Graph Theory: Lecture No. 37

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in Let k > 0 be an integer, and let p = p(n) be a function of n such that $p \ge (6k \ln n)/n$ for large n. Then $\lim_{n \to \infty} P(\alpha \ge \frac{n}{2k}) = 0$

For every integer k, there exists a graph H with girth g(H) > k and chromatic number $\chi(H) > k$.

- $k \geq 3$, and fix $0 < \epsilon < \frac{1}{k}$. Let $p = n^{\epsilon 1}$
- Let X(G) denote the number of short cycles (of length at most k) in a random graph $G \in \mathcal{G}(n, p)$.
- $E(X) = \sum_{i=3}^{k} \frac{(n)_i p^i}{2i} \le \frac{1}{2} \sum_{i=3}^{k} (n^i p^i) \le \frac{1}{2} (k-2) n^k p^k$.
- $P[X \ge n/2] \le \frac{E(X)}{n/2} \le (k-2)n^{k-1}p^k = (k-2)n^{k\epsilon-1}$.
- Since $k\epsilon 1 < 0$, $\lim_{n\to\infty} P[X \ge n/2] = 0$.

- Let \mathcal{P} be a graph property- i.e. a class of graphs closed under isomorphism.
- Let p = p(n) be a fixed function. If $P[G \in \mathcal{P}] \to 1$, as $n \to \infty$, we say that $G \in \mathcal{P}$ for almost all $G \in \mathcal{G}(n, p)$.
- If $P[G \in \mathcal{P}] \to 0$ as $n \to \infty$, we say that almost no $G \in \mathcal{G}(n,p)$ has property \mathcal{P} .

For every constant $p \in (0,1)$, and every graph H, almost every $G \in \mathcal{G}(n,p)$, contains an induced copy of H.

We call a real function t=t(n) with $t(n)\neq 0$, for all n, a threshold function for a graph property \mathcal{P} , if the following holds for all p=p(n), and $G\in\mathcal{G}(n,p)$. $\lim_{n\to\infty}[G\in\mathcal{P}]=0$, if $p/t\to 0$, as $n\to\infty$ and =1 if $p/t\to 1$, as $n\to\infty$.

- Consider a graph property of the form $\mathcal{P} = \{G : X(G) \geq 1\}$ where $X \geq 0$ is a random variable on G(n, p). (Example, connectedness).
- How can we prove that \mathcal{P} has a threshold function t ?
- We study one method here, called second moment method.
- If we can show that as $n \to \infty$, $E(X) \to 0$, then it means, that almost all graphs have property \mathcal{P} . (Since $P[X \ge 1] \le E(X)$, by Markov inequality.)
- On the other hand we cannot show

The Variance σ^2 of X: $\sigma^2 = E((X - \mu)^2)$. It is a quadratic measure of how much X deviates from its mean.

Graph Theory: Lecture No. 37

$$\sigma^2 = E(X^2) - \mu^2.$$

Chebyshev's Inequality: For all real $\lambda > 0$, $P[|X - \mu| \ge \lambda] \le \frac{\sigma^2}{\lambda^2}$.

If $\mu>0$, for n large, and $\frac{\sigma^2}{\mu^2}\to 0$, as $n\to\infty$, then X(G)>0Since any graph G with X(G)=0 satisfies $|X(G)-\mu|=\mu$. So, $P[X=0]\leq P[|X-\mu|\geq\mu]\leq \frac{\sigma^2}{\mu^2}\to 0$, as $n\to 0$. Given a graph H, let \mathcal{P}_H be the property of containing a copy of H as subgraph. H is called balanced if $\epsilon(H') \leq \epsilon(H)$ for all subgraphs H' of H.

If H is a balanced graph with k vertices, and $\ell \geq 1$ edges, then $t(n) = n^{-k/\ell}$ is a threshold function for \mathcal{P}_H .

If $k \ge 3$, then $t(n) = n^{-1}$ is a threshold function for the property of containing a k-cycle.

If T is a tree of order $k \ge 2$, then $t(n) = n^{k/(k-1)}$ is a threshold function for the property for containing a copy of T.

If $k \ge 2$, then $t(n) = n^{2/(k-1)}$ is a threshold function for the property of containing a K_k .

- Let X(G) denote the number of subgraphs of G isomorphic to H.
- Given $n \in N$, let \mathcal{H} denote the set of all graphs isomorphic to \mathcal{H} whose vertices lie in $\{0, 1, \dots, n-1\}$.
- Given $H' \in \mathcal{H}$, we write $H' \subseteq G$ to denote that H' itself is a subgraph of G.
- The number of isomorphic copies of H on a fixed k set is at most k!.
- $|\mathcal{H}| \leq \binom{n}{k} k! \leq n^k$.
- Given p = p(n), let $\gamma = p/t$, where $t = n^{-k/\ell}$.

- For each fixed $H' \in \mathcal{H}$, $P[H' \subseteq G] = p^{\ell}$ since $|E(H')| = \ell$.
- $E(X) = |\mathcal{H}|p^{\ell} \le n^k (\gamma n^{-k/\ell})^{\ell} = \gamma^{\ell} \to 0$, if $\gamma \to 0$ as $n \to 0$.

We have $\frac{\binom{n}{k}}{n^k} \geq \frac{1}{k!} \left(1 - \frac{k-1}{k}\right)^k$.