

Better EVERYWHERE. Smarter EVERYDAY. เก่งขึ้นได้ทุกที่ ดีขึ้นได้ทุกวัน

ชื่อ-สกุล:	วันที่สอบ:	เวลาที่สอบ:
กฎระเบียบและรายละเอียดของการสอ	าบ	
1. ข้อสอบมีทั้งหมด 30 ข้อ 35 หน้า	า(ไม่รวมหน้าปก) 100 ค	ะแนน
ตอนที่ 1: ปรนัย 25 ข้อ(ข้อ	า 1-25) ข้อละ 3 คะแนน	
ตอนที่ 2: อัตนัย 5 ข้อ(ข้อ	26-30) ข้อละ 5 คะแนน	Į.
2. เวลาสอบทั้งหมด 90 นาที		
3. กรอกคำตอบลงบนกระดาษคำต	อบบนเว็บไซต์ให้ชัดเจเ	Î
4. ในกรณีที่เป็น ข้อเติมคำ ต้องเลือ	กตอบให้ ครบทั้งหกหล ั	<u>์ก</u> โดยในหลักที่ไม่มีค่าให้
กดเลือกเลข o ให้ ครบ		
5. หากหมดเวลาสอบ จะ ไม่สามาร	วถกดคำตอบ ลงบนเว็บ	ไซต์และระบบจะ <u>บังคับให้</u>
ส่งข้อสอบ ทันที		
6. ห้ามใช้เครื่องคำนวณในการทำข้	้อสอบ	
	ลงชื่อผู้เข้าสอบ_	
	วันที่	

EXAM1 1/35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

กำหนดให้ใช้ค่าต่อไปนี้ สำหรับกรณีที่ต้องแทนค่าตัวเลขและไม่มีกำหนดไว้ในข้อสอบแต่ละข้อ

ขนาดของความเร่งใน้มถ่วง $g=9.8~\mathrm{m/s}^2$

อัตราเร็วของแสงในสุญญากาศ $c=3.0 imes10^8\,\mathrm{m/s}$

ค่าคงตัวแก๊ส $R=8.3~\mathrm{J/(mol~K)}$

ค่าคงตัวอาโวกาโดร $N_{
m A}=6.0 imes10^{23}~{
m mol}^{-1}$

ค่าคงตัวโบลต์ซมันน์ $k_{
m B} = 1.4 imes 10^{-23} \; {
m J/K}$

ค่าของ $\sin heta \, \cos heta$ และ $an heta \,$ ที่มุม $heta \,$ ต่าง ๆ ดังตารางต่อไปนี้

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ไม่นิยาม

สแกนตรงนี้ มีเฉลยให้ดูฟรีนะ !!!

ขื่อ:

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

ตอนที่ 1: แบบปรนัย 5 ตัวเลือก 1 คำตอบที่ถูกที่สุด

จำนวน 25 ข้อ (ข้อที่ 1 - 25) ข้อละ 3 คะแนน รวม 75 คะแนน

1. นักเรียนทดลองปล่อยวัตถุให้เริ่มเคลื่อนที่จากพื้นเอียงไปยังพื้นราบที่มีความฝืด และบันทึกเวลาที่ วัตถุเริ่มเคลื่อนที่จนหยุดนิ่ง จำนวน 4 ครั้งได้ดังนี้ $12.24\ 12.06\ 11.98$ และ $12.02\$ วินาที ข้อใด เป็นการรายงานเวลาที่วัตถุเคลื่อนที่ในรูปค่าเฉลี่ย (\overline{x}) และค่าความคลาดเคลื่อนของค่าเฉลี่ย ($\Delta\overline{x}$) ที่ถูกต้องตามหลักการรายงานผลการวัด กำหนดให้

- ullet $\Delta \overline{x} = rac{x_{
 m max} x_{
 m min}}{2}$ เมื่อ $x_{
 m max}$ และ $x_{
 m min}$ คือค่ามากสุดและน้อยสุดที่วัดได้ ตามลำดับ
- บันทึกค่าความคลาดเคลื่อนของค่าเฉลี่ยเลขคณิตด้วยเลขนัยสำคัญ 1 ตัว

1) 12.1±0.1 วินาที่

2) 12.08 ± 0.1 วินาที

3) 12.075 ± 0.13 วินาที่

4) 12.075 ± 0.1 วินาที

5) 12.0 ± 0.1 วินาที

EXAM1 3 / 35

01

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

2. วัตถุหนึ่งเคลื่อนที่แนวตรงด้วยความเร่งคงตัวซึ่งมีทิศทางเดียวกับความเร็ว กราฟแสดงความสัมพันธ์ระหว่างขนาดของความเร็วยกกำลังสอง (v^2) และตำแหน่ง (x) ของวัตถุ เป็นดังนี้

หลังจากวัตถุเคลื่อนที่ผ่านตำแหน่ง $x=0\ \mathrm{m}$ เป็นเวลา $10\$ วินาที่ ขนาดของการกระจัดของวัตถุนั้นมีค่ากี่เมตร

- 1) 85
- 2) 90
- 3) 180

- 4) 260
- 5) 740

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

3. นักเรียนคนหนึ่งศึกษาเรื่องแรงเสียดทานของวัตถุบนพื้นเอียง โดยทำแบบฝึกหัดข้อหนึ่งดังนี้

แบบฝึกหัด

วัตถุมวล m กำลังไถลลงบนพื้นเอียงฝืดที่ทำมุม heta กับแนวระดับ ดังภาพ

วัตถุมีความเร่งเท่าใด

กำหนดให้ g เป็นขนาดของความเร่งโน้มถ่วง

 $\cos \theta = 0.8$ และ $\sin \theta = 0.6$

สัมประสิทธิ์ความเสียดทานสถิตระหว่างวัตถุกับพื้นเอียงเท่ากับ 0.5

สัมประสิทธิ์ความเสียดทานจลน์ระหว่างวัตถุกับพื้นเอียงเท่ากับ 0.4

นักเรียนแสดงวิธีคิดตามลำดับบรรทัดดังนี้

<u>วิธีทำ</u> กำหนดให้ ทิศทางลงขนานพื้นเอียงเป็น + และทิศทางขึ้นขนานพื้นเอียงเป็น –

