APPL. CINFARI

Intermezzo

Abbiamo visto principalmente i seguenti esempi di spazi vettoriali

una volta fissato un riferimento, precisamente una base, ciascun spazio vettoriale geometrico \mathcal{V}^n si può identificare, come spazio vettoriale col rispettivo spazio vettoriale numerico \mathbb{R}^n (n=1,2,3). Per ogni intero positivo n si può considerare come analogo n-dimensionale degli spazi vettoriali geometrici uno spazio vettoriale n-dimensionale astratto; una volta fissata una base, tale spazio vettoriale si può identificare con il corrispondente spazio vettoriale \mathbb{R}^n . Di regola, le definizioni, le proposizioni, i teoremi e le dimostrazioni sono più naturali per gli spazi vettoriali astratti.

Di seguito vedremo in particolare come le descrizioni della applicazioni lineari fra pazi vettoriali \mathbb{R}^n si possano estendere a descrizioni di applicazioni lineari fra spazi vettoriali astratti.

D'ora innanzi, tranne avviso contrario, ogni spazio vettoriale considerato sarà tacitamente supposto di dimensione finita.

Applicazioni lineari

Siano V, W spazi vettoriali. Cosa possiamo dire delle applicazioni lineari da V a W? Innanzitutto, l'unico elemento che sicuramente esiste in uno spazio vettoriale è il vettore nullo. Dunque possiamo definire un'applicazione $F: V \to W$ ponendo $F(v) = \underline{0} \in W$, per ogni $v \in V$. Questa applicazione è lineare, viene detta "applicazione nulla".

Teorema. Siano dati: uno spazio vettoriale V, una sequenza di vettori a_1, \ldots, a_n base di V, uno spazio vettoriale W, una sequenza di vettori w_1, \ldots, w_n di W. Allora esiste un'unica applicazione lineare $F: V \to W$ tale che

esplicitamente, per ogni
$$v = x_1 a_1 + \dots + x_n a_n \in V$$
, $F(v) = x_1 w_1 + \dots + x_n w_n$.

Commenti:

$$F(a_1) = w_1, \dots, F(a_n) = w_n;$$

$$w_1, \dots, w_n \in W$$

$$\exists ! F: V \longrightarrow W | F(a_i) = w_i;$$

$$\forall i \leq a_1, \dots, a_n \in V$$

- Il senso del teorema è che, dato uno spazio vettoriale n-dimensionale V, una volta fissata una base in V, si possono identificare le applicazioni lineari da V verso uno spazio vettoriale W con le sequenze di n vettori di W: ogni applicazione lineare $V \to W$ si può rappresentare con un sequenza di n vettori di W, le immagini dei vettori base di V, e ogni sequenza di n vettori di W rappresenta una ed una sola applicazione lineare $V \to W$.
- L'ipotesi che a_1, \ldots, a_n sia una base di V è fondamentale, in quanto assicura per ciascun vettore $v \in V$ l'esistenza e l'unicità della sequenza dei coefficienti x_1, \ldots, x_n che servono per costruire F(v).
- L'unicità dell'applicazione F, con la sua descrizione esplicita, è ovvia. La parte principale della dimostrazione consiste nel provare che una tale applicazione F è lineare.

Esempio. In \mathcal{V}^2 , identificato con \mathbb{R}^2 mediante un riferimento, consideriamo

una base, ad esempio
$$a_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ due vettori, ad esempio $w_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $w_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Esiste un'unica applicazione lineare $F: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $F(a_1) = w_1$, $F(a_2) = w_2$.

Calcoliamo il valore di F su un vettore, ad esempio $v = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = x_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ se esolo se } x_1 = \frac{2}{5}, x_2 = \frac{4}{5};$$

quindi

$$F\begin{bmatrix}2\\2\end{bmatrix} = \frac{2}{5}\begin{bmatrix}1\\-3\end{bmatrix} + \frac{4}{5}\begin{bmatrix}-2\\1\end{bmatrix} = \begin{bmatrix}-\frac{6}{5}\\-\frac{2}{5}\end{bmatrix}.$$

Applicazioni lineari iniettive, suriettive, biiettive

Applicazioni fra insiemi, iniettive, suriettive, biiettive.

Ricordiamo che un'applicazione $F: D \to C$ fra insiemi si dice

- iniettiva se soddisfa una delle tre condizioni equivalenti per ogni $d_1, d_2 \in D$, da $d_1 \neq d_2$ segue $F(d_1) \neq F(d_2)$; per ogni $d_1, d_2 \in D$, da $F(d_1) = F(d_2)$ segue $d_1 = d_2$; per ogni $c \in C$, esiste al più un $d \in D$ tale che F(d) = c;

- <mark>suriettiv</mark>a se

per ogni $c \in C$, esiste almeno un $d \in D$ tale che F(d) = c;

- biiettiva se

per ogni $c \in C$, esiste un'unico $d \in D$ tale che F(d) = c.

