第七章 K近邻算法

1.K近邻算法葡萄酒数据集预测

In [1]:

```
#from pyspark.ml.regression import KNNRegressionModel
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.mllib.feature import StandardScaler
from pyspark.mllib.regression import LabeledPoint
#from pyspark.mllib.classification import KNNClassificationModel, KNNModel
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
from pyspark.sql import SparkSession
import os
from pyspark.ml.feature import *
from pyspark.ml.classification import *
from pyspark. sql. functions import concat, array, col
from pyspark.sql.types import DoubleType
from pyspark.ml.linalg import Vectors
#from pyspark.ml.classification import KNNClassifier
```

In [2]:

```
import numpy as np
import pandas as pd
import math
```

In [3]:

```
# create a spark session
spark = SparkSession.builder.appName("KMeans").getOrCreate()

# load the data
data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("葡萄data.show()
```

+	 		+
原始样本	酒精含量(%)	苹果酸含量(%)	分类
+	+	 	+
样本1	5	2	0
样本2	6	1	0
样本3	4	1	0
样本4	8	3	1
样本5	10	2	1
+	L	L	+

In [4]:

```
#强制类型转化,避免assembler中两特征值类型不同 from pyspark.sql.functions import col from pyspark.sql.types import DoubleType data = data.withColumn("酒精含量(%)", col("酒精含量(%)").cast(DoubleType())) data = data.withColumn("苹果酸含量(%)", col("苹果酸含量(%)").cast(DoubleType())) data.show()
```

原始样本	+ 酒精含量(%)	苹果酸含量(%)	++ 分类
样本1 样本2 样本3 样本4 样本5	6. 0 4. 0 8. 0	1. 0 1. 0 3. 0	0 0 0 1 1

In [5]:

```
# 生成特征向量
assembler = VectorAssembler(inputCols=["酒精含量(%)","苹果酸含量(%)"], outputCol="features")
data = assembler.transform(data)
data.show()
```

原始样本 	 酒精含量(%)	苹果酸含量(%)	 分类	features
样本1 样本2 样本3 样本4 样本5	6. 0 4. 0 8. 0	2. 0 1. 0 1. 0 3. 0 2. 0	0 0 1	[5. 0, 2. 0] [6. 0, 1. 0] [4. 0, 1. 0] [8. 0, 3. 0] [10. 0, 2. 0]

In [6]:

训练KNN模型

```
kmeans = KMeans().setK(2).setSeed(1)
madel = kmeans fit(data)
```

model = kmeans.fit(data)

In [7]:

```
# 预测单个样本
new_data1 = [(7,1)]
test1 = spark.createDataFrame(new_data1,["酒精含量(%)","苹果酸含量(%)"])
test1 = assembler.transform(test1)
predictions = model.transform(test1)
predictions.show()
```

In [8]:

```
#预测多个样本
new_data2 = [(7,1),(8,3)]
test2 = spark.createDataFrame(new_data2,["酒精含量(%)","苹果酸含量(%)"])
test2 = assembler.transform(test2)
predictions = model.transform(test2)
predictions.show()
```

 酒精含量(%)	苹果酸含量(%)	features	 prediction
7 8		[7. 0, 1. 0] [8. 0, 3. 0]	

2.数据归一化代码演示

2.1 min-max标准化

In [9]:

```
from pyspark.ml.feature import MinMaxScaler from pyspark.ml.linalg import Vectors
```

In [10]:

原始样本	酒精含量(%)	苹果酸含量(%)	 分类
样本1		2	0
样本2	60	1	0
样本3	40	1	0
样本4	80	3	1
样本5	100	2	1

In [11]:

```
data = data.withColumn("酒精含量(%)", col("酒精含量(%)").cast(DoubleType()))
data = data.withColumn("苹果酸含量(%)", col("苹果酸含量(%)").cast(DoubleType()))
data.show()

◆
```

原始样本	+ 酒精含量(%)	苹果酸含量(%)	++ 分类 -
样本1 样本2 样本3 样本4 样本5	60. 0 40. 0 80. 0	1. 0 1. 0 3. 0	0 0 0 0 1 1 1 1

In [12]:

```
# 生成特征向量
assembler = VectorAssembler(inputCols=["酒精含量(%)","苹果酸含量(%)"], outputCol="features")
data = assembler.transform(data)
data.show()
```

	L		L	L
原始样本	酒精含量(%)	苹果酸含量(%)	分类	features
样本1 样本2 样本3 样本4 样本5	60. 0 40. 0 80. 0	2. 0 1. 0 1. 0 3. 0 2. 0	0 0 1	[50. 0, 2. 0] [60. 0, 1. 0] [40. 0, 1. 0] [80. 0, 3. 0] [100. 0, 2. 0]
+				 +

In [13]:

```
# Create a MinMaxScaler object
scaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")

# Fit the scaler to the data
scalerModel = scaler.fit(data)

# Transform the data using the scaler
scaledData = scalerModel.transform(data)

# Show the scaled data
scaledData.select("scaledFeatures").head(5)
```

Out[13]:

```
[Row(scaledFeatures=DenseVector([0.1667, 0.5])),
Row(scaledFeatures=DenseVector([0.3333, 0.0])),
Row(scaledFeatures=DenseVector([0.0, 0.0])),
Row(scaledFeatures=DenseVector([0.6667, 1.0])),
Row(scaledFeatures=DenseVector([1.0, 0.5]))]
```

2.2 Z-score标准化

In [14]:

```
from pyspark.ml.feature import StandardScaler from pyspark.ml.linalg import Vectors
```

In [15]:

```
# Create a StandardScaler object
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures", withMean=True, withStd
# Fit the scaler to the data
scalerModel = scaler.fit(data)

# Transform the data using the scaler
scaledData = scalerModel.transform(data)

# scaledData = scaler.fit(data).transform(data)

# Show the scaled data
#scaledData.show()
scaledData.select("scaledFeatures").head(5)
# scalerModel.mean, scalerModel.std
```

Out[15]:

```
[Row(scaledFeatures=DenseVector([-0.6644, 0.239])),
Row(scaledFeatures=DenseVector([-0.2491, -0.9562])),
Row(scaledFeatures=DenseVector([-1.0796, -0.9562])),
Row(scaledFeatures=DenseVector([0.5813, 1.4343])),
Row(scaledFeatures=DenseVector([1.4118, 0.239]))]
```

因为原数据并非正态分布,故z-score标准化需要设置参数withMean=True, withStd=True

当标准化结果不理想时,可以对原始数据进行一些预处理,例如去除异常值或进行平滑处理,也可以尝试使用其他的机器学习算法,例如决策树或者支持向量机等。

由上述结果可以看出,此处的标准化结果与所给样例不同,猜想是因为sklearn库与StandardScaler标准差使用的公式不同。

在sklearn中公式如下:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

但在StandardScaler方法中为:

$$1 \quad \stackrel{N}{\mathbf{\nabla}}_{(x)} \quad \dots^2$$

3.案例实战 - 手写数字识别模型

由于mlib中并未实现KNN方法,故使用KMeans进行替代

In [16]:

```
spark = SparkSession.builder.appName("HandWriting").get0rCreate()

# 1.读取数据
data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("手写#data.head()

■
```

In [17]:

```
assembler = VectorAssembler(inputCols=list(data.columns[1:]), outputCol="features")
data = assembler.transform(data)

#手动生成特征向量:
# columns_connect = [str(i) for i in range(1, 1024)]
# data = data.select(*(col(c).cast("double").alias(c) for c in data.columns))
# data = data.withColumn("features", array(*columns_connect))

data = data.select("对应数字", "features").dropna()
#data.select("features").head()
```

In [18]:

```
# 3.划分训练集与测试集
(trainingData, testData) = data.randomSplit([0.8, 0.2])
```

In [19]:

```
trainingData.show()
| 对应数字 |
                           features
         0 | (1024, [8, 9, 10, 11, . . .
         0 (1024, [9, 10, 11, 12...
         0 (1024, [10, 11, 12, 1...
         0 (1024, [10, 11, 12, 1...
         0 (1024, [10, 11, 12, 1...
         0 (1024, [10, 11, 12, 4...
         0 | (1024, [10, 11, 41, 4...
         0 (1024, [10, 11, 42, 4...
         0 (1024, [10, 15, 16, 1...
         0 (1024, [10, 19, 20, 4...
         0 (1024, [11, 12, 13, 1...
         0 (1024, [11, 12, 13, 1...
         0 | (1024, [11, 12, 13, 1...
         0 | (1024, [11, 12, 13, 1...
         0 (1024, [11, 12, 13, 1...
         0 \mid (1024, \lceil 11, 12, 13, 1...)
         A /1004 F11 10 10 1
```

