5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

5. Routing-Verfahren und -Protokolle

5.1 Einführung Routing

- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

Routing und Forwarding

Forwarding

Vorgang um ein Paket durch einen einzelnen Netzknoten zu schicken

Routing

- Verfahren zur Auswahl eines Weges vom Quellknoten zum Zielknoten
- Connection Oriented Networks: Routing erfolgt beim Verbindungsaufbau
 - Eintrag in Forwarding-Table gilt für alle Daten der Verbindung
- Connectionless Networks: Routing erfolgt für jedes Paket

Routing: Grundbegriffe

Link

Übertragungsabschnitt zwischen zwei Nachbarknoten (Router, vertices)

Route / Path

- Weg für Dateneinheiten vom Quell- zum Zielknoten
 - Verbindungsorientierte Kommunikation
 - für alle Dateneinheiten einer Verbindung
 - Verbindungslose Kommunikation
 - für jede einzelne Dateneinheit separat

Routing-Metrik

- Jedem Link des Netzes wird eine Metrik (Kostenwert) zugeordnet
 - Beispiele sind "Hop" (Kosten von 1), Delay, Bandbreite
- Metrik kann unidirektional definiert sein

Routing-Policy

Strategie des Netzbetreibers zur Auswahl einer Route

Routing: Grundbegriffe

 Directed (gerichtet): geordnetes Knotenpaar. Repräsentiert als (u, v) in der Richtung von Knoten u zu v (Networking: simplex)

Undirected (ungerichtet): ungeordneres Paar von Knoten.
Repräsentiert als {u, v}. Lässt jede Art von Richtung unbeachtet
und behandelt die Knoten beider Enden als miteinander
austauschbar (Networking: duplex)

 Multiple Edges (mehrere Kanten): Zwei oder mehr Kanten die das selbe Paar von Knoten verbinden

Gerichteter (Directed) Graph: G(V, E), Set von Knoten V und Set von Kanten E, wobei letztere ein geordnetes Elementenpaar von V darstellen (gerichtete Kanten)

```
G(V, E),
V={u,v,w},E={(u,v),(v,w),(u,w)}
```

 Ungerichteter (Simple/Undirected) Graph: besteht aus einem Knotenset V, und einem Set ungeordneter Kantenpaare E (ungerichtet)

```
G(V, E),
V={u,v,w},E={{u,v},{v,w},{u,w}}
```

• Loop (Schleife): Kante die vom Ursprungsknoten wieder zurück zum selben Knoten führt. Repräsentiert als {u,u} = {u}

- Multigraph: G(V,E), besteht aus einem Set von Knoten V, einem Set von Kanten E und einer Funktion f von E zu {{u, v}| u, v ∈ V, u ≠ v}
- e1 und e2 werden als mehrfache oder parallele Kanten wenn f(e1)
 = f(e2) gilt

G(V, E),

$$V = \{u, v, w\}, E = \{e1, e2, e3, e4\}$$

Routing: Grundbegriffe

 Incidence (Matrix): Dann am Nützlichsten wenn Informationen über Kanten interessanter ist als Informationen über Knoten

 Adjacency (Matrix / List): Dann am Nützlichsten wenn Informationen über Knoten interessanter ist als Informationen über Kanten

Ist G = (V, E) ein ungerichteter Graph mit den Knoten v₁, v₂, v₃, ..., v_n und den Kanten e₁, e₂, ..., e_m ergibt sich die Inzidenzmatrix mit den Dimensionen n x m zu M = [m_{ii}] mit:

$$m_{ij} = \begin{bmatrix} 1 \text{ when edge } e_j \text{ is incident with } v_i \\ 0 \text{ otherwise} \end{bmatrix}$$

- Kann außerdem folgendes repräsentieren:
 - Mehrere Kanten: indem Spalten mit identischen Einträgen genutzt werden, da diese Kanten inzident (verbunden) mit dem selben Knotenpaar sind
 - Loops: indem eine Spalte mit exakt einem Eintrag (der gleich 1 ist) genutzt wird, entsprechend dem Knoten der inzident zum Loop ist

Beispiel: Ungerichteter Graph

	e ₁	e ₂	e ₃
V	1	0	1
u	1	1	0
W	0	1	1

Beispiel: Gerichteter Graph

	e ₁	e ₂	e ₃
V	-1	0	1
u	1	-1	0
W	0	1	-1

• Beispiel: Ungerichteter Multigraph

	e ₁	e ₂	e ₃	e ₄	e ₅
V	1	0	1	1	0
u	1	1	0	0	0
W	0	1	1	1	1

- Ist eine N x N Matrix, wobei |V| = N (also Knotenanzahl)
- Diese Matrix (NxN) $A = [a_{ij}]$ ergibt sich aus den Einträgen:

Für ungerichtete Graphen

$$a_{ij} = \begin{bmatrix} 1 & \text{if } \{v_i, v_j\} & \text{is an edge of } G \\ 0 & \text{otherwise} \end{bmatrix}$$

Für gerichtete Graphen

$$a_{ij} = \begin{bmatrix} 1 \text{ if } (v_i, v_j) \text{ is an edge of } G \\ 0 \text{ otherwise} \end{bmatrix}$$

• Erleichtert die Suche nach Subgraphen sowie das Umkehren eines Graphen sofern nötig

Adjazenzmatrix

- Die Adjazenzmatrizen einfacher Graphen sind symmetrisch (a_{ij} = a_{ji})
 - Warum? Weil jede Kante {i,j} die Knoten i und j in beide Richtungen verbindet
- Wenn der Graph relativ wenige Kanten enthält, so handelt es sich bei der zugehörigen Adjazenzmatrix um eine sparse Matrix (= dünn besetzt)
 - Warum? Weil aus weniger Kanten mehr 0 als 1 resultieren
- Gerichtete Multigraphen werden repräsentiert indem a_{ij} die Anzahl der Kanten von v_i zu v_j beschreibt

Adjazenzmatrix

• Beispiel: Ungerichteter Graph

	V	u	W
V	0	1	1
u	1	0	1
W	1	1	0

• Beispiel: Gerichteter Graph

	(ZU)				
		V	u	W	
.	V	0	1	0	
	u	0	0	1	
	W	1	0	0	

/-..\

Adjazenzmatrix

Beispiel: Gerichteter Multigraph, Matrix

	V	u	W
V	1	1	1
u	0	0	2
W	1	0	0

Beispiel: ungerichteter Graph, Liste

Vertex	Adjacency list
V	u, w
u	v, w
w	u, v

5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

Routing-Algorithmus: Distanzvektor

Dezentrale (verteilte Zustandsinformation)

- Knoten X
 - Kennt nur die Linkkosten zu allen Nachbarknoten V: c(x,v)
- Ermittelt Kosten des Least-Cost-Path zum Zielknoten Y: D_x(y) ≈ k_x(y)
- bildet seinen Distanzvektor zu allen Zielen: $\mathbf{D}_{\mathsf{x}} = (|\mathsf{D}_{\mathsf{x}}(\mathsf{y})| | \mathsf{y} \in \mathbf{N}|)$
- Kennt Distanzvektoren seiner Nachbarknoten V: $\mathbf{D}_{V} = (D_{V}(y):|y \in \mathbf{N})$

Update und Kostenberechnung (verteiltes Routing)

- Von Zeit zu Zeit sendet jeder Knoten seinen Distanzvektor an die Nachbarn
- Falls Knoten X ein Update (D_V) von seinem Nachbarknoten V erhält aktualisiert er seinen eigenen Distanzvektor:

für jeden Zielknoten Y:
$$D_X(y) = \min_{V} \{c(x,v) + D_V(y)\}$$

• $D_X(y)$ konvergiert gegen die optimalen Kosten $k_X(y)$

Routing-Algorithmus: Distanzvektor (2)

