1. POLYNOMIAL EQUATIONS

- 1. The roots of the equation $x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$ ($a_1 \neq 0$), are α , $-\alpha$, β and γ . Show that
 - (a) $a_1a_2a_3 = a_1^2 + a_0a_3^2$,
 - (b) β , γ are the roots of the equation $a_1x^2 + a_1a_3x + a_0a_3 = 0$.

Solve the equation $9x^4 + 6x^3 - 9x^2 - 2x + 2 = 0$ given that two of the roots are equal in magnitude and opposite in sign. (J72/I/1)

2. (a) Find all the roots, real or complex, of the equation

$$\begin{vmatrix} x^4 & x & 1 \\ 16 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

(b) If α , β , γ are the roots of the equation $x^3 + bx^2 + ax + a = 0$, prove that

$$\begin{vmatrix} 1+\alpha & 1 & 1 \\ 1 & 1+\beta & 1 \\ 1 & 1 & 1+\gamma \end{vmatrix} = 0.$$
 (J72/II/1)

3. If $t \in R$ (the set of real numbers), find the set of values of t for which the solution set, in R, of the equation $tx^2 + x + 1 = 0$ is non-empty. Given that t is small and positive and the roots are denoted by α and β ($\alpha > \beta$), expand α and β in ascending powers of t as far as the term in t and describe how α

expand α and β in ascending powers of t as far as the term in t and describe how α and β vary as t tends to zero. (J73/II/1)

4. (a) If a, b, and c are non-zero constants such that the roots of $x^3 + ax^2 + bx + c = 0$ are α , β and $(\alpha + \beta)$, prove that $4ab = a^3 + 8c$, and form the cubic equation whose roots are α , β and $\alpha\beta$, giving the coefficients in terms of α and c.

(b) Make a sketch to show the regions in the x-y plane within which points (x, y) satisfy simultaneous inequalities $(x + 1)^2 \ge 4$ and $y^2 \ge 4x^2$. (N73/I/1)

5. (a) Solve for x the equation $x^2 - 2ax \cos\theta + a^2 = 0$ and show that the expression on the left-hand side is a factor of $E \equiv x^{2n} - 2a^n x^n \cos n\theta + a^{2n}$. Factorise E as a product of factors that are quadratic in x.

(b) If $\beta \neq 1$ is a root of the equation $z^5 = 1$, show that $1 + \beta + \beta^2 + \beta^3 + \beta^4 = 0$. Hence or otherwise find a quadratic equation, with real coefficients, whose roots are $\beta + \beta^4$ and $\beta^2 + \beta^3$. (N74/II/17)

- 6. Let p(x) be a real polynomial and a be a real number. Show that there is a real polynomial q(x) such that $p(x) \equiv (x-a)^2 q(x)$ if, and only if, p(a) = 0 = p'(a). Hence, or otherwise, factorise the polynomial $4x^3 36x^2 + 81x 54$, given that it has a repeated factor. (J75/I/1)
- 7. Express $(y+z)^2 (y^2-z^2) + (z+x)^2 (z^2-x^2) + (x+y)^2 (x^2-y^2)$ as a product of four first-degree factors. (J76/I/1)

- 8. (a) Express $\frac{1}{(x^2+1)(x-2)}$ in partial fractions.
 - (b) A cubic polynomial P(x), with real coefficients, has remainder -2 when divided by x-1 and remainder -6 when divided by x+1. Find the remainder when P(x) is divided by x^2-1 .

 If it is also known that one of the roots of the equation P(x)=0 is i (where $i^2=-1$), find P(x).
- 9. The equation $x^3 + ax^2 + bx + c = 0$, in which a, b, c are non-zero constants, has roots which form a geometric progression. Prove that $a^3c = b^3$. Prove also that if the common ratio of the progression is 2, then $7b = 2a^2$. Solve the equation $\sqrt{2x^3 7x^2 + 7\sqrt{2x 4}} = 0$. (N77/I/1)
- (a) Solve the equation $2x^3 3x^2 59x + 30 = 0$, given that the roots are in arithmetic progression.
 - (b) The roots of the equation $2x^3 + x^2 5x + 3 = 0$ are α , β , γ . Find
 - (i) $\alpha^2 + \beta^2 + \gamma^2$,
 - (ii) $\alpha^3 + \beta^3 + \gamma^3$,
 - (iii) a cubic equation, with numerical coefficients, which has roots $\alpha + 1$, $\beta + 1$, $\gamma + 1$. (J78/I/1)
- 11. The cubic equation $x^3 + ax^2 + bx + c = 0$, in which a, b, c are real constants, has roots x_1, x_2, x_3 . Give expressions for $\sum_{i=1}^{3} x_i$ and $\sum_{i=1}^{3} x_i^2$ in terms of the coefficients of i=1

the cubic equation.

Obtain, in either order,

- (a) the equation $\sum_{i=1}^{3} x_i^3 + a \sum_{i=1}^{3} x_i^2 + b \sum_{i=1}^{3} x_i + 3c = 0,$
- (b) an expression for $\sum_{i=1}^{3} x_i^3$ in terms of a, b, c.

Hence, or otherwise, given the simultaneous equations

$$p + q + r = 4,$$

 $p^2 + q^2 + r^2 = 12,$
 $p^3 + q^3 + r^3 = 64,$

find a cubic equation which has p, q and r as its roots, and solve this equation.

(N78/I/1)

2. (a) In the quadratic equation $(k+3)x^2-2(k+1)x+2k-1=0$, k is a real constant and $k \neq -3$.

Find the set of values of k for which the equation has

- (i) real roots,
- (ii) real roots, one positive and one negative,
- (iii) real, positive roots.
- (b) The quadratic equation $5x^2 6x + 3 = 0$ has roots α and β . Find the values of

(i)
$$\alpha^2 + \alpha\beta + \beta^2$$
, (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$. (J79/I/1)

- 13. If z_1 and z_2 are complex numbers prove that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, and $\overline{z_1} \ \overline{z_2} = \overline{z_1} \ \overline{z_2}$. Deduce that if z_1 is a root of the equation $az^4 + bz^3 + cz^2 + dz + e = 0$, where $a, b, c, d, e, \epsilon R$, then $\overline{z_1}$ is also a root. Hence, or otherwise,
 - (a) find a polynomial of the fourth degree with real coefficients, which has 2+i and 1-2i as two of its roots,
 - (b) solve the equation $4z^4 24z^3 + 39z^2 + 6z 10 = 0$, given that 3 i is one of the roots. (J79/II/1)
- 14. (a) Solve the equation $6x^3 + 25x^2 62x + 24 = 0$, given that the product of two of the roots is -8.
 - (b) The roots of the equation $36x^3 + 72x^2 + 23x 6 = 0$ are α , β , γ . Find a cubic equation with numerical coefficients, which has roots $6\alpha + 1$, $6\beta + 1$, $6\gamma + 1$.

 (J81/I/1)
- 15. The equation $x^2 2x + a + bx^{-1} + 4x^{-2} = 0$ has roots α , β , γ , δ . Given that $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 12$, and $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = 1$, find the values of a and b.

Show that if $y = x + 2x^{-1}$, the given equation can be written as a quadratic equation in y.

Hence, or otherwise, solve the given equation.

(N81/I/1)

- 16. The equation $2x^3 3x^2 + ax + b = 0$, where a and b are real constants, has roots α , β and γ . Given that $\alpha = 1 i \sqrt{3}$,
 - (a) find β , γ , a and b,
 - (b) prove that, for $n \in \mathbb{Z}$,

$$\alpha^{n} + \beta^{n} + \gamma^{n} = 2^{n+1} \cos\left(\frac{1}{3}n\pi\right) + \left(-\frac{1}{2}\right)^{n}.$$
 (J82/I/3)

