Ejercicio 1. Toda colección de abiertos disjuntos de \mathbb{R}^n es a lo sumo numerable.

Proof. Por densidad de \mathbb{Q} todo intervalo abierto A_i de \mathbb{R} tiene un $x_i \in \mathbb{Q}$ tal que $x_i \in A_i$ y como todos estos intervalos son disjuntos $x_i \neq x_j$ $j \neq i$. Por ende tenemos a los umo $\#\mathbb{Q}$ intervalos o lo que es lo mismo numerables intervalos

Observación. Si en cambio pueden ser cerrados los intervalos ya su cardinal no necesariamente es \aleph_0

Por ejemplo si tomamos los intervalos $[n\sqrt{2}, (n+1)\sqrt{2}]$

Ejercicio 2. Sea G la colección de todas las bolas B(q,r) de R^n con centro $q \in \mathbb{Q}^n$ y radio racional r. Sea $S \subseteq \mathbb{R}^n$ abierto y $x \in S$. Probar que $\exists B \in G$ tal que $x \in B \subseteq S$

Proof. Primero probemos que dada cualquier bola abierta $B(x,r) \subseteq \mathbb{R}^n$ de centro $x \in \mathbb{R}^n$ podemos encontrar algún $q \in \mathbb{Q}^n$ tal que $q \in B(x,r)$

Dada la bola , tomemos un $z \in B(x,r)$ ahora mirando coordenada a coordenada sabemos que para cada $i \in \{1,2,\ldots,n\}$ existe un $q_i \in \mathbb{Q}$ tal que $|x_i-q_i| \leq |x_i-z_i|$ por densidad de racionales en \mathbb{R} en escencia esto es decir que entre dos numeros reales hay un racional , pero como aquí no sabemos en cada coordenada si x_i mayor o menor que y_i simplemente buscamos un racional que este más cerca de x_i , luego pudimos armar un $q = (q_1, q_2, \ldots, q_n) \in \mathbb{Q}^n$ tal que $d(x,q) \leq d(x,y)$ esto sale de saber que cada modulo entre x_i, q_i es mas pequeno que entre x_i, y_i .

Entonces $q \in \mathbb{Q}^n$ y ademas $q \in B(r, x)$.

Observación. Esto es equivalente a que Q^n es denso en \mathbb{R}^n

Ahora pasamos al ejercicio. Dado $x \in S$ abierto , sabemos que existe $B(x,r) \subseteq S$.

Ahora tomemos $r' \in \mathbb{Q}$ tal que $r' < \frac{r}{2}$

Miramos B(x,r') por el lema inicial sabemos que existe $q \in B(x,r')$ tal que $q \in \mathbb{Q}^n$

Ahora si usamos B(q,r') tenemos una bola que está contenida en S y ademas $x \in B(q,r')$

Veamosló. Como $q \in B(x, r')$ entonces $d(x, q) \le r'$ entonces $x \in B(q, r')$

Ahora tomemos un $p \in B(q, r')$ luego $d(p, q) \le r'$

Teniendo esto en cuenta sabemos $d(p,x) \le d(p,q) + d(q,x) \le r' + r' < \frac{r}{2} + \frac{r}{2} = r$

Luego $\forall p \in B(q, r')$ tenemos d(p, x) < r entonces $p \in B(x, r) \subseteq S$ entonces $B(q, r') \subseteq S$ Juntando todo $x \in B(q, r') \subseteq S$

Ejercicio 3. Teorema de Lindelof. Sea $A \subseteq \mathbb{R}^n$ y $\mathcal{C} = (W_i)_{i \in I}$ un cubrimiento por abiertos de A. Probar que existe un subcubrimiento numerable de \mathcal{C} que cubre a A.

Proof. Sea $W_i \subseteq \mathcal{C}$ entonces como es un abierto por el ejercicio anteriór sabemos que para cada $x \in W_i$ existe B(x', r) con $x' \in \mathbb{Q}$ y $r \in \mathbb{Q}$ tal que $x \in B(x', r) \subseteq W_i$

Y esto mismo podemos hacer para cada W_i y para cada $x \in W_i$

Ahora teniendo esto en mente lo que hacemos para armar el subcubrimiento que buscabamos es para cada una de estas bolas de centro y radio racionales nos quedamos con un único W_i que las contiene.

Alumno Javier Vera

Esto es seguro un cubrimiento , por que para cada $x \in A$ tenemos un W_i tal que $x \in W_i$ y por lo tanto una bola racional tal que x está en esa bola y para cada una de esas bolas nos quedamos con un único W_i por lo tanto cada $x \in A$ estan en algún W_i de los que nos quedamos

Ahora por la forma en que armamos este subcubrimiento sabemos que a lo sumo tenemos igual cantidad de abiertos cubriendo que de bolas de centro racional y radio racional, pero el conjunto de todas las bolas de centro racional y radio racional , es facil ver que es a lo sumo numerable , por lo tanto este subcubrimiento es lo sumo numerable , de esta forma tenemos que efectivamente es subcubrimiento numerable (por que tiene menos cosas que el anteriór cubrimiento que era no numerable) y además por que es tambié un cumbrimiento

Ejercicio 4. Sea $S \subseteq \mathbb{R}^n$. Un punto $x \in \mathbb{R}^n$ es un punto de condensación de S si toda bola B centrada en x tiene la propiedad de que $B \cap S$ es no numerable. Probar que si S es no numerable entonces existe un punto $x \in S$ de condensación de S.

Proof. Llamaré S_{Con} al conjut
no de los puntos de condensasión de S por comodidad.

Supongamos que no existe punto de condensasión de S, entonces $\forall x \in S \ x \notin S_{con}$

Entonces $\forall x_i \in S$ como $x_i \notin S_{con}$ luego existe un r > 0 tal que $B(x_i, r_i) \cap S$ es contable (lo contrario a no numerable)

Bueno ahora si tomamos la union de esas bolas $\bigcup_{i \in I} B_i$ tenemos un cubrimiento por abiertos de S por que para cada $x \in S$ tenemos una bola

Luego por Lindelöf sabemos que hay un subcubrimiento numerable

Luego tenemos este nuevo $S = \bigcup_{i \in \mathbb{N}} B_i$ cubrimiento con numerables bolas abiertas

Sabemos que $S \cap S = (\bigcup_{i \in \mathbb{N}} B_i) \cap S = \bigcup_{n \in \mathbb{N}} B_i \cap S$

Pero cada una de estas intersecciones tiene contables elementos por hipotesis.

Luego tenemos que $S = \bigcup B_i \cap S$ es union numerable de cosas contables , por lo tanto es a lo sumo numerable

Pero entonces S es a lo sumo numerable lo cual es absurdo. Dicho absurdo provino de suponer que no existia ningún punto de condensasión

Ejercicio 5. Sea $S \subseteq \mathbb{R}^n$, probar que la colección de puntos aislados de S es a lo sumo numerable.

Proof. Supongamos que el conjunto de los puntos aislados de S notemosló $S_{aislados}$ es no numerable.

Por el ejericio anteriór existe un $x \in S_{aislados}$ tal que x es de condensasión.

Entonces $\forall r > 0, \ B(x,r) \cap S_{aislados}$ es no numerable.

Pero entonces $\forall r > 0, B(x,r) \cap S_{aislados} \neq \{x\}$ por que $\{x\}$ es finito

Luego, $\forall r > 0, B(x,r) \cap S \neq \{x\}$

Pero entonces x no es un punto aislado, lo que es absurdo

Ejercicio 6. Ver si las siguuientes funciones son distancias.

• $d_1(x,y) = (x-y)^2$ No es distancia.

