Data 101

Alipio Jorge

10/11/2020

What is Data?

- Look it up!
 - ▶ Philosophy: things known or assumed as facts, making the basis of reasoning or calculation
 - Science and engineering: the quantities, characters, or symbols on which operations are performed by a computer, which may be stored and transmitted in the form of electrical signals and recorded on magnetic, optical, or mechanical recording media.

How is data represented?

- Raw data
 - what the world gives
- ► Table or set of tables
 - sooner or later
- Mathematically
 - vectors, matrices, tensors
- ► Only?
 - NO, it's just what successful algorithms prefer
 - ▶ and that is what DS end up with 99.9% of the time

Tables

Play golf dataset

Independent variables				Dep. var
OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
sunny	85	85	FALSE	Don't Play
sunny	80	90	TRUE	Don't Play
overcast	83	78	FALSE	Play
rain	70	96	FALSE	Play
rain	68	80	FALSE	Play
rain	65	70	TRUE	Don't Play
overcast	64	65	TRUE	Play
sunny	72	95	FALSE	Don't Play
sunny	69	70	FALSE	Play
rain	75	80	FALSE	Play
sunny	75	70	TRUE	Play
overcast	72	90	TRUE	Play
overcast	81	75	FALSE	Play
rain	71	80	TRUE	Don't Play

- Data Object (entity)
 - ▶ Row, example, case, individual, observation . . .
- Attribute
 - ▶ Column, variable, feature, dimension, . . .
 - statistically: random variables

Variables

Play golf dataset

Independent variables				Dep. var
OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
sunny	85	85	FALSE	Don't Play
sunny	80	90	TRUE	Don't Play
overcast	83	78	FALSE	Play
rain	70	96	FALSE	Play
rain	68	80	FALSE	Play
rain	65	70	TRUE	Don't Play
overcast	64	65	TRUE	Play
sunny	72	95	FALSE	Don't Play
sunny	69	70	FALSE	Play
rain	75	80	FALSE	Play
sunny	75	70	TRUE	Play
overcast	72	90	TRUE	Play
overcast	81	75	FALSE	Play
rain	71	80	TRUE	Don't Play

- Independent Variable
 - ▶ Predictor, descriptor, input variable
- Dependent Variable
 - ▶ Class, target attribute, output variable

Variable types

Play golf dataset

Independent variables				Dep. var	
OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY	
sunny	85	85	FALSE	Don't Play	
sunny	80	90	TRUE	Don't Play	
overcast	83	78	FALSE	Play	
rain	70	96	FALSE	Play	
rain	68	80	FALSE	Play	
rain	65	70	TRUE	Don't Play	
overcast	64	65	TRUE	Play	
sunny	72	95	FALSE	Don't Play Play	
sunny	69	70	FALSE		
rain	75	80	FALSE	Play	
sunny	75	70	TRUE	Play	
overcast	72	90	TRUE	Play	
overcast	81	75	FALSE	Play	
rain	71	80	TRUE	Don't Play	

Discrete

Nominal, Binary (or Boolean), Ordinal

Continuous

- Numeric
- Note: numeric and continuous are not synonimous, but are often treated as such

Basic Statistics

- Data understanding
 - ▶ Variables can be **summarized** using statistical measures
- Sample
 - the set of cases you get in your data set
 - each variable can be seen as a sample

Basic statistics - central

- Central tendency
 - μ Mean or average (numeric vars)
 - weighted mean
 - ► Median (ordinal vars, including numeric)
 - ► Mode (any var)

Basic statistics - dispersion

Ordinal, including numeric

- ► Range
 - ► Max Min
- ▶ Quartiles, Q_1 , Q_2 or median, Q_3
 - divide your data in four equal sized sets
- Five-number summary
 - ► Min, Q₁, median, Q₃, Max
- ► *IQR* Inter quartile range
 - $ightharpoonup IQR = Q_3 Q_1$

Basic statistics - dispersion

Numeric

- $\triangleright \sigma^2$ Variance
 - the mean of the squared differences of the observations to their mean
 - ► also: the mean of the squared observations minus the the square of their mean
- $\triangleright \sigma$ Standard deviation
 - the squared root of the variance

Basic statistics - Outliers

Outliers

- values well out of the expected range of observations
- various ways to define outliers
- ► Commonly:
 - $ightharpoonup x \geq Q_3 + 1.5 imes IQR$ or
 - \triangleright $x < Q_1 1.5 \times IQR$
- Outliers can be visualized with a box plot
 - whisker chart, gráfico de bigodes (PT)

A Statistical summary in pandas

```
import pandas as pd
d = pd.read_csv('../Dados/SAheart.csv')
d[['sbp','age','chd']].describe(include='all')
```

```
##
                sbp
                           age
                               chd
## count 462.000000 462.000000
                              462
## unique
                NaN
                           NaN
## top
                NaN
                          NaN
                                No
## freq
                NaN
                          NaN 302
## mean
         138.326840 42.816017 NaN
         20.496317
                     14.608956 NaN
## std
         101.000000
                     15.000000
                               NaN
## min
## 25%
         124.000000
                     31.000000
                               NaN
## 50%
         134.000000
                     45.000000
                               NaN
## 75%
         148.000000
                     55.000000 NaN
         218.000000
                     64.000000
                               NaN
## max
```

Graphical Displays - Box plot

d['tobacco'].plot.box()

Graphical Displays - Bar plot

d['chd'].value_counts().plot.bar()

Graphical Displays - Pie plot

d['chd'].value_counts().plot.pie()

Graphical Displays - Histogram

d['tobacco'].plot.hist()

Graphical Displays - Density

d['tobacco'].plot.density()

Graphical Displays - Quantile plot

- Visual comparison with the standard normal
 - or between two variables

```
import statsmodels.api as sm
sm.qqplot(d['tobacco'])
```


Multivariate statistics

##

- ▶ When we work with more than one variable at a time
- ▶ How much two variables jointly change?
- Covariance
- How much does a variable "agree" with another?
 - Correlation (Pearson, Kendall, Spearman, . . .)

Get the correlation matrix of the variables in the dataset

```
d.corr()
```

##	sbp	tobacco	ldl	 obesity
## sbp	1.000000	0.212247	0.158296	 0.238067

- ## tobacco 0.212247 1.000000 0.158905
- 0.124529 ## 1d1 0.158296 0.158905 1.000000 0.330506
- ## adiposity 0.356500 0.286640 0.440432 . . . 0.716556 -0.057454 -0.014608 0.044048 0.074006 ## typea . . .
 - ## obesity 0.238067 0.124529 0.330506 1.000000 ## alcohol 0.140096 0.200813 - 0.0334030.051620 . . .
 - 0.388771 0.450330 0.311799 0.291777 ## age

Graphical Displays - Scatter plot

d.plot.scatter('age','tobacco')

Wrap up

- Homework to be submitted (counts as participation)
 - Produce a notebook with the theoretical definitions and examples of all the statistical measures. Include plots to show your examples.
 - Submit in moodle a pdf or a self standing html resulting from the notebook
 - deadline October 17th

References

- ▶ Data Mining Concepts and Techniques, Han, Kamber & Pei
- ► From the web
 - ► Towards Data Science, Data Science Made Simple, Medium, Wikipedia among others