| Chapter5

|小样本 OLS

I二元线性回归

```
y_i = \alpha + \beta x_{i1} + \gamma x_{i2} + \epsilon_i
```

```
reg y x1 x2
```

predict lny1 // 计算拟合值,命名为 lny1 predict e, re // 计算残差,命名为 e, re 可选参数指计算残差,没有则为计算拟合值

list lny lny1 e // 列出真实值和上面算出来的拟合值

古典线性回归模型的假定

- 线性假定:每个解释变量对 y_i 的边际效应为常数。如果边际效应可变(解释变量对因变量的影响可能不是恒定的,而是随变量值的变化而变化),可加入平方项(x_{ij}^2)或交叉项($x_{i2}x_{i3}$)。
- 严格外生性(零条件均值): 误差项(残差)与所有的解释变量(自变量)在任何时刻都是不相关的。
- 不存在严格多重共线性:不存在某个解释变量是另一个解释变量的倍数,或可由其他解释变量线性表出的情形。
- 球型扰动项: 扰动项条件同方差且无自相关。
- 随机抽样: 在重复抽样中,样本数据是从总体中随机抽取的,保证观测值之间相互独立。

|高斯-马尔可夫定理

扰动项理想情况下必须满足四个条件,这些条件被称为<mark>高斯-马尔可夫条件(Gauss-Markov Conditions)</mark>:

- 1. 零条件均值 $E(\epsilon_i|X_i)=0$
- 2. 同方差性 $E(\epsilon|X_i) = \sigma^2$ 对于所有 i均成立
- 3. 非自相关性 $Cov(\epsilon_i, \epsilon_j) = 0, i \neq j$
- 4. 自变量非随机性 $Cov(X_i, u_i) = 0$

如果所有高斯-马尔可夫条件都满足,OLS是所有估计量中最优的,因为在数学上它被证明是最<mark>佳线性无</mark> 偏估计量(Best Linear Unbiased Estimator, BLUE)。这个结论被称为<mark>高斯-马尔可夫定理。</mark>

IOLS 的小样本性质

- 线性性: OLS 估计量 $\beta = (X'X)^{-1}X'y$ 为 y 的线性组合。
- 无偏性: $E(b \mid X) = \beta$,即b不会系统地高估或低估 β 。
- 估计量 \boldsymbol{b} 的方差为 $\operatorname{Var}(\boldsymbol{b} \mid \boldsymbol{X}) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$
- 高斯-马尔可夫定理证明 OLS 得到的是 BLUE
- 方差的无偏估计: $E(s^2|X) = \sigma^2$

|假设检验

| 单系数 t 检验

检验某个特定自变量(或解释变量)对因变量是否具有显著的线性影响。

小样本理论 (有限样本理论): 不要求样本容量 $n \to \infty$

假定: $\epsilon \mid X \sim N\left(0, \sigma^2 I_n\right)$ (数据来自正态分布的总体)

// 正态分布的特点

密度函数完全由均值和协方差矩阵决定

两个随机变量不相关就意味着相互独立

正态分布变量的线性函数仍然是正态分布

原假设 $H_0: \beta_k = 0$ (假定自变量 (X_k) 对因变量 (Y) 没有线性影响)。检测在原假设成立的前提下,是否导致不太可能发生的小概率事件在一次抽样的样本中实现。如果小概率事件在一次抽样的样本被观测到,那么假设不可信,拒绝原假设,接受替代假设 $H_1: \beta_k \neq 0$

Ⅰ步骤

- 1. 计算 t 统计量: $t_k \equiv \frac{\hat{\beta}_k}{\operatorname{SE}\left(\hat{\beta}_k\right)} \sim t\left(n\right)$, 其中 $\operatorname{SE}\left(\hat{\beta}_k\right) = \frac{s}{\sqrt{n}}$
- 2. 计算显着性水平为 α 的临界值 $t_{\alpha/2}$ (n-K),通常 $\alpha=5\%, \alpha/2=2.5\%$
- 3. 如果 $|t_k| \geqslant t_{\alpha/2} (n-K)$,则 t 落入拒绝域,拒绝原假设。

计算 p-value $\equiv P\left(|T|>|t_k|\right),\ T\sim t\left(n-K
ight)$

p值是一个概率值,表示在零假设为真的情况下,得到一个像(t_k)或更极端的样本统计量(即偏离原假设的程度更大)的概率。

F 检验

$$H_0: \beta_2 = \ldots = \beta_k = 0$$

计算临界值 $F_{\alpha}(m, n-K)$, 如果大于临界值,则落入拒绝域。

Stata 实现

$$\ln w = eta_1 + eta_2 s + eta_3 ext{expr} + eta_4 ext{tenure} + eta_5 ext{smsa} + eta_6 ext{rns} + \epsilon$$

reg lnw s expr tenure smsa rns //... 先做线性回归

Source	SS	df	MS	Nu	mber of obs	; =	758					
				— F(5, 752) _{c 莈2}	左垢癌	域 81.75					
Model	49.0478814	5	9.8095762	. 8 Pr	ob > F	<u>=</u>	0.0000					
Residual	90.2382684	752	.11999769	7 R-:	squared	=	0.3521					
				— Ad	j R-squared	d =	0.3478					
Total	139.28615	757	.18399755	6 Ro	ot MSE	=	.34641					
	p-value 均小于 0.05											
lnw	Coefficient	Std. err.	t	P> t	[95% (conf.	interval]					
S	.102643	.0058488	17.55	0.000	.09116	511	.114125					
expr	.0381189	.0063268	6.02	0.000	. 02569		.0505392					
tenure	.0356146	.0077424	4.60	0.000	.02041	L53	.0508138					
smsa	.1396666	.0280821	4.97	0.000	.08453	379	.1947954					
rns	0840797	.0287973	-2.92	0.004	14061	L24	0275471					
_cons	4.103675	.085097	48.22	0.000	3.9366	519	4.270731					

vce // variance convariance matrix estimated 协方差矩阵

Covariance matrix of coefficients of regress model

e(V)	S	expr	tenure	smsa	rns	_cons
S	.00003421					
expr	8.660e-06	.00004003				
tenure	-3.997e-08	00001107	.00005994			
smsa	0000144	3.261e-06	-7.819e-06	.00078861		
rns	8.524e-06	7.334e-07	7.259e-06	.00012486	.00082928	
_cons	00046567	00016778	00008646	00038746	00043997	.0072415

```
reg lnw s expr tenure smsa if rns // 删掉 rns 为 0 的行进行回归
reg lnw s expr tenure smsa if !rns // 删掉 rns 不为 0 的行进行回归
reg lnw s expr tenure smsa if s>12 // 删掉 s 小于 12 的行进行回归
quietly reg lnw s expr tenure smsa rns // 不输出回归结果,以便后面使用 predict
```

进行假设检验,原假设为 s 对应的 $eta_2=0.1$

test s=0.1

返回 F (1,752) 和 p-value

又检验 expr-tenure = 0

test expr = tenure