Travel Demand Modeling Project

1.) บทน้ำ

รายงานนี้นำเสนอแบบจำลอง 4-Step Model โดยใช้ Nguyen-Dupuis Network แบ่งเขตออกเป็น 4 โซน (A, B, C, D) เพื่อพิจารณาประสิทธิภาพของระบบขนส่งในระยะ 30 ปี โดยวัดประสิทธิภาพทุก 5 ปี ตามการ เพิ่มขึ้นของประชากรและกลุ่มเป้าหมาย (อัตราการเพิ่มขึ้นต่อปี 1.50% สำหรับประชากรทั่วไป, 1% สำหรับ นักเรียน และ1.40% สำหรับพนักงาน) สำหรับโหมดการเดินทางทั้งหมด (รถยนต์, ระบบขนส่งสาธารณะ, และ จักรยาน) โดยการจำลองระบบขนส่งสาธารณะ (Transit) ด้วยการสร้างเส้นทางตามรอยปะสีเขียวใน Nguyen-Dupuis Network (ภาพที่ 1) ในแต่ละโซน

2.) ทฤษฎีที่เกี่ยวข้อง

4-Step Model (Urban Transportation Planning) เป็นกรอบแบบจำลองที่ใช้ในการวางแผนและ วิเคราะห์ระบบการขนส่งและการเดินทางในพื้นที่ ซึ่งประกอบด้วยขั้นตอนสำคัญทั้ง 4 ขั้นตอน ดังนี้

- Trip Generation: คาดการณ์จำนวนการเดินทางที่เริ่มและสิ้นสุดในแต่ละโซน
- Trip Distribution: วิเคราะห์ว่าแต่ละต้นทางจะเดินทางไปยังปลายทางใด
- Modal Split: แบ่งสัดส่วนการเดินทางตามประเภทพาหนะที่เลือกใช้
- Trip Assignment: กำหนดเส้นทางที่การเดินทางจะใช้บนโครงข่ายถนนหรือระบบขนส่ง

ภาพที่ 1 Nguyen-Dupuis Network เส้นทางสำหรับ Automobile และ Bike เส้นทางตามรอยปะสีเขียว สำหรับ Transit

3.) Trip Generation

Trip Generation เป็นขั้นตอนที่หนึ่งใน 4-Step Model และมีวัตถุประสงค์เพื่อประมาณการจำนวนการ เดินทางที่ถูกสร้างขึ้นหรือดึงดูดในพื้นที่ ซึ่งสมการที่ให้มีรูปแบบ ดังนี้

Production (การสร้างการเดินทาง) = 250 + 1.14Population + 0.15Student Attraction (การดึงดูดการเดินทาง) = 150 + 0.48Population + 0.2Student + 0.65Employee

โดยทั้งสองสมการนี้นำมาคำนวณเพื่อหาจำนวนการเดินทางที่สร้างขึ้นหรือถูกดึงดูดในพื้นที่ตามประชากร (Population) นักเรียน (Student) และพนักงาน (Employee) โดยมีอัตราการเพิ่มขึ้นต่อปี ดังนี้

Population Growth Rate	1.50%
Student Growth Rate	1.00%
Employee Growth Rate	1.40%

สำหรับปีเริ่มต้น (Base Year) ทำการนำค่าปัจจุบันของประชากร, นักเรียน, และพนักงานมาใส่ลงใน สมการเพื่อหาค่า Trip Production และ Trip Attraction ในปีแรก และทำการคำนวณ Trip Production และ Trip Attraction ในแต่ละปีตามอัตราการเพิ่มขึ้นต่อปีที่กำหนด เช่น 5 ปี 10 ปี 15 ปี 20 ปี 25 ปี และ 30 ปี โดย ใช้สมการและค่าประชากร นักเรียน และพนักงานในแต่ละปีที่ได้คำนวณมาในขั้นตอนก่อนหน้า (ตารางที่ 1)

Production	Attraction
6262	6262
6659.2098	6659.20981
7086.6351	7086.6351
7546.5864	7546.5864
8041.5517	8041.5517
8574.2096	8574.2096
9147.4449	9147.4449
	6262 6659.2098 7086.6351 7546.5864 8041.5517 8574.2096

ดังตารางที่ 1 Trip Production และ Trip Attraction ทุกๆ 5 ปี

4.) Trip Distribution

Trip Distribution เป็นขั้นตอนที่สองใน 4-Step Model และมีวัตถุประสงค์ในการกระจายการเดินทาง ไปยังตำแหน่งต่าง ๆ ในเครือข่ายการขนส่ง ซึ่งรวมถึงการคำนวณ Trip Length Frequency, Travel Time, Friction Factor, และจำนวน Trip ตาม Gravity Model ดังนี้

4.1) Trip Length Frequency (ความถี่ของระยะทางการเดินทาง) กำหนดความถี่ของการเดินทาง ตามระยะทางที่อยู่ในช่วง travel time 0 ถึง 30 นาที เพื่อทำให้เข้าใจการกระจายของระยะทางการเดินทางใน ช่วงเวลาที่สั้นๆ มีค่าเฉลี่ยอยู่ที่ 11.863นาที (กราฟที่ 1)

