- 1. Initial exploration of dataset:
 - 1. Data type of columns:

Numeric, Date and Time, Strings

- 2. Time period for which the data is given: 2016-09 to 2018-10
 - i. Query:

```
SELECT MIN(order_purchase_timestamp) AS min_time,
MAX(order_delivered_customer_date) AS max_time
FROM Target.orders
```

ii. Output:

Row /	min_time	max_time	11
1	2016-09-04 21:15:19 UTC	2018-10-17 13:22:46 UTC	

- 3. Cities and states covered
 - i. Query:

```
SELECT customer_state, customer_city, COUNT(*) AS no_of_cust
FROM Target.customers
GROUP BY customer_state, customer_city
ORDER BY no_of_cust DESC
```

Row /	customer_state	customer_city //	no_of_cust
1	SP	sao paulo	15540
2	RJ	rio de janeiro	6882
3	MG	belo horizonte	2773
4	DF	brasilia	2131
5	PR	curitiba	1521
6	SP	campinas	1444
7	RS	porto alegre	1379
8	BA	salvador	1245
9	SP	guarulhos	1189
10	SP	sao bernardo do campo	938

- 2. In depth Exploration:
 - 1. There is a whooping rise of people buying from e-commerce websites in Brazil. From 329 orders in 2016 to 54011 orders in 2018.
 - i. Query:

```
SELECT COUNT(order_id) AS total_orders_placed,
EXTRACT(YEAR FROM order_purchase_timestamp) AS year
FROM Target.orders
GROUP BY year
```

ORDER BY year

ii. Output:

Row /	total_orders	year	h
1	329		2016
2	45101		2017
3	54011		2018

i. Query:

```
SELECT COUNT(order_id) AS total_orders_placed,

EXTRACT(YEAR FROM order_purchase_timestamp) AS year,

EXTRACT(MONTH FROM order_purchase_timestamp) AS month

FROM Target.orders

GROUP BY year, month

ORDER BY total_orders_placed DESC
```

ii. Output:

Row	total_orders	year //	month //
1	7544	2017	11
2	7269	2018	1
3	7211	2018	3
4	6939	2018	4
5	6873	2018	5
6	6728	2018	2
7	6512	2018	8
8	6292	2018	7
9	6167	2018	6
10	5673	2017	12
11	4631	2017	10
12	4331	2017	8

2. The maximum orders are received during the night time i.e. from 18 - 1. The least orders are received during dawn.

i. Query:

```
SELECT COUNT(order_id) AS total_orders_placed,
   EXTRACT(HOUR FROM order_purchase_timestamp) AS hour
FROM Target.orders
```

```
GROUP BY hour
ORDER BY total_orders_placed DESC
```

JOB INFORMATION		RESULTS
Row /	total_orders	hour
1	6675	16
2	6578	11
3	6569	14
4	6518	13
5	6454	15
6	6217	21
7	6193	20
8	6177	10
9	6150	17
10	5995	12
11	5982	19
12	5816	22

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by region, states:
 - i. Query:

```
SELECT c.customer_state, c.customer_city,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
COUNT(o.order_id) AS total_orders
FROM Target.orders o JOIN Target.customers c
ON o.customer_id = c.customer_id
WHERE EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017
GROUP BY c.customer_state, c.customer_city, month
ORDER BY c.customer_state, c.customer_city, month
```

customer_state //	customer_city //	month /	total_orders
AC	brasileia	2	1
AC	cruzeiro do sul	12	2
AC	epitaciolandia	10	1
AC	manoel urbano	9	1
AC	porto acre	4	1
AC	rio branco	1	2
AC	rio branco	2	2
AC	rio branco	3	2
AC	rio branco	4	4
AC	rio branco	5	8

2. Customer distribution in Brazil: The maximum number of orders are received for the 3 states which is SP, RJ, MG

i. Query:

```
SELECT customer_state, customer_city,
COUNT(customer_id) AS total_customers
FROM Target.customers
GROUP BY customer_state, customer_city
ORDER BY total_customers DESC
```

ii. Output:

