COMPUTATION IN BIOMEDICAL RESEARCH

Upneet Kaur and Alina Arzamassky 09/29/20

Zinc Coordination Spheres in Protein Structures

- Zinc metalloproteins are one of the most abundant and structurally diverse proteins
- A number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry
- Zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail.

Molecular mass distributions of zinc proteins determined by NMR and X-ray crystallography

- Computational problem: Determine the molecular mass distribution of Zn-containing proteins solved by NMR and X-RAY crystallography.
- The input is the PDB file and output is the histogram displaying the molecular mass distribution.

Mikko Laitaoja .et al, Inorganic Chem., 2013

Queried for all structures and their respective molecular weights

Custom Report Web Services

The RCSB PDB website provides pre-defined summary and customizable reports for query results. Web Services can also be used to generate reports. These reports are gene based on

- . PDB IDs: A list of PDB IDs
- Field items: Any combination of fields selected by the user or
- Report name: Summary reports use predefined fields related to the report subject
- . Service: Download the report as a file or display file in the browser.
- Format (optional): Reports can be generated in CSV and XML format. Format is an optional parameter; XML is the default.

structureId, experimentalTechnique, structureMolecularWeight, 100D, X-RAY DIFFRACTION, 6360.3, 1994 101D, X-RAY DIFFRACTION, 7939.35, 1995 101D, X-RAY DIFFRACTION, 7939.35, 1985 101M,X-RAY DIFFRACTION, 18112.8, 1999 102D, X-RAY DIFFRACTION, 7637.17, 1995 102L, X-RAY DIFFRACTION, 18926.61, 1993 102M,X-RAY DIFFRACTION, 18010.64, 1999 103D, SOLUTION NMR, 7502.93, 1994 103L,X-RAY DIFFRACTION, 19092.72, 1993 103M, X-RAY DIFFRACTION, 18093.78, 1999 104D, SOLUTION NMR, 7454.78, 1995 104L.X-RAY DIFFRACTION.37541.04.1993 104M,X-RAY DIFFRACTION, 18030.63, 1999 105D.SOLUTION NMR.3350.4.1995 105M,X-RAY DIFFRACTION, 18030.63, 1999 106D.SOLUTION NMR.3086.58.1995

- Example 5: Download a predefined summary report of all current PDB entries in CSV format. A list of report name can be found in this page.
 - PDB ID: *
 - Report Name: Sequence

http://www.rcsb.org/pdb/rest/customReport.csv?pdbids=*&reportName=Sequence&service=wsfile&format=csv

sed 's/
shr \/>/\n/g' customReport.csv > customReport.sed.csv or for mac ed -e 's/
\/'\\$'\n/q' customReport2.csv > customReport2.sed.csv

```
#!/bin/py
import os
# Get the pygrep script.
dir = "/databases/mol/pdb"
def list_files_recursive(path):
    Function that receives as a parameter a directory path
    :return list_: File List and Its Absolute Paths
    files = []
    # r = root, d = directories, f = files
    for r, d, f in os.walk(path):
        for file in f:
            files.append(os.path.join(r, file))
    lst = [file for file in files]
    return 1st
```

```
search_words_xray = ['ZINC','X-RAY']
def check_xray(filename):
   with open(filename, 'r') as f:
         datafile = f.read().replace('\n', '')
    if all(word in datafile for word in search_words_xray):
           return True
    return False
search_words_nmr = ['ZINC','NMR']
def check_nmr(filename):
    with open(filename, 'r') as f:
         datafile = f.read().replace('\n', '')
    if all(word in datafile for word in search_words_nmr):
            return True
    return False
```

```
nmr_list = []
xray_list = []
result = list_files_recursive(dir)
i = 0
j=0
for res in result:
    #with open(res, 'r') as f:
        # print (f.read())
    if check_xray(res):
       xray_list.append(res)
       print ("seen xray", i, "number of times so far")
       i += 1
    if check_nmr(res):
       nmr_list.append(res)
```

