# Université de Liège



Structures de données et algorithmes

# **Algorithmes**

2ème bachelier en ingénieur civil

Auteurs:
Antoine Wehenkel
Antoine Louis
Maxime Lamborelle

Professeur:
P. Geurts

# Table des matières

| 1        | Intr | oducti         | ion et récursivité                                           | 3        |
|----------|------|----------------|--------------------------------------------------------------|----------|
|          | 1.1  | Tri pa         | r insertion                                                  | 3        |
|          |      | 1.1.1          | Pseudo-code                                                  | 3        |
|          |      | 1.1.2          | Complexité                                                   | 3        |
|          |      | 1.1.3          | Propriétés                                                   | 3        |
|          | 1.2  | Tri pa         | r fusion (Merge-Sort)                                        | 4        |
|          |      | 1.2.1          | Pseudo-code                                                  | 4        |
|          |      | 1.2.2          | Complexité                                                   | 4        |
|          |      | 1.2.3          | Propriétés                                                   | 4        |
| <b>2</b> | Tri  |                |                                                              | 5        |
| 4        | 2.1  | Tri ro         | pide (QuickSort)                                             | <b>5</b> |
|          | 2.1  |                | o-code                                                       |          |
|          | 2.2  |                |                                                              | 5        |
|          |      | 2.2.1          | Complexité                                                   | 5        |
|          | 0.0  | 2.2.2          | Propriétés                                                   | 5        |
|          | 2.3  |                | ruction d'un tas (Build-Max-Heap) et tri par tas (Heap-Sort) | 6        |
|          |      | 2.3.1          | Pseudo-code                                                  | 6        |
|          |      | 2.3.2          | Complexité                                                   | 6        |
|          |      | 2.3.3          | Propriétés                                                   | 6        |
| 3        | Stru | actures        | s de données élémentaires                                    | 7        |
|          | 3.1  | Parco          | urs d'arbre                                                  | 7        |
|          |      | 3.1.1          | Parcours infixe                                              | 7        |
|          |      | 3.1.2          | Parcous préfixe                                              | 7        |
|          |      | 3.1.3          | Parcours postfixe                                            | 7        |
|          |      | 3.1.4          | Parcours en largeur                                          | 7        |
|          | 3.2  | Inserti        | ion dans un tas (Heap-Insert)                                | 8        |
|          |      | 3.2.1          | Pseudo-code                                                  | 8        |
|          |      | 3.2.2          | Complexité                                                   | 8        |
| 4        | Dict | tionna         | iros                                                         | 9        |
| •        | 4.1  |                | rche dichotomique                                            | 9        |
|          | 1.1  | 4.1.1          | Peudo-code                                                   | 9        |
|          |      | 4.1.2          | Complexité et comparaison avec les autres algorithmes        | 9        |
|          | 4.9  |                |                                                              |          |
|          | 4.2  |                | binaire de recherche                                         | 9        |
|          |      | 4.2.1          | Recherche                                                    | 9        |
|          |      | 4.2.2          | Successeur                                                   | 10       |
|          |      |                |                                                              |          |
|          |      | 4.2.3<br>4.2.4 | Insertion                                                    | 10<br>10 |

| 5 | Gra | phes                   | <b>12</b> |
|---|-----|------------------------|-----------|
|   | 5.1 | Parcours en largeur    | 12        |
|   |     | 5.1.1 Pseudo-code      | 12        |
|   |     | 5.1.2 Complexité       | 12        |
|   | 5.2 | Parcours en profondeur | 12        |
|   |     | 5.2.1 Pseudo-code      | 12        |
|   |     | 5.2.2 Complexité       | 12        |
|   | 5.3 | Bellman-Ford           | 13        |
|   |     | 5.3.1 Pseudo-code      | 13        |
|   | 5.4 | Dijkstra               | 13        |
|   |     | 5.4.1 Pseudo-code      | 13        |
|   |     | 5.4.2 Complexité       | 13        |
|   | 5.5 | Kruskal                | 14        |
|   |     | 5.5.1 Pseudo-code      | 14        |
|   |     | 5.5.2 Complexité       | 14        |
|   | 5.6 | Prim                   | 14        |
|   |     | 5.6.1 Pseudo-code      | 14        |
|   |     | 5.6.2 Comployitá       | 1.4       |

