(19) 世界知的所有権機関 国際事務局

- 1818 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888

(43) 国際公開日 2001 年5 月10 日 (10.05.2001)

PCT

(10) 国際公開番号 WO 01/32164 A1

- (51) 国際特許分類7: A61K 31/155, 31/245, 31/18, 31/275, 31/166, 31/502, 31/36, 31/4035, 31/42, 31/429, 31/505, 31/403, 31/416, 31/4192, 31/404, 31/4245, 31/415, 31/519, 31/428, 31/352, 31/4453, 31/40, 31/343, 31/432, 31/472, 31/47, 31/5375, 31/381, 31/44, 31/45, 31/505, 31/351, 31/341, 31/357, 31/426, 31/445, 31/4402, 31/522, C07C 317/40, 323/65, 323/12, 323/19, 323/41
- (21) 国際出願番号:

PCT/JP00/07694

(22) 国際出願日:

2000年11月1日(01.11.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

JP

- (30) 優先権データ: 特願平11/311137 1999年11月1日(01.11.1999) 特願平11/372347
 - 1999年12月28日(28.12.1999)

特願平2000-180472

2000年6月15日(15.06.2000) JP

特願平2000-180473

2000年6月15日(15.06.2000) JP

特願平2000-180476

2000年6月15日(15.06.2000)

特願平2000-180478

2000年6月15日(15.06.2000) JP

(71) 出願人(米国を除く全ての指定国について): 大正製薬 株式会社(TAISHO PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒170-8633 東京都豊島区高田3丁目24番1号 Tokyo (JP).

(72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 佐藤正和 (SATO, Masakazu) [JP/JP]. 宮田 則之 (MIYATA, Noriyuki) [JP/JP]. 石井孝明 (ISHII, Takaaki) [JP/JP]. 小林結 子 (KOBAYASHI, Yuko) [JP/JP]. 天田英明 (AMADA, Hideaki) [JP/JP]; 〒170-8633 東京都豊島区高田3丁目 24番1号 大正製薬株式会社内 Tokyo (JP).
- (74) 代理人: 弁理士 志賀正武, 外(SHIGA, Masatake et al.); 〒169-8925 東京都新宿区高田馬場三丁目23番3号 OR ピル Tokyo (JP).
- (81) 指定国 (国内): AU, CA, CN, JP, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: INHIBITOR FOR 20-HETE-YIELDING ENZYME

(54) 発明の名称: 20-HETE産生酵素阻害剤

(57) Abstract: An inhibitor for 20-hydroxyeicosatetraenoic acid production which comprises as the active ingredient a specific hydroxyformamidine derivative or a pharmacologically acceptable salt thereof. It is useful especially as a remedy for kidney diseases, cerebrovascular diseases, or circulatory diseases. The novel hydroxyformamidine derivative or pharmacologically acceptable salt thereof is also provided.

(57) 要約:

O 01/32164 A1

本発明は特定のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効成分とする20-ヒドロキシエイコサテトラエン酸産生阻害剤である。本発明は、特に、腎疾患、脳血管疾患又は循環器疾患治療薬として有用である。また、本発明は、新規なヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩をも提供するものである。

明細書

20-HETE産生酵素阻害剤

技術分野

本発明は、アラキドン酸から生合成される20-ヒドロキシエイコサテトラエン酸(20-HETE)の産生酵素を阻害するヒドロキシホルムアミジノベンゼン誘導体に関する。

背景技術

アラキドン酸から産生される生理活性物質として、従来より、シクロオキシゲナーゼによって産生されるプロスタグランジン類及びリポキシゲナーゲによって産生されるリポキシゲナーゼ類が広く知られている。しかし、近年、チトクロームp450属に属する酵素によってアラキドン酸から産生される20-HETEが生体内で多彩な働きをしていることが明らかとされつつある(J. Vascular Research、第32巻、第79頁(1995))。これまでに20-HETEは腎臓、脳血管等の主要臓器において微小血管を収縮又は拡張させることや細胞増殖を惹起することが明らかにされており、生体内で重要な生理作用を演じていると共に各種腎疾患、脳血管疾患、循環器疾患等の病態に深く関与していることが示唆されている(J. Vascular Research、第32巻、第79頁(1995)、Am. J. Physiol.,第277巻、R607頁(1999)等)。

発明の開示

本発明は、腎臓、脳血管等の主要臓器における微小血管収縮又は拡張、或いは、 細胞増殖惹起に関与する20-HETEの産生を阻害する薬剤を提供することを 目的としている。

本発明者らは前記課題を解決する目的で鋭意探索研究した結果、ある特異な部分構造を有する芳香族化合物が意外にも20-HETEの産生酵素の阻害作用を有することを見出し、本発明を完成した。

すなわち、本発明の一つの形態は、次の一般式(1)

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5

〔式中、R¹~R⁵は、

同一又は相異なって、水素原子;水酸基;カルボキシル基;ハロゲン原子;C 1-14アルキル基;1~6個のハロゲン原子で置換されたC1-14アルキル基;C2 -6アルケニル基:C1-6アルコキシC1-6アルキル基;C3-8シクロアルキルC1-6 アルキル基: C2-6アルキニル基: C3-8シクロアルキル基: C3-8シクロアルコ キシ基: C2-10アルカノイル基: C1-6ヒドロキシアルキル基: 1~6個のハロ ゲン原子で置換されたC1-6ヒドロキシアルキル基: C2-6アルコキシカルボニ ル基:3-フェニルー2-プロペニルオキシカルボニル基:C2-6アルコキシカ ルボニルC1-6アルキル基:ジC1-6アルキルアミノC2-6アルコキシカルボニル 基;モノ又はジーCュ-6アルキルアミノ基;Cュ-10アルカノイルアミノ基;Cュ-6アルキル基で置換された C 2-6アルカノイルアミノ基:ベンゾイルアミノ基: カルバモイル基: C1-6アルキル基又はフェニル基でモノ又はジ置換されたカル バモイル基; N-(N', N'-ジC1-6アルキルアミノC1-6アルキル)カルバ モイル基;シアノ基;シアノСュ-。アルキル基:ニトロ基:チオール基:フェノ キシ基; C1-6アルキル基、C1-6アルコキシ基及びハロゲン原子からなる群か ら選択される1~3個で置換されたフェノキシ基;フェニルチオ基;ニトロフェ ニルチオ基; C1-6アルキルスルホニル基; フェニルスルホニル基; C1-6アル キルチオC1-6アルキル基;ベンゼン環が1~5個のハロゲン原子で置換された フェニルスルホニルC1-6アルキルチオ基:フェニル基:ベンジル基:シアノ基、 ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択さ れる $1 \sim 3$ 個で置換されたフェニル基;ビフェニル基; $\alpha -$ シアノベンジル基; $1 \sim 5$ 個のハロゲン原子で置換された $\alpha -$ シアノベンジル基; ピシクロ「2.2. 1] -ヘプター5-エンー2, 3-ジカルボキシイミジル基で置換されたベンジ

WO 01/32164

ル基;ベンソイル基;スチリル基;C1-6アルコキシ基及びジC1-6アルキルア ミノアルキル基からなる群から選択される1~5個で置換されたスチリル基;ピ ロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基;Cı -6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換 されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置換さ れたフタルイミドイル基; N-カルバソリル基; 1~3個のC1-6アルキル基で 置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3個の C1-6アルキル基で置換されたフェニルスルホニルアミノ基; C1-6アルキルア ミノスルホニルC1-6アルキル基;チアジアソリル基;オキサジアソリル基;ハ ロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択され る1~3個で置換されたフェニル基で置換されたオキサジアゾリル基;ピロリジ ニル基;ピラゾリル基;ハロゲン原子、C1-6アルキル基及びトリフルオロメチ ル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル基; ハロゲン原子、C₁-6アルキル基及びC₂-6アルコキシカルボニル基からなる群 から選択される1~3個で置換されたフリル基;チエノピリミジニルチオ基;1 ~3個のC1-6アルキル基で置換されたチエノピリミジニルチオ基;チエノピリ ジルチオ基;1~3個のC1-6アルキル基で置換されたチエノピリジルチオ基; ベンゾチアゾリルチオ基、1~3個のハロゲン原子で置換されたベンゾチアゾリ ルチオ基;式-Y-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷[式中、Yは酸素原子又 は硫黄原子であり:R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なって、水素原子、 ハロゲン原子、C1-4アルキル基又はトリフルオロメチル基であり:R'は水素 原子;ハロゲン原子;C1-14アルキル基;C3-8シクロアルキル基;C3-8シク ロアルコキシ基; C2-10アルケニル基; C2-6アルキニル基; フェニル基; ニト ロ基、シアノ基、C1-6アルキル基、C1-6アルコキシ基、C1-6アルキルチオ基、 フェニル基、フェノキシ基、フェネチル基、Cz-6アルコキシカルボニル基及びハ ロゲン原子からなる群から選択される1~3個で置換されたフェニル基;シアノ 基;カルボキシル基; C_{1-6} アルコキシ基; C_{1-6} ヒドロキシアルキル基; C_{1-6} アルコキシC1-6アルコキシ基; C1-6アルコキシC1-6アルコキシC1-6アルコキ シ基;C1-6アルキルチオ基;C2-6アルカノイルオキシ基;C2-6アルカノイル

オキシC1-6アルキル基;フェノキシ基;フェニルチオ基;NーC1-6アルキル トルイジノ基;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;Cı -。アルキル基で置換されたピリジル基; C1-。アルキル基で置換されたピペリジ ノ基;Cュ-。アルコキシ基で置換されたピリジル基;Cュ-。アルキル基で置換され たピロリジノ基; C1-6アルキル基で置換されたモルホリノ基;モルホリニル基; C1-6アルキル基で置換されたモルホリニル基;ホモモルホリニル基;チオモルホ リノ基; C1-6アルキル基で置換されたチオモルホリノ基; チオモルホリニル基; C1-6アルキル基で置換されたチオモルホリニル基;ピペラジニル基:4位がC1 - gアルキル基で置換されたピペラジン-1-イル基;ホモピペリジニル基; C 1-『アルキル基で置換されたホモピペリジニル基;ピリジルチオ基;キノリル基:フ リル基;オキセタニル基;オキソラニル基;ジオキソラニル基; С1-8アルキル 基で置換されたジオキソラニル基;オキサニル基;ジオキサニル基;Сュー。アルキ ル基で置換されたジオキサニル基;ベンソジオキサニル基;ピロリドンー1ーイ ル基;ピロリジニル基;N-С1-6アルキルピロリジニル基;ピペリジニル基; N-C₁₋₆アルキルピペリジニル基:ピロリル基:チエニル基:チアゾリル基; 1~3個のC1-6アルキル基で置換されたチアゾリル基; C1-6アルキル基で置 換された2,6-プリンジオン-7-イル基;フルフリル基;ジCュ-。アルキル アミノ基;Cュー。アルコキシカルボニル基;又はジCュー。アルキルアミノCュー。ア ルコキシ基であり:mは1~6の整数:及びnは0~6の整数である] で示され る基;又は、式-SQ₂NR®R®[式中、R®びR®は、同一又は相異なって、水 素原子、Cュ-ュ。アルキル基、Cュ-。アルカノイル基、イソオキサゾリル基、1~ 3個のC1-6アルキル基で置換されたイソオキサゾリル基、チアジアソリル基、 1~3個のC1-6アルキル基で置換されたチアジアソリル基、チアソリル基、1 ~3個のC1-6アルキル基で置換されたチアゾリル基、ピリジル基、1~3個のC 1-6アルキル基で置換されたピリジル基、ピリミジニル基、1~3個のC1-6ア ルキル基で置換されたピリミジニル基、1~3個のC1-6アルコキシ基で置換さ れたピリミジニル基、ピリダジニル基、1~3個のC1-6アルコキシ基で置換さ れたピリダジニル基、インダゾリル基又はC1-6アルキル基でモノ又はジ置換さ れたカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに

3,5-ジオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を 形成する基である]で示される基であるか、

或いは、 $R^1 \sim R^5$ のうち、隣り合ういずれかの2つはベンゼン環とともに、フ タルイミド環; C1-6アルキル基で置換されたフタルイミド環; インドール環; インダン環;インダソール環;ベンソトリアソール環;S,S-ジオキソベンソチ オフェン環; 2,3-ジヒドロイミダソ[2,1-b]ベンソチアゾール環;ジベン ゾフラン環;C1-6アルコキシ基で置換されたジベンゾフラン環;フルオレン環 ;ハロゲン原子で置換されたフルオレン環;ピレン環;カルボスチリル環;Cı -6アルキル基で置換されたカルボスチリル環;ナフタレン環;シアノ基、ハロ ゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で 置換されたナフタレン環; 1, 2, 3, 4-テトラヒドロナフタレン環; キノリン環 ; C_{1-6} アルキル基で置換されたキノリン環; イソキノリン環; $2-オキソー\alpha$ ークロメン環;C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1- $_6$ アルキル基からなる群から選択される $1 \sim 3$ 個で置換された 2 - オキソ- lpha -クロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタ ラジンジオン環;ベンゾチアゾール環;C1-6アルキル基で置換されたベンゾチ アゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する〕で表 されるヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効 成分とする20-ヒドロキシエイコサテトラエン酸産生阻害剤である。

上記一般式(1)では、 $R^1 \sim R^6$ が、同一又は相異なって、水素原子;水酸基;カルボキシル基;ハロゲン原子; C_{1-14} アルキル基; $1 \sim 6$ 個のハロゲン原子で置換された C_{1-14} アルキル基; C_{2-6} アルキニル基; C_{3-8} シクロアルキル基; C_{3-8} シクロアルコキシ基; C_{2-10} アルカノイル基; C_{1-6} ヒドロキシアルキル基; $1 \sim 6$ 個のハロゲン原子で置換された C_{1-6} ヒドロキシアルキル基; C_{2-6} アルコキシカルボニル基;3-7エニル-2-7ロペニルオキシカルボニル基;2-6アルコキシカルボニル2-6アルコキシカルボニル2-6アルコキシカルボニル区2-6アルコキシカルボニル基;モノ又はジー2-6アルキルアミノ基;2-16アルカノイルアミノ基;2-16アルカノイルアミノ基;2-16アルキル基で置換された2-16アルカノイルアミノ基;2-16アルキル基で置換された2-16アルカノイルアミノ基;2-16 ボンゾイルアミノ基;2-16 カルバモイル基;2-16 アルキル基又はフェニル基でモ

ノ又はジ置換されたカルバモイル基; N-(N', N'-ジC1-6アルキルアミ ノC1-6アルキル)カルバモイル基;シアノ基;シアノC1-6アルキル基;ニトロ 基;チオール基;フェノキシ基;Cュー。アルキル基、Cュー。アルコキシ基及びハ ロゲン原子からなる群から選択される1~3個で置換されたフェノキシ基;フェ ニルチオ基;ニトロフェニルチオ基;C1-6アルキルスルホニル基;フェニルス ルホニル基:Cュー。アルキルチオCュー。アルキル基;ベンゼン環上が1~5個の ハロゲン原子で置換されたフェニルスルホニルC1-6アルキルチオ基;フェニル 基:ベンジル基:シアノ基、ハロゲン原子、C1-6アルキル基及びC1-6アルコ キシ基からなる群から選択される1~3個で置換されたフェニル基;ビフェニル 基:α-シアノベンジル基:1~5個のハロゲン原子で置換されたα-シアノベ ンジル基:ビシクロ [2.2.1]-ヘプター5-エンー2,3-ジカルボキシ イミジル基で置換されたベンジル基;ベンゾイル基;スチリル基;C1-6アルコ キシ基及びジC1-6アルキルアミノアルキル基からなる群から選択される1~5 個で置換されたスチリル基:ピロリジノ基:ピペリジノ基;モルホリノ基;ピリ ジル基:ピリミジニル基;Cュー。アルキル基及びCュー。アルコキシ基からなる群 から選択される1~3個で置換されたピリミジニル基;フタルイミドイル基;1 ~3個のハロゲン原子で置換されたフタルイミドイル基;N-カルバゾリル基; 1~3個のC1-6アルキル基で置換されたジオキソピペリジニル基:フェニルス ルホニルアミノ基:1~3個のC1-6アルキル基で置換されたフェニルスルホニ ルアミノ基: C1-6アルキルアミノスルホニルC1-6アルキル基: チアジアソリ ル基:オキサジアゾリル基:ハロゲン原子、Cュー。アルキル基及びCュー。アルコ キシ基からなる群から選択される1~3個で置換されたフェニル基で置換された オキサジアゾリル基:ピロリジニル基:ピラゾリル基:ハロゲン原子、C1-6ア ルキル基及びトリフルオロメチル基からなる群から選択される1~3個で置換さ れたピラゾリル基;フリル基;ハロゲン原子、C1-6アルキル基及びС2-6アル コキシカルボニル基からなる群から選択される1~3個で置換されたフリル基: チエノピリミジニルチオ基:1~3個のC₁₋₆アルキル基で置換されたチエノピ リミジニルチオ基;チエノピリジルチオ基;1~3個のC1-6アルキル基で置換 されたチエノピリジルチオ基:ベンゾチアゾリルチオ基、1~3個のハロゲン原

子で置換されたベンソチアソリルチオ基;又は、式-Y-(CR⁶¹R⁶²)_m-(CR ⁶³ R ⁶⁴) "一 R ⁷ [式中、 Y は酸素原子又は硫黄原子であり: R ⁶¹、 R ⁶²、 R ⁶³ 及び R * 4 は同一又は相異なって、水素原子、ハロゲン原子、C1-4アルキル基又はト リフルオロメチル基であり:R 'は水素原子;ハロゲン原子; C:-14アルキル基 ; C₃₋₈シクロアルキル基; C₂₋₁₀アルケニル基; C₂₋₆アルキニル基; フェニ ル基;ニトロ基、シアノ基、C1-6アルキル基、C1-6アルコキシ基、C1-6アル キルチオ基、フェニル基、フェノキシ基、フェネチル基、C2-6アルコキシカルボ ニル基及びハロゲン原子からなる群から選択される1~3個で置換されたフェニ ル基;シアノ基;カルボキシル基;C1-6アルコキシ基;C1-6ヒドロキシアル キル基; C3-8シクロアルコキシ基; C1-6アルコキシC1-6アルコキシ基; C1-6 アルコキシC1-6アルコキシC1-6アルコキシ基; C1-6アルキルチオ基; C2-6 アルカノイルオキシ基;C2-6アルカノイルオキシC1-6アルキル基;フェノキシ 基;フェニルチオ基;N-C1-6アルキルトルイジノ基;ピロリジノ基;ピペリ ジノ基;モルホリノ基;ピリジル基;C1-6アルキル基で置換されたピリジル基 ; C1-6アルキル基で置換されたピペリジノ基; C1-6アルコキシ基で置換された ピリジル基;C1-6アルキル基で置換されたピロリジノ基;C1-6アルキル基で置 換されたモルホリノ基;モルホリニル基;C1-6アルキル基で置換されたモルホリ ニル基;ホモモルホリニル基;チオモルホリノ基;C1-6アルキル基で置換された チオモルホリノ基;チオモルホリニル基;C1-6アルキル基で置換されたチオモル ホリニル基;ピペラジニル基;4位がC1-6アルキル基で置換されたピペラジン-1-イル基;ホモピペリジニル基;C:~6アルキル基で置換されたホモピペリジニ ル基;ピリジルチオ基;キノリル基;フリル基;オキセタニル基;オキソラニル 基;ジオキソラニル基;Cュー。アルキル基で置換されたジオキソラニル基;オキサ ニル基;ジオキサニル基;C1-6アルキル基で置換されたジオキサニル基;ベンゾ ジオキサニル基;ピロリドン-1-イル基;ピロリジニル基;N-C1-6アルキ ルピロリジニル基;ピペリジニル基;N-C1-6アルキルピペリジニル基;ピロ リル基;チエニル基;チアゾリル基;1~3個のC1-6アルキル基で置換された チアソリル基; C1-6アルキル基で置換された2, 6-プリンジオンー7-イル基 ;フルフリル基;ジC1-6アルキルアミノ基;C2-6アルコキシカルボニル基;

又は SC_{1-6} アルキルアミノ C_{1-6} アルコキシ基:mは $1\sim6$ の整数:及びnは $0\sim6$ の整数である] で示される基であることが好ましい。

また、本発明の20-ヒドロキシエイコサテトラエン酸産生阻害剤では、上記一般式(1)の化合物のうち、R'、R'、R'及びR'が水素原子であるもの又はその製薬学的に許容される塩を有効成分とすることが好ましい。

また、本発明の他の形態は、上記一般式(1)の化合物のうち、新規な化学構造を有するヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩である。

すなわち、本発明の他の形態は、次の一般式 (2)

【式中、R¹¹~R⁵⁵は、その少なくとも1つが、C₅₋₁₄アルキル基;C₂₋₆アルケニル基;C₃₋₈シクロアルキルC₁₋₆アルキル基;C₂₋₆アルキニル基;C₃₋₈シクロアルキル基;C₃₋₈シクロアルコキシ基;C₂₋₁₀アルカノイル基;C₁₋₆ヒドロキシアルキル基;1~6個のハロゲン原子で置換されたC₁₋₆ヒドロキシアルキル基;2-6アルコキシカルボニル基;3-フェニル-2-プロペニルオキシカルボニル基;C₂₋₆アルコキシカルボニル及;3-フェニル-2-プロペニルオキシカルボニル基;C₂₋₆アルコキシカルボニル及;5-6アルキルアミノ基;C₁₋₆アルキルアミノ基;C₁₋₆アルカノイルアミノ基;C₁₋₆アルカノイルアミノ基;ベンゾイルアミノ基;カルバモイル基;C₁₋₆アルキル基又はフェニル基でモノ又はジ置換されたカルバモイル基;N-(N', N'-ジC₁₋₆アルキルアミノスはジ置換されたカルバモイル基;シアノと₁₋₆アルキルスルホニル基;フェニルスルホニル基;C₁₋₆アルキルチオに1-6アルキルスルホニル基;フェニルスルホニル基;C₁₋₆アルキルチオに1-6アルキルチオ基;フェニル基;ベンジル基;シアノ基、ハロゲン原子、C₁₋₆アルキルチルを選択され

 δ 1 \sim 3 個で置換されたフェニル基;ビフェニル基; α - シアノベンジル基; 1 ~ 5 個のハロゲン原子で置換された α - シアノベンジル基; ビシクロ [2.2. 1] ーヘプター5-エンー2、3-ジカルボキシイミジル基で置換されたベンジ ル基;ベンゾイル基;スチリル基;Cュ-。アルコキシ基及びジCュ-。アルキルア ミノアルキル基からなる群から選択される1~5個で置換されたスチリル基;ピ ロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基;Cı -6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換 されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置換さ れたフタルイミドイル基;Nーカルバソリル基;1~3個のC1-6アルキル基で 置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3個の C₁₋₆アルキル基で置換されたフェニルスルホニルアミノ基; C₁₋₆アルキルア ミノスルホニルCュ-。アルキル基;チアジアゾリル基;オキサジアゾリル基;ハ ロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択され る1~3個で置換されたフェニル基で置換されたオキサジアゾリル基;ピロリジ ニル基;ピラゾリル基;ハロゲン原子、C1-6アルキル基及びトリフルオロメチ ル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル基; ハロゲン原子、C₁-εアルキル基及びC₂-εアルコキシカルボニル基からなる群 から選択される1~3個で置換されたフリル基;チエノピリミジニルチオ基;1 ~3個のC1-6アルキル基で置換されたチエノピリミジニルチオ基;チエノピリジ ルチオ基;1~3個のC1-6アルキル基で置換されたチエノピリジルチオ基;ベン ゾチアゾリルチオ基、1~3個のハロゲン原子で置換されたベンゾチアゾリルチ 才基;式-Y-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷⁷[式中、Yは酸素原子又は 硫黄原子であり:R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なって、水素原子、 ハロゲン原子、C1-4アルキル基又はトリフルオロメチル基であり:R''はハロ ゲン原子; C4-14アルキル基; C3-8シクロアルキル基; C2-10アルケニル基; C2-6アルキニル基;フェニル基;ニトロ基、シアノ基、C1-6アルキル基、C1 -6アルコキシ基、C1-6アルキルチオ基、フェニル基、フェノキシ基、フェネチ ル基、C 2-6アルコキシカルボニル基及びハロゲン原子からなる群から選択される 1~3個で置換されたフェニル基;シアノ基;カルボキシル基; C1-6アルコキ

シ基;C1-6アルコキシC1-6アルコキシ基;C1-6アルコキシC1-6アルコキシC 1-6アルコキシ基; C1-6ヒドロキシアルキル基; C3-8シクロアルコキシ基; C1 -eアルキルチオ基; C2-eアルカノイルオキシ基; C2-eアルカノイルオキシC1 - 6アルキル基;フェノキシ基;フェニルチオ基; N-C1-6アルキルトルイジノ 基;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;Cュー。アルキル 基で置換されたピリジル基;Cュー。アルキル基で置換されたピペリジノ基;Cュー。 アルコキシ基で置換されたピリジル基; C1-6アルキル基で置換されたピロリジノ 基;Cュー。アルキル基で置換されたモルホリノ基;モルホリニル基;Cュー。アルキ ル基で置換されたモルホリニル基;ホモモルホリニル基;チオモルホリノ基:C 1-6アルキル基で置換されたチオモルホリノ基:チオモルホリニル基: C1-6アル キル基で置換されたチオモルホリニル基:ピペラジニル基:4位がC1-6アルキル 基で置換されたピペラジンー1ーイル基;ホモピペリジニル基:С1-6アルキル基 で置換されたホモピペリジニル基;ピリジルチオ基;キノリル基;フリル基;オ キセタニル基;オキソラニル基;ジオキソラニル基; С1-6アルキル基で置換され たジオキソラニル基:オキサニル基:ジオキサニル基:C1-6アルキル基で置換さ れたジオキサニル基;ベンソジオキサニル基;ピロリドン-1-イル基;ピロリ ジニル基; N-C1-6アルキルピロリジニル基; ピペリジニル基; N-C1-6ア ルキルピペリジニル基;ピロリル基;チエニル基;チアソリル基;1~3個のC 1-6アルキル基で置換されたチアソリル基; C1-6アルキル基で置換された2, 6.-プリンジオン-7-イル基;フルフリル基;ジC1-6アルキルアミノ基;C 2-6アルコキシカルボニル基;又はジC1-6アルキルアミノC1-6アルコキシ基; であり: $mは1\sim6$ の整数:及び $nは0\sim6$ の整数である]で示される基;又は、 式-SO₂NR[®]R[®][式中、R[®]びR[®]は、同一又は相異なって、水素原子、C₁₋ 10アルキル基、C2-6アルカノイル基、イソオキサゾリル基、1~3個のC1-6 アルキル基で置換されたイソオキサゾリル基、チアジアゾリル基、1~3個のC 1-6アルキル基で置換されたチアジアゾリル基、チアゾリル基、1~3個のC1-6アルキル基で置換されたチアソリル基、ピリジル基、1~3個のC1-6アルキ ル基で置換されたピリジル基、ピリミジニル基、1~3個のС1-6アルキル基で 置換されたピリミジニル基、1~3個のCı-eアルコキシ基で置換されたピリミ

ジニル基、ピリダジニル基、1~3個のC₁₋₆アルコキシ基で置換されたピリダジニル基、インダソリル基又はC₁₋₆アルキル基でモノ又はジ置換されたカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに3,5ージオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であるか、

或いは、R¹¹~R⁵⁵のうち、隣り合ういずれかの2つはベンゼン環とともに、 フタルイミド環; C1-6アルキル基で置換されたフタルイミド環; インドール環 ; インダン環; インダゾール環; ベンゾトリアゾール環; S, S - ジオキソベンゾ チオフェン環; 2, 3 ージヒドロイミダソ[2, 1 - b]ベンゾチアソール環;ジベ ンゾフラン環; C1-6アルコキシ基で置換されたジベンゾフラン環; フルオレン 環;ハロゲン原子で置換されたフルオレン環;ピレン環;カルボスチリル環; C 1-6アルキル基で置換されたカルボスチリル環;ナフタレン環;シアノ基、ハロ ゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で 置換されたナフタレン環;1,2,3,4-テトラヒドロナフタレン環;キノリン環 $;C_{1-6}$ アルキル基で置換されたキノリン環;イソキノリン環 $;2-オキソ-\alpha$ ークロメン環;C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1- $_{6}$ アルキル基からなる群から選択される $1 \sim 3$ 個で置換された $2 - オキソー _{lpha} -$ クロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタ ラジンジオン環;ベンゾチアゾール環; C_{1-6} アルキル基で置換されたベンゾチ アゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する基であ り、且つ、他のR¹¹~R⁵⁵は、同一又は相異なって、水素原子、C₁₋₄アルキル基、 C1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子である] で表されるヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩で ある。

一般式(2)の化合物においては、 $R^{11}\sim R^{55}$ の少なくとも1つが、 C_{5-14} アルキル基; C_{2-6} アルキニル基; C_{3-8} シクロアルキル基; C_{3-8} シクロアルコキシ基; C_{2-10} アルカノイル基; C_{1-6} ヒドロキシアルキル基; $1\sim 6$ 個のハロゲン原子で置換された C_{1-6} ヒドロキシアルキル基; C_{2-6} アルコキシカルボニル基; 3-7ェニルー2-プロペニルオキシカルボニル基; C_{2-6} アルコキシカ

ルボニルCュ-。アルキル基;ジCュ-。アルキルアミノCュ-。アルコキシカルボニル 基;モノ又はジーCュー。アルキルアミノ基;Cューュ。アルカノイルアミノ基:Cュー 。アルキル基で置換されたCュー。アルカノイルアミノ基:ベンゾイルアミノ基: カルバモイル基; C1-8アルキル基又はフェニル基でモノ又はジ置換されたカル バモイル基; N-(N', N'-ジC1-6アルキルアミノC1-6アルキル)カルバ モイル基;シアノ基;シアノС1-6アルキル基;С1-6アルキルスルホニル基: フェニルスルホニル基; С1-6アルキルチオС1-6アルキル基; ベンゼン環が1 ~5個のハロゲン原子で置換されたフェニルスルホニルC1-8アルキルチオ基: フェニル基;ベンジル基;シアノ基、ハロゲン原子、Cュ-。アルキル基及びCュ-6アルコキシ基からなる群から選択される1~3個で置換されたフェニル基:ビ フェニル基; α - シアノベンジル基; $1 \sim 5$ 個のハロゲン原子で置換された α -シアノベンジル基;ビシクロ[2.2.1]ーヘプター5-エンー2,3-ジカ ルボキシイミジル基で置換されたベンジル基;ベンゾイル基;スチリル基;C, -6アルコキシ基及びジC1-6アルキルアミノアルキル基からなる群から選択され る1~5個で置換されたスチリル基;ピロリジノ基;ピペリジノ基;モルホリノ 基;ピリジル基;ピリミジニル基;C1-6アルキル基及びC1-6アルコキシ基か らなる群から選択される1~3個で置換されたピリミジニル基;フタルイミドイ ル基;1~3個のハロゲン原子で置換されたフタルイミドイル基;N-カルバゾ リル基;1~3個のCュー。アルキル基で置換されたジオキソピペリジニル基;フ ェニルスルホニルアミノ基;1~3個のC1-6アルキル基で置換されたフェニル スルホニルアミノ基; C1-6アルキルアミノスルホニルC1-6アルキル基;チア ジアソリル基;オキサジアソリル基;ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換されたフェニル基で置 換されたオキサジアゾリル基;ピロリジニル基;ピラゾリル基;ハロゲン原子、 C1-6アルキル基及びトリフルオロメチル基からなる群から選択される1~3個 で置換されたピラゾリル基;フリル基;ハロゲン原子、C1-6アルキル基及びC 2-6アルコキシカルボニル基からなる群から選択される1~3個で置換されたフ リル基、又は、式-SO2NR®R®[式中、R®びR®は、同一又は相異なって、 水素原子、C1-10アルキル基、C2-6アルカノイル基、イソオキサソリル基、1

~3個のC1-6アルキル基で置換されたイソオキサソリル基、チアジアソリル基、1~3個のC1-6アルキル基で置換されたチアジアソリル基、チアソリル基、1~3個のC1-6アルキル基で置換されたチアソリル基、ピリジル基、1~3個のC1-6アルキル基で置換されたピリジル基、ピリミジニル基、1~3個のC1-6アルキル基で置換されたピリミジニル基、1~3個のC1-6アルコキシ基で置換されたピリミジニル基、ピリダジニル基、1~3個のC1-6アルコキシ基で置換されたピリミジニル基、ピリダジニル基、1~3個のC1-6アルコキシ基で置換されたピリダジニル基、インダソリル基又はC1-6アルキル基でモノ又はジ置換されたカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに3,5-ジオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であるか、

或いは、R¹¹~R⁵⁵のうち、隣り合ういずれかの2つはベンゼン環とともに、 フタルイミド環;C1-6アルキル基で置換されたフタルイミド環;インドール環 ;インダン環;インダソール環;ベンソトリアソール環;S,S-ジオキソベンソ チオフェン環;2,3-ジヒドロイミダソ[2,1-b]ベンソチアソール環;ジベ ンゾフラン環;C1-6アルコキシ基で置換されたジベンゾフラン環;フルオレン 環;ハロゲン原子で置換されたフルオレン環;ピレン環;カルボスチリル環; C 1-6アルキル基で置換されたカルボスチリル環;ナフタレン環;シアノ基、ハロ ゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で 置換されたナフタレン環;1,2,3,4-テトラヒドロナフタレン環;キノリン環 ; C1-6アルキル基で置換されたキノリン環; イソキノリン環; 2-オキソーα ークロメン環;C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1- $_{6}$ アルキル基からなる群から選択される $1 \sim 3$ 個で置換された $2 - オキソー _{lpha} -$ クロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタ ラジンジオン環;ベンゾチアゾール環;C1-6アルキル基で置換されたベンゾチ アゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する基であ り、且つ、他のR¹¹~R⁵⁵は、同一又は相異なって、水素原子、C₁₋₄アルキル基、 C₁₋₄アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子であって

そして、その場合、R¹¹~R⁵⁵の少なくとも1つが、C₅₋₁₄アルキル基;C₂

-。アルキニル基;Cs-&シクロアルキル基;Cs-&シクロアルコキシ基;C2-10 アルカノイル基;Cュー。ヒドロキシアルキル基;1~6個のハロゲン原子で置換 されたCュー。ヒ ドロキシアルキル基:Cュー。アルコキシカルボニル基;3-フェ ニルー2-プロペニルオキシカルボニル基; C2-6アルコキシカルボニルC1-6 アルキル基;ジC1-8アルキルアミノC2-8アルコキシカルボニル基;モノ又は ジーCュー。アルキルアミノ基;Cューュ。アルカノイルアミノ基;Cュー。アルキル基 で置換されたCュー。アルカノイルアミノ基:カルバモイル基:Сュー。アルキル基 又はフェニル基でモノ又はジ置換されたカルバモイル基: N-(N', N'-ジC 1-6アルキルアミノ C1-6アルキル) カルバモイル基; シアノ基; シアノ C1-6ア ルキル基;;C1-6アルキルスルホニル基;フェニルスルホニル基;C1-6アル キルチオC1-6アルキル基;フェニル基;ベンジル基;シアノ基、ハロゲン原子、 С1-6アルキル基及びС1-6アルコキシ基からなる群から選択される1~3個で 置換されたフェニル基;ビフェニル基;α-シアノベンジル基;1~5個のハロ ゲン原子で置換されたαーシアノベンジル基;ベンゾイル基;ピロリジノ基;ピ ペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基;C1-6アルキル基及 びC1-6アルコキシ基からなる群から選択される1~3個で置換されたピリミジニ ル基:ピロリジニル基;ピラゾリル基;ハロゲン原子、C1-6アルキル基及びト リフルオロメチル基からなる群から選択される1~3個で置換されたピラゾリル 基;フリル基;ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニ ル基からなる群から選択される1~3個で置換されたフリル基;又は、式-SO 2NR[®]R[®][式中、R[®]びR[®]は、同一又は相異なって、水素原子、C₁₋₁₀アルキ ル基、С2-6アルカノイル基、イソオキサゾリル基、1~3個のС1-6アルキル 基で置換されたイソオキサゾリル基、チアジアソリル基、1~3個のCュ-6アル キル基で置換されたチアジアゾリル基、チアゾリル基、1~3個のC1-6アルキル 基で置換されたチアソリル基、ピリジル基、1~3個のC1-6アルキル基で置換 されたピリジル基、ピリミジニル基、1~3個のC1-6アルキル基で置換された ピリミジニル基、1~3個のC1-6アルコキシ基で置換されたピリミジニル基、 ピリダジニル基、1~3個のC1-6アルコキシ基で置換されたピリダジニル基、 インダゾリル基又はC1-6アルキル基でモノ又はジ置換されたカルバモイル基で

あるか、或いは、一緒になって隣接する窒素原子とともに3,5-ジオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であり、且つ、他の $R^{11}\sim R^{55}$ は、同一又は相異なって、水素原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子であることが好ましい。

15

一方、一般式 (2) の化合物において、R''~R⁵⁵の少なくとも1つが、式-Y-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷⁷ [式中、Yは酸素原子又は硫黄原子で あり:R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なって、水素原子、ハロゲン原 子、C1-4アルキル基又はトリフルオロメチル基であり:R ***はハロゲン原子; C₄₋₁₄アルキル基;C₃₋₈シクロアルキル基;C₂₋₁₀アルケニル基;C₂₋₆アル キニル基;フェニル基;ニトロ基、シアノ基、C1-6アルキル基、C1-6アルコ キシ基、C1-6アルキルチオ基、フェニル基、フェノキシ基、フェネチル基、C2 -6アルコキシカルボニル基及びハロゲン原子からなる群から選択される1~3個 で置換されたフェニル基;シアノ基;カルボキシル基; C1-6アルコキシ基; C 1-6ヒドロキシアルキル基;C3-8シクロアルコキシ基;C1-6アルコキシC1-6ア ルコキシ基;C1-6アルコキシC1-6アルコキシC1-6アルコキシ基;C1-6アル キルチオ基;C2-6アルカノイルオキシ基;C2-6アルカノイルオキシC1-6アル キル基;フェノキシ基;フェニルチオ基;N-C1-6アルキルトルイジノ基;ピ ロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;C1-6アルキル基で置 換されたピリジル基;C1-6アルキル基で置換されたピペリジノ基;C1-6アルコ キシ基で置換されたピリジル基;C1-6アルキル基で置換されたピロリジノ基;C 1-6アルキル基で置換されたモルホリノ基;モルホリニル基; C1-6アルキル基で 置換されたモルホリニル基;ホモモルホリニル基;チオモルホリノ基;C₁₋₆アル キル基で置換されたチオモルホリノ基;チオモルホリニル基;C1-6アルキル基で 置換されたチオモルホリニル基;ピペラジニル基;4位がС1-8アルキル基で置換 されたピペラジンー1ーイル基;ホモピペリジニル基;С1-6アルキル基で置換さ れたホモピペリジニル基;ピリジルチオ基;キノリル基;フリル基;オキセタニ ル基;オキソラニル基;ジオキソラニル基;C1-6アルキル基で置換されたジオキ ソラニル基;オキサニル基;ジオキサニル基;C1-6アルキル基で置換されたジオ

キサニル基:ベンゾジオキサニル基:ピロリドン-1-イル基:ピロリジニル基 : N-C1-6アルキルピロリジニル基: ピペリジニル基; N-C1-6アルキルピ ペリジニル基;ピロリル基;チエニル基;チアソリル基;1~3個のCュ-。アル キル基で置換されたチアソリル基;C1-8アルキル基で置換された2,6-プリン ジオンー1ーイル基;フルフリル基;ジC1-6アルキルアミノ基;C2-6アルコ キシカルボニル基;又はジCュー。アルキルアミノCュー。アルコキシ基であり:m は1~6の整数:及びnは0~6の整数である]で示される基であり、且つ、他 のR¹¹~R⁵⁶は、同一又は相異なって、水素原子、C₁₋₄アルキル基、C₁₋₄アル コキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子であってもよい。 そして、この場合は、R¹¹~R⁵⁶の少なくとも1つが、式-O-(CR⁶¹R⁶²) m-(CR⁶³R⁶⁴)_m-R⁷⁷ [式中、R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なっ て、水素原子、ハロゲン原子、Cューィアルキル基又はトリフルオロメチル基であ り:R⁷⁷は、ジーC1-6アルキルアミノ基;ジーC1-6アルキルアミノーC1-6アル コキシ基;ピペリジル基; C1-6アルキル基で置換されたピペリジニル基;ピペリ ジノ基; C1-6アルキル基で置換されたピペリジノ基; ピリジル基; C1-6アルキ ル基で置換されたピリジニル基; С:-6アルコキシ基で置換されたピリジニル基; ピリジルチオ基;ピロリジノ基;C1-6アルキル基で置換されたピロリジノ基;ピ ロリドン-1-イル基;ピロリジニル基;C1-6アルキル基で置換されたピロリジ ニル基;ピロリル基;チエニル基;チアゾリル基;モルホリノ基;C1-6アルキル 基で置換されたモルホリノ基;モルホリニル基; C1-6アルキル基で置換されたモ ルホリニル基;ホモモルホリニル基;チオモルホリノ基;C1-6アルキル基で置換 されたチオモルホリノ基;チオモルホリニル基;С1-6アルキル基で置換されたチ オモルホリニル基;ピペラジニル基;4位がC1-6アルキル基で置換されたピペラ ジンー1-イル基;ホモピペリジニル基;又はC1-6アルキル基で置換されたホモ ピペリジニル基であり:mは1~6の整数:及びnは0~6の整数である]で示 される基であり、且つ、他のR''~R56は、同一又は相異なって、水素原子、C 1-4アルキル基、C1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロ ゲン原子であることが好ましい。

また、一般式 (2) の化合物では、R¹¹、R²²、R⁴⁴及びR⁵⁵が水素原子であ

るもの、すなわち、ベンゼン環上のヒドロキシホルムアミジノ基に対してp位のR³のみが非水素原子型の置換基であるものが好ましい。

上記一般式(1)及び(2)の化合物が20-HETE産生酵素阻害活性を有することは、本発明者らによって初めて見出された。したがって、当該化合物は腎疾患、脳血管疾患又は循環器疾患治療薬として有用である。

本発明において使用される用語が以下に定義される。本発明において「C.-,」とは、その後に続く基が x ~ y 個の炭素原子を有することを示す。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。

C1-4、C1-6、C1-8及びC1-14アルキル基とは、直鎖状又は分岐鎖状の炭素原子数がそれぞれ1~4、1~6、1~8及び1~14のアルキル基を意味し、例えばC1-14アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソプチル基、tertーブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソペキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。

1~6個のハロゲン原子で置換されたC₁₋₁₄アルキル基とは、ハロゲン原子の 1~6個で置換された直鎖状又は分岐鎖状の炭素原子数1~14のアルキル基を 意味し、1~4個のハロゲン原子で置換されたメチル基又はエチル基が好ましく、 例えばジフルオロメチル基、ジブロモメチル基、トリフルオロメチル基、トリフ ルオロエチル基等が挙げられる。このうちトリフルオロメチル基が好ましい。

C2-6アルケニル基とは、直鎖状又は分岐鎖状の炭素原子数2~6の二重結合を有するアルキニル基を意味し、例えばエテニル基、プロペニル基、プテニル基等が挙げられる。

C₂₋₆アルキニル基とは、直鎖状又は分岐鎖状の炭素原子数 2~6の三重結合を有するアルキニル基を意味し、例えばエチニル基、プロピニル基、ブチニル基等が挙げられる。

C3-8シクロアルキル基とは、炭素原子数3~8の環状アルキル基を意味し、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基等である。

C3-8シクロアルキルC1-6アルキル基は、C3-8シクロアルキル基とC1-6アル

キル基の複合した形態を有しており、例えばシクロプロピルメチル基、シクロプ チルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基などである。

