Cryptography and Network Security I

Exam 1 Makeup

1. [30 points] Hash Functions: Refer to the example in textbook pg 333-334 (in 7th addition) and implement a "collision attack" to the following wikipedia text: "More efficient attacks are possible by employing cryptanalysis to specific hash functions. When a collision attack is discovered and is found to be faster than a birthday attack, a hash function is often denounced as "broken". The NIST hash function competition was largely induced by published collision attacks against two very commonly used hash functions, MD5 and SHA-1. The collision attacks against MD5 have improved so much that, as of 2007, it takes just a few seconds on a regular computer. Hash collisions created this way are usually constant length and largely unstructured, so cannot directly be applied to attack widespread document formats or protocols."

In order to implement a collision attack, I started with an original message and a malicious message. To generate variations of the original message, I replaced space characters in the message with either space, space backspace space space backspace, or space space backspace backspace space depending on the iteration number. I then applied the same operation to the malicious message, iterating until I had located a combination with a matching hashes. For the sake of speed I limited hashes to 32-bit md5, however larger bit numbers are fully supported, just a bit slow (Python function execution speed is limiting). Finally, I printed the results to the console, with the raw strings outputted (ordinarily the strings output identically, so I needed to print the raw strings to show the additional space and backspace [\x08] chars). For the example, I used legitimate message = "The quick brown fox jumps over the lazy dog." And fraudulent message = "The scheming purple fox jumps onto the frightened dog.", though any messages may be supplied.

Console Output:

```
>please enter legitimate message (leave blank for default):
>legitimate message detected as 'The quick brown fox jumps over the lazy dog.'
>please enter fraudulent message (leave blank for default):
>fraudulent message detected as 'The scheming purple fox jumps onto the frightened dog.'
>generating x' variations of legitimate message...
>finished generating 65536 variations of original message in time = 0 seconds
>generating and comparing y' variations of fraudulent message...
>found y' number 14500 = 'The scheming \x08\x08 purple \x08fox jumps
\x08onto \x08the \x08 frightened dog.' with hash 3cc950c9 matching
>x' number 20427 = 'The \x08 quick brown \x08\x08 fox \x08\x08 jumps
\x08\x08 over the \x08lazy \x08\x08 dog.' with hash 3cc950c9 in time = 18
seconds
For code solution, see hash functions.py
```

2. [30points] Elliptic Curves and ECC: Solve problems 10-12, 10-13, 10-14, 10-15 from the text book. 10-12

Consider the Elliptic curve $E_{11}(1,6)$; that is, the curve is defined by $y^2 = x^3 + x + 6$ with a modulus of p = 11. Determine all of the points in $E_{11}(1,6)$. Hint: Start by calculating the right-hand side of the equation for all values of x

х	x ³ +x+6 mod 11	q
1	8	N/A
2	5	(4,7)
3	3	(5,6)
4	8	N/A
5	4	(2,9)
6	8	N/A
7	4	(2,9)
8	9	(3,8)
9	7	N/A
10	4	(2,9)

Points = (2,4), (2,7), (3,5), (3,6), (5,2), (5,9), (7,2), (7,9), (8,3), (8,8), (10,2), (10,9)

10-13

What are the negatives of the following elliptic curve points over Z_{17} ? P = (5,8); Q = (3,0); R = (0,6).

-Р	(5,9)
-Q	(3,0)
-R	(0,11)

10-14

For $E_{11}(1,6)$, consider the point G=(2,7). Compute the multiples of G from G from G through G.

G	m	Result
2	$\frac{3*2^2+1}{2*7} = 8$	(5,2)
3	$\frac{2*7}{2-7} = 2$	(8,3)
4	3	(10,2)
5	9	(3,6)
6	10	(7,9)
7	7	(7,2)
8	10	(3,5)
9	9	(10,9)
10	3	(8,8)
11	2	(5,9)
12	8	(2,4)
13	8	(5,2)

10-15

This problem performs elliptic curve encryption/decryption using the scheme outlined in Section 10.4. The cryptosystem parameters are $E_{11}(1,6)$ and G=(2,7). B's private key is $n_B=7$.

a. Find B's public key Pb

$$P_B = n_B * G = (7,2)$$

b. A wishes to encrypt the message $P_m = (10,9)$ and chooses the random value k = 3. Determine the ciphertext C_m .

$$C_m = kG_1P_m + k*P_B = (8,3),(10,2)$$

c. Show the calculation by which B recovers P_m from C_m.

$$P_m = C_2 - n_B * C_1 = (10,9)$$

3. [40points] Primality and Factorization: Consider the following integers: 31531; 520482; 485827; 15485863.

3.a. Implement and check with Miller-Rabin algorithm if they are prime or not

31531 is prime

520482 is not prime

485827 is prime

15485863 is prime

3.b. Implement Pollard-Rho method and factor them if they are not prime.

31531 has no factors

520482 has a factor of 3

485827 has no factors

15485863 has no factors

For code solution, see primality_factorization.py