Spektralsequenzen und der Satz von Serre

Tim Baumann

Geboren am 15. Juni 1994 in Friedberg 14. Juli 2015

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Bernhard Hanke

Zweitgutachter: Prof. Dr. X Y

Institut für Mathematik

MATHEMATISCH-NATURWISSENSCHAFTLICH-TECHNISCHE FAKULTÄT
UNIVERSITÄT AUGSBURG

1 Spektralsequenzen

1.1 Faserungen

Definition. Eine Serre-Faserung ist eine stetige Abbildung $p: E \to B$, welche die Homotopieliftungseigenschaft (HLE) für die Scheiben D^n besitzt, d. h. für alle $n \ge 0$ und für alle stetigen Abbildungen H, H_0 wie unten, sodass das äußere Quadrat kommutiert, gibt es eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

$$D^{n} \xrightarrow{H_{0}} E$$

$$\downarrow^{i_{0}} \qquad \exists \tilde{H} \qquad \downarrow^{p}$$

$$D^{n} \times I \xrightarrow{H} B$$

Dabei ist i_0 die Inklusion von D^n in $D^n \times I$ als $D^n \times \{0\}$. Eindeutigkeit von \tilde{H} wird nicht gefordert.

Lemma. Es sei $p: E \to B$ eine stetige Abbildung. Dann sind äquivalent:

- a) p ist eine Serre-Faserung
- b) p besitzt die $relative\ Homotopieliftungseigenschaft$ für CW-Paare, d. h. für alle CW-Paare (X,A) und für alle H_0 und H wie unten, sodass das äußere Quadrat kommutiert, gibt eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

Bemerkung. Eine Hurewicz-Faserung ist eine Serre-Faserung, welche die Homotopieliftungseigenschaft sogar für alle topologischen Räume besitzt.

Beweis. "b) \implies a)" Folgt sofort mit $(X, A) := (D^n, \emptyset)$.

"a) \Longrightarrow b)" Wir behandeln zunächst den Fall $(X,A)=(D^n,S^{n-1}),\ n\in\mathbb{N}$. Dann ist $(D^n\times I,D^n\times\{0\}\cup S^{n-1}\cup I)\approx(D^n)$ homöomorph als Raumpaar. Somit ist die relative Homotopieliftungseigenschaft in diesem Fall gleichbedeutend zur Homotopieliftungseigenschaft für die Scheibe D^n .

Es sei nun (X,A) ein beliebiges Raumpaar. Dann kann man induktiv die Homotopie H auf die i-Zellen e^i_α von $X\setminus A$ fortsetzen. Dabei ist die Homotopie auf $S^{n-1}=\partial D^n$ durch die Komposition der bisher konstruierten Homotopie mit der anheftenden Abbildung $\phi_\alpha:S^{n-1}\to X^{n-1}$ vorgegeben. Man erhält die Fortsetzung durch Anwenden des zuerst bewiesenen Falls. \square

Lemma. Es seien $p: E \to B$ eine Serre-Faserung, $b_0 \in B$, $F := p^{-1}(b_0)$ die Faser über b_0 und $f_0 \in F$. Dann gibt es eine lange exakte Sequenz

$$\dots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \dots \to \pi_1(B, b_0)$$

von Homotopiegruppen. Dabei ist $i: F \hookrightarrow E$ die Inklusion.

Beweis. Die gesuchte exakte Sequenz ist die lange exakte Homotopiesequenz

$$\ldots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \ldots \to \pi_1(E, F, f_0)$$

des Raumpaares (E, F). Es bleibt zu zeigen: $\pi_n(E, F, f_0) \cong \pi_n(B, b_0)$ als Gruppe für n > 1 und als punktierte Menge für n = 1. Der Isomorphismus muss außerdem so gewählt werden, dass

$$p_* = \left(\pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\cong} \pi_n(B, b_0)\right).$$

Wir zeigen: $p_*: \pi_n(E, F, f_0) \to \pi_n(B, b_0)$ ist der gesuchte Isomorphismus (damit ist obige Gleichung erfüllt).

Surjektivität: Sei $[g:(I^{n+1},\partial I^{n+1},b_0)\to (B,\{b_0\},b_0)]\in \pi_{n+1}(B,b_0),\ n\geq 0.$ Sei \tilde{g} der Lift im folgenden relativen HLE-Diagramm:

$$U \xrightarrow{\text{konst } f_0} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I^n \times I \xrightarrow{g} B$$

wobei $U := I^n \times \{0\} \cup (\partial I^n) \times I \subset I^{n+1}$. Dann kann man \tilde{g} als eine Abbildung $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{f_0\})$ von Raumtripeln auffassen, welche ein Element von $\pi_{n+1}(E, F, f_0)$ repräsentiert. Es gilt $p_*[\tilde{g}] = [p \circ \tilde{g}] = [g]$.

Injektivität: Seien $[h_0], [h_1] \in \pi_{n+1}(E, F, f_0)$ mit $p_*[h_0] = p_*[h_1]$. Sei

$$H: I \times I^{n+1}, \quad (t, x) \mapsto H_t(x)$$

eine Homotopie mit $H_0 = p \circ h_0$, $H_1 = p \circ h_1$, welche zu jedem Zeitpunkt $t \in I$ eine Abbildung $H_t : (I^{n+1}, \partial I^{n+1}) \to (B, \{b_0\})$ von Raumpaaren ist. Betrachte folgendes HLE-Diagramm:

$$V \xrightarrow{h} E$$

$$\downarrow p$$

$$I^{n+1} \times I \xrightarrow{H} B$$

mit $V := I^{n+1} \times \{0\} \cup (\partial I^{n+1}) \times I \subset I^{n+2}$ und

$$h|_{\{0\}\times I^{n+1}} \coloneqq h_0, \quad h|_{\{1\}\times I^{n+1}} \coloneqq h_1, \quad h|_{I\times U} \coloneqq \text{konst } f_0.$$

Nun ist \tilde{H} eine Homotopie von h_0 nach h_1 , welche zu jedem Zeitpunkt t eine Abbildung \tilde{H}_t : $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{b_0\})$ von Raumtripeln ist.

