

Workforce Scheduling and Routing Problem (WSRP)

ARTIGO UTILIZADO:

Workforce Scheduling Linear Programming Formulation

T. Garaix**, M. Gondran*, P. Lacomme*, E. Mura***, N. Tchernev*

- 1) Université Clermont-Auvergne, LIMOS, UMR CNRS 6158, Campus des Cézeaux, 63178 Aubière Cedex France (e-mail: (gondran, placomme, tchernev)@isima.fr).
 - 2) Ecole des Mines de Saint-Etienne, 158 cours Fauriel, 42000 Saint-Etienne

France (e-mail: garaix@emse.fr).

3) Université de Technologie de Troyes, ICD-LOSI, UMR CNRS 6281, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex, France (e-mail: enzy,mura@utt.fr).

Link do artigo: Workforce Scheduling Linear Programming Formulation

Problema de programação e roteamento HHC

PARÂMETROS:

- W conjunto de trabalhadores
- T conjunto de tarefas
- ullet $dist_{i,j}$ distância da tarefa i à tarefa j
- p_j^w custo do trabalhador w para realizar j.
- ullet Dur_j tempo de processamento da tarefa j
- ullet r_j número de trabalhadores necessários para realizar a tarefa j
- $m{\cdot}\ pw_i^w$ nível de satisfação ($pw_i^w \in [0,1]$) quando o trabalhador w é atribuído à tarefa j
- pa_j^w nível de satisfação ($pa_j^w \in [0,1]$) quando o trabalhador w é atribuído à tarefa j considerando as preferências regionais (a tarefa j está localizada em uma região k)
- $m{\cdot}\ ps^w_j$ nível de satisfação da habilidade ($ps^w_j\in[0,1]$) com $ps^w_j=\max(ps^i_j)$ quando a tarefa j é atribuída ao trabalhador w
- $ullet p_j^w$ = $(pa_j^w + pw_j^w + ps_j^w) orall w \in W$, $j \in T$ é a qualidade do serviço.
- $[e_j, l_j]$ janela de tempo da tarefa j
- ullet $[TW^w_{inf}, TW^w_{sup}]$ janela de tempo de trabalho do trabalhador w

PARÂMETROS:

```
param nT := 6: # Número total de tarefas: T
param nW := 3; # Número total de trabalhadores
set T := 0..nT; # Conjunto de tarefas: T = {t1, ti, ..., tT}
set W := 1..nW; # Conjunto de trabalhadores: W = {w1, wi, ..., wT}
set A within T cross T; # Conjunto de arestas
param dist{(i,j) in A}; # Distância da tarefa i à tarefa j
param p{T,W}; # Custo do trabalhador w para realizar j
param Dur{j in T}; # Tempo de processamento da tarefa j
param r{i in T}: # Número de trabalhadores necessários para realizar a tarefa /
param pw{i in T, w in W} >= 0, <= 1; # Nivel de satisfacão ((pw)j^w ∈ [0,1]) quando o trabalhador w é atribuído à tarefa i
param pa{j in T, w in W} >= 0, <= 1; # Nível de satisfação ((pa)w^j ∈ [0,1]) quando o trabalhador w é atribuído à tarefa j considera
param ps{j in T, w in W} >= 0, <= 1; # Nível de satisfação da habilidade ((ps)w^j E [0,1]) com (ps)w^j=max((ps)i^j) quando a tarefa
param rojw{j in T, w in W}; #= pa[j,w] + pw[j,w] + ps[j,w]; # Qualidade do servico = pa + pw + ps
param ej{i in T}: # Janela de tempo da tarefa i -> Limite inferior
param lj{j in T}; # Janela de tempo da tarefa j -> Limite superior
param TWinf{w in W}: # Janela de tempo de trabalho do trabalhador w -> Limite inferior
param TWsup{w in W}; # janela de tempo de trabalho do trabalhador w -> Limite superior
param lambdal := 0.4; # Peso 1
param lambda2 := 0.65; # Peso 2
param lambda3 := 0.75; # Peso 3
param lambda4 := 1.0; # Peso 4
```

VARIÁVEIS BINÁRIAS:

- $x_{i,j}^w = \begin{cases} 1, & ext{se o trabalhador } w ext{ passar da tarefa } i ext{ para } j \\ 0, & ext{senão} \end{cases}$
- $x_{0,j}^w = \begin{cases} 1, & \text{se o trabalhador } w \text{ se deslocar do local de partida para a tarefa } i \\ 0, & \text{senão} \end{cases}$
- $x_{i,0}^w = \left\{egin{array}{ll} 1, & ext{se o trabalhador } w ext{ passar da tarefa } i ext{ para o local de término } 0 \ 0, & ext{senão} \end{array}
 ight.$
- $\psi^w_j = \begin{cases} 1, & \text{se o trabalhador } w \text{ for designado para uma tarefa } j \text{ situada fora da região de preferência } 0, & \text{senão} \end{cases}$
- $heta_j^w = egin{cases} 1, & ext{se a violação da janela de tempo ocorrer quando a tarefa } j ext{ for atribuída ao trabalhador } w \\ 0, & ext{senão} \end{cases}$

