k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae 1; g_Clostridium sensu stricto 1; s_Clostridium perfringens

Correlation within: IM-PIM

Correlation within: IM-DIM

Correlation with all samples

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

Correlation within: IM-PIM

Correlation within: IM-DIM

k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Bacillaceae; g_Oceanobacillus; s_Oceanobacillus caeni

Correlation within: IM-PIM

Correlation within: IM-DIM

k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Corynebacteriales; f__Corynebacteriaceae; g__Corynebacterium 1; Ambiguous_taxa

31.0

30.0

Cq value

29.5

29.0

30.5

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Micrococcales; f_Brevibacteriaceae; g_Brevibacterium; NA

Correlation with all samples
log_e(S) = 8.379, p = 0.053, ρ̂_{Spearman} = 0.335, Cl_{95%} [-0.014, 0.611], n_{pairs} = 34

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus; NA

Correlation within: IM-PIM

Correlation within: IM-DIM

k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Micrococcales; f__Beutenbergiaceae; NA; NA

 $\log_{e}(S) = 8.113, p = 0.355, \widehat{\rho}_{Spearman} = 0.178, Cl_{95\%}$ [-0.212, 0.520], $n_{pairs} = 29$

Correlation within: IM-PIM

 $log_e(S) = 5.545$, p = 0.746, $\widehat{\rho}_{Spearman} = 0.105$, $Cl_{95\%}$ [-0.513, 0.652], $n_{pairs} = 12$

Correlation within: IM-DIM

 $log_e(S) = 5.940, p = 0.011, \widehat{\rho}_{Spearman} = -0.727, Cl_{95\%} [-0.927, -0.206], n_{pairs} = 11$

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Aerococcaceae; g__Globicatella; Ambiguous_taxa

SampleType • REF-PID • REF-PIM • REF-DID • IM-PIM

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; NA; NA

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; NA; NA

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

Correlation within: IM-PIM

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; Ambiguous_taxa; Ambiguous_taxa

 $log_e(S) = 8.034, p = 0.209, \widehat{\rho}_{Spearman} = 0.241, Cl_{95\%} [-0.149, 0.566], n_{pairs} = 29$

IM-PIM

SampleType • IM-PID

Correlation within: IM-PIM

 $\log_{\rm e}(\rm S) = 5.730, \ p = 0.812, \ \widehat{\rho}_{\rm Spearman} = -0.077, \ {\rm Cl}_{95\%} \ [-0.635, \ 0.534], \ n_{\rm pairs} = 12$

Correlation within: IM-DIM

 $log_e(S) = 6.006$, p = 0.175, $\widehat{\rho}_{Spearman} = -0.420$, $Cl_{95\%}$ [-0.808, 0.222], $n_{pairs} = 12$

k_Bacteria; p_RsaHF231; c_uncultured bacterium; o_uncultured bacterium; f_uncultured bacterium; g_uncultured bacterium; s_uncultured bacterium

Correlation within: IM-PIM

Cq value

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Aerococcaceae; g__Globicatella; Ambiguous_taxa

SampleType • REF-PID • REF-PIM • REF-DID • IM-PIM

30.0

Cq value

19.250

19.275

Cq value

19.300

19.325

k_Bacteria; p_RsaHF231; c_uncultured bacterium; o_uncultured bacterium; f_uncultured bacterium; g_uncultured bacterium; s_uncultured bacterium

 $log_e(S) = 7.434$, p = 0.003, $\hat{\rho}_{Spearman} = 0.537$, $Cl_{95\%}$ [0.194, 0.763], $n_{pairs} = 28$

SampleType • IM-PID •

Correlation within: IM-PIM

 $log_e(S) = 4.682, p = 0.110, \widehat{\rho}_{Spearman} = 0.509, Cl_{95\%} [-0.151, 0.855], n_{pairs} = 11$

Correlation within: IM-DIM

IM−PIM • IM−DID • IM−DIM • Feed

 $log_e(S) = 5.481$, p = 0.618, $\widehat{\rho}_{Spearman} = 0.161$, $Cl_{95\%}$ [-0.470, 0.683], $n_{pairs} = 12$

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; NA; NA

SampleType • REF-DID • IM-PID • IM-PIM • IM-DID • IM-DIM

30.5

31.0

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus; s__Enterococcus cecorum

Correlation within: IM-PIM

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus; NA

28

Cq value

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

31

30

0.00 -

29.0

29.5

30.0

Cq value

30.5

31.0

k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Bacillaceae; g_Bacillus; s_uncultured Virgibacillus sp.

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

Correlation within: IM-PIM

29 Cq value 30

Correlation within: IM-DIM

Correlation within: Feed

28

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus; NA

 $log_e(S) = 7.348$, p = 0.005, $\widehat{\rho}_{Spearman} = 0.526$, $Cl_{95\%}$ [0.171, 0.760], $n_{pairs} = 27$

Cq value

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__Bacillus thermoamylovorans

Correlation with all samples

Correlation within: IM-PIM

Correlation within: IM-DIM

Correlation with all samples

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Corynebacteriales; f_Corynebacteriaceae; g_Corynebacterium 1; s_Corynebacterium xerosis

Correlation within: IM-PIM

29 Cq value

Correlation within: IM-DIM

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Actinomycetaceae; g_Actinomyces; s_uncultured Actinomycetales bacterium

Correlation with all samples

log_e(S) = 8.024, ρ = 0.194, ρ̂_{Spearman} = 0.248, Cl_{95%} [-0.141, 0.571], n_{pairs} = 29

k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Micrococcales; f__Microbacteriaceae; g__Microbacterium; Ambiguous_taxa

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Macrococcus; Ambiguous_taxa

SampleType • REF-PID • REF-PIM • REF-DID • IM-PID • IM-PIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus; NA

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

Correlation within: IM-DIM

Correlation with all samples

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; NA

Relative abundance (%)

SampleType • IM-PID •

Correlation within: IM-PIM

Correlation within: IM-DIM

IM−PIM • IM−DID • IM−DIM • Feed

Correlation with all samples

Correlation within: IM-DIM

 $log_e(S) = 3.584$, p = 0.139, $\hat{\rho}_{Spearman} = 0.571$, $Cl_{95\%}$ [-0.248, 0.914], $n_{pairs} = 8$

k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Xanthobacteraceae; g__Bradyrhizobium; NA Correlation with all samples 0.20 -Relative abundance (%) 28.2 28.8 27.9 28.5 Cq value 29.1 **SampleType** • IM-PIM • IM-DIM Correlation within: IM-PIM **Correlation within: IM-DIM** 0.26 -0.24 -0.175 **-**Relative abundance (%) Relative abundance (%) 0.125 -0.18 -0.100 -29.1 27.89 27.91 27.93 27.9 27.95 27.97 29.10 29.02 29.06 29.04 29.08 Cq value Cq value

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Savagea; Ambiguous_taxa

Correlation with all samples

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__Bacillus andreraoultii

SampleType • IM-PID • IM-PIM • IM-DID • IM-DIM • Feed

0.1 -

Correlation within: IM-PIM

 $log_e(S) = 5.447$, p = 0.244, $\widehat{\rho}_{Spearman} = -0.406$, $Cl_{95\%}$ [-0.832, 0.320], $n_{pairs} = 10$

Correlation within: IM-DIM

29.0

30.0

Cq value

30.5

31.0

29.5

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Actinomycetaceae; g_Actinomyces; s_uncultured Actinomycetales bacterium Correlation with all samples

k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Micrococcales; f__Microbacteriaceae; g__Microbacterium; Ambiguous_taxa

 $log_e(S) = 8.255, p = 0.448, \hat{\rho}_{Spearman} = 0.144, Cl_{95\%} [-0.239, 0.488], n_{pairs} = 30$

Correlation with all samples

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Kurthia; s__Kurthia sp. PAOGL173

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; NA

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus; NA

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Vagococcus; Ambiguous_taxa

Correlation within: IM-DIM

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Enterococcaceae; g_Enterococcus; Ambiguous_taxa

Correlation with all samples

log_e(S) = 6.641, p = 0.641, p̂_{Spearman} = -0.126, Cl_{95%} [-0.596, 0.407], n_{pairs} = 16

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillus helveticus **Correlation with all samples** $log_e(S) = 6.407, p = 0.771, \widehat{\rho}_{Spearman} = -0.082, Cl_{95\%}$ [-0.582, 0.462], $n_{pairs} = 15$ 20 24 28 Cq value SampleType • REF-PID • REF-PIM • REF-DID • REF-DIM • IM-PID **Correlation within: REF-PIM Correlation within: REF-DIM** 1.06 **Relative abundance (%)** 0.98 -31.8 30 31.71 31.75 31.77 31.79 31 31.73 Cq value Cq value **Correlation within: Feed** Correlation within: IM-PIM 1.5 Relative abundance (%) 19.0 28.300 28.305 28.310 28.315 28.320 18.0 18.5 Cq value

Relative abundance (%)

0 -

Relative abundance (%)

Relative abundance (%) - 180.0 **(%)** - 0.079 - 0.077

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus; NA

SampleType • IM-PID

Correlation within: IM-PIM

Cq value

Correlation within: IM-DIM

IM-PIM
 IM-DID
 IM-DIM
 Feed

Correlation within: Feed

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Lactobacillaceae; g_Lactobacillus; s_Lactobacillus sp. DJF_WC57 **Correlation with all samples** $log_e(S) = 8.351$, p = 0.433, $\widehat{\rho}_{Spearman} = 0.146$, $Cl_{95\%}$ [-0.230, 0.484], $n_{pairs} = 31$ 20 28 24 Cq value SampleType • REF-PID • REF-PIM • IM-PID • IM-PIM • IM-DID Correlation within: IM-PIM $log_e(S) = 5.823, p = 0.572, \hat{\rho}_{Spearman} = -0.182, Cl_{95\%} [-0.694, 0.453], n_{pairs} = 12$ **Correlation within: REF-PIM** 2.0 -Relative abundance (%) 0.0 29 Cq value 30.48 28 30 30.46 30.50 30.52 Cq value Correlation within: IM-DIM $log_e(S) = 5.670, p = 0.340, \hat{\rho}_{Spearman} = -0.318, Cl_{95\%} [-0.779, 0.366], n_{pairs} = 11$ **Correlation within: Feed Relative abundance (%)** 0.75 - 0.25 18.0 29.0 29.5 30.5 19.0 31.0 18.5 30.0 Cq value

2.0 -

1.0 -

0.0 -

-0.5 **-**

2.250 -

Kelative aprindance (%)2.225 - 2.225 - 2.200 - 2.200 - 2.205 - 2.175 - 2.20

30.44

0.75 -

Relative abundance (%)

Cq value

Relative abundance (%)

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Oceanobacillus; Ambiguous_taxa

Correlation within: IM-DIM

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Kurthia; s__uncultured bacterium **Correlation with all samples** $log_e(S) = 3.332, p = 0.253, \hat{\rho}_{Spearman} = 0.500, Cl_{95\%} [-0.430, 0.915], n_{pairs} = 7$ 29 31 28 30 Cq value SampleType • REF-PID • REF-PIM • REF-DID • IM-PIM Correlation within: IM-PIM 0.150 -0.125 -

Relative abundance (%)

0.0

27

 $log_e(S) = 7.338$, p = 0.043, $\widehat{\rho}_{Spearman} = 0.408$, $Cl_{95\%}$ [0.004, 0.698], $n_{pairs} = 25$

Cq value

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; Ambiguous_taxa

Correlation with all samples

log₈(S) = 6.380, p = 0.108, \$\hat{0}_{Spearman} = 0.391, Cl_{999}, [-0.107, 0.733], n_{pairs} = 18

2 -

Relative abundance (%)

k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Corynebacteriales; f__Corynebacteriaceae; g__Corynebacterium 1; Ambiguous_taxa **Correlation with all samples** $log_e(S) = 6.078, p = 0.428, \hat{\rho}_{Spearman} = 0.221, Cl_{95\%}$ [-0.343, 0.668], $n_{pairs} = 15$ 28 29 30 31 Cq value

31.0

30.5

30.0

Cq value

29.0

29.5

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Lactobacillaceae; g_Lactobacillus; s_Lactobacillus sp. LA-6 **Correlation with all samples** $log_e(S) = 5.730, p = 0.092, \hat{\rho}_{Spearman} = 0.450, Cl_{95\%} [-0.098, 0.788], n_{pairs} = 15$ 20 32 28 24 Cq value SampleType • REF-PID • REF-PIM • REF-DID • REF-DIM • IM-PID **Correlation within: REF-PIM Correlation within: REF-DIM** 2.0 -Relative abundance (%) 30 31.9 31 32.0 32.1 32.2 31.8 Cq value Cq value Correlation within: IM-PIM **Correlation within: Feed Relative abundance (%)** 0.450 1 17.700 17.8 28.300 28.275 28.325 28.350 17.725 17.750 17.775

Relative abundance (%)

-2 **-**

Relative abundance (%)

0.14 -

Relative abundance (%)- 01.0
- 80.0
- 80.0

k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Oceanobacillus; Ambiguous_taxa

