# Lecture Notes 13: Review Linear Algebra

CPSC 302: Numerical Computation for Algebraic Problems

Jessica Bosch
 jbosch@cs.ubc.ca
http://www.cs.ubc.ca/~jbosch

University of British Columbia Department of Computer Science

2017/2018 Winter Term 1

Copyright 2017 Jessica Bosch
Slides reused and adapted from Uri Ascher, Chen Greif
This work is made available under the terms of the Creative Commons Attribution 2.5 Canada license <a href="http://creativecommons.org/licenses/by/2.5/ca/">http://creativecommons.org/licenses/by/2.5/ca/</a>

# **Chapter 4: Review Linear Algebra**

- Basic Concepts: Linear Systems and Eigenvalue Problems
- Norms
- Special Matrix Classes
- Singular Value Decomposition (SVD)
- Examples in Applications

- Special Matrix Classes
   Symmetric Positive Definite
   Orthogonality
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

- Special Matrix Classes
   Symmetric Positive Definite
   Orthogonality
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

# Symmetric Positive Definite Matrices

Extend notion of positive scalar to matrices:

$$A = A^T$$
,  $\mathbf{x}^T A \mathbf{x} > 0$ ,  $\forall \mathbf{x} \neq \mathbf{0}$ .

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0.$$

#### **Useful Facts about Matrices**

Consider a real square  $n \times n$  matrix  $A = (a_{ij})$ .

• If  $A=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ , then the matrix is nonsingular iff  $d=det(A)=a_{11}a_{22}-a_{12}a_{21}\neq 0.$  If  $d\neq 0$  then

$$A^{-1} = \frac{1}{d} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

• The matrix is strictly diagonally dominant if for all i, i = 1, 2, ..., n,

$$|a_{ii}| > \sum_{j \neq i} |a_{i,j}|.$$

• Let A be a symmetric, strictly diagonally dominant matrix whose diagonal elements are all positive. Then A is symmetric positive definite.

- Special Matrix Classes
   Symmetric Positive Definite
   Orthogonality
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

# **Orthogonal and Orthonormal Vectors**

 $\bullet$  Orthogonal vectors: two vectors  ${\bf u}$  and  ${\bf v}$  of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v} = 0.$$

• Orthonormal vectors: if also  $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$ .

# **Orthogonal Matrices**

Square matrix Q is orthogonal if its columns are pairwise orthonormal,
 i.e.,

$$Q^T Q = I$$
. Hence also  $Q^{-1} = Q^T$ .

• Important properties: for any orthogonal matrix Q and vector  $\mathbf{x}$ 

$$||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$$
. Hence  $||Q||_2 = ||Q^{-1}||_2 = 1$ .

• For any symmetric matrix A there is a real orthogonal eigenvector matrix X, so that  $X^{-1}AX$  is diagonal.

- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

### **Singular Value Decomposition**

Let A be real  $m \times n$  (rectangular in general). Then there are orthogonal matrices U  $(m \times m)$  and V  $(n \times n)$  such that

$$A = U\Sigma V^T,$$

where

$$\Sigma = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \operatorname{diag}\{\sigma_1, \dots, \sigma_r\},$$

with the **singular values** satisfying

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0, \quad \sigma_{r+1} = \cdots = \sigma_n = 0.$$

Connection to eigenvalues:  $\sigma_i = \sqrt{\lambda_i}$ , where  $\lambda_i$  are eigenvalues of  $A^T A$ .

- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

Low Rank Approximation

PCA

Data Fitting

Differential Equation

- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications
  Low Rank Approximation

PCA

Data Fitting

Differential Equation

# Low Rank Approximation



- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

Low Rank Approximation

PCA

Data Fitting
Differential Equation

# **Instance: Point Cloud**



# **Instance: RBF Interpolation**

Left: consolidated point cloud. Right: RBF surface.



- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

Low Rank Approximation

PCA

Data Fitting

Differential Equation

### **Data Fitting**

Given measurements, or observations

$$(t_1, b_1), (t_2, b_2), \dots, (t_m, b_m) = \{(t_i, b_i)\}_{i=1}^m,$$

want to fit a function

$$v(t) = \sum_{j=1}^{n} x_j \phi_j(t),$$

For example, polynomial fit:

$$v(t) = x_1 + x_2t + x_3t^2 + \ldots + x_nt^{n-1}$$
, so  $\phi_j(t) = t^{j-1}$ .

- $\phi_1(t), \phi_2(t), \dots, \phi_n(t)$  are known linearly independent basis functions
- $x_1, \ldots, x_n$  are **coefficients** to be determined s.t. (hopefully)

$$v(t_i) = b_i, \quad i = 1, 2, \dots, m.$$

# Data Fitting (cont.)

Define  $a_{ij} = \phi_j(t_i)$ . Want  $A\mathbf{x} = \mathbf{b}$ , where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Assume that A has full column rank n.

1. If m = n get interpolation problem. Use methods of Chapters 5 or 7 to solve

$$A\mathbf{x} = \mathbf{b}$$
.

2. If m > n want, e.g.,  $\min_{\mathbf{x}} \|\mathbf{b} - A\mathbf{x}\|_2$ . Get least squares data fitting. Use methods of Chapter 6 to solve

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2.$$

- 1. Special Matrix Classes
- 2. Singular Value Decomposition (SVD)
- 3. Examples in Applications

Low Rank Approximation

PCA

Data Fitting

Differential Equation

### **Differential Equation**

Given g(t),  $0 \le t \le 1$ , recover v(t) satisfying -v'' = g.

Require two boundary conditions

1. 
$$v(0) = v(1) = 0$$
, or

2. 
$$v(0) = 0$$
,  $v'(1) = 0$ .

Discretize on mesh  $t_i = ih$ , i = 0, 1, ..., N:

$$-\frac{v_{i+1}-2v_i+v_{i-1}}{h^2}=g(t_i), \quad i=1,2,\ldots,N-1.$$

Note h = 1/(N+1). So, smaller h means larger number of linear equations.

With BC v(0) = v(1) = 0, require  $v_0 = v_N = 0$ .

# **Linear System for Differential Equation**

Need to solve  $A\mathbf{v} = \mathbf{g}$ , where

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-2} \\ v_{N-1} \end{pmatrix}, \ \mathbf{g} = \begin{pmatrix} g(t_1) \\ g(t_2) \\ \vdots \\ g(t_{N-2}) \\ g(t_{N-1}) \end{pmatrix}, \ A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

Thus, A is **tridiagonal**.