Cambridge International AS & A Level

NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

[2]

DO NOT WRITE IN THIS MARGIN

[1]

1 (a) Complete Table 1.1 using relevant information from the Periodic Table.

Table 1.1

	nucleon number	proton number	number of electrons
Mg ²⁺	24		
Al ³⁺	27		

(b)	State and explain the difference in the ionic radius of Al^{3+} compared to Mg^{2+} .				
	[3]				

(c) Draw a labelled diagram to show the structure and bonding in sodium.

(d) Fig. 1.1 shows the variation in melting point of some Period 3 elements in their standard states at room temperature and pressure.

Fig. 1.1

z	
1 1 1 1 1	
<u>S</u>	
I	
I WRITE IN THIS MARGIN	
<u>Y</u> ≶	
2	

0100000000	

(i)	Explain why Si has a high melting point.
	[1

- Complete Fig. 1.1 to show the variation in the melting points of the elements P, S and Cl. [2]
- (e) Two Period 3 elements react with an excess of oxygen at room pressure.
 - Complete Table 1.2.

Table 1.2

1	2	3
Period 3 element	state of oxide at room temperature and pressure	approximate pH of solution made when oxide is added to water
Na		
S		

[2] The solutions made in column 3 of Table 1.2 are mixed together. (ii) Name the type of reaction that occurs.[1] Write an equation to describe the reaction between P₄O₁₀ and an excess of water. Aluminium hydroxide is amphoteric. Explain what is meant by amphoteric.[1] Write an equation to describe the reaction that occurs when aluminium hydroxide, $Al(OH)_3$, reacts with NaOH(aq).

[Total: 15]

2 Separate samples of Na_2CO_3 and $NaHCO_3$ react with HCl(aq) to produce the same products, as shown in Table 2.1.

Table 2.1

reaction	equation	$\Delta H/\text{kJ}\text{mol}^{-1}$
1	$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$	ΔH_1
2	$NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2$	$\Delta H_2 = +27.2$

(a) Complete the reaction pathway diagram in Fig. 2.1 for reaction 2.

Label the diagram to show the enthalpy change, ΔH_2 , and the activation energy, E_A .

Fig. 2.1

[2]

- **(b)** The value for ΔH_1 is determined by experiment using the following method.
 - $50.0 \,\mathrm{cm^3}$ of $2.00 \,\mathrm{mol \, dm^{-3}}$ HC $l(\mathrm{aq})$ is added to a polystyrene cup.
 - The initial temperature of the acid is recorded as 19.6 °C.
 - 0.0400 mol of Na₂CO₃ is added and the mixture is stirred.
 - All the solid Na₂CO₃ disappears and a colourless solution is produced.

The maximum temperature recorded during the reaction is 26.2°C.

(i) Describe **one** other observation that shows the reaction is complete.

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

(ii) Calculate the value of ΔH_1 in kJ mol⁻¹.

Assume the specific heat capacity of the reaction mixture is the same as for water and no heat is lost to the surroundings.

5

Show your working.

$$\Delta H_1 = \text{kJ mol}^{-1} [3]$$

(iii) Thermal decomposition occurs when NaHCO₃ is heated.

$$\text{reaction 3} \qquad \text{2NaHCO}_3 \, \rightarrow \, \text{Na}_2 \text{CO}_3 \, + \, \text{H}_2 \text{O} \, + \, \text{CO}_2$$

Calculate the enthalpy change for reaction 3, $\Delta H_{\rm r}$, using the data in Table 2.1 and the value of $\Delta H_{\rm 1}$ calculated in **(b)(ii)**.

(If you were unable to calculate a value for ΔH_1 in **(b)(ii)**, assume the enthalpy change is $-38.4\,\mathrm{kJ\,mol^{-1}}$. This is **not** the correct value.)

$$\Delta H_{\rm r} = \text{kJ mol}^{-1} [2]$$

(c) **Z** is a salt that contains a Period 4 element from Group 2. When **Z** is heated brown gas forms. Identify the formula of **Z** and use it to write an equation for the reaction.

......[2]

[Total: 10]

(a) Describe what is meant by dynamic equilibrium.

