

NEW YORK UNIVERSITY

INSTITUTE OF MATHEMATICAL SCIENCES
Division of Electromagnetic Research

85 Waverly Place, New York 3, N.Y.

AFCRC-TN-179

ASTIA DOCUMENT No. AD117007

NEW YORK UNIVERSITY

Institute of Mathematical Sciences
Division of Electromagnetic Research

RESEARCH REPORT No. EM-102

Propagation of Electromagnetic Pulses Around the Earth

BERTRAM R. LEVY and JOSEPH B. KELLER

CONTRACT No. AF 19(604)1717

FEBRUARY, 1957

201-W3

EM 102

NEW YORK UNIVERSITY

Institute of Mathematical Sciences
Division of Electromagnetic Research

Research Report No. EM-102

PROPAGATION OF ELECTROMAGNETIC PULSES AROUND THE EARTH

Bertram R. Levy and Joseph B. Keller

Bertram R. Levy
Bertram R. Levy

Joseph B. Keller
Joseph B. Keller

Morris Kline
Morris Kline
Project Director

February, 1957

The research reported in this document has been sponsored by the Air Force Cambridge Research Center, Air Research and Development Command, under Contract No. AF 19(604)1717.

New York, 1957

Abstract

The propagation of electromagnetic pulses around the earth is investigated analytically. The pulses are assumed to be produced by a vertical electric or magnetic dipole. The earth is treated as a homogeneous sphere of either finite or infinite conductivity and the atmosphere is assumed to be homogeneous. It is found that very short pulses become longer the further they propagate, in addition to diminishing in amplitude. The duration of a pulse which is initially a delta-function increases as θ^3 , where θ is the angle between source and receiver. The results are represented as products of several factors, which we call the amplitude factor, the pulse-shape factor, the time-dependent height-gain factor for the source and receiver, and the conductivity factor. Graphs of these factors and of the pulse shape for several cases are given.

Table of Contents

	<u>Page</u>
1. Introduction	1
2. The field of a periodic source	1
3. The field of a delta-function source	4
4. Discussion of results	7
References	12
Figures	13
Distribution List	20

1. Introduction

Suppose an electromagnetic pulse of given shape and amplitude is emitted by a source on or near the ground. We wish to find its shape, amplitude and arrival time at any point beyond the horizon on or near the ground. In particular we wish to determine the effects of the ground conductivity along the propagation path. We will assume that the source is a vertical dipole of either electric or magnetic type and that the earth is a homogeneous sphere. By a slight modification of our procedure, we could also treat the case in which the ground conductivity varies along the propagation path.

The method of solution consists of two steps. First we must obtain the Hertz vector which represents the field due to a time harmonic or periodic source. Then by Fourier superposition of these periodic fields we can obtain the Hertz vector for a delta-function source. Other pulse-type sources can be treated by superposition of delta-function fields.

Since the field due to a periodic source has been determined by numerous authors, our first step is simple--we need merely copy the Hertz vector of this field. This is done in Section 2, the books of V.A. Fock [1] and H. Bremmer [2] being used as sources. In Section 3 we write the Fourier integral representing the Hertz vector of the field due to a delta-function source. We then evaluate this integral by the saddle point method and obtain a simple formula as the result for each type of dipole. In Section 4 some graphs based on these formulas and a discussion of the results are given.

We wish to acknowledge our indebtedness to Prof. Bernard Friedman who previously analyzed the field due to a pulsed line source near a perfectly conducting cylinder.

2. The field of a periodic source

Suppose a vertical electric dipole is located at the point $r = \rho$, $\theta = 0$ of a polar coordinate system with the origin at the center of the earth. Then its field can be expressed in terms of a Hertz vector having only a radial component $rU_e(r, \theta, t)$, by the formulas

$$(1) \quad E = \nabla \times \nabla \times (\vec{r}U_e)$$

$$H = (\epsilon \frac{\partial}{\partial t} + \sigma) \nabla \times (\vec{r}U_e).$$

Similarly, the field of a vertical magnetic dipole at $r = \rho$, $\theta = 0$ can be expressed in terms of a radial Hertz vector $rU_m(r, \theta, t)$ by the formulas

The numbers τ_s^∞ and τ_s^0 are complex, lying on the ray $\arg \tau = \pi/3$. The τ 's of smallest absolute value are

$$(16) \quad \tau_s^\infty = 0.808 e^{i\pi/3}$$

$$(17) \quad \tau_s^0 = 1.856 e^{i\pi/3}.$$

For a highly conducting earth σ_1 is large so δ_e is large and δ_m is small. Therefore the series (14) is useful for computing τ_s in the electric case and (15) is useful in the magnetic case. For the same reason (8) is more convenient for computing f in the electric case, and (9) is in the magnetic case.

3. The field of a delta-function source

The Hertz potential $U(r,\theta,t)$ of the field due to a vertical electric or magnetic dipole having any time dependence can be obtained by Fourier superposition of the periodic potentials $u(r,\theta)e^{-ikt}$ described above. Since $k = \omega/c$, where $1/c = \sqrt{\epsilon\mu}$, we can integrate with respect to k instead of ω and obtain

$$(18) \quad U(r,\theta,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} A(k)u(r,\theta)e^{-ikct} dk.$$

In (18) the Fourier amplitude $A(k)$ is determined by the time dependence and amplitude of the source. With the function $u(r,\theta)$ defined as in the preceding section, a delta-function source has the amplitude $A(k) = 1$. In the absence of the earth, the Hertz potential of the field due to such a dipole would be

$$(19) \quad U_0 = \frac{\delta(t - \frac{R}{c})}{4\pi R}.$$

Here $R = (r^2 + p^2 - 2pr \cos \theta)^{1/2}$ is the distance from the source to the receiver. Thus with $A(k) = 1$, (18) will yield the diffracted pulse due to the incident pulse (19).

To evaluate (18) we introduce the time T defined by

$$(20) \quad T = t - \frac{a\theta}{c} + \frac{a}{c} \cos^{-1}\left(\frac{a}{p}\right) + \frac{a}{c} \cos^{-1}\left(\frac{a}{R}\right).$$

This time T is just the time measured from the arrival of the diffracted wave front at the point (r,θ) , assuming that the source starts at $t = 0$. We now insert (8)

or (9) into (18) and set $A(k) = 1$.