C1-6アルコキシ基とは、直鎖状又は分岐鎖状の炭素原子数1~6のアルコキシ基を意味し、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、2,2-ジメチルプロポキシ基、ブトキシ基、tert-ブトキシ基、3ーメチルブトキシ基、3,3-ジメチルプトキシ基、3ーメチルペントキシ基等が挙げられる。

C₁₋₆アルコキシC₁₋₆アルキル基は、C₁₋₆アルコキシ基とC₁₋₆アルキル基の 複合した形態を有しており、例えばメトキシメチル基、エトキシメチル基、メト キシエチル基、エトキシエチル基、プロポキシエチル基、イソプロポキシエチル 基、プトキシエチル基、tert-プトキシエチル基等が挙げられる。

C₃₋₈シクロアルコキシ基とは、炭素原子数3~8の環状アルコキシ基を意味し、例えばシクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等である。

C₂₋₁₀アルカノイル基とは、直鎖状又は分岐鎖状の炭素原子数 2~10のアルカノイル基を意味し、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ、このうちアセチル基が好ましい。

 C_{1-6} ヒドロキシアルキル基とは、ヒドロキシル基で置換された C_{1-6} アルキル基を意味し、例えばヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2, 3-ジヒドロキシエチル基等が挙げられ、このうちヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基が特に好ましい。

 C_{2-6} アルカノイルオキシ C_{1-6} アルキル基とは前記の C_{1-6} ヒドロキシアルキル基の水酸基が C_{2-6} アルカノイル基で置換されているものを意味し、例えば 2, 3-ジアセトキシエチル基である。 $1\sim6$ 個のハロゲン原子で置換された C_{1-6} ヒドロキシアルキル基とは、ハロゲン原子の $1\sim6$ 個で置換された C_{1-6} ヒドロキシアルキル基を意味し、例えばヒドロキシフルオロメチル基、1-ヒドロキシー2-フルオロエチル基、2-ヒドロキシー2-フルオロエチル基、3-ヒドロキシー2-クロロプロピル基、2, 3-ジヒドロキシー3-ブロモプロピル基、

WO 01/32164

1, 1, 1, 3, 3, 3ーヘキサフルオロー2ーヒドロキシプロピル基等が挙げ られ、このうち、1, 1, 1, 3, 3, 3ーヘキサフルオロー2ーヒドロキシプ ロピル基が好ましい。

C 2-6アルコキシカルボニル基とは、直鎖状又は分岐鎖状のC1-6アルコキシ基 とカルボニル基との複合した形態を有しており、例えばメトキシカルボニル基、 エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、 プトキシカルボニル基等が挙げられ、このうちメトキシカルボニル基、プロポキ シカルボニル基が好ましい。

C2-6アルコキシカルボニルC1-6アルキル基とは、C2-6アルコキシカルボニル 基とC1-6アルコキシ基との複合した形態を有している。したがって、C1-6アル コキシカルボニルC1-6アルキル基は、一般に、- (CH2) t-COOR11、 (式 中、 k は 1 ~ 6 の整数; R ¹ ⁴は C ₁-。アルキル基である)で表すことができ、具体 的には、-CH₂COOCH₃(メトキシカルボニルメチル基)、-CH₂COOC H₂CH₃ (エトキシカルボニルメチル基)、-CH₂CH₂COOCH₃ (メトキシ カルボニルエチル基)、-CH2CH2COOCH2CH3(エトキシカルボニルエ チル基)などが含まれる。このうち、エトキシカルボニルメチル基が特に好まし W

ジC1-6アルキルアミノC2-6アルコキシカルボニル基とは、2個のC1-6アルキ ル基で置換されたアミノ基とC2-6アルコキシカルボニル基との複合した形態を有 しており、例えばN, Nージエチルアミノエトキシカルボニル基、N, Nージブ チルアミノプロポキシカルボニル基が挙げられる。特に、N, Nージエチルアミ ノエトキシカルボニル基が好ましい。

モノ又はジーC1-6アルキルアミノ基とは、1個又は2個のС1-6アルキル基で 置換されたアミノ基を意味し、例えばメチルアミノ基、エチルアミノ基、ジメチ ルアミノ基、ジエチルアミノ基等が挙げられ、このうちジメチルアミノ基が好ま しい。

C2-10アルカノイルアミノ基とは、C2-10アルカノイル基で置換されたアミノ 基を意味し、例えばアセチルアミノ基が挙げられる。また、C1-6アルキル基で置 換されたC2-6アルカノイルアミノ基としては、例えばN-アセチル-N-メチル

アミノ基が挙げられる。

 C_{1-6} アルキル基又はフェニル基でモノ又はジ置換されたカルバモイル基としては、例えばN-メチルカルバモイル基、N-ブチルカルバモイル基、N-フェニルカルバモイル基が挙げられる。N- (N', N' -ジ C_{1-6} アルキルアミノ C_{1} -6アルキル)カルバモイル基としては、N- (N', N' -ジエチルアミノエチル)カルバモイル基が挙げられる。

シアノC1-6アルキル基とは、シアノ基とC1-6アルキル基との複合した形態を有しており、例えばシアノメチル基、シアノエチル基、シアノプロピル基が挙げられる。このうち、シアノメチル基が特に好ましい。

ニトロ基、チオール基、フェノキシ基、C1-6アルキル基、C1-6アルコキシ基及びハロゲン原子からなる群から選択される1~3個で置換されたフェノキシ基としては、例えば2ーメチルフェノキシ基、3ーメチルフェノキシ基、4ーメチルフェノキシ基、2ーメトキシフェノキシ基、3ーメトキシフェノキシ基、4ーメトキシフェノキシ基、5ークロロフェノキシ基、4ークロロフェノキシ基等が挙げられるが、このうち、2ーメチルフェノキシ基、4ーメチルフェノキシ基、2ーメトキシフェノキシ基、4ーメチルフェノキシ基、2ーメトキシフェノキシ基、4ークロロフェノキシ基が好ましい。

C1-6アルキルスルホニル基は、C1-6アルキル基とスルホニル基(-SO2-)との複合した形態を有しており、例えばメチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、イソブチルスルホニル基、tert-ブチルスルホニル基、ペンチルスルホニル基、イソペンチルスルホニル基等が挙げられるが、メチルスルホニル基が好ましい。

 C_{1-6} アルキルチオ C_{1-6} アルキル基は、 C_{1-6} アルキルチオ基と C_{1-6} アルキル基の複合した形態を有しており、例えばメチルチオメチル基、2-メチルチオエチル基等が挙げられるが、メチルチオメチル基が好ましい。

ベンゼン環が1~5個のハロゲン原子で置換されたフェニルスルホニルC1-6アルキルチオ基は、置換フェニルスルホニル基とC1-6アルキルチオ基の複合した形態を有しており、例えば4-クロロフェニルスルホニルメチルチオ基等が挙げら

れる。

シアノ基、ハロゲン原子、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される $1\sim3$ 個で置換されたフェニル基の例には、4-シアノフェニル基、4-クロロフェニル基、4-メチルフェニル基、4-メトキシフェニル基等が挙げられるが、このうち4-シアノフェニル基が好ましい。 $1\sim5$ 個のハロゲン原子で置換された $\alpha-$ シアノベンジル基としては、例えば $\alpha-$ シアノー4-クロロベンジル基等が挙げられる。

 C_{1-6} アルコキシ基及びジ C_{1-6} アルキルアミノアルキル基からなる群から選択される $1\sim5$ 個で置換されたスチリル基の例には、4-メトキシスチリル基、4-N, N-ジメチルアミノスチリル基等が挙げられる。

 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される $1\sim3$ 個で置換されたピリミジニル基の例には、6-メトキシピリミジン-4-イル基、2-メチルピリミジン-4-イル基等が挙げられる。

1~3個のハロゲン原子で置換されたフタルイミドイル基としては、例えば5 ークロローNーフタルイミドイル基等が挙げられる。

 $1 \sim 3$ 個の C_{1-6} アルキル基で置換されたジオキソピペリジニル基としては、例えば 2 , 6 -ジオキソー3 -エチルピペリジンー3 -イル基等が挙げられる。

1~3個のC₁₋₆アルキル基で置換されたフェニルスルホニルアミノ基としては、例えば4-メチルフェニルスルホニルアミノ基等が挙げられる。C₁₋₆アルキルアミノスルホニルC₁₋₆アルキル基としては、例えばメチルアミノスルホニルメチル基等が挙げられる。

ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換されたフェニル基で置換されたオキサジアソリル基としては、例えばtertープチル基、メトキシ基、臭素原子で置換されたフェニル基でオキサジアソール環が置換されたものが挙げられ、更に具体的には、5-(p-tertープチルフェニル)オキサジアソリン-2-イル基、5-(m-メトキシフェニル)オキサジアソリン-2-イル基、5-(5-プロモ-3-メトキシフェニル)オキサジアソリン-2-イル基等が挙げられる。

ハロゲン原子、C1-6アルキル基及びトリフルオロメチル基からなる群から選

択される1~3個で置換されたピラソリル基としては、例えば3-トリフルオロメチルピラゾリル基等が挙げられる。

ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からなる 群から選択される1~3個で置換されたフリル基としては、例えばメチル基、エ トキシカルボニル基等で置換されたフリル基があり、更に具体的には、5 −メチ ル-4-エトキシカルボニル-2-フリル基等が挙げられる。

 $1 \sim 3$ 個の C_{1-6} アルキル基で置換されたチェノピリミジニルチオ基としては、縮合環が1 個のメチル基又はエチル基で置換されたチェノピリミジニルチオ基が好ましく、更に具体的には、チオフェン環がメチル基で置換されたものがより好ましい。

1~3個のC₁₋₆アルキル基で置換されたチエノピリジルチオ基としては、縮 合環が1個のメチル基又はエチル基で置換されたチエノピリジルチオ基が好まし く、更に具体的には、チオフェン環がメチル基で置換されたものがより好ましい。

1~3個のハロゲン原子で置換されたベンゾチアゾリルチオ基としては、縮合 環が1個のハロゲン原子で置換されたベンゾチアゾリルチオ基が好ましく、更に 具体的には、ベンゼン環が塩素原子で置換されたものがより好ましい。

1~3個のC₁₋₆アルキル基で置換されたイソオキサゾリル基としては、1又は2個のメチル基又はエチル基で置換されたイソオキサゾリル基が好ましく、更に、5-メチルイソオキサゾリル-3-イル基がより好ましい。

1~3個のC₁₋₆アルキル基で置換されたチアソリル基としては、1又は2個のメチル基又はエチル基で置換されたチアソリル基が好ましい。

 $1 \sim 3$ 個の C_{1-6} アルキル基で置換されたピリジル基としては、1 又は2 個のメチル基又はエチル基で置換されたピリジル基が好ましく、特に2-メチルピリジン-6 -イル基が好ましい。

1~3個のC1-6アルキル基で置換されたピリミジニル基としては、1又は2個のメチル基又はエチル基で置換されたピリミジニル基が好ましく、更に、2,4-ジメチルピリミジンー6-イル基がより好ましい。

1~3個のC₁₋₆アルコキシ基で置換されたピリミジニル基としては、1又は 2個のメトキシ基又はエトキシ基で置換されたピリミジニル基が好ましく、更に、 4ーメトキシピリミジンー6ーイル基、2,4ージメトキシピリミジンー6ーイル基がより好ましい。

1~3個のC1-6アルコキシ基で置換されたピリダジニル基としては、1又は2個のメトキシ基又はエトキシ基で置換されたピリダジニル基が好ましい。

C₂₋₁₀アルケニル基とは、直鎖状又は分岐鎖状の炭素原子数 2~10の二重結合を有するアルケニル基を意味し、例えばエテニル基、プロペニル基、ブチニル基等が挙げられ、更に具体的には、1,5-ジメチルー4-ヘキセニル基等が挙げられる。

C1-6アルキルチオ基とは、炭素原子数1~6の直鎖状又は分岐鎖状のアルキルチオ基を指し、例えばメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、プチルチオ基、イソプチルチオ基、tertープチルチオ基、ペンチルチオ基、イソペンチルチオ基等が挙げられるが、メチルチオ基が特に好ましい。

C2-6アルカノイルオキシ基とは、C2-6アルカノイル基とオキシ基 (-O-)が複合した形態を有しており、例えばアセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基等が挙げられる。

ニトロ基、シアノ基、C1-6アルキル基、C1-6アルコキシ基、C1-6アルキルチオ基、フェニル基、フェノキシ基、フェネチル基、C2-6アルコキシカルボニル基及びハロゲン原子からなる群から選択される1~3個で置換されたフェニル基としては、例えば4ークロロフェニル基、4ーフルオロフェニル基、2,5ージフルオロフェニル基、2,5ージクロロフェニル基、0ーフェネチルフェニル基、4ーメチルチオフェニル基、mーフェノキシフェニル基、4ーメチルフェニル基、3ーメチルフェニル基、2ーメチルフェニル基、3ーメチルフェニル基、2ーメチンフェニル基、3ーメトキシフェニル基、3ーメトキシフェニル基、4ーメトキシフェニル基、2,4ージメトキシフェニル基、4ーメトキシカルボニルフェニル基、pーフェニルフェニル基、mーシアノフェニル基等が挙げられる。

C1-6アルコキシC1-6アルコキシ基とは、C1-6アルコキシ基とC1-6アルコキシ基の複合した形態を有しており、例えばメトキシメトキシ基、メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等である。

C1-6アルコキシC1-6アルコキシC1-6アルコキシ基の例にはCH3OCH2CH2OCH2CH2OCH2CH2O-などが含まれる。

ジ-C₁₋₆アルキルアミノ基には、-N(CH₃)₂、-N(CH₂CH₃)₂、-N(CH₂CH₃)₂等が含まれる。

ジ-C₁₋₆アルキルアミノ-C₁₋₆アルコキシ基には、-OCH₂N (CH₃)₂、-OCH₂CH₂N (CH₃)₂、-OCH₂CH₂N (CH₂CH₃)₂などが含まれる。

N-C₁-6アルキルトルイジノ基とは、トルイジノ基 (CH₃-C₆H₄-NH -) がC₁-6アルキル基で置換された形態を有しており、好ましくはメチル基又はエチル基で置換されている。特に、N-エチル-m-トルイジノ基が好ましい。フリル基は、2-フリル基、3-フリル基を含む。

オキセタニル基は、ヘテロ原子として酸素原子を1個有する飽和四員環の形態 を有するもので、2ーオキセタニル基、3ーオキセタニル基を含む。

オキソラニル基は、ヘテロ原子として酸素原子を1個有する飽和五員環の形態 を有するもので、2-オキソラニル基、3-オキソラニル基を含む。

ジオキソラニル基は、ヘテロ原子として酸素原子を2個有する飽和五員環(ジオキソラン)、好ましくは1,3ージオキソランの環から水素を除いて誘導される1価の基を指す。ジオキソラニル基は、その基の環がC₁₋₆アルキル基によって置換されていてもよく、例えば2,2ージメチルー1,3ージオキソランー4ーイル基などである。

オキサニル基は、ヘテロ原子として酸素原子を1個有する飽和六員環の形態を 有するもので、2-オキサニル基、3-オキサニル基、4-オキサニル基を含む。

ジオキサニル基は、ヘテロ原子として酸素原子を 2 個有する飽和六員環(ジオキサン)、好ましくは、 1 、 3 ージオキサンの環から水素を除いて誘導される 1 価の基を指す。ジオキサニル基は、その基の環が C_{1-8} アルキル基によって置換されていてもよく、例えば 5 、 5 ージメチルー 1 、 3 ージオキサンー 2 ーイル基などである。

ベンゾジオキサニル基は、ベンゾジオキサン、好ましくは1, 4ーベンゾジオキサンの環から水素を除いて誘導される1価の基を指す。例えば1, 4ーベンゾジオキサン-2-イル基などである。

ピペリジニル基は、2-ピペリジニル基、3-ピペリジニル基、4-ピペリジニル基を含む。またピペリジニル基は、その基上の窒素原子がC₁₋₆アルキル基によって置換されていてもよく、好ましくは、N-メチルーピペリジル基である。

ピペリジノ基は、ピペリジンの窒素原子上から水素原子を除いて誘導される1 価の基を指す。

ピリジル基は、2-ピリジル基、3-ピリジル基、4-ピリジル基を含む。またピリジル基は、その基の環がC1-6アルキル基、好ましくはメチル基によって置換されていてもよく、例えば6-メチルー2-ピリジル基などが挙げられる。

ピリジルチオ基は、ピリジル基と1個のチオ基が複合した形態を有しており、 ピリジン-2-イルチオ基、ピリジン-3-イルチオ基、ピリジン-4-イルチオ基が含まれる。好ましくはピリジン-2-イルチオ基である。

ピロリジノ基は、ピロリジンの窒素原子上から水素原子を除いて誘導される1 価の基を指す。

ピロリドン-1-イル基は、2-ピロリドン-1-イル基、3-ピロリドン-1-イル基を含む。

ピロリジニル基は、2-ピロリジニル基、3-ピロリジニル基を含む。またピロリジニル基は、その基上の窒素原子がC1-6アルキル基によって置換されていてもよく、例えばN-メチル-2-ピロリジニル基などである。

キノリル基は、2ーキノリル基、3ーキノリル基、4ーキノリル基、5ーキノリル基、6ーキノリル基、7ーキノリル基、8ーキノリル基を含み、好ましくは2ーキノリル基である。

ピロリル基は、1-ピロリル基、2-ピロリル基、3-ピロリル基を含み、好ましくは1-ピロリル基(N-ピロリル基)である。

チエニル基は、2ーチエニル基、3ーチエニル基を含む。

チアソリル基は、2-チアソリル基、4-チアソリル基、5-チアソリル基を含む。また、チアソリル基は、その基の環が C_{1-6} アルキル基によって置換されていてもよく、例えば4-メチルー5-チアソリル基などである。

モルホリノ基は、モルホリンの窒素原子上から水素原子を除いて誘導される1 価の基を指す。

フルフリル基は、2-フルフリル基を意味する。

2,6-プリンジオン-7-イル基は、プリン環の2位と6位の炭素原子にそれぞれ1個のオキソ基(=O)が結合している2,6-プリンジオンから誘導される1価の基で、7位の窒素原子から水素原子を除いて誘導される基を指す。C 1-6アルキル基で置換された2,6-プリンジオン-7-イル基としては、その基上の窒素原子の1又は2個が、C1-6アルキル基、特にメチル基によって置換されていることが好ましく、例えば1,3-ジメチル-2,6-プリンジオン-7-イルなどが挙げられる。

ところで、一般式(1)のR¹~R⁵のうち、隣り合ういずれかの2つはベンゼン環と共に上記の環構造を構成することができる。これらのうち、特に言及されてよいものは以下のとおりである。

C₁₋₆アルキル基で置換されたフタルイミド環としては、環がメチル基又はエチル基で置換されたものが好ましく、更に、例えばN-メチルーフタルイミド環のように、メチル基で置換されたものがより好ましい。

C1-6アルコキシ基で置換されたジベンゾフラン環としては、環がメトキシ基又はエトキシ基で置換されたものが好ましく、更に、1個のメトキシ基で置換されたものがより好ましい。

ハロゲン原子で置換されたフルオレン環としては、環が塩素原子又は臭素原子 で置換されたものが好ましく、更に、1個の臭素原子で置換されたものがより好 ましい。

C1-6アルキル基で置換されたカルボスチリル環としては、環がメチル基又はエチル基で置換されたものが好ましく、更に、1個のメチル基で置換されたものがより好ましい。

シアノ基、ハロゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で置換されたナフタレン環としては、シアノ基、ハロゲン原子、ニトロ基、メチル基又はエチル基の1~3個で置換されたものが好ましく、更に、1個のシアノ基、臭素原子、塩素原子、ニトロ基又はメチル基で置換されているものがより好ましい。

C1-6アルキル基で置換されたキノリン環としては、環がメチル基又はエチル基

で置換されたものが好ましく、更に、1個のメチル基で置換されたキノリン環が より好ましい。

 C_{1-6} アルキル基、 C_{1-6} アルコキシ基及び C_{1-6} アルコキシ C_{1-6} アルキル基からなる群から選択される $1\sim3$ 個で置換された2-オキソー $\alpha-$ クロメン環としては、環がメチル基、エチル基、メトキシ基、エトキシ基、メトキシメチル基、メトキシエチル基、エトキシメチル基又はエトキシエチル基で置換されたものが好ましく、更に、1つのメチル基又はメトキシメチル基で置換されたものがより好ましい。

C1-6アルキル基で置換されたシンノリン環としては、環がメチル基又はエチル基で置換されたものが好ましく、更に、1つのメチル基で置換されたものがより 好ましい。

C₁₋₆アルキル基で置換されたベンソチアソール環としては、環がメチル基又はエチル基で置換されたものが好ましく、更に、1つのメチル基で置換されたものがより好ましい。

また、本発明において製薬学的に許容される塩とは、アルカリ金属類、アルカリ土類金属類、アンモニウム、アルキルアンモニウムなどとの塩、鉱酸又は有機酸との塩である。それらは、例えばナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩、アルミニウム塩、トリエチルアンモニウム塩、酢酸塩、プロピオン酸塩、酪酸塩、ぎ酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、ステアリン酸塩、コハク酸塩、エチルコハク酸塩、ラクトビオン酸塩、イルコン酸塩、グルコへプトン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、2ーヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩、ラウリル硫酸塩、リンゴ酸塩、アスパラギン酸塩、グルタミン酸塩、アジピン酸塩、システインとの塩、Nーアセチルシステインとの塩、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、ヨウ化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩、アクリル酸ポリマーとの塩、カルボキシビニルポリマーとの塩などを挙げることができる。

本発明の一般式(1)で表される化合物は、特開昭61-165360号公報

(ここに参照として組み込まれる)に記載された方法又はそれに準ずる方法により製造することができる。

例えばR'~R⁵で置換された下記のアニリン誘導体

を、触媒量の酢酸等の有機酸、塩酸等の鉱酸又はピリジン塩酸等のアミン類の鉱酸塩の存在下或いは非存在下に、オルトギ酸トリメチル、オルトギ酸トリエチル等のオルトギ酸エステル類と、好ましくは室温から150℃、より好ましくは70~100℃で2~72時間反応させ、得られた反応中間体を単離又は単離せずに、エタノール等の溶媒中でヒドロキシルアミンによって処理することにより合成することがきる。

