User's Manual

Model MX190

MX100/DARWIN 用 API ファーストステップガイド

(API で MX100 用プログラムを作成するために)

本 API で MX100 用のプログラムを作成する場合、このマニュアルを最初にお読みください。

このマニュアルでは、MX100 用のプログラムを作成するための MX100 の基本的な事項 について説明しています。本 API と MX100 については、下表のマニュアルを参照してください。これらのマニュアルは、それぞれの製品に付属の CD-ROM に収納されています。

マニニ	ュアル名	マニュアル No.
MX10	0/DARWIN 用 API ユーザーズマニュアル	IM MX190-01
MX10	0 データアクイジションユニットユーザーズマニュアル	IM MX100-01

また、このマニュアルでは、API と拡張 API の違いを説明しています。拡張 API の特長を で理解の上、目的に合った API をで使用ください。

「MX100/DARWIN 用 API ユーザーズマニュアル」(IM MX190-01) に掲載されている以外のサンプルプログラムを弊社の Web ページで公開しています。「付録」をご覧ください。

目次

MX100 によるデータアクイジションシステム	2
システム構成、モジュール番号、チャネル番号番号	
MX100 のデータと API の構造体の対応	
API と拡張 API	
- 3 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
注意事項	
データ収集機能 (FIFO)	
MX100 のデータ収集機能 (FIFO)	
API または拡張 API によるデータ取得	
付録	
サンプルプログラムの掲載先	
FAO (Frequently Asked Questions) の掲載先	

MX100 によるデータアクイジションシステム

システム構成、モジュール番号、チャネル番号

システム構成

MX100 によるデータアクイジションシステムは、データアクイジションユニット (以下「MX100」と呼びます)、PC、およびネットワークへの接続機器で構成されます。ひとつの MX100 は、イーサネットポートを備えた「メインモジュール」、信号の入出力を行う「入出力モジュール」、 およびそれらを装着し接続する「ベースプレート」で構成されます。

モジュール番号

入出力モジュールのモジュール番号は、そのモジュールを装着したスロットの番号です。 スロット番号は、0、1、2、3、4、5です。複数スロットを占有するモジュールのモジュール番号は、占有するスロットのうち最も小さいスロット番号です。

例:スロット「2」、「3」、「4」を占有する「30ch 中速 DCV/TC/DI 入力モジュール」のモジュール番号は「2」です。

チャネル番号

ユニット内のチャネル番号でチャネルを指定します。ユニット内のチャネル番号は、そのモジュールが占有するスロット番号 (ユニット上のスロット位置) と、そのモジュール内の何番目のチャネルか (モジュール内の端子位置) によって決まります。

例:スロット番号 3 に装着したモジュールの、2 番目のチャネルのチャネル番号は「32」です。

Note.

弊社のソフトウエア、MX100 スタンダードや MXLogger では、チャネル番号は「ユニット番号+ユニット内のチャネル番号」の 5 桁で表記されますが、API ではユニットの IP アドレスを指定して通信するので、チャネル番号としてユニット内のチャネル番号だけを使用します。

MX100 のデータと API の構造体の対応

MX100 のデータを格納する構造体と対象のデータとの対応を示します。

MXSegmentなど:構造体名

:矢印はデータの移動方向 :ディジタル出力モジュール DÒ :アナログ出力モジュール ΑO PWM :パルス幅出力モジュール :アナログ入力モジュール :ディジタル入力モジュール DI :パルス入力モジュール Ы :ひずみ入力モジュール :メインモジュール Strain Main :Ethernet通信機能 Ethernet

FIFO :データ収集機能(詳細は本書の5ページを参照してください)

