Topology Note

Alex

June 21, 2022

Contents

1	Top	ology Spaces and Continuous Function	5
	1.1	Basic Definition of Topology	5
	1.2	Basis for a Topology	6
		1.2.1 Exercise	7
	1.3	The Order Topology	7
	1.4	The Product Topology	8
	1.5	The Subspace Topology	9

4 CONTENTS

Definitions

В	O
basis, 6	open set, 5
C coarser, 5 strictly coarser, 5 convex, 9 D	open sets, 5 order topology, 7 ordered square, 9 P product topology, 8 projection, 8
discrete topology, 5	projection, c
F finer, 5 strictly finer, 5 finite complement topology, 5	R ray, 8 closed ray, 8 open ray, 8
I interval, 7 closed interval, 7 half-open interval, 7 open interval, 7	smaller, 5 strictly smaller, 5 standard topology on R, 6 subbasis, 7 subspace, 9 subspace topology, 9
K-topology on R, 6	${f T}$
L larger, 5 strictly larger, 5 lower limit topology on R, 6	topology, 5 topology generated by basis, 6 topology space, 5 trivial topology, 5

Chapter 1

Topology Spaces and Continuous Function

1.1 Basic Definition of Topology

Definition 1.1.1 (topology). A topology on a set X is a collection T of subsets of X having the following properties:

- \emptyset and \mathbb{X} are in \mathbb{T}
- The union of the elements of any sub collection of \mathbb{T} is in \mathbb{T}
- The intersection of the elements of any finite sub collection of $\mathbb T$ is in $\mathbb T$

Definition 1.1.2 (topology space). A topological space is a set X for which a topology T has been specified.

Definition 1.1.3 (open set). A open set \mathbb{U} is a subset of \mathbb{X} that belongs to a topology \mathbb{T} of \mathbb{X} .

Definition 1.1.4 (open sets). A topology can also be called a open sets

Definition 1.1.5 (discrete topology). The set of all subsets of a set X formed a topology called discrete topology

Definition 1.1.6 (trivial topology). The set consisting the set X and \emptyset only formed a topology of X called **trivial topology**

Definition 1.1.7 (finite complement topology). Let \mathbb{X} be a set. Let \mathbb{T}_f be the collection of all subsets \mathbb{U} of \mathbb{X} such that $\mathbb{X} - \mathbb{U}$ either if a **finite** 1 of is all of \mathbb{X} . Then \mathbb{T}_f is a topology on \mathbb{X} , called the .

Definition 1.1.8 (finer, larger, strictly finer, strictly larger, coarser, smaller, strictly coarser, strictly smaller, comparable). Let \mathbb{T} and \mathbb{T}' be two topology on a given set \mathbb{X} . If \mathbb{T} is a subset of \mathbb{T}' , we say that \mathbb{T}' is finer or larger than \mathbb{T} . If \mathbb{T} is a proper subset of \mathbb{T}' , we say that \mathbb{T}' is strictly finer or strictly larger than \mathbb{T} . We also say that \mathbb{T} is coarser or smaller or strictly coarser or strictly smaller than \mathbb{T}' . We say that \mathbb{T} and \mathbb{T}' is comparable if either \mathbb{T} is a subset of \mathbb{T}' or \mathbb{T}' is a subset of \mathbb{T} .

¹The set \mathbb{U} can form a topology because of the definition of topology is intersection of finite sub collection. If this can be intersection of infinite sub collection, \mathbb{U} will not be a topology.

1.2 Basis for a Topology

Definition 1.2.1 (basis). If X is a set, a **basis** for a topology on X is a collection B of subsets of X (called **basis elements**) such that:

- For each $x \in \mathbb{X}$, there is at least one basis element B containing x
- If x belongs to the intersection of two basis elements B_1 and B_2 , then there is another element $x \in B_3 \in \mathbb{B}$ such that $B_3 \subseteq B_1 \cap B_2$

Definition 1.2.2 (topology generated by basis). Let \mathbb{B} be a basis on \mathbb{X} . Let \mathbb{U} be a set containing all subsets U of \mathbb{X} such that for each element $x \in U$, there is $B \in \mathbb{B}$ that $x \in B \subseteq U$. Such \mathbb{U} formed a topology on \mathbb{X} , called **topology** \mathbb{T} **generated by** \mathbb{B}

Lemma 1.2.1. Let X be a set. Let \mathbb{B} be a basis for a topology \mathbb{T} on X. Then \mathbb{T} equals to the set of all possible unions of elements of \mathbb{B} .

Proof. Let set \mathbb{U} be the set of all possible unions of elements of \mathbb{B} . For any $U \in \mathbb{U}$. $U = \cup B^2$ for some $B \in \mathbb{B}$. Thus, for every $x \in U$, there exist a $B' \in \mathbb{B}$ that $x \in B' \subseteq U$. Thus, $U \in \mathbb{T}$.

Conversely, for any $U \in \mathbb{T}$. For any $x \in U$, let $x \in B_x \in U$. Then, $U = \bigcup_{x \in U} B_x$. Thus, $U \in \mathbb{U}$.

Therefore, \mathbb{U} equals to \mathbb{T} .

Lemma 1.2.2. ³ Let \mathbb{X} be a topological space. Suppose that \mathbb{C} is a collection of open sets of \mathbb{X} such that for each open set U of \mathbb{X} and each $x \in U$, there is an element $C \in \mathbb{C}$ such that $x \in C \subseteq C$. Then \mathbb{C} is a basis for the topology of \mathbb{X} .

Lemma 1.2.3. ⁴ Let \mathbb{B} and \mathbb{B}' be basis for the topologies \mathbb{T} and \mathbb{T}' , respectively, on \mathbb{X} . Then the following are equivalent:

- \mathbb{T}' is finer than \mathbb{T}
- For each $x \in \mathbb{X}$ and each basis element $B \in \mathbb{B}$ containing X, there is a basis element $B' \in \mathbb{B}'$ such that $x \in B' \subseteq B$.

Definition 1.2.3 (standard topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the standard topology on the real line ⁵.

Definition 1.2.4 (lower limit topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a \leq x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the **lower** limit topology on the real line. When \mathbb{R} is given this topology, we denote it by \mathbb{R}_l .

Definition 1.2.5 (K-topology on the real line). Let be $\mathbb{B} = \{B|B = \{x|a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. Let $K = \{x|x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. $\mathbb{B} \cup \{B - K|B \in \mathbb{B}\}$ formed a basis on real line. The topology generated by \mathbb{B} is called the **K-topology on the real line**. When \mathbb{R} is given this topology, we denote it by $\mathbb{R}_{\mathbb{K}}$.

Lemma 1.2.4. ⁶ The topologies \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is strictly finer than the standard topology on \mathbb{R} .

²Note that this expression may not be unique.

 $^{^3}$ We omit the proof of this lemma as it is obvious.

⁴We omit the proof of this lemma as it is obvious.

 $^{^{5}}$ Whenever we consider \mathbb{R} , we shall suppose it is given this topology unless we specifically state otherwise.

⁶We omit the proof of this lemma as it is obvious.

Lemma 1.2.5. The topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Proof. Let \mathbb{T}_l and $\mathbb{T}_{\mathbb{K}}$ be topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ respectively. Let $K = \{x | x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. We first proof that \mathbb{T}_l is not finer than $\mathbb{T}_{\mathbb{K}}$. Let $U = \{x | -1 < x < 1\} - K, x = 0$. If there exist $B = \{x | a \le x < b\} \in \mathbb{T}_l$ such that $x \in B \subseteq U$, then 0 < b < 1. Thus, there exist $n \in \mathbb{Z}_+$ that $0 < \frac{1}{n} < b$. Thus B is not a subset of U.

Then we proof that $\mathbb{T}_{\mathbb{K}}$ is not finer than \mathbb{T}_{l} . Let $U' = \{x | a' \leq x < b'\}$. If there exist $B' = \{x | a'' < x < b''\} or \{x | a'' < x < b''\} - K \text{ such that } a' \in B \subseteq U. \text{ Thus } a'' < a < b''. \text{ Thus } a'' < a < b''.$ there exist c that $a'' < x < a, x \in B, x \notin U'$. Thus $B' \nsubseteq U'$.

Thus the topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Definition 1.2.6 (subbasis). A subbasis \mathbb{S} for a topology on \mathbb{X} is a collection of subsets of $\mathbb X$ whose union equals $\mathbb X$. The topology generated by the subbasis $\mathbb S$ is defined to be the collection \mathbb{T}^7 of all unions of finite intersections of elements of \mathbb{S} .

1.2.1 Exercise

1. Show that if \mathbb{A} is a basis for a topology on \mathbb{X} , then the topology generated by \mathbb{A} equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.

Proof. As a subbasis is also a basis, we will directly prove the case of subbasis here.

