桂林电子科技大学试卷

2020-2021 学年第 2 学期

果号

课程名称 高等数学 All (A卷 闭卷)适用斑级(或年级、专业) 2020级

							还卷人
-							
							得分
							100
4	12	12	14	24	16	18	滋 分
							-
7	>\r	H	pq	11	1	1	题 号
	1			Versile.	14 67	110	Cul Culva C.
	中作			475 北江	中华	170	本非平可

、填空题(每小题3分,共18分)

- 2. 自线 $\frac{x+1}{4} = \frac{y+1}{-7} = \frac{z}{3}$ 和平面 x+y+z=0 的汽条为(填"平行"或"垂直")____
- 3. 己知函数 $z = x^2 + y^2$,则 dz =______
- 4. 数项级数 $\sum_{n=1}^{+\infty} \frac{1}{n^2+1}$ 的收敛性为(填"收敛"或"发散")_____

5. 函数
$$f(x,y) = \begin{cases} \frac{\sin(x^2y)}{y}, & (x,y) \neq (1.0) \\ y & \text{ 在点(1.0) 处 (填"连续"或"问衙")}_{-1} \end{cases}$$

- 6. 设光滑曲线L的弧长为 π ,则 $\int_{L} 3 ds =$ _____
- 二、选择题(每小题 4 分, 共 16 分)
- 1. xOz 坐标面上的抛物线 $z^2=x$ 绕 x 轴旋转一周所得曲面的方程为().

(A)
$$x^2 + y^2 = z$$
 (B) $y^2 + z^2 = x$ (C) $x^2 + z^2 = y$ (D) $y^2 + z^2 = x^2$

- 3. 己知 l 为 $f(x) = xy^2$ 在 (1,1) 处增加最快的方向,则 f(x) 在该点沿 l 的方向导数为 () .
- (A) 1 (B) $\sqrt{2}$ (C) -3 (D) $\sqrt{5}$
- . 设函数 f(x,y) 的定义域为有界闭域D,点 $R \in D$,以下说法中,错误的是() (A) 若 f 在 D 上连续,则 f 在 D 上一定有界

- (B) 若 f 的两个一阶偏导数都在 P。 处连续,则 f 在 P。 处也连续
- (C) 若f在 P_0 处连续,则它在 P_0 处沿任一方向的方向导数都存在
- (D) 若f在D上连续,则f在D上的二重积分一定存在
- 三、计算题一(每小题 8 分, 共 24 分)
- 1. 求过点(1,2,3) 且与两平面2x-z=1和3y-z=2都平行的直线方程
- 2. 已知二元函数 $z=xy+\frac{x}{y}$,计算偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$
- 四、计算题二(每小题7分, 共14分)
- 1. 计算二重积分 $\iint_0 (x+y) d\sigma_x$ 共中积分区域 D 是项点为 (0,0), (1,0), (1,1) 的三角形团 g
- 2. 计算 $\int_L y ds$, 其中 L 为曲线 $y = x^3$ 上点 (0,0) 到 (1,1) 之间的一段弧
- 五、计算题 : (每小题 6 分, 共 12 分)
- 1. 计算曲面积分∬xydS,其中∑为平面x+y+z=1在第一卦限中的部分
- 2. 计算曲面积分 $\oint_\Sigma x^3 dy dz + y^3 dz dx$, 其中 $\sum_J J \Omega$ 的表面外侧, Ω 由 $x^2 + y^2 = z$ 及 z=1 所围成。

六、解答题(每小题6分,共12分)

- 1. 曲线积分 $\int_0^3 x^2 y dx + (x^3 + 1) dy$ 是香与路径无关? 并说明理由. 若 L 为 \mathcal{A} 从点 A(0,0) 到点 B(1,1) 的光滑曲线,且可表示为 y = f(x), 那么该积分的值是多少?
- 2. 将 $f(x) = \frac{1}{x+1}$ 展开成(x-1) 的幂级数,并求该级数的收敛域。

七、证明题(共4分)

若 $\sum_{n=1}^{\infty} u_n$ 绝对收敛、证明 $\sum_{n=1}^{\infty} u_n$ 收敛、进一步、设f(x)在点x=0的某邻域内具有连续的二阶导数、且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛、