EyeSim-VR Validation Report

System Version: 1.0

Author: EyeSim-VR Team

Table of Contents

PURPOSE	2
SYSTEM DESCRIPTION AND SCOPE	2
VALIDATION APPROACH AND CRITERIA	3
DOCUMENTATION VALIDATION	3
FUNCTIONALITIES VALIDATION	6
NON-FUNCTIONAL REQUIREMENTS VALIDATION	15
REVIEW AND APPROVAL SIGNATURES	18
APPENDICES TEST CODE	19

Purpose

The purpose of this validation plan is to review the various activities involved in Eyesim-VR project to ensure all necessary documentations are in place, all requirements as specified by our client are met. User training is provided to ensure that it is properly installed and used. Validation of all functionalities is accomplished through the user validation testing that is executed by the users of the application.

System Description and Scope

EyeSim-VR is a multiple mobile robot simulator with VR functionality based on game engine Unity 3D that allows experiments with the same unchanged EyeBot programs that run on the real robots. EyeSim VR is capable of simulating all major functionalities in RiBIOS-7, including:

- LCD Output/Key Input
- Camera output
- PSD Sensors
- Servos and Motors
- V-Omega Driving
- Radio Communication

User can build 3D customized simulation environment using a world or maze file (in wld or maz extension), place any number of different kind of robots (in the provided robot models), and also add different kind of objects (like cans or soccer balls) to the simulation. Due to Unity's excellent physics engine, the simulation of the motion of robots and the interactions between robots and objects/walls can be more realistic and accurate, which considerably

Report Created by: EyeSim-VR Team Page 2 of 24

improves the quality of simulation. To make simulations more realistic, user can even add errors to the simulation (because real robots aren't perfect) using the simulated error function we provide.

Validation Approach and Criteria

The validation of the system is divided into documentation validation, functional requirements validation, and non-functional requirements validation. The validation approach and criteria are listed below.

Validation Items	Criteria	Validation Approach
Documentations	In place; correct	Documentation Review Interview (client, users)
Functional Requirements	Functions can be performed as expected, free from bugs	User validation testing
Non-functional Requirements	Non-functional requirements should be met	Interview users User validation testing

Documentation Validation

To ensure that necessary documentations are in place and the content is correct and up-todate, following detailed validations were performed for each document.

Documentation Name	System Requirements Document and Prototype	
Author	EysSim-VR team	
Description	Highlights system functional) and pr	n scope, requirements (functional and non-rototype.
Completion Date	2nd June 2017	
Content	 Client, mentor and team members Functional and Non-functional requirements Use cases Prototype screenshots 	
Validations		
Documentation Review	Criteria	 Documentation provides the required content Documentation is nicely formatted and easy to read
Validated Method	Internal peer review	

Report Created by: EyeSim-VR Team Page 3 of 24

	Validated by	EysSim-VR team
Requirements Validation	Criteria	 Requirements are clearly presented and Use cases are correct and easy to understand Requirements are from Client's real intention
	Validated	Internal peer review
	Method	Interview
	Validated by	EysSim-VR team
	v andated by	Dr Thomas Braunl

Documentation Name	EyeSim-VR User Manual	
Author	EysSim-VR team	
Description	Describes in deta	il on the installation and usage of the simulator
Completion Date	14th September 2	2017
Content	Installation	equirements on procedures es to perform various functionalities rting
Validations		
Documentation Review	Criteria	 Documentation provides the required content Documentation is nicely formatted and easy to read
	Validated Method	Internal peer review
	Validated by	EysSim-VR team
	Criteria	Procedures are correct and valid
Installation Procedures	Validated Method	 Internal testing, tested on team member's laptop and lab computers. Tests by Robotics Students of GENG5508 in their lab sessions either on lab computers or their own laptops.
	Validated by	EysSim-VR teamGENG5508 Students
Functionalities	Criteria	Procedures to perform functionalities should be valid and indicative screenshots and icons are correct.
	Validated Method	 Internal testing, tested on team member's laptop and lab computers. Tests by Robotics Students of GENG5508 in their lab sessions either on lab

		computers or their own laptops
	Validated by	EysSim-VR team
		GENG5508 Students

Documentation Name	EyeSim-VR Web	osite (http://robotics.ee.uwa.edu.au/eyesim/)
Author	EysSim-VR team	
Description		ption of the simulator, and provide links for ulator software and other resources.
Completion Date	14th September 2	2017
Content	System reDownload	l introduction equirements I links allation and setup instructions
Validations		
	Criteria	 The website provides the required content The website is nicely formatted and easy to navigate
Website Review	Validated Method	Internal peer review
	Validated by	EysSim-VR team
	Criteria	Procedures are correct and valid
Basic Installation procedures	Validated Method	 Internal testing, tested on team member's laptop and lab computers. Tests by Robotics Students of GENG5508 in their lab sessions either on lab computers or their own laptops.
	Validated by	EysSim-VR teamGENG5508 Students
Download Links	Criteria	All links should work without "dead link" problems
	Validated Method	 Internal testing, tested on team member's laptop and lab computers. Tests by Robotics Students of GENG5508 in their lab sessions either on lab computers or their own laptops.
	Validated by	EysSim-VR teamGENG5508 Students

Comments: The required documents and website have been created by EysSim-VR team and validated internally (through peer review) and externally (either by Client or end users) and revised accordingly.

Report Created by: EyeSim-VR Team Page 5 of 24

Functionalities Validation

To validate the functionalities of the EyeSim-VR simulator, following test cases have been used, each testing and validating one or multiple functionalities. Each test case has been performed multiple times on both lab computers and laptops.

