Matemáticas II

Marcos Bujosa

Universidad Complutense de Madrid

15/01/2025

1 / 44

L-16 L-17 L-18 L-19 L-R

1 Esquema de la Lección 16

Matrices siempre cuadradas en este tema

Esquema de la Lección 16

- Autovalores, autovectores (eigen, característicos, propios)
- $|\mathbf{A} \lambda \mathbf{I}| = 0$ ecuación característica
- $\operatorname{tr}(\mathbf{A})$, $\det \mathbf{A}$ (demo en la próxima lección)

L-16 L-17 L-18 L-19

Puede encontrar la última versión de este material en

https://github.com/mbujosab/MatematicasII/tree/main/Esp

Marcos Bujosa. Copyright © 2008–2025
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1/44

L-16 L-17 L-18 L-19 L-R

2 Autovalores y autovectores

Considere la ecuación

$$\mathbf{A} \underline{x} = \lambda \underline{x} \qquad (con \quad x \neq \mathbf{0})$$

- Autovalor es cualquier λ para el que existan soluciones.
- Dichas soluciones *no nulas* x se llaman *autovectores*. $x \neq 0$ tales que Ax es un múltiplo de x

Cuando λ es 0, ¿quienes son los auto-vectores?

- 3 Un ejemplo: matriz de proyección
- Proyección ortogonal
- ¿Qué vectores son autovectores? ¿qué vectores quedan en la misma dirección?
- ¿Cuanto valen sus autovalores?
- ¿Hay más autovectores? ¿Con qué autovalor?
- Dos autoespacios

4 / 44

L-R

L-16 L-17 L-18 L-19

5 ¿Cómo calcular los autovalores y los autovectores?

¿Cómo resolver

$$\mathbf{A}x = \lambda \hat{x}$$

Reescribamos ...

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} =$$

idea Para que esto ocurra ¿cómo debe ser la matriz $(\mathbf{A} - \lambda \mathbf{I})$?

¿Cuánto debe valer el determinante? $|\mathbf{A} - \lambda \mathbf{I}| =$

L-16 L-17 L-18 L-19 L-F

Otro ejemplo: matriz intercambio

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- ¿Un vector que no cambie tras el intercambio?
- ¿Cuál es su autovalor?
- ¿Algún autovector asociado a $\lambda_2 = -1$?

$$\mathbf{A}\boldsymbol{x}_2 = -\boldsymbol{x}_2$$

Nótese: $\operatorname{tr}(\mathbf{A}) = 0 = \lambda_1 + \lambda_2;$ $\det \mathbf{A} = -1 = \lambda_1 \cdot \lambda_2.$

5 / 44

L-16 L-17 L-18 L-19 L-R

6 ¿Cómo calcular los autovalores y los autovectores?

- 1. Autovalores son los λ 's tales que: $|\mathbf{A} \lambda \mathbf{I}| =$ (Polinomio característico $P_{\mathbf{A}}(\lambda)$)
- 2. ¿Cómo calcular los x tales que $(\mathbf{A} \lambda \mathbf{I}) x = \mathbf{0}$?

Autoespacio (conjunto de autovectores + 0):

$${\cal E}_{\lambda}({f A}) = \left\{ \left. {m x} \in {\mathbb R}^n
ight| {f A} {m x} = \lambda {m x}
ight\}$$

Espectro: conjunto $\{\lambda_1, \dots \lambda_k\}$ de autovalores (raíces de $P_{\mathbf{A}}(\lambda)$)

7 Ejemplo (¡primero los autovalores!)

Buscamos determinante nulo (Polinomio característico)

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}; \qquad \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 0$$

Nótese: $\operatorname{tr}(\mathbf{A}) = 6 = \lambda_1 + \lambda_2$; $\det \mathbf{A} = 8 = \lambda_1 \cdot \lambda_2$.

8 / 44

L-16 L-17 L-18 L-19 L-R

9 Otro ejemplo: Matriz rotación 90º

$$\mathbf{Q} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- ¿Cuanto suman los autovalores?
- ¿Cuanto vale el determinante?

Dificultades

$$\lambda_1 + \lambda_2 = 0$$
 y $\lambda_1 \cdot \lambda_2 = 1$ (+) · (-) = (+)

¿Qué vector es paralelo a si mismo tras una rotación de 90º?

$$\det (\mathbf{Q} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 =$$

L-16 L-17 L-18 L-19 L-

8 Ejemplo (después los autoespacios)

y ahora calculamos el espacio nulo $\mathcal{N}(\mathbf{A} - \lambda \mathbf{I})$... para cada λ .

Para
$$\lambda_1=4$$
 $(\mathbf{A}-4\mathbf{I})=\begin{bmatrix} 3-4 & 1 \\ 1 & 3-4 \end{bmatrix}=\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ \Rightarrow

Para
$$\lambda_2 = 2$$

$$(\mathbf{A} - 2\mathbf{I}) = \begin{bmatrix} 3 - 2 & 1 \\ 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow$$

¡Son los dos únicos autovectores?

$$\mathbf{A} oldsymbol{x}_i = \lambda oldsymbol{x}_i; \qquad egin{bmatrix} 3 & 1 \ 1 & 3 \end{bmatrix} oldsymbol{x}_i = \lambda oldsymbol{x}_i.$$

9 / 44

L-16 L-17 L-18 L-19 L-R

10 Ejemplos aún peores

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

Autovalores

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)(3 - \lambda) = 0 \begin{cases} \lambda_1 = 3 \\ \lambda_2 = 3 \end{cases}$$

Autovectores

• para
$$\lambda_1$$
: $(\mathbf{A} - \lambda \mathbf{I}) \boldsymbol{x} = \mathbf{0} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}_1; \qquad \boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

• para λ_2 :

 $\lambda=3$ está repetido dos veces, pero $\dim \mathcal{E}_3(\mathbf{A})=1$

$$\mu(3) = 2 \neq 1 = \gamma(3)$$

Resumen:

- 1. Los autovalores λ son aquellos que hacen singular a la matriz $(\mathbf{A} \lambda \mathbf{I})$, es decir, son las raíces del polinomio característico: $\det(\mathbf{A} \lambda \mathbf{I})$.
- 2. Una matriz de orden $n \times n$ tiene polinomio caracteristico de grado n
- 3. Un polinomio de grado n tiene n raíces (quizá algunas raíces repetidas)
- 4. La suma de los autovalores es igual a la suma de los elementos de la diagonal de la matriz (traza)
- 5. El producto de los autovalores es igual al determinante
- 6. Los autovectores asociados a λ son los vectores no nulos de $\mathcal{N}\left(\mathbf{A}-\lambda\mathbf{I}\right)$.

12 / 44

L-16

L-17

L-18

L-19

L-R

(b)

$$\mathbf{B} = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

(Strang, 2007, ejercicio 12 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 3. Si **B** tiene autovalores 1, 2, 3, **C** tiene autovalores 4, 5, 6, y **D** tiene autovalores 7, 8, 9, λ Qué autovalores tiene la matriz de orden 6 por 6

 $A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$? donde B, C, D son matrices triangulares superiores.

(Strang, 2007, ejercicio 13 del conjunto de problemas 5.1.)

 $(L\mbox{-}16)$ Problema 4. Encuentre los autovalores y autovectores de las siguientes matrices

(a)

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(b)

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

(Strang, 2007, ejercicio 5 del conjunto de problemas 5.1.)

