Ç

Generalized Least Squares (GLS)

Generalized Least Squares

What do we do if the errors are correlated or heteroscedastic?

Suppose $e \sim N_n(0, \Sigma)$, where Σ is the variance-covariance matrix. We will consider two cases:

- \bullet Σ known (this is an idealized case from which we can get some insight)
- Σ unknown (e.g. regression with time series data, spatial data, etc.)

We will discuss some examples and R code

-

GLS: Σ known

- Assume $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ and $\mathbf{e} \sim N_n(\mathbf{0}, \Sigma)$ where Σ is a known, symmetric, positive definite covariance matrix.
- Transform this problem back to Ordinary Least-Squares (OLS). Write $\Sigma = SS^{\top}$ where we assume S^{-1} exists. We could use, for example, the Cholesky decomposition from linear algebra to obtain S. Multiply the model equation by S^{-1} on both sides:

$$S^{-1}\mathbf{y} = S^{-1}(\mathbf{X}\boldsymbol{\beta} + \mathbf{e})$$
$$\mathbf{y}^* = \mathbf{X}^*\boldsymbol{\beta} + \mathbf{e}^*$$
$$\mathbf{e}^* \sim (S^{-1}\mathbf{0}, S^{-1}\Sigma(S^{-1})^\top) = N(\mathbf{0}, \mathbf{I})$$

1

• Now we can solve for β using OLS:

$$\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta} + \mathbf{e}^*, \quad \mathbf{y}^* = S^{-1} \mathbf{y}, \quad \mathbf{X}^* = S^{-1} \mathbf{X}$$
$$\hat{\boldsymbol{\beta}} = [\mathbf{X}^{*\top} \mathbf{X}^*]^{-1} \mathbf{X}^{*\top} \mathbf{y}^*$$
$$= (\mathbf{X}^{\top} (S^{-1})^{\top} S^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} (S^{-1})^{\top} S^{-1} \mathbf{y}$$
$$= (\mathbf{X}^{\top} \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{\Sigma}^{-1} \mathbf{y}$$

• Note that the solution minimizes:

$$||\mathbf{y}^* - \mathbf{X}^* \boldsymbol{\beta}||^2 = (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})^{\top} \underline{\Sigma}^{-1} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$

Weighted Least Squares (WLS)

ullet Suppose that Σ is a diagonal matrix of unequal error variances:

$$\Sigma = diag(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2)$$

• The GLS estimate of β minimizes:

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{(y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2}{\sigma_i^2}$$

This problem is known as the Weighted Least-Squares (WLS).

• Note that the errors are weighted by $1/\sigma_i^2$: smaller weights for samples with larger variances.

4

WLS Example

strongx data set from the faraway library.

A large number of observations taken for each *momentum* measurement, allows to have a good estimate of the standard deviation sd for each value of the response crossx at each energy level. We can use $weights = 1/sd^2$ as a parameter in the Im(.) call.

```
data("strongx")
names(strongx)

## [1] "momentum" "energy" "crossx" "sd"

g=lm(crossx ~ energy, strongx, weights=1/sd^2)
summary(g)
```

OLS vs. WLS

The WLS line departs from values with higher variance (smaller weights)

WLS Special case: Replicated Observations

Suppose we collected multiple observations for each x_i . We use double subscripts to indicate the replicate observations:

$$(\mathbf{x}_i, y_{i1}, y_{i2}, \dots, y_{in_i})$$

Let y_i denote the average of the n_i observations sharing \mathbf{x}_i . Then the residual sum of squares for β equals

$$\sum_{i=1}^{n} \sum_{j=1}^{n_i} (y_{ij} - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2 = \sum_{i=1}^{n} n_i (y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2 + \sum_{i=1}^{n} \sum_{j=1}^{n_i} (y_{ij} - y_i)^2$$

Minimizing the RSS to solve for β is the same as minimizing the first term on the right only (why?). Because $Var(y_i) = \sigma^2/n_i$, we use WLS on the y_i :

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} n_i (y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2$$

In **R**: Use weights in the Im(.) function: $Im(y_i \sim ..., weights = n_i,...)$

Maximum Likelihood Estimation when Σ is known

- Model: $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \Sigma)$
- Log-likelihood:

$$\log(p(\mathbf{y}|\boldsymbol{\beta}, \boldsymbol{\Sigma}))$$

$$= \log \left\{ \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp[-\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})] \right\}$$

$$= -\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + Constant.$$

Therefore the MLE is given by

$$\hat{\boldsymbol{\beta}}_{mle} = \arg\min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \Sigma^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

0

Generalized Least-Squares: Σ unknown

How about using the following iterative approach?

- $\textbf{ 0} \ \, \text{Start with some initial guess of } \Sigma$
- **2** Use Σ to estimate β
- **1** Use residuals (since we have known β) to estimate Σ
- Iterate until convergence

It looks like a good idea; however the methods will not work if we do not assume some structure about Σ (too many parameters to be estimated).

g

Usually, based on the application, we can assume a particular structure for Σ that does not involve too many parameters. Then we can model $\boldsymbol{\beta}$ and Σ simultaneously. For example , for AR(1) times series (auto-regressive model of order 1), the structure of Σ would be:

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 & \dots \\ \rho & 1 & \rho & \rho^2 & \dots \\ \dots & \dots & \dots & \dots \\ \rho^{n-1} & \rho^{n-2} & \dots & \dots & 1 \end{pmatrix}$$

 Σ as a function of ρ and σ^2 . Use the **nlme** package in **R**

Example with auto-correlated errors

Time series data

- Longley's Economic Regression Data: A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n=16).
- GNP.deflator: GNP implicit price deflator (1954=100)
- · GNP: Gross National Product.
- Unemployed: number of unemployed.
- · Armed.Forces: number of people in the armed forces.
- Population: 'noninstitutionalized' population ≥ 14 years of age.
- Year
- Employed: number of people employed.

```
library(faraway)
data(*longley*)
head(longley)
```

##		GNP.deflator	GNP	Unemployed	Armed.Forces	Population	Year	Employed
##	1947	83.0	234.289	235.6	159.0	107.608	1947	60.323
##	1948	88.5	259.426	232.5	145.6	108.632	1948	61.122
##	1949	88.2	258.054	368.2	161.6	109.773	1949	60.171
##	1950	89.5	284.599	335.1	165.0	110.929	1950	61.187
##	1951	96.2	328.975	209.9	309.9	112.075	1951	63.221
##	1952	98.1	346.999	193.2	359.4	113.270	1952	63.639

Example with auto-correlated errors

Residuals after fitting the model: $g = Im(Employed \sim GNP + Population, data=longley)$

Test for autocorrelation

Use Durbin-Watson test from the Imtest library to test autocorrelation.

Null hypothesis: Errors are not auto-correlated

```
##
## Durbin-Watson test
##
## data: g
## DW = 1.3015, p-value = 0.02245
## alternative hypothesis: true autocorrelation is greater than 0

#D-W test shows the errors are signifficantly correlated
#Solution: Fit a Regression with autocorrelated errors.
library(nlme)
g = gls(Employed ~ GNP + Population, correlation = corAR1(form= ~ Year), data=longley)
summary(g)
```

Use function gls from library nlme