OPTICAL PICKUP DEVICE AND ITS ASSEMBLING METHOD

Patent number:

JP2004206801

Publication date:

2004-07-22

Inventor:

AKINAGA AKIRA

Applicant:

SHARP KK

Classification:

- international:

G11B7/08; G11B7/125; G11B7/22; G11B7/08;

G11B7/125; G11B7/22; (IPC1-7): G11B7/125;

G11B7/08; G11B7/22

- european:

Application number: JP20020375104 20021225 Priority number(s): JP20020375104 20021225

Report a data error here

Abstract of JP2004206801

PROBLEM TO BE SOLVED: To provide an optical pickup device which can position the optical components in an optical path length direction with high accuracy and efficiently and its assembling method.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-206801 (P2004-206801A)

(43) 公開日 平成16年7月22日(2004.7.22)

(51) Int.Cl. ⁷		FI			テーマコード(参考)
G11B	7/1 2 5	G11B	7/125	Α	5D117
G11B	7/08	G11B	7/08	Z	5D119
G11B	7/22	G 1 1 B	7/22		5D789

	審査請求	未謂求	請求項	で数 8	OL	(全	9 頁)
(21) 出願番号 特願2002-375104 (P2 (22) 出願日 平成14年12月25日 (2	. 1 ' '	考) 5D117 5D119	株式市 (8 野) 市 (5) 市 (7) 市 (7) 市 (7) ボ	倍野区信太郎 倍野区	長池町		

(54) 【発明の名称】光学ピックアップ装置及びその組立方法

(57)【要約】

【課題】光学部品の光路長方向への位置調整を高精度に、かつ能率よく行うことができる光学ピックアップ装置 及びその組立方法を提供すること。

【解決手段】ハウシング10と、このハウシング10に取付けられるレーザ光を照射可能及び/又は検出可能な光学部品と、ハウシング10の光学部品取付位置に設けられ、光学部品を直接にハウシング10に取付け可能とする取付手段とを備える。取付手段は、光学部品のハウシング10への取付時及び光学部品の光路長方向位(区方向)への位置調整時に、光学部品のレーザ光照射側及び/又はレーザ光受光側の端部素子を保護する弾性緩衝体14を備える。

【選択図】 図5

【特許請求の範囲】

【請求項1】

八ウジングと、このハウジングに取付けられるレーザ光を照射可能及び/又は検出可能な 光学部品と、ハウジングの光学部品取付位置に設けられ、前記光学部品を直接にハウジングに取付け可能とする取付手段とを備え、前記取付手段は、前記光学部品のハウジングへの取付時及び光学部品の光路長方向位への位置調整時に、光学部品のレーザ光照射側及び/又はレーザ光受光側の端部素子を保護する弾性緩衝体を備えてなることを特徴とする光学ピックアップ装置。

【請求項2】

ハウジングは、光学部品を水平な光路長方向に挿入して取付けるための凹部を有し、 弾性緩衝体は、前記凹部の奥部壁面に沿って配置されてなる請求項1に記載の光学ピック アップ装置。

【請求項3】

取付手段が、光学部品の上下方向の移動を規制することにより光学部品を仮保持する仮保持部を凹部に有する請求項1又は2に記載の光学ピックアップ装置。

【請求項4】

仮保持部は、凹部の内面に形成され、凹部に挿入された光学部品を上下から挟持する構造である請求項3に記載の光学ピックアップ装置。

【請求項5】

仮保持部が、上下から挟持した光学部品を固定するための接着剤の塗布箇所を兼ねる請求 項4に記載の光学ピックアップ装置。

【請求項6】

取付手段が、弾性緩衝体を固定するための接着剤の塗布用突部を凹部に有する請求項1~5のいずれが1つに記載の光学ピックアップ装置。

【請求項7】

光学部品がホログラムレーザユニットである請求項1~6の何れか1つに記載の光学ピックアップ装置。

【請求項8】

請求項4に記載の光学ピックアップ装置を組立てる光学ピックアップ装置の組立方法であって、

(1) 光学部品を凹部に挿入して仮保持部にて仮保持する工程と、

(2) 光学部品を弾性緩衝体に突き当てつっ光路長方向へ微動させて位置調整を行う工程 >.

