Honors Discrete Mathematics: Lecture 14 Notes

Gerandy Brito Spring 2022

Sarthak Mohanty

Operations on Congruency Classes

Example. Find all integer solutions to the equation

$$6x + 2y^2 = 2020$$

Solution. We will work step by step.

1. For any $m \in \mathbb{Z}$, we have $6x + 2y^2 \equiv 2020 \pmod{m}$. We will use m = 3. We will first show that $y^2 \equiv 0$ or $1 \pmod{3}$ for any $y \in \mathbb{Z}$.

For any $y \in \mathbb{Z}$, either $3 \mid y$ or $3 \nmid y$.

Case 1. Suppose $3 \mid y$. Then $y \equiv 0 \pmod{3}$, so $y^2 \equiv 0 \pmod{3}$.

Case 2. Suppose $3 \nmid y$. Then $y \equiv 1$ or 2 (mod 3).

Case 2.1. Suppose $y \equiv 1 \pmod{3}$. Then $y^2 \equiv 1^2 \equiv 1 \pmod{3}$.

Case 2.2. Suppose $y \equiv 2 \pmod{3}$. Then $y^2 \equiv 2^2 \equiv 1 \pmod{3}$.

In either subcase, $y^2 \equiv 1 \pmod{3}$.

In either case, $y^2 \equiv 0$ or 1 (mod 3).

2. Now we can show that $6x + 2y^2 \equiv 0$ or 2 (mod 3) for all pairs $x, y \in \mathbb{Z}$.

For any $y \in \mathbb{Z}$, either $y^2 \equiv 0 \pmod{3}$ or $y^2 \equiv 1 \pmod{3}$.

Case 1. Suppose $y^2 \equiv 0 \pmod{3}$. Then $6x + 2y^2 \equiv 6x \equiv 0 \pmod{3}$ for all $x \in \mathbb{Z}$.

Case 2. Suppose $y^2 \equiv 1 \pmod{3}$. Then $6x + 2y^2 \equiv 6x + 2 \equiv 2 \pmod{3}$ for all $x \in \mathbb{Z}$.

In either case, $6x + 2y^2 \equiv 0$ or 2 (mod 3) for all $x \in \mathbb{Z}$.

3. Finally, let $x, y \in \mathbb{Z}$. Now note that $2020 \equiv 1 \pmod{3}$. But from part (b), $6x + 2y^2 \not\equiv 1 \pmod{3}$, so $6x + 2y^2 \not\equiv 2020 \pmod{3}$, so $6x + 2y^2 \not\equiv 2020$. Therefore there exist no integer solutions to the equation $6x + 2y^2 = 2020$.

Divisibility Rules

Theorem. A number n is divisible by 3 iff the sum of its digits (in base 10) is also a multiple of 3.

Proof. Let $n = n_k n_{k-1} n_{k-2} \dots n_1 n_0$, where $n_i \in \{0, 1, \dots, 9\}$. Note that

$$10 \equiv 1 \pmod{3}$$

$$10^2 \equiv 1 \pmod{3}$$

$$\vdots$$

$$10^t \equiv 1 \pmod{3}$$
(*)

Then

$$n = 10^{k} \cdot n_k + 10^{k} \cdot n_{k-1} + \dots + 10^{k} \cdot n_1 + n_0.$$

$$\stackrel{(*)}{\equiv} n_k + n_{k-1} + \dots + n_1 + n_0 \pmod{3}.$$

Tricks

Let's find $10^{2022} \pmod{7}$.

First note that $\{10^k\}_{k\geq 1} \pmod{7}$ is periodic, as we will show below.

$$10^{1} \equiv 3 \pmod{7}$$

$$10^{2} \equiv 2 \pmod{7}$$

$$10^{3} \equiv 10^{2} \cdot 10 \equiv 2 \cdot 3 = 6 \pmod{7}$$

$$10^{4} \equiv 10^{3} \cdot 10 \equiv 6 \cdot 3 \equiv 4 \pmod{7}$$

$$10^{5} \equiv 10^{4} \cdot 10 \equiv 4 \cdot 3 \equiv 5 \pmod{7}$$

$$10^{6} \equiv 10^{5} \cdot 10 \equiv 5 \cdot 3 \equiv 1 \pmod{7}$$

$$10^{7} \equiv 10^{6} \cdot 10 \equiv 1 \cdot 3 = 3 \pmod{7}$$

The sequence 3, 2, 6, 4, 5, 1 will repeat as we take larger powers of 10.

Now $10^{2022} = 10^{6 \cdot q + r} \equiv 1 \pmod{6}$,, since the sequence repeats every 6 values.

Fermat's Little Theorem

To introduce this theorem, we first state a lemma.

Lemma Take some prime number p and some integer a. Then $\{i \cdot a\}_{1 \le i \le p-1}$ are all diff \pmod{p} Proof (By contradiction) Assume there are $1 \le i, j \le p-1$ such that $ia \equiv ja \pmod{p}$ OR $(i-j)a \equiv 0 \pmod{p}$ contradiction! (unless i=j).

Using this lemma, Fermat observed that (*)

$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$

 $(a^{p-1}-1)(p-1)! \equiv 0 \pmod{p}$

Finally, he created his own theorem, stated below.

Fermat's Little Theorem. For any prime number p and integer a, $a^{p-1} \equiv 1 \pmod{p}$.

Chinese Remainder Theorem

Let $m_1, m_2, \ldots, m_k \in \mathbb{N}^*$ such that every distinct pair m_i, m_j is pairwise coprime. Also consider any $a_1, a_2, \ldots, a_k \in \mathbb{Z}$.

There exists exactly one x (taken mod m) such that

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_k \pmod{m_k}$

Proof. We construct a solution

$$M_i = \frac{M}{m_i}.$$

First set $y_i \in \mathbb{Z}$ such that $y_i \cdot M_i \equiv 1 \pmod{m_i}$. Then set

$$x = a_1 y_1 M_1 + a_2 y_2 M_2 + \dots + a_{i-1} y_{i-1} M_{i-1} + a_i y_i M_i + a_{i+1} y_{i+1} M_{i+1} + \dots + a_k y_k M_k.$$

Claim: $x \equiv a_i \pmod{m_i}$, because every term goes to zero except $a_i y_i M_i$, which goes to a_i .