Note for R Lec 4-5

Luo Beier

目录

1	R 语	語		2
	1.1	Pipe o	pperator	2
	1.2	基本数	y据管理	4
		1.2.1	$\mathrm{mutate}() \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	4
		1.2.2	选取列 select()	6
			1.2.2.1 按名称选取	6
			1.2.2.2 按名称所含字符选取	8
			1.2.2.3 混合选取	9
		1.2.3	修改列名	9
		1.2.4	按行选取 filter()	10
		1.2.5	排序 arrange()	11
		1.2.6	合并数据	12
			1.2.6.1 bind_cols(df1,df2,)	12
			1.2.6.2 连接数据 _join() 函数族	12
		1.2.7	缺失值	13
		1.2.8	数据规整	14
			1.2.8.1 pivot_longer()	15

		1.2.8.2	pivot_wider()	16
1.3	From	data set t	o a random variables	19
	1.3.1	summar	y()	19
	1.3.2	Probabi	lity models	21
		1.3.2.1	Joint count:	21
		1.3.2.2	Joint probability	21
		1.3.2.3	Marginal distribution	22
		1.3.2.4	Conditional distribution	23
		1.3.2.5	Draw distribute plot	24
		1.3.2.6	Calculate Sample Mean and Covariance	25
1.4	Genera	ate rando	m variables by the build-in functions	27
	1.4.1	Common	n probability distributions	27
	1.4.2	Generat	e normal random variables	29
	1.4.3	Generat	e multivariate normal random variables	29

1 R 语言

首先,我们先介绍一个新的传递数据的方法: Pipe operator

1.1 Pipe operator

A key package: **tidyverse**

Suppose that we want to find the following summation:

$$\sqrt{\sum_{i=-10}^{10} |i|}.$$

Base-R, we can:

```
sqrt(sum(abs(-10:10)))
## [1] 10.48809
```

We can use pipe operator to deal with multiple functions like this:

```
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6
                  v purrr
                           0.3.4
## v tibble 3.1.8
                  v dplyr 1.0.10
## v tidyr 1.2.1
                  v stringr 1.4.1
## v readr
          2.1.2
                   v forcats 0.5.2
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
-10:10 %>%
 abs() %>%
 sum() %>%
 sqrt()
```

[1] 10.48809

More logical!

When you have multiple arguments in a function:

```
matrix(1:10, nrow = 2, byrow = TRUE)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 2 3 4 5

## [2,] 6 7 8 9 10
```

```
1:10 %>%
matrix(nrow = 2, byrow = TRUE)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 2 3 4 5

## [2,] 6 7 8 9 10
```

1.2 基本数据管理

```
library(tidyverse)
library(palmerpenguins)
```

1.2.1 mutate()

我们想再创建一个新的变量:

```
df <- penguins
attach(df)
df$bill_sum <- bill_length_mm + bill_depth_mm
detach(df)</pre>
```

在 tidyverse 包下,可以使用 mutate() 函数:

```
library(tidyverse)
mutate(.data = df, bill_sum = bill_length_mm + bill_depth_mm)
```

```
## # A tibble: 344 x 9
     species island
                       bill_length_mm bill_d~1 flipp~2 body_~3 sex
##
                                                                      year bill_~4
     <fct>
             <fct>
##
                                <dbl>
                                         <dbl>
                                                 <int>
                                                         <int> <fct> <int>
                                                                             <dbl>
                                 39.1
                                          18.7
                                                   181
                                                                      2007
                                                                              57.8
  1 Adelie Torgersen
                                                          3750 male
##
                                 39.5
                                                   186
   2 Adelie Torgersen
                                          17.4
                                                          3800 fema~
                                                                      2007
                                                                              56.9
  3 Adelie Torgersen
                                 40.3
                                          18
                                                   195
                                                          3250 fema~
                                                                      2007
                                                                              58.3
```

```
Torgersen
                                                                 NA <NA>
                                                                           2007
##
    4 Adelie
                                    NA
                                             NA
                                                        NA
                                                                                    NA
##
    5 Adelie
              Torgersen
                                    36.7
                                              19.3
                                                       193
                                                               3450 fema~
                                                                           2007
                                                                                    56
##
    6 Adelie
              Torgersen
                                    39.3
                                              20.6
                                                       190
                                                               3650 male
                                                                           2007
                                                                                    59.9
   7 Adelie
              Torgersen
                                    38.9
                                              17.8
                                                       181
                                                               3625 fema~
                                                                           2007
                                                                                    56.7
##
    8 Adelie
                                    39.2
                                                       195
                                                                                    58.8
##
              Torgersen
                                              19.6
                                                               4675 male
                                                                           2007
##
    9 Adelie
              Torgersen
                                    34.1
                                              18.1
                                                       193
                                                               3475 <NA>
                                                                           2007
                                                                                    52.2
## 10 Adelie
              Torgersen
                                    42
                                              20.2
                                                       190
                                                               4250 <NA>
                                                                           2007
                                                                                    62.2
## # ... with 334 more rows, and abbreviated variable names 1: bill_depth_mm,
## #
       2: flipper_length_mm, 3: body_mass_g, 4: bill_sum
## or,
mutate(df, bill_sum = bill_length_mm + bill_depth_mm)
## # A tibble: 344 x 9
##
      species island
                         bill_length_mm bill_d~1 flipp~2 body_~3 sex
                                                                           year bill_~4
      <fct>
##
               <fct>
                                   <dbl>
                                             <dbl>
                                                     <int>
                                                              <int> <fct> <int>
                                                                                   <dbl>
##
    1 Adelie
              Torgersen
                                    39.1
                                              18.7
                                                       181
                                                               3750 male
                                                                           2007
                                                                                    57.8
                                              17.4
##
    2 Adelie
              Torgersen
                                    39.5
                                                       186
                                                               3800 fema~
                                                                           2007
                                                                                    56.9
    3 Adelie
##
              Torgersen
                                    40.3
                                              18
                                                       195
                                                               3250 fema~
                                                                           2007
                                                                                    58.3
    4 Adelie
##
              Torgersen
                                    NA
                                             NA
                                                        NA
                                                                 NA <NA>
                                                                           2007
                                                                                    NA
    5 Adelie
                                    36.7
                                                       193
                                                               3450 fema~
                                                                                    56
##
              Torgersen
                                              19.3
                                                                           2007
    6 Adelie
                                                       190
                                                                                    59.9
##
              Torgersen
                                    39.3
                                              20.6
                                                               3650 male
                                                                           2007
##
    7 Adelie
              Torgersen
                                    38.9
                                              17.8
                                                       181
                                                               3625 fema~
                                                                           2007
                                                                                    56.7
    8 Adelie
              Torgersen
                                    39.2
                                              19.6
                                                       195
                                                               4675 male
                                                                           2007
                                                                                    58.8
##
    9 Adelie
              Torgersen
                                    34.1
                                              18.1
                                                       193
                                                               3475 <NA>
                                                                           2007
                                                                                    52.2
##
## 10 Adelie Torgersen
                                    42
                                              20.2
                                                       190
                                                               4250 <NA>
                                                                           2007
                                                                                    62.2
    ... with 334 more rows, and abbreviated variable names 1: bill_depth_mm,
## #
       2: flipper_length_mm, 3: body_mass_g, 4: bill_sum
## or, using pipe operator:
df %>%
```

A tibble: 344 x 9

mutate(bill sum = bill length mm + bill depth mm)

```
##
      species island
                         bill_length_mm bill_d~1 flipp~2 body_~3 sex
                                                                            year bill_~4
      <fct>
##
               <fct>
                                   <dbl>
                                             <dbl>
                                                      <int>
                                                              <int> <fct> <int>
                                                                                    <dbl>
    1 Adelie
                                    39.1
                                              18.7
                                                        181
                                                                            2007
##
              Torgersen
                                                               3750 male
                                                                                     57.8
##
    2 Adelie
              Torgersen
                                    39.5
                                              17.4
                                                        186
                                                               3800 fema~
                                                                            2007
                                                                                     56.9
    3 Adelie
              Torgersen
                                    40.3
                                                        195
                                                               3250 fema~
                                                                            2007
                                                                                     58.3
##
                                              18
##
    4 Adelie
              Torgersen
                                    NA
                                              NA
                                                         NA
                                                                 NA <NA>
                                                                            2007
                                                                                     NA
##
    5 Adelie
              Torgersen
                                    36.7
                                              19.3
                                                        193
                                                               3450 fema~
                                                                            2007
                                                                                     56
                                                                                     59.9
##
    6 Adelie
              Torgersen
                                    39.3
                                              20.6
                                                        190
                                                               3650 male
                                                                            2007
##
    7 Adelie
              Torgersen
                                    38.9
                                              17.8
                                                        181
                                                               3625 fema~
                                                                            2007
                                                                                     56.7
##
    8 Adelie
              Torgersen
                                    39.2
                                              19.6
                                                        195
                                                               4675 male
                                                                            2007
                                                                                     58.8
##
    9 Adelie
              Torgersen
                                    34.1
                                              18.1
                                                        193
                                                               3475 <NA>
                                                                            2007
                                                                                     52.2
## 10 Adelie Torgersen
                                    42
                                              20.2
                                                        190
                                                               4250 <NA>
                                                                            2007
                                                                                     62.2
```

... with 334 more rows, and abbreviated variable names 1: bill_depth_mm,

2: flipper_length_mm, 3: body_mass_g, 4: bill_sum

1.2.2 选取列 select()

```
df <- penguins # 初始化 df 变量
df %>% select(bill_length_mm, bill_depth_mm)
```

1.2.2.1 按名称选取

##	# A	tibble:	344 x	2
##	1	bill_leng	gth_mm	bill_depth_mm
##			<dbl></dbl>	<dbl></dbl>
##	1		39.1	18.7
##	2		39.5	17.4
##	3		40.3	18
##	4		NA	NA
##	5		36.7	19.3
##	6		39.3	20.6
##	7		38.9	17.8

```
## 8 39.2 19.6

## 9 34.1 18.1

## 10 42 20.2

## # ... with 334 more rows
```

df %>% select(-bill_length_mm, -bill_depth_mm) # 按名称删除不需要的列

##	# 1	A tibble:	: 344 x 6				
##		species	island	flipper_length_mm	body_mass_g	sex	year
##		<fct></fct>	<fct></fct>	<int></int>	<int></int>	<fct></fct>	<int></int>
##	1	Adelie	Torgersen	181	3750	male	2007
##	2	Adelie	Torgersen	186	3800	female	2007
##	3	Adelie	Torgersen	195	3250	female	2007
##	4	Adelie	Torgersen	NA	NA	<na></na>	2007
##	5	Adelie	Torgersen	193	3450	female	2007
##	6	Adelie	Torgersen	190	3650	male	2007
##	7	Adelie	Torgersen	181	3625	female	2007
##	8	Adelie	Torgersen	195	4675	male	2007
##	9	Adelie	Torgersen	193	3475	<na></na>	2007
##	10	Adelie	Torgersen	190	4250	<na></na>	2007
##	#	with	334 more 1	cows			

名称选取

如果选取的列很多,我们也可以先观察其命名特征,用特定的函数进行选取。比如,在企数据集中,类型为 double 的变量名都是以bill开始的,所以我们就可以

df %>% select(starts_with("bill"))

其他选择函数:

函数	作用
starts_with() ends_with() contains() matches()	以某前缀开头 以某后缀结尾 包含某字符或字符串 匹配正则表达式

1.2.2.2 按名称所含字符选取

按数值类型选取

df %>% select(where(is.numeric))

A tibble: 344 x 5

bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year <dbl> <dbl> ## <int> <int> <int> ## 1 39.1 18.7 181 3750 2007 2 39.5 17.4 186 3800 2007 ## ## 3 40.3 18 195 3250 2007 ## 4 NANANANA2007 36.7 19.3 193 3450 2007 ## 5 6 39.3 20.6 190 3650 2007 ## ## 38.9 17.8 181 3625 2007 39.2 19.6 195 4675 2007 ## 8 ## 9 34.1 18.1 193 3475 2007 42 20.2 190 4250 2007 ## 10

... with 334 more rows

df %>% select(where(is.double))

A tibble: 344×2

```
##
     bill_length_mm bill_depth_mm
               <dbl>
##
##
   1
                39.1
                              18.7
##
   2
               39.5
                              17.4
##
   3
               40.3
                              18
##
   4
               NA
                              NA
##
   5
               36.7
                              19.3
## 6
               39.3
                              20.6
## 7
               38.9
                              17.8
               39.2
                              19.6
## 8
  9
##
                34.1
                              18.1
                42
                              20.2
## 10
## # ... with 334 more rows
```

```
## 逻辑并
select(df, 条件— & 条件二)
## 逻辑或
select(df, 条件— | 条件二)
## 逻辑非
select(df, !条件一)
```

1.2.2.3 混合选取

1.2.3 修改列名

```
df %>%
rename(Bill.Length = bill_length_mm,
Bill.Depth = bill_depth_mm,
Flipper.Length = flipper_length_mm,
Body.Mass = body_mass_g) # 等号前是新名字, 等号后面是老名字
```

