Corresponding to the paper entitled "In-Stream Hydrokinetic Turbine Fault Detection and Fault Tolerant Control - A Benchmark Model" submitted to ACC 2019.

FAU MHK Simulation Setup Instruction

- 1. For initial download and compiling instructions please refer to https://nwtc.nrel.gov/FAST8
- 2. Replace the AeroDyn, ElastoDyn, InflowWind, and ServoDyn input files with the ones provided to represent FAU's MHK (Marine Hydrokinetic Turbine) operating conditions

- 3. Go to MHK folder -> InflowWind -> SEED Files
- 4. Copy one of the seed files to InflowWind -> Wind

5. Use MATLAB to open Run_All.m

6. Change the seed value to match the file in the "Wind" folder

```
seeds = string([56781234]);
       TMax = 120;
       DT = 0.00005;
       NP Wind=1e-8;
       NP RotSpd=1e-4;
       NP_GenSpd=2e-4;
       Np_tau_g=.9;
       Np P g=10;
       Np_beta=1.5e-3;
       Np LSS=1e-3;
       Np XY ACC=5e-4;
       Np_Tau_B=1e3;
       Np WY=5e-2;
       alpha gc=50; %1/20e-3;
17 -
       eta gc=0.85;
       f cut = 0.25;
       w cut = 2*pi*f cut;
20
21
       % fault = 1;
       % pitches = [0;0;0];
       % for i = 4:length(seeds)
             % Rename input file
             movefile('.\InflowWind\Wind\FAU TurbSim Hydro_' + seeds(i)...
                  + '.bts', '.\InflowWind\Wind\FAU TurbSim Hydro.bts');
             % Sensor scaling 0.95
```

7. Open the Takuya.slx file in Simulink

8. Change the simulation time from 30 sec to 120 sec (n/a if already at

120 sec)

Final_FAU_MHK > Final_FAU_MHK > MH	K ∨ Ŭ	Search MHK		0
Name	Date modified	Туре	Size	
AeroDyn	10/8/2018 10:45 A	File folder		
ElastoDyn	10/8/2018 10:45 A	File folder		
InflowWind	10/8/2018 10:59 A	File folder		
ServoDyn	10/8/2018 10:45 A	File folder		
📜 slprj	10/8/2018 10:45 A	File folder		
Baseline.fst	10/8/2018 10:45 A	FST File		6 KB
controller_v2.m	10/8/2018 10:45 A	MATLAB Code		1 KB
🎦 psd.m	10/8/2018 10:45 A	MATLAB Code		1 KB
lacktrian ReadFASTbinary.m	10/8/2018 10:45 A	MATLAB Code		5 KB
🖺 Run_Simulation.m	10/8/2018 10:45 A	MATLAB Code		1 KB
慉 save_all.m	10/8/2018 10:45 A	MATLAB Code		1 KB
✓ 🔁 Takuya.slx	10/8/2018 10:45 A	Simulink Model		31 KB
Takuya.slxc	10/8/2018 10:45 A	Simulink Cache		6 KB

9. In MATLAB, add the Final_FAU_MHK folder to path as seen in picture

F5

Selected Folders

Selected Folders and Subfolders

Remove from Path

Refresh

✓ Indicate Files Not on Path

Run

10. In MATLAB, navigate the "Current Folder" window to the MHK folder and then press play to run the script

Post-process

11. The program will yield a set of output files to the MHK folder named: "TurbSim_56781234_p*.mat" where p* represents the pitch angle for each simulation in <u>radians</u>.

10/7/2018 1:29 PM	MATLAB Data	128,527 KB
10/7/2018 6:32 AM	MATLAB Data	125,037 KB
10/7/2018 8:17 AM	MATLAB Data	127,594 KB
10/7/2018 10:01 A	MATLAB Data	126,742 KB
10/7/2018 11:45 A	MATLAB Data	127,607 KB
10/7/2018 4:48 AM	MATLAB Data	125,010 KB
	10/7/2018 6:32 AM 10/7/2018 8:17 AM 10/7/2018 10:01 A 10/7/2018 11:45 A	10/7/2018 6:32 AM MATLAB Data 10/7/2018 8:17 AM MATLAB Data 10/7/2018 10:01 A MATLAB Data 10/7/2018 11:45 A MATLAB Data