I²C Communication - Physical Layer

Nathan Gardner - Technical Presentation

I²C basic overview

- Invented in 1982 by Philips Semiconductors (now NXC Semiconductors)
- Original I²C was patented in 1981 but has since been expanded greatly and specified
- De Facto Standard for many years official specification in 1992
- NXC has stake in specification now, as well as many other companies
- Focus on Physical Layer of I²C

What is the Physical Layer?

- Physical structure of the connections and circuit typology
- I²C Physical: bus topology, open drain bus, clock stretching, multi-master, clock and data arbitration

How is the SECON robot using it?

- Communication with sensors onboard robot
- Ten sensors in vision subsystem all connected via two wire communication to controller

Two line bus topology

Serial Clock (SCL) - Clock for data, rising edge sensitive

Serial Data (SDA) - Data line, where data electrical signals will be read from

Can simply be thought of as a D flip-flop in this presentation

- D = SDA
- CLK = SCL

Circuit typology

- Open-drain (open-collector) configuration
- All signals are generated by pulling down SCL or SDA

MOSFETs (n-channel)

Cutoff: $v_{GS} < V_{TN}$, $i_D = 0$

Triode: $v_{GS} > V_{TN}$ and $v_{DS} < v_{DS}(sat)$, $i_D = K_n \left[2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2 \right]$

Saturation: $v_{GS} > V_{TN}$ and $v_{DS} > v_{DS}(sat)$, $i_D = K_n (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$

where $v_{DS}(sat) = v_{GS} - V_{TN}$

and $K_n = \frac{k'_n}{2} \frac{W}{I}$ (note: for simplified model assume $\lambda = 0$)

CMOS gate input levels

Acceptable CMOS Gate Output Signal Levels

Parasitic capacitance

- Limited by total bus capacitance of 400 pF in slower speed implementations
- Longer runs and shielded wire increases capacitance on the bus
- Main reason for limited number of peripheral devices, limited wire length
- RC circuit created, τ = RC
- Active pull-ups and current sources added

TYPICAL APPLICATION

BLOCK DIAGRAM

Rise time of an I²C line is derived using equation 7.

$$t_r = (V_{IH(MIN)} - V_{IL(MAX)}) \cdot C_{BUS}/I_{PULL-UP(B)}$$
 (7)

*from LTC1694 datasheet

Clock stretching

Multiple master controllers

- Multiple master devices are allowed in I²C protocol
- Controllers can write/ read any of the target controllers
- This created some other issues, solved by arbitration

:

Wired-AND

Α	В		Output
	0	0	0
	0	1	0
	1	0	0
	1	1	1

SCL Arbitration

- Two master clocks
- Wired-AND ensure SCL allows for
 - The longest low signal
 - The shortest high signal
- Master 2 clock will actually phase shift compared to the expected

SDA Arbitration

Arbitrates SDA with two
masters are writing to the bus

A		В		Output
	0		0	0
	0		1	0
	1		0	0
	1		1	1

Timing Diagram

Thank you

Questions?

Sources

Buffer information:

https://www.allaboutcircuits.com/textbook/digital/chpt-3/logic-signal-voltage-levels/

LTC1694 Datasheet: https://docs.rs-online.com/eecb/0900766b810ed93f.pdf

I²C Information and diagrams: https://prodigytechno.com/