

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра математической физики

Киселёв Евгений Иванович

Суперкомпьютерное моделирование и технологии

ОТЧЁТ О ВЫПОЛНЕНИИ ЗАДАНИЯ

Математическая постановка задачи

Рассмотрим задачу Дирихле для уравнения Пуассона:

$$\begin{cases} -\Delta u = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x, y), & (x, y) \in D \in \mathbb{R}^2 \\ u(x, y) = 0, & (x, y) \in \gamma = \partial D \end{cases}$$

Пусть теперь $D \in \mathbb{II} = \{(x,y): A_x < x < B_x, A_y < y < B_y\}$, и \overline{D} , $\overline{\mathbb{II}}$ – замыкания областей D, \mathbb{II} . Пусть Γ – граница \mathbb{II} . $\widehat{D} = \mathbb{II} \setminus \overline{D}$ назовём фиктивной областью. Выберем и зафиксируем малое $\varepsilon > 0$.

Рассмотрим задачу Дирихле в П:

$$\begin{cases} -\frac{\partial}{\partial x} \left(k(x, y) \frac{\partial v}{\partial x} \right) - \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial v}{\partial y} \right) = F(x, y), & (x, y) \in \gamma, \\ v(x, y) = 0, & (x, y) \in \Gamma \end{cases}$$

где
$$k(x,y) = \begin{cases} 1, (x,y) \in D \\ \frac{1}{\varepsilon}, (x,y) \in \widehat{D} \end{cases}$$
, $F(x,y) = \begin{cases} f(x,y), (x,y) \in D \\ 0, (x,y) \in \widehat{D} \end{cases}$

Требуется найти непрерывную в $\overline{\mathbb{I}}$ функцию v(x,y), являющуюся решением данной задачи, такую, что

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in D}} \left(W(x,y),n(x_0,y_0)\right) = \lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in \widehat{D}}} \left(W(x,y),n(x_0,y_0)\right),$$

где $W(x,y) = -k(x,y) \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)$, n(x,y) – вектор единичной нормали к границе γ в точке (x,y), определённый всюду или почти всюду на кривой.

Также известно, что $\max_{(x,y)\in D} |v(x,y)-u(x,y)| < C\varepsilon$, C>0.

Разностная схема и метод скорейшего спуска

Краевую задачу предлагается решать численно методом конечных разностей.

Введём равномерную прямоугольную сетку $\overline{\omega}_h = \overline{\omega}_x \times \overline{\omega}_y$

$$\overline{\omega}_\chi=\{x_i=A_\chi+ih_\chi, i=\overline{0,M}\}, \overline{\omega}_y=\big\{y_j=A_y+jh_y, j=\overline{0,N}\big\},$$
 где $h_\chi=\frac{B_\chi-A_\chi}{M}$, $h_y=\frac{B_y-A_y}{N}$.

Обозначим за ω_h внутренние узлы сетки. Рассмотрим линейное пространство H функций, заданных на ω_h , и пусть ω_{ij} – значение функции из H в $(x_i, y_j) \in \omega_h$. Будем считать, что в H задано скалярное произведение и евклидова норма: $(u, v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_x \; h_y u_{ij} v_{ij}$, $\|u\|_E = \sqrt{(u, u)}$.

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида $A\omega = B$, где $A: H \to H$, $B \in H$. Такая задача называется разностной схемой. Решение этой задачи считается численным решением исходной дифференциальной задачи.