กราฟที่ 1 Trip Length Frequency แสดงสัดส่วนความถี่ของการเดินทางที่อยู่ในช่วง 0 ถึง 30 นาที

4.2) Travel Time ในแต่ละ OD Pair (Origin-Destination) สำหรับแต่ละรูปแบบการเดินทาง (Automobile, Transit, และ Bike) กำหนดให้เดินทางในลักษณะ One-Way เฉพาะทางตรง และเลี้ยวขวาทำให้ ไม่มีการเดินทางระหว่าง zone A กับ zone B และ ระหว่าง zone C กับ zone D แสดง Travel Time ในแต่ละ OD Pair โดยใช้ข้อมูลที่มีอยู่เกี่ยวกับระยะทางและความเร็วเฉลี่ยของแต่ละโหนดในการเดินทาง (ตารางที่ 2)

		Automo	bile		Transit			Bike						
O/D	Α	В	С	D	O/D	Α	В	С	D	O/D	Α	В	С	D
Α	15	99999	12.5	12.5	Α	15	99999	21.6667	21.6667	Α	15	99999	54.167	54.167
В	99999	15	10	10	В	99999	15	19.1667	19.1667	В	99999	15	47.917	47.917
С	12.5	10	15	99999	С	21.66667	19.1667	15	99999	С	54.167	47.9167	15	99999
D	12.5	10	99999	15	D	21.66667	19.1667	99999	15	D	54.167	47.9167	99999	15

ตารางที่ 2 Travel Time ในแต่ละ OD สำหรับ 3 รูปแบบการเดินทาง

4.3) Friction Factor ใช้ Hybrid Functionในการคำนวณ และใช้หลักการ friction calibration โดย การ Production & Attraction Balancing ของ Base Year เพื่อหาค่า n และ a ที่ค่าเฉลี่ย 11.863 นาที ได้ดังนี้

$$f(C_{ij}) = C_{ij}^{2.25} e^{-0.615C_{ij}}$$

ซึ่งมีค่าขึ้นอยู่กับ \mathcal{C}_{ij} (ในที่นี้ให้มีค่าเท่ากับ Travel Time) **(ตารางที่ 3)**

f(Cij)						
O/D	1	2	3	4		
1	0.044	0	0.135	0.1347		
2	0	0.044	0.379	0.3794		
3	0.135	0.379	0.044	0		
4	0.135	0.379	0	0.0436		

ตารางที่ 3 Friction Factor ในแต่ละ OD

Friction Factor เป็นพารามิเตอร์ที่ใช้ใน Gravity Model เพื่อปรับแต่งความสามารถในการดึงดูดหรือ สร้างการเดินทางระหว่างจุดต้นทาง (Origin) และจุดปลายทาง (Destination) ในระบบขนส่ง โดยการปรับแต่ง Friction Factor จึงเป็นการปรับความเหมาะสมของ Gravity Model ต่อสภาพแวดล้อมและเงื่อนไขที่มีผลต่อการ เดินทางในพื้นที่นั้น ๆ

เมื่อเปรียบเทียบกับความถี่ของระยะทางการเดินทาง (Trip Length Frequency) พบว่า Friction Factor จะมีค่ามากที่ระยะเวลาในการเดินทาง (Travel Time) ที่น้อยสามารถอธิบายได้ว่าความต้องการในการเดินทางที่ สั้นมีแนวโน้มที่จะเพิ่มขึ้นที่ ระยะเวลาที่มีความสะดวกและเข้าถึงง่าย นอกจากนี้ความสะดวกในการเดินทางและ ความพร้อมในการสร้างและดึงดูดการเดินทางก็มีบทบาทมากในการเพิ่มค่าของ Friction Factor ที่ระยะทางการ เดินทางสั้น ๆนี้ การเพิ่มค่าของ Friction Factor ที่ระยะทางการเดินทางสั้นทำให้ Gravity Model สามารถ สะท้อนความต้องการในการเดินทางในระยะสั้นได้ดีขึ้น และสอดคล้องกับความจริงทางพฤติกรรมการเดินทางใน บางสถานการณ์ เช่น ในพื้นที่ที่การเดินทางที่สั้นมีความสำคัญมาก เช่น ในการเดินทางในช่วงเวลาที่คนต้องการ เดินทางที่รวดเร็วและสะดวก เช่น ในเขตเมืองที่จุดสนใจหลายแห่งอยู่ใกล้กัน

ระยะทางสั้น (Travel Time 1-3 นาที) ในระยะเวลาการเดินทางที่สั้น ความสัมพันธ์ระหว่าง Friction Factor และเวลาการเดินทางมีค่าบวกทำให้กราฟมีความชั้นเพิ่มขึ้นที่เวลา 1 นาที แทนถึงการเดินทางในระยะเวลา สั้นที่มีความสะดวกและต้องการมากขึ้น ระยะทางที่กลาง (Travel Time 3 นาที) การเดินทางที่มีระยะเวลา ประมาณ 3 นาทีแทนโครงสร้างที่กราฟเริ่มลดลง ซึ่งอาจบ่งบอกถึงความสะดวกในการเดินทางที่ลดลงเมื่อเวลา

เพิ่มขึ้น และ ระยะทางยาว (Travel Time 4-30 นาที) ที่ระยะทางที่มากขึ้น การเดินทางมีอุปสรรคที่เป็นผลมา จากระยะทางที่มาก ทำให้ Friction Factor ลดลงเรื่อย ๆ แสดงถึงการสูญเสียความสะดวกในการเดินทาง (กราฟที่ 2)

กราฟที่ 2 กราฟเปรียบเทียบTrip Length Frequency (กราฟ F) กับ Friction Factor (กราฟ Cal)

4.4) Gravity Model เป็นแบบจำลองทางคณิตศาสตร์ที่ใช้ในการคำนวณปริมาณการเดินทางระหว่างจุด ต้นทาง และปลายทางในระบบขนส่ง สามารถคำนวณได้จากสมการดังนี้

$$T_{ij} = P_i \frac{A_j \cdot F_{ij} \cdot K_{ij}}{\sum_j A_j \cdot F_{ij} \cdot K_{ij}}$$

โดยที่

 T_{ij} ปริมาณการเดินทางระหว่างจุดต้นทาง i และจุดปลายทาง j

 P_i ปริมาณการสร้างทริปที่จุดต้นทาง i (Trip Production)

 A_j ปริมาณการดึงดูดทริปที่จุดปลายทาง j (Trip Attraction)

 F_{ij} Friction Factor ระหว่างจุดต้นทาง i และจุดปลายทาง j

 K_{ij} ปัจจัยปรับแบบทดลองจากโซนสู่โซน ซึ่งคำนึงถึงผลกระทบที่เกิดขึ้นในแนวทางการเดินทางจาก ประสิทธิภาพของความเชื่อมโยงทางสังคมและเศรษฐกิจที่กำหนดไว้ และที่ไม่ได้รวมอยู่ในแบบจำลอง อื่น ๆ (ให้เท่ากับ 1)

สามารถคำนวณเพื่อหาจำนวน Trip ระหว่างโซน และภายในโซนได้โดยการนำข้อมูลจำนวน Trip Production และ Trip Attraction ของโซน A, B, C และ D จากขั้นตอน Trip Generation (ตารางที่ 4) เพื่อใช้ เป็น Trip Target และ Friction Factor ที่คำนวณได้จากข้อ 4.3 ในการคำนวณสำหรับปี Base year ได้ผลลัพธ์ เป็น O-D Matrix แสดงจำนวน Trip ทั้งภายในโซน และ ระหว่างโซน (ตารางที่ 5)

Zone	Production	Attraction
Α	2050	1249.73896
В	2050	1558.6098
С	1054	1803.80574
D	1108	1649.8455
Sum	6262	6262

ตารางที่ 4 แสดงจำนวน Trip Production และ Trip Attraction ของโซน A B, C และ D

O/D	Α	В	С	D
Α	1315.695	0	355.5789	373.6139
В	0	623.6745	688.2676	723.1766
С	358.0733	695.5269	10.15343	0
D	376.232	730.7986	0	11.20944

ตารางที่ 5 O-D Matrix แสดงจำนวน Trip ทั้ง ภายใน โซน และ ระหว่างโซน

ผลลัพธ์ O-D Matrix ที่ได้จาก Gravity Model แสดงถึงแนวโน้มในการเดินทางระหว่างโซน A, B, C, และ D และภายในโซน โดยคำนึงถึงปัจจัย Travel Time และปริมาณการสร้าง-ดึงดูดทริป (Trip Production และ Trip Attraction)ของแต่ละโซนในระบบขนส่ง โซน A มีจำนวนการเดินทาง (Trip) ที่สูงมากที่สุด แสดงให้เห็นว่า โซน A เป็นจุดสำคัญที่มีการเดินทางมากที่สุดในระบบ อาจเกิดจาก Travel Time ที่น้อยลงหรือปริมาณการสร้าง-ดึงดูดทริปที่มากขึ้นในโซน A ตัวเลขใน O-D Matrix บ่งบอกถึงปริมาณการเดินทางที่คาดหวังระหว่างโซนที่ต่างกัน ซึ่งสามารถให้ความเข้าใจเพิ่มเติมเกี่ยวกับความสัมพันธ์ของ Travel Time และปริมาณการสร้าง-ดึงดูดทริปใน ระบบขนส่ง ในขณะที่จำนวนการเดินทาง (Trip) ระหว่างโซน A กับ B และ โซน C กับ D มีค่าเท่ากับ 0 เนื่องจาก การกำหนดให้ไม่มีการเดินทางโดยการกำหนด Travel time ให้มีค่าที่สูงมาก การลด Travel Time ระหว่างโซน ทำให้เกิดจำนวน Trip มากขึ้นในกรณีที่ Travel Time น้อย ความสะดวกในการเดินทางเพิ่มขึ้นทำให้ผู้คนมีโอกาส มากขึ้นในการใช้บริการขนส่ง โซนที่มีปริมาณการสร้าง-ดึงดูดทริปสูงมีโอกาสมากขึ้นในการเป็นจุดเริ่มต้นหรือ ปลายทางของการเดินทาง นั่นหมายความว่า การเชื่อมโยงกับพื้นที่ที่มีกิจกรรมมาก เช่น ศูนย์การค้าหรือศูนย์ธุรกิจ จะส่งผลให้มีจำนวน Trip เพิ่มขึ้น

