

Statistical Computing

R Lab

R Lab for Statistical Computing

Young-geun Kim
Department of Statistics, SKKU
dudrms33@g.skku.edu

16 Apr, 2019

Contents

W	⁷ elcoi	me	5
	Stat	istical Computing	5
1	Met	thods for Generating Random Variables	7
	1.1	Introduction	7
	1.2	Pseudo-random Numbers	
	1.3	The Inverse Transform Method	
	1.4	The Acceptance-Rejection Method	
	1.5	Transfomation Methods	
	1.6	Sums and Mixtures	
	1.7	Multivariate Normal Random Vector	
	1.8	Stochastic Processes	
2	Mo	nte Carlo Integration and Variance Reduction	31
	2.1	Monte Carlo Integration	31
	2.2	Variance and Efficiency	35
	2.3	Variance Reduction	38
	2.4	Importance Sampling	41
3	Mo	nte Carlo Methods in Inference	43
Ū	3.1	Parametric Bootstrap	43
	3.2	Monte Carlo Methods for Estimation	
	3.3	Confidence interval	
	3.4	Hypothesis tests	
	$3.4 \\ 3.5$	Statistical Methods	
	0.0	Rootstrap	55

4 CONTENTS

Welcome

Statistical computing mainly treats useful simulation methods.

```
library(tidyverse)
```

tidyverse package family will be used in every chapter. Loading step is in _common.R, so it is not included in the text. Sometimes data.table library will be called for efficiency.

Statistical Computing

We first look at *random generation* methods. Lots of simulation methods are built based on this random numbers.

Sampling from a fininte population

Generating random numbers is like sampling. From finite population, we can sample data with or without replacement. For example of sampling with replacement, we toss coins 10 times.

```
sample(0:1, size = 10, replace = TRUE)
#> [1] 1 0 0 1 0 1 1 0 1 1
```

Sampling without replacement: Choose some lottery numbers which consist of 1 to 100.

```
sample(1:100, size = 6, replace = FALSE)
#> [1] 61 83 50 74 34 35
```

Random generators of common probability distributions

R provides some functions which generate random numbers following famous distributions. Although we will learn some skills generating these numbers in basis levels, these functions do the same thing more elegantly.

```
gg_curve(dbeta, from = 0, to = 1, args = list(shape1 = 3, shape2 = 2)) +
    geom_histogram(
        data = tibble(
        rand = rbeta(1000, 3, 2),
        idx = seq(0, 1, length.out = 1000)
      ),
        aes(x = rand, y = ..density..),
        position = "identity",
        bins = 30,
        alpha = .45,
        fill = gg_hcl(1)
      )
```

6 CONTENTS

Figure 1: Beta(3,2) random numbers

Figure 1 shows that rbeta() function generate random numbers very well. Histogram is of the random number, and the curve is the true beta distribution.

Chapter 1

Methods for Generating Random Variables

1.1 Introduction

Most of the methods so-called *computational statistics* requires generation of random variables from specified probability distribution. In hand, we can spin wheels, roll a dice, or shuffle cards. The results are chosen randomly. However, we want the same things with computer. Here, **r**. As we know, computer cannot generate complete uniform random numbers. Instead, we generate **pseudo-random** numbers.

1.2 Pseudo-random Numbers

Definition 1.1 (Pseudo-random numbers). Sequence of values generated deterministically which have all the appearances of being independent unif(0,1) random variables, i.e.

$$x_1, x_2, \dots, x_n \stackrel{iid}{\sim} unif(0, 1)$$

- behave as if following unif(0,1)
- typically generated from an initial seed

1.2.1 Linear congruential generator

Then $u_1, u_2, \ldots, u_n \sim unif(0, 1)$

```
Algorithm 1: Linear congruential generator

input: a, c \in \mathbb{Z}_+ and modulus m

1 Initialize x_0;

2 for i \leftarrow 1 to n do

3 \mid x_i = (ax_{i-1} + c) \mod m;

4 end

5 u_i = \frac{x_i}{m} \in (0, 1);
output: u_1, u_2, \ldots, u_n \sim unif(0, 1)
```

```
lcg <- function(n, seed, a, b, m) {
  x <- rep(seed, n + 1)
  for (i in 1:n) {
    x[i + 1] <- (a * x[i] + b) %% m
}</pre>
```

```
x[-1] / m
}
tibble(
    x = lcg(1000, 0, 1664525, 1013904223, 2^32)
) %>%
    ggplot(aes(x = x)) +
    geom_histogram(aes(y = ..density..), bins = 30, col = gg_hcl(1))
```


1.2.2 Multiplicative congruential generator

As we can expect from its name, this is congruential generator with c = 0.

```
Algorithm 2: Multiplicative congruential generator

input: a, \in \mathbb{Z}_+ and modulus m

1 Initialize x_0;

2 for i \leftarrow 1 to n do

3 | x_i = ax_{i-1} \mod m;

4 end

5 u_i = \frac{x_i}{m} \in (0, 1);

output: u_1, u_2, \ldots, u_n \sim unif(0, 1)
```

We just set b = 0 in our lcg() function. The seed must not be zero.

```
tibble(
  x = lcg(1000, 5, 1664525, 0, 2^32)
) %>%
  ggplot(aes(x = x)) +
  geom_histogram(aes(y = ..density..), bins = 30, col = gg_hcl(1))
```


1.2.3 Cycle

Generate LCG n = 32 with a = 1, c = 1, and m = 16 from the seed $x_0 = 0$.

```
lcg(32, 0, 1, 1, 16)

#> [1] 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250

#> [11] 0.6875 0.7500 0.8125 0.8750 0.9375 0.0000 0.0625 0.1250 0.1875 0.2500

#> [21] 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0.6875 0.7500 0.8125 0.8750

#> [31] 0.9375 0.0000
```

Observe that we have the cycle after m-th number. Against this problem, we give different seed from every (im + 1)th random number.

1.3 The Inverse Transform Method

Definition 1.2 (Inverse of CDF). Since some cdf F_X is not strictly increasing, we difine $F_X^{-1}(y)$ for 0 < y < 1 by

$$F_X^{-1}(y) := \inf\{x : F_X(x) \ge y\}$$

Using this definition, we can get the following theorem.

Theorem 1.1 (Probability Integral Transformation). If X is a continuous random variable with cdf $F_{(X)}$, then

$$U \equiv F_X(X) \sim unif(0,1)$$

Probability Integral Transformation. Let $U \sim unif(0,1)$. Then

$$P(F_X^{-1}(U) \le x) = P(\inf\{t : F_X(t) = U\} \le x)$$
$$= P(U \le F_X(x))$$
$$= F_U(F_X(x))$$
$$= F_X(x)$$

Thus, to generate n random variables $\sim F_X$, we can use uniform random numbers.

Note that in R, vectorized operation would be better, i.e. generate runif(n) and plug it into given inverse cdf.

1.3.1 Continuous case

Denote that the *probability integral transformation* holds for a continuous variable. When generating continuous random variable, applying above algorithm might work.

Example 1.1 (Exponential distribution). If $X \sim Exp(\lambda)$, then $F_X(x) = 1 - e^{-\lambda x}$. We can derive the inverse function of cdf

$$F_X^{-1}(u) = \frac{1}{\lambda} \ln(1 - u)$$

Note that

$$U \sim unif(0,1) \Leftrightarrow 1 - U \sim unif(0,1)$$

Then we just can use U instead of 1-U.

```
inv_exp <- function(n, lambda) {
   -log(runif(n)) / lambda
}</pre>
```

If we generate $x_1, \ldots, x_{500} \sim Exp(\lambda = 1)$,

```
gg_curve(dexp, from = 0, to = 10) +
    geom_histogram(
    data = tibble(x = inv_exp(500, lambda = 1)),
    aes(x = x, y = ..density..),
    bins = 30,
    fill = gg_hcl(1),
    alpha = .5
)
```


Figure 1.1: Inverse Transformation: Exp(1)

1.3.2 Discrete case

```
Algorithm 4: Inverse transformation method in discrete case

input: analytical form of F_X

1 for i \leftarrow 1 to n do

2    | u_i \stackrel{iid}{\sim} unif(0,1);

3    | Take x_i s.t. F_X(x_{i-1}) < U \le F_X(x_i);

4 end

output: x_1, x_2, \dots, x_n \stackrel{iid}{\sim} F_X
```

Table 1.1: Example of a Discrete Random Variable

x	0.0	1.0	2.0	3.0	4.0
p	0.1	0.2	0.2	0.2	0.3

Example 1.2 (Discrete Random Variable). Consider a discrete random variable X with a mass function as in Table 1.1.