Test Case Number	Test Case 1	
Description	Test world loading, scene viewing, robot placing,	
r	moving, rotating and deleting	
System Environment	Windows, Mac OS and Linux	
Hardware Environment	Computers and laptops	
Steps	Start Eyesim-VR simulator	
	2. Load a world file/maze file in the simulator	
	3. Add a robot in the scene	
	4. Drag and move the robot to three other locations	
	5. Rotate the robot 90,180 and 360 degrees	
	using "+" and "-" keys.	
	6. Inspect the robot parameters by double	
	clicking on the robot	
	7. Click on the pause button, and edit the x,y	
	coordinates of the robot and parameter of	
	rotation, then click resume button.	
D 10	8. Delete the robot	
Expected Results	1. Simulator should be started	
	2. Simulator can build the environment	
	according to the world/maze file selected. 3. Robot can be added in the scene	
	4. Robot can be dragged using mouse to other	
	valid locations	
	5. Robot can rotate with the pressing of "+" and "-" keys	
	6. Inspector window should pop up showing	
	PSD sensors readings, camera captures and	
	coordinates of the robot.	
	7. The location and rotation parameters can be	
	edited and the position of the robot will	
	change accordingly 8. Target robot can be deleted	
Testing Results	8. Target robot can be deleted As expected	
Tested Features	World Loading	
	Scene Viewing	
	Robot Placing	
	Robot Moving & Rotating	
	Robot Parameter Viewing	
	Robot Parameter Editing	
	Robot Deletion	

Report Created by: EyeSim-VR Team Page 6 of 24

Tested By	EyeSim-VR team
	7
Test Case Number	Test Case 2
Description	Test object placing, moving, rotating and deleting
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Steps	1. Start Eyesim-VR simulator
	2. Add an Object (can or soccer ball) in the scene
	3. Drag and move the object to three other locations
	4. Rotate the robot 90,180 and 360 degrees using "+" and "-" keys.
	5. Inspect the object parameters by double clicking on the object
	6. Click on the pause button, and edit the x,y coordinates of the object and parameter of rotation, then click resume button.7. Delete the object
Expected Results	Simulator should be started
Expected Results	2. The object can be added in the scene
	Object can be dragged using mouse to other valid locations
	4. Object can rotate with the pressing of "+"

and "-" keys

change accordingly
7. Target object can be deleted

Object Moving & Rotating

Object Placing

Object Deletion

EyeSim-VR team

degree.

As expected

5. Inspector window should pop up showing x,y coordinates of the object and the rotation

6. The location and rotation parameters can be edited and the position of the object will

Test Case Number	Test Case 3
Description	Test the basic driving functions
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• motor.c
Steps	Start Eyesim-VR simulator
	2. Compile and run the test code in terminal
	3. Click on "Go" buttons in simulated LCD
	window
Expected Results	Simulator should be started

Testing Results

Tested Features

Tested By

	2. The robot should be placed in the scene3. The robot should drive forward at full motor power
Testing Results	As expected
Tested Features	Basic Driving
Tested Functions	MOTORDrive
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 4	
Description	LCD and image processing functions.	
System Environment	Windows, Mac OS and Linux	
Hardware Environment	Computers and laptops	
Test Code ¹	• rgb.c	
	• img.c	
Steps	Start Eyesim-VR simulator	
	2. Compile and run the test code in terminal	
	3. Click on different buttons in simulated LCD	
	window	
Expected Results	Simulator should be started	
	2. The robot should be placed in the scene	
	3. The robot should run according to the script	
	and pressed button	
Testing Results	As expected	
Tested Features	LCD Window	
	Image Processing	
Tested Functions	LCDImageStart	
	LCDImage	
	LCDPrintf	
	LCDSetPrintf	
	LCDImageGray	
	IPSetSize	
	IPWriteFile	
	IPReadFile	
Tested By	EyeSim-VR team	

¹ Detailed code can be seen in appendix

Page 8 of 24

Test Case Number	Test Case 5
Description	LCD functions.
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• graphics.c
	• fonts.c
Steps	Start Eyesim-VR simulator
	2. Compile and run the test code in terminal
	3. Click on different buttons in simulated LCD
	window

Expected Results	Simulator should be started
	2. The robot should be placed in the scene
	3. The robot should run according to the script
	and pressed button
Testing Results	As expected
Tested Features	LCD Window
Tested Functions	• LCDMenu
	LCDSetColor
	LCDClear
	• LCDPixel
	LCDPixelInvert
	LCDLine
	LCDLineInvert
	• LCDArea
	LCDAreaInvert
	LCDCircle
	LCDCircleInvert
	LCDSetFont
	LCDSetFontSize
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 6
Description	Test Velocity/Omega Driving functions
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• speed.c
	• drivedemo.c
	• drive.c
Steps	Start Eyesim-VR simulator
	2. Place a robot in the scene
	3. Compile and run each of the test code in
	terminal
	4. If there's command in the script to show the
	LCD window, click on different buttons in
	simulated LCD window
Expected Results	1. Simulator should be started
	2. The robot should be placed in the scene
	3. A simulated LCD should show up with 4
	buttons.
	4. The robot should run according to the script
	and pressed button
Testing Results	As expected
Tested Features	Velocity/Omega Driving
Tested Functions	VWSetSpeed
	VWGetPosition
	VWSetPosition

