$\begin{array}{c} {\rm Pr\'actico}~4 \\ {\rm Matem\'atica~Discreta~I-A\~no}~2019/1 \\ {\rm FAMAF} \end{array}$

Soluciones

1. a) Calcular el resto de la división de 1599 por 39 sin tener que hacer la división. (Ayuda: $1599 = 1600 - 1 = 40^2 - 1$).

 $Rta: 1599 \equiv 1^2 - 1 \pmod{39}$, por lo tanto el resto es 0.

- b) Lo mismo con el resto de 914 al dividirlo por 31. $Rta: 914 = 30^2 + 14 \equiv (-1)^2 + 14 \pmod{31}$, por lo tanto el resto es 15.
- 2. Sea $n \in \mathbb{N}$. Probar que todo número de la forma $4^n 1$ es divisible por 3. $Rta: 4^n - 1 \equiv 1^n - 1 \equiv 0 \pmod{3}$ por lo tanto $3|4^n - 1$.
- 3. Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par y 1 si n es impar. Rta: Si n=2k, se tiene $n^2=4k^2$, por lo tanto $4|n^2$. Si n=2k+1, tenemos $n^2=4k^2+4k+1=4(k^2+k)+1$ y vale el resultado.
- 4. a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11. Rta:

Regla del 2. Si $n = \sum_{j=0}^k a_j 10^j, n \equiv \sum_{j=1}^k a_j 0^j + a_0$ (2) por lo tanto es divisible por 2 si y solo si su dígito de unidades lo es, o sea si termina en 0, 2, 4, 6, 8. Regla del 3 y 9. Como $10 \equiv 1$ (3), $\sum_{j=0}^k a_j 10^j \equiv \sum_{j=0}^k a_j 1^j$ (3). Por lo tanto 3|n si y sólo si 3 divide a la suma de sus dígitos. Notar que lo mismo pasa con 9 por ser $10 \equiv 1$ (9).

Regla del 4 y 8. $10^j \equiv 0$ (4) si j > 1 y $10^j \equiv 0$ (8) si j > 2. Por lo tanto, al tomar congruencia de n módulo 4 u 8, sólo quedan las dos últimas cifras en el primer caso y las 3 últimas en el segundo. Es decir 4|n si y sólo si $4|10a_1 + a_0$ y 8|n si y sólo si $8|100a_2 + 10a_1 + a_0$.

Regla del 11. $10 \equiv -1$ (11) $\Rightarrow n = \sum_{j=0}^{k} a_j 10^j \equiv \sum_{j=0}^{k} a_j (-1)^j$ Entonces 11|n si y sólo si 11 divide a la suma de los dígitos que están en lugar par menos la suma delos dígitos que están en lugar impar.

b) Decir por cuáles de los números del 2 al 11 son divisibles los siguientes números:

12342 5176 314573 899.

 $Rta: 12342 = 2 \cdot 3 \cdot 11^2 \cdot 17$, $5176 = 2^3 \cdot 647$, $314573 = 7 \cdot 44939$, 899 no es divisible por ninguno de ellos.

5. Sean a, b, c números enteros, ninguno divisible por 3. Probar que

$$a^2 + b^2 + c^2 \equiv 0 \pmod{3}$$
.

Rta: Si ninguno es divisible por 3 tenemos que $x^2 \equiv 1$ (3) para x = a, b, c, por lo tanto la suma de los cuadrados será congruente a 3 módulo 3 y esto dice que $3|a^2 + b^2 + c^2$.

6. Hallar la cifra de las unidades y la de las decenas del número 7^{15} .

Rta: Para encontrar dichas cifras tenemos que tomar congruencia módulo 100. $7^{15} = (7^2)^7 7 = (50-1)^7 7 \equiv (50 \cdot 7 - 1)7(100)$ donde hemos usado la fórmula binomial para $(50-1)^7$ y el hecho que $50^n \equiv 0(100)$ para n > 1. Finalmente $(50 \cdot 7 - 1)7 \equiv (50 - 1)7 \equiv 343 \equiv 43(100)$.