なお、上記のアニリン誘導体は、例えば以下の方法によって合成することができる。ここでは説明の簡便化のために上記アニリン誘導体において R^1 、 R^2 、 R^4 及び R^5 は水素原子とし、 R^3 を-Y($CR^{61}R^{62}$)"-($CR^{63}R^{64}$)"-R 7 とする。

まず、下記式 (a)

(式中Xはハロゲン原子を示す)で表される化合物と、例えば下記式 (b)

$$R^{7} (CR^{63}R^{64})_{m} - (CR^{61}R^{62})_{m}YH$$
 (b)

で表される化合物(式中R⁷、Y、R⁶¹、R⁶²、m、R⁶³、R⁶⁴、nは上記と同様 である)を塩基の存在下に反応させて下記式(c)

$$R^{7}-(CR^{63}R^{64})_{n}-(CR^{61}R^{62})_{m}-Y$$
NO₂ (c)

で示される化合物を得る。

次に、芳香族ニトロ基を芳香族アミノ基に還元する一般的な方法を用いて、上記式(c)で示される化合物が下記式(d)で表されるアニリン誘導体へと誘導される。

$$R^{7}$$
-($CR^{63}R^{64}$)_n-($CR^{61}R^{62}$)_m-Y
NH₂ (d)

本発明の20-HETE産生阻害剤は、一般式 (1) で表される化合物又はその製薬学的に許容される塩を有効成分として含有するものであり、20-HET E産生を有効に阻害する。

また、本発明の20-HETE産生阻害剤は、医薬、特に腎疾患、脳血管疾患 又は循環器疾患治療薬として有用である。

本発明に係る医薬(腎疾患、脳血管疾患、循環器疾患治療薬を含む)、並びに、20-HETE産生阻害剤の投与量は、成人を治療する場合で、一般式(1)で表される化合物又はその製薬学的に許容される塩として、1日1~2000mgが好ましく、これを1日1回又は数回に分けて投与することができる。この投与量は、用途、患者の年齢、体重及び症状等によって適宜増減することができる。

本発明に係る医薬(腎疾患、脳血管疾患、循環器疾患治療薬)、及び、20-HETE産生阻害剤は、経口又は非経口的に投与することができる。その投与剤型は錠剤、カプセル剤、顆粒剤、散剤、粉剤、トローチ剤、軟膏剤、クリーム剤、

乳剤、懸濁剤、坐剤、注射剤などであり、いずれも慣用の製剤技術(例えば第12改正日本薬局方に規定する方法)によって製造することができる。これらの投与剤型は、患者の症状、年齢及び治療の目的に応じて適宜選択することができる。各種剤型の製剤の製造においては、常用の賦形剤(例えば結晶セルロース、デンプン、乳糖、マンニトールなど)、結合剤(例えばヒドロキシプロピルセルロース、ポリビニルピロリドンなど)、滑沢剤(例えばステアリン酸マグネシウム、タルクなど)、崩壊剤(例えばカルボキシメチルセルロースカルシウムなど)などを用いることができる。

発明を実施するための最良の形態

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例 に限定されるものではない。

実施例1

N-(4-プチルー2-メチルフェニル)-N'-ヒドロキシーホルムアミジンの合成

4-ブチルー2-メチルアニリン(129.18g)とオルトギ酸エチル(234.66g)を100℃で11時間攪拌した後、過剰のオルトギ酸エチルを留去した。得られた粗生成物をメタノール(200ml)に溶解させた。塩酸ヒドロキシルアミン(65.59g)のメタノール溶液(500ml)に、ナトリウムメトキシド(51.02g)のメタノール溶液(350ml)を0℃で滴下し中和した。析出した塩化ナトリウムをろ別し、ろ液を粗生成物のメタノール溶液に滴下し、室温で15時間攪拌した。メタノールを留去し、得られた残渣をクロロホルム800mlに溶解させ、水及び飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後除媒し、得られた残渣をヘキサンで洗浄し、標題化合物の粗結晶を63.66g得た。粗結晶の一部(35.47g)をヘキサン:酢酸エチル(1:4)で再結晶し、無色粉末の標題化合物(後述する表1の化合物1)を29.85g得た。

融点 131.5~134.0℃。

WO 01/32164

N-(4-tert-ブチルフェニル) - N'-ヒドロキシ-ホルムアミジンの合成 4-tert-ブチルアニリン (3.9 g) とオルトギ酸エチル (7.9 g) を100℃で6.5時間攪拌した後、過剰のオルトギ酸エチルを留去した。得られた粗生成物をメタノール (10 m1) に溶解させた。塩酸ヒドロキシルアミン (2.1 g) のメタノール溶液 (20 m1) に、ナトリウムメトキシド (1.6 g) のメタノール溶液 (15 m1) を0℃で滴下し中和した。析出した塩化ナトリウムを濾別し、濾液を粗生成物のメタノール溶液に滴下し、室温で1.5時間攪拌した。メタノールを留去し、得られた残渣をクロロホルム50 m1に溶解させ、水及び飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=4:1) で精製し、標題化合物 (後述する表1の化合物2)を1.65 g得た。融点 113.5~114.5℃

実施例3

N-(4-メトキシカルボニルフェニル)-N'-ヒドロキシホルムアミジンの合成 4-アミノベンソイックアシドメチルエステル(1.98g)とオルトギ酸エチル(4.07g) の混合物を100℃で16時間攪拌した後、過剰のオルトギ酸エチルを留去した。得られた残渣に塩酸ヒドロキシルアミン(1.50g)とナトリウムメトキシド(1.10g)から調製したヒドロキシルアミンのメタノール溶液(16m1)を加え、室温で6時間撹拌した。溶媒留去後残渣にクロロホルムを加え、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;n-ヘキサン:酢酸エチル)で精製後クロロホルムーメタノールから再結晶して無色粉末状の標題化合物(後述する表1の化合物123)を得た(0.32g)。

融点 167.0~167.5℃

実施例4

N-(2-アミノスルホニルフェニル)-N'-ヒドロキシホルムアミジンの 合成

2ーアミノベンズスルホンアミド(3.0g)、オルト蟻酸エチル(5.15g)と酢酸エチル(20ml)の混合物を、100℃で5時間撹拌した後、過剰のオルト蟻酸エチルを留去した。残渣のメタノール(30ml)溶液に塩酸ヒドロキシルアミン(1.50g)とナトリウムメトキシド(1.10g)から調製したヒドロキシルアミンのメタノール溶液(40ml)を加え、室温で2日間撹拌した。溶媒流去後、残渣にクロロホルムを加え、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル)で精製して無色粉末状の標題化合物(後述する表1の化合物236)を得た(0.73g)。

融点130.5~131.5℃

実施例5

N-[4-(ピリジン-2-イルメトキシ)フェニル)]-N'-ヒドロキシホルムアミジンの合成

4-(ピリジン-2-イルメトキシ)アニリン(1.715g)とオルトギ酸エチル(2.613g)の混合物を100℃で14時間攪拌した後過剰のオルトギ酸エチルを留去した。残渣のメタノール溶液(20m1)にヒドロキシルアミンの1Mメタノール溶液(10m1)を加え室温で2.5日間攪拌した。溶媒留去後、得られた残渣にクロロホルムを加え、水及び飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥後溶媒留去した。得られた残渣を酢酸エチルで再結晶して無色粉末状の標題化合物(後述する表1の化合物345)を得た(0.524g)。

融点 159.5~161.0℃

実施例6

N-[4-(ベンジルチオ) フェニル)]-N'-ヒドロキシホルムアミジンの合成 4-(ベンジルチオ)アニリン(1. 18g)とオルトギ酸エチル(1. 78g)の混 合物を100℃で12時間攪拌した後過剰のオルトギ酸エチルを留去した. 残渣

のメタノール溶液(20ml)にヒドロキシルアミンの1Mメタノール溶液(10ml)を加え室温で2.5日間攪拌した。溶媒留去を得られた残渣にクロロホルムを加え、水及び飽和食塩水で洗,後無水硫酸マグネシウム乾燥後溶媒留去した。得られた残渣を酢酸エチルで再結晶して無色粉末状の標題化合物(後述する表1の化合物441)を得た(0.43g)。

融点:166℃

実施例7

製造例1と同様な操作を行い下記の表1に示す化合物を得た。なお、上記製造例1~6で得られた化合物も他の化合物と併せて表1に示す。

表1中のRf値は、Merk社製薄層クロマトグラフィーSilicagel 60Fzs4又はフジシルシア化学社製NH TLCプレートを用い、酢酸エチル: ヘキサン(1:2)の混合液で展開したとき(無印)又はクロロホルム:メタノール(9:1)の混合液で展開したとき(*印)のRf値を示す。また、posi及びnegaの項はESI法によりマススペクトルを測定した際にポジティブモードもしくはネガティブモードで観測されたカチオンピーク(M+H)及びアニオンピーク(M-H)の測定値を示す。

	<u></u>	T		34				T			
化合物 番号	推造式	mp	M+H (ESI)	M+H (APCI)	M-H (ESI)	M-H (APCI)	Rf值	TLC *	展開溶媒	抑制率 (1 µ M)	IC50 (nM)
化合物	Thursh	131.5 _ 134.0	207	207	:	205	0.56	Si02 (NH)	EtOAc: MeOH =95:5	100.5	3.5
化合物	7 Chroн	113.5			101				Hexane :AcOEt		
	PA A PA	84.5- 85.5	193		191		0,13	Si02	Hexane :AcOEt	97.0	7,8
化合物	TO NOH	101.0 - 102.5			191		0.15	Si02	Hexane :AcOEt =2:1	107.6	3
化合物	ON N	153.0 - 154.0	219		217		0.13	Si02	Hexane :AcOEt =2:1		3.8
化合物 6	OH N HN	119.5 - 120.5	223		221		0,20	Si02	Hexane :AcOEt =2:1	99.9	
化合物	Thunh Moh	122.5 - 124.0	207		205		0.14	SiO2	Hexane :AcOEt =2:1	110.5	12.1
化合物 8	OH HCI	141.0 - 142.0	193		191		0.21	Si02	Hexane :AcOEt =2;1	99.9	
化合物	OH N	108.0 - 110.0	221		219		0.15		Hexane :AcOEt =2:1	99.9	4.9

	_														
	化台	合物 0	OH N	143.5 - 144.5			151			12	2:00	Hex:	DEt		
	化台	計物 1	OH HN Cr	151.0	35		183		0.1		Si02	Hexa :AcO =2:	ine Et		
	化合 12	物	OH N HN	139.5 - 140.5 15	5				0,0			Hexai :AcOi =2:1	ne Et		
	化合 ¹	物	OH OH	116.0 - 118.0 165	j		63		0.12	2 5	i02	fexan AcOE =2:1	ie		
	化合物 	勿	OH HN CI	151.0 - 153.0		18	3		0,19	Sit	· /·	exand		162.8	
4	七合物 	9	oh h Ci	155.5 156.0 171		16			0.10	Sio]:A	exane cOEt :2:1		287,7	
ſŧ	:合物 18		Думон	141.0 - 142.0 165		163				SiO	He:	xane :OEt 2:1	97.6		
化	合物 17		OH N	136.5 - 139.0 181		179				Si02	Hex :Act	ane OEt		6,6	
<u> ተ</u>	合物 8		-oCharge	139.0 - 140.0 167		165		0.0			Hexa :AcO	ine Et	85.3		
								_10.0	0 12	i02	=2;	1	94.6	45.2	

						т		r			
化合物	о Су _м он	144.0	1						Hexane :AcOEt		
19	Н	145.0	181	 	179	 -	0,08	Si02	=2:1	88.0	337.6
化合物	HN OH	149.0 - 150.0	181		179		0.07	Si02	Hexane :AcOEt =2:1	97.5	227.6
化合物 	OH N HN	115.5 - 116,5	165		163		0,14	Si02	Hexane :AcOEt =2:1	81.1	
化合物	P P P P P P P P P P P P P P P P P P P	139.0 - 141.0					0.16	Si02	Hexane :AcOEt =2:1		
化合物	OH HN CI	110.0 - 111.5	171		169		0.12	Si02	Hexane :AcOEt =2;1	82.8	475.8
化合物	hy a	119.0 - 120.5	205				0.10	Si02	Hexane :AcOEt	89.2	519.7
化合物 25	OH HN CI	142.5 - 144.5	189		187		0.15	Si02	Hexane :AcOEt =2:1	87.0	
化合物 26	OH N HN CI	155.0 - 158.5	201		199	·	0.18	SiO2	Hexane :AcOEt =2:1	86.0	203.7
化合物 27	F F ON OH	140.5 - 142.0	205		203	-	0.10	SiO2	Hexane :AcOEt =2;1	103,3	1,7

	h
•	

			,		r —						
化合 ⁴ 28	OH NAME OF THE PARTY OF THE PAR	119.0 - 120.5	235		233		0.15	Si02	Hexan :AcOE =2:1		4.7
化合物 29	ф но	93.0- 94.5	179		177		0.13	Si02	Hexans		4.7
化合物	у Думон	143.0 - 143.5	179		177				Hexane:AcOEt=2:1	103.0	2.4
化合物 ·31	- Other	131.0	79			0	.12 5	SiO2	lexane AcOEt =2:1	97.8	6.6
化合物	HN	114.0 - 115.0 1	79			0.	16 S	19	lexane AcOEt =2:1	87.2	
化合物 33	OH HN Br	171.0		29		0.2	3 Si	J:A	exane cOEt	91.9	
化合物 34	OH N Br	163.0 - 163.5 293		291		0.17		He :Ac	xane :OEt		
化合物35	OH N HN CI Br	161.0				0.17		Hex	ane OEt		79.7
化合物 36	OH N HN Br	163.0 		213		0.10		=2 Hexa :Ac0 =2:	ine		8.5

				 					 т	
化合物 37	OH N N	167.0 - 167.5	195	193		0.06	SiO2	Hexane :AcOEt =2:1	92.7	
化合物 38	oh N C	151.0 - 152,5	185	183		0.13	SiO2	Hexane :AcOEt =2:1	89.8	79.8
化合物 39	F O O NOH	110.0 _ 113.0	221	219		0.10	Si02	Hexane :AcOEt =2:1	99.0	22
化合物 40	oh hn cr	160.0 _ 161.0	205	203		0.16	Si02	Hexane :AcOEt =2:1	98.2	
化合物 41	OH N HN Br	161.0 - 161.5	229	227		0,13	Si02	Hexane :AcOEt =2:1	96.6	49.0
化合物	OH N	144.0 - 145.0				0.44	Si02	CHCl3: MeOH= 9:1	99.9	
化合物 43	F _N -OH	123.0 - 124.0	169	167		0.30	Si02	CHCI3: MeOH= 9;1		168.1
化合物 44	~of the NoH	145.0 - 146.0	223	221	·	0.32		CHCI3: MeOH=		8.1
化合物 45	Br H NOH	163.5 - 164.5	243			0.45		CHCl3: MeOH= 9:1	53,5	<u> </u>

	_		T					 									
		合物 46	F.F.	он		00.5 - 02.0	205	2	03			.24	SiO	CHC MeOl	H=	5 35	5
	化台	含物 7	, Chho	н		66.0 - 66.5	277	27	75				Si02	CHCI MeOH	3:		5
	化全4	物 8	Br H N	ОН	-	5.0 - 6.0	335						SiO2	CHCI3 MeOH 9:1	3:		<u>y</u> _
	化合	物	E E E	H	122			271				4 5		CHCI3 MeOH= _ 9:1			
	化合 50	物	F T F OH		155. 156.		73	171				S		CHCI3: 1eOH= 9:1			
	化合物 	b	Br N'OH		157.0 158.0	1	29	227			0.42		0	HCl3:		25,5	
1	と合物 52		N-OH	- Ł	145.0 146.0	1	1				0.43		C	9:1 HCl3: •OH=	50.2	21.8	
化	合物 53		Br N'OH	1	59.0 - 60.0	271				.			CI- Me	9:1 ICI3: OH=			
t.	合物		F.C. N.OH	16	62.5 - 63.5							<u>Si02</u>	CH()H=			
					1 6.0		L	 		0.	43 3	Si02	9;				

				т		— т	-		· · · · · ·		
化合物 55	OH N	130.5 - 132.0	277		275		0,5	Si02	CHCI3: MeOH= 9:1	31,3	
化合物 56	N CH OH	144.0 - 145.5	190		188		0,42	Si02	CHCl3: MeOH= 9:1	50.6	
化合物	OH N		193		191		0,22	Si02	Hexane :AcOEt =2;1	59.1	
化合物	OH N HN Br	146.5 - 148.0	257		255		0.21	Si02	Hexane :AcOEt =2:1	99.9	7.1
化合物 59	OH HN		167		165		0.13	Si02	Hexane :AcOEt =2:1	49,0	
化合物	OH N HN		181		179		0,15	Si02	Hexane :AcOEt =2:1		
化合物	OH N				163		0.17	Si02	Hexane :AcOEt		
化合物 62	oh N		151		100	,	0,12	Si02	Hexane :AcOEt	69.5	
化合物 63	OH N		165		163		0.12	Si02	Hexane :AcOEt	49.3	

化金	OH N HN HN					163			0.13	Si02	Hexa :AcO	Et	
化合 65			٠	167		165			0.08		Hexar :AcOE	ne Et	
化合 66	物 OH NN HN NN			181		179				Si02	Hexan	t	
化合4	OH N HN CI			185		183		0.			=2:1 Hexane	:	
化合物	OH F F HN			05		203				:	=2:1 lexane AcOEt	48.4	
化合物	OH CI		18				,	0.1		H	=2:1 exame	¥ -	
化合物 70	OH N		245			87		0,15		He :A	exane	58.7	
化合物 71	OH N					17		<u>0.15</u>	Sig	2 =	2:1	32.9	
比合物 72	OH N	168.0	179		17			0,18	SiO	Hex	2:1 4	12.5	
<u>-</u>		169,0	179	L		<u></u>	0	.12	Si02	:Ac(=2	1 9	9.2	

				 	т			,	,	,
化合物	OH N HN		297	295		0,18	Si02	Hexane :AcOEt =2;1	99.9	
化合物	OH N HN Br		243	241		0.11	Si02	Hexane :AcOEt =2;1	43.7	
化合物	OH N HN Br		2 <u>15</u>	213		0.16	Si02	Hexane :AcOEt =2:1	46.9	
化合物 76	OH N N			195		0.06	Si02	Hexane :AcOEt =2:1	35.1	
化合物	OH N HN F F F			281		0.17	Si02	Hexane :AcOEt	49.0	
化合物 78	OH N		97	195		0.03	Si02	Hexane :AcOEt	36.3	
化合物 79	HN HO							Hexane:AcOEt		
化合物 80	OH HN F F		55	153	·	0,15		Hexane :AcOEt	35.3	
化合物	OH HN CI CI CI	20	39	237			SiO2	=2:1 Hexane :AcOEt =2:1	37.2 51.3	

									
化合物		133.5 - 134.5 2	215	213	0	12 Si	Hexane :AcOEt :02 =2:1	:	
化合物 83			49				CHCl3: MeOH=	70.9	
化合物 	OH NEW YORK	22			0.4		CHCl3: MeOH=		
化合物 85	OH N			219	0,2	7 SiO	2 9:1 CHCl3: MeOH=		
化合物	OH CI	229		227	0.37	SiO2	9;1 CHCl3: MeOH=		
化合物	OH N HN	185	1	83	0.29	SiO2	9;1 CHCl3:	58,7	
87 化合物	OH HN	187			0.22	Si02	MeOH= 9:1		_
化合物 88	OH CI	231	229	9	0.31	SiO2	CHCI3; MeOH= 9:1		
化合物 89	OH N F F	210	208		0.32 \$	M	PHCI3: leOH= 9:1		_
化合物 90	ρ F	235			0.33 S	Me	HCI3: •OH= 9:1 36.5	;	

						т	
化合物 91	OH N HE	263		0.27	CHCK MeOH Si02 9:1		
化合物 92	OH N HN F F	230	228	0.51	CHCI MeOH Si02 9:1	3: =	
化合物 93	OH N HN			0.21	CHCI MeOH Si02 9:1	3: -	
化合物	OH O. 20	226	224	0.29	CHCI MeOl Si02 9:1	3: - 41.2	
化合物 95	OH NO.NO HN	210	208	0.32	CHCI MeOl Si02 9:1	3: = 44.5	
化合物 96	OH N Br HN Br	335		0.40	CHC MeOl Si02 9:1	3: H=	
化合物 97	OH CO CO	239	237	0.32	CHC MeOł Si02 9:1	13: H=	
化合物 98	OH N HN	185			CHC MeOl Si02 9:1	3: t= 43.9	
化合物 99	AH O	197	195		CHC MeOl Si02 9:1	3:	

化合 100	OH N Br		370		368		0.38	Si02	CHCI3 MeOH= 9:1	=	
化合 ⁴ 101	OH N CO		201		199		0.24		CHCl3: MeOH=	;	
化合物 102	OH BY HN		375		373			- 11	9;1 CHCl3: MeOH=	52.4	
化合物 103	O NOH	143.0)		225			I N	9;1 CHCI3: 1eOH=	44.4	
化合物 104	OH N HN		181					M	9:1 HCl3: eOH=		
化合物 105	OH NOH FFF		303					Cł Me	9:1 HCl3:	31,9	
化合物 106	OH HCI			30		0.	12 Si	02 !		16.7	
化合物 107	HA O O O		165	16	3	0.2	5 SiO	CHC	:1		
合物 108	F 2 4		96	194		0.3	7 SiO2	9:	1		
100	а	23	11		<u> </u>	0.39	Si02	CHC MeOi 9:1	H= 36.4	•	

								· -
化合物	OH CO	196	194	0.13	Si02	CHCl3: MeOH= 9:1		
化合物 110	OH N HN Et			0.13	Si02	CHCl3: MeOH= 9:1		
化合物	OH N F HN F	191		0,37	Si02	CHCl3: MeOH= 9;1		
化合物 112	N HN OH HO		160	0.24	Si02	CHCl3: MeOH= 9;1	37.4	
化合物	1	196	194			CHCl3: MeOH= 9;1		
化合物 114	OH HCI		223	0.21	Si02	CHCl3: MeOH= 9:1		
化合物 115	OH N CI	239				CHCl3: MeOH= 9:1		
化合物	H H H	197	195	·		CHCl3: MeOH=		•
化合物	OH N HN B	249	247	0.37		9;1 CHCl3: MeOH= 9:1	71,6	