Definition. Es seien $p: E \to B$ und $g: X \to B$ stetig. Der Pullback von p entlang g ist die Abbildung $g^*(p): g^*(E) \to X$, wobei $g^*(E) \coloneqq X \times_B E$ das Faserprodukt von X und E über B vermöge g und p ist.

Bemerkung. Pullback ist funktoriell: $(g \circ f)^* = f^* \circ g^*$ und $id^* = id$.

Lemma. Pullbacks von Serre-Faserungen sind Serre-Faserungen.

Beweis. Sei $p:E\to B$ eine Serre-Faserung und $g:X\to B$ stetig. Wir müssen die Existenz des Morphismus \tilde{H} im folgenden Diagramm zeigen:

$$D^{n} \xrightarrow{H_{0}} g^{*}(E) \xrightarrow{h} E$$

$$\downarrow i_{0} \qquad \qquad \downarrow p$$

$$\downarrow g^{*}(p) \qquad \qquad \downarrow p$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Aus der HLE von p erhält wie folgt einen Morphismus K:

$$D^{n} \xrightarrow{H_{0}} X \times_{B} E \xrightarrow{h} E$$

$$\downarrow^{i_{0}} \qquad \qquad \downarrow^{p}$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Nun ist $D^n \times I$ vermöge H und K ein Kegel über dem Diagramm ($X \stackrel{g}{\to} B \stackrel{p}{\leftarrow} E$). Die universelle Eigenschaft von $g^*(E)$ induziert einen Morphismus $\tilde{H}: D^n \times I \to X \times_B E$ mit $g^*(p) \circ \tilde{H} = H$ und $h \circ \tilde{H} = K$. Aus der univ. Eigenschaft von $g^*(E)$ (Eindeutigkeit) folgt nun $\tilde{H} \circ i_0 = H_0$. \square

Definition. Ein Morphismus $(g, \tilde{g}): p' \to p$ von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$ ist ein kommutatives Quadrat der Form

$$E' \xrightarrow{\tilde{g}} E$$

$$\downarrow^{p'} \qquad \downarrow^{p}$$

$$B' \xrightarrow{g} B$$

Beispiel. Pullback einer Serre-Faserung p entlang einer stetigen Abbildung g induziert einen Morphismus $(g, \tilde{g}) : g^*(p) \to p$ von Serre-Faserungen.

Lemma. Die langen exakten Sequenzen der Homotopiegruppen von Faserungen sind natürlich: Es sei $(g, \tilde{g}): p' \to p$ ein Morphismus von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$, $b'_0 \in B'$, $b_0 \coloneqq g(b'_0)$, $F' \coloneqq p'^{-1}(b'_0)$, $F \coloneqq p^{-1}(b_0)$, $f'_0 \in F'$, $f_0 \coloneqq \tilde{g}(f'_0)$. Dann gibt es eine "Leiter" bestehend aus kommutativen Quadraten zwischen den Homotopiesequenzen:

$$\dots \longrightarrow \pi_n(F', f_0') \xrightarrow{i_*'} \pi_n(E', f_0') \xrightarrow{p_*'} \pi_n(B', b_0') \xrightarrow{\partial} \pi_{n-1}(F', f_0') \longrightarrow \dots$$

$$\downarrow^{(\tilde{g}|_{F'})_*} \qquad \downarrow^{\tilde{g}_*} \qquad \downarrow^{g_*} \qquad \downarrow^{(\tilde{g}|_{F'})_*}$$

$$\dots \longrightarrow \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \longrightarrow \dots$$

Beweis. Folgt aus der Natürlichkeit der langen exakten Homotopiesequenz von Raumpaaren. \Box

Es sei $p:E\to B$ eine Serre-Faserung, $\gamma:I\to B$ ein stetiger Weg. Betrachte die lange exakte Sequenz

$$\dots \to \pi_n(F_{\gamma(0)}) \to \pi_n(\gamma^*(E)) \to \pi_n(I) \to \pi_{n-1}(F_{\gamma(0)}) \to \dots$$

der Homotopiegruppen von $\gamma^*(p): \gamma^*(E) \to I$ mit Faser

$$F_{\gamma(t)} := \gamma^*(p)^{-1}(t) \subset \gamma^*(E) = \{(t, e) \in I \times E \mid \gamma(t) = p(e)\}.$$

In dieser Sequenz sind die Gruppen $\pi_n(I)$ trivial. Folglich sind die Abbildungen $(i_{\gamma(t)})_*: \pi_n(F_{\gamma(t)}, *) \to \pi_n(\gamma^*(E), *)$ Isomorphismen. In anderen Worten: $i_{\gamma(t)}$ ist eine schwache Äquivalenz. Aus einem Korollar des Whitehead-Theorems folgt nun, dass i_t auch in Homologie und Kohomologie Isomorphismen induziert (vgl. Spanier, AT, S. 406, Cor 7.6.25). Wir untersuchen den Isomorphismus

$$T_{\gamma} := (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\gamma(1)}).$$

Lemma. T_{γ} hängt lediglich von der Weghomotopieklasse von γ ab, d. h. ist η ein zweiter Weg mit $\gamma \simeq \eta$, so gilt $T_{\gamma} = T_{\eta}$.

Beweis. Sei $H: I \times I \to B$ eine Homotopie zw. den Wegen γ und η , d. h. $H_0 \coloneqq H(0,-) = \gamma$, $H_1 = \eta$, $H(-,0) \equiv x$ und $H(-,1) \equiv y$ mit $x \coloneqq \gamma(0) = \eta(0)$ und $y \coloneqq \gamma(1) = \eta(1)$. Für festes $s \in I$ sei $i_s: I \to I \times I$, $t \mapsto (s,t)$ die Inklusion als $\{s\} \times I$. Betrachte das kommutative Diagramm

$$H_s^*(E) \xrightarrow{\widetilde{i_s}} H^*(E) \longrightarrow E$$

$$H_s^*(p) \downarrow \qquad \qquad \downarrow^p$$

$$I \xrightarrow{i_s} I \times I \xrightarrow{H} B$$

$$H_s \xrightarrow{H_s}$$

Sei $t \in I$ fest. Sei $F_{s,t} := (H_s^*(p))^{-1}(t) = (H^*(p))^{-1}((s,t))$ und $f_0 \in F$. Das linke komm. Diagramm induziert einen Morphismus zw. den langen ex. Homotopieseq. von $H_t^*(p)$ und $H^*(p)$:

$$\dots \longrightarrow \pi_{n+1}(I,t) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i'_{s,t})^*} \pi_n(H_s^*(E),f_0) \xrightarrow{H_s^*(p)_*} \pi_n(I,t) \longrightarrow \dots$$

$$\downarrow i_{s*} \qquad \qquad \downarrow \qquad \downarrow (\widetilde{is})_* \qquad \downarrow i_{s*} \qquad \downarrow i_{s*} \qquad \downarrow i_{s*} \qquad \downarrow \dots$$

$$\dots \longrightarrow \pi_{n+1}(I \times I,(s,t)) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i_{s,t})_*} \pi_n(H^*(E),f_0) \xrightarrow{H^*(p)_*} \pi_n(I \times I,(s,t)) \longrightarrow \dots$$

In diesen Sequenzen verschwinden die Gruppen $\pi_n(I,t)$ bzw. $\pi_n(I \times I,(s,t))$. Folglich induzieren die Abbildungen $\widetilde{i_s}$ Isomorphismen in Homotopie und in Kohomologie. Es gilt nun

$$T_{\gamma} = (i'_{0,1})^* \circ ((i'_{0,0})^*)^{-1} = (i'_{0,1})^* \circ (\widetilde{i_0})^* \circ (\widetilde{i_0})^{-1} \circ ((i'_{0,0})^*)^{-1}$$

$$= (i_{0,1})^* \circ ((i_{0,0})^*)^{-1} \stackrel{(\star)}{=} (i_{1,1})^* \circ ((i_{1,0})^*)^{-1}$$

$$= (i'_{1,1})^* \circ (\widetilde{i_1})^* \circ (\widetilde{i_1})^{-1} \circ ((i'_{1,0})^*)^{-1} = (i'_{1,1})^* \circ ((i'_{1,0})^*)^{-1} = T_{\eta}.$$

Die Gleichung (*) gilt wegen $i_{0,1} \simeq i_{1,1}$ und $i_{0,0} \simeq i_{1,0}$.

Mit ganz ähnlicher Technik kann man zeigen:

Lemma. Seien $\gamma, \eta: I \to B$ stetige Wege mit $\gamma(1) = \eta(0)$. Dann gilt

$$T_{\eta} \circ T_{\gamma} = T_{\gamma \cdot \eta} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\eta(1)}).$$

Dabei ist die Komposition $\gamma \cdot \eta$ von γ und η folgender Weg:

$$\gamma \cdot \eta : I \to B, \quad s \mapsto \begin{cases} \gamma(2s), & \text{falls } s \in [0, \frac{1}{2}], \\ \eta(2s-1), & \text{falls } s \in [\frac{1}{2}, 1]. \end{cases}$$

Beweis. Betrachte folgendes kommutatives Diagramm:

Dabei ist $j:I\to I$ die Abbildung $s\mapsto s/2$. Analog zum letzten Lemma sieht man anhand des Leiterdiagramms der langen exakten Sequenzen der Faserungen $\gamma^*(p)$ und $(\gamma \cdot \eta)^*(p)$, dass \widetilde{j} einen Isomorphismus in Homotopie und Kohomologie induziert. Es gibt ein ähnliches Diagramm

mit η statt γ und $k: I \to I$, $s \mapsto (1+s)/2$ statt j. Es induziert auch \widetilde{k} einen Isomorphismus in Kohomologie. Es gilt nun

$$\begin{split} T_{\eta} \circ T_{\gamma} &= (i_{\eta(1)})^* \circ ((i_{\eta(0)})^*)^{-1} \circ (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} \\ &= (i_{\eta(1)})^* \circ \tilde{k}^* \circ (\tilde{k}^*)^{-1} \circ ((i_{\eta(0)})^*)^{-1} \circ (i_{\gamma(1)})^* \circ \tilde{j}^* \circ (\tilde{j}^*)^{-1} \circ ((i_{\gamma(0)})^*)^{-1} \\ &= (\tilde{k} \circ i_{\eta(1)})^* \circ ((\tilde{k} \circ i_{\eta(0)})^*)^{-1} \circ (\tilde{j} \circ i_{\gamma(1)})^* \circ ((\tilde{j} \circ i_{\gamma(0)})^*)^{-1} \\ &= (i_{\gamma,\eta(1)})^* \circ ((i_{\gamma,\eta(1/2)})^*)^{-1} \circ (i_{\gamma,\eta(1/2)})^* \circ ((i_{\gamma,\eta(0)})^*)^{-1} \\ &= (i_{\gamma,\eta(1)})^* \circ ((i_{\gamma,\eta(0)})^*)^{-1} = T_{\gamma,\eta}. \end{split}$$

1.2 Lokale Koeffizienten

Definition. Ein lokales Koeffizientensystem \underline{A} auf einem topologischen Raum B besteht aus abelschen Gruppen $(A_b)_{b\in B}$ und Isomorphismen $T_{\gamma}: A_{\gamma(0)} \xrightarrow{\cong} A_{\gamma(1)}$ für jeden stetigen Weg $\gamma: I \to B$, sodass gilt:

- Sind zwei Wege $\gamma, \eta: I \to B$ homotop modulo Endpunkte, so gilt $T_{\gamma} = T_{\eta}$.
- Für komponierbare Wege $\gamma, \eta: I \to B$ gilt $T_{\gamma, \eta} = T_{\eta} \circ T_{\gamma}$.
- Für den konstanten Weg $\gamma \equiv b$ gilt $T_{\gamma} = \mathrm{id}_{A_b}$.

