Package 'healthyR'

July 1, 2024

Title Hospital Data Analysis Workflow Tools

Version 0.2.2

Description Hospital data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative hospital data. Some of these include average length of stay, readmission rates, average net pay amounts by service lines just to name a few. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://github.com/spsanderson/healthyR

BugReports https://github.com/spsanderson/healthyR/issues

Imports magrittr, rlang (>= 0.1.2), tibble, timetk, ggplot2, dplyr, lubridate, graphics, purrr, stringr, writexl, cowplot, scales, sqldf, plotly

Suggests knitr, rmarkdown, pacman, healthyR.data, broom, tidyselect

VignetteBuilder knitr

Depends R (>= 3.3)

NeedsCompilation no

Author Steven Sanderson [aut, cre, cph] (https://orcid.org/0009-0006-7661-8247)

Maintainer Steven Sanderson <spsanderson@gmail.com>

Repository CRAN

Date/Publication 2024-07-01 13:20:02 UTC

2 category_counts_tbl

Contents

category_counts_tbl	. 2
color_blind	. 4
diverging_bar_plt	. 4
diverging_lollipop_plt	. 6
dx_cc_mapping	. 7
gartner_magic_chart_plt	. 8
hr_scale_color_colorblind	. 10
hr_scale_fill_colorblind	. 10
los_ra_index_plt	. 11
los_ra_index_summary_tbl	. 12
named_item_list	. 14
opt_bin	. 15
px_cc_mapping	. 16
save_to_excel	. 17
service_line_augment	. 17
service_line_vec	. 19
sql_left	. 20
sql_mid	. 21
sql_right	. 21
top_n_tbl	. 22
ts_alos_plt	. 23
ts_census_los_daily_tbl	. 25
ts_median_excess_plt	. 26
ts_plt	. 28
ts_readmit_rate_plt	. 29
ts_signature_tbl	. 31
	33

category_counts_tbl Counts by Category

Description

Index

Get the counts of a column by a particular grouping if supplied, otherwise just get counts of a column.

Usage

```
category_counts_tbl(.data, .count_col, .arrange_value = TRUE, ...)
```

category_counts_tbl 3

Arguments

.data The data.frame/tibble supplied.
.count_col The column that has the values you want to count.
.arrange_value Defaults to true, this will arrange the resulting tibble in descending order by .count_col
... Place the values you want to pass in for grouping here.

Details

- Requires a data.frame/tibble.
- Requires a value column, a column that is going to counted.

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Data Table Functions: los_ra_index_summary_tbl(), named_item_list(), top_n_tbl(), ts_census_los_daily_tbl(), ts_signature_tbl()
```

```
library(healthyR.data)
library(dplyr)

healthyR_data %>%
   category_counts_tbl(
    .count_col = payer_grouping
    , .arrange = TRUE
    , ip_op_flag
)

healthyR_data %>%
   category_counts_tbl(
    .count_col = ip_op_flag
    , .arrange_value = TRUE
    , service_line
)
```

4 diverging_bar_plt

color_blind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

```
color_blind()
```

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A vector of 8 Hex RGB definitions.

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Color Blind: hr_scale_color_colorblind(), hr_scale_fill_colorblind()
```

Examples

```
color_blind()
```

diverging_bar_plt

Diverging Bar Chart

Description

Diverging Bars is a bar chart that can handle both negative and positive values. This can be implemented by a smart tweak with geom_bar(). But the usage of geom_bar() can be quite confusing. That's because, it can be used to make a bar chart as well as a histogram. Let me explain.

By default, geom_bar() has the stat set to count. That means, when you provide just a continuous X variable (and no Y variable), it tries to make a histogram out of the data.

In order to make a bar chart create bars instead of histogram, you need to do two things. Set stat = identity and provide both x and y inside aes() where, x is either character or factor and y is numeric. In order to make sure you get diverging bars instead of just bars, make sure, your categorical variable has 2 categories that changes values at a certain threshold of the continuous variable. In below example, the mpg from mtcars data set is normalized by computing the z score. Those vehicles with mpg above zero are marked green and those below are marked red.

diverging_bar_plt 5

Usage

```
diverging_bar_plt(
    .data,
    .x_axis,
    .y_axis,
    .fill_col,
    .plot_title = NULL,
    .plot_subtitle = NULL,
    .plot_caption = NULL,
    .interactive = FALSE
)
```

Arguments

```
.data The data to pass to the function, must be a tibble/data.frame.

.x_axis The data that is passed to the x-axis.

.y_axis The data that is passed to the y-axis. This will also equal the parameter label

.fill_col The column that will be used to fill the color of the bars.

.plot_title Default is NULL

.plot_subtitle Default is NULL

.plot_caption Default is NULL

.interactive Default is FALSE. TRUE returns a plotly plot
```

Details

This function takes only a few arguments and returns a ggplot2 object.