VARIÁVEIS CONTÍNUAS:

- y_j número de trabalhadores não disponíveis para realizar a tarefa j
- t_j hora de início da tarefa j
- ullet d_i^w hora de saída do trabalhador w da tarefa j
- $a_{\,i}^w$ hora de chegada do trabalhador w à tarefa j

VARIÁVEIS:

```
## Binárias:
32 ## Binárias:
33 var x{(i,j) in A, w in W}, binary; # x[i,j,w] = 1 se o trabalhador w passar da tarefa i para j
34 var psi{j in T, w in W}, binary; # psi[j] = 1 se o trabalhador w for designado para uma tarefa
35 var theta{j in T, w in W}, binary; # theta[j] = 1 se a violação da janela de tempo ocorrer quan
36 var c{j in T, w in W}, binary; # c[j,w] = 1 se o trabalhador tiver sido incluído no contrato do
37
38 ## Contínuas:
39 var y{j in T} integer >= 0; # Número de trabalhadores não disponíveis para realizar a tarefa j
40 var t{j in T} >= 0; # Hora de início da tarefa j
41 var d{T,W} >= 0; # Hora de saída do trabalhador w da tarefa j
42 var a{T,W} >= 0; # Hora de chegada do trabalhador w à tarefa j
```

FUNÇÃO OBJETIVO:

A função objetivo a ser minimizada envolve quatro critérios que são balanceados por

$$\min f(s) = \lambda_1 \sum_{w=1}^W \sum_{i=0}^T \sum_{j=1}^T (dist_{i,j} + p_j^w) x_{i,j}^w + \lambda_2 \sum_{j=1}^T (3r_j - \sum_{i=0}^T \sum_{w=1}^W p_j^w x_{i,j}^w) + \lambda_3 \sum_{j=1}^T \sum_{w=1}^W (\psi_j^w + \theta_j^w) + \lambda_4 \sum_{j=1}^T y_j$$

quatro pesos (λ) correspondentes aos níveis de prioridade.

Ordem de prioridade dos pesos: $\lambda_4 \succcurlyeq \lambda_3 \succcurlyeq \lambda_2 \succcurlyeq \lambda_1$

FUNÇÃO OBJETIVO:

```
# FUNÇÃO OBJETIVO:

## minimize Objective:

## sum{w in W, i in T, j in T: j > 0} (dist[i,j] + p[j,w]) * x[i,j,w] + # Critério 1

## critério 1

## critério 2

## sum{j in T: j > 0} (j * r[j] - sum{i in T, w in W} rojw[i,w] * x[i,j,w]) + # Critério 2

## critério 2

## sum{j in T, w in W: j > 0} (psi[j,w] + theta[j,w]) + # Critério 3

## critério 4

## sum{j in T: j > 0} y[j] # Critério 4

## critério 4
```

CONJUNTO DE RESTRIÇÕES 1:

A viagem de um trabalhador w da tarefa i para a tarefa j é definida por $x_{i,j}^w=1$ (tarefa 0 é o local inicial e tarefa |T| é o local final). Assim, estas restrições garantem que para um trabalhador w: de uma tarefa i um trabalhador w pode viajar para no máximo uma outra tarefa (1ª restrição); para uma tarefa j um trabalhador pode viajar de no máximo uma tarefa (2ª restrição); e se w for atribuído a uma tarefa j após a tarefa i então $x_{i,j}^w=1$ e (3ª restrição) pode ser reescrita como $\sum_{u=0}^T x_{j,u}^w=1$ significando que w deve viajar para outra tarefa (ou para a localização final) e não pode ficar nesta posição.

