LDSCI5209 - Information Presentation and Visualisation

Week 1: Introductions

Dimitris Mylonas
Northeastern University London

Plan for today

- Introductions
- Course overview
- Importance of data visualisation
- Evolution of visualisation

Who are you?

Colournamer: https://colornaming.net

Dimitris Mylonas: https://orcid.org/0000-0002-9467-6081

Aims for the LDSCI5209 course

- Design and evaluate effective data visualisations
- Apply principles of human perception, cognition and interactivity
- Develop good programming skills for both static and interactive visualisations
- Enhance analytical and communication skills

Teaching plan

- 12 x 1.5 hours of lectures
- 12 x 1.5 hours of hands-on lab sessions
- 12 x 1 hours of optional office hours

Useful resources

- Canvas & Syllabus:
- Textbook:
 - Visualization Analysis and Design by Tamara Munzner (2014)
- Yet, there is no single textbook on visualisation and we will use multiple sources.

Formative assessment

- Submit solved Exercise Sheets for each lab session
- When? Every Monday 23:59
- Marks, if any, do NOT contribute to the overall final grade

Summative assessment

- AE1 Set Exercises: From Colours to Words
- AE2 Written Assignment: Explorable Visual Data Storie

Grade scale

1 st Class	Upper Second Class	Lower Second Class	Third Class	Fail
100	68	58	48	35
90	65	55	45	20
85	62	52	42	5
80				0
75				
72				

Attendance

Use SEAtS app on your mobiles to register your attendance

The importance of data visualisation

Making the invisible visible

What is data visualisation?

- Data visualisation is the visual representation of information and data to enhance human cognition.
- It is used to **augment human capabilities**, not to replace human decision-making with computational methods.
- Data visualisation is an interdisciplinary field that combines art, design, psychology, statistics, data science and human computer interaction (HCI).

How much data do we produce?

What kind of data do we produce?

Source: https://whatsthebigdata.com/data-generated-every-day/

The ability to take data—to be able to understand it, to process it, to extract value from it, to visualise it, to communicate it—that's going to be a hugely important skill in the next decades, ...because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it.

Hal Varian, Google's Chief Economist
The McKinsey Quarterly, Jan 2009

Popularity of skills in data science

Why visualise data?

- Help cognition
- Expand memory
- Find patterns
- Generate and answer questions
- Make decisions
- Communicate
- Inspire

Cognitive limitations

https://youtu.be/_bnnmWYI0IM?feature=shared

Why visualisation complements statistics

	X1	Y1	X2	Y2	Х3	Y3	X4	Y4
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.11	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Mean	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
StD	3.16	1.94	3.16	1.94	3.16	1.94	3.16	1.94
Corr	0.	82	0.	82	0.	82	0.	82

... same stats, different visualisations

Matejka and Fitzmaurice (CHI 2017)

Learning about stats and visualisation

https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen?subtitle=en

The evolution of data visualisation

From early maps to interactive dashboards

Early visualisations (Pre-1700s)

Mercator's World map (1569)

Ptolemy's Geography (circa 150)

The rise of statistical graphics (1800s)

The Bottom line is divided into Years, the Right hand line into L19000 each.

State make to the Mar of the cold to Mr. Physiair

Modern data visualisation (1900s)

Interactive real time visualisations (2000s)

The future of data visualisation?

AR Graph Visualisation (Li & Wang, 2022)

Vitualitics

Interactive activity

Exploring strengths and limitations of data visualisations

Physical vs. Dymaxion world maps

Physical Map

Dymaxion Map (1954)

Bars vs. Pie charts

Source: https://www.atlassian.com/data/charts/how-to-choose-pie-chart-vs-bar-chart

Bar charts vs. heatmaps

Source: https://www.atlassian.com/data/charts/heatmap-complete-guide

Questions?