Value

A plotly plot or a ggplot2 static plot

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_lollipop_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_plt(), ts_readmit_rate_plt()
```

```
suppressPackageStartupMessages(library(ggplot2))

data("mtcars")
mtcars$car_name <- rownames(mtcars)
mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2)
mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above")</pre>
```

diverging_lollipop_plt

Diverging Lollipop Chart

Description

This is a diverging lollipop function. Lollipop chart conveys the same information as bar chart and diverging bar. Except that it looks more modern. Instead of geom_bar, I use geom_point and geom_segment to get the lollipops right. Let's draw a lollipop using the same data I prepared in the previous example of diverging bars.

Usage

```
diverging_lollipop_plt(
   .data,
   .x_axis,
   .y_axis,
   .plot_title = NULL,
   .plot_subtitle = NULL,
   .plot_caption = NULL,
   .interactive = FALSE
```

Arguments

.data	The data to pass to the function, must be a tibble/data.frame.	
.x_axis	The data that is passed to the x-axis. This will also be the x and x and x are parameters of the geom_segment	
.y_axis	The data that is passed to the y-axis. This will also equal the parameters of yend and label	
.plot_title	Default is NULL	
$.plot_subtitle$	Default is NULL	
$.plot_caption$	Default is NULL	
.interactive	Default is FALSE. TRUE returns a plotly plot	

dx_cc_mapping 7

Details

This function takes only a few arguments and returns a ggplot2 object.

Value

A plotly plot or a ggplot2 static plot

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_bar_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_plt(), ts_readmit_rate_plt()
```

Examples

dx_cc_mapping

Diagnosis to Condition Code Mapping file

Description

Diagnosis to Condition Code Mapping file

Usage

```
data(dx_cc_mapping)
```

Format

A data frame with 86852 rows and 5 variables

See Also

```
Other AHRQ: px_cc_mapping
```

```
gartner_magic_chart_plt
```

Gartner Magic Chart - Plotting of two continuous variables

Description

Plot a Gartner Magic Chart of two continuous variables.

Usage

```
gartner_magic_chart_plt(
   .data,
   .x_col,
   .y_col,
   .point_size_col = NULL,
   .y_lab = "",
   .x_lab = "",
   .top_left_label = "",
   .top_right_label = "",
   .bottom_right_label = ""
)
```

Arguments

```
.data
                  The dataset you want to plot.
.x_col
                  The x-axis for the plot.
.y_col
                  The y-axis for the plot.
.point_size_col
                  The default is NULL. If you want to size the dots by a column in the data
                  frame/tibble, enter the column name here.
                  The y-axis label (default: "").
.y_lab
.x_lab
                  The x-axis label (default: "").
                  The title of the plot (default: "").
.plot_title
.top_left_label
                  The top left label (default: "").
.top_right_label
                  The top right label (default: "").
.bottom\_right\_label
                  The bottom right label (default: "").
.bottom_left_label
                  The bottom left label (default: "").
```

```
gartner_magic_chart_plt
```

Value

A ggplot plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), los_ra_index_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_plt(), ts_readmit_rate_plt()
```

```
library(dplyr)
library(ggplot2)
data_tbl <- tibble(</pre>
  x = rnorm(100, 0, 1),
  y = rnorm(100, 0, 1),
  z = abs(x) + abs(y)
gartner_magic_chart_plt(
  .data = data_tbl,
  .x_{col} = x,
  .y_{col} = y,
  .point_size_col = z,
  .x_{lab} = "los",
  .y_lab = "ra",
  .plot_title = "tst",
  .top_right_label = "High RA-LOS",
  .top_left_label = "High RA",
  .bottom_left_label = "Leader",
  .bottom_right_label = "High LOS"
)
gartner_magic_chart_plt(
  .data = data_tbl,
  .x_{col} = x,
  .y_{col} = y,
  .point_size_col = NULL,
  .x_{lab} = "los",
  .y_lab = "ra",
  .plot_title = "tst",
  .top_right_label = "High RA-LOS",
  .top_left_label = "High RA",
  .bottom_left_label = "Leader",
  .bottom_right_label = "High LOS"
)
```

hr_scale_color_colorblind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

