

AC

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/00, 15/06, 15/09		A1	(11) International Publication Number: WO 00/58451 (43) International Publication Date: 5 October 2000 (05.10.00)
(21) International Application Number: PCT/US00/07544 (22) International Filing Date: 21 March 2000 (21.03.00)		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 09/277,078 26 March 1999 (26.03.99) US (71) Applicant: THE SALK INSTITUTE FOR BIOLOGICAL STUDIES [US/US]; 10010 North Torrey Pines Road, La Jolla, CA 92037 (US). (72) Inventors: SAKURADA, Kazuhiro; 5220 Fiore Terrace #213, San Diego, CA 92122 (US). PALMER, Theo; 3491 Tony Drive, San Diego, CA 92122 (US). GAGE, Fred, H.; 1533 Virginia Way, La Jolla, CA 92037 (US). (74) Agent: FULLER, Michael, L.; Knobbe, Martens, Olson & Bear, LLP, Sixteenth Floor, 620 Newport Center Drive, Newport Beach, CA 92609 (US).			
(54) Title: REGULATION OF TYROSINE HYDROXYLASE EXPRESSION (57) Abstract <p>The invention relates to methods and materials involved in the regulation of tyrosine hydroxylase expression as well as the treatment of catecholamine-related diseases. Specifically, the invention provides cells that contain exogenous nucleic acid having a nucleic acid sequence that encodes Nurr1 as well as methods and materials for inducing tyrosine hydroxylase expression, treating catecholamine-related deficiencies, and identifying tyrosine hydroxylase-related deficiencies.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	CN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LJ	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

REGULATION OF TYROSINE HYDROXYLASE EXPRESSION**BACKGROUND***1. Technical Field*

5 The invention relates generally to neural progenitor cells and more specifically to the regulation of tyrosine hydroxylase expression and treatment of catecholamine-related diseases.

2. Background Information

10 During development, neural stem cells differentiate into the different types of neurons and glia found in the adult central nervous system (CNS) and peripheral nervous system (PNS). In general, these different types of neurons are classified based on the particular types of neurotransmitters they produce. For example, dopaminergic neurons produce dopamine, while noradrenergic neurons produce
15 norepinephrine. The neurotransmitters dopamine and norepinephrine belong to a class of compounds called catecholamines. A catecholamine is an ortho-dihydroxyphenylalkylamine that is derived from the common cellular metabolite tyrosine. For example, the catecholamines dopamine and norepinephrine are synthesized from tyrosine as follows: tyrosine is converted to
20 dihydroxyphenylalanine (DOPA) by the enzyme tyrosine hydroxylase (TH), DOPA to dopamine by the enzyme aromatic L-amino acid decarboxylase (AADC), and dopamine to norepinephrine by the enzyme dopamine β -hydroxylase (DBH). The rate limiting step for both dopamine and norepinephrine synthesis is the conversion of tyrosine into DOPA by TH. In addition, dopamine can be converted to
25 dihydroxyphenylacetic acid (DOPAC) by the enzymes monoamine oxidase (MAO) and aldehyde dehydrogenase.

The exact mechanisms that regulate neuronal phenotype or even neuronal cell fate determination are not well understood. Developmental studies, however, have identified some genes that appear involved. Briefly, vertebrate nervous systems
30 develop in stereotypic positions along the dorso-ventral (D-V) and anterior-posterior

(A-P) axes of the neural tube (Tanabe *et al.*, *Science* 274:1115-1123 (1996). Transplantation and explant culture studies confirmed that signaling centers instruct cell fates along the A-P and D-V axes. A characteristic common to these centers is the interaction of receptor-ligand pairs to modify cell fate. Sonic hedgehog (Shh) and bone morphogenetic protein (BMP) are two such polypeptides that regulate cell fate along the D-V axis. Fibroblast growth factor-2 (FGF-2), FGF-8, retinoic acid (RA), and Wnt1 influence cell fate along the A-P axis. In each case, signaling induces downstream changes that are reflected in the patterning of transcription factor expression (Crossley *et al.*, *Nature* 380:66-68 (1996); Lumsden and Krumlauf, *Science* 274:1109-1114 (1996); Shimamura *et al.*, *Development* 124:2709-2718 (1997); and Vollmer *et al.*, *J. Neurochem.* 71:1-19 (1998)).

Using explant cultures, intersections of Shh and FGF-8 signaling created induction sites for dopaminergic neurons in the midbrain and forebrain (Ye *et al.*, *Cell* 93:755-766 (1998)). In addition, Nurr1, an orphan receptor belonging to the nuclear receptor superfamily (Law *et al.*, *Mol. Endocrinol.* 6:2192-2135 (1992) and Zetterstrom *et al.*, *Mol. Endocrinol.* 10:1656-1666 (1996)), and the bicoid-related homeobox factor Ptx3/Pitx3 (Semina *et al.*, *Human Mol. Genet.* 6:2109-2116 (1997); Semina *et al.*, *Nature Genet.* 19:167-170 (1998); and Smidt *et al.*, *Proc. Natl. Acad. Sci. USA* 94:13305-13310 (1997)) appear to be involved in midbrain dopaminergic determination.

Briefly, Nurr1 is expressed at embryonic day (E) 10.5 in the ventral aspect of the mesencephalic flexure and continues to be expressed into adulthood (Zetterstrom *et al.*, *Mol. Endocrinol.* 10:1656-1666 (1996) and Zetterstrom *et al.*, *Mol. Brain Res.* 41:111-120 (1996)). Ptx3 is expressed in ventral midbrain starting at E11.5, soon after Nurr1 begins to be expressed (Smidt *et al.*, *Proc. Natl. Acad. Sci. USA* 94:13305-13310 (1997) and Saucedo-Cawdenas *et al.*, *Proc. Natl. Acad. Sci. USA* 95:4013-4018 (1998)). Nurr1-null mice lack midbrain dopaminergic neurons and die within 24 h after birth (Zetterstrom *et al.*, *Science* 276:248-250 (1997); Saucedo-Cawdenas *et al.*, *Proc. Natl. Acad. Sci. USA* 95:4013-4018 (1998); and Castillo *et al.*, *Mol. Cell. Neurosci.* 11:36-46 (1998)). In addition, dopamine is absent in the substantia nigra

and ventral tegmental area of Nurr1-null mice (Castillo *et al.*, *Mol. Cell. Neurosci.* 11:36-46 (1998)). However, TH immunoreactivity and mRNA expression in hypothalamic, olfactory, and lower brain stem regions were unaffected, and DOPA treatments, whether given to the pregnant dams or to the newborns, failed to rescue 5 the Nurr1-null mice (Castillo *et al.*, *Mol. Cell. Neurosci.* 11:36-46 (1998)).

SUMMARY

The present invention relates to the regulation of tyrosine hydroxylase expression and treatment of catecholamine-related diseases. Specifically, the 10 invention provides cells that contain exogenous nucleic acid having a nucleic acid sequence that encodes Nurr1 (SEQ ID NO:2) as well as methods and materials for inducing tyrosine hydroxylase expression, treating catecholamine-related deficiencies, and identifying tyrosine hydroxylase-related deficiencies.

The present invention is based on the discovery that expression of Nurr1 15 polypeptide induces tyrosine hydroxylase expression in cells derived from an adult mammal. Specifically, expression of Nurr1 polypeptide induces TH expression in both differentiated and undifferentiated adult rat-derived hippocampal progenitor cells (AHPs). In addition, AHPs overexpressing Nurr1 can produce elevated levels of DOPA and DOPAC, indicating that the TH expression induced by Nurr1 expression 20 results in functional TH enzyme.

The present invention also is based on the discovery that Nurr1 polypeptide induces tyrosine hydroxylase expression by binding directly to the TH promoter. Specifically, Nurr1 polypeptide was found to bind directly to the TH promoter region at positions -873 to -866 (5'-AAAGGTCA-3'). Since mutations within this Nurr1- 25 binding element of the tyrosine hydroxylase promoter region can result in reduced reporter gene expression and thus tyrosine hydroxylase-related deficiencies, such deficiencies can be identified by assessing the nucleic acid sequence within the TH promoter. Clearly, identifying a tyrosine hydroxylase-related deficiency within a mammal can provide useful information for directing medical practitioners to 30 appropriate treatments.

- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present
- 5 invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- 10 Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

DESCRIPTION OF DRAWINGS

- Figure 1 is a diagram depicting the expression of the indicated transcripts by
- 15 HC7 and C31 cells under proliferation (FGF-2+) and various differentiation (FGF-2-) conditions. Total RNA isolated from rat brain E13.5 was used as control.
- Figure 2 is a diagram depicting the NIT, GIT, and RVEN3 retroviral vectors.
- Figure 3 is a diagram depicting the expression of the indicated transcripts by
- 20 cells expressing Shh-N. Column a, RT-PCR products generated from total RNA isolated from differentiated (FGF-2 withdrawal followed by 6 days of RA treatment) C31 cells that were infected 24 hours before triggering differentiation with retroviral vectors expressing either GFP or Shh-N. Column b, RT-PCR products generated from total RNA isolated from differentiated (FGF-2 withdrawal followed by 6 days of RA treatment), stable HC7-GFP or HC7-Shh-N cells that were treated with
- 25 tetracycline until just before differentiation. Column c, RT-PCR products generated from total RNA isolated from differentiated (FGF-2 withdrawal followed by 6 days of FK treatment), stable HC7-GFP or HC7-Shh-N cells that were cultured without tetracycline for 10 days before differentiation. Column d, RT-PCR products generated from total RNA isolated from differentiated (FGF-2 withdrawal followed by 6 days of
- 30 RA treatment), stable HC7-GFP or HC7-Shh-N cells that were cultured without

tetracycline for ten days before differentiation.

Figure 4 a, b, and c is a diagram depicting the expression of the indicated transcripts by HC7 cells forced to express GFP, Shh-N, Nurr1, or Nurr1a stably and HC7-Nurr1 cells forced to express GFP or Ptx3 transiently. RT-PCR products were
5 generated from total RNA isolated from cells that were proliferating in the absence of tetracycline for two days.

Figure 5 is a diagram depicting the expression of TH by HC7-Nurr1 cells cultured in the indicated condition for 24 hours. FGF-2+ indicates proliferating conditions, and FGF-2- indicates differentiating conditions triggered by FGF-2
10 withdrawal.

Figure 6 is a diagram depicting the expression of the indicated transcripts by various cells. Panel A, RT-PCR products generated from total RNA isolated from C31 cells infected with retroviruses (RVEN3) expressing GFP, Shh-N, Nurr1, or Nurr1a transiently, and induced immediately to differentiate in the presence of RA.
15 Panel B, RT-PCR products generated from total RNA isolated from HC7 cells infected with retroviruses (NIT) expressing GFP, Shh-N, Nurr1, or Nurr1a, selected in G418 for ten days without tetracycline, and induced to differentiate in the presence of RA. Panel C, RT-PCR products generated from total RNA isolated from HC7 cells infected with retroviruses (NIT) expressing GFP, Shh-N, Nurr1, or Nurr1a, selected in
20 G418 for ten days without tetracycline, and induced to differentiate in the presence of FK. Nurr1/Ptx3 cells represents stable HC7-Nurr1 cells transiently expressing Ptx3.

Figure 7 contains three HPLC chromatograms. Panel A, HPLC chromatogram of a cell lysate from HC7 cells propagated with FGF-2. Panel B, HPLC chromatogram of a cell lysate from HC7-Nurr1 cells differentiated in the presence of
25 FK. Panel C, HPLC chromatogram of the same cell lysate of Panel B spiked with a mix of DOPA, dopamine (DA), and DOPAC (50 ng/ml).

DETAILED DESCRIPTION

The invention provides methods and materials related to the regulation of
30 tyrosine hydroxylase expression as well as the treatment of catecholamine-related

diseases. Specifically, the invention provides cells that contain exogenous nucleic acid as well as methods and materials for inducing tyrosine hydroxylase expression, treating catecholamine-related deficiencies, and identifying tyrosine hydroxylase-related deficiencies.

5 Cells containing exogenous nucleic acid that encodes Nurr1 are clinically useful, providing medical practitioners with biological material that can produce elevated levels of particular predetermined compounds such as DOPA, dopamine, norepinephrine, and DOPAC. Such cells containing exogenous Nurr1 nucleic acid can express Nurr1 polypeptide that induces TH enzyme synthesis that, in turn, results
10 in the conversion of tyrosine into DOPA. The particular compound produced by a cell containing the exogenous Nurr1 nucleic acid can be determined based upon the set of enzymes, in addition to TH, that are expressed by that cell. For example, cells that express little to no AADC and contain exogenous Nurr1 nucleic acid can
15 synthesize and accumulate DOPA, while cells that express AADC and DBH, and contain exogenous Nurr1 nucleic acid can synthesize and accumulate norepinephrine.

In addition, cells expressing Nurr1, and thus functional TH enzyme resulting in catecholamine production, can be used to treat catecholamine-related deficiencies associated with disease states such as Parkinson's disease, manic depression, and schizophrenia. For example, cells containing exogenous Nurr1 nucleic acid can be
20 administered (e.g., intracranial injection) to the substantia nigra region of a Parkinson's disease patient such that those cells provide that region of the brain with dopamine. Clearly, the induction of tyrosine hydroxylase expression in a cell using an exogenous nucleic acid that encodes Nurr1 is a useful means for creating
25 catecholamine-producing cells that can be used in the medical treatment of catecholamine-related deficiencies.

