Московский физико-технический институт (госудраственный университет)

Лабораторная работа по оптике

Кольца Ньютона [4.2.1]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Аннотация	1							
2	Теоретические сведения								
3	Экспериментальная установка	2							
4	Ход работы 4.1 Радиусы колец Ньютона и кривизна линзы	4							
5		5 5 7							
6	Вывод	8							
7	Литература	8							

1 Аннотация

Цель работы: ознакомление с явлением интерференции в тонких пленках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются: измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из черного стекла; ртутная лампа ПРК-4; щель; линзы; призма прямого зрения; объектная пікала.

2 Теоретические сведения

Интерференция — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Кольца Ньютона – кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.

В нашей установке кольца Ньютона образуются при интерференции световых волн, отраженных от границ тонкой воздушной прослойки, заключенной между выпуклой поверхностью линзы и плоской стеклянной пластинкой (рис. 1). Наблюдение ведется в отраженном свете.

Рис. 1. K расчёту колец Ньютона

Рис. 1: теоретическая модель

Этот классический опыт используется для определения радиуса кри-

визны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R - d)^2 = 2Rd - d^2$, где R – радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2,\ldots$. Получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$
 (2)

3 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 3. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора , коллиматора (щель S и объектив) и призмы прямого зрения . Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора

Рис. 2: Экспериментальная установка

находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта .

Оптическая схема монохроматора позволяет получить в плоскости входного окна опак-иллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

4 Ход работы

Сперва настроим микроскоп для наблюдения картины колец Ньютона. Аналогично для получения последних необходимо настроить монохроматор. Измерения будем проводить в безразмерных единицах окулярной шкалы, а для получения реальных величик впоследствии будем использовать калиброванную объектную шкалу.

4.1 Радиусы колец Ньютона и кривизна линзы

Для определения радиуса кривизны линзы будем измерять диаметры колец, результаты измерений занесем в таблицу 1. По этим данным, зная длину волны λ , рассчитаем радиус R кривизны линзы.

4.2 Наблюдение «биений»

При биениях мы наблюдали следующее количество полос между центрами четких систем $\Delta m=18$. Вычислим отсюда разность длин волн желтого и зеленого света ртутной лампы $\Delta \lambda=\lambda_{\rm ж}-\lambda_{\rm 3}$:

$$(\Delta m + 1)\lambda_3 = \Delta m \lambda_{\mbox{\tiny 3K}} \Rightarrow \Delta \lambda = \frac{\lambda_3}{\Delta m} \approx 30 \ \mbox{\tiny HM}$$

Теоретические данные:

Длина волны желтого и зеленого света: $\lambda_{\rm ж}=583$ нм, $\lambda_{\rm 3}=550$ нм \Rightarrow

$$\Rightarrow \Delta \lambda_{\text{Teop}} = 33 \text{ HM}.$$

Относительное отклонение экспериментального значения от теоретического:

$$\varepsilon_{\Delta\lambda} = \frac{|30 - 33|}{33} \approx 9\%$$

4.3 Калибровка окулярной шкалы

Для определения цены деления окулярной шкалы сверху на линзу кладем калиброванную объектную шкалу. Объектная шкала размером 1 мм разбита на 100 делений. Используя всё поле зрения микроскопа, отмечаем, какие из самых дальних штрихов объектной шкалы лучше всего совпадают со штрихами окулярной шкалы. Отнормировав шкалу с калибровочной объектной шкалы, найдем:

$$\delta x = \frac{0.79_{
m MM}}{8} = 0.099 \pm 0.001 \
m mm$$

5 Обработка данных

5.1 Белые и темные кольца

m	Тем	иные к	ольца	Светлые кольца			
	l_1	l_2	$r_{m,\text{темн}}^2$	l_1	l_2	$r_{m, \text{ светл}}^2$	
0	4,71	3,72	0,25	4,15	$4,\!15$	0,00	
1	5,00	$3,\!24$	0,77	4,78	3,43	0,46	
2	5,45	2,92	1,60	5,16	3,08	1,08	
3	5,59	2,65	2,16	5,44	2,79	1,76	
4	5,83	2,42	2,91	5,70	$2,\!54$	2,50	
5	6,02	$2,\!23$	3,59	5,91	2,32	3,22	
6	6,17	2,06	4,22	6,09	2,11	3,96	
7	6,47	1,89	5,24	6,25	1,97	4,58	

Таблица 1: данные для измерение диаметров колец Ньютона

Построим график зависимости $r_m^2(m)$, откуда сможем найдем радиус кривизны линзы:

Рис. 3: график зависимости $r_m^2(m)$

Найдем коэффициент пропорциональности по МНК, также оценим погрешность:

