Ultime considerazioni sui sistemi lineari

Considerians il caso particolor di un sistema lineare AX = b con A E Un (K) invertibile.

Proposition (HETODO DELL'INVERSA)

Sia A E Mn (K) una matrice invertibile e b E Mn, (K). Allora il sistema cineare

AX = b

possiede l'unica soluzione X = A-16, dour A-1 è l'inversa di A

Dim

- · Mostriano innanzitutto che z= A-16 è soluzione di (x). Infatti abbiano
 - d = dnI = d(rAA) = drAA
- · (unicità) Mostriano che x=A-16 è l'unica soluzione di (x). Sia y una soluzione di (x). Allora abbienno:

$$Ay = b \Rightarrow A^{-1}Ay = A^{-1}b \Rightarrow Iny = A^{-1}b \Rightarrow y = A^{-1}b = x$$

Abbiano dunque mostrato che il sistema (x) possiede un'unica soluzione data da x = A-16.

Esempio: L'unica soluzione del sistema limare.

$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$A \qquad X \qquad b$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & -1 \\ 1/3 & -1/3 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 2 \\ 3 \end{pmatrix}$$
esercisio 4

eserazio 4 Joglio 2

Come calcalare l'inversa di una matrice?

Purtroppo daremo solo un accenno in questo corso, ma è utile sapere che l'algoritmo di Gauss-Jordan può essere utilizzato per calculare in modo efficiente l'inversa di una matrice.

Se esiste una successione di operazioni elementari che "trasformano" A nella matrice identità, allora A è invertibile. Idea: Più precisamente, se Pi,... Pr sono le motrici elementari corrispondenti alle operazioni di cui sopra (come spiegato nell'esercizio 5 del foglio 3), allora si ho: Pr -- Pr A = In Quindi A-1 = Pr... Pr. Di consequenza A-1 può essere calcalata ellettuando la stesse operazioni su In: Pr---Pr (A ! In) = (In ! Pr---Pr) A appoure qui Esempio : Riprendiano la matrice precedente: $A = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 2 \end{pmatrix}.$ Per determinant l'inversa di A affianchianus ad A la matrice identità ed effettuianus le operazioni sulla matrice 3×6 così ottenuta finche non otteniano nel primo blocco la matrice identité. l'inversa di A 0341000

Ţ	Jin	1																					
	Se	(>	(4,	, 2cm),	(4,	,	, Yn) E	S	,	c	روا	ora	a	طط	ion	ص					
		Ois																	` A	Ĺ:	=1,-	V	w.
	No	stri œ																					
		Qi4(Xat	94)	+	- +	Qiv	, (Xı	vt a	w)=	Qia	Xal	11 (+ Q,	in X	7	Q LA	94+	11	<u>a</u>	ingn	-	
7							~ (5 (0				_		0				0
3)		Se		Zu,.	, 5	Kv)	€ :	20	=	=>	スリ	(X)	1	. , X	~)	E	>c	A	λε	: K .			
		Di	щ																				
		Se	(:	حر,۔	حر۔۔	(n)	€ S.	-	=>	Qi	424	4-	4	a	in2	ln =	0	A	i =	٦,	,	w	•
		H	osh	ia u	ص	ch	u	ounc	chi	2	(x	۷,	, :	en)	= (λx	,	,2	xn)	6	. S	٥.	
		8	3 C	cogu	i	Ũ=-	7	·		المحاد	oi à	سد	s ·	1									
			Qi	(200	.)+	·+ a	in(1	(Xh)) =	10	الديكا	(4 -	+	la,	in X	n =	٦ (Qia	K4+-	" +	an	n)Kn	/=0
	()			-										C				<i>(1</i>)		0			П
	Z	e ho	sis,	rieta Lu	ر م	٦,	2 K"	e :	3	for	ww	0 0	7.	50	(אר	Se	otho	sqa	.સં	0		
		रेज																					zwo
																					•		
		ह्ये :	20	ia n	V حصلا	ni at	s so	gazi gwe	, oi	νελ ί Ι δί	oria V	de Si	Su	۲. دو د	507	705	5 4 92	<i>510</i>	VE	ττο	or W	LE	Se
			ر	1)	: W	≠ (ઝ .					0	pero	(Z (0	ui	di	V						
				1			ωz		W	, (N4+	wi	E	W	()	ة للا	ل غ	liws	2 0	įs ę	etho		
																OM		20W	مسا)			
			3	3) '	Αυ	<i>ا</i> ∈	W	\ \ \	12	E V	(, l	·w	E (XI	(U	1 E Da	iuls w	020 L	:27 19 9 i	spe ca	sion Mo	u,	ger
															ڪ	تما	ari)					
<u>O</u> s	se	rvaz	voi:	<u>.</u>	•	Įù Ž	for the	r,	ch S	s ia	ka w	E	m. Ser:	ولم (س	. (3 es	آ (3 رجاس	mb(2: cc	کمد	zh V	. Q V ≠	Ø	. W) .
																				Ш			
					•		۰ عر ۱۹ و	lem	ent	SW	$\omega \mu \sigma$	0	رم زم(96 26	ĕ por	w. he	م د	s S U	Sio Se	ve r	600	زمل بعد	.: .va
							Zia	ΛL	Đις	حدط	enh												_
						-	Tutte elev	e le nent	k d	i VX	gong Voe	زوآر مه	and	isce he e	en Vdc	enti	da di	V V	νί (W)	ا و	V)	d	i e
							V	ĕ U	mo s	ક્લ્વટ	io w	ењо	ડ:વી	۹.									

Esempi

- 1) L'insieme delle soluzioni di un sistema lineare omogeno o n incognite e coefficient in K e un soltospazio vettoriale di Kn.
- 2) Ogni spazio vettoriale V ha due sottospazi vettoriali

· Wz = 1 09, dove 0 è il vettore vulla di V.

3) V= 1R3, W= 9(x,y, 2) E1R3: 2447==42 W you & un sotospazio vettoriale poichi (0,0,0) & W.

4) V= 1R2, W= 1(x,y) E 1R2: -12x < 19.

W non & un sottospatio bettorish poidu (1,0), (1,1) EW, ma (1,0)+ (1,1)=(2,1) & W (2>1). Quindi W non verifica la propriété (2)

5) Sta V = K" e W:= o (o, x2, ..., xn): x; E k V :=2,..., ny. W & un sottospazio vettoriale di V. Infatti:

② (0,...,0) ∈ W => W ≠ Ø.

2 siano x = (0, x2, ..., xn), y=(0, y2, ..., yn) ∈ W.

Allo _ y = (0, x2+y2, ..., xn+yn) \(\text{W} \)

Prime coordinate \(\text{Nulle} \)

3 Siano 2=(0, 22,..., 2n) ∈ W, λ ∈ K. Allora 2. ≥ = (0, 2×2, ..., 2×n) ∈ W

Avrenum pohoto concludere che W è un sottogozo vettoriali anche osservando che W rappresenta l'insieme delle soluzioni del sistema lineare omogeneo:

6) Sia V una spazio rettoriale su K e sia $v \in V$, $v \neq 0$, un vettore non nullo. L'insieme

< v > = 120, 2 € K4

é un sottospasio vettoriale costituito da tutti i multipli

Infalti:

2) Siano z, y e < 00> e siano 2, µ e k tali che z=20, y= µv.

Allow $\times + \underline{y} = \lambda \underline{v} + \mu \underline{v} = (\lambda + \mu) \underline{v} = \times + \underline{y} \in \langle \underline{v} \rangle$

3) Sia x < <v> e sia le K tale che x = lv.

Allore, Vaek, az = alv E <v>.

Tale sottospazio prende il nome di retto vettoriale. Il nome è giustificato dolla sequente interpreta zione geometrica:

Sia $V = \mathbb{R}^2$ e $\sigma = (1,1)$.

Allora < v> = \(\lambda \lambda (1,1) : \lambda \in 1\text{1R} \forall = \forall (2,2) : \lambda \in 1\text{R} \forall = $= d(x,y) \in \mathbb{R}^2 : z = g \cdot q.$

Quindi <1> Corrisponde alla retta di equazione y= x:

Più in generale se $v = (a,b) \in \mathbb{R}^2$ allora $<v > \tilde{e}$ la retta passante per l'origine definita dall'equazione:

bx - ay = 0.

Si noti quindi che l'insieme dei punhi di una retta del piano che non passa per l'origine mon è un sottospazio vettoriale di IR² (poiché nod contiene il vettore nulo (00)). Parleremo in questo caso di "retta affine" invece che retta vettoriale. Osservazioni: