AIM3 - Scalable Data Mining and Data Analysis

01 – Motivation Sebastian Schelter, Christoph Boden, Volker Markl

Fachgebiet Datenbanksysteme und Informationsmanagement Technische Universität Berlin

http://www.dima.tu-berlin.de/

A web-scale search engine

Google

- maintains a copy of the World Wide Web
 - estimated to have 7.3 billion pages, March 2012
- Challenges
 - search this copy in sub-seconds
 - identify duplicate content
 - compute the ,importance' of pages (PageRank)
 - display content-related ads

The largest social network

facebook

- maintains the world's largest social network
 - 721 million active users (May 2011), more than 1/10 of the world's population!
 - 68.7 billion friendship links
 - 2.7 billion likes per day

Challenges

- provide realtime updates of friends activities
- suggest new friends (link prediction)
- display content-related ads
- compute statistics about the social graph

The world's fastest news medium

- realtime communication via short messages
 - 2009: 2 million tweets per day
 - 2010: 65 million tweets per day
 - 2011: 200 million tweets per day

Challenges

- allow search in (near) realtime
- recommend interesting people (link prediction)
- find topics in the messages

What happens at such a scale?

What happens at such a scale?

A technological challenge

- Do existing approaches suffice to solve this challenge?
 - Can we put the data in a relational database?
 - Can we find an appropriate schema for the data?
 - Can we process the data on a single machine?
 - Can we process the data in Matlab?

Probably not.

- Solution: run computations in parallel on dozens, hundreds, thousands of machines, **but**:
 - for economic reasons, we wish to use commodity hardware, such machines will fail and break regularly
 - software that is designed to run on a single machine cannot 'magically' run on a cluster
 - scheduling tasks, handling concurrency and failure as well as transferring intermediate results in a distributed system are extremely difficult engineering tasks

A new set of tools

Distributed filesystems

- store petabytes of data in the cluster
- transparently handle reads, writes and replication

Parallel processing platforms

- offer a parallel programming model to allow developers to write distributed applications
- move computation to data, not data to computation
- relieve the developer from handling concurrency, network communication and machine failures

Our algorithms have to change

- Each machine will only see a small portion of the data
 - we cannot use random access anymore, we must always work on partitioned data
 - joining data become very costly as lots of machines will be involved
- Communication via network and disk becomes the bottleneck
 - our algorithms must try to locally aggregate as much as possible
 - minimizing network traffic becomes the key to scaling out algorithms
- Concurrency and recovery must be hidden from the developer
 - algorithms must fit into a simple, parallelizable programming model
 - the system (not the developer) handles concurrency and recovery

Topics of the course

- Motivation, Overview
- MapReduce & Distributed filesystems
- MapReduce: Joins, Patterns & Extensions
- Stratosphere
- Clustering
- Dimensionality Reduction
- Data Stream Mining
- Graph Processing & Social Network Analysis
- Graph Processing: Google Pregel
- Collaborative Filtering: Neighborhood Methods
- Collaborative Filtering: Latent Factor Models
- Classification
- Textmining
- Specialized Machine Learning approaches

Tasks in the course

- 3 two week homework assignments
 - available as Java project on github
 - implement your solution and send us a patch
 - present your solution in the course
- six week project (in groups of 2-3 students)
 - implement a data mining algorithm on a parallel processing platform
 - demonstrate your solution on a real world dataset
 - 3 ten minute presentations: problem and planned solution, prototypical implementation, final presentation with results on real world data
- oral exam

Mining of Massive Datasets (Rajaraman, Ullman)

free PDF version available at: http://infolab.stanford.edu/~ullman/mmds.html

Hadoop: The definitive guide (White)