In a first embodiment, the invention provides cells containing an exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the rat Nurr1 amino acid sequence (Table 1; SEQ ID NOs:1 and 2). Such cells are included within the scope of the invention
30 provided the encoded amino acid sequence is expressed and induces tyrosine

hydroxylase expression in that cell. Such cells include, without limitation, neural progenitor cells, neural cells, and neural stem cells. In addition, such cells may express midbrain markers such as Otx1 and En1, midbrain dopaminergic markers such as Ptx3, and any other polypeptide such as those associated with neurons and synaptic transmission. For example, a cell within the scope of the invention expresses vesicular monoamine transporters (e.g., VAMT1 and VMAT2), synaptotagmins, syntaxin, and/or synaptobrevin.

Table 1. Nucleic acid and amino acid sequence of rat Nurr1 (SEQ ID NOs:1 and 2).

10	atgccttgtttcaggcgca... agctacagttaccactttcgg... aagtttagcatggac... agtaccc... atgccc... 15 15
	cagcaacacagccac... tactacaaggcc... ccgatgtggac... catatgatcgag... tcgcccc... 20 20
	cccatgaacccggag... cccaatcccattcg... tcgcagttgt... ggtctgtgc... gagggctg... 25 25
	gcaaataaaaattg... cagaagtgc... cgagaggtcg... ccgggtgagtc... acctggactatt... 30 30
	caacatatcc... gcagagaagatt... tcagtttctt... 7

aaactcattttgcataatgggtggcttgacaggtgcaatgcgtgcgtggcttgg
gaatggattgattccattgttgaatttcctccaacttgcagaatatgaacatcgacatt
tctgccttcctgcattgtgcctggctatggtcacagagacacgggctcaaggaa
cccaagagagtgaaagagactacaaaacaaaattgttaattgtctaaagaccatgtgact

5 ttcaataatggggatttgaaccgacccaaactacactgtccaaactgttgggaagctccca
gaacttcgcaccccttgcacacagggctcagcgcatttctacctgaaatttggaaagac
tttgttaccaccaccagaataattgacaaactttcctggacacccatcacccctaa

MPCVQAQYGSPPQGASPASQSYHSSGEYSSDFLTPEFVKFSMDLTNTETATTSLPSF
10 STFMDNYSTGYDVKPPCLYQMPLSGQQSSIKVEDIQMNHYQQHSHLPPQSEEMMPHSGSV
YYKPSSPPTPSTPGFQVQHS PMWDDPGSLHNFHQNYYATTHMIEQRKTPVSRLSLFSFKQ
SPPGTPVSSCQMRFDGPLHVPMNPEPAGSHVVVDGQTFAVPNPIRKPASMGFPGLQIGHA
SQLLDTQVPSPPSRGSPSNEGLCAVCGDNAACQHYGVRTCEGCKGFFKRTVQKNAKYVCL

15 The term "progenitor cell" as used herein refers to any cell that can give rise to a distinct cell lineage through cell division. In other words, progenitor cells can be generally described as cells that give rise to differentiated cells. For example, a neural progenitor cell is a parent cell that can give rise to a daughter cell having characteristics similar to a neural cell. The term "neural cell" as used herein refers to neurons, including dopaminergic neurons as well as glial cells, including astrocytes, oligodendrocytes, and microglia. For the purpose of this invention, all neuroepithelial cells of the diencephalon, telencephalon, mesencephalon, myelencephalon, and metencephalon as well as adult hippocampal progenitor cells (AHPs), adult subventricular zone stem cells, and adult spinal cord progenitor are considered to be 20 neural progenitor cells. In addition, all neuroepithelial cells of the mesencephalon as well as AHPs, are considered to be midbrain neural progenitor cells. Moreover, a cell within the scope of the invention can be a mammalian cell. For example, mammalian cells derived from a mammal at any stage of development from blastula formation to 25 adult can contain an exogenous nucleic acid.

30 The term "nucleic acid" as used herein encompasses both RNA and DNA, including cDNA, genomic DNA, and synthetic (e.g., chemically synthesized) DNA.

The nucleic acid can be double-stranded or single-stranded. Where single-stranded, the nucleic acid can be the sense strand or the antisense strand. In addition, nucleic acid can be circular or linear.

The term "exogenous" as used herein with reference to nucleic acid and a particular cell refers to any nucleic acid that does not originate from that particular cell as found in nature. Thus, all non-naturally occurring nucleic acid are considered to be exogenous to a cell once introduced into the cell. It is important to note that non-naturally occurring nucleic acid can contain nucleic acid sequences or fragments of nucleic acid sequences that are found in nature provided the nucleic acid as a whole does not exist in nature. For example, a nucleic acid containing a genomic DNA sequence within an expression vector is considered to be a non-naturally occurring nucleic acid, and thus is considered to be exogenous to a cell once introduced into the cell, since that nucleic acid as a whole (genomic DNA plus vector DNA) does not exist in nature. Thus, any vector, autonomously replicating plasmid, or virus (e.g., retrovirus, adenovirus, or herpes virus) that as a whole do not exist in nature is considered to be a non-naturally-occurring nucleic acid. It follows that genomic DNA fragments produced by PCR or restriction endonuclease treatment as well as cDNA's are considered to be a non-naturally-occurring nucleic acid since they exist as separate molecules not found in nature. It also follows that any nucleic acid containing a promoter sequence and polypeptide-encoding sequence (e.g., cDNA or genomic DNA) in an arrangement not found in nature is considered to be a non-naturally occurring nucleic acid.

It is also important to note that a nucleic acid that is naturally occurring can be exogenous to a particular cell. For example, an entire chromosome isolated from a cell of person X would be considered an exogenous nucleic acid with respect to a cell of person Y once that chromosome is introduced into Y's cell.

Nucleic acid that is considered to be exogenous to a particular cell can be obtained using common molecular cloning or chemical nucleic acid synthesis procedures and techniques, including PCR. PCR refers to a procedure or technique in which target nucleic acid is amplified in a manner similar to that described in U.S.

Patent No. 4,683,195, and subsequent modifications of the procedure described therein. Generally, sequence information from the ends of the region of interest or beyond are used to design oligonucleotide primers that are identical or similar in sequence to opposite strands of a potential template to be amplified. Using PCR, a nucleic acid sequence can be amplified from RNA or DNA. For example, a nucleic acid sequence can be isolated by PCR amplification from total cellular RNA, total genomic DNA, and cDNA as well as from bacteriophage sequences, plasmid sequences, viral sequences, and the like. When using RNA as a source of template, reverse transcriptase can be used to synthesize complimentary DNA strands.

Standard nucleic acid sequencing techniques and software programs that translate nucleic acid sequences into amino acid sequences based on the genetic code can be used to determine whether or not a particular nucleic acid has a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2. For the purpose of this invention, the percent amino acid sequence identity between the sequence set forth in SEQ ID NO:2 and any other amino acid sequence is calculated as follows. First, the two amino acid sequences are aligned using the MEGALIGN® (DNASTAR, Madison, WI, 1997) sequence alignment software following the Jotun Heim algorithm with the default settings. Second, the number of matched positions between the two aligned amino acid sequences is determined. A matched position refers to a position in which identical residues occur at the same position as aligned by the MEGALIGN® sequence alignment software. Third, the number of matched positions is divided by 598, and the resulting value multiplied by 100 to obtain the percent identity. If the obtained percent identity is greater than or equal to 65 for a particular amino acid sequence, then that particular amino acid sequence is an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2.

Nucleic acid having a nucleic acid sequence that encodes a polypeptide having an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2 can be identified and obtained using any method. For example, the nucleic acid sequence set forth in SEQ ID NO:1 can be mutated using common molecular cloning techniques (e.g., site-directed mutageneses) such that the amino acid sequence

- encoded by the mutated nucleic acid sequence is at least 65 percent identical to the sequence set forth in SEQ ID NO:2. Possible mutations include, without limitation, deletions, insertions, and base substitutions, as well as combinations of deletions, insertions, and base substitutions. In addition, nucleic acid and amino acid databases (e.g., GenBank[®]) can be used to identify a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2. Briefly, any amino acid sequence having some homology to the sequence set forth in SEQ ID NO:2, or any nucleic acid sequence having some homology to the sequence set forth in SEQ ID NO:1 can be used as a query to search GenBank[®].
- 5 10 Search results then can be analyzed to determine the percent identity between the amino acid sequences obtained from an amino acid search, or the encoded amino acid sequences obtained from a nucleic acid search, and the amino acid sequence set forth in SEQ ID NO:2.

Further, PCR and nucleic acid hybridization techniques can be used to identify nucleic acid having a nucleic acid sequence that encodes a polypeptide having an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2. Briefly, any nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, or fragment thereof, can be used as a probe to identify a similar nucleic acid by hybridization under conditions of moderate to high stringency. Such similar nucleic acid then can be isolated, sequenced, and analyzed to determine the percent identity between the encoded amino acid sequences and the amino acid sequence set forth in SEQ ID NO:2.

In general, high stringency conditions can be used to identify nucleic acid having a high degree of homology to a probe. High stringency conditions can include the use of a denaturing agent such as formamide during hybridization, e.g., 50% formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, and 75 mM sodium citrate at 42°C. Another example is the use of 50% formamide, 30 5X SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.5),

0.1% sodium pyrophosphate, 5X Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% sodium lauryl sulfate (SDS), and 10% dextan sulfate at 42°C, with washes at 42°C in 0.2X SSC and 0.1% SDS. Alternatively, low ionic strength and high temperature can be used for washing, for example, 0.1X SSC (0.015 M

- 5 NaCl/0.0015 M sodium citrate), 0.1% SDS at 65°C.

Moderate stringency conditions can be used to identify nucleic acid having a moderate degree of homology to a probe. Moderate stringency conditions can include the use of higher ionic strength and/or lower temperatures for washing of the hybridization membrane, compared to the ionic strength and temperatures used for high stringency hybridization. For example, a wash solution of 4X SSC (0.06 M NaCl/0.006 M sodium citrate), 0.1% SDS can be used at 50°C, with a last wash in 1X SSC at 65°C. Alternatively, a hybridization wash in 1X SSC at 37°C can be used.

- 10 Low stringency conditions can be used to identify nucleic acid having a low degree of homology to a probe. Low stringency conditions can include the use of higher ionic strength and/or lower temperatures for washing of the hybridization membrane, compared to the ionic strength and temperatures used for moderate stringency hybridization. For example, a wash solution of 4X SSC (0.06 M NaCl/0.006 M sodium citrate), 0.1% SDS can be used at 37°C, with a last wash in 1X SSC at 45°C. Alternatively, a hybridization wash in 2X SSC at 37°C can be used.

- 15 20 Hybridization can be done by Southern or Northern analysis to identify a DNA or RNA sequence, respectively, that hybridizes to a probe. The probe can be labeled with a radioisotope such as ³²P, an enzyme, digoxigenin, or by biotinylation. The DNA or RNA to be analyzed can be electrophoretically separated on an agarose or polyacrylamide gel, transferred to nitrocellulose, nylon, or other suitable membrane, and hybridized with the probe using standard techniques well known in the art such as those described in sections 7.39-7.52 of Sambrook *et al.*, (1989) Molecular Cloning, second edition, Cold Spring harbor Laboratory, Plainview, NY. Typically, a probe is at least about 20 nucleotides in length. For example, a probe corresponding to a 20 nucleotide sequence within SEQ ID NO:1 can be used to identify a nucleic acid identical to or similar to the nucleic acid sequence of SEQ ID NO:1. In addition,
- 25 30

probes longer or shorter than 20 nucleotides can be used.

As described herein, the cells of the invention must not only contain an exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, but 5 must also express the encoded amino acid sequence such that tyrosine hydroxylase expression is induced. Methods of identifying cells that contain exogenous nucleic acid are well known to those skilled in the art. Such methods include, without limitation, PCR and nucleic acid hybridization techniques such as Northern and Southern analysis. In some cases, immunohistochemistry and biochemical techniques 10 can be used to determine if a cell contains a particular nucleic acid by detecting the expression of a polypeptide encoded by that particular nucleic acid. For example, detection of Nurr1-immunoreactivity after introduction of an exogenous nucleic acid containing a cDNA that encodes Nurr1 into a cell that does not normally express Nurr1 polypeptide can indicate that that cell not only contains the introduced 15 exogenous nucleic acid but also expresses the encoded Nurr1 polypeptide from that introduced exogenous nucleic acid. In this case, the detection of Nurr1 induced TH expression (e.g., increases in TH mRNA levels, TH-immunoreactivity, or TH enzymatic activity) also can indicate that that cell contains the introduced exogenous 20 nucleic acid and expresses the encoded Nurr1 polypeptide from that introduced exogenous nucleic acid.

