© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 - CCP PSI 2006

Si *n* est un entier naturel non nul, on note

$$\sigma_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

et on pose $\sigma_0 = 0$.

A toute suite complexe a, on associee la suite a^* définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

Partie I – Deux exemples

1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$. On suppose que la suite a est définie par $\forall n \in \mathbb{N}, \ a_n = \alpha$.

- **a.** Expliciter $\sum_{k=0}^{n} \binom{n}{k}$ pour $n \in \mathbb{N}$.
- **b.** Expliciter a_n^* pour $n \in \mathbb{N}$.
- **c.** La série $\sum_{n\geq 0} a_n$ (resp. $\sum_{n\geq 0} a_n^*$) est-elle convergente?

2. Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : $\forall n \in \mathbb{N}$, $a_n = z^n$.

- **a.** Exprimer a_n^* en fonction de z et n.
- **b.** On suppose que |z| < 1.
 - i. Justifier la convergence de la série $\sum_{n\geq 0} a_n$ et expliciter sa somme $A(z) = \sum_{n=0}^{\infty} a_n$.

1

- ii. Justifier la convergence de la série $\sum_{n\geq 0} a_n^*$ et expliciter sa somme $\sum_{n=0}^{\infty} a_n^*$ en fonction de A(z).
- **c.** On suppose que $|z| \ge 1$.
 - i. Quelle est la nature (convergente ou divergente) de la série $\sum_{n>0} a_n$?
 - ii. Quelle est la nature de $\sum_{n>0} a_n^*$ si z=-2?

© Laurent Garcin MP Dumont d'Urville

iii. On suppose $z=e^{i\theta}$, avec θ réel tel que $0<|\theta|<\pi$. Montrer que la série $\sum_{n\geq 0}a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de la somme $\sum_{n=0}^{\infty}a_n^*$.

Partie II - Etude du procédé de sommation

Dans cette partie, et pour simplifier, on suppose que a est à valeurs réelles.

1. Comparaison des convergences des deux suites.

- **a.** Soit $n \in \mathbb{N}^*$, on considère une entier k fixé, $k \in [0, n]$.
 - i. Préciser un équivalent de $\binom{n}{k}$ lorsque n tend vers $+\infty$.
 - ii. En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.
- **b.** Soit a une suite réelle et q un entier naturel $\underline{\text{fixé}}$.

On considère pour n > q la somme $S_q(n, a) = \sum_{k=0}^q \binom{n}{k} \frac{a_k}{2^n}$. Quelle est la limite de $S_q(n, a)$ lorsque l'entier n tend vers $+\infty$?

- **c.** On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- **d.** On suppose que a_n tend vers ℓ (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- **e.** La convergence de la suite (a_n) est-elle équivalente à la convergence de la suite (a_n^*) ?

2. Comparaison des convergences des séries $\sum a_n$ et $\sum a_n^*$.

Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- **a.** Pour $n \in [0, 3]$, exprimer U_n comme combinaison linéaire des sommes S_k , c'est à dire sous la forme $U_n = \sum_{k=0}^n \lambda_{n,k} S_k$.
- **b.** On se propose de déterminer l'expression explicite de U_n comme combinaison linéaire des sommes S_k pour $k \in [0, n]$:

$$(\mathcal{E}) \ \mathbf{U}_n = \sum_{k=0}^n \lambda_{n,k} \mathbf{S}_k \text{ pour } n \in \mathbb{N}$$

- i. A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte-tenu des résultats obtenus à la question précédente?
- ii. Etablir la formule (\mathcal{E}) par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in [0, n]$, $a_k = S_k S_{k-1}$ avec la convention $S_{-1} = 0$).
- c. On suppose que la série $\sum a_n$ est convergente. Montrer que la série $\sum a_n^*$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- **d.** La convergence de la série $\sum a_n$ est-elle équivalente à la convergence de la série $\sum a_n^*$?

Partie III - Une étude de fonctions.

Pour x réel, lorsque cela a du sens, on pose :

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!}$$

$$g(x) = \sum_{n=0}^{\infty} \frac{\sigma_n x^n}{n!}$$

$$\phi(x) = \sum_{n=0}^{\infty} \sigma_n x^n$$

1. Etude de f.

- **a.** Vérifier que f est définie et continue sur \mathbb{R} .
- **b.** Expliciter xf(x) pour tout x réel.
- **c.** Expliciter $e^{-x} f(x)$ pour tout x réel.

2. Etude de g.

- **a.** Montrer que g est définie et de classe \mathcal{C}^1 sur \mathbb{R} .
- **b.** On désigne par g' la dérivée de la fonction g. Exprimer g' g en fonction de f.
- **c.** Montrer que pour tout *x* réel :

$$g(x) = e^x \int_0^x e^{-t} f(t) dt$$

3. La fonction F.

On condidère la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x e^{-t} f(t) dt$$

- a. Montrer que la fonction F est développable en série entière sur $\mathbb R$ et expliciter son développement.
- **b.** Pour $n \in \mathbb{N}^*$, on note $\gamma_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k \cdot k!(n-k)!}$. Exprimer γ_n en fonction de n et σ_n .

4. La série $\sum_{k} \frac{(-1)^{k+1}}{k}$.

- **a.** Soit $w_k = \ln\left(\frac{k+1}{k}\right) \frac{1}{k+1}$ pour $k \in \mathbb{N}^*$.
 - i. Montrer que la série $\sum_{k>1} w_k$ est convergente.
 - ii. En déduire que la suite de terme général $\sigma_n \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.
- **b.** Pour $n \in \mathbb{N}^*$, on pose $\tau_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer τ_{2n} en fonction de σ_{2n} et σ_n .
- c. Montrer en utilisant les questions précédentes que la série $\sum_{k\geq 1} \frac{(-1)^{k+1}}{k}$ est convergente et déterminer sa somme $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$.

5. Etude de la fonction ϕ .

- **a.** Déterminer le rayon de convergence R de la série entière $\sum_{n\geq 1} \sigma_n x^n$.
- **b.** Préciser l'ensemble de définition Δ de la fonction ϕ , et étudier ses variations sur [0, R].
- c. Valeur de $\phi\left(\frac{1}{2}\right)$.

En utilisant les résultat de la partie II et de la question **4.c**, expliciter la valeur de $\phi\left(\frac{1}{2}\right)$.

d. Expliciter $\phi(x)$ pour $x \in \Delta$ et retrouver la valeur de $\phi\left(\frac{1}{2}\right)$.