Lógica Digital (1001351)

Circuitos Sequenciais: Registradores

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 11 de maio de 2019

Objetivos

Nesta aula vamos aprender sobre:

- Registradores, os quais armazenam vários bits;
- Registradores de deslocamento;
- Contadores de vários tipos.

Registrador de deslocamento

(a) Circuit

(b) A sample sequence

Figure 5.17 A simple shift register.

Registrador de deslocamento com carga paralela

Figure 5.18 Parallel-access shift register.

Contador de três bits

Figure 5.19 A three-bit up-counter.

Contador de três bits (decremento)

Figure 5.20 A three-bit down-counter.

Table 5.1 Derivation of the synchronous up-counter.

Clock cycle	$Q_2 Q_1 Q_0$
0	0 0 0 Q ₁ changes
1	$0 0 1 \qquad \qquad Q_2 \text{ changes}$
2	0 1 0
3	0 1 1
4	1 0 0
5	1 0 1
6	1 1 0
7	1 1 1
8	0 0 0

$$\begin{split} T_0 &= 1 \\ T_1 &= Q_0 \\ T_2 &= Q_0 Q_1 \\ T_3 &= Q_0 Q_1 Q_2 \\ \cdot \\ \cdot \\ \cdot \\ T_n &= Q_0 Q_1 ... Q_{n-1} \end{split}$$

Contador de 4 bits síncrono

Figure 5.21 A four-bit synchronous up-counter.

Contador de 4 bits síncrono com enable

Figure 5.22 Inclusion of Enable and Clear capability.

Usando flip-flops do tipo D

Figure 5.23 A four-bit counter with D flip-flops.

Contador com carga paralela

Figure 5.24 A counter with parallel-load capability.

Contador módulo-6 com reset síncrono

(a) Circuit

(b) Timing diagram

Figure 5.25 A modulo-6 counter with synchronous reset.

Contador módulo-6 com reset assíncrono

Figure 5.26 A modulo-6 counter with asynchronous reset. A modulo-6 counter with asynchronous reset.

Contador BCD de dois dígitos

Figure 5.27 A two-digit BCD counter.

Contador em anel

(a) An n-bit ring counter

(b) A four-bit ring counter

Figure 5.28 Ring counter.

Contador Johnson

Figure 5.29 Johnson counter.

Bibliografia

- ▶ Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009
- https://tams-www.informatik.unihamburg.de/applets/hades/

Lógica Digital (1001351)

Circuitos Sequenciais: Registradores

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 11 de maio de 2019

