

Al

INTRODUCTION TO TINYML

Dennis A. N. Gookyi

Introduction TO TinyML

MACHINE LEARNING

- Machine Learning
 - Machine Learning is a subfield of Artificial Intelligence focused on developing algorithms that learn to solve problems by analyzing data for patterns

MACHINE LEARNING

- Deep Learning
 - Deep Learning is a type of Machine Learning that leverages
 Neural Networks and Big Data

Applications of machine learning

Image classification

[Prob]

: 60%

[PREDICTION]

German shepherd

Object detection

Segmentation

Machine translation

Data centers

All the capabilities on previous examples, required a remarkable amount of horsepower and computing capabilities, so what companies are doing, they are taking all these computers and jam packing them into data centers, that are all just being dedicated in order to provide machine learning capabilities today

TPUs/GPUs

- In order to be able to provide ML capability, companies like Google are building TPUs (Tensor Processing Units) and NVIDIA GPUs (Graphics Processing Units)
- Both of these computing systems are capable of running machine learning extremely fast

- Bigger is not always better
 - Because we can not have a Datacenter to do ML inside our phone

- Bigger is not always better
 - Because we can not have a Datacenter to do ML inside our phone

High power High bandwidth **High latency** Why?

Low power
Low bandwidth
Low latency

- Bigger is not always better
 - Because we can not have a Datacenter to do ML inside our phone

- Bigger is not always better
 - Because we can not have a Datacenter to do ML inside our phone

End devices

❖ What Makes TinyML?

Example

Google Assistant

Example

Inputs

Endpoints have sensors, tons of sensors

Motion Sensors

Gyroscope, radar, magnetometer, accelerator

Acoustic Sensors Ultrasonic, Microphones, Geophones, Vibrometers **Environmental Sensors**

Temperature, Humidity, Pressure, IR, etc.

Touchscreen Sensors

Capacitive, IR

Image Sensors

Thermal, Image

Biometric Sensors

Fingerprint, Heart rate, etc.

Force Sensors

Pressure, Strain

Rotation Sensors Encoders

Endpoints have sensors, tons of sensors

Motion Sensors

Gyroscope, radar, magnetometer, accelerator

Acoustic Sensors

Ultrasonic, Microphones, Geophones, Vibrometers

Environmental Sensors

Temperature, Humidity, Pressure, IR, etc.

Touchscreen Sensors

Capacitive, IR

Image Sensors

Thermal, Image

Biometric SensorsFingerprint, Heart rate, etc.

Force Sensors

Pressure, Strain

Rotation Sensors

Encoders

Biometric sensors

Non-invasive Glucose Monitoring

Fingerprint + Photoplethysmography (**PPG**)

Endpoints have sensors, tons of sensors

Motion Sensors

Gyroscope, radar, magnetometer, accelerator

Acoustic Sensors

Ultrasonic, Microphones, Geophones, Vibrometers

Environmental Sensors

Temperature, Humidity, Pressure, IR, etc.

Touchscreen Sensors

Capacitive, IR

Image Sensors Thermal, Image

Biometric Sensors

Fingerprint, Heart rate, etc.

Force Sensors

Pressure, Strain

Rotation Sensors

Encoders

Endpoints have sensors, tons of sensors

Processing

Thinking big

Thinking big

Thinking big

BIG GPU / CPU 561mm²

Thinking small

BIG GPU / CPU 561mm²

Thinking small

BIG GPU / CPU 561mm²

Thinking small

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm²

Thinking tiny

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm²

Thinking tiny

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm²

Thinking tiny

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm²

Thinking tiny

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm²

TINY

Apple 0778 30mm²

Thinking record breaking

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm² TINY

Apple 0778 *30mm*²

Kinetis KL03 3.2mm²

Thinking record breaking

BIG GPU / CPU 561mm²

SMALL

Mobile SoC 83mm² TINY

Apple 0778 30mm²

world's smallest ARM-Powered MCU

48MHz, 32KB flash, 20-pin

Kinetis KL03 3.2mm²

Thinking record breaking

MCU demand forecast

MCU pricing forecast

Comparing power

BIG GPU / CPU

300W NVIDIA Tesla K80 **SMALL**

3.64W Apple A12

Neural Decision Processor

Always-on deep learning speech/audio recognition

Ultra low power, 128KB SRAM, 12-pin, 2.52mm²

140 μW

Syntiant NDP100

Comparing power

Use case: button cell battery

Neural Decision Processor

Always-on deep learning speech/audio recognition

Ultra low power, 128KB SRAM, 12-pin, 2.52mm²

140 μWSyntiant NDP100

Output

Output

❖ MCUs enable TinyML

SIZE

LOW POWER LOW COST

❖ MCUs enable TinyML

MCUs enable TinyML

❖ MCUs enable TinyML

What makes TinyML

Embedded Systems

Machine Learning