1t€ 11	OH HN HN 8			ine.						CHCI; MeOH	3:		_
化合	OH N HN	X		25		223		0.41		9:1 CHCl3 MeOH:			_
化合: 120	P H H	F F	17	19				0.27	Si02	9:1 CHCl3: MeOH=			
化合物 121	OH N HN C	人	68.5		23	71			Si02	9:1			
化合物	OH NAME OF THE PARTY OF THE PAR	0 10	06.0 - 07.5 223						E	=1:2	72.0		
化合物 123		FO 16	7.0 - 7.5		221			Si	Et	OAc:	94.7	28.9	
化合物 124	4. A.	100	0.0	<u>195</u>	193		0.4	17 (N	H) =		92.7		
化合物 125	FF F N N.	он 138. 	0		227		- 1	2 Si0	2 =1	1:2 9	2.2	354.5	
比合物 128	FUN.	173.0								67	7.6		
120		(dec.)						<u> </u>		34.	9		

						· · · · ·	т				
化合物	~° Р № м-он	137.5 - 138.5		209		207	0,53	Si02 (NH)	EtOAc: MeOH =95:5		
化合物 128	CL CO CH N'OH	143.0 145.0	263				0.26	Si02	CHCl3: MeOH =9:1	102.0	7.0
化合物	O JOH	183.0 - 183.5		253	251		0,50	Si02 (NH)			
化合物 130	O O Thou	155.0 - 156.0	243		241		0,10	Si02	EtOAc: hexane =1:2	116.5	6.9
化合物 131	O O O NO.OH	144.0 - 145.5	229		227		0,09	Si02	EtOAc: hexane =1:2	89.2	26
化合物 132	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	122.0 - 123.5								117.6	3,9
化合物 133	~ Thuon	116.5 - 117.5	•			·				48.6	720
化合物 134	CT _{MOH}	154.0 - 154.5					,			57.4	3625
化合物 135	OH N		137		135		0.10	SiO2	EtOAc: hexane =1:2	49.3	CSUC

化合物 136 243 241 0.17 Si02 =1:2 EtOAc: hexane = 1:2 EtOAc: hexane = 1:2
化合物 137 229 227 0.15 Si02 =1:2 EtOAc: hexane =1:2
OH NO OF SIO2 =1:2
化合物 138 297 295 0.11 Si02 =1:2 44.0
(化合物 HN EtOAc:
H ₂ N HN
140 NOH 194 192 0.23 (NH) =90:10
化合物 NOH 194 192 0.06 SiO2 CHCi3: MeOH = 95:5
化合物 AcOEt:
NO NH O
化合物 143 HO-N 196 194 0.25 Si02 CHCl3: MeOH =95:5 37.3
比合物 144 HO-N 215 213 0.13 Si02 =95:5

化合物 145	D. O.			213	0.11	Si02	CHCl3: MeOH =95:5		
化合物 146	P F F F F F F F F F F F F F F F F F F F		235	233	0.25	Si02 (NH)	AcOEt		
化合物 147	HN CI CI		273	271	0.26	Si02 (NH)	AcOEt		
化合物 148	HO.N=N=F		327_	325	0,32	Si02 (NH)	AcOEt		
化合物 149	HO.N.S.		265	263	0.34	Si02 (NH)	AcOEt	36.5	
化合物 150	HN F F HO		262	260	0.15	Si02 (NH)	AcOEt	34.1	
化合物 151	HO.N.		203	201	0.20	Si02 (NH)	AcOEt	108.2	
化合物 152	F F CI		255	253	0.28	Si02 (NH)	AcOEt		
化合物 153	HO.N.N.		203	201	0.29	SiO2 (NH)	AcOEt	39,4	

·															
化力	合物 54	HN S				23	7	235		0.24	SiO:	Act	05.		
化台	計物 55	HO.N.	•			241		244			SiO2 (NH)				
化合 15	物 6	HO.N. A. S.				327		25		0.32	Si02				
化合 157		HON-HO	,			277	27				SiO2			9.4	
化合 ⁴ 158	勿	HO, N N N				195	19:			S	Si02			1.4	
化合物 159		HO.N. N.				209	207			s	NH) A				
七合物 160		OH OH					179			26 (N	Et M	OAc:		+-	
合物 161		E NOH	156.0 - 157.0		16		1/3		-	SiO.	EtC 2 Me	95:5 Ac: OH			
合物 62		A N-OH	.31.0					167	0.5	I (NH	EtO,	5:5 Ac:	88.6	13.4	\$
			LL	i	183	18	1		0.49	(NH)	=95		62.6		

						,		, - ,		
化合物 163	H-2-H		207		205	0.61	Si02 (NH)		40,0	
化合物 164	CI N N COH		186		184	0.55	Si02 (NH)	EtOAc: MeOH =95;5	86.7	
化合物 165	NH NH		169			0.54	Si02 (NH)	EtOAc: MeOH =95;5	105,7	
化合物	. The source		200			0.56	Si02 (NH)	EtOAc: MeOH =95:5		
化合物 167	A NH		221		219	0,58	Si02 (NH)			
化合物 168	A 20 2 4		228	226		0.57	Si02 (NH)	EtOAc: MeOH =95:5	61.9	
化合物 169	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		272	270			SiO2 (NH)	EtOAc:	104.1	
化合物	СГ		186		184	0.50	Si02	EtOAc:	99.8	
化合物	PH OH	-	181		.57	0.23	Si02	EtOAc: MeOH =95:5	54.1	

<u></u>												
化合	OH NH N OH				181			0.21	Si02	EtOAc; MeOH =95:5		
化合: 	HO NOH				181		179	0.30	Si02	=93:5 EtOAc: MeOH =95:5		
化合物 174	CI NH OH				202				SiO2	tOAc:		
化合物 175	X N-OH			1	93				SiO2 M	:OAc:	62.4	
化合物 176	H N-OH				30			Si	Et(DAc:	59.9	
化合物	Br NH							Sio	EtO Med	Ac:	7.0	
化合物 178	NH NH NH	121.0	1	24		2	0.5	53 (NI	EtO/ MeO	5:5 85.	4	
化合物 179	Dy-n-on	122.5		193		191	0.5	Z (NH.	=95: EtOA	5 91.4	9.0	
化合物 180	A Mah			179		177	0.54	(NH)	=95:5	63.5	<u> .</u>	
180	a n			208	204		0.59	Si02	MeOH ≈95:5			

		 		1	,	т—-				
化合物	CI NH N-OH			227		0,54	Si02	EtOAc: MeOH =95;5		
化合物	CI NH OH		216	214		0,56	SiO2 (NH)	EtOAc: MeOH =95;5	90.2	
化合物	O NH O NH		209	207		0,50	Si02 (NH)	EtOAc: MeOH =95:5	92.0	
化合物	O NH NH NH		255	253		0.48	Si02	EtOAc: MeOH =95:5		
化合物 185	NH NH NH		180	178			SiO2	EtOAc: MeOH		
化合物 186	O N OH		197	195			Si02 (NH)	EtOAc; MeOH		
化合物 187	A POPULAR OF THE POPU						SiO2	EtOAc: MeOH		
化合物 188	NH OH		195	193			(NH)	EtOAc: MeOH		
化合物 189	Y O NH		223	221		0.50		=95:5 EtOAc: MeOH =95:5	59.1 116.8	

	化合 190	物 o non			225	5	223			0.51	Si02 (NH)	EtOA MeOl =95:	H		
	化合 191	物 OH			269		267					EtOA:	D:	.9	
	化合 1 192	NH OH			230		228				SiO2	EtOAc MeOH			
1	七合物 193	D O O			209		.20				SiO2	=95:5 EtOAc: MeOH			
	ご合物 194	D OH			•			207		s		=95:5		+	
化	合物 195	NH NH		1	197			<u>195</u>	0.4	14 (N	IH)	=95:5 tOAc:	67.5		
化	含物	P-2-9			197				0.5	1 (N	H) =	95:5 OAc:			
	物	CI N.OH					2	20	•	Sio	Et(95:5 PAc:	46.9		
;合 198	物	O H		19		88			0.57	Si02	EtO Me(ЭН			
			 						0.50	(NH)	=95	:5 8	1.8		J

		.,	 		,					, ,
化合物 199	P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-		209	207		0.50	SiO2 (NH)	EtOAc: MeOH =95;5	85.6	
化合物 200	Br NH NH OH		274	272 [.]		0,50	Si02 (NH)		53,3	
化合物 201	- 1 - 5- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6-		321	319		0.50	SiO2		70.1	
化合物 202	O NH		244	242		0.53	SiO2	EtOAc: MeOH =95:5	31.6	
化合物 203	O-N-CI NH NH OH		217		215		SiO2 (NH)	EtOAc: MeOH	51,1	
化合物 204	но Дум-он		181		179	0.30	SiO2	EtOAc: MeOH	51.1	
化合物 205	HO NOH		167		165	0.25		EtOAc:		
化合物_206	CI NH NH		217		103		Si02	EtOAc: MeOH		
化合物 207	HO NH	138.0	181		179	0.49	Si02	=95:5 EtOAc: MeOH =95:5	90.7	11.6

化合 208	THE NAME OF THE NA				253	25	51			F2 (Si02	EtO. Me(ЭН	-	
化合 ² 09	HO NH	- 1	59.5 - '0.0		167				0.2	s	i02	=95 EtO/ MeO =95:	₹c:		
化合物 210	Br F N-OH				313	311					02	EtOA MeO	ic:	2.2	<u>151,6</u>
化合物 211	OH N HN S			183		181			0.35			=95:	3:	8	
化合物 212	OH HN F F			251		249			0.35		CA	=9:1 HCl3 leOH			
化合物 213	HN HCI			79		243					CIM	=9:1 HCl3: eOH			
化合物 214	OH OH		18							Si02	CH Me	9:1 ICI3:		-	
化合物 215	OH F F		10			79		- 0	.12	SiO2	CH(9;1 Cl3;	31.9		
と合物 216	OH N				2	25		0.	25 :	SiO2	= <u>9</u>	:1	36.1		
210	F			<u>L</u> _	16	7		0.3	1 5	i02	MeC =9;)H 1			

					 ·		·	·	,
化合物 217	OH 2HCI	25	3		0,4	Si02	CHCl3: MeOH =9:1		
化合物 218	T T T T T T T T T T T T T T T T T T T	19			0,08	Si02	CHCi3: MeOH =9:1		
化合物 219	OH HN HN	22		219	0.38	Si02	CHCl3: MeOH =9;1		
化合物 220	2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	170		174	0.28	Si02	CHCl3: MeOH ≂9:1		
化合物 221	A H A H A H A H A H A H A H A H A H A H	193		191	0.35	Si02	CHCI3: MeOH		
化合物 222	OH P			225	0.29	SiO2	CHCl3: MeOH =9:1		
化合物 223	OH N O NO	000					CHCl3: MeOH		
化合物 224	OH N HN	290		288	0.34		=9:1 CHCl3: MeOH	52.2	
化合物 225	CI C	343		235 341		SiO2	=9;1 CHCl3: MeOH =9;1	47.1	

				33						
化合	OH HN OSSO		277		275	0.3	37 Si	CHO MeC 02 =9:)H l	
化合 ⁴ 227	// 60 \	139.0 141.0	0		189	0.3				20.7
化合物 228	W CH				267	0.11		EtOA hexan	c:	
化合物		194.0 - 195.0	238		236	0.34		CHCI3	3:	
化合物		165.0 - 165.5	181		79	0.07		Et0Ac		16.0
化合物 231	OH N	168.5 - 169.0	191		39	0,16		EtOAc; hexane =1:2	92.9	Í
七合物 232	H ₃ C CH ₃	154.0 - 155.0					9.02	-1,2		196,5
:合物 233	HA CO	118.0 - 119.5 2	27	225		0.10		EtOAc; nexane =1;2	86.0	6.6
合物	OH C	111.0		211			E	tOAc:		51.9
						 15 S	IUZ[=1:2	74.1	

		, 		 	T				,	·
化合物 235	OH N HN Br	167.5 - 168.0	1	263		0.13	Si02	EtOAc: hexane =1:2		5915.9
化合物 236	ON OH	130.5 - 131.5	1							
化合物 237	D No. OH	197.5 - 198.0		237		0.17	Si02	EtOAc; hexane = 1:2		26.2
化合物 238	CO MOH	142.5 - 144.0	177	175		0.12	Si02	EtOAc: hexane =1:2	101.6	30.0
化合物 239	Р С С С С С С С С С С С С С С С С С С С	182.5 - 183.0								4078
化合物 240	OH N		227	225		0.15	Si02	EtOAc: hexane =1:2		
化合物 241	OH HN HN HN HN HN HN HN HN HN HN HN HN HN	ı	243			0.15	Si02	EtOAc: hexane =1:2		
化合物 242	HO-NH		. 187	185		0,13		EtOAc: hexane =1:2	50.6	
化合物 243	OH N		213	211				EtOAc: hexane =1:2	50.0	

					01							
化合 	物 种 和				220					CHCl3: MeOH		
化合 ¹ 245	HN N-OH				330	328	328	0.49		=95:5 AcOEt:	32.7	
化合物	O HN				276	274	274	0.38	(NH)	EtOH =90:10	55.4	
246	N _{OH}	-	1		220	218	218	0.22	SiO2	MeOH =95:5		
化合物 247	NH NH		+	1	93	191	191	0.15	M	HCI3; eOH 95;5	_	
化合物 248	HO-N			20	06 2	04	0),64 <u>S</u> i	Et	OEt OH 2:10	-	
化合物 249	N H OH			206	3 20	4	0	.6 SiO	Ac0 Et0 =90:	H	-	-
化合物 250				306	304	304	0.3	Sio2	AcOE EtO: =90:1	Et: 1 0	+	1
化合物 	HN OH	+	1	302	300	300	0.3	Si02	CHCI3 MeOH =95:5	11	<u> </u>	
と合物 252	HONN				295		0.24	1 1	CHCl3: MeOH =95:5			
												•

		·	 · · · · · ·	,				·		
	ON NH2					!				
化合物 253	и. он		216	214	214	0.27	Si02 (NH)	AcOEt: EtOH =90:10		
	\$-(1)									
化合物 254	HN OH			233		0.56	Si02 (NH)			
化合物 255			354	352	352	0.57	Si02	AcOEt: EtOH =90:10		
233	,,,,,,		354	332	. 352	0.57	SIUZ	=90:10		
化合物 256	44 44 44 44 44 44 44 44 44 44 44 44 44			321		0.28	Si02	CHCI3: MeOH =95:5		

化合物 257		ı	388	386	386	0.15	Si02	CHCl3: MeOH =95:5		
化合物 258	но, он		225	223	223	0,08	Si02	CHCl3: MeOH =95:5		
	No.								•	_
化合物 259	HO-N		244	242		0.33	Si02 (NH)	AcOEt: EtOH =90:10	52.8	
化合物 260	OH NH		177	175	175	0.21	Si02	CHCI3: MeOH =95:5		
化合物 261	OH OH		178	176	176	0.04	Si02	CHCI3: MeOH =95:5		

				00								
化合 262	MH NH NOH			176		174	002	Si02	CHCI3:			_
化合 ¹ 263	Br O'N OH			389	387	387	0.26		≃95:5 CHCl3: MeOH			
化合物 264	S N OH			311	309	309	0.25		=95:5 CHCI3: MeOH =95:5			
化合物 	Br OH			295		293		C	HCl3: leOH :95:5			
化合物 266	S N N OH				115		0.24 S	M	HCI3: eOH 95:5			
化合物	N S HN			3;	34	0.	31 Si	CH Me	Cl3: OH	-		
化合物 268	CN-H OH		299	9 29	7 29	7 0.0	5 Si0:	CHO	C13:			
化合物 269	J. N. OH		219	217				CHCI MeOI	3:			
公合物 270	NH OH		322	320	320	0.05		=95:5 CHCl3 MeOH =95:5				
							YIVE	-30:0			J	

化合物 271	HO.NS N		288	286	286	0.37	Si02	AcOEt		
化合物 272	HO, N		274	272	272	0.33	Si02			
化合物 273	HO.N-N-FF	165.0 - 167.0	271	269	269		Si02			96.8
化合物 274	HO. _N		303	301	301		Si02			50.0
化合物 275	но _{.N=1}						Si02	AcOEt	94.5	
化合物 276	HO'N NH NH	207.0	261	259	259		Si02	AcOEt		
化合物	HO.N. N.	207,5	304	302	302		Si02	AcOEt	71.8	55.9
化合物	HO N N N N N N N N N N N N N N N N N N N		257	255	255		SiO2	AcOEt	76.4	
278	HO,N=N		256	254		0.15	(NH) Si02	AcOEt	65,3	
279	H G		 334	332	332	0.21	(NH)	AcOEt	42.8	

化合 ²⁸⁰				337	, ;	335	335	0.2	Si(NI	02 H) Ac	OEt		
化合物 281		,	-	350	3	48	348	0.2	SiO 1 (NH)2 i) Act	DEt	50.9	
化合物	N HO			282			280	0.17	Si0:	2)) AcC)Et	<u>122.9</u>	
化合物 283	HO.N=N			<u>252</u>	25	60	250	0.16	Si02	AcO	Et	62.6	
化合物 	HO N HO			286	28	4 2	284	0.16	Si02 (NH)	AcOl	≣t		
化合物 285	HOB		3	302	300	30	00	0.16	Si02 (NH)	AcOE	t	·	
化合物 286	н		2	89	287	28	17 0),16	SiO2 (NH)	<u>AcOE1</u>			
比合物 287	HO, N= N=O		28	9 2	87	287	7 0.	17 (I	SiO2 VH) A	\c0Et			
合物 288	HO.N=N		208	3 20	06	206	0.1	Si 14 (N	i02 iH) A	cOEt			

66

		,	 ,							· · · · · · · · · · · · · · · · · · ·
化合物 289	HO.N~N		221	219	219	0.13	Si02 (NH)	AcOEt		
化合物 290	и Другон		212	210	210	0.42	Si02 (NH)			
化合物 291	CI NH NH NOH		222	220	220	0.48	Si02 (NH)			
化合物 292	M M NOH		188	186	186	0.36	Si02 (NH)			
化合物 293	N NOH		220	218	218	0.59	Si02 (NH)	EtOAc: MeOH =95:5		
化合物 294	C C C C C C C C C C C C C C C C C C C	162.0 - 162.5	220		218		Si02 (NH)	EtOAc:	100.0	
化合物 295	Charon	V02.0				·	Si02	EtOAc: MeOH	103.2	4,9
化合物 296	NAM DH		202		200	0.37	Si02	=95:5 EtOAc: MeOH	73.8	
化合物 297	N D N-OH		188		186			=95:5 EtOAc: MeOH =95:5	71.1	

_																	
1t. 2	合物 98	Z NH	рн И				203			804			Si02) HC		
化 2	含物 99		_{М-} он				232		20	201		33 (i02		vc:		
化会	物的		Ņ Ņ	182			232	2	30	230		10 (t	02	=95:	c:		
化合 301	物	O'N' ONH	i i	102						220		4 (N	D2 N	<u>=95:5</u> tOAc		3	5.7
化合约 302	(d)		-ОН	177.5	1		208 57			206		SiO	2 M	=95:5 OAc:	62.1		
化合物 303	ħ	N. N	,								<u>0.47</u>	SiO2	Et	95;5 OAc:	96.5		1.9
化合物 304	į .	o CODING	Э Н			24		247	24			(NH)	EtC	95;5 PAc:			
化合物 305	но		ОН	·		20:		03		ı	.33	(NH)	=9: EtO	5:5 Ac:	68.5		
と合物 306		HO HO				245			<u>243</u>	0.	14 (NH)	=95 CHC	13:			
							216	3		0.1	0 s	02	/leO =9:1	Н			

		, , , , , , , , , , , , , , , , , , , 		, <u>,</u>				
化合物	HCI HN N-OH					CHCI3: MeOH		·
307_		201		0,40	Si02	=9:1		
化合物 308	HO-N-II	332	330	0,08		CHCI3: MeOH		
化合物 309	OH N S	194		0,17	Si02	CHCI3: MeOH =9;1		
化合物 310	OH CONTRACTOR OF THE CONTRACTO	316	314	0.25	Si02	CHCI3: MeOH =9:1		
化合物 311	OH NO OO	344	342	0.25	Si02	CHCI3: MeOH =9:1		
化合物 312	OH SO OF SO	315		0.15		CHCI3: MeOH =9:1		
化合物 313	HA DI	286	284	0.25	Si02	CHCl3: MeOH =9:1		
化合物 314	D	290		0.38		CHCl3: MeOH =9:1		
化合物 315	OH OF CI	371	369	0,48	SiO2	CHCl3: MeOH =9:1	50.7	

	_					·														
		含物 16		\^ (J _n	~ _N -OH		44.0 46.0	1			193		0.09	SiO	Acc	(ane : OEt	97.		¥.0
•	化台31			~~°		H-72-H	- [32.0 - 33.0		19!				.51		EtO	Ac:	93.8		5
	化合	·物 8	<u>~</u>	~° ₁		N ^{Ol}	H	36.5 - 17.5	209		2	07	 0.	09	SiO	Hexa :Ac0 :=2:	Et		9,	
	化合 319	物	HA PH	0	·o^~	~	•	6.0 - 7.0	223		22	21	0.1	3	Si02	Hexa :AcO: =2:1	Et	99.9	3.8	
	化合 320	勿	HN HO	0.	~	<u>~</u>	125	.	237		23	5	0.1	1 5	Si02	Hexar :AcOE =2:1	t	2.5	1.3	
1	と合物 321		HN C	1.	<u>~</u>	~	121 122		51		249		0.30	5 (1	iO2 VH)	Ac0Et		9.9	3.7	
1k	:合物 322		<u>~</u>	~~	<u>,</u>	OI NH	Н	20	55		263		0.36	Sid	O2 H)	AcOEt				
化	合物 123	^	<u>~</u>	~~°	Q		128.0 130.0	1	9		277		.12	SiO	H:	exane			25.9	
ይ: 3	合物 24		×		NH	н	148.5 - 149.5	223		2	21					:OEt	99	1		
													 		<u>'\</u>	<u> </u>	_33		3.7	

