## Research on Efficient Modality Fusion for Enhanced Uni-modal Ensemble

향상된 단일모달 모델 앙상블을 위한 효율적인 모달리티 결합에 관한 연구

Intelligent Information Processing Lab **KiHoon Lee** 

#### Large Multi-modal Model?

## LLM은 옛말...이미지까지 학습한 'LMM' 뜬다

용 임대준 기자 ② 입력 2023.10.12 18:00 

□ 댓글 0 

○ 좋아요 0

## 글만 알던 생성AI...영상 보고 감정 읽는 '멀티모달'로

AI 트렌드 체크 : GPT-4V, LLM 시대를 지나 이제 'LMM'이 온다

'GPT-4V' 이어 '제미니' 공개 임박...오픈 소스 '라바'도 인기

2023.10.10. 오후 4:25

챗GPT 출시 1년 만에 기술 트렌드 확 바뀌어

## 사람처럼 보고 듣고 말하는 'LMM' 시대 온다

**■** 0 **○** 까카 **⊕** 

#### Large Multi-modal Model?



#### 모달리티 별 적합한 딥러닝 모델

- 시계열 정보 RNN, LSTM, GRU, 1D CNN, Transformer ...
- 텍스트 데이터 BERT, ROBERTA, AlBERT, DeBERTA, DistilBERT, ELECTRA, GPT, T5, LLaMA, XLNet...
- 이미지 데이터 CNN, ResNET, VGG, ViT, BEiT, DeiT, EfficientNet, Swin Transformer, YOLO, ...
- 오디오 데이터 Speech2Text, WavLM, Wav2Vec, Whisper, Hubert...
- 멀티모달 데이터 → VisualBERT, BLIP, PaLi, BeiT-3, CoCa, VLMo, ViLT, ...

## 단일모달 앙상블 방안

• 한정된 자원을 사용하여 효과적으로 문제를 해결



#### 단일모달 앙상블 방안

• 한정된 자원을 사용하여 효과적으로 문제를 해결



#### **Graduation Paper**

#### Tittle

- 향상된 단일모달 모델 앙상블을 위한 효율적인 모달리티 결합에 관한 연구
- Research on Efficient Modality Fusion for Enhanced Uni-modal Ensemble

#### Research Motivation

- 실증적인 연구 부족
  - 데이터간의 결합 과정에서 정보 손실 문제를 최소화하는 연구
  - 데이터간의 이질성을 최소화할 수 있는 벡터 조합 연구
  - 단일 모달을 결합하여 멀티모달 문제를 해결하는 연구

#### Research Objective

- 단일 모달리티 모델의 앙상블을 통한 효율적인 모달리티 결합 방안 개발
- 데이터 간의 이질성을 최소화하여 모델의 학습 및 추론 성능을 향상시키는 방법 연구
- 제안하는 모달리티 결합 방안의 성능을 실증적으로 검증
- 모든 유형의 데이터와 딥러닝 네트워크에 적용 가능한 범용성 있는 결합 방안을 제안













#### **Computational Complexity**

- Simple Vectors Pair Combine Method
  - $h(i,j) = F(h_i,h_j) = W_1h_i * W_2h_j$ 
    - $x = \text{input seq} \{x_1, x_2, \dots, x_N\}$
    - $h(i,j) = representation \ \ \, x(i) \ \ \, x(j) \ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$
    - $N = length \ of \ input \ sequence \ (x = \{x_1, x_2, ..., x_N\})$
    - **D** = Dimension(Hidden State Vector's depth)

- W = D dimension matrix (layer)
- k = number of layers
  - $\mathbf{F} = Feed Forward Network$



재표현된 벡터간의 단순 쌍 조합은  $\mathcal{O}(N^2D^2)$ 의 계산복잡도를 가짐

즉, 벡터가 길수록 막대한 컴퓨팅 자원 소모

#### **Computational Complexity**

- **Efficient Vector Combination** 
  - $h(i,j) = F(h_i^k, h_i^k) = W[h_i, h_j, h_i h_j, h_i * h_j] = W_1h_i + W_2h_j + W_3(h_i h_j) + W_4(h_i * h_j)$ 
    - $x = \text{input seq} \{x_1, x_2, \dots, x_N\}$

- W = D dimension matrix (layer)
- h(i,j) = representation 된 x(i)와 x(j)의 조합 결과  $k = number\ of\ layers$
- $N = length \ of \ input \ sequence \ (x = \{x_1, x_2, ..., x_N\})$
- $\mathbf{F} = Feed\ Forward\ Network$
- **D** = Dimension(Hidden State Vector's depth)



