Вопрос №1

Определение частичного предела последовательности

Определение. Предел любой подпоследовательности данной числовой последовательности называется частичным пределом этой последовательности.

По теореме Больцано-Вейерштрасса любая ограниченная последовательность имеет хотя бы один частичный предел.

Верхний и нижний пределы последовательности

Определение. Наименьший частичный предел последовательности $\{a_n\}$ называется ее нижним пределом и обозначается как $\underline{\lim} \ a_n$.

Определение. Наибольший частичный предел последовательности $\{a_n\}$ называется ее верхним пределом и обозначается как $\overline{\lim} a_n$.

Любая ограниченная последовательность имеет как верхний, так и нижний предел.

Любая числовая последовательность имеет хотя бы один частичный предел, конечный или бесконечный.

Если последовательность имеет предел (конечный или бесконечный), то верхний, нижний и обычный пределы этой последовательности равны. Обратное тоже верно.

Фундаментальные (сходящиеся к себе) последовательности

Лемма (условие Коши). Пусть $\{x_n\}$ сходится. Тогда $\forall \varepsilon > 0: \exists N = N(\varepsilon): \forall n \geq N, \forall m \geq N \Rightarrow |x_n - x_m| < \varepsilon.$

Доказательство. Пусть $x_0 = \lim_{n \to \infty} x_n$. Тогда $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n \ge N$: $|x_n - x_0| < \frac{\varepsilon}{2}$. Следовательно, $\forall n > N, \ \forall m > N$: $|x_n - x_m| \le |x_n - x_0| + |x_0 - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Определение. Последовательность $\{x_n\}$ вещественных чисел удовлетворяет условию Коши, если $\forall \varepsilon > 0 : \exists N = N(\varepsilon) : \forall n \geq N, \forall m \geq N \Rightarrow |x_n - x_m| < \varepsilon$.

Определение. Последовательности, удовлетворяющие условию Коши, также называются фундаментальными или сходящимися к себе.

Теорема о сходимости фундаментальной последовательности вещественных чисел

Теорема. Если последовательность $\{x_n\}$ вещественных чисел удовлетворяет условию Коши, то она сходится к конечному пределу.

Доказательство.

- 1. Убедимся, что если имеет место условие Коши, то $\{x_n\}$ ограничена. Пусть $\varepsilon=1$ и $m=N_1$. Тогда для всех $n\geq N_1=N(1)$ имеем: $|x_n-x_{N_1}|<1 \Leftrightarrow x_{N_1}-1< x_n< x_{N_1}+1$. Выберем минимум (a) и максимум (b) среди чисел $\{x_1,x_2,\ldots,x_{N_1-1},x_{N_1},x_{N_1+1}\}$. Тогда $a\leq x_n\leq b \ \forall n=1,2,\ldots$ Таким образом, $\{x_n\}$ ограничена и по теореме Больцано-Вейерштрасса существует ее сходящаяся подпоследовательность $\{x_{n_k}\}$. Пусть ее предел равен x_0 .
- 2. Убедимся, что $x_0 = \lim_{n \to \infty} x_n$. Для всех $\varepsilon > 0$ имеем: $\exists N_{\varepsilon} : \forall n, m \ge N_{\varepsilon} : |x_n x_m| < \frac{\varepsilon}{2}, \exists M_{\varepsilon} : \forall k \ge M_{\varepsilon} : |x_{n_k} x_0| < \frac{\varepsilon}{2}$. Обозначим $P = \max(N_{\varepsilon}, M_{\varepsilon})$. Тогда $P \ge M_{\varepsilon} \forall n_p \ge P \ge N_{\varepsilon}$. Поэтому $\forall n \ge N_{\varepsilon} : |x_n x_0| \le |x_n x_{n_p}| + |x_{n_p} x_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$. Это означает по определению, что существует предел последовательности $x_0 = \lim_{n \to \infty} x_n$.

Критерий Коши

Следствие теоремы о сходимости. Для того чтобы последовательность вещественных чисел сходилась необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Отметим, что это следствие (критерий Коши) на множестве \mathbb{Q} является неверным. Например, последовательность нижних десятичных приближений числа $\sqrt{2}$ сходится к $\sqrt{2}$, и, следовательно, не имеет рационального предела, хотя и удовлетворяет условию Коши.

Полнота множества вещественных чисел

Множество $\mathbb R$ является полным относительно введенной сходимости, в отличие от множества $\mathbb Q$.

Пример. Пусть $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$. Доказать, что $\lim_{n \to \infty} H_n = +\infty$.

Решение. Имеем для любого n: $H_{2n}-H_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2}$. Следовательно, $\exists \varepsilon=\frac{1}{2}: \ \forall N\ \exists n=N,\ \exists m=2N=2n:\ |H_n-H_m|\geq\frac{1}{2}$. Получается, последовательность не удовлетворяет условию Коши, это значит, что у неё не может быть конечного предела. Но последовательность монотонно возрастает, а значит, по теореме Вейерштрасса, у нее есть предел, равный $+\infty$.

Предел последовательности частичных сумм гармонического ряда

Пусть $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$, $n = 1, 2, \ldots$ Доказать, что $\lim_{n \to \infty} H_n = +\infty$.

Решение. Имеем для любого $n=1,2,\ldots$: $H_{2n}-H_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2}$. Следовательно, $\exists \varepsilon=\frac{1}{2}:\ \forall N\ \exists n=N,\ \exists m=2N=2n:\ |H_n-H_m|\geq\frac{1}{2}$. Это означает, что последовательность $\{H_n\}$ не удовлетворяет условию Коши. Согласно следствию из теоремы Коши у последовательности $\{H_n\}$ не может существовать конечного предела. Но $\{H_n\}$ монотонно возрастает: $H_{n+1}-H_n=\frac{1}{n+1}>0\ \Rightarrow H_{n+1}>H_n$. Следовательно, по теореме Вейерштрасса, у нее есть предел. Но так как предел не может быть конечным, то он равен бесконечности: $\lim_{n\to\infty}H_n=\lim_{n\to\infty}(1+\frac{1}{2}+\ldots+\frac{1}{n})=+\infty$.

Вопрос №2

Уравнение кривых на плоскости

Уравнением кривой (линии) на координатной плоскости называется уравнение, которому удовлетворяют координаты x и y каждой точки данной кривой и не удовлетворяют координаты любой точки, не лежащей на этой кривой.

В общем случае уравнение кривой может быть записано в виде F(x,y)=0 или y=f(x).

Полярная система координат

Определение. Полярная система координат – двумерная система координат, в которой каждая точка на плоскости определяется двумя числа-

ми – полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.

Каждая точка в полярной системе координат может быть определена двумя полярными координатами, которые обычно называются ρ (радиальная координата) и ϕ (угловая координата, полярный угол). Координата ρ соответствует расстоянию от точки до центра, или полюса системы координат, а координата ϕ равна углу, отсчитываемому в направлении против часовой стрелки от луча через 0° (иногда называемого полярной осью системы координат). Полярный радиус определен для любой точки плоскости и всегда принимает неотрицательные значения $\rho \geq 0$. Полярный угол ϕ определен для любой точки плоскости, за исключением полюса O, и принимает значения $-\pi < \phi \leq \pi$. Полярный угол измеряется в радианах и отсчитывается от полярной оси:

- в положительном направлении (против направления движения часовой стрелки), если значение угла положительное;
- в отрицательном направлении (по направлению движения часовой стрелки), если значение угла отрицательное.

Например, точка с координатами $(3,60^\circ)$ будет выглядеть на графике как точка на луче, который лежит под углом 60° к полярной оси, на расстоянии трёх единиц от полюса. Точка с координатами $(3,-300^\circ)$ будет находиться на том же месте.

Уравнение прямой, проходящей через две точки

Каноническое уравнение прямой на плоскости вида $\frac{x-x_1}{a_x} = \frac{y-y_1}{a_y}$ задает в прямоугольной системе координат Oxy прямую, проходящую через точку $M_1(x_1,y_1)$ и имеющую направляющий вектор $\vec{a}=(a_x,a_y)$. Направляющим вектором прямой a, которая проходит через точки M_1 и M_2 , является вектор $M_1 M_2$, он имеет координаты (x_2-x_1,y_2-y_1) .

Каноническое уравнение прямой a, проходящей через две заданные точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, имеет вид $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ (или $\frac{x-x_2}{x_2-x_1}=\frac{y-y_2}{y_2-y_1}$).

Параметрические уравнения прямой на плоскости, проходящей через две точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ имеют вид $\begin{cases} x=x_1+(x_2-x_1)\cdot\lambda\\y=y_1+(y_2-y_1)\cdot\lambda \end{cases}$ или $\begin{cases} x=x_2+(x_2-x_1)\cdot\lambda\\y=y_2+(y_2-y_1)\cdot\lambda \end{cases}$

Угловой коэффициент прямой

Уравнение прямой, разрешенной относительно y, называется уравнением с угловым коэффициентом: y = kx + b.

Здесь угловой коэффициент $k = \operatorname{tg}(\phi)$, где ϕ - угол наклона прямой к оси Ox, а параметр b (равен величине отрезка OB, отсекаемого прямой от оси Oy) сдвиг прямой по оси Oy.

Уравнение прямой, проходящей через данную точку $M(x_0, y_0)$ и имеющей коэффициент k, находится по формуле: $y - y_0 = k(x - x_0)$. Если эта прямая параллельна оси Oy, то ее уравнение записывается в виде: $x = x_0$.

Уравнение прямой, проходящей через данную точку параллельно данному вектору

Пусть прямая проходит через точку $M_0(x_0, y_0)$ параллельно вектору $\vec{a} = (l, m)$.

Точка M(x,y) лежит на прямой тогда и только тогда, когда векторы $\vec{a}=(l,m)$ и $\vec{M_0M}=(x-x_0,y-y_0)$ коллинеарны. Векторы $\vec{a}=(l,m)$ и $\vec{M_0M}=(x-x_0,y-y_0)$ коллинеарны тогда и только тогда, когда их координаты пропорциональны, то есть

$$\frac{x - x_0}{l} = \frac{y - y_0}{m}.\tag{1}$$

Полученная система уравнений задает искомую прямую и называется каноническими уравнениями прямой на плоскости.

Уравнения 1 представим в виде $\frac{x-x_0}{l}=\frac{y-y_0}{m}=t$, где t принимает любые значения $-\infty < t < \infty$.

Следовательно, можем записать $\begin{cases} x = x_0 + lt \\ y = y_0 + mt \end{cases}$, где $-\infty < t < \infty$.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Пусть дана некоторая точка M_0 и вектор \vec{n} . Проведем через точку M_0 прямую l перпендикулярно вектору \vec{n} .

Пусть M - произвольная точка. Точка M лежит на прямой l в том и только в том случае, когда вектор $\vec{M_0M}$ перпендикулярен вектору \vec{n} , а для этого необходимо и достаточно, чтобы скалярное произведение векторов \vec{n} и $\vec{M_0M}$ равнялось нулю:

$$\vec{n} \cdot \vec{M_0 M} = 0. \tag{2}$$

Чтобы выразить последнее равенство в координатах, введем прямоугольную декартову систему координат. Пусть точки M_0 и M имеют координаты (x_0,y_0) и (x,y). Тогда: $\vec{M_0M}=(x-x_0,y-y_0)$. Обозначим координаты нормального вектора \vec{n} через (A,B). Теперь равенство 2 можно записать так:

$$A(x - x_0) + B(y - y_0) = 0. (3)$$

Уравнение 3 есть уравнение прямой l, проходящей через данную точку $M_0(x_0, y_0)$ перпендикулярно данному вектору $\vec{n} = (A, B)$.

Общее уравнение прямой на плоскости

Теорема. Всякое невырожденное уравнение первой степени вида Ax + By + C = 0 ($A^2 + B^2 \neq 0$) представляет собой уравнение некоторой прямой на плоскости Oxy.

Доказательство.

- 1. Пусть сначала $B \neq 0$. Тогда уравнение выше можно представить в виде: $y = -\frac{A}{B}x \frac{C}{B}$. Сравнивая это с уравнением y = kx + b, мы получим, что это есть уравнение прямой с угловым коэффициентом $k = -\frac{A}{B}$ и начальной ординатой $b = -\frac{C}{B}$.
- 2. Пусть теперь B=0; тогда $A\neq 0$. Имеем Ax+C=0 и $x=-\frac{C}{A}$. Полученное уравнение представляет собой уравнение прямой параллельной оси Oy и отсекающей на оси Ox отрезок $a=-\frac{C}{A}$.

Вычисление угла между прямыми

Рассмотрим две прямые (не параллельные оси Oy), заданные их уравнениями с угловыми коэффициентами: y = kx + b, где $k = \operatorname{tg}(\phi)$ и y = k'x + b', где $k' = \operatorname{tg}(\phi')$. Требуется определить угол θ между ними. Точнее, под углом θ мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой ($0 \le \theta \le \pi$). Этот угол θ равен углу ACB треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому $\phi' = \phi + \theta$, или $\theta = \phi' - \phi$. Отсюда на основании известной формулы тригонометрии получаем: $\operatorname{tg}(\theta) = \operatorname{tg}(\phi' - \phi) = \frac{\operatorname{tg}(\phi') - \operatorname{tg}(\phi)}{1 + \operatorname{tg}(\phi) \cdot \operatorname{tg}(\phi')}$. Заменяя $\operatorname{tg}(\phi)$ и $\operatorname{tg}(\phi')$ соответственно на k и k', окончательно получаем: $\operatorname{tg}(\theta) = \frac{k'-k}{1+k\cdot k'}$. Эта формула дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.

Условие параллельности и перпендикулярности двух прямых

Если прямые параллельны, то $\phi' = \phi$ и, следовательно: k = k'.

Обратно: если выполнено условие k=k', то, учитывая, что ϕ' и ϕ заключаются в пределах от 0 до π , получаем: $\phi'=\phi$, и, следовательно, рассматриваемые прямые или параллельны, или сливаются.

Прямые на плоскости параллельны тогда и только тогда, когда их угловые коэффициенты равны между собой.

Если прямые перпендикулярны, то $\theta=\frac{\pi}{2}$ и, следовательно: $\cot(\theta)=\frac{1}{\operatorname{tg}(\theta)}=\frac{1+k\cdot k'}{k'-k}=0$. Отсюда 1+kk'=0 и $k'=-\frac{1}{k}$. Справедливо и обратное утверждение.

Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.

Вычисление расстояния от данной точки до данной прямой

Если мы определим координаты (x_2, y_2) точки H_1 , то искомое расстояние $|M_1H_1|$ мы сможем вычислить, используя формулу для нахожде-

ния расстояния от точки M_1 до точки H_1 по их координатам: $|M_1H_1|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$, где (x_2,y_2) координаты точки H_1 , а (x_1,y_1) - координаты точки M_1 . Или: $d=\frac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}$, где A и B - коэффициенты из Ax+By+C=0 - обобщенного уравнения прямой.