Row	customer_state //	customer_city //	total_customers
1	SP	sao paulo	15540
2	RJ	rio de janeiro	6882
3	MG	belo horizonte	2773
4	DF	brasilia	2131
5	PR	curitiba	1521
6	SP	campinas	1444
7	RS	porto alegre	1379
8	ВА	salvador	1245
9	SP	guarulhos	1189
10	SP	sao bernardo do campo	938

4. Impact on Economy:

- 1. Get % increase in cost of orders from 2017 to 2018: There is a whopping rise of 139% in the cost of orders from 2017 to 2018.
 - i. Query:

```
SELECT EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
ROUND(SUM(i.price + i.freight_value)) AS total_price
FROM Target.orders o JOIN Target.order_items i
ON o.order_id = i.order_id
WHERE EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND
8
GROUP BY year
```

Row //	year //	total_price //
1	2018	8643531.0
2	2017	3610270.0

- 2. Mean & Sum of price and freight value by customer state
 - i. Query:

```
SELECT c.customer_state,
ROUND(SUM(i.price)) AS total_price,
ROUND(AVG(i.freight_value)) AS avg_freight_value
FROM Target.customers c JOIN Target.orders o
ON c.customer_id = o.customer_id
JOIN Target.order_items i
ON o.order_id = i.order_id
GROUP BY c.customer_state
```

customer_state //	total_price //	avg_freight_value //
MT	156454.0	28.0
MA	119648.0	38.0
AL	80315.0	36.0
SP	5202955.0	15.0
MG	1585308.0	21.0
PE	262788.0	33.0
RJ	1824093.0	21.0
DF	302604.0	21.0
RS	750304.0	22.0
SE	58921.0	37.0

- 5. Analysis on sale, freight and delivery time:
 - 1. Days between purchasing, delivering and estimated delivery
 - i. Query:

```
SELECT DATE_DIFF( order_estimated_delivery_date, order_purchase_timestamp, DAY) AS estimated_time, DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS actual_time FROM Target.orders
WHERE DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) IS NOT NULL
```

JOB INFORMATION	RESULTS
-----------------	---------

Row /	estimated_ti	actual_time //
1	17	30
2	59	30
3	52	35
4	32	30
5	33	32
6	31	29
7	39	43
8	36	40
9	35	37
10	28	33

2. Create columns:

i. Query:

```
SELECT DATE_DIFF(order_purchase_timestamp,
order_delivered_customer_date, DAY) AS time_to_delivery,
DATE_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY) AS diff_estimated_delivery
FROM Target.orders
```

ii. Output:

JOB IN	IFORMATION _	RESU	LTS	JSON	EXECU
Row /	time_to_delivery	le	diff_e	estimated_deliver	y //
1		30			12
2		30			-28
3		35			-16
4		30			-1
5		32			0
6		29			-1
7		43			4
8		40			4
9		37			1
10		33			5

- Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
 - i. Query:

```
SELECT c.customer_state,
ROUND(AVG(i.freight_value)) AS mean_freight_value,
ROUND(AVG(DATE_DIFF(order_purchase_timestamp,
order_delivered_customer_date, DAY))) AS time_to_delivery,
ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY))) AS diff_estimated_delivery
FROM Target.orders o JOIN Target.customers c
ON o.customer_id = c.customer_id
JOIN Target.order_items i
ON o.order_id = i.order_id
GROUP BY c.customer_state
```

customer_state //	mean_freight_value	time_to_delivery	diff_estimated_delivery //
MT	28.0	-18.0	14.0
MA	38.0	-21.0	9.0
AL	36.0	-24.0	8.0
SP	15.0	-8.0	10.0
MG	21.0	-12.0	12.0
PE	33.0	-18.0	13.0
RJ	21.0	-15.0	11.0
DF	21.0	-13.0	11.0
RS	22.0	-15.0	13.0
SE	37.0	-21.0	9.0