- 17. (a) Determine the complex numbers v and w for which $z^2 + (4-2i)z = (z+v)^2 w$, for all $z \in \mathbb{C}$.
 - (b) Find the square roots of 5-12i.
 - (c) Solve the quadratic equation $z^2 + (4-2i)z = 2-8i$.
 - (d) Obtain an equation, of degree four with integer coefficients, having as two of its roots -5 + 3i and 1 i. (N82/I/1)
- 18. The equation $x^3 + px^2 + qx + r = 0$ has positive roots α , β , γ . The arithmetic mean of α , β , γ , is A; the geometric mean is G, where $G = (\alpha \beta \gamma)^{\frac{1}{3}}$; and the harmonic mean is H, where $H^{-1} = \frac{1}{3}(\alpha^{-1} + \beta^{-1} + \gamma^{-1})$. Express p, q, r in terms of A, G, H. Given that three numbers have arithmetic mean 4, geometric mean 2 and harmonic mean 1, show that the numbers are the roots of the equation $x^3 12x^2 + 24x 8 = 0$.

Hence, or otherwise, find the numbers.

(N82/II/1)

- 19. Prove that if $(x-a)^2$ is a factor of the polynomial f(x) then (x-a) is a factor of f'(x). Give a counter-example to show that the converse of this result is not true.
 - (a) Solve the equation $3x^3 + 29x^2 + 65x 25 = 0$, given that two of its roots are equal.
 - (b) Solve the equation $54x^4 + 27x^3 198x^2 + 164x 40 = 0$, given that three of its roots are equal. (J83/II/1)

20. The equation $x^3 - 2x^2 + 3x - 5 = 0$ has roots α , β , γ . Given that the equation $x^3 + px^2 + qx + r = 0$ has roots $\beta + \gamma$, $\gamma + \alpha$, $\alpha + \beta$, obtain numerical values for p, q and r.

- 21. (a) Given that the roots of the equation $x^3 + px^2 + qx + r = 0$ are three consecutive terms of an arithmetic progression, show that $2p^3 + 27r = 9pq$.
 - (b) Given that the roots of the equation $x^3 + px^2 + qx + r = 0$ are three consecutive terms of a geometric progression, find a condition that p, q and r must satisfy.
- The equation $3x^4 + 4x^3 x^2 10x 6 = 0$ has roots α , β , γ , δ . Given that $\alpha\beta = 2$, write down the value of $\gamma\delta$, and express $3x^4 + 4x^3 x^2 10x 6$ as a product of two quadratic factors.

Hence, or otherwise, solve the equation. (N84/I/1)

- 23. (a) Express $\cos 5\theta$ as a polynomial in $\cos \theta$.
 - (b) Write down the solutions of the equation $\cos 5\theta = 1$, for $0 \le \theta < 2\pi$. Deduce that $\cos \frac{2}{5}\pi$ is one root of the equation $16x^4 + 16x^3 - 4x^2 - 4x + 1 = 0$.
 - (c) By expressing $16x^4 + 16x^3 4x^2 4x + 1$ in the form $(ax^2 + bx + c)^2$, or otherwise, obtain the exact value of $\cos \frac{2}{\pi} \pi$ (N84/II/1)
- 24. The equation $x^3 9x^2 + 28x 27 = 0$ has roots α , β and γ .
 - (a) Find the numerical value of $x^3 + \beta^3 + \gamma^3$.
 - (b) Given that the equation $y^3 + py^2 + qy + r = 0$ has roots $\alpha 3$, $\beta 3$, $\gamma 3$, obtain numerical values for p, q and r.
 - (c) Using the result of (b), or otherwise, determine the number of real roots of the equation $x^3 - 9x^2 + 28x - 27 = 0$, and find between which pair of consecutive integers ecah real root lies. (J85/I/1)
- 25. The equation $x^3 + px + q = 0$ has roots α , β , γ .
 - (a) Express $\alpha^2 + \beta^2 + \gamma^2$ in terms of p and q.
 - (b) Prove that $\alpha^3 + \beta^3 + \gamma^3 = -3q$.
 - (c) Find the numerical value of $\alpha^4 + p\alpha^2 + q\alpha$.
 - (d) Prove that $2(\alpha^4 + \beta^4 + \gamma^4) (\alpha^2 + \beta^2 + \gamma^2)^2 = 0$. (N85/I/1)
- (a) Solve the equation $x^3 + x^2 19x + 5 = 0$, given that the product of two of its 26. roots is equal to 1
 - (b) The roots of the equation $x^4 6x^3 + 5x^2 6x + 4 = 0$ are α , β , γ , δ . By using the substitution $x = \sqrt{y}$, or otherwise, show that the equation having roots α^2 , β^2 , γ^2 , δ^2 is $y^4 - 26y^3 - 39y^2 + 4y + 16 = 0$ Hence, or otherwise, find the exact value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$. (J86/I/1)

