Lab13-2:Image Captioning

Encoder-Decoder

- Neural Machine Translation
 - Encoder RNN
 - reads the source sentence and transforms it into a rich fixed-length vector representation
 - Decoder RNN
 - uses the representation as the initial hidden state and generates the target sentence

Encoder-Decoder

- Image Captioning
 - Encoder CNN
 - reads the images and transforms it into a rich fixedlength vector representation
 - Decoder RNN
 - uses the representation as the initial hidden state and generates the target sentence

Encoder-Decoder

- m-RNN
 - a multimodal Recurrent Neural Network model
 - language model part
 - image part
 - multimodal part

m-RNN

- It must be emphasized that
 - The image part is AlexNet, which connects the seventh layer of AlexNet to the multimodal layer.
 - This model feeds the image at each time step.

NIC

- a generative model combining recent advances in computer vision and machine translation
 - The image is only input once, at t = -1, to inform the LSTM about the image contents.

- Attention-Based
 - 《Show, Attend and Tell: Neural Image Caption Generation with Visual Attention》
 - a generative model attempting to incorporate a form of attention with two variants

- To get more related papers,
 - https://paperswithcode.com/task/image-captioning

- Implementation
 - The model architecture is similar to 《Show,
 Attend and Tell: Neural Image Caption Generation with Visual Attention》
 - https://www.tensorflow.org/tutorials/text/image_caption
 oning

CAPTCHA

 an acronym for "Completely Automated Public Turing test to tell Computers and Humans Apart"

CAPTCHA

- a type of challenge-response test used in computing to determine whether or not the user is human
- prevents spam attacks and protects websites from bots

COMMENT

- reCAPTCHA
 - a CAPTCHA-like system
 - establish that a computer user is human
 - assist in the digitization of books or improve machine learning

- Homework
 - Train a captcha-recognizer to identify English words in images

- Homework
 - Dataset
 - 140,000 CAPTCHAs
 - 2500 English words
 - 3-5 character lengths
 - four different fonts.

Homework

- Requirements
 - Use any model architectures you want
 - Design your own model architecture
 - The first 100,000 as training data, the next 20,000 as validation data, and the rest as testing data
 - Only if the whole word matches exactly does it count as correct
 - Predict the answer to the testing data and write them in a file
 - Testing accuracy should be at least 90%

- Homework
 - Notification
 - your code file (Lab13-2_{student id}.ipynb)
 - your answer file (Lab13-2_{student id}.txt)

```
a0 thus
a1 www
a2 tied
a3 ids
a4 jam
a5 zoo
a6 apple
a7 big
a8 lot
a9 above
a10 ooo
a11 dame
a12 dates
```

- Homework
 - Loss/Acc

