

Exercise 4A

Question 11:

Given BD = CD and OD = DX Join BX and CX Thus, the diagonals of quad OBXC bisect each other OBXC is a parallelogram BX \parallel CF and so, OF \parallel BX Similarly, CX \parallel OE In Δ ABX, OF \parallel BX

$$\therefore \frac{AO}{AX} = \frac{AF}{AB} - - - (1)$$

In ∆ACX, OE | XC

$$\therefore \frac{AO}{AX} = \frac{AE}{AC} - - - (2)$$

From (1) & (2), we get $\frac{AF}{AB} = \frac{AE}{AC}$

Hence, EF | BC

Question 12:

Given: ABCD is a parallelogram in which P is the midpoint of DC and Q is a point on AC such that CQ=1/4 AC. PQ produced meets BC at

R.

To prove: R is the midpoint of BC

Construction: Join BD

Proof: Since the diagonals of a \parallel gm bisect each other at S such that

$$CS = \frac{1}{2} AC$$

Now,
$$CS = \frac{1}{2}AC$$
 and $CQ = \frac{1}{4}AC \Rightarrow CQ = \frac{1}{2}CS$

Therefore Q is the midpoint of CS So, PQ \parallel DS. Therefore, QR \parallel SB. In Δ CSB, Q is the midpoint of CS and QR \parallel SB. So R is the midpoint of BC.

