Analízis1ABC, 2. zárthelyi dolgozat, 2014.05.16.

- 1. Számítsa ki a következő határértéket : $\lim_{n\to+\infty} \left(\frac{n^2-9}{n^2+3n}\right)^n$.
- **2.** Adott az $x_0 := 1$ és $x_{n+1} := \sqrt{x_n + \frac{n+1}{n+2}} \ (n \in \mathbb{N})$ sorozat. Konvergens-e és ha igen, mi a határértéke?
- 3. Döntse el, hogy az alábbi sorok konvergensek vagy divergensek (a válaszát indokolja) :

i)
$$\sum_{n=1} \frac{\sqrt{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}}{(1+\sqrt{1}) \cdot (1+\sqrt{2}) \cdot (1+\sqrt{3}) \cdot \dots \cdot (1+\sqrt{n})};$$
 ii) $\sum_{n=1} \frac{1+\frac{1}{2}+\frac{1}{3}+\dots +\frac{1}{n}}{2^n}$.

- **4.** Tekintsük a $\sum_{n=0}^{\infty} \frac{n}{2n^2+1} \cdot (1-2x)^n$ $(x \in \mathbb{R})$ hatványsort. Adja meg a hatványsor középpontját. Milyen $x \in \mathbb{R}$ számok mellett konvergens a sor?
- **5.** Adjon meg olyan R > 0 valós számot és (a_n) sorozatot, amelyekkel : $\frac{x+3}{x+2} \frac{x}{x-3} = \sum_{n=0}^{+\infty} a_n \cdot x^n \quad (x \in (-R, +R)).$
 - i) Mennyi a_{2014} ?
 - ii) Számítsa ki a $\sum_{n=0}^{+\infty} a_n$ sorösszeget!