```
hr_scale_color_colorblind(..., theme = "hr")
```

Arguments

... Data passed in from a ggplot object

theme Right now this is hr only. Anything else will render an error.

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A gggplot layer

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Color Blind: color_blind(), hr_scale_fill_colorblind()
```

```
hr_scale_fill_colorblind
```

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

```
hr_scale_fill_colorblind(..., theme = "hr")
```

los_ra_index_plt 11

Arguments

... Data passed in from a ggplot object

theme Right now this is hr only. Anything else will render an error.

Details

This function is used in others in order to help render plots for those that are color blind.

Value

```
A gggplot layer
```

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Color Blind: color_blind(), hr_scale_color_colorblind()
```

los_ra_index_plt

Plot LOS and Readmit Index with Variance

Description

Plot the index of the length of stay and readmit rate against each other along with the variance

Usage

```
los_ra_index_plt(.data)
```

Arguments

.data

The data supplied from los_ra_index_summary_tbl()

Details

- Expects a tibble
- Expects a Length of Stay and Readmit column, must be numeric
- Uses cowplot to stack plots

Value

A patchwork ggplot2 plot

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), gartner_magic_chart_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_plt(), ts_readmit_rate_plt()
```

Examples

```
suppressPackageStartupMessages(library(dplyr))
data_tbl <- tibble(</pre>
  "alos" = runif(186, 1, 20)
, "elos" = runif(186, 1, 17)
, "readmit_rate" = runif(186, 0, .25)
  , "readmit_rate_bench" = runif(186, 0, .2)
)
los_ra_index_summary_tbl(
  .data = data_tbl
  , .max_los = 15
  , .alos_col
  , .alos_col = alos
, .elos_col = elos
  , .readmit_rate = readmit_rate
  , .readmit_bench = readmit_rate_bench
) %>%
  los_ra_index_plt()
los_ra_index_summary_tbl(
  .data = data_tbl
                = 10
= alos
= elos
  , .max_los
  , .alos_col
  , .elos_col
  , .readmit_rate = readmit_rate
  , .readmit_bench = readmit_rate_bench
) %>%
  los_ra_index_plt()
```

los_ra_index_summary_tbl

Make LOS and Readmit Index Summary Tibble

Description

Create the length of stay and readmit index summary tibble

Usage

```
los_ra_index_summary_tbl(
   .data,
   .max_los = 15,
```

```
.alos_col,
.elos_col,
.readmit_rate,
.readmit_bench
)
```

Arguments

.data The data you are going to analyze.

.max_los You can give a maximum LOS value. Lets say you typically do not see los over 15 days, you would then set .max_los to 15 and all values greater than .max_los will be grouped to .max_los

.alos_col The Average Length of Stay column

.elos_col The Expected Length of Stay column

.readmit_rate The Actual Readmit Rate column

.readmit_bench The Expected Readmit Rate column

Details

- · Expects a tibble
- Expects the following columns and there should only be these 4
 - Length Of Stay Actual Should be an integer
 - Length Of Stacy Benchmark Should be an integer
 - Readmit Rate Actual Should be 0/1 for each record, 1 = readmitted, 0 did not.
 - Readmit Rate Benchmark Should be a percentage from the benchmark file.
- This will add a column called visits that will be the count of records per length of stay from 1 to .max_los
- The .max_los param can be left blank and the function will default to 15. If this is not a good default and you don't know what it should be then set it to 75 percentile from the stats::quantile() function using the defaults, like so .max_los = stats::quantile(data_tbl\$alos)[[4]]
- Uses all data to compute variance, if you want it for a particular time frame you will have to filter the data that goes into the .data argument. It is suggested to use timetk::filter_by_time()
- The index is computed as the excess of the length of stay or readmit rates over their respective expectations.

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Data Table Functions: category_counts_tbl(), named_item_list(), top_n_tbl(), ts_census_los_daily_tbl() ts_signature_tbl()
```

14 named_item_list

Examples

```
suppressPackageStartupMessages(library(dplyr))
data_tbl <- tibble(</pre>
 "alos"
            = runif(186, 1, 20)
  , "elos"
                  = runif(186, 1, 17)
   "readmit_rate" = runif(186, 0, .25)
    "readmit_bench" = runif(186, 0, .2)
los_ra_index_summary_tbl(
  .data = data_tbl
  , .max_los
               = 15
              = alos
= elos
  , .alos_col
  , .elos_col
 , .readmit_rate = readmit_rate
  , .readmit_bench = readmit_bench
)
los_ra_index_summary_tbl(
 .data = data_tbl
             = 10
 , .max_los
                 = alos
 , .alos_col
              = elos
 , .elos_col
  , .readmit_rate = readmit_rate
  , .readmit_bench = readmit_bench
)
```

named_item_list

Tibble to named list

Description

Takes in a data.frame/tibble and creates a named list from a supplied grouping variable. Can be used in conjunction with save_to_excel() to create a new sheet for each group of data.

Usage

```
named_item_list(.data, .group_col)
```

Arguments

.data The data.frame/tibble.

. group_col The column that contains the groupings.

Details

• Requires a data.frame/tibble and a grouping column.

opt_bin 15

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Data Table Functions: category_counts_tbl(), los_ra_index_summary_tbl(), top_n_tbl(), ts_census_los_daily_tbl(), ts_signature_tbl()
```

Examples

```
library(healthyR.data)

df <- healthyR_data
df_list <- named_item_list(.data = df, .group_col = service_line)
df_list</pre>
```

opt_bin

Get the optimal binwidth for a histogram

Description

Gives the optimal binwidth for a histogram given a data set, it's value and the desired amount of bins

Usage

```
opt_bin(.data, .value_col, .iters = 30)
```

Arguments

.data The data set in question

.value_col The column that holds the values

.iters How many times the cost function loop should run

Details

• Supply a data.frame/tibble with a value column. from this an optimal binwidth will be computed for the amount of binds desired

Value

A tibble of histogram breakpoints

Author(s)

Steven P. Sanderson II, MPH

Modified from Hideaki Shimazaki Department of Physics, Kyoto University shimazaki at ton.scphys.kyoto-u.ac.jp Feel free to modify/distribute this program.

px_cc_mapping

See Also

```
Other Utilities: save_to_excel(), sql_left(), sql_mid(), sql_right()
```

Examples

```
suppressPackageStartupMessages(library(purrr))
suppressPackageStartupMessages(library(dplyr))

df_tbl <- rnorm(n = 1000, mean = 0, sd = 1)

df_tbl <- df_tbl %>%
    as_tibble() %>%
    set_names("value")

df_tbl %>%
    opt_bin(
        .value_col = value
        , .iters = 100
    )
```

px_cc_mapping

Procedure to Condition Code Mapping file

Description

Procedure to Condition Code Mapping file

Usage

```
data(px_cc_mapping)
```

Format

A data frame with 79721 rows and 5 variables

See Also

```
Other AHRQ: dx_cc_mapping
```

save_to_excel 17

save_to_excel

Save a file to Excel

Description

Save a tibble/data.frame to an excel .xlsx file. The file will automatically with a save_dtime in the format of 20201109_132416 for November 11th, 2020 at 1:24:16PM.

Usage

```
save_to_excel(.data, .file_name)
```

Arguments

.file_name the name you want to give to the file.

Details

• Requires a tibble/data.frame to be passed to it.

Value

A saved excel file

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Utilities: opt_bin(), sql_left(), sql_mid(), sql_right()
```

Description

Takes a few arguments from a data.frame/tibble and returns a service line augmented to a data.frame/tibble for a set of patients.

Usage

```
service_line_augment(.data, .dx_col, .px_col, .drg_col)
```

Arguments

.data	The data being passed that will be augmented by the function.
.dx_col	The column containing the Principal Diagnosis for the discharge.
.px_col	The column containing the Principal Coded Procedure for the discharge. It is possible that this could be blank.
.drg_col	The DRG Number coded to the inpatient discharge.

Details

This is an augment function in that appends a vector to an data.frame/tibble that is passed to the .data parameter. A data.frame/tibble is required, along with a principal diagnosis column, a principal procedure column, and a column for the DRG number. These are needed so that the function can join the dx_cc_mapping and px_cc_mapping columns to provide the service line. This function only works on visits that are coded using ICD Version 10 only.

Lets take an example discharge, the DRG is 896 and the Principal Diagnosis code maps to DX_660, then this visit would get grouped to alcohol_abuse

DRG 896: ALCOHOL, DRUG ABUSE OR DEPENDENCE WITHOUT REHABILITATION THERAPY WITH MAJOR COMPLICATION OR COMORBIDITY (MCC)

DX_660 Maps to the following ICD-10 Codes ie F1010 Alcohol abuse, uncomplicated:

```
library(healthyR)
dx_cc_mapping %>%
  filter(CC_Code == "DX_660", ICD_Ver_Flag == "10")
```

Value

An augmented data.frame/tibble with the service line appended as a new column.

Author(s)

Steven P. Sanderson II, MPH

```
df <- data.frame(
  dx_col = "F10.10",
  px_col = NA,
  drg_col = "896"
)

service_line_augment(
  .data = df,
  .dx_col = dx_col,
  .px_col = px_col,
  .drg_col = drg_col
)</pre>
```

service_line_vec 19

service_line_vec Service Line Grouper Vectorized Function

Description

Takes a few arguments from a data.frame/tibble and returns a service line vector for a set of patients.

Usage

```
service_line_vec(.data, .dx_col, .px_col, .drg_col)
```

Arguments

.data	The data being passed that will be augmented by the function.
.dx_col	The column containing the Principal Diagnosis for the discharge.
.px_col	The column containing the Principal Coded Procedure for the discharge. It is possible that this could be blank.
.drg_col	The DRG Number coded to the inpatient discharge.

Details

This is a vectorized function in that it returns a vector. It can be applied inside of a mutate statement when using dplyr if desired. A data.frame/tibble is required, along with a principal diagnosis column, a principal procedure column, and a column for the DRG number. These are needed so that the function can join the dx_cc_mapping and px_cc_mapping columns to provide the service line. This function only works on visits that are coded using ICD Version 10 only.

Lets take an example discharge, the DRG is 896 and the Principal Diagnosis code maps to DX_660, then this visit would get grouped to alcohol_abuse

DRG 896: ALCOHOL, DRUG ABUSE OR DEPENDENCE WITHOUT REHABILITATION THERAPY WITH MAJOR COMPLICATION OR COMORBIDITY (MCC)

DX_660 Maps to the following ICD-10 Codes ie F1010 Alcohol abuse, uncomplicated:

```
library(healthyR)
dx_cc_mapping %>%
  filter(CC_Code == "DX_660", ICD_Ver_Flag == "10")
```

Value

A vector of service line assignments.

Author(s)

Steven P. Sanderson II, MPH

20 sql_left

Examples

```
df <- data.frame(
    dx_col = "F10.10",
    px_col = NA,
    drg_col = "896"
)

service_line_vec(
    .data = df,
    .dx_col = dx_col,
    .px_col = px_col,
    .drg_col = drg_col
)</pre>
```

sql_left

Use SQL LEFT type function

Description

Perform an SQL LEFT() type function on a piece of text

Usage

```
sql_left(.text, .num_char)
```

Arguments

. text A piece of text/string to be manipulated
. num_char How many characters do you want to grab

Details

• You must supply data that you want to manipulate.

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Utilities: opt_bin(), save_to_excel(), sql_mid(), sql_right()
```

```
sql_left("text", 3)
```

sql_mid 21

 sql_mid

Use SQL MID type function

Description

Perform an SQL SUBSTRING type function

Usage

```
sql_mid(.text, .start_num, .num_char)
```

Arguments

. text A piece of text/string to be manipulated

.start_num What place to start at

.num_char How many characters do you want to grab

Details

• You must supply data that you want to manipulate.

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Utilities: opt_bin(), save_to_excel(), sql_left(), sql_right()
```

Examples

```
sql_mid("this is some text", 6, 2)
```

sql_right

Use SQL RIGHT type functions

Description

Perform an SQL RIGHT type function

Usage

```
sql_right(.text, .num_char)
```

22 top_n_tbl

Arguments

. text A piece of text/string to be manipulated
. num_char How many characters do you want to grab

Details

• You must supply data that you want to manipulate.

Author(s)

```
Steven P. Sanderson II, MPH
```

See Also

```
Other Utilities: opt_bin(), save_to_excel(), sql_left(), sql_mid()
```

Examples

```
sql_right("this is some more text", 3)
```

top_n_tbl

Top N tibble

Description

Get a tibble returned with n records sorted either by descending order (default) or ascending order.

Usage

