CPSC 340: Machine Learning and Data Mining

L1 regularization & linear Classifiers
Bonus slides

L1-Regularization as a Feature Selection Method

Advantages:

- Deals with conditional independence (if linear).
- Sort of deals with collinearity:
 - Picks at least one of "mom" and "mom2".
- Very fast with specialized algorithms.

Disadvantages:

- Tends to give false positives (selects too many variables).
- Neither good nor bad:
 - Does not take small effects.
 - Says "gender" is relevant if we know "baby".
 - Good for prediction if we want fast training and don't care about having some irrelevant variables included.

"Elastic Net": L2- and L1-Regularization

To address non-uniqueness, some authors use L2- and L1-:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2 + \frac{\lambda_2}{2} ||w||^2 + \frac{\lambda_1}{2} ||w||_1$$

- Called "elastic net" regularization.
 - Solution is sparse and unique.
 - Slightly better with feature dependence:
 - Selects both "mom" and "mom2".
- Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

- To remove false positives, some authors add a debiasing step:
 - Fit 'w' using L1-regularization.
 - Grab the non-zero values of 'w' as the "relevant" variables.
 - Re-fit relevant 'w' using least squares or L2-regularized least squares.

- A related use of L1-regularization is as a filtering method:
 - Fit 'w' using L1-regularization.
 - Grab the non-zero values of 'w' as the "relevant" variables.
 - Run standard (slow) variable selection restricted to relevant variables.
 - Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

- Regularizing | w_i|² selects all features.
- Regularizing | w_i | selects fewer, but still has many false positives.

• What if we regularize $|w_j|^{1/2}$ instead?

- Less need for debiasing, but it's not convex and hard to minimize.
- There are many non-convex regularizers with similar properties.
 - L1-regularization is (basically) the "most sparse" convex regularizer.

Can we just use least squares??

What went wrong?

Can we just use least squares??

What went wrong?

"Good" errors vs. "bad" errors.

Online Classification with Perceptron

- Perceptron for online linear binary classification [Rosenblatt, 1957]
 - Start with $w_0 = 0$.
 - At time 't' we receive features x_t.
 - We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 - If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 - Otherwise, set $w_{t+1} = w_t$.

(Slides are old so above I'm using subscripts of 't' instead of superscripts.)

- Perceptron mistake bound [Novikoff, 1962]:
 - Assume data is linearly-separable with a "margin":
 - There exists w* with $||w^*||=1$ such that $sign(x_t^Tw^*) = sign(y_t)$ for all 't' and $|x^Tw^*| \ge \gamma$.
 - Then the number of total mistakes is bounded.
 - No requirement that data is IID.

Perceptron Mistake Bound

- Let's normalize each x_t so that $||x_t|| = 1$.
 - Length doesn't change label.
- Whenever we make a mistake, we have $sign(y_t) \neq sign(w_t^T x_t)$ and

$$||w_{t+1}||^{2} = ||w_{t} + yx_{t}||^{2}$$

$$= ||w_{t}||^{2} + 2\underbrace{y_{t}w_{t}^{T}x_{t}}_{<0} + 1$$

$$\leq ||w_{t}||^{2} + 1$$

$$\leq ||w_{t-1}||^{2} + 2$$

$$\leq ||w_{t-2}||^{2} + 3.$$

• So after 'k' errors we have $||w_t||^2 \le k$.

Perceptron Mistake Bound

- Let's consider a solution w^* , so sign $(y_t) = \text{sign}(x_t^T w^*)$.
 - And let's choose a w^* with $||w^*|| = 1$,
- Whenever we make a mistake, we have:

$$||w_{t+1}|| = ||w_{t+1}|| ||w_*||$$

$$\geq w_{t+1}^T w_*$$

$$= (w_t + y_t x_t)^T w_*$$

$$= w_t^T w_* + y_t x_t^T w_*$$

$$= w_t^T w_* + |x_t^T w_*|$$

$$\geq w_t^T w_* + \gamma.$$

- Note: $w_t^T w_* \ge 0$ by induction (starts at 0, then at least as big as old value plus γ).
- So after 'k' mistakes we have ||w₊|| ≥ γk.

Perceptron Mistake Bound

- So our two bounds are $||w_t|| \le \operatorname{sqrt}(k)$ and $||w_t|| \ge \gamma k$.
- This gives $\gamma k \leq \operatorname{sqrt}(k)$, or a maximum of $1/\gamma^2$ mistakes.
 - Note that $\gamma > 0$ by assumption and is upper-bounded by one by $||x|| \le 1$.
 - After this 'k', under our assumptions
 we're guaranteed to have a perfect classifier.