Lab: Table Relations

This document defines the lab assignments for "Databases Basics with MySQL Course" at Software University.

Get familiar with the camp database. You will use it in the following exercises.

1. Mountains and Peaks

Write a query to create two tables – mountains and peaks and link their fields properly. Tables should have:

- Mountains:
 - id
 - name
- Peaks:
 - id
 - name
 - mountain id

Check your solutions using the "Run Queries and Check DB" strategy.

2. Trip Organization

Write a query to retrieve information about SoftUni camp's transportation organization. Get information about the drivers (name and id) and their vehicle type. Submit your queries using the "MySQL prepare DB and Run Queries" strategy.

Example

driver_id	vehicle_type	driver_name
1	bus	Simo Sheytanov
1	van	Simo Sheytanov
2	van	Roli Dimitrova

3.SoftUni Hiking

Get information about the hiking routes – starting point and ending point, and their leaders – name and id. Submit your queries using the "MySQL prepare DB and Run Queries" strategy.

Example

route_starting_point	route_ending_point	leader_id	leader_name
Hotel Malyovitsa	Malyovitsa Peak	3	RoYaL Yonkov
Hotel Malyovitsa	Malyovitsa Hut	3	RoYaL Yonkov
Ribni Ezera Hut	Rila Monastery	3	RoYaL Yonkov
Borovets	Musala Peak	4	Ivan Ivanov

4. Delete Mountains

Drop tables from the task 1.

Write a query to create a one-to-many relationship between a table, holding information about peaks (id, name) and other - about mountains (id, name, mountain_id), so that when an mountains gets removed from the database, all of his peaks are deleted too.

Submit your queries using the "MySQL run queries & check DB" strategy.

5. Project Management DB*

Write a query to create a project management db according to the following E/R Diagram:

Submit your queries using the "MySQL Run Queries and Check DB" strategy.

Exercises: Table Relations

This document defines the exercise assignments for the "Databases Basics - MySQL" course @ Software University.

1. One-To-One Relationship

Create two tables as follows. Use appropriate data types.

persons			
person_id	first_name	salary	passport_id
1	Roberto	43300.00	102
2	Tom	56100.00	103
3	Yana	60200.00	101

passports		
passport_id passport_number		
101	N34FG21B	
102	K65LO4R7	
103	ZE657QP2	

Insert the data from the example above.

- Alter table persons and make person_id a primary key.
- Create a foreign key between persons and passports by using the passport_id column.
- Think about which passport field should be UNIQUE.

Submit your queries by using "MySQL run queries & check DB" strategy.

2. One-To-Many Relationship

Create two tables as follows. Use appropriate data types.

manufacturers		
manufacturer_id	name	established_on
1	BMW	01/03/1916
2	Tesla	01/01/2003
3	Lada	01/05/1966

models		
model_id	name	manufacturer_id
101	X1	1
102	i6	1
103	Model S	2
104	Model X	2
105	Model 3	2
106	Nova	3

Insert the data from the example above.

• Add primary and foreign keys.

Submit your queries by using "MySQL run queries & check DB" strategy.

3. Many-To-Many Relationship

Create three tables as follows. Use appropriate data types.

students		
student_id name		
1	Mila	
2	Toni	
3	Ron	

exams		
exam_id name		
101	Spring MVC	
102	Neo4j	
103	Oracle 11g	

students_exams		
student_id exam_i		
1	101	
1	102	
2	101	
3	103	
2	102	
2	103	

Insert the data from the example above.

- Add primary and foreign keys.
- Have in mind that the table **student_exams** should have a **composite** primary key.

Submit your queries by using "MySQL run queries & check DB" strategy.

4. Self-Referencing

Create a single table as follows. Use appropriate data types.

teachers		
teacher_id	name	manager_id
101	John	
102	Maya	106
103	Silvia	106
104	Ted	105
105	Mark	101
106	Greta	101

Insert the data from the example above.

- Add primary and foreign keys.
- The foreign key should be between manager_id and teacher_id.

Submit your queries by using " MySQL run queries & check DB" strategy.

5. Online Store Database

Create a new database and design the following structure:

6. University Database

Create a new database and design the following structure:

Submit your queries by using "MySQL run queries & check DB" strategy.

7. SoftUni Design

Create an E/R Diagram of the SoftUni Database. There are some special relations you should check out: **employees** are **self-referenced (manager_id)** and **departments** have **One-to-One** with the **employees (manager_id)** while the **employees** have **One-to-Many (department_id)**. You might find it interesting how it looks on a diagram. ©

8. Geography Design

Create an E/R Diagram of the Geography Database.

9. Peaks in Rila

Display all peaks for "Rila" mountain_range. Include:

- mountain_range
- peak_name
- peak_elevation

Peaks should be sorted by **peak_elevation** descending.

Example

mountain_range	peak_name	peak_elevation
Rila	Musala	2925

Submit your queries by using "MySQL prepare DB & run queries" strategy.

