STATISTICAL TECHNIQUES APPLIED TO FOREST BIOMETRICS

LUAN DEMARCO FIORENTIN

Sebastião do Amaral Machado (Advisor) Allan Libanio Pelissari (Co-advisor) Saulo Jorge Téo (Co-advisor) Wagner Hugo Bonat (Co-advisor)

Federal University of Paraná Postgraduate Program in Forestry Engineering FUPR/PPFE

Friday, January 24, 2020

Sumário

- CHAPTERS
- 2 CHAPTER I
 - Covariance generalized linear models: an approach for quantifying uncertainty in tree stem taper modeling
- CHAPTER II

- Joint marginal modeling of height and volume for Araucaria angustifolia
- 4 CHAPTER II
 - Generalized linear models for tree survival in forest stands

2 / 63

5 REFERENCES AND ACKNOWLEDGMENT

CHAPTERS

uncertainty in tree stem taper modeling

• Chapter I: Covariance generalized linear models: an approach for quantifying

- Chapter II: Joint marginal modeling of height and volume for Araucaria angustifolia
- Chapter III: Generalized linear models for tree survival in forest stands

Sumário

- CHAPTERS
- 2 CHAPTER I
 - Covariance generalized linear models: an approach for quantifying uncertainty in tree stem taper modeling
- CHAPTER II

- Joint marginal modeling of height and volume for *Araucaria angustifolia*
- 4 CHAPTER II
 - Generalized linear models for tree survival in forest stands

4 / 63

5 REFERENCES AND ACKNOWLEDGMENT

- Tree stem form modeling has special importance for the forest management;
- Requires multiples diameter measures within an individual tree:
 - Consequence is a correlation between observations.

(b) Measuring

(c) Modeling

- BONAT & JØRGENSEN (2016) developed the covariance generalized linear models (CGLM):
 - Quite flexible for modeling univariate and multivariate correlated data;
 - Considering response of mixed types;
 - And allow to define many covariance structures.
- CGLM is based on a marginal model specification and second-moment assumptions;
- Covariance are introduced by using a linear combination of known matrices.
- Thus, this approach presents a great potential in forest modeling.

LDF Thesis Defense Friday, January 24, 2020

• Hypothesis:

Covariance generalized linear models it will be suitable for modeling the behavior of *Pinus taeda* tree stem taper.

Main goal:

To introduce the covariance generalized linear model framework in the context of forest biometrics.

LDF Thesis Defense Friday, January 24, 2020

- Taper data set was obtained by measuring 427 samples trees;
- Repeated measures of response were taken at: 0%, 0.5%, 1%, 5%, 10%, 15%, 20%, 25%. 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of total height;
- Dataset was split in four age classes:
 - C1: 4 to 7 years old (without thinning);
 - C2: 8 to 11 years old (1 thinning);
 - C3: 12 to 19 years old (2 thinning);
 - C4: 20 to 30 years old (3 thinning).

LDF Thesis Defense Friday, January 24, 2020

Marginal specification of the covariance generalized linear model is given as

$$E[\mathbf{Y}] = \mu = g^{-1}(\mathbf{X}\beta)$$

$$Var[\mathbf{Y}] = \mathbf{\Sigma} = \Omega(\mathbf{\tau}) = \tau_0 Z_0 + \ldots + \tau_D Z_D,$$

Y is an $N \times 1$ response vector;

X is an $N \times k$ design matrix;

 β is an $k \times 1$ regression parameters vector;

g is the link function;

 Z_D with $d = 0, \dots, D$ are known matrices reflecting the covariance structure;

$$\boldsymbol{\tau} = (\tau_0, \dots, \tau_D)$$
 is a $(D+1) \times 1$ dispersion parameters vector.

LDF Thesis Defense Friday, January 24, 2020

Mean structure is given as

$$E[Y] = g^{-1}(X\beta) = \beta_1(X-1) + \beta_2(X^2-1) + \beta_3(\alpha_1 - X)^2 I_1 + \beta_4(\alpha_2 - X)^2 I_2,$$

Y is a response vector of relative diameter:

X is a predictor variable vector of relative height:

 α_s are the inflexion points to be estimated (s=1,2);

 β_t are the parameters to be estimated (t = 1, 2, 3, 4);

 $I_q = 1$ if $X \leq \alpha_q$ and 0 otherwise, which are a dummy indicator variables vector;

 $g(\cdot)$ is an identity link function.

