

UCD

School of Engineering and Architecture

Electronic Engineering

CT 20 0 Matlab for control

EEEN40010 Control Theory

Authors: Tiarnach Ó Riada 16315466 **Date submitted**: 31st October 2020

Problems

Problem 1	
Problem 2	
Problem 3	
Problem 4	

Problem 1

The plant is given in eq. (1).

$$\mathcal{H}(s) = \frac{s + 3.6}{s^2 + 20s + 64} \tag{1}$$

The poles of this plant are $\{-16, -4\}$ and it has a zero at -3.6.

The DC gain of the plant is 0.05625. This was found by evaluating eq. (1) at s = 0.

The steady-state value of the response to a unit step was calculated using the residue command in MAT-LAB to get the partial fraction expansion of the product of the laplace transform of the unit step and the transfer function. The denominator corresponding to the pole at 0 is the steady-state value, 0.05625.

There is a potentially dominant pole at -4. This should result in a 2% settling time of $\frac{4}{4} = 1$ s and, if the pole truly is dominant, no overshoot.

The step response of this plant is given in fig. 1.1. Characteristics visible on the plot are reproduced in table 1.

	Observed value	Predicted Value
Steady-state value	0.0563	0.05625
10% to $90%$ rise time	$0.105\mathrm{s}$	-
2% settling time	$0.496\mathrm{s}$	$1\mathrm{s}$
Percentage overshoot	3.54%	0%

The predicted and observed steady state values are identical to the level of precision given in the plot. The 2% settling time and the percentage overshoot values differ however. This is caused by the supposed dominant pole at -4 not being sufficiently dominant for the plant's response to approximate that of a first order system. The step response in the time domain is given in eq. (2). This shows that the non-dominant pole at -16 is $7\times$ greater than the pole at -4; since this pole is four times more negative and has a greater magnitude than the supposed dominant pole, this will decrease the settling time. The dominant pole's diminished magnitude relative to the non-dominant pole will also cause overshoot to occur, as the time taken for the dominant pole to assert its dominance is increased.

$$h(t) = 0.0563 + 0.0083e^{-4t} - 0.0646e^{-16t}$$
 (2)

As fig. 1.1 shows, the step response exhibits overshoot but no ringing.

Problem 2

The partial fraction expansion of the plant (given in eq. (1)) when the unit step is the input, as obtained using the residue command, is as follows:

$$\mathcal{H}(s) = \frac{s+3.6}{s^2+20s+64} \cdot \frac{1}{s} = -\frac{0.0646}{s+16} + \frac{0.0083}{s+4} + \frac{0.0563}{s}$$

Taking the inverse Laplace transform of the above, we arrive at an expression for the step response of the system.

$$h(t) = 0.0563 + 0.0083e^{-4t} - 0.0646e^{-16t}$$

Figure 1.1: Step response for eq. (1)

Problem 3

$$\mathcal{H}_1 = \frac{1}{s^2 + 50s + 184}$$

$$\mathcal{H}_2 = \frac{s + 16}{s^2 + 50s + 184}$$

Problem 4

Figure 4.1 gives the step responses and settling times (3) for $k \in \{0.1, 0.5, 2, 10\}$ and $z \in \{0.1, 0.5, 2\}$. The steady state error is zero for every combination of positive k and z. There is zero percentage overshoot for

(4) any choice of k and z. The closed loop poles are given in table 2.

$$\mathcal{G}_c = \frac{k(s+z)}{s} \tag{5}$$

k	Z	p_2	p_1	p_0	t_s
0.100	0.100	-16.103	-3.997	-0.001	6980
0.100	0.500	-16.100	-3.997	-0.003	1400
0.100	2.000	-16.090	-3.998	-0.011	349
0.500	0.100	-16.513	-3.984	-0.003	1420
0.500	0.500	-16.500	-3.986	-0.014	284
0.500	2.000	-16.453	-3.992	-0.055	70.9
2.000	0.100	-18.046	-3.944	-0.010	376
2.000	0.500	-18.000	-3.949	-0.051	75.2
2.000	2.000	-17.827	-3.970	-0.203	18.7
10.000	0.100	-26.142	-3.822	-0.036	96.2
10.000	0.500	-25.986	-3.833	-0.181	19.2
10.000	2.000	-25.384	-3.886	-0.730	4.75

Table 2: Closed loop poles p_0, p_1, p_2 of plant eq. (1) in a unity negative feedback loop with controller eq. (5). p_0 is the dominant pole in each case.

As the table shows, the dominant poles p_0 come to dominate more as both k and z increase. For lower values of k, the system is very sluggish, with settling times being up to several thousand seconds, contrasting with the much quicker times

Figure 4.1: Step responses of plant eq. (1) in a unity negative feedback loop with controller eq. (5) for various values of k—the proportional gain—and z— the controller zero.