Speeding R up on your computer by parallelized computations — a geostatistical case study

Andreas Papritz

Department of Environmental Systems Science, ETH Zurich
Statistik Stadt Zürich

papritz@env.ethz.ch

outline

- motivating example: mercury soil contamination in Visp, Valais
- geostatistics in a nutshell
- case study: analysis of mercury topsoil content in Visp West
- "embarrasingly" parallel computations in R
- parallelizing computations for geostatistical analyses

mercury soil contamination in Visp

mercury soil contamination in Visp

- Lonza Ltd operates since 1909 a chemical plant in Visp, Canton of Valais
- mercury (Hg) used for many decades as catalyst in production of chemical compounds
- Hg disposed as sewage into river Rhône by Grossgrundkanal (GGK)

situation

mercury soil contamination in Visp

- Hg soil pollution "discovered" in course of construction of motorway (2007–2011)
- historical study: dispersal of Hg contaminated sediments of GGK during maintenance until 1988
- since 2011 extensive soil pollution survey

mercury soil contamination in Visp

- \Rightarrow > 70 parcels in residential areas must be cleaned up
- ⇒ geostatistical study to map spatial extent of Hg pollution and delimit areas that need further study for decision about clean-up

geostatistics in a nutshell

- methology developed in mining
- widely used for spatial interpolation of "point"-support data
- many fields of application: soils, climate, property prices, ...

textbook example: Wolfcamp aquifer data

Cressie (1993)

auto-correlation of errors

geostatistics in a nutshell

- methology developed in mining
- widely used for spatial interpolation of "point"-data
- many fields of application: soils, climate, property prices, ...
- \Rightarrow linear mixed modelling approach $Y \sim \mathcal{N}\left(oldsymbol{X}oldsymbol{eta}, \Gamma_{oldsymbol{ heta}}
 ight)$
- ⇒ estimating model parameters by Restricted Maximum Likelihood (REML)
- ⇒ kriging: empirical (= "plug-in") best linear unbiased prediction (eBLUP)

case study: topsoil Hg content Visp West

⇒ testing hypotheses about causes for observed spatial patterns

robust REML fit using georob package

```
> library(georob)
>
> system.time(fit.0 <- georob(
+ log(hg) ~ logdist.to.ggk + close.to.road + close.to.aqueduct,
+ data = d.vw, locations = ~x+y, variogram.model = "RMexp",
+ param = c(variance = 0.5, nugget = 0.3, scale = 30),
+ tuning.psi = 1))

user system elapsed
11.146 0.927 12.336</pre>
```

> summary(fit.0)

. . .

Robust REML estimates

Variogram: RMexp
Estimate
variance 0.808
snugget(fixed) 0.000
nugget 0.346
scale 32.140

Fixed effects coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.90931	1.15902	2.510	0.012418
logdist.to.ggk	-1.30615	0.34372	-3.800	0.000165
close.to.roadyes	0.33852	0.18578	1.822	0.069092
<pre>close.to.aqueductyes</pre>	0.02102	0.33463	0.063	0.949947

. . .

```
> plot(fit.0, estimator = "qn", xlab = "lag distance [m]",
+ lag.dist.def= c(seq(0, 100, by = 5), seq(120, 200, by = 20)))
```


testing hypotheses about Hg sources

10-fold cross-validation

```
> fit.1 <- update(fit.0, . ~ . - close.to.road - close.to.aqueduct)</pre>
> system.time(cv.1 <- cv(fit.1, sets=d.vw$cv.subset.block.1, lqn=TRUE))</pre>
   user system elapsed
 63.912 7.143 71.764
> fit.2 <- update(fit.0, . ~ 1)</pre>
> cv.2 <- cv(fit.2, sets=d.vw$cv.subset.block.1, lgn=TRUE)</pre>
> summary(cv.1)
Statistics of back-transformed cross-validation prediction errors
            mede
                     rmse
                              made
     me
 0.3176 -0.1258 2.2103 0.3053 ...
> summary(cv.2)
Statistics of back-transformed cross-validation prediction errors
            mede
                              made
     me
                     rmse
 0.3323 -0.1515 2.2122 0.3368 ...
```

"embarrassingly" parallel tasks

- multiple tasks that do not depend on each other
- examples: cross-valdiation, bootstrapping,...

parallelized matrix multiplication

C = A B	В	C = A B	В
А	С	A ₁ A ₂	C ₁
		A ₃ A ₄	C ₃

"embarrassingly" parallel tasks

- multiple tasks that do not depend on each other
- examples: cross-valdiation, bootstrapping,...
- examples: matrix multiplication, ...
- ⇒ parts of a bigger task that can be processed independently from one another

"embarrassingly" parallel computation with R

- useful packages: parallel, snowfall, ...
- starting point: lapply-construct

```
> lapply(
+ list(task_1, task_2, ...),
+ function(task_i, x){
+ R-statements_to_solve_task_i
+ },
+ x = common_argument
+ )
```

"embarrassingly" parallel computation with R

• mini-example (Gordon, 2015)

```
> lapply(
+ 1:4,
+ function(exponent, x){ x^exponent },
+ x = 2
[[1]]
[1] 2
[[2]]
[1] 4
[[3]]
[1] 8
[[4]]
[1] 16
> x < -2
> unlist(lapply(1:4, function(exponent) { x^exponent }))
[1] 2 4 8 16
```

"embarrassingly" parallel computation with R

parallelized mini-example using forking (non-Windows OS)

```
> library(parallel)
> unlist(mclapply(1:4, function(exponent){ x^exponent },
+    mc.cores = 2))
[1] 2    4    8    16
```

• parallelized mini-example using parallel socket clusters (all OS)

```
> library(snowfall)
> sfInit(parallel = TRUE, cpus = 2)
> unlist(sfLapply(1:4, function(exponent){ x^exponent }))
ERROR in checkForRemoteErrors(val) :
    2 nodes produced errors; first error: OBJECT 'x' not found
> sfExport("x")  # or: sfExportAll()
> unlist(sfLapply(1:4, function(exponent){ x^exponent }))
[1] 2 4 8 16
> sfStop()
```

parallelized computations in georob package

- computing covariance matrices and matrix multiplication
- cross-validation
- computing kriging predictions
- computing likelihood profiles
- stepwise model building

parallelized computations in *georob* package

model fit using parallelized matrix multiplication

```
> system.time(update(fit.0,
+ control=control.georob(pcmp = control.pcmp(pmm.ncores = 3))))
   user system elapsed
24.484  6.172  25.752
# computation with 1 core: elapsed 12.336
```

cross-validation

```
> system.time(cv.1 <- cv(fit.1, sets=d.vw$cv.subset.block.1,
+ lgn=TRUE, ncores = 3))

user system elapsed
57.683  6.008  36.383
# computation with 1 core: elapsed 71.764</pre>
```

parallelized computations in *georob* package

computing kriging predictions

 back-transformation and conversion to SpatialPixelsDataFrame for display by spplot()

```
> krige.1 <- lgnpp(krige.1)
> coordinates(krige.1) <- ~ x+y
> gridded(krige.1) <- TRUE</pre>
```

end of story?

NO! use R linked to OpenBLAS library

using R with OpenBLAS library on Mac OS X

- install OpenBLAS, e.g. from MacPorts (https://www.macports.org/)
- linking OpenBLAS library to R

```
cd /Library/Frameworks/R.framework/Resources/lib
sudo ln -sf /opt/local/lib/libopenblas.dylib libRblas.dylib
```

ullet enjoy ... e.g. Cholesky decomposition of 4000 imes 4000 matrix

```
> y <- rnorm(4000)
> d <- exp(-as.matrix( dist(y)))
> system.time( chol(d) )
  user system elapsed
1.466  0.027  0.769
# using default BLAS library that ships with R: elapsed 10.327
```

georob computations with R linked to OpenBLAS

model fit

```
> system.time(update(fit.0))
  user system elapsed
6.320  1.946  4.318
# standard BLAS: elapsed 12.336
```

cross-validation

```
> system.time(cv.1 <- cv(fit.1, sets=d.vw$cv.subset.block.1,
+ lgn=TRUE, ncores = 3))
  user system elapsed
48.085 21.794 19.556
# standard BLAS & 3 core : elapsed 36.383
# standard BLAS & 1 core : elapsed 71.764</pre>
```

take-home messages

- use R along with OpenBLAS, GotoBLAS, Intel's MKL library (NB: Microsoft's R Open uses Intels's MKL library, cf. https://mran.microsoft.com/)
- 2. use parLappy(), sfLapply(), mclapply(), etc. instead of lapply()
- 3. DON'T USE for-loops for embarrasingly parallel tasks
- 4. use forking instead of parallel socket clusters on non-Windows OS

References

- Cressie, N. A. C. (1993). *Statistics for Spatial Data*. John Wiley & Sons, New York, revised edition.
- Gordon, M. (2015). How to go parallel in R basics + tips. G-FORGE A blog about orthopaedic surgery, R, research and more. http://gforge.se/2015/02/how-to-go-parallel-in-r-basics-tips/(accessed 2018-05-11).
- Knaus, J. (2015). *snowfall: Easier cluster computing (based on snow).*. R package version 1.84-6.1.
- Papritz, A. (2018). *georob: Robust Geostatistical Analysis of Spatial Data*. R package version 0.3-6.