SERVICEMANUAL

MULTITECH

KT-9055

PS & TX TYPEN

MAIN CHASSIS

C710

C110

C1703

C1705

C170

SECAM TRANSCORDER

REMOTE BOARD

MINI NECK 15"

NARROW NECK CRT

CONTROL BOARD

MAIN CHASSIS

NARROW NECK CRT

MINI NECK 15"

Contents

Section		Contents							
1		General specifications & notes							
2		Safety warning & servicing instructions							
3		Main chassis (non teletext) and CRT base PCB							
	3.1	Cjrcuit diagramInsert							
	3.2	Component location diagramInsert							
	3.3	Block diagram							
	3.4	Description							
	3.5	Alignment							
	3.6	Fault guide							
	3.7	Parts list							
4		Tuning system							
	4.1	Circuit diagramInsert							
	4.2	Component location diagramInsert							
	4.3	Block diagram							
	4.4	Circuit description							
	4.5	Fault guide							
	4.6	Parts list							
5		AV interface							
	5.1	Circuit diagram							
	5.2	Component location diagram							
	5.3	Circuit description							
	5.4	Alignment							
	5.5	Parts list							
6		SECAM transcoder							
	6.1	Circuit diagramInsert							
	6.2	Component location diagramInsert							
	6.3	Block diagram							
	6.4	Circuit description							
	6.5	Alignment							
	6.6	Parts list							
7		Teletext							
	7.1	Circuit diagram							
	7.2	Component location diagram							
	7.3	Block diagram .							
	7.4	Circuit description							
	7.5	Alignment							
	7.6	Fauit guide							
_	7.7	Parts list							
8		CRT purity and convergence							
9		Cabinet & miscellaneous parts list							
		Cabinat parts innation diagrams							

Section 1 - General Specifications & Notes

Colour system PAL CCIR 625 line SECAM V or H * Sound system FM 5,5MHz (B/G/H) or 6MHz (I) Tuning range VHF Band I 48-106MHz Ch E2-E4 Europe Ch A-C Irish Ch S1 Cable VHF Band III 115-297MHz Ch E5-E12 Europe Ch D-K Irish Ch S3-S20 Cable **UHF Band** 474-858MHz Channels 21-69 UK Antenna 75 ohm unbalanced Picture tube PIL 90° pin cushion free Power supply 160-264V ~ AC 50Hz Audio output 5W RMS @ 10% THD (8 ohm) 2W RMS @ 10% THD (16 ohm) Frequency response 25Hz - 12KHz (-3dB) AV inputs * Video 1V peak 75 ohm Audio 250mV 10K ohm Teletext * WST625 (English/German/Swedish) * Optional features

Parts Lists Abbreviations

Resistors	CF	Carbon film
	FR	Fusible
	MO	Metal oxide
	MF	Metal film
	SR	Safety
	WW	Wire wound
Presets	HRZ	Horizontal mounting
	VRT	Vertical mounting
Capacitors	CER	Ceramic
	ELC	Electrolytic
	MKT	Philips 'MKT' type
	MKS	Philips 'MKS' type
	MKT-P	Philips 'MKT-P type
	FKP1	Wima 'FKP1' type
	FKP2	Wima 'FKP2' type
Tolerances	F	+/- 1%
	G	+/ 2%
	J	+/- 5%
	K	+/- 10%
	M	+/- 20%

Section 2 - Safety and Servicing Precautions

READ THESE SAFETY WARNINGS BEFORE SERVICING THIS CHASSIS.

This television receiver is manufactured to comply with the International Safety Standard IEC65 or its variants (BS415-UK, VDE-GERMANY etc).

WARNING - High voltage. Servicing should only be performed by suitably qualified and experienced personnel.

WARNING - Use an isolation transformer. Although the chassis is isolated from the mains supply, areas of the main PCB are at mains potential. Use a 250-500VA transformer when servicing.

WARNING - Read the following instructions before attempting any repairs or adjustments.

Safety components

Many electrical and mechanical parts in this chassis have special safety-related characteristics which may pass unnoticed by visual inspection. The protection afforded by them cannot necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. The fitting of non-approved components may cause a hazard resulting in electric shock or fire. Replacement parts which have special safety characteristics are identified by the following symbol in this manual and its supplements.

Before replacing any of these components, read the parts list in this manual carefully.

X-ray radiation

This receiver is designed so that X-ray radiation is kept to an absolute minimum. Since certain malfunctions or service-work may generate potentially hazardous radiation with prolonged exposure at close range, the following precautions should be observed.

- → While repairing, ensure that the high voltage does not exceed 26KV (at a beam current of 1 mA).
- → For normal operation, the receiver should require only 24.5KV +/-1.5KV (at a beam current of 1 mA)
- The only source of X-RAY RADIATION in this TV receiver is the picture tube. For continued X-RAY RADIATION protection, the replacement tube must be of the same type tube as that specified in the parts list.

High voltages

- Potentials as high as 25,000 volts are present when this receiver is operating. Operation
 of the receiver outside the cabinet or with the back cover removed presents a shock
 hazard.
- Servicing should not be attempted by anyone who is not thoroughly familiar with the precautions necessary when working on high-voltage equipment.

- Always discharge the picture tube anode to the chassis ground to remove shock hazard before disconnecting the anode cap. Use a lead with a 10K series resistor.
- Completely discharge the high potential of the picture tube before handling. The picture tube is highly evacuated and if broken, glass fragments will be violently expelled.

Fuses, fusible resistors and power resistors

- In the event of fuse or fusible resistor replacement they must be replaced with the type specified in the parts list.
- Power and fusible resistors should be mounted the same distance above the circuit board as the original.

General Servicing Precautions

- → Disconnect the television from the mains supply before discharging the picture tube anode or before removing or refitting any component, circuit board, module or connector.
- Fitting a wrong part or incorrect polarity of electrolytic capacitors may result in an explosion.
- Test high voltage only with a high voltage meter or a multi meter equipped with a suitable high voltage probe. Do not test high voltage by "drawing an arc".
- Do not spray any chemicals on or near this instrument or any of its assemblies.
- Ensure that all power transistors and integrated circuits have their heatsinks correctly fitted before connecting power. Use heatsink compound where necessary.
- Electrostatically sensitive (ES) devices. Some integrated circuits in the tuning and teletext circuits can be easily damaged by static eletricity. Ensure that no power is applied to the chassis or circuit. Do not remove a replacement ES device from its protective package until you are ready to install it. Do not use freon-propelled chemicals since these can generate electrical charges sufficient to damage ES devices.

Before returning the television to the customer

After servicing is completed, carry out the following safety checks.

- Inspect lead dress to make certain that leads are not pinched or damaged.
- Ensure that no loose parts are lodged within the receiver.
- Inspect and ensure that all protective devices such as non-metallic control knobs, insulators, cabinet backs, adjustment and compartment covers and shields, isolation resistors, capacitor networks, mechanical insulators are refitted correctly.
- If a mains plug is not fitted, ensure that the mains connection label is fitted.
- Perform flash, insulation and load tests using a suitable appliance tester.

Section 3.3

Section 3.4 - Main Chassis, Description

The TDA 4505 combines all the small signal functions (except colour decoder and tuner) necessary for a colour TV receiver. Only output amplifiers for horizontal and vertical deflection and sound are required.

Tuner

Three different tuners may be fitted :-

Type 1604UEC for UHF only

Type 3010UEC for UHF only

Type 1604KKC for VHF/UHF (including cable bands)

The tuners incorporate a preamplifier which is capable of driving the SAW filter directly.

Vision IF and detector

The IF amplifier has a symetrical input (pins 8,9) and gain controlled stages. Gated AGC is used.

A 90 degree phase shift network is used together with the synchronous video demodulator to provide both AFC and video detection. Only one reference coil (L102) is required.

With very weak input signals the AFC signal can become noisy and errors occur. To prevent this the AFC detector is switched off during no or weak signal conditions.

Sound IF and Audio stages

The composite video output from pin 17 also contains the intercarrier sound signal which passes through the filter Z101 and enters the sound IF stage at pin 15.

The FM signal from the AV board can also be injected here. After FM limiting the signal is demodulated by a quatrature demodulator (L101).

The volume level is controlled by a DC control voltage on pin 11; sound muting also occurs at this stage.

The audio signal from pin 12 is then amplified by a TDA2611A power amplifier.

Horizontal Deflection

The horizontal synchronisation circuit has 2 control loops to enable accurate sand castle timing and to compensate for storage time delays in Q601. Automatic loop time constant switching and sound muting are also included.

Synchronisation pulses are generated by the synch separator (pin 25) which receives video (FBAS) signals from either the video output (pin 17) or external signals via the AV board (K100 pin 5).

In the first control loop the RC oscillator is synchronised with the synchronising pulses from the synch separator.

The phase detector produces an error voltage on pin 24 which controls the frequency of the RC oscillator (pin 23).

The coincidence detector and logic circuits select the correct time constant for weak or strong signals. The circuit also detects signals from a VCR or video disk player and selects the correct time constant.

Picture centring (horizontal shift) is achieved by applying a DC potential from the R116 to the second phase detector circuit (pin 28).

The line (horizontal) output stage Q601, Q600 and T600, T601 are of conventional design.

Pin 27 serves as an input for flyback pulse to sychronise the line (horizontal) oscillator as well as generating a sandcastle pulse for the PAL and SECAM decoders. The flyback pulse from C606 is clamped by diode D604 to produce a 10V square wave. The 4 levels required for the complete sandcastle pulse (frame/vertical blanking, horizontal blanking, colour burst gating and unblanked) are produced by pin 27 clamping the flyback pulse at the required level.

Vertical (frame) deflection.

The vertical deflection circuit consists of a ramp generator, digital divider/counter, controlling logic and an external power amplifier.

No adjustment for vertical frequency is required; 50 or 60Hz signals are selected automatically.

The TDA3565 power amplifier acts as a voltage to current converter amplifying the ramp output from pin 3 of the TDA4505.

The ciruit has 2 feedback paths. The voltage across R412 is proportional to the deflection current (and height) and provides AC feedback to pin 4 of the TDA4505. DC feedback is via R407.

AV switching

Transistor Q101 mutes the vision IF and de-activates the AGC and AFC circuits when its base (K001 pin 3) is grounded. The audio mute circuit does not function under this condition.

Standby On/Off

When the standby ON command is received transistor Q809 is turned off allowing the control pin of the regulator IC803 to rise. The regulator turns on providing a 12V supply to the TDA4505 enabling the horizontal oscillator to start. The switch mode power supply operates at all times.

