Question Number	Scheme	Marks
7(i)	$\frac{\left(8^{x}\right)^{x}}{32^{x}} = 4 \Rightarrow \frac{2^{3x^{2}}}{2^{5x}} = 2^{2} \Rightarrow 2^{\left(3x^{2} - 5x\right)} = 2^{2}$	M1A1
	$\Rightarrow 3x^2 - 5x = 2 \Rightarrow (3x+1)(x-2) = 0$	M1
	$x = -\frac{1}{3}, 2$	A1 (4)
(ii)	$\log_x 64 - \log_x 4 = \log_x \left(\frac{64}{4}\right) = \log_x 16$	M1
	$\log_{x} 16 = \frac{\log_{4} 16}{\log_{4} x} = \frac{2}{\log_{4} x}$	M1
	$3\log_4 x + \frac{2}{\log_4 x} = 5 \Rightarrow 3(\log_4 x)^2 + 2 = 5\log_4 x$	M1
	$\Rightarrow 3\left(\log_4 x\right)^2 - 5\log_4 x + 2 = 0$	
	$\Rightarrow (3\log_4 x - 2)(\log_4 x - 1) = 0$	dM1
	$\Rightarrow \log_4 x = \frac{2}{3}, \log_4 x = 1$	A1
	$\Rightarrow x = 4^{\frac{2}{3}} \left(= 2^{\frac{4}{3}} = \sqrt[3]{16} \right) = 2.5198421 \approx 2.52 \text{ or better } x = 4^{1} = 4$	dM1A1 (7)
ALT (ii)	$\log_x 64 - \log_x 4 = \log_x \left(\frac{64}{4}\right) = \log_x 16 = 2\log_x 4$	[11] M1
	$\log_4 x = \frac{\log_x x}{\log_x 4} = \frac{1}{\log_x 4}$	M1
	$2\log_x 4 + \frac{3}{\log_x 4} = 5 \Rightarrow 2(\log_x 4)^2 + 2 = 5\log_x 4$	M1
	$\Rightarrow 2(\log_x 4)^2 - 5\log_x 4 + 3 = 0$	
	$\Rightarrow (2\log_x 4 - 3)(\log_x 4 - 1) = 0$	dM1
	$\Rightarrow \log_x 4 = \frac{3}{2}, \log_x 4 = 1 \Rightarrow 4 = x^{\frac{3}{2}}, 4 = x^1$	A1
	$\Rightarrow x = 4^{\frac{2}{3}} = (\sqrt[3]{16}) = 2.5198421 \approx 2.52 \text{ or better}, x = 4^{1} = 4$	dM1A1 (7)

Question Number	Scheme	Marks
(i)		
M1	Change all terms of equation to powers of 2 (or possibly 4)	
A1 M1	Correct 2 term equation with powers of 2 Equate the powers in their equation and solve the resulting 3 term quadratic	
A1	Correct values for x (both needed)	
711	Special Case: Using factor theorem:	
	Substitute $x = 2$ and show correct M1A1M0A0	
	If (unlikely) same done with $x = -\frac{1}{3}$ - send to Review!	
(ii)		
	The work for the first 3 M marks may appear in a different order.	
N/1	Enter the marks in the order shown here.	
M1	Combine the two logs base <i>x</i> or combine the equivalent logs after changing base. Award for combining the 2 equivalent numbers after multiplying through by their	
	denominators	
M1	Change all logs base <i>x</i> to logs base 4 (or all logs to the same base)	
M1	Obtain a 3 term quadratic, terms in any order.	
dM1	Solve their 3 term quadratic to $\log_4 x =$ or $\log_p x =$ Depends on all previous	us M marks
A1	Two correct values for $\log_4 x$ or $\log_p x$	
dM1	"Undo" their logs to get at least one value for x (not nec correct) Depends on all pr	evious M
	marks.	
A1	Two correct values for x. Accept accurate answers or min 3 sf	
ALT		
M1	Combine the two logs base <i>x</i>	
M1	Change all log base 4 to log base x	
M1	Obtain a 3 term quadratic, terms in any order.	
dM1	Solve their 3 term quadratic to $\log_x 4 =$ or $\log_x p =$ Depends on all previous	s M marks
A1	Two correct values for $\log_x 4$ or $\log_x p$	
dM1	"Undo" their logs to get at least one value for x Depends on all previous M mark	KS
A1	Two correct values for x	