5. Dibuja los diagramas en el plano del producto cartesiano $A \times B$ para los conjuntos A y B dados: (1) $A = \{x \in \mathbb{R} : 1 \le x \le 2 \text{ o } 3 \le x \le 4\}, B = \{x \in \mathbb{R} : x = 1 \text{ o } x = 2\}; (2) A = \{1, 2, 3\}, B = \{x \in \mathbb{R} : 1 \le x \le 3\}.$

Solución. El conjunto $A \times B$ en el primer caso consta de cuatro barras horizontales, $[1, 2] \times \{1\}$, $[1, 2] \times \{2\}$, $[3, 4] \times \{1\}$ y $[3, 4] \times \{2\}$, y en el segundo caso de tres barras verticales, $\{1\} \times [1, 3]$, $\{2\} \times [1, 3]$ y $\{3\} \times [1, 3]$. \square

6. Sea $A = \{x \in \mathbb{R} : -1 \le x \le 1\}$ un subconjunto de los números reales. ¿Es el conjunto $C = \{(x,y) \in A \times A : x^2 + y^2 = 1\}$ la gráfica de una función?

Solución. Para que C sea una función (en el sentido conjuntista) ha de verificarse que para todo $a \in A$ existe un único $b \in A$ tal que $(a, b) \in C$.

Sin embargo, para a=0 tenemos que $(0,1)\in C$ y $(0,-1)\in C$, de forma que C no puede ser una función. \square

- 7. Sea f la función real dada por $f(x) = 1/x^2$ para todo $x \in \mathbb{R}, x \neq 0$. Con ello, determina:
 - (1) la imagen, f(E), de $E = \{x \in \mathbb{R} : 1 \le x \le 2\}$;
 - (2) la imagen inversa, $f^{-1}(G)$, de $G = \{x \in \mathbb{R} : 1 \le x \le 4\}$.

Observacion. Suponemos sabido para $0 \le \alpha, \beta$ que: $\alpha \le \beta \iff \alpha^2 \le \beta^2$.

Esto se prueba fácilmente cuando dispongamos del orden de los números reales.

Solución. (1) Veamos que $f(E) = \{y \in \mathbb{R} : y = f(x) \text{ para cierto } x \in [1,2]\} = \begin{bmatrix} \frac{1}{4},1 \end{bmatrix}$.

 (\subseteq) Sea $y_0 \in f(E)$, entonces existe $x_0 \in [1,2]$ con $f(x_0) = y_0$ por definición, luego

$$\frac{1}{4} \le y_0 \le 1 \iff \frac{1}{4} \le \frac{1}{x_0^2} \le 1 \iff 1 \le x_0^2 \le 4 \iff 1 \le x_0 \le 2 \checkmark$$

 (\supseteq) Recíprocamente, sea $y_0 \in [\frac{1}{4}, 1]$, definamos $x_0 := 1/\sqrt{y_0}$. Entonces, es claro que $f(x_0) = y_0$ y:

$$1 \le x_0 \le 2 \iff 1 \le \frac{1}{\sqrt{y_0}} \le 2 \iff \frac{1}{2} \le \sqrt{y_0} \le 1 \iff \frac{1}{4} \le y_0 \le 1 \checkmark$$

- (2) Veamos que $f^{-1}(G)=\{x\in\mathbb{R}:\exists y\in G, f(x)=y\}=[\frac{1}{2},1].$
- (\subseteq) Sea $x_0 \in f^{-1}(G)$ luego $\exists y_0 \in [1,4]$ tal que $\frac{1}{x_0^2} = y_0$. Veamos que $x_0 \in [\frac{1}{2},1]$:

$$\frac{1}{2} \leq x_0 \leq 1 \overset{\text{cuentas}}{\Longleftrightarrow} 1 \leq \frac{1}{x_0} \leq 2 \overset{\text{obs.}}{\Longleftrightarrow} 1 \leq \frac{1}{x_0^2} \leq 4 \overset{\text{def.}}{\Longleftrightarrow} 1 \leq y_0 \leq 4 \checkmark.$$

(⊇) Sea $x_0 \in [\frac{1}{2}, 1]$, definamos $y_0 = \frac{1}{x_0^2}$, de forma que $f(x_0) = y_0$, y se comprueba fácilmente que $y_0 \in G = [1, 4]$, con lo que $x_0 \in f^{-1}(G)$:

$$1 \le y_0 \le 4 \iff 1 \le \frac{1}{x_0^2} \le 4 \iff \frac{1}{4} \le x_0^2 \le 1 \iff \frac{1}{2} \le x_0 \le 1 \checkmark.$$

8. Sea g la función dada por $g(x)=x^2$ para todo $x\in\mathbb{R}$ y sea f la función dada por f(x)=x+2 para todo $x\in\mathbb{R}$. Consideremos $h:\mathbb{R}\to\mathbb{R}$, la composición de ambas, $h=g\circ f$. Determina:

- (1) la imagen, h(E), de $E = \{x \in \mathbb{R} : 0 \le x \le 1\}$;
- (2) la imagen inversa, $h^{-1}(G)$, de $G = \{x \in \mathbb{R} : 0 \le x \le 4\}$.