Bemerkung. Man kann ein lokales Koeffizientensystem auf B auch als Funktor von dem Fundamentalgruppoid von B in die Kategorie der abelschen Gruppen auffassen.

Beispiel. Im letzten Abschnitt wurde gezeigt: Bei einer Serre-Faserung $p: E \to B$ bilden die q-ten Kohomologiegruppen $A_b := H^q(p^{-1}(b))$ der Fasern ein lokales Koeffizientensystem. Mit dem universellen Koeffizententheorem sieht man, dass gleiches auch für die Homologiegruppen $A_b := H^q(p^{-1}(b); G)$ mit Koeffizienten in einer abelschen Gruppe G gilt. Wir bezeichnen dieses Koeffizientensystem im Folgenden mit $\mathcal{H}^q(F_p; G)$.

Beispiel. Für jede abelsche Gruppe G gibt es das konstante Koeffizientensystem \underline{G} mit $G_b := G$ für alle $b \in B$ und $T_{\gamma} = \mathrm{id}_G$ für alle $\gamma : I \to B$.

Sei im Folgenden $\Delta_n(B)$ die Menge der n-Simplizes in B, also die Menge der stetigen Abbildungen $\Delta^n \to B$ mit $\Delta^n := \operatorname{spann}\{e_0, \dots, e_n\} \subset \mathbb{R}^{n+1}$, und

$$d_n: \Delta_n(B) \to \Delta_{n-1}(B) \quad \sigma \mapsto \sigma_{(e_0, \dots, \hat{e_i}, \dots, e_n)} \qquad (0 \le i \le n),$$

die Abbildung auf die *i*-Seite. Für einen *n*-Simplex σ bezeichne $\sigma_i := \sigma_{\langle e_i \rangle} \in \Delta_0(B) = B$ die *i*-te Ecke und $\sigma_{ij} := \sigma_{\langle e_i, e_j \rangle} \in \Delta_1(B)$ den Weg von von σ_i nach σ_j entlang der *ij*-Kante von σ $(0 \le i \le j \le n)$.

Definition. Sei B ein topologischer Raum, \underline{A} ein lokales Koeffizientensystem auf B. Der Ko-komplex der singulären Koketten auf B mit Koeffizienten in \underline{A} ist folgendermaßen definiert:

$$C^{n}(B;\underline{A}) \coloneqq \prod_{\sigma \in \Delta_{n}(B)} A_{\sigma_{0}}, \quad \delta^{n}\left((a_{\tau})_{\tau \in \Delta_{n}(B)}\right)_{\sigma \in \Delta_{n+1}(B)} \coloneqq T_{\sigma_{01}}^{-1}(a_{d_{0}(\sigma)}) + \sum_{i=1}^{n+1} (-1)^{i} a_{d_{i}(\sigma)}.$$

Man überprüft leicht, dass $\delta^{n+1} \circ \delta^n = 0$ gilt. Die Kohomologie $H^*(B; \underline{A}) := H^*(C^*(B; \underline{A}))$ dieses Kettenkomplexes heißt singuläre Kohomologie von B mit Koeffizienten in \underline{A} .

Beobachtung. Für das konstante Koeffizientensystem \underline{G} gilt $H^*(B;\underline{G}) \cong H^*(B;G)$. Gewöhnliche Kohomologie mit Koeffizienten ist also ein Spezialfall von Kohomologie mit Koeffizienten in einem lokalen System.

Definition. Es sei \underline{R} ein lokales Koeffizientensystem, in dem die Gruppen R_b sogar Ringe und die Abbildungen T_{γ} Ringisomorphismen sind. Dann definiert

$$\cup : H^{m}(B; \underline{R}) \times H^{n}(B; \underline{R}) \to H^{m+n}(B; \underline{R}),$$

$$([(a_{\sigma})_{\sigma \in \Delta_{m}(B)}] \cup [(b_{\sigma})_{\sigma \in \Delta_{n}(B)}])_{\tau \in \Delta_{m+n}(B)} \coloneqq a_{\sigma_{\langle e_{1}, \dots, e_{m} \rangle}} \cdot T_{\sigma_{0m}}^{-1}(b_{\sigma_{e_{m}, \dots, e_{m+n}}})$$

ein Produkt, das sogenannte Cup-Produkt.

1.3 Spektralsequenzen

Es sei A im Folgenden ein kommutativer Ring mit Eins.

Definition. Eine (kohomologische) Spektralsequenz besteht aus

- A-Moduln $E_r^{p,q}$ für alle $p,q \in \mathbb{Z}$ und $r \geq 1$,
- A-Modul-Homomorphismen $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ mit $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$
- und Isomorphismen $\alpha_r^{p,q}: H^{p,q}(E_r) := \ker(d_r^{p,q}) / \operatorname{im}(d_r^{p-r,q+r-1}) \xrightarrow{\cong} E_{r+1}^{p,q}.$

Bemerkung. • Die Homomorphismen $d_{p,q}^r$ heißen Differentiale.