Let $\mathbb{S} = \{\mathbb{T}_{\alpha}\}$ be set contain all the topologies that contain A. Let \mathbb{T} be the topology that A generated. Let $\mathbb{T}' = \cap \mathbb{T}_{\alpha}$.

First, $\mathbb{A} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}'$.

Also, $\mathbb{A} \subseteq \mathbb{T}$. Thus, $\mathbb{T} \in \mathbb{S}$. Thus, $\mathbb{T}' \subseteq \mathbb{T}$.

Thus, $\mathbb{T} = \mathbb{T}'$

The Order Topology

Definition 1.3.1 (interval). Let \mathbb{X} is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called **intervals** determined by a and b:

- $(a,b) = \{x | a < x < b\}$
- $(a,b] = \{x | a < x \le b\}$
- $[a,b) = \{x | a \le x < b\}$
- $[a,b] = \{x | a \le x \le b\}$

(a,b) is called an **open interval** on \mathbb{X} . [a,b] is called an **closed interval** on \mathbb{X} . (a,b] and [a, b) is called **half-open intervals**.

Definition 1.3.2 (order topology). ⁹ Let \mathbb{X} be a set with a simple order relation; assume \mathbb{X} has more than one element. Let \mathbb{B} be the collection of all sets of the following types:

• All open intervals (a, b) in X.

⁷It is obvious that \mathbb{T} is a topology, we just omit the proof here.

⁸It is obvious that \mathbb{T}' is also a topology, we just omit the proof here.

⁹The standard topology on \mathbb{R} is an order topology derived from the usual order on \mathbb{R} .

- All intervals of the form $[a_0,b)$, where a_0 is the smallest element (if exist) of \mathbb{X} .
- All intervals of the form $(a, b_0]$, where b_0 is the largest element (if exist) of \mathbb{X} .

The collection \mathbb{B} formed a basis for a topology on \mathbb{X} , which is called the order topology.

Definition 1.3.3 (ray). ¹⁰¹¹ If X is an ordered set, and a is an element of X, there are four subsets of X that are called **rays** determined by a:

- $(a, +\infty) = \{x | x > a\}$
- $(-\infty, a) = \{x | x < a\}$
- $[a, +\infty) = \{x | x \ge a\}$
- $(-\infty, a] = \{x | x \le a\}$

 $(a,+\infty)$ and $(-\infty,a)$ are called **open rays**. $[a,+\infty)$ and $(-\infty,a]$ are called **closed rays**.

1.4 The Product Topology

Definition 1.4.1 (product topology). Let \mathbb{X} and \mathbb{Y} be topological spaces. The **product topology** on $\mathbb{X} \times \mathbb{Y}$ having a basis \mathbb{B} containing all sets of the form $U \times V$, where U and V is open sets of \mathbb{X} and \mathbb{Y} respectively.

Theorem 1.4.1. ¹² If $\mathbb B$ and $\mathbb C$ is basis for the topology of $\mathbb X$ and $\mathbb Y$ respectively, then the collection

$$\mathbb{D} = \{B \times C | B \in \mathbb{B} and C \in \mathbb{C}\}\$$

is a basis for the topology of $\mathbb{X} \times \mathbb{Y}$

Definition 1.4.2 (projection). Let $\pi_1: \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ be defined by the equation:

$$\pi_1(x,y) = x$$

Let $\pi_2: \mathbb{X} \times \mathbb{Y} \to \mathbb{Y}$ be defined by the equation:

$$\pi_1(x,y)=y$$

The maps π_1 and π_2 are called the **projections** of $\mathbb{X} \times \mathbb{Y}$ onto its first and second factors, respectively.

Theorem 1.4.2. ¹³ The collection

$$\mathbb{S} = \{\pi_1^{-1}(U)|Uopenin\mathbb{X}\} \cup \{\pi_2^{-1}(V)|Vopenin\mathbb{Y}\}$$

is a subbasis for the product topology on $\mathbb{X} \times \mathbb{Y}$.

 $^{^{10}}$ open rays are always open sets in the order topology

¹¹the open rays also formed a subbasis of the order topology

 $^{^{12}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

¹³We omit the proof of this lemma as it is obvious.

1.5 The Subspace Topology

Definition 1.5.1 (subspace topology). Let \mathbb{X} be a topological space with topology \mathbb{T} . If Y is a subset of \mathbb{X} , the collection $\mathbb{T}_Y = \{Y \cap U | U \in \mathbb{T}\}$ is a topology on Y, called the **subspace** topology.

