Patent claims

1. Compounds of the formula I

in which

- A denotes a saturated, unstaturated or partially unsaturated ring having at most 6 carbon atoms or an unsaturated or partially unsaturated ring having at most 5 carbon atoms and from 1 to 3 nitrogen atoms, one oxygen atom and/or one sulphur atom,
- X^1 denotes S, O and NH, and
- R¹ denotes hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, OH, nitro, CF₃, CN, NR¹¹R¹², NH-CO-R¹³, or O-C₁-C₄-alkyl, where R¹¹ and R¹², independently of each other, denote hydrogen or C_1 - C_4 -alkyl, and R¹³ denotes hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkylphenyl or phenyl,
- B denotes an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 15 carbon atoms or an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 14 carbon atoms and from 0 to 5 nitrogen atoms, from 0 to 2 oxygen atoms and/or from 0 to 2 sulphur atoms, where the respective ring can be additionally substituted by one R⁴ and at most 3 different or identical R⁵ radicals, and one or two carbon, or sulphur, atoms

can also carry one or two =0 groups, such as keto groups, sulphones or sulphoxides, or denotes a radical L_v-Y-M_w , in which

- L denotes a straight-chain or branched saturated or unsaturated carbon chain of from 1 to 8 C atoms, where each carbon atom can be substituted by one or two \mathbb{R}^4 radicals and at most two different or identical \mathbb{R}^5 radicals,
- M possesses, independently of L, the same meaning as L, and
- Y denotes a bond, S, O or NR^3 , where R^3 is hydrogen, branched or unbranched C_1-C_6 -alkyl, C_1-C_4 -alkylphenyl or phenyl, and
- v denotes 0 and 1, and
- w denotes 0 and 1,
- R^4 denotes hydrogen or $-(D)_p-(E)_s-(F^1)_q-G^1-(F^2)_r-G^2-G^3$, where
 - D denotes S, NR43 or O,
 - E denotes phenyl,

$$c=0$$
, $=SO_2-$. $-SO_2NH-$, $-NHCO-$. $-CONH-$, $NHSO_2-$, or $-NHCOCH_2X^4$

- X4 denotes S, O or NH,
- ${
 m F}^1$ denotes a straight-chain or branched, saturated or unsaturated carbon chain of from 1 to 8 C atoms,

- F^2 independently of F^1 , possesses the same meaning as F^1 ,
- G¹ denotes a bond, an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 15 carbon atoms or an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 14 carbon atoms and from 0 to 5 nitrogen atoms, from 0 to 2 oxygen atoms and/or from 0 to 2 sulphur atoms, where the respective ring can be additionally substituted by at most 3 different or identical R⁵ radicals, and one or two carbon and/or sulphur atoms can also carry one or two =0 groups, and

G² denotes NR⁴¹R⁴²,

or a bond,

G³ denotes an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 15 carbon atoms or an unsaturated, saturated or partially unsaturated mono-, bi- or tri-cyclic ring having at most 14 carbon atoms and from 0 to 5 nitrogen atoms, from 0 to 2 oxygen atoms and/or from 0 to 2 sulphur atoms where the respective ring additionally substituted by at most 3 different

or identical R^5 radicals, and one or two carbon, or sulphur, atoms can also carry one or two =0 groups, or denotes hydrogen,

- p denotes 0 or 1,
- s denotes 0 or 1,
- q denotes 0 or 1,
- r denotes 0 or 1,
- $\rm R^{41}$ denotes hydrogen, C₁-C₆-alkyl, where each carbon atom can additionally carry up to 2 $\rm R^6$ radicals, phenyl, which can additionally carry at most 2 $\rm R^6$ radicals, and (CH₂)_t-K, and
- R^{42} denotes hydrogen, $C_1-C_6-alkyl$, $-CO-R^8$, CO_2-R^8 , SO_2NH_2 , SO_2-R^8 , $-(C=NH)-R^8$ and $(C=NH)-NHR^8$,
- R^{43} denotes hydrogen and C_1-C_4 -alkyl,
- t denotes 1, 2, 3 or 4,
- denotes $NR^{11}R^{12}$, $NR^{11}-C_1-C_4$ -alkylphenyl, pyrrolidine, piperidine, 1,2,5,6-tetrahydropyridine, morpholine, homopiperidine, piperazine, which can be additionally substituted by an alkyl radical C_1-C_6 -alkyl, and homopiperazine, which can be additionally substituted by an alkyl radical C_1-C_6 -alkyl,
- R⁵ denotes hydrogen, chlorine, fluorine, bromine, iodine, OH, nitro, CF₃, CN, NR¹¹R¹², NH-CO-R¹³, C₁-C₄-alkyl-CO-NH-R¹³, COR⁸, C₀-C₄-alkyl-O-CO-R¹³, C₁-C₄-alkylphenyl, phenyl, CO_2 -C₁-C₄-alkyl and branched and unbranched C₁-C₆-alkyl, O-C₁-C₄-alkyl or S-C₁-C₄-alkyl where each C atom of the alkyl chains

can carry up to two ${\ensuremath{\text{R}}}^6$ radicals and the alkyl chains can be unsaturated,

- \mbox{R}^{6} denotes hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched $\mbox{C}_{1}\mbox{-}\mbox{C}_{6}\mbox{-}alkyl,$ OH, nitro, CF3, CN, NR $^{11}\mbox{R}^{12}$, NH-CO-R 13 or O-C $_{1}\mbox{-}\mbox{C}_{4}\mbox{-}alkyl,$
- R^7 denotes hydrogen, C_1 - C_6 -alkyl, phenyl, where the phenyl ring can be additionally substituted by up to two R^{71} radicals, and an amine $NR^{11}R^{12}$ or a cyclic saturated amine having from 3 to 7 members which can additionally be substituted by an alkyl radical C_1 - C_6 -alkyl, and homopiperazine which can be additionally substituted by an alkyl radical C_1 - C_6 -alkyl,

where the radicals R^{11} , R^{12} and R^{13} in K, R^5 , R^6 and R^7 can, independently of each other, assume the same meaning as R^1 ,

- R^{71} denotes OH, C_1-C_6 -alkyl, O- C_1-C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂,
- R^8 denotes $C_1-C_6-alkyl,\ CF_3,\ phenyl$ or $C_1-C_4-alkylphenyl,\ where the ring can additionally be substituted by up to two <math display="inline">R^{81}$ radicals,
- R^{81} denotes OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and
- R^9 denotes hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl, CO_2 - C_1 - C_4 -alkylphenyl, CO_2 - C_1 - C_4 -alkylphenyl, CO_2 - C_1 - C_4 -alkyl, SO_2 -phenyl, COR^8 or phenyl, where the phenyl rings can be additionally substituted by up to two R^{91} radicals,
- R^{91} denotes OH, $C_1-C_6-alkyl$, $O-C_1-C_4-alkyl$, chlorine, bromine, iodine, fluorine, CF_3 , nitro or NH_2 ,

and also their tautomeric forms and possible enantiomeric and diastereomeric forms and their prodrugs.

- Compounds of the formula I according to Claim 1, in which
 - A denotes a benzo ring,
 - X^1 denotes O, and
 - R1 denotes hydrogen.
- 3. Compounds of the formula I according to Claim 1 or 2, in which
 - B denotes phenyl, cyclohexyl, piperidine, pyridine, pyrimidine, pyrrole, pyrazole, thiphene, furan, oxazole, naphthalene, piperazine, quinoline, pyrazine or indole, each of which can be substituted by one R⁴ or at most 2 R⁵.
- 4. Compounds of the formula I according to at least one of Claims 1 to 3, in which
 - L denotes a carbon chain which has from 1 to 8 C atoms and which contains at least one triple bond, where the carbon atoms of the chain can be substituted by one or two R⁴ radicals and at most two different or identical R⁵ radicals,
 - v denotes 1, and
 - w denotes 0 or 1.
- 5. Compounds of the formula I according to at least one of Claims 1 to 4, in which

- R^4 denotes $D_{0,1}-F^1_{0,1}-G^2-G^3$, where G^3 denotes hydrogen,
- D denotes O or NR^{43} , where R^{43} denotes hydrogen or C_1-C_3 -alkyl, and
- F^1 denotes C_2-C_4 -alkyl.
- 6. Compounds of the formula I according to at least one of Claims 1 to 4, in which
 - R^4 denotes $G^1 F^1{}_0, {}_1 G^2 G^3,$ where G^3 denotes hydrogen, and
 - F^1 denotes C_1-C_2 -alkyl.
- 7. Compounds of formula I according to Claim 6, in which
 - G¹ denotes imidazole or pyrrole, where the pyrrole can in each case be substituted by at most three different or identical R⁵ radicals, and
 - F^1 denotes C_1-C_2 -alkyl.
- 8. Pharmaceutical composition which comprises at least one compound according to one of Claims 1 to 7 and also at least one customary carrier and/or auxiliary substance.
- Use of a compound of formula I according to one of 9. Claims 1 to 7 for producing a pharmaceutical for prophylaxis and/or treatment neurodegenerative diseases, neuronal damage or due to ischaemias, for treating microinfarctions, for treating in association with revascularization of critically stenosed critically arteries or stenosed peripheral arteries, for treating acute myocardial

infarction and damage during and after its medicinal or mechanical lysis, for treating tumours and their metastases, and for treating sepsis, multiorgan failure, immunological diseases, diabetes mellitus and viral infections.

- Process for the prophylaxis and/or treatment of 10. neurodegenerative diseases, neuronal damage or ischaemias, for treating due to damage microinfarctions, for treating in association with revascularization of critically stenosed coronary arteries or critically stenosed peripheral arteries, for treating acute myocardial infarction and damage during and after medicinal or mechanical lysis, for treating tumours and their metastases, and for treating failure, immunological multiorgan diseases, diabetes mellitus and viral infections by administration of an effective quantity of at least one compound of the formula I according to one of Claims 1 to 7.
- 11. Process for producing a compound according to one of Claims 1 to 7, which comprises condensing an aldehyde of the formula II with a diamine of the formula III:

where the symbols in the formulae II and III have the same meaning as in Claim 1.

12. Process according to Claim 11, where the diamine of the formula III is obtained by reacting a substituted nitrobenzoic ester of the formula IV

with a diamine of the formula V, in a polar solvent and in the presence of a base, and subsequently hydrogenating:

where the symbols in the formulae IV and V have the same meaning as in Claim 1 and R^2 denotes branched or unbranched, saturated or unsaturated C_1-C_6 -alkyl.