### Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <a href="https://creativecommons.org/licenses/by-sa/2.0/legalcode">https://creativecommons.org/licenses/by-sa/2.0/legalcode</a>



### Deep Neural Networks

Deep L-layer Neural network

## What is a deep neural network?



logistic regression



2 hidden layers





Deep neural network notation 4 later NN  $x_2$ × =0[0] [ = 4 (#layers) N = 5 N 157 = 5 N [2] = 3 N [4] = N[1] = 1 n(1) = #unts in layer &  $a^{(e)} = autinotions$  in legal  $a^{(e)} = a_x = 3$   $a^{(e)} = autinotions$  in legal  $a^{(e)} = a_x = 3$   $a^{(e)} = autinotions$  in legal  $a^{(e)} = a_x = 3$   $a^{(e)} = autinotions$  in legal  $a^{(e)} = a_x = 3$ 

Andrew



### Deep Neural Networks

Forward Propagation in a Deep Network

Forward propagation in a deep network





## Deep Neural Networks

Getting your matrix dimensions right

## Parameters $W^{[l]}$ and $b^{[l]}$



Andrew Ng

### Vectorized implementation





## Deep Neural Networks

Why deep representations?

### Intuition about deep representation



### Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.





### Deep Neural Networks

Building blocks of deep neural networks

deeplearning.ai

#### Forward and backward functions





#### Forward and backward functions





## Deep Neural Networks

Forward and backward propagation

### Backward propagation for layer l

- $\rightarrow$  Input  $da^{[l]}$
- $\rightarrow$  Output  $da^{[l-1]}$ ,  $dW^{[l]}$ ,  $db^{[l]}$

Red arrows show dA(s) - however, in shallow network, instead of dA(s) we worked directly with dZ(s), they have a 1x1 relationship based on activation function

#### Summary





## Deep Neural Networks

Parameters vs Hyperparameters

### What are hyperparameters?

Parameters:  $W^{[1]}$  ,  $b^{[1]}$  ,  $W^{[2]}$  ,  $b^{[2]}$  ,  $W^{[3]}$  ,  $b^{[3]}$  ... Hyperparameters: hearn'y rate of titerations # hidden layer L

# hidden with N [12] Choice of autivortion frontion dister: Momentur, min-Loth cize, regularjohns...

# Applied deep learning is a very empirical process





## Deep Neural Networks

What does this have to do with the brain?

### Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$x_1$$
 $x_2$ 
 $x_3$ 

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$



