

Experimental physik Vb (Teilchen- und Astrophysik)

Übung 02

Aufgabe 1 Mandelstam-Variablen

(5 Punkte)

Zeigen Sie, dass für die elastische Streuung von identischen Teilchen $A + A \rightarrow A + A$ gilt:

$$s = 4(\vec{p}^2 + m^2)$$

$$t = -2\vec{p}^2(1 - \cos\theta)$$

$$u = -2\vec{p}^2(1 + \cos\theta)$$

Dabei sind \vec{p} der Impuls des einfallenden Teilchens im Schwerpunktsystem, m die Masse des Teilchens und θ der Streuwinkel.

Aufgabe 2 Linearbeschleuniger und Zyklotron (4+4=8 Punkte) Protonen sollen auf eine kinetische Energie von $E_{\rm kin}=20\,{\rm MeV}$ beschleunigt werden. Dazu steht eine hochfrequente Wechselspannung $U(t)=U_0\sin\omega t$ mit $U_0=200\,{\rm kV}$ und $\omega/2\pi=f=20\,{\rm MHz}$ zur Verfügung.

- a. Wie viele Driftröhren werden für einen Linearbeschleuniger benötigt? Wie groß müssen die Rohrlängen L_k des Linearbeschleunigers sein? Wie lang ist der gesamte Beschleuniger?
- b. Wie viele Umläufe werden in einem Zyklotron benötigt? Wie stark muss das Magnetfeld B sein? Welchen Durchmesser hat das Zyklotron?

Hinweise: Die Beschleunigung soll jeweils auf den Maxima des Absolutwerts der Wechselspannung stattfinden. Rechnen Sie nicht-relativistisch ($E_{\rm kin} \ll m_p!$).

Aufgabe 3 Luminosität

(1+1+1=3 Punkte)

a. Berechnen Sie die instantane Luminosität in $1/(cm^2 s)$ und 1/(nb s) des LHC (Umfang 26,695 km) mit den Parametern:

$$n_B = 2808$$
, $N_1 = N_2 = 115 \cdot 10^9$, $\sigma_x = \sigma_y = 15 \,\mu\text{m}$.

b. Berechnen Sie die integrierte Luminosität in $1/{\rm fb}$ über eine Betriebszeit von 6 Monaten mit jeweils durchschnittlich 30 Tagen unter der Annahme, dass die mittlere Effizienz des Beschleunigers etwa 25 % beträgt.

c. Der Produktionswirkungsquerschnitt für das Higgs-Boson beträgt bei LHC $\sigma(pp \to H+X) \simeq 20\,\mathrm{pb}$. Wie viele Higgs-Bosonen werden an einem der Wechselwirkungspunkte des LHCs in 6 Monaten produziert?

Aufgabe 4 Ionisationsverluste

$$(5+2+2=9 \text{ Punkte})$$

a. Plotten Sie (z.B. mit matplotlib) den Ionisationsverlust (in MeV) von Myonen, Pionen, Kaonen, Protonen und α -Teilchen in 1 cm dickem Polystyrene-Szintillator ([C₆H₅CHCH₂]_n) als Funktion des Impulses. Wählen Sie eine geeignete Auftragung!

Der spezifische Energieverlust ist in erster Näherung und für nicht zu hohe Impulse gegeben durch

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = K\rho z^2 \frac{Z}{A} \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 \right)$$

Hierbei ist $K=4\pi N_A r_e^2 m_e c^2=0{,}307\,\mathrm{MeV}\,\mathrm{g}^{-1}\,\mathrm{cm}^2$ und

$$W_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$

ist der maximale Energieübertrag eines Teilchens der Masse M auf ein Elektron. Die Dichte von Polystyrene beträgt $\rho=1,06\,\mathrm{g/cm^3}$ und $\langle Z/A\rangle=0,537\,68,$ die mittlere Anregungsenergie ist $I=68,7\,\mathrm{eV}.$

- b. Bei welchem Impuls ist der mittlere Energieverlust von Pionen und Kaonen gleich?
- c. Welche Energie deponiert ein minimalionisierendes Teilchen im Mittel in 1 cm Szintillator?