Comparison Tables: BBOB 2015 Testbed in 2-D

The BBOBies

July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbod

testbed algorithm short name	paper	reference
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 02-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	1.8	5.7	5.7	6.2	6.2	6.2	6.2	15/15
BSifeg	1.5 (1)	1.5(0.6)	1.8(0.2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	1.7(0.2)	15/15
BSif	1.5 (1)	1.5(0.9)	1.8(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	15/15
BSqi	1.5 (1)	1.5(0.9)	1.8(0.3)	1.7(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	15/15
BSrr	1.5 (1)	1.5(0.5)	1.8(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	15/15
CMA-CSA	2.7(4)	2.8 (3)	9.2(5)	14(6)	18(4)	26(6)	37(6)	15/15
CMA-MSR	3.4(1)	3.4(2)	10(5)	17(4)	29(6)	44(7)	63(9)	15/15
CMA-TPA	3.0 (3)	5.7(5)	10(4)	13(11)	19(8)	31(9)	38(7)	15/15
GP1-CMAES	1.7(0.6)	2.7 (2)	5.7(4)	7.0(2)	10(5)	14(4)	20(6)	15/15
GP5-CMAES	2.7(2)	1.9(0.8)	2.8 (1.0)	3.8(0.6)	4.2(1)	6.3(2)	12(6)	15/15
IPOPCMAv3p	4.4(5)	4.0(4)	10(4)	14(8)	18(6)	28(7)	39(3)	15/15
LHD-10xDef	2.6(2)	4.4(3)	10(2)	10(0.4)	11(0.6)	44(105)	∞ 100	0/15
LHD-2xDefa	2.3(2)	2.2 (0.1)	3.0(0.4)	3.7(1)	4.9(1)	33(48)	∞ 100	0/15
RAND-2xDef	2.9 (3)	2.2 (0.1)	3.1(0.7)	4.0(0.8)	5.1(0.8)	42(38)	∞ 100	0/15
RF1-CMAES	3.2(4)	3.6(4)	6.6(3)	8.6(3)	15(4)	34(5)	62(35)	12/15
RF5-CMAES	3.1(4)	14(46)	41(65)	90(62)	116(122)	1168(1666)	1220(914)	1/15
Sifeg	1.5 (1)	1.6(0.9)	2.2 (0.3)	2.9 (0.4)	3.4(0.5)	4.8(0.8)	5.7(0.5)	15/15
Sif	1.5 (1)	1.6 (0.6)	2.2 (0.3)	3.1(0.6)	3.5(0.6)	4.9(0.8)	5.7(0.2)	15/15
Srr	1.5 (1)	1.6(0.9)	2.2 (0.1)	2.7 (0.1)	3.2(0.2)	4.2(0.3)	5.3(0.2)	15/15

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	16	19	25	25	26	28	29	15/15
BSifeg	1.2(0.3)	1.2(0.3)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.1(0.2)	1.2(0.3)	15/15
BSif	1.2(0.4)	1.2(0.4)	1.0(0.4)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.2(0.2)	15/15
BSqi	1.0(0.2)	0.98 (0.2)	0.82 (0.1)	0.82 (0.1)	0.87(0.1)	0.92 (0.1)	1.1(0.3)	15/15
BSrr	1.2(0.2)	1.2(0.2)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.1(0.1)	1.3(0.1)	15/15
CMA-CSA	11(8)	15(4)	13(3)	15(3)	15(2)	16(2)	18(2)	15/15
CMA-MSR	15(9)	17(5)	14(4)	16(3)	18(3)	20(2)	23(3)	15/15
CMA-TPA	10(7)	12(6)	11(3)	13(3)	15(3)	15(2)	17(3)	15/15
GP1-CMAES	8.8(7)	13(8)	12(4)	12(2)	13(2)	15(2)	17(11)	13/15
GP5-CMAES	4.2(3)	5.3(2)	4.6(1)	4.9(1)	5.3(0.8)	5.3(0.9)	7.0(5)	15/15
IPOPCMAv3p	11(11)	18(7)	20(12)	24(16)	31(30)	67(85)	$\infty 506$	0/15
LHD-10xDef	29(44)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	14(30)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	16(26)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	29(31)	180(228)	295(425)	288(344)	∞	∞	$\infty 506$	0/15
RF5-CMAES	35(24)	115(77)	∞	∞	∞	∞	$\infty 502$	0/15
Sifeg	1.6(0.3)	1.5(0.3)	1.3(0.3)	1.4(0.3)	1.4(0.2)	1.6(0.4)	1.7(0.3)	15/15
Sif	1.5(0.4)	1.5(0.3)	1.3(0.3)	1.3(0.3)	1.4(0.2)	1.6(0.5)	1.7(0.5)	15/15
Srr	1.5(0.2)	1.4(0.3)	1.3(0.1)	1.4(0.1)	1.5(0.2)	1.6(0.2)	1.8(0.2)	15/15

Table 4: 02-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Cacii uiiis van	ac aiviac	a by am	ichsion.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	15	271	445	446	450	454	464	15/15
BSifeg	1.0(0.7)	0.19(0.1)	0.21 (0.1)	0.21 (0.1)	0.22 (0.1)	0.22 (0.1)	0.22 (0.1)	15/15
BSif	0.99 (0.3)	0.19(0.1)	0.21 (0.2)	0.21 (0.1)	0.21 (0.1)	0.22 (0.2)	0.21 (0.1)	15/15
BSqi	0.96 (0.6)	0.19(0.1)	0.20 (0.1)	15/15				
BSrr	1.0(0.9)	0.18(0.1)	0.19(0.1)	0.20 (0.1)	0.20 (0.1)	0.21 (0.1)	0.21 (0.1)	15/15
CMA-CSA	2.6 (2)	2.7 (2)	4.4(7)	4.9(6)	5.0(2)	5.2(5)	5.4(5)	15/15
CMA-MSR	3.7(2)	3.8(6)	4.4(2)	6.0(7)	6.3(2)	6.7(5)	7.1(12)	15/15
CMA-TPA	7.1(15)	4.7(4)	10(7)	10(16)	10(7)	11(9)	11(8)	15/15
GP1-CMAES	2.5(2)	2.9 (3)	5.3(9)	5.4(5)	5.4(4)	8.2(17)	16(31)	1/15
GP5-CMAES	5.1(4)	2.3 (3)	∞	∞	∞	∞	$\infty 508$	0/15
IPOPCMAv3p	3.0 (2)	1.9(2)	3.5(5)	3.6(5)	3.6(5)	3.7(3)	3.8(3)	4/15
LHD-10xDef	3.8(6)	5.5(8)	3.4(3)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.5(0.8)	$0.74_{(0.4)}$	1.6 (3)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.4 (2)	1.6 (3)	1.6(2)	3.3(4)	∞	∞	∞ 100	0/15
RF1-CMAES	11(18)	13(15)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	17(23)	13(10)	∞	∞	∞	∞	$\infty 506$	0/15
Sifeg	1.3(0.6)	0.23 (0.1)	0.20 (0.1)	0.21 (0.0)	0.24 (0.1)	0.25 (0.0)	0.26 (0.0)	15/15
Sif	1.3(0.6)	0.24 (0.1)	0.21 (0.1)	0.22 (0.0)	0.24 (0.0)	0.25 (0.1)	0.25 (0.0)	15/15
Srr	1.3(0.5)	0.19 (0.1)	0.18 (0.0)	0.19 (0.1)	0.22 (0.0)	0.24 (0.0)	0.26 (0.0)	15/15

Table 5: 02-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	22	344	459	496	523	544	566	15/15
BSifeg	0.91 (0.4)	0.17(0.1)	0.21(0.1)	0.20(0.1)	0.20(0.1)	0.22 (0.1)	0.28(0.1)	15/15
BSif	0.91(0.5)	0.17(0.1)	0.22(0.1)	0.21 (0.1)	0.21(0.1)	0.22 (0.1)	0.27(0.1)	15/15
BSqi	0.98(0.5)	0.17(0.1)	0.22(0.1)	0.21 (0.1)	0.20(0.1)	0.22 (0.1)	0.27(0.1)	15/15
BSrr	0.93 (0.3)	0.18(0.1)	0.21(0.1)	0.21 (0.1)	0.21(0.1)	0.24 (0.1)	0.31(0.1)	15/15
CMA-CSA	2.3 (2)	5.6(5)	21(17)	66(45)	75(40)	77(62)	76(39)	14/15
CMA-MSR	6.1(12)	9.3(8)	242(174)	533(660)	1634(1484)	2409(2591)	2315(2138)	2/15
CMA-TPA	2.9 (3)	6.2(12)	34(62)	110(213)	109(293)	134(203)	131(483)	12/15
GP1-CMAES	2.2 (1)	3.5(4)	3.6(4)	3.4(5)	6.8(4)	14(15)	$\infty 506$	0/15
GP5-CMAES	6.4(5)	2.6 (4)	∞	∞	∞	∞	$\infty 508$	0/15
IPOPCMAv3p	2.9 (2)	4.8(3)	16(31)	15(14)	14(7)	14(23)	$\infty 506$	0/15
LHD-10xDef	2.7 (3)	4.3(3)	3.2(3)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.8(0.8)	4.3(5)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.7 ₍₁₎	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	3.3(2)	∞	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	16(18)	21(31)	∞	∞	∞	∞	∞ 504	0/15
Sifeg	0.96(0.4)	0.27(0.1)	0.38(0.2)	0.44(0.2)	0.55(0.1)	0.63(0.2)	0.73(0.2)	15/15
Sif	0.95 (0.7)	0.28(0.1)	0.39(0.2)	0.45 (0.2)	0.55 (0.2)	0.61(0.1)	0.71(0.2)	15/15
Srr	0.96 (0.6)	0.24(0.1)	0.36 (0.1)	0.44 (0.1)	0.56 (0.1)	0.68 (0.2)	0.82(0.3)	15/15

Table 6: 02-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	3.7	4.4	4.4	4.4	4.4	4.4	4.4	15/15
BSifeg	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSif	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
$_{\mathrm{BSrr}}$	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
CMA-CS	A 2.9(2)	4.5(5)	4.8(5)	4.8(4)	4.8(2)	4.8(4)	4.8(2)	15/15
CMA-MS	R 3.1(2)	5.7(2)	6.1(1)	6.2(3)	6.2(3)	6.2(4)	6.2(4)	15/15
CMA-TP.	A 2.1(1)	3.5(2)	4.0(2)	4.0(2)	4.0(2)	4.0(1)	4.0(1)	15/15
GP1-CMA	ES 2.5 (2)	6.9(21)	9.3(7)	9.3(12)	9.3(15)	9.3(4)	9.3(6)	15/15
GP5-CMA	ES 2.0 (0.9)	3.7(1.0)	4.2(3)	4.4(3)	4.4(3)	4.4(3)	4.4(2)	15/15
IPOPCMA	v3p4.4(3)	12(16)	13(9)	13(17)	13(20)	13(22)	13(12)	15/15
LHD-10xI	Def 3.3(3)	14(0)	14(0.6)	14(0.6)	14(0.6)	14(0)	14(0.6)	15/15
LHD-2xD	efa 2.5 (1)	3.2(0.3)	3.3(0.6)	3.3(0.6)	3.3(0.6)	3.3(0.6)	3.3(0.6)	15/15
RAND-2x	Def 2.5 (2)	3.1(0.3)	3.5(1)	3.6(0.9)	3.6(0.9)	3.6(0.6)	3.6(0.6)	15/15
RF1-CMA	ES 1.8(2)	20(21)	21(24)	22(24)	22(27)	22(26)	22(29)	15/15
RF5-CMA	ES 3.1(4)	58(99)	60(69)	61(65)	61(46)	61(71)	61(90)	12/15
Sifeg	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

Table 7: 02-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	# succ
f6	13	23	41	54	67	95	124	15/15
BSifeg	379(727)	416(774)	318(489)	538(706)	871(884)	1397(726)	2212(3487)	1/15
BSif	304(732)	442(618)	761(744)	1186(1753)	∞	∞	∞ 2e4	0/15
BSqi	306(266)	344(578)	397(683)	400(1255)	515(735)	1415(927)	2241(2313)	1/15
BSrr	371(695)	403(413)	319(404)	436(441)	686(626)	1407(1775)	2201(2432)	1/15
CMA-CSA	3.7(6)	4.3(2)	3.9 (1)	4.2 (1)	4.1(0.9)	4.2(0.7)	4.1(0.8)	15/15
CMA-MSR	3.1(2)	5.3(2)	4.8(2)	5.0(1)	5.3(1)	5.3(0.9)	5.2(0.7)	15/15
CMA-TPA	1.6(1)	3.6 (4)	3.8(2)	3.8(2)	3.8 (1)	3.8 (1)	3.9 (1)	15/15
GP1-CMAES	3.5(2)	4.9(2)	7.7(6)	19(17)	112(142)	∞	$\infty 506$	0/15
GP5-CMAES	2.7 (7)	9.2(17)	17(15)	44(58)	∞	∞	$\infty 506$	0/15
IPOPCMAv3p	3.2(1)	4.6 (1)	3.8 (1)	4.1(2)	4.2(2)	4.8(0.9)	12(10)	5/15
LHD-10xDef	1.5(1)	9.0(8)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.0(3)	12(11)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.0(2)	6.3(5)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	12(20)	67(87)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	9.4(9)	40(35)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	274(100)	271(150)	245(443)	316(356)	890(783)	2857(2247)	2205(1639)	1/15
Sif	354(367)	318(987)	395(822)	551(617)	1261(1899)	2870(4586)	∞ 2e4	0/15
Srr	267(144)	242(563)	246(355)	301(401)	506(463)	1339(1664)	2152(2487)	1/15

Table 8: 02-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	3.2	21	60	193	217	217	241	15/15
BSifeg	1.7 ₍₁₎	480(588)	1418(1329)	680(805)	1297(2015)	1297(1390)	1165(2122)	1/15
BSif	1.7 ₍₁₎	471(494)	453(432)	711(797)	1297(1529)		1165(916)	1/15
BSqi	1.7 ₍₁₎	254(330)	546(324)	711(589)	1297(996)	1297(1205)	1165(791)	1/15
BSrr	1.7 ₍₁₎	557(565)	570(357)	701(532)	1297(463)	1297(2641)	1165(874)	1/15
CMA-CSA	4.0(3)	5.7(9)	2.9 (2)	1.2(0.8)	1.3 (1)	1.3 (1)	1.5(2)	15/15
CMA-MSR	4.4(4)	1.9(2)	2.3 (3)	1.1(0.1)	1.2(0.3)	1.2(0.3)	1.3(0.3)	15/15
CMA-TPA	3.7(2)	1.9(2)	1.9 (1)	0.91(0.5)	0.88(0.7)	0.88(0.6)	1.0 (0.4)	15/15
GP1-CMAES	4.2(3)	2.2 (2)	1.8(1.0)	1.1(1)	1.1(0.8)	1.1(1)	1.4 (1)	13/15
GP5-CMAES	3.3(3)	2.2(2)	2.5 (0.8)	1.1(1)	1.1(1)	1.1(2)	1.7(1)	12/15
IPOPCMAv3p	3.9(3)	4.5(4)	3.2(3)	1.8(2)	1.7(1)	1.7(2)	2.1 (1)	11/15
LHD-10xDef	7.6(8)	2.6 (0.6)	4.8(4)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	3.0(3)	1.2(1)	1.5(2)	1.7(2)	2.1 (0.6)	2.1 (4)	2.9 (2)	2/15
RAND-2xDef	3.8(1)	1.5(0.9)	1.1(0.6)	1.3(1)	6.7(7)	6.7(5)	6.0(8)	1/15
RF1-CMAES	4.1(5)	4.2(4)	4.7(2)	2.2 (3)	2.7(4)	2.7 (2)	3.8(7)	7/15
RF5-CMAES	3.8(5)	3.4(6)	12(15)	42(48)	∞	∞	∞ 550	0/15
Sifeg	1.8 (1)	362(494)	964(989)	690(568)	1372(1552)	1372(1691)	1232(1727)	1/15
Sif	1.8(2)	320(377)	699(690)	718(581)	∞	∞	∞ 2e4	0/15
Srr	1.8 (2)	378(706)	566(374)	722(911)	∞	∞	∞ 2e4	0/15

Table 9: 02-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID FOI	are arrive		TIOIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	5.4	12	37	46	86	94	112	15/15
BSifeg	2.1 (0.7)	309(423)	2235(2549)	∞	∞	∞	∞ 2e4	0/15
BSif	2.1 (0.6)	275(380)	2262(1672)	5971(4564)	3193(3049)	∞	∞ 2e4	0/15
BSqi	2.1 (0.6)	408(742)	1538(1599)	5812(3002)	∞	∞	∞ 2e4	0/15
BSrr	2.1 (0.6)	308(385)	3350(5164)	5712(9431)	∞	∞	∞ 2e4	0/15
CMA-CSA	7.6(13)	17(23)	9.1(10)	10(4)	5.8(3)	6.1 (3)	5.5(1)	15/15
CMA-MSR	3.7(5)	15(25)	8.7(9)	8.9 ₍₅₎	5.1 (3)	5.6 (2)	5.6 (3)	15/15
CMA-TPA	5.2(3)	7.7 (7)	5.4 (3)	5.6 (2)	3.6 (1)	3.9 (1)	4.0(0.7)	15/15
GP1-CMAES	4.7(1)	8.5(21)	7.0(10)	13(26)	10(17)	10(6)	16(27)	4/15
GP5-CMAES	3.3(2)	11(20)	9.0(14)	10(7)	5.7(9)	6.7(13)	6.0(3)	9/15
IPOPCMAv3p	5.5(5)	10(2)	6.7 (6)	8.0(6)	5.6 (3)	9.0(10)	11(8)	6/15
LHD-10xDef	6.0(5)	10(13)	20(17)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	3.4(1)	4.0(0.3)	4.4(7)	15(20)	17(13)	∞	∞ 100	0/15
RAND-2xDef	3.8(0.9)	3.9 (3)	19(8)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	11(3)	13(7)	15(18)	47(53)	44(41)	∞	$\infty 506$	0/15
RF5-CMAES	25(66)	74(53)	92(137)	∞	∞	∞	$\infty 506$	0/15
Sifeg	2.4 (0.6)	355(727)	1078(1160)	1755(1276)	∞	∞	∞ 2e4	0/15
Sif	2.5 (0.5)	337(684)	1385(1274)	1749(2341)	2918(3548)	∞	∞ 2e4	0/15
Srr	2.5 (0.8)	266(422)	1819(948)	5100(4599)	∞	∞	∞ 2e4	0/15

Table 10: 02-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f9	1	18	30	44	68	81	92	15/15
BSifeg	76(432)	154(211)	311(797)	682(434)	1947(1694)	∞	∞ 2e4	0/15
BSif	50(73)	131(169)	445(610)	1446(1993)	1965(909)	∞	∞ 2e4	0/15
BSqi	73(213)	105(16)	483(602)	2777(3373)	3875(4553)	3218(2464)	$\infty~2e4$	0/15
BSrr	62(186)	141(226)	502(623)	1838(2274)	3939(8007)	∞	$\infty~2e4$	0/15
CMA-CSA	30(16)	5.8(3)	8.4(6)	8.1(4)	5.9 (1)	5.7 (2)	5.8 (3)	15/15
CMA-MSR	26(14)	7.1(5)	10(6)	8.9(5)	6.3(2)	6.4(2)	6.5(2)	15/15
CMA-TPA	26(26)	6.8(12)	8.2(8)	7.2 (4)	5.6 (3)	5.4(0.9)	5.7(0.7)	15/15
GP1-CMAES	29(18)	7.8(4)	14(11)	17(23)	19(27)	21(39)	26(35)	3/15
GP5-CMAES	19(14)	3.4(12)	5.3 (3)	5.9 (3)	4.4 (4)	5.0 (5)	4.8(5)	11/15
IPOPCMAv3p	23(19)	3.5(2)	6.6 (6)	8.2(6)	6.0(5)	6.4(7)	11(6)	7/15
LHD-10xDef	25(21)	4.0(4)	49(52)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	15 (16)	2.5 (1)	5.1(4)	11(14)	∞	∞	∞ 100	0/15
RAND-2xDef	16 (10)	2.4 (0.7)	12(12)	11(12)	∞	∞	∞ 100	0/15
RF1-CMAES	20(24)	19(21)	30(22)	83(72)	111(206)	∞	$\infty 506$	0/15
RF5-CMAES	172(383)	34(35)	113(80)	165(144)	∞	∞	∞ 504	0/15
Sifeg	22(38)	67(177)	373(639)	1292(784)	1792(2315)	3206(2154)	∞ 2e4	0/15
Sif	16 (6)	122(178)	442(696)	974(1863)	3836(3551)	3212(3982)	∞ 2e4	0/15
Srr	19(14)	80(207)	432(689)	5454(9109)	3534(4476)	∞	∞ 2e4	0/15

