### (12)

## **EUROPÄISCHE PATENTANMELDUNG**

- (1) Anmeldenummer: 95101136.0
- 2 Anmeldetag: 27.01.95

(1) Int. Cl.<sup>6</sup>: **C07D 207/38**, C07D 209/54, C07F 9/572, C07D 491/10, C07D 495/10, C07D 401/12, C07D 409/12, C07D 407/12, A01N 43/36, A01N 43/38

- Priorität: 09.02.94 DE 4404001 06.09.94 DE 4431730
- Veröffentlichungstag der Anmeldung: 23.08.95 Patentblatt 95/34
- Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL
- (1) Anmelder: BAYER AG

D-51368 Leverkusen (DE)

- (2) Erfinder: Fischer, Dr. Reiner **Nelly Sachs Strasse 23** D-40789 Monheim (DE)
  - Erfinder: Bretschneider, Dr. Thomas

Talstrasse 29b D-53797 Lohmar (DE) Erfinder: Krüger, Dr. Bernd-Wieland

Am Vorend 52

D-51467 Bergisch Gladbach (DE)

Erfinder: Ruther, Dr. Michael

Grabenstrasse 23 D-40789 Monhelm (DE)

Erfinder: Erdelen, Dr. Christoph

**Unterbüscherhof 15** 

D-42799 Leichlingen (DE)

Erfinder: Wachendorff-Neumann, Dr. Ulrike

Krischerstrasse 81 D-40789 Monhelm (DE)

Erfinder: Santel, Dr. Hans-Joachim

Grünstrasse 9A

D-51371 Leverkusen (DE) Erfinder: Dollinger, Dr. Markus **Burscheider Strasse 154b** 

**(I)** 

D-51381 Leverkusen (DE)

- Substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate.
- Die Erfindung betrifft neue 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)



in welcher

die in der Beschreibung angegebene Bedeutung haben, A, B, X, Y und G mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als Schädlingsbekämpfungsmittel.

Die Erfindung betrifft neue 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, insbesondere als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenylpyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger (Liebigs Ann. Chem. 1985 1095) synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A-0 262 399 und GB-2 266 888-A werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist. Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-355 599 und EP-415 211) sowie substituierte mono-cyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-377 893 und EP-442 077).

Weiterhin bekannt sind polycyclische 3-Arylpyrrolidin-2,4-dion-Derivate (EP-442 073) sowie 1H-3-Arylpyrrolidin-dion-Derivate (EP-456 063 und EP-521 334).

Es wurden nun neue substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

30 gefunden, in welcher

15

20

25

35

40

Α

für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteroatom unterbrochenes, gegebenenfalls substituiertes Cycloalkyl oder jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

В

für Wasserstoff Alkyl oder Alkoxyalkyl steht, oder

A und B

gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten gegebenenfalls durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten Cyclus stehen,

Χ

für Halogen oder Alkyl steht,

Y fi

für Halogen oder Alkyl steht,

G

für Wasserstoff (a) oder für eine der Gruppen

45

$$R^{1}$$
 (b),  $R^{2}$  (c),  $SO_{2}-R^{3}$  (d),  $R^{5}$  (e),

50

E (f) oder

|            |                                   | steht,                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Ε                                 | für ein Metallionäquivalent oder ein Ammoniumion steht,                                                                                                                                                                                                                                                                                                               |
|            | L und M                           | jeweils für Sauerstoff oder Schwefel stehen,                                                                                                                                                                                                                                                                                                                          |
| 5          | R¹                                | für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht, |
| 10         | H2                                | für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,                                                                                                                                                                             |
|            | R³, R⁴ und R⁵                     | unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,                                                                                                                 |
| 15         | R <sup>6</sup> und R <sup>7</sup> | unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen,      |
| 20         | Unter Einbeziel                   | laß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen. hung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G nicht hauptsächlichen Strukturen (la) bis (lg):                                                                                                                                              |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 25         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 30         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 35         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 40         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 45         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| <b>-</b> 0 |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 50         |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                   |                                                                                                                                                                                                                                                                                                                                                                       |

(Ia)

worin

15

20

25

30

35

A, B, E, L, M, X, Y, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup> und R<sup>7</sup> die oben angegebenen Bedeutungen besitzen.

Aufgrund eines oder mehrerer Chiralitätszentren fallen die Verbindungen der Formel (la) - (lg) im allgemeinen als Stereoisomerengemisch an, die gegebenenfalls in Üblicher Art und Weise getrennt werden können. Sie können sowohl in Form ihrer Diastereomerengemische als auch als reine Diastereomere oder Enantiomere verwendet werden. Im folgenden wird der Einfachheit halber stets von Verbindungen der Formel (la) bis (lg) gesprochen, obwohl sowohl die reinen Verbindungen, als auch die Gemische mit unterschiedlichen Anteilen an isomeren, enantiomeren und stereomeren Verbindungen gemeint sind.

Weiterhin wurde gefunden, daß man die neuen substituierten 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält.

(A) Man erhält 1H-3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (la)

50

45

in welcher

15

30

35

40

45

A, B, X und Y die oben angegebene Bedeutung haben, wenn man

N-Acylaminosäureester der Formel (II)

$$\begin{array}{c|c}
CO_2R^8 \\
A \longrightarrow B \\
NH \\
O
\end{array}$$
(II)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, und

R<sup>8</sup> für Alkyl, inbesondere C<sub>1</sub>-C<sub>10</sub>-Alkyl steht, in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert; oder

(B) man erhält Verbindungen der Formel (Ib)

50 in welcher

A, B, X, Y und R¹ die oben angegebene Bedeutung haben, wenn man Verbindungen der Formel (la),

$$\begin{array}{c} A & H \\ B & N \\ O \\ HO \\ X & Y \end{array}$$
 (Ia)

in welcher

5

10

15

20

25

30

35

40

45

50

55

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

in welcher

R1 die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

β) mit Carbonsäureanhydriden der Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R1 die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

(C) man erhält Verbindungen der Formel (lc-a)

in welcher

A, B, X, Y und R<sup>2</sup> die oben angegebene Bedeutung haben,

und

M für Sauerstoff oder Schwefel steht, wenn man Verbindungen der Formel (la)

in welcher

5

10

15

20

30

35

45

50

55

A, B, X und Y die oben angegebene Bedeutung haben, mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V)

R<sup>2</sup>-M-CO-CI (V)

in welcher

R<sup>2</sup> und M die oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

25 ode

(D) man erhält Verbindungen der Formel (Ic-b)

40 in welcher

A, B, R<sup>2</sup>, X und Y die oben angegebene Bedeutung haben und

M für Sauerstoff oder Schwefel steht, wenn man Verbindungen der Formel (la)

$$\begin{array}{c} A & H \\ B \longrightarrow N \\ O \\ X \longrightarrow Y \end{array}$$
 (Ia)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

a) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

 $\begin{array}{c}
CI \longrightarrow M - R^2 \\
S
\end{array} (VI)$ 

10

15

5

in welcher

M und R<sup>2</sup> die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R2-Hal (VII)

20

in welcher

R<sup>2</sup> die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder lod steht,

umsetzt;

oder

(E) man erhält Verbindungen der Formel (ld)

30

25

40

45

35

in welcher

A, B, X, Y und R<sup>3</sup> die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (la)

50

 $\begin{array}{c} X \\ X \\ X \end{array} \qquad \begin{array}{c} X \\ X \\ \end{array} \qquad \begin{array}{c} (Ia) \\ ($ 

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der Formel (VIII)

5 R3-SO<sub>2</sub>-CI (VIII)

in welcher

R<sup>3</sup> die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

(F) man erhält 3-Aryl-pyrrolidin-2,4-dione der Formel (le)

15

20

25

10

in welcher

A, B, L, X, Y, R<sup>4</sup> und R<sup>5</sup> die oben angegebene Bedeutung haben,

30 wenn man

1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (la) bzw. deren Enole

35

$$\begin{array}{c} A & H \\ B & N \\ O \\ X & \end{array}$$
 (Ia)

45

40

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Phosphorverbindungen der Formel (IX)

50

55

$$Hal - P \stackrel{R^4}{\downarrow} (IX)$$

in welcher

L,  $R^4$  und  $R^5$  die oben angegebene Bedeutung haben und

Hal für Halogen, insbesondere Chlor oder Brom steht,

5 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels

umsetzt;

oder

(G) man erhält Verbindungen der Formel (If)

10

15

20

25

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, und

E für ein Metallionäquivalent oder für ein Ammoniumion steht, wenn man Verbindungen der Formel (la)

30

35

40

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

 $Me(OR^{10})_t$  (X)

50

45

$$R^{12} R^{10}$$

$$\downarrow \qquad \qquad (XI)$$

in welchen

Me für ein ein- oder zweiwertiges Metall wie beispielsweise Lithium, Kalium, Natrium,

Calcium oder Magnesium,

t für die Zahl 1 oder 2 und

R<sup>10</sup>, R<sup>11</sup> und R<sup>12</sup> unabhängig voneinander für Wasserstoff und/oder Alkyl

stehen.

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

(H) Ferner wurde gefunden, daß man Verbindungen der Formel (I-g)

10

15

5

in welcher

A, B, L, X, Y, R<sup>6</sup> und R<sup>7</sup> die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

25

35

30

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

 $R^6-N=C=L$  (XII)

45 in welcher

L und R<sup>6</sup> die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

50 β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

$$\begin{array}{c|c}
R^6 & \downarrow \\
N & CI \\
R^7 & CI
\end{array}$$
(XIII)

in welcher

5

10

20

25

30

35

40

45

50

55

L, R<sup>6</sup> und R<sup>7</sup> die oben angegebene Bedeutung haben gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

Weiterhin wurde gefunden, daß sich die neuen 1-H-3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Für die allgemeinen Formeln der vorliegenden Anmeldung gilt:

A steht bevorzugt für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>12</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Alkenyl, C<sub>1</sub>-C<sub>10</sub>-Alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio-C<sub>1</sub>-C<sub>6</sub>-alkyl, gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy und/oder Nitro substituiertes Aryl, 5- bis 6-gliedriges Hetaryl oder Aryl-C<sub>1</sub>-C<sub>6</sub>-alkyl.

B steht bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>12</sub>-Alkyl oder C<sub>1</sub>-C<sub>8</sub>-Alkoxyalkyl oder

A, B und das Kohlenstoffatom an das sie gebunden sind, stehen bevorzugt für einen gesättigten oder ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C<sub>3</sub>-C<sub>10</sub>-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C<sub>1</sub>-C<sub>10</sub>-Alkyl, C<sub>3</sub>-C<sub>10</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>10</sub>-Alkoxy, C<sub>1</sub>-C<sub>10</sub>-Alkylthio, Halogen oder Phenyl substituiert ist oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>bevorzugt</u> für einen C<sub>3</sub>-C<sub>6</sub>-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- und/oder Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünfbis achtgliedrigen Spirocyclus bildet oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen bevorzugt für einen C<sub>3</sub>-C<sub>8</sub>-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy oder Halogen substituierten gesättigten oder ungesättigten 3- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.

A steht besonders bevorzugt für Wasserstoff jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>10</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Alkenyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Alkylthio-C<sub>1</sub>-C<sub>6</sub>-alkyl, gegebenenfalls durch Fluor, Chlor, C<sub>1</sub>-C<sub>3</sub>-Alkyl oder C<sub>1</sub>-C<sub>3</sub>-Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl.

B steht besonders bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>10</sub>-Alkyl oder C<sub>1</sub>-C<sub>6</sub>-Alkoxyalkyl oder

A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders bevorzugt für einen gesättigten oder ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C<sub>3</sub>-C<sub>9</sub>-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Alkylthio, Fluor, Chlor oder Phenyl substituiert ist oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen besonders bevorzugt für einen C<sub>3</sub>-C<sub>6</sub>-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder Schwefelatome unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder

A,B und das Kohlenstoffatom, an das sie gebunden sind, stehen besonders bevorzugt für einen C<sub>3</sub>-C<sub>6</sub>-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C<sub>1</sub>-C<sub>3</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy, Fluor, Chlor oder Brom substituierten gesättigten oder ungesättigten 5- bis

- 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.
- A steht ganz besonders bevorzugt für Wasserstoff, gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>3</sub>-C<sub>4</sub>-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff-und/oder Schwefelatomen unterbrochen sein kann oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Pyrazolyl, Triazolyl, Indolyl, Thiazolyl, Thienyl oder Benzyl.
- B steht ganz besonders bevorzugt für Wasserstoff, C1-C8-Alkyl oder C1-C4-Alkoxyalkyl oder
  - A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C<sub>3</sub>-C<sub>8</sub>-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder
  - A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für einen C<sub>3</sub>-C<sub>6</sub>-Spirocyclus, der durch eine gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder
  - A,B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für einen C<sub>3</sub>-C<sub>6</sub>-Spirocyclus, bei dem zwei Substituenten gemeinsam, für einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.
  - X steht bevorzugt für Halogen oder C<sub>1</sub>-C<sub>6</sub>-Alkyl.

5

10

15

20

25

35

40

45

50

55

- X steht besonders bevorzugt für Fluor, Chlor, Brom oder C<sub>1</sub>-C<sub>4</sub>-Alkyl.
- X steht ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl.
- Y steht bevorzugt für Halogen oder C<sub>1</sub>-C<sub>6</sub>-Alkyl.
- 30 Y steht besonders bevorzugt für Fluor, Chlor, Brom oder C<sub>1</sub>-C<sub>4</sub>-Alkyl.
  - Y steht ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl.

Dabei gilt, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

G steht bevorzugt für Wasserstoff (a) oder für eine der Gruppen

E (f) oder

$$N \stackrel{R^6}{\longrightarrow} N \stackrel{R^7}{\longrightarrow} (g)$$

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht und L und M jeweils für Sauerstoff oder Schwefel stehen.

R¹ steht bevorzugt jeweils für gegebenenfalls durch Halogen s

steht bevorzugt jeweils für gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>20</sub>-Alkyl, C<sub>2</sub>-C<sub>20</sub>-Alkenyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Alkylthio-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Polyal-koxy-C<sub>1</sub>-C<sub>8</sub>-alkyl oder gegebenenfalls durch Halogen oder C<sub>1</sub>-C<sub>6</sub>-Alkyl substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff- und/oder Schwefelatom unterbrochen sein kann,

für gegebenenfalls durch Halogen, Nitro,  $C_1$ - $C_6$ -Alkyl,  $C_1$ - $C_6$ -Alkoxy,  $C_1$ - $C_6$ -Halogenalkyl,  $C_1$ - $C_6$ -Alkylthio oder  $C_1$ - $C_6$ -Alkylsulfonyl substituiertes Phe-

nyl.

5

10

15

20

25

30

35

40

45

50

55

Ε

L und M

R2

R3, R4 und R5

R6 und R7

G

für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy substituiertes Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl,

für gegebenenfalls durch Halogen und/oder C1-C6-Alkyl substituiertes 5- oder 6gliedriges Hetaryl,

für gegebenenfalls durch Halogen und/oder C<sub>1</sub>-C<sub>6</sub>-Alkyl substituiertes Phenoxy-C<sub>1</sub>-C<sub>6</sub>alkyl oder

für gegebenenfalls durch Halogen, Amino und/oder C<sub>1</sub>-C<sub>6</sub>-Alkyl substituiertes 5- oder 6-gliedriges Hetaryloxy-C<sub>1</sub>-C<sub>6</sub>-alkyl.

steht bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C<sub>3</sub>-C<sub>20</sub>-Alkenyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl,

für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, oder

für jeweils gegebenenfalls durch Halogen, Nitro, C1-C6-Alkyl, C1-C6-Alkoxy und/oder

C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl substituiertes Phenyl oder Benzyl.

stehen unabhängig voneinander bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy, C<sub>1</sub>-C<sub>8</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>8</sub>)-alkylamino, C<sub>1</sub>-C<sub>8</sub>-Alkylthio, C<sub>2</sub>-C<sub>8</sub>-Alkenylthio, C<sub>3</sub>-C<sub>7</sub>-Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituiertes Phenyl, Phenoxy oder

stehen unabhängig voneinander bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C1-C8-Alkyl, C3-C8-Cycloalkyl, C1-C8-Alkoxy, C3-C8-Alkenyl, C1-C8-Alkoxy-C1-C8-alkyl, für gegebenenfalls durch Halogen, C1-C8-Halogenalkyl, C1-C8-Alkyl und/oder C1-C8-Alkoxy substituiertes Phenyl, gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl und/oder C<sub>1</sub>-C<sub>8</sub>-Alkoxy substituiertes Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen C<sub>3</sub>-C<sub>6</sub>-Alkylenring.

steht besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

 $SO_{2}-R^{3}$   $P^{R^{4}}$  (c),  $R^{5}$ (b),

E (f) oder

 $N_{P}^{R^6}$  (g),

in welchen

für ein Metallionäquivalent oder ein Ammoniumion steht. ieweils für Sauerstoff oder Schwefel stehen.

R¹ steht besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>16</sub>-Alkyl, C<sub>2</sub>-C<sub>16</sub>-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>16</sub>-Alkylt-

hio-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl oder gegebenenfalls durch Halogen oder C<sub>1</sub>-C<sub>5</sub>-Alkyl substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls durch Halogen, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>3</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio oder C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl, C1-C3-Halogenalkoxy substituiertes Phenyl-C1-C4-alkyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Pyra-

zolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Phenoxy-C<sub>1</sub>-C<sub>5</sub>-alkyl oder

für gegebenenfalls durch Fluor, Chlor, Brom, Amino und/oder C1-C4-Alkyl substituiertes Pyridyloxy-C<sub>1</sub>-C<sub>5</sub>-alkyl, Pyrimidyloxy-C<sub>1</sub>-C<sub>5</sub>-alkyl oder Thiazolyloxy-C<sub>1</sub>-C<sub>5</sub>-alkyl. steht besonders bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C1- $C_{16}$ -Alkyl,  $C_{3}$ - $C_{16}$ -Alkenyl,  $C_{1}$ - $C_{6}$ -Alkoxy- $C_{1}$ - $C_{6}$ -alkyl,  $C_{1}$ - $C_{6}$ -Polyalkoxy- $C_{1}$ - $C_{6}$ -alkyl, für gegebenenfalls durch Halogen, C1-C3-Alkyl und/oder C1-C3-Alkoxy substituiertes C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl oder

für jeweils gegebenenfalls durch Halogen, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy und/oder C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl substituiertes Phenyl oder Benzyl.

stehen unabhängig voneinander besonders bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>6</sub>)-alkylamino, C<sub>1</sub>-C<sub>6</sub>-Alkylthio, C<sub>3</sub>-C<sub>4</sub>-Alkenylthio, C<sub>3</sub>-C<sub>6</sub>-Cycloalkylthio, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C1-C3-Alkoxy, C1-C3-Halogenalkoxy, C1-C<sub>3</sub>-Alkylthio, C<sub>1</sub>-C<sub>3</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>3</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.

stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C1-C6-Alkyl, C3-C6-Cycloalkyl, C1-C6-Alkoxy, C<sub>3</sub>-C<sub>6</sub>-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>5</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>5</sub>-Alkyl und/oder C<sub>1</sub>-C<sub>5</sub>-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C5-Alkyl, C1-C5-Halogenalkyl und/oder C1-C5-Alkoxy substituiertes Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C<sub>3</sub>-C<sub>6</sub>-Alkylenring.

steht ganz besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

$$R^{1}$$
 (b),  $R^{2}$  (c),  $SO_{2}R^{3}$   $R^{5}$  (e)

E (f) oder

 $N \stackrel{R^{\circ}}{\searrow} (g),$ 

in welcher für ein Metallionäquivalent oder ein Ammoniumion steht und

ieweils für Sauerstoff oder Schwefel stehen.

steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>14</sub>-Alkyl, C<sub>2</sub>-C<sub>14</sub>-Alkenyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylthio- $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_4$ -Polyalkoxy- $C_1$ - $C_4$ -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder tert.-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C<sub>1</sub>-C<sub>3</sub>-alkyl,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, Thienyl, Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl,

für gegebenenfalls durch Fluor, Chlor, Methyl und/oder Ethyl substituiertes Phenoxy-C1-C4-alkyl, oder

10

15

20

5

R3, R4 und R5

R6 und R7

G 25

35

30

40

Ε

R¹

L und M

45

50

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Pyrimidyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl oder Thiazolyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl.  $R^2$ steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>14</sub>-Alkyl, C<sub>3</sub>-C<sub>14</sub>-Alkenyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl. 5 für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C3-C6-Cvcloalkvl. oder für jeweils gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl. R3, R4 und R5 10 stehen unabhängig voneinander ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C1-C4)-alkylamino, C1-C4-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C<sub>1</sub>-C<sub>2</sub>-Alkoxy, C<sub>1</sub>-C<sub>2</sub>-Fluoralkoxy, C<sub>1</sub>-C<sub>2</sub>-Alkylthio, C<sub>1</sub>-C<sub>2</sub>-Fluoralkylthio, C<sub>1</sub>-C<sub>3</sub>-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio. R<sup>6</sup> und R<sup>7</sup> stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, für jeweils 15 gegebenenfalls durch Fluor, Chlor, Brom substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>3</sub>-C<sub>4</sub>-Alkenyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und/oder C1-C4-Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenen-20 falls durch Sauerstoff oder Schwefel unterbrochenen C4-C6-Alkylenring. In den angegebenen Definitionen können gesättigte oder ungesättigte Alkylreste, auch in Verbindung mit Heteroatomen, wie z.B. Alkoxy oder Alkylthio, soweit möglich jeweils geradkettig oder verzweigt sein. Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend. Erfindungsgemäß bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt. Erfindungsgemäß besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in 30 welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt. Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination dieser vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen Im einzelnen seien außer bei den bei Herstellungsbeispielen genannten Verbindungen die folgenden 35 Verbindungen der Formel (la) genannt: 40

55

45

Tabelle 1:

| Х  | Y               | A                               | В |
|----|-----------------|---------------------------------|---|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н |

# Fortsetzung Tabelle 1:

| ٠, | • |  |
|----|---|--|
|    |   |  |

| Х  | Y               | A                               | В                             |
|----|-----------------|---------------------------------|-------------------------------|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub> | Δ_                              | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | $\bigcirc$                      | CH <sub>3</sub>               |

EP 0 668 267 A1

| 5          | Х               | Y  | A                               | В                             |
|------------|-----------------|----|---------------------------------|-------------------------------|
|            | CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | Н                             |
| 10         | CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | Н                             |
|            | CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| 15         | CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
|            | CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | Н                             |
| 20         | CH <sub>3</sub> | CI | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
|            | CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
|            | CH <sub>3</sub> | C1 | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
| 25         | CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | CH <sub>3</sub>               |
|            | CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| 30         | CH₃             | Cl | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
|            | CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| 35         | CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
|            | CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
|            | CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| 40         | CH <sub>3</sub> | Cl | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
|            | CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| <b>4</b> 5 | CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |

50

# Fortsetzung Tabelle 1:

| 5  |  |
|----|--|
| 10 |  |
|    |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |

| X               | Y               | A                                                                                                    | В                                                                |
|-----------------|-----------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| CH <sub>3</sub> | CI              |                                                                                                      | CH <sub>3</sub>                                                  |
| CH <sub>3</sub> | Cl              |                                                                                                      | CH <sub>3</sub>                                                  |
| CH <sub>3</sub> | Cl              | $\bigcirc$                                                                                           | CH <sub>3</sub>                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                   |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                   |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                   |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                   |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                   |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C                                                                  | )-(CH <sub>2</sub> ) <sub>2</sub> -                              |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                |                                                                  |
| Cl              | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                               |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                                  |
| Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC                                                                | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |

# Fortsetzung Tabelle 1:

| _ |  |
|---|--|
| o |  |
| - |  |
|   |  |
|   |  |

| Х  | Y               | A                                                                                                      | В                                                                |
|----|-----------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                                  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                                 | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                                 | <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                                 | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-O                                                                | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |                                                                  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |                                                                  |
| CI | CH₃             | -сн <sub>2</sub> сн                                                                                    | (CH <sub>2</sub> ) <sub>2</sub> —CH—                             |
| Cl | CH <sub>3</sub> | -CH₂-CH<br>(CH                                                                                         |                                                                  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH(CH <sub>2</sub> ) <sub>2</sub>                                                  |                                                                  |

# Fortsetzung Tabelle 1:

| 5 |  |
|---|--|
| _ |  |

| X               | Y  | A                                                                                                  | В                                                                |
|-----------------|----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH <sub>2</sub> ) <sub>5</sub> - |                                                                  |
| CH <sub>3</sub> | Cl |                                                                                                    |                                                                  |
| CH <sub>3</sub> | Cl |                                                                                                    |                                                                  |
| CH <sub>3</sub> | Cl | -(CH                                                                                               | I <sub>2</sub> ) <sub>6</sub> -                                  |
| CH <sub>3</sub> | Cl | -(CH                                                                                               | I <sub>2</sub> ) <sub>7</sub> -                                  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -0                                                                | )-(CH <sub>2</sub> ) <sub>2</sub> -                              |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S                                                                | S-(CH <sub>2</sub> ) <sub>2</sub> -                              |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                             |                                                                  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CH(                                                              | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC                                                              | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -CHC                                                              | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C                                                            | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                             | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                             | <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC                                                             | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-O                                                            | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |

Α

В

## Fortsetzung Tabelle 1:

Y

 $\mathbf{X}$ 

| 1 | v |  |
|---|---|--|
|   |   |  |
|   |   |  |

| 1 | 0 |  |
|---|---|--|

15

20

25

30

35

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ib) genannt:

# Tabelle 2:

45

40

50

EP 0 668 267 A1

|   | Fortsetzur | ig: Tabelle     |
|---|------------|-----------------|
|   | х          | Y               |
| 5 | CI         | CH <sub>3</sub> |

| х       | Y               | A                               | В                             | $\mathbb{R}^1$  |
|---------|-----------------|---------------------------------|-------------------------------|-----------------|
| Cl      | CH <sub>3</sub> | CH <sub>3</sub>                 | н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| C1      | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C₄H <sub>9</sub>                | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | СН3             |
| Cl · ·· | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | Δ_                              | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl      | CH <sub>3</sub> | $\bigcirc$                      | CH <sub>3</sub>               | CH <sub>3</sub> |

Fortsetzung: Tabelle 2

|    | Fortsetzung: 7    | abelle 2 |                                 |                               |                 |
|----|-------------------|----------|---------------------------------|-------------------------------|-----------------|
| 5  | x                 | Y        | A                               | В                             | R <sup>1</sup>  |
|    | CH <sub>3</sub>   | Cl       | CH <sub>3</sub>                 | Н                             | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | C <sub>2</sub> H <sub>5</sub>   | Н                             | CH <sub>3</sub> |
| 10 | CH <sub>3</sub>   | Cl       | C <sub>3</sub> H <sub>7</sub>   | Н                             | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | i-C <sub>3</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub> |
| 15 | CH <sub>3</sub>   | Cl       | C₄H <sub>9</sub>                | Н                             | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | i-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | s-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| 20 | CH <sub>3</sub>   | Cl       | t-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | CI       | CH <sub>3</sub>                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| 25 | CH <sub>3</sub>   | Cl       | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
| 30 | CH <sub>3</sub>   | Cl       | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| 30 | CH <sub>3</sub>   | Cl       | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | i-C <sub>4</sub> H <sub>9</sub> | CH₃                           | CH <sub>3</sub> |
| 35 | CH <sub>3</sub>   | Cl       | s-C <sub>4</sub> H <sub>9</sub> | CH₃                           | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | CI       | t-C <sub>4</sub> H <sub>9</sub> | CH₃                           | CH <sub>3</sub> |
| 40 | CH <sub>3</sub>   | Cl ·     | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub> |
|    | CH <sub>3</sub>   | Cl       | Δ_                              | CH <sub>3</sub>               | CH <sub>3</sub> |
| 45 | CH <sub>3</sub> . | CI<br>·  |                                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| 50 | CH <sub>3</sub>   | Cl       |                                 | CH <sub>3</sub>               | CH <sub>3</sub> |

55

EP 0 668 267 A1

|     | x        | Y               | A                                                                  | В                                                 | $\mathbb{R}^1$  |
|-----|----------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|-----------------|
| 5   | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                 |                                                   | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                 | CH <sub>3</sub>                                   |                 |
| 7.0 | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                 |                                                   | СН3             |
| 10  | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                 |                                                   | СН3             |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                 |                                                   | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(C                             | H <sub>2</sub> ) <sub>2</sub> -                   | CH <sub>3</sub> |
| 15  | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(Cl                            | H <sub>2</sub> ) <sub>2</sub> -                   | СН3             |
|     | Cl       | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(                             | CH <sub>2</sub> ) <sub>3</sub> -                  | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -              | -(CH <sub>2</sub> ) <sub>2</sub> -                | CH <sub>3</sub> |
| 20  | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub>  | -(CH <sub>2</sub> ) <sub>2</sub> -                | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub>  | -(CH <sub>2</sub> ) <sub>2</sub> -                | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H             | <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 25  | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>2</sub>               | 3-(CH <sub>2</sub> ) <sub>2</sub> -               | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H              | <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H              | <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 30  | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> F            | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> |
|     | Cl       | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                | CH <sub>3</sub> |
| 05  | Cl       | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -              | -(CH <sub>2</sub> ) <sub>2</sub> -                | CH <sub>3</sub> |
| 35  | Cl       | CH <sub>3</sub> | _СН₂—СН—(СН₂).                                                     | <del>,</del> —¢н—                                 | CH <sub>3</sub> |
|     |          |                 |                                                                    |                                                   |                 |
| 40  | -        |                 | └──CH <sub>2</sub>                                                 |                                                   |                 |
| 40  | C1       | CH <sub>3</sub> | -CH₂-CHCH                                                          | I−CH <sub>2</sub> −−                              | CH <sub>3</sub> |
|     |          |                 | $\lfloor (CH_2)_4 \rfloor$                                         |                                                   |                 |
| 45  | Cl       | CH <sub>3</sub> | —СН <sub>2</sub> —СН——СН                                           | I—(CH <sub>2</sub> );—                            | CH <sub>3</sub> |
|     |          |                 | !!!                                                                |                                                   |                 |
|     | <u> </u> | <u>l</u>        | (CH <sub>2</sub> ) <sub>3</sub>                                    | •                                                 | ·               |

50

EP 0 668 267 A1

|    | Х               | Y        | A B                                                                                                     | $\mathbb{R}^1$  |
|----|-----------------|----------|---------------------------------------------------------------------------------------------------------|-----------------|
| 5  | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | CH <sub>3</sub> |
| 10 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
| 15 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
|    | CH <sub>3</sub> | CI       | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| 20 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | CH <sub>3</sub> |
| 25 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | CH <sub>3</sub> |
| 20 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 30 | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> |
|    | CH <sub>3</sub> | Cl       | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 35 | CH <sub>3</sub> | Cl       | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| 33 | CH <sub>3</sub> | Cl       | —СН₂—СН—(СН₂)₂—СН—                                                                                      | CH <sub>3</sub> |
|    | ļ               |          | CH <sub>2</sub>                                                                                         |                 |
| 40 | CVI             | - CI     | •                                                                                                       | CIT             |
|    | CH <sub>3</sub> | Cl       | −CH <sub>2</sub> −CH−CH <sub>2</sub> −                                                                  | CH <sub>3</sub> |
|    |                 |          | (CH <sub>2</sub> )4                                                                                     |                 |
| 45 | CH <sub>3</sub> | Cl       | -CH <sub>2</sub> -CH-CH-(CH <sub>2</sub> ) <sub>2</sub> -                                               | CH <sub>3</sub> |
|    |                 |          |                                                                                                         |                 |
|    |                 | <u> </u> | C(CH <sub>2</sub> ) <sub>3</sub>                                                                        | <u> </u>        |

50

|    | etzung: Tabelle 2 |                                 | 7                             |                                 |
|----|-------------------|---------------------------------|-------------------------------|---------------------------------|
| X  | Y                 | A                               | В                             | R <sup>1</sup>                  |
| Cl | CH <sub>3</sub>   | CH <sub>3</sub>                 | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | C <sub>2</sub> H <sub>5</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | C <sub>3</sub> H <sub>7</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | i-C <sub>3</sub> H <sub>7</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | C <sub>4</sub> H <sub>9</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | i-C <sub>4</sub> H <sub>9</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | s-C <sub>4</sub> H <sub>9</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | t-C <sub>4</sub> H <sub>9</sub> | н                             | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | CH <sub>3</sub>                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | i-C <sub>3</sub> H <sub>7</sub> |
| CI | CH <sub>3</sub>   |                                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Çl | CH <sub>3</sub>   |                                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub>   |                                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |

EP 0 668 267 A1

| Ortocaang. 1    | WO 0110 Z |                                 |                               |                                 |
|-----------------|-----------|---------------------------------|-------------------------------|---------------------------------|
| X               | Y         | A                               | В                             | R <sup>1</sup>                  |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | Н                             | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | CH₃                           | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C₄H <sub>9</sub>                | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | СӉ₃                           | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | ·Cl       | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | $\bigcirc$                      | CH <sub>3</sub>               | i-C <sub>3</sub> H <sub>7</sub> |

EP 0 668 267 A1

|    | x  | Y               | A                                                    | В                                                                 | R <sup>1</sup>                  |
|----|----|-----------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|
| 5  | CI | CH <sub>3</sub> | -(CI                                                 | H <sub>2</sub> ) <sub>2</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | H <sub>2</sub> ) <sub>4</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | Cl | CH <sub>3</sub> |                                                      | H <sub>2</sub> ) <sub>5</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | H <sub>2</sub> ) <sub>6</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | H <sub>2</sub> ) <sub>7</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | Cl | CH <sub>3</sub> |                                                      | O-(CH <sub>2</sub> ) <sub>2</sub> -                               | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | S-(CH <sub>2</sub> ) <sub>2</sub> -                               | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | Cl | CH <sub>3</sub> |                                                      | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | Cl | CH <sub>3</sub> |                                                      | $-C_3H_7-(CH_2)_2-$                                               | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | Cl | CH <sub>3</sub> |                                                      | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                                      | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | Cl | CH <sub>3</sub> |                                                      | $H_3)_2$ -(CH <sub>2</sub> ) <sub>2</sub> -                       | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -CH <sub>2</sub> CH(C                                |                                                                   | i-C <sub>3</sub> H <sub>7</sub> |
| 40 |    |                 |                                                      | CH <sub>2</sub>                                                   |                                 |
|    | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> )              | -CH-CH <sub>2</sub>                                               | i-C <sub>3</sub> H <sub>7</sub> |
| 45 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>3</sub> | -CH(CH <sub>2</sub> ) <sub>2</sub>                                | i-C <sub>3</sub> H <sub>7</sub> |

55

EP 0 668 267 A1

| X               | Y  | A B                                                                                                     | R <sup>1</sup>                  |
|-----------------|----|---------------------------------------------------------------------------------------------------------|---------------------------------|
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH(CH <sub>2</sub> ) <sub>2</sub> -CH<br>CH <sub>2</sub>                              | i-C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | CI | -CH <sub>2</sub> -CH                                                                                    | i-C <sub>3</sub> H <sub>7</sub> |
| СН3             | Cl | $-CH_{2}$ — $CH$ — $CH$ — $(CH_{2})_{2}$ — $(CH_{2})_{3}$                                               | i-C <sub>3</sub> H <sub>7</sub> |

|  | Fortsetzung | : Tabelle | 2 |
|--|-------------|-----------|---|
|--|-------------|-----------|---|

|    | ronsetzung. | auche Z         |                                 |                               |                                 |
|----|-------------|-----------------|---------------------------------|-------------------------------|---------------------------------|
|    | х           | Y               | A                               | В                             | R <sup>1</sup>                  |
| 5  | Cl          | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| 10 | Cl          | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
|    | CI          | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| 15 | Cl          | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| .• | Cl          | CH₃             | i-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| 20 | Cl          | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | CH <sub>3</sub>                 | CH₃                           | t-C <sub>4</sub> H <sub>9</sub> |
| 25 | Cl          | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH₃                           | t-C <sub>4</sub> H <sub>9</sub> |
| 30 | Cl          | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| 35 | Cl          | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| 40 | CI          | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | t-C <sub>4</sub> H <sub>9</sub> |
| 40 | Cl          | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl          | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| 45 | Cl          | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| 50 | Cl          | CH <sub>3</sub> | <u></u>                         | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |

| Fortsetzung: | Tabelle | 2 |
|--------------|---------|---|

| ortsetzung. I   | 400110 = |                                 |                               |                                 |
|-----------------|----------|---------------------------------|-------------------------------|---------------------------------|
| х               | Y        | A                               | В                             | R <sup>1</sup>                  |
| CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | Н                             | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl ·     | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl .     | Δ_                              | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl       |                                 | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |
| СН3             | Cl       | $\bigcirc$                      | CH <sub>3</sub>               | t-C <sub>4</sub> H <sub>9</sub> |

EP 0 668 267 A1

| 5  | X   | Y               | A                                                                                                                                                                                                 | В                                                                | R <sup>1</sup>                  |
|----|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                                                                                                                |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 10 | ci  | CH <sub>3</sub> | -(CF                                                                                                                                                                                              | H <sub>2</sub> ) <sub>5</sub> -                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                                                                                                                |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                                                                                                                |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 15 | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                             |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S                                                                                                                                                               | S-(CH <sub>2</sub> ) <sub>2</sub> -                              | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                                                                                                            |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 20 | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                            |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                              |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                              |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 25 | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -<br>-(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> |                                                                                                                                                                                                   |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| :  | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                             |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 30 | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                             |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                           |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                             |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 35 | Cl  | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCI                                                                                                                                                                           | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | t-C <sub>4</sub> H <sub>9</sub> |
|    | Cl  | CH <sub>3</sub> | −CH <sub>2</sub> −CH−(C                                                                                                                                                                           | H <sub>2</sub> ) <sub>2</sub> —ÇH—                               | t-C <sub>4</sub> H <sub>9</sub> |
|    |     |                 |                                                                                                                                                                                                   |                                                                  |                                 |
| 40 | Cl. | CH <sub>3</sub> | -СH <sub>2</sub> -СН                                                                                                                                                                              |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |
|    |     |                 | (CH <sub>2</sub> )                                                                                                                                                                                |                                                                  |                                 |
| 45 | Cl  | CH <sub>3</sub> | -CH <sub>2</sub> CH                                                                                                                                                                               |                                                                  | t-C <sub>4</sub> H <sub>9</sub> |

50

Fortsetzung: Tabelle 2

| 5  | X               | Y  | A B                                                                                                     | R <sup>1</sup>                  |
|----|-----------------|----|---------------------------------------------------------------------------------------------------------|---------------------------------|
| Ĭ  | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
| 10 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
| 15 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | t-C <sub>4</sub> H <sub>9</sub> |
| 20 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | t-C <sub>4</sub> H <sub>9</sub> |
| 25 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-С <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | t-C <sub>4</sub> H <sub>9</sub> |
| 30 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | t-C <sub>4</sub> H <sub>9</sub> |
| 35 | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | t-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl | -CH₂-CH-(CH₂)₂-CH-                                                                                      | t-C <sub>4</sub> H <sub>9</sub> |
|    |                 |    | CH <sub>2</sub>                                                                                         |                                 |
| 40 | CVI             |    |                                                                                                         | 4 C II                          |
|    | CH₃             | Cl | —СН₂—СН——СН—СН₂—<br>                                                                                    | t-C <sub>4</sub> H <sub>9</sub> |
|    |                 |    | └_(CH <sub>2</sub> )₄┘                                                                                  |                                 |
| 45 | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH-CH-(CH <sub>2</sub> ) <sub>2</sub> -                                               | t-C <sub>4</sub> H <sub>9</sub> |
|    |                 |    | (CH <sub>2</sub> ) <sub>3</sub>                                                                         |                                 |
|    |                 | I  | 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                 | 1                               |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ic) genannt:

55

EP 0 668 267 A1

(Ic)

Tabelle 3:

|    | х     | Y               | A                               | В                               | L   | M | R <sup>2</sup>                  |
|----|-------|-----------------|---------------------------------|---------------------------------|-----|---|---------------------------------|
| 15 | Cl    | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                               | O   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 20 | Cl    | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | C₄H <sub>9</sub>                | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 25 | Cl    | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub> . |
| 25 | Cl    | CH <sub>3</sub> | t-C₄H <sub>9</sub>              | Н                               | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 30 | Cl    | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 35 | Cl    | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | CI    | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | .C1 · | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> . | .0  | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 40 | Cl    | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub>   | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | Cl    | CH <sub>3</sub> |                                 | CH <sub>3</sub>                 | 0   | 0 | C <sub>2</sub> H <sub>5</sub>   |
| 45 | CI    | CH₃             |                                 | CH <sub>3</sub>                 | O . | 0 | C <sub>2</sub> H <sub>5</sub>   |
|    | CI    | CH <sub>3</sub> |                                 | CH <sub>3</sub>                 | ο . | 0 | C <sub>2</sub> H <sub>5</sub>   |

55

Fortsetzung: Tabelle 3

|    | Fortsetzung: I  | abelle 3 |                                 |                               |   |   |                               |
|----|-----------------|----------|---------------------------------|-------------------------------|---|---|-------------------------------|
|    | х               | Y        | A                               | В                             | L | М | R <sup>2</sup>                |
| 5  | CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | CI       | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 10 | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 15 | CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 20 | CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 25 | CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 30 | CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 35 | CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | O | 0 | C <sub>2</sub> H <sub>5</sub> |
| 40 | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
|    | CH <sub>3</sub> | Cl       | Δ_                              | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 45 | CH <sub>3</sub> | Cl       |                                 | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |
| 8  | CH <sub>3</sub> | Cl       |                                 | CH <sub>3</sub>               | 0 | 0 | C <sub>2</sub> H <sub>5</sub> |

55

EP 0 668 267 A1

|      | X    | Y               | A                                     | В                                                                  | L | М  | R <sup>2</sup>                |
|------|------|-----------------|---------------------------------------|--------------------------------------------------------------------|---|----|-------------------------------|
| 5    | Cl   | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>2</sub> -                                   | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>4</sub> -                                   | 0 | 0  | $C_2H_5$                      |
| 3    | Cl   | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>5</sub> -                                   | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 10   | Cl   | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>6</sub> -                                   | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>7</sub> -                                   | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 15   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 15   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -CH <sub>2</sub> -CH                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0 | 0  | $C_2H_5$                      |
| 20   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -Cl  | HCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 20   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | IC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | IC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 25   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | i-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0_ | C <sub>2</sub> H <sub>5</sub> |
| 25   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 30   | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi | -OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(  | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 35   | Cl   | CH <sub>3</sub> | -CH <sub>2</sub> -(CH                 | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      | Cl   | CH <sub>3</sub> | _                                     | -(CH <sub>2</sub> ) <sub>2</sub> -CH-                              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|      |      |                 |                                       | —CH₂—                                                              |   |    |                               |
| 40 . | Cl . | CH <sub>3</sub> |                                       | CH-CH <sub>2</sub>                                                 | 0 | O  | C₂H₅                          |
| 45   | Cl   | CH <sub>3</sub> | -сн <sub>2</sub> -сн-                 | CH-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0  | C₂H₅                          |

50

EP 0 668 267 A1

|             | Х                | Y  | A                                                    | В                                                              | L | M  | R <sup>2</sup>                |
|-------------|------------------|----|------------------------------------------------------|----------------------------------------------------------------|---|----|-------------------------------|
| 5           | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> )                                  | 2-                                                             | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> )                                  | 4-                                                             | 0 | 0  | $C_2H_5$                      |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> )                                  | 5                                                              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 10          | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> )                                  | 6                                                              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> )                                  | 7                                                              | 0 | 0  | $C_2H_5$                      |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(                | CH <sub>2</sub> ) <sub>2</sub>                                 | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 15          | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(                | CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub>                  | -(CH <sub>2</sub> ) <sub>3</sub> -                             | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH               | I <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 20          | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H | I <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> F | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 25          | CH <sub>3</sub>  | Ci | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCl              | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub>  | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub>  | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 30          | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC             | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             | CH <sub>3</sub>  | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub>  | ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| , , , , , , | CH <sub>3</sub>  | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> )               | ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 35          | CH <sub>3</sub>  | Cl | —СН <u>-</u> ÇН—(С                                   | CH <sub>2</sub> ) <sub>2</sub> —CH—                            | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
|             |                  |    |                                                      |                                                                |   |    |                               |
| 40          | .CH <sub>3</sub> | Cl | СН <sub>2</sub> СН                                   | -ÇH−CH <sub>2</sub> —                                          | 0 | Ο. | C <sub>2</sub> H <sub>5</sub> |
| A           |                  |    | CH <sub>2</sub> )4                                   |                                                                |   |    |                               |
|             | CH <sub>3</sub>  | Cl | -CH₂-CH(                                             | CH-(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | 0  | C <sub>2</sub> H <sub>5</sub> |
| 45          |                  |    | (CH <sub>2</sub> ) <sub>3</sub>                      |                                                                |   |    |                               |

50

|    | Fortsetzung: | Γabelle 3       |                                 |                               |    |   |                                 |
|----|--------------|-----------------|---------------------------------|-------------------------------|----|---|---------------------------------|
|    | х            | Y               | A                               | В                             | L  | М | R <sup>2</sup>                  |
| 5  | Cl           | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | Cl           | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | Cl           | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | Cl           | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH₃             | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | Cl           | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | Cl           | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | Cl           | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 40 | Cl           | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 40 | Cl           | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl           | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 45 | Cl           | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | O. | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 50 | Cl           | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0  | 0 | i-C <sub>3</sub> H <sub>7</sub> |

|           | Fortsetzung: 7  | Tabelle 3       | }                               |                               |   |   |                                 |
|-----------|-----------------|-----------------|---------------------------------|-------------------------------|---|---|---------------------------------|
| _         | X               | Y               | A                               | В                             | L | М | R <sup>2</sup>                  |
| 5         | CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 10        | CH <sub>3</sub> | Cl              | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 13        | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 15        | CH <sub>3</sub> | Cl              | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| ·         | CH <sub>3</sub> | Cl              | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 20        | CH <sub>3</sub> | Cl              | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 25        | CH <sub>3</sub> | Cl              | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 30        | CH <sub>3</sub> | Cl              | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 35        | CH <sub>3</sub> | Cl              | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl <sub>.</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | Ö | i-C <sub>3</sub> H <sub>7</sub> |
| 40        | CH <sub>3</sub> | Cl              | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|           | CH <sub>3</sub> | Cl              | Δ_                              | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| <b>45</b> | CH <sub>3</sub> | Cl              |                                 | CH <sub>3</sub>               | 0 | 0 | i-C₃H <sub>7</sub>              |
| 50        | CH <sub>3</sub> | Cl              | $\frown$                        | CH <sub>3</sub>               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |

EP 0 668 267 A1

| 5  | X  | Y               | A                                     | В                                                                  | L | М | R <sup>2</sup>                  |
|----|----|-----------------|---------------------------------------|--------------------------------------------------------------------|---|---|---------------------------------|
| 3  | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>2</sub> -                                   | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>4</sub> -                                   | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>5</sub> -                                   | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>6</sub> -                                   | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>7</sub> -                                   | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -CH₂-CH                               | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -Cl  | HCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| :  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | HC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | HC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | i-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| :  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | IOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi | -OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(  | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CH                 | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | −CH <sub>2</sub> −CH−                 | -(CH <sub>2</sub> ) <sub>2</sub> -CH-                              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 40 | Cl | CH <sub>3</sub> | _                                     | CH-CH <sub>2</sub> -                                               | O | 0 | i-C <sub>3</sub> H <sub>7</sub> |
| 45 | Cl | CH <sub>3</sub> | -сн₂-сн-<br> <br> -сн₂-сн-            | CH-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |

50

EP 0 668 267 A1

|   | Х               | Y  | A                                                      | В                                                              | L | M | R <sup>2</sup>                  |
|---|-----------------|----|--------------------------------------------------------|----------------------------------------------------------------|---|---|---------------------------------|
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> )                                    | 2-                                                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> )                                    | 4 <b>~</b>                                                     | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> )                                    | 5"                                                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> )                                    | 6 <b>-</b>                                                     | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> )-                                   | 7-                                                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(                  | CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(                  | CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub>                    | -(CH <sub>2</sub> ) <sub>3</sub> -                             | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH                 | <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H   | I <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H   | I <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> l | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCI                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub>    | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub>    | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC               | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub>    | ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> )                 | <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | СН₃             | Cl | -CH <sub>2</sub> CH(C                                  | CH <sub>2</sub> ) <sub>2</sub> —CH—                            | 0 | 0 | i-C₃H <sub>7</sub>              |
| : | CH₃             | Cl | -СН <sub>2</sub> СН                                    | 1                                                              | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |
|   | CH <sub>3</sub> | Cl | -сн <sub>2</sub> снс                                   | CH—(CH <sub>2</sub> ) <sub>2</sub> —                           | 0 | 0 | i-C <sub>3</sub> H <sub>7</sub> |

|    | Fortsetzung: 7 | Tabelle 3       |                                 |                               |   |   |                                 |
|----|----------------|-----------------|---------------------------------|-------------------------------|---|---|---------------------------------|
|    | х              | Y               | A                               | В                             | L | М | R <sup>2</sup>                  |
| 5  | Cl             | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | Cl             | CH <sub>3</sub> | i-C₄H <sub>9</sub>              | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | CI             | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | Cl             | CH <sub>3</sub> | C₄H <sub>9</sub>                | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | i-C₄H <sub>9</sub>              | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | Cl             | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| •  | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 40 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl             | CH <sub>3</sub> | _                               | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 45 | Cl .           | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |

55

50

CH<sub>3</sub>

0

S

i-C<sub>3</sub>H<sub>7</sub>

CH<sub>3</sub>

Cl

Fortsetzung: Tabelle 3

|    | х               | Y    | A                               | В                             | L  | М | R <sup>2</sup>                  |
|----|-----------------|------|---------------------------------|-------------------------------|----|---|---------------------------------|
| 5  | CH <sub>3</sub> | Cl   | CH <sub>3</sub>                 | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | CH <sub>3</sub> | Cl   | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | CH <sub>3</sub> | Cl   | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | CH <sub>3</sub> | Cl   | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| ,  | CH <sub>3</sub> | Cl   | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | CH <sub>3</sub> | Cl   | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| (  | CH <sub>3</sub> | Cl   | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | CH <sub>3</sub> | Cl   | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | CH <sub>3</sub> | Cl   | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 40 | CH <sub>3</sub> | Cl . | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl   | Δ_                              | CH <sub>3</sub>               | 0  | S | i-C <sub>3</sub> H <sub>7</sub> |
| 45 | CH <sub>3</sub> | Cl   | 6                               | .CH <sub>3</sub>              | .0 | S | i-C <sub>3</sub> H <sub>7</sub> |

55

50

CH<sub>3</sub>

Cl

CH<sub>3</sub>

0

S

i-C<sub>3</sub>H<sub>7</sub>

EP 0 668 267 A1

| 5  | х  | Y               | A                                     | В                                                                  | L | М | R <sup>2</sup>                  |
|----|----|-----------------|---------------------------------------|--------------------------------------------------------------------|---|---|---------------------------------|
| 5  | Cl | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>2</sub> -                                   | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>4</sub> -                                   | o | S | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | Cl | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>5</sub> -                                   | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CI | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>6</sub> -                                   | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>7</sub> -                                   | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> |                                       | -S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -Cl  | HCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| \  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | HC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | HC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | i-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 7  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | IOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi | -OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(  | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | O | S | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CH                 | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | Cl | CH <sub>3</sub> | −CH <sub>2</sub> −ÇH−                 | -(CH <sub>2</sub> ) <sub>2</sub> -ÇH-                              | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    |    |                 |                                       | —CH₂                                                               |   |   |                                 |
| 40 | Cl | CH <sub>3</sub> | -CH₂-CH-                              | ——ÇH−CH <sub>2</sub> —                                             | O | S | i-C <sub>3</sub> H <sub>7</sub> |
|    |    |                 | L <sub>(C</sub>                       | H <sub>2</sub> ) <sub>4</sub>                                      |   |   |                                 |
| 45 | Cl | CH <sub>3</sub> | -CH₂-CH-                              | CH-(CH <sub>2</sub> ) <sub>2</sub>                                 | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    |    |                 | •                                     | F. A                                                               |   |   |                                 |

55

EP 0 668 267 A1

|    | X               | Y   | A                                                      | В                                                 | L | М | R <sup>2</sup>                  |
|----|-----------------|-----|--------------------------------------------------------|---------------------------------------------------|---|---|---------------------------------|
| 5  | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> )                                    | 2-                                                | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ),                                   | 4-                                                | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> )                                    | 5-                                                | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 10 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> )                                    | 6                                                 | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> )-                                   | 7                                                 | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -O-(                  | CH <sub>2</sub> ) <sub>2</sub> -                  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 15 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -S-(                  | CH <sub>2</sub> ) <sub>2</sub> -                  | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -CH <sub>2</sub> -CHCH <sub>3</sub> -                  | -(CH <sub>2</sub> ) <sub>3</sub> -                | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH                 | 3-(CH <sub>2</sub> ) <sub>2</sub> -               | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 20 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H   | I <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H   | I <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> l | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 25 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCI                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub>    | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub>    | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>2</sub>  | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    | CH <sub>3</sub> | Cl  | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> )  | ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 35 | CH <sub>3</sub> | Cl  | -CH <sub>2</sub> -(CHCH <sub>3</sub> )                 | <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
| 30 | CH <sub>3</sub> | Cl  | -СН₂ÇН(С                                               | H <sub>2</sub> ) <sub>2</sub> —ÇH—                | 0 | s | i-C <sub>3</sub> H <sub>7</sub> |
|    |                 |     | c                                                      | ;H <sub>2</sub>                                   |   |   |                                 |
| 40 | CH <sub>3</sub> | .Cl | −CH <sub>2</sub> −CH−−−                                | CH−CH₂—                                           | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    |                 |     | (CH <sub>2</sub> )                                     | ]                                                 |   |   |                                 |
| 45 | CH <sub>3</sub> | Cl  | _сн <del>,</del> _сн——с                                | CH—(CH <sub>2</sub> ) <sub>2</sub> —              | 0 | S | i-C <sub>3</sub> H <sub>7</sub> |
|    |                 |     | (CH <sub>2</sub> ) <sub>3</sub>                        |                                                   |   |   |                                 |

50

| (] | Fortsetzung: 7 | Tabelle 3       |                                 |                               |              |   |                                 |
|----|----------------|-----------------|---------------------------------|-------------------------------|--------------|---|---------------------------------|
|    | х              | Y               | A                               | В                             | L            | М | R <sup>2</sup>                  |
| 5  | Cl             | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 10 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 15 | Cl             | CH <sub>3</sub> | i-C₄H <sub>9</sub>              | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 20 | Cl             | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 25 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CI             | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 30 | Cl             | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 35 | Cl             | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 30 | Cl             | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| Ì  | Cl             | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 40 | Cl             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | Cl             | CH <sub>3</sub> | Δ_                              | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 45 | Cl .           | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0            | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | <u> </u>       |                 | <u> </u>                        |                               | <del> </del> | - | ļ                               |

55

50

CH<sub>3</sub>

Cl

CH<sub>3</sub>

0

0

s-C<sub>4</sub>H<sub>9</sub>

Fortsetzung: Tabelle 3

| ortsetzung:     | labelle 3 | )<br>                           |                               |   |   |                                 |
|-----------------|-----------|---------------------------------|-------------------------------|---|---|---------------------------------|
| х               | Y         | A                               | В                             | L | М | R <sup>2</sup>                  |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| СН3             | Cl        | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| СН3             | Cl        | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| CH <sub>3</sub> | Cl        | $\frown$                        | CH <sub>3</sub>               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |

EP 0 668 267 A1

|      | F F |                 |                                       |                                                                    |     |    |                                 |
|------|-----|-----------------|---------------------------------------|--------------------------------------------------------------------|-----|----|---------------------------------|
| _    | х   | Y               | A                                     | В                                                                  | L   | М  | R <sup>2</sup>                  |
| 5    | Cl  | CH <sub>3</sub> | -((                                   | CH <sub>2</sub> ) <sub>2</sub> -                                   | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>4</sub> -                                   | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 10   | Cl  | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>5</sub> -                                   | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 70   | Cl  | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>6</sub> -                                   | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(0                                   | CH <sub>2</sub> ) <sub>7</sub> -                                   | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 15   | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub>      | -O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 75   | Cl  | CH <sub>3</sub> |                                       | -S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -CH <sub>2</sub> -CH                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 20   | Cl  | CH <sub>3</sub> |                                       | HCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 20   | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CF  | IC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | HC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 25   | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | i-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | IOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| 30   | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi | -OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(  | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0_ | s-C <sub>4</sub> H <sub>9</sub> |
| 35   | Cl  | CH <sub>3</sub> | -CH <sub>2</sub> -(CH                 | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      | Cl  | CH <sub>3</sub> | —СН <del>2</del> —СН-                 | -(CH <sub>2</sub> ) <sub>2</sub> ÇН                                | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
| :    |     |                 |                                       | -CH <sub>2</sub>                                                   |     |    |                                 |
| 40 - | Cl  | CH <sub>3</sub> | —СН <sub>2</sub> —СН−                 | —ÇH−CH₂—                                                           | 0 " | Ó  | s-C <sub>4</sub> H <sub>9</sub> |
|      |     |                 | L <sub>(C</sub>                       | H <sub>2</sub> )4                                                  |     |    |                                 |
| 45   | Cl  | CH <sub>3</sub> | _сн <u>-</u> сн-                      |                                                                    | 0   | 0  | s-C <sub>4</sub> H <sub>9</sub> |
|      |     |                 | F(CH                                  | l <sub>2</sub> ) <sub>3</sub>                                      |     |    |                                 |

55

EP 0 668 267 A1

|    | x               | Y    | A B                                                                                                     | L | M | R <sup>2</sup>                  |
|----|-----------------|------|---------------------------------------------------------------------------------------------------------|---|---|---------------------------------|
| 5  | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 10 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>7</sub>                                                                        | 0 | 0 | s-C₄H <sub>9</sub>              |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 15 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 20 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | 0 | 0 | s-C₄H <sub>9</sub>              |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 05 | CH <sub>3</sub> | Cl_  | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 25 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 30 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 30 | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 35 | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 33 | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               | 0 | 0 | s-C <sub>4</sub> H <sub>9</sub> |
|    |                 |      | CH <sub>2</sub>                                                                                         |   |   |                                 |
| 40 | CH <sub>3</sub> | Cl . | -CH <sub>2</sub> -CH-CH <sub>2</sub> -                                                                  | О | 0 | s-C <sub>4</sub> H <sub>9</sub> |
| 45 | CH₃             | Cl   | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -                                                  | 0 | О | s-C <sub>4</sub> H <sub>9</sub> |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 50 Verbindungen der Formel (Id) genannt:

Tabelle 4:

| Х  | Y               | A                               | В                             | R <sup>3</sup>  |
|----|-----------------|---------------------------------|-------------------------------|-----------------|
| Cl | СН3             | CH <sub>3</sub>                 | Н                             | CH <sub>3</sub> |
| Cl | CH₃             | C <sub>2</sub> H <sub>5</sub>   | Н                             | CH <sub>3</sub> |
| CI | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C₄H <sub>9</sub>                | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub> |
| Cl | CH₃             | $\triangle$                     | CH₃                           | CH <sub>3</sub> |
| Cl | CH₃             |                                 | CH <sub>3</sub>               | CH <sub>3</sub> |
| CI | CH <sub>3</sub> | $\bigcirc$                      | СН3                           | CH <sub>3</sub> |

| Fortsetzung: | Taballa |   |
|--------------|---------|---|
| ronsetzung:  | Tabelle | 4 |

|          | or weezenig.    | aoche 4 |                                 |                               |                 |
|----------|-----------------|---------|---------------------------------|-------------------------------|-----------------|
|          | X               | Y       | A                               | В                             | R <sup>3</sup>  |
|          | CH <sub>3</sub> | CI      | CH <sub>3</sub>                 | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | CI      | C <sub>2</sub> H <sub>5</sub>   | Н                             | CH <sub>3</sub> |
| ,        | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | i-C <sub>3</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | C <sub>4</sub> H <sub>9</sub>   | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | i-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | s-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | t-C <sub>4</sub> H <sub>9</sub> | Н                             | CH <sub>3</sub> |
|          | CH <sub>3</sub> | CI      | CH <sub>3</sub>                 | СН₃                           | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | C <sub>2</sub> H <sub>5</sub>   | CH₃                           | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | i-C <sub>3</sub> H <sub>7</sub> | CH₃                           | CH <sub>3</sub> |
| ,        | CH <sub>3</sub> | Cl      | C₄H <sub>9</sub>                | CH₃                           | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | i-C <sub>4</sub> H <sub>9</sub> | CH₃                           | CH <sub>3</sub> |
| ;        | CH <sub>3</sub> | Cl      | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl :    | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub> |
| <b>'</b> | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl      | $\triangleleft$                 | CH <sub>3</sub>               | CH <sub>3</sub> |
|          | CH <sub>3</sub> | Cl .    | $\bigcup$                       | CH <sub>3</sub>               | СН3             |
|          | CH <sub>3</sub> | Cl      | $\frown$                        | CH <sub>3</sub>               | CH <sub>3</sub> |

EP 0 668 267 A1

|    | х  | Y               | A                  |
|----|----|-----------------|--------------------|
| 5  | Cl | CH <sub>3</sub> |                    |
|    | Cl | CH <sub>3</sub> |                    |
| 10 | Cl | CH <sub>3</sub> |                    |
|    | Cl | CH <sub>3</sub> |                    |
|    | Cl | CH <sub>3</sub> |                    |
| 15 | Cl | CH <sub>3</sub> |                    |
|    | Cl | CH <sub>3</sub> |                    |
|    | Cl | CH <sub>3</sub> |                    |
| 20 | Cl | CH <sub>3</sub> | -(                 |
|    | Cl | CH <sub>3</sub> | -(                 |
|    | Cl | CH <sub>3</sub> | -(                 |
| 25 | Cl | CH <sub>3</sub> | -((                |
|    | Cl | CH <sub>3</sub> | -((                |
|    | Cl | CH <sub>3</sub> | -(0                |
| 30 | Cl | CH <sub>3</sub> | -(0                |
|    | Cl | CH <sub>3</sub> | -(C                |
|    | Cl | CH <sub>3</sub> | -(                 |
| 35 | Cl | CH <sub>3</sub> | -(                 |
|    | Cl | CH <sub>3</sub> | -СН <sub>2</sub> - |
|    |    |                 |                    |
| 40 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> - |
|    |    |                 |                    |
| 45 | Cl | CH <sub>3</sub> | CH <sub>2</sub> -  |

| x  | Y               | A B                                                                                                     | R <sup>3</sup>  |
|----|-----------------|---------------------------------------------------------------------------------------------------------|-----------------|
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH                                                                                    | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH-(CH <sub>2</sub> ) <sub>2</sub> -                                                | CH <sub>3</sub> |

55

Fortsetzung: Tabelle 4

|      | Х               | Y    | A B                                                                                                     | R <sup>3</sup>  |
|------|-----------------|------|---------------------------------------------------------------------------------------------------------|-----------------|
| 5    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | CH <sub>3</sub> |
|      | СН₃             | Cl   | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | CH <sub>3</sub> |
| i    | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | CH <sub>3</sub> |
| 10   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
| 15   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| 20   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | CH <sub>3</sub> |
| 25   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 20   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 30   | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> |
|      | CH <sub>3</sub> | Cl   | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | CH <sub>3</sub> |
| 35   | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub> |
| 33   | CH <sub>3</sub> | Cl   | —СН <sub>2</sub> —СН—(СН <sub>2</sub> ) <sub>2</sub> —СН—                                               | CH <sub>3</sub> |
|      |                 |      | CH <sub>2</sub>                                                                                         |                 |
| 40 . | CH <sub>3</sub> | Cl . | СН₂СH                                                                                                   | CH <sub>3</sub> |
|      |                 |      | (CH <sub>2</sub> )4                                                                                     |                 |
| 45   | CH <sub>3</sub> | Cl   | -CH <sub>2</sub> -CHCH-(CH <sub>2</sub> ) <sub>2</sub> -                                                | CH <sub>3</sub> |
|      |                 |      | (CH <sub>2</sub> )3                                                                                     |                 |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (le) genannt:

Tabelle 5:

(le) 

| х      | Υ               | Α                               | В                             | L  | R <sup>4</sup>  | R <sup>5</sup>                      |
|--------|-----------------|---------------------------------|-------------------------------|----|-----------------|-------------------------------------|
| Cl     | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | s  | СН,             | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>T</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | СН3             | i-C <sub>3</sub> H <sub>7</sub> | Н                             | s  | СН              | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | СН3             | i-C <sub>4</sub> H <sub>9</sub> | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | t-C4H9                          | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl · . | CH <sub>3</sub> | C <sub>2</sub> H <sub>3</sub>   | C <sub>2</sub> H <sub>5</sub> | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl     | CH <sub>3</sub> | Δ                               | CH <sub>3</sub>               | s_ | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CI     | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | s  | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CI     | CH <sub>3</sub> | <u></u>                         | CH <sub>3</sub>               | s  | СН3             | i-C₃H <sub>7</sub> -S-              |

Fortsetzung: Tabelle 5

|    | Fortsetzung: 1  | abelle 5 | )                               |                               |   |                 |                                     |
|----|-----------------|----------|---------------------------------|-------------------------------|---|-----------------|-------------------------------------|
|    | х               | Y        | A                               | В                             | L | R <sup>4</sup>  | R <sup>5</sup>                      |
| 5  | CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| :  | CH <sub>3</sub> | CI       | C <sub>2</sub> H <sub>5</sub>   | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10 | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15 | CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20 | CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | Н                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | CH <sub>3</sub>                 | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 05 | CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25 | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30 | CH <sub>3</sub> | Cl       | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35 | CH <sub>3</sub> | Cl       | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 40 | CH <sub>3</sub> | Cl       | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       | _                               | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45 | CH <sub>3</sub> | Cl       |                                 | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl       |                                 | CH <sub>3</sub>               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

55

EP 0 668 267 A1

| 5   | x  | Y               | A                                       | В                                                                                                    | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|-----|----|-----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|---|-----------------|-------------------------------------|
| Ĭ   | Cl | CH <sub>3</sub> | -(CI                                    | ·I <sub>2</sub> ) <sub>2</sub> -                                                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 4 3 | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>4</sub> -                                                                      | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10  | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>5</sub> -                                                                      | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>6</sub> -                                                                      | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>7</sub> -                                                                      | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -(     | O-(CH <sub>2</sub> ) <sub>2</sub> -                                                                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -      | S-(CH <sub>2</sub> ) <sub>2</sub> -                                                                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHC                   | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                                    | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH    | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |   | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-  | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC   | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-( | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                    | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(C   | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35  | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHC                  | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                     | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     | Cl | CH <sub>3</sub> | −сн <sub>2</sub> −-сн−                  | -(CH <sub>2</sub> ) <sub>2</sub> CH                                                                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|     |    |                 |                                         | -CH <sub>2</sub>                                                                                     |   |                 |                                     |
| 40  | Cl | CH <sub>3</sub> | -CH₂-CH-                                |                                                                                                      | S | CH₃             | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45  | Cl | CH <sub>3</sub> |                                         |                                                                                                      | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

50

EP 0 668 267 A1

| X               | Y  | Α                                                  | В                                                                | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|-----------------|----|----------------------------------------------------|------------------------------------------------------------------|---|-----------------|-------------------------------------|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub>                                  | ) <sub>2</sub>                                                   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub>                                  | ) <sub>4</sub> -                                                 | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub>                                  | )5-                                                              | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub>                                  | ) <sub>6</sub> -                                                 | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub>                                  | ) <sub>7</sub> -                                                 | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-               | (CH <sub>2</sub> ) <sub>2</sub> -                                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-               | (CH <sub>2</sub> ) <sub>2</sub> -                                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH                             | <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCl             | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C            | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC             | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC             | <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC             | <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC           | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH             | <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH                            | <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH-((                            | CH <sub>2</sub> ) <sub>2</sub> CH                                | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | СН <sub>2</sub> СН                                 |                                                                  | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> CH                                | CH-(CH <sub>2</sub> ) <sub>2</sub> -                             | S | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

