Lista 4: Otimização I

A. Ramos *

November 19, 2017

Abstract

Lista em constante atualização.

- 1. Dualidade, condições de otimalidade, condições KKT.
- 2. Para os exercícios que forem convenientes pode ser usado alguma linguagem de programação.
- 1. Prove que a função dual é concava e o domínio dela é convexo.
- 2. Seja B uma matriz simétrica definida positiva. Encontre o problema dual do problema de minimização:

minimizar
$$\frac{1}{2}x^TBx$$
 sujeito a $Ax = b, x \ge 0$.

- 3. Verifique no caso de programação linear que o dual do problema dual é o problema original. Se (P) denota um problema de programação linear e (D) o problema dual associado. Mostre que (i) se (P) é ilimitado inferiormente, então (D) é inviável; (ii) se (P) é viável e limitada inferiormente, então (D) tem uma solução ótima e o gap de dualidade é zero; (iii) se (P) é inviável dê exemplos onde (D) é ilimitado ou inviável.
- 4. Considere o problema de minimização: minimizar $\frac{1}{2}x^2 + \frac{1}{2}(y-3)^2$ sujeito a $x^2 y \le 0$, $-x + y \le 2$.
 - (a) O problema anterior é um problema de otimização convexa?
 - (b) Solucione o problema geometricamente
 - (c) Dê um motivo teórico que justifique a existência de pontos KKT. Dê também um motivo para a unicidade de ponto KKT.
 - (d) Escreva as condições KKT e determine o ponto KKT.
 - (e) Determine explicitamente o problema dual
 - (f) Encontre uma solução ótima do problema dual.
- 5. Considere o problema de minimização: minimizar x-4y+z sujeito a $x+2y+2z+2=0, \quad x^2+y^2+z^2\leq 1.$
 - (a) Dado um ponto KKT, esse ponto deve ser ótimo?
 - (b) Encontre a solução ótima do problema usando as condições KKT.
- 6. Problema de otimização minimax. Seja $\{a_1, a_2, \dots, a_m\} \in \mathbb{R}^n$ um conjunto de vetores e dado $k \in \mathbb{N}$, defina o conjunto $\Delta(k) := \{x \in \mathbb{R}^k : \sum_{i=1}^k x_i = 1, x_i \geq 0, i = 1, \dots, k\}$. Considere o problema de otimização:

$$\underset{x \in \Delta(n)}{\text{minimizar}} \quad \max\{\langle a_i, x \rangle : i = 1, \dots, m\}.$$

Mostre que o problema dual é

onde A é uma matriz onde as linhas são os vetores a_1, \ldots, a_m .

Dica: Re-escreva o problema minimizar $\max\{\langle a_i, x \rangle : i = 1, \dots, m\}$ como minimizar v s.a. $\langle a_i, x \rangle \leq v$, $\forall i$, e aplique dualidade neste último problema.

- 7. Considere o problema de otimização minimizar $x^4 2y^2 y$ sujeito a $x^2 + y^2 + y \le 0$. Responda
 - (a) O problema é convexo?
 - (b) Mostre que existe solução ótima.
 - (c) Encontre todos os pontos KKT. Para cada ponto, quais satisfazem a condição necessária de segunda ordem?

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- (d) Encontre a solução global.
- 8. Calcule o cone tangente $T_{\Omega}(z)$ e o cone linearizado $L_{\Omega}(z)$ em z=0, onde $z\in\Omega$ e Ω é cada um dos seguintes conjuntos
 - (a) $\{(x,y) \in \mathbb{R}^2 : y \le x^3\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 : y = 0 \text{ ou } x = 0\}$
 - (c) $\{r(\cos\theta, \sin\theta) \in \mathbb{R}^2 : r \in [0, 1], \theta \in [\pi/4, 7\pi/4]\}$

Vale alguma condição de qualificação?

