AMENDMENTS TO THE CLAIMS

This Listing of the Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) <u>A method for treating a mammal infected with viruses of a Pneumovirinae sub-family, which comprises administering to the mammal a therapeutically effective amount of one or more compounds Use of a compound of formula I:</u>

Formula I

its salts, and or pharmaceutically acceptable salts or derivatives thereof, in the treatment of infections involving viruses of the *Pheumovirinae* sub-family, wherein

A₂ together with the atoms to which it is attached, forms an optionally substituted aromatic ring;

linker <u>B-C</u>, together with the atoms to which they are it is attached, forms an optionally substituted heterocyclic ring having from 5 to 8 ring atoms;

 R_1 is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_nC_{3-7}$ cycloalkyl, $-(CH_2)_nC_{4-7}$ cycloalkenyl, $-(CH_2)_n$ aryl C_{1-12} alkyl, $-(CH_2)_n$ aryl C_{2-12} alkenyl, $-(CH_2)_n$ aryl C_{2-12} alkynyl[[,]] and $-(CH_2)_n$ heterocyclyl; n is 0-6; and the alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$, $-C(Y)CH_2N(R_4)R_3$, $-C(Y)CH_2SR_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkenyl, $-(CH_2)_m$ aryl C_{2-12} alkynyl and $-(CH_2)_m$ heterocyclyl; and when R_2 is $-CH_2R_3[[,]]$ or $-C(Y)R_3$, R_3 may also is further selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; w is 0, 1 or 2[[,]]; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X and Y are independently selected from O, S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy.

- 2. (Currently Amended) <u>The method according to Use as defined in claim 1,</u> wherein R_2 is not an unsubstituted $-C_{1-6}$ alkyl or unsubstituted $-C(O)-C_{1-6}$ alkyl.
- 3. (Withdrawn and Currently Amended) The method according to Use as defined in claim 1, wherein ring A is an optionally substituted aryl ring.
- 4. (Withdrawn and Currently Amended) The method according to Use as defined in-claim 1, wherein ring A is an optionally substituted phenyl ring.
- 5. (Currently Amended) <u>The method according to Use as defined in claim 1,</u> wherein ring A is an optionally substituted heteroaryl ring.
- 6. (Currently Amended) The method according to Use as defined in claim 1, wherein ring A, together with the atoms to which it is attached, represents an optionally substituted pyridyl, optionally substituted pyridazinyl, optionally substituted pyrimidinyl, optionally substituted pyringly, optionally substituted furyl, optionally substituted thienyl, optionally substituted imidazolyl, optionally substituted oxazolyl or optionally substituted isoxazolyl ring.
- 7. (Currently Amended) The method according to Use as defined in claim 1, wherein ring A is an optionally substituted pyridyl, optionally substituted pyridazinyl, optionally substituted pyrimidinyl or optionally substituted pyrazinyl ring.
- 8. (Currently Amended) The method according to Use as defined in claim 1, wherein ring A is an optionally substituted pyridyl ring.
- 9. (Currently Amended) The method according to Use as defined in claim 1, wherein ring A is optionally substituted with one or more substituents independently selected from halo, -NH₂, -NO₂, C₁₋₆ alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C₁₋₆ alkyl or halo substituted C₁₋₆ alkyl, and, when ring A contains one or more ring nitrogens, the optional substituents include are further selected from Noxides of one or more of the ring nitrogens and pyridinium salts thereof.

10. (Currently Amended) The method according to Use as defined in claim [[1]] 9, wherein ring A is optionally substituted with a substituent selected from halo, alkyl, C₆H₅-, CH₃-C₆H₄-, CF₃-C₆H₄-, pyridyl[[,]] and –NO₂, and when ring A contains one or more ring nitrogens, the optional substituent also include is further selected from an N-oxide form of a ring nitrogen, and a pyridinium salt[[s]] thereof.

- 11. (Currently Amended) The method according to Use as defined in claim 1, wherein ring A is not substituted.
- 12. (Currently Amended) The method according to Use as defined in claim 1, wherein the compound of formula I is a compound of the formula IV

Formula IV

its salts, or N-oxides or pharmaceutically acceptable salts or derivatives thereof, wherein B-C, X, R_1 and R_2 are as defined in claim 1.

