Clasificación y enlaces químicos

Enlaces químicos

Resumen

Cuando los elementos reaccionan, sus átomos deben colisionarse. Esa colisión determina la clase compuesto que se genera.

Las fuerzas que mantienen unidos a los átomos para formar moléculas se llaman Enlaces químicos.

Keywords: Enlace químico

Chemical links.

Abstract

When the elements react, their atoms must collide. That collision determines the class that is generated.

The forces that hold atoms together to form molecules are called chemical links.

Keywords: chemical links

La molécula

 Una molécula es un agregado de, por lo menos, dos átomos en una colocación definitiva que se mantienen unidos a través de fuerzas químicas (también llamadas enlaces químicos).

Enlace Químico

Enlace Químico

La fuerza que mantienen unidos a los átomos para formar moléculas de llaman enlaces químicos.

www.quimicas.net320 × 205

Regla del octeto

 Ganan, pierden o comparten electrones para lograr una estructura atómica estable y similar a la de un gas raro o noble (VIII A)

Todos los gases nobles **Excepto** el **Helio** tienen 2 ē

www.textoscientificos.com305 × 243

Regla del octeto

Este signo indica que perdió un electrón

En la unión de estos átomos, el sodio (Na) transfiere su único electrón de valencia al cloro para que pueda completar su octeto

El cloro y azufre comparten sus electrones para completar su octeto (8 electrones de valencia)

Quimica532 × 311

Representación de enlaces con la estructura de Lewis.

Los electrones de los orbitales externos se indican por medio de puntos o cruces alrededor del elemento.

GRUPO	IA	ПА	ПΑ	ΓVA	VA	VIA	VIIA	VIIIA
# electrones de Valencia	1	2	3	4	5	6	7	8
	H^{ullet}	Be	в.	ë:	N:	0	F	Ne
E L E	Li•	Mg	Å1.	Si	P	S	Cl	Ar
M E N	Na•	Ča	Ğa.	Ge:	As	Se	Br	Kr
T O S	K•	Sr	Îñ.	\$n.	Sb.	Те	. İ.:	Хe
	Rb•	₿a	Та.	₽b•	Bi	Ро	At	Rn

Actividad 3.1640 × 471

Clasificación de los Enlaces Químicos

jesica623.blogspot.com891 × 290

Enlace Iónico

Ocurre cuando hay trasferencia completa de electrones de un átomo a otro.

El que pierde átomos se transforma en lon Positivo o catión.

El que acepta los átomos se transforma en ion negativo o anión.

Enlace Covalente

Se forma cuando dos átomos comparten electrones provenientes de cada uno de ellos
Se divide en tres los cuales son:

- > Polar
- > No polar
- > Coordinado.

SlidePlayer960 × 720

Enlace Covalente simple, doble y triple

Simples: Por cada dos átomos que se combinan, hay un par de electrones compartidos (un enlace)

Ciencias de Joseleg

Enlace Covalente simple, doble y triple

Doble: Cuando comparten mas de un par de electrones entre ellos.

Clasificación de los Enlaces Químicos

Triple: Cuando los átomos comparten tres pares de electrones se unen en un enlace triple.

elpaulofreire.es

Enlace covalente Polar

Los átomos que forman sus moléculas están unidos mediante los enlaces covalentes, pero ganara el que tenga electronegatividad mayor (mayor numero en su octeto)

slideplayer.es960 × 720

Enlace Covalente No polar

Son aquellos de la misma especie, que comparten y se distribuye por igual sus cargas eléctricas

SlidePlayer960 × 720

Enlace Covalente Coordinado

Se lleva a cabo cuando uno solo de los átomos entrelazantes aporta el par electrónico. Una vez formado el enlace dicho par se comparte como enlace covalente.

Wikipedia249 × 202

Enlace Covalente Coordinado

Google Docs675 × 300

Enlace Metálico

Los metales son brillantes, maleables, dúctiles y buenos conductores de calor y de la electricidad, la estructura de los metales y la naturaleza de los enlaces metálicos.

Los metales están compuestos por iones positivos, estrechamente unidos en solidos cristalinos, estos iones positivos están rodeados.

