

On-line Recognition of Handwritten Mathematical Symbols

Bachelor's thesis of Martin Thoma Martin Thoma | 5th of June, 2014

$$1 + \frac{1}{1 + 1} \qquad \frac{1 + \sqrt{5}}{2}$$

Contents

1 What is my Bachelor's thesis about?

- Preprocessing and Features
- **Evaluation**

What is my Bachelor's thesis about?

- Recognition of handwritten mathematical symbols
- On-line recognition, not OCR!
- Given a series of points (x(t), y(t), b(t))I want to get the LATEX command.

Why did I work on this topic?

- LATEX is easy as soon as you know the \commands.
- It's hard to find the LATEX command of single symbols.
- It's much harder to find complete formulas.

For now: recognition of isolated symbols.

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Normalizing

- Scaling
- Shifting
- Resampling

Noise reduction

- Smoothing (e.g. moving average)
- Dot reduction
- Filtering (by distance, speed or angle)
- Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance,

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

Features

- Local
 - Coordinates
 - Speed
 - Binary pen pressure
 - Direction
 - Curvature
 - Bitmap-environment
 - Hat-Feature
- Global
 - # of points
 - # of strokes
 - Center point
 - Bitmap
 - Bounding box (width, height, time)
 - Re-curvature
 - Ink

Merged symbols (MER error)

Base symbol		equivalent symbols		
LATEX	Rendered	LATEX	Rendered	
\sum	\sum	\$\Sigma\$	Σ	
\prod	Π	\$\Pi\$	Π	
		\$\sqcap\$	П	
\coprod	\coprod	\$\amalg\$	П	
		\$\sqcup\$		
\perp	\perp	\$\bot\$	\perp	
\models	=	\$\vDash\$	⊨	
1		\mid		
\Delta	Δ	\$\triangle\$	\triangle	
		<pre>\$\vartriangle\$</pre>	Δ	

Merged symbols (MER error)

Base symbol		equivalent symbols		
MEX	Rendered	lat _e x	Rendered	
\I		<pre>\$\parallel\$</pre>		
\olimits	Ω	\$\Omega\$	Ω	
\setminus	\	\$\backslash\$	\	
\checked	✓	\$\checkmark\$	\checkmark	
\&	&	\$\with\$	&	
\#	#	\$\sharp\$	#	
\ S	§	\$\mathsection\$	§	
\nabla	∇	\triangledown	∇	
\lhd	\triangleleft	<pre>\$\triangleleft\$</pre>	⊲	
		<pre>\$\vartriangleleft\$</pre>	\triangleleft	
\emptyset	\oiint	<pre>\$\varoiint\$</pre>	∯	

Merged symbols (MER error)

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Base symbol		equivalent symbols		
L TEX	Rendered	LATEX .	Rendered	
\mathbb{R}	\mathbb{R}	\$\mathds{R}\$	\mathbb{R}	
\mathbb{Q}	\mathbb{Q}	\mathds{Q}	$\mathbb Q$	
\mathbb{Z}	${\mathbb Z}$	\mathds{Z}	${f Z}$	
\mathbb{A}	${\cal A}$	\mathscr{A}	\mathscr{A}	
\mathbb{D}	${\cal D}$	\mathscr{D}	\mathscr{D}	
\mathbb{N}	$\mathcal N$	\mathscr{N}	N	
\mathbb{R}	${\cal R}$	\mathscr{R}	${\mathscr R}$	
\propto	\propto	<pre>\$\varpropto\$</pre>	Œ	

Experiments

Preprocessing: Scaling, shifting and linear interpolation

Features: Coordinates of 80 points (4 strokes with 20 points each)

Learning: MLP, 1000 epochs, LR $\eta=0.1$, Momentum $\alpha=0.1$

Custom	Topology	Classification error		
System		TOP1	TOP3	MER
$\overline{B_1}$	160:500:369	23.34 %	6.80 %	6.64 %
B_2	160:500:500:369	$\underline{21.51\%}$	5.75%	5.67%
B_3	160:500:500:500:369	21.93%	5.74%	5.64%
B_4	160:500:500:500:500:369	23.88%	6.12%	6.04%

Table: Baseline systems with three different classification error measures. All errors were measured on the test set.

Complex classifier

Preprocessing: Connect strokes, scale, shift and linear interpolation

Features: Coordinates of 80 points (4 strokes with 20 points each),

re-curvature per stroke, ink, stroke count, aspect ratio

Learning: MLP, 1000 epochs, LR $\eta = 0.1$, Momentum $\alpha = 0.1$,

supervised layer-wise pretraining

System	Classification error					
Oyste	TOP1	change	TOP3	change	MER	change
$B_{1,c}$	20.96%	-2.38%	5.24%	-1.56%	5.13%	-1.51%
$B_{2,c}$	18.26%	-3.25%	4.07%	-1.68%	3.98%	-1.69%
$B_{3,c}$	$\underline{18.19\%}$	-3.74%	4.06 %	-1.68%	3.99%	-1.65%
$B_{4,c}$	18.57%	-5.31%	4.25%	-1.87%	4.18%	-1.86%

Table: Error rates of the complex recognizer systems.

HWRT and write-math.com

Two software projects were created:

- write-math.com: A website where on-line handwritten data gets collected and classified
- hwrt: The handwriting recognition toolkit is a Python project for handwriting recognition

This presentation and the bachelor's thesis will be at martin-thoma.com/write-math.

Image Sources

- Server by RRZEicons
- Desktop Computer by Ed g2s, Ironbrother, Kierancassel and Msgj
- Server by Mimooh

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Thanks for Your Attention!

