OPERATION ANALYTICS AND INVESTIGATING METRIC SPIKE

Abstract

Praveen Joshi

Praveenjoshi899@gmail.com

Description

Operation Analytics is the analysis done for the complete end-to-end operations of a company. With the help of this, the company then finds the areas on which it must improve upon. You work closely with the ops team, support team, marketing team, etc and help them derive insights out of the data they collect.

Being one of the most important parts of a company, this kind of analysis is further used to predict the overall growth or decline of a company's fortune. It means better automation, better understanding between cross-functional teams, and more effective workflows.

Investigating metric spike is also an important part of operation analytics as being a Data Analyst you must be able to understand or make other teams understand questions like- Why is there a dip in daily engagement? Why have sales taken a dip? Etc. Questions like these must be answered daily and for that its very important to investigate metric spike.

You are working for a company like Microsoft designated as Data Analyst Lead and is provided with different data sets, tables from which you must derive certain insights out of it and answer the questions asked by different departments.

The Problem

Case Study 1 (Job Data)

- Number of jobs reviewed: Amount of jobs reviewed overtime.
- Your task: Calculate the number of jobs reviewed per hour per day for November 2020.
- **Throughput:** It is the no. of events happening per second. Your task: Let's say the above metric is called throughput. Calculate 7-day rolling average of throughput. For throughput, do you prefer daily metric or 7-day rolling and why?
- Percentage share of each language: Share of each languagefor different contents.
- Your task: Calculate the percentage share of each language in the last 30 days.
- **Duplicate rows:** Rows that have the same value present in them.
- Your task: Let's say you see some duplicate rows in the data. How will you display duplicates from the table?

The Problem(Cont...)

Case Study 2 (Investigating metric spike)

• **User Engagement:** To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Your task: Calculate the weekly user engagement.

- User Growth: Amount of users growing over time for aproduct.
- Your task: Calculate the user growth for product.
- **Weekly Retention:** Users getting retained weekly aftersigning-up for a product.
- Your task: Calculate the weekly retention of users-sign upcohort?
- Weekly Engagement: To measure the activeness of a user.
 Measuring if the user finds quality in a product/serviceweekly.
- Your task: Calculate the weekly engagement per device?
- **Email Engagement:** Users engaging with the email service. Your task: Calculate the email engagement metrics?

<u>Design</u>

Steps taken to load the data into the database

- Using the 'create db' function of MySQL create a database
- Then add tables and column names
- Then add the values into them using the 'insert into'function of MySQL
- By using the 'select' command we can query the desiredoutput

Software used for querying the results

--> MySQL Workbench 8.0.33

Software used for analyzing using Bar plots

--> Microsoft Excel 365

Job Data

Creating & Inserting Data:

```
create database operation_analytics;
    use operation_analytics;
```

```
create table job_data(

job_id int,

actors_id int,

event varchar(255),

language varchar(255),

time_spent int,

org varchar(255),

ds date);
```

select * from job_data;

```
INSERT INTO job_data (ds, job_id, actors_id, event, language, time_spent, org)

VALUES ('2020-11-30', 21, 1001, 'skip', 'English', 15, 'A'),

('2020-11-30', 22, 1006, 'transfer', 'Arabic', 25, 'B'),

('2020-11-29', 23, 1003, 'decision', 'Persian', 20, 'C'),

('2020-11-28', 23, 1005, 'transfer', 'Persian', 22, 'D'),

('2020-11-28', 25, 1002, 'decision', 'Hindi', 11, 'B'),

('2020-11-27', 11, 1007, 'decision', 'French', 104, 'D'),

('2020-11-26', 23, 1004, 'skip', 'Persian', 56, 'A'),

('2020-11-25', 20, 1004, 'transfer', 'Italian', 45, 'C');
```


Findings - I

To find the number of jobs reviewed per hour per day in November 2020:

- **1.** We will use the data from job_id columns of the job_data table.
- 2. Then we will divide the total count of job id (distinct and non-distinct) by (30 days
- * 24 hours) for finding the number of jobs reviewed per day.

