Coffee Quality Institute: Q Certified Arabica Coffees

CS 513: Theory and Practice of Data Cleaning, Summer 2019

Elmar H. Langholz (elmarhl2@illinois.edu)

July 26 2019

Contents

Introduction and Overview
Initial assessment of the dataset
Coffee information
Grades/Cupping scores
Green analysis
Data Cleaning methods and process
Data cleaning with OpenRefine
Coffee information
Grades/Cupping scores
Green analysis
Data cleaning with R
Coffee information
Grades/Cupping scores
Green analysis
Relational schema and integrity constraint checks
Coffee completion date should be after creation
Coffee altitude should be larger or equal than zero
Coffee cupping scores/grades should be between zero and ten
Coffee cupping scores/grades should be have approximate total scores
Coffee cupping scores/grades should correctly report passing vs. failing
Coffee green analysis count should be larger than zero
Coffee green analysis category totals should equal
Coffee green analysis category defects should equal
Every coffee entry should have a at least one set of grades/cupping scores and green
analysis
Every coffee entry should have at most one set of grades/cupping scores and green
analysis
Data Cleaning Results
Conceptual workflows
Overview diagram
Retrieve, save and normalize coffee data diagrams
Clean data with OpenRefine diagrams
Clean data with R diagrams
Clean constraint violations diagrams
OpenRefine workflows
Coffee information diagram
Grades/Cupping scores diagram
Green analysis diagram
Changes summary
By type and stages
Totals
Conclusions and Future Work
Appendix

Retrieve data	27
Normalize data	28
Save data	29
Coffee information altitude normalization	29
Coffee information altitude unit standardization	29
Coffee information weight unit standardization	29
Coffee information green analysis pass normalization	29
Coffee grades/cupping scores pass conversion	30
Setup clean data	30
Save clean data	30
Setup and open relational database	30
Write data and list tables	30
Coffee completion integrity constraint	30
Coffee altitude integrity constraint	31
Coffee grades integrity constraint	31
Coffee grades total integrity constraint	31
Coffee grades pass integrity constraint	32
Coffee green analysis values integrity constraint	32
Coffee green analysis totals	32
Coffee green analysis defects	33
Coffee at least one grade or greens integrity constraint	33
Coffee at most one grades or greens integrity constraint	33
Setup final clean data without constaint violation entries	34
Remove integrity constraint violation entries	34
Save final clean data	34
Create OpenRefine YesWorkflow's	35
Create OpenRefine diagrams	35
Calculate row difference summaries	36
Calculate cell difference summaries	37
Calculate total row difference summaries	39
Calculate total cell difference summaries	39
Create total CSV difference files	39

Introduction and Overview

The Coffee Quality Institute¹ (CQI) is an international non-profit organization dedicated to improving the quality of coffee. As such, they provide tools and support for people that lack the understanding on how to measure the quality of the coffee they produce. They have compiled and shared their database² of Q graded arabica³ and robusta⁴ coffees which contain details about the producer, its farm, the coffee cupping scores and green coffee analysis (GCA).

As a use case, assume we want to open up our coffee sales business from wholesale to retail. In order to do this we want to leverage the data from CQI, our primary coffee provider, to implement a feature in our platform to recommend coffee. Since our target market consists of specialty coffee enthusiasts, roasters and baristas we are able to construct an advanced coffee profile with their preferences. For this to work, we must

 $^{^1}$ Coffee Quality Institute. In Coffee Quality Institute. Retrieved May 27, 2019 from https://www.coffeeinstitute.org/

 $^{^2}$ Arabica Coffees - Q Coffee. In Coffee Quality Institute. Retrieved May 27, 2019 from https://database.coffeeinstitute.org/coffees/arabica

³Coffea arabica. (2019, May 15). In Wikipedia, The Free Encyclopedia. Retrieved May 27, 2019 from https://en.wikipedia.org/wiki/Coffea arabica

⁴Robusta coffee. (2019, May 16). http://openrefine.org/http://openrefine.org/ Retrieved May 27, 2019 from https://en.wikipedia.org/wiki/Robusta_coffee

clean the CQI data and then leverage it to build a recommender system that will proactively perform these recommendations over time.

Unlike with regular coffee which is normally dark roasted to the maximum level possible, in specialty coffee the quality matters a lot more since the flavors and notes are obtained through a light roast. However, depending on preference, one might find that one is willing to sacrifice different types of quality for price (e.g. you don't care as much about aroma but you want flavor and find the presence of slight insect issues or broken beans irrelevant).

In order to make this data fit for use, we will focus on accuracy, completeness and consistency of the measured coffee quality entries. Specifically, we would like to focus on the macro and micro-location details, coffee details and quality which consists of grading/cupping scores as well as green coffee analysis.

The data is sufficiently clean and granular enough that we can correlate the farm and coffee lot to its grading/cupping scores and green coffee analysis. It can also allow us to perform analysis at the farm, producer or regional level with the intent of uncovering trends at the harvest year. With enough historical data, it can help identify patterns and predict quality based on any of these parameters. Adding other sources of data (e.g. historical weather conditions, air moisture, etc...), can potentially improve and make these predictions even more accurate.

Initial assessment of the dataset

The dataset was acquired using CQI's undocumented API, then it normalized and saved. At the time of obtaining this data there were only 3 robusta coffee records. Therefore, the focus was determined to fall fully on arabica coffees. In general the data is divided into three different areas and therefore files: coffee information, grades/cupping scores and green analysis.

Coffee information

The coffee information subset consists of 104 observations and has the following structure:

```
Classes 'tbl_df', 'tbl' and 'data.frame':
                                            104 obs. of 67 variables:
                            "arabica" "arabica" "arabica" "arabica" ...
 $ species_short
                     : chr
                            "Arabica" "Arabica" "Arabica" "Arabica" ...
 $ species_title
                     : chr
 $ origin_title
                     : chr
                            "Nicaragua" "Costa Rica" "Costa Rica" "Indonesia" ..
                            "Completed" "Completed" "Completed" ...
 $ stage_title
                     : chr
 $ createdBy_name
                     : chr
                            "COMERCIAL INTERNACIONAL EXPORTADORA, S.A." "CECA"..
 $ createdBy_username: chr
                            "CISA" "CECA" "PT-ROYAL-PACIFIC-INDAH-INTE"..
 $ country_title
                     : chr
                            NA NA NA NA ...
 $ completed_desc
                            "Jun 21st, 2018" "Jun 6th, 2018" "Jun 6th, 2018" "...
                     : chr
                            "May 10th, 2018" "May 17th, 2018" "May 17th, 2018"...
 $ created desc
                     : chr
 $ icp_title
                            "Instituto Hondureño del Café" "Specialty Coffee "...
                     : chr
 $ icp_short
                     : chr
                            "ihcafe" "scacr" "SCAI" ...
                            83.5 81.8 83.6 78.5 78.3 ...
 $ grade_f
                     : num
 $ pass_cert
                            1 1 1 0 0 1 0 0 1 1 ...
                     : num
                            NA "3095-1000" "3095-1000" "20352" ...
 $ zip
                     : chr
 $ weight_unit
                     : chr
                            "kg" "kg" "kg" "kg" ...
 $ weight
                     : num
                            69 69 69 1 69 69 1 69 69 60 ...
 $ viewable
                     : num
                            1 1 1 1 1 1 1 1 1 1 ...
 $ varietal
                            5 6 6 14 4 4 0 0 4 37 ...
                     : num
 $ url
                     : logi NA NA NA NA NA NA ...
 $ thiscoffee
                            NA 1 1 1 NA NA NA 1 NA 5 ...
                     : num
 $ status
                            1 1 1 1 1 1 1 1 1 1 ...
                     : num
 $ state
                     : chr
                            "MANAGUA" "San José" "San José" "SUNGGAL" ...
```

```
$ stage
                   : num 666666666 ...
$ species
                   : num 1 1 1 1 1 1 1 1 1 1 ...
$ ship
                   : logi NA NA NA NA NA NA ...
                   : chr "Jinotega" "Tarrazu" "Tarrazu" NA ...
$ region
$ reason
                   : num NA 3 3 NA NA NA NA 3 NA 1 ...
                   : num 344617 674386 324816 875590 946016 ...
$ random id
$ producer
                          "Rolando Lacayo" "Martin Gutierrez" "Martin Gutie"..
                   : chr
$ processing
                   : num 2 2 2 1 2 2 1 NA 2 2 ...
$ phone
                   : chr
                         "(505) 2255 9200" "(506) 22024400" "(506) 22024400""...
$ origin
                   : num 160 54 54 104 93 93 104 143 93 217 ...
$ offer
                   : chr NA NA NA NA ...
                          "COMERCIAL INTERNACIONAL EXPORTADORA, S.A." "CECA"..
$ name
                   : chr
                   : chr "Beneficio San Carlos" "Beneficio Montañas del Di"..
$ mill
                  : chr "829721 / K1820012" "9162" "9162-3" "1" ...
$ lot
                  : num 44679 44889 44890 45012 45113 ...
$ invoice
$ image_5
                   : logi NA NA NA NA NA NA ...
                  : logi NA NA NA NA NA NA ...
$ image_4
$ image 3
                  : logi NA NA NA NA NA NA ...
$ image_2
                  : logi NA NA NA NA NA NA ...
$ image 1
                  : logi NA NA NA NA NA NA ...
$ icp
                  : num 22 3 3 8 6 6 8 31 6 21 ...
$ ico
                  : chr "017/001/1578" "5-025-0189" "5-025-0190" NA ...
$ iam
                  : num NA 3 3 3 NA NA NA 6 NA 6 ...
$ harvest
                  : chr
                          "2018" "2018" "2018" "2018" ...
                : chr "Y" "Y" "Y" "N" ...
$ green_pass
$ grade_id
                  : num 496470 670071 825826 538985 992773 ...
$ grade
                   : num 83.5 81.8 83.6 78.5 78.3 ...
$ farm_long
                   : chr NA NA NA NA ...
$ farm_lat
                   : chr NA NA NA NA ...
                          "Cafetales Santa Matilde" "Gamboa" "Gamboa" "ELMA"..
$ farm
                   : chr
$ description
                   : chr
                          NA NA NA NA ...
$ createdBy
                   : num 11014 7765 7765 16482 1209 ...
                  : num 1.53e+09 1.53e+09 1.53e+09 1.53e+09 1.53e+09 ...
$ created
                  : num NA NA NA NA NA NA NA NA NA ...
$ country
                   : num 1.53e+09 1.53e+09 1.53e+09 1.53e+09 ...
$ completed
                  : chr "COMERCIAL INTERNACIONAL EXPORTADORA, S.A." "CECA"...
$ company
$ city
                  : chr "MANAGUA" "Montes de Oca" "Montes de Oca" "MEDAN" ..
$ carrier
                   : logi NA NA NA NA NA NA ...
$ buyer
                   : chr NA NA NA NA ...
$ bags
                  : num 275 245 80 2 275 50 2 250 275 50 ...
$ altitude_unit
                  : chr "m" "m" "m" "m" ...
$ altitude
                   : chr "1100" "1850" "1850" NA ...
$ address
                   : chr NA "De la entrada al Parqueo del Mall San Pedro, "...
$ DT_RowId
                   : num 344617 674386 324816 875590 946016 ...
                   : num 1 2 3 4 5 6 7 8 9 10 ...
$ row_index
```

Grades/Cupping scores

The grades/cupping scores subset consists of 103 observations and has the following structure:

```
Classes 'tbl_df', 'tbl' and 'data.frame': 103 obs. of 14 variables:

$ aroma : num 7.75 7.75 7.5 7.42 7 ...

$ flavor : num 7.75 7.5 7.58 6.75 ...

$ after : num 7.5 7.25 7.33 7.17 6.75 ...
```

```
$ acidity
           : num 7.58 7.33 7.67 7.58 7 ...
$ body
           : num 7.83 7.33 7.58 7.33 6.92 ...
$ mouthfeel : num  0 0 0 0 0 0 0 0 0 ...
$ balance
           : num 7.5 7.25 7.58 7.33 6.92
$ uniformity: num 10 10 10 10 10 10 10 10 10 ...
           : num 10 10 10 10 10 10 10 10 10 10 ...
$ clean
$ sweet
           : num 10 10 10 6.67 10 ...
$ overall
           : num
                  7.58 7.42 8.33 7.42 7 ...
$ total
           : num 83.5 81.8 83.6 78.5 78.3 ...
$ pass
           : num 1 1 1 0 0 1 1 1 1 1 ...
$ random_id : num 344617 674386 324816 875590 946016 ...
```

