Variables aléatoires : loi et espérance (suite).

- 1. Soit X une variable aléatoire. Déterminer pour quelles valeurs de $\lambda \in \mathbb{R}$ la variable $e^{\lambda X}$ est intégrable et calculer $\mathbb{E}[e^{\lambda X}]$ dans chacun des cas suivants :
 - a) X suit la loi uniforme sur un intervalle [a, b],
 - b) X suit la loi exponentielle de paramètre $\theta > 0$,
 - c) X suit la loi normale $\mathcal{N}(0,1)$.

Solution de l'exercice 1.

a) Pour tout $\lambda \in \mathbb{R}$, la variable aléatoire $e^{\lambda X}$ est bornée (lorsque X suit une loi uniforme sur [a,b]), et donc intégrable. De plus,

$$\mathbb{E}[e^{\lambda X}] = \int_a^b e^{\lambda x} dx = \lambda^{-1} [e^{\lambda x}]_a^b = \lambda^{-1} [e^{\lambda b} - e^{\lambda a}].$$

b)
$$E[e^{\lambda X}] = \int_0^{+\infty} e^{(\lambda - \theta)x} dx = \begin{cases} +\infty & \text{si } \lambda \ge \theta, \\ \frac{1}{\theta - \lambda} & \text{si } \lambda < \theta. \end{cases}$$

c) Pour la loi normale, on trouve, en faisant le changement de variable $y = x - \lambda/2$,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\lambda x - x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\lambda y^2/2 - \lambda^2/4} dy = e^{-\lambda^2/4}.$$

- **2.** a) Soit X une variable aléatoire à valeurs dans \mathbb{N} . Montrer que si X^2 est intégrable, alors X est intégrable. Ce résultat reste-t-il vrai si l'on suppose que la loi de X admet une densité?
- b) Soit $m \ge 1$ un entier. Donner un exemple d'une variable aléatoire X à valeurs dans \mathbb{N} telle que X^k soit intégrable pour tout k compris entre 1 et m et $\mathbb{E}[X^{m+1}] = +\infty$.

Solution de l'exercice 2.

a) En utilisant l'inégalité $|x| \leq 1 + x^2$ valable pour tout réel x et la positivité de l'espérance, on obtient que $\mathbb{E}[|X|] \leq 1 + \mathbb{E}[X^2]$, ce qui prouve que le résultat, sans hypothèse sur la variable aléatoire réelle X autre que l'existence d'un moment d'ordre 2. En particulier c'est vrai si X est à densité.

b) Notons, pour tout s>1, $\zeta(s)=\sum_{n\geq 1}\frac{1}{n^s}.$ Considérons une variable aléatoire $X:(\Omega,\mathscr{F},\mathbb{P})\to\mathbb{N}^*$ telle que pour tout $n\geq 1$ on ait

$$\mathbb{P}(X = n) = \frac{1}{\zeta(m+2)} \frac{1}{n^{m+2}}.$$

Alors d'une part,

$$\mathbb{E}[X^m] = \frac{1}{\zeta(m+2)} \sum_{n \ge 1} \frac{1}{n^2} = \frac{\zeta(2)}{\zeta(m+2)} < +\infty,$$

donc X admet un moment d'ordre m et, d'autre part,

$$\mathbb{E}[X^{m+1}] = \frac{1}{\zeta(m+2)} \sum_{n \ge 1} \frac{1}{n} = +\infty,$$

donc X n'admet pas de moment d'ordre m+1.

- **3.** On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \frac{1}{\pi} \frac{1}{1+t^2}$.
- a) Montrer que f est la densité d'une mesure de probabilités sur \mathbb{R} . Soit X une variable aléatoire dont la loi admet la densité f.
- b) La variable aléatoire X est-elle intégrable?
- c) Calculer la fonction de répartition de X.
- d) Calculer la loi de $Y = \arctan(X)$.

La loi considérée dans cet exercice s'appelle la loi de Cauchy standard.