In altri termini, l'applicazione è bijettiva se e solo se è sia injettiva che surjettiva.

Cosa si può dire delle applicazioni lineari iniettive, suriettive, biiettive? Iniziamo con le applicazioni fra spazi vettoriali numerici.

Sia data un'applicazione lineare fra spazi vettoriali numerici

$$F: \mathbb{R}^n \to \mathbb{R}^m$$
, $F(x) = Ax$ (A costante $m \times n$).

Osserviamo che per ogni $b \in \mathbb{R}^m$, l'equazione nell'incognita x su \mathbb{R}^n

$$F(x) = b$$

equivale all'equazione

$$Ax = b$$
,

$$F(r) = Ar = b$$

$$A\left(\frac{v_1}{v_n}\right) = \frac{b}{b} = F\left(v_1, \dots, v_n\right)$$

che è un sistema lineare di m equazioni in n incognite.

Proposizione.

- F è inettiva se e solo se le colonne di A sono linearmente indipendenti, cioè r(A) = n;
- F è suriettiva se e solo se le righe di A sono linearmente indipendenti; cioè r(A) = m;
- Fè biiettiva se e solo se n = r(A) = m, cioè Aè non singolare.

Dimostrazione parziale. Proviamo solo la 1° e la 3° affermazione. Indicate con f_1, \ldots, f_n le colonne di A, l'equazione Ax = b si scrive anche come

$$x_1f_1 + \dots + x_nf_n = b.$$

- Se F è inettiva, allora per ogni $b \in \mathbb{R}^m$ l'equazione $x_1 f_1 + \dots + x_n f_n = b$ ha al più una soluzione, allora l'equazione $x_1 f_1 + \dots + x_n f_n = \underline{0}$ ha solo la soluzione $x_1 = \dots = x_n = 0$, allora f_1, \dots, f_n sono linearmente indipendenti. Viceversa, si prova che se f_1, \dots, f_n sono linearmente indipendenti, allora per ogni $b \in \mathbb{R}^m$ l'equazione $x_1 f_1 + \dots + x_n f_n = b$ ha al più una soluzione, quindi F è iiettiva.
- F è biiettiva se e solo se per ogni $b \in \mathbb{R}^m$ l'equazione $x_1 f_1 + \cdots + x_n f_n = b$ ha aun'unica soluzione se e solo se f_1, \ldots, f_n è una base di \mathbb{R}^m se e solo se A è non singolare se e solo se m = r(A) = n.

Esempi.

$$\mathbf{F}:\mathbb{R}^2\to\mathbb{R}^3,\quad \mathbf{F}\left[\begin{array}{c}x_1\\x_2\end{array}\right]=\left[\begin{array}{cc}1&0\\1&1\\0&1\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right]$$
è iniettiva ma non suriettiva.

$$G: \mathbb{R}^2 \to \mathbb{R}^3$$
, $G\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ non è iniettiva né suriettiva.

$$\mathbf{H}: \mathbb{R}^3 \to \mathbb{R}^2, \quad \mathbf{H} \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right]$$
è suriettiva ma non iniettiva.

$$L: \mathbb{R}^2 \to \mathbb{R}^2, \quad L \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
è biiettiva.

Queste considerazioni e proposizione si possono riformulare in vari modi più o meno forti in termini di spazi vettoriali astratti, ad esempio come segue. Sia data un'applicazione lineare da uno spazio vettoriale V con una base a_1, \ldots, a_n verso uno spazio vettoriale W

$$F(x_1a_1 + \dots + x_na_n) = x_1f_1 + \dots + x_nf_n \quad (f_i \text{ costanti } \in W).$$

$$F(\lambda_1 v_1 + \cdots + \lambda_m v_m) = \lambda_{11} \omega_1 + \cdots + \lambda_m \omega_n$$

Proposizione.

- F è iniettiva se e solo se
$$f_1, \ldots, f_n$$
 è linearmente indipendente; $\omega_1, \ldots, \omega_n$ lin ind

- Fè suriettiva se e solo se Span
$$\{f_1,\ldots,f_n\}=W;$$
 $<\omega_1,\ldots,\omega_n$ $>$ $<$ $>$

- F è biiettiva se e solo se
$$f_1, \ldots, f_n$$
 è una base di W .

Commento. La dimostrazione di questa proposizione segue quasi direttamente dalle definizioni. Viene lasciata al lettore.