Input

select

count(distinct job_id)/(30*24) as num_jobs_reviewed

from job_data

where

ds between '2020-11-01' and '2020-11-30';

Output

num_jobs_reviewed_distinct 0.0083

num_jobs_reviewed_non_distinct 0.0111

^{*}Just remove Distinct from the above command to get this result..

Job Data

Findings - II

For calculating the 7-day rolling daily metric average of throughput:-

- **1.** We will be first taking the count of job_id(distinct and non-distinct) andordering them w.r.t ds (date of interview)
- **2.** Then by using the ROW function we will be considering the rowsbetween 6 preceding rows and the current row
- 3. Then we will be taking the average of the jobs_reviewed

Input

```
select ds,

jobs_reviewed,

avg(jobs_reviewed)over(order by ds rows between 6 preceding and current row) as throughput_7

from

(select ds, count(distinct job_id) as jobs_reviewed

from job_data where ds between '2020-11-01' and '2020-11-30'

group by ds)a;
```

ds	jobs_reviewed	throughput_7_rolling_average
25 November 2020	1	1
26 November 2020	1	1
27 November 2020	1	1
28 November 2020	2	1.25
29 November 2020	1	1.2
30 November 2020	2	1.3333

ds	jobs_reviewed	throughput_7_rolling_average_non_distinct_jobid
25-11-		
2020	1	1
26-11-		
2020	1	1
27-11-		
2020	1	1
28-11-		
2020	2	1.25
29-11-		
2020	1	1.2
30-11-		
2020	2	1.3333

To Calculate the percentage share of each language (distinct and non-distinct):-

- **1.** We will first divide the total number of languages (distinct/non-distinct) by the total number of rows presents in the table
- **2.** Then we will do the grouping based on the languages.

Input

```
select * from job_data;
select language,
num_jobs,
100.0* num_jobs/total_jobs as pct_share_lang
from
(
select language, count(distinct job_id) as num_jobs
from job_data
group by language
)a
cross join
(
select count(distinct job_id) as total_jobs
from job_data
)b;
```

job_id	language	total_of_each_language	percentage_share_of_each_language
21	English	1	12.5
22	Arabic	1	12.5
23	Persian	3	37.5
25	Hindi	1	12.5
11	French	1	12.5
20	Italian	1	12.5

^{*}Remove distinct to get the above result from the SQL command..

Job Data

Findings - III(Cont..)

Output /Result

job_id	language	total_of_each_language	percentage_share_of_each_distinct_language
22	Arabic	1	12.5
21	English	1	12.5
11	French	1	12.5
25	Hindi	1	12.5
20	Italian	1	12.5
23	Persian	1	37.5

Job Data Findings Findings- IV

To view the duplicate rows having the same value we will:-

- 1. First decide in which do we need to find the duplicate row values
- **2.** After deciding the column(parameter) we will use the ROW_NUMBERfunction to find the row numbers having the same value
- **3.** Then we will portioning the ROW_NUMBER function over the column(parameter) that we decided i.e. job_id
- **4.** Then using the WHERE function we will find the row_num having valuegreater than 1 i.e. row num > 1 based on the occurrence of the job id in the table

Input

```
select * from
(
select *,
row_number()over(partition by job_id) as rownum
from job_data
)a
where rownum>1;
```

job_id	actors_id	event	language	time_spent	org	ds	rownum
23	1005	transfer	Persian	22	D	28-11-2020	2
23	1004	skip	Persian	56	Α	26-11-2020	3

Investigating Metric SpikeFindings - I

A. **User Engagement:** To measure the activeness of a user. Measuring if the user finds quality in a product/service. **Your task:** Calculate the weekly user engagement?

To find the weekly user engagement:-

- **1.** We will extract the week from the occurred_at column of the events tableusing the EXTRACT function and WEEK function
- 2. Then we will be counting the number of distinct user id from the events table
- **3.** Then we will use the GROUP BY function to group the output w.r.t week fromoccurred_at

week_number	number_of_users
18	791
19	1244
20	1270
21	1341
22	1293
23	1366
24	1434
25	1462
26	1443
27	1477
28	1556
29	1556
30	1593
31	1685
32	1483
33	1438
34	1412
35	1442

Investigating Metric SpikeFindings-I (Cont...)

number_of_users vs. week_number

INVESTIGATING METRIC SPIKEFINDINGS -II

B User Growth: Amount of users growing over time for a product. Your task: Calculate the user growth for product?

To find the user growth (number of active users per week):-

- **1.** First we will the extract the year and week for the occurred_at column of theusers table using the extract, year and week functions
- 2. Then we will group the extracted week and year on the basis of year and weeknumber
- 3. Then we ordered the result on the basis of year and week number
- **4.** Then we will find the cumm_active_users using the SUM, OVER and ROWfunction between unbounded preceding and current row

Input

select
extract(year from occured_at) as year_num,
extract(week from occured_at) as week_num,
device,
count(distinct user_id) as no_of_users
from tutorial.yammer_events
where event_type = 'engagement'
group by 1,2,3
order by 1,2,3;

year_nu	week_nu	num_active_us	cum_active_us	year_nu	week_nu	num_active_us	cum_active_us
m	m	ers	ers	m	m	ers	ers
2013	1	67	67	2013	45	ಭ	2564
2013	2	29	96	2013	46	94	2658
2013	3	47	143	2013	47	82	2740
2013	4	36	179	2013	48	103	2843
2013	S	30	209	2013	49	96	2939
2013	6	48	257	2013	50	117	3056
2013	7	41	298	2013	51	123	3179
2013	8	39	337	2013	52	104	3283
2013	9	33	370	2014	1	91	3374

2013	10	43	413	2014	2	122	3496
2013	11	33	446	2014	3	112	3608
2013	12	32	478	2014	4	113	3721
2013	13	33	511	2014	S	130	3851
2013	14	40	551	2014	6	132	5483
2013	15	35	586	2014	7	135	4118
2013	16	42	628	2014	8	127	4245
2013	17	48	676	2014	9	127	4372
2013	18	48	724	2014	10	135	4507
2013	19	45	769	2014	11	152	4659
2013	20	SS	824	2014	12	132	4791
2013	21	41	865	2014	13	151	4942
2013	22	49	914	2014	14	161	5103
2013	23	51	965	2014	15	166	5269
2013	24	51	1016	2014	16	165	5434
2013	25	46	1062	2014	17	176	5610
2013	26	57	1119	2014	18	172	5782
2013	27	57	1176	2014	19	160	5942
2013	28	52	1228	2014	20	186	6128
2013	29	71	1299	2014	21	177	6305
2013	30	66	1365	2014	22	186	6491
2013	31	69	1434	2014	23	197	6688
2013	32	66	1500	2014	24	198	6886
2013	33	73	1573	2014	25	222	7108
2013	34	70	1643	2014	26	210	7318
2013	35	80	1723	2014	27	199	7517
2013	36	65	1788	2014	28	223	7740
2013	37	71	1859	2014	29	215	7955
2013	38	84	1943	2014	30	228	8183
2013	39	92	2035	2014	31	234	8417
2013	40	81	2116	2014	32	189	8606
2013	41	88	2204	2014	33	250	8856
2013	42	74	2278	2014	34	259	9115
2013	43	97	2375	2014	35	266	9381
2013	44	92	2467				

INVESTIGATING METRIC SPIKEFINDINGS - II
(CONT...)

Output

count 9381

INVESTIGATING METRIC SPIKEFINDINGS - III

C. Weekly Retention: Users getting retained weekly after signing-up for a product. **Your task:** Calculate the weekly retention of users-sign up cohort?

The weekly retention of users-sign up cohort can be calculated by two means i.e.either by specifying the week number (18 to 35) or for the entire column of occurred_at of the events table.

- 1. Firstly we will extract the week from occurred_at column using the extract, week functions
- **2.** Then, we will select out those rows in which event_type = 'signup_flow' andevent_name = 'complete signup'
- **3.** If finding for a specific week we will specify the week number using the extractfunction
- **4.** Then using the left join we will join the two tables on the basis of user_id whereevent_type = 'engagement'
- 5. Then we will use the Group By function to group the output table on the basisof user id
- **6.** Then we will use the Order By function to order the result table on the basis of user id

Input

```
select count(user_id),
    sum(case when retention_week = 1 then 1 else 0 end) as per_week_retention
from
(
select a.user_id,
    a.sign_up_week,
    b.engagement_week,
    b.engagement_week - a.sign_up_week as retention_week
from
(
(select distinct user_id, extract(week from occured_at) as sign_up_week
from tutorial.yammer_events
where event_type = 'signup_flow'
and event_name = 'complete_signup'
and extract(week from occured_at)=18)a
left join
```



```
(select distinct user_id, extract(week from occured_at) as engagement_week from tutorial.yammer_events
where event_type = 'engagement')b
on a.user_id = b.user_id
)
group by user_id
order by user_id;
```

Output

Google Drive Link for saved result(without specifying week number)

Task_3_case_study_2

Investigating Metric SpikeFindings - III
(Cont...)

Output

Google Drive Link for saved result (specifying week number as 18)

Task 3 case study_ 2 18_week - Google Drive

INVESTIGATING METRIC SPIKEFINDINGS - IV

D. Weekly Engagement:

To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

To find the weekly user engagement per device:-

- **1.** Firstly we will extract the year_num and week_num from the occurred_atcolumn of the events table using the extract, year and week function
- **2.** Then we will select those rows where event_type = 'engagement' using the WHERE clause
- **3.** Then by using the Group By and Order By function we will group andorder the result on the basis of year_num, week_num and device

Input

select
extract(year from occured_at) as year_num,
extract(week from occured_at) as week_num,
device,
count(distinct user_id) as no_of_users
from tutorial.yammer_events
where event_type = 'engagement'
group by 1,2,3
order by 1,2,3;

Output

Google Drive link for saved result

question D weekly user engagement perdevice

Investigating Metric SpikeFindings - V

To find the email engagement metrics(rate) of users:-

- **1.** We will first categorize the action on the basis of email_sent, email_opened and email_clicked using the CASE, WHEN, THEN functions
- **2.** Then we select the sum of category of email_opened divide by the sum of the category of email_sent and multiply the result by 100.0 and name isas email_opening_rate
- **3.** Then we select the sum of category of email_clicked divide by the sum of the category of email sent and multiply the result by 100.0 and name is as email clicking rate
- **4.** email sent = ('sent weekly digest', 'sent reengagement email')
- **5.** email_opened = 'email_open'
- **6.** email clicked = 'email clickthrough'

Input

```
select
100.0 * sum(case when email_cat = 'email_opened' then 1 else 0 end)
    /sum(case when email_cat = 'email_sent' then 1 else 0 end)
as email opening rate,
100.0 * sum(case when email_cat = 'email_clicked' then 1 else 0 end)
     /sum(case when email_cat = 'email_sent' then 1 else 0 end)
as email_clicking_rate
from
select *,
case when action in ('sent_weekly_digest', 'sent_reengagement_email')
   then 'email_sent'
   when action in ('email open')
   then 'email opened'
   when action in ('email_clickthrough')
   then 'email_clicked'
end as email cat
from tutorial.yammer_events
)a;
```


Output

email_opening_rate	email_clicking_rate		
33.58338805	14.78988838		

Analysis

From the tables and Bar plot, I have inferred the following:-number of

- distinct jobs reviewed per day is 0.0083
- number of non-distinct jobs reviewed per day is 0.0111
- 7-day rolling average throughput for 25, 26, 27, 28, 29 and 30 Nov 2020 are 1, 1, 1,
 1.25, 1.2 and 1.3333 respectively(for both distinct and non-distinct)
- The percentage share of each language i.e. Arabic, English, French, Hindi, Italian and Persian are 12.5, 12.5, 12.5, 12.5, 12.5 and 37.5 respectively(for both distinct and non-distinct)
- There are 2 duplicates values/rows having job id = 23 and language = Persian in boththe rows

Using the Why's approach I am trying to find more insights

- Why there is a difference in values between the number of distinct jobs reviewed per day and a number of non-distinct jobs reviewed per day?
- ----> May be due to repeated values in two or more rows or the dataset consisted ofduplicate rows
- Why one shall use the 7-day rolling average for calculating throughput and not a daily metric average?
- ----> For calculating the throughput we will be using the 7-day rolling because 7-day rolling gives us the average for all the days right from day 1 to day 7 Whereas the daily metric gives us the average for only that particular day itself.
- Why is it that the percentage share of all other languages is 12.5% but that of language ='Persian' is 37.5?
- ----> In such cases there are two chances i.e. either there were duplicate rows having language as 'Persian' or there were really two or more unique people who were speaking in the Persian language
- Why do we need to look for duplicate rows in a dataset?
- ----> Duplicates have a direct influence of the Analysis going wrong and may be led to wrong Business
 Decisions leading to loss to the company or any entity; so to avoid these one must look for duplicates
 and remove them where necessary

ANALYSIS (CONT...)

From the tables and Bar plot I have infer the following:-

- The weekly user engagement is the highest for week 31 i.e. 1685
- There are in total 9381 active users from 1st week of 2013 to the 35th week of 2014
- The email_opening_rate is 33.5833 and email_clicking_rate is 14.78988

I have used the Why's approach to gain few more insights:-

- Why is the weekly user engagement so less in the beginning and then got increased?
- ----> It is a fact that for any new product or service launched, during it's initial periodin the market it is
 less known to all people only some people use the product and based on their experience the
 product/service engagement increases or decreases depending on whether the consumer experience
 was good or bad. In this case since the user engagement increased after 2-3 weeks of the launch means
 that the consumer had a good experience with the product/service
- Why is weekly retention so important?
- ---> Weekly retention helps the firms to convince and help those visitors who just complete the sign-up
 or leave the sign-up process in between, such visitors may become customers in future if they are
 guided and convinced properly
- Why is weekly engagement per device plays an important role?
- ----> Based on the reviews from users weekly engagement per device helps the firms on which devices
 they must focus more and which devices need more improvements so they also get a good review in
 users weekly engagement per device
- Why is Email Engagement plays an important role?
- ----> Email Engagement helps the firms to decide the discounts and offers on specific products. In this
 case the email_opening_rate is 33.58 i.e. out of the 100 mails send only 34 mails were opened and the
 email_clicking_rate is 14.789 i.e. out of 100 mails opened only 15 mails were clicked for more details
 regarding the discount/product details. This means that the current firm needs to have some more
 catchy line for mails also the firm needs to do rigorous planning and deciding content before sending
 the mails

CONCLUSION

In Conclusion, I would like to conclude that Operation Analytics and Investigating Metric Spike are very necessary and they must be done on a daily, weekly, Monthly, Quarterlyor Yearly basis based on the Business needs of the firm.

Also, any entity must focus on Email Engagement with the customers; the firm must use catchy headings alongwith reasonable discounts and coupons so as to increase their existing customer base

Also, any firm must have a separate department(if possible)so as to hear out the problems of those Visitors who had left the Sign-up Process in between, the firm must guide them so as to convert them from Visitors to Customers.