Electronic Systems

Digital Representations

Ing. Luca Zulberti – luca.zulberti@phd.unipi.it Prof. Massimiliano Donati – massimiliano.donati@unipi.it Prof. Luca Fanucci – luca.fanucci@unipi.it

Agenda

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

Agenda

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

Rounding $\mathbb{R} \to \mathbb{Z}$

- Greatest preceding integer $y = [x] = floor(x) = \max(y \in \mathbb{Z} : y \le x)$
- Least succeeding integer $y = [x] = ceil(x) = min(y \in \mathbb{Z} : y \ge x)$

Rounding $\mathbb{R} \to \mathbb{Z}$

- Round half-up
- Round half-down
- Round half-away
- Round half-towards

$$y = round(x) = [x + 0.5]$$

$$y = round(x) = [x - 0.5]$$

$$y = round(x) = sgn(x)[|x| + 0.5]$$

$$y = round(x) = sgn(x)[|x| - 0.5]$$

Rounding $\mathbb{R} \to \mathbb{Z}$

import math

#include <math.h>

```
y = floor(x)
```

y = ceil(x)

y = round(x)

y = fix(x)

$$y = math.floor(x)$$

y = math.ceil(x)

y = round(x)

y = int(x)

$$y = floor(x)$$

y = ceil(x)

y = round(x)

y = (int)x

=ARROTONDA.DIFETTO(A1;1)

=ARROTONDA.ECCESSO(A1;1)

=ARROTONDA (A1; 0)

=ARROTONDA.PER.DIF(A1;0)

Unsigned

- Given N-bit
- 2^N representations
- $UN(N) = [0:2^N 1]$

$$x = b_{N-1}b_{N-2} \dots b_1b_0 = \sum_{k=0}^{N-1} b_k 2^k$$

$$N = \lceil \log_2(x+1) \rceil$$

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Unsigned

- Addition needs one bit more (MSB)
 - Avoid overflow or carry-out (wrap-around)

•
$$UN(N) + UN(N) \rightarrow UN(N+1)$$

•
$$UN(N) + UN(M) \rightarrow UN(\max(N, M) + 1)$$

	1	0	1	1	0	0	1	0
		1	1	1	1	0	1	1
1	0	0	1	0	1	1	0	1

$$178 + 123 = 301$$

Unsigned

- Multiplication is representable on the sum of word length
- $UN(N) \times UN(N) \rightarrow UN(2N)$
- $UN(N) \times UN(M) \rightarrow UN(N+M)$

- Sign and Magnitude
 - The MSB is the sign (0: positive, 1: negative)
 - Others are the magnitude

$$x = (-1)^{b_{N-1}} \times \sum_{k=0}^{N-2} b_k 2^k$$

• N = 8

- Biased or Excess-K
 - The «all zero» representation is centered on -K
 - Representation as translation

$$x = -K + \sum_{k=0}^{N-1} b_k 2^k$$

•
$$N = 8$$

- One's complement
 - Negative integers are bitwise negation of positives
 - Bitwise negation is the same of $2^N 1 |x|$

$$x = -b_{N-1}(2^N - 1) + \sum_{k=0}^{N-2} b_k 2^k$$

•
$$N = 8$$

$$b_7$$
 b_6 b_5 b_4 b_3 b_2 b_1 b_0
 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 $-b_7(2^7-1)$

- Two's complement
 - Negative integers are bitwise negation of positives+1
 - right to left, until first '1', then flip the rest
 - Is the same of $2^N |x|$

$$x = -b_{N-1}2^{N-1} + \sum_{k=0}^{N-2} b_k 2^k$$

•
$$N = 8$$

$$b_7$$
 b_6 b_5 b_4 b_3 b_2 b_1 b_0
 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 $-b_7$

• Two's complement (signed de facto)

•
$$SG(N) = [-2^{N-1}: 2^{N-1} - 1]$$

$$N = \lceil \log_2(x+1) \rceil + 1$$
 if $x \ge 0$
 $N = \lceil \log_2(|x|) \rceil + 1$ if $x < 0$

- C2 Balanced representation
- $SG_R(N) = [-2^{N-1} + 1:2^{N-1} 1]$

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

Word length extension

- Unsigned Extension
 - Insert '0' as new MSB

- Signed (C2) Extension
 - Copy the MSB as new MSB
 - From $x_{C2_{N+1}} = |x|_{2^{N+1}}$

Addition

- Addition "needs" one bit more (MSB copied)
 - Avoid C2 overflow
 - Digital native $(x \pm y)_{C2} = |x_{C2} \pm y_{C2}|_{2^N}$
- $SG(N) + SG(N) \rightarrow SG(N+1)$
- $SG(N) + SG(M) \rightarrow SG(\max(N, M) + 1)$

Extended 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 -78 + 123 = 45

Don't mind the carry out in C2

Multiplication

• Multiplication is representable on the sum of word length

•
$$SG(N) \times SG(N) \rightarrow SG(2N)$$
 $SG_B(N) \times SG_B(N) \rightarrow SG_B(2N-1)$

•
$$SG(N) \times SG(M) \rightarrow SG(N+M)$$
 $SG_B(N) \times SG_B(M) \rightarrow SG_B(N+M-1)$

!!! Digital circuits **DO NOT** work intrinsically with C2 representation for multiplication !!!

- Absolute values multiplication (unsigned)
- Dedicated Architectures (Booth's algorithm, Baugh-Wooley multiplier...)

Shift Operation

- Shift Right Logical (srl)
 - Discard k bit from right and insert k zeros from left ($\left\lfloor \frac{x}{2^k} \right\rfloor$ on unsigned)

$$b_7$$
 b_6 b_5 b_4 b_3 b_2 b_1 b_0 $\gg 3$ 0 0 0 b_7 b_6 b_5 b_4 b_3

- Shift Right Arithmetical (sra)
 - Discard k bit from right and insert k MSB from left $(\left\lfloor \frac{x}{2^k} \right\rfloor)$ on signed)

$$b_7$$
 b_6 b_5 b_4 b_3 b_2 b_1 b_0 $\gg 3$ b_7 b_7 b_7 b_6 b_5 b_4 b_3

- Shift Left Logical (sll)
 - Discard k bit from left and insert k zeros from right ($x \times 2^k$ on unsigned and signed)

Agenda

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

Real Representations

Two models

- Floating-Point
- Fixed-Point

Properties

- **Precision**: Number of bit used.
- Resolution: Smallest positive number representable, zero excluded.
- **Range**: The set given by the minimum negative number and maximum positive number.
- Accuracy: Maximum error from the real number and its representation (usually = Resolution/2).
- **Dynamic Range**: Ratio of maximum positive over minimum positive, zero excluded (dB).

$$x = M \times \beta^E$$

- M =Significand, signed fraction
- $\beta = \text{Base}$
- E = Exponent, signed integer
- "Normalized Form" $\rightarrow M$ representation with the MSDigit different from zero.

- Standard IEEE 754
 - Single Precision (32 bit)
 - Double Precision (64 bit)

- M = Significand, 24 bit of magnitude +1 bit for sign
 - F = Fractional, 23 bit stored + 1 implicit, for normalized form 1.fff...
 - s = Sign bit
- β = Base 2
- E = Exponent, 8-bit integer with excess-127, biased (0 and 255 used for special cases)

$$x = (-1)^s \times \left(1 + \sum_{k=1}^{23} b_{23-k} 2^{-k}\right) \times 2^{E-127}$$

• Standard IEEE 754

	S	M	E	bias	~Min	~Max	DR	$\operatorname{Max} \epsilon_r$
Single	1 bit	1+23 bit	8 bit [-126:127]	127	10^{-38}	10+38	$1529~\mathrm{dB}$	$< 6 \times 10^{-8}$
Double	1 bit	1+51 bit	11 bit [-1022:1023]	1023	10^{-308}	10 ⁺³⁰⁸	12312 dB	$< 3 \times 10^{-16}$

Non-Uniform numbers distribution

- Standard IEEE 754
 - Special cases

Special cases must be managed with the same performance as normal cases.

• Standard IEEE 754

Addition and Subtraction

- Align Fractional parts based on Exponents
- Compute the result
- Normalization and Round-off
 - Overflow possibility $(\pm \infty)$
 - Underflow possibility (denormalized)

Multiplication

- Add the exponents
- Multiply Fractional
- Normalization of result
- XOR for sign bit

MIPS FPA for add, sub

Fixed-Point

• Represent less order of magnitude than the floating-point ranges.