Cuando un electrón fluye alejándose, otros se desplazan para ocupar su lugar, debido a la atracción electrostática entre los cationes y los electrones, esta es la naturaleza de los enlaces metálicos de que mantiene junto a un metal. Los enlaces metálicos con mucho mas débiles que los enlaces iónicos y covalentes.

El mar de electrones de gran movilidad es el responsable del brillo de los metales

www.upv.es464 × 253

Óxidos (óxidos básicos)

- Compuestos binarios formados por: Oxígeno(-2)+Metal.

-Fórmula: M _{val O} O_{val M} (Siendo M: metal; O: oxígeno).

- Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).

- Nomenclatura:

❖ Tradicional: Óxido + [metal]

Tri-

Tetra-

❖ Stock: Óxido de [metal] (valencia en nº romanos).

❖ Sistemátic

+ [metal]

Fórmula	Tradicional	Stock	Sistemática
PbO ₂	Óxido plúmbico	Óxido de plomo (IV)	Dióxido de cobre
Li ₂ O	Óxido de litio	Óxido de Litio	Monóxido de litio
Cu ₂ O	Óxido cuproso	Óxido de Cobre (I)	Monóxido de dicobre

Anhídridos (Óxidos ácidos)

- Compuestos binarios formados por: Oxígeno(-2)+ No Metal.
- Fórmula: X _{val O} O_{val X} (Siendo X: no metal; O: oxígeno).
- -Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).

❖ Stock: Óxido de [no metal] (valencia en nº romanos).

Óxidos (óxidos ácidos)

Fórmula	Tradicional	Stock	Sistemática
Br ₂ O	Anhídrido	Óxido de bromo	Monóxido de
	hipobromoso	(1)	dibromo
P_2O_5	Anhídrido	Óxido de fósforo	Pentóxido de
	fosfórico	(V)	difósforo
CO ₂	Anhídrido	Óxido de	Dióxido de
	carbónico	carbono (IV)	carbono
SO ₃	Anhídrido	Óxido de azufre	Trióxido de
	sulfúrico	(VI)	azufre
N_2O_5	Anhídrido	Óxido de	Trióxido de
	nitroso	nitrógeno (III)	dinitrógeno

Hidruros metálicos

- Compuestos binarios formados por: Hidrógeno(-1)+ Metal.
- Fórmula: M _{val H} H_{val M} (Siendo M: metal; H: hidrógeno).
- -Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).
- Nomenclatura:
- Tradicional: Hidruro + [metal] + valencias)

-oso -ico

(si tiene dos

Hidruro de [metal] (si tiene una valencia)

- **❖** Stock: Hidruro de [metal] (valencia en nº romanos).
- Sistemática:

Mono-Di-Tri-Tetra-

+ hidruro de [metal]

Hidruros metálicos

Fórmula	Tradicional	Stock	Sistemática
SnH ₂	Hidruro	Hidruro de	Dihidruro de
	estanoso	estaño (II)	estaño
SnH ₄	Hidruro	Hidruro de	Tetrahidruro de
	estannico	estaño (IV)	estaño
BeH ₂	Hidruro de	Hidruro de	Dihidruro de
	berilio	berilio	berilio

Hidruros no metálicos

- Compuestos binarios formados por: Hidrógeno(-1)+ No Metal.
- Fórmula: X _{val H} H_{val X} (Siendo X: no metal; H: hidrógeno).

-Grupos 13 y 15, valencia 3 -Grupo 14, valencia 4

-Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).

- Nomenclatura:
- ***** Tradicional: Nombres especiales
- **❖** Stock: Hidruro de [no metal] (valencia en nº romanos).
- Sistemática:

+ hidruro de [no metal]

Hidruros no metálicos

Fórmula	Tradicional	Stock	Sistemática
BH ₃	Borano	Hidruro de boro	Trihidruro de
			boro
CH ₄	Metano	Hidruro de	Tetrahidruro de
		carbono	carbono
SiH ₄	Silano	Hidruro de silicio	Tetrahidruro de
			silicio
NH ₃	Amoníaco	Hidruro de	Trhidruro de
		nitrógeno	nitrógeno
PH ₃	Fosfina o	Hidruro de	Trihiduro de
	fosfamina	fósforo	fósforo
AsH ₃	Arsina	Hidruro de	Trihidruro de
		arsénico	arsénico
SbH ₃	Estibina	Hidruro de	Trihidruro de
		antimonio	antimonio

Haluros de hidrógeno

- Compuestos binarios formados por: Hidrógeno(-1)+ No Metal
- Fórmula: H _{val X} X_{val H} (Siendo X: no metal; H: hidrógeno).

Grupo 16 valencia 2 Grupo 17 valencia 1

- -Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).
- Nomenclatura:
- Tradicional: Ácido + [no metal] hídrico
- ❖ Stock: [no metal] uro de hidrógeno.
- ❖ Sistemática: (mono) + [no metal] uro de hidrógeno

Haluros de hidrógeno

Fórmula	Tradicional	Stock	Sistemática
H ₂ S	Ácido	Sulfuro de	Monosulfuro de
	sulfhídrico	hidrógeno	hidrógeno
H ₂ Te	Ácido telurhídrico	Telururo de hidrógeno	Monotelururo de hidrógeno
H ₂ Se	Ácido	Seleniuro de	Monoseleniuro
	selenhídrico	hidrógeno	de hidrógeno
HCI	Ácido	Cloruro de	Monocloruro de
	bromhídrico	hidrógeno	hidrógeno

Sales binarias (sales neutras)

- Compuestos binarios formados por: Metal+ No Metal

Grupo 17 (F, Cl, Br, I), valencia 1 Grupo 16 (S, Se, Te), valencia 2

- Fórmula: M _{val X} X_{val M} (Siendo X: no metal; M: metal).
- -Si se pueden simplificar los subíndices, se simplifican. Los subíndices siempre son números naturales (jamás un número fraccionario o decimal como subíndice).

 -oso
 -ico
- Nomenclatura:
- **❖** Tradicional: [no metal] uro de [metal]
- **❖** Stock: [no metal] uro de[metal] (valencia del metal)
- **❖** Sistemática:

Mono-Di-Tri-Tetra-

+ [no metal] – uro de

+ [metal]

Sales binarias (sales neutras)

Fórmula	Tradicional	Stock	Sistemática
CdBr ₂	Bromuro de cadmio	Bromuro de cadmio	Dibromuro de cadmio
HgS	Sulfuro mercúrico	Sulfuro de mercurio (II)	Monosulfuro de mercurio
Ag ₂ S	Sulfuro de plata	Sulfuro de plata	Monosulfuro de diplata
AuBr	Bromuro auroso	Bromuro de oro	Monobromuro de oro

Peróxidos

- Compuestos binarios formados por: Oxígeno (-1)+ Metal
- Fórmula: M _{val O} O_{val M} (Siendo O: oxígeno; M: metal).
- En el caso de que la valencia del metal sea igual a 1, se pone subíndice 2 tanto al metal como al oxígeno y no se simplifica.
- Nomenclatura:
- **❖** Tradicional: Peróxido + [metal]

-oso -ico

- **Stock:** Peróxido de [metal] (valencia del metal)
- **❖** Sistemática: [metal]

Mono-Di-Tri-Tetra-

+ [no metal] – peróxido de

Mono-Di-

+

Peróxidos

Fórmula	Tradicional	Stock	Sistemática
BaO ₂	Peróxido de bario	Peróxido de bario	Dióxido de bario
Li ₂ O ₂	Peróxido de litio	Peróxido de litio	Dióxido de litio
Ag_2O_2	Peróxido de plata	Peróxido de plata	Dióxido de plata
HgO ₂	Peróxido mercúrico	Peróxido de mercurio (II)	Dióxido de mercurio
H ₂ O ₂	Agua oxigenada	Peróxido de hidrógeno	Dióxido de dihidrógeno

Hidróxidos o Bases

- Compuestos ternarios formados por: Metal+ grupo OH (-1)
- Fórmula: M _{val OH} OH_{val M} (Siendo OH: grupo hidróxido; M: metal).
- Nomenclatura;
- Tradicional: I -ico do + [metal]
- **Stock:** Hidróxido de [metal] (valencia del metal)
- ❖ Sistemática: + hidróxido de [metal]

Hidróxidos o Bases

Fórmula	Tradicional	Stock	Sistemática
Cu(OH) ₂	Hidróxido	Hidróxido de	Dihidróxido de
	cúprico	cobre (II)	cobre
Al(OH) ₃	Hidróxido de	Hidróxido de	Trihidróxido de
	aluminio	alumnio	aluminio
Fe(OH) ₃	Hidróxido férrico	Hidróxido de hierro (III)	Trihidróxido de hierro
Na(OH)	Hidróxido de	Hidróxido de	Hidróxido de
	sodio	sodio	sodio

Ácidos oxoácidos

- Compuestos ternarios formados por: Oxígeno, Hidrógeno + No Metal (excepto Mn, Cr)
- Fórmula: H_aX_bO_c

Añadimos a la molécula de anhídrido correspondiente una molécula de agua.

Anhídrido hipocloroso: $Cl_2O + H_2O = HClO$

- Nomenclatura:

❖ Tradicional: Ácido +

Hipo- [no metal]

-050 -050 -ico -ico

Stock: No existe.

Sistemática:

Mono-Di-Tri-Tetra-

oxo [no metal] - ato (val X) de Hidrógeno

Funcional: Ácido

oxo [no metal] – ico (valencia no metal)

Ácidos oxoácidos

Fórmula	Tradicional	Stock	Funcional
HClO ₄	Ácido perclórico	Tetraoxoclorato (VII) de hidrógeno	Ácido tetraoxoclórico (VII)
H ₂ SO ₄	Ácido sulfúrico	Tetraoxosulfato (VI) de hidrógeno	Ácido tetraoxosulfúric o (VI)
H ₂ CO ₂	Ácido carbonoso	Dioxocarbonato (II) de hidrógeno	Ácido dioxocarbónico (II)

Ácidos especiales (I)

Manganeso

	Fórmula	Tradicional	Sistemática	Funcional
IV	H ₂ MnO ₃	Ácido Manganoso	Trioxomanganato (IV) de hidrógeno	Ácido trioxomangánico (IV)
VI	H ₂ MnO ₄	Ácido Mangánico	Tetraoxomanganato (VI) de hidrógeno	Ácido tetraoxomangánico (VI)
VII	HMnO ₄	Ácido Permangánico	Tetraoxomanganato (VII) de hidrógeno	Ácido tetraoxomangánico (VII)

Cromo

Valencia	Fórmula	Tradicional	Sistemática	Funcional
VI	H ₂ CrO ₄	Ácido crómico	Tetraoxocroma	Ácido
			to (VI) de	tetraxocrómico
			hidrógeno	(VI)

Ácidos especiales (II)

Fósforo

$$P_2O + 3H_2O = H_6P_2O_4 = H_3PO_2$$

 $P_2O_3 + 3H_2O = H_6P_2O_6 = H_3PO_3$
 $P_2O_5 + 3H_2O = H_6P_2O_8 = H_3PO_4$

Arsénico

$$As_2O + 3H_2O = H_6As_2O_4 = H_3AsO_2$$

 $As_2O_3 + 3H_2O = H_6As_2O_6 = H_3AsO_3$
 $As_2O_5 + 3H_2O = H_6As_2O_8 = H_3AsO_5$

Antimonio

$$Sb_2O + 3H_2O = H_6Sb_2O_4 = H_3SbO_2$$

$$Sb_2O_3 + 3H_2O = H_6Sb_2O_6 = H_3SbO_3$$

$$Sb_2O_5 + 3H_2O = H_6Sb2O_8 = H_3SbO_4$$

Sales Oxisales

- Compuestos ternarios formados por: Metal + No Metal + Oxígeno
- Fórmula: $M_a (X_b O_c)_{val M}$

Cambiamos el hidrógeno por un metal y ponemos su valencia fuera del paréntesis. El subíndice que tiene el hidrógeno se deja.

Sales Oxisales

Fórmula	Tradicional	Stock	Sistemática
Ni(NO ₃) ₃	Nitrato niquélico	Nitrato de níquel (III)	Tristrioxonitrato (V) de níquel (III)
Co(ClO ₄) ₃	Perclorato cobáltico	Perclorato de cobalto (III)	Tristetraoxoclora to (VII) de cobalto (III)
Pb(ClO) ₄	Hipoclorito plúmbico	Hipoclorito de plomo (IV)	Tetrakismonoxoc lorato (I) de plomo (IV)