5CCS2FC2: Foundations of Computing II

Graph Algorithms

Week 5

Dr Christopher Hampson

Department of Informatics

King's College London

Topological Sorting

Directed Acyclic Graphs (DAGs)

- Directed Acyclic Graphs (DAGs)
 - A graph G=(V,E) is said to be a directed acyclic graph if it is irreflexive and does not contain any cycles of length ≥ 2

if there is a path $u \leadsto v$ then there is no path $v \leadsto u$

(for all vertices $u,v\in V$)

Example: Software Dependency Graphs

(http://cxf.apache.org/docs/cxf-dependency-graphs.html)

Topological Sorting

Topological Sort

• A topological sorting of a Directed Acyclic Graph G=(V,E) is a sequence of vertices $Q=\langle v_1,v_2,\ldots,v_n\rangle$ such that

If
$$v_i \leadsto v_j$$
 then $i < j$ for all $i, j \le n$

(i.e. all the arrows point 'downstream' from v_1 to v_n)

Topological Sorting

Topological Sort

- Step 1) Select any unsorted node $u \in V$ and add u to a stack.
- Step 2) While the stack is not empty
 - Step 2.1) Identify the vertex u at the top of the stack (but do not remove yet!)
 - Step 2.2) If Adj(u) is empty or have all been visited, pop u from the stack and add u to the front of the sorted queue Q,
 - Step 2.3) Else, add all unsorted successors $(\operatorname{\sf Adj}(u)-Q)$ to the top of the stack
- Step 3) Repeat from Step 1 until all vertices are sorted.

(this implementation employs a Depth-First-Search strategy)

Transpose Graph

Transpose Graph

• The ${
m transpose}$ of a graph G=(V,E) is the directed graph $G^{\sf T}=(V,E^{\sf T})$, where

$$(a,b) \in E^{\mathsf{T}} \quad \Longleftrightarrow \quad (b,a) \in E$$

(i.e., G^{T} is the same as G with all the arrows reversed)

- Strong Connected Component (SCC)
 - A strongly connected component of a graph G=(V,E) is a subset $C\subseteq V$, such that

there is a path $u \leadsto v$ and a path $v \leadsto u$, for all $u,v \in C$

(single nodes can be their own SCCs)

Component Graph

• The component graph of a graph G=(V,E) is a new graph $G^{
m scc}=(V^{
m scc},E^{
m scc})$ whose vertices are the strongly connected components of G, and

$$(A,B) \in E^{ extsf{SCC}} \quad \Longleftrightarrow \quad egin{array}{l} A
eq B ext{ and } b \in B ext{, such that } (a,b) \in E \end{array}$$

Theorem The component graph G^{scc} is a Directed Acyclic Graph.

Proof:

Step 1) Suppose, for contradiction, that there is a cycle:

(let A and B to two distict SCCs in the cycle)

Step 2) Let $a \in A$ and $b \in B$, then by definition there must be a path from a to b, and from b back to a,

Step 3) Therefore, a and b must belong to the same SCC, despite choosing $A \neq B$.

Q.E.D.

Strongly Connected Components

Step 1) Perform a topological sort on the graph G to obtain an ordering $Q = \langle v_1, \dots, v_n \rangle$.

(this will not be a *true* topological sort due to possible cycles)

- Step 2) While the queue Q is non-empty
 - Step 2.1) Dequeue the first (ungrouped) element u from Q and initialise a new component $S=\{u\}$
 - Step 2.2) Perform a DFS from u on the transpose graph G^T , adding all newly discovered vertices to S.
 - Step 2.3) Add S to a list of Strongly Connected Components and repeat from Step 2.

Minimum Spanning Tree Algorithms

Minimum Spanning Trees

Spanning Tree

• A spanning tree for a weighted graph G=(V,E,w) is a tree T=(V,E') in which each vertex is connected and $E'\subseteq E$,

Minimum Spanning Tree (MST)

 A minimum spanning tree is a spanning tree whose weight is minimal out of all possible spanning trees

Kruskal's Spanning Tree Algorithm

Kruskal's Algorithm

- Step 1) Sort the edge list E by weight (shortest first)
- Step 2) Initalise the set $T = \emptyset$,
- **Step 3)** Dequeue shortest edge (u, v) from E:
 - Step 3.1) If $T \cup \{(u,v)\}$ is acyclic, set $T := T \cup \{(u,v)\}$.
- **Step 4)** Repeat from Step 3.

(we need to also consider how to *efficiently* test whether $T \cup \{(u,v)\}$ is acyclic)

Kruskal's Spanning Tree Algorithm

Theorem The worst-case running time for Kruskal's Algorithm is $O(|E|\log|E|)$.

Proof: (sketch)

ullet Step 1 takes the longest time and it responsible for the $O(|E|\log|E|)$ upper bound on the running time

time to sort an array of size $n = O(n \log n)$

• Step 2 takes constant time

step 2 =
$$O(1)$$

• In Step 3 we dequeue each edge at most once

step 3 = O(|E|)

Kruskal's Spanning Tree Algorithm

• Step 3.1 can be performed by checking whether u and v are already connected, since a second connection would create a cycle.

time to check connectedness
$$= O(|V| \ \alpha(|V|))$$

where α is a *very very!* slow growing function that we can forget about.

(see Cormen et al. Section 21.3 for more details)

Hence, the total worst-case running time is given by

$$O(|E|\log |E|) + O(1) + O(|E|) + O(|V|\alpha(|V|)) = O(|E|\log |E|)$$

Q.E.D.

Prim's Spanning Tree Algorithm

Prim's Algorithm

- Step 1) Select a root node $r \in V$,
- Step 2) Initialise the set $T = \emptyset$,
- **Step 3)** Add the adjacent edges $\operatorname{\mathsf{Adj}}(r)$ to a priority queue Q
- **Step 4)** Dequeue the shorted edge (u, v) from the queue,
 - **Step 4.1)** If u and v are disconnected in T, set $T:=T\cup\{(u,v)\}$.
 - Step 4.2) Add to the queue Q any new edges adjacent to u or v.
- **Step 5)** Repeat from Step 4.

End of Slides!