Let us first consider the case of a perfectly conducting earth. In this case τ is independent of k and δ is either infinity or zero. Then for $T < 0$ the contour in (18) can be closed in the upper half-plane to yield the value zero for U . This is, of course, to be expected from the definition of T . For $T > 0$ we evaluate (18) by the saddle point method. In the electric case we use (8) in (18), set $\delta_e = \infty$ and obtain

$$(21) \quad U_e(r, \theta, t) = \sum_s \frac{c\theta}{2^{5/2} 3^{1/2} \pi a^{1/2} |\tau_s^\infty|^{1/2} (\sin \theta)^{1/2}} \cdot \frac{1}{(cT)^{3/2}} \exp \left[-\frac{2}{3^{3/2}} \frac{|\tau_s^\infty|^{3/2} \theta^{3/2} a^{1/2}}{(cT)^{1/2}} \right] \cdot \frac{v \left\{ |\tau_s^\infty|^{2^{1/3}} \left(\frac{\theta(r-a)}{3cT} - 1 \right) \right\}}{v(-|\tau_s^\infty|^{2^{1/3}})} \frac{v \left\{ |\tau_s^\infty|^{2^{1/3}} \left(\frac{\theta(p-a)}{3cT} - 1 \right) \right\}}{v(-|\tau_s^\infty|^{2^{1/3}})} .$$

In the magnetic case we use (9) in (18), set $\delta_m = 0$ and obtain

$$(22) \quad U_m(r, \theta, t) = \sum_s \frac{c\theta |\tau_s^0|^{1/2}}{2^{5/2} 2^{1/3} 3^{1/2} \pi a^{1/2} (\sin \theta)^{1/2}} \cdot \frac{1}{(cT)^{3/2}} \exp \left[-\frac{2}{3^{3/2}} \frac{|\tau_s^0|^{3/2} \theta^{3/2} a^{1/2}}{(cT)^{1/2}} \right] \cdot \frac{v \left\{ |\tau_s^0|^{2^{1/3}} \left(\frac{\theta(r-a)}{3cT} - 1 \right) \right\}}{v'(-2^{1/3} |\tau_s^0|)} \frac{v \left\{ |\tau_s^0|^{2^{1/3}} \left(\frac{\theta(p-a)}{3cT} - 1 \right) \right\}}{v'(-2^{1/3} |\tau_s^0|)} .$$

The function v in (21) and (22) is the imaginary part of the Airy function, $v = \text{Im } w$. For large positive z , $v(z)$ is asymptotic to $\frac{1}{2} z^{-1/4} \exp \left[-\frac{2}{3} z^{3/2} \right]$ while for large negative z , $v(z)$ is asymptotic to $(-z)^{-1/4} \sin \left[\frac{2}{3} (-z)^{3/2} + \frac{\pi}{4} \right]$. In the intermediate region the values of $v(z)$ have been tabulated by V. A. Fock [1].

Now let us consider the case of a finitely conducting earth. In the

electric case we will use for τ_s the first two terms of (14) with $\delta = \delta_e$. Upon inserting (8) into (18), with this value of τ_s , and putting $A(k) = 1$, we obtain an expression for $U_e(r, \theta, t)$. For $T < 0$ this expression is zero, as before. For $T > 0$ we again use the saddle point method. Since δ_e is a function of k , the determination of the saddle point is more complicated than in the previous cases. Therefore we neglect the term $-1/(2\tau_s^\infty \delta_e)$ compared with τ_s^∞ in determining the saddle point. Then we obtain

$$(23) \quad U_e(r, \theta, t) = \sum_s \frac{\infty |\tau_s^\infty|^{1/2}}{2^{3/2} 3^{1/2} n a^{1/2} (\sin \theta)^{1/2}} \cdot \frac{1}{2|\tau_s^\infty| + \frac{1}{|\tau_s^\infty||\delta_e^*|}}$$

$$\cdot \frac{1}{(cT)^{3/2}} \exp \left[-\frac{\frac{2}{3^{3/2}} \left[|\tau_s^\infty| + \frac{1}{2|\tau_s^\infty|} \cdot \frac{1}{|\delta_e^*|} \right]^{3/2} e^{3/2} a^{1/2}}{(cT)^{1/2}} \right]$$

$$\cdot \frac{v \left\{ |\tau_s^\infty|^{2/3} \left(\frac{\theta(r-a)}{3cT} - 1 \right) \right\}}{v(-|\tau_s^\infty|^{2/3})} \frac{v \left\{ |\tau_s^\infty|^{2/3} \left(\frac{\theta(p-a)}{3cT} - 1 \right) \right\}}{v(-|\tau_s^\infty|^{2/3})}.$$

In (23), δ_e^* is the value of δ_e at the stationary point. Its absolute value is given by

$$(24) \quad |\delta_e^*| = \left(\frac{3 T}{|\tau_s^\infty| T_2} \right)^{1/2} \sqrt{\frac{\frac{\epsilon_1}{\epsilon} + \frac{3^{3/2} \sigma_1 \mu c a}{|\tau_s^\infty|^{3/2}} \left(\frac{T}{T_2} \right)^{3/2}}{\frac{\epsilon_1}{\epsilon} - 1 + \frac{3^{3/2} \sigma_1 \mu c a}{|\tau_s^\infty|^{3/2}} \left(\frac{T}{T_2} \right)^{3/2}}}.$$

Here $T_2 = \theta a/c$ is the travel time for the pulse to reach the point θ from the source at $\theta = 0$.

In the magnetic case we use the first two terms in (15) for τ_s with $\delta = \delta_m$. Then using (9) in (18) with $A(k) = 1$ we obtain an expression for $U_m(r, \theta, t)$. As before this expression is zero for $T < 0$, while for $T > 0$ we obtain

$$(25) \quad U_m(r, \theta, t) = \sum_s \frac{\infty |\tau_s^o|^{1/2}}{2^{5/2} 2^{1/3} 3^{1/2} n a^{1/2} (\sin \theta)^{1/2}} \cdot \frac{1}{2|\delta_m|^2 (|\tau_s^o| - |\delta_m^*|) + 1}$$

$$\cdot \frac{1}{(cT)^{3/2}} \exp \left[-\frac{\frac{2}{3^{3/2}} \left[|\tau_s^o| - |\delta_m^*| \right]^{3/2} e^{3/2} a^{1/2}}{(cT)^{3/2}} \right]$$

$$\cdot \frac{v \left\{ |\tau_s^o|^{2^{1/3}} \left(\frac{e(r-a)}{3cT} - 1 \right) \right\}}{v'(-z^{1/3} |\tau_s^o|)} \frac{v \left\{ |\tau_s^o|^{2^{1/3}} \left(\frac{e(r-a)}{3cT} - 1 \right) \right\}}{v'(-z^{1/3} |\tau_s^o|)} .$$

Here δ_m^* is the value of δ_m at the stationary point and $|\delta_m^*|$ is given by

$$(26) \quad |\delta_m^*| = \left(\frac{3cT}{|\tau_s^o| \theta a} \right)^{1/2} \frac{1}{\sqrt{\frac{\epsilon_1}{\epsilon} - 1 + \frac{\sigma \mu c}{|\tau_s^o|^{3/2} a^{1/2} \theta^{3/2}} (cT)^{3/2}}} .$$

4. Discussion of results

We have calculated the Hertz vector of the field due to a vertical electric or magnetic dipole with a delta function time dependence. For a perfectly conducting earth we obtain (21) and (22), while for finite conductivity we obtain (23) and (25). Of course (23) reduces to (21) and (25) to (22) as $\sigma_1 \rightarrow \infty$. These results are useful at points beyond the horizon and therefore only the first term ($s = 0$) in each result need be retained. This is so because the other terms have relatively rapidly decaying exponential factors. Consequently our results are rather simple formulas.

