Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2Q20

OLS #16 (multicolinéarité, Ridge)

Régression Linéaire sans \mathcal{H}_1

- ▶ X est mal conditionnée, i.e. certaines valeurs propres de X^TX sont proches de $0 \Rightarrow \det(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \simeq 0$, phénomène de colinéarité.
- \triangleright (ou/et) p > n le nombre de covariables est nettement supérieur au nombre d'observations.

L'hypothèse initiale \mathcal{H}_1 est donc largement remise en cause!

- ▶ Idée: perturber la matrice **X** pour éloigner ses valeurs propres de 0 et ainsi stabiliser l'inversion de $\mathbf{X}^{\mathsf{T}}\mathbf{X}$.
- ▶ Notation: $0 \le \mu_1 \le \dots \mu_p$ valeurs propres ordonnées de $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ et soit P la matrice orthogonale telle que $X^TX = PDP^T$ avec $\mathbf{D} = \operatorname{diag}(\mu_1, \dots, \mu_n).$
- ▶ Soit $\lambda \geq 0$, $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbb{I}_{p}$ a les mêmes vecteurs propres que $\mathbf{X}^{\top}\mathbf{X}$ et pour valeurs propres $\mu_i + \lambda$ pour $j = 1, \dots, p$.
- ▶ Hoerl and Kennard (1970): remplacer $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ par $\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbb{I}_{p}$ dans la définition des MCO:

$$\hat{oldsymbol{eta}}_{ ext{ridge}}(\lambda) = (\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbb{I}_p)^{-1}\mathbf{X}^{ op}\mathbf{Y}$$

- ▶ Si $\lambda = 0$, alors $\hat{\beta}_{\text{ridge}} = \hat{\beta}^{\text{mco}}$; si $\lambda \to \infty$, alors $\hat{\beta}_{\text{ridge}} \to \mathbf{0}$.
- \triangleright Fixer λ est important. Quelles sont les conséquences sur le biais et variance des estimateurs?

▶ Soit $\lambda \ge 0$, on peut montrer que $\hat{\beta}_{\text{ridge}}(\lambda)$ minimise

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$
$$= \sum_{i=1}^n (Y_i - \mathbf{x}_i \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p \beta_j^2$$

https://rstatisticsblog.com/

ightharpoonup Soit $\tilde{\beta}$ l'estimateur minimisant

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 sous la contrainte que $\|\boldsymbol{\beta}\|^2 \le \delta$.

 $\forall \lambda > 0$, $\exists \delta$ tel que les deux solutions coïncident.

$$\blacktriangleright \; \hat{\boldsymbol{\beta}}_{\text{ridge}} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbb{I}_{p}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}.$$

$$\blacktriangleright \ \mathbb{E}\left(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}\right) = \boldsymbol{\beta} - \lambda \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbb{I}_{p}\right)^{-1}\boldsymbol{\beta}.$$

$$\qquad \qquad \operatorname{Var}(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}) = \sigma^2 \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbb{I}_p \right)^{-1} \mathbf{X}^{\top} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbb{I}_p \right)^{-1}.$$

et l'erreur quadratique vaut

$$\mathrm{EQM}(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}) \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbb{I}_{\boldsymbol{\rho}} \right)^{-1} \left(\sigma^{2} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) + \lambda^{2} \boldsymbol{\beta} \boldsymbol{\beta}^{\mathsf{T}} \right) \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbb{I}_{\boldsymbol{\rho}} \right)^{-1}$$

alors que, pour rappel, $\mathrm{EQM}(\hat{\boldsymbol{\beta}}) = \mathrm{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$.

Si μ_i valeur propre de $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

- Sous \mathcal{H}_1 (nécessairement r = p) $\operatorname{tr}(\mathrm{EQM}(\hat{\boldsymbol{\beta}})) = \sum_{i=1}^p \frac{\sigma^2}{\mu_i};$
- ▶ (potentiellement $r \le p$):

$$\operatorname{tr}(\operatorname{EQM}(\hat{\boldsymbol{\beta}}_{\operatorname{ridge}})) = \sum_{j=1}^{r} \frac{\sigma^{2} \mu_{j} + \lambda^{2} \left(\mathbf{P}^{\mathsf{T}} \boldsymbol{\beta}\right)_{j}^{2}}{(\mu_{j} + \lambda)^{2}};$$

 $\qquad \qquad \operatorname{tr}(\mathrm{EQM}(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}})) \leq \operatorname{tr}(\mathrm{EQM}(\hat{\boldsymbol{\beta}})) \Leftrightarrow \lambda \leq \frac{2\sigma^2}{\boldsymbol{\beta}^{\top}\boldsymbol{\beta}}.$

Rétrécissement / shrinkage

- Soit $\hat{\theta}$ un estimateur de θ sans biais et de variance σ^2 , donc $\mathrm{EQM}(\hat{\theta}) = \sigma^2$.
- ▶ Soit $\lambda > 0$ et $\tilde{\lambda} = \frac{\hat{\theta}}{1 + \lambda}$ alors

$$\mathbb{E}(\tilde{\theta}) = \frac{\theta}{1+\lambda}, \ \operatorname{Var}(\tilde{\theta}) = \frac{\sigma^2}{(1+\lambda)^2} \text{ et } \operatorname{EQM}(\tilde{\theta}) = \frac{\lambda^2 \theta^2 + \sigma^2}{(1+\lambda)^2}.$$

On peut ainsi trouver λ^* telle que $\mathrm{EQM}(\tilde{\theta})$ soit minimale

 $lackbox{$\widetilde{ heta}$ est donc biaisé mais de variance plus faible que <math>\hat{ heta}.$

On peut trouver λ^* telle que $\lambda \mapsto \operatorname{tr}(\mathrm{EQM}(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}(\lambda)))$ soit minimale

On peut utiliser

```
1 > library(MASS)
2 > ?lm.ridge
OU
1 > library(ISLR)
```

7 > plot(ridge_mod, var="lambda")

au lieu de $\|\boldsymbol{\beta}\|_2$ (norme Euclidienne), on peut être tenté d'utiliser la norme de Mahalanobis (ou plutôt la norme euclidienne standardisée)

i.e. on centre et on réduit les variables explicatives

$$\mathbf{x}_j \mapsto \frac{\mathbf{x}_j - \overline{x}_j}{s_{x_i}}$$

```
1 > ys = (y-mean(y))/sd(y)
2 > xs = x
3 > for(i in 1:ncol(x)) xs[,i] = (x[,
        i]-mean(x[,i]))/sd(x[,i])
4 > ridge_mod_s = glmnet(xs, ys,
        alpha = 0)
5 > plot(ridge_mod_s, var="lambda")
```


Régression LASSO

- ▶ Ici, on ne contraint pas la norme euclidienne $\|\beta\| = \|\beta\|_2$ (i.e. la norme ℓ^2) mais la norme ℓ^1 des coefficients.
- La méthode Lasso consiste à minimiser

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 sous la contrainte $\|\boldsymbol{\beta}\|_1 \le \delta$.

- ▶ Il n'existe pas de solution exacte (plusieurs algorithmes ont été proposés - LARS, coordinate descent algorithm).
- ▶ On peut montrer que le problème est équivalent à minimiser le problème

$$\hat{\boldsymbol{\beta}}_{\mathrm{lasso}}(\lambda) = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$$

 $(\forall \lambda > 0, \exists \delta > 0 \text{ tel que les solutions de ces deux problèmes})$ coïncident)...