Y is also called a **subspace** of X

Lemma 1.5.1. ¹⁴ If \mathbb{B} is basis for the topology of \mathbb{X} , Y is a subset of \mathbb{X} then the collection

$$\mathbb{B}_Y = \{ B \cap Y | B \in \mathbb{B} \}$$

is a basis for the subspace topology on Y

Lemma 1.5.2. ¹⁵Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

Theorem 1.5.1. ¹⁶ If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$

Proof. Let $\mathbb{B}_{\mathbb{X}}$ and $\mathbb{B}_{\mathbb{Y}}$ and $\mathbb{B}_{\mathbb{X}\mathbb{Y}}$ be basis of topology of \mathbb{X} and \mathbb{Y} and $\mathbb{X} \times \mathbb{Y}$ respectively. Let $\mathbb{B}'_{\mathbb{X}}$ and $\mathbb{B}'_{\mathbb{Y}}$ and $\mathbb{B}'_{\mathbb{X}\mathbb{Y}}$ be basis of topology of A and A and $A \times B$ respectively. We will show that $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}} = \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$. Thus, the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$.

First, every element in $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ can be represented by $B_A \cap A \times B_B \cap B = B_A \times B_B \cap A \times B \in \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$ where $B_A \in \mathbb{B}'_{\mathbb{X}}, B_B \in \mathbb{B}'_{\mathbb{Y}}$. Thus $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}} \subseteq \mathbb{B}'_{\mathbb{X}\mathbb{Y}}$.

Next, we show that $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ generate the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$. For any open set U in $\mathbb{X} \times \mathbb{Y}$, and $\forall x \in U \cap A \times B, \exists B_{\mathbb{X}} \times B_{\mathbb{Y}} \in \mathbb{B}_{\mathbb{X}\mathbb{Y}}, x \in B_{\mathbb{X}} \times B_{\mathbb{Y}} \subseteq \mathbb{X} \times \mathbb{Y}$. Thus $x \in B_{\mathbb{X}} \times B_{\mathbb{Y}} \cap A \times B \subseteq A \times B, B_{\mathbb{X}} \times B_{\mathbb{Y}} \cap A \times B \in \mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$. Thus $\mathbb{B}'_{\mathbb{X}} \times \mathbb{B}'_{\mathbb{Y}}$ generate the topology $A \times B$ inherits as a subspace of $\mathbb{X} \times \mathbb{Y}$.gi

Definition 1.5.2 (ordered square). Let I = [0,1]. The set $I \times I$ in the dictionary order ¹⁷ topology will be called **ordered square**, and denoted by I_o^2

Definition 1.5.3 (convex). Given an ordered set \mathbb{X} , let us say that a subset \mathbb{Y} of \mathbb{X} is **convex** in \mathbb{X} if for each pair of points a < b of \mathbb{Y} , the entire interval (a, b) of points of \mathbb{X} lies in \mathbb{Y}

Theorem 1.5.2. ¹⁸ Let X be an ordered set in the order topology. Let Y be a subset of X that is convex in X. Then the order topology on Y is the same as the topology Y inherits as a subspace of X.

$$X_1 = (x_1, x_2, x_3 ...)$$

 $X_2 = (x'_1, x'_2, x'_3 ...)$

 $X_1 > X_2$ only when

$$\exists k \in \mathbb{Z}_+, \forall i \in \mathbb{Z}_+, 0 < i < k$$
$$x_i = x_i'$$
$$x_k > x_k'$$

 $^{^{14}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

 $^{^{15}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

 $^{^{16}}$ If $\mathbb X$ is an ordered set in the order topology, and $\mathbb Y$ is a subset of $\mathbb X$. The order relation, when restricted to $\mathbb Y$, makes $\mathbb Y$ into and ordered set. However, the resulting order topology on $\mathbb Y$ need not be the same as the topology that $\mathbb Y$ inherits as a subspace of $\mathbb X$.

¹⁷the dictionary means for $X_1, X_2 \in \mathbb{Y} = \mathbb{X}_1 \times \mathbb{X}_2 \times \mathbb{X}_3 \dots$ which:

¹⁸Given $\mathbb X$ is an ordered set in the order topology and $\mathbb Y$ is a subset of $\mathbb X$, we shall assume that $\mathbb Y$ is given the subspace topology unless we specifically state otherwise.

