School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 3

Given the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY		
TRAINING INSTANCES							
A	S	h	n	F	N		
В	S	h	h	T	N		
С	0	h	h	F	Y		
D	r	m	h	F	Y		
Ε	r	С	n	F	Y		
F	r	С	n	Т	N		
TEST INSTANCES							
G	0	m	n	Т	?		
Н	?	h	?	F	?		

- 1. Build a probabilistic **model** based around the given training instances:
 - (a) Calculate the **prior** probability P(Outl = s). Calculate the prior probabilities of the other attribute values in this data.
 - (b) Find the **entropy** of (the distribution of the attribute values) for each of the six attributes, given this probabilistic model.
 - (c) Calculate the **joint** probability $P(Outl = s \cap Temp = h)$. Calculate some other joint probabilities, for pairs of attribute values from different attributes.
 - (d) Calculate the **conditional** probability P(Outl = s|Temp = h). Calculate some other conditional probabilities.
- 2. Ensure that you can derive the **Naive Bayes** formulation.
- 3. Using the probabilistic model that you developed above, classify the test instances according to the method of **Naive Bayes**.
 - (a) Using the "epsilon" smoothing method.
 - (b) Using "Laplace" smoothing.

ID	Outl	Temn	Ниті	Wind	ΡιΔν		
===					1 1 1 1 1 1		
Training Instances							
A	s	h	n	F	N		
В	s	h	h	T	N		
С	0	h	h	F	Y		
D	r	m	h	F	Y		
\mathbf{E}	r	C	n	F	Y		
F	r	С	n	T	N		
TEST INSTANCES							
G	0	m	n	T	?		
Н	2	h	2	F	?		

- 1. Build a probabilistic **model** based around the given training instances:
 - (a) Calculate the **prior** probability P(Outl = s). Calculate the prior probabilities of the other attribute values in this data.
 - (b) Find the **entropy** of (the distribution of the attribute values) for each of the six attributes, given this probabilistic model.
 - (c) Calculate the **joint** probability $P(Outl = s \cap Temp = h)$. Calculate some other joint probabilities, for pairs of attribute values from different attributes.
 - (d) Calculate the **conditional** probability P(Outl = s|Temp = h). Calculate some other conditional probabilities.

(a)
$$P(out|=S) = \frac{2}{6} = \frac{1}{3}$$

$$H(x) = 0 \longrightarrow less information \longrightarrow certainty.$$

$$H(x) = -\sum_{x \in X} P(x) \log_2 P(x)$$
 (in bits)
attribute name attribute value.

e.g.
$$H(Ont) = -(P(ont) = s)\log_2 P(ont) = s) + P(ont) = o)\log_2 P(ont) = o) + \cdots)$$

$$= -(\frac{2}{6}\log_2 \frac{2}{6} + \frac{1}{6}\log_2 \frac{2}{6})$$

$$= 1.46 \text{ bits}.$$

Joint probability PLANB) = 同时发生 P(Dutl=s n Temp=h) = 5

(d) Conditional Probability P(A|B) => given B \$4 A

$$P(Out|=s|Temp=h) = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$$

2. Ensure that you can derive the Naive Bayes formulation.

- Using the probabilistic model that you developed above, classify the test instances according to the method of Naive Bayes.
 - (a) Using the "epsilon" smoothing method.
 - (b) Using "Laplace" smoothing.

_ID	Outl	Тетр	Humi	Wind	PLAY		
TRAINING INSTANCES							
А	S	h	n	F	N		
В	S	h	h	T	N		
С	0	h	h	F	Y		
D	r	m	h	F	Y		
\mathbf{E}	r	C	n	F	Y		
F	r	С	n	T	N		
TEST INSTANCES							
G	0	m	n	T	?		
Η	?	h	?	F	?		

test G:

Class=N:
$$\frac{2}{6} \times (2 \times 2 \times \frac{2}{3} \times \frac{2}{3}) = \frac{2}{9} e^2$$

class = N:
$$\frac{3}{6} \times (\frac{1}{3} \times \frac{3}{3}) = \frac{1}{6} \quad \nu$$

$$class = Y: \frac{3}{6} \times (\frac{3}{3} \times \frac{1}{3}) = \frac{1}{9}$$

test G:

Class = N:
$$\frac{3}{6} \times \left(\frac{1+0}{3+3} \times \frac{1+0}{3+3} \times \frac{1+2}{2+3} \times \frac{2+2}{2+3} \right) = 0.005 \ \checkmark$$

Class = Y:
$$\frac{3}{6} \times \left(\frac{1+1}{3+3} \times \frac{1+1}{3+3} \times \frac{1+1}{2+3} \times \frac{1+0}{2+3}\right) = 0.004\%$$

test H:

$$C|a55 = N$$
 $\frac{3}{6} \times (\frac{1+2}{3+3} \times \frac{1+1}{2+3}) = 0.01$

Class = Y
$$\frac{3}{6}$$
 × $(\frac{1+1}{3+3} \times \frac{1+3}{3+3}) = 0.013$ V

Different smothing method, different result