DOUBLEROOT

Cheat Sheet – Inverse Trigonometric Functions

Domain/Range

	_	
Function	Domain	Range
sin ⁻¹ x	[-1, 1]	$[-\pi/2, \pi/2]$
cos ⁻¹ x	[-1, 1]	[0, π]
tan⁻¹x	(–∞, ∞)	$(-\pi/2, \pi/2)$
cot ⁻¹ x	(–∞, ∞)	(0, π)
sec ⁻¹ x	R - (-1,1)	$[0, \pi] - {\pi/2}$
CSC ⁻¹ X	R - (-1,1)	$[-\pi/2, \pi/2] - \{0\}$

Identities

1.	$\sin(\sin^{-1}x) = x$	x ∈ [−1, 1]
2.	$\cos(\cos^{-1}x) = x$	x ∈ [−1, 1]
3.	$tan(tan^{-1}x) = x$	$x \in R$
4.	$\cot(\cot^{-1}x) = x$	$x \in R$
5.	$sec(sec^{-1}x) = x$	$x \in R - (-1, 1)$
6.	$csc(csc^{-1}x) = x$	$x \in R - (-1, 1)$
7.	$sin^{-1}(sinx) = x$	$x \in [-\pi/2, \pi/2]$
8.	$cos^{-1}(cosx) = x$	$x \in [0, \pi]$
9.	$tan^{-1}(tanx) = x$	$x \in (-\pi/2, \pi/2)$
10.	$\cot^{-1}(\cot x) = x$	$x \in (0, \pi)$
11.	$sec^{-1}(secx) = x$	$x \in [0, \pi] - \{\pi/2\}$
12.	$csc^{-1}(cscx) = x$	$x \in [-\pi/2, \pi/2] - \{0\}$

 $x \in [-1, 1]$

 $x \in R - (-1, 1)$

 $x \in R$

16. $\sin^{-1}(-x) = -\sin^{-1}x$	x ∈ [−1, 1]
17. $\cos^{-1}(-x) = \pi - \cos^{-1}x$	x ∈ [−1, 1]
18. $tan^{-1}(-x) = -tan^{-1}x$	x∈R
19. $\cot^{-1}(-x) = \pi - \cot^{-1}x$	x∈R
20. $\sec^{-1}(-x) = \pi - \sec^{-1}x$	$x \in R - (-1, 1)$
21. $\csc^{-1}(-x) = -\csc^{-1}x$	$x \in R - (-1, 1)$

13. $\sin^{-1}x + \cos^{-1}x = \pi/2$

14. $tan^{-1}x + cot^{-1}x = \pi/2$

15. $\sec^{-1}x + \csc^{-1}x = \pi/2$

$\sum x_i = \sum x_i = \sum x_i$	XCN (1, 1)
22. $\sin^{-1}x = \csc^{-1}(1/x)$	$x \in [-1, 1] - \{0\}$
23. $\csc^{-1}x = \sin^{-1}(1/x)$	$x \in R - (-1, 1)$
24. $\cos^{-1}x = \sec^{-1}(1/x)$	$x \in [-1, 1] - \{0\}$
25. $\sec^{-1}x = \cos^{-1}(1/x)$	$x \in R - (-1, 1)$
26. $tan^{-1}x = cot^{-1}(1/x)$	x ∈ (0, ∞)
$tan^{-1}x = cot^{-1}(1/x) - \pi$	x ∈ (-∞, 0)
27. $\cot^{-1}x = \tan^{-1}(1/x)$	x ∈ (0, ∞)
$\cot^{-1}x = \tan^{-1}(1/x) + \pi$	x ∈ (-∞, 0)

28.
$$\sin^{-1}x = \cos^{-1}\sqrt{1 - x^2}$$
 $x \in [0, 1]$
29. $\sin^{-1}x = -\cos^{-1}\sqrt{1 - x^2}$ $x \in [-1, 0)$
30. $\cos^{-1}x = \sin^{-1}\sqrt{1 - x^2}$ $x \in [0, 1]$
31. $\cos^{-1}x = \pi - \sin^{-1}\sqrt{1 - x^2}$ $x \in [-1, 0)$

$$\begin{aligned} & + - \text{Inverse Trigonometric Functions} \\ & 32. \ \tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \\ & x > 0, y > 0, xy < 1 \\ & 33. \ \tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right) \\ & x > 0, y > 0, xy > 1 \\ & 34. \ 2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2} & x \in [-1,1] \\ & 35. \ 2\tan^{-1}x = -\pi - \sin^{-1}\frac{2x}{1+x^2} & x \in [-1,1] \\ & 36. \ 2\tan^{-1}x = -\pi - \sin^{-1}\frac{2x}{1+x^2} & x \in [0,\infty) \\ & 38. \ 2\tan^{-1}x = \cos^{-1}\frac{1-x^2}{1+x^2} & x \in [-\infty,0] \\ & 39. \ 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2} & x \in [-1,1] \\ & 40. \ 2\tan^{-1}x = \pi + \tan^{-1}\frac{2x}{1-x^2} & x \in [-1,1] \\ & 40. \ 2\tan^{-1}x = \pi + \tan^{-1}\frac{2x}{1-x^2} & x \in [-1,1] \\ & 41. \ 2\tan^{-1}x = -\pi + \tan^{-1}\frac{2x}{1-x^2} & x \in [-1,1] \\ & 42. \ 2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2}) & x \in [-1,1] \\ & 43. \ 2\sin^{-1}x = -\pi - \sin^{-1}(2x\sqrt{1-x^2}) & x \in [-1/\sqrt{2},1/\sqrt{2}] \\ & 44. \ 2\sin^{-1}x = -\pi - \sin^{-1}(2x\sqrt{1-x^2}) & x \in [-1/\sqrt{2},1] \\ & 45. \ 2\cos^{-1}x = \cos^{-1}(2x^2-1) & x \in [-1,-1/\sqrt{2}] \\ & 46. \ 2\cos^{-1}x = 2\pi - \cos^{-1}(2x^2-1) & x \in [-1,0] \\ & 47. \ 3\sin^{-1}x = \sin^{-1}(3x - 4x^3) & x \in [-1,2,1/2] \\ & 48. \ 3\sin^{-1}x = \pi - \sin^{-1}(3x - 4x^3) & x \in [-1,2,1/2] \\ & 49. \ 3\sin^{-1}x = -\pi - \sin^{-1}(3x - 4x^3) & x \in [-1,-1/2] \\ & 50. \ 3\cos^{-1}x = \cos^{-1}(4x^3 - 3x) & x \in [-1,-1/2] \\ & 51. \ 3\cos^{-1}x = 2\pi - \cos^{-1}(4x^3 - 3x) & x \in [-1,-1/2] \\ & 52. \ 3\cos^{-1}x = 2\pi - \cos^{-1}(4x^3 - 3x) & x \in [-1,-1/2] \\ & 53. \ 3\tan^{-1}x = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-1/\sqrt{3}, \infty) \\ & 54. \ 3\tan^{-1}x = \pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 55. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) & x \in (-\infty,-1/\sqrt{3}) \\ & 56. \ 3\tan^{-1}x = -\pi$$