Spazi nullo e colonna, spazi nucleo e immagine

Ricordiamo che a ciascuna matrice A di tipo $m \times n$ abbiamo associato alcuni spazi vettoriali, in particolare:

- lo spazio nullo di A

$$\mathcal{N}(A) = \text{insieme delle soluzioni}$$
 del sistema lineare omogeneo $Ax = 0$;

- lo spazio colonna di A

$$C(A) = \operatorname{Span}\{f_1, \dots, f_n\} \ (f_j \in \mathbb{R}^m \text{ colonne di } A);$$

e abbiamo visto la relazione fra le loro dimensioni

$$\dim(\mathcal{N}(A)) + \dim(\mathcal{C}(A)) = n.$$

Indicata con $F: \mathbb{R}^n \to \mathbb{R}^m$ l'applicazione lineare data da

$$F(x) = Ax$$

possiamo descrivere questi spazi come segue:

- $\mathcal{N}(A)$ è l'insieme dei vettori di \mathbb{R}^n che vengono mandati nel vettore nullo di \mathbb{R}^m :

$$\mathcal{N}(A) = \{x \mid F(x) = \underline{0}\} \subseteq \mathbb{R}^n;$$

- $\mathcal{C}(A)$ è l'insieme delle immagini in \mathbb{R}^m dei vettori di \mathbb{R}^n :

$$\mathcal{C}(A) = \{ F(x); x \in \mathbb{R}^n \} \subseteq \mathbb{R}^m.$$

Lo spazio nullo e lo spazio colonna della matrice si dicono rispettivamente anche "spazio nucleo" e "spazio immagine" dell'applicazione F. Più in generale, si ha la

Definizione. Sia $F: V \to W$ un'applicazione lineare fra due spazi vettoriali V, W;

- il $\frac{1}{1}$ nucleo di F è l'insieme dei vettori che F manda nel vettore nullo di W:

$$\operatorname{Im}(F) = \{ F(x); x \in V \} \subseteq W.$$

Si verifica che Ker(F) e Im(F) sono sottospazi, rispettivamente di V e W.

Esempio.
$$F: \mathbb{R}^2 \to \mathbb{R}^3, \quad F\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix};$$

$$\operatorname{Ker}(F) = \mathcal{N} \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= (\text{ soluzioni di } \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix})$$

$$= (\text{ insieme dei } \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ con } x_2 \text{ libera })$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

Esempio. Siano date: una base a_1, a_2 di uno spazio vettoriale V, due vettori w_1, w_2 linearmente indipendenti in uno spazio vettoriale W, l'applicazione lineare $F: V \to W$ tale che

$$F(a_1) = w_1, F(a_2) = w_2$$

esplicitamente,

$$F(xa_1 + ya_2) = xw_1 + yw_2$$
 per ogni $x, y \in \mathbb{R}$.

Allora

$$Ker(F) = \{xa_1 + ya_2 \mid xw_1 + yw_2 = \underline{0}\} = \{\underline{0}\};$$

$$Im(F) = \{xw_1 + yw_2; \ x, y \in \mathbb{R}\} = Span\{w_1, w_2\}.$$

Al teorema sulla relazione fra le dimensioni dello spazio nullo e spazio colonna di una matrice corrisponde il seguente teorema sulla relazione fra le dimensioni dello spazio nucleo e spazio immagine di un'applicazione lineare

Teorema. Siano: $F: V \to W$ un'applicazione lineare, z_1, \ldots, z_p una bse di Ker(F), $F(v_1), \ldots, F(v_q)$ una base di Im(F). Allora $z_1, \ldots, z_p, v_1, \ldots, v_q$ è una base di V, quindi $\dim(\text{KerF}) + \dim(\text{ImF}) = \dim(V)$.

Dimostrazione.

- Consideriamo l'uguaglianza

$$x_1z_1 + \dots + x_pz_p + y_1v_1 + \dots + y_qv_q = \underline{0};$$

applicando F ad entranmbi i membri, essendo F lineare, si ha

$$x_1F(z_1) + \dots + x_pF(z_p) + y_1F(v_1) + \dots + y_qF(v_q) = \underline{0};$$

essendo $z_1, \ldots, z_n \in \text{Ker}(F)$, si ha

$$y_1 F(v_1) + \cdots + y_q F(v_q) = \underline{0};$$

essendo $F(v_1), \ldots, F(v_q)$ linearemente indipendenti, si ha $y_1 = \cdots = y_q = 0$; quindi $x_1z_1 + \cdots + x_pz_p = \underline{0}$;

essendo z_1, \ldots, z_p linearemente indipendenti, si ha $x_1 = \cdots = x_p = 0$.

Quindi $z_1, \ldots, z_p, v_1, \ldots, v_q$ è linearmente indipendente.

- Sia $v \in V$. Poichè $F(v_1), \ldots, F(v_q)$ genera Im(F), esistono dei numeri y_1, \ldots, y_q tali che

$$F(v) = y_1 F(v_1) + \dots + y_q F(v_q);$$

essendo F lineare, si ha

$$F(v - y_1v_1 - \dots - y_qv_q) = \underline{0};$$

essendo z_1,\dots,z_p una base di Ker(F), esistono dei numeri x_1,\dots,x_p tali che

$$v - y_1 v_1 - \dots - y_q v_q = x_1 z_1 + \dots + x_p z_p;$$

quindi

$$v = x_1 z_1 + \dots + x_p z_p + y_1 v_1 + \dots + y_q v_q.$$

Quindi $z_1, \ldots, z_p, v_1, \ldots, v_q$ genera V.