各構造体については、「MX100/DARWIN 用 API ユーザーズマニュアル」(IMMX190-01) のそれぞれのページをご覧ください。

構造体	説明	参照先
MXAOPWMData	出力モジュール (AO/PWM) の出力データです。	6-38 ページ
MXBalanceData	ひずみ入力モジュールの初期バランスデータです。	6-36ページ
MXChConfigData	チャネルの設定データです。	6-31 ページ
MXChInfo	測定チャネル (入力モジュール)の表示用データです。	6-31 ページ
MXConfigData	全設定データです。	6-37 ページ
MXDataInfo	測定データのデータ値です。	6-28 ページ
MXDateTime	測定データの時刻情報です。	6-27 ページ
MXDOData	ディジタル出力モジュール (DO) の出力データです。	6-38 ページ
MXNetInfo	通信設定データです。	6-36 ページ
MXOutputData	出力モジュール (AO/PWM) の設定データです。	6-37 ページ
MXSegment	7 セグメント LED の表示データです。	6-38 ページ
MXStatus	システム状態データです。	6-35 ページ
MXSystemInfo	メインモジュールを含むシステム設定データです。	6-34 ページ
MXTransmit	入力モジュールから出力モジュールへの伝送出力データで	6-38 ページ
	す。	

IM MX190-02 3

API と拡張 API

拡張 API の特長

本ソフトウエアには、API と拡張 API の 2 つのソフトウエアがあります。拡張 API は、より簡単にプログラムを作成できるようにした API です。拡張 API は、いくつかの API の機能を組み合わせて、よりユーザフレンドリな機能として提供します。拡張 API は、API の上位 API に位置付けられており、API を呼び出して動作します。下図は 2 つの API の違いを説明したものです。API と拡張 API については、「MX100/DARWIN 用 API ユーザーズマニュアル」(IM MX190-01)の「1.2 ソフトウエアの構成と特長」にも説明が記載されています。

MX100 用の API と拡張 API

プログラムの単純化

APIでは、取得したデータの保存領域はユーザ側になります。そのため、メモリ量を含めたパフォーマンスは、ユーザプログラムで制御できます。一方拡張 API では、拡張 API がデータを保持し、管理します。そのため、オーバーヘッドが発生しますが、ユーザが領域を制御しなくてもよいので、プログラムが単純化できます。

データ操作の単純化

拡張 API では関数の戻り値や引数に、構造体を使用しません。

関数の単純化

拡張 API の関数は、

- ・ 計測器と通信を行い、計測器の状態を変更し、また、拡張 API が保持しているデータを変更する関数 (状態遷移関数)
- ・ 拡張 API が保持しているデータを参照するための関数 (取得関数) の 2 種類に単純化されています。

対応プログラム言語の拡張

API	拡張 API
Visual C++	Visual C++
Visual C	Visual C
Visual Basic	Visual Basic
	Visual Basic.NET
	C#

注意事項

API と拡張 API の関数を混在して使用した場合、動作は保証できません。 その他の拡張 API の注意事項については、「MX100/DARWIN 用 API ユーザーズマニュアル」 (IM MX190-01) の 12-2 ページ「注意事項」をご覧ください。

データ収集機能 (FIFO)

MX100 のデータ収集機能 (FIFO)

測定周期と FIFO

MX100ではモジュールごとに最大 3 つの測定周期を設定できます。測定周期ごとに、収集したデータを格納する領域が MX100 内に用意されます。この領域が FIFO(First In First Out) 方式のため、以下このデータ収集そのものを「FIFO」と呼びます。FIFO とは、領域の先頭からデータを書き込んでいき、領域の最後まで書き込むと、先頭から上書きしていく方式です。FIFO には測定周期の速い順に、「0」「1」「2」の番号が割り振られます。同じ測定周期に設定されたモジュール上のチャネルの測定データは、同じ FIFO に格納されます。よって、FIFO 番号を指定して MX100 からデータを取得すると、同じ測定周期のチャネルすべての測定データを取得することができます。