13. (Currently Amended) The method according to Use as defined in claim 1, wherein R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$, $-C(Y)CH_2N(R_4)R_3$, $-C(Y)CH_2SR_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, $-C_{1-12}$ alkyl, $-C_{2-12}$ alkenyl, $-C_{2-12}$ alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{2-12} alkynyl, $-(CH_2)_m$ aryl C_{2-12} alkynyl, $-(CH_2)_m$ heterocyclyl, and when R_2 is $-CH_2R_3[[,]]$ or $-C(Y)R_3$, R_3 is further may also be selected from $-S-R_5$ and $-O-R_5$; m is 0-6[[,]]; R_4 is hydrogen or is C_{1-6} alkyl[[,]]; R_5 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl and heterocyclyl groups are optionally substituted with one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, C_{2-6} alkenyl, C_{2-6} alkynyl, halo, halo- C_{1-6} alkyl, $\frac{1}{2}$ (including $-CF_3[[,]]$), hydroxy, mercapto, nitro, cyano, $-C(F_1)$ and $-C(F_1)$ and di($-C_{1-6}$ alkyl) amino, phenyl, benzyl and heterocyclyl.

14. (Currently Amended) The method according to Use as defined in claim 1, wherein R_2 is $-CH_2-R_3$, and R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heterocyclyl; and m is 0 to 3; and the aryl or heterocyclyl ring is optionally substituted.

- 15. (Currently Amended) The method according to Use as defined in claim 1, wherein R₂ is -COR₃; and R₃ is optionally substituted aryl or optionally substituted heterocyclyl and is optionally substituted.
- 16. (Currently Amended) The method according to Use as defined in-claim 14 or 15, wherein R₃ is optionally substituted and is selected from phenyl, naphthyl, furyl, thienyl, pyrrolyl, *H*-pyrrolyl, pyrrolinyl, pyrrolidinyl, oxazolyl, oxadiazolyl, (including-1,2,3-oxadiazolyl, and-1,2,4-oxadiazolyl[[s)]], thiazolyl, isoxazolyl, furazanyl, isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolyl, triazolyl-(including, 1,2,3-triazolyl, and-1,3,4-triazolyl[[s)]], tetrazolyl, thiadiazolyl-(including, 1,2,3-thiadiazolyl, and-1,3,4-thiadiazolyl[[s)]], pyridyl, pyrimidinyl, pyridazinyl, pyranyl, pyrazinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, triazinyl, 1*H*-thieno[2,3-c]pyrazolyl, thieno[2,3-b]furyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, uridinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, benzotriazinyl, naphthyridinyl and [[or]] pteridinyl.
- 17. (Currently Amended) The method according to Use as defined in claim 16, wherein R₃ is optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo-C₁₋₆ alkyl-(including, CF₃[[)]], hydroxy, mercapto, nitro, cyano, NH₂, mono [[or]] and di(C₁₋₆ alkyl) amino, phenyl, benzyl and heterocyclyl.
- 18. (Currently Amended) The method according to Use as defined in claim 1, wherein R₂ is -CON(H)R₃, [[and]] R₃ is -(CH₂)_m aryl or -(CH₂)_m heteroaryl; [[and]] m is 0 to 2; and the aryl or heteroaryl ring is optionally substituted with one or more substituents independently selected from halo, lower alkyl, hydroxy, lower alkoxy and phenyl.
- 19. (Currently Amended) The method according to Use as defined in claim 1, wherein linker –B-C– is an optionally substituted linker of the formula –CH₂-(CH₂)_z–, where z is 1-4.

20. (Currently Amended) The method according to Use as defined in claim 19, wherein z is 1 or 2.

- 21. (Currently Amended) The method according to Use as defined in claim 1, wherein -B-C- is a linker of the formula -CH₂CH₂-.
- 22. (Currently Amended) The method according to Use as defined in claim 1, wherein linker –B-C– is optionally substituted with no more than three optional substituents, the substituents selected from halo, lower alkyl, hydroxy, lower alkoxy, phenyl and benzyl.
- 23. (Currently Amended) The method according to Use as defined in claim 1, wherein linker –B-C– is not substituted.
- 24. (Currently Amended) The method according to Use as defined in claim 1, wherein X is oxygen or sulphur.
- 25. (Currently Amended) The method according to Use as defined in claim 1, wherein R_1 is an optionally substituted aryl or heterocyclyl group.
- 26. (Currently Amended) The method according to Use as defined in claim 1, wherein R₁ represents phenyl, thienyl, pyrrolyl, pyridyl or ring or a -C₁₋₆ alkylphenyl-group, the rings being each optionally substituted with halo, hydroxy, nitro, -NR'R", C₁₋₁₂ alkyl, phenyl or -O-R_a, [[(]]where R' and R" are independently selected from hydrogen, lower alkyl and -C(O)R, where R is C₁₋₆ alkyl, phenyl or heterocyclyl), C₁₋₁₂ alkyl, phenyl, and O-R_a; where R_a is -C₁₋₁₂ alkyl, -C₃₋₇ cycloalkyl, -C₁₋₁₂ alkylC₃₋₇ cycloalkyl, phenyl or -C₁₋₁₂ alkylphenyl; and the C₁₋₁₂ alkyl, phenyl or R_a group may be is optionally substituted with halo, -CN, -NR'R", CO₂R, or CONR'R", where R, R' and R" -NR¹⁰R¹¹, -CO₂R¹² or -CONR¹⁰R¹¹, where R¹⁰, R¹¹ and R¹² are independently selected from hydrogen [[or]] and lower alkyl.
- 27. (Currently Amended) The method according to Use as defined in-claim 1, wherein R_1 is phenyl optionally substituted with a substituent selected from halo, $-C_{1-6}$ _alkyl, $-C_{1-6}$ _alkylhalo, $-C_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCO₂NH₂, $-OC_{1-6}$ alkylCN, $-OC_{1-6}$ _alkylCO₃-7_cycloalkyl, $-OC_{1-6}$ _alkylC₆H₅, $-OC_{1-6}$ _alkylOCH₃, $-OC_{6}$ H₅, $-OC_{6}$ H₄halo, $-CF_{3}$, $-OCF_{3}$, -NR'R'', $-CO_{2}$ H, $-CO_{2}$ C₁₋₆ alkyl, $-NO_{2}$, -OH, $-C_{6}$ H₅, $-C_{6}$ H₄C₁₋₆ alkyl, $-C_{6}$ H₄halo and -OC(O)C₁₋₆ alkyl; [[()] where R' and R'' are independently selected from hydrogen, -C(O)C₁₋₆ alkyl, -C(O)C₆H₅, -C(O)CH=CHCO₂H, -C(O)C₁₋₆ alkylCO₂H, -C(O)C₁₋₆ alkylCO₂H, -C(O)C₁₋₆ alkylCO₂H, -C(O)C₁₋₆ alkylCO₂H, -C(O)C₁₋₆

alkylCO₂CH₃, -C(O)C₁₋₆_alkylC₆H₅, -C(O)C₁₋₆_alkylC₆H₄CH₃, -C(O)C₁₋₆_alkylC₆H₄OCH₃ and -C(O)C₁₋₆_alkylC₆H₄halo), $-CO_2$ H, $-CO_2$ C₁₋₆ alkyl, $-CO_2$ C₁₋₆ alkyl, $-CO_2$ C₁₋₆ alkyl, $-CO_2$ C₁₋₆ alkyl.

