

LAYOFFS DATA CLEANING AND EXPLORATORY ANALYSIS

BY MOHAMMAD JUNAID

Table of Contents

- 1.Introduction
- 2.Dataset Overview
- 3. Problem Statement
- 4.Data Cleaning Approach
 - 4.1 Removing Duplicate Data
 - 4.2 Standardizing Text Fields
 - 4.3 Handling Null and Blank Values
 - 4.4 Formatting Dates
- 5. Exploratory Data Analysis (EDA)
 - 5.1 Aggregation by Company
 - 5.2 Aggregation by Industry
 - 5.3 Yearly Trends
 - 5.4 Rolling Total Over Months
 - 5.5 Ranking by Year
- 6. Insights and Observations
- 7. Conclusion
- 9.Contact

Introduction

In this project, I worked on cleaning and analyzing a dataset containing layoffs data from multiple companies across different industries and regions. Real-world datasets are often messy, with missing values, inconsistent formatting, and duplicate records. Through structured SQL techniques, I cleaned the dataset, standardized entries, handled missing values, and performed exploratory data analysis to extract meaningful insights.

This document provides an overview of the dataset, the challenges encountered, the approach followed, the SQL queries implemented, and the insights discovered.

The dataset, named layoffs, contains the following fields:

Column	Description
company	Name of the company
location	City or area where the layoffs occurred
industry	Sector of the company
total_laid_off	Number of employees laid off
percentage_laid_off	Percentage of employees laid off
date	Date when layoffs were announced
stage	Funding stage of the company
country	Country of the company
funds_raised_millions	Funding raised in millions USD

Issues identified in the dataset:

- Duplicate rows across multiple columns
- Inconsistent naming (e.g., industries, countries)
- Missing values in important columns
- Date fields in unreadable formats

Problem Statement

The raw dataset was difficult to work with due to:

- Repeated entries causing inaccuracies
- Blank or null values affecting aggregation
- Unstructured data making analysis unreliable
- Formatting inconsistencies in dates and text fields

The objective was to clean the dataset and structure it for proper analysis.

		_													
C	7 2 4 6	₹ 100%	₹ £ %	.0 123	Defaul *	- 10 +	B <i>I</i> ÷	A & H	83 * 臣 * .	1 - 1÷ - A -	© # III	7 🗎	- Σ		^
	▼ fk o	ompany													
	A	В	С	D	Ε	F	G	н	1	J	К				
	company	location	industry	total_laid_off	percentage_lai	d date	stage	country	funds_raised_r	nillions					
2	Atlassian	Sydney	Other	500	0.0	5 3/6/2023	Post-IPO	Australia	21	0					
3	SiriusXM	New York City	Media	475	0.0	8 3/6/2023	Post-IPO	United States	52	5					
4	Alerzo	Ibadan	Retail	400	NULL	3/6/2023	Series B	Nigeria	1	6					
5	UpGrad	Mumbai	Education	120	NULL	3/6/2023	Unknown	India	63	1					
6	Loft	Sao Paulo	Real Estate	340	0.1	5 3/3/2023	Unknown	Brazil	78	8					
7	Embark Trucks	SF Bay Area	Transportation	230	0.	7 3/3/2023	Post-IPO	United States	31	7					
8	Lendi	Sydney	Real Estate	100	NULL	3/3/2023	Unknown	Australia	5	9					
9	UserTesting	SF Bay Area	Marketing	63	NULL	3/3/2023	Acquired	United States	15						
10	Airbnb	SF Bay Area			NULL		Post-IPO	United States	640						
11	Accolade	Seattle	Healthcare	NULL	NULL		Post-IPO	United States	45						
12	Indigo	Boston	Other	NULL	NULL	3/3/2023		United States.	120						
	Zscaler	SF Bay Area	Security	177			Post-IPO	United States	14						
14	MasterClass	SF Bay Area	Education		NULL		Series E	United States	46	1					
15	Ambev Tech	Blumenau	Food		NULL		Acquired	Brazil	NULL						
16	Fittr	Pune	Fitness	30			Series A	India	1						
17	CNET	SF Bay Area	Media	12			Acquired	United States	2						
18 19	Flipkart	Bengaluru	Retail	NULL	NULL		Acquired	India United States	1290 NULL	U					
20	Kandela Truckstop.com	Los Angeles Boise	Consumer	NULL	NULL		Acquired Acquired	United States United States	NULL						
21	Thoughtworks	Chicago	Logistics	NULL 500			Post-IPO	United States	NULL 74	0					
22	iFood	Sao Paulo	Food	355			Subsidiary	Brazil	210						
3	Color Health	SF Bay Area	Healthcare		NULL		Series E	United States	48						
	Waymo	SF Bay Area	Transportation	209			Subsidiary	United States	550						
	PayFit	Paris	HR	200			Series E	France	49						

Figure 1: Snapshot of the raw dataset before cleaning.

4.Data Cleaning Approach

The cleaning process was divided into four main steps using SQL:

4.1 Removing Duplicate Data

Duplicates were identified using the ROW_NUMBER() window function partitioned by columns such as company, location, industry, etc. Duplicates were removed by keeping only the first record.

Key Queries:

```
WITH duplicate_cte AS (
    SELECT *,
    ROW_NUMBER() OVER (
        PARTITION BY company, location, industry, total_laid_off,
        percentage_laid_off, `date`, stage, country, funds_raised_millions
    ) AS row_num
    FROM layoffs_staging
)
DELETE FROM layoffs_staging
WHERE row_num > 1;
```

4.2 Standardizing Text Fields

Company Names:

```
Trimmed extra spaces using:

UPDATE layoffs_staging

SET company = TRIM(company);
```

Industry Names:

Standardized entries such as "Crypto-based" to "Crypto":

```
UPDATE layoffs_staging
SET industry = 'Crypto'
WHERE industry LIKE 'Crypto%';
```

Country Names:

Removed trailing periods from "United States." and similar entries:

```
UPDATE layoffs_staging
SET country = TRIM(TRAILING ': FROM country)
WHERE country LIKE 'United States%';
```

4.3 Handling Null and Blank Values

Industry:

Blank entries were set to NULL:

```
UPDATE layoffs_staging
SET industry = NULL
WHERE industry = ";
```

Values were filled using other available records:

UPDATE layoffs_staging t1 JOIN layoffs_staging t2 ON t1.company = t2.company SET t1.industry = t2.industry WHERE t1.industry IS NULL AND t2.industry IS NOT NULL;

Total Laid Off and Percentage:

Rows where both were missing were removed:

DELETE FROM layoffs_staging WHERE total_laid_off IS NULL AND percentage_laid_off IS NULL;

Figure 2: Cleaned dataset with standardized and properly formatted entries.

4.4 Formatting Dates:

Converted date strings into DATE format using:

UPDATE layoffs_staging
SET `date` = STR_TO_DATE(`date`, '%m/%d/%Y');

ALTER TABLE layoffs_staging MODIFY COLUMN `date` DATE;

5. Exploratory Data Analysis (EDA)

After cleaning, multiple analytical queries were run to extract patterns.

5.1 Aggregation by Company

```
SELECT company, SUM(total_laid_off)
FROM layoffs_staging
GROUP BY company
ORDER BY 2 DESC;
```

This query revealed which companies had the highest layoffs.

5.2 Aggregation by Industry

```
SELECT industry, SUM(total_laid_off)
FROM layoffs_staging
GROUP BY industry
ORDER BY 2 DESC;
```

his showed the most impacted sectors.

5.3 Yearly Trends

```
SELECT YEAR('date'), SUM(total_laid_off)
FROM layoffs_staging
GROUP BY YEAR('date')
ORDER BY 1 DESC;
```

This displayed how layoffs fluctuated over the years.

5.4 Rolling Total Over Months

```
WITH rolling_total AS (
SELECT SUBSTRING(`date`,1,7) AS month,
SUM(total_laid_off) AS total_off
FROM layoffs_staging
GROUP BY month
)
SELECT month, total_off, SUM(total_off) OVER (ORDER BY month) AS cumulative_off
FROM rolling_total;
```

Used to track cumulative layoffs over time.

5.5 Ranking by Year

```
WITH company_year AS (
    SELECT company, YEAR(`date`) AS year, SUM(total_laid_off) AS total_off
    FROM layoffs_staging
    GROUP BY company, YEAR(`date`)
),
ranking AS (
    SELECT *,
    DENSE_RANK() OVER (
        PARTITION BY year
        ORDER BY total_off DESC
    ) AS rank
    FROM company_year
)
SELECT *
FROM ranking
WHERE rank <= 5;
```

This query identified the top 5 companies affected by layoffs each year.

Figure 3: Top 5 Companies by Layoffs for Each Year (2020-2023)

This table displays the top 5 companies with the highest layoffs for each year, using the DENSE_RANK() function. It helps identify which companies faced the most workforce reductions over time.

6. Insights and Observations

- Industry Trends: Industries like technology, crypto, and healthcare showed higher layoffs.
- Time Trends: Layoffs peaked at certain months and years, indicating seasonal or economic patterns.
- Key Companies: Some companies consistently had large layoffs, which could be a sign of internal restructuring or market shifts.

7. Conclusion

This project demonstrates how structured SQL techniques can transform messy data into actionable insights. The cleaned dataset is now ready for deeper analysis or visualization using dashboards. The methodologies applied here can be adapted to other datasets with similar challenges.

8. Contact

Mohammad Junaid

- Mmdjunaid34343@gmail.com
- github.com/junaid876/layoffs-data-analysis

