Numerical Characterization of Ultrasound Elastography for the Early Detection of Deep Tissue Injuries

by

Kenton David Hamaluik

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering University of Alberta

© Kenton David Hamaluik, 2014

Abstract

Deep tissue injuries—casually termed "bedsores"—are a type of wound often suffered as secondary injuries in persons with reduced mobility such as those with spinal cord injuries, the elderly, and people with multiple sclerosis. Deep tissue injuries form when excess pressure is applied to tissue for extended periods of time without relief and begin as the necrotic breakdown of deep tissues at the bone-muscle interface. As these wounds progress, they "tunnel" up toward the surface of the skin where they break open into late-stage pressure ulcers and are completely unnoticeable if the patient lacks sensation. There is currently no clinical tool for detecting these injuries as they form and progress and as such these wounds represent a severe burden on both patients and the health care system alike.

The goal of this work was to numerically characterize the use of three modalities of ultrasound elastography—quasi-static ultrasound elastography, acoustic radiation force impulse imaging, and shear wave speed quantification—for the early detection of deep tissue injuries. Ultrasound elastography is an imaging modality capable of imaging the mechanical stiffness of soft tissue which is a key measure of tissue health. Through combinations of k-space pseudo-spectral techniques, finite-element modelling, and image processing methods, the ability of ultrasound elastography to detect and accurately diag-

nose deep tissue injuries was explored. Parametric studies were undertaken to investigate the effect of a wide range of parameters relevant to the detection sensitivity of ultrasound elastography including both device-design parameters and deep tissue injury lesion properties.

Through the numerical characterizations performed in this work, an understanding of the benefits and limitations of using ultrasound elastography to detect deep tissue injuries was achieved. Shear wave speed quantification was found to provide the most accurate measures of tissue health, however its effectiveness may be limited in very deep tissues. The understanding gained from this work may lead to investigating ultrasound elastography as a viable detection modality for early deep tissue injuries in both animal models and human subjects—these real world tests are the next step on the way to clinical adoption of ultrasound elastography for the early detection of deep tissue injuries.

Preface

Chapter 3 of this thesis has been published as K. Hamaluik, W. Moussa, M. Ferguson-Pell, "Numerical Characterization of Quasi-Static Ultrasound Elastography," *IEEE Transactions on Medical Imaging*. I was responsible for the study design, data collection, and manuscript composition. W. Moussa and M. Ferguson-Pell were the supervisory authors and assisted with manuscript composition.

Dedication

This work was written for all those who have lovingly supported me throughout it's creation.

To my mother Meridel, who instilled in me the desire to always better myself and persist through the greatest of difficulties. Even when things got difficult, you gently pushed me to continue on.

To my late father David, who taught me about the world and inspired my combination of creativity, critical analysis, and work ethic. I wasn't able to finish before he left us, but I know he would be proud of what I accomplished in the end.

To my beautiful wife Dennie, who has stood by me and loved me without condition in the face of adversity and struggle. Without you, I would have given up long ago. You supported me above all others and this work exists as much because of you as it does because of me.

Acknowledgements

This work reflects the endless days I have spent learning, researching, and growing throughout the past several years and would not have been possible without the gracious assistance of the considerable number of people supporting me.

My supervisor, Dr. Walied Moussa has been a constant source of inspiration and learning for me. His enthusiam and tenacity for research became a model for this work early on in the process. I would like to thank him for providing me with this alongside all the resources and support I needed to complete this work.

I would also like to thank my co-supervisor, Dr. Martin Ferguson-Pell for believing in me since I was an undergraduate student and continually providing me with opportunities to advance my learning. Despite his tremendous responsibilities, he always made time for me when I needed it and has always provided valuable input and guidance.

I am incredibly grateful for the wonderful guidance, support, and supervision of the entire Project SMART Pressure Ulcer group along with the rest of the PIs and trainees of the Project SMART team. Their gentle leadership, kind friendship, and impressive ability continually inspired me to pursue my best and live up to their remarkable example.

I truly stand as a dwarf upon the shoulders of giants.

Table of Contents

1	Intr	oducti	on	1
	1.1	Motiva	ation	1
	1.2	Object	tive	3
	1.3	Metho	dology	3
	1.4	Thesis	Outline	4
2	Lite	erature	Review	7
	2.1	Deep 7	Γissue Injuries	7
		2.1.1	Aetiology and Histology	11
		2.1.2	Prevention and Treatment	15
		2.1.3	Detection	16
	2.2	Ultras	ound Elastography	19
		2.2.1	Quasi-Static Ultrasound Elastography	20
		2.2.2	Acoustic Radiation Force Impulse Imaging	21
		2.2.3	Shear Wave Speed Quantification	23
	2.3	Conclu	asion	24
3	Nui	nerical	Characterization of Quasi-Static Ultrasound Elas-	_
	tog	aphy		27
	3.1	Introd	uction	27
	3.2	Metho	d	28
		3.2.1	Formation of B-Mode Ultrasound Images	31
		3.2.2	Finite-Element Model of Tissue Deformation Under Sur-	
			face Distortion	32
		3.2.3	Characterizing Quasi-Static Ultrasound Elastography $% \left(1\right) =\left(1\right) +\left(1\right)$	33

		3.2.4	Model Validation Using a Commercially Available Phan-	
			tom	35
	3.3	Result	ts and Discussion	36
		3.3.1	Finite Element Models of Ultrasound and Deformation	36
		3.3.2	Resulting Elastograms	39
		3.3.3	Numerical Characterizations	40
		3.3.4	Physical Phantom Validation	58
	3.4	Concl	usion	60
4	Nu	merica	l Characterization of Acoustic Radiation Force Im-	-
	pul	se Ima	ging	63
	4.1	Introd	luction	63
	4.2	Metho	od	64
		4.2.1	K-Space Pseudo-spectral Model of Acoustic Fields	64
		4.2.2	Derivation of Acoustic Radiation Force	66
		4.2.3	Temporal Finite-Element Model of Soft Tissue Defor-	
			mation	68
		4.2.4	Characterizing Acoustic Radiation Force Impulse Imaging	g 71
		4.2.5	Physical Phantom Validation	74
	4.3	Result	ts	74
		4.3.1	K-Space Pseudospectral Models of Acoustic Radiation	
			Force	75
		4.3.2	Temporal Finite-Element Model of Soft Tissue Defor-	
			mation	82
		4.3.3	Numerical Characterization of Acoustic Radiation Force	
			Impulse Imaging	85
		4.3.4	Physical Phantom Validation	96
	4.4	Concl	usion	97
5	Nu	merica	l Characterization of Shear Wave Speed Quantifica-	-
	tion	1		100
	5.1	Introd	luction	100
	5.2	Metho	od	101
		5.2.1	Shear Wave Speed	101
		5.2.2	Model Set Up	103

		5.2.3	Model Validation	106
	5.3	Result	ts and Discussion	106
		5.3.1	Acoustic Radiation Force Impulse Simulations	107
		5.3.2	Sample Shear Wave Speed Measurement	107
		5.3.3	Lesion Detection Characterization	112
		5.3.4	Physical Phantom Validation	126
	5.4	Concl	usions	128
6	Con	ıclusio	n	130
	6.1	Comp	arisons Between Methods	132
	6.2	Recon	nmendations and Future Work	143
\mathbf{R}	efere	nces		146
\mathbf{A}	ppen	dix A	Data Tables	171
	A.1	Quasi-	-Static Ultrasound Elastography	171
	A.2	Acous	tic Radiation Force Impulse Imaging	173
	A.3	Shear	Wave Speed Quantification	177
\mathbf{A}	ppen	dix B	Source Code	178
	B.1	Quasi-	-Static Ultrasound Elastography	178
	B.2	Acous	tic Radiation Force Impulse Imaging	184
	В.3	Shear	Wave Speed Quantification	193
\mathbf{A}	ppen	dix C	Experimental Protocols	195
	C.1	Quasi-	-Static Ultrasound Elastography	196
	C.2	Acous	tic Radiation Force Impulse Imaging	196
	C.3	Shear	Wave Speed Quantification	197

List of Tables

3.1	Quasi-static model investigated parameters	29
3.2	CIRS phantom model mechanical properties	35
4.1	K-Space pseudo-spectral model parameters	66
4.2	ARFI model tissue properties	68
4.3	ARFI Maxwell model tissue properties	69
4.4	ARFI model investigated parameters	73
5.1	Shear wave speed quantification model investigated parameters	104

List of Figures

2.1	NPUAP pressure ulcer staging guidelines	10
2.2	Schematic representation of the time course of tissue stiffness	
	changes in a deep tissue injury	14
3.1	Quasi-static model geometries	30
3.2	Point spread function used for simulating b-mode ultrasound	
	scans	31
3.3	Quasi-static finite-element model boundary conditions	34
3.4	Sample deformation finite-element model results for a hard spher-	
	ical lesion	38
3.5	Sample strain elastogram for a hard spherical lesion	40
3.6	Detection ability as it is related to true lesion stiffness ratio	42
3.7	Error characterization for a hard spherical lesion	43
3.8	Error characterization for: co-located, blurred boundary, clus-	
	tered, and visible human lesion models	44
3.9	Quasi-static lesion size characterization	45
3.10	Quasi-static lesion depth characterization	46
3.11	Quasi-static lesion altitude characterization	47
3.12	Quasi-static ultrasound probing frequency characterization	48
3.13	Quasi-static applied strain characterization	49
3.14	Quasi-static lesion separation distance characterization	50
3.15	Sample elastogram for two co-located lesions	51
3.16	Quasi-static lesion blur radius characterization	52
3.17	Quasi-static lesion density characterization	53
3.18	Sample elastogram for a set of clustered lesions	54
3.19	Quasi-static clustered lesion radius characterization	55

3.20	Quasi-static Visible Human model lesion width characterization	56
3.21	Sample elastogram of a Visible Human model lesion	57
3.22	Quasi-static characterization of lesion depth in a Visible Human	
	model	58
3.23	Experimental validation of quasi-static model results	59
4.1	ARFI finite-element model boundary conditions	70
4.2	ARFI model schematics	72
4.3	Sample acoustic radiation force distribution	76
4.4	Effect of depth and interrogation frequency on magnitude of	
	acoustic body forces	77
4.5	Effect of transducer aperture on the magnitude of acoustic ra-	
	diation force	78
4.6	Magnitude of developed acoustic radiation force in relation to	
	the number of applied pulse cycles	79
4.7	Strong dependence on source pressure of focal point force	80
4.8	I_{SPPA} safety measures of ARFI pulses	82
4.9	ARFI-induced deformation at various depths and interrogation	
	frequencies	83
4.10	ARFI-induced deformation at various depths and source pressures	84
4.11	ARFI-induced deformation across various interrogation frequen-	
	cies and source pressures	85
4.12	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with changing lesion radius	86
4.13	ARFI imaging-acquired lesion stiffness mean squared error re-	
	lated to lesion radius	87
4.14	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with changing lesion depth	88
4.15	ARFI imaging-acquired lesion stiffness mean squared error re-	
	lated to lesion depth	89
4.16	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with blurred lesions	90
4.17	ARFI imaging-acquired lesion stiffness mean squared error re-	
-•	lated to lesion blurring	90
		_

4.18	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with clustered lesions	91
4.19	ARFI imaging-acquired lesion stiffness mean squared error re-	
	lated to small lesion cluster density	92
4.20	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with clustered lesions	93
4.21	ARFI imaging-acquired lesion stiffness mean squared error re-	
	lated to small lesion cluster density	94
4.22	Numerical characterization of ARFI imaging-acquired stiffness	
	ratio with changing lesion radii in a visible human model $\ . \ . \ .$	94
4.23	ARFI imaging-acquired lesion stiffness mean squared error re-	
	lated to MRI-acquired lesion size in a Visible Human model $$.	95
4.24	Experimental ARFI model results	96
4.25	Experimental validation of ARFI imaging model results	97
5.1	Schematic of shear wave speed quantification-investigated lesions	s 105
5.2	Sample radiation force distribution in relation to lesion location $$	108
5.3	Sample shear wave motion through time	109
5.4	Sample continuous surface plot of shear wave induced displace-	
	ment	110
5.5	Sample continuous surface plot of shear wave induced axial dis-	
	placement highlighting the shear wave location in time	110
5.6	Sample extracted shear wave position-time trace	111
5.7	Sample trace of shear wave speed through the focal line	112
5.8	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with changing lesion radius	113
5.9	Shear-wave speed quantified squared error related to lesion radius	s114
5.10	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with changing lesion offsets	115
5.11	Shear-wave speed quantified mean squared error related to le-	
	sion offset	116
5.12	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with changing lesion depth	117

5.13	Shear-wave speed quantified mean squared error related to le-	
	sion depth \dots	118
5.14	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with blurred lesions $\dots \dots \dots \dots$	119
5.15	Shear-wave speed quantified mean squared error related to le-	
	sion blurring	120
5.16	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with clustered lesions	121
5.17	Shear-wave speed quantified mean squared error related to small	
	lesion cluster density	122
5.18	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with clustered lesions	123
5.19	Shear-wave speed quantified mean squared error related to small	
	lesion cluster density	124
5.20	Numerical characterization of shear wave speed measured stiff-	
	ness ratio with changing lesion radii in a visible human model	125
5.21	Shear-wave speed quantified mean squared error related to MRI-	
	acquired lesion size in a Visible Human model	125
5.22	Experimental shear wave speed quantification results	126
5.23	Experimental validation of shear wave speed quantification model	
	results	127
6.1	Detection sensitivities of hard-boundaried spherical lesions us-	
	ing the three investigated imaging modalities	133
6.2	Percent error of measured stiffness ratios for spherical lesions	
	across the three investigated modalities	134
6.3	Detection sensitivities of blurred-boundary spherical lesions us-	
	ing the three investigated imaging modalities	136
6.4	Percent error of measured stiffness ratios for blurred lesions	
	across the three investigated modalities	136
6.5	Detection sensitivities of clustered lesions using the three inves-	
	tigated imaging modalities	137
6.6	Percent error of measured stiffness ratios for clustered lesions	
	across the three investigated modalities	139

6.7	Detection sensitivities of MRI-acquired Visible Human lesions	
	using the three investigated imaging modalities	140
6.8	Percent error of measured stiffness ratios for MRI-acquired Vis-	
	ible Human lesions across the three investigated modalities $$. $$	141
6.9	Experimental results of the three methodologies investigated $% \left(1\right) =\left(1\right) \left(1\right)$	142
6.10	Experimental validation of the simulation results across all three	
	methodologies investigated	143

Nomenclature

Mathematical Symbols

Symbol	Meaning
α	Acoustic absorption coefficient
α_0	Power law prefactor
B/A	Acoustic nonlinearity parameter
b_i	Body force
b_r	Blurred lesion blur radius
$b_{ ho}$	Clustered lesion density
C	Elasticity tensor
c_0	Speed of sound
c_T	Shear wave speed
d	Lesion depth
d_f	Focal depth
δ_{sep}	Co-located lesion separation distance
E	Young's modulus
E_{lesion}	Young's modulus of lesion
$E_{rel,meas}$	Lesion stiffness ratio
$E_{rel,nom}$	Nominal lesion stiffness ratio
E_{tissue}	Young's modulus of tissue
ε	Strain
ε_{app}	Transducer-applied strain
ε_{lesion}	Measured lesion strain
$arepsilon_p$	Percent error
$\varepsilon_{rel,meas}$	Measured lesion strain ratio

Symbol	Meaning
$\varepsilon_{rel,true}$	True lesion strain ratio
ε_{tissue}	Measured tissue strain
F	Applied body forces
f	Ultrasound frequency
f_{i}	Applied load
G_m	Shear modulus of the m^{th} branch of a Maxwell model
Γ	Boundary domain
h	Lesion altitude
I	Acoustic intensity
I_{SPPA}	Spatial peak pulse average intensity
I_{SPTA}	Spatial peak time average intensity
K	Bulk modulus
k	Wave number
λ_{tissue}	Lamé constant
λ_{wave}	Ultrasound wavelength
MI	Mechanical index
MSE	Mean squared error
μ_{tissue}	Lamé constant (shear modulus)
n_c	Number of acoustic periods
∇	Del operator
P_r	Refractory pressure
P_{source}	Ultrasound transducer source pressure
p	Acoustic pressure
r_{lesion}	Lesion radius
r_{bl}	Clustered lesion radius
ρ	Acoustic density
$ ho_0$	Equilibrium density
S_M	Acoustic pressure source term
$\varnothing S$	Lesion diameter
$\varnothing L$	Visible Human lesion width
σ	Stress tensor
σ_0	Initial stress distribution
$\sigma_{applied}$	Stress applied to tissue

Symbol	Meaning
t_{inson}	Insonification time
$ au_m$	Relaxation time of the m^{th} branch of a Maxwell model
\vec{u}	Particle displacement
\vec{v}	Particle velocity
u_0	Initial displacement
v_{max}	Maximum tissue displacement in the axial direction
w_{active}	Total width of active transducer elements
y	Power law exponent

Abbreviations

Abbreviation	Meaning
ARFI	Acoustic radiation force impulse
DTI	Deep tissue injury
IES	Intermittent electrical stimulation
MRI	Magnetic resonance imaging
NPUAP	National Pressure Ulcer Advisory Panel
PU	Pressure ulcer
SCI	Spinal cord injury
USE	Ultrasound elastography

Chapter 1

Introduction

1.1 Motivation

Pressure ulcers are debilitating wounds often suffered by people with limited mobility such as those undergoing lengthy surgical procedures, the elderly, and those with spinal cord injuries (SCI) [1]—up to 80 percent of people with SCI will develop a pressure ulcer in their lifetime [2]. Pressure ulcers are generally characterized by a deterioration of the skin leading to painful open wounds and while many pressure ulcers may be blamed on excess friction and moisture at the skin surface, many start as "deep tissue injuries" (DTI) which start deep below the skin surface—most often at the bone-muscle interface [3]. DTI are generally thought to be formed due to some combination of excessive deformation and ischemia resulting from sustained loading on localized tissue [4]–[6]. As of the time of writing, there is no clinically feasible method of detecting deep tissue injuries until they begin to damage superficial skin—even the National Pressure Ulcer Advisory Panel's description of them is largely based on their appearance after the fact [7]. With our inability to detect these

forming injuries and subsequently implement deep tissue injury prevention and mitigation protocols, the injuries may eventually progress to form large subcutaneous cavities which eventually break through the surface of the skin and reveal themselves as stage III or IV pressure ulcers [8], [9].

Currently, the only tool capable of readily detecting early deep tissue injuries is T₂*-weighted MRI [6], [10]. Unfortunately, MRI is not cost-effective for detecting the onset of DTI in a clinical population. Alternately, ultrasound is a much more cost-effective, if less sensitive imaging modality. While it has been shown that some DTI may be discerned using classical b-mode ultrasound imaging [3], [11], the sonographic features of DTI are difficult to separate from regular tissue inhomogeneities. To overcome this, ultrasound elastography may provide more reliable results by imaging the mechanical tissue stiffness rather than its acoustic properties. Ultrasound elastography is an imaging modality which utilizes sonographic techniques to determine the localized mechanical stiffness of tissue and is currently used clinically to detect breast and prostate cancer lesions [12], [13] as well as liver fibrosis [14]. It is known that as DTI form, they undergo mechanical stiffness changes throughout their progression [9], [15], [16], with tissue undergoing significant 1.8 – 3.3-fold mechanical stiffening during injury formation [5]. Initially damaged tissues show signs of increased relative stiffness due to edema-related swelling while eventually showing signs of decreased relative stiffness due to decomposition and necrosis [17]. Since ultrasound elastography is capable of imaging these stiffness changes, it follows that the formation and progression of DTI may be imaged using ultrasound elastography. In fact, ultrasound elastography has shown to be a valid technique for imaging the formation of a DTI in a rat model [18]. Before this technique can be fully understood and used in human patients, the various parameters involved in performing ultrasound elastography must be characterized with respect to detecting DTI in humans.

1.2 Objective

The broad objective of this work was to numerically characterize the use of ultrasound elastography to detect and monitor formative and progressive deep tissue injuries. Although it has been shown that ultrasound elastography is capable of imaging DTI [18], the degree of suitability of this technique with regard to DTI is not yet understood. When the effects of numerous interrogation parameters on detection sensitivity and ability are known, the technology may be evaluated on its feasibility and usefulness to detect deep tissue injuries. The ultimate goal of this characterization is to be the first stage in the process of allowing ultrasound elastography to be implemented clinically for detecting DTI. It is reasoned that if early detection modalities are implemented clinically, both patients and the health care system may benefit by lowering the incidence and outright cost of treating fully-formed deep tissue injuries.

1.3 Methodology

In order to investigate the use of ultrasound elastography for the detection of deep tissue injuries, the technology must first be characterized and fully understood. While traditional experimentation provides an opportunity to work with physical subjects it can be severely limiting as absolute control over all investigated parameters is relinquished. Further, subject recruitment may present an insurmountable barrier to the execution of such a study. As

such, in this exploratory work, various numerical models of the technology have been utilized to investigate the controlled effect of a broad number of parameters relating to each technology. Specifically, k-space models of ultrasonic wave propagation and finite-element models of tissue deformation have been developed. These models were coupled with tissue strain estimation algorithms to fully simulate ultrasound elastography procedures. Parametric studies on the detection sensitivity and ability of the various ultrasound elastography modalities were carried out with respect to various lesion and technological parameters. Chief parameters of interest included those related to the physical realities of deep tissue injuries such as lesion depth, size, and relative mechanical stiffness as well as parameters related to the design and development of appropriate ultrasonic transducers such as probing frequency, transducer dimensions, etc.

1.4 Thesis Outline

In this work, three methods of ultrasonic elastogram image formation have been investigated: quasi-static ultrasound elastography, acoustic radiation force impulse imaging, and shear wave speed quantification. While all three methods may be used to interrogate tissue stiffness, each does so in a distinctively unique way. The academic background leading to the motivation for this work and the development of the numerical models is presented in Chapter 2.

Quasi-static ultrasound elastography estimates tissue strain by tracking inhomogeneities across pre- and post- compression b-mode scans where the compression is generated by manual indentation of the transducer against the surface of the skin. Naturally, mechanically stiffer regions of tissue will strain

significantly less than the relatively unstiff surrounding tissue. To investigate this technique, two-dimensional b-mode ultrasound scans of simulated preand post-compressed tissue were generated. A finite-element model of tissue deformation was utilized to generate the post-compression simulated scans. A published tissue strain estimation algorithm was utilized to then generate elastograms for the parametric study. The models and results pertaining to this technique are presented in Chapter 3.

After performing experiments using quasi-static ultrasound elastography on a phantom model, it became clear that quasi-static methods present significant challenges that acoustic radiation force impulse imaging may overcome. Chief amongst these challenges is the repeatability and inter-operator reliability of the technique as quasi-static elastography is heavily reliant upon manual force generation. Acoustic radiation force impulse imaging estimates tissue strain by applying an acoustic radiation force body load to deep tissue, causing the interrogated tissue region to deform which is then tracked using conventional ultrasound beams fired at a high frame rate. The magnitude of deformation and tissue relaxation time may then be correlated to tissue stiffness. This technique presents an advantage over quasi-static elastography in that the interrogation process is entirely automated, hence more repeatable and reliable. To simulate acoustic radiation force impulse imaging, a k-space pseudo-spectral method was used to generate simulated acoustic body loads which were then combined with a finite-element model of tissue deformation to analyze the sensitivity of ARFI imaging to investigate formative DTI. The models and results for this technique are presented in Chapter 4.

Although acoustic radiaton force impulse imaging has some advantages over quasi-static elastography, it only provides qualitative measures of relative tissue stiffness which is limited utility. To provide a quantitative measure of tissue stiffness and subsequently, tissue health, shear wave speed quantification may be used. Shear wave speed quantification quantifies tissue stiffness by tracking shear waves generated by an acoustic radiation force impulse and correlating the speed of the relatively slow-moving generated shear waves to the mechanical stiffness of the tissue. To simulate shear wave speed quantification, the k-space pseudo-spectral method of simulating acoustic body loads adopted in Chapter 4 was used in combination with a finite-element model of tissue deformation to investigate the interaction between lesions and shear wave speed. The models and results for this technique are presented in Chapter 5.

