MATH 100, Fall 2021 Tutorial Worksheet Your Student Number: V00 Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)
Question Attempted: Q1
Turn = 400 Gradiens = 360° = 212 radians.
Let sin denote sin in radious. Then I Gradien = 2TE = IT n
In $\sin_{G}(x) = \sin\left(\frac{\pi}{200}x\right)$.
Taking the derivative, we obtain
$\frac{d}{dx} \sin_{G}(x) = \frac{d}{dx} \left(\sin \left(\frac{\pi x}{200} \right) \right) = \frac{\pi}{200} \cos \left(\frac{\pi x}{200} \right)$
$=\frac{\pi}{200} G_{6}(x)$

MATH 100, Fall 2021	Your Name: KeY	
Tutorial Worksheet	Your Student Number: V00	
Tutorial Section (T01, T02 etc)	Today's Date:	
Tutorial Instructor Name:		
Question Number Attempted (Q1, Q2, etc)		

Questin Attempted; Q2

18 $x^4+2x^2-y^2=-1$, den differentating both sides we obtain $4x^4+2x^2-y^2=4x^3+4x-2yy'=\frac{d}{dx}(-1)=0$ Rearranging, we obtain $y'=\frac{2x^3+2x}{y}=\frac{2x(2x^2+1)}{y}$.

Then at (x,y)=(-1,-2), $y'=\frac{-2(2)}{-2}=2$.

Then y=2x+C, and subbig in (x,y)=(-1,-2), we find C=-2+2=0, so the eyn of the largest is

MATH 100, Fall 2021 Tutorial Worksheet Your Student Number: V00 Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc) Your Name: Your Name:
Question Attempted: @3
Giron 2+12x2-y2=-1 and no may rowning
Graph $y^2 = x^4 + 2x^2 + 1 = (x^2 + 1)^2$.
Then if $y < 0$, we way conclude $y = -\sqrt{(x^2+1)^2} = -(x^2+1)$
Than MAN y'= -2x.
Than at sec-1, y'=2. Thus the tangent
to the curve at $(-1,-2)$ may be given by $y=2x+C$. Subbig in $(-1,-2)$ we find $-2=-2+C$ so $C=0$.
Subbig in (-1,-2) refind -2=-2+C so (=0.
Firstly, de formula for the tangent is then given by

e formula for the ta. y = 20c

MATH 100, Fall 2021	Your Name: KEY	
Tutorial Worksheet	Your Student Number: V00	
Tutorial Section (T01, T02 etc)	Today's Date:	
Tutorial Instructor Name:		
Question Number Attempted (Q1, Q2, etc)		

Question Attempted: Q7

Han
$$\chi(\theta) = \cos \theta, \quad \theta(t) = 2t + \frac{1}{2}t^2$$

We have therether
$$\frac{dx}{dt} = \frac{dx}{d\theta} = (-\sin\theta)(2tt)$$

$$= -(2tt)\sin(2tt+\frac{1}{2}t^2)$$

For time -3, we we get
$$\frac{dz_1}{dt} = -(2-3)\sin(-3+\frac{9}{2}) = \sin(-\frac{3}{2}) < 0,$$

Thorsfore, the coordinate is moving in the regative of dicitar at this time.

MATH 100, Fall 2021 Tutorial Worksheet Your Student Number: V00 Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)

Quastron Attempted: Q5
$$y = \frac{\chi^2(\chi+3)^6}{(\chi^2+1)^{\frac{1}{7}}}$$
, so

$$y' = y \frac{d \ln(y)}{dx} = \frac{d \ln(x)}{dx} y \frac{d}{dx} \left(2 \ln x + 6 \ln(x+3) - 3x - \frac{1}{4} \ln(x^2+1) \right)$$

= $y \left(\frac{2}{x} + \frac{6}{x+3} - 3 - \frac{2x}{4(x^2+1)} \right)$

$$= \frac{\chi^{2}(\chi+3)^{6}e^{-3\chi}}{(\chi^{2}+1)^{\frac{1}{7}}} \left(\frac{2}{2\chi} + \frac{6}{\chi+3} - 3 - \frac{\chi}{2(\chi^{2}+1)} \right)$$