```
top_n_tbl(.data, .n_records, .arrange_value = TRUE, ...)
```

Arguments

.data The data you want to pass to the function
.n_records How many records you want returned
.arrange_value A boolean with TRUE as the default. TRUE sorts data in descending order
... The columns you want to pass to the function.

Details

- Requires a data.frame/tibble
- Requires at least one column to be chosen inside of the ...
- Will return the tibble in sorted order that is chosen with descending as the default

ts_alos_plt 23

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Data Table Functions: category_counts_tbl(), los_ra_index_summary_tbl(), named_item_list(), ts_census_los_daily_tbl(), ts_signature_tbl()
```

Examples

```
library(healthyR.data)

df <- healthyR_data

df_tbl <- top_n_tbl(
    .data = df
    .n_records = 3
    .arrange_value = TRUE
    , service_line
    , payer_grouping
)

print(df_tbl)</pre>
```

ts_alos_plt

Plot ALOS - Average Length of Stay

Description

Plot ALOS - Average Length of Stay

Usage

```
ts_alos_plt(.data, .date_col, .value_col, .by_grouping, .interactive)
```

Arguments

.data	The time series data you need to pass
.date_col	The date column
.value_col	The value column
.by_grouping	How you want the data summarized - "sec", "min", "hour", "day", "week", "month", "quarter" or "year"
.interactive	TRUE or FALSE. TRUE returns a plotly plot and FALSE returns a static ggplot2 plot

24 ts_alos_plt

Details

- Expects a tibble with a date time column and a value column
- Uses timetk for underlying sumarization and plot
- If .by_grouping is missing it will default to "day"
- A static ggplot2 object is return if the .interactive function is FALSE otherwise a plotly plot is returned.

Value

A timetk time series plot

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_median_excess_plt(), ts_plt(), ts_readmit_rate_plt()
```

```
library(healthyR)
library(healthyR.data)
library(timetk)
library(dplyr)
library(purrr)
# Make A Series of Dates ----
data_tbl <- healthyR_data</pre>
df_tbl <- data_tbl %>%
    filter(ip_op_flag == "I") %>%
    select(visit_end_date_time, length_of_stay) %>%
    summarise_by_time(
        .date_var = visit_end_date_time
        , .by = "day"
        , visits = mean(length_of_stay, na.rm = TRUE)
   ) %>%
    filter_by_time(
       .date_var = visit_end_date_time
        , .start_date = "2012"
        , .end_date = "2019"
    set_names("Date","Values")
ts_alos_plt(
  .data = df_tbl
  , .date_col = Date
  , .value_col = Values
```

```
, .by = "month"
, .interactive = FALSE
)
```

```
ts_census_los_daily_tbl
```

Time Series - Census and LOS by Day

Description

Sometimes it is important to know what the census was on any given day, or what the average length of stay is on given day, including for those patients that are not yet discharged. This can be easily achieved. This will return one record for every account so the data will still need to be summarized. If there are multiple entries per day then those records will show up and you will therefore have multiple entries in the column date in the resulting tibble. If you want to aggregate from there you should be able to do so easily.

If you have a record where the .start_date_col is filled in but the corresponding end_date is null then the end date will be set equal to Sys.Date()

If a record has a start_date that is NA then it will be discarded.

This function can take a little bit of time to run while the join comparison runs.

Usage

```
ts_census_los_daily_tbl(
   .data,
   .keep_nulls_only = FALSE,
   .start_date_col,
   .end_date_col,
   .by_time = "day"
)
```

Arguments

```
. data The data you want to pass to the function
```

.keep_nulls_only

A boolean that will keep only those records that have a NULL end date, meaning the patient is still admitted. The default is FALSE which brings back all records.

.start_date_col

The column containing the start date for the record

.end_date_col The column containing the end date for the record.

by_time How you want the data presented, defaults to day and should remain that way unless you need more granular data.

Details

- Requires a dataset that has at least a start date column and an end date column
- Takes a single boolean parameter

Value

A tibble object

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Data Table Functions: category_counts_tbl(), los_ra_index_summary_tbl(), named_item_list(), top_n_tbl(), ts_signature_tbl()
```

Examples

Description

Plot out the excess +/- of the median value grouped by certain time parameters.

ts_median_excess_plt 27

Usage

```
ts_median_excess_plt(
    .data,
    .date_col,
    .value_col,
    .x_axis,
    .ggplot_group_var,
    .years_back
)
```

Arguments

```
.data The data that is being analyzed, data must be a tibble/data.frame.
.date_col The column of the tibble that holds the date.
.value_col The column that holds the value of interest.
.x_axis What is the be the x-axis, day, week, etc.
.ggplot_group_var
The variable to group the ggplot on.
.years_back How many yeas back do you want to go in order to compute the median value.
```

Details

• Supply data that you want to view and you will see the excess +/- of the median values over a specified time series tibble.

