

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №1 по курсу «Моделирование»

Студент Прянишников А.Н.
Группа <u>ИУ7-65Б</u>
Оценка (баллы)
Преподаватели Градов В. М

Тема Решение задачи Коши методами Эйлера, Пиккара и Рунге-Кутта

Цель работы

Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Аналитическая часть

Постановка задачи

Имеется общее дифференциальное уравнение, у которого отсутствует аналитическое решение:

$$\begin{cases} u'(x) = x^2 + u^2 \\ u(0) = 0 \end{cases}$$
 (1)

Для решения данного ОДУ были использованы 3 алгоритма.

Метод Пикара

Имеем:

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t)) dt$$
 (2)

Строим ряд функций:

$$y^{(s)} = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t)) dt, \qquad y^{(0)} = \eta$$
 (3)

Построим 4 приближения для уравнения (2):

$$y^{(1)}(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (4)

$$y^{(2)}(x) = 0 + \int_0^x (t^2 + \left(\frac{t^3}{3}\right)^2) dt = \frac{x^3}{3} + \frac{x^7}{63}$$
 (5)

$$y^{(3)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$
 (6)

$$y^{(4)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} + \frac{2x^{15}}{93555} + \frac{2x^{19}}{3393495} + \frac{2x^{19}}{2488563} + \frac{2x^{23}}{86266215} + \frac{x^{23}}{99411543} + \frac{2x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$
(7)

Метод Рунге-Кутта

$$y^{n+1}(x) = y^n(x) + h((1-\alpha)R_1 + \alpha R_2)$$
(8)

где
$$R1 = f(x_n, y^n), R2 = f(x_n + \frac{h}{2\alpha}, y^n + \frac{h}{2\alpha}R_1), \alpha = \frac{1}{2}$$
 или 1

Порядок точности: $O(h^2)$.

Метод Эйлера

$$y^{(n+1)}(x) = y^{(n)}(x) + h \cdot f(x_n, y^{(n)})$$
(9)

Порядок точности: O(h).

Код программы

На листинге 1 представлена реализация алгоритмов Пиккара, Рунге-Кутта и Эйлера.

Листинг 1: Реализация алгоритмов

```
import matplotlib.pyplot as plt
import numpy as np
EPS = 10**(-2)
def f(x, u):
    return x**2 + u**2
def f_1(x):
    return x**3 / 3
def f_2(x, f1):
    return f1 + x**7 / 63
def f_3(x, f2):
    return f2 + 2*x**11 / 2079 + x**15 / 59535
def f_4(x, f3):
    return f3 + 2*x**15 / 93555 + 2*x**19 / 3393495 + \
        + 2*x**19 / 2488563 + 2*x**23 / 86266215 + 2*x**23 / 99411543 + \
            + 2*x**27 / 3341878155 + x**31 / 109876902975
def pikkar_method(x_min, x_max, h):
    x = x_min
    result_1 = []
    result_2 = []
    result_3 = []
    result_4 = []
    while x <= x_max:
        f1 = f_1(x)
        f2 = f_2(x, f1)
        f3 = f_3(x, f2)
        f4 = f_4(x, f3)
        result_1.append(f1)
        result_2.append(f2)
        result_3.append(f3)
        result_4.append(f4)
        x += h
    return result_1, result_2, result_3, result_4
# Alpha = 1
```

```
def runge_kutt_1(x_min, x_max, h, y0):
    x = x_min
    y = y0
    result_y = []
    result_y.append(y)
    while x <= x_max:
        try:
            y_{temp} = y + h/2 * f(x, y)
            y_pr_temp = f(x + h/2, y_temp)
            y += h * y_pr_temp
            x += h
            result_y.append(y)
        except:
            while x <= x_max:
                result_y.append('-')
                x += h
            return result_y
    return result_y
# Alpha = 0.5
def runge_kutt_2(x_min, x_max, h, y0):
    x = x_min
    y = y0
    result_y = []
    result_y.append(y)
    while x <= x_max:
        try:
            y_{temp} = y + h/2 * f(x, y)
            y_pr_temp = f(x + h, y_temp)
            y_pr_temp_2 = 0.5 * (f(x, y) + y_pr_temp)
            y += h * y_pr_temp_2
            x += h
            result_y.append(y)
        except:
            while x <= x_max:
                result_y.append('-')
                x += h
            return result_y
    return result_y
def euler(x_min, x_max, h, y0):
    x = x_min
    y = y0
    result = []
    result.append(y)
    while x <= x_max:
```

```
try:
    y += h * f(x, y)
    x += h
    result.append(y)

except:
    while x <= x_max:
        result.append('-')
        x += h
    return result

return result</pre>
```

Демонстрация работы программы

По заданию требуется границу интервала x_{max} выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения до второго знака после запятой.

На листинге 2 представлена реализация поиска границы интервала x_{max} .

Листинг 2: Поиск границы интервала

```
def find_accuracy(x_min, x_max, h, y):
    res5 = runge_kutt_1(x_min, x_max, h, y)
    res6 = runge_kutt_2(x_min, x_max, h, y)
    res7 = euler(x_min, x_max, h, y)
    x = 0
    N = len(res5)
    for i in range(0, N):
        if (abs(res5[i] - res6[i]) \le EPS) and \
             (abs(res6[i] - res7[i]) \le EPS) and \
                 (abs(res5[i] - res7[i]) <= EPS):
            x +=
        else:
             print()
            print("Xmax_{\sqcup} = _{\sqcup}", x)
             break
    return x
```

На рисунке 1 представлен результат поиска границы:

Xmax = 1.9493000000043028

Рисунок. 1: Поиск границы

На рисунке 2 представлена таблица решений уравнений различными методами до правой границы с интервалом 0.05:

1							
Х	Pikkar_1	Pikkar_2	Pikkar_3	Pikkar_4	Runge(a=1)	Runge(a=0.5)	Euler
0.00	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.05	0.00004167	0.00004167	0.00004167	0.00004167	0.00004167	0.00004167	0.00004165
0.10	0.00033333	0.00033333	0.00033333	0.00033333	0.00033333	0.00033333	0.00033328
0.15	0.00112500	0.00112503	0.00112503	0.00112503	0.00112503	0.00112503	0.00112491
j 0.20	0.00266667	0.00266687	0.00266687	0.00266687	0.00266687	0.00266687	0.00266667
0.25	0.00520833	0.00520930	0.00520930	0.00520930	0.00520930	0.00520930	0.00520899
0.30	0.00900000	0.00900347	0.00900347	0.00900347	0.00900347	0.00900347	0.00900302
0.35	0.01429167	0.01430188	0.01430189	0.01430189	0.01430189	0.01430189	0.01430127
0.40	0.02133333	0.02135934	0.02135938	0.02135938	0.02135938	0.02135938	0.02135858
0.45	0.03037500	0.03043431	0.03043446	0.03043446	0.03043446	0.03043446	0.03043344
0.50	0.04166667	0.04179067	0.04179114	0.04179115	0.04179115	0.04179114	0.04178988
0.55	0.05545833	0.05569999	0.05570133	0.05570133	0.05570134	0.05570133	0.05569979
0.60	0.07200000	0.07244434	0.07244784	0.07244785	0.07244786	0.07244785	0.07244601
0.65	0.09154167	0.09231980	0.09232824	0.09232828	0.09232831	0.09232829	0.09232611
0.70	0.11433333	0.11564054	0.11565965	0.11565975	0.11565985	0.11565982	0.11565727
j 0.75	0.14062500	0.14274379	0.14278465	0.14278494	0.14278523	0.14278518	0.14278222
0.80	0.17066667	0.17399548	0.17407871	0.17407948	0.17408026	0.17408019	0.17407676
0.85	0.20470833	0.20979686	0.20995931	0.20996124	0.20996322	0.20996311	0.20995916
0.90	0.24300000	0.25059201	0.25089736	0.25090195	0.25090668	0.25090652	0.25090199
0.95	0.28579167	0.29687639	0.29743135	0.29744180	0.29745263	0.29745240	0.29744721
1.00	0.33333333	0.34920635	0.35018515	0.35020796	0.35023184	0.35023152	0.35022557
1.05	0.38587500	0.40820993	0.40989019	0.40993829	0.40998919	0.40998873	0.40998192
j 1.10	0.44366667	0.47459868	0.47741355	0.47751177	0.47761702	0.47761639	0.47760857
1.15	0.50695833	0.54918087	0.55379315	0.55398804	0.55420008	0.55419922	0.55419020
1.20	0.57600000	0.63287589	0.64028242	0.64065925	0.64107673	0.64107554	0.64106510
1.25	0.65104167	0.72673010	0.73840666	0.73911851	0.73992422	0.73992260	0.73991042
1.30	0.73233333	0.83193415	0.85003452	0.85135123	0.85287999	0.85287777	0.85286345
1.35	0.82012500	0.94984168	0.97746847	0.97985817	0.98271805	0.98271499	0.98269798
1.40	0.91466667	1.08198969	1.12355960	1.12782283	1.13311267	1.13310843	1.13308797
1.45	1.01620833	1.23012049	1.29185290	1.29934157	1.30904442	1.30903848	1.30901347
1.50	1.12500000	1.39620536	1.48677133	1.49974327	1.51744754	1.51743913	1.51740796
1.55	1.24129167	1.58246992	1.71384867	1.73603804	1.76828516	1.76827302	1.76823324
1.60	1.36533333	1.79142136	1.98002380	2.01755403	2.07642338	2.07640542	2.07635311
1.65	1.49737500	2.02587752	2.29401209	2.35685053	2.46509615	2.46506871	2.46499726
1.70	1.63766667	2.28899789	2.66677353	2.77104085	2.97279722	2.97275336	2.97265088
1.75	1.78645833	2.58431668	3.11210160	3.28372784	3.66833693	3.66826238	3.66810523
1.80	1.94400000	2.91577783	3.64736281	3.92786202	4.68813070	4.68799187	4.68772698
1.85	2.11054167	3.28777229	4.29442366	4.74999897	6.34652546	6.34622695	6.34571003
1.90	2.28633333	3.70517736	5.08080977	5.81669111	9.56699529	9.56616341	9.56485626
1.95	2.47162500	4.17339840	6.04115248	7.22415275	18.74727220	18.74300215	18.73696032

Рисунок. 2: Поиск границы

Рисунок. 3: График функции