Green analysis

The green analysis subset consists of 103 observations and has the following structure:

```
Classes 'tbl df', 'tbl' and 'data.frame':
                                           103 obs. of 27 variables:
 $ full_black
                          : num
                                0 0 0 0 0 0 0 0 0 0 ...
 $ full_sour
                          : num
                                0000000000...
 $ dried_cherry
                                0 0 0 0 0 0 0 0 0 0 ...
                          : num
 $ fungus
                                0 0 0 0 0 0 0 0 0 0 ...
                          : num
 $ severe_insect
                                2005001000...
                          : num
 $ foreign_matter
                          : num
                                0 0 0 0 0 0 0 0 0 0 ...
 $ partial_black
                         : num
                                5 0 0 1 5 0 0 0 2 0 ...
 $ partial_sour
                                1 0 0 12 0 0 0 1 0 0 ...
                         : num
 $ parchment
                         : num
                                0 0 0 0 0 0 0 0 0 0 ...
 $ floater
                                0000000000...
                         : num
 $ immature
                         : num
                                0 3 2 32 0 1 26 26 0 0 ...
 $ withered
                         : num
                                0 0 0 0 0 0 0 7 0 0 ...
 $ shell
                                15 2 2 0 4 3 0 1 8 0 ...
                          : niim
 $ broken
                                9 3 2 160 13 10 62 17 14 1 ...
                          : num
 $ hull
                                0 0 0 0 0 0 0 0 0 0 ...
                          : num
 $ slight_insect
                                3 0 10 20 1 0 3 10 0 0 ...
                          : num
 $ moisture
                          : num
                                11 11 11 14 10 10 14 11 11 11 ...
 $ color
                                4 3 4 4 4 4 4 4 4 ...
                          : num
                                0 0 0 0 0 0 0 0 0 0 ...
 $ agtron
                          : num
 $ quakers
                                0 0 0 5 2 1 5 0 2 0 ...
                          : num
                                 "Green" "Bluish-Green" "Green" "Green" ...
                          : chr
 $ color_title
 $ category_one_total
                          : num
                                2005001000...
 $ category_two_total
                          : num
                                33 8 16 225 23 14 91 62 24 1 ...
 $ category_one_equivalent: num
                                0 0 0 1 0 0 0 0 0 0 ...
 $ category_two_equivalent: num
                                5 0 1 44 3 2 17 10 3 0 ...
 $ pass
                          : logi
                                 TRUE TRUE TRUE FALSE TRUE TRUE ...
 $ random_id
                          : num 344617 674386 324816 875590 946016 ...
```

Data Cleaning methods and process

Data cleaning with OpenRefine

The coffee information dataset has several issues which were addressed using OpenRefine⁵. The operation history has been stored in the supplemental information as JSON files (*_recipe.json) under the data/openrefine directory.

⁵openrefine.github.com. In *OpenRefine*. Retrieved June 3, 2019 from http://openrefine.org/

Coffee information

Corresponding to text columns the following was addressed: spelling mistakes/typos, inconsistency between abbreviation vs. no abbreviation, text casing mismatch, and extra spaces (leading, trailing and in between). These issues were present in the following columns of interest: country_title, state, region, producer, name, mill, farm, company, city, carrier and buyer. Date columns completed_desc and created_desc were also standardized to use ISO. Across the board, NA and None are used to convey the same meaning and were standardize to use either empty or None (one or the other).

Grades/Cupping scores

No major changes were performed on this subset of the data.

Green analysis

No major changes were performed on this subset of the data.

Data cleaning with R

More transformations were performed using R which did not fit well using OpenRefine.

Coffee information

Some altitudes are ranges instead of units: **1500-2000**. Due to this, we normalized it by calculating the mid-point between the range, and converted the values to numeric. Two different types of altitude units were used: feet (ft) and meters (m). These were standardized by converting feet to meters. As a point in hand, two different types of weight units were used: pounds (lbs) and kilograms (kg). These were standardized by converting pounds to kilograms. Finally, the green analysis pass column green_pass was normalized from numeric to logical.

Grades/Cupping scores

The pass column was normalized from numeric to logical.

Green analysis

No major changes were performed on this subset of the data.

Relational schema and integrity constraint checks

Using the clean data a SQLite database was setup and opened and each data subset written to a corresponding table with the same name. In order to address violation constraints, rows corresponding to these were removed.

Coffee completion date should be after creation

In denial form, we report all the integrity constraint violations for coffee entries which completion date is before its creation date:

random_id	created	completed
532954	1530489600	1529971200
990730	1530489600	1529884800
856523	1530230400	1529884800
790329	1530489600	1529884800
127616	1530489600	1529884800
816803	1530489600	1529971200
401052	1530489600	1529971200
768955	1530489600	1529971200
111259	1543017600	1530662400
138073	1538697600	1534982400
858333	1547596800	1540944000
696491	1549670400	1548633600
995923	1549670400	1549497600
565006	1550707200	1549929600
761203	1558396800	1552694400

This could mean that the cupping score/grading was finished before the entry was created within the system. For this reason, we keep the entries.

Coffee altitude should be larger or equal than zero

In denial form, we report all the integrity constraint violations for coffee entries that have an altitude less or equal than zero:

random id	altitude

No issues were found.

Coffee cupping scores/grades should be between zero and ten

In denial form, we report all the integrity constraint violations for coffee entries that have grades less than zero or larger than ten:

random_id

No issues were found.

Coffee cupping scores/grades should be have approximate total scores

In denial form, we report all the integrity constraint violations for coffee grades that do not have a close enough total score:

No issues were found.

Coffee cupping scores/grades should correctly report passing vs. failing

In denial form, we report all the integrity constraint violations for coffee grades that do not mark coffees with a score of larger than or equal to 80 as pass, otherwise fail:

random_id	total	pass
-----------	-------	------

No issues were found.

Coffee green analysis count should be larger than zero

In denial form, we report all the integrity constraint violations for coffee green analysis that have grades less than zero:

$$random_id$$

No issues were found.

Coffee green analysis category totals should equal

In denial form, we report all the integrity constraint violations for coffee green analysis whose totals per category do not match the manually calculated values:

random_id	one_total	category_one_total	two_total	category_two_total
995923	46	23	392	196

In this case the manually calculated total amounts (one_total and two_total) are double (2x) the ones reported by the data set. This could be caused by a either an ETL process gone wrong or an incorrect data entry so it will be removed from the data set.

Coffee green analysis category defects should equal

In denial form, we report all the integrity constraint violations for coffee green analysis whose calculated defects per category do not match the manually calculated ones:

random_id	one_defects	category_one_equivalent	two_defects	category_two_equivalent
995923	15	7	73	36

As in the case before for the same entry, we see that the manually calculated defect amounts (one_defects and two_defects) are larger by two times plus one (2x + 1) the reported value by the data set. This could be caused by a either an ETL process gone wrong or an incorrect data entry so it will be removed from the data set.

Every coffee entry should have a at least one set of grades/cupping scores and green analysis

In denial form, we report all the integrity constraint violations for coffee entries that do not exist in the grades/cupping scores and green analysis subset when they do within the coffee information:

Grades/cupping scores

random_id	farm	mill	producer
742679	El Prado	Neiva	Franklin Dussan

Green analysis

random_id	farm	mill	producer
742679	El Prado	Neiva	Franklin Dussan

In this case we are missing an entry in both. It could mean that it still has not been added and/or reviewed. These entries will be removed from the data set.

Every coffee entry should have at most one set of grades/cupping scores and green analysis

In denial form, we report all the integrity constraint violations for coffee entries that have more than one entries for the grades/cupping scores or green analysis subset:

Grades	cupping/	scores

random_id

Green analysis

random_id

No issues were found.

Data Cleaning Results

In order to understand the above process and summarize the data cleaning results, diagrams and changes summaries per data file were constructed.

Conceptual workflows

A retrieve and clean workflow was manually created using YesWorkflow⁶ and is provided as supplemental information as workflow/coffee.yw. Following are multiple visualization levels of it.

Overview diagram

Figure 1: Level 0 - Retrieve and clean workflow

 $^{^6} Yes Workflow - Git Hub. \ In \ \textit{Git Hub}. \ Retrieved \ June \ 6, \ 2019 \ from \ https://github.com/yesworkflow-org/linearized-linearize$

Retrieve, save and normalize coffee data diagrams

Figure 2: Level 1 - Retrieve, save and normalize coffee data

11

Clean data with OpenRefine diagrams

Figure 3: Level 1 - Clean data with OpenRefine

Figure 4: Level 2 - Clean coffee information with OpenRefine

Clean data with R diagrams

Figure 5: Level 1 - Clean data with R

14

Figure 6: Level 2 - Clean coffee informatino with R

Clean constraint violations diagrams

Figure 7: Level 1 - Clean constraint violation

16

OpenRefine workflows

Using or2yw⁷ three YesWorklow files (included in the supplemental information under the workflow/openrefine/*.yw directory) were automatically generated for the data cleaning changes performed using OpenRefine. Following, the corresponding diagrams (one per each data file) are included.

⁷or2ywtool - PyPI. In *PyPI - the Python Package Index*. Retrieved July 17, 2019 from https://pypi.org/project/or2ywtool/

Coffee information diagram

Figure 8: OpenRefine coffee information changes

${\bf Grades/Cupping\ scores\ diagram}$

Figure 9: OpenRefine grades/cupping scores changes

Green analysis diagram

Figure 10: OpenRefine green analysis changes

Changes summary

Using csvdiff⁸, the changes performed in total and at each stage can be calculated per each file by the amount rows that were either removed, added and/or changed. For cell changes, csv_diff⁹ was used to complete the presented results.

By type and stages

The changes by type and stages can be summarized with the following tables.

Coffee information

Row changes

	Removed	Added	Changed
OpenRefine	0 rows (0.0%)	0 rows (0.0%)	104 rows (100.0%)
R	0 rows (0.0%)	0 rows (0.0%)	104 rows (100.0%)
Constraints	2 rows (1.9%)	0 rows (0.0%)	0 rows (0.0%)

⁸csvdiff - PyPI. In *PyPI - the Python Package Index*. Retrieved July 14, 2019 from https://pypi.org/project/csvdiff/9helpers-scripts/csv_diff.py at master - maozza/helpers-scripts. In *Github*. Retrieved July 20, 2019 from https://github.com/maozza/helpers-scripts/blob/master/csv_diff.py

OpenRefine cell changes

Column name	Changed
altitude	1 cells (1%)
buyer	2 cells (1.9%)
carrier	104 cells (100%)
city	34 cells (32.7%)
company	70 cells (67.3%)
completed_desc	104 cells (100%)
country	50 cells (48.1%)
country_title	50 cells (48.1%)
created_desc	104 cells (100%)
createdBy_name	57 cells (54.8%)
farm	58 cells (55.8%)
grade_f	20 cells (19.2%)
green_pass	1 cells (1%)
iam	40 cells (38.5%)
image_1	104 cells (100%)
image_2	104 cells (100%)
image_3	104 cells (100%)
image_4	104 cells (100%)
image_5	104 cells (100%)
mill	74 cells (71.2%)
name	70 cells (67.3%)
origin_title	2 cells (1.9%)
processing	2 cells (1.9%)
producer	63 cells (60.6%)
reason	41 cells (39.4%)
region	51 cells (49%)
ship	104 cells (100%)
state	38 cells (36.5%)
thiscoffee	40 cells (38.5%)
url	104 cells (100%)

R cell changes

Column name	Changed
address	7 cells (6.7%)
altitude	11 cells (10.6%)
buyer	95 cells (91.3%)
carrier	104 cells (100%)
country	50 cells (48.1%)
country_title	49 cells (47.1%)
description	95 cells (91.3%)
farm	2 cells (1.9%)
farm_lat	94 cells (90.4%)
farm_long	95 cells (91.3%)
green_pass	104 cells (100%)
iam	40 cells (38.5%)
ico	26 cells (25%)
icp_title	32 cells (30.8%)
image_1	104 cells (100%)
image_2	104 cells (100%)
image_3	104 cells (100%)
image_4	104 cells (100%)
image_5	104 cells (100%)
offer	101 cells (97.1%)
processing	2 cells (1.9%)
producer	2 cells (1.9%)
reason	41 cells (39.4%)
region	2 cells (1.9%)
ship	104 cells (100%)
state	7 cells (6.7%)
thiscoffee	40 cells (38.5%)
url	104 cells (100%)
weight	1 cells (1%)
zip	12 cells (11.5%)

Constraints cell changes

Column name	Changed
-------------	---------

Grades/Cupping scores

	Removed	Added	Changed
OpenRefine	0 rows (0.0%)	0 rows (0.0%)	0 rows (0.0%)
R	0 rows (0.0%)	0 rows (0.0%)	0 rows (0.0%)
Constraints	1 rows (1.0%)	0 rows (0.0%)	0 rows (0.0%)

