ABIDEI PINT FC mat stats

Erin W Dickie, Saba Shahab January 15, 2018

This is an analysis of the FC Mats

```
library(dplyr)
library(tidyr)
library(broom)
library(igraph)
library(corrplot)
library(effsize)
library(knitr)
library(ggplot2)
library(gridExtra)
```

Reading in the data

A couple things to note here about the how the clinical data is being parsed:

- 1. all catergorical variables are being set to Factors
- Note that sex.x still needs descriptive labels
- 2. Education is being very basically impluted when it is not available so that we do not lose data

Some functions we're using

```
## functions
read_subject_meants <- function(subid, pint_dir, vertex_type) {
  meants <- read.csv(file.path(pint_dir,</pre>
```

```
paste(subid, vertex_type, "meants.csv", sep="_")),
                      header=FALSE)
  return(meants)
}
load_all_subject_matrices <- function(subids, myedgenames, pint_dir,</pre>
                                        vertex type) {
  ## use these parameters to set up a blank dataframe to hold all the correlations
  theZs <- as.data.frame(cbind("subid" = subids,
                                matrix(numeric(),
                                        nrow = length(subids),
                                        ncol = numedges,
                                        dimnames = list(1:length(subids),
                                                        myedgenames))))
  theZs[,2:ncol(theZs)] <- numeric(nrow(theZs)*(ncol(theZs)-1))
  ## now correlate everyones ts and write the correlations to a massive data frame
  for (i in 1:nrow(theZs)) {
    ## get the subid from the dataframe and read in the meants
    meants <- read_subject_meants(theZs$subid[i], pint_dir, vertex_type)</pre>
    ## correlate and graph
    cormat <- cor(t(meants))</pre>
    g<-graph_from_adjacency_matrix(cormat, mode="upper",
                                    weighted=T, diag=F)
    # take the eqde list as a vector
    thecorrs <- E(g)$weight
    # apply the Z transform (so we can do stats)
    theseZ <- atanh(thecorrs)</pre>
    # save the output to the data.frame
    theZs[i,2:ncol(theZs)] <- theseZ
  }
 return(theZs)
make_corrplot <-function(data, attrtoplot, graph_title) {</pre>
  forplot <- as.data.frame(data)</pre>
  forplot <- forplot %>% separate(Edge, into = c("V1", "V2"), sep = '\\.')
  g <- graph_from_data_frame(forplot, directed=F)</pre>
  g.mat <- get.adjacency(g, attr=attrtoplot)</pre>
  corrplot(as.matrix(g.mat),
           is.corr = F, tl.cex = 0.3, tl.col = "black",
           title = graph_title)
}
#new circle graph function
radian.rescale <- function(x, start=0, direction=1) {</pre>
  c.rotate <- function(x) (x + start) %% (2 * pi) * direction</pre>
  c.rotate(scales::rescale(x, c(0, 2 * pi), range(x)))
```

```
draw_circle_graph <- function(data, Yeo7_80verts) {</pre>
  CircleOrder <- as.character(Yeo7_80verts$SHORTNAME)</pre>
  CircleOrder <- c(CircleOrder[75:length(CircleOrder)], CircleOrder[1:74])</pre>
  g <- graph.data.frame(data, directed = F)</pre>
  Yeo7_80verts$wnetname <- substr(Yeo7_80verts$SHORTNAME,3,6)
  Yeo7 80verts$Vhex <- NA
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==2] <- "#781286"
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==3] <- "#00760E"
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==4] <- "#C43AFA"
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==5] <- "#4682B4"
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==6] <- "#E69422"
  Yeo7_80verts$Vhex[Yeo7_80verts$NETWORK==7] <- "#CD3E3A"
  V(g)$color <- Yeo7_80verts$Vhex
  g$layout <- layout_in_circle(g,order = CircleOrder)</pre>
  lab.locs <- radian.rescale(x=1:80, direction=-1, start=0)
  d <-as.matrix(dist(g$layout, method = "euclidean",</pre>
                      upper = TRUE, diag = TRUE, p = 2))
  gdist <-graph_from_adjacency_matrix(as.matrix(dist(g$layout, method = "euclidean",</pre>
                                                        upper = TRUE, diag = TRUE, p = 2)),
                                        mode="upper", weighted=T, diag=F)
  dist.df <- cbind(data, E(gdist) $ weight)</pre>
  dist.df$scaledD <- (dist.df$`E(gdist)$weight`/(-2)) + 1</pre>
  dist.df$scaleDc <- dist.df$scaledD</pre>
  dist.df\$netcombo <- paste(substr(dist.df\$V1,1,2), substr(dist.df\$V2,1,2), sep =".")
  switchlist <- c("DA.VI", "DA.SM")</pre>
  dist.df$scaleDc[dist.df$netcombo %in% switchlist] <- dist.df$scaleD[dist.df$netcombo %in% switchlist]
  plt <- plot(g, edge.width=E(g)$logp*5,</pre>
       edge.curved=dist.df$scaleDc,
       edge.color = E(g)$posneg,
       vertex.size = 3.5,
       vertex.label.family="sans",
       vertex.label.font=1,
       vertex.label.cex = 0.5,
       vertex.label = Yeo7_80verts$wnetname,
       vertex.label.dist=0.5,
       vertex.label.degree=lab.locs,
       vertex.label.color = V(g)$color)
  return(plt)
}
```

