Department of Computer Science and Engineering

B.Sc. in Engineering 1st Year 1st Semester Examination-2019 Course: EEE 1131/APEE 1131 [Electrical Circuit and Electronics]

Marks: 521/2

[Answer any six (06) questions taking three (03) from each section.]

Time: 3 Hours

Section-A

- Show that in any electrical network the incoming current is equal to outgoing current.
- From the circuit shown below determine the current through 10 Ohm resistor using i) Thevenin's theorem and ii) Norton's theorem.

2.a) Determine the number of branches and nodes in the figure given below. Find out the current I_1 and I_2 .

- Define Thevenin's voltage and Thevenin's resistance with an example.
- Calculate the value of V_{TH} and R_{TH} between terminal A and B of the following figure:

- 3.a) Why Si or Ge is not used to fabricate LEDs?
 - What is LCD? Why does it require extremely low power to operate LCDs?
 - c) Why P-N photodiode is known as one of the fastest photo-detector? What are the other uses of P-N photodiode except photo-detector?
- 4.a) What is a Zener diode?
 - Show the V-I characteristics of a Zener diode. b)
 - Calculate the value of v_0 for the given circuit for i) $v_i = 5V$ ii) $v_i = 10 \ V$ and iii) $v_i = 15 \ V$

3 53/4

2

3

33/4

23/4

3

3

1

23/4

5

- 5.a) What will happen if a transistor is not biased properly?
 - b) For the amplifier drawn below i) draw the load line and ii) mark the Q point. Assume β =100 and neglect V_{BE} .

c) The inputs and outputs of three amplifiers A₁, A₂ and A₃ are shown below. Classify the amplifiers 1¼ depending on their outputs.

2

1%

5

1

2

5%

2

2%

4

- 6.a) What is an OP-AMP? What are the uses of OP-AMP?
 - b) Discuss the basic characteristics of an ideal OP-AMP.
 - c) For the following amplifier (assume the OP-AMP is ideal) determine the following
 - i) voltage gain ii) input resistance iii) output resistance

- 7.a) What is an oscillator?
 - b) Discuss the conditions for oscillation.
 - c) Design a Hartley oscillator which has to be tunable over 500 kHz to 1000 kHz. The values of the two inductors are 50 μH each. Neglect the effect of mutual inductance.
- 8.a) What do you mean by Zener breakdown and avalanche breakdown?
 - b) Draw the circuit diagram of a full-wave bridge rectifier.
 - c) Consider R_L is the load resistance in the half-wave rectifier shown below, determine i) rms value of load voltage ii) power absorbed by the load and iii) efficiency of the rectifier.

Department of Computer Science and Engineering

B.Sc. in Engineering1st Year 1st Semester Examination-2019 Course: ENG 1111[Technical and Communication English]

Marks: 35 [Answer any four (04) questions taking two (02) from each section.]

Time: 3 Hours

Section-A

1.a) b)	Define three kinds of predicate with examples.	0.75
-/	Complete the following conditional sentences (any four):	4
	i) You would have gotten wet ii) I would have been happy iii) If I had worked harder iv) I would have baked a cake. v), I would have written to you. Change the following words as directed (any four):	
	ii) I would have been happy	
	iii) If I had worked harder	
	iv) I would have baked a cake.	
c١	v), I would have written to you.	
c)	words as directed (any lour).	4
	i) Proper (change it into an adverb)	
	ii) Peril (change it into an adjective)	
	iii) Soothe (change it into an adjective)	
	iv) Assertion (change it into a verb)	
	v) Pilferage (change it into a verb)	
2.a)	Define compound-complex sentences with an example.	1.75
b)	Make sentences according to the following structures (any four):	4
	i) Subject + intransitive verb + adjunct	
	ii) Subject + passive verb	
	iii) Subject + transitive verb + indirect object + direct object + adjunct	
	iv) Subject + transitive verb + direct object	
	v) Subject + linking verb + complement + adjunct	
c)	Make sentences with the following idioms (any three):	3
	i) An inside job	
	ii) In a fix	
	iii) Sine die	
	iv) Throw cold water	
3.a)	Define subordinate clauses with an example.	1.75
b)	Use appropriate modals, according to the instructions in brackets, to complete the following	4
	sentences; use negatives where necessary (any four):	
	i) It be raining in Sylhet now. (Indicate a guess)	
	ii) As the team has worked hard, it expect success. (Indicate a logical possibility)	
	iii) The food is so tasty that I lick my fingers while eating. (Indicate an unrealistic action)	
	iv) You reach the station early. (Indicate an obligation)	
	v) She said that she leave then. (Indicate future in a past event)	
c)	Form wh-questions, for the following sentences, the answers of which should be the	3
	underlined words (any three):	
	i) Farjana went to Australia in 2018.	
	ii) The professor's laptop was stolen.	
	iii) The team members admire the captain.	
	iv) He forgot his name.	

