
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

Volume 471
June 6, 1986

INTERNATIONAL SYMPOSIUM ON
BIOORGANIC CHEMISTRY^a

Editor
RONALD BRESLOW

Conference Organizers
E. T. KAISER, KOJI NAKANISHI, and RONALD BRESLOW

CONTENTS

Preface. <i>By RONALD BRESLOW</i>	ix
---	----

Part I. Mimics of Biological Systems

Attempted Chemical Construction of Artificial Single Cells. <i>By IWAO TABUSHI</i>	1
Synthesis of a Partial Transacylase Mimic. <i>By DONALD J. CRAM, PATRICK YUK-SUN LAM, and SIEW PENG HO</i>	22
Recent Studies of Supramolecular Catalysis and Transport Processes. <i>By JEAN-MARIE LEHN</i>	41
Design of Sequence-specific DNA Cleaving Molecules: Comparison of Distamycin-EDTA · Fe(II) and <i>N</i> -Bromoacetyl distamycin. <i>By PETER B. DERVAN and BRENDA F. BAKER</i>	51
Approaches to Artificial Enzymes. <i>By RONALD BRESLOW</i>	60
Organization and Functions of Synthetic Bilayers. <i>By TOYOKI KUNITAKE</i>	70
Chemical Studies Pertaining to the Chemistry of Cytochrome P-450 and the Peroxidases. <i>By THOMAS C. BRUCE</i>	83
Biological Strategies for the Manipulation of Dioxygen: The Chemistry of Cytochrome P-450. <i>By JOHN T. GROVES</i>	99

Part II. Chemistry of Natural Products of Biological Importance

Chemistry of Corphinoids. <i>By A. ESCHENMOSER</i>	108
Stereochemical Studies of Natural Products Biosynthesis. <i>By DAVID E. CANE</i>	130
Biosynthesis of the Pigments of Life. <i>By ALAN R. BATTERSBY</i>	138
Chemistry of Metalloanthocyanins. <i>By TOSHIO GOTO, HIROTOSHI TAMURA, TAKATOSHI KAWAI, TSUTOMU HOSHINO, NOBUYUKI HARADA, and TADAO KONDO</i>	155

^aThe papers in this volume were presented at the International Symposium on Bioorganic Chemistry, sponsored by the New York Academy of Sciences and the International Union of Pure and Applied Chemistry, which was held on May 6-8, 1985, in New York, N. Y.

NMR Studies of Biosynthetic Pathways. <i>By A. I. SCOTT</i>	174
Molecular Messengers among Insects. <i>By JERROLD MEINWALD</i>	197

Part III. Chemistry of Biological Macromolecules

Bacterial Cyclohexanone Oxygenase: A Versatile Flavoprotein Oxygen Transfer Catalyst. <i>By JOHN LATHAM and CHRISTOPHER WALSH</i>	208
Interaction of DNA Containing Phosphorothioate Groups with Restriction Enzymes. <i>By FRITZ ECKSTEIN</i>	217
The Mechanism of Action of Phenylalanine Hydroxylase. <i>By STEPHEN J. BENKOVIC, LESLIE M. BLOOM, GIDEON BOLLAG, THOMAS A. DIX, BETTY JEAN GAFFNEY, and STEPHEN PEMBER</i>	226
The Design of Peptides and Proteins. <i>By E. T. KAISER</i>	233
Biochemical Asymmetric Catalysis. <i>By CHARLES J. SIH, WOAN-RU SHIEH, CHING-SHIH CHEN, SHIH-HSIUNG WU, and GARY GIRDAUKAS</i>	239
Relatives of Watson-Crick DNA, RNA Cross Sections. <i>By NELSON J. LEONARD, KENNETH A. CRUCKSHANK, MICHAEL P. GROZIAK, GARY L. CLAUSON, and BALEKUDRU DEVADAS</i>	255
The Mechanistic Pathway of a Mutant Triosephosphate Isomerase. <i>By RONALD T. RAINES and JEREMY R. KNOWLES</i>	266
Rhodopsin, the Visual Pigment, and Bacteriorhodopsin. <i>By H. GOBIND KHORANA</i>	272

Poster Papers

Structure of Crown Gall Tumor Metabolites: Chemical Mediators of Parasitism. <i>By HANS AARON BATES</i>	289
Models for Planar Polyazamacrocyclic Ligands for Alkali Metal Ions. <i>By THOMAS W. BELL and FRIEDA GUZZO</i>	291
Role of Active Site Residues and Solvation in RNase A. <i>By C. BROOKS III, A. BRÜNGER, M. FRANCL, K. HAYDOCK, L. C. ALLEN, and M. KARPLUS</i>	295
Configurational Patterns among Macrolide Antibiotics. <i>By W. D. CELMER</i>	299
Bioorganic Applications of Heteronuclear Multiquantum Proton-detected Spectroscopy. <i>By DAVID COWBURN</i>	304
Synthetic Approaches to Analogues of the Vancomycin Family of Antibiotics. <i>By ANDREW D. HAMILTON and MICHAEL J. MANN</i>	305
Enzyme-generated Model for the Reductive Acetylation of Lipoyl-E2 by E1 in the Pyruvate Dehydrogenase Multienzyme Complex. <i>By FRANK JORDAN, ZBIGNIEW H. KUDZIN, and DONALD J. KUO</i>	308
Synthesis and Stereochemical Analysis of Chiral [¹⁶ O, ¹⁷ O, ¹⁸ O]Sulfate Esters. <i>By GORDON LOWE and MARTIN J. PARRATT</i>	310
Studies with Folate Models. <i>By U. K. PANDIT, A. R. STOIT, H. BIERÄUGEL, P. F. C. VAN DER MEIJ, and E. R. DE WAARD</i>	314
Functionalized Crown Ethers as an Approach to the Enzyme Model for the Synthesis of Peptides. <i>By SHIGEKI SASAKI, MITSUHIKO SHIONOYA, HISAAKI CHAKI, and KENJI KOGA</i>	316
Molecular Recognition by Cyclic Urea Mimetics of α -Chymotrypsin. <i>By CAROL A. VENANZI and JEFFREY D. BUNCE</i>	318

Selective Reductive Cleavage of a Threonine Peptide Bond in Polymyxin Antibiotics. <i>By JAY WEINSTEIN and ADRIANO AFCNSO.....</i>	321
Several Polynucleotide-modifying Enzymes Are Active on the A Conformation. <i>By SEHYOON YOU, HAI-YOUNG WU, and MICHAEL J. BEHE.....</i>	324
Index of Contributors.....	327

Financial assistance was received from:

- BAYER AG/MILES
- BURROUGHS WELLCOME CO.
- HOFFMANN-LAROCHE, INC.
- LILLY RESEARCH LABORATORIES/DIVISION OF ELI LILLY AND COMPANY
- MERCK, SHARP & DOHME RESEARCH LABORATORIES/DIVISION OF MERCK & CO., INC.
- MERRELL DOW RESEARCH INSTITUTE
- NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES/NATIONAL INSTITUTES OF HEALTH
- NATIONAL SCIENCE FOUNDATION
- OFFICE OF NAVAL RESEARCH
- STANDARD OIL COMPANY OF INDIANA—AMOCO RESEARCH CENTER
- THE UPJOHN COMPANY
- U. S. AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
- U. S. ARMY RESEARCH OFFICE

The New York Academy of Sciences believes it has a responsibility to provide an open forum for discussion of scientific questions. The positions taken by the participants in the reported conferences are their own and not necessarily those of the Academy. The Academy has no intent to influence legislation by providing such forums.