แผนภาพวัตถุอิสระ

หา a จากกฎการเคลื่อนที่ของนิวตัน

โดยให้ g f และ a เป็นขนาดของ $ar{g}$ $ar{f}$ และ $ar{a}$ ตามลำดับ

 $mg\sin\theta - f = ma$ บรรทัดที่ 1

 $mg\sin\theta - \mu mg\cos\theta = ma$ บรรทัดที่ 2

g(0.6) - (0.5)(g)(0.8) = a บรรทัดที่ 3

a = 0.2 g

<u>ตอบ</u> วัตถุไถลลงพื้นเอียงด้วยความเร่ง a=0.2~g

EXAM1 5/

01

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

วิธีคิดของนักเรียนข้างต้น ข้อใดระบุจุดที่ผิดพลาด เหตุผลที่ผิดพลาด และการแก้ไขได้ถูกต้อง

	จุดที่ผิดพลาด	เหตุผลที่ผิดพลาด	การแก้ไข
1)	แผนภาพวัตถุอิสระ	เขียนทิศของ $ec{N}$ ผิด	เขียน $ar{N}$ ให้มีทิศตรงข้าม $mar{g}$
2)	แผนภาพวัตถุอิสระ	เขียนทิศของ <i>mg</i> ผิด	เขียน $mar{g}$ ให้มีทิศตรงข้าม $ar{N}$
3)	บรรทัดที่ 1	เขียนสมการผิด	$mg\sin\theta + f = ma$
4)	บรรทัดที่ 2	แทนค่า f ผิด	$f = \mu mg \sin \theta$
5)	บรรทัดที่ 3	แทนค่า μ ผิด	$\mu = 0.4$

EXAM1 6 / 35

ข้อสอบ > A-Level ฟิสิกส์

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

4. นำภาชนะทรงกระบอกมวลน้อยมาก AB และ C ที่ทำมาจากวัสดุชนิดเดียวกัน ใส่น้ำปริมาณต่าง ๆ โดยน้ำในภาชนะ A และ C มีระดับความสูงเท่ากัน จากนั้นปิดฝาและวางภาชนะทั้ง 3 ใบ บนแผ่นไม้ ที่มีความฝืดเพื่อไม่ให้ภาชนะไถล และมีก้านสำหรับปรับมุมเอียง

เมื่อหมุนก้านหมุนจนแผ่นไม้เอียงมากขึ้น พบว่า ภาชนะที่ล้มลงจากก่อนไปหลังเรียงลำดับได้ดังนี้ ภาชนะ A ภาชนะ B ภาชนะ C

จากข้อมูล ระดับน้ำและขนาดของภาชนะทั้ง 3 ใบ ที่เป็นไปได้เป็นดังข้อใด

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

5. ดันวัตถุที่อยู่บนพื้นลื่นและอยู่ชิดกับปลายด้านหนึ่งของสปริง ที่มีค่าคงตัวสปริง k ทำให้สปริงหดเป็น ระยะ x จากตำแหน่งสมดุล จากนั้นปล่อยให้วัตถุเริ่มเคลื่อนที่ดังภาพ

พบว่า เมื่อวัตถุเคลื่อนที่ผ่านตำแหน่งสมดุลของสปริง วัตถุมีอัตราเร็วเป็น $\,v\,$ และเมื่อวัตถุเคลื่อนที่ ต่อไปบนพื้นฝืด จะเคลื่อนที่ได้เป็นระยะทาง s ก่อนจะหยุดนิ่ง

กำหนดให้ g เป็นขนาดของความเร่งใน้มถ่วง

 μ_{k} เป็นสัมประสิทธิ์ความเสียดทานจลน์ระหว่างวัตถุกับพื้นฝืด

วัตถุมีขนาดเล็กมาก จึงไม่พิจารณาขนาดของวัตถุ

ระยะทาง s ที่วัตถุนี้เคลื่อนที่ได้มีค่าเท่าใด

$$1) \frac{kx^2}{2\mu_k g}$$

$$2) \frac{v^2}{\mu_k g}$$

$$3) \frac{v^2}{2kx}$$

4)
$$\frac{v^2}{2\mu_k g}$$

2)
$$\frac{v^2}{\mu_k g}$$

5)
$$\frac{2\mu_k g}{k}$$

mônkey **everydoy**

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

- 6. นักเรียนคนหนึ่งออกแบบขั้นตอนการศึกษาเรื่องการชนแบบยืดหยุ่นของวัตถุที่มวลต่างกัน ดังนี้
 - (1) เตรียมรถทดลองที่เหมือนกัน 2 คัน ติดแถบกระดาษที่ต่ออยู่กับเครื่องเคาะสัญญาณเวลากับรถทั้ง สองคัน และติดดินน้ำมันไว้ที่รถคันที่ 2 ดังภาพ

- (2) วางแท่งเหล็กที่มวลเท่ากันจำนวน 1 แท่งบนรถทั้งสองคัน และวางรถบนพื้นระดับ
- (3) กดสวิตช์ให้เครื่องเคาะสัญญาณเวลาทำงาน และผลักรถคันที่ 1 ให้เข้าชนรถคันที่ 2 สังเกตการเคลื่อนที่ และหาอัตราเร็วก่อนและหลังการชนของรถทั้งสองคัน

จากการออกแบบ พบว่าไม่สามารถใช้ศึกษาเรื่องที่ต้องการได้ จึงเสนอวิธีปรับปรุงดังนี้

- ก. ปรับปรุงขั้นตอน (1) โดยเอาดินน้ำมันออกและติดสปริงแทน
- ข. ปรับปรุงขั้นตอน (2) โดยวางแท่งเหล็กบนรถคันที่ 1 เพียงคันเดียว
- ค. ปรับปรุงขั้นตอน (3) โดยออกแรงผลักรถคันที่ 2 ให้เข้าชนรถคันที่ 1 ที่อยู่นิ่ง

นักเรียนต้องปรับปรุงตามข้อใดถึงใช้ศึกษาเรื่องที่ต้องการได้

กำหนดให้ ไม่มีการสูญเสียพลังงานเนื่องจากแรงเสียดทาน

ดินน้ำมันและสปริงมีมวลน้อยมากเมื่อเปรียบเทียบกับรถทดลอง

1) ก. เท่านั้น

2) ค. เท่านั้น

3) ก. และ ข. เท่านั้น

- 4) ข. และ ค. เท่านั้น
- 5) ก. ข. และ ค.