Figure 1.2: Probability Mass Function

Then we have the cdf

Figure 1.3: CDF of the Discrete Random Variable: Illustration for discrete case

Remembering the algorithm, we can implement dplyr::case_when() here.

```
rcustom <- function(n) {
  tibble(u = runif(n)) %>%
  mutate(
    x = case_when(
    u > 0 & u <= .1 ~ 0,
    u > .1 & u <= .3 ~ 1,
    u > .3 & u <= .5 ~ 2,
    u > .5 & u <= .7 ~ 3,
    TRUE ~ 4
  )</pre>
```

```
) %>%
    select(x) %>%
    pull()
}

tibble(
    x = rcustom(100)
) %>%
    ggplot(aes(x = x)) +
    geom_histogram(aes(y = ..ndensity..), binwidth = .1)
```


Figure 1.4: Generated discrete random numbers

See Figure 1.2 and 1.4. Comparing the two, the result can be said okay.

1.3.3 Problems with inverse transformation

Examples 1.1 and 1.2. We could generate these random numbers because we aware of

```
1. analytical F_X
2. F^{-1}
```

In practice, however, not all distribution have analytical F. Numerical computing might be possible, but it is not efficient. There are other approaches.

1.4 The Acceptance-Rejection Method

Acceptance-rejection method does not require analytical form of cdf. What we need is our *target* density (or mass) function and *proposal* density (or mass) function. Target function is what we want to generate. Propsal function is of any random variable that is *easy to generate random numbers*. From this approach, we can generate any distribution while computation is not efficient.

pdf or pmf	target or proposal
f	target
g	proposal - easy to generate random numbers

First of all, g should satisfy that

$$sptf \subseteq sptg$$

Next, for some (pre-specified) c > 0

$$\forall x \in sptf : \frac{f(x)}{g(x)} \le c$$

```
Algorithm 5: Acceptance-rejection algorithm

input: target f, proposal g, and c

1 for i \leftarrow 1 to n do

2 | Y \sim g(y);

3 | U \sim unif(0,1) \perp \!\!\!\perp Y;

4 | if U \leq \frac{f(Y)}{cg(Y)} then

5 | Accept x_i = Y;

6 | else

7 | go to Line 2;

8 | end

9 end

output: x_1, x_2, \ldots, x_n \stackrel{iid}{\sim} f(x)
```

1.4.1 Efficiency

Figure 1.5: Property of AR method

See Figure 1.5. This illustrates the motivation of A-R method. Lower one is f(x) and the upper one is cg(x) which covers f. We can see that

$$0 < \frac{f(x)}{cg(x)} \le 1$$

The algorithm takes random number from $Y \sim g$ in each recursive step i, which is represented as a line in the figure. At this value, the algorithm accept Y as random number of f if

$$U \le \frac{f(Y)}{cg(Y)}$$

Suppose that we choose a point at random on a line drawn in the figure 1.5. If we get the red line, we accept. Otherwise, we reject. In other words, the *colored area is where we reject the given value*. The smaller the area is, the more efficient the algorithm will be.

Proposition 1.1 (Properties of A-R Method). See Figure 1.5.

- 1. $\frac{f(Y)}{cq(Y)} \perp U$
- 2. $0 < \frac{f(x)}{cg(x)} \le 1$
- 3. Let N be the number of iterations needed to get an acceptance. Then

$$N \sim Geo(p)$$
 where $p \equiv P\left(U \le \frac{f(Y)}{cg(Y)}\right)$

and so

$$\begin{cases} P(N=n) = p(1-p)^{n-1}I_{\{1,2,\dots\}}(n) \\ E(N) = average \ number \ of \ iterations = \frac{1}{p} \end{cases}$$

4.
$$X \sim Y \mid U \leq \frac{f(Y)}{cg(Y)}$$
, i.e.

$$P\left(Y \le y \mid U \le \frac{f(Y)}{cq(Y)}\right) = F_X(y)$$

Remark (Efficiency). Efficiency of the A-R method depends on $p = P\left(U \leq \frac{f(Y)}{cg(Y)}\right)$. In fact,

$$E(N) = \frac{1}{p} = c$$

The algorithm becomes efficient for small c.

Proof. Note that

$$P\left(U \le \frac{f(y)}{cg(y)}, Y = y\right) = P\left(Y \le \frac{g(y)}{cg(y)} \mid Y = y\right) P(Y = y)$$

Since
$$U \sim unif(0,1)$$
, $P\left(Y \leq \frac{g(y)}{cg(y)} \mid Y = y\right) = \frac{f(y)}{cg(y)}$.

By construction, P(Y = y) = g(y).

It follows that

$$\begin{split} p &= P\bigg(U \leq \frac{f(y)}{cg(y)}\bigg) = \int_{-\infty}^{\infty} P\bigg(U \leq \frac{f(y)}{cg(y)}, Y = y\bigg) dy \\ &= \int_{-\infty}^{\infty} \frac{f(y)}{cg(y)} g(y) dy \\ &= \frac{1}{c} \int_{-\infty}^{\infty} f(y) dy \\ &= \frac{1}{c} \end{split}$$

Hence,

$$E(N) = \frac{1}{p} = c$$

We can say that the method is efficient when the acceptance rate p is large, i.e. c small.

Corollary 1.1 (Efficiency of A-R Method). A-R method is efficient when

 $g(\cdot)$ is close to $f(\cdot)$ and

have small c.

Corollary 1.2 (Choosing c). To enhance the algorithm, we might choose c which satisfy

$$c = \max\left\{\frac{f(x)}{g(x)} : x \in sptf\right\}$$

1.4.2 Examples

Example 1.3 (Beta(a,b)). Let $X \sim Beta(a,b)$. Then the pdf of X is given by

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} I_{(0,1)}(x)$$

Solution (Generating Beta(a,b) with A-R method). Consider proposal density $g(x) = I_{(0,1)}(x)$, i.e. unif(0,1). To determine the optimal c s.t.

$$c = \max\left\{\frac{f(x)}{g(x)} : x \in (0,1)\right\}$$

find the maximum of

$$\frac{f(x)}{g(x)} = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$

Solve

$$\begin{split} \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg) &= \frac{1}{B(a,b)}\Big((a-1)x^{a-2}(1-x)^{b-1} - (b-1)x^{a-1}(1-x)^{b-2}\Big) \\ &= \frac{x^{a-2}(1-x)^{b-2}}{B(a,b)}\Big((a-1)(1-x) - (b-1)x\Big) \\ &= \frac{x^{a-2}(1-x)^{b-2}}{B(a,b)}\Big(a-1 - (a+b-2)x\Big) &= 0 \end{split}$$

It follows that

$$\frac{f(x)}{g(x)} \le \frac{f(\frac{a-1}{a+b-2})}{g(\frac{a-1}{a+b-2})} = c$$

```
if a-1 a+b-2 ≠ 0,1
ar_beta <- function(n, a, b) {
    opt_x <- (a - 1) / (a + b - 2)
    opt_c <- dbeta(opt_x, shape1 = a, shape2 = b) / dunif(opt_x)
    X <- NULL
    N <- 0
    while (N <= n) {
        Y <- runif(n)
        U <- runif(n)
        X <- c(X, Y[U <= dbeta(Y, shape1 = a, shape2 = b) / opt_c])
        N <- length(X)
        if (N > n ) X <- X[1:n]
    }
    X
}</pre>
```

Now we try to compare this A-R function to R rbeta function.

```
gen_beta <-
 tibble(
   ar_rand = ar_beta(1000, 3, 2),
   sam = rbeta(1000, 3, 2)
  ) %>%
  gather(key = "den", value = "value")
gg_curve(dbeta, from = 0, to = 1, args = list(shape1 = 3, shape2 = 2)) +
  geom_histogram(
   data = gen_beta,
   aes(x = value, y = ..density.., fill = den),
   position = "identity",
   bins = 30.
   alpha = .45
  scale_fill_discrete(
   name = "random number",
   labels = c("AR", "rbeta")
 )
```


Figure 1.6: $\operatorname{Beta}(3,2)$ Random numbers from each function

In the Figure 1.6, the both histograms are very close to the true density curve. To see more statistically, we can draw a Q-Q plot.

```
gen_beta %>%
  ggplot(aes(sample = value)) +
  stat_qq_line(
    distribution = stats::qbeta,
    dparams = list(shape1 = 3, shape2 = 2),
    col = I("grey70"),
    size = 3.5
) +
  stat_qq(
    aes(colour = den),
    distribution = stats::qbeta,
    dparams = list(shape1 = 3, shape2 = 2)
) +
  scale_colour_discrete(
    name = "random number",
    labels = c("AR", "rbeta")
)
```


Figure 1.7: Q-Q plot for Beta(3,2) random numbers

See Figure 1.7. We have got series of numbers that are sticked to the beta distribution line.