Let us examine $U_e(r, \theta, t)$ for the perfectly conducting case when both the source and observation point are on the ground ($\rho = a$ and $r = a$). Then (21) becomes

$$(27) \quad U_e(a, \theta, t) = A_e(\theta) S(T/T_{eo}).$$

Here the amplitude $A_e(\theta)$ is the maximum value of U_e , the build-up time $T_{eo}(\theta)$ is the time at which the maximum occurs and $S(T/T_{eo})$ is the pulse shape factor. A_e , T_{eo} and S are given by

$$(28) \quad A_e = \frac{3^7 c}{|\tau_o^\infty|^5 2^{11/2} \pi e^3 a^2} \frac{1}{\sqrt{\epsilon^7 \sin \theta}} = (1.64 \times 10^{-5}) \frac{1}{\sqrt{\epsilon^7 \sin \theta}} \sim (1.64 \times 10^{-5}) \frac{1}{\theta^4},$$

$$(29) \quad T_{eo} = \frac{4|\gamma_o^\infty|^3 a}{3^5 c} \theta^3 = (1.85 \times 10^{-4}) \theta^3,$$

$$(30) \quad S(T/T_{eo}) = (T_{eo}/T)^{3/2} \exp 3[1-(T_{eo}/T)^{1/2}].$$

A graph of the pulse shape factor S is given in Figure 1. U_e is obtained from this graph by multiplying the vertical side by $A_e(\theta)$, which is given by (28).

If the observation point is above the ground ($r > a$), U_e is obtained by multiplying (27) by the time dependent height-gain factor $H_e(T/T_{el}(r))$ defined by

$$(31) \quad H_e\left(\frac{T}{T_{el}(r)}\right) = \frac{\sqrt{T_{el}(r)/T - 2^{1/3}|\gamma_o^\infty|}}{\sqrt{-2^{1/3}|\gamma_o^\infty|}}.$$

In (31) the time $T_{el}(r)$ is defined by

$$(32) \quad T_{el}(r) = 2^{1/3}|\gamma_o^\infty|\theta(r-a)/3c.$$

A graph of $H_e(T/T_{el}(r))$ is shown in Figure 2. If the source is above the ground ($\rho > a$) a similar height-gain factor must be introduced. Thus in general we have for the perfectly conducting case

$$(33) \quad U_e(r, \theta, t) = A_e(\theta)S(T/T_{eo})H_e\left(\frac{T}{T_{el}(r)}\right)H_e\left(\frac{T}{T_{el}(\rho)}\right).$$

A graph of U_e is shown in Figure 3.

If the times $T_{el}(r)$ and $T_{el}(\rho)$ are both small compared to the build up time T_{eo} , both height-gain factors are effectively equal to unity. Then U_e is essentially the same as it is for both source and receiver on the ground. On the other hand if $T_{el}(r)$ and $T_{el}(\rho)$ are large compared to T_{eo} , the maximum of U_e is less than its value for $r = a$, $\rho = a$ by the factor $H_e(T_o/T_{el}(r))H_e(T_o/T_{el}(\rho))$. In this case the shape of the pulse is also slightly altered.

In case of finite conductivity, (23) shows that U_e is obtained by multiplying (33) by the conductivity factor $C_e(T/T_{eo}, T/T_2)$. This factor is given by

$$(34) \quad C_e = \exp \left[3(T_o/T)^{1/2} \left(1 - \left[1 + \frac{1}{2|\mathcal{T}_o^\infty|^2 |\delta_e^*|} \right]^{1/2} \right) \right] \cdot \frac{1}{1 + \frac{1}{2|\mathcal{T}_o^\infty|^2 |\delta_e^*|} + \frac{1}{2|\mathcal{T}_o^\infty||\delta_e^*|^2}}.$$

The quantity $|\delta_e^*|$, which depends upon T/T_2 and upon σ_1 , is given by (24) with $s = 0$. Thus we have, denoting by U_e^∞ the result (33) for perfect conductivity,

$$(35) \quad U_e(r, \theta, t) = U_e^\infty(r, \theta, t) C_e(T/T_{eo}, T/T_2).$$

If we insert the expression (33) for U_e^∞ this becomes

$$(36) \quad U_e(r, \theta, t) = A_e(\theta) S(T/T_{eo}) H_e(T/T_{el}(r)) H_e(T/T_{el}(\rho)) C_e(T/T_{eo}, T/T_2).$$

A graph of C_e is shown in Figure 4 and one of U_e in Figure 5.

A quite similar analysis is also possible in the magnetic case. From (22) we find that the analogue of (33) for U_m in the case of perfect conductivity is

$$(37) \quad U_m(r, \theta, t) = A_m(\theta) S(T/T_{mo}) H_m(T/T_{ml}(r)) H_m(T/T_{ml}(\rho)).$$

The shape factor S is the same as in the electric case but the amplitude $A_m(\theta)$, the build-up time T_{mo} , the times $T_{ml}(r)$ and $T_{ml}(\rho)$ and the height-gain factors H_m are slightly different. These quantities are given by

$$(38) \quad A_m(\theta) = \frac{3^7 c}{2^{11/2} 2^{1/3} \pi e^3 |\mathcal{T}_o^\infty|^4 a^2} \cdot \frac{1}{\sqrt{\theta^7 \sin \theta}} = (3.78 \times 10^{-3}) \frac{1}{\sqrt{\theta^7 \sin \theta}} \sim (3.78 \times 10^{-3}) \frac{1}{\theta^{14}},$$

$$(39) \quad T_{mo} = \frac{4|\mathcal{T}_o^\infty|^3 a}{3^5 c} \theta^3 = (2.24 \times 10^{-9}) \theta^3,$$

$$(40) \quad T_{ml}(r) = 2^{1/3} |\tau_0^o| \Theta(r-a)/3c,$$

$$(41) \quad H_m(T/T_{ml}(r)) = \frac{v \left[T_{ml}(r)/T - 2^{1/3} |\tau_0^o| \right]}{v' \left[-2^{1/3} |\tau_0^o| \right]}.$$

A graph of the height-gain factor H_m is given in Figure 6. This height-gain factor is zero at the ground. Therefore graphs of U_m are given for $r > a$ and $\rho > a$ in Figure 7.

