Study conformal mapings, Dirichle problem (Lavrentiev book)

· :

Let C be a curve with pieces (arcs) C_{α} . (e.g. polygon)

Let f = f(t) be a function on C, which has jumps. Let D_i be internal points of arcs C_{α} , where f has a jump. Let A_i be vertices A_{α} : the arc C_{α} goes from the vertex A_{α} to the vertex $A_{\alpha+1}$. Note that at vertices we have a jump of angles: at the vertex A_{α} the jump

$$\delta\varphi_{\alpha} = \varphi_{\alpha}^{(+)} - \varphi_{\alpha}^{(-)}$$
.

Let F(z) be function with jumpes h_k at the points D_k , where curve is smooth and with jumps H_{α} at the vertices A_{α}

Consider (with lavrentiev-Shabad) the new function

$$\tilde{F}(z) = F(z) + \frac{1}{\pi} \sum_{k} \arg(z - D_k) - \sum_{\alpha} \frac{H_{\alpha}}{\delta \varphi_a} \arg(z - A_{\alpha})$$

This function has no jumps.