Operations Research

Primaler Simplex

Voraussetzung: Negativer Eintrag in z Zeile

- 1. Standardform → Maximieriungsfunktion, Zielfunktion nach 0 umstellen, <=
- 2. Pivotelement finden
 - a. Pivotspalte: Für alle $\mathbf{z_i} < \mathbf{0} \rightarrow$ kleinstes z finden (betragsmäßig größter Wert)
 - b. Pivotzeile: Für alle $\mathbf{a}_{ij} > \mathbf{0} \Rightarrow \min \left\{ \frac{b_i}{a_{ij}} \right\}$
- 3. Neues Tableau bestimmen

Dualer Simplex

Voraussetzung: Negativer Eintrag in b Spalte

- 1. Zeile: Wähle kleinsten bi Wert
- 2. Spalte: Für alle $\mathbf{a}_{ij} < \mathbf{0} \rightarrow \max \left\{ \frac{z_j}{a_{ij}} \right\}$

Sonderfälle

- Keine zulässige Lösung unzulässige
 - a. Dualer Simplex: Pivotzeile hat nur Elemente ≥ 0 (♣你)
- Zulässige Lösung
 - a. Unbeschränktheit (R mla 31 ye & sishey)
 - i. Pivotspalte hat nur Elemente ≤ 0
 - b. Redundanz
 - i. Alle Werte (außer Einheitsvektor und b_i Spalte) ≤ 0 ($\stackrel{*}{\approx}$ ($\stackrel{*}{\approx}$)
- Optimale Lösung
 - a. Primale Degeneration . In Optimum schneiden sich nen Nebanbadingungen (R. ") . Sonderfoll der Rodundame
 - i. Eine Basisvariable $b_i = 0$
 - b. Duale Degeneration . Rein Sonderfold der Redundung.
 - i. Eine Nichtbasisvariable mit $z_i = 0$

Duales Problem

- 1. Kapazitätsbegrenzungen der Nebenbedingung kommen in die Zielfunktion
- 2. Spalte als neue Zeile schreiben

Maximierungsproblem	Minimierungsproblem	maX → x Variablen		
Zielfunktion:	Zielfunktion:	mil	N → Nebenbe	dingung
max F _{Max} (x)	min F _{Min} (u)		1 / Nebelibe	ungung
Nebenbedingungen: i-te NB: ≤ i-te NB: ≥ i-te NB: =	Variablen: u _i ≥ 0 u _i ≤ 0 u _i ∈ ℝ	duales Problem primales Problem	unbeschränkt	keine Lösung
Variablen: x _i ≥ 0	Nebenbedingungen: j-te NB: ≥	unbeschränkt	×	~
$x_{j} \leq 0$ $x_{j} \in \mathbb{R}$	j-te NB: ≤ j-te NB: =	keine Lösung	~	✓

- Hat das primale Problem P eine optimale Lösung x*, so besitzt das zugehörige duale Problem D eine optimale Lösung u* und es gilt z_P(x*) = z_D(u*)
 Ist P unbeschränkt, so besitzt D keine zulässige Lösung. Ist D unbeschränkt, so besitzt P keine zulässige Lösung. Achtung: Der Umkehrsatz ist notwendig, aber nicht hinreichend!
- Sei A ein Maximierungsproblem mit der zulässigen Lösung (x₁, ..., xk) und sei B das duale (Minimierungs-)Problem von A mit der zulässigen Lösung (u₁, ..., un).
 Dann gilt zp(x₁, ..., xk) ≤ zp(u₁, ..., un). (Einschließungssatz / schwache Dualität)

Substitutionskoeffizienten

• Geben an, um wie viele Einheiten sich die Basisvariable zur Zeile i erhöht ($a_{ij} < 0$) bzw. verringert ($a_{ij} > 0$), wenn man die Nichtbasisvariable zur Spalte j um eine Einheit erhöht.

Schattenpreise

- Kostenmäßige Werte jeder Einheit der Mindestanforderungen (Kapazitätrestiktion)
- Erhöht (senkt) man die Anforderungen um eine Einheit, verschlechtert (verbessert) sich der Ziel- funktionswert um den angegebenen Wert.

Sensitivitätsanalyse

Voraussetzung: Keine Degeneration

- 1. Singuläre Sensitivitätsanalyse: eine Variable unter Beibehaltung der übrigen wird sinnvoll variiert
- 2. Multiple Sensitivitätsanalyse: Änderung mehrerer Variablen ("Dreipunktschätzung")

Zielfunktionskoeffizient

Ressourcenbeschränkungen

· Nichtbasisvariable

$$-c_k^- = \infty$$

$$-c_k^+ = c_k^*$$

· Basisvariable

-
$$c_k^-=\infty$$
, falls alle $a_{kj}^*\leq$ 0 mit j \neq k, sonst

–
$$c_k^- = \min \frac{c_j^*}{a_{k,j}^*}$$
 mit j \neq k für positive a_{kj}^*

-
$$c_k^+=\infty$$
, falls alle $a_{kj}^*\geq 0$ mit j \neq k, sonst

$$-\ c_k^+ = \min \frac{-c_j^*}{a_{k,i}^*} \ \mathrm{mit} \ \mathrm{j} \neq \mathrm{k} \ \mathrm{für} \ \mathrm{negative} \ a_{kj}^*$$

· Basisvariable

$$-b_k^- = x_q$$

$$-b_k^+ = \infty$$

· Nichtbasisvariable

-
$$b_k^-=\infty$$
, falls alle $a_{iq}^*\leq 0$, sonst

–
$$b_k^- = \min \, \frac{b_i^*}{a_{iq}^*}$$
 für positive a_{iq}^*

$$-\ b_k^+=\infty$$
, falls alle $a_{iq}^*\geq 0$, sonst

$$-\ b_k^+ = \min\ \frac{-b_i^*}{a_{iq}^*}$$
 für negative a_{iq}^*

Merke: Bei - \rightarrow <= 0 und bei + \rightarrow größer als 0 // mehr Ressourcen geht immer, weniger Ziel auch

Graphentheorie

- Ein Graph ohne parallele Kanten und ohne Schlinge wird als schlichter Graph bezeichnet.
- Ein schlichter, gerichteter Graph mit endlicher Knotenmenge heißt **Digraph**.
- Ein Graph mit parallelen Kanten wird als **Multigraph** bezeichnet.
- Ein geschlossener Weg heißt Zyklus.

	+3 * x(b,a) +	5 * x(c,a) + 1 * x(d,a) + 2 * x(c,b)) + 3 * x(d,c)
Funktionsweise	Knoten a: Knoten b:	x(a,b) + x(a,c) + x(a,d) = 1 x(b,a) + x(b,c) = 1	$x(a,b) + x(b,a) \le 1$ $x(a,c) + x(c,a) \le 1$
流入科以外有	Knoten a:	x(b,a)+x(c,a)+x(d,a)=1	不明外別
-4	Knoten b:	x(a,b) + x(c,b) = 1	$x(a,b) + x(b,c) + x(c,a) \le 2$
			v(a,c) + v(c,b) + v(b,a) < 2

Kruskal # minimaler Spannbaum

Kürzeste Kante gesamt finden, dann hocharbeiten

Greedy

Von Knoten ausgehend die kürzeste Kante markieren, keine Kreise

Dijkstra

Tabelle mit Gewicht und Vorgänger

Yen

Kürzesten Weg bestimmen und alternativen Pfad

• Ein Weg ist die Folge von gerichteten Kanten, jeweils vom Pfeilende zur Pfeilspitze. Ein geschlossener Weg heißt Zyklus.

- Adjadenzmatrix
- Stort: a: x(c,a) + x(b,a) (x(a,b) + x(a,c)) = -1• • x(c,d) + x(b,d) + x(f,d) + x(e,d) (x(d,c) + x(d,b) + x(d,f) + x(d,e)) = 0
- \circ 0 auf der Diagonalen x(d,f) + x(e,f) (x(f,d) + x(f,e)) = 1
- o 1, falls verbunden
- o Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch.
- Inzidenzmatrix
 - 1, falls zwei Knoten verknüpft
 - o 0, falls nicht verbunden
 - o -1, falls Endpunkt
- Bewertungsmatrix B
 - o ∞, falls nicht verbunden
 - Kantengewicht, falls verbunden
- Multiplikation
 - $\circ \quad U^{(2)} = U^{(1)} \bigotimes B = U^{(1)} \bigotimes U^{(1)}$
 - $\circ \quad U_{ab}^{(2)} = \min\{1.\, \text{Eintrag Zeile a} \,+\, 1.\, \text{Eintrag Spalte b; } 2.\, \text{Eintrag a} \,+\, \text{b; } \ldots\}$

Branch-and-Bound Algorithmus

- Zerlegung des Optimierungsproblems in kleinere Teilprobleme (Branching)
- Entscheidung, welches Teilproblem weitergeführt oder durch anderes dominiert wird (Bounding)

Auswahlregel für Variable (Branching)

- Zufallsauswahl
- **Fraktionellste Variable (1/2-Regel)** Wähle diejenige Variable zum Einschränken, deren aktueller, nicht ganzzahliger Anteil näher an 1/2 liegt
- **Strong Branching** Wahl derjenigen Strukturvariable, die den Zielfunktionswert am meisten verändert, das heißt, den größten Zielfunktionskoeffizienten besitzt

Auswahlstrategie für Teilprobleme (Bounding)

- **Maximum Upper Bound (MUB)** Wähle Problem mit bestem Zielfunktionswert aus Liste (beachte die Optimierungsrichtung)
- **Tiefensuche** Wähle Problem aus Liste, welches als letztes eingefügt wurde (LIFO)
- **Breitensuche** Wähle Problem aus Liste, welches als erstes eingefügt wurde (FIFO)