# 1 Introduction et récursivité

# 1.1 Tri par insertion

### 1.1.1 Pseudo-code

```
Insertion-Sort(A)

1 for j = 2 to A.length

2 key = A[j]

3 i = j - 1

4 while i > 0 and A[i] > key

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

## 1.1.2 Complexité

### En temps

- Dans le pire cas, la boucle **for** est exécutée (n-1) fois et la boucle **while** (j-1) fois. On a alors  $T(n) = \Theta(n^2)$ .
- Dans le meilleur cas, la boucle **for** est exécutée (n-1) fois et la boucle **while** 0 fois. On a alors  $T(n) = \Theta(n)$ .
- Dans le cas moyen, cet algorithme est  $\Theta(n^2)$ .

En espace O(1)

# 1.1.3 Propriétés

|        | Itératif | Récursif | En place | Stable |  |
|--------|----------|----------|----------|--------|--|
| Oui No |          | Non      | Oui      | Oui    |  |

# 1.2 Tri par fusion (Merge-Sort)

### 1.2.1 Pseudo-code

```
Merge-Sort(A, p, r)
1 if p < r
        q = \frac{p+r}{2}
2
3
        MERGE-SORT(A, p, q)
        Merge-Sort(A, q + 1, r)
4
        MERGE(A, p, q, r)
Merge(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 \quad n_2 = r - q
 3 Soit L[1...n_1 + 1] et R[1...n_2 + 1] deux nouveaux tableaux
 4 for i = 1 to n_1
 5
         L[i] = A[p+i-1]
 6 for j = 1 to n_1
 7
          R[j]=A[q+j]
 8 L[n_1+1]=\infty
 9 \quad R[n_2+1] = \infty
10 i = 1; j = 1
11 for k = p to r
          if L[i] \leq R[j]
12
               A[k] = L[i]
13
               i=i+1
14
15
          else
               A[k] = R[j]
16
17
               j = j + 1
```

# 1.2.2 Complexité

En temps Dans tous les cas, la complexité est  $\Theta(n \log n)$ .

En espace O(n)

# 1.2.3 Propriétés

| Itératif | Récursif | En place | Stable |  |
|----------|----------|----------|--------|--|
| Oui      | Oui      | Non      | Oui    |  |

# 2 Tri

# 2.1 Tri rapide (QuickSort)

### 2.2 Pseudo-code

```
\begin{array}{ll} \text{PARTITION}(A, p, r) \\ 1 & x = A[r] \\ 2 & i = p - 1 \\ 3 & \textbf{for } j = p \textbf{ to } r - 1 \\ 4 & \textbf{ if } A[j] \leq x \\ 5 & i = i + 1 \\ 6 & swap(A[i], A[j]) \\ 7 & swap(A[i + 1], A[r]) \\ 8 & \textbf{return } i + 1 \end{array}
```

```
\begin{array}{ll} \text{QuickSort}(A,p,r) \\ 1 & \text{if } p < r \\ 2 & q = \text{Partition}(A,p,r) \\ 3 & \text{QuickSort}(A,p,q-1) \\ 4 & \text{QuickSort}(A,q+1,r) \end{array}
```

Appel initial: QUICKSORT(A,1,A.length)

### 2.2.1 Complexité

### En temps

- Dans le pire cas, q = p ou q = r.On a alors  $T(n) = \Theta(n^2)$
- Dans le meilleur cas,  $q = \lfloor n/2 \rfloor$ . On a alors  $T(n) = \Theta(n \log n)$
- Dans le cas moyen, cet algorithme est  $\Theta(n \log n)$

Complexité de partition :  $T(n) = \Theta(n)$ 

En espace  $O(\log n)$  si bien implémenté (récursif terminal, en développant d'abord la partition la plus petite)

# 2.2.2 Propriétés

| Itératif | Récursif | En place | Stable |  |
|----------|----------|----------|--------|--|
| Oui      | Oui      | Oui      | Non    |  |

# 2.3 Construction d'un tas (Build-Max-Heap) et tri par tas (Heap-Sort)

### 2.3.1 Pseudo-code

