= ЭКПЕРИМЕНТАЛЬНЫЕ СТАТЬИ =

УДК 579.8.06:546.22

БАКТЕРИИ ЦИКЛА СЕРЫ В ОСАДКАХ ХВОСТОХРАНИЛИЩА ДОБЫЧИ ЗОЛОТА В КУЗБАССЕ

© 2009 г. О. В. Карначук^{1, *}, А. Л. Герасимчук¹, Д. Бэнкс², Б. Френгстад³, Г. А. Стыкон¹, З. Л. Тихонова¹, А. Х. Каксонен⁴, Я. А. Пухакка⁴, А. С. Яненко⁵, Н. В. Пименов^{6, *}

¹Томский государственный университет
²Университет Ньюкасла, Великобритания
³Норвежская геологическая служба, Трондхейм
⁴Технологический университет, Тампере, Финляндия
⁵ГосНИИгенетика, Москва

⁶Учреждение Российской академии наук Институт микробиологии им. С.Н. Виноградского РАН, Москва Поступила в редакцию 05.05.2008 г.

Изучено разнообразие и численность культивируемых микроорганизмов, принимающих участие в окислении серы и восстановлении сульфата в окисленных осадках хвостохранилища добычи золота в Кузбассе. Осадки характеризовались низким pH от 2.4 до 2.8, высоким содержанием SO_4^{2-} , до 22 г/л, и высокими концентрациями растворенных металлов. Содержание мышьяка достигало 1.9 г/л. Филогения бактерий в микрокосмах была изучена путем амплификации фрагментов гена 16S pPHK и последующим разделением их методом гель-электрофореза в денатурирующем градиенте (DGGE). Единственными бактериями, для которых известна способность к диссимиляционному восстановлению сульфата, были спорообразующие Desulfosporosinus. Desulfosporosinus sp. DB, филогенетически удаленный от известных культивируемых и некультивируемых представителей этого рода, выделен в чистую культуру. Сульфатредуцирующие Deltaproteobacteria не обнаружены. Самыми многочисленными филотипами в микрокосмах были представители Firmicutes, включая обособленный кластер, гомология представителей которого с Pelotomaculum составляла не более 94%. В анаэробных и микроаэрофильных микрокосмах обнаруживали Acidithiobacillus ferrooxidans и Acidithiobacillus caldus. Максимальная численность сульфатредукторов не превышала 9.5×10^2 кл/мл.

Ключевые слова: гель-электрофорез в денатурирующем градиенте, кислые шахтные воды, сульфатредуцирующие бактерии, хвостохранилища добычи и производства золота, Acidithiobacillus, Desulfosporosinus, Pelotomaculum, Thermincola.

Добыча и переработка сульфидных руд металлов сопряжена с образованием больших количеств твердых отходов. При производстве золота объем концентрата после стадий обогащения и флотации может составлять не более 1% от общего количества переработанной руды [1]. Отходы добычи, включая мелкодисперсные фракции, не подвергаются дальнейшей переработке и размещаются в непосредственной близости от места производства. Так называемые "хвосты" объединяют отходы с высокой концентрацией ассоциированных сульфидов, образующиеся после обогащения, и отходы флотации и цианирования. Широкомасштабные процессы окисления остаточных сульфидов в хвостохранилищах золота и сульфидных руд представляют серьезную угрозу окружающим экосистемам, являясь источником кислых дренажных вод с высокой концентрацией ионов металлов. Хемолитотрофные бактерии, использующие серу и железо в качестве доноров электронов, вносят существенный вклад в окислительные процессы и выведение металлов в раствор, в то время как микробное восстановление сульфатов может служить возможным механизмом осаждения металлов в этих экосистемах [2].

Целью настоящей работы было изучение разнообразия и численности культивируемых микроорганизмов, принимающих участие в окислении серы и восстановлении сульфата в окисленных осадках хвостохранилища добычи золота на месторождении "Новый Берикуль" в Кузбассе, где, по предварительным данным, нами был зарегистрирован заметный процесс бактериальной сульфатредукции (Карначук и др., неопубликованные данные).

^{*} Адресат для корреспонденции (e-mail: olga.karnachuk@green. tsu.ru, npimenov@mail.ru).

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования были осадки бывшего хвостохранилища месторождения "Новый Берикуль" в Кузбассе, где добыча рудного золота осуществлялась в 1933–1941 и 1949–1951 годах [3]. На берегу реки Мокрый Берикуль производилось размельчение, флотация и цианирование руды. Здесь же размещали отходы производства в хвостохранилище, ограниченном дамбой. В конце 90-х годов часть осадков хвостохранилища была вывезена и засыпана пустой породой. Однако оставшаяся часть отходов продолжает окисляться, что приводит к образованию многочисленных высачиваний, характеризующихся низким уровнем рН и высокой концентрацией растворенных металлов.

Пробы верхнего окисленного слоя осадков и придонной воды отбирали 11 июля 2006 г. Температуру, рН и проводимость воды определяли на месте ионо-метром HANNA HI 8314F. Воду для остальных химических анализов фильтровали в полиэтиленовые флаконы объемом 120 мл через фильтр 0.45 мкм. Определение концентрации ионов металлов проводили в лаборатории Норвежской Геологической Службы методами масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) и атомноэмиссионной спектроскопии с индуктивно-связанной плазмой (ICP-AES). Концентрацию анионов определяли там же с помощью ионного хроматографа (Dionex 120 DX). До проведения анализа пробы хранили в холодильнике при 4°C. При определении концентрации металлов пробы подкисляли 0.5% HNO₃ (ч.д.а) для исключения возможной адсорбции/осаждения. Подкисленную аликвоту анализировали на Thermo Jarrell Ash ICP 61 (ICP-AES) и Finnigan Mat c Meinhart Nebulizer CD-1 (ICP-MS).

Численность сульфатредуцирующих бактерий (СРБ) определяли методом предельных разведений на жидкой пресноводной среде Видделя [4] с использованием лактата, ацетата и этанола в качестве доноров электронов. Пенициллиновые флаконы полностью заполняли средой, в качестве дополнительного источника железа использовали стальную скрепку, которая также способствовала поддержанию низкого окислительно-восстановительного потенциала среды за счет выделения катодного водорода и служила сайтом нуклеации при образовании сульфида железа. Культивирование серий предельных разведений проводили при 28°C. Рост СРБ оценивали по потемнению среды в результате образования сульфида железа, а также по приросту сероводорода. Все серии предельных разведений осуществляли в трех повторностях. Наиболее вероятное количество бактерий рассчитывали по таблицам Мак-Креди.

Накопительные культуры СРБ были получены путем пересевов на среду Видделя из серий предельных разведений для определения численности. Лак-

тат, ацетат, этанол и формиат использовали в качестве субстратов роста, культивирование проводили при 28° С. Для выделения чистой культуры были использованы последние в серии разведений флаконы с заметным ростом СРБ из осадков. Используя их в качестве инокулята, проводили регулярные пересевы на ту же среду с одновременным увеличением начальной концентрации Cu(II) в среде до 650 мг/л. Медь вносили в качестве добавки из отдельно стерилизованного стокового раствора $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$. Чистоту культуры проверяли микроскопически, а также секвенированием близкой к полной нуклеотидной последовательности гена 16S pPHK.

Для создания микрокосмов один миллилитр верхнего слоя осадков и придонной воды помещали в пенициллиновые флаконы, которые заполняли до верха средой Видделя с различными органическими добавками (лактатом, ацетатом, этанолом). В различных вариантах начальный рН доводили до 7 или 2, и вносили дополнительно ионы Cu(II) в концентрации 200 мг/л. Микрокосмы также культивировали в микроаэрофильных условиях, оставляя половину флакона незаполненной. В микроаэрофильных условиях для всех микрокосмов использовали лактат, вносили Cu(II) до концентрации 200 мг/л и культивировали при рН 2. Все флаконы были закрыты резиновой пробкой и обжаты сверху алюминиевым колпачком. Культивировали микрокосмы в течение трех месяцев при температуре 28°C.

ДНК из микрокосмов выделяли с использованием кита MO BIO PowerSoil DNA Kit ("MO BIO Laboratories, Inc", Carlsbad, США) в соответствии с инструкцией производителя. Для определения филогенетической принадлежности культивируемых микроорганизмов методом гель-электрофореза в денатурирующем градиенте (DGGE) первоначально проводили амплификацию фрагмента ге-16S рРНК, соответствующего позициям 341-926 Escherichia coli с использованием праймеров GC-BacV3f (5'-GCclamp-CCT ACG GGÂ GGC ĀGC AG-3') и 907r (5'-CCĜ TCA ATT CMT TTG AGT TT-3') [5]. Смесь для ПЦР-реакции содержала 1 мкл матрицы ДНК (в концентрации превышающей 50 нг), 5 мкл 10× буфера для DNAzyme DNA Polymerase ("FINNZYMES") (содержит 1.5 мкМ MgCl₂), 1 мкл BSA ("Fermentas"), 0.2 мкл 25 мкМ смеси dNTP ("Amersham"), 0.25 мкл каждого праймера, 0.4 мкл DNAzyme II DNA Polymerase 2U/мкл ("FINNZYMES"). Амплификацию проводили с использованием Thermocycler T3000 ("Biometra®", Нидерданды) по следующей программе: (1) первоначальная денатурация при 95°C в течение 5 мин; (2) последующие 30 циклов денатурация при 94°C в течение 30 c; (3) отжиг праймеров при 50°C в течение 1 мин; (4) элонгация праймеров при 72°C в течение 2 мин; (5) окончательная элонгация при 72°C в течение 10 мин. Присутствие ПЦР-продукта визуализировали в 1% агарозном геле с окрашиванием бромистым этидием. Разделение амплифицированных

фрагментов ДНК методом DGGE проводили с использованием системы INGENY phor U-2 ("Ingeny International BV", Нидерланды) в линейном градиенте мочевины и формамида между 20 и 70% (для проб Ха116) и 30 и 70% (для проб Ха115) (100% денатурирующие условия определяли как 7 М мочевину и 40% формамид) в 8% акриламидном геле. Электрофорез проводили при 100 В в течение 22 ч при 60°С. После электрофореза гель окрашивали в растворе SYBR Gold в соответствии с инструкцией фирмы-производителя ("Invitrogen") и фотографировали на трансиллюминаторе 3UV фотокамерой Kodak с программным обеспечением Kodak 1D. Полосы вырезали из геля и инкубировали в течение 12 ч в 20 мкл воды MilliQ при 4°C. Супернатант затем использовали для ПЦР-реамплификации с теми же праймерами, но без GC-clamp. При этом был использован тот же режим амплификации, однако в смесь для ПЦР не добавляли BSA. Секвенирование последовательностей ДНК осуществляли коммерчески в Macrogen LTD, Сеул, Корея.

Для определения последовательности нуклеотидов гена 16S pPHK чистой культуры СРБ проводили амплификацию с использованием пары праймеров 27F (5'-AGA GTT TGA TCC TGG CTC AG-3') [6] и 1492R (5'-GGT TAC CTT GTT ACG ACT T-3') [7]. Для получения матрицы ДНК 1 мл культуры в поздней экспоненциальной фазе осаждали центрифугированием при 9000 об/мин в течение 10 мин. Осадок промывали 1 мл 1× PBS буфера. Процедуру повторяли три раза. После отмывки осадок разводили 100 мкл $1 \times PBS$ -буфера и замораживали при -20°C. Смесь для ПЦР-реакции (50 мкл) содержала 5 мкл $10 \times \Pi \coprod P$ -буфера с 200 мМ (NH₄)₂SO₄ ("Fermentas"), 5 мкл MgCl₂ (2.5мМ) ("Fermentas"), 2.5 мкл DMSO, 2.5 мкл смеси dNTP ("Fermentas"), 0.25 мкл каждого праймера (в концентрации 10 пМ), 1 мкл матрицы ДНК (в концентрации превышающей 50 нг) и 0.5 мкл *Тад*-полимеразы ("Fermentas"). Амплификацию проводили с использованием Mastercycler ("Eppendorf") по следующей программе: (1) первоначальная денатурация при 95°C в течение 20 с; (2) последующие 6 циклов денатурация при 95°C в течение 10 с, (3) отжиг праймеров при 45°С в течение 20 с; (4) элонгация праймеров при 72°C в течение 1.5 мин; (5) последующие 27 циклов денатурация при 95°C в течение 10 c; (6) отжиг праймеров при 55°C в течение 20 c; (7) элонгация праймеров при 72°C в течение 1.5 мин; (8) окончательная элонгация при 72°С в течение 3 мин. Секвенирование последовательностей ДНК осуществляли на автоматическом секвенаторе Beckman Coulter CEQ 8000 в ГосНИИгенетика.

Анализ последовательностей ДНК проводили с использованием программы BioEdit и инструмента BLAST GenBank (http://www.ncbi.nlm.nih.gov/) [8]. Филогенетический анализ проводили с использованием пакета ARB (http://www.arb-home.de). Последовательности были выровнены инструментом FastAlign пакета ARB относительно участков с из-

вестной вторичной структурой, точность всех выравниваний была проверена вручную. Исходное филогенетическое дерево было построено методом ближайшего соседа (neighbor-joining) для последовательностей гена 16S рРНК, длина которых была полной или близка к полной. Более короткие фрагменты гена, соответствующие филотипам/полосам в DGGE-геле, были добавлены с использованием алгоритма parasimony analysis, который позволяет внесение коротких последовательностей без изменения структуры дерева. Воотьтар-анализ был основан на 1000 репликах для установления доверительного уровня для каждого узла дерева. Все полученные последовательности ДНК депонированы в GenBank NCBI под номерами EU737112 и FJ493549-FJ493587.

РЕЗУЛЬТАТЫ

Физико-химические параметры исследованных биотопов. Биоразнообразие культивируемых бактерий цикла серы было изучено в осадках двух небольших ветландов, располагающихся на территории бывшего хвостохранилища. Описание биотопов и характеристика отобранных проб приведены в табл. 1. Вода исследованных водоемов характеризовалась крайне низкими значениями рН от 2.4 до 2.8. В обеих пробах обнаружена максимально высокая концентрация сульфата, достигающая 22.8 г/л в воде Ха116 и 8.45 г/л в воде Ха115 (табл. 2). Также было высоко содержание растворенного железа -2.0 и 9.1 г/л в воде Ха115 и Ха116 соответственно. Обращает внимание запредельная концентрация мышьяка, 1.9 г/л, зафиксированная в пробе Ха116. Высокой была концентрация других растворенных металлов – цинка, меди, алюминия, кобальта, никеля, кадмия и свинца. В целом концентрация ионов металлов в воде Ха116 была выше, чем в Ха115.

Численность в осадках и выделение накопительной и чистой культур СРБ. Определенная методом предельных разведений максимальная численность СРБ, зафиксированная в пробе верхнего слоя осадков Xa115, составляла 9.5×10^2 кл/мл (рис. 1a). Количество СРБ, показывающее рост на использованных средах, было значительно меньше в пробах верхнего горизонта осадков Ха 116 и не превышало 9.5 кл/мл (рис. 1б). На средах с лактатом и этанолом удавалось обнаружить рост в большем количестве разведений по сравнению с ацетатом. Эта тенденция была особенно выражена для проб осадков Ха115. Интересно отметить, что максимальную численность СРБ в пробе 115 обнаруживали при культивировании в кислых условиях среды (рН 2) и повышенной концентрации ионов меди (начальная концентрация Cu(II) 200 мг/л). Для остальных изученных органических субстратов прослеживалась та же закономерность возрастания определяемой численности при увеличении концентрации металлов и снижении рН среды культивирования.

Обозначение пробы	Место отбора и характеристика пробы	рН воды	T, °C	Проводимость (мкСм/см)
Xa115	Неглубокий ветланд, глубина не превышает 10 см, на берегу реки Мокрый Берикуль на месте бывшего хвостохранилища. Расположен на расстоянии примерно 50 м от хранилища пустой породы и бывшего цеха по обработке рудного золота. Осадок состоит из тонкого слоя наилка, покрывающего куски породы. Наилок имеет интенсивный оранжевый цвет. Куски породы по берегам ветланда также покрыты оранжевым осадком сверху и имеют зеленоватый цвет в нижней части. В микрокосмах использован наилок, смешанный с придонной водой.		20.9	6700
Xa116	Небольшая лужа, глубина воды над осадком не превышает 2 см, непосредственно на берегу реки Мокрый Берикуль. Расстояние до кромки воды не превышает 1 м. Цвет воды в луже интенсивно красный. По берегам отложения оранжевого и белого цвета. В микрокосмах использован верхний слой осадка с придонной водой.		20.4	8500

Таблица 1. Характеристика места отбора и некоторые физико-химические параметры изученных проб

Серии предельных разведений, полученные из осадков Xa115, были использованы для получения накопительных культур. Из накопительной культуры, показывающей интенсивный рост на этаноле в присутствии повышенных концентраций меди, было проведено выделение чистой культуры СРБ. Чистая культура была получена

Таблица 2. Концентрация некоторых анионов и катионов в воде ветландов

Концентрация анионов/катионов/элементов, мг/л	Xa115	Xa116	
F	3.89	5.25	
Cl ⁻	10.2	15.2	
Br ⁻	< 5.0	5.23	
SO_4^{2-}	8448	22876	
Si	75.5	72.4	
Al	286	518	
Fe	2020	9100	
Ti	0.0272	2.23	
Mg	267	445	
Ca	502	357	
Na	25.7	6.89	
Mn	32.9	52.5	
Cu	12.6	35.2	
Zn	133	351	
Pb	1.27	8.49	
Ni	4.29	4.88	
Co	2.35	4.77	
Cd	2.03	5.72	
Cr	0.347	2.73	
As	24.2	1910	

путем разведений в жидкой среде с одновременным последовательным повышением начальной концентрации Cu(II) до 650 мг/л. Подвижные палочки, обозначенные как штамм DB, при микроскопическом исследовании выглядели однородно. Секвенирование гена 16S рРНК подтвердило, что культура была генетически однородной. Филогенетический анализ нуклеотидной последовательности гена 16S рРНК, близкой к полной, длиной 1473 п.н. позволяет поместить этот штамм в филум Firmicutes, класс Clostridia, порядок Clostridiales, се-Peptococcacaea, род Desulfosporosinus. мейство Штамм DB достаточно далеко удален от известных как культивируемых, так и некультивируемых Desulfosporosinus. Его ближайшим, валидно описанным родственником, является Desulfosporosinus auripigmenti, гомология последовательностей с которым составляет 96.6% (рис. 2).

Филогенетическая принадлежность бактерий цикла серы и других микроорганизмов из микрокосмов. После трех месяцев культивирования анаэробные микрокосмы показывали явные следы развития сульфатредукции. Осадок чернел, что вероятнее всего происходило в результате осаждения сульфидов железа. В микрокосмах, культивируемых в микроаэрофильных условиях, напротив, образование оранжевого осадка охры свидетельствовало о развитии окислительных процессов.

Секвенирование и филогенетический анализ фрагментов гена 16S рРНК филотипов, разделенных с помощью DGGE, позволил обнаружить в микрокосмах не только организмы, способные осуществлять диссимиляционное восстановление сульфата, но и другие группы домена *Bacteria*. Прежде всего, нужно отметить филотипы, родственные железоокисляющим *Acidithiobacillus ferrooxidans* (рис. 2, рис. 3). Аэробные *A. ferrooxidans* обнаруживали в микрокосмах, культивируемых в течение трех месяцев в анаэробных условиях с выраженным

развитием сульфатредукции. Секвенированный нами филотип DGGE_Xa115_EthpH2Cu200_12 (полоса 12 на рис. 4) был обнаружен в микрокосме из осадков Ха115, содержащем этанол в качестве органического субстрата, повышенное содержание ионов Cu(II) и культивируемого в кислых условиях среды. Гомология последовательности филотипа 12 составляла 99% с А. ferrooxidans CCM4253 (номер доступа в GeneBank EF465493). Филотип показывал стопроцентную гомологию последовательностей с некультивируемым клоном АҮ678254, обнаруженным в кислых источниках Йеллоустонского парка [9]. В этом же кластере находятся другие последовательности, близкородственные A. ferrooxidans и выделенные из местообитаний, загрязненных шахтными дренажными водами – клон EF446231 (99% гомологии) из филаментов Рио Тинто [10] и клон ЕF464644 (99% гомологии) из хвостохранилищ, загрязненных метилртутью [Winch et al., unpublished]. Профили DGGE, полученные для остальных условий культивирования, свидетельствуют, что организм присутствовал во всех микрокосмах с низким pH (полосы 23, 30, 40, 47) (рис. 4). В анаэробных микрокосмах Ха116 обнаруживали другой филотип, родственный A. ferrooxidans. Филотип 289 характеризовался максимальной гомологией последовательностей, 98%, со штаммом А. ferrooxidans EF465493, выделенным из филаментов реки Рио Тинто в Испании [10].

В микрокосмах Xa116, культивируемых в микроаэрофильных условиях, наблюдали филотипы (244, 245), родственные другому сероокисляющему хемолитотрофу — Acidithiobacillus caldus. В профилях DGGE, полученных из анаэробных микрокосмов, полосы, соответствующие интенсивной полосе 245 из микроаэрофильных условий отсутствовали. Интересно отметить, что в микроаэрофильных микрокосмах мы не смогли обнаружить филотипов, родственных A. ferrooxidans.

Филогенетический анализ филотипов показал, что большинство организмов из Xa115, для которых известна способность к сульфатредукции, относилось к роду Desulfosporosinus (рис. 2). Большое количество филотипов (85, 72, 84, 42) попадало в один кластер с недавно описанным Desulfosporosinus lacus с гомологией последовательностей 98%. В этот же кластер попадал выделенный из биопленок, образующих ZnS в шахтных водах, Desulfosporosinus sp. 44а_T3a [11]. Гомология последовательностей этого штамма и филотипа 72 составляла 98%. Также к этому кластеру относились два организма из микрокосма Xa116, представленные филотипами 243 и 246 (99% гомологии с D. lacus) (рис. 3).

Desulfosporosinus orientis был ближайшим родственником организма, представленного филотипом 59 (Xa115), с гомологией последовательностей 98%. В микрокосмах Xa116 с добавлением этанола и лактата также обнаруживали большое количе-

Рис. 1. Численность СРБ в осадках Xa115 и Xa116, определенная методом предельных разведений с различными донорами электронов, pH и концентрацией меди в среде: I – pH 7; 2 – pH 7, Cu(II) 200 мг/л; 3 – pH 2; 4 – pH 2, Cu(II) 200 мг/л.

ство филотипов, родственных D. orientis (филотипы 261, 291, 263, 264, 271, 297, 260 на рис. 3). При добавлении ацетата, а также при культивировании микрокосмов в микроаэрофильных условиях этих филотипов не обнаруживали.

Большое количество филотипов, обнаруженных в Xa115 (73, 82, 74, 18), образовывало отдельный кластер внутри *Peptococcaceae* (рис. 2). Их ближайшим валидно описанным родственником был синтроф *Pelotomaculum isophtalicum*, гомология последовательностей с которым составляла не более 91%. К этой же группе относилось большинство организмов, обнаруженных в микрокосмах Xa116 (рис. 3). При этом гомология последовательностей филотипов из Xa116 с *P. isophtalicum* и *Pelotomaculum shinkii* не превышала 94%. Наибольшее количество филотипов из этого кластера было зафиксировано при культивировании микрокосмов в микроаэрофильных условиях.

Несколько *Firmicutes*, обнаруживаемых как в микрокосмах Xa115, так и в Xa116, попадало в группу организмов, ближайшим валидно описанным родственником в которой, был *Thermincola carboxydiphila*. Гомология последовательностей *T. carboxydiphila* и филотипов 265, 304 и 283 из Xa116 и 34 и 94 из Xa115 не превышала 93%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследованные нами хвостохранилища представляют пример природных местообитаний с экстремально низким значением pH среды. Естествен-

Рис. 2. Филогенетическое положение филотипов, разделенных методом DGGE, из микрокосмов Xa115 и штамма *Desulfosporosinus* sp. DB. Более короткие последовательности добавлены с использованием parsimony analysis к дереву, построенному ранее методом ближайшего соседа (neighbor-joining). *Methanobacterium formicicum*, AF169245 (не показан на дереве) был выбран в качестве удаленной группы.

ные экосистемы достаточно редко характеризуются такими кислыми условиями, и известные примеры, в основном, связаны с местами интенсивного биологического окисления сульфидных руд. Активные процессы окисления остаточных сульфидов в Берикульском хвостохранилище подтверждаются измеренными нами исключительно высокими концентрациями сульфата и растворенного железа. Большое содержание растворенного алюминия, очевидно, связано с протекающим в этих условиях гидролизом алюмосиликатных минералов. Высокое содержание катионов металлов - характерная особенность кислых шахтных вод. Однако измеренная нами концентрация мышьяка, достигающая почти 2 г/л, является очень высокой даже среди известных примеров таких местообитаний. Вероятным источником As может служить арсенопирит, одна из основных ассоциированных сульфидных руд на Берикульском месторождении [3]. Автор также отмечает присутствие сфалерита (ZnS), что объясняет высокую концентрацию цинка в изученных ветландах. Исследованная нами экосистема близка к местообитаниям реки Тинто, в которую разгружаются воды, дренирующие Пиритный Пояс на Пиренеях [10]. Однако если значения кислотности среды в изученных хвостохранилищах были сравнимы с Рио Тинто, то концентрация многих металлов намного превышала величины, известные для Испании.

А. caldus, обнаруженный нами в осадках Xa116, может играть особую роль в окислении арсенопирита и снижения рН среды. Допсон и Линдстрем [12] экспериментально показали, что этот организм может существенно увеличивать скорость растворения, за счет окисления элементной серы и других соединений, экранирующих поверхность арсенопирита. Кроме того, окисление серы A. caldus может оказывать заметный вклад в понижение рН среды, так как является истинно протон-генерирующей реакцией.

Способность получать энергию за счет диссимиляционной сульфатредукции к настоящему времени обнаружена в пяти различных филумах филогенетического дерева [13]. Самые многочисленные группы представителей сосредоточены в классе *Delta-proteobacteria* и отделе *Firmicutes*. Исключительной особенностью исследованных осадков хвостохрани-

Рис. 3. Филогенетическое положение филотипов, разделенных методом DGGE, обнаруженных в микрокосмах Xa116. Более короткие последовательности добавлены с использованием parsimony analysis к дереву, построенному ранее методом ближайшего соседа (neighbor-joining). *Methanobacterium formicicum*, AF169245 (не показан на дереве) был выбран в качестве удаленной группы.

лищ является тот факт, что нам не удалось обнаружить в них ни одного представителя *Deltaproteobacteria*. Все полученные филотипы и выделенная чистая культура СРБ относились к спорообразующим *Firmicutes*. Без сомнения использованный нами подход, включающий стадию культивирования микроорганизмов, снижает шансы обнаружить всех присутствующих в биотопе *Bacteria*. Однако многие *Deltaproteobacteria* легко поддаются культивированию. Ранее мы обнаруживали многочисленных представителей этого класса в экосистемах, загрязненных добычей и производством металлов, включая осадки хвостохранилищ [14]. Использованный нами для скрининга метод флуоресцентной гибриди-

зации *in situ* (FISH) показал, что относящиеся к *Deltaproteobacteria* представители семейств *Desulfobulbaceae* и *Desulfovibrionaceae* доминировали в накопительных культурах, полученных из осадков хвостохранилищ Норильской промышленной зоны. Можно предположить, что выявленное в этом исследовании доминирование сульфатредуциурющих *Firmicutes* является отражением истинного соотношения спорообразующих и грамотрицательных СРБ в исследованных нами осадках.

Преимущества спорообразующих микроорганизмов очевидны в экосистемах с экстремально низким рН среды и высокой концентрацией ионов металлов. Их присутствие в кислых шахтных водах

Рис. 4. DGGE-профили ПЦР-амплифицированных фрагментов гена 16S pPHK из микрокосмов Xa115. Дорожки: 1,2 – микрокосмы с добавлением этанола и Cu(II) до конечной концентрации 200 мг/л; 3,4 – микрокосмы с добавлением лактата и Cu(II) до конечной концентрации 200 мг/л; 5,6 – микрокосмы с добавлением лактата без меди; 7,8 – микрокосмы с добавлением этанола и Cu(II) до конечной концентрации 200 мг/л; 9,10 – микрокосмы с добавлением лактата и Cu(II) до конечной концентрации 200 мг/л; 11,12 – микрокосмы с добавлением этанола без меди; 13,14 – микрокосмы с добавлением лактата без меди; 15,16 – микрокосмы с добавлением ацетата без меди. 12,23,30,40,47 – номера филатипов на дорожках 2 – 6 соответственно.

было отмечено и другими исследователями. Лабрентз и Банфилд [11] обнаруживали представителей Desulfosporosinus в микробных обрастаниях внутри заброшенной шахты по добыче Zn и Pb только с помощью культивирования. Полученная ими библиотека клонов по гену 16S pPHK не содержала последовательностей спорообразующих СРБ. Исследователи видят причину в том, что бактерии могли находиться в фазе споруляции, что, в свою очередь, делало их ДНК менее доступной для выделения. Наиболее многочисленной в исследованных биопленках была группа грамотрицательных Desulfobacteriaceae. Надо отметить, что штамм Desulfosporosinus sp. 44a-T3a, выделенный Лабрентз и Банфилд, принадлежит к тому же кластеру, что и некоторые из полученных нами в этом исследовании филотипов (рис. 2, рис. 3). Многие из некультивируемых представителей Desulfosporosinus, близкородственных нашим филотипам были выделены из местообитаний, загрязненных металлами. Например, клон A1_bac, попадающий в один кластер со штаммом DB, был получен из осадков хвостохранилищ, загрязненных метилртутью [Winch et al., неопубликованные данные]. Известны другие примеры выделения Desulfosporosinus как с использованием культивирования [15], так и молекулярными методами [16–18] из местообитаний, загрязненных металлами. Desulfosporosinus могут использовать As в качестве акцептора электронов [19]. Можно предположить, что сульфатредуцирующим Desulfos-

porosinus принадлежит особая роль в местообитаниях, характеризующихся высоким содержанием ионов металлов и низким рН.

Физиологическая роль найденной нами группы грамположительных организмов, ближайшим родственником которых был Thermincola, остается невыясненной. Способность к диссимиляционному восстановлению сульфата не описана для этих бактерий. Непосредственно Т. carboxydiphila является термофильным алкалофилом [20] – фенотип, появление которого наименее вероятно в экстремально кислых условиях Сибирского биотопа. Поскольку процент сходства наших филотипов с T. carboxydiphila был достаточно низким и не превышал 93% гомологии последовательностей, можно предположить и существенные различия в фенотипах. Возможно, обнаруженные нами бактерии могут восстанавливать железо. Все остальные *Thermincola*, описанные к настоящему времени и отличные от типового штамма, способны к восстановлению трехвалентного железа [21].

При отборе проб мы не проводили измерения окислительно-восстановительного потенциала, однако большие количества охры, о присутствии которой можно было судить по ярко-оранжевому цвету осадков, не оставляют сомнения в том, что изученные верхние слои осадков являются окисленными. Высокое содержание сульфата и железа свидетельствуют в пользу максимального развития окислительных процессов. Традиционно сульфатредукцию

рассматривают как строго анаэробный процесс. Несмотря на то, что современные исследования в области физиологии и биохимии сульфатвосстанавливающих организмов свидетельствуют о высокой толерантности многих из них к кислороду, основное внимание экологов и биогеохимиков в поисках этих бактерий, до сих пор направлено на анаэробные местообитания. В отношении экосистем, связанных с шахтным дренажом, традиционно считают, что СРБ могут присутствовать и участвовать в биогеохимических преобразованиях в анаэробной зоне, развивающейся ниже окисленных поверхностных слоев. Ранее мы обнаружили заметные скорости сульфатредукции в осадках ветландов, характеризующихся положительными значениями Еh, в Норильской промышленной зоне добычи и производства металлов [14]. Данное исследование подтверждает, что спорообразующие СРБ присутствуют в окисленных осадках. Насколько активны эти организмы в окисленных и кислых осадках хвостохранилища отходов золота в Кузбассе предстоит понять в дальнейшем.

Обнаружение присутствия аэробного *A. ferrooxidans* в анаэробных микрокосмах с активным развитием сульфатредукции также противоречит устоявшимся традициям в рассмотрении физиологии этого организма и его геохимической роли. Было показано, что *A. ferrooxidans* может расти хемолитотрофно в анаэробных условиях с использованием Fe(III) в качестве акцептора электронов [22]. Геохимическое значение этого процесса остается неизученным. Полученные нами свидетельства развития "традиционных" аэробов в анаэробных микрокосмах и анаэробных организмов в окисленных условиях кислых осадков еще раз свидетельствуют в необходимости изучения активности этих организмов в "нетрадиционных" местообитаниях.

Нам не удалось бы провести исследование уникальной экосистемы в Кузбассе, если бы не помощь Стаса, Елены и Юлии Корчагиных и Анатолия Рева, которым мы искренно благодарны за участие в поисках хвостохранилища и отборе проб. Мы также благодарим В.П. Парначева за бесценные советы в области геологических особенностей месторождений золота в Кузбассе.

Исследование было поддержано грантами РФФИ 07-04-01554-а и Федерального Агентства Образования РФ РНП.2.1.1.7338, а также частично финансировалось госконтрактом Министерства Науки РФ по программе ФЦ НТП № 02.512.11.2003.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Blowes D.W., Ptacek C.J., Weisener C.G.* The geochemistry of acid mine drainage // Treatise on Geochemistry. 2003. V. 9. P. 149–204.
- 2. *Johnson B*. Biological removal of sulfurous compounds from inorganic wastewaters // Environmental technologies to treat sulfur pollution: principles and engineering / Eds.

- Lens P.N.L., Hulshoff L. London: IWA Publishing, 2000. P. 175–205.
- Геращенко А.А. Анализ минерально-сырьевой базы золота в Кемеровской области // Золото Кузбасса / Кемерово: Издательство Кемеровский полиграфкомбинат, 2000. С. 69–213.
- 4. Widdel F.F., Bak R. Gram-negative mesophilic sulfate-reducing Bacteria // The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edition / Eds. Balows A. et al. V. 4. Berlin: Springer-Verlag, 1992. P. 3352–3378.
- Muyzer G., Hottenträger S., Teske A., Wawer C. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA – a new molecular approach to analyse the genetic diversity of mixed microbial communities // Molecular Microbial Ecology Manual / Eds. Akkermans A.D.L. et al. Dordrecht: Kluwer Academic Publishers, 1996. P. 1–23.
- DeLong E.F. Archaea in costal marine environments // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 5685–5689.
- Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // J. Bacteriol. 1991. V. 173. P. 697–703.
- 8. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs // Nucl. Acids Res. 1997. V. 25. P. 3389–3402.
- Hamamura N., Olson S.H., Ward D.M., Inskeep W.P. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at rainbow springs, Yellowstone national park // Appl. Environ. Microbiol. 2005. V. 71. P. 5943–5950.
- Garcia-Moyano A., Gonzalez-Toril E., Aguilera A., Amils R. Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain) // Syst. Appl. Microbiol. 2007. V. 30. P. 601–614.
- 11. *Labrenz M., Banfield J.F.* Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system // Microbial Ecol. 2004. V. 47. P. 205–217.
- 12. *Dopson M., Lindström E.B.* Potential role of *Thiobacillus caldus* in arsenopyrite bioleaching // Appl. Environ. Microbiol. 1999. V. 65. P. 36–40.
- Stahl D.A., Fishbain S., Klein M., Baker B.J., Wagner M.
 Origins and diversification of sulfate-respiring microorganisms // Antonie van Leeuwenhoek. 2002. V. 81. P. 189–195.
- 14. Karnachuk O.V., Pimenov N.V., Yusupov S.K., Frank Y.A., Kaksonen A.H., Puhakka J.A., Ivanov M.V., Lindström E.B., Tuovinen O.H. Sulfate reduction potential in sediments in the Norilsk mining area, northern Siberia // Geomicrobiol. J. 2005. V. 22. P. 11–25.
- Johnson B.D., Hallberg K.B. The microbiology of acidic mine waters // Res. Microbiol. 2003. V. 154. P. 466–473.
- Nevin K.P., Finneran K.T., Lovley D.R. Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment // Appl. Environ. Microbiol. 2003. V. 69. P. 3672–3675.
- 17. Petrie L., North N.N., Dollhopf S.L., Balkwill D.L., Kostka J.E. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sedi-

- ments contaminated with uranium(VI) // Appl. Environ. Microbiol. 2003. V. 69. P. 7467–7479.
- Saunders J.A., Lee M-K., Wolf L.W., Morton C.M., Feng Y., Thomson I., Park S. Geochemical, microbiological, and geophysical assessments of anaerobic immobilization of heavy metals // Bioremediation J. 2005. V. 9. P. 33–48.
- 19. Newman D.K., Kennedy E.K., Coates J.D., Ahmann D., Ellis D.J., Lovley D.R., Morel F.M.M. Dissimilatory arsenate and sulfate reduction in *Desulfotomaculum auripigmentum* sp. nov. // Arch. Microbiol. 1997. V. 168. P. 380–388.
- 20. Sokolova T.G., Kostrikina N.A., Chernyh N.A., Kolganova T.V., Tourova T.P., Bonch-Osmolovskaya E.A. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic,
- carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 2069–2073.
- Zavarzina D.G., Sokolova T.G., Tourova T.P., Chernyh N.A., Kostrikina N.A., Bonch-Osmolovskaya E.A. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction // Extremophiles. 2007. V. 11. P. 1–7.
- 22. *Ohmura N., Sasaki K., Matsumoto N., Saiki H.* Anaerobic respiration using Fe(3⁺), S(0), and H(2) in the chemolithoautotrophic bacterium *Acidithiobacillus ferrooxidans* // J. Bacteriol. 2002. V. 184. P. 2081–2087.