##	#	A tibble	: 344 x 8						
##		species	island	Bill.Length	Bill.Depth	Flipper.Length	Body.Mass	sex	year
##		<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
##	1	Adelie	Torgersen	39.1	18.7	181	3750	male	2007
##	2	Adelie	Torgersen	39.5	17.4	186	3800	fema~	2007
##	3	Adelie	Torgersen	40.3	18	195	3250	fema~	2007
##	4	Adelie	Torgersen	NA	NA	NA	NA	<na></na>	2007
##	5	Adelie	Torgersen	36.7	19.3	193	3450	fema~	2007
##	6	Adelie	Torgersen	39.3	20.6	190	3650	male	2007
##	7	Adelie	Torgersen	38.9	17.8	181	3625	fema~	2007
##	8	Adelie	Torgersen	39.2	19.6	195	4675	male	2007
##	9	Adelie	Torgersen	34.1	18.1	193	3475	<na></na>	2007
##	10	Adelie	Torgersen	42	20.2	190	4250	<na></na>	2007
##	#	with	334 more 1	rows					

1.2.4 按行选取 filter()

比如,我们想要选择 species 为"Adelie" 的这些样本点:

df %>% filter(species == "Adelie")

##	# A tibble:	: 152 x 8						
##	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	flipper_~1	body_~2	sex	year
##	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
##	1 Adelie	Torgersen	39.1	18.7	181	3750	male	2007
##	2 Adelie	Torgersen	39.5	17.4	186	3800	fema~	2007
##	3 Adelie	Torgersen	40.3	18	195	3250	fema~	2007
##	4 Adelie	Torgersen	NA	NA	NA	NA	<na></na>	2007
##	5 Adelie	Torgersen	36.7	19.3	193	3450	fema~	2007
##	6 Adelie	Torgersen	39.3	20.6	190	3650	male	2007
##	7 Adelie	Torgersen	38.9	17.8	181	3625	fema~	2007
##	8 Adelie	Torgersen	39.2	19.6	195	4675	male	2007
##	9 Adelie	Torgersen	34.1	18.1	193	3475	<na></na>	2007
##	10 Adelie	Torgersen	42	20.2	190	4250	<na></na>	2007

... with 142 more rows, and abbreviated variable names 1: flipper_length_mm, ## # 2: body_mass_g

进一步再选取 bill_length_mm 大于 40 的:

```
df %>% filter(species == "Adelie",
bill_length_mm > 40)
```

## #	A tibble:	51 x 8						
##	species	island	bill_length_mm	${\tt bill_depth_mm}$	flipper_~1	body_~2	sex	year
##	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>

##	1 Adelie	Torgersen	40.3	18	195	3250 fema~	2007
##	2 Adelie	Torgersen	42	20.2	190	4250 <na></na>	2007
##	3 Adelie	Torgersen	41.1	17.6	182	3200 fema~	2007
##	4 Adelie	Torgersen	42.5	20.7	197	4500 male	2007
##	5 Adelie	Torgersen	46	21.5	194	4200 male	2007
##	6 Adelie	Biscoe	40.6	18.6	183	3550 male	2007
##	7 Adelie	Biscoe	40.5	17.9	187	3200 fema~	2007
##	8 Adelie	Biscoe	40.5	18.9	180	3950 male	2007

2007

2007

3900 male

3550 fema~

184

180

... with 41 more rows, and abbreviated variable names 1: flipper_length_mm,

40.9

42.2

18.9

18.5

2: body_mass_g

9 Adelie Dream

10 Adelie Dream

1.2.5 排序 arrange()

arrange(df, variable) (升序), 或者 arrange(df, -variable) (降序)。

也可以对多个变量依次排序。比如先对变量一排序,再对变量二排序,其公 式为:

arrange(df, var1, var2)

1.2.6 合并数据

1.2.6.1 bind_cols(df1,df2,...)

1.2.6.2 连接数据 __join() 函数族 左联结 left__join():

	X		У	Left	key val_x	val_y
1	x1	1	у1		1 X1 2 X2 3 X3	y2 NA
2	x2	2	y2	· ·		
3	х3	4	у3			

还有右联结 right_join(), inner_join 和 full_join 等。

其他的数据处理函数

1.2.7 缺失值

● 运算中的数据一旦出现了NA, 结果就会出现问题:

```
c(1, 2, 3, NA) %>% sum()
## [1] NA
```

• 在运算的时候, 可以强制忽略缺失值:

```
c(1, 2, 3, NA) %>% sum(na.rm = TRUE)
## [1] 6
```

• 很多函数都有na.rm这个选项, 如mean(), var()等。

We can also do something to the original data to delete the NA value:

```
mean(penguins$body_mass_g)

## [1] NA

penguins1 <- penguins[complete.cases(penguins),]</pre>
```

[1] 4207.057

1.2.8 数据规整

若我们有一组植物的高度数据

mean(penguins1\$body_mass_g)

```
plant_height <- data.frame(
Day = 1:5,
A = c(0.7, 1.0, 1.5, 1.8, 2.2),
B = c(0.5, 0.7, 0.9, 1.3, 1.8),
C = c(0.3, 0.6, 1.0, 1.2, 2.2),
D = c(0.4, 0.7, 1.2, 1.5, 3.2)
)</pre>
```

此时的数据形如:

plant_height

```
## Day A B C D
## 1 1 0.7 0.5 0.3 0.4
## 2 2 1.0 0.7 0.6 0.7
## 3 3 1.5 0.9 1.0 1.2
## 4 4 1.8 1.3 1.2 1.5
## 5 5 2.2 1.8 2.2 3.2
```

若我们想将其转化为:

```
## # A tibble: 20 x 3
        Day plant height
##
##
      <int> <chr> <dbl>
##
   1
          1 A
                      0.7
##
   2
          1 B
                      0.5
##
   3
          1 C
                      0.3
##
   4
          1 D
                      0.4
##
   5
          2 A
                      1
##
   6
          2 B
                      0.7
   7
          2 C
                      0.6
##
                      0.7
##
   8
          2 D
                      1.5
##
          3 A
## 10
          3 B
                      0.9
          3 C
## 11
                      1
## 12
          3 D
                      1.2
## 13
          4 A
                      1.8
## 14
          4 B
                      1.3
## 15
          4 C
                      1.2
## 16
          4 D
                      1.5
## 17
                      2.2
          5 A
## 18
          5 B
                      1.8
                      2.2
## 19
          5 C
## 20
          5 D
                      3.2
```

则我们需要 pivot_longer() 来使表格变长:

1.2.8.1 pivot_longer() 上述步骤的代码为:

```
long <- plant_height %>% pivot_longer(cols = A:D,names_to = "plant",values_to = "height
long
```

```
## # A tibble: 20 x 3
## Day plant height
```

```
##
      <int> <chr> <dbl>
##
          1 A
                     0.7
   2
          1 B
                     0.5
##
##
   3
          1 C
                     0.3
   4
          1 D
                     0.4
##
##
   5
          2 A
##
          2 B
                     0.7
##
   7
          2 C
                     0.6
##
  8
          2 D
                     0.7
                     1.5
## 9
          3 A
## 10
          3 B
                     0.9
## 11
          3 C
                     1
## 12
          3 D
                     1.2
## 13
          4 A
                     1.8
## 14
          4 B
                     1.3
## 15
          4 C
                     1.2
## 16
         4 D
                     1.5
## 17
          5 A
                     2.2
## 18
         5 B
                     1.8
## 19
          5 C
                     2.2
                     3.2
## 20
          5 D
```

1.2.8.2 pivot_wider() 同样,我们也有使表格变宽的方法:

```
## # A tibble: 5 x 5
##
      Day
            Α
                  В
                         С
##
    <int> <dbl> <dbl> <dbl> <dbl>
## 1
        1
            0.7
                  0.5
                       0.3
                             0.4
## 2
            1
                  0.7
        2
                       0.6
                             0.7
## 3
        3 1.5
                 0.9
                      1
                             1.2
```

```
plant_record <- data.frame(
    day = c(1L, 2L, 3L, 4L, 5L),
    A_height = c(1.1, 1.2, 1.3, 1.4, 1.5),
    A_width = c(2.1, 2.2, 2.3, 2.4, 2.5),
    A_depth = c(3.1, 3.2, 3.3, 3.4, 3.5),
    B_height = c(4.1, 4.2, 4.3, 4.4, 4.5),
    B_width = c(5.1, 5.2, 5.3, 5.4, 5.5),
    B_depth = c(6.1, 6.2, 6.3, 6.4, 6.5),
    C_height = c(7.1, 7.2, 7.3, 7.4, 7.5),
    C_width = c(8.1, 8.2, 8.3, 8.4, 8.5),
    C_depth = c(9.1, 9.2, 9.3, 9.4, 9.5)
)
as_tibble(plant_record)</pre>
```

```
## # A tibble: 5 x 10
##
       day A_height A_width A_depth B_hei~1 B_width B_depth C_hei~2 C_width C_depth
                                                                                  <dbl>
##
     <int>
              <dbl>
                       <dbl>
                               <dbl>
                                        <dbl>
                                                 <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                          <dbl>
## 1
         1
                 1.1
                         2.1
                                 3.1
                                          4.1
                                                   5.1
                                                           6.1
                                                                   7.1
                                                                            8.1
                                                                                     9.1
## 2
                1.2
                         2.2
                                          4.2
                                                                   7.2
                                                                                     9.2
         2
                                  3.2
                                                   5.2
                                                           6.2
                                                                            8.2
                         2.3
## 3
         3
                1.3
                                 3.3
                                          4.3
                                                   5.3
                                                           6.3
                                                                   7.3
                                                                            8.3
                                                                                     9.3
## 4
         4
                1.4
                         2.4
                                          4.4
                                                           6.4
                                                                   7.4
                                                                                     9.4
                                 3.4
                                                   5.4
                                                                            8.4
         5
                 1.5
                         2.5
                                 3.5
                                          4.5
                                                   5.5
                                                           6.5
                                                                   7.5
                                                                            8.5
                                                                                     9.5
## 5
```

```
plant_record_longer <- plant_record %>%
tidyr::pivot_longer(
cols = !day,
names_to = c("species", ".value"),
names_pattern = "(.*)_(.*)"
```

... with abbreviated variable names 1: B_height, 2: C_height

)

1

2

3

1

2

3

1.1

1.2

1.3

4.1

4.2

4.3

7.1

7.2

7.3

2.1

2.2

2.3

5.1

5.2

5.3

8.1

8.2

8.3

```
plant_record_longer %>% slice(1:10)
## # A tibble: 10 x 5
##
        day species height width depth
##
      <int> <chr>
                     <dbl> <dbl> <dbl>
          1 A
                              2.1
##
   1
                        1.1
                                    3.1
   2
          1 B
                              5.1
                                    6.1
##
                       4.1
          1 C
   3
                       7.1
                              8.1
                                    9.1
##
##
          2 A
                        1.2
                              2.2
                                    3.2
   5
          2 B
                        4.2
                              5.2
                                    6.2
##
          2 C
                       7.2
                              8.2
                                    9.2
   6
##
   7
                              2.3
##
          3 A
                        1.3
                                    3.3
   8
          3 B
                        4.3
                              5.3
                                    6.3
##
                       7.3
##
   9
          3 C
                              8.3
                                    9.3
## 10
          4 A
                        1.4
                              2.4
                                    3.4
变回去:
plant_record_wider <- plant_record_longer %>%
tidyr::pivot_wider(
names_from = species,
values_from = c(height, width, depth),
names_glue = "{species}_{.value}"
)
plant_record_wider
## # A tibble: 5 x 10
##
       day A_height B_hei~1 C_hei~2 A_width B_width C_width A_depth B_depth C_depth
     <int>
              <dbl>
                      <dbl>
                               <dbl>
                                       <dbl>
                                               <dbl>
                                                                <dbl>
                                                                        <dbl>
##
                                                        <dbl>
```

<dbl>

6.1

6.2

6.3

9.1

9.2

9.3

3.1

3.2

3.3

```
## 4
         4
                 1.4
                         4.4
                                  7.4
                                          2.4
                                                   5.4
                                                            8.4
                                                                    3.4
                                                                             6.4
                                                                                      9.4
## 5
         5
                 1.5
                         4.5
                                  7.5
                                           2.5
                                                   5.5
                                                            8.5
                                                                    3.5
                                                                             6.5
                                                                                      9.5
## # ... with abbreviated variable names 1: B_height, 2: C_height
```

1.3 From data set to a random variables

1.3.1 summary()

- Working with numbers:
 - center: sample mean, sample median, and so on
 - spread: standard deviation, range, quantiles, IQR(Interquartile range), and so on
 - skewness

```
body_mass_g <- penguins$body_mass_g
summary(body_mass_g)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2700 3550 4050 4202 4750 6300 2
```

Or we can customize our summary output:

```
## # A tibble: 1 x 4
## mean median sd IQR
## <dbl> <int> <dbl> <dbl>
## 1 NA NA NA 1200
```

If we want to calculate the mean of one particular *species*, we can use **group_by()** and **summarize**

penguins %>%

group_by(species) %>%

```
summarize(n = length(body_mass_g),
           mean = mean(body_mass_g, na.rm = TRUE),
            sd = sd(body_mass_g,na.rm = TRUE))
## # A tibble: 3 x 4
     species
                   n mean
     <fct>
               <int> <dbl> <dbl>
##
                 152 3701. 459.
## 1 Adelie
## 2 Chinstrap
                 68 3733. 384.
                 124 5076. 504.
## 3 Gentoo
We can add more information like sex:
penguins[complete.cases(penguins),]%>% # 去掉所有的 NA
  group_by(species,sex) %>%
  summarize(n = length(body_mass_g),
           mean = mean(body_mass_g,na.rm = TRUE),
            sd = sd(body_mass_g,na.rm = TRUE))
## `summarise()` has grouped output by 'species'. You can override using the
## `.groups` argument.
## # A tibble: 6 x 5
## # Groups:
              species [3]
     species
               sex
                          n mean
                                     sd
     <fct>
               <fct> <int> <dbl> <dbl>
## 1 Adelie
              female
                         73 3369.
                                   269.
## 2 Adelie
              male
                         73 4043.
                                   347.
## 3 Chinstrap female
                        34 3527.
                                   285.
```

```
## 4 Chinstrap male 34 3939. 362.
## 5 Gentoo female 58 4680. 282.
## 6 Gentoo male 61 5485. 313.
```

1.3.2 Probability models

```
(joint_table <- penguins %>%
    xtabs(~species + sex, data = .)) %>% # 管道操作时,传过来的数据做为非第一参数时,必须用 addmargins() # 计算 sum
```

1.3.2.1 Joint count:

```
##
              sex
## species
               female male Sum
##
    Adelie
                   73
                       73 146
##
    Chinstrap
                   34
                        34 68
##
    Gentoo
                        61 119
                   58
##
    Sum
                  165 168 333
```

```
joint_table %>%
prop.table() %>%
round(digit = 3) %>% # 保留三位有效数字
addmargins()
```

1.3.2.2 Joint probability

```
## sex
## species female male Sum
## Adelie 0.219 0.219 0.438
## Chinstrap 0.102 0.102 0.204
```

0.174 0.183 0.357

##

Gentoo

```
0.495 0.504 0.999
##
     Sum
library(magrittr)
1.3.2.3 Marginal distribution
##
## 载入程辑包: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
       set_names
## The following object is masked from 'package:tidyr':
##
##
       extract
joint_table %>%
margin.table(1) %T>% # 向左传递值到 print(), 但下一个%>% 仍然由 margin.table(1) 传递而不是
print() %>%
prop.table()
## species
##
      Adelie Chinstrap
                         Gentoo
##
         146
                   68
                            119
## species
      Adelie Chinstrap
## 0.4384384 0.2042042 0.3573574
```

```
joint_table %>%
margin.table(2) %T>%
print() %>%
prop.table()
## sex
## female
          male
     165
          168
## sex
##
     female
                 male
## 0.4954955 0.5045045
joint_table %>% prop.table(margin = 1) # 已知第一个变量 species 求条件分布
1.3.2.4 Conditional distribution
##
             sex
## species
                female
                           male
              0.500000 0.500000
    Adelie
    Chinstrap 0.500000 0.500000
##
    Gentoo 0.487395 0.512605
##
joint_table %>% prop.table(margin = 2)
##
             sex
## species
                 female
                             male
             0.4424242 0.4345238
     Adelie
##
##
    Chinstrap 0.2060606 0.2023810
##
    Gentoo 0.3515152 0.3630952
```

```
ggplot(data = penguins, aes(x = body_mass_g, y = ..density.., fill = species)) +
geom_density(color = "black", alpha = 0.5)
```

1.3.2.5 Draw distribute plot

Warning: Removed 2 rows containing non-finite values (stat_density).

Sometimes we can also use **boxplot()**

```
ggplot(data = penguins, aes(x=species, y=body_mass_g, fill=species)) +
geom_boxplot(color="black", alpha=0.5)
```

Warning: Removed 2 rows containing non-finite values (stat_boxplot).

1.3.2.6 Calculate Sample Mean and Covariance Mean

```
penguins1 %>%
select(where(is.numeric)) %>%
colMeans() %>%
knitr::kable() # 用表格表示
```

-	
	X
bill_length_mm	43.99279
$bill_depth_mm$	17.16486
$flipper_length_mm$	200.96697
$body_mass_g$	4207.05706
year	2008.04204

Covariance Matrix

	X1	X2	Х3	X4	Х5
X1	29.91	-2.46	50.06	2595.62	0.15
X2	-2.46	3.88	-15.95	-748.46	-0.08
X3	50.06	-15.95	196.44	9852.19	1.72
X4	2595.62	-748.46	9852.19	648372.49	14.31
X5	0.15	-0.08	1.72	14.31	0.66

Correlation Matrix

	X1	X2	Х3	X4	X5
X1	1.00	-0.23	0.65	0.59	0.03
X2	-0.23	1.00	-0.58	-0.47	-0.05
Х3	0.65	-0.58	1.00	0.87	0.15
X4	0.59	-0.47	0.87	1.00	0.02
X5	0.03	-0.05	0.15	0.02	1.00

1.4 Generate random variables by the build-in functions

1.4.1 Common probability distributions

Letter	Description
d	density
p	probability, distribution function
q	quantile function
r	random generation

For example:

```
dnorm(0)#Normal distribution 的 f(x) 在 x=0 处的值
```

[1] 0.3989423

```
pnorm(0) #F(0)
```

[1] 0.5

qnorm(0.25)#Normal distribution 的 F(x) 小于等于 0.25 时 x 的值

[1] -0.6744898

rnorm(100) # 生成 n 个服从 Normal distribution 的点

```
##
     [1] 0.91042246 1.30051615 -0.15632530 1.03827771 0.60078149 0.08197316
##
     [7] 0.75716874 0.01572915 0.53504882 0.08197983 -0.61039920 -0.21939325
    Г137
        0.32235670 -0.28615564 0.12074337 0.53893889 0.23477276 -2.79557243
##
   [19] 1.70301087 -1.37533719 -2.12701424 1.11752100 -1.32748275 0.13085013
##
    [25] 0.54190657 -0.96162230 -0.43122228 -0.45348243 0.58338815 0.32969995
##
   [31] -0.13618782 -1.07651517 -0.41933581 0.89875303 1.89589993 2.10347674
##
    [37] -1.74895543 1.28243933 1.11763420 -0.58785007 1.41029660 0.23911747
##
    [43] 0.30763068 -0.73646567 2.50749014 -0.35787946 0.93203286 1.82171953
    [49] 0.95598089 0.66374993 0.96202650 -1.19291145 0.12532804 -0.12068604
##
    [55] 1.01066323 -1.38276165 -0.45066957 -1.14961735 -0.10016193 -0.10245828
##
    [61] -0.16352543 0.71934533 0.88153839 1.68019513 -1.16779894 0.82686081
##
    [67] 0.55091111 -0.35137248 0.72399147 0.19662018 -2.48402215 0.49543918
    [73] -0.42581290 0.13104051 -0.44585107 0.40809023 -0.25318276 0.22665706
##
    [79] 0.24347304 -0.39507716 0.03600709 0.08494616 0.53811249 0.02393861
##
    [85] -0.91437330 -1.42142677 -0.20410372 0.28641367 -0.50467861 2.18677658
##
    [91] -1.87696424 1.09340833 1.71875305 0.79254963 -0.77698722 1.19237565
    [97] -0.98041794 -1.30406564 0.01093546 0.40756647
```

Common distributions

Distribution	Abbreviation	Distribution	Abbreviation
Beta	beta	Logistic	logis
Binomial	binom	Multinomial	multinom
Cauchy	cauchy	Negative binomial	nbinom
Chi-squared (noncentral)	chisq	Normal	norm
Exponential	exp	Poisson	pois
F	f	Wilcoxon Signed Rank	signrank
Gamma	gamma	Т	t
Geometric	geom	Uniform	unif
Hypergeometric	hyper	Weibull	weibull
Lognormal	lnorm	Wilcoxon Rank Sum	wilcox

1.4.2 Generate normal random variables

```
rnorm(100,mean=0,sd=1) %>%
hist()
```


rnorm(100) %>%
 summary()

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -3.260109 -0.690097 0.054221 -0.006459 0.640251 2.782867

1.4.3 Generate multivariate normal random variables

library(MASS)

##

载入程辑包: 'MASS'

```
## The following object is masked from 'package:dplyr':
##
## select

set.seed(1234)
mu <- c(10, 20)
sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
mvrnorm(100, mu, sigma) %>%
plot()
```

