Mobile Robot Lab: NEATO

Installing Wifi Drivers

Figure 1 Go to Magic; M:\Neato Robotics\Wifi Neato\Autorun

Conecting to Neato=RaspberryPi

Select the SSID Wifi: NEATO_{ A B C D E F K }

Password: neato2016

Enviroment

Putty \rightarrow connect remotely to RPI and execute

FileZilla → To transfers files to the RPI

Sublime Text → For editing

Config Putty (user: pi / pass: raspberry)

Answer: YES

Login as: pi

Psw: raspberry

IP: 192.168.100.1

Port: 22

Configuring Filezilla

Connecting Filezilla to Raspberry

IP: 192.168.100.1 / usr: pi / psw: raspberry / Port: 22

Executing: test_DrivingNR.py and test_NeatoCommands.py

```
pi@raspberrypi: ~/GRUPO_A
                                                                     - - X
                      4096 Mar 18 08:58
                       675 Mar 18 08:09 .profile
                 pi 1132 Mar 18 14:21 prova.py
                      4096 Jan 1 1970
                  pi 5461 Mar 20 02:16 script1.py
                  pi 5661 Mar 20 02:21 script23.py
                      5726 Mar 20 02:22 script23.pyc
                  pi 2339 Mar 20 02:22 script3.py
                  pi 4096 Mar 18 08:58 Templates
                       4096 Mar 18 08:58
                        113 Mar 20 02:17 .Xauthority
                        353 Mar 20 02:17 .xsession-errors
                       353 Mar 20 02:17 .xsession-errors.old
Afollow wall distance.py
rm: cannot remove 'GRUPO C/*': No such file or directory
rm: cannot remove 'GRUPO K/*': No such file or directory
 est DrivingNR.py test NeatoCommands.py
     spberrypi:-/GRUPO A $ python test DrivingNR.py
```

Python test_DrivingNR.py
Python test NeatoCommands.py

How Neato 'firmware' interpret: set_motor command

Command: SetMotor

Description: Sets the specified motor to run in a direction at a requested speed. (TestMode Only) Usage: SetMotor [LWheelDist <LWheelDist_value>] [RWheelDist <RWheelDist_value>] [Speed <Speed_value>] [Accel <Accel_value>] [RPM <RPM_value>] [Brush] [VacuumOn] [VacuumOff] [VacuumSpeed <VacuumSpeed_value>] [RWheelDisable] [LWheelDisable] [BrushDisable] [RWheelEnable] [BrushEnable]

Options:

Flag	Description
LWheelDist	Distance in millimeters to drive Left wheel. (Pos = forward, neg = backward)
RWheelDist	Distance in millimeters to drive Right wheel. (Pos = forward, neg = backward)
Speed	Speed in millimeters/second. (Required only for wheel movements)
Accel	Acceleration in millimeters/second. (Used only for wheel movements. Defaults to 'Speed'.)
RPM	Next argument is the RPM of the motor. Not used for wheels, but applied to all other motors specified in the command line.
Brush	Brush motor forward (Mutually exclusive with wheels and vacuum.)

How Neato 'firmware' interpret: set_motor command

Understanding test_DrivingNR.py

Inverse Kinematics

$$\begin{bmatrix} \dot{R} \\ \dot{L} \end{bmatrix} t = \begin{bmatrix} 1 & S \\ 1 & -S \end{bmatrix} \begin{bmatrix} v_C \\ \dot{\theta} \end{bmatrix} t$$
Jacobian

$$\left[\begin{array}{c} R \\ L \end{array}\right] = \left[\begin{array}{cc} 1 & S \\ 1 & -S \end{array}\right] \left[\begin{array}{c} C \\ \theta \end{array}\right]$$

$$R = 2\pi \left(1000 + \frac{243}{2}\right) = 7047mm$$

$$L = 2\pi \left(1000 + \frac{243}{2}\right) = 5520mm$$

Right wheel footprint


```
distancia_R = (((speed * pow(-1, direccion)) + (S * tita_dot)) * tiempo) * pow(-1, direccion) distancia_L = <math>(((speed * pow(-1, direccion)) + (-S * tita_dot)) * tiempo) * pow(-1, direccion)
```

comando = 'SetMotor LWheelDist ' + str(distancia_L) + ' RWheelDist ' + str(distancia_R) + ' Speed ' + str(speed * pow(-1, direccion))
envia(ser,comando, 0.2)