In [26]:

```
# 4. 训练KNN模型
#由于是聚类方法,因此K必须为10类
kmeans = KMeans().setK(10).setSeed(6)
model = kmeans.fit(trainingData)
```

In [27]:

```
#5. 预测测试数据集结果
from pyspark. sql. functions import concat_ws
predictions = model. transform(trainingData)

# predictions = predictions. select(col("对应数字", "prediction"). cast("string"))

# predictions. write. format("text"). save("数字对应分类")

predictions = predictions. withColumn("selected_columns", concat_ws(",", *[col(c) for c in ["对应 predictions. select("selected_columns"). write. format("text"). save("数字对应分类2")

# predictions. show()
```

将训练结果进行打印,得到每个数字对应的分类如下:

聚类结果
4
3
2
1
0
9

对应数字	聚类结果
6	8
7	6
8	5

In [28]:

```
#predictions.show()
#6. 对测试集进行训练
predictions = model.transform(testData)
```

In [29]:

```
#对比预测结果
predictions. select("对应数字", "prediction"). head(5)
```

Out[29]:

```
[Row(对应数字=0, prediction=5),
Row(对应数字=0, prediction=5),
Row(对应数字=0, prediction=5),
Row(对应数字=0, prediction=5),
Row(对应数字=0, prediction=5)]
```

In [30]:

```
#7. 对预测准确度进行评估

#各数字
predictions. groupBy("对应数字"). count(). show()
predictions. groupBy("对应数字", "prediction"). count(). show(100)
```

+	++ count
+	++
1	48
6	35
3	31
5	33
9	45
4	34
8	34
7	34
2	37
0	50
+	++

对应数字 +	prediction	count
3	1	29
2	2	35
8	9	12
9	4	5
8	3	14
1	7	2
1	2	1
4	0	22
0	5	49
5	7	6
6	8	35
4	9	1
9	7	36
1	3	30
0	0	1
1	4	15
8	1	1
4	3	1
2	1	1
4	6	3
8	7	6
8	2	1
3	9	1
5	1	1
9	9	1
4	4	7
9	6	3
3	7	1
5	9	26
2	7	1
7	6	34

由各数字在测试集中出现次数与聚类结果进行比对,正确率计算如下:

In [31]:

```
accuracy = (49+30+35+29+22+26+35+34+12+36)/(51+42+42+34+36+36+36+33+32+44)
print("Test accuracy = %g" % accuracy)
```

Test accuracy = 0.797927

4.补充知识点: 图像识别原理详解

4.1 图片大小调整及显示

In [32]:

```
from PIL import Image
img = Image.open('数字4.png')
img = img.resize((32,32))
img.show()
img
```

4

Out[32]:

4.2 图片灰度处理

In [33]:

```
img = img.convert('L')
img
```

Out[33]:

4.3 图片二值化处理

In [34]:

```
# 二值化处理
import numpy as np
img new = img. point (lambda x: 0 if x > 128 else 1)
arr = np. array (img new)
# 打印arr中的每一行
for i in range (arr. shape [0]):
   print(arr[i])
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
```

4.4 二维数组转一维数组

In [35]:

(1, 1024)

```
arr_new = arr.reshape(1, -1)
arr_new

Out[35]:
array([[0, 0, 0, ..., 0, 0, 0]], dtype=uint8)

In [36]:
print(arr_new.shape)
```

此时我们可以把这个处理过的图片"数字4"传入到我们上面训练好的KMeans模型中

In [37]:

```
spark = SparkSession.builder.appName("array_to_dataframe").getOrCreate()

# assembler = VectorAssembler(inputCols=arr_new[:], outputCol="features")

# arr_new = assembler.transform(arr_new)

# import pandas as pd
test_data = [(Vectors.dense(arr_new[0]),)]
test_df = spark.createDataFrame(test_data, ["features"])
predictions = model.transform(test_df)
#print('图片中的数字为: ' + str(answer[0]))
```

In [38]:

```
predictions. select("prediction"). head()
```

Out[38]:

Row(prediction=0)

经过比对,发现0聚类对应的数字为4,因此分类正确