Colour decoder

The PAL decoder integrated circuit (IC500) TDA3565 contains all functions required for identification and demodulation of PAL signals. The RGB output signals from the decoder are fed to the video amplifiers.

SECAM transcoder

The transcoder IC700 converts SECAM signals into PAL which can then be decoded by the PAL decoder TDA3565. For further details see section 6.

Video output amplifiers

These are conventional class A amplifiers.

Switch mode power supply (SMPS)

A free running switch mode power supply ensures good regulation with a wide range of input voltages as well as providing isolation from the mains supply. The control circuit uses a TDA4601D (an improved version of the TDA4600) and incorporates short circuit and overvoltage protection.

A PTC thermistor R802 is used to provide an initial supply to pin 9 of the TDA4601 to allow fast starting.

Section 3.5 - Main Chassis, Adjustments and Alignment.

Equipment required

Digital voltmeter Oscilloscope PAL pattern generator

Preparation

Check that all components are fitted and the high voltage leads are connected,

Ensure that the grounding leads between the picture tube ground (aquadag), the CRT base socket and the main chassis are correctly connected.

Set all preset potentiometers in the mid position except R811, which must be set fully anticlockwise.

IMPORTANT. The antenna socket is not isolated from the main chassis. When using test equipment that is grounded a conductive path may exist via the antenna socket.

Power supply (set HT)

Connect a mains supply voltage of 220-240V to the power supply input. Connect DVM between TP13 and chassis ground.

Switch the receiver on and adjust preset potentiometer R811 (HT) for 115V. Turn down brightness so screen is dark then re-check voltage.

Re-adjust R811 if necessary for 115V +/-0.5V.

Horizontal frequency (Line hold)

Tune to test card or CCIR standard signal.

Connect pin 25 of TDA4505 (IC100) to +11V (TP20).

Adjust the preset potentiometer R126 (H-F) for minimum rolling of the picture.

Horizontal shift

Centre picture with preset R116 (H-SH) control.

Horizontal width and linearity

Not adjustable.

Tuner AGC take over point

Method 1.

Tune to a CCIR standard signal with a level of between 5 and 20mV.

Connect an oscilloscope that has a frequency response of at least 60MHz to the input of the SAW filter Z100 (pin 1). Use a low capacitance probe (2pf, X10).

Adjust preset potentiometer R102 (AGC) for a voltage of 1V p-p.

Method 2.

Tune to a CCIR signal with a level of 1.5mV.

Turn R102 anticlockwise until snow appears or contrast reduces slightly. Rotate R102 clockwise until the snow just disappears.

Increase signal level to 30mV and check that overloading or sound buzz does not occur.

Vertical (frame) height and linearity

Adjust pre-set potentiometer R410 (V-A) for 6% over scan.

Adjust pre-set potentiometer R409 (V-Lin) for best linearity.

Adjust pre-set potentiometer R505 (V-shift) for correct vertical position.

Colour reference oscillator

Tune to a PAL colour bar pattern.

To override the colour killer, connect pin 11 of IC500 (TP29) to +11V (TP25).

Connect TP32 and TP33 together.

Adjust potentiometer R527 (FREQ) for minimum rolling of colour bars.

PAL matrix adjustment

Tune to a TV PAL signal that has anti PAL (colourless) areas.

Method 1

Connect an oscilloscope to the BLUE output (K501 pin 3).

Adjust delay line amplitude (DL-AMP) preset R502 and delay line phase (DL-P) coil L503 to minimise the alternating (double image) waveforms. See Figs 1 and 2)

Method 2

Connect an oscilloscope that has X and Y inputs to the RED and BLUE outputs.

(X to K501 pin 4 RED) (Y to K501 pin 2 BLUE).

Adjust the colour, brightness and contrast controls to produce a vector display on the oscilloscope.

Adjust the delay line amplitude (DL-AMP) preset R520 to reduce the amplitude of the small vectors (Hannover blind errors) (see Fig 3), and the delay line phase (DL-P) coil L503 to superimpose the outer vectors (see Fig 4).

Note: some of the test patterns may not produce clearly defined vectors. In such cases method 1 should be used.

Picture tube greyscale

Tune to an unmodulated test pattern (blank or white raster).

Turn brightness, colour and contrast to minimum.

Set the drive presets R703 (G-DR) and R705 (B-DR) to mid position.

Set the background (cut-off) presets R713, R725, R727 and the A1 (screen) control to minimum.

Method 1

Open jumper J403 to cut supply of vertical output stage.

Connect TP34 (sandcastle) to TP21 (+12V).

Connect oscilloscope to the RED cathode pin 8 on CRT.

Adjust pre-set potentiometer R713 for required cut-off voltage on pin 8 of CRT. Adjust screen grid control for minimum light and re-adjust with R713 for correct cut-off voltage. Afterwards do not change R713.

Adjust pre-set potentiometer R725 and R727 to obtain a just visible white line.

Remove interconnection TP34 and TP21 and close jumper J403.

Check CRT data for cut-off voltage recommended for optimal performance of CRT.

Tune to greyscale (staircase) pattern.

Set contrast control to maximum.

Adjust pre-set potentiometers R703 and R705 until best white balance is obtained.

Method 2

Disconnect plug K400 (vertical).

Turn the A1 (screen) control until a coloured line appears. Note colour.

Turn the A1 control down until the line is extinguished.

Adjust the background presets for the remaining two colours to produce a coloured line before turning each preset anticlockwise to extinguish the line.

Reconnect plug .K400 and tune to a grey scale (staircase test pattern.

Set contrast to a high level.

Adjust the DRIVE presets R703 and R705 for correct white balance on the highlights.

ALIGNMENT

Alignment frequencies

SYSTEM	VISION IF	SAW FILTER	SOUND IF	
B/G	38.9MHz	SY177	5.5MHz	PAL/SECAM-V
Н	38.9MHz	SY177/SY178	5.5MHz	PAL/SECAM-H
I (UK)	39.5MHz	SY153A	6.0MHz	PAL
I (IRELAND)	38.9MHz	SY453A	6.0MHz	PAL

Video detector

Inject IF signal (38.9 or 39.5MHz) modulated with staircase (greyscale) waveform into tuner IF injection point..

The television should be switched to UHF band if a VHF/UHF model.

Connect voltmeter to TP4 (AFC) and an oscilloscope to the video output K100 pin 1.

The AFC voltage will change from 0 to 12V as the AFC tuning point is passed.

Adjust L102 for approximately 6V.

Note: Several false tuning points may be obtained; only the correct point will produce a linear staircase (step) video waveform.

Sound detector

Tune to a signal with a test tone.

Connect an oscilloscope to pin 12 of IC100 or across the loud speaker (see note on ground path).

Set volume control in mid position.

Adjust the detector coil L101 for good symmetrical sine wave.

A FM signal generator connected via a 1nF capacitor to the junction of L103 and R143 may be used if a CCIR signal is not available.

Set the generator to the correct frequency (5,5 or 6,0MHz), 50KHz deviation, 10mV amplitude and 1KHz modulation.

Sound trap

As the AFC cannot be defeated, the conventional method of tuning the television off frequency slightly to produce an increased sound carrier cannot be used.

Method 1

Inject a monochrome signal with FM sound into the IF injection point...

The video carrier frequency should be 200-300kHz higher than the standard IF frequency e.g. 39.2MHz for B/G (38.9MHz), 39.8MHz for I (39.5MHz).

Connect an oscilloscope to video output on K100 pin 1.

Adjust L104 for minimum sound carrier on the video signal.

Method 2

Tune to an unmodulated signal (blank raster) with no sound carrier.

Connect a signal generator 5.5Mhz (or 6MHz) CW to pin 17 of the TDA4505.

Connect an oscilloscope to the video output on K100 pin 1.

Adjust L104 for minimum sound carrier on the video waveform.

Chroma trap

Method 1.

Tune to a TV PAL signal.

Connect oscilloscope to R to B or G signal connector K501 pins 2, 3 or 4.

Adjust L501 for minimum colour sub-carrier on the R, G or B signals.

Method 2.

Inject a 4,433MHz signal into pin 7 of the SECAM socket.

Adjust L501 as in method 1.

Chroma band-pass

Method 1.

Tune to a PAL colourbar test pattern.

Connect oscilloscope via a probe (smaller than 2pF loading) to pin 3 of IC500.

Adjust with L500 for maximum amplitude of the chromanence waveform and optimum square wave signals at the output on K501.

Method 2.

Connect a sweep generator (wobbulator) to pin 8 of the SECAM socket.

Connect the detector via a high impedance oscilloscope probe to pin 3 of IC500.

System B/G

Set the generator to 4,43MHz centre frequency and 50mV amplitude.

Adjust coil L500 for maximum amplitude at 4,43MHz.

System i

Set centre frequency to 5MHz. Adjust coil L500 so that the 4,43MHz marker is 2dB from top.

SECTION 3.5 MAIN CHASSIS & CRT BASE PCB ALIGNMENT POINTS

MAIN CHASSIS

MINI NECK 15"

Note B/G = Background = Cut off

CRT BASE PCB

Section 3.6 - Main Chassis, Fault Guide

Check D804, D808, Q600, C813, Noise (squeal) from Dead. (No sound, raster or C601, C602, C600, C604. programme indicator.) power supply. Check F800, IC800, R802, R805, No output from power supply. (115V, 25V, 17V) R808. Check IC300, IC302. (Remote 115V o.k. control PCB) See fault guide in section 4.5 No sound or raster (horizontal Programme numbers stage not working). Standby and tuning functions not indicator lit. working. Check IC803, Q809, R844, K804 No 12V on TP21. pin 2 low (0V). Check 12V on IC100 pin 7, IC100, TP21 (12V) o.k. Q601, R600, R605. Turn A1 (screen) control No raster, Horizontal stage OK. (Note: sound will be muted if up. set not tuned to signal.) Check IC400, IC100 and periferal Horizontal line visible components. Raster visible. Check Q702, IC500 pin 1 (12V) pin 9/TP28 (2-4V). Sound not muted even if Check Q101, C120, AV PCB. No picture. (Sound may be tuned off station. muted.) Sound appears when Check AV and SECAM modules Q103, IC500. tuned to station. Check IC200, IC100 pin 12 (AF) Picture synchronised. No sound pin 11 (0-6V), Alignment of L102. Check IC100 pin 25 (FBAS), AV Picture not synchronmodule. ised. Overide colour killer. No colour. (PAL decoder only.) (TP26 to +12V) Check IC500 pin 3 (chroma), pin No colour. 16 (8.86MHz), Pin 7 (Sandcastle). Check alignment of R527 (freq). Coloured bands

IMPORTANT Discharge C809 before replacing IC800.