Load the ivertex and tvertex Zs for all subjects

```
## read in one examplar to get some parameters we want
meants1 <- read_subject_meants(qced_sublists$subid[1], pint_dir, 'ivertex')
## sort the meants into the order from the new naming scheme
names(meants1) <- paste0("TR_",1:ncol(meants1))
Yeo_meants <- cbind(Yeo7_80verts,meants1)
## correlate and graph from the first one</pre>
```

```
cormat <- cor(t(select(Yeo_meants,starts_with("TR_"))))</pre>
rownames(cormat) <- Yeo_meants$SHORTNAME</pre>
colnames(cormat) <- Yeo_meants$SHORTNAME</pre>
g<-graph_from_adjacency_matrix(cormat, mode="upper",
                                 weighted=T, diag=F,
                                 add.rownames = "code")
g.df <- as.data.frame(get.edgelist(g), names=T)</pre>
# take the egde list as a vector
thecorrs \leftarrow E(g)$weight
# apply the Z transform (so we can do stats)
theseZ <- atanh(thecorrs)</pre>
## get two variables of interest.. edgenames and the number of edges
myedgenames <- paste(g.df[ ,1],g.df[ ,2],sep=".") ## the V1.V2 name
                                                    ## the number of edges
numedges <- length(myedgenames)</pre>
## get all the Z's from ivertex
theZs_ivertex <- load_all_subject_matrices(as.character(qced_sublists$subid),</pre>
                                             myedgenames, pint_dir, 'ivertex')
## merge all those correlations back with the demographics
alldemZs_i_m <- merge(pheno,theZs_ivertex,by="subid") %>%
    gather_("Edge", "FC", myedgenames)
## get all the Z's from tvertex
theZs_tvertex <- load_all_subject_matrices(as.character(qced_sublists$subid),</pre>
                                             myedgenames, pint_dir,
                                             'tvertex')
## merge all those correlations back with the demographics
alldemZs_t_m <- merge(pheno,theZs_tvertex,by="subid") %>%
 gather_("Edge", "FC", myedgenames)
```

Run the linear model for all Template and Personalized FC edges

Note: one trick here (but justified by Saba's thesis and Graces work, is to add a DX*Sex interation term of all models)

looking at all FDR corrected results..

