Packing and Covering with Non-piercing Regions

(pack and cover but don't pierce)

Sathish Govindarajan, Rajiv Raman

Saurabh Ray, Aniket Basu Roy

Set Cover Dominating Set

Packing Regions and Points

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

Planar Bipartite Graph.

▶ A balanced vertex separator of sublinear size.

- ▶ A balanced vertex separator of sublinear size.
- Small Set Expansion

- ▶ A balanced vertex separator of sublinear size.
- Every small subset of the LARGER SET expands in the smaller set.

- ▶ A balanced vertex separator of sublinear size.
- ▶ Every $\leq k$ sized subset of the LARGER SET expands in the smaller set.

Minimization Problem

- A balanced vertex separator of sublinear size.
- ▶ Every $\leq k$ sized subset of the LOCAL SEARCH SOLUTION expands in the optimum solution.

Maximization Problem

- A balanced vertex separator of sublinear size.
- ▶ Every $\leq k$ sized subset of the OPTIMUM SOLUTION expands in the local search solution.

- A balanced vertex separator of sublinear size.
- ▶ Every $\leq k$ sized subset of the LARGER SET expands in the smaller set.

Take Away!

Non-piercing Regions

 $A \setminus B$ is connected. $B \setminus A$ is connected.

Non-piercing Regions

 $A \setminus B$ is connected. $B \setminus A$ is connected.

Non-piercing Regions

Set Cover Dominating Set

Packing Regions and Points

Set Cover Dominating Set

Set Cover

Set Cover

Dominating Set

Dominating Set

Minimization Problem

- A balance vertex separator of sublinear size.
- ▶ Every $\leq k$ sized subset of the LOCAL SEARCH SOLUTION expands in the optimum solution.

Minimization Problem

Aschner et al. '13, Mustafa and Ray '09

Suppose Π is a minimization problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$, that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- A balanced vertex separator of sub-linear size.
- ▶ For any subset $\mathcal{B}' \subseteq \mathcal{B}$, $(\mathcal{B} \setminus \mathcal{B}') \cup \mathcal{N}(\mathcal{B}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{B}')$ denotes the set of neighbors of \mathcal{B}' in \mathcal{H} .

Suppose Π is the Set Cover problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$, that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- A balanced vertex separator of sub-linear size.
- ▶ For any subset $\mathcal{B}' \subseteq \mathcal{B}$, $(\mathcal{B} \setminus \mathcal{B}') \cup \mathcal{N}(\mathcal{B}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{B}')$ denotes the set of neighbors of \mathcal{B}' in \mathcal{H} .

Suppose Π is the Set Cover problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$, that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- A balanced vertex separator of sub-linear size.
- ▶ $\forall p \in P$, $\exists R \in \mathcal{R}$, $B \in \mathcal{B}$ such that $p \in R$ and $p \in B$, there exists an $(R,B) \in E(H)$.

Suppose Π is the Set Cover problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$, that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- ► A balanced vertex separator of sub-linear size.
- \checkmark ∀p ∈ P, $\exists R ∈ R$, B ∈ B such that p ∈ R and p ∈ B, there exists an (R,B) ∈ E(H).

Planar Bipartite Graph

Minimal Lens

H' satisfies the *nice* properties \Rightarrow H satisfies the *nice* properties. $H \rightarrow H' \rightarrow \cdots \rightarrow \text{Reds}$ are disjoint and Blues are disjoint.

Set Cover Dominating Set

Packing Regions and Points

Packing Regions and Points

Maximization Problem

Aschner et al. '13

Suppose Π is a maximization problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$ that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- A balanced vertex separator of sub-linear size.
- ▶ For any $\mathcal{R}' \subseteq \mathcal{R}$, $(\mathcal{B} \cup \mathcal{R}') \setminus \mathcal{N}(\mathcal{R}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{R}')$ denotes the set of neighbors of \mathcal{R}' in \mathcal{H} .

Packing Problem

Suppose Π is the Packing problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$ that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- ► A balanced vertex separator of sub-linear size.
- ▶ For any $\mathcal{R}' \subseteq \mathcal{R}$, $(\mathcal{B} \cup \mathcal{R}') \setminus \mathcal{N}(\mathcal{R}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{R}')$ denotes the set of neighbors of \mathcal{R}' in \mathcal{H} .

Packing Problem

Suppose Π is the Packing problem. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B}, E)$ that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- ▶ A balanced vertex separator of sub-linear size.
- ▶ For any $\mathcal{R}' \subseteq \mathcal{R}$, $(\mathcal{B} \cup \mathcal{R}') \setminus \mathcal{N}(\mathcal{R}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{R}')$ denotes the set of neighbors of \mathcal{R}' in \mathcal{H} .

The intersection graph of $\mathcal{R} \cup \mathcal{B}$ is such a graph.

Capacitated Region Packing

Input:

- \mathcal{X} A set of Non-piercing Regions*
- P A point set
- ℓ A constant positive integer

Output:

A maximum sized subset $\mathcal{X}' \subseteq \mathcal{X}$ such that every point $p \in P$ is contained in at most ℓ regions in \mathcal{X}' .

Capacitated Packing Problem

Suppose Π is the Capacitated Packing problem for non-piercing regions. If there exists a bipartite graph $H=(\mathcal{R}\cup\mathcal{B},E)$ that belongs to a family of graphs having the following 2 properties, then the Local Search algorithm is a PTAS for Π .

- ▶ A balanced vertex separator of sub-linear size.
- ▶ For any $\mathcal{R}' \subseteq \mathcal{R}$, $(\mathcal{B} \cup \mathcal{R}') \setminus \mathcal{N}(\mathcal{R}')$ is a feasible solution. Here, $\mathcal{N}(\mathcal{R}')$ denotes the set of neighbors of \mathcal{R}' in \mathcal{H} .

The intersection graph of $\mathcal{R} \cup \mathcal{B}$ is such a graph.

Pyrga-Ray Graph '08

Pyrga-Ray Graph '08

Pyrga-Ray Graph '08

Packing Points

Input:

 \mathcal{X} — A set of Non-piercing Regions

P — A point set

Output:

A maximum sized subset $P' \subseteq P$ such that every region $X \in \mathcal{X}$ contains at most 1 point in P'.

Summary

The following problems admit PTAS for Non-piercing Regions using Local Search.

- Set Cover
- Dominating Set
- Capacitated Region Packing
- Point Packing

Mange Tak