Proof.
$$d_1(-1,1) = 4 > 1 + 1 = d_1(-1,0) + d_1(0,1)$$

- $d_2(x,y) = \sqrt{|x-y|}$ es una distancia
 - 1. $d_2(x,y) = 0 \iff \sqrt{|x-y|} = 0 \iff |x-y| = 0 \iff x = y$
 - 2. $d_2(x,y) = d_2(y,x)$ es trivial
 - 3. $d_2(x,y)^2 = |x-y| < |x-z| + |z-y| \le |x-z| + |z-y| + 2\sqrt{|x-z||z-y|} = (\sqrt{|x-z|} + \sqrt{|z-y|})^2 = (d_2(x,z) + d_2(z,y))^2$ Luego $d_2(x,y)^2 \le (d_2(x,z) + d_2(z,y))^2$

Y es tirivial ver que entonces $d_2(x,y) \leq d_2(x,z) + d_2(z,y)$

- $d_3(x,y) = |x^2 y^2|$ Es facil ver que no es distancia $d_3(-2,2) = 0$
- $d_4(x,y) = |x-2y|$ Es trivial devuelta $d_4(2,1) = 0$
- $d_5(x,y) = \frac{|x-y|}{1+|x-y|}$ queda como ejercicio para el lectro , por que es un aburrimiento hacerlo

Ejercicio 7. Es una clásica demostración de taller de cálculo.

Ejercicio 8. Sea $N: \mathbb{Z} \to \mathbb{R}$ la funcion definida por

$$N(x) = \begin{cases} 2^{-n} & \text{si } a \neq 0, \quad p^n | a \quad \text{y} \quad p^{n+1} \nmid a \\ 0 & \text{si } a = 0 \end{cases}$$

donde p es un primo fijo, y sea $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ dada por d(a,b) = N(a-b). Probar que (\mathbb{Z},d) es un espacio métrico

Proof. Primero definamos para cada entero no nulo $\phi_p(a)$ que es el mayor $n \in \mathbb{N}$ tal que $p^n|a$ Es simple ver $\phi_p(a) = \phi_p(-a)$ tambien $\phi_p(a+b) \ge \min \{\phi_p(a), \phi_p(b)\}$ Ahora podemos reescribir

$$d(a,b) = \begin{cases} 2^{-\phi_p(a-b)} & \text{si } a \neq b \\ 0 & \text{si } a = b \end{cases}$$

- 1. Sea d(a,b)=0 entonces a=b por definición , por que $2^n\neq 0 \quad \forall n\in\mathbb{Z}$
- 2. Asumiendo $a \neq b$ tenemos $d(a,b) = 2^{-\phi_p(a-b)} = 2^{-\phi_p(-(a-b))} = 2^{-\phi_p(-a+b)} = d(b,a)$
- 3. Ahora consideremos que $\phi_p(a-b) = \phi_p((a-c)+(c-b)) \ge \min \{\phi_p(a-c), \phi_p(c-b)\}$ Tambien supongo por comodidad $a \ne b \ne c$ por comodidad, si alguno fuera igual la demostración es trivial

$$d(a,b) = 2^{-\phi_p(a-b)} \le 2^{-\min\{\phi_p(a-c),\phi_p(c-b)\}} = \min\{2^{\phi_p(a-c)}, 2^{\phi_p(c-b)}\} \le 2^{\phi_p(a-c)} + 2^{\phi_p(c-b)}$$

Finalmente $d(a,b) \le d(a,c) + d(c,b)$

Entonces d es una métrica y por lo tanto (\mathbb{Z},d) es un pár conjunto, métrica o lo que es lo mismo , un espacio métrico

Ejercicio 9. Sean X un conjunto y $\delta: X \times X \to \mathbb{R}$ definida por

$$\delta(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

Verificar que δ es una métrica y hallar los abiertos de (X, δ) Nota: δ se llama metrica discreta y (X, δ) espacio métrico discreto

Proof. 1. $\delta(x,y) = 0 \iff x = y$

- 2. Supongamos $x \neq y \Rightarrow \delta(x,y) = 1 = \delta(y,x)$
- 3. Supongamos devuelta $x\neq y$ si no es obvio que vale , $\delta(x,y)=1\leq \delta(x,z)+\delta(z,y)$ esto vale seguro , por que no puede suceder $\delta(x,z)=\delta(z,y)=0$ por que esto implicaría x=z=y absurdo

Ejercicio 10. Sea $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : (a_n)_{n \in \mathbb{N}} \text{ es acotada}\}$. Se considera $d : \ell_{\infty} \times \ell_{\infty} \to \mathbb{R}$ definida por $d(a_n, b_n) = \sup_{n \in \mathbb{N}} |a_n - b_n|$. Probar que (ℓ_{∞}, d) es un espacio métrico.

Proof. 1. $d(a_n, b_n) = 0 \iff \sup_{n \in \mathbb{N}} |a_n - b_n| = 0 \iff 0 \le |a_n - b_n| \le 0 \quad \forall n \in \mathbb{N}$ $\iff |a_n - b_n| = 0 \quad \forall n \in \mathbb{N} \iff a_n = b_n \quad \forall n \in \mathbb{N}$

- 2. $d(a_n, b_n) = \sup_{n \in \mathbb{N}} |a_n b_n| = \sup_{n \in \mathbb{N}} |b_n a_n| = d(b_n, a_n)$
- 3. Sabemos que $|a_n b_n| \le |a_n + c_n| + |c_n b_n|$ $\sup_{n \in \mathbb{N}} |a_n - b_n| \le \sup_{n \in \mathbb{N}} (|a_n + c_n| + |c_n - b_n|) = \sup_{n \in \mathbb{N}} |a_n + c_n| + \sup_{n \in \mathbb{N}} |c_n - b_n|$ $d(a_n, b_n) \le d(a_n, c_n) + d(c_n, b_n)$

Ejercicio 11. Dados $a, b \in \mathbb{R}, a < b$, se define $\mathcal{C}[a, b] = \{f : [a, b] \to \mathbb{R} : f \text{ es continua}\}$. Probar que son espacios métricos.

- i. $(C[a, b], d_1)$ con $d_1(f, g) = \int_a^b |f(x) g(x)| dx$
- ii. $(\mathcal{C}[a,b],d_{\infty})$, con $d_{\infty}(f,g)=\sup_{x\in[a,b]}|f(x)-g(x)|$

Proof. Son demostraciones de taller

Ejercicio 12. Sean (X_1, d_1) y $(X_2.d_2)$ espacios métricos. Consideremos el conjunto $X_1 \times X_2$ y la aplicación $d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$ dada por

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

- (a) Probar que d define una métrica en $X_1 \times X_2$
 - *Proof.* i. Por comodida tomemos $x=(x_1,x_2)$ e $y=(y_1,y_2)$ $d(x,y)=d_1(x_1,y_1)+d_2(x_2,y_2)$ como ambas d_1,d_2 son distancias entonces son mayores a 0 entonces $d((x_1,x_2),(y_1,y_2)) \geq 0$
 - ii. $d(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2) = d_1(y_1,x_1) + d_2(y_2,x_2) = d(y,x)$
 - iii. $d(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2) \le d_1(x_1,z_1) + d_1(z_1,y_1) + d_2(x_2,z_2) + d_2(z_2,y_2) = d(x,z) + d(z,y)$
- (b) Construir otras métricas en $X_1 \times X_2$

Es evidente que va a funcionar con cualquier par d_1, d_2 tales que ambas sean métricas

Ejercicio 13. Sea (X, d) un espacio métrico y sean $A, B \subseteq X$

1. Probar las siguientes propiedades del interiór de un conjunto:

(a)

$$A^{\mathrm{o}} = \bigcup_{G \text{ abierto, } G \subseteq A} G$$

Proof. \subseteq) Trivial dado que A^{o} es abierto mas grande contenido en A

 $\subseteq)$ Sea $x\in\bigcup G$ entonces $x\in G$ para algún G de la unión

Como G es abierto existe $B(x,r)\subseteq G$ y por otro lado $G\subseteq A$

Entonces existe $B(x,r) \subseteq A$ entonces $x \in A^{o}$

(b) $\emptyset^{o} = \emptyset$

Proof. Supongamos $\emptyset^{\circ} \neq \emptyset$ entonces $\exists x \in X$ tal que $x \in \emptyset^{\circ}$

Luego tiene que existir $B(x,r)\subseteq\emptyset$ que es absurdo

(c) $X^{o} = X$

Proof. \subseteq) Vale siempre

⊇) Sea $x \in X$ supongamos que $x \notin X^{\rm o}$ entonces $\forall r>0$ $B(x,r) \not\subseteq X$ entonces $\exists y \in B(x,r)$ tal que $y \notin X$

Absurdo por que X es todo no pueden existir cosas que no esten en X

(d) $A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$

Proof. Sea
$$x \in A^{\circ}$$
 entonces existe $B(x,r) \subseteq A \subseteq B$ luego $x \in B^{\circ}$

(e) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. ¿Se puede generalizar a una intersección infinita?

