Minimum Spawning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

October 2018

- Problem definition
 - Concepts
 - Use cases
- 2 Algorithms
 - Prim
 - Kruskal
 - Borůvka (Sollin)
 - Others
- 3 Environment
- 4 Benchmarking
 - Reference, baseline

Problem definition

The MST problem

Concepts

(Somewhat) realistic use-cases and input sets?

- G(n,p)
- Preferential attachment
 - Social networks

m uskal růvka (Sollin) hers

Algorithms

Prim Kruskal Borůvka (Sollin) Others

Prim

Prim Kruskal Borůvka (Sollin) Others

Kruskal

Prim Kruskal Borůvka (Sollin) Others

Borůvka (Sollin)

Prim Kruskal Borůvka (Sollin) Others

A few ideas

Correctness

How to verify correctness of the parallelization?

Environment

Architecture

EULER Cluster

Xeon E $x,x \in \{3,5,7\}$; x86_64 architecture

Source: https://scicomp.ethz.ch/wiki/Euler

Tools

C++, OMP : shared memory

Reference, baseline

Benchmarking

How to argue about performance (bounds, what to compare to?)

 ${\tt https://spcl.inf.ethz.ch/Research/Performance/LibLSB/}$

