進行方向の計算回数削減による ソーシャルフォースモデルを用いた 人流シミュレーションの高速化

情報科学研究科 情報科学専攻 前川研究室 2281011 片寄颯人

人流シミュレーション 歩行者をエージェントでモデル化

駅や商業施設などの避難シミュレーション
→ソーシャルフォースモデル(SFM)

解析人数が増えるほど処理時間が長くなる

人流シミュレーション 歩行者をエージェントでモデル化

駅や商業施設などの避難シミュレーション
→ソーシャルフォースモデル(SFM)

解析人数が増えるほど処理時間が長くなる

本研究の目的

SFMを用いた人流シミュレーションの高速化

SFMの解析手順

反復回数が多くなるほど 解析時間が長くなる

SFMの運動方程式

周囲の人を避ける動きをモデル化して エージェントの動きを再現

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{T} + \sum_{j} F_{ij} + \sum_{W} F_{iW}$$

 m_i エージェントの体重 v_i^0 エージェントの希望速度 v_i エージェントの歩行速度 τ 時定数

エージェント移動を決定する運動方程式

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{\tau} + \sum_{j} F_{ij} + \sum_{W} F_{iW}$$

エージェント移動を決定する運動方程式

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{\tau} + \sum_{j} F_{ij} + \sum_{w} F_{iw}$$

目的地

エージェント移動を決定する運動方程式

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{\tau} + \sum_{j} F_{ij} + \sum_{w} F_{iw}$$

目的地

進行方向ベクトル e_i の計算が必要

エージェント移動を決定する運動方程式

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{\tau} + \sum_{j} F_{ij} + \sum_{W} F_{iW}$$

目的地

周囲のエージェントを避ける力

エージェント移動を決定する運動方程式

$$m_{i} \frac{dv_{i}}{dt} = m_{i} \frac{v_{i}^{0} e_{i} - v_{i}}{\tau} + \sum_{j} F_{ij} + \sum_{w} F_{iw}$$

目的地

周囲のエージェントを避ける力

障害物を避ける力

SFMの計算時間の削減

エージェントを避ける力の計算

エージェント数が多くなるほど計算回数が多くなる →セル分割法による計算回数削減

セル分割法を用いたSFM

解析領域を格子状に分割することでエージェント間距離を計算するエージェント数を削減

- 1 計算対象のエージェント
- ■■ 視野範囲

セル分割法を用いたSFM

解析領域を格子状に分割することでエージェント間距離を計算するエージェント数を削減

- 1 計算対象のエージェント
- 視野範囲

エージェント3:距離と角度の計算→判定

エージェント4:距離と角度の計算→判定

エージェント6:距離と角度の計算→判定

エージェント9:距離と角度の計算→判定→力の計算

- 1 計算対象のエージェント
- ■ 視野範囲

SFMの計算時間の削減

エージェントを避ける力の計算

エージェント数が多くなるほど計算回数が多くなる →セル分割法による計算回数削減

さらなる高速化には

障害物を避ける力

目的地

の計算回数削減が必要

提案手法の方針

運動方程式=

+

障害物を避ける力の計算

障害物は座標が変化しない

目的地

進行方向ベクトル e_i はエージェントの座標に応じて決まる

提案手法の方針

運動方程式=

+

障害物を避ける力の計算

障害物は座標が変化しない

目的地

進行方向ベクトル e_i はエージェントの座標に応じて決まる

提案手法

目的地

障害物を避ける力

の計算を簡略化

→演算回数を削減による高速化を目指す

解析領域を格子状に分割 あらかじめ格子ごとのエージェント進行方向を設定

〇 エージェント

格子ごとの進行方向

提案手法を用いたSFM

解析中は配列を参照

提案手法を用いたSFM

解析中は配列を参照

目的地

障害物から受ける力

の計算を削減

エージェントを避ける力

→解析中に計算が必要

エージェントを避ける力の 計算時間を削減 →さらなる高速化が見込める

エージェントを避ける力の計算時間削減

単純なセル分割法 影響範囲外のエージェント間距離も計算 →無駄な処理

エージェントを避ける力の計算時間削減

単純なセル分割法 影響範囲外のエージェント間距離も計算 →無駄な処理

提案手法 影響範囲に合わせた近似領域を設定 →エージェント間距離の計算回数を削減

近似領域の高精度化

単純なセル分割法

エージェント3:距離と角度の計算→判定

エージェント4:距離と角度の計算→判定

エージェント6:距離と角度の計算→判定

エージェント9:距離と角度の計算→判定→力の計算

提案手法

エージェント3:距離と角度の計算→判定

エージェント9:距離と角度の計算→判定→力の計算

近似領域の高精度化

近似領域の設定方法 座標や進行方向に応じて数多く存在 →セルの選択に時間がかかる

近似領域の形状は四角形を維持

→範囲内に含まれるかどうかを高速に判定可能

近似領域の設定方法

進行方向(上下左右)の分類方法

- ・エージェントの進行方向ベクトルや視野角
- ・セル分割法のセルの座標
 - →さまざまな方法が考えられる

本研究

近似領域の設定を6パターン設定

パターン1	セル分割法	
パターン2	エージェントの進行方向	
パターン3	エージェントの進行方向と視野座標	
パターン4	エージェントの座標と視野座標	
パターン5	視野座標とセルの座標	
パターン6	エージェントの進行方向	

提案手法の有効性を評価するために SFMを用いた人流シミュレーションを行う

既存手法	セル分割法を用いたSFM
提案手法	・格子分割を用いた進行方向の計算回数削減 ・エージェント間距離の計算回数削減

測定内容

- ・進行方向計算中の演算回数
- ・シミュレーション時間
- ・提案手法が生じる誤差

エージェントの初期配置

交差の配置

解析領域	300m × 300m
エージェント数	可変
壁粒子数	0
1エージェントあたり の経由地	0

直進の配置

解析領域	50m × 50m
エージェント数	40
壁粒子数	可変
1エージェントあたり の経由地	1

エージェントの初期配置位置

経由地

障害物

関連研究を参考にパラメータを設定

A_{i}	2000 N	
$B_{_i}$	0.08	
k	$1.2\times10^5 kgs^{-2}$	
K	$2.4 \times 10^{5} kg m^{-1} s^{-2}$	
$v_i^0(t)$	1.4 m /s	
t_{i}	0.0001s	
r_{i}	0.25 m	
格子サイズ	50.00 m ~ 0.19 m	

評価環境

	マシン1	マシン2
CPU	Intel Xeon E5-2687W v2	Intel Xeon E5-2667W v2
Memory	64GB	32GB
OS	Linux 4.12.9	Linux 6.5.8
GCC version	7.2.0	13.2.0
最適化 オプション	-O3	

格子サイズ50mから0.78mまで エージェントが通る場所が個別計算の格子に設定 →計算回数が削減できない

格子サイズ50mから0.78mまで エージェントが通る場所が個別計算の格子に設定 →計算回数が削減できない

格子サイズが大きくなるほど前処理にかかる時間が多くなる →格子数が多くなるほど前処理中の計算回数が多くなるため

通路幅2mのときの計算回数

格子サイズ0.39

本測定下において一番計算回数が少ない

- →・エージェントが通る場所が個別計算する格子にならない
 - ・前処理の計算回数が低い

通路幅2mのときの実行時間

格子サイズ0.39mのときに最もはやく解析できる

格子サイズが小さくなるほど前処理の時間が多くなる →格子数が多くなるほど計算回数が多くなるため

通路幅を変えたときの高速化率

最大高速化率

2m:1.75倍 5m:1.69倍 10m:1.45倍 20m:1.11倍 通路幅が狭いほど高速化率が高くなる

通路幅が狭いほど壁粒子の密度が高くなり 解析中の演算回数が削減できるためであると考えられる

格子分割を用いた計算回数削減

通路を再現した配置 計算回数を〇%削減 シミュレーション時間を最大1.7倍高速化

実問題に対しても有効であるか明らかにする 本評価では演習室と教室を再現した配置を用いて 避難シミュレーションを行う

演習室の配置

解析領域	50m×50m		
経由地	26個		
エージェント数	204人		
壁粒子数	1454個		

教室の配置

解析領域	50m×50m			
経由地	12個			
エージェント数	96人			
壁粒子数	1037個			

実問題における高速化率

実問題における高速化率

提案手法の高速化率 演習室の配置で最大1.50倍,教室の配置で1.55倍 →実問題に対しても解析時間の短縮が可能

実問題における解析精度

誤差の算出方法を示す!

実問題における解析精度

提案手法の誤差 演習室と教室の配置:最大2.5cm

解析領域50m×50mに対して小さな値

→許容できる範囲の誤差で高速化できる

提案手法

格子分割を用いた進行方向の計算回数削減計算回数を○%削減シミュレーション時間を○倍高速化生じる誤差が○cm →人流シミュレーションに対して有効

解析中のエージェント間距離の計算回数を削減→さらなる高速化が見込める

エージェント間距離の計算回数削減

エージェント間距離の計算回数削減による

エージェント間距離の計算回数[1010回]

括弧内の数字は削減率

人数	パターン					
	1(既存)	2	3	4	5	6
3,000	5.1	3.9 (24%)	4.0 (23%)	4.4 (15%)	4.1 (21%)	4.4 (15%)
5,000	14.4	10.9 (24%)	11.1 (23%)	12.2 (15%)	11.4 (21%)	12.2 (15%)
7,500	33.1	25.2 (24%)	25.8 (22%)	28.3 (15%)	26.7 (20%)	28.3 (15%)

パターンごとの実行時間[s]

人数	パターン					
	1(既存)	2	3	4	5	6
3,000	2,636	2,123	2,140	2,307	2,184	2,292
5,000	7,435	5,941	6,016	6,463	6,162	6,453
7,500	1,7198	13,730	13,985	15,048	14,931	15,036

パターンごとの実行時間[s]

人数	パターン					
	1(既存)	2	3	4	5	6
3,000	2,636	2,123	2,140	2,307	2,184	2,292
5,000	7,435	5,941	6,016	6,463	6,162	6,453
7,500	1,7198	13,730	13,985	15,048	14,931	15,036

一番高速な手法 パターン1(進行方向ベクトルeを用いた手法)

既存手法と同精度で高速な手法 パターン2(進行方向ベクトルeと視野座標を用いた手法)

パターンごとの高速化率[倍]

実問題に対する実行時間

SFMを用いた人流シミュレーションを高速化するために エージェントの進行方向計算中の演算回数を削減

提案手法

格子分割を用いた進行方向計算回数削減で最大1.9倍 エージェント間距離の計算回数削減で最大1.3倍

→提案手法よりも高速に解析できることを確認