```
Max-Heapify(A, i)
 1 \quad l = \text{Left}(i)
 2 \quad r = Right(i)
 3 if l \leq A. heap\text{-}size \wedge A[l] > A[i]
 4
          largest = l
 5 else largest = i
 6 if r \leq A. heap-size \land A[r] > A[largest]
          largest = r
 7
    if largest \neq i
 8
          swap(A[i], A[largest])
 9
10
          Max-Heapify(A, largest)
Build-Max-Heap(A)
1
   A.heap-size = A.length
   for i = |A.length/2| downto 1
2
3
        Max-Heapify(A, i)
\text{Heap-Sort}(A)
   Build-Max-Heap(A)
   for i = A. length downto 2
3
        swap(A[i], A[1])
        A.heap-size = A.heap-size - 1
4
5
        MAX-HEAPIFY(A, 1)
```

## 2.3.2 Complexité

- MAX-HEAPIFY a une complexité au pire cas égale à la hauteur du nœud : $T(n) = O(\log(n)) = O(h)$ . On a donc comme complexité dans le pire cas les cas pour BUILD-MAX-HEAP de  $T(n) = \Theta(n)$ , cf. slides 154-158.
- On a pour le tri par tas une complexité dans tous les cas égale à  $\Theta(n \log n)$  en temps et O(1) en espace.

### 2.3.3 Propriétés

| Itératif | Récursif | En place | Stable |  |
|----------|----------|----------|--------|--|
| Oui      | Oui      | Oui      | Non    |  |

Les points forts du tri par tas sont son efficacité et sa faible consommation de mémoire.

# 3 Structures de données élémentaires

### 3.1 Parcours d'arbre

Tous ces algorithme ont une complexité en temps dans tous les cas  $\Theta(n)$ .

### 3.1.1 Parcours infixe

Parcours infixe (en ordre): Chaque nœud est visité après son fils gauche et avant son fils droit.

```
INORDER-TREE-WALK(T, x)

1 if HasLeft(T, x)

2 INORDER-TREE-WALK(T, \text{Left}(x))

3 print GetData(T, x)

4 if HasRight(T, x)

5 INORDER-TREE-WALK(T, \text{Right}(x))
```

### 3.1.2 Parcous préfixe

Parcours préfixe (en préordre) : chaque nœud est visité avant ses fils.

```
PREORDER-TREE-WALK(T, x)

1 print GetData(T, x)

2 if hasLeft(T, x)

3 PREORDER-TREE-WALK(T, \text{Left}(x))

4 if hasRight(T, x)

5 Preorder-Tree-Walk(T, \text{Right}(x))
```

### 3.1.3 Parcours postfixe

Parcours postfixe (en postordre): chaque nœud est visité après ses fils

```
\begin{array}{lll} \operatorname{Postorder-Tree-Walk}(T,x) \\ 1 & \text{ if } \operatorname{HasLeft}(T,x) \\ 2 & \operatorname{Postorder-Tree-Walk}(T,\operatorname{Left}(x)) \\ 3 & \text{ if } \operatorname{HasRight}(T,x) \\ 4 & \operatorname{Postorder-Tree-Walk}(T,\operatorname{Right}(x)) \\ 5 & \operatorname{print } \operatorname{GetData}(T,x) \end{array}
```

# 3.1.4 Parcours en largeur

Parcours en largeur : on visite le nœud le plus proche de la racine qui n'a pas déjà été visité. Correspond à une visite des nœuds de profondeur 1, puis 2, ....