${\bf Open Refine\ cell\ changes}$

Column name	Changed
-------------	---------

R cell changes

Constraints cell changes

Column name	Changed
-------------	---------

Green analysis

	Removed	Added	Changed
OpenRefine	0 rows (0.0%)	0 rows (0.0%)	2 rows (1.9%)
R	0 rows (0.0%)	0 rows (0.0%)	2 rows (1.9%)
Constraints	1 rows (1.0%)	0 rows (0.0%)	0 rows (0.0%)

${\bf Open Refine\ cell\ changes}$

Column name	Changed	
pass	2 cells (1.9%)	

${\bf R}$ cell changes

Column name	Changed	
pass	2 cells (1.9%)	

Constraints cell changes

Totals

The total row changes between when the data that was first downloaded and the final data cleaning changes can then be summarized as follows:

	Removed	Added	Changed
Coffee information	2 rows (1.9%)	0 rows (0.0%)	102 rows (98.1%)
Grades/Cupping scores	1 rows (1.0%)	0 rows (0.0%)	0 rows (0.0%)
Green analysis	1 rows (1.0%)	0 rows (0.0%)	0 rows (0.0%)

Since only the coffee information ended with changes, the total cell changes between when the data that was first downloaded and the final data cleaning changes can then be summarized as follows:

Column name	Changed
address	7 cells (6.7%)
altitude	11 cells (10.6%)
buyer	95 cells (91.3%)
city	33 cells (31.7%)
company	68 cells (65.4%)
completed_desc	102 cells (98.1%)
country_title	1 cells (1%)
created_desc	102 cells (98.1%)
createdBy_name	55 cells (52.9%)
description	93 cells (89.4%)
farm	59 cells (56.7%)
farm_lat	92 cells (88.5%)
farm_long	93 cells (89.4%)
grade_f	20 cells (19.2%)
green_pass	102 cells (98.1%)
ico	26 cells (25%)
icp_title	32 cells (30.8%)
mill	73 cells (70.2%)
name	68 cells (65.4%)
offer	99 cells (95.2%)
origin_title	2 cells (1.9%)
producer	64 cells (61.5%)
region	52 cells (50%)
state	45 cells (43.3%)
weight	1 cells (1%)
zip	11 cells (10.6%)

The difference files were also calculated and are stored in the supplemental information under the data/diff directory.

Conclusions and Future Work

From the changes summary, we can observe that we ended up modifying every single row corresponding to the coffee information using OpenRefine and R. On the other hand, very few modifications were performed on the grades/cupping scores and green analysis data files. This makes sense taking into consideration that the coffee information data contained many string entries while the grades/cupping scores contained primarily numeric values. Overall, the amount of changes with respect to the original data are substantial.

One major problem encountered early on was eagerly updating new data from the source. Initially we ran the data retrieval process to acquire the data from the web site frequently (since it was fully automated) because we believed it changed infrequently. However, that was not the case and therefore it was hard to establish a data cleaning loop during development since we ended up having to compensate for the updates as well. For this reason we decided to take a snapshot of the data (including date/time) and work offline.

With more time, we would have reached out to CQI and try to resolve someof the issues encountered in the data set. To start with, we assumed that it is possible to have a completion date which is before their creation date. This should be confirmed with them. Also, while all constraint violations were removed, some of these could have been fixed instead. Such is the case of coffee greens total and coffee greens defect. Finally, it would have been great to further clean the data to obtain the coordinates for the producers and have a better sense of location of the farms. Withit we could visually inspect the data in a more practical way.

Appendix

Retrieve data

```
create_date_marker_file <- function (file_path) {</pre>
  file_connection <- file(file_path)</pre>
  current date <- strftime(now(), "%Y-%m-%dT%H:%M:%S%z")
  writeLines(current_date, file_connection)
  close(file_connection)
data_path <- "./data"
download_path <- file.path(data_path, "download")</pre>
coffees_object_file_path <- file.path(download_path, "coffees.rds")</pre>
coffee_details_object_file_path <- file.path(download_path, "coffee_details.rds")</pre>
coffees_file_path <- file.path(download_path, "coffees.csv")</pre>
coffee_grades_file_path <- file.path(download_path, "coffee_grades.csv")</pre>
coffee_greens_file_path <- file.path(download_path, "coffee_greens.csv")</pre>
coffee_date_file_path <- file.path(download_path, "coffees_date.txt")</pre>
coffee_details_date_file_path <- file.path(download_path, "coffee_details_date.txt")</pre>
data_frame_from_list <- function (data) {</pre>
  normalized_values <- lapply(data, function (row) {</pre>
    row[sapply(row, is.null)] <- NA</pre>
    unlist(row)
  })
  data_matrix <- do.call("rbind", normalized_values)</pre>
  data_frame <- as.data.frame(data_matrix, stringsAsFactors = FALSE)</pre>
  data_frame
retrieve_coffees <- function (</pre>
  url = "https://database.coffeeinstitute.org/api/coffees/arabicaAjax",
  start = 0.
  length = 0) {
  body <- list(start = start, length = length)</pre>
  response <- POST(url, body = body, encode = "form")</pre>
  value <- content(response)</pre>
  data_frame <- data_frame_from_list(value$data)</pre>
  data_frame
retrieve_coffee_details <- function (identifier, base_url) {</pre>
  url <- file.path(base_url, identifier)</pre>
  response <- GET(url)
  value <- content(response)</pre>
  value
}
retrieve_details <- function (</pre>
  coffees df,
  base_url = "https://database.coffeeinstitute.org/api/coffee/random") {
  identifiers <- as.numeric(coffees_df$random_id)</pre>
```

```
details_list <- lapply(identifiers, function (identifier) {
    value <- retrieve_coffee_details(identifier, base_url)
    value
})

details_list
}

dir.create(data_path, showWarnings = FALSE)

dir.create(download_path, showWarnings = FALSE)

coffees_df <- retrieve_coffees()

saveRDS(coffees_df, file = coffees_object_file_path)

create_date_marker_file(coffee_date_file_path)

details <- retrieve_details(coffees_df)

saveRDS(details, file = coffee_details_object_file_path)

create_date_marker_file(coffee_date_file_path)

create_date_marker_file(coffee_details_object_file_path)</pre>
```

