Project Group 6: Neuronal Regeneration

Members: Harris Lussenhop, Ajay Rao, and Augustus Lee

DS 4200 Fall 2020 - Prof. Cody Dunne, Northeastern University

Introduction **OUR FOCUS** <u>Traditional Biological Research Pipeline:</u> Report + Share **Findings Conduct Experiment**

Collect Results

Goal: Find a way to improve transmission of experimental findings to other scientists

Research Paper

Novel DLK-independent neuronal regeneration in *Caenorhabditis elegans* shares links with activity-dependent ectopic outgrowth

Samuel H. Chung^{a,b,c}, Mehraj R. Awal^{b,c}, James Shay^{b,c}, Melissa M. McLoed^{b,c}, Eric Mazur^{a,d}, and Christopher V. Gabel^{b,c,1}

^aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; ^bDepartment of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118; ^cBoston University Photonics Center, Boston, MA 02215; and ^dDepartment of Physics, Harvard University, Cambridge, MA 02138

Edited by Cornelia I. Bargmann, Rockefeller University, New York, NY, and approved March 1, 2016 (received for review January 15, 2016)

Quick Summary:

- Normal neuronal regeneration in C. elegans regularly requires DLK-1 gene
- BUT, paper findings reveal a new DLK-1-independent form of regeneration
 - Regeneration requires stimulation
 - Cutting neuron axon and/or neuron dendrite are regenerative stimuli

Partner/Paper Author

- Samuel Chung, Ph.D.
 - Assistant Professor of Bioengineering
- Northeastern University NeuroLab
 - Lab goal is to to identify/understand the mechanisms underlying lesion conditioning
- Authored a paper examining
 DLK-1-independent regeneration in *C. elegans* models where our data is sourced

Project Goal: effectively communicate the novel neuronal regeneration data to other researchers and to elucidate key data trends found across the various experimental conditions/groups

Data Properties

length	regen_type	age	re_image_time	cut_type	genetics	re_image_time_class	col_name	none	not_to_ring	to_ring	along_ring	full_length
14.205	3	L2	12hr	axon	wild-type	12hr	wt axon	0.19047619	0.285714286	0.19047619	0.238095238	0.09523809
4.508	1	L2	12hr	axon	wild-type	12hr	wt a+d	0	0	0.076923077	0.461538462	0.461538462
17.799	2	L2	12hr	axon	wild-type	12hr	dlk-1 a+d	0.933333333	0.066666667	0	0	0
16.506	2	L2	12hr	axon	wild-type	24hr	wt axon	0	0	0.083333333	0.666666667	0.25
21.462	3	L2	12hr	axon	wild-type	24hr	wt a+d	0	0	0	0	1

Mix of quantitative and categorical data

- Quantitative: axon length regeneration measurements + regeneration type percentage
- <u>Categorical</u>: regeneration type
 - i.e. "along ring", "not to ring", ... (neuroscience lingo)

Statistical Data

- Relative P values for significant differences in regeneration between experimental conditions/groups were reported
- Mean and SD for each experimental group was calculated

Visualization Design

Live Demo

https://neu-ds-4200-f20.github.io/project-group-6-neuronal-regeneration/

Conclusion

- Visualized novel DLK-1-independent neuronal regeneration data
- Interactive and dynamic features increase data understandability and reduce visual clutter
- Overall, visualization improves clarity of data and highlights the key experimental findings in the paper for its scientist users

Special Thanks to:

- Professor Samuel Chung
- Professor Cody Dunne
- David Saffo
- Noa Grooms