Karta Ćwiczenia 3. Projekt i symulacja sumatora

Imię i Nazwisko: Andrzej Ka	pczyński	Grupa 128 Semestr 1.
Dzień tygodnia i godzina:Nto.90	15:10	
Data wykonania ćwiczenia:13.0	01.2023 Podpi	is prowadzącego:

I. Przygotowanie do ćwiczenia

Wykonanie "przygotowania do ćwiczenia" jest warunkiem koniecznym dopuszczenia do ćwiczenia i powinno być przygotowane w domu.

Do ninicjszej kartki dołącz (zszyte zszywaczem) pisane odręcznie (zabronione jest pisanie na komputerze) odpowiedzi na następujące zagadnienia:

- Narysuj schemat pelnego sumatora (full adder) za pomocą bramek logicznych. Napisz funkcje logiczne dla wyjść SUM i CARRYout.
- 2. Zaproponuj i narysuj przebiegi sygnałów wejściowych A,B,Cin pozwalające przetestować poprawność działania sumatora. Narysowane przebiegi fali prostokątnej powinny mieć wartości amplitudy 0 i 1.2 V, a czas trwania jednego bitu powinien wynosić 50 ns. Cały przebieg powinien więc zmieścić się w czasie 400 ns±czasy narastanie i opadania.
 Jaką analizę należy wykonać, aby sprawdzić poprawność działania sumatora na poziomie tranzystorów? Podaj parametry analizy, a w szczególności czas jej trwania.
 Zaproponuj analizę i przebiegi do wyznaczenia czasów, które należy wpisać w tabeli 2.
- Narysuj symbol sumatora, a następnie użyj go do narysowanie schematu sumatora 4 bitowego typu "Ripple-Carry Adder" (połączenie łańcuchowe sumatorów).
- Określ ścieżkę krytyczną dla tego typu sumatora 4-bitowego i podaj kombinację wejściową (przebiegi wejściowe), które pozwolą wyznaczyć maksymalny czas propagacji.
- 5. Zakladając, że najdłuższe opóźnienie na jednym sumatorze (Cin do Cout) wynosi 10 ms i wejściowymi liczbami są (xxxx)2 oraz (yyyy)2 zaproponowane przez Ciebie w pkt 4 podaj wartości (0/1) na wyjściach sumatora w chwilach 9 ms, 19 ms, 29 ms, 39 ms, 49 ms i 59 ms.

Czas	Cout	S3	S2	SI	SO
9 ms					
19 ms					
29 ms		fig.			Tel Co
39 ms					
49 ms					
59 ms			4		N

Zaproponuj rodzaj symulacji i narysuj przebiegi wejściowe dla weryfikacji powyższej tabeli dla sumatora 4-bitowego.

II. Wyniki symulacji

Tabela 1.

Potwierdzenie przez prowadzącego poprawności	202
wykresów na monitorze	podpis prowadzącego

Tabela 2.

5 7	Parametr	Wartość	Jednostka
Z wejścia A do wyjścia CARRY	Opóźnienie high-to-low tag	2.8558	ns
	Opóźnienie low-to-high tar	1.3267	ns
	Opóźnienie ta	2.09125	ns
	Czas opadania t _f	5.4262	ns
	Czas narastania t _r	2.6636	ns
Z wejścia C do wyjścia CARRY	Opóźnienie t _d	2.1083	ns
Z wejścia A do wyjścia SUM	OpóźnienieDelay time t _d	2.11525	ns

Tabela 3.

A3A2A1A0 C0	11111
B3B2B1B0	0000
CARRY S3S2S1S0	10000

Tabela 4.

Czas	Cout	S3	S2	S1	S0
200.692ns	0	1	1	1	1
200.72ns	0	1	1	1	0
200.795ns	0	1	1	0	0
200.869ns	0	1	0	0	0
200.905ns	1	1	0	0	0
200.945ns	1	0	0	0	0
Potwierdzenie prz wykresami na mo		ego zgodnośc	i wpisów z	podpis prowadzącego	520

Tabela 5.

	Parametr	Wartość	Jednostka
Z wejścia A0 do wyjścia CARRY	Opóźnienie high-to-low tag	351.38	ps
	Opóźnienie low-to-high tar	386.71	ps
	Opóźnienie ta	369.04	ps
	Czas opadania t _f	17.046	ps
	Czas narastania t _r	24.858	ps
Z wejścia C0 do wyjścia CARRY	Opóźnienie t _d	356.165	ps
Z wejścia A0 do wyjścia SUM0	OpóźnienieDelay time t₄	195.68	ps

145358 Andrzej Kapczyński SVM : Cin @ A @ B SUM CARRY: AB+ Cin (ABB) CARRY OR AND Symbolis sumatora 1-bitomego 300 250 100 450 1[1] 4. Scierla Loghycena A: 0000 B: 1111 50 Cin: zmiana z O na 1 20 Aby spreudzić poprowność dziatawa sumatora natery bykoneć analyze . TRAN In 400 2 0 1 n dobradność lurdu cras optimene crascony trustica optimene enalizy poszedbane