Mathematics and numerics for data assimilation and state estimation – Lecture 8

Summer semester 2020

Summary of lecture 7

- Random variables can be discrete, mixed or continuous.
- It is uniquely described by its distribution \mathbb{P}_X , and also by its cdf

$$F_X(x) = \mathbb{P}(X \le x)$$

and, if it exists, also by its pdf

$$\pi_X(x) = \frac{\mathbb{P}(X \in dx)}{dx}.$$

- \blacksquare expectation of X given Y can be expressed through use of the
 - **1** conditional probability $\mathbb{P}(X \in dx \mid Y)$ when Y is a discrete rv
 - 2 and the conditional density $\pi_{X|Y}$ when X and Y are continuous rv.

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

- 2 Forward and inverse problems
 - Bayesian vs frequentist

- 3 Bayesian inversion
 - Bayesian methodology

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

- 2 Forward and inverse problems
 - Bayesian vs frequentist

- 3 Bayesian inversion
 - Bayesian methodology

General definition for conditional expectation

Mixed rv are neither discrete nor continuous.

Example 1

X = YZ where $Y \sim Bernoulli(1/2)$ and $Z \sim U[0,1]$ with $Y \perp Z$.

Then formally,

$$\pi_X(x) = \frac{\delta_0(x) + \mathbb{1}_{[0,1]}(x)}{2}$$

- Conditional expectations cannot always be computed using conditional densities for mixed rv.
- **Objective:** obtain a unifying definition for conditional expectations valid for all types of rv.

Sigma algebra generated by Y

For a discrete rv

$$Y(\omega) = \sum_{k=1}^{\kappa} b_k \mathbb{1}_{B_k}(\omega)$$

on $(\Omega, \mathcal{F}, \mathbb{P})$, with $B_k = \{Y = b_k\}$ we define

$$\sigma(Y) := \sigma(\{B_k\}) = \text{smallest } \sigma\text{-algebra containing all events } B_1, B_2, \dots$$

- By construction Y is $\sigma(Y)$ -measurable and $\sigma(Y) \subset \mathcal{F}$.
- Then, for an integrable rv X, it holds that

$$\mathbb{E}[X|Y](\omega) = \begin{cases} \frac{1}{\mathbb{P}(B_1)} \int_{B_1} X d\mathbb{P} & \text{if } \omega \in B_1 \\ \frac{1}{\mathbb{P}(B_2)} \int_{B_2} X d\mathbb{P} & \text{if } \omega \in B_2 \\ \vdots \end{cases}$$

Observations: $\mathbb{E}[X|Y]$ is a $\sigma(Y)$ -measurable discrete rv for which

$$\int_{B} X d\mathbb{P} = \int_{B} \mathbb{E}[X \mid Y] d\mathbb{P} \quad \forall B \in \sigma(Y).$$

(hint: verify first for sets B_k , and extend to general set $B \in \sigma(Y)$).

Seeking to preserve these properties, observe first that for $Y:(\Omega,\mathcal{F}) \to (\mathbb{R}^k,\mathcal{B}^k)$,

$$\sigma(Y):=$$
 smallest σ -algebra containing $Y^{-1}(C) \quad \forall C \in \mathcal{B}^k$ similarly satisfies $\sigma(Y) \subset \mathcal{F}$ and that Y is $\sigma(Y)$ -measurable.

Definition 2 (Conditional expectation for general rv)

For rv $X:\Omega\to\mathbb{R}^d$ and $Y:\Omega\to\mathbb{R}^k$ defined on the same probability space, we define $\mathbb{E}\left[X\mid Y\right]$ as any $\sigma(Y)$ -measurable rv Z satisfying

$$\int_{\mathcal{P}} X d\mathbb{P} = \int_{\mathcal{P}} Z d\mathbb{P} \quad \forall B \in \sigma(Y).$$

Conditioning on a σ -algebra

One may relate $\mathbb{E}[X \mid Y]$ to another kind of conditional expectation:

Definition 3 (Expectation of X given $\mathcal{V} \subset \mathcal{F}$.)

Let $X:\Omega\to\mathbb{R}^d$ be an integrable rv on a probability space $(\Omega,\mathcal{F},\mathbb{P})$ and assume \mathcal{V} is a σ -algebra $\mathcal{V}\subset\mathcal{F}$. Then we define $\mathbb{E}\left[\left.X\mid\mathcal{V}\right]$ as any \mathcal{V} -measurable rv Z satisfying

$$\int_{B} XdP = \int_{B} Z dP \quad \forall B \in \mathcal{V}.$$

Observation: Setting $\mathcal{V} = \sigma(Y)$ implies that $\mathbb{E}[X \mid Y]$ satisfies the constraints of $\mathbb{E}[X \mid \sigma(Y)]$ and vice versa.

Question: Does $\mathbb{E}[X \mid V]$ exist and is it unique?

Yes, $\mathbb{E}[X \mid \mathcal{V}] = \text{Proj}_{L^2(\Omega,\mathcal{V})}X$ is a.s. unique.

Function space $L^2(\Omega, \mathcal{F})$

As an extension of $L^2(\Omega)$ for discrete rv, we introduce the Hilbert space

$$L^2(\Omega,\mathcal{F}) = \left\{ X: (\Omega,\mathcal{F}) o (\mathbb{R}^d,\mathcal{B}^d) \, \middle| \quad \int_{\Omega} |X(\omega)|^2 \, dP < \infty
ight\}$$

with the scalar product

$$\langle X, Y \rangle = \int_{\Omega} X \cdot Y dP = \int_{\mathbb{R}^d \times \mathbb{R}^d} X \cdot Y dF(x, y)$$

and norm

$$||X||_{L^2(\Omega,\mathcal{F})} = \sqrt{\langle X,Y \rangle}.$$

This is a Hilbert space: it is complete and for any sub- σ -algebra $\mathcal{V} \subset \mathcal{F}$, $L^2(\Omega, \mathcal{V})$ is a closed subspace of $L^2(\Omega, \mathcal{F})$.

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^2(\Omega, \mathcal{F})$ onto the closed subspace $L^2(\Omega, \mathcal{V})$ is defined as any rv $Z \in L^2(\Omega, \mathcal{V})$ satisfying

$$\langle X - Z, W \rangle = 0 \quad \forall W \in L^2(\Omega, \mathcal{V}).$$
 (1)

We write $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$.

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^2(\Omega, \mathcal{F})$ onto the closed subspace $L^2(\Omega, \mathcal{V})$ is defined as any rv $Z \in L^2(\Omega, \mathcal{V})$ satisfying

$$\langle X - Z, W \rangle = 0 \quad \forall W \in L^2(\Omega, \mathcal{V}).$$
 (1)

We write $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$.

Exercise: verify that $\operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$ satisfies the constraints of $\mathbb{E}[X \mid \mathcal{V}]$. **Hint:** consider $W = \mathbb{1}_B$ for $B \in \mathcal{V}$

Exercise: verify that $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$ is unique in $L^2(\Omega, \mathcal{V})$ (and thus a.s. unique).

Last step: take as a fact that $\mathbb{E}[X \mid \mathcal{V}]$ satisfies the constraint (1) of $\text{Proj}_{L^2(\Omega,\mathcal{V})}X$, and conclude that $\mathbb{E}[X \mid \mathcal{V}]$ is a.s. unique.

Summary conditional expectations

Theorem 5

For rv $X : \Omega \to \mathbb{R}^d$ and $Y : \Omega \to \mathbb{R}^k$ defined on the same probability space and with $X \in L^2(\Omega, \mathcal{F})$, it holds that

$$\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid \sigma(Y)] = Proj_{L^{2}(\Omega, \sigma(Y))}X.$$

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

- 2 Forward and inverse problems
 - Bayesian vs frequentist

- 3 Bayesian inversion
 - Bayesian methodology

What are forward and inverse problems

Forward problem Possible

Possible outcomes ære decluced from cause

I werse problem Effects Pessible causes are induced from

A simple linear example

Forward problem: Given a matrix A and vector u compute the outcome

$$y = Au$$

Inverse problem: Given a matrix A and observation/effect y with either

- (i) $y \notin \text{columnSpan}(A)$, or
- (ii) $y \in \text{columnSpan}(A)$ but $Kernel(A) \neq \emptyset$,

then for (i), find the best approximate cause u to

$$Au = y$$

and for (ii), find the most suitable cause u to the above problem.

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

- 1 a solution exists,
- 2 the solution is unique, and
- 3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then the problem is **ill-posed**.

Example: The linear forward problem

$$y = Au$$

with fixed A and u is well-posed.

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

- 1 a solution exists,
- 2 the solution is unique, and
- 3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then the problem is **ill-posed**.

Example: The inverse problem:

$$Au = y$$

with fixed A and input y is well-posed if A is invertible and $|A^{-1}|$ is not too large. Since then for perturbed observations $y_{\delta} = y + \mathcal{O}(\delta)$,

$$|u - u_{\delta}| = |A^{-1}(y - y_{\delta})| \le C|A^{-1}|\delta.$$

Otherwise, it is not a well-posed problem.

Deterministic methods versus Bayesian inversion

We will consider extensions of the linear problem of the following form

$$Y = G(U) + \eta \tag{2}$$

where

- Y is the observation
- *G* is the possibly nonlinear forward model
- \blacksquare η is a perturbation/observation noise,
- lacksquare U is the unknown parameter we seek to recover

Typical deterministic approach: View all variables as deterministic – also the perturbation. Find unique solution an initially ill-posed problem (2) by introducing pseudo-inverse G^+ and solve

$$U=G^+(Y-\eta).$$

Bayesian approach: View all variables as random. Model your uncertainty through input prior $U \sim \pi_U$ and $\eta \sim \pi_\eta$. Solution is not a point in \mathbb{R}^d , but a posterior distribution: $\pi_{U|Y}(\cdot|y)$ (given observation Y = y).

Plan for this lecture

■ Bayesian methodology for solving inverse problems.

■ Introduce norms to study convergence of the posterior $\pi_{U|Y}$.

■ Well-posedness for Bayesian inversion with perturbed input model $G_\delta \approx G$.

Bayesian vs frequentist

Definition 7 (Frequentist randomness)

The probability of an event is the long-term frequency of said event occurring when repeating an experiment multiple times:

$$\mathbb{P}(X \in A) = \lim_{M \to \infty} \sum_{i=1}^{M} \frac{\mathbb{I}_A(X_i)}{M} \quad \text{with } X_i \sim \mathbb{P}, \quad \text{and ideally independent.}$$

- Is applicable to repeatable experiments (coin flips, card games, ...), and to some degree to lagre data experiments (elections, survey polls, etc.)
- and to some degree in settings where imaginary sampling is deduced from from some form of prior information (e.g., physics argument for a coin flip being Bernoulli(1/2)).
- Dogmatically interpreted, not applicable to non-repeating experiments (e.g., probability that Barcelona wins a particular soccer match).

Bayesian vs frequentist

Definition 8 (Bayesian uncertainty)

 $\mathbb{P}(X \in A \mid I)$ represents my degree of belief/confidence that A occurs given all my prior information I.

- **Constraint in defnition:** If you and I have the same prior information I, then your $\mathbb{P}(\cdot \mid I)$ should be the same as mine!
- The Bayesian approach leads to the same probability calculus as in the "usual" frequentist probability theory.
- More general than frequentist approach, as imaginary sampling really stems from a Bayesian viewpoint.
- Can assign probabilities/plausibility/belief to events which are either true or not (i.e., not at all random in the frequentist viewpoint):

 $\mathbb{P}(John\ Doe\ committed\ the\ crime\ |\ evidence\ x,\ y,\ z)$

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

- 2 Forward and inverse problems
 - Bayesian vs frequentist
- Bayesian inversion
 - Bayesian methodology

Bayesian inverse problem

We consider the problem

$$Y = G(U) + \eta \tag{3}$$

where

- lacksquare $U \in \mathbb{R}^d$ is the unknown parameter we seek to recover
- $Y \in \mathbb{R}^k$ is the observation
- lacksquare $G: \mathbb{R}^d
 ightarrow \mathbb{R}^k$ is the possibly nonlinear forward model
- lacksquare η is the observation noise

Assumption 1

All parameters, possibly with the exception of ${\it G}$ are random, described through

- $U \sim \pi_U$, $\eta \sim \pi_\eta$ and $Y \sim \pi_Y$,
- \blacksquare and $\eta \perp U$.

Objective: Given Y = y use this to improve the estimate of the first component in the joint rv (U, Y) through determining $\pi_{U|Y}(\cdot|y)$.

Theorem 9 (Bayes theorem [Thm 1.2 Sanz-A., Stuart, Taeb (SST)]) Let Assumption 1 hold and assume that $\pi_Y(y) > 0$. Then

$$U|Y = y \sim \pi_{U|Y}(\cdot|y)$$

with

$$\pi_{U|Y}(u|y) = \frac{\pi_{\eta}(y - G(u))\pi_{U}(u)}{\pi_{Y}(y)}. \tag{4}$$
 Verfication: We may assume that also $\pi_{U}(u) > 0$, since otherwise (4)

trivially holds. By the disintegration formula, $\pi_{UY}(u, y) = \pi_{U|Y}(u|y)\pi_Y(y)$ and $\pi_{UY}(u, y) = \pi_{Y|U}(y|u)\pi_U(u)$.

And since $\pi_Y(y) > 0$, combining the above yields Bayes' rule for densities:

And since
$$\pi_Y(y)>0$$
, combining the above yields Bayes' rule for densities $\pi_{U|Y}(u|y)==rac{\pi_{Y|U}(y|u)\pi_{U}(u)}{\pi_{Y}(y)}.$

Since $Y|(U = u) = G(U) + \eta|(U = u) = G(u) + \eta$

 $\pi_{U|Y}(u|y) =$

$$\pi_{Y|U}(y|u) = \pi_{\eta+G(u)}(y) = \pi_{\eta}(y-G(u)).$$

Remarks

$$\pi_{U|Y}(u|y) = \frac{\pi_{\eta}(y - G(u))\pi_{U}(u)}{\pi_{Y}(y)}.$$
 (5)

■ The denominator $\pi_Y(y)$ in (5) acts as normalizing constant is called **the evidence** or the **marginal likelihood**:

$$Z:=\pi_Y(y)=\int_{\mathbb{R}^d}\pi_\eta(y-G(u))\pi_U(u)\,du.$$

- $\blacksquare \pi_{U|Y}(u|y)$ is the **posterior density**
- To avoid clutter, we will drop density subscripts when reference is clear $(\pi(u) = \pi_U(u), \ \pi(u|y) = \pi_{U|Y}(u|y)$ etc.)

Question: Given the posterior density, how can we produce a one-value estimate of the most plausible value of U|Y=y?

Posterior mean and MAP estimators

Definition 10

The posterior mean of U given Y = y is defined by

$$u_{PM} := \mathbb{E}[U|Y = y] = \int_{\mathbb{R}^d} u\pi(u|y)du$$

and the maximum a posteriori (MAP) estimator is defined by

$$u_{MAP} := \arg \max_{u \in \mathbb{R}^d} \pi(u|y).$$

Example 11

This yields:

Let $\eta \sim N(0, \gamma^2)$ and model G(u) = u and prior

$$\pi(u) = \frac{\mathbb{1}_{(-1,1)}(u)}{2}$$

 $u_{MAP} = rg \max_{u \in \mathbb{R}} \pi(u|y) = egin{cases} y & ext{if } y \in (-1,1) \ -1 & ext{if } y \leq -1 \ 1 & ext{if } v > 1 \end{cases}, \quad ext{and} \quad u_{PM} = ?$

Given an observation Y = y, Bayes' theorem yields

$$\pi(u|y) = \frac{\pi_{\eta}(y-u)\pi_{U}(u)}{\pi_{V}(y)} = \frac{\mathbb{1}_{(-1,1)}(u)\exp(-(y-u)/2\gamma^{2})}{27}$$

with normalizing constant Z.

iven an observation
$$Y = y$$
, Bayes' theorem yie

Assimilating two observations

Example 12

Consider the ordinary differential equation

$$\dot{x}(t; u) = x(t; u)$$
 $t > 0$ and $x(0; u) = u$

and

$$G(u) = x(1; u) = ue^1,$$

and assume we have two different observations

$$Y_1 = G(U) + \eta_1$$
, and $Y_2 = G(U) + \eta_2$,

with the prior density $U \sim U[-1,4]$, and $\eta_1 \sim N(0,1)$ and $\eta_2 \sim U[-0.5,0.5]$ with $\eta_1 \perp \eta_2$.

Problem: Compute the posterior density for $U|(Y_1 = 0.2, Y_2 = -0.4)$.

Solution to Example 12

Set $Y = (Y_1, Y_2)$ with $\eta = (\eta_1, \eta_2)$ and apply Theorem 1 to the joint rv (U, Y), for the observation y = (0.2, -0.4).

$$\pi(u|y) = \frac{\pi_{\eta}((y_1 - G(u), y_2 - G(u)))\pi_{U}(u)}{Z}$$
$$= \frac{\pi_{\eta_2}(y_2 - G(u))\pi_{\eta_1}((y_1 - G(u))\pi_{U}(u))}{Z}$$

Motivation: For $\pi_U(u) > 0$,

$$Y|(U=u) = (G(u) + \eta_1, G(u) + \eta_2)$$

 $\implies \pi(y|u) = \pi_{\eta_1\eta_2}(y_1 - G(u), y_2 - G(u)).$

and

$$\pi(u|y) =$$

Observation: The posterior $\pi(u|y_1, y_2)$ can be obtained in two ways:

■ In one go: $U|(Y_1 = y_1, Y_2 = y_2)$ mapping $\pi_U(u)$ to $\pi(u|y_1, y_2)$:

$$\pi(u|y) = \frac{\pi_{\eta}((y_1 - G(u), y_2 - G(u)))\pi_{U}(u)}{Z}$$

■ Or sequentially: 1. $U|(Y_1 = y_1)$ mapping $\pi_U(u)$ to $\pi(u|y_1)$:

$$\pi(u|y_1) = \frac{\pi_{\eta_1}(y_1 - G(u))\pi_U(u)}{Z_1}$$

and 2. $U|(Y_1 = y_1, \frac{Y_2}{Y_2} = y_2)$ mapping $\pi(u|y_1)$ to $\pi(u|y_1, \frac{y_2}{Y_2})$

$$\pi(u|y_1, y_2) = \frac{\pi_{\eta_2}(y_2 - G(u))\pi(u|y_1)}{Z_2}$$

$$\frac{\pi(u|y_1, y_2)}{Z_2}$$

$$\frac{\pi(u|y_1, y_2)}{Z_2}$$

$$\frac{\pi(u|y_1, y_2)}{Z_2}$$

$$\frac{\pi(u|y_1, y_2)}{Z_2}$$

Well-posedness for Bayesian inversion

Relation between observation and underlying parameter

$$Y = G(U) + \eta$$

Inverse problem: what is the most likely/plausible U given Y = y

Bayesian inversion solution: the posterior density $\pi(u|y)$, or a function of the density, e.g., u_{PM} and u_{MAP} .

Hadamard's definition of well-posedness requires that a solution (i) exists, (ii) is unique and (iii) is stable with respect to small perturbations of the input.

By construction, $\pi(u|y)$ exists and is unique as long as $\pi_Y(y) > 0$.

Objective: Study condition (iii) under perturbations in the model. We seek a result along the lines of

$$|G_{\delta} - G| = \mathcal{O}(\delta) \implies d(\pi^{\delta}(\cdot|y), \pi(\cdot|y)) = \mathcal{O}(\delta),$$
 but what is d?

Metrics on the space of pdfs

Let us introduce the space of probability density functions on \mathbb{R}^d

$$\mathcal{M} := \left\{ f \in L^1(\mathbb{R}^d) \mid f \geq 0 \text{ and } \int_{\mathbb{R}^d} f(u) \, du = 1
ight\}$$

and recall that

$$d: \mathcal{M} \times \mathcal{M} \rightarrow [0, \infty)$$

is a metric on \mathcal{M} if for all $\pi, \bar{\pi}, \hat{\pi} \in \mathcal{M}$

- $1 d(\pi,\bar{\pi}) = 0 \iff \pi \stackrel{L^1}{=} \bar{\pi},$
- $2 d(\pi, \bar{\pi}) = d(\bar{\pi}, \pi),$
- $d(\pi,\bar{\pi}) = d(\pi,\hat{\pi}) + d(\hat{\pi},\bar{\pi}).$

Definition 13 (Total variation distance)

For any $\pi, \bar{p}i \in \mathcal{M}$,

$$d_{TV}(\pi, \bar{\pi}) := \frac{1}{2} \int_{\mathbb{R}^d} |\pi(u) - \bar{\pi}(u)| du = \frac{1}{2} \|\pi - \bar{\pi}\|_{L^1(\mathbb{R}^d)}$$

Metrics on the space of pdfs

Definition 14 (Hellinger distance)

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$d_{H}(\pi,ar{\pi}):=rac{1}{\sqrt{2}}\|\sqrt{\pi}-\sqrt{ar{\pi}}\|_{L^{2}(\mathbb{R}^{d})}.$$

 $0 \le d_H(\pi, \bar{\pi}) \le 1$ and $0 \le d_{TV}(\pi, \bar{\pi}) \le 1$.

Lemma 15 (SST Lem 1.8)

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$, \pi \subset \mathcal{M}$$

Verification for d_{TV} :

$$d_{TV}(\pi,\bar{\pi}) =$$

Properties TV and Hellinger distances

Lemma 16

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$\frac{1}{\sqrt{2}}d_{TV}(\pi,\bar{\pi}) \leq d_H(\pi,\bar{\pi}) \leq \sqrt{d_{TV}(\pi,\bar{\pi})}$$

Weak errors

The posterior mean

$$u_{PM}[\pi(\cdot|y)] = \mathbb{E}^{\pi(\cdot|y)}[u] = \int_{\mathbb{R}^d} u \, \pi(u|y) \, du$$

is one possible solution to the inverse problem.

For a perturbation in the forward model $G_{\delta}=G+\mathcal{O}(\delta)$ that leads to a perturbed in the posterior density $\pi^{\delta}(u|y)$, we then need to bound the following to verify stability

$$|u_{PM} - u_{PM}^{\delta}| = |\mathbb{E}^{\pi(\cdot|y)}[u] - \mathbb{E}^{\pi(\cdot|y)}[u]|$$

More generally, for a mepping $f: \mathbb{R}^d \to \mathbb{R}^k$, we may be interested in bounding

$$|\mathbb{E}^{\pi(\cdot|y)}[f] - \mathbb{E}^{\pi^{\delta}(\cdot|y)}[f]|$$

Lemma 17 (SST Lem 1.10)

Let $f: \mathbb{R}^d \to \mathbb{R}^k$ satisfy $||f||_{\infty} = \sup_{u \in \mathbb{R}^d} |f(u)| < \infty$. Then for any $\pi, \bar{\pi} \in \mathcal{M}$.

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{\bar{\pi}}[f]| \leq 2\|f\|_{\infty} d_{TV}(\pi, \bar{\pi})$$

Verification:

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{ar{\pi}}[f]| = \Big| \int_{\mathbb{R}^d} f(u)(\pi(u) - ar{\pi}(u)) du \Big|$$

Lemma 18 (SST Lem 1.11)

Given $\pi, \bar{\pi} \in \mathcal{M}$, assume that $f: \mathbb{R}^d \to \mathbb{R}^k$ satisfies

$$f_2^2[\pi, \bar{\pi}] := \mathbb{E}^{\pi}[|f(u)|^2] + \mathbb{E}^{\bar{\pi}}[|f(u)|^2] < \infty.$$

Then

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{\bar{\pi}}[f]| \leq 2f_2 d_{\mathcal{H}}(\pi, \bar{\pi}).$$

Proof:

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{ar{\pi}}[f]| = \Big| \int_{\mathbb{R}^d} f(u)(\pi(u) - ar{\pi}(u)) du \Big|$$

Application of Lemma 18 to perturbed posterior means.

$$|u_{PM}[\pi(\cdot|y)] - u_{PM}[\pi^{\delta}(\cdot|y)]| = |\mathbb{E}^{\pi(\cdot|y)}[u] - \mathbb{E}^{\pi^{\delta}(\cdot|y)}[u]|$$

$$< 2f_2 d_H(\pi(\cdot|y), \pi^{\delta}(\cdot|y)).$$

= 2 • 11(• ()

where
$$f(u)=u$$
 for the posterior mean, and thus
$$f_2^2=\int_{\mathbb{R}^d}|u|^2(\pi(u|y)+\pi^\delta(u|y))\,du.$$

Next time

 \blacksquare Assumptions on the noise η and perturbations \textit{G}_{δ} that gives stability,

lacksquare Perturbed forward problems G_δ to which said assumptions apply,

■ Bayesian inversion in the linear setting with Gaussian distributions.