No SECAM, PAL ok.

No SECAM or PAL

colour.

No colour. (PAL/SECAM.)

Check alignment/components in

Check PAL decoder, SECAM

SECAM module.

module.

Section 3.7 - Main Chassis, Parts List

Circui Ref	it	Description				Part Number	Comment
R001	RESISTOR	МО	15K	2W	J	112188	· 5 💆
R002	RESISTOR		150K	0.25W	J		ч •
R010	RESISTOR		2M2	0.25W	J		
R011	RESISTOR	CF	47K	0.25W	J		
R012	RESISTOR		100K	0.25W	J		
R013	RESISTOR	CF	100K	0.25W	J		
R014/		CF	10R	0.25W	Ĵ		
R015	RESISTOR		68K	0.25W	J		
R016	RESISTOR	CF	1K2	0.25W	Ĵ	102126	
R017	RESISTOR	CF	68K	0.25W	J	103686	
R018	RESISTOR	CF	12K	0.25W	J	103122	
R019	RESISTOR	CF	470K	0.25W	J	104470	
R100	RESISTOR	CF	2M2	0.25W	J	105221	
R101	RESISTOR	CF	15K	0.25W	J	103155	
R102	PRESET	HRZ	47K	5x10mm		133470	•
R103	RESISTOR	CF	6K8	0.25W	J	102685	
R104	RESISTOR	CF	2M7	0.25W	J	105272	
R105	RESISTOR	CF	33K	0.25W	J	103336	
R107	RESISTOR	CF	12K	0.25W	J	103122	
R108	RESISTOR	CF	10R	0.25W	J	100107	
R109	RESISTOR	CF	4K7	0.25W	J	102479	
R110	RESISTOR	CF	10K	0.25W	J	103116	
R111	RESISTOR	CF	3K3	0.25W	J	102338	
R114	RESISTOR	CF	47K	0.25W	J	103475	
R115	RESISTOR	CF	82K	0.25W	J	103825	
R116	PRESET	HRZ	47K	5x10mm		133470	
R117	RESISTOR	CF	2M7	0.25W	J	105272	
R119	RESISTOR	CF	1K5	0.25W	J	112156	
R120	RESISTOR	CF	10K	0.25W	J	103116	
R125	RESISTOR	CF	30K	0.25W	J	103305	
R126	PRESET	HRZ	10K	5x10mm		133141	
R129 R131	RESISTOR	CF	1K8	0.25W	J	102189	
R132	RESISTOR RESISTOR	CF CF	4K7	0.25W	J	102479	20" & 21" MODELS ONLY
R133	RESISTOR	CF CF	3K3	0.25W	J	102338	DAL DIO AND CECAMAMODELO ONLY
R134	RESISTOR	CF	22K 680K	0.25W	J	103224	PAL B/G AND SECAM MODELS ONLY
R135	RESISTOR	CF	22K	0.25W 0.25W	J	104681 103224	
R136	RESISTOR	CF	100K	0.25W	J	104110	
R140	RESISTOR	CF	2K2	0.25W	J	102227	
R141	RESISTOR	CF	330R	0.25W	J	101331	
R142	RESISTOR	CF	680R	0.25W	Ĵ	101683	
R144	RESISTOR	CF	4K7	0.25W	J	102479	
R145	RESISTOR	CF	100R	0.25W	J	101106	
R200 /!\		FR	4R7	1W	J	129470	
R202	RESISTOR	CF	6R8	0.25W	J	109680	
R400	RESISTOR	CF	1K 0	0.25W	Ĵ	102101	
R401 🔼	RESISTOR	FR	4R7	1W	J	129470	
R402	RESISTOR	CF	3K9	0.25W	J	102397	
R403	RESISTOR	CF	10K	0.25W	J	103116	
R404	RESISTOR	CF	470R	0.25W	J	104470	
R405	PRESET	HRZ	10K	5x10mm		133141	
R406	RESISTOR	CF	270R	0.25W	J	101274	
R007	RESISTOR	CF	56K	0.25W	J	103561	
R408	RESISTOR	CF	10K	0.25W	J	103116	
R409	PRESET	HRZ	4K7	5x10mm		132474	
R410	PRESET	HRZ	100R	5x10mm		131102	
R411	RESISTOR	CF	22K	0.25W	J	103224	
R412/!\		CF	1R8	0.25W	J	109180	
R413	RESISTOR	CF	1K 0	0.25W	J	102101	

Circuit Ref	: De	escription				Part Number	Comment
R500 /	\ RESISTOR	FR	4R7	0.25W	J	129480	
R502	RESISTOR	CF	100R	0.25W	J		
R503	RESISTOR	CF	2K2	0.25W	J		
R504	RESISTOR	CF	1K0	0.25W	J		
R505	RESISTOR	CF	560R	0.25W	J		
R507	RESISTOR	CF	1K0	0.25W	J		
R508	RESISTOR	CF	1K2	0.25W	J		
R510	RESISTOR	CF	6K8	0.25W	J		NON-TELETEXT MODELS ONLY
R511	RESISTOR	CF	75K	0.25W	J		NON-TELETEXT MODELS ONLY
R512	RESISTOR	CF	15K	0.25W	J		NON-TELETEXT MODELS ONLY
R513	RESISTOR	CF	120K	0.25W	J		NON-TELETEXT MODELS ONLY
R514	RESISTOR	CF	330K	0.25W	Ĵ		NON-TELETEXT MODELS ONLY
R515	RESISTOR	CF	68K	0.25W	Ĵ		NON-TELETEXT MODELS ONLY
R519	RESISTOR	CF	1K2	0.25W	J		NON-TELETEXT MODELS ONLY
R520	PRESET	HRZ	1K0	5x10mm		132100	NON-TELETEXT MODELS
R521	RESISTOR	CF	390R	0.25W	J	101395	NON-TELETEXT MODELS ONLY
R522	RESISTOR	CF	1K	0.25W	J	102101	NON-TELETEXT MODELS ONLY
R523	RESISTOR	CF	470K	0.25W	J	101470	NON-TELETEXT MODELS ONLY
R527	PRESET	HRZ	1K0	5x10mm		113141	NON-TELETEXT MODELS ONLY
R528	RESISTOR	CF	1M0	0.25W	J	105106	NON-TELETEXT MODELS ONLY
R529	RESISTOR	CF	2K7	0.25W	J	102273	
R600	RESISTOR	ww	2R7	4W	K		
R601	RESISTOR	MO	10K	2W	K		
R603	RESISTOR	SR	220K	0.25W	K		
R604	RESISTOR	CF	47K	0.25W	J	102479	
R605 /\	RESISTOR	MO	5K6	2W	J	112564	
R606	RESISTOR	CF	1K8	0.25W	J	102189	
R607	RESISTOR	CF	4K7	0.25W	J	102479	
R608	RESISTOR	CF	330K	0.25W	J	101331	
R609	RESISTOR	CF	10K	0.25W	Ĵ	103116	
R610 <u> </u>	RESISTOR	MF	1K0	1W	J	112108	
R611	RESISTOR	CF	8K2	0.25W	J	102825	
R612	RESISTOR	MO	3M3	1W	ĸ	115330	21" VIDEOCOLOR ASIEBV CRT ONLY
OR	LINK						ALL OTHER MODELS
R800	RESISTOR	CF	220K	0.25W	J	104222	, 5
R801 /!\	RESISTOR	ww	2R7	4W	ĸ	129227	
R802 /	THERMISTOR	2322 672	96009			154214	PTC
R803 🔣	RESISTOR	MF	2K7	1W	J	112270	
R804 /!\	THERMISTOR	2322 662	98009			154213	DEGAUSS
R805	RESISTOR	MF	0R82	0.25W	J	119824	
R806	RESISTOR	CF	27R	0.25W	J	100271	
R808	RESISTOR	CF	100K	0.25W	J	104110	
R809	RESISTOR	CF	270K	0.25W	J	104273	
R810	RESISTOR	CF	15K	0.25W	J	103155	
R811	PRESET	HRZ	4K7	5x10mm		132474	
R812 _	RESISTOR	MO	47R	1W	Κ	110470	
R813/	RESISTOR	FR	0R22	1W	J	129228	
R814	RESISTOR	CF	10K	0.25W	J	103116	
R815	RESISTOR	CF	1K2	0.25W	J	102126	
R816 _^	RESISTOR	CF	220R	0.25W	J	101223	
R817/	RESISTOR	SR	4M7	0.5W	K	125470	
R844 <u>(1)</u>	RESISTOR	FR	4R7	1W	J	129470	
R845	RESISTOR	CF	390R	0.25W	J	101395	
	RESISTOR	CF	3K3	0.25W	J.	102338	
R847	RESISTOR	CF	10K	0.25W	J	103116	
	CAPACITOR	CER	1n0	50V	Κ	224108	
C007	CAPACITOR	MKT	100n	100V	М		
C008	CAPACITOR	CER	10n	50V	Κ	223135	
C009	CAPACITOR	ELC	1u0	16V		233131	
C010	CAPACITOR	ELC	4u7	50V		239488	
D100	DIODE	BAW62				302964	PAL BG & SECAM MODELS ONLY
D101	DIODE	BAW62				302964	PAL BG & SECAM MODELS ONLY
D011	CAPACITOR	CER	10n	50V	K	224108	

