1 Hooke's Law:

$$F = k\Delta L \tag{N}$$

Where k is the **stiffness constant** $(N m^{-1})$. Valid until the elastic limit.

2 Stress:

$$\sigma = \frac{F}{A} \tag{Pa}$$

Where F is the force exerted and A is the area on which the force has been exerted.

3 Strain:

$$\varepsilon = \frac{\Delta l}{l}$$
 (Dimension-less)

Where Δl is the change in length, and l is the original length.

4 Young's Modulus:

$$Y = \frac{\sigma}{\varepsilon}$$
 (Dimension-less)

We can define Young's modulus to be the measure of stiffness of a given material¹.

5 Stress vs Strain graph:

¹It has to be considered separately for objects made of different materials.

6 Force vs Extension graph:

Gradient: Energy stored (J)

7 Energy stored per unit volume:

$$\frac{1}{2}$$
 stress × strain (J m⁻³)

8 Nomenclature:

Term	Description
Stiffness	How difficult to deform
Strength	How difficult to break
Elasticity	Where Young's modulus works.
Ductile	Able to undergo a lot of plastic behaviour.
Brittle	Breaks suddenly without undergoing plastic behaviour
Necking	Narrowing of material due to stretching.
UTS	Ultimate tensile stress a material can withstand w/o fractures/narrowing