Value

A ggplot2 plot

See Also

```
Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_alos_plt(), ts_plt(), ts_readmit_rate_plt()
```

```
suppressPackageStartupMessages(library(timetk))
ts_signature_tbl(
 .data
        = m4_daily
  , .date_col = date
) %>%
ts_median_excess_plt(
 .date_col
                    = date
 , .value_col
                  = value
                    = month
 , .x_axis
 , .ggplot_group_var = year
 , .years_back = 1
)
```

28 ts_plt

ts_plt

Time Series Plot

Description

This is a warpper function to the timetk::plot_time_series() function with a limited functionality parameter set. To see the full reference please visit the timetk package site.

Usage

```
ts_plt(
    .data,
    .date_col,
    .value_col,
    .color_col = NULL,
    .facet_col = NULL,
    .facet_ncol = NULL,
    .interactive = FALSE
)
```

Arguments

.data	The data to pass to the function, must be a tibble/data.frame.
.date_col	The column holding the date.
.value_col	The column holding the value.
.color_col	The column holding the variable for color.
.facet_col	The column holding the variable for faceting.
.facet_ncol	How many columns do you want.
.interactive	Return a plotly plot if set to TRUE and a static ggplot2 plot if set to FALSE. The default is FALSE.

Details

This function takes only a few of the arguments in the function and presets others while choosing the defaults on others. The smoother functionality is turned off.

Value

A plotly plot or a ggplot2 static plot

Author(s)

Steven P. Sanderson II, MPH

ts_readmit_rate_plt 29

See Also

```
https://business-science.github.io/timetk/reference/plot_time_series.html

Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_readmit_rate_plt()
```

Examples

```
suppressPackageStartupMessages(library(dplyr))
library(timetk)
library(healthyR.data)
healthyR.data::healthyR_data %>%
  filter(ip_op_flag == "I") %>%
  select(visit_end_date_time, service_line) %>%
  filter_by_time(
    .date_var = visit_end_date_time
    , .start_date = "2020"
    ) %>%
  group_by(service_line) %>%
  summarize_by_time(
    .date_var = visit_end_date_time
    , .by = "month"
    , visits = n()
  ) %>%
 ungroup() %>%
 ts_plt(
   .date_col = visit_end_date_time
   , .value_col = visits
   , .color_col = service_line
```

Description

Plot Readmit Rate

Usage

```
ts_readmit_rate_plt(.data, .date_col, .value_col, .by_grouping, .interactive)
```

Arguments

.date_col The date column..value_col The value column.

30 ts_readmit_rate_plt

```
.by_grouping How you want the data summarized - "sec", "min", "hour", "day", "week", "month", "quarter" or "year".

.interactive TRUE or FALSE. TRUE returns a plotly plot and FALSE returns a static ggplot2 plot.
```

Details

- Expects a tibble with a date time column and a value column
- Uses timetk for underlying sumarization and plot
- If .by_grouping is missing it will default to "day"

Value

A timetk time series plot that is interactive

Author(s)

Steven P. Sanderson II, MPH

See Also

```
Other Plotting Functions: diverging_bar_plt(), diverging_lollipop_plt(), gartner_magic_chart_plt(), los_ra_index_plt(), ts_alos_plt(), ts_median_excess_plt(), ts_plt()
```

```
set.seed(123)
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(purrr))
suppressPackageStartupMessages(library(dplyr))
ts_tbl <- tk_make_timeseries(</pre>
 start = "2019-01-01"
  , by = "day"
  , length_out = "1 year 6 months"
values <- arima.sim(</pre>
 model = list(
   order = c(0, 1, 0)
    , n = 547
    , mean = 1
    , sd = 5
)
df_tbl <- tibble(</pre>
 x = ts_tbl
 , y = values
 ) %>%
 set_names("Date","Values")
```

ts_signature_tbl 31

```
ts_readmit_rate_plt(
   .data = df_tbl
   , .date_col = Date
   , .value_col = Values
   , .by = "month"
   , .interactive = FALSE
)
```

ts_signature_tbl

Make a Time Enhanced Tibble

Description

Returns a tibble that adds the time series signature from the timetk::tk_augment_timeseries_signature() function. All added from a chosen date column defined by the .date_col parameter.

