Course 5: Foundation Models

Summary

Last session

- Deep Learning Basics
- Convolutional Neural Networks
- Transformers

Today's session

- What is a Foundation Model
- Self Supervised Learning
- Some examples of Foundation Models

What is a Foundation Model?

- Trained on internet-scale datasets
- Training task si not straightforward (SSL, pretext tasks)
- Generic feature extractors, Multipurpose
- Generalization is not a problem anymore! All is about particularization

https://blogs.nvidia.com/blog/what-are-foundation-models/

What is a Foundation Model?

Deep Learning

Foundation models

- No Inductive Bias (as for Convolutions)
- Best generalization in many domains
 - comparable with convolutions for Images
 - State-of-the-art for Natural Language Processing
- Few Hyperparameters
- Very large, require large datasets for training

Attention is all you need: https://arxiv.org/pdf/1706.03762

Self-attention

Mechanism that enhances input embedding by including information about the input context (e.g., the meaning of a word changes based in its context)

- inputs are projected by weight matrices W_i into q, k and v vectors
- attention weights $\omega_{i,j}$ are obtained by dot product (e.g., similarity) of query and keys

 $\verb|https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html|$

Self-attention

- lacksquare self-attention scores $lpha_{i,j}$ are normalized version of weights $\omega_{i,j}$
- the output z_i is an attention-weighted version of the original query input x_i with respect to all other elements of the input

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Self Supervised Learning

The principle

Learning useful representations from data without relying on labels. The model *creates* the labels based on the structure of the data through *pretext tasks*

Why it is important

- Scalability: Since unlabeled data is much easier to obtain, models can scale to larger datasets and more diverse inputs
- Robust Representations -> Transferability: It often leads to more generalizable representations that perform well across multiple tasks compared to models trained on a more limited label space

Self Supervised Learning

Types of SSL approaches

■ Masked Input Modeling: Predicting missing part of the input

BERT: https://arxiv.org/pdf/1810.04805

Masked Autoencoders: https://arxiv.org/pdf/2111.06377

Self Supervised Learning

Types of SSL approaches

- Masked Input Modeling: Predicting missing part of the input
- Contrastive Learning: Pulling together similar representations and pushing apart dissimilar ones

SimCLR: https://arxiv.org/pdf/2002.05709, BYOL: https://arxiv.org/pdf/2006.07733

How Big Are We Now?

- Increasing model size is a proxy for increasing performance
- Data is as important as scaling model size! For 2x model size, data should also be 2x
- Datasets are growing very rapidly (0.1-0.2 orders of magnitude per year before 2015, now higher)

Tutorial on data efficiency: https://baharamm.github.io/assets/pdf/ICML24_tutorial_DataEfficient.pdf
Training Compute-Optimal Large Language Models: https://arxiv.org/pdf/2203.15556
Scaling Laws for Neural Language Models: https://arxiv.org/pdf/2001.08361

Some examples: Foundation Models for Text

Model	Provider	Open	Release	Params	Data
BERT	Google	Yes	Oct-2018	345M	3.3M
PaLM	Google	No	Apr-2022	540B	780B
GPT-4	OpenAl	No	Mar-2023	-	300B
GPT-3.5	OpenAl	No	Mar-2023	175B	-
Llama1	Meta Al	Yes	Feb-2023	7/13/33/65B	1 T/1.4T
Llama2	Meta Al	Yes	Jul-2023	7/13/33/70B	2T
Mixtral 💶	MistralAl	Yes	Dec-2023	8 x 7B	-
Phi-2	Microsoft	No	Dec-2023	2.7B	-

Large Language Models

- Transformers trained (SSL) on predicting masked tokens and next sentence
- Finetuning (Supervised) on instruction data (prompt + response)
- Reinforcement Learning with Human Feedback

 $\label{lem:https://docs.google.com/presentation/d/1nfV9QiNV2tbHsw9GeP7e96az-oL_C_rymTSE6V6zBos/edit?usp=sharing Llama Paper: https://arxiv.org/abs/2302.13971$

Tutorial on foundation models for text:

Some examples: Foundation Models for Vision

DINOv2

- Vision transformers trained (SSL) on large curated data
- Produces all-purpose visual features (classification, segmentation, depth estimation..)

SAM

- Image and text Encoders (SSL pretrained Transformers) trained on 1B masks and 1M images
- Segment any object, promptable segmentation

DINOv2: https://arxiv.org/abs/2304.07193, SAM: https://segment-anything.com/

Some examples: Multimodal Foundation Models

NEXT WEEK...

Customize a Foundation Model

- Foundation models are often fine-tuned after pre-training to adapt them to a specific task
- The challenge becomes particularization (as opposed to generalization)
- Different techniques depending on the objective of the adaptation:
 - 1 Add specific information to the model knowledge (e.g., Retrieval augmented generation RAG)
 - Change behavior of the model with fine-tuning (e.g., parameter efficient fine tuning with LORA)
 - Improve Foundation Model safety and helpfulness (e.g., Reinforcement Learning based un Human Feedback for LLMs)

RAG: https://blogs.nvidia.com/blog/what-are-foundation-models/ LoRA Paper: https://arxiv.org/pdf/2106.09685.pdf

Various tutorials on RAG and fine-tuning: https://github.com/facebookresearch/llama-recipes/tree/main

Foundation Models

- Model trained on an Internet scale dataset
- Self-Supervised training: pretext tasks
- Particularization vs Generalization

Source: https://blogs.nvidia.com/blog/what-are-foundation-models/

Lab Session 5

Generate the embeddings you worked with in Lab 2 and 3 using pretrained Foundation Models

- Load the specific modality dataset
- Preprocess the raw data if needed
- Use Hugging Face to load the pretrained Foundation Model
- Generate the embeddings and test them