CS202 - Algorithm Analysis Quick Sort

Aravind Mohan

Allegheny College

February 14, 2023

Discussion Based On ...

Sedgewick 2.3 Quick Sort

Strategy:

- Divide: partition array into 2 subarrays such that elements in the lower part < elements in the higher part.
- Conquer: recursively sort the 2 subarrays.
- Combine: trivial since sorting is done in place.

Characteristics:

- sort almost in "place", i.e., does not require an additional array.
- pivot is generally chosen as the last element.
- very practical, average and best case sort performance $O(N \times log(N))$, with small constant factors and efficient for large size data only.
- worst case running time is $O(N^2)$

Partitioning Procedure (linear)

Algorithm - Partition(A, p, r)

Input: an n-element un-sorted array A of integer values, a lower bound p of the array A, and a pivot r in the array A.

Output: an n-element sorted array A of integer values.

```
\begin{split} i &\leftarrow p-1 \\ \textbf{for j} &= \textbf{p to r-1 do} \\ &\quad \textbf{if A[j]} \leq \textbf{A[r] then} \\ &\quad i \leftarrow i+1 \\ &\quad \text{swap A[i] and A[j]} \\ &\quad \textbf{end if} \\ &\quad \textbf{end for} \\ &\quad \text{swap A[i+1] and A[r]} \\ &\quad \textbf{return i+1} \end{split}
```

QuickSort Procedure (linear)

```
Algorithm - QuickSort(A, p, r)
```

Input: an n-element un-sorted array A of integer values, a lower bound p of the array A, and a pivot r in the array A.

Output: an n-element sorted array A of integer values.

```
 \begin{aligned} & \text{if } p < r \text{ then} \\ & q \leftarrow \text{Partition}(A,p,r) \\ & \text{QuickSort}(A, p, q-1) \\ & \text{QuickSort}(A, q+1, r) \\ & \text{end if} \end{aligned}
```

Partitioner Example

Partitioner Example

Quick Sort Algorithm - An analysis

Running Time:

- Worst case: $O(n^2)$
- Best case: $O(n \times log(n))$
- Average case: $O(n \times log(n))$

Quick Sort Split

- 1:9 split $O(n \times log(n))$
- 1:99 split $\overline{O(n \times log(n))}$
- 1:999 split $O(n \times log(n))$
- 0:n split $O(n^2)$

Quick Sort Example (Analyze)

1 2 3 4 5 6 7	1	2	3	4	5	6	7
---------------	---	---	---	---	---	---	---

• Running time : $O(n^2)$

Quick Sort Example (Analyze)

7 6 5 4 3 2 1

• Running time : $O(n^2)$

Quick Sort Finishing Up

One question to think of is can we do a better job in selecting the pivot element? Random position for [pivot] better split? - In Lab

Reading Assignment

Sedgewick 2.3 Quick Sort

Questions?

Please ask if there are any Questions!