	VWStraightVWTurnVWWaitVWDone
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 7
Description	Test servo function
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• servo.c
Steps	Start Eyesim-VR simulator
	5. Place a robot in the scene
	6. Compile and run the test code in terminal
Expected Results	Simulator should be started
	2. The robot should be placed in the scene
	3. A LCD window should show up with the
	image captured by the camera, and the
	camera will pan and then tilt with the
	captured image changing accordingly.
Testing Results	As expected
Tested Features	Servo Movement
Tested Functions	SERVOSet
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 8
Description	Camera captures
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• graycol.c
Steps	Start Eyesim-VR simulator
	2. Place a robot in the scene
	3. Compile and run the test code in terminal
Expected Results	Simulator should be started
	2. The robot should be placed in the scene
	3. LCD window should show up with the
	captured image in gray, user can change the
	image to color by clicking on the LCD
	button.
Testing Results	As expected
Tested Features	Camera Capture
Tested Functions	CAMGet
	CAMGetGray
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 9
Description Description	Camera captures and image processing & LCD
2 00012911011	functions
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• hsi.c
Steps	Start Eyesim-VR simulator
	2. Place a robot in the scene
	3. Compile and run the test code in terminal
Expected Results	Simulator should be started
•	2. The robot should be placed in the scene
	3. A LCD window will show up with 6
	different styles of captured image.
	Representing "Color, Gray, Binary - Hue, Sat
	Intensity".
Testing Results	As expected
Tested Features	Camera Capture
	Image Processing
	LCD Window
Tested Functions	CAMInit
	CAMRelease
	IPCol2Gray
	IPCol2HSI
	LCDImageBinary
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 10
Description	Test PSD function
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	• psd.c
Steps	Start Eyesim-VR simulator
	2. Place a robot in the scene
	3. Compile and run the test code in terminal
Expected Results	1. Simulator should be started
	2. The robot should be placed in the scene
	3. The robot should show a LCD window
	showing the PSD readings of the robot.
Testing Results	As expected
Tested Features	PSD infrared Position Sensors
Tested Functions	PSDGet
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Test Case Number	Test Case 11
Description	Test camera movement, physics, simulation speedup and slowdown, simulation pause and resume.
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code1	drive-straight.c
Steps	 Start Eyesim-VR simulator Place a robot in the lower end of the scene Adjust the simulation camera using "w,s,a,d" keys. Click on the Camera-> Birdseye View button to have a birds-eye view Click on the Camera-> Reset Camera button to reset camera Place a can in front of the robot Double click on the robot In the popped up inspector window click on the "select control" button Navigate and select the test code file During the simulation, click on the pause button to pause the simulation Click on the play button to resume the simulation On the robot inspector window, click on the add trace button to add trace. During the simulation, click on the speedup button to speedup the simulation Click on the play button to slowdown the simulation Watch the interact between robot and the can when the robot hit the can.
Expected Results	 Simulator should be started A robot should be added to the scene Camera should be adjusted accordingly We can see a birds-eye view of the simulation The camera view point should return to normal A can should be added to the scene A robot inspector window should pop up A file selector should pop up for selection of code file The robot should move forward as commanded in the code. The simulation should pause The simulation should resume A green line will appear indicating the trace of the robot

	13. The simulation should run at twice the speed14. The simulation should run at normal speed15. The can should be knocked over by the robot representing a physical interaction
Testing Results	As expected
Tested Features	 Physics Simulation Speedup Simulation Slowdown Simulation Pausing/Resuming Camera Movement Client Loading Add Trace
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Page 13 of 24

Test Case Number	Test Case 12
Description	Test camera movement, physics, simulation speedup and slowdown, simulation pause and resume.
System Environment	Windows, Mac OS and Linux
Hardware Environment	Computers and laptops
Test Code ¹	test.simdirve.cping.c
Steps	 Start Eyesim-VR simulator Select test.sim from simulator Load Simmenu Use the add error menu in simulator to select type of error and add error to simulation Use Oculus VR headset to control camera of robot during the simulation and control the main camera With the robots in the scene, compile and run code ping.c in terminal
Expected Results	 Simulator should be started 2 robots will be placed at specific spot and facing direction and Error will be added to the simulation according to the selected type We can use VR headset to control and view both the robot camera and main camera The robots should show a LCD windows showing their Ids and receive each other's id
Testing Results	As expected
Tested Features	Add ErrorRadio ControlVR Functions

	Simulation File Batch Script
Tested Functions	RADIOSend
	RADIOInit
	RADIOGetID
	RADIOStatus
	RADIOReceive
Tested By	EyeSim-VR team

¹ Detailed code can be seen in appendix

Following table shows all the available features of the EysSim-VR and the corresponding validation test cases.

Features Validation Test Cases			
Simulator Functionality			
World Loading	Test Case 1		
Robot Placing	Test Case 1		
Robot Moving & Rotating	Test Case 1		
Robot Deletion	Test Case 1		
Client Loading	Test Case 11		
Object Placing	Test Case 2		
Object Moving& Rotating	Test Case 2		
Object Deletion	Test Case 2		
Physics	Test Case 11		
Simulation Speedup	Test Case 11		
Simulation Slowdown	Test Case 11		
Simulation Pausing/Resuming Test Case 11			
Add Trace	Test Case 11		
Add Error	Test Case 12		
Robot Functionality			
Basic Driving	Test Case 3		
PSD infrared Position Sensors Test Case 10			
Velocity/Omega Driving	Test Case 6		
Camera Capture	Test Case 8, Test Case 9		
Servo Movement	Test Case 7		
Radio Control	Test Case 12		
LCD window	Test Case 4, Test Case 5, Test Case 9		
Image Processing	Test Case 4, Test Case 9		
User Interface			
Scene Viewing Test Case 1			
Camera Movement	Test Case 11		
Robot Parameter Viewing	Test Case 1		
Robot Parameter Editing	Test Case 1		
Object Parameter Viewing	Test Case 2		
Object Parameter Editing	Test Case 2		
Virtual Reality			

Report Created by: EyeSim-VR Team Page 14 of 24

Robot Camera VR Controlling & Viewing	Test Case 12		
Main Camera VR Controlling & Viewing	Test Case 12		
External Features			
Simulation File Batch Script	Test Case 12		

Non-functional Requirements Validation

Requirement	Security		
Description	Providing security to source code		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Source code should be kept in client's private Git Repository. Client give Eyesim-VR team access to his private git repository Final Eyesim product will not have any personal or important information. 		
Expected Results	 Eyesim-VR team gets source code access Source code can only be changed physically or logically by Eyesim- VR team or client Unauthorized people cannot access the private git repository account. Other students will not be able to make changes to source code or product. 		
Testing Results	As expected		
Tested Aspects	 Git access Making changes to code to alter the Eyesim environment 		
Tested By	Eyesim-VR team		

Requirement	Compatibility		
Description	Checking compatibility of operating systems for		
	all students to have easy access to the Eyesim		
	simulator		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Install Cygwin, X11 and unity application on windows Install Xcode, Xquartz and unity application on Mac OS 		
Expected Results	Students are able to run Eyesim Simulator on Windows Students are able to run simulator on mac.		
Testing Results	As expected		
Tested Aspects	Installation process on both mac and on windows.		

Report Created by: EyeSim-VR Team Page 15 of 24

Tested By	Eyesim-VR team

Requirement	Usability		
Description	Checking user interface standards		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Eyesim installation process must be completed in few clicks and should be easy for students who have no coding experience. To be cross compatible for all the operating systems and ease of use of environment, code must be placed in a single file and will be able to run Eyesim simulator through batch commands. Instructions are given at every step of robot movements and functions. 		
Expected Results	 Student are able to run simulator environment by clicking on single file. User interface should be standard and easy for non-coders. Instructions or guidelines helps users to install the environment. 		
Testing Results	As expected		
Tested Aspects	 Installation process on both mac and on windows. Opening Eyesim simulator through single fil 		
Tested By	EyeSim-VR team		

Requirement	Performance		
Description	Checking product performance		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Eyesim helps to run multiple robots in real time in the same environment by placing code in the real-time environment. Robot has different functions to perform and each is saved in different files. So, each program has many number of threads. Eyesim helps to run different functions at same time without any time lag. Eyesim allows robot to navigate in the environment 		
Expected Results	1. Students can run multiple robots on simulator environment by clicking on its specific functions.		
Testing Results	As expected		
Tested Aspects	Time lag when adding, deleting and running		

	multiple robots on the simulator.
Tested By	Eyesim-VR team

Requirement	Reliability		
Description	Checking reliability of the product		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Product is hosted publicly on university website and can be installed on lab computers and on peer laptops as well. We can handle small errors by restarting product without any information loss as we have not provided any important information In case of bugs rise in the system, they can be immediately emailed or notify Eyesim-VR team through Bugzilla application. 		
Expected Results	 Students can easily install Eyesim simulator Students can restart the simulator many time with no information loss Bugs can be notified and rectified easily Product is can be installed on windows, mac and Linux operating systems. It is cross compatible 		
Testing Results	As expected		
Tested Features	Cross compatibility and reinstalling product with no information loss		
Tested By	EyeSim-VR team		

Requirement	Upgradability	
Description	Checking upgradability of the product	
System Environment	Windows, Mac OS and Linux	
Hardware Environment	Computers and laptops	
Requirements/Steps	1. Source code is written and stored in editable text files in order to help future developers to extend the functionalities of the product.	
Expected Results	Future developers will be able to add new features to product.	
Testing Results	As expected	
Tested Features	Tested on newly added features of simulator environment (Wall and floor colors of maze file) at the end of project	
Tested By	Eyesim-VR team	

Requirement	Implementation		
Description	Product implementation		
System Environment	Windows, Mac OS and Linux		
Hardware Environment	Computers and laptops		
Requirements/Steps	 Testing is done on each robot functionality. Bugzilla application is provided to student to report bugs Once the testing is done, Product is ready to implement. Need to get client approval of the product 		
Expected Results	 Many of the bugs are identified and solved Client approves the final product Product is launched with installation guidelines Eyesim-VR team will be available to fix the bugs in later stages 		
Testing Results	As expected		
Tested Features	Simulation environment and each functionality of robot		
Tested By	Eyesim-VR team		

Comments: The non-functional requirements are also crucial part of the requirements of the EyeSim VR project. During the second half year of the project, major proportion of our efforts is allocated to the validations of these requirements both by infernal testing, and in the student labs, feedbacks from students are acquired from Bugzilla bug reporting system to facilitate our validations and improvements of the product.

Review and Approval Signatures

The signatures below indicate that all the above described tests and validations conform to the requirements as specified in the System Requirements Documentation, and the EyeSim simulation has been validated to met the functional and non-functional requirements of client.

Approved by:

Signature	Initials	Date

Appendices Test Code

In the sequence of the code showing up in this document:

```
img[pos]=0; img[pos+1]=0; img[pos+2]=255;
Motor.c
                                                              for (int i=200; i<240; i++)
#include "eyebot.h"
                                                               for (int j=0; j<320; j++)
#include <stdio.h>
                                                               \{ pos = 3*(320*i + j); \}
#include <math.h>
                                                                img[pos]=255; img[pos+1]=255; img[pos+2]=255;
int main ()
{ int k, x,y,phi;
                                                              IPSetSize(QVGA);
 LCDMenu("GO","BACK","CIRCLE","END");
                                                              IPWriteFile("pic/rgb.ppm", img);
                                                              LCDImageStart(0,0, 320,240);
                                                              LCDImage(img);
 { switch(k = KEYGet())
                                                              LCDPrintf("Black - Red - Green - Blue - White");
  { case KEY1: MOTORDrive(1, 100);
                                                              OSWait(5000); // 5s
                   MOTORDrive(2, 100);
                   break:
   case KEY2: VWSetSpeed(-300, 0); break;
                                                             Img.c
   case KEY3: VWSetSpeed(+300, 90); break;
                                                             // EyeBot Demo Program: Image File I/O, T. Bräunl, June
  OSWait(2000); // 1 sec
                                                             #include "eyebot.h"
  VWSetSpeed(0,0); // stop
                                                             int main()
  VWGetPosition(&x, &y, &phi);
                                                             { BYTE img[QVGA_SIZE];
  LCDPrintf("x=%d y=%d p=%d\n", x,y,phi);
 } while(k != KEY4);
                                                              IPSetSize(QVGA);
                                                              LCDImageStart(0,10, 320,240);
RJB.c
                                                              LCDSetPrintf(0,0, "IMAGE 1: Color");
                                                              IPReadFile("pic/image1.ppm", img);
// EyeBot Demo Program: Image File I/O, T. Bräunl, June
                                                              LCDImage(img);
                                                              OSWait(2000); // 2s
#include "eyebot.h"
                                                              LCDSetPrintf(0,0, "IMAGE 2: Gray");
int main()
                                                              IPReadFile("pic/image2.pgm", img);
{ BYTE img[QVGA_SIZE];
                                                              LCDImageGray(img);
 int pos;
                                                              OSWait(2000); // 2s
 for (int i=0; i<50; i++)
                                                              LCDSetPrintf(0,0, "IMAGE 3: Binary");
 for (int j=0; j<320; j++)
                                                              IPReadFile("pic/image3.pbm", img);
 \{ pos = 3*(320*i + j); 
                                                              LCDImageGray(img); // same function as Gray pgm
  img[pos]=0; img[pos+1]=0; img[pos+2]=0;
                                                              OSWait(2000); // 2s
 for (int i=50; i<100; i++)
                                                             Graphics.c
 for (int j=0; j<320; j++)
 \{ pos = 3*(320*i + j); 
                                                             #include "eyebot.h"
  img[pos]=255; img[pos+1]=0; img[pos+2]=0;
                                                             char *text = "The quick brown fox jumps over the lazy dog.
                                                             1234567890";
                                                             #define ColorConstNum 17
 for (int i=100; i<150; i++)
 for (int j=0; j<320; j++)
                                                             int TestLCDSetColor(COLOR fg, COLOR bg)
 \{ pos = 3*(320*i + i); \}
  img[pos]=0; img[pos+1]=255; img[pos+2]=0;
                                                                       static int ColorCount = 0;
                                                                       printf("LCDClear()\n");
                                                                       LCDClear();
 for (int i=150; i<200; i++)
                                                                       printf("LCDMenu()\n");
 for (int j=0; j<320; j++)
                                                                       LCDMenu("One", "Two", "Three", "Four");
 \{ pos = 3*(320*i + j);
```

```
printf("LCDSetColor(%08x, %08x), %d/%d\n",
                                                                     // TestLCDSetColor(ORANGE, SILVER);
(int)fg, (int)bg, ++ColorCount, ColorConstNum);
                                                                     // TestLCDSetColor(SILVER, LIGHTGRAY);
         LCDSetColor(fg, bg);
                                                                     // TestLCDSetColor(LIGHTGRAY, DARKGRAY);
                                                                     // TestLCDSetColor(DARKGRAY, NAVY);
         printf("LCDPrintf(text)\n");
         LCDPrintf(text);
                                                                     // TestLCDSetColor(NAVY, CYAN);
                                                                     // TestLCDSetColor(CYAN, TEAL);
         printf("KEYWait(ANYKEY)\n\n");
         KEYWait(ANYKEY);
                                                                     // TestLCDSetColor(TEAL, MAGENTA);
         return(0);
                                                                     // TestLCDSetColor(MAGENTA, PURPLE);
}
                                                                     // TestLCDSetColor(PURPLE, MAROON);
                                                                     // TestLCDSetColor(MAROON, YELLOW);
// int TestLCDMenul(int pos, char* string, COLOR fg, COLOR
                                                                     // TestLCDSetColor(YELLOW, OLIVE);
                                                                     // TestLCDSetColor(OLIVE, RED);
//{
         printf("Testing LCDMenul() ...\n")
                                                                     // LCDSetMode() should work properly, skipping
//
//
         printf("LCDClear()\n");
                                                                     printf("LCDClear()\n"); // Whether LCDClear()
//
         LCDClear();
                                                           resets the Pos and Color or not?
//
         printf("LCDMenul()\n");
                                                                     LCDClear();
//
         LCDMenul(pos, string, fg, bg);
                                                                     printf("LCDMenu()\n");
                                                                     LCDMenu("One", "Two", "Three", "Four");
//
         printf("LCDPrintf(text)\n");
                                                                     printf("LCDPrintf(text)\n");
//
         LCDPrintf(text);
         printf("KEYWait(ANYKEY)\n\n");
                                                                     LCDPrintf(text);
//
         KEYWait(ANYKEY);
                                                                     printf("KEYWait(ANYKEY)\n\n");
//
//
         return(0);
                                                                     KEYWait(ANYKEY);
//}
                                                                     // LCDMenul
int main(void)
                                                                     printf("Testing LCDMenul() ...\n");
                                                                     printf("LCDClear()\n");
         int x=0, y=0;
                                                                     LCDClear();
                                                                     printf("LCDMenul()\n");
         printf("LCDMenu()\n");
         LCDMenu("One", "Two", "Three", "Four");
                                                                     LCDMenul(0, "GREEN One", GREEN, BLUE);
                                                                     printf("LCDMenuI()\n");
         printf("LCDPrintf(text)\n");
                                                                     LCDMenul(1, "BLUE Two", BLUE, WHITE);
         LCDPrintf(text);
         printf("KEYWait(ANYKEY)\n\n");
                                                                     printf("LCDMenul()\n");
         KEYWait(ANYKEY);
                                                                     LCDMenul(2, "WHITE Three", WHITE, RED);
                                                                     printf("LCDMenul()\n");