Usage

```
ts_signature_tbl(.data, .date_col, .pad_time = TRUE, ...)
```

Arguments

```
    .data The data that is being analyzed.
    .date_col The column that holds the date.
    .pad_time Boolean TRUE/FALSE. If TRUE then the timetk::pad_by_time() function is called and used on the data.frame before the modification. The default is TRUE.
    ... Grouping variables to be used by dplyr::group_by() before using timetk::pad_by_time()
```

Details

- Supply data with a date column and this will add the year, month, week, week day and hour to the tibble. The original date column is kept.
- Returns a time-series signature tibble.
- You must know the data going into the function and if certain columns should be dropped or kept when using further functions

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH

32 ts_signature_tbl

See Also

```
Other\ Data\ Table\ Functions:\ category\_counts\_tbl(),\ los\_ra\_index\_summary\_tbl(),\ named\_item\_list(),\ top\_n\_tbl(),\ ts\_census\_los\_daily\_tbl()
```

```
library(timetk)

ts_signature_tbl(
   .data = m4_daily
   ,.date_col = date
   ,.pad_time = TRUE
   , id
)
```

Index

* AHRQ dx_cc_mapping, 7	diverging_bar_plt, 4, 7, 9, 12, 24, 27, 29, 30 diverging_lollipop_plt, 5, 6, 9, 12, 24, 27,
px_cc_mapping, 16	29, 30
* Augment Function	dplyr::group_by(), <i>31</i>
service_line_augment, 17	dx_cc_mapping, 7, 16
* Color Blind	
color_blind, 4	gartner_magic_chart_plt, 5, 7, 8, 12, 24,
hr_scale_color_colorblind, 10	27, 29, 30
hr_scale_fill_colorblind, 10	
* Data Table Functions	hr_scale_color_colorblind, 4, 10, 11
category_counts_tbl, 2	hr_scale_fill_colorblind, 4, 10, 10
los_ra_index_summary_tbl, 12	
named_item_list, 14	los_ra_index_plt, 5, 7, 9, 11, 24, 27, 29, 30
top_n_tbl, 22	los_ra_index_summary_tbl, <i>3</i> , 12, <i>15</i> , <i>23</i> ,
ts_census_los_daily_tbl, 25	26, 32
ts_signature_tbl, 31	<pre>los_ra_index_summary_tbl(), 11</pre>
* Plotting Functions	
diverging_bar_plt, 4	named_item_list, 3, 13, 14, 23, 26, 32
diverging_bar_pit, 4 diverging_lollipop_plt, 6	opt_bin, 15, <i>17</i> , <i>20</i> – <i>22</i>
gartner_magic_chart_plt, 8	opt_bin, 13, 17, 20–22
los_ra_index_plt, 11	px_cc_mapping, 7, 16
ts_alos_plt, 23	p
	save_to_excel, <i>16</i> , 17, <i>20</i> – <i>22</i>
ts_median_excess_plt, 26	save_to_excel(), 14
ts_plt, 28	service_line_augment, 17
ts_readmit_rate_plt, 29 * Utilities	service_line_vec, 19
	sql_left, 16, 17, 20, 21, 22
opt_bin, 15	sql_mid, 16, 17, 20, 21, 22
save_to_excel, 17	sql_right, 16, 17, 20, 21, 21
sql_left, 20	stats::quantile(), <i>13</i>
sql_mid, 21	
sql_right, 21	<pre>timetk::filter_by_time(), 13</pre>
* Vector Function	<pre>timetk::pad_by_time(), 31</pre>
service_line_vec, 19	<pre>timetk::plot_time_series(), 28</pre>
* datasets	<pre>timetk::tk_augment_timeseries_signature(),</pre>
dx_cc_mapping, 7	31
px_cc_mapping, 16	top_n_tb1, 3, 13, 15, 22, 26, 32
	ts_alos_plt, 5, 7, 9, 12, 23, 27, 29, 30
category_counts_tb1, 2, 13, 15, 23, 26, 32	ts_census_los_daily_tbl, <i>3</i> , <i>13</i> , <i>15</i> , <i>23</i> , <i>25</i> ,
color_blind, 4, <i>10</i> , <i>11</i>	32

34 INDEX