Reading Circle #1 Chapter2 Perceptron

2018.05.14 M1 Kouki OKADA

Index

- What's perceptron?
- Implementation of perceptron (AND/NAND/OR)
- Limitation of perceptron (XOR)
- Summary

What's perceptron?

Early machine learning

- In 1943, Warren McCulloch and Walter Pitts presented formal neuron (形式ニューロン).
 - This algorithm is the artificial neuron for the first time and based on brain neuron.
 - cf.) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4):115-133, 1943
- Frank Rosenblatt invented perceptron based on formal neuron in 1957.
 - cf.) A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review 65(6): 386-408, 1958.

Neuron

- ① Some current signals conducting from dendrites (樹状突起) and combine at cell body (細胞体).
- ② If the combined signal's voltage suppress threshold value, current signal conducts to the axon.
- 3 The signal conducts from axon terminal to another neuron.

Perceptron (two inputs)

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$

- Multiple input, one output signal (0 or 1)
- x:inputs / y:output / w:weights
- Each "○" is called "neuron" or "node"
- Θ: threshold value
- Algorithm
 - ① Calculate $w_1x_1 + w_2x_2$ in the neuron
 - ② Compare the summation with θ If $w_1x_1 + w_2x_2 > \theta$ then y = 1
 - → "the neuron fires"

otherwise y = 0

Implementation of perceptron

Logic circuit

AND gate

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

NAND gate

x_1	x_2	y
0	0	1
0	1	1
1	0	1
1	1	0

One of parameters satisfy these table

 \triangleright AND: $(w_1, w_2, \theta) = (0.5, 0.5, 0.7)$

 \triangleright NAND: $(w_1, w_2, \theta) = (-0.5, -0.5, -0.7)$

 \triangleright OR: $(w_1, w_2, \theta) = (0.5, 0.5, 0.2)$

Simple implementation (AND)

```
1 print (AND (0, 0))
2 print (AND (0, 1))
3 print (AND (1, 0))
4 print (AND (1, 1))

0
0
0
1
```

Bias

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$

$$y = \begin{cases} 0 & (-\theta + w_1 x_1 + w_2 x_2 \le 0) \\ 1 & (-\theta + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$

$$y = \begin{cases} 0 & (b + w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (b + w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$

- $b = -\theta$
- w_1, w_2 : weight
 - ➤ Weight controls the importance of input signals.
- b: bias
 - ➤ Bias controls the possibility of firing of neuron.

Implementation using bias and weight

```
def NAND(x1, x2):
    x = np. array([x1, x2])
    w = np. array([-0.5, -0.5]) # w1=-0.5, w2=-0.5
    b = 0.7 # theta=-0.7
    tmp = np. sum(w*x) + b
    if tmp <= 0:
        return 0
    elif tmp > 0:
        return 1
```

x1	x2		у
0	0		1
0	1		1
1	0		1
1	1		0

Implementation using bias and weight 2

```
def OR(x1, x2):
    x = np. array([x1, x2])
    w = np. array([0.5, 0.5]) # w1=0.5, w2=0.5

b = -0.2 # theta=0.2

tmp = np. sum(w*x) + b

if tmp <= 0:
    return 0

elif tmp > 0:
    return 1
```

```
x1 x2 | y

0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 1
```

```
def run_logic_circuit(logic):
    print('x1 x2 | y')
    print(' 0 0 | ', logic(0, 0))
    print(' 0 1 | ', logic(0, 1))
    print(' 1 0 | ', logic(1, 0))
    print(' 1 1 | ', logic(1, 1))
    print(' 1 1 | ', logic(1, 1))
1 run_logic_circuit(NAND)

1 run_logic_circuit(OR)
```

What is "learning"?

- In this implementations, we (human) decided the parameters of perceptron (w1, w2, b).
- In the problems of machine learning, computer decides the parameters automatically.

• "Learning" is a process to decide optimal parameter value.

Limitation of perceptron

Visual image of OR perceptron

$$(w_1, w_2, \theta) = (0.5, 0.5, 0.2)$$

$$y = \begin{cases} 0 \ (-0.2 + 0.5x_1 + 0.5x_2 \le \theta) \\ 1 \ (-0.2 + 0.5x_1 + 0.5x_2 > \theta) \end{cases}$$

It needs to be separated \bigcirc and \triangle by straight line, to make OR gate.

> It is well separated.

XOR (Exclusive OR) gate

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

 How can we separate these points by straight line?

↑ Limitation of simple perceptron

- ➤ But It is possible to separate by the curve.
- The region separated by straight line: linear region
- The region separated by curve: nonlinear region

15

How can we implement XOR gate?

Express XOR using AND, NAND, OR

```
1 def XOR(x1, x2):

2 s1 = NAND(x1, x2)

3 s2 = OR(x1, x2)

4 y = AND(s1, s2)

return y
```

Notation of XOR by perceptron

- Two layer perceptron. Different from AND, NAND, OR
- Multi-layered perceptron: The perceptron consists of multiple layers.
- The perceptron makes it possible to express more flexibly by deepening the layer.

From NAND to the computer

- Multilayer perceptron can make more complex circuit.
 E.g.) adder, encoder converting binary to decimal
- The computer can make from combination of NAND gate.
 NAND gate can make by perceptron.
 - >The computer can make by perceptron.
- How many layers does it need to make computer?
- In theory, only two layers
 - ➤ Because it was proved that any functions can make by two layers perceptron.

Summary

- Perceptron algorithm has inputs and output. When a certain input is given, a fixed value is output.
- Perceptron uses "weight" and "bias" as parameters.
- Perceptron can express logic circuit.
- Simple (single layer) perceptron can't express XOR.
- While simple perceptron can only express linear region, multilayer perceptron can express nonlinear region.
- Multilayer perceptron can express computer.