Esercitazione 3 - ALGEBRA RELAZIONALE

Trasparenze rielaborate da Atzeni, Ceri, Paraboschi, Torlone Basi di dati McGraw-Hill, 1999

- · Università degli Studi di Milano-Bicocca
 - · Corso di Basi di dati 1
 - · Anno Accademico 2006/2007
 - · Esercitazione del 04/04/2007

Esempi di interrogazioni

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Partiamo dallo schema e istanza qui sotto

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

3

Strttuura concettuale dello schema: apparentemente e'

Impiegato I Capo di

Capo

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Strttuura concettuale dello schema: in realta' e' piu' complessa

Anche i capi Sono impiegati!

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 5

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 mila €

 $SEL_{Stipendio>40}$ (Impiegati)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

SEL_{Stipendio>40}(Impiegati)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

7

- Trovare matricola, nome ed età degli impiegati che guadagnano più di 40mila €
- · Qui abbiamo bisogno di una proiezione per eliminare gli attributi non richiesti

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Matricola	Nome	Età	
7309	Rossi	34	
5698	Bruni	43	
4076	Mori	45	
8123	Lupi	46	

```
PROJ<sub>Matricola</sub>, Nome, Età
(
SEL<sub>Stipendio>40</sub>(Impiegati)
```

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- Trovare le matricole dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila €
- Qui abbiamo bisogno di un join perche'
 l'interrogazione riguarda attributi e proprieta'
 di entrambe le relazioni

Impiegati (Matricola, Nome, Eta', Stipendio) Supervisione (Impiegato, Capo)

> Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Partiamo dallo schema e istanza qui sotto

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Cano
	Саро
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 11

 Trovo prima gli impiegati che guadagnano più di 40mila €

 $(SEL_{Stipendio>40}(Impiegati))$

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Poi trovo i capi cercando tali impiegati nella relazione Supervisione
 Impiegati (Matricola, Nome, Eta', Stipendio)
 Supervisione (Impiegato, Capo)

Supervisione JOIN Impiegato=Matricola

(SEL_{Stipendio>40}(Impiegati))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 13

· E infine trovo le matricole dei capi

 $PROJ_{Capo}$

(Supervisione JOIN _{Impiegato=Matricola}

(SEL_{Stipendio>40}(Impiegati)))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare le matricole dei capi degli impiegati che guadagnano più di 40mila €

PROJ_{Capo} (

Supervisione JOIN Impiegato=Matricola

(SEL_{Stipendio>40}(Impiegati)))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 15

Relazione risultato

CAPO

5698

4076

8123

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Metodologia

- 1. Individua le relazioni coinvolte nella specifica, attraverso gli attributi citati e le condizioni
- 2. Individua i tipi di operazioni necessarie
- 3. Individua un possibile ordinamento delle operazioni che porta ad ottenere il risultato richiesto

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Nuova interrogazione

 Trovare nome e stipendio dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 milioni

> Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

19

Soluzione

- 1. Qui ci possiamo semplificare la vita utilizzando la interrogazione precedente, che produce una relazione con un attributo CAPO.
- 2. La relazione con attributo CAPO va messa in JOIN con la relazione Impiegato, e poi vanno estratti gli attributi NOME e STIPENDIO

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

• Trovare nome e stipendio dei capi degli impiegati che (gli impiegati) guadagnano più di 40 mila €

PROJ_{Nome, Stipendio} (

Impiegati JOIN Matricola=Capo

PROJ_{Capo}(Supervisione
JOIN Impiegato=Matricola
(SEL_{Stipendio}>40(Impiegati))))

Nella nuova edizione del libro si propone la seguente espressione

PROJ (REN_{MatrC,NomeC,StipC,EtaC← Matr,Nome,Stip,Eta} (IMPIFGATI)

JOIN MatrC=Capo
(Supervisione
JOIN Impiegato=Matricola
(SELStipendio>40(Impiegati))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 23

Motivo

- Nell'ultimo JOIN si collegano n-ple di impiegati e capi, quindi con diverso significato
- · La ridenominazione e' proposta per rendere omogenei i nomi delle n-ple
- Io preferisco la vecchia soluzione, perche' qui la ridenominazione non e' essenziale, ma anche questa e' corretta

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

Qui il problema e' diverso, perche' nella selezione finale abbiamo bisogno di una relazione, risultato di JOIN, <u>in cui</u> <u>compaiono sia Impiegati che Capi</u>

> Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

25

Ricordiamo la struttura concettuale dello schema

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 mila €
- Non si puo' esprimere direttamente nell'algebra (mancano i "quantificatori universali, manca l'equivalente del tutti).
- · Pero' si puo' rifrasare

Togliere dai capi (DIFF) quelli i cui impiegati quadagnano meno di, oppure 40 milioni

> Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 mila €

 $\begin{array}{c} \text{PROJ}_{\textit{Capo}}\left(\text{Supervisione}\right) & - \\ \\ \text{PROJ}_{\textit{Capo}}\left(\text{Supervisione}\right. \\ \text{JOIN}_{\text{Impiegato=Matricola}} \\ \left(\text{SEL}_{\text{Stipendio}} \leq 40 \left(\text{Impiegati}\right)\right) \end{array}$

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 29

Proviamo a rifrasarla in linguaggio naturale per vedere se coglie le specifiche (cioe' se e' corretta)

- · 1. Trova i capi, poi
- 2. Trova gli impiegati che guadagnano meno o 40 milioni,
- · 3. Poi trova i loro capi
- 4. Togli dal primo insieme il secondo

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Conservazione e perdita di informazioni: il caso di proiezioni e join nell'algebra relazionale

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 31

Join e proiezioni

- Join e proiezioni sono operazioni complementari:
- Le proiezioni "spezzano" relazioni in frammenti, quindi separano informazioni "che stavano insieme"
- I join ricompongono frammenti in relazioni piu' grandi, quindi ricompongono informazioni che erano separate

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e proiezioni: caso 1 composizione seguita da decomposizione

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 33

Join e proiezioni: caso 1

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	CapoRep
В	Mori
С	Bruni

Impiegato	Reparto	CapoRep
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	CapoRep
В	Mori

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e proiezioni: caso 2 decomposizione seguita da composizione

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 35

Join e proiezioni: caso 2 – esempio 1 ogni reparto ha un solo capo

Impiegato	Reparto	CapoRep
Neri	В	Mori
Bianchi	Α	Rossi

Impiegato	Reparto
Neri	В
Bianchi	Α

Reparto	CapoRep
В	Mori
Α	Rossi

Impiegato	Reparto	CapoRep
Neri	В	Mori
Bianchi	Α	Rossi

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e Proiezioni: caso 2 - esempio 2 i reparti possono avere piu' capi

Impiegato	Reparto	Capodilmp
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto	Reparto	Capodilmp
Neri	В	В	Mori
Bianchi	В	В	Bruni
Verdi	Α	Α	Bini

Impiegato	Reparto	Capodilmp	
Neri	В	Mori	
Bianchi	В	Bruni	
Neri	В	Bruni	
Bianchi	В	Mori	
Verdi	Α	Bini	
Basi di dati, Capitolo 3			

37

Join e proiezioni: proprieta'

• $R_1(X_1)$, $R_2(X_2)$

Caso 1: $PROJ_{X_1}(R_1 \ JOIN \ R_2) \subseteq R_1$

• R(X), $X = X_1 \cup X_2$

Caso 2: (PROJ $_{X_1}$ (R)) JOIN (PROJ $_{X_2}$ (R)) \supseteq R

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Quando accade nel caso 2 che $(PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R)) = R?$

- Cioe', quando accade che separando (decomponendo) uno schema e poi ricomponendolo otteniamo lo stesso risultato?
- Proprieta' di DECOMPOSIZIONE SENZA PERDITA:
- Se X0 = X1 ∩ X2 e' chiave di R1 o di R2 allora decomponendo e ricomponendo otteniamo il risultato di partenza

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 39

Tornando ai due esempi del caso 2 Esempio 1

- · R (Impiegato, Reparto, Caporeparto)
- · Decomposta in
 - ·R1 (Impiegato, Reparto)
 - · R2(Reparto, Caporeparto)
- · REPARTO e' chiave della seconda relazione
- · Vale la decomposizione senza perdita

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e proiezioni: caso 2 - esempio 1

Impiegato	Reparto	CapoRep
Neri	В	Mori
Bianchi	Α	Rossi

Impiegato	Reparto
Neri	В
Bianchi	Α

Reparto	CapoRep
В	Mori
Α	Rossi

Impiegato	Reparto	CapoRep
Neri	В	Mori
Bianchi	Α	Rossi

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 41

Caso 2 - esempio 2

- · R1 (Impiegato, Reparto, Capodiimpiegato)
- · Decomposto in
 - ·R1 (Impiegato, Reparto)
 - · R2(Reparto, Capodiimpiegato)
- · REPARTO non e' chiave di nessuna delle due relazioni
- · Si perdono informazioni, nel senso che si perde il legame tra impiegato e capo

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e Proiezioni: caso 2 - esempio 2

Impiegato	Reparto	Capodilmp
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto	Reparto	Capodilmp
Neri	В	В	Mori
Bianchi	В	В	Bruni
Verdi	Α	Α	Bini

Impiegato	Reparto	Capodilmp
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	Α	Bini

Basi di dati, Capitolo 3

43

Equivalenza di interrogazioni in algebra relazionale

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Equivalenza in matematica e in informatica

- · In matematica esistono espressioni algebriche equivalenti
- $\cdot a * (b + c) = a * b + a * c$
- · Anche per l'algebra relazionale esistono regole di equivalenza tra espressioni

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 45

Tipi di equivalenza

- L'equivalenza puo' dipendere dallo schema
- Def1 E1 EQ_R E2 se E1(r) = E2(r) per ogni istanza r di R
- · Ovvero valere per ogni schema
- \cdot Def2 E1 EQ E2 se E1 EQ $_{\rm R}$ E2 per ogni schema R

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Regole di trasformazione di equivalenza nell'algebra relazionale: alcuni esempi 1

- •1. ATOMIZZAZIONE o Una selezione congiuntiva puo' essere sostituita da una sequenza di operazioni di selezione individuali
 - • σ c1 AND c2 AND .. cn (R) equivalente σ c1 (σ c2(... σ cn(R)..))
- Esempio
- · SEL Eta' > 30 AND Stipendio < 50 (Impiegati)
- · Equivalente a
- SEL Eta' > 30 (SEL Stipendio < 50 (Impiegati))

 Atzeni-Ceri-Paraboschi-Torlone,

 Basi di dati, Capitolo 3

47

Regole di trasformazione di equivalenza nell'algebra relazionale: alcuni esempi 2

- •2. COMM σ Commutativita' della selezione • σ c1 (σ c2(R)) equivalente σ c2 (σ c1(R))
- \cdot 3. COMM σ X Commutativita' di selezione e prodotto cartesiano
 - • σ c (R X S) equivalente (σ c (R)) X S (se fa riferimento solo ad attributi di R)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Regole di trasformazione di equivalenza nell'algebra relazionale: alcuni esempi 3

- •4. COMM σ π Commutativita' di selezione e proiezione
 - • $\sigma c (\pi (R))$ equivalente $\pi(\sigma c (R))$
- •5. COMM π e Join Commutativita' di proiezione e join
- •6. EQUIV X σ e Join Equivalenza di prodotto cartesiano e selezione con Join
- •oc (E1 X E2) equivalente E1 JOIN c E2

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 49

La piu' importante

- · 7. ANTICIPAZIONE DELLA SELEZIONE RISPETTO AL JOIN
- σc(E1 JOIN E2) EQUIV E1 JOIN σc(E2)
- se c fa riferimento solo ad attributi in E2
- Vale anche sotto opportune condizioni la
- ANTICIPAZIONE DELLA PROIEZIONE RISPETTO AL JOIN

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Vediamo un esempio di applicazione di utilizzo della regola 7 (e di altre)

- Supponiamo di voler trovare i numeri di matricola dei capi di impiegati con meno di 30 anni
- · Una prima espressione e'
- πCapo (σ Eta < 30 AND Matr=Imp (Impiegati X Supervisione))
- Scarsa efficienza. Fare il prodotto cartesiano obbliga a n x m operazioni
- · Dove n e m sono le cardinalita' delle relazioni
- · Su record che poi possono risultare inutili

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 51

Applichiamo ...

- · Regola 1
- · ATOMIZZAZIONE DELLE SELEZIONI
- πCapo (σEta < 30 (σMatr=Imp (Impiegati X Supervisione)))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Applichiamo ...

- · Regola 6
- · EQUIV X o e Join
- πCapo (σEta < 30 (Impiegati JOIN Matr=Imp Supervisione)
- · Regola 7
- · ANTICIPAZIONE DELLA SELEZIONE RISPETTO AL JOIN
- πCapo (σEta < 30 (Impiegati) JOIN Matr=Imp (Supervisione))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 53

Infine ...

- · Regola 7.b
- ANTICIPAZIONE DELLA PROIEZIONE RISPETTO AL JOIN
- πCapo (πMatr (σEta < 30 (Impiegati))
 JOIN Matr=Imp Supervisione)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Esercizio 1

Considerando la seguente base di dati:

Fornitori (CodiceFornitore, Nome, Indirizzo, Città)

Prodotti (CodiceProdotto, Nome, Marca, Modello)

Catalogo (CodiceFornitore, CodiceProdotto, Costo)

formulare in Algebra Relazionale una interrogazione per ciascuno dei seguenti punti:

- Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.
- Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).
- 3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.
- 4. Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

<u>29</u>

Soluzione Esercizio 1.1 (1/3)

1. Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 1: (Prodotti ⋈ Catalogo)

CodiceProdotto	Nome	Marca	Modello	CodiceFornitore	Costo
0001	Notebook	IBM	390 x	002	€ 1.900
0001	Notebook	IBM	390 x	010	€ 2.200
0002	Desktop	IBM	510	002	€ 2.500
0002	Desktop	IBM	510	001	€ 3.200
0003	Desktop	ACER	730	001	€ 2.200
0003	Desktop	ACER	730	010	€ 2.000
0003	Desktop	ACER	730	002	€ 1.800

mizeni-cel i-i al aboschi- i ol ione, basi al aati, capitolo s

Soluzione Esercizio 1.1 (2/3)

1. Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 2: (σ_{Costo} < 2000 (Prodotti ⋈ Catalogo))

CodiceProdotto	Nome	Marca	Modello	CodiceFornitore	Costo
0001	Notebook	IBM	390 x	002	€ 1.900
0003	Desktop	ACER	730	002	€ 1.800

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

JU

Soluzione Esercizio 1.1 (3/3)

1.Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 3:

 $\pi_{ ext{Nome, Marca, Modello}}$

 $(\sigma_{\text{Costo} < 2000}(\text{Prodotti} \bowtie \text{Catalogo}))$

Nome	Marca	Modello
Notebook	IBM	390 x
Desktop	ACER	730

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

υı

Soluzione Esercizio 1.2 (1/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 1: (Fornitori ⋈ Catalogo)

Nome	Indirizzo	Città	CodiceFornitore	CodiceProdotto	Costo
Ladroni	Via Ostense	Roma	001	0003	€ 2.200
Ladroni	Via Ostense	Roma	001	0002	€ 3.200
Risparmietti	Viale Marconi	Roma	002	0001	€ 1.900
Risparmietti	Viale Marconi	Roma	002	0002	€ 2.500
Risparmietti	Viale Marconi	Roma	002	0003	€ 1.800
Teloporto	Via Roma	Milano	010	0001	€ 2.200
Teloporto	Via Roma	Milano	010	0003	€ 2.000

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

اےر

Soluzione Esercizio 1.2 (2/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 2: ((Fornitori ⋈ Catalogo)

\bowtie ($\pi_{\texttt{CodiceProdotto},\texttt{Marca}}$ (Prodotti)))

Nome	Indirizzo	Città	CodiceFornitore	Costo	CodiceProdotto	Marca
Ladroni	Via Ostense	Roma	001	€ 2.200	0003	ACER
Risparmietti	Viale Marconi	Roma	002	€ 1.900	0001	IBM
Risparmietti	Viale Marconi	Roma	002	€ 2.500	0002	IBM
Teloporto	Via Roma	Milano	010	€ 2.200	0001	IBM
Ladroni	Via Ostense	Roma	001	€ 3.200	0002	IBM
Teloporto	Via Roma	Milano	010	€ 2.000	0003	ACER
Risparmietti	Viale Marconi	Roma	002	€ 1.800	0003	ACER

Soluzione Esercizio 1.2 (3/4)

Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 3:

$$\sigma_{\mathtt{Marca} = \mathtt{`IBM'}}$$
 ((Fornitori \bowtie Catalogo)
$$\bowtie (\pi_{\mathtt{CodiceProdotto},\mathtt{Marca}}(\mathtt{Prodotti}))$$

Nome	Indirizzo	Città	CodiceFornitore	Costo	CodiceProdotto	Marca
Risparmietti	Viale Marconi	Roma	002	€ 1.900	0001	IBM
Teloporto	Via Roma	Milano	010	€ 2.200	0001	IBM
Risparmietti	Viale Marconi	Roma	002	€ 2.500	0002	IBM
Ladroni	Via Ostense	Roma	001	€ 3.200	0002	IBM

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

```
Soluzione Esercizio 1.2 (4/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 4:

\[ \pi_{\text{Nome}} \text{(} \]

\[ \sigma_{\text{marca} = '\text{IBM'}} \text{(} (\text{Fornitori} \times \text{Catalogo}) \\
\times \text{(} \pi_{\text{CodiceProdotto}, \text{Marca}} \text{(} \text{Prodotti}) \text{)} \]

Nome

Ladroni

Risparmietti

Teloporto

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3
```



```
Soluzione Esercizio 1.3 (2/5)
3. Trovare i codici di tutti i prodotti che sono forniti da almeno
    due fornitori.
    Passo 1: \pi_{CF}, CodiceProdotto (
                     (\rho_{\mathtt{CF}\leftarrow\mathtt{CodiceFornitore}}(\mathtt{Catalogo})) )
                                CodiceProdotto
                          CF
                          001
                                0002
                          001
                                0003
                          002
                                0001
                                0002
                          002
                          002
                                0003
                                0001
                          010
                          010
                                0003
               MIZERI-CETT-FUTUDOSCRI- FOTTORE, DUST UT UUTI, CUPITOTO 3
```


Soluzione Esercizio 1.3 (4/5)

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

```
Passo 3: \sigma_{\text{CodiceFornitore} > \text{CF}} (
```