(3) 仮保持部と光学部品との当接部位に接着剤を塗布して、光学部品をハウジングに固定する工程とを含むことを特徴とする光学ピックアップ

装置の組立方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光学ピックアップ装置及びその組立方法に関し、さらに詳しくは、CDやDV 40 D等の光ディスク媒体に対して光学的に精報を再生、記録及び消去の何れかを行り得る光学ピックアップ装置及びその組立方法に関するものである。

[0002]

【従来の技術】

C D や D V D 等にみられるような光ディスク媒体は、多量の構報を高密度で記録・再生可能であるため、A V 機器、コンピュータ等 その利用範囲は非常に多岐にわたる。特に最近は、高密度光ディスク媒体への記録技術の確立、及び実用化・普及が要求されている。 その中でもこれら光ディスク媒体の記録・再生に用いられる光学ピックアップ 装置の高性能化が進められている。

[0003]

10

20

図6は、2点鎖線で示したホログラムレーザユニット(以下、レーザユニットと称する場 合がある)11とハウジング10との間に、レーザュニット11を保持するレーザホルダ 1 7 を設けた従来の光学ピックアップ装置を示している(例えば、特許文献 1 参照)。こ の従来の光学ピックアップ装置の組立ては、レーザユニット11をレーザホルダ17に挿 入し、レーザ押さえバネ15によってレーザユニット11をハウジング10側に押さえ、 レ — サ 押 さ え 八 ネ 1 5 の 両 端 に 形 成 さ れ た 孔 部 1 8 に ピ ス 1 9 を そ れ ぞ れ 挿 入 し 、 こ の 各 ピ ス 1 9 を ハ ウ シ ン ク 1 0 に 形 成 さ れ た ネ シ 孔 2 0 に 螺 合 さ せ る 。 光 学 ピ ッ ク ア ッ フ 装 置 の動作回路が形成されている基板パターン樹脂(以下、FPCと称する場合がある)2 1 に は複数個の孔が設けられており、各孔周辺には導通ランドが存在する。このFPC21の 各 礼 に レ ー ザ ユ ニ ッ ト 1 1 の 末 端 の 複数 の 端 子 1 1 d を 挿 入 し 、 各 導 通 ラ ン ド と 各 端 子 1 1.1~88八ンダ付けする。その後、光ディスク媒体の精報を正確に読み込むことができる ように、レーザユニット11及ひレーサホルダ17の位置が調整され、レーザユニット1 1 とレーザホルダ 1 7 は接着個所 2 2 において、またハウシング 1 0 とレーザホルダ 1 7 はレーザユニット11先端の回折案子である。また、矢印Xは左右方向を表し、黒丸Yは 上下方向を表し、矢印区は光路長方向を表している。

[0004]

【特許文献1】

特開2000-21013号公報

[0005]

【発明が解決しようとする課題】

高密度光ティスク媒体への記録が要求されている昨今では、特にレーザユニット11から出射された拡散光を平行光に変換する役目を担うコリメートレンズ24とレーザユニット11との相互間隔を高精度に保ってピックアップ精度を向上させることが必要不可欠であるが、図6に示す従来の光学ピックアップ装置の構造では不十分であった。つまり、光光でルクアップ表置の組立て時において、ハウジング10と同程度の高強度を有した部内で形成されているレーザホルダ17内にレーザユニット11を装着させ、光路長方向(か17の壁部に接触し破損する場合があり、レーザユニット11の取付け及び光路長方の位置調整が困難であった。また、組立て時には、レーザホルダ17を八ウジング10に(X、Y、区方向に)位置調整する作業と、レーザホルダ17を八ウジング10に(X、Y、区方向に)位置調整する作業とか個別に行われ、組立て作業の能率低下を招いていた。