- ullet Die Gesamtheit der Module $E^r_{p,q}$ und Differentiale d^{pq}_r mit $r\in\mathbb{N}$ fest heißt r-te $Seite\ E^r$.
- Man stellt Seiten für gewöhnlich in einem 2-dimensionalen Raster dar:

Definition. Eine Spektralsequenz konvergiert, falls für alle $p,q \in \mathbb{Z}$ ein $R \in \mathbb{N}$ existiert, sodass für alle $r \geq R$ die Differentiale von und nach $E_r^{p,q}$ null sind und damit $E_{p,q}^{\infty} \coloneqq E_R^{p,q} \cong E_{R+1}^{p,q} \cong \dots$ Der Grenzwert der SS ist die Unendlich-Seite $E_{\infty} \coloneqq \{E_{\infty}^{p,q}\}_{p,q}$.

Bemerkung. Viele Spektralsequenzen sind im ersten Quadranten konzentriert, d. h. $E_r^{p,q}$ ist nur für $p,q \geq 0$ ungleich Null. Solche Spektralsequenzen konvergieren immer, denn für alle $p,q \in \mathbb{Z}$ führen für $r \geq \max(p+1,q+2)$ alle Differentiale von $E_r^{p,q}$ aus dem ersten Quadranten heraus und alle dort eintreffenden Differentiale kommen von außerhalb des ersten Quadranten und sind daher Null.

Definition. Eine Filtrierung eines A-Moduls M ist eine absteigende Folge

$$M \dots \supseteq F^{p-1}M \supseteq F^pM \supseteq F^{p+1}M \supseteq \dots$$

von Untermoduln von $M, p \in \mathbb{Z}$. Eine Filtrierung heißt

- ausschöpfend, falls $M = \bigcup_p F^p$,
- Hausdorffsch, wenn $0 = \bigcap_n F^p M$ und
- regulär, wenn sie ausschöpfend und Hausdorffsch ist.

Definition. Eine Spektralsequenz E konvergiert gegen einen graduierten A-Modul $M = \bigoplus_{n \in \mathbb{Z}} M_n$ (notiert $E_r^{p,q} \Rightarrow M^{p+q}$), falls E überhaupt konvergiert und reguläre Filtrierungen

$$M_n \supseteq \ldots \supseteq F^{p-1}M_n \supseteq F^pM_n \supseteq F^{p+1}M_n \supseteq \ldots$$

existieren, sodass $E_{\infty}^{pq} \cong F^p M_{p+q} / F^{p+1} M_{p+q}$ für alle $p, q \in \mathbb{Z}$.

1.4 Die Spektralsequenz eines filtrierten Komplexes

Definition. Eine Filtrierung eines Kokettenkomplexes C^{\bullet} ist eine absteigende Folge

$$C^{\bullet} \supseteq \ldots \supseteq F^{p-1}C^{\bullet} \supseteq F^{p}C^{\bullet} \supseteq F^{p+1}C^{\bullet} \supseteq \ldots$$

von Unterkomplexen.

Lemma. Es sei C^{\bullet} ein filtrierter Kokettenkomplex. Es gibt eine Spektralsequenz mit

$$E_1^{pq} = H^{p+q}(F^p C^{\bullet}/F^{p+1}C^{\bullet}).$$

Angenommen, die Filtrierung ist

- a) gradweise nach unten beschränkt, d. h. für alle $q \in \mathbb{Z}$ gibt es ein $p \in \mathbb{Z}$ mit $F^pC^q = 0$,
- b) ausschöpfend, d. h. für alle $q \in \mathbb{Z}$ ist $\bigcup_p F^p C^q = C^q$ und
- c) für alle $q \in \mathbb{Z}$ gibt es ein $P \in \mathbb{Z}$, sodass für alle $p \leq P$ gilt: Die Inklusion $F^pC^{\bullet} \hookrightarrow C^{\bullet}$ induziert einen Isomorphismus $H^q(F^pC^{\bullet}) \cong H^q(C^{\bullet})$ in Kohomologie.

Dann konvergiert die Spektralsequenz gegen $H^*(C^{\bullet})$.

Wir führen zunächst etwas neue Notation ein. Diese hilft, den Beweis verständlicher zu formulieren. Wir fassen im Folgenden den Kettenkomplex als ein einziges Modul $C := \bigoplus_{n \in \mathbb{Z}} C^n$ anstatt als Folge von Modulen auf. Dieses Modul ist filtriert durch die Untermodule $F^p := \bigoplus_{n \in \mathbb{Z}} F^p C^n$. Wir setzen $F^{-\infty} := C$ und $F^{\infty} := 0$. Die Korandabbildung fassen wir als Homomorphismen $d: C \to C$ mit $d \circ d = 0$ auf, der die Filtrierung von C respektiert.

Wir sind interessiert an der Kohomologie von C^{\bullet} , also an $H^*(C) := \ker(d)/\operatorname{im}(d)$ und an der Kohomologie von F^p/F^{p+1} , also $H^*(F^p/F^{p+1}) \cong (d|_{F^p})^{-1}(F^{p+1})/d(F^p)$. Wir geben nun eine Verallgemeinerung der Definition der Kohomologie von C^{\bullet} und der Kohomologie des Quotientenkomplexes F^p/F^q : Statt Zykeln (d. h. Elementen $c \in C$ mit d(c) = 0) betrachten wir z-Zykel, das sind Elemente $c \in C$ mit $d(c) \in F^z$. Wir teilen diese durch die Menge $d(F^b)$ der b-Ränder anstatt durch die Menge d(C) der Ränder. Wir setzen

$$S[z,q,p,b] := \frac{F^p \cap d^{-1}(F^z)}{(F^p \cap d^{-1}(F^z)) \cap (F^q + d(F^b))}.$$

Wir haben als Spezialfälle

$$S[p,q,p,q] \cong F^p/F^q$$
 und $S[q,q,p,p] \cong H^*(F^p/F^q)$.

Lemma. Es sei $z_1 \ge q_1 \ge p_1 = z_2 \ge b_1 = q_2 \ge p_2 \ge b_2$. Dann ist folgende Abbildung ein wohldefinierter Homomorphismus:

$$d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1], [c] \mapsto [d(c)].$$

Beweis. Falls [c] = 0 in $S[z_2, q_2, p_2, b_2]$, so existieren $x \in F^{q_2}$ und $y \in F^{b_2}$ mit c = x + d(y). Somit gilt $d^*[c] = [dc] = [d(x) + d^2(y)] = [d(x)] = 0$ in $S[z_1, q_1, p_1, b_1]$, da $F^{b_1} = F^{q_2}$.

Lemma. Es seien Filtrierungsindizes wie folgt gegeben:

$$z_3 \geq q_3 \geq p_3 \geq b_3$$
 $z_2 \geq q_2 \geq p_2 \geq b_2$ $z_1 \geq q_1 \geq p_1 \geq b_1$

Dann ist

$$\alpha: S[q_1, q_2, p_2, p_3] \to \frac{\ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])}{\operatorname{im}(d^*: S[z_3, q_3, p_3, b_3] \to S[z_2, q_2, p_2, b_2])}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis. Sei A der Quotient auf der rechten Seite.

Wohldefiniertheit: Sei [c] = 0 in $S[q_1, q_2, p_2, p_3]$, d. h. es gibt $e \in F^{q_2} = F^{b_1}$ und $f \in F^{p_1}$ mit c = e + d(f). Dann ist $d^*[c] = [d(c)] = [d(e)] = 0$ in $S[z_1, q_1, p_1, b_1]$, also $c \in \ker(d^* : S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Nun ist $f \in d^{-1}(F^{z_3})$, da $d(f) = c - e \in F^{p_2} = F^{z_3}$. Es gilt $[c] = [e + d(f)] = [d(f)] = d^*[f] = 0$ in A.

Injektivität: Sei $c \in F^{p_2} \cap d^{-1}(F^{q_1})$ mit [c] = 0 in A. Das heißt, es gibt $e \in F^{q_2}$, $f \in F^{b_2}$ und $g \in F^{p_3} \cap d^{-1}(F^{z_3})$ mit c = e + d(f) + d(g). Dann ist [c] = [e + d(f + g)] = 0 in $S[q_1, q_2, p_2, p_3]$, da $f + g \in F^{p_3}$.

Surjektivität: Sei $\tilde{c} \in F^{p_2} \cap d^{-1}(F^{z_2})$ mit $[\tilde{c}] \in \ker(d^* : S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Das heißt, es gibt $e \in F^{q_1}$ und $f \in F^{b_1} = F^{q_2}$ mit $d(\tilde{c}) = e + d(f)$. Dann ist $[\tilde{c}] = [\tilde{c} - f]$ in $S[q_1, q_2, p_2, p_3]$ mit $\tilde{c} - f \in F^{p_2} \cap d^{-1}(F^{q_1})$, da $d(\tilde{c} - f) = e \in F^{q_1}$.

Beweis des Lemmas über Existenz der Spektralsequenz. Wir beachten jetzt wieder, dass C und damit S[z,q,p,b] graduiert und d ein Differential vom Grad +1 ist. Es sei $S[z,q,p,b]^n$ die n-te Komponente. Setze

$$E_r^{pq} := S[p+r, p+1, p, p-r+1]^{p+q}.$$

Die Differentiale sind

$$d_r^{pq} : \underbrace{S[p+r,p+1,p,p-r+1]^{p+q}}_{=E_r^{p,q}} \to \underbrace{S[p+2r,p+r+1,p+r,p+1]^{p+q+1}}_{=E_r^{p+r,q-r+1}}, \quad [c] \mapsto [d(c)].$$

Sie sind wohldefiniert nach Lemma TODO: Nr. Wegen Lemma TODO: Nr ist

$$\alpha_r^{pq}: H^{p,q}(E_r) = \ker(d_r^{pq})/\operatorname{im}(d_r^{p-r,q+r-1}) \to E_{r+1}^{pq}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis der Konvergenz: Es seien $p,q\in\mathbb{Z}$. Wegen Bedingung a) gibt es ein $R_1\geq 0$, sodass $F^{p+R_1}C^{p+q+1}=0$. Für $r\geq R_1$ ist damit $E_r^{p+r,q-r+1}$ als Subquotient (d. h. Quotient eines Untermoduls) von $F^{p+R_1}C^{p+q+1}$ Null. Folglich verschwindet auch das Differential d_r^{pq} . Wegen Bedingung c) gibt es ein $S\in\mathbb{Z}$, sodass $F^sC^\bullet\hookrightarrow C^\bullet$ und somit auch $F^sC^\bullet\hookrightarrow F^{s-1}C^\bullet$ für $s\leq S$ einen Isomorphismus in H^{p+q-1} und H^{p+q} induziert. Anhand der langen exakten Sequenz zu $0\to F^sC^\bullet\to F^{s-1}C^\bullet\to F^{s-1}C^\bullet/F^sC^\bullet\to 0$ sieht man, dass $H^{p+q-1}(F^{s-1}C^\bullet/F^sC^\bullet)=0$. Somit ist $E_r^{p-r,q+r-1}$ für $r\geq R_2:=p-s+1$ als Submodul von $H^{p+q-1}(F^{p-r}C^\bullet/F^{p-r+1}C^\bullet)$ Null. Folglich verschwindet auch $d_r^{p-r,q+r-1}$. Mit $R:=\max(R_1,R_2)$ gilt dann $E_R^{pq}\cong E_{R+1}^{pq}\cong\ldots\cong E_\infty^{pq}$. Sei $H^n(C^\bullet)$ absteigend filtriert durch $F^pH^n(C^\bullet):= \operatorname{im}(i^*:H^n(F^pC^\bullet)\to H^n(C^\bullet))$. Für $r\geq R$ ist

$$E^{pq}_{\infty} \cong E^{pq}_{r} = \frac{F^{p}C^{p+q} \cap d^{-1}(0)}{(F^{p}C^{p+q} \cap d^{-1}(0)) \cap (F^{p+1}C^{p+q} + d(F^{p-r+1}C^{p+q-1}))} = S[\infty, p+1, p, p-r+1]^{p+q}.$$