5.) Modal Split

Modal Split ในรายงานนี้ใช้รูปแบบการเดินทาง 3 รูปแบบ คือ รถยนต์ (Automobile) ขนส่งสาธารณะ (Transit) และจักรยาน (Bike) โดยใช้วิธี Maximum Likelihood เพื่อหาสมการอรรถประโยชน์ในแต่ละการ เดินทางขั้นตอนหลักมีดังนี้

5.1) การหาสมการอรรถประโยชน์ (Utility Functions) ในขั้นตอนนี้จะทำการหาสมการ อรรถประโยชน์สำหรับแต่ละรูปแบบการเดินทาง (Automobile, Transit, Bike) สมการอรรถประโยชน์นี้จะ คำนวณจากรูปแบบของคุณสมบัติหรือความสะดวกของการเดินทางแต่ละรูปแบบ ในที่นี้เป็นเวลา (Travel Time) และค่าใช้จ่าย (Cost) ดังนี้

$$\begin{array}{ll} U_{auto} &= V_{auto} + \mathcal{E}_{auto} &= 11.561 - 21719 time + \mathcal{E}_{auto} \\ U_{transit} &= V_{transit} + \mathcal{E}_{transit} &= 0.1 - 8.536 time + 25.318 cost + \mathcal{E}_{transit} \\ U_{bike} &= V_{bike} + \mathcal{E}_{bike} &= -7.43 time + \mathcal{E}_{bike} \end{array}$$

สมการอรรถประโยชน์ของการใช้รถยนต์ (Automobile) จะลดลงเมื่อเวลาการเดินทาง (time) เพิ่มขึ้น ผู้ใช้บริการที่ให้ความสำคัญกับการประหยัดเวลามีแนวโน้มที่จะเลือกรถยนต์มากกว่า ส่วนสมการอรรถประโยชน์ ของการใช้ขนส่งสาธารณะ (Transit) ก็ลดลงเมื่อเวลาการเดินทาง (time) และค่าใช้จ่าย (cost) เพิ่มขึ้น ผู้ใช้บริการ ที่ให้ความสำคัญกับเวลาและค่าใช้จ่ายที่ต่ำมีแนวโน้มที่จะเลือกใช้ขนส่งสาธารณะ ในขณะที่สมการอรรถประโยชน์ ของการใช้จักรยาน (Bike) ลดลงเมื่อเวลาการเดินทาง (time) เพิ่มขึ้น ผู้ใช้บริการที่ให้ความสำคัญกับการออกกำลัง กายและไม่ต้องการใช้เวลามากในการเดินทางมีแนวโน้มที่จะเลือกใช้จักรยาน เป็นต้น

5.2) คำนวณความเป็นไปได้ (Probability) จากสมการอรรถประโยชน์ที่ได้จากข้อ 5.1 สามารถหา ความเป็นไปได้หรือสัดส่วนการเดินทางในแต่ละรูปแบบการเดินทางโดยใช้ข้อมูลเวลาและค่าใช้ในแต่ละ OD จาก สมการ ดังนี้

$$P_{auto} = \frac{e^{V_{auto}}}{e^{V_{auto}} + e^{V_{transit}} + e^{V_{bike}}}$$

$$P_{transit} = \frac{e^{V_{auto}} + e^{V_{transit}} + e^{V_{bike}}}{e^{V_{auto}}}$$

$$P_{bike} = \frac{e^{V_{auto}} + e^{V_{transit}} + e^{V_{bike}}}{e^{V_{auto}} + e^{V_{bike}}}$$

สามารถคำนวณจำนวนการเดินทาง(Trip) ในแต่ละ O-D Pair สำหรับ 3 รูปแบบการเดินทางได้จาก $P_m imes Trip_{ij}^m$ (ตารางที่ 6)

	Α	utomob	ile		Transit			Bike						
OVD	Α	В	С	D	OND	Α	В	С	D	OYD	Α	В	С	D
Α	0	0	355.58	373.61	Α	0	0	0	0	Α	1315.69	0	0	0
В	0	0	688.27	723.18	В	0	0	0	0	В	0	623.67	0	0
С	358.07	695.53	0	0	С	0	0	0	0	С	0	0	10.15	0
D	376.23	730.8	0	0	D	0	0	0	0	D	0	0	0	11.21

ตารางที่ 6 จำนวน Trip ภายใน zone และ ระหว่าง zone ในแต่ละรูปแบบการเดินทาง

6.) Trip Assignment

หลังจากที่ได้ข้อมูล O-D Matrix จากขั้นตอน Modal Split ซึ่งระบุสัดส่วนการใช้รูปแบบการเดินทางแต่ ละรูปแบบในแต่ละ O-D Pair ขั้นตอนถัดไปคือการกำหนดเส้นทางการเดินทางสำหรับแต่ละ O-D นี้โดยใช้ User Equilibrium (UE) Model โดยขั้นตอนนี้เป็นส่วนสำคัญที่ทำให้เราทราบถึงแนวโน้มการเคลื่อนไหวของผู้ใช้ใน ระบบขนส่ง สำหรับรายงานนี้จะมีเพียงเส้นทางที่เชื่อมด้วย link ระหว่างโซน A กับ โซน C / โซน A กับ โซน D / โซน B กับ โซน C และ โซน B กับ โซน D จาก Nguyen-Dupuis Network (ภาพที่ 1) สามารถแสดงเส้นทางที่ เป็นไปได้ทั้งหมด ดังนี้

