

Inferência Estatística III

Análises de Variâncias

Prof. Dr. Juliano van Melis Parte I

Parte 1 Conteúdo

- Análise da Variância ANOVA
 - Introdução
 - Pressupostos da ANOVA
 - Teste de Levine para homogeneidade da variância
 - Estatística F para testar igualdade de várias médias
 - Interpretação do Quadro ANOVA
 - Outputs R, SPSS e SAS
 - ANOVA de um fator com o MS Excel® e R
 - ANOVA com dois fatores com MS Excel® e R
 - ANOVA com medidas repetidas
- Teste de Kruskall-Wallis

Parte 2

Conteúdo

· Correlação Linear Simples

- Coeficiente Correlação Linear de Pearson
- Significância da correlação linear
- Medida de associação paramétrica
- Teste t student para análise da significância CLP
- Aplicações e análises com MS Excel® e R

· Medida de associação não-paramétrica

- Teste de Spearman
- · Correlação Bisserial
- Avaliação

ANOVA - ANÁLISE DE VARIÂNCIA

ANOVA com & Médias

- → Teste paramétrico (possui estimativas de
- →Utilizado quando o pesquisador deseja verificar se existem diferenças entre as médias de uma determinada variável (variável resposta) em relação a um tratamento com dois ou mais níveis categóricos (variável preditora).

→ O teste t também é utilizado nesse tipo de procedimento (com no máximo de dois níveis), porém a ANOVA é indicada para análises com n > 30.

Variável resposta (métrica) Variável preditora (categórica)

ANOVA de ANOVA com & Médias

Definição: "Técnica estatística usada para determinar se as amostras de dois ou mais grupos surgem de populações com médias iguais. A análise de variância é empregada para uma medida dependente"

Variável Dependente (métrica) Variável Independente (categórica)

Soma dos Desvios Quadrados ENTRE os grupos

"Sum of Squares **BETWEEN**"

$$SSD_{B} = \sum_{i} \sum_{j} (\bar{x}_{i} - \bar{x}_{.})^{2} = \sum_{i} n_{i} (\bar{x}_{i} - \bar{x}_{.})^{2}$$

Soma dos Desvios Quadrados DENTRO dos grupos "Sum of Squares WITHIN"

$$SSD_W = \sum_{i} \sum_{j} (x_{ij} - \bar{x}_i)^2$$

É possível normalizar a soma dos quadrados, calculando a *média dos desvios quadrados*

$$MS_W = SSD_W/(N-k)$$

 $MS_B = SSD_B/(k-1)$

Mean Squares Within & Between

N: número totalk: número de grupos

Introdução Homocedasticidade ANOVA de Ressupostos & Médias um fator dois fatores repetidas

Pressupostos

- Resíduos (erros) devem seguir uma distribuição normal: erro_{ii} ~ N(0, σ²)
- Homogeneidade das variâncias: As contribuições das variâncias dos grupos devem ser equivalentes para a variância total.
- 3. Amostras independentes: a observação de uma variável não pode influenciar outra observação. Atenção para medidas repetidas!

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

$$F = MS_B/MS_W$$

Se o valor de F = 1

→ Médias dos Quadrados ENTRE os grupos é semelhante às Médias dos Quadrados DENTRO dos grupos.

Se o valor de F < 1

- → Médias dos Quadrados ENTRE os grupos é menor que as Médias dos Quadrados DENTRO dos grupos.
- → Nesses dois casos, as variâncias dentro dos grupos é tão grande que sobressaem a qualquer sinal que os grupos tenham.

Se o valor de F > 1

- ightarrow Médias dos Quadrados *ENTRE* os grupos é maior que as Médias dos Quadrados *DENTRO* dos grupos.
- →Nesse caso, os grupos parecem ter papel importante para a variação dos valores.

