MA150 Algebra 2, Assignment 3

Dyson Dyson

Question 6

$$W = (x + 2y - 3z = 0) \subset \mathbb{R}^3 \tag{1}$$

Q6 (a)

Show that $W \neq \mathbb{R}^3$, and explain why that implies that dim W < 3.

The vector $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ is not in W since it doesn't satisfy the equation. In particular, $1(1)+2(1)-3(-1)=6\neq 0$. Therefore $W\neq \mathbb{R}^3$.

We know from lectures that the dimension of a subspace is less than or equal to the dimension of the parent space, and they have the same dimension if and only if they are equal. Since $W \subset \mathbb{R}^3$, dim $W \leq \dim \mathbb{R}^3$. The dimension of \mathbb{R}^3 is 3 (since the standard basis of \mathbb{R}^3 has 3 elements). Therefore dim $W \leq 3$. But $W \neq \mathbb{R}^3$, so dim W < 3.

Q6 (b)

Find a basis of W and find $\dim W$.

We can rearrange equation (1) to get x = 3z - 2y. Then we can introduce parameters λ and μ and conclude that any point in W can be written as

$$\begin{pmatrix} 3\mu - 2\lambda \\ \lambda \\ \mu \end{pmatrix} = \lambda \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

Therefore $\left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\}$ is a basis of W.

Call the elements of this basis $\{w_1, w_2\}$ for convenience. Plugging w_1 into equation (1) gives 1(-2) + 2(1) - 3(0) = 0 as required, and plugging w_2 into equation (1) gives 1(3) + 2(0) - 3(1) = 0 as required. Therefore $w_1, w_2 \in W$.

For w_1 and w_2 to be independent, we need to show that $\lambda w_1 + \mu w_2 = 0_W$ if and only if $\lambda = \mu = 0$. That linear independence equation expands to

$$\begin{pmatrix} 3\mu - 2\lambda \\ \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The second components of the vectors imply $\lambda = 0$, and the third components imply $\mu = 0$. Therefore w_1 and w_2 are linearly independent.

 w_1 and w_2 must span W since any linear combination is of the form $\begin{pmatrix} 3\mu - 2\lambda \\ \lambda \\ \mu \end{pmatrix}$ and we showed before that that is equivalent to equation (1), which is the definition of W.

Since we have a basis of W with 2 elements, we know that $\dim W = 2$.

Let $V = \mathbb{R}[x]_{\leq 3}$ be the vector space of polynomials in x of degree at most 3, and let $W = \mathbb{R}^2$. Consider the linear map $\varphi : V \to W$ determined on the basis $1, x, x^2, x^3$ by

$$\varphi(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \varphi(x) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad \varphi(x^2) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad \varphi(x^3) = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Q7 (a)

Compute $\varphi(2x^3 - 3x + 2)$.

$$\varphi(2x^3 - 3x + 2) = \varphi(2x^3) + \varphi(-3x) + \varphi(2)$$

$$= 2\varphi(x^3) - 3\varphi(x) + 2\varphi(1)$$

$$= 2\binom{-1}{3} - 3\binom{-1}{1} + 2\binom{1}{0}$$

$$= \binom{-2}{6} + \binom{3}{-3} + \binom{2}{0}$$

$$= \binom{3}{3}$$

Q7 (b)

Consider the linear map $\psi: V \to W$ where

$$\psi = \begin{pmatrix} f(-1) \\ \frac{\mathrm{d}f}{\mathrm{d}x}(-1) \end{pmatrix}$$

Show that $\psi = \varphi$.

By proposition 5.17, two linear maps are equal if their domains and codomains are equal and they agree on the elements of a basis of the domain. φ and ψ are both defined on $\varphi, \psi : \mathbb{R}[x]_{\leq 3} \to \mathbb{R}^2$. Then we just have to check that φ and ψ agree on some basis of the domain, and it makes sense to use $\{1, x, x^2, x^3\}$.

$$\psi(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \psi(x) = \begin{pmatrix} -1 \\ 1 \end{pmatrix},$$

$$\psi(x^2) = \begin{pmatrix} (-1)^2 \\ 2(-1) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad \psi(x^3) = \begin{pmatrix} (-1)^3 \\ 3(-1)^2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Since ψ and φ agree on a basis, $\psi = \varphi$.

Q7 (c)

Compute $\operatorname{Im} \varphi$.

To find the image of a linear transformation, we can write it as a matrix and take the column span of its row reduced echelon form. φ is L_M where

$$M = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \end{pmatrix}$$

Finding RREF(M) only takes one step, $A_{21}(1)$.

$$RREF(M) = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -2 & 3 \end{pmatrix}$$

Then $\operatorname{Colspan}(\operatorname{RREF}(M)) = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$, so $\operatorname{Im} \varphi = \mathbb{R}^2$.

Q7 (d)

Compute $\dim \ker \varphi$.

 φ is defined on the domain $V = \mathbb{R}[x]_{\leq 3}$, which has dimension 4. Also Im $\varphi = \mathbb{R}^2$, so dim Im $\varphi = 2$. Therefore by the Rank-Nullity Theorem,

$$\dim \ker \varphi = \dim V - \dim \operatorname{Im} \varphi = 4 - 2 = 2$$

Let $V = \mathbb{R}[x]_{\leq 2}$ be the vector space of polynomials in x of degree at most 2.

Q8 (a)

For any fixed $a \in \mathbb{R}$, prove that $x \mapsto x + a$ is an isomorphism $\pi : V \to V$. That is, π is the linear map defined by $\pi(x^i) = (x+a)^i$ on the basis $1, x, x^2$ of V.

An isomorphism of vector spaces is just a bijective linear map. We shall first prove that π is a linear map.

We expect $\pi(\lambda x^i) = \lambda \pi(x^i)$.

$$\pi(\lambda x^{i}) = \pi\left(\left(\lambda^{\frac{1}{i}}x\right)^{i}\right)$$
$$= \left(\lambda^{\frac{1}{i}}x + a\right)^{i}$$

Q8 (b)

Write the matrix of π with respect to the basis $1, x, x^2$ of V.

$$L_{\pi} = \begin{pmatrix} 1 & a & a^2 \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{pmatrix}$$

Consider $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}\$ which is a (very large) vector space under the usual operations $\lambda f + \mu g$.

Q9 (a)

Let $W = \langle \cos(x), \cos(2x) \rangle$ which is a subspace of V. What is dim W?

 $\cos(x)$ and $\cos(2x)$ are linearly independent and span W by definition, so $\{\cos(x), \cos(2x)\}$ is a basis for W. The dimension of a vector space is equal to the number of vectors in a basis, so dim W=2.

Q9 (b)

Let $\mathcal{U} = \{ f \in W : f(10) = 0 \}$, which is a subspace of W. What is dim \mathcal{U} ?

We want functions of the form $\lambda \cos(x) + \mu \cos(2x)$ for some $\lambda, \mu \in \mathbb{R}$ where $\lambda \cos(10) + \mu \cos(20) = 0$. That means we need

$$\lambda = \frac{-\mu \cos(20)}{\cos(10)}$$

Therefore every element of \mathcal{U} is of the form

$$\mu\left(\frac{-\cos(20)}{\cos(10)}\cos(x) + \cos(2x)\right)$$

and therefore $\left\{\frac{-\cos(20)}{\cos(10)}\cos(x) + \cos(2x)\right\}$ is a basis of \mathcal{U} . Since this basis has 1 element, $\dim \mathcal{U} = 1$.

Q9 (c)

Let $\mathcal{U}_2 = \{ f \in W : f(10) = 1 \}$. Is \mathcal{U}_2 a subspace of W?

We want functions of the form $\lambda \cos(x) + \mu \cos(2x)$ for some $\lambda, \mu \in \mathbb{R}$ where $\lambda \cos(10) + \mu \cos(20) = 1$.

To be a subspace of W, U_2 must be a non-empty subset (this is trivially true), and must be closed under the operations of W. So if we have some $\alpha \cos(x) + \beta \cos(2x) \in U_2$, then we want $\lambda (\alpha \cos(x) + \beta \cos(2x)) \in U_2$ for any $\lambda \in \mathbb{R}$.

But $\alpha \cos(10) + \beta \cos(20) = 1$ by definition of \mathcal{U}_2 , and $\lambda (\alpha \cos(x) + \beta \cos(2x)) = \lambda \neq 1$. Therefore \mathcal{U}_2 is not closed under scalar multiplication and therefore is not a subspace of W.

Consider $L_A: \mathbb{R}^4 \to \mathbb{R}^3$ (i.e. $\underline{v} \mapsto A\underline{v}$) for the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{pmatrix}$$

where the values for $a, b, c, d \in \mathbb{R}$ are not known.

Q10 (a)

State the Rank-Nullity Theorem.

Let $\varphi: V \to W$ be a linear map. Then $\dim \operatorname{Im} \varphi + \dim \ker \varphi = \dim V$.

Q10 (b)

Provide values for a, b, c, d so that dim Colspan A = 1. What are dim Im L_A and dim ker L_A in your example?

a = b = c = d = 0 gives dim Colspan A = 1. Then

$$\dim\operatorname{Im} L_A=\dim\operatorname{Colspan} A=1$$

and then by the Rank-Nullity Theorem, dim ker $L_A = 4 - 1 = 3$.

Q10 (c)

Provide values for a, b, c, d so that dim Colspan A = 2. What are dim Im L_A and dim ker L_A in your example?

 $a=1,\;b=c=d=0$ gives $\dim\operatorname{Colspan} A=2.$ Then $\dim\operatorname{Im} L_A=2$ and $\dim\ker L_A=2.$

Q10 (d)

Provide values for a, b, c, d so that dim Colspan A = 3. What are dim Im L_A and dim ker L_A in your example?

 $a=1,\ d=1,\ b=c=0$ gives $\dim\operatorname{Colspan} A=3.$ Then $\dim\operatorname{Im} L_A=3$ and $\dim\ker L_A=1.$