Example 1.4 (A-R Method for Discrete case). A-R method can be also implemented to discrete case such as Example 1.2.

Table 1.3: Example of a Discrete Random Variable

x	0.0	1.0	2.0	3.0	4.0
p	0.1	0.2	0.2	0.2	0.3

Solution (Generating discrete random numbers using A-R methods). Consider proposal $g(x) \sim$ Discrete unif(0, 1, 2, 3, 4), i.e.

$$g(0) = g(1) = \dots = g(4) = 0.2$$

Then we set

$$c = \max\left\{\frac{p(x)}{g(x)} : x = 0, \dots, 4\right\} = \max\left\{0.5, 1, 1.5\right\} = 1.5$$

1.5 Transfomation Methods

1.5.1 Continuous

Proposition 1.2 (Transformation between continuous random variables). Relation between random variables enables generating target numbers from the others.

1.
$$Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0,1) \Rightarrow \sum Z_i^2 \sim \chi^2(n)$$

2.
$$Y_1 \sim \chi^2(m) \perp Y_2 \sim \chi^2(n) \Rightarrow \frac{Y_1/m}{Y_2/n} \sim F(m,n)$$

3.
$$Z \sim N(0,1) \perp Y \sim \chi^2(n) \Rightarrow \frac{Z}{\sqrt{Y/n}} \sim t(n)$$

- 4. $Y_1, \ldots, Y_n \stackrel{iid}{\sim} Exp(\lambda) \Rightarrow \sum Y_i^2 Gamma(n, \lambda)$
- 5. $U \sim unif(0,1) \Rightarrow (b-a)U + a \sim unif(a,b)$
- 6. $U \sim Gamma(r, \lambda) \perp \!\!\! \perp V \sim Gamma(s, \lambda) \Rightarrow \frac{U}{U+V} \sim Beta(r, s)$
- 7. $Z \sim N(0,1) \Rightarrow \mu + \sigma Z \sim N(\mu, \sigma^2)$
- 8. $Y \sim N(\mu, \sigma^2) \Rightarrow e^Y \sim LogNormal(\mu, \sigma^2)$

Example 1.5 (Generating Beta(a, b) using rgamma). From Proposition 1.2, we can generate Beta(a, b) random numbers using Gamma(a, 1) and Gamma(b, 1).

```
trans_beta <- function(n, shape1, shape2) {
  u <- rgamma(n, shape = shape1, rate = 1)
  v <- rgamma(n, shape = shape2, rate = 1)
  u / (u + v)
}</pre>
```


Figure 1.8: Beta(3,2) Random numbers from each function, including transformation method

1.5.2 Box-Muller transformation

Denote that Gaussian cdf has no closed form of F_X^{-1} . Using polar coordinates, we can generate Normal random numers.

Theorem 1.2 (Box-Muller transformation). Let $U_1, U_2 \stackrel{iid}{\sim} unif(0,1)$. Then

$$\begin{cases} Z_1 = \sqrt{-2 \ln U_2} \cos(2\pi U_1) \\ Z_2 = \sqrt{-2 \ln U_2} \sin(2\pi U_1) \end{cases}$$

Proof. Write

$$(Z_1, Z_2)^T \sim N\left(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\right)$$

Then the joint pdf is given by

$$f_{Z_1,Z_2}(x_1,x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right)$$

Consider polar coordiate transformation (R, θ) : $x_1 = R \cos \theta$ and $x_2 = R \sin \theta$. Since it is also random vector,

$$\begin{split} f_{R,\theta}(r,\theta) &= f_{Z_1,Z_2}(x_1,x_2)|J| \\ &= \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \left| \begin{array}{cc} \frac{\partial x_1}{\partial r} & \frac{\partial x_1}{\partial \theta} \\ \frac{\partial x_2}{\partial r} & \frac{\partial x_2}{\partial \theta} \end{array} \right| \\ &= \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) \left| \begin{array}{cc} \frac{\partial x_1}{\partial r} & \frac{\partial x_1}{\partial \theta} \\ \frac{\partial x_2}{\partial r} & \frac{\partial x_2}{\partial \theta} \end{array} \right| \\ &= \frac{r}{2\pi} \exp\left(-\frac{r^2}{2}\right) \end{split}$$

Then each marginal density function can be computed as

$$f_{\theta}(\theta) = \int_{0}^{\infty} \frac{r}{2\pi} \exp\left(-\frac{r^{2}}{2}\right) dr$$
$$= \frac{1}{2\pi} I_{(0,2\pi)}(\theta)$$
$$\stackrel{d}{=} unif(0,2\pi)$$

$$f_R(r) = \int_0^\theta \frac{r}{2\pi} \exp\left(-\frac{r^2}{2}\right) d\theta$$
$$= r \exp\left(-\frac{r^2}{2}\right) I_{(0,\infty)}(r)$$

Thus,

$$f_{R,\theta} = f_{\theta} f_R \Rightarrow R \perp \!\!\! \perp \theta$$

It follows from inverse transformation theorem that

$$Z_1 = R\cos\theta = \sqrt{-2\ln U_2}\cos(2\pi U_1)$$

and that

$$Z_2 = R\sin\theta = \sqrt{-2\ln U_2}\sin(2\pi U_1)$$

where
$$U_1, U_2 \stackrel{iid}{\sim} unif(0,1)$$

Algorithm 6: Box-Muller transformation 1 for $i \leftarrow 1$ to n do 2 $U_1, U_2 \stackrel{iid}{\sim} unif(0, 1);$ 3 $z_{2i-1} = \sqrt{-2 \ln U_2} \cos(2\pi U_1);$ 4 $z_{2i} = \sqrt{-2 \ln U_2} \sin(2\pi U_1);$ 5 end output: $z_1, \ldots, z_n \stackrel{iid}{\sim} N(0, 1)$

```
bmnorm <- function(n, mean = 0, sd = 1) {
    n_bm <- ceiling(n / 2)
    tibble(
        theta = runif(n = n_bm, max = 2 * pi),
        R = sqrt(-2 * log(runif(n_bm)))
    ) %>%
        mutate(
            x1 = R * cos(theta),
            x2 = R * sin(theta)
    ) %>%
        gather(x1, x2, key = "key", value = "value") %>%
        mutate(value = mean + sd * value) %>%
        select(value) %>%
        pull()
}
```

```
gg_curve(dnorm, from = 0, to = 6, args = list(mean = 3, sd = 1)) +
geom_histogram(
  data = tibble(x = bmnorm(1000, mean = 3, sd = 1)),
  aes(x = x, y = ..density..),
  bins = 30,
  fill = gg_hcl(1),
  alpha = .5
)
```


Figure 1.9: Normal random numbers by Box-Muller transformation

1.5.3 Discrete

Proposition 1.3 (Transformation between discrete random variables). Relation between random variables enables generating target numbers from the others.

- 1. $Y_1, \ldots, Y_n \stackrel{iid}{\sim} Bernoulli(p) \Rightarrow \sum Y_i^2 \sim B(n, p)$
- 2. $U \sim unif(0,1) \Rightarrow X_i = \lfloor mU \rfloor + 1$
- 3. $X = the number of events occurring in 1 unit of time \sim Poisson(\lambda)$

Proposition 1.4 (Bernoulli process). Let $X_1, X_2, ... \stackrel{iid}{\sim} Bernoulli(p)$.

- 1. $N = the number of trials until we see a success, i.e. X_N = 1 \Rightarrow N \sim Geo(p)$
- 2. $Y_1, \ldots, Y_r \stackrel{iid}{\sim} Geo(p) \Rightarrow \sum_{i=1}^r Y_i = the \ number \ of \ trials \ until \ we \ see \ r \ successes \sim NegBin(r,p)$

Proposition 1.5 (Count process). Let $Y_1, Y_2, \ldots \stackrel{iid}{\sim} Exp(\lambda)$ be interarrival times. Then

$$X = \max\{n : \sum Y_i \le 1\} = the \ number \ of \ events \ occurring \ in \ 1 \ unit \ of \ time \sim Poisson(\lambda)$$

1.6 Sums and Mixtures

1.6.1 Convolutions

Definition 1.3 (Convolution). Let X_1, \ldots, X_n be independent and identically distributed and let $S = X_1 + \cdots + X_n$. Then the distribution of S is called the n-fold convolution of X and denoted by $F_X^{*(n)}$.