X-RAY: 16570

NMR: 1479

```
xray_list = []
                                                                                    result = list_files_recursive(dir)
import pandas as pd
                                                                                    #res_base=os.path.basename(dir)
import numpy as np
                                                                                   i = 0
import os
                                                                                    j=0
                                                                                   for res in result:
# Get the pygrep script.
                                                                                        #with open(res, 'r') as f:
#dir = "/databases/mol/pdb"
                                                                                           # print (f.read())
dir = "/databases/mol/mmCIF"
                                                                                        if check_xray(res):
def list_files_recursive(path):
                                                                                          xray_loop = os.path.splitext(os.path.basename(res))[0].upper()
                                                                                          print(xray_loop)
                                                                                          xray_list.append(xray_loop)
    Function that receives as a parameter a directory path
                                                                                          i += 1
    :return list : File List and Its Absolute Paths
                                                                                          print ("seen xray", i, "number of times so far")
                                                                                        if check_nmr(res):
                                                                                          nmr_loop = os.path.splitext(os.path.basename(res))[0].upper()
    files = \Pi
                                                                                          nmr_list.append(nmr_loop)
                                                                                          i += 1
                                                                                          print ("seen nmr", j, "number of times so far")
    # r = root, d = directories, f = files
    for r, d, f in os.walk(path):
        for file in f:
                                                                                       Get the molecular weight form the rcsb.org for final PDBs
             files.append(os.path.join(r, file))
    lst = [file for file in files]
                                                                                    #moldata = pd.read_csv("PDBlist.csv", index_col ="structureId")
    return 1st
                                                                                    #data = pd.read_csv("PDBlist.csv")
                                                                                    #byyear = data.loc[(data['publicationYear'] < 2012)]</pre>
search_words_xray = ['ZINC','X-RAY']
def check_xray(filename):
                                                                                    xray =∏
    with open(filename, 'r') as f:
                                                                                    nmr = [
         datafile = f.read().replace('\n', '')
    if all(word in datafile for word in search_words_xray):
                                                                                    with open ("PDBlist.csv") as f:
           return True
                                                                                        for line in f.readlines():
    return False
                                                                                           a = line.split(',')
                                                                                           if a[0] in nmr_list:
                                                                                               nmr.append(float(a[2])/1000)
search_words_nmr = ['ZINC','NMR']
                                                                                           if a[0] in xray_list:
def check_nmr(filename):
                                                                                               xray.append(float(a[2])/1000)
    with open(filename, 'r') as f:
         datafile = f.read().replace('\n', '')
                                                                                    print(xray)
    if all(word in datafile for word in search_words_nmr):
                                                                                    print(nmr)
             return True
    return False
                                                                                    np.save("xray.npy",np.array(xray))
                                                                                    np.save("nmr.npy",np.array(nmr))
```

nmr_list = []

#!/bin/py

```
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.optimize import curve_fit as curve_fit
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.colors as mcolors
import matplotlib.patheffects as PathEffects
import matplotlib.gridspec as gridspec
import pandas as pd
import numpy as np
width = 512.11743/72.2
font = 9
mpl.rc('text', usetex=True)
mpl.rc('font', family = 'serif')
mpl.rcParams['xtick.labelsize']=font-1
mpl.rcParams['ytick.labelsize']=font-1
mpl.rcParams['text.latex.preamble'] = [
    r'\usepackage{amsmath}',
    r'\usepackage{amssymb}']
```

```
xray = np.load("xray.npy")
nmr = np.load("nmr.npy")
fig=plt.figure(figsize=(1,1))
fig.set figheight((np.sgrt(5.0)-1.0)/2. * width/2)
fig.set_figwidth(width/2)
gs1 = gridspec.GridSpec(1,1)
gs1.update(wspace=0, hspace=0)
ax1 = plt.subplot(gs1[0])
ax1.hist(xray, 15, range = (0,300), rwidth = 0.5)
plt.xlabel(r"Molecular Weight (kDa)", fontsize=font)
plt.ylabel(r"Number of Molecules", fontsize=font)
plt.title(r'X-RAY', fontsize=font)
plt.savefig("xray.pdf",bbox_inches='tight')
plt.close()
ax1 = plt.subplot(gs1[0])
ax1.hist(nmr, 15, range = (0, 100), rwidth = 0.5)
plt.xlabel(r"Molecular Weight (kDa)", fontsize=font)
plt.ylabel(r"Number of Molecules", fontsize=font)
plt.title(r'NMR', fontsize=font)
plt.savefig("nmr.pdf",bbox_inches='tight')
plt.close()
```