						 				
化合物 325	Y OH NH	123.0 - 125.0	237		235	0.23	SiO2	AcOEt	106	2.6
化合物 326	CONH NH		237		235	0.35	SiO2 (NH)	AcOEt	110,8	
化合物 327	A PARTICIPATION OF THE PARTICI			237	235	0.35	SiO2 (NH)	AcOEt	110,1	
化合物 328	TO NH NH OH		233		221	0.33	SiO2 (NH)	AcOEt	121.4	
化合物 329	OH NH	127.0 - 128.0		221	219	0.33	SiO2	AcOEt	121.1	0.7
化合物 330	OH NH	122.0 - 124.0	207		205	0.33	SiO2	AcOEt	118.8	2.4
化合物 331	OH NH	139.0 - 139.5		219	217		SiO2	AcOEt		
化合物 332	NH NH	169.5 - 170.0	233	213			SiO2			3.2
化合物 333	OH NH	171.5	205		231		SiO2	AcOEt AcOEt	110.6	2.1

_																			
化。	合物 34	人	~ <u>.</u> C	NH N OH	- ''	25.0 - 26.0	221						0.23	SiO	2 Ace	DEt	105	5 3	.2
1t £	音物 35		~ <u>.</u> Q	NH NH	- 1	9.0	205).23_	SiO	2 AcC	Œt	_110	1.	4_
化台33	物 6	~	~.O	NH OH	- 1 -	2.5 5.0	207		_ 2	05	•	0	31	SiO2 (NH)	AcO	Et	<u>117.6</u>	3 3.:	2_
化合 33	物7		<u>~.O</u>	NH NH OH	135	-	19		2	17		0.	31	SiO2 (NH)	AcOl	€t	119.4	2.1	-
化合 ¹ 338	物	<u>~~</u>		OH NH	100.		21	-			219	0.3	3 (SiO2 NH)	<u>AcOE</u>	t 1	19.8	0.9	
化合物 339	to (о́н М_о́н	113.9	1	0	-	241			0.1	ı s	iO2 /	<u>AcOE</u>		88_	124.2	
化合物 340	9	<u>~~~</u>	, Chi	 I	157.5 -158						-					97	7.4	3.0	
比合物 341		>^ °		N-OH	129.5 -133	263			261			0.23	SiC	02 Ac	:OEt	10	4	1,2	
C合物 342		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O _n	N-OH	174.5 - 175.5											98,	5	5.3	

				 	,		.	,		
化合物 343	O-o-Ch-o-H	166.5 - 167.0							84,5	3.3
化合物 344	NO CHON OH	180- 180.5	244			0.12	SiO2	AcOEt	107	37.5
化合物 345	N O C N OH	159.5 -161	244			0,14	SiO2	AcOEt	101	23,1
化合物 346	~ O C N N OH	104.0 - 107.0							106,2	8.9
化合物 347	ON ON NH	80.5- 81.5	255	253		0.18	SiOs	AcOEt	105	3.7
化合物 348	STORY NH OH	128.5 - 129.5	267							
化合物 349	OH NH	152.5		265				AcOEt	103	3.4
化合物 350	OH NH	168.0		269				AcOEt	100	1.6
化合物 351	OH NH	168.5	252	250				AcOEt AcOEt	91	1.4