LDF Thesis Defense Friday, January 24, 2020

Specification of a matrix linear predictor

- Strategy 1 VarStr: components were specified without incorporating the repeated measures structure.
 - Variance structure was directly modeled based on I; H_r ; A; H_s^2 ; A^2 ; H_r : A; and H_s^2 : A^2 .

$$I = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix}; \quad H_r = \begin{bmatrix} H_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & H_{ij} \end{bmatrix}; \quad A = \begin{bmatrix} A_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & A_i \end{bmatrix}; \dots; \quad A^2 = \begin{bmatrix} A_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & A_i^2 \end{bmatrix}.$$

LDF Thesis Defense Friday, January 24, 2020

Specification of a matrix linear predictor

- Strategy 2 CovStr: components were built considering the correlation structure among response variable.
 - Covariance structure was directly modeled based on I; MA(p); ED_{o} ; and ED_{h} .

$$extbf{\emph{I}} = egin{bmatrix} 1 & ... & 0 \ dots & \ddots & dots \ 0 & ... & 1 \end{bmatrix}; \quad extbf{\emph{MA}}(1) = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}; ...; \quad extbf{\emph{ED}}_h = egin{bmatrix} 0 & ... & dh_{1j}^{-1} \ dots & \ddots & dots \ dh_{i1}^{-1} & ... & 0 \end{bmatrix}.$$

LDF Thesis Defense Friday, January 24, 2020 12 / 63

Specification of a matrix linear predictor

• Strategy 3 - RwStr: we proposed to model the matrix linear predictor as a random walk model. The model is specified by the inverse of the dispersion matrix as

$$\mathbf{\Omega}(\delta, \rho)^{-1} = \delta(\mathbf{D} - \rho \mathbf{W}),$$

where W is a neighborhood matrix; D is a diagonal matrix with the number of neighborhoods in the main diagonal; δ is a precision parameter; and ρ is a spatial autocorrelation parameter.

$$\mathbf{\Omega}(\boldsymbol{ au})^{-1} = au_0 \boldsymbol{D} + au_1 \boldsymbol{W},$$

where $\tau_0 = \delta$: and $\tau_1 = -\delta \rho$.

LDF Thesis Defense Friday, January 24, 2020

Components of the matrix linear predictor for the first three observations taken within-tree were given as

$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 and $\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Thesis Defense Friday, January 24, 2020

Specification of a matrix linear predictor

• Strategy 4 - MmStr: we presented the marginal specification of a mixed-effect model for taking into account the repeated measures effects within-tree for the covariates

$$Z_1 = (\mathbf{X} - 1)$$
 and $Z_2 = \left(\mathbf{X^2} - 1\right)$.

X is a predictor variable vector:

LDF Thesis Defense Friday, January 24, 2020

- Our focus was to quantify the uncertainty associated to the response:
- Confidence intervals for the response were calculated by

$$CI(\boldsymbol{\mu}, \gamma) = \hat{\boldsymbol{\mu}} \pm Z_{\gamma/2} \sqrt{\hat{\boldsymbol{c}}},$$

where $\hat{\mu}$ is an $N \times 1$ vector of expected value; $Z_{\gamma/2}$ is a quantile of normal distribution for γ confidence level; and $\hat{\boldsymbol{c}}$ is a main diagonal of covariance matrix of the fitted model.

> LDF Thesis Defense Friday, January 24, 2020 16 / 63

Model selection:

- Score Information Criterion (SIC) was proposed by Bonat et al. (2017) for selecting components of the matrix linear predictor:
 - Function used: mc_sic_covariance from the mcglm package (BONAT, 2018) of the R statistical software (R CORE TEAM, 2018).
- Goodness-of-fit statistics:
 - Log-likelihood (LogLik);
 - Akaike information criterion (AIC);
 - Bayesian information criterion (BIC);
 - Mean Squared Error (MSE).

LDF Thesis Defense Friday, January 24, 2020 17 / 63

Our main goal was increasing the prediction ability.