4.a)

Read the passage and answer the following questions:

An Oxford professor who has studied existential threats ranging from nuclear war to superbugs says the biggest danger of all may be "superintelligence". It is any intellect that outperforms human intellect in every field, and Nick Bostrom thinks its most likely form will be a machine -- artificial intelligence (AI).

There are two ways artificial intelligence could go, Bostrom argues. It could greatly improve our lives and solve the world's problems, such as disease, hunger and even pain. Or, it could take over and possibly kill all or many humans. As it stands, the catastrophic scenario is more likely, according to Bostrom, who has a background in physics, computational neuroscience and mathematical logic.

"Superintelligence" could overcome extremely powerful and be able to shape the future according to its preferences, "Bostrom told me." If humanity was sane and had our act together globally, the sensible course of action would be to postpone development of superintelligence until we figure out how to do so safely."

Bostrom, the founding director of Oxford's Future of Humanity Institute, lays out his concerns in his new book, *Supeintelligence: Paths, Dangers, Strategies*. His book makes a harrowing comparison between the fate of horses and humans.

Horses were initially complemented by carriages and ploughs, which greatly increased the horse's productivity. Later, horses were substituted for by automobiles and tractors. When horse became obsolete as a source of labor, many were sold off to meatpackers to be processed into dog food, bone meal, leather, and glue. In the United States, there were about 26 million horses in 1915. By the early 1950s, 2 million remained. The same dark outcome, Bostrom said, could happen to humans once AI makes our labor and intelligence obsolete.

	The state of the s	
	i) What is "superintelligence"?	1
	ii) According to Bostrom, in which two ways can AI impact our lives?	1
	iii) What is the name Bostrom's new book?	1
	iv) With which animal does Bostrom compare the possible fate of humans?	1
	v) Under what condition can human beings continue to develop AI, according to	2
	Bostrom?	2.75
	vi) Suggests a suitable title for the passage and justify the title.	2.75
5.a)	Write a letter to the editor of The Daily Star calling attention to the declining standard of	Δ

- English among the students today.
- b) Answer any one of the following questions:i) Write a contrast paragraph on "College life and University life".
 - ii) Write a listing paragraph on "Impacts of Global Warming".
- 6.a) Suppose you made an order to Asus Computers in the last week. For unavoidable reasons, you have to cancel this order now. Write a letter to its Director of Sales cancelling the order.
 - b) Suppose you work at Rahimafrooz Limited as its Director. You have noticed that some of the employees have formed a habit of coming late and leaving early. Write a memo to remind them of their obligations and to warn them of disciplinary measures if they continue this habit.

Department of Computer Science and Engineering

B.Sc. Engg. Part 1 Odd Semester Examination 2019

Course: MATH 1111 (Algebra, Trigonometry and Vector)

Full Marks: 52.5

Time: 3 Hours

[N.B. Answer any three questions from each Section]