Verteilte Zustandsinformation und Routing-Tabelle

- c(x,y): Kosten des Links von Knoten X zu Nachbarknoten Y
- $D_X(y,v)$: Kosten des Weges von Knoten X zu Zielknoten Y über Nachbar V
- D_X(y): Kosten des Least-Cost-Path von Knoten X zu Knoten Y --

- Knoten X schickt allen Nachbarn ein Update, falls
 - lokale Linkkosten c(x,y) sich geändert haben
 - sich ein neuer Distanzvektor **D**_X(v) zu einem Zielknoten V ergibt

"Meine (X) Kosten zum Ziel Z betragen $D_X(z) = 3$ " [Ziel Z, $D_X(z)=3$] \leftarrow Ziel via Kosten Forwarding [Ziel Y, $D_X(y)=2$] \leftarrow 3 u u Table in Knoten X V - X **Updates** $D_X(Ziel)$ Ζ [Ziel Y, $D_x(y)=2$] [Ziel Z, $D_x(z)=3$]

Update der Routing-Tabelle

Knoten U vor dem Update

Routing Database U "Forwarding Table U

über Knoten

Ziel	
zum z	

<u>u</u>		
D _U (.,.)	X	Z
X	3	12
Z	10	5
У	11	6

Ziel	via	Kosten
Х	Х	3
Z	Z	5
у	Z	6

Knoten U nach dem Update

Richtig?

Update Database für $D_X(y)$

$$D_{U}(y,x) = c(u,x) + D_{X}(y)$$

= 3 + 2 = 5

über Knoten

	D _U (.,.)	X	Z
ziel	X	3	12
zum Ziel	Z	10	5
ZI	у	√ 5	6

Ziel	via	Kosten
Х	Х	3
Z	Z	5
У	Х	5

Shortest Path:

$$D_{U}(y) = \min_{V} D_{U}(y,u)$$
$$v \in \{x, z\}$$

Sende Update

 $D_{IJ}(y)$

Bellmann-Ford-Algorithmus

[Initialisierung in Knoten x]

 $D_X(v,v) = c(x,v)$ for all neighbours v, $D_X(y,w) = \infty$ for w is not neighbour node

For all destination nodes y: sent $D_X(y) = \min_V D_X(y,v)$ to all neighbour nodes v

[loop (in jedem Knoten x)]

wait (until a link cost changes or until an update receives from neighbour v)

if (c(x,v) changes by d)

for all destinations y: $D_x(y,v) = D_x(y,v) + d$

← (Kosten zu allen Zielen über Nachbar v um d ändern. Anmerkung: d kann positiv oder negativ sein)

else if (update $D_{v}(y)$ received from v for destination y)

for the single destination y: $D_x(y,v) = c(x,v) + D_v(y)$

← (der kürzeste Weg von v zu y hat sich geändert, v hat einen neuen Wert $D_{v}(y)$ gesendet)

[Neuberechnung aller Vektoren]

for all destinations y: $D_X(y) = \min_V D_X(y,v)$

if (we have a new $D_X(y)$ for any destination y)

send new value $D_X(y)$ of to all neighbour v

← (send Update)

Bellmann-Ford-Algorithmus

Zeitpunkt t

D _Y ()	X	Z
X	2	∞
Z	∞	1

D _Z ()	X	у
X	7	∞
у	∞	1

über

	D _X ()	У	Z
ziei	У		
7	Z		

D _Y ()	X	Z
X		
Z		

D _Z ()	X	У
Х		
у		

über

Bellmann-Ford-Algorithmus (2)

über

	D _X ()	У	Z	
	У	2	8	
İ	Z	8	7	

D _Y ()	Х	Z
X	2	8
Z	8	1

D _Z ()	Х	У
Х	7	∞
У	8	1

У

9

1

Bellmann-Ford-Algorithmus (3)

über

	D _X ()	У	Z	
Ziel	У	2	∞	
Z	Z	8	7	

D _Y ()	X	Z
X	2	8
Z	8	1

D _Z ()	Х	У
Х	7	∞
у	8	1

У

9

1

1

9

Änderung der Link-Kosten: Good news travels fast GIT (WS 2023/24)

Y erkennt neue Linkkosten, Neuberechnung $D_Y(.,.)$ neuer Wert $D_Y(x)$, Update an Nachbarn

Z erhält Update von Y, Neuberechnung von $D_Z(.,.)$, neuer Wert $D_Z(x)$, Update an Nachbarn

Y erhält Update von Z, Neuberechnung $D_{Y}(.,.)$, Konvergenz

Änderung der Link-Kosten: Bad news travels slowly^{G/T (WS 2023/24)}

"bad news travels slowly" Count-to-Infinity-Problem

D _Y ()	X	Z
Х	60	51
Z	3	1

D _Z ()	X	у
X	50	52
zy	51	1

Y erkennt neue Linkkosten, Neuberechnung $D_{Y}(.,.)$ neuer Wert $D_{Y}(x)$,

Update an Nachbarn

Routing-Schleife für Ziel X: Weg: $Z \rightarrow Y \rightarrow Z \rightarrow Y \rightarrow ...$

Konvergenz nach 44 Iterationen, Weg: Z→ X

Änderung der Link-Kosten: Poisoned Reverse

Prinzip

- Shortest Path von Z nach X geht über Y
- Knoten Z hat Shortest Path nach X von Knoten Y gelernt
 - Selektives Update and Knoten Z

$$D_Z(x) = \infty$$
 "Poisoned Reverse"

(für Y hat Z keinen Weg zum Ziel X)

Sende allen anderen Nachbarn:
 Update D₇(x)

- Beispiel: Z hat $D_Y(x) = 4$ von Y erhalten
 - Neue Distanz: D_z(x)
 - sende $D_Z(x) = \infty$ an Y
 - $D_7(x) = 5$ an X und V

Beispiel: Poisoned Reverse

5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

Routing-Algorithmus: Link-State

Globale Zustandsinformation

- Netztopologie und Linkkosten sind jedem Knoten (Router) bekannt
 - Die Zustandsinformation ist im statischen Fall in jedem Router gleich
 - Wird durch ein Link-State-Broadcast-Potokoll realisiert
- Nur positive, meist zustandsabhängige Linkkosten (Metrik)

Dezentral ausgeführter Routing-Algorithmus

- Shortest-Path-Algorithmus von Djikstra
- In jedem Knoten:
 - Finde den Weg geringster Kosten zu allen anderen Knoten
 - Quellknoten ist Wurzel eines Baums kürzester Wege
 - Wege sind schleifenfrei

Shortest-Path-Algorithmus von Djikstra

Notation

Für einen Quellknoten (source node):

- c(i,j): Linkkosten von Knoten i zu j, c(i,j) = ∞ falls kein Nachbarknoten
 - Linkkosten aller Links im Quellknoten bekannt
- D(v): Kosten des Weges vom Quellknoten zum Knoten v mit den momentan geringsten Kosten (Label)
- p(v): Vorgänger von v auf dem momentan kürzesten Weg zu Knoten v
- N*: Menge der Knoten, zu denen ein Weg geringster Kosten besteht

Shortest-Path-Algorithmus von Djikstra (2)

Initialisierung

 $N^*=\{A\}; D(v)=\infty; p(v)=0$

(A ist der Quellknoten)

I. for all nodes v adjacent to A:

D(v)=c(A,v); p(v)=A

(initiale Kosten zu allen Nachbarn)

