Linear Regression

Machine Learning - Prof. Dr. Stephan Günnemann

Leonardo Freiherr von Lerchenfeld

November 16, 2017

Contents

1	Least squares regression	2
	1.1 Problem 1	2
	1.2 Problem 2	2
2	Ridge regression	2
	2.1 Problem 3	2
3	Bayesian linear regression	3
	3.1 Problem 4	S
4	Appendix	3
	Appendix 4.1 Jupyter Notebook	3

1 Least squares regression

1.1 Problem 1

Is at the ending of the document

1.2 Problem 2

$$E_{weighted}(w) = \frac{1}{2} \sum_{i=1}^{N} t_i [w^T \Phi(x_i) - y_i]^2$$

$$with \qquad T = diag(t_1 \dots t_n)$$

$$E_{weighted}(w) = \frac{1}{2} (Y - \Phi W)^T T (Y - \Phi W)$$

$$0 = \frac{\partial}{\partial w} \frac{1}{2} (Y^T - W^T \Phi^T) T (Y - \Phi W)$$

$$0 = \frac{\partial}{\partial w} \frac{1}{2} (Y^T T Y - Y^T T \Phi W - W^T \Phi^T T Y + W^T \Phi^T T \Phi W)$$

$$with \qquad 0 = \frac{\partial}{\partial w} \frac{1}{2} (Y^T T Y)$$

$$0 = \frac{\partial}{\partial w} \frac{1}{2} (-2Y^T T \Phi W + W^T \Phi^T T \Phi W)$$

$$0 = -Y^T T \Phi + \frac{1}{2} (\Phi^T T \Phi + (\Phi^T T \Phi)^T) W$$

$$W = (\Phi^T T \Phi)^{-1} \Phi^T T Y$$

The weighting factor t_i can be interpreted as a weight for the datapoints.

- 1) The variance of a particular datapoint is inversely proportional to t_i . So t_i is the precision of the distribution.
- 2) t_i could also be interpreted as a multiplicator of data points, e.g., for $t_i = 2$ the i-th datapoint has double influence, so the i-th datapoint is treated as it would be twice in the dataset.

2 Ridge regression

2.1 Problem 3

$$E_{LS} = \frac{1}{2} (\Phi w - y)^T (\Phi w - y)$$

$$y = \begin{pmatrix} y \\ 0 \end{pmatrix} \qquad \Phi = \begin{pmatrix} \Phi \\ \sqrt{\lambda}I \end{pmatrix}$$

$$E_{LS} = \frac{1}{2} \left(\begin{pmatrix} \Phi \\ \sqrt{\lambda}I \end{pmatrix} w - \begin{pmatrix} y \\ 0 \end{pmatrix} \right)^T \left(\begin{pmatrix} \Phi \\ \sqrt{\lambda}I \end{pmatrix} w - \begin{pmatrix} y \\ 0 \end{pmatrix} \right)$$

$$= \frac{1}{2} ((\Phi w - y)^T (\sqrt{\lambda}w)^T) \begin{pmatrix} \Phi w - y \\ \sqrt{\lambda}w - 0 \end{pmatrix}$$

$$= \frac{1}{2} ((\Phi w - y)^T (\Phi w - y) + (\sqrt{\lambda}w)^T (\sqrt{\lambda}w))$$

$$E_{ridge} = \frac{1}{2} ((\Phi w - y)^T (\Phi w - y)) + \frac{\lambda}{2} w^T w$$

3 Bayesian linear regression

3.1 Problem 4

Our likelihood is as follows: $p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|\mathbf{w}^{\mathbf{T}}\mathbf{\Phi}(\mathbf{x_i}), \beta^{-1})$ The conjugate prior for w and β is: $p(\mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m_0}, \beta^{-1}\mathbf{S_0})Gamma(\beta|a_0, b_0)$

The posterior distribution should be $p(\mathbf{w}, \beta, | \mathcal{D}) = \mathcal{N}(\mathbf{w} | \mathbf{m}_{\mathbf{N}}, \beta^{-1} \mathbf{S}_{\mathbf{N}}) Gamma(\beta | a_N, b_N)$

$$p(w,\beta|\mathcal{D}) = \frac{\beta^{\frac{1}{2}}}{S_N^{\frac{1}{2}}\sqrt{2\pi}} exp(-\frac{(w-m_N)^2}{2\beta^{-1}S_N}) \frac{b_N^{a_N}}{\Gamma(a_N)} \beta^{a_n-1} exp(-b_N\beta)$$

$$ln(p(w,\beta|\mathcal{D})) = \frac{1}{2}ln \ \beta - \frac{1}{2}ln \ S_N - \beta(w-m_N)^2 - 2S_N + a_Nln \ b_N + (a_N-1)ln \ \beta - b_N\beta + const$$