Given that α , β and γ are the roots of the cubic equation $x^3 + x^2 - 2x - 5 = 0$, find the exact values of

- (i) $\alpha^2 + \beta^2 + \gamma^2$, (ii) $\alpha^3 + \beta^3 + \gamma^3$,
- (N86/I/1)

The roots of the equation $x^3 - 4x - 1 = 0$ are α , β and γ . Find the exact value of $\alpha^2 + \beta^2 + \gamma^2$ and of $\alpha^4 + \beta^4 + \gamma^4$. (J87/V1)

29. Show, by considering the relation $y = (1 + x)^{-1}$ between the variables x and y, or otherwise, that if α , β , λ and δ are the roots of the equation $x^4 - 2x - 1 = 0$, then $(1 + \alpha)^{-1}$, $(1 + \beta)^{-1}$, $(1 + \lambda)^{-1}$ are the roots of the equation $2y^4 - 6y^3 + 6y^2 - 4y + 1 = 0$.

Hence find the exact value of $(1 + \alpha)^{-2} + (1 + \beta)^{-2} + (1 + \lambda)^{-2} + (1 + \delta)^{-2}$.

39. Given that α , β and γ are the roots of the equation $x^3 + 3x - 1 = 0$, find the exact value of $\alpha^3 + \beta^3 + \gamma^3$. (J88/I/1)

- 31. For the equation $x^4 + 2x^3 + 3x^2 + 5x + 1 = 0$
 - (i) obtain the sum of the squares of the roots of the equation;
 - (ii) show that the equation has two negative roots, α and β , such that $-2 < \alpha < \beta < 0$;
 - (iii) deduce from (i) and (ii), or prove otherwise, that the equation has no other real roots;
 - (iv) show that γ and δ , the complex roots of the equation, satisfy $|\gamma| = |\delta| = 1/\sqrt{(\alpha\beta)}$. (N88/I/1)
- 32. Given that $x^3 + x^2 + 2x 2 = 0$ and that $y = \frac{x}{x+2}$, show that $4y^3 + 2y^2(1-y) + 2y(1-y)^2 (1-y)^3 = 0$.

Hence find the exact value of $(\frac{\alpha}{\alpha+2})^2 + (\frac{\beta}{\beta+2})^2 + (\frac{\gamma}{\gamma+2})^2$, where α , β and γ are the roots of the given cubic equation in x. (J89/I/1)

33. The cubic equation $x^3 + px + q = 0$, where $q \neq 0$, has roots α , β and γ . By putting $y = -\frac{q}{x}$, or otherwise, show that the cubic equation $y^3 - py^2 - q^2 = 0$ has roots $\beta\gamma$, $\gamma\alpha$ and $\alpha\beta$.

Show that $\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2 = p^2$. (N89/I/1)

34. Given that α , β and γ are the roots of the equation x^3 - 2x - 5 = 0, find a cubic equation which has roots α^3 , β^3 and γ^3 .

Hence, or otherwise, find the values of $\alpha^3 + \beta^3 + \gamma^3$ and $\alpha^6 + \beta^6 + \gamma^6$. (190/1/2)

35. The roots of the equation $x^3 - 3x^2 - 4x - 1 = 0$ are α , β and γ . Find the exact values of $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha^3 + \beta^3 + \gamma^3$. (N90/I/1)