Section-A

1) a) Define a union and intersection of two sets. Let $A = \{0,1,2,3,4\}$ and $B = \{3,5,6\}$. 2.75 Find $A \cup B$ and $A \cap B$. b) Let X and Y be two sets. Define a relation and a function from X to Y. Let 3 $X = \{1,2,3,4\}$ and $Y = \{a,b,c\}$. Consider the following three subsets of $X \times Y$ $f = \{(1, a), (2, a), (3, b), (4, c)\}, g = \{(2, a), (2, b), (3, b), (4, b)\}$ and $h = \{(1, a), (2, b), (3, c)\},$ which are functions from X into Y? Why? c) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = 2x - 5 and $g: \mathbb{R} \to \mathbb{R}$ defined by 3 $g(x) = 5x^2 - 3$. Find $f \circ g$ and $g \circ f$. 2) a) Prove that imaginary roots of an equation occur in pairs (the equation with real co-3 efficients). b) Find the nature of the roots of the polynomial $f(x) = x^7 - x^4 - x^2 - 1$. 3 c) If a, b, c are the roots of the equation $x^3 + px^2 + qx + r \equiv 0$, find the value of 2.75 $\sum a^2$. 3) a) Solve the cubic equation $x^3 + x - 2 = 0$ 3 b) Prove that $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (b-c)(a-b)(c-a)(a+b+c)$ 3 c) Solve the following system of linear equations by using Cramer's rule: 2.75 x + y + z = 1, x + 2y + z = 2, x + y + 2z = 0.4) 3 a) State De'Moivers Theorem. Find all the values of $(1+i)^{1/3}$. b) If $x + \frac{1}{x} = 2\cos\theta$, then show that $x^n + \frac{1}{x^n} = 2\cos n\theta$. 3

Section B

c) Prove that $i^i = e^{-(4n+1)^{\pi}/2}$.

5) a) Prove that $\frac{\Pi}{8} = \frac{1}{13} + \frac{1}{57} + \frac{1}{911} + \cdots$

2.75

3 b) Find the sum of the series $1 + x\cos\theta + x^2\cos 2\theta + \dots + x^{n-1}\cos(n-1)\theta$ 2.75 c) Separate into real and imaginary parts of the expression $tan^{-1}(x + iy)$. 6) a) Show that the vectors $\vec{A}=3\vec{\imath}-2\vec{\jmath}+k$, $\vec{B}=\vec{\imath}-3\vec{\jmath}+5\vec{k}$, $\vec{C}=2\vec{\imath}+\vec{\jmath}-4\vec{k}$ form a 3 right angled triangle. b) Prove that the area of a parallelogram with sides \underline{A} and \underline{B} is $|\underline{A}| \times |\underline{B}|$. 2.75 c) Prove that $\nabla \times \nabla \phi = 0$ and $\nabla \cdot (\nabla \times A) = 0$ 3 7) a) If $A = (3x^2 + 6y)i - 14yzj + 20xz^2k$, evaluate $\int_C A dr$ from (0,0,0) to (1,1,1) 3 along path $C: x = t, y = t^2, z = t^3$. b) Evaluate $\iint \varphi n ds$, where $\varphi = \frac{3}{8}xyz$ and S is the surface of the cylinder 3 $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. c) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ 2.75 and $x^2 + z^2 = a^2$. 8) a) Verify Green's theorem in the plane for $\oint_C (xy + y^2)dx + x^2dy$ where C is the 3 closed curve of the region bounded by y = x and $y = x^2$.

3

2.75

b) If v = w + r, prove that $w = \frac{1}{2} Curl V$, where w is a constant vector.

bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

c) Evaluate $\iint_S F. nds$, where $\vec{F} = 4x\vec{\imath} - y^2\vec{\jmath} + yzk$ and S is the surface of the cube

Department of Computer Science and Engineering

B.Sc. in Engineering 1st Year 1st Semester Examination-2019

Course: CHEM 1111 [Physical and Inorganic Chemistry]

[Answer any six (06) questions taking three (03) from each section.]

