1 Analitična izpeljava vplivov dinamične in statične ekscentričnosti

V tem poglavju bom analitično prikazal vpliv omenjenih ekscentričnosti, ki se pojavita zaradi neprimerne vgradnje. Napaki različno vplivati na izhodni podatek, zato ju lahko obravnamvam posamično. Preko analitične izpeljave bomo spoznali kako se spreminja lokacija Hall-ove sonde glede na magnet ob pravilni montaži. Z vpeljavo dodane ekscentričnosti v model bomo videli, kako se potek gibanja Hall-ove sonde glede na magnet spremeni. S poznavanjem lokacije Hall-ove sonde nad magnetom bomo lahko odčitali vrednost B_z .

1.1 Definicija koordinatnih sistemov

Definirajmo kartezični koordinatni sistem, ki ima v izhodišcu postavljen radialno magnetiziran magnet. Na poljubno točko $S_{h0}(x_0, y_0)$, vendar ne v izhodišče postavimo Hall-ovo sondo. Na sliki 1.1 je prikazan tak sistem. Hall-ova sonda je postavljena na abcisno os za lažje razumevanje. Vrednost y_0 je lahko poljubna in končna rešitev izpeljave bo splošna za poljubno lokacijo Hall-ove sonde v začetni legi.

Z rotacijo magneta za kot θ , se lokacija Hall-ove sonde glede na magnet spremeni. Nova lokacija Hall-ove sonde glede na magnet je enaka, kot če namesto magnet, zarotiramo Hall-ovo sondo za kot $-\theta$. Novo lokacjo Hall-ove sonde glede na magnet lahko zapišemo z rotacijsko matriko.

Slika 1.1: Definicija koordinatnega sistema z magnetom in Hall-ovo sondo

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
 (1.1)

Argument rotacijske matrike je $-\theta$, pri čemer vemo, da smo namesto magneta zarotirali Hall-ovo sondo v nasprotno smer. Z upoštevanjem lihosti funkcije sinus in sodosti funkcije kosinus[?], se enačba 1.1 poenostavi v:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
 (1.2)

(a) Zasukan magnet za kot θ

(b) Zasukan senzor za kot $-\theta$

Slika 1.2: Sprememba lokacije glede na magnet ob rotaciji

1.2 Izpeljava gibanja lokacije Hall-ove sonde na magnet pri dinamični ekscentričnosti

Opazujmo sedaj sistem gibanja Hall-ove sonde glede na magnet ter dinamično ekscentričnost. Magnet je postavljen v izhodišce koordinatnega sistema $S_m(0,0)$, kjre je tudi os vrtenja. Sedaj magnet izmaknemo v novo lego $S_{m1}(\Delta x_d, \Delta y_d)$ (Slika 1.3). Os vrtenja je še vedno postavljena v izhodišče koordinatnega sistema. Središce magneta $S_{m1}(\Delta x_d, \Delta y_d)$ tako tekom vrtenja okoli koordinatnega izhodišca opiše krožnico z radijem $\sqrt{\Delta x_d^2 + \Delta y_d^2}$. V sistem sedaj dodajmo Hallovo sondo v njeno začetno lego glede na izhodišce $S_{h0}(x_0, y_0)$.

Slika 1.3: Shema definicije dinamične ekscentričnosti vpliva na magnet

Enako gibanje Hall-ove sonde na magnet lahko dosežemo tudi z obrnjenim sistemom. Vrnimo magnet v izhodiščno lego $S_m(0,0)$. Sedaj postavimo os vrtenja magneta v točko $(-\Delta x_d, -\Delta y_d)$. Hall-ovo sondo postavimo v točko $S_{h1}(x_0 - \Delta x_d, y_0 - \Delta y_d)$.

Sistema prikazana na slikah 1.3 in 1.4, se v začetnih legah ne razlikujeta. Sedaj zarotirajmo Hall-ovo sondo okoli osi vrtenja $S_0(-\Delta x_d, -\Delta y_d)$. Hall-ova sonda se giblje glede na magnet enako, kot če bi magnet zavrteli z dinamično ekscentričnostjo (Slika 1.3). Gibanje Hall-ove sonde na magnet je izraženo kot gibanje po krožnici s središčem v točki $(-\Delta x_d, -\Delta y_d)$.

Slika 1.4: Shema definicije dinamične ekscentričnosti vpliva na Hall-ovo sondo

Slika 1.5: Potek Hall-ove sonde ob rotaciji glede na magnet ob dinamični ekscentričnosti

Potek Hall-ove sonde ob rotaciji z upoštevanjem dinamične ekscentričnosti lahko zapišemo kot rotacijo z dodatno enosmerno komponento(1.2).

