VV471— Introduction to Numerical Methods

Assignment 7

Jing and Manuel — UM-JI (Summer 2019)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Cantor's set

In this exercise we investigate a few properties of Cantor's set.

Calling C_0 the compact [0,1] we trisect it and remove the middle open part and define C_1 as $[0,1/3] \cup [2/3,1]$. Recursively repeating the process we construct an infinite sequence $C_0 \supset C_1 \supset \cdots \supset C_i \supset \cdots$. We define the *Cantor set* as the intersection of all the nested C_i , $C = \bigcap_{i=0}^{\infty} C_i$.

- * 1. Prove that *C* is compact.
 - 2. Show that for any two elements x < y of C, there exists $z \notin C$ such that x < z < y.
 - 3. We estimate how "large" the set C is with respect to λ , the Lebesgue measure.
 - a) What is the Lebesgue measure of a countable set?
 - b) Show that for $n \in \mathbb{N}$, $\lambda(C_n) = \left(\frac{2}{3}\right)^n$, and conclude that C has Lebesgue measure 0.
 - 4. We estimate how "large" the set C is with respect to cardinality.
 - a) Show that C is not empty.
 - * b) We write any $x \in [0, 1]$ using the ternary expansion

$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$$
, with $a_i \in \{0, 1, 2\}$.

Describe the form of the x belonging to C_i , $i \in \mathbb{N}$.

- c) Clearly explain Cantor diagonal argument.
- * d) Using Cantor diagonal argument show that Cantor's set is uncountable.
- 5. From questions 3, Cantor's set has Lebesgue measure 0, and from question 4 it is uncountable. Explain how this is possible.

Ex. 2 — Cantor's function

We now define the Cantor function following the construction process of the Cantor set. Let f_1 be 1/2 over the "removed interval" (1/3,2/3) and linear on C_1 . Then define f_2 to be 1/4 and 3/4 on the two removed intervals, to coincide with f_1 in 1/3 and 2/3, while being linear on the remaining four intervals. The process is carried on as the Cantor set is built, defining the Cantor function f_C .

1. Show that the $(f_n)_{n\in\mathbb{N}}$ define a sequence of monotonically increasing continuous functions.

- 2. Show that $(f_n)_{n\in\mathbb{N}}$ converges uniformly to $f_C:[0,1]\to[0,1]$.
- 3. Prove that Cantor function is
 - a) Uniformly continuous;

 Hint: prove (or assume) that a continuous function on a compact is uniformly continuous.
 - b) Monotonically increasing;
 - * c) Differentiable almost everywhere, with f'(x) = 0;
- 4. Prove that f_C is not absolutely continuous.

Note: the Cantor function is one of the most simple function to be uniformly continuous but not absolutely continuous

Ex. 3 — Taylor's theorem

Reasoning by induction and applying the fundamental theorem of calculus, prove

- 1. Taylor's theorem as given in the slides (theorem 5.36).
- 2. Taylor's theorem with the remainder in the Lagrange form; Calling $P_n(x)$ the polynomial part of f(x) in Taylor's theorem, show the existence of $c \in [a, x]$ such that

$$f(x) - P_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Ex. 4 — Convergence of rationals to irrationals

Intuitively a *complete space* has "no point missing" anywhere. In particular it means that any Cauchy sequence converges inside the space. In this exercise we show that *e* is not rational while we find a Cauchy sequence of rationals converging to *e*.

- 1. Show that e is irrational.
- 2. Show that the sequence $(u_n)_{n\in\mathbb{N}}$ defined by $u_n=\left(1+\frac{1}{n}\right)^n$ is a Cauchy sequence converging to e.
- 3. Is \mathbb{Q} complete? Explain.