1 Grafi

• Grafo non orientato

Un grafo non orientato è un grafo G = (V,E) dove E consiste in coppie non ordinate di vertici $\{u,v\}$ dove $u,v \in V$ e $u \neq v$. Dalla definizione risulta che non sono possibili cappi.

- Grafo non orientato connesso

Un grafo non orientato G=(V,E) viene definito connesso se $\forall (u,v)$ dove $u,v \in V$ esiste un cammino che collega il vertice u al vertice v. Un grafo non orientato è anche detto connesso se è composto da una singola componente connessa.

Componente connessa

Le componenti connesse di un grafo G = (V,E) sono le classi di equivalenza sull' insieme V sotto la relazione "raggiungibile da".

* Classe di equivalenza

Data una relazione di equivalenza R su un insieme S, la classe di equivalenza di un elemento $x \in S$ è definita come: $[x] = \{y \mid (x,y) \in R \}$

* Relazione di equivalenza

R è una relazione di equivalenza su un insieme S sse R è una relazione binaria su S, R deve godere delle proprietà di riflessività, simmetria e transitività.

• Grafo orientato

Un grafo orientato G è composto da una coppia (V,E) dove V è l'insieme finito di vertici ed E una relazione binaria su V. E è l'insieme degli archi del grafo. Sono possibili cappi.

- Relazione binaria

Una relazione binaria R tra due insiemi S e T è un insieme di coppie ordinate (x,y) con $x \in S$, $y \in T$ dove R è un sottoinsieme del prodotto cartesiano SxT.

Grafo orientato fortemente connesso

Un grafo orientato è detto fortemente connesso se $\forall (u,v) \ u,v \in V$ u è connesso a v da un cammino e viceversa. Un grafo orientato è fortemente connesso se è composto da una singola componente fortemente connesa.

- Componente fortemente connessa

Le componenti connesse di un grafo orientato sono le classi di equivalenza sull'insieme dei vertici V sotto la relazione di "vertici mutualmente raggiungibili". Se ho $(u,v) \in V$ intendo che u deve essere raggiungibile da v e viceversa.

• Grafo completo

Se in un grafo $G=(V,E)\ \forall (u,v)$ dove $u,v\in V$ esiste un arco $(u,v)\in E.$ Un grafo è completo se ha V(V-1)/2 archi.

• Cammino

Un cammino di lunghezza k da un vertice u ad un vertice v in un G = (V,E) è una sequenza di vertici (v_0,v_1,\ldots,v_k) dove $u=v_0$ e $v=v_k$ e $(v_{i-1},v_i)\in E$ per $i=1,\ldots,k$. La lunghezza del cammino è il numero di archi nel cammino.

• Distanza tra vertici

La distanza tra due vertici è la lunghezza di uno dei cammini più brevi che connettono i due vertici.

• Foresta

Una foresta è un grafo non orientato aciclico.

• Albero non radicato

Un albero non radicato è un grafo orientato, connesso e aciclico. Equivalentemente un albero è un grafo non orientato connesso con N nodi e N-1 archi.

2 Programmazione Greedy

- Matroide Un matroide è una coppia ordinate M = (E, F) dove:
 - 1. E è un insieme finito.
 - 2. F è una famiglia (non vuota) di sottoinsiemi di E chiamati sottoinsiemi indipendenti di E. Deve valere che se $B \in F$ e $A \subseteq B$ allora $A \in F$.
 - 3. Se A,B \in F e |A| < |B| allora \exists x \in B-A tale per cui A \cup {x} \in F.