Дифференциальное уравнение во всех точках ω_h аппроксимируется следующим разностным уравнением:

$$\begin{split} &-\frac{1}{h_x}\Big(a_{i+1j}\frac{\omega_{i+1j}-\omega_{ij}}{h_x}-a_{ij}\frac{\omega_{ij}-\omega_{i-1j}}{h_x}\Big)-\frac{1}{h_y}\Big(b_{ij+1}\frac{\omega_{ij+1}-\omega_{ij}}{h_y}-b_{ij}\frac{\omega_{ij}-\omega_{ij-1}}{h_y}\Big)=F_{ij},\\ &i=\overline{1,M-1}\;,j=\overline{1,N-1},\\ &\text{где }a_{ij}=\frac{1}{h_y}\int_{y_{j-1/2}}^{y_{j+1/2}}k\big(x_{i-1/2},t\big)dt\;,b_{ij}=\frac{1}{h_x}\int_{x_{i-1/2}}^{x_{i+1/2}}k\big(t,y_{j-1/2}\big)dt,\\ &i=\overline{1,M}\;,j=\overline{1,N},\\ &x_{i\pm 1/2}=x_i\pm\frac{h_x}{2}\;,y_{j\pm 1/2}=y_j\pm\frac{h_y}{2}\\ &\text{ м }F_{ij}=\frac{1}{h_xh_y}\iint_{\Pi_{ij}}^{\Pi_{ij}}F(x,y)dxdy\;,i=\overline{1,M-1}\;,j=\overline{1,N-1},\\ &\text{где }\Pi_{ij}=\big\{(x,y)\colon x_{i-1/2}\leq x\leq x_{i+1/2},y_{j-1/2}\leq y\leq y_{j+1/2}\big\} \end{split}$$

Краевые условия аппроксимируется точным равенством $\omega_{ij} = \omega(x_i, y_j) = 0$ для $(x_i, y_j) \in \Gamma$. Так как эти переменные исключаются из общей системы уравнений, то количество неизвестных совпадает с числом

уравнений; при этом система является линейной и, следовательно, имеет единственное решение.

Интегралы в равенствах выше можно упростить.

$$a_{ij} = \begin{cases} &1, \ \left[(x_{i-1/2}, y_{j-1/2}), (x_{i-1/2}, y_{j+1/2}) \right] \in D \\ &\frac{1}{\varepsilon}, \ \left[(x_{i-1/2}, y_{j-1/2}), (x_{i-1/2}, y_{j+1/2}) \right] \in \widehat{D} \end{cases} \\ &\frac{1}{\varepsilon}, \ \left[(x_{i-1/2}, y_{j-1/2}), (x_{i-1/2}, y_{j+1/2}) \right] \in \widehat{D} \end{cases} \\ &\frac{l_{ij}}{h_y} + \frac{\left(1 - \frac{l_{ij}}{h_y} \right)}{\varepsilon}, \quad \text{иначе } (l_{ij} - \text{длина отрезка } \in D) \end{cases} \\ b_{ij} = \begin{cases} &1, \ \left[(x_{i-1/2}, y_{j-1/2}), (x_{i+1/2}, y_{j-1/2}) \right] \in \widehat{D} \\ &\frac{1}{\varepsilon}, \ \left[(x_{i-1/2}, y_{j-1/2}), (x_{i+1/2}, y_{j-1/2}) \right] \in \widehat{D} \\ &\frac{l_{ij}}{h_x} + \frac{\left(1 - \frac{l_{ij}}{h_x} \right)}{\varepsilon}, \quad \text{иначе } (l_{ij} - \text{длина отрезка } \in D) \end{cases} \\ F_{ij} = \begin{cases} &f(x_i, y_j), \ \prod_{ij} \subset D \\ &0, \ \prod_{ij} \subset \widehat{D} \end{cases} \\ &\frac{S_{ij}f(x_i^*, y_j^*)}{h_x h_y}, \quad \text{иначе } (S_{ij} - \text{площадь } \prod_{ij} \cap D, (x_i^*, y_j^*) \in \prod_{ij} \cap D) \end{cases}$$

Приближённое решение разностной схемы ищется методом скорейшего спуска:

$$\omega_{ij}^{k+1}=\omega_{ij}^k-\tau_{k+1}r_{ij}^k,$$
 где $r_{ij}^k=A\omega_{ij}^k-F_{ij}$ – невязка, $\tau_{k+1}=\frac{(r^k,r^k)}{(Ar^k,r^k)}$ – итерационный параметр.

Критерий остановки этого метода выглядит следующим образом:

$$\left\|\omega_{ij}^{k+1}-\omega_{ij}^{k}
ight\|_{F}<\delta$$
, где $\delta>0$

 $\underline{3 a \text{мечание:}}$ в численной схеме указано взять $\varepsilon = \left(max(h_x, h_y) \right)^2$.

Программная реализация

Этапы выполнения программы:

- 1) Инициализация данных
- 2) Заполнение матриц a_{ij}, b_{ij}, F_{ij}
- 3) Цикл while (условие: пока $\left\|\omega_{ij}^{k+1}-\omega_{ij}^{k}\right\|_{E}<\delta$). В цикле
 - а. Вычисление r_{ij}^k
 - b. Вычисление τ_{k+1}
 - с. Вычисление ω_{ij}^{k+1}
 - d. Вычисление $\left\|\omega_{ij}^{k+1} \omega_{ij}^{k}\right\|_{F}$
 - е. В случае невыполнения условия цикла: копирование ω_{ij}^{k+1} в ω_{ij}^k
- 4) Сохранение решение
- 5) Освобождение памяти

Пункты 2, 3(а-е) задают циклы по сетке. Их можно распараллелить средствами OpenMP. Также нужно было задании провести распараллеливание с помощью технологии МРІ. В программе с помощью MPI Dims create выбирается наилучшее разбиение доступного процессоров в двумерную сетку. Инициализация a_{ij}, b_{ij}, F_{ij} происходит в определяет локальных матрицах, размеры которых сетка процессорам. Расчёты для последовательной реализации (1 процессор и 1 нить) приведены для вариантов OpenMP и MPI+OpenMP соответственно, так как для компиляции использовались разные варианты компиляторов (ІВМ и тріс++ соответсвенно) и время работы отличалось:

Реализация	Число точек	Число итераций	Время решения
	сетки $N \times M$		
OpenMP	90 × 80	13223	4.675[s]
OpenMP	180 × 160	8817	12.587[s]
MPI+OpenMP	90 × 80	13223	20.3[s]
MPI+OpenMP	180 × 160	8817	64.6[s]

График решения на сетке (180, 160) для f(x, y) = 1:

Таблица 1:

Количество	Число точек	Число	Время	Ускорение
нитей OpenMP	сетки $N \times M$	итераций	решения	
2	90 × 80	13223	2.461[s]	1.9
4	90 × 80	13223	1.392[s]	3.36
8	90 × 80	13223	1.114[s]	4.2
16	90 × 80	13223	0.855[s]	5.46
4	180×160	8817	3.288[s]	3.83
8	180×160	8817	2.23[s]	5.64
16	180×160	8817	1.956[s]	6.43
32	180×160	8817	1.876[s]	6.7

Таблица 2:

Количество	Количество	Число	Число	Время	Ускорение
процессоров	нитей	точек сетки	итераций	решения	
MPI	OpenMP	$N \times M$			
2	1	90×80	13233	10.1[s]	2
2	2	90×80	13233	8.258[s]	2.458
2	4	90×80	13233	6.511[s]	3.117
2	8	90×80	13233	4.678[s]	4.339
4	1	180×160	8817	19.343[s]	3.34
4	2	180×160	8817	10.249[s]	6.3
4	4	180×160	8817	8.823[s]	7.321
4	8	180×160	8817	7.586[s]	8.515

Заключение

Таким образом была проделана работа по реализации метода конечных разностей в том числе и с помощью технологий OpenMP и MPI. В целом можно заключить, что с ростом числа процессоров/нитей ускорение программы увеличивается. Важно заметить, что времена работы программ, скомпилированных разными компиляторами, отличаются, вероятно из-за того, что компилятор IBM лучше подходит для железа распределённого кластера Полюс.