Internship Report

Car Sales Purchase Prediction

Name: Ankita Gupta					
Course: ML1119					
Duration: 2 Weeks					
Problem Statement: You are working as a car salesman and you would like to develop a Machine Learning model to predict the total amount that customers are willing to pay.					
The model should predict: Car Purchase Amount					
Github link: https://github.com/Ankita30-ui/Car-Sales-Purchase-Prediction					
Dataset used					
The data source used for this project is car.csv The car.csv Data Set contains attributes like: Customer Name, Customer e-mail, Country, Gender, Age, Annual Salary, Credit Card Debt, Net Worth.					
Link: https://drive.google.com/drive/folders/1Dzj0gD6irtFA97BkBlpd3lnwWRPzHBHp?usp=sharing					
Applying algorithms					
Sequential modelling					

1.Importing the libraries:

3. Visualizing data:

3. creating testing and training dataset

4. Training the model

5. Evaluating the model:

6. Final output:

```
FINAL RESULT

In [27]: # Gender, Age, Annual Salary, Credit Card Debt, Net Worth
X test=np.array([[1,56,50006,10000,600000]])
y predict=model.predict(X_test)

In [28]: print('Expected Purchase Amount for Car:',y_predict)

Expected Purchase Amount for Car: [[98529.44]]
```