- 계산 복잡도 감소
  - $\mathcal{O}(N^2D^2) \longrightarrow \mathcal{O}(N^2D)$

\* 
$$F(H_i, H_j) = \frac{2}{1 + 2^{-2W(H_i, H_j, H_i - H_j, H_i \circ H_j)}} - 1$$

- Dataset
  - **VQA v2** (Visual Question Answering)
    - 데이터 개수

|           | Train   | Validation | Test    |
|-----------|---------|------------|---------|
| Images    | 82,783  | 40,540     | 81,434  |
| Questions | 443,757 | 214,354    | 447,793 |

#### • 성능지표

$$accuracy = min(\frac{humans\ that\ provided\ that\ answer}{3}, 1)$$

#### • Exeample



| Question                      | Answer (Label)                                                      |  |
|-------------------------------|---------------------------------------------------------------------|--|
| What color are the dishes?    | id1: pink and yellow id2: yellow, pink id10: pink, yellow, and blue |  |
| How many cookies can be seen? | id1: 2<br>id2: 2<br><br>id10: 2                                     |  |
| What is the green stuff?      | id1: broccoli<br>id2: broccoli<br><br>id10: broccoli                |  |

- Dataset
  - **VQA v2** (Visual Question Answering)
    - Baseline



Fig. 8: Our best performing model (deeper LSTM Q + norm I). This model uses a two layer LSTM to encode the questions and the last hidden layer of VGGNet [48] to encode the images. The image features are then  $\ell_2$  normalized. Both the question and image features are transformed to a common space and fused via element-wise multiplication, which is then passed through a fully connected layer followed by a softmax layer to obtain a distribution over answers.

#### • Hyperparameter

• Image\_size: 384

• Learning Rate: 2e-5

• Batch\_size: 32

• Epoch: 10

• num\_class: 1000(87.47%)

Criterion: CrossEntropyLoss

Optimizer: Adam

#### Results

| Text Model | Image Model                              | Method                 | Accuracy  |
|------------|------------------------------------------|------------------------|-----------|
| LSTM       | VGGNet                                   | Concatenation          | 0.35895   |
|            |                                          |                        | (±0.0183) |
| LSTM       | VGGNet                                   | Element Wise Product   | 0.36382   |
|            |                                          |                        | (±0.0157) |
| LSTM       | VGGNet                                   | Cross-Modal Attention  | 0.39814   |
|            |                                          |                        | (±0.0102) |
|            | + Efficient Vector<br>VGGNet Combination | 0.47285                |           |
| LSTM       |                                          | Combination            | (±0.0092) |
|            |                                          | + Adaprive Weighted    | 0.50481   |
| LSTM       | VGGNet                                   | VGGNet Summation (UME) | (±0.0194) |

Visualization Analysis



Visualization Analysis



#### • Hyperparameter

• Image\_size: 384

• Learning Rate: 2e-5

• Batch\_size: 16

• Epoch: 10

• num\_class: 3128(93.25%)

• Criterion: CrossEntropyLoss

Optimizer: AdamW

#### Results

| Text Model | Image Model | Method     | Accuracy  |
|------------|-------------|------------|-----------|
| BERT       | ViT         | Baseline   | 0.47186   |
|            |             |            | (±0.0093) |
| BERT       | ViT         | UME Method | 0.55331   |
|            |             |            | (±0.0132) |
| RoBERTa    | ViT         | Baseline   | 0.49412   |
|            |             |            | (±0.0105) |
|            | V:T         | UME Method | 0.57921   |
| RoBERTa    | ViT         |            | (±0.0148) |
| DeBERTa_V3 | ВеіТ        | Baseline   | 0.58251   |
|            |             |            | (±0.0089) |
| DeBERTa_V3 | ВеіТ        | UME Method | 0.67917   |
|            |             |            | (±0.0121) |

#### **Conclusion**

- 단순 결합 대비 효율적인 계산 복잡도를 가진 조합 방안 제안
- 동일한 모델과의 비교를 통해 벡터 조합 방안의 효과 검증
- Grad-Cam 시각화를 통해 벡터 조합 방안의 효과 검증
- 모든 모델에 적용 가능한 일반성과 범용성 있는 조합 방안 제안

#### **Future Works**

- 3가지 이상의 유니모달 데이터를 사용한 작업으로 추가 검증
- 대형 멀티모달 모델(LMM) 사전학습 방식으로 채택하여 효과 검증

#### 논문 추가 계획

- 레퍼런스 추가
- 실험 추가 언어모델 3개(BERT, RoBERTa, DeBERTa)와 비전모델 2개(ViT, BeiT) 전체 앙상블
- 실험 결과 추가 그래프 등 직관적으로 비교가능한 시각화 결과 추가
- 알고리즘 추가

# Thank you

Intelligent Information Processing Lab **KiHoon Lee**