UFPA CBCC: Linguagens Formais, Autômatos e Computabilidade – Lista Prova 01 – 09/12/2021

Aluno:

1. [1.0 pt] Seja **M** um autômato finito determinístico: $Q = \{q_0, \, q_1, \, q_2\}; \, \Sigma = \{a, \, b\}; \, F = \{q_2\}$ e

δ_1	а	b
q o	q_0	q ₁
q ₁	q ₂	q ₁
q ₂	q ₂	q_0

- a) Qual o diagrama de estados de M?
- b) Apresente as computações de M que processam as cadeias: abaa, bbbabb, bababa, bbbaa.
- c) Quais cadeias do item <u>b</u> são aceitas por **M**?
- d) Qual a linguagem aceita por M?
- 2. Desenvolva AFDs que reconheçam as seguintes linguagens:
 - a. [1.0 pt]{w | w possui número de a's divisível por 3 e o números de b's é ímpar. }
 - b. [1.0 pt] {w | w não possui **101** ou **010** como subcadeia.}
- 3. [1.0 pt] Prolifere os estados do AFN M abaixo e diga se M aceita as cadeias babba e abab.

4. [1.0 pt] Aplique o algoritmo de conversão e obtenha o AFD equivalente ao AFN abaixo:

δ_1	а	b
q o	$\{q_1, q_2\}$	1
q ₁	-	-
q ₂	-	{q ₄ }
q ₄	{q ₂ }	-

q₀ - estado inicial

q1 e q4 - estados finais

- 5. [2.0 pt] Considere a linguagem $L \subseteq \{a,b,c\}^*$ tal que $w \in L$ se e somente se w começa com aa e termina com bc:
 - a) Obtenha uma gramática linear à direita que gere essa linguagem.
 - b) Obtenha uma gramática linear à esquerda que gere essa linguagem.
 - c) Obtenha uma expressão regular que gere essa linguagem.
 - d) Obtenha um autômato finito determinístico que reconheça essa linguagem.
- 6. [2.0 pt] Construa uma Gramática Regular G tal que $L(G) = \{ w \mid w \in (0,1) + e \text{ todos os } 0\text{ 's sejam consecutivos} \}.$
- 7. [1.0 pt] Obtenha uma Expressão Regular que representa a linguagem, sobre o alfabeto {a, b, c}, em que as cadeias começam com a ou possuem comprimento par.