- 7. Hallar el resto en la división de x por 5 y por 7 para:
 - a) $x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$;

Rta: Sabemos que si (a,5)=1 se tiene $a^4\equiv 1(5)$, luego cada sumando salvo 5^8 es congruente a 1 módulo 5. Su suma da entonces $7\equiv 2(5)$.

También sabemos que $a^7 \equiv a(7) \forall a$, por lo cual la suma es congruente a $\sum_{i=1}^8 i^2$ módulo 8. Esto es $1+4+2+2+4+1+0+1=15\equiv 1(7)$.

b) $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$.

Rta:
$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \equiv 6 \equiv 1(5)$$

 $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 4 \cdot 3 \cdot 1 \cdot 3 \equiv 108 \equiv 3(7).$

- 8. Hallar todos los x que satisfacen:
 - $a) x^2 \equiv 1 \quad (4)$

Rta: Resolvemos primero para $0 \le x \le 3$ y luego sumamos un múltiplo de 4. Esto es x=1 o x=3 y por lo tanto x=1+4k o x=3+4k, lo cual también se puede escribir como $x=4k\pm 1$.

 $b) x^2 \equiv x \quad (12)$

Rta: Soluciones menores que 12: x=0,1,4,9,11. Luego el conjunto solución es $\{12k,12k\pm 1,12k+4,12k-3\}$.

 $c) \ x^2 \equiv 2 \quad (3)$

Rta: No tiene soluciones pues $0^2 = 0, 1^2 = 1, 2^2 \equiv 1(3)$.

Matemática Discreta I FAMAF

d)
$$x^2 \equiv 0$$
 (12)

Rta: Soluciones menores que 12: $\{0,6,\}$. Luego las soluciones son $\{12k,12k+6\}$.

e)
$$x^4 \equiv 1$$
 (16)

Rta: Notemos que x debe ser impar. Podemos tomar $-8 \le x \le 8$, es decir $x \in \{-7, -5, -3, -1, 1, 3, 5, 7\}$. Los cuadrados son $\{49, 25, 9, 1, 1, 9, 25, 49\}$ que son congruentes módulo 16 a $\{1, 9, 9, 1, 1, 9, 9, 1\}$ A su vez cuando elevamos estos al cuadrado, como $9^2 = 81 \equiv 1$ (16) Tenemos que todo número impar es solución de la ecuación.

Alternativamente podríamos elevar 2k+1 a la cuarta con la fórmula binomial $\sum_{j=0}^{4} {4 \choose j} (2k)^j 1^{4-j} = 1 + 4 \cdot 2k + 6 \cdot 4k^2 + 4 \cdot 4k^3 + 16k^4 = 1 + 8(k+3k^2) + 16(k^3 + k^4) \equiv 1 + 8(k+3k^2)$ (16). Si observamos que k(1+3k) siempre es par ya que es uno de los factores es par, tenemos que $(2k+1)^4 \equiv 1 + 16(3k+1)k/2 \equiv 1$ (16).

$$f) 3x \equiv 1(5)$$

Rta: Probamos con x = 0, 1, 2, 3, 4 y vemos que $3 \cdot 2 = 6 \equiv 1$ (5). Luego las soluciones son x = 5k + 2.

9. Sean $a, b, m \in \mathbb{Z}$, d > 0 tales que $d \mid a, d \mid b$ y $d \mid m$. Probar que la ecuación $a \cdot x \equiv b(m)$ tiene solución si y sólo si la ecuación

$$\frac{a}{d} \cdot x \equiv \frac{b}{d} \left(\frac{m}{d} \right)$$

tiene solución.