EXAM1 9 / 35

01

PHYSICS A-Level ฟิสิกส์ มี.ค. 66

7. นักกอล์ฟตีลูกกอล์ฟขึ้นจากพื้น A ในทิศทำมุม กับแนวระดับ พบว่าเมื่อเวลาผ่านไป 4.00 วินาที ลูกกอล์ฟผ่านยอดต้นไม้พอดี ซึ่งต้นไม้อยู่บนพื้น B ที่อยู่สูงกว่าพื้น A 1.00 เมตร และอยู่ห่างออกไป 72.0 เมตร จากจุดตีลูกกอล์ฟ ดังภาพ

กำหนดให้ $\sin \theta = 0.800$ และ $\cos \theta = 0.600$ ไม่คิดแรงต้านอากาศ และไม่คิดขนาดของลูกกอล์ฟ

ยอดต้นไม้อยู่สูงจากพื้น B กี่เมตร

- 1) 7.4
- 2) 10.6
- 3) 16.6
- 4) 17.6
- 5) 18.6

ชื่อ:

EXAM1	10 / 35

m@nkey e**veryddy**

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

วัตถุมวล 0.20 กิโลกรัม อยู่นิ่งบนพื้นลื่น ติดอยู่ที่ปลายด้านหนึ่งของสปริงที่มีค่าคงตัวสปริงเท่ากับ
 นิวตันต่อเมตร และปลายอีกด้านของสปริงยึดติดกับกำแพง

เมื่อดึงวัตถุให้สปริงยืดออกจากตำแหน่งสมดุล แล้วปล่อยให้วัตถุเคลื่อนที่กลับไป-กลับมาแบบฮาร์มอ นิกอย่างง่าย วัตถุจะมีความถี่ค่าหนึ่ง

วัตถุจะเกิดการสั่นพ้องได้ ต้องถูกแรงกระตุ้นด้วยความถี่กี่รอบต่อวินาที และถ้าเพิ่มมวลของวัตถุให้ มากขึ้น คาบของการเคลื่อนที่จะเป็นอย่างไรเมื่อเทียบกับก่อนเพิ่มมวล

	ความถี่ของแรงกระตุ้น	คาบของการเคลื่อนที่เมื่อเพิ่มมวลของวัตถุ
	(รอบต่อวินาที)	(เทียบกับก่อนเพิ่มมวล)
1)	$\frac{0.10}{\pi}$	ରମ୍ଭ
2)	$\frac{0.10}{\pi}$	เพิ่มขึ้น
3)	$\frac{5.0}{2\pi}$	เท่าเดิม
4)	$\frac{5.0}{2\pi}$	ରଜରଏ
5)	$\frac{5.0}{2\pi}$	เพิ่มขึ้น

ชื่อ:

EXAM1 11 / 35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

9. คลื่นผิวน้ำหน้าตรงเคลื่อนที่จากบริเวณ A เข้าสู่บริเวณ B และเกิดการหักเห ซึ่งคลื่นมีมุมตกกระทบ 30 องศา และมุมหักเห heta โดยบริเวณ A สันคลื่นที่อยู่ถัดกันมีระยะห่าง 10 เซนติเมตร และคลื่นมี อัตราเร็ว 25 เซนติเมตรต่อวินาที่

กำหนดให้ $\sin\theta = 0.60$ และ $\cos\theta = 0.80$ เมื่อคลื่นเคลื่อนที่เข้าไปยังบริเวณ B สันคลื่นที่อยู่ถัดกันอยู่ห่างกันกี่เซนติเมตร และคลื่นมีอัตราเร็วกี่ เสนติเมตรต่อวินาที่

	ระยะห่างของสันคลื่นที่อยู่ถัดกัน	อัตราเร็วของคลื่น
	(เซนติเมตร)	(เซนติเมตรต่อวินาที)
1)	8	21
2)	8	30
3)	12	21
4)	12	30
5)	12	40

4	
୩୭	•
- 11 1 1	_

EXAM1	12 / 35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

10. นักเรียนกลุ่มหนึ่งศึกษาเรื่องคลื่นผิวน้ำ โดยทำให้เกิดคลื่นหน้าตรงบนถาดคลื่น พบว่า เกิดคลื่น เคลื่อนที่บนผิวน้ำ ซึ่งหน้าคลื่นเคลื่อนที่ได้ระยะทาง 40 เซนติเมตร ภายในเวลา 1 วินาที วาดภาพแสดงคลื่นผิวน้ำ ณ เวลาหนึ่งได้ดังภาพที่ 1

ภาพที่ 1 แสดงคลื่นผิวน้ำหน้าตรง โดยเส้นตรงแทนสันคลื่น และลูกศรแทนทิศทางการแผ่ของคลื่น จากนั้นนักเรียนวาดภาพหน้าคลื่นใหม่ที่เกิดขึ้นจากหน้าคลื่นเดิมดังภาพที่ 2และระบุว่ารัศมีของหน้า คลื่นวงกลมเล็ก ๆ (เส้นประ) มีขนาดเท่ากับความยาวคลื่นของคลื่นผิวน้ำ

ภาพที่ 2 แสดงหน้าคลื่นใหม่ของคลื่นผิวน้ำและภาพขยายแสดงจุดตัดระหว่างหน้าคลื่นที่นักเรียนวาด

ชื่อ:

EXAM1 13 / 35

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

คลื่นผิวน้ำนี้มีความถี่กี่เฮิรตซ์ และภาพหน้าคลื่นใหม่ที่นักเรียนวาดถูกต้องหรือไม่ เพราะเหตุใด