Solución. Se deja como ejercicio propuesto.

9. Sea f la función real dada por $f(x) = x^2$ para todo $x \in \mathbb{R}$ y denotemos $E = \{x \in \mathbb{R} : -1 \le x \le 0\}$ y $F = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Demuestra que $E \cap F = \{0\}$ y que $f(E \cap F) = \{0\}$, mientras que, por otra parte, se tiene que $f(E) = f(F) = \{y \in \mathbb{R} : 0 \le y \le 1\}$. Deduce así que $f(E \cap F)$ es un subconjunto propio de $f(E) \cap f(F)$. ¿Qué ocurre si se elimina 0 de los conjuntos $E \setminus F$? Determina los conjuntos $E \setminus F$ y $f(E) \setminus f(F)$ y demuestra que no es cierto que $f(E \setminus F) \subseteq f(E) \setminus f(F)$.

Solución. Veamos que $E \cap F = \{0\}$.

- (\subseteq) Sea $x \in E \cap F$, entonces $-1 \le x \le 0$ y $0 \le x \le 1$, de forma que la única posibilidad es x = 0,
- (\supseteq) x = 0 verifica claramente que $-1 \le x \le 0 \iff x \in E$ y que $0 \le x \le 1 \iff x \in F$.

Estudiemos ahora $f(E \cap F)$ y $f(E) \cap f(F)$

 $f(E \cap F) = f(\{0\}) = \{0\} = \{0\}$ trivialmente; y $f(E) = \{y : 0 \le y \le 1\} = f(F)$. ¿Por qué?

Por una parte, $-1 \le x \le 0 \implies 0 \le x^2 \le 1$:

- (i) que $0 \le x^2$ es segundo axioma; $x \in \mathbb{P} \implies x \cdot x = x^2 \in \mathbb{P}$;
- (ii) como $x-(-1)=1+x\in\mathbb{P} \implies (-x)(1+x)=-x^2-(x)\in\mathbb{P},$ es decir $x\leq -x^2 \implies x^2\leq -x\leq 1$

Por otra parte, $0 \le x \le 1 \implies 0 \le x^2 \le 1$ (ya lo vimos).

Determinemos ahora $E \setminus F$ y veamos que $f(E \setminus F) \not\subseteq f(E) \setminus f(F)$.

Es sencillo comprobar que $E \setminus F = \{x \in \mathbb{R} : -1 \le x < 0\}$, y que $f(E) \setminus f(F) = \emptyset$, pues f(E) = f(F),

luego
$$f(E \setminus F) = \{ y \in \mathbb{R} : 0 \le y < 1 \} \not\subseteq \emptyset = f(E) \setminus f(F).$$

10. Sea A y B dos conjuntos, sea $f:A\to B$ una aplicación y $E,F\subseteq A$. Demuestra que $f(E\cup F)=f(E)\cup f(F)$ y $f(E\cap F)\subseteq f(E)\cap f(F)$. ¿Por qué no se tiene la igualdad en general?

Solución. Empecemos demostrando que $f(E \cup F) = f(E) \cup f(F)$.

Que $y \in f(E \cup F)$ es equivalente a que exista $x \in E \cup F$ tal que y = f(x), o reescribiendo esto, que exista $x \in E$ tal que y = f(x) o que exista $x \in F$ tal que y = f(x), es decir, $y \in f(E)$ o $y \in f(F)$, en otras palabras, que $y \in f(E) \cup f(F)$.

Demostremos ahora que $f(E \cap F) \subseteq f(E) \cap f(F)$.

Sea $y \in f(E \cap F)$ cualquiera, es decir, por definición, tal que existe $x \in E \cap F$ satisfaciendo y = f(x), de forma que existe $x \in E$ tal que y = f(x) y existe ese mismo $x \in F$ tal que y = f(x), y con todo ello concluimos que $y \in f(E)$ e $y \in f(F)$, en otras palabras $y \in f(E) \cap f(F)$.

¿Por qué no se tiene la igualdad en general? Construyamos un ejemplo. Denotemos $A = \{1,2,3\}$ y $B = \{1,2\}$, y sean $E = \{1,2\}$ y $F = \{2,3\}$, de forma que $E \cap F = \{2\}$. Definamos la función $f:A \to B$ dada por f(1) = 1, f(2) = 2 y f(3) = 1, de modo que $f(E) \cap f(F) = \{1,2\}$ pero $f(E \cap F) = \{2\}$, con lo que no se verifica el contenido recíproco.