Pipeline Practice Exercises

Consider our instruction-execution pipeline *with forwarding*: Each of the following 6 questions is independent.

- a- When the d-box decodes the instruction 'l.d f6,-24(r2)', it sends the following 3 information to the x-box: ____ add signal ____, __ immediate -24 ____, register r2 value ___.
- b- When the d-box decodes the instruction 'mul.d f6, f2, f4', it sends the following 3 information to the x-box: oppcode multiply , value of f2 , value of f4 . The w-box will receive the following 2 information: result of multiplication , id of f6 for the same instruction.
- c- When the m-box processes the instruction 'l.d f6, -4(r4)', it receives the following information: the address 4-r4 , load signal from the x- box and it sends the following information: data from memo address r4-4 , id of f6 to the w-box box.
- d- When the pipeline is processing the instruction 's.d f8, 4(r2), the **m-box** receives 2 different types of values. Indicate type & value for each: $\underline{\text{memory address 4+r2}}$, $\underline{\text{data/value at f8}}$.
- e- In the pipeline, the _____ f-box increments the PC for each and every instruction while the ____ d-box ____ modifies the PC only if a branch will be executed.
- f- Consider the following 2 independent sets of instructions:

	1	2	3	4	5	6	
add r1, r1, 8	f	d	х	n	W		
l.d f8, 4(r1)		f	d	Χ	m	W	
	1	2	3	4	5	6	7
l.d f8, 4(r1)	f	d	Х	m	W		
add f6, f8, f4		f	d	S	x	n	W

There is data dependency within each set of instructions; Explain briefly (1-2 sentences) each dependency and how it affects the data flow in the pipeline.

Assume that the following are the only control signals: <x-box> no-op, add, mult, shift; <m-box> no-op, load, and store; <w-box> no-op, write-back. Consider the following program

1 2 3 4 5 6 7 8 9 0 fdxmw 1.d f6,-8(r2) f8,-16(r3) 1.d fdxmw mul.df10,f6,f8 f d x m w f10,f10,16 f dxmw s.d f10,24(r4) fdxm

- a) Write down the 4 control signals received by the x-box during cycles 4-7. Ans $_{add}$ $_{noop}$ $_{multiply}$ $_{shift}$
- b) Write down the 4 control signals received by the m-box during cycles 4-7. Ans $\frac{\log d}{\log d} = \frac{\log d}{\log d} = \frac{\log d}{\log d} = \frac{\log d}{\log d}$
- c) Write down the 4 control signals received by the w-box during cycles 4-7. Ans $\frac{1000}{1000}$ writeback writeback $\frac{1000}{1000}$
- d) Which box initiates the control signals for other boxes working on the same instruction? d-box