In the case of finite conductivity, we find from (25) that U_m can be obtained by multiplying the result (37) by the conductivity factor $C_m(T/T_{mo}, T/T_2)$. This factor is

$$(42) \quad C_m(T/T_{mo}, T/T_2) = \frac{\exp \left[3 \left(\frac{T}{T_2} \right)^{1/2} \left(1 - \left[1 - \frac{|\delta_m^*|}{|\tau_0^o|} \right]^{3/2} \right) \right]}{2 |\delta_m^*|^2 (|\tau_0^o| - |\delta_m^*|) + 1}.$$

The quantity $|\delta_m^*|$ depends upon T/T_2 and upon σ_1 . It is given by (26) with $s = 0$. If we denote the result (37) for perfect conductivity by U_m^∞ we now have

$$(43) \quad U_m(r, \theta, t) = U_m^\infty(r, \theta, t) C_m(T/T_{mo}, T/T_2).$$

If we replace U_m^∞ by means of (37) this becomes

$$(44) \quad U_m(r, \theta, t) = A_m(\theta) S(T/T_{mo}) H_m(T/T_{ml}(r)) H_m(T/T_{ml}(\rho)) C_m(T/T_{mo}, T/T_2).$$

If $\sigma = 4$ mhos/meter, which is the conductivity of sea water, C_m differs from unity by less than one per cent for all values of θ . Therefore in this case U_m is essentially the same as U_m^∞ , which is shown in Figure 7.

The field components can be found from the Hertz vector by equation (1) in the electric case and by equation (21) in the magnetic case. In the electric case $E_\theta = 0$, and $E_\theta = 0$ at $r = a$ in the perfectly conducting case. The main non-zero component of E is E_r . By using (1) and (18) we find, for finite or infinite conductivity, that

$$(45) \quad E_r = -\frac{1}{a} \left[\frac{|\tau_0^\infty| T_2}{3T} \right]^3 U_e.$$

In the magnetic case $E_r = E_\theta \approx 0$. From (2) and (18) we find for the only non-zero component of E ,

$$(46) \quad E_\phi = \frac{\mu c}{a} \left[\frac{|\mathcal{T}_0^0| T_2}{3T} \right]^3 U_m.$$

When the source has a time dependence $f(t)$ instead of $\delta(t)$, the result for the Hertz vector or the field components can be obtained from those for the delta function source. If U^f denotes the Hertz vector (electric or magnetic) due to the source f , and U^δ the corresponding Hertz vector due to the delta-function source, then by superposition

$$(47) \quad U^f(r, \theta, t) = \int_{-\infty}^{\infty} f(\tau') U^\delta(r, \theta, t - \tau') d\tau'.$$

From this equation we see that the minimum resolution time in U^f is the appropriate build-up time T_{eo} or T_{mo} . Thus frequencies higher than $1/T_{eo}$ or $1/T_{mo}$ are essentially lost from the pulse. We may describe this by saying that diffraction has the effect of a low pass filter. This is understandable since high frequency fields do not so readily diffract around the earth.

An alternative to (47), which may be easier to compute from, is

$$(48) \quad U^f(r, \theta, t) = \bar{f}(ck^*) U^\delta(r, \theta, t).$$

Here \bar{f} is the Fourier transform of $f(t)$ and k^* is the value of k at the saddle point. It is given by

$$(49) \quad ck^* = \frac{ic}{a} \left[\frac{|\mathcal{T}_0^0| T_2}{3T} \right]^{3/2}.$$

Here \mathcal{T}_0^0 is \mathcal{T}_0^∞ in the electric case and \mathcal{T}_0^0 in the magnetic case. Although (47) is valid for arbitrary $f(t)$, (48) applies only when $f(t)$ represents a pulse. This limitation results because the phase of \bar{f} was ignored in determining the saddle point.

Finally we must point out a limitation on our result (33) in the electric dipole case for a finitely conducting earth. This limitation pertains to small values of T . For such values of T the stationary value of k or ω is large in the integral (18) for U_e . But our approximate calculation of \mathcal{T}_s , which occurs in

that integral, is based on an expansion for large σ and it is not valid when ω is also large. Therefore the result (23) is not accurate for small T. However this range of T is confined to a small interval which terminates long before the maximum occurs, in the case we have considered. No such limitation occurs in the magnetic dipole case, however, since then the expansion for large σ becomes more accurate when ω is large.

References

- [1] Fock, V.A. - Diffraction of radio waves around the earth's surface; Academy of Sciences, USSR, Moscow, 1946.
- [2] Bremmer, H. - Terrestrial Radio Waves, Elsevier, New York, 1949.

Figure 1
The pulse share factor $S(x) = x^{-3/2} \exp[3(1-x^{-1/2})]$.

Figure 3

The Hertz potential $U_e(T)$ for the electric dipole case, based on (33). The source and receiver are both 25 meters above the ground, which is assumed to be perfectly conducting, and the angle $\theta = \frac{\pi}{8}$. The vertical scale is the value of $U_e(T)/A_e(3/8)$, where A_e is given by (28).

Figure 1

The conductivity correction factor $C_e(\tau)$ for the electric dipole case, based on (34). The conductivity $\sigma = 1$ mho/meter, appropriate to sea water, while $\Theta = \frac{3}{8}$, $\epsilon_1/\epsilon = 81$ and $\mu = 4\pi \cdot 10^{-7}$ henry/meter.

Figure 5

The Hertz potential $U_e(T)$ for the electric dipole case and a finitely conductive earth. The source and receiver are both 25 meters above the ground, the conductivity $\sigma = 1$ mho/meter, $\Theta = \frac{3}{8}$, $\epsilon_1/\epsilon = 81$ and $\mu = \ln \cdot 10^{-7}$ henry/meter. The vertical scale is the value of $U_e(T)/A_e(3/8)$ with U_e given by (36) and A_e by (28).

Figure 6

The time dependent height-gain factor
 $H_m(x)$ for the magnetic dipole case.
The graph, based on (11), is for a
height of 25 meters.

Figure 7

The Hertz potential $U_m(\tau)$ for the magnetic dipole case. The source and receiver are both 25 meters above the ground. The graph is based upon (37) for a perfectly conducting earth and upon (44) for a finitely conducting earth with $\sigma = 4 \text{ mho/meter}$. The two results are indistinguishable. The vertical scale shows the value of $U(\tau)/A_m$ for $\theta = \frac{3}{8}$ with A_m given by (38). For any other value of θ , say $\theta = \frac{2}{8}a$, the vertical scale must be multiplied by $a^{-17/2}$ and the horizontal scale by a^{-2} .

