Daniel Schmidt

Objective: To become as skilled in the design of control systems and robots as I possibly can

Education:

California State University, Sacramento: 2012 to Fall 2014 Grade Point Average: 3.85

Degrees in Progress:

o B.S. Electrical Engineering – Controls

Sacramento City College: 2007 to 2012 Grade Point Average: 3.84 Degrees Completed:

> A.S. Electronic Facilities Maintenance Technician, Telecommunications Technician, Mathematics

Programs and Courses Studied:

- o PC Assembly and Repair
- Operating Systems Experience (Windows, Linux, iOS)
- Soldering and high-tech assembly
- o AC/DC, Semiconductor theory and analysis
- o Receivers and transmitters
- o Mathematics, General Chemistry, Physics
- Network analysis
- o Logic design, HDL Verilog
- o Transistor amplifier design

- Analog/Digital control system design
- Machine Vision
- Microprocessors
 - Intel x86
 - ARM Raspberry Pi
- Microcontroller programming
 - Atmel ATmega328
 - Parallax Propeller
- o Robotics

Experience:

- Programming Languages: C/C++, Python, Perl, batch, shell, Intel Assembly, Verilog
- Web Design: HTML, CSS, Javascript, jQuery
- Test Equipment: DMM, Oscilloscope, AWG, Protocol Analyzer
- Software: Pspice, Multisim, ADS, Matlab, MS Office Suite, Apache Open Office, Quartus II

Projects:

- Senior Design:
 - o Home infant monitor with hot-swappable, self-identifying sensors and Web-based interface
 - Designed hot-swappable 'smart sensor' modules which identify themselves as well as check sensor data for threshold levels indicative of a medical emergency and alert main hub
 - Designed interface between sensors and main hub using Inter-integrated Circuit (I²C) Bus
 - Constructed all hardware components; Designed template for chassis fabrication
 - Performed device and sensor hardware testing; DMM, Oscilloscope, writing and evaluating test code
 - Participated in Idea-to-Product competition for Biomedical design projects
- Robotics:
 - Laser-guided PID-controlled mobile robot
 - Wrote code for Proportional-Integral-Derivative control of robot's position
 - Tested robot to determine optimal value for PID tuning parameters
 - DC motors, IC H-Bridge, Arduino for robot control and Raspberry Pi for image processing
 - Autonomous mobile robot with Infrared and Ultrasonic obstacle detection
 - ATmega328 Arduino on a breadboard
 - Proportional Control of DC motors using proximity feedback from sensors
 - Autonomous mobile robot with Infrared obstacle and edge detection
 - Parallax Propeller with C/C++
 - Continuous rotation servos
 - o PID speed controller for DC motor using I²C interface (Sensor to Controller)

Professional Experience:

- Micron Technology, Inc.
 - o Developed software to control a cross-temperature test flow for SSDs in a Linux environment
 - Object-oriented, compiled using g++ and Linux "make" utility
 - GPIB interface to control temperature and power
 - Developed software to automate a power cycling control system with verification scripts to test functionality of multiple SSDs
 - Controlling PCs across a network using PsExec