Customer Segmentation Analysis

This project scope is to perform customer segmentation analysis on a group of customers. By using KMeans unsupervised machine learning algorithm to find the univariate, bivariate clusters.

Objective: Customer segmentation clusters to develop marketing campaign startegy plan

This project includes Data Exploration Analysis and Machine learning KMeans clustering analysis

```
In [9]:
           import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn.cluster import KMeans
           import warnings
           warnings.filterwarnings('ignore')
In [10]:
           customer_data = pd.read_csv('Mall_Customers.csv')
In [11]:
           customer data.head()
Out[11]:
             CustomerID Gender Age
                                      Annual Income (k$)
                                                          Spending Score (1-100)
          0
                            Male
                                   19
                                                      15
                                                                             39
                                   21
                                                                             81
                            Male
                                                      15
          2
                         Female
                                   20
                                                      16
                                                                              6
                         Female
                                                      16
                                                                             77
                          Female
                                   31
                                                      17
                                                                             40
In [12]:
           customer_data.describe()
                 CustomerID
                                        Annual Income (k$) Spending Score (1-100)
Out[12]:
                                    Age
           count
                  200.000000
                             200.000000
                                                 200.000000
                                                                       200.000000
                  100.500000
                              38.850000
                                                  60.560000
                                                                        50.200000
           mean
                   57.879185
                              13.969007
                                                  26.264721
                                                                        25.823522
             std
```

		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	max	200.000000	70.000000	137.000000	99.000000

```
In [13]:
sns.distplot(customer_data['Annual Income (k$)'])
```

Out[13]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Density'>

Compare Gender with Annual Income "Univariate Analysis"


```
In [18]:
    columns = ['Age', 'Annual Income (k$)','Spending Score (1-100)']

for i in columns:
    plt.figure()
    sns.boxplot(data = customer_data, x='Gender', y= customer_data[i])
```


Bivariate Analysis

```
sns.scatterplot(data = customer_data, x= 'Annual Income (k$)', y= 'Spending Score (1-10
Out[21]:

cAxesSubplot:xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
```

<seaborn.axisgrid.PairGrid at 0xb112075df0>

customer_data = customer_data.drop('CustomerID', axis=1)

sns.pairplot(customer_data)

In [23]:

Out[23]:

In [24]:
sns.pairplot(customer_data, hue='Gender')

Out[24]: <seaborn.axisgrid.PairGrid at 0xb113154b80>

In [27]: customer_data.groupby('Gender')['Age', 'Annual Income (k\$)','Spending Score (1-100)'].m

Out[27]: Age Annual Income (k\$) Spending Score (1-100)

Gender

Female	38.098214	59.250000	51.526786
Male	39.806818	62.227273	48.511364

In [28]: customer_data.corr()

Out[28]:

	Age	Annual Income (k\$)	Spending Score (1-100)		
Age	1.000000	-0.012398	-0.327227		
Annual Income (k\$)	-0.012398	1.000000	0.009903		
Spending Score (1-100)	-0.327227	0.009903	1.000000		

```
In [30]:
sns.heatmap(customer_data.corr(), annot=True, cmap='coolwarm')
```

Out[30]: <AxesSubplot:>

Clustering Univariate

```
In [40]:
      clustering_income = KMeans(n_clusters=6)
In [41]:
      clustering_income.fit(customer_data[['Annual Income (k$)']])
     KMeans(n_clusters=6)
Out[41]:
In [42]:
      clustering income.labels
     Out[42]:
          1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
          3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
          2, 2])
In [43]:
      customer_data['Income cluster'] = clustering_income.labels_
In [44]:
      customer_data.head()
Out[44]:
           Age Annual Income (k$) Spending Score (1-100) Income cluster
       Gender
     0
        Male
             19
                       15
                                   39
                                            1
```

Gender Age Annual Income (k\$) Spending Score (1-100)

Income cluster

```
1
               Male
                      21
                                        15
          2
             Female
                      20
                                        16
                                                               6
                                                                             1
             Female
                      23
                                        16
                                                              77
                                                                             1
             Female
                      31
                                        17
                                                              40
                                                                             1
In [45]:
           customer_data['Income cluster'].value_counts()
               48
Out[45]:
               42
               42
               32
               28
                8
          Name: Income cluster, dtype: int64
In [46]:
           clustering_income.inertia_
          5050.904761904766
Out[46]:
In [48]:
           inertia_scores = []
           for i in range(1,11):
               kmeans = KMeans(n clusters=i)
               kmeans.fit(customer_data[['Annual Income (k$)']])
               inertia_scores.append(kmeans.inertia_)
In [49]:
           plt.plot(range(1,11), inertia_scores)
          [<matplotlib.lines.Line2D at 0xb113c9d850>]
Out[49]:
          140000
          120000
          100000
           80000
           60000
           40000
           20000
               0
In [50]:
           clustering_income = KMeans(n_clusters=3)
In [51]:
           clustering_income.fit(customer_data[['Annual Income (k$)']])
```

```
KMeans(n clusters=3)
Out[51]:
In [52]:
           customer_data['Income cluster'] = clustering_income.labels_
In [53]:
           customer_data['Income cluster'].value_counts()
               92
Out[53]:
               72
               36
          Name: Income cluster, dtype: int64
In [54]:
           clustering_income.inertia_
          23528.152173913048
Out[54]:
In [55]:
           customer_data.groupby('Income cluster')['Age', 'Annual Income (k$)', 'Spending Score (1-
Out[55]:
                             Age Annual Income (k$) Spending Score (1-100)
          Income cluster
                       39.184783
                                           66.717391
                                                                 50.054348
                       37.833333
                                           99.888889
                                                                 50.638889
                     2 38.930556
                                           33.027778
                                                                 50.166667
```

Bivariate Clustering

```
In [60]:
          clustering income shopping = KMeans(n clusters=5)
In [61]:
          clustering_income_shopping.fit(customer_data[['Annual Income (k$)','Spending Score (1-1
         KMeans(n_clusters=5)
Out[61]:
In [58]:
          inertia_scores2 = []
          for i in range(1,11):
              kmeans2 = KMeans(n clusters=i)
              kmeans2.fit(customer_data[['Annual Income (k$)','Spending Score (1-100)']])
              inertia scores2.append(kmeans2.inertia )
In [59]:
          plt.plot(range(1,11), inertia_scores2)
          [<matplotlib.lines.Line2D at 0xb11415a7f0>]
Out[59]:
```

In [62]:

```
250000 -

200000 -

150000 -

50000 -

2 4 6 8 10
```

```
In [89]:
    plt.figure(figsize = (10,8))
    sns.scatterplot(data = customer_data, x= 'Annual Income (k$)', y='Spending Score (1-100 centers = pd.DataFrame(clustering_income_shopping.cluster_centers_)
    centers.columns = ['x','y']
```

customer_data['Income and shopping cluster'] = clustering_income_shopping.labels_

```
sns.scatterplot(data = customer_data, x= 'Annual Income (k$)', y='Spending Score (1-100
centers = pd.DataFrame(clustering_income_shopping.cluster_centers_)
centers.columns = ['x','y']
plt.scatter(x=centers['x'], y= centers['y'], s=100, c ='black', marker ='*')
plt.savefig('bivariate Clustering.png')
```



```
In [69]:
    pd.crosstab(customer_data['Income and shopping cluster'], customer_data['Gender'], norm
```

Out[69]:			Ge	nder	Female	Male						
	Inco	me and sh	hopping cl	uster								
				0	0.538462	0.461538						
				1	0.457143	0.542857						
				2	0.592593	0.407407						
				3	0.608696	0.391304						
				4	0.590909	0.409091						
In [70]:	cus	tomer_da	ata.group	by('	Income ar	nd shoppi	ng cluster	')['Age',	'Annual I	ncome (<\$)','Sper	nd
Out[70]:					Age	Annual I	ncome (k\$)	Spending Sc	ore (1-100))		
	Income and shopping cluster											
				0	32.692308		86.538462		82.128205	;		
				1	41.114286		88.200000		17.114286	ò		
				2	42.716049		55.296296		49.518519)		
				3	45.217391		26.304348		20.913043	3		
				4	25.272727		25.727273		79.363636	;		
In [90]:	cus	tomer_da	ata									
Out[90]:		Gender	Age	Annua	al Income (k\$)	Spendin	g Score (1- 100)	Income cluste		ome and	shopping cluster	
	0	Male	19		15		39	í	2		3	
	1	Male	21		15		81	2	2		4	
	2	Female	20		16		6	2	2		3	
	3	Female	23		16		77	Ź	2		4	
	4	Female	31		17		40	2	2		3	
	•••											
	195	Female	35		120		79		1		0	
	196	Female	45		126		28	,	1		1	
	197	Male	32		126		74	,	1		0	
	198	Male	32		137		18	,	1		1	
	199	Male	30		137		83		1		0	

200 rows × 6 columns

In [91]:

customer_data.to_csv('clustering data.csv')

Customer Segmentation Analysis Results:

- * Target group would be cluster (0): this includes customers with high spending score and high annual income
- * 54% of cluster(0) shoppers are women
- * Cluster (4) presents an interesting opportunity of high spending shoppers but with less annual income. Those shoppers may be targeted for sales items campaigns or popular items.