In the last chapter, we have already seen a bunch of random variables that can be generated by summing the other.

Example 1.6 (Chisquare). Let $Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0,1)$. We know from Proposition 1.2 that

$$V = \sum_{i=1}^{n} Z_i \sim \chi^2(n)$$

Building a $n \times df$ matrix can be a good strategy here. After that, rowSums or colSums ends the generation work.

```
conv_chisq <- function(n, df) {
    X <-
        matrix(rnorm(n * df), nrow = n, ncol = df)^2
    rowSums(X)
}

gg_curve(dchisq, from = 0, to = 15, args = list(df = 5)) +
    geom_histogram(
    data = tibble(x = conv_chisq(1000, df = 5)),
    aes(x = x, y = ..density..),
    bins = 30,
    fill = gg_hcl(1),
    alpha = .5
    )</pre>
```


Figure 1.10: χ^2 random numbers from Normal sums

1.6.2 Mixtures

Definition 1.4 (Discrete mixture). A random variable X is a discrete mixture if the distribution of X is a weighted sum

$$F_X(x) = \sum \theta_i F_{X_i}(x)$$

where constants θ_i are called the mixing weights or mixing probabilities.

Definition 1.5 (Continuous mixture). A random variable X is a continuous mixture if the distribution of X is a weighted sum

$$F_X(x) = \int_{-\infty}^{\infty} F_{X|Y=y}(x) f_Y(y) dy$$

Example 1.7 (Mixture of several Normal distributions). Generate a random sample of size 1000 from a normal location mixture with components of the mixture N(0,1) and N(3,1), i.e.

$$F_X = p_1 F_{X_1} + (1 - p_1) F_{X_2}$$

For easy combining samples, we use foreach library.

library(foreach)

As in A-R method, Bernoullin splitting would be used.

$$\begin{cases} F_{X_1} & U > p_1 \\ F_{X_2} & \text{otherwise} \end{cases}$$

```
mix_norm <- function(n, p1, mean1, sd1, mean2, sd2) {
  x1 <- rnorm(n, mean = mean1, sd = sd1)
  x2 <- rnorm(n, mean = mean2, sd = sd2)
  k <- as.integer(runif(n) > p1)
```

```
k * x1 + (1 - k) * x2
}
```

Try various p_1 , from 0.1 to 1

```
mixture <-
  foreach(p1 = 0:10 / 10, .combine = bind_rows) %do% {
    tibble(
      value = mix_norm(n = 1000, p1 = p1, mean1 = 0, sd1 = 1, mean2 = 3, sd2 = 1),
      key = rep(p1, 1000)
    )
}</pre>
```

```
mixture %>%
  ggplot(aes(x = value, colour = factor(key))) +
  stat_density(geom = "line", position = "identity") +
  scale_colour_discrete(
   name = expression(p[1]),
   labels = 0:10 / 10
) +
  xlab("x")
```


Figure 1.11: Mixture normal random number for each mixing probability

1.7 Multivariate Normal Random Vector

Definition 1.6 (Multivariate normal random vector). A random vector $\mathbf{X} = (X_1, \dots, X_p)^T$ follows multivariate normal distribution if

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{p}{2}|\Sigma|}} \exp\left[-\frac{1}{2}(\mathbf{x}\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}\boldsymbol{\mu})\right]$$

Remark. Let $\mathbf{Z} \sim MVN(\mathbf{0}, I)$. Then

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \boldsymbol{\mu} \sim MVN(\boldsymbol{\mu}, \Sigma) \tag{1.1}$$

From this remark, we get to generate standard normal random vector.

1.7.1 Spectral decomposition method

Note that covariance matrix is symmetric.

Theorem 1.3 (Spectral decomposition). Suppose that Σ is symmetric. Then

$$\Sigma = P\Lambda P^T$$

where $(\mathbf{v}_j, \lambda_j)$ corresponding eigenvector-eigenvalue

$$\begin{cases} P = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix} \in \mathbb{R}^{p \times p} \text{ orthogonal} \\ \Lambda = diag(\lambda_1, \dots, \lambda_p) \end{cases}$$

Corollary 1.3. Suppose that Σ is symmetric. Then

$$\Sigma^{\frac{1}{2}} = P\Lambda^{\frac{1}{2}}P^T$$

where
$$\Lambda^{\frac{1}{2}} = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_p})$$

eigen() performs spectral decomposition. \$values has eigenvalues and \$vectors has eigenvectors. We first generate matrix that consists of standard normal random vector:

$$\begin{bmatrix} Z_{11} & Z_{12} & \cdots & Z_{1p} \\ Z_{21} & Z_{22} & \cdots & Z_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ Z_{n1} & Z_{n2} & \cdots & Z_{np} \end{bmatrix}$$

Denote that each observation is row. To use Equation (1.1), we should multiply $\Sigma^{\frac{1}{2}}$ behind this matrix, not in front of. μ matrix should be also made to matrix, in form of

$$\begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1p} \\ \mu_{11} & \mu_{22} & \cdots & \mu_{1p} \\ \vdots & \vdots & \vdots & \vdots \\ \mu_{11} & Z_{n2} & \cdots & \mu_{1p} \end{bmatrix} \in \mathbb{R}^{n \times p}$$

```
rmvn_eigen <- function(n, mu, sig) {
  d <- length(mu)
  ev <- eigen(sig, symmetric = TRUE)
  lambda <- ev$values
  P <- ev$vectors
  sig2 <- P %*% diag(sqrt(lambda)) %*% t(P)
  Z <- matrix(rnorm(n * d), nrow = n, ncol = d)
  X <- Z %*% sig2 + matrix(mu, nrow = n, ncol = d, byrow = TRUE)
  colnames(X) <- paste0("x", 1:d)
  X %>% tbl_df()
}
```

```
# mean vector ------
mu <- c(0, 1, 2)
# symmetric matrix ------
sig <- matrix(numeric(9), nrow = 3, ncol = 3)
diag(sig) <- rep(1, 3)
sig[lower.tri(sig)] <- c(-.5, .5, -.5) * 2
sig <- (sig + t(sig)) / 2</pre>
```

Generate

$$\mathbf{X}_i \sim MVN\bigg((0,1,2), \begin{bmatrix} 1 & -0.5 & 0.5 \\ -0.5 & 1 & -0.5 \\ 0.5 & -0.5 & 1 \end{bmatrix}\bigg)$$

```
(mvn3 <- rmvn_eigen(1000, mu = mu, sig = sig))
#> # A tibble: 1,000 x 3
       x1 x2 x3 <dbl> <dbl> <dbl>
#>
#>
       <dbl>
#> 1 -0.168 1.41 1.80
#> 2 1.39 -0.00942 2.40
#> 3 -0.710 1.30 1.37
#> 4 0.0314 2.04 1.80
#> 5 0.177 0.568 1.71
#> 6 -0.960 1.23 1.61
#> 7 -1.01 1.28 0.106
#> 8 0.272 0.0842 2.12
#> 9 0.148 1.63 2.53
#> 10 -1.24 1.53
                     1.28
#> # ... with 990 more rows
mvn3 %>%
 GGally::ggpairs(
   lower = list(continuous = GGally::wrap(gg_scatter, size = 1))
```


Figure 1.12: Multivariate normal random vector - spectral decomposition method

1.7.2 Singular value decomposition

SVD can be said to be a kind of generalization of spectral decomposition. This method can be used for any matrix, i.e. non-symmetric matrix. For Σ , SVD and spectral decomposition is equivalent. However, SVD does not account for symmetric property, so this method is less efficient compared to spectral decomposition.

```
rmvn_svd <- function(n, mu, sig) {
    d <- length(mu)
    S <- svd(sig)
    sig2 <- S$u %*% diag(sqrt(S$d)) %*% t(S$v)
    Z <- matrix(rnorm(n * d), nrow = n, ncol = d)
    X <- Z %*% sig2 + matrix(mu, nrow = n, ncol = d, byrow = TRUE)
    colnames(X) <- paste0("x", 1:d)
    X %>% tbl_df()
}
```


Figure 1.13: Multivariate normal random vector - svd

1.7.3 Choleski decomposition

Theorem 1.4 (Cholesky decomposition). Suppose that Σ is symmetric and positive definite. Then

$$\Sigma = Q^T Q$$

where Q is an upper triangular matrix.