Circuit Ref	De	scription				Part Number	Comment
C012 C013	CAPACITOR CAPACITOR	ELC CER	1u0 10n	16V	V.	233131 224108	
C014	CAPACITOR	ELC	1u0	50V 16V	,	233131	
C015	CAPACITOR	ELC	68u	16V		230681	
C016	CAPACITOR	CER	10n	50V	Κ		
C017	CAPACITOR	CER	10n	50V	K	224108	
C019	CAPACITOR	ELC	1u0	63V		239119	
C100	CAPACITOR	MKT	220n	63V	K		
C101	CAPACITOR	ELC	22u	16V	12	231258	•
C102 C103	CAPACITOR CAPACITOR	CER ELC	1n0 330u	50V 16V	K	224108 232331	
C104	CAPACITOR	CER	2n2	50V	K	222238	
C105	CAPACITOR	CER	1n2	50V	ĸ	222151	
C106	CAPACITOR	CER	1n0	50V	K	224108	
C107	CAPACITOR	ELC	1u0	35V		233132	
C108	CAPACITOR	ELC	22u	16V		231258	
C109	CAPACITOR	CER	22n	50V		223247	D
C110	CAPACITOR	CER	68p	50V	M		PAL BG & SECAM MODELS
C111	CAPACITOR CAPACITOR	CER CER	39p 22n	50V 50V	M M	220399 223247	PAL I MODELS
C112	CAPACITOR	MKT	100n	100V	M	214137	
C113	CAPACITOR	CER	150p	50V	J	221172	
C114	CAPACITOR	MKT	22n	63V	K	214226	
C115	CAPACITOR	ELC	10u	16V		230143	
C116	CAPACITOR	PYF	2n7	160V	G	212274	
C117	CAPACITOR	ELC	1u0	50V		239128	
C118 C119	CAPACITOR CAPACITOR	MKT MKT	470n 220n	63V 63V	M J	214485 214226	
C120	CAPACITOR	ELC	1u0	35V	J	239128	
C121	CAPACITOR	MKT	100n	100V	М	214137	
C122	CAPACITOR	ELC	100u	16V	•••	232161	
C123	CAPACITOR	CER	150p	50V	J	221172	
C125	CAPACITOR	CER	150p	50V	J	221173	PAL BG & SECAM MODELS
0400	CAPACITOR	CER	120p	50V	J	221174	PAL I MODELS
C126	CAPACITOR	CER	560p	50V	K	221560	
C127 C128	CAPACITOR CAPACITOR	CER CER	68p 15p	50V 50V	J	220702 220170	
C200	CAPACITOR	CER	22n	50V	M	223247	
C201	CAPACITOR	ELC	1000u	35V	•••	233132	
C202	CAPACITOR	MKT	100n	100V	М	214137	
C203	CAPACITOR	CER	10n	50V	K	223135	
C204	CAPACITOR	CER	22n	50V	М	223247	
C205	CAPACITOR	MKT	100n	100V	М	214137	
C206 C207	CAPACITOR CAPACITOR	MKT ELC	100n 330u	100V 25V	М	214137 232333	
C400	CAPACITOR	CER	4n7	50V	K	222480	
C401	CAPACITOR	CER	4n7	50V	ĸ	222480	
C402	CAPACITOR	CER	470p	50V	K	221501	
C403	CAPACITOR	ELC	100u	50V		232164	
C404	CAPACITOR	ELC	220u	35V		232254	
C405	CAPACITOR	MKT	100n	100V		214137	
C406 C407	CAPACITOR	MKT	100n	100V	M	214137	
C407	CAPACITOR CAPACITOR	ELC ELC	1500u 2u2	35V 50V		233155 239235	:
C500	CAPACITOR	ELC	100u	25V		232163	
C501	CAPACITOR	CER	22n	50V	М	223247	NON-TELETEXT MODELS ONLY
C502	CAPACITOR	CER	82p	50V	М		
C503	CAPACITOR	ELC	4u7	25V		239488	NON-TELETEXT MODELS ONLY
C504	CAPACITOR	CER	270p	50V	K	221280	
C505	CAPACITOR	CER	10n	50V	K	223135	NON-TELETEXT MODELS ONLY
C506	CAPACITOR	CER	68p	50V	J	220702	NON TELETEVE MODEL C CNILY
C507 C509	CAPACITOR CAPACITOR	MKT CER	330n	63V 50V	K J	214336	NON-TELETEXT MODELS ONLY
~~	CAPACITUM	CEM	150p	3UV	J	221172	

Circuit Des Ref	scription		Part Numbe	Comment or
C511 CAPACITOR C512 CAPACITOR C513 CAPACITOR C514 CAPACITOR C517 CAPACITOR C519 CAPACITOR C527 CAPACITOR C528 CAPACITOR C529 CAPACITOR C529 CAPACITOR C600 CAPACITOR C601 CAPACITOR C602 CAPACITOR C603 CAPACITOR C604 CAPACITOR C604 CAPACITOR C604 CAPACITOR C604 CAPACITOR C605 CAPACITOR	MKT 220n ELC 1u0 ELC 1u0 MKT 100n CER 10n CER 10p ELC 1u0 CER 270p CER 270p CER 270p ELC 1u0 ELC 1u0 ELC 22u MKT 47n MKP10 470n MKP10 330n	63V 50V 16V 50V 100V 50V 50V 50V 50V 250V 160V 100V 250V 250V	K 214226 239128 230143 239128 M 214137 K 223135 J 220112 239128 K 221280 K 221280 231161 215106 231259 K 231487 M 214486 M 214342 J 213750	NON-TELETEXT MODELS ONLY 14" & 20" MODELS 15" & 21" MODELS
C605 A CAPACITOR A CAPACITOR A CAPACITOR CAPAC	FKP1 7n5 FKP1 6n8 FKP1 5n6 MKT 100n MKT 220n CER 1n0 CER 150u MKT-P 470n MKT-P 150n MKT-P 150n MKT-P 100n CER 330p ELC 100u FKP1 5n6 CER 330p ELC 100u FKP2 6n8	1.5kV 1.5kV 1.5kV 100V 100V 50V 160V 1KV 1KV 250V 250V 250V 250V 1KV 25V 16V 1KV 16V 16V	J 213750 J 212689 J 212566 M 214137 K 214227 K 224108 239129 K 222169 K 222169 K 222169 K 222169 M 214487 M 214161 M 214139 K 221351 232163 J 221351 232165 K 212688	21" MODELS ONLY 15" MODELS ONLY
C815 CAPACITOR C816 CAPACITOR C817 CAPACITOR C818 CAPACITOR C819 CAPACITOR C820 CAPACITOR C821 CAPACITOR C821 CAPACITOR C834 CAPACITOR C835 CAPACITOR C836 CAPACITOR C837 CAPACITOR C838 CAPACITOR C838 CAPACITOR L100 COIL L101 COIL L101 COIL L102 COIL L103 COIL L500 COIL L500 COIL L501 COIL COIL COIL COIL COIL COIL COIL COIL	ELC 1000u CER 330p ELC 2200u ELC 100u ELC 1u0 FKP2 4n7 CER 4n7 MKT 330n MKT 330n ELC 1000u MKT 330n ELC 1000u CHOKE 0u68 SOUND DET 42' VIDEO REF 185 CHOKE 6u8 SOUND TRAP 19 CHROMA PASS	35V 50V 1KV 1 25V 10V 100V 4KV 63V 63V 16V 11 11 11 11 12 142/90 142/91	233132 J 221174 J 221351 233241 232164 239125 K 212487 222480 K 214336 C 214336 C 233131 K 214336 C 232161 C 052690 C 052691 C 052693 C 052695 C 053321 C 052697 C 052728 C 052725	NON-TELETEXT MODELS ONLY NON-TELETEXT MODELS ONLY 14* & 20' MODELS 15' MODELS

Circuit Ref	Des	cription		Part Numbe	Comment r
L800 ! L801 L802 L803 L808 L809 L810 L811 T600 T601 / T801 / T801 D001 D002 D400 D600 D600 D600 D600 D600 D600 D801 D802 D803 D804 D800 D801 D806 D807 D808 D809 Q001 Q101 Q102 Q103 Q600 Q601 Q800 Q809 IC100 IC200	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR I.C.	FBT AT2079/10		052698 052699 055137 052700 055553 055552 052699 055552 051550 051551 051552 302950 302289 302947 300305 302289 302948 30295 300305 400921 400922 400922 400923 400923 400923 451340 451340 451340 451341 451342	
C800 IC803 F800 <u></u>	I.C. I.C.	TDA3565 TDA4601B LM317T T1.6A/250V		451343 451344 451345 054205 030306	NON-TELETEXT MODELS ONLY
	TUNER	1604UEC OR 3010UEC 1600KKC SY153		597136 599136 056733	PAL I MODELS PAL BG & SECAM MODELS PAL I MODELS
Z101	CERAMIC FILTER	5.5MB		056727 056734 056728	PAL BG & SECAM MODELS PAL I MODELS PAL BG & SECAM MODELS
Z501 X500 F	DELAY LINE	DL701 DL470 3.867 MHz	{ { { { { { { { { {	052701 052702 056729 QUOTE MODEL	NON-TELETEXT MODELS ONLY 14' PAL I 14' PAL BG 15' PAL I 15' PAL BG 20' PAL I 20' PAL BG 21' PAL I 21' PAL BG

CRT Base PCB

	ircuit R ef	Desc	ription				Part Number	Comment
R	700	RESISTOR	CF	470R	0.25W	J	104470	
R7	701	RESISTOR	CF	3K3	0.25W	J	102338	
	702	RESISTOR	CF	1K2	0.25W	J	102126	
R7	703	PRESET	HRZ	2K2	5x10mm		132226	
R7	704	RESISTOR	CF	3K3	0.25W	J	102338	
	705	PRESET	HRZ	2K2	5x10mm		132226	
R	706 🗥		CF	220R	0.25W	J	104222	
	707	RESISTOR	CF	3K3	0.25W	J	102338	
	708	RESISTOR	CF	4K7	0.25W	J	129480	
	709	RESISTOR	CF	4K7	0.25W	J	129480	
	710	RESISTOR	CF	1K2	0.25W	J	102126	
	712	RESISTOR	CF	820R	0.25W	J	101820	
	713	RESISTOR	CF	2K2	5x10mm	_	132226	
	714	RESISTOR	MF	10K	1W	G	113103	
	715/!\	RESISTOR	SR	220K	0.5W	J	124220	
	716 A	RESISTOR	CF	470R	0.25W	J	101470	14" MODELS
H	<u> </u>		MF	1R0	1W	G	119105 118225	15" MODELS
	\ <u>\</u>	RESISTOR	MF	2R2	1W	G G	119105	20" MODELS
	· ()	RESISTOR	MF	1R0	1W 1W	G	119105	21" VIDEOCOLOR A51EBV CRT
	₩	RESISTOR	MF	1R0	1W	G	118225	21" PHILIPS A51EAL CRT
ο-	740 <u>/!\</u>	RESISTOR RESISTOR	MF MO	2R2 1K5	0.5W	K	112156	21 THEIR O'NOTERE OFF
	718 719	RESISTOR	MO	1K5	0.5 W	ĸ	112156	
	719 720	RESISTOR	MO	1K5	0.5W	ĸ	112156	
	721	RESISTOR	CF	820R	0.25W	Ĵ	101820	
	722 <u>/</u> \	RESISTOR	MF	10K	1W	Ğ	113103	
	724	RESISTOR	CF	470R	0.25W	J	101470	
	725	PRESET	HRZ	2K2	5x10mm		132226	
	726	RESISTOR	CF	820R	0.25W	J	101820	
	727	PRESET	HRZ	2K2	5x10mm		132226	
	728 🗘	RESISTOR	MF	10K	1W	G	113103	
	730	RESISTOR	CF	470R	0.25W	J	101470	
		RESISTOR	FR	100R	0.25W	J	101106	
	701 ္	CAPACITOR	CER	220p	50V	K	221245	
		CAPACITOR	CER	10n	1KV	K	223134	
	703	CAPACITOR	ELC	150u	16V	v	232166	_
	705	CAPACITOR	CER	220p	50V	K	221245 213487	
	706	CAPACITOR	MKT	47n	100V	K K	221245	
	708	CAPACITOR	CER	220p	50V 250V	N.	231161	
	709	CAPACITOR	ELC 1NA148	10u	25UV		302289	
	700	DIODE	1N4148 1N4148				302289	
	701 700	DIODE	1N4148				302289	
_	702	TRANSISTOR	BF869				400924	
	700 701	TRANSISTOR	BF869				400924	
	701 702	TRANSISTOR	JA101				400920	
	702 703	TRANSISTOR	BF869				400924	
1.4	.ω <u>Λ</u>	SOCKET	CRT				031763	14", 20" & 21" MODELS
	$\overrightarrow{\Lambda}$		CRT				031779	15' MODELS
	دب	PCB, COMPLETE					577165	14' MODELS
		PCB, COMPLETE					569165	15' MODELS
		PCB, COMPLETE					597165	20" & 21" MODELS

Section 4.4 - Tuning System, Description

Central Processor SAA 1293A

The SAA 1293A is a single chip microcomputer in n-channel MOS technology and together with an EEPROM can perform all the operating and tuning functions of a TV receiver.

Most important features of the SAA 1293 are:

- voltage synthesized tuning system
- storage of up to 55 stations
- four analog outputs for volume, brightness etc
- last used analogue levels memorised
- normalised (ideal) analogue levels can be preset
- 2 digit display indicates station (programme) number, tuning scale, band switch etc
- direct interfacing with teletext system
- programmable tuning options (not accessable to customer)

Power on reset.

The circuit D301, Q302, Q305 etc forces the reset line (pin 4) high once the 5 and 12V supplies are above a certain level.

Standby on/off.

Pin 5 is a bidirectional input/output port. In standby mode the output is high turning Q303 off. If the mains switch is operated, the auxillary (wiping) contact shorts pin 5 to ground, this input is read by the microcomputer which then holds pin 5 low.

Standby and ON commands from the remote control also control pin 5.

Tuning voltage.

Pulses of variable width from pin 13 drive the switching transistor Q309. The waveform at the collector (33V peak square wave) is averaged and filtered by a RC Network to produce a DC tuning voltage.

This voltage (0-28V) is proportional to pulse width and pulse shape.

Analog outputs

Pins 10, 11, 33 and 34 produce variable width pulses of 12V amplitude; filtering by the RC networks R319/C304 etc produces a DC control voltage.

Pin 34 is intended for volume control and is clamped by D310 to prevent the control voltage rising excessively. A voltage above 10V will affect the horizontal oscillator function.

Band switching

Transistors Q306 to 308 are used to decode and buffer the 2 bandswitch pins (29 and 30).

Pin 29	Pin 30	VHFI	VHF III	UHF
LO	LO		not valid	
LO	HI	Χ		
HI	LO		X	
Н	н			X

Display Indicator

The 2 seven segment displays are driven in a multiplexed mode with the segme. digitals addressed sequentially.

The segments are controlled by pins 14-19, 21 and 22; the digits by pins 23 and 24.

To light a segment (eg. digit 1 segment C), pin 23 (digit enable) and pin 16 (segment C) must both be at 'low'.

Keyboard

The segment control lines that address the display are also used to scan the keyboard. When a key switch is pressed the closed contact is detected by the lines to pins 36-39.

Memory EEPROM

Various parameters such as tuning and bandswitch data, analogue settings as well as system options are stored in the EEPROM IC301. Either the MDA2061 or MDA2062 may be used.

The microcomputer SAA1293 communicates with EEPROM via a 3 wire IM bus. Data is transmitted or received in serial form and is stored as an 8 bit word. Total memory is 1024 bits (128 words).

An area of memory is protected and cannot be re-written unless pin 6 is high. This area is used for the operating options to ensure that false information or interference does not alter the operating system.

Infra-red preamplifier

The preamplifier module consists of a Infra-red PIN photodiode and a wideband preamplifier.

The TBA 2800 IC has four main parts: A gain controlled amplifier, 2nd stage amplifier, pulse separating amplifier and an inverter/driver. No adjustment is required.

Remote Control Transmitter

The SAA1250 IC transmits commands in the form of a 10 bit word. A total of 14 pulses are used for each word (activate, start, word and stop.) The time between pulses is used to signify the status of the bit (short delay '0', long delay for '1'). To provide immunity against interference the SAA1293 receiver must receive at least 2 identical words in sequence (the SAA1250 will continue to send the same word for as long as the key is pressed.)

When not transmitting the current consumption is kept to a minimum by the use of C-MOS technology.

Teletext control

A 2 line MI bus is used for data transmition and reception.

As the teletext decoder required a 3 line IM bus the AV switching output is programmed to operate as the IDENT line.

Section 4.5 - Tuning System, Fault Guide

1. In standby, no display, no tuning functions

No 16V supply

Faulty 5V regulator IC302.

2. Operating, no display, no tuning functions

No 12V supply

reset line low (pin 4 SAA1293A)

[Q302, Q305, D301]

3. In standby, bar displayed, no tuning functions

Crystal X300 faulty.

4. Displays (.1.) or (.2.), no programme memory

EEPROM IC301 faulty.

5. Not memorising tuning positions or analogue settings All other functions normal

No 20V supply [D302, D303,C303]

6. Not tuning. All other functions normal

No 33V [D001] - Q309

7. Tuning functions or display characters incorrect Programmable tuning options not set.

IMPORTANT. The operating and tuning characteristics are pre-programmed in the EEPROM. A suitably programmed EEPROM is only available from the service agents.

Section 4.6 - Tuning System, Parts List

Circuit Ref		Description				Part Number	Comment
	DECIGEOR	05	4017	0.0514/		100110	
R300	RESISTOR	CF	10K	0.25W	J	103116	
R301	RESISTOR	CF	1K0	0.25W	J		
R302	RESISTOR	CF	10K	0.25W	J	103116	
R303	RESISTOR	CF	330R	0.25W	J	101331	
R304	RESISTOR	CF .	10K	0.25W	J	103116	
R305	RESISTOR	CF	12K	0.25W	J	103122	
R306	RESISTOR	CF	3K9	0.25W	J	102397	
R307	RESISTOR	CF	10K	0.25W	J	103116	
R308	RESISTOR	CF	3K3	0.25W	J	102338	
R309	RESISTOR	CF	10K	0.25W	J	103116	
R310	NOT USED		4016	0.05144		100110	
R311	RESISTOR	CF	10K	0.25W	J	103116	
R313	RESISTOR	CF	4K7	0.25W	J	102479	
R315	RESISTOR	CF	1K0	0.25W	J	102101	
R316	RESISTOR	CF	1K5	0.25W	J	102157	
R317	RESISTOR	CF	3K3	0.25W	J	102338	
R318	RESISTOR	CF	4K7	0.25W	J	102479	
R319	RESISTOR	CF	68K	0.25W	J	103686	
R320	RESISTOR	CF	330K	0.25W	J	104332	
R321	RESISTOR	CF	47K	0.25W	J	103475	
R322	RESISTOR	CF	22K	0.25W	J	103224	
R323	RESISTOR	CF	22K	0.25W	J	103224	
R324	RESISTOR	CF	22K	0.25W	J	103224	
R325	RESISTOR	CF	22K	0.25W	J	103224	
R326	RESISTOR	CF	22K	0.25W	J	103224	
R327	RESISTOR	CF	47K	0.25W	J	103475	
R328	RESISTOR	CF	470K	0.25W	J	104470	
R329	RESISTOR	CF	10K	0.25W	J	103216	
R330	RESISTOR	CF	10K	0.25W	J	103116	
R331	RESISTOR	CF	15K	0.25W	J	103155	
R332	RESISTOR	CF	39K	0.25W	J	103392	
R333	RESISTOR	CF	47K	0.25W	J	103475	
R334	RESISTOR	CF	2K2	0.25W	J	102227	
R335	RESISTOR	CF	220K	0.25W	J	101223	
R336 /		MF	33R	1W	J	110331	
R337	RESISTOR	CF	1M0	0.25W	J	105106	
R338	RESISTOR	CF	4K7	0.25W	J	102479	
R339	RESISTOR	CF	4K7	0.25W	J	102479	
R340	RESISTOR	CF	220R	0.25W	J	101223	
R341	RESISTOR	CF	220R	0.25W	J	101223	
R342	RESISTOR	CF	220R	0.25W	J	101223	
R343	RESISTOR	CF	220R	0.25W	J	101223	
R344	RESISTOR	CF	220R	0.25W	J	101223	And the same
R345	RESISTOR	CF	220R	0.25W	J	101223	
R346	RESISTOR	CF	220R	0.25W	J	101223	
R347	RESISTOR	CF	220R	0.25W	J	101223	
R348	RESISTOR	CF	2K7	0.25W	J	105272	
R349	RESISTOR	CF	1K8	0.25W	J	102189	
R350	RESISTOR	CF	1K5	0.25W	J	102157	
R356	RESISTOR	CF	4K7	0.25W	J	102479	
C300	CAPACITOR		470n	63V	М	214485	
C301	CAPACITOR		10u	50V		230143	
C302	CAPACITOR		47n	100V	М	213485	
C303	CAPACITOR		1u0	63V		239119	
C304	CAPACITOR		100n	100V	М	214137	
C306	CAPACITOR		100n	100V	М	214137	
C307	CAPACITOR		100n	100V	M	214137	
C308	CAPACITOR		68n	50V	K	223682	
C309	CAPACITOR	CER	68n	50V	K	223682	

Circui Ref	t De	scription	. **	-1		Part Number	Comment
C310 C311 C312 C313 C314 C315 C316 C322 C323 L300 D300 D301 D302 D303 D303 D304 D305 D306 D309 D310 C300 C301 C302 C303 C304 C305 C306 C307 C308 C309 IC300 IC301 IC302 X300	CAPACITOR COIL DIODE TRANSISTOR TRANSITOR TRANSIT	MKT MKT CER MKT MKT MKT CER ELC CHOKE 1N4148 2PD5V6 ZPD 20V 1N4148 1N4148 1N4148 1N4148 1N4148 2PD 2V7 JA101	, Α	63V 63V 50V 63V 100V 50V 16V 16V	K K K K M M M M M M M M M M M M M M M M	213336 221501 1 214485 1 214226 1 214137	
Control R349 R351 R353	board PCB RESISTOR RESISTOR RESISTOR LED DISPLAY SWITCH PCB, COMPLETE	CF CF CF TDSR513 TIP1550-6		0.25W 0.25W 0.25W	J J	103392 104244 103336 302956 010710 577172	
R354 R355 C316 C317 C318 C319 C320 D308 IC303	RESISTOR RESISTOR RESISTOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR CAPACITOR DIODE I.C. PCB. COMPLETE	CF CF ELC ELC CER CER CER BPW41 TBA2800	100R 10K 22u 2u2 1n2 10n 10n	0.25W 0.25W 16V 50V 50V 50V 25V		101106 103116 231260 239235 222151 223138 223138 302952 451346 597186	

Section 5.1

INSERTION DIAGRAM AV - BOARD

COPPER PATTERN

Section 5.3 - AV Interface, Description

Transistors Q220 and Q221 form a non-inverting amplifier with a gain of 2. A standard 1v p-p video signal is thus amplified to the same level as produced by the vision IF stage.