72

Γ-						·								
化 <u>3</u> 5	合物	NH NH	рн V	158.5 159.5	1				0.	2 6:	02 4	05:		
化合 35	i物 《礼		- 1	158.0 - 160.0	278		276				02 Ac		97	<u>4.6</u>
化合 354	物~	NH NH	- 1	13,0 - 14,0	239		237						05	3.7
化合 ⁴ 355	9 ON	NH NH	Н 14	11.0	266		264				2 AcO			3.0
化合物 356		OH NH		1.0			204				AcOl		7	5.9
化合物 357		OH NH									AcOE		2	.6
化合物 358		NH OH	138.	1		20	62		0.16	SiO2	AcOEt	98		
化合物 359	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	OH OH	139,5			27	0	. 0	.14 Si	O2 A	cOEt	103	3.1	
	~~~	OH NH	134.5	290		288		0.	2 Sic	)2 Ac	OEt	102	1.4	
七合物 360				279		277		0.2	2 Sio	2 Act	DEt			

								<del></del>			
	NH N OH	104.0									
化合物 361	\s\\o\	- 106,0	241		239		022	6:03	AcOEt	106	2.1
301	NH OH	156.0			233		0,22	3,02	·	100	2.1
化合物		-									
362	N OH	157,0	244	<del> </del>		<del> </del>	0.11	SiO2	AcOEt	106	2.1
化合物 363	OH NH	154.0 - 155.0	272		270		0,11	SiO2	AcOEt	105	0.78
化合物 364	OH NH	136.5 - 137.5	295		293		0.21	SiO2	AcOEt	104	2.0
化合物 365	Que of the second secon	143.5 145.0	287		285		0.19	SiO2	AcOEt	105	1.4
化合物 366	OH NH	188.0  189.0	272				0.09	SiO2	AcOEt	105	1.2
化合物 367	S NH	165.0 - 166.0	249				0.18	SiO2	AcOEt	103	2.1
化合物 368	OH NH	165.5 - 166.0	233						AcOEt	96	2.5
化合物 369	OH NH	146.5 - 149.0	258						AcOEt	105	3.1

		<del></del>															
化金	含物 70	0	PH OH			263	3 26	33	261	1 26	51 (	33	SiO2	AcC	)Et	113.7	
化含 37	·物	<u></u>	OI NH	93	.0- 1.0	239			237				SiO2				
化合	物2		OH NH				27		269			s	iO2			10,4	0.9
化合: 373	物	~~°~	ON NH	97.0 99.	>-				•	269		s	iO2	AcO		00.5	
化合 <b></b> 374	物(		NH NH	93.			253		251	251	0.3		(H) (O2)	<u>AcOE</u>	t 11	5,3	0.8
化合物 375	b		OF NH	н		331	331	3	29	329	0.3	Sic	H) \	AcOE	t 11	9.1	
化合物 376			OH NH				301	25	99	299	0,3	_(NI	H) A	<u>cOEt</u>	117	.7	
	Br		NH OH				336	33	3	334	0.3	SiO (NH	2 I) A	cOEt	114.	9	_
化合物 377	0		OH OH			3	36	334		334	0.3	SiO2 (NH)	Ac	OEt	107.4		
化合物 378_		<u> </u>			_	2	95	293	2	93	0,3	SiO2 (NH)	Acc	DEt	102.4		

						·			,	,	
化合物 379	OH NH			287	285	285	0.27	SiO2	AcOEt	105.4	
化合物 380	NH OH			291	289	289	0.26	SiO2 (NH)	AcOEt	118.9	
化合物 381	ON NH			285	283	283	0.27	SiO2	AcOEt	116.0	
化合物 382	OH NH	153.0 - 153,5	1	273			0.26	SiO2	AcOEt	122,5	3,1
化合物 383	OH NH			257	255	255		SiO2		116.2	
化合物 384	\$ \$\frac{1}{2} \\ \frac{1}{2} \\ \fr	167.0 - 167.5		279	277		0.27	SiO2			
化合物 385	OH NH	107.0						SiO2	AcOEt	117.3	2.8
化合物				312	310	310	0.27	SiO2	AcOEt	109.0	
386 化合物	OH NH	163.0		347	345		0.27	(NH)	AcOEt	105.2	
387	`s~	164,0	289	289			0.27	(NH)	AcOEt	97.8	0.9

(比合物 338	Γ-	<del></del>			_												
化合物 167.0 167.5 273 271 0.31 (NH) AcOEt 105.5 1.6 (NH) AcOEt 105.5 1.6 (NH) AcOEt 105.5 1.6 (NH) AcOEt 105.5 1.6 (NH) AcOEt 112.8 2.7 (NH) AcOEt 112.8 2.7 (NH) AcOEt 113.4 2.4	化 <del>(</del> 38	<b>合物</b>	) )	NH NH	)H			375	222				SiO2				
167.5   273   271   0.31   (NH)   AcOEt   105.5   1.6     1た合物   391   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4	化合	\$ 40 (i	~.O	NH N OH	16	7.0		<u> </u>	333	3,	33	0.27	(NH)	AcOE	t 96.	2	
153,5   273   271   0,31   (NH)   AcOEt   112.8   2.7     (比合物 393	38	9 0		OH N	167	7.5	-	273		27	1	0.31	SiO2 (NH)	AcOEt	105.	5 1,6	
162.0 257 255 255 0.31 (NH) AcOEt 113.4 2.4  (化合物 393	化合 390	**************************************	<b>yol</b>	OH • N	-		1	273		271	, ,	0.31	SiO2 (NH)	<u>AcOEt</u>	112.8	2.7	
化合物 392	化合4 391	h C	Y.O.	<del>о</del> н	-		2	57	255	255	0.	31 (		\c0Et	113.4	2.4	
化合物 393 146.0 268 266 266 0.26 (NH) AcOEt 109.6 2.4 (NH) 393 1.1 (化合物 394 145.0 325 303 301 0.27 (NH) AcOEt 119.9 3.9 (化合物 395 178.0 395 395 307 307 307 307 307 307 307 307 307 307	化合物 392		CO NI-	N i	-	1	26	1 2	50			Si	02				
(化合物 394	化合物		~~~	1	43.0 -			, , , ,	39		0.3			cOEt	109.6	2.4	
394	11- A 44-		NH NH	у Н			268	26	36 2	266	0.2	6 (Ni	H) Ac	OEt 1	124,3	1,1	
化合物 395 SiO2	394	<u> </u>	NH NH	14 H	5,0	325	303		3	01	<u>0.27</u>	SiO (NH	2 ) Ac(	DEt 1	19.9	3.9	
N	化合物 395		OH OH	170	.	103	303		30	11 (	0.29	SiO2 (NH)	AcO	Et 11	1.6	2.1	
化合物 396 323 301 321 299 0.29 (NH) AcOEt 102.7	化合物 396	YO			32	23	301	321	299	0	.29	SiO2 (NH)	AcOE	t 102	2.7		

			<del>,                                     </del>		,			<del>,</del>		· · · · ·	
化合物				319			0.29	SiO2	AcOEt	99,3	
	- Он						1	1	TAUOLE	1 3.3	
化合物 398	~n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		296	296	294	294	0.29	SiO2 (NH)	AcOEt	95.2	2.4
化合物	OH NH	118-						SiO2			
399		120	224	224	222	222	0.31	(NH)	AcOEt	102.3	98
化合物 400	N OH NH	115.0 - 117.0	238	238		236	0.29	SiO2	AcOEt	116,9	48.7
								1	,,,,,,,,,	110.0	
化合物 401	N NH	100.0 - 102.0	252	252	250	250-	0.29	SiO2 (NH)	AcOEt	117.4	37.6
化合物 402	NA N	95.0- 96.0	280	280	278	278	0.29	SiO2 (NH)	AcOEt	118.8	18,7
化合物 403	) NH NH	101.5	266	266	264	264	0.32	SiO2	AcOEt	110 2	20.5
化合物 404	NO ON NH	57.5- 59.0	268	268	266	266		SiO2		118.3	28.5
化合物 405	Check of the top of th		314	314	312	312		SiO2	AcOEt AcOEt	114.9	115.6

_	<del></del>												
11:	·合物 o N 406		~ _N ∕oH			359	357	357		SiO2			
化。	合物 (N)		- 1	127.5 - 129.5	264	264	262	262	0.29	SiO2	AcOEt	73.7	
1t <u>4</u>	<b>含物</b> ○ へ	√ ₀ C NH	он N 1	77.0		278	276	276	5	SiO2	AcOEt	94.3	4.9
化合 _40	; the state of the	OH OH		15.0 - 6.0					s	iO2		103.0	4.2
化合: 410	to S		155	.	30				Sid	JH) A		13.2	6.7
化合物 411		O NH	150. - 151.	-					Sio	H) Ac		17.3	1.0
化合物 412		OH NH	130.0						31 (NH SiO2	) Acc	<u>PEt 12:</u>	2.4 3	.1
化合物 413	_\$~^o	OH OH	112.0	200	260				2 (NH)	AcO	Et 119.	.4 1.5	
化合物 414	\$^0^	NH N OH	132.0		227	225	225	0.32	(NH)	<u>AcOE</u>	t 120,2	2.3	
			133.5	241	241	239	239	0.32	SiO2 (NH)	<u>lcOEt</u>	113,2	1,0	

	OH.					· · · · ·				<del></del>	,
化合物	NH NH	114- 117	264	264	262	262	0,31	SiO2		103.7	17.6
化合物 416	N NH NH	99.5- 102.5	264	264		262	0,31	SiO2	AcOEt	85,8	16.3
化合物	OH NH	146.5 -148		264				SiO2			
化合物 418	OH NH	-140	2.04		271	262	0.33	SiO2	AcOEt		90,0
化合物 419	S S S NH		200	273	271	271		SiO2	AcOEt	120.4	
化合物 420	OH NH	147-	289	289	287	287	0.33	SiO2	AcOEt	116.1	
化合物	OH NH	148,5	237	237	235	235	0.31	SiO2	AcOEt	118.6	8.0
化合物	OH NH	132.0		251	249	249	0.33	(NH) SiO2	AcOEt	113.3	3,9
化合物	S OH	132.0	263	263	261	261		(NH)	AcOEt	121.6	1.5
423	- ~ `0′ ~	134.5	263	263		261	0.35	(NH)	AcOEt	118,4	2.2

	·		01			
化合物 ~~	~~~°O"	^N он 102.0 - 103.5				1.5
化合物 _{Na} - ^O - 425		>300 >300				3.0
化合物 9 426		101.5 - 104.0				5,1
化合物 427 HO^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	109.5				2.6
化合物 N 428	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	144.5				51.5
t合物 (N ⁽⁾ 429	OH	160.5		-   .		79.1
合物 430 N	О Н _ N - ОН					7.4
合物 () (		115.0	-			47.7
計物 () () ()	Vo C N. OH 1	16.5 17.5				19.5

							<del></del>				
化合物_433	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	125.0 - 127,0									1,5
100		127.0		1	1				<del> </del>	<del>                                     </del>	1,3
化合物 434	Na OLLO OLL NO H	>300									3.2
	<u></u>										
化合物	Lovo Chino.H	133.0									
435	8	134,5	<u> </u>	ļ	<u> </u>	ļ <u>.</u>	<u> </u>	<del> </del>			2.2
化合物 436	HO OH	140.5 - 141.0									70.0
,,,,,	QН	171.0	<u> </u>	<u> </u>		<u> </u>	1	$\vdash$			79.2
化合物	OH NH			293	291	291	0.33	SiO2 (NH)	AcOEt	96.1	
化合物 438	OH NH			251	249	249	0.36	SiO2 (NH)	AcOEt	87,9	
化合物 439	Va NH	144.1 - 144.2		211	209	209	0.36	SiO2	AcOEt	92.3	2.9
化合物 440	OH NH			255		253			AcOEt	102.8	
· 化合物 441	OH N NH	166		259	257	257		SiO2	AcOEt	94.2	

	<del></del>	<del></del>			,								
化合 442	物	OH OH				225	223	223	0.36	SiO2	AcOEt	95.7	
化合 ⁴	b ↓_s	OH OH				239	237	237		SiO2		103.0	
化合物 444	но у	NH OH	12	1.0		213	211	211		SiO2		100.7	
化合物 445	_h	ANH OH	112	2.0	2	40 :	238	238	s	iO2 NH) A		95.1	12.1
化合物 446	~\s\	OH NH		.	24	1	2	39 (	Si	02 H) Ac		5.9	
化合物	$Q_sQ$	OH OH			237	23	15 23	35 O	Sic 36 (NH	02			
化合物 448	CT's C	NH N OH	125.0 126,5		249	247	7 24		SiO:				
比合物 449	J _s ()	1	119.0 - 120,5		_225	223			SiO2	,			.9
合物 450		oh oh					-23	0.38	3 (NH)	LAcOE	t 105.1	1 1.	3

			04							
化合物	OH NH		253	251	251	0.41	SiO2 (NH)	AcOEt	97.6	
化合物 452	OH NH		267	265	265	0.41	SiO2 (NH)	AcOEt	112.3	,
化合物 453			295	293	293	0.44	SiO2 (NH)	AcOEt	95.3	
化合物	OH N NH		268	266	266	0.26	SiO2 (NH)	AcOEt	105.8	
化合物 455	0, 0, 2, 0		255		253	0.28	SiO2 (NH)	AcOEt	105.6	
化合物 456	Y _S OH	143.0 - 145.0	225	223	223	0.33	SiO2 (NH)	AcOEt	94.4	6.3
化合物 457	OH NH		269	267	_267	0.33	SiO2 (NH)	AcOEt	112.6	
化合物 458	ON SUPPLIES		 273	271	271	0.36	SiO2 (NH)	AcOEt	116,0	
化合物 459	HO S NH	108- 108.5	227	225	225	0.10	SiO2 (NH)	AcOEt	119.0	2.4

* SiO2(NH): Merck pre-coated plates Silica gel 60 F254, SiO2(NH)(NH): TLC2'L-INH Fuji Silysia Chemical LTI





表 1 記載の化合物について、20-HETE産生阻害作用を試験した。本試験はJ. Pharmacol. Exp. Ther., 第268巻, 474頁(1994)に記載の方法に準拠して行った。

50mMの3-モルホリノプロパンスルホン酸(pH7.4)、5mMの塩化マグネシウム及び1mMのエチレンジアミンテトラアセティックアシド ジソディウムソルト (EDTA) を含む組成の緩衝液に、試験対象化合物を加えた。

その後、酵素としてラット腎ミクロソーム(自然発症高血圧ラット(オス、6 週齢)の腎臓から調製したミクロソーム画分)を、基質として[5,6,8,9,11,12,1 4,15]トリチウム-アラキドン酸(アマシャム社製)を、及び補酵素としてNAD PH(シグマ社製)を添加し37度で1.5時間反応させた。

反応後にギ酸を添加して反応を停止させ、 更にアセトニトリル (終濃度 5 0%) を加えて1時間30分室温で放置した。

20-HETEの産生酵素活性は、C18逆相カラム(バイオシルC18, バイオラッド社製)を装着した放射性物質検出器付き高速液体クロマトグラフィー(ギルソン社製)により測定した。

試験対象化合物の無添加時における20-HETEの生成量を100%とし、 化合物添加時の生成量が50%阻害される化合物濃度又は化合物を1μM添加し た時の阻害率を表1に併せて示す。

表1より、本発明の化合物は、20-HETE産生阻害効果を有することが確認された。

## 産業上の利用可能性

本発明に係る一般式(1)で表される化合物又はその製薬学的に許容される塩は、20-HETE産生阻害剤として有用である。したがって、これらは医薬として、特にヒト及び動物において20-HETEが関わる疾病、例えば各種の腎疾患、脳血管疾患、循環器疾患治療薬として有用である。

そして、一般式 (1) で表される化合物又はその製薬学的に許容される塩のうち、ベンゼン環上のヒドロキシホルムアミジノ部分に対してパラ位に非水素原子置換基を有するものが特に好ましい。



なお、請求項5以下に規定される化合物又はその製薬学的に許容される塩は、 新規な化合物であり、それ自体有用であると共に上記効果にも優れたものである。

#### 請求の範囲

#### 1. 式

〔式中、R'~R'は、

同一又は相異なって、水素原子;水酸基;カルボキシル基;ハロゲン原子; C 1-14アルキル基;1~6個のハロゲン原子で置換されたC1-14アルキル基;C2 -6アルケニル基;C1-6アルコキシC1-6アルキル基、;C3-8シクロアルキルC1 -6アルキル基;C2-6アルキニル基;C3-8シクロアルキル基;C3-8シクロアル コキシ基;C 2-10アルカノイル基;C 1-6ヒドロキシアルキル基; 1 ~ 6 個のハ ロゲン原子で置換されたC1-6ヒドロキシアルキル基; C2-6アルコキシカルボ ニル基;3-フェニル-2-プロペニルオキシカルボニル基;C2-6アルコキシ カルボニルC1-6アルキル基;ジC1-6アルキルアミノC2-6アルコキシカルボニ ル基;モノ又はジーC1-6アルキルアミノ基;C2-10アルカノイルアミノ基;C 1-6アルキル基で置換された C2-6アルカノイルアミノ基;ベンソイルアミノ基 ;カルバモイル基;C1-6アルキル基又はフェニル基でモノ又はジ置換されたカ ルバモイル基;N-(N', N'-ジC1-6アルキルアミノC1-6アルキル)カル バモイル基;シアノ基;シアノС1-6アルキル基;ニトロ基;チオール基;フェ ノキシ基;C1-6アルキル基、C1-6アルコキシ基及びハロゲン原子からなる群 から選択される1~3個で置換されたフェノキシ基;フェニルチオ基;ニトロフ ェニルチオ基; C1-6アルキルスルホニル基; フェニルスルホニル基; C1-6ア ルキルチオC1-6アルキル基;ベンゼン環が1~5個のハロゲン原子で置換され たフェニルスルホニルC1-6アルキルチオ基;フェニル基;ベンジル基;シアノ 基、ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選 択される $1 \sim 3$ 個で置換されたフェニル基;ビフェニル基; $\alpha$ ーシアノベンジル



基;1~5個のハロゲン原子で置換されたαーシアノベンジル基;ビシクロ [2. 2. 1] -ヘプター5-エンー2、3-ジカルボキシイミジル基で置換されたべ ンジル基:ベンゾイル基:スチリル基;C1-6アルコキシ基及びジC1-6アルキ ルアミノアルキル基からなる群から選択される1~5個で置換されたスチリル基 ;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基; С1-6アルキル基及びС1-6アルコキシ基からなる群から選択される1~3個で 置換されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置 換されたフタルイミドイル基:N-カルバソリル基:1~3個のCュ-。アルキル 基で置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3 個のC1-6アルキル基で置換されたフェニルスルホニルアミノ基; C1-6アルキ ルアミノスルホニルC1-6アルキル基;チアジアゾリル基;オキサジアソリル基 ;ハロゲン原子、Cュー。アルキル基及びCュー。アルコキシ基からなる群から選択 される1~3個で置換されたフェニル基で置換されたオキサジアソリル基:ピロ リジニル基:ピラゾリル基:ハロゲン原子、C1-6アルキル基及びトリフルオロ メチル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル 基;ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からな る群から選択される1~3個で置換されたフリル基;チエノピリミジニルチオ基 ;1~3個のC1-6アルキル基で置換されたチエノピリミジニルチオ基:チエノ ピリジルチオ基;1~3個のC1-6アルキル基で置換されたチエノピリジルチオ 基:ベンソチアソリルチオ基、1~3個のハロゲン原子で置換されたベンソチア ゾリルチオ基;式-Y-(CR⁶¹R⁶²)_n-(CR⁶³R⁶⁴)_n-R⁷[式中、Yは酸素原 子又は硫黄原子であり:R 61、R 62、R 63及びR 64は同一又は相異なって、水素 原子、ハロゲン原子、C1-4アルキル基又はトリフルオロメチル基であり:R⁷ は水素原子;ハロゲン原子; C1-14アルキル基; C3-8シクロアルキル基; C2-10アルケニル基; C 2-6アルキニル基; フェニル基; ニトロ基、シアノ基、C1εアルキル基、С1-εアルコキシ基、С1-εアルキルチオ基、フェニル基、フェノ キシ基、フェネチル基、C2-6アルコキシカルボニル基及びハロゲン原子からなる 群から選択される1~3個で置換されたフェニル基;シアノ基;カルボキシル基 ; C1-6アルコキシ基; C1-6ヒドロキシアルキル基; C3-8シクロアルコキシ基



;  $C_{1-6}$ アルコキシ $C_{1-6}$ アルコキシ基; $C_{1-6}$ アルコキシ $C_{1-6}$ ア ルコキシ基; C1-6アルキルチオ基; C2-6アルカノイルオキシ基; C2-6アルカ ノイルオキシC1-6アルキル基;フェノキシ基;フェニルチオ基;NーC1-6ア ルキルトルイジノ基;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基 ; C1-6アルキル基で置換されたピリジル基; C1-6アルキル基で置換されたピ ペリジノ基; C1-6アルコキシ基で置換されたピリジル基; C1-6アルキル基で置 換されたピロリジノ基;C1-6アルキル基で置換されたモルホリノ基;モルホリニ ル基;C1-6アルキル基で置換されたモルホリニル基;ホモモルホリニル基;チオ モルホリノ基; C1-6アルキル基で置換されたチオモルホリノ基; チオモルホリニ ル基; C1-6アルキル基で置換されたチオモルホリニル基; ピペラジニル基; 4位 がC1-6アルキル基で置換されたピペラジン-1-イル基;ホモピペリジニル基; C1-6アルキル基で置換されたホモピペリジニル基;ピリジルチオ基;キノリル基 ;フリル基;オキセタニル基;オキソラニル基;ジオキソラニル基;C1-6アルキ ル基で置換されたジオキソラニル基;オキサニル基;ジオキサニル基;C1-6アル キル基で置換されたジオキサニル基;ベンゾジオキサニル基;ピロリドンー1-イル基;ピロリジニル基; N-C1-8アルキルピロリジニル基;ピペリジニル基 ; N-C1-6アルキルピペリジニル基;ピロリル基;チエニル基;チアゾリル基 ; 1~3個のC1-6アルキル基で置換されたチアソリル基; C1-6アルキル基で 置換された2, 6-プリンジオンー7-イル基;フルフリル基;ジC1-6アルキ ルアミノ基;C2-6アルコキシカルボニル基;又はジC1-6アルキルアミノC1-6 アルコキシ基であり:mは1~6の整数:及びnは0~6の整数である]で示さ れる基;又は、式-SO2NR®R®[式中、R®びR®は、同一又は相異なって、 水素原子、C1-10アルキル基、C2-6アルカノイル基、イソオキサゾリル基、1 ~3個のC1-6アルキル基で置換されたイソオキサゾリル基、チアジアゾリル基、 1~3個のC1-6アルキル基で置換されたチアジアソリル基、チアソリル基、1 ~3個のC1-6アルキル基で置換されたチアソリル基、ピリジル基、1~3個のC 1-6アルキル基で置換されたピリジル基、ピリミジニル基、1~3個のC1-6ア ルキル基で置換されたピリミジニル基、1~3個のC1-6アルコキシ基で置換さ れたピリミジニル基、ピリダジニル基、1~3個のC1-6アルコキシ基で置換さ



れたピリダジニル基、インダソリル基又はC₁₋₆アルキル基でモノ又はジ置換されたカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに3,5-ジオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であるか、

或いは、R¹~R⁵のうち、隣り合ういずれかの2つはベンゼン環とともに、フ タルイミド環; C 1-6アルキル基で置換されたフタルイミド環; インドール環; インダン環;インダゾール環;ベンゾトリアソール環; S, S - ジオキソベンソチ オフェン環;2,3-ジヒドロイミダゾ[2,1-b]ベンゾチアゾール環:ジベン プフラン環; C1-6アルコキシ基で置換されたジベンプフラン環: フルオレン環 :ハロゲン原子で置換されたフルオレン環:ピレン環;カルボスチリル環:C1 -6アルキル基で置換されたカルボスチリル環;ナフタレン環;シアノ基、ハロ ゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で 置換されたナフタレン環;1,2,3,4-テトラヒドロナフタレン環;キノリン環  $;C_{1-6}$ アルキル基で置換されたキノリン環; 17 : イソキノリン環; 27 - オキソー $\alpha$ ークロメン環:C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1- $_{6}$ アルキル基からなる群から選択される $1 \sim 3$ 個で置換された2 -オキソ $- \alpha -$ クロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタ ラジンジオン環:ベンゾチアゾール環;C1-6アルキル基で置換されたベンゾチ アゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する〕で表 されるヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効 成分とする20-ヒドロキシエイコサテトラエン酸産生阻害剤。

2.  $R^1 \sim R^6 \mathring{n}$ 、同一又は相異なって、水素原子;水酸基;カルボキシル基;  $n = n \mathring{n} / n \mathring{n}$  の  $n \mathring{n}$  の n



ル基;モノ又はジーC1-6アルキルアミノ基;C2-10アルカノイルアミノ基;C 1-6アルキル基で置換されたC₂-6アルカノイルアミノ基;ベンゾイルアミノ基 ;カルバモイル基;C1-6アルキル基又はフェニル基でモノ又はジ置換されたカ ルバモイル基; $N-(N', N'-ジC_{1-6}$ アルキルアミノ $C_{1-6}$ アルキル)カル バモイル基;シアノ基;シアノС1-6アルキル基;ニトロ基;チオール基;フェ ノキシ基;C1-6アルキル基、C1-6アルコキシ基及びハロゲン原子からなる群 から選択される1~3個で置換されたフェノキシ基;フェニルチオ基;ニトロフ ェニルチオ基;C1-6アルキルスルホニル基;フェニルスルホニル基;C1-6ア ルキルチオC1-6アルキル基;ベンゼン環が1~5個のハロゲン原子で置換され たフェニルスルホニルC1-6アルキルチオ基;フェニル基;ベンジル基;シアノ 基、ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選 択される1~3個で置換されたフェニル基;ビフェニル基;αーシアノベンジル 基; $1\sim5$ 個のハロゲン原子で置換された $\alpha$ ーシアノベンジル基;ビシクロ [2. 2. 1] -ヘプター5-エンー2, 3-ジカルボキシイミジル基で置換されたべ ンジル基;ベンソイル基;スチリル基;C1-6アルコキシ基及びジC1-6アルキ ルアミノアルキル基からなる群から選択される1~5個で置換されたスチリル基 ;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基; C1-6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で 置換されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置 換されたフタルイミドイル基; N-カルバソリル基; 1~3個のC1-6アルキル 基で置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3 個のC1-6アルキル基で置換されたフェニルスルホニルアミノ基; C1-6アルキ ルアミノスルホニルC1-6アルキル基;チアジアソリル基;オキサジアソリル基 ;ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択 される1~3個で置換されたフェニル基で置換されたオキサジアゾリル基;ピロ リジニル基;ピラゾリル基;ハロゲン原子、C 1-6アルキル基及びトリフルオロ メチル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル 基;ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からな る群から選択される1~3個で置換されたフリル基;チエノピリミジニルチオ基



;1~3個のCュー。アルキル基で置換されたチエノピリミジニルチオ基:チエノ ピリジルチオ基;1~3個のCュー。アルキル基で置換されたチエノピリジルチオ 基;ベンソチアソリルチオ基、1~3個のハロゲン原子で置換されたベンソチア ゾリルチオ基;又は、式-Y-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷[式中、Yは 酸素原子又は硫黄原子であり: R *1、R *2、R *3及びR *4は同一又は相異なって、 水素原子、ハロゲン原子、C1-4アルキル基又はトリフルオロメチル基であり: R¹は水素原子;ハロゲン原子; C₁₋₁₄アルキル基; C₃₋₈シクロアルキル基; C2-10アルケニル基; C2-6アルキニル基; フェニル基; ニトロ基、シアノ基、 C1-8アルキル基、C1-6アルコキシ基、C1-6アルキルチオ基、フェニル基、フ ェノキシ基、フェネチル基、C2-6アルコキシカルボニル基及びハロゲン原子から なる群から選択される1~3個で置換されたフェニル基;シアノ基:カルボキシ ル基;C1-6アルコキシ基;C1-6ヒドロキシアルキル基:C3-8シクロアルコキ シ基; С1-6アルコキシС1-6アルコキシ基; С1-6アルコキシС1-6アルコキシC 1-6アルコキシ基; C1-6アルキルチオ基; C2-6アルカノイルオキシ基; C2-6 アルカノイルオキシC1-6アルキル基;フェノキシ基;フェニルチオ基; N-C1 -6アルキルトルイジノ基;ピロリジノ基;ピペリジノ基;モルホリノ基;ピリ ジル基; C1-6アルキル基で置換されたピリジル基; C1-6アルキル基で置換さ れたピペリジノ基;C1-6アルコキシ基で置換されたピリジル基;C1-6アルキル 基で置換されたピロリジノ基;C1-6アルキル基で置換されたモルホリノ基;モル ホリニル基; C1-6アルキル基で置換されたモルホリニル基; ホモモルホリニル基 ;チオモルホリノ基;C1-6アルキル基で置換されたチオモルホリノ基;チオモル ホリニル基; C1-6アルキル基で置換されたチオモルホリニル基; ピペラジニル基 ; 4位がC1-6アルキル基で置換されたピペラジン-1-イル基;ホモピペリジニ ル基; C1-6アルキル基で置換されたホモピペリジニル基; ピリジルチオ基; キノ リル基;フリル基;オキセタニル基;オキソラニル基;ジオキソラニル基;С1-6アルキル基で置換されたジオキソラニル基;オキサニル基;ジオキサニル基; C 1-6アルキル基で置換されたジオキサニル基;ベンソジオキサニル基;ピロリドン -1-イル基;ピロリジニル基; N-C1-6アルキルピロリジニル基;ピペリジ ニル基; N-C1-6アルキルピペリジニル基; ピロリル基; チエニル基; チアソ



リル基;  $1 \sim 3$ 個の $C_{1-6}$ アルキル基で置換されたチアソリル基;  $C_{1-6}$ アルキル基で置換された 2,  $6-プリンジオン-7-イル基; フルフリル基; ジ<math>C_{1-6}$ アルキルアミノ基;  $C_{2-6}$ アルコキシカルボニル基; 又はジ $C_{1-6}$ アルキルアミノ  $C_{1-6}$ アルコキシ基であり: mは  $1 \sim 6$  の整数: 及びnは  $0 \sim 6$  の整数である] で示される基である、請求の範囲第 1 項記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効成分とする 20-ヒドロキシエイコサテトラエン酸産生阻害剤。

- 3. R¹、R²、R⁴及びR⁵が水素原子である、請求の範囲第2項記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効成分とする20-ヒドロキシエイコサテトラエン酸産生阻害剤。
- 4. 腎疾患、脳血管疾患又は循環器疾患治療薬である、請求の範囲第1~3項のいずれか1項に記載の20-ヒドロキシエイコサテトラエン酸産生阻害剤。

#### 5. 式

[式中、 $R^{11}\sim R^{66}$ は、その少なくとも1つが、 $C_{6-14}$ アルキル基; $C_{2-6}$ アルケニル基; $C_{3-8}$ シクロアルキル $C_{1-6}$ アルキル基; $C_{2-6}$ アルキニル基; $C_{3-8}$ シクロアルキル基; $C_{3-8}$ シクロアルコキシ基; $C_{2-10}$ アルカノイル基; $C_{1-6}$  ヒドロキシアルキル基; $1\sim 6$  個のハロゲン原子で置換された $C_{1-6}$ ヒドロキシアルキル基; $C_{2-6}$ アルコキシカルボニル基;3-7ェニルー2-7ロペニルオキシカルボニル基; $C_{2-6}$ アルコキシカルボニル $C_{1-6}$ アルキル基;ジ $C_{1-6}$ アルキルアミノ $C_{2-6}$ アルコキシカルボニル基;モノ又はジー $C_{1-6}$ アルキルアミノ基; $C_{2-10}$ アルカノイルアミノ基; $C_{1-6}$ アルキル基で置換された $C_{2-6}$ アルカ