Iteration:

loop

(Wähle den Knoten was der Menge N\N*,

II. find w not in N* such that D(w) is a minimum; der vom Quellknoten

add w to N*;

mit minimalen Pfad-Kosten erreicht wird)

III. update D(v) for all v adjacent to w and not in N*: (Die neuen Kosten

 $D(v) = \min(D(v), D(w) + c(w,v))$

if new shortest path: p(v) = w

until all nodes n ε N*;

in N*: (Die neuen Kosten zu v sind entweder die alten Kosten zu v oder die bekannten Kosten des kürzesten Weges zu w, zuzüglich der Kosten von w zu v)

Beispiel: Djikstra

Topologie

Initialisierung

	Label				
Iteration / Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
0. / I	{1}	5, 1	5, 1	1, 1	∞, 0

Beispiel: Djikstra

Topologie

Initialisierung

1. Iteration

II: find w with min(D(w))

	Label				
Iteration / Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
0. / I	{1}	5, 1	5, 1	1, 1	∞, 0
1. / II	{1, <mark>4</mark> }			$\min: w = 4$	

Beispiel: Djikstra

Topologie

Initialisierung

1. Iteration

III: D(v) = min(D(v), D(w) + c(w,v))

	Label				
Iteration / Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
0. / I	{1}	5, 1	5, 1	1, 1	∞, 0
1. / II III	{1, 4 }	3, 4	5, 1	min: w = 4 1, 1	6, 4

Beispiel: Djikstra (2)

2. Iteration

Iter./Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
1. / II III	{1, 4 }	3, 4	5, 1	min: w = 4 (1, 1)	6, 4
2. / II III	{1, 4, <mark>2</mark> }	min: w = 2 (3, 4)	5, 1		4, 2

Beispiel: Djikstra (2)

3. Iteration

Iter./Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
1. / II III	{1, <mark>4</mark> }	3, 4	5, 1	min: w = 4 (1, 1)	6, 4
2. / II III	{1, 4, <mark>2</mark> }	min: w = 2 (3, 4)	5, 1		4, 2
3. / II III	{1, 4, 2, <mark>5</mark> }		5, 1		min: w = 5 (4, 2)

Beispiel: Djikstra (2)

Iter./Schritt	N*	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)
1. / II III	{1, 4 }	3, 4	5, 1	min: w = 4 (1, 1)	6, 4
2. / II III	{1, 4, <mark>2</mark> }	min: w = 2 (3, 4)	5, 1		4, 2
3. / II III	{1, 4, 2, <mark>5</mark> }		5, 1		min: w = 5 (4, 2)
4. / 11	{1, 4, 2, 5, <mark>3</mark> }		min: <i>w</i> = 3		

Eigenschaften des Djikstra-Algotithmus

Routing-Tabelle

- Iterative Konstruktion der Wege aus der Vorgängerinformation
 - Beispiel: Weg von 1→ 5:

$$p(5)=2$$
, $p(2)=4$, $p(4)=1 \leftrightarrow 1-4-2-5$

Komplexität für N Knoten

- Jede Iteration: Überprüfung der Knoten die noch nicht in N* sind
 - 1. Iteration N 1 Überprüfungen
 - 2. Iteration N 2 Überprüfungen
 - ...
 - Insgesamt: N(N+1)/2 Überprüfungen
- Komplexität ist O(N²)
 - O(Nlog(N)) bei effizienter Implementierung

Oszillation bei zustandsabhängigen Metriken

Beispiel

- Kosten sind äquivalent zur Verkehrslast des Links
- Gerichtete Verbindungskanten
- Knoten D und B senden "1", Knoten C "e" Verkehrseinheiten an Ziel A

Lösungsansätze

- Knoten führen das Update nicht gleichzeitig durch
- Selbstsynchronisation der Knoten wird durch zufällige Wahl der Updatezeitpunkte vermieden

Link-State vs. Distanz-Vektor Algorithmus

Komplexität

- LS: Bei N Knoten und E Links sind O(N,E) Meldungen zu senden
- DV: Austausch nur zwischen Nachbarn
 - Anzahl abhängig von Zahl der Iterationen bis zur Konvergenz

Konvergenzgeschwindigkeit

- **LS**: Komplexität O(N²)
 - Oszillationen möglich
- DV: variable Konvergenzzeit
 - Mögliche Routingschleifen
 - Count-to-Infinity-Problem
 - PR keine vollständige Lsg.

