算法与数据结构体系课程

liuyubobobo

是一种数据结构

使用分块(分组)的思想

解决区间问题

回忆:线段树可以用来解决区间问题 O(logn)

SQRT分解: O(sqrt(n));编程简单

区间查询 和 区间更新

查询一个区间 [i, j] 的最大值,最小值,或者区间数字和

前缀和

区间和 动态维护 多次查询;多次更新;边更新边查询

0 32 58 75 130 202 221 229 275 297 365 393 426 488 580 633 649 presum
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

动态维护 多次查询;多次更新;边更新边查询

使用数据结构的关键

优先队列

红黑树;AVL树;并查集

Leetcode 303

Leetcode 307

32	26	17	55	72	19	8	46	22	68	28	33	62	92	53	16
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

32	26	17	55	72	19	8	46	22	68	28	33	62	92	53	16
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

32	26	17	55	72	19	8	46	22	68	28	33	62	92	53	16	91	16
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

查询: sum[9...11]

O(sqrt(n))

查询: sum[9...11]

查询: sum[6...9]

O(sqrt(n))

查询: sum[6...9]

查询: sum[3...16]

查询: sum[3...16]

查询: sum[3...16]

O(sqrt(n)) + O(sqrt(n)) + O(sqrt(n)) = O(sqrt(n))

实现SQRT分解

实现SQRT 分解

Leetcode 303

实践: 实现 SQRT 分解

SQRT分解的单元素更新

基本思想: 把一个含有 N 个元素的数组分成 \sqrt{n} 份

2组 0组 1组 3组 4组

update: data[6] = 66

基本思想: 把一个含有 N 个元素的数组分成 \sqrt{n} 份

 0 组
 1 组
 2 组
 3 组
 4 组

 130
 145 - 8 + 66
 151
 223
 107

update: data[6] = 66 O(1)

区间和

作业:

区间最大值

区间最小值

使用 Merger

SQRTDecomposition

其他

欢迎大家关注我的个人公众号:是不是很酷

算法与数据结构体系课程

liuyubobobo