Most results are for the linear effect of age..but there is one significant effect of Diagnosis in the FP network (contralateral partietal areas..)

```
FC_lmres %>%
  filter(term %in% c("DXCtrl","Sex2", "DXCtrl:Sex2","age")) %>%
  arrange(p.value) %>%
  select(Edge, vertex_type, term, statistic, p.value, p.FDR) %>%
  filter(p.value < 0.0001) %>%
  kable()
```

Edge	vertex_type	term	statistic	p.value	p.FDR
DAP2R.DMP2L	Personalized	age	-4.911880	1.30e-06	0.0081221
VI04L.VI04R	Template	age	-4.514794	8.20 e-06	0.0259097
FPP1L.FPP1R	Template	DXCtrl	-4.514494	8.20 e-06	0.0518894
DAP2L.SMF2L	Personalized	age	4.279925	2.31e-05	0.0439448
DAP1L.VAP2R	Template	age	4.236437	2.78e-05	0.0439448
DMP1R.DMT1R	Template	Sex2	4.111470	4.71e-05	0.2486655
DAP2R.VAI1R	Personalized	age	4.027573	6.66e-05	0.0721185
DAP2L.VAI1R	Template	age	4.008427	7.21e-05	0.0721185
DMP1L.VAF3R	Personalized	Sex2	3.986851	7.87e-05	0.2486655
${\rm DAP2R.DMP2R}$	Personalized	age	-3.941623	$9.45\mathrm{e}\text{-}05$	0.0721185

Looking at the significant effect in FP network

all the model terms within this edge

```
FC_lmres %>%
filter(Edge == "FPP1L.FPP1R") %>%
  select(Edge, vertex_type, term, statistic, p.value, p.FDR) %>%
  kable()
```

Edge	vertex_type	term	statistic	p.value	p.FDR
FPP1L.FPP1R	Personalized	(Intercept)	4.9027915	0.0000013	0.0000456
FPP1L.FPP1R	Personalized	DXCtrl	-0.5152849	0.6066194	0.9261453
FPP1L.FPP1R	Personalized	Sex2	-0.0991067	0.9210998	0.9981405
FPP1L.FPP1R	Personalized	$mean_fd$	0.6063966	0.5445722	0.7798235
FPP1L.FPP1R	Personalized	age	1.3504356	0.1775882	0.7334033
FPP1L.FPP1R	Personalized	Edu	-0.4112220	0.6811151	0.9970032
FPP1L.FPP1R	Personalized	SiteZHH	1.6322088	0.1033693	0.3993238
FPP1L.FPP1R	Personalized	SiteCOBRE	0.3332637	0.7390981	0.9129909
FPP1L.FPP1R	Personalized	DXCtrl:Sex2	-0.1388769	0.8896126	0.9977319
FPP1L.FPP1R	Template	(Intercept)	4.9213744	0.0000012	0.0000424
FPP1L.FPP1R	Template	DXCtrl	-4.5144944	0.0000082	0.0518894
FPP1L.FPP1R	Template	Sex2	-1.3698671	0.1714449	0.8081463
FPP1L.FPP1R	Template	$mean_fd$	-0.7201338	0.4718348	0.7280264
FPP1L.FPP1R	Template	age	-0.4186586	0.6756752	0.9377793
FPP1L.FPP1R	Template	Edu	1.7905168	0.0740758	0.9970032
FPP1L.FPP1R	Template	SiteZHH	1.1552492	0.2486314	0.5937746
FPP1L.FPP1R	Template	${\bf Site COBRE}$	2.4661057	0.0140492	0.1587799

Edge	vertex_type	term	statistic	p.value	p.FDR
FPP1L.FPP1R	Template	DXCtrl:Sex2	1.9149833	0.0561593	0.8467977

splitting the plot by Site

building circle plots of the subthreshold effects

```
mutate(thres_statistic = if_else(p.value <= p_thres,</pre>
                                     true = statistic,
                                     false= 0)) %>%
  mutate(posneg = case_when(.$thres_statistic < -0.01 ~ 1,</pre>
                              .$thres_statistic > 0.01 ~ 2,
                              TRUE ~ NA_real_),
        log_p = case_when(.$p.value <= p_thres ~ log(.$p.value),</pre>
                           TRUE \sim 0)
  plot <- draw_circle_graph(forgraph, Yeo7_80verts)</pre>
  return(plot)
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
```

```
filter_term = "DXCtrl", filter_vtype = "Template")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "DXCtrl", filter_vtype = "Personalized")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "DXCtrl:Sex2", filter_vtype = "Template")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "DXCtrl:Sex2", filter_vtype = "Personalized")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "Sex2", filter_vtype = "Template")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "Sex2", filter_vtype = "Personalized")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "age", filter_vtype = "Template")
```



```
thresholded_circle_plot(FC_lmres, p_thres = 0.001,
                              filter_term = "age", filter_vtype = "Personalized")
```


NULL

New stuff for graph theory - 30 July 2017

```
# New stuff for graph theory - 30 July 2017
## merge all those correlations back with the demographics
alldemZs_i_m <- merge(qced_sublists,theZs_ivertex,by="subid")</pre>
alldemZs_t_m <- merge(qced_sublists,theZs_tvertex,by="subid")</pre>
# Averaging z-scores for each diagnostic group for the i vertices
aggregate_all_i <- aggregate(alldemZs_i_m[, 14:3173], list(alldemZs_i_m$DX_GROUP), mean)
# Subsetting into patients and controls so I can make separate adjacency matrices
```

```
aggregate_all_i_SCZ <- aggregate_all_i[1,2:3161]</pre>
aggregate_all_i_HC <- aggregate_all_i[2,2:3161]</pre>
# Averaging z-scores for each diagnostic group for the t vertices
aggregate_all_t <- aggregate(alldemZs_t_m[, 14:3173], list(alldemZs_t_m$DX_GROUP), mean)
# Subsetting into patients and controls so I can make separate adjacency matrices
aggregate_all_t_SCZ <- aggregate_all_t[1,2:3161]</pre>
aggregate_all_t_HC <- aggregate_all_t[2,2:3161]</pre>
## Thresholding the values here
\#\ aggregate\_all\_i\_SCZ[aggregate\_all\_i\_SCZ\ <\ 0.60]\ <-\ 0
{\it \# Creating \ an \ iGraph - will \ change \ weights \ to \ represent \ different \ diagnostic \ groups}
g<-graph_from_adjacency_matrix(cormat, mode="upper",
                                 weighted=T, diag=F,
                                 add.rownames = "code")
# Color coding the networks
V(g) color <- ifelse(substr(V(g) name, 0,2) == "DM", "#CD3E3A", (ifelse(substr(V(g) name, 0,2) == "EX",
# Creating labels for the vertices - just the lobe and the hemisphere as the network is color-coded
V(g) $label_name <- substr(V(g) $name, 3,5)
# Creating adjacency matrices for i vertices
aggregate_all_i_SCZ_data <- as.matrix(aggregate_all_i_SCZ)</pre>
aggregate_all_i_SCZ_data <- as.vector(aggregate_all_i_SCZ_data)</pre>
E(g)$weight <- aggregate_all_i_SCZ_data</pre>
SCZ_i_vertex <- get.adjacency(g, type="both", attr="weight", sparse=FALSE)</pre>
aggregate_all_i_HC_data <- as.matrix(aggregate_all_i_HC)</pre>
aggregate_all_i_HC_data <- as.vector(aggregate_all_i_HC_data)</pre>
E(g)$weight <- aggregate_all_i_HC_data</pre>
HC_i_vertex <- get.adjacency(g, type="both", attr="weight", sparse=FALSE)</pre>
# Creating adjacency matrices for t vertices
aggregate_all_t_SCZ_data <- as.matrix(aggregate_all_t_SCZ)</pre>
aggregate_all_t_SCZ_data <- as.vector(aggregate_all_t_SCZ_data)</pre>
E(g)$weight <- aggregate_all_t_SCZ_data</pre>
SCZ_t_vertex <- get.adjacency(g, type="both", attr="weight", sparse=FALSE)</pre>
aggregate_all_t_HC_data <- as.matrix(aggregate_all_t_HC)</pre>
aggregate_all_t_HC_data <- as.vector(aggregate_all_t_HC_data)</pre>
E(g)$weight <- aggregate_all_t_HC_data</pre>
HC_t_vertex <- get.adjacency(g, type="both", attr="weight", sparse=FALSE)</pre>
# # Writing the adjacency matrices to use in MATLAB
# write.csv(SCZ_i_vertex, "..//projects/saba/HCP_fMRI_SCZ/new_analyses_20170412/FC_analyses/Graph_Theor
# write.csv(HC_i_vertex, "/projects/saba/HCP_fMRI_SCZ/new_analyses_20170412/FC_analyses/Graph_Theory/HC
\# write.csv(SCZ_t_vertex, "/projects/saba/HCP_fMRI_SCZ/new_analyses_20170412/FC_analyses/Graph_Theory/S
# write.csv(HC_t_vertex, "/projects/saba/HCP_fMRI_SCZ/new_analyses_20170412/FC_analyses/Graph_Theory/HC
```