Proof. \subseteq) Sea $x \in (A \cap B)^{\circ}$ entonces existe $B(x,r) \subseteq A \cap B$

Pero entonces $B(x,r) \subseteq A$ por lo que $x \in A^{o}$

Tambien $B(x,r) \subseteq B$ por lo que $x \in B^{\circ}$

Luego $x \in A^{o} \cap B^{o}$

 \supseteq) Sea $x \in A^{\circ} \cap B^{\circ}$ entonces $x \in A^{\circ}$ y $x \in B^{\circ}$

Entonces existe $B(x, r_1) \subseteq A$ y también $B(x, r_2) \subseteq B$

Si tomamos $r = \min\{r_1, r_2\}$ tenemos que $B(x, r) \subseteq A$ y tambien $B(x, r) \subseteq B$

Entonces
$$B(x,r) \subseteq A \cap B$$
 finalmente $x \in (A \cap B)^{o}$

(f) $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$ ¿Vale la igualdad?

Proof. $x \in A^{\circ} \cup B^{\circ}$ entonces x esta en alguno de los dos o los dos interiores

Supongamos $x \in A^{\circ}$ entonces existe $B(x,r) \subseteq A \subseteq A \cup B$

Entonces $x \in (A \cup B)^{\circ}$

Si esta en ambos , en particular esta en una , asi que usamos lo de arriba nuevamente $\,$

No vale la igualdad por ejemplo A = [1, 2] y B = [2, 3]

$$A^{\circ} \cup B^{\circ} = (1,2) \cup (2,3) \neq (1,3) = ([1,3])^{\circ} = (A \cup B)^{\circ}$$

2. Probar las siguiente propiedades de la clausura de un conjunto

(a)

$$\overline{A} = \bigcap_{F \text{ cerrado, } A \subseteq F} F$$

Proof. Sea $x \in \overline{A}$ entonces $\forall r > 0, B(x,r) \cap A \neq \emptyset$ ahora supongamos $x \notin F$

Como $F=\overline{F}$ por ser cerrado, entonces $x\notin\overline{F}$ para algún F en la intersección

Entonces $\exists r' > 0$ tal que $B(x, r') \cap F = \emptyset$

Pero esto es absurdo dado que $A\subseteq F$ tenemos $\emptyset\neq B(x,r')\cap A\subseteq B(x,r')\cap F=\emptyset$

Entonces $x \in \overline{F} = F$

Y esto vale para cualquier F cerrado tal que $A\subseteq F$

Entonces x esta en todos estos F y por ende en la intersección

⊇) Sea $x \in \bigcap F$ entonces $x \in F$ para todo $F = \overline{F}$ por que es cerrado por lo tanto $x \in \overline{F}$

Supongamos que $x \in \bigcap F$ pero $x \notin \overline{A}$ entonces tiene que existir un r > 0 tal que $B(x,r) \cap A = \emptyset$ luego tenemos que $A \subseteq X \setminus B(x,r)$ que ademas es cerrado por que es el complemento de B(x,r) que es abierto

Pero entonces $X \setminus B(x,r)$ es un cerrado que contiene a A por ende es uno de los F en la intersección

Entonces $x \in X \setminus B(x,r)$ lo cual es absurdo

Provino de suponer que existia un r > 0 tal que $B(x,r) \cap A = \emptyset$

Entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$ por lo tanto $x \in \overline{A}$

(b) $\overline{\emptyset} = \emptyset$

Proof. Supongamos que son diferentes entonces $\exists x \in X$ tal que $x \in \overline{\emptyset}$ entonces $\forall r > 0$ $B(x, r) \cap \emptyset \neq \emptyset$ lo cual es absurdo

(c) $\overline{X} = X$

 $Proof. \supseteq$) Ya está demostrada

 $\subseteq)$ Sea $x\in\overline{X}$ seguro tambien $x\in X$ por que no existe tal que $x\notin X$

Notemos que X es el conjunto universal

(d) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$

Proof. Sea $x \in \overline{A}$ entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Tambien sabemos que $A \subseteq B$ entonces $B(x,r) \cap A \subseteq B(x,r) \cap B$

Entonces $\forall r > 0$ $B(x,r) \cap B \neq \emptyset$ luego $x \in \overline{B}$

(e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$; Se puede generalizar a unión infinita?

Proof. \subseteq) Sea $x \in \overline{A \cup B}$ luego $\forall r > 0$ $B(x, r) \cap (A \cup B) \neq \emptyset$

Supongamos $x \notin \overline{A} \cup \overline{B}$ entonces $x \notin \overline{A}$ y $x \notin \overline{B}$

Entonces $B(x, r_1) \cap A = \emptyset$ y por otro lado $B(x, r_2) \cap B = \emptyset$

Luego sea $r = \min\{r_1, r_2\}$ tenemos que

 $B(x,r)\cap (A\cup B)\subseteq (B(x,r)\cap A)\cup (B(x,r)\cap B)\subseteq (B(x,r_1)\cap A)\cup (B(x,r_2)\cap B)=\emptyset$

Absurdo entonces no puede ser que $x \notin \overline{A}$ y $x \notin \overline{B}$

⊇) Sea $x \in \overline{A} \cup \overline{B}$ supongamos $x \in \overline{A}$ luego $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Entonces dado que $B(x,r) \cap A \subseteq B(x,r) \cap (A \cup B)$

Tenemos $B(x,r) \cap (A \cup B) \neq \emptyset$ por lo que $x \in \overline{A \cup B}$

(f) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof. Sea $x \in \overline{A \cap B}$ entonces $\forall r > 0$ $B(x,r) \cap (A \cap B) \neq \emptyset$

Entonces tenemos $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$ por lo que $x \in \overline{A}$

Y tambien $\forall r > 0$ $B(x,r) \cap B \neq \emptyset$ por lo que $x \in \overline{B}$

Entonces $x \in \overline{A} \cap \overline{B}$

Sea $A = \mathbb{Q} \ y \ B = \mathbb{R} \setminus \mathbb{Q} \quad \overline{A \cap B} = \overline{\emptyset} = \emptyset \neq \mathbb{R} = \mathbb{R} \cap \mathbb{R} = \overline{\mathbb{Q}} \cap \overline{\mathbb{R} \setminus \mathbb{Q}} = \overline{A} \cap \overline{B} \quad \Box$

(g)
$$x \in \overline{A} \iff$$
 existe una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \longrightarrow x$

Proof.
$$\Rightarrow$$
) Sea $x \in \overline{A}$ entonces $\forall n \in \mathbb{N}$ $B(x, \frac{1}{n}) \cap A \neq \emptyset$

Entonces $\forall n \in \mathbb{N}$ existe $a_n \in A \cap B(x, \frac{1}{n})$ entonces $a_n \in A$ y $a_n \in B(x, \frac{1}{n})$

Que es lo mismo que decir $\forall \epsilon > 0 \quad \exists a_n \in A \text{ tal que } d(x, a_n) \leq \epsilon$

Por lo tanto $\forall \epsilon > 0 \quad \exists n_0 \text{ tal que } \forall n \geq n_0 \quad d(x, a_n) \leq \epsilon$

 \Leftarrow) Sea $a_n \in A \quad \forall n \in \mathbb{N} \text{ tal que } a_n \to x$

Entonces $\forall \epsilon > 0 \quad \exists a_n \in A \text{ tal que } d(x, a_n) \leq \epsilon$

Luego $\forall \epsilon > 0$ tenemos $a_n \in B(x, \epsilon)$ con $a_n \in A$

Por lo que $B(x,\epsilon) \cap A \neq \emptyset$

Entonces
$$x \in \overline{A}$$

- 3. Probar las siguientes propiedades que relacionan interiór y clausura:
 - (a) $(X \setminus A)^{\circ} = X \setminus \overline{A}$

Proof. \subseteq) Sea $x \in (X \setminus A)^{\circ}$ entonces existe r > 0 tal que $B(x, r) \subseteq (X \setminus A)$

Entonces $B(x,r) \cap A = \emptyset$ luego $x \notin \overline{A}$ y sabemos que $x \in X$

Entonces $x \in X \setminus \overline{A}$

 $\supseteq)$ Sea $x\in X\setminus \overline{A}$ entonces $x\notin \overline{A}$

Entonces $\exists r > 0 \quad B(x,r) \cap A = \emptyset$

Por lo tanto $B(x,r) \subseteq X \setminus A$ luego $x \in (X \setminus A)^{\circ}$

(b)
$$\overline{X \setminus A} = X \setminus A^{\circ}$$

Proof. ⊇) Sea
$$x \in X \setminus A^{\circ} \iff x \notin A^{\circ} \iff \forall r > 0$$
 $B(x,r) \not\subseteq A$ $\iff \forall r > 0$ $B(x,r) \cap (X \setminus A) \neq \emptyset \iff x \in \overline{X \setminus A}$

(c) ¿Es cierto que vale $\overline{A} = \overline{A^{o}}$?

Proof. Si
$$A \subseteq \mathbb{R}$$
 con $A = \{1\}$ entonces $\overline{A} = \{1\} \neq \emptyset = \overline{\emptyset} = \overline{A^o}$

(d) ¿Es cierto que vale $A^{\circ} = (\overline{A})^{\circ}$?

$$\mathbb{Q}^{\mathrm{o}} = \emptyset \neq \mathbb{R} = \mathbb{R}^{\mathrm{o}} = (\overline{\mathbb{Q}})^{\mathrm{o}}$$

4. Probar las siguientes propiedades de la frontera de un conjunto

(a)
$$\partial A = \overline{A} \cap \overline{X \setminus A}$$

Proof.
$$\subseteq$$
) $x \in \partial A \iff \forall r > 0$ $B(x,r) \cap A \neq \emptyset$ $y B(x,r) \cap A^c \neq \emptyset$ $\iff x \in \overline{A} \ y \ x \in \overline{A^c} = \overline{X \setminus A} \iff x \in \overline{A} \cap \overline{X \setminus A}$

(b) ∂A es cerrado

Proof. Esto es equivalente a ver que $\partial A = \overline{\partial A}$ una de las inclusiones es trivial Veamos que $\overline{\partial A} \subseteq \partial A$. Sea $x \in \overline{\partial A}$ entonces $\forall r > 0$ $B(x, r) \cap \partial A \neq \emptyset$

Luego $\forall r > 0$ B(x, r) tenemos un $y \in \partial A$ tal que $y \in B(x, r)$

Como $y \in B(x,r)$ que es abierto $\exists r'$ tal que $B(y,r') \subseteq B(x,r)$

Como $y \in \partial A$ entonces $\forall r$ tenemos $B(y,r) \cap A \neq \emptyset$ y $B(y,r) \cap A^c \neq \emptyset$

En particular vale para r', entonces $B(y,r') \cap A \neq \emptyset$ y $B(y,r') \cap A^c \neq \emptyset$

Entonces $\emptyset \neq B(y,r') \cap A \subseteq B(x,r) \cap A$ y tambien sucede con A^c

Entones $x \in \partial A$

Otra opción es usar el ejercicio de arriba, como $\partial A = \overline{A} \cap \overline{X \setminus A}$ que es una intersección de dos cerrados entonces es cerrado

(c) $\partial A = \partial (X \setminus A)$

Proof. Esto sale por definición usando que $A^c = X \setminus A$ y que $A = (X \setminus A)^c$

Ejercicio 14. Sea (X, d) un espacio métrico y sean $G \subseteq X$ abierto y $F \subseteq X$ cerrado. Probar que $F \setminus G$ es cerrado y $G \setminus F$ es abierto

Proof.

Ejercicio 15. Sea (X, d) un espacio métrico. Dados $a \in X$ y $r \in \mathbb{R}_{>0}$, llamamos bola cerrada de centro a y radio r al conjunto $\overline{B}(a, r) = \{x \in X : d(x, a) \leq r\}$

1. Probar que $\overline{B}(a,r)$ es un conjunto cerrado y que $\overline{B}(a,r)\subseteq \overline{B}(a,r)$

Proof. Sea $y \in X \setminus \overline{B}(x,r)$, entonces d(x,y) > r por lo tanto $\epsilon = d(x,y) - r > 0$

Ahora sea $z \in B(y, \epsilon)$ entonces $d(z, x) + d(z, y) \ge d(x, y)$

Luego $d(z, x) \ge d(x, y) - d(z, y) > d(x, y) - \epsilon = r$

Entonces $z \in X \setminus \overline{B}(x,r) \quad \forall z \in B(y,\epsilon)$

Por lo que $\forall y \in X \setminus \overline{B}(x,r) \quad \exists B(y,\epsilon) \text{ tal que } B(y,\epsilon) \subseteq X \setminus \overline{B}(x,r)$

Finalmente $X \setminus \overline{B}(x,r)$ es abierto entonces $\overline{B}(x,r)$ es cerrado

Como sabemos que $B(x,r) \subseteq \overline{B}(x,r)$ y ahora sabiendo que $\overline{B}(x,r)$ cerrado

Entonces $\overline{B(x,r)} \subseteq \overline{B}(x,r)$

2. Dar un ejemplo de un espacio métrico y una bola abierta B(a,r) cuya clausura no sea $\overline{B}(a,r)$

Esto es dar un ejemeplo donde $\overline{B(x,r)} \not\supseteq \overline{B}(x,r)$

Consideremos el espacio métrico (\mathbb{Z},δ) donde δ es la distancia discreta

Para cualquier $x \in \mathbb{Z}$ tenemos $\overline{B(x,1)} = \overline{\{x\}} = \{x\} \not\supseteq \mathbb{Z} = \overline{B}(x,1)$

Ejercicio 16. Sean (X, d_1) e (Y, d_2) espacios métricos. Se considera el espacio métrico $(X \times Y, d)$, donde la d es la métrica definida en el Ejercicio 12. Probar que para $A \subseteq X$ y $B \subseteq Y$ valen:

1. $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$

Proof. Veamos primero que dados U y V abiertos de X e Y respectivamente entonces $U \times V$ es abierto de $X \times Y$.

Sea $(x,y) \in U \times V$. como $x \in U$ que es abierto existe $B(x,r_1) \subseteq U$

Y lo mismo con y existe $B(y, r_2) \subseteq V$

Ahora si tomamos $r = \min\{r_1, r_2\}$

Sea $x \in (A \times B)^{\circ}$ entonces $\exists r > 0$ tal que $B(x,r) \subseteq A \times B$

Si $(x',y') \in B_r(x,y)$ $r > d((x,y),(x',y')) = d_1(x,x') + d_2(y,y')$. Ambos sumandos son positivos por ser distancias. Luego ambos sumandos tienen que ser menores que r

Entonces $d_1(x, x') < r \le r_1$ entonces $x' \in B(x, r_1) \subseteq U$

Y también $d_2(y, y') < r \le r_2$ entonces $y' \in B(y, r_2) \subseteq V$

Entonces $(x', y') \in U \times V$ luego $B_r(x, y) \subseteq U \times V$

Entonces para cualquier $(x,y) \in U \times V$ encontramos $B_r(x,y) \subseteq U \times V$

Luego $U \times V$ es abierto.

Luego como A^{o} y B^{o} abierto entonces $A^{o} \times B^{o}$ abierto

Luego dado que $A^{\rm o}\times B^{\rm o}\subseteq A\times B$ y $A^{\rm o}\times B^{\rm o}$ es abierto. Entonces $A^{\rm o}\times B^{\rm o}\subseteq (A\times B)^{\rm o}$

Veamos $A^{\circ} \times B^{\circ} \supseteq (A \times B)^{\circ}$

Sea $(x,y) \in (A \times B)^{\circ}$ entonces existe r > 0 $B_r(x,y) \subseteq (A \times B)$

Entonces si $x' \in B(x, \frac{r}{2})$ e $y' \in B(y, \frac{r}{2})$

Luego $d((x', y')(x, y)) = d_1(x', x) + d_2(y', y) < \frac{r}{2} + \frac{r}{2} = r$

entonces $(x', y') \in B_r(x, y) \subset A \times B$

Luego $x' \in A$ y tambien $y' \in B$

 $B(x, \frac{r}{2}) \subseteq A$ y por otro lado $B(y, \frac{r}{2}) \subseteq B$

Entonces $x \in A^{\rm o}$ e $y \in B^{\rm o}$ luego $(x,y) \in A^{\rm o} \times B^{\rm o}$

 $2. \ \overline{A \times B} = \overline{A} \times \overline{B}$

 $\mathit{Proof.}$ Siguiendo las ideas anteriores probemos que F y G cerrados entonces $F\times G$ es cerrado

Sea F e G cerrados entoncse $X \setminus F$ y $X \setminus G$ son abiertos

Luego $X \setminus F \times Y$ es abierto por lo que $F \times X$ es cerrado

De la misma manera $X\times Y\setminus G$ abierto entonces $X\times G$ es cerrado

Luego $(X \times G) \cap (F \times Y) = F \times G$ es intersección de cerrado

Entonces $F \times G$ es cerrado

Luego usando esto tenemos que \overline{A} y \overline{B} son cerrados por lo que $\overline{A} \times \overline{B}$ es cerrado

Luego $A \times B \subseteq \overline{A} \times \overline{B}$ entonces $\overline{A \times B} \subseteq \overline{A} \times \overline{B}$

$$Veamos \overline{A \times B} \supseteq \overline{A} \times \overline{B}$$

Ejercicio 17. Sea (X, d) un espacio métrico y sean A, B subconjunto de X.

- 1. Probar las siguientes propiedades del derivado de un conjunt:
 - (a) A' es cerrado.

Proof. Sea $(a_n)_{n\in\mathbb{N}}\subseteq A'$ convergente tal que $a_n\to a$, queremos ver que $a\in A'$ esto nos diría que $A'=\overline{A'}$

Como $a_n \to a$ dado un $\epsilon > 0$ existe n_0 tal que $\forall n > n_0 \quad d(a, a_n) \le \epsilon$

Equivalentemente para cualquier $\epsilon > 0$ existe n_0 tal que $\forall n \geq n_0 \ a_n \in B(a, \epsilon)$.

Pero tomemos solo un a_n llamemos
lo a_j tal que $a_j \in B(a,\epsilon)$

Como $a_j \in B(a, \epsilon)$ es abierto entonces existe r' tal que $B(a_j, r') \subseteq B(a, r)$

Tambien sabemos que $a_j \in A'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to a_j$

Sea $\epsilon = r'$ tenemos que exsite n_1 tal que $\forall n \geq n_1 \ d(x_n, a_j) \leq r'$

Entonces $\forall n \geq n_1 \ x_n \in B(a_j, r')$

Por lo tanto hay numerables $x_n \in A$ tal que $x_n \in B(a_j, r') \subseteq B(a, r)$

Entonces hay numerables $x_n \in A$ tal que $x_n \in B(a, r)$

Por lo tanto $B(a,r) \cap A$ es numerable.

Entonces a es un punto de acumulación, $a \in A'$

Luego $A' = \overline{A'}$ entonces A' es cerrado

(b) $A \subseteq B \Longrightarrow A' \subseteq B'$

Proof. Sea $x \in A'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to x$ Como $A \subseteq B$ la misma sucesión $(x_n)_n \subseteq B$ entonces $x \in B'$

(c) $(A \cup B)' = A' \cup B'$

Proof. \subseteq) Sea $x \in (A \cup B)'$ entonces existe $(x_n)_n \subseteq A \cup B$ tal que $x_n \to x$ Entonces $x_n \in A$ o $x_n \in B$ para infinitos términos , si no tendría infinitos términos fuera de A y fuera de B lo que es absurdo. Quizas para los dos , pero no importa. Spd $x_n \in A$ para infinitos términos entonces me quedo con todos los términos de x_n tal que $x_n \in A$ esto es una subsucesión de x_n entonces converge a x por lo tanto tengo una sucesión contenida en A que converge a x luego $x \in A'$

Entonces $x \in A' \cup B'$

⊇) Sea
$$x \in A' \cup B'$$
 spd $x \in A'$ luego existe $(a_n)_{n \in \mathbb{N}} \subseteq A$ tal que $a_n \to a$
Pero entonces $(a_n)_n \subseteq A \cup B$ por lo tanto $a \in (A \cup B)'$

(d)
$$\overline{A} = A \cup A'$$

Proof. Primero notemos que si $x \in A'$ entonces $\forall r > 0$ $B(x,r) \cap A$ es infinita Por lo tanto diferente del vacio entonces $x \in \overline{A}$ entonces $A' \subseteq \overline{A}$

- \supseteq) Luego $A \subseteq \overline{A}$ entonces $A \cup A' \subseteq \overline{A} \cup A' = \overline{A}$
- \subseteq) Sea $x \in \overline{A}$ entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Supongamos que $x \notin A$, pero entonces usando la bola $B(x, \frac{1}{n})$ y sabiendo que $B(x, \frac{1}{n}) \cap A \neq \emptyset \quad \forall n \in \mathbb{N}$ Armamos una sucesión $(x_n)_n \subseteq A$ tal que $x_n \to x$ Luego $x \in A'$

Ahora supongamos que $x \notin A'$ entonces existe r > 0 tal que $B(x, r) \cap A$ es finito Pero entonces tiene que exisitir algún r' < r tal que $\#(B(x, r') \cap A) = 1$

Esto sucede por que para cada elemento en la intersección sabemos que está en la bola y entonces tiene una distancia a x pero entonces si tomamos un radio mas pequenio ese elemento no estaría en la bola y por lo tanto no estaría en la intersección y esto lo podemos hacer con todos los elementos , salvo uno, por que si no quedara ninguno existiria un 4_2 tal que $B(x,r_2)\cap A=\emptyset$ que es absurdo por que $x\in \overline{A}$

Pero entonces existe r>0 tal que $B(x,r)\cap A=\{x\}$, si fuese otro eleménto y el único , usaríamos $r'=\frac{d(x,y)}{2}$ y entonces $y\notin B(x,r')$

Entonces $x \in A$

Entonces siempre que $x \in \overline{A} \Rightarrow x \in A$ o $x \in A'$ por lo tanto $x \in A \cup A'$

(e)
$$(\overline{A})' = A'$$

Proof. \supseteq) Usando el b) tenemos que como $A \subseteq \overline{A} \Rightarrow A' \subseteq (\overline{A})'$

 \subseteq) Sea $x \in (\overline{A})'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq \overline{A} \setminus \{x\} = (A \cup A') \setminus \{x\}$ tal que $x_n \to x$ Luego x_n tiene infinitos términos en A o en A' o en las dos

Si tiene infinitos en A podemos armar una subsucesión $(x_{n_j})_{n\in\mathbb{N}}\subseteq A$ como es subsucesión $x_{n_i}\to x$ entonces $x\in A'$

Si tiene infinitos en A' similarmente llegamos a que $x \in (A')' \subseteq A'$

Si tiene infinitos en las dos , podemos usar cualquiera de los dos argumentos

Observación. $(A')' \subseteq A'$

Proof. A' es cerrado por lo tanto para cualquier $(x_n)_n \subseteq A'$ tal que $x_n \to x$ sucede que $x \in A'$. Si no , no sería cerrado

Luego A' contiene a todos sus puntos de acumulación por lo tanto $(A')' \subseteq A'$

2. Probar que $x \in X$ es un punto de acumulación de $A \subseteq X$ si y solo si existe una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to x$ y $(x_n)_{n \in \mathbb{N}}$ no es casi constante.

Proof. ⇒) Sabemos que si $x \in A'$ entonces $\forall r > 0$ $B(x,r) \cap A$ es infinito entonces $(B(x,r) \setminus \{x\}) \cap A$ es también infinta.

Luego definamos x_n tal que $x_n \in B(x, \frac{1}{n}) \setminus \{x\} \cap A$ para cada $n \in \mathbb{N}$

Ahora afirmo $x_n \to x$ veamosló

Sea $\epsilon > 0$ sabemos por arquimedianidad que exsite n_0 tal que $\frac{1}{n_0} \leq \epsilon$

Luego por como construí x_n tengo que $x_n \in B(x, \frac{1}{n_0}) \quad \forall n \geq n_0$

Entonces dado cualquier $\epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x) \leq \epsilon \quad \forall n \geq n_0$

Por lo tanto $\forall \epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x, x_n) \leq \epsilon \quad \forall n \geq n_0$

Entonces $x_n \to x$. Además x_n no puede ser casi constante, si lo fuera existiría un n_0 tal que $x_n = x \quad \forall n \geq n_0$ pero esto es absurdo por que sabemos que $x_n \neq x \quad \forall n \in \mathbb{N}$

Si en cambio existiera un n_0 tal que $x_n = a \neq x \quad \forall n \geq n_0$ luego a_n no convergería a x

Ejercicio 18. Hallar interiór, clausura, conjunto derivado y frontera de cada uno de los siguientes subconjuntos de \mathbb{R} . Determinar cuales son abiertos o cerrado

$$[0,1]$$
 ; $(0,1)$; \mathbb{Q} ; $\mathbb{Q} \cap [0,1]$; \mathbb{Z} ; $[0,1) \cup \{2\}$

Proof. 1. [0,1] Es facil ver que el interiór es (0,1) viendo que cada punto es interión tomando un punto y usando como radio el minimo de las distancias hacia 0 y hacia 1

La clausura es también simple por que todo punto en [0,1] cumple trivialmente que la intersección con [0,1] es diferente de vacía

Todos los puntos en [0,1] son de acumlación usando la sucesión constante

La frontera es el conunto $\{0,1\}$ es facíl ver que son de la frontera y es facil ver que cualquier otro no cumple ser de la frontera

Usando esto es facil ver que [0,1] es cerrado

Para (0,1) el análisis es similar

 \mathbb{Q} por densidad de \mathbb{I} es facil ver que dado un $x \in \mathbb{Q}$ $\forall r > 0$ $B(x,r) \cap \mathbb{I} \neq \emptyset$

Por ende ninguna bola puede estar contenida en $\mathbb Q$ y entonces su interiór es vacío

Esta claro que todos $x \in \mathbb{Q}$ es de acumulación , usando la sucesión constante, pero además todo $x \in \mathbb{I}$ es de acumulación de \mathbb{Q} por densidad de racionales es facil de probar

Sabiendo que $\overline{\mathbb{Q}}=\mathbb{Q}\cup\mathbb{Q}'$ tenemos que $\overline{\mathbb{Q}}=\mathbb{Q}\cup\mathbb{I}=\mathbb{R}$

$$\partial \mathbb{Q} = \overline{\mathbb{Q}} \setminus \mathbb{Q}^o = \mathbb{R} \setminus \emptyset = \mathbb{R}$$

Un análisis muy similar podemos hacer con $\mathbb{Q} \cap [0,1]$

 $\mathbb Z$ devuelta su interiór es vacío, es facíl ver que todos sus puntos son aislados, entonces no pueden ser de acumulación

Luego $\mathbb{Z}'=\emptyset$ entonces tambien tenemos que $\overline{\mathbb{Z}}=\mathbb{Z}\cup\mathbb{Z}'=\mathbb{Z}$

$$\partial \mathbb{Z} = \overline{\mathbb{Z}} \setminus \mathbb{Z}^o = \overline{\mathbb{Z}} = \mathbb{Z}$$

 $A = [0,1) \cup \{2\}$ tenemos que 2 no puede ser interiór usando $\forall r > 0$ $B(2,r) \not\subseteq A$

Lo mismo con 0 para cualquier B(x,r) sabemos que existe un x<0 tal que $x\in B(0,r)$ por ende $B(0,r)\not\subseteq A$ el $1\not\in A$ por lo tanto $1\not\in A^{\rm o}$

Para el resto de los puntos y es facil encontrar un radio usando d(y,1) o d(y,0)

Finalmente tenemos $A^{o} = (0, 1)$

Es fácil ver que 0 son puntos de acumulación usando una sucesión por derecha

Luego usando una sucesión de numeros menores que 1 vemos que 1 es de acumulación

Entonces A' = [0, 1]

Luego
$$\overline{A} = A \cup A' = [0,1] \cup \{2\}$$

$$\partial A = \overline{A} \setminus A^{\rm o} = \{0,1,2\}$$

Ejercicio 19. Caracterizar los abiertos y los cerrados de \mathbb{Z} considerado como espacio métrico con la métrica inducida por la usual de \mathbb{R} . Generalizar a un subespacio discreto de un espacio métrico X.

Proof. \Box

Ejercicio 20. Sea (X, d) un espacio métrico y sean $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ sucesiones en X.

1. Si $\lim x_n = x$ y $\lim y_n = y$, probar que $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)$

Proof. Sabemos que $d(x_n, y_n) \le d(x_n, x) + d(x, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$

Entonces tenemos que $\lim_{n\to\infty} d(x_n, y_n) \le \lim_{n\to\infty} (d(x_n, x) + d(x, y) + d(y, y_n))$

Como todos los límites del lado derecho exiten los puedo separar $\lim d(x_n, y_n) \leq d(x, y)$

Con la misma idea $d(x,y) \le d(x,x_n) + d(x_n,y) \le d(x,x_n) + d(x_n,y_n) + d(y_n,y)$

entonces $-d(x_n, y_n) \le d(x, x_n) - d(x, y) + d(y_n, y)$

 $\lim -d(x_n, y_n) \le \lim (d(x, x_n) - d(x, y) + d(y_n, y))$

Todos los límites existen entonces separando $-\lim d(x_n, y_n) \le -d(x, y)$

Finalmente $\lim d(x_n, y_n) \ge d(x, y)$

Entonces $d(x_n, y_n) = d(x, y)$

2. Si $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ son de sucesiones de Cauchy de X, probar que la sucesión real $(d(x_n,y_n))_{n\in\mathbb{N}}$ es convergente

Proof. Sabemos que ambas sucesiones son de cauchy entonces

Dado un $\epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x_m) \leq \frac{\epsilon}{2} \quad \forall n, m \geq n_0$

Y con ese mismo dado $\epsilon > 0$ existe $n_1 \in \mathbb{N}$ tal que $d(y_k, y_j) \leq \frac{\epsilon}{2} \quad \forall k, j \geq n_1$

Ahora si tomamos $n_2 = \max\{n_1, n_0\}$

Tenemos ambas $d(x_n, x_m) \leq \frac{\epsilon}{2}$ y $d(y_k, y_j) \leq \frac{\epsilon}{2}$ $\forall n, m, j, k \geq n_2$

Teniendo esto $d(x_n, y_n) \le d(x_n, x_s) + d(x_s, y_n) \le d(x_n, x_s) + d(x_s, y_s) + d(y_s, y_n)$

Entonces dado $\epsilon > 0$ usando el n_2 tenemos $d(x_n, y_n) \leq \frac{\epsilon}{2} + d(x_s, y_s) + \frac{\epsilon}{2} \quad \forall n, s \geq n_2$

Entonces dado el $\epsilon > 0$ tenemos $n_2 \in \mathbb{N}$ tal que $d(x_n, y_n) \leq d(x_s, y_s) + \epsilon \quad \forall n, s \geq n_2$

Hacieno el mismo proceso con $d(x_s, y_s)$ llegamos a que $d(x_s, y_s) - \epsilon \leq d(x_n, y_n)$

Luego juntando estas dos ideas podemos notar que dado un $\epsilon > 0$ tenemos

$$\exists n_2 \in \mathbb{N} \text{ tal que } |d(x_n, y_n) - d(x_s, y_s)| \leq \epsilon \quad \forall n, s > n_2$$

Sabemos que para todo $\epsilon > 0$ podemos hacer el mismo proceso y encontrar un n_2

$$\forall \epsilon > 0 \quad \exists n_2 \in \mathbb{N} \text{ tal que } |d(x_n, y_n) - d(x_s, y_s)| \le \epsilon \quad \forall n, s \ge n_2$$

Pero esto nos dice que $d(x_n, y_n)$ es de Cauchy y como $d(x_n, y_n) \in \mathbb{R} \quad \forall n \in \mathbb{N}$ y \mathbb{R} es completo entonces $d(x_n, y_n)$ converge

Ejercicio 21. Un subconjunto de A de un espacio métrico de X se dice G_{δ} (respectivamente F_{σ}) si es intersección de una sucesión de abiertos (respectivamente unión de una sucesión de cerrados) de X

1. Probar que el complemento de un G_{δ} es un F_{σ}

Proof. Sea $G_{\delta} = \bigcap_{i \in I} G_i$ intersección de abiertos

Luego
$$x \in (\bigcap_{i \in I} G_i)^c = G^c_{\delta} \iff x \notin \bigcap_{i \in I} G_i \iff$$

existe algún G_i tal que $x \notin G_i \iff$ existe algún G_i tal que $x \in G_i^c$

$$\iff x \in \bigcup_{i \in I} G_i^c \iff x \in F_{\sigma}$$

Este último sí y solo sí vale por que G_i es abierto, por lo tanto G_i^c es cerrado, luego $\bigcup G_i^c$ es unión de cerrados por lo tanto un F_σ

2. Probar que el complemento de un F_{σ} es un G_{δ}

Proof. Sea $F_{\sigma} = \bigcup_{i \in I} F_i$ unión de cerrados

Luego
$$x \in F_{\sigma}^{c} = (\bigcup_{i \in I} F_{i})^{c} \iff x \notin \bigcup_{i \in I} F_{i}$$

$$\iff \forall i \in I \ x \notin F_i \iff x \in F_i^c \quad \forall i \in I \iff x \in \bigcap_{i \in I} F_i^c \iff x \in G_\delta$$

El último si y solo si vale por que F_i es cerrado luego F_i^c es abierto por lo tanto $\bigcap F_i^c$ es intersección de abiertos entonces es un G_δ

3. Probar que todo cerrado es un G_{δ} . Deducir que todo abierto es un F_{δ}

Proof. Sea F cerrado, definamos U_n

$$U_n = \bigcup_{x \in F} B(x, \frac{1}{n})$$

 U_n es unión de abiertos por lo tanto abierto

Ahora firmo que $F = \bigcap U_n$ osea intersección de abiertos. entonces F es G_δ

Veamosló. $x \in F$ entonces $x \in B(x, \frac{1}{n}) \quad \forall n \in \mathbb{N}$ entonces $x \in U_n \quad \forall n \in \mathbb{N}$

Entonces $y \in \bigcap U_n$

Sea $y \in \bigcap U_n$ entonces $y \in U_n \quad \forall n \in \mathbb{N}$ entonces para cada $n \in \mathbb{N}$ sabemos que y pertenece a alguna de esas bolas, otra forma de decirlo $y \in B(x_n, \frac{1}{n})$ para algún $x_n \in F$ pero entonces dado un $\epsilon > 0$ sabemos que existe un $n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} \le \epsilon$ pero ademas sabemos que para todo $n > n_0$ sucede $\frac{1}{n} \le \frac{1}{n_0} \le \epsilon$ por ende $d(x_n, y) \le \epsilon \quad \forall n \ge n_0$

Pero entonces x_n converge a y y además $x_n \in F \quad \forall n \in \mathbb{N}$ y como F es cerrado tenemos que $y \in F$

Forma B. Sea G abierto

$$U_n = \bigcup_{x \in X \setminus G} B(x, \frac{1}{n})$$

Luego tenemos $F_n = X \setminus U_n$ que es complemento de abierto por lo tanto cerrado.

Ahora afirmo que $G = \bigcup F_n$ que es unión de cerrados por lo tanto F_{σ}

Veamosló, sea $y \in G$ supongamos $y \notin \bigcup F_n$ entonces $y \notin F_n \quad \forall n \in \mathbb{N}$

Entonces $y \in U_n \quad \forall n \in \mathbb{N}$ por lo tanto $y \in \bigcap U_n$ por el mismo argumento que antes esto implica que $y \in X \setminus G$, lo que es absurdo. Luego $y \in \bigcup F_n$

Sea $y \in \bigcup F_n$ entonces $y \in F_n \quad \forall n \in \mathbb{N}$ entonces $y \notin U_n \quad \forall n \in \mathbb{N}$

Supongamos $y \notin G$ entonces $y \in X \setminus G$ pero entonces $y \in U_n$ para algún $n \in \mathbb{N}$ seguro Lo que es absurdo , entonces $y \in G$

- 4. (a) Exhibir una sucesión de abiertos de \mathbb{R} cuya intersección sea [0,1). Idem con [0,1]
 - (b) Exhibir una sucesión de cerrados de \mathbb{R} cuya unión sea [0,1)
 - (c) ¿Qué conclusión puede obtenerse de estos ejemplos?

Ejercicio 22. a

1. Sea (X,d) un espacio métrico. Se define $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Probar que d' es una métrica en X topológicamente equivalente a d (o sea, ambas dan a lugar a una misma noción de conjunto abierto). Observar que $0 \le d'(x,y) \le 1$ para todo $x,y \in X$

Proof. Consideremos $f = \frac{x}{1+x}$ entonces podemos reescribir $d'(x,y) = f \circ d$ También sabemos que f es creciente dado que su derivada es mayor a $0 \quad \forall x \in \mathbb{R}$

Y f(0) = 0. Estas dos cosas nos dicen que $f \circ d$ es distancia , por lo tanto d' es distancia Veamos que $d' = f \circ d$ y d son topológicamente equivalentes

Sea $y \in B_{d'}(x, \epsilon)$ seguro existe un r > 0 tal que $\epsilon < \frac{r}{r+1}$ entonces $d'(y, x) \le \epsilon \le \frac{r}{r+1}$

$$d'(x,y) = \frac{d(y,x)}{1 + d(y,x)} \le \frac{r}{r+1} \iff \frac{r+1}{r} \le \frac{1 + d(y,x)}{d(y,x)} \iff 1 + \frac{1}{r} \le \frac{1}{d(y,x)} + 1 \iff d(y,x) \le r$$

Entonces $y \in B_d(x,r)$ por lo tanto $B_{d'}(x,\epsilon) \subseteq B_d(x,r)$

Ahora sea $y \in B_d(x, \epsilon)$ entonces $d(x, y) \le \epsilon$ y seguro existe un $r \ge \epsilon$

Entonces $d(x,y) \leq \epsilon \leq r$ usando la misma idea llegamos a que entonces $d'(x,y) \leq \frac{r}{r+1}$

Luego $y \in B_{d'}(x, \frac{r}{r+1})$ luego $B_d(x, r) \subseteq B_{d'}(x, \frac{r}{r+1})$

2. Sea $(X_n, d_n)_{n \in \mathbb{N}}$ una sucesión de espacios métricos tales que para cada $n \in \mathbb{N}$ vale $0 \le d_n(x, y) \le 1$ para todo par de elementos $x, y \in X_n$.

Para cada $x = (X_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}}$ definimos:

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

3. Sea (X,d) un espacio métrico. Llamamos $X^{\mathbb{N}}$ al conjunto de las sucesiones de X. Mostrar que aplicando i) y ii) se le puede dar una métrica a $X^{\mathbb{N}}$.

Ejercicio 23. Sean d_{∞} y d_2 las métricas en R^n definidas en el ejercicio 7. Mostrar que d_{∞} y d_2 son topológicamente equivalentes.

Proof. Por un lado tenemos que $d_{\infty}(x,y) \leq d_1(x,y) \quad \forall x,y \in \mathbb{R}^n$

Entonces si x_k converge con d_1 entonces seguro converge con d_{∞}

Ahora por otro lado supongamos x_k converge con d_{∞}

 x_k converge con d_∞ entonces dado $\epsilon>0$ existe n_0 tal que $d_\infty(x_k,x)\leq \epsilon \quad \forall k\geq n_0$

Entonces dado $\epsilon > 0$ existe n_0 tal que

$$d_1(x_k, x) = \sum_{j=1}^n |(x_k)_j - x_j| \le n \sup_{1 \le j \le n} |(x_k)_j - x_j| = n d_{\infty}(x_k, x) \le n\epsilon \quad \forall k \ge n_0$$

Aclaración j es el indice de componente, y n es un número fijo, que sirve para cualquier ϵ y está dado por la dimensión de \mathbb{R}^n

Luego x_k converge en d_1 . Entonces ambas distancias generan las mismas sucesiones convergentes, por lo tanto son equivalentes

Ejercicio 24. Sea (X, d) un espacio métrico. Dados $A \subseteq X$ no vacío y $x \in X$, se define la distancia de x a A como $d_A(x) = \inf \{d(x, a) : a \in A\}$. Probar:

i. $|d_A(x) - d_A(y)| \le d(x, y)$ para todo par de elementos $x, y \in X$

Proof. Tenemos que $d(x, a) \leq d(x, y) + d(y, a)$

$$d(x,A) = \inf d(x,a) \le \inf (d(x,y) + d(y,a)) = \inf d(x,y) + \inf d(y,a) = d(x,y) + d(y,A)$$

Entonces $d(x, A) - d(y, A) \le d(x, y)$

haciendo lo mismo pero arrancando de $d(y, a) \le d(y, x) + d(x, a)$

llegamos a $-d(x, y) \le d(x, A) - d(y, A)$

Juntando todo

$$|d_A(x) - d_A(y)| \le d(x, y)$$

ii. $x \in A \Rightarrow d_A(x) = 0$

Proof. Sea $D = \{d(x, a) : a \in A\}$ afirmo que inf D = 0

- $0 < d \quad \forall d \in D$
 - Si no fuera cierto existiria $d' \in D$ tal que d' < 0 entonces d' = d(x, a) < 0 para algún $a \in A$ lo que es absurdo
- Sea $l \leq d \quad \forall d \in D$ entonces $l \leq 0$ Supongo que no es cierto, entonces existe $l \leq d \quad \forall d \in D$ con l > 0, pero sabemos que $d(x, x) \in D$ y d(x, x) = 0 < lLuego $0 = \inf D$ por lo tanto $d_A(x) = \inf D = 0$

iii.
$$d_A(x) = 0 \iff x \in \overline{A}$$

Proof.
$$\Rightarrow$$
) Sea $D = \{d(x, a) : A \in A\}$ luego $0 \inf D \iff$

Entonces existe un sucesión $d_n \in D \quad \forall n \in \mathbb{N}$ tal que $d_n \to 0$

 \iff para cada $n \in \mathbb{N}$ existe $a \in A$ tal que $d_n = d(x, a)$ llamemosló a_n

Luego $d(x, a_n) = d_n \to 0 \iff$ tenemos $a_n \in A \quad \forall n \in \mathbb{N}$ y además $a_n \to x$ $\iff x \in \overline{A}$

iv.
$$B_A(r) = \{x \in X : d_A(x) < r\}$$
 es abierto para todo $r > 0$

Proof. Sea $x \in B_A(r)$, primero una pequeña afirmación,

Como $x \in B_A(r)$ entonces $r > d_A(x)$ luego existe ϵ tal que $r - \epsilon > d_A(x)$

Luego puedo tomar $r' = r - \epsilon - d(x, A)$ y seguro r > 0

Afirmo que $B(x,r') \subseteq B_A(r)$. Veamosló, sea $y \in B(x,r')$ entonces

$$d(y,A) \leq d(y,x) + d(x,A) \leq r' + d(x,A) = r - \epsilon - d(x,A) + d(x,A) < r$$

Luego $y \in B_A(r)$ entonces $B(x, r') \subseteq B_A(r)$

Finalmente $\forall x \in X \quad \exists r' > 0 \text{ tal que } B(x, r') \subseteq B_A(r)$

$$B_A(r)$$
 es abierto

v.
$$\overline{B}_A(r) = \{x \in X : d_A(x) \le r\}$$
 es cerrado para todo $r > 0$

Proof. Tomemos el complemento de la bola, $A = \{x \in X : d_A(x) > r\}$ veamos que es abierto

Ahora se
a $x\in A$ afirmo que $B(x,r')\subseteq A$ con r'=d(x,A)-r>0,ve
amosló

Sea
$$y \in B(x, r')$$
 tenemos $d(x, A) - d(y, A) \le |d(x, A) - d(y, A)| \le d(x, y) < d(x, A) - r$

Entonces $-d(y, A) < -r \Rightarrow d(y, A) > r$ por lo tanto $y \in A$ luego $B(x, r') \subseteq A$

Luego
$$\overline{B}_A(r)$$
 es complemento de un abierto , por lo tanto es cerrado \Box

Ejercicio 25. Sea (X, d) un espacio métrico. Dados $A, B \subseteq X$ no vacíos se define la distancia entre A y B por $d(A, B) = \inf \{d(a, b) : a \in A \mid b \in B\}$. Determinar si las siguientes afirmaciones son verdaderas o falsas:

1. d es una distancia en $\mathcal{P}(X) \setminus \{\emptyset\}$ Es falso

Proof. To
memos un
$$A \subseteq X$$
 con $A \neq \{\emptyset\}$ $B = A \cup \{x\}$ $x \in X$

Entonces
$$d(A, B) = 0$$
 pero $A \neq B$ entonces no es una métrica

2. $d(A, B) = d(A, \overline{B})$ es verdadero

Sea $L_1 = d(A, B)$ $L_2 = d(A, \overline{B})$ supongamos que son diferentes

 $L_1 < L_2$ entonces $\exists \epsilon > 0$ tal que $L_1 + \epsilon < L_2$

Como L_1 es un ínfimo existe $a \in A, b \in B$ tal que $L_1 \le d(a,b) \le L_1 + \epsilon < L_2$

Pero entonces existen $a \in A, b \in B$ tal que $d(a,b) < L_2 = \inf \{d(a,b) : a \in A \mid b \in \overline{B}\}$

Absurdo por que como $a \in A, b \in B$ entonces $d(a,b) \in \{d(a,b) : a \in A \mid b \in \overline{B}\}$

Ahora en cambio si $L_1 > L_2$ entonces usando el mismo argumento

existe $a \in A$ $b' \in \overline{B}$ tal que $L_2 \le d(a,b') \le L_2 + \epsilon < L_1$

Entonces $d(a,b') < L_1$ entonces existe ϵ' tal que $d(a,b') + \epsilon' < L_1$

Ahora como $b' \in \overline{B}$ existe $(b_n)_n \subseteq B$ tal que $b_n \to b$ Entonces $|d(a,b_n) - d(a,b')| \to 0$

Luego dado ϵ' existe n_0 tal que $d(a, b_n) \leq d(a, b') + \epsilon' \quad \forall n \geq n_0$

Por lo tanto $\forall n \geq n_0$ tenemos $d(a,b_n) < L_1$ pero con un $b_n \in B$ nos alcanza para decir que es absurdo dado que nuevamente $d(a,b_n) \in \{d(a,b) : a \in A \mid b \in B\}$ por ende $d(a,b_n)$ no puede ser menor que el infimo de un conjunto que lo contiene

Luego no sucede $L_1 < L_2$ y tampoco $L_2 < L_1$ entonces $L_1 = L_2$

3. $d(A, B) = 0 \iff A \cap B \neq \emptyset$ es falso

Proof. Sea (\mathbb{R}^2, d) . Con d la distancia euclídea.

Sean
$$A = \{(x,0) : x \in \mathbb{N}\}$$
 $B = \{(x,\frac{1}{x}) : x \in \mathbb{N}\}$

Sabemos que $A \cap B = \emptyset$, sin embargo es facil ver que d(A,B) = 0.

Tomamos la sucesión $x_n = d((n,0),(n+\frac{1}{n})) = \sqrt{\frac{1}{n^2}}$.

$$(x_n)_n \subseteq \{d(a,b) : a \in A \mid b \in B\}$$
 y además $x_n \to 0$

Por lo tanto 0 es ínfimo

4. $d(A,B) = 0 \iff \overline{A} \cap \overline{B} \neq \emptyset$

Proof. Sirve el mismo ejemplo que arriba, por que $A=\overline{A}$ y $B=\overline{B}$

5. $d(A, B) \le d(A, C) + d(C, B)$

Proof. $d(A, B) \le d(a, b) \le d(a, c) + d(c, b) \quad \forall (a \in A \quad b \in B \quad c \in C)$

$$d(A, B) \le d(a, c) + d(c, b) \quad \forall (a \in A \quad b \in B \quad c \in C)$$

Entonces $d(A, B) \le \inf\{d(a, c) + d(c, b) : a \in A \mid b \in B\}$

Que es igual a $\inf\{d(a,c): a\in A \quad c\in C\} + \inf\{d(c,b): c\in C \quad b\in B\}$

o lo mismo d(A, C) + d(C, B). Luego $d(A, B) \le d(A, C) + d(C, B)$