DATE / / Write a python program to import & export class using pandas diborary functions -) Pandas enead csv () ambab data = pd. nead-csv ("austin flowing Data con) aisbob-data head () # Exporting datatrance to a csu file. ions data to-csv (" cleaned- ions-data, csv') # importing dataset using ORC Und = "https://andvine.res.co/pd/machine-learne

DATE Cab, 02 Demonstrate Vantous data preprocessing techniques Algorithm 1) Downloading the dutaset 2) Reading as file pd. nead CSV Colata-path 37 Observing dataset using head(), int dataset using mathelat Conecite test set & frain-set 6) Visualise the data to gain ata cleaning by dropping Scaling data using standardization min-max strategy Training the linear negression mod alculating noot mean square Training decision torce Coross validation using mean & standon deviation Filling test data & calculating accuracy

12-4-24	PAGE NO. DATE / /
Q.	Implement linear negression algorithm using
	Implement linear negression algorithm using appropriate datase.
	Algorithm
	1. Import recessary laborances. 2. Import datase
	2. Import datase
	3. Varialization of dataset using diff plots like
	heat map; distinibution plot, scatterplat ctc.
	3. Varialization of datacet using diff plots like heatmap; distinibution plot, scatterplot ctc. 4. process the data, convert on encode categorical
	aara
	5. Split the dataset into training set & test set.
1	
	from skde ann model selection import torain-test-split
	* topin X-test y Appain, y test = topico test solit
	* torain, X-test, y Apain, y-test = torain-test-split (x, y, test-size = 0.3, orandom state: 23)
	1 Pulm
	6. Build model3
	6. Build model? I from sklearn linear-model import Edinear. Regression
- 40	
	In neg = Linear Regression ()
	7. Fit the dataset to model & torain it
	7. Fit the dataset to model & tonain it lin-neg-fit (x-tonain, y-tonain)
	8. Calculate the accuracy using mean square crows
	& Erenos.

	DATE / /
	Q. Implement multilinean negression.
	2) Import dataset 2) Import dataset 3) Visualize the data set using matplotlib. 4) Fossile categorised data
	3) Visualize the data set using matplot lib. Pyplot.
	ct= Colemn Torans former (torans formers =
	Tiencode') Ope Hot Encoder [33)]
N., ; .	5) Split dataset to training & test dataset. 6) We can see multiple independent variables.
	7) Coreate gregoesson model. gregoesson = Linear Regression ()
	8) Fit the trainset
	(a) Test the model using test sel.
	Jan Hart

	PAGE NO. DATE / /
(a)	Use appropriate destaset for building the decision free ID3 & apply the Knowldedge. to classify new sample.
	to classify new sample.
	1) Import the liberaries like Decision Free Classition.
	2) Impost diabetes dataset. 3) Define calculate entoropy function to.
	V- coont = por et value.
	proportion = 1- count / total- mous
	entropy = proportion+ math. log2 (proportion)
	intermation gain = entropy out come ->
	y) Detine information-gain function information-gain = entropy outcome >
	5) Acres the feature with highest information gain.
	6) Coneate a decession tree using Decision Tree Classifier function
	7) Plot the tree
	8) orti Detine ID3 function & pass new sample as parameter & obtain classification

1		PAGE IVO.
		DATE / /
Q.	Build KNN dassification made	el for a given dataset
	1) Toward the percusary labor	29261
	1) Import the percusary libore	L
	2) Import diabetes datases	
	3) Poseposocess the dataset.	france
	4) Split the dataset as test &	TSILLIN S.ES
	s) Build the KNN model.	P. Cainthanst
	KNN = Kneighbors Classi	Per (D_nesgnovo.s) - x)
	6) Fit the model & test the a	CCUTACY
	5) Fit the model & test the a 7) We can plot graph of Kuss a the best K value.	accuracy to choose
	He best to walve	J
	The view	*1
	W.Klon	~
	7	
	1	

	PAGE NO. DATE / /
8)	Rendom Fined alassit a
	Random Foirest algorithm
	-) D. I. a
	Duto pre-processing step
	Titing the grandom taxes algorithm to toraining see
	poreds change the test oruguet
	- fitting the grandom farest algorithm to tiraining set of predicting the test grasult (concerting of confusion and or or confusion and or confusion
	and est x
	→ Visualizing the test set negult
-	Steps: - Select nandom K data points from the
	tesalarno set
	Step 2: Build the decossion toners cistocoated with
	The Selected data forms
	Sty3: Choose the no. N for decision tonces that
	you want to build
	Step 4: Reposit step 182
	Step 8: For new datapoints, find the posedictions, of each decision tree & assign new data points to category that wind the mayority total
	of each decision tree & assign new date ports
	to category that wind the mayority dotes
	J. Klory
	3

	DATE / /
	to boosting ensemble method on green
9	Implement occasi
	Implement boosting ensemble method on green of dataset
	1) Doitialise weights '-assign equal weights to all training samples
	2) For each base learner (weale learner):
	from a weak learner on forcing data
	forum a weak learner on foruming data
	3 Update sample weights. & Inconeus i weight
	of the incorrectly classified
	Samples so that they are more likely to be selected
	Samples so that they are more likely to be selected
	I Repeat steps 2 & 3 for a fixed no of iterations
	on until a Stopping waterion is met
	-) Aggregate the predictions
	a output the ensemble model

	DATE / /
(0)	Build K-means algorithm to dutes a set of
	Build K-means algorithm to divier a set of data stand in a CSU file.
	function kmeans (x, k, max Herations);
	1) Instalze centroids Transforty
	2) Repeat ontil convergence on max, iteration.
	a: assign cachdata point to nearest Central
	6. Opdale centroids based on the
	mean of data points in each cluster
	c. check convergence
	3) Return the final centroids.
P ()	Dimensionality ineduction using PCA
	*Standardize data: - compute mean 11 & d
	Standard deviation = for each feator
9	
	3) (ompute the covariance metrix (x-u) T (x-u) (x-u) T (x-u)
	Min
	3) Compute reigenvectors & esgenualues:
	3) Compute reigenvectors & ergenvaluer:
	select the ton & eigenvectors corresponding
	select the top & eigenvectors corresponding to largest eigenvalues to farm projections
	matrix w
	5) Project the data onto the new feature spaces
	Y = V W
	6) output: gretuin the transformed dateur
	Xoca.