$$posterior \propto likelihood * prior$$

$$= p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|\mathbf{w}^T\mathbf{\Phi}(\mathbf{x_i}), \beta^{-1})p(\mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m_0}, \beta^{-1}\mathbf{S_0})Gamma(\beta|a_0, b_0)$$

$$= \prod_{i=1}^{N} \frac{\beta^{\frac{1}{2}}}{\sqrt{2\pi}} exp(-\frac{(y_i - w^T\mathbf{\Phi}_i)^2}{2\beta^{-1}}) \frac{\beta^{\frac{1}{2}}}{S_0^{\frac{1}{2}}\sqrt{2\pi}} exp(-\frac{(w-m_0)^2}{2\beta^{-1}S_0}) \frac{b_0^{a_0}}{\Gamma(a_0)} \beta^{a_0-1} exp(-b_0\beta)$$

$$ln (...) = \frac{N}{2}ln \ \beta - \frac{\beta}{2} \sum_{i=1}^{N} (y_i - w^T\mathbf{\Phi})^2 + \frac{1}{2}ln \ \beta - \frac{1}{2}ln \ S_0 - \beta(w-m_0)^2 - 2S_0 + a_0ln \ b_0$$

$$+ (a_0 - 1)ln \ \beta - b_0\beta + const$$

When we look at all the terms with $ln \beta$ we get

$$a_N - 1 = a_0 - 1 + \frac{N}{2}$$

 $a_N = a_0 + \frac{N}{2}$

4 Appendix

4.1 Jupyter Notebook

04_homework_linear_regression

November 14, 2017

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [34]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset

# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_s)
```

1.3 Task 1: Fit standard linear regression

```
In [35]: def fit_least_squares(X, y):
    """Fit ordinary least squares model to the data.
    Parameters
```

```
X : array, shape [N, D]
                 (Augmented) feature matrix.
             y : array, shape [N]
                 Regression targets.
             Returns
             _____
             w : array, shape [D]
                 Optimal regression coefficients (w[0] is the bias term).
             n n n
             # TODO
             XTX = np.matmul(np.transpose(X),X)
             Pseudoinv = np.matmul(np.linalg.inv(XTX), np.transpose(X))
             w = np.matmul(Pseudoinv, y)
             return w
1.4 Task 2: Fit ridge regression
In [36]: def fit_ridge(X, y, reg_strength):
             """Fit ridge regression model to the data.
             Parameters
             X : array, shape [N, D]
                 (Augmented) feature matrix.
             y : array, shape [N]
                 Regression targets.
             reg_strength : float
                 L2 regularization strength (denoted by lambda in the lecture)
             Returns
             _____
             w : array, shape [D]
                 Optimal regression coefficients (w[0] is the bias term).
             m m m
             # TODO
             D = np.size(X, 1)
             XTX = np.matmul(np.transpose(X),X)
             xtxlagrange = XTX + reg_strength*np.identity(D)
             Pseudoinv = np.matmul(np.linalg.inv(xtxlagrange), np.transpose(X))
             w = np.matmul(Pseudoinv,y)
             return w
```

1.5 Task 3: Generate predictions for new data

```
In [37]: def predict_linear_model(X, w):
             """Generate predictions for the given samples.
             Parameters
             _____
             X : array, shape [N, D]
                 (Augmented) feature matrix.
             w : array, shape [D]
                Regression coefficients.
             Returns
             -----
             y_pred : array, shape [N]
                Predicted regression targets for the input data.
             n n n
             # TODO
             y_pred = np.matmul(X, w)
             return y_pred
```

1.6 Task 4: Mean squared error

```
In [41]: def mean_squared_error(y_true, y_pred):
             """Compute mean squared error between true and predicted regression to
             Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
             Parameters
             _____
             y_true : array
                True regression targets.
             y_pred : array
                 Predicted regression targets.
             Returns
             -----
             mse : float
                Mean squared error.
             11 11 11
             # TODO
             mse = np.mean((y_true - y_pred) **2)
             return mse
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [42]: # Load the data
         np.random.seed(1234)
         X , y = load_boston(return_X_y=True)
         X = np.hstack([np.ones([X.shape[0], 1]), X])
         test\_size = 0.2
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_s
         # Ordinary least squares regression
         w_ls = fit_least_squares(X_train, y_train)
         y_pred_ls = predict_linear_model(X_test, w_ls)
         mse_ls = mean_squared_error(y_test, y_pred_ls)
         print('MSE for Least squares = {0}'.format(mse_ls))
         # Ridge regression
         reg_strength = 1
         w_ridge = fit_ridge(X_train, y_train, reg_strength)
         y_pred_ridge = predict_linear_model(X_test, w_ridge)
         mse_ridge = mean_squared_error(y_test, y_pred_ridge)
         print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.984307611781773
MSE for Ridge regression = 21.051487033772275
In [ ]:
```