	ความถี่ (เฮิรตซ์)	ความถูกต้องของภาพหน้าคลื่นใหม่
4)		ไม่ถูกต้อง เพราะหน้าคลื่นใหม่ต้องเกิดจาก
1)	1	การลากเส้นสัมผัสที่เชื่อมหน้าคลื่นวงกลมเล็ก ๆ
0)		ไม่ถูกต้อง เพราะหน้าคลื่นใหม่ต้องเกิดจาก
2)	4	การลากเส้นสัมผัสที่เชื่อมหน้าคลื่นวงกลมเล็ก ๆ
0)		ถูกต้อง เพราะหน้าคลื่นใหม่ต้องเกิดจาก
3)	4	การลากเส้นเชื่อมจุดตัดระหว่างหน้าคลื่นวงกลมเล็ก ๆ
4)		ไม่ถูกต้อง เพราะหน้าคลื่นใหม่ต้องเกิดจาก
4)	5	การลากเส้นสัมผัสที่เชื่อมหน้าคลื่นวงกลมเล็ก ๆ
C \		ถูกต้อง เพราะหน้าคลื่นใหม่ต้องเกิดจาก
5)	5	การลากเส้นเชื่อมจุดตัดระหว่างหน้าคลื่นวงกลมเล็ก ๆ

ชื่อ:

EXAM1	14 / 35

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

- 11. ในการทดลองการแทรกสอดของแสงผ่านสลิตคู่ นักเรียนกลุ่มหนึ่งศึกษาความสัมพันธ์ระหว่าง ตำแหน่งกึ่งกลางของแถบสว่างกลาง (x) และ ระยะห่างระหว่างช่องสลิต (d) ดังนี้
 - (1) เตรียมแผ่นสลิตคู่ 3 แผ่น ที่มีค่า d ต่างกัน เลเซอร์พอยเตอร์สีเขียว และฉาก ให้ฉากห่างจาก แผ่นสลิตคู่ 2.0 เมตร
 - (2) ฉายแสงเลเซอร์ให้ตกกระทบตั้งฉากกับสลิตคู่แผ่นที่ 1 ซึ่งมีค่า d น้อยที่สุด วัดค่า x บนฉาก บันทึกค่า x ที่วัดได้
 - (3) ทำซ้ำโดยเปลี่ยนแผ่นสลิตคู่ให้มีค่า d มากขึ้นตามลำดับ
 - (4) วิเคราะห์ข้อมูลและสรุปผลการทดลอง

พิจารณาข้อความต่อไปนี้

- ก. ข้อมูลค่า x ที่ถูกบันทึก คือ ตำแหน่งที่เกิดการแทรกสอดของแสงแบบหักล้าง
- ข. เมื่อใช้แผ่นสลิตคู่ที่มี $d=100~\mu m$ ค่า x จะมากกว่า เมื่อใช้แผ่นสลิดคู่ที่มี $d=250~\mu m$
- ค. ถ้านักเรียนกลุ่มนี้ตั้งสมมุติฐานว่า "เมื่อค่า d มากขึ้น ค่า x จะมากขึ้นตามไปด้วย" การทดลองนี้สามารถใช้ทดสอบสมมติฐานดังกล่าวได้

ข้อความใดถูกต้อง

			શ્ર
4١	O 10	100	~ .
1)	ก.เง	/T: T1	นน

2) ข. เท่านั้น

3) ค. เท่านั้น

					ש
4)			_	10000	٠ <u>,</u>
4)	١١.	และ	<i>ا</i> ۱.	111,11	มน

5) ข. และ ค. เท่านั้น

EXAM1 15 / 35

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

01

12. นักเรียนคนหนึ่งที่มีการมองเห็นสีเป็นปกติ ทำการสังเกตสีของวัตถุ A ภายใต้แสงสีต่าง ๆ ได้ผลดัง ตาราง

การฉายแสงสี	ผลการสังเกตสีของวัตถุ A
ลายแสงสีแดงไปที่วัตถุ	เห็นวัตถุเป็นสีแดง
ลายแสงสีน้ำเงินไปที่วัตถ ุ	เห็นวัตถุเป็นสีน้ำเงิน
<u>ลายแสงสีเขียวผ่านแผ่นกรองแสงสีน้ำเงินไปที่วัตถุ</u>	เห็นวัตถุเป็นสีดำ
ฉายแสงขาวผ่านแผ่นกรองแสงสีเขียวไปที่วัตถุ	เห็นวัตถุเป็นสีเขียว

กำหนดให้ แผ่นกรองแสงสีที่ใช้มีคุณภาพสูง การผสมแสงสีปฐมภูมิเป็นดังภาพ

จากข้อมูล ถ้ามองวัตถุ A ภายใต้แสงสีขาว จะเห็นเป็นสีใด

1) สีแดง

2) สีขาว

3) สีเหลือง

4) สีแดงม่วง

5) สีน้ำเงินเขียว

.!	
a .	
୩ନ	•
шш	

EXAM1	16 / 35

m@nkey everyddy

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

13. รุ้งเกิดจากการหักเหของแสงอาทิตย์ผ่านหยดน้ำ โดยแสงขาวจากดวงอาทิตย์ที่ผ่านเข้าสู่หยดน้ำจะ ถูกกระจายออกเป็นสีต่าง ๆ แล้วสะท้อนภายในหยดน้ำ ออกสู่อากาศเข้าสู่ตาผู้สังเกต

พิจารณารุ้งปฐมภูมิที่เกิดการจากการสะท้อนของแสงภายในหยดน้ำ 1 ครั้ง แล้วออกสู่อากาศดังภาพ อย่างง่ายซึ่งพิจารณาที่แสงเพียง 2 สี เท่านั้น

ในการหักเหของแสงอาทิตย์ที่เข้าสู่หยดน้ำ เปรียบเทียบมุมหักเหของแสงสี A และสี B และ เปรียบเทียบดรรชนีหักเหของน้ำสำหรับแสงสี A และ B ได้เป็นอย่างไร