Introdução & Pressupostos	Homocedasticidade & Médias	ANOVA de um fator	ANOVA com dois fatores	ANOVA medidas repetidas
------------------------------	-------------------------------	----------------------	------------------------	-------------------------

$$F = MS_B/MS_W$$

			Degrees of freedom in numerator (df1)									
	p	1	2	3	4	5	6	7	. 8	12	24	1000
1	0.100	39.85	49.50	53,59	55.83	57.24	58.20	58.91	59.44	80.71	62.00	83.30
	0.050	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	243.9	249,1	254.3
	0.025	647.8	799.5	864.2	899.6	921.8	937.1	948.2	955.6	976.7	997.3	1017.8
	0.010	4052	4999	5404	5624	5764	5859	5928	5981	6107	6234	8383
	0.001	405312	499725	540257	562668	576498	566033	593185	597954	610352	623703	636101
2	0.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.41	9.45	9.4
	0.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.41	19.45	19.40
	0.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.41	39.46	39.50
	0.010	98.50	99.00	99.16	99.25	99.30	00.33	99.36	99.38	99.42	99.46	00.50
	0.004	000 20	009.04	000.21	000.21	000.21	000 21	000.21	000.21	000.21	000.91	000.2

Introdução Homocedasticidade & ANOVA de & Pressupostos & Médias um fator dois fatores repetidas

→Teste de Fisher

Hipótese nula: Variâncias são iguais

Hipótese alternativa: Variâncias não são iguais

$$W = S_1^2/S_2^2 \sim F(n-1, m-1)$$

Introdução Homocedasticidade ANOVA de ANOVA com & Médias →Teste de Fisher > variancias <- tapply(dados\$valor, dados\$plantacao, FUN=var)</pre> > variancias p1 1.097398 1.264867 > variancias[1]/variancias[2] 0.8675999 > var.test(valor ~ plantacao, dados) F test to compare two variances data: valor by plantacao F=0.8676, num df=29, denom df=29, p-value=0.7047 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.412947 1.822824 sample estimates: ratio of variances

0.8675999

→Teste de Levene

W ~ Distribuição F gl₁= k-1 e gl₂= N-k

Definition [edit]

The test statistic, W, is defined as follows:

$$W = rac{(N-k)}{(k-1)} rac{\sum_{i=1}^k N_i (Z_{i\cdot} - Z_{\cdot\cdot})^2}{\sum_{i=1}^k \sum_{j=1}^{N_i} (Z_{ij} - Z_{i\cdot})^2},$$

where

- ullet is the number of different groups to which the sampled cases belong,
- ullet N_i is the number of cases in the ith group,
- N is the total number of cases in all groups,
- ullet Y_{ij} is the value of the measured variable for the jth case from the ith group,
- $\bullet \ Z_{ij} = \left\{ \begin{aligned} |Y_{ij} \tilde{Y}_{i\cdot}|, & \tilde{Y}_{i\cdot} \text{ is a mean of the i-th group,} \\ |Y_{ij} \tilde{Y}_{i\cdot}|, & \tilde{Y}_{i\cdot} \text{ is a median of the i-th group.} \end{aligned} \right.$

Introdução Homocedasticidade ANOVA de Ressupostos & Médias um fator dois fatores ANOVA medidas repetidas

EXEMPLO

plantacao

Introdução & Pressupostos	0.107.11	ANOVA de um fator	ANOVA com dois fatores	ANOVA medidas repetidas
EXEMPLO				
> anova(mod) Analysis of Va	riance Table			R
Response: valo	r ium Sa Mean Sa F val	ue Pr(>F)	
	1.453 61.453 52.0			
Signif, codes:	0 '***' 0.001 '**	' 0.01 '*'	0.05 '.' 0.1	1
>				_

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator

TABELA ANOVA 1-FATOR

Fonte da Variação	SQ	gl	Variância	Razão F
Entre	SQE	k - 1	$S_{entre}^2 = \frac{SQE}{k-1}$	$F = \frac{S_{\text{entre}}^2}{S_{\text{entre}}^2}$
Dentro	SQD	n - k	$S_{dentro}^2 = \frac{SQD}{n - k}$	S ² _{dentro}
Total	SQT = SQE+SQD	n - 1		

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_anova_sect003.htm

https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php

 $\underline{\text{https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php}$

https://www.marsja.se/four-ways-to-conduct-one-way-anovas-using-python/

& Médias

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas

um fator

dois fatores

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas Pressupostos & Médias um fator dois fatores repetidas

