FICHE 02-12: Groupes quasi-cycliques de Prüfer: ALG1-01 2.18

Yvann Le Fay

Juillet 2019

Enoncé

Soit \mathbb{U}_p le groupe engendré par les $e^{\frac{2i\pi}{p^{\alpha}}}$ pour $\alpha \in \mathbb{N}$ avec p premier. Déterminer les sous-groupes de \mathbb{U}_p .

Solution

Pour tout $\alpha \in \mathbb{N}$, posons $G_{\alpha} = \langle e^{\frac{2i\pi}{p^{\alpha}}} \rangle$. C'est un sous-groupe de \mathbb{U}_p par définition. Tout sous-groupe de G_{α} par le théorème de Lagrange doit diviser p^{α} , il est donc de la forme G_{β} avec $\beta \leq \alpha$. La suite des G_{α} est donc strictement croissante pour l'inclusion. D'où,

$$\mathbb{U}_p = \bigcup_{\alpha \in \mathbb{N}} G_\alpha$$

Soit G un sous-groupe de \mathbb{U}_p . Supposons que G n'est pas de la forme G_{β} , alors il n'est contenu dans aucun G_{α} d'après la remarque faite sur les sous-groupes de G_{α} . Soit $\alpha \in \mathbb{N}$ et $x \in G \setminus G_{\alpha}$. Notons $n \in \mathbb{N}$ le plus petit entier tel que $x \in G_n$. Alors nécessairement, $\alpha < n$. Ecrivons x sous la forme

$$x = e^{\frac{2ik\pi}{p^n}}$$

Alors par minimalité de $n, x^{p^{n-1}} = e^{\frac{2ik\pi}{p}} \neq 1$, donc $p \nmid k$, donc p et k sont premiers entre-eux puisque p est premier. Cela suffit à ce que x soit un générateur de G_n , or $x \in G$ donc $G_n \subset G$ d'où $G_\alpha \subset G_n \subset G$ puisque $\alpha < n$. Le raisonnement mené est vrai pour tout $\alpha \in \mathbb{N}$ puisque G n'est contenu dans aucun G_α , finalement on en déduit que $G = \mathbb{U}_p$. Ainsi, les sous-groupes de \mathbb{U}_p sont \mathbb{U}_p et les G_α pour $\alpha \in \mathbb{N}$.