Conditional predictions:

$$\widetilde{\mu}_{i+1|i} = \hat{\mu}_{i+1} + \hat{C}_{(i+1),i}\hat{C}_{i,i}^{-1}(y_i - \hat{\mu}_i),$$

where $\widetilde{\mu}$ is a vector of conditional predictions of response; $\hat{\mu}$ is a vector of marginal prediction of response; \mathbf{v} is a vector of observed response; and $\hat{\mathbf{C}}$ is a covariance matrix of the fitted model.

Prediction analysis was based on mean squared error (MSE) and the bias (B) over the stem.

LDF Thesis Defense Friday, January 24, 2020

Linear predictor of CovStr:

Table 1: Parameter estimates, standard errors (SE), Z-statistics and root mean square error (MSE) for CovStr

Parameter	Estimates	SE	Z-statistics	MSE
eta_1	3.3519	1.3324	2.5157	
eta_{2}	-2.7030	0.7041	-3.8392	
eta_{3}	23.8337	0.8543	27.8976	0.00622
$eta_{ extsf{4}}$	2.2442	0.6941	3.2331	0.00022
$lpha_{1}$	0.0900	0.0017	52.0427	
α_2	0.8726	0.0260	33.5535	

LDF Thesis Defense Friday, January 24, 2020 19 / 63

RESULTS

- Components of the matrix linear predictor of *CovStr*:
 - Identity matrix:
 - Euclidean distance between pairs of observations:
 - Moving average model of order 1, 2 and 3.

$$Var[\mathbf{Y}] = \hat{\tau}_0 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \hat{\tau}_1 \begin{bmatrix} 0 & 1.0 & 0.5 & 0.3 \\ 1.0 & 0 & 1.0 & 0.5 \\ 0.5 & 1.0 & 0 & 1.0 \\ 0.3 & 0.5 & 1.0 & 0 \end{bmatrix} +$$
(1)

$$\hat{\tau}_{2} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} + \hat{\tau}_{3} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} + \hat{\tau}_{4} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}. \tag{2}$$

Thesis Defense Friday, January 24, 2020 20 / 63

• Matrix linear predictor:

Table 2: Parameter estimates, standard errors (SE), z-statistics (Z-value), likelihood (LogLik), akaike (AIC) and bayesian (BIC) information criterion for the matrix linear predictor for CovStr

Parameter	Estimates	SE	Z-statistics	LogLik	AIC	BIC
$\overline{ au_0}$	0.00629	0.00027	23.3944			
$ au_1$	0.01273	0.00063	20.2913			
$ au_2$	-0.00728	0.00041	-17.7324	12100.52	-24179.04	-24103.92
$ au_3$	-0.00164	0.00012	-13.9066			
$ au_{4}$	-0.00031	0.00004	-8.7549			

LDF Thesis Defense Friday, January 24, 2020

Figure 1: Pearson's residuals by relative height for different modeling strategies and fitted smooth curve in solid line

LDF Thesis Defense Friday, January 24, 2020 22 / 63

Figure 2: Correlation between lag one Pearson's residuals for response variable by different modeling strategies

LDF Thesis Defense Friday, January 24, 2020 23 / 63

RESULTS

Figure 3: Uncertainty in the response. Observed values (full circles), fitted values (solid lines) and 95% confidence intervals (dashed lines) for response variable

LDF Thesis Defense Friday, January 24, 2020 24 / 63

Figure 4: Mean squared error (C) and bias (D) for marginal (dashed lines) and conditional (solid lines) models

LDF Thesis Defense Friday, January 24, 2020 25 / 63

- The CGLM can be easily used for stem taper modeling;
- Advantage of our approach is obtaining a robust taper model.
- The CovStr approach was the best strategy.

LDF Thesis Defense Friday, January 24, 2020 26 / 63

Sumário

- CHAPTERS
- 2 CHAPTER I
 - Covariance generalized linear models: an approach for quantifying uncertainty in tree stem taper modeling
- CHAPTER II

- Joint marginal modeling of height and volume for *Araucaria angustifolia*
- 4 CHAPTER II
 - Generalized linear models for tree survival in forest stands
- 5 REFERENCES AND ACKNOWLEDGMENT

INTRODUCTION

- Volume is an important information for evaluating the potential of a forest;
- Diameter and height are fundamental attributes at tree level;
- Usually, we fit models for describing variables such as:
 - Height and Volume.

LDF

INTRODUCTION

- BONAT & JØRGENSEN (2016) develop the so-called multivariate covariance generalized linear models (MCGLM);
- MCGLM allow to model response variables from distinct nature simultaneously;
- Besides, quantify the association between responses by using correlation parameters:
 - Also, we can include a covariance matrix;
 - And variance functions for different type of response variables.

OBJECTIVES

• Hypothesis:

Correlation between response variables influence the fitting of the regression models.

Main goal:

To analyze the fitting of univariate and multivariate regression models for describing the behavior of height and volume of *Araucaria angustifolia* in native forest.

MATERIAL AND METHODS

- Data set was collected at Xanxerê municipality, Santa Catarina, Brazil;
- Trees were randomly selected on the forest fragment;
- Data set were composed by 169 independent sample trees and the variables measured were:
 - Diameter at breast height (D, cm);
 - Total height (H, m);
 - Individual volume with bark (V, m^3) .

MATERIAL AND METHODS

Generic formulation for the MCGLM is given as

$$E(\mathbf{Y}) = \mathbf{M} = \{g_1^{-1}(\mathbf{X}_1eta_1), ..., g_R^{-1}(\mathbf{X}_Reta_R)\},$$

$$Var(\mathbf{Y}) = \mathbf{C} = \mathbf{\Sigma}_R \otimes \mathbf{\Sigma}_b,$$

The covariance matrix Σ_r for each response is given as

$$\mathbf{\Sigma}_r = V(\boldsymbol{\mu}_r; \boldsymbol{p}_r)^{1/2} h\{\Omega(\boldsymbol{\tau}_r)\} V(\boldsymbol{\mu}_r; \boldsymbol{p}_r)^{1/2}.$$

 Σ_R is an $N \times N$ covariance matrix within response r=1,...R; Σ_b is a correlation matrix among response variables; $V(\mu_r; \boldsymbol{p}_r)$ is a diagonal matrix, whose main entries denote the variance functions; \boldsymbol{p}_r is a power parameter vector; $h\{\Omega(\tau_r)\} = \tau_0 Z_0 + ... + \tau_D Z_D$; and h is a covariance link function.

MATERIAL AND METHODS

Statistical analysis:

- Linear predictor:
 - Response variables: tree height (H) and tree volume (V);
 - Covariate: diameter at breast height (D).
- Matrix linear predictor:
 - Variance modeling was performed as a function of D;
 - Variance function was specified.

MATERIAL AND METHODS

Statistical analysis:

- Linear predictor:
 - Response variables: tree height (H) and tree volume (V);
 - Covariate: diameter at breast height (D).
- Matrix linear predictor:
 - Variance modeling was performed as a function of D;
 - Variance function was specified.
- Modeling approach:
 - Univariate;
 - Multivariate.

MATERIAL AND METHODS

Statistical analysis:

- Linear predictor:
 - Response variables: tree height (H) and tree volume (V);
 - Covariate: diameter at breast height (D).
- Matrix linear predictor:
 - Variance modeling was performed as a function of D;
 - Variance function was specified.
- Modeling approach:
 - Univariate;
 - Multivariate.
- Performance of the models:
 - Gaussian pseudo likelihood (PL);
 - Pseudo Bayesian's information criterion (PBIC).

Statistical analysis:

- Univariate and multivariate models were fitted on the R (R CORE TEAM, 2019);
- We use the mcglm package, version 0.5.0 (BONAT, 2018):
 - Package has an intuitive interface;
 - Many functions are available for building the components of the matrix linear predictor.

LDF Thesis Defense Friday, January 24, 2020

Exploratory data analysis

Figure 5: Histograms of response variables height (H) and volume (V); and scatter plot between response variables and covariate diameter (D)

LDF Thesis Defense Friday, January 24, 2020 35 / 63

RESULTS

- Linear predictor:
 - $E(H_i) = \beta_0 + \beta_1 D_i + \beta_2 D_i^2 + \beta_3 D_i^3$; • $E(V_i) = \exp(\beta_0 + \beta_1 D_i + \beta_2 D_i^2)$.
- Matrix linear predictor:

varied until third degree.

- $M1 = \Omega(\tau_r) = \tau_0 I$;
- $M2 = \Omega(\tau_r) = \tau_0 I + \tau_1 Z$;
- $M3 = \Omega(\tau_r) = \tau_0 I + \tau_1 Z + \tau_2 Z^2$;
- $M4 = \Omega(\tau_r) = \tau_0 I + \tau_1 Z + \tau_2 Z^2 + \tau_3 Z^3$.
- Variance function was included in all models.
- where I is an $N \times N$ identity matrix, being N the number of observations; Z is an $N \times N$ diagonal matrix whose main entries are constituted by tree diameters (D), where the effects

Table 3: Parameter estimates and standard errors of the univariate and multivariate models for H

Parameter	Estimates	Standard error Estimates		Standard error	
	Univariate	Multivariate			
β_0	0.3776	1.7087	5.7281	1.5568	
eta_{1}	0.8937	0.1114	0.5201	0.0994	
eta_{2}	-0.0131	0.0021	-0.0061	0.0018	
eta_{3}	0.00007	0.00001	0.00003	0.00001	
$ au_{ extsf{0}}$	8.7814	1.1021	9.3747	1.1124	

Table 4: Parameter estimates and standard errors of the univariate and multivariate models for V

Parameter	Estimates	Standard error	Estimates	Standard error
	Univariate		Multivariate	
β_0	-3.1707	0.1108	-3.1528	0.1122
eta_{1}	0.0988	0.0036	0.0982	0.0036
eta_{2}	-0.0004	0.00003	-0.0004	0.00003
$ au_{0}$	0.0830	0.0102	0.0843	0.0095
p	1.6350	0.0829	1.6152	0.0781

LDF Thesis Defense Friday, January 24, 2020 38 / 63

RESULTS

Table 5: Estimated correlation (ρ) between response variables height (H) and volume (V) for the multivariate fitting

Model	Estimates	Standard error
M1	0.5075	0.0595
M2	0.4945	0.0604
M3	0.4715	0.0619

Table 6: Pseudo likelihood (PV) and pseudo bayesian's information criterion (PBIC) from univariate and multivariate models

Model	PV	PBIC
Mode	I for H and	V: univariate case
M1	-570.57	1199.31
M2	-567.80	1205.41
М3	-564.70	1210.84
Model	for <i>H</i> and	V: multivariate case
M1	-550.98	1165.95
M2	-549.95	1175.52
М3	-548.09	1183.44

LDF Thesis Defense Friday, January 24, 2020 40 / 63

Figure 6: 95% Confidence intervals from univariate and multivariate models for response variables

LDF Thesis Defense Friday, January 24, 2020 41 / 63

CONCLUSION

- Univariate and multivariate regression models were suitable;
- Correlation between response variables can influence the parameter estimates and standard errors;
- Variance function has potential to improve the performance of the models;
- Multivariate covariance generalized linear models have great potential to be applied to forest biometrics.

Sumário

- CHAPTERS
- 2 CHAPTER I
 - Covariance generalized linear models: an approach for quantifying uncertainty in tree stem taper modeling
- CHAPTER II

- Joint marginal modeling of height and volume for *Araucaria angustifolia*
- 4 CHAPTER III
 - Generalized linear models for tree survival in forest stands
- 5 REFERENCES AND ACKNOWLEDGMENT

INTRODUCTION

- Tree survival is a phenomenon associated to many factors:
 - Competition; forest management practices; climatic conditions.
- Statistical tools able to predict the probability of a tree survive are essential;
- Logistic regression is widely used for estimating tree survival:
 - Require a linear predictor and a link function.
- Commom approach for selecting covariates for composing the linear predictor:
 - Forward, backward or stepwise.

INTRODUCTION

- Alternative approaches are regularization methods:
 - Lasso (Least Absolute Shrinkage and Selection Operator);
 - Ridge regression;
 - Elastic Net.
- Main idea: to fit a regression model which the parameter estimates are penalized or shrunken toward to zero.

OBJECTIVES

• Hypothesis:

Regularization methods are appropriated for selecting correlated covariates, once this approach can reduce the variance of the parameters.

Main goal:

To estimate the probability of *Pinus taeda* survival.

MATERIAL AND METHODS

- Data set: forest inventory performed in two occasions (2009 and 2015);
- 13 variables were mesured at trees and sub-samples level:
 - Complete observations: 40,556 trees.
- Response variable: survival, which is a binary variable (1 if the tree is alive or 0 otherwise).
- Covariates: age; gsample; nsample; daverage; dcv; dg; dmax; ddom; hdom; thinsample; gthin; nthin.

LDF Thesis Defense Friday, January 24, 2020 47 / 63

MATERIAL AND METHODS

The generelized linear model is given as

$$Y_i|x_i \sim Bernoulli\left(\pi_i\right)$$
 $g\left(\pi_i\right) = \eta_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip},$

where Y_i is the response variable; $x_{i1},...,x_{ip}$ are the predictor variables X_i ; π_i is the survival probability; g is a link function; η_i is the linear predictor; and β_0 , β_1 , ..., β_p are parameters to be estimated.

- Covariates for composing the linear predictor were selected by:
 - Stepwise and Regularization.
- Four Link function were tested:
 - Cauchit, complement log-log, logit and probit.

MATERIAL AND METHODS

• Stepwise was based on the minimization of the Bayesian's Information Criterion (BIC):

$$BIC = -2\hat{l} + \ln(n) p,$$

where \hat{I} is the maximized log-likelihood value; n is the number of observations; and p is the number of parameters.

MATERIAL AND METHODS

• Regularization was based on penalizations controlled by the parameters λ and α that quantify the penalization intensity:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{l}(y_{i},\beta_{0}+\beta_{1}x_{i1}+\ldots+\beta_{p}x_{ip})+\lambda\left[\alpha\sum_{i=1}^{n}||\beta_{p}||+(1-\alpha)\sum_{i=1}^{n}||\beta_{p}^{2}||\right].$$

LDF Thesis Defense Friday, January 24, 2020 50 / 63

MATERIAL AND METHODS

• Regularization was based on penalizations controlled by the parameters λ and α that quantify the penalization intensity:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{l}(y_{i},\beta_{0}+\beta_{1}x_{i1}+\ldots+\beta_{p}x_{ip})+\lambda\left[\alpha\sum_{i=1}^{n}||\beta_{p}||+(1-\alpha)\sum_{i=1}^{n}||\beta_{p}^{2}||\right].$$

Lasso: first order penalization ($\alpha = 1$),

LDF

Ridge Regression: second order penalization ($\alpha = 0$).

Elastic Net: intermediate penalization (0 $< \alpha < 1$).

MATERIAL AND METHODS

• Regularization was based on penalizations controlled by the parameters λ and α that quantify the penalization intensity:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{l}(y_{i},\beta_{0}+\beta_{1}x_{i1}+\ldots+\beta_{p}x_{ip})+\lambda\left[\alpha\sum_{i=1}^{n}||\beta_{p}||+(1-\alpha)\sum_{i=1}^{n}||\beta_{p}^{2}||\right].$$

Lasso: first order penalization ($\alpha = 1$),

Ridge Regression: second order penalization ($\alpha = 0$).

Elastic Net: intermediate penalization (0 $< \alpha < 1$).

- Optimum λ : cross-validation based on *cv.glmnet* function of the glmnet package (FRIEDMAN et al., 2010);
- $\lambda = 0 \rightarrow \alpha$ not identifiable.

MATERIAL AND METHODS

Influence of the link function on the covariate selection were tested:

Cauchit:

$$tan[\pi(\pi_i - 0.5)] = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip},$$

Complement log-log:

$$ln[-ln(1-\pi_i)] = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip},$$

Logit:

$$ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip},$$

Probit:

$$\phi^{-1}(\pi_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

MATERIAL AND METHODS

Performance of the models:

- Half-Normal plots (HNP) by hnp function of the hnp package (MORAL et al., 2017);
- Randomized quantile residuals (RQR) (DUNN & SMYTH, 1996)

LDF Thesis Defense Friday, January 24, 2020 52 / 63

MATERIAL AND METHODS

Performance of the models:

- Half-Normal plots (HNP) by hnp function of the hnp package (MORAL et al., 2017);
- Randomized quantile residuals (RQR) (DUNN & SMYTH, 1996)

Predictive performance: Data were split in fitting data (90%) and validation (10%);

- ROC (Receiver Operating Characteristic) curve of the ROCR package (SING et al., 2005);
- Sensibility (Sens) and specificity (Esp):
 - Estimated for 0.75; 0.85; 0.90; 0.95 and 0.99 probability values.

Figure 7: Correlogram between variables clustered by centroid method

LDF Thesis Defense Friday, January 24, 2020 53 / 63

Covariates selected for composing the linear predictor:

- Stepwise: gsample, nsample, dcv, dg and dmax.
- Regularization: all covariates were selected:
 - Best λ value was close to 0 for all sequences of $0 \le \alpha \le 1$,
 - regardless of loss measure we tested.
- We decided to continue the data analysis considering the natural scale of the covariates.

Table 7: Bayesian information criterion (BIC) and residual deviance (RD) by link functions and covariate selection methods

Link function	BIC (number	of covariates)	Residual deviance		
	Stepwise	Regularization	Stepwise	Regularization	
Cauchit	7068.31 (9)	7094.98 (12)	6963.30	6958.20	
C. log-log	6847.46 (5)	6904.20 (12)	6784.40	6768.30	
Logit	6874.73 (7)	6910.75 (12)	6790.70	6774.20	
Probit	6851.50 (5)	6906.84 (12)	6788.50	6769.30	

LDF Thesis Defense Friday, January 24, 2020 55 /

RESULTS

Table 8: Parameter estimates, standard errors (SE) and p-value for the fitted models on the linear predictor scale, with complement log-log link function

Parameter	Estimate	SE	p-value	Estimate	SE	p-value
	Regulariza	tion		Stepwise		
intercept	-0.2940	0.3917	p > 0.05	-0.3973	0.2305	$p \le 0.10$
age	-0.0097	0.0128	p > 0.05	-	-	-
gsample	-0.0404	0.0034	$p \le 0.05$	-0.0413	0.0024	$p \le 0.05$
nsample	0.0017	0.0001	$p \le 0.05$	0.0017	0.0001	$p \le 0.05$
daverage	-0.4005	0.3486	p > 0.05	-	-	-
dcv	-0.0484	0.0146	$p \le 0.05$	-0.0411	0.0047	$p \le 0.05$
dg	0.4891	0.3469	p > 0.05	0.0575	0.0118	$p \le 0.05$
dmax	0.0451	0.0093	$p \le 0.05$	0.0312	0.0069	$p \le 0.05$
ddom	-0.0426	0.0224	p > 0.05	-	-	-
hdom	0.0028	0.0102	p > 0.05	-	-	-
thinsample	-0.0238	0.1884	p > 0.05	-	-	-
gthin	0.0230	0.0098	$p \le 0.05$	-	-	-
nthin	-0.0008	0.0003	$p \le 0.05$	-	-	-

Figure 8: Half-normal plot (left) and randomly quantile residuals (right) for diagnosing the fitted models

LDF Thesis Defense Friday, January 24, 2020 57 / 63

Figure 9: ROC curve of the models applied to the validation data set

LDF Thesis Defense Friday, January 24, 2020 58 / 63

Table 9: Sensitivity and specificity by selected models applied to the validation data set for 0.99 probability cut point

Model	Sensitivity	Specificity
Stepwise	0.989	0.460
Regularization	0.989	0.466

LDF Thesis Defense Friday, January 24, 2020 59 / 63

CONCLUSION

- Stepwise procedure for selecting covariates was more parsimoniously;
- Complementary log-log link function was the most suitable;
- Model presented a great prediction ability, mainly due to the high number of survival trees.

Sumário

- CHAPTERS
- 2 CHAPTER I
 - Covariance generalized linear models: an approach for quantifying uncertainty in tree stem taper modeling
- CHAPTER II

- Joint marginal modeling of height and volume for *Araucaria angustifolia*
- 4 CHAPTER II
 - Generalized linear models for tree survival in forest stands

61 / 63

REFERENCES AND ACKNOWLEDGMENT

REFERENCES

• BONAT, W.H. Multiple response variables regression models in R: The mcglm Package. Journal of Statistical Software, v. 84, n. 4, 2018.

BONAT, W.H.: JØRGENSEN, B. Multivariate covariance generalized linear models.

- Journal of the Royal Statistical Society. Series C: Applied Statistics, v. 65, n. 5, p. 649–675, 2016.
- DUNN, P.K.; SMYTH G.K. Randomized quantile residuals. Journal of Computational and Graphical Statistics, v. 5, n. 3, p. 236-244, 1996.
- FRIEDMAN J.; HASTIE, T.; TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, v. 33, n. 1, p. 1-22, 2010.
- R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019.

ACKNOWLEDGMENT

Thank you all for everything!!!

(a) UFPR/PPGEF

(b) CNPq

(c) DEST/UFPR

(d) LEG