- 28. (Currently Amended) The method according to Use as defined in claim 1, wherein R₁ is phenyl substituted with halo, $-OC_{1-6}$ _alkyl, $-OC_{1-6}$ _alkylhalo, $-OC_{1-6}$ _alkylCO₂NH₂, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCN, $-OC_{1-6}$ _alkylCO₃-7_cycloalkyl, $-OC_{1-6}$ _alkylC₆H₅ or $-OC_{1-6}$ _alkylOCH₃.
- 29. (Currently Amended) The method according to Use as defined in claim 1, wherein R₁ is 4-chlorophenyl.
- 30. (Currently Amended) A method for the treatment of infections involving viruses of [[the]] <u>a Pneumovirinae</u> sub-family by the inhibition of [[the]] virus[['s]] fusion processes, <u>comprising</u> by the administration of <u>administering</u> a therapeutically effective amount of a compound of formula I as defined in claim 1, the <u>salt</u> or <u>a pharmaceutically acceptable salt or derivative[[s]] thereof, to a patient in need [[to]] <u>of</u> treatment.</u>
- 31. (Currently Amended) A pharmaceutical formulation, for the treatment of infections involving viruses of the *Pneumovirinae* sub-family comprising a compound of formula I as defined in claim 1, the salt-or a pharmaceutically acceptable salt or derivative[[s]] thereof, and a pharmaceutical acceptable carrier or excipient.

32-33. (Canceled).

- 34. (Currently Amended) A method for preventing the infection of <u>a mammal[[s]]</u> with viruses of [[the]] <u>a Pneumovirinae</u> sub-family, which comprises administering to the mammal a therapeutically effective amount of one or more of the compounds of formula I as defined in claim 1, the salt or a pharmaceutically acceptable <u>salt or derivative[[s]]</u> thereof.
- 35. (Currently Amended) The method of claim 33 in 1 for the treatment of infections involving viruses of the *Pneumovirus* and *Metapneumovirus* genus.
- 36. (Currently Amended) The method of claim 33 in 1 for the treatment of respiratory syncytial virus (RSV).
- 37. (Currently Amended) The method of claim 33 in 1 for the treatment of human RSV or human metapneumovirus.

38. (Currently Amended) A compound of formula I

Formula I

its or a salts, and or pharmaceutically acceptable derivative[[s]] thereof, wherein:

A₂ together with the atoms to which it is attached, represents an optionally substituted phenyl, pyridyl, optionally substituted pyridazinyl, optionally substituted pyrimidinyl or optionally substituted pyrazinyl ring;

 $_B$ -C $_$ is an optionally substituted link<u>er</u> of the formula $-CH_2$ - $(CH_2)_z$ -, where z is 1-4; R_1 is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_nC_{3-7}$ cycloalkyl, $-(CH_2)_nC_{4-7}$ cycloalkenyl, $-(CH_2)_n$ aryl C_{1-12} alkyl, $-(CH_2)_n$ aryl C_{2-12} alkenyl, $-(CH_2)_n$ aryl C_{2-12} alkynyl[[,]] and $-(CH_2)_n$ heterocyclyl; n is 0-6; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkenyl, and when R_2 is $-CH_2R_3[[,]]$ or $-C(Y)R_3$, R_3 is further may also be selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; w is 0, 1 or 2:[[,]] and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X and Y are independently selected from O, S and NR_6 , where R_6 is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy;

with the provisos that when A is phenyl and R₁ is 4 chlorophenyl or unsubstituted phenyl

- (i) R₃ is not unsubstituted cyclopropyl, halomethyl, unsubstituted phenyl or phenyl with only halo, CH₃ and/or OCH₃ substituents when R₂ is COR₃;
- (ii) R₃ is not unsubstituted phenyl or phenyl with only halo, CH₃, OCH₃ and/or C(O)OCH₂CH₃ substituents when R₂ is C(O)NHR₂:
- (iii) R₃ is not unsubstituted phenyl or phenyl with only halo, CH₃, OCH₃ and/or C(O)OCH₂CH₃ substituents when R₂ is C(S)NHR₃; and with the provisos

- (iv) when A is phenyl and R₂ is CH₂R₃, R₃ is not hydrogen, unsubstituted C₁₋₆ alkyl or C₁₋₆ alkyl only substituted with NH₂, mono or di C₁₋₆ alkyl amino groups;
- (v) when A is phenyl and R_1 is 4-methoxyphenyl, R_2 is not CHO;
- (vi) when A is phenyl and R₁ is phenyl optionally substituted with only halo, C₁₋₆ alkyl and / or C₁₋₆ alkoxy and R₂ is COR₃, R₃ is not methylene substituted with NH₂, mono or di C₁₋₆ alkyl amino, N-piperidinyl or N-morpholinyl;
- (vii) when A is phenyl and R₁ is 3 CH₃, 4 CH₃CH₂CH₂NHC(O)CH₂O phenyl, R₂ is not -S(O)₂CH₂SO₂CH₃, CHO, COCH₂CH₃, CH₂CH₂OH, CH₂CH₂OCH₃, CH₂CO₂C(CH₃)₃ or C_{1.6} alkyl;
- (viii) when A is pyridyl and R_1 is 3-CH₃[[,]]-4-CH₃CH₂CH₂NHC(O)CH₂O-phenyl, R_2 is not CH₃; and when A is pyridyl, X is O, R_1 is $-(CH_2)_n$ aryl, n is 0, and R_2 is $-CH_2R_3$, then (i) R_3 is not methyl when R_1 is 4-chlorophenyl and z is 1, and (ii) R_3 is not ethyl when R_1 is phenyl and z is 2.
- 39. (Currently Amended) The compound <u>according to</u> as defined in claim 38, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, with the proviso that when ring A is phenyl
- (i) R₃ is not hydrogen or optionally substituted C_{1.6} alkyl when R₂ is CH₂R₃ or COR₃;
- (ii) R₃ is not (CH₂)_mheterocyclyl where m is 1 or 2 and the heterocyclyl ring is piperidinyl, morpholinyl, pyrrolidinyl, piperazinyl, thiomorpholinyl when R₂ is COR₃ and R1 is 4-chlorophenyl, 4-methoxyphenyl or unsubstituted phenyl;
- (iii) R_2 is not benzyl; and-with the proviso
- (iv) R_2 is not $-CH_3$ when A is pyridyl.
 - 40. (Canceled).
- 41. (Currently Amended) The compound according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is optionally substituted with one or more substituents independently selected from halo, $-NH_2$, $-NO_2$, C_{1-6} alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C_{1-6} alkyl or halo substituted C_{1-6} alkyl, and, when ring A contains one or more ring nitrogens, the optional substituents include are also selected from N-oxides of one or more of the ring nitrogens.

42. (Currently Amended) The compound according to as defined in-claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is optionally substituted with a substituent selected from halo, alkyl, C_6H_5 —, CH_3 - C_6H_4 —, CF_3 - C_6H_4 —, pyridyl[[,]] and — NO_2 , and when ring A contains one or more ring nitrogens, the optional substituent <u>is</u> also include selected from [[an]] N-oxide forms of [[a]] ring nitrogens.

- 43. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is not substituted.</u>
- 44. (Currently Amended) The compound <u>according to</u> as <u>defined in claim 38</u>, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, wherein R₂ is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$, $-C(Y)CH_2N(R_4)R_3$, $-C(Y)CH_2SR_3$ and $-S(O)_wR_5$, where R₃ is selected from hydrogen, $-C_{1-12}$ _alkyl, $-C_{2-12}$ _alkenyl, $-C_{2-12}$ _alkynyl, $-(CH_2)_mC_{3-7}$ _cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ _aryl, $-(CH_2)_m$ _arylC₁₋₁₂ alkyl, $-(CH_2)_m$ _arylC₂₋₁₂_alkenyl, $-(CH_2)_m$ _arylC₂₋₁₂ alkynyl[[,]] and $-(CH_2)_m$ _heterocyclyl, and when R₂ is $-CH_2R_3[[,]]$ or $-C(Y)R_3$, R₃ is <u>further may also be</u> selected from -S-R₅ and -O-R₅; m is 0-6, R₄ is hydrogen or [[is]] C₁₋₆ alkyl, R₅ is selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₄₋₇ cycloalkenyl, benzyl, aryl and heterocyclyl; w is 0, 1 or 2, and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo-C₁₋₆ alkyl (<u>including</u> CF₃[[)], hydroxy, mercapto, nitro, cyano, NH₂, mono <u>and [[or]]</u> di(C₁₋₆ alkyl) amino, phenyl, benzyl and heterocyclyl, the substituents being optionally substituted.
- 45. (Currently Amended) The compound <u>according to</u> as defined in claim 38, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, wherein R₂ is -CH₂-R₃[[,]]; and R₃ is -(CH₂)_m aryl or -(CH₂)_m heterocyclyl; [[and]] m is 0 to 3; and the aryl or heterocyclyl ring is optionally substituted.
- 46. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein R₂ is –COR₃, and R₃ is <u>optionally substituted</u> neterocyclyl-and is optionally substituted.</u>
- 47. (Currently Amended) The compound according to as defined in claim 46, the or a salt or pharmaceutically acceptable derivative thereof, wherein R_3 is optionally substituted and is selected from phenyl, naphthyl, furyl, thienyl, pyrrolyl, H-pyrrolyl, pyrrolinyl, pyrrolidinyl,