CF	CodiceProdotto	Costo	CodiceFornitore
001	0002	€ 3.200	002
002	0001	€ 1.900	010
001	0003	€ 2.200	010
002	0003	€ 1.800	010
001	0003	€ 2.200	002

Soluzione Esercizio 1.3 (5/5)

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

Passo 4:

```
\pi_{\texttt{CodiceProdotto}} (
```

```
\sigma_{\text{CodiceFornitore}} > c_{\text{CF}} (

Catalogo \bowtie \pi_{\text{CF,CodiceProdotto}} (
(\rho_{\text{CF}\leftarrow\text{CodiceFornitore}} (\text{Catalogo})))))
```

CodiceProdotto 0001 0002 0003

Soluzione Esercizio 1.4 (1/6)

 Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Osservazioni:

- Per risolvere l'esercizio è necessaria una sorta di quantificatore universale.
- L'algebra relazionale non possiede tale costrutto.
- La soluzione si ottiene sottraendo alla relazione Fornitori, una relazione che contiene i Fornitori ai quali manca almeno un prodotto.
- Indicheremo per brevità di esposizione:

CodiceFornitore con CF CodiceProdotto con CP

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

/1

Soluzione Esercizio 1.4 (3/6)

 Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 2:

Sottraggo alla relazione ottenuta nel <u>passo 1</u> i CF e i CP contenuti nella relazione Catalogo.

(
$$(\pi_{\text{CF}}(\text{Fornitori}) \bowtie \pi_{\text{CP}}(\text{Catalogo}))$$

- $\pi_{\text{CF,CP}}(\text{Catalogo})$)

ottengo una relazione contenente i CF dei Fornitori associati ai CP dei prodotti che non hanno in catalogo quindi i CF dei Fornitori a cui manca almeno un prodotto di quelli in catalogo.

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

/3

Soluzione Esercizio 1.4 (5/6)

4. Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 3:

```
\pi_{\mathrm{CF}} (  (\pi_{\mathrm{CF}}(\mathrm{Fornitori}) \bowtie \pi_{\mathrm{CP}}(\mathrm{Catalogo})) - \pi_{\mathrm{CF,CP}}(\mathrm{Catalogo}) )
```

CF 001 010

Chiamiamo questa interrogazione con R.

R corrisponde ai CF dei Fornitori ai quali manca almeno un prodotto di quelli in catalogo.

Soluzione Esercizio 1.4 (6/6)

4. Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 4:

```
( \pi_{\mathtt{CF}}(\mathtt{Fornitori}) - \mathbb{R} )
```

CF di Fornitori che distribuiscono tutti i prodotti presenti nel Catalogo

Passo 5:

Devo ricavare il Nome dei Fornitori

$$\pi_{\text{Nome}}$$
 ((π_{CF} (Fornitori) - R) \bowtie Fornitore)

Nome

Risparmietti

Alzeni-ceri-raradoschi-torione, Basi ai aati, Capitolo 5

Si assuma il seguente schema di data base per la gestione di una biblioteca:

LIBRO(codice_libro, autore, titolo)
LETTORE(codice_lettore, nome, cognome)
PRESTITO(codice_lettore, codice_libro, data_prestito)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titoli dei libri presi a prestito il giorno 12/5/99;
- b) Autori dei libri presi a prestito dai signori Paolo Rossi;
- c) Codici dei lettori che hanno preso a prestito libri scritti da Gibson oppure da Sterling.

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

77

Esempi di query: Esercizio 1

Si assuma il seguente schema di data base per la gestione di una biblioteca:

LIBRO(codice_libro, autore, titolo)
LETTORE(codice_lettore, nome, cognome)
PRESTITO(codice_lettore, codice_libro, data_prestito)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titoli dei libri presi a prestito il giorno 12/5/99;
- b) Autori dei libri presi a prestito dai signori Paolo Rossi;
- c) Codici dei lettori che hanno preso a prestito libri scritti da Gibson oppure da Sterling.

a) $\pi_{\text{titolo}} \sigma_{\text{data_prestito}=12/5/99} \text{PRESTITO} LIBRO$ b) $\pi_{\text{autore}} \sigma_{\text{nome-'Paolo'}} = \pi_{\text{codice_lettore}} \sigma_{\text{autore-'Gibson'}} = \pi_{\text{codice_lettore}} \sigma_{\text{codice_lettore}} = \pi_{\text{codice_lettore}} = \pi_{\text{codice_le$

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Si assuma il seguente schema di data base per la gestione di dati riguardanti il noleggio di cd:

CD(codice_cd, autore, titolo)
CLIENTE(codice_cliente, nome, cognome)
NOLEGGIO(codice_cliente, codice_cd, data_noleggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Autore e titolo dei cd noleggiati dai signori Paolo Rossi in data 20/5/99;
- b) Nome e cognome dei clienti che hanno noleggiato cd dei **REM** in data 12/10/98;
- c) Titolo dei cd che sono stati noleggiati dal cliente avente codice 123A oppure dal cliente avente codice 236B.

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

79

Si assuma il seguente schema di data base per la gestione di dati riguardanti il noleggio di cd:

CD(codice_cd, autore, titolo)

CLIENTE(codice_cliente, nome, cognome)

NOLEGGIO(codice_cliente, codice_cd, data_noleggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Autore e titolo dei cd noleggiati dai signori Paolo Rossi in data 20/5/99;
- b) Nome e cognome dei clienti che hanno noleggiato c
d dei REM in data 12/10/98;
- c) Titolo dei cd che sono stati noleggiati dal cliente avente codice 123A oppure dal cliente avente codice 236B.
- b) $\pi_{\text{nome, cognome}}$ ($\sigma_{\text{autore='REM'}}$ CD \bigstar $\sigma_{\text{data=12/10/98}}$ NOLEGGIO \bigstar CLIENTE)
- c) $\pi_{titolo}(\text{CD} \sigma_{codice_cliente=^1123A'} \text{ or codice_cliente=^*236B'}, \text{NOLEGGIO})$

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Si assuma il seguente schema di data base per la gestione di dati riguardanti i mondiali di calcio:

MONDIALE(anno, luogo, nazione_vincitrice)

ALLENATORE(cognome, nome, nazione_allenata, anno)

PARTITA(anno, nazione_A, nazione_B, punteggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- Nazioni che hanno vinto il mondiale in casa ed anno in cui ciò è avvenuto:
- Anno e luogo dei mondiali vinti dalle nazioni allenate da Paolo Rossi:
- Nazioni contro cui ha giocato la nazione vincitrice del mondiale 98 durante lo stesso.

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

81

Esempi di query: Esercizio 3

Si assuma il seguente schema di data base per la gestione di dati riguardanti i mondiali di calcio:

MONDIALE(anno, luogo, nazione_vincitrice)
ALLENATORE(cognome, nome, nazione_allenata, anno)
PARTITA(anno, nazione_A, nazione_B, punteggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

Nazioni che hanno vinto il mondiale in casa ed anno in cui ciò è avvenuto:

Anno e luogo dei mondiali vinti dalle nazioni allenate da Paolo Rossi:

 $\pi_{anno,\,luogo}(\,\sigma_{nome='Paolo';and\,\,cognome='Rossi'},\rho_{anno_all\,\,\leftarrow\,\,anno}\,\,ALLENATORE$

Nazioni contro cui ha giocato la nazione vincitrice del mondiale 98 durante lo stesso.

Mizeni-Ceri-raraboschi-Torione, basi ai aati, Capitolo s

--

Si assuma il seguente schema di data base per la raccolta di prenotazioni di posti su treni:

VIAGGIATORE(codice_v, nome, cognome)

TRENO(codice_t, provenienza, destinazione)

PRENOTAZIONE(codice_v, codice_t, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei viaggiatori che in data 10/11/97 hanno prenotato posti su treni da Milano per Roma;
- b) Elenco delle date in cui viaggiatori dal cognome Rossi hanno effettuato prenotazioni;
- c) Provenienza e destinazione dei treni su cui è stata effettuata almeno una prenotazione.

MIZERII-CELI-FUL UDUSCRII- LOLIUNE, DUSL UL UUTI, CUPITUIU S

Esempi di query: Esercizio 4

Si assuma il seguente schema di data base per la raccolta di prenotazioni di posti su treni:

VIAGGIATORE(codice_v, nome, cognome)

TRENO(codice_t, provenienza, destinazione)

PRENOTAZIONE(codice_v, codice_t, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei viaggiatori che in data 10/11/97 hanno prenotato posti su treni da Milano per Roma;
- b) Elenco delle date in cui viaggiatori dal cognome Rossi hanno effettuato prenotazioni;
- c) Provenienza e destinazione dei treni su cui è stata effettuata almeno una prenotazione.
- a) $\pi_{nome,cognome}$ ($\sigma_{provenienza="Milano"}$ and destinazione="Roma", TRENO

 \bowtie $\sigma_{data=10/11/97}$ PRENOTAZIONE \bowtie VIAGGIATORE)

- b) $\pi_{data}(\sigma_{cognome='Rossi} \cdot VIAGGIATORE \bowtie PRENOTAZIONE)$
- c) $\pi_{provenienza, destinazione}$ (PRENOTAZIONE TRENO)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Si assuma il seguente schema di data base per la gestione di un video-noleggio:

CLIENTE(codice_c, nome, cognome)
FILM(codice_f, titolo, anno, genere)
NOLEGGIO(codice_c, codice_f, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei clienti che hanno noleggiato film di fantascienza;
- b) Titolo dei film gialli noleggiati da Paolo Rossi;
- c) Cognome dei clienti che in data 17/3/99 hanno noleggiato film di fantascienza o film girati nel 1965.

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

85

Si assuma il seguente schema di data base per la gestione di un video-noleggio:

CLIENTE(codice_c, nome, cognome) FILM(codice_f, titolo, anno, genere) NOLEGGIO(codice_c, codice_f, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei clienti che hanno noleggiato film di fantascienza;
- b) Titolo dei film gialli noleggiati da Paolo Rossi;
- c) Cognome dei clienti che in data 17/3/99 hanno noleggiato film di fantascienza o film girati nel 1965.
- a) $\pi_{\text{nome, cognome}}$ ($\sigma_{\text{genere}^{-}\text{fantascienza}}$ ·FILM NOLEGGIO CLIENTE)
- b) $\pi_{titolo}(\sigma_{nome=`Paolo` and `Cognome=`Rossi'}$ CLIENTE \blacktriangleright NOLEGGIO \blacktriangleright $\sigma_{genere=`giallo`}$ FILM)
- c) $\pi_{cognome}$ (CLIENTE) $\sigma_{data=17/3/99}$ NOLEGGIO $\sigma_{genere^+fantascienza^+}$ or anno=1965 FILM)

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Si assuma il seguente schema di data base per la prenotazione di aule per esami:

ESAME(codice_esame, materia, professore)
AULA(codice_aula, nome, edificio, capienza)
PRENOTAZIONE(codice_aula, codice_esame, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Edificio e nome delle aule prenotate per gli esami di fisica il giorno 12/5/99;
- b) Nome e capienza delle aule prenotate per esami tenuti dal Prof. Rossi;
- c) Edificio e nome delle aule con capienza di almeno 120 posti le quali non hanno prenotazioni in data 9/11/99

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

87

Si assuma il seguente schema di data base per la prenotazione di aule per esami:

ESAME(codice_esame, materia, professore)
AULA(codice_aula, nome, edificio, capienza)
PRENOTAZIONE(codice_aula, codice_esame, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Edificio e nome delle aule prenotate per gli esami di fisica il giorno 12/5/99;
- b) Nome e capienza delle aule prenotate per esami tenuti dal Prof. Rossi;
- c) Edificio e nome delle aule con capienza di almeno 120 posti le quali non hanno prenotazioni in data 9/11/99

```
a) \pi_{\text{nome, edificio}}(\sigma_{\text{materia} = \text{fisica}} \cdot \text{ESAME}) \sigma_{\text{data} = 12/5/99} \text{ PRENOTAZIONE} \text{AULA})
```

b) $\pi_{\text{nome,capienza}}(\sigma_{\text{professore}^{-i}\text{Rossi}^{i}}\text{ESAME}
https://prenotazione.aula)$

c) $\pi_{edificio, \, nome}$ ($\sigma_{capienza>=120}$ AULA) - $\pi_{edificio, \, nome}$ ($\sigma_{data=12/5/99}$ PRENOTAZIONE

 $\bowtie \sigma_{capienza>=120} AULA)$

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Esercizi: Equivalenza di interrogazioni

Caso 1

 Dato il seguente schema relazionale
 Fornitore(<u>CodiceFornitore</u>, Nome, Indirizzo, Citta')

Prodotto(<u>CodiceProdotto</u>, Nome, Marca)
Catalogo(<u>CodiceFornitore</u>, <u>CodiceProdotto</u>,
Costo)

 Trovare Nome, Marca e Modello dei prodotti acquistabili a meno di 2000 euro

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Soluzioni

Soluzione 1

 $\pi_{\text{Nome, Marca, Modello}}$ ($\sigma_{\text{Costo < 2000}}$ (Prodotto X Catalogo))

Soluzione 2

π_{Nome, Marca, Modello}
(Prodotto JOIN_{Costo < 2000} (Catalogo))

Sono equivalenti?

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

91

Verifichiamo

Soluzione 1

 $\pi_{\text{Nome, Marca, Modello}}$ ($\sigma_{\text{Costo < 2000}}$ (Prodotto X Catalogo))

Applichiamo la regola di trasformazione 6 (Equivalenza di prodotto cartesiano e selezione con JOIN) e otteniamo...

Soluzione 2

 $\pi_{\mathsf{Nome,\,Marca,\,Modello}}$ (Prodotto $\mathsf{JOIN}_{\mathsf{Costo} \, < \, 2000}$ (Catalogo))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Caso 2

· Dato il seguente schema relazionale

Viaggiatore(<u>CodiceV</u>, Nome, Cognome) Treno(<u>CodiceT</u>, Provenienza, Destinazione) Prenotazione(<u>CodiceV</u>, <u>CodiceT</u>, Data)

 Trovare Nome e Cognome dei viaggiatori che in data 22/03/2006 hanno prenotato posti su treni da Milano per Torino

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

93

Soluzioni

Soluzione 1

 $\pi_{\mathsf{Nome},\,\mathsf{Cognome}}$

($\sigma_{\text{Provenienza}} = \text{'Milano'} \text{ AND Destinazione} = \text{'Torino'} \text{ Treno } X$ $\sigma_{\text{data}} = 22/03/2006 \text{ Prenotazione } X \text{ Viaggiatore})$

Soluzione 2

π_{Nome, Cognome}

($\bigcirc_{\text{Provenienza = 'Milano'}}$ (Treno JOIN $_{\text{Destinazione = 'Torino'}}$ (Prenotazione JOIN $_{\text{data = 22/03/2006}}$ Viaggiatore))

Sono equivalenti?

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Verifichiamo (1)

Soluzione 1

 $\pi_{\mathsf{Nome},\,\mathsf{Cognome}}$

($\circ_{Provenienza} = 'Milano' \ AND \ Destinazione = 'Torino' \ Treno \ X$ $\circ_{data} = 22/03/2006 \ Prenotazione \ X \ Viaggiatore)$

Applichiamo la regola di trasformazione 1 (Atomizzazione) e otteniamo...

Soluzione 2

 $\pi_{Nome, Cognome}$ ($\circlearrowleft_{Provenienza = 'Milano'}$ ($\circlearrowleft_{Destinazione = 'Torino'}$ Treno X $\circlearrowleft_{data = 22/03/2006}$ Prenotazione X Viaggiatore))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

95

Verifichiamo(2)

Soluzione 2

 $\pi_{Nome, Cognome}$ ($\sigma_{Provenienza = 'Milano'}$ ($\sigma_{Destinazione = 'Torino'}$ Treno X $\sigma_{data = 22/03/2006}$ Prenotazione X Viaggiatore))

Applichiamo la regola di trasformazione 6 (Equivalenza di prodotto cartesiano e selezione con JOIN) e otteniamo...

Soluzione 3

 $\pi_{Nome, Cognome}$ ($\sigma_{Provenienza = 'Milano'}$ ($\sigma_{Destinazione = 'Torino'}$ Treno X (Prenotazione JOIN_{data = 22/03/2006} Viaggiatore)))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Verifichiamo(3)

Soluzione 3

 $\pi_{\text{Nome, Cognome}}$ ($\odot_{\text{Provenienza = 'Milano'}}$ ($\odot_{\text{Destinazione = 'Torino'}}$ Treno X (Prenotazione JOIN_{data = 22/03/2006} Viaggiatore)))

Applichiamo la regola di trasformazione 6 (Equivalenza di prodotto cartesiano e selezione con JOIN) e otteniamo...

Soluzione 4

 $\pi_{Nome, Cognome}$ ($\sigma_{Provenienza = 'Milano'}$ (Treno JOIN _{Destinazione = 'Torino'} (Prenotazione JOIN_{data = 22/03/2006} Viaggiatore)))

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

97

Caso 3

Dato il seguente schema relazionale

CITTA'(Nome, Regione, Abitanti) ATTRAVERSAMENTI (Città, Fiume) FIUMI (Fiume, Lunghezza)

 Trovare nome, regione e abitanti per le città che hanno più di 50000 abitanti e sono attraversate dal Po oppure dall'Adige

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Soluzioni

Soluzione 1

```
\pi_{\text{Nome, Regione, Abitanti}}
( \circ_{\text{Fiume = 'Po' OR Fiume = 'Adige'}} (\circ_{\text{Abitanti}} > 50000 (Attraversamenti) JOIN_{\text{Citt\`a}-Nome} (Citta'))
```

Soluzione 2

```
\pi_{Nome, Regione, Abitanti}
( \sigma_{Fiume = 'Po' OR Fiume = 'Adige'} (Attraversamenti)
JOIN_{Citt\grave{a}=Nome}
( \sigma_{Abitanti} > 50000 (Citta')))
```

Sono equivalenti?

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

99

Verifichiamo

Soluzione 1

```
π<sub>Nome</sub>, Regione, Abitanti

( <sup>©</sup>Fiume = 'Po' OR Fiume = 'Adige' ( <sup>©</sup>Abitanti > 50000

(Attraversamenti) JOIN<sub>Città=Nome</sub> (Citta'))
```

Applichiamo la regola di trasformazione 7(Anticipazione della selezione rispetto al JOIN

Soluzione 2

```
\pi_{\text{Nome, Regione, Abitanti}}
( \circ_{\text{Fiume = 'Po' OR Fiume = 'Adige'}} (Attraversamenti)
\text{JOIN}_{\text{Cittå=Nome}} (\circ_{\text{Abitanti}} > 50000 (Citta')))
```

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3