[0006]

せこで、本発明の主要なもう一つの目的は、組立て時の光学部品の破損を防止して、不良率、コスト低減を図り得ると共に、光学部品の光路長方向への位置調整を高精度に、かつ能率よく行うことができる光学ピックアップ装置及びその組立方法を提供することを目的とする。

[0007]

【課題を解決するための手段】

かくして、本発明によれば、ハウジングと、このハウジングに取付けられるレーザ光を照射可能及び/又は検出可能な光学部品と、ハウジングの光学部品取付位置に設けられ、前記光学部品を直接にハウジングに取付け可能とする取付手段とを備え、

前記取付手段は、前記光学部品のハウジングへの取付時及び光学部品の光路長方向位への位置調整時に、光学部品のレーザ光照射側及び/又はレーザ光受光側の端部案子を保護する弾性緩衝体を備えてなる光学ピックアップ装置が提供される。

[0008]

本発明の光ピックアップ 装置が対象とする 橋 報記 録媒体としては、 例えばLD、CD、CD—ROM、DVD—ROM、CD-R、DVD—R、CD—RW、DVD—RW、DVD+R、 DVD+RW、DVD—RAM等の光ディスクや、MO、MD等の光磁気ディスク

10

20

30

40

10

20

30

40

50

を学げることができ、特に、光学部品の高い取付精度を要求する書き込み可能なDVD-R、DVD-RW、DVD+R、DVD+RW、DVD-RAM等に対して本発明の光ピックアップ装置を好適に使用することができる。

[0009]

本発明において、 ハウシングに取付けられるレーザ光を照射可能及び/又は検出可能な光学部品としては、 ホログラムレーザユニット、半導体レーザ、 受光素子等を学けることができ、特に、コリメートレンズとの距離調整(光路長方向の位置調整)に最も高い精度が 要求されるホログラムレーザユニットが好適である。

以下、単に光学部品と称するときは、ホログラムレーザユニット、半導体レーザ、受光素子等のレーザ光を照射可能及び/又は検出可能な光学部品を意味するものとする。

$[0 \ 0 \ 1 \cdot 0]$

本発明によれば、ホログラムレーザユニット、半導体レーザ、受光素子等の光学部品をハウジングに取付けるに際して、弾性緩衝体を取付位置に設けたことにより光学部品のレーザ光照射側及び/又はレーザ光受光側の端部素子が弾性緩衝体にて保護され、ある程度の強度を有する金属やプラスチックからなるハウジングの壁部に端部案子が接触して破損することが防止される。このように、光学部品が弾性緩衝体により保護されて破損率が大幅に減少することと、従来必要であったレーザホルダ(図6参照)が不要であり、加工しづらリレーザホルダの製作工程及び部品点数を削減できること、従来行われていたレーザホルダのハウジングへの取付け及び位置調整が省略されることにより、製造コストが大幅に低減すると共に、組立ての作業能率が向上する。

また、弾性緩衝体によって光路長方向への調整空間が確保されており、光学部品を光路長方向へ位置調整する際に弾性緩衝体の弾性変形によって光学部品の光路長方向への移動(微動)が可能であり高精度にかつ容易に位置調整を行うことができる。したがって、コリメートレンズへ照射されるレーザ光(拡散光)の精度及び/又はコリメートレンズからのレーザ光(集束光)の精度が向上し、高密度光デバイス媒体へのより確実な記録・再生が可能となる。

[0011]

本発明において、弾性緩衝体の材質としては、海綿又は合成樹脂やゴム等からなるスポンジ等が用いられる。なお、この弾性緩衝体には、光学部品のレーザ光出射部及び/又は受光部に対向する位置に、レーザ光を通過させるためのレーザ光通過窓が形成される。また、この弾性緩衝体を光学部品の端部素子を覆う形状に形成することにより、防塵機能及び遮光機能を付加することができる。なお、遮光性をより高めるために、弾性緩衝体は黒色にすることが好ましい。

