Instrumentação 1

Sensores Resistivos

Professor Cicero Martelli DAELN/CPGEI

profmartelli.instrumentacao@gmail.com

Sensores Resistivos

- 1. Sensores resistivos
- 2. Potenciômetros
- 3. Dispositivos medidores de deformação
- 4. Detectores de temperatura resistivos
- 5. Termistores
- 6. Magnetoresistores
- 7. Resistores dependentes de luz (LDRS)
- 8. Higrômetros resistivos
- 9. Sensores de gás resistivos
- 10. Sensores líquidos de condutividade

Resistive Sensors

Potentiometers

Strain Gages

Resistive Temperature Detectors (RTDs)

Thermistors

Magnetoresistors

Light-Dependent Resistors (LDRs)

Resistive Hygrometers

Resistive Gas Sensors

Liquid Conductivity Sensors

Potenciômetros

- Uma resistência com um contato móvel (um potenciômetro) pode ser usada para medir deslocamentos lineares ou rotacionais.
 - Uma tensão conhecida é aplicada às extremidades do resistor
 - O contato é anexado ao objeto em movimento de interesse
 - A tensão de saída no contato é proporcional ao deslocamento

Notas

- Não linearidades como resultado de efeitos de carregamento
- Resolução devido ao número limitado de voltas por unidade de distância

Desgaste de contato por fricção

$$V_0 = V_S \frac{X - X_{MIN}}{X_{MAX} - X_{MIN}}$$

Example of application "Joy" stick

Strain gauges (Extensômetros)

Strain gauges são dispositivos cuja resistência muda com o estresse (efeito piezoresistivo)

- Deformação (Strain) é uma mudança fracionária (Δ L/L) nas dimensões de um objeto como resultado de estresse mecânico (força/área)
- A resistência R de uma tira de material de comprimento L, seção transversal A e resistividade ρ , é então: R= ρ L/A
- Diferenciando, o fator gauge G vem a ser:

$$\frac{\Delta R}{R} = \frac{\Delta L}{L} - \frac{\Delta A}{A} + \frac{\Delta \rho}{\rho} \cong (1 + 2v) \frac{\Delta L}{L} + \frac{\Delta \rho}{\rho} \Rightarrow G = \frac{\Delta R/R}{\Delta L/L} = \underbrace{(1 + 2v)}_{\text{GEOMETRIC}} + \underbrace{\frac{\Delta \rho}{\rho \Delta L}}_{\text{PIEZO-RESISTIVE}}$$

Foil Strain gauge

• Where ν is the Poisson's ratio ($\nu\cong 0.3$), which determines the strain in directions normal to L

■ In <u>metal</u> foil gauges, the geometric term dominates (G≅2)

■ In <u>semiconductor</u> gauges, the piezoresistive term dominates (G≅100)

Strain gauges

TABLE 2.2 Typical Characteristics of Metal and Semiconductor Strain Gages

Parameter	Metal	Semiconductor 0.001 με to 3000 με	
Measurement range	0.1 με to 50,000 με		
Gage factor	1.8 to 4.5	40 to 200	
Nominal resistance, Ω	120, 250, 350, 600,, 5000	1000 to 5000	
Resistance tolerance	0.1 % to 0.35 %	1 % to 2%	
Active grid length, mm	0.4 to 150	1 to 5	
	Standard: 3 to 10		

Strain gauges

Fabricação e uso

 Os strain gages típicos consistem em uma folha ou grade de arame coberta por duas folhas de isolamento (poli-imida)

 O gauge (transmissor/medidor) é fixado ao objeto desejado com um adesivo

Os segmentos longitudinais estão alinhados com o

direção do estresse

 A sensibilidade à tensão transversal pode ser desprezada

Notas

- Os efeitos da temperatura são bastante pronunciados em gauges semicondutores
- Para compensar, é comum colocar "dummy" gauges que estão sujeitos às mesmas mudanças de temperatura, mas sem estresse mecânico
- As mudanças de resistência são tipicamente muito pequenas
- Strain gauges s\u00e3o quase invariavelmente usados em uma ponte de Wheatstone

Sensores de força e aceleração

Sensores de força

- A célula de carga de duplo feixe acoplado
- O recorte de sino de halteres fornece áreas de tensão máxima para os medidores
- A viga em balanço se dobra em forma de S
 - Isso induz tanto deformações de compressão quanto de tração que podem ser facilmente medidas em um <u>arranjo em ponte</u>.

