BLG354E - Quiz 2

Q1) A system diagram is given below where x[n] is a discrete-time signal obtained by sampling a continuous-time signal x(t) with sampling frequency of 100 Hz. (20p+10p+20p)

a) Find the impulse response of the system via simulation (Present the result in a tabular form by also providing a pseudocode).

Psuedo Code:

 $@T_S=1/(100 \text{ Hz})=0.01 \text{ sec, } t=kT_S$

Input X

E=X-0.5Y

 $B=A; z^{-1}$

 $A=E; z^{-1}$

Output Y=A+B

Return

n	X	A	В	Е	Y
0	1	0.000	0.000	1.000	0.000
1	0	1.000	0.000	-0.500	1.000
2	0	-0.500	1.000	-0.250	0.500
3	0	-0.250	-0.500	0.375	-0.750
4	0	0.375	-0.250	-0.063	0.126
5	0	-0.063	0.375	-0.156	0.312
6	0	-0.156	-0.063	0.109	-0.218
7	0	0.109	-0.156	0.023	-0.046
8	0	0.023	0.109	-0.066	0.132
9	0	-0.066	0.023	0.021	-0.042
10	0	0.021	-0.066	0.022	-0.044
11	0	0.022	0.021	-0.022	0.044
12	0	-0.022	0.022	0.000	0.000
13	0	0.000	-0.022	0.011	-0.022
14	0	0.011	0.000	-0.005	0.010

b) Find the system response for x[n]=n(u[n]-u[n-2]) by simulation.

 $x[n]=n(u[n]-u[n-2])=n(\delta[n]+\delta[n-1])=\{0,1\}$

x[1]=1 and x[n]=0 if $n \neq 1$

n	X	A	В	Е	Y
0	0	0.000	0.000	0.000	0.000
1	1	0.000	0.000	1.000	0.000
2	0	1.000	0.000	-0.500	1.000
3	0	-0.500	1.000	-0.250	0.500
4	0	-0.250	-0.500	0.375	-0.750
5	0	0.375	-0.250	-0.063	0.126
6	0	-0.063	0.375	-0.156	0.312
7	0	-0.156	-0.063	0.109	-0.218
8	0	0.109	-0.156	0.023	-0.046
9	0	0.023	0.109	-0.066	0.132
10	0	-0.066	0.023	0.021	-0.042
11	0	0.021	-0.066	0.022	-0.044
12	0	0.022	0.021	-0.022	0.044
13	0	-0.022	0.022	0.000	0.000
14	0	0.000	-0.022	0.011	-0.022
15	0	0.011	0.000	-0.005	0.010

c) Find the system response for x[n]=n(u[n-1]-u[n-3]) by convolution for the first 5 values where u[n] is the unit step function.

 $x[n]=n(u[n-1]-u[n-3])=n(\delta[n-1]+\delta[n-2])=\{1,2\}$

As we find impulse response in part (a), h[n] is equal to the output in part (a), i.e., $h[n]=\{0.000,\,1.000,\,0.500,\,-0.750,\,0.126,\,0.312\}$ for n=0,1,2,3,4,5.

y[n]=x[n]*h[n]

n							x1	x2							
							1	2							
8									0.312	0.126	-0.75	0.5	1.0	0	
7								0.312	0.126	-0.75	0.5	1.0	0		
6							0.312	0.126	-0.75	0.5	1.0	0			
5						0.312	0.126	-0.75	0.5	1.0	0				
4					0.312	0.126	-0.75	0.5	1.0	0					
3				0.312	0.126	-0.75	0.5	1.0	0						
2			0.312	0.126	-0.75	0.5	1.0	0							
1		0.312	0.126	-0.75	0.5	1.0	0								
0	0.312	0.126	-0.75	0.5	1.0	0									
	0	0	1.0	2.5	0.25	-1.375	0.562	0.625	0						
	y0	y1	y 2	y 3	y4	y 5	y6	y7	y8						

Q2) For the system function
$$H(z) = \frac{1 - \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$
,

- a) Draw the block diagram of the system as two cascaded sub-systems.
- b) Is the system BIBO stable? Explain briefly.

Combining these two systems:

b)

Thus, howing multipliers absolutely lesser than 1, the past subspace is BIBD stable. The second system which could be mother as YENJXET-XENJE-XEN-2XED-EXEN-21 is also stable. Thus the ments shade is BIBD stable