Marks: 521/2

Time: 3 Hours

Section-A

1.a)	What is meant by the equi conductance of a solution of a			te? Explain why t	he equivalent	3
b)	A first order reaction is 25% co			take to be 70% com	plete?	2
c)	Make a clear distinction betwe	en an electrolytic	cell and a galvanic ce	II. Write the cell rea	ctions for the	3
-1	following electrochemical cells					
	(i) Zn Zn2+ Cu2+ Cu; (ii) Cd Cd	²⁺ Hg ₂ Cl ₂ Hg;				
d)	What is transference number?					3/4
2 -1	What is ionic mobility? State a	ad avalain the 'Vah	draugeh's Law' of in	lenendent migration	of ions	3
2.a)	Define the following terms: lie	uid iunction noter	ntial electrode note	ntial standard elect	rode potential	3
b)	Define the following terms: liquid junction potential, electrode potential, standard electrode potential and concentration cell.					
c)	Calculate the EMF of the follow	ving cell: Zn Zn²+(0	0.001M) Ag+ (0.01)	Ag		23/4
,						
	Given that $E_{Ag^+/Ag}^{\circ} = 0.80V$ a					
3.a)	What is meant by chemical equ	uilibrium? Derive a	relation between th	e equilibrium consta	ants K_p and K_c .	3
b)	What is rate constant of a read	tion? Derive the in	tegrated law for a fi	rst order reaction.		3
c)	From the following data for de	composition of N ₂ 0	O ₅ and CCl₄ at 48°C, s	show that the reaction	on is of the	2¾
	first order:					
	t (min)	10	15	20	∞	
	Vol. of O ₂ evolved (mL)	6.30	8.95	11.40	34.75	
4.a)	Distinguish between adsorption	on and absorptior	. Define the terms	adsorbent and ads	sorbate giving	2
	suitable examples.			lidite of this is other	m2	3¾
b)	Explain the 'Freundlich adsorp What are sols and emulsion	tion isotherm'. Hov	w can you test the va	illulty of this isotheri	lyophilic and	3
c)		ist Give rour imp	ortant points or u	merences between	Tyophine and	3
	lyophobic sols.					
		<u>Sec</u>	<u>tion-B</u>			
5.a)	- · forthor	adius of nth orbit o	f H-atom			33/4
b)	Derive an expression for the ra	adius of nth orbit o	f H-atom.	s is 0 529 × 10 ⁻¹⁰ m		3¾ 1½
c)	Calculate the radius of 2 nd orb	it of He ⁺ ion. Given	that the Bohr radius	is $0.529 \times 10^{-10} m$ ectral line of Lyman	series. Given	11/2
	Calculate the radius of 2 nd orb Find out the frequency in ter	it of He ⁺ ion. Given	that the Bohr radius	is $0.529 \times 10^{-10} m$ ectral line of Lyman	series. Given	
d)	Calculate the radius of 2^{nd} orb Find out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$	it of He ⁺ ion. Given ms of wavenumbe	that the Bohr radius	is $0.529 \times 10^{-10} m$ ectral line of Lyman	series. Given	11/2
d)	Calculate the radius of 2^{nd} orb Find out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$	it of He ⁺ ion. Given ms of wavenumbe	that the Bohr radius	is $0.529 \times 10^{-10} m$ ectral line of Lyman	series. Given	1½ 1½
d) 6.a)	Calculate the radius of 2^{nd} orb Find out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exc What are s and p block elements	it of He ⁺ ion. Given ms of wavenumbe clusion principal. nts? Mention the n	that the Bohr radius rs (\bar{v}) for the 2^{nd} sponsing the characteristics of the char	ectral line of Lyman of s and p block elem	series. Given	1½ 1½
	Calculate the radius of 2^{nd} orbifind out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exception. What are s and p block elements Define electron affinity. The electrons are stated to the state of the state o	it of He ⁺ ion. Given ms of wavenumbe clusion principal. nts? Mention the n lectron affinity of c	that the Bohr radius rs (\bar{v}) for the 2^{nd} spends on an area characteristics on the real character is the character that	ectral line of Lyman of s and p block elem n that of fluorine – e	series. Given	1½ 1½ 2 3 2¾
