#### **Produit Cartésien**

- NOTATION :  $R \times S$
- ARGUMENTS : 2 relations quelconques :

$$R(A_1, A_2, \dots, A_n) \ S(B_1, B_2, \dots, B_k)$$

- SCHÉMA DE  $T = R \times S : T(A_1, A_2, \dots, A_n, B_1, B_2, \dots, B_k)$
- VALEUR DE  $T = R \times S$ : ensemble de tous les nuplets ayant n + k composants (attributs)
  - dont les n premiers composants forment un nuplet de R
  - et les k derniers composants forment un nuplet de S

# **Exemple de Produit Cartésien**

| R             | A | В |
|---------------|---|---|
|               | 1 | 1 |
| $\mid R \mid$ | 1 | 2 |
|               | 3 | 4 |

$$\begin{array}{c|cccc} \mathbf{S} & \mathbf{C} & \mathbf{D} & \mathbf{E} \\ & \mathbf{a} & \mathbf{b} & \mathbf{a} \\ |S| & \mathbf{a} & \mathbf{b} & \mathbf{c} \\ & \mathbf{b} & \mathbf{a} & \mathbf{a} \end{array}$$

 $\Rightarrow$ 

| $\mathbf{R} \times \mathbf{S}$   | A | В | C | D | E |
|----------------------------------|---|---|---|---|---|
|                                  | 1 | 1 | a | b | a |
|                                  | 1 | 1 | a | b | c |
|                                  | 1 | 1 | b | a | a |
|                                  | 1 | 2 | a | b | a |
| $\mid R \mid \times \mid S \mid$ | 1 | 2 | a | b | c |
|                                  | 1 | 2 | b | a | a |
|                                  | 3 | 4 | a | b | a |
|                                  | 3 | 4 | a | b | c |
|                                  | 3 | 4 | b | a | a |

### **Jointure Naturelle**

- NOTATION :  $R \bowtie S$
- ARGUMENTS : 2 relations quelconques :

$$R(A_1, \ldots, A_m, X_1, \ldots, X_k)$$
  $S(B_1, \ldots, B_n, X_1, \ldots, X_k)$ 

où  $X_1, \ldots, X_k$  sont les attributs en commun.

- SCHÉMA DE  $T = R \bowtie S$ :  $T(A_1, \ldots, A_m, B_1, \ldots, B_n, X_1, \ldots, X_k)$
- VALEUR DE  $T=R\bowtie S$ : ensemble de tous les nuplets ayant m+n+k attributs dont les m premiers et k derniers composants forment un nuplet de R et les n+k derniers composants forment un nuplet de S.

## Jointure Naturelle: Exemple

 R
 A
 B
 C

 a
 b
 c

 d
 b
 c

 b
 b
 f

 c
 a
 d

 B
 C
 D

 b
 c
 d

 b
 c
 e

 a
 d
 b

 $\mathbf{R} \bowtie \mathbf{S}$ A B <u>C</u> D b d c a b a c e d d c d b c e

a

c

d

b

### **Jointure Naturelle**

Soit  $U = \{A_1, \dots, A_m, B_1, \dots, B_n, X_1, \dots, X_k\}$  l'ensemble des attributs des 2 relations et  $V = \{X_1, \dots, X_k\}$  l'ensemble des attributs en commun.

$$R \bowtie S = \pi_U(\sigma_{\forall A \in V: R.A = S.A}(R \times S))$$

NOTATION : R.A veut dire "l'attribut A de la relation R".

# Jointure Naturelle: Exemple

| R | A | В |
|---|---|---|
|   | 1 | a |
|   | 1 | b |
|   | 4 | a |

| A | В | D |
|---|---|---|
| 1 | a | b |
| 2 | c | b |
| 4 | a | a |

| $\mathbf{R} \times \mathbf{S}$ | R.A | R.B | S.A | S.B | D |
|--------------------------------|-----|-----|-----|-----|---|
|                                | 1   | a   | 1   | a   | b |
| $\longrightarrow$              | 1   | a   | 2   | c   | b |
| $\rightarrow$                  | 1   | a   | 4   | a   | a |
| $\rightarrow$                  | 1   | b   | 1   | a   | b |
| $\longrightarrow$              | 1   | b   | 2   | c   | b |
| $\longrightarrow$              | 1   | b   | 4   | a   | a |
| $\longrightarrow$              | 4   | a   | 1   | a   | b |
| $\longrightarrow$              | 4   | a   | 2   | c   | b |
|                                | 4   | a   | 4   | a   | a |



$$\begin{array}{c|ccccc} \mathbf{R} \bowtie \mathbf{S} & \mathbf{A} & \mathbf{B} & \mathbf{D} \\ \hline 1 & a & b \\ 4 & a & a \\ \\ \Leftarrow & \pi_{R.A,R.B,D}(\sigma_{R.A=S.A \land R.B=S.B}(R \times S)) \end{array}$$