COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW5 due Nov 10

PR2 due Dec 5

Previously on COS 433...

Trapdoor Permutations

Domain X

Gen(): outputs (pk,sk)

$$F(pk,x \in X) = y \in X$$

 $F^{-1}(sk,y) = x$

Correctness:

$$Pr[F^{-1}(sk, F(pk, x)) = x : (pk,sk) \leftarrow Gen()] = 1$$

Correctness implies **F,F**⁻¹ are deterministic, permutations

Trapdoor Permutation Security

In other words, $F(pk, \cdot)$ is a one-way function

(pk,sk)←Gen()

h a hardcore bit for **F(pk, ·)**

Trapdoor Permutations from RSA

Gen():

- Choose random primes p,q
- Let N=pq
- Choose e,d .s.t ed=1 mod (p-1)(q-1)
- Output pk=(N,e), sk=(N,d)

$$F(pk,x)$$
: Output $y = x^e \mod N$

$$F^{-1}(sk,y)$$
: Output $x = y^d \mod N$

Everyone agrees on group **G** of prime order **p**

Everyone agrees on group **G** or prime order **p**

Everyone agrees on group **G** or prime order **p**

Theorem: If DDH holds on **G**, then the Diffie-Hellman protocol is secure

Proof:

- $\cdot (Trans,k) = ((g^a,g^b), g^{ab})$
- DDH means indistinguishable from ((ga,gb), gc)

What if only CDH holds, but DDH is easy?

Today

Public Key Encryption
Digital signatures (if time)

PKE:

PKE:

PKE:

For **n** users, need **O(n)** public keys

PKE Syntax

Message space M

Algorithms:

- (sk,pk)←Gen(λ)
- Enc(pk,m)
- Dec(sk,m)

Correctness:

 $Pr[Dec(sk,Enc(pk,m)) = m: (sk,pk) \leftarrow Gen(\lambda)] = 1$

Security

One-way security

Semantic Security

CPA security

CCA Security

One-way Security

Semantic Security

CPA Security

CCA Security

Question: Which two notions are equivalent?

One-Way Encryption from TDPs

 $Gen_{E}() = Gen_{TDP}()$

Enc(pk,m): Output c = F(pk,m)

Dec(sk,c): Output $m' = F^{-1}(sk,c)$

Semantically Secure Encryption from TDPs

Ideas?

Considerations

A single server often has to decrypt many ciphertexts, whereas each user only encrypts a few messages

Therefore, would like to make decryption fast

Considerations

Encryption running time:

- O(log e) multiplications, each taking O(log2N)
- Overall O(log e log²N)

Decryption running time:

O(log d log²N)

(Note that ed $\geq \Phi(N) \approx N$)

Considerations

Possibilities:

- e tiny (e.g. 3): fast encryption, slow decryption
- d tiny (e.g. 3): fast decryption, slow encryption
 - Problem?
- **d** relatively small (e.g. $\mathbf{d} \approx \mathbf{N}^{0.1}$)
 - Turns out, there is an attack that works whenever d < N^{.292}

Therefore, need **d** to be large, but ok taking **e=3**

Considerations

Chinese remaindering to speed up decryption:

- Let $sk=(d_0,d_1)$ where $d_0 = d \mod (p-1), d_1 = d \mod (q-1)$
- Let $c_0 = c \mod p$, $c_1 = c \mod q$
- Compute $m_0 = c^{d0} \mod p$, $m_1 = c^{d1} \mod q$
- Reconstruct \mathbf{m} from $\mathbf{m_0}$, $\mathbf{m_1}$

Running time:

• r log³p + r log³q + O(log²N) \approx r(log³N)/4

ElGamal

Group **G** of order **p**, generator **g** Message space = **G**

Gen():

- Choose random $a \leftarrow \mathbb{Z}_p^*$, let $h \leftarrow g^a$
- pk=h, sk=a

Enc(pk,m∈{0,1}):

- $\cdot r \leftarrow \mathbb{Z}_{p}$ $\cdot c = (g^{r}, h^{r} \times m)$

Dec?

Theorem: If DDH is hard in **G**, then ElGamal is CPA secure

Proof:

- Adversary sees h=g^a, g^r, g^{ar}×m_o
- DDH: indistinguishable from g^a , g^r , $g^c \times m_o$
- Same as g^a , g^r , $g^c \times m_1$
- DDH again: indistinguishable from g^a , g^r , $g^{ar} \times m_o$

CCA-Secure Encryption

Non-trivial to construct with provable security

Most efficient constructions have heuristic security

CCA Secure PKE from TDPs

Let (Enc_{SKE}, Dec_{SKE}) be a CCA-secure secret key encryption scheme.

Let (Gen,F,F⁻¹) be a TDP

Let **H** be a hash function

CCA Secure PKE from TDPs

```
Gen_{PKF}() = Gen()
Enc<sub>PKE</sub>(pk, m):

    Choose random r

• Let c \leftarrow F(pk,r)
• Let d \leftarrow Enc_{SKE}(H(r), m)
• Output (c,d)
Dec_{PKE}(sk, (c, d)):
• Let r \leftarrow F^{-1}(sk, c)
• Let m \leftarrow Dec_{SKF}(H(r), d)
```

CCA Secure PKE from TDPs

Theorem: If (Enc_{SKE}, Dec_{SKE}) is a CCA-secure secret key encryption scheme, (Gen,F,F⁻¹) is a TDP, and H is modeled as a random oracle, then (Gen_{PKE}, Enc_{PKE}, Dec_{PKE}) is a CCA secure public key encryption scheme

OAEP

Insecure OAEP Variants

Insecure OAEP Variants

Why padding?

All ciphertexts decrypt to valid messages

 Makes it hard to argue security

Digital Signatures

(aka public key MACs)

Message Authentication Codes

Goal: If Eve changed **m**, Bob should reject

Problem

What if Alice and Bob have never met before to exchange key **k**?

Want: a public key version of MACs where Bob can verify without having Alice's secret key

Message Integrity in Public Key Setting

Goal: If Eve changed **m**, Bob should reject

Digital Signatures

Algorithms:

- Gen() \rightarrow (sk,pk)
- Sign(sk,m) $\rightarrow \sigma$
- Ver(pk,m, σ) \rightarrow 0/1

Correctness:

 $Pr[Ver(pk,m,Sign(sk,m))=1: (sk,pk) \leftarrow Gen()] = 1$

Security Notions?

Much the same as MACs, except adversary gets verification key

1-time Security For Signatures

Many-time Signatures

Strong Security

Building Digital Signatures

Non-trivial to construct with provable security

Most efficient constructions have heuristic security

Signatures from TDPs?

$$Gen_{Sig}() = Gen()$$

$$Sign(sk,m) = F^{-1}(sk,m)$$

$$Ver(pk,m,\sigma)$$
: $F(pk,\sigma) == m$

Signatures from TDPs

Gen_{Sig}() = Gen()
Sign(sk,m) =
$$F^{-1}$$
(sk, H(m))
Ver(pk,m, σ): F (pk, σ) == H(m)

Theorem: If (Gen,F,F⁻¹) is a secure TDP, and **H** is "modeled as a random oracle", then (Gen_{Sig},Sign,Ver) is (strongly) CMA-secure

Basic Rabin Signatures

Gen_{Sig}(): let p,q be random large primes sk = (p,q), pk = N = pq

Sign(sk,m): Solve equation $\sigma^2 = H(m) \mod N$ using factors p,q

Output σ

 $Ver(pk,m,\sigma): \sigma^2 \mod N == H(m)$

Problems

H(m) might not be a quadratic residue

Can only sign roughly ¼ of messages

Suppose adversary makes multiple signing queries on the same message

- Receives $\sigma_1, \sigma_2, \dots$ such that $\sigma_i^2 \mod N = H(m)$
- After enough tries, may get all 4 roots of H(m)
- Suppose $\sigma_1 \neq \pm \sigma_2 \mod N$
- Then $GCD(\sigma_1-\sigma_2,N)$ will give a factor

One Solution

```
Gen<sub>sig</sub>(): let p,q be primes, a,b,c s.t.
```

- a is a non-residue mod p and q,
- b is a residue mod p but not q,
- c is a residue mod q but not p
 sk = (p,q,a,b,c), pk = (N = pq, a,b,c)

Sign(sk,m):

- Solve equation $\sigma^2 \in \{1,a,b,c\} \times H(m) \mod N$
- Output σ

Ver(pk,m, σ): σ^2 mod N \in {1,a,b,c}×H(m)

One Solution

Exactly one of $\{1,a,b,c\}\times H(m)$ is a residue **mod N** \Rightarrow Solution guaranteed to be found

Still have problem that multiple queries on same message will give different roots

One Solution

Possibilities:

- Have signer remember all messages signed

Another Solution

Gen_{Sig}(): let
$$p,q$$
 be random large primes $sk = (p,q)$, $pk = N = pq$

Sign(sk,m): Repeat until successful:

- Choose random $u \leftarrow \{0,1\}^{\lambda}$
- Solve equation $\sigma^2 = H(m,u) \mod N$
- Output (u,σ)

 $Ver(pk,m,(u,\sigma)): \sigma^2 \mod N == H(m,u)$

Another Solution

In expectation, after 4 tries will have success

(Whp) Only ever get a single root of a given **H(m,u)**

Theorem: If factoring is hard and **H** is modeled as a random oracle, then Rabin signatures are (weakly) CMA secure

Another Solution

Sign(sk,m): Repeat until successful:

- Choose random $u \leftarrow \{0,1\}^{\lambda}$
- Solve equation $\sigma^2 = H(m,u) \mod N$ using factors p,q, where $\sigma < (N-1)/2$
- Output (u,σ)

 $Ver(pk,m,(u,\sigma)): \sigma^2 \mod N == H(m,u) \wedge \sigma < (N-1)/2$

Theorem: If factoring is hard and **H** is modeled as a random oracle, then Rabin signatures are strongly CMA secure