EP 0 668 267 A1

| Fortsetzung: | Tabelle | 5 |
|--------------|---------|---|
|              |         |   |

| X  | Y               | A                               | В                             | L | R <sup>4</sup>                | R <sup>5</sup>                      |
|----|-----------------|---------------------------------|-------------------------------|---|-------------------------------|-------------------------------------|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CI | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Ci | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| Cl | CH <sub>3</sub> | $\bigcirc$                      | CH <sub>3</sub>               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

EP 0 668 267 A1

| Fortsetzung:   | Tabel  | le | 5 |
|----------------|--------|----|---|
| I UI WULLUIIE. | 1 augi |    | _ |

| х               | Y  | A                               | В                             | L  | R <sup>4</sup>                | R <sup>5</sup>                      |
|-----------------|----|---------------------------------|-------------------------------|----|-------------------------------|-------------------------------------|
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | Н                             | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | t-C <sub>4</sub> H <sub>9</sub> | Н                             | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C₄H <sub>9</sub>                | CH <sub>3</sub>               | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C₄H <sub>9</sub>              | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | CI | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | ·S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | CI | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | $\triangle$                     | CH <sub>3</sub>               | s  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl |                                 | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | <u></u>                         | CH <sub>3</sub>               | S  | C <sub>2</sub> H <sub>5</sub> | i-C₃H <sub>7</sub> -S-              |

EP 0 668 267 A1

| 5    | X  | Y               | A                                       | В                                                                 | L | R <sup>4</sup>                | R <sup>5</sup>                      |
|------|----|-----------------|-----------------------------------------|-------------------------------------------------------------------|---|-------------------------------|-------------------------------------|
|      | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>2</sub> -                                   | s | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>4</sub> -                                   | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10   | Cl | CH <sub>3</sub> | -(Cl                                    | H <sub>2</sub> ) <sub>5</sub> -                                   | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | (CI                                     | H <sub>2</sub> ) <sub>6</sub> -                                   | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>7</sub> -                                   | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -(     | O-(CH <sub>2</sub> ) <sub>2</sub> -                               | s | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -      | S-(CH <sub>2</sub> ) <sub>2</sub> -                               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| . 11 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHC                   | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH    | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | S | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 1    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-  | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC   | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | CI | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-( | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(C   | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35   | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHC                  | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | −CH <sub>2</sub> —ÇH—                   | -(CH <sub>2</sub> ) <sub>2</sub> ÇH                               | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      |    |                 |                                         | -CH <sub>2</sub>                                                  |   |                               |                                     |
| 40   | Cl | CH <sub>3</sub> | —СН <sub>2</sub> —СН—<br>(СЬ            | —CH−CH₂—                                                          | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45   | Cl | CH <sub>3</sub> |                                         |                                                                   | S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

50

EP 0 668 267 A1

| X               | Y  | A B                                                                                                 | L                  | R <sup>4</sup>                | R <sup>5</sup>                     |
|-----------------|----|-----------------------------------------------------------------------------------------------------|--------------------|-------------------------------|------------------------------------|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                  | s                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                  | s                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                  | s                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                  | s                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                  | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                               | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                               | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | CI | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                              | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | CI | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub>  | - S                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub>  | - S                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> )             | <sub>2</sub> - S   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub>               | - S                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> )              | <sub>2</sub> - S   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> )              | <sub>2</sub> - S   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> )            | ) <sub>2</sub> - S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> | - S                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | S                  | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH(CH <sub>2</sub> ) <sub>2</sub> -CH                                             | - s                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
| CH <sub>3</sub> | Cl | -сн₂-снсн-сн₂                                                                                       | _ s                | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |
|                 | :  | (CH <sub>2</sub> )4                                                                                 |                    | :                             |                                    |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH(CH <sub>2</sub>                                                              | ) <sub>2</sub> — S | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -  |

| <b>TO</b>     | co 1 11  | _ |
|---------------|----------|---|
| Fortsetzung:  | Labelle  | ` |
| I UI WULLUIE. | I acciic | _ |

|    | x  | Y               | A                               | В                             | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|----|----|-----------------|---------------------------------|-------------------------------|---|-----------------|-------------------------------------|
| 5  | Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10 | Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | O | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15 | Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20 | Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25 | Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30 | Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35 | Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 40 | Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 40 | Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | ĊH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | Cl | CH <sub>3</sub> | Δ_                              | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45 | Cl | СН3             |                                 | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 50 | Cl | CH <sub>3</sub> | <u></u>                         | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

EP 0 668 267 A1

| 5 |
|---|
|   |

| Х               | Y  | A                               | В                             | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|-----------------|----|---------------------------------|-------------------------------|---|-----------------|-------------------------------------|
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | ĊI | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | CI | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl | $\triangle$                     | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH <sub>3</sub> | Cl |                                 | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| CH₃             | Cl | <u> </u>                        | CH <sub>3</sub>               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

EP 0 668 267 A1

|      | X  | Y               | A                                      | В                                                                 | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|------|----|-----------------|----------------------------------------|-------------------------------------------------------------------|---|-----------------|-------------------------------------|
| 5    | Cl | CH <sub>3</sub> | -(Cl                                   | H <sub>2</sub> ) <sub>2</sub> -                                   | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| - 1) | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -     |                                                                   | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10   | Cl | CH <sub>3</sub> | -(Cl                                   | H <sub>2</sub> ) <sub>5</sub> -                                   | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(Cl                                   | H <sub>2</sub> ) <sub>6</sub> -                                   | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(Cl                                   | -(CH <sub>2</sub> ) <sub>7</sub> -                                |   | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -(    | O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| .•   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -     | S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHC                  | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(  | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi- | -C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC  | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30   | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC  | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi- | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(C  | CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35   | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHC                 | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | O | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      | Cl | CH <sub>3</sub> | -CH₂-CH-                               | -(CH <sub>2</sub> ) <sub>2</sub> ÇH                               | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|      |    |                 |                                        | -CH <sub>2</sub>                                                  |   |                 |                                     |
| 40   | Cl | CH <sub>3</sub> | -CH₂-CH-                               |                                                                   | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45   | Cl | CH <sub>3</sub> | -сн <sub>2</sub> сн                    | -CH-(CH <sub>2</sub> ) <sub>2</sub> -                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |

55

EP 0 668 267 A1

|            | X               | Y          | A                                                   | В                                                                           | L | R <sup>4</sup>  | R <sup>5</sup>                      |
|------------|-----------------|------------|-----------------------------------------------------|-----------------------------------------------------------------------------|---|-----------------|-------------------------------------|
| 5          | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> )                                 | )2-                                                                         | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> )                                 | )4-                                                                         | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> )                                 | )5-                                                                         | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10         | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> )                                 | 6                                                                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> )                                 | )7-                                                                         | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -O-                | (CH <sub>2</sub> ) <sub>2</sub> -                                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15         | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -S-(               | (CH <sub>2</sub> ) <sub>2</sub> -                                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH₃             | Cl         | -CH <sub>2</sub> -CHCH                              | <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                             | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHCI              | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20         | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub>  | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub>  | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C             | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25         | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC              | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC              | H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC              | H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30         | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC            | <sup>2</sup> <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>2</sub> | <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -              | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            | CH <sub>3</sub> | Cl         | -CH <sub>2</sub> -(CHCH <sub>3</sub>                | ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35         | CH <sub>3</sub> | Cl         | СН₂ÇН((                                             | CH₂)₂—ÇH <i>—</i>                                                           | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|            |                 |            | (                                                   | CH <sub>2</sub>                                                             |   |                 |                                     |
|            | CH <sub>3</sub> | Cl         | —СН <u>₂</u> —СН                                    | -ÇH−CH₂—                                                                    | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 40         |                 | <i>:</i> . | (CH <sub>2</sub> )                                  |                                                                             |   |                 |                                     |
|            | CH <sub>3</sub> | Cl         | −сн <sub>2</sub> −-сн                               | CH—(CH <sub>2</sub> ) <sub>2</sub> —                                        | 0 | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| <b>4</b> 5 |                 |            | (CH <sub>2</sub> ) <sub>3</sub> -                   | ]                                                                           |   |                 |                                     |

50

EP 0 668 267 A1

|    | ortsetzung. Tabene 5 |                 |                                 |                               |   |                               |                                     |  |  |  |
|----|----------------------|-----------------|---------------------------------|-------------------------------|---|-------------------------------|-------------------------------------|--|--|--|
|    | X                    | Y               | A                               | В                             | L | R <sup>4</sup>                | R <sup>5</sup>                      |  |  |  |
| 5  | Cl                   | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 10 | Cl                   | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 15 | Cl                   | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 20 | Cl                   | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 25 | Cl                   | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 30 | Cl                   | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 35 | Cl                   | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 40 | Cl                   | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | Cl                   | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 45 | Cl                   | CH <sub>3</sub> |                                 | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
| 50 | Cl                   | CH <sub>3</sub> | $\frown$                        | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |  |  |  |
|    | 1                    | i l             | \/                              |                               |   | 1                             | 1                                   |  |  |  |

Fortsetzung: Tabelle 5

| <u> </u> | ronseizung. 1   | abene 3 | ·                               |                               |   |                               |                                     |
|----------|-----------------|---------|---------------------------------|-------------------------------|---|-------------------------------|-------------------------------------|
|          | x               | Y       | A                               | В                             | L | R <sup>4</sup>                | R <sup>5</sup>                      |
| 5        | CH <sub>3</sub> | Cl      | CH <sub>3</sub>                 | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | C <sub>2</sub> H <sub>5</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10       | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | i-C <sub>3</sub> H <sub>7</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | C <sub>4</sub> H <sub>9</sub>   | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15       | CH <sub>3</sub> | Cl      | i-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | s-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20       | CH <sub>3</sub> | Cl      | t-C <sub>4</sub> H <sub>9</sub> | Н                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | CH <sub>3</sub>                 | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25       | CH <sub>3</sub> | Cl      | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25       | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30       | CH <sub>3</sub> | Cl      | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35       | CH <sub>3</sub> | Cl      | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 40       | CH <sub>3</sub> | Cl      | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          | CH <sub>3</sub> | Cl      | Δ_                              | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45       | CH <sub>3</sub> | Cl      |                                 | CH <sub>3</sub>               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|          |                 |         |                                 |                               |   |                               |                                     |

55

50

CH<sub>3</sub>

Cl

i-C<sub>3</sub>H<sub>7</sub>-S-

C<sub>2</sub>H<sub>5</sub>

o

CH<sub>3</sub>

EP 0 668 267 A1

| 5         | X  | Y               | A                                       | В                                                                 | L | R <sup>4</sup>                | R <sup>5</sup>                      |
|-----------|----|-----------------|-----------------------------------------|-------------------------------------------------------------------|---|-------------------------------|-------------------------------------|
| _         | Cl | CH <sub>3</sub> | -(CI                                    | ·I <sub>2</sub> ) <sub>2</sub> -                                  | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | (CI                                     | H <sub>2</sub> ) <sub>4</sub> -                                   | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10        | Cl | CH <sub>3</sub> | -(CI                                    | ·I <sub>2</sub> ) <sub>5</sub> -                                  | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CI                                    | H <sub>2</sub> ) <sub>6</sub> -                                   | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CI                                    | I <sub>2</sub> ) <sub>7</sub> -                                   | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -(     | O-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -5     | S-(CH <sub>2</sub> ) <sub>2</sub> -                               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHC                   | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH    | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-  | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC   | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHO   | C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-( | OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | $C_2H_5$                      | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(C   | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35        | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHC                  | H <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           | Cl | CH <sub>3</sub> | сн <sub>2</sub> сн                      | -(CH <sub>2</sub> ) <sub>2</sub> ÇH                               | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| <b>40</b> |    |                 |                                         | -CH <sub>2</sub>                                                  |   |                               |                                     |
|           | Cl | CH <sub>3</sub> | -CH₂-CH-                                | —ÇH−CH₂—                                                          | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|           |    |                 | L <sub>(Сн</sub>                        | 2)4                                                               |   |                               |                                     |
| 45        | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH(CH <sub>3</sub> )  | -CH-(CH <sub>2</sub> ) <sub>2</sub> -                             | 0 | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| i         |    |                 | (0112)                                  | /3                                                                |   |                               |                                     |

50

EP 0 668 267 A1

|    | X               | Y  | A B                                                                                                     | L   | R <sup>4</sup>                | R <sup>5</sup>                      |
|----|-----------------|----|---------------------------------------------------------------------------------------------------------|-----|-------------------------------|-------------------------------------|
| 5  | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 10 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 15 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 20 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 25 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH₃             | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 30 | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35 | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 35 | CH <sub>3</sub> | Cl | -CH2-CH-(CH2)2-CH-                                                                                      | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    |                 |    | CH <sub>2</sub>                                                                                         |     |                               |                                     |
| 40 | CH <sub>3</sub> | Cl | -СН <sub>2</sub> СНСНСН-                                                                                | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
|    | :               |    | CH <sub>2</sub> )                                                                                       | : . |                               | :                                   |
| 45 | CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH-(CH <sub>2</sub> ) <sub>2</sub> -                                                | 0   | C <sub>2</sub> H <sub>5</sub> | i-C <sub>3</sub> H <sub>7</sub> -S- |
| 45 |                 |    | L <sub>(CH<sub>2</sub>)3</sub>                                                                          |     |                               |                                     |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (If-a) genannt:

Tabelle 6a:

(If-a)

| х  | Y               | A                               | В                             |
|----|-----------------|---------------------------------|-------------------------------|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | н                             |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CI | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | СН3                             | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | СН              | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub> | _                               | CH <sub>3</sub>               |
| Cl | СН₃             | Q.                              | CH <sub>3</sub>               |
| CI | СН3             | <u></u>                         | CH <sub>3</sub>               |

EP 0 668 267 A1

Fortsetzung: Tabelle 6a

| ortsetzung. 1   | auciic oa |                                 |                               |
|-----------------|-----------|---------------------------------|-------------------------------|
| х               | Y         | A                               | В                             |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | Н                             |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | н                             |
| CH <sub>3</sub> | Cl        | C₄H <sub>9</sub>                | Н                             |
| CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl        | $\triangle$                     | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        | $\bigcirc$                      | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               |
|                 |           |                                 |                               |

EP 0 668 267 A1

Fortsetzung: Tabelle 6a

| Portsetzung. Tauene oa |    |                 |                                                                                                          |                                                                      |  |
|------------------------|----|-----------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                        | X  | Y               | A                                                                                                        | В                                                                    |  |
| 5                      | Cl | CH <sub>3</sub> | -(                                                                                                       | (CH <sub>2</sub> ) <sub>2</sub> -                                    |  |
|                        | Cl | CH <sub>3</sub> | -(                                                                                                       | (CH <sub>2</sub> ) <sub>4</sub> -                                    |  |
|                        | Cl | CH <sub>3</sub> | -(                                                                                                       | (CH <sub>2</sub> ) <sub>5</sub> -                                    |  |
| 10                     | Cl | CH <sub>3</sub> | -(                                                                                                       | (CH <sub>2</sub> ) <sub>6</sub> -                                    |  |
|                        | Cl | CH <sub>3</sub> | -(                                                                                                       | (CH <sub>2</sub> ) <sub>7</sub> -                                    |  |
|                        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> )                                                                                      | <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                    |  |
| 15                     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> )                                                                                      | ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                  |  |
|                        | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH                                                                                     | H-CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                 |  |
|                        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C                                                                      | CH-CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                |  |
| 20                     | CI | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C                                                                      | H-C <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |
|                        | CI | СН3             | -(CH <sub>2</sub> ) <sub>2</sub> -C                                                                      | H-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |
| 25                     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                                     | H-i-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |  |
| 25                     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CI                                                                     | H-OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                |  |
|                        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CF                                                                     | H-OC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |
| 30                     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                                     | H-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |
| 30                     | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH-i-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                                      |  |
|                        | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |                                                                      |  |
| 35                     | Cl | CH <sub>3</sub> | -СН <sub>2</sub> -(СН                                                                                    | I-CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |
|                        | Cl | CH <sub>3</sub> | —СН <sub>2</sub> —СН-                                                                                    | −(СН <sub>2</sub> ) <sub>2</sub> −СН−                                |  |
|                        |    |                 |                                                                                                          | -CH <sub>2</sub>                                                     |  |
| 40                     | Cl | CH <sub>3</sub> | -СH <sub>2</sub> -СН-                                                                                    | ——ÇH−CH <sub>2</sub> —                                               |  |
|                        |    |                 | 1 :                                                                                                      | H <sub>2</sub> ) <sub>4</sub>                                        |  |
| 45                     | Cl | CH <sub>3</sub> | —СН <sub>2</sub> —СН-                                                                                    | CH(CH <sub>2</sub> ) <sub>2</sub>                                    |  |
|                        |    | /               | L <sub>(C</sub>                                                                                          | H <sub>2</sub> ) <sub>3</sub>                                        |  |
| !                      |    |                 |                                                                                                          |                                                                      |  |

50

EP 0 668 267 A1

Fortsetzung: Tabelle 6a

| Х               | Y  | A B                                                                                                     |
|-----------------|----|---------------------------------------------------------------------------------------------------------|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |
| CH <sub>3</sub> | CI | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               |
|                 |    | CH <sub>2</sub>                                                                                         |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH-CH <sub>2</sub> -                                                                |
|                 |    | (CH <sub>2</sub> )4                                                                                     |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH(CH <sub>2</sub> ) <sub>2</sub> -                                                 |
|                 |    | (CH <sub>2</sub> ) <sub>3</sub>                                                                         |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (If-b) genannt:

Tabelle 6b;

i-C<sub>3</sub>H<sub>7</sub> NF

H<sub>7</sub> NH<sub>3</sub>

B
A
H
N
O
I
O
I
O
X

(If-b)

| х  | Y               | A                               | В                             |
|----|-----------------|---------------------------------|-------------------------------|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | н                             |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | н                             |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | t-C₄H <sub>9</sub>              | Н                             |
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| CI | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               |
| CI | CH <sub>3</sub> |                                 | CH <sub>3</sub>               |
| Cl | СН3             | <u></u>                         | CH <sub>3</sub>               |

| Ī    | Fortsetzung: T  | abelle 6b |                                 |                               |
|------|-----------------|-----------|---------------------------------|-------------------------------|
| 5    | х               | Y         | A                               | В                             |
|      | CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | Н                             |
|      | CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| 10   | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | Н                             |
|      | CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
| 15   | CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | Н                             |
|      | CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
|      | CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| 20   | CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | н                             |
|      | CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| 25   | CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
|      | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| 00   | CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| 30   | CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
|      | CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| 35   | CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
|      | CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| . 40 | CH <sub>3</sub> | Cļ.       | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
|      | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
|      | CH <sub>3</sub> | Cl        | Δ_                              | CH <sub>3</sub>               |
| 45   | CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               |

CH<sub>3</sub>

Cl

55

50

CH<sub>3</sub>

EP 0 668 267 A1

Fortsetzung: Tabelle 6b

|    | X  | Y               | A B                                                                                                     |
|----|----|-----------------|---------------------------------------------------------------------------------------------------------|
| 5  | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |
| 10 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |
| 15 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |
|    | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |
| 20 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |
| 25 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
| 30 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |
|    | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |
|    | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |
| 35 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               |
|    |    |                 | CH <sub>2</sub>                                                                                         |
| 40 | Cl | CH <sub>3</sub> | -CH2-CHCH-CH2-                                                                                          |
|    | ·. |                 | (CH <sub>2</sub> )4                                                                                     |
| 45 | Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -                                                  |
| 70 |    |                 | (CH <sub>2</sub> )3                                                                                     |
|    |    |                 |                                                                                                         |

50

Fortsetzung: Tabelle 6b

| Oraceang. Automo es |         |                                                                                                         |  |  |
|---------------------|---------|---------------------------------------------------------------------------------------------------------|--|--|
| X                   | Y       | A B                                                                                                     |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |  |  |
| CH <sub>3</sub>     | Ci      | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |
| CH <sub>3</sub>     | Cl      | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |  |  |
| CH <sub>3</sub>     | Cl      | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| CH <sub>3</sub>     | Cl      | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |
| CH <sub>3</sub>     | Cl      | СH <sub>2</sub> —СН—(СН <sub>2</sub> ) <sub>2</sub> —СН—                                                |  |  |
|                     | <u></u> | CH <sub>2</sub>                                                                                         |  |  |
| CH <sub>3</sub>     | Cl      | −CH <sub>2</sub> −СH−−СH <sub>2</sub> −−                                                                |  |  |
|                     |         | (CH <sub>2</sub> )4                                                                                     |  |  |
| CH <sub>3</sub>     | CI      | -CH <sub>2</sub> -CHCH-(CH <sub>2</sub> ) <sub>2</sub> -                                                |  |  |
|                     |         | (CH <sub>2</sub> ) <sub>3</sub>                                                                         |  |  |

50 Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ig-a) genannt:

EP 0 668 267 A1

Tabelle 7a:

(Ig-a)

| х  | Y               | Α                               | В                             |
|----|-----------------|---------------------------------|-------------------------------|
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | Н                             |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | Н                             |
| Cl | CH <sub>3</sub> | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
| Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | i-C₄H <sub>9</sub>              | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CI | CH <sub>3</sub> | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CI | CH <sub>3</sub> | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| Cl | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> |                                 | CH <sub>3</sub>               |
| Cl | CH <sub>3</sub> | <u></u>                         | CH₃                           |

EP 0 668 267 A1

Fortsetzung: Tabelle 7a

| X               | Y  | A                               | В                             |
|-----------------|----|---------------------------------|-------------------------------|
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | Ĥ                             |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | Н                             |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
| CH <sub>3</sub> | Cl | C <sub>4</sub> H <sub>9</sub>   | Н                             |
| CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
| CH <sub>3</sub> | Cl | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
| CH <sub>3</sub> | CI | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | C₄H <sub>9</sub>                | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
| CH <sub>3</sub> | Cl | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
| CH <sub>3</sub> | Cl | _                               | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl |                                 | CH <sub>3</sub>               |
| CH <sub>3</sub> | Cl | <u></u>                         | CH <sub>3</sub>               |

Fortsetzung: Tabelle 7a

|  | 5 |  |  |
|--|---|--|--|
|  |   |  |  |

| х  | Y               | A B                                                                                                     |  |  |
|----|-----------------|---------------------------------------------------------------------------------------------------------|--|--|
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH-CH <sub>2</sub>                                                                  |  |  |
| Cl | CH <sub>3</sub> | $-CH_{2}$ $-CH$ $-(CH_{2})_{2}$ $-(CH_{2})_{3}$                                                         |  |  |

EP 0 668 267 A1

Fortsetzung: Tabelle 7a

| Х               | Y  | A B                                                                                                     |  |  |  |
|-----------------|----|---------------------------------------------------------------------------------------------------------|--|--|--|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |  |  |  |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |  |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               |  |  |  |
|                 |    | CH <sub>2</sub>                                                                                         |  |  |  |
| CH <sub>3</sub> | Cl | CH₂CH                                                                                                   |  |  |  |
|                 |    | (CH <sub>2</sub> )4                                                                                     |  |  |  |
| CH <sub>3</sub> | Cl | -CH2-CHCH-(CH2)2-                                                                                       |  |  |  |
|                 |    | (CH <sub>2</sub> ) <sub>3</sub>                                                                         |  |  |  |

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 50 Verbindungen der Formel (Ig-b) genannt:

EP 0 668 267 A1

Tabelle 7b:

5

10

15

20

25

30

35

40

45

50

Y Α В  $\mathbf{X}$ Н Cl  $CH_3$  $CH_3$  $C_2H_5$ Н ClCH<sub>3</sub> Н  $C_3H_7$ Cl CH<sub>3</sub>  $i-C_3H_7$ Н ClCH<sub>3</sub> Cl CH<sub>3</sub>  $C_4H_9$ Н i-C<sub>4</sub>H<sub>9</sub> H Cl CH<sub>3</sub> Н Cl CH<sub>3</sub> s-C<sub>4</sub>H<sub>9</sub> t-C<sub>4</sub>H<sub>9</sub> Н Cl CH<sub>3</sub> Cl CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> Cl  $C_2H_5$ CH<sub>3</sub> CH<sub>3</sub>  $C_3H_7$ CH<sub>3</sub> CI CH<sub>3</sub> Cl CH<sub>3</sub> i-C<sub>3</sub>H<sub>7</sub> CH<sub>3</sub>  $C_4H_9$ Cl CH<sub>3</sub> CH<sub>3</sub> i-C<sub>4</sub>H<sub>9</sub> CH<sub>3</sub> Cl CH<sub>3</sub> s-C<sub>4</sub>H<sub>9</sub> Cl CH<sub>3</sub> CH<sub>3</sub> Cl CH<sub>3</sub> t-C<sub>4</sub>H<sub>9</sub> CH<sub>3</sub>  $C_2H_5$ Cl CH<sub>3</sub>  $C_2H_5$  $C_3H_7$  $C_3H_7$ Cl CH<sub>3</sub> CH<sub>3</sub> Cl CH<sub>3</sub> Cl CH<sub>3</sub>  $CH_3$ Cl CH<sub>3</sub> CH<sub>3</sub>

Fortsetzung: Tabelle 7b

| ( ) | roriseizung. 1  | aucile 70 |                                 |                               |
|-----|-----------------|-----------|---------------------------------|-------------------------------|
|     | Х               | Y         | A                               | В                             |
| 5   | CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | Н                             |
|     | CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | Н                             |
| 10  | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | Н                             |
|     | CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | Н                             |
| 15  | CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | Н                             |
|     | CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | Н                             |
|     | CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | н                             |
| 20  | CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | Н                             |
|     | CH <sub>3</sub> | Cl        | CH <sub>3</sub>                 | CH <sub>3</sub>               |
| 25  | CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | CH <sub>3</sub>               |
|     | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | CH <sub>3</sub>               |
|     | CH <sub>3</sub> | Cl        | i-C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               |
| 30  | CH <sub>3</sub> | Cl        | C <sub>4</sub> H <sub>9</sub>   | CH <sub>3</sub>               |
|     | CH <sub>3</sub> | Cl        | i-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| 35  | CH <sub>3</sub> | Cl        | s-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
|     | CH <sub>3</sub> | Cl        | t-C <sub>4</sub> H <sub>9</sub> | CH <sub>3</sub>               |
| 40  | CH <sub>3</sub> | Cl        | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> |
|     | CH <sub>3</sub> | Cl        | C <sub>3</sub> H <sub>7</sub>   | C <sub>3</sub> H <sub>7</sub> |
|     | CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               |
| 45  | CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               |
|     | CH <sub>3</sub> | Cl        |                                 | CH <sub>3</sub>               |

55

EP 0 668 267 A1

Fortsetzung: Tabelle 7b

| 5  |  |  |
|----|--|--|
| 10 |  |  |
| 15 |  |  |
| 20 |  |  |
| 25 |  |  |
| 30 |  |  |
| 35 |  |  |

| Х  | Y               | A B                                                                                                     |  |  |  |
|----|-----------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Cl | СН3             | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                      |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                      |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                      |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                      |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                      |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                   |  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                  |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -    |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                 |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |  |  |  |
| Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   |  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                  |  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                               |  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH                                                                                    |  |  |  |
| Cl | CH <sub>3</sub> | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -<br>(CH <sub>2</sub> ) <sub>3</sub>               |  |  |  |

Fortsetzung: Tabelle 7b

| 5 |  |
|---|--|
|   |  |

| Х               | Y  | A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>4</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>5</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>6</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>7</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -S-(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>2</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHOC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -CHi-OC <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>3</sub> | Cl | -(CH <sub>2</sub> ) <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -(CHCH <sub>3</sub> ) <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| СН3             | Cl | -CH <sub>2</sub> -CH-(CH <sub>2</sub> ) <sub>2</sub> -CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> | Cl | -CH <sub>2</sub> -CH-CH <sub>2</sub> -CH-CH <sub>2</sub> -CH <sub>2</sub> |
| CH <sub>3</sub> | Cl | $-CH_{2}$ $-CH$ $-(CH_{2})_{2}$ $-(CH_{2})_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Verwendet man gemäß Verfahren (A) N-(2-Chlor-4-methylphenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäureethylester als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B<sub>a</sub>) 3-(2-Methyl-4-chlorphenyl)-5,5-dimethylpyrrolidin-2,4-dion und Pivao loylchlorid als Ausgangsstoffe, 50 kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B<sub>B</sub>) 3-(2-Brom-4-ethylphenyl)-5-isopropyl-5-methyl-pyrrolidin-2,4-dion und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (C) 3-(2-Methyl-4-chlorphenyl)-5,5-diethylpyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren ( $D_{\alpha}$ ) 3-(2-Chlor-4-methylphenyl)-5.5-pentamethylen-pyrrolidin-2,4-dion und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

10

Verwendet man gemäß Verfahren (D<sub>B</sub>) 3-(2-Brom-4-ethylphenyl)-5,5-ethylmercaptoethyl-pyrrolidin-2,4-dion, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (E) 3-(2-Chlor-4-isopropylphenyl)-5.5-(2-methyl)-pentamethylen-pyrrolidin-2,4-dion und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (F) 3-(2-Methyl-4-chlorphenyl)-5-isobutyl-5-methyl-pyrrolidin-2,4-dion und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsver-lauf durch folgendes Reaktionsschema wiedergegeben werden:

$$S = P - CH_3$$

$$i - C_4H_9$$

$$H_3C_{HN}$$

$$OCH_2CF_3$$

$$i - C_4H_9$$

$$OCH_2CF_3$$

$$I - C_4H_9$$

$$OCH_2CF_3$$

$$H_3C_{HN}$$

$$OCH_2CF_3$$

$$I - C_4H_9$$

$$OCH_2CF_3$$

$$I - C_4H_9$$

$$OCH_2CF_3$$

$$I - C_4H_9$$

$$OCH_2CF_3$$

$$I - C_4H_9$$

$$OCH_2CF_3$$

$$OCH_2C$$

Verwendet man gemäß Verfahren (G) 3-(2-Fluor-4-methylphenyl)-5-cyclopropyl-5-methyl-pyrrolidin-2,4-dion und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Na<sup>(+)</sup>

Verwendet man gemäß Verfahren (H<sub>∞</sub>) 3-(2-Chlor-4-ethylphenyl)-5,5-hexamethylen-pyrrolidin-2,4-dion und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

OH CI
$$C_2H_5$$

$$C_2H_5$$

$$C_2H_5-N=C=0$$

$$C_2H_5$$

Verwendet man gemäß Verfahren (H<sub>g</sub>) 3-(2-Methyl-4-chlorphenyl)-5-methyl-pyrrolidin-2,4-dion und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

H<sub>3</sub>C OH CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> 
$$H_3$$
C  $CH_3$   $H_3$ C  $CH_3$   $CH_3$ 

Die bei den erfindungsgemäßen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

15

30

45

50

55

A, B, X, Y und R<sup>8</sup> die oben angegebene Bedeutung haben, sind neu.

Man erhält z.B. Acyl-aminosäureester der Formel (II), wenn man Aminosäurederivate der Formel (XIV),

o in welcher

5

15

20

30

35

 $R^9$  für Wasserstoff (XIVa) oder Alkyl, bevorzugt  $C_1\text{-}C_6\text{-Alkyl}$  (XIVb) steht und

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

Y—COHal (XV)

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews <u>52</u>, 237-416 (1953); Bhattacharya, Indian J. Chem. <u>6</u>, 341-5, 1968) und die dabei für R<sup>9</sup> = Wasserstoff erhaltenen Acylaminosäuren der Formel (IIa),

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

verestert (Chem. Ind. (London) 1568 (1968)).

Die substituierten cyclischen Aminocarbonsäuren der Formel (XIVa) sind im allgemeinen nach der Bucherer-Bergs-Synthese oder nach der Strecker-Synthese erhältlich und fallen dabei jeweils in unterschiedlichen Isomerenformen an. So erhält man nach den Bedingungen der Bucherer-Bergs-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als β bezeichnet), in welchen die Reste R und die Carboxylgruppe äquatorial stehen, während nach den Bedingungen der Strecker-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als α bezeichnet) anfallen, bei denen die Aminogruppe und die Reste R äquatorial stehen.

50

# Bucherer-Bergs-Synthese (β-Isomeres)

Strecker-Synthese (α-Isomeres)

(L. Munday, J. Chem. Soc. 4372 (1961); J.T. Eward, C. Jitrangeri, Can. J. Chem. <u>53</u>, 3339 (1975).

Weiterhin lassen sich die bei den obigen Verfahren (A) verwendeten Ausgangsstoffe der Formel (II)

in welcher

5

10

20

25

30

35

40

45

50

A, B, X, Y und  ${\sf R}^{\sf R}$  die oben angegebene Bedeutung haben, herstellen, wenn man Aminonitrile der Formel (XVI)

 $\begin{array}{c} A \\ + A \\ - A \\ - A \end{array} \qquad (XVI)$ 

in welcher

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht, zu Verbindungen der Formel (XVII)

$$\begin{array}{c} X \\ \\ O \\ \\ A \\ \\ B \end{array} \qquad (XVII)$$

10

15

5

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, umsetzt, und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

Die Verbindungen der Formel (XVII) sind ebenfalls neu.

Beispielhaft aber nicht begrenzend seien außer den bei den Herstellungsbeispielen genannten Zwischenprodukten die folgenden Verbindungen der Formel (II) genannt:

N-(2-Chlor-4-methylphenylacetyl)-alanin-methylester

N-(2-Chlor-4-methylphenylacetyl)-leucin-methylester

N-(2-Chlor-4-methylphenylacetyl)-isoleucin-methylester

N-(2-Chlor-4-methylphenylacetyl)-valin-methylester

N-(2-Chlor-4-methylphenylacetyl)-aminoisobuttersäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclopentancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclooktancarbonsäure-methylester

30 N-(4-Chlor-2-methylphenylacetyl)-alanin-methylester

N-(4-Chlor-2-methylphenylacetyl)-leucin-methylester

N-(4-Chlor-2-methylphenylacetyl)-isoleucin-methylester

N-(4-Chlor-2-methylphenylacetyl)-valin-methylester

N-(4-Chlor-2-methylphenylacetyl)-aminoisobuttersäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester

 $N\hbox{-}(4\hbox{-}Chlor\hbox{-}2\hbox{-}methylphenylacetyl)\hbox{-}2,} 3\hbox{-}dimethyl\hbox{-}2\hbox{-}aminoval erians \"{a}ure\hbox{-}methyle stern \ref{theory}.$ 

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclopentancarbonsäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclooktancarbonsäure-methylester

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure-methylester,

45 N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure-methylester, N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure-methylester,

Beispielhaft, aber nicht begrenzend, seien außer den bei den Herstellungsbeispielen genannten Zwischen-

```
produkten die folgenden Verbindungen der Formel (IIa) genannt:
    N-(2-Chlor-4-methylphenylacetyl)-alanin
    N-(2-Chlor-4-methylphenylacetyl)-leucin
    N-(2-Chlor-4-methylphenylacetyl)-isoleucin
   N-(2-Chlor-4-methylphenylacetyl)-valin
    N-(2-Chlor-4-methylphenylacetyl)-aminoisobuttersäure
    N-(2-Chlor-4-methylphenylacetyl)-2-ethyl-2-aminobuttersäure
    N-(2-Chlor-4-methylphenylacetyl)-2-methyl-2-aminovaleriansäure
    N-(2-Chlor-4-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
10 N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclopentancarbonsäure
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclohexancarbonsäure
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cycloheptancarbonsäure
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclooktancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-alanin
15 N-(4-Chlor-2-methylphenylacetyl)-leucin
    N-(4-Chlor-2-methylphenylacetyl)-isoleucin
    N-(4-Chlor-2-methylphenylacetyl)-valin
    N-(4-Chlor-2-methylphenylacetyl)-aminoisobuttersäure
    N-(4-Chlor-2-methylphenylacetyl)-2-ethyl-2-aminobuttersäure
   N-(4-Chlor-2-methylphenylacetyl)-2-methyl-2-aminovaleriansäure
    N-(4-Chlor-2-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclopentancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclohexancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cycloheptancarbonsäure
   N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclooktancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure
   N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure
   N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure
   N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure
    Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (XV)
    und Aminosäuren der Formel (XIVa) nach Schotten-Baumann (Organikum, 9. Auflage, 446 (1970) VEB
    Deutscher Verlag der Wissenschaften, Berlin) erhältlich.
        Die Phenylessigsäurehalogenide der Formel (XV) sind allgemein bekannte Verbindungen der organi-
```

schen Chemie oder lassen sich nach bekannten Verfahren herstellen.

Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) als Ausgangsstoffe benötigten Verbindungen der Formel (Ia) sind durch das erfindungsgemäße Verfahren (A) erhältlich.

Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) außerdem als Ausgangsstoffe benötigten Säurehalogenide der Formel (III), Carbonsäureanhydride der Formel (IV), Chlorameisensäureester oder Chlorameisensäurethioester der Formel (V), Chlormonothioameisensäureester oder Chlordithioameisensäureester der Formel (VI), Alkylhalogenide der Formel (VII), Sulfonsäurechloride der Formel (VIII), Phosphorverbindungen der Formel (IX), Metallhydroxide, Metallalkoxide oder Amine der Formel (XI) und (XI) und Isocyanate der Formel (XIII) oder Carbamidsäurechlorid der Formel (XIII) sind allgemein bekannte Verbindungen der organischen bzw. anorganischen Chemie.

Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II) in welcher A, B, X, Y und R8 die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen

Kondensation unterwirft.

20

25

35

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, iso-Butanol und tert.-Butanol.

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C<sub>8</sub>-C<sub>10</sub>)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 ° C und 250 ° C, vorzugsweise zwischen 50 ° C und 150 ° C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa doppeltäquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ( $B\alpha$ ) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren ( $B\alpha$ ) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkaliund Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Ba) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (B $\beta$ ) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

Als Verdünnungsmittel können vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bß) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (B\$) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5

Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle Üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesi-um- und Calciumoxid, außerdem Alkali- und Erdalkalimetalloarbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüber hinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren (Dα) setzt man pro Mol Ausgangsverbindung der Formel (la) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VI) bei 0 bis 120 °C, vorzugsweise bei 20 bis 60 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Sulfone, Sulfoxide, aber auch Halogenalkane.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B. Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (D<sub>B</sub>) setzt man pro Mol Ausgangsverbindung der Formel (Ia) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50 °C und insbesondere bei 20 bis 30 °C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (la) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (la) solange mit Schwefelkohlenstoff um, bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VII) erfolgt vorzugsweise bei 0 bis 70 °C und insbesondere bei 20 bis 50 °C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

35

55

Beim Herstellungsverfahren (E) setzt man pro Mol Ausgangsverbindung der Formel (la) ca. 1 Mol Sulfonsäurechlorid (VIII) bei -20 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe wie Methylenchlorid.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (F) setzt man zum Erhalt von Verbindungen der Struktur (Ie) auf 1 Mol der Verbindung (Ia), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel in Frage wie Halogenalkane, Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate oder Amine. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Das Verfahren (G) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallhydroxiden bzw. Metallalkoxiden der Formel (X) oder Aminen der Formel (XI) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (G) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20 °C und 100 °C, vorzugsweise zwischen 0 °C und 50 °C.

Bei Herstellungsverfahren ( $H_{\alpha}$ ) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Isocyanat der Formel (XII) bei 0 bis 100 °C, vorzugsweise bei 20 bis 50 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren  $(H_\beta)$  setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid der Formel (XIII) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werdern, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und

Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Foificula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci. Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhiopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten einsetzen, wie beispielsweise gegen die Larven des Meerrettichblattkäfers (Phaedon cochleariae) oder

gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) und gegen die Raupen der Kohlschabe (Plutella maculipennis).

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Dikotyle Unkräter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotola, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cycnodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Sachharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindunngen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe eignen sich sehr gut zur selektiven Bekämpfung monokotyler Unkräuter in dikotylen Kulturen im Vor- und Nachlaufverfahren. Sie können beispielsweise in Baumwolle oder Zuckerrüben mit sehr gutem Erfolg zur Bekämpfung von Schadgräser eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoffimprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als
Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage:
Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipi-

de. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Besonders günstige Mischpartner sind z.B. die folgenden:

#### Fungizide:

15

2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoromethoxy-4'-trifluoro-methyl-1,3-thiazol-5-carboxanilid; 2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyi-mino-N-methyl-2-(2 phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino-[alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,

Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,

Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,

Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon, Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,

Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox, Guazatine,

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan, Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,

Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin, Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Quintozen (PCNB),

Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,

Validamycin A, Vinclozolin,

Zineb, Ziram

#### Bakterizide:

50

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbon-säure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

#### 55 Insektizide / Akarizide / Nematizide:

Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,

Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M,

- Gis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
  - Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton, Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos, Etrimphos,
- Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb, HCH, Heptenophos, Hexaflumuron, Hexythiazox,
- Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda-cyhalothrin, 5 Lufenuron,
  - Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin, Naled, NC 184, NI 25, Nitenpyram
  - Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
- Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
  - RH 5992,
- Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos, Tebufenozid, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Triarrathen, Triazophos, Triazuron, Trichlorfon, Triflumuron, Trimethacarb,
  - Vamidothion, XMC, Xylylcarb, YI 5301 / 5302, Zetamethrin.

### Herbizide:

30

55

beispielsweise Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4-DB, 2,4-DB, 2,4-DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxyphenoxy-alkansäureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifopbutyl, Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chlorpropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxylamine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und loxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuronethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.

Der erfindungsgemäße Wirkstoff kann ferner in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

#### Herstellungsbelspiele:

# Beispiel (la-1):

10

5

12,42 g Kalium-t-butylat werden in 35 ml trockenem Tetrahydrofuran vorgelegt und unter Rückfluß mit einer Lösung von 16 g N-(4-Chlor-2-methylphenyl)-acetyl-1-amino-cyclohexan-carbonsäure-methylester in 100 ml trockenem Toluol versetzt und 90 Minuten am Rückfluß gekocht. Nach Abkühlen wird die Reaktionslösung mit 150 ml Wasser versetzt, die wäßrige Phase abgetrennt. Die organische Phase wird erneut mit 75 ml Wasser gewaschen. Die wäßrigen Phasen werden vereinigt, mit 16 ml konzentrierter Salzsäure angesäuert und der Niederschlag abgesaugt und getrocknet. Es werden erhalten 11,7 g (81 % der Theorie), Fp.162 °C.

20

25

Analog werden die folgenden Verbindungen erhalten:

30

## Tabelle 8

35



45

40

50

| _  |         |                 |                 |                                        |                                                      |        |       |
|----|---------|-----------------|-----------------|----------------------------------------|------------------------------------------------------|--------|-------|
|    | Bsp.Nr. | х               | Y               | A                                      | В                                                    | Isomer | Fp.°C |
| 5  | Ia-2    | Cl .            | CH <sub>3</sub> | CH <sub>3</sub>                        | CH <sub>3</sub>                                      | -      | 92    |
| ŭ  | Ia-3    | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -     |                                                      | -      | > 220 |
|    | Ia-4    | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | В      | 230   |
| 10 | Ia-5    | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CH(  | CH <sub>3</sub> -CH <sub>2</sub> -                   | ß      | 188   |
|    | Ia-6    | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH(  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | В      | > 220 |
| 15 | Ia-7    | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CH(  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | ß      | > 230 |
|    | Ia-8    | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH(  | CH <sub>3</sub> -CH <sub>2</sub> -                   | ß      | 153   |
|    | Ia-9    | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> CHO   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   | ß      | > 220 |
| 20 | Ia-10   | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(0 | CH <sub>2</sub> ) <sub>2</sub> -                     | -      | 167   |
|    | Ia-11   | Cl              | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub>        | CH <sub>3</sub>                                      | -      | 203   |
| 25 | Ia-12   | Cl .            | CH <sub>3</sub> | $\rightarrow$                          | CH <sub>3</sub>                                      | •      | 146   |
| 30 | Ia-13   | Cl              | CH <sub>3</sub> | -cH                                    | CH <sub>2</sub> -                                    | -      | 196   |
| 35 | Ia-14   | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH   | CH <sub>3</sub> -CHCH <sub>3</sub> CH <sub>2</sub> - | ß      | 142   |
|    | Ia-15   | CH <sub>3</sub> | CI              | CH <sub>3</sub>                        | CH <sub>3</sub>                                      | -      | 187   |
| 40 | Ia-16   | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(  | CH <sub>2</sub> ) <sub>2</sub> -                     | -      | 189   |
|    | Ia-17   | CH <sub>3</sub> | Cl              | -с́н                                   | I <sub>2</sub> ,CH <sub>2</sub> -                    | -      | 202   |
| 45 |         |                 |                 |                                        |                                                      |        |       |
| 50 | Ia-18   | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub>        | CH <sub>3</sub>                                      | -      | 169   |
|    |         |                 |                 |                                        |                                                      |        |       |

## Beispiel (lb-1)

55

4,38 g der Verbindung des Beispiels la-1 werden in 70 ml trockenem Methylenchlorid mit 2,1 ml Triethylamin versetzt und bei 0 bis 10 °C 1,58 ml Isobuttersäurechlorid in 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiums-

ulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 2,6 g (47 % der Theorie), Fp. 186 °C.

Analog und gemäß den allgemeinen Angaben zur Herstellung werden die folgenden Verbindungen erhalten:

# Tabelle 9



| Bsp   Nr.   Nr |    |       |                 |                   | 44.44                                   |                                                    |                                 |   |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----------------|-------------------|-----------------------------------------|----------------------------------------------------|---------------------------------|---|-----|
| Ib-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | -     | X               | Y                 | A                                       | В                                                  | R <sup>1</sup>                  |   |     |
| Ib-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  | Ib-2  | Cl              | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>2</sub> -CHCH   | (CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub>                 | ß | 217 |
| Ib-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Ib-3  | Cl              | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>2</sub> -CHCH   | I <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> | ß | 183 |
| Ib-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | Гb-4  | Cl              | · CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>3</sub> -CHCH   | <sub>3</sub> -CH <sub>2</sub> -                    | CH <sub>3</sub>                 | ß | 211 |
| Ib-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Ib-5  | Cl              | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>3</sub> -CHCH   | <sub>3</sub> -CH <sub>2</sub> -                    | i-C <sub>3</sub> H <sub>7</sub> | ß | 138 |
| Ib-8   CH <sub>3</sub>   Cl   (CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   CH <sub>3</sub>   B   208     Ib-9   CH <sub>3</sub>   Cl   (CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -   i-C <sub>3</sub> H <sub>7</sub>   B   218     Ib-10   CH <sub>3</sub>   Cl   (CH <sub>2</sub> ) <sub>3</sub> -CHCH <sub>3</sub> -CH <sub>2</sub> -   CH <sub>3</sub>   B   230     Ib-11   CH <sub>3</sub>   Cl   (CH <sub>2</sub> ) <sub>3</sub> -CHCH <sub>3</sub> -CH <sub>2</sub> -   i-C <sub>3</sub> H <sub>7</sub>   B   163     Ib-12   Cl   CH <sub>3</sub>   -(CH <sub>2</sub> ) <sub>5</sub> -   i-C <sub>3</sub> H <sub>7</sub>   -   174     Ib-13   Cl   CH <sub>3</sub>   -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -   CH <sub>3</sub>   -   217     Ib-14   Cl   CH <sub>3</sub>   i-C <sub>3</sub> H <sub>7</sub>   CH <sub>3</sub>   CH <sub>3</sub>   -   191     Ib-15   Cl   CH <sub>3</sub>   CH <sub>3</sub>   CH <sub>3</sub>   -   188     Ib-16   Cl   CH <sub>3</sub>   -   CH <sub>2</sub>   CH <sub>3</sub>   -   211     Ib-17   Cl   CH <sub>3</sub>   -   -   -   220     Ib-17   Cl   CH <sub>3</sub>   -   -   -   220     Ib-18   CH <sub>3</sub>   -   -   -   220     Ib-19   CH <sub>3</sub>   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 | Ib-6  | Cl              | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>2</sub> -CHOC   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub>                 | ß | 198 |
| Ib-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Ib-7  | CI              | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>2</sub> -CHOC   | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | i-C <sub>3</sub> H <sub>7</sub> | ß | 141 |
| Ib-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Ib-8  | CH <sub>3</sub> | Cl                | (CH <sub>2</sub> ) <sub>2</sub> -CHCH   | (CH <sub>2</sub> ) <sub>2</sub> -                  | CH <sub>3</sub>                 | ß | 208 |
| Ib-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 | Ib-9  | CH <sub>3</sub> | Cl                | (CH <sub>2</sub> ) <sub>2</sub> -CHCH   | (CH <sub>2</sub> ) <sub>2</sub> -                  | i-C <sub>3</sub> H <sub>7</sub> | ß | 218 |
| Ib-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Ib-10 | CH <sub>3</sub> | Cl                | (CH <sub>2</sub> ) <sub>3</sub> -CHCH   | I <sub>3</sub> -CH <sub>2</sub> -                  | CH <sub>3</sub>                 | ß | 230 |
| Ib-13 Cl CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> - CH <sub>3</sub> - 217  Ib-14 Cl CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> CH <sub>3</sub> CH <sub>3</sub> - 191  Ib-15 Cl CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> - 188  Ib-16 Cl CH <sub>3</sub> CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> - 211  Ib-17 Cl CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> - CH <sub>3</sub> - > 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 | Ib-11 | CH <sub>3</sub> | Cl                | (CH <sub>2</sub> ) <sub>3</sub> -CHCH   | I <sub>3</sub> -CH <sub>2</sub> -                  | i-C <sub>3</sub> H <sub>7</sub> | ß | 163 |
| Ib-14 Cl CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> CH <sub>3</sub> CH <sub>3</sub> - 191  Ib-15 Cl CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> - 188  Ib-16 Cl CH <sub>3</sub> CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> - 211  Ib-17 Cl CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> - CH <sub>3</sub> - > 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Гb-12 | Cl              | CH <sub>3</sub>   | -(CH <sub>2</sub> ) <sub>5</sub> -      |                                                    | i-C <sub>3</sub> H7             | - | 174 |
| Ib-15 Cl CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> - 188  Ib-16 Cl CH <sub>3</sub> CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> - 211  Ib-17 Cl CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> - CH <sub>3</sub> - > 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 | Ib-13 | Cl              | CH <sub>3</sub>   | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CI | H <sub>2</sub> ) <sub>2</sub> -                    | CH <sub>3</sub>                 | • | 217 |
| Ib-16 Cl CH <sub>3</sub> CH <sub>3</sub> i-C <sub>3</sub> H <sub>7</sub> - 211  Ib-17 Cl CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> - CH <sub>3</sub> - > 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Ib-14 | Cl              | CH <sub>3</sub>   | i-C <sub>3</sub> H <sub>7</sub>         | CH₃                                                | CH <sub>3</sub>                 | 1 | 191 |
| Ib-17 Cl CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> - CH <sub>3</sub> - > 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35 | Ib-15 | Cl              | CH <sub>3</sub>   | $\triangle$                             | CH₃                                                | CH <sub>3</sub>                 | - | 188 |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 | Ib-16 | Cl              | CH <sub>3</sub>   | $\triangleright$                        | CH <sub>3</sub>                                    | i-C <sub>3</sub> H <sub>7</sub> | - | 211 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Ib-17 | Cl              | CH <sub>3</sub>   | -CH <sub>2</sub>                        | CH <sub>2</sub> -                                  | CH <sub>3</sub>                 | - |     |

| 5        | Bsp<br>Nr. | x               | Y               | A                                                                                      | В                                                  | R <sup>1</sup>                                  | Iso-<br>mer | Fp.<br>°C |
|----------|------------|-----------------|-----------------|----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------|-----------|
| 10       | Ib-18      | CI              | CH <sub>3</sub> | -CH <sub>2</sub>                                                                       | CH₂-                                               | i-C <sub>3</sub> H <sub>7</sub>                 | -           | 189       |
| 15       | Ib-19      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHO                                                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub>                                 | ß           | 218       |
|          | Ib-20      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHO                                                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | i-C <sub>3</sub> H <sub>7</sub>                 | В           | 176       |
| 20       | Ib-21      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH                                                | H <sub>2</sub> ) <sub>2</sub> -                    | CH <sub>3</sub>                                 | -           | 209       |
| 20       | Ib-22      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH                                                | H <sub>2</sub> ) <sub>2</sub> -                    | i-C <sub>3</sub> H <sub>7</sub>                 | -           | 192       |
| 25       | Ib-23      | CH <sub>3</sub> | Cl              | -CH <sub>2</sub> CH <sub>2</sub> -                                                     |                                                    | CH₃                                             | •           | 215       |
| 30<br>35 | Ib-24      | CH <sub>3</sub> | Cl              | -CH <sub>2</sub> CH <sub>2</sub> -                                                     |                                                    | i-C <sub>3</sub> H <sub>7</sub>                 | •           | 209       |
| 40       | Ib-25      | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub>                                                        | CH <sub>3</sub>                                    | CH <sub>3</sub>                                 | -           | 161       |
| 40       | Ib-26      | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub>                                                        | CH <sub>3</sub>                                    | i-C <sub>3</sub> H <sub>7</sub>                 | -           | 152       |
|          | Ib-27      | CH <sub>3</sub> | ·Cl             | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                    | i-C <sub>4</sub> H <sub>9</sub>                 | ß           | 201       |
| 45       | Ib-28      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                    | H <sub>5</sub> C <sub>2</sub> O-CH <sub>2</sub> | ß           | 178       |
| 50       | Ib-29      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHC                                                  | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | cı———                                           | В           | >220      |

EP 0 668 267 A1

|    | Bsp<br>Nr. | х               | Y               | A                                       | В                                                 | R <sup>1</sup>                                   | Iso-<br>mer | Fp.<br>°C |
|----|------------|-----------------|-----------------|-----------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------|-----------|
| 5  | Ib-30      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH  | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CI-(N=)                                          | В           | >220      |
| 10 | Ib-31      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH  | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | <br> <br>  CI                                    | В           | 220       |
| 15 | Ib-32      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHC   | H <sub>3</sub> -CH <sub>2</sub> -                 | $\triangle$                                      | В           | 196       |
| 20 | Ib-33      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCH  | H <sub>3</sub> -CH <sub>2</sub> -                 | i-C <sub>4</sub> H <sub>9</sub>                  | ß           | 172       |
|    | Ib-34      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | H <sub>5</sub> C <sub>2</sub> O-CH <sub>2</sub>  | ß           | 143       |
| 25 | Ib-35      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | H <sub>3</sub> C                                 | В           | 189       |
| 30 | Ib-36      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | CI-                                              | В           | >220      |
| 35 | Ib-37      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | CI N=                                            | ß           | 220       |
| 40 | Ib-38      | CH <sub>3</sub> | CI              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | (s)                                              | ß           | 218       |
| 45 | Ib-39      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI  | H <sub>3</sub> -CH <sub>2</sub> -                 | ()\_                                             | В           | 218       |
| 50 | Ib-40      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(Cl | H <sub>2</sub> ) <sub>2</sub> -                   | H <sub>5</sub> C <sub>2</sub> -O-CH <sub>2</sub> |             | 168       |

| 5  | Bsp<br>Nr.    | х               | Y               | A                                                                     | В                                                 | R <sup>1</sup>                                                       | Iso-<br>mer | Fp.<br>°C |
|----|---------------|-----------------|-----------------|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-------------|-----------|
|    | Ib-41         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> - |                                                   | ci—C                                                                 | -           | >220      |
| 10 | Ib-42         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> - |                                                   | CI-N=                                                                | -           | >220      |
| 15 | Ib-43         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH                               | ·I <sub>2</sub> ) <sub>2</sub> -                  | n-C <sub>15</sub> H <sub>31</sub>                                    | -           | 99        |
| 20 | Љ-44          | CH <sub>3</sub> | CI              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH                               | H <sub>2</sub> ) <sub>2</sub> -                   | cı                                                                   |             | 198       |
| 25 | Ib-45         | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> - |                                                   | CI N=                                                                | 1           | 206       |
|    | Ib-46         | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CI                               | H <sub>2</sub> ) <sub>2</sub> -                   | n-C <sub>15</sub> H <sub>31</sub>                                    | ı           | 136       |
| 30 | Ib-47         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCI                                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | H <sub>5</sub> C <sub>2</sub> -O-CH <sub>2</sub>                     | В           | 175       |
|    | Ib-48         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCI                                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | n-C <sub>15</sub> H <sub>31</sub>                                    | ß           | 96        |
| 35 | Љ-49          | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCI                                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | cı—()                                                                | В           | 218       |
| 40 | <b>Ib-</b> 50 | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CHCI                                | H <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CI-N=                                                                | В           | 209       |
| :  | Ib-51         | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI                                | H <sub>3</sub> -CH <sub>2</sub> -                 | n-C <sub>15</sub> H <sub>31</sub>                                    | В           | 84        |
| 45 | Ib-52         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHCI                                | H <sub>3</sub> -CH <sub>2</sub> -                 | n-H <sub>9</sub> C₄-CH-<br> <br> <br>  C <sub>2</sub> H <sub>5</sub> | ß           | 120       |
| 50 | Ib-53         | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHCl                                | H <sub>3</sub> -CH <sub>2</sub> -                 | i-C <sub>4</sub> H <sub>9</sub>                                      | В           | 154       |

| Bsp<br>Nr. | х               | Y               | A                                       | В                                                                      | R <sup>1</sup>                                   | Iso-<br>mer | Fp.<br>°C |
|------------|-----------------|-----------------|-----------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|-------------|-----------|
| Ib-54      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHCl  | H <sub>3</sub> -CH <sub>2</sub> -                                      | H <sub>5</sub> C <sub>2</sub> -O-CH <sub>2</sub> | В           | 166       |
| Ib-55      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHCl  | H <sub>3</sub> -CH <sub>2</sub> -                                      | cı-(                                             | В           | 214       |
| Ib-56      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHCl  | -(CH <sub>2</sub> ) <sub>3</sub> -CHCH <sub>3</sub> -CH <sub>2</sub> - |                                                  | В           | 212       |
| Ib-57      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CHC   | H <sub>3</sub> -CH <sub>2</sub> -                                      | n-C <sub>15</sub> H <sub>31</sub>                | ß           | 78        |
| Ib-58      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(Cl | H <sub>2</sub> ) <sub>2</sub> -                                        | H <sub>5</sub> C <sub>2</sub> -O-CH <sub>2</sub> |             | 182       |

#### Beispiel (Ic-1)

4,36 g der Verbindung des Beispiels la-1 werden in 70 ml trockenem Methylenchlorid mit 2,1 ml Triethylamin versetzt und bei 0 bis 10 °C 1,5 ml Chlorameisensäure-ethylester in 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 4,1 g (75 % der Theorie), Fp. 184 °C.

Analog und gemäß den allgemeinen Angaben zur Herstellung werden folgende Verbindungen erhalten:

## Tabelle 10

 $R^2$  M O X (Ic)

| Bsp<br>Nr. | х               | Y               | A                                     | В                                                   | М  | R <sup>2</sup>                  | Iso-<br>mer | Fp.<br>°C |
|------------|-----------------|-----------------|---------------------------------------|-----------------------------------------------------|----|---------------------------------|-------------|-----------|
| Ic-2       | Cl              | CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>2</sub> -CHC  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0  | C <sub>2</sub> H <sub>5</sub>   | В           | 218       |
| Ic-3       | CI              | CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>2</sub> -CHC  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0  | i-C <sub>3</sub> H <sub>7</sub> | В           | 215       |
| Ic-4       | CI              | CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>3</sub> -CHC  | CH <sub>3</sub> -CH <sub>2</sub> -                  | 0  | C <sub>2</sub> H <sub>5</sub>   | ß           | 173       |
| Ic-5       | Cl              | CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>2</sub> -CHC  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0  | C <sub>2</sub> H <sub>5</sub>   | В           | 163       |
| Ic-6       | Cl              | CH <sub>3</sub> | (CH <sub>2</sub> ) <sub>2</sub> -CHC  | OCH <sub>3</sub> -(CH <sub>2)2</sub> -              | 0  | s-C <sub>4</sub> H <sub>9</sub> | ß           | 124       |
| Ic-7       | CH <sub>3</sub> | Cl              | (CH <sub>2</sub> ) <sub>2</sub> -CHC  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0  | C <sub>2</sub> H <sub>5</sub>   | В           | 188       |
| Ic-8       | CH <sub>3</sub> | Cl              | (CH <sub>2</sub> ) <sub>3</sub> -CHC  | CH <sub>3</sub> -CH <sub>2</sub> -                  | 0  | C <sub>2</sub> H <sub>5</sub>   | В           | 168       |
| Ic-9       | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -    | -(CH <sub>2</sub> ) <sub>5</sub> -                  |    | C <sub>2</sub> H <sub>5</sub>   |             | 168       |
| Ic-10      | Cl              | CH <sub>3</sub> | CH <sub>3</sub>                       | CH <sub>3</sub>                                     | 0  | C₂H₅                            | •           | 162       |
| Ic-11      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -                    | 0  | C <sub>2</sub> H <sub>5</sub>   | -           | ><br>220  |
| Ic-12      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -                    | ο. | s-C <sub>4</sub> H <sub>9</sub> | -           | 169       |
| Ic-13      | Cl              | СН3             | i-C <sub>3</sub> H <sub>7</sub>       | CH <sub>3</sub>                                     | 0  | C <sub>2</sub> H <sub>5</sub>   | -           | 192       |
| Ic-14      | Cl              | CH <sub>3</sub> | i-C <sub>3</sub> H <sub>7</sub>       | СН3                                                 | 0  | s-C <sub>4</sub> H <sub>9</sub> | -           | 173       |
| Ic-15      | Cl              | CH <sub>3</sub> | D-                                    | СН3                                                 | 0  | C <sub>2</sub> H <sub>5</sub>   | -           | 179       |
| lc-16      | CI              | CH <sub>3</sub> | D-                                    | CH <sub>3</sub>                                     | 0  | s-C <sub>4</sub> H <sub>9</sub> | •           | 174       |

| - 1 |                                         |                   |                 |                                                                                        |                                                     |   |                                 |             |             |
|-----|-----------------------------------------|-------------------|-----------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|---|---------------------------------|-------------|-------------|
|     | Bsp<br>Nr.                              | х                 | Y               | A                                                                                      | В                                                   | М | R <sup>2</sup>                  | Iso-<br>mer | Fp.<br>°C   |
| 5   | Ic-17                                   | Cl                | CH <sub>3</sub> | -CH <sub>2</sub>                                                                       | CH₂-                                                | 0 | C <sub>2</sub> H <sub>5</sub>   | •           | 174         |
| 10  |                                         |                   | •               |                                                                                        |                                                     | : |                                 |             |             |
|     | Ic-18                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH(                                                  | CH₃-CH₂-                                            | S | i-C <sub>3</sub> H <sub>7</sub> | •           | 205-<br>207 |
| 15  | Ic-19                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                   | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | C <sub>2</sub> H <sub>5</sub>   | ß           | 141         |
|     | Ic-20                                   | CH <sub>3</sub>   | Cl .            | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                   | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | s-C <sub>4</sub> H <sub>9</sub> | ß           | 154         |
| 20  | Ic-21                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(                                                  | CH <sub>2</sub> ) <sub>2</sub> -                    | 0 | C₂H₅                            | •           | ><br>220    |
| 25  | Ic-22                                   | CH₃               | CI              | -CH <sub>2</sub> CH <sub>2</sub> -                                                     |                                                     | 0 | C₂H₅                            |             | 206         |
|     | Ic-23                                   | CH <sub>3</sub>   | Cl              | i-C <sub>3</sub> H <sub>7</sub>                                                        | CH <sub>3</sub>                                     | 0 | C <sub>2</sub> H <sub>5</sub>   | -           | 159         |
| 30  | Ic-24                                   | CH <sub>3</sub>   | Cl              | i-C <sub>3</sub> H <sub>7</sub>                                                        | CH <sub>3</sub>                                     | 0 | s-C <sub>4</sub> H <sub>9</sub> | -           | 172         |
|     | Ic-25                                   | CH <sub>3</sub>   | Cl              | CH <sub>3</sub>                                                                        | CH <sub>3</sub>                                     | 0 | C <sub>2</sub> H <sub>5</sub>   | -           | 172         |
| 35  | Ic-26                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CH(                                                  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | CH <sub>3</sub>                 | ß           | 178         |
|     | Ic-27                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | i-C <sub>4</sub> H <sub>9</sub> | ß           | 194         |
|     | Ic-28                                   | CH <sub>3</sub> . | Cl <sub>.</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH                                                   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | i-C <sub>3</sub> H <sub>7</sub> | ß           | .184.       |
| 40  | Ic-29                                   | CH <sub>3</sub>   | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -ĊH                                                   | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | s-C <sub>4</sub> H <sub>9</sub> | ß           | 211         |
| 45  | Ic-30                                   | CH₃               | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CHCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - |                                                     | 0 |                                 | В           | 200         |
| 50  | Ic-31                                   | CH <sub>3</sub>   | CI              | -(CH <sub>2</sub> )₂-CH(                                                               | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | 0 | сн <sub>2</sub>                 | ß           | 219         |
| 50  | نــــــــــــــــــــــــــــــــــــــ |                   |                 |                                                                                        |                                                     | L |                                 |             |             |

|    | Bsp<br>Nr. | х               | Y               | A                                     | В                                  | М        | R <sup>2</sup>                  | Iso-<br>mer | Fp. |
|----|------------|-----------------|-----------------|---------------------------------------|------------------------------------|----------|---------------------------------|-------------|-----|
| 5  | Ic-32      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> - | 0        | CH <sub>3</sub>                 | ß           | 217 |
|    | Ic-33      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> - | 0        | i-C <sub>3</sub> H <sub>7</sub> | ß           | 186 |
|    | Ic-34      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> - | 0        | s-C <sub>4</sub> H <sub>9</sub> | ß           | 185 |
| 10 | Ic-35      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> - | 0        | i-C <sub>4</sub> H <sub>9</sub> | ß           | 191 |
|    | Ic-36      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> - | 0        |                                 | В           | 196 |
|    |            |                 |                 |                                       |                                    |          |                                 |             |     |
| 15 |            |                 |                 |                                       |                                    |          |                                 |             | ļ   |
|    | Ic-37      | Cl              | CH <sub>3</sub> | -CH <sub>2</sub> CI                   | H <sub>2</sub> -                   | 0        | i-C <sub>3</sub> H <sub>7</sub> | •           | 205 |
| 20 |            |                 |                 |                                       | )                                  |          |                                 |             |     |
|    |            |                 |                 |                                       |                                    |          |                                 |             |     |
|    |            |                 |                 |                                       |                                    |          |                                 |             |     |
| 25 | Ic-38      | Cl              | CH <sub>3</sub> | -CH₂ CI                               | <b>-1</b> 2•                       | 0        | i-C <sub>4</sub> H <sub>9</sub> | -           | 135 |
|    |            |                 |                 |                                       |                                    |          |                                 |             |     |
|    |            |                 |                 |                                       |                                    |          |                                 |             |     |
| 30 |            |                 |                 |                                       |                                    |          |                                 |             |     |
|    | Ic-39      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -   | 0        | CH <sub>3</sub>                 | -           | 209 |
|    | Ic-40      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -   | 0        | i-C <sub>3</sub> H <sub>7</sub> | •           | 208 |
| 35 | Ic-41      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> )₂-                | 0        | i-C <sub>4</sub> H <sub>9</sub> | -           | 202 |
|    | Ic-42      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -   | 0        |                                 | -           | 209 |
|    |            |                 |                 |                                       | titi i ke.                         |          | СН2                             | ٠.          |     |
| 40 |            |                 | ·               |                                       |                                    |          |                                 |             |     |
|    | Ic-43      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-( |                                    | 0        | CH₃                             | -           | 218 |
|    | Ic-44      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-( |                                    | 0        | i-C <sub>3</sub> H <sub>7</sub> | -           | 207 |
| 45 | Ic-45      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-( |                                    | 0        | i-C <sub>4</sub> H <sub>9</sub> | •           | 211 |
|    | Ic-46      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -   | 0        |                                 | -           | 174 |
| 50 |            |                 |                 |                                       |                                    |          | \ <u>_</u> //                   |             |     |
| 50 | 1          |                 |                 |                                       |                                    | <b>.</b> |                                 | <u> </u>    |     |

| Bs<br>Nr. |    | х  | Y               | A                                    | В                                                  | М | R <sup>2</sup>                                   | Iso-<br>mer | Fp.<br>°C |
|-----------|----|----|-----------------|--------------------------------------|----------------------------------------------------|---|--------------------------------------------------|-------------|-----------|
| Ic-       | 47 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | t-C <sub>4</sub> H <sub>9</sub> -CH <sub>2</sub> | ß           | 213       |
| Ic-       | 48 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | s-C <sub>4</sub> H <sub>9</sub>                  | В           | 164       |
| Ic-       | 49 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | i-C <sub>4</sub> H <sub>9</sub>                  | В           | 167       |
| Ic-       | 50 | Cl | CH₃<br>·        | -(CH <sub>2</sub> ) <sub>2</sub> -CH | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | 0 | <u></u>                                          | В           | 220       |
| Ic-       | 51 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CH | CH <sub>3</sub> -CH <sub>2</sub> -                 | 0 | i-C <sub>3</sub> H <sub>7</sub>                  | В           | 203       |
| Ic-       | 52 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CH | CH <sub>3</sub> -CH <sub>2</sub> -                 | 0 | i-C <sub>4</sub> H <sub>9</sub>                  | В           | 179       |
| Ic-       | 53 | Cl | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CH | CH <sub>3</sub> -CH <sub>2</sub> -                 | 0 | s-C <sub>4</sub> H <sub>9</sub>                  | a           | 158       |

#### s Beispiel Id-1

3,05 g der Verbindung des Beispiels la-8 werden in 70 ml trockenem Methylenchlorid mit 1,4 ml Triethylamin versetzt und bei 0 bis 10°C 1,15 ml Methansulfonsäurechloridin 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 3 g (78 % der Theorie), Fp. 198°C.

#### Beispiel le-1

10 H<sub>3</sub>C O H<sub>3</sub>C O CI (+) H<sub>3</sub>NCH(CH<sub>3</sub>)<sub>2</sub>

3,06 g (10 mmol) der Verbindung la-8 werden in 50 ml wasserfreiem Methylenchlorid suspendiert und mit 1,02 ml (12 mmol) wasserfreiem Isopropylamin versetzt. Nach 15 Min. wird das Lösungsmittel im Vakuum abgedampft. Man erhält 3,6 g ( $\underline{a}$  98 % der Theorie) der Verbindung le-1 vom Schmp. 152 °C.

## 20 Beispiel Ig-1

15

25 H<sub>3</sub>C CI

4,59 g der Verbindung des Beispiels la-8 werden in 50 ml trockenem Tetrahydrofuran mit 2,28 g Diazabicycloundecen versetzt und bei 0 bis 10°C 1,76 ml Morpholincarbamidsäurechlorid in 5 ml trockenem Tetrahydrofuran zugegeben und anschließend 3 h unter Rückfluß erwärmt. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 2,6 g (47 % der Theorie), Fp. 182°C.

55

45

#### Herstellung der Ausgangsverbindungen:

#### Beispiel (II-1)

5

10

15

14,5 g (75 mmol) 1-Amino-cyclohexancarbonsäure-methylester-hydrochlorid werden in 180 ml absolutem Tetrahydrofuran vorgelegt, mit 21 ml Triethylamin versetzt, bei 0 bis 10 °C 15,2 g (75 mmol) 4-Chlor-2-methyl-phenylessigsäurechlorid in 20 ml absolutem Tetrahydrofuran zugetropft und 1 Stunde bei Raumtemperatur nachgerührt. Man gießt das Reaktionsgemisch in 500 ml Eiswasser + 200 ml HCl, saugt das ausgefallene Produkt ab und trocknet es. Nach Umkristallisieren aus Methyl-tert.-butylether/n-Hexan erhält man 16 g (4 65 % der Theorie) des oben gezeigten Produkts vom Schmelzpunkt 151 °C.

#### Beispiel (II-2)

25

35

30

Zu 124,4 g (1,27 Mol) konzentrierter Schwefelsäure tropft man 70,4 g (0,253 Mol) N-(2-Chlor-4-methylphen-ylacetyl)-2-amino-2,3-dimethylbuttersäurenitril in 500 ml Methylenchlorid, so daß die Lösung mäßig siedet. Nach zwei Stunden werden 176 ml absolutes Methanol zugetropft und 6 h unter Rückfluß erwärmt. Die Reaktionsmischung wird auf 1,25 kg Eis gegossen und mit Methylenchlorid extrahiert. Die vereinigten Methylenchloridphasen werden mit gesättigter Natriumhydrogencarbonatlösung gewaschen, getrocknet, das Lösungsmittel im Vakuum abgedampft und der Rückstand aus Methyl-tert.-butylether/n-Hexan umkristallisiert.

Auf diese Weise erhält man 69,6 g (à 88 % der Theorie) der Verbindung II-2 vom Schmp. 96 ° C. Analog den Beispielen (II-1) und (II-2) erhält man die in Tabelle 11 gezeigten Beispiele.

50

# Tabelle 11

| Bsp<br>Nr. | х               | <b>Y</b>        | A                                     | В                                                   | R <sup>8</sup>  | Isomer   | Fp.°C |
|------------|-----------------|-----------------|---------------------------------------|-----------------------------------------------------|-----------------|----------|-------|
| II-3       | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>5</sub> -    |                                                     | CH <sub>3</sub> | <b>-</b> | 102   |
| II-4       | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | CH <sub>3</sub> | ß        | 124   |
| II-5       | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> -                  | CH <sub>3</sub> | ß        | 127   |
| II-6       | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> | ß        | 106   |
| II-7       | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -  | CH <sub>3</sub> | a        | 161   |
| II-8       | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>3</sub> -CH  | CH <sub>3</sub> -CH <sub>2</sub> -                  | CH <sub>3</sub> | ß        | 136   |
| II-9       | CH <sub>3</sub> | ·Cl             | -(CH <sub>2</sub> ) <sub>2</sub> -ĊH  | OCH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> - | CH <sub>3</sub> | ß.       | 124   |
| II-10      | CH <sub>3</sub> | Cl              | CH <sub>3</sub>                       | CH <sub>3</sub>                                     | CH <sub>3</sub> | -        | 169   |
| П-11       | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub>       | CH <sub>3</sub>                                     | CH <sub>3</sub> | -        | 126   |
| II-12      | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -                    | CH <sub>3</sub> |          | 117   |

EP 0 668 267 A1

| _  | Bsp<br>Nr. | х               | Y               | A                                     | В                                                          | R <sup>8</sup>  | Isomer | Fp.°C |
|----|------------|-----------------|-----------------|---------------------------------------|------------------------------------------------------------|-----------------|--------|-------|
| 5  | II-13      | CH <sub>3</sub> | Cl              | -c <b>-</b>                           | H <sub>2</sub> CH <sub>2</sub> -                           | CH <sub>3</sub> | •      | 169   |
| 10 |            |                 |                 |                                       | <u>/</u> /                                                 |                 |        |       |
| 15 | II-14      | CH₃             | Cl              | -(CH <sub>2</sub>                     | ) <sub>2</sub> -C-(CH <sub>2</sub> ) <sub>2</sub> -<br>O   | CH₃             | -      | 115   |
| 20 | II-15      | Cl              | CH <sub>3</sub> | CH <sub>3</sub>                       | CH₃                                                        | CH <sub>3</sub> | -      | 101   |
| 25 | II-16      | Cl              | CH <sub>3</sub> | $\triangle$                           | CH <sub>3</sub>                                            | СН₃             | -      | 118   |
|    | II-17      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-( | CH <sub>2</sub> ) <sub>2</sub> -                           | CH <sub>3</sub> | -      | 137   |
| 30 | II-18      | Cl              | CH <sub>3</sub> | -CF                                   | -CH <sub>2</sub> CH <sub>2</sub> -                         |                 | -      | 168   |
| 35 | II-19      | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -CH  | CH <sub>3</sub> -CHCH <sub>3</sub> -CH <sub>2</sub> -      | CH <sub>3</sub> | В      | 143   |
| 40 | II-20      | Cl              | CH <sub>3</sub> |                                       | ) <sub>2</sub> -C-(CH <sub>2</sub> ) <sub>2</sub> -<br>) O | CH <sub>3</sub> |        | 115   |

#### Beispiel (XVII-1)

5 H<sub>3</sub>C CN O CH

15 33,6 g (0,3 Mol) 2-Amino-2,3-dimethyl-buttersäurenitril werden in 450 ml absolutem Tetrahydrofuran vorgelegt, mit 42 ml Triethylamin versetzt und bei 0 bis 10 °C 60,9 g 2-Chlor-4-methyl-phenylessigsäure-chlorid zugetropft. Man rührt eine Stunde bei Raumtemperatur nach, rührt den Ansatz in 1,3 l Eiswasser und 200 ml 1 N HCl ein, saugt den Niederschlag ab, trocknet und kristallisiert aus Methyltert.-butylether/n-Hexan um. Auf diese Weise erhält man 70,4 g (△ 84 % der Theorie) des oben gezeigten Produktes vom 20 Schmp. 112 °C.

Analog erhält man die in Tabelle 12 aufgeführten Verbindungen der Formel (XVII).

Tabelle 12

15

20

25

30

35

40

55

B CN (XVII)

| Bsp-Nr. | x               | Y               | A                                      | В                                | Fp. |
|---------|-----------------|-----------------|----------------------------------------|----------------------------------|-----|
| XVII-2  | Cl              | CH <sub>3</sub> | -(CH <sub>2</sub> ) <sub>2</sub> -O-(0 | CH <sub>2</sub> ) <sub>2</sub> - | 156 |
| XVII-3  | Cl              | CH <sub>3</sub> | $\forall$                              | CH <sub>3</sub>                  | 169 |
| XVII-4  | Cl              | CH <sub>3</sub> | -CH <sub>2</sub>                       | CH₂-                             | 121 |
| XVII-5  | CH <sub>3</sub> | Cl              | -(CH <sub>2</sub> ) <sub>2</sub> -O-(0 | CH <sub>2</sub> ) <sub>2</sub> - | 112 |
| XVII-6  | CH <sub>3</sub> | Cl              | i-C <sub>3</sub> H <sub>7</sub>        | CH <sub>3</sub>                  | 136 |
| XVII-7  | СН₃             | CI              | -CH <sub>2</sub>                       | CH₂-                             | 112 |

## Anwendungsbeispiele

## Beispiel A

50 Phaedon-Larven-Test

| Lösungsmittel: | 7 Gewichtsteile Dimethylformamid         |
|----------------|------------------------------------------|
| Emulgator:     | Gewichtsteil Alkylarylpolyglykolether    |
| Linuigator.    | I dewichtsteil Alkylai ylpolygiykolethel |

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das

Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica olearacea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4 und la-5 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 7 Tagen.

#### 10 Beispiel B

Plutella-Test

15

5

| Lösungsmittel: | 7 Gewichtsteile Dimethylformamid        |
|----------------|-----------------------------------------|
| Emulgator:     | 1 Gewichtsteil Alkylarylpolyglykolether |

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica olearacea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella maculipennis) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden; 0 % bedeutet, daß keine Raupen abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4 und la-7 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 7 Tagen.

Bei einer beispielhaften Wirkstoffkonzentration von 0,01 % bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ib-9 und Ib-11 eine Abtötung von 100 % nach 3 Tagen.

Die Verbindungen gemäß den Herstellungsbeispielen la-7 (0,01 %, 7 Tage), Ib-8 (0,01 %, 3 Tage) und lc-7 (0,01 %, 3 Tage) bewirkten bei den in Klammern angegebenen Wirkstoftkonzentrationen und Zeiten eine Abtötung von 100 %.

#### 35 Beispiel C

Nephotettix-Test

40

45

| Lösungsmittel: | 7 Gewichtsteile Dimethylformamid      |
|----------------|---------------------------------------|
| Emulgator:     | Gewichtsteil Alkylarylpolyglykolether |

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4, la-5, lb-8, lb-9 und lb-11 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 6 Tagen.

## Beispiel D

Myzus-Test

5

15

| Lösungsmittel: | 7 Gewichtsteile Dimethylformamid        |
|----------------|-----------------------------------------|
| Emulgator:     | 1 Gewichtsteil Alkylarylpolyglykolether |

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea), die stark von der Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Blattläuse abgetötet wurden; 0 % bedeutet, daß keine Blattläuse abgetötet wurden.

Bei diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4, la-7 und la-8 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % einen Abtötungsgrad von mindestens 70 % nach 6 Tagen.

Bei einer beispielhaften Wirkstoffkonzentration von 0,1 % bewirkte z.B. die Verbindung gemäß dem Herstellungsbeispiel lb-11 eine Abtötung von 90 % nach 6 Tagen.

#### Beispiel E

25 Panonychus-Test

| Lösungsmittel: | 3 Gewichtsteile Dimethylformamid        |  |
|----------------|-----------------------------------------|--|
| Emulgator:     | 1 Gewichtsteil Alkylarylpolyglykolether |  |

30

35

45

50

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Ca. 30 cm hohe Pflaumenbäumchen (Prunus domestica), die stark von allen Entwicklungsstadien der Obstbaumspinnmilbe (Panonychus ulmi) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-8, lb-8, lb-9, lc-7, lb-10, lb-11, lc-8, la-4 und la-5 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % einen Abtötungsgrad von mindestens 95 % nach 7 Tagen.

#### Beispiel F

Tetranychus-Test (OP-resistent/Spritzbehandlung)

| Lösungsmittel: | 3 Gewichtsteile Dimethylformamid      |
|----------------|---------------------------------------|
| Emulgator:     | Gewichtsteil Alkylarylpolyglykolether |

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die Verbindungen gemäß den Herstellungsbeispielen la-7, la-8, lb-9, lc-7, lb-10, lb-11, lc-8, la-4 und la-5 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % eine Abtötung von mindestens 95 % nach 7 Tagen.

#### Beispiel G

#### Pre-emergence-Test

| Lösungsmittel: | 5 Gewichtsteile | Aceton                   |
|----------------|-----------------|--------------------------|
| Emulgator:     | 1 Gewichtsteil  | Alkylarylpolyglykolether |

15

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

O % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

In diesem Test zeigen beispielsweise die Verbindungen gemäß Herstellungsbeispiel (Ic-14) bei einer beispielhaften Aufwandmenge von 250 g/ha und einer sehr guten Verträglichkeit durch Beta vulgaris eine Wirkung von mindestens 95 % gegenüber folgenden Testpflanzen: Alopecurus myosuroides, Digitaria sanguinalis, Echinocloa colonum, Lolium perenne und Setaria viridis.

30

25

#### Patentansprüche

#### 1. 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

40

35

45

in welcher

A für Wa

50

55

für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteroatom unterbrochenes, gegebenenfalls substituiertes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B A und B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder

gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten gegebenenfalls durch mindestens ein Heteroatom unter-

brochenen unsubstituierten oder substituierten Cyclus stehen.

Х

für Halogen oder Alkyl steht,

Υ für Halogen oder Alkyl steht, G für Wasserstoff (a) oder für eine der Gruppen  $SO_{2} R^{3}$   $P^{R^{4}}$ 5 E (f) oder 10 15 steht. E für ein Metallionäquivalent oder ein Ammoniumion steht, L und M jeweils für Sauerstoff oder Schwefel stehen, 20 R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxy-25 alkyl oder Hetaryloxyalkyl steht,  $\mathbb{R}^2$ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder 30 für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen R6 und R7 unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam mit dem N-35 Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen, deren Diastereomerengemische, reinen Diastereomeren und Enantiomeren, mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen. 40 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um eine der folgenden Strukturen (la) bis (lg) handelt: 45 50

worin

15

20

25

30

35

40

45

55

- A, B, E, L, M, X, Y, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>5</sup> und R<sup>7</sup> die in Anspruch 1 angegebenen Bedeutungen besitzen.
  - 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, in welcher

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>12</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Alkenyl, C<sub>1</sub>-C<sub>10</sub>-Alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio-C<sub>1</sub>-C<sub>6</sub>-alkyl, gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder

|    |                | Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls durch Halogen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                | C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>1</sub> -C <sub>6</sub> -Halogenalkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy und/oder Nitro substituiertes Aryl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |                | 5- oder 6-gliedriges Hetaryl oder Aryl-C₁-C6-alkyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | В              | für Wasserstoff, C <sub>1</sub> -C <sub>12</sub> -Alkyl oder C <sub>1</sub> -C <sub>8</sub> -Alkoxyalkyl steht, oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5  | A, B           | und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                | ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                | C <sub>10</sub> -Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C <sub>1</sub> -C <sub>10</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                | Alkyl, C <sub>3</sub> -C <sub>10</sub> -Cycloalkyl, C <sub>1</sub> -C <sub>6</sub> -Halogenalkyl, C <sub>1</sub> -C <sub>10</sub> -Alkoxy, C <sub>1</sub> -C <sub>10</sub> -Alkylthio, Halogen oder Phenyl substituiert ist oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | A, B           | und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₅-Spirocyclus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 | А, Б           | stehen, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- und/oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                | Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                | durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                | das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Spirocyclus bildet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 |                | oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | A, B           | und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₃-Spirocyclus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                | stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                | C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy oder Halogen substituierten gesättigten oder ungesät-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                | tigten 3- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20 | v              | unterbrochen sein kann,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | X<br>Y         | für Halogen oder C₁-C₅-Alkyl steht,<br>für Halogen oder C₁-C₅-Alkyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Ġ              | für Wasserstoff (a) oder für eine der Gruppen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | <b>u</b>       | 101 Traccordon (a) cool for only collection arappen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25 |                | 0 _4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                | $\tilde{I}$ |
|    |                | $R^{1}$ (b), $R^{2}$ (c), $SO_{2}-R^{3}$ (d), $R^{5}$ (e),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                | R (b), $M$ (c), $R$ (e),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30 |                | E (f) oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                | L (I) oddi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |                | \ R <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35 |                | $N \setminus 7$ (g),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                | L" R'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |                | steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40 |                | in welchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | E              | für ein Metallionäquivalent oder ein Ammoniumion steht und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | L und M        | jeweils für Sauerstoff oder Schwefel stehen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | R <sup>1</sup> | für jeweils gegebenenfalls durch Halogen substituiertes C <sub>1</sub> -C <sub>20</sub> -Alkyl, C <sub>2</sub> -C <sub>20</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                | Alkenyl, $C_1$ - $C_8$ -Alkoxy- $C_1$ - $C_8$ -alkyl, $C_1$ - $C_8$ -Alkylthio- $C_1$ - $C_8$ -alkyl, $C_1$ - $C_8$ -Polyalkoxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45 |                | C <sub>1</sub> -C <sub>8</sub> -alkyl oder gegebenenfalls durch Halogen oder C <sub>1</sub> -C <sub>6</sub> -Alkyl substituiertes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                | Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                | und/oder Schwefelatom unterbrochen sein kann,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                | für gegebenenfalls durch Halogen, Nitro, C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy, C <sub>1</sub> - C <sub>6</sub> -Halogenalkoxy, C <sub>1</sub> -C <sub>6</sub> -Alkylthio oder C <sub>1</sub> -C <sub>6</sub> -Alkylsulfonyl sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 |                | stituiertes Phenyl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50 |                | für gegebenenfalls durch Halogen, C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy, C <sub>1</sub> -C <sub>6</sub> -Halogenal-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                | kyl, C₁-C₅-Halogenalkoxy substituiertes Phenyl-C₁-C₅-alkyl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                | für gegebenenfalls durch Halogen und/oder C <sub>1</sub> -C <sub>6</sub> -Alkyl substituiertes 5- oder 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                | gliedriges Hetaryl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55 |                | für gegebenenfalls durch Halogen und/oder C₁-C6-Alkyl substituiertes Phenoxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                | C <sub>1</sub> -C <sub>6</sub> -alkyl, oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                | für gegebenenfalls durch Halogen, Amino und/oder C <sub>1</sub> -C <sub>6</sub> -Alkyl substituiertes 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                | oder 6-gliedriges Hetaryloxy-C <sub>1</sub> -C <sub>6</sub> -alkyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

tes C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, oder

Alkenyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl,

für jeweils gegebenenfalls durch Halogen substituiertes  $C_1$ - $C_{20}$ -Alkyl,  $C_3$ - $C_{20}$ -

für gegebenenfalls durch Halogen, C1-C4-Alkyl und/oder C1-C4-Alkoxy substituier-

 $\mathbb{R}^2$ 

| 5  |                                   | für jeweils gegebenenfalls durch Halogen, Nitro, C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy-und/oder C <sub>1</sub> -C <sub>6</sub> -Halogenalkyl substituiertes Phenyl oder Benzyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | R³, R⁴ und R⁵                     | unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes $C_1$ - $C_8$ -Alkyl, $C_1$ - $C_8$ -Alkoxy, $C_1$ - $C_8$ -Alkylamino, $D_1$ - $C_8$ -Alkylamino, $C_1$ - $C_8$ -Alkylthio, $C_2$ - $C_8$ -Alkenylthio, $C_3$ - $C_7$ -Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, $C_1$ - $C_4$ -Alkoxy, $C_1$ - $C_4$ -Alkoxy, $C_1$ - $C_4$ -Alkylthio, $C_1$ -                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                   | C <sub>4</sub> -Halogenalkylthio, C <sub>1</sub> -C <sub>4</sub> -Alkyl, C <sub>1</sub> -C <sub>4</sub> -Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | R <sup>6</sup> und R <sup>7</sup> | unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C <sub>1</sub> -C <sub>8</sub> -Alkyl, C <sub>3</sub> -C <sub>8</sub> -Cycloalkyl, C <sub>1</sub> -C <sub>8</sub> -Alkoxy, C <sub>3</sub> -C <sub>8</sub> -Alkenyl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15 |                                   | C <sub>1</sub> -C <sub>8</sub> -Alkoxy-C <sub>2</sub> -C <sub>8</sub> -alkyl, für gegebenenfalls durch Halogen, C <sub>1</sub> -C <sub>8</sub> -Halogenalkyl, C <sub>1</sub> -C <sub>8</sub> -Alkyl und/oder C <sub>1</sub> -C <sub>8</sub> -Alkoxy substituiertes Phenyl, gegebenenfalls durch Halogen, C <sub>1</sub> -C <sub>8</sub> -Alkyl, C <sub>1</sub> -C <sub>8</sub> -Halogenalkyl und/oder C <sub>1</sub> -C <sub>8</sub> -Alkoxy substituiertes Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen C <sub>3</sub> -C <sub>6</sub> -Alkylenring stehen,                                                                                                                                                                                                                                            |
| 20 | mit der Maßgabe, d                | daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 4. 1H-Aryl-pyrrolidin-a           | 2,4-dion-Derivate der Formel (I) gemäß Anspruch 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25 | Α                                 | für Wasserstoff, jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C <sub>1</sub> -C <sub>10</sub> -Alkyl, C <sub>3</sub> -C <sub>6</sub> -Alkenyl, C <sub>1</sub> -C <sub>8</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>6</sub> -Polyalkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>8</sub> -Alkylthio-C <sub>1</sub> -C <sub>6</sub> -alkyl, gegebenenfalls durch Fluor, Chlor, C <sub>1</sub> -C <sub>3</sub> -Alkyl, C <sub>1</sub> -C <sub>3</sub> -Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C <sub>1</sub> -C <sub>4</sub> -Alkyl, C <sub>1</sub> -C <sub>4</sub> -Halogenalkyl, C <sub>1</sub> -C <sub>4</sub> -Alkoxy |
| 30 |                                   | und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C <sub>1</sub> -C <sub>4</sub> -alkyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | В<br>А, В                         | für Wasserstoff, C₁-C₁o-Alkyl oder C₁-C₀-Alkoxyalkyl steht oder und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35 | Α, Β                              | ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C <sub>3</sub> -C <sub>9</sub> -Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>3</sub> -C <sub>8</sub> -Cycloalkyl, C <sub>1</sub> -C <sub>3</sub> -Haloalkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy, C <sub>1</sub> -C <sub>6</sub> -Alkylthio, Fluor, Chlor oder Phenyl substituiert ist oder                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | A, B                              | und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₅-Spirocyclus stehen, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 |                                   | Schwefelatome unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 45 | A,B                               | und das Kohlenstoffatom, an das sie gebunden sind, für einen $C_3$ - $C_6$ -Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch $C_1$ - $C_3$ -Alkyl, $C_1$ - $C_3$ -Alkoxy, Fluor, Chlor oder Brom substituierten gesättigten oder ungesättigten 5- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | ×                                 | fel unterbrochen sein kann,<br>für Fluor, Chlor, Brom oder C₁-C₄-Alkyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 | Y<br>G                            | für Fluor, Chlor, Brom oder oder C <sub>1</sub> -C <sub>4</sub> -Alkyl steht, für Wasserstoff (a) oder für eine der Gruppen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55 |                                   | $R^{1}$ (b), $R^{2}$ (c), $SO_{2}$ $R^{3}$ (d), $R^{5}$ (e),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

E (f) oder

steht,

in welchen

für ein Metallionäquivalent oder ein Ammoniumion steht und L und M jeweils für Sauerstoff oder Schwefel stehen,

für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>16</sub>-Alkyl,  $C_2$ - $C_{16}$ -Alkenyl,  $C_1$ - $C_6$ -Alkoxy- $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_{16}$ -Alkylthio- $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ Polyalkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl oder gegebenenfalls durch Halogen oder C<sub>1</sub>-C<sub>5</sub>-Alkyl sub-

stituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls durch Halogen, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl, C1-C3-Halogenalkoxy, C1-C4-Alkylthio oder C1-C4-Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>3</sub>-Halogenalkoxy substituiertes Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Phenoxy-C<sub>1</sub>-C<sub>5</sub>-alkyl oder

für gegebenenfalls durch Fluor, Chlor, Brom, Amino und/oder C1-C4-Alkyl substituiertes Pyridyloxy-C1-C5-alkyl, Pyrimidyloxy-C1-C5-alkyl oder Thiazolyloxy-C1-C5-alkyl steht,

für jeweils gegebenenfalls durch Halogen substituiertes C1-C16-Alkyl, C3-C16-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl,

für gegebenenfalls durch Halogen, C1-C3-Alkyl und/oder C1-C3-Alkoxy substituiertes C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl oder

für jeweils gegebenenfalls durch Halogen, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy und/oder C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes  $C_1-C_6$ -Alkyl,  $C_1-C_6$ -Alkoxy,  $C_1-C_6$ -Alkylamino,  $Di-(C_1-C_6)$ -alkylamino,  $C_1-C_6$ -Alkylt-

hio, C<sub>3</sub>-C<sub>4</sub>-Alkenylthio, C<sub>3</sub>-C<sub>6</sub>-Cycloalkylthio, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C<sub>1</sub>-C<sub>3</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>3</sub>-Alkylthio, C<sub>1</sub>-C<sub>3</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>3</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl substituiertes

Phenyl, Phenoxy oder Phenylthio stehen und

unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>3</sub>-C<sub>6</sub>-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, für gegebenenfalls durch Halogen, C<sub>1</sub>-C<sub>5</sub>-Halogenalkyl, C1-C5-Alkyl und/oder C1-C5-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C5-Alkyl, C1-C5-Halogenalkyl und/oder C1-C5-Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenenfalls durch Sauerstoff oder

Schwefel unterbrochenen C<sub>3</sub>-C<sub>6</sub>-Alkylenring stehen,

mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

1H-3-Aryl-pyrrolidin-2,4-dion Derivate der Formel (I) gemäß Anspruch 1, in welcher

> für Wasserstoff, gegebenenfalls durch Fluor und/oder Chlor substituiertes C1-C8-Alkyl, C<sub>3</sub>-C<sub>4</sub>-Alkenyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Polyalkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl,

> > 129

5

10

Ε

R¹

15

20

25

30

R<sup>2</sup>

R3, R4 und R5

R6 und R7

Α

35

40

45

50

|                |              | Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Pyrazolyl, Triazolyl, Indolyl, Thiazolyl, Thienyl oder Benzyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | В            | für Wasserstoff, C <sub>1</sub> -C <sub>8</sub> -Alkyl oder C <sub>1</sub> -C <sub>4</sub> -Alkoxyalkyl steht oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5              | A, B         | und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten gegebenenfals durch Sauerstoff oder Schwefel unterbrochenen C <sub>3</sub> -C <sub>8</sub> -Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, secButyl, tert,-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek-Bu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10             |              | toxy, tertButoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15             | A, B         | und das Kohlenstoffatom, an das sie gebunden sind, für einen C <sub>3</sub> -C <sub>6</sub> -Spirocyclus stehen, der durch eine gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | A,B          | siebengliedrigen Spirocyclus bildet oder und das Kohlenstoffatom, an das sie gebunden sind, für einen C <sub>3</sub> -C <sub>6</sub> -Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20             |              | Schwefel unterbrochen sein kann,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | X            | für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl steht,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Y<br>G       | für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl steht,<br>für Wasserstoff (a) oder für eine der Gruppen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | G            | idi wassersidii (a) ddei idi eine dei Gruppeii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |              | $R^{1}$ (b), $R^{2}$ (c), $SO_{2}$ $R^{3}$ $R^{5}$ (e),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30             |              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |              | E (f) oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35             |              | E (f) oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |              | $ \downarrow N \stackrel{R^6}{R^7} (g), $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35             | E<br>L und M | steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht, jeweils für Sauerstoff oder Schwefel stehen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35             |              | steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht, jeweils für Sauerstoff oder Schwefel stehen, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C <sub>1</sub> -C <sub>14</sub> -Alkyl, C <sub>2</sub> -C <sub>14</sub> -Alkenyl, C <sub>1</sub> -C <sub>4</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Alkylthio-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Polyalkoxy-C <sub>1</sub> -C <sub>4</sub> -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen                                                                                                                                                                                                                                                                                                      |
| 35<br>40<br>45 | L und M      | steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht, jeweils für Sauerstoff oder Schwefel stehen, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C <sub>1</sub> -C <sub>14</sub> -Alkyl, C <sub>2</sub> -C <sub>14</sub> -Alkenyl, C <sub>1</sub> -C <sub>4</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Alkylthio-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Polyalkoxy-C <sub>1</sub> -C <sub>4</sub> -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,                                                                                                                                                                                                                                                                                           |
| 35<br>40       | L und M      | steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht, jeweils für Sauerstoff oder Schwefel stehen, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C <sub>1</sub> -C <sub>14</sub> -Alkyl, C <sub>2</sub> -C <sub>14</sub> -Alkenyl, C <sub>1</sub> -C <sub>4</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Alkylthio-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Polyalkoxy-C <sub>1</sub> -C <sub>4</sub> -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, |
| 35<br>40<br>45 | L und M      | steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht, jeweils für Sauerstoff oder Schwefel stehen, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C <sub>1</sub> -C <sub>14</sub> -Alkyl, C <sub>2</sub> -C <sub>14</sub> -Alkenyl, C <sub>1</sub> -C <sub>4</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Alkylthio-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>4</sub> -Polyalkoxy-C <sub>1</sub> -C <sub>4</sub> -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl substituiertes Phenyl,                                                                        |

noxy-C1-C4-alkyl, oder

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl, Ethyl, substituiertes Pyridyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Pyrimidyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl oder Thiazolyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl steht, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C1-C14-Alkyl,

 $C_3-C_{14}$ -Alkenyl,  $C_1-C_4$ -Alkoxy- $C_1-C_6$ -alkyl,  $C_1-C_4$ -Polyalkoxy- $C_1-C_6$ -alkyl,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder

Methoxy substituiertes C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl,

oder für jeweils gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>4</sub>)-alkylamin

no, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C<sub>1</sub>-C<sub>2</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Fluoralkoxy, C<sub>1</sub>-C<sub>2</sub>-Alkylthio, C<sub>1</sub>-C<sub>2</sub>-Fluoralkylthio, C<sub>1</sub>-C<sub>3</sub>-Al-

kyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und

R6 und R7

unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Fluor, Chlor, Brom substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>3</sub>-C<sub>4</sub>-Alkenyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und/oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C4-C6-Alkylenring ste-

hen.

mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

Verfahren zur Herstellung von substituierten 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man

(A) zum Erhalt von 1H-3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (la)

(Ia)

in welcher

 $\mathbb{R}^2$ 

R3, R4 und R5

5

10

15

20

30

35

40

45

50

55

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben,

N-Acylaminosäureester der Formel (II)

(II)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, und

R8 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert; oder

(B) zum Erhalt von Verbindungen der Formel (Ib)

20

5

10

15

in welcher

A, B, X, Y und R<sup>1</sup> die in Anspruch 1 angegebene Bedeutung haben, Verbindungen der Formel (Ia),

25

$$\begin{array}{c} A & H \\ B \longrightarrow N \\ HO \\ X \longrightarrow \end{array}$$
 (Ia)

35

40

30

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

Hal R<sup>1</sup> (III)

45

50

55

in welcher

R1 die oben angegebene Bedeutung hat und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oc

β) mit Carbonsäureanhydriden der Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt;

oder

(C) zum Erhalt von Verbindungen der Formel (Ic-a)

15

10

5

20

25

in welcher

A, B, X, Y und R<sup>2</sup> die in Anspruch 1 angegebene Bedeutung haben, und

M für Sauerstoff oder Schwefel steht, Verbindungen der Formel (la)

30

35

$$\begin{array}{c} A & H \\ B \longrightarrow N \\ HO \\ X \longrightarrow Y \end{array}$$
 (Ia)

40

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V)

45

R<sup>2</sup>-M-CO-CI (V)

in welcher

R<sup>2</sup> und M die oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

Säurebindemittels umsetzt;

oder

(D) zum Erhalt von Verbindungen der Formel (Ic-b)

55

in welcher

A, B, R<sup>2</sup>, X und Y die oben angegebene Bedeutung haben

und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

20

15

30

35

25

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

40

50

55

$$CI \longrightarrow M - R^2$$
 $S$ 
 $(VI)$ 

45 in welcher

M und R<sup>2</sup> die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R2-Hal (VII)

in welcher

R<sup>2</sup> die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder lod steht,

umsetzt;

oder

(E) zum Erhalt von Verbindungen der Formel (Id)

5

15

10

in welcher

A, B, X, Y und R<sup>3</sup> die in Anspruch 1 angegebene Bedeutung haben, Verbindungen der Formel (Ia)

25

20

$$\begin{array}{c} A & H \\ B & N \\ O \\ HO \\ X & \end{array}$$
 (Ia)

35

40

45

30

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der Formel (VIII)

R3-SO2-CI

in welcher

R<sup>3</sup> die oben angegebene Bedeutung hat,

(VIII)

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

(F) zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen der Formel (le)

50

in welcher

5

15

A, B, L, X, Y, R<sup>4</sup> und R<sup>5</sup> die in Anspruch 1 angegebene Bedeutung haben, 1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (la) bzw. deren Enole

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Phosphorverbindungen der Formel (IX)

(IX) 40

in welcher

L, R4 und R5 die oben angegebene Bedeutung haben und

> Hal für Halogen steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder (G) zum Erhalt von Verbindungen der Formel (If)

55

50

45

in welcher

Me(OR10)t

(X)

5

10

15

35

40

45

50

55

A, B, X und Y die oben angegebene Bedeutung haben, und

E für ein Metallionäquivalent oder für ein Ammoniumion steht, Verbindungen der Formel (la)

in welcher
A, B, X und Y die oben angegebene Bedeutung haben,

mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

D<sup>12</sup> D10

 $\begin{array}{ccc}
R^{12} & R^{10} \\
N & & (XI)
\end{array}$ 

in welchen

Me für ein- oder zweiwertige Metallionen,

t für die Zahl 1 oder 2 und

R<sup>10</sup>, R<sup>11</sup> und R<sup>12</sup> unabhängig voneinander für Wasserstoff und/oder Alkyl

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt, oder daß man (H) zum Erhalt von Verbindungen der Formel (g)

10

5

in welcher

A, B, L, X, Y, R<sup>6</sup> und R<sup>7</sup> die in Anspruch 1 angegebene Bedeutung haben, Verbindungen der Formel (Ia)

15

20

$$\begin{array}{c} A & H \\ B & N \\ O \\ X & \end{array}$$

$$(Ia)$$

25

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

$$R^6-N=C=L$$
 (XII)

35

40

30

in welcher

L und R<sup>6</sup> die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

45

$$\begin{array}{c|c}
R^{6} & \downarrow \\
N & CI \\
R^{7} & CI
\end{array}$$
(XIII)

50

55

in welcher

L, R<sup>6</sup> und R<sup>7</sup> die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

## 7. Verbindungen der Formel (II)

10

5

in welcher

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben und für Alkyl steht.

15 8. Verfahren zur Herstellung der Acyl-aminosäureester der Formel (II), gemäß Anspruch 7, dadurch gekennzeichnet, daß man Aminosäurederivate der Formel (XIV),

25 in welcher

 $\mbox{R}^{9} \ \cdot \ \mbox{für Wasserstoff (XIVa) oder Alkyl (XIVb) steht und$ 

A und B die in Anspruch 1 angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

30

35

40

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert und die dabei für R9 = Wasserstoff erhaltenen Acylaminosäuren der Formel (IIa),

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

55 verestert,

oder daß man Aminonitile der Formel (XVI)

$$\begin{array}{c}
A \\
H_2N
\end{array}
C \equiv N$$
(XVI)

in welcher

5

10

25

30

35

55

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X und Y die oben angegebene Bedeutung haben und Hal für Chlor oder Brom steht,

zu Verbindungen der Formel (XVII)

$$Y - \bigvee_{O} \bigvee_{A \in B} C \equiv N$$
 (XVII)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, umsetzt, und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

9. Verbindungen der Formel (XVII)

$$Y - \bigvee_{O} NH C \equiv N$$

$$O AB$$
(XVII)

in welcher

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben.

10. Verfahren zur Herstellung von Verbindungen der Formel (XVII) gemäß Anspruch 10, dadurch gekennzeichnet, daß man Aminonitrile der Formel (XVI)

$$\begin{array}{c}
A \\
B \\
C \equiv N
\end{array}$$
(XVI)

in welcher

A und B die in Anspruch 1 angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

$$\begin{array}{c} X \\ Y - \begin{array}{c} \\ \\ \end{array} \\ COHal \end{array}$$

20

25

30

5

10

in welcher

X und Y die in Anspruch 1 angegebene Bedeutung haben und

Hal für Chlor oder Brom steht, umsetzt.

- 11. Schädlingsbekämpfungsmittel und Herbizide, gekennzeichnet durch einen Gehalt an mindestens einem 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I) gemäß Anspruch 1.
- 12. Verwendung von 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen und unerwünschtem Pflanzenbewuchs.
- 13. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß man 1-H-3-Aryl-pyrrolidin 2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 auf Schädlinge, unerwünschten Pflanzenbewuchs und/oder ihren Lebensraum einwirken läßt.
- 14. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln und Herbiziden, dadurch gekennzeichnet, daß man 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

45

50

|           |                                        | GE DOKUMENTE                                          | <del></del>          |                                          |
|-----------|----------------------------------------|-------------------------------------------------------|----------------------|------------------------------------------|
| Kategorie | Kennzeichnung des Dokum<br>der maßgebi | nents mit Angabe, soweit erforderlich,<br>ichen Teile | Betrifft<br>Anspruch | KLASSIFIKATION DER<br>ANMELDUNG (Lacció) |
| X,P       | EP-A-0 613 885 (BA                     | YER A.G.)                                             | 1,7,9                | C07D207/38                               |
| Χ         | * Tabelle 1-10: Be                     | ispiele Ia-1, Ib-1, Ic-1 *                            | li                   | C07D209/54                               |
| X         | * Seite 117. Zeile                     | 40; Verbindungen II,                                  | 17                   | C07F9/572                                |
|           | Seite 120; Beispie                     |                                                       | ľ                    | C07D491/10                               |
| X         | * Verbindungen XVI                     |                                                       | 9                    | C07D495/10                               |
|           | V-7                                    |                                                       | 1                    | C07D401/12                               |
| X,P       | EP-A-0 613 884 (BA                     | YER A.G.)                                             | 1,7,9                | C07D409/12                               |
| χ̈́       | * Tabelle 1-10; Be                     | ispiele                                               | 1                    | C07D407/12                               |
|           |                                        | 1, Ie-1, Ie-2, Ig-1, Ig-2 *                           | -                    | A01N43/36                                |
| X         |                                        | Seite 94, Zeile 33-54 *                               | 7                    | A01N43/38                                |
| X         |                                        | I Seite 94, Zeile 57 -                                | وا                   | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |
| ^         | Seite 95, Zeile 9                      |                                                       | -                    |                                          |
|           | -                                      |                                                       |                      |                                          |
| X,P       | EP-A-0 596 298 (BA                     |                                                       | 1,7,9                |                                          |
| X         | * Tabelle 1-7; Ver                     | bindung Seite 51, Zeile                               | 1                    |                                          |
|           | 40; Beispiele Ib-2                     | ,Ic-2,Ie-1 *                                          |                      |                                          |
| X         | * Verbindung Seite                     | 49, Zeile 45;                                         | 7                    |                                          |
|           |                                        | ite 52; Seite 55, Zeile                               |                      |                                          |
|           |                                        | eile 1-11,36-43; Tabelle                              |                      |                                          |
|           | 8 *                                    |                                                       |                      |                                          |
| X         | * Verbindungen XVI                     | I Seite 55; Tabelle 9 *                               | 9                    | RECHERCHIERTE<br>SACHGEBIETE (Int.Cl.6)  |
| Х,Р       | EP-A-0 595 130 (BA                     | YER A.G.)                                             | 7,9                  | C07D                                     |
| χ̈̀' Ι    | * Tabelle Seite 26                     |                                                       | 7'-                  | C07F                                     |
| χ l       | * Tabelle Seite 14                     |                                                       | ģ                    | AO1N                                     |
| ^         | Tuberre Seree 14                       | ,10,13,10,11 14                                       |                      | CO7C                                     |
| x,o       | EP-A-0 521 334 (BA                     | YER A.G.)                                             | 11-14                |                                          |
| χ̈́l      | * Tabelle 4; Verbi                     |                                                       | 1                    |                                          |
| <b>χ</b>  | * Seite 43-46 *                        |                                                       | 6                    |                                          |
| X         | * Verbindungen IX,                     | II. Seite 45-46 *                                     | 7                    |                                          |
| χ         | * Seite 45-46 *                        | 11, 00:00 10 10                                       | 8                    |                                          |
|           |                                        |                                                       |                      |                                          |
| K,D       | EP-A-0 456 063 (BA                     | YER A.G.)                                             | 11-14                |                                          |
| X         | * Tabelle 1,2,3 *                      |                                                       | 1                    |                                          |
| X         | * Seite 9-10 *                         |                                                       | 6                    |                                          |
| X         | * Verbindungen II                      | Seite 11 *                                            | 7                    |                                          |
| X         | * Seite 10 *                           |                                                       | 8                    |                                          |
| Ì         |                                        | -/                                                    |                      |                                          |
|           | •                                      | <del>-/</del>                                         |                      |                                          |
|           |                                        |                                                       |                      |                                          |
| Der vo    |                                        | de für alle Patentansprüche erstellt                  |                      |                                          |
|           | Becherchesert                          | Abschiefdetem der Beckerche                           |                      | Prithe                                   |
|           | BERLIN                                 | 28. Juni 1995                                         | Fre                  | lon, D                                   |

EPO FORM 15th that (PORCE)

KATEGORIE DER GENANNTEN DOKUMENTE

X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derzeiben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

T: der Erfindung zugrunde liegende Theorien oder Grundsätze
E: älteres Patentiokument, das jedoch erst am oder
nach dem Anmelden angeführtes Dokument
L: aus andern Gründen angeführtes Dokument

<sup>&</sup>amp; : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument



## EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 95 10 1136

|                                                         |                                                                                                                                                                                                                       | GE DOKUMENTE                                                                   | ······································                                                                                      |                                           |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Kategorie                                               | Kennzeichnung des Dokun<br>der maßgebl                                                                                                                                                                                | ents mit Angabe, soweit erforderlich<br>ichen Teile                            | h, Betrifft<br>Anspruch                                                                                                     | KLASSIFIKATION DER<br>ANMELDUNG (Int.CL6) |
| A,D                                                     | EP-A-O 377 893 (BA<br>* das ganze Dokume                                                                                                                                                                              | YER A.G.)<br>nt *                                                              | 1-14                                                                                                                        |                                           |
| <b>A</b>                                                | WO-A-94 01401 (BAY<br>* das ganze Dokume                                                                                                                                                                              | ER A.G.)                                                                       | 1-14                                                                                                                        |                                           |
| 7.00                                                    |                                                                                                                                                                                                                       |                                                                                |                                                                                                                             | RECHERCHIERTE<br>SACHGEBIETE (Int. Cl.6)  |
|                                                         |                                                                                                                                                                                                                       |                                                                                |                                                                                                                             |                                           |
| Der voi                                                 | fiegende Recherchenbericht wur                                                                                                                                                                                        | de für alle Patentansprüche erstellt                                           |                                                                                                                             |                                           |
|                                                         | Recharchement                                                                                                                                                                                                         | Abschlußdatum der Recherche                                                    |                                                                                                                             | Prtifer                                   |
|                                                         | BERLIN                                                                                                                                                                                                                | 28. Juni 1995                                                                  | Fre                                                                                                                         | lon, D                                    |
| X : von  <br>Y : von  <br>ande<br>A : techi<br>O : mich | ATEGORIE DER GENANNTEN I<br>besonderer Bedeutung allein betrach<br>besonderer Bedeutung in Verbindun;<br>ren Verbffentlichung derseiben Kate<br>sologischer Hintergrund<br>sichriftliche Offenbarung<br>chentiteratur | E : siteres Pate tet nach dem A patt einer D : in der Ann gorie L : aus andern | mtdokument, das jedoc<br>unmeldedatum veröffen<br>eidung angeführtes Do<br>Gründen angeführtes E<br>r gleichen Patentfamili | tifcht worden ist<br>kurnent<br>Ookument  |

EPO PORM 1503 03.42 (POICIS)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.