4. Sort the data to get the following:

1. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

i. Query:

```
SELECT c.customer_state,
ROUND(AVG(i.freight_value)) AS mean_freight_value,
ROUND(AVG(DATE_DIFF(order_purchase_timestamp,
order_delivered_customer_date, DAY))) AS time_to_delivery,
ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY))) AS diff_estimated_delivery
FROM Target.orders o JOIN Target.customers c
ON o.customer_id = c.customer_id
JOIN Target.order_items i
ON o.order_id = i.order_id
GROUP BY c.customer_state
ORDER BY mean_freight_value DESC
LIMIT 5
```

customer_state //	mean_freight_value	time_to_delivery	diff_estimated_delivery //
РВ	43.0	-20.0	12.0
RR	43.0	-28.0	17.0
RO	41.0	-19.0	19.0
AC	40.0	-20.0	20.0
PI	39.0	-19.0	11.0

2. Top 5 states with highest/lowest average time to delivery

i. Query:

```
SELECT c.customer_state,
ROUND(AVG(i.freight_value)) AS mean_freight_value,
ROUND(AVG(DATE_DIFF(order_purchase_timestamp,
order_delivered_customer_date, DAY))) AS time_to_delivery,
ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY))) AS diff_estimated_delivery
FROM Target.orders o JOIN Target.customers c
ON o.customer_id = c.customer_id
JOIN Target.order_items i
ON o.order_id = i.order_id
GROUP BY c.customer_state
ORDER BY time_to_delivery DESC
```

ii. Output:

Row	customer_state //	mean_freight_value /	time_to_delivery //
1	SP	15.0	-8.0
2	PR	21.0	-11.0
3	MG	21.0	-12.0
4	DF	21.0	-13.0
5	RJ	21.0	-15.0
6	RS	22.0	-15.0
7	GO	23.0	-15.0
8	ES	22.0	-15.0
9	SC	21.0	-15.0
10	MS	23.0	-15.0

3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

i. Query:

```
SELECT c.customer_state,
ROUND(AVG(DATE_DIFF(order_purchase_timestamp,
order_delivered_customer_date, DAY))) AS time_to_delivery,
ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,
order_delivered_customer_date, DAY))) AS diff_estimated_delivery
FROM Target.orders o JOIN Target.customers c
ON o.customer_id = c.customer_id
JOIN Target.order_items i
ON o.order_id = i.order_id
```

```
GROUP BY c.customer_state
ORDER BY diff_estimated_delivery ASC
LIMIT 5
```

Row	customer_state //	time_to_delivery //	diff_estimated_delivery
1	AL	-24.0	8.0
2	SE	-21.0	9.0
3	MA	-21.0	9.0
4	SP	-8.0	10.0
5	BA	-19.0	10.0

- 6. Payment type analysis:
 - 1. Month over Month count of orders for different payment types
 - i. Query:

```
SELECT DISTINCT p.payment_type,
EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
COUNT(p.order_id) OVER (PARTITION BY p.payment_type
ORDER BY EXTRACT(YEAR FROM order_purchase_timestamp) ASC,
EXTRACT(MONTH FROM order_purchase_timestamp) ASC) AS total_orders
FROM Target.orders o JOIN Target.payments p
ON o.order_id = p.order_id
```

payment_type //	year //	month /	total_orders //
UPI	2016	10	63
UPI	2017	1	260
UPI	2017	2	658
UPI	2017	3	1248
UPI	2017	4	1744
UPI	2017	5	2516
UPI	2017	6	3223
UPI	2017	7	4068
UPI	2017	8	5006
UPI	2017	9	5909

- 2. Distribution of payment installments and count of orders
 - i. Query:

```
SELECT payment_installments,
```

COUNT(order_id) AS total_orders
FROM Target.payments
GROUP BY payment_installments

payment_installments //	total_orders //
0	2
1	52546
2	12413
3	10461
4	7098
5	5239
6	3920
7	1626
8	4268
9	644
10	5328
11	23
12	133