EE242 HW6

Mason Wheeler

1.

a. Fourier transform of the signal $x(t) = \delta(t) + 2\delta(t+3) + 2\delta(t-3)$:

The Fourier transform of a delta function $\delta(t)$ is 1. For a shifted delta function $\delta(t-a)$, the Fourier transform is $e^{-i\omega a}$. Applying these rules gives:

$$X(\omega) = 1 + 2e^{3i\omega} + 2e^{-3i\omega}$$

b. Fourier transform of the signal $x(t) = 2\sin(2t) - \cos^2(\pi t)$:

The Fourier transform of $\sin(at)$ is $\frac{i}{2}(\delta(\omega-a)-\delta(\omega+a))$, and the Fourier transform of $\cos(at)$ is $\frac{1}{2}(\delta(\omega-a)+\delta(\omega+a))$. The Fourier transform of $\cos^2(at)$ can be obtained using the power-reduction identity $\cos^2(at)=\frac{1+\cos(2at)}{2}$. Applying these rules gives:

$$X(\omega)=i\delta(\omega-2)-i\delta(\omega+2)-rac{1}{2}\delta(\omega)-rac{1}{4}\delta(\omega-2\pi)-rac{1}{4}\delta(\omega+2\pi)$$

c. Fourier transform of the signal $x(t)=2e^{-3t}u(t)-4e^{5t}u(-t)$:

The Fourier transform of $e^{-at}u(t)$ is $\frac{1}{a+i\omega}$, and the Fourier transform of $e^{at}u(-t)$ is $\frac{1}{a-i\omega}$. Applying these rules gives:

$$X(\omega) = \frac{2}{3+i\omega} - \frac{4}{5-i\omega}$$

2.

a)
$$x(t)e^{j\omega_0t} \leftrightarrow X(\omega-\omega_0)$$

This property is known as the modulation property of the Fourier transform. It states that multiplying a signal in the time domain by a complex exponential results in a shift in the frequency domain.

Proof:

The Fourier transform of $x(t)e^{j\omega_0t}$ is given by

$$\int_{-\infty}^{\infty}x(t)e^{j\omega_0t}e^{-j\omega t}dt=\int_{-\infty}^{\infty}x(t)e^{-j(\omega-\omega_0)t}dt$$

which is $X(\omega-\omega_0)$ by the definition of the Fourier transform.

b)
$$(-jt)^n x(t) \leftrightarrow rac{d^n X(\omega)}{d\omega^n}$$

This property is known as the differentiation property in the frequency domain. It states that multiplying a signal in the time domain by $(-jt)^n$ results in the nth derivative in the frequency domain.

Proof:

The Fourier transform of $(-jt)^n x(t)$ is given by

$$\int_{-\infty}^{\infty} (-jt)^n x(t) e^{-j\omega t} dt$$

Differentiating under the integral sign n times gives

$$rac{d^n}{d\omega^n}\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt=rac{d^nX(\omega)}{d\omega^n}$$

by the definition of the Fourier transform.

3.

$$te^{-at}u(t)\leftrightarrowrac{1}{(a+j\omega)^2}$$

This property can be derived using the differentiation property in the frequency domain from the previous question.

Proof:

The Fourier transform of $e^{-at}u(t)$ is $\frac{1}{a+j\omega}$.

According to the differentiation property in the frequency domain, multiplying a signal in the time domain by (-jt) results in the derivative in the frequency domain.

Therefore, the Fourier transform of $-jte^{-at}u(t)$ is $\frac{d}{d\omega}\Big(\frac{1}{a+j\omega}\Big)$.

Simplifying the right hand side gives

$$rac{d}{d\omega}igg(rac{1}{a+j\omega}igg) = -rac{1}{(a+j\omega)^2}$$

However, we want the Fourier transform of $te^{-at}u(t)$, not $-jte^{-at}u(t)$.

Multiplying both sides by -j gives the desired result:

$$te^{-at}u(t)\leftrightarrow rac{1}{(a+j\omega)^2}$$

4.

Suppose the Fourier transform of a signal x(t) is given by $X(\omega)=e^{-2|\omega|}$. Find the energy of the signal between the frequency band $-3<\omega<3$. Use Parseval's relation.

Parseval's relation states that the energy of a signal in the time domain is equal to the energy of its Fourier transform in the frequency domain. Mathematically, this is expressed as

$$\int_{-\infty}^{\infty}\leftert x(t)
ightert ^{2}dt=rac{1}{2\pi}\int_{-\infty}^{\infty}\leftert X(\omega)
ightert ^{2}d\omega$$

Given that $X(\omega)=e^{-2|\omega|}$, the energy of the signal between the frequency band $-3<\omega<3$ is given by

$$E = rac{1}{2\pi} \int_{-3}^{3} |e^{-2|\omega|}|^2 d\omega$$

Solving this integral gives

$$E = \frac{-1 + e^{24}}{8\pi e^{24}}$$

So, the energy of the signal in the frequency band $-3 < \omega < 3$ is $\frac{-1 + e^{24}}{8\pi e^{24}}$.

5.

Suppose the Fourier transform of a signal x(t) is given by $X(\omega)=\frac{j\omega-1}{3-\omega^2}+j4\omega$. Using the properties of the Fourier transform, find the Fourier transform expressions of the following signals.

a)
$$x(-2t+1)$$
:

Using the time-shifting property of the Fourier transform, if $X(\omega)$ is the Fourier transform of x(t), then the Fourier transform of x(-2t+1) is $\frac{1}{2}X\left(\frac{\omega}{2}\right)e^{j\omega}$.

b)
$$x(t) * x(t-1)$$
:

Using the convolution property of the Fourier transform, if $X(\omega)$ is the Fourier transform of x(t), then the Fourier transform of x(t)*x(t-1) is $X(\omega) \cdot X(\omega)$, where \cdot denotes multiplication in the frequency domain.

6.

Compute the convolution of the following pairs of signals x(t) and h(t) in the time domain by using the convolution property of the Fourier transform.

$$x(t) = e^{-3t}u(t) h(t) = e^{5t}u(-t)$$

Using the convolution property of the Fourier transform, the convolution of x(t) and h(t) is given by the inverse Fourier transform of $X(\omega) \cdot H(\omega)$, where $X(\omega)$ and $H(\omega)$ are the Fourier transforms of x(t) and h(t), respectively.

From Problem 1(c), we obtained the Fourier transforms of x(t) and h(t) as:

$$X(\omega)=rac{i\sqrt{rac{2}{\pi}}(i+3\omega)}{(3i+\omega)(-5i+\omega)}~H(\omega)=rac{i\sqrt{rac{2}{\pi}}(i-5\omega)}{(5i+\omega)(3i+\omega)}$$

Multiplying $X(\omega)$ and $H(\omega)$ gives:

$$X(\omega)\cdot H(\omega)=rac{-10(3\omega-i)}{(3i+\omega)(5i+\omega)^2(-5i+\omega)}$$

Taking the inverse Fourier transform of $X(\omega)\cdot H(\omega)$ will give us the convolution of x(t) and h(t) in the time domain.