ARCTIC-READY POWER MANAGEMENT PATENT

ARCTIC-READY POWER MANAGEMENT PAT

United States Patent Application No. 16/789,432

Filing Date: March 15, 2022

Assignee: Polar Dynamics Robotics, Inc.

ABSTRACT

A system and method for managing power consumption in autonomooperating in sub-zero environments, comprising a temperature-adapti distribution network, cold-resistant battery cells, and an intelligent pow management controller that optimizes energy usage based on enviror conditions and operational demands.

BACKGROUND OF THE INVENTION

[0001] Autonomous mobile robots operating in extreme cold environmunique challenges related to power management and battery perform. Traditional lithium-ion battery systems experience significant degradar capacity and charging capability at temperatures below -20 C, limiting practical application in cold storage and arctic environments.

[0002] Existing solutions fail to address the complex interplay between temperature fluctuations, power consumption patterns, and autonomorequirements in industrial freezer settings.

SUMMARY OF THE INVENTION

[0003]. The present invention provides a novel power management sy specifically designed for autonomous mobile robots operating in extre environments. The system comprises:

- (a) A multi-layer thermal isolation architecture for critical power compo
- (b) Advanced battery chemistry optimized for sub-zero performance;
- (c) Intelligent power routing algorithms that dynamically adjust power distribution based on real-time temperature data;
- (d) Predictive thermal management systems that anticipate and prever performance degradation.

DETAILED DESCRIPTION

1. System Architecture

[0004]. The power management system includes:
1. Temperature-Resistant Battery Assembly
- Proprietary lithium iron phosphate (LiFePO4) cells modified for -40 C
-
Multi-layer thermal insulation system with vacuum-sealed compartme
Integrated heating elements with closed-loop temperature control
2. Power Distribution Network
- Redundant power buses with cold-resistant conductors
Smart switching matrix for optimal power routing

- - 4 -

Temperature-compensated voltage regulators

3. Control System

-

Microprocessor-based power management controller

-

Real-time temperature monitoring across 16 zones

-

Adaptive power allocation algorithms

2. Operating Parameters

[0005] The system maintains optimal performance under the following

1. Temperature Range

- - 5 -

Operational: -40 C to +50 C

-

Storage: -50 C to +60 C

-

Charging: -30 C to +45 C

2. Power Specifications

-

Nominal voltage: 48V DC

-

Peak current: 80A

_

Continuous current: 40A

-

Battery eapacity: 960Wh
3. Novel Features
[0006] Key innovations include:
1. BlueCore(TM) Technology
- Proprietary battery cell chemistry with arctic-grade electrolyte
- Advanced thermal management algorithms
- Predictive power optimization based on usage patterns
Safety Systems
-

Multiple₇redundant temperature sensors

-

Emergency power shutdown mechanisms

-

Fault detection and isolation systems

CLAIMS

A power management system for autonomous mobile robots comprise

- (a) A temperature-resistant battery assembly capable of operation be
- (b) An intelligent power distribution network with adaptive routing capabilities;
- (c) A control system implementing predictive thermal management alg

The system of claim 1, wherein the battery assembly includes:

(a) Modefied	LiFePO4	cells	with	arctic-	-grade	electrol	yte;

- (b) Multi-layer thermal isolation architecture;
- (c) Integrated heating elements controlled by closed-loop feedback.

The system of claim 1, further comprising:

- (a) Real-time temperature monitoring across multiple zones;
- (b) Dynamic power allocation based on environmental conditions;
- (c) Predictive maintenance capabilities.

INVENTORS

Dr. Marcus Chen, Chief Technology Officer

_

Dr. James Barrett, Chief Robotics Officer

- -9-

Dr. Sarah Wong, Senior Power Systems Engineer

PATENT REPRESENTATIVES

Wilson & Thompson LLP

1234 Innovation Drive

Boston, MA 02110

PRIORITY CLAIM

This application claims priority to U.S. Provisional Application No. 63/5 filed March 15, 2021.

GOVERNMENT RIGHTS

[0007] This invention was made with government support under Cont NSF-SBIR-2145789 awarded by the National Science Foundation. The certain rights in the invention.
certain rights in the invention.