Robustheit

Verhalten bei Knotenfehlfunktion

- LS: Knoten verteilt falsche Linkkosten
 - Jeder Knoten berechnet eigene Tabelle, damit begrenzte Fehlerwirkung
- DV: Knoten verteilt falsche Pfadkosten
 - Jeder Knoten benutzt Tabelle der Nachbarn
 - Fehler verbreitet sich im ganzen Netz

5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State

5.3 Hierarchisches Routing

5.4 Routing-Protokolle

5.4.1 OSPF

5.4.2 BGP

Routing: Wichtige Protokollkomponenten

Reachability

- Verfahren zum Austausch von Erreichbarkeitsinformationen zwischen den Routern
 - Welche Netzwerke sind über mich erreichbar
 - Welche Router sind im Netzwerk vorhanden

Optimal Route

- Ziel: Finde den Least Cost Path (Weg der geringsten Kosten)
 - Optimale Wege werden mit Shortest Path Algorithmus berechnet

Updates

- Falls die Topologie oder die Link-Kosten sich ändern
- Inhalt der Updates wird auch als Zustandsinformation bezeichnet

Pfadkosten und Dynamische Programmierung

Zustandsinformation und optimale Pfadkosten

- c(x,y): Kosten des Links von Knoten X zu Nachbarknoten Y
- k_X(y): Kosten des Least-Cost-Path von Knoten X zu Knoten Y

Prinzip: Im Knoten X für Zielknoten Y

Problem: Skalierung

- Starker Anstieg der Zahl der Netze und Router in den Netzen
 - Routing-Tabelle wächst mit der Anzahl der Netzpräfixe
 - Austausch von Routing-Information wächst mit Zahl der Router

Problem: Administrative Autonomie

- Das Internet ist ein Netzwerk von Netzen
 - Jedes Netzwerk gehört jemand anderem, bspw ISP
 - Jede Organisation möchte seine Netzwerke unabhängig und selbstständig administrieren

Lösung: Autonome Systeme (Autonomous Systems, AS)

Autonome Systeme und Routing

Autonome Systeme (AS)

- Ein Autonomes System ist eine Region im Internet, die autonom und unabhängig administriert wird
- Router werden in autonomen Systemen zusammengefasst
 - Autonome Systeme werden auch als Routing-Domain bezeichnet

Autonome Systeme ermöglichen Hierarchisches Routing

- Intra-Domain-Routing (Intra-AS-Routing)
 - Router innerhalb des AS
 - Router im selben AS verwenden das gleiche Intra-AS-Routing-Protokoll
 - Je AS ein anderes Intra-AS-Routing-Protokoll
- Inter-Domain-Routing (Inter-AS-Routing)
 - Routing zwischen verschiedenen AS
 - Gateway-Router der verschiedenen AS' sind miteinander verbunden

Inter- und Intradomain Routing

Intra-AS
Routing
Algorithmus

Forwarding
Table

Forwarding Table wird durch Intra- und Inter-Domain Routing Algorithmen erstellt

- Inter-AS Protokoll verteilt Reachability Info zu externen Netzen, z.B. Netzw. A über Router 1b
- Intra-AS Routing liefert Interface des Least-Cost-Path zum AS-internen Gateway-Router 1b

Intra-Domain Routing

- Routing innerhalb des AS's
- Auch als Interior Gateway
 Protocol (IGP) bezeichnet
- Je AS ein anderes Intra-Domain Routing Protokoll möglich
- Routing-Metrik
 - Performance- oder Kosten-metrik im Vordergrund
 - Routing-Tables werden nur innerhalb des AS propagiert
- Beispiele: RIP, OSPF

Inter-Domain Routing

- Routing zwischen AS's
- Auch als Exterior Gateway
 Protocols (EGP) bezeichnet
- Meist ein Gateway-Router je AS fürs Inter-Domain Routing zuständig
- Routing-Metrik
 - Metrik orientiert sich an Policies des Providers
 - Beispiel: wer darf zu wem Transitverkehr durchleiten
 - Performance meist nicht wichtig
- Beispiel: BGP

5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

Open Shortest Path First (OSPF)

Intradomain-Routing-Protokoll

"Open" bedeutet öffentlich verfügbar

1989: OSPFv1

• 1998: OSPFv2 für IPv4

erweitert durch Support für IPv6 und CIDR

Support f
ür Uni- und Multicast

OSPF verwendet den Link-State-Algorithmus

- Mehrere Wege gleicher Kosten zu einem Ziel möglich
 - Ermöglicht Lastverteilung auf mehrere Wege und erhöhte Zuverlässigkeit
- Type-of-Service-Routing
 - je Link, abhängig vom IP-TOS, mehrere Metriken möglich
 - z.B. Satelliten-Link für Best Effort, Breitband-Link für Real-Time-Dienste

OSPF – Meldungen

- OSPF-Meldungen werden direkt über IP an die Nachbar-Router versendet
- Sicherheit: OSPF Meldungen können authentifiziert werden

Adjacency: Discovery of Neighbors

- Erkennen eines Nachbar-Routers mittels eines "HELLO"-Protokolls
 - Neuer Router sendet OSPF-Meldung HELLO in angeschlossene Netze
 - Nachbar-Router antworten ihrerseits mit HELLO Meldungen
- Periodischer Austausch von HELLO Meldungen
- 40 Sekunden kein HELLO vom Nachbar-Router → Router ausgefallen

Hierarchisches Routing mit OSPF

Aufteilung des AS in OSPF - Areas

- Eine Backbone Area, mehrere lokale Areas
 - LSA's werden nur innerhalb einer OSPF-Area ausgetauscht
 - Jeder Router kennt nur die Topologie seiner Area
- Backbone-Router (BR): Router des Backbone-Bereiches
- Internal Router (IR)
 - hat nur Nachbar-Router innerhalb der eigenen Area
 - hat genau eine Link State Database (LSDB) für seine Area
- Area Border Router (ABR)
 - besitzt f
 ür jede Nachbar-Area eine LSDB
 - verteilt Shortest Path Info zu anderen Bereichen im eigenen Bereich
 - verteilt aggregierte Zustandsinfo der eigenen Area an andere ABR's
- Boundary Router (ASBR)
 - verwaltet externe Routen zu Zielen in anderen AS
 - externe Routen werden im gesamten eigenem AS bekannt gegeben

5. Routing-Verfahren und -Protokolle

- 5.1 Einführung Routing
- 5.2 Routing-Algorithmen
 - 5.2.1 Routing-Algorithmus: Distanzvektor
 - 5.2.2 Routing-Algorithmus: Link-State
- 5.3 Hierarchisches Routing
- 5.4 Routing-Protokolle
 - 5.4.1 OSPF
 - 5.4.2 BGP

Border Gateway Protokoll (BGP)

Interdomain Routing Protokoll

- aktuelle Version BGP-v4 (RFC 4271 / 4760)
- Erreichbarkeit der Netze steht im Vordergrund, nicht optimale Wege
- Unterstützung für Classless Inter-Domain Routing (CIDR)

Pfad-Vektor-Protokoll (erweitertes Distanz-Vektor Verfahren)

