TEXT MINING for PRACTICE

Python을 활용한 비정형 데이터 분석 - WEEK 12

전병진 FINGEREDMAN (fingeredman@gmail.com)

Part 11.

비정형데이터와 머신러닝

데이터 분석

Machine Learning & Deep Learning

머신러닝 (Machine Learning) 이란?

- ▶ 사람이 직접적으로 규칙을 지정하지 않아도, 컴퓨터가 직접 데이터를 통해 "학습 (learning)"하고 "경험"을 통해 자동으로 문제를 해결하는 방법
- ▶ 기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘 등을 개발하는 분야

머신러닝의 유형

- ▶ 지도학습 (supervised learning) : 입력에 대한 정답을 알고있는 상태에서 대조하며 학습하는 방법
- ▶ 비지도학습 (unsupervised learning) : 정답이 없는 입력값들만 주어진 상태로 학습하는 방법

<u>Machine</u> Learning Types	<u>Tasks</u>	Analysis methods/Algorithms
지도학습 (Supervised Learning)	예측, 추정 (Prediction, Estimation)	 Linear Regression Regression Tree, Model Tree SVM(Support Vector Machine) Neural Network, Deep Learning ARIMA, Exponential Smoothing
	분류 (Classification)	 Decision Tree Logistic Regression, Discriminant Analysis k-NN(k-Nearest Neighbor), CBR(Case-Based Reasoning) Naïve Bayes Classification SVM, Neural Network Ensemble (Bagging, Boosting, Random Forest)
	패턴/구조 발견 (Pattern/Rule)	 Association Rule Analysis, Sequence Analysis Network Analysis, Link Analysis, Graph theory Structural Equation Modeling, Path Analysis
비지도학습	그룹화 (Grouping)	 k-Means Clustering, Hierarchical Clustering, Density-based Clustering, Fuzzy Clustering SOM(Self-Organizing Map)
(Unsupervised Learning)	차원 축소 (Dimension Reduction)	 PCA(Principal Component Analysis), Factor Analysis, SVD(Singular Value Decomposition)
	영상,이미지,문자 (Video, Image, Text, Signal processing)	 Wavelet/Fast Fourier Transformation, DTW(Dynamic Time Warping), SAX(Symbolic Aggregate Approximation), Line/Circular Hough Transformation Text mining, Sentiment Analysis

머신러닝의 유형: 지도학습 (Supervised Learning)

머신러닝의 유형: 비지도학습 (Unsupervised Learning)

머신러닝의 유형: 강화학습 (Reinforcement Learning)

- ▶ 입력변수 (x)와 목표변수 (y) 사이의 복잡한 관계를 어떠한 파라미터 (w)와의 관계로 접근하는 방식
- ▶ 정답을 구하기위한 적절한 파라미터 (w)를 구하고 예측된 값 (pred.)과 정답 (label)과의 차이인 오류 (error, loss) 계산
- ▶ 머신러닝(인공신경망)의 궁극적인 목적은 오류의 평균을 최소로하는 적절한 파라미터 (w)를 도출

W ₁	X ₁	W ₂	X ₂	Yn
	0		1	2
	1	?	2	6
?	1		1	4
	1.5		1	5

$$y = ax_1 + bx_2$$

a	X 1	b	X 2	Уn	Υ	Y - y n
	0		1	y 1	2	2 - y ₁
?	1	?	2	y 2	6	6 - y ₂
•	1	•	1	У з	4	4 - y ₃
	1.5		1	y 4	5	5 - y ₄
					AVG(Y - y _n)	

$$Y_n = W_1 \cdot X_1 + W_2 \cdot X_2$$

W ₁	X 1	W ₂	X ₂	Yn	Y	Y - Yn
	0		1	Yı	2	2 - Y ₁
2	1	?	2	Y ₂	6	6 - Y ₂
?	1	•	1	Y ₃	4	4 - Y ₃
	1.5		1	Y 4	5	5 - Y ₄
					AVG(Y - Y _n)	

$$Y_n = 1 \cdot X_1 + 2 \cdot X_2$$

W ₁	X ₁	W ₂	X_2	Yn	Y	Y - Y _n
	0		1	2	2	0
•	1	2	2	5	6	-1
•	1	_	1	3	4	-1
	1.5		1	3.5	5	-1.5
					AVG(Y - Y _n)	-0.875

$$Y_n = 2 \cdot X_1 + 2 \cdot X_2$$

W ₁	X ₁	W ₂	X_2	Yn	Y	Y - Yn
	0	2	1	2	2	0
2	1		2	6	6	0
2	1		1	4	4	0
	1.5		1	5	5	0
					AVG(Y - Y _n)	0

Pred. =
$$2 \cdot X_1 + 2 \cdot X_2$$

W ₁	X ₁	W ₂	X ₂	Pred.	Label	Error
	0	2	1	2	2	0
2	1		2	6	6	0
	1		1	4	4	0
	1.5		1	5	5	0
					Loss	0

Artificial Neural Network

$$Y_{1} = W_{1} \cdot X_{1} + W_{2} \cdot X_{2}$$

Artificial Neural Network

16

E.O.D