MC-202 — Unidade 4 Noções de Eficiência de Algoritmos

Rafael C. S. Schouery rafael@ic.unicamp.br

Universidade Estadual de Campinas

2° semestre/2017

Quantos segundos demora para executar a seguinte função?

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Depende...

• do computador onde ele for rodado

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento
- do valor de n

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento
- do valor de n
 - -n = 10 vs n = 10.000

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento
- do valor de n
 - -n = 10 vs n = 10.000
- da posição de x no vetor

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento
- do valor de n

```
-n = 10 \text{ vs } n = 10.000
```

- da posição de x no vetor
 - no melhor caso, a linha 4 é executada 1 vez

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

- do computador onde ele for rodado
 - computador rápido vs lento
- do valor de n
 - -n = 10 vs n = 10.000
- da posição de x no vetor
 - no melhor caso, a linha 4 é executada 1 vez
 - no pior caso, a linha 4 é executada n vezes

Queremos analisar algoritmos:

Queremos analisar algoritmos:

• Independentemente do computador onde ele for rodado

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

Em geral, queremos analisar o pior caso do algoritmo

A análise do melhor caso pode ser interesse, mas é rara

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

- A análise do melhor caso pode ser interesse, mas é rara
- A análise do caso médio é mais difícil

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

- A análise do melhor caso pode ser interesse, mas é rara
- A análise do caso médio é mais difícil
 - É uma análise probabilística

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

- A análise do melhor caso pode ser interesse, mas é rara
- A análise do caso médio é mais difícil
 - É uma análise probabilística
 - Precisamos fazer suposições sobre os dados de entrada

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Consumo de tempo por linha no pior caso:

Linha 2: tempo c₂ (alocação de variável)

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c₂ (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5    return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c_2 (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c_2 (alocação de variável)
- Linha 3: tempo c_3 (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c₄ (acessos, comparação e if)

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c₂ (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c₄ (acessos, comparação e if)
 - No pior caso, essa linha é executada n vezes

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c_2 (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c₄ (acessos, comparação e if)
 - No pior caso, essa linha é executada n vezes
- Linha 5: tempo c_5 (acesso e return)

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

- Linha 2: tempo c_2 (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c_4 (acessos, comparação e if)
 - No pior caso, essa linha é executada n vezes
- Linha 5: tempo c_5 (acesso e return)
- Linha 6: tempo c₆ (return)

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Consumo de tempo por linha no pior caso:

- Linha 2: tempo c₂ (alocação de variável)
- Linha 3: tempo c₃ (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c_4 (acessos, comparação e if)
 - No pior caso, essa linha é executada n vezes
- Linha 5: tempo c_5 (acesso e return)
- Linha 6: tempo c₆ (return)

O tempo de execução é menor ou igual a

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Consumo de tempo por linha no pior caso:

- Linha 2: tempo c_2 (alocação de variável)
- Linha 3: tempo c_3 (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n + 1 vezes
- Linha 4: tempo c_4 (acessos, comparação e if)
 - No pior caso, essa linha $\acute{\mathrm{e}}$ executada n vezes
- Linha 5: tempo c_5 (acesso e return)
- Linha 6: tempo c₆ (return)

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

Se $n \ge 1$, temos que o tempo de execução é menor ou igual a

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

Se $n \ge 1$, temos que o tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$

= $\frac{a}{b} + \frac{b}{c_3} \cdot n$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$
$$= \mathbf{a} + \mathbf{b} \cdot n \le \mathbf{a} \cdot n + \mathbf{b} \cdot n$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$

= $\mathbf{a} + \mathbf{b} \cdot n \le \mathbf{a} \cdot n + \mathbf{b} \cdot n = \mathbf{d} \cdot \mathbf{n}$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

Se $n \ge 1$, temos que o tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$
$$= \mathbf{a} + \mathbf{b} \cdot n \le \mathbf{a} \cdot n + \mathbf{b} \cdot n = \mathbf{d} \cdot \mathbf{n}$$

Isto é, o crescimento do tempo é linear em n

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

Se $n \ge 1$, temos que o tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$
$$= \mathbf{a} + \mathbf{b} \cdot n \le \mathbf{a} \cdot n + \mathbf{b} \cdot n = \mathbf{d} \cdot \mathbf{n}$$

Isto é, o crescimento do tempo é linear em n

Se n dobra, o tempo de execução praticamente dobra

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le \frac{dn}{2}$$

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le dn$$

d não interessa tanto, depende apenas do computador...

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le dn$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le \frac{dn}{dn}$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

O tempo do algoritmo é da ordem de n

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le dn$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

O tempo do algoritmo é da ordem de n

• A ordem de crescimento do tempo é igual a de f(n) = n

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le \frac{dn}{dn}$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

O tempo do algoritmo é da ordem de n

• A ordem de crescimento do tempo é igual a de f(n) = n

Dizemos que

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = O(n)$$

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le dn$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

O tempo do algoritmo é da ordem de n

• A ordem de crescimento do tempo é igual a de f(n) = n

Dizemos que

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = O(n)$$

Veremos uma definição formal de $O(\cdot)$ em breve...

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (1+r)/2;
3    if (1 > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

Precisamos resolver o problema recursivamente

para um vetor com metade do tamanho

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (1+r)/2;
3    if (1 > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$
 - Ou seja, $t \le 1 + \lg n$

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2   int m = (1+r)/2;
3   if (1 > r)
4    return -1;
5   if (dados[m] == x)
6    return m;
7   else if (dados[m] < x)
8    return busca_binaria(dados, m + 1, r, x);
9   else
10   return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$ - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (1+r)/2;
3    if (1 > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$
 - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada
 - operações aritméticas, comparações e return

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

Precisamos resolver o problema recursivamente

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$
 - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada
 - operações aritméticas, comparações e return

Consumo de tempo é no máximo ct

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

Precisamos resolver o problema recursivamente

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$
 - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada
 - operações aritméticas, comparações e return