- Routing Messages enthalten komplette Wege (Routen) als Liste von ASs
- schleifenfreie Wege einfach realisierbar
- Information über mehrere alternative Wege zu einem Zielnetz vorhanden
- Auswahl eines Weges basiert nicht auf Kosten sondern auf Policies
- zum Beispiel:
 - benutze den Weg mit der minimalen Anzahl von Transit-AS
 - transportiere keinen Verkehr des Providers A
 - Empfangene Updates werden an Nachbarn (Peers) weitergegeben

- BGP-Router, die eine BGP-Session unterhalten heißen Peers
- diese werden auch BGP-Speaker genannt (da sie BGP "sprechen")
- Je zwei BGP-Router (Peers) etablieren eine TCP-Session (Port 175)
- Die Peer-Router werden konfiguriert und nicht automatisch ermittelt
- Router tauschen BGP-Messages aus

BGP Route Selection

- Falls ein Router mehr als eine Route für ein Präfix erhält
- Auswahlregeln für eine Route (16 Regeln nach Prioritäten)
- 1) Local Preference Value Attribute
 - → Routing-Policy: gibt die Wichtigkeit einer AS-internen Route zum nächsten AS der Route (next-hop-AS) an
- 2) Shortest AS-Path
- 3) Dichtester Next-Hop Router: Hot Potato Routing
 - → Es wird der BGP Router gewählt, der den Shortest Path zum nächsten AS der Route (next-hop-AS) hat
- 4) Weitere Kriterien

- AS A, AS B und AS C sind Provider Networks
- AS 2 und AS 3 sind Customer Stub AS
- AS 1 ist ein Dual-homed Stub AS (Anschluss an zwei Netzwerken)
 - AS 1 möchte keinen Transitverkehr von AS B nach AS C transportieren
 - z.B. zu einem Netzwerk-Präfix in AS C
 - Policy: AS 1 sendet keine Informationen zu Ziel-Netzen die in einem anderen AS liegen, außer zu Ziel-Netzen in seinem eigenen AS
 - AS 1 verhält sich wie ein reines Stub-AS

BGP Route Selection

- AS A teilt AS B die Route A 3 zu einem Netzwerk-Präfix in AS 3 mit
- AS B teilt AS 1 die Route B A 3 mit
- Frage: Soll AS B die Route B A 3 auch an AS C mitteilen?

- AS A teilt AS B die Route A 3 zu einem Netzwerk-Präfix in AS 3 mit
- AS B teilt AS 1 die Route B A 3 mit
- Frage: Soll AS B die Route B A 3 auch an AS C mitteilen?
- Nein: AS B erhält keinen direkten "Revenue" für diesen Transit-Verkehr, da eigene Customer (z.B. in AS1) weder Ziel noch Quelle sind.
- AS B möchte, dass dieser Verkehr direkt über AS C läuft.
- Policy: AS B gibt nur Routen an AS C weiter, in denen seine Customer als Ziel oder Quelle eingetragen sind

Probleme

- ISPs geben neue Routen bekannt um zusätzlich Verkehr zu erhalten
 - zusätzlicher Gewinn
 - Verkehr auf Inhalt analysieren
- ISPs blockieren Routen
 - Konkurrenten beeinträchtigen
 - gesellschaftspolitische Einflussnahme
- Fehlerhafte BGP-Updates durch falsch konfigurierte Router
 - April 2010: 37000 IP-Netze werden fälschlich über chinesischen ISP geleitet
 - Juni 2010: deutscher Knoten DE-CIX behindert den Verkehr zwischen ISPs
 - Oktober 2021: Facebook nimmt sich versehentlich selbst vom Netz

Lösungsvorschläge

- S-BGP(secure BGP) oder soBGP (secure origin BGP, Cisco)
 - Authentifizierung und Autorisierung der Absender (mittels Zertifikate)
 - Verschlüsselung und Integritätsschutz der Messages (IPSec, MD5)
- Praktisch noch nicht realisiert