Proof. Consider the ray $(a, +\infty)$ in \mathbb{X} . If $a \in \mathbb{Y}$, then

$$(a, +\infty) \cap \mathbb{Y} = \{x | x \in \mathbb{Y} and x > a\}$$

This is an open ray of the ordered set of \mathbb{Y} . if $a \notin Y$, then a is either a lower bound on \mathbb{Y} or an upper bound on \mathbb{Y} , since \mathbb{Y} is convex. In the former case, the set $(a, +\infty) \cap \mathbb{Y}$ equals all of \mathbb{Y} , in the latter case, it is empty.

A similar remark shows that the intersection of the rat $(-\infty, a)$ with $\mathbb Y$ is either an open ray of $\mathbb Y$, or $\mathbb Y$ itself, or empty. Since the sets $(a, +\infty)\mathbb Y$ and $(-\infty, a) \cap \mathbb Y$ form a subbasis for the subspace topology on $\mathbb Y$, and since each is open in the order topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of \mathbb{Y} equals the intersection of an open ray of \mathbb{X} with \mathbb{Y} , so it is open in the subspace topology on \mathbb{Y} . Since the open rays of \mathbb{Y} are a subbasis for the order topology on \mathbb{Y} , this topology is contained in the subspace topology.

Exercise

1. A map $f: \mathbb{X} \to \mathbb{Y}$ is said to be a **open map** if for every open set $U \subseteq \mathbb{X}$, the set f(U) is open in \mathbb{Y} . Show that $\pi: \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ is open map.

Proof. An open set in $\mathbb{X} \times \mathbb{Y}$ can be represented by

$$\cup (U_i \times U_i')$$

where U_i, U'_i are open sets in X, Y, respectively.

Also,

$$\cup (U_i \times U_i') = \cup (U_i) \times \cup (U_i')$$

Thus,

$$\pi(\cup(U_i\times U_i'))=\cup(U_i)$$

Thus, $\pi(U)$ is open in \mathbb{X} .

- 2. Let \mathbb{X} and \mathbb{X}' denote a single set in the topologies \mathbb{T} and \mathbb{T}' , respectively; let \mathbb{Y} and \mathbb{Y}' denote a single set in the topologies \mathbb{U} and \mathbb{U}' , respectively. ¹⁹ Assume these sets are nonempty.
 - (a) Show that if $\mathbb{T}' \supseteq \mathbb{T}$ and $\mathbb{U}' \supseteq \mathbb{U}$, then the product topologies $\mathbb{X}' \times \mathbb{Y}'$ is finer than the product topology on $\mathbb{X} \times \mathbb{Y}$.
 - (b) Does the converse of the previous statement hold?
- 3. Show that the countable collection 20

$$\{(a,b) \times (c,d) | a < b, c < d, a \in \mathbb{Q}, b \in \mathbb{Q}, c \in \mathbb{Q}, d \in \mathbb{Q}\}$$

is a basis for \mathbb{R}^2

Proof. This is obvious if you prove that $(a,b) \times (c,d)$ is a rectangle in the \mathbb{R}^2 plane. \square

 $^{^{19}}$ what does \mathbb{X} , \mathbb{X}' , \mathbb{Y} , \mathbb{Y}' really mean here?? I do not know, so I just put the exercise here without a proof. 20 The prove of this set is countable is typically similar to Cantor's enumeration of a countable collection of countable sets.

4. Let X be an ordered set. If Y is a proper subset of X that is convex in X prove that Y may not be an interval or a ray in X.

Proof. Let $\mathbb{X} = \mathbb{R}^2$ with dictionary order. Then $Y = \{(x,y)| -1 \le x \le 1\}$ is convex in \mathbb{X} , however it is not an interval or a ray.

There is a false prove given by myself.

Proof. Let $\mathbb S$ be a set that contain all intervals and rays of $\mathbb Y$. We define a partial order on $\mathbb S$ by inclusion. So if there is a chain in $\mathbb S$:

$$S_1 \subseteq S_2 \subseteq S_3 \dots$$

Let

$$S = S_1 \cup S_2 \cup S_3 \cup \dots$$

Thus, S is an upper bound of the chain.

Thus, by Zorn's Lemma, there is a maximal element of \mathbb{S} , say U, then we prove that $U = \mathbb{Y}$. If $U \neq \mathbb{Y}$, then $\exists x, x \in \mathbb{Y} - U$.

If U is a ray say $(a, +\infty)$. Then x < a, thus $U \subseteq (x, +\infty) \subseteq \mathbb{B}$, then there is contradiction with the maximal element.

If U is an interval, the circumstance is similar with the proof of U is a ray.

Thus \mathbb{Y} is a ray or an interval.

However, there is issue with this proof, the set S does exists. However, it may not be an interval or ray, so it may not be contained in S