計算機方式論

第6章 データ形式 - 文字の表現

1

文字の表現

- ◆ 数字、カナ文字、アルファベットの表現:文字データを用いる6~8ビットで表現
- ◆各文字とビットパターンの対応付け コード化 文字コード表で表す
- ◆コード化の様々な方式 ISOコード、JISコード、ASCIIコード、 EBCDICコード

情報交換用7単位符号(7bits)

♦ISO⊐—F

国際標準化機構(International Standardization Organization, ISO)で定めた国際基準の文字コード

- ◆この規格を基に、各国の基準 が規格化されている
- ◆表は**国際基準版IRV**の文字 コード(1967年の規格)
- ◆現在の国際基準版

ISO/IEC646はASCIIと完全一致 文字コード7ビット

左側3ビット 右側4ビット 列番号 行番号

ISO-国際標準化機構の**国際基準版** IRV(International Reference Version)

	•								
			左	側	3	ピ	ツ	ŀ	
		0	1	2	3	4	5	6	7
	0	NUL	DLE	SP	0	@	Р	,	p
右	1	SOH	DC1	. !	1	Α	Q	a	q
	2	STX	DC2	. "	2	В	R	b	r
側	3	ETX	DC3	#	3	С	S	С	S
	4	EOT	DC4	a	4	D	Τ	d	t
4	5	ENQ	NAK	. %	5	Ε	U	е	u
	6	ACK	SYN	&	6	F	V	f	v
ピ	7	BEL	ETB	-	7	G	W	g	w
	8	BS	CAN	(8	Н	X	h	x
ツ	9	HT	EM)	9	I	Y	i	У
	Α	LF	SUB	*	:	J	Z	j	Z
卜	В	VT	ESC	+	;	K	[k	{
	С	FF	FS	,	<	L	/	1	
	D	CR	GS	-	=	M]	m	}
	Е	SO	RS		>	Ν	^	n	-
	F	SI	US	/	?	О	_	О	DEL

情報交換用7単位符号(7bits)

♦ISO⊐—F

0,1列及びSP,DELは制御文字である。SP(空白文字)、NUL(空白、媒体の空きを埋める)、BEL(ベル、ベルを鳴らす)、LF(改行)、FF(書式送り)、CR(復帰)、SO(シフトアウト)、SI(シフトイン)、ESC(エスケープ)、DEL(抹消)等。

◆コード21~7Eは図形文字である。SPは図形文字でもある。

文字SP 0100000 20_{16}

文字K 1001011 4B₁₆ ISO-国際標準化機構の**国際基準版** IRV(International Reference Version)

情報交換用8単位符号(8bits)

◆拡張2進化10進コードーEBCDIC英小文字コード

(Extended Binary Coded Decimal Interchange Code)

					右	左		則 4		ビッ		F					
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
	0	NUL	DLE	DS		SP	&	-						{	}	/	0
	1	SOH	DC1	SOS		0		/		a	j	\sim		Α	J		1
右	2	STX	DC2	FS	SYN	Γ				b	k	S		В	K	S	2
	3	ETX	TM			J				С	1	t		C	L	Τ	3
側	4	PF	RES	BYP	PN					d	m	u		D	M	U	4
	5	НТ	NL	LF	RS	٠				е	n	v		Е	Ν	V	5
4	6	LC	BS	ETB	UC					f	О	w		F	О	W	6
	7	DEL	IL	ESC	EOT					g	p	x		G	Ρ	Χ	7
Ľ	8	GE	CAN				_			h	q	У		Н	Q	Y	8
	9	RLF	EM							i	Γ	z		I	R	Z	9
ッ	Α	SMM	CC	SM		¢	!		:								LVM
	В	VT	CU1	CU2	CU3		\$,	#								
卜	C	FF	IFS		DC4	<	*	%	@								
	D	CR	IGS	ENQ	NAK	()	_	,								
	Е	SO	IRS	ACK		+	;	>	=								
	F	SI	IUS	BEL	SUB		\neg	?	39				0				E0

日本語文字コード

- ◆2バイトから成り、**漢字**等を表現
- ◆JIS漢字コード(JIS X 0208):情報交換用符号化漢字集合
- ◆シフトJISコード:パソコン中心のコード
- ◆Unicode(JIS X 0221):国際符号化文字集合、ISO-10464-1のUCS-2、Windows NT,IABA,Macintoshで採用
- ◆EUCコード: AT&Tの定めたコード、Unixで使われる

10

データの属性

◆命令語とデータ語の区別:

計算機の処理サイクルで決まる。

フェッチサイクル ⇒ 命令語

実行サイクル ⇒ データ語

データの種別の指定方式

◆データの種別:

2進表現・10進表現 固定小数点・浮動小数点等の区別をいかに行うか?

- ①命令コード方式
- ②ディスクリプタ方式
- ③タグ方式

12

①命令コード方式

◆命令コードで、データの種別を指定。アドレス部で直 接データを指す。

命令の数:

2進表現・10進表現 固定小数点,浮動小数点 のデータ種別分必要!

固定小数点2進加算 固定小数点10進加算 浮動小数点2淮加复 浮動小数点10進加算

命令コード アドレス部

- ◆現在の大多数の計算機で使用
- ◆演算制御が簡単で、高速化に適する。 → 010110 ·····
- ◆ データの種別が増えると命令数も増える。
- ◆対象とするデータの種別が異っても、一般にそれを検 出できない。

②ディスクリプタ方式

◆命令のアドレス部···データのディスクリプタ (descriptor)を指す。

ディスクリプタがデータの種別 とデータの番地を記述する。

- ◆命令の種類が少なくて済む。 異なる種別のデータ の演算も同じ命令 で可能。
- ◆ ディスクリプタのアクセス のため1回余分な 主記憶アクセスが必要。

命令コード アドレス部

ディスクリプタ

2 進・10進数表現 固定・浮動小数点

データ

0 1 0 1 1 1 0 0

14

③タグ方式

- ◆命令···タグを指す。 タグがデータの種別 とデータの値を記述。
- ◆ ディスクリプタ方式と同じで 命令の種類が少なくて済む。 異なる種別のデータの演算も 同じ命令で可能。
- ◆ 主記憶アクセスは少ない (ディスクリプタ方式と比べて)。
- **◆ タグ**中に**データ種別とデータ値**をもつためタグ が**長く**なる。

命令 命令コード アドレス部 タグ ・ ータ種別 01011100・・・・・ データの値

15

演習1-データ形式

- (1) 整数形コンピュータにおいて、2進数5桁の符号を 考慮した数値データを考える。
- (a) 正の整数15の2進数表示を書け。
- (b) 負の整数-15の「1の補数による負数表現」の2進 数表示を書け。
- (c) 負の整数-15の「2の補数による負数表現」の2進 数表示を書け。

16

演習2-データ形式

- (2) 2進数5ビットのXとYは、先頭が符号ビットの正または負の整数を表す。
 - ①XとYとの2進数加算(X)₂+(Y)₂を行い、結果を書け。
 - ②このとき、循環桁上げが必要なら、手順と結果を書け。
 - ③この結果を吟味せよ。この際、符号ビットに関する桁上げを 考慮せよ。2進数加算(X)₂+(Y)₂がオーバーフローのときは、 オーバーフローと書け。

ただし、符号を考慮した値は、「1の補数による負数表現」をとるとする。例えば、X=11001のとき、値-6を表す。

- (a) X=00101, Y=01001
- (b) X=00110, Y=10110
- (c) X=11101, Y=10110
- (d) X=10111, Y=10110

17

演習4-データ形式

(4) 11ビットを使った浮動小数点表現を考える。 下の図の浮動小数点表現の表す値の2進数表現と10進 数表現を書け。

1 1001 111000

ただし、左端の1ビットが仮数部の符号、その右隣の4ビットが指数部、残りの6ビットが仮数部を表す。

指数部、仮数部ともに2進数で表す。基数は、2進数とする。**負の仮数**は、符号と絶対値表現で表す。

仮数部は、正規化したうえでけち表現がとられている。 指数部は、バイアス値7とする。 演習3-データ形式

- (3) 整数形コンピュータで2進数6桁のデータにおいて、
- (a) 整数31の2進数表示を書け。
- (b) 負の整数-31の「符号と絶対値」による2進数表示を書け。
- (c) **負の整数-31**の「**1の補数**」による**2進数表示**を書け。
- (d) 負の整数-31の「2の補数」による2進数表示を書け。
- (e) 「2の補数」を使ったとき表せる整数値の範囲を書け。

18

演習5-データ形式

- (5) データ形式に関し、次の問いに答えよ。
- (1) 数値表現には**固定小数点**方式と**浮動小数点**方式とがある。これらを概説せよ。
- (2) 浮動小数点方式の正規表現とけち表現を述べよ。
- (3) 浮動小数点方式のバイアス表現を述べよ。

20