Analysis 4 Problem Set 14

Allen Fang and Xu Yuan

1 Exercise 1

Let us take the case where u'(t) < f(t, u(t)) and $\phi(t_0) \ge u(t_0)$ since the other proofs follow similarly. Then, assume for the sake of contradiction that actually, $u(s) > \phi(s)$ for some s. Let s_0 be the infimum of all such s. Then, by definition, we know that $u'(s_0) \ge \phi'(s_0)$. However, $u'(s_0) < f(s_0, u(s_0)) = f(s_0, \phi(s_0)) = \phi'(s_0)$. [Note that this requires continuity of u but not $u \in C^1$.

2 Exercise 2

2.1 Exercise 2.1

The solution is decreasing provided y' < 0. Using the ODE we see that this is equivalent to the condition that y(y+t) > 0, which holds in the area where y > 0, y > -t and where y < 0, y < -t.

2.2 Exercise 2.2

Using Corollary 2.8, we see that since F(t,y) = -y(y+t) is C^1 in y, it is in particular locally Lipschitz in y as well, and thus, the Cauchy problem has a unique maximal solution.

It is clear that the null function is a maximal solution to the Cauchy problem, and since we have just shown that maximal solutions are unique, $\phi_0 = 0$.

To see the last step, we use the same argument as used on Exercise Sheet 12. Namely, if there exists a solution that is nonpositive, then there must be a point, s at which $\phi(t_*) \leq 0$. Then, by continuity, there is a point at which $\phi(s) = 0$. But then considering the Cauchy problem

$$y' = -y(y+t) \tag{1}$$

$$y(s) = 0 (2)$$

we see that 0 is a maximal solution to this Cauchy problem. Since we know maximal solutions are unique, this is a contradiction.

2.3 Exercise 2.3

Since one is positive, we know from Exercise 2.2 that $\phi_1(t) > 0$ for all $t \in [0,b)$. Then, since t > 0 as well, we have using the ODE directly that ϕ_1 must be decreasing in the region $0 \le t < b$. Then, clearly the solution exists in the compact interval $[0,b] \times [b,1]$, and since this is true for any finite b, using Proposition 2.10 shows that actually $b = \infty$. If $\phi_1(t)$ did not approach 0, then it must approach some other point α . Then, $\lim_{t\to\infty,y\to\alpha} F(t,y) = 0$, but this is clearly not the case. Note that this does not rely on the specific choice of t=1. It suffices that t>0.

2.4 Exercise 2.4

This follows directly from the fact that

$$u'(t) = -\frac{2}{(t+2)^2}$$

and that

$$-u(t)(u(t)+2) = -\frac{4}{(t+2)^2} - \frac{4}{t+2}$$

2.5 Exercise 2.5

Since $u(t) \ge F(t, y)$, and $u(0) < \phi_2(0)$, we can use Theorem 4.3 to conclude that $\phi_2(t) \ge u(t)$ on $(\max(a, -2), 0)$. We realize that this in particular implies that $-2 \le a < 0$ since otherwise, $\phi_2(-2)$ would be unbounded, which means that it would not be a well-defined solution on (a, b). Then, since $u(0) = \phi_1(0)$, we can conclude using Theorem 4.3 that $\phi_1(t) \ge u(t)$ on [a, 0], which in particular means, using the ODE, that $\phi'_1(t) < 0$ on [a, 0].

2.6 Exercise 2.6

This is verified by simple calculation.

2.7 Exercise 2.7

Consider the piecewise C^0 function defined by z(t) = w(t) for $t \le -2$, z(t) = v(t) for $-2 < t \le 0$. Then, $z'(t) \ge -z(t)(z(t)+t)$ for all t < 0, and since $z(0) \ge \phi_r(0)$ for $0 < r \le \frac{1}{2}$, we have that $\phi_r(t) \le z(t)$. But then

recall that from before, we know that $\phi_r(t) > 0$. But then this directly implies that $\lim_{t \to -\infty} \phi_r(t) = 0$. (Notice that in particular, the comparison theorem allows us to extend the range of $\phi_r(t)$ to negative infinity). To see that $\lim_{t \to \infty} \phi_r(t) = 0$, it suffices to repeat the argument used for ϕ_1 above.

2.8 Exercise 2.8

Let $\phi' = -\phi(\phi + t)$. Then let $\psi(t) = -\phi(-t)$

$$\psi'(t) = \phi'(-t)$$

$$= -\phi(-t)(\phi(-t) - t)$$

$$= -\psi(t)(\psi(t) + t).$$

2.9 Exercise 2.9

We remark here that the graphs

for ϕ_1 , ϕ_{-1} contain singularities like we would expect and that the true maximal solution would just be one branch of the graphs shown here.

3 Exercise 3

3.1 Exercise 3.1

This is a separable first order ODE, and thus, we can solve it directly

$$y' = -y^{2}$$

$$\int_{y(t_{0}}^{y(t)} \frac{1}{y^{2}} dy = \int_{t_{0}}^{t} dt$$

$$-\frac{1}{y}\Big|_{y(t_{0})}^{y(t)} = t - t_{0}$$

$$-\frac{1}{y(t)} = t - t_{0} - \frac{1}{y_{0}}$$

$$y(t) = -\frac{1}{t - t_{0} + y_{0}^{-1}}.$$

3.2 Exercise 3.2

From the explicit solution above, which can be extended to $t=\infty$, we see that it is clear that $\phi(t)\to 0$ as $t\to\infty$.