Sprawozdanie 6 – graf nieskierowany bez wierzchołków izolowanych

Badanie polegało na badaniu czasu znalezienia drogi z wierzchołka zerowego do wylosowanego wierzchołka. Krawędzie były generowane tak, aby n-ty wierzchołek był połączony z wierzchołkiem n-1 oraz n+1. Dodatkowo dodano krawędzie łączące losowe wierzchołki w liczbie 10%*S, gdzie S to całkowita liczba wierzchołków w grafie. Pomiary dla każdej ilości wierzchołków były powtarzanie dziesięciokrotnie. Z otrzymanej próby wyciągnięto wartość średnią. Obranym sposobem przechowywania relacji wierzchołków jest lista sąsiedztw. Podstawowym powodem jest duża oszczędność pamięci(dla macierzy sąsiedztwa zużycie pamięci zawsze będzie równe n² bitów, co przy badaniach dla 10⁶ elementów byłoby zbyt kosztowne). Drugą sprzyjającą cechą była możliwość przekazania listy sąsiadów, zamiast sprawdzania kolejnych pozycji w macierzy sąsiedztwa.

liczba wierzchołków w grafie	czas przeszukania metodą BFS[s]	czas przeszukania metodą DFS[s]
10	0,002722	0,002598
100	0,002938	0,002593
1000	0,003423	0,002641
10000	0,029608	0,003727
100000	7,29458	0,009231
1000000	85,3702	0,100478

Tabela 1 Uśrednione wartości pomiarów znajdowania ścieżki metodą BFS oraz DFS

Wnioski

• dla grafu generowanego w powyższy sposób metoda DFS jest szybsza