• But follow the integer arithmetic!!

$$x = N \times LSB_{value}$$

• If the LSB_{value} is a power of 2, we can effectively see the decimal point.

$$x = \underbrace{b_{M-1}b_{M-2}\dots b_1b_0}_{integer\ part} \underbrace{b_{-1}\dots b_{-(F-1)}b_{-F}}_{fractional\ part} = \sum_{k=-F}^{M-1} b_k 2^k$$

 $0 \quad 1 \quad = 9.0625 = 145 \times 2^{-4}$

• Fixed Point works exactly as integer representation but scaled by the weight of the LSB.

Fixed-Point

	Precision	Resolution	Accuracy	Range	DR
UN	8 bit	LSB	LSB/2	[0:255]	≈ 48 dB
SG	8 bit	LSB	LSB/2	[-128:127]	≈ 42 dB
UN	16 bit	LSB	LSB/2	[0:65535]	≈ 96 dB
SG	16 bit	LSB	LSB/2	[-32768:32767]	≈ 90 dB
UN	32 bit	LSB	LSB/2	[0:4294967295]	≈ 193 dB
SG	32 bit	LSB	LSB/2	[-2147483648:2147483647]	≈ 187 dB

• Uniform numbers distribution

Agenda

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

Quantization

$$x \to Q[x]$$

- Q[x] is the quantization function.
- Should be one of the rounding (or floor) techniques showed.

$$Q[x] = floor \mid round \quad \left(\frac{x}{LSB}\right) \times LSB$$
Integer

• absolute error is $\epsilon_A = |Q[x] - x|$

Quantization

- How to select the LSB or the Precision for a signal, or a variable(s), representation?
- Two cases: **starts from the LSB** or reach the LSB.
- If the *LSB* is a power of 2 and a given ϵ_A is required (accuracy requirements)

$$LSB = 2^{-F} \le \epsilon_A$$
 $F = \left[\log_2\left(\frac{1}{\epsilon_A}\right)\right]$

Example

Represent $e=2.718281828\ldots$ with max $\epsilon_A=10^{-3}$ μ

$$F = \left[\log_2\left(\frac{1}{\epsilon_A}\right)\right] = 10 \qquad \to LSB = 2^{-10}$$

$$Q[e] = \left[\frac{e}{2^{-10}}\right] \times 2^{-10} = 2784 \times 2^{-10} = 2.71875$$

Quantization

- How to select the LSB or the Precision for a signal, or a variable(s), representation?
- Two cases: starts from the LSB or reach the LSB.
- If a range of reals has to be represented on *N* bits, we may normalize, remap, this range.

Hp: $\max x > 0$;

 $\min x < 0$

$$LSB = \frac{\max x}{2^{N-1} - 1} \quad or \quad \frac{|\min x|}{2^{N-1}}$$

Example

Represent
$$[-\pi, \pi)$$
 on $N = 8$ bit $\rightarrow LSB = \frac{\pi}{2^{N-1}} = 0.024543692606 ...$

$$[-\pi,\pi) \rightarrow [-128:127] \times LSB$$

Quantization — Truncation

• Truncation discard T bit from right (LSBs).

- LSB changes value $LSB_{\chi_T} = LSB_{\chi} \cdot 2^T$
- - $x_T = floor\left(\frac{x}{2^T}\right)$

Simple, cut away T LSBs wires. Mean value altered.

• $x_T = round\left(\frac{x}{2T}\right)$

More Complex but does not alter the mean value.

Quantization — Saturation

- Saturation discard S bit from left (MSBs) but implements a clipping strategies on data.
- LSB does not change value $LSB_{x_S} = LSB_x$

$$x_{S} = \begin{cases} x & x \in [-2^{N-S-1} + 1: 2^{N-S-1} - 1] \\ -2^{N-S-1} + 1 & x < -2^{N-S-1} + 1 \\ 2^{N-S-1} - 1 & x > 2^{N-S-1} - 1 \end{cases}$$

Agenda

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

Bit-true implementation

- Starting from a Problem "P" described by math formulation.
- The Design goes through many levels of abstraction to implement a digital circuit.

Math

Problem formulation

Floating-Point

- Solving Algorithm ϕ
- MATLAB
- C/C++
- Python
- ...

Algorithm

Fixed-Point

- Approx Algorithm ϕ^*
 - MATLAB
- C/C++
- Python
- ...

Implementation

• Bit-true model

RTL

- HW definition for ϕ^*
- VHDL
- Verilog
- . .

Architecture

- Bit-true model
- Cycle-true model
- Blocks Partitioning

Math

Ploat

ixeo

RTL

- Compute the magnitude of a complex number
- Problem $P(a,b) = \sqrt{a^2 + b^2}$
- Square root operator is not easy in hardware, we need an approximated algorithm.

$$\phi(a,b) = \alpha \max(|a|,|b|) + \beta \min(|a|,|b|)$$

• Where α and β are real constant.

Math `

Floa

ixe

RTL

- How to **measure the approximation of** $\phi(a, b)$ vs the real problem P(a, b)?
- First, we have to select one metric to optimize (cost function). Common examples:
 - Maximum Error

$$MAX_E = \max_{X}(|\phi(x) - P(x)|)$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{card(X)^*} \sum_{x} (\phi(x) - P(x))^2$$

*cardinality/dimension of vector x

GOAL: Are there some α and β exact values that "minimize" a cost function?

- Let's take points over the unitary radius for $0 \le \theta \le \frac{\pi}{4}$

•
$$\phi(\theta) = \alpha \cos(\theta) + \beta \sin(\theta)$$
 for $0 \le \theta \le \frac{\pi}{4}$

- For $\theta = 0$ we hit $\phi = \alpha$
- For $\theta = \frac{\pi}{4}$ we hit, symmetrically, $\phi = \frac{\sqrt{2}}{2}(\alpha + \beta)$

- If $\alpha = 1$ $\beta = \sqrt{2} 1$ the max error is on $\theta_{max} = \arctan \frac{\beta}{\alpha} = \frac{\pi}{8}$ $MAX_E \approx 0.0824 \ (8.24\%)$
- We can reduce α , β and balance the errors
- $E(\theta) = |\alpha \cos(\theta) + \beta \sin(\theta) 1|$
 - $E(0) = 1 \alpha$
 - $E\left(\frac{\pi}{8}\right) = \alpha \cos \frac{\pi}{8} + \beta \cos \frac{\pi}{8} 1$
 - $E\left(\frac{\pi}{4}\right) = 1 \alpha \cos \frac{\pi}{4} \beta \cos \frac{\pi}{4}$

• We want to find
$$\alpha, \beta$$
 so that:
$$\begin{cases} E\left(\frac{\pi}{8}\right) = E(0) \\ E\left(\frac{\pi}{4}\right) = E(0) \end{cases}$$

Math

$$\beta = \frac{2\sin\frac{\pi}{8}}{1 + \cos\frac{\pi}{8}} \approx 0.39782 \dots$$

Math

loat

ixec

RTL

- However, we can write a floating-point model
- Find the optimum (min) of a cost function on 2D space with numerical computations.

Math

oat > Fi

ixed

RTL

• To achieve bit-true model we have to quantize α, β

•
$$Q[\alpha] = round\left(\frac{\alpha}{2^{-F}}\right) \times 2^{-F}$$

•
$$Q[\beta] = round\left(\frac{\beta}{2^{-F}}\right) \times 2^{-F}$$


```
F = 1 alpha = 2/2 beta = 1/2
                                    error = 11.8034\%
F = 2 alpha = 4/4 beta = 2/4
                                    error = 11.8034\%
F = 3 alpha = 8/8 beta = 3/8
                                    error = 6.8\%
F = 4 alpha = 15/16 beta = 6/16
                                    error = 7.1891\%
F = 5 alpha = 31/32 beta = 13/32
                                    error = 5.0484\%
F = 6 alpha = 61/64 beta = 25/64 error = 4.9794\%
F = 7 alpha = 123/128 beta = 51/128
                                    error = 4.0266\%
       alpha = 246/256 beta = 102/256
F = 8
                                    error = 4.0266\%
```


Math

Ploat

ixe

RTL

Alpha Max plus Beta Min results for various values of Alpha and Beta

End

- 1) Integer Representations
 - I. Unsigned
 - II. Signed
- 2) Real Representations
 - I. Floating-Point
 - II. Fixed-Point
- 3) Quantization Strategies in Digital Design
- 4) Bit-true implementation: Alpha-Max Beta-Min example