					1.7

(b) Reaction 4 describes the reversible reaction between yellow Fe³⁺(aq) and colourless SCN⁻(aq) to produce red FeSCN²⁺(aq).

reaction 4 Fe³⁺(aq) + SCN⁻(aq)
$$\rightleftharpoons$$
 FeSCN²⁺(aq)
yellow colourless red

An equilibrium mixture contains $Fe^{3+}(aq)$, $SCN^{-}(aq)$ and $FeSCN^{2+}(aq)$. A few colourless crystals of soluble KSCN(s) are added. The mixture is then left until it reaches equilibrium again. The temperature of both equilibrium mixtures is the same.

- (i) Deduce the changes that occur, if any, in the equilibrium mixture after KSCN(s) is added compared to the original equilibrium mixture.
 - change in appearance

change in relative concentration of Fe³⁺(aq)

• change in value of the equilibrium constant, K_{c}

DO NOT WRITE IN THIS MARGIN

(ii) The expression for the equilibrium constant, $K_{\rm c}$, for reaction 4 is shown.

$$K_{c} = \frac{[\text{FeSCN}^{2+}(\text{aq})]}{[\text{Fe}^{3+}(\text{aq})] \times [\text{SCN}^{-}(\text{aq})]}$$

 5.00×10^{-5} mol of Fe³⁺(aq) and 5.00×10^{-5} mol of SCN⁻(aq) are added together and allowed to reach equilibrium. The total volume of the mixture is $25.0 \, \text{cm}^3$.

At equilibrium the concentration of FeSCN²⁺(aq) is 4.23×10^{-4} mol dm⁻³.

Calculate the equilibrium constant, $K_{\rm c}$, for reaction 4.

Include the units in your answer.

- (c) Determine the full electronic configuration of Fe³⁺.
-[
- (d) SCN⁻(aq) is colourless.

Complete the dot-and-cross diagram in Fig. 3.1 to show the arrangement of outer electrons in an SCN⁻ ion.

Fig. 3.1

[2]

[Total: 12]

* 0019655306609 *

9

BLANK PAGE

- 4 CH₃(CH₂)₅CHBrCH₃ exists as a pair of stereoisomers.
 - (a) Draw the three-dimensional structures of the **two** stereoisomers of $CH_3(CH_2)_5CHBrCH_3$. R can be used to represent $CH_3(CH_2)_5$.

[2]

(b) A sample of $\mathrm{CH_3(CH_2)_5CHBrCH_3}$ reacts with NaOH to make $\mathrm{CH_3(CH_2)_5CH(OH)CH_3}$ in an $\mathrm{S_N1}$ mechanism.

Complete Fig. 4.1 to show the mechanism for the reaction of CH₃(CH₂)₅CHBrCH₃ and NaOH.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Fig. 4.1

[3]

(c) Separate samples of $CH_3(CH_2)_5CHBrCH_3$, $CH_3(CH_2)_5CH(OH)CH_3$ and $CH_3(CH_2)_5CHCH_2$ are tested with different reagents.

Complete Table 4.1. If no reaction occurs, write \times in the relevant box.

Table 4.1

reagent added	observation with CH ₃ (CH ₂) ₅ CHBrCH ₃	observation with CH ₃ (CH ₂) ₅ CH(OH)CH ₃	observation with CH ₃ (CH ₂) ₅ CHCH ₂
Br ₂ (I) in the dark			
PCl ₅ (s)			
AgNO ₃ (aq)			

* 0019655306611 *

11

(d) $CH_3(CH_2)_5CHBrCH_3$ is heated with **D** to produce three different molecules, **E**, **F** and **G**.

Fig. 4.2

(i)	Name the type of reaction.	
		[1]
(ii)	Identify D and the conditions used.	
		[1]

Both σ and π bonds are present in a molecule of **E** as a result of different types of hybridisation in the carbon atoms.

Complete Table 4.2 to show the number of carbon atoms with each type of hybridisation in a molecule of **E**.

Table 4.2

	number of carbon atoms					
	sp hybridised sp ² hybridised sp ³ hybridised					
E						

Describe the essential feature of an unbranched hydrocarbon that causes its molecules to show stereoisomerism. Explain how this feature leads to stereoisomerism.

[Total: 15]

[2]

- Compound **W** has molecular formula $C_4H_{10}O$. It contains only **one** functional group.
 - (a) Table 5.1 shows the two peaks with the greatest m/e values in the mass spectrum of **W**.

Table 5.1

mle	relative abundance
74	50
75	Х

Calculate the relative abundance, x, of the peak at m/e = 75 using the information from Table 5.1.

The mass spectrum of **W** also shows peaks at m/e = 29 and m/e = 59.

Suggest the molecular formulae of these fragments.

[2]

(b) A sample of \mathbf{W} , $\mathbf{C_4H_{10}O}$, is heated under reflux with an excess of acidified $\mathbf{K_2Cr_2O_7}$ until there is no further reaction. Only one organic product, X, is present in the mixture at the end of the reaction.

Fig. 5.1 shows the infrared spectrum of W.

Fig. 5.1

Fig. 5.2 shows the infrared spectrum of X.

13

Fig. 5.2

Table 5.2

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
О–Н	carboxyl hydroxy	2500–3000 3200–3650

(i) Absorption **A** is shown in Fig. 5.1. Absorption **B** is shown in Fig. 5.2.

Complete Table 5.3 using the information given in Fig. 5.1, Fig. 5.2 and Table 5.2.

Table 5.3

absorption	bond	functional group containing the bond
Α		
В		

(ii) Use the information in (a) and (b)(i) to draw the structure of X in the box in Fig. 5.3.

Fig. 5.3

[1]

(c) Y is a structural isomer of W.

Both **W** and **Y** produce colourless bubbles when sodium is added to them.

 \mathbf{Y} does \mathbf{not} react when heated with acidified $\mathrm{K_2Cr_2O_7}.$

 ${f Y}$ does ${f not}$ react when warmed with alkaline ${f I}_2({f aq})$.

(i) Name the functional group present in ${\bf Y}$.

(ii) Complete the equation to describe the reaction of \boldsymbol{W} or \boldsymbol{Y} with sodium.

......
$$C_4H_{10}O +Na \rightarrow$$
 [1]

(iii) Draw the structure of Y.

[1]

[Total: 8]

Important values, constants and standards

15

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} C$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ} C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	18	2 -	e H	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon	118	Og	ganesson -
	17									chlorine 35.5												Φ
	16				8	0	oxygen 16.0	16	တ	sulfur 32.1	8	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	8	Po	polonium -	116		livermorium t
	15				7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium -
	41				9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	S	tin 118.7	82	Ъ	lead 207.2	114	Εl	flerovium —
	13				2	Ф	boron 10.8	13	Ρſ	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	84	l_l	thallium 204.4	113	Ę	nihonium —
										12	30	Zu	zinc 65.4	48	В	cadmium 112.4	80	Нg	mercury 200.6	112	Ö	copernicium
										7	59	_D	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium -
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	ᇁ	platinum 195.1	110	Ds	darmstadtium -
G										6	27	ဝိ	cobalt 58.9	45	格	rhodium 102.9	77	'n	iridium 192.2	109	¥	meitnerium -
		-]	Ι	hydrogen 1.0						80	56	Fe	iron 55.8	4	R	ruthenium 101.1	9/	SO	osmium 190.2	108	Η	hassium
										7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	В	bohrium —
					_	loq	lass			9	24	ဝ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≷	tungsten 183.8	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>n</u>	tantalum 180.9	105		
						atc	re			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	士	hafnium 178.5	104	弘	rutherfordium -
										ო	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -
	~				3	:-	lithium 6.9	1	Na	sodium 23.0	19	×	potassium 39.1	37	&	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium —

7.1	Pn	Intetium	175.0	103	۲	lawrencium	ı
20	Υp	ytterbium	173.1	102	2	nobelium	ı
69	T	thulium	168.9	101	Md	mendelevium	ı
89	щ	erbinm	167.3	100	Fm	ferminm	ı
29	운	holmium	164.9	66	Es	einsteinium	ı
99	ò	dysprosium	162.5	86	ŭ	californium	ı
65	Д	terbium	158.9	26	Ř	berkelium	1
64	В	gadolinium	157.3	96	Cm	curium	1
63	En	europium	152.0	92	Am	americium	ı
62	Sm	samarium	150.4	98	Pu	plutonium	ı
61	Pm	promethium	ı	93	Νp	neptunium	ı
09	PΝ	neodymium	144.2	92	\supset	uranium	238.0
59	Ā	praseodymium	140.9	91	Ра	protactinium	231.0
58	Ce	cerium	140.1	06	드	thorium	232.0
22	Гa	lanthanum	138.9	89	Ac	actinium	ı

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.