	มุมหักเหของแสงสี	ดรรชนีหักเหของน้ำสำหรับแสงสี
1)	A มีค่ามากกว่า	A มีค่ามากกว่า
2)	A มีค่ามากกว่า	B มีค่ามากกว่า
3)	B มีค่ามากกว่า	A มีค่ามากกว่า
4)	B มีค่ามากกว่า	B มีค่ามากกว่า
5)	B มีค่ามากกว่า	มีค่าเท่ากัน

ชื่อ:

EXAM1 17 / 35

A-Level ฟิสิกส์ มี.ค. 66

14. ลวดโลหะชนิดหนึ่งมีความต้านทานต่อความยาวเท่ากับ 0.50 โอห์มต่อเมตร นำลวดชนิดนี้มีจำนวน
2 เส้น ที่ยาวเส้นละ 50 เซนติเมตร มาต่อเข้ากับตัวต้านทานขนาด1.8 โอห์ม และแบตเตอรี่ขนาด
1.5 โวลต์ ที่มีความต้านทานภายใน 0.20 โอห์ม ดังภาพ

อิเล็กตรอนที่ผ่านพื้นที่หน้าตัดของตัวต้านทาน 1.8 โอห์ม ในเวลา 1.6 วินาที มีจำนวนกี่อิเล็กตรอน กำหนดให้ อิเล็กตรอนมีขนาดประจุ $e=1.6\times 10^{-19}~{
m C}$

1) 5.0×10^{18}

2) 6.0×10^{18}

3) 7.0×10^{18}

4) 7.5×10^{18}

5) 1.5×10^{19}

ชื่อ:

EXAM1 18 / 35

ข้อสอบ > A-Level ฟิสิกส์

m@nkey e**veryddy**

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

- 15. นักเรียนต้องการศึกษาชนิดของแรงระหว่างประจุไฟฟ้าของคู่วัตถุที่ทำจากวัสดุต่างชนิดกัน โดยมี ขั้นตอนการทดลอง ดังนี้
 - (1) นำผ้าฝ้ายถูกับแผ่นเทฟลอน และนำผ้าฝ้ายอีกผืนถูกับท่อแก้วที่แขวนอยู่
 - (2) นำแผ่นเทฟลอนเข้าใกล้ท่อแก้ว โดยหันด้านที่ถูกับผ้าฝ้ายเข้าใกล้กัน ดังภาพ สังเกตและบันทึกผล
 - (3) ทำซ้ำข้อ 1-2 โดยเปลี่ยนท่อแก้วเป็นท่อพีวีซี ผลการทดลองเป็นดังตาราง

คู่วัตถุที่เข้าใกล้กัน	ผลการนำวัตถุเข้าใกล้กัน
ท่อแก้ว และ แผ่นเทฟล่อน	ดึงดูดกัน
ท่อพีวีซี และ แผ่นเทฟลอน	ผลักกัน

ลำดับการสูญเสียอิเล็กตรอนเมื่อนำวัสดุแต่ละชนิดมาขัดถูกัน เรียงลำดับได้ดังนี้

1. แก้ว 2. ผ้าฝ้าย 3. พีวีซี 4. เทฟลอน

โดยวัสดุที่อยู่ลำดับก่อนจะมีแนวโน้มการเสียอิเล็กตรอนมากกว่าวัสดุที่อยู่ลำดับหลัง

ชื่อ:

A-Level ฟิสิกส์ มี.ค. 66

ข้อใดระบุตัวแปรต้น และแผนภาพแสดงประจุไฟฟ้าของการทดลองได้ถูกต้อง

	ตัวแปรงต้นการทดลอง	แผนภาพแสดงประจุไฟฟ้า
1)	ผลการนำวัตถุเข้าใกล้กัน	
2)	ผลการนำวัตถุเข้าใกล้กัน	ท่อแก้ว แผ่นเทฟลอน
3)	ชนิดของวัตถุที่นำแผ่นเทฟลอนเข้าใกล้	ท่อพีวีซี ×× แผ่นเทฟลอน
4)	ชนิดของวัตถุที่นำแผ่นเทฟลอนเข้าใกล้	 ท่อแก้ว × แผ่นเทฟลอน
5)	ชนิดของวัตถุที่นำแผ่นเทฟลอนเข้าใกล้	ท่อพีวีซี ×× แผ่นเทฟลอน

ชื่อ:	(เบอร์โทร:	
-------	------------	--

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

16. ความร้อนเหลือทิ้งที่เกิดขึ้นในโรงไฟฟ้าและโรงงานอุตสาหกรรมสามารถนำกลับมาใช้ประโยชน์ได้ โดยแนวทางหนึ่ง คือ การนำมาผลิตไฟฟ้าด้วยเครื่องผลิตไฟฟ้าเทอร์มออิเล็กทริก ซึ่งสามารถผลิต ไฟฟ้าได้เมื่อมีความแตกต่างอุณหภูมิระหว่างด้านร้อนและด้านเย็น ดังแผนภาพ ความร้อนที่รับเข้าไป จะทำให้เกิดความต่างศักย์ ส่งผลให้เกิดการเคลื่อนที่ของอิเล็กตรอนระหว่างด้านร้อน ด้านเย็น และ ผ่านอุปกรณ์ไฟฟ้า

จากข้อมูล พิจารณาข้อความต่อไปนี้

- ก. เมื่อด้านร้อนและด้านเย็นมีอุณหภูมิเท่ากัน จะทำให้เกิดกระแสไฟฟ้าผ่านอุปกรณ์ไฟฟ้า
- ข. ถ้าประสิทธิภาพของเครื่องผลิตไฟฟ้าเทอร์มออิเล็กทริก (η) แปรผันตรงกับผลต่างอุณหภูมิ ระหว่างด้านร้อน และด้านเย็น (ΔT) การทำให้ ΔT มีค่ามากขึ้น จะส่งผลให้ η มีค่ามากขึ้น
- ค. ถ้าเครื่องผลิตไฟฟ้าเทอร์มออิเล็กทริกหนึ่งมีกำลังไฟฟ้า 2.0 กิโลวัตต์ จะจ่ายพลังงานไฟฟ้าได้
 10 กิโลจูลในช่วงเวลา 5.0 วินาที

