

PROPOSTA DE MODELO PREDITIVO PARA DIABETES

ALUNOS:

ADÍLIO DE SOUSA FARIAS
ANDERSON MARTINS
CELÍCIO DE JESUS JUNIOR
ELYEL BACKES PEDROSO
GUILHERME ALVES LEÃO
LUCAS DA SILVA LIMA

APRESENTAÇÃO

Importância do Tema e Impacto da Doença 2

Apresentação do Dataset e Desenvolvimento do Modelo de ML 3

Apresentação da Proposta do Aplicativo 4

Considerações Finais

IMPORTANCIA DO TEMA

DIAGNÓSTICO PRECOCE

Uma análise preditiva de diabetes utilizando aprendizado de máquina pode auxiliar no diagnóstico precoce, tratamento personalizado e gerenciamento eficaz do diabetes.

IMPACTO DO DIABETES

O diabetes é uma doença crônica que afeta milhões de pessoas em todo o mundo. Estatísticas alarmantes mostram que a prevalência do diabetes está em constante crescimento, representando um desafio significativo para pacientes e sistemas de saúde. Além disso, o diabetes está associado a complicações graves, como doenças cardiovasculares, problemas renais e neuropatias.

IMPORTANCIA DO TEMA

TIPO 1

Destruição células produtoras de insulina (5 a 10%)

TIPO 2

Resulta da resistência à insulina e de deficiência na secreção (cerca de 90%)

DIABETES GESTACIONAL

Diminuição da tolerância à glicose, diagnosticada pela primeira vez na gestação - causa ainda não conhecida

OUTROS TIPOS - INCOMUNS

Defeitos genéticos, causas medicamentosas, etc.

PRINCIPAIS COMPLICAÇÕES

PÉ DIABÉTICO

CARDIOPATIAS -INFARTO MIOCÁRDIO

PREDISPOSIÇÃO PARA INFECÇÕES

ESTATISTICAS DA DOENÇA

12,5%

diabetes em 2021

Projeção 2045 - Mundial

É crucial buscar soluções inovadoras que possam melhorar a qualidade de vida dos pacientes diabéticos e reduzir os custos relacionados ao tratamento da doença

APRENDIZADO

A análise preditiva pode ser um aliado valioso para médicos, pacientes e sistemas de saúde, oferecendo previsões precisas e permitindo intervenções preventivas.

NA ÁREA MÉDICA, O APRENDIZADO DE MÁQUINA TEM SIDO AMPLAMENTE UTILIZADO PARA ANÁLISE DE DADOS CLÍNICOS, DIAGNÓSTICO DE DOENÇAS E PREVISÃO DE RESULTADOS DE TRATAMENTOS. ESSA TECNOLOGIA PODE PROCESSAR GRANDES DIMENSÕES DE INFORMAÇÕES DE FORMA EFICIENTE, SUPERANDO AS LIMITAÇÕES DO CONHECIMENTO HUMANO TRADICIONAL.

APRESENTAÇÃO DO DATASET E DESENVOLVIMENTO DO MODELO DE ML

DIABETES.CSV

Informações médicas de 768 pacientes do sexo feminino com pelo menos 21 anos de idade

Informações foram coletadas entre os anos de 1988 e 1990

8 VARIÁVEIS PREDITORAS

Gravidez: (numero de gestações)

Glicose: (concentração plasmática 2h após teste de tolerância oral

Pressão Sanguínea: Pressão Arterial diastólica

Espessura Pele: Espessura da dobra cutânea do tríceps

Insulina: Nínel séric de insulina 2h após refeição

IMC: Índice de Massa Corporal

Função Pedigree Diabetes: Também conhecida como indice de herença genética)

Idade: idade em anos

Resultado: Variável de classe (0 ou 1)

0 = pacientes não preditivos para diabete e 1= pacientes preditivos para diabetes

3 PROPOSTA DO APLICATIVO

CONSIDERAÇÕES FINAIS

MODELOS TESTADOS

Rede Neural Artificial - Acurária = 75,32%

SVM - Acurária = 75,97%

Regressão Logística - Acurária = 75,32%

Regressão logística - Acurária = 72,08%

No entanto, quando realizamos uma avaliação de quais hiperparâmetros do modelo principal entregam o melhor ajuste de treino, observamos que o modelo principal chega a ter a melhor performance em relação aos demais!

Justificando a escolha do grupo por usar esse algoritmo para processar as chances de uma pessoa dentro do grupo observado em ter ou não diabetes, dado o conjunto de dados apresentados!!

CONSIDERAÇÕES FINAIS

POSSIBILIDADE DE MELHORA DA PERFORMANCE

OUTRAS VARIÁVEIS PODERIAM INFLUENCIAR NAS CHANCES CALCULADAS PELO ALGORITMO

- O PRESENTE ESTUDO NOS SERVE APENAS COMO VALOR DIDÁTICO
- NÃO SE RECOMENDA PARA USO PROFISSIONAL,
 - PODERIA SER UM COMEÇO DE TRABALHO PROFISSIONAL
 - ELEVAR O NÚMERO DE OBSERVAÇÕES E REALIZAR ENGENHARIA DE FEATURES
 - CRIANDO OU COLETANDO NOVAS VARIÁVEIS INDEPENDENTES, PARA QUE O PRESENTE ESTUDO POSSA VIR A GANHAR UM ESCOPO DE USO PROFISSIONAL.

APRENDIZADOS

SE FAZ IMPORTANTE O INVESTIMENTO EM NOVAS TECNOLOGIAS NA ÁREA DA SAÚDE PARA O DIAGNÓSTICO PRECOCE DE DOENÇAS COMO O DIABETES TENDO EM VISTA O CENÁRIO ATUAL DO BRASIL E DO MUNDO.

APESAR DO ALGORÍTIMO DE REDES NEURAIS TER OBTIDO MELHOR DESEMPENHO APÓS O AJUSTE DE HIPERPARAMETROS, ENTENDEMOS QUE O RESULTADO VARIA DE ACORDO COM DETALHES, ASSIM SEMPRE SERÁ IMPORTANTE A OPNIÃO DE UM PROFISSÍONAL DA SAÚDE QUALIFICADO PARA AUXILIAR NO DESENVOLVIMENTO DE TAIS FERRAMENTAS.

ENTENDEMOS QUE PARA RESULTADOS MAIS PRECISOS SE FAZ NECESSÁRIO UM REGISTRO MAIS PRECISO DE DADOS.

MUITO OBRIGADO!!!