6.a)	Calculate the radius of 2^{nd} orb Find out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exc What are s and p block element Define electron affinity. The element	it of He ⁺ ion. Given ms of wavenumbe clusion principal. nts? Mention the n lectron affinity of c	that the Bohr radius rs (\bar{v}) for the 2^{nd} spends on an area characteristics on the real character is the character that	ectral line of Lyman of s and p block elem n that of fluorine – e	series. Given	1½ 1½ 2 3
6.a) b) c)	Calculate the radius of 2^{nd} orbifind out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exception what are s and p block element Define electron affinity. The electron what is iconic bond? What are	it of He ⁺ ion. Given ms of wavenumbe clusion principal. hts? Mention the n lectron affinity of c e the conditions for	that the Bohr radius rs (\bar{v}) for the 2^{nd} spinain characteristics on the formation of io	ectral line of Lyman of s and p block elem n that of fluorine – e nic bonds?	series. Given nents. explain why.	1½ 1½ 2 3 2¾ 3
6.a) b) c) 7.a)	Calculate the radius of 2^{nd} orbifind out the frequency in terms that $R_H = 1.097 \times 10^7 m^{-1}$. State and explain the Pauli exception of the Pauli excep	it of He ⁺ ion. Given ms of wavenumbe clusion principal. hts? Mention the n lectron affinity of c e the conditions for	that the Bohr radius rs (\bar{v}) for the 2 nd spending characteristics of the formation of ione characteristics of the characteristics	ectral line of Lyman of s and p block elem n that of fluorine – e nic bonds? covalent compounds	series. Given nents. explain why.	1½ 1½ 2 3 2¾
6.a) b) c)	Calculate the radius of 2^{nd} orb Find out the frequency in term that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exc What are s and p block element Define electron affinity. The element of the work of the covalent bond with example of the covalent bond with the covalent bond with example of the covalent bond with the covale	it of He ⁺ ion. Given ms of wavenumbe clusion principal. hts? Mention the n lectron affinity of c e the conditions for	that the Bohr radius rs (\bar{v}) for the 2 nd spending characteristics of the formation of ione characteristics of the characteristics	ectral line of Lyman of s and p block elem n that of fluorine – e nic bonds? covalent compounds	series. Given nents. explain why.	1½ 1½ 2 3 2¾ 3
6.a) b) c) 7.a)	Calculate the radius of 2^{nd} orb Find out the frequency in term that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exc What are s and p block element Define electron affinity. The electron what is iconic bond? What are Define covalent bond with example of the MO energy level distabilities of the ions.	it of He $^{+}$ ion. Given ms of wavenumbe clusion principal. Ints? Mention the number lectron affinity of case the conditions for the agram of O_2^+ and	that the Bohr radius rs (\bar{v}) for the 2 nd spending characteristics of the formation of io O_2^- ions. Find out	of s and p block elem n that of fluorine – e nic bonds? covalent compounds the bond orders an	nents. explain why.	1½ 1½ 2 3 2¾ 3
6.a) b) c) 7.a) b)	Calculate the radius of 2^{nd} orbifind out the frequency in term that $R_H = 1.097 \times 10^7 m^{-1}$ State and explain the Pauli exception what are s and p block element Define electron affinity. The electron what is iconic bond? What are Define covalent bond with example Define the MO energy level distabilities of the ions.	it of He $^{+}$ ion. Given ms of wavenumbe clusion principal. Ints? Mention the number of the conditions for the conditions for ample. What are the agram of O_2^+ and atomic orbitals?	that the Bohr radius rs (\bar{v}) for the 2 nd spenain characteristics of the formation of ione characteristics of O_2^- ions. Find out	of s and p block elementh that of fluorine — enic bonds? covalent compounds the bond orders and pes of the follow	nents. explain why.	1½ 1½ 2 3 2¾ 3 2 3

- 8.a) Write the ground state electronic configuration of the following metals/ions: Cr (24), Cu(29), Co²⁺(27) and Ni²⁺(28).
 - b) Explain the following (Any Three)
 - i) The melting point of MgO is much higher than that of NaF;
 - ii) Cu²⁺ complexes are colored while those of Zn²⁺are colorless;
 - iii) Transition metals show variable oxidation states
 - iv) Fe3+ is more stable than Fe2+.

Dept. Computer Science and Engineering
University of Rajshahi

9

and write the advantages of DBMS.

Semester Final Examination, B.Sc. Engg. 2019, 1st year, Odd semester

Course ID: CSE 1111 Course Title: Introduction to Computer Systems/Computer Fundamentals

Total Time 3 Hours

Total Marks 52.5

(Answer any six questions taking three from each section)

1(a) (b) (c)	Section A What do you mean by system boot up? Briefly discuss the PC's booting up process. What is meant by computer generations? Explain different generations of computers. Expand ABC, ENIAC, EDVAC and EDSAC.	3 3.75 2
2(a) (b) (c)	What is motherboard? Write the functions of it. Also mention the main components on a motherboard. Briefly discuss how a keyboard works. Explain the internal structure of CPU with diagram	3 2.75
3(a) (b) (c)	How does the control unit assist the CPU in carrying out its operations? Explain. What do you understand by machine cycle? Explain the main operations those are accomplished during the machine cycle. How does the bus width affect the overall speed of the computer system? Define the three types of I/O buses.	3 3 2.75
4(a) (b) (c)		3 3 2.75
	Section B	
5(a)		3
(b)		2 3.75
6(a)		3
(b) (d)	Define utility program. List a few names of utility programs with their tasks.	2.75 2 1
7(a) (b) (c)	Explain the advantages and disadvantages of client-server and-peer-to-peer networks	2.75 3 3
8(a)	Define computer virus. How does computer virus work? Mention some notable computer viruses.	3
(c)	What is data processing? Define data and information.	2 3.75

University of Rajshahi Dept. Computer Science and Engineering University of Rajshahi

Dept. of Colly of Schling Library of Kalahani. Semester Final Examination, B.Sc. Engg. 2019, 1st year, Odd semester Course ID: CSE 1121 Course Title: : Structural Programming Language **Total Time 3 Hours** Total Marks 52.5

(Answer any six questions taking three from each section)

1. (a) Why do we get "segmentation fault" message in C programming?

02

(b) What will be the value of c and d if

03

int a=10; int b=3; float c,d; c=a/b; d=a/2.0;

(c) Can the following program sum all the numbers in the array num[]? If not, modify only 3.75 one variable or a value so that you can sum first ten numbers in the array. #include<stdio.h>

```
int main()
{
  int num[11]={5,10,15,20,0,30,35,40,45,50,0};
  int i=0,sum=0;
  while(num[i%5])
     sum=sum+num[i];
     i=i+1:
  printf("%3d",sum);
  return 0;
}
```

2. (a) What is recursive function? What is its limitation?

02 6.75

(b) Write a C program for the following problem:

The student association of the dept. of CSE of Rajshahi University arranged a game in their last picnic. In that game; one student, X from 1st year and another student, Y from 2nd year were asked to pick up balls as many as possible from a basket within 2 minutes. The basket contained many balls having three different colors; red (R), green (G) and blue (B). The winner was decided based on earned points (P), as calculated by the formula; P = (RX-RY)*7 + (GX-GY)*5 + (BX-BY)*3, where RX and RY are the number of red colored balls picked up by X and Y, respectively and so on. The positive value of P indicated that the winner was X; otherwise, the winner was Y.

Input: The input will have two lines; the first line is for X and the second line is for Y. Each line will have three integers separated by spaces; describing the number of red, green and blue balls picked up by the respective student. The inputs will be given in such a way that the value of P will either be positive or negative.

Example: 17 24 30

15 25 25

Output: The output will have a single line that shows the name of the winning year. For example, the output for the above input set will be: 1st year

Find out the output of the following program. #include<stdio.h>

4.75

#include<conio.h>

```
void pointer(int *p, int *q, int *r, int *s);
main() {
    int a,b,c,d,*x,*y;
    a=10; b=20; x=&c; y=&d; c=30; d=40;
    printf("Before calling %d %d %d %d \n",a,b,*x,*y);
    pointer(&c,&d,&a,&b);
    printf("After calling %d %d %d %d\n",a,b,*x,*y);
}
```

```
void pointer(int *p, int *q, int *r, int *s)
           *p=100; *q=200; *r=300; *s=400;
                                                                                                         04
       Find out the output of the following program:
        #include<stdio.h>
        void pointer(int *point)
          int i:
          for (i=0;i<10;i++)
             printf("%3d", *point);
             point++:
          }
        int main()
           int i:
           int num[10]={0,1,2,3,4,5,6,7,8,9};
           pointer(num);
           printf("\n");
           for(i=0;i<10;i++)
           printf("%3d",num[i]);
           return 0;
        }
   (a) Write a program to toggle a bit of a number at nth position using bit-wise operator?
                                                                                                        03
    (b) Explain 'the name of array can be considered as pointer'. Give an example how you can
                                                                                                       03
         pass an array to a function.
    (c) Can the following program sum the three numbers? If not, why?
                                                                                                        2.75
         #include<stdio.h>
         int main()
            int a,b,c,sum=0;
            if(scanf("%d%d%d",&a,&b,&c)==3)
              sum=a+b+c;
            printf("%3d",sum);
            return 0; }
                                                   Section B
                                        Answer any THREE questions.
   (a) Write a program to display A to Z and a to z using ASCII code.
5.
                                                                                                        4.75
         Sample input and a program are given. Find out the output of the following program.
                                                                                                        04
         Sample Input: Happy Coding!
         #include<stdio.h>
         #include<string.h>
         void func(char str∏)
            for (int i=0; str[i]!='\0'; i++)
               if (str[i]>='A' && str[i]<='Z')
                 str[i] = str[i] + 'a' - 'A';
               else if (str[i]>='a' && str[i]<='z')
                 str[i] = str[i] + 'A' - 'a';
            }
         }
```

```
int main()
            char str[20];
            gets(str);
            func(str);
            printf("\n%s",str);
            return 0;
                                                                                                               02
         What is header file?
    (a)
                                                                                                               4.75
         100 small letters are written in a file named input.txt. In each line, 10 letters are written. All
         the letters are separated by a single space. Determine the frequency of the letters and
         write into another file named output.txt.
                                                                                                               02
         What are the differences between compiler and interpreter?
                                                                                                               03
    (a) How can you optimize a program? Give an example.
7.
                                                                                                               2.75
    (b) How can you extend memory allocation during execution of a program?
                                                                                                               3.75
         What will be output of the following program?
          #include<stdio.h>
          #include<conio.h>
          int x[5][5]=\{ \{1, 4, 3, 6, 8\}, \{2, 9, 0, 5, 7\}, \}
                     {5, 9, 6, 7, 6},
                     {9, 0, 2, 6, 8},
                     {3, 6, 0, 1, 7} };
          int i;j,k,l, tmp,big,p;
          main() {
           for (i=0:i<=4:i++)
              for(j=0; j<=4; j++)
                for(k=j; k<=4; k++)
                  for(l=k; <=4; l++)
                  x[k][l]=x[k][l]+1;
          for (i=0;i<=4;i++)
              for(j=0; j<=4; j++)
                printf ("%d ",x[i][j]);
              printf ("\n ");
           getch(); }
```

8. (a) What is the difference between an array and a structure? How can you determine the 2.75 number of bytes allocated for an array and a structure?

(b) Google is one of the most famous Internet search engines which hosts and develops a number of Internet based services and products. In the website, an interesting button 'I'm feeling lucky' attracts our eyes. This feature could allow the user skip the search result page and go directly to the first ranked page. Amazing! It saves a lot of time.

The question is, when one types some keywords and presses 'I'm feeling lucky' button, which web page will appear? Google does a lot and comes up with excellent approaches

to deal with it. In this simplified problem, let us just consider that Google assigns every web page an integer-valued relevance.

The most related page will be chosen. If there is a tie, all the pages with the highest relevance are possible to be chosen. Your task is simple, given 10 web pages and their relevance. Just pick out all the possible candidates which will be served to the user when 'I'm feeling lucky'.

Input: The input contains multiple test cases. The number of test cases T is in the first line. For each test case, there are 10 lines, describing the webpage and the relevance. Each line contains a character string without any blank characters denoting the URL of this webpage and an integer Vi denoting the relevance of this web page. The length of the URL is between 1 and 100 inclusively. (1 < Vi < 100)

Output: For each test case, output several lines which are the URLs of the web pages which are possible to be chosen. The order of the URLs is the same as the input. Please look at the sample output for further information of output format.

Sample Input www.youtube.com 1 www.google.com 2 www.google.com.hk 3 www.alibaba.com 10 www.taobao.com 5 www.bad.com 10 www.good.com 7 www.fudan.edu.cn 8 www.university.edu.cn 9 acm.university.edu.cn 10 www.youtube.com 1 www.google.com 2 www.google.com.hk 3 www.alibaba.com 11 www.taobao.com 5 www.bad.com 10 www.good.com 7 www.fudan.edu.cn 8 acm.university.edu.cn 9 acm.university.edu.cn 10 Sample Output Case #1: www.alibaba.com www.bad.com acm.university.edu.cn Case #2: www.alibaba.com