DISTRIBUTION LIST FOR RESEARCH REPORTS

Contract No. AF 19(60h)1717

(One copy unless otherwise noted)

- Commander**
Air Force Missile Test Center
Patrick Air Force Base, Florida
ATTN: Technical Library
- Commander**
Air Research and Development Command
Washington 25, D.C.
ATTN: RDLR
- Commander**
Air Research and Development Command
Washington 25, D.C.
ATTN: R.P. Bowker, RDNRDC-L
- Director**
Air University Library
Maxwell Air Force Base, Alabama
ATTN: CR-4582
- Headquarters, USAF**
Director of Research and Development
Washington 25, D.C.
ATTN: AFIRD
- Commander**
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
ATTN: Mr. Walter J. Fortune, WOLNS-6
- Commander**
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
ATTN: WOLNT-5, N. Draganac
- Commander**
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
ATTN: WCRB-5, Wave Prop. Section
- Air Technical Intelligence Center
Wright-Patterson Air Force Base, Ohio
ATTN: ATIN-Bia
- Commander**
Rome Air Development Center
Griffiss Air Force Base
Rome, New York
ATTN: RCSST-3
- Commander**
Rome Air Development Center
Griffiss Air Force Base
Rome, New York
ATTN: RCERA-1, D. Mather
- Commander**
Rome Air Development Center
Griffiss Air Force Base
Rome, New York
ATTN: RCEB, Dr. Burgess
- Commander**
Holloman Air Res. and Dev. Center
Holloman Air Force Base, New Mexico
ATTN: HRCI
- Director**
Evans Signal Laboratory
Belmar, New Jersey
ATTN: Mr. C. Woodard
- Director**
Evans Signal Laboratory
Belmar, New Jersey
ATTN: Technical Document Center
- Signal Corps Liaison Officer
Mass. Institute of Technology
Cambridge 39, Massachusetts
ATTN: A.D. Brodigan
- Commanding General
SC Engineering Laboratories
Fort Monmouth, New Jersey
ATTN: SCEL Technical Documents Center
Bay 2C122
- Department of the Army
Office of the Chief Signal Officer
Washington 25, D.C.
ATTN: SIGM
- Department of the Army
Office of Chief Signal Officer
Engineering and Tech. Division
Washington 25, D.C.
ATTN: SIGNET-5
- Director
Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland
ATTN: Ballistics Measurement Lab.
- Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland
ATTN: Technical Information Branch
Victor W. Richard
- Diamond Ordnance Fuze Laboratories
Washington 25, D.C.
ATTN: Guided Missile Fuze Library
R.F. Hatcher, Chief Microwave
Development Section
- (10) Document Service Center
Armed Services Tech. Information Agency
Knott Building
Dayton 2, Ohio
ATTN: DSC-SC
- Office of Technical Services
Department of Commerce
Washington 25, D.C.
ATTN: Tech. Reports Section
- National Bureau of Standards
Department of Commerce
Washington 25, D.C.
ATTN: Dr. A.G. McNish
- National Bureau of Standards
Department of Commerce
Washington 25, D.C.
ATTN: Gustave Shapiro
- Boulder Laboratories Library
National Bureau of Standards
Boulder, Colorado
ATTN: Mrs. Victoria S. Barker, Lib.
- Director
National Bureau of Standards
Central Radio Prop. Laboratory
Boulder, Colorado
ATTN: Division 1h.0
- Library
Division of Public Documents
U.S. Government Printing Office
Washington 25, D.C.
- (2) Commander
Air Force Cambridge Research Center
Laurence G. Hanscom Field
Bedford, Mass.
ATTN: Electronics Document Room
CROUCH-ZE
- (3) Commander
Air Force Cambridge Research Center
Laurence G. Hanscom Field
Bedford, Mass.
ATTN: CRG-1, R.E. Hiatt
- (10) Commander
L.G. Hanscom Air Field
Bedford, Mass.
CROUCH-2
- Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.
ATTN: Code Aer-M-444
- Chief, Bureau of Ships
Navy Department
Washington 25, D.C.
ATTN: Mr. E. Johnston, Code 838
- Commander
U.S. Naval Air Missile Test Center
Point Mugu, California
ATTN: Code 366; MT-6
- U.S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
ATTN: The Library
- Commander**
U.S. Naval Ordnance
Test Station (Code 753)
China Lake, California
- Librarian**
U.S. Naval Postgraduate School
Monterey, California
- Director**
U.S. Naval Research Laboratory
Washington 25, D.C.
ATTN: Code 1110
- Director**, National Security Agency
Washington 25, D.C.
- Director**
U.S. Naval Research Laboratory
Washington 25, D.C.
ATTN: Code 2/21
- Director**
U.S. Naval Research Laboratory
Washington 25, D.C.
ATTN: Code 5250, J. Bohmert
- Commanding Officer and Director
U.S. Navy Underwater Sound Lab.
Port Trumbull, New London, Conn.
ATTN: Mr. C.M. Dunn
- Chief of Naval Research
Navy Department
Washington 25, D.C.
ATTN: Code 427
- (2) Commanding Officer and Director
U.S. Navy Electronics Lab. Lib.
San Diego 52, California
- Chief, Bureau of Ordnance
Navy Department
Washington 25, D.C.
ATTN: Technical Library, Code Ad3
Mr. H.B. Rex, Code ReSh
- Chief, Bureau of Ordnance
Navy Department
Washington 25, D.C.
ATTN: Mr. C.H. Jackson, Code Pe9a
- Chief, Bureau of Ordnance
Navy Department
Washington 25, D.C.
ATTN: L.E. Wallingford, Code Relf
- Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.
ATTN: Code Aer-L-931
- Chief Bureau of Ships
Navy Department
Washington 25, D.C.
ATTN: L.E. Shoemaker, Code 838D
- (2) Commander
U.S. Naval Air Development Center
Johnsville, Pennsylvania
- Commander**
U.S. Naval Air Test Center
Patuxent River, Maryland
ATTN: ET-315, Antenna Section
- Naval Ordnance Laboratory
Corona, California
ATTN: Library
- U.S. Naval Ordnance Laboratory
Department of the Navy
Corona, California
ATTN: Dr. Robert L. Conger
- U.S. Naval Ordnance Plant
Indianapolis 16, Indiana
ATTN: AD-130 (library)
- Airborne Instruments Lab., Inc.
160 Old Country Road
Mineola, New York
ATTN: Librarian

