Assignment 1

14-01-2019

- (1) Let $S \subset \mathbb{R}$ and $a \in \mathbb{R}$. Define what it means to say that
 - (a) a is a minimum of the set S.
 - (b) the set S has a minimum.
- (2) Prove the following statements given that \mathbb{R} is a field. State clearly the axioms you are using.
 - (a) For all $a, b, c \in \mathbb{R}$ a + b = a + c implies b = c.
 - (b) For all $a, b, c \in \mathbb{R}$ and $a \neq 0$, $a \cdot b = a \cdot c$ implies b = c
 - (c) For all $a \in \mathbb{R}$, $a \cdot 0 = 0$
 - (d) If for any $a, b \in \mathbb{R}$, $a \cdot b = 0$ then a = 0 or b = 0.
 - (e) For all $a \in \mathbb{R}, -a = (-1) \cdot a$
 - (f) For all $a, b \in \mathbb{R}$, $a, b \neq 0$, then $1/(a \cdot b) = (1/a) \cdot (1/b)$
- (3) Prove the following statements given that \mathbb{R} is an ordered field. State clearly the axioms you are using.
 - (a) For all $a, b \in \mathbb{R}$, if a < b then (-b) < (-a).
 - (b) 0 < 1.
 - (c) For all $a, b \in \mathbb{R}$, is 0 < a < b then 0 < 1/b < 1/a.
 - (d) $a \in \mathbb{R}, a \neq 0$ then $a^2 > 0$.
 - (e) If for some $a, b \in \mathbb{R}$, $a^2 + b^2 = 0$ then a = b = 0.
 - (f) For all $a, b \in \mathbb{R}$, if 0 < ab then 0 < a, b or a, b < 0.
 - (g) For all $a, b \in \mathbb{R}$, if ab < 0 then a < 0, 0 < b or b < 0, 0 < a.
 - (h) If $a \in \mathbb{R}$ is such that $a \cdot a = a$ then a = 0 or a = 1.
 - (i) For all $a, b \in \mathbb{R}$, if 0 < a < b then $a^2 < b^2$
 - (j) For all $a, b \in \mathbb{R}$, if 0 < a < b then $a < \sqrt{a \cdot b} < b$
 - (k) For all $a, b \in \mathbb{R}$, if $a \le b$ then $a \le \frac{a+b}{2} \le b$
 - (l) For all $a, b \in \mathbb{R}$, if 0 < a < b then $\sqrt{a \cdot b} < \frac{a + b}{2}$

Notation i) a^2 denotes $a \cdot a$

ii) \sqrt{x} is a number such that $(\sqrt{x})^2 = x$.

As we have not proven that such a number does exist, you may assume for now that it does.