#plot.igraph(g,vertex.label=V(g)\$name,layout=layout.fruchterman.reingold, edge.color="black",edge.width
hist(aggregate_all_i_SCZ_data, main="SCZ: i-vertex", xlab = "z-scores", xlim=c(-0.5, 3.0))

SCZ: i-vertex

hist(aggregate_all_i_HC_data, main="HC: i-vertex", xlab = "z-scores", xlim=c(-0.5, 3.0))

HC: i-vertex

SCZ: t-vertex

hist(aggregate_all_t_HC_data, main="HC: t-vertex", xlab = "z-scores", xlim=c(-0.5, 3.0))

HC: t-vertex


```
# Reassigning weights to the igraph
E(g)$weight <- aggregate_all_i_SCZ_data
E(g)$weight <- aggregate_all_i_HC_data
E(g)$weight <- aggregate_all_t_SCZ_data
E(g)$weight <- aggregate_all_t_HC_data

# Using 0.65 for i-vertex, and 0.35 for t-vertex
# Using 0.2 for i-vertex, and 0.19 for t-vertex</pre>
g_few=delete.edges(g, which(E(g)$weight <=0.20))
plot(g_few, vertex.label=V(g_few)$label_name)
```


g_few_vert=delete.vertices(g_few,which(degree(g_few)<15))
plot(g_few_vert, vertex.label=V(g_few_vert)\$label_name)</pre>

sum(degree(g_few))

[1] 680

degree(g_few)

DAF1L DAF1R DAF2L DAF2R DAP1L DAP1R DAP2L DAP2R DAP3L DAP3R DAT1L DAT1R ## 9 7 13 11 8 7 7 5 8 8 3 7 ## DMF1L DMF1R DMF2L DMF2R DMF3L DMF3R DMP1L DMP1R DMP2L DMP2R DMT1L DMT1R

```
8 8 9 9 5 2 11 11
                                                 10
                                                       10
## DMT2L DMT2R FPF1L FPF1R FPF2L FPF2R FPF3L FPF3R FPF4L FPF4R FPF5L FPF5R
                  8
                       8
                             6
                                   6
                                         6
                                              8
                                                   10
                                                          6
## FPP1L FPP1R FPP2L FPP2R FPT1L FPT1R VAF1L VAF1R VAF2L VAF2R VAF3L VAF3R
            5
                 11
                       9
                             5
                                   3
                                        14
                                              17
                                                    9
                                                         11
## VAF4L VAF4R VAF5L VAF5R VAI1L VAI1R VAP1L VAP1R VAP2L VAP2R VAT1L VAT1R
                 11
                       7
                            19
                                  21
                                         8
                                              10
                                                   14
                                                         12
           15
## SMF1L SMF1R SMF2L SMF2R SMF3L SMF3R SMI1L SMI1R SMT1L SMT1R VIO1L VIO1R
      7
            5
                6
                       7
                             6
                                   9
                                        10
                                              10
                                                    7
                                                                7
## VIO2L VIO2R VIO3L VIO3R VIO4L VIO4R VIO5L VIO5R
                       7
betweenness(g_few_vert)
## VAF1R VAF4R VAI1L VAI1R
##
      0
           0
degree(g_few_vert)
## VAF1R VAF4R VAI1L VAI1R
                 3
##
      3
            3
# Ratio of the number of edges and the number of possible edges
edge_density(g_few)
## [1] 0.1075949
## rm the extra object in memory
#rm(cormat, meants1, theZs_tvertex, theZs_ivertex, Yeo_meants, g)
```