Sensores de aceleração

Acelerômetro mola-massa-amortecedor

- Viga (cantilever)em balanço com extensômetros
- Uma massa sísmica é anexada à extremidade da viga
- O amortecimento geralmente é realizado com fluidos viscosos ou ímãs permanentes

Sensor de pressão piezoresistivo

displacement

Stress

Piezoresistive Pressure Sensors

Wheatstone Bridge configuration

Illustration from "An Introduction to MEMS Engineering", N. Maluf

Sensor de pressão piezoresistivo

Processo de gravação (Etching process)

Acelerômetro piezoresitivo

Detectores de Temperatura Resistivos

Termoresistor ou Termistor

$$R = R_0[1 + \alpha(T - T_0)]$$

TABLE 2.3 Specifications for Some Different Resistance Temperature Detectors

Parameter	Platinum	Copper	Nickel	Molybdenum
Span, °C	-200 to +850	-200 to +260	-80 to +320	-200 to +200
α^a at 0 °C, $(\Omega/\Omega)/K$	0.00385	0.00427	0.00672	0.003786
R at 0° C, Ω	25, 50, 100, 200, 500, 1000, 2000	10 (20°C)	50, 100, 120	100, 200, 500, 1000, 2000

Termoresistor ou Termistor

1: NTC $R = R_0 e^{b\left(\frac{1}{T} - \frac{1}{T_0}\right)}$

2: RTD (Platinum)

Magnetoresistores

A magnetoresistência é a tendência de um material alterar o valor de sua resistência elétrica quando um campo magnético é aplicado externamente.

AMR - resistor magnetorresistivo anisotrópico

GMR - O <u>Giant</u> efeito magnetorresistivo aparece quando constitui-se uma multicamada feita de camadas finas não magnéticas e magnéticas intercaladas.

TABLE 2.5 General Characteristics of AMR, GMR, and Hall Effect Sensors

Parameter	AMR Sensor	GMR Sensor	Hall Effect Sensor
Input range	25 mT	2 mT	60 mT
Maximal output	2 % to 5 % ^a	4% to 20% ^a	0.5 V/T
Frequency range	Up to 50 MHz	Up to 100 MHz	25 kHz typical 1 MHz feasible
Temperature coefficient	Fair	Good	Depends on model
Maximal temperature	200 °C	200°C	150°C
Cost (2000)	Medium-high	Low-medium	Low

Magnetoresistores - Exemplos

TABLE 2.6 Some Characteristics of Commercial Magneroresistive Sensors

Parameter	KMZ10A ^a	DM 208 ^b	GMR B6 ^c	NVS 5B50 ^d
Field span, kA/m ^e	-0.5 to $+0.5$	_	-15 to $+15$	-4 to +4
Sensitivity, (mV/V)/(kA/m)	14.0	3.5	8	11 to 16
$R_{\mathrm{bridge}}, \mathrm{k}\Omega$	1.2	0.65	0.7	5
Maximal operating voltage, V	10	13	7	24
Operating temperature, °C	-40 to $+150$	-	-40 to 150	-50 to 150

^a AMR, Philips Semiconductors.

^bAMR, Sony.

^c GMR, Infineon (Siemens).

^dGMR, Nonvolatile Electronics.

^e In air, 1 kA/m corresponds to 1.26 mT.

Magnetoresistores - Exemplos

Medição de Velocidade: Sensor Magnetoresistivo

Com uma placa de campo, utiliza-se da dependência da resistência elétrica de um resistor na força de um campo magnético.

