Chapter 1 :: From Zero to One

•Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris 저

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Background

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$213 billion in 2004

The Game Plan

- The purpose of this course is that you:
 - Understand what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs
 - Design and build a microprocessor

The Art of Managing Complexity

- Abstraction (개념화)
- Discipline (규약)
- The Three –Y's
 - Hierarchy (계층화)
 - Modularity (모듈화)
 - Regularity (균일화)

Abstraction

• Hiding details when they aren't important

Application >"hello programs world!" Software Operating device drivers Systems instructions Architecture registers datapaths Microcontrollers architecture adders Logic memories Digital **AND** gates Circuits **NOT** gates Analog amplifiers Circuits filters transistors **Devices** diodes electrons **Physics**

focus of this course

Discipline

- Intentionally restricting your design choices
 - to work more productively at a higher level of abstraction
- Example: Digital discipline
 - Considering discrete voltages instead of continuous voltages used by analog circuits
 - Digital circuits are simpler to design than analog circuits – can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - I.e., digital cameras, digital television, cell phones, CDs

The Three -Y's

- Hierarchy
 - A system divided into modules and submodules

- Modularity
 - Having well-defined functions and interfaces

- Regularity
 - Encouraging uniformity, so modules can be easily reused

Example: Flintlock Rifle

Hierarchy

Three main modules:lock, stock, andbarrel

Submodules of lock:hammer, flint,frizzen, etc.

Example: Flintlock Rifle

Modularity

- Function of stock:mount barrel and lock
- Interface of stock:length and locationof mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are **continuous**, for example
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers **discrete subset** of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –
 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Digital Discipline: Binary Values

- Typically consider only **two discrete values**:
 - 1's and 0's
 - 1, TRUE, HIGH
 - 0, FALSE, LOW
- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use **voltage** levels to represent 1 and 0

• Bit: Binary digit

George Boole, 1815 - 1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws *of Thought* (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

nstitute of Physics

1.4 Number Systems(수의 체계)

• Decimal numbers (10진수)

• Binary numbers (2진수)

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal (2진수를 10진수로)
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary (10진수를 2진수로)
 - $-32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 1011111_2$

Binary Values and Range

- *N*-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- *N*-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- *N*-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^N 1]$
 - Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]
- *N*-bit binary number
 - How many values? 2^N
 - Range: $[0, 2^N 1]$
 - Example: 3-digit binary number:
 - $2^3 = 8$ possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hexadecimal Numbers (16진수)

- Base 16
- Shorthand for Binary

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111
	16	

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

Hexadecimal to binary conversion:

- Convert 4AF₁₆ (also written 0x4AF) to binary
- **0100 1010 1111**₂

Hexadecimal to decimal conversion:

Convert 0x4AF to decimal

```
-010010101111_{2} = 1 \times 2^{10} + 1 \times 2^{7} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}
= 1024 + 128 + 32 + 8 + 4 + 2 + 1
= 1199_{10}
-0x4AF = (4 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})
= 1199_{10}
```

Bits, Bytes, Nibbles...

• Bits

Bytes & Nibbles

• Bytes

10010110
most least significant bit bit

10010110 nibble

CEBF9AD7
most least

significant byte

최상위바이트

significant byte

최하위바이트

Large Powers of Two (거듭제곱의 계산)

- $2^{10} = 1 \text{ kilo} \approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

$$-2^4 \times 2^{20} \approx 16 \text{ million} = 16 \text{ Mega}$$

• How many values can a 32-bit variable represent?

$$-2^2 \times 2^{30} \approx 4$$
 billion = 4 Giga

Signed Binary Numbers (부호화된 2진수)

- 부호화된 2진수의 표현법 2가지
 - Sign/Magnitude Numbers (부호 및 크기의 2진수 표현법)
 - Two's Complement Numbers (2의 보수)

Sign/Magnitude Numbers (부호/크기 표기법)

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Negative number: sign bit = 1 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Positive number: sign bit = 0 $A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$
- Example, 4-bit representations of \pm 5:

$$-5 = 1101_2$$

 $+5 = 0101_2$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers (부호/크기 표기법)

- Problems (문제점):
 - Addition doesn't work, for example -5 + 5:

$$\frac{1101}{+0101}$$

$$\frac{10010 \text{ (wrong!)}}{}$$

Two representations of 0 (± 0): (두 가지의 zero표현)
1000 (-0)
0000 (+0)

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers: (부호 및 크기의 2진수 표현법에서 발생한 문제점 해결)
 - Addition works
 - Single representation for 0 (zero 표현 한 가지로 가능)

"Taking the Two's Complement"

- Reversing the sign of a two's complement number
- **Method** (2의 보수로 표현된 음수 만들기):
 - 1. Invert the bits (모든 비트를 반전 시킨 값에)
 - 2. Add 1 (1을 더한다)
- Example: Reverse the sign of $(+7) = 0111_2$
 - 1. 1000

2.
$$\frac{+}{1001} = (-8+1=-7)$$

Two's Complement Examples

- Take the two's complement of $(+6) = 0110_2$
 - 1. 1001

$$2. \ \ \frac{+1}{1010} = (-8+2 = -6)$$

- Take the two's complement of $(-3) = 1101_2$
 - 1. 0010

$$2. + 1 \over 0011 = (+3)$$

Addition (2진수의 덧셈)

Decimal

• Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Two's Complement Addition

Add 6 + (-6) using two's complement numbers
 111

• Add -2 + 3 using two's complement numbers

Overflow (오버플로우)

- Digital systems operate on a fixed number of bits
- overflows: when the result is too big to fit in the available number of bits (계산과정에서 결과 값이 데이터의 용량에 비해 크거나 작을 때)
- Example: add 13 and 5 using 4-bit numbers

Overflow (오버플로우)

- Unsigned 최상위 비트를 넘어가는 carry가 발생할 때
- Sign/Magnitude
- Two's Complement
 - ①두 개의 숫자가 양수일 때 결과 값이 음수거나
 - ②두 개의 숫자가 음수일 때 결과 값이 양수일 때

=> 최상위비트 carry_in != carry_out

Two's Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}
- Most positive 4-bit number: 0111_2 (7₁₀)
- Most negative 4-bit number: 1000_2 (-2³ = -8₁₀)
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
 (첫 비트가 0이면 양수, 1이면 음수)
- Range of an *N*-bit two's complement number (2의 보수로 표현할 수 있는 범위) : $[-2^{N-1}, 2^{N-1}-1]$

Increasing Bit Width (비트확장)

- A value can be **extend**ed from N bits to M bits (where M > N) by using:
 - Sign-extension (부호비트로 확장)
 - Zero-extension (zero로 확장)

Sign-Extension(부호 확장)

- Sign bit is copied into most significant bits.
- Number value remains the same.

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

• Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension(zero 확장)

- Zeros are copied into most significant bits.
- Number value may change.

• Example 1:

- 4-bit value =

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

4-bit value =

$$1011 = -5_{10}$$

- 8-bit zero-extended value: $00001011 = 11_{10}$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Q & A

[실습] Chapter 1.1~1.4 :: 연습문제(p40~)

- •수의 표현 범위: 7, 8, 9, 10, 11, 12, 41
- •진법: 13(a,b), 15(a,b), 17(a,b), 21(a,c), 23(a,c)
- •data의 표현: 43, 45, 46, 48, 49
- 2의 보수의 수 : 68
- •오버플로우: 52(b), 54(b), 56(c), 61(c)
- •Extention(부호 확장): 33, 35,