ข้อความใดถูกต้อง

1) ข. เท่านั้น

- 2) ค. เท่านั้น
- 3) ก. และ ข. เท่านั้น
- 4) ก. และ ค. เท่านั้น
- 5) ข. และ ค. เท่านั้น

EXAM1 21 / 35

A-Level ฟิสิกส์ มี.ค. 66

17. ยิงโปรตอนด้วยความเร็วขนาด 2.5×10^3 เมตรต่อวินาที เข้าไปในบริเวณที่มีสนามแม่เหล็กขนาด สม่ำเสมอ 0.20 เทสลา โดยความเร็วของโปรตอนมีทิศทางตั้งฉากกับสนามแม่เหล็กซึ่งมีทิศทางพุ่ง ออกตั้งฉากกับระนาบกระดาษ ดังภาพ

โปรตอนจะมีแนวการเคลื่อนที่อย่างไร และขนาดของแรงแม่เหล็กที่กระทำต่อโปรตอนมีค่ากี่นิวตัน กำหนดให้ โปรตอนมีขนาดประจุ $e=1.6\times 10^{-19}~{
m C}$

	แนวการเคลื่อนที่ของโปรตอน	ขนาดของแรงแม่เหล็ก (นิวตัน)
1)	เคลื่อนที่เบนขึ้น	8.0×10^{-17}
2)	เคลื่อนที่เบนขึ้น	2.0×10^{-15}
3)	เคลื่อนที่เบนลง	1.3×10 ⁻²³
4)	เคลื่อนที่เบนลง	8.0×10^{-17}
5)	เคลื่อนที่เบนลง	2.0×10^{-15}

ชื่อ:

|--|

m@nkey e**veryddy**

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

18. มอเตอร์ไฟฟ้าอย่างง่ายสร้างจากขดลวดทองแดงระนาบรูปสี่เหลี่ยมผืนผ้าที่มีความกว้าง a ความ ยาว b พันจำนวน N รอบ วางอยู่ในสนามแม่เหล็กสม่ำเสมอ $ar{B}$ ต่อกับแบตเตอรี่ด้วยคอมมิวเท เตอร์วงแหวนผ่าซีกและแปรงสัมผัส

ถ้าขณะหนึ่งระนาบของขดลวดวางตัวทำมุม heta กับสนามแม่เหล็ก โดยมีกระแสไฟฟ้า I ผ่านขดลวด ในทิศทาง ดังภาพ

EXAM1 23 / 35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

กราฟใดแสดงความสัมพันธ์ระหว่างโมเมนต์ของแรงควบคู่ M ที่กระทำต่อขดลวด กับมุม heta ได้ถูกต้อง

กำหนดให้ ไม่คิดผลของการเกิดอีเอ็มเอฟกลับ (back emf) ในขดลวด โมเมนต์ทวนเข็มนาฬิกามีค่าเป็นบวก โมเมนต์ตามเข็มนาฬิกามีค่าเป็นลบ

EXAM1 24 / 35

ข้อสอบ > A-Level ฟิสิกส์

m@nkey e**veryddy**

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

19. นักเรียนคนหนึ่งต้องการสร้างคลื่นแม่เหล็กไฟฟ้าโดยการนำขดลวดทองแดงเคลือบฉนวน 2 ขด มาพัน รอบแกนเหล็กเพื่อทำหน้าที่เป็นหม้อแปลง โดยให้จำนวนรอบของขดลวด Y มากกว่าจำนวนรอบ ของขดลวด X มาก ๆ ให้ปลายขดลวด X ต่อกับแบตเตอรี่ และให้ปลายของขดลวด Y ต่อกับ ตัวนำทรงกลม Z และ Z' ที่อยู่ห่างกันเล็กน้อย และมีแผ่นโลหะ L กับ L' ต่อกับตัวนำทรงกลม ดัง ภาพ

อุปกรณ์นี้จะสามารถสร้างคลื่นแม่เหล็กไฟฟ้าอย่างต่อเนื่อง ได้หรือไม่ เพราะเหตุใด

- 1) ไม่ได้ เพราะกระแสไฟฟ้าจากแบตเตอรี่ไม่เปลี่ยนแปลงตามกาลเวลา
- 2) ไม่ได้ เพราะมีกระแสไฟฟ้าคงตัวเคลื่อนที่จากขดลวด ${f X}$ ไปขดลวด ${f Y}$
- 3) ไม่ได้ เพราะจำนวนขดลวด \mathbf{Y} ต้องน้อยกว่าจำนวนขดลวด \mathbf{X}
- 4) ได้ เพราะจะเกิดอีเอ็มเอฟเหนี่ยวนำขดลวด Y อย่างต่อเนื่อง
- 5) ได้ เพราะกระแสไฟฟ้าที่ผ่านขดลวด X ทำให้เกิดสนามแม่เหล็กที่มีขนาดคงตัว

EXAM1 25 / 35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

20. นำสาร X ในสถานะของแข็ง มวล 50.0 กรัม อุณหภูมิ -10.0 องศาเซลเซียส ใส่ในสาร X ซึ่งอยู่ ในสถานะของเหลว มวล 100.0 กรัม อุณหภูมิ 20 องศาเซลเซียส

เมื่อตั้งทิ้งไว้จนเกิดสมดุลความร้อน สาร X จะมีอุณหภูมิกี่องศาเซลเซียส และสาร X ในสถานะ ของแข็งจะหลอมเหลวไปทั้งหมดกี่กรัม

กำหนดให้ ไม่มีการถ่ายโอนความร้อนให้กับสิ่งแวดล้อมภายนอก

สาร X มีจุดเยือกแข็ง $T_f = -10~{
m ^{\circ}C}$

สาร X มีความร้อนแฝงของการหลอมเหลว $L=2.0 imes 10^5~\mathrm{J/kg}$

สาร ${f X}$ ในสถานะของเหลว มีความร้อนจำเพาะ $c_{\scriptscriptstyle L}=3.0 imes 10^3~{
m J/kg\cdot K}$