L-16

L-18

L-19

Problemas de la Lección 16

(L-16) PROBLEMA 1. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} -3 & 4 & -4 \\ -3 & 5 & -3 \\ -1 & 2 & 0 \end{bmatrix}$$

(a) Los autovalores de **A** son -1, 1 y 2; y dos auto-vectores son

$$v = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}; \qquad w = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Compruebe que estos vectores son efectivamente auto-vectores de A. ¿Cuales son sus correspondientes autovalores?

(b) Encuentre un tercer auto-vector correspondiente al tercer auto-valor.

(L-16) PROBLEMA 2. Encuentre los valores y vectores característicos de

(a)

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

12 / 44

L-16

L-17

L-18

I_10

L-R

(L-16) PROBLEMA 5. Los autovalores de **A** son iguales a los autovalores \mathbf{A}^{T} . Esto se debe a que $\det(\mathbf{A} - \lambda \mathbf{I})$ es igual a $\det(\mathbf{A}^{\mathsf{T}} - \lambda \mathbf{I})$.

- (a) Lo anterior es cierto porque
- (b) Demuestre con un ejemplo que, sin embargo, los auto-vectores de A y A^T no son

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 6. Sea B y un autovector x con autovalor asociado λ , es decir $\mathbf{B}x = \lambda x$; sea también $\mathbf{A} = (\mathbf{B} + \alpha \mathbf{I})$. Demuestre que x es también un autovector de \mathbf{A} , pero con el autovalor asociado $(\lambda + \alpha)$.

(L-16) Problema 7.

- (a) Encuentre los autovalores y los auto-vectores de la matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$. Compruebe que la traza es igual a la suma de los autovalores, y que el determinante es igual a su producto.
- (b) Si consideramos una nueva matriz, generada a partir de la anterior como

$$\mathbf{B} = (\mathbf{A} - 7\mathbf{I}) = \begin{bmatrix} -6 & -1 \\ 2 & -3 \end{bmatrix}.$$

¿Cuáles son los autovalores y auto-vectores de la nueva matriz, y como están relacionados con los de A?

(Strang, 2007, ejercicio 1 y 3 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 8. Suponga que λ es un auto-valor de ${\bf A}$, y que ${\bf x}$ es un auto-vector tal que ${\bf A}{\bf x}=\lambda {\bf x}$.

- (a) Demuestre que ese mismo x es un auto-vector de $\mathbf{B} = \mathbf{A} 7\mathbf{I}$, y encuentre el correspondiente auto-valor de \mathbf{B} .
- (b) Suponga que $\lambda \neq 0$ (y que **A** es invertible), demuestre que x también es un auto-vector de \mathbf{A}^{-1} , y encuentre el correspondiente auto-valor. ¿Qué relación tiene con λ ?

(Strang, 2007, ejercicio 7 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 9. Suponga que $\bf A$ es una matriz de dimensiones $n\times n$, y que $\bf A^2=\bf A$. ¿Qué posibles valores pueden tomar los autovalores de $\bf A$?

(L-16) PROBLEMA 10. Suponga la matriz \mathbf{A} con autovalores 1, 2 y 3. Si v_1 es un auto-vector asociado al auto-valor 1, v_2 al auto-valor 2 y v_3 al auto-valor 3; entonces ¿cuanto es $\mathbf{A}(v_1+v_2-v_3)$?

(L-16) PROBLEMA 11. Proporcione un ejemplo que muestre que los auto-valores pueden cambiar cuando un múltiplo de una columna se resta de otra. ¿Por qué los pasos de eliminación no modifican los autovalores nulos? (Strang, 2007, ejercicio 6 del conjunto de problemas 5.1.)

12 / 44

L-16 L-17 L-18 L-19 L-R

(L-16) Problema 15. The equation $(\mathbf{A}^2 - 4\mathbf{I})x = b$ has no solution for some right-hand side b. Give as much information as possible about the eigenvalues of the matrix \mathbf{A} (the matrix \mathbf{A} is diagonalizable).

(L-16) PROBLEMA 16. You are given the matrix

$$\mathbf{A} = \begin{bmatrix} 0.5 & 0.2 & 0.2 \\ 0.1 & 0.5 & 0.5 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$$

One of the eigenvalues is $\lambda=1$. What are the eigenvalues of **A**? [Hint: Very little calculation required! You should be able to see another eigenvalue by inspection of the form of **A**, and the third by an easy calculation. You shouldn't need to compute $\det(\mathbf{A}-\lambda\mathbf{I})$ unless you really want to do it the hard way.]

L-16 L-17 L-18 L-19 L-R

(L-16) PROBLEMA 12. El polinomio característico de una matriz **A** se puede factorizar como

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda).$$

Demuestre, partiendo de esta factorización, que el determinante de ${\bf A}$ es igual al producto de sus valores propios (autovalores). Para ello haga una elección inteligente del valor de λ .

(Strang, 2007, ejercicio 8 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 13. Calcule los valores característicos (autovalores o valores propios) y los vectores característicos de $\bf A$ y $\bf A^2$:

$$\mathbf{A} = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \qquad \mathbf{y} \qquad \mathbf{A}^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}$$

 ${\bf A}^2$ tiene los mismos _____ que ${\bf A}$. Cuando los autovalores de ${\bf A}$ son λ_1 y λ_2 , los autovalores de ${\bf A}^2$ son ____. (Strang, 2007, ejercicio 22 del conjunto de problemas 5.1.)

(L-16) PROBLEMA 14. Suponga que los valores característicos de \mathbf{A} son 1, 2 y 4, ¿cuál es la traza de \mathbf{A}^2 ? ¿Cuál es el determinante de $(\mathbf{A}^{-1})^{\mathsf{T}}$? (Strang, 2007, ejercicio 10 del conjunto de problemas 5.2.)

12 / 44

L-16 L-17 L-18 L-19 L-R

1 Esquema de la Lección 17

Esquema de la Lección 17

- Matrices semejantes: $C = S^{-1}AS$
- Diagonalizando una matriz por bloques triangulares

• Matrices diagonalizables: cuando **C** es diagonal.

2 Matrices semejantes

Semejanza

A y C son semejantes si existe S invertible tal que

$$\mathbf{C} = \mathbf{S}^{\text{-}1}\mathbf{A}\mathbf{S}$$

Si A y C son semejantes (mirar demos en el libro):

- Mismo determinante: $\det \mathbf{A} = \det \mathbf{C}$
- Mismo polinomio característico: $|\mathbf{A} \lambda \mathbf{I}| = |\mathbf{C} \lambda \mathbf{I}|$
- Mismos autovalores y con las mismas multiplicidades algebraica y geométrica.
- La misma traza.

L-16

Trans. Elem. inversas espejo: $\left(\mathbf{I}_{(\tau_1\cdots\tau_k)}\right)^{-1}={}_{esp(\tau_k^{-1}\cdots\tau_1^{-1})}\mathbf{I}$

$$\mathbf{I} = \mathbf{I}_{[(-\alpha)\mathbf{j}+\mathbf{i}]} \mathbf{T}_{[(\alpha)\mathbf{i}+\mathbf{j}]} = \mathbf{I}_{[\left(\frac{1}{\alpha}\right)\mathbf{j}]} \mathbf{T}_{[(\alpha)\mathbf{j}]} \Rightarrow \mathbf{A} \text{ similar a } esp(\tau_1 \cdots \tau_k)^{-1} \mathbf{A}_{\tau_1 \cdots \tau_k}$$

L-17 L-18 L-19 L-R

4 Diagonalizando por bloques una matriz (matriz dentada)

Sea
$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \| & \| & \mathbf{L} \end{bmatrix} \in \mathbb{C}^{n \times n}$$
 donde

C (de orden m) es singular y **L** es triangular inferior e invertible, entonces existe S = RP (invertible) tal que

L-16 L-17 L-R

3 Diagonalizando por bloques una matriz (matriz dentada)

Sea
$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \\ \hline * & \mathbf{L} \end{bmatrix} \in \mathbb{C}^{n \times n}$$
 donde

C (de orden m) es singular y L es triangular inferior e invertible; entonces existe R invertible tal que

$$\left(\dots \frac{\tau}{\left[\left(-\alpha_{j}\right)^{m+j}\right]}\dots\right)^{\mathbf{A}}\left(\dots \frac{\tau}{\left[\left(\alpha_{j}\right)^{j+m}\right]}\dots\right); \qquad \mathbf{j}=1,\dots,m-1.$$

L-18 L-17

15 / 44

5 Un ejemplo muy sencillo

Ejemplo

L-16

16 / 44

Sea
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 con autovalores 0, 1 y 1.

$$\underbrace{\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \end{subarray}} \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\begin{subarray}{c} [(1)1+2] \\ [(2)3+2] \\ [(2)3+2] \\ [(2)3+2] \\ [(2)3+2] \\ [(3)1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{subarray}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{subarray}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \end{subarray}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{subarray}}_{\begin{subarray}{c} \mathbf{I} \\ \mathbf{I} \end{subarray}}_{\begin{subarray}{c} \mathbf$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\text{diagonal}}$$

L-16

L-17

6 Un ejemplo no tan sencillo

Ejemplo

Sea
$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix}$$
 con autovalores 1, 1 y 0.

$$\begin{array}{c} (-) \\ \hline 11 \\ \hline \end{array} \begin{array}{c} \begin{bmatrix} -3 & 0 & 3 \\ 3 & -3 & -9 \\ -1 & 2 & 5 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 11 \\ \hline \end{bmatrix} \begin{array}{c} \begin{bmatrix} -2 & -2 & 0 \\ 1 & 2 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 11 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} -2 & -2 & 0 \\ 0 & 0 & 1 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} -2 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} -2 & -2 & 0 \\ 0 & 0 & 1 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 1 & 0 \\ \hline -1 & 2 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 1 & 0 \\ \hline -1 & 2 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 1 & 0 \\ \hline -1 & 3 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline -1 & 3 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline -1 & 3 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline -1 & 3 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 & 0 \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 1 & 0 \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \begin{bmatrix} (-) \\ 0 & 1 \\ \end{bmatrix} \\ \hline \end{bmatrix} \\ \begin{bmatrix}$$

18 / 44

L-16

L-17

L-18

L-R

8 De vuelta al ejemplo sencillo y "desdentado"

Sea
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 con autovalores 0, 1 y 1.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}(\mathbf{S}_{|i}) = \lambda_i(\mathbf{S}_{|i}) \quad \Rightarrow \quad \mathbf{S}_{|i} \text{ es un autovector.}$$

7 Toda matriz es semejante a otra matriz dentada

Para toda A existe S tal que

L-17

$$S^{-1}AS = C \Rightarrow AS = SC$$

donde C, dentada, tiene los autovalores en la diagonal **Ejemplo**

$$\begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix} \begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}}_{\text{dentada}}$$
Consequencias

- $\sum \lambda_i = \operatorname{tr}\left(\mathbf{A}\right)$ y $\prod \lambda_i = \det \mathbf{A}$
- $\bullet \quad \mathbf{AS}_{|j} = \mathbf{SC}_{|j} \qquad \Rightarrow \qquad \text{para } j \text{ tal que } \mathbf{C}_{|j} = \lambda_i \mathbf{I}_{|j} :$

 $\mathbf{A}(\mathbf{S}_{|i}) = \lambda_i(\mathbf{S}_{|i}) \Rightarrow \mathbf{S}_{|i}$ es un autovector.

19 / 44

L-17 9 Matrices diagonalizables

- La matriz es diagonalizable si y solo si las multiplicidades algebraicas son iguales a las geométricas para cada autovalor
- Si no hay autovalores repetidos tampoco hay "dientes"
- Cuando no hay autovalores repetidos A es diagonalizable

10 Diagonalizando una matriz

- Encuentre el espectro: $\{\lambda_1, \lambda_2, \ldots\}$
- \bullet Encuentre la multiplicidad algebraica de cada autovalor: $\mu(\lambda_i)$

luego elija una de estas alternativas:

- 1. Dentar la matrix (implementado en NAcAL)
- 2. ... o para cada λ_i
 - encuentre el autoespacio

$${\mathcal E}_{\lambda_i}({\mathsf A}) = \left\{ \left. {m x} \in {\mathbb R}^n \right| {\mathsf A} {m x} = \lambda_i {m x}
ight\} \ = \ {\mathcal N}({\mathsf A} - \lambda_i {\mathsf I}).$$

• revise $\mu(\lambda_i) = \dim {\mathcal E}_{\lambda_i}({\mathbf A})$ (multiplicidades algebráica y geométrica iguales)

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix}; \quad \mathbf{S} = \begin{bmatrix} \text{base de } \mathcal{E}_{\lambda_1}(\mathbf{A}) \# \cdots \# \text{base de } \mathcal{E}_{\lambda_k}(\mathbf{A}) \end{bmatrix}$$

$$S^{-1}AS = D \Leftrightarrow A = SDS^{-1}$$

22 / 44

L-R

L-16

L-17

L-18

L-19

L-R

Problemas de la Lección 17

(L-17) PROBLEMA 1. Factorice las siguientes matrices en SDS⁻¹;

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

(Strang, 2007, ejercicio 15 del conjunto de problemas 5.2.)

(L-17) Problema 2. ¿Cuáles de las siguientes matrices no se pueden diagonalizar?

(a)

$$\mathbf{A}_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$

(b)

$$\mathbf{A}_2 = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}$$

(c)

$$\mathbf{A}_3 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$

(Strang, 2007, ejercicio 5 del conjunto de problemas 5.2.)

L

L-17

L-19

_ _ _

Potencias de una matriz diagonalizable Si $\mathbf{A}x=\lambda x$ entonces $\mathbf{A}^2x=\mathbf{A}\mathbf{A}x=\mathbf{A}(\lambda x)=\lambda \mathbf{A}x=$

(...)

- ¿Qué relación hay entre los autovectores de **A** y los de **A**²?
- ¿Qué relación hay entre los autovalores de **A** y los de **A**²?

Dicho en forma matricial (si **A** es diagonalizable, $\mathbf{A} = \mathbf{SDS}^{-1}$):

$$A^2 = SDS^{-1}SDS^{-1} = SD^2S^{-1}$$

En general para, $n \in \mathbb{Z}$, $n \ge 0...$ $\mathbf{A}^n =$ ¿y si \mathbf{A} es invertible?

23 / 44

I -17

L-18

. . .

L-R

(L-17) Problema 3. Si $\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$ encuentre \mathbf{A}^{100} diagonalizando \mathbf{A}

(Strang, 2007, ejercicio 7 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 4. Si los autovalores de ${f A}$ son 1, 1 y 2, ¿cuáles de las siguientes afirmaciones sabemos que son ciertas?

- (a) A es invertible.
- (b) A es diagonalizable.
- (c) A no es diagonalizable

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 5. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

- (a) (1^{pts}) Determine si la matriz **A** es diagonalizable. En caso de que lo sea, encuentre una matriz diagonal **D** y una matriz **S** tal que **A** = **SDS**⁻¹.
- (b) (0.5^{pts}) Calcule $(\mathbf{A}^6)\mathbf{v}$, donde $\mathbf{v} = (0, 0, 0, 1)$.
- (c) $(0.5^{\rm pts})$ Use los valores obtenidos en el primer apartado para justificar que ${\bf A}$ es regular (invertible).

L-16 L-17

-17 L-18 L-19

(d) (0.5pts) ¿Qué relación hay entre los autovalores y los autovectores de ${\bf A}$ y los de ${\bf A}^{-1}$?

(L-17) PROBLEMA 6. Si $\mathbf{A} = \mathbf{SDS}^{-1}$; entonces $\mathbf{A}^3 = ($)()() $\mathbf{A}^{-1} = ($)(). (Strang, 2007, ejercicio 16 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 7. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

- (a) Encuentre los autovalores de A
- (b) Encuentre los auto-vectores de A
- (c) Diagonalice **A**: escríbalo como $\mathbf{A} = \mathbf{SDS}^{-1}$.

(L-17) PROBLEMA 8. ¿Falso o verdadero? Si los autovalores de ${\bf A}$ son 2, 2 y 3 entonces sabemos que la matriz es

- (a) Invertible
- (b) Diagonalizable
- (c) No diagonalizable.

(L-17) PROBLEMA 9. Sean las matrices

$$\mathbf{A}_1 = \begin{bmatrix} 8 & \\ & 2 \end{bmatrix}; \qquad \mathbf{A}_2 = \begin{bmatrix} 9 & 4 \\ & 1 \end{bmatrix}; \qquad \mathbf{A}_3 = \begin{bmatrix} 10 & 5 \\ -5 & \end{bmatrix}$$

23 / 44

L-R

L-R

L-16 L-17

- (a) Encuentre los autovalores y auto-vectores de la matriz $\mathbf{A}=\begin{bmatrix}1&0&0\\-2&1&0\\1&0&1\end{bmatrix}$.
- (b) Explique por qué (o por qué no) la matriz A es diagonalizable.

(L-17) PROBLEMA 14. Sea **A** una matriz 3×3 . Asuma que sus autovalores son 1 y 0, que una base de los autovectores asociados a $\lambda=1$ son [1,0,1] y [0,0,1]; mientras que los asociados a $\lambda=0$ son paralelos a [1,1,2].

- (a) ¿Es A diagonalizable? En caso afirmativo escriba la matriz diagonal $\bf D$ y la matriz $\bf S$ tales que $\bf A = \bf S \bf D \bf S^{-1}$.
- (b) Encuentre A.

(L-17) PROBLEMA 15. Sea **A** una matriz 2×2 tal que $\binom{2}{0}$ es un autovector de **A** con autovalor 2, y $\binom{2}{-1}$ es otro autovector de **A** con autovalor -2. Si $v = \binom{1}{-1}$, calcule $(\mathbf{A}^3)v$.

L-16 L-17 L-18 L-19 L-R

- (a) Complete dichas matrices de modo que en los tres casos $\det \mathbf{A}_i = 25$. Así, la traza es en todos los casos igual a 10, y por tanto para las tres matrices el único auto-valor $\lambda = 5$ está repetido dos veces ($\lambda^2 = 25$ y $\lambda + \lambda = 10$ implica $\lambda = 5$).
- (b) Encuentre un vector característico con $\mathbf{A}x=5x$. Estas tres matrices no son diagonalizable porque no hay un segundo auto-vector linealmente independiente del primero.

(Strang, 2007, ejercicio 27 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 10. Factorice las siguientes matrices en S D S^{-1}

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$

(Strang, 2007, ejercicio 1 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 11. Encuentre la matriz **A** cuyos autovalores son 1 y 4, cuyos autovectores son $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ y $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ respectivamente.

(Strang, 2007, ejercicio 2 del conjunto de problemas 5.2.)

(L-17) PROBLEMA 12. Si los elementos diagonales de una matriz triangular superior de orden 3×3 son 1, 2 y 7, ¿puede saber si la matriz es diagonalizable? ¿Quién es **D**? (Strang, 2007, ejercicio 4 del conjunto de problemas 5.2.)

(L-17) Problema 13.

23 / 44

L-16 L-17 L-18 L-19 L-R

1 Esquema de la Lección 18

Esquema de la Lección 18

- Matrices simétricas $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$
 - Autovalores y autovectores
- Introd. formas cuadráticas y matrices definidas positivas

2 Matrices simétricas $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

¿que hay de especial en $\mathbf{A} x = \lambda x$ cuando $\mathbf{A}_{n \times n}$ es simétrica?

- 1. Los autovalores son REALES
- 2. n autovectores *pueden elegirse* PERPENDICULARES (¡siempre diagonalizable!)

Caso diagonalizable usual:

$$S^{-1}AS = D \longleftrightarrow A = SDS^{-1}$$

Caso simétrico:

Puedo elegir autovectores orto*normales* (columnas de S = Q)

(Si
$$\mathbf{A} = \mathbf{A}^{\mathsf{T}}$$
) $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{-1}} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}$ Tma. espectral

Diagonalizable ortogonalmente.

25 / 44

L-16 L-17 L-18 L-19 L-R

4 Formas cuadráticas

Forma cuadrática:

$$x A x$$
; con $A^{T} = A$

Como $\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\mathsf{T}}$ (con $\mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{I}$), entonces

 $x \mathbf{A} x = x \mathbf{Q} \mathbf{D} \mathbf{Q}^\intercal x = (\mathbf{Q}^\intercal x) \mathbf{D} (\mathbf{Q}^\intercal x)$ (suma ponderada de cuadrados)

Forma cuadrática definida positiva:

$$x\mathbf{A}x > 0 \quad \forall x \neq \mathbf{0} \qquad \iff \qquad \lambda_i > 0, \quad i = 1:n.$$

entonces también decimos que A es definida positiva.

L-16 L-17 L-18 L-19

3 Autoespacios ortogonales en las matrices simétricas

Los autovectores (correspondientes a autovalores distintos) de una matriz simétrica son ortogonales.

Demostración.

Suponga $\mathbf{A} x = \lambda_1 x$ y $\mathbf{A} y = \lambda_2 y$ (con $\lambda_1 \neq \lambda_2$). Entonces

$$\lambda_1 \boldsymbol{x} \cdot \boldsymbol{y} = \mathbf{A} \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x} (\mathbf{A}^{\intercal}) \boldsymbol{y} = \boldsymbol{x} \mathbf{A} \boldsymbol{y} = (\boldsymbol{x} \cdot \boldsymbol{y}) \lambda_2.$$

Puesto que $\lambda_1 \neq \lambda_2$ necesariamente:

$$\lambda_1(\boldsymbol{x}\cdot\boldsymbol{y}) - \lambda_2(\boldsymbol{x}\cdot\boldsymbol{y}) = 0 \implies (\lambda_1 - \lambda_2)\boldsymbol{x}\cdot\boldsymbol{y} = 0 \implies \boldsymbol{x}\cdot\boldsymbol{y} = 0.$$

26 / 44

L-16 L-17 L-18 L-19 L-R

5 Matrices definidas positivas

Significado:

$$x \mathbf{A} x > 0$$
 (excepto para $x = \mathbf{0}$)

Algunas propiedades

Suponga **A** simétrica definida positiva: ¿lo es también A^{-1} ? $A = QDQ^{-1} = QDQ^{T}$

Suponga A, B simétricas definidas positivas: ¿lo es A + B?

por tanto la respuesta es...

L-16 L-17 L-18 L-19 L-R

6 Producto de matrices A^TA

Supongamos $\mathbf{A}_{m \times n}$ rectangular. ¿Es $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ definida positiva?

$$\boldsymbol{x}(\mathbf{A}^{\intercal}\mathbf{A})\boldsymbol{x} =$$

Sólo puede ser 0 si $\mathbf{A}x$ es $\mathbf{0}$

¿Cómo garantizar que $\mathbf{A}x \neq \mathbf{0}$ cuando $x \neq \mathbf{0}$?

29 / 44

L-R

L-16 L-17 L-18 L-19

8 Matrices simétricas definidas positivas

- Todos los autovalores son:
- Todos los pivotes son:

$$\begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$$

Pivotes:

¿Signo de los autovalores?

$$\lambda^2 - 8\lambda + 11 = 0 \to \lambda = 4 \pm \sqrt{5} > 0$$

7 Matrices simétricas: signo de los autovalores

¿Son todos los λ_i positivos? ¿Son todos negativos?

Calcular autovalores de ${\displaystyle \mathop{\pmb{A}}_{5\times 5}}$ es imposible en general

Buenas noticias: Signo de los pivotes de la forma escalonada coincide con el de los λ_i (si no hemos cambiado el signo del determinante con transformaciones $Tipo\ II$)

núm. pivotes positivos = núm. autovalores positivos

L-16 L-17 **L-18** L-19 L-R

Resumen (para matrices simétricas):

- 1. Matrices simétricas tienen autovalores reales y autovectores que se pueden elegir perpendiculares
- 2. $\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\mathsf{T}}$ con \mathbf{Q} ortogonal
- 3. A es simétricas si y solo si es *ortogonalmente* diagonalizable.
- 4. El signo de los autovalores coincide con el de los pivotes¹

Problemas de la Lección 18

(L-18) PROBLEMA 1. Escriba las matrices $\boldsymbol{A},\,\boldsymbol{B}$ y \boldsymbol{C} en la forma $\boldsymbol{Q}\boldsymbol{D}\boldsymbol{Q}^\intercal$ del teorema espectral.

(a)
$$\mathbf{A} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$\mathbf{C} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.5.)

(L-18) Problema 2. Encuentre los autovalores y los autovectores unitarios (de longitud igual a uno) de

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(Strang, 2003, ejercicio 3 del conjunto de problemas 6.4.)

(L-18) PROBLEMA 3. Encuentre una matriz ortonornal ${\bf Q}$ que diagonalize la siguiente matriz simétrica:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

32 / 44

L-R

L-R

L-16 L-17

(L-18) PROBLEMA 6. Sean

L-18

L-19

- (a) Encuentre los valores característicos de **A** (recuerde que $i^2 = -1$).
- (b) Encuentre los valores característicos de B (en este caso quizá le resulte más sencillo encontrar primero los autovectores, y deducir entonces los autovalores).

(Strang, 2007, ejercicio 14 del conjunto de problemas 5.5.)

(L-18) Problema 7. Si ${\bf A}^3={\bf 0}$ entonces los autovalores de ${\bf A}$ deben ser _____ De un ejemplo tal que ${\bf A}\neq {\bf 0}$. Ahora bien, si ${\bf A}$ es además simétrica, demuestre que entonces ${\bf A}^3$ es necesariamente ${\bf 0}$.

L-16 L-17 L-18 L-19 L-

(Strang, 2003, ejercicio 5 del conjunto de problemas 6.4.)

(L-18) Problema 4. Suponga que ${\bf A}$ es una matriz simétrica de 3 por 3 con autovalores 0, 1 y 2.

- (a) ¿Qué propiedades pueden garantizarse para los autovectores unitarios u, v y w correspondientes a los respectivos autovalores 0, 1 y 2?
- (b) En términos de u, v y w, describa el espacio nulo $\mathcal{N}(\mathbf{A})$, el espacio nulo por la izquierda $\mathcal{N}(\mathbf{A}^{\intercal})$, el espacio fila $\mathcal{C}(\mathbf{A}^{\intercal})$ y el espacio columna $\mathcal{C}(\mathbf{A})$.
- (c) Encuentre un vector x tal que Ax = v + w. ¿Es único?
- (d) ¿Qué condiciones debemos imponer sobre b para que $\mathbf{A}x=b$ tenga solución?
- (e) Si u, v y w son las columnas de S, y v es ortogonal a w; escriba las matrices $S^{-1} \vee S^{-1}AS$.

(Strang, 2007, ejercicio 13 del conjunto de problemas 5.5.)

(L-18) PROBLEMA 5. Escriba un hecho destacado sobre los valores característicos de cada uno de estos tipos de matrices:

- (a) Una matriz simétrica real.
- (b) Una matriz diagonalizable tal que $\mathbf{A}^n \to \mathbf{0}$ cuando $n \to \infty$.
- (c) Una matriz no diagonalizable
- (d) Una matriz singular

(Strang, 2007, ejercicio 16 del conjunto de problemas 5.5.)

32 / 44

L-16 L-17 L-18 L-19 L-R

(L-18) PROBLEMA 8. Sea la matriz

$$\mathbf{A} = \begin{bmatrix} a & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Demuestre que **A** no es diagonalizable cuando a=3.
- (b) ¿Es **A** diagonalizable cuando a=2? (explique su respuesta). En caso afirmativo calcule una matriz diagonal de autovalores **D** y una de autovectores **S** tales que $\mathbf{A} = \mathbf{S}\mathbf{D}\mathbf{S}^{-1}$.
- (c) ¿Es ATA diagonalizable para cualquier valor de a? ¿Es posible encontrar una base ortonormal de autovectores de ATA?
- (d) Encuentre todos los valores de a para los cuales existe ${\bf A}^{-1}$ y además la matriz es diagonalizable.

(L-18) PROBLEMA 9. Sea la matriz

$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$$

- (a) Exprese B en la forma $B = A = QDQ^T$ del teorema espectral.
- (b) ¿Es B diagonalizable? Si no lo es, diga las razones; y en caso contrario genere una matriz S que diagonalice a B.

(L-18) Problema 10. Suponga que ${m q}_1$, ${m q}_2$ y ${m q}_3$ forman una base ortonormal de \mathbb{R}^3 y que ${\bf A}$ es tal que ${\bf A}{m q}_1=(1,0,0,)$, ${\bf A}{m q}_2=(0,1,0,)$, y ${\bf A}{m q}_3=(0,0,1,)$.

- (a) $(0.5^{\rm pts})$ Escriba **A** explícitamente en términos de los vectores \boldsymbol{q}_1 , \boldsymbol{q}_2 , \boldsymbol{q}_3 .
- (b) (1^{pts}) Escriba todos los posibles valores de $\det \mathbf{A}$.
- (c) Cuáles de las siguientes afirmaciones son correctas: Los autovalores de A tienen que. . .
 - ser números reales.
 - ser números reales y positivos.
 - ser números imaginarios.
 - tener valor absoluto $|\lambda| = 1$.

32 / 44

L-16 L-17 L-18 L-19 L-R

2 Formas cuadráticas

- Definida positiva: $\forall x \neq 0 \Rightarrow x A x > 0$.
- Semi-definida positiva: $\forall x \neq 0 \Rightarrow x Ax \geq 0$.
- Definida negativa: $\forall x \neq 0 \Rightarrow x A x < 0$.
- Semi-definida negativa: $\forall x \neq 0 \Rightarrow x Ax \leq 0$.
- Indefinida: ni semi-definida positiva ni semi-definida negativa.

L-16 L-17 L-18 L-19 L-

1 Esquema de la Lección 19

Esquema de la Lección 19

- Matrices (semi)definidas positivas, (semi)definidas negativas
- Completando el cuadrado
- Diagonalización por congruencia

33 / 44

L-16 L-17 L-18 **L-19** L-F

Ejemplo

¿Qué número debo poner para que la matriz **A** sea singular?

$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & \end{bmatrix}$$

- Autovalores:
- Menores principales:
- Para la forma cuadrática

$$q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}\mathbf{A}\mathbf{x} = \begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + y^2$$

¿Existe $x \neq 0$ tal que xAx = 0?

L-19

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix}$$
 entonces $\begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + ?y^2$

- ; Hay números x y y que hagan xAx negativa?
- ¿Pasa por el origen?
- Si y=0 y x=1, jes positiva? (jy si x=-1?)
- Si x = 0 y y = 1, jes positiva? (jy si y = -1?)
- ¿Es siempre positiva?

(0,0,) punto de silla: mínimo en unas direcciones, y máximo en otras.

$$\lambda_1 = -2, \quad \begin{pmatrix} -6\\4 \end{pmatrix}; \qquad \lambda_1 = 11, \quad \begin{pmatrix} 6\\9 \end{pmatrix}$$

36 / 44

37 / 44

L-16

L-19

L-R

3 Completando el cuadrado

Si pudiéramos expresar q(x) como suma de cuadrados, sabríamos si q(x) es defnida positiva.

Completemos el cuadrado!

- $q(x,y) = 2x^2 + 12xy + 20y^2 = 2(x + ?y)^2 + ?$
- $q(x,y) = 2x^2 + 12xy + 7y^2$
- $q(x,y) = 2x^2 + 12xy + 18y^2$
- $q(x,y) = 2x^2 + 12xy + 200y^2$ (gráfico)

Si definida positiva: q(x,y) = a; a > 0: elipse

Eiemplo

Si
$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$$
 entonces $\begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + 20y^2$

Definida positiva.

Pruebas de que A es definida positiva

- ¡Son los menores principales positivos?
- ¡Son los autovalores positivos?

$$q_{\mathbf{A}}(\boldsymbol{x}) = \boldsymbol{x} \mathbf{A} \boldsymbol{x} > 0$$
 para todo $\boldsymbol{x} \neq \mathbf{0}$

4 Matrices congruentes

A y **C** son congruentes si existe **B** invertible tal que $|\mathbf{C} = \mathbf{B}^{\mathsf{T}} \mathbf{A} \mathbf{B}$

Diagonalización por congruencia

Para toda **A** (simétrica) existe $\mathbf{B} = \mathbf{I}_{\tau_1 \cdots \tau_{l_1}}$ (invertible) tal que

$$\mathbf{D} = \mathbf{B}^{\mathsf{T}} \mathbf{A} \mathbf{B} \qquad \text{es diagonal} \qquad \qquad (\mathbf{B}^{\mathsf{T}} = {}_{\tau_{b} \cdots \tau_{1}} \mathbf{I})$$

L-19

Teorema Espectral: ¡Diagonalización por semejanza y congruencia!

$$\mathbf{D} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q}.$$

Toda forma cuadrática se puede expresar como suma de cuadrados

$$x \mathbf{A} x = x (\mathbf{B}^{-1})^{\mathsf{T}} \mathbf{D} \mathbf{B}^{-1} x = y \mathbf{D} y;$$
 donde $y = \mathbf{B}^{-1} x.$

5 Completar el cuadrado

$$2x^{2} + 12xy + 20y^{2}$$

$$\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}]} \begin{bmatrix} 2 & 0 \\ 6 & 2 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix};$$

por tanto tenemos que:

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \mathbf{D} = \mathbf{E}^{\mathsf{T}} \mathbf{A} \mathbf{E} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

así $\mathbf{A} = (\mathbf{E}^{\intercal})^{-1}\mathbf{D}\mathbf{E}^{-1}$ y por tanto

$$\boldsymbol{x} \mathbf{A} \boldsymbol{x} = \begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \boldsymbol{x} (\mathbf{E}^{-1})^{\mathsf{T}} \end{pmatrix} \mathbf{D} \begin{pmatrix} \mathbf{E}^{-1} \boldsymbol{x} \end{pmatrix}$$
$$= \begin{pmatrix} (x+3y), & y, \end{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{pmatrix} (x+3y) \\ y \end{pmatrix} = 2(x+3y)^2 + 2y^2$$

40 / 44

L-16 L-17 L-18 L-19 L-R

- 7 Matrices definidas positivas y elipsoides: ejemplo 3 por 3
- La región (xAx = a) es un (elipsoide).
- Los autovectores son los ejes principales Q.
- Longitud de los ejes determinada por los autovalores

L-16 L-17 L-18 L-19 L-

6 Ejemplo 3 por 3

¿Es
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 definida positiva?

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow[\begin{bmatrix} \left(\frac{1}{2}\right)\mathbf{1}+\mathbf{2} \right]]{\boldsymbol{\tau}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow[\begin{bmatrix} \left(\frac{2}{3}\right)\mathbf{2}+\mathbf{3} \right]]{\boldsymbol{\tau}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

$$x\mathbf{A}x = 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz > 0$$

 $x \mathbf{A} x = 1$: (elipsoide) Ejes en la dirección de los autovectores $\mathbf{A} = \mathbf{Q}^{\mathsf{T}} \lambda \mathbf{Q}$

L-16 L-17 L-18 L-19 L-R

8 Otro ejemplo 3 por 3

¿Es
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 definida positiva?

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow[[(1)\mathbf{3}+1]{\textbf{7}}{} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow[[(-\frac{1}{2})\mathbf{1}+3]{\textbf{7}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \xrightarrow[\mathbf{2}=3]{\textbf{2}=3} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz indefinida

"Clasificación" de formas cuadráticas

$$oxed{x \mathbf{A} x \overset{ ext{ ext{ ext{ ext{ ext{\lefta}}}}}{0}}; \quad \mathsf{para todo} \ x
eq \mathbf{0}}$$

Métodos

Mirar el signo de

- 1. Elem. diag.: $D = B^{T}AB$ (Diagonalización por congruencia) 🙂
- 2. Calcular los autovalores: (Raíces de un polinomio)
- (Critero de Sylvester) 😉 3. Menores principales:

Lev de inercia

el número de componentes positivas, negativas y nulas de la diagonal de D es un invariante de A, i.e., no depende de B (La diagonalización ortogonal $\mathbf{D} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q}$ es un caso especial)

44 / 44

L-19 L-16 L-18 L-R

(L-19) PROBLEMA 3. ; Cuales de la siguientes matrices tienen dos autovalores positivos? Pruebe a > 0 y $ac > b^2$ (determinante mayor que cero); no calcule los autovalores. x A x < 0.

(a)
$$\mathbf{A} = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}$$
(c)
$$\mathbf{C} = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix}$$

(d)
$$\mathbf{D} = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$$

(Strang, 2007, ejercicio 14 del conjunto de problemas 6.1.)

(L-19) Problema 4. Demuestre que $f(x,y)=x^2+4xy+3y^2$ no tiene un mínimo en (0,0) a pesar de que todos sus coeficientes son positivos. Escriba f(x,y) como una diferencia de cuadrados y encuentre un punto (x, y) donde f(x, y) sea negativa. (Strang, 2007, ejercicio 16 del conjunto de problemas 6.1.)

(L-19) PROBLEMA 5. Demuestre a partir de los valores característicos que si A es definida positiva, entonces también lo son $A^2 \vee A^{-1}$. (Strang, 2007, ejercicio 4 del conjunto de problemas 6.2.)

(L-19) PROBLEMA 1. Decida si las siguientes matrices son definidas positivas, y escriba las formas cuadráticas $f = x \mathbf{A} x$ correspondientes:

L-19

(a)
$$\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$$

L-16

(b)
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -1 & 2 \\ 2 & -8 \end{bmatrix}$$

(e) El determinante del apartado (b) es cero; ; a lo largo de que recta se verifica que en todos sus puntos f(x,y) = 0?

(Strang, 2007, ejercicio 2 del conjunto de problemas 6.1.)

(L-19) PROBLEMA 2. ¿Cuál es la forma cuadrática $f = ax^2 + 2bxy + cy^2$ para cada una de las siguientes matrices? Complete el cuadrado con la finalidad de escribir fcomo una suma de uno o dos cuadrados $d_1()^2 + d_2()^2$.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$$

(Strang, 2007, ejercicio 15 del conjunto de problemas 6.1.)

44 / 44

L-19 L-16 L-18

(L-19) PROBLEMA 6. Sean las formas cuadráticas

$$q_1(x, y, z) = x^2 + 4y^2 + 5z^2 - 4xy.$$

$$q_2(x, y, z) = -x^2 + 4y^2 + z^2 + 2xy - 2axz.$$

- (a) Demuestre que $q_1(x, y, z)$ es semi-definida positiva.
- (b) Halle, si existiese, un valor de a de manera que $q_2(x, y, z)$ sea definida negativa.

(L-19) Problema 7. Decida si las siguientes matrices son definidas positivas o no.

(a)
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} -1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

(c)
$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

(Strang, 2007, ejercicio 2 del conjunto de problemas 6.2.)

(L-19) Problema 8. Clasifique la forma cuadrática (ie., definida positiva, negativa, semidefinida, no definida, etc.)

$$q(x, y, z) = x^2 + 6xy + y^2 + az^2;$$

en función del parámetro a.

(L-19) PROBLEMA 9. Si ${\bf A}=\left[\begin{smallmatrix} a&b\\b&d\end{smallmatrix}\right]$ es definida positiva, pruebe que ${\bf A}^{-1}$ es definida positiva.

(Strang, 2007, ejercicio 8 del conjunto de problemas 6.1.)

(L-19) Problema 10. Si una matriz simétrica de 2 por 2 satisface a>0, y $ac>b^2$, demuestre que sus autovalores son reales y positivos (definida positiva). Emplee la ecuación característica y el hecho de que el producto de los autovalores es igual al determinante.

(Strang, 2007, ejercicio 3 del conjunto de problemas 6.1.)

44 / 44

L-R

L-16 L-17 L-18 L-19 L-R

(L-19) PROBLEMA 13. Demuestre que si $\bf A$ y $\bf B$ son definidas positivas entonces $\bf A+\bf B$ también es definida positiva. Para esta demostración los pivotes y los valores característicos no son convenientes. Es mejor emplear $x(\bf A+\bf B)x>0$ (Strang, 2007, ejercicio 5 del conjunto de problemas 6.2.)

(L-19) PROBLEMA 14. Factorice las siguientes matrices simétricas en la forma $\dot{\mathbf{L}} \cdot \mathbf{D} \cdot \dot{\mathbf{L}}^\mathsf{T}$.

(a)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

(L-19) PROBLEMA 15. La forma cuadrática $f(x,y)=3(x+2y)^2+4y^2$ es definida positiva. Encuentre la matriz **A**, factorícela en \mathbf{LDL}^T , y relacione los elementos en **D** y **L** con 3, 2 y 4 en f.

(Strang, 2007, ejercicio 9 del conjunto de problemas 6.1.)

(L-19) PROBLEMA 11. Decida si las siguientes matrices son definidas positivas, definidas negativas, semi-definidas, o indefinidas.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}$
(c) $\mathbf{C} = -\mathbf{B}$
(d) $\mathbf{D} = \mathbf{A}^{-1}$

L-16

(L-19) PROBLEMA 12. Una matriz definida positiva no puede tener un cero (o incluso peor; un número negativo) en su diagonal principal. Demuestre que esta matriz no cumple $x\mathbf{A}x>0$, para todo $x\neq 0$:

(Strang, 2007, ejercicio 21 del conjunto de problemas 6.2.)

44 / 44

L-R

L-16 L-17 L-18 L-19 L-R

(L-19) PROBLEMA 16. Considere las siguientes matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & a & a \end{bmatrix} \qquad \mathbf{y} \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Se pide:

- (a) (0.5^{pts}) Calcule los autovalores de la matriz **A**.
- (b) (0.5^{pts}) Prueba que si a=2 la matriz **A** NO es diagonalizable.
- (c) (1^{pts}) Para la matriz B, encuentre una matriz diagonal D y una matriz P tal que $B = PDP^\intercal$.
- (d) (0.5^{pts}) Obtenga la expresión polinómica de la forma cuadrática asociada a la matriz B y pruebe que es definida positiva.

(L-19) PROBLEMA 17. Dada la matriz $\mathbf{A} = \begin{pmatrix} a & 3/5 \\ b & 4/5 \end{pmatrix}$, calcule valores (si existen) de a y b para los cuales

- (a) (0.5^{pts}) La matriz **A** es orto-normal.
- (b) (0.5^{pts}) Las columnas de la matriz **A** son independientes.
- (c) $(0.5^{\text{pts}}) \lambda = 0$ es un autovalor de **A**.
- (d) (0.5^{pts}) A es simétrica y definida negativa.

L-16 L-17 L-18 **L-19** L-R

(L-19) Problema 18.

- (a) Obtenga la matriz ${\bf Q}$ asociada a la forma cuadrática $q(x,y,z)=x^2+2xy+ay^2+8z^2$ y clasifique la matriz ${\bf Q}$ (es decir, diga en que casos la matriz es no definida, definida o semidefinida, de manera positiva o negativa) para el caso en el que a es igual a uno (a=1).
- (b) Clasifíque la matriz **Q** cuando $a \neq 1$.

44 / 44

L-16 L-17 L-18 L-19 L-R

(f) Si 1 es el único autovalor de una matriz $\bf A$ de orden 2×2 , entonces $\bf A$ necesariamente tiene que ser la matriz identidad $\bf I$.

(L-OPT-2) PROBLEMA 3. complete los blancos, o responda Verdadero/Falso.

