

Ministère de l'Education Nationale Université de Montpellier II Place Eugène Bataillon 34095 Montpellier Cedex 5

TP FMIN105 Algorithmique / Complexité / Calculabilité

RAPPORT (DÉCEMBRE 2011)

Travail préparé par :

Thibaut MARMIN Clément SIPIETER William DYCE

Table des matières

1	Par	Partie théorique					
	1.1	Partie	algorithmique	5			
	1.2	Partie	complexité	5			
		1.2.1	$SAT \propto 3SAT $	5			
		1.2.2	NP-complétude de 2–SAT	8			
		1.2.3	2–SAT, un problème polynomial $\ \ldots \ \ldots \ \ldots$	8			
	1.3	Partie	calculabilité	8			
2	Par	tie nra	tique	o			

Chapitre 1

Partie théorique

1.1 Partie algorithmique

1.2 Partie complexité

1.2.1 SAT \propto 3-SAT

(a) Énoncé de SAT :

```
\begin{array}{lll} \text{Donn\'ees}: & \mathcal{V} = \{v_1, v_2 \dots v_n\} & \textit{Ensemble de n variables} \\ & \mathcal{C} = \{c_1, c_2, c_3 \dots c_m\} & \textit{Ensemble de m clauses} \\ & \text{où} & c_i = (l_{i1} \vee l_{i2} \vee \dots \vee l_{ik}) & \textit{Clauses de k litt\'eraux} \\ & \text{avec} & l_{ij} = v \text{ ou } \neg v & \textit{avec } v \in U \end{array}
```

Problème : existe-il au moins une affectation des variables telle que chaque clause de $\mathcal C$ soit vrai.

Énoncé de 3-SAT:

3–SAT est identique au problème SAT avec k=3.

Données:
$$\mathcal{V} = \{v_1, v_2, v_3 \dots v_n\}$$

$$\mathcal{C} = \{c_1, c_2, c_3 \dots c_m\}$$
où
$$c_i = (l_{i1} \lor l_{i2} \lor l_{i3})$$
avec
$$l_{ij} = v \text{ ou } \neg v$$

(b) La réduction du problème SAT peut être définit en montrant que chaque clause c de \mathcal{C} peut-être transformée en un ensemble de clauses \mathcal{C}' tel que pour toute affectation rendant vrai l'ensemble des clauses de \mathcal{C} , on peut trouver une affectation rendant vrai chaque clause de \mathcal{C}' . Chaque clause de \mathcal{C}' devant être de taille exactement 3. La réciproque doit également être montrée.

Définissons les réductions :

$$k = 1$$

Soit ci_1 une clause de taille 1, on a $ci_1 = (l)$. Ajoutons deux variables $v_1, v_2 \notin \mathcal{V}$ et transformons la clause c en quatre clauses. On obtient l'ensemble $\mathcal{C}_1 = \{c_1, c_2, c_3, c_4\}$ avec :

$$c_1 = (l \vee v_1 \vee v_2)$$

$$c_2 = (l \lor v_1 \lor \neg v_2)$$

$$c_3 = (l \lor \neg v_1 \lor v_2)$$

$$c_4 = (l \lor \neg v_1 \lor \neg v_2)$$

k = 2

Soit ci_2 une clause de taille 2, on a $ci_2=(l_1\vee l_2)$. Ajoutons une variable $v\notin\mathcal{V}$ et transformons la clause c en deux clauses. On obtient l'ensemble $\mathcal{C}_2=\{c_1,c_2\}$ avec :

$$c_1 = (l_1 \lor l_2 \lor v)$$
$$c_2 = (l_1 \lor l_2 \lor \neg v)$$

k = 3

La clause ci_3 ne subit pas de transformation.

$$\mathcal{C}_3 = \{ci_3\}$$

k > 3

Soit la clause $ci_k = (l_1 \vee l_2 \vee \cdots \vee l_k)$. On ajoute (k-3) nouvelles variables $(v_1, v_2 \dots v_{k-3})$.

$$C_k = \underbrace{(l_1 \vee l_2 \vee v_1)}_{c_1} \bigwedge_{i=1}^{k-4} \left[\underbrace{(\neg v_i \vee l_{i+2} \vee v_{i+1})}_{c_{i+1}} \right] \wedge \underbrace{(\neg v_{k-3} \vee l_{k-1} \vee l_k)}_{c_{k-2}}$$

Montrons que SAT est vrai si et seulement si 3-SAT est vrai :

$SAT \, \to \, 3\text{--}SAT$

- Soit une interprétation I_1 qui satisfasse la clause ci_1 :

$$val(I_1, ci_1) = val(I_1, l) = vrai$$

Prenons une interprétation I_1' avec $val(I_1, l) = val(I_1', l)$, peu importe les affectations de v_1 et v_2 , l étant présent dans toutes les clauses de C_1 :

$$val(I_1', \mathcal{C}) = vrai$$

– Soit une interprétation I_2 qui satisfasse la clause ci_2 :

$$\exists i, val(I_2, l_i) = vrai$$

Prenons une interprétation I_2' avec :

$$val(I_2, l_1) = val(I'_2, l_1)$$

$$val(I_2, l_2) = val(I'_2, l_2)$$

Peu importe l'affectation de v dans I_2' , on a $val(I_2', \mathcal{C}_2) = vrai$.

7 Partie théorique

- Soit une interprétation I_k qui satisfasse la clause ci_k :

$$\exists i, val(I_k, l_i) = vrai$$

Prenons une interprétation I_k^\prime telle que :

$$val(I_k, l_i) = val(I'_k, l_i)$$

$$\forall j \in [1; (i-2)], val(I'_k, v_j) = vrai$$

$$\forall j \in [(i-1); (k-3)], val(I'_k, v_j) = faux$$

On obtient :

$$val(I'_k, \mathcal{C}_k) = vrai$$

$3\text{--}SAT \,\to\, SAT$

Prenons une interprétation I_1 telle que $val(I_1, \mathcal{C}_1) = vrai$. Sans perte de généralité, on suppose que :

$$val(I_1, v_1) = val(I_1, v_2) = vrai$$

La clause c_4 de C_1 ne peut être satisfaite que si $val(I_1, l) = vrai$. On a donc:

$$val(I_1, ci_1) = vrai$$

- Prenons une interprétation I_2 telle que $val(I_2, \mathcal{C}_2) = vrai$. Sans perte de généralité on suppose que :

$$val(I_2, v) = vrai$$

La clause c_2 de C_2 ne peut être satisfaire que si $val(I_2, (l_1 \vee l_2)) =$ vrai.

On a donc :

$$val(I_2, ci_2) = vrai$$

- Prenons une interprétation I_k telle que $val(I_k, \mathcal{C}_k) = vrai$ et montrons qu'il existe forcément un i tel que $val(I_k, l_i) = vrai$. Supposons que l'interprétation I_k est modèle de C_k avec

$$\forall i \in [1; k], val(I_k, l_i) = faux$$

$$\Rightarrow val(I_k, v_1) = vrai \text{ (dans } c_1)$$

Donc:
$$\forall i \in [1; (k-4)], val(I_k, v_{i+1}) = vrai$$

$$\Rightarrow val(I_k, v_{k-3}) = vrai$$

$$\Rightarrow val(I_k, c_{k-2}) = faux$$

$$\Rightarrow val(I_k, C_k) = faux$$

Pour que l'interprétation I_k satisfasse \mathcal{C}_k , il doit exister un $i \in$ [1;k] tel que $val(I_k,l_i) = vrai$.

On a donc:

$$val(I_k, ci_k) = vrai$$

(c) Le point (b) définit la réduction de SAT vers 3–SAT. Afin de montrer la NP-Complétude de 3–SAT, montrons que la réduction s'effectue en un temps polynomial.

Soit:

k la taille de la clause initiale,

 v_k le nombre de variables à ajouter pour obtenir des clauses de taille 3, w_k le nombre de clauses de taille 3 obtenues à partir de la clause initiale.

$$v_3 = 0$$
 $w_3 = 1$
 $v_4 = 1$ $w_4 = 2$
 $v_5 = 2$ $w_5 = 3$
: :

Pour tout k > 3:

$$v_k = v_{\left\lceil \frac{k}{2} \right\rceil + 1} + v_{\left\lfloor \frac{k}{2} \right\rfloor + 1} + 1$$
$$w_k = w_{\left\lceil \frac{k}{2} \right\rceil + 1} + w_{\left\lfloor \frac{k}{2} \right\rfloor + 1}$$

 $v_k = \theta(k)$, donc borné par la taille de F. La réduction s'effectue donc en un temps polynomial.

Il est possible de réduire le problème SAT à 3–SAT en un temps polynomial, SAT étant NP-complet, 3–SAT l'est aussi.

1.2.2 NP-complétude de 2-SAT

- 1. coucou
- 2. coucou

1.2.3 2-SAT, un problème polynomial

- 1. coucou
- 2. coucou

1.3 Partie calculabilité

Chapitre 2

Partie pratique