ノイルアミノ基;ベンソイルアミノ基;カルバモイル基;C1-6アルキル基又は フェニル基でモノ又はジ置換されたカルバモイル基; N-(N', N'-ジC:-。アルキルアミノC1-。アルキル)カルバモイル基;シアノ基;シアノC1-。アル キル基;C1-6アルキルスルホニル基;フェニルスルホニル基;C1-6アルキル チオC1-6アルキル基:ベンゼン環が1~5個のハロゲン原子で置換されたフェ ニルスルホニルC1-6アルキルチオ基;フェニル基;ベンジル基;シアノ基、ハ ロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択され る1~3個で置換されたフェニル基;ビフェニル基;αーシアノベンジル基;1  $\sim 5$  個のハロゲン原子で置換された $\alpha$  -シアノベンジル基; ビシクロ [2.2. 1] -ヘプタ-5-エン-2, 3-ジカルボキシイミジル基で置換されたベンジ ル基;ベンゾイル基;スチリル基;C1-6アルコキシ基及びジC1-6アルキルア ミノアルキル基からなる群から選択される1~5個で置換されたスチリル基;ピ ロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基;C, -6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換 されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置換さ れたフタルイミドイル基; N-カルバソリル基; 1~3個のC1-6アルキル基で 置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3個の C1-6アルキル基で置換されたフェニルスルホニルアミノ基; C1-6アルキルア ミノスルホニルC1-6アルキル基;チアジアソリル基;オキサジアソリル基;ハ ロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択され る1~3個で置換されたフェニル基で置換されたオキサジアソリル基;ピロリジ ニル基;ピラソリル基;ハロゲン原子、C1-6アルキル基及びトリフルオロメチ ル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル基; ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からなる群 から選択される1~3個で置換されたフリル基;チエノピリミジニルチオ基;1 ~3個のC1-6アルキル基で置換されたチエノピリミジニルチオ基;チエノピリジ ルチオ基;1~3個のC1-6アルキル基で置換されたチエノピリジルチオ基;ベン ソチアソリルチオ基、1~3個のハロゲン原子で置換されたベンソチアソリルチ 才基;式-Y-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷⁷[式中、Yは酸素原子又は

WO 01/3216



95 硫黄原子であり:R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なって、水素原子、 ハロゲン原子、C1-4アルキル基又はトリフルオロメチル基であり:R''はハロ ゲン原子; C4-14アルキル基; C3-8シクロアルキル基; C2-10アルケニル基; C2-6アルキニル基;フェニル基;ニトロ基、シアノ基、C1-6アルキル基、C1 -6アルコキシ基、C1-6アルキルチオ基、フェニル基、フェノキシ基、フェネチ ル基、C₂-。アルコキシカルボニル基及びハロゲン原子からなる群から選択される 1~3個で置換されたフェニル基;シアノ基;カルボキシル基;C1-6アルコキ シ基; C1-6ヒドロキシアルキル基; C3-8シクロアルコキシ基; C1-6アルコキシ  $C_{1-6}$ アルコキシ基; $C_{1-6}$ アルコキシ $C_{1-6}$ アルコキシ $E_{1-6}$ アルコキシ基; $C_{1}$ -6アルキルチオ基; C2-6アルカノイルオキシ基; フェノキシ基; フェニルチオ 基;N-C1-6アルキルトルイジノ基;ピロリジノ基;ピペリジノ基;モルホリ ノ基;ピリジル基;C1-6アルキル基で置換されたピリジル基;C1-6アルキル 基で置換されたピペリジノ基; C1-6アルコキシ基で置換されたピリジル基; C1 -6アルキル基で置換されたピロリジノ基;C1-6アルキル基で置換されたモルホリ ノ基;モルホリニル基;C1-6アルキル基で置換されたモルホリニル基;ホモモル ホリニル基;チオモルホリノ基;C1-6アルキル基で置換されたチオモルホリノ基 ;チオモルホリニル基; C1-6アルキル基で置換されたチオモルホリニル基;ピペ ラジニル基;4位がC1-6アルキル基で置換されたピペラジン-1-イル基;ホモ ピペリジニル基;C1-6アルキル基で置換されたホモピペリジニル基;ピリジルチ オ基;キノリル基;フリル基;オキセタニル基;オキソラニル基;ジオキソラニ ル基; C1-6アルキル基で置換されたジオキソラニル基;オキサニル基;ジオキ サニル基; С1-6アルキル基で置換されたジオキサニル基; ベンソジオキサニル基 ; ピロリドン-1-イル基; ピロリジニル基; N-C1-6アルキルピロリジニル 基;ピペリジニル基;N-C1-6アルキルピペリジニル基;ピロリル基;チエニ ル基;チアソリル基;1~3個のC1-6アルキル基で置換されたチアソリル基; 少なくともC1-6アルキル基で置換された2,6-プリンジオン-7-イル基;フ ルフリル基;ジC1-6アルキルアミノ基;C2-6アルコキシカルボニル基;又は ジC1-6アルキルアミノC1-6アルコキシ基であり:mは1~6の整数:及びn は0~6の整数である]で示される基;又は、式-SO2NR®R®[式中、R®び



R°は、同一又は相異なって、水素原子、C1-10アルキル基、C2-6アルカノイル基、イソオキサソリル基、1~3個のC1-6アルキル基で置換されたイソオキサソリル基、チアジアソリル基、1~3個のC1-6アルキル基で置換されたチアジアソリル基、チアゾリル基、1~3個のC1-6アルキル基で置換されたチアソリル基、ピリジル基、1~3個のC1-6アルキル基で置換されたピリジル基、ピリジル基、ピリジル基、1~3個のC1-6アルキル基で置換されたピリミジニル基、1~3個のC1-6アルコキシ基で置換されたピリミジニル基、ピリグジニル基、1~3個のC1-6アルコキシ基で置換されたピリミジニル基、ピリグジニル基、1~3個のC1-6アルコキシ基で置換されたピリダジニル基、イングソリル基又はC1-6アルキル基でモノ又はジ置換されたカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに3,5-ジオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であるか、

或いは、R¹¹~R⁵⁶のうち、隣り合ういずれかの2つはベンゼン環とともに、 フタルイミド環; C1-6アルキル基で置換されたフタルイミド環; インドール環 ; インダン環; インダゾール環; ベンゾトリアゾール環; S, S - ジオキソベンソ チオフェン環; 2,3ージヒドロイミダゾ[2,1-b]ベンゾチアソール環;ジベ ンソフラン環;C1-6アルコキシ基で置換されたジベンソフラン環;フルオレン 環;ハロゲン原子で置換されたフルオレン環;ピレン環;カルボスチリル環;C 1-6アルキル基で置換されたカルボスチリル環;ナフタレン環;シアノ基、ハロ ゲン原子、ニトロ基及びC1-6アルキル基からなる群から選択される1~3個で 置換されたナフタレン環;1,2,3,4-テトラヒドロナフタレン環;キノリン環 ;  $C_{1-6}$ アルキル基で置換されたキノリン環; イソキノリン環;  $2-オキソ-\alpha$ ークロメン環;C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1- $_6$ アルキル基からなる群から選択される $1\sim3$ 個で置換された2-オキソー $_{lpha}$ ー クロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタ ラジンジオン環;ベンゾチアゾール環;C1-6アルキル基で置換されたベンゾチ アゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する基であ り、且つ、他のR¹¹~R⁵⁵は、同一又は相異なって、水素原子、C₁₋₄アルキル基、 C1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子である] で表されるヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩。



6. R¹¹~R⁵⁶の少なくとも1つが、C₅₋₁₄アルキル基;C₃-εシクロアルコキ シ基; C2-6アルキニル基; C3-8シクロアルキル基; C2-10アルカノイル基;  $C_{1-6}$ ヒドロキシアルキル基; $1\sim6$ 個のハロゲン原子で置換された $C_{1-6}$ ヒド ロキシアルキル基; C₂₋₆アルコキシカルボニル基; 3-フェニル-2-プロペ ニルオキシカルボニル基; C2-6アルコキシカルボニルC1-6アルキル基; ジC1 -6アルキルアミノC2-6アルコキシカルボニル基;モノ又はジーC1-6アルキル アミノ基; C 2-10アルカノイルアミノ基; C 1-6アルキル基で置換された C 2-6 アルカノイルアミノ基;ベンソイルアミノ基;カルバモイル基;C1-6アルキル 基又はフェニル基でモノ又はジ置換されたカルバモイル基; N-(N', N'-ジ С1-6アルキルアミノС1-6アルキル)カルバモイル基;シアノ基;シアノС1-6 アルキル基; C1-6アルキルスルホニル基; フェニルスルホニル基; C1-6アル キルチオC1-6アルキル基;ベンゼン環が1~5個のハロゲン原子で置換された フェニルスルホニルC1-6アルキルチオ基;フェニル基;ベンジル基;シアノ基、 ハロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択さ れる $1 \sim 3$ 個で置換されたフェニル基;ビフェニル基; $\alpha$ ーシアノベンジル基;  $1 \sim 5$  個のハロゲン原子で置換された $\alpha$  - シアノベンジル基; ビシクロ [2. 2. 1] -ヘプター5-エンー2, 3-ジカルボキシイミジル基で置換されたベンジ ル基;ベンゾイル基;スチリル基;C1-6アルコキシ基及びジC1-6アルキルア ミノアルキル基からなる群から選択される1~5個で置換されたスチリル基;ピ ロリジノ基;ピペリジノ基;モルホリノ基;ピリジル基;ピリミジニル基;Cı -6アルキル基及びC1-6アルコキシ基からなる群から選択される1~3個で置換 されたピリミジニル基;フタルイミドイル基;1~3個のハロゲン原子で置換さ れたフタルイミドイル基; N-カルバソリル基; 1~3個のC1-6アルキル基で 置換されたジオキソピペリジニル基;フェニルスルホニルアミノ基;1~3個の C1-6アルキル基で置換されたフェニルスルホニルアミノ基; C1-6アルキルア ミノスルホニルC1-6アルキル基;チアジアソリル基;オキサジアソリル基;ハ ロゲン原子、C1-6アルキル基及びC1-6アルコキシ基からなる群から選択され る1~3個で置換されたフェニル基で置換されたオキサジアゾリル基;ピロリジ



ニル基;ピラゾリル基;ハロゲン原子、Cュー。アルキル基及びトリフルオロメチ ル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル基: ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からなる群 から選択される1~3個で置換されたフリル基、チエノピリミジニルチオ基:1 ~3個のC1-6アルキル基で置換されたチエノピリミジニルチオ基;チエノピリジ ルチオ基;1~3個のC1-6アルキル基で置換されたチエノピリジルチオ基:ベン **ゾチアゾリルチオ基、1~3個のハロゲン原子で置換されたベンゾチアゾリルチ** オ基又は、式-SO₂NR[®]R[®][式中、R[®]びR[®]は、同一又は相異なって、水素 原子、C1-10アルキル基、C2-6アルカノイル基、イソオキサソリル基、1~3 個のCュー。アルキル基で置換されたイソオキサソリル基、チアジアソリル基、1 ~3個のC1-6アルキル基で置換されたチアジアソリル基、チアソリル基、1~ 3個のC1-6アルキル基で置換されたチアソリル基、ピリジル基、1~3個のC1 -6アルキル基で置換されたピリジル基、ピリミジニル基、1~3個のC1-6アル キル基で置換されたピリミジニル基、1~3個のC1-6アルコキシ基で置換され たピリミジニル基、ピリダジニル基、1~3個のC1-6アルコキシ基で置換され たピリダジニル基、インダゾリル基又はC1-6アルキル基でモノ又はジ置換され たカルバモイル基であるか、或いは、一緒になって隣接する窒素原子とともに3. 5ージオキソピペラジノ基、ピロリジニル基、ピペリジノ基、モルホリノ基を形 成する基である]で示される基であるか、

WO 01/321@



ークロメン環;C1-6アルキル基、C1-6アルコキシ基及びC1-6アルコキシC1-6アルキル基からなる群から選択される1~3個で置換された2ーオキソーαークロメン環;シンノリン環;C1-6アルキル基で置換されたシンノリン環;フタラジンジオン環;ベンゾチアゾール環;C1-6アルキル基で置換されたベンソチアゾール環;ベンゾジオキソラン環;ベンゾブチロラクトン環を形成する基であり、且つ、他のR¹¹~R⁵⁵は、同一又は相異なって、水素原子、C1-4アルキル基、C1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子である請求の範囲第5項に記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩。

7. R ¹¹~R ⁵⁵の少なくとも1つが、C ₅-14アルキル基;C ₂-6アルキニル基; C s-sシクロアルキル基; C s-sシクロアルコキシ基; C z-10アルカノイル基;  $C_{1-6}$ ヒドロキシアルキル基; $1\sim6$ 個のハロゲン原子で置換された $C_{1-6}$ ヒド ロキシアルキル基; C₂₋₆アルコキシカルボニル基; 3-フェニル-2-プロペ ニルオキシカルボニル基; C2-6アルコキシカルボニルC1-6アルキル基; ジC1 -6アルキルアミノC2-6アルコキシカルボニル基;モノ又はジーC1-6アルキル アミノ基;C2-10アルカノイルアミノ基;C1-6アルキル基で置換されたC2-6 アルカノイルアミノ基;カルバモイル基;C1-6アルキル基又はフェニル基でモ ノ又はジ置換されたカルパモイル基;N-(N', N'-ジC1-6アルキルアミ ノC1-6アルキル)カルバモイル基;シアノ基;シアノC1-6アルキル基;C1-6 アルキルスルホニル基;フェニルスルホニル基;C1-6アルキルチオC1-6アル キル基;フェニル基;ベンジル基;シアノ基、ハロゲン原子、C1-6アルキル基 及びC1-6アルコキシ基からなる群から選択される1~3個で置換されたフェニ ル基;ビフェニル基;αーシアノベンジル基;1~5個のハロゲン原子で置換さ れたαーシアノベンジル基;ベンゾイル基;ピロリジノ基;ピペリジノ基;モル ホリノ基;ピリジル基;ピリミジニル基;C1-6アルキル基及びC1-6アルコキ シ基からなる群から選択される1~3個で置換されたピリミジニル基;ピロリジ ニル基;ピラゾリル基;ハロゲン原子、C1-6アルキル基及びトリフルオロメチ ル基からなる群から選択される1~3個で置換されたピラゾリル基;フリル基;



ハロゲン原子、C1-6アルキル基及びC2-6アルコキシカルボニル基からなる群 から選択される1~3個で置換されたフリル基;又は、式-SO2NR®R®[式 中、R゚びR゚は、同一又は相異なって、水素原子、C1-10アルキル基、C2-6ア ルカノイル基、イソオキサゾリル基、1~3個のC1-6アルキル基で置換された イソオキサゾリル基、チアジアゾリル基、1~3個のC1-6アルキル基で置換さ れたチアジアゾリル基、チアゾリル基、1~3個のアルキル基で置換されたチア ゾリル基、ピリジル基、1~3個のC1-8アルキル基で置換されたピリジル基、 ピリミジニル基、1~3個のC1-8アルキル基で置換されたピリミジニル基、1 ~3個のCュー。アルコキシ基で置換されたピリミジニル基、ピリダジニル基、1 ~3個のC1-6アルコキシ基で置換されたピリダジニル基、インダソリル基又は С1-6アルキル基でモノ又はジ置換されたカルバモイル基であるか、或いは、一 緒になって隣接する窒素原子とともに 3,5 –ジオキソピペラジノ基、ピロリジニ ル基、ピペリジノ基、モルホリノ基を形成する基である]で示される基であり、 且つ、他のR¹¹~R⁵⁶は、同一又は相異なって、水素原子、C₁₋₄アルキル基、C 1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子である]で 表される請求の範囲第6項に記載のヒドロキシホルムアミジン誘導体又はその製 薬学的に許容される塩。

8.  $R^{11} \sim R^{55}$ の少なくとも1つが、式 $-Y-(CR^{61}R^{62})_m-(CR^{63}R^{64})_n-R^{77}$  [式中、Yは酸素原子又は硫黄原子であり: $R^{61}$ 、 $R^{62}$ 、 $R^{63}$ 及び $R^{64}$ は同一又は相異なって、水素原子、ハロゲン原子、 $C_{1-4}$ アルキル基又はトリフルオロメチル基であり: $R^{77}$ はハロゲン原子; $C_{4-14}$ アルキル基; $C_{3-6}$ シクロアルキル基; $C_{2-16}$ アルケニル基; $C_{2-6}$ アルキニル基;フェニル基;ニトロ基、シアノ基、 $C_{1-6}$ アルキル基、 $C_{1-6}$ アルコキシ基、 $C_{1-6}$ アルキルチオ基、フェニル基、フェノキシ基、フェネチル基、 $C_{2-6}$ アルコキシカルボニル基及びハロゲン原子からなる群から選択される $1\sim3$  個で置換されたフェニル基;シアノ基;カルボキシル基; $C_{1-6}$ アルコキシ基; $C_{1-6}$ アルコキシ上、 $E_{3-8}$  シクロアルコキシ基; $E_{1-6}$ アルコキシ上、 $E_{3-8}$  シクロアルコキシ基; $E_{1-6}$ アルコキシ上。 $E_{3-8}$  シクロアルコキシ基; $E_{1-6}$ アルコキシ上。 $E_{3-6}$ アルカナイルオキシ基





9. R¹¹~R⁶⁵の少なくとも1つが、式-O-(CR⁶¹R⁶²)_m-(CR⁶³R⁶⁴)_n-R⁷⁷ [式中、R⁶¹、R⁶²、R⁶³及びR⁶⁴は同一又は相異なって、水素原子、ハロゲン原子、C₁₋₄アルキル基又はトリフルオロメチル基であり:R⁷⁷は、ジーC₁₋₆アルキルアミノ基;ジーC₁₋₆アルキルアミノーC₁₋₆アルコキシ基;ピペリジル基;C₁₋₆アルキル基で置換されたピペリジニル基;ピペリジノ基;C₁₋₆アル



キル基で置換されたピペリジノ基;ピリジル基;C1-6アルキル基で置換されたピリジニル基;C1-6アルコキシ基で置換されたピリジニル基;ピリジルチオ基;ピロリジノ基;C1-6アルキル基で置換されたピロリジノ基;ピロリドンー1ーイル基;ピロリジニル基;C1-6アルキル基で置換されたピロリジニル基;ピロリル基;チェール基;チアソリル基;モルホリノ基;C1-6アルキル基で置換されたモルホリニル基;ホモモルホリニル基;チオモルホリノ基;C1-6アルキル基で置換されたモルホリニル基;オオモルホリノ基;C1-6アルキル基で置換されたチオモルホリノ基;チオモルホリニル基;C1-6アルキル基で置換されたチオモルホリール基;サオモルホリニル基;C1-6アルキル基で置換されたチオモルホリニル基;サオモルホリニル基;C1-6アルキル基で置換されたポモピペリジニル基であり:mは1~6の整数:及びnは0~6の整数である]で示される基であり、且つ、他のR¹¹~R⁵⁵は同一又は相異なって、水素原子、C1-4アルキル基、C1-4アルコキシ基、トリフルオロメチル基、ニトロ基又はハロゲン原子である請求の範囲第8項に記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩。

- 10. R¹¹、R²²、R⁴⁴及びR⁵⁵が水素原子である、請求の範囲第7~9項のいずれか1項に記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩。
- 11. 請求の範囲第5~10項のいずれか1項に記載のヒドロキシホルムアミジン誘導体又はその製薬学的に許容される塩を有効成分とする20ーヒドロキシエイコサテトラエン酸産生阻害剤。
- 12. 腎疾患、脳血管疾患又は循環器疾患治療薬である請求の範囲第11項に記載の20-ヒドロキシエイコサテトラエン酸産生阻害剤。

A. CLASSIFICATION OF SUBJECT MATTER	PCT/JP00/07694				
31/403, 31/416, 31/4192, 31/404, 31/275, 31/166, 31/502, 31 31/433, 31/472, 31/47, 31/5375, 31/381, 31/415, 31/519, 31/42	1/36, 31/4035, 31/42, 31/429, 31/505,				
According to International Patent Classification (IPC) or to both national classification are	od IPC				
Minimum documentation and IPC					
Minimum documentation searched (classification system followed by classification symbol 1nt. c1' A61K31/155, 31/245, 31/18, 31/275, 31/166, 31/275, 31/166, 31/275, 31/166, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31/275, 31	ols)				
31/433, 31/472, 31/404, 31/4245, 31/415, 31/502, 31/	/36, 31/4035, 31/42, 31/430, 31/430				
31/403, 31/416, 31/4192, 31/404, 31/4245, 31/166, 31/502, 31/ 31/433, 31/472, 31/47, 31/5375, 31/381, 31/415, 31/519, 31/420 31/4402, 31/522, C07C317/40, 323/41, 323/65, 323/12, 323/19,	8, 31/352, 31/4453, 31/40, 31/343.				
Documentation searched other than minimum documentation. 323/65, 323/12, 323/19,	51, 31/341, 31/357, 31/426, 31/445,				
documentation to the extent that such documents					
Electronic data base consulted during the international search (name of data base and, when REGISTRY (STN), CAPLUS (STN)					
REGISTRY (STN), CAPLUS (STN)	re practicable search to				
(0.17)	presidence, scarch terms used)				
C. DOCUMENTS CONSIDERED					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where appropriate, of the relevant  X Koichi HAYAKAWA et al. "Curpotion"					
X Koichi HAYAKAWA et al., "Quantitative  Structure-Activity Relational installative	passages Relevant to claim No.				
A Structure Act					
N-Phenyl formamidani Metationships of Fungicid	5,8				
Vol.1/, No.1 (1992) a valual of Pesticide	Science, 1-4,6,7,9-12				
(p.23, Table 3, No.58)					
A JP, 53-132520 2 (	1				
A JP, 53-132529, A (Hoechest AG.), 18 November, 1978 (18.11.78)					
	1-12				
& BE, 866194, A & FR, 2387946, A	1 1				
	1				
1 1 1 1 1 2 2 8 8 1	1 1				
1 & JD 60-10250	1-12				
& JP, 60-19759, A & AU, 8430229, A	1				
& FI, 8402861 A & DK, 8403469, A	1 1				
& SE, 8403711, A & DK, 8403469, A & ES, 542534, A	1				
A Magdelena Ni-	1 1				
Production Contributes to the Vascular Responses Nitric Oxide, "Hypertension, Vol.29 No.12	20-HETE				
Nitric Oxide, "Hypertension, Vol.29, No.1, Pt.2	s to 1-12				
PP.320-325 No.1, Pt.2	(1997)				
	1 1				
Further documents are listed in the continuation of Box C.					
Special categories of cited documents:					
considered to be general state of the art which is not	after the international filing date or				
P english date and and the same and the s	after the international filing date or office with the application but cited to				
document which many t	J Tilk tile Invention				
cited to establish at a country claim/s) and the considered novel or committee to the considered novel or considered novel o					
"O" document of excellent					
"O" document referring to an oral disclosure, use, exhibition or other means "P" document of particular relections of the company of the comp	taken alone vance; the claimed invention cannot be ventive step when the document is				
than the prior to the international filing data to the combination being about	and accuments such				
	to a person skilled in the art				
Date of the actual completion of the international search  16 January, 2001 (16.01.01)  Date of mailing of the international search	· · · · · · · · · · · · · · · · · · ·				
1 2 0 1 (16 f) f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	onal search report				
	01 (30.01.01)				
tune and mailing address of the total	1				
Japanese Patent Office Authorized officer					
acsimile No.					
	Į.				
orm PCT/ISA/210 (second sheet) (July 1992)					

Internation No.
PCT/JP00/07694

Continuation of A, CLASSIFICATION OF SUBJECT MATTER (IPC)

C07C311/21,311/46,311/58,259/14,C07D237/32,317/66,209/48,261/14,513/04, 239/46,239/47,209/94,231/56,249/18,209/08,271/10,231/16,495/04,277/70,277/44, 311/18,239/42,295/12,231/12,307/91,209/82,307/68,277/64,285/06,217/12,215/38, 239/26,237/28,215/22,277/62,295/08,317/22,215/14,333/16,307/42,277/26,213/30, 213/70,319/06,487/04,207/27,211/22,307/12,309/06,307/40,277/64,473/08, A61P43/00,13/12,9/10,9/00

Continuation of B, FIELDS SEARCHED; Minimum documentation searched (IPC)

C07C311/21,311/46,311/58,259/14,C07D237/32,317/66,209/48,261/14,513/04,
239/46,239/47,209/94,231/56,249/18,209/08,271/10,231/16,495/04,277/70,277/44,
311/18,239/42,295/12,231/12,307/91,209/82,307/68,277/64,285/06,217/12,215/38,
239/26,237/28,215/22,277/62,295/08,317/22,215/14,333/16,307/42,277/26,213/30,
213/70,319/06,487/04,207/27,211/22,307/12,309/06,307/40,277/64,473/08,
A61P43/00,13/12,9/10,9/00

Form PCT/ISA/210 (extra sheet) (July 1992)

### 国際調査報告



国際調査報告		国際山野畑口	~			
A. 発明の属する分野の分類 (国際特許分類 (IP Int. Cl' A61K31/155 31/245 31/16 21/16 21/16		四际山映奋号	PCT/JI	00/07694		
192, 31/404, 31/4245, 31/415, 31/519, 31/428, 31/352, 44, 31/45, 31/505, 31/351, 31/341, 31/357, 31/426, 31/	31/502, 31/36, 3	1/4035, 31/42, 3 31/343, 31/433, /522, C07C317/4	1/429, 31/505, 31/472, 31/47 0. 323/41, 323	31/403, 31/416, 31/4 , 31/5375, 31/381, 31/		
B. 調査を行った分野			-, 6,00/ 41, 323	765, 323/12, 323/19,		
調査を行った最小限資料 (国際特許分類 (IPC)) Int. Cl ⁷ A61K31/155 31/245 31/18 31/255 31/245 31/245 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/245 31/255 31/255 31/245 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 31/255 3		<del></del>				
Int. Cl ⁷ A61K31/155, 31/245, 31/18, 31/275, 31/166, 3 192, 31/404, 31/4245, 31/415, 31/519, 31/428, 31/352, 3 44, 31/45, 31/505, 31/351, 31/341, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/428, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/577, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/57777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/5777, 31/577	1/502, 31/36, 31	/4035, 31/42, 31	/429, 31/505,	31/403. 31/416. 31/4		
	145, 31/4402, 31/	51/343, 31/433, 3 522. 0070317/40	1/472, 31/47,	31/5375, 31/381, 31/		
最小限資料以外の資料で調査を行った分野に含まれるも	i. m	, 0010011/40	, 343/41, 323/	65, 323/12, 323/19,		
	600	•				
国際調査で使用した電子データベース (データベースの REGISTRY (STN), CAPLUS (STN)	夕新 部本に					
ALLOS (STN), CAPLUS (STN)	7中か、胸壁に使	用した用語)				
C. 関連すると認められる文献	<del></del>			1		
が用文献の						
一	するときは、その	の関連する簡所。	の事子	関連する		
				請求の範囲の番号		
A Relationships of Fungicidal N- Journal of Pesticide Science	-Phenylforma	midoximes, "	17169	5,8		
(p. 230 Tabel 30 No. 58)						
131,03-139500 4 /	ヘキスト・フ	<b>ア</b> クティン <i>は</i> 、	<del>13</del> 11 €			
フト) 18. 11月. 1978 ( & DE, 2717437 A	18.11.	78)	ヒルンヤー	1-12		
& DE, 2717437, A & BE, 866194. A &	& NL, 7	80418	9, A			
& BE, 866194, A &	FR, 23	87946,	A			
C 欄の焼きたませれ			1			
C欄の続きにも文献が列挙されている。	□ パラ	ントファミリー	.) = EB. b. = B			
引用文献のカテゴリー				を参照。		
A」特に関連のある文献ではなく、一般的技術水準を示す もの	の日の け「T」国際出	D後に公表された B願日マけ何生の	と文献	た文献であって		
」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの。				ルた文献であって 日の原理又は理論		
以後に公表されたもの  ・」優先権主張に疑義を提起する文献又は他の文献の発行  日若しくは他の禁則な理典なかます。		のために引用す	350	が極くに埋論		
0」口頭に上ス照示 佐田 ロール						
」国際出願日前で、かつ優先権の主張の基礎となる出願	よって	進歩性がかい	たくつし日明	である組合せに		
調査を完了した日	「&」同一パ	テントファミリ	一文献			
16.01.01	国際調査報告(	の発送日				
質査機関の名称及びあて先		3	0.01.0	1		
日本国特許庁(ISA/ID)	特許庁審査官	(権限のある職員	1 6 7	<del></del>		
野児番号100~001m	4	村玲英子	" 富山	C 8517		
東京都千代田区霞が関三丁目 4番 3 号	ない 4来現像		150.73			





C (続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*		請求の範囲の番身
A	EP, 132881, A1 (NIPPON SODA CO., LTD.) 13. 2月. 1985 (13. 02. 85) & JP, 60-19759, A & AU, 8430229, A & SE, 8403711, A & DK, 8403469, A & FI, 8402861, A & ES, 542534, A	1-12
A .	Magdelena Alonso-Galicia et al. "Inhibition of 20-HETE Production Contributes to the Vascular Responses to Nitric Oxide," Hypertension, Vol. 29, No. 1, Pt. 2 (1997) pp. 320-325	1-12
		·
	-	

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

# 第2頁A欄 発明の属する分野の分類(国際特許分類(IPC))の続き

C07C311/21, 311/46, 311/58, 259/14, C07D237/32, 317/66, 209/48, 261/14, 513/04, 239/46, 239/47, 209/94, 231/56, 249/18, 209/08, 271/10, 231/16, 495/04, 277/70, 277/44, 311/18, 239/42, 295/12, 231/12, 307/91, 209/82, 307/68, 277/64, 285/06, 217/12, 215/38, 239/26, 237/28, 215/22, 277/62, 295/08, 317/22, 215/14, 333/16, 307/42, 277/26, 213/30, 213/70, 319/06, 487/04, 207/27, 211/22, 307/12, 309/06, 307/40, 277/64, 473/08, A61P43/00, 13/12, 9/10, 9/00

第2頁B欄 調査を行った分野 調査を行った最小限資料 (国際特許分類 (IPC)) の続き

C07C311/21, 311/46, 311/58, 259/14, C07D237/32, 317/66, 209/48, 261/14, 513/04, 239/46, 239/4 7, 209/94, 231/56, 249/18, 209/08, 271/10, 231/16, 495/04, 277/70, 277/44, 311/18, 239/42, 295/12, 231/12, 307/91, 209/82, 307/68, 277/64, 285/06, 217/12, 215/38, 239/26, 237/28, 215/22, 277/62, 295/08, 317/22, 215/14, 333/16, 307/42, 277/26, 213/30, 213/70, 319/06, 487/04, 207/27, 211/22, 307/12, 309/06, 307/40, 277/64, 473/08, A61P43/00, 13/12, 9/10, 9/00