

Why and When to Employ MLOps

Agenda

Data Scientists' Pain Points

The concept of DevOps in ML

Machine Learning Lifecycle

What we hear from most data scientists

What we hear from most data scientists

Operationalizing a model means balancing time, resources, and quality throughout the whole system

Agenda

Data Scientists' Pain Points

The concept of DevOps in ML

Machine Learning Lifecycle

MLOps is a lifecycle management discipline for machine learning

Some DevOps concepts translate directly to MLOps

Some DevOps concepts translate directly to MLOps

Some DevOps concepts translate directly to MLOps

But MLOps differs from DevOps in important ways

	DevOps	MLOps
1	Test and validate code and components	Also test and validate data, data schemas, and models

But MLOps differs from DevOps in important ways

	DevOps	N	MLOps
,	Test and va	alidate code onents	Also test and validate data, data schemas, and models
	Focus on a package or	single software service	Also consider the whole system: the ML training pipeline

But MLOps differs from DevOps in important ways

	DevOps	MLOps
1	Test and validate code and components	Also test and validate data, data schemas, and models
2	Focus on a single software package or service	Also consider the whole system: the ML training pipeline
3	Deploy code and move to the next task	Constantly monitor, retrain, and serve the model

Machine learning is the high-interest credit card of technical debt

Credit Card Bill

This is a bill you have to pay. If you do not pay within one month, a 30-day surcharge is assessed.

Name: A. Developer

Address: 29 Dev Team Street

Bill received: 20/07/2020

Your Transactions

Price
30 days
45 days
30 days
90 days
195 days
60 days
255 days

Agenda

Data Scientists' Pain Points

The concept of DevOps in ML

Machine Learning Lifecycle

An ML pipeline contains well-defined processes

The level of automation defines the maturity of the ML process

Level 0	Level 1	Level 2
Build and	Automate	Automate training,
deploy manually	the training phase	validation, and deployment

cloud.google.com