To allow the volume control to vary sound level, the audio from the AV socket must first be modulated (FM) so that it can be detected by the sound detector stages.

Transistor Q230 and inductor L231 form a Hartley oscillator which oscillates at the sound IF carrier frequency (5,5 or 6,0MHz).

The audio signal applied to the varicap diode D230 changes its capacitance and thus frequency modulates the oscillator circuit.

TV/AV switching is performed by the switch S220. In the AV mode transistor Q101 is turned on, connecting pin 19 (AGC detector) of TDA4505 to ground. This mutes the vision IF, however the sound IF remains unmuted.

Incoming video from Q220/Q221 is fed via pin 4 (K100) to the blocking capacitor C122.

Video for the synch detector passes through R138.

Video for the colour decoder returns through pin 5 and S220 to pin 1.

Section 5.4 - AV Interface, Alignment

Fitting/Removal

The module is connected to sockets K100 and K200. Remove or cut link J63 near Q103.

Note. Socket K100 is a 7 pin socket, 2 pins are used for ground (both marked pin 2).

Socket K200 is a 5 pin socket.

The 2 pin plug from the AV board must be fitted to the right side (pin 4 is input, pin 5 ground).

Alignment

Method 1.

Switch unit to AV.

Short circuit Audio input socket.

Connect frequency counter to R238 or plug K200 pin 4.

Adjust coil L231 for 5,5MHz (system B/G/H) or 6MHz (system I)

Method 2.

Inject a 1KHz 200mV audio signal into the AV socket.

Connect an oscilloscope to the loudspeaker.

Adjust L231 for maximum undistorted sound.

Increase the audio input level until distortion increases again, then readjust L231 for minimum distortion.

Section 5.5 - AV Interface, Parts List

Circuit Reference	Description	on		N	Part lumber	Com-ment	
R221 RES R222 RES R223 RES R224 RES R225 RES R230 A RES R231 RES R231 RES R232 RES R234 RES R235 RES R236 RES R237 RES R238 RES R239 RES C220 CA C221 CA C221 CA C231 CA C232 CA C231 CA C232 CA C233 CA C234 CA C235 CA C236 CA C237 CA C237 CA C237 CA C230 CA C237 CA C238 CA C239 CA C231 CA C231 CA C231 CA C232 CA C231 CA C232 CA C231 CA C232 CA C231	ISTOR	CF C	100R 10K 10K 470R 470R 100R 10K 22K 4K7 3K3 100R 470R 680R 75R 47u 10u 10n 10n 10n 120p 270p 470p	0.25W 0.05W 0.05W	J 1 J 1 J 1 J J J J J J J J J J J J J J	01106 03116 03116 101470 101470 101470 101106 103116 103224 102479 102338 101106 101470 101683 100751 230509 230143 223138 223138 223138 221173 221279 221494 302693 031777 010711 052726 052691 400921 400921 597175	

Section 6.4 - SECAM Transcoder, Description

The TDA3592A integrated circuit consists of a SECAM decoder, PAL encoder and automatic PAL/SECAM switching.

If a SECAM signal is detected it is decoded as (R-Y) and (B-Y) signals before being re-encoded as PAL.

For any other signal which is not SECAM (ie PAL, Monochrome, NTSC or no signal) the IDENTICATION circuit allows the signal to pass through the transcoder without any processing.

SECAM signals with vertical identification (SECAM-V) or with horizontal identification (SECAM-H) can be decoded.

The SECAM system transmits colour information as FM modulated colour difference signals. The signals are sequential; (R-Y) for one horizontal line and (B-Y) for the next. To enable the colour difference signals to be identified the (R-Y) signal has a centre frequency of 4,406MHz and the (B-Y) signal 4,25MHz.

The SECAM signal passes through the Bell (cloche) filter to pin 3. The Bell filter is tuned to approximately 4,43MHz and equalises the amplitude of the 2 signals. Some compensation for frequency response errors in the vision IF stages is also possible.

The SECAM signal passes through a FM limiting amplifier before being demodulated. To allow black level clamping the (R-Y) and (B-Y) signals must be separated by the commutating switch. After clamping the signals are recombined in an amplifier which has an external de-emphasis circuit. Pin 20.

The (R-Y) and (B-Y) signals are used to amplitude modulate the 2 subcarrier (4,43MHz) signals.

As the (B-Y) and (R-Y) \pm 0 signals still alternate line by line the delay line DL701 and PAL matrix are used to produce a normal PAL signal.

Section 6.5 Secam Transcoder, Alignment

FITTING/REMOVAL

Break links T49 (chroma) and J48 (Luma), fit transcoder to socket and secure with screw. Refit links if transcoder is to be removed.

ALIGNMENT

Bell filter

Tune to a SECAM colourbar signal.

Connect an oscilloscope via a low capacitance probe (<2.5pF) to pin 3.

Adjust the bell filter L702 so that the amplitudes of the R-Y (4,406MHz) and B-Y (4,25MHz) signals are equal. (See fig 1.)

Another method is to view the signal at pin 20 on the oscilloscope and adjust for optimum step response.

PAL reference oscillator

Method 1:

Connect a frequency counter via a low capacitance probe to pin 8.

Adjust the trimmer capacitor C717 for a frequency of 4.433619MHz +/-50Hz.

Method 2:

Overide the colour killer and ident circuits of the PAL decoder to put the oscillator in the free running mode. (See section on PAL decoder alignment.)

Tune to a PAL colour bar signal.

Adjust the oscillator of the PAL decoder for stationary colours.

Change the PAL signal for a SECAM signal.

Adjust trimmer capacitor C717 for stationary colours again.

SECAM demodulator reference circuit

Use a SECAM chrominance signal without colour modulation. (Unmodulated 4,406 and 4,25MHz).

Connect an oscilloscope via a low capacitance probe to IC700 pin 9.

Align L700 and R702 for minimum amplitude modulation of the signal.

Chromanence delay line

Note. The PAL decoder, the BELL filter (L702) and the demodulator circuit must be correctly aligned before adusting the delay line.

Method 1:

This method makes use of a SECAM generator which is able to modulate the B-Y carrier only.

Adjust the potentiometer (R717) amplitude and the coils L702 and L704 (delay line phase) for a minimum (R-Y) signal in the PAL decoder.

Method 2:

Connect a PAL vectorscope to the output of the transcoder (pin 8).

Ensure correct PAL vector graticule is fitted.

Supply a SECAM colour-bar signal to the input circuit of the IC.

Adjust coils (L702 and L704) and preset potentiometer R711 amplitude until the vectors are of correct phase and amplitude. Use the BLUE signal as the reference vector.

Section 6.6 - SECAM Transcoder, Parts List

R700 RESISTOR CF 1K0 0.25W J 102101 R701 RESISTOR CF 1K0 0.25W J 102101 R702 PRESET HRZ 1K0 5x10mm 132100	Circuit Referen	ıce	Descripti	ion		N	Part umber	Comment
R703 RESISTOR CF 2K0 0.25W J 000000 R705 RESISTOR CF 10R 0.25W J 100107 R708 RESISTOR CF 10R 0.25W J 100107 R709 RESISTOR CF 1K0 0.25W J 102101 R710 RESISTOR CF 1K0 0.25W J 102101 R710 RESISTOR CF 390R 0.25W J 102101 R711 PRESET HRZ 1K 0 5x10mm 132100 R712 RESISTOR CF 680R 0.25W J 101895 R711 PRESET HRZ 1K 0 5x10mm 132100 R712 RESISTOR CF 680R 0.25W J 101683 C700 CAPACITOR PYF 180p 63V G 221192 C701 CAPACITOR MKT 100n 100V M 214137 C702 CAPACITOR MKT 100n 100V M 214137 C703 CAPACITOR CER 1n0 50V K 224108 C704 CAPACITOR CER 33p 50V K 220347 C705 CAPACITOR ELC 100 50V 239128 C706 CAPACITOR ELC 100 16V 230143 C707 CAPACITOR CER 22⁻ 50V M 223247 C710 CAPACITOR CER 100p 50V M 221175 C711 CAPACITOR CER 100p 50V M 221175 C712 CAPACITOR MKT 100n 100V M 214137 C713 CAPACITOR MKT 100n 100V M 214137 C714 CAPACITOR MKT 100n 100V M 214137 C715 CAPACITOR MKT 100n 100V M 214137 C716 CAPACITOR MKT 100n 100V M 214137 C717 CAPACITOR MKT 100n 100V M 214137 C718 CAPACITOR MKT 100n 100V M 214137 C714 CAPACITOR MKT 100n 100V M 214137 C715 CAPACITOR TANT 100 25V M C716 CAPACITOR ELC 100 50V 239128 C717 CAPACITOR TRIMMER 22p 7.5mm 260225 C718 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V K 224108 C721 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V K 224108 C721 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V K 224108 C721 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V C 239128 C721 CAPACITOR CER 1n0 50V K 224108 C720 CAPACITOR CER 1n0 50V C 239128 C721 CAPACITOR CER 1n0 50V C 239128 C721 CAPACITOR CER 1n0 50V C 239128 C720 CAPACITOR CER 100 50000000000000000000000000	R701 R702 R703 R704 R705 R708 R709 R710 R711 R712 C700 C701 C702 C703 C704 C705 C706 C707 C710 C711 C712 C713 C714 C715 C716 C717 C718 C719 C720 C721 L700 L701 L702 L703 L704 Z700 Z701 X700 D700	RESISTOR PRESET RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR RESISTOR PRESET RESISTOR CAPACITOR C	CF HRZ CF	1K0 1K0 1K0 560R 2K0 10R 2K0 1K0 390R 1K0 680R 180p 100n 100 100 22r 100p 390p 100n	0.25W 5x10mm 0.25W 0.25W 0.25W 0.25W 0.25W 5x10mm 0.25W 63V 100V 50V 50V 50V 50V 16V 50V 50V 100V 100V 100V 100V 100V 100V	AXX WWGWWW AXAWOL CCCCC C	102101 132100 101562 000000 100107 111111 102101 101395 132100 101683 221192 214137 224108 220347 239128 230143 223247 221175 221391 214137 214137 214137 214137 239128 260225 223135 224108 224108 224108 224108 052703 052726 052133 053321 053321 052702 052701 056730 302955 451350	

INSERTION DIAGRAM
TELETEXT 19 - 10 - 88

Section 7.4 - Teletext System, Description

For teletext models the existing colour decoder on the main PCB is replaced with a new decoder on the teletext PCB.

Circuit description

The composite (FBAS) video signal is converted into a 7bit digital signal by the A to D flash convertor IC900 (VAD2150). Transistor Q905 provides a low impedance drive for the convertor's input (pin12) as well as preventing the clamp pulses from IC903 entering the video signal line.

A digital sandcastle pulse from IC903 is used to blank the synchronising pulses and colour burst (pin 11).

All the teletext decoding and character generation is performed within the teletext processor IC902 (TPU2732). No adjustments or alignment are necessary.

For mixed text mode the vertical deflection circuit is provided with a fully interlaced 50Hz signal via a bistable (flip-flop) in IC905.

Contrast reduction is also necessary to prevent the beam current limiter circuit acting when in mixed text mode. This is achieved by triggering another bistable in IC905.

Note: Fitting a teletext board to a non teletext chassis may contravene safety regulations and will invalidate the guarantee.

Section 7.5 - Teletext system, Alignment

Teletext decoder

No alignment necessary.

Colour decoder

Colour reference oscillator

Tune to a PAL colour bar pattern.

Connect test points TP32 and TP33 together. (Pins 21and 22 of IC500)

Connect pin6 (SAT) to +12V to override the colour killer.

Adjust trimmer capacitor C515 for minimum rolling of colour bars.

PAL matrix adjustment

Tune to a PAL colour bar signal that has anti PAL (colourless) areas.

Method 1

Connect an oscilloscope to the BLUE output (connector K501 pin 2).

Adjust the delay line amplitude (DL-AMP) preset R520 and delay line phase (DL-P) coil L503 to minimise the alternating (double waveform. (see figs 1 and 2 section 3.5)

Method 2

Connect an oscilloscope with X and Y inputs to the RED and BLUE outputs.

(X to K501 pin 4 RED, Y to K501 pin 2 BLUE)

Adjust colour, brightness and contrast controls to produce a vector display on the oscilloscope (see Fig 3 section 3.5).

Adjust DIL-AMP preset to reduce the amplitude of the small vectors (hannover blind errors), and the DL-PHASE coil to superimpose the output vectors (see fig 4 section 3.5).

Note: Some test patterns may not produce clearly visible vectors.

Chroma band pass filter L500

See alignment details in non teletext version (section 3.5)

Chroma trap L501.

See alignment details in non teletext version (section 3.5)

Section 7.6 - Teletext System, Fault Guide

System does not enter into the text mode.

Check power supply (IC904).
Check clock circuit (Q900).
Check blanking output (Q904).
Check RAM memory (IC901).
Check colour decoder (IC500).
Check teletext operating options. *

System enters into an unidentified mode. (Neither teletext nor TV mode)

Check/replace TPU2732 (IC902). Check/replace 4164 (IC901). Check teletext operating options. *

System enters into teletext mode but does not display teletext information.

If no page header:
Check R,G,B outputs,and IC902..
If page header ok but no other information:
Check video input, Q905 and IC903.
Check teletext operating options. *

Text displayed on the screen is not synchronised.

Check waveforms and sychronisation signal outputs (pins 22 and 24 of IC903 DPU2540. Note: There is no after hours synch (AHS). Text will not be synchronised unless a TV signal is being received.

Errors, faulty characters or decoding errors.

Check 'clock cracker' pages from several different stations.

If pages vary significantly or are random check: I.F. alignment.

Level of video (FBAS) signal at base of Q905 Clamp pulses from IC903 pins 19 & 21. Check/replace IC900 & IC903.

If errors remain constant or characters distorted check/replace IC901 or IC902...

Excessive contrast of teletext characters.

Check the voltage level (4V) at pin 28 of IC903

and Q906.

Check value of R924 (1k5-2k2). Check EEPROM (IC300) program.

Excessive contrast of teletext character

in mixed text mode.

Check pin 5 of IC905. (Low in TV or mixed text

mode.

Interlace flicker on text display.

Check the waveform at pin 9 of IC905.

(25Hz square wave when in teletext mode)

Note:

No output when in TV or mixed text mode.

^{*} Teletext operating options (teletext system, language, contrast level etc) are stored in the tuning system EEPROM IC300.

Section 7.7 - Teletext System, Parts List

Circui Refer		Descri	ption	-		Part Numbe	Comment
R510	RESISTOR	CF	10K	0.25W		J 103116	
R511	RESISTOR	CF	75K	0.25W		J 103752	
R512	RESISTOR	CF	15K	0.25W		J 103155	
R513	RESISTOR	CF	120K			J 104123	
R514	RESISTOR	CF	330K			104123	
R515	RESISTOR	CF	68K	0.25W		J 103686	
R519	RESISTOR	CF	1K2	0.25W	Ì		
R520	PRESET	HRZ	1K	5x10mr		132122	
R521	RESISTOR	CF	390R	0.25W	٠.		
R523	RESISTOR	CF	1K0	0.25W			
R524	RESISTOR	CF	470R	0.25W	J		
R900	RESISTOR	CF	150R	0.25W	J		
R901	RESISTOR	CF	10K	0.25W	j		
R902	RESISTOR	CF	100R	0.25W	J		
R903	RESISTOR	CF	10K	0.25W	J	103116	
R904	RESISTOR	CF	1K8	0.25W	J	102189	
R905	RESISTOR	CF	22R	0.25W	J	100224	
R906	RESISTOR	CF	1K8	0.25W	j	102189	
R907	RESISTOR	CF	75R	0.25W	J	100751	
R908	RESISTOR	CF	75R	0.25W	J	100751	
R909	RESISTOR	CF	75R	0.25W	J	100751	
R910	RESISTOR	CF	75R	0.25W	J		
R911	RESISTOR	CF	1K8	0.25W	J		
R912	RESISTOR	CF	75R	0.25W	J		
R913	RESISTOR	CF	75R	0.25W	J		
R914	RESISTOR	CF	22R	0.25W	J	100224	
R915 R916	RESISTOR	CF	10K	0.25W	J	103116	
R917 /	RESISTOR	CF	470R	0.25W	J	104470	
R918	∆ RESISTOR RESISTOR	ww	18R	5W	Ķ		
R919	RESISTOR	CF	820R	0.25W	J	101820	
R920	RESISTOR	CF CF	270R	0.25W	J	101274	
R921	RESISTOR	CF CF	220R	0.25W	J	101223	
R922	RESISTOR	CF	1K0 1K0	0.25W	J	102101	
R923	RESISTOR	CF	1K0	0.25W 0.25W	J	102101	
R924	RESISTOR	CF	1K8	0.25W	J	102101 102189	
R925 /		CF	27R	0.25W	J	100271	
R926	RESISTOR	CF	1K5	0.25W	J	100271	
R927	RESISTOR	CF	22R	0.25W	J	100224	
R928	RESISTOR	CF	270K	0.25W	J	104273	
R929	RESISTOR	CF	470R	0.25W	Ĵ	104470	
R930	RESISTOR	CF	100R	0.25W	J	104110	
R931	RESISTOR	CF	120K	0.25W	Ĵ	104123	
R932	RESISTOR	CF	33K	0.25W	J	103336	
R933	RESISTOR	CF	3K3	0.25W	J	102338	
R934							Replaced by link
R935	RESISTOR	CF	270-820	R 0.25W	J	101274	Value sets mixed teletext contrast level
C501	CAPACITOR	MKT	470n	63V	Κ	214494	
C503	CAPACITOR	MKT	330n	63V	K	214336	
C505	CAPACITOR	CER	10n	50V	K	223135	
C507	CAPACITOR	MKT	330n	63V	K	214336	
C508	CAPACITOR	ELC	2u2	50V	K	239235	
C512	CAPACITOR	ELC	1u0	50V		293128	
C513	CAPACITOR	ELC	10u	16V		230143	
C514	CAPACITOR	ELC	1u0	50V		239128	
C515	CAPACITOR	TRIM	22p	7.5mm		260225	
C516 C517	CAPACITOR	MKT	100n	100V		214137	
C517	CAPACITOR CAPACITOR	MKT	100n	100V	M		
	CAPACITOR	ELC	2u2	50V	v	239235	
C520	CAPACITOR	CER CER	10n 10n	50V 50V	K K	223135	
			1011	J-0 #	1.	223135	

Circuit Reference		Descript	ion	Part Number	Comment		
	CAPACITOR CAPACI	MKT	100n 100n 100n 100n 100n 100n 100n 100n	100V 100V 100V 100V 16V 100V 50V 50V 100V 100V 100V 100V 100V	M M M M M M M M M M M M M M M M M M M	214137 214137 214137 214137 214137 214137 214137 214137 230143 214137 223135 220246 221245 214137 230143 214137 214139 214137 223135 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 302289 400920 400920 400920 400920 400920 400920 451390 451393 451396 451394 451395 451391 451392 052695	Comment
L504 L900 L901 Z500 X500 X900	COIL COIL COIL COIL CRYSTAL CRYSTAL PCB, COMPLET	CHOKE CHOKE CHOKE PAL DEL 8.867MH 17.73447	z	DL701		053321 052726 052726 052701 056729 056860 597196	

Section 8 - CRT Purity and Convergence

IMPORTANT.

The purity and convergence have been pre-aligned and should not normally require adjustment.

If purity or convergence is incorrect check the operation of the degaussing coil and thermistor R804 before attempting any adjustment.

The Philips tube has the purity and convergence preset by magnetised rings within the picture tube neck. Do not allow magnetised objects, external degaussing coils or magnets near the tube neck otherwise purity or convergence may be affected permanently.

Alignment procedures vary according to the size and make of tube. Before commencing any adjustment demagnetise the tube and cabinet with an external degaussing coil. Allow the receiver to operate for 15 minutes.

Conventional PIL Tube

14inch (37cm) Samsung 3708B22

20inch (51cm) Samsung 5109B22

Colour Purity and Centre Convergence

- 1. Obtain a green raster by turning down the RED (R) and BLUE (B) background (cut off) presets or by selecting a green test pattern.
- 2. Loosen the clamp screw holding the yoke and slide the yoke backward to provide vertical green bar (zone) in the picture screen. (Fig. 2.)
- 3. Remove the rubber wedges. (If fitted).
- 4. Rotate and spread the tabs of the purity (P) magnet (Fig. 1.) until the green bar is in the centre of the screen. At the same time, centre the raster vertically.
- 5. Move the yoke slowly forward until a uniform green screen is obtained. Place a rubber wedge in the uppermost position (D). Lightly tighten the clamp screw of the yoke.
- 6. Check the purity of the red and blue rasters by adjusting the background (cut off) presets.
- 7. Adjust the background (cut off) presets for a white raster.
- 8. Select crosshatch pattern on signal generator. Adjust the BRIGHTNESS, CONTRAST and FOCUS controls for a well defined pattern.
- 9. Turn the green gun off with the background (cut off) preset.
- 10. Adjust the two tabs of the 4-pole magnets to converge the red and blue vertical lines in the centre of the picture screen. (Fig 4.)

Turning both tabs together moves the red and blue lines vertically.

Turning each tab in opposite directions moves the red and blue lines horizontally.

- 11. Turn the green gun on. Adjust the two tabs of 6-pole magnets to converge the red/blue and green lines. The 6 pole magnets move the red/blue and green lines the same way as the 4 pole magnets.
- 12. Repeat the convergence and purity adjustments bearing in mind that the adjustments interact to some extent.

Periferal (dynamic) Convergence

- 1. Remove any wedges that may be fitted.
- 2. Tilt front of the deflection yoke up or down to obtain best convergence at the edge of the screen (Fig .5). Place a wedge at the uppermost position (D). Do not remove the adhesive backing paper from the wedge.
- 3. Place the other wedge at the bottom position (B) removing the backing paper to stick.
- 4. Tilt front of the yoke right or left to obtain best convergence of parallel lines. (Fig. 6.)
- 5. Keep the yoke position steady and put another wedge in either upper position (A or C). Remove backing paper and stick the wedge on the picture tube.
- 6. Remove the temporary wedge and fit it in the other upper position. Stick it to the picture tube to secure the yoke.
- 7. After fixing the three wedges, recheck overall convergence and purity. Tighten the screw firmly to fix the yoke and check the yoke is firm.
- 8. Secure the wedges with additional tape, silicon rubber or other flexible adhesive.

FST (S5) Picture Tube

21inch (53cm) Videocolor A51EBV12X

Purity and static convergence are adjusted by the magnetic ring on the tube neck. The ring can be rotated or moved along the neck.

PERIFERAL (DYMANIC) CONVERGENCE

- 1. Retract the 3 adjustment screws by rotating them anti clockwise.
- 2. Obtain a green raster by turning down the red (R) and blue (B) background (cut off) presets or selecting a green test pattern.
- 3. Move the yoke backwards or forwards until a uniform green screen is obtained. Tighten the clamp screw lightly.
- 4. Adjust the background controls for a white raster.
- 5. Select a crosshatch pattern and check that the lines are converged correctly at the centre of the screen. The position of the yoke may have to moved slightly to obtain optimum purity and convergence.
- 6. Periferal convergence procedure is similar to that for the PIL tubes.

Move the yoke in the horizontal or vertical plane to converge the red/green/blue lines at the edges of the screen. (Figs. 5 & 6.)

- 7. Rotate the adjustment screws clockwise until they touch the glass. Tighten the clamp screw firmly.
- 8. Using a plastic adjustment tool, tighten the screws gradually to obtain best convergence and to prevent the scan coil moving. Do not over tighten otherwise the yoke will move backwards affecting purity.
- 9. Secure the ends of the adjustment screws to the glass with silicon rubber or other flexible adhesive.

FST (45AX) Picture Tube

15inch (38cm) Philips A36EAM00X01

21inch (53cm) Philips A51EAL00X

No purity or convergence adjustments are necessary.

SECTION 8 - CRT PURITY & CONVERGENCE

FIG 1

FIG 2

FIG 3

FIG 4

FIG 5

FIG 6

Section 9, Cabinet & Miscellaneous Parts List

Ref	Description	Part Number	Comment
CPT (1) CPT (1) CPT (1) CPT OR	⚠DEGAUSS COIL	056737 577166 056738 569166 056736 597166 056735	14' MODELS 14' MODELS 15' MODELS 15' MODELS 20' MODELS 20' MODELS 21' MODELS (VIDEOCOLOR CRT) 21' MODELS (PHILIPS CRT)
(2) L602	_Ì DEGAUSS COIL (ASSEMBLY) HORIZONTAL WIDTH COIL	589166	21" MODELS 21" VIDEOCOLOR TUBE ONLY
(3) (4) (5) (6) (7) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23)	MSWITCH, MAINS 1753-504 PCB,CONTROL SWITCH, TIP (KEYBOARD) SPEAKER 4" 16 Ohm SPEAKER 3 X 4" 16 Ohm CABINET, FRONT CABINET, FRONT CABINET, FRONT CABINET, FRONT CABINET, BACK CABINET, BACK DOOR, CONTROL PANEL BUTTON, MAINS SWITCH GLASS, REMOTE WINDOW CLIP, SPEAKER FIXING CLIP, SPEAKER FIXING FEET, CABINET CABINET, WOODEN (CASE) MASK, FRONT MASK, FRONT BRACKET, MAIN PCB BRACKET, TELETEXT PCB PCB, AV LOGO (BADGE) LABELS, REAR (SET) AERIAL, LOOP AERIAL, LOOP AERIAL, ROD REMOTE CONTROL HANDSET REMOTE CONTROL HANDSET STYROFOAM (A) TOP 1 PAIR STYROFOAM (B) BOTTOM 1PAIR	577107 597107 633252 637252	14" MODELS 15" MODELS 20" MODELS 21" MODELS 14" & 15" MODELS 20" & 21" MODELS
	STYROFOAM (A) TOP 1 PAIR STYROFOAM (B) BOTTOM 1 PAIR CARTON BOX CARTON BOX CARTON BOX CARTON BOX	597805 597806 577800 569800 599800	20' & 21' MODELS 20' & 21' MODELS 14' MODELS 15' MODELS 20' MODELS 21' MODELS

Teletext PCB brackets must be ordered separately when ordering cabinets for the 20' & 21' models

() Exploded view reference number.

Section 9, Page 2

Amendment Sheet

AMD 1.1 Section 3.4 Page 1

Line 6 Change to read Type 1604UEC or 3010UEC for UHF only

Line 7 Delete

Line 8 Change to read Type 1604KKC or 2000KHC for VHF/UHF

(including cable bands).

1.2 Section 3.5

Page 1

Tuner AGC take over point. Method 1

Replace all text with following.

Tune to a CCIR standard signal with a level of 1mV

Connect a voltmeter to TP19

Adjust preset potentiometer R102 (AGC) until the AGC voltage just begins to drop by 5-10mV. Increase the signal to 1.5mV and check that the AGC voltage is approximately 2.5V below its initial value.

AMD 1.3 Section 3.5

Page 4

Video detector

After 'The television VHF/UHF model, add the following:

The 2000KHC tuner does not have an injection point.

In this case remove the tuner.

If the connection between the tuner and the SAW filter is assymetrical inject a 100mV signal into the input of the SAW filter Z100.

If the connection is symetrical ground one input to the SAW filter and inject the signal into the other input.

After 'Adjust L102 for approximately 6V.' add '(6.6V if Q001 is filtted.),.

AMD 1.4 Section 3.7

CHANGE	H012	RESISTOR	CF	220K	0.25W	J	104222	
CHANGE	R013	RESISTOR	CF	220K	0.25W	Ĵ	104222	-
DELETE	R133				0.2011	J	107222	-
CHANGE	R603	RESISTOR	MO	68K	1.6W	J	133681	
CHANGE	_					J		
	=	RESISTOR	CF	270K	0.5W	J	144272	
DELETE	D100							
DELETE	D101							
CHANGE	C606	CAPACITOR	CER	330p	500V	М	211311	
ADD	C610							
		CAPACITOR	MKI	100n	160V	М	214137	
CHANGE	C822	CAPACITOR	CER	4n7	4kV		222480	
CHANGE	ET1	(2nd line)			****		222700	
OI II MAGE	L.,	,						VDE/BS415
		TIMED						

599136

1600KKC or 2000 KKC (Changes are underlined for clarity only.)

TUNER

AMD 1.4 (Continued)

Insert - Circuit diagram

Change values of R012, R013, R603, C606 to those given above. Delete R133, D100, D101 Add C610 between T601 Pin 7 and ground.

AMD 1.5 Section 4.4 Page 2

Line 34 change 'transmition' to 'transmission'.

AMD 1.6 Section 6.6

CHANGE C715 CAPACITOR TANT 1u0 25v M 239131 (Change is underlined for clarity only.)

AMD 1.7 Section 7.1 and 7.7 Page 1

Section 7.7 Teletext System Parts List. CHANGE R902 RESISTOR CF <u>180R</u> 0.25W J 101106 (Change is underlined for clarity only.)

Section 7.1 Teletext System Circuit Diagram Change value of R902 as above.

AMD 1.8 Section 9 Page 1

ADD MAINS CORD WITHOUT PLUG 033129 UK
ADD MAINS CORD WITH STANDARDT PLUG 599500 EURO NON-FTZ
ADD MAINS CORD WITH FILTERED PLUG 54C500 EURO FTZ

46, 4

AMD 1.9 Insert Component overlay

Control board Delete words 14" and 15"

END

MAIN CHASSIS

MAIN CHASSIS

MINI NECK 15"

NARROW NECK CRT

MAIN CHASSIS

REMOTE BOARD

SECAM TRANSCORDER

MAIN CHASSIS

NARROW NECK CRT

SECAM TRANSCORDER

CONTROL BOARD