Es ist daher $F^pH^{p+q}(C^{\bullet})/F^{p+1}H^{p+q}(C^{\bullet})\cong S[\infty,p+1,p,-\infty]^{p+q}$ ein Quotient von E^{pq}_{∞} . Tatsächlich gilt $S[\infty,p+1,p,-\infty]^{p+q}\cong E^{pq}_{\infty}$, denn: Sei $c\in F^pC^{p+q}\cap d^{-1}(0)$ mit [c]=0 in $S[\infty,p+1,p,-\infty]^{p+q}$. Dann gibt es ein $e\in F^{p+1}C^{p+q}$ und ein $f\in C^{p+q-1}$ mit c=e+d(f). Wegen Bedingung b) gibt es ein $\tilde{p}\in\mathbb{Z}$ mit $f\in F^{\tilde{p}}C^{p+q+1}$. Wähle r so, dass $r\geq R$ und $p-r+1\leq \tilde{p}$. Dann ist [c]=[e]+[d(f)]=0 in $E^{pq}_r\cong E^{pq}_\infty$.

1.5 Die Serre-Spektralsequenz

Satz (Jean-Pierre Serre). Es sei G eine abelsche Gruppe. Für jede Serre-Faserung $p:E\to B$ existiert eine Spektralsequenz mit

$$E_2^{p,q} = H^p(B; \mathcal{H}^q(F_p; G)),$$

welche gegen $H^*(E)$ konvergiert.

Beweis. $\frac{\text{TODO}}{\text{TODO}}$:

1.6 Multiplikative Struktur der Serre-Spektralsequenz

Satz. Es sei R ein Ring, $p:E\to B$ eine Serre-Faserung. Dann gibt es bilineare Abbildungen

$$m_r: E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t}, \ (x,y) \mapsto m_r(x,y) =: xy$$

mit folgenden Eigenschaften:

- d_r ist derivativ: $d_r^{p+s,q+t}(xy) = (d_r^{p,q}x)y + (-1)^{p+q}x(d_r^{s,t}y)$
- Es gilt $m_{r+1}([x], [y]) = [m_r(x, y)]$ für alle $x \in \ker(d_r^{p,q}), y \in \ker(d_r^{s,t}).$
- $m_2: E_2^{p,q} \times E_2^{r,s} \to E_2^{p+s,q+t}$ ist das $(-1)^{qs}$ -fache des Cup-Produkts

$$H^p(B; \mathcal{H}^q(F; R)) \times H^s(B; \mathcal{H}^t(F; R)) \to H^{p+s}(B; \mathcal{H}^{q+t}(F; R)),$$

welches für $a = [(a_{\sigma})_{\sigma \in \Delta_m(B)}] \in H^p(B; \mathcal{H}^q(F; R))$ und $b = [(b_{\sigma})_{\sigma \in \Delta_n(B)}] \in H^s(B; \mathcal{H}^t(F; R))$ definiert ist durch

$$(a \cup b)_{\sigma \in \Delta_{p+s}(B)} \coloneqq a_{\sigma_{\langle e_1, \dots, e_m \rangle}} \cup T_{\sigma_{0m}}^{-1}(b_{\sigma_{e_m, \dots, e_{m+n}}}).$$

• Das Cup-Produkt auf $H^*(B;R)$ respektiert die Filtrierungen von $H^n(B;R)$ und schränkt daher ein zu Abbildungen $F_p^m \times F_s^n \to F_{p+s}^{m+n}$. Die induzierte Abbildung auf dem Quotienten $F_p^m/F_{p+1}^m \times F_s^n/F_{s+1}^n \to F_{p+s}^{m+n}/F_{p+s+1}^{m+n}$ entspricht dem Grenzwert $m_\infty: E_\infty^{p,m-p} \times E_\infty^{s,n-s} \to E_\infty^{p+s,m+n-p-s}$ der Multiplikationen m_r .

Beweis. TODO:

1.7 Die Pfadfaserung

Definition. Der *Pfadraum* eines punktierten topologischer Raum (X, x_0) ist

$$PX := \{ \gamma \in X^I \mid \gamma(0) = x_0 \} \subset X^I$$

mit der Unterraumtopologie des Raumes X^I , welcher die Kompakt-Offen-Topologie besitzt. Der Basispunkt von PX ist der konstante Weg $y_0: I \to X, \ t \mapsto x_0$.

Bemerkung. Der Raum PX ist zusammenziehbar: Die Abbildung

$$H: I \times PX \to PX, \quad (t, \gamma) \mapsto \gamma(t \cdot -)$$

ist eine Homotopie zwischen der konstanten Abbildung mit Wert γ_0 und id_{PX}.

Lemma. Die Abbildung $p: PX \to X, \ \gamma \mapsto \gamma(1)$ ist eine Hurewicz-Faserung.

