

| Rodzaj dokumentu:             | Zasady oceniania rozwiązań<br>zadań                                                                    |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Egzamin:                      | Egzamin maturalny TEST DIAGNOSTYCZNY                                                                   |  |
| Przedmiot:                    | Matematyka                                                                                             |  |
| Poziom:                       | Poziom podstawowy                                                                                      |  |
| Formy arkusza:                | MMAP-P0-100, MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-700, MMAP-P0-Q00, MMAP-P0-K00, MMAU-P0-100 |  |
| Termin egzaminu:              | 6 grudnia 2024 r.                                                                                      |  |
| Data publikacji<br>dokumentu: | 11 grudnia 2024 r.                                                                                     |  |

### Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

#### **Uwaga:**

Gdy wymaganie egzaminacyjne dotyczy treści z II etapu edukacyjnego, dopisano "SP".

### Zadanie 1. (0-1)

| Wymagania określone w podstawie programowej <sup>1</sup>                                                                                            |                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Wymaganie ogólne                                                                                                                                    | Wymaganie szczegółowe                                                                                                            |  |
| III. Wykorzystanie i interpretowanie reprezentacji.  1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych. | Zdający: I.7) stosuje interpretację geometryczną i algebraiczną wartości bezwzględnej, rozwiązuje równania typu: $ x + 4  = 5$ . |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

В

#### Zadanie 2. (0-1)

| Wymaganie ogólne                       | Wymaganie szczegółowe                 |
|----------------------------------------|---------------------------------------|
| I. Sprawność rachunkowa.               | Zdający:                              |
| Wykonywanie obliczeń na liczbach       | I.4) stosuje związek pierwiastkowania |
| rzeczywistych, także przy użyciu       | z potęgowaniem oraz prawa działań na  |
| kalkulatora, stosowanie praw działań   | potęgach i pierwiastkach.             |
| matematycznych przy przekształcaniu    |                                       |
| wyrażeń algebraicznych oraz            |                                       |
| wykorzystywanie tych umiejętności przy |                                       |
| rozwiązywaniu problemów w kontekstach  |                                       |
| rzeczywistych i teoretycznych.         |                                       |

#### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Α

<sup>&</sup>lt;sup>1</sup> Rozporządzenie Ministra Edukacji z dnia 28 czerwca 2024 r. zmieniające rozporządzenie w sprawie podstawy programowej kształcenia ogólnego dla liceum ogólnokształcącego, technikum oraz branżowej szkoły II stopnia (Dz.U. z 2024 r. poz. 1019).



#### Zadanie 3. (0-2)

| Wymaganie ogólne                        | Wymagania szczegółowe                      |
|-----------------------------------------|--------------------------------------------|
| IV. Rozumowanie i argumentacja.         | Zdający:                                   |
| 1. Przeprowadzanie rozumowań, także     | I.2) przeprowadza proste dowody dotyczące  |
| kilkuetapowych, podawanie argumentów    | podzielności liczb całkowitych [];         |
| uzasadniających poprawność rozumowania, | I.4) stosuje […] prawa działań na potęgach |
| odróżnianie dowodu od przykładu.        | [].                                        |

### Zasady oceniania

- 2 pkt przekształcenie wyrażenia  $2^{100}+4^{49}+16^{24}$  do postaci  $21\cdot n$ , gdzie n jest liczbą naturalną, np.:  $2^{96}\cdot 21,~4^{48}\cdot 21.$
- 1 pkt przekształcenie wyrażenia  $2^{100}+4^{49}+16^{24}$  do postaci  $2^{100}+2^{98}+2^{96}$  *ALBO* 
  - przekształcenie wyrażenia  $2^{100}+4^{49}+16^{24}$  do postaci  $4^{50}+4^{49}+4^{48}$ , *ALBO*
  - przekształcenie wyrażenia  $2^{100} + 4^{49} + 16^{24}$  do postaci  $16^{25} + 16^{24} \cdot 4 + 16^{24}$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Przykładowe pełne rozwiązania

#### Sposób I

Korzystamy z własności działań na potęgach i otrzymujemy:

$$2^{100} + 4^{49} + 16^{24} = 2^{100} + (2^2)^{49} + (2^4)^{24} = 2^{100} + 2^{98} + 2^{96}$$

Wyłączamy wspólny czynnik przed nawias

$$2^{100} + 2^{98} + 2^{96} = 2^{96} \cdot (2^4 + 2^2 + 1) = 2^{96} \cdot 21$$

Liczba  $2^{96}$  jest liczbą całkowitą, zatem liczba  $2^{100} + 4^{49} + 16^{24}$  jest podzielna przez 21.

#### Sposób II

Korzystamy z własności działań na potęgach i otrzymujemy:

$$2^{100} + 4^{49} + 16^{24} = (2^2)^{50} + 4^{49} + (4^2)^{24} = 4^{50} + 4^{49} + 4^{48}$$

Wyłączamy wspólny czynnik przed nawias

$$4^{50} + 4^{49} + 4^{48} = 4^{48} \cdot (4^2 + 4 + 1) = 4^{48} \cdot 21$$

Liczba  $4^{48}$  jest liczbą całkowitą, zatem liczba  $2^{100} + 4^{49} + 16^{24}$  jest podzielna przez 21.

#### Sposób III

Korzystamy z własności działań na potęgach i otrzymujemy:

$$2^{100} + 4^{49} + 16^{24} = (2^4)^{25} + (4^2)^{24} \cdot 4 + 16^{24} = 16^{25} + 16^{24} \cdot 4 + 16^{24}$$

Wyłączamy wspólny czynnik przed nawias

$$16^{25} + 16^{24} \cdot 4 + 16^{24} = 16^{24} \cdot (16 + 4 + 1) = 16^{24} \cdot 21$$

Liczba  $16^{24}$  jest liczbą całkowitą, zatem liczba  $2^{100} + 4^{49} + 16^{24}$  jest podzielna przez 21.