Consumo de tempo é no máximo ct

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2    int m = (l+r)/2;
3    if (l > r)
4       return -1;
5    if (dados[m] == x)
6       return m;
7    else if (dados[m] < x)
8       return busca_binaria(dados, m + 1, r, x);
9    else
10       return busca_binaria(dados, l, m - 1, x);
11 }</pre>
```

Precisamos resolver o problema recursivamente

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$ - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada
 - operações aritméticas, comparações e return

Consumo de tempo é no máximo $ct \le c + c \lg n$

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2   int m = (1+r)/2;
3   if (1 > r)
4    return -1;
5   if (dados[m] == x)
6    return m;
7   else if (dados[m] < x)
8    return busca_binaria(dados, m + 1, r, x);
9   else
10   return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

Precisamos resolver o problema recursivamente

- para um vetor com metade do tamanho
- paramos, no pior caso, no primeiro t tal que $n/2^t < 1$
 - Ou seja, $t \le 1 + \lg n$
- ullet gastamos um tempo constante c em cada chamada
 - operações aritméticas, comparações e return

Consumo de tempo é no máximo $ct \le c + c \lg n = O(\lg n)$

Temos dois objetivos para analisar algoritmo

• Entender o tempo de execução de um algoritmo

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é O(f(n))

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é $\mathrm{O}(f(n))$
- Comparar dois algoritmos

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é $\mathrm{O}(f(n))$
- Comparar dois algoritmos
 - Busca linear é O(n) e busca binária é $O(\lg n)$

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é $\mathrm{O}(f(n))$
- Comparar dois algoritmos
 - Busca linear é O(n) e busca binária é $O(\lg n)$
 - Veremos que um algoritmo $O(\lg n)$ é melhor que um O(n)

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é $\mathrm{O}(f(n))$
- Comparar dois algoritmos
 - Busca linear é O(n) e busca binária é $O(\lg n)$
 - Veremos que um algoritmo $O(\lg n)$ é melhor que um O(n)
 - Prova formal que um algoritmo é melhor que o outro

Queremos comparar duas funções f e g

Queremos comparar duas funções f e g

Queremos entender a velocidade de crescimento de f

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples

•
$$f(n) = c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 e g(n) = n$$

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples

- $f(n) = c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 e g(n) = n$
- $f(n) = 3n^2 + 10 \lg n$ e $g(n) = n^2$

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples

- $f(n) = c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 e g(n) = n$
- $f(n) = 3n^2 + 10 \lg n$ e $g(n) = n^2$

f e g podem ser os tempos de execução de dois algoritmos

Queremos comparar duas funções f e g

- Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples

- $f(n) = c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 e g(n) = n$
- $f(n) = 3n^2 + 10 \lg n$ e $g(n) = n^2$

f e g podem ser os tempos de execução de dois algoritmos

•
$$f(n) = dn$$
 e $g(n) = c + c \lg n$

Comparar funções verificando se $f(n) \le g(n)$ para todo n

Comparar funções verificando se $f(n) \le g(n)$ para todo n

Problema: $10n > n^2$ para n < 10

Comparar funções verificando se $f(n) \le g(n)$ para todo n

Problema: $10n > n^2$ para n < 10

Solução: Ao invés de comparar todo n, comparar apenas n suficientemente grande

Comparar funções verificando se $f(n) \le g(n)$ para todo n

Problema: $10n > n^2$ para n < 10

Solução: Ao invés de comparar todo n, comparar apenas n suficientemente grande

• Para todo $n \ge n_0$ para algum n_0

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

Problema: n + 5 > n para todo n

• Mas a velocidade de crescimento das funções é o mesmo

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

- Mas a velocidade de crescimento das funções é o mesmo
- Constantes dependem da máquina onde executamos

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

- Mas a velocidade de crescimento das funções é o mesmo
- Constantes dependem da máquina onde executamos
- Vamos ignorar constantes e termos menos importantes

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

- Mas a velocidade de crescimento das funções é o mesmo
- Constantes dependem da máquina onde executamos
- Vamos ignorar constantes e termos menos importantes

Comparar funções verificando se $f(n) \le g(n)$ para $n \ge n_0$

Problema: n + 5 > n para todo n

- Mas a velocidade de crescimento das funções é o mesmo
- Constantes dependem da máquina onde executamos
- Vamos ignorar constantes e termos menos importantes

Solução: Ao invés de comparar f com g, comparar com $c \cdot g$, onde c é uma constante

11

Dizemos que uma função f(n) = O(g(n)) se

Dizemos que uma função f(n) = O(g(n)) se

• existe uma constante c

Dizemos que uma função f(n) = O(g(n)) se

- existe uma constante c
- existe uma constante n₀

Dizemos que uma função f(n) = O(g(n)) se

- existe uma constante c
- existe uma constante n₀

tal que

Dizemos que uma função f(n) = O(g(n)) se

- existe uma constante c
- existe uma constante n₀

tal que

$$f(n) \le c \cdot g(n)$$
, para todo $n \ge n_0$

Dizemos que uma função f(n) = O(g(n)) se

- existe uma constante c
- existe uma constante n₀

tal que

$$f(n) \le c \cdot g(n)$$
, para todo $n \ge n_0$

f(n) = O(g(n)) se, para todo n suficientemente grande, f(n) é menor ou igual a um múltiplo de g(n)

Exemplo: 2n + 120 = O(n)

Exemplo: 2n + 120 = O(n)

Basta escolher, por exemplo, c = 10 e $n_0 = 15$

Exemplo: $3n^2 + n + 5 = O(n^2)$

Exemplo: $3n^2 + n + 5 = O(n^2)$

Basta escolher, por exemplo, c = 4 e $n_0 = 4$

$$1 = O(1)$$

$$1 = O(1)$$

$$1.000.000 = O(1)$$

$$1 = O(1)$$

 $1.000.000 = O(1)$
 $5n + 2 = O(n)$

$$1 = O(1)$$

$$1.000.000 = O(1)$$

$$5n + 2 = O(n)$$

$$5n^{2} + 5n + 2 = O(n^{2})$$

$$1 = O(1)$$

$$1.000.000 = O(1)$$

$$5n + 2 = O(n)$$

$$5n^{2} + 5n + 2 = O(n^{2})$$

$$\log_{2} n = O(\log_{10} n)$$

$$1 = O(1)$$

$$1.000.000 = O(1)$$

$$5n + 2 = O(n)$$

$$5n^{2} + 5n + 2 = O(n^{2})$$

$$\log_{2} n = O(\log_{10} n)$$

$$\log_{10} n = O(\log_{2} n)$$

• O(1): tempo constante

- O(1): tempo constante
 - não depende de n

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico
 - lg indica log_2

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico
 - lg indica log₂
 - quando n dobra, o tempo aumenta em 1

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico
 - lg indica log₂
 - quando n dobra, o tempo aumenta em 1
 - Ex: Busca binária

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico
 - lg indica log₂
 - quando n dobra, o tempo aumenta em 1
 - Ex: Busca binária
 - Outros exemplos durante o curso

• O(n): linear

- O(n): linear
 - quando n dobra, o tempo dobra

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadriplica

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadriplica
 - Ex: BubbleSort, SelectionSort e InsertionSort

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadriplica
 - Ex: BubbleSort, SelectionSort e InsertionSort
- $O(n^3)$: cúbico

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadriplica
 - Ex: BubbleSort, SelectionSort e InsertionSort
- $O(n^3)$: cúbico
 - quando n dobra, o tempo octuplica

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadriplica
 - Ex: BubbleSort, SelectionSort e InsertionSort
- $O(n^3)$: cúbico
 - quando n dobra, o tempo octuplica
 - Ex: multiplicação de matrizes $n \times n$

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

• Para instâncias grandes $(n \ge n_0)$

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

• $2n^2 = O(n^3)$, mas...

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

- $2n^2 = O(n^3)$, mas...
- $2n^2 = O(n^2)$

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

- $2n^2 = O(n^3)$, mas...
- $2n^2 = O(n^2)$

Ou seja, podemos ter feito uma análise folgada

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

- $2n^2 = O(n^3)$, mas...
- $2n^2 = O(n^2)$

Ou seja, podemos ter feito uma análise folgada

achamos que o algoritmo é muito pior do que é realmente

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

- $2n^2 = O(n^3)$, mas...
- $2n^2 = O(n^2)$

Ou seja, podemos ter feito uma análise folgada

achamos que o algoritmo é muito pior do que é realmente

No curso, não faremos análises folgadas

1. Mostre que $n + \lg n = O(n)$

- 1. Mostre que $n + \lg n = O(n)$
- 2. Mostre que $15n = O(n \lg n)$ mas que $n \lg n \neq O(n)$

- 1. Mostre que $n + \lg n = O(n)$
- 2. Mostre que $15n = O(n \lg n)$ mas que $n \lg n \neq O(n)$
 - Essa análise é folgada, já que 15n = O(n)

- 1. Mostre que $n + \lg n = O(n)$
- 2. Mostre que $15n = \mathrm{O}(n\lg n)$ mas que $n\lg n \neq \mathrm{O}(n)$
 - Essa análise é folgada, já que 15n = O(n)
- 3. Mostre que $42n = O(n^2)$ mas que $n^2 \neq O(42n)$

- 1. Mostre que $n + \lg n = O(n)$
- 2. Mostre que $15n = O(n \lg n)$ mas que $n \lg n \neq O(n)$
 - Essa análise é folgada, já que 15n = O(n)
- 3. Mostre que $42n = O(n^2)$ mas que $n^2 \neq O(42n)$
 - Essa análise é folgada, já que 42n = O(n)