DHEERAN E. WIGGINS

Summer 2025
Illinois Mathematics and Science Academy

July 11, 2025

OVERVIEW

- 1 Setting the Stage
- 2 Quantum Circuit Model
- 3 Hidden Subgroups
- 4 Outlook

Today we will describe what a quantum circuit is, using the mathematical language we have built thus far.

Then, we can discuss some preliminaries on the HSP.

Suppose our quantum processing unit (QPU) has n qubits. Recall that by the multiple systems axiom, this means our state space \mathcal{H} for the QPU is isomorphic to the n-fold tensor product

$$\mathcal{H} \simeq \mathbb{C}^2 \underbrace{\otimes \cdots \otimes}_{n \text{ times}} \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$$

of dimension 2^n .

Then, the states of our system should be given by the density operators on \mathcal{H} .

That is, we care about the operators

$$\mathcal{D}(\mathcal{H}) = \{ \rho \in \mathsf{M}_{2^n}(\mathbb{C}) : \operatorname{tr}(\rho) = 1 \text{ and } \rho \ge 0 \},$$

where $\rho \geq 0$ means $\langle \varphi | \rho | \varphi \rangle \geq 0$ for all $| \varphi \rangle \in \mathcal{H}$.

Furthermore, the system evolution axiom tells us that if $\rho_t \in \mathcal{D}(\mathcal{H})$ is the state of our system at time t, then closed evolution in the times $t \in [t_1, t_2]$, the state of our system follows

$$\rho_{t_2} = U \rho_{t_1} U^{\dagger}.$$

Remember, we require $U \in M_{2^n}(\mathbb{C})$ to be unitary:

$$UU^{\dagger} = U^{\dagger}U = I_{2^n}.$$

Note that one sort of density operator is a pure state, i.e., one of the form

$$\rho = |\varphi\rangle\langle\varphi|$$
, $|\varphi\rangle \in \mathcal{H}$ of unit length.

It is thus often easier to consider states as just normalized vectors $|\varphi\rangle$ in \mathcal{H} , where now closed evolution is of the form

$$|\varphi_{t_2}\rangle = U |\varphi_{t_1}\rangle,$$

since taking outer products gives back our original $U(-)U^{\dagger}$ form for pure states:

$$|\varphi_{t_2}\rangle\langle\varphi_{t_2}| = U |\varphi_{t_1}\rangle (U |\varphi_{t_1}\rangle)^{\dagger} = U |\varphi_{t_1}\rangle\langle\varphi_{t_1}| U^{\dagger}.$$

Observe that

$$U^{\dagger} \rho_{t_2} U = U^{\dagger} U \rho_{t_1} U^{\dagger} U = \rho_{t_1},$$

so quantum computation is reversible.

Setting the Stage

We call a unitary U acting on $s \le n$ qubits q_1, \ldots, q_s in the space $(\mathbb{C}^2)^{\otimes n}$ a quantum gate.

00000

$$\mathcal{H}^{q_1}$$
 \mathcal{H}^{q_1} \mathcal{H}^{q_1} \mathcal{H}^{q_1} \mathcal{H}^{q_n} \mathcal{H}^{q_n}

Moving to the right along a wire represents moving forward in time, though we usually work under the assumption that our quantum gates U in $\mathcal U$ work instantaneously.

Assigned reading: §2.2 of Lomont's review for a slightly more rigorous treatment of quantum circuits.

https://arxiv.org/pdf/quant-ph/0411037.

Then, take a look at §3.1.

We now take a look at the statement of the HSP.

Hidden Subgroups ●000 For a group element $j \in G$ and subgroup $H \leq G$, the (left) coset jH is the subset

Hidden Subgroups

$$jH = \{jh : h \in H\} \subseteq G.$$

When H is normal in G, these cosets were precisely the elements of our quotient group G/H.

Let (G, \cdot) be a group, S be an arbitrary set, and $H \leq G$ be a subgroup. Then, a function

$$f:G\to S$$

Hidden Subgroups

separates H-cosets if for all elements $j, k \in G$,

$$f(j) = f(k)$$
 if and only if $jH = kH$.

Hidden Subgroups

Let (G, \cdot) be a group; let $S = \{s_1, \dots, s_n\}$ be a finite set. If $f: G \to S$ separates H-cosets for some subgroup $H \le G$, then use the value of f on some elements of G to determine a set $X \subseteq G$ such that $\langle X \rangle = H$.

Next time we will discuss

- (i) the quantum fourier transform F_n on \mathbb{Z}/n .
- (ii) the cyclic нsp algorithm.

Then, we will move on to the more general abelian HSP algorithm and applications to Simon's and Shor's algorithms.