oxazolyl, oxadiazolyl, (including-1,2,3-oxadiazolyl, and-1,2,4-oxadiazolyl[[s)]], thiazolyl, isoxazolyl, furazanyl, isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolyl, triazolyl, (including 1,2,3-triazolyl, and-1,3,4-triazolyl[[s)]], tetrazolyl, thiadiazolyl, (including 1,2,3-thiadiazolyl, and-1,3,4-thiadiazolyl[[s)]], pyridyl, pyrimidinyl, pyridazinyl, pyranyl, pyrazinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, triazinyl, 1*H*-thieno[2,3-c]pyrazolyl, thieno[2,3-b]furyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, indazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, uridinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, benzotriazinyl, naphthyridinyl and [[or]] pteridinyl.

- 48. (Currently Amended) The compound <u>according to as defined in-claim 38, the or a</u> salt or pharmaceutically acceptable derivative thereof, wherein R₃ is optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo-C₁₋₆ alkyl, (including CF₃[[)]], hydroxy, mercapto, nitro, cyano, NH₂, mono [[or]] <u>and di(C₁₋₆ alkyl)</u> amino, phenyl, benzyl and heterocyclyl, <u>where the phenyl</u>, benzyl and heterocyclyl groups <u>are [[being]]</u> optionally substituted.
- 49. (Currently Amended) The compound according to as defined in-claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein R_2 is $-CON(H)R_3[[,]]$; [[and]] R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heteroaryl; [[and]] m is 0 to 2; and the aryl or heteroaryl ring is optionally substituted with one or more substituents independently selected from halo, lower alkyl, hydroxy, lower alkoxy and phenyl.
- 50. (Currently Amended) The compound <u>according to as defined in-claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein z is 1 or 2.</u>
- 51. (Currently Amended) The compound <u>according to</u> as defined in claim 38, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, wherein -B-C- is a linker of the formula -CH₂CH₂-.
- 52. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein the linker –B-C– is optionally substituted no more than three optional substituents, the substituents selected from halo, lower alkyl, hydroxy, lower alkoxy, phenyl and benzyl.</u>

53. (Currently Amended) The compound <u>according to</u> as defined in claim 38, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, wherein the linker –B-C– is not substituted.

- 54. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein X is oxygen or sulphur.</u>
- 55. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein X is oxygen.</u>
- 56. (Currently Amended) The compound according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein R_1 is an optionally substituted aryl or heterocyclyl group.
- 57. (Currently Amended) The compound <u>according to as defined in claim 38, the or a</u> salt or pharmaceutically acceptable derivative thereof, wherein R₁ represents phenyl, thienyl, pyrrolyl, pyridyl or ring or a -C₁₋₆ alkylphenyl group, the rings being each optionally substituted with halo, hydroxy, nitro, -NR'R", C₁₋₁₂ alkyl, phenyl or -O-R_a, [[(]]where R' and R" are independently selected from hydrogen, lower alkyl and -C(O)R, where R is C₁₋₆ alkyl, phenyl or heterocyclyl), C₁₋₁₂ alkyl, phenyl, and O-R_a; where R_a is -C₁₋₁₂ alkyl, -C₃₋₇ cycloalkyl, -C₁₋₁₂ alkylC₃₋₇ cycloalkyl, phenyl or -C₁₋₁₂ alkylphenyl; and the C₁₋₁₂ alkyl, phenyl or R_a group may be is optionally substituted with halo, -CN, -NR'R", -CO₂R, or -CONR'R", where R, R' and R" -NR¹⁰R¹¹, -CO₂R¹² or -CONR¹⁰R¹¹, where R¹⁰, R¹¹ and R¹² are independently selected from hydrogen [[or]] and lower alkyl.

