Учебно-тематические планы лекционных занятий по курсу «Математика» (дифференциальные уравнения + ряды) 2 курс 3 семестр

N₂	Темы лекций	Кол-во ауд. часов
1.	Дифференциальные уравнения: основные понятия. Теорема существования и единственности решения. Задача Коши. Дифф.ур-ния І-го порядка. Уравнения с разделяющимися переменными и приводящиеся к ним. Примеры.	2
2.	Однородные дифф.ур-ния I-го порядка и приводящиеся к ним: определение и метод решения. Линейные дифф.ур-ния I-го порядка и уравнения Бернулли: определения и методы решения. Примеры.	2
3.	Уравнения в полных дифференциалах: определение и метод решения. Интегрирующие множители вида $\mu(x)$ и $\mu(y)$: определения и их формулы. Решение дифф.ур-ний допускающих интегрирующий множитель. Примеры.	2
4.	Дифф.ур-ния II-го порядка, допускающие понижение порядка. Примеры. Линейные дифф.ур-ния II-го порядка: однородные и неоднородные. Свойства их решений (докво).	2
5.	Линейная независимость функций. Определитель Вронского и его свойства. Структура общего решения ЛОДУ и ЛНДУ ІІ-го порядка (док-во). Фундаментальная система решений ЛОДУ.	2
6.	ЛОДУ ІІ-го порядка с постоянными коэффициентами. Метод Эйлера для построения общего решения такого уравнения (док-во). Метод подбора частного решения ЛНДУ с правой частью вида: а) $P_n(x) \cdot e^{ax}$ и б) $e^{ax} \cdot (A_n(x) \cos bx + B_m(x) \sin bx)$. Примеры.	2
7.	Метод вариации произвольных постоянных для решения ЛНДУ ІІ-го порядка с постоянными коэффициентами. Примеры. Линейные дифф.ур-ния <i>n</i> -го порядка: основные понятия, свойства решений, основные теоремы.	2
8.	Системы линейных дифф.ур-ний І-го порядка: определение, однородные и неоднородные системы, метод исключения для их решения. Примеры. Системы ЛОДУ І-го порядка с постоянными коэффициентами. Метод Эйлера для построения их общего решения. Примеры.	2
9.	Метод подбора частного решения для системы ЛНДУ и метод вариации произвольных постоянных.	2
10.	Дифф.ур-ния в частных производных (УРЧП): основные понятия, примеры. Классификация линейных уравнений в частных производных II-го порядка; приведение к каноническому виду методом характеристик.	2
11.	Основные типы уравнений математической физики. Понятие корректности задачи. Начальные и краевые условия. Постановка задач для волнового уравнения, уравнения теплопроводности, уравнения Лапласа.	2
12.	Числовые ряды: определение, частичная сумма, сходимость ряда. Необходимый признак сходимости числового ряда (док-во). Свойства сходящихся рядов. Достаточные признаки сходимости знакоположительных рядов: интегральный признак Коши (док-во).	2
13.	Ряды Дирихле и гармонический ряд: исследование их сходимости. Признаки сравнения рядов (док-во). Признак Даламбера (док-во).	2
14.	Знакопеременные и знакочередующиеся ряды: определения. Признак Лейбница для знакочередующихся рядов. Абсолютная и условная сходимость знакопеременных рядов: определение, достаточный признак абсолютной сходимости. Свойства сходящихся знакопеременных рядов.	2
15.	Степенные ряды: определение, сходимость в точке, область сходимости. Теорема Абеля (док-во). Радиус сходимости. Интервал сходимости и область сходимости степенного ряда. Примеры.	2
16.	Разложение функций в ряды Тейлора и Маклорена. Необходимое и достаточное условие сходимости рядов Тейлора к исходной функции. Основные разложения некоторых функций $(e^x, \ln(1+x), \sin x, \cos x, (1+x)^\alpha, \arcsin x, \arctan x)$ в ряды Маклорена.	2
17.	Применение рядов в приближенных вычислениях и в решении дифф.ур-ний. Обзорная лекция.	2
11.	ИТОГО:	34 часа