•
$$\sum_{j=0}^T x_{i,j}^w \preccurlyeq 1$$
, $orall i=0..|T|, w=1..|W|$

•
$$\sum_{i=0}^T x_{i,j}^w \preccurlyeq 1$$
, $orall i=0..|T|, w=1..|W|$

•
$$\sum_{i=0}^T x_{i,j}^w = \sum_{u=0}^T x_{j,u}^w$$
 , $orall i = 0..|T|, w = 1..|W|$

CONJUNTO DE RESTRIÇÕES 1:

```
52  # RESTRIÇÕES:
53  ## Conjunto 1:
54  Constraint_1{i in T, w in W}: sum{j in T: (i,j) in A} x[i,j,w] <= 1;
55  Constraint_2{j in T, w in W}: sum{i in T: (i,j) in A} x[i,j,w] <= 1;
56  Constraint_3{j in T, w in W}: sum{i in T: (i,j) in A} x[i,j,w] = sum{u in T: (j,u) in A} x[j,u,w];</pre>
```

CONJUNTO DE RESTRIÇÕES 2:

O número de trabalhadores atribuídos à tarefa j deve estar de acordo com r_j ou seja, com o número de trabalhadores necessários para realizar a tarefa j. y_j é o número de trabalhadores ausentes para a tarefa alcançada j e é definida por: $y_j = r_j - \sum_{w=1}^W \sum_{i=0}^T x_{i,j}^w$. Se uma tarefa j exigir três trabalhadores ($r_j = 3$), mas apenas um trabalhador w_1 é atribuído a j para que exista um e apenas um $x_{i,j}^w = 1$ e a restrição poderá ser reescrita como $\sum_{w=1}^W \sum_{i=0}^T x_{i,j}^w + y_j = 1 + y_i = 3$. Por consequência, $y_i = 2$ que é o número de trabalhadores ausentes para realizar a tarefa.

$$ullet \sum_{w=1}^W \sum_{i=0}^T x_{i,j}^w + y_j = r_j$$
 , $orall j = 1..|T|$

CONJUNTO DE RESTRIÇÕES 2:

```
58 ## Conjunto 2:
59 Constraint_4{j in T: j > 0}: sum{w in W, i in T} x[i,j,w] + y[j] = r[j];
```

CONJUNTO DE RESTRIÇÕES 3:

$$\psi^w_j + M.\ pa^w_j \succcurlyeq \sum_{i=0}^T x^w_{i,j}, orall w = 1..|W|, j = 1..|T|$$
 M

$$M.\, heta_{j}\succcurlyeq t_{j}+Dur_{j}-TW_{sup}^{w}+(\sum_{i=0}^{T}x_{i,j}^{w}-1).\,M,orall w=1..|W|,j=1..|T|$$

$$(M.\, heta_{j} \succcurlyeq TW^{w}_{inf} - t_{j} + (\sum_{i=0}^{T} x^{w}_{i,j} - 1).\, M, orall w = 1..|W|, j = 1..|T|)$$

CONJUNTO DE RESTRIÇÕES 3:

Idealmente, um trabalhador deve ser designado para tarefas em suas regiões geográficas disponíveis. No entanto, as violações da região de preferência são possíveis e devem ser medidas para definir a terceira parte da função objetivo. Na restrição 1, se $pa_j^w=0$, o trabalhador w é atribuído à tarefa j que está localizado em uma região não desejada, a restrição 1 pode ser reescrita como, $\psi_j^w\succcurlyeq\sum_{i=0}^T x_{i,j}^w$ implicando $\psi_j^w\succcurlyeq1$.

Quando ambas as tarefas i e j são atribuídas ao trabalhador $w, x_{i,j}^w = 1$ e a restrição 2:

$$M.\theta_j \succcurlyeq t_j + Dur_j - TW_{sup}^w + (\sum_{i=0}^T x_{i,j}^w - 1).M$$

$$M.\, heta_j \succcurlyeq TW^w_{inf} - t_j + (\sum_{i=0}^T x^w_{i,j} - 1).\,M$$

pode ser reescrita como:

$$M.\theta_j \succcurlyeq t_j + Dur_j - TW_{sup}^w$$

$$M.\theta_j \succcurlyeq TW_{inf}^w - t_j$$

A restrição 2 garante que, se o tempo de conclusão (t_j+Dur_j) da tarefa j exceder TW^w_{sup} , a variável binária θ_j é definida como 1. Como $t_j+Dur_j-TW^w_{sup}>0$, a restrição 2 é reescrita como M. $\theta_j\succcurlyeq t_j+Dur_j-TW^w_{sup}>0$ e garante que $\theta_j=1$. A restrição 3 garante que $\theta_j=1$, se $t_j< TW^w_{inf}$, isto é, quando $TW^w_{inf}-t_j>0$, o que significa que o trabalhador w tem que executar tarefa j antes do final de sua janela de tempo de trabalho.

CONJUNTO DE RESTRIÇÕES 3:

```
61 ## Conjunto 3:
62 Constraint_5{j in T, w in W: j > 0}: (psi[j,w] + M * pa[j,w]) >= sum{i in T} x[i,j,w];
63 Constraint_6{j in T, w in W: j > 0}: M * theta[j,w] >= sum{i in T} (x[i,j,w] - 1) * M + t[j] + Dur[j] - TWsup[w];
64 Constraint_7{j in T, w in W: j > 0}: M * theta[j,w] >= sum{i in T} (x[i,j,w] - 1) * M - t[j] + TWinf[w];
```

CONJUNTO DE RESTRIÇÕES 4:

Nos cenários abordados nesta apresentação, um trabalhador pode realizar uma tarefa exigida por um cliente se e somente se o trabalhador tiver sido incluído no contrato do cliente (restrição abaixo), neste caso $c_j^w=1$, caso contrário $c_j^w=0$ e $\sum_{i=0}^T x_{i,j}^w < 0$ que impõe $x_{i,j}^w=0$.

$$ullet \sum_{i=0}^T x_{i,j}^w \preccurlyeq c_j^w, orall j=1..|T|, w=1..|W|$$

CONJUNTO DE RESTRIÇÕES 4:

```
66 ## Conjunto 4:
67 Constraint_8{j in T, w in W: j > 0}: c[j,w] >= sum{i in T} x[i,j,w];
68
```

CONJUNTO DE RESTRIÇÕES 5:

Se um trabalhador w for atribuído a uma tarefa j após uma tarefa i, então $x_{i,j}^w=1$, então a restrição 1 pode ser reescrita como $d_j^w\succcurlyeq (t_j+Dur_j)$ implicando que o tempo de partida d_j^w do trabalhador w da tarefa j deve ser maior que o tempo de início t_j de j mais o tempo de processamento Dur_j de j. Se $x_{i,j}^w=0$, (restrição 1) pode ser reescrito como: $d_j^w\succcurlyeq -M$ e essa restrição é válida.

A restrição 2 garante que, se um trabalhador w for atribuído à tarefa j após a tarefa i ($x_{i,j}^w=1$) então $a_j^w\succcurlyeq (d_{s_i}^w+dist_{i,j})$ deveranter, implicando que o tempo de chegada a_j^w de w na tarefa j está depois de seu horário de partida d_i^w da tarefa i mais a distância entre as tarefas i e j. Se $x_{i,j}^w=0$, (restrição 2) pode ser reescrito como: $a_j^w\succcurlyeq -M$ e esta restrição é válida.

•
$$d_j^w \succcurlyeq (t_j + Dur_j) + (\sum_{i=0}^T x_{i,j}^w - 1).\ M, orall w = 1..|W|, j = 1..|T|$$

$$ullet \ a_{j}^{w}\succcurlyeq (d_{i}^{w}+dist_{i,j})+(x_{i,j}^{w}-1).\,M, orall w=1..|W|, i=0..|T|, j=1..|T|$$

CONJUNTO DE RESTRIÇÕES 5:

```
69 ## Conjunto 5:

70 Constraint_9{j in T, w in W: j > 0}: d[j,w] >= sum{i in T} (x[i,j,w] - 1) * M + (t[j] + Dur[j]);

71 Constraint_10{i in T, j in T, w in W: j > 0}: a[j,w] >= (x[i,j,w] - 1) * M + (d[i,w] + dist[i,j]);
```

CONJUNTO DE RESTRIÇÕES 6:

A hora de início t_j da tarefa j deve ser posterior à hora de chegada a_j^w de todos os trabalhadores necessários wpara realizar a tarefa (restrição 1). Além disso, uma tarefa j tem uma janela de tempo $[e_i$, $l_i]$ e pode começar somente após o início e_i de sua janela de tempo (restrição 2) e antes do final de sua janela de tempo (restrição 3).

$$ullet t_j \succcurlyeq a_j^w, orall w=1..|W|, j=1..|T|$$
 $ullet t_j \succcurlyeq e_j, orall j=1..|T|$ $ullet t_j \preccurlyeq l_j, orall j=1..|T|$

•
$$t_j \succcurlyeq e_j, \forall j = 1..|T|$$

$$ullet \ t_j \preccurlyeq l_j, orall j = 1..|T|$$

CONJUNTO DE RESTRIÇÕES 6:

```
73  ## Conjunto 6:
74  Constraint_11{j in T, w in W: j > 0}: a[j,w] <= t[j];
75  Constraint_12{j in T: j > 0}: ej[j] <= t[j];
76  Constraint_13{j in T: j > 0}: lj[j] <= t[j];</pre>
```

CONJUNTO DE RESTRIÇÕES - DOMÍNIO DAS VARS:

$$x_{i,j}^w, heta_j^w, \psi_j^w \in \{0,1\}, y_j \in \mathbb{N}, t_i, a_j^w, d_j^w \in \mathbb{R}$$