Memory-based Parameter Adaptation

Sanket Vaibhav Mehta (SVM)

LLL Reading Group @ CMU

Motivation

- General scheme for continual, one-shot, incremental or life-long learning problems
- Challenges:
 - Sequential distributional shift (task)
 - Shifts in task label distributions (class/ label)
 - Domain shifts (domain)
- Common attributes (for models):
 - Negate the effects of catastrophic forgetting (avoid negative backward transfer)
 - Rapid acquisition of knowledge (positive forward transfer)
 - Unbalanced/ scarce data and good generalization

Method

Three components:

- 1. **Embedding** network f_{γ} FNN or RNN
- 2. **Memory**, $M = \{(h_i, v_i)\}$ (circular buffer /FIFO)
 - keys $h_j \leftarrow f_{\gamma}(x_j)$
 - values $v_j \leftarrow y_j$
 - retrieval: KNN search on the keys with Euclidean distance
- 3. **Output** network g_{θ}

Training

• MLE for parameters (γ, θ)

$$p_{\text{train}}(y|x,\gamma,\theta) = g_{\theta}(f_{\gamma}(x))$$

• Classification: g_{θ} => softmax layer

Training setting

Training

• MLE for parameters (γ, θ)

$$p_{\text{train}}(y|x,\gamma,\theta) = g_{\theta}(f_{\gamma}(x))$$

• Classification: g_{θ} => softmax layer

Training setting

procedure MBPA-TRAIN

Sample mini-batch of training examples $B = \{(x_b, y_b)\}_b$ from training data.

Calculate the embedded mini-batch $B' = \{(f_{\gamma}(x_b), y_b) : x_b, y_b \in B\}.$

Update θ , γ by maximising the likelihood 1 of θ and γ with respect to mini-batch B

Add the embedded mini-batch examples B' to memory $M: M \leftarrow M \cup B'$.

Testing

 $\bullet \quad \text{Retrieval} \ \ C \ = \ \{(h_k^{(x)}, v_k^{(x)}, w_k^{(x)})\}_{k=1}^K$

$$w_k^{(x)} \propto \operatorname{kern}(h_k^{(x)}, q) \quad (h, q) = \frac{1}{\epsilon + \|h - q\|_2^2}$$

Testing setting

Testing

 \bullet Retrieval $C = \{(h_k^{(x)}, v_k^{(x)}, w_k^{(x)})\}_{k=1}^K$

$$w_k^{(x)} \propto \operatorname{kern}(h_k^{(x)}, q) \quad (h, q) = \frac{1}{\epsilon + \|h - q\|_2^2}$$

• MbPA adaptation

$$heta^x = heta + \Delta_M(x, heta)$$
 correction $p(y|x, heta^x) = p(y|x, heta^x,C) = g_{ heta^x}(f_{\gamma}(x))$

Testing setting

Testing

• Retrieval $C = \{(h_k^{(x)}, v_k^{(x)}, w_k^{(x)})\}_{k=1}^K$

$$w_k^{(x)} \propto \operatorname{kern}(h_k^{(x)}, q) \quad (h, q) = \frac{1}{\epsilon + \|h - q\|_2^2}$$

MbPA adaptation

$$heta^x = heta + \Delta_M(x, heta)$$
 correction $p(y|x, heta^x) = p(y|x, heta^x,C) = g_{ heta^x}(f_{\gamma}(x))$

Testing setting

procedure MBPA-TEST(test input: x, output prediction: \hat{y})

Calculate embedding $q = f_{\gamma}(x)$, and $\Delta_{\text{total}} \leftarrow 0$.

Retrieve K-nearest neighbours to q and producing context, $C = \{(h_k^{(x)}, v_k^{(x)}, w_k^{(x)})\}_{k=1}^K$ for each step of MbPA do

Calculate
$$\Delta_M(x, \theta + \Delta_{\text{total}})$$
 according to $\triangle_{\text{total}} \leftarrow \Delta_{\text{total}} + \Delta_M(x)$.

Output prediction $\hat{y} = g_{\theta + \Delta_{\text{total}}}(h)$

MAP Interpretation of MbPA

- Posterior: $p(\theta^x | \theta, x_c, v_c, x) = \frac{p(v_c | x_c, \theta^x, x) p(\theta^x | \theta)}{p(v_c | \theta, x_c, x)}$
- Maximise the posterior over the context C w.r.t θ^x

$$\arg \max_{\theta^x} \mathbb{E}_C \left\{ \log p(\theta^x | \theta, x_c, v_c, x) \right\} = \arg \max_{\theta^x} \log p(\theta^x | \theta) + \mathbb{E}_C \left\{ \log p(v_c | x_c, \theta^x, x) \right\}$$
$$= \arg \max_{\theta^x} \log p(\theta^x | \theta) + \sum_{k=1}^K w_k^{(x)} \log p(v_k^{(x)} | h_k^{(x)}, \theta^x, x)$$

 $\log p(\theta^x|\theta) \propto -\frac{||\theta^x-\theta||_2^2}{2\alpha_M}$ (Gaussian prior on θ^x centered at θ)

Contextual update:

$$\Delta_M(x,\theta) = -\alpha_M \left. \nabla_{\theta} \sum_{k=1}^K w_k^{(x)} \log p(v_k^{(x)} | h_k^{(x)}, \theta^x, x) \right|_{\theta} - \beta(\theta - \theta^x),$$

Attention to Local Fitting: MbPA for a regression

Figure 2: Illustrative diagram of the local fitting on a regression task. Given a query (blue), we retrieve the context from memory showed in red.

CL: Sequential Distributional Shift (Permuted MNIST)

Figure 3: (Left) Results on Permuted MNIST comparing baselines with MbPA using different memory sizes. (Right) Results augmenting MbPA with EWC, showing the flexibility and complementarity of MbPA.

Takeaways: Few gradient steps on carefully selected data from memory are sufficient to recover performance. Flexibility and complementarity of MbPA.

IL: Shift in Task Label Distributions (ImageNet)

	8	Тор	o 1 (at epoc	chs)	AUC (at epochs)			
Subset	Model	0.1	1	3	0.1	1	3	
Novel	MbPA	46.2 %	64.5 %	65.7 %	27.4 %	57.7 %	63.0 %	
	Non-Parametric	40.0 %	53.3 %	52.9 %	28.3 %	47.9 %	51.8 %	
	Mixture	31.6 %	56.0 %	59.1 %	18.6 %	47.4 %	54.7 %	
	Parametric	16.2 %	53.6 %	57.9 %	5.7 %	41.7 %	51.9 %	
Pre Trained	MbPA	68.5 %	70.9 %	70.9 %	71.4 %	70.3 %	70.3 %	
	Non-Parametric	62.7 %	69.4 %	70.0 %	45.9 %	65.8 %	68.7 %	
	Mixture	71.9 %	70.3 %	70.2 %	74.8 %	70.6 %	70.1 %	
	Parametric	71.4 %	68.1 %	68.8 %	76.0 %	68.6 %	68.3 %	

Table 1: Quantitative evaluation of the learning dynamics for the Imagenet experiment. We compare a parametric model, non-parametric model (prediction based on memory only (9)), a mixture model and MbPA. We report the top 1 accuracy as well as the area under the curve (AUC) at different points in training.

Takeaways: MbPA outperforms both parametric and mixture model in speed and performance. MbPA acquires knowledge from very few examples.

IL: Shift in Task Label Distributions (ImageNet)

Figure 4: The figure compares the performance of MbPA (blue) against two baselines: the parametric model (green) and the mixture of experts (red). (Left) Aggregated performance (Right) disentangled performance evaluated on new (dashed) and old (solid) classes.

Takeaways: MbPA outperforms both parametric and mixture model in speed and performance. MbPA acquires knowledge from very few examples.

IL: Unbalanced Dataset (ImageNet)

Figure 5: (Left) MbPA outperformed both parametric and memory-based mixture baselines, in the presence of unbalanced data on previously unseen classes (dashed lines). (Right) Example of MbPA. Query (shown larger in the top-right corner) of class "TV" and neighbourhood (all other images) for a specific case. Mixture and parametric models fail to classify the image while MbPA succeeds. 8 different classes in the closest 20 neighbours (e.g. "desktop computer", "monitor", "CRT screen"). Accuracy went from 25% to 75% after local adaptation.

Takeaways: Inductive bias in the local adaptation process is well suited to deal with data scarcity

Domain Shifts: Language Modeling (PTB/ WikiText-2)

	PTB			WikiText-2		
	Valid	Test	$\Delta { m Test}$	Valid	Test	$\Delta { m Test}$
CharCNN (Zhang et al., 2015)		78.9				
Variational LSTM (Aharoni et al., 2017)		61.7				
LSTM + cache (Grave et al., 2016)	74.6	72.1		72.1	68.9	
LSTM (Melis et al., 2017)	60.9	58.3		69.1	65.9	
AWD-LSTM (Merity et al., 2017)	60.0	57.3		68.6	65.8	
AWD-LSTM + cache (Merity et al., 2017)	53.9	52.8	- 4.5	53.8	52.0	- 13.8
AWD-LSTM (reprod.) (Krause et al., 2017)	59.8	57.7		68.9	66.1	
AWD-LSTM + dyn eval (Krause et al., 2017)	51.6	51.1	- 6.6	46.4	44.3	- 21.8
LSTM (ours)	61.8	59.6		69.3	65.9	
LSTM + cache (ours)	55.7	55.3	-4.3	53.2	51.3	-14.6
LSTM + MbPA	54.8	54.3	-5.3	58.4	56.0	-9.9
LSTM + MbPA + cache	54.8	54.4	-5.2	51.8	49.4	-16.5

Table 2: Table with PTB and WikiText-2 perplexities. Δ Test denotes improvement of model on the test set relative to the corresponding baseline.

Takeaways: Inductive bias in the local adaptation process is well suited to deal with data scarcity

Domain Shifts: Language Modeling (PTB/ WikiText-2)

Figure 8: Percent improvement when MbPA is included with the LSTM baseline and neural cache, split by training word frequency into five equally sized buckets. The bucket 1 contains the most frequent words, and bucket 5 contains the least frequent words. The average improvement ± 1 standard deviation are shown. MbPA provides a directional improvement for less frequent words.

Takeaways: MbPA provides a directional improvement for rare words

Conclusion

- MbPA: a scheme for using an episodic memory to locally adapt the parameters
- MbPA: improvements on wide range of settings incremental, lifelong, domain shift
- MbPA: rapid adaptation to unseen classes, deal with imbalanced data, shift in word distributions in language modeling tasks

Issues:

- Keys are drifting
- Very very very slow

Discussion

- 1. Given episodic memory: Replay vs. Local adaptation
 - a. Local adaptation is bound to be superior?
- Selection strategies for experience selection are beneficial for replay
- 3. Random selection of experiences for local adaptation?
 - a. Any strategy as long as diversity(?) is ensured
- 4. Rethinking: Avoiding catastrophic forgetting <=> Quickly unforgetting?

References

Sprechmann, Pablo, et al., "Memory-based parameter adaptation" ICLR 2018