Utilizando-se de sequências de fendas de dentes não simétricas, até mesmo a direção da velocidade pode ser recuperada.

Light-dependent resistor (LDR)

Princípio de funcionamento: efeito fotoelétrico interno

$$E = h \times f$$

LDRs – Comportamento

A relação entre a resistência R para um fotocondutor e a iluminação Ev (e.g. in lux) é fortemente não linear.

Modelo simples:

$$R = A \times E_{\nu}^{-\alpha}$$

LDRs – Dependência do comprimento de onda

Higrômetros Resistivos

Figure 2.30 Resistive humidity sensor based on a bulk polymer and its resistance-humidity characteristic (from Ohmic Instruments).

Sensores de gás resistivos - Princípio

Os sensores resistivos de gás semicondutor dependem da mudança da condutividade da superfície, ou do volume, de alguns semicondutores de óxido metálico, dependendo da concentração de oxigênio na atmosfera ambiente.

Outros gases reagem com o oxigênio e podem ser detectados indiretamente.

http://www.figarosensor.com/technicalinfo/principle/mos-type.html

Sensores de gás resistivos - Exemplos

Sensores de condutividade (Liquid Conductivity Sensors)

Polarization effects (double layer capacitor)

Equivalent circuit

Condicionamento de sinal para sensores resistivos

Circuitos Básicos

Método 2-fios ou 4 fios.

 $R_{\rm w2}$

Compensa as resistências dos

Divisor de Voltagem

Diferença entre 2 fios e 4 fios?

Olá, Em resumo, um instrumento de 2 fios (4-20mA) é alimentado pelo circuito de corrente. Um instrumento de 4 fios é alimentado por uma fonte externa.

Divisor de Voltagem

■ Pressupostos

- Interessado em medir a mudança fracionária na resistência x do sensor: R_S=R₀(1+x)
- R₀ é a resistência do sensor na ausência de um estímulo
- A carga do resistor é expressa: R_L=R₀k por conveniência

$$V_{out} = V_{CC} \frac{R_{S}}{R_{S} + R_{L}} =$$

$$= V_{CC} \frac{R_{0} (1+x)}{R_{0} (1+x) + R_{0} k} = V_{CC} \frac{1+x}{1+x+k}$$

Perguntas

- E se invertermos R_S e R_L?
- Como podemos recuperar R_S a partir de V_{out}?

Ponte Wheatstone

- Um circuito que consiste em 2 divisores
 - Um divisor de tensão de referência (esq)
 - Um sensor de divisão de tensão

- Modos de operação da ponte de Wheatstone
 - Modo nulo
 - ✓ R₄ ajustado até que a condição de equilíbrio seja atendida:

$$V_{out} = 0 \Leftrightarrow R_3 = R_4 \frac{R_2}{R_1} \qquad \text{Vantagem: a medição \'e independente das flutuações em V_{cc}}$$

- Modo de deflexão
 - ✓ A tensão desbalanceada V_{out} é usada como saída do circuito

$$V_{OUT} = V_{CC} \left(\frac{R_3}{R_2 + R_3} - \frac{R_4}{R_3 + R_4} \right)$$

Vantagem: velocidade

Ponte Wheatstone

Pressupostos

Deseja medir as alterações de resistência fracionária do sensor $R_S=R_0(1+x)$

 A ponte está operando perto da condição de equilíbrio:

$$k = \frac{R_1}{R_4} = \frac{R_2}{R_0}$$

A tensão de saída torna-se

$$V_{out} = V_{CC} \left(\frac{R_0 (1+x)}{R_0 k + R_0 (1+x)} - \frac{R_4}{R_4 k + R_4} \right) =$$

$$= V_{CC} \left(\frac{(1+x)}{k + (1+x)} - \frac{1}{k+1} \right) = V_{CC} \frac{kx}{(1+k)(1+k+x)}$$

