# Collaborative Filtering Nearest Neighbor Approach

### **Bad news**

#### Netflix Prize data no longer available to public.

- Just after contest ended in July 2009:
  - Plans for Netflix Prize 2 contest were announced
  - Contest data was made available for further public research at UC Irvine repository
- But a few months later:
  - Netflix was being sued for supposed privacy breaches connected with contest data
  - FTC was investigating privacy concerns
- By March 2010:
  - Netflix had settled the lawsuit privately
  - Withdrawn the contest data from public use
  - Cancelled Netflix Prize 2

## **Good news**

An older movie rating dataset from GroupLens is still available, and perfectly suitable for the CSS 490 / 590 project.

- Consists of data collected through the MovieLens movie rating website.
- Comes in 3 sizes:
  - MovieLens 100k
  - MovieLens 1M
  - MovieLens 10M

http://www.grouplens.org/node/12 http://movielens.umn.edu/login

# MovieLens 100k dataset properties

- 943 users
- 1682 movies
- 100,000 ratings
- 1 5 rating scale
- Rating matrix is 6.3% occupied
- Ratings per user

$$min = 20$$

$$mean = 106$$

$$max = 737$$

Ratings per movie

$$min = 1$$

$$mean = 59$$

$$max = 583$$

# Recommender system definition

DOMAIN: some field of activity where <u>users</u> buy, view, consume, or otherwise experience <u>items</u>

#### PROCESS:

- users provide <u>ratings</u> on <u>items</u> they have experienced
- Take all < user, item, rating > data and build a predictive model
- For a user who hasn't experienced a particular item, use model to <u>predict</u> how well they will like it (i.e. <u>predict rating</u>)

# Types of recommender systems

Predictions can be based on either:

- content-based approach
  - explicit characteristics of users and items
- collaborative filtering approach
  - implicit characteristics based on similarity of users' preferences to those of other users

# Collaborative filtering algorithms

- Common types:
  - Global effects
  - Nearest neighbor
  - Matrix factorization
  - Restricted Boltzmann machine
  - Clustering
  - Etc.

# Nearest neighbor in action



## Nearest neighbor classifiers



#### Requires three inputs:

- The set of stored samples
- 2. Distance metric to compute distance between samples
- 3. The value of *k*, the number of nearest neighbors to retrieve

## Nearest neighbor classifiers



To classify unknown record:

- 1. Compute distance to other training records
- 2. Identify *k* nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

# Nearest neighbor classification

- Compute distance between two points
  - Example: Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Options for determining the class from nearest neighbor list
  - Take majority vote of class labels among the k-nearest neighbors
  - Weight the votes according to distance
    - example: weight factor  $w = 1 / d^2$

## Nearest neighbor in collaborative filtering

- For our implementation in Project 2:
  - Actually a regression, not a classification.
    - Prediction is a weighted combination of neighbor's ratings (real number).
  - We consider all neighbors, not the k-nearest subset of neighbors.
    - Since we're not ranking neighbors by distance, distance no longer relevant.
  - Instead of distance, we calculate similarities that determine weightings of each neighbor's rating.

## Nearest neighbor in action

- For this example:
  - Find <u>every</u> user that has rated movie 10
  - Compute similarity between user 2 and each of those users
  - Weight those users' ratings according to their similarities
  - Predicted rating for user 2 is sum of other users' weighted ratings on movie 10



# Measuring similarity of users

- For Project 2 we will use Pearson's correlation coefficient (PCC) as a measure of similarity between users.
- Pearson's correlation coefficient is covariance normalized by the standard deviations of the two variables:

$$corr(x, y) = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

Always lies in range -1 to 1

# Measuring similarity of users

PCC similarity for two users a and b:

$$PCC(a,b) = \frac{\sum_{j=1}^{n} (r_{a,j} - \overline{r}_a)(r_{b,j} - \overline{r}_b)}{\sqrt{\sum_{j=1}^{n} (r_{a,j} - \overline{r}_a)^2} \sqrt{\sum_{j=1}^{n} (r_{b,j} - \overline{r}_b)^2}}$$

- Both sums are taken over only those movies rated by both a and b (indexed by j)
- $r_{a,j}$  = rating by user a on movie j
- $r_a$  = average rating on all movies rated by user a
- n = number of movies rated by both a and b

# Mesauring similarity of users

- Calculating PCC on sparse matrix
  - Calculate user average rating using only those cells where a rating exists.
  - Subtract user average rating only from those cells where rating exists.
  - Calculate and sum user-user cross-products and user deviations from average only for those movies where a rating exists for both users.

