MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 5.4

One-to-One and Onto Linear Transformations

Let $L: V \to W$ be a LT. L is one-to-one if and only if

Let $L: V \to W$ be a LT. L is one-to-one if and only if for all $v_1, v_2 \in V$, $L(v_1) = L(v_2)$ implies $v_1 = v_2$,

Let $L: V \to W$ be a LT. L is one-to-one if and only if for all $v_1, v_2 \in V$, $L(v_1) = L(v_2)$ implies $v_1 = v_2$, i.e., $v_1 \neq v_2$ implies $L(v_1) \neq L(v_2)$.

Let $L: V \to W$ be a LT. L is one-to-one if and only if for all $v_1, v_2 \in V$, $L(v_1) = L(v_2)$ implies $v_1 = v_2$, i.e., $v_1 \neq v_2$ implies $L(v_1) \neq L(v_2)$.

L is onto if and only if,

Let $L: V \to W$ be a LT. L is one-to-one if and only if for all $v_1, v_2 \in V$, $L(v_1) = L(v_2)$ implies $v_1 = v_2$, i.e., $v_1 \neq v_2$ implies $L(v_1) \neq L(v_2)$.

L is onto if and only if, for every $w \in W$, there is some $v \in V$ such that L(v) = w.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'. Check if L is one-to-one and onto.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. *L* is not one-to-one

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Q: Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto (Why?)

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto (Why?)

Let $q \in P_2$.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto (Why?)

Let $q \in P_2$. Now,there must exist $p \in P_3$ such that L(p) = q.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto (Why?)

Let $q \in P_2$. Now,there must exist $p \in P_3$ such that L(p) = q. Consider $p = \int q(x)dx$ with zero constant term.

Q:. Consider a LT $L: P_3 \to P_2$ given by L(p) = p'.

Check if L is one-to-one and onto.

Sol. L is not one-to-one (Why?)

Consider $p_1 = x + 1$ and $p_2 = x + 2$. Since,

 $L(p_1) = L(p_2) = 1$, L is not one-to-one.

L is onto (Why?)

Let $q \in P_2$. Now,there must exist $p \in P_3$ such that L(p) = q. Consider $p = \int q(x)dx$ with zero constant term. Because L(p) = q, we see that L is onto.

Q:. Consider a LT $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0].

Q:. Consider a LT $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0]. Check if L is one-to-one and onto.

Sol. Let $L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$

Sol. Let
$$L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$$

 $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow$

Sol. Let
$$L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$$

 $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow [x_1, y_1] = [x_2, y_2].$

Sol. Let
$$L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$$

 $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow [x_1, y_1] = [x_2, y_2].$
Hence, L is one-to-one.

Q:. Consider a LT $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0]. Check if L is one-to-one and onto.

Sol. Let
$$L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$$

 $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow [x_1, y_1] = [x_2, y_2].$
Hence, L is one-to-one.

L is not onto

Q:. Consider a LT $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0]. Check if L is one-to-one and onto.

Sol. Let $L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$ $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow [x_1, y_1] = [x_2, y_2].$ Hence, L is one-to-one.

L is not onto since, its range is not all of \mathbb{R}^3 .

Q:. Consider a LT $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0]. Check if L is one-to-one and onto.

Sol. Let $L([x_1, y_1]) = L([x_2, y_2]) \Longrightarrow$ $[2x_1, x_1 - y_1, 0] = [2x_2, x_2 - y_2, 0] \Longrightarrow [x_1, y_1] = [x_2, y_2].$ Hence, L is one-to-one.

L is not onto since, its range is not all of \mathbb{R}^3 . To be specific, there is no vector $[x,y] \in \mathbb{R}^2$ such that L([x,y]) = [0,0,1].

Q:. Which of the following transformations are one-to-one? onto?

Q:. Which of the following transformations are one-to-one? onto?

1. $L: \mathbb{R}^3 \to \mathbb{R}^4$ given by L([x, y, z]) = ([y, z, -y, 0]).

Q:. Which of the following transformations are one-to-one? onto?

- 1. $L: \mathbb{R}^3 \to \mathbb{R}^4$ given by L([x, y, z]) = ([y, z, -y, 0]).
- 2. $L: M_{22} \to M_{22}$ given by $L(A) = A^T$.

Q:. Which of the following transformations are one-to-one? onto?

- 1. $L: \mathbb{R}^3 \to \mathbb{R}^4$ given by L([x, y, z]) = ([y, z, -y, 0]).
- 2. $L: M_{22} \to M_{22}$ given by $L(A) = A^{T}$.

Sol. 1. neither one-to-one nor onto

Q:. Which of the following transformations are one-to-one? onto?

- 1. $L: \mathbb{R}^3 \to \mathbb{R}^4$ given by L([x, y, z]) = ([y, z, -y, 0]).
- 2. $L: M_{22} \to M_{22}$ given by $L(A) = A^T$.
- **Sol.** 1. neither one-to-one nor onto
- 2. one-to-one and onto

Q:. Which of the following transformations are one-to-one? onto?

- 1. $L: \mathbb{R}^3 \to \mathbb{R}^4$ given by L([x, y, z]) = ([y, z, -y, 0]).
- 2. $L: M_{22} \to M_{22}$ given by $L(A) = A^T$.
- Sol. 1. neither one-to-one nor onto
- 2. one-to-one and onto
- 3. Show that the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$L([x,y,z]) = ([x-y,y])$$
 is onto but not one-one.

Theorem: Let V and W be vector spaces, and let

 $L: V \to W$ be a LT. Then

Proof. Suppose L is one-to-one and let $v \in \ker(L)$.

Proof. Suppose L is one-to-one and let $v \in \ker(L)$. We need to show that $v = \mathbf{0}_V$.

Proof. Suppose L is one-to-one and let $v \in \ker(L)$. We need to show that $v = \mathbf{0}_V$. Now $L(v) = \mathbf{0}_W$

Proof. Suppose L is one-to-one and let $v \in \ker(L)$. We need to show that $v = \mathbf{0}_V$. Now $L(v) = \mathbf{0}_W$ and from Theorem 5.1, $L(\mathbf{0}_V) = \mathbf{0}_W \implies L(v) = L(\mathbf{0}_V)$.

Proof. Suppose L is one-to-one and let $v \in \ker(L)$. We need to show that $v = \mathbf{0}_V$. Now $L(v) = \mathbf{0}_W$ and from Theorem 5.1, $L(\mathbf{0}_V) = \mathbf{0}_W \implies L(v) = L(\mathbf{0}_V)$. Because L is one-to-one, we have $v = \mathbf{0}_V$.

Conversely, let $\ker(L) = \{\mathbf{0}_V\}.$

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one.

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$.

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$. Now, $L(v_1) - L(v_2) = \mathbf{0}_W \Longrightarrow$

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$. Now, $L(v_1) - L(v_2) = \mathbf{0}_W \implies L(v_1 - v_2) = \mathbf{0}_W \implies$

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$. Now, $L(v_1) - L(v_2) = \mathbf{0}_W \implies L(v_1 - v_2) = \mathbf{0}_W \implies v_1 - v_2 \in \ker(L)$.

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$. Now, $L(v_1) - L(v_2) = \mathbf{0}_W \implies L(v_1 - v_2) = \mathbf{0}_W \implies v_1 - v_2 \in \ker(L)$. Since, $\ker(L) = \{\mathbf{0}_V\} \implies$

Conversely, let $\ker(L) = \{\mathbf{0}_V\}$. We need to show that L is one-to-one. Let $v_1, v_2 \in V$ with $L(v_1) = L(v_2)$. Now, $L(v_1) - L(v_2) = \mathbf{0}_W \implies L(v_1 - v_2) = \mathbf{0}_W \implies v_1 - v_2 \in \ker(L)$. Since, $\ker(L) = \{\mathbf{0}_V\} \implies v_1 - v_2 = \mathbf{0}_V \implies v_1 = v_2$.

Theorem: Let V and W be vector spaces, and let $L: V \to W$ be a LT.

Theorem: Let V and W be vector spaces, and let $L:V\to W$ be a LT. If W is finite dimensional, then L is onto

Proof. By definition, L is onto if and only if range(L) = W.

Proof. By definition, L is onto if and only if range(L) = W. And from Theorem 4.16, $\dim V = \dim W$ if and only if V = W

Proof. By definition, L is onto if and only if range(L) = W. And from Theorem 4.16, $\dim V = \dim W$ if and only if V = W where W is a subspace of V.

Proof. By definition, L is onto if and only if range(L) = W. And from Theorem 4.16, $\dim V = \dim W$ if and only if V = W where W is a subspace of V. This concludes the proof.

Example 3

Q:. Consider a LT $L: M_{22} \to M_{23}$ given by

$$L\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Example 3

Q:. Consider a LT $L: M_{22} \to M_{23}$ given by

$$L\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto.

Example 3

Q:. Consider a LT $L: M_{22} \to M_{23}$ given by

$$L\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto. Also find a basis for range(L).

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then $a-b=c-d=c+d=a+b=0$ implies $a=b=c=d=0$.

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then $a-b=c-d=c+d=a+b=0$ implies $a=b=c=d=0$. Hence, $\ker(L)$ contains only the zero matrix,

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then $a-b=c-d=c+d=a+b=0$ implies $a=b=c=d=0$. Hence, $\ker(L)$ contains only the zero matrix, i.e., $\dim(\ker(L))=0$

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then $a-b=c-d=c+d=a+b=0$ implies $a=b=c=d=0$. Hence, $\ker(L)$ contains only the zero matrix, i.e., $\dim(\ker(L))=0$ implies L is one-to-one.

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then

$$a-b=c-d=c+d=a+b=0$$
 implies $a=b=c=d=0$.

Hence, ker(L) contains only the zero matrix, i.e., dim(ker(L)) = 0 implies L is one-to-one.

From Dimension Theorem, we can directly conclude that $\dim(\operatorname{range}(L)) = \dim(M_{22}) - \dim(\ker(L)) = 4$.

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then $a-b=c-d=c+d=a+b=0$ implies $a=b=c=d=0$.

Hence, ker(L) contains only the zero matrix, i.e., dim(ker(L)) = 0 implies L is one-to-one.

From Dimension Theorem, we can directly conclude that $\dim(\operatorname{range}(L)) = \dim(M_{22}) - \dim(\ker(L)) = 4$. Hence, $\dim(\operatorname{range}(L)) = 4 \neq \dim(M_{23}) \Longrightarrow$

Sol. If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$$
 then

$$a-b=c-d=c+d=a+b=0$$
 implies $a=b=c=d=0$.

Hence, ker(L) contains only the zero matrix, i.e., dim(ker(L)) = 0 implies L is one-to-one.

From Dimension Theorem, we can directly conclude that $\dim(\operatorname{range}(L)) = \dim(M_{22}) - \dim(\ker(L)) = 4$. Hence, $\dim(\operatorname{range}(L)) = 4 \neq \dim(M_{23}) \implies L$ is not onto.

$$\operatorname{range}(L) = \left\{ \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix} \middle| \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \right\}$$

$$\operatorname{range}(L) = \left\{ \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} \middle| \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \right\}$$

$$\operatorname{Now}, \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} =$$

$$a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \Longrightarrow$$

$$\begin{aligned} &\operatorname{range}(L) = \left\{ \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} \middle| \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \right\} \\ &\operatorname{Now}, \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} = \\ &a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \Longrightarrow \\ &\operatorname{range}(L) = \\ &\operatorname{span}\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \right\} = \\ &\operatorname{span}(B). \end{aligned}$$

$$\begin{aligned} &\operatorname{range}(L) = \left\{ \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} \middle| \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \right\} \\ &\operatorname{Now}, \begin{bmatrix} a - b & 0 & c - d \\ c + d & a + b & 0 \end{bmatrix} = \\ &a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \Longrightarrow \\ &\operatorname{range}(L) = \\ &\operatorname{span}\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \right\} = \\ &\operatorname{span}(B). \end{aligned}$$

Since B is LI, it forms a basis for range(L).

Q:. Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Q:. Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Is L one-to-one and onto.

Q:. Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Is L one-to-one and onto.

Sol. The matrix
$$\begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix}$$
 row reduces to

Q:. Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Is L one-to-one and onto.

Sol. The matrix $\begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix}$ row reduces to

$$\begin{bmatrix} 1 & 0 & -2/5 \\ 0 & 1 & -6/5 \\ 0 & 0 & 0 \end{bmatrix}$$

From range method,

From range method, dim(range(L)) = 2

From range method, dim(range(L)) = 2 and from Dimension Theorem, dim(ker(L)) = 1.

From range method, $\dim(\operatorname{range}(L)) = 2$ and from Dimension Theorem, $\dim(\ker(L)) = 1$. Hence, L is neither one-to-one nor onto.

From range method, $\dim(\operatorname{range}(L)) = 2$ and from Dimension Theorem, $\dim(\ker(L)) = 1$. Hence, L is neither one-to-one nor onto.

Result: Let V and W be finite dimensional vector spaces with $\dim(V) = \dim(W)$. Let $L: V \to W$ be a LT.

From range method, $\dim(\operatorname{range}(L)) = 2$ and from Dimension Theorem, $\dim(\ker(L)) = 1$. Hence, L is neither one-to-one nor onto.

Result: Let V and W be finite dimensional vector spaces with $\dim(V) = \dim(W)$. Let $L: V \to W$ be a LT. Then L is one-to-one if and only if L is onto.

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

$$L(B) = AB - BA$$
.

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

Sol.
$$L(I_n) =$$

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

Sol.
$$L(I_n) = AI_n - I_n A = 0_n$$
.

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

Sol.
$$L(I_n) = AI_n - I_nA = 0_n$$
. Hence, $I_n \in \ker(L)$

Q: Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

L(B) = AB - BA. Is L one-to-one and onto.

Sol. $L(I_n) = AI_n - I_nA = 0_n$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one.

Q:. Let A be a fixed $n \times n$ matrix, and consider a LT

 $L: M_{nn} \to M_{nn}$ given by

L(B) = AB - BA. Is L one-to-one and onto.

Sol. $L(I_n) = AI_n - I_n A = 0_n$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one. Now from Dimension Theorem, we can conclude L is not onto.

Q:. Consider a LT $L: P \to P$ given by

$$L(p(x)) = xp(x)$$
.

Q:. Consider a LT $L: P \to P$ given by

L(p(x)) = xp(x). Is L one-to-one and onto.

Q:. Consider a LT $L: P \to P$ given by

L(p(x)) = xp(x). Is L one-to-one and onto.

Sol.
$$ker(L) = \{p(x)|L(p(x)) = 0_P\} \Longrightarrow$$

Q:. Consider a LT $L: P \to P$ given by

L(p(x)) = xp(x). Is L one-to-one and onto.

Sol.
$$\ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies \ker(L) = \{0_P\}.$$

Q:. Consider a LT $L: P \to P$ given by L(p(x)) = xp(x). Is L one-to-one and onto.

Sol. $ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies ker(L) = \{0_P\}.$ Hence, L is one-to-one.

Q:. Consider a LT $L: P \to P$ given by L(p(x)) = xp(x). Is L one-to-one and onto.

Sol. $ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies ker(L) = \{0_P\}.$ Hence, L is one-to-one. Now, the constant polynomial is not in range(L),

Q:. Consider a LT $L: P \to P$ given by L(p(x)) = xp(x). Is L one-to-one and onto.

Sol. $\ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies \ker(L) = \{0_P\}.$ Hence, L is one-to-one. Now, the constant polynomial is not in $\operatorname{range}(L)$, L is not onto

Q:. Consider a LT $L: P \to P$ given by L(p(x)) = xp(x). Is L one-to-one and onto.

Sol. $\ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies \ker(L) = \{0_P\}.$ Hence, L is one-to-one. Now, the constant polynomial is not in range(L), L is not onto (Here we can not use Dimension Theorem

Q:. Consider a LT $L: P \to P$ given by L(p(x)) = xp(x). Is L one-to-one and onto.

Sol. $\ker(L) = \{p(x)|L(p(x)) = 0_P\} \implies \ker(L) = \{0_P\}.$ Hence, L is one-to-one. Now, the constant polynomial is not in range(L), L is not onto (Here we can not use Dimension Theorem because P is infinite dimensional).

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto.

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is onto but not one-to-one.

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is onto but not one-to-one.

Q:. Consider a LT $L: P_2 \to P_2$ given by $L(ax^2 + bx + c) = (a+b)x^2 + (b+c)x + (a+c)$.

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is onto but not one-to-one.

Q:. Consider a LT $L: P_2 \to P_2$ given by $L(ax^2 + bx + c) = (a+b)x^2 + (b+c)x + (a+c)$. Is L one-to-one and onto.

Q:. Consider a LT $L: M_{23} \to M_{22}$ given by

$$L\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is onto but not one-to-one.

Q:. Consider a LT $L: P_2 \to P_2$ given by $L(ax^2 + bx + c) = (a+b)x^2 + (b+c)x + (a+c)$. Is L one-to-one and onto.

Sol. *L* is one-to-one and onto.

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is L one-to-one and onto.

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is not one-to-one but onto.

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is not one-to-one but onto.

Q:. Consider a LT $L: U_3 \to M_{33}$ given by $L(A) = (A + A^T)/2$.

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is not one-to-one but onto.

Q:. Consider a LT $L: U_3 \to M_{33}$ given by $L(A) = (A + A^T)/2$. Is L one-to-one and onto.

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is L one-to-one and onto.

Sol. *L* is not one-to-one but onto.

Q:. Consider a LT $L: U_3 \to M_{33}$ given by

$$L(A) = (A + A^{T})/2$$
. Is L one-to-one and onto.

Sol. *L* is one-to-one but not onto.