Eliminierung von Teilproblemen (Ausloten)

- Ganzzahligkeit Teilproblem ist optimal ganzzahlig gelöst
- **Beschränkung** Zielfunktionswert ist schlechter als der eines bereits optimal gelösten ganzzahligen Teilproblems (wird dominiert)
- Unzulässigkeit Der zulässige Bereich ist leer

Gomory-Algorithmus

- 1. Beschneidung des Lösungsraumes durch weitere Schranken, sogenannte Schnittebenen
- 2. Schnittebenen sind zusätzliche Nebenbedingungen, die von allen zulässigen, ganzzahligen Lösungspunkten erfüllt werden
- 3. Momentan optimaler Punkt des linearen Problems wird "abgeschnitten"
- 4. Es werden solange weitere Schnittebenen hinzugefügt, bis eine zulässige Lösung erreicht ist

Gomory 算法 1. 通过进一步的边界切割解空间,即所谓的截面平面 2. 截面是所有允许的整数解点都满足的附加约束 3. 目前线性问题的最优点是"截断" 4.添加更多的切割平面,直到达到可接受的解决方案

Rucksackproblem

Nr.	Gegenstand	Koste n	Nutzen	Nutzen/Kosten	Rang
1	Ziegelsteine	6	1		
2	Zelt	7	3		
3	Flasche Bier	4	2		
4	Mückenschutz	2	5		
5	Grill	9	4		

- 1. Reihenfolge festlegen basierend auf Rang
- 2. Bruch auf 0 und auf 1 setzen und als 1.Rang festlegen
- 3. Restliche Werte berechnen

Binäre Variablen

$$max z=6x_1 +4x_2 + 4x_3 -200y_1 -100y_2$$

Fixkosten	Entweder-Oder	(tx) > ว (เษา>เจ Wenn-dann
Wenn x ₁ produziert wird, fallen y ₁ Fixkosten an	Wenn x₁ produziert wird, dann mindestens 10	Wenn x_2 und x_3 mehr als 20 sind, dann x_1 min 10
$x_1 \le BIG \cdot y_1$		$x_1 \le BIG \cdot y_1$ $f(x) \le BIG \cdot (1-9)$ $10 - x_1 \le BIG \cdot q - g(x) \le BIG \cdot 9$ $q \begin{cases} 0, falls & x_2 + x_3 \le 20 \\ 1, falls & x_2 + x_3 \ge 20 \end{cases}$

Hinweis: BIG wird als hinreichend große Zahl definiert

Dynamische Optimierung

- Einteilung in Stufen, mit letzter Stufe beginnend nach vorne arbeiten
- x_k* bezeichnet den "ausgewählten", effizienteren Knoten
- c_k* bestimmt die bisherige Gesamtlänge

Effizienzanalyse

- Berechne Produktivität eines Unternehmens über $\frac{y_A}{x_A}$ mit Output y und Input x
- Die Produktivität des Unternehmens A relativ zu Unternehmen B wird als **Efficiency Ratio (E)** bezeichnet: $E = \frac{y_A}{x_A} / \frac{y_B}{x_B} = \frac{y_A}{y_B} / \frac{x_A}{x_B}$

Farrell-Effizienz

• Inputbasiert: $E = \frac{x*}{x} \text{ mit } 0 < E \le 1$

Outputbasiert:
$$F = \frac{y^*}{y}$$
 mit $F \ge 1$

Dominanz

• Eine Input-Output-Kombination x^2 , y^2 dominiert die Input-Output-Kombination x^1, y^1 , wenn $x^2 \le x^1$, $y^2 \ge y^1$ und $x^1, y^1 \ne x^2, y^2$

Effizienz nach Koopmann

• Eine Input-Output-Kombination ist effizient, wenn es von keiner weiteren dominiert wird

Technologieannahmen

- Free Disposability
 - o Input: Es kann immer mehr Input verwendet werden für denselben Output
 - o Output: Es kann immer weniger Output produziert werden mit demselben Input
- Konvexität: jede lineare Kombination von zwei Produktionsplänen ist ebenfalls möglich
- Additivität: Addition zwei Produktionsplänen ist möglich (Teil des Technologie-Sets)
- Skalierung: Vier verschiedene Arten (siehe unten)

Konstante Skalenerträge (CRS)

Fallende Skalenerträge (DRS)

Steigende Skalenerträge (IRS)

Variable Skalenerträge (DRS)

Variable Skalenerträge (DRS)

Julia

Wert definieren

```
Zahnpasta = ["Colgate Total", "Dentagard", "Advanced White"]
```

Wert deklarieren

```
# Rohstoffverbrauch in Gramm
b = dict(
"Colgate Total" => 50,
"Dentagard" => 100,
"Advanced White" => 80
)
```

Model deklarieren

```
past = Model(with_optimizer(Clp.with_optimizer)
```