- (a) Cualquier sistema generador de un espacio vectorial contiene una base del espacio (V/F)
- (b) Que los vectores ${m v}_1,\ {m v}_2,\ \dots,\ {m v}_n$ sean linealmente independientes significa que
- (c) El conjunto que sólo contiene el vector ${\bf 0}$ es un conjunto linealmente independiente. (V/F)
- (d) Una matriz cuadrada de orden n por n es diagonalizable cuando:
- (e) Si u = (1, 2, -1, 1), entonces ||u|| =______
- (f) Si u = (1, 2, -1, 1) y v = (-2, 1, 0, 0), entonces $u \cdot v =$

L-16 L-17 L-18 L-19 L-

Problemas de la Lección opcional 2

(L-OPT-2) PROBLEMA 1. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & a & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- (a) (0.5^{pts}) Demuestre que **A** es invertible si y sólo si $a \neq 0$.
- (b) (0.5^{pts}) ¿Es la matriz **A** definida positiva cuando a=1? Justifique su respuesta.
- (c) (1^{pts}) Calcule \mathbf{A}^{-1} cuando a=2.
- (d) $(0.5^{\rm pts})$ ¿Cuantas variables pueden ser tomadas como exógenas (o libres) en el sistema $\mathbf{A}x=\mathbf{0}$ cuando a=0? ¿Cuales?

(L-OPT-2) PROBLEMA 2. Verdadero o falso (puntuarán aquellas respuestas correctamente justificadas; una respuesta que se limite a indicar la falsedad o veracidad de cada afirmación tendrá una calificación de cero puntos)

- (a) Si A es simétrica, entonces A² también lo es.
- (b) Si $A^2 = A$ entonces $(I A)^2 = (I A)$ donde I es la matriz identidad.
- (c) Si $\lambda=0$ es un autovalor de la matriz cuadrada ${\bf A}$, entonces el sistema de ecuaciones ${\bf A}x={\bf 0}$ es compatible determinado.
- (d) Si $\lambda=0$ es un autovalor de la matriz cuadrada **A**, entonces el sistema de ecuaciones $\mathbf{A}x=\mathbf{b}$ puede ser incompatible.
- (e) Si una matriz es ortogonal (columnas perpendiculares y de norma uno) entonces su inversa también es ortogonal.

44 / 44

L-16 L-17 L-18 L-19 L-R

(L-OPT-2) PROBLEMA 4. En las preguntas siguientes $\bf A$ y $\bf B$ son matrices $n \times n$. Indique si las siguientes afirmaciones son verdaderas o falsas (incluya una breve explicación, o un contra ejemplo que justifique su respuesta):

- (a) Si A no es cero entonces $det(A) \neq 0$
- (b) Si $det(AB) \neq 0$ entonces A es invertible.
- (c) Si intercambio las dos primeras filas de A sus autovalores cambian.
- (d) Si A es real y simétrica, entonces sus autovalores son reales (aquí no es necesaria una justificación).
- (e) Si la forma reducida de echelon de $({\bf A}-5{\bf I})$ es la matriz identidad, entonces 5 no es un autovalor de ${\bf A}$.
- (f) Sea ${m b}$ un vector columna de ${\mathbb R}^n$. Si el sistema ${f A}{m x}={m b}$ no tiene solución, entonces $\det({f A})
 eq 0$
- (g) Sea C de orden 3×5 . El rango de C puede ser 4.
- (h) Sea ${\bf C}$ de orden $n \times m$, y ${\bf b}$ un vector columna de \mathbb{R}^n . Si ${\bf C}{\bf x} = {\bf b}$ no tiene solución, entonces $\operatorname{rg}({\bf C}) < n$.
- (i) Toda matriz diagonalizable es invertible.
- (i) Si A es invertible, entonces su forma reducida de echelon es la matriz identidad.

L-16 L-17 L-18 L-19 L-R

(L-OPT-2) PROBLEMA 5. Sean

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 4 \\ 0 & 0 & 5 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}; \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 0 & 4 \\ 0 & 0 & 6 \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Los autovalores de ${\bf B}$ son 0 y 2. Use esta información para responder a las siguientes cuestiones. Para cada matriz debe dar una explicación. Puede haber más de una matriz que cumpla la condición:

- (a) ¿Qué matrices son invertibles?
- (b) ¿ Qué matrices tienen un autovalor repetido?
- (c) ¿Qué matrices tienen rango menor a tres?
- (d) ¿ Qué matrices son diagonalizables?
- (e) ¿Para qué matrices diagonalizables podemos encontrar tres autovectores ortogonales entre si?

(L-OPT-2) PROBLEMA 6. Sea la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- (a) Calcule los autovalores y autovectores de A.
- (b) ¿Es A diagonalizable?

44 / 44

L-16 L-17 L-18 L-19 L-R

- (a) ¿Cuáles son sus espacios columna $\mathcal{C}(\mathbf{A})$ y espacio nulo $\mathcal{N}(\mathbf{A})$? (no responda con la definición, diga qué conjunto de vectores compone cada espacio).
- (b) Suponga que A puede ser factorizada en A = LU:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 7 & 3 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{12} & u_{13} \\ 0 & 0 & u_{13} \end{bmatrix}$$

Describa el primer paso de eliminación en la reducción de **A** a **U**. ¿porqué sabe que **U** es también una matriz invertible? ¿Cuanto vale el determinante de **A**?

- (c) Encuentre una matriz particular de dimensiones 3 x 3 e invertible A que no pueda ser factorizada en la forma LU (sin permutar previamente las filas). ¿Qué factorización es todavía posible en su ejemplo? (no es necesario que realice la factorización). ¿Cómo sabe que su matriz A es invertible?
- Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.
- Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.

44 / 44

L-16 L-17 L-18 L-19 L-R

- (c) ¿Es posible encontrar una matriz P tal que $A = PDP^{T}$, siendo D una matriz diagonal?
- (d) Calcule $|\mathbf{A}^{-1}|$.

(L-OPT-2) PROBLEMA 7. Sea **A** una matriz 3×3 y sean $\lambda_1=1,\ \lambda_2=2$ y $\lambda_3=-1$ sus autovalores. Sean $\boldsymbol{v}_1=(1,0,1)^{\mathsf{T}}$ y $\boldsymbol{v}_2=(1,1,1)^{\mathsf{T}}$ los autovectores asociados a λ_1 y λ_2 .

- (a) ¿Es A diagonalizable?
- (b) ¿Podría ser $v_3 = (-1, 0, -1)^{\mathsf{T}}$ un autovector asociado al autovalor $\lambda_3 = -1$.
- (c) Calcule $\mathbf{A}(\boldsymbol{v}_1 \boldsymbol{v}_2)$.

(L-Opt-2) Problema 8.

(a) $(0.5^{\rm pts})$ Encuentre un sistema lineal homogéneo $\mathbf{A}x=\mathbf{0}$ cuyas soluciones sean

$$\left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \ \middle| \ \exists \alpha, \beta, \gamma \in \mathbb{R} \quad \text{tales que} \ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \right\}$$

(b) (0.5pts) Si el polinomio característico de la matriz **A** es $p(\lambda) = \lambda^5 + 3\lambda^4 - 24\lambda^3 + 28\lambda^2 - 3\lambda + 10$, encuentre el rango de **A**.

(L-OPT-2) PROBLEMA 9. Suponga una matriz cuadrada e invertible A .

 $n \times r$