Вычислим коэффициенты a и b уравнения линейной регрессии $\hat{y} = ax + b$ по известным формулам:

$$a = \frac{\sum x_i \sum y_i - n \sum x_i y_i}{(\sum x_i)^2 - n \sum x_i^2} = \frac{28 \cdot 20,74 - 8 \cdot 102,04}{28^2 - 8 \cdot 140} \approx 0,70;$$

$$b = \frac{\sum x_i \sum x_i y_i - \sum x_i^2 \sum y_i}{(\sum x_i)^2 - n \sum x_i^2} = \frac{28 \cdot 102,04 - 140 \cdot 20,74}{28^2 - 8 \cdot 140} \approx 0,14.$$

Вычислим коэффициенты линейной парной корреляции (r_{xy}) и детерминации (R^2) :

$$r_{xy} = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{\left(n\sum x_i^2 - \left(\sum x_i\right)^2\right)\left(n\sum y_i^2 - \left(\sum y_i\right)^2\right)}} = \frac{8 \cdot 102,04 - 28 \cdot 20,74}{\sqrt{\left(8 \cdot 140 - 28^2\right)\left(8 \cdot 74,5032 - 20,74^2\right)}};$$

$$r_{xy} \approx 0,998$$

следовательно, $R^2 = r_{xy}^2 = 0,998^2 \approx 0,9959.$

Для оценки значимости параметров регрессии и корреляции сначала:

- найдём
$$x$$
 средний: $\bar{x} = \frac{1}{n} \sum x_i = \frac{28}{8} = 3.5;$

- составим таблицу вспомогательных величин, где $\varepsilon_i = y_i - \hat{y}_i,$

$$\Delta \varepsilon_i = \varepsilon_i - \varepsilon_{i-1}, A_i = \left| \frac{y_i - \hat{y}_i}{y_i} \right| :$$

i	x_i	y_i	\hat{y}_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	ε_i	ε_i^2	A_i	$\Delta \varepsilon_i$	$(\Delta \varepsilon_i)^2$
1	0	0,25	0, 14	-3, 5	12, 25	0,11	0,013	0,447	_	_
2	1	0,77	0,84	-2, 5	6, 25	-0,07	0,005	0,090	-0,181	0,032
3	2	1,6	1,54	-1, 5	2,25	0,06	0,004	0,037	0,129	0,017
4	3	2, 16	2,24	-0, 5	0, 25	-0,08	0,007	0,038	-0,141	0,020
5	4	2,91	2,94	0, 5	0, 25	-0,03	0,001	0,011	0,049	0,002
6	5	3,59	3,64	1,5	2,25	-0,05	0,003	0,015	-0,021	0,001
7	6	4,22	4,35	2, 5	6, 25	-0, 13	0,016	0,030	-0,071	0,005
8	7	5,24	5,05	3, 5	12, 25	0, 19	0,037	0,037	0,319	0,102
\sum	_	_	_	_	42		0,08	0,705	_	0,179

Случайные ошибки параметров a, b и коэффициента корреляции r_{xy} :

$$m_a = \sqrt{\frac{1}{\sum (x_i - \bar{x}_i)^2} \cdot \frac{\sum (y_i - \hat{y}_i)^2}{n - 2}} = \sqrt{\frac{1}{42} \cdot \frac{0.0847}{8 - 2}} \approx 0,0183;$$

$$m_b = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2} \cdot \frac{\sum x_i^2}{n \sum (x_i - \bar{x}_i)^2}} = \sqrt{\frac{0.0847}{8 - 2} \cdot \frac{140}{8 \cdot 42}} \approx 0,0767;$$

Полученные значения:

$$a_{\rm c} = 0.70 \pm 0.02$$

 $b_{\rm c} = 0.14 \pm 0.08$

Аналогичные рассчеты для светлых колец дают:

$$a_{\text{\tiny T}} = 0,68 \pm 0,02$$

 $b_{\text{\tiny T}} = -0.17 \pm 0.06$

5.2 Радиус линзы

Из теории и по полученным данным (зависимости $r_m^2(m)$) найдем радиус кривизны линзы:

$$R = \frac{r_m^2}{m\lambda} = \frac{a_{\scriptscriptstyle \mathrm{T}}}{\lambda} = (1, 26 \pm 0, 04) \text{ cm}.$$

6 Вывод

В ходе выполнения данной работы экспериментально мы смогли пронаблюдать за картиной интерференционных максимумов и минимумов (кольца Ньютона), был рассчитан радиус кривизны линзы при помощи построения графики зависимости радиусов колец (темных и светлых) от их порядковых номеров. Полученные результаты:

$$R = (1, 26 \pm 0, 04)$$
 cm.

Также мы рассчитали разницу длин волн желтого и зеленого света ртутной лампы:

$$\Delta \lambda_{
m эксп} = 30, \Delta \lambda_{
m теор} = 33$$
 нм

$$\varepsilon_{\Delta\lambda} = \frac{|30 - 33|}{33} \approx 9\%$$

Разница в результатах объясняется погрешностью определения m.

7 Литература

- 1. Лабораторный практикум по общей физике. В 3 т. Том 2. Оптика: учебное пособие
- 2. http://mathhelpplanet.com (МНК и регрессионный анализ)
- 3. https://ru.wikipedia.org/wiki/Свет (длины волн желтого и зеленого света)