[0012]

本発明において、ハウジングは、光学部品を水平な光路長方向に挿入して取付けるための凹部を有し、この凹部の奥部壁面に沿って上記弾性緩衝体を配置した構造とすれば、この凹部が光学部品全体を保護するように収納できる収納スペースとなり、この凹部に光学部品を挿入する際に端部素子が奥部壁面に接触しないよう弾性緩衝体にて保護することができる。

また、取付手段の一構成要素として、弾性緩衝体を固定するための接着剤の塗布用突部を凹部に設けてもよく、それによって弾性緩衝体を適正な上下高さ位置に容易に取付けることができる。

[0013]

本発明において、仮保持部は、凹部の内面に形成され、凹部に挿入された光学部品を上下から挟持する構造、例えば水平方向に開口した凹部の開口部に向かって、左内側面から内側へ突出する上下1対の突出片、及び右内側面から内側へ突出する上下1対の突出片からなる構造を挙げることができる。これにより、仮保持部を簡素な構造とすることができる。そして、この仮保持部によって凹部に挿入された光学部品が設計光軸に対応する上下高さ位置にかつ平行に仮保持される。ここで、本発明において「仮保持」とは、光学部品を少なくとも光路長方向へ動かせる状態に保持することであると定義する。なお、凹部の幅

10

30

40

50

(左右方向)を光学部品の幅より大きく設定した場合、光学部品は光路長方向と左右方向 (すなわち水平面方向)に移動可能に仮保持部にて仮保持され、2方向の位置調整が行われることとなる。さらに、この仮保持部は、上下から挟持した光学部品を固定するための 接着剤の塗布箇所を兼ねるものとすることができ、好都合である。

[0014]

本 発 明 は 、 別 の 観 点 に よ れ ば 、 上 述 の 光 学 じ ッ ク ア ッ プ 装 置 を 組 立 て る 光 学 じ ッ ク ア ッ プ 装 置 の 組 立 方 法 で あ っ て 、

- (1) 光学部品を凹部に挿入して仮保持部にて仮保持する工程と、
- (2) 光学部品を弾性緩衝体に突き当てつっ光路長方向へ微動させて位置調整を行う工程 と、

(3) 仮保持部と光学部品との当接部位に接着剤を塗布して、光学部品をハウジングに固定する工程とを含む光学ピックアップ装置の組立方法を提供できる。

[0015]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて説明する。なお、本発明は実施の形態に限定 されるものではない。

[0016]

図1は本発明の実施の形態の光学ピックアップ装置の要部平面図であり、図2は同実施の形態におけるハウシングの要部斜視図であり、図3は図1のA-A線断面図であり、図4は図1のB-B線断面図であり、図5は同実施の形態における光学ピックアップ装置を分解した各部品を示す平面図である。なお、図1~図5において、図6で説明した従来の光学ピックアップ装置と同一の要素には同一の符号を付している。

[0017]

この光学ピックアップ装置は、ハウジング10と、このハウジング10に取付けられる各種光学部品とを備える。この各種光学部品としては、レーザ光を照射可能及び検出可能なホログラムレーザユニット11と、図示省略のダイクロプリズム、コリメートレンズ、立上げミラー、対物レンズ等を備えている。

[0018]

本発明の光学ピックアップ装置は、ホログラムレーザユニット11のようなレーザ光を照射可能及び/又は検出可能な光学部品をハウジング10に取付ける取付構造に特徴を有している。

ここで、本実施の形態で用いられるホログラムレーザユニット11について簡単に説明すると、このレーザユニット11は従来から一般に使用されているものであり、矩形プロック形の本体部11 など、本体部11 なの先端に設けられた本体部11 なよりも小さい矩形プロック形の回折案子11 b と、本体部11 なの基端に接合板11 c を介して設けられた複数個の端子11 d とを構え、大きさとしては例えば、全長し(区方向):10.6 mm、本体部11 なの幅W(X方向):6.6 mm、本体部11 なの厚みT(Y方向):3.0 mmである。

以下、ホログラムレーサユニット11のハウシング10への取付構造を説明する。

[0019]

八ウシング10は、外周端の一部に、ホログラムレーザユニット11を水平方向に挿入して取付ける光学部品取付用凹部30を有すると共に、外周端面の凹部30の両側には、凹部30にホログラムレーザユニット11を取付けるためのネジ孔20、20を有している

[0020]

光学部品取付用凹部 3 0 は、水平方向(区方向)及び上方に開口する凹溝状であり、その水平方向の開口が、ホログラムレーザユニット 1 1 を挿入するための挿入口 3 1 とされている。また、凹部 3 0 の奥部には光路長方向(区方向)に溝状の光路 3 2 が形成されており、この光路 3 2 は図示しないダイクロプリズム、コリメートレンズ等を収納する凹所 3

10

20

30

50

8と連通している。すらに、凹部30は、挿入口31から奥部側へ少し入ったところで幅が僅かに狭くなる段部を左右の内側面に有し、この段部よりも奥部側に、少なくとも光路長方向へのホログラムレーザユニット11の移動を規制 底面30 a と垂直な上下方向(Y方向)へのホログラムレーザユニット11の移動を規制する後述の仮保持部12を有している。

[0021]

仮保持部12は、凹部30の光路長方向(区方向)の略中間位置において、水平方向に開口した凹部30の挿入口31に向かって左内側面306から内側へ突出する上下1対の突出片12の、126及ひ右内側面30cから内側へ突出する上下1対の突出片12c、12 んからなる。そして、上側の突出片12の、12cの下面と下側の突出片126、12 んの上面とは相互に水平方向に平行な対向面として形成されている。この場合、上側の突出片12 ん、12 ムは凹部30の底面30 の上に形成されている。

[0.022]

また、上側の突出片 1 2 α 、 1 2 α と 下側の突出片 1 2 α 、 1 2 α との間隔 α は、 本口 グラムレーザユニット 1 1 0 の厚み T と 略等 しく設定される 2 共に、 左側の突出片 1 2 α 、 1 2 α と右側の突出片 1 2 α 、 1 2 α との間隔 α は、 本口 グラムレーザユニット 1 1 0 幅 W よりも小さく設定される。 本実施の形態の場合、 間隔 α 3 α 6 α 6 m m に設定される。 左内側面 3 0 α と右内側面 3 0 α との間隔 α 3 α 6 α 6 m m に設定される。 左内側面 3 0 α と右内側面 3 0 α との間隔 α 3 α 6 α 6 m m α 6 α 6 m m α 6 α 6 m m α 7 α 8 m m α 8 m m α 9 α 7 α 8 m m α 9 α 9 α 1 2 α 1 2

[0023]

また、凹部30は、左内側面306・右内側面30cと奥部壁面との間には、奥部へ向かって幅を狭める屈折壁面30点、30cが設けられており、底面30点における屈折壁面30点、30cに接する位置に、後述する弾性緩衝体14を取付けるための直角二等辺三角形の一対の取付段部16点、166が設けられている。本実施の形態の場合、各取付段部16点、166は、斜辺:2.1mm、他辺:1.5mm、厚み:0.8mmに設定されている。この取付段部16点、166は、弾性緩衝体14を凹部30に接着するための後述の接着削塗布箇所として利用され、弾性緩衝体14を所定の高さ位置に保持するために上記厚みに設定されている。

[0024]

また、本発明の光学ピックアップ装置は、凹部30の奥部に取付けられる上記弾性緩衝体14を備えている。この弾性緩衝体14は、任意の弾性を有するプラスチック製の黒いスポンジからなり、凹部30の突起部12よりも奥部側の空間とほぼ同じ外観形状に形成されており、内部にはホログラムレーザユニット11の回折案子116全体を少し余裕を持って挿入できる大きさの収納凹部14なを有すると共に、収納凹部14なの基端開口側(突起部12側)には本体部11なの先端側を一合させる一合凹部146を有している。また、弾性緩衝体14の先端面には収納凹部14なと連通するレーザ光通過窓(図示省略)が形成されている。この弾性緩衝体14を凹部30の奥部に取付ける際は、上記一対の取付段部16な、166の上面に予め接着削13なを塗布し、弾性緩衝体14を凹部30の上方開口部から挿入して上記接着削13なにで下面2箇所を固定する。

[0025]

次に、このようにハウジング10に設けられた取付構造にホログラムレーザユニット11を取付ける手順(組立方法)の一例を説明する。

ハウシング10は、その凹部30に予め弾性緩衝体14が上述のようにして取付けられて 1) Z .

工程(1):このハウジング10の挿入口31にレーザュニット11を回折案子11b側 から挿入していき、回折案子116を弾性緩衝体14の収納凹部14の内に挿入していく 。 こ の と き 、 レ ー ザ ユ ニ ッ ト 1 1 を 凹 部 3 0 に 突 っ 込 み 過 ぎ た と し て も 、 回 析 素 子 1 1 b が 直接 凹 部 3 0 の 内 面 に 接 触 し て 破 損 し な い よ う 弾 性 緩 衝 体 1 4 が ク ッ シ ョ ン の 役 目 を 担 っている。また、弾性緩衝体14内の収納凹部14のに回折索子116が収納されたこと に よ り 、 防 塵 効 果 と 遮 光 効 果 が 得 ら れ 、 そ れ に よ り 高 い ピ ッ ク ア ッ プ 精 度 が 得 ら れ る 。 一 方、本体部11のは、その先端部が弾性緩衝体14の 合凹部146に 合し、かつ中間 部が上側の突出片12の、12cと下側の突出片12b、12dとの間に挿入され、上下 方向(Y方向)の移動が規制された状態で仮保持(挾持)される。

工程(2) : 突起 部 1 2 に 7 仮 保 持 さ れ た レ ー ザ ユ ニ ッ ト 1 1 を 、 例 え ば 位 置 調 整 具 を 用 いて光路長方向(乞方向)及び左右方向(X方向)に位置調整する。

こ の と き 、 弾 性 緩 衝 体 1 4 は 適 度 な 弾 性 を 有 す る ス ポ ン シ か ら な る の で 、 レ ー ザ ユ ニ ッ ト 11の端部素子である回折素子11bを弾性緩衝体14に突き当てっつ光路長方向に容易 にかっ凹部80の奥部壁面に接触させることなく微動させることができる。なお、レーザ ユニット 1 1 の上下方向(Y 方向)の位置調整は、突起部 1 2 によるレーザユニット 1 1 の 仮保持にて行われている。

[0027]

工程(3):上側の突出片12α、12cとレーザュニット11の本体部11αの上面と の当接部位、及び下側の突出片12b、12dとレーザユニット11の本体部11ムの下 面との当接部位、具体的には各突出片の鉛直面とレーザユニット11の当接面とが直交す る部分にそれぞれ接着剤(好ましくは硬化時間が極めて短い瞬間接着剤)を塗布して、突 起部12にレーザユニット11を固定する。

[0028]

T稈(4):レーザ押さえパネ15の複数の端子挿通孔にレーザユニット11の各端子1 1 d を 挿 通 さ せ 、 レ ー サ 押 さ え パ ネ 1 5 の 両 端 に 形 成 さ れ た 孔 部 1 8 に ピ ス 1 9 を そ れ で れ挿入し、この各ピス19をハウジング10に形成されたネジ孔20に螺合する。そして . 基板パターン樹脂(FPC)2 1 の複数個の孔に各端子11dを挿通させ、各孔周辺の 導通ランドと各端子110とをハンダ付けすることにより、レーザユニット11がハウジ ング10に高精度に位置調整された状態で頑強に固定される。