```
Breadth-Tree-Walk(T)
 1 Q = "Empty queue"
    if not ISEMPTY(T)
 3
         Engueue(Q, Root(T))
 4
    while not QUEUE-EMPTY(Q)
         y = \text{Dequeue}(Q)
 5
 6
         print GetData(T, y)
 7
         if HASLEFT(T, y)
 8
              Engueue(Q, Left(y))
 9
         if HASRIGHT(T, y)
10
              \text{Enqueue}(Q, \text{Right}(y))
```

# 3.2 Insertion dans un tas (Heap-Insert)

### 3.2.1 Pseudo-code

```
\begin{aligned} & \text{Heap-Insert}(A, key) \\ & 1 \quad A.heap - size = A.heap - size + 1 \\ & 2 \quad A[A.heap - siez] = -\infty \\ & 3 \quad \text{Heap-Increase-Key}(A, A.heap - size, key) \end{aligned}
& \text{Heap-Insert-Key}(A, i, key) \\ & 1 \quad \text{if } key < A[i] \\ & 2 \quad \text{error "new key is smaller than current key"} \\ & 3 \quad A[i] = key \\ & 4 \quad \text{while } i > 1 \text{ and } A[\text{Parent}(i)] < A[i] \\ & 5 \quad swap(A[i], A[\text{Parent}(i)]) \\ & 6 \quad i = \text{Parent}(i) \end{aligned}
```

# 3.2.2 Complexité

 $O(\log n)$  car la longueur de la branche de la racine à i est  $O(\log n)$  pour un tas de taille n.

# 4 Dictionnaires

# 4.1 Recherche dichotomique

### 4.1.1 Peudo-code

```
BINARY-SEARCH(V, k, low, high)

1 if low > high

2 return NIL

3 mid = \lfloor (low + high)/2 \rfloor

4 x = \text{Elem-At-Rank}(V, mid)

5 if k == x.key

6 return x

7 elseif k > x.key

return BINARY-SEARCH(V, k, mid + 1, high)

9 else return BINARY-SEARCH(V, k, low, mid - 1)
```

# 4.1.2 Complexité et comparaison avec les autres algorithmes

|                  | Pire cas         | En moyenne       |
|------------------|------------------|------------------|
| Implémentation   | SEARCH           |                  |
| Liste            | $\Theta(n)$      | $\Theta(n)$      |
| Vecteur trié     | $\Theta(\log n)$ | $\Theta(\log n)$ |
| ABR              | $\Theta(n)$      | $\Theta(\log n)$ |
| AVL              | $\Theta(\log n)$ | $\Theta(\log n)$ |
| Table de hachage | $\Theta(n)$      | $\Theta(1)$      |

# 4.2 Arbre binaire de recherche

|                                  | Pire cas         |                  |                  | $En\ moyenne$    |                  |                  |
|----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| $\underline{Impl\'{e}mentation}$ | SEARCH           | Insert           | DELETE           | SEARCH           | Insert           | DELETE           |
| Liste                            | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
| Vecteur trié                     | $\Theta(\log n)$ | $\Theta(n)$      | $\Theta(n)$      | $\Theta(\log n)$ | $\Theta(n)$      | $\Theta(n)$      |
| ABR                              | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(\log n)$ | $\Theta(\log n)$ | $\Theta(\log n)$ |
| AVL                              | $\Theta(\log n)$ |
| Table de hachage                 | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(1)$      | $\Theta(1)$      | $\Theta(1)$      |

### 4.2.1 Recherche