O - D	Route
A – C	1,19,16 / 1,12,4,5,16 / 1,12,4,14,8 / 1,12,13,7,8 / 10,3,4,5,16 / 10,3,4,14,8 / 10,3,13,7,8
	/ 10,11,6,7,8
A – D	1,12,4,14,15 / 1,12,13,7,15 / 10,3,4,14,15 / 10,3,13,7,15 / 10,11,6,7,15 / 10,11,18,9
B – C	2,11,6,7,8 / 2,3,4,5,16 / 2,3,4,14,8 / 2,3,13,7,8 / 17,6,7,8
B - D	2,3,4,14,15 / 2,3,13,7,15 / 2,11,6,7,15 / 2,11,18,9 / 17,18,9 / 17,6,7,15

โดยเวลาในเการเดินทางจากจุดเริ่มต้น (Origin)ไปยังจุดปลายทาง (Destination) คือ ผลรวมเวลาการ เดินทางในแต่ละ link โดยเวลาในการเดินทางในแต่ละ link สามารถคำนวณได้จาก BPRⁿ Function : Travel time = FFTT(1+0.17(Link flow/Capacity)^{3.8}) โดยใช้ข้อมูล Parameter (ตารางที่ 7) ในการคำนวณ Travel time ดังนี้

Link [one way]	Speed limit (km/h)	Distance (km)	FFTT (min)	Capacity (PCU/hr)
1	60	2.50	2.5	3000
2	60	2.50	2.5	1500
3	40	1.67	2.5	2000
4	40	2.50	3.75	3000
5	60	2.50	2.5	2000
6	40	1.67	2.5	1500
7	40	1.67	2.5	3000
8	60	2.50	2.5	1000
9	60	2.50	2.5	1000
10	60	2.50	2.5	1250
11	60	2.50	2.5	2000
12	60	2.50	2.5	2000
13	40	2.50	3.75	2000
14	40	1.67	2.5	2000
15	60	2.50	2.5	2250
16	60	2.50	2.5	2500
17	90	3.75	2.5	1500
18	90	11.25	7.5	1500
19	90	15.00	10	2250

ตารางที่ 7 ข้อมูล Parameter ของแต่ละ Link

การคำนวณด้วย User Equilibrium (UE) Model สามารถคำนวณด้วยการกำหนดจำนวนการเดินทาง ของแต่ละ O – D Pair โดยจำแนกรูปแบบการเดินทางที่ได้จากการคำนวณในขั้นตอน Modal Split เพื่อหา จำนวน Trip ในแต่ละเส้นทางผ่าน Link ต่างๆ โดย User Equilibrium (UE) Model จะคำนวณจำนวนการ เดินทางของแต่ละ Link (Link Flow) ที่ทำให้เวลาในการเดินทาง (Travel Time) สั้นที่สุด โดยเลือกเส้นทางที่ใช้ เวลาที่สั้นที่สุดของแต่ละ O – D Pair ดังตารางที่ 8 ทำให้ได้เวลาในการเดินทางใหม่ ดังตารางที่ 9 เพื่อนำไปปรับ ค่า Travel Time อีกครั้งสำหรับการคำนวณซ้ำ (Loop Feedback) จนกว่าจะไม่มีผู้ใช้ที่ต้องการเปลี่ยนแปลง เส้นทางเพื่อลดความหน่วงเวลา ในแต่ละรอบของการปรับ ผู้ใช้ที่พบว่ามีเวลาในการเดินทางมากกว่าที่จะพยายาม เปลี่ยนแปลงเส้นทางเพื่อลดเวลาการเดินทาง การเปลี่ยนแปลงนี้จะมีผลต่อค่า Travel Time ในเส้นทางที่ เปลี่ยนแปลง และนำไปสู่การคำนวณใหม่ของ O-D Matrix และค่า Travel Time ในรอบถัดไป ในขณะเดียวกัน พบว่าไม่มีการเดินทางของขนส่งสาธารณะเลย และการเดินทางภายในโซนจะเป็นรูปแบบการเดินทางแบบจักรยาน เท่านั้น

0 - D	Route	TotalTime	Route	Flow
	1,19,16	15.00	f1	0
	1,12,4,5,16	13.75	f2	237.57
	1,12,4,14,8	13.92	f3	0
AC	1,12,13,7,8	13.99	f4	0
AC	10,3,4,5,16	13.75	f5	25.18
	10,3,4,14,8	13.93	f6	0
	10,3,13,7,8	14.00	f7	0
	10,11,6,7,8	13.75	f8	92.83
	1,12,4,14,15	13.78	f9	0
	1,12,13,7,15	13.85	f10	0
AD	10,3,4,14,15	13.79	f11	0
AD	10,3,13,7,15	13.86	f12	0
	10,11,6,7,15	13.61	f13	373.61
	10,11,18,9	15.01	f14	0
	2,11,6,7,8	13.74	f15	0
	2,3,4,5,16	13.75	f16	0
BC	2,3,4,14,8	13.92	f17	0
	2,3,13,7,8	13.99	f18	0
	17,6,7,8	11.57	f19	688.27
	2,3,4,14,15	13.78	f20	0
	2,3,13,7,15	13.85	f21	0
BD	2,11,6,7,15	13.60	f22	0
ΒD	2,11,18,9	15.00	f23	0
	17,18,9	12.84	f24	0
	17,6,7,15	11.43	f25	723.18

