For the optimum value of w, the quadient vanishes W = $\sum_{i=1}^{m} x_i y_i x_i = 0$ $\Rightarrow \omega = \sum_{i=1}^{m} x_i y_i x_i$ Substituting this optimum value of ω Most of the x_i teems are zero. Move (max) $\frac{1}{2} ||w||^2 + \sum_{i} \alpha_i (1 - y_i \langle w, x_i \rangle)$ Avoign (max) $\frac{1}{2} ||w||^2 + \sum_{i} \alpha_i (1 - y_i \langle w, x_i \rangle)$ $w = \sum_{i \neq j} \alpha_j y_i$ $x = \sum_{i \neq j} \alpha_i y_i x_i$ $x = \sum_{i \neq j} \alpha_i y_i x_i$ $x = \sum_{i \neq j} \alpha_i y_i x_i$ $x = \sum_{i \neq j} \alpha_i x_i y_i x_i$ $x = \sum_{i \neq j} \alpha_i x_i y_i x_i$ $x = \sum_{i \neq j} \alpha_i x_i y_i x_i$ XERT Vector & occurs inside ||V| = LV,V)

d= 100000 (x1, xm) Gram in $(21, x_1)$ (x_1, x_2) Matrix $(21, x_1)$ (x_2, x_2) $(m \times m)$ $(21, x_1)$ (x_2, x_2) $(21, x_1)$ (x_2, x_2) LAZ, Xm) mxm, mxxm, x, \ \(\alpha m, \alpha \)

realing

matrix

T. hand t · (7m, xm) Inner product: distance between the

Input

x

x

x

x

space. \mathbb{R}^{2} to $\phi(x)$ \mathbb{R}^{2} . D>>d Gram matrix $(\phi(x), \phi(x'))$ Similarity in the feature space $\Phi(\vec{x})$ is in D dim space: inner product in D dim space K(\(\alpha\), \(\phi\) = \(\phi\) \(\phi\) \\

\[
\left(\alpha\), \(\phi\) \(\alpha\) \\

\[
\left(\alpha\), \(\phi\) \(\alpha\)

\[
\left(\alpha\), \(\phi\) \(\alpha\)

\[
\left(\alpha\), \(\phi\) \(\alpha\)

\[
\left(\alpha\), \(\phi\)

\[
\left(transform

the transf

Once again consider the problem $\min \ f(\omega) \ \text{subject to} \ g_i(\omega) \leq 0 \quad \forall i$ Using Lagrange parameters we reformulate it as LHS $f(\omega^*) = \min_{\omega} f(\omega) = \min_{\omega} \max_{\alpha} \left[f(\omega) + \sum_{i} \alpha_{i} g_{i}(\omega) \right]$ strong = max min $f(\omega) + \sum_{i} x_{i} g_{i}(\omega)$, when strong duality holds. Let $\underline{\omega}^*$ be the optimal that minimizes LHS min $f(\underline{\omega})$ $\underline{\omega}$ Let $\underline{\alpha}^*$ be the optimal solution of the RHS max minur $\underline{\omega}$ wind (α^*) = min (α^*) dual. Lagrangian (α^*) = min (α^*) $(\alpha$ $p^* = d^*$ $= f(\omega^*) + \left[\sum_{i} x_i^* g_i(\omega^*)\right] = 0$ = saddle point $= f(\omega^*)$ ° of the inequality $f(w^*) \leq f(w^*)$ must be an equality. and this can be ensured only if at the optimal $\sum_{\ell} \alpha_{i}^{*} g_{i}(\omega^{*}) = 0$ solution.