สาร ${f X}$ ในสถานะของแข็ง มีความร้อนจำเพาะ $c_s=1.5 imes10^3~{
m J/kg\cdot K}$

	อุณหภูมิของสาร X	มวลของสาร X ในสถานะของแข็ง
	เมื่อเกิดสมดุลความร้อน (°C)	ที่หลอมเหลว (g)
1)	-13.0	0.0
2)	-10.0	5.0
3)	-10.0	45.0
4)	10.0	0.0
5)	10.0	50.0

ชื่อ:

EXAM1	26 / 35

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

21. แก๊สอุดมคติชนิดหนึ่งบรรจุอยู่ในภาชนะปิดใบหนึ่งที่มีปริมาตรคงตัว โดยแก๊สมีอุณหภูมิ T_1 เมื่อทำ ให้อุณหภูมิของแก๊สเปลี่ยนแปลงไปจากเดิม พบว่า อัตราเร็วอาร์เอ็มเอสของโมเลกุลแก๊สเท่ากับ 2 เท่า ของค่าเดิม

พลังงานจลน์เฉลี่ยของโมเลกุลแก๊สหลังจากเปลี่ยนแปลงอุณหภูมิดังข้างต้น มีค่าเท่าใดในรูป ความสัมพันธ์กับ T_1

กำหนดให้

อุณหภูมิ $T_{\scriptscriptstyle 1}$ เป็นอุณหภูมิสัมบูรณ์

 $k_{\scriptscriptstyle B}$ เป็นค่าคงตัวใบลต์ชมันน์

ไม่มีการถ่ายโอนความร้อนระหว่างระบบกับสิ่งแวดล้อม

1)
$$\frac{3}{8}k_{B}T_{1}$$

$$2) \ \frac{3}{4} k_B T_1$$

3)
$$3k_BT_1$$

4)
$$6k_{B}T_{1}$$

5)
$$12k_BT_1$$

EXAM1 27 / 35

01

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

22. เอียงกาน้ำชาที่ฝามีรูเปิดโดยให้ปากพวย ณ ตำแหน่ง a ซึ่งมีพื้นที่หน้าตัด A ทำมุม θ กับแนว ระดับระยะทางจากผิวน้ำชา ณ ตำแหน่ง b ถึงตำแหน่ง c เท่ากับ H และระยะทางจากตำแหน่ง a ถึงตำแหน่ง c เท่ากับ a

อัตราการใหลของน้ำชาที่ออกจากปากพวย ณ ตำแหน่ง a มีค่าประมาณเท่าใด กำหนดให้ น้ำชาใหลอย่างต่อเนื่องและสม่ำเสมอ อัตราการลดลงของระดับน้ำชาในกาช้ามาก ๆ ประมาณเป็นศูนย์ g เป็นขนาดของความเร่งโน้มถ่วง

1)
$$\frac{\sqrt{2g(H-L\cos\theta)}}{A}$$

$$2) \frac{\sqrt{2g(H - L\sin\theta)}}{A}$$

3)
$$A\sqrt{2g(H-L)}$$

4)
$$A\sqrt{2g(H-L\cos\theta)}$$

5)
$$A\sqrt{2g(H-L\sin\theta)}$$

EXAM1	28 / 35

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

23. วัตถุดำอันหนึ่งแผ่คลื่นแม่เหล็กไฟฟ้าความถี่ต่าง ๆ กัน โดยคลื่นแม่เหล็กไฟฟ้าความถี่ f ประกอบด้วยโฟตอนที่มีพลังงาน $\mathcal{E}=hf$ ซึ่ง h เป็นค่าคงตัวพลังค์

พิจารณาข้อความต่อไปนี้

- ก. คลื่นแม่เหล็กไฟฟ้าความถี่ 2.0×10^{15} เฮิรตซ์ สามารถแผ่ออกมาโดยมีพลังงานรวมเป็น $(6.0 \times 10^{15})h$ จูล
- ข. โฟตอนของคลื่นแม่เหล็กไฟฟ้าความถี่ 2.0×10^{15} เฮิรตซ์ มีพลังงานมากกว่า โฟตอนของคลื่น แม่เหล็กไฟฟ้าความถี่ 4.0×10^{15} เฮิรตซ์
- ค. เมื่อคลื่นแม่เหล็กไฟฟ้ามีเลขควอนตัมมากขึ้น พลังงานของโฟตอน arepsilon จะมีค่ามากขึ้น

ข้อความใดถูกต้อง

1) ก. เท่านั้น

2) ค. เท่านั้น

3) ก. และ ข. เท่านั้น

- 4) ก. และ ค. เท่านั้น
- 5) ข. และ ค. เท่านั้น

EXAM1 29 / 35

01

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

24. อนุภาค A และ B กำลังเคลื่อนที่เป็นแนวตรง อนุภาค B มีมวลเป็นครึ่งหนึ่งของอนุภาค A และมี พลังงานจลน์เป็น 8 เท่าของอนุภาค A

อัตราส่วนระหว่างความยาวคลื่นเดอบรอยล์ของอนุภาค B ต่ออนุภาค A เป็นเท่าใด

1) $\frac{1}{4}$

2) $\frac{1}{2}$

3) $\frac{1}{1}$

4) $\frac{2}{1}$

5) $\frac{2}{1}$

m@nkey e**veryddy**

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

25. $^{184}_{82}{
m Pb}$ และ $^{40}_{17}{
m Cl}$ เกิดการสลายแล้วทำให้ได้ ${f X}$ และ ${f Y}$ ตามลำดับ ดังสมการ

$$^{184}_{82}$$
Pb $\to X + {}^{4}_{2}$ He

40
Cl \rightarrow Y + $^{0}_{-1}e$ + \overline{v}_{e}

นิวเคลียสใดมีเสถียรภาพน้อยกว่า และนิวเคลียสนั้นมีพลังงานยึดเหนี่ยวกี่จูล

กำหนดให้ นิวเคลียสของธาตุ X มีส่วนพร่องมวล เท่ากับ 2.514×10^{-27} กิโลกรัม นิวเคลียสของธาตุ Y มีส่วนพร่องมวล เท่ากับ 6.129×10^{-28} กิโลกรัม c เป็นอัตราเร็วแสงในสุญญากาศ