測定が設定されていないチャネルは含まれません。

モジュールに設定できる測定周期は下表のとおりです。

モジュール	形名	ド名 測定周期の選択肢											
		10	50	100	200	500	1	2	5	10	20	30	60
		ms					s						
4ch 高速ユニバーサル入力モジュール	MX110-UNV-H04	0	0	\circ		0	\circ		\circ	\circ		\circ	
10ch 中速ユニバーサル入力モジュール	MX110-UNV-M10	-	-	\circ	\circ	0	\circ		\circ	\circ	\circ	\circ	
30ch 中速 DCV/TC/DI 入力モジュール	MX110-VTD-L30	-	-	-	-	0	\circ	\circ	\circ	\circ	\circ	\circ	
6ch 中速 4 線式 RTD 抵抗入力モジュール	MX110-V4R-M06	-	-	\circ	0	0	\circ						
4ch 中速ひずみ入力モジュール	MX112-B12-M04	-	-	0	0	0	\circ	0	0	0	0	0	
	MX112-B35-M04												
	MX112-NDI-M04												
10ch 高速ディジタル入力モジュール	MX115-D05-H10	0	0	0	0	0	0	0	0	0	0	0	0
	MX115-D24-H10												
10ch パルス入力モジュール	MX114-PLS-M10	-	-	0		0	0	0	0	0	0	0	0

〇:選択可、-:選択不可

IM MX190-02 5

API または拡張 API によるデータ取得

API または拡張 API により、FIFO から測定データを取得する場合について説明します。

プログラムの流れ

MX100の測定データを取得する場合、APIと拡張 APIではそれぞれ下表のようなプログラムの流れになります。サンプルプログラムを参照してください。サンプルプログラムについては、本書の「付録」に記載の参照先をご覧ください。

API	機能	プロ	1グラムの流れ
	測定データ	1	FIFOを開始
	の取得	2	取得できるデータ範囲を FIFO から取得
		3	測定データの時刻情報を FIFO から取得
		4	測定データのデータ値を FIFO から取得
		5	FIFO を停止

2、3、4 を繰り返すことにより、継続して FIFO から測定データを取得できます。

拡張 API	機能	プロ	プログラムの流れ			
	測定データ	1	FIFO を開始			
	の取得	2	計測点をひとつ進める。			
		3	計測点の測定データを取得。			
		4	FIFO を停止			

2 を実行するたびに、計測点をひとつ進めます。従って、2 と3 を繰り返すことにより、順番に測定データを取得できます。

API の場合

下図は、API が FIFO から測定データを取得するときの状態を示します (「プログラムの流れ」の表の「2」「3」「4」)。API は範囲を指定 (Start No. と End No.) して FIFO から測定データの時刻情報 (MXDateTime) とデータ値 (MXDataInfo) を取得します。

* 1回のデータ取得処理で、指定した範囲の最後のデータまで取得できないことがあります。 その場合は、取得できた最後のデータ番号の次が Start No. になります。

使用する関数については、下表に記載の「MX100/DARWIN 用 API ユーザーズマニュアル」 (IMMX190-01) の参照先をご覧ください。サンプルプログラムについては、本書の「付録」 に記載の参照先をご覧ください。

言語	参照先
	取得するデータ範囲を取得、測定データの時刻情報を取得、測定データを取得
Visual C++	2-8 ページの「測定データの取得 (FIFO 指定)」
Visual C	3-4 ページの「測定データの取得 (FIFO 指定)」
Visual Basic	4-4 ページの「測定データの取得 (FIFO 指定)」

拡張 API の場合

下図は、拡張 API が測定データを取得するときの状態を示します (「プログラムの流れ」の表の「2」「3」)。瞬時値指定の場合は、最新データが Current になります。

計測点を進めるには、状態遷移関数の測定データ取得機能を使用します。 Current データを読み出すには、各取得関数を使用します。

状態遷移関数の測定データ取得機能、取得関数については、下表に記載の「MX100/DARWIN 用 API ユーザーズマニュアル」(IMMX190-01) の参照先をご覧ください。サンプルプログラムについては、本書の「付録」に記載の参照先をご覧ください。

プログラム言語	参照先							
	状態遷移関数の取得機能	取得関数						
Visual C++	12-8 ページの「取得機能」	12-9 ページ						
Visual C	13-6 ページの「取得機能」	13-7 ページ						
Visual Basic	14-6 ページの「取得機能」	14-7 ページ						
Visual Basic.NET	15-6 ページの「取得機能」	15-7 ページ						
C#	16-6 ページの「取得機能」	16-7 ページ						

瞬時値によるデータ収集

瞬時値によるデータ収集の場合、FIFO内の最新データを取得することになります。API は MX100の測定データには最短 100ms でアクセスできます。従って、瞬時値を取得する場合、最速で 100ms ごとになります。それより速い測定周期の場合は、FIFO 番号を指定してデータを取得します。

FIFO のスタート/ストップ

MX100 からデータを取得するためには、FIFO がスタートしていることが必要です。API で FIFO をスタートするとすべての FIFO がスタートし、FIFO をストップすると、すべての FIFO がストップします。

データを取得するときの注意

バッファ内がデータでいっぱいになってしまう前に、PCから MX100 にアクセスしてデータを読み出すことが必要です。FIFO 用バッファの容量は、3 つの FIFO を合わせて 2M バイトです。たとえば、60 チャネルのデータを測定周期 10ms で収集する場合、約 60 秒 * でバッファがいっぱいになります。バッファがいっぱいになると、MX100 はバッファの先頭からデータを上書きします。従って、60 秒より短い周期で PC が MX100 からデータを取得することが必要です。実際の取得周期は、アプリケーションに合わせて決めます。

* バッファがいっぱいになるまでの時間の算出方法については、「MX100/DARWIN 用 API ユーザーズマニュアル」(IMMX190-01) の「付録 3 MX100 のタイムアウト値の算出」を参照してください。

約3分間アクセスがない場合、MX100が通信を切断します。

付録

サンプルプログラムの掲載先

ユーザーズマニュアル

CD-ROM に収納されている「MX100/DARWIN 用 API ユーザーズマニュアル」 (IMMX190-01) に、下表のサンプルプログラムが掲載されています。

API 用サンプルプログラム

プログラム言語	内容	参照先
Visual C++	測定データの取得	2-10 ページ
	設定データの取得/設定	2-13 ページ
Visual C	測定データの取得	3-7ページ
	設定データの取得/設定	3-11 ページ
Visual Basic	測定データの取得	4-7ページ
	設定データの取得/設定	4-10 ページ

拡張 API 用サンプルプログラム

プログラム言語	内容	参照先
Visual C++	測定データの取得	12-16 ページ
	設定データの読み出しと書き込み	12-18 ページ
Visual C	測定データの取得	13-13 ページ
	設定データの読み出しと書き込み	13-15 ページ
Visual Basic	測定データの取得	14-13 ページ
	設定データの読み出しと書き込み	14-15 ページ
Visual Basic.NET	測定データの取得	15-13 ページ
	設定データの読み出しと書き込み	15-15 ページ
C#	測定データの取得	16-13 ページ
	設定データの読み出しと書き込み	16-15 ページ

Web ページ

下記の URL に、サンプルプログラムが掲載されています。 http://www.yokogawa.co.jp/ns/mx100/download/

内容	プログラム言語	API	拡張 API
測定データを取得して波形表示する。	Visual C++	0	0
	Visual C	0	0
	Visual Basic	0	0
	Visual Basic.NET	_	0
	C#	_	0
2 つのチャネルの測定値を取得して、X-Y プロット表	Visual Basic	0	0
示する。			

○:サンプルプログラムあり。

-:サンプルプログラムなし (未対応)。

FAQ (Frequently Asked Questions) の掲載先

よくある質問と回答が、下記の URL に掲載されています。

http://www.yokogawa.co.jp/ns/faq/daqmaster/ns-mxapi-faq-01.htm