59. (Currently Amended) The compound <u>according to</u> as defined in claim 38, the <u>or</u> a salt or pharmaceutically acceptable derivative thereof, wherein R_1 is halo-phenyl.

- 60. (Currently Amended) The compound <u>according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein R₁ is 4-chlorophenyl.</u>
 - 61. (Canceled).
- 62. (Currently Amended) The compound according to as defined in claim 38, the or a salt or pharmaceutically acceptable derivative thereof, wherein R_2 is $\underline{-}C(O)-R_3$ and R_3 is $\underline{-}(CH_2)_m$ -aryl or $\underline{-}(CH_2)_m$ -heteroaryl, where m is 0 to 6, and the aryl or heteroaryl group is optionally substituted.
- 63. (Currently Amended) The compound <u>according to as defined in claim 38 of the formula IV</u>

Formula IV

wherein R₁, R₂, X₃ and B-C are as defined in claim 38, and the <u>or an N-oxide form [[and]] or</u> pyridium salt thereof.

- 64. (Currently Amended) The compound according to as defined in claim 63, and the or an N-oxide form and or pyridium salt thereof, wherein R_2 is $_C(O)R_3$ and R_3 is $-(CH_2)_m$ -aryl or $_(CH_2)_m$ -heteroaryl, where m is 0 to 6, and the aryl or heteroaryl group is optionally substituted.
 - 65. (Previously Presented) A compound disclosed in table 2 or 3.
- 66. (Currently Amended) A pharmaceutical formulation for the treatment of infections involving viruses of *Pneumovirinae* sub-family comprising a compound of formula I according to as defined in claim 38, the salt or a pharmaceutically acceptable salt or derivative thereof, and a pharmaceutically acceptable carrier or excipient.
 - 67. (Withdrawn and Currently Amended) A compound of formula

 Page 13 of 20

$$\begin{array}{c} H \\ N \\ O \end{array}$$
 or
$$\begin{array}{c} H \\ N \\ O \end{array}$$

[[and]] or a salt[[s]] thereof, wherein:

the pyridyl ring is optionally substituted;

=B-C= is an optionally substituted linker of the formula $-CH_2$ - $(CH_2)_z$ -, where z is 1-4; R₁ is selected from C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, $-(CH_2)_nC_{3-7}$ cycloalkyl, $-(CH_2)_nC_{4-7}$ cycloalkenyl, $-(CH_2)_n$ aryl, $-(CH_2)_n$ arylC₁₋₁₂ alkyl, $-(CH_2)_n$ arylC₂₋₁₂ alkenyl, $-(CH_2)_n$ arylC₂₋₁₂ alkynyl[[,]] and $-(CH_2)_n$ heterocyclyl; where n is 0-6, and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X is selected from O, S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy;

with the proviso that when -B-C- is $-CH_2CH(CH(CH_3)_2)-$, R_1 is not $3-CH_3[[,]]_2-4 CH_3CH_2CH_2NHC(O)CH_2O$ -phenyl-.

- 68. (Withdrawn and Currently Amended) The compound according to as defined in claims 67 and or a salt[[s]] thereof, wherein the pyridyl ring is optionally substituted with one or more substituents independently selected from halo, $-NH_2$, $-NO_2$, $-C_{1-6}$ alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C_{1-6} alkyl or halo substituted C_{1-6} alkyl, and the ring nitrogen of the pyridyl ring may optionally be an N-oxide.
- 69. (Withdrawn and Currently Amended) The compound according to as defined in claims 67 and or a salt[[s]] thereof, wherein the pyridyl ring is optionally substituted with a substituent selected from halo, alkyl, C₆H₅-, CH₃-C₆H₄-, CF₃-C₆H₄-, pyridyl and _NO₂, and the ring nitrogen of the pyridyl ring may optionally be an N-oxide.
- 70. (Withdrawn and Currently Amended) The compound <u>according to as defined in claims 67 and or a salt[[s]]</u> thereof, wherein the pyridyl ring is not substituted.
- 71. (Withdrawn and Currently Amended) The compound <u>according to as defined in claims 67 and or a salt[[s]]</u> thereof, wherein –B-C- is a linker of the formula –CH₂CH₂-.

