Sommaire

1	Utiliser la notation factortielle	1
2	Utiliser le symbole \sum	1
3	Formule du binôme de Newton et coefficients binomiaux	2
4	Démonstrations par récurrence	3

1 Utiliser la notation factortielle

Exercice 1

Dans la fraction suivante, le numérateur est le produit des n premiers nombres impairs, et le dénominateur est le produit des n premiers nombres pairs :

$$Q_n = \frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{2 \times 4 \times 6 \times \dots \times (2n)} \qquad (n \in \mathbb{N}^*)$$

Exprimer Q_n d'une manière plus "compacte", au moyen de factorielles.

Exercice 2

Simplifier l'expression $\frac{1}{(n-1)!} - \frac{1}{(n+1)!}$

Exercice 3

Quel est le dernier chiffre de 257! ?

2 Utiliser le symbole Σ

Exercice 4

Pour chaque question, une seule réponse est juste. Laquelle?

- 1. La somme $\sum_{k=0}^{n} 2$
 - a. n'a pas de sens
- b. vaut 2(n+1)
- c. vaut 2n

- 2. La somme $\sum_{p=0}^{2n+1} (-1)^p$ est égale à
 - a. 1

b. -1

c. 0

Exercice 5 (À l'aide du symbole somme)

Écrire à l'aide du symbole somme \sum les sommes suivantes :

1.
$$2^3 + 2^4 + \dots + 2^{12}$$
.

4.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

$$2. \ \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots + \frac{10}{1024}$$

5.
$$n + (n+1) + \cdots + 2n$$
;

3.
$$2-4+6-8+\cdots+50$$

6.
$$\frac{x_1}{x_n} + \frac{x_2}{x_{n-1}} + \dots + \frac{x_{n-1}}{x_2} + \frac{x_n}{x_1}$$
.

Exercice 6 (Différence de deux sommes)

Pour $n \ge 1$, on pose $u_n = \sum_{k=n}^{2n} \frac{1}{k}$. Simplifier $u_{n+1} - u_n$.

Exercice 7 (Somme des cubes d'entiers,...)

Pour $n \in \mathbb{N}$, on rappelle que $: \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

- 1. Développer $(n+1)^4$
- 2. À partir du développement précédent calculer $\sum_{k=1}^n k^3$

Exercice 8 (Changement d'indice)

- 1. Calculer la somme suivante $\sum_{k=1}^{n} (n-k+1)$.
- 2. Calculer la somme suivante $\sum_{k=1}^{n} (k+1)^2$.
- 3. Calculer la somme $\sum_{k=1}^{n} \left(\frac{1}{k} \frac{1}{n+1-k} \right)$.

Exercice 9 (Télescopage)

1. Déterminer deux réels a et b tels que, pour tout $k \in \mathbb{N}$, $\frac{1}{(k+1)(k+3)} = \frac{a}{k+1} + \frac{b}{k+3}$. En déduire la valeur de la somme $S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+3)}$.

Exercice 10 (Somme télescopique et factorielle)

- 1. Calculer la somme $\sum_{k=0}^{n} k(k!)$
- 2. Calculer la somme $\sum_{k=0}^{n} \frac{1}{k(k+1)(k+2)}$

Exercice 11 (Transformer en somme télescopique)

- 1. Déterminer une suite (u_k) telle que, pour tout $k \ge 0$, on ait $u_{k+1} u_k = (k+2)2^k$.
- 2. En déduire $\sum_{k=0}^{n} (k+2)2^{k}$.

Exercice 12 (Somme et factorielles)

Démontrer que, pour tout $n \in \mathbb{N}^*$, on a $(n+1)! \ge \sum_{k=1}^n k!$.

3 Formule du binôme de Newton et coefficients binomiaux

Exercice 13 (Factorielle et coefficients binomiaux)

- 1. Soient $n, p \ge 1$. Démontrer que $\binom{n-1}{p-1} = \frac{p}{n} \binom{n}{p}$.
- 2. Pour $n \in \mathbb{N}$ et a, b réels non nuls, simplifier les expressions suivantes :

a.
$$(n+1)! - n!$$

b.
$$\frac{(n+3)!}{(n+1)!}$$

c.
$$\frac{n+2}{(n+1)!} - \frac{1}{n!}$$

Exercice 14 (Égalité de coefficients binômiaux)

- 1. Soit $n \in \mathbb{N}$. Pour quels entiers $p \in \{0, \dots, n-1\}$ a-t-on $\binom{n}{p} < \binom{n}{p+1}$.
- 2. Soit $n \in \mathbb{N}$. Soit $p \in \{0, \dots, n\}$. Pour quelle(s) valeur(s) de $q \in \{0, \dots, n\}$ a-t-on $\binom{n}{p} = \binom{n}{q}$?

Exercice 15 (Formule du binôme de Newton)

Démontrer que
$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} a^k b^{n-k}$$

En déduire la valeur de $\sum_{k=0}^{n} {n \choose k} (-1)^{n-k}$

Exercice 16 (Formule du binôme)

- 1. Développer $(x+1)^6$, $(x-1)^6$.
- 2. Démontrer que, pour tout entier n, on a $\sum_{p=0}^{n} {n \choose p} = 2^n$.
- 3. Démontrer que, pour tout entier n, on a $\sum_{p=0}^{n} {n \choose p} 2^p = 3^n$.
- 4. Démontrer que, pour tout entier n, on a $\sum_{k=1}^{2n} {2n \choose k} (-1)^k 2^{k-1} = 0$.

Démonstrations par récurrence

Exercice 17 (Somme des entiers, des carrés,...)

Pour $n \in \mathbb{N}$, on note $a_n = \sum_{k=1}^n k$, $b_n = \sum_{k=1}^n k^2$ et $c_n = \sum_{k=1}^n k^3$. Démontrer que $a_n = \frac{n(n+1)}{2}$, que $b_n = \frac{n(n+1)(2n+1)}{6}$ et que $c_n = a_n^2$.

Exercice 18

Démontrer l'inégalité de Bernoulli : Pour tout $x \ge 1$ et n entier on a : $(1+x)^n \ge 1 + nx$

Exercice 19

Démontrer l'égalité de Bernoulli $\,:a^n-b^n=\sum\limits_{k=0}^na^k\;b^{n-k}$

Remarque on retrouve l'identité remarquable que l'on connait déjà : $a^2 - b^2 = (a + b)(a - b)$

Développer $(a+1)^4 - a^4$