

# DEPARTAMENTO DE ENGENHARIA INFORMÁTICA LICENCIATURA EM ENGENHARIA INFORMÁTICA

## INTELIGÊNCIA ARTIFICIAL

2021/2022 - 2º semestre

#### **PROJETO – MUMMY MAZE SOLVER**

# 1. Mummy Maze

O *Mummy* Maze é um jogo onde o herói é um caçador de tesouros. Enquanto busca por tesouros perdidos, a personagem principal do jogo vai atravessando vários níveis onde tem de evitar ser apanhado por inimigos e pisar armadilhas.



Em cada nível ou câmara está uma passagem para o nível ou câmara seguinte. Desta forma, o objetivo do herói é deslocar-se para a zona de acesso ao próximo nível evitando quaisquer perigos que possam ocorrer: ser morto por um inimigo ou cair numa armadilha. A zona de acesso ao nível seguinte é a célula que tem uma escada adjacente (ver figura seguinte).



Este jogo é jogado por turnos, onde primeiro se move o Herói e em seguida se deslocam os inimigos. Em cada turno, o Herói é sempre o primeiro a deslocar-se e os inimigos são sempre os últimos, mesmo que aquele já tenha chegado à célula objetivo.

# 2. Elementos constituintes do jogo

#### Herói



O Herói consegue deslocar-se apenas uma casa de cada vez em cada turno. Isto é: em cada turno o herói pode passar para a quadrícula imediatamente acima, abaixo, à esquerda ou à direita da quadrícula onde se encontra, a não ser que haja uma parede a bloquear esse caminho. O Herói pode ainda optar por não se movimentar durante o seu turno.

## Múmia Branca



A múmia branca desloca-se até duas casas em cada turno. O objetivo da múmia é matar o Herói e para isso vai tentando deslocar-se para a posição onde este está. A múmia branca primeiro procura estar na mesma coluna onde se encontra o Herói e só depois é que tenta deslocar-se para a mesma linha que este. Usando o exemplo anterior, caso o Herói não efetuasse nenhum movimento, a movimentação da múmia seria duas células para a direita, de forma a ficar na mesma coluna que o Herói (ver figura seguinte).



Caso o Herói não se volte a mover durante o seu turno, o movimento da múmia branca será o seguinte:



Neste caso, a múmia branca desloca-se apenas uma casa: como já está na mesma coluna que o Herói, tenta posicionar-se na mesma linha indo para cima; após o primeiro passo para cima, a múmia branca encontra uma parede, o que a impede de se deslocar mais para cima.

Na situação ilustrada na figura abaixo, a múmia tenta deslocar-se primeiro para a esquerda mas não consegue. Como ainda não realizou nenhum movimento, tenta de seguida aproximar-se pelas linhas e desce uma casa. Como ainda lhe resta um movimento, tenta agora aproximar-se novamente pelas colunas e move-se para a esquerda, matando o herói. Ou seja, a múmia tenta sempre gastar os dois movimentos, dando sempre prioridade à aproximação pelas colunas.



#### Múmia Vermelha



Tal como a múmia branca, a múmia vermelha pode realizar até dois movimentos em cada turno. A múmia vermelha procura primeiro estar na mesma linha que o herói e só depois é que se desloca para a mesma coluna.

#### Escorpião



O escorpião desloca-se da mesma forma que a múmia branca, embora apenas se desloque uma quadrícula por turno.

## Chave



Sempre que o Herói passa pela quadrícula onde se encontra a chave, abre ou fecha uma porta. Se a porta estiver fechada passa a estar aberta e vice-versa.

#### **Porta**



Quando está fechada, a porta funciona como uma parede: bloqueia os movimentos do Herói e seus inimigos.

#### Armadilha



O Herói morre sempre que pisar uma armadilha. As armadilhas não têm efeito nos inimigos.

## 3. Como matar múmias

Em alguns níveis onde existam duas múmias pode ser necessário eliminar primeiro uma múmia para que o nível possa ter solução. Caso o Herói consiga fazer com que duas múmias ocupem a mesma casa, elas lutam entre si restando apenas uma múmia viva. A múmia morta desaparece do nível.

## 4. Trabalho a Realizar

Pretende-se que seja desenvolvida uma aplicação que, recorrendo aos algoritmos de procura implementados nas aulas práticas, seja capaz de jogar o jogo Mummy Maze. Para os algoritmos de procura informados deverão ser formuladas pelo menos duas heurísticas distintas adequadas ao problema. O programa deverá permitir ao utilizador escolher um determinado nível a resolver, o algoritmo de procura e a heurística a utilizar (se aplicável).

Pretende-se que seja também realizado um estudo comparativo do desempenho dos vários algoritmos de procura bem como das heurísticas que forem utilizadas na resolução dos problemas. Nomeadamente, pretende-se estudar os seguintes aspetos:

- O desempenho dos algoritmos de procura não informados;
- O desempenho dos algoritmos de procura informados;
- O desempenho dos algoritmos de procura não informados versus o desempenho dos algoritmos de procura informados;
- A qualidade das heurísticas utilizadas.

# 5. Representação dos estados

São muitos os níveis que constituem o jogo Mummy Maze. Neste projeto, o programa a desenvolver deve estar preparado para jogar apenas com níveis com as dimensões iguais aos do nível apresentado nas figuras anteriores: uma matriz de 6 x 6 células. No entanto, deverá ser possível definir diferentes configurações para os níveis. Para isso, deverão ser utilizados ficheiros de texto que permitam definir diferentes níveis: a posição inicial do Herói e dos inimigos, bem como as paredes, chaves, portas, armadilhas e a posição do objetivo.

O conteúdo dos ficheiros de configuração deverá consistir numa matriz de 13 x 13 caracteres em que cada carácter representa uma célula do nível, uma parede ou a saída. Os caracteres a utilizar deverão ser os seguintes:

- '|' ou '-', para uma posição ocupada por uma parede;
- 'H', para o agente;
- '.', para uma posição vazia;
- 'S', para a localização da saída;
- 'M', para a múmia branca;
- 'V', para a múmia vermelha;
- 'A', para a armadilha;
- 'E', para o escorpião;
- 'C', para a chave;
- '=', para porta horizontal fechada;
- ', para porta horizontal aberta;
- '"', para porta vertical fechada;
- ")", para porta vertical aberta.

Desta forma, o nível apresentado na figura abaixo à esquerda tem a seguinte representação representada à direita:



No sítio da cadeira, juntamente com o enunciado, está disponível um ficheiro denominado niveis.zip onde se encontram alguns níveis a resolver já neste formato. Os estudantes são encorajados a criar novos níveis e até a publicar os mesmos no fórum da unidade curricular para que possam comparar diferentes soluções e heurísticas para o mesmo problema.

# 6. Visualização das soluções

De modo a permitir uma visualização mais agradável das soluções encontradas é fornecida a biblioteca MummyMazeShowSolution.jar. Esta biblioteca deverá ser incluída na aplicação a desenvolver e contém a classe SolutionPanel, pertencente à package showSolution — onde deverá ser invocado o método showSolution (List<String> states, double solutionCost). Este método é responsável por mostrar graficamente a sequência de estados resultantes da solução encontrada pelos algoritmos de procura e o custo da mesma. Para o funcionamento correto deste componente é necessário que seja passada como argumento deste método uma lista com as *strings* correspondentes à sequência de estados que resultam da aplicação da solução bem como o custo da solução encontrada. As *strings* enviadas têm de obedecer forçosamente ao formato especificado anteriormente.

## 7. Relatório

Do relatório deverá constar:

- A descrição da representação utilizada para cada estado;
- A descrição das heurísticas utilizadas;
- A apresentação e discussão dos resultados obtidos;
- A descrição da contribuição de cada elemento do grupo no desenvolvimento do projeto e na escrita do relatório;
- Outros aspetos considerados relevantes para uma boa compreensão e avaliação do trabalho realizado.

Alguns dos fatores com mais importância na avaliação do relatório são:

- Clareza na descrição dos componentes da aplicação;
- A forma como os resultados dos testes são compilados e a clareza com que são apresentados (a utilização, mas não só, de tabelas e/ou gráficos pode ajudar);
- A análise e discussão dos resultados.

# 8. Cotações

10% - Definição do problema

20% - Definição do estado

15% - Definição das ações

20% - Heurísticas

20% - Estudo e Relatório

15% - Extras

Extras sugeridos:

- Implementação de otimizações específicas a alguns algoritmos de procura desenvolvidos nas aulas de modo a torná-los mais eficientes (cabe aos estudantes identificar os algoritmos que podem ser otimizados bem como as otimizações a implementar);
- Implementação de outros algoritmos de procura;
- Realização de um conjunto de experiências de forma automática;
- Implementação de mais heurísticas.

# 9. Prazos, datas, regras e instruções

- 1. Data limite de entrega do projeto: 21 de junho de 2022, 23:59.
- 2. Data da prova oral: 5 de julho de 2022.
- 3. O projeto é realizado em grupos de 2 estudantes. Não são aceites projetos realizados por grupos com mais de 2 elementos. Os estudantes que pretendam realizar o projeto individualmente devem solicitá-lo, por escrito, ao docente responsável pela UC. Apenas em casos bem fundamentados serão autorizados projetos realizados individualmente.
- 4. O relatório deve ser realizado utilizando o modelo disponibilizado na secção Projeto do sítio da UC no Moodle.
- 5. O projeto deve ser entregue sob a forma de um arquivo zip, rar ou 7z que contenha todos os elementos do projeto, incluindo o relatório. O nome do arquivo deve ter o formato IA\_Projeto\_#1\_#2.(zip/rar/7z), onde #1 e #2 devem ser substituídos pelos números de estudante dos elementos do grupo. O relatório deve ser entregue em formato pdf e o seu nome deve ter a mesma estrutura do arquivo mas com extensão pdf.