Permit Number 56398

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant	Emission	Rates (13)
		Name (3)	lbs/hour	TPY (4)
Probat Batch Roasting				
2	Probat Roaster 1 Receiving Cyclone Stack	PM	0.05	0.23
	Receiving Cyclone Stack	PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
3	Probat Roaster 2 Receiving Cyclone Stack	PM	0.05	0.23
	Treceiving Cyclonic Stack	PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
4	Probat Roaster 3 Receiving Cyclone Stack	PM	0.05	0.23
		PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
5	Probat Roaster 4 Receiving Cyclone Stack	PM	0.05	0.23
		PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
6	Probat Roaster 1 Afterburner Stack	PM	0.04	0.20
	7 Horbarror Glack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		СО	1.92	8.41

		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
7	Probat Roaster 2 Afterburner Stack	PM	0.04	0.20
	Alterburner Stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		со	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
8	Probat Roaster 3 Afterburner Stack	РМ	0.04	0.20
	Attendance Stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
9	Probat Roaster 4 Afterburner Stack	РМ	0.04	0.20

		PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
18	Probat Roaster 5 Receiving Cyclone Stack	PM	0.04	0.17
	Treceiving Cyclone Stack	PM ₁₀	0.04	0.17
		PM _{2.5}	0.04	0.17
19	Probat Roaster 6 Receiving Cyclone Stack	PM	0.04	0.17
		PM ₁₀	0.04	0.17
		PM _{2.5}	0.04	0.17
20	Probat Roaster 7 Receiving Cyclone Stack	PM	0.04	0.17
	Treceiving Cyclone Stack	PM ₁₀	0.04	0.17
		PM _{2.5}	0.04	0.17
21	Probat Roaster 8 Receiving Cyclone Stack	PM	0.04	0.17
	Treceiving Cyclone Stack	PM ₁₀	0.04	0.17
		PM _{2.5}	0.04	0.17
22	Probat Roaster 5 Afterburner Stack	PM	0.04	0.20
	, attendanter stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01

		NO _x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
23	Probat Roaster 6 Afterburner Stack	PM	0.04	0.20
	Antibumer Stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
24	Probat Roaster 7 Afterburner Stack	PM	0.04	0.20
	Autorburner Stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO _x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07

		CH₃COOH	0.05	0.20
25	Probat Roaster 8			
23	Afterburner Stack	PM	0.04	0.20
		PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		SO ₂	<0.01	0.01
		NO_x	0.38	1.68
		СО	1.92	8.41
		VOC	0.05	0.23
		CH₂CHCHO	0.03	0.14
		CH₃CHO	0.02	0.07
		CH₃COOH	0.05	0.20
Roasted Coffe	e Storage Bins and Silos		1	
14	Silo 2 MB Caff Baghouse No. 1 Stack (7)	PM	0.07	0.30
	No. 1 Stack (7)	PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
15	Bad Bar Caff Silo Cyclone No. 1 Stack (7)	PM	0.21	0.90
	No. 1 Stack (1)	PM ₁₀	0.21	0.90
		PM _{2.5}	0.21	0.90
16	FSPD Caff Blending Silo Baghouse No. 1 Stack (7)	PM	0.07	0.30
	Bagnouse No. 1 Stack (1)	PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
	Total Operations for Silo 2 MB Caff Baghouse No. 1,	PM	0.21	0.90
	Bad Bar Caff Silo Cyclone No. 1, and FSPD Caff	PM ₁₀	0.21	0.90
	Blending Silo Baghouse No. 1	PM _{2.5}	0.21	0.90
17	RWB Silo 3 Decaff	PM	0.05	0.23

		PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
30	Silo 2 MB Caff Baghouse No. 2 Stack (8)	PM	0.05	0.23
	140. 2 Stack (b)	PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
31	Bad Bar Caff Silo Cyclone No. 2 Stack (8)	РМ	0.15	0.68
	140. 2 Stack (6)	PM ₁₀	0.15	0.68
		PM _{2.5}	0.15	0.68
	Total Operations for RWB Silo 3 Decaff Baghouse	РМ	0.15	0.68
	No. 1, Silo 2 MB Caff Baghouse No. 2, and Bad	PM ₁₀	0.15	0.68
	Bar Caff Silo Cyclone No. 2	PM _{2.5}	0.15	0.68
32	FSPD Caff Blending Silo Baghouse No. 2 Stack	PM	0.07	0.30
		PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
33	RWB Silo 3 Decaff Baghouse No. 2 Stack	PM	0.07	0.30
	Bagnouse No. 2 Stack	PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
40	Decaff Green Bean Probat Baghouse Stack	РМ	0.05	0.23
	Eagilouse Stack	PM ₁₀	0.05	0.23
107 and 108	07 and 08 SIG Baghouse Vents	РМ	0.09	0.38
	Vento	PM ₁₀	0.05	0.23
		PM _{2.5}	0.02	0.09
111	6 Cell Silo Caff 30K Baghouse Vent	РМ	0.05	0.23
	Sagnouss von	PM ₁₀	0.05	0.23
112	Vert Caff 15K Receiving Bin Baghouse Vent	РМ	0.05	0.23

1	· ·			
		PM_{10}	0.05	0.23
113	Coffee Bean Transfer 21K Baghouse Vent	РМ	0.05	0.23
	Dag.iouco voik	PM ₁₀	0.05	0.23
114	Bosch No. 3 30K 1 Baghouse Vent	PM	0.05	0.23
	Dag.ioudo voix	PM ₁₀	0.05	0.23
118	RWB Receiving Bin Baghouse Vent	РМ	0.05	0.23
	Dag.iouco voik	PM ₁₀	0.05	0.23
119	Rework Bin A Baghouse Vent	РМ	0.05	0.23
		PM ₁₀	0.05	0.23
120	RWB Bin B Baghouse Vent	PM	0.05	0.23
		PM ₁₀	0.05	0.23
121	Rework Bin B Baghouse Vent	PM	0.05	0.23
		PM ₁₀	0.05	0.23
123	C-1 Caff 30K 3 Baghouse Vent	РМ	0.05	0.23
	Vont	PM ₁₀	0.05	0.23
124	Rework Caff 30K 4 Baghouse Vent	PM	0.05	0.23
	Dag.ioudo voix	PM ₁₀	0.05	0.23
125	Caff 15K 6 Baghouse Vent	PM	0.05	0.23
		PM ₁₀	0.05	0.23
126	Coffee Bean Transfer 09 SIG Baghouse Vent	РМ	0.05	0.23
	Die Bagneass von	PM_{10}	0.05	0.23
127, 128, and 129	10, 11, and 12 SIG Baghouse Vents	PM	0.05	0.23
	_ 3g333 13to	PM ₁₀	0.05	0.23
130	Receiving Bin 1 Baghouse Vent	PM	0.05	0.23
		PM_{10}	0.05	0.23

131	Receiving Bin 2 Baghouse Vent	PM	0.05	0.23
	Vent	PM ₁₀	0.05	0.23
132	Silo No. 2 Receiving Baghouse Vent	PM	0.07	0.30
	Bugnouse vent	PM ₁₀	0.07	0.30
133	Bad Bar Caff Silo Receiving Cyclone Vent	PM	0.21	0.90
	Treasuring Systems vein	PM_{10}	0.21	0.90
134	Receiving Bin A Baghouse Vent	PM	0.05	0.23
	Von	PM ₁₀	0.05	0.23
135	Receiving Bin B Baghouse Vent	PM	0.05	0.23
	Von	PM ₁₀	0.05	0.23
136	Receiving Bin C Baghouse Vent	PM	0.07	0.30
		PM_{10}	0.07	0.30
147	Decaff Vert B1-D 15K Baghouse Vent	PM	0.05	0.23
		PM ₁₀	0.05	0.23
148	Decaff Vert 15K Baghouse Vent	PM	0.05	0.23
	Volik	PM ₁₀	0.05	0.23
149	Decaff 30K 5 Baghouse Vent	РМ	0.05	0.23
	Volit	PM_{10}	0.05	0.23
150	Cloud Decaff Baghouse Vent	PM	0.05	0.23
	Volit	PM_{10}	0.05	0.23
154	3 lb Receiving Bin Baghouse Vent	PM	0.05	0.23
	249000 10	PM ₁₀	0.05	0.23
155	Ribbon Blender Receiver Cyclone Vent	PM	0.03	0.13
		PM ₁₀	0.03	0.13
156	Caff Surge Bin Baghouse Vent	PM	0.06	0.26

		PM ₁₀	0.06	0.26
Continuous Roas	ters 1 and 2 Operations			
137	Green Bean Transfer Baghouse Vent	PM	0.03	0.13
	Bagnouse vent	PM ₁₀	0.03	0.13
138	Isothermal Roasters 1 and 2 RTO Stack	PM	1.35	5.93
		PM ₁₀	1.35	5.93
		SO ₂	0.01	0.05
		NO _x	1.78	7.81
		СО	7.12	31.19
		VOC (6)	0.15	0.66
139A	Rotoclone Wet Cyclone Stack	PM	<0.01	0.01
		PM ₁₀	<0.01	0.01
139B	Rotoclone Wet Cyclone Stack	PM	<0.01	0.01
		PM ₁₀	<0.01	0.01
139C	Receiving 1 Cyclone Vent	PM	0.24	0.58
		PM ₁₀	0.24	0.58
139D	Receiving 2 Cyclone Vent	PM	0.24	0.58
		PM ₁₀	0.24	0.58
141	Receiving Mixer Baghouse Vent	PM	0.03	0.13
	Vent	PM ₁₀	0.03	0.13
142	Coffee Transfer Baghouse Vent	PM	0.03	0.13
	VOIR	PM ₁₀	0.03	0.13
Continuous Roas	ter 3 Operations		<u>.</u>	<u>.</u>
101 and 102	Green Bean Receiving Bins Baghouse Vents	PM	0.03	0.13
	Dirio Dagnodoc Vento	PM ₁₀	0.03	0.13

103	Isothermal Roaster 3 RTO	PM	3.08	13.49
	Stack	PM ₁₀	3.08	13.49
		PM _{2.5}	1.33	5.84
	_			
		SO ₂	0.01	0.03
		NO _x	1.13	4.94
		СО	7.01	30.69
		VOC (6)	0.11	0.50
104A	Cooling Car Wet Cyclone Stack	PM	0.11	0.49
	Stack	PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
105A	Destoner Receiving Cyclone Vent	PM	0.24	0.83
	Systems vent	PM ₁₀	0.24	0.83
Extraction Flow	Process			
201	Green Bean Destoners Baghouse Vent	PM	1.11	4.88
	Dagnouse vent	PM ₁₀	1.11	4.88
202	Green Bean Destoners 1 Baghouse Vent	PM	1.11	4.88
	Dagnouse vent	PM ₁₀	1.11	4.88
203	Green Bean Polishers Baghouse Vent	PM	1.29	5.63
	Dagnouse Vent	PM ₁₀	1.29	5.63
251	Green Bean Destoners 2 Baghouse Vent	PM	0.05	0.23
	Dagnouse Vent	PM ₁₀	0.05	0.23
252	Green Bean Destoners 3 Baghouse Vent	PM	0.07	0.30
	Dagnouse vent	PM ₁₀	0.07	0.30
AMCO 2 Proces	SS			·
258	Link Belt Receiver 6 Cyclone Vent	PM	0.31	1.36

		PM ₁₀	0.31	1.36
259	Link Belt Dryer Furnace 6 Cyclone Stack	PM	0.39	1.73
	Systeme States	PM ₁₀	0.39	1.73
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.03
		NO _x	0.50	2.17
		СО	0.83	3.64
		VOC	0.05	0.24
260	Aeroglide 6 Dryer Cyclone Stack	PM	3.00	13.13
	Stack	PM ₁₀	3.00	13.13
Process Link E	Belt 2 Operations			·
261	Link Belt Receiver 2 Cyclone Vent	РМ	0.31	1.36
	Cyclone vent	PM ₁₀	0.31	1.36
262	Link Belt Dryer Furnace 2 Cyclone Stack	PM	0.39	1.73
	Systems Statist	PM ₁₀	0.39	1.73
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.03
		NO _x	0.50 2.17	2.17
		СО	0.83	3.64
		VOC	0.05	0.24
263	Aeroglide 2 Dryer Cyclone Stack	PM	2.66	11.66
		PM ₁₀	2.66	11.66
267	Bean Polishing Baghouse Stack	PM	0.34	1.43
		PM ₁₀	0.34	1.43
302	Green Bean Cleaner Baghouse Vent	РМ	0.86	3.75

		PM ₁₀	0.86	3.75
100	Building Fugitives (includes			
100	Building Fugitives (includes Green Bean Receiving, Storage Bins 360 1A and	PM	0.24	1.03
	1B, Storage Bins 360 2A and 2B, Storage Bins 360 3A and 3B, Storage Bins 360 4A and 4B, Scales 264 and 265, and Storage Bin 266) (5)	PM_{10}	0.24	1.03
103 and 138	Isothermal Roasters 1, 2, and 3 RTO Stacks	HAPs	0.015	0.06
311	Area Vacuum System Baghouse Stack	PM	0.34	1.50
	Jag.ioado Gladi.	PM ₁₀	0.34	1.50
320	Bin Silo 63 Baghouse No.	PM	0.34	1.50
		PM ₁₀	0.34	1.50
321	Bin Silo 63 Baghouse No. 2 Stack	PM	0.34	1.50
		PM ₁₀	0.34	1.50
322	Bin Silo 64 Baghouse Stack	PM	0.34	1.50
		PM ₁₀	0.34	1.50
359	Spray Dryer 12 Cyclone Stack	PM	8.77	38.41
		PM ₁₀	8.77	38.41
		PM _{2.5}	8.77	38.41
		SO ₂	0.01	0.04
		NO _x	1.52	6.67
		СО	1.28	5.60
		VOC	0.08	0.37
362	Spray Dryer 11 Cyclone Stack	PM	8.71	38.15
		PM ₁₀	8.71	38.15
		PM _{2.5}	8.71	38.15

		SO ₂	0.01	0.05
		NO _x	1.09	4.78
		СО	2.73	11.94
		VOC	0.04	0.16
360A	Agglomerator Airveyour 5 Baghouse Stack	PM	0.20	0.87
		PM ₁₀	0.20	0.87
363	Agglomerator 5 Scrubber Stack	PM	1.30	6.26
		PM ₁₀	1.30	6.26
		SO ₂	<0.01	0.02
		NO _x	0.64	2.82
		СО	0.54	2.37
		VOC	0.03	0.15
360B	Agglomerator Airveyour 6 Baghouse Stack	PM	0.20	0.87
		PM ₁₀	0.20	0.87
361	Agglomerator 6 Scrubber Stack	PM	1.30	6.26
		PM ₁₀	1.30	6.26
		SO ₂	<0.01	0.02
		NO _x	0.64	2.82
		СО	0.54	2.37
		VOC	0.03	0.15
402	Boiler 5 Stack	РМ	0.60	0.10
		PM ₁₀	0.60	0.10
		PM _{2.5}	0.60	0.10
		SO ₂	0.05	0.01
		NO _x	7.84	1.32

	CO	6.59	1.11
			0.07
Boiler 6 Stack			33.05
	PM ₁₀	8.72	29.05
	PM _{2.5}	7.52	25.05
	SO ₂	3.74	12.47
	NO _x (9)	12.36	199.03
	NO _x (10)	45.44	199.03
	NO _x (11)		199.03
	CO (14)	7.21	31.58
	CO (15)	33.00	31.58
	CO (16)		31.58
	VOC	1.12	4.91
Building Fugitives (Includes	PM	<0.01	<0.01
Otorage Bill Verito) (6)	PM ₁₀	<0.01	<0.01
tup, and Shutdown (MSS)			
Baghouse MSS	PM	<0.01	<0.01
	PM ₁₀	<0.01	<0.01
	PM _{2.5}	<0.01	<0.01
	y reference. Sourc	es remain auth	orized by the
PBR § 106.264 (Registration No. 45	5721)	
Grinders 12A and 12B	PM	0.18	0.78
Bayriouse	PM ₁₀	0.18	0.78
PBR § 106.183 (Registration No. 37	'950)	
	Storage Bin Vents) (5) tup, and Shutdown (MSS) Baghouse MSS rule (PBR) sources incorporated belisted below: PBR § 106.264 (Grinders 12A and 12B Baghouse	PM10	NOC 0.43

Boiler 7	PM	0.50	2.17
	PM_{10}	0.50	2.17
	SO_2	0.02	0.10
	NO_x	2.24	9.80
	СО	2.24	9.68
	VOC	0.21	0.92
d Permit (SP) sources incorporated listed below:	by reference. Sour	ces remain auth	norized by the
SP § 116.617	7 (Permit No. 46897)	(12)	
Probat Battery 1 Baghouse	РМ	1.54	6.76
	PM ₁₀	1.54	6.76
Probat Battery 2 Baghouse	РМ	1.54	6.76
	PM_{10}	1.54	6.76
SP § 116.617	7 (Permit No. 46558)	(12)	
MRG Southland Bins Baghouse	PM	0.17	0.75
	PM ₁₀	0.17	0.75
RWB Curing Bins Baghouse No. 1	РМ	0.17	0.75
	PM ₁₀	0.17	0.75
RWB Curing Bins Baghouse No. 2	РМ	0.17	0.75
	PM ₁₀	0.17	0.75
	Probat Battery 1 Baghouse Probat Battery 2 Baghouse Probat Battery 2 Baghouse Probat Battery 2 Baghouse RWB Curing Bins Baghouse No. 1 RWB Curing Bins RWB Curing Bins	PM10 SO2 NOx CO VOC	PM10 0.50 SO2 0.02 NOx 2.24 CO 2.24 VOC 0.21 Id Permit (SP) sources incorporated by reference. Sources remain authorised below: SP § 116.617 (Permit No. 46897) (12) Probat Battery 1 Baghouse PM 1.54 PM10 0.17 RWB Curing Bins PM 0.17 RWB Curing Bins PM 0.17 RWB Curing Bins PM10 0.17 RW

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) PM total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented
 - PM_{10} total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as represented
 - PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
 - SO₂ sulfur dioxide
 - NO_x total oxides of nitrogen

CO - carbon monoxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

 CH_2CHCHO - acrolein CH_3CHO - acetaldehyde CH_3COOH - acetic acid

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40

Code of Federal Regulations Part 63, Subpart C

(4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) These VOC emissions include HAP emissions.
- (7) Only one emission source in this grouping (EPNs 14, 15, and 16) can operate at any given time.
- (8) Only one emission source in this grouping (EPNs 17, 30, and 31) can operate at any given time.
- (9) Hourly NO_x emissions limit based on firing of natural gas only.
- (10) Hourly NO_x emissions limit based on firing of natural gas and coffee grounds/chaff.
- (11) Annual NO_x emissions limit regardless of fuel fired (i.e., natural gas only or natural gas and coffee ground/chaff).
- (12) SP is a Pollution Control Projects (PCP) SP.
- (13) Planned startup and shutdown emissions are included. Maintenance activities, except as specified in Special Condition No. 33, are not authorized by this permit and will need separate authorization, unless the activity can meet the conditions of 30 TAC § 116.119.
- (14) Hourly CO emissions limit based on normal operations.
- (15) Hourly CO emissions limit based on startup and shutdown operations.
- (16) Annual CO emissions limit regardless of operating scenario (i.e., normal operations or startup and shutdown).

Dated April 29, 2014