Normalize data

```
normalize_details <- function (details_list) {</pre>
  grade_by_id <- lapply(details_list, function (details) {</pre>
    row <- NA
    if (is.list(details$grade)) {
      row <- details$grade
      row$random_id <- details$random_id</pre>
    }
    row
  })
  grades_df <- data_frame_from_list(grade_by_id)</pre>
  green_by_id <- lapply(details_list, function (details) {</pre>
    row <- NA
    if (is.list(details$green)) {
      row <- details$green
      row$random_id <- details$random_id</pre>
    }
    row
  })
  greens_df <- data_frame_from_list(green_by_id)</pre>
  list(grades = grades_df, greens = greens_df)
normalize_grades <- function (grades_df) {</pre>
  grades_df <- grades_df[complete.cases(grades_df$random_id), ]</pre>
  grades_df
normalize_greens <- function (greens_df) {</pre>
  greens_df$pass <- as.logical(greens_df$pass)</pre>
  greens_column_names <- colnames(greens_df)</pre>
```

```
remove <- c("color_title", "pass")
integer_column_names <- greens_column_names[!(greens_column_names %in% remove)]
for (column_name in integer_column_names) {
    greens_df[[column_name]] <- as.numeric(greens_df[[column_name]])
}

greens_df <- greens_df[complete.cases(greens_df$random_id), ]
    greens_df
}

normalized_details <- normalize_details(details)
grades_df <- normalize_grades(normalized_details$grades)
greens_df <- normalize_greens(normalized_details$greens)</pre>
```

Save data

```
write_csv(coffees_df, coffees_file_path)
write_csv(grades_df, coffee_grades_file_path)
write_csv(greens_df, coffee_greens_file_path)
rm(details)
rm(normalized_details)
```

Coffee information altitude normalization

```
range_1500_2000 <- coffees_or_df$altitude == "1500-2000"
coffees_or_df$altitude[range_1500_2000] <- 1500 + ((2000 - 1500) / 2)
coffees_or_df$altitude <- as.numeric(coffees_or_df$altitude)</pre>
```

Coffee information altitude unit standardization

```
feet_units <- coffees_or_df$altitude_unit == "ft"
coffees_or_df$altitude[feet_units] <- coffees_or_df$altitude[feet_units] * 0.3048</pre>
```

Coffee information weight unit standardization

```
pound_units <- coffees_or_df$weight_unit == "lbs"
coffees_or_df$weight[pound_units] <- coffees_or_df$weight[pound_units] * 0.453592</pre>
```

Coffee information green analysis pass normalization

```
yes <- coffees_or_df$green_pass == "Y"
no <- coffees_or_df$green_pass == "N"
coffees_or_df$green_pass[yes] <- "TRUE"
coffees_or_df$green_pass[no] <- "FALSE"
coffees_or_df$green_pass <- as.logical(coffees_or_df$green_pass)</pre>
```

Coffee grades/cupping scores pass conversion

```
greens_or_df$pass <- as.logical(greens_or_df$pass)</pre>
```

Setup clean data

```
clean_path <- file.path(data_path, "clean")
coffees_clean_file_path <- file.path(clean_path, "coffees.csv")
coffee_grades_clean_file_path <- file.path(clean_path, "coffee_grades.csv")
coffee_greens_clean_file_path <- file.path(clean_path, "coffee_greens.csv")
dir.create(clean_path, showWarnings = FALSE)</pre>
```

Save clean data

```
write_csv(coffees_or_df, coffees_clean_file_path)
write_csv(grades_or_df, coffee_grades_clean_file_path)
write_csv(greens_or_df, coffee_greens_clean_file_path)
rm(coffees_or_df)
rm(grades_or_df)
rm(greens_or_df)
```

Setup and open relational database

```
coffees <- read_csv(coffees_clean_file_path)
grades <- read_csv(coffee_grades_clean_file_path)
greens <- read_csv(coffee_greens_clean_file_path)

ic_violation_ids_to_remove <- NULL
database_path <- file.path(data_path, "database")
dir.create(database_path, showWarnings = FALSE)
database_file_path <- file.path(database_path, "coffee.db")
connection <- dbConnect(RSQLite::SQLite(), database_file_path)</pre>
```

Write data and list tables

```
dbWriteTable(connection, "coffees", coffees)
dbWriteTable(connection, "grades", grades)
dbWriteTable(connection, "greens", greens)
dbListTables(connection)
```

Coffee completion integrity constraint

```
query <-
"
SELECT random_id, created_desc as created, completed_desc as completed
FROM coffees
WHERE created_desc > completed_desc
```

```
result <- dbGetQuery(connection, query)</pre>
```

Coffee altitude integrity constraint

```
query <-
"
SELECT random_id, altitude
  FROM coffees
WHERE altitude <= 0
"
result <- dbGetQuery(connection, query)</pre>
```

Coffee grades integrity constraint

Coffee grades total integrity constraint

Coffee grades pass integrity constraint

Coffee green analysis values integrity constraint

Coffee green analysis totals

```
query <-
SELECT A.random id, A.one total, B.category one total,
       A.two_total, B.category_two_total
  FROM (
        SELECT random_id,
               (full_black + full_sour + dried_cherry
                + fungus + severe_insect + foreign_matter) as one_total,
               (partial_black + partial_sour + parchment + floater + immature
                + withered + shell + broken + hull + slight_insect) as two_total
          FROM greens
       ) as A
  JOIN greens as B
   ON A.random_id = B.random_id
 WHERE ABS(A.one_total - B.category_one_total) > 0
       OR ABS(A.two_total - B.category_two_total) > 0
result <- dbGetQuery(connection, query)
```

Coffee green analysis defects

```
query <-
SELECT A.random_id, A.one_defects, B.category_one_equivalent,
       A.two_defects, B.category_two_equivalent
  FROM (
        SELECT random_id,
               (full_black + full_sour + dried_cherry
                + fungus + FLOOR(severe_insect / 5) + foreign_matter) as one_defects,
               (FLOOR(partial_black / 3) + FLOOR(partial_sour / 3)
                + FLOOR(parchment / 5) + FLOOR(floater / 5)
                + FLOOR(immature / 5) + FLOOR(withered / 5)
                + FLOOR(shell / 5) + FLOOR(broken / 5)
                + FLOOR(hull / 5) + FLOOR(slight_insect / 10)) as two_defects
          FROM greens
       ) as A
  JOIN greens as B
   ON A.random_id = B.random_id
WHERE ABS(A.one_defects - B.category_one_equivalent) > 0
       OR ABS(A.two_defects - B.category_two_equivalent) > 0
result <- dbGetQuery(connection, query)
```

Coffee at least one grade or greens integrity constraint

```
query <-
"
SELECT random_id, farm, mill, producer
   FROM coffees
WHERE random_id NOT IN (SELECT random_id FROM grades)
"
result <- dbGetQuery(connection, query)

query <-
"
SELECT random_id, farm, mill, producer
   FROM coffees
WHERE random_id NOT IN (SELECT random_id FROM greens)
"
result <- dbGetQuery(connection, query)</pre>
```

Coffee at most one grades or greens integrity constraint

```
query <-
"
SELECT random_id
FROM coffees
WHERE random_id IN (
    SELECT random_id
    FROM (</pre>
```

```
SELECT random_id, count(*) as count
          FROM grades GROUP BY random_id
      )
    WHERE count > 1
result <- dbGetQuery(connection, query)</pre>
query <-
SELECT random_id
 FROM coffees
WHERE random id IN (
   SELECT random id
      FROM (
        SELECT random_id, count(*) as count
          FROM greens GROUP BY random_id
    WHERE count > 1
)
result <- dbGetQuery(connection, query)</pre>
```

Setup final clean data without constaint violation entries

```
final_path <- file.path(data_path, "final")
coffees_final_file_path <- file.path(final_path, "coffees.csv")
coffee_grades_final_file_path <- file.path(final_path, "coffee_grades.csv")
coffee_greens_final_file_path <- file.path(final_path, "coffee_greens.csv")
dir.create(final_path, showWarnings = FALSE)</pre>
```

Remove integrity constraint violation entries

```
coffees_final <- coffees[!(coffees$random_id %in% ic_violation_ids_to_remove),]
grades_final <- grades[!(grades$random_id %in% ic_violation_ids_to_remove),]
greens_final <- greens[!(greens$random_id %in% ic_violation_ids_to_remove),]</pre>
```

Save final clean data

```
write_csv(coffees_final, coffees_final_file_path)
write_csv(grades_final, coffee_grades_final_file_path)
write_csv(greens_final, coffee_greens_final_file_path)
rm(coffees_final)
rm(grades_final)
rm(greens_final)
```

Create OpenRefine YesWorkflow's

```
full_file_path <- function (file_path) { file.path(getwd(), file_path) }</pre>
or2yw_yw <- function (source_file_path, target_file_path) {</pre>
  source <- file.path(getwd(), source_file_path)</pre>
  target <- file.path(getwd(), target file path)</pre>
  command <- paste0(</pre>
    "or2yw -i \"",
    source,
    "\" -0 \"",
    target,
    "\"")
  result <- try(system(command, intern = TRUE))</pre>
  result
}
openrefine_workflow_path <- "./workflow/openrefine"</pre>
dir.create(openrefine workflow path, showWarnings = FALSE)
recipe names <- c(
  "coffees recipe.json",
  "coffee_grades_recipe.json",
  "coffee_greens_recipe.json")
recipe file paths <- sapply(</pre>
  recipe_names,
  function (name, path) { file.path(path, name) },
  openrefine_path)
worfklow_names <- c("coffees.yw", "coffee_grades.yw", "coffee_greens.yw")</pre>
worfklow_paths <- sapply(</pre>
  worfklow_names,
  function (name, path) { file.path(path, name) },
  openrefine_workflow_path)
result <- mapply(</pre>
  function (source, target) { or2yw_yw(source, target) },
  recipe_file_paths,
  worfklow paths)
```

Create OpenRefine diagrams

```
or2yw_png <- function (source_file_path, target_file_path) {
  source <- file.path(getwd(), source_file_path)
  target <- file.path(getwd(), target_file_path)
  target <- gsub(" ", "\ ", target)
  command <- paste0(
    "or2yw -i \"",
    source,
    "\" -o \"\\\"",
  target,
    "\\"\" -ot png")
  result <- try(system(command, intern = TRUE))
  result
}</pre>
```

```
openrefine_workflow_image_path <- "./workflow/openrefine/png"
dir.create(openrefine_workflow_image_path, showWarnings = FALSE)
worfklow_image_names <- c("coffees.png", "coffee_grades.png", "coffee_greens.png")
worfklow_image_paths <- sapply(
    worfklow_image_names,
    function (name, path) { file.path(path, name) },
    openrefine_workflow_image_path)
result <- mapply(
    function (source, target) { or2yw_png(source, target) },
    recipe_file_paths,
    worfklow_image_paths)</pre>
```

Calculate row difference summaries

```
create_file_path_pairs <- function (paths, file_names) {</pre>
  lapply(file_names, function (file_name) {
    file_paths <- sapply(paths, function (path, file) {</pre>
      file_path <- file.path(path, file)</pre>
      file_path
    },
    file_name)
    file_path_pairs <- list()</pre>
    file_paths_length <- length(file_paths)</pre>
    if (file_paths_length > 1) {
      for (index in 2:file_paths_length) {
        source <- file_paths[index - 1]</pre>
        target <- file_paths[index]</pre>
        file_path_pairs[[index - 1]] <- list(source = source, target = target)</pre>
      }
    }
    file_path_pairs
  })
}
csvdiff_row_summary <- function (source_file_path, target_file_path) {</pre>
  source <- file.path(getwd(), source_file_path)</pre>
  target <- file.path(getwd(), target_file_path)</pre>
  command <- paste0(</pre>
    "csvdiff --style=summary random_id \"",
    "\" \"",
    target,
    "\"")
  result <- try(system(command, intern = TRUE))</pre>
  result
}
paths <- c(download_path, openrefine_path, clean_path, final_path)</pre>
file_names <- c("coffees.csv", "coffee_grades.csv", "coffee_greens.csv")
```

```
file_path_pairs <- create_file_path_pairs(paths, file_names)</pre>
row_summaries <- lapply(file_path_pairs, function (file_pairs) {</pre>
  file_summaries <- lapply(file_pairs, function (pair) {</pre>
    summary <- csvdiff_row_summary(pair$source, pair$target)</pre>
    result <- NULL
    if (length(summary) > 1) {
      removed <- gsub("removed ", "", summary[1])</pre>
      added <- gsub("added ", "", summary[2])</pre>
      changed <- gsub("changed ", "", summary[3])</pre>
      result <- data.frame(</pre>
        Removed = removed.
        Added = added,
        Changed = changed,
        stringsAsFactors = FALSE)
    } else if (length(summary) == 1) {
      result <- data.frame(</pre>
        Removed = "0 rows (0.0\%)",
        Added = "0 rows (0.0\%)",
        Changed = "0 rows (0.0\%)",
        stringsAsFactors = FALSE)
    }
    result
  })
  df <- do.call(rbind, file summaries)</pre>
  rownames(df) <- c("OpenRefine", "R", "Constraints")</pre>
  df
})
```

Calculate cell difference summaries

```
file empty <- function (file path) {</pre>
  info <- file.info(file_path)</pre>
  empty <- info$size == 0</pre>
  empty
csvdiff_cell_summary <- function (source_file_path, target_file_path) {</pre>
  source <- file.path(getwd(), source_file_path)</pre>
  target <- file.path(getwd(), target_file_path)</pre>
  command <- paste0(</pre>
    "python3 ./deps/csv_diff.py -src \"",
    source,
    "\" -dest \"".
    target,
    "\" -keys random_id")
  try(system(command, intern = TRUE))
  field_change <- data.frame()</pre>
  if (!file_empty("field_change_percent.csv") && !file_empty("field_change_sum.csv")) {
    field_change_percent <- read.csv(</pre>
```

```
"field_change_percent.csv",
      header = FALSE,
      stringsAsFactors = FALSE)
    colnames(field_change_percent) <- c("column_name", "percent")</pre>
    remove <- field_change_percent$column_name != "No Field"
    field_change_percent <- field_change_percent[remove, ]</pre>
    field_change_sum <- read.csv(</pre>
      "field_change_sum.csv",
      header = FALSE,
      stringsAsFactors = FALSE)
    colnames(field_change_sum) <- c("column_name", "sum")</pre>
    remove <- field change sum$column name != "No Field"
    field_change_sum <- field_change_sum[remove, ]</pre>
    field change <- merge(field change percent, field change sum, by = c("column name"))
    file.remove("results_details.json")
    file.remove("field_change_percent.csv")
    file.remove("field_change_sum.csv")
  if (is.null(field_change) || nrow(field_change) == 0) {
    field_change <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
    colnames(field_change) <- c("column_name", "percent", "sum")</pre>
  }
 field_change
}
reformat_cell_summary <- function (summary) {</pre>
  reformatted_summary <- data.frame(matrix(ncol = 2, nrow = 0))
  colnames(reformatted_summary) <- c("column_name", "cells_changed")</pre>
  if (nrow(summary) > 0) {
    percent <- round(summary$percent, 1)</pre>
    cells_changed <- pasteO(summary$sum, " cells (", percent, "%)")</pre>
    reformatted_summary <- data.frame(</pre>
      column_name = summary$column_name,
      cells_changed = cells_changed
  }
  colnames(reformatted_summary) <- c("Column name", "Changed")</pre>
  reformatted_summary
}
cell summaries <- lapply(file path pairs, function (file pairs) {
  file_summaries <- lapply(file_pairs, function (pair) {</pre>
    summary <- csvdiff cell summary(pair$source, pair$target)</pre>
    summary <- reformat_cell_summary(summary)</pre>
  })
  file_summaries
})
```

Calculate total row difference summaries

```
paths <- c(download_path, final_path)</pre>
file_names <- c("coffees.csv", "coffee_grades.csv", "coffee_greens.csv")</pre>
file_path_pairs <- create_file_path_pairs(paths, file_names)</pre>
total summaries <- lapply(file path pairs, function (file pair) {
  pair <- file_pair[[1]]</pre>
  summary <- csvdiff_row_summary(pair$source, pair$target)</pre>
  result <- NULL
  if (length(summary) > 1) {
    removed <- gsub("removed ", "", summary[1])</pre>
    added <- gsub("added ", "", summary[2])</pre>
    changed <- gsub("changed ", "", summary[3])</pre>
    result <- data.frame(</pre>
      Removed = removed,
      Added = added,
      Changed = changed,
      stringsAsFactors = FALSE)
  } else if (length(summary) == 1) {
    result <- data.frame(</pre>
      Removed = "0 rows (0.0\%)",
      Added = "0 rows (0.0\%)",
      Changed = "0 rows (0.0%)"
      stringsAsFactors = FALSE)
  }
})
total_row_summaries <- do.call(rbind, total_summaries)</pre>
rownames(total_row_summaries) <- c(</pre>
  "Coffee information",
  "Grades/Cupping scores",
  "Green analysis")
```

Calculate total cell difference summaries

```
paths <- c(download_path, final_path)
file_names <- c("coffees.csv", "coffee_grades.csv", "coffee_greens.csv")
file_path_pairs <- create_file_path_pairs(paths, file_names)

total_cell_summaries <- lapply(file_path_pairs, function (file_pair) {
   pair <- file_pair[[1]]
   summary <- csvdiff_cell_summary(pair$source, pair$target)
   summary <- reformat_cell_summary(summary)
   summary
})</pre>
```

Create total CSV difference files

```
csvdiff <- function (source_file_path, target_file_path, output_file_path) {
  source <- file.path(getwd(), source_file_path)</pre>
```

```
target <- file.path(getwd(), target_file_path)</pre>
  output <- file.path(getwd(), output_file_path)</pre>
  command <- paste0(</pre>
    "csvdiff --style=pretty --output=\"",
    output,
    "\" random id \"",
    source,
    "\" \"",
    target,
    "\"")
  result <- try(system(command, intern = TRUE))</pre>
  result
}
diff_path <- file.path(data_path, "diff")</pre>
dir.create(diff_path, showWarnings = FALSE)
paths <- c(download_path, final_path)</pre>
file_names <- c("coffees.csv", "coffee_grades.csv", "coffee_greens.csv")</pre>
file_path_pairs <- create_file_path_pairs(paths, file_names)</pre>
diff_file_names <- sapply(</pre>
  file_names,
  function (file_name) { gsub(".csv", ".json", file_name) })
diff_file_paths <- sapply(</pre>
  diff file names,
  function (file_name) { file.path(diff_path, file_name) })
diffs <- mapply(function (file_pair, output_file) {</pre>
  pair <- file_pair[[1]]</pre>
  summary <- csvdiff(pair$source, pair$target, output_file)</pre>
  result <- NULL
  if (length(summary) > 1) {
    removed <- gsub("removed ", "", summary[1])</pre>
    added <- gsub("added ", "", summary[2])</pre>
    changed <- gsub("changed ", "", summary[3])</pre>
    result <- data.frame(</pre>
      Removed = removed,
      Added = added,
      Changed = changed,
      stringsAsFactors = FALSE)
  } else if (length(summary) == 1) {
    result <- data.frame(</pre>
      Removed = "0 rows (0.0\%)",
      Added = "0 rows (0.0\%)",
      Changed = "0 rows (0.0\%)",
      stringsAsFactors = FALSE)
  }
},
file_path_pairs,
diff_file_paths)
```