SVD and PCA

Mohammad Emtiyaz Khan EPFL

Nov 19, 2015

©Mohammad Emtiyaz Khan 2015

Motivation

Principal component analysis (PCA) is a popular method for dimensionality reduction. It is also the simplest example of a latent factor model. It is very similar to matrix factorization and can be obtained using singular value decomposition (SVD).

PCA can be seen as a method that minimizes the reconstruction error or maximizes the variance of the projection, as well as a method to decorrelate the data.

Matrix factorization and PCA

In matrix factorization, we compute an approximation $\mathbf{X} \approx \widetilde{\mathbf{X}} = \mathbf{W}\mathbf{Z}^T$. If we restrict columns of \mathbf{W} to be orthogonal, then the factorization is equivalent to PCA. This is also a regularizer similar to an L_2 regularizer used in the alternating least-squares algorithm.

SVD

Such orthogonal factorization can be obtained using SVD:

$$X = USV^T$$

where \mathbf{U} and \mathbf{V} are orthonormal matrices of size $D \times D$ and $N \times N$ respectively, and \mathbf{S} is a diagonal matrix of size $D \times N$ with nonnegative entries which are called singular values. Columns of \mathbf{U} and \mathbf{V} are the left and right singular vectors, respectively.

The singular values appear in a descending order in S, i.e. we have $s_1 \geq s_2 \geq s_3 \ldots$, where s_i is the i'th singular value.

We let $\mathbf{W} = \mathbf{U}\mathbf{S}^{1/2}$ and $\mathbf{Z} = \mathbf{V}\mathbf{S}^{1/2}$ to obtain the low rank approximation. This minimizes the reconstruction error (a result known as the Eckart-Young theorem).

Spectral view of SVD

Assuming D < N, we can express SVD as follows

$$\mathbf{X} = \sum_{j=1}^{D} s_j \mathbf{u}_j \mathbf{v}_j^T$$

Easy to see that, for all j, $\mathbf{X}\mathbf{v}_j = s_j\mathbf{u}_j$. Note the similarity to the eigenvalue decomposition. Zero singular values correspond to the basis vector in the null space.

Since s_j are ordered, this tell you about the *spectrum* of \mathbf{X} , where higher singular vectors contain the *low-frequency information* and lower singular values contain the *high-frequency information*.

Therefore, if you have a reason to believe that the low-frequency content contains more useful *information* than the high-frequency content, then a low-rank approximation is justified.

An example

The following example is taken from lecture notes of Nando De Frietas's.

$$[U,S,V] = svd(X);$$

imshow(U(:,1:M)*S(1:M,1:M)*V(:,1:M)')

PCA and decorrelation

Define the sample mean and sample covariance matrix of the data vector \mathbf{x}_n as follows:

$$\bar{\mathbf{x}} := \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$
, $\mathbf{S} := \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$

If \mathbf{x}_n are i.i.d. samples drawn from some $p(\mathbf{x})$, then the sample mean and covariance will indeed converge to the true mean and covariance of $p(\mathbf{x})$ as $N \to \infty$.

Suppose that $\bar{\mathbf{x}} = 0$, i.e. the data is zero mean (or centered). Then, $\mathbf{S} = \frac{1}{N}\mathbf{X}\mathbf{X}^T$. Using SVD, we can write the following:

$$\mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{S}^2\mathbf{U}^T$$

Multiplying the left by \mathbf{U}^T and the right by \mathbf{U} , we get the following:

$$\mathbf{U}^T \mathbf{X} \mathbf{X}^T \mathbf{U} = \mathbf{S}^2$$

The columns of matrix **U** are called the principal components and they decorrelate the covariance matrix. The matrix **U** can also be used to visualize the factors.

To do

- 1. Read Section 12.1.1 and 12.1.2 of Bishop. Understand the two viewpoints: maximizing variance and minimizing reconstruction error.
- 2. Read Section 12.1.4 of Bishop to learn about the computational complexity of PCA.