Table 11: 02-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f10	30	46	54	61	68	82	98	15/15
BSifeg	38(69)	199(134)	1916(1795)	∞	∞	∞	∞ 5883	0/15
BSif	71(101)	197(111)	1084(364)	2036(2892)	1814(1959)	∞	∞ 8444	0/15
BSqi	135(69)	467(501)	1535(1254)	∞	∞	∞	∞ 1e4	0/15
BSrr	46(79)	240(189)	543(1409)	1622(1430)	∞	∞	∞ 6681	0/15
CMA-CSA	7.5(5)	6.5(2)	6.3(1)	6.0(1)	5.8 (1)	5.6(0.8)	5.3(0.9)	15/15
CMA-MSR	7.4(4)	6.1(2)	5.8 (2)	6.4(0.8)	6.3(1)	6.5(0.6)	6.6(1)	15/15
CMA-TPA	6.3 (4)	5.6 (3)	5.9(2)	6.0(0.7)	5.8(2)	5.6(0.8)	5.3(1)	15/15
GP1-CMAES	4.6(3)	4.6 (3)	4.7 (1)	4.6 (1)	4.5(1.0)	4.7(2)	4.8(2)	13/15
GP5-CMAES	1.6 (0.9)	1.8(1)*2	2.0 (0.7)	2.0 (0.2)	1.9(0.3)	1.8(0.3)	1.9(0.4)	15/15
IPOPCMAv3p	8.3(5)	8.7(5)	11(10)	17(17)	18(28)	23(14)	$\infty 506$	0/15
LHD-10xDef	16(15)	33(23)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	6.9(4)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	10(13)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	19(17)	34(50)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	14(13)	77(151)	141(282)	∞	∞	∞	$\infty 502$	0/15
Sifeg	8.6(6)	80(75)	110(46)	310(620)	276(224)	∞	∞ 2159	0/15
Sif	12(9)	95(102)	323(431)	613(652)	546(326)	∞	∞ 2178	0/15
Srr	7.9(11)	70(111)	224(215)	643(433)	∞	∞	∞ 2193	0/15

Table 12: 02-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f11	35	45	50	62	67	81	97	15/15
BSifeg	58(51)	209(271)	431(513)	1500(1712)	1373(1477)	∞	∞ 6926	0/15
BSif	45(113)	240(361)	1887(2063)	1544(1651)	1413(1804)	∞	∞ 5430	0/15
BSqi	60(156)	196(306)	267(387)	549(432)	1596(1424)	∞	$\infty 5998$	0/15
BSrr	59(105)	302(303)	631(606)	1628(2636)	1489(989)	∞	$\infty 6000$	0/15
CMA-CSA	4.9(3)	6.4(2)	6.7(2)	5.9(2)	5.9(1)	5.6(0.7)	5.3(1)	15/15
CMA-MSR	5.1(3)	5.7 (2)	6.3(2)	5.7 (2)	6.1(0.8)	6.5(1)	6.7(0.5)	15/15
CMA-TPA	5.4(3)	6.0(1)	6.1 (1)	5.7(0.9)	5.6(0.7)	5.6(0.6)	5.2(1)	15/15
GP1-CMAES	4.4(4)	4.9(3)	5.8 (2)	5.0(0.9)	4.9(0.9)	4.6(1.0)	4.7 (1.0)	14/15
GP5-CMAES	1.5(0.6)	2.2 (0.6)	2.5 (0.3)	2.1 (0.3)	2.2 (0.3)	2.0(0.4)	2.1(0.2)	15/15
IPOPCMAv3p	7.3(6)	10(6)	11(9)	11(10)	13(12)	46(47)	$\infty 506$	0/15
LHD-10xDef	42(37)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	21(26)	16(48)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	7.1(7)	10(8)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	14(23)	36(63)	72(40)	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	8.7(13)	79(222)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	22(9)	65(39)	223(156)	183(215)	263(391)	463(459)	∞ 2391	0/15
Sif	13(38)	40(59)	97(97)	185(106)	540(1035)	∞	∞ 2405	0/15
Srr	22(36)	89(70)	167(102)	588(843)	538(429)	∞	∞ 2357	0/15

Table 13: 02-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	35	46	75	94	105	153	195	15/15
BSifeg	93(26)	156(240)	217(413)	294(340)	283(159)	254(481)	199(344)	4/15
BSif	78(340)	132(130)	192(216)	232(238)	353(185)	243(410)	190(152)	4/15
BSqi	91(116)	132(128)	162(211)	248(320)	307(400)	306(276)	240(429)	3/15
BSrr	61(56)	148(320)	161(422)	204(307)	313(278)	295(271)	232(239)	3/15
CMA-CSA	8.0(3)	11(12)	8.9(2)	8.6(10)	8.4(0.9)	7.3 (13)	6.2 (5)	15/15
CMA-MSR	8.8(16)	12(7)	8.7(5)	9.0(1)	9.0(6)	7.4(9)	6.7 (3)	15/15
CMA-TPA	5.2 (4)	7.0 (7)	6.9(6)	6.9(7)	6.8 (0.6)	5.7(4)	5.4(0.7)	15/15
GP1-CMAES	6.2(10)	7.0 (8)	6.5 (8)	7.3 (7)	11(5)	50(115)	39(49)	1/15
GP5-CMAES	2.9 (1)	7.5(9)	4.9(11)	6.5 (3)	7.6 (7)	11(6)	18(25)	2/15
IPOPCMAv3p	4.4(5)	7.4 (6)	6.5 (9)	7.9(8)	17(20)	25(42)	$\infty 506$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	7.1(6)	31(50)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	6.9(7)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	11(14)	20(22)	97(121)	77(66)	∞	∞	$\infty 506$	0/15
RF5-CMAES	12(11)	80(48)	100(81)	∞	∞	∞	∞ 504	0/15
Sifeg	17(35)	45(80)	39(57)	66(75)	73(156)	82(119)	64(67)	4/15
Sif	28(32)	66(82)	49(39)	71(78)	79(136)	90(121)	71(132)	4/15
Srr	11(38)	44(86)	45(84)	85(95)	119(64)	83(88)	65(34)	4/15

Table 14: 02-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	ac ar ira	J	OIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	23	35	46	60	71	95	122	15/15
BSifeg	541(1088)	802(1017)	1350(1088)	4694(1e4)	∞	∞	$\infty~2e4$	0/15
BSif	789(771)	1789(2615)	5953(8420)	∞	∞	∞	$\infty~2e4$	0/15
BSqi	430(450)	1042(1206)	2829(4552)	4857(5674)	∞	∞	$\infty~2e4$	0/15
BSrr	491(550)	1250(1781)	2940(4540)	4875(4005)	4136(2903)	∞	$\infty~2e4$	0/15
CMA-CSA	2.9 (3)	4.2 (2)	4.6 (1)	4.6 (1.0)	4.6(0.8)	4.9 (1)	4.8(0.7)	15/15
CMA-MSR	3.7(2)	4.7(2)	5.7(1.0)	5.6(0.5)	5.7(0.6)	6.3 (1)	6.3(0.8)	15/15
CMA-TPA	4.5(4)	4.9(1)	5.1 (1)	4.9(2)	5.5 (1)	5.2(1)	5.3(0.5)	15/15
GP1-CMAES	2.7(2)	3.7 (2)	5.2(4)	7.7(2)	11(18)	19(19)	$\infty 506$	0/15
GP5-CMAES	3.8(7)	4.6(2)	4.4(2)	4.4 (6)	4.3 (1)	8.5(12)	$\infty 506$	0/15
IPOPCMAv3p	3.9(2)	5.6(4)	6.1(2)	7.3(8)	12(9)	∞	$\infty 506$	0/15
LHD-10xDef	2.9 (0.7)	21(31)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.4(0.4)	4.2(3)	32(26)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(0.9)	4.0(7)	31(11)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	7.9(12)	17(18)	21(33)	22(22)	53(86)	∞	$\infty 506$	0/15
RF5-CMAES	11(11)	62(49)	159(132)	∞	∞	∞	$\infty 508$	0/15
Sifeg	563(612)	1461(1049)	∞	∞	∞	∞	∞ 2e4	0/15
Sif	410(309)	760(519)	1726(1588)	4333(6653)	∞	∞	∞ 2e4	0/15
Srr	428(1103)	1059(860)	2567(2279)	4077(5292)	3464(6129)	∞	∞ 2e4	0/15

Table 15: 02-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	1.4	7.4	16	24	38	67	90	15/15
BSifeg	2.6 (3)	8.5(15)	5.4(7)	15(18)	695(867)	4153(3633)	∞ 2e4	0/15
BSif	2.6 (3)	8.7(11)	5.4(5)	15(33)	1128(1649)	4153(5635)	∞ 2e4	0/15
BSqi	2.6 (3)	5.7(4)	3.8(10)	7.9(13)	1172(1059)	∞	∞ 2e4	0/15
BSrr	2.6 (3)	8.4(8)	5.3(12)	7.9(10)	577(529)	4152(4893)	3108(4717)	1/15
CMA-CSA	1.3(2)	1.9(2)	3.6(1.0)	4.0(2)	4.3(2)	5.0 (0.9)	5.4(0.7)	15/15
CMA-MSR	2.7 (1)	2.8 (2)	4.5(2)	6.2(1)	5.8(2)	5.7(0.7)	6.2(0.7)	15/15
CMA-TPA	2.8 (4)	3.5(1)	4.8(2)	5.3(2)	4.8(2)	5.0 (0.6)	5.5(0.9)	15/15
GP1-CMAES	1.7(0.7)	1.9(2)	2.1 (1)	2.9 (2)	4.8(5)	9.2(4)	84(105)	1/15
GP5-CMAES		2.3 (0.5)	1.8 (1)	1.9(0.7)	2.4 (2)	4.2 (1)	41(66)	2/15
IPOPCMAv3p	2.0 (0.7)	3.1(2)	3.3(0.6)	4.6(2)	5.5(3)	6.6(4)	27(27)	3/15
LHD-10xDef	1.6 (1)	3.1(2)	4.4(0.4)	12(7)	39(22)	∞	∞ 100	0/15
LHD-2xDefa	1.6(0.5)	1.4 (1)	1.6(0.3)	3.5 (3)	∞	∞	∞ 100	0/15
RAND-2xDef	1.2(1)	1.9(0.4)	1.7(0.5)	4.8(2)	12(16)	∞	∞ 100	0/15
RF1-CMAES	1.9 (3)	6.3(9)	6.3(8)	10(6)	37(29)	∞	$\infty 506$	0/15
RF5-CMAES	1.3(0.7)	48(69)	56(58)	146(180)	∞	∞	$\infty 506$	0/15
Sifeg	2.6 (0.7)	2.3 (1)	2.2 (2)	7.1(2)	1252(2232)	4153(3485)	∞ 2e4	0/15
Sif	2.6(2)	2.4(2)	2.2 (2)	10(7)	2256(2504)	4153(5560)	∞ 2e4	0/15
Srr	2.6 (3)	2.1(1)	1.9(1.0)	3.8(3)	643(529)	4153(5116)	∞ 2e4	0/15

Table 16: 02-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	37	291	1033	1066	1113	1231	1412	5/5
BSifeg	27(92)	116(254)	56(63)	55(56)	54(52)	71(80)	∞ 2e4	0/15
BSif	22(2)	77(80)	80(90)	81(78)	79(84)	112(110)	∞ 2e4	0/15
BSqi	3.3(5)	49(69)	45(59)	44(54)	42(47)	50(84)	64(31)	3/15
BSrr	4.2(12)	47(65)	44(21)	55(54)	54(60)	107(50)	192(194)	1/15
CMA-CSA	1.1 (1)	1.4(0.6)	1.5(2)	1.6(2)	1.6(2)	1.5 (1)	1.4 (1)	15/15
CMA-MSR	0.86(0.3)	2.3 (0.9)	2.6 (1)	2.7 (2)	2.7 (2)	2.6 (2)	2.4 (1)	15/15
CMA-TPA	1.5(0.7)	3.8(2)	2.3 (3)	2.5 (2)	2.4(2)	2.3 (2)	2.2 (0.7)	15/15
GP1-CMAES	1.3(2)	2.8 (3)	1.6(4)	1.6(2)	1.6 (3)	1.5(2)	1.7(2)	3/15
GP5-CMAES	0.75 (0.4)	1.6(2)	0.81(0.7)	0.93(1)	0.90 (0.4)	0.83 (0.9)	0.90 (0.8)	5/15
IPOPCMAv3p	1.3 (1)	2.3 (2)	2.2 (1)	2.2 (3)	2.1(3)	1.9 (1)	1.7(1)	3/15
LHD-10xDef	2.2 (2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	0.90 (0.6)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(0.7)	2.4 (4)	1.4(0.7)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.9 (7)	5.5(5)	7.0(8)	6.8(5)	∞	∞	$\infty 506$	0/15
RF5-CMAES	6.1(7)	24(17)	∞	∞	∞	∞	$\infty 506$	0/15
Sifeg	1.7(4)	31(23)	37(106)	36(48)	35(42)	32(57)	30(33)	5/15
Sif	1.7 (0.6)	35(67)	27(47)	26(33)	26(29)	37(40)	89(109)	2/15
Srr	1.6 (0.4)	29(16)	39(62)	38(78)	37(60)	44(44)	86(71)	2/15

Table 17: 02-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	9.1	50	174	326	358	409	538	15/15
BSifeg	3.2(4)	18(63)	32(54)	46(50)	57(33)	149(63)	257(410)	2/15
BSif	3.0(2)	8.6(56)	29(33)	37(51)	45(80)	150(206)	249(199)	2/15
BSqi	2.9 (2)	5.9(2)	28(49)	41(92)	72(131)	142(112)	251(199)	2/15
BSrr	3.8(0.7)	6.9(21)	20(56)	36(82)	55(63)	146(169)	161(192)	3/15
CMA-CSA	10(4)	5.9(10)	3.0 (3)	2.0(2)	2.3 (1)	2.4 (3)	2.0 (0.9)	15/15
CMA-MSR	13(36)	11(12)	10(14)	5.4(7)	5.2(4)	4.9(6)	4.0(5)	15/15
CMA-TPA	2.9 (4)	4.2(3)	3.9(7)	2.5 (2)	2.7 (4)	2.8 (4)	2.3 (2)	15/15
GP1-CMAES	3.4(2)	6.4(8)	8.5(17)	6.8(4)	6.5(5)	5.9(5)	$\infty 506$	0/15
GP5-CMAES	8.2(9)	14(24)	4.8(6)	5.4(3)	6.7(8)	∞	$\infty 506$	0/15
IPOPCMAv3p	2.4 (0.7)	3.9(3)	2.8 (3)	2.1(2)	2.9 (5)	3.2 (4)	2.6 (3)	5/15
LHD-10xDef	3.1(4)	3.1 (3)	8.5(15)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.2 (1)	2.1 (3)	2.6 (2)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.6 (5)	1.2(1)	1.9 (1)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.1(2)	8.1(5)	12(12)	11(10)	20(12)	18(18)	14(20)	1/15
RF5-CMAES	4.3(2)	10(20)	12(23)	∞	∞	∞	$\infty 502$	0/15
Sifeg	2.3 (1)	14(49)	21(23)	31(53)	33(62)	69(54)	89(98)	5/15
Sif	2.3 (1)	27(85)	29(114)	34(81)	35(55)	89(93)	242(338)	2/15
Srr	2.3 (1)	17(45)	21(30)	19(15)	37(47)	102(185)	153(149)	3/15

Table 18: 02-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	2.7	61	133	275	396	1086	1657	5/5
BSifeg	2.2 (2)	6.2(3)	48(125)	59(52)	130(68)	∞	∞ 2e4	0/15
BSif	2.2 (0.8)	35(64)	37(45)	73(60)	160(187)	∞	∞ 2e4	0/15
BSqi	2.2 (2)	27(18)	33(15)	41(72)	64(67)	∞	∞ 2e4	0/15
BSrr	2.2 (2)	32(9)	78(116)	88(128)	102(75)	∞	∞ 2e4	0/15
CMA-CSA	3.1(1)	2.0(5)	2.0(1)	1.5(1)	1.6 (1)	1.8 (1)	1.4 (1)	15/15
CMA-MSR	20(4)	4.6(5)	3.3(3)	2.6 (1)	2.2 (1)	1.9(0.9)	1.5(0.6)	15/15
CMA-TPA	3.6(4)	1.1(0.5)	2.1 (3)	2.0(2)	2.0 (1)	1.8(0.3)	1.4(0.7)	15/15
GP1-CMAES	3.8(4)	4.2(5)	5.1(6)	5.8(6)	18(43)	∞	$\infty 506$	0/15
GP5-CMAES	7.6(13)	5.6(5)	5.1(6)	5.8(2)	9.0(11)	∞	$\infty 508$	0/15
IPOPCMAv3p	2.5 (3)	3.0(7)	3.1 (7)	2.6 (2)	2.8 (2)	∞	$\infty 506$	0/15
LHD-10xDef	1.8(1)	1.3 (1)	11(8)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.5(2)	1.1(2)	5.3(3)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.9(2)	0.69(0.6)	3.5(6)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.6 (5)	3.8(9)	6.5(4)	8.5(12)	9.2(9)	∞	$\infty 506$	0/15
RF5-CMAES	50(49)	16(19)	55(29)	∞	∞	∞	∞ 502	0/15
Sifeg	2.2(2)	1.9 ₍₃₎	6.6(10)	18(27)	34(55)	∞	∞ 2e4	0/15
Sif	2.2(2)	4.1(6)	7.9(14)	10(11)	45(62)	264(369)	∞ 2e4	0/15
Srr	2.2(2)	1.8(5)	3.8(5)	22(12)	31(19)	∞	∞ 2e4	0/15

Table 19: 02-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	19	134	666	1249	1708	2438	2858	15/15
BSifeg	0.77 (0.3)	121(140)	137(252)	∞	∞	∞	∞ 2e4	0/15
BSif	0.78(0.1)	149(135)	209(265)	∞	∞	∞	∞ 2e4	0/15
BSqi	0.77 (0.2)	123(77)	74(51)	∞	∞	∞	∞ 2e4	0/15
BSrr	0.76(0.1)	113(106)	135(113)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	1.5(2)	3.9(4)	1.3(0.7)	0.94 (0.9)	0.78(0.5)	1.1(0.5)	1.1(1)	15/15
CMA-MSR	5.0(1)	5.8(8)	1.7(1)	1.2(1.0)	1.0(0.4)	1.1(2)	1.3(2)	15/15
CMA-TPA	1.7 (1)	3.8(8)	1.3(2)	0.91 (0.4)	0.78(0.3)	1.0(0.7)	1.1(0.7)	15/15
GP1-CMAES	2.7 (8)	5.4(7)	2.5 (5)	6.0(8)	4.4(3)	∞	$\infty 506$	0/15
GP5-CMAES	13(11)	7.1(5)	∞	∞	∞	∞	$\infty 502$	0/15
IPOPCMAv3p	1.3 (1.0)	3.4(6)	1.8 (3)	1.4(0.6)	2.2 (3)	∞	$\infty 506$	0/15
LHD-10xDef	1.9(2)	2.7 (3)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.3(0.5)	1.3(0.8)	2.2 (2)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.1 (0.4)	2.0(2)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.4(0.6)	8.4(7)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	7.1(6)	12(14)	∞	∞	∞	∞	$\infty 502$	0/15
Sifeg	0.88(0.7)	90(134)	94(104)	∞	∞	∞	∞ 2e4	0/15
Sif	0.86(0.8)	141(233)	85(252)	∞	∞	∞	∞ 2e4	0/15
Srr	0.88(0.8)	148(258)	125(105)	233(160)	∞	∞	∞ 2e4	0/15

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	26	216	227	252	276	15/15
BSifeg	4.7(3)	23(23)	4.0 (3)	15(15)	70(31)	533(655)	∞ 2e4	0/15
BSif	4.7(4)	22(16)	4.2(2)	33(49)	117(240)	234(280)	1041(654)	1/15
BSqi	4.7(4)	23(29)	3.7 (3)	35(69)	66(98)	245(205)	1027(1907)	1/15
BSrr	4.7(4)	21(30)	3.6 (3)	28(31)	124(154)	351(350)	∞ 2e4	0/15
CMA-CSA	5.5(5)	29(48)	21(31)	13(19)	13(12)	17(14)	15 (10)	15/15
CMA-MSR	4.5(4)	31(32)	12(16)	13(11)	18(14)	32(13)	126(191)	13/15
CMA-TPA	3.3 (5)	38(50)	6.2(9)	6.2 (6)	7.1(5)	7.9 (6)	7.7 (3)	15/15
GP1-CMAES	5.6(5)	34(30)	11(9)	16(18)	16(24)	∞	$\infty 506$	0/15
GP5-CMAES	4.0(2)	164(181)	17(16)	16(26)	16(18)	29 (30)	∞ 504	0/15
IPOPCMAv3p	5.2(3)	29(38)	14(22)	34(40)	∞	∞	$\infty 506$	0/15
LHD-10xDef	4.1(3)	35(36)	18(13)	6.9 (10)	∞	∞	∞ 100	0/15
LHD-2xDefa	3.9 (3)	41(24)	8.3(14)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	3.7 (4)	42(54)	16(17)	6.6 (5)	∞	∞	∞ 100	0/15
RF1-CMAES	8.6(5)	46(89)	19(35)	10(4)	15(11)	∞	$\infty 506$	0/15
RF5-CMAES	6.6(6)	51(102)	12(5)	∞	∞	∞	∞ 504	0/15
Sifeg	5.9(8)	20 (20)	6.8(6)	31(46)	61(69)	245(352)	539(471)	2/15
Sif	5.8(4)	20 (15)	6.2(5)	25(21)	116(237)	339(240)	∞ 2e4	0/15
Srr	5.8(8)	19 (18)	5.1(4)	28(44)	110(110)	231(277)	∞ 2e4	0/15

Table 21: 02-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	3.7	61	365	366	366	370	375	15/15
BSifeg	15(14)	62(101)	19(14)	20(16)	21(24)	23(16)	36(21)	12/15
BSif	16(1)	141(230)	30(55)	32(28)	40(27)	56(66)	80(82)	8/15
BSqi	13(7)	34(39)	13(8)	14(34)	15(25)	18(41)	28(23)	12/15
BSrr	14(38)	40(125)	26(38)	26(52)	27(2)	29(89)	34(51)	11/15
CMA-CSA	2.8(2)	5.5 (6)	8.2(10)	9.2(10)	10 (7)	10 (10)	10 (6)	15/15
CMA-MSR	2.1(2)	12(8)	28(28)	45(23)	70(24)	98(32)	102(246)	15/15
CMA-TPA	4.3(4)	19(27)	13(11)	15(17)	16(19)	17(15)	17(14)	15/15
GP1-CMAES	2.0(2)	8.2(11)	4.2(5)	4.3(4)	6.2 (4)	6.3 (4)	9.5(10)	2/15
GP5-CMAES	2.1(2)	13(21)	9.3(13)	9.4(11)	9.4(12)	9.3(6)	9.4(25)	2/15
IPOPCMAv3p	2.3(2)	25(29)	20(21)	20(13)	20(22)	20(33)	20(23)	1/15
LHD-10xDef	3.4(2)	12(9)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.4 (1)	25(21)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.4(2)	7.7 (8)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.3 (3)	19(26)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	35(75)	40(76)	20(16)	∞	∞	∞	∞ 504	0/15
Sifeg	4.9(1)	36(52)	11(12)	12(11)	13(13)	20(20)	32(52)	13/15
Sif	5.0(6)	44(44)	18(20)	19(19)	20(23)	25(16)	35(23)	13/15
Srr	4.0(5)	36(162)	16(27)	16(21)	17(26)	22(19)	37(54)	11/15

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	1.7	51	174	276	290	324	330	15/15
BSifeg	2.1(2)	25(77)	26(35)	17(38)	17(56)	19(33)	34(57)	11/15
BSif	2.1(2)	90(101)	38(86)	28(36)	30(87)	40(67)	48(61)	9/15
BSqi	2.1(2)	19(64)	32(39)	21(54)	21(22)	23(47)	39(88)	11/15
BSrr	2.1(2)	41(1)	38(115)	25(73)	24(35)	24(31)	35(42)	11/15
CMA-CSA	1.5 (0.9)	2.6 (6)	3.3(6)	3.0(4)	3.4(3)	3.2(5)	3.3 (5)	15/15
CMA-MSR	1.9 (1)	11(26)	120(97)	82(71)	229(152)	315(315)	309(1069)	10/15
CMA-TPA	1.5(0.8)	59(189)	49(162)	32(4)	62(3)	131(104)	136(458)	13/15
GP1-CMAES	1.8 (3)	10(12)	3.8(8)	3.1(2)	3.1(0.9)	2.9 (3)	4.6(7)	4/15
GP5-CMAES	1.5(2)	8.4(6)	5.4(7)	4.3(6)	5.2(7)	4.8(4)	6.8(10)	3/15
IPOPCMAv3p	1.6(2)	3.6(6)	4.7(6)	5.4(5)	5.2(3)	4.8(9)	4.8(10)	4/15
LHD-10xDef	1.4 (1)	1.0(0.7)	0.68 (0.4)	0.68(1)	1.2(0.7)	∞	∞ 100	0/15
LHD-2xDefa	1.4(0.9)	0.58(0.6)	0.34 (0.2)	0.38 (0.3)	0.77 (0.3)	2.3(2)	∞ 100	0/15
RAND-2xDef	1.5(0.6)	0.72 (0.3)	0.32 (0.3)	0.41(0.1)	0.44 (0.4)	1.1(2)	∞ 100	0/15
RF1-CMAES	1.2(0.6)	16(15)	19(23)	12(8)	11(12)	10(9)	10(20)	2/15
RF5-CMAES	1.7 (1)	4.2(3)	6.9(7)	7.9(5)	7.6(6)	6.9(10)	11(15)	2/15
Sifeg	2.1 (1)	77(130)	55(87)	35(52)	35(63)	36(76)	42(32)	10/15
Sif	2.1(2)	91(161)	59(84)	38(60)	38(51)	36(36)	45(69)	10/15
Srr	2.1(2)	78(67)	65(75)	48(85)	46(116)	43(26)	62(106)	8/15

Table 23: 02-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	5.1	27	168	218	249	289	306	15/15
BSifeg	2.2(4)	23(10)	94(179)	150(439)	196(286)	∞	∞ 2e4	0/15
BSif	2.0(1)	61(23)	80(47)	263(229)	230(171)	∞	∞ 2e4	0/15
BSqi	2.7(2)	24(4)	91(149)	154(212)	235(194)	∞	∞ 2e4	0/15
BSrr	2.5(1)	50(117)	85(70)	151(188)	144(263)	971(727)	∞ 2e4	0/15
CMA-CSA	2.2 (3)	16(50)	14(37)	12(2)	10(6)	15(3)	15(3)	15/15
CMA-MSR	2.3(4)	21(26)	18(9)	75(250)	74(48)	115(347)	115(1)	13/15
CMA-TPA	1.2(0.6)	13(5)	7.6(15)	65(218)	63(385)	111(363)	105(348)	13/15
GP1-CMAES	8.6(27)	6.0(10)	6.8(21)	5.3(3)	4.7(5)	5.6(4)	5.7 (7)	4/15
GP5-CMAES	1.4 (1)	4.0(4)	2.1(2)	1.7(2)	1.6(2)	2.3 (3)	4.1(3)	5/15
IPOPCMAv3p	1.5(2)	4.6(6)	4.2(3)	4.2(8)	3.9 (2)	3.6(4)	3.6 (2)	6/15
LHD-10xDef	1.1 (0.6)	1.9(2)	0.81(0.5)	1.7(1)	6.0(7)	∞	∞ 100	0/15
LHD-2xDefa	1.6 (1)	1.5(2)	1.9(2)	2.1(2)	6.0(7)	∞	∞ 100	0/15
RAND-2xDef	1.0(0.5)	1.6(2)	0.58 (0.5)	1.0(0.5)	1.4(2)	5.1 (5)	∞ 100	0/15
RF1-CMAES	1.1(0.7)	15(21)	12(29)	9.5(10)	8.5(7)	7.3(7)	24(15)	1/15
RF5-CMAES	1.7(2)	19(18)	12(14)	16(21)	∞	∞	$\infty 502$	0/15
Sifeg	2.2(2)	16(58)	84(113)	144(191)	182(172)	969(588)	∞ 2e4	0/15
Sif	2.3 (1)	28(93)	103(171)	133(277)	360(641)	966(758)	∞ 2e4	0/15
Srr	2.1(2)	29(82)	89(203)	159(194)	266(237)	969(675)	∞ 2e4	0/15

Table 24: 02-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	7.8	193	234	263	299	348	379	15/15
BSifeg	1.9(2)	1.5(2)	22(19)	1073(2479)	∞	∞	∞ 2e4	0/15
BSif	1.9(2)	1.7 ₍₁₎	34(42)	253(191)	∞	∞	∞ 2e4	0/15
BSqi	1.8(1)	2.2 (2)	36(35)	340(238)	∞	∞	∞ 2e4	0/15
BSrr	2.1(2)	2.1(2)	24(52)	504(612)	947(1104)	816(908)	748(1069)	1/15
CMA-CSA	3.2(3)	4.5(10)	10 (16)	9.3(12)	8.5(8)	7.8 (6)	7.6 (6)	15/15
CMA-MSR	2.2(2)	7.7(14)	9.3(9)	9.0(7)	10 (11)	9.2(5)	9.3(9)	15/15
CMA-TPA	1.9(2)	8.8(8)	21(47)	19(24)	18(34)	17 (5)	16(27)	15/15
GP1-CMAES	2.2 (3)	18(31)	32(36)	29(47)	∞	∞	$\infty 506$	0/15
GP5-CMAES		2.5(4)	3.0 (2)	4.6(7)	4.2 (6)	∞	$\infty 502$	0/15
IPOPCMAv3p	0.99 (3)	6.8(7)	16(13)	14(31)	∞	∞	$\infty 506$	0/15
LHD-10xDef	1.5(2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.4 (3)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.0(2)	7.7(10)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.8(1)	8.7(8)	∞	∞	∞	∞	$\infty 502$	0/15
RF5-CMAES	1.5(2)	4.9(5)	31(49)	∞	∞	∞	∞ 504	0/15
Sifeg	1.9 (1)	3.3(3)	59(79)	1118(981)	∞	∞	∞ 2e4	0/15
Sif	1.8(2)	3.5(2)	93(132)	∞	∞	∞	∞ 2e4	0/15
Srr	1.9(2)	3.4(3)	57(62)	1111(1904)	∞	∞	∞ 2e4	0/15

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	18	857	8515	23399	24113	24721	24721	5/15
BSifeg	1.7 (1)	46(77)	∞	∞	∞	∞	∞ 2e4	0/15
BSif	1.7(0.4)	32(19)	31(26)	∞	∞	∞	∞ 2e4	0/15
BSqi	2.7 (5)	25(47)	30 (18)	11 (9)	∞	∞	∞ 2e4	0/15
BSrr	1.9(2)	34(43)	30(29)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	1.4(0.8)	161(203)	153(212)	∞	∞	∞	$\infty~2e5$	0/15
CMA-MSR	4.5(23)	94(36)	37(53)	57(71)	55 (56)	54(47)	54(34)	2/15
CMA-TPA	1.5(1)	94(178)	154(194)	57 (86)	118 (116)	115(120)	115(122)	1/15
GP1-CMAES	3.2(0.8)	4.0 (6)	0.88(1)	∞	∞	∞	$\infty 506$	0/15
GP5-CMAES		2.7 (1)	0.84(1.0)	∞	∞	∞	$\infty 506$	0/15
IPOPCMAv3p	1.1 (1.0)	8.6(11)	∞	∞	∞	∞	$\infty 506$	0/15
LHD-10xDef	1.7(2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.1(1)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(2)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	0.88(1.0)	8.5(14)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	3.2(7)	8.4(12)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	1.5 ₍₁₎	26(13)	∞	∞	∞	∞	∞ 2e4	0/15
Sif	1.5(1)	35(41)	31(21)	∞	∞	∞	∞ 2e4	0/15
Srr	1.5(2)	31(36)	32(46)	∞	∞	∞	∞ 2e4	0/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.