William Stallings Komunikasi Data dan Komputer Edisi ke 7

Bab 8
Multiplexing

Multiplexing

Frequency Division Multiplexing

- FDM
- Penggunaan bandwidth berlebih pada media membutuhkan bandwid pada channel
- Tiap sinyal di modulasi dengan frekuensi carrier berbeda
- Frekuensi sinyal dipesah sehingga tidak terjasi overlap (guard bands)
- e.g. broadcast radio
- Channel diallokasikan jika tidak ada data

Diagram Frequency Division Multiplexing

Sistem FDM

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

FDM pada Tiga Voiceband Signals

(c) Spectrum of composite signal using subcarriers at 64 kHz, 68 kHz, and 72 kHz

Sistem Carrier Analog

- AT&T (USA)
- Pola Hirarki FDM
- Group
 - 12 voice channels (4kHz each) = 48kHz
 - Range 60kHz to 108kHz
- Supergroup
 - 60 channel
 - FDM pada 5 group sinyal dalam carriers diantara 420kHz dan 612 kHz
- Mastergroup
 - 10 supergroups

Wavelength Division Multiplexing

- Banyak cahaya pada frekuensi berbeda
- Carried oleh optical fiber
- Bentuk FDM
- Tiap carrier warna cahaya dipisahkan pada saluran data
- 1997 Bell Labs
 - 100 sinar
 - Setiap 10 Gbps
 - Memberikan 1 terabit per second (Tbps)
- Sistem komersial pada 160 channels dari 10 Gbps yang tersedia
- Lab systems (Alcatel) 256 channels dalam tiap 39.8 Gbps
 - 10.1 Tbps
 - Over 100km

Operasi WDM

- Secara umum arsitekturnya sama dengan FDM
- Nomor Sumber membangkitkan sinar dengan frekuensi berbeda
- Multiplexer menggabungkan sumber-sumber untuk ditransmisikan pada single fiber
- Optical amplifiers memperkuat semua wavelengths
 - Typically tens of km apart
- Demux membagi channel-channel dalam satu tujuan
- Mostly 1550nm wavelength range
- Dahulu 200MHz tiapr channel
- Sekarang 50GHz

Dense Wavelength Division Multiplexing

- DWDM
- Tdak ada ketentuan atau definisi standar
- Secara tidak langsung lebih banyak channel lebih banyak akhiran pada WDM
- 200GHz atau kurang

Synchronous Time Division Multiplexing

- Kecepatan data pada medium melebihi kecepatan data pada sinyal digital yang ditransmisikan
- Multiple digital signals interleaved dalam
- Dimungkinkan dalam level bit pada block-block
- Time slots preassigned untuk sumber dan fixed
- Time slots dialokasikan jika tidak ada data
- Time slots tidak dimiliki selama diantara sumber yang didistribusikan

Time Division Multiplexing

Sistem TDM

(a) Transmitter

(b) TDM Frames

(c) Receiver

TDM Link Control

- Tidak ada header-header dan trailers
- Tidak dibutuhkan protokol data link control
- Flow control
 - Kecepatan data pada line dimultiplex adalah fixed
 - Jika satu channel receiver tidak menerima data,yang lain harus mengikuti
 - Sumber dikumpulkan harus diquench (dipadamkan)
 - Meningglkan slot kosong
- Error control
 - Errors dideteksi dan dihandel oleh sistem individual channel

Data Link Control dalam TDM

(b) Input data streams

 $\cdots \ f_2 \ F_1 \ d_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ d_1 \ A_2 \ C_1 \ F_2 \ A_1 \ f_2 \ F_1 \ f_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ C_1 \ A_2 \ A_1 \ F_2 \ F_1$

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field
A = address field f = one octet of FCS field

C = control field

Framing

- Tidak ada flag atau karakter SYNCmenggolongkan frame-frame TDM
- Harus menyediakan mekanisme sinkronisasi
- Membuat framing digit
 - Satu kontrol bit dibuat untuk tiap frame TDM
 - Seperti channel yang lain "control channel"
 - Mengidentifikasi bit patterns digunakan untuk mengontrol channel
 - e.g. alternating 01010101...tidak seperti dalam data channel
 - Dapar membandingkan incoming bit patterns tiap channel dengan sync pattern

Pulse Stuffing

- Masalah mensikronkan sumber data
- Clocks dalam sumber yang berbeda penyimpangn
- Kecepatan data untuk sumber yang berbeda tidak digabungkan oleh simple rational number
- Solusi Pulse Stuffing
 - Kecepatan data outgoing (excluding framing bits) lebih tinggi daripada jumlah kecepatan incoming
 - Stuff extra dummy bits or pulses into each incoming signal until it matches local clock
 - Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

TDM pada Sumber Analog dan Digital

Sistem Carrier Digital

- Hierarki pada TDM
- USA/Canada/Japan menggunakan satu sistem
- ITU-T menggunakan sistem yang mirip (tetapi berbeda)
- US system based on DS-1 format
- Multiplexes 24 channels
- Tiap frame memiliki 8 bit per channel ditambah satu framing bit
- 193 bits per frame

Sistem Carrier Digital(2)

- Untuk suara tiap channel berisi satu kata pada pendigitalan data(PCM, 8000 samples per sec)
 - Kecepatan data 8000x193 = 1.544Mbps
 - Five out of six frames have 8 bit PCM samples
 - Sixth frame is 7 bit PCM word plus signaling bit
 - Bentuk aliran bit pensinyalan untuk tiap channel berisi control dan routing info
- Beberapa format untuk data digital
 - 23 channels of data
 - 7 bits per frame plus indicator bit for data or systems control
 - 24th channel is sync

Mixed Data

- DS-1 dapat membawa mixed voice dan sinyal data
- Digunakan 24 channels
- Tidak ada sync byte
- Dapat interleave DS-1 channels juga
 - Ds-2 is four DS-1 giving 6.312Mbps

Format DS-1 Transmission

Notes:

- 1. The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - 8-bit PCM used on five of six frames.
 - 7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- 3. Data channels:
 - Channel 24 is used for signaling only in some schemes.
 - Bits 1-7 used for 56 kbps service
 - Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- Compatible
- Signal Hierarchy
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1)
 - 51.84Mbps
 - Carry DS-3 or group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps)
 - Multiple STS-1 combined into STS-N signal
 - ITU-T lowest rate is 155.52Mbps (STM-1)

Format Frame SONET

(a) STS-1 frame format

SONET STS-1 Overhead Octets

		Framing	Framing	STS-ID
	\	A1	A2	C1
Section)	BIP-8	Orderwire	User
Overhead	了	B1	E1	F1
		DataCom	DataCom	DataCom
		D1	D2	D3
	\mathcal{L}	Pointer	Pointer	Pointer
	-	H1	H2	Action H3
	١	BIP-8	APS	APS
	\ \	B2	K1	K2
]	DataCom	DataCom	DataCom
Line)	D4	D5	D6
Overhead	7	DataCom	DataCom	DataCom
	ì	D7	D8	D9
	- [DataCom	DataCom	DataCom
		D10	D11	D12
	-	Growth	Growth	Orderwire
		Z1	Z2	E2
	_			

(a) Transport Overhead

Trace
J1
BIP-8
В3
Signal
Label C2
Path
Status G1
User
F2
Multiframe
H4
Growth
Z3
Growth
Z4
Growth
Z5

(b) Path Overhead

Statistical TDM

- Dalam Synchronous TDM banyak slot yang dibuang
- Statistical TDM mengallocasikan time slots dynamically based on demand
- Multiplexer scans line input dan memilih data sampai frame penuh
- Kecepatan data pada line lebih kecil daripada kecepatan aggregate pada line input

Statistical Format Frame TDM

(a) Overall frame

(b) Subframe with one source per frame

(c) Subframe with multiple sources per frame

Performance

- Output kecepatan data lebih buruk kecepatan data aggregate
- Dimungkinkan karena masalah selama peak periods
 - Buffer inputs
 - Menjaga ukuran buffer ke minimum smpai mengurangi delay

Ukuran Buffer dan Delay

(a) Mean buffer size versus utilization

(a) Mean delay versus utilization

Kabel Outlie Modem

- Dua bentuk channel dari kabel tv menyediakan dedikasi untuk transfer data
 - Satu unutk tiap direction
- Tiap channel shared oleh number pada subscribers
 - Pola dibutuhkan untuk alokasi kapasitas
 - Statistical TDM

Pengoperasian Kabel Modem

Downstream

- Kabel scheduler mengirimkan data dalam pake-paket kecil
- Jika lebih dari satu subscriber active, tiap subscriber mendapatkan kapasitas fraction downstream
 - mendapatkan 500kbps sampai 1.5Mbps
- Digunakan juga untuk alokasi time slots upstream untuk subscribers

Upstream

- User meminta timeslots dalam bagian channel upstream
 - · Diperuntukkan untuk slots
- Headend scheduler mengirim kembali assignment pada time slot berikutnya untuk subscriber

Pola Kabel Modem

Asymmetrical Digital Subscriber Line

- ADSL
- Link diantara subscriber dan jaringan
 - Local loop
- Menggunakan currently installed twisted pair cable
 - Dapat membawa broader spectrum
 - 1 MHz atau lebih

Disain ADSL

- Asymmetric
 - Kapasitas downstream lebih besar daripada upstream
- Frequency division multiplexing
 - Lowest 25kHz for voice
 - Plain old telephone service (POTS)
 - Menggunakan echo cancellation atauFDM untuk memberikan two bands
 - menggunakan FDM within bands
- Range 5.5km

Konfigurasi Channel ADSL

(a) Frequency-division multiplexing

Discrete Multitone

- DMT
- Multiple sinyal carrier dalam frekuensi yang berbeda
- Beberapa bit tiap channel
- 4kHz subchannels
- Mengirimkan tes sinyal untuk digunakan subchannels dengan snyal lebih baik dari rasio noise
- 256 downstream subchannels at 4kHz (60kbps)
 - 15.36MHz
 - Impairments memberi this down ke1.5Mbps ke 9Mbps

DTM Bits Per Alokasi Channel

Transmitter DMT

xDSL

- Kecepatan data tinggi DSL
- Single line DSL
- Kecepatan data sangat tinggi DSL

Bacaan yang Dibutuhkan

- Stallings bab 8
- Web sites
 - ADSL
 - SONET