ตารางที่ 8 จำนวนการเดินทางของแต่ละ Link (Link Flow) ที่ทำให้เวลาในการเดินทาง (Travel Time) สั้นที่สุด ของแต่ละ O – D Pair

O - D	Route	TotalTime	Route	Flow
	1,19,16	15.00	f1	0
	1,12,4,5,16	13.75	f2	223.06
	1,12,4,14,8	13.96	f3	0
AC	1,12,13,7,8	14.04	f4	0
AC	10,3,4,5,16	13.75	f5	0
	10,3,4,14,8	13.96	f6	0
	10,3,13,7,8	14.04	f7	0
	10,11,6,7,8	13.92	f8	0
	1,12,4,14,15	13.78	f9	0
	1,12,13,7,15	13.86	f10	0
AD	10,3,4,14,15	13.78	f11	0
AD	10,3,13,7,15	13.86	f12	0
	10,11,6,7,15	13.74	f13	183.22
	10,11,18,9	15.00	f14	0
	2,11,6,7,8	13.92	f15	0
	2,3,4,5,16	13.75	f16	0
BC	2,3,4,14,8	13.96	f17	0
	2,3,13,7,8	14.04	f18	0
	17,6,7,8	12.19	f19	830.57
	2,3,4,14,15	13.78	f20	0
	2,3,13,7,15	13.86	f21	0
BD	2,11,6,7,15	13.74	f22	0
BD	2,11,18,9	15.00	f23	0
	17,18,9	13.27	f24	0
	17,6,7,15	12.01	f25	924.55

ตารางที่ 10 จำนวนการเดินทางของแต่ละ Link
(Link Flow) ที่ทำให้เวลาในการเดินทาง (Travel Time)
สั้นที่สุด ของแต่ละ O – D Pair ที่ User Equilibrium

Time	min
t1	2.50
t2	2.50
t3	2.50
t4	3.75
t5	2.50
t6	3.50
t7	2.57
t8	2.67
t9	2.50
t10	2.51
t11	2.50
t12	2.50
t13	3.75
t14	2.50
t15	2.53
t16	2.50
t17	2.84
t18	7.50
t19	10.00

ตารางที่ 9 Travel Time ของแต่ละ Link ที่ได้จากการคำนวณด้วย User Equilibrium (UE) Model

Time	min
t1	2.50
t2	2.50
t3	2.50
t4	3.75
t5	2.50
t6	3.63
t7	2.58
t8	2.71
t9	2.50
t10	2.50
t11	2.50
t12	2.50
t13	3.75
t14	2.50
t15	2.53
t16	2.50
t17	3.27
t18	7.50
t19	10.00

ตารางที่ 11 Travel Time ของแต่ละ Link ที่ ได้จากการคำนวณด้วย User Equilibrium (UE) Model ที่ User Equilibrium

การทำ Loop Feedback ในกระบวนการ User Equilibrium จะทำให้ Travel Time ในแต่ละ Link คงที่หรือเข้าสู่สถานะที่ไม่มีการเปลี่ยนแปลงเพิ่มเติม นั่นคือสถานะของ User Equilibrium (UE) ที่ผู้ใช้ไม่มีความ ประสงค์ที่จะเปลี่ยนแปลงเส้นทางของตนเองอีก การคำนวณในแต่ละรอบจะเปลี่ยนแปลง Travel Time และ O-D Matrix ตามที่ผู้ใช้ต้องการเพื่อลดเวลาในการเดินทาง แต่เมื่อถึงจุดที่ไม่มีการเปลี่ยนแปลงเพิ่มเติม นั่นคือเมื่อ Travel Time ในแต่ละ Link คงที่และไม่มี O-D Matrix หรือเส้นทางใดที่สามารถเปลี่ยนแปลงได้อีก (ตารางที่ 10 และ 11)

7.) การวัด Performance ของระบบขนส่ง

แบบจำลอง 4-Step Model นี้พิจารณาประสิทธิภาพของระบบขนส่งในระยะ 30 ปี โดยวัดประสิทธิภาพ ทุก 5 ปี ตามการเพิ่มขึ้นของประชากรและกลุ่มเป้าหมาย (อัตราการเพิ่มขึ้นต่อปี 1.50% สำหรับประชากรทั่วไป, 1% สำหรับนักเรียน, 1.40% สำหรับพนักงาน) จากตารางที่ 1 แสดงให้เห็นถึงจำนวนการเดินทางที่เพิ่มมากขึ้น อย่างมีนัยสำคัญ ซึ่งเป็นผลมาจากการเพิ่มขึ้นของประชากรและกลุ่มเป้าหมาย (กราฟที่ 3)