Variável métrica Y

ANOVA de

um fator

ANOVA de

Introdução Homo

Introdução Homo

& Médias

ANOVA com

Introdução Homocedasticidade Pressupostos & Médias ANOVA de um fator

→ Fazer Tukey HSD (ou outro teste post hoc)

Teste Tukey HSD (Honest Significant Difference)

$$HSD = \frac{\overline{X_a} - \overline{X_b}}{\sqrt{\frac{MS_{within}}{n_{grupo}}}}$$

→ É realizado *APÓS* ANOVA

As diferenças são significativas quando os "intervalos" não estão encostados no eixo 0.

Fonte: http://doi.org/10.1371/journal.pone.0170375

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

ETAPAS NECESSÁRIAS PARA EFETUAR UMA ANOVA

 Verifique se os dados contínuos seguem uma distribuição normal

shapiro.test(y)

2. Verifique o pressuposto de homocedasticidade $var.test(y \sim x)$

bartlett.test(y ~ x)
levene.test(y ~ x)

- 3. Variáveis são independentes?
- + Número amostral semelhante
- + Amostragem suficiente

TESTAR VALIDADE DA ANOVA

- 1. ANOVA significativa, execute um teste post hoc TukeyHSD (aov $(y \sim x)$)
- 2. Cheque as homogeneidade das variâncias plot(aov(y ~ x), which=1)
- 3. Distribuição Normal dos resíduos plot (aov (y ~ x), which=2)
- → Considere Teste Não-paramétrico: Kruskal-Wallis

 Os resíduos devem apresentar uma distribuição normal (Gráfico Quantil-Quantil deve seguir a linha diagonal)

- Faça e interprete uma ANOVA com uma das características das flores (comprimento/largura da sépala/pétala).
- Deve ser realizado um teste post hoc? Caso positivo, faça e interprete o teste post hoc.
- Cheque os pressupostos e a validade do teste.

→ Quando há o interesse de verificar a relação entre duas variáveis categóricas em relação a uma variável contínua

len [numérico]: Comprimento do Dente ("Tooth length") supp [fator]: Tipo de suplemente ("Supplement type"):

VC: Vitamine C

OJ: Orange Juice.

dose [numeric]: Dose em mg/dia ("Dose in milligrams/day")


```
dois fatores
                    & Médias
                                                                      repetidas
                                      um fator
  ANOVA_adit <- aov(len ~ factor(dose)
                                                 + supp, data= dente)
> Summary(ANOVA_adit)

Df Sum Sq Mean Sq F value
factor(dose) 2 2426.4 1213.2 82.81
supp 1 205.4 205.4 14.02
                                                  Pr(>F)
                                        82.81 < 2e-16 ***
14.02 0.000429 ***
                                                 < 2e-16 ***
Residuals
               56 820.4
                               14.7
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                   Y \sim X1 + X2
          Numérico Fator
                                      Fator
```

→ Esse é um modelo aditivo

→ Se não estiver como fator, observe g.l.

supp	dose	supp:dose
ОС	0.5	OC:0.5
	1.0	OC:1.0
	2.0	OC:2.0
VC	0.5	VC:0.5
	1.0	VC:1.0
	2.0	VC:2.0

edasticidade ANOVA de ANOVA com Médias um fator dois fatores

→ Desenho balanceado?

Introdução Homocedasticid

table(dente\$supp,dente\$dose)

&	Introdução Ho Pressupostos	mocedasticidade & Médias	ANOVA de ANOVA um fator dois fa	A com ANOVA medida atores repetidas
	dose	0.5	1.0	2.0
	VC	4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7	16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5	23.6 18.5 18.5 25.5 26.4 32.5 26.7 21.5 23.3 29.5
	OJ	15.2 21.5 17.6 9.7 14.5 10 8.2 9.4 16.5 9.7	19.7 23.3 23.6 26.4 20 25.2 25.8 21.2 14.5 27.3	25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23

& Pressupostos & Médias um fator dois fatores repetidas	Introdução Homocedasticidade & Pressupostos & Médias			
---	--	--	--	--

