Escriu quin és l'espai de coordenades inicial i final de la multiplicació de la **projection matrix** per un vèrtex.

Inicial:

Final:

Quina mena de punt o vector estem transformant amb el producte que apareix a sota?

$$\begin{bmatrix} x_a \\ y_a \\ z_a \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{-T} \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix}$$

Exercici 5

Escriu, per cada tasca, si s'executa ABANS o DESPRÉS del FS:

- (a) Pas a NDC
- (b) Geometry Shader
- (c) Divisió de perspectiva
- (d) Depth Test

Exercici 6

Indica, per cada punt, si pot ser dins (DINS) o segur que és fora (FORA) de la piràmide de visió d'una càmera perspectiva:

- (a) (0.2, -0.5, 0.8, 1) en clip space
- (b) (0, 0, 1, 1) en eye space
- (c) (200, 300, 400) en NDC
- (d) (0, 0, 0) en NDC

Exercici 7

Completa, en GLSL, una possible definició de la funció mix:

```
vec3 mix(vec3 a, vec3 b, float t)
{
    return ....
}
```

Exercici 8

Siguin R, S i T les matrius de rotació, escalat i translació a aplicar a un model com a part de la transformació de modelat. Indica en quin ordre és més habitual multiplicar aquestes matrius (escriu el producte de les matrius):

Escriu, usant la notació L(D|S)*E, els light paths que suporten aquestes tècniques:

- (a) Two-pass raytracing
- (b) Classic Raytracing

Exercici 10

a un quad que té coordenades de textura inicials en [0,1].

Completa el FS per aconseguir els resultats que es mostren:

frontColor = texture(colorMap, ______* vtexCoord);

frontColor = texture(colorMap, ______* vtexCoord);

Exercici 11

Quin concepte de radiometria/fotometria és el més adient per mesurar la quantitat d'energia per unitat de temps que arriba a una superfície, per unitat d'àrea (unitats W/m²)?

Exercici 12

A l'equació general del rendering:

$$L_{ ext{o}}(\mathbf{x},\,\omega_{ ext{o}},\,\lambda,\,t) \,=\, L_{e}(\mathbf{x},\,\omega_{ ext{o}},\,\lambda,\,t) \,+\, \int_{\Omega} f_{r}(\mathbf{x},\,\omega_{ ext{i}},\,\omega_{ ext{o}},\,\lambda,\,t)\, L_{ ext{i}}(\mathbf{x},\,\omega_{ ext{i}},\,\lambda,\,t)\, (\omega_{ ext{i}}\,\cdot\,\mathbf{n}) \;\mathrm{d}\,\omega_{ ext{i}}$$

Què representa ω_o?

Aquest VS calcula coordenades de textura per a un FS que implementa shadow mapping:

```
uniform mat4 lightMatrix;
out vec4 textureCoords;
const float a = .....;
...
void main() {
    ...
    textureCoords = T(a,a,a)*S(a,a,a)*lightMatrix*vec4(vertex,1);
    gl_Position = modelViewProjectionMatrix *vec4(vertex,1);
}
```

Usant aquesta notació:

- (a) Quin valor ha de tenir la constant a?
- (b) Escriu (com a producte de matrius) com l'aplicació ha de calcular, en aquest cas, la matriu lightMatrix.

Exercici 14

Escriu la matriu o producte de matrius per les conversions següents, usant la notació:

M = modelMatrix $M^{-1} = modelMatrixInverse$ V = viewingMatrix $V^{-1} = viewingMatrixInverse$ P = projectionMatrix $P^{-1} = projectionMatrixInverse$

N = normalMatrix I = Identitat

- a) Convertir un vèrtex de world space a clip space
- b) Convertir un vèrtex de eye space a world space

Exercici 15

Sigui P(u,v) la representació paramètrica d'una superfície, amb normals unitàries N(u,v). Sigui F(u,v) un mapa d'elevacions. Escriu l'expressió que permet calcular la superfície P'(u,v) que resulta de pertorbar P segons el mapa d'elevacions, tal i com es faria servir en displacement mapping.

Exercici 16
Escriu en codi GLSL com calcular la posició de la càmera en object space. Pot usar les matrius per defecte del viewer.
vec3 obs =
Francisi 47
Exercici 17
Un VS ha calculat unes coordenades de textura vtexCoord usant la tècnica de projective texture mapping.
(a) Indica quina ha de ser la declaració (en GLSL) de vtexCoord, al VS
(b) Completeu com caldria accedir a la textura colormap en aquest cas:
vec4 color = texture(colormap,);
Exercici 18
En la tècnica de generació d'ombres per projecció,
(a) Quants cop cal dibuixar l'objecte que produeix l'ombra?
(b) Per què ens pot ser útil usar el stencil buffer?
Exercici 19
En quin sistema de coordinades han d'estar aquestes variables per tal que el VS sigui correcte?
(a) vec3 L = normalize(lightPosition.xyz – modelViewMatrix * P); // L is the light vector
P ha d'estar en espai
(b) gl_Position = projectionMatrix * P;
P ha d'estar en espai
a cota, c., copa,

Si fem servir el mode de filtrat GL_LINEAR_MIPMAP_LINEAR per MINIFICATION, quants texels es fan servir per avaluar cada crida a texture()?