กราฟที่ 3 การเพิ่มขึ้นของกลุ่มเป้าหมายในทุกๆ 5 ปี

กราฟที่ 4 จำนวนการเดินทางระหว่างโซนที่เกิดขึ้นทุกๆ 5 ปี

จาก Trip Assignment ในหัวข้อที่ 6 เป็นการหาเส้นทางของการเดินทางในระบบขนส่ง สำหรับรายงานนี้ จะมีเพียงเส้นทางที่เชื่อมด้วย link ระหว่างโซน A กับ โซน C / โซน A กับ โซน D / โซน B กับ โซน C และ โซน B กับ โซน D จากกราฟที่ 4 แสดงจำนวนการเดินทางที่เกิดขึ้นของแต่ละ O – D Pair ทุกๆ 5 ปี พบว่าจำนวนการ เดินทางไม่ได้เพิ่มขึ้นอย่างมีนัยสำคัญ (ไม่ได้เพิ่มขึ้นอย่างต่อเนื่องทุกๆ 5 ปี) บาง O – D Pair พบว่ามีจำนวนการ เดินทาง (Trip) ลดลงเมื่อเวลาผ่านไป 5 ปี แล้วค่อยเพิ่มขึ้นเนื่องจากการทำ Loop Feedback ใน User Equilibrium (UE) และการปรับปรุงระบบขนส่งในแต่ละปีทำให้ Cost (Travel Time) ของแต่ละ O-D Pair ไม่ เท่ากัน โดยมีความเป็นไปได้ในอนาคตที่ Cost สำหรับบาง O-D Pair จะเพิ่มขึ้น นอกจากนี้การเปลี่ยนแปลงใน ปัจจัยต่างๆ ทำให้ Cost (Travel Time) ของ O-D Pair แต่ละคู่มีการเปลี่ยนแปลงตาม (กราฟที่ 5) โดยแต่ละ O-D Pair มีเส้นทาง และเวลาในการเดินทาง (ตารางที่ 12)

	O-D Pair	Route	TotalTime
0	AC	1,12,4,5,16	13.75
	AD	10,11,6,7,15	13.74
	BC	17,6,7,8	12.19
	BD	17,6,7,15	12.01
	O-D Pair	Route	TotalTime
5	AC	1,12,4,5,16	13.87
	AC	10,3,4,5,16	13.87
	AD	1,12,4,14,15	14.00
	AD	10,3,4,14,15	14.00
	BC	17,6,7,8	13.32
	BD	17,6,7,15	13.13

	O-D Pair	Route	TotalTime
10	AC	1,12,4,5,16	13.88
		10,3,4,5,16	13.88
	AD	1,12,4,14,15	14.01
		10,3,4,14,15	14.01
	BC	17,6,7,8	13.14
	BD	17,6,7,15	12.95
	O-D Pair	Route	TotalTime

	O-D Pair	Route	TotalTime
15	AC	1,12,4,5,16	14.03
		10,3,4,5,16	14.03
	AD	1,12,4,14,15	14.01
		10,3,4,14,15	14.01
		1,12,13,7,15	14.01
		10,3,13,7,15	14.01
	BC	17,6,7,8	13.97
		2,3,4,5,16	13.97
	BD	17,6,7,15	13.79

	O-D Pair	Route	TotalTime
20	AC	1,12,4,5,16	14.13
		10,3,4,5,16	14.13
	AD	1,12,4,14,15	14.30
		10,3,4,14,15	14.30
		1,12,13,7,15	14.30
		10,3,13,7,15	14.30
	BC	17,6,7,8	14.06
		2,3,4,5,16	14.06
	BD	17,6,7,15	13.82

	O-D Pair	Route	TotalTime	
25	AC	1,12,4,5,16	14.36	
		10,3,4,5,16	14.36	
	AD	1,12,4,14,15	14.52	
		10,3,4,14,15	14.52	
		1,12,13,7,15	14.52	
		10,3,13,7,15	14.52	
	BC	17,6,7,8	14.30	
		2,3,4,5,16	14.30	
	BD	17,6,7,15	14.60	

O-D Pair	Route	TotalTime
30	1,12,4,5,16	14.44
AC	10,3,4,5,16	14.44
AC	1,12,13,7,8	14.44
	10,3,13,7,8	14.44
AD BC	1,12,4,14,15	14.65
	10,3,4,14,15	14.66
	1,12,13,7,15	14.65
	10,3,13,7,15	14.65
	17,6,7,8	14.38
	2,3,4,5,16	14.38
	2,3,13,7,8	14.38
	17,6,7,15	14.59
	2,3,4,14,15	14.59
	2,3,13,7,15	14.59
	17,18,9	14.59

ตารางที่ 12 เส้นทาง และเวลาในการเดินทางของแต่ละ O-D Pair ที่เกิดขึ้นในทุกๆ 5 ปี

(ตัวหนังสือสีแดง = เส้นทางเกิดใหม่)