- 9. Considere $\Omega := \{x \in \mathbb{R}^n : F(x) \in C\}$, onde C é um cone fechado em \mathbb{R}^m e $F : \mathbb{R}^n \to \mathbb{R}^m$ é uma função continuamente derivável.
 - (a) Prove que $T_{\Omega}(x) \subset \{d \in \mathbb{R}^n : DF(x)d \in T_C(F(x))\}$ para todo $x \in \Omega$.
- 10. Prove que se $x^* \in U \subset V$, então $T_U(x^*) \subset T_V(x^*)$. Pode existir igualdade entre os cones tangente mesmo que os conjuntos U e V sejam diferentes?
- 11. Prove que $\widehat{N}_{\Omega}(x) \subset N_{\Omega}(x), \forall x \in \Omega$. Dê um exemplo onde a inclusão é estrita.
- 12. (a) Seja $C := \{d \in \mathbb{R}^n : Ad \leq 0, Bd = 0\}$. Mostre que C é um cone fechado e calcule C° . Qual é $C^{\circ \circ}$?
 - (b) Seja $\Omega = \{x \in \mathbb{R}^n : g_j(x) \leq 0 \ \forall j = 1, \dots, p; \ h_i(x) = 0, \ \forall i = 1, \dots, m\}$, onde g_j e h_i são funções afins $\forall i, j$. Dado $x \in \Omega$, calcule o cone tangente $T_{\Omega}(x)$, o cone normal regular $N_{\Omega}(x)$ e mostre que a condição de Guignard vale.
- 13. Seja $A \in \operatorname{Sym}_{+}(\mathbb{R})$. Prove que $T_{\operatorname{Sym}_{+}(\mathbb{R})}(A) = \operatorname{Sym}_{+}(\mathbb{R}) \mathbb{R}_{+}(A)$ e $\widehat{N}_{\operatorname{Sym}_{+}(\mathbb{R})}(A) = \operatorname{Sym}_{-}(\mathbb{R}) \cap \{H \in \operatorname{Sym}(\mathbb{R}) : \operatorname{tr}(AH) = 0\}$.
- 14. Seja $v \in \mathbb{R}^n$. Mostre que (i) $||v||_1 = \sup\{\langle v, w \rangle : ||w||_{\infty} \le 1\}$, (ii) $||v||_{\infty} = \sup\{\langle v, w \rangle : ||w||_1 \le 1\}$ e que (iii) $||v||_2 = \sup\{\langle v, w \rangle : ||w||_2 \le 1\}$.
- 15. Desiqualdade de Holder. Prove a desigualdade de Holder ¹ usando o problema de maximização

$$\underset{x}{\text{maximizar }} \{ \langle x, y \rangle : \sum_{i=1}^{n} |x_i|^p = 1 \},$$

onde y é um vetor fixo com $||y||_q = 1$ e 1/p + 1/q = 1 (p, q > 1).

16. Ausência de pontos KKT. Seja o problema de otimização

minimizar
$$x^2 + y^2$$

sujeito a $x^2 = (y-1)^3$

- (a) Resolva o problema geometricamente
- (b) Mostre que não existe pontos satisfazendo as condições KKT
- (c) Encontre todos os pontos que satisfazem as condições FJ
- (d) Para tentar resolver o problema de minimização podemos substituir $x^2 = (y-1)^3$ na função objetivo para obter o problema sem restrições min $(y-1)^2 + y^2$. O que tem de errado essa abordagem? como podemos corrigir?
- 17. Seja $y \in \mathbb{R}^n$. Considere o problema de minimização

- (a) Mostre que o problema admite solução.
- (b) Quando A tem posto linha completo, mostre que a solução é única, que as condições KKT valem e a solução tem a expressão $y A^T (AA^T)^{-1} (Ay + b)$.
- 18. Atualização simétrica de Powell-Broyden (PSB). Seja A uma matriz simétrica $n \times n$, e vetores s e y em \ltimes . Considere o seguinte problema de minimização

minimizar
$$||B - A||_F^2$$
 sujeito a $Bs = y$, $B^T = B$,

onde $\|\cdot\|_F$ é a norma de Frobenius

¹Para todo $x,y \in \mathbb{R}^n$, temos que $|\langle x,y \rangle| \leq \|x\|_p \|y\|_q$ com igualdade se, e somente se x e y são paralelos. A p-norma $\|z\|_p$ é definida como $\|z\|_p^p := \sum_{i=1}^n |z_i|^p$.

- (a) Mostre que o conjunto viável é um conjunto fechado convexo não vazio.
- (b) Mostre que o problema de minimização tem uma única solução.
- (c) Encontre a expressão para dita solução.
- 19. Atualização BFGS. Seja A uma matriz simétrica $n \times n$, e vetores s e y em \ltimes com $s^y > 0$. Considere o seguinte problema de minimização

minimizar
$$\operatorname{tr}(BA) - \ln \det(B)$$

sujeito a $Bs = y$
 $B \in \operatorname{Sym}_{++}(\mathbb{R}).$

- (a) Mostre que existe ao menos um ponto viável, verificando que $\langle s, y ts \rangle^{-1} (y ts) (y ts)^T + tI$ é viável para t > 0 suficientemente pequeno.
- (b) Mostre que o problema de minimização tem solução. *Dica:* Analise o conjunto de nível da função objetivo. Observe que neste problema o conjunto viável não é fechado. Compare com o problema anterior (atualização PSB).
- (c) Mostre que existe uma única solução.
- (d) Use as condições KKT para encontrar a expressão para dita solução. Por que as condições KKT valem? Justifique.

20. Responda

- (a) Prove que LICQ implica MFCQ
- (b) Mostre que a condições de Mangasarian-Fromovitz (MFCQ) vale se, e somente se o conjunto de multiplicadores é não vazio e compacto.
- (c) Seja $C = \{x \in \mathbb{R}^n : g_j(x) \le 0, j = 1, \dots, p; h_i(x) = 0, i = 1, \dots, m\}$ onde todas as funções g_j são convexas e h_i são funções afins. (i) Prove que a condição de Slater implica a MFCQ. (ii) Se $\{\nabla h_i(x) : i = 1, \dots, m\}$ é um conjunto linearmente independente, mostre que MFCQ implica a condição de Slater.
- 21. Seja A uma matriz simétrica $n \times n$ (não necessariamente definida positiva), b e c vetores em \mathbb{R}^n e Δ um escalar positivo. Considere o problema de minimização.

Mostre que é o problema admite um minimizador global que está na fronteira. As condições KKT valem nesse ponto? Vale alguma CQ?

- 22. Prove que B é definida positiva no subespaço $\ker(A)$ se, e somente se existe um $\rho^* > 0$ tal que $B + \rho AA^T$ é definida positiva para todo $\rho \ge \rho^*$
- 23. Seja B uma matriz simétrica $n \times n$ (não necessariamente definida positiva) e c um vetor em \mathbb{R}^n . Considere o problema quadrático de minimização com restrições de igualdade:

$$\label{eq:minimizar} \begin{aligned} & \underset{x}{\text{minimizar}} & & \frac{1}{2}\langle x, Bx \rangle + \langle c, x \rangle \\ & \text{sujeito a} & & Ax = b \end{aligned}$$

Responda

- (a) Se x^* é minimizador local, então x^* deve satisfazer as condições KKT: $Bx^* + c \in \text{Im}(A^T)$ e $Ax^* = b$.
- (b) Mostre que x^* deve satisfazer a condição necessária de segunda-ordem que B é semi-definida positiva sobre o subespaço $\ker(A)$.
- (c) Prove que se um ponto KKT satisfaz a condição necessária de segunda ordem do item anterior, é de fato, um *minimizador global* do problema quadrático.
- 24. Seja B uma matriz simétrica $n \times n$, A uma matriz $m \times n$, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}^m$. Considere o problema de minimização.

Se A tem posto linha completo e B é definida positiva no núcleo de A, isto é, $\langle d, Bd \rangle > 0 \ \forall d \in \text{Ker}(A), \ d \neq 0$. Mostre que o problema tem um único ponto estacionário que é minimizador global.