Recommender System with Mapreduce - 1

赵敏 老师

扫描二维码关注微信/微博 获取最新IT面试情报及权威解答

微信: ninechapter

知乎专栏: http://zhuanlan.zhihu.com/jiuzhang

微博: http://www.weibo.com/ninechapter

官网: www.jiuzhang.com

Outline

- What is Recommender System
- Why Recommender System
- How to design Recommender System
- Deployment of recommender system on Mapreduce

What is recommender system

- Systems that attempt to predict item that users may be interested in
 - Amazon products recommendation

- Systems that help people find information that may interest them
 - Search engine

Why recommender system

- Massive MR project
 - Complex Algorithm
 - 5 MapReduce Jobs Chain
 - Put it on your resume!

Design Recommender System

Design Movie Recommender System

Design Recommender System

- Algorithms used for recommender system
- Choose one algorithm then implement it
- Implement recommender system with MapReduce

- User Collaborative Filtering (User CF)
- Item Collaborative Filtering (Item CF)

• ...

User CF

 A form of collaborative filtering based on the similarity between users calculated using people's ratings of those items

User	Movie 1	Movie 2	Movie 3	Movie 4
Α	10	4	9	9
В	5.5	8	5	5
С	8	2	8.5	recommend

Item CF

 A form of collaborative filtering based on the similarity between items calculated using people's ratings of those items

User	Movie 1	Movie 2	Movie 3
Α	10	4	9
В	9	5	9
С	8	2	recommend

We will use Item CF

- The number of users weighs more than number of products
- Item will not change frequently, lowering calculation
- Using user's historical data, more convincing

Item CF

- Build co-occurrence matrix
- Build rating matrix
- Matrix computation to get recommending result

Since this is Item CF, what is the first thing to do?

Describe the relationship between different items

How to define relationship between different movies

Item CF

Based on user's profile

- watching history
- rating history
- favorite list

Based on movie's info

- movie category
- movie producer

Item CF

We will use rating history to build relationship between movies

If one user rated two movies, these two are related

How to represent relationship between different movies

Item CF

Co-occurrence matrix

A co-occurrence matrix is a matrix that is defined over an image to be the distribution of co-occurring pixel values (grayscale values, or colors) at a given offset.

Item CF

User	M1	M2	M3	M4	M5
A	1	1		1	
В	1	1	1	•	
	'		'		
С		1	1		1
D		1		1	

value(M1,M2) = Count(x_M1 && x_M2) x表示一个人同时看了M1 和 M2 两个电影

How to tell the difference between movies towards each user?

User	Transformers	Tiny Times
Α	10	4
В	3	9

Build rating matrix for each user

Item CF

Rating Matrix

User	M1	M2	M3	M4	M5
Α	9	4		8	
В	3	7	8		
С		8	7		4
D		5		8	

Movie	User B
	rating
M1	3
M2	7
M3	8
M4	0
M5	0

Recomend Movie for each user

Item CF

Co-occurrence Matrix

	M1	M2	M3	M4	M5		
M1	2	2	1	1	0		M1
M2	2	4	2	2	1	归一化处理	M2
M3	1	2	2	0	1		M3
M4	1	2	0	2	0		M4
M5	0	1	1	0	1		M5

	M1	M2	M3	M4	M5
M1	2/6	2/6	1/6	1/6	0
M2	2/1 1	4/1 1	2/1 1	2/1 1	1/1 1
М3	1/6	2/6	2/6	0	1/6
M4	1/5	2/5	0	2/5	0
M5	0	1/3	1/3	0	1/3

Item CF

	M1	M2	М3	M4	M5
M1	2/6	2/6	1/6	1/6	0
M2	2/1 1	4/1 1	2/1 1	2/1 1	1/1
M3	1/6	2/6	2/6	0	1/6
M4	1/5	2/5	0	2/5	0
M5	0	1/3	1/3	0	1/3

Movie	User B rating	Result
M1	3	4.66
M2	7	4.54
M3	8	 5.5
M4	0 ?	3.4
M5	0 ?	5(reco

	Result
	4.66
	4.54
-	5.5
	3.4
	5(recommed)

$$\mathbf{AB} = egin{pmatrix} a & b & c \ p & q & r \ u & v & w \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} ax + by + cz \ px + qy + rz \ ux + vy + wz \end{pmatrix}$$

Implement recommender system with MapReduce 本章等は

- Build co-occurrence matrix
- Build rating matrix
- Multiply co-occurrence matrix and rating matrix

What we expect:

User	M1	M2	M3	M4	M5
A	1	1		1	
В	1	1	1		
		T			
С		1	1		1
D		1		1	
	I				

Store raw data in which format?

User	M1	M2	М3	M4	M5
Α	1	1		1	
В	1	1	1		
С		1	1		1
D		1		1	

```
1,10001,5.0
1,10002,3.0
1,10003,2.5
2,10001,2.0
2,10002,2.5
2,10003,5.0
2,10004,2.0
3,10001,2.0
3,10004,4.0
3,10005,4.5
3,10007,5.0
4,10001,5.0
4,10003,3.0
4,10004,4.5
4,10006,4.0
5,10001,4.0
5,10002,3.0
5,10003,2.0
5,10004,4.0
5,10005,3.5
5.10006.4.0
```


Data Preprocessor

Divide data by user_id

Merge data for same user_id

Divide Data By User

Input

user_id1 movie1 rating user_id2 movie4 rating

user_id34 movie7 rating user_id49 movie8 rating

Movie3 user_id22 movie4 rating user_id27 movie7 rating

Output

User_id	Movie_id: Rating	Movie_id: Rating
1	1:10	2: 8
2	1: 8	2: 5.5
3	2: 4.5	8: 9
4	2: 6.5	8: 2.5

Divide Data By User: Mapper

User id Movie id Rating 10 8 user id1 movie1 rating user id2 movie4 rating 8 5.5 user id34 movie7 rating user id49 movie8 rating 3 4.5 Movie3 3 8 9 user id22 movie4 rating user id27 movie7 rating 4 6.5 8 2.5 4

Divide Data By User: Reducer

User_id	Movie_id	Rating
1	1	10
1	2	8
2	1	8
2	2	5.5
3	2	4.5
3	8	9
4	2	6.5
4	8	2.5

	User_id	Movie_id: Rating	Movie_id: Rating
Merge	1	1:10	2: 8
	2	1: 8	2: 5.5
	3	2: 4.5	8: 9
	4	2: 6.5	8: 2.5

M5

0

User	M1	M2	M3	M4	M5
A	1	1		1	•
			1	'	
В	1	1	1		
С		1	1		1
D		1		1	

Input

User_id	Movie_id: Rating	Movie_id: Rating
1	1:10	2: 8
2	1: 8	2: 5.5
3	2: 4.5	8: 9
4	2: 6.5	8: 2.5

Output

MovieA: MovieB	Relation
1: 1	2
1: 2	2
2: 1	2
2: 2	4
2: 8	2
8: 2	2
8: 8	2

如何计算一部电影被多少人看过?

User_id	Movie_id: Rating	Movie_id: Rating
1	1:10	2: 8
2	1: 8	2: 5.5
3	2: 4.5	8: 9
4	2: 6.5	8: 2.5

	Movie	Count
	1	1
	2	1
-	1	1
	2	1
	2	1
	8	1
	2	1
	8	1

Mapper

	Movie	Sum
	1	2
	2	4
	8	2

Reducer

Copyright © www.jiuzhang.com

如何计算两部电影同时被多少人看过?

Build Co-occurrence Matrix: Mapper

User_id	Movie_id: Rating	Movie_id: Rating
1	1:10	2: 8
2	1: 8	2: 5.5
3	2: 4.5	8: 9
4	2: 6.5	8: 2.5

MovieA: MovieB	Relation
1:1	1
1:2	1
2:1	1
2:2	1
1:1	1
1:2	1
2:1	1
2:2	1

. . . .

Build Co-occurrence Matrix: Reducer

MovieA: MovieB	Relation			ı
1:1	1		MovieA: MovieB	Relation
1:2	1		1: 1	2
2:1	1	Merge	1: 2	2
2:2	1		2: 1	2
1:1	1		2: 2	4
1:2	1		2: 8	2
2:1	1		8: 2	2
2:2	1		8: 8	2

. . . .

What you have learned

- What is Recommender System
- Methods to implement recommender system
- Understand the theory behind UserCF
- How to implement UserCF in MR