Soma dos Desvios Quadrados para o fator dose (colunas)

$$SSD_{colunas} = m \sum_{j} \left(\overline{x_{\bullet j}} - \overline{x_{\bullet \bullet}} \right)^{2}$$

 $\overline{x_{ullet j}}$: Média da coluna $oldsymbol{j}$

 \mathcal{X}_{ullet} : Média geral

 $m{m}$: número de elementos para cada coluna $m{j}$

&	Introdução Ho Pressupostos	mocedasticidade & Médias		A com ANOVA medida atores repetidas
	dose supp	0.5	1.0	2.0
	VC	42 11.5 7.3 5.8 6.4 10 0 11.2 11.2 5.2 7	16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5	23.6 18.5 33.9 25.5 26.4 32.6 22.7 26.7 21.5 23.3 29.5
	OJ	15.2 21.5 17.6 9.7 14.5 10 8.2 9.4 16.5 9.7	19.7 23.3 23.6 26.4 20 25.2 25.8 21.2 14.5 27.3	25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23
	$\overline{\mathcal{X}}_{ullet}$	10.605	19.735	26.1

& Pressupostos & Médias	um fator	dois fatores	repetidas				
Soma dos Desvios Quadrados para o fator dose (colunas)							
$SSD_{columas} = m \sum_{j} \left(\overline{x_{\bullet j}} - \overline{x_{\bullet \bullet}} \right)^{2}$							
_			1				
$SSD_{columas} = 20 \times \left[(10.605 - 18.3) \right]$	31)2 + (19.73	5-18.81)2 +	(26.1–18.81) ²]				
SSD_{column}	$_{us} = 2420$	5.43					
gl = (classe	es nas co	lunas-1)					

Introdução & Pressupostos	Homocedasticidade & Médias	ANOVA de um fator	ANOVA com dois fatores	ANOVA medidas repetidas

Soma dos Desvios Quadrados para o fator supp (linhas)

$$SSD_{linhas} = n \sum_{i} \left(\overline{x_{i \bullet}} - \overline{x_{\bullet \bullet}} \right)^{2}$$

 $\overline{x_{i\bullet}}$: Média da linha i

x : Média geral

 $m{n}$: número de elementos para cada linha $m{i}$

Introdução & Pressupostos		cidade ANOVA s um fat		
dose supp	0.5	1.0	2.0	$\overline{x_i}$
VC	4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7	16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5	23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5	16.963
OJ	15.2 21.5 17.6 9.7 14.5 10 8.2 9.4 16.5 9.7	19.7 23.3 23.6 26.4 20 25.2 25.8 21.2 14.5 27.3	25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23	20.663

Soma dos Desvios Quadrados para o fator supp (linhas)

$$SSD_{linhas} = n \sum_{i} \left(\overline{x_{i \bullet}} - \overline{x_{\bullet \bullet}} \right)^{2}$$

$$SSD_{linhas} = 30 \times [(16.963 - 18.81)^2 + (20.663 - 18.81)^2]$$

$$SSD_{linhas} = 205.35$$

gl = (classes nas linhas-1)

Introdução	Homocedasticidade	ANOVA de	ANOVA com	ANOVA medidas
& Pressupostos	& Médias	um fator	dois fatores	repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i \bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

Introdução ^I & Pressupostos	Homocedasticidade & Médias		OVA com ANOVA i s fatores repe	
supp	0.5	1.0	2.0	
VC	42 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7	16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5	23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5	
$\overline{\mathcal{X}}_{ij}$	7.98	16.77	26.14	
OJ	15.2 21.5 9.7 14.5 10 8.2 9.4 16.5 9.7	19.7 23.3 23.6 26.4 20 25.2 25.8 21.2 14.5 27.3	25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23	
$\overline{\mathcal{X}}_{ij}$	13.23	22.7	26.06	

lucture alone 2 e	Homocedasticidade	ANOVA do	ANOVA com	ANOVA medidae
Introdução	nomoceuasticiuaue	ANOVA de	AITO VA COIII	ANO VA III Euluas
	0 845-11	um fator	dois fatores	repetidas
& Pressupostos	& Médias	umiator	uois iatores	repetiuas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\rm int} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

dose supp	0.5	1.0	2.0	
vc				
OJ				

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{int} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i \bullet}} - \overline{x_{\bullet j}} + \left(\overline{x_{\bullet \bullet}} \right)^{2} \right)$$

dos	e 0.5	1.0	2.0	
vc				
OJ				
				18.81

Introdução Homocedasticidade ANOVA de & NOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{i} \left(\overline{x_{ij}} \left(\overline{x_{i}} \right) - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

supp	ose 0.5	1.0	2.0	<i>x</i> _{<i>i</i>} .
vc				16.96
OJ				20.66
<i>x</i> .,	10.61	19.73	26.1	18.81

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} (\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}})^{2}$$

dose supp	0.5	1.0	2.0	<i>x</i> _{<i>i</i>*}
vc				16.96
xij	7.98	16.77	26.14	
OJ				20.66
xij	13.23	22.7	26.06	
<i>x</i> .,	10.61	19.73	26.1	18.81

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

do supp	o.5	1.0	2.0	<i>x</i> _{<i>i</i>} .
vc	SSD ₁₁	SSD ₁₂	SSD ₁₃	16.96
xij	7.98	16.77	26.14	
OJ	SSD ₂₁	SSD ₂₂	SSD ₂₃	20.66
xij	13.23	22.7	26.06	
<i>x</i> _{•<i>i</i>}	10.61	19.73	26.1	18.81

Introdução Homocedasticidade ANOVA de A & Pressupostos & Médias um fator d

ANOVA com ANOVA medidas dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

supp	dose	0.5	1.0	2.0	x_{i*}
vc		(7.98 - 16.96 -10.61 +18.81) ²	(16.77 - 16.96 -19.73 +18.81) ²	(26.14 - 16.96 -26.01 +18.81) ²	16.96
xij		7.98	16.77	26.14	
OJ		(13.23 - 20.66 -10.61 +18.81) ²	(22.7 - 20.66 -19.73 +18.81) ²	(26.06 - 20.66 -26.1 +18.81) ²	20.66
xij		13.23	22.7	26.06	
x.	i	10.61	19.73	26.1	18.81

Introdução Homocedasticidade ANOVA de ANOVA com & ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

		•	J		
supp	dose	0.5	1.0	2.0	
vc		10*0.601	10*1.243	10*3.572	
OJ		10*0.601	10*1.243	10*3.5721	

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados para a interação entre fator supp (linhas) e fator dose (colunas)

$$SSD_{\text{int}} = \sum_{i} \sum_{j} \left(\overline{x_{ij}} - \overline{x_{i\bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}} \right)^{2}$$

$$SSD_{int} = 108.3$$

gl = (linhas-1)*(colunas-1)

Introdução Homocedasticidade ANOVA de Ressupostos & Médias um fator dois fatores ANOVA com control ANOVA medidas

Soma dos Desvios Quadrados TOTAL

$$SSD_{TOTAL} = \sum \left(x_{ij} - \overline{x_{\bullet \bullet}}\right)^2$$

$$SSD_{\rm int} = 3452.21$$

gl = n - 1

Soma dos Desvios Quadrados Resíduos

$$SSD_{TOTAL} = SSD_{residuos} + SSD_{linhas} + SSD_{colunas} + SSD_{\rm int}$$

$$345221 = SSD_{residuos} + 2426.4 + 205.35 + 108.3$$

$$SSD_{residuos} = 712.1$$

$$gl = I.c.(n'-1)$$

Introdução Homocedasticidade & Pressupostos & Médias	e ANOVA de um fator	ANOVA com dois fatores	ANOVA medidas repetidas
---	------------------------	------------------------	-------------------------

QUADRO ANOVA 2-FATORES

Fonte da variação	Soma dos Quadrados	Graus de liberdade	Quadrados Médios QM (variâncias)	F
Linhas	SSDlinhas	Linhas-1	SSDlinhas/Linhas-1	QMIin/QMres
Colunas	SSDcolunas	colunas-1	SSDcolunas/col-1	QMcol/QMres
Linhas:Colunas	SSDinter	(I-1)(c-1)	SSDinter/(I-1)(c-1)	QMint/QMres
Resíduos	SSDresíduos	l.c.(n'-1)	SSDinter/l.c.(n'-1)	
TOTAL	SSD _{total}	n-1		

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medida & Pressupostos & Médias um fator dois fatores repetidas

QUADRO ANOVA 2-FATORES

Fonte da variação	Soma dos Quadrados	Graus de liberdade	Quadrados Médios QM (variâncias)	F
supp	205.4	2-1	205.4	92.0
dose	2426.4	3-1	1213.2	15.6
supp:dose	108.3	(2-1)(3-1)	54.2	4.1
Resíduos	712.1	2.3(10 - 1)	13.2	
TOTAL	3452.2	60 – 1		

- →Com interação entre fatores
- →Quando a interação **não é significativa**, levar em consideração somente **modelo aditivo**

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

INTERPRETAÇÃO

 A dose recebida (dose) influencia nas médias do comprimento dos dentes

F_{2,54} = 92, p-valor<0.0001

•A fonte da vitamina C (supp) recebida influencia nas médias do comprimento dos dentes

 $F_{1.54}$ = 15.57, p-valor<0.0001

 A relação entre dose e comprimento dos dentes é influenciada pela fonte de vitamina C

 $F_{2.54} = 4.11$, p-valor<0.05

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

ANCOVA

ANálise de COVAriância

+ DISCIPLINA 11

ANÁlise de COVAriância

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

E SE OS FATORES ESTÃO DESBALANCEADOS?

→Utiliza-se Soma dos Quadrados de diferentes Tipos (sensu SAS)

Tipo I

O cálculo das Soma dos Quadrados é sequencial. Primeiro testa o efeito do fator A, depois do fator B e por último o fator A:B. Portanto, sofre com duas influências: (i) ordem dos fatores postos no modelo e (ii) se os fatores estão desbalanceados.

Tipo II

Testa primeiro a interação entre os fatores A:B, depois é que analisa separadamente os fatores A e B. Esse é mais indicado (mais poderoso) quando não há interação entre os fatores (interação não é significativa)

Tipo III

Válida para quando há interação significativa e os fatores estão desbalanceados. Normalmente, quando a interação é significativa, não é interessante ver o efeito dos fatores separadamente.

Ver também

https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/ https://stats.stackexchange.com/questions/60362/choice-between-type-ii-type-ii-or-type-iii-arIntrodução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

E SE OS FATORES ESTÃO DESBALANCEADOS?

ANOVA com dois fatores & Médias um fator repetidas

E SE OS FATORES ESTÃO DESBALANCEADOS?

```
> Anova(minha_anova, type = "II")
Anova Table (Type II tests)
Response: 1en
                                Sum Sq Df F value Pr(>F)
124.79 1 10.9213 0.002775 **
1051.97 2 46.0316 2.865e-09 ***
51.33 2 2.2461 0.125948
297.09 26
factor(dose)
supp:factor(dose)
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVA com dois fatores Introdução Hom & Médias um fator repetidas

EXERCÍCIO

data("CO2") ?CO2

- 1. Testar se Treatment e Type influenciam em uptake.
- 2. Verificar se os dados seguem a distribuição normal (*)
- 3. Verificar se os dados são homocedásticos
- 4. Verificar se o experimento é balanceado
- 5. Executar ANOVA
- 6. Executar teste post hoc?
- 7. Concluir

Introdução Hom ANOVA com & Médias dois fatores

EXERCÍCIO

data("CO2")

- 1. Testar se Type influencia na relação entre conc e uptake.
- 2. Executar teste post hoc?

ANOVA de ANOVA com ANOVA medida & Médias um fator

Prós

- Custa menos (precisa de menos sujeitos)
- Maior poder estatístico

Contra:

- Não contabiliza "Error term" (em nome do poder estatístico)
- -Precisa estar em ordem ("Tempo1", "Tempo2" ...)
- -Valores faltantes

+ DISCIPLINA 11

ANOVA com & Médias

Viola o pressuposto de independência

→ Um sujeito é medido mais do que uma vez

Pressuposto de esfericidade:

→ Relação entre os pares das condições experimentais é similar: nível de dependência é praticamente igual

Variância A-C = Variância A-B = Variância B-C

Esfericidade: A estrutura da variância-covariância das medidas repetidas segue um determinado padrão.

um fator dois fatores & Médias repetidas

Organização dos dados

Dados "WIDE" ⇔ Dados "LONG"

ID	Fator	Temp1	Temp2
1	Trata	0.1	0.2
2	Control	1.1	1.2
n	FatorX	5.1	5.2

ID	Fator	Tempo	Valor
1	Trata	1	0.1
1	Trata	2	0.2
2	Control	1	1.1
2	Control	2	1.2
n	FatorX	2	5.2

EXEMPLO

data("OBrienKaiser") ?OBrienKaiser

- → 3 Tempos: Pré, Pós e "Follow-up"
- → 3 Tratamentos: Controle, A e B
- → 5 Medidas em cada Tempo

ANOVA com dois fatores Introdução Homo & Médias um fator

EXEMPLO

Dados "LONG"

Como são medidas repetidas (de um mesmo ID), você usa esse termo de "Error", dizendo que os

sujeitos (ID) estão sendo medidos repetidamente ao

longo dos fatores (VI) para a variável contínua (VD)

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medida & Médias um fator dois fatores

EXEMPLO

Dados "WIDE"

iDado <- data.frame(VarInd = levels(dados_wide\$VI))</pre>

AnovaMR <- car::Anova(modelo, idata = iDado, idesign = ~VarInd)

summary(AnovaMR, multivariate = FALSE, univariate = TRUE)

Análises de Variâncias

TESTES NÃO-PARAMÉTRICOS

Kruskal-Wallis

- →É alternativa não-paramétrica para o teste ANOVA para um fator (one-way ANOVA).
- →Semelhante ao Teste U de Wilcoxon pois também utiliza *ranking*.

Características

- · Análise de variância não paramétrica
- 3 ou + grupos independentes
- Hipótese: As distribuições de todos os grupos são iguais,
- · Hipótese: As medianas de todos os grupos são iguais
- · Insensível a outliers
- · Os grupos não precisam ter o mesmo tamanho

Kruskal-Wallis

Cuidados

- Se a distribuição for normal é melhor usar o teste ANOVA de um critério (one-way)
- Precisa ter 4 ou mais elementos na amostra de cada grupo
- · Se tiver só 2 grupos use o Mann-Whitney

Kruskal-Wallis

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1)$$

n_i: número de observações no grupo i

N: número total de observações em todos os k grupos

 $\emph{\textbf{R}}_{i}$: soma dos rankings das $\emph{\textbf{n}}_{i}$ observações no grupo $\emph{\textbf{i}}$

Kruskal-Wallis

Number	s of Flies/m³	of Foliage	
Herbs	Shrubs	Trees	
14.0 (15)	8.4 (11)	6.9 (8)	
12.1 (14)	5.1(2)	7.3 (9)	
9.6 (12)	5.5 (4)	5.8 (5)	N = 5 + 5 + 5 = 15
8.2 (10)	6.6 (7)	4.1(1)	$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1)$
10.2 (13)	6.3 (6)	5.4(3)	21(21 1 1) [=] [1]
$n_1 = 5$	$n_2 = 5$	$n_3 = 5$	$= \frac{12}{15(16)} \left[\frac{64^2}{5} + \frac{30^2}{5} + \frac{26^2}{5} \right] - 3($
$R_1 = 64$	$R_2 = 30$	$R_3 = 26$	15(16) [5 5 5]
			$= \frac{12}{240}[1134.400] - 48$
			= 56.720 - 48
		Calculado	= 8.720
Críti	ico (tabelado)	$H_{0.05,5,5,5} = 5.78$	80
		Reject H ₀ .	_

Fonte: Zar, J.H. 2010. Biostatistical Analysis. 5th ed. Ed. Pearson.

Kruskal-Wallis

Friedman

- → Alternativa para ANOVA com dois fatores (two-way ANOVA)
- →Equivalente ao **Teste de Sinais**, onde testa pares de + ou dentro de cada par.
- →É menos sensível que o teste de sinais de Wilcoxon

