Parametric Modeling Basics

Wojciech Matusik

Computational Design Stack

Parametric Design

Design Space

• Each design can be mathematically represented as a point in \mathbb{R}^D

Why Parametric Design?

- Expand design space (from single design to design family)
- Enable design customization
- Constrain design for manufacturability
- Solve inverse problems easier (later)

How do we create Parametric Designs?

- CAD Systems
- Procedural Modeling

Deformation Methods

CAD Systems

A very brief history of CAD

- 1963—Sketchpad
 - First interactive graphics
- 1970s 2D
- 1980s 3D
- 1990s Parametric CAD and commoditization

Parametric feature-based modeling

- Theory: easily modify designs and create variations
- Recipe for creating the model
- Start with sketches
- Apply "features"

Assemblies

- Hierarchical
- Parts combined via "mates"

Boundary Representation (B-REP)

- Topology
 - Graph of edges, vertices, faces, etc.
- Geometry
 - Parametric curves and surfaces
 - "Analytic" and splines

Geometry Kernels

- Standalone: ACIS and Parasolid
- Both descended from Cambridge, UK
- Others not nearly as good
- Key differentiation
 - Robustness
 - Ability to work with bad data
 - Performance

• Sweeping

- Sweeping
- Booleans

- Sweeping
- Booleans
- Fillet

- Sweeping
- Booleans
- Fillet
- Draft

- Sweeping
- Booleans
- Fillet
- Draft
- Offset

Referencing / Identity

CAD Architecture

Geometric Constraint Solving

- Harder than "just" nonlinear equations:
 - Underdefined
 - Overspecified
 - Disconnected solutions

• Users expect "minimal" change

CAD has many parallels to programming

Programming	\longleftrightarrow	CAD
Program	\longleftrightarrow	Parametric Model
Function	\longleftrightarrow	Feature, Part Studio
Loop	\longleftrightarrow	Pattern
Version Control	\longleftrightarrow	Product Data Management (PDM)
Code diff	\longleftrightarrow	Model compare

Programming in CAD (Onshape)

A Part Studio in Onshape is a function

FeatureScript (Onshape)

- New language for writing CAD features
- All Onshape features are written in FeatureScript and are open source
- Users can make their own features
- www.onshape.com/featurescript

Parametric Model in OnShape (Lab)

Create a model with a small number of parameters

OpenSCAD

- Software for creating solid 3D CAD models
- Not an interactive modeler
 - Very basic UI
- A 3D-compiler
 - Geometry written as a script
 - Executed using CGAL/OpenCSG
 - Rendered with OpenGL
- Available for Linux/UNIX, Windows, Mac OS X
 - http://www.openscad.org

OpenSCAD

- Interface
 - 3 panels
 - Script
 - View
 - Info
- Compile (F5)
 - Design->Compile
- Show Axes (Ctrl+2)

3D Primitives

- Sphere
 - sphere(5); sphere(r=5);
- Cube
 - cube(5);
 - cube([4,8,16]);
- Cylinder
 - cylinder(20,10,5);
 cylinder(h = 20, r1 = 10,
 r2 = 5);
 - cylinder(h=20,r=10);

Transformations

- Translate
 - e.g., translate([10,0,0])
 sphere(5); // translate along
 x axis
- Rotate
- Scale
- Order dependent
 - translate([0,0,10])
 rotate([45,0,0])
 cylinder([20,10,0]);
 - Color("green")
 rotate([45,0,0])
 translate([0,0,10])
 cylinder([20,10,0]);

CSG

- Union
- Intersection
- Difference
- Example:

```
union()
{
  translate([0,-25,-25]) cylinder(50,10,10);
  rotate([90,0,0]) cylinder(50,8,8);
}
```

Loops

```
for (loop_variable_name = range or vector) {
for (z = [-1, 1, -2.5]) {
translate( [0, 0, z] )
   cube(size = 1, center = false);
 for (i = [0:5]) {
 rotate( i*360/6, [1, 0, 0])
  translate([0, 10, 0]) sphere(r = 1);
```

Loops

Module

Procedures/Functions

```
module leaves() { cylinder(20,5,0); }
module box() { cube([5,10,15]); }

module tree() {
  leaves();
  scale([0.5,0.5,0.5]) translate([-2.5,-5,-15]) box();
  }

tree();
```


Module

Parameters

Default values

```
module box2(w=5,l=10,h=20) {
  echo("w=", w, " l=", l, " h=", h);
  cube([w,l,h]);
}
box2();
```


Parametric Model in OpenSCAD

```
module simple_tree(size, dna, n) {
    if (n > 0) {
       // trunk
       cylinder(r1=size/10, r2=size/12, h=size, $fn=24);
       // branches
       translate([0,0,size])
          for(bd = dna) {
             angx = bd[0];
            angz = bd[1];
            scal = bd[2];
               rotate([angx,0,angz])
                  simple_tree(scal*size, dna, n-1);
    else // leaves
       color("green")
       scale([1,1,3])
          translate([0,0,size/6])
             rotate([90,0,0])
               cylinder(r=size/6,h=size/10);
  // dna is a list of branching data bd of the tree:
        bd[0] - inclination of the branch
        bd[1] - Z rotation angle of the branch
        bd[2] - relative scale of the branch
  dna = [ [12, 80, 0.85], [55, 0, 0.6],
       [62, 125, 0.6], [57, -125, 0.6]];
  simple_tree(50, dna, 6);
```


Graphics vs. CAD

Modeling for graphics

- Movies, games, images
- Complexity from shaders, tricks
- Meshes, subdivision
- Research in touch with industry

CAD

- Manufacturing, analysis, drawings, images
- Complexity is modeled
- Photorealism can hurt
- B-rep/NURBS, subdivision
- Research disconnected from reality