	นิวเคลียสที่มีเสถียรภาพน้อยกว่า	พลังงานยึดเหนี่ยว(จูล)
1)	X	$\frac{(2.514 \times 10^{-27} kg)c^2}{180}$
2)	X	$(2.514 \times 10^{-27} kg)c^2$
3)	Y	$\frac{(6.129 \times 10^{-28} kg)c^2}{180}$
4)	Y	$\frac{(6.129 \times 10^{-28} kg)c^2}{40}$
5)	Y	$(6.129 \times 10^{-28} kg)c^2$

EXAM1 31 / 35

A-Level ฟิสิกส์ มี.ค. 66

ตอนที่ 2: แบบระบายคำตอบที่เป็นตัวเลข

จำนวน 5 ข้อ (ข้อที่ 26 – 30) ข้อละ 5 คะแนน รวม 25 คะแนน

26. ปล่อยวัตถุหนึ่งให้ตกในบริเวณที่มีสนามโน้มถ่วงคงตัวใกล้ผิวโลก พบว่า วัตถุตกถึงพื้นในเวลา 1.0 วินาที เมื่อวัตถุนี้ถูกปล่อยจากระดับความสูงเดียวกันใกล้ผิวดาวเคราะห์ A พบว่า วัตถุตกถึงพื้นใน เวลา 5.0 วินาที

ถ้ารัศมีดาวเคราะห์ A มีค่า 10 เท่าของรัศมีโลก มวลดาวเคราะห์ A จะเป็น<u>กี่เท่า</u>ของมวลโลก กำหนดให้ การเคลื่อนที่ของวัตถุพิจารณาเฉพาะผลจากแรงโน้มถ่วงเท่านั้น

ชื่อ:

EXAM1	32 / 35

m@nkey e**veryddy**

01

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

27. เรือลำหนึ่งจอดอยู่ในบริเวณที่มีหน้าผาและเปิดหวูด พบว่า คนบนเรือได้ยินเสียงสะท้อนกลับมาจาก หน้าผา จากนั้นเรือเคลื่อนที่ออกห่างจากหน้าผาไปจอดอีกตำแหน่งหนึ่งและเปิดหวูดอีกครั้ง พบว่า ช่วงเวลาตั้งแต่เปิดหวูดจนกระทั่งได้ยินเสียงสะท้อนในครั้งหลังนี้ นานกว่าที่ตำแหน่งแรก 4.0 วินาที

ระยะห่างระหว่างเรือกับหน้าผาในตอนเปิดหวูดครั้งที่ 2 มากกว่าตอนเปิดหวูดครั้งที่ 1 <u>กี่เมตร</u> กำหนดให้

- อุณหภูมิของอากาศเท่ากับ 15.0 องศาเซลเซียส
- อัตราเร็วเสียงในอากาศที่อุณหภูมิ 0 องศาเซลเซียส เท่ากับ
 - 331.0 เมตรต่อวินาที และ อัตราเร็วเสียงจะเพิ่มขึ้น
 - 0.6 เมตรต่อวินาที ต่ออุณหภูมิที่เพิ่มขึ้นทุก ๆ 1 องศาเซลเซียส

ชื่อ:

EXAM1 33 / 35

A-Level ฟิสิกส์ มี.ค. 66

28. ประจุ -2.00 ไมโครคูลอมบ์ กำลังเคลื่อนที่ภายในสนามไฟฟ้าสม่ำเสมอ \vec{E} ขนาด 5.00 โวลต์ต่อ เมตร จากจุด A ไปยังจุด B ซึ่งอยู่ห่างกัน 10.0 เซนติเมตร ดังภาพ ขณะผ่านจุด A ประจุมีพลังงาน จลน์ 10.0 ไมโครจูล

พลังงานจลน์ของประจุขณะผ่านจุด B มีค่ากี่<u>ไมโครจูล</u>

ชื่อ:

m@nkey e**veryddy**

A-Level ฟิสิกส์ มี.ค. 66

PHYSICS

29. ผูกภาชนะด้วยเชือก 2 เส้น แล้วแขวนกับเพดาน ซึ่งก้นภาชนะมีพื้นที่ 1.00×10^{-2} ตารางเมตร และ ภายในภาชนะบรรจุน้ำมันที่มีระดับสูงจากก้นภาชนะ 10.0 เซนติเมตร ดังภาพ

ผลรวมของแรงที่ของไหลกระทำต่อกันภาชนะทั้งภายในและภายนอกมีขนาด<u>กี่นิวตัน</u>

กำหนดให้

ความดันบรรยากาศ ณ ตำแหน่งที่ผูกภาชนะ $P_0=1.010\times 10^5\,\mathrm{Pa}$ ความหนาแน่นของน้ำมัน $\rho=800\;\mathrm{kg/m^3}$ ขนาดของความเร่งใน้มถ่วง $g=9.80\;\mathrm{m/s^2}$

ชื่อ:

EXAM1 35 / 35

PHYSICS

A-Level ฟิสิกส์ มี.ค. 66

30. กราฟแสดงจำนวนนิวเคลียสของธาตุกัมมันตรังสี A และ B ที่เหลืออยู่เมื่อเวลาผ่านไปจากเริ่มต้นเป็น ดังนี้

เมื่อเวลาผ่านไป 6 ชั่วโมงจากเริ่มต้น จำนวนนิวเคลียสของ A ที่เหลืออยู่เป็น<u>กี่เท่า</u>ของจำนวน นิวเคลียส B ที่เหลืออยู่

กำหนดให้ ขณะเริ่มต้น จำนวนนิวเคลียส A และ B เท่ากับ $N_{
m 0}$

ชื่อ: