

Best Practices for Production Deployments- NetApp HCI for Red Hat OpenShift on RHV

NetApp Solutions

Kevin Hoke May 24, 2021

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-rhv_best_practices_for_production_deployments.html on October 21, 2021. Always check docs.netapp.com for the latest.

Table of Contents

Best Practices for Production Deployments - NetApp HCI for Red Hat OpenShift on RHV

This section lists several best practices that an organization should take into consideration before deploying this solution into production.

Deploy OpenShift to an RHV Cluster of at Least Three Nodes

The verified architecture described in this document presents the minimum hardware deployment suitable for HA operations by deploying two RHV-H hypervisor nodes and ensuring a fault tolerant configuration where both hosts can manage the hosted-engine and deployed VMs can migrate between the two hypervisors. Because Red Hat OpenShift initially deploys with three master nodes, it is ensured in a two-node configuration that at least two masters will occupy the same node, which can lead to a possible outage for OpenShift if that specific node becomes unavailable. Therefore, it is a Red Hat best practice that at least three RHV-H hypervisor nodes be deployed as part of the solution so that the OpenShift masters can be distributed evenly, and the solution receives an added degree of fault tolerance.

Configure Virtual Machine/Host Affinity

Ensuring the distribution of the OpenShift masters across multiple hypervisor nodes can be achieved by enabling VM/host affinity. Affinity is a way to define rules for a set of VMs and/or hosts that determine whether the VMs run together on the same host or hosts in the group or on different hosts. It is applied to VMs by creating affinity groups that consist of VMs and/or hosts with a set of identical parameters and conditions. Depending on whether the VMs in an affinity group run on the same host or hosts in the group or separately on different hosts, the parameters of the affinity group can define either positive affinity or negative affinity. The conditions defined for the parameters can be either hard enforcement or soft enforcement. Hard enforcement ensures that the VMs in an affinity group always follows the positive/negative affinity strictly without any regards to external conditions. Soft enforcement, on the other hand, ensures that a higher preference is set out for the VMs in an affinity group to follow the positive/negative affinity whenever feasible. In a two or three hypervisor configuration as described in this document soft affinity is the recommended setting, in larger clusters hard affinity can be relied on to ensure OpenShift nodes are distributed. To configure affinity groups, see the Red Hat 6.11. Affinity Groups documentation.

Use a Custom Install File for OpenShift Deployment

IPI makes the deployment of OpenShift clusters extremely easy through the interactive wizard discussed earlier in this document. However, it is possible that there are some default values that might need to be changed as a part of a cluster deployment. In these instances, the wizard can be run and tasked without immediately deploying a cluster, but instead outputting a configuration file from which the cluster can be deployed later. This is very useful if any IPI defaults need to be changed, or if a user wants to deploy multiple identical clusters in their environment for other uses such as multitenancy. For more information about creating a customized install configuration for OpenShift, see Red Hat OpenShift Installing a Cluster on RHV with Customizations.

Next: Videos and Demos: NetApp HCI for Red Hat OpenShift on Red Hat Virtualization

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.