Rta: La ecuación $\frac{a}{d} \cdot x \equiv \frac{b}{d}(\frac{m}{d})$ tiene solución si y sólo si $\frac{m}{d} | \frac{a}{d} \cdot x - \frac{b}{d}$ si y sólo si $\frac{a}{d} \cdot x - \frac{b}{d} = \frac{m}{d}q$ como $d \neq 0$ multiplicando por d, esto ocurre si y sólo si $m | a \cdot x - b$, es decir, $a \cdot x \equiv b(m)$.

- 10. Resolver las siguientes ecuaciones:
 - $a) \ 2x \equiv -21(8)$

Como el módulo es par, no hay solución pues el miembro de la derecha es par y el de la izquierda es impar.

$$b) \ 2x \equiv -12(7)$$

Rta: $x = 1 + 7k, k \in \mathbb{Z}$.

$$c) \ 3x \equiv 5(4).$$

Rta: $x = 3 + 4k, k \in \mathbb{Z}$.

11. Resolver la ecuación $221x \equiv 85$ (340). Hallar todas las soluciones x tales que $0 \le x < 340$.

Rta: Notemos que 221, 85 y 340 son divisibles por 17 Sus respectivos cocientes son 13, 5 y 20. Por el ejercicio 9 podemos entonces resolver $13x \equiv 5(20)$. Las soluciones de esta ecuación deben ser múltiplos de 5 y menores que 20. Comprobamos que 5 es la única solución menor que 20. las restantes son de la forma 20k + 5. Tenemos que el conjunto buscado es: $\{5, 25, 45, \ldots, 305, 325\} = \{5 + 20k, \}_{k=1}^{20}$.

12. (i) Encontrar todas las soluciones de la ecuación en congruencia

$$36 x \equiv 8 (20)$$

usando el método visto en clase.

Rta: $(36, 20) = 4 \Rightarrow 36 - 20 = 16, 20 - 16 = 4, \Rightarrow 2 \cdot 20 - 36 = 4$. Por lo tanto $(-2)36 = 8 - 4 \cdot 20$, Esto es x = -2 + 20k.

Alternativa: La ecuación es equivalente a $9x \equiv 2$ (5) el único resto que la satisface es 3. Las soluciones de esta ecuación son $5k + 3, k \in \mathbb{Z}$. Entre los restos módulo 20, la única que satisface la ecuación original es $3 + 5 \cdot 3 = 18$ y a esta se le deben sumar los múltiplos de 20.

- (ii) Dar todas las soluciones x de la ecuación anterior tales que -8 < x < 30. $Rta: \{-2, 18\}$.
- 13. (i) Encontrar todas las soluciones de la ecuación en congruencia

$$21 x \equiv 6 (30)$$

usando el método visto en clase.

Rta: La ecuación es equivalente a: $7x \equiv 2$ (10). Ahora bien 1 = (7, 10) y $1 = (-7) \cdot 7 + 5 \cdot 10$, por lo tanto $2 = (-14) \cdot 7 + 10 \cdot 10$. Haciendo congruencia módulo 10 obtenemos: $2 \equiv (-14) \cdot 7 \equiv 6 \cdot 7$ (10). Luego la ecuación tiene como soluciones x = 10k + 6, con k entero.

- (ii) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 35. Rta: 6, 16, 26.
- 14. Dado $t \in \mathbb{Z}$, decimos que t es inversible módulo m si existe $h \in \mathbb{Z}$ tal que $th \equiv 1 (m)$.
 - a) ¿Es 5 inversible módulo 17? Rta: Si, $5 \cdot 7 \equiv 1 \ (17)$

Matemática Discreta I FAMAF

b) Probar que t es inversible módulo m, si y sólo si (t, m) = 1. Rta: Si t es inversible módulo m sea h tal que $th \equiv 1(m)$. Esto es th - 1 = mq, y por lo tanto 1 = th - mq, lo cual dice que (t, m) = 1. Recíprocamente si (t, m) = 1 existen enteros h y q tales que 1 = th + mq y esto nos dice que m divide a 1 - th o sea $th \equiv 1(m)$.

- c) Determinar los inversibles módulo m, para m = 11, 12, 16. $Rta: \{1, 2, 3, ..., 9, 10\}, \{1, 5, 7, 11\}, \{1, 3, 5, 7, 9, 11, 13, 15\}.$
- 15. Encontrar los enteros cuyos cuadrados divididos por 19 dan resto 9. Rta: Si resolvemos $x^2 \equiv 9$ (3) vemos que 3 y 16 son los únicos restos que son solución. Luego, todas las soluciones buscadas son $19k \pm 3$.
- 16. Probar que todo número impar a satisface: $a^4 \equiv 1$ (16), $a^8 \equiv 1$ (32), $a^{16} \equiv 1$ (64). ¿Se puede asegurar que $a^{2^n} \equiv 1$ (2^{n+2})? Rta: Si n = 1, $a^2 - 1$ es divisible por 8 ya que $a^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k = 4k(k+1)$ y 2|k(k+1). Si $a^{2^n} \equiv 1$ (2^{n+2}) entonces 2^{n+2} divide a $a^{2^n} - 1$ multiplicando por $a^{2^n} + 1$, que es par, tenemos que 2^{n+1+2} divide a $(a^{2^n} - 1)(a^{2^n} + 1) = a^{2^{n+1}} - 1$.
- 17. Encontrar el resto en la división de a por b en los siguientes casos:
 - a) $a = 11^{13} \cdot 13^8$; b = 12; $Rta: 11^{13} \cdot 13^8 \equiv (-1)^{13} \cdot 1^8 \equiv 11$ (12).
 - b) $a = 4^{1000}; b = 7; Rta: 4^{1000} = (4^6)^{166} 4^4 \equiv (4^2)^2 \equiv 2^2$ (12).
 - c) $a = 123^{456}; b = 31; Rta: 123^{456} \equiv (-1)^{456} \equiv 1 (31).$
 - d) $a = 7^{83}$; b = 10. Rta: $7^{83} = (7^4)^{20}7^3 \equiv 1^{20}343 \equiv 3$ (10).
- 18. Obtener el resto en la división de 2^{21} por 13; de 3^8 por 5 y de 8^{25} por 127. $Rta: 2^{21} = 2^{13}2^8 \equiv 2 \cdot 2^8$ (13) Como $2^32^9 = 2^{12} \equiv 1$ (13), se tiene $82^9 \equiv 1$ (13) y

esto dice que $2^9 \equiv 5$ (13) ya que $8 \cdot 5 = 3 \cdot 13 + 1$.

$$3^8 = 3^4 \cdot 3^4 \equiv 1 \cdot 1 \ (13).$$

 $8^{25} = 2^{75}$ como $2^7 = 128 \equiv 1$ (127); tenemos que $2^{75} = (2^7)^{10}2^5 \equiv 2^5$ (127).

Por lo tanto $8^{25} \equiv 32 \ (127)$

19. a) Probar que no existen enteros no nulos tales que $x^2 + y^2 = 3z^2$.

Rta: Si x, y, z fuesen solución y tuvieran un factor común t es claro que también x/t, y/t.z/t cumpliría las condiciones. Luego podemos asumir que x, y, z no tienen factor en común salvo ± 1 .

Si tomamos congruencia módulo 3 en ambos miembros vemos que la suma de dos cuadrados módulo 3 sólo puede ser 0si ambos números son divisibles por 3. Luego x = 3a, y = 3b, y por lo tanto $x^2 = 9a^2, y^2 = 9b^2$. Podemos simplificar la ecuación y obtenemos $3a^2 + 3b^2 = z^2$. Tomando congruencia módulo 3 nuevamente tenemos que 3 divide a z^2 y por lo tanto divide a z. Esto contradice el hecho que x, y, z no tenían factor común.

b) Probar que no existen números racionales no nulos a, b, r tales que $3(a^2+b^2) = 7r^2$.

Rta: Aquí también podemos asumir que a, b, r no tienen factores en común. Tomando congruencia módulo 3 vemos que 3 divide a r o sea $r = 3t, r^2 = 9t^2$. Reemplazando y simplificando tenemos $a^2 + b^2 = 3t^2$, que sabemos por el inciso anterior que no tiene solución.

- 20. Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} 1$. Rta: Notemos que $1001 = 7 \cdot 11 \cdot 13$. Por lo tanto (a, 1001) = 1 implica (a, 7) = (a, 11) = (a, 13) = 1. Entonces $a^6 \equiv 1$ (7); $a^{10} \equiv 1$ (11) y $a^{12} \equiv 1$ (13). Por lo tanto $a^{720} = ((a^6)^{10})^{12} \equiv 1$ (7 · 11 · 13).
 - (*): ejercicios opcionales de mayor dificultad.
- 21. (*) ¿Para qué valores de n es $10^n 1$ divisible por 11? Rta: Como $10 \equiv -1$ (11), se tiene $10^n - 1 \equiv (-1)^n - 1$ (11). Entonces $10^n - 1$ es divisible por 11 si y solo si n es par.
- 22. (*) Probar que para ningún $n \in \mathbb{N}$ se puede partir el conjunto $\{n, n+1, \ldots, n+5\}$ en dos partes disjuntas no vacías tales que los productos de los elementos que las integran sean iguales.

Rta: Notemos que si fuera posible dicha partición. el n+2 dividiría a ambos productos y uno de ellos no lo contiene. Entonces n+2 debe dividir a (n+2-2)(n+2-1)(n+2+1)(n+2+2)(n+2+3). Esto nos dice que n+2 debe dividir a $(-1)(-2)\cdot 1\cdot 2\cdot 3=12$. Las posibilidades para n+2 son entonces: 1, 2, 3, 4, 6,12. Pero 1 y 2 dan $n \le 0$ y las restantes dan $n \in \{1,2,4,10\}$. Las primera no puede ser pues en el conjunto $\{1,2,3,4,5,6\}$ hay un único elemento divisible por 5, que debería ser divisor de ambos productos de la partición. La misma razón dice que n no puede ser 2 ni 4. Finalmente si n=10, el conjunto sería $\{10,11,12,13,14,15\}$

Matemática Discreta I FAMAF

que posee un único elemento divisible por 7 (el 14) y vale el mismo razonamiento que antes con 7 en lugar de 5.

Alternativamente: Notemos que 7 divide a lo sumo a uno de los 6 números. Si $\prod_{i=0}^5 (n+i) = u_1 u_2$ con $u_1 = u_2$, entonces 7 no divide a ninguno de los factores ya que si divide a un factor de u_1 divide a un factor de u_2 . Tenemos así que las congruencias módulo 7 dan los 6 restos posibles y su producto 720 es congruente a 6 módulo 7. Pero entonces $u_1^2 = u_1 u_2 \equiv 720 \equiv 6$ (7) se tendría que 6 es un cuadrado módulo 7 lo cual es falso.

23. (*) El número 2²⁹ tiene nueve dígitos y todos son distintos. ¿Cuál dígito falta? (No está permitido el uso de calculadora).

Rta: Primero nos planteamos la siguiente pregunta, ¿Cuánto suman sus dígitos? Si $2^{29} = \sum_{i=0}^{8} a_i 10^i$, entonces $\sum_{i=0}^{8} a_i = \sum_{i=0}^{9} i - d$, donde d es el dígito que falta. Esto es $\sum_{i=0}^{8} a_i = 45 - d$. Además $2^{29} = \sum_{i=0}^{8} a_i 10^i \equiv \sum_{i=0}^{8} a_i$ (9). Entonces si calculamos esta congruencia podemos obtener d: $2^{29} = (2^6)^4 2^5 \equiv 2^5$ (9) y $2^5 \equiv 5$ (9) por lo tanto $d \equiv -5$ (9) o sea d = 4 es el dígito faltante.