Prep Course Mathematics Integration

Sonja Otten, Christian Seifert (Deutsch), Jens-Peter M. Zemke (English)

Inhalt

- 1. Integration
 - Definite integral as area
 - ► Antiderivatives and indefinite integrals
 - ▶ Relation between both: fundamental theorem of calculus
- 2. Methods for integration
 - ► Integral as area
 - Substitution

For $f \colon [a,b] \to \mathbb{R}$: Determine area under f in [a,b]:

For $f \colon [a,b] \to \mathbb{R}$: Determine area under f in [a,b]:

For $f : [a, b] \to \mathbb{R}$: Determine area under f in [a, b]:

Approximate the area with vertical stripes:

The narrower the stripes, the better the approximation should be.

For $f:[a,b]\to\mathbb{R}$: Determine area under f in [a,b]:

Approximate the area with vertical stripes:

The narrower the stripes, the better the approximation should be.

There exist functions, where no area can be determined in this way.

▶ *f* integrable, if approximation of area possible.

The definite integral

For $f : [a, b] \to \mathbb{R}$ integrable: We write the definite integral

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

for signed area between f and x-axis in [a, b], i.e.:

$$\int_a^b f(x) \, \mathrm{d}x = \text{area where } f \geqslant 0 - \text{area where } f < 0.$$

Here,

ightharpoonup a, b limits (or bounds) of integration, f integrand, x variable of integration.

The definite integral

For $f:[a,b]\to\mathbb{R}$ integrable: We write the definite integral

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

for signed area between f and x-axis in [a, b], i.e.:

$$\int_{a}^{b} f(x) dx = \text{area where } f \geqslant 0 - \text{area where } f < 0.$$

 $\uparrow a \qquad \qquad \downarrow f \\
 \downarrow a$

Here,

ightharpoonup a, b limits (or bounds) of integration, f integrand, x variable of integration.

Calculation rules: for integrable f, g:

- ightharpoonup constant factor rule: for $c \in \mathbb{R}$: $\int_a^b cf(x) dx = c \int_a^b f(x) dx$
- ightharpoonup sum rule: $\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
- ▶ partition: for a < c < b: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

For function f given by f(x) := 2 for $x \in [0,3]$:

Area between f and x-axis: rectangle of area $2 \cdot 3 = 6$.

Compute $\int_0^4 (x-1) dx$.

Compute $\int_0^4 (x-1) dx$.

Signed area between f given by f(x) := x - 1 for $x \in [0, 4]$ and x-axis:

- riangular area for $x \in [0,1]$: $\frac{1}{2}$,
- riangular area for $x \in [1,4]$: $\frac{9}{2}$.

Therefore,

$$\int_0^4 (x-1) \, \mathrm{d}x = \frac{9}{2} - \frac{1}{2} = 4.$$

For interval $D \subset \mathbb{R}$, function $f \colon D \to \mathbb{R}$:

 $F \colon D \to \mathbb{R}$ antiderivative of f, if F differentiable and F' = f.

Antidifferentiation is the opposite operation to differentiation.

For interval $D \subset \mathbb{R}$, function $f \colon D \to \mathbb{R}$:

 $F \colon D \to \mathbb{R}$ antiderivative of f, if F differentiable and F' = f.

Antidifferentiation is the opposite operation to differentiation.

Example:

For f given by f(x) := 2x for $x \in [0, 1]$: antiderivative: F given by $F(x) := x^2$ for $x \in [0, 1]$.

For interval $D \subset \mathbb{R}$, function $f \colon D \to \mathbb{R}$: $F \colon D \to \mathbb{R}$ antiderivative of f, if F differentiable and F' = f.

Antidifferentiation is the opposite operation to differentiation.

Example:

For f given by f(x) := 2x for $x \in [0,1]$: antiderivative: F given by $F(x) := x^2$ for $x \in [0,1]$.

Properties:

- ▶ If F antiderivative of f, then so is F + c for all $c \in \mathbb{R}$.
- Antiderivatives are unique up to a constant.