Solution de l'exercice 3.

a) On effectue le changement de variable $t = \arctan x$, et, comme $\arctan' = \frac{1}{1 + \arctan^2}$, il vient

$$\int_{-\infty}^{+\infty} f(x)dx = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} d\theta = 1.$$

f est donc la densité d'une probabilité.

- b) $\frac{x}{1+x^2} \sim x$ n'est pas intégrable au voisinage de l'infini, et donc X n'est pas intégrable.
- c) Par le changement de variable du a), on obtient

$$\mathbb{P}(X \le a) = \int_{-\infty}^{a} f(x)dx = \frac{1}{\pi} \int_{-\pi/2}^{\arctan a} d\theta = \arctan a + \pi/2.$$

d) Soit $b \in [-\pi/2, \pi/2]$. On a, toujours par le même calcul,

$$\mathbb{P}(Y \le b) = \mathbb{P}(X \le \tan b) = \int_{-\infty}^{\tan b} f(x)dx = \frac{1}{\pi} \int_{-\pi/2}^{b} d\theta = b + \pi/2.$$

Y suit donc la loi uniforme sur $[-\pi/2, \pi/2]$.

4. Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(0,1)$. Montrer que pour tout $n \in \mathbb{N}$, la variable aléatoire X^n est intégrable et calculer $\mathbb{E}[X^n]$. Vérifier que pour tout $n \geq 0$, $\mathbb{E}[X^n]$ est le nombre de manières d'apparier n points, c'est-à-dire le nombre de partitions de l'ensemble $\{1,\ldots,n\}$ par des paires.

Solution de l'exercice 4. La densité de la loi normale centrée réduite est la fonction $f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. On sait que pour tout $n\geq 1$, la fonction $x\mapsto |x|^ne^{-\frac{x^2}{2}}$ tend vers 0 lorsque x tend vers $+\infty$ ou $-\infty$. Soit $n\geq 1$ un entier. Puisque $x\mapsto |x|^{n+2}e^{-\frac{x^2}{2}}$ tend vers 0 en l'infini, on a $|x|^ne^{-\frac{x^2}{2}}=O(\frac{1}{x^2})$ en $+\infty$ et $-\infty$, si bien que l'intégrale $\int_{-\infty}^{+\infty}|x|^ne^{-\frac{x^2}{2}}\,dx$ converge. La loi normale centrée réduite admet donc des moments de tous les ordres.

Pour tout $n \geq 0$, posons

$$m_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{2}} dx.$$

Si n est impair, m_n est l'intégrale d'une fonction intégrable impaire, donc $m_n = 0$. Ceci peut se vérifier en faisant le changement de variable y = -x qui donne la relation $m_n = -m_n$.

Pour n = 0, m_0 est l'intégrale de la densité d'une loi de probabilités, donc $m_0 = 1$. Soit $n \ge 2$ un entier pair. On écrit n = 2p. Une intégration par parties donne, pour tout R > 0,

$$\frac{1}{\sqrt{2\pi}} \int_{-R}^{+R} x^{2p} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-R}^{+R} \underbrace{x^{2p-1}}_{u} \underbrace{x e^{-\frac{x^2}{2}}}_{v'} dx$$

$$= \frac{1}{\sqrt{2\pi}} \left[-x^{2p-1} e^{-\frac{x^2}{2}} \right]_{-R}^{R} + (2p-1) \frac{1}{\sqrt{2\pi}} \int_{-R}^{+R} x^{2p-2} e^{-\frac{x^2}{2}} dx.$$

En faisant tendre R vers $+\infty$, on trouve la relation $m_{2p}=(2p-1)m_{2p-2}$, qu'on résout en $m_{2p}=(2p-1)(2p-3)\dots 3.1$. Ce nombre est souvent noté (2p)!! et vaut $\frac{(2p)!}{2^pp!}$.

Finalement, les moments de la loi normale centrée réduite sont donnés par

$$\forall n \ge 1, \ m_n = \begin{cases} 0 & \text{si } n \text{ est impair,} \\ (2p)!! = \frac{(2p)!}{2^p p!} & \text{si } n = 2p. \end{cases}$$

Pour apparier n points, il faut choisir avec lequel des n-1 autres éléments apparier le premier, puis il en reste n-2 à apparier pour lesquels on procède de même. On obtient la même équation de récurrence que précédemment, avec une unique possibilité si n=2 et aucune si n est impair. Le nombre de manière d'apparier n points est donc égal au moment d'ordre n de la loi normale.

5. Soit $\theta > 0$ un réel. Soit X une variable aléatoire de loi exponentielle de paramètre θ . Montrer que pour tout entier $n \geq 1$, la variable aléatoire X^n est intégrable et calculer $\mathbb{E}[X^n]$. Donner une interprétation combinatoire de ce nombre lorsque $\theta = 1$.

Solution de l'exercice 5. Pour n=0, on a évidemment $\mathbb{E}[X^0]=1$. Soit $n\geq 1$. On intègre par parties (en dérivant le monôme et en primitivant l'exponentielle) :

$$\mathbb{E}[X^n] = \theta \int_0^{+\infty} x^n e^{-\theta x} dx = \theta \left[\frac{x^n e^{-\theta x}}{-\theta} \right]_0^{+\infty} + \theta n \int_0^{+\infty} x^{n-1} e^{-\theta x} dx = \frac{n}{\theta} \mathbb{E}[X^{n-1}].$$

En raisonnant par récurrence, on obtient immédiatement $\mathbb{E}[X^n] = n!\theta^{-n}$.

Pour $\theta = 1$, $\mathbb{E}[X^n] = n!$ est le nombre de bijections d'un ensemble ayant n éléments dans lui même.

6. Soit $\lambda > 0$ un réel. Soit X une variable aléatoire de loi de Poisson de paramètre λ . Montrer que pour tout entier $k \geq 1$, la variable aléatoire $X(X-1) \dots (X-k+1)$ est intégrable et calculer son espérance. Calculer $\mathbb{E}[X^m]$ pour $m \in \{1,2,3,4\}$ et vérifier que pour chacune de ces valeurs de m, $\mathbb{E}[X^m]$ est le nombre de partitions d'un ensemble à m éléments lorsque $\lambda = 1$. On peut démontrer que cette assertion est vraie pour tout $m \geq 1$.

Solution de l'exercice 6. $Y_k := X(X-1)...(X-k+1)$ est une variable aléatoire positive, on peut donc calculer son espérance (éventuellement infinie, auquel cas elle n'est pas intégrable). En utilisant le fait que $Y_k = 0$ lorsque X = 0, ..., k-1, on obtient

$$\mathbb{E}[Y_k] = e^{-\lambda} \sum_{i > k} \frac{i(i-1)\dots(i-k+1)\lambda^i}{i!} = e^{-\lambda} \lambda^k \sum_{i > k} \frac{\lambda^{i-k}}{(i-k)!} = \lambda^k < +\infty.$$

On sait que les Y_k permettent de retrouver les X^k par combinaison linéaire (famille échelonnée de polynômes, même si ici X désigne une variable aléatoire et pas une indéterminée). On trouve, en identifiant les coefficients

$$X = Y_1, \quad X^2 = Y_2 + Y_1, \quad X^3 = Y_3 + 3X^2 - 2X = Y_3 + 3Y_2 + Y_1,$$

 $X^4 = Y_4 + 6X^3 - 11X^2 + 6X = Y_4 + 6Y_3 + 7X^2 - 6X = Y_4 + 6Y_3 + 7Y_2 + Y.$

On prend maintenant les espérances et on utilise la relation $\mathbb{E}[Y_k] = \lambda^k$ calculée plus haut pour obtenir les premiers moment de X:

$$\mathbb{E}[X] = \lambda, \quad \mathbb{E}[X^2] = \lambda^2 + \lambda, \quad \mathbb{E}[X^3] = \lambda^3 + 3\lambda^2 + \lambda, \quad \mathbb{E}[X^4] = \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda.$$

Pour $\lambda = 1$, on obtient

$$\mathbb{E}[X] = 1$$
, $\mathbb{E}[X^2] = 3$, $\mathbb{E}[X^3] = 5$, $\mathbb{E}[X^4] = 15$.

On constate que pour ces 4 valeurs, $\mathbb{E}[X^m]$ est le nombre de partitions d'un ensemble à m éléments, et même que le coefficient devant λ^k est celui des partitions de cet ensemble en k sous-ensembles. Par exemple pour m=4, on a : pour k=4, une seule partition (composée de 4 singletons), pour k=3, 6 partitions (composées d'une paire et de deux

singletons), pour k = 2, 7 partitions (3 composées de deux paires et 4 composées d'un brelan et d'un singleton) et enfin pour k = 1 une seule (réduite à l'ensemble total).

7. Montrer qu'une variable aléatoire positive dont l'espérance est nulle est nulle presque sûrement. On pourra montrer, par contraposition, que si X est une variable aléatoire positive telle que $\mathbb{E}[X] > 0$, alors $\mathbb{P}(X > 0) > 0$.

Solution de l'exercice 7. Soit $X:(\Omega,\mathscr{F},\mathbb{P})\to\mathbb{R}_+$ une variable aléatoire réelle positive. Pour tout $n\geq 1$, définissons un événement $A_n\in\mathscr{F}$ en posant $A_n=\{X\geq \frac{1}{n}\}$. La suite d'événements $(A_n)_{n\geq 1}$ est croissante et vérifie $\bigcup_{n\geq 1}A_n=\{X>0\}$. On en déduit que $\mathbb{P}(X>0)$ est la limite des $\mathbb{P}(X\geq \frac{1}{n})$ lorsque n tend vers l'infini.

Supposons $\mathbb{P}(X>0)>0$. Alors il existe $n\geq 1$ tel que $\mathbb{P}(X\geq \frac{1}{n})>0$. On a donc

$$\mathbb{E}[X] \geq \mathbb{E}\left[X\mathbbm{1}_{\{X \geq \frac{1}{n}\}}\right] \geq \frac{1}{n}\mathbb{E}\left[\mathbbm{1}_{\{X \geq \frac{1}{n}\}}\right] \geq \frac{1}{n}\mathbb{P}\left(X \geq \frac{1}{n}\right) > 0.$$

Nous venons de montrer que si X n'est pas presque sûrement nulle, alors son espérance est strictement positive. La contraposée de cette assertion est ce qu'on nous demandait de démontrer.

8. Soient $\lambda, \mu > 0$ deux réels. On considère l'ensemble $\Omega = \mathbb{N}^2$, la tribu $\mathscr{F} = \mathscr{P}(\mathbb{N}^2)$ et, sur l'espace mesurable (Ω, \mathscr{F}) , la probabilité \mathbb{P} caractérisée par

$$\forall (n,m) \in \mathbb{N}^2, \ \mathbb{P}(\{(n,m)\}) = e^{-(\lambda+\mu)} \frac{\lambda^n}{n!} \frac{\mu^m}{m!}.$$

Enfin, sur $(\Omega, \mathcal{F}, \mathbb{P})$, on définit les deux variables aléatoires X(n, m) = n et Y(n, m) = m.

- a) Vérifier que $\mathbb{P}(\Omega) = 1$.
- b) Déterminer la loi de X et la loi de Y.
- c) Déterminer la loi de X + Y.

Solution de l'exercice 8.

a) On peut sommer la série double (car à termes positifs) dans l'ordre de son choix, par exemple en m puis en n. En reconnaissant le développement de l'exponentielle de μ , on obtient :

$$\sum_{m\geq 1} \mathbb{P}(\{n,m\}) = e^{-\lambda} \frac{\lambda^n}{n!} \sum_{m\geq 1} e^{-\mu} \frac{\mu^m}{m!} = e^{-\lambda} \frac{\lambda^n}{n!},$$

et donc on a bien:

$$\sum_{n\geq 1} \sum_{m\geq 1} \mathbb{P}(\{n,m\}) = \sum_{n\geq 1} e^{-\lambda} \frac{\lambda^n}{n!} = 1.$$

b) D'après le calcul précédent, $\mathbb{P}(X=n) = \sum_{m\geq 1} \mathbb{P}(\{n,m\}) = e^{-\lambda} \frac{\lambda^n}{n!}$, donc X suit la loi de Poisson de paramètre λ .

Un calcul analogue montre que Y suit la loi de Poisson de paramètre μ .

c) Déterminons la loi de X + Y. Soit $k \in \mathbb{N}$. Alors

$$\begin{split} \mathbb{P}(X+Y=k) &= \sum_{n=0}^k \mathbb{P}(\{n,k-n\}) = \sum_{n=0}^k e^{-(\lambda+\mu)} \frac{\lambda^n}{n!} \frac{\mu^{k-n}}{(k-n)!} \\ &= e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{n=0}^k C_k^n \lambda^k \mu^{k-n} = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^k}{k!}. \end{split}$$

X + Y suit donc la loi de Poisson de paramètre $\lambda + \mu$.

9. Soient $\lambda > 0$ et $p \in [0,1]$ deux réels. On considère l'ensemble $\Omega = \mathbb{N}^2$, la tribu $\mathscr{F} = \mathscr{P}(\mathbb{N}^2)$ et, sur l'espace mesurable (Ω, \mathscr{F}) , la probabilité \mathbb{P} caractérisée par

$$\forall (n,k) \in \mathbb{N}^2, \ \mathbb{P}(\{(n,k)\}) = e^{-\lambda} \frac{\lambda^n}{n!} \binom{n}{k} p^k (1-p)^{n-k} \mathbb{1}_{k \le n}.$$

Enfin, sur $(\Omega, \mathscr{F}, \mathbb{P})$, on définit les deux variables aléatoires X(n, k) = n et Y(n, k) = k.

- a) Vérifier que $\mathbb{P}(\Omega) = 1$.
- b) Déterminer la loi de X et la loi de Y.

Solution de l'exercice 9.

a) En fixant n, on obtient

$$\sum_{k \in \mathbb{N}} \mathbb{P}(\{(n,k)\}) = e^{-\lambda} \frac{\lambda^n}{n!} \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \mathbb{1}_{k \le n} = e^{-\lambda} \frac{\lambda^n}{n!} \sum_{k=0}^n (p+1-p)^n = e^{-\lambda} \frac{\lambda^n}{n!}.$$

On somme maintenant sur $n \in \mathbb{N}$, et en reconnaissant le développement de $\exp(\lambda)$ on vérifie immédiatement que

$$\mathbb{P}(\Omega) = \sum n \in \mathbb{N} \sum_{k \in \mathbb{N}} \mathbb{P}(\{(n, k)\}) = 1.$$

P est donc bien une probabilité.

b) On vient de voir que

$$\mathbb{P}(X=n) = \sum_{k \in \mathbb{N}} \mathbb{P}(\{(n,k)\}) = e^{-\lambda} \frac{\lambda^n}{n!},$$

ce qui montre que X suit une loi de Poisson de paramètre λ .

Il reste à déterminer la loi de Y. On a

$$\mathbb{P}(Y = k) = \sum_{n \in \mathbb{N}} \mathbb{P}(\{(n, k)\}) = e^{-\lambda} \frac{(p\lambda)^k}{k!} \sum_{n=k}^{\infty} \frac{(\lambda(1-p))^{n-k}}{(n-k)!}.$$

Or, en faisant le changement d'indice m = n - k, on obtient

$$\sum_{n=k}^{\infty} \frac{(\lambda(1-p))^{n-k}}{(n-k)!} = \sum_{m \in \mathbb{N}} \frac{(\lambda(1-p))^m}{m!} = \exp(\lambda(1-p)).$$

D'où, finalement,

$$\mathbb{P}(Y = k) = e^{-\lambda p} \frac{(p\lambda)^k}{k!}.$$

Y suit donc une loi de Poisson de paramètre λp .

Concrètement, Y peut être obtenu tirant d'abord X selon une loi de Poisson de paramètre λ , puis en lançant X pièces de monnaie (biaisées, ayant une probabilité p de donner un pile). Y est alors le nombre de pièces tombées sur pile.