COMUNICAÇÃO SERIAL

A comunicação serial é uma das formas mais comuns de transferência de dados entre dispositivos eletrônicos;

É mais eficiente para dispositivos distantes entre si, pois demandam menos "fios" para fazer a comunicação:

Serial Communication

Outra forma é através da Comunicação Paralela:

Nesta, há a necessidade de um "fio" para a transmissão de cada bit.

Por exemplo, em um sistema de 8 bits, precisa de pelo menos 9 fios;

Modos de Transmissão:

Comunicação Serial

Existem diversas formas de comunicação serial, por exemplo: UART (RS232), USB, RS485, SPI, I2C, ONEWIRE, etc.

Comunicação Serial

A comunicação serial pode ser assíncrona ou síncrona:

- Assíncrona: não existe um sinal de *clock* para sincronizar a transmissão e a recepção;
- Síncrona: precisa de um sinal de *clock* para sincronizar a transmissão e a recepção;

USART - Universal Synchronous Asynchronous Receiver Transceiver

A **USART** significa transmissor e receptor síncrono e assíncrono universal.

É uma comunicação serial de dois protocolos.

Este protocolo é usado para transmitir e receber os dados bit a bit em relação aos pulsos de *clock* em um único fio.

Os microcontroladores AVR tem dois pinos: TX e RX, que são especialmente usados para transmitir e receber dados em

série.

Principais características da USART AVR

- Operação Full Duplex (Registros Seriais de Recepção e Transmissão Independentes)
- Operação Assíncrona ou Síncrona
- Operação Síncrona com clock Mestre ou Escravo
- Gerador de Baud Rate de Alta Resolução
- Suporta Quadros Seriais com 5, 6, 7, 8 ou 9 bits de dados e 1 ou 2 bits de parada
- Geração de paridade ímpar ou par e verificação de paridade suportada pelo hardware
- Detecção de transbordamento de dados
- Detecção de erro de enquadramento
- Filtragem de ruído Inclui detecção de bit de início falso e filtro passa-baixo digital
- Três interrupções separadas em TX completo, Registro de dados TX vazio e RX completo
- Modo de comunicação multi-processador
- Modo de comunicação assíncrona de velocidade dupla

Configuração de pinos USART

- •RXD: pino do receptor USART (pino 2)
- •TXD: pino do transmissor USART (pino 3)
- •XCK: pino de relógio USART (pino 6)

A USART dos microcontroladores AVR operam em três modos.

Modo Normal Assíncrono

Neste modo de comunicação, os dados são transmitidos e recebidos bit a bit, sem pulsos de *clock*, pela taxa de transmissão predefinida definida pelo registro **UBBR**.

Modo de velocidade dupla assíncrona

Neste modo de comunicação, os dados transferidos com o dobro da taxa de transmissão são configurados pelo registro UBBR e configurados pelos bits U2X no registro UCSRA.

É usado onde configurações precisas de taxa de transmissão e relógio do sistema são necessárias.

Modo Síncrono

Neste sistema, a transmissão e recepção de dados em relação ao pulso do *clock* é definida como UMSEL = 1 no registro UCSRC.

Modo Assíncrono (UART):

Um frame UART consiste de:

- 1 start-bit;
- 7 ou 8 bits de dados;
- 0 ou 1 bit de paridade (pode ser paridade par ou paridade ímpar);
- 1 ou 2 stop-bits;
- Quando o canal está parado (sem transmissão) a linha fica em nível lógico 1;

Na prática, normalmente se usa 1 start-bit, 7 ou 8 bits de dados e 1 stop-bit;

BAUD RATE: é a taxa de transmissão.

Define a quantidade de bits transmitidos por segundo (um frame UART tem entre 10 e 12 bits);

Alguns valores padrões de baud rate são: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000 e 115200;

UDR0 - USART I/O Data Register 0

É o registrador de transmissão e recepção de dados. Tem o papel de armazenar o conteúdo a ser transmitido ou recebido, dependendo da ação a ser realizada. Compartilham o mesmo endereço pois não há como transmitir e receber ao mesmo tempo.

Bits 7:0 – TXB / RXB[7:0]: USART Transmit / Receive Data Buffer

UCSR0A - USART Controle and Status Register A

É um registrador de configuração e de indicação do estado da comunicação.

Bit	7	6	5	4	3	2	1	0
[RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0
Access	R	R/W	R	R	R	R	R/W	R/W
Reset	0	0	1	0	0	0	0	0

Bit 7 – RXC0: USART Receive Complete

Bit 6 - TXC0: USART Transmit Complete

Bit 5 – UDRE0: USART Data Register Empty

Bit 4 – FE0: Frame Error

Bit 3 - DOR0: Data OverRun

Um *Data OverRun* ocorre quando o buffer de recepção está cheio (dois caracteres). Neste caso há um caractere aguardando no Registrador de Deslocamento e um novo bit de início é detectado.

Bit 2 – UPE0: USART Parity Error

Bit 1 – U2X0: Double the USART Transmission Speed

Bit 0 - MPCM0: Multi-processor Communication Mode

UCSR0B - USART Control and Status Register 0 B

Bit	7	6	5	4	3	2	1	0
[RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80
Access	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – RXCIE0: RX Complete Interrupt Enable 0

Bit 6 – TXCIE0: TX Complete Interrupt Enable 0

Bit 5 – UDRIE0: USART Data Register Empty Interrupt Enable 0

Bit 4 – RXEN0: Receiver Enable 0

Bit 3 – TXEN0: Transmitter Enable 0

Bit 2 – UCSZ02: Character Size 0

Bit 1 – RXB80: Receive Data Bit 8 0

Bit 0 – TXB80: Transmit Data Bit 8 0

UCSR0C - USART Control and Status Register 0 C

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

UMSEL0n: USART Mode Select [n = 1:0]

UMSEL0[1:0]	Mode
00	Asynchronous USART
01	Synchronous USART
10	Reserved
11	Master SPI (MSPIM) ⁽¹⁾

UCSR0C - USART Control and Status Register 0 C

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

UPM0n: USART Parity Mode 0 n [n = 1:0]

UPM0[1:0]	ParityMode
00	Disabled
01	Reserved
10	Enabled, Even Parity
11	Enabled, Odd Parity

UCSR0C - USART Control and Status Register 0 C

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

USBS0: USART Stop Bit Select 0

USBS0	Stop Bit(s)
0	1-bit
1	2-bit

UCSR0C - USART Control and Status Register 0 C

Bit	7	6	5	4	3	2	1	0	
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/	UCSZ00 /	UCPOL0	
						UDORD0	UCPHA0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	1	1	0	

UCSZ01 / UDORD0: USART Character Size / Data Order

UCSZ0[2:0]	Character Size
000	5-bit
001	6-bit
010	7-bit
011	8-bit
100	Reserved
101	Reserved
110	Reserved
111	9-bit

UCSR0C - USART Control and Status Register 0 C

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

Bit 0 – UCPOL0: Clock Polarity 0

UCPOL0	Transmitted Data Changed (Output of TxD0 Pin)	Received Data Sampled (Input on RxD0 Pin)
0	Rising XCK0 Edge	Falling XCK0 Edge
1	Falling XCK0 Edge	Rising XCK0 Edge

Etapas de configuração da UART

Etapa 1: Cálculo e definição da taxa de transmissão

A taxa de transmissão de USART / UART é definida pelo registrador **UBRR** (Baud Rate Register)
Este registro é usado para gerar a transmissão de dados em uma velocidade específica.

O UBRR é um registrador de 16 bits composto de "duas partes" de 8 bits: como UBRR (H), UBRR (L).

Operating Mode	Equation for Calculating Baud Rate(1)	Equation for Calculating UBRRn Value
Asynchronous Normal mode (U2Xn = 0)	$BAUD = \frac{f_{OSC}}{16(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{16\mathrm{BAUD}} - 1$
Asynchronous Double Speed mode (U2Xn = 1)	$BAUD = \frac{f_{OSC}}{8(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{8\mathrm{BAUD}} - 1$
Synchronous Master mode	$BAUD = \frac{f_{OSC}}{2(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{2\mathrm{BAUD}} - 1$

A fórmula da taxa de transmissão é:

```
BAUD = Fosc / (16 * (UBBR + 1))
```

A fórmula do registro UBRR é: UBRR = Fosc / (16 * (BAUD-1))

A frequência do microcontrolador AVR é 16 MHz = 16000000; Vamos supor que a taxa de transmissão seja de 19200 bps, então

```
UBRR = 16000000 / (16 * (19200-1))
```

$$UBRR = 16000000 / (16 * (19200-1))$$

UBRR = 51.099

Etapa 2: Seleção do modo de transmissão de dados

O modo de transmissão de dados, bit de início e bit de parada e o tamanho dos caracteres são definidos pelo registro de controle e status **UCSRC** (Control and Status Register).

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

Bits 7:6 - UMSEL0n: USART Mode Select 0 n [n = 1:0]

These bits select the mode of operation of the USART0

Table 24-8. USART Mode Selection

UMSEL0[1:0]	Mode
00	Asynchronous USART
01	Synchronous USART
10	Reserved
11	Master SPI (MSPIM) ⁽¹⁾

Etapa 3: Seleção do modo de transmissão de dados

O modo síncrono e assíncrono é selecionado pelo bit **UMSEL** do registro de status de controle.

Se UMSEL = 0, então o USART opera em modo assíncrono, caso contrário, opera em modo síncrono.

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

Etapa 4: Bit de início e bit de parada

Os bits de início e de parada são uma forma de enviar e receber dados em série.

Os microcontrolador AVR tem um bit de início e dois bits de parada.

O bit de parada extra pode ser útil para adicionar um pouco mais de tempo de processamento de recepção.

Assim, podemos aumentar o tempo de processamento usando dois bits de parada para obter os dados adequados.

O número de bits de parada é selecionado pelo bit USBS de **UCSRC** (o registro de status de controle).

USBS = 0 => um bit de parada

USBS = 1 => dois bits de parada.

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

Etapa 5: Definição do tamanho do caractere

Podemos escolher um formato de quadro de dados em cada quadro pelo bit UCSZ do registrador UCSR0C / UCSR0B.

UCSZ2	UCSZ1	UCSZ0	Charector size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1 8-bit	
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

UCSR0C

Dit	'	0	3				<u>'</u>	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

UCSR0B

Bit	7	6	5	4	3	2	1	0	
[RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	
Reset	0	0	0	0	0	0	0	0	

Etapa 6: Armazenamento dos Dados Recebidos

O microcontrolador AVR contém um registro de buffer UDR (Data Buffer Registers) para transmitir e receber dados.

O UDR é um registro de buffer de 16 bits dos quais 8 bits são usados para receber (RXB) os dados e outros bits são usados para transmitir os dados (TXB).

A transmissão do registro do buffer de dados será o destino do registro UDR para os dados nele gravados.

Receber o registro do buffer de dados retornará o conteúdo do registro UDR.

Etapa 7: Habilitação do transmissor e receptor

Os dados são transmitidos e recebidos pelos pinos RXC e TXC do microcontrolador.

Estes são configurados pelo registro UCSRA.

Os flags RXC e TXC indicam que houve a recepção e transmissão completa.

Bit	7	6	5	4	3	2	1	0
	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0
Access	R	R/W	R	R	R	R	R/W	R/W
Reset	0	0	1	0	0	0	0	0

```
int main ()
  int i = 0;
  unsigned int ubrr = 103 //BAUD RATE = 9600bps;
  unsigned char dados [] = "VAI CURINTIA!!!";
  // Definir taxa de transmissão
  UBRROH =0;
  UBRROL = ubrr;
  UCSROC = 0b000000110;; // Definir formato de quadro: 8 dados, primeiro bit
  UCSROB = 0b00001000; // Habilitar transmissor
  while (1) {
    i = 0;
    while (dados [i]! = 0) // imprime a string "VAI CURINTIA!!!"
     while (! (UCSROA & (1 << UDREO))); // Aguarde o buffer de transmissão vazio
     UDRO = dados [i]; // Coloca os dados no buffer, envia os dados
                       // incrementa contador
     i ++;
```