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} -\Delta x_d \\ -\Delta y_d \end{bmatrix}$$
(1.3)

V (1.3) lahko izrazimo - in izraz se poenostavi.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - \begin{bmatrix} \Delta x_d \\ \Delta y_d \end{bmatrix}$$
(1.4)

1.3 Izpeljava gibanja lokacije Hall-ove sonde na magnet pri statični ekscentričnosti

Postavimo sistem nazaj v izhodišcno lego, brez ekscentričnosti. Tako sredščce magneta, kot os vrtenja postavimo v izhodišce. Hall-ova sonda je postavljena v točko $S_{h0}(x_0, y_0)$. Sedaj premaknimo Hall-ovo sondo za $(\Delta x_s, \Delta y_s)$, v novo točko $S_{h1}(x_0 + \Delta x_s, y_0 + \Delta y_s)$. Na sliki 1.6 je prikazana le statična ekscentričnost v y-osi, vendar celotni razmislek velja za obe statični ekscentričnosti enako.

Slika 1.6: Shema definicije statične ekscentričnosti

Po enakem razmišljanju kot v zgornjih poglavjih, sedaj zarotirajmo Hall-ovo sondo za kot $-\theta$ okoli izhodišča. Hall-ova sonda se giblje po krožnici z radijem $\sqrt{(x_0 + \Delta x_s)^2 + (y_0 + \Delta y_s)^2}$.

Statična ekscentričnost tako vpliva le na spremembo radija krožnice, ki jo opiše Hall-ova sonda ob rotaciji nad magnetom.

To lahko zapišemo v izraz (1.2) kot:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 + \Delta x_s \\ y_0 + \Delta y_s \end{bmatrix}$$
(1.5)

Slika 1.7: Potek Hall-ove sonde ob rotaciji glede na magnet ob statični ekscentričnosti

1.4 Končna enačba za določanje lokacije Hall-ove sonde

Do sedaj smo postopoma izpeljali enačbe za:

- sistem magneta in Hall-ove sonde ob pravilni montaži
- sistem magneta in Hall-ove sonde z dinamično ekscentričnostjo magneta
- sistem magneta in Hall-ove sonde s statično ekscentričnostjo Hall-ove sonde

Enačbi sistema z ekscentričnostjo sti med seboj neodvisni zato lahko enačbe sistemov združimo. Uporabimo princip superpozicije in dobimo končno enačbo za lociranje Hall-ove sonde glede na magnet v odvistnosti od zasuka magneta, z upoštevanjem vpliva tako dinamične kot statične ekscentričnosti. Končna enačba se glasi:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 + \Delta x_s \\ y_0 + \Delta y_s \end{bmatrix} - \begin{bmatrix} \Delta x_d \\ \Delta y_d \end{bmatrix}$$
(1.6)

Ogledali smo si, kako je ob rotaciji locirana Hall-ova sonda glede na magnet. Ogledali smo si tudi, kako na lokacijo sonde vplivati dinamična in statična ekscentričnost. S poznavanjem magnetnega polje $B_z = B_z(x, y)$, lahko določimo kakšno vrendost polja B_z pomeri Hall-ova sonda ob rotaciji $(B_z = B_z(\theta))$. Ob

poznavanju polja $B_z,$ lahko določimo zasuk magneta glede na postavitev Hallove sonde.

2 Izpeljava poteka polja $B_z(\theta)$ in ocena napake zaradi ekscentričnosti

V tem poglavju si bomo ogledali kakšno magnetno polje pomeri Hall-ova sonda. Ogledali si bomo magnet, ter kako senzor RM44 meri magnetno polje. Preko pomirjenega polja, bomo izračunali kakšna je napake pomerjenega kota od referenčnega in kako se napaka spreminja z ekscentričnostjo.

2.1 Definicija gostote magnetnega polja B_z

Predlagan magnet s strani proizvajalca senzorja je radialno magnetiziran s premerom 4 mm. ajalnik pozicije RM44 meri z-komponento gostote magnetnega polja,

./Slike/magnet4mm ne obstaja

Slika 2.1: Primer magneta predlagan s strani proizvajalca

zato se lahko osredotočimo le nanjo [?]. Potek komponente B_z nad cilindričnim magnetom je prikazan na sliki 2.2.

Potek z-komponente lahko izračunamo po Biot-Savartovim zakonom oz. nu-

Slika 2.2: z-komponenta vektorja gostote magnetnega polja nad cilindričnim magnetom citeAM8192

merično seštejemo prispevke posameznih delčkov magneta. Tako dobimo vrednost celotnega vektorja gostote magnetnga polja v posamezni točki. Magnetno polje z komponente v okolici osi vrtenja magneta lahko aproksimiramo z ravnino

$$B_z(x,y) = k \cdot x. \tag{2.1}$$

Takšna aproksimacija zadostuje za ocenitev poteka napake. S poznavanjem lokacije Hall-ove sonde, kar smo si ogledali v prejšnjem poglavju, sedaj dobimo potek pomerjene komponente gostote magnetnega polja. Aprokisirano polje je linearno odvisno od x komponente. Za lažje razumevanje definirajmo konstanto k enako 1.

2.2 Postavitev Hall-ovih sond za zajem polja in pomerjeno polje v odvistnosti od ekscentričnosti

Za izračun kota potrebujem poznati polje v vsaj dveh točkah nad magnetom. Da si enačbe olajšamo postavimo 2 Hall-ovi sondi na koordinatni osi, oddaljeni od izhodišča za r_0 .

Slika 2.3: Začetna postavitev Hallovih sond

S poznavanjem lociranja sonde glede na magnet (1.6), funkcije polja (2.1) ter začetne pozicije Hall-ovih sond lahko določimo potek polja sonde.

$$cos = B_{H_1}(\theta, r_0, \Delta x_s, \Delta y_s, \Delta x_d) = r_0 \cos \theta + \Delta x_s \cos \theta + \Delta y_s \sin \theta - \Delta x_d \quad (2.2)$$

$$sin = B_{H_2}(\theta, r_0, \Delta x_s, \Delta y_s, \Delta x_d) = r_0 \sin \theta + \Delta x_s \cos \theta + \Delta y_s \sin \theta - \Delta x_d \quad (2.3)$$

Zajeta signala bom od tu naprej imenoval sinus (sin) in cosinu (cos), ker je to njuna osnovna oblika.

2.2.1 Sprememba magnetnega polja zaradi ekscentričnosti

Oglejmo si primer kakšno polje zajameti Hall-ovi sondi, ko ekscentričnosti ni. *sin* in *cos* izraza se poenostavita in dobimo poteka v obliki sinusa ter kosinusa z enako amplitudo (Slika 2.4).

Slika 2.4: Poteka sin in cosbrez ekscentričnosti pri $r_0=1~\mathrm{mm}$

Upoštevajmo sedaj le statični ekscentričnosti Δx_s in Δy_s . Δx_d postavimo na 0. Enačbi (2.2) in (2.3) lahko preuredimo v izraza:

$$\cos(\theta, r_0, \Delta x_s, \Delta y_s) = \sqrt{(r_0 + \Delta x_s)^2 + \Delta y_s^2} \cos(\theta - \arctan \frac{\Delta y_s}{r_0 + \Delta x_s}) \qquad (2.4)$$

$$sin(\theta, r_0, \Delta x_s, \Delta y_s) = \sqrt{\Delta x_s^2 + (r_0 + \Delta y_s)^2} \cos(\theta - 90 + \arctan \frac{\Delta x_s}{r_0 + \Delta y_s}) \quad (2.5)$$

Iz njiju vidimo spremenjena poteka. Signaloma se je spremenila amplituda in fazni zamik (Slika 2.5).

Slika 2.5: Poteka sin in cos pri $r_0=1~\rm{mm}$ in upoštevanjem 0,1 mm statični ekscentričnosti v x-osi

Postavimo sedaj vrednosti Δx_s in $\Delta_y s$ na 0, Δx_d predpostavimo da ni 0.

$$cos(\theta, r_0, \Delta x_s, \Delta y_s, \Delta x_d) = r_0 \cos \theta - \Delta x_d$$
 (2.6)

$$sin(\theta, r_0, \Delta x_s, \Delta y_s, \Delta x_d) = r_0 \sin \theta - \Delta x_d$$
 (2.7)

Polji obdržita enako amplitudo ter fazo, vendar dobita enosmerno komponento (Slika 2.6).

Slika 2.6: Poteka sin in cos pri $r_0=1$ mm in upoštevanjem 0,1 dinamične ekscentričnosti v x-osi

2.3 Premik senzorja v z smeri

Poglejmo si še kako vpliva sprememba premikanja senzorja v z smeri. Pri magnetnem polju aprokismiranem z ravnino (4.1), se gostota magnetnega polja pri obeh sondah spreminja enako. To se v enačbah odraža le kot dodaten faktor. Upoštevajmo spremembo polja zaradi premika senzorja po z osi. Zajeti polji imata naslednji potek:

$$\cos = k_z(r_0\cos\theta + \Delta x_s\cos\theta + \Delta y_s\sin\theta - \Delta x_d) \tag{2.8}$$

$$sin = k_z(r_0 \sin \theta + \Delta x_s \cos \theta + \Delta y_s \sin \theta - \Delta x_d)$$
 (2.9)

Z vstavitvijo formul v arctan se faktor k_z nahaj tako v števcu kot imenovalcu ter se lahko okrajša. Naj še enkrat poudarim, da to velja le za polje aproksimirano z ravnino.

3 Vpliv deformacije signala sinus in cosinus na izhodno napako

Da si lažje predstavljamo, kako se bo napaka odražala v obliki digitalnega izhoda, si oglejmo posamezno deformacijo signalov sinus in cosinus. Deformacija sinusa in cosinusa zaradi nepravilne montaže, vpliva le na enosmerno komponento, amplitudo in fazni kot med signaloma.

Ogledali si bomo kako vplivajo na izračunan kot, različne amplitude signalov sinus in cosinus, neortogonalost oz. fazni zamik sinusa in kosinusa različen od 90°. Ogledali si bomo tudi pojav enosmernih komponenet v sinusu in cosinusu, in za konec še vpliv višjih harmonikov, ki niso posledica nepravilne montaže, vendar je prav da jih omenim.

Za izračun kota se uporablja funkcijo atan2(); za izhodno vrednost kota v radianih oz. atan2d(); za vrednost v stopinjah [?][?]. Različne literature (citiraj iz clanaka od rls) opisujejo napake zaradi popačitve signalov sin cos. Napaka je izražena v obliki enosmerne komponente ter prvega oz drugega harmonika, kateri od primera do primera najbolj izstopa. V nadaljeevanju bom prikazal kako popačen signal kot vhod v funkcijo atan2(); vpliva na napako ter kako se odraža tudi na visjih harmonikih napake. Za majhne popačenja signalov, literatura nakazuje na linearno naraščanje napake, vendar predvidevam, da bo napaka z večjo deformacijo naraščala eksponentno.

Na tej točki je prav da definiram še napako pomejrenega kota ε , ki predstavlja razliko med merjenim in referenčnim kotom.

$$\varepsilon = \varphi - \operatorname{atan2}(\sin \theta, \cos \theta) \tag{3.1}$$

3.1 Različne amplitude

Vzemimo signal sinus z amplitudo A_{sin} in signal cosinus z amplitude A_{cos} . Vstavimo signala v funkcijo atan2.

Opazimo, da lah
hko razmerje amplitud nadomestimo s koeficientom k. Kot, ki bo izhodna funkcija lahko nados
metimo s:

$$\varphi = \operatorname{atan2}(A_{sin}\sin\theta, A_{cos}\cos\theta) = \operatorname{atan2}(k\sin\theta, \cos\theta)$$
 (3.2)

k limitirajmo v neskončnost:

$$\lim_{k \to \infty} \operatorname{atan2}(k \sin \theta, \cos \theta) \tag{3.3}$$

Slika 3.1: ε ob limiti k v neskončnost

Kot ε , se bo ob limiti izrazila v obliki , ki jo lahko izrazimo z vrsto [?]:

$$\varepsilon = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin 2n\theta \tag{3.4}$$

Nato sem izračunal napaka pri različnih k in naredil fft napake ε [?].

Harmonike napake sem aproksimiral z racionalno funkcijo in končna napaka za katerikoli k se je izrazila z vrsto:

$$\varepsilon_p = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{k-1}{k+1}\right)^n \sin 2n\theta \tag{3.5}$$

Slika 3.2: ε pri k=1.1

Slika 3.3: Razlika med napako izračunano s funkcijo atan2 in izračnunano napako z vrsto po (3.5) pri k=1.1

3.2 Različne enosmerne komponente

Enosmerna komponenta se lahko pojavi tako v sinusu, cosinusu ali v obeh. V naslednjih podpoglavjih bom prikazal kako se napaka spreminja glede na enosmerno komponeno le v enem od signalov in nakoncu kako se napaka izrazi, če imate oba signala enake enosmerne komponente.

3.2.1 Enosmerna komponenta sinusa

Poglejmo kako se bo izrazala napaka ε v naslednjem izrazu:

$$\varphi = \operatorname{atan2}(\sin \theta + b_0, \cos \theta) \tag{3.6}$$

Postopajmo kot v prejčnjem poglavju in limitirajmo b_0 v neskončnost:

$$\lim_{b_0 \to \infty} \operatorname{atan2}(\sin \theta + b_0, \cos \theta) \tag{3.7}$$

Napaka se izrazi v obliki:

Slika 3.4: ε ob limiti b_0 v neskončnost

$$\varepsilon = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2}{n} \sin(n\theta + 90n)$$
 (3.8)

Tudi tu naredimo fft napake pri različnih enosmernih komponentah. Napako lahko opišemo z naslednjo enačbo:

$$\varepsilon_{p} = \begin{cases} \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2 - |b_{0}|^{-n}}{n} \sin(n\theta - 90n), & b_{0} \leq -1\\ \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{b_{0}^{n}}{n} \sin(n\theta + 90n), & |b_{0}| \leq 1\\ \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2 - b_{0}^{-n}}{n} \sin(n\theta + 90n), & b_{0} \geq 1 \end{cases}$$
(3.9)

3.2.2 Enosmerna komponenta cosinusa

Sedaj poglejom napako pri enosmerni komponenti cosinusa

$$\varphi = \operatorname{atan2}(\sin\theta, \cos\theta + a_0) \tag{3.10}$$

Postopajmo kot v prejčnjem poglavju in limitirajmo a_0 v neskončnost:

$$\lim_{a_0 \to \infty} \operatorname{atan2}(\sin \theta, \cos \theta + a_0) \tag{3.11}$$

Slika 3.5: ε pri $b_0=0{,}1$

Slika 3.6: Razlika med napako izračunano s
 funkcijo atan2 in izračnunano napako z vrsto po (3.9) pr
i $b_0=0.1$ in $n<20\,$

Napaka se izrazi v obliki:

$$\varepsilon = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2}{n} \sin(n\theta + 90n)$$
 (3.12)

Slika 3.7: ε ob limiti a_0 v neskončnost

Tudi tu naredimo fft napake pri različnih enosmernih komponentah. Napako lahko opišemo z naslednjo enačbo:

$$\varepsilon_{p} = \begin{cases} \frac{180}{\pi} \sum_{n=1}^{\infty} (-1)^{n} \frac{2 - |a_{0}|^{-n}}{n} \sin(n\theta), & a_{0} \leq -1 \\ \frac{180}{\pi} \sum_{n=1}^{\infty} (-1)^{n} \frac{a_{0}^{n}}{n} \sin(n\theta), & |a_{0}| \leq 1 \\ \frac{180}{\pi} \sum_{n=1}^{\infty} (-1)^{n} \frac{2 - a_{0}^{-n}}{n} \sin(n\theta), & a_{0} \geq 1 \end{cases}$$
(3.13)

Slika 3.8: ε pri a=0 0,1

Slika 3.9: Razlika med napako izračunano s
 funkcijo atan2 in izračnunano napako z vrsto po (3.13) pr
i $a_0=0,\!1$ in n<20

3.2.3 Enosmerna komponenta pri obeh signalih

Oglejmo si še napako, če imate oba signala, sinus in cosinus, enako enosmerno komponento.

$$\varphi = \operatorname{atan2}(\sin \theta + c_0, \cos \theta + c_0) \tag{3.14}$$

Limitirajmo:

$$\lim_{c_0 \to \infty} \operatorname{atan2}(\sin \theta + c_0, \cos \theta + c_0) \tag{3.15}$$

Slika 3.10: ε ob limiti c_0 v neskončnost

in napako ε zapišemo kot:

$$\varepsilon = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2}{n} \sin(n\theta - 90n)$$
 (3.16)

Z enakimi postopki kot zgoraj sem tudi tu določil potek napake.

$$\varepsilon_{p} = \begin{cases} \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2 - |\sqrt{2}c_{0}|^{-n}}{n} \sin(n\theta + 90n), & c_{0} \leq -\frac{\sqrt{2}}{2} \\ \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{(\sqrt{2}c_{0})^{n}}{n} \sin(n\theta - 90n), & |c_{0}| \leq \frac{\sqrt{2}}{2} \\ \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{2 - (\sqrt{2}c_{0})^{-n}}{n} \sin(n\theta - 90n), & c_{0} \geq \frac{\sqrt{2}}{2} \end{cases}$$
(3.17)

Slika 3.11: ε pri $c_0 = 0,1$

Slika 3.12: Razlika med napako izračunano s
 funkcijo atan2 in izračnunano napako z vrsto po (3.17) pr
i $c_0=0,\!1$ in n<20

${\bf 3.3}\quad {\bf Neorotogonal nost\ signal ov}$

Napaka se pojavi lahko tudi, če signala sinus in cosinus nista zamaknjena za točno 90°. Z enakim postopkom kot v prejšnjih poglavjih, bom tudi tu, določil napako z vrsto, za vsak zamaknjen signal posebaj.

3.3.1 Fazni zamik sinusa

Poglejmo najprej zamaknjen sinusni signal. Tudi tu napravimo limito vendar le do 90°, saj se siganl kasneje začne ponavljati.

$$\lim_{\varphi_{sin}\to 90} \operatorname{atan2}(\sin\theta + \varphi_{sin}, \cos\theta) \tag{3.18}$$

Slika 3.13: ε pri $\varphi_{sin} = 90^{\circ}$

Napaka se izrazi v vrsti:

$$\varepsilon = 45^{\circ} - \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(2n\theta)$$
 (3.19)

Napravil sem izračune napake pri različnih φ_{sin} , naredil fft signala in pogledal odvistnost amplitude harmonika od φ_{sin} . Harmonike sem lahko aprokismiral z višjimi potencami funkcije tangens, ter dobil končno enačbo.

$$\varepsilon_p = \frac{\varphi_{sin}}{2} + \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \tan(\frac{\varphi_{sin}}{2})^n \sin(2n\theta + 90n + n\varphi_{sin})$$
(3.20)

Slika 3.14: ε pri $\varphi_{sin}=1^\circ$

Slika 3.15: Razlika med napako izračunano s
 funkcijo atan2 in izračnunano napako z vrsto po (3.23) pr
i $\varphi_{sin}=1^\circ$ in n<20

3.3.2 Fazni zamik cosinusa

Enako posotopamo tudi pri faznem zamiku cosinusa.

$$\lim_{\varphi_{cos} \to 90} \operatorname{atan2}(\sin \theta + \varphi_{cos}, \cos \theta)$$
 (3.21)

Slika 3.16: ε pri $\varphi_{cos}=90^\circ$

Napaka se izrazi v vrsti:

$$\varepsilon = 45^{\circ} + \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(2n\theta)$$
 (3.22)

Ponovil pri različnih φ_{cos} , naredil fft, aproksimiral posamezni harmonik napake in dobil izraz:

$$\varepsilon_p = \frac{\varphi_{cos}}{2} + \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \tan(\frac{\varphi_{cos}}{2})^n \sin(2n\theta - 90n + n\varphi_{cos})$$
(3.23)

Slika 3.17: ε pri $\varphi_{cos}=1^\circ$

Slika 3.18: Razlika med napako izračunano s
 funkcijo atan2 in izračnunano napako z vrsto po (3.23) pr
i $\varphi_{cos}=1^\circ$ in n<20

3.4 Potek napake pri statični ekscentričnosti v smeri x

V zgornjih poglavjih smo spoznali, kakšne oblike je napaka pri določeni deformaciji analognega signala. Zgornji poteki napake veljajo le za eno vrsto deformacije, njihovih odvistnosti nisem raziskal.

Sedaj se osredotočimo na potek napake ob izraženi statični ekscentričnosti v smeri x. Signala sin in cos imate naslednji potek:

$$sin = r_0 \sin(\theta) + \Delta x_s \cos(\theta) \tag{3.24}$$

$$cos = r_0 \cos(\theta) + \Delta x_s \cos(\theta) \tag{3.25}$$

Kot φ bomo pridobili s funkcijo atan2(). Zgornja izraza vstavimo v atan2() in ju delimo z r_0 .

$$\varphi = \operatorname{atan2}(\sin(\theta) + \frac{\Delta x_s}{r_0}\cos(\theta), \cos(\theta) + \frac{\Delta x_s}{r_0}\cos(\theta))$$
 (3.26)

Napako sem izpelajal po enakih postopkih kot zgoraj. Napaka sem izrazil z vrsto:

$$\varepsilon_p = \operatorname{atan} \frac{-\Delta x_s}{\Delta x_s + 2r_0} + \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\Delta x_s}{\sqrt{\Delta x_s^2 + 2r_0 \Delta x_s + 2r_0^2}} \right)^n \sin(2n\theta + n(90 + \operatorname{atan}(\frac{\Delta x_s + r_0}{r_0})))$$
(3.27)

Pri čemer:

$$\Delta x_s > -r_0$$

Napaka se je izrazila z enosmerno komponento in drugim harmonikom, po pričakovanju. V enačbi (3.24) vidimo, da nastopati v analognih signalih razilčni amplitudi in fazna zamika. Napaka je bila pričakovana.

3.5 Potek napake pri statični ekscentričnosti v smeri y

Postopek enako ponovimo za ekscentričnost v y smeri. Pričakujem, da se bo napaka izrazila podobno kot, pri ekscentričnosti v x smeri.

Izpeljal sem napako z vrsto in rezultat je:

$$\varepsilon_p = \operatorname{atan} \frac{-\Delta y_s}{\Delta y_s + 2r_0} + \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\Delta y_s}{\sqrt{\Delta y_s^2 + 2r_0 \Delta y_s + 2r_0^2}} \right)^n \sin(2n\theta + n(90 + \operatorname{atan}(\frac{\Delta y_s + r_0}{r_0})))$$
(3.28)

Pri čemer:

$$\Delta y_s > -r_0$$

3.6 Potek napake pri dinamični ekscentričnosti v smeri x

Analogna signala se izrazita z naslednjim potekom:

$$sin = r_0 \sin(\theta) - \Delta x_d \tag{3.29}$$

$$\cos = r_0 \cos(\theta) - \Delta x_d \tag{3.30}$$

Signala nas spomnita na poteka, ki smo ju obravnavali že v poglavju 3.2.3, zato bom tu napisal le rezultat. Razlikuje se le v predznaku.

$$\varepsilon_p = \frac{180}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{-\sqrt{2}}{r_0} \Delta x_d \right)^n \sin(n\theta - 90n)$$
 (3.31)

$$|\Delta x_d| \le \frac{r_0}{\sqrt{2}}$$

V tem poglavju smo pogledali, poteke napake ob deformaciji analognih signalov. Ogledali smo si tudi, kako se bo napaka izrazila ob ekcentričnosti senzorja ter magneta. Za majhne odmike, je dovolj upoštevanje le prvega člena vrste, pri katerih lahko tudi predpostavimo linearno naraščanje napake. V nadaljevanju bom velikost harmonika v odvistnosti od povzročene ekscentričnosti aproksimiral s kubičnim polinomom, ter jih primerjal z izpeljavo v tem poglavju. Harmoniki katerih potek je npr racionalna funkcija (primer (3.27)), bom razvil v Taylorjevo vrsto do tretje stopnje, katero bom lahko primerjal s kubičnimi polinomi.

V prejšnjem poglavju smo magnetno polje magneta aproksimirali z ravnino ter napako izračunali z neskončno vrsto. V tem poglavju bom predstavil simulacije opravljene na magnetnem polju aproksimiranega z ravnino, izračnan kot φ je rezultat numerične funkicje atan2d(y,x) citeatan2d. Predstavil bom napako, jo razstavil na posamezne harmonike, ter prikazal spreminjanje amplitud glede na spremembo ekscentričnosti. Ravnina aproksimiranega magnetnega polja je:

$$B(x,y) = x (4.1)$$

Hall-ovi sondi sti postavljeni na krožnico z radijem 2,4 mm [?].

4.1 Brez napake

Za začetek si poglejmo idealno montriran tako senzor kot magnet. Signala sin in cos imata enaki amplitudi in sta fazno zamaknjena za 90°. Napaka ε , ki se pojavi pri izračunu je tako le numerična napaka funkcije atan2d (Slika 4.2).

Numerično napako lahko na pričakovano napako zaradi ekscnetričnosti zanemarim.

Slika 4.1: Potek signalov sin in cos brez ekscentričnosti

Slika 4.2: Napaka ε pri simulacijah z linearnim magnetnim poljem brez ekscentričnosti

4.2 Simulacija statične ekscentričnosti v smeri x-osi

Oglejmo si rezultate simulacij statične ekscentričnosti v smeri x. Po pričakovanjih se bo povišala amplituda sin in cos signala ter zmanjšal njun fazni zamik (izraza (2.4) in 2.5).

Slika 4.3: Signala sin in cos pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri x

Napaka ε je prikazana na sliki 4.5.

Slika 4.4: Napaka ε pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri x

Napako razvijmo v Fourierovo vrsto in pridobimo amplitude posameznih harmonikov napake(Slika 4.6).

Slika 4.5: Amplitude harmonikov napake ε razvite v Fourierovo vrsto pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri x

Po pričakovanjih najbolj izstopata enosmerna komponenta (harmonik 0) in drugi harmonik.

4.2.1 Sprememba sin, cos ter napake od $\Delta_x s$

Poglejmo tudi kako se bo spreminjala amplituda in faza osnovnega harmonika ter enosmerna komponenta signalov sin in cos, od spremembi ekscentričnosti. Potek amplitude osnovnega harmonika je prikazan na sliki 4.4. Amplituda cos se spreminja hitreje, kot amplituda sin (2.4)(2.5).

Na sliki 4.7 vidimo odvisnost amplitud od spreminjanja ekscentričnosti.

Poteke s slike 4.7 predstavimo enako kot (3.27).

Slika 4.6: Amplituda osnovnega harmonika signalov sin in cos pri simulacijah z linearnim poljem statične ekscentričnosti v smeri x

Slika 4.7: Potek amplitud posameznega harmonika napake ε od statične ekscentričnosti v smeri x

$$C_0 = 3,35 \cdot 10^{-1} \Delta x_s^3 - 2,48 \Delta x_s^2 + 1,19 \cdot 10 \Delta x_s + 1,23 \cdot 10^{-5}$$
 (4.2)

$$C_1 = 5,56 \cdot 10^{-4} \Delta x_s^3 - 2,00 \cdot 10^{-3} \Delta x_s^2 + 4,34 \cdot 10^{-3} \Delta x_s + 7,67 \cdot 10^{-8}$$
 (4.3)

$$C_2 = 4,13 \cdot 10^{-1} \Delta x_s^3 - 3,53 \Delta x_s^2 + 1,69 \cdot 10 \Delta x_s - 2,31 \cdot 10^{-5}$$
 (4.4)

$$C_3 = -2,17 \cdot 10^{-4} \Delta x_s^3 + 2,57 \cdot 10^{-4} \Delta x_s^2 + 4,20 \cdot 10^{-3} \Delta x_s + 4,51 \cdot 10^{-8} (4.5)$$

$$C_4 = -8,27 \cdot 10^{-1} \Delta x_s^3 + 2,42 \Delta x_s^2 + 8,08 \cdot 10^{-3} \Delta x_s - 1,60 \cdot 10^{-4}$$
 (4.6)

4.3 Simulacija statične ekscentričnosti v smeri y-osi

Oglejmo si še rezultate simulacij statične ekscentričnosti v smeri y. Pričakujem podobne rezultate kot pri statični ekscentričnosti v smeri x, le da bo tu hitreje naračšala amplituda sin signala.

Slika 4.8: Signala sin in cos pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri y

Napaka je prikazana na sliki 4.9.

Razvijmo jo v Fourierovo vrsto in pridobimo amplitude posameznih harmonikov napake(Slika 4.10).

Tudi tu najbolj izstopata enosmerna komponenta in drugi harmonik. Za razliko od statčne ekscentričnosti v smeri x je tu enosmerna komponenta negativna.

Na sliki 4.11 vidimo odvisnost amplitud od spreminjanja statične ekscentričnosti v smeri y.

Poteke s slike 4.11 predstavimo s polinomom tretje stopnje.

Slika 4.9: Napaka ε pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri y

Slika 4.10: Amplitude harmonikov napake ε razvite v Fourierovo vrsto pri simulacijah z linearnim poljem pri 0,24 mm statične ekscentričnosti v smeri y

$$C_{0} = 3,35 \cdot 10^{-1} \Delta y_{s}^{3} - 2,48 \Delta y_{s}^{2} + 1,19 \cdot 10 \Delta y_{s} + 1,22 \cdot 10^{-5}$$

$$C_{1} = 1,09 \cdot 10^{-4} \Delta y_{s}^{3} - 8,69 \cdot 10^{-4} \Delta y_{s}^{2} + 4,34 \cdot 10^{-3} \Delta y_{s} + 7,62 \cdot 10^{-10}$$

$$C_{2} = 4,12 \cdot 10^{-1} \Delta y_{s}^{3} - 3,53 \Delta y_{s}^{2} + 1,69 \cdot 10 \Delta y_{s} - 2,31 \cdot 10^{-5}$$

$$C_{3} = 2,43 \cdot 10^{-4} \Delta y_{s}^{3} - 1,30 \cdot 10^{-3} \Delta y_{s}^{2} + 4,20 \cdot 10^{-3} \Delta y_{s} + 1,83 \cdot 10^{-8}$$

$$C_{4} = -8,26 \cdot 10^{-1} \Delta y_{s}^{3} + 2,42 \Delta y_{s}^{2} + 6,13 \cdot 10^{-3} \Delta y_{s} - 1,60 \cdot 10^{-4}$$

$$(4.11)$$

Slika 4.11: Potek amplitud posameznega harmonika napake ε od statične ekscentričnosti v smeri y

4.4 Dinamična ekscentričnost

Oglejmo si sedaj rezultate simulacij dinamične ekscentričnosti. V signalih sin in cos se pojavi enosmerna komponenta (Slika 4.12).

Slika 4.12: Signala sin in cos pri simulacijah z linearnim poljem pri 0,24 mm dinamične ekscentričnosti v smeri x

Slika 4.13: Napaka ε pri simulacijah z linearnim poljem pri 0,24 mm dinamične ekscentričnosti v smeri y

V napaki prevladuje prvi harmonik kar je vidno tudi iz razvoja v Fourierovo vrsto (Slika 4.14)

Slika 4.14: Amplitude harmonikov napake ε razvite v Fourierovo vrsto pri simulacijah z linearnim poljem pri 0,24 mm dinamične ekscentričnosti v smeri x

Na sliki 4.15 vidimo odvisnost amplitud od spreminjanja ekscentričnosti.

Slika 4.15: Potek amplitud posameznega harmonika napake ε od dinamične ekscentričnosti v smeri x

Poteke harmonikov s slike 4.15 aproksimiramo s polinomi.

$$C_{0} = 2,64 \cdot 10^{-4} \Delta x_{d}^{3} + 1,25 \cdot 10^{-3} \Delta x_{d}^{2} + 2,91 \cdot 10^{-3} \Delta x_{d} + 1,02 \cdot 10^{-7} (4.13)$$

$$C_{1} = 1,58 \cdot 10^{-4} \Delta x_{d}^{3} + 2,37 \cdot 10^{-3} \Delta x_{d}^{2} + 3,38 \cdot 10 \Delta x_{d} + 2,28 \cdot 10^{-7} (4.14)$$

$$C_{2} = 1,06 \cdot 10^{-3} \Delta x_{d}^{3} + 9,95 \Delta x_{d}^{2} - 1,95 \cdot 10^{-3} \Delta x_{d} + 7,96 \cdot 10^{-7} (4.15)$$

$$C_{3} = 3,91 \Delta x_{d}^{3} - 1,41 \cdot 10^{-3} \Delta x_{d}^{2} + 9,91 \cdot 10^{-4} \Delta x_{d} + 1,06 \cdot 10^{-5} (4.16)$$

$$C_{4} = 1,73 \Delta x_{d}^{3} - 5,52 \cdot 10^{-1} \Delta x_{d}^{2} + 6,15 \cdot 10^{-2} \Delta x_{d} - 1,36 \cdot 10^{-3} (4.17)$$

$$(4.18)$$

Dinamična ekscentričnost v smeri y, pri simulacijah z linearnim poljem ni izražala napake, saj se polje ob tej ekscentričnosti zaradi aproksimacije z ravnino, za Hall-ove sonde ni spremenilo.

V tem poglavju sem predstavil numerične rezultate simulacij z magnetnim poljem aproksimiranega z ravnino. Rezultati so potrdili prevladujoče harmomnike, pojavljajo se tudi višji, kar sem upošteval pri napaki izrazeni z neskončno vrsto. V nadaljevanju pričakujem, z boljšim modelom magnetnega polja, manjše napake

po amplitudi.