[0029]

このように、本発明によれば、レーザユニット11の光路長方向の空間調整を可能にする だ け で な く 、 従 来 乃 要 で あ っ た 加 エ し ず ら いレ ー サ ホ ル ダ (図 6 参 照) が 不 要 と な る 点 を 利点を有している。これによって、コリメートレンズへ照射されるレーザ光の精度が向上 し、高密度光ティスク媒体へのより確実な記録が可能となる。また、レーザユニット11 の破損が防止でき、光学ピックアップ装置製造に際しての不良率、コスト低下を可能とす ることができる。

[0030]

[他の実施の形態]

1.上記実施の形態では、図2に示すように、ハウジング10の凹部30は底面30へを 有する凹溝状の構造である場合を例示したが、光学部品を凹部に挿入して各突出片にて仮 保持(挟持)し、位置調整した後に、下側の突出片と光学部品との当接部位に接着剤を容 易に塗布できるように、例えば底面における下側の突出片の周囲に接着削塗布用の窓部を 形成したり、あるいは底面

を省略するようにしてもより。

2. 上記実施の形態では、ハウジング10の凹部30に、レーザ光を照射及び受光して検 出するホログラムレーザユニット11を取付ける場合を例示したが、レーザ光を照射のみ する半導体レーザや、レーザ光を受光して検出のみす

20

10

30

る受光素子を凹部30に取付けるようにしてもよい。

[0031]

【発明の効果】

本発明によれば、ホログラムレーザユニット、半導体レーザ、受光素子等の光学部品をハウジングに取付けるに際して、弾性緩衝体を取付位置に設けたことにより光学部品のレーザ光照射側及び/又はレーザ光受光側の端部素子が弾性緩衝体にて保護され、ある程度の強度を有する金属やプラスチックからなるハウジングの壁部に端部素子が接触して破損することが防止される。このように、光学部品が弾性緩衝体により保護されて破損率が大幅に減少することと、従来必要であったレーザホルダが不要であり、加工しづらロレーザホルダの製作工程及び部品点数を削減できること、従来行われてロたレーザホルダのハウジングへの取付け及び位置調整が省略されることにより、製造コストが大幅に低減すると共に、組立ての作業能率が向上する。

また、弾性緩衝体によって光路長方向への調整空間が確保されており、光学部品を光路長方向へ位置調整する際に弾性緩衝体の弾性変形によって光学部品の光路長方向への移動(微動)が可能であり高精度にかつ容易に位置調整を行うことができる。したがって、コリメートレンズへ照射されるレーザ光(拡散光)の精度及び/又はコリメートレンズがらのレーザ光(集束光)の精度が向上し、高密度光デバイス媒体へのより確実な記録・再生が可能となる。

【図面の簡単な説明】

- 【図1】本発明の実施の形態の光学ピックアップ装置の要部平面図である。
- 【図2】同実施の形態におけるハウジングの要部斜視図である。
- 【図3】図1のA-A線断面図である。
- 【図4】図1のB-B線断面図である。
- 【図5】同実施の形態における光学ピックアップ装置を分解した各部品を示す平面図である。
- 【図6】従来の光学ピックアップ装置を示す要部平面図である。

【符号の説明】

- 10 ハウジング
- 30 光学部品取付用凹部
- 区 光路長方向
- Y 上下方向
- 12 仮保持部
- 14 弹性緩衝体
- 30a 底面
- 16a、16b 取付段部
- 11 ホログラムレーザユニット
- 136 接着剤

10

20

[図1]

[23]

[図2]

【図4】

【図5】

【図6】