กราฟที่ 5 Travel Time ที่เปลี่ยนไปทุกๆ 5 ปี

เมื่อผู้ใช้บริการถนนพบว่าเมื่อเวลาผ่านไป 5 ปีเวลาการเดินทางเพิ่มขึ้น มีการเปลี่ยนแปลงในการเลือกใช้ เส้นทางผู้ใช้บริการมีแนวโน้มที่จะเปลี่ยนไปใช้เส้นทางที่ไม่ใช้เวลาน้อยที่สุดในตอนเริ่มต้น เมื่อถึงจุดสมดุล (User Equilibrium) เส้นทางที่ใช้เวลาน้อยที่สุดจะมีการเพิ่มขึ้น แสดงถึงการปรับเปลี่ยนในการเลือกใช้เส้นทางการ เดินทาง อาจทำให้เวลาการเดินทางใน 5 ปีต่อมาลดลงได้เช่นกันดังกราฟที่ 5 สะท้อนให้เห็นถึงความกระทบของ การเพิ่มจำนวนรถที่ใช้บริการถนนและการเปลี่ยนแปลงในการเลือกเส้นทาง

8.) สรุปและอภิปราย

แบบจำลอง 4 Step Model นี้เป็นการวิเคราะห์และวางแผนการเดินทางในระบบขนส่ง โดยพิจารณา ทุกๆ 5 ปี จนถึงปีที่30 สำหรับรูปแบบการเดินทางรถยนต์, ระบบขนส่งสาธารณะ, และจักรยาน การปรับปรุง ระบบขนส่งทุกปีมีผลให้ Cost (Travel Time) ของ O-D Pair เปลี่ยนแปลงการทำ Loop Feedback ทำให้ Cost เริ่มต้นที่ถูกคาดเดาตาม User Equilibrium เปลี่ยนแปลงตามเวลา โดยการปรับปรุงแต่ละปีทำให้ Cost ของ O-D Pair เปลี่ยนแปลงตามปัจจัยต่างๆ ซึ่งมีผลต่อความต้องการการเดินทางโดยส่วนใหญ่การเดินทางเป็นการเดินทาง ด้วยรถยนต์ตลอด และไม่มีการเดินทางด้วยระบบขนส่งสาธารณะตลอด 30 ปี ซึ่งอาจเกิดจากข้อจำกัดหลาย ประการ เช่น ขาดสิ่งอำนวยความสะดวก ในทางกลับกันการเดินทางภายในโซนเป็นการเดินทางด้วยจักรยาน เท่านั้น แสดงถึงความสามารถในการใช้งานรถจักรยานรวมถึงสิ่งอำนวยความสะดวกในการใช้จักรยานภายในโซน นอกจากนี้ Loop Feedback ใน User Equilibrium ช่วยให้เข้าใจการปรับปรุงระบบขนส่งและปัจจัยที่ส่งผลต่อ การเดินทาง การที่ไม่มีการเดินทางด้วยระบบขนส่งสาธารณะ หรือการที่มีเพียงเดินทางด้วยจักรยานภายในโซน แสดงถึงการใช้งานและการตอบสนองของผู้ใช้ที่สามารถนำมาปรับปรุงระบบได้ในทางที่เหมาะสม

การที่ไม่มีระบบขนส่งสาธารณะแสดงถึงผู้ใช้บริการไม่มีความสะดวกสบายในการเดินทางสาธารณะ ทำให้ ผู้คนมักเลือกใช้รถยนต์ส่วนตัวมากขึ้น ซึ่งอาจเป็นเรื่องของความสะดวกและความเร็วในการเดินทา การเดินทาง ด้วยจักรยานภายในโซนตลอดในระยะ 30 ปีนั้น สะท้อนถึงการเลือกใช้วิธีการเดินทางที่เป็นมิตรกับสิ่งแวดล้อมและ สุขภาพของผู้คน โดยที่ไม่มีการนำเข้ารถยนต์หรือใช้ระบบขนส่งสาธารณะ นอกจากนี้ระยะเวลา 30 ปีที่ได้รับการ วิเคราะห์ทุก 5 ปี พบว่าไม่มีการเปลี่ยนแปลงในรูปแบบการเดินทาง โดยที่ไม่มีระบบขนส่งสาธารณะและการ เดินทางด้วยจักรยานระหว่างโซนเลย เป็นไปได้ว่าผู้คนไม่ได้พิจารณาการเปลี่ยนแปลงเมื่อระบบการเดินทางเพิ่มขึ้น และยังคงเลือกใช้รถยนต์อยู่ จำนวนการเดินทางมีการเพิ่มขึ้นเนื่องจากการเพิ่มขึ้นของกลุ่มเป้าหมายที่มีนัยสำคัญ เมื่อมีจำนวนการเดินทางเพิ่มขึ้น ผู้คนมีแนวโน้มที่จะเริ่มต้นเปิดใช้เส้นทางใหม่ และเส้นทางที่เป็นที่นิยมในตอนแรก อาจมีการเปลี่ยนแปลงในทำนองเดียวกันข้อจำกัดและความสะดวกของระบบขนส่งอาจส่งผลต่อการเลือกใช้ รูปแบบการเดินทางในระยะยาว นอกจากนี้ความต้องการรวมถึงความสะดวกสบายของผู้ใช้บริการมีผลต่อการ

เลือกใช้รูปแบบการเดินทาง และการเลือกเส้นทางในการเดินทาง การวิเคราะห์นี้มีประโยชน์ในการวางแผนและ พัฒนาระบบขนส่งในอนาคต