Corollary 1.4. Suppose that Σ is symmetric and positive definite. For cholesky decomposition 1.4, define

$$\Sigma^{\frac{1}{2}} = Q$$

chol() computes cholesky decomposition. In R, it gives upper triangular Q. Since some statements cholesky decomposition by $\Sigma = LL^T$ with lower triangular matrix, try not to confuse.

```
rmvn_chol <- function(n, mu, sig) {
  d <- length(mu)
  sig2 <- chol(sig)
  Z <- matrix(rnorm(n * d), nrow = n, ncol = d)</pre>
```

```
X <- Z %*% sig2 + matrix(mu, nrow = n, ncol = d, byrow = TRUE)
colnames(X) <- paste0("x", 1:d)
X %>% tbl_df()
}
```


Figure 1.14: Multivariate normal random vector - cholesky decomposition

1.8 Stochastic Processes

Definition 1.7 (Stochastic process). A stochastic process is a collection $\{X(t):t\in T\}$ of random variables indexed by the set T. The index set T could be discrete or continuous.

A State space is called te set of possible values that X(t) can take.

- 1.8.1 Homogeneous poisson process
- 1.8.2 Nonhomogeneous poisson process
- 1.8.3 Symmetric random walk

Chapter 2

Monte Carlo Integration and Variance Reduction

2.1 Monte Carlo Integration

Consider integration problem of a integrable function g(x). We want to compute

$$\theta \equiv \int_{a}^{b} g(x)dx$$

For instance, standard normal cdf.

Example 2.1 (Standard normal cdf). Compute values for

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

It might be impossible to compute this integral with hand. So we implement *simulation* concept here, based on the following theorems.

Theorem 2.1 (Weak Law of Large Numbers). Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2 < \infty)$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{p}{\to} \mu$$

Let g be a measurable function. Then

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow{p} g(\mu)$$

Theorem 2.2 (Strong Law of Large Numbers). Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2 < \infty)$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{a.s.}{\to} \mu$$

Let g be a measurable function. Then

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \stackrel{a.s.}{\to} g(\mu)$$

2.1.1 Simple Monte Carlo estimator

Theorem 2.3 (Monte Carlo Integration). Consider integration (2.1). This can be approximated via appropriate pdf f(x) by

$$\hat{\theta}_M = \frac{1}{N} \sum_{i=1}^{N} g(X_i)$$

Suppose that we have a distribution $f(x) = I_{sptg}(x)$, i.e. uniform distribution. Let sptg = (a, b).

$$\theta \equiv \int_{sptg} g(x)dx$$

$$= \int_{a}^{b} g(x)dx$$

$$= \int_{0}^{1} g(a + (b - a)t)(b - a)dt$$

$$\equiv \int_{0}^{1} h(t)dt$$

$$= \int_{0}^{1} h(t)I_{(a,b)}(t)dt$$

$$= E[h(U)] \qquad U \sim unif(0,1)$$

$$(2.1)$$

By the Strong law of large numbers 2.2,

$$\frac{1}{n} \sum_{i=1}^{n} h(U_i) \stackrel{a.s.}{\to} E[h(U)] = \theta$$

where $U \sim unif(0,1)$. Thus, what we have to do here are two things.

- 1. representing g as h.
- 2. generating lots of U_i

Go back to Example 2.1.

Solution. Case 1: x > 0

Since $\Phi(x)$ is symmetry,

$$\Phi(0) = \frac{1}{2}$$

Fix x > 0.

$$\int_0^x \exp\left(-\frac{t^2}{2}\right) dt = \int_0^x x \exp\left(-\frac{t^2}{2}\right) \frac{I_{(0,x)}(t)}{x} dt$$
$$\approx \frac{1}{N} \sum_{i=1}^N x \exp\left(-\frac{U_i^2}{2}\right)$$

with $U_1, \ldots, U_N \stackrel{iid}{\sim} unif(0, x)$.

Case 2: x < 0

Recall that $\Phi(x)$ is symmetry.

Hence,

$$\hat{\Phi}(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \frac{1}{N} \sum_{i=1}^{N} x \exp\left(-\frac{U_i^2}{2}\right) + \frac{1}{2} \equiv \hat{\theta}(x) & x \ge 0\\ 1 - \hat{\theta}(-x) & x < 0 \end{cases}$$

```
phihat <- function(x, y) {
   yi <- abs(y)
   theta <- mean(yi * exp(-x^2 / 2)) / sqrt(2 * pi) + .5
   ifelse(y >= 0, theta, 1 - theta)
}
```

Then compute $\hat{\Phi}(x)$ for various x values.

```
phi_simul <- foreach(y = seq(.1, 2.5, length.out = 10), .combine = bind_rows) %do% {
    tibble(
        x = y,
        phi = pnorm(y),
    Phihat =
        tibble(x = runif(10000, max = y)) %>%
        summarise(cdf = phihat(x, y = y)) %>%
        pull()
    )
}
```

Table 2.1: Simple MC estimates of Normal cdf for each x

x	pnorm	mc
0.100	0.540	0.540
0.367	0.643	0.643
0.633	0.737	0.737
0.900	0.816	0.816
1.167	0.878	0.878
1.433	0.924	0.923
1.700	0.955	0.958
1.967	0.975	0.976
2.233	0.987	0.987
2.500	0.994	0.990

2.1.2 Hit-or-Miss Monte Carlo

Hit-or-Miss approach is another way to evaluate integrals.

Example 2.2 (Estimation of π). Consider a circle in \mathbb{R} coordinate.

$$x^2 + y^2 = 1$$

$$\int_0^1 \sqrt{1 - t^2} dt = \frac{\pi}{4} \tag{2.2}$$

By estimating Equation (2.2), we can estimate π , i.e.

$$\pi = 4 \int_0^1 \sqrt{1 - t^2} dt$$

Simple MC integration can also be used.

$$\int_{0}^{1} \sqrt{1 - t^{2}} dt = \int_{0}^{1} \sqrt{1 - t^{2}} I_{(0,1)}(t) dt$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} \sqrt{1 - U_{i}^{2}}$$

```
circ <- function(x) {
    4 * sqrt(1 - x^2)
}

tibble(x = runif(10000)) %>%
    summarise(mc_pi = mean(circ(x)))
#> # A tibble: 1 x 1
#> mc_pi
#> <dbl>
#> 1 3.14
```

On the other way, hit-or-miss MC method applies geometric probability.

Figure 2.1: Hit-or-Miss

See Figure 2.1. From each coordinate, generate

```
• X_i \stackrel{iid}{\sim} unif(0,1)
```

• $Y_i \stackrel{iid}{\sim} unif(0,1)$

Then the proportion of $Y_i \leq \sqrt{1-X_i^2}$ estimates $\frac{\pi}{4}$.

```
tibble(x = runif(10000), y = runif(10000)) %>%
    summarise(hitormiss = mean(y <= sqrt(1 - x^2)) * 4)
#> # A tibble: 1 x 1
#> hitormiss
#> <dbl>
#> 1 3.15
```

2.2 Variance and Efficiency

We have seen two appropriates doing the same task. Now we want to evaluate them. Denote that simple Monte Carlo integration 2.3 is estimating the expected value of some random variable. Proportion, which approximates probability is expected value of identity function.

The common statistic that can evaluate estimators expected value might be their variances.

2.2.1 Variance

Note that variance of sample mean is $Var(\overline{g(X)}) = \frac{Var(g(X))}{N}$. This property is one of estimating variance of $\hat{\theta}$.

$$\widehat{Var}(\hat{\theta}) = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^{N} (g(X_i) - \overline{g(X_i)}) \right) = \frac{1}{N^2} \sum_{i=1}^{N} (g(X_i) - \overline{g(X_i)})$$
 (2.3)

For example,

However, this *variance of sample mean* is used in situation when we are in sample limitation situation. We do not have to stick to this. Now, Generating samples as many as we want is possible. So we try another approach: *parametric bootstrap*.

