Title

3-D, 2-story unsymmetrical structure

Description

Assume that each floor acts as a rigid diaphragm. Calculate the natural frequencies.

Perform a response spectrum analysis.

(a) Structural analysis model

(b) Floor plan (Input direction of response spectrum)

Structural geometry and structural analysis model

Model

Analysis Type

3-D response spectrum analysis

Unit System

ft, kip

Dimension

Length 50 ft Width 25 ft Height 25 ft

Floor mass $\begin{aligned} M_x &= M_y = 3.88 \text{ kips} \cdot \text{sec}^2/\text{ft} \\ \text{Rotational mass moment of inertia} & M_{zz} &= 1011 \text{ kips} \cdot \text{sec}^2\cdot\text{ft} \\ \text{Damping ratio} & \xi &= 0.05 \text{ (5 \%)} \\ \text{Gravitational acceleration} & g &= 32.2 \text{ ft/sec}^2 \end{aligned}$

Response spectrum data (Accelerations with respect to periods)

							Un	it: ft/sec ²
Period(sec)	0.0	0.1	0.125	0.167	0.182	0.200	0.250	0.333
Acceleration	0.400	0.581	0.628	0.787	0.9439	1.0056	0.7980	0.8806
Period (sec)	0.431	0.500	0.667	1.000	1.273	2.000	10.00	100.0
Acceleration	0.9212	1.0466	0.6418	0.4822	0.2586	0.1602	0.0102	0.0

Element

Beam element

Material

Modulus of elasticity E = 432000 ksf

Section Property

Columns Area $A = 2.25 \text{ ft}^2$

Moment of inertia $I_{yy} = 0.4219 \text{ ft}^4 (= I_{zz})$

Beams Moment of inertia $I_{yy} = 0.6667 \text{ ft}^4$

Boundary Condition

Nodes $1 \sim 6$; Constrain all DOFs.

Nodes 19 and 20 ; Constrain Dx, Dy and Rz of all nodes at each floor to these nodes. (Master nodes)

Analysis Case

Floor masses are assigned to the master nodes at each floor in the directions of X and Y-axes. Mass moment of inertia about Z-axis is assigned to each master nodes. The response spectrum data act in the direction 30 degrees counterclockwise from the X-axis.

Number of natural frequencies to be computed = 6

Results

Eigenvalue Analysis Results

				ΕI	GENV	ALUE	A N	ALYS	I S				
	Mode Frequ No (rad/sec)		iency		Period		Tolerance						
			sec)	(cycle	/sec)	(se	ec)	Tolerance					
	1	1 15,154782 2,411959		0,414601 6,1876e-016									
	2	16	,741843	2	,664547	0,375298 0,000		00e+000					
	3 25,795993 4,105560		C	,243572	3,4169e-016								
	4	54	,729236	8	,710428	C	,114805	1,48	78e-014				
	5	56	,964908	9	,066247	C	,110299	4,06	40e-015				
	6	86	,225648	13	,723238	C	,072869	8,86	88e-014				
				MODAL	PARTIC	IPATION	MASSE	S(%) PR	INTOUT				
	Mode	TRA	N-X	TRA	N-Y	TRA	N-Z	ROT	N-X	ROT	N-Y	ROT	N-Z
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	0,00	0,00	86,57	86,57	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	86,97	86,97	0,00	86,57	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00
	3	1,19	88,16	0,00	86,57	0,00	0,00	0,00	0,00	0,00	0,00	87,60	88,61
	4	0,00	88,16	13,43	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	88,61
	5	11,83	99,99	0,00	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,12	88,73
	6	0,01	100,00	0,00	100,00	0,00	0,00	0,00	0,00	0,00	0,00	11,27	100,00
	EIGENVECTOR												

Displacements

	Node	Load	DX (ft)	DY (ft)	DZ (ft)	RX ([rad])	RY ([rad])	RZ ([rad])
	19	RESP	0.048868	0.034028	0.000000	0.000000	0.000000	0.000323
	20	RESP	0.105880	0.078156	0.000000	0.000000	0.000000	0.000796

Vibration modes of the structure

Comparison of Results

Unit : sec

Vibration mode —	Natural period				
vioration mode	SAP2000	MIDAS/Civil			
1 st	0.4146	0.4146			
2 nd	0.3753	0.3753			
3 rd	0.2436	0.2436			
4 th	0.1148	0.1148			
5 th	0.1103	0.1103			
6 th	0.0729	0.0729			

Unit: ft

Node	Displacement	Displacement at the master node				
Noue	component	SAP2000	MIDAS/Civil			
19	X displacement	0.0489	0.0489			
	Y displacement	0.0341	0.0340			
	Z rotational displacement	0.0003	0.0003			
20	X displacement	0.1060	0.1059			
	Y displacement	0.0782	0.0782			
	Z-rotational displacement	0.0008	0.0008			

Reference

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992, Example 8.

Response Spectrum Data