In addition, methods for expressing an amino acid sequence from an exogenous nucleic acid are well known to those skilled in the art. Such methods include, without limitation, constructing a nucleic acid such that a regulatory element promotes the expression of a nucleic acid sequence that encodes a polypeptide. 25 Typically, regulatory elements are DNA sequences that regulate the expression of other DNA sequences at the level of transcription. Thus, regulatory elements include, without limitation, promoters, enhancers; and the like.

Methods of identifying cells that express an amino acid sequence from an exogenous nucleic acid also are well known to those skilled in the art. Such methods 30 include, without limitation, immunocytochemistry, Northern analysis, and RT-PCR.

Likewise, the expression of tyrosine hydroxylase can be determined using immunocytochemistry, Northern analysis, or RT-PCR, for example. Briefly, immunocytochemistry using anti-TH antibodies can be used to assess the expression of TH polypeptide, while Northern analysis and RT-PCR techniques can be used to 5 assess the expression of TH mRNA. Any increased expression of TH polypeptide or TH mRNA attributed to the expression of the amino acid sequence encoded by the exogenous nucleic acid is considered to be the induced TH expression. A simple comparison between TH expression results obtained from appropriate cells with and without the exogenous nucleic acid can be used to determine increases in TH 10 expression. It is also noted that TH expression can be assessed using HPLC to measure the amount of DOPA, dopamine, norepinephrine, or DOPAC within cells, since the amount of these compounds within a cell can correlate with the expression of TH polypeptide.

The exogenous nucleic acid contained within a cell of the invention can be 15 maintained within that cell in any form. For example, exogenous nucleic acid can be integrated into the genome of the cell or maintained in an episomal state. In other words, a cell of the invention can be a stable or transient transformant.

Any method can be used to introduce an exogenous nucleic acid into a cell. In fact, many methods for introducing nucleic acid into cells, whether *in vivo* or *in vitro*, 20 are well known to those skilled in the art. For example, calcium phosphate precipitation, electroporation, heat shock, lipofection, microinjection, and viral-mediated nucleic acid transfer are common methods for introducing nucleic acid into cells. In addition, naked DNA can be delivered directly to cells *in vivo* as described elsewhere (U.S. Patent Number 5,580,859 and U.S. Patent Number 5,589,466 25 including continuations thereof). Further, nucleic acid can be introduced into cells by generating transgenic animals.

Transgenic animals can be aquatic animals (such as fish, sharks, dolphin, and the like), farm animals (such as pigs, goats, sheep, cows, horses, rabbits, and the like), rodents (such as rats, guinea pigs, and mice), non-human primates (such as baboon, monkeys, and chimpanzees), and domestic animals (such as dogs and cats). Several
5 techniques known in the art can be used to introduce nucleic acid into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (U.S. Patent No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten *et al.*, *Proc. Natl. Acad. Sci., USA*, 82:6148-6152 (1985)); gene transfection into embryonic stem cells (Gossler A *et al.*,
10 *Proc Natl Acad Sci USA* 83:9065-9069 (1986)); gene targeting into embryonic stem cells (Thompson *et al.*, *Cell*, 56:313-321 (1989)); nuclear transfer of somatic nuclei (Schnieke AE *et al.*, *Science* 278:2130-2133 (1997)); and electroporation of embryos.

For a review of techniques that can be used to generate and assess transgenic animals, skilled artisans can consult Gordon (*Intl. Rev. Cytol.*, 115:171-229 (1989)),
15 and may obtain additional guidance from, for example: Hogan *et al.*, "Manipulating the Mouse Embryo" Cold Spring Harbor Press, Cold Spring Harbor, NY (1986); Krimpenfort *et al.*, *Bio/Technology*, 9:844-847 (1991); Palmiter *et al.*, *Cell*, 41:343-345 (1985); Kraemer *et al.*, "Genetic Manipulation of the Early Mammalian Embryo" Cold Spring Harbor Press, Cold Spring Harbor, NY (1985); Hammer *et al.*, *Nature*, 20 315:680-683 (1985); Pursel *et al.*, *Science*, 244:1281-1288 (1986); Wagner *et al.*, U.S. Patent No. 5,175,385; and Krimpenfort *et al.*, U.S. Patent No. 5,175,384.

Methods for inducing TH expression

As described herein, TH expression can be induced in a cell by providing a
25 cell with an exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2 such that the encoded amino acid sequence is expressed. In addition, any method including those described herein can be used to introduce such an exogenous nucleic acid into a cell.

30 Further, a kit containing a proliferation factor and nucleic acid having a nucleic

acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2 can be used to induce tyrosine hydroxylase expression in a cell (e.g., AHPs). A proliferation factor is any polypeptide that promotes the proliferation of cells in tissue culture including, without limitation, FGF-5, 2, FGF-4, and EGF. The proliferation factor can be used to maintain cells in a proliferative state while the nucleic acid is being introduced into the cells.

Treating catecholamine-related deficiencies

Catecholamine-related deficiencies in a mammal (e.g., a human patient) can be treated by administering an effective amount of cells to a mammal. The administered cells contain, as described herein, exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2 such that the encoded amino acid sequence is expressed and induces tyrosine hydroxylase expression. This induced TH expression causes the cells to produce a catecholamine such as dopamine or norepinephrine.

A catecholamine-related deficiency is any physical or mental condition that is associated with or attributed to an abnormal level of a catecholamine such as dopamine or norepinephrine. This abnormal level of catecholamine can be restricted to a particular region of the mammal's brain (e.g., midbrain) or adrenal gland. A catecholamine-related deficiency can be associated with disease states such as Parkinson's disease, manic depression, and schizophrenia. In addition, catecholamine-related deficiencies can be identified using clinical diagnostic procedures.

An effective amount of cells is any amount that does not cause significant toxicity to the mammal and results in either the production of a more normal level of a catecholamine or a relief, to at least some degree, of at least one clinical symptom associated with the catecholamine-related deficiency. Such an amount can be determined by assessing the clinical symptoms associated with the catecholamine-related deficiency before and after administering a fixed amount of cells. In addition, the effective amount of cells administered to a mammal can be adjusted according to the mammal's response and desired outcomes. Significant toxicity can vary for each particular patient and depends on multiple factors including, without limitation, the

patient's physical and mental state, age, and tolerance to pain. The cells can be administered to any part of the mammal's body including, without limitation, midbrain, brainstem, and adrenal gland.

- Catecholamine-related deficiencies also can be treated by administering an exogenous nucleic acid to a cell of the mammal. The administration can be an *in vivo*, *in vitro*, or *ex vivo* administration as described herein. For example, an *in vivo* administration can involve administering a viral vector to the midbrain region of a mammal, while an *ex vivo* administration can involve extracting midbrain cells from a mammal, transfecting the cells with an exogenous nucleic acid in tissue culture, and then introducing the transfected cells back into the same mammal.

Identifying TH-related deficiencies

A tyrosine hydroxylase-related deficiency is any physiological condition characterized by a reduced level of TH expression within a cell or group of cells.

- Tyrosine hydroxylase-related deficiencies can be associated with disease states such as Parkinson's disease, manic depression, and schizophrenia. In addition, such deficiencies can be identified by assessing the nucleic acid sequence of Nurr1-binding elements located in the TH promoter. A Nurr1-binding element is a portion of DNA that Nurr1 polypeptide binds directly. For example, a Nurr1-binding element can be located in the TH promoter region at positions -873 to -866 and can have a nucleic acid sequence as set forth in this sequence 5'-AAAGGTCA-3'. Common molecular biology techniques can be used to assess the nucleic acid within the -873 to -866 region of the TH promoter for the presence or absence or mutation of this 5'-AAAGGTCA-3' sequence. For example, genomic DNA can be isolated from cells collected from a mammal and a fragment of DNA containing the -873 to -866 region of the TH promoter amplified by PCR. Once amplified, the -873 to -866 region can be sequenced and any changes to the 5'-AAAGGTCA-3' sequence determined. Murphy *et al.*, *Gene Expression*, Vol. 5, 169-179 (1996). For example, ΔAAGGTCA mutation in the two underlined positions permits neural binding.
- The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

Example 1 - Differentiation of adult neural progenitor cells into midbrain dopaminergic neuronal phenotype

The following experimental procedures were used to isolate and propagate rat
5 adult hippocampal progenitor cells (AHPs). Briefly, neural precursors from adult rat
hippocampal formations were isolated in culture as described elsewhere (Gage *et al.*,
Proc. Natl. Acad. Sci. USA 92:11879-1188 (1995)). Primary cultures were maintained
on laminin coated dishes as described by Ray *et al.* (*Proc. Natl. Acad. Sci. USA*
90:3602-3606 (1993)) using DMEM:F12 (1:1) media supplemented with N2
10 supplement (GIBCO) and 20 ng/ml recombinant human FGF-2 from E. coli (provided
by A. Baird. The bulk population of AHPs designated HC7 herein have been
characterized elsewhere (Palmer *et al.*, *Mol. Cell. Neurosci.* 8:389-404 (1997)). The
HC7 cells were used at passages 10 through 20. The stem cell-derived clone
designated C31 was isolated from the HC7 population. These cells have also been
15 described elsewhere (Palmer *et al.*, *Mol. Cell. Neurosci.* 8:389-404 (1997)). Both
polyclonal (HC7) and clonal (C31) populations can generate a variety of neuronal
phenotypes including GABA, TH, and AChE-positive neurons.

To induce differentiation, cells were initially plated onto laminin coated 6 cm
dishes or coated chamber slides at a density of 2×10^4 or 10^5 cells per cm^2 ,
20 respectively. Cells were allowed to proliferate in N2 supplemented medium
containing 20 ng/ml FGF-2 for 24 hours. FGF-2 was then withdrawn and the cells
subsequently treated with N2 medium alone or with N2 medium containing 0.5 μM
retinoic acid (RA), 5 μM forskolin (FK), or 40 ng/ml FGF-8. Medium was replaced
every 48 hours.

25 The expression of A-P and D-V markers by the fibroblast growth factor-2
(FGF-2)-responsive AHPs was examined using RT-PCR as follows. Briefly, total
RNA was isolated from cell culture using RNAzol (Tel Test). Using the Superscript
preamplification system (GIBCO BRL), cDNA was made from 4 μg of total RNA.
First strand cDNA was diluted 3-fold, and 2 μl of the diluted cDNA used for each
30 PCR reaction. RT-PCR products were analyzed in a 1.5% agarose gel containing

Ethidium Bromide (EtBr). DNA bands were photographed using an Eagle Eye XI video system (Stratagene). The image was exported in a TIFF file and DNA bands were quantified using NIH Image 1.55 software for Macintosh. The quantification value of the band was designated the absorbance (Pixels). Measurements of
5 absorbance using the above system were linear up to 120 pixels. For quantitative PCR, cycle numbers and template quantity were determined to be in the linear range for each gene. Kinetic analyses were also used to demonstrate linearity as described elsewhere (Yokoi *et al.*, *Biophys. Res. Commun.* 195:769-775 (1993)). Regression equations of the form: $Y=A \times E^n$, where Y is the yield of PCR products, E is the
10 efficiency of amplification, and n is the number of cycles, were fitted to the data in the linear portion of the semilogarithmic graphs. The coefficient A was calculated for each reaction in order to estimate the relative amount of mRNA. Each sample was analyzed at least three times, and the difference in the obtained values was always less than 2%. For each experimental test condition, at least two independent experiments
15 were performed. The following primers were used to amplify the indicated target cDNA:

- G3PDH: 5'-ACACAGTCCATGCCATCAC-3' (SEQ ID NO:3)
and 5'-TCCACCACCCTGTTGCTGTA-3' (SEQ ID NO:4)
- 20 TH: 5'-CCTCCTTGTCTCGGGCTGTAA-3' (SEQ ID NO:5)
and 5'-CTGAGCTTGTCCCTGGCGTCA-3' (SEQ ID NO:6)
- AADC: 5'-CCTACTGGCTGCTCGGACTAA-3' (SEQ ID NO:7)
and 5'-GCGTACCAAGGGACTCAAACTC-3' (SEQ ID NO:8)
- DBH: 5'-GTGACCAGAAAGGGCAGATCC-3' (SEQ ID NO:9)
25 and 5'-CACCGGCTTCTTCTGGTAGT-3' (SEQ ID NO:10)
- GFAP: 5'-GCAGACCTCACAGACGTTGCT-3' (SEQ ID NO:11)
and 5'-AGGCTGGTTCTGGATCTGG-3' (SEQ ID NO:12)
- Phox2A: 5'-TGGCGCTCAAGATCGACCTCA-3' (SEQ ID NO:13)
and 5'-CGTTAGGGTGGGATTAGCGGT-3' (SEQ ID NO:14)
- 30 Nurr1: 5'-TAAAAGGCCGGAGAGGTCGTC-3' (SEQ ID NO:15)

		and 5' -CTCTCTGGGTTCCCTGAGCC-3' (SEQ ID NO:16)
Ptc:		5'-ACCTTGACTGCTTCTGGG-3' (SEQ ID NO:17)
		and 5'-AGTCGTAGCCCCCTGAAGTGTT-3' (SEQ ID NO:18)
Smo:		5'-GCCACCCTGCTCATCTGGA-3' (SEQ ID NO:19)
5		and 5'-TTCCGGCCTAAACGCTTCTC-3' (SEQ ID NO:20)
Gli1:		5'-CATGTGTGAGCAAGAAGGTTGC-3' (SEQ ID NO:21)
		and 5'-AAGTCGAGGACACTGGCTATAGG-3' (SEQ ID NO:22)
Shh:		5'-TTCTGGTGGCCCTTGCTTCCT-3' (SEQ ID NO:23)
		and 5'-TACTTGCTGCGGTCCCTGTCA-3' (SEQ ID NO:24)
10	Otx:	5'-MGIMGIGARMGIACIACITYAC-3' (SEQ ID NO:25)* and 5'-ICKICKRTTIBWRAACCAIACYTG-3' (SEQ ID NO:26)*
	En:	5'-AARMGICCIIMGIACIGCITYAC-3' (SEQ ID NO:27)* and 5'-CKYTRTRTYTGRAACCADATYTT-3' (SEQ ID NO:28)*
Hox:		5'-YTIGARAARGARTTYCAYTTYAA-3' (SEQ ID NO:29)* and 5'-TTCATICKICKRTTYTGRAACCA-3' (SEQ ID NO:30)*
15	Pax:	5'-MGIMGIWSIMGIACIACITYAC-3' (SEQ ID NO:31)* and 5'-ICKICKRTTIBWRAACCAIACYTG-3' (SEQ ID NO:32)*
	D2R:	5'-GCATCCTGAACCTGTGTGCCA-3' (SEQ ID NO:33) and 5' -GCAGCATCCTTGAGTGGTGTC-3' (SEQ ID NO:34)
20	GFR α -1:	5'-GATTGCTGATGTCCGCCGAG-3' (SEQ ID NO:35) and 5'-AATCAGTCCCAGTAGGCCAG-3' (SEQ ID NO:36)
	c-Ret:	5'-AGACAGACCCAGGCTTCGCTA-3' (SEQ ID NO:37) and 5'-TTCCGCTGATGCAATGGCG-3' (SEQ ID NO:38)
	FGFR:	5'-TCNGAGATGGAGRTGATGAA-3' (SEQ ID NO:39)## and 5'-CCAAAGTCHGCDATCTTCAT-3' (SEQ ID NO:40)##
25		

Those particular primers marked with an asterisk (*) are degenerate primers represented by the indicated amino acid sequence. For the primers marked with a pound sign (#), N represents all four bases, R represents A and G, and H represents A, T and C. The PCR products from the Ptc, Otx, En, and Hox reactions were subcloned

into a TOPO-TA vector (Invitrogen) and analyzed by DNA sequencing, while the identity of each product for the remaining PCR reactions was confirmed by restriction enzyme digestion. Controls included total RNA isolated from rat brain E13.5 as well as PCR reactions lacking reverse transcriptase.

- 5 Otx1, En1, GBX2, HoxA1, HoxA2, HoxB2, HoxD3, and HoxD4 mRNA was detected in both non-clonal cultures (HC7) and stem cell-derived clonal cultures (C31) proliferating in the presence of FGF-2 (Table 2, Figure 1). The broad range of homeobox members present indicates that AHPs are not restricted to the forebrain-specific A-P identities expected for hippocampus-derived cells. Sonic hedgehog
10 (Shh) transcripts were not detected; however, transcripts for the Shh receptors Ptc and Smo, and the Shh-responsive gene Gli1 were detectable in proliferating cells, suggesting some level of Shh-related signal transduction (Figure 1). In addition, expression of midbrain (Otx1 and En1) and midbrain dopaminergic markers (Nurr1 and Ptx3) indicated that some of the AHPs may be competent to generate midbrain-specific dopaminergic neurons.
15

Table 2. Nucleotide and amino acid sequence of homeobox genes expressed in AHPs

<u>Gene</u>	<u>Nucleotide and amino acid sequence</u>
Otx1	CGGCAGGGAGCGGACGACGTTACGCGCTCACAGCTGGACGTGCTC
20	R R E R T T P T R S Q L D V L GAGGCGCTGTTCGCAAAGACTCGCTACCCAGACATCTTCATGC E A L F A K T R Y P D I F M R GAGGAGGTGGCTCTCAAGATCAACCTGCCCGAGTCCAGAGTCAA E E V A L K I N L P E S R V Q
25	GTCTGGTTCAACAAACAGCCGCC (SEQ ID NO:41) V W F N N S R (SEQ ID NO:42)

En1	<pre> AAGCGGCCGCGACGGCGTTCACGGCCGAGCAGCTGCAGAGACTC K R P R T A F T A E Q L Q R L AAGGGAGATTCAGGCAAACCGTACATCACGGAGCAGCGCGA K A E F Q A N R Y I T E Q R R CAGACCTGGCCCAGGAGCTCAGCCTGAACGAGTCCCAGATCAAG Q T L A Q E L S L N E S Q I K ATCTGGTTCCAAAACAAGCGA (SEQ ID NO:43) I W F Q N K R (SEQ ID NO:44) </pre>
10 GBX2	<pre> AAGCGGCCGCGACGGCGTTACCAGCGAGCAGCTGCTGGAGCTG K R P R T A F T S E Q L L E L GAGAAGGAATTCCACTGCAAAAGTACCTCTCCCTGACCGAGCGC E K E F H C K K Y L S L T E R TCACAGATCGCCCATGCCCTCAAACTCAGCGAGGTGCAAGTAAAA S Q I A H A L K L S E V Q V K ATATGGTTCCAAAACAAGCGA (SEQ ID NO:45) I W F Q N K R (SEQ ID NO:46) </pre>
HoxA1	<pre> CTGGAGAAGGAGTTCCATTCAACAAGTACCTAACAGAGCCCCGC L E K E F H F N K Y L T R A R AGGGTGGAGATAGCCCGTCCCTGCAACTCAATGAGACCCAGGTG R V E I A A S L Q L N E T Q V AAGATCTGGTTCCAAAACCGC (SEQ ID NO:47) K I W F Q N R (SEQ ID NO:48) </pre>
25 HoxA2/B2	<pre> CTGGAGAAGGAGTTCAACAAAGTACCTGTGCCGGCCGCGG L E K E F H F N K Y L C R P R CGGGTTGAGATCGCCGCCCTGCTGGACCTCACCGAAAGGCAGGTC R V E I A A L L D L T E R Q V </pre>

AAAGTCTGGTTCCAAAACCGC (SEQ ID NO:49)

K V W F Q N R (SEQ ID NO:50)

HoxD3	CTGGAGAAGGAGTTCCATTCAACCGCTACCTGTGCCGGCCGC L E K E F H F N R Y L C R P R CGCGTGGAGATGGCTAACCTGCTGAACCTCACCGAACGCCAGATC R V E M A N L L N L T E R Q I AAGATCTGGTTCCAAAACCGC (SEQ ID NO:51) K I W F Q N R (SEQ ID NO:52)
5	
HoxD4	CTGGAAAAGGAATTCATTTAACAGGTATCTGACCAGGCGCCGT L E K E F H F N R Y L T R R R CGGATTGAAATCGCTCACACCCTGTGTCTGAGGCCAGATC R I E I A H T L C L S E R Q I AAGATCTGGTTCAAAACAAA (SEQ ID NO:53) K I W F Q N K (SEQ ID NO:54)
10	
15	

Cell differentiated in the presence of RA or FK also were evaluated by immunofluorescent staining performed as described elsewhere (Gage *et al.*, *Proc. Natl. Acad. Sci USA* 92:11879-1188 (1995)). Briefly, after fixation with 4% paraformaldehyde in PBS, cells were incubated with primary antibodies overnight at 4°C. After removing the primary antibodies, the cells were incubated overnight at 4°C with secondary antibodies (Jackson Immunoresearch) conjugated to fluorescein isothiocyanate, cyanin-3, or cyanin-5. Primary antibody concentrations were as follows: mouse anti-MAP2ab (monoclonal, Sigma) at 1:500; mouse anti-TH (monoclonal, Boehringer Mannheim) at 1:500; rabbit anti-TH (polyclonal, Eugenetech) at 1:500; and mouse anti-AADC (monoclonal, Sigma) at 1:500. MAP2ab (microtubule-associated protein 2) is a major component of the neuronal cytoskeleton. Labeled cells were visualized using a Bio-Rad MRC1000 confocal

scanning laser microscope and color images were generated using Adobe Photoshop (Adobe System). The total cell numbers were scored using nuclear counterstaining with 4', 6-diamidino-2-phenylindole (DAPI, Sigma). The relative proportions of each cell phenotype were determined by systematic sampling of 40x fields across the
5 length and breadth of each well.

Only a small proportion of the MAP2ab-immunoreactive neurons was double labeled for TH (0.9 +/- 0.3% in the presence of RA and 1.5 +/- 0.4% in the presence of FK). Nearly all cells were immunoreactive for AADC, but none contained detectable DBH. Consistent with the immunofluorescent data, RT-PCR revealed an
10 early upregulation of TH and AADC (at 6 days) in the absence of detectable DBH (Figure 1) or Phox2a mRNA. DBH and Phox2a are specifically expressed in adrenergic neurons. Withdrawal of FGF-2 and treatment with FK also induced a rapid upregulation of Nurr1 mRNA expression (Figure 1). Although RA treatment also stimulated TH expression at both the polypeptide and RNA levels, the coordinated
15 upregulation of Nurr1 and AADC seen with FK was absent. In fact, RA had an inhibitory effect on AADC and Ptx3 mRNA expression (Figure 1), indicating that RA and FK have overlapping yet clearly distinct effects on the signaling cascades leading to a dopaminergic phenotype.

In addition, GFR α -1, a GPI-linked GDNF binding polypeptide, was
20 constitutively expressed under both proliferating and differentiating conditions (Figure 1), and the receptor tyrosine kinase c-Ret, another component of the GDNF receptor, was upregulated in response to FK. Taken together, this RT-PCR data indicates that FK activates a broad transcriptional response consistent with dopaminergic rather than adrenergic or noradrenergic differentiation.

25

Example 2 - FGF-8 does not increase TH expression
when applied during differentiation

FGFR1, FGFR2, and FGFR3 expression was observed in AHPs, indicating that AHPs may be competent to respond to FGF-8. Since the high concentration of

5 FGF-2 used to propagate AHPs (20 ng/ml) can activate all three FGF receptors (*Ormitz et al., J. Biol. Chem.* 271:15292-15297 (1996)), the effects of exogenously applied FGF-8 might be masked in proliferating cells. Indeed, FGF-8 did not show any obvious effect on TH expression in the presence of FGF-2. FGFR3 expression, however, did increase following FGF-2 withdrawal. Thus, FGF-8 could potentially

10 exhibit a measurable effect following FGF-2 withdrawal during the subsequent differentiation. Interestingly, FGF-8 had little effect on TH, Nurr1, or Ptx3 expression after 4 days, either in the absence or presence of FK. These results indicate that FGFR3 signaling is not important during the terminal stages of differentiation, but may instead be critical in promoting a dopaminergic competence during the early

15 proliferative expansion of precursors. In this case, the high concentrations of FGF-2 used to maintain proliferative cultures could substitute for FGF-8 in promoting dopaminergic competence for AHPs.

Example 3 - Forced expression of Shh-N, Nurr1, Nurr1a, and Ptx3

20 1. *Cloning of Shh-N, Nurr1, Nurr1a, and Ptx3*

cDNAs containing the full open reading frames of rat Shh-N, Nurr1, Nurr1a, and Ptx3 were cloned by RT-PCR from polyA RNA derived from Fischer 344 rat embryonic brain at embryonic day 13.5. Total RNA was isolated as described by Okayama *et al.* (*Methods Enzymol.* 154:3-28 (1987)). PolyA RNA was purified using

25 Oligo(dT)-cellulose (Pharmacia) column chromatography. First strand cDNA synthesis was carried out using 50 ng of polyA RNA, Superscript II reverse transcriptase (GIBCO BRL), and oligo dT primer followed by RNase H treatment. The resulting products were PCR amplified using Pwo polymerase (Boehringer Mannheim) and the following primers:

S' primer for Shh-N:	5'-CGTACCAAGCTCGCGCACAGAC-3' (SEQ ID NO:55)
3' primer for Shh-N:	5'-GGAATCAGCCGTCAGATTG-3' (SEQ ID NO:56)
S' primer for Nurr1 and Nurr1a:	5'-TCGGCTGAAGCCATGCCTTG-3' (SEQ ID NO:57)
3' primer for Nurr1 and Nurr1a:	5'-GACGTGCATGGGAGAAAGTC-3' (SEQ ID NO:58)
5 5' primer for Ptx3:	5'-CATGGAGTTGGGCTGCTTGG-3' (SEQ ID NO:59)
3' primer for Ptx3:	5'-TCACACCGGCCGTTCCACG-3' (SEQ ID NO:60)

The PCR products were subcloned into TOPO-TA cloning vector (Invitrogen) as described in the manufacturer's instructions. DNA sequencing confirmed that the 10 clones contained the full length sequences for the rat Shh-N, Nurr1, Nurr1a, and Ptx3 coding regions.

2. Retroviral Cloning and Transduction

The NIT retroviral vector was constructed from LINX (Hoshimaru *et al.*, *Proc. 15 Natl. Acad. Sci. USA* 93:1518-1523 (1996)) by swapping positions of the tetracycline-controlled transactivator (tTA) and neomycin resistance genes (Figure 2). The neomycin resistance gene was replaced by E-GFP coding sequence to form GIT. The transgenes within the NIT and GIT vectors are under the control of the CMV promoter fused to the tetracycline operator. RVEN3 was constructed from pCLMFG 20 (provided by Nikunj Somia) by deleting the ATG codon between the splice acceptor site and multiple linker sites. The transgenes within the RVEN3 vector are under the control of the retrovirus LTR promoter. pCLMFG was derived from MFG and contains a hCMV immediate early promoter in place of the 5' U3 region in pCLMFG (Naviaux *et al.*, 1996). Fragments containing Shh-N, Nurr1, Nurr1a, Ptx3, and E-GFP 25 (Clontech) were cloned into NIT, GIT, or RVEN3 vector and the DNA transfected into producer cells (293gag pol; provided from Nikunj Somia). To increase the degree of infection of the virus, viral preparations were pseudotyped with a vesicular stomatitis virus (VSV-G) coat protein by cotransfected the producer cells with pMD.G. Viral supernatants were concentrated by centrifugation (Burns *et al.*, 1993) 30 and exposed to AHPs suspensions for 30 minutes followed by plating to polyornithine/laminin-coated dishes.

To generate stable expressing cells, HC7 cells were treated with a high concentration of NIT-based viruses (multiplicity of infection = about 1) and cultured in the presence of 100 µg/ml G418. To improve cell survival during selection, medium was supplemented with conditioned medium from high density HC7 cell culture.

5

3. Shh-N in proliferating cells potentiates TH expression during differentiation

The role of Shh in AHPs was examined using a tetracycline suppressible Shh-N-expressing retrovirus (NIT-Shh-N; Figure 2). Shh-N is a recombinant amino-terminal autoproteolytic fragment of Shh. When NIT-Shh-N was introduced into AHPs and a bulk drug resistant population of stable Shh-N-expressing cells were isolated, a high level of Shh-N mRNA expression under control of a tetracycline repressible promoter was observed.

To examine the effects of Shh-N expressed only during the terminal stages of differentiation, AHPs (C31) were infected with a high titer of Shh-N expressing retrovirus immediately before differentiation. Interestingly, Shh-N expression resulted in depressed TH expression after 6 days of differentiation in the presence of RA (Figure 3, column a). Similar TH repression was observed in the stable Shh-N-expressing cells (HC7-Shh-N) when tetracycline was used to suppress Shh-N-expression until just before differentiation in the presence of RA (Figure 3, column b). In contrast, constitutive expression of Shh-N in proliferating cells (HC7-Shh-N) for 10 days prior to differentiation resulted in a 1.8-fold and 3.7-fold increase in TH expression after 6 days of differentiation in the presence of FK or RA, respectively (Figure 3, columns c and d). Interestingly, constitutive Shh expression had no effect on TH expression during proliferation. In addition, expression of DBH was not observed in any of these conditions. These results indicate that Shh can play an important role in the early patterning of proliferative precursors but has an inhibitory effect on TH expression when expressed during the terminal stages of differentiation.

4. *Nurr1 induces TH expression*

The roles of Nurr1 and Nurr1a (a COOH-terminal truncation of Nurr1 formed by alternative splicing) were examined. Nucleic acid encoding these polypeptides were subcloned into the retrovirus expression vectors NIT or RVEN3, and the resulting vectors used to transduce AHPs cultures (Figure 2). Nurr1-expressing retrovirus (NIT-Nurr1) was introduced into AHPs and a bulk population of stable Nurr1-expressing cells (HC7-Nurr1) was isolated by G418 selection. Nurr1 mRNA was expressed at 25-fold higher levels than in non-transduced controls, and TH expression was elevated 60-fold in proliferating cells (Figure 4). In addition, the 60-fold increase in TH expression was maintained during the rapid induction of TH observed in response to FGF-2 withdrawal and FK treatment. For example, at 24 hours following FGF-2 withdrawal, both control and Nurr1-expressing cells exhibited a 2-fold increase in TH expression but the absolute level of TH expression remained 60-fold higher in Nurr1-expressing cells compared to non-infected controls (Figure 5).

By six days, this differential TH response was maintained but to a lesser extent. TH expression was 14-fold or 7-fold higher in Nurr1-expressing cells than in non-infected controls in the presence of RA and FK, respectively (Figure 6). Interestingly, Nurr1 had little effect on the proliferation of cells, and expression levels of Ptx3, AADC, c-Ret, and GFR- α 1 were not affected. In other words, forced expression of Nurr1 did not alter the proliferative state of the cells. Similar results were obtained using the stem cell-derived C31 line.

Overexpression of Nurr1a, the COOH-terminal truncated form of Nurr1, had little effect on TH expression, either in proliferating or differentiating cells (Figures 4-6). These results indicate that the alternatively spliced form of Nurr1 does not function to activate TH expression. In addition, the forced expression of Nurr1a did not negatively regulate the Nurr1 activation of TH expression in either control cells expressing endogenous levels of Nurr1 or HC7-Nurr1 overexpressing cells.

Forced expression of Nurr1 alone was not sufficient to induce TH expression in fibroblast and kidney cell lines. Specifically, the full length Nurr1 was introduced into the rat primary skin fibroblast cell line (FF12) and the human kidney cell line

(293 cells) using the RVEN3 retroviral vector. In both cases, TH expression was not detected.

In addition, TH polypeptide expression was examined by immunofluorescent staining. TH immunoreactivity was detected ubiquitously in HC7-Nurr1 cells in both 5 proliferating and differentiating conditions. In addition, TH polypeptide was detected at low levels in all Nurr1-expressing cells; however, following differentiation in either RA or FK, TH expression was markedly upregulated in roughly 1% of the Map2ab-positive neurons. These strongly TH immunoreactive neurons were generated at similar numbers even in the absence of forced expression of Nurr1. These results 10 indicate that Nurr1 overexpression can activate TH expression in undifferentiated cells yet not to the extent achieved during a fully activated neuronal differentiation program.

The Nurr1-induced expression of TH resulted in the synthesis of active TH enzyme. Cell lysates were analyzed for DOPA, dopamine, and DOPAC by reverse- 15 phase high-performance liquid chromatography (HPLC). Briefly, cells were collected after 6 days of differentiation in N2 medium supplemented with FK or after 2 days of proliferation in the presence of FGF-2, and suspended in lysis buffer containing 100 mM perchloric acids, 50 mM EDTA pH 8.0, and 50 mM sodium bisulfate. Samples were freeze/thawed twice and supernatants were collected by centrifugation at 14,000 20 rpm for 5 minutes. These samples were assayed for DOPA, dopamine, and DOPAC using reverse phase HPLC with electrochemical detection as described elsewhere (Melega *et al.*, *Brain Res.* 543:271-276 (1991)).

DOPA and DOPAC were detected in HC7-Nurr1 cell lysates after 6 days of differentiation in the presence of FK (Figure 7). The total amounts of DOPA and 25 DOPAC were 49.2 ng/mg protein. Control HC7 cells did not produce detectable amounts of DOPA or DOPAC. These results indicate that the TH expression detected in Nurr1-expressing cells led to the production of functional TH enzyme. In addition, since DOPA is rapidly converted to dopamine by AADC and is subsequently converted to DOPAC by MAO and aldehyde dehydrogenase, the presence of DOPAC 30 indicates that both TH and AADC are functional.

5. *Ptx3 had little effect on proliferation and differentiation*

The role of Ptx3 during proliferation and differentiation was examined. Nucleic acid encoding this polypeptide was subcloned into the retrovirus expression vector RVEN3, and the resulting Ptx3-containing expression vector was used to transduce Nurr1-stable cells (HC7-Nurr1). Ptx3 mRNA was easily detected in these cells; however, the expression of TH, AADC, c-Ret, GFR α -1, and D2R was not affected (Figure 4 and 6).

Since Ptx3-expressing cells may require Nurr1 for survival, HC7 cells were treated with a GFP-tagged retroviral vector (GIT) expressing Ptx3 so that individual Ptx3-expressing cells can be followed in a population of cells that express very low levels of endogenous Nurr1 (Figure 1). No differences in proliferation or differentiation relative to GFP expression alone were observed, indicating that Ptx3 overexpression does not itself induce apoptosis in cells expressing low levels of Nurr1.

Example 4 - Nurr1 polypeptide binds directly to a Nurr1 binding element within the TH promoter

Six kilobases of sequence upstream of the TH start site were scanned for putative Nurr1 binding sites. DNase I footprint analysis was performed using recombinant Nurr1 polypeptide and a DNA fragment corresponding to the rat TH promoter positions -962 to -729. Briefly, labeled TH DNA fragments (-962 to -729) used for footprint analysis were generated by PCR using a plasmid containing 4.5 kb of the rat TH promoter as template (provided by Chikaraishi) and two oligo primers, one of which was 32 P end- labeled. The resulting PCR products were gel purified using 6% polyacrylamide gel. Nurr1 polypeptide was produced in a TNT coupled reticulocyte lysate system (Promega). DNase I footprint reactions were carried out in 25 mM HEPES-KOH pH 7.5, 80 mM potassium chloride, 1 mM magnesium chloride, 20% glycerol, 0.05% NP-40, and 5% polyvinyl alcohol with a fixed amount of reticulocyte lysate. Dose response experiments were performed using different ratios

of unreacted and reacted reticulocyte lysate. For example, the end-labeled fragments were incubated with 0, 10, 5, and 1 μ l of reticulocyte lysate reaction mixture of Nurr1 polypeptide combined with 10, 0, 5, and 9 μ l of unreacted reticulocyte lysate, respectively. DNase I digestions were carried out with 0.1 unit of enzyme at room 5 temperature for one minute. DNA sequencing was performed by the same labeled primer using Sequenase kit (Amersham).

Titration of Nurr1 polypeptide gave progressive protection of nucleotides spanning positions -873 to -866 (5'-AAAGGTCA-3'). In contrast, Nurrla exhibited only weak protection at the same site. Taken together, these data indicate that Nurr1 10 activates TH expression by binding directly to a midbrain dopaminergic neuron-specific enhancer element of the TH promoter.

To determine whether Nurr1 acts in a 9cRA-dependent or 9cRA-independent manner to induce TH expression, the effects of 9cRA on TH expression were examined. HC7-Nurrl cells were exposed to FGF-2 withdrawal and treatment with 15 9cRA for 24 hours. FGF-2 withdrawal increased TH expression 2-fold. Addition of all-trans RA (RA) had no additional effect on TH expression at this very early time in differentiation. In contrast, TH expression decreased in the presence of 9cRA in a dose-dependent manner (Figure 5). These results indicate that the activating effects of Nurr1 on TH expression are not dependent on 9cRA.

20

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of 25 the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

WHAT IS CLAIMED IS:

1. A cell comprising exogenous nucleic acid, said exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, wherein said amino acid sequence is expressed and induces tyrosine hydroxylase expression within said cell.
2. The cell of claim 1, wherein said cell is a mammalian cell.
- 10 3. The cell of claim 2, wherein said cell is derived from an adult mammal.
4. The cell of claim 1, wherein said cell is a neural progenitor cell.
- 15 5. The cell of claim 4, wherein said cell is a midbrain neural progenitor cell.
6. The cell of claim 1, wherein said cell is a neural cell.
- 20 7. The cell of claim 1, wherein said cell expresses at least one polypeptide selected from the group consisting of Otx1, En1, and Ptx3.
8. The cell of claim 1, wherein said tyrosine hydroxylase expression promotes DOPA production in said cell.
- 25 9. The cell of claim 1, wherein said tyrosine hydroxylase expression promotes dopamine production in said cell.
10. The cell of claim 1, wherein said tyrosine hydroxylase expression promotes norepinephrine and epinephrine production in said cell.
- 30 11. The cell of claim 1, wherein said nucleic acid sequence encodes Nurr1.

12. A method for inducing tyrosine hydroxylase expression in a cell, said method comprising providing said cell with exogenous nucleic acid, said exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, wherein said amino acid sequence is expressed and induces tyrosine hydroxylase expression within said cell.
13. The method of claim 12, wherein said cell is provided with said exogenous nucleic acid *in vivo*.
14. The method of claim 12, wherein said cell is provided with said exogenous nucleic acid *ex vivo*.
15. The method of claim 12, wherein said cell is a mammalian cell.
16. The method of claim 15, wherein said cell is derived from an adult mammal.
17. The method of claim 12, wherein said cell is a neural progenitor cell.
- 20 18. The method of claim 17, wherein said cell is a midbrain neural progenitor cell.
19. The method of claim 12, wherein said cell is a neural cell.
20. The method of claim 12, wherein said cell expresses at least one polypeptide selected from the group consisting of Otx1, En1, and Ptx3.
- 25 21. The method of claim 12, wherein said tyrosine hydroxylase expression promotes DOPA production in said cell.
- 30 22. The method of claim 12, wherein said tyrosine hydroxylase expression

promotes dopamine production in said cell.

23. The method of claim 12, wherein said tyrosine hydroxylase expression promotes norepinephrine production in said cell.

5

24. The method of claim 12, wherein said nucleic acid sequence encodes Nurr1.

25. A method for treating a catecholamine-related deficiency in a mammal, said method comprising administering an effective amount of cells to said mammal,

10 wherein said cells contain exogenous nucleic acid, said exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, and wherein said amino acid sequence is expressed and induces tyrosine hydroxylase expression in said cells thereby causing said cells to produce a catecholamine.

15

26. The method of claim 25, wherein said catecholamine-related deficiency comprises a dopamine deficiency.

27. The method of claim 26, wherein said catecholamine is dopamine.

20

28. The method of claim 25, wherein said catecholamine-related deficiency comprises a norepinephrine deficiency.

29. The method of claim 28, wherein said cells express dopamine β -hydroxylase,

25 and wherein said catecholamine is norepinephrine.

30. The method of claim 25, wherein said catecholamine-related deficiency is associated with a disease state selected from the group consisting of Parkinson's disease, manic depression, and schizophrenia.

31. The method of claim 25, wherein said mammal is a human.

32. The method of claim 25, wherein said cells are mammalian cells.

33. The method of claim 32, wherein said cells are derived from an adult mammal.
34. The method of claim 25, wherein said cells are neural progenitor cells.
5
35. The method of claim 34, wherein said cells are midbrain neural progenitor cells.
36. The method of claim 25, wherein said cells are neural cells.
- 10 37. The method of claim 25, wherein said cells express at least one polypeptide selected from the group consisting of Otx1, En1, and Ptx3.
38. The method of claim 25, wherein said administration is an intracranial administration.
15
39. The method of claim 38, wherein said intracranial administration places said cells within the midbrain region of said mammal.
40. The method of claim 25, wherein said nucleic acid sequence encodes Nurr1.
20
41. A method for treating a catecholamine-related deficiency in a mammal, said method comprising administering an exogenous nucleic acid to a cell of said mammal, said exogenous nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2, wherein
25 said amino acid sequence is expressed and induces tyrosine hydroxylase expression in said cell thereby causing said cell to produce a catecholamine.
42. The method of claim 41, wherein said catecholamine-related deficiency comprises a dopamine deficiency.
30
43. The method of claim 42, wherein said catecholamine is dopamine.
44. The method of claim 41, wherein said catecholamine-related deficiency comprises a norepinephrine deficiency.

45. The method of claim 44, wherein said cell expresses dopamine β -hydroxylase, and wherein said catecholamine is norepinephrine.
- 5 46. The method of claim 41, wherein said catecholamine-related deficiency is associated with a disease state selected from the group consisting of Parkinson's disease, manic depression, and schizophrenia.
- 10 47. The method of claim 41, wherein said mammal is a human.
48. The method of claim 41, wherein said cell is a mammalian cell.
49. The method of claim 48, wherein said cell is derived from an adult mammal.
- 15 50. The method of claim 41, wherein said cell is a neural progenitor cell.
51. The method of claim 50, wherein said cell is a midbrain neural progenitor cell.
52. The method of claim 41, wherein said cell is a neural cell.
- 20 53. The method of claim 41, wherein said cell expresses at least one polypeptide selected from the group consisting of Otx1, En1, and Ptx3.
54. The method of claim 41, wherein said nucleic acid sequence encodes Nurr1.
- 25 55. A method for identifying a tyrosine hydroxylase-related deficiency in a mammal, said method comprising detecting a mutation in a Nurr1-binding element in a tyrosine hydroxylase promoter, wherein said Nurr1-binding element promotes tyrosine hydroxylase expression when bound by Nurr1 polypeptide, and wherein the presence of said mutation is indicative of a tyrosine hydroxylase-related deficiency.
- 30 56. The method of claim 55, wherein said tyrosine hydroxylase-related deficiency is associated with a disease state selected from the group consisting of Parkinson's disease,

manic depression, and schizophrenia.

57. The method of claim 55, wherein said mammal is a human.

5 58. The method of claim 55, wherein said mutation comprises at least one nucleotide change in said Nurr1-binding element.

59. The method of claim 55, wherein said Nurr1-binding element comprises a sequence as set forth in 5'-AAAGGTCA-3'.

10

60. A kit for inducing tyrosine hydroxylase expression in a cell, said kit comprising a proliferation factor and nucleic acid, wherein said proliferation factor promotes proliferation of said cell, and wherein said nucleic acid is exogenous to said cell and comprises a nucleic acid sequence that encodes an amino acid sequence at least 65 percent identical to the sequence set forth in SEQ ID NO:2.

15 61. The kit of claim 60, wherein said cell is a neural progenitor cell.

62. The kit of claim 60, wherein said cell is neural cell.

20

63. The kit of claim 60, wherein said proliferation factor comprises FGF-2.

64. The kit of claim 60, wherein said nucleic acid sequence encodes Nurr1.

25 65. A cell comprising exogenous nucleic acid, wherein said exogenous nucleic acid encodes an amino acid sequence, and hybridizes to the sequence set forth in SEQ ID NO:1 under hybridization conditions, and wherein said amino acid sequence is expressed and induces tyrosine hydroxylase expression within said cell.

1/8

FIG. 1

2/8

FIG. 2

3/8

FIG. 3B

FIG. 3A

4/8

FIG. 4B

FIG. 4C

FIG. 4A

5/8

FIG. 5

6/8

FIG. 6E

FIG. 6G

FIG. 6D

FIG. 6F

8/8

FIG. 7A

FIG. 7B

FIG. 7C

SEQUENCE LISTING

<110> The Salk Institute for Biological Studies

<120> REGULATION OF TYROSINE HYDROXYLASE
EXPRESSION

<130> SALK2710WO

<140> PCT/US00/-----
<141> 2000-03-21<150> 09/277,078
<151> 1999-03-26

<160> 60

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1797
<212> DNA
<213> Rattus norvegicus<220>
<221> CDS
<222> (1)...(900)

<400> 1		
atg cct tgt gtt cag gcg cag tat ggg tcc tcg cct caa gga gcc agc		48
Met Pro Cys Val Gln Ala Gln Tyr Gly Ser Ser Pro Gln Gly Ala Ser		
1 5 10 15		
ccc gct tct cag agc tac agt tac cac tct tcg gga gaa tac agc tcc		96
Pro Ala Ser Gln Ser Tyr Ser Tyr His Ser Ser Gly Glu Tyr Ser Ser		
20 25 30		
gat ttc tta act cca gag ttt gtc aag ttt agc atg gac ctc acc aac		144
Asp Phe Leu Thr Pro Glu Phe Val Lys Phe Ser Met Asp Leu Thr Asn		
35 40 45		
act gaa att act gcc acc act tct ctc ccc agc ttc agt acc ttt atg		192
Thr Glu Ile Thr Ala Thr Ser Leu Pro Ser Phe Ser Thr Phe Met		
50 55 60		
gac aac tac agc aca ggc tac gac gtc aag cca cct tgc ttg tac caa		240
Asp Asn Tyr Ser Thr Gly Tyr Asp Val Lys Pro Pro Cys Leu Tyr Gln		
65 70 75 80		
atg ccc ctg tcc gga cag cag tcc tcc att aag gta gaa gac att cag		288
Met Pro Leu Ser Gly Gln Gln Ser Ser Ile Lys Val Glu Asp Ile Gln		
85 90 95		
atg cac aac tac cag caa cac agc cac ctg ccc cct cag tcc gag gag		336
Met His Asn Tyr Gln Gln His Ser His Leu Pro Pro Gln Ser Glu Glu		
100 105 110		
atg atg cca cac agc ggg tcg gtt tac tac aag ccc tct tcg ccc ccg		384

Met Met Pro His Ser Gly Ser Val Tyr Tyr Lys Pro Ser Ser Pro Pro			
115	120	125	
aca ccc agc acc ccg ggc ttc cag gtg cag cat agc ccg atg tgg gac			432
Thr Pro Ser Thr Pro Gly Phe Gln Val Gln His Ser Pro Met Trp Asp			
130	135	140	
gat ccg ggc tcc ctt cac aac ttc cac cag aac tac gtg gcc act acg			480
Asp Pro Gly Ser Leu His Asn Phe His Gln Asn Tyr Val Ala Thr Thr			
145	150	155	160
cat atg atc gag cag agg aag aca cct gtc tcc cgc ctt tca ctc ttc			528
His Met Ile Glu Gln Arg Lys Thr Pro Val Ser Arg Leu Ser Leu Phe			
165	170	175	
tcc ttt aag cag tcg ccc ccg ggc act cct gtg tct agc tgc cag atg			576
Ser Phe Lys Gln Ser Pro Pro Gly Thr Pro Val Ser Ser Cys Gln Met			
180	185	190	
cgc ttt gac ggg cct ctg cac gtc ccc atg aac ccg gag ccc gcg ggc			624
Arg Phe Asp Gly Pro Leu His Val Pro Met Asn Pro Glu Pro Ala Gly			
195	200	205	
agc cac cac gta ctg gat ggg cag acc ttc gcc gtg ccc aat ccc att			672
Ser His His Val Leu Asp Gly Gln Thr Phe Ala Val Pro Asn Pro Ile			
210	215	220	
cgc aag ccg gca tcc atg ggc ttc ccg ggc ctg cag atc ggc cac gcg			720
Arg Lys Pro Ala Ser Met Gly Phe Pro Gly Leu Gln Ile Gly His Ala			
225	230	235	240
tcg cag ttg ctt gac acg cag gtg ccc tcg ccg ccg tcc cgg ggc tct			768
Ser Gln Leu Leu Asp Thr Gln Val Pro Ser Pro Pro Ser Arg Gly Ser			
245	250	255	
ccc tcc aat gag ggt ctg tgc gct gtt tgc ggt gac aac gcg gcc tgt			816
Pro Ser Asn Glu Gly Leu Cys Ala Val Cys Gly Asp Asn Ala Ala Cys			
260	265	270	
cag cat tac ggt gtt cgc act tgt gag ggc tgc aaa ggt ttc ttt aag			864
Gln His Tyr Val Arg Thr Cys Glu Gly Cys Lys Gly Phe Phe Lys			
275	280	285	
cgc acg gtg caa aaa aac gcg aaa tat gtg tgt tta gcaaataaaa			910
Arg Thr Val Gln Lys Asn Ala Lys Tyr Val Cys Leu			
290	295	300	
attgccccagt ggataagcgc cggcgaaatc gttgtcagta ctgtcggtt cagaagtgcc			970
tggctgttgg gatggtaaa gaagtgggtc gcacggacag ttaaaaggc cggagaggtc			1030
gtctaccctc aaaacccgaag agccccacagg atcccccttc cccctcacct cccgtgagtc			1090
tgatcagtgc cctcgatcaga gcccacgtcg actccaatcc ggcaatgacc agccctggact			1150
atccccagggtt ccaggccaaac cctgactatc agatgagtg agatgatact caacatatcc			1210
agcaggttcta cgatccctg actggctcta tggagatcat cagagggtgg gcagagaaga			1270
ttccctggctt tgctgacctg cccaaagccg atcaggacatc gctttttgaa tca gctttct			1330
tagaattatt tggttctacgc tttagcataca ggtccaaccc agtggagggt aaactcatct			1390
tttgcaatgg ggtggcttg cacaggttgc aatgcgtgc tggctttggg gaatggatttg			1450
attccatttgt tgaattctcc tccaacttgc agaatatgaa catgcacatt tctgccttct			1510
cctgcattgc tgcctggctt atggtcacag agagacacgg gctcaaggaa cccaaagagag			1570
tggaaagagct aaaaaacaaa attgtaaaatt gtcttaaaga ccatgtgact ttcaataatg			1630

ggggattgaa ccgacccaaac tacctgtcca aactgttggg gaagctcccc aacttcgca	1690
ccctttgcac acaggggctc cagcgatt tctacctgaa attggaagac ttggtaccac	1750
caccagcaat aattgacaaa ctttcctgg acaccttacc tttctaa	1797

<210> 2
<211> 300
<212> PRT
<213> Rattus norvegicus

<400> 2
Met Pro Cys Val Gln Ala Gln Tyr Gly Ser Ser Pro Gln Gly Ala Ser
1 5 10 15
Pro Ala Ser Gln Ser Tyr Ser Tyr His Ser Ser Gly Glu Tyr Ser Ser
20 25 30
Asp Phe Leu Thr Pro Glu Phe Val Lys Phe Ser Met Asp Leu Thr Asn
35 40 45
Thr Glu Ile Thr Ala Thr Thr Ser Leu Pro Ser Phe Ser Thr Phe Met
50 55 60
Asp Asn Tyr Ser Thr Gly Tyr Asp Val Lys Pro Pro Cys Leu Tyr Gln
65 70 75 80
Met Pro Leu Ser Gly Gln Gln Ser Ser Ile Lys Val Glu Asp Ile Gln
85 90 95
Met His Asn Tyr Gln Gln His Ser His Leu Pro Pro Gln Ser Glu Glu
100 105 110
Met Met Pro His Ser Gly Ser Val Tyr Tyr Lys Pro Ser Ser Pro Pro
115 120 125
Thr Pro Ser Thr Pro Gly Phe Gln Val Gln His Ser Pro Met Trp Asp
130 135 140
Asp Pro Gly Ser Leu His Asn Phe His Gln Asn Tyr Val Ala Thr Thr
145 150 155 160
His Met Ile Glu Gln Arg Lys Thr Pro Val Ser Arg Leu Ser Leu Phe
165 170 175
Ser Phe Lys Gln Ser Pro Pro Gly Thr Pro Val Ser Ser Cys Gln Met
180 185 190
Arg Phe Asp Gly Pro Leu His Val Pro Met Asn Pro Glu Pro Ala Gly
195 200 205
Ser His His Val Leu Asp Gly Gln Thr Phe Ala Val Pro Asn Pro Ile
210 215 220
Arg Lys Pro Ala Ser Met Gly Phe Pro Gly Leu Gln Ile Gly His Ala
225 230 235 240
Ser Gln Leu Leu Asp Thr Gln Val Pro Ser Pro Pro Ser Arg Gly Ser
245 250 255
Pro Ser Asn Glu Gly Leu Cys Ala Val Cys Gly Asp Asn Ala Ala Cys
260 265 270
Gln His Tyr Gly Val Arg Thr Cys Glu Gly Cys Lys Gly Phe Phe Lys
275 280 285
Arg Thr Val Gln Lys Asn Ala Lys Tyr Val Cys Leu
290 295 300

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 3
accacagtcc atgccatcac

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 4
tccaccaccc tgttgtgtta

20

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 5
cctccttgta tcgggctgtta a

21

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 6
ctgagcttgt ccttggcgta a

21

<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 7
cctactggct gctcgacta a

21

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 8
gcgttaccagg gactcaaact c

21

<210> 9
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 9

gtgaccagaa agggcagatc c

21

<210> 10

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 10

caccggcttc ttctggtag t

21

<210> 11

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 11

gcagacactca cagacgttgc t

21

<210> 12

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 12

aggctggttt ctcggatctg g

21

<210> 13

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 13

tggcgctcaa gatcgacctc a

21

<210> 14

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide for PCR

<400> 14
cgtagggtg ggattagcgg t 21

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 15
taaaaggccg gagaggtcgt c 21

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 16
ctctcttggg ttcccttgagc c 21

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 17
acctttggac tgcttctggg 20

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 18
agtctgttagcc cctgaagtgt t 21

<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 19
gccaccctgc tcatctgga 19

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 20
ttccggccta aacgcttctc 20

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 21
catgtgtgag caagaagggtt gc 22

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 22
aagtcgagga cactggctat agg 23

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 23
ttctggtggc ccttgcttcc t 21

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 24
tacttgctgc ggtccctgtc a 21

<210> 25
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid sequence representing a degenerate primer for PCR

<400> 25
Met Gly Ile Met Gly Ile Gly Ala Arg Met Gly Ile Ala Cys Ile Ala
1 5 10 15
Cys Ile Thr Thr Tyr Ala Cys
20

<210> 26
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 26
Ile Cys Lys Ile Cys Lys Arg Thr Thr Ile Asx Trp Arg Ala Ala Cys
1 5 10 15
Cys Ala Ile Ala Cys Tyr Thr Gly
20

<210> 27
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 27
Ala Ala Arg Met Gly Ile Cys Cys Ile Met Gly Ile Ala Cys Ile Gly
1 5 10 15
Cys Ile Thr Thr Tyr Ala Cys
20

<210> 28
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 28
Cys Lys Tyr Thr Thr Arg Thr Thr Tyr Thr Gly Arg Ala Ala Cys Cys
1 5 10 15
Ala Asp Ala Thr Tyr Thr Thr
20

<210> 29
<211> 23
<212> PRT
<213> Artificial Sequence

<220>

<223> Amino Acid representing degenerate primer for PCR

<400> 29
Tyr Thr Ile Gly Ala Arg Ala Ala Arg Gly Ala Arg Thr Thr Tyr Cys
1 5 10 15
Ala Tyr Thr Thr Tyr Ala Ala
20

<210> 30
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 30
Thr Thr Cys Ala Thr Ile Cys Lys Ile Cys Lys Arg Thr Thr Tyr Thr
1 5 10 15
Gly Arg Ala Ala Cys Cys Ala
20 ;

<210> 31
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 31
Met Gly Ile Met Gly Ile Trp Ser Ile Met Gly Ile Ala Cys Ile Ala
1 5 10 15
Cys Ile Thr Thr Tyr Ala Cys
20

<210> 32
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino Acid representing degenerate primer for PCR

<400> 32
Ile Cys Lys Ile Cys Lys Arg Thr Thr Ile Asx Trp Arg Ala Ala Cys
1 5 10 15
Cys Ala Ile Ala Cys Tyr Thr Gly
20

<210> 33
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 33

gcatcctgaa cctgtgtgcc a 21
<210> 34
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 34
gcagccatcct tgagtgggt c 21
<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 35
gatttgctga tgtccgcccga g 21
<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 36
aatcagtcggc gagtagggcca g 21
<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 37
agacagacccc aggcttcgct a 21
<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<400> 38
tttcccgctga tgcaatgggc g 21
<210> 39
<211> 20

```

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<221> misc_feature
<222> (0)...(0)
<223> n = A, T, G, or C

<221> misc_feature
<222> (0)...(0)
<223> r = G or A

<400> 39
tcngagatgg agrtgatgaa                                20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide for PCR

<221> misc_feature
<222> (0)...(0)
<223> h = A, C, or T; not G

<221> misc_feature
<222> (0)...(0)
<223> d = A, G, or T; not C

<400> 40
ccaaagtchc cdatcttcat                                20

<210> 41
<211> 157
<212> DNA
<213> Rattus norvegicus

<220>
<221> CDS
<222> (1)...(157)

<400> 41
cg1g5 g9 a13 g17 t21 a25 c29 g33 t37 g41 c45 g49 c53 g57 g61 g65 g69 g73 g77 g81 g85 g89 g93 g97 g101 g105 g109 g113 g117 g121 g125 g129 g133 g137 g141 g145 g149 g153 g157 g161 g165 g169 g173 g177 g181 g185 g189 g193 g197 g201 g205 g209 g213 g217 g221 g225 g229 g233 g237 g241 g245 g249 g253 g257 g261 g265 g269 g273 g277 g281 g285 g289 g293 g297 g301 g305 g309 g313 g317 g321 g325 g329 g333 g337 g341 g345 g349 g353 g357 g361 g365 g369 g373 g377 g381 g385 g389 g393 g397 g401 g405 g409 g413 g417 g421 g425 g429 g433 g437 g441 g445 g449 g453 g457 g461 g465 g469 g473 g477 g481 g485 g489 g493 g497 g501 g505 g509 g513 g517 g521 g525 g529 g533 g537 g541 g545 g549 g553 g557 g561 g565 g569 g573 g577 g581 g585 g589 g593 g597 g601 g605 g609 g613 g617 g621 g625 g629 g633 g637 g641 g645 g649 g653 g657 g661 g665 g669 g673 g677 g681 g685 g689 g693 g697 g701 g705 g709 g713 g717 g721 g725 g729 g733 g737 g741 g745 g749 g753 g757 g761 g765 g769 g773 g777 g781 g785 g789 g793 g797 g801 g805 g809 g813 g817 g821 g825 g829 g833 g837 g841 g845 g849 g853 g857 g861 g865 g869 g873 g877 g881 g885 g889 g893 g897 g901 g905 g909 g913 g917 g921 g925 g929 g933 g937 g941 g945 g949 g953 g957 g961 g965 g969 g973 g977 g981 g985 g989 g993 g997 g1001 g1005 g1009 g1013 g1017 g1021 g1025 g1029 g1033 g1037 g1041 g1045 g1049 g1053 g1057 g1061 g1065 g1069 g1073 g1077 g1081 g1085 g1089 g1093 g1097 g1101 g1105 g1109 g1113 g1117 g1121 g1125 g1129 g1133 g1137 g1141 g1145 g1149 g1153 g1157 g1161 g1165 g1169 g1173 g1177 g1181 g1185 g1189 g1193 g1197 g1201 g1205 g1209 g1213 g1217 g1221 g1225 g1229 g1233 g1237 g1241 g1245 g1249 g1253 g1257 g1261 g1265 g1269 g1273 g1277 g1281 g1285 g1289 g1293 g1297 g1301 g1305 g1309 g1313 g1317 g1321 g1325 g1329 g1333 g1337 g1341 g1345 g1349 g1353 g1357 g1361 g1365 g1369 g1373 g1377 g1381 g1385 g1389 g1393 g1397 g1401 g1405 g1409 g1413 g1417 g1421 g1425 g1429 g1433 g1437 g1441 g1445 g1449 g1453 g1457 g1461 g1465 g1469 g1473 g1477 g1481 g1485 g1489 g1493 g1497 g1501 g1505 g1509 g1513 g1517 g1521 g1525 g1529 g1533 g1537 g1541 g1545 g1549 g1553 g1557 g1561 g1565 g1569 g1573 g1577 g1581 g1585 g1589 g1593 g1597 g1601 g1605 g1609 g1613 g1617 g1621 g1625 g1629 g1633 g1637 g1641 g1645 g1649 g1653 g1657 g1661 g1665 g1669 g1673 g1677 g1681 g1685 g1689 g1693 g1697 g1701 g1705 g1709 g1713 g1717 g1721 g1725 g1729 g1733 g1737 g1741 g1745 g1749 g1753 g1757 g1761 g1765 g1769 g1773 g1777 g1781 g1785 g1789 g1793 g1797 g1801 g1805 g1809 g1813 g1817 g1821 g1825 g1829 g1833 g1837 g1841 g1845 g1849 g1853 g1857 g1861 g1865 g1869 g1873 g1877 g1881 g1885 g1889 g1893 g1897 g1901 g1905 g1909 g1913 g1917 g1921 g1925 g1929 g1933 g1937 g1941 g1945 g1949 g1953 g1957 g1961 g1965 g1969 g1973 g1977 g1981 g1985 g1989 g1993 g1997 g2001 g2005 g2009 g2013 g2017 g2021 g2025 g2029 g2033 g2037 g2041 g2045 g2049 g2053 g2057 g2061 g2065 g2069 g2073 g2077 g2081 g2085 g2089 g2093 g2097 g2101 g2105 g2109 g2113 g2117 g2121 g2125 g2129 g2133 g2137 g2141 g2145 g2149 g2153 g2157 g2161 g2165 g2169 g2173 g2177 g2181 g2185 g2189 g2193 g2197 g2201 g2205 g2209 g2213 g2217 g2221 g2225 g2229 g2233 g2237 g2241 g2245 g2249 g2253 g2257 g2261 g2265 g2269 g2273 g2277 g2281 g2285 g2289 g2293 g2297 g2301 g2305 g2309 g2313 g2317 g2321 g2325 g2329 g2333 g2337 g2341 g2345 g2349 g2353 g2357 g2361 g2365 g2369 g2373 g2377 g2381 g2385 g2389 g2393 g2397 g2401 g2405 g2409 g2413 g2417 g2421 g2425 g2429 g2433 g2437 g2441 g2445 g2449 g2453 g2457 g2461 g2465 g2469 g2473 g2477 g2481 g2485 g2489 g2493 g2497 g2501 g2505 g2509 g2513 g2517 g2521 g2525 g2529 g2533 g2537 g2541 g2545 g2549 g2553 g2557 g2561 g2565 g2569 g2573 g2577 g2581 g2585 g2589 g2593 g2597 g2601 g2605 g2609 g2613 g2617 g2621 g2625 g2629 g2633 g2637 g2641 g2645 g2649 g2653 g2657 g2661 g2665 g2669 g2673 g2677 g2681 g2685 g2689 g2693 g2697 g2701 g2705 g2709 g2713 g2717 g2721 g2725 g2729 g2733 g2737 g2741 g2745 g2749 g2753 g2757 g2761 g2765 g2769 g2773 g2777 g2781 g2785 g2789 g2793 g2797 g2801 g2805 g2809 g2813 g2817 g2821 g2825 g2829 g2833 g2837 g2841 g2845 g2849 g2853 g2857 g2861 g2865 g2869 g2873 g2877 g2881 g2885 g2889 g2893 g2897 g2901 g2905 g2909 g2913 g2917 g2921 g2925 g2929 g2933 g2937 g2941 g2945 g2949 g2953 g2957 g2961 g2965 g2969 g2973 g2977 g2981 g2985 g2989 g2993 g2997 g3001 g3005 g3009 g3013 g3017 g3021 g3025 g3029 g3033 g3037 g3041 g3045 g3049 g3053 g3057 g3061 g3065 g3069 g3073 g3077 g3081 g3085 g3089 g3093 g3097 g3101 g3105 g3109 g3113 g3117 g3121 g3125 g3129 g3133 g3137 g3141 g3145 g3149 g3153 g3157 g3161 g3165 g3169 g3173 g3177 g3181 g3185 g3189 g3193 g3197 g3201 g3205 g3209 g3213 g3217 g3221 g3225 g3229 g3233 g3237 g3241 g3245 g3249 g3253 g3257 g3261 g3265 g3269 g3273 g3277 g3281 g3285 g3289 g3293 g3297 g3301 g3305 g3309 g3313 g3317 g3321 g3325 g3329 g3333 g3337 g3341 g3345 g3349 g3353 g3357 g3361 g3365 g3369 g3373 g3377 g3381 g3385 g3389 g3393 g3397 g3401 g3405 g3409 g3413 g3417 g3421 g3425 g3429 g3433 g3437 g3441 g3445 g3449 g3453 g3457 g3461 g3465 g3469 g3473 g3477 g3481 g3485 g3489 g3493 g3497 g3501 g3505 g3509 g3513 g3517 g3521 g3525 g3529 g3533 g3537 g3541 g3545 g3549 g3553 g3557 g3561 g3565 g3569 g3573 g3577 g3581 g3585 g3589 g3593 g3597 g3601 g3605 g3609 g3613 g3617 g3621 g3625 g3629 g3633 g3637 g3641 g3645 g3649 g3653 g3657 g3661 g3665 g3669 g3673 g3677 g3681 g3685 g3689 g3693 g3697 g3701 g3705 g3709 g3713 g3717 g3721 g3725 g3729 g3733 g3737 g3741 g3745 g3749 g3753 g3757 g3761 g3765 g3769 g3773 g3777 g3781 g3785 g3789 g3793 g3797 g3801 g3805 g3809 g3813 g3817 g3821 g3825 g3829 g3833 g3837 g3841 g3845 g3849 g3853 g3857 g3861 g3865 g3869 g3873 g3877 g3881 g3885 g3889 g3893 g3897 g3901 g3905 g3909 g3913 g3917 g3921 g3925 g3929 g3933 g3937 g3941 g3945 g3949 g3953 g3957 g3961 g3965 g3969 g3973 g3977 g3981 g3985 g3989 g3993 g3997 g4001 g4005 g4009 g4013 g4017 g4021 g4025 g4029 g4033 g4037 g4041 g4045 g4049 g4053
```

Asn Asn Ser Arg
50

<210> 42
<211> 52
<212> PRT
<213> Rattus norvegicus

<400> 42
Arg Arg Glu Arg Thr Thr Phe Thr Arg Ser Gln Leu Asp Val Leu Glu
1 5 10 15
Ala Leu Phe Ala Lys Thr Arg Tyr Pro Asp Ile Phe Met Arg Glu Glu
20 25 30
Val Ala Leu Lys Ile Asn Leu Pro Glu Ser Arg Val Gln Val Trp Phe
35 40 45
Asn Asn Ser Arg
50

<210> 43
<211> 156
<212> DNA
<213> Rattus norvegicus

<220>
<221> CDS
<222> (1)...(156)

<400> 43
aag cgg ccg cgg acg gcg ttc acg gcc gag cag ctg cag aga ctc aag 48
Lys Arg Pro Arg Thr Ala Phe Thr Ala Glu Gln Leu Gln Arg Leu Lys
1 5 10 15
gcg gag ttc cag gca aac cgc tac atc acg gag cag cgg cga cag acc 96
Ala Glu Phe Gln Ala Asn Arg Tyr Ile Thr Glu Gln Arg Arg Gln Thr
20 25 30
ctg gcc cag gag ctc agc ctg aac gag tcc cag atc aag atc tgg ttc 144
Leu Ala Gln Glu Leu Ser Leu Asn Glu Ser Gln Ile Lys Ile Trp Phe
35 40 45
caa aac aag cga
Gln Asn Lys Arg 156
50

<210> 44
<211> 52
<212> PRT
<213> Rattus norvegicus

<400> 44
Lys Arg Pro Arg Thr Ala Phe Thr Ala Glu Gln Leu Gln Arg Leu Lys
1 5 10 15
Ala Glu Phe Gln Ala Asn Arg Tyr Ile Thr Glu Gln Arg Arg Gln Thr
20 25 30
Leu Ala Gln Glu Leu Ser Leu Asn Glu Ser Gln Ile Lys Ile Trp Phe
35 40 45
Gln Asn Lys Arg

50

<210> 45
<211> 156
<212> DNA
<213> Rattus norvegicus

<220>
<221> CDS
<222> (1)...(156)

<400> 45
aag cgg ccg cgg acg gcg ttt acc agc gag cag ctg ctg gag ctg gag 48
Lys Arg Pro Arg Thr Ala Phe Thr Ser Glu Gln Leu Leu Glu Leu Glu
1 5 10 15

aag gaa ttc cac tgc aaa aag tac ctc tcc ctg acc gag cgc tca cag 96
Lys Glu Phe His Cys Lys Tyr Leu Ser Leu Thr Glu Arg Ser Gln
20 25 30

atc gcc cat gcc ctc aaa ctc agc gag gtg caa gta aaa ata tgg ttc 144
Ile Ala His Ala Leu Lys Leu Ser Glu Val Gln Val Lys Ile Trp Phe
35 40 45

caa aac aag cga 156
Gln Asn Lys Arg
50

<210> 46
<211> 52
<212> PRT
<213> Rattus norvegicus

<400> 46
Lys Arg Pro Arg Thr Ala Phe Thr Ser Glu Gln Leu Leu Glu Leu Glu
1 5 10 15
Lys Glu Phe His Cys Lys Tyr Leu Ser Leu Thr Glu Arg Ser Gln
20 25 30
Ile Ala His Ala Leu Lys Leu Ser Glu Val Gln Val Lys Ile Trp Phe
35 40 45
Gln Asn Lys Arg
50

<210> 47
<211> 111
<212> DNA
<213> Rattus norvegicus

<220>
<221> CDS
<222> (1)...(111)

<400> 47
ctg gag aag gag ttc cat ttc aac aag tac cta aca aga gcc cgc agg 48
Leu Glu Lys Glu Phe His Phe Asn Lys Tyr Leu Thr Arg Ala Arg Arg
1 5 10 15

gtg gag ata gcc gcg tcc ctg caa ctc aat gag acc cag gtg aag atc 96
13

Val Glu Ile Ala Ala Ser Leu Gln Leu Asn Glu Thr Gln Val Lys Ile
20 25 30

tgg ttc caa aac cgc
Trp Phe Gln Asn Arg 111
35

<210> 48
<211> 37
<212> PRT
<213> *Rattus norvegicus*

<400> 48
 Leu Glu Lys Glu Phe His Phe Asn Lys Tyr Leu Thr Arg Ala Arg Arg
 1 5 10 15
 Val Glu Ile Ala Ala Ser Leu Gln Leu Asn Glu Thr Gln Val Lys Ile
 20 25 30
 Trp Phe Gln Asn Arg
 35

<210> 49
<211> 111
<212> DNA
<213> *Rattus norvegicus*

<220>
<221> CDS
<222> (1)...(111)

```

<400> 49
ctg gag aag gag ttt cat ttc aac aag tac ctg tgc cgg ccg cgg cgg
Leu Glu Lys Glu Phe His Phe Asn Lys Tyr Leu Cys Arg Pro Arg Arg
   1           5                  10                   15

```

gtt gag atc gcc gcc ttg ctg gac ctc acc gaa agg cag gtc aaa gtc
 Val Glu Ile Ala Ala Leu Leu Asp Leu Thr Glu Arg Gln Val Lys Val
 20 25 30

tgg ttc caa aac cgc
Trp Phe Gln Asn Arg 111
35

<210> 50
<211> 37
<212> PRT
<213> Rattus norvegicus

```

<400> 50
Leu Glu Lys Glu Phe His Phe Asn Lys Tyr Leu Cys Arg Pro Arg Arg
   1           5           10          15
Val Glu Ile Ala Ala Leu Leu Asp Leu Thr Glu Arg Gln Val Lys Val
   20          25          30
Trp Phe Gln Asn Arg
   35

```

<210> 51
<211> 111

<212> DNA
 <213> Rattus norvegicus

<220>
 <221> CDS
 <222> (1)...(111)

<400> 51
 ctg gag aag gag ttc cat ttc aac cgc tac ctg tgc cgg ccg cgc cgc 48
 Leu Glu Lys Glu Phe His Phe Asn Arg Tyr Leu Cys Arg Pro Arg Arg
 1 5 10 15

gtg gag atg gct aac ctg ctg aac ctc acc gaa cgc cag atc aag atc 96
 Val Glu Met Ala Asn Leu Leu Asn Leu Thr Glu Arg Gln Ile Lys Ile
 20 25 30

tgg ttc caa aac cgc 111
 Trp Phe Gln Asn Arg
 35

<210> 52
 <211> 37
 <212> PRT
 <213> Rattus norvegicus

<400> 52
 Leu Glu Lys Glu Phe His Phe Asn Arg Tyr Leu Cys Arg Pro Arg Arg
 1 5 10 15
 Val Glu Met Ala Asn Leu Leu Asn Leu Thr Glu Arg Gln Ile Lys Ile
 20 25 30
 Trp Phe Gln Asn Arg
 35

<210> 53
 <211> 111
 <212> DNA
 <213> Rattus norvegicus

<220>
 <221> CDS
 <222> (1)...(111)

<400> 53
 ctg gaa aag gaa ttt cat ttt aac agg tat ctg acc acc agg cgc cgt cgg 48
 Leu Glu Lys Glu Phe His Phe Asn Arg Tyr Leu Thr Arg Arg Arg Arg
 1 5 10 15

att gaa atc gct cac acc ctg tgt ctg tct gag cgc cag atc aag atc 96
 Ile Glu Ile Ala His Thr Leu Cys Leu Ser Glu Arg Gln Ile Lys Ile
 20 25 30

tgg ttt caa aac aaa 111
 Trp Phe Gln Asn Lys
 35

<210> 54
 <211> 37

<212> PRT
<213> Rattus norvegicus

<400> 54
Leu Glu Lys Glu Phe His Phe Asn Arg Tyr Leu Thr Arg Arg Arg Arg
1 5 10 15
Ile Glu Ile Ala His Thr Leu Cys Leu Ser Glu Arg Gln Ile Lys Ile
20 25 30
Trp Phe Gln Asn Lys
35

<210> 55
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 55
cgtaccagct cgcgcacaga c

21

<210> 56
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 56
ggaaatcagc cgtcagat tt g

21

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 57
tcggctgaag ccatgccttg

20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 58
gacgtgcattg ggagaaaatc

20

<210> 59
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 59
catggagttt gggctgcttg g

21

<210> 60
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotides for PCR

<400> 60
tcacaccggc cgttccacg

19

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/07544

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :C12N 15/00, 15/06, 15/09
US CL :435/252.3, 440, 455, 183, 69.1, 6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/252.3, 440, 455, 183, 69.1, 6; 536/23.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	SAKURADA et al. Nurrl, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development. September 1999, Vol. 126, No. 18, pages 4017-4026, see entire document.	1-24 and 65
Y	LAW et al. Identification of a New Brain-Specific Transcription Factor, NURR1. Molecular Endocrinology. December 1992, Vol. 6, No. 12, pages 2129- 2135. see entire document.	1-24 and 65

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means	"A"	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
24 MAY 2000	25 JUL 2000

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer <i>Richard Hutson</i> <i>Se</i> RICHARD HUTSON Telephone No. (703) 308-0196
---	---

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/07544

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X -	SCEARCE et al. RNR-1, a nuclear Receptor in the NGFI-B/Nur77 Family That is Rapidly Induced in Regenerating Liver. J. Biol. Chem. April 1993, Vol. 268, No. 12, pages 8855-8861, see entire document.	1-3 and 65 ---- 4-24
X -	WO 94/04675 A2 (KROCZEK et al.) 03 March 1994, see entire document.	1-3 and 65 ---- 4-24
Y	CASTILLO et al. Dopamine Biosynthesis is Selectively Abolished in Substantia Nigra/Ventral Tegmental Area but not in Hypothalamic Neurons in Mice with Targeted Disruption of the Nurr1 Gene. Mol. Cell. Neuroscience. May 1998, Vol. 11, pages 36-46, see entire document.	1-24 and 65
A	NAKAGAWA et al. Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells. Development. August 1996, Vol. 122, No. 8, pages 2449-2464, see entire document.	1-24 and 65

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US00/07544**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos. 1-24 and 65

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/07544

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

EAST, STN, MEDLINE, BIOSIS, CAPLUS, EMBASE, SCISEARCH, JAPIO, PÁTOSWO, PATOSEP; search terms: tyrosine hydroxylase, Nurr1, brain, midbrain, DOPA, dopamine, catecholamine, norepinephrine, otx1, en1 ptx1; STIC Search SEQ ID NO:1, 2 and 3,

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-24 and 65, drawn to a cell comprising exogenous nucleic acid that induces tyrosine hydroxylase expression and methods of inducing tyrosine hydroxylase expression.

Group II, claim(s) 25-54, drawn to a method of treating a catecholamine-related deficiency.

Group III, claim(s) 55-59, drawn to a method for detecting tyrosine hydroxylase-related deficiency in a mammal.

Group IV, claim(s) 60-64, drawn to a kit for inducing tyrosine hydroxylase expression in a cell.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The groups I-IV share the technical relationship of the Nurr1 protein sequence corresponding to SEQ ID No: 2, but the sequence of the Nurr1 protein was already known, (Law et al. Mol. Endocrinol. 6(12): 2129-2135, 1992) therefore this is not a special technical feature.