, navigation, and control systems.

EKF with constraint correction

EKF with constraint correction

▶ Constraints based on multi-body system design

EKF with constraint correction

▶ Constraints based on multi-body system design

Simulation

Simulation

EKF without constraints

Simulation

EKF with constraints

Work schedule

Work schedule

Task description	Start time	End time
State of knowledge review	_	Feb 24, 2024
Design of sensor board prototype	Feb 17, 2024	Mar 16, 2024
Develop source code for gather measurements	Mar 9, 2024	Mar 30, 2024
Develop source code for filtration & sensor fusion	Mar 23, 2024	Apr 13, 2024
Connect prototype with force measurement system and move controller	Apr 13, 2024	May 4, 2024
System tuning	May 4, 2024	May 18, 2024
Completion of documentation	May 11, 2024	Jun 1, 2024

Expected results of thesis:

Expected results of thesis:

▶ gathering theoretical knowledge of position & orientation measurement system

Expected results of thesis:

- ▶ gathering theoretical knowledge of position & orientation measurement system
- ▶ design of universal device to estimate knowledge of position

Expected results of thesis:

- ▶ gathering theoretical knowledge of position & orientation measurement system
- ▶ design of universal device to estimate knowledge of position

References

- [2002] Kalman filtering with state equality constraints Simon, D. and Tien Li Chia
- [2009] Direction Cosine Matrix IMU: Theory Premerlani, William and Bizard, Paul
- [2021] Cascaded Complementary Filter Architecture for Sensor Fusion in Attitude Estimation Narkhede, Parag and Poddar, Shashi and Walambe, Rahee and Ghinea, George and Kotecha, Ketan

Questions?

Politechnika Warszawska

Thank you!