Lý thuyết Điều khiển tự động 1

Phương pháp IMC

Bộ điều khiến dự báo Smith

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Phương pháp IMC

Đặc điểm của phương pháp

- Cấu trúc bộ điều khiển bao gồm cả mô hình toán học của đối tượng
- Đối với một số dạng mô hình đối tượng, bộ đk thiết kế theo phương pháp IMC có dạng của bộ đk PID

Phương pháp IMC (tiếp)

$$G_k(s) = \frac{G_{DK}(s)G(s)}{1 + G_{DK}(s)G(s)} = 1$$
 (2)

Thế (1) vào (2), ta được
$$G_{IMC}(s)\tilde{G}(s) = 1 \iff G_{IMC}(s) = \frac{1}{\tilde{G}(s)}$$

Bộ đk IMC trong thực tế

• Đối tượng có pha cực tiểu

$$G_{IMC}(s) = \frac{1}{\tilde{G}(s)}G_{L}(s)$$

với
$$G_L(s) = \frac{1}{(1+T_L s)^r}$$

với $G_L(s) = \frac{1}{(1+T_I s)^r}$ T_L chọn đủ nhỏ để bộ lọc ít ảnh hưởng đến động học của hệ thống

r chọn để bộ đk "khả thi"

• Đối tượng không có pha cực tiểu $\tilde{G}(s) = G_{-}(s)G_{+}(s)$

$$\tilde{G}(s) = G_{-}(s)G_{+}(s)$$

trong đó $G_{-}(s)$ thành phần có pha cực tiểu

 $G_{+}(s)$ thành phần có pha không cực tiểu

Khi đó

$$G_{IMC}(s) = \frac{1}{G_{-}(s)}G_{L}(s)$$

Bộ điều khiển dự báo Smith

Đặc điểm của phương pháp

- Là phương pháp thiết kế bộ đk PID kết hợp bù trễ cho đối tượng có trễ lớn
- Sử dụng khi mô hình hàm truyền đạt của đối tượng đủ chính xác

Bộ đk dự báo Smith

Từ sơ đồ cấu trúc ở hình bên, ta có

$$Y_{FH}(s) = \tilde{G}(s)U(s) + (G_0(s)e^{-Ls} - \tilde{G}(s)e^{-\tilde{L}s})U(s)$$

Nếu
$$\tilde{G}(s) = G_0(s)$$
 và $\tilde{L} = L$ thì $Y_{FH}(s) = \tilde{G}(s)U(s)$

Nhưng vì
$$U(s) = \frac{1}{G_0(s)e^{-Ls}}Y(s)$$
 và $\tilde{G}(s) = G_0(s)$

nên
$$Y_{FH}(s) = \tilde{G}(s) \frac{1}{G_0(s)e^{-Ls}} = e^{Ls}Y(s)$$

Bộ điều khiển dự báo Smith (tiếp)

 \implies $y_{FH}(t) = y(t+L)$ và tín hiệu hồi tiếp là dự báo của tín hiệu đầu ra

Do đó, việc thiết kế bộ điều khiển $G_{DB}(s)$ có thể dựa trên mô hình không có trễ $\tilde{G}(s)$

Sử dụng các phương pháp thiết kế bộ điều khiển PID đã biết

Nhận xét

Biến đổi sơ đồ trên về sơ đồ sau.

$$G_{DK}(s) = \frac{G_{DB}(s)}{1 + G_{DB}\tilde{G}(s)(1 - e^{-\tilde{L}s})}$$

