Apellidos '	Pèrez Jiménez	
Nombre	Hugo	

Preguntas sobre grupos:

- 1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2, \mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .
 - (a) (½ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) (½ punto) Dada $A \in \mathrm{GL}(2,\mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2, \mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

flugo Pérez Jiménez

Ejercicio 1 (T.2)

F3 = 72/42

- (a) Tomamos $X = (\overline{F_3} \times \overline{F_3}) \cdot (co_16)$ y definitions N como, $\underline{V} N \underline{W} = \underline{V} \cdot \underline{V} = \underline{+} \underline{W} \cdot \underline{V}$ Veamos que N es relación de equivalencia:
 - ·) Replexiva: $\forall v \in X \ v = V \implies v \land v$
 - Si westria: $V \wedge \omega = \omega \wedge V = \omega \otimes V = \omega \otimes \omega = \pm V$. Si $V = + \omega = \omega = V$, si $V = -\omega = \omega = -V = \omega$.
 - Transitiva: $V N \omega N U \implies V N U$. Tevenos $V = \pm \omega$ $V M U = \pm U$. Si $W = \pm U = 1$ $V = \pm W = \pm (u) = 1$ V N U = 1Si W = -U = 1 $V = \pm (-u) \implies V = \pm U \implies V N U = 1$ $V M U = \pm U = 1$ V M U = 1 V M U =

 $\begin{array}{c} (1) \, N(\frac{2}{0}) \, , \, (\frac{9}{0}) \, N(\frac{9}{2}) \, , \, (\frac{1}{2}) \, N(\frac{2}{1}) \, , \, (\frac{1}{3}) \, N(\frac{2}{2}) = 0 \\ = 1 \, P^{2}(\overline{H}_{3}) \, = \, \langle \, [(\frac{1}{0})] \, , \, [(\frac{1}{2})] \, , \, [(\frac{1}{2})] \, , \, [(\frac{1}{2})] \, \langle \, (\frac{1}{2}) \, \rangle \, , \, \\ \# \left(\, P^{2}(\overline{H}_{3}) \, \right) \, = \, 4 \, . \end{array}$

(b) $A \in GL(2,\overline{H_3})$, $Q_A: P^2(\overline{H_3}) \longrightarrow P^2(\overline{H_3})$ $[\underline{V}] \longmapsto A.[\underline{V}]$ Es ke aplicación es ké de fi unda de tel forma que manda a un elemento [V] de $P^2(\overline{H_3})$ al producto por la isquisame por $A \in GL(2)\overline{H_3}$.

Por ser [Y] un vector 2×1 con entradas en \mathbb{F}_3 y

A una matriz 2×2 con entradas en \mathbb{F}_3 benavor que

el producto ester ajustado y produce un vector 2×1 con

entradas en \mathbb{F}_3 . Como A es invertible \longrightarrow A = (00)us existe es posible \Longrightarrow $\mathbb{F}(\mathbb{F}_3)$ \longrightarrow $\mathbb{P}^2(\mathbb{F}_3)$.

: $(\mathbb{F}_4 = \mathbb{F}_0) \not= \mathbb{P}^2(\mathbb{F}_3)$. For faceto \mathbb{F}_4 esta bien definida

il siempre obtenenos un vector de $\mathbb{P}^2(\mathbb{F}_3)$ por cer las files

de las matrices \mathbb{F}_4 vectores an $\mathbb{P}^2(\mathbb{F}_3)$ diffictas el curlo por

ser \mathbb{F}_4 invertible).

c) Towerros $\mathbb{P}^2(\mathbb{H}_3) = \angle [V_1] = [\binom{1}{0}], [V_2] = [\binom{1}{1}], [V_3] = [\binom{1}{2}],$ $[V_4] = [\binom{1}{1}] \{ \text{ Veauros que } \forall_A \text{ es biyectiva pare } \}$ $\forall_A \in GL(2,\mathbb{H}_3)$

) Injecticidad: tomames [Y], [W] \(\begin{aligned}{l} P^2(\overline{T}_3) : [Y] \(EW \end{aligned} \)

Pero \(\Phi_A([V]) = \Phi_A([W]) = \righta A([V]) = A([W]).

Aplicamen \(\Phi_{A^{-1}} (A^{-1} \in GL(2, \overline{T}_3) \text{ por definición}):

\(\Phi_{A^{-1}} (A([V])) = \Phi(A([W])) = \righta A([V]) = \righta A([V])

. flugo Reroz

) Sobrey ectividad: [Y] $\in \mathbb{P}^2(\mathbb{F}_3)$. Quere usos uso gue existe [w] $\in \mathbb{P}^2(\mathbb{F}_3)$: $(\mathbb{F}_4([w]) = [V]$. Basta temorr [w] = $\mathbb{A}^1[V] \in \mathbb{P}^2(\mathbb{F}_3)$ y $(\mathbb{F}_4([w]) = \mathbb{A} \cdot \mathbb{A}^1[V] = [V]$ = $\mathbb{P}^2(\mathbb{F}_3)$ y $(\mathbb{F}_4([w]) = \mathbb{A} \cdot \mathbb{A}^1[V] = [V]$ = $\mathbb{P}^2(\mathbb{F}_3)$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3))$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3))$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3))$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3)$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3))$ $\mathbb{P}^2(\mathbb{P}^2(\mathbb{F}_3))$ $\mathbb{P}^2(\mathbb{P}^$

Por ser la biyective se tiene que tiel1,2,3,49

la [[Vi]] = [Vi] son 1 = j = 4, esto es: la mande

cada i (1 = i = 4) a un j (1 = j = 4) distinto para

cada i (por ser la biyectivo). Esto corresponde a

ma permutación en Su Sen & Sa dicha permuteción.

O A es única: Supongamos SAN = JAZ (SAL) SAZ E SM)

 $\psi_{A}([Vi]) = [Vj] \implies [V_{A_{1}}(i)] = [V_{A_{2}}(i)] = [V_{A_{2}}(i)] = [V_{A_{1}}(i)] = [V_{A_{2}}(i)] = [V_{A_{1}}(i)] =$

(d)

Veauvor que $f \in louronorfiscus$.

I identidad $\Rightarrow f(I) = \sigma_I = id$. ya que $\psi_I([Yi]) = Vi + i \in \{1,2,3,4\}$.

f (AB) =
$$\sigma_{AB} = \sigma_{A} \circ \sigma_{B} = f(A) \cdot f(B)$$

*I

 $V_{AB} \in [Vi]$) = $AB = [Vi] = V_{A} (V_{B}[Vi])$

If $(A^{-1}) = \sigma_{A^{-1}} = \sigma_{A^{-1}}$

* $V_{AB} = [Vi] = V_{A^{-1}} ([V_{a}i]) = A^{-1} [V_{a}i]] = A^{-1} A = A^{1} A = A^{-1} A = A^{$