Figure 2.2: Empircal distribution of $\hat{\theta}$

See Figure 2.2. If we estimate $E\left[g(U\sim unif(a,b))\right]$, we can get θ . Generate M samples $\{U_1^{(j)},\ldots,U_N^{(j)}\},j=1,\ldots M$ from this $U\sim unif(a,b)$. In each sample, calculate MC estimates $\hat{\theta}^{(j)}$. Now we have M MC estimates $\hat{\theta}$. This gives empirical distribution of $\hat{\theta}$. By $drawing\ a\ histogram$, we can see the outline.

```
Algorithm 7: Variance of \hat{\theta}

input: \theta = \int_a^b g(x) dx
1 for m \leftarrow 1 to M do
2 | Generate U_1^{(m)}, \dots, U_N^{(m)} \stackrel{iid}{\sim} unif(a, b);
3 | Compute \hat{\theta}^{(j)} = \frac{(b-a)}{N} \sum g(U_i^{(j)});
4 end
5 \hat{\theta} = \frac{1}{M} \sum \hat{\theta}^{(j)};
6 \widehat{Var}(\hat{\theta}) = \frac{1}{M-1} \sum (\hat{\theta}^{(j)} - \hat{\bar{\theta}})^2;
output: \widehat{Var}(\hat{\theta})
```

Since we have to generate large size of data, data.table package will be used.

library(data.table)

Group operation can be used. Additional column (sam) would indicate group, and for each group MC operation would be processed. The following is the function generating data.table before group operation.

```
mc_data <- function(rand, N = 10000, M = 1000, char = "s", ...) {
  data.table(
    u = rand(n = N * M, ...),
    sam = gl(M, N, labels = paste0("s", 1:M))
  )
}</pre>
```


Figure 2.3: Empirical distribution of $\hat{\pi}$ by simple MC

As in Algorighm 7, we can compute the variance as below.

On the other hand, we need to generate two sets of random numbers for hit-or-miss MC.

```
pi_hit <-
  mc_data(runif)[
    , u2 := runif(10000 * 1000)
][,
    .(hitormiss = mean(u2 <= sqrt(1 - u^2)) * 4),
    keyby = sam]

pi_mc[pi_hit] %>%
  melt(id.vars = "sam", variable.name = "hat") %>%
  ggplot(aes(x = value, fill = hat)) +
  geom_histogram(bins = 30, alpha = .5, position = "identity") +
  xlab(expression(pi)) +
  geom_vline(xintercept = pi, col = I("red")) +
  scale_fill_discrete(
```

```
name = "MC",
labels = c("Simple", "Hit-or-Miss")
)
```


Figure 2.4: Simple MC and Hit-or-Miss MC

2.2.2 Efficiency

See Figure 2.4. It is obvious that Hit-or-Miss estimate produces larger variance than simple MC.

Definition 2.1 (Efficiency). Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two estimators for θ . Then $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if

$$\frac{Var(\hat{\theta}_1)}{Var(\hat{\theta}_2)} < 1$$

In other words, if $\hat{\theta}_1$ has smaller variance than $\hat{\theta}_2$, then $\hat{\theta}_1$ is said to be efficient, which is preferable.

Table 2.2: Simple MC versus Hit-or-Miss

SimpleMC	Hit-or-Miss	SimpleMCefficiency
0	0	TRUE

2.3 Variance Reduction

Consider Equation (2.3) based on $Var(\hat{\theta}) = \frac{\sigma^2}{N}$. This variance can always reduced by adding N. But we want to reduce variance less computationally.

2.3.1 Antithetic Variables

Consider correlated random variables U_1 and U_2 . Then we have

$$Var\left(\frac{U_1 + U_2}{2}\right) = \frac{1}{4}\left(Var(U_1) + Var(U_2) + 2Cov(U_1, U_2)\right)$$

See the last term $Cov(U_1, U_2)$. If we generate U_{i1} and U_{i2} negatively correlated, we can get reduced variance than previous i.i.d. sample

$$Var\left(\frac{U_1+U_2}{2}\right) = \frac{1}{4}\left(Var(U_1) + Var(U_2)\right)$$

Lemma 2.1. U and 1-U are identically distributed, but negatively correlated.

- 1. $U \sim unif(0,1) \Leftrightarrow 1 U \sim unif(0,1)$
- 2. Corr(U, 1 U) = -1

This is well-known property of uniform distribution. Instead of generating N uniform numbers, try $\frac{N}{2}$ U_i and make corresponding $\frac{N}{2}$ $1 - U_i$. This sequence becomes negatively correlated, so we can reduce the variance as mentioned.

When can we replace previous numbers with these antithetic variables? We usually plug-in the numbers in some function h to get Monte carlo integration. The thing is, our target is h, not U. h(U) and h(1-U) should still be negatively correlated. Hence, h should be monotonic function.

Corollary 2.1. If $g = g(X_1, ..., X_n)$ is monotone, then

$$Y = g(F_{\mathbf{Y}}^{-1}(U_1), \dots, F_{\mathbf{Y}}^{-1}(U_n))$$

and

$$Y' = g(F_X^{-1}(1 - U_1), \dots, F_X^{-1}(1 - U_n))$$

are negatively correlated.

```
Algorithm 8: Variance of \hat{\theta} using antithetic variables

input: h: monotonic

1 for m \leftarrow 1 to M do

2 | Generate U_{1,1}^{(m)}, \dots, U_{\frac{N}{2},1}^{(m)} \stackrel{iid}{\sim} unif(0,1);

3 | Set U_{i,2}^{(m)} := 1 - U_{i,1}^{(m)} \stackrel{iid}{\sim} unif(0,1);

4 | \{U_i^{(m)}\}_1^N = \{U_{1,1}^{(m)}, \dots, U_{\frac{N}{2},2}^{(m)}\};

5 | \hat{\theta}^{(j)} = \frac{1}{N} \sum h(U_i^{(j)});

6 end

7 \bar{\theta} = \frac{1}{M} \sum \hat{\theta}^{(j)};

8 \widehat{Var}(\hat{\theta}) = \frac{1}{M-1} \sum (\hat{\theta}^{(j)} - \bar{\theta})^2;

output: \widehat{Var}(\hat{\theta})
```

Check again Example 2.1. We have try to calculate

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

using simple monte carlo. To make the support (0,1), let $y=\frac{t}{x}$ be a change of variable. Then

$$\int_0^x \exp\left(-\frac{t^2}{2}\right) dt = \int_0^1 x \exp\left(-\frac{(xy)^2}{2}\right) dy$$
$$\approx \frac{1}{N} \sum_{i=1}^N x \exp\left(-\frac{(xU_i)^2}{2}\right)$$

```
phiunif <- function(x, y) {
   yi <- abs(y)
   theta <- mean(yi * exp(-(yi * x)^2 / 2)) / sqrt(2 * pi) + .5
   ifelse(y >= 0, theta, 1 - theta)
}
```

Consider $\Phi(2)$.

Now apply antithetic variables.

Figure 2.5: Use of antithetic variables

Obviously, variance has been reduced.

2.3.2 Control Variates

Recall that we are trying to estimate $\theta=EX$ here in MC integration. Consider other output random variable. Suppose that $\mu_Y\equiv E(Y)$ is known. Then

$$X + c(Y - \mu_Y)$$

is an unbiased estimator for θ for any $c \in \mathbb{R}$.

2.4 Importance Sampling

Chapter 3

Monte Carlo Methods in Inference

3.1 Parametric Bootstrap

In this setting, we know distribution of X. We can freely generate from this distribution.

Figure 3.1: Parametric bootstrap

See Figure 3.1. From the "true" distribution, we can generate multiple samples. From each sample estimator can be computed. Then we can check these multiple estimates. Multiple estimates are close to motivation of estimator, so it helps exploring statistical inference with simple steps.

```
mc_data <- function(rand, N = 10000, M = 1000, char = "s", ...) {
   data.table(
        x = rand(n = N * M, ...),
        sam = gl(M, N, labels = paste0("s", 1:M))
   )
}</pre>
```

3.2 Monte Carlo Methods for Estimation

Example 3.1 (Any quantity of interest). Suppose that $X_1, X_2 \stackrel{iid}{\sim} N(0,1)$. We want to estimate

$$\theta = E|X_1 - X_2|$$

3.2.1 Empirical distribution

```
Algorithm 9: Empirical distribution of \hat{\theta}
   input: distribution f
 1 for m \leftarrow 1 to M do
      4 end
 5 Draw a histogram;
   output: \hat{\hat{\theta}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{m}^{(m)}, \{\hat{\theta}^{(1)}, \dots, \hat{\theta}^{(M)}\}
basicmc <-
  mc_data(rnorm, N = 2)[,
                            xname := g1(2, 1, length = 2000, labels = c("x1", "x2"))] %>%
  dcast(sam ~ xname, value.var = "x") %>%
  .[,
     .(that = mean(abs(x1 - x2))),
    by = sam]
basicmc[,
         .(est = mean(that))]
#>
       est
#> 1: 1.1
basicmc %>%
  ggplot(aes(x = that)) +
  geom_histogram(bins = 30, col = gg_hcl(1), alpha = .7) +
  xlab(expression(theta))
```


Figure 3.2: Empirical distribution of $\hat{\theta}$ for $|X_1 - X_2|$

3.2.2 Standard error

In Algorithm 9, we can get standard error by just calculating standard deviation of

$$\{\hat{\theta}^{(1)},\ldots,\hat{\theta}^{(M)}\}$$

```
Algorithm 10: Standard error of \hat{\theta}

input: distribution f

1 for m \leftarrow 1 to M do

2 | Generate (X_1^{(m)}, X_2^{(m)}) \stackrel{iid}{\sim} N(0, 1);

3 | Compute \hat{\theta}^{(m)} = |X_1^{(m)} - X_2^{(m)}|;

4 end

5 \hat{\bar{\theta}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_m^{(m)};

6 \widehat{SE}(\hat{\theta}) = \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} (\hat{\theta}^{(m)} - \hat{\bar{\theta}});}

output: \widehat{SE}(\hat{\theta})
```

3.2.3 Mean squared error

MSE is used when comparing several estimators.

Definition 3.1 (Mean squared error).

$$MSE(\hat{\theta}) := E(\hat{\theta} - \theta)^2$$

To know MSE, however, we should compute expectation. Some of them might be complicated even though we know true distribution. As the last chapter, we can apply Monte carlo method.

Example 3.2 (MSE of a trimmed mean). Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} N(2,1)$. Consider three estimators for $\mu = 2$.

- 1. mean \overline{X}
- 2. median \tilde{X}
- 3. kth trimmed mean $\overline{X}_{[-k]}$

```
Algorithm 11: MSE of mean, median, and kth trimmed mean input : distribution f

1 for m \leftarrow 1 to M do

2 Generate (X_1^{(m)}, \dots, X_N^{(m)}) \stackrel{iid}{\sim} N(2, 1);

3 Sort (X_1^{(m)}, \dots, X_N^{(m)}) in increasing order, i.e. (X_{(1)}^{(m)}, \dots, X_{(N)}^{(m)});

4 Mean \overline{X}^{(m)} = \frac{1}{N} \sum_{i=1}^{N} X_i^{(m)};

5 Median \tilde{X}^{(m)} = \begin{cases} X_{i}^{(m)} & N \text{ odd} \\ X_{i}^{(m)} + X_{i}^{(m)} & N \end{cases};

6 kth trimmed mean \overline{X}_{[-k]}^{(m)} = \frac{1}{N-2k} \sum_{i=k+1}^{N-k} X_{(i)}^{(m)}

7 end

8 \widehat{MSE}(\overline{X}) = \frac{1}{M} \sum_{m=1}^{M} (\overline{X}^{(m)} - 2)^2;

9 \widehat{MSE}(\bar{X}) = \frac{1}{M} \sum_{m=1}^{M} (\overline{X}^{(m)} - 2)^2;

10 \widehat{MSE}(\overline{X}_{[-k]}) = \frac{1}{M} \sum_{m=1}^{M} (\overline{X}_{[-k]}^{(m)} - 2)^2;

output: \widehat{MSE}(\bar{X}), \widehat{MSE}(\bar{X}), and \widehat{MSE}(\overline{X}_{[-k]})

trim <- function(x, k = 1) {
```

```
trim <- function(x, k = 1) {
    n <- length(x)
    x <- sort(x)
    sum(x[(k + 1):(n - k)]) / (n - 2 * k)
}
#------
mu_list <- function(x, k) {
    list(mean = mean(x), median = median(x), trim = trim(x, k))
}</pre>
```

Try k = 1.

```
(trim_mc <-
 mc_data(rnorm, mean = 2, sd = 1)[,
                                  unlist(lapply(.SD, mu_list, k = 1)) %>% as.list,
                                  bv = sam)
#>
          sam x.mean x.median x.trim
#>
     1:
              2.02
                        2.02
                                2.02
           s1
#>
                         2.00
                                2.00
     2:
           s2
                2.00
#>
     3:
               2.00
                         2.01
                                2.00
           s3
#>
     4:
              1.99
                         1.98
                                1.99
           s4
#>
     5:
               2.00
                         1.99
           s5
                                2.00
#>
   996: s996 2.02 2.02 2.02
```

```
#>
    997: s997
                 2.00
                          1.99
                                 2.00
   998: s998
                 1.99
                          1.99
                                 1.99
#> 999: s999
                 1.99
                          1.99
                                 1.99
#> 1000: s1000
                 2.00
                          2.01
                                 2.00
trim_mc %>%
  melt(id.vars = "sam", variable.name = "hat") %>%
  ggplot(aes(x = value, fill = hat)) +
  geom_histogram(bins = 30, alpha = .3, position = "identity") +
  xlab(expression(mu)) +
  geom_vline(xintercept = 2, col = I("red")) +
  scale_fill_discrete(
    name = "Estimates",
    labels = c("Mean", "Median", "Trimmed")
```


Figure 3.3: Empirical distribution of each estimator for $\mu = 2$

Here, median shows the largest standard error.

Now try various k for trimmed mean.

```
trim_mse %>%
 transpose() %>%
 .[,
    `:=`(
     k = rep(0:9, each = 2),
     hat = gl(2, k = 1, length = 2 * 10, labels = c("mse", "se"))
   )] %>%
 dcast(k ~ hat, value.var = "V1")
     k
#>
            mse
                     se
#> 1: 0 9.83e-05 0.00992
#> 2: 1 9.83e-05 0.00992
#> 3: 2 9.83e-05 0.00992
#> 4: 3 9.83e-05 0.00992
#> 5: 4 9.82e-05 0.00992
#> 6: 5 9.83e-05 0.00992
#> 7: 6 9.83e-05 0.00992
#> 8: 7 9.83e-05 0.00992
#> 9: 8 9.83e-05 0.00992
#> 10: 9 9.83e-05 0.00992
```

3.3 Confidence interval

Remember the meaning of 95% confidence interval. If we have 100 samples and construct confidence interval in each sample, 95 intervals would include true parameter. In this Monte Carlo setting, we know true population distribution, so we can generate multiple samples. Thus, we can reproduce this confidence interval situation.

3.3.1 Empirical confidence interval

See one of histograms of Figure 3.3. Estimates are sorted. Calculating the upper and lower quantiles would give values close to confidence interval. See Figure 3.2. While the former show symmetric distribution, this is not. 0.25 and 0.975 quantile might be inappropriate. In this case, we should pick the *shortest interval*

with 95%. Best critical region leads to the shortest length of CI given α , so we are finding this one.

```
Algorithm 12: Empirical confidence interval by Monte Carlo method
    input: distribution f
 1 for m \leftarrow 1 to M do
         Generate X_1^{(m)}, \dots, X_n^{(m)} \stackrel{iid}{\sim} f;
Compute \hat{\theta}^{(m)} = \hat{\theta}(\mathbf{X}^{(\mathbf{m})});
 4 end
 5 if Distribution of \{\hat{\theta}^{(m)}\}_{1}^{M} symmetric then
         Sort \{\hat{\theta}^{(1)}, \dots, \hat{\theta}^{(M)}\}\ in decreasing order, i.e. \{\hat{\theta}^{(1)}_{(1)}, \dots, \hat{\theta}^{(M)}_{(M)}\}\;
         Compute LB = \frac{\alpha}{2} sample quantile and UB = 1 - \frac{\alpha}{2} sample quantile;
 7
 8
    else
         foreach lb < 0.05 with ub - lb = 1 - \alpha do
 9
              Candidate interval (lb, ub);
10
              calculate length l_i = ub - lb;
11
         (LB, UB): pick up the interval with the smallest length l_i;
13
14 end
    output: (LB, UB)
```

3.3.2 Empirical confidence level

On the contrary, we can estiamte confidence level given confidence interval.