For interval $D \subset \mathbb{R}$, function $f \colon D \to \mathbb{R}$:

 $F \colon D \to \mathbb{R}$ antiderivative of f, if F differentiable and F' = f.

Antidifferentiation is the opposite operation to differentiation.

Example:

For f given by f(x) := 2x for $x \in [0, 1]$: antiderivative: F given by $F(x) := x^2$ for $x \in [0, 1]$.

Properties:

- ▶ If F antiderivative of f, then so is F + c for all $c \in \mathbb{R}$.
- Antiderivatives are unique up to a constant.

We write the indefinite integral

$$\int f(x) \, \mathrm{d}x$$

for all antiderivatives F + c with $c \in \mathbb{R}$ of f.

Determination of antiderivatives

"Differentiation is a skill, integration is art."

f(x)	f'(x)
$c \ (c \in \mathbb{R})$	0
$x^{\alpha} \ (\alpha \neq 0)$	$\alpha x^{\alpha-1}$
$\log x $	$\frac{1}{x}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\int f(x) \mathrm{d}x + c$	f(x)

Determination of antiderivatives

"Differentiation is a skill, integration is art."

f(x)	f'(x)
$c \ (c \in \mathbb{R})$	0
$x^{\alpha} \ (\alpha \neq 0)$	$\alpha x^{\alpha-1}$
$\log x $	$\frac{1}{x}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
e^x	e^x
$\int f(x) \mathrm{d}x + c$	f(x)

For integrable f, g:

Constant factor rule: for $c \in \mathbb{R}$

$$\int cf(x) \, \mathrm{d}x = c \int f(x) \, \mathrm{d}x$$

Sum rule:

$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

Products: integration by parts

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

(Special) compositions: substitution

$$\int f(g(x))g'(x) dx = F(g(x)) + c$$

Indefinite integral for function f given by:

$$f(x) := 4x^3 - 6x^2 + x - 1$$
:

$$\int f(x) \, \mathrm{d}x = x^4 - 2x^3 + \frac{1}{2}x^2 - x + c \quad \text{with } c \in \mathbb{R}.$$

Indefinite integral for function f given by:

$$f(x) := 4x^3 - 6x^2 + x - 1$$
:

$$\int f(x)\,\mathrm{d}x = x^4 - 2x^3 + \frac{1}{2}x^2 - x + c \quad \text{with } c \in \mathbb{R}.$$

$$f(x) := \frac{1}{x} + 3e^x - 2\sin(x)$$
:

$$\int f(x) dx = \log|x| + 3e^x + 2\cos(x) + c \quad \text{with } c \in \mathbb{R}.$$

Indefinite integral for function f given by:

$$f(x) := 4x^3 - 6x^2 + x - 1$$
:

$$\int f(x)\,\mathrm{d}x = x^4 - 2x^3 + \frac{1}{2}x^2 - x + c \quad \text{with } c \in \mathbb{R}.$$

 $f(x) := \frac{1}{x} + 3e^x - 2\sin(x)$:

$$\int f(x) dx = \log|x| + 3e^x + 2\cos(x) + c \quad \text{with } c \in \mathbb{R}.$$

 $f(x) := x \cos(x):$

We set u(x):=x, $v'(x):=\cos(x)$. Then u'(x)=1, $v(x)=\sin(x)$, and

$$\int x \cos(x) dx = x \sin(x) - \int \sin(x) dx = x \sin(x) + \cos(x) + c \quad \text{with } c \in \mathbb{R}.$$

Determine the indefinite integral for the function f given by:

►
$$f(x) := \sqrt{x} + \frac{1}{x}$$
 for $x > 0$:

 $f(x) := 3\cos(x) - 2e^x \text{ for } x \in \mathbb{R}$:

Determine the indefinite integral for the function f given by:

 $f(x) := \sqrt{x} + \frac{1}{x} \text{ for } x > 0:$ We compute

$$\int f(x)\,\mathrm{d}x = \frac{2}{3}\sqrt{x^3} + \log|x| + c \quad \text{with } c\in\mathbb{R}.$$

▶ $f(x) := 3\cos(x) - 2e^x$ for $x \in \mathbb{R}$: We compute

$$\int f(x) dx = 3\sin(x) - 2e^x + c \quad \text{with } c \in \mathbb{R}.$$

Relation between indefinite and definite integral

Fundamental theorem of calculus

For $f : [a, b] \to \mathbb{R}$ integrable:

... from indefinite to definite integrals:

For antiderivative F of f:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: F(x) \Big|_{a}^{b}.$$

Relation between indefinite and definite integral

Fundamental theorem of calculus

For $f : [a, b] \to \mathbb{R}$ integrable:

... from indefinite to definite integrals:

For antiderivative F of f:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: F(x) \Big|_{a}^{b}.$$

... from definite to indefinite integrals:

For f continuous: F given by

$$F(x) := \int_{a}^{x} f(t) dt$$

is antiderivative of f.

We calculate $\int_{-\pi}^{3\pi} (2\cos(x) - \sin(x) + 2) dx$: With $f(x) := 2\cos(x) - \sin(x) + 2$ we obtain that

$$F(x) := 2\sin(x) + \cos(x) + 2x$$

provides an antiderivative F of f. Hence

$$\int_{-\pi}^{3\pi} (2\cos(x) - \sin(x) + 2) dx = (2\sin(x) + \cos(x) + 2x)\Big|_{-\pi}^{3\pi}$$

$$= 2\sin(3\pi) + \cos(3\pi) + 6\pi - (2\sin(-\pi) + \cos(-\pi) - 2\pi)$$

$$= 0 - 1 + 6\pi - (0 - 1 - 2\pi)$$

$$= 8\pi.$$

Calculate
$$\int_0^1 \left(\frac{1}{\sqrt{x}} - x\right) dx$$
.

Calculate $\int_0^1 \left(\frac{1}{\sqrt{x}} - x\right) dx$.

With $f(x) := \frac{1}{\sqrt{x}} - x$ we obtain that

$$F(x) := 2\sqrt{x} - \frac{1}{2}x^2$$

provides an antiderivative F of f. Hence

$$\int_0^1 \left(\frac{1}{\sqrt{x}} - x\right) dx = \left(2\sqrt{x} - \frac{1}{2}x^2\right)\Big|_0^1$$
$$= 2 - \frac{1}{2} - 0 = \frac{3}{2}.$$

Integration by parts

For interval $D \subset \mathbb{R}$, $f, g \colon D \to \mathbb{R}$ differentiable:

Reminder: product rule of differentiation: (fg)' = f'g + fg'

Integration by parts

For interval $D \subset \mathbb{R}$, $f, g \colon D \to \mathbb{R}$ differentiable:

Reminder: product rule of differentiation: (fg)' = f'g + fg'

Integration by parts: For f', g' integrable:

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx,$$

and for D = [a, b]:

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

Integration by parts

For interval $D \subset \mathbb{R}$, $f, g \colon D \to \mathbb{R}$ differentiable:

Reminder: product rule of differentiation: (fg)' = f'g + fg'

Integration by parts: For f', g' integrable:

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx,$$

and for D = [a, b]:

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

Typical applications:

- polynomial \cdot (sin, cos, exp) g = polynomial, multiple application possible
- ▶ polynomial $\cdot \log$ $g = \log$, vanishes after application
- ► (sin, cos, exp) · (sin, cos, exp) here also rearranging terms (trigonometric identities, Pythagoras) required

We calculate $\int x^2 e^x dx$:

Setting $u(x) := x^2$ and $v'(x) := e^x$ we obtain u'(x) = 2x and $v(x) = e^x$. Hence

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx.$$

Now another integration by parts: setting u(x) := 2x and $v'(x) := e^x$ we obtain u'(x) = 2 and $v(x) = e^x$, hence

$$\int 2xe^x dx = 2xe^x - \int 2e^x dx$$
$$= 2xe^x - 2e^x + c \text{ with } c \in \mathbb{R}.$$

Thus,

$$\int x^2 e^x dx = x^2 e^x - (2xe^x - 2e^x + c)$$
$$= x^2 e^x - 2xe^x + 2e^x + \tilde{c}$$
$$= (x^2 - 2x + 2)e^x + \tilde{c} \quad \text{with } \tilde{c} \in \mathbb{R}.$$

Calculate $\int_0^{\pi} x \cos(x) dx$.

Calculate $\int_0^{\pi} x \cos(x) dx$.

Setting u(x) := x and $v'(x) := \cos(x)$ we obtain u'(x) = 1 and $v(x) = \sin(x)$. Hence

$$\int_0^{\pi} x \cos(x) dx = x \sin(x) \Big|_0^{\pi} - \int_0^{\pi} \sin(x) dx$$

$$= 0 + \cos(x) \Big|_0^{\pi}$$

$$= -2.$$

Substitution

For intervals D_f, D_g and $f: D_f \to \mathbb{R}$, $g: D_g \to D_f$ differentiable:

Reminder: chain rule for differentiation: $f(g)' = f'(g) \cdot g'$

Substitution

For intervals D_f, D_g and $f: D_f \to \mathbb{R}$, $g: D_g \to D_f$ differentiable:

Reminder: chain rule for differentiation: $f(g)' = f'(g) \cdot g'$

Substitution: For f,g^\prime continuous, antiderivative F of f:

$$\int f(g(x))g'(x) dx = F(g(x)) + c,$$

and for $D_g = [a, b]$

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt = F(t) \Big|_{t=g(a)}^{g(b)} = F(g(x)) \Big|_{x=a}^{b}.$$

Substitution

For intervals D_f, D_g and $f: D_f \to \mathbb{R}$, $g: D_g \to D_f$ differentiable:

Reminder: chain rule for differentiation: $f(g)' = f'(g) \cdot g'$

Substitution: For f,g' continuous, antiderivative F of f:

$$\int f(g(x))g'(x) dx = F(g(x)) + c,$$

and for $D_g = [a, b]$

$$\int_{a}^{b} f(g(x))g'(x) \, \mathrm{d}x = \int_{g(a)}^{g(b)} f(t) \, \mathrm{d}t = F(t) \Big|_{t=g(a)}^{g(b)} = F(g(x)) \Big|_{x=a}^{b}.$$

Typical applications:

- - Set $g(x) := \alpha x + \beta$

Set $g(x) := \sin(x)$. Analogously: \sin and \cos interchanged

$$\int \frac{h'(x)}{h(x)} dx$$
Set $f(x) := \frac{1}{x}$, $g(x) := h(x)$

We calculate $\int_2^5 3\pi \sin(2\pi x - \pi) dx$:

By substituting $t:=2\pi x-\pi$ and $\frac{\mathrm{d}t}{\mathrm{d}x}=2\pi$ we have

$$\int_{2}^{5} 3\pi \sin(2\pi x - \pi) dx = \int_{3\pi}^{9\pi} \frac{3}{2} \sin(t) dt$$

$$= -\frac{3}{2} \cos(t) \Big|_{3\pi}^{9\pi}$$

$$= -\frac{3}{2} (\cos(9\pi) - \cos(3\pi))$$

$$= -\frac{3}{2} (-1 - (-1)) = 0.$$

Calculate $\int_0^3 \frac{2x}{x^2+1} dx$.

Calculate
$$\int_0^3 \frac{2x}{x^2+1} dx$$
.

By substituting $t := x^2 + 1$ and $\frac{dt}{dx} = 2x$ we have

$$\int_0^3 \frac{2x}{x^2 + 1} dx = \int_1^{10} \frac{1}{t} dt$$
$$= \log |t| \Big|_1^{10}$$
$$= \log 10.$$