Beweis. Es sei ein topologischer Raum A und stetige Abbildungen $H_0: A \to PX, H: I \times A \to X$ mit $H \circ i_0 = p \circ H_0$ gegeben. Dann ist eine Homotopieliftung gegeben durch

$$\tilde{H}: I \times A \to PX$$
,

$$(s,a) \mapsto \gamma_{s,a}, \quad \gamma_{s,a}(t) := \begin{cases} H_0(a)(t \cdot (1+s)) & \text{falls } t \cdot (1+s) \le 1, \\ H(t \cdot (1+s) - 1, a) & \text{falls } t \cdot (1+s) \ge 1. \end{cases}$$

Die Faserung $p: PX \to X$ wird *Pfadfaserung* genannt.

Bemerkung. Die Faser von p über x_0 ist

$$\Omega X := \{ \gamma \in X^I \, | \, \gamma(0) = \gamma(1) = x_0 \}.$$

Der Raum ΩX heißt Schleifenraum von X.

Bemerkung. Seien (X, x_0) und (Y, y_0) punktierte Räume. Es gibt eine in X und Y natürliche Bijektion

$$\operatorname{Hom}((\Sigma X, x_0), (Y, y_0)) \cong \operatorname{Hom}((X, x_0), (\Omega Y, \gamma_0)),$$

$$f \mapsto (x \mapsto t \mapsto f([(x, t)])),$$

$$([(x, t)] \mapsto g(x)(t)) \leftarrow g.$$

Lemma. Man kann jede stetige Abbildung $f: X \to Y$ schreiben als Komposition

$$X \xrightarrow{i} E_f \xrightarrow{p} Y$$

einer Homotopieäquivalenz i und einer Hurewicz-Faserung p. Genauer gilt

$$E_f := \{(x, \gamma) \in X \times X^I \mid f(x) = \gamma(0)\} \subset X \times Y^I,$$

$$i(x) := (x, t \mapsto f(x)),$$

$$p(x, \gamma) := \gamma(1).$$

Beweis. Offensichtlich sind i und p stetig und es gilt $p \circ i = f$. Das Homotopie-Inverse von i ist $j: E_f \to X, \ (x,\gamma) \mapsto x$. Es gilt $j \circ i = \mathrm{id}_X$ und eine Homotopie zwischen $i \circ j$ und id_{E_f} ist gegeben durch

$$H: I \times E_f \to E_f, \quad (s, (x, \gamma)) \mapsto (x, \gamma(s \cdot -)).$$

Es bleibt zu zeigen, dass p eine Faserung ist. Es sei dazu ein topologischer Raum A und Abbildungen $H_0:A\to E_f$ und $H:I\times A\to Y$ mit $H\circ i_0=p\circ H_0$ gegeben. Dann ist folgende Abbildung eine Homotopieliftung:

$$\tilde{H}: I \times A \to E_f,$$

$$(s,a) \mapsto \gamma_{s,a}, \quad \gamma_{s,a}(t) := \begin{cases} H_0(a)(t \cdot (1+s)) & \text{falls } t \cdot (1+s) \le 1, \\ H(t \cdot (1+s) - 1, a) & \text{falls } t \cdot (1+s) \ge 1. \end{cases}$$

1.8 Eilenberg-MacLane-Räume

Definition. Sei G eine Gruppe, $n \ge 1$. Ein Eilenberg-MacLane-Raum vom Typ K(G, n) ist ein punktierter, zusammenhängender topologischer Raum (X, x_0) mit

$$\pi_q(X, x_0) = \begin{cases} G & \text{falls } q = n, \\ 0 & \text{falls } q \neq n. \end{cases}$$

Lemma. Sei G eine abelsche Gruppe, $n \geq 2$. Dann existiert ein CW-Komplex (X, x_0) vom Typ K(G, n).

Beweis. TODO:

Bemerkung. Sei (X, x_0) ein K(G, n). Dann ist ΩX ein K(G, n-1), denn

$$\pi_q(\Omega X, \gamma_0) \cong \operatorname{Hom}((S^q, *), (\Omega X, \gamma_0)) \cong \operatorname{Hom}((\Sigma S^q, *), (X, x_0)) \cong \pi_{q+1}(X, x_0)$$

$$\cong \begin{cases} G & \text{falls } q+1 = n \iff q = n-1 \\ 0 & \text{falls } q+1 \neq n. \end{cases}$$

1.9 Serre-Klassen

Satz. Es sei (X, x_0) ein wegzusammenhängender, abelscher Raum, d. h. die Wirkung von $\pi_1(X, x_0)$ auf den höheren Homotopiegruppen $\pi_n(X, x_0)$, $n \ge 1$, ist trivial. Dann sind äquivalent:

- Die Homotopiegruppen $\pi_n(X, x_0)$ sind endlich für $n \ge 0$.
- Die Homologiegruppen $H_n(X; \mathbb{Z})$ sind endlich für $n \geq 1$.

Beweis. TODO:

1.10 Rationale Kohomologie von Räumen vom Typ $K(\mathbb{Z},n)$

Satz. Es gilt

$$H^*(K(\mathbb{Z}, n); Q) \cong \mathbb{Q}[x] \cong \begin{cases} \mathbb{Q}[x] & \text{falls } n \text{ gerade,} \\ \Lambda_{\mathbb{Q}}[x] & \text{falls } n \text{ ungerade} \end{cases}$$

mit Erzeuger $x \in H^n(K(\mathbb{Z}, n), \mathbb{Q})$. Dabei bezeichnet $\Lambda_{\mathbb{Q}}[x]$ die äußere Algebra mit Erzeuger x.

Beweis. $\frac{\text{TODO}}{\text{CO}}$:

1.11 Satz von Serre

Satz. Die Homotopiegruppen $\pi_i(S^n)$ sind endlich bis auf die Gruppen $\pi_{4k-1}(S^{2k})$, $k \ge 1$, welche jeweils isomorph zu einer direkten Summe von \mathbb{Z} mit einer endlichen Gruppe sind.

Beweis. $\frac{\text{TODO}}{\text{TODO}}$: