

Domaine de LICENCE : SCIENCES, TECHNOLOGIE (ST)

Mentions : Sciences pour l'Ingénieur – Mathématiques Informatique

ECO 113 MECANIQUE DU POINT MATERIEL

SESSION 6: DYNAMIQUE

EXERCICES POUR SE TESTER

Exo Test n° 1 - Les notations suivantes sont toutes incorrectes. Dites pourquoi.

1°)
$$\vec{F} = 30 N$$

$$2^{\circ}$$
) $\vec{F} = 15\vec{i} - 20\vec{j}$ (en N) $\Rightarrow \vec{F} = -5N$

3°)
$$\vec{F} = -15\vec{i} - 20\vec{j}$$
 (en N) $\Rightarrow \vec{F} = -35 N$.

Exo Test n° 2 - Atome de BOHR

L'atome de BOHR est constitué d'un proton (charge fixe +e) et d'un électron (charge -e), assimilé à un point matériel de masse m et animé d'un mouvement circulaire uniforme de grande vitesse autour du proton (Figure 1). Le poids de l'électron est négligeable devant la force électrique qui a pour expression $\vec{F} = -K \frac{e^2}{r^2} \vec{i}$ (K constante, e charge de l'électron, r: rayon de l'atome).

- 1°) Appliquer la relation fondamentale de la Dynamique. En déduire la vitesse de l'électron.
- 2°) Déterminer $\vec{\sigma}_{o}$, vecteur moment cinétique de l'électron par rapport au point O (préciser le point d'application, la direction, le sens et la norme de ce vecteur).

Prendre : $e = 1,6x10^{-19}$ coulombs; $r = 0,53x10^{-10}$ mètres; $m = 9,1 \times 10^{-31}$ kg ; $K = 9x10^{9}$ unités SI.

Figure 1

Exo Test 3 - Colis parachuté

On étudie le mouvement d'un colis parachuté d'un avion, suivant un axe vertical Oz dirigé vers le bas (Fig. 2). A t=0, on suppose le colis à l'altitude z=0. Outre son poids, le colis est soumis à une force de frottement fluide (due à l'air) modélisable par : $\vec{F} = -A\vec{v}$ (A, constante positive, \vec{v} , vecteur-vitesse du colis, de norme $v = ||\vec{v}||$). De plus, la vitesse initiale est supposée nulle.

- 1°) Ecrire la **relation vectorielle** traduisant le principe fondamental de la Dynamique et en déduire l'équation différentielle qui régit le mouvement.
- 2°) Trouver la loi v(t) régissant la vitesse v en fonction du temps. Montrer que, pour des temps de plus en plus grands, cette vitesse atteint une certaine limite.
- 3°) Trouver la loi horaire z(t).

Figure 2

1

 \mathcal{Z}

0

M

Application numérique : Calculer, au bout de 15 s, la distance de chute ainsi que la vitesse. Accélération de la pesanteur : $g = 10 \text{ m.s}^{-2}$; $A = 7 \text{ N.s.m}^{-1}$; masse du colis : m = 14 kg.

N.B.: L'équation différentielle : $\frac{du}{dt} + au = b$ a pour solution générale : $u = C e^{-at} + \frac{b}{a}$.

Exo Test n° 4 - Parachutiste

Un parachutiste, assimilé à un point matériel M de masse m = 80 kg, saute d'un avion qui se déplace à vitesse constante horizontale \vec{v}_0 (Fig. 3).

- 1°) Ecrire la relation fondamentale de la Dynamique.
- 2°) Par intégration de l'accélération, déterminer le vecteur-vitesse $\vec{V}_{M/R}$ du parachutiste par rapport à un repère [R] lié à la surface du sol (repère fixe), puis le vecteur-vitesse $\vec{V}_{M/R'}$ du parachutiste par rapport à un repère [R'] lié à l'avion. Pour rappel, la vitesse d'entrainement a pour expression : $\vec{V}_{e/(R'/R)} = \vec{v}_0$.
- 3°) Par une intégration des vecteurs-vitesses, établir l'expression du mouvement dans le repère [R'] (en donnant l'expression du vecteur position $\overrightarrow{OM}_{R'}$) et l'expression du mouvement dans le repère [R] (en donnant l'expression du vecteur position \overrightarrow{OM}_R). On note x_0 et y_0 les coordonnées de M à l'instant t=0 dans le repère [R] et on considère comme nulles les coordonnées initiales x_0 et y_0 de M dans le repère mobile [R'].

Figure 3

Exo Test n°5 - Moments d'une force

La norme de la force \vec{F} appliquée au point A (Fig. 4) est égale à 500 N. On note \vec{i} , \vec{j} , \vec{k} les vecteurs unitaires respectifs des axes x, y et z (perpendiculaire au plan de la feuille).

- ${f 5.1}$ Déterminer les coordonnées cartésiennes du vecteur-force ec F .
- 5.2 Déterminer le vecteur-moment de la force \vec{F} par rapport au point O.
- 5.3 Déterminer le moment de la force \vec{F} par rapport à l'axe Oz et préciser quel est son effet.