Entrenamiento 2023 Lista de problemas

Kenny J. Tinoco

ASJT - Nicaragua

1. OMCC y PAGMO

1.1. Encuentro 1

Problema 1.1. Sean reales a, b, c > 0, tales que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3$. Demostrar que se cumple

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge 3.$$

Problema 1.2. Si x + y + z = 1, con $x, y, z \in \mathbb{R}^+$. Probar que

$$xy + yz + 2zx \le \frac{1}{2}.$$

Problema 1.3. Si $a^4 + b^4 + c^4 + d^4 = 16$, con $a, b, c, d \in \mathbb{R}$ Probar que

$$a^5 + b^5 + c^5 + d^5 \le 32.$$

Problema 1.4. Para $a, b, c \in \mathbb{R}$ con $a^2 + b^2 + c^2 = 3$. Probar que

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ac} \ge \frac{3}{2}.$$

Problema 1.5. Para todo $x, y, z \in \mathbb{R}$, con $y \neq -z, z \neq -x$ y $x \neq -y$. Probar que

$$\frac{x^2 - z^2}{y + z} + \frac{y^2 - x^2}{z + x} + \frac{z^2 - y^2}{x + y} \ge 0.$$

Problema 1.6. Definamos la secuencia $a_0 = 1$ y $a_n = \prod_{i=0}^{n-1} a_i + 1, n \ge 1$. Probar que

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1} - 1} = 1.$$

Problema 1.7. Definimos la secuencia $\{x_i\}_{i\geq 1}$ por $x_1 = \frac{1}{1012}$ y para $n \geq 1$

$$x_{n+1} = \frac{x_n + x_n^2}{1 + x_n + x_n^2}$$

Hallar el valor de

$$\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{1011}+1} + \frac{1}{x_{1012}}.$$

Problema 1.8. Definamos la siguiente secuencia como

$$B_1 = B_2 = 1$$

 $B_n = 2B_{n-2} + B_{n-1}, \quad n \ge 3.$

Probar que para n impar

$$\sum_{i=1}^{n-1} B_i = B_n - 1.$$

Problema 1.9. Sea $x, y, z \in \mathbb{R}^+$, tal que xyz = 1, probar que la siguiente desigualdad se cumple

$$\frac{x^3 + y^3}{x^2 + xy + y^2} + \frac{y^3 + z^3}{y^2 + yz + z^2} + \frac{z^3 + x^3}{z^2 + zx + x^2} \ge 2.$$

Problema 1.10. Sea $a_0 = a_1 = 1$ y

$$a_{n+1} = 1 + \frac{a_1^2}{a_0} + \frac{a_2^2}{a_1} + \dots + \frac{a_n^2}{a_{n-1}}, n \ge 1.$$

Hallar a_n en función de n.

Problema 1.11. Sea P(x) un polinomio no nulo tal que (x-1)P(x+1) = (x+2)P(x) para todo real x, y $P(2)^2 = P(3)$. Hallar m+n, si $P\left(\frac{7}{2}\right) = \frac{m}{n}$ donde m y n son primos relativos.

1.2. Encuentro 2

Problema 1.12. Dado a - b = 2, b - c = 4. Hallar el valor de $a^2 + b^2 + c^2 - ab - bc - ca$.

Problema 1.13. Dado que $\frac{x}{x^2 + 3x + 1} = a$, $(a \neq 0)$. Encontrar el valor de

$$\frac{x^2}{x^4 + 3x^2 + 1}.$$

Problema 1.14. Resolver

$$\sqrt[3]{x^3 + 3x^2 - 4} - x = \sqrt[3]{x^3 - 3x + 2} - 1.$$

Problema 1.15. Dado que a + b = c + d y $a^3 + b^3 = c^3 + d^3$. Probar que

$$a^{2023} + b^{2023} = c^{2023} + d^{2023}.$$

Problema 1.16. Sean $a, b \ y \ c$ números naturales tales que

$$ab(c+ab^2)+c^2(b^2c+a^3) = b^2c(a^2c+b)+a(a^2b+c^3)$$

Desmostrar que al menos uno de los números a, b o c es un cuadrado perfecto.

Problema 1.17. Pruebe que si a, b, c son números reales positivos, entonces:

$$\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} \ge \frac{2}{a} + \frac{2}{b} - \frac{2}{c}.$$

Problema 1.18. Sean a, b, c números reales positivos, muestre que

$$\sum_{cyc} \frac{a}{(a+b)(a+c)} \le \frac{9}{4(a+b+c)}.$$

Problema 1.19. Sean a, b, c números reales positivos, con abc = 8, muestre que

$$\frac{a-2}{a+1} + \frac{b-2}{b+1} + \frac{c-2}{c+1} \le 0$$

Problema 1.20. Sea P(x) un polinomio de coeficientes reales no negativos. Sean x_1, x_2, \dots, x_k reales positivos tales que $x_1x_2 \dots x_k = 1$. Demostrar que

$$P(x_1) + P(x_2) + \dots + P(x_k) \ge kP(1).$$

Problema 1.21. Sean $a_1, a_2, \dots, a_{2023}$ números reales y para cada entero $1 \le n \le 2023$ sea

$$S_n = a_1 + a_2 + \dots + a_n$$

Si $a_1 = 2023$ y se cumple que $S_n = n^2 a_n$ para todo n, determina el valor de a_{2023} .

Problema 1.22. Existe un único polinomio con coeficiente reales de la forma

$$P(x) = 7x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

tal que P(1) = 1, P(2) = 2, ..., P(6) = 6. Hallar el valor de P(0).

Problema 1.23. Consideremos la secuencia de números racionales definida por

$$x_1 = \frac{4}{3}$$

$$x_{n+1} = \frac{x_n^2}{x_n^2 - x_n + 1}, n \ge 1$$

Demostrar que el numerador de la sumatoria

$$\sum_{i=1}^{n} x_i$$

reducida en su mínima expresión es un cuadrado perfecto.

Problema 1.24. El entero positivo n verifica

$$\frac{1}{1 \cdot \left(\sqrt{1} + \sqrt{2}\right) + \sqrt{1}} + \frac{1}{2 \cdot \left(\sqrt{2} + \sqrt{3}\right) + \sqrt{2}} + \vdots + \frac{1}{n \cdot \left(\sqrt{n} + \sqrt{n+1}\right) + \sqrt{n+1}} = \frac{2022}{2023}$$

Hallar la suma de digitos de n.

Problema 1.25. Sean los reales positivos a_1, a_2, \dots, a_n tales que $a_1 \cdot a_2 \cdot \dots \cdot a_n = 1$. Probar que

$$\frac{a_1}{1+a_1} + \frac{a_2}{(1+a_1)(1+a_2)} + \frac{a_3}{(1+a_1)(1+a_2)(1+a_3)} + \vdots + \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} \ge \frac{2^n - 1}{2^n}.$$

Problema 1.26. Sea $n \ge 2$ un entero positivo y a_1, a_2, \dots, a_n números reales positivos tales que $a_1 + a_2 + \dots + a_n = 1$. Probar que la siguiente desigualdad se cumple

$$\frac{a_1}{1 + a_2 + a_3 + \dots + a_n} + \frac{a_2}{1 + a_1 + a_3 + \dots + a_n} + \frac{a_n}{1 + a_2 + a_3 + \dots + a_{n-1}} \ge \frac{n}{2n - 1}.$$

Problema 1.27. Definamos $a_k = (k^2 + 1)k!$ y $b_k = a_1 + a_2 + \dots + a_k$. Sea $\frac{a_{100}}{b_{100}} = \frac{m}{m}$

donde m y n naturales primos relativos. Hallar n-m.

Problema 1.28. Hallar el valor de

$$\frac{2^2}{2^2 - 1} \times \frac{3^2}{3^2 - 1} \times \frac{4^2}{4^2 - 1} \times \dots \times \frac{2023^2}{2023^2 - 1}.$$

Problema 1.29. Determine el valor de la suma

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{4045}{2022^2 \times 2023^2}.$$

Problema 1.30. Determine $a^2 + b^2 + c^2 + d^2$ si

$$\begin{split} \frac{a^2}{2^2-1} + \frac{b^2}{2^2-3^2} + \frac{c^2}{2^2-5^2} + \frac{d^2}{2^2-7^2} &= 1 \\ \frac{a^2}{4^2-1} + \frac{b^2}{4^2-3^2} + \frac{c^2}{4^2-5^2} + \frac{d^2}{4^2-7^2} &= 1 \\ \frac{a^2}{6^2-1} + \frac{b^2}{6^2-3^2} + \frac{c^2}{6^2-5^2} + \frac{d^2}{6^2-7^2} &= 1 \\ \frac{a^2}{8^2-1} + \frac{b^2}{8^2-3^2} + \frac{c^2}{8^2-5^2} + \frac{d^2}{8^2-7^2} &= 1 \end{split}$$

Problema 1.31. Probar que para todo entero positivo n, se puede encontrar una permutación del conjunto $\{1, 2, 3, \dots, n\}$ de manera que el promedio de dos enteros no aparece en medio de ellos.

Por ejemplo, si se tiene n=4, la permutación $\{1,3,2,4\}$ sirve, mientras que $\{1,4,2,3\}$ no, ya que 2 está entre 1 y 3, y $2=\frac{1+3}{2}$.

Problema 1.32. Un $trimin\acute{o}$ es una ficha rectangular de 1×3 . ¿Es posible cubrir un tablero de ajedrez de 8×8 usando 21 $trimin\acute{o}$, de manera que hay exactamente una casilla 1×1 sin ser cubierta?. En caso de que la respuesta sea afirmativa, determine todas las posibles casillas que pueden quedar sin ser cubiertas.

Problema 1.33. En un tablero cuadriculado $n \times n$ se escriben números dentro de cada casilla mediante el siguiente proceso:

- Se seleccionan números reales $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ todos distintos entre sí.
- En la casilla de la fila i columna j se escribe el número $a_i + b_j$.

Suponiendo que los n productos de los números en cada fila del tablero son iguales entre sí, demostrar que los n productos de los números en cada columna también son iguales entre sí.

2. IMO y OIM

2.1. Encuentro 1

Problema 2.1. Hallar todos los posibles números reales que satisfacen¹

$$x \cdot \lfloor x \rfloor + 2022 = \lfloor x^2 \rfloor$$

Problema 2.2. Demuestre que para todo $n \geq 4$ existen enteros positivos distintos a_1, a_2, \dots, a_n para los cuales se cumple que

$$\frac{20}{21} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}.$$

Problema 2.3. Decimos que un conjunto S, posiblemente infinito, de enteros positivos distintos es bueno si para cualesquieras par de elementos $m, n \in S$, con $m \neq n$, se tiene que la diferencia |m-n| divide a m y n, simultáneamente.

[|]x| representa la parte entera de x.

- a. Demuestra que un conjunto bueno no puede tener una cantidad infinita de elementos.
- b. Demuestra que para todo entero positivo $N \geq 2$, existe un conjunto bueno con N elementos.

Problema 2.4. En un tablero de $n \times n$, el conjunto de todas las casillas que están ubicadas en la diagonal principal del tablero o debajo de ella, es llamado n-escalera. Por ejemplo, en la siguiente figura se muestra una 3-escalera:

¿De cuántas formas se puede dividir una 99escalera en algunos rectángulos, que tengan sus lados sobre líneas de la cuadrícula, de tal forma que todos los rectángulos tengas áreas distintas?

Problema 2.5. Encontrar todas las funciones inyectivas $f: \mathbb{N} \to \mathbb{N}$, tales que satisfacen f(1) = 2, f(2) = 4 y

$$f(f(m) + f(n)) = f(f(m)) + f(n).$$

Problema 2.6. Sea n > 2, un entero y P(x) un polinomio de coeficientes reales tal que para un real k

$$\frac{P(2) - P(1)}{1} = \frac{P(4) - P(2)}{2} = \frac{P(8) - P(4)}{4} = \dots = \frac{P(2^n) - P(2^{n-1})}{2^{n-1}} = k$$

$$\frac{P(2^{n+1}) - P(2^n)}{2^n} \neq k$$

Hallar el valor mínimo del grado de P y todos los posibles polinomios P con grado mínimo.

Problema 2.7. Sean $a, b, c \in \mathbb{R}^+$, tal que a+b+c=0. Demostrar que

$$\sqrt[n]{ab+bc+ca} \geq a\sqrt[n]{\frac{b+c}{2}} + b\sqrt[n]{\frac{c+a}{2}} + c\sqrt[n]{\frac{a+b}{2}}.$$

Problema 2.8. Sea

$$\frac{r}{s} = 0.k_1 k_2 k_3 \cdots$$

la expansión decimal de un número racional. Probar que a lo más dos de los números

$$\sigma_1 = 10 \left(\frac{r}{s}\right) - k_1, \quad \sigma_2 = 10^2 \left(\frac{r}{s}\right) - (10k_1 + k_2),$$

$$\sigma_3 = 10^3 \left(\frac{r}{s}\right) - (10^2 k_1 + 10k_2 + k_3), \quad \cdots$$

son iguales.

2.2. Encuentro 2

Problema 2.9. Encuentra todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que para cualesquiera enteros m, n tenemos

$$f(m+n) + f(mn-1) = f(m)f(n).$$

Problema 2.10. Encontrar todas las fuciones $f: \mathbb{N} \to \mathbb{N}$ que para todo $x, y \in N$ se cumple que

$$f(x+y) = f(x) + f(y) + 3(x+y)\sqrt[3]{f(x)f(y)}.$$

Problema 2.11. Encontrar todas las funciones f tal que

$$f(f(x) + y) = f(x^2 - y) + 4yf(x)$$

para todo real x y y.

Problema 2.12. Determinar todos los enteros $n \geq 2$ que tengan la siguiente propiedad: para cualquier entero a_1, a_2, \dots, a_n cuya suma no sea divisible por n, existe un índice $1 \leq i \leq n$ tal que ninguno de los números

$$a_i, a_i + a_{i+1}, \cdots, a_i + a_{i+1} + \cdots + a_{i+n-1}$$

es divisible por n. Aquí, dejamos $a_i = a_{i-n}$ cuando i > n.

Problema 2.13. Sea n un entero impar. Pintaremos los vértices de un n-ágono regular con tres colores talque hay un número impar de vértices de cada color. Probar que existen un triángulo isósceles con los tres vértices de diferente color.

Problema 2.14. Determinar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ con la propiedad

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

para todo entero $x, y \in \mathbb{Z}$.

Problema 2.15. Sea a_{in} una sucesión de reales positivos que satisface

$$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$$

para todo entero positivo k. Muestra que $a_1 + a_2 + \cdots + a_n \ge n$, para todo $n \ge 2$.

Problema 2.16. Encuentre todas las funciones $f: \mathbb{R}^+ \to \mathbb{R}^+$ que satisfacen

$$x^{2}(f(x) + f(y)) = (x + y)f(yf(x)).$$

Referencias

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Desigualdades. UNAM, 2014.

[Her20a] Josué Hernández. Guia Practica de Productos Notables. Academia Sabatina de Jóvenes Talento. Nicaraqua, Agosto 2020.

[Her20b] Josué Hernández. Sumas telescópicas II. Academia Sabatina de Jóvenes Talento. Nica-ragua, Agosto 2020.

[Ins20] Olimpiadas InsOMMnia. I Olimpiada de Álgebra. *InsOMMnia*, 2020.

[NN19] Peter Nizić-Nikolac. The alternative IMOs (2001 - 2017). AoPs, July 2019.

[San21] Marcos Sanchez. Clase de álgebra. Academia Sabatina de Jóvenes Talento. Nicaragua, Marzo 2021.

[San22] Marcos Sanchez. Hoja de trabajo #1. Academia Sabatina de Jóvenes Talento. Nicaragua, Enero 2022.