Finally, the conclusions derived from this work and their implications along with suggestions for future studies are discussed in Chapter 6. Data tables for all the characterization plots that are presented in this work are given in Appendix A, while the MATLAB® source code for performing the simulations are given in Appendix B. Lastly, experimental protocols used in the acquisition of experimental validation data are given in Appendix C.

Chapter 2

Literature Review

In order to understand the need for a clinical method of detecting deep tissue injuries, the full scope of the issue must be explored. To this end, the current state of the literature regarding deep tissue injuries, how they form, what factors characterize them, and how they are currently treated is explored here. In order to relate this disease to the detection modalities proposed in this work, the mechanics and history of ultrasound elastography are also explored and related back to the problem at hand. The major gaps in the current literature regarding the use of ultrasound elastography for detecting and monitoring deep tissue injuries are presented as this work attempts to partially fill those gaps and bring the technology one step closer to clinical implementation.

2.1 Deep Tissue Injuries

Pressure ulcers, commonly referred to as "bedsores", are an extraordinarily large problem facing the health care system today. At least \$11 billion is spent in the United States of America alone treating approximately 500,000 injuries

annually [19], [20] while only a minute fraction of that is spent toward pressure ulcer research [21]. Compared to hospital stays for all other conditions, patients with at least a secondary diagnosis of a pressure ulcer were more often discharged to a long-term care facility and more likely resulted in death [20]. These injuries place an extremely significant burden on the people who suffer from them—pressure ulcers were found to have a profound impact on people's lives including: altering their physical, social, and financial status; changing their body image; losing independence and control; and subjecting them to the grieving process [22], [23]. These debilitating wounds are often suffered by people with limited mobility such as those undergoing lengthy surgical procedures, the elderly, and those with spinal cord injuries (SCI) [1]—approximately 80 percent of people with spinal cord injuries (SCI) will develop at least one pressure ulcer during their lifetime [2] and approximately 19 percent of elderly patients in long-term care facilities will develop one [24]. Pressure ulcers exist throughout the entire health-care system and are often formed when undergoing hospitalization [25]. These injuries have a tendency to become chronic, non-healing wounds and many patients die from complications related to them [26]. Furthermore, patients who have developed at least one pressure ulcer in their life are at a significantly greater risk of developing a second one [27].

Pressure ulcers generally form over boney prominences with approximately 64% occurring over the ischial tuberosities, trochanter, or sacrum [28] and typically start at the surface of the skin and progress deep in the tissue. Deep tissue injuries—currently defined as a type of pressure ulcer—form in the same regions are pressure ulcers but generally form at the bone-muscle interface deep in the tissue [3]. In general, these injuries are characterized by a some manner of tissue loss through necrosis of the tissue, though there is currently

some debate on the exact nature of these wounds as well as the accuracy of the clinical descriptions attributed to them by the National Pressure Ulcer Advisory Panel (NPUAP).

The NPUAP defines pressure ulcers as a "localized injury to the skin and / or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in combination with shear and / or friction" and are generally staged according to a tiered system of increasing damage [7]. The various stages of pressure ulcer classifications are depicted in Fig. 2.1 and described as follows [7]:

Suspected Deep Tissue Injury

Purple or maroon localized area of discoloured intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and / or shear. The area may be preceded by tissue that is painful, firm, mushy, boggy, warmer or cooler as compared to adjacent tissue.

Stage I

Intact skin with non-blanchable redness of a localized area usually over a bony prominence. Darkly pigmented skin may not have visible blanching; its colour may differ from the surrounding area.

Stage II

Partial thickness loss of dermis presenting as a shallow open ulcer with a red pink wound bed, without slough. May also present as an intact or open / ruptured serum-filled blister.

Stage III

Full thickness tissue loss. Subcutaneous fat may be visible but bone,