Path analysis: just more than one linear model!

 $u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$

$$v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

Today's dataset (the same as example 2 from Thursday!)

Available browse (v; vegetation) as a function of ungulate (u) and predator (w; wolf) abundance.

First, we'll simulate random variation in wolf density (w)

 $w_i \sim lognormal(0.35, 0.75)$

Second, we'll simulate ungulate density (u) as a function of w

 $u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_v^2)$

Third, we'll simulate browse density (v) as a function of u

 $v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

We'll use two (very similar) models to analyze the data

- 1. Identity link functions (i.e., normal distributions) in R
- 2. Log-normal distributions (to constrain to 'possible' values) in JAGS

First, we'll use 'identity' link functions in R [lm()]

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

Something to think about

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

 $lm(u \sim w)$

It's easy to calculate the effect of wolves on ungulate $(\alpha_1)!$

Something to think about

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

$$\beta_1 \\ \text{lm} \, (v \sim u)$$

It's also easy to calculate the effect of ungulates on vegetation (β_1)

Something to think about (we'll discuss this shortly!)

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

How would we calculate the effect of wolves on browse?!

How would we calculate the effect of wolves on browse?!

Let's imagine there is a hypothetical 101st study site with a current density of 2 wolves per 'unit'

- 1. What is the current ML estimate of ungulates and browse?
- 2. What would happen to ungulate density if wolves were extirpated?
- 3. What would happen to browse if wolves were extirpated?

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$
 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

We would gain about 8.83 ungulates, going from 29.582 to 38.421.

$$\alpha_0 = 38.4211$$

$$\alpha_1 = -4.4194$$

What would happen if we went from 2 wolves to 0?

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$
 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

We would gain about 8.83 ungulates, going from 29.582 to 38.421.

$$\alpha_0 = 38.4211$$

$$\alpha_1 = -4.4194$$

How would that 8.83 gain in ungulates affect browse?

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$
 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

If we gain about 8.83 ungulates, we lose 'browse'.

$$\beta_0 = 0.2809$$

$$\beta_1 = -0.00738$$

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

Losing wolves -> more deer; more deer -> less browse

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

$$\beta_1 = -0.00738$$
 $\alpha_1 = -4.4194$

$$-0.06524 = -0.002 - 0.0625$$

Change in browse

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

$$\beta_1 = -0.00738$$
 $\alpha_1 = -4.4194$

$$-0.06524 = \begin{vmatrix} -0.002 - 0.0625 \end{vmatrix} = \alpha_1(\beta_1)(-2)$$

Change in browse

Take-home 1: indirect effects aren't as 'horrifying' as they seem

$$u_i \sim \text{normal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{normal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

i.e., if identity link, then effect of wolves on veg = $\alpha_1\beta_1$

$$E(v_i|w_i) = [\beta_0 + \beta_1(\alpha_0)] + \alpha_1\beta_1w_i$$

slope = $\alpha_1\beta_1$

intercept =

what value of veg would be given number of deer if there were no wolves

Let's go to the code and prove it!

Second, we'll use the data-generating model to analyze the data

$$u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

$$v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$$

Take-home: this takes some careful thinking!

$$u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

i.e., what link functions are we using, and how do we incorporate those?

i.e., what link functions are we using, and how do we incorporate those?

Take-home: this takes some careful thinking!

$$u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

i.e., are these z-standardized covariates? How do we back-transform axes?

i.e., how are we scaling our covariates?

We have to keep track of a bunch of stuff

Take-home

$$u_i \sim \text{lognormal}(\alpha_0 + \alpha_1 w_i, \sigma_u^2)$$

 $v_i \sim \text{lognormal}(\beta_0 + \beta_1 u_i, \sigma_v^2)$

JAGS/Bayes will take some time, but it comes with advantages too!

Take-home: the math is <u>tedious and requires careful thought</u>, but the concept is simple!

Take-home: on Thursday, we'll review and expand!