```
\begin{array}{ll} \operatorname{Tree-Search}(x,k) \\ 1 & \text{if } x == \operatorname{NIL} \text{ or } k == x. key \\ 2 & \text{return } x \\ 3 & \text{if } k < x. key \\ 4 & \text{return } \operatorname{Tree-Search}(x. left, k) \\ 5 & \text{else return } \operatorname{Tree-Search}(x. right, k) \end{array}
```

Appel initial (à partir d'un arbre T) Tree-Search(T.root, k) Complexité :  $T(n) \in O(h)$ , où h est la hauteur de l'arbre car dans le pire cas h = n.

### 4.2.2 Successeur

```
TREE-SUCCESSOR(x)

1 if x.right \neq \text{NIL}

2 return TREE-MINIMUM(x.right)

3 y = x.parent

4 while y \neq \text{NIL} and x == y.right

5 x = y

6 y = y.parent

7 return y
```

Complexité : O(h), où h est la hauteur de l'arbre

#### 4.2.3 Insertion

```
Tree-Insert(T, z)
 1 y = NIL
 2 \quad x = T.root
    while x \neq NIL
         y = x
 4
 5
         if z. key < x. key
 6
              x = x. left
         else x = x.right
 7
 8
   z.parent = y
 9 if y == NIL
10
         /\!\!/ Tree T was empty
11
         T.root = z
12
    elseif z. key < y. key
13
         y.left = z
14 else y.right = z
```

Complexité : O(h) où h est la hauteur de l'arbre

### 4.2.4 Suppression

```
Tree-Delete(T, z)
 1 if z.left == NIL
          Transplant(T, z, z.right)
 3
    elseif z.right == NIL
         Transplant(T, z, z.left)
 4
 5
    else /\!\!/ z has two children
 6
         y = \text{Tree-Successor}(z)
 7
         if y. parent \neq z
 8
               Transplant(T, y, y.right)
 9
              y.right = z.right
               y.right.parent = y
10
          /\!\!/ Replace z by y
11
         Transplant(T, z, y)
12
13
         y.left = z.left
14
         y.left.parent = y
```

```
\begin{aligned} & \text{Transplant}(T, u, v) \\ & 1 \quad \text{if} \ u. \, parent == \text{NIL} \\ & 2 \quad T. \, root = v \\ & 3 \quad \text{elseif} \ u == u. \, parent.left \\ & 4 \quad u. \, parent.left = v \\ & 5 \quad \text{else} \ u. \, parent.right = v \\ & 6 \quad \text{if} \ v \neq \text{NIL} \\ & 7 \quad v. \, parent = u. \, parent \end{aligned}
```

Complexité : O(h) pour un arbre de hauteur h (Tout est O(1) sauf l'appel à TREE-SUCCESSOR).

# 5 Graphes

# 5.1 Parcours en largeur

#### 5.1.1 Pseudo-code

```
BFS(G, s)
 1 for each vertex u \in G.V \setminus \{s\}
          u.d = \infty
 3 \quad s.d = 0
 4 Q = "create empty Queue"
 5 ENQUEUE(Q, s)
     while not Queue-Empty(Q)
 7
          u = \text{Dequeue}(Q)
 8
          for each v \in G.Adj[u]
 9
               if v.d = \infty
10
                    v.d = u.d + 1
11
                    Engueue(Q, v)
```

### 5.1.2 Complexité

- Chaque sommet est enfilé au plus une fois  $(v.d \text{ infini} \rightarrow \text{fini})$
- Boucle exécutée O(|V|) fois
- Boucle interne O(|E|) fois au total
- Au total : O(|V| + |E|)

# 5.2 Parcours en profondeur

# 5.2.1 Pseudo-code

```
DFS(G, s)
 1 for each vertex u \in G.V
         u.visited = False
 3 \quad S = \text{``create empty Stack''}
 4 Push(S, s)
    while not STACK-EMPTY(S)
 5
 6
         u = Pop(S)
 7
         if u.visited == False
 8
              u.visited == True
 9
              for each v \in G.Adj[u]
10
                   if v.visited == False
                        Push(S, v)
11
```

# 5.2.2 Complexité

- Initialisation :  $\Theta(|V|)$
- Boucle while O(|V| + |E|)
- Au total : O(|V| + |E|)

### 5.3 Bellman-Ford

### 5.3.1 Pseudo-code

```
Bellman-Ford(G, w, s)
   Init-Single-Source(G, s)
   for i = 1 to |G.V| - 1
3
         for each edge (u, v) \in G.E
4
              Relax(u, v, w)
INIT-SINGLE-SOURCE(G, s)
   for each v \in G.V
1
2
         v.d = \infty
3
         v.\pi = \text{NIL}
4 \quad s.d = 0
Relax(u, v, w)
   if v.d > u.d + w(u, v)
2
         v.d = u.d + w(u, v)
3
         v.\pi = u
    Complexité : \Theta(|V| \cdot |E|)
```

# 5.4 Dijkstra

### 5.4.1 Pseudo-code

```
DIJKSTRA(G, w, s)

1 INIT-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = "create an empty min priority queue from G.V"

4 while not EmptyQ

5 u = \text{Extract-Min}(Q)

6 S = S \bigcup \{u\}

7 for each v \in G.Adj[u]

8 Relax(u, v, w) #! Relax doit modifier la clé de v dans Q
```

# 5.4.2 Complexité

- Si la file est un tas extraction et ajustement de clé en :  $O(\log(|V|))$
- Chaque sommet est extrait de la file à priorité une et une seule fois :  $O(|V| \cdot \log(|V|))$
- Chaque arête est parcourue une et une seule fois et entraı̂ne au plus un ajustement de clé :  $O(|E| \cdot \log(|V|))$
- Total :  $O(|V| \cdot \log(|V|) + |E| \cdot \log(|V|)) = O(|E| \cdot \log(|V|))$

### 5.5 Kruskal

### 5.5.1 Pseudo-code

```
Kruskal(G, w)
 1 A = \emptyset
 P = \emptyset
 3
     for each vertex v \in G.V
            P = P \bigcup \{\{v\}\}\
 5
      for each (u, v) \in G.E taken in nondecreasing order of weight w
 6
            P_1 = \text{subset in } P \text{ containing } u
 7
            P_2 = \text{subset in } P \text{ containing } v
 8
            if P_1 \neq P_2
 9
                  A = A \bigcup \{(u, v)\}\
                  Merge P_1, P_2 et P
10
11
     return A
```

### 5.5.2 Complexité

- Initialisation : O(|V|)
- Tri des arêtes :  $O(|E| \cdot \log(|V|))$
- Coût total des fusions :  $O(|V| \cdot \log(|V|))$
- Total :  $O(|V| \cdot \log(|V|) + |E| \cdot \log(|V|)) = O(|E| \cdot \log(|V|))$

### 5.6 Prim

### 5.6.1 Pseudo-code

```
PRIM(G, w, r)
 1 Q = \emptyset
 2 for each u \in G.V
 3
          u.key = \infty
 4
          u.\pi = \text{NIL}
 5
          INSERT(Q, u)
 6
    Decrease-Key(Q, r, 0) / r.key = 0
 7
     while Q \neq \emptyset
 8
          u = \text{Extract-Min}(Q)
 9
          for each v \in G.adj[u]
                if v \in Q and w(u, v) < v.key
10
11
                     v.\pi = u
12
                     DECREASE-KEY(Q, v, w(u, v))
```

# 5.6.2 Complexité

- Initialisation et première boucle for :  $O(|V| \cdot \log(|V|))$
- Diminuer la clé de  $r: O(\log(|V|))$
- Boucle while (|V| appels à Extract-Min et |E| appels à Decrease-Key) :  $O(|V| \cdot \log(|V|) + |E| \cdot \log(|V|))$
- Total :  $O(|V| \cdot \log(|V|) + |E| \cdot \log(|V|)) = O(|E| \cdot \log(|V|))$