- ACF Electronics
800 N. Pitt Street
Alexandria, Pennsylvania
ATTN: Tech. Library
- American Machine and Foundry Company
Electronics Division
1085 Commonwealth Avenue
Boston 15, Mass.
ATTN: Technical Library
Mrs. Rita Morawski, Librarian
- Andrew Alford Consulting Engineers
299 Atlantic Avenue
Boston 10, Massachusetts
ATTN: Dr. A. Alford
- Bethel Memorial Institute
505 King Avenue
Columbus 1, Ohio
ATTN: I-205 F-F
Dr. Bernard H. List
- Bell Aircraft Corporation
P.O. Box 1
Buffalo 5, New York
ATTN: Technical Library
Mrs. Jasmine H. Mulcahey
- Bell Telephone Labs., Inc.
Whippany, New Jersey
ATTN: Technical Information Lib.
- Bendix Aviation Corporation
Pacific Division
11600 Sherman Way
North Hollywood, Calif.
ATTN: Technical Library
J.R. Brenninger, Engr. Librarian
- Bendix Radio
Div. of Bendix Aviation Corporation
East Joplin Road
Towson 1, Maryland
ATTN: Res. and Development Lab. (65)
Chief Engineer
- Bjorksten Research Laboratories, Inc.
P.O. Box 265
Madison 1, Wisconsin
Attn: F.B. Korsgard, Treasurer
- Boeing Airplane Company
Pilotless Aircraft Division
Seattle 11, Washington
ATTN: Pilotless Aircraft Div. Library
R.R. Barker, Library Supervisor
- Boeing Airplane Company
Wichita Division
Wichita, Kansas
ATTN: Kenneth C. Knight, Librarian
- Boeing Airplane Company
Seattle Division
Seattle 21, Washington
ATTN: E.T. Allen, Librarian
- Chance Vought Aircraft, Inc.
P.C. Box 5907
Dallas, Texas
ATTN: Engineering Library
Mr. W.S. White, Librarian
- Convair, A Division of General Dynamics
Corp.
Fort Worth 1, Texas
ATTN: R.S. Brown, Div. Res. Librarian
- Convair, Division of General
Dynamics Corporation
San Diego 12, California
ATTN: Engineering Library
- Cornell Aero. Laboratory, Inc.
155 Genesee Street
Buffalo 21, New York
ATTN: Elmira T. Evans, Librarian
- Dalmo Victor Company
111 El Camino Real
San Carlos, California
ATTN: Dorothie Quigley, Tech. Libr.
- Dorm and Marginlin, Inc.
30 Sylvester Street
Westbury, L.I., New York
- Douglas Aircraft Company, Inc.
Long Beach Division
Long Beach 1, California
ATTN: Engineering Library (C-250)
- Douglas Aircraft Company, Inc.
627 Lepham Street
El Segundo, California
ATTN: Engineerin; Library
- Douglas Aircraft Company, Inc.
3000 Ocean Park Boulevard
Santa Monica, California
ATTN: Eq. Sec. Reference Files,
Eq. Eng. A250
- Douglas Aircraft Corporation
Tulsa, Oklahoma
ATTN: Technical Library
- Electronic Defense Laboratory
P.O. Box 205
Mountain View, California
ATTN: Library
- Electronics Research, Inc.
2300 N. New York Avenue
Evansville, Indiana
ATTN: Mr. S. Baldridge,
Engineering supervisor
- Emerson and Cuming, Inc.
869 Washington Street
Canton, Mass.
ATTN: W.R. Cuming
- The Emerson Electric Mfg. Company
8100 Florissant Avenue
St. Louis 21, Missouri
ATTN: Mr. E. Breslin,
Emerson Engineering Library
- Fairchild Aircraft
Division Fairchild Eng. and Airplane
Corp.
Hagerstown, Maryland
ATTN: Library
- Farnsworth Electronics Company
Fort Wayne 1, Indiana
ATTN: Technical Library
- Federal Telecommunication Labs.
500 Washington Avenue
Nutley 10, New Jersey
ATTN: Technical Library
- Gabriel Electronics
Division Gabriel Company
Needham Heights, Mass.
ATTN: Miss Elaine Foss, Librarian
- General Electric Company
Ithaca, New York
ATTN: Advanced Electronics Center
Library, John B. Travis
- General Electric Company
Electronics Park
Syracuse, New York
ATTN: Mrs. Anna Damon, Documents
Librarian, Documents Lib.
Bldg. 3-143
- General Precision Laboratory, Inc.
63 Bedford Road
Pleasantville, New York
ATTN: Mrs. Mary G. Herbst, Librarian
- Goodyear Aircraft Corp.
1210 Massillon Road
Akron 15, Ohio
ATTN: Library D-120 Plant A
- Grumman Aircraft Engineering Corp.
Bethpage, L.I., New York
ATTN: Engineering Library,
Plant No. 5
- Hallcrafters Corporation
110 West 5th Avenue
Chicago, Illinois
ATTN: Library
- Hoffman Laboratories, Inc.
Los Angeles, California
ATTN: Library
- Hughes Aircraft Company
Microwave Laboratory
Culver City, California
ATTN: Library, Building 12
M.D. Adcock, Head, Antenna Dept.
- Hughes Aircraft Company
Culver City, California
ATTN: Research and Development Lib.
- Hycon Eastern, Inc.
75 Cambridge Parkway
Cambridge, Mass.
ATTN: Mr. S. Stein, Library
- International Business Machines Corp.
Military Products Division
590 Madison Avenue
New York 22, New York
ATTN: Mr. C.F. McIlvain
- International Business Machines Corp.
Military Products Division
Albion Computer Laboratories
West Islip, New York
ATTN: Mr. J.J. Walsh, Dept. 528
- Janesky and Bailey, Inc.
1339 Wisconsin Avenue, N.W.
Washington, D.C.
ATTN: Tech. Library, Delmer C. Ports
- Henry Jasik, Consulting Engineer
61 Second Street
Minneapolis, New York
- Jet Propulsion Laboratory
1600 Oak Grove Drive
Pasadena, California
ATTN: I.E. Newman
- Martin Katzin and Co., Consultants
711 14th Street, N.W.
Washington 5, D.C.
- Lincoln Laboratory
P.O. Box 73
Lexington 73, Massachusetts
ATTN: Henry Straus, Document Re., A-229
- Lockheed Aircraft Corporation
Missile Systems Division
7701 Woodley Avenue
Van Nuys, California
ATTN: MS Library -902, Dept. 82-10
E.A. Blasi, Head, Antenna Lab.
- Lockheed Aircraft Corporation
California Division
Engineering Library
Dept. 72-25, Plant A-1, Bldg. 63-1
ATTN: N.G. Haroie
- The Glenn L. Martin Company
Denver, Colorado
ATTN: Wm. V. Foley, Engineering Lib.
- The Glenn L. Martin Company
Baltimore 3, Maryland
ATTN: Engineering Library
Antenna Design Group
- Maryland Electronic Mfg. Corp.
5009 Calvert Road
College Park, Maryland
ATTN: H. Warren Cooper
- Mathematical Reviews
80 Waterman Street
Providence 6, Rhode Island
- The W.L. Maxon Corporation
460 West 38th Street
New York, New York
ATTN: Antenna Laboratory
- McDonnell Aircraft Corporation
Box 516
St. Louis 3, Missouri
ATTN: P.J. Tetrich
Engineering Library
- McMillan Laboratory, Inc.
Ipswich, Massachusetts
ATTN: Security Officer
Document Room
- Melpar, Inc.
3000 Arlington Boulevard
 Falls Church, Virginia
ATTN: Engineering, Technical Lib.

Microwave Radiation Company
1923 So. Hamilton Street
Gardena, California
ATTN: Mr. Morris J. Fhrlich, Pres.

Northrop Aircraft, Inc.
Engineering Department
100 E. Broadway
Hawthorne, California
ATTN: E.A. Prettas, Engineering
Library, Plant III

North American Aviation, Inc.
127th Lakewood Boulevard
Downey, California
ATTN: Technical Library,
Dept. 991-h

North American Aviation, Inc.
Los Angeles International Airport
Los Angeles 45, California
ATTN: Engineering Technical File

Page Communications Engineers
710 Little Street, N.W.
Washington 5, D.C.
ATTN: Library

Philco Corporation Research Division
A and Lippincott Street
Philadelphia 3h, Pa.
ATTN: Technical library

Pickard and Burns, Inc.
240 Highland Avenue
Needham 9h, Mass.
ATTN: Dr. J.T. de Bettencourt

Polytechnic Research and Development
Company, Inc.
202 Tillary Street
Brooklyn 1, New York
ATTN: Technical Library

Radiation Engineering Laboratory
Maynard, Mass.
ATTN: Dr. John Ruze

Radiation, Inc.
P.O. Drawer 37
Melbourne, Florida
ATTN: Technical Library
Mr. M.L. Cox, Assistant
Project Engineer

Radio Corp. of America
RCA Laboratories
Rocky Point, New York
ATTN: P.S. Carter, Lab. Library

RCA Laboratories
Princeton, New Jersey
ATTN: Miss Fern Cleak, Librarian
Research Library

RCA Defense Electronic Products
Carden 2, New Jersey
ATTN: Miss J.W. Steever, Librarian
Library 1C-2

(2)The Raytheon-Midwandre Corporation
5730 Arbor Vista Street
Los Angeles 45, California
ATTN: Margaret C. Whithan,
Chief Librarian, Research
and Development Library

The Rand Corporation
Via: RANX Liaison Office
1700 Main Street
Santa Monica, California
ATTN: Library

Rantic Corporation
Carlsbados, California
ATTN: Technical Library

Raytheon Manufacturing Company
M and A Division
Bedford, Massachusetts
ATTN: Irving Goldstein

Raytheon Laboratory
Wayland, Massachusetts
ATTN: Document Lib., John E. Walsh
Dept. 87h, Antenna

Raytheon Manufacturing Company
Wayland Laboratory
Wayland, Massachusetts
ATTN: Miss Alice G. Anderson, Lib.
Wayland Library

Republic Aviation Corporation
Farmington, L.I., New York
ATTN: H. Stieglitz, Engineerin' Lib.

Rheem Manufacturing Company
Research and Development
9236 East Hall Road
Downey, California
ATTN: J.C. Joerger

Ryan Aerautical Company
San Diego, California
ATTN: Technical Library

Sanders Associates
137 Canal Street
Nashua, New Hampshire
ATTN: Mr. Wild, Library

Sandia Corporation
P.O. Box 5800
Classified Document Division
Albuquerque, New Mexico

Sparry Gyroscopic Company
Great Neck, L.I., New York
ATTN: Engineering Library
Florence W. Burnhull,
Engr. Librarian

Stanford Research Institute
Menlo Park, California
ATTN: Engineering Document Library
Mrs. Beatrice Gibson, Libr.

Sylvania Electric Company
100 First Street
Waltham, Mass.
ATTN: Librarian

Systems Laboratories Corporation
15216 Ventura Blvd.
Sherman Oaks, California
ATTN: Dr. W.C. Hoffman

Technical Research Group
17 Union Square West
New York 3, New York

A.S. Thomas, Inc.
161 Devonshire Street
Boston, Mass.
ATTN: A.S. Thomas

Westinghouse Electric Corp.
2529 Wilkens Avenue
Baltimore 3, Maryland
ATTN: Engineering Library
Kent M. Mack

Wheeler Laboratories, Inc.
122 Cutler Mill Road
Great Neck, New York
ATTN: Mr. Harold A. Wheeler

Zenith Plastic Company
Box 91
Gardena, California
ATTN: Mr. S.S. Cleesky

Library
Geophysical Institute
University of Alaska
College, Alaska

Electronic Research Laboratory
Div. of Electronic Engineering
University of California
Berkeley h, California
ATTN: S. Silver

Electronics Research Laboratory
232 Cory Hall
University of California
Berkeley h, California
ATTN: J.W. Whinnery
California Institute of Technology
1201 E. California Street
Pasadena, California
ATTN: Dr. Charles W. Papas

Carnegie Institute of Technology
Pittsburgh 13, Pennsylvania
ATTN: Albert E. Heins

School of Electrical Engineering
Cornell University
Ithaca, New York
ATTN: Dr. Henry G. Booker

College of Engineering
University of Florida
Gainesville, Florida
ATTN: Engineering Sciences Library
Professor H.H. Latour

Engineering Experiment Station
Georgia Institute of Technology
Atlanta, Georgia
ATTN: Georgia Tech. Library
Mrs. J.M. Crosland

Technical Reports Collection
Harvard University
Gordon McKay Library
303A Pierce Hall
Oxford Street
Cambridge 38, Massachusetts
ATTN: Mrs. E.L. Hufschmidt, Librarian

Harvard College Observatory
60 Garden Street
Cambridge, Massachusetts
ATTN: Dr. Fred L. Whipple

Serials Department - 220-S Library
University of Illinois
Urbana, Illinois
ATTN: Engineering Library

Antenna Section
Electrical Engr. Research Laboratory
University of Illinois
Urbana, Illinois
ATTN: EERL Library, Room 210,
Dr. K.H. Duhamel

The Johns Hopkins University
Department of Physics
Baltimore 18, Maryland
ATTN: Professor Donald E. Kerr

Radiation Laboratory
Johns Hopkins University
1315 St. Paul Street
Baltimore 2, Maryland

Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
ATTN: Document Library

Massachusetts Institute of Technology
Research Laboratory of Electronics
Document Room 208-221
Cambridge 39, Massachusetts

University of Michigan
Electronic Defense Group
Engineering Research Institute
Ann Arbor, Michigan
ATTN: J.A. Boyd, Supervisor

Willow Run Labs., of the Engineering
Research Institute
The University of Michigan
Willow Run Airport
Ypsilanti, Michigan
ATTN: K.W. Siegel, Head, Theory
and Analysis Department

University of Michigan
Willow Run Laboratories
Willow Run Airport
Ypsilanti, Michigan
ATTN: Sheila Coon, Librarian

University of Minnesota
Minneapolis, Minnesota
Engineering Library
ATTN: Head Librarian
Microwave Laboratory
Electrical Engineering Dept.
Northwestern University
Evanston, Illinois
ATTN: Prof. R.E. Beam

- Antenna Laboratory
Department of Electrical Engineering
Ohio State University
Columbus, Ohio
ATTN: Dr. T. E. Tice
- Oklahoma University Research Found.
Norman, Oklahoma
ATTN: Technical Library
Professor C. L. Barrar
- Microwave Research Institute
55 Johnson Street
Brooklyn 1, New York
ATTN: Dr. A.A. Ulmer
- Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn 1, New York
ATTN: Microwave Research Institute
- Syracuse University
Dept. of Electrical Eng.
Syracuse 10, New York
ATTN: Technical Library
- University of Texas
Electrical Eng. Research Lab.
P.O. Box 8262, Univ. Station
Austin 12, Texas
ATTN: John R. Gerhardt
- Dept. of Physics
University of Texas
Austin 12, Texas
ATTN: Physics Library
Claude W. Norton
- Tufts University
Medford 55, Massachusetts
ATTN: Research Lab. of Physical
Electronics
Professor Charles H. Hünings
- University of Toronto
Dept. of Electrical Engineering
Toronto, Ontario, Canada
ATTN: Prof. George Sinclair
- University of Washington
Dept. of Electrical Engineering
Seattle, Washington
ATTN: Prof. J. Held
- Ionosphere Research Laboratory
Pennsylvania State College
State College, Pennsylvania
ATTN: Prof. A.J. Waynick, Director
- Institute of Mathematical Science
25 Waverly Place
New York 3, New York
ATTN: Mrs. Joan Segal, Librarian
- School of Electrical Engineering
Purdue University
Lafayette, Indiana
ATTN: Professor F.W. Schultz
- Department of Electrical Engineering
California Institute of Technology
ATTN: Dr. Charles H. Papas
- Electronics Division
Ranix Corporation
1700 Main Street
Santa Monica, California
ATTN: Dr. Robert Kalaba
- National Bureau of Standards
Washington, D.C.
ATTN: Dr. A.K. Saunders
- Applied Mathematics and Statistics Lab.
Stanford University
Stanford, Calif. 94301
ATTN: Dr. Albert H. Bowker
- Department of Physics and Astronomy
Michigan State University
East Lansing, Michigan
ATTN: Dr. A. Leitner
- University of Tennessee
Knoxville, Tennessee
ATTN: Dr. Fred A. Ficken
- California Institute of Technology
1201 S. California Street
Pasadena, California
ATTN: Dr. K. Erdelyi
- Wayne University
Detroit, Michigan
ATTN: Professor A.R. Stevenson
- Mathematics Department
Stanford University
Stanford, California
ATTN: Dr. Harold Levine
- University of Minnesota
Minneapolis 14, Minnesota
ATTN: Prof. Paul C. Rosenblom
- Department of Mathematics
University of Pennsylvania
Philadelphia 4, Pa.
ATTN: Professor Bernard Epstein
- Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
ATTN: Dr. B.S. Gouray
- (2) Exchange and Gift Division
The Library of Congress
Washington 25, D.C.
- Electrical Engineering Department
Massachusetts Institute of Tech.
Cambridge 39, Massachusetts
ATTN: Dr. L.J. Chu
- Nuclear Development Assoc. Inc.
5 New Street
White Plains, New York
ATTN: Library
- Lebanon Valley College
Annville, Pennsylvania
ATTN: Professor J.M. Bissinger
- Dept. of Physics, Dow Hall
University of Pittsburgh
Pittsburgh 13, Pa.
ATTN: Dr. Edward Berjuoy
- Dept. of Physics
Amherst College
Amherst, Massachusetts
ATTN: Dr. Arnold Arens
- California Institute of Tech.
Electrical Engineering
Pasadena, California
ATTN: Dr. Zohrab A. Kaprielian
- Dr. Rodman Dell
209A Ernest St.
Ypsilanti, Michigan
- California Institute of Tech.
Pasadena 14, California
ATTN: Mr. Calvin Wilcox
- (3) Mr. Robert Brookhurst
 Woods Hole Oceanographic Inst.
 Woods Hole, Massachusetts
- National Bureau of Standards
Boulder, Colorado
ATTN: Dr. R. Allert
- Engineering Library
Plant 5
Grumman Aircraft Corp.
Bethpage, L.I., New York
ATTN: Mrs. A.M. Gray
- Mrs. Jane Scanlon
204 South Street
Southbridge, Massachusetts
- Dr. Solomon I. Schweil
3669 Louis Road
Palo Alto, California
- Microwave Laboratory
55 Johnson Street
Brooklyn, New York
ATTN: Dr. Bernard Lipmann
- University of Minnesota
The University Library
Minneapolis 14, Minnesota
ATTN: Exchange Division
- Professor Bernard Friedman
55 Hilltop Avenue
New Rochelle, New York
- Lincoln Laboratory
Massachusetts Institute of Tech.
P.O. Box 73
Lexington 73, Mass.
ATTN: Dr. Chia Chin Wang, Km. 0-351
- Melpar, Inc.
3000 Arlington Boulevard
Balls Church, Virginia
ATTN: Mr. K.L. Kelleher, Section Head
- Antenna Laboratory, IBM
Air Force Cambridge Research Center
Laurelton 1, Hanscom Field
Bedford, Massachusetts
ATTN: Selton A. Logan
- Electronics Research Directorate
Air Force Cambridge Research Center
Laurelton 1, Hanscom Field
Bedford, Massachusetts
ATTN: Dr. William Neuman, CPUE
- Air Force Antiride Research Center
Laurelton 1, Hanscom Field
Bedford, Massachusetts
ATTN: Mr. Francis J. Zucker
- Crosley AVCO Research Labs.
257 Crescent Street
Waltham, Massachusetts
ATTN: Mr. W.H. Larson
- Antenna Research Section
Microwave Laboratory
Hughes Aircraft Company
Culver City, California
ATTN: Dr. Richard R. Barrar
- Columbia University
Hudson Laboratories
P.O. Box 239
115 Palisade Street
Dobbs Ferry, New York
ATTN: Dr. R.M. Johnson
- Institute of Fluid Dynamics and Applied Math.
University of Maryland
College Park, Maryland
ATTN: Dr. Elliott Montroll
- Dept. of Electrical Engineering
Washington University
Saint Louis 5, Missouri
ATTN: Professor J. Van Blaeld
- Dept. of the Navy
Office of Naval Research Branch Office
120 E. Green Street
Pasadena 1, California
- Brandeis University
Waltham, Massachusetts
ATTN: Library
- General Electric Company
Microwave Laboratory
Electronics Division
Stanford Industrial Park
Palo Alto, California
ATTN: Library
- Hughes Research Laboratories
Hughes Aircraft Company
Culver City, California
ATTN: Dr. A.A. Gold
Rm. 12, Km. 2529
- Smith Research Associates
3930 4th Avenue
San Diego 3, California
ATTN: Dr. John B. Smyth

Electrical Engineering
California Institute of Tech.
Pasadena, California
ATTN: Dr. Georges G. Weill

Naval Research Laboratory
Washington 25, D.C.
ATTN: Dr. Henry J. Passerini
Code 5278 A

Dr. George Kear
10585 N. Stelling Rd.
Cupertino, California

Brooklyn Polytechnic Institute
85 Livingston Street
Brooklyn, New York
ATTN: Dr. Nathan Marcuvitz

Department of Electrical Engr.
Brooklyn Polytechnic Institute
85 Livingston Street
Brooklyn, New York
ATTN: Dr. Jerry Shmoys

Dept. of Mathematics
University of New Mexico
Albuquerque, New Mexico
ATTN: Dr. I. Kolodner

W.L. Marxon
1660 W. 38th Street
New York, N.Y.
ATTN: Dr. Harry Hochstadt

NYU
EM-
102 Levy

Propagation of electro-
magnetic pulses around
the earth.

NYU
EM-
102 Levy

Propagation of electromagnetic pulses around the earth.

Date Due

