

Exact and approximate solutions for the Constrained Shortest Path Tour Problem

D. Ferone¹, P. Festa¹ and F. Guerriero²

September 7, 2017

¹Dep. of Mathematics and Applications, University of Napoli, Federico II

²Dep. of Mechanical, Energetic and Management Engineering, University of Calabria

Overview

- 1. Introduction
- 2. Computational complexity
- 3. Mathematical formulation
- 4. Exact approach
- 5. Heuristic approach
- 6. Some experimental results

Introduction

The Shortest Path Tour Problem

Let be G = (V, A) be a directed graph, where

- V is a set of n nodes;
- A is a set of m arcs;
- $C: A \to \mathbb{R}^+ \cup \{0\}$

Let T_1, \ldots, T_N be disjoint subsets of V. The Shortest Path Tour Problem (SPTP) consists in finding a single-origin single-destination shortest path by ensuring that at least one node of each node subset T_1, \ldots, T_N is involved according to the sequence wherewith the subsets are ordered.

The Shortest Path Tour Problem

$$T_1 = \{1\}, T_2 = \{3\}, T_3 = \{2\}, T_4 = \{4\}$$

$$P_T = \{1, 2, 3, 2, 3, 4\}$$
 $c(P_T) = 5$

The Constrained Shortest Path Tour Problem

Additional constraint: the path does not include repeated arcs.

$$T_1 = \{1\}, T_2 = \{3\}, T_3 = \{2\}, T_4 = \{4\}$$

The Constrained Shortest Path Tour Problem

Additional constraint: the path does not include repeated arcs.

$$T_1 = \{1\}, T_2 = \{3\}, T_3 = \{2\}, T_4 = \{4\}$$

$$P_T = \{1, 3, 2, 3, 4\}$$
 $c(P_T) = 8$

Complexity

Theorem

Theorem

Ham-Path

Theorem

The CSPTP is NP-hard.

 $\quad \bullet \quad \text{for each node } i \in \mathit{V}\text{,}$

Ham-Path

Theorem

The CSPTP is NP-hard.

• for each node $i \in V$,

• insert in V' nodes i^- and i^+ ;

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i,j) \in A$ and for each $k=2,\ldots,n$,

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i, j) \in A$ and for each $k = 2, \dots, n$,
 - insert in V' node ij^k ;

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i⁻, i⁺) with cost 0;
- for each arc $(i, j) \in A$ and for each $k = 2, \dots, n$,
 - insert in V' node ij^k ;
 - insert in T_k node ij^k ;

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i, j) \in A$ and for each $k = 2, \dots, n$,
 - insert in V' node ij^k ;
 - insert in T_k node ij^k ;
 - insert in A' arc (i^+, ij^k) with cost c_{ij} and arc (ij^k, j^-) with cost 0;

Theorem

Ham-Path

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i, j) \in A$ and for each $k = 2, \dots, n$,
 - insert in V' node ij^k ;
 - insert in T_k node ij^k ;
 - insert in A' arc (i^+, ij^k) with cost c_{ij} and arc (ij^k, j^-) with cost 0;
- set $T_1 = \{s^-\}$ and $T_{n+1} = \{d^+\}$.

Theorem

Path existence lemma

Lemma

There exists a path $P = i_1, i_2, \dots, i_k$, $k \le n$, in

$$\langle G = (V, A, C), s, d \rangle,$$

if and only if in

$$\langle G' = (V', A', C'), s^-, d^+, \{T_h\}_{h=1,\dots,n+1} \rangle$$

there exists a path P' from i_1^- to i_k^+ , such that

$$P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right), i_k^-, i_k^+ \right\}.$$

7

$$\Rightarrow$$
 Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \le n$.

- \Rightarrow Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \le n$.
 - by construction $(i_l^-,i_l^+)\in A'$ for each $l=1,\ldots,k$;

- \Rightarrow Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \leq n$.
 - by construction $(i_l^-, i_l^+) \in A'$ for each $l = 1, \dots, k$;
 - $(i_l^+, i_l i_{l+1}^q)$, $(i_l i_{l+1}^q, i_{l+1}^-)$ for each $q = 2, \ldots, n$;

- \Rightarrow Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \leq n$.
 - by construction $(i_l^-, i_l^+) \in A'$ for each $l = 1, \dots, k$;
 - $(i_l^+, i_l i_{l+1}^q)$, $(i_l i_{l+1}^q, i_{l+1}^-)$ for each $q = 2, \dots, n$;
- \Leftarrow exists P', P is not present.

- \Rightarrow Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \leq n$.
 - by construction $(i_l^-, i_l^+) \in A'$ for each $l=1,\ldots,k$;
 - $(i_l^+, i_l i_{l+1}^{q})$, $(i_l i_{l+1}^{q}, i_{l+1}^{})$ for each $q=2,\ldots,n$;
- \Leftarrow exists P', P is not present.
 - $i_l \notin V$: i_l^- and i_l^+ would not be in V';

- \Rightarrow Exists in G a path $P = \{i_1, i_2, \dots, i_k\}$, $k \leq n$.
 - by construction $(i_l^-, i_l^+) \in A'$ for each $l = 1, \dots, k$;
 - $(i_l^+,i_li_{l+1}^{q})$, $(i_li_{l+1}^{q},i_{l+1}^-)$ for each $q=2,\ldots,n$;
- \Leftarrow exists P', P is not present.
 - $i_l \notin V$: i_l^- and i_l^+ would not be in V';
 - $(i_l,i_{l+1}) \not\in A$, then arcs $(i_l^+,i_li_{l+1}^{l+1})$ and $(i_li_{l+1}^{l+1},i_{l+1}^-)$ would not be in A'.

Theorem (Ham-Path $<_m^p$ CSPTP)

There exists in G an Hamiltonian path P from s to d with length L(P) if and only if there exists in G' a constrained path tour P' from s^- to d^+ with length L(P') = L(P).

 \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{i_1, i_2, \dots, i_n\}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1}\right), i_k^-, i_k^+ \right\};$

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1}\right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1}\right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;
 - it involves successively and sequentially all sets T_i by construction.

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;
 - it involves successively and sequentially all sets T_i by construction.
- \Leftarrow By construction the feasible path tour must be as P', it implies exists a path $P=\{\ i_1,\ldots,i_n\ \}$ in G.

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1}\right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;
 - it involves successively and sequentially all sets T_i by construction.
- \Leftarrow By construction the feasible path tour must be as P', it implies exists a path $P = \{i_1, \dots, i_n\}$ in G.
 - Suppose P is not Hamiltonian;

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{ i_1, i_2, \dots, i_n \}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;
 - it involves successively and sequentially all sets T_i by construction.
- \Leftarrow By construction the feasible path tour must be as P', it implies exists a path $P = \{i_1, \dots, i_n\}$ in G.
 - Suppose P is not Hamiltonian;
 - There exist $i_k = i_j$, where $k \neq j$;

- \Rightarrow By hypothesis, there exists in G an Hamiltonian path $P = \{i_1, i_2, \dots, i_n\}$, where $i_1 = s$ and $i_n = d$.
 - $\qquad \text{Exists } P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1}\right), i_k^-, i_k^+ \right\};$
 - If P' crosses some arcs more than once: it must be (i^-, i^+) ;
 - it involves successively and sequentially all sets T_i by construction.
- \Leftarrow By construction the feasible path tour must be as P', it implies exists a path $P = \{i_1, \ldots, i_n\}$ in G.
 - Suppose P is not Hamiltonian;
 - There exist $i_k = i_j$, where $k \neq j$;
 - \bullet P' must cross twice the arc $(i_k^-,i_k^+)=(i_j^-,i_j^+).$

Mathematical model

Mathematical model

$$\min \sum_{(i,j)\in A} \sum_{k=1}^{N-1} x_{ij}^k c_{ij}$$

s.a.

$$\sum_{j \in FS(i)} x_{ij}^k - \sum_{j \in BS(i)} x_{ji}^k = \begin{cases} y_i & \text{if } i \in T_k, \\ -y_i & \text{if } i \in T_{k+1}, \quad \forall i \in V, k = 1, \dots, N-1 \\ 0, & \text{otherwise}. \end{cases}$$

$$\sum_{i \in T} y_i = 1 \qquad \forall k = 1, \dots, N-1$$

$$\sum_{k=1}^{N-1} x_{ij}^k \le 1$$

$$y_s = 1, y_d = 1$$

 $x_{ij}^k \in \{0, 1\}, y_i \in \{0, 1\}$

 $\forall (i, j) \in A$

Exact approach

Main ideas

■ A path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\ldots,N-1$;

Main ideas

- A path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\ldots,N-1$;
- an arc repetition can occur only in two different subpaths $T_i \leadsto T_{i+1}$ and $T_j \leadsto T_{j+1}$, with $i \neq j$.

Main ideas

- A path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\ldots,N-1$;
- an arc repetition can occur only in two different subpaths $T_i \leadsto T_{i+1}$ and $T_j \leadsto T_{j+1}$, with $i \neq j$.

Solution infeasible because (v, w) crossed both in $T_i \rightsquigarrow T_{i+1}$ and $T_j \rightsquigarrow T_{j+1}$ Impose solution does not

Impose solution does not contain (v, w) in $T_i \leadsto T_{i+1}$

Impose solution does not contain (v, w) in $T_j \leadsto T_{j+1}$

```
1 Function B&B(G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N})
2 | ShortestPaths \leftarrow FLOYDWARSHALL(G);
3 | x \leftarrow \text{DP}(V, A, s, \{T_i\}_{i=1,...,N});
4 | if x is feasible then
5 | return (x, z(x))
```

```
1 Function B&B (G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,\dots,N})
           for i \leftarrow 1 to N-1 do
 6
                  foreach v \in T_i do
                        foreach w \in T_{i+1} do
 8
                               \mathsf{Paths}[\mathit{i}] \leftarrow \mathsf{Paths}[\mathit{i}] \cup \{\mathsf{ShortestPaths}[\mathit{v}][\mathit{w}]\} \; ;
 9
           Q \leftarrow \texttt{GenerateNodes}(x, Paths, [\emptyset]_{i=1}^{N-1});
10
           x^* \leftarrow \mathbf{Nil}; z(x^*) \leftarrow +\infty;
11
```

```
1 Function B&B(G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N})

...;

while Q is not empty do

Node \leftarrow Pop(Q);

i \leftarrow Node.index;

A \leftarrow A \setminus Node.costraints[i];
...;
```

```
1 Function B&B(G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,\dots,N})
     while Q is not empty do
12
         foreach v \in T_i do
17
           foreach w \in T_{i+1} do
18
        19
```

```
1 Function B&B (G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1}
        while Q is not empty do
12
            x \leftarrow \text{DP}(Node.paths);
20
            A \leftarrow A \cup Node.costraints[i];
21
22
            if x is feasible then
                 if z(x) < z(x^*) then
23
                     x^* \leftarrow x, z(x^*) \leftarrow z(x);
24
            else if z(x) < z(x^*) then
25
26
                 Q \leftarrow
                   Q \cup GenerateNodes(x, Node.paths, Node.constraints);
        return (x^*, z(x^*));
27
```

GRASP

Experimental results

Experimental settings

Implemented in C++, executed on S.Co.P.E., a cluster of nodes, connected by 10 Gigabit Infiniband technology, each of them with two processors Intel Xeon E5-4610v2@2.30 Ghz.

Instances:

Complete Graphs The number of nodes are
$$n \in \{100, \dots, 500\}$$
 with a step of $50.$ $(C1, \dots, C9)$

Random Sparse Graphs
$$n \in \{250, 500\}$$
,
$$m \in \{0.1, 0.2, 0.3, 0.4, 0.5\} \cdot n(n-1). \text{ (R1, ..., R10)}$$

Grid Graphs
$$5 \times 10$$
, 10×20 , 15×30 , 5×5 , 10×10 , 15×15 . (G1, ..., G6)

M2 vs B&B vs GRASP on complete graphs

M2 vs B&B vs GRASP on complete graphs

M2 vs B&B vs GRASP on complete graphs

Computational times

M2 vs B&B vs GRASP on random graphs

Optimal solutions

M2 vs B&B vs GRASP on random graphs

Optimal solutions

M2 vs B&B vs GRASP on random graphs

Computational times

M2 vs B&B vs GRASP on grid graphs

M2 vs B&B vs GRASP on grid graphs

Computational times

Conclusions and future work

B&B has very good performances expecially on dense graphs;

Conclusions and future work

- B&B has very good performances expecially on dense graphs;
- GRASP is useful when B&B is not able to find feasible solutions;

Conclusions and future work

- B&B has very good performances expecially on dense graphs;
- GRASP is useful when B&B is not able to find feasible solutions;
- as future work, we are investigating further variants of the problem resulting from the introduction of further constraints defined on the arcs and/or on the nodes of the graph.

01000101 01001110 01000100 (E N D)

Thank you.