Name:	Roll Number:
1 tuille.	TOH TUHICE.

Quiz-1

Max. Time: 20 min Max. Points: 20

Note: Solve all parts. Limit your written responses to the provided space.

- Q.1. [8] Choose by putting a check mark on the most appropriate option. Note: No cutting/overwriting allowed.
- i. It is not impossible to row reduce a given matrix to different reduced echelon forms, using different sequences of row operations.
- (A) True (B) False
- ii. The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is referred to as vector equation.
- (A) True (B) False
- iii. The equation Ax = b is consistent if the matrix A, which is $m \times n$, has a pivot position in every row.
- (A) True (B) False
- iv. If **A** is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for some **b** in \mathbb{R}^m .
- (A) True (B) False
- v. A homogeneous system is not always consistent.
- (A) True (B) False
- vi. If x is a nontrivial solution of Ax = 0, then every entry in x is nonzero.
- (A) True (B) False
- vii. The effect of adding \mathbf{p} to a vector \mathbf{v} is to move \mathbf{v} in a direction parallel to \mathbf{v} .
- (A) True (B) False
- viii. The equation $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ describes a line through \mathbf{v} parallel to \mathbf{p} .
- (A) True (B) False

Q.2. [7+5]

a) Row reduce the following matrix to reduced echelon form.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution: See Example 2 on page 14 in the textbook.

Name:

Roll Number:_____

b) Let
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
, and $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$. Is \mathbf{b} in the span of the columns of \mathbf{A} ?

Solution: Reduce [A b] to echelon form.

$$[\mathbf{A} \ \mathbf{b}] = \begin{bmatrix} 2 & 0 & 6 & 10 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 1 & -2 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since $[\mathbf{A} \ \mathbf{b}]$ is consistent, therefore, \mathbf{b} is in the span of the columns of \mathbf{A} .

Name:	Roll Number: