

planetmath.org

Math for the people, by the people.

proof of hitting times are stopping times for right-continuous processes

 ${\bf Canonical\ name} \quad {\bf ProofOfHitting Times Are Stopping Times For Right continuous Processes}$

Date of creation 2013-03-22 18:39:12 Last modified on 2013-03-22 18:39:12

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Proof

Classification msc 60G05 Classification msc 60G40 Let $(\mathcal{F})_{t\in\mathbb{T}}$ be a http://planetmath.org/FiltrationOfSigmaAlgebrasfiltration on the measurable space (Ω, \mathcal{F}) , It is assumed that \mathbb{T} is a closed subset of \mathbb{R} and that \mathcal{F}_t is universally complete for each $t\in\mathbb{T}$.

Let X be a right-continuous and adapted process taking values in a metric space E and $S\subseteq E$ closed. We show that

$$\tau = \inf \left\{ t \in \mathbb{T} : X_t \in S \right\}$$

is a stopping time. Assuming S is nonempty and defining the continuous function $d_S(x) \equiv \inf\{d(x,y): y \in S\}$, then τ is the first time at which the right-continuous process $Y_t = d_S(X_t)$ hits 0.

Let us start by supposing that \mathbb{T} has a minimum element t_0 .

If \mathbb{P} is a probability measure on (Ω, \mathcal{F}) and $\mathcal{F}_t^{\mathbb{P}}$ represents the http://planetmath.org/Complet of the σ -algebra \mathcal{F}_t with respect to \mathbb{P} , then it is enough to show that τ is an $(\mathcal{F}_t^{\mathbb{P}})$ -stopping time. By the universal completeness of \mathcal{F}_t it would then follow that

$$\{\tau \le t\} \in \bigcap_{\mathbb{D}} \mathcal{F}_t^{\mathbb{P}} = \mathcal{F}_t$$

for every $t \in \mathbb{T}$ and, therefore, that τ is a stopping time. So, by replacing \mathcal{F}_t by $\mathcal{F}_t^{\mathbb{P}}$ if necessary, we may assume without loss of generality that \mathcal{F}_t is complete with respect to the probability measure \mathbb{P} for each t.

Let \mathcal{T} consist of the set of measurable times $\sigma \colon \Omega \to \mathbb{T} \cup \{\infty\}$ such that $\{\sigma < t\} \in \mathcal{F}_t$ for every t and that $\sigma \leq \tau$. Then let σ^* be the essential supremum of \mathcal{T} . That is, σ^* is the smallest (up to sets of zero probability) random variable taking values in $\mathbb{R} \cup \{\pm \infty\}$ such that $\sigma^* \geq \sigma$ (almost surely) for all $\sigma \in \mathcal{T}$.

Then, by the properties of the essential supremum, there is a countable sequence $\sigma_n \in \mathcal{T}$ such that $\sigma^* = \sup_n \sigma_n$. It follows that $\sigma^* \in \mathcal{T}$.

For any $n = 1, 2, \dots$ set

$$\sigma_1 = \inf \left\{ t \in \mathbb{T} : t \ge \sigma^*, Y_t < 1/n \right\}.$$

Clearly, $\sigma_1 \leq \tau$ and, choosing any countable dense subset A of T, the right-continuity of Y gives

$$\{\sigma_1 < t\} = \bigcup_{\substack{s < t, \\ s \in A}} \{\sigma^* < s, Y_s < 1/n\} \in \mathcal{F}_t.$$

So, $\sigma_1 \in \mathcal{T}$, which implies that $\sigma_1 \leq \sigma^*$ with probability one. However, by the right-continuity of Y, $\sigma_1 > \sigma^*$ whenever σ^* is finite and $Y_{\sigma^*} > 1/n$, so

$$\mathbb{P}(\sigma^* < \infty, Y_{\sigma^*} > 0) \le \sum_n \mathbb{P}(\sigma^* < \infty, Y_{\sigma^*} > 1/n) = 0.$$

This shows that $Y_{\sigma^*} = 0$ and therefore $\sigma^* \geq \tau$ whenever $\sigma^* < \infty$. So, $\sigma^* = \tau$ almost surely and $\tau \in \mathcal{T}$ giving,

$$\{\tau \le t\} = \{\tau < t\} \cup \{Y_t = 0\} \in \mathcal{F}_t.$$

So, τ is a stopping time.

Finally, suppose that \mathbb{T} does not have a minimum element. Choosing a sequence $t_n \to -\infty$ in \mathbb{T} then the above argument shows that

$$\tau_n = \inf \left\{ t \in \mathbb{T} : t \ge t_n, Y_t = 0 \right\}$$

are stopping times so,

$$\{\tau \le t\} = \bigcup_{n} \{\tau_n \le t\} \in \mathcal{F}_t$$

as required.