Example 3.3 (Confidence interval for variance). If $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Thus, $100(1-\alpha)\%$ confidence interval is given by

$$(0, \frac{(n-1)S^2}{\chi^2_{\alpha}(n-1)})$$

For each MC sample, compute confidence interval. Just check if *known true parameter* is in the interval. Its proportion becomes the confidence level. It is simpler that estimate confidence interval itself.

```
Algorithm 13: Empirical confidence level by Monte Carlo method  \begin{array}{c|c} \textbf{input} & : \text{distribution } f \text{ with parameter } \theta \\ \textbf{1} & \textbf{for } m \leftarrow 1 \textbf{ to } M \textbf{ do} \\ \textbf{2} & | & \text{Generate } X_1^{(m)}, \dots, X_n^{(m)} \overset{iid}{\sim} f; \\ \textbf{3} & | & \text{Compute the confidence interval } C_m; \\ \textbf{4} & | & \text{Compute } Y_j = I(\theta \in C_m), \text{ i.e. whether } \theta \text{ is in the CI}; \\ \textbf{5} & \textbf{end} \\ \textbf{6} & \text{Empirical confidence level } \overline{Y} = \sum_{m=1}^M Y_m; \\ \textbf{output: } \overline{Y} \\ \end{array}
```

```
Let \mu = 0, \sigma = 2, N = 20, and let M = 1000.

ci_var <- function(x, variance, alpha) {
    n <- length(x)
```


Figure 3.4: Proportion of σ^2 in confidence intervals

This leads to empirical confidence level, i.e. sample proportion. Just follow the last step 6 of Algorithm 13.

It is very close to 0.95. One of advantages of simulation study is we can assume various situation. For example, *violation of Gausiannity*.

Example 3.4 (Violation of Normal distribution assumption). Refer to Example 3.3. This has assumed that $X_i \stackrel{iid}{\sim} N(\mu = 2, \sigma^2 = 4)$. What if not? For instance,

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \chi^2(df=2)$$

Just change random numbers.

Table 3.1: Empirical confidence level for each population

Normal	Chisq	
0.952	0.763	

From Table 3.1, we found that non-normality lowers confidence level from 0.952 to 0.763.

3.4 Hypothesis tests

Using MC method, we have done point estimation and interval estimation. Now consider hypothesis testing.

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

where $\{\Theta_0, \Theta_1\}$ is a partition of the parameter space Θ . First of all, we have test statistic

$$T(\mathbf{X}) \stackrel{H_0}{\sim} f$$

and f is called *null distribution*. Given observed data, we compute this test statistic T_0 . Where T_0 is located in the null distribution f decides whether we reject or accept H_0 . If T_0 is very far from the middle, we can say that the realized data set is very rare event under H_0 . In this case, we reject H_0 . Otherwise, accept it. This is why we compute the tail probability, p-value.

3.4.1 Empirical p-value

Example 3.5. Suppose that $X_1, \ldots, X_{10} \stackrel{iid}{\sim} Exp(\lambda = 1)$, which are observed as follows

`rxexp`

Let $\theta = E(X) = \frac{1}{\lambda}$.

$$H_0: \theta = 0.5$$
 vs $H_1: \theta > 0.5$

Test using $T = \frac{\overline{X} - \theta_0}{S/\sqrt{n}}$ statistic.

Before looking at p-value, briefly look at empirical null distribution of test statistic.

geom_vline(xintercept = t.test(xexp, mu = .5)\$statistic, col = I("red")) + # xexp: observed data
geom_vline(xintercept = -t.test(xexp, mu = .5)\$statistic, col = I("red")) +
xlab("T")

Figure 3.5: Emprirical Null Distribution

By proceeding the similar way, we can get empirical distribution of test statistics. Some are out of observed T_0 , some are not. Motivation is that we just count these. Proportion of these would estimate p-value. Recap what p-value is.

Definition 3.2 (p-value). Let T be test statistic and let T_0 be observed test statistic given data. Then p-value is

$$p-value := \begin{cases} P(|T| \ge T_0 \mid H_0) & \text{both sided} \\ P(T \ge T_0 \mid H_0) & \text{one sided} \\ P(T \le T_0 \mid H_0) & \text{one sided} \end{cases}$$

Denote that p-value is probability. So in MC setting, we can estimate this by computing *sample mean of identity function*.

Lemma 3.1 (Empirical p-value). Let T_0 be observed test statistic and let $\{T_1, \ldots, T_M\}$ be test statistic computed in each MC sample.

$$Empirical\ p\text{-}value = \begin{cases} \frac{\left| \{T_j: (T_j > |T_0|)\ or\ (T_j < -|T_0|)\} \right|}{M} & both\text{-}sided \\ \frac{\left| \{T_j: (T_j > T_0)\} \right|}{M} & or\ \frac{\left| \{T_j: (T_j < T_0)\} \right|}{M} & one\text{-}sided \end{cases}$$

Algorithm 14: Empirical p-value by Monte Carlo method input : Given observed data, compute T_0 1 for $m \leftarrow 1$ to M do 2 | Generate $X_1^{(m)}, \dots, X_n^{(m)} \stackrel{H_0}{\sim} f$; 3 | Compute $T_m(\mathbf{X}^{(m)})$; 4 end 5 Empirical p-value $\hat{p} = \begin{cases} \frac{\left|\{T_j: (T_j > |T_0|) \text{ or } (T_j < -|T_0|)\}\right|}{M} & \text{both-sided} \\ \frac{\left|\{T_j: (T_j > T_0)\}\right|}{M} & \text{or } \frac{\left|\{T_j: (T_j < T_0)\}\right|}{M} & \text{one-sided} \end{cases}$;

Go back to Example 3.5. Only left is computing 5 of Algorighm 14. (Denote that **xexp** in the code is vector object of observed data).

It is smaller that 0.05, so we reject H_0 .

3.4.2 Comparing several tests

MC method would be used in comparing tests rather than conducting test itself. By generating random number, we can evaluate tests.

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

As mentioned earlier, $\{\Theta_0, \Theta_1\}$ is a partition of the parameter space Θ . For this test, we can perform several tests. Test method 1, test method 2, et cetera. All these methods produce error, but these errors might be different. So we try to compare this.

what is true	accept H_0	reject H_0	
H_0	correct decision	Type I error	
H_1	$Type\ II\ Error$	correct decision	

In most tests, we aims to reject H_0 . By rejecting it, we can evidently say that H_0 is not true. In this sense, we treat type I error more importantly that type II error in general. Test strategy becomes to control type I error probability first and then lower type II error probability.

Definition 3.3 (Power function). Let $\theta \in \Theta$ be a parameter of a test.

$$\beta(\theta) := P(\text{reject } H_0 \mid \theta)$$

With this power function, each type I error and type II error probability is given.

Lemma 3.2 (typeerr). 1.
$$P(Type\ I\ error) = \beta(\theta_0), \quad \theta_0 \in \Theta_0$$

2. $Power\ \beta(\theta_1) = 1 - P(Type\ II\ error), \quad \theta_1 \in \Theta_1$

Following our test strategy, fixing P(Type I error) and maximizing $\beta(\theta_1)$, we construct following test.

Definition 3.4 (Size α Test). A test with $\beta(\theta)$ is called size α test if and only if

$$\alpha := \sup_{\theta \in \Theta_0} \beta(\theta), \quad 0 \le \alpha \le 1$$

Figure 3.6: Size α Test

Then how to compare tests? Look at the following example. Three columns of the middle part are type I error rate.

test methods	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.01$	Power
Test 1	0.09	0.04	0.01	0.7
Test 2	0.11	0.06	0.01	0.65
Test 3	0.15	0.07	0.02	0.9

Here, we will choose **Test 1**.

- 1. Type I error rate $\approx \alpha$
 - before looking at power, this should be satisfied.
 - So Test 3 is excluded
- 2. Larger power
 - Thus, we select Test 1.

3.4.3 Empirical type-I error rate

Recall Lemma 3.2. As in p-value, we just compute sample proportion for each type I error rate and power under null and alternative distribution.

Lemma 3.3. Consider $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$.

Define $I(\mathbf{X})$ by

$$I(\mathbf{X}) = \begin{cases} 1 & H_0 \text{ is rejected} \mid H_0 \\ 0 & otherwise \end{cases}$$

For each MC sample, compute this statistic $I_m = I(\mathbf{X}^m)$. Then empirical type I error rate can be computed as

$$\frac{1}{M} \sum_{m=1}^{M} I_m$$

- 3.4.4 Empirical power
- 3.4.5 Count Five test for equal variance
- 3.5 Statistical Methods
- 3.6 Bootstrap