М + РЕШЕНИЯ

M+556. В трапец ABCD ($AB \parallel CD$) диагоналите AC и BD се пресичат в точка O, а лицата на триъгълниците ABO, CDO и BCO са съответно a, b и c. Ако е изпълнено равенството c = a - 6b, да се намери отношението на голямата основа към малката.

(Сава Гроздев, гр. София, Веселин Ненков, с. Бели Осъм)

Решение. Тъй като $c = \sqrt{ab}$, то $\sqrt{ab} = a - 6b$. Следователно $\sqrt{\frac{a}{b}} = \frac{a}{b} - 6$. Ако $x = \sqrt{\frac{a}{b}}$, то $x^2 - x - 6 = 0$. Следователно търсеното отношение е x = 3, т.е. 3:1.

M+557. Точките M, N и P лежат съответно върху страните BC, CA и AB на ΔABC така, че $\angle ANP = \angle BMP = \angle MPN$.

- а) Ако $CP \cap MN = Q$, да се намери геометричното място на точката Q, когато P описва страната AB.
- б) Да се определи положението на точката P, при което $MN \perp CP$. Да се докаже, че при това положение на P периметърът на четириъгълника CMPN е поголям от удвоения диаметър на вписаната в ΔABC окръжност.

(Христо Лесов, гр. Казанлък)

Решение. От условието следва, че $AN \parallel PM$ $BM \parallel PN$. Следователно четириъгълникът *CMPN* е успоредник.

- а) Диагоналите на успоредника СМРИ се разполовяват от точката Q. Затова, когато P се движи по страната AB, Q описва средната отсечка на ΔABC , която е успоредна на AB.
- б) Ако $MN \perp CP$, успоредникът CMPN е ромб, т.е. CM = MP = PN = CN = x и диагоналът CP е ъглополовяща на *∢*ACB. Тъй като $PN \parallel BC$ и $PM \parallel AC$, чрез теоремата на Талес $\frac{PN}{BC} = \frac{AP}{AB}$ и $\frac{PM}{AC} = \frac{BP}{AB}$. След изразяваме

почленно събиране на тези равенства
получаваме
$$\frac{x}{BC} + \frac{x}{AC} = 1$$
. Оттук

 $x = \frac{AC.BC}{AC+BC}$. За лицето S на $\triangle ABC$ имаме $S = \frac{1}{2}.AC.BC.\sin \angle ACB$. Тъй като $0 < \sin \angle ACB \le 1$, to $S \le \frac{1}{2} ACBC$. Ocbeh toba AC + BC < AC + BC + AB. 3atoba $x > \frac{2S}{AC + BC + AB} = r$. Следователно за периметъра на ромба е изпълнено неравенството 4x > 4r, което доказва твърдение б).

M+558. В изпъкнал четириъгълник ABCD са изпълнени равенствата $∠ABD = 90^\circ$ и AC.BD = AD.BC. Точката P лежи върху правата AD така, че D е между A и P и

 $\angle DCP = 90^{\circ}$. Да се докаже, че описаните окръжности на триъгълниците ABC и DCP са допирателни.

(Хаим Хаимов, гр. Варна)

Решение. Достатъчно е да докажем, че описаните окръжности c_1 и c_2 съответно около ΔABC и ΔDCP имат обща допирателна в точката C. Нека O е средата на PD, а Q е точка в полуравнината, определена от правата CD, съдържаща ABCDтака, че $\angle QCO = 90^{\circ}$. Правата CQ е допирателна за c_2 . Остава да се докаже, че тя се допира до c_1 . От периферните свойствата на ъгли следва, вписаните достатъчно да ce докаже, $\angle BCQ = \angle BAC$. Тъй като $\angle DCO = \angle ODC = 180^{\circ} - \angle ADC$. получаваме последователно

 $\angle BCO = \angle OCD - \angle DCB = 90^{\circ} - (\angle DCO + \angle BCD) = \angle ADC - \angle BCD - 90^{\circ}$

т.е. $\angle BCQ = (180^\circ - \angle ACD - \angle CAD) - \angle BCD - 90^\circ = 90^\circ - \angle ACD - \angle CAD - \angle BCD$. Тогава желаното равенство $\angle BCQ = \angle BAC$ е равносилно с равенството $90^\circ - \angle ACD - \angle CAD - \angle BCD = \angle BAC$, т.е (1) $90^\circ - \angle ACD = \angle BCD + \angle DAB$. Остава да докажем това равенство. Нека A_1 е точка от продължението на PC така, че $\angle A_1DC = \angle ADB$. Понеже $\angle A_1CD = \angle ABD = 90^\circ$, то $\triangle ADB \sim \triangle A_1DC$. Оттук $\frac{AD}{AD} = \frac{DB}{DC}$.

От тази пропорция и равенството $\angle ADA_1 = \angle BDC$ следва, че $\triangle ADA_1 \sim \triangle BDC$. Затова $\frac{AA_1}{AD} = \frac{BC}{BD}$. Но по условие BC.AD = AC.BD, което е еквивалентно с $\frac{BC}{BD} = \frac{AC}{AD}$.

Следователно $\frac{AA_1}{AD} = \frac{AC}{AD}$, т.е. $AA_1 = AC$. Оттук (2) $\angle ACA_1 = \angle AA_1C$. Имаме $\angle ACA_1 = 90^\circ - \angle ACD$. От друга страна $\Delta ADA_1 \sim \Delta BDC$ и $\Delta A_1DC \sim \Delta ADB$, $\angle AA_1D = \angle BCD$ и $\angle DA_1C = \angle DAB$. Оттук $\angle AA_1C = \angle AA_1D + \angle DA_1C = \angle BCD + \angle DAB$. От равенството (2) следва, че $90^\circ - \angle ACD = \angle BCD + \angle DAB$. Последното доказва (1). С това задачата е решена.

M+559. Да се реши уравнението $5x^2 + 6y^2 + z^2 - 2zy - 6x + 12y + 9 = 0$, където $x, y, z \in \mathbb{R}$.

(Росен Николаев, Йордан Петков, гр. Варна)

Решение. Преобразуваме лявата страна на уравнението, като отделяме точни квадрати.

Получаваме
$$(z-y)^2 + 5\left(x-\frac{3}{5}\right)^2 + 5\left(y+\frac{6}{5}\right)^2 = 0$$
. Следователно са изпълнени

едновременно равенствата z-y=0, $x-\frac{3}{5}=0$ и $y+\frac{6}{5}=0$. Оттук получаваме, че уравнението има единствено решение $x=\frac{3}{5}$, $y=-\frac{6}{5}$, $z=-\frac{6}{5}$.

M+560. Нека $N = 2000^{2000} + 2001^{2001} + 2002^{2002} + \dots + 2014^{2014} + 2015^{2015} + 2016^{2016}$. Редицата N, N_1 , N_2 , ..., N_k е образувана така, че всяко число след първото е получено като сума от цифрите на предишното. Ако k е най-малкото число, при което N_k е едноцифрено число, да се намерят k и N_k .

(Сава Гроздев, гр. София, Веселин Ненков, с. Бели Осъм)

Решение. Първо ще определим стойността на N_k . Числото N_k е остатъкът, който се получава при делението на N с 9. Да отбележим, че ако a е цяло число, което не се дели на 3, то a^6 има остатък 1 при деление на 9. Наистина, тъй като $a^6-1=\left(a^3-1\right)\left(a^3+1\right)$, то при a=3n+1 числото $a^3-1=9n\left(3n^2+3n+1\right)$ се дели на 9, а при a=3n-1 числото $a^3+1=9n\left(3n^2-3n+1\right)$ се дели на 9. Оттук следва, че при произволно естествено число a числото a^{6u} има остатък 1 при деление на 9. Освен това, ако \overline{abcd} е произволно четирицифрено цяло число, то има остатък a+b+c+d при деление на 9. Като използваме тези наблюдения получаваме:

 $2001^{2001} \equiv 2004^{2004} \equiv 2007^{2007} \equiv 2010^{2010} \equiv 2013^{2013} \equiv 2016^{2016} \equiv 0 \pmod{9} , \\ 2000^{2000} \equiv 2^2 \equiv 4 \pmod{9} , \qquad 2002^{2002} \equiv 4^4 \equiv 4 \pmod{9} , \qquad 2003^{2003} \equiv 5^5 \equiv 2 \pmod{9} , \\ 2005^{2005} \equiv 7^1 \equiv -2 \pmod{9} , \qquad 2006^{2006} \equiv 8^2 \equiv 1 \pmod{9} , \qquad 2008^{2008} \equiv 1^4 \equiv 1 \pmod{9} , \\ 2009^{2009} \equiv 2^5 \equiv 5 \equiv -4 \pmod{9} , \qquad 2011^{2011} \equiv 4^1 \equiv 4 \pmod{9} , \qquad 2012^{2012} \equiv 5^2 \equiv 7 \equiv -2 \pmod{9} , \\ 2014^{2014} \equiv 7^4 \equiv 7 \equiv -2 \pmod{9} , \qquad 2015^{2015} \equiv 8^5 \equiv 8 \equiv -1 \pmod{9} .$

Следователно $N_k \equiv N \equiv 4+4+2-2+1+1-4+4-2-2-1 \equiv 5 \pmod{9}$, т.е. $N_k = 5$.

Сега ще намерим стойността на k. Тъй като за всяко четирицифрено число \overline{abcd} е изпълнено \overline{abcd} < 10000, то \overline{abcd}^{2016} < 10000 2016 . Броят на цифрите на 10000 2016 е равен на 1+4.2016=8065. Следователно броят на цифрите на $abcd^{2016}$ не надминава 8065. Ако две числа имат по 8065 цифри, то сумата им е число с най-много 8066 цифри. Следователно сумата на четири числа, всяко от които има по 8065 цифри, е число с най-много 8067 цифри. Оттук следва, че сумата на осем числа, всяко от които има по 8065 цифри, е число с най-много 8068 цифри. Следователно сумата на шестнадесет числа, всяко от които има по 8065 цифри, е число с най-много 8069 цифри. Накрая получаваме, че сумата на седемнадесет числа, всяко от които има по 8065 цифри, е число с най-много 8070 цифри. Следователно числото N има не повече от 8070 цифри. Най-голямото число, което има 8070 цифри, е числото X, състоящо се от 8070 деветки. Сумата от цифрите на X е 8070.9 = 72630. Следователно $N_1 < 72630$. Числото, което е по-малко от 72630 и има най-голяма сума на цифрите си, е 69999. Затова за сумата N_2 от цифрите на N_i е изпълнено неравенството $N_2 < 6 + 4.9 = 42$. Числото, което е по-малко от 42 и има най-голяма сума на цифрите си, е 39. Затова за сумата N_3 от цифрите на N_2 е изпълнено неравенството $N_3 \le 3 + 9 = 12$. Тъй като $5 = N_k \le N_3$ и сумата от цифрите на всяко от числата 10, 11 и 12 е по-малка от 5, то $N_3 = 5$. Оттук следва и предположението, че k = 3. Не е

изключена обаче и възможността да е изпълнено равенството k=2 . Тази възможност се отхвърля по следния начин: Нека

 $A=2001^{2001}+2004^{2004}+2007^{2007}+2010^{2010}+2013^{2013}+2016^{2016}$ и B=N-A. Числото A се дели на 9 и затова е изпълнено равенството A=9.C, където $C\geq 1$. Следователно сумата от цифрите на A е поне 9. Ако сумата от цифрите на B е равна на M, то за сумата от цифрите на N получаваме $N_1\geq 9+M$. Тъй като $M\geq 1$, то N_2 е

двуцифрено число (както беше показано по-горе, то е по-малко от 42). Следователно k=3. Така окончателно получаваме, че k=3 и $N_3=5$.

M+561. Ако α_1 , α_2 и α_3 са ъглите на триъгълник $A_1A_2A_3$, да се докаже неравенството:

$$3\left(\sum_{i=1}^{3}\sin^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos^{2}\alpha_{i}\right)+2\left(\sum_{i=1}^{3}\sin\alpha_{i}\cos\alpha_{i}\right)\left(\sum_{i=1}^{3}\sin\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos\alpha_{i}\right)\geq$$

$$\geq\left(\sum_{i=1}^{3}\sin^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos\alpha_{i}\right)^{2}+\left(\sum_{i=1}^{3}\cos^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\sin\alpha_{i}\right)^{2}+3\left(\sum_{i=1}^{3}\sin\alpha_{i}\cos\alpha_{i}\right)^{2}.$$

В кои случаи се достига равенство?

(Лучиан Туцеску, Крайова, Румъния)

Решение. Разглеждаме матрицата $A = \begin{pmatrix} \sin \alpha_1 & \sin \alpha_2 & \sin \alpha_3 \\ \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ 1 & 1 & 1 \end{pmatrix}$ и нейната

транспонирана $A^T = \begin{pmatrix} \sin \alpha_1 & \cos \alpha_1 & 1 \\ \sin \alpha_2 & \cos \alpha_2 & 1 \\ \sin \alpha_3 & \cos \alpha_3 & 1 \end{pmatrix}$. За произведението на тези матрици

получаваме $A.A^{T} = \begin{pmatrix} \sum_{i=1}^{3} \sin^{2}\alpha_{i} & \sum_{i=1}^{3} \sin\alpha_{i} \cos\alpha_{i} & \sum_{i=1}^{3} \sin\alpha_{i} \\ \sum_{i=1}^{3} \sin\alpha_{i} \cos\alpha_{i} & \sum_{i=1}^{3} \cos^{2}\alpha_{i} & \sum_{i=1}^{3} \cos\alpha_{i} \\ \sum_{i=1}^{3} \sin\alpha_{i} & \sum_{i=1}^{3} \cos\alpha_{i} & 3 \end{pmatrix}.$ Тъй като

 $\det (A.A^T) = (\det A)^2 \ge 0$, то след пресмятане на детерминантата на $A.A^T$ се получава

$$3\left(\sum_{i=1}^{3}\sin^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos^{2}\alpha_{i}\right)+2\left(\sum_{i=1}^{3}\sin\alpha_{i}\cos\alpha_{i}\right)\left(\sum_{i=1}^{3}\sin\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos\alpha_{i}\right)-\left(\sum_{i=1}^{3}\sin^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\cos\alpha_{i}\right)^{2}-\left(\sum_{i=1}^{3}\cos^{2}\alpha_{i}\right)\left(\sum_{i=1}^{3}\sin\alpha_{i}\right)^{2}-3\left(\sum_{i=1}^{3}\sin\alpha_{i}\cos\alpha_{i}\right)^{2}\geq0,$$

което е еквивалентно с желаното неравенство. Равенство се получава тогава и само тогава, когато $\det(A) = 0$, т.е.

 $\sin\alpha_1\cos\alpha_2 + \sin\alpha_2\cos\alpha_3 + \sin\alpha_3\cos\alpha_1 - \cos\alpha_1\sin\alpha_2 - \cos\alpha_2\sin\alpha_3 - \cos\alpha_3\sin\alpha_1 = 0.$

Това равенство е еквивалентно с $\sin\frac{\alpha_1-\alpha_2}{2}\sin\frac{\alpha_2-\alpha_3}{2}\sin\frac{\alpha_3-\alpha_1}{2}=0$, което означава, че $\alpha_1=\alpha_2$, $\alpha_2=\alpha_3$ или $\alpha_3=\alpha_1$. Следователно в неравенството се достига равенство тогава и само тогава, когато $A_1A_2A_3$ е равнобедрен триъгълник.

M+562. В окръжност с диаметър d са построени n успоредни хорди $A_k B_k$ (k=1,2,...,n), които пресичат диаметър PQ съответно в точките M_k (k=1,2,...,n). Ако диаметърът PQ е такъв, че са изпълнени равенствата $A_k M_k^2 + B_k M_k^2 = S$ (k=1,2,...,n), да се намерят всички цели стойности на n и d, при които n.S = 2016.

(Милен Найденов, гр. Варна)

Решение. Нека дадената окръжност има център O и радиус R, а C_k е средата на $A_k B_k$ $(k=1,2,\ldots,n)$. Въвеждаме означенията $A_k C_k = a_k$, $OC_k = p_k$, $C_k M_k = x_k$ и $\not < A_k M_k O = \alpha_k$ $(k=1,2,\ldots,n)$. Тогава

$$S = A_k M_k^2 + B_k M_k^2 = (a_k + x_k)^2 + (a_k - x_k)^2 = 2(a_k^2 + x_k^2).$$

Тъй като $a_k^2+p_k^2=R^2$ и $a_k=p_kctg\alpha_k$, то $S=2\Big[R^2+p_k^2\big(ctg^2\alpha_k-1\big)\Big]$ (k=1,2,...,n). От последното равенство следва, че S е постоянна величина само когато $ctg^2\alpha_k-1=0$ (k=1,2,...,n). Следователно $\alpha_k=45^\circ$ или $\alpha_k=135^\circ$. При такива ъгли имаме $S=2R^2=\frac{d^2}{2}$. Сега равенството n.S=2016 преминава в $n.d^2=4032$. Тъй като $4032=4032.1^2=1008.2^2=252.4^2=63.8^2=448.3^2=112.6^2=28.12^2=7.24^2$, то търсените целочислени решения са осем и те могат да се обобщят в следващата таблица:

d	1	2	3	4	6	8	12	24
n	4032	1008	448	252	112	63	28	7

M+563. Точката P лежи върху страната AB на остроъгълния триъгълник ABC, а M и N са петите на перпендикулярите, спуснати от P съответно към BC и AC. Да се

определи положението на P, когато: a) MN има най-малка дължина; б) лицето на ΔMNP е най-голямо; в) сборът от квадратите на MP и NP е най-малък.

(Христо Лесов, гр. Казанлък)

Решение. а) От условието следва, че четириъгълникът *CMNP* е вписан в окръжност с диаметър *CP*. Нека $\angle ACB = \gamma$. От синусовата теорема за ΔCMN имаме $MN = CP.\sin \gamma$. Следователно *MN* има най-малка дължина, когато *CP* е с най-малка дължина. Това се случва, когато $CP \perp AB$, т.е. P е петата на височината през върху страната AB.

б) Тъй като $\sphericalangle MPN = 180^{\circ} - \gamma$, то $S_{MNP} = \frac{1}{2}MP.NP.\sin\gamma$. От друга страна $S_{BCP} + S_{ACP} = S_{ABC}$, т.е. $\frac{1}{2}BC.PM + \frac{1}{2}AC.PN = \frac{1}{2}BC.AC.\sin\gamma$. Сега от неравенството между средното аритметично и средното геометрично следва

$$PM.PN = \frac{BC.PM.AC.PN}{BC.AC} \le \frac{1}{BC.AC} \left(\frac{BC.PM + AC.PN}{2}\right)^2 =$$
$$= \frac{1}{BC.AC} \left(\frac{1}{2}.BC.AC.\sin\gamma\right)^2 = \frac{1}{4}.BC.AC.\sin^2\gamma.$$

Оттук $S_{MNP} \leq \frac{1}{8}MP.NP.\sin^3\gamma$. Следователно най-голямата стойност на S_{MNP} е равна на $MP.NP.\sin^3\gamma$ и се достига, когато BC.PM = AC.PN, т.е. $S_{BCP} = S_{ACP}$. Последното равенство показва, че най-голямата стойност на S_{MNP} се получава, когато P е средата на AB.

в) От неравенството но Коши-Буняковски-Шварц имаме

$$(BC^2 + AC^2)(MP^2 + NP^2) \ge (BC.MP + AC.NP)^2$$
.

Оттук $MP^2 + NP^2 \ge \frac{4S_{ABC}^2}{BC^2 + AC^2}$. Следователно най-малката стойност на $MP^2 + NP^2$ се получава, когато AC.MP = BC.NP. Ако $CD \perp AB$ и $C \in AB$, то $S_{ACP} = \frac{1}{2}AC.MP = \frac{1}{2}AP.CD$ и $S_{BCP} = \frac{1}{2}BC.MP = \frac{1}{2}BP.CD$. От тези равенства намираме $PN = \frac{AP.CD}{AC}$ и $PM = \frac{BP.CD}{BC}$. Следователно $\frac{BP}{AP} = \frac{BC^2}{AC^2}$. Последното равенство означава, че сумата $MP^2 + NP^2$ е най-малка, когато CP е симедианата на ΔABC през върха C.

M+564. Точките O и H са съответно центърът на описаната окръжност и ортоцентърът на остроъгълния триъгълник ABC. Ако M и N са точки съответно от

страните AC и BC, така че $\not < MHN = \not < ACB$, да се докаже, че ортогоналните проекции на O и H върху правата MN лежат върху Ойлеровата окръжност на $\triangle ABC$ и е изпълнено равенството $\not < MON = 180^\circ - 2 \not < ACB$.

(Хаим Хаимов, гр. Варна)

Решение. В решението на задачата ще използваме следната:

Лема. Ако X е вътрешна точка за изпъкналия четириъгълник ABCD, а H_1 , H_2 , H_3 и H_4 са ортогоналните проекции на X съответно върху AB, BC, CD и DA, то четириъгълникът $H_1H_2H_3H_4$ е вписан в окръжност тогава и само тогава, когато $\angle AXB + \angle CXD = 180^\circ$.

Доказателство. Тъй като четириъгълниците AH_1XH_4 , H_4XH_3D , H_3XH_2C и H_2XH_1B са вписани, то $\sphericalangle H_4H_1X= \sphericalangle H_4AX$, $\sphericalangle H_2H_1X= \sphericalangle H_2BX$, $\sphericalangle H_4H_3X= \sphericalangle H_4DX$ и $\sphericalangle H_2H_3X= \sphericalangle H_2CX$. Оттук имаме

Следователно условието $<\!\!\!\!< H_4H_1H_2 + <\!\!\!\!< H_4H_3H_2 = 180^\circ$ за вписаност на $H_1H_2H_3H_4$ е еквивалентно с $<\!\!\!\!< AXB + <\!\!\!\!< CXD = 180^\circ$. С това лемата е доказана.

Нека $\angle ACB = \gamma$, а P и Q са ортогоналните проекции съответно на M и N върху OH. От равенствата $\angle AHB = 180^{\circ} - \gamma$ и $\angle MHN = \gamma$ следва, че $\angle AHB + \angle MHN = 180^{\circ}$. Сега от лемата следва, че ортогоналните проекции на H върху страните на четириъгълника ABNM лежат на една окръжност k. Но тази окръжност минава през петите на височините на ΔABC . Следователно k е Ойлеровата окръжност на ΔABC . Оттук получаваме, че $Q \in k$. Нека O_1 е центърът на k, а K е ортогоналната проекция на O_1 върху OH. Тъй като O_1 е среда на OH, то O_1K е средна основа в правоъгълния трапец HOPQ. Затова $O_1P = O_1Q$. Но $Q \in k$ и следователно $P \in k$. Оттук следва, че ортогоналните проекции на O върху страните на четириъгълника ABNM лежат на k. Сега от лемата следва, че $\angle AOB + \angle MON = 180^{\circ}$, т.е. $\angle MON = 180^{\circ} - 2\gamma$. С това задачата е решена.

