ONE-PAGE REVIEW

MATH 1910 Recitation

§9.1 (Arc Length and Surface Area) §9.4 (Taylor Polynomials)

§9.4 (Taylor Polynomials) §10.1 (Differential Equations) November 3, 2016

	(1
(1) The arc length of $f(x)$ on the interval $[a,b]$ is	

- (2) The **surface area** of the surface obtained by rotating the graph of f(x) around the x-axis for $a \le x \le b$ is
- (3) The *n*-th Taylor Polynomial centered at x = a for the function f is

$$T_n(x) =$$

(4) The error for the n-th Taylor Polynomial is

$$|T_n(x)-f(x)|\leq \boxed{$$

(5) **Taylor's Theorem** says that

$$R_n(x) = T_n(x) - f(x) =$$

- (6) A **differential equation** is like a normal equation, except you solve a differential equation for a 6 instead of a number.
- (7) The **order** of a differential equation is the highest derivative of *y* appearing in the equation. What are the orders of the following equations?

	Equation	Oraer
(a)	$y' = x^2$	(7)
(d)	$y''' + x^4y' = 2$	(8)
(b)	$(y')^3 + yy' = \sin x$	(9)
(c)	$y'' = y^2$	(10)

(8) The technique for solving a differential equation where you move all the x-terms to one side and all of the y-terms to the other side is called \bigcirc

PRACTICE PROBLEMS

MATH 1910 Recitation

§9.1 (Arc Length and Surface Area) §9.4 (Taylor Polynomials) §10.1 (Differential Equations)

November 3, 2016

- (1) For the curve curve $y = \ln(\cos x)$ over the interval $[0, \pi/4]$, set up an integral to calculate:
 - (a) the arc length.
 - (b) the surface area when rotated around the *x*-axis.
- (2) Approximate the arc length of the curve $y = \sin(x)$ over the interval $[0, \pi/2]$ using the midpoint rule M_8 .
- (3) Find the Taylor polynomials $T_2(x)$ and $T_3(x)$ for $f(x) = \frac{1}{1+x}$ centered at a = 1.
- (4) Find n such that $|T_n(1.3) \sqrt{1.3}| \le 10^{-6}$, where T_n is the Taylor polynomial for \sqrt{x} at a = 1.
- (5) Find the general solutions of the following differential equations using separation of variables.

(a)
$$\frac{dy}{dt} - 2y = 1$$

(b)
$$(1+x^2)y' = x^3y$$

(6) Solve the initial value problem
$$\begin{cases} y' + 2y = 0 \\ y(\ln(2)) = 3 \end{cases}$$