                                                                     LCDMenul(3, "RED Four", RED, GREEN);
         printf("LCDClear()\n");
                                                                     printf("LCDPrintf(text)\n");
         LCDClear();
         printf("LCDMenu()\n");
                                                                     LCDPrintf(text);
         LCDMenu("One", "Two", "Three", "Four");
                                                                     printf("KEYWait(ANYKEY)\n\n");
                                                                     KEYWait(ANYKEY);
         printf("LCDSetPos(3,5)\n");
         LCDSetPos(3,5);
         printf("LCDPrintf(text)\n");
                                                                     // // LCDGetSize
         LCDPrintf(text);
                                                                     // printf("LCDClear()\n");
         printf("KEYWait(ANYKEY)\n\n");
                                                                     // LCDClear();
         KEYWait(ANYKEY);
                                                                     // printf("LCDMenu()\n");
                                                                     /\!/\,LCDMenu("One", "Two", "Three", "Four");\\
         // printf("LCDClear()\n");
                                                                     // printf("LCDGetSize(&x, &y)\n");
         // LCDClear();
                                                                     // LCDGetSize(&x, &y);
                                                                     // printf("Result: x=%d, y=%d\n", x, y);
         // printf("LCDSetColor(RED, GREEN)\n");
         // LCDSetPos(RED, GREEN);
                                                                     // printf("KEYWait(ANYKEY)\n\n");
         // printf("LCDPrintf(text)\n");
                                                                     // KEYWait(ANYKEY);
         // LCDPrintf(text);
                                                                     // LCDPixel
         // printf("KEYWait(ANYKEY)\n\n");
         // KEYWait(ANYKEY);
                                                                     printf("LCDClear()\n");
                                                                     LCDClear();
         // LCD
                                                                     printf("LCDMenu()\n");
         // TestLCDSetColor(RED, GREEN);
                                                                     LCDMenu("One", "Two", "Three", "Four");
         // TestLCDSetColor(GREEN, BLUE);
                                                                     printf("LCDPixel(50, 50, WHITE)\n");
         // TestLCDSetColor(BLUE, WHITE);
                                                                     LCDPixel(50, 50, WHITE);
         // TestLCDSetColor(WHITE, GRAY);
                                                                     printf("KEYWait(ANYKEY)\n\n");
         // TestLCDSetColor(GRAY, BLACK);
                                                                     KEYWait(ANYKEY);
         // TestLCDSetColor(BLACK, ORANGE);
     Report Created by: EyeSim-VR Team
```

```
// LCDClear();
                                                                     // printf("KEYWait(ANYKEY)\n\n");
         // printf("LCDMenu()\n");
                                                                     // KEYWait(ANYKEY);
         // LCDMenu("One", "Two", "Three", "Four");
                                                            //
         printf("LCDPixelInvert(50, 50)\n");
         LCDPixelInvert(50, 50);
                                                                     printf("Exiting normally ...\n");
         printf("KEYWait(ANYKEY)\n\n");
                                                                     return(0);
         KEYWait(ANYKEY);
                                                            }
         printf("LCDLine(0, 0, 200, 100, GREEN)\n");
         LCDLine(0, 0, 200, 100, GREEN);
                                                            Fonts.c
         printf("KEYWait(ANYKEY)\n\n");
                                                            #include "eyebot.h"
         KEYWait(ANYKEY);
                                                            #include <unistd.h>
         printf("LCDLineInvert(0, 100, 200, 0)\n");
         LCDLineInvert(0, 100, 200, 0);
                                                            int main() {
         printf("KEYWait(ANYKEY)\n\n");
                                                                     LCDPrintf("Standard default font\n");
         KEYWait(ANYKEY);
                                                                     LCDSetFont(HELVETICA, NORMAL);
                                                                     LCDPrintf("Printing in Helvetica Normal\n");
         // int fill
         printf("LCDArea(50, 50, 100, 120, BLUE, 0)\n");
                                                                     LCDSetFont(HELVETICA, BOLD);
         LCDArea(50, 50, 100, 120, BLUE, 0);
                                                                     LCDPrintf("Printing in Helvetica Bold\n");
         printf("KEYWait(ANYKEY)\n\n");
                                                                     LCDSetFont(TIMES, NORMAL);
         KEYWait(ANYKEY);
                                                                     LCDPrintf("Printing in Times Normal\n");
         printf("LCDArea(50, 50, 100, 120, BLUE, 1)\n");
         LCDArea(50, 50, 100, 120, BLUE, 1);
                                                                     LCDSetFont(TIMES, BOLD);
         printf("KEYWait(ANYKEY)\n\n");
                                                                     LCDPrintf("Printfing in Times Bold\n");
         KEYWait(ANYKEY);
                                                                     LCDSetFont(COURIER, NORMAL);
         printf("LCDAreaInvert(60, 60, 120, 100)\n");
                                                                     LCDPrintf("Printing in Courier Normal\n");
         LCDAreaInvert(60, 60, 120, 100);
         printf("KEYWait(ANYKEY)\n\n");
                                                                     LCDSetFont(COURIER, BOLD);
         KEYWait(ANYKEY);
                                                                     LCDPrintf("Printing in Courier Bold\n");
                                                                     LCDSetFont(HELVETICA, NORMAL);
         // LCDCircle
         printf("LCDCircle(140, 140, 50, ORANGE, 0)\n");
                                                                     LCDSetFontSize(14);
                                                                     LCDPrintf("Increasing font size to 14\n");
         LCDCircle(140, 140, 50, ORANGE, 0);
         printf("KEYWait(ANYKEY)\n\n");
         KEYWait(ANYKEY);
                                                                     sleep(2);
                                                           }
         printf("LCDCircle(140, 140, 50, ORANGE, 1)\n");
         LCDCircle(140, 140, 50, ORANGE, 1);
         printf("KEYWait(ANYKEY)\n\n");
                                                            Speed.c
         KEYWait(ANYKEY);
                                                            | Filename: speed.c
         printf("LCDCircleInvert(150, 150, 20)\n");
                                                            Author: Thomas Braunl UWA 2017
         LCDCircleInvert(150, 150, 20);
                                                            | Description: Drive using SetSpeed functions
         printf("KEYWait(ANYKEY)\n\n");
         KEYWait(ANYKEY);
                                                            #include "eyebot.h"
         printf("KEYXY(&x, &y)\n");
                                                            #include <stdio.h>
         KEYGetXY(&x, &y);
                                                            #include <math.h>
         printf("Result: x=%d, y=%d\n", x, y);
         printf("KEYWait(ANYKEY)\n\n");
                                                            int main ()
         KEYWait(ANYKEY);
                                                            { int k, x,y,phi;
                                                             LCDMenu("GO","BACK","CIRCLE","END");
//
         // printf("LCDClear()\n");
         // LCDClear();
                                                             { switch(k = KEYGet())
         // printf("LCDMenu()\n");
                                                             { case KEY1: VWSetSpeed(+300, 0); break;
         // LCDMenu("One", "Two", "Three", "Four");
                                                               case KEY2: VWSetSpeed(-300, 0); break;
     Report Created by: EyeSim-VR Team
                                                                                               Page 21 of 24
```

// printf("LCDClear()\n");

```
case KEY3: VWSetSpeed(+300, 90); break;
                                                                       break;
                                                                case KEY4: done = 1;
  OSWait(1000); // 1 sec
                                                                       break;
  VWSetSpeed(0,0); // stop
                                                               VWSetSpeed(0,0); // stop
  VWGetPosition(&x, &y, &phi);
                                                              } while (!done);
  LCDPrintf("x=%d y=%d p=%d\n", x,y,phi);
 } while(k != KEY4);
                                                              return 0;
}
                                                             }
Drive-demo.c
#include "eyebot.h"
                                                             Drive.c
#include <stdio.h>
                                                             // EyeBot Demo Program: Drive, T. Bräunl, Nov. 2015
#include <math.h>
                                                             #include "eyebot.h"
#define functions 9
                                                             int main()
                                                             { for (int i=0; i<2; i++) // run twice
char fname[functions][32]=
                                                              { VWStraight(500, 10); // 0.5m in ca. 5s
  {"Forward", "Backward", "Rotate Left", "Rotate Right",
                                                             //{ VWStraight(500, 100); // 0.5m in ca. 5s
   "Curve Left\n(FORWARD)", "Curve Right\n(FORWARD)",
                                                               while (!VWDone())
"Curve Left\n(BACKWARD)",
                                                                if (PSDGet(2) < 100) VWSetSpeed(0,0); // STOP if obstacle
   "Curve Right\n(BACKWARD)", "SetPos [0,0,0]"};
                                                             in front
                                                               VWTurn(180, 60); // half turn (180 deg) in ca. 3s
//velocities
                                                               VWWait();
                                                                               // wait until completed
int vel[functions][2] =
  \{ \{ 300, 0 \}, \{-300, 0 \}, \{ 0, 30 \}, \{ 0, -30 \}, 
                                                             }
   { 300, 30}, { 300, -30}, {-300, 30},
   {-300,-30}, { 0, 0} };
                                                             Servo.c
                                                             #include "eyebot.h"
int main (){
                                                             void checkpos(int pan, int tilt)
                                                             { BYTE img[QVGA SIZE];
 int x, y, phi, v, w;
 int fnum = 0, done = 0;
                                                              SERVOSet(1, pan);
 v = 0; w = 0;
                                                              SERVOSet(2, tilt);
                                                              LCDSetPrintf(0,0,"PanTlt: %3d %3d\n", pan, tilt);
 do {
                                                              CAMGet(img);
  LCDClear();
                                                              LCDImage(img);
  LCDMenu("+", "-", "GO", "END");
  LCDPrintf("%s\n", fname[fnum]);
  VWGetPosition(&x, &y, &phi);
  LCDPrintf("x = %d \ n", x);
                                                             int main()
  LCDPrintf("y = %d \n", y);
                                                             { int pos;
  LCDPrintf("p = %d \n", phi);
                                                              CAMInit(QVGA);
  v = vel[fnum][0];
  w = vel[fnum][1];
                                                              for (pos=128; pos<255; pos++) checkpos(pos, 128);
  LCDPrintf("v=%d, w=%d\n", v, w);
                                                              for (pos=255; pos>0; pos--) checkpos(pos, 128);
                                                              for (pos=0; pos<128; pos++) checkpos(pos, 128);
  switch(KEYGet()) {
   case KEY1: fnum = (fnum+1) % functions;
                                                              for (pos=128; pos<255; pos++) checkpos(128, pos);
                                                              for (pos=255; pos>0; pos--) checkpos(128, pos);
         break:
   case KEY2: fnum = (fnum-1 +functions) % functions;
                                                              for (pos=0; pos<128; pos++) checkpos(128, pos);
         break:
   case KEY3: if (fnum<8)
                                                              return 0;
         { VWSetSpeed(v,w);
                                                             }
          LCDMenu(" ", " ", "STOP", " ");
          KEYWait(KEY3); // continue until key pressed
                                                             Graycol.c
                                                             // EyeBot Demo Program: Camera Interactive, T. Bräunl, Nov
         else if (fnum==8)
                                                             2015
          VWSetPosition(0,0,0);
                                                             #include "eyebot.h"
      Report Created by: EyeSim-VR Team
                                                                                                 Page 22 of 24
```

```
LCDImage(image);
int main()
                                                              IPCol2Gray(image, g);
                                                                                                // make gray
{ BYTE img[QVGA_SIZE];
                                                              LCDImageStart(160, 0, 160,120);
                                                              LCDImageGray(g);
 int k, size = 0, gray = 1;
                                                              for (int i=0; i<PIX; i++) b[i] = (g[i]<127); // make bin
 LCDMenu("SIZE", "COL", "", "END");
                                                              LCDImageStart(320, 0, 160,120);
 CAMInit(QQVGA); // automatically sets LCDIMageSize and
                                                              LCDImageBinary(b);
IPSize
                                                              IPCol2HSI(image, h, s, i);
                                                                                                // disect HSI
                                                              LCDImageStart( 0,120, 160,120);
 { k = KEYRead();
                                                              LCDImageGray(h);
  if (k==KEY1)
                                                              LCDImageStart(160,120, 160,120);
  { size = !size;
                                                              LCDImageGray(s);
   LCDClear();
                                                              LCDImageStart(320,120, 160,120);
                                                              LCDImageGray(i);
   if (size) CAMInit(QVGA);
    else CAMInit(QQVGA);
                                                             } while (KEYRead() != KEY4);
                                                             CAMRelease();
  else if (k==KEY2) {
                                                             return 0;
    gray = !gray;
                                                            }
                                                            Psd.c
                                                            #include "eyebot.h"
  if (gray)
  { CAMGetGray(img);
                                                            #define PSD_LEFT 1
                                                            #define PSD_FRONT 2
   LCDImageGray(img);
    LCDMenu("SIZE", "COL", "", "END");
                                                            #define PSD_RIGHT 3
                                                            int main()
  else // color
  { CAMGet(img);
   LCDImage(img);
                                                            int left, front, right;
    LCDMenu("SIZE", "COL", "", "END");
                                                            do{
 } while (k != KEY4);
                                                            LCDRefresh();
                                                            left = PSDGet(PSD_LEFT);
 return 0;
                                                            front = PSDGet(PSD_FRONT);
                                                            right = PSDGet(PSD_RIGHT);
}
Hsi.c
                                                            VWSetSpeed(200,0);
// EyeBot Demo Program: Display color, gray, binary -- hue,
                                                            OSWait(200);
sat, intensity
                                                            LCDPrintf("Left:%d,Front:%d,Right:%d",left, front,right);
#include "eyebot.h"
#define SIZE QVGA SIZE
                                                            } while(front>200);
#define PIX (SIZE/3)
                                                            VWSetSpeed(0,0); //stop
#define XS 160
#define YS 120
#define X 80
                                                            Drive-straight.c
#define Y 60
#define D 5
                                                            // EyeBot Demo Program: Drive, T. Bräunl, Nov. 2015
#define MID (3*(Y*XS + X))
                                                            #include "eyebot.h"
                                                            int main()
                                                            { LCDPrintf("Drive straight\n");
int main()
{ BYTE image[SIZE];
                                                             VWStraight(1000, 200); // 1m in ca. 5s
 BYTE h[PIX], s[PIX], i[PIX], g[PIX], b[PIX];
                                                             VWWait();
                                                                             // wait until completed
 CAMInit(QQVGA);
                                                             LCDPrintf("Rotate\n");
 LCDMenu(" ", " ", " ", "END");
                                                             VWTurn(180, 60);
                                                                                  // half turn in ca. 3s
 LCDSetPrintf(20,0, "Color, Gray, Binary - Hue, Sat Intensity"); VWWait();
                                                                             // wait until completed
                                                             LCDPrintf("Drive straight\n");
 do
 { CAMGet(image);
                                                             VWStraight(1000, 200); // 1m in ca. 5s
  LCDImageStart( 0, 0, 160,120);
                                                                             // wait until completed
                                                             VWWait();
      Report Created by: EyeSim-VR Team
                                                                                                Page 23 of 24
```

```
myid = RADIOGetID();
                                                              LCDPrintf("my id %d\n", myid);
 LCDPrintf("Rotate\n");
 VWTurn(180, 60);
                      // half turn in ca. 3s
                // wait until completed
                                                              k = KEYGet();
 VWWait();
                                                              if (k==KEY4) return 0; // exit
}
                                                              if (k==KEY1) // master only
                                                              { LCDPrintf("scanning (takes time ...)\n");
Test.sim
#comment
                                                               ret = RADIOStatus(id);
world
                                                               if (ret<0) LCDPrintf("error RADIOStatus\n");</pre>
"/Users/tomzhangle/Desktop/RoBotVR/RobotVR/SavedWorl
                                                               partnerid = id[0];
                                                               LCDPrintf("partner is %d\n", partnerid);
d.wld"
# botname x y phi
                                                               LCDPrintf("I will start\n");
                                                               RADIOSend(partnerid, buf);
LabBot 200 200 0 "/Users/tomzhangle/Desktop/drive.x"
LabBot 500 200 90 "/Users/tomzhangle/Desktop/drive.x"
                                                              LCDPrintf("I am waiting for partner\n");
Ping.c
// Ping-Pong radio communication program
                                                              for (i=0; i<10; i++)
// T. Braunl, May 2017
                                                              { RADIOReceive(&partnerid, buf, MAX);
                                                               LCDPrintf("received from %d text %s\n", partnerid, buf);
#include "eyebot.h"
#define MAX 10
                                                               sscanf (buf, "%d", &num);
                                                               num++;
                                                               sprintf(buf, "%05d", num);
int main ()
{ int k, i, num, ret;
                                                               RADIOSend(partnerid, buf);
 int id[256];
 int myid, partnerid;
 BYTE buf[MAX] = "00000";
                                                              KEYWait(KEY4);
 LCDMenu("MASTER", "SLAVE", "", "END");
 RADIOInit();
```