

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 12.01.2017

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Definition: Graph

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

■ Einer endlichen, nichtleeren Knotenmenge V

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $E := \{(a, b), (c, d), (a, d)\}$

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

- $E := \{(a, b), (c, d), (a, d)\}$
- $E := \{(a, a), (b, b), (c, c)\}$

Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Definition: Graph

Ein Graph G = (V, E) ist ein Tupel aus:

- Einer endlichen, nichtleeren Knotenmenge V
- Einer endlichen Kantenmenge $E \subseteq V \times V$

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

- $E := \{(a, b), (c, d), (a, d)\}$
- $E := \{(a, a), (b, b), (c, c)\}$
- *E* := ∅

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

Graphen

Praxisbeispiele

Ungerichtete Graphen

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

Graphen

Praxisbeispiele

Ungerichtete Graphen

$$V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$$

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriff

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$

• $V := \{a, b, c, d\}, E := \{(a, a), (b, b), (c, c)\}$

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Ungerichtete

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$

 $V := \{a, b, c, d\}, E := \{(a, a), (b, b), (c, c)\}$

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Ungerichtete

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$

 $V := \{a, b, c, d\}, E := \{(a, a), (b, b), (c, c)\}$

• $V := \{a, b, c, d\}, E := \emptyset$

Wie sehen diese Graphen aus?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Ungerichtete

Beispiel: Knotenmenge $V := \{a, b, c, d\}$. Kantenmenge könnte zum Beispiel sein...

 $V := \{a, b, c, d\}, E := \{(a, b), (c, d), (a, d)\}$

 $V := \{a, b, c, d\}, E := \{(a, a), (b, b), (c, c)\}$

• $V := \{a, b, c, d\}, E := \emptyset$

Wann Angabe als Menge, wann als Visualisierung?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Wir verwenden gezeichnete Graphen und deren Definition als Mengen als äquivalent.

Wann Angabe als Menge, wann als Visualisierung?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtet Graphen

Begriff

Wir verwenden gezeichnete Graphen und deren Definition als Mengen als äquivalent.

• $\{(a,b),(c,d),(a,d)\} = \{(a,b),(a,d),(c,d)\} \neq \{(b,a),(d,c),(d,a)\},$ also Kantenmenge mit unterschiedlichen Reihenfolgen darstellbar. Genauso die Knotenmenge.

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Wann Angabe als Menge, wann als Visualisierung?

Wir verwenden gezeichnete Graphen und deren Definition als Mengen als äquivalent.

• $\{(a,b),(c,d),(a,d)\} = \{(a,b),(a,d),(c,d)\} \neq \{(b,a),(d,c),(d,a)\},$ also Kantenmenge mit unterschiedlichen Reihenfolgen darstellbar. Genauso die Knotenmenge.

Wann Angabe als Menge, wann als Visualisierung?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriff

Wir verwenden gezeichnete Graphen und deren Definition als Mengen als äquivalent.

• $\{(a,b),(c,d),(a,d)\} = \{(a,b),(a,d),(c,d)\} \neq \{(b,a),(d,c),(d,a)\},$ also Kantenmenge mit unterschiedlichen Reihenfolgen darstellbar. Genauso die Knotenmenge.

Es kann also in jedem Fall der Graph sowohl als "Visualisierung" oder als Menge angegeben werden, beide Varianten sind formal korrekt.

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Ist Person A direkt mit Person B befreundet?

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?
- Ist Person A über maximal 2 verschiedene Leute mit Person B befreundet?

Praxisbeispiel: Soziales Netzwerk

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?
- Ist Person A über maximal 2 verschiedene Leute mit Person B befreundet? ⇔ Gibt es einen Pfad von A nach B mit maximaler Länge 3?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Praxisbeispiel: Soziales Netzwerk

- Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?
- Ist Person A über maximal 2 verschiedene Leute mit Person B befreundet? ⇔ Gibt es einen Pfad von A nach B mit maximaler Länge 3?
 - Wieviele Freunde hat Person A?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Praxisbeispiel: Soziales Netzwerk

- Ist Person A direkt mit Person B befreundet? \Leftrightarrow Gibt es eine Kante (A, B)?
- Ist Person A über maximal 2 verschiedene Leute mit Person B befreundet? ⇔ Gibt es einen Pfad von A nach B mit maximaler Länge 3?
 - Wieviele Freunde hat Person $A? \Leftrightarrow$ Welchen Grad hat Person $A \in V$?

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Kantengewichtung: Jeder Kante wird eine Zahl $c \in \mathbb{R}$ zugewiesen.

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Kantengewichtung: Jeder Kante wird eine Zahl $c \in \mathbb{R}$ zugewiesen.
- Wie lange dauert der kürzeste Weg von Kongresszentrum nach Hauptfriedhof?

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Kantengewichtung: Jeder Kante wird eine Zahl $c \in \mathbb{R}$ zugewiesen.
- Wie lange dauert der kürzeste Weg von Kongresszentrum nach Hauptfriedhof?

 Wie lang ist ein kürzester Pfad von Kongresszentrum nach Hauptfriedhof?

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Nantengewichtung: Jeder Kante wird eine Zahl $c\in\mathbb{R}$ zugewiesen.
- Wie lange dauert der kürzeste Weg von Kongresszentrum nach Hauptfriedhof?

 Wie lang ist ein kürzester Pfad von Kongresszentrum nach Hauptfriedhof?
- Wo kommt man von Kronenplatz überall innerhalb von 5 Zeiteinheiten hin?

Praxisbeispiel: Wie kommt man am schnellsten von *A* nach *B*

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Kantengewichtung: Jeder Kante wird eine Zahl $c \in \mathbb{R}$ zugewiesen.
- Wie lange dauert der kürzeste Weg von Kongresszentrum nach Hauptfriedhof?

 Wie lang ist ein kürzester Pfad von Kongresszentrum nach Hauptfriedhof?
- Wo kommt man von Kronenplatz überall innerhalb von 5 Zeiteinheiten hin? \Leftrightarrow Für welche Orte $v \in V$ existiert ein Pfad (*Kronenplatz*, ..., v) mit einer Länge von maximal 5?

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Wie lang ist die Kodierung vom Zeichen *c*?

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Wie lang ist die Kodierung vom Zeichen c? ⇒ Wie lang ist der Pfad von Wurzel zu Knoten c? In diesem Fall 2.

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wie lang ist die Kodierung vom Zeichen c? Wie lang ist der Pfad von Wurzel zu Knoten c? In diesem Fall 2.
- Wie viele Zeichen werden kodiert?

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wie lang ist die Kodierung vom Zeichen c? ⇒ Wie lang ist der Pfad von Wurzel zu Knoten c? In diesem Fall 2.
- Wie viele Zeichen werden kodiert?

 Wie viele Knoten sind von der Wurzel erreichbar, die selbst keine ausgehenden Kanten haben?

Praxisbeispiel: Huffman-Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wie lang ist die Kodierung vom Zeichen c? Wie lang ist der Pfad von Wurzel zu Knoten c? In diesem Fall 2.
- Wie viele Zeichen werden kodiert?

 Wie viele Knoten sind von der Wurzel erreichbar, die selbst keine ausgehenden Kanten haben?

 Wie viele Blätter hat der Baum?

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Bis jetzt

Praxisbeispiele

Ungerichtete Graphen

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Bis jetzt: Gerichtete Graphen

Praxisbeispiele

Ungerichtete Graphen

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph, dessen Kanten Mengen, und keine Tupel sind.

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

■ Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph, dessen Kanten Mengen, und keine Tupel sind.

■ Beispiel: Statt Kante (u, v) jetzt Kante $\{u, v\}$

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

■ Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph, dessen Kanten Mengen, und keine Tupel sind.

■ Beispiel: Statt Kante (u, v) jetzt Kante $\{u, v\} = \{v, u\}$.

Ungerichtete Graphen

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriff

Bis jetzt: Gerichtete Graphen, dh. Kanten (u, v) hatten eine Richtung von Knoten u nach Knoten v.

Ungerichteter Graph

Ein ungerichteter Graph ist ein Graph, dessen Kanten Mengen, und keine Tupel sind.

- Beispiel: Statt Kante (u, v) jetzt Kante $\{u, v\} = \{v, u\}$.
- Information über Richtung geht also verloren, Kanten verbinden nur noch Knoten, ohne sich zu merken, welcher Knoten Start und welcher Ziel ist.

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Teilgraph

Zu einem Graph G := (V, E)

Graphen

Praxisbeispiele

Ungerichtete Graphen

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Teilgraph

Zu einem Graph G := (V, E) ist ein Teilgraph definiert

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Teilgraph

Zu einem Graph G:=(V,E) ist ein Teilgraph definiert als G'=(V',E')

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

Zu einem Graph G := (V, E) ist ein Teilgraph definiert als G' = (V', E'), falls gilt $V' \subseteq V$ und $E' \subseteq E$.

■ Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von *G*?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von *G*?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete

Begriffe

Teilgraph

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_1 := \{a, c, d, e, f\}, E_1 := \{(a, c), (c, a), (a, e), (f, d)\}$ ein Teilgraph von *G*?
- Ist ein Graph mit $V_2 := \{d, f\}, E_2 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_3 = E_3 = \emptyset$ ein Teilgraph von G?

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

Zu einem Graph G := (V, E) ist ein Teilgraph definiert als G' = (V', E'), falls gilt $V' \subseteq V$ und $E' \subseteq E$.

■ Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_4 := \{a, b\}, E_4 := \{(f, d)\}$ ein Teilgraph von G?

Teilgraph

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Teilgraph

- Beispiel: Sei G := (V, E) mit $V := \{a, b, c, d, e, f\}$ und $E := \{(b, a), (b, f), (f, d), (e, f), (f, a), (e, b), (a, e), (f, c), (a, c), (c, a), (c, e)\}$
- Ist ein Graph mit $V_4 := \{a, b\}, E_4 := \{(f, d)\}$ ein Teilgraph von G?
- Ist ein Graph mit $V_5 := \{g, a\}, E_5 := \{(g, a), (a, g)\}$ ein Teilgraph von G?

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u,...,v) ist eine Aneinanderreihung von Knoten

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u,...,v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u,...,v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt:

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt: $\forall i \in \mathbb{Z}_n : (v_i, v_{i+1}) \in E$.

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

n

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt: $\forall i \in \mathbb{Z}_n : (v_i, v_{i+1}) \in E$.

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt: $\forall i \in \mathbb{Z}_n : (v_i, v_{i+1}) \in E$.

Der Pfad (b, f, c, e) ist ein möglicher Pfad von b nach e der Länge 3.

Weg/Pfad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Pfad informell

Ein Pfad (u, ..., v) ist eine

Aneinanderreihung von Knoten, die jeweils mit Kanten verbunden sind, sodass man über das traversieren der Kanten vom Startknoten $u \in V$ zum Zielknoten $v \in V$ kommt.

Anmerkung: Wenn man sich einen Knoten $x \in V$ merkt und eine Kante $(x, y) \in E$ traversiert, so gelangt man zu Knoten y.

Pfad formell

Ein Pfad $P := (v_0, v_1, ..., v_n)$ der Länge n ist eine Permutation auf V, wobei gilt: $\forall i \in \mathbb{Z}_n : (v_i, v_{i+1}) \in E$.

Der Pfad (b, f, c, e) ist ein möglicher Pfad von b nach e der Länge 3.

Gibt es noch andere solcher Pfade?

Zyklus

Lukas Bach, lukas.bach@student.kit.edu

Zyklus

Graphen

Praxisbeispiele

Ungerichtete Graphen

Zyklus

Lukas Bach, lukas.bach@student.kit.edu

Zyklus

F: . 7

Ein Zyklus ist ein Pfad $(v_1,...,v_n)$ mit $v_1=v_n$.

Praxisbeispiele

Graphen

Ungerichtete

Graphen

Zyklus

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Zyklus

Ein Zyklus ist ein Pfad $(v_1, ..., v_n)$ mit $v_1 = v_n$.

Zyklus

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Zyklus

Ein Zyklus ist ein Pfad $(v_1, ..., v_n)$ mit $v_1 = v_n$.

Der Pfad (b, f, a, c, e) ist ein möglicher Zyklus.

Zyklus

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Zyklus

Ein Zyklus ist ein Pfad $(v_1, ..., v_n)$ mit $v_1 = v_n$.

Der Pfad (b, f, a, c, e) ist ein möglicher Zyklus. Gibt es noch andere Zyklen?

Zusammenhängend

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Zusammenhängend

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Zusammenhängender Graph

Ein ungerichteter Graph heißt zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Zusammenhängend

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Zusammenhängender Graph

Ein ungerichteter Graph heißt zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Stark zusammenhängender Graph

Ein gerichteter Graph heißt stark zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Zusammenhängend

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Zusammenhängender Graph

Ein ungerichteter Graph heißt zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Stark zusammenhängender Graph

Ein gerichteter Graph heißt stark zusammenhängend, wenn gilt: $\forall u, v \in V \exists$ Pfad von u nach v.

Schwach zusammenhängender Graph

Ein gerichteter Graph heißt schwach zusammenhängend, wenn der zugehörige ungerichteter Graph zusammenhängend ist.

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

$$d_{-}(u) := |\{(v, u) \in E : v \in V\}|$$

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_{-}(u) := |\{(v, u) \in E : v \in V\}|$, also die Anzahl der Kanten, die in den Knoten u zeigen.

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_{-}(u) := |\{(v, u) \in E : v \in V\}|$, also die Anzahl der Kanten, die in den Knoten u zeigen.

Ausgangsgrad

Der Ausgangsgrad eines Knoten $u \in V$ ist definiert als:

$$d_+(u) := |\{(u, v) \in E : v \in V\}|$$

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtet Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_{-}(u) := |\{(v, u) \in E : v \in V\}|$, also die Anzahl der Kanten, die in den Knoten u zeigen.

Ausgangsgrad

Der Ausgangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_+(u) := |\{(u, v) \in E : v \in V\}|$, also die Anzahl der Kanten, die vom Knoten u aus weg zeigen.

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphe

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_{-}(u):=|\{(v,u)\in E:v\in V\}|$, also die Anzahl der Kanten, die in den Knoten u zeigen.

Ausgangsgrad

Der Ausgangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_+(u) := |\{(u, v) \in E : v \in V\}|$, also die Anzahl der Kanten, die vom Knoten u aus weg zeigen.

Grad

Der Grad eines Knoten u ist definiert als: $d(u) := d_+(u) + d_-(u)$

Knotengrad

Lukas Bach, lukas.bach@student.kit.edu

Graphe

Praxisbeispiel

Ungerichtet Graphen

Begriffe

Eingangsgrad

Der Eingangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_{-}(u) := |\{(v, u) \in E : v \in V\}|$, also die Anzahl der Kanten, die in den Knoten u zeigen.

Ausgangsgrad

Der Ausgangsgrad eines Knoten $u \in V$ ist definiert als:

 $d_+(u) := |\{(u, v) \in E : v \in V\}|$, also die Anzahl der Kanten, die vom Knoten u aus weg zeigen.

Grad

Der Grad eines Knoten u ist definiert als: $d(u) := d_+(u) + d_-(u)$, also die Anzahl der Kanten, über die u verbunden ist.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Kennt ihr schon: Huffman-Baum

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Kennt ihr schon: Huffman-Baum

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Kennt ihr schon: Huffman-Baum

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Kennt ihr schon: Huffman-Baum

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

Bäume haben immer einen Wurzelknoten, von dem alle anderen Knoten ausgehen.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Kennt ihr schon: Huffman-Baum

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

- Bäume haben immer einen Wurzelknoten, von dem alle anderen Knoten ausgehen.
- Ungerichtete Bäume können mehrere Wurzeln haben.

Gerichtete Bäume

Lukas Bach, lukas.bach@student.kit.edu

Kennt ihr schon: Huffman-Baum

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Gerichteter Baum

Ein gerichteter Baum ist ein schwach zusammenhängender kreisfreier gerichteter Graph.

Ungerichteter Baum

Ein ungerichteter Baum ist ein zusammenhängender kreisfreier ungerichteter Graph.

- Bäume haben immer einen Wurzelknoten, von dem alle anderen Knoten ausgehen.
- Ungerichtete Bäume können mehrere Wurzeln haben.
- Knoten mit Grad 1 heißen Blätter.

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

■ Wieviele Kanten kann ein Graph mit *n* Knoten maximal haben?

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

Begriffe

Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben?

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit *n* Knoten maximal haben? *n*²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n$

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n-1)$

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispie

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben?

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

Begriffe

Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²

- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2} + n$

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$
- Wieviele Kanten kann ein ungerichteter schlingenfreier Graph mit n Knoten maximal haben?

Randfälle

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiel

Ungerichtete Graphen

- Wieviele Kanten kann ein Graph mit n Knoten maximal haben? n²
- Wieviele Kanten kann ein schlingenfreier Graph mit n Knoten maximal haben? $n^2 n = n(n 1)$
- Wieviele Kanten kann ein ungerichteter Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$
- Wieviele Kanten kann ein ungerichteter schlingenfreier Graph mit n Knoten maximal haben? $\frac{n(n-1)}{2}$

Lukas Bach, lukas.bach@student.kit.edu

Graphen

Praxisbeispiele

Ungerichtete Graphen