# Zadanie 4. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                     |
|------------------------------------------|-------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                  |
| reprezentacji.                           | I.9) [] posługuje się wzorami na logarytm |
| 1. Stosowanie obiektów matematycznych    | iloczynu [] i logarytm potęgi.            |
| i operowanie nimi, interpretowanie pojęć |                                           |
| matematycznych.                          |                                           |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

D

# Zadanie 5. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe                   |
|-------------------------------------------|-----------------------------------------|
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                |
| 2. Używanie języka matematycznego do      | I.8) wykorzystuje własności potęgowania |
| tworzenia tekstów matematycznych, w tym   | i pierwiastkowania w sytuacjach         |
| do opisu prowadzonych rozumowań           | praktycznych, w tym do obliczania       |
| i uzasadniania wniosków, a także do       | procentów składanych, zysków z lokat    |
| przedstawiania danych.                    | i kosztów kredytów.                     |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

В

# Zadanie 6. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                |
|------------------------------------------|--------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                             |
| reprezentacji.                           | II.4) […] dzieli wyrażenia wymierne. |
| 1. Stosowanie obiektów matematycznych    |                                      |
| i operowanie nimi, interpretowanie pojęć |                                      |
| matematycznych.                          |                                      |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

В

# Zadanie 7. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                    |
|------------------------------------------|------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                 |
| reprezentacji.                           | IV.1) rozwiązuje układy równań liniowych |
| 1. Stosowanie obiektów matematycznych    | z dwiema niewiadomymi [].                |
| i operowanie nimi, interpretowanie pojęć |                                          |
| matematycznych.                          |                                          |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

۸

#### Zadanie 8. (0-3)

| Wymaganie ogólne                         | Wymagania szczegółowe                      |
|------------------------------------------|--------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                   |
| reprezentacji.                           | III.1) przekształca równania i nierówności |
| Stosowanie obiektów matematycznych       | w sposób równoważny, w tym np.             |
| i operowanie nimi, interpretowanie pojęć | przekształca równoważnie równanie          |
| matematycznych.                          | $\frac{5}{x+1} = \frac{x+3}{2x-1};$        |
|                                          | III.4) rozwiązuje równania [] kwadratowe.  |
|                                          | SP VI. Równania z jedną niewiadomą.        |
|                                          | 3) rozwiązuje równania, które po prostych  |
|                                          | przekształceniach wyrażeń algebraicznych   |
|                                          | sprowadzają się do równań pierwszego       |
|                                          | stopnia z jedną niewiadomą.                |

### Zasady oceniania

- 3 pkt zastosowanie poprawnej metody **oraz** zapisanie założenia:  $x \neq 1$ , **oraz** poprawny wynik: x = -6.
- 2 pkt przekształcenie równania  $\frac{x+3}{x-1} = \frac{x}{2x-2}$  do równania liniowego, np. 2(x+3) = x, oraz rozwiązanie tego równania: x = -6 *ALBO* 
  - przekształcenie równania  $\frac{x+3}{x-1}=\frac{x}{2x-2}$  do równania kwadratowego, np. (x+3)(2x-2)=x(x-1), oraz rozwiązanie tego równania: x=-6 oraz x=1, *ALBO*
  - przekształcenie równania  $\frac{x+3}{x-1} = \frac{x}{2x-2}$  do równania liniowego, np. 2(x+3) = x, **oraz** zapisanie założenia:  $x \neq 1$ ,
  - przekształcenie równania  $\frac{x+3}{x-1}=\frac{x}{2x-2}$  do równania kwadratowego, np. (x+3)(2x-2)=x(x-1), oraz zapisanie założenia:  $x\neq 1$ .
- 1 pkt przekształcenie równania  $\frac{x+3}{x-1}=\frac{x}{2x-2}$  do równania liniowego, np. 2(x+3)=x ALBO
  - przekształcenie równania  $\frac{x+3}{x-1}=\frac{x}{2x-2}$  do równania kwadratowego, np. (x+3)(2x-2)=x(x-1), ALBO
  - zapisanie założenia:  $x \neq 1$ .
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.



#### Uwaga:

Jeżeli zdający stosuje metodę analizy starożytnych i nie zapisze założenia, ale uwzględni je w końcowej odpowiedzi, to może otrzymać **3 punkty** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

### Sposób I

Każde z wyrażeń:  $\frac{x+3}{x-1}$ ,  $\frac{x}{2x-2}$  ma sens liczbowy dla  $x \neq 1$ .

Przekształcamy równanie równoważnie:

$$\frac{x+3}{x-1} = \frac{x}{2x-2} / 2(x-1), \text{ gdzie } x \neq 1$$
$$2(x+3) = x, \text{ gdzie } x \neq 1$$

Rozwiązujemy otrzymane równanie liniowe:

$$2x + 6 = x$$
$$x = -6$$

Rozwiązaniem równania  $\frac{x+3}{x-1} = \frac{x}{2x-2}$  jest liczba (-6).

#### Sposób II

Każde z wyrażeń:  $\frac{x+3}{x-1}$ ,  $\frac{x}{2x-2}$  ma sens liczbowy dla  $x \neq 1$ .

Przekształcamy równanie równoważnie:

$$\frac{x+3}{x-1} = \frac{x}{2x-2}$$
(x+3)(2x-2) = x(x-1), gdzie x \neq 1

Rozwiązujemy otrzymane równanie kwadratowe:

$$2x^{2} - 2x + 6x - 6 = x^{2} - x$$
$$x^{2} + 5x - 6 = 0$$

Obliczamy wyróżnik trójmianu  $x^2 + 5x - 6$ :

$$\Delta = 5^2 - 4 \cdot 1 \cdot (-6) = 49$$

Stad

$$x_1 = \frac{-5 - \sqrt{49}}{2 \cdot 1} = -6$$

$$x_2 = \frac{-5 + \sqrt{49}}{2 \cdot 1} = 1$$

Wobec założenia  $x \neq 1$  jedynym rozwiązaniem równania  $\frac{x+3}{x-1} = \frac{x}{2x-2}$  jest liczba (-6).

#### Zadanie 9. (0-2)

| Wymaganie ogólne                         | Wymaganie szczegółowe            |
|------------------------------------------|----------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                         |
| reprezentacji.                           | III.4) rozwiązuje [] nierówności |
| 1. Stosowanie obiektów matematycznych    | kwadratowe.                      |
| i operowanie nimi, interpretowanie pojęć |                                  |
| matematycznych.                          |                                  |

### Zasady oceniania

- 2 pkt spełnienie warunku określonego w zasadach oceniania za 1 pkt **oraz** zapisanie zbioru rozwiązań nierówności:  $x \in [-1,7]$  *ALBO* 
  - spełnienie warunku określonego w zasadach oceniania za 1 pkt oraz przedstawienie zbioru rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.
- 1 pkt obliczenie lub podanie pierwiastków trójmianu kwadratowego  $x^2-6x-7$ :  $x_1=-1$  oraz  $x_2=7$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### **Uwagi:**

- **1.** Jeżeli zdający, obliczając pierwiastki trójmianu  $x^2 6x 7$ , popełni błędy (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionych błędów zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.
- **2.** Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- **3.** Jeżeli zdający rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np.  $x^2 6x$ ), i w konsekwencji rozpatruje inną nierówność (np.  $x^2 6x \le 0$ ), to otrzymuje **0 punktów** za całe rozwiązanie.
- **4.** Akceptowane jest zapisanie pierwiastków trójmianu w postaci  $a + b\sqrt{c}$ , gdzie a, b, c są liczbami wymiernymi.
- **5.** Jeżeli zdający poda zbiór rozwiązań w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów i jednocześnie zapisze niewłaściwy przedział jako zbiór rozwiązań (np.  $x \in (-1,7)$ ), to otrzymuje **1 punkt** za całe rozwiązanie.

#### Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci [7, -1], to otrzymuje **2 punkty**.



Egzamin maturalny z matematyki – poziom podstawowy. Test diagnostyczny – grudzień 2024 r.

### Przykładowe pełne rozwiązanie

Zapisujemy nierówność w postaci  $x^2-6x-7\leq 0$  i obliczamy miejsca zerowe funkcji  $y=x^2-6x-7$ .

Obliczamy wyróżnik trójmianu  $x^2 - 6x - 7$ :

$$\Delta = (-6)^2 - 4 \cdot 1 \cdot (-7) = 64$$

Stad

$$x_1 = \frac{-(-6) - \sqrt{64}}{2 \cdot 1} = -1$$

$$x_2 = \frac{-(-6) + \sqrt{64}}{2 \cdot 1} = 7$$

Szkicujemy wykres funkcji  $y = x^2 - 6x - 7$ .

Odczytujemy argumenty, dla których funkcja przyjmuje wartości niedodatnie.



Zbiorem rozwiązań nierówności jest przedział [-1,7].

#### Zadanie 10. (0-4)

| Wymaganie ogólne                          | Wymaganie szczegółowe                        |
|-------------------------------------------|----------------------------------------------|
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                     |
| 1. Interpretowanie i operowanie           | V.4) odczytuje z wykresu funkcji: dziedzinę, |
| informacjami przedstawionymi w tekście,   | zbiór wartości, [] przedziały, w których     |
| zarówno matematycznym, jak                | funkcja przyjmuje wartości większe (nie      |
| i popularnonaukowym, a także w formie     | mniejsze) lub mniejsze (nie większe) od      |
| wykresów [].                              | danej liczby, [] argumenty, dla których      |
| ,                                         | wartości największe i najmniejsze są przez   |
|                                           | funkcję przyjmowane.                         |

#### Zasady oceniania

- 4 pkt zapisanie dokładnie czterech poprawnych odpowiedzi.
- 3 pkt zapisanie dokładnie trzech poprawnych odpowiedzi.
- 2 pkt zapisanie dokładnie dwóch poprawnych odpowiedzi.
- 1 pkt zapisanie dokładnie jednej poprawnej odpowiedzi.
- 0 pkt brak spełnienia powyższych kryteriów.

### Rozwiązanie

- **1.** Dziedziną funkcji f jest przedział (-4,4].
- **2.** Zbiorem wartości funkcji f jest przedział [-1,3].
- **3.** Zbiorem wszystkich argumentów, dla których funkcja f przyjmuje wartości ujemne, jest przedział (1,3).
- **4.** Zbiorem wszystkich argumentów, dla których funkcja f przyjmuje największą wartość, jest przedział (-4, -2].

#### Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej przy zachowaniu poprawnych krańców przedziału, np. zapisze, że dziedziną funkcji f jest przedział [4,-4), to otrzymuje **1 punkt** za tak zapisaną odpowiedź.



# Zadanie 11. (0-1)

| Wymaganie ogólne                                                      | Wymagania szczegółowe                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------|
| II. Wykorzystanie i tworzenie informacji.                             | Zdający:                                                    |
| 1. Interpretowanie i operowanie                                       | V.6) wyznacza wzór funkcji liniowej na                      |
| informacjami przedstawionymi w tekście,<br>zarówno matematycznym, jak | podstawie informacji o jej wykresie lub o jej własnościach; |
| i popularnonaukowym, a także w formie                                 | V.11) wykorzystuje własności funkcji                        |
| wykresów [].                                                          | liniowej [] do interpretacji zagadnień                      |
|                                                                       | geometrycznych [].                                          |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

# Rozwiązanie

PF

# Zadanie 12.1. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe        |
|-------------------------------------------|------------------------------|
| III. Wykorzystanie i interpretowanie      | Zdający:                     |
| reprezentacji.                            | V.4) odczytuje [] przedziały |
| 3. Tworzenie pomocniczych obiektów        | monotoniczności [].          |
| matematycznych na podstawie istniejących, |                              |
| w celu przeprowadzenia argumentacji lub   |                              |
| rozwiązania problemu.                     |                              |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

D

### Zadanie 12.2. (0-2)

| Wymaganie ogólne                         | Wymaganie szczegółowe                        |
|------------------------------------------|----------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                     |
| reprezentacji.                           | V.9) wyznacza wzór funkcji kwadratowej na    |
| Stosowanie obiektów matematycznych       | podstawie informacji o tej funkcji lub o jej |
| i operowanie nimi, interpretowanie pojęć | wykresie.                                    |
| matematycznych.                          |                                              |

### Zasady oceniania

- 2 pkt wybranie dwóch odpowiedzi, z których obie są poprawne.
- 1 pkt wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna.
- 0 pkt odpowiedź niepoprawna albo brak odpowiedzi.

### Uwaga:

Jeżeli zdający wybierze trzy lub więcej odpowiedzi, to otrzymuje **0 punktów**.

### Rozwiązanie

BD

# Zadanie 12.3. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe                |
|-------------------------------------------|--------------------------------------|
| III. Wykorzystanie i interpretowanie      | Zdający:                             |
| reprezentacji.                            | V.12) na podstawie wykresu funkcji   |
| 3. Tworzenie pomocniczych obiektów        | y = f(x) szkicuje wykresy funkcji [] |
| matematycznych na podstawie istniejących, | y = f(x) + b.                        |
| w celu przeprowadzenia argumentacji lub   |                                      |
| rozwiązania problemu.                     |                                      |

#### Zasady oceniania

- 1 pkt odpowiedź poprawna.
- 0 pkt odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

#### Rozwiązanie

FΡ

# Zadanie 13. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                     |
|------------------------------------------|-------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                  |
| reprezentacji.                           | V.14) posługuje się funkcjami wykładniczą |
| 1. Stosowanie obiektów matematycznych    | i logarytmiczną [].                       |
| i operowanie nimi, interpretowanie pojęć |                                           |
| matematycznych.                          |                                           |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

### Rozwiązanie

FΡ

# Zadanie 14. (0-1)

| Wymaganie ogólne                         | Wymagania szczegółowe                  |
|------------------------------------------|----------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                               |
| reprezentacji.                           | VI.1) oblicza wyrazy ciągu określonego |
| 1. Stosowanie obiektów matematycznych    | wzorem ogólnym;                        |
| i operowanie nimi, interpretowanie pojęć | VI.4) sprawdza, czy dany ciąg jest […] |
| matematycznych.                          | geometryczny.                          |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

# Rozwiązanie

FΡ

# Zadanie 15. (0-1)

| Wymaganie ogólne                        | Wymaganie szczegółowe                  |
|-----------------------------------------|----------------------------------------|
| III. Wykorzystanie i interpretowanie    | Zdający:                               |
| reprezentacji.                          | VI.7) wykorzystuje własności ciągów [] |
| 2. Dobieranie i tworzenie modeli        | arytmetycznych [] do rozwiązywania     |
| matematycznych przy rozwiązywaniu       | zadań [].                              |
| problemów praktycznych i teoretycznych. |                                        |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

D

# Zadanie 16. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                             |
|------------------------------------------|---------------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                          |
| reprezentacji.                           | VI.6) stosuje wzór na <i>n</i> -ty wyraz [] ciągu |
| 1. Stosowanie obiektów matematycznych    | geometrycznego.                                   |
| i operowanie nimi, interpretowanie pojęć |                                                   |
| matematycznych.                          |                                                   |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

С



# Zadanie 17.1. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                            |
|------------------------------------------|--------------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                         |
| reprezentacji.                           | VII.1) wykorzystuje definicje funkcji: sinus     |
| 1. Stosowanie obiektów matematycznych    | [] dla kątów od $0^{\circ}$ do $180^{\circ}$ []. |
| i operowanie nimi, interpretowanie pojęć |                                                  |
| matematycznych.                          |                                                  |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

D

# Zadanie 17.2. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                    |
|------------------------------------------|------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                 |
| reprezentacji.                           | VII.1) wykorzystuje definicje funkcji [] |
| 1. Stosowanie obiektów matematycznych    | tangens dla katów od 0° do 180° [].      |
| i operowanie nimi, interpretowanie pojęć |                                          |
| matematycznych.                          |                                          |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

۸

### Zadanie 18. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                           |
|------------------------------------------|-------------------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                                        |
| reprezentacji.                           | VII.2) korzysta z wzorów                        |
| Stosowanie obiektów matematycznych       | $\sin^2 \alpha + \cos^2 \alpha = 1 \ [\ldots].$ |
| i operowanie nimi, interpretowanie pojęć |                                                 |
| matematycznych.                          |                                                 |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Α

# Zadanie 19. (0-4)

| Wymaganie ogólne                          | Wymagania szczegółowe                    |
|-------------------------------------------|------------------------------------------|
| IV. Rozumowanie i argumentacja.           | Zdający:                                 |
| 4. Stosowanie i tworzenie strategii przy  | VIII.8) korzysta z cech podobieństwa     |
| rozwiązywaniu zadań, również w sytuacjach | trójkątów.                               |
| nietypowych.                              | SP IX. Wielokąty.                        |
|                                           | 2) stosuje wzory na pole trójkąta, […]   |
|                                           | trapezu, a także do wyznaczania długości |
|                                           | odcinków [].                             |

#### Zasady oceniania

4 pkt – zastosowanie poprawnej metody i poprawny wynik:  $P_{ABCD} = 22,14$ .

3 pkt – obliczenie długości odcinków AD oraz CD: |AD|=3,6 oraz |CD|=4,8 ALBO

– obliczenie pól trójkątów ABC oraz CAD:  $P_{ABC} = 13,5$  oraz  $P_{CAD} = 8,64$ .

2 pkt – obliczenie długości odcinka AD: |AD| = 3,6

**ALBO** 

– obliczenie długości odcinka CD: |CD| = 4.8,

– obliczenie pola trójkąta ABC:  $P_{ABC} = 13,5$ .

1 pkt – obliczenie długości odcinka BC: |BC| = 4,5

**ALBO** 

– zapisanie równania wynikającego z podobieństwa trójkątów ABC i CAD, np.

$$\frac{|CD|}{|AC|} = \frac{|AC|}{|AB|}$$
ALBO



Egzamin maturalny z matematyki – poziom podstawowy. Test diagnostyczny – grudzień 2024 r.

- zapisanie, że trójkąt ABC jest podobny do trójkąta CAD w skali  $k=\frac{7,5}{6}$ , ALBO
- zapisanie, że trójkąt CAD jest podobny do trójkąta ABC w skali  $k=\frac{6}{7,5}$ , ALBO
- zapisanie, że  $| \angle BAC | = | \angle ACD |$  oraz obliczenie cosinusa kąta BAC:  $\cos | \angle BAC | = \frac{6}{7,5},$  ALBO
- zapisanie zależności między wysokością AD trapezu a długością ramienia BC, np.  $\frac{1}{2}\cdot 7.5\cdot |AD|=\frac{1}{2}\cdot 6\cdot |BC|$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### **Uwaga:**

Jeżeli jedynym błędem zdającego jest:

- a) zastosowanie niepoprawnej definicji jednej funkcji trygonometrycznej
- b) błędne zastosowanie twierdzenia Pitagorasa
- c) zastosowanie niepoprawnej tożsamości  $\sqrt{x^2 + y^2} = x + y$
- d) błędne zastosowanie podobieństwa trójkątów (zapisanie błędnej proporcji),

i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.

Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a)–d), to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów.

### Przykładowe pełne rozwiązania

#### Sposób I

Trójkąty ABC oraz CAD są podobne na podstawie cechy kąt – kąt – kąt podobieństwa trójkątów. Stąd

$$\frac{|CD|}{|AC|} = \frac{|AC|}{|AB|}$$
$$\frac{|CD|}{6} = \frac{6}{7,5}$$

|CD| = 4.8

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka AD:

$$|AD|^2 = |AC|^2 - |CD|^2$$
  
 $|AD|^2 = 6^2 - 4.8^2$   
 $|AD|^2 = 12.96$   
 $|AD| = 3.6$ 

Obliczamy pole trapezu ABCD:

$$P_{ABCD} = \frac{1}{2} \cdot (|AB| + |CD|) \cdot |AD| = \frac{1}{2} \cdot (7.5 + 4.8) \cdot 3.6 = 22.14$$

#### Sposób II

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka BC:

$$|BC|^2 = |AB|^2 - |AC|^2$$
  
 $|BC|^2 = 7.5^2 - 6^2$   
 $|BC|^2 = 20.25$   
 $|BC| = 4.5$ 

Obliczamy pole trójkąta ABC:

$$P_{ABC} = \frac{1}{2} \cdot |AC| \cdot |BC| = \frac{1}{2} \cdot 6 \cdot 4,5 = 13,5$$

Trójkąt CAD jest podobny do trójkąta ABC (na podstawie cechy kąt – kąt – kąt podobieństwa trójkątów) w skali  $k=\frac{6}{7,5}=0.8$ .

Wykorzystujemy zależność między polami figur podobnych i obliczamy pole trójkąta CAD:

$$P_{CAD} = k^2 \cdot P_{ABC} = 0.8^2 \cdot 13.5 = 8.64$$

Obliczamy pole trapezu ABCD:

$$P_{ABCD} = P_{ABC} + P_{CAD} = 13.5 + 8.64 = 22.14$$

#### Sposób III

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka BC:

$$|BC|^2 = |AB|^2 - |AC|^2$$
  
 $|BC|^2 = 7.5^2 - 6^2$   
 $|BC|^2 = 20.25$   
 $|BC| = 4.5$ 

Długość odcinka AD jest równa wysokości trójkąta ABC poprowadzonej z wierzchołka C.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot 7.5 \cdot |AD|$$

Ponadto pole trójkąta ABC można obliczyć jako połowę iloczynu długości przyprostokątnych:



Egzamin maturalny z matematyki – poziom podstawowy. Test diagnostyczny – grudzień 2024 r.

$$P_{ABC} = \frac{1}{2} \cdot 6 \cdot 4,5 = 13,5$$

Zatem

$$\frac{1}{2} \cdot 7.5 \cdot |AD| = 13.5$$
$$|AD| = 3.6$$

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka CD:

$$|CD|^2 = |AC|^2 - |AD|^2$$
  
 $|CD|^2 = 6^2 - 3.6^2$   
 $|CD|^2 = 23.04$   
 $|CD| = 4.8$ 

Obliczamy pole trapezu ABCD:

$$P_{ABCD} = \frac{1}{2} \cdot (|AB| + |CD|) \cdot |AD| = \frac{1}{2} \cdot (7.5 + 4.8) \cdot 3.6 = 22.14$$

#### Sposób IV

Zauważmy, że  $| \not ACD | = | \not ABAC |$ .

Zatem 
$$\cos | \angle ACD| = \cos | \angle BAC| = \frac{|AC|}{|AB|} = \frac{6}{7.5} = 0.8$$
.

Jednocześnie  $\cos | \angle ACD| = \frac{|CD|}{|AC|} = \frac{|CD|}{6}$ .

Stad

$$\frac{|CD|}{6} = 0.8$$

więc

$$|CD| = 4.8$$

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka AD:

$$|AD|^2 = |AC|^2 - |CD|^2$$
  
 $|AD|^2 = 6^2 - 4.8^2$   
 $|AD|^2 = 12.96$   
 $|AD| = 3.6$ 

Obliczamy pole trapezu ABCD:

$$P_{ABCD} = \frac{1}{2} \cdot (|AB| + |CD|) \cdot |AD| = \frac{1}{2} \cdot (7.5 + 4.8) \cdot 3.6 = 22.14$$

# Zadanie 20. (0-1)

| Wymaganie ogólne                        | Wymagania szczegółowe                     |
|-----------------------------------------|-------------------------------------------|
| IV. Rozumowanie i argumentacja.         | Zdający:                                  |
| 1. Przeprowadzanie rozumowań, także     | VIII.5) stosuje własności kątów wpisanych |
| kilkuetapowych, podawanie argumentów    | i środkowych;                             |
| uzasadniających poprawność rozumowania, | VIII.6) stosuje wzory na [] długość łuku  |
| odróżnianie dowodu od przykładu.        | okręgu.                                   |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

В

# Zadanie 21. (0-1)

| Wymaganie ogólne                        | Wymaganie szczegółowe                 |
|-----------------------------------------|---------------------------------------|
| IV. Rozumowanie i argumentacja.         | Zdający:                              |
| 1. Przeprowadzanie rozumowań, także     | IX.3) oblicza odległość dwóch punktów |
| kilkuetapowych, podawanie argumentów    | w układzie współrzędnych.             |
| uzasadniających poprawność rozumowania, |                                       |
| odróżnianie dowodu od przykładu.        |                                       |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

۸



# Zadanie 22. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe                      |
|-------------------------------------------|--------------------------------------------|
| IV. Rozumowanie i argumentacja.           | Zdający:                                   |
| 4. Stosowanie i tworzenie strategii przy  | IX.2) posługuje się równaniami prostych na |
| rozwiązywaniu zadań, również w sytuacjach | płaszczyźnie, w postaci kierunkowej [],    |
| nietypowych.                              | w tym wyznacza równanie prostej            |
|                                           | o zadanych własnościach (takich, jak np.   |
|                                           | [] równoległość do innej prostej).         |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

В

# Zadanie 23. (0-1)

| Wymaganie ogólne                         | Wymaganie szczegółowe                |
|------------------------------------------|--------------------------------------|
| III. Wykorzystanie i interpretowanie     | Zdający:                             |
| reprezentacji.                           | IX.4) posługuje się równaniem okręgu |
| 1. Stosowanie obiektów matematycznych    | $(x-a)^2 + (y-b)^2 = r^2$ .          |
| i operowanie nimi, interpretowanie pojęć |                                      |
| matematycznych.                          |                                      |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

С

# Zadanie 24. (0-1)

| Wymaganie ogólne                          | Wymagania szczegółowe                     |
|-------------------------------------------|-------------------------------------------|
| III. Wykorzystanie i interpretowanie      | Zdający:                                  |
| reprezentacji.                            | X.3) rozpoznaje w [] ostrosłupach []      |
| 3. Tworzenie pomocniczych obiektów        | kąty między ścianami […];                 |
| matematycznych na podstawie istniejących, | X.5) oblicza objętości [] ostrosłupów, [] |
| w celu przeprowadzenia argumentacji lub   | również z wykorzystaniem trygonometrii.   |
| rozwiązania problemu.                     |                                           |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

В

# Zadanie 25. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe                      |
|-------------------------------------------|--------------------------------------------|
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                   |
| 1. Interpretowanie i operowanie           | X.5) oblicza objętości […] graniastosłupów |
| informacjami przedstawionymi w tekście [] | [].                                        |
| matematycznym [].                         |                                            |

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

D



### Zadanie 26. (0-2)

| Wymaganie ogólne                                                                                | Wymagania szczegółowe                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IV. Rozumowanie i argumentacja.                                                                 | Zdający:                                                                                                                                                                                                                |
| 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych. | X.4) rozpoznaje [] w stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami (np. kąt rozwarcia stożka, kąt między tworzącą a podstawą), oblicza miary tych kątów; X.5) oblicza objętości [] stożka []. |

#### Zasady oceniania

2 pkt – zastosowanie poprawnej metody i poprawny wynik: 120°.

1 pkt – obliczenie kwadratu promienia podstawy stożka:  $r^2 = 12$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Przykładowe pełne rozwiązanie

Ze wzoru na objętość stożka otrzymujemy:

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot H$$
$$8\pi = \frac{1}{3} \cdot \pi \cdot r^2 \cdot 2$$
$$r^2 = 12$$
$$r = \sqrt{12} = 2\sqrt{3}$$

Niech  $\alpha$  oznacza połowę miary kąta rozwarcia stożka. Wtedy

$$tg \alpha = \frac{2\sqrt{3}}{2} = \sqrt{3}$$

Stad  $\alpha = 60^{\circ}$ .

Zatem kąt rozwarcia stożka ma miarę 120°.

### Zadanie 27. (0-1)

| Wymaganie ogólne                          | Wymaganie szczegółowe                 |
|-------------------------------------------|---------------------------------------|
| II. Wykorzystanie i tworzenie informacji. | Zdający:                              |
| 1. Interpretowanie i operowanie           | XI.2) zlicza obiekty, stosując reguły |
| informacjami przedstawionymi w tekście [] | mnożenia i dodawania [].              |
| matematycznym [].                         |                                       |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

#### Rozwiązanie

В

#### Zadanie 28. (0-2)

| Wymaganie ogólne                        | Wymaganie szczegółowe             |
|-----------------------------------------|-----------------------------------|
| III. Wykorzystanie i interpretowanie    | Zdający:                          |
| reprezentacji.                          | XII.1) oblicza prawdopodobieństwo |
| 2. Dobieranie i tworzenie modeli        | w modelu klasycznym.              |
| matematycznych przy rozwiązywaniu       |                                   |
| problemów praktycznych i teoretycznych. |                                   |

### Zasady oceniania

2 pkt – zastosowanie poprawnej metody i poprawny wynik:  $P(A) = \frac{11}{24}$ .

- 1 pkt wypisanie wszystkich zdarzeń elementarnych LUB obliczenie/podanie liczby tych zdarzeń:  $|\Omega|=6\cdot 4$ , LUB sporządzenie tabeli o 24 polach <u>odpowiadających</u> zdarzeniom elementarnym, LUB sporządzenie pełnego drzewa stochastycznego ALBO
  - wypisanie (lub zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego, ALBO
  - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=11, o ile nie zostały zliczone błędne pary, ALBO
  - sporządzenie fragmentu drzewa stochastycznego, który zawiera wszystkie gałęzie sprzyjające zdarzeniu A, oraz zapisanie prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów doświadczenia, ALBO
  - podanie prawdopodobieństwa jednoelementowego zdarzenia (elementarnego):  $\frac{1}{24}$ , *ALBO*



Egzamin maturalny z matematyki – poziom podstawowy. Test diagnostyczny – grudzień 2024 r.

- zapisanie tylko 
$$P(A) = \frac{11}{24}$$
.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### Uwaga:

Jeżeli zdający zapisuje tylko liczby 11 lub 24 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

### Sposób I

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (x, y), gdzie  $x \in \{1, 2, 3, 4, 5, 6\}$  oraz  $y \in \{7, 8, 9, 10\}$ .

Liczbę wszystkich zdarzeń elementarnych obliczamy z wykorzystaniem reguły mnożenia. Moc zbioru  $\,\Omega\,$  jest równa  $\,6\cdot 4=24.$ 

Zdarzeniu A sprzyjają następujące zdarzenia elementarne: (1,8),(2,8),(2,10),(3,8),(4,7),(4,8),(4,9),(4,10),(5,8),(6,8),(6,10), więc moc zbioru A jest równa 11.

Zatem prawdopodobieństwo zdarzenia A jest równe  $\frac{11}{24}$ .

#### Sposób II

W tabeli literą  $\mathcal{A}$  zaznaczamy zdarzenia elementarne sprzyjające zdarzeniu A (pary liczb, których iloczyn jest podzielny przez 4).

| C  | 1             | 2             | 3             | 4             | 5             | 6             |
|----|---------------|---------------|---------------|---------------|---------------|---------------|
| 7  |               |               |               | $\mathcal{A}$ |               |               |
| 8  | $\mathcal{A}$ | $\mathcal{A}$ | $\mathcal{A}$ | $\mathcal{A}$ | $\mathcal{A}$ | $\mathcal{A}$ |
| 9  |               |               |               | $\mathcal{A}$ |               |               |
| 10 |               | $\mathcal{A}$ |               | $\mathcal{A}$ |               | $\mathcal{A}$ |

Moc zbioru  $\Omega$  jest równa 24.

Zdarzeń sprzyjających wylosowaniu liczb, których iloczyn jest podzielny przez 4, jest 11. Zatem prawdopodobieństwo zdarzenia A jest równe  $\frac{11}{24}$ .

#### Sposób III (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.



Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{3}{6} \cdot \frac{1}{4} + \frac{2}{6} \cdot \frac{2}{4} + \frac{1}{6} \cdot \frac{4}{4} = \frac{11}{24}$$

### Zadanie 29. (0-2)

| Wymaganie ogólne                       | Wymaganie szczegółowe                    |
|----------------------------------------|------------------------------------------|
| I. Sprawność rachunkowa.               | Zdający:                                 |
| Wykonywanie obliczeń na liczbach       | XII.2) oblicza średnią arytmetyczną […], |
| rzeczywistych, także przy użyciu       | znajduje medianę [].                     |
| kalkulatora, stosowanie praw działań   |                                          |
| matematycznych przy przekształcaniu    |                                          |
| wyrażeń algebraicznych oraz            |                                          |
| wykorzystywanie tych umiejętności przy |                                          |
| rozwiązywaniu problemów w kontekstach  |                                          |
| rzeczywistych i teoretycznych.         |                                          |

#### Zasady oceniania

- 2 pkt zapisanie dokładnie dwóch poprawnych odpowiedzi.
- 1 pkt zapisanie dokładnie jednej poprawnej odpowiedzi.
- 0 pkt brak spełnienia powyższych kryteriów.

# Uwaga:

Nie akceptuje się zaokrągleń otrzymanych wyników.



#### Rozwiązanie

- 1. Średnia arytmetyczna liczby przeczytanych książek w tej grupie uczniów jest równa 6,38.
- 2. Mediana liczby przeczytanych książek w tej grupie uczniów jest równa 6,5.

#### Zadanie 30. (0-4)

| Wymaganie ogólne                        | Wymaganie szczegółowe                    |
|-----------------------------------------|------------------------------------------|
| III. Wykorzystanie i interpretowanie    | Zdający:                                 |
| reprezentacji.                          | XIII) rozwiązuje zadania optymalizacyjne |
| 2. Dobieranie i tworzenie modeli        | w sytuacjach dających się opisać funkcją |
| matematycznych przy rozwiązywaniu       | kwadratową.                              |
| problemów praktycznych i teoretycznych. |                                          |

#### Zasady oceniania

4 pkt – zastosowanie poprawnej metody i poprawne wyniki, np.:

$$P(x) = -26x^2 + 96x$$
 oraz  $D = (0,3)$  oraz  $x = \frac{24}{13}$ .

- 3 pkt zapisanie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x oraz wyznaczenie dziedziny D tej funkcji, np.  $P(x) = -26x^2 + 96x$  oraz D = (0,3) ALBO
  - zapisanie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x (bez wyznaczonej dziedziny funkcji P) oraz prawidłowe obliczenie pierwszej współrzędnej wierzchołka wykresu funkcji P, np.  $P(x) = -26x^2 + 96x$  oraz  $x = \frac{24}{13}$ .
- 2 pkt zapisanie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x (bez wyznaczonej dziedziny funkcji P), np.  $P(x)=-26x^2+96x$  ALBO
  - zapisanie zależności między długościami krawędzi AD i AB prostopadłościanu oraz wyznaczenie zakresu zmienności x, np.

$$4 \cdot x + 4 \cdot |AD| + 4 \cdot 3x = 48$$
 oraz  $x \in (0,3)$ .

- 1 pkt zapisanie zależności między długościami krawędzi AD i AB prostopadłościanu, np.  $4\cdot x+4\cdot |AD|+4\cdot 3x=48$  ALBO
  - wyznaczenie zakresu zmienności  $x: x \in (0,3)$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Uwagi:

- **1.** Jeżeli zdający zapisze poprawny wzór funkcji P zmiennej x oraz zapisze poprawną dziedzinę funkcji P, a następnie obliczy  $P\left(\frac{24}{13}\right)$  oraz wartości funkcji P dla dwóch argumentów leżących symetrycznie względem prostej  $x=\frac{24}{13}$ , i nie odwoła się do symetrii wykresu funkcji kwadratowej, to otrzymuje **3 punkty** za całe rozwiązanie.
- 2. Jeżeli zdający nie zapisze pola powierzchni całkowitej prostopadłościanu jako funkcji P zmiennej x, a jedynie obliczy wartości pola dla wybranych długości krawędzi i na tej podstawie wskazuje największą wartość pola, to za całe rozwiązanie otrzymuje 0 punktów, o ile nie nabył prawa do innej liczby punktów.
- **3.** Jeżeli zdający zamiast sumy długości wszystkich krawędzi prostopadłościanu rozpatruje sumę obwodów wszystkich jego ścian i rozwiąże zadanie konsekwentnie do końca, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie (za konsekwentne: wyznaczenie wzoru funkcji pola, dziedziny tej funkcji oraz obliczenie wartości x, dla której funkcja osiąga wartość największą).
- **4.** Jeżeli zdający w wyniku popełnionych błędów otrzymuje funkcję pola, która jest funkcją kwadratową o dodatnim współczynniku przy  $x^2$ , to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (za zapisanie zależności między długościami krawędzi AD i AB prostopadłościanu oraz za wyznaczenie zakresu zmienności x).
- 5. Jeżeli zdający oblicza największą wartość funkcji P z wykorzystaniem rachunku różniczkowego i nie uzasadni, że w punkcie będącym miejscem zerowym pochodnej funkcji P jest największa wartość funkcji P, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.

Za poprawne uzasadnienie, że w punkcie będącym miejscem zerowym pochodnej funkcji P jest największa wartość funkcji P, można uznać sytuację, gdy zdający bada znak pochodnej (np. szkicuje wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznacza na rysunku, np. znakami "+" i "-", znak pochodnej), **oraz**:

– opisuje przedziały monotoniczności funkcji  $\,P\,$  (słownie lub graficznie – np. przy użyciu strzałek)

#### LUB

- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja  $\,P\,$  ma maksimum lokalne i jest to jednocześnie jej największa wartość,

### **LUB**

- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja P ma maksimum lokalne i jest to jedyne ekstremum tej funkcji.



### Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.



Ponieważ |AB| = x, więc |AE| = 3x.

Suma długości wszystkich dwunastu krawędzi prostopadłościanu jest równa 48, zatem

$$4 \cdot |AB| + 4 \cdot |AD| + 4 \cdot |AE| = 48$$
$$|AB| + |AD| + |AE| = 12$$
$$x + |AD| + 3x = 12$$
$$|AD| = 12 - 4x$$

Pole P powierzchni całkowitej prostopadłościanu ABCDEFGH jest równe

$$P = 2 \cdot (|AB| \cdot |AD| + |AB| \cdot |AE| + |AD| \cdot |AE|)$$

Ponieważ |AB|=x, |AD|=12-4x, |AE|=3x, więc wzór funkcji P zmiennej x ma postać

$$P(x) = 2 \cdot [x \cdot (12 - 4x) + x \cdot 3x + (12 - 4x) \cdot 3x]$$

$$P(x) = 2 \cdot (12x - 4x^2 + 3x^2 + 36x - 12x^2)$$

$$P(x) = 2 \cdot (-13x^2 + 48x)$$

$$P(x) = -26x^2 + 96x$$

Wyznaczamy dziedzinę funkcji P. Z warunków zadania wynika, że:

$$|AB| = x > 0$$
 oraz  $|AD| = 12 - 4x > 0$  oraz  $|AE| = 3x > 0$ 

Zatem

$$x > 0$$
 oraz  $x < 3$ 

Zmienna x może przyjmować wartości z przedziału (0,3).

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka tej paraboli:

$$p = \frac{-96}{2 \cdot (-26)} = \frac{24}{13} \in (0,3)$$

Zatem funkcja P przyjmuje wartość największą dla argumentu  $\frac{24}{13}$ .

Spośród rozważanych prostopadłościanów największe pole powierzchni całkowitej ma ten, w którym  $x=\frac{24}{13}$ .