72. (Withdrawn and Currently Amended) The compound <u>according to as defined in claims 67 and or a salt[[s]]</u> thereof, wherein X is oxygen or sulphur.

- 73. (Withdrawn and Currently Amended) The compound according to as defined in claims 67 and or a salt[[s]] thereof, wherein X is oxygen.
- 74. (Withdrawn and Currently Amended) The compound <u>according to as defined in claims 67 and or a salt[[s]]</u> thereof, wherein R₁ is an optionally substituted aryl or heterocyclyl group.
 - 75. (Withdrawn and Currently Amended) A compound of the formula

[[and]] or a salt[[s]] thereof, wherein the pyridyl ring is optionally substituted and R_1 and X are as defined in [[C]]claim 67, with the proviso that R_1 is not 4-chlorophenyl.

76. (Withdrawn and Currently Amended) A compound of the formula

[[and]] or a salt[[s]] thereof, wherein the fused pyridazinyl ring is optionally substituted and R₁ and X are as defined in [[C]]claim 67, with the proviso that R₁ is not phenyl, 4-chlorophenyl or 4-methoxyphenyl.

77. (Withdrawn and Currently Amended) A compound of any one of the formula

and salts thereof, wherein the fused pyridyl, pyrazinyl, pyridazinyl or pyrimidinyl ring is optionally substituted and R_1 and X are as defined in Claim 67.

78. (Currently Amended) A method for the production of a compound of formula I according to claim 38, comprising the step of reacting Use of a compound of formula III:

Formula III

[[and]] or a salt[[s]] thereof, with an acylating agent, an isocyanate or an isothiocyanate wherein R_I, ring A, B C and X are as defined in claim 38, as an intermediate for the production of formula I as defined in claim 38.

- 79. (Withdrawn and Currently Amended) A method of separating the enantiomers of a compound of formula III, [[by]] comprising forming diastereomeric salts of the compounds using an enantiomerically enriched chiral hydrogen phosphate.
- 80. (Withdrawn and Currently Amended) A method of separating the enantiomers of a compound as defined in according to claim 67, comprising [[by]] forming diastereomeric salts of the compound using an enantiomerically enriched chiral hydrogen phosphate.
- 81. (Currently Amended) The compound as defined in according to claim 38 in a substantially pure optically active form.
- 82. (Withdrawn and Currently Amended) The compound as defined in according to claim 67 in a substantially pure optically active form.
- 83. (Withdrawn and Currently Amended) The compound as defined in according to claim 75 in a substantially pure optically active form.

84. (Withdrawn and Currently Amended) The compound as defined in according to claim 76 in a substantially pure optically active form.

- 85. (Withdrawn and Currently Amended) The compound as defined in according to claim 77 in a substantially pure optically active form.
 - 86. (New) A compound of formula I

Formula I

or a salt or pharmaceutically acceptable derivative thereof, wherein:

A, together with the atoms to which it is attached, represents an optionally substituted pyridyl, optionally substituted pyridazinyl, optionally substituted pyrimidinyl or optionally substituted pyrazinyl ring;

–B-C− is an optionally substituted linker of the formula –CH₂-(CH₂)_z−, where z is 1-4; R₁ is selected from C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, –(CH₂)_nC₃₋₇ cycloalkyl, –(CH₂)_nC₄₋₇ cycloalkenyl, –(CH₂)_n aryl, –(CH₂)_n arylC₁₋₁₂ alkyl, –(CH₂)_n arylC₂₋₁₂ alkenyl, –(CH₂)_n arylC₂₋₁₂ alkynyl and –(CH₂)_n heterocyclyl; n is 0-6; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkenyl, aryl C_{2-12} alkynyl and $-(CH_2)_m$ heterocyclyl; and when R_2 is $-CH_2R_3$ or $-C(Y)R_3$, R_3 is further selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; m is 0, 1 or 2; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X and Y are independently selected from O, S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy.