Design and Analysis of Algorithms

L30: Knapsack problem Dynamic Programming

> Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 1: Levitin
 - Sec 8.4
- Text book 2: Horowitz
 - Sec 5.7
- R1: Introduction to Algorithms
 - Cormen et al.

Knapsack problem

- Knapsack problem:
 - Given n items of known weights $w_1, ..., w_n$, and
 - Having values $v_1, ..., v_n$ and a capacity W
 - Find the most valuable subset of items that fit into the knapsack.
 - Items are to be considered in full, not partially
 - Note: All the weights w_{i} 's and knapsack capacity w_{i} are integers, but values can be real numbers.
- Goal: solve the knapsack problem using dynamic programming.

DP Approach: Knapsack

- To solve knapsack problem using DP,
 - Need to design a recurrence relation
 - Express a solution to an instance in terms of smaller instances.
- Consider an instance defined by first i items with
 - Weights $w_1, w_2, ..., w_i$; $1 \le i \le n$
 - Values $v_1, v_2, ..., v_i$; $1 \le i \le n$
 - Knapsack capacity j, $1 \le j \le w$
- Let V[i,j] be the optimal solution to this instance
 - i.e. the value of most valuable subsets of first i items that fit knapsack of capacity j.
- Approach: divide first i items into two categories:
 - Those that include ith item, and
 - Those that don't include ith item

DP Approach: Knapsack

	0		j-w _i		j		M
0	0	0	0	0	0	0	0
	0						
i-1	0		V[i-1,j-w _i]		V[i-1,j]		
i	0				V[i,j]		
	0						
n	0						

Table for solving knapsack problem using dynamic programming

- Category 1: subsets that do not include ith item.
 - Value of optimal subset is V[i-1,j]
- Category 2: subsets that do include ith item.
 - Thus $j>w_i$ i.e. $j-w_i\geq 0$.
 - Value of optimal subset is $v_i+V[i-1, j-w_i]$

DP Approach: Knapsack

- Possible cases:
 - $j < w_i$ (i.e. $j w_i < 0$), i.e. weight of i^{th} item is more than j and thus can't be included
 - $-j \ge w_i$ (i.e $j w_i \ge 0$) weight of i^{th} item is less than or equal to j, and thus i^{th} item may included or execluded.
- Thus,

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j - w_i \ge 0 \\ V[i-1,j] & \text{if } j - w_i < 0 \end{cases}$$
 (1)

The initial conditions can be defined as

$$V[i, 0] = 0$$
 for $i \ge 0$
i.e. i items and 0 capacity
 $V[0, j] = 0$ for $j \ge 0$
i.e. 0 items and j capacity

Example: Knapsack

$$V[i,j] = \begin{cases} max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & if j - w_i \ge 0 \\ V[i-1,j] & if j - w_i < 0 \end{cases}$$
(1)

- Example: consider knapsack of size 5
 - (i.e. max weight it can hold is 5),
 - Weights as

$$w_1=2$$
, $w_2=1$, $w_3=3$, $w_4=2$

Values as

$$v_1 = \$12, v_2 = \$10, v_3 = \$20, v_4 = \$15$$

- Need to compute V[4,5]
 - -Max value with 4 items with knapsack capacity 5

Example Knapsack

Capacity→ wts, values;		0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2 v_1 = 12$	1	0					
$w_2=1 v_2=10$	2	0					
$w_3 = 3 v_3 = 20$	3	0					
$w_4 = 2 v_4 = 15$	4	0					

$$V[0,j]=0$$
 for $0 \le j \le 5$
 $V[i,0]=0$ for $0 \le i \le 4$

Capacity→ wts, values;		0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1=2 v_1=12$	1	0	0	12	12	12	12
$w_2=1 v_2=10$	2	0					
$w_3 = 3 v_3 = 20$	3	0					
$w_4 = 2 v_4 = 15$	4	0					

$$\begin{array}{l} V\text{[1,1]} = & \text{V[1-1,1] since } j = 1 < w_1 = 2 \\ = & 0 \\ V\text{[1,2]} = & \text{max} \{ & \text{V[0,2],12+V[0,2-2]} \}; j = 2 \ge w_1 = 2 \\ = & \text{max} \{ & \text{0,12+V[0,0]} \} = 12 \\ V\text{[1,3]} = & \text{max} \{ & \text{V[0,3],12+V[0,3-2]} \}; j = 3 \ge w_1 = 2 \\ = & \text{max} \{ & \text{0,12+V[0,1]} \} = 12 \\ V\text{[1,4]} = & \text{max} \{ & \text{V[0,4],12+V[0,4-2]} \}; j = 4 \ge w_1 = 2 \\ = & \text{max} \{ & \text{0,12+V[0,2]} \} = 12 \\ V\text{[1,5]} = & \text{max} \{ & \text{V[0,5],12+V[0,5-2]} \}; j = 5 \ge w_1 = 2 \\ = & \text{max} \{ & \text{0,12+V[0,3]} \} = 12 \\ \end{array}$$

Capacity→ wts, values;		0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1=2 v_1=12$	1	0	0	12	12	12	12
$w_2=1 v_2=10$	2	0	10	12	22	22	22
$w_3 = 3 v_3 = 20$	3	0					
$w_4 = 2 v_4 = 15$	4	0					

```
 \begin{array}{l} \mathbb{V}[2,1] = \max\{\mathbb{V}[1,1],10+\mathbb{V}[1,1-1]\}; \ \ j=1 \geq w_2=1 \\ = \max\{0,\ 10+\mathbb{V}[1,0]\} = 10 \\ \mathbb{V}[2,2] = \max\{\mathbb{V}[1,2],\ 10+\mathbb{V}[1,2-1]\}; \ \ j=2 \geq w_2=1 \\ = \max\{12,\ 10+0\} = 12 \\ \mathbb{V}[2,3] = \max\{\mathbb{V}[1,3],\ 10+\mathbb{V}[1,3-1]\}; \ \ j=3 \geq w_2=1 \\ = \max\{12,\ 10+\mathbb{V}[1,2]\} = \max\{12,22\} = 22 \\ \mathbb{V}[2,4] = \max\{\mathbb{V}[1,4],\ 10+\mathbb{V}[1,4-1]\}; \ \ j=4 \geq w_2=1 \\ = \max\{12,\ 10+\mathbb{V}[1,3]\} = \max\{12,22\} = 22 \\ \mathbb{V}[2,5] = \max\{\mathbb{V}[1,5],\ 10+\mathbb{V}[1,5-1]\}; \ \ j=5 \geq w_2=1 \\ = \max\{12,\ 10+\mathbb{V}[1,4]\} = \max\{12,22\} = 22 \\ \end{array}
```

Capacity→ wts, values;		0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1=2 v_1=12$	1	0	0	12	12	12	12
$w_2=1 v_2=10$	2	0	10	12	22	22	22
$w_3 = 3 v_3 = 20$	3	0	10	12	22	30	32
$w_4 = 2 v_4 = 15$	4	0					

```
V[3,1]=V[2,1] = 10; (j=1<w<sub>3</sub>=3)

V[3,2]=V[2,2] = 12; (j=2<w<sub>3</sub>=3)

V[3,3]=\max\{V[2,3], 20+V[2,3-3]\}; (j=3\geq w<sub>3</sub>=3)

=\max\{22, 20+0\} = 22

V[3,4]=\max\{V[2,4], 20+V[2,4-3]\}; (j=4\geq w<sub>3</sub>=3)

=\max\{22, 20+V[2,1]\}=\max\{22,30\}=30

V[3,5]=\max\{V[2,5], 20+V[2,5-3]\}; (j=5\geq w<sub>3</sub>=3)

=\max\{12, 20+V[2,2]\}=\max\{12,20+12\}=32
```

Capacity→ wts, values;		0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1=2 v_1=12$	1	0	0	12	12	12	12
$w_2=1 v_2=10$	2	0	10	12	22	22	22
$w_3 = 3 v_3 = 20$	3	0	10	12	22	30	32
$w_4 = 2 v_4 = 15$	4	0	10	15	25	30	37

```
 \begin{array}{l} V[4,1] = V[3,1] &= 10; \quad (j=1 < w_4 = 2) \\ V[4,2] = \max\{V[3,2],15 + V[3,2-2]\}; \quad (j=2 \ge w_4 = 2) \\ &= \max\{12,15 + V[3,0]\} = \max\{12,15 + 0\} = 15 \\ V[4,3] = \max\{V[3,3], \quad 15 + V[3,3-2]\}; \quad (j=3 \ge w_4 = 2) \\ &= \max\{22,15 + V[3,1]\} = \max\{22,15 + 10\} = 25 \\ V[4,4] = \max\{V[3,4], \quad 15 + V[3,4-2]\}; \quad (j=4 \ge w_4 = 2) \\ &= \max\{30, \quad 15 + V[3,2]\} = \max\{30,15 + 12\} = 30 \\ V[4,5] = \max\{V[3,5], \quad 15 + V[3,5-2]\}; \quad (j=5 \ge w_4 = 2) \\ &= \max\{32, \quad 15 + V[3,3]\} = \max\{32,15 + 22\} = 37 \\ \end{array}
```

Example Knapsack: Optimal Subset

Capacity→ wts, values;		0	1	2	3	4	5
	0	6	0	0	0	0	0
$w_1=2$ $v_1=12$	1	0	0	21	12	12	12
w₂=1 v ₂ =10	2	0	10	12	22	22	22
$w_3 = 3 v_3 = 20$	3	0	10	12	22	30	32
w₄=2 v ₄ =15	4	0	10	15	25	30	37

Optimal subset

- Backtrack from maximal value V[4,5] to prev. rows.
- Thus, optimal subsets are

```
V[4,5]=37 \ (\neq V[3,5]) \ \text{implies} \ \underline{w_4}=2 \ \text{is included} V[3,3]=22 \ (=V[2,3]) \ \text{implies} \ \underline{w_3}=3 \ \text{is not included} V[2,3]=22 \ (\neq V[1,3] \ \text{implies} \ \underline{w_2}=1 \ \text{is included} V[1,2]=12 \ (\neq V[0,2] \ \text{implies} \ \underline{w_1}=2 \ \text{is included}
```

Algorithm: Knapsack using DP

```
Algo DPKnapsack(w[1..n], v[1..n], W)
  int V[0..n,0..W], P[1..n,1..W];
  for j=0 to W do
     V[0,j] = 0
  for i=0 to n do
     V[i, 0] = 0
  for i=1 to n do
    for j = 1 to W do
     if w[i] \le j and (v[i] + V[i-1, j-w[i]]) > V[i-1, j] then
       V[i,j] = v[i] + V[i-1,j-w[i]];
     else
        V[i,j] = V[i-1,j]
  return V[n,W] (and the optimal subset by backtracing)
```

Efficiency of Knapsack

- Time Efficiency: ⊕ (nW)
- Space efficiency: ⊕ (nW)

Summary

- Knapsack algorithm using dynamic programming
- Efficiency
- Optimal subsets using backtracking