

On Focal Loss for Class-Posterior Probability Estimation: A Theoretical Perspective

Nontawat Charoenphakdee*1,2, Jayakorn Vongkulbhisal*3, Nuttapong Chairatanakul4,5, Masashi Sugiyama^{2,1} The University of Tokyo¹, RIKEN AIP², IBM Research³, Tokyo Institute of Technology⁴, RWBC-OIL (AIST) ⁵

Summary

Theoretical analysis of focal loss with practical use.

- Q1: Does focal risk minimizer give Bayes-optimal classifier Yes!
- Q2: Does focal risk minimizer match class-posterior probability $p(y|\boldsymbol{x})$? No! Directly using model's output gives unreliable confidence.
- Q3: Following Q2, can we do anything about it? Yes! We discovered a closed-form transformation $oldsymbol{\Psi}^{\gamma}$ that can recover p(y|x) with theoretical guarantee!

Introduction

$$\begin{pmatrix} .78 \\ .22 \end{pmatrix}$$

$$\begin{pmatrix} .78 \\ .22 \end{pmatrix} \qquad \begin{pmatrix} .6 \\ .3 \end{pmatrix}$$

$$\begin{pmatrix} .65 \\ .35 \end{pmatrix}$$

$$\begin{pmatrix} .65 \\ .35 \end{pmatrix}$$

$$\begin{pmatrix} .65 \\ .35 \end{pmatrix} \qquad \left(\right.$$

.60

 $oldsymbol{q}_{\ell}^* = \operatorname{argmin}_{oldsymbol{q}} \mathbb{E}_{y \sim p(y|oldsymbol{x})}[\ell(oldsymbol{q}(oldsymbol{x}), oldsymbol{e}_y)]$: Cross-entropy risk minimizer : Focal risk minimizer

- $egin{aligned} oldsymbol{q}(oldsymbol{x}) \in \Delta^K \ oldsymbol{e}_y \colon \operatorname{One-hot\ vector} \end{aligned}$
- Bayes-optimal classifier predicts the most probable class $\arg \max_{u} p(y|\boldsymbol{x})$.
- Class-posterior probability p(y|x) provides useful confidence score.
- Loss function highly influences the behavior of the trained model.

Example: The well-studied cross-entropy (CE) loss for K-class classification:

CE loss is

- classification-calibrated: CE risk minimizer $m{q}^*_{ ext{CE}}(m{x})$ gives Bayes optimal classifier.
- strictly proper: CE risk minimizer $q_{\mathrm{CE}}^*(x)$ gives class-posterior probability.

Q: What about theoretical properties of focal loss?

Focal loss

$$\ell_{\mathrm{FL}}^{\gamma}(\boldsymbol{v}, \boldsymbol{u}) = -\sum_{i=1}^{K} u_i (1 - v_i)^{\gamma} \log(v_i)$$

- Originally proposed for dense object detection.
- Many practical applications in the medical field.

(Al Rahhal+, 2019, Chang+, 2018, Lotfy+, 2019, Sun+, 2019)

(Lin+, 2017)

Main results

Focal loss is classification-calibrated for $\gamma \geq 0$:

$$\operatorname{arg\,max}_{y} \boldsymbol{q}_{\mathrm{FL},\gamma}^{*}(\boldsymbol{x}) = \operatorname{arg\,max}_{y} p(y|\boldsymbol{x}).$$

However, it is **not strictly proper for** $\gamma > 0$:

$$q_{\mathrm{FL},\gamma}^*(\boldsymbol{x}) \neq p(y|\boldsymbol{x}).$$

We can predict the most probable class, but confidence score is unreliable.

Example:

Solution: Recover $p(y|\boldsymbol{x})$ from $\boldsymbol{q}_{\mathrm{FL},\gamma}^*(\boldsymbol{x})$ via $\boldsymbol{\Psi}^{\gamma}$:

Define
$$\mathbf{\Psi}^{\gamma}(\boldsymbol{v}) = [\Psi_{1}^{\gamma}(\boldsymbol{v}), \dots, \Psi_{K}^{\gamma}(\boldsymbol{v})]^{\top},$$
 where $\Psi_{i}^{\gamma}(\boldsymbol{v}) = \frac{h^{\gamma}(v_{i})}{\sum_{l=1}^{K}h^{\gamma}(v_{l})},$ and $h^{\gamma}(v_{i}) = \frac{v_{i}}{(1-v_{i})^{\gamma}-\gamma(1-v_{i})^{\gamma-1}v_{i}\log v_{i}}$

- Closed-form
- Theoretically justified No hyperparameter
- No additional training required Preserves accuracy

Numerical simulation

- Bigger γ makes the network q^{γ} more prone to be underconfident in **Standard**.
- Using temperature scaling $\mathbf{T}\bar{\mathbf{S}}_{\mathrm{NLL}}$ (Guo+, 2017) is insufficient to recover $p(y|\boldsymbol{x})$.
- With our proposed $oldsymbol{\Psi}^{\gamma}$, we can recover $p(y|oldsymbol{x})$ (almost) perfectly.

Benchmark experiments

Evaluation metric: Expected calibration error (ECE) (Naeini+, 2015)

- Using $m{\Psi}^{\gamma}$ is effective when we have good approximation of $m{q}^*_{{
 m FL},\gamma}(m{x})$ (Fig. a-c)
- But it is less effective when having small data or model architecture is too large (Fig. d-g)

With focal-loss-based temperature scaling ${f TS}_{
m FL}$ or label smoothing ${f LS}$:

Using $oldsymbol{\Psi}^{\gamma}$ is preferable for both cases. *We used ResNet110 for Fig. a-d. Same trend can be observed for all models in our paper (ResNet8-110)

References