YOLO You Only Look Once

목차 CONTENTS

- O1 YOLO v1
- O2 YOLO 9000
- O3 YOLO v3
- O3 YOLO v4

00 Why YOLO?

Object Detection

DPM: Deformable Part Models

R-CNN: Regions with CNN features

Object를 Detect하기 위한 기존의 Sliding window, DPM, R-CNN 같은 region-based classifiers는 Real-time object detect가 힘들다.

Object Detection

YOLO Detection System

이미지 내의 Bounding Box(Bbox)와 class probability를 하나의 regression problem으로 묶는 one-stage detection 제안

이미지를 한번 보는 것으로 객체 종류와 위치 정보를 한번에 빠르게 추측

다른 도메인에 적용 가능

Unified detection 이 가능한 모델 YOLO!

01 You Only Look Once: Unified, Real-Time Object Detection

The Model

YOLO on PASCAL VOC.

S = 7

B = 2

C = 20 (PASCAL VOC has 20 labelled classes)

 $S \times S$ grid on input

 W_i

 h_i

YOLO on PASCAL VOC.

S = 7

B = 2

C = 20 (PASCAL VOC has 20 labelled classes)

Class probability map

 C_1 C_2 C_3 C_4 :

 $Pr(Class_i | Object)$

물체가 Bbox 내에 있을때 Grid cell에 있는 object가 Class에 속할 확률

class-specific confidence scores

 $Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$

NMS

Class 별 진행하여 confidence 내림차순으로 정렬 후 가장 높은 confidence 를 갖는 박스를 기준으로 순차적으로 IOU를 구하여 특정치 이상이면 score 0로 변경

Final Detection Result

Training: Network Architecture

Pretrained: 20 Conv layers

Fine-tuned : 4 Conv layers + 2 fc layers

1x1 convolution을 통한 parameter 개수 감소

Detection Input size 224x224 -> 448 x 448

Training

 $S \times S$ grid on input

Output Tensor

Training

- 1. Match gt label to appropriate grid cell
- 2. Class prediction
- 3. Bbox 생성 후 confidence 조정

가장 큰 confidence score를 가 진 bbox를 predictor로 한다.

Training: Loss Function

Sum-squared error coordinate, confidence, class probability loss구함

Experiments

VOC

Localization error가 높음 correct 비율이 낮음

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45

Less Than Real-Time 15 Fastest DPM [38] 2007 30.4 R-CNN Minus R [20] 53.5 2007 6 Fast R-CNN [14] 2007+2012 70.0 0.5 Faster R-CNN VGG-16[28] 73.2 2007+2012 Faster R-CNN ZF [28] 2007+2012 62.1 18 YOLO VGG-16 2007+2012 66.4 21

다른 detector 과 비교 하였을 때 높은 성능과 속도를 보임

Experiments

Combine to Fast R-CNN

	mAP	Combined	Gain
Fast R-CNN	71.8	-	-
Fast R-CNN (2007 data)	66.9	72.4	.6
Fast R-CNN (VGG-M)	59.2	72.4	.6
Fast R-CNN (CaffeNet)	57.1	72.1	.3
YOLO	63.4	75.0	3.2

VOC 2012 test	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	n plant	sheep	sofa	train	tv
MR_CNN_MORE_DATA [11]	73.9	85.5	82.9	76.6	57.8	62.7	79.4	77.2	86.6	55.0	79.1	62.2	87.0	83.4	84.7	78.9	45.3	73.4	65.8	80.3	74.0
HyperNet_VGG	71.4	84.2	78.5	73.6	55.6	53.7	78.7	79.8	87.7	49.6	74.9	52.1	86.0	81.7	83.3	81.8	48.6	73.5	59.4	79.9	65.7
HyperNet_SP	71.3	84.1	78.3	73.3	55.5	53.6	78.6	79.6	87.5	49.5	74.9	52.1	85.6	81.6	83.2	81.6	48.4	73.2	59.3	79.7	65.6
Fast R-CNN + YOLO	70.7	83.4	78.5	73.5	55.8	43.4	79.1	73.1	89.4	49.4	75.5	57.0	87.5	80.9	81.0	74.7	41.8	71.5	68.5	82.1	67.2
MR_CNN_S_CNN [11]	70.7	85.0	79.6	71.5	55.3	57.7	76.0	73.9	84.6	50.5	74.3	61.7	85.5	79.9	81.7	76.4	41.0	69.0	61.2	77.7	72.1
Faster R-CNN [28]	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
DEEP_ENS_COCO	70.1	84.0	79.4	71.6	51.9	51.1	74.1	72.1	88.6	48.3	73.4	57.8	86.1	80.0	80.7	70.4	46.6	69.6	68.8	75.9	71.4
NoC [29]	68.8	82.8	79.0	71.6	52.3	53.7	74.1	69.0	84.9	46.9	74.3	53.1	85.0	81.3	79.5	72.2	38.9	72.4	59.5	76.7	68.1
Fast R-CNN [14]	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
UMICH_FGS_STRUCT	66.4	82.9	76.1	64.1	44.6	49.4	70.3	71.2	84.6	42.7	68.6	55.8	82.7	77.1	79.9	68.7	41.4	69.0	60.0	72.0	66.2
NUS_NIN_C2000 [7]	63.8	80.2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3
BabyLearning [7]	63.2	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6
NUS_NIN	62.4	77.9	73.1	62.6	39.5	43.3	69.1	66.4	78.9	39.1	68.1	50.0	77.2	71.3	76.1	64.7	38.4	66.9	56.2	66.9	62.7
R-CNN VGG BB [13]	62.4	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3
R-CNN VGG [13]	59.2	76.8	70.9	56.6	37.5	36.9	62.9	63.6	81.1	35.7	64.3	43.9	80.4	71.6	74.0	60.0	30.8	63.4	52.0	63.5	58.7
YOLO	57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
Feature Edit [33]	56.3	74.6	69.1	54.4	39.1	33.1	65.2	62.7	69.7	30.8	56.0	44.6	70.0	64.4	71.1	60.2	33.3	61.3	46.4	61.7	57.8
R-CNN BB [13]	53.3	71.8	65.8	52.0	34.1	32.6	59.6	60.0	69.8	27.6	52.0	41.7	69.6	61.3	68.3	57.8	29.6	57.8	40.9	59.3	54.1
SDS [16]	50.7	69.7	58.4	48.5	28.3	28.8	61.3	57.5	70.8	24.1	50.7	35.9	64.9	59.1	65.8	57.1	26.0	58.8	38.6	58.9	50.7
R-CNN [13]	49.6	68.1	63.8	46.1	29.4	27.9	56.6	57.0	65.9	26.5	48.7	39.5	66.2	57.3	65.4	53.2	26.2	54.5	38.1	50.6	51.6

Experiments

	VOC 2007	Pi	casso	People-Art
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32
Poselets [2]	36.5	17.8	0.271	
D&T [4]	-	1.9	0.051	

(a) Picasso Dataset precision-recall curves.

(b) Quantitative results on the VOC 2007, Picasso, and People-Art Datasets. The Picasso Dataset evaluates on both AP and best F_1 score.

Figure 5: Generalization results on Picasso and People-Art datasets.

YOLO9000: Better, faster, stronger.

Better, faster, stronger

Better, faster, stronger

YOLO v1에서 필요한 개선점들

다른 SOTA detection에 비해 성능이 낮음

Localization errors

낮은 recall 로 object를 전부 찾아내지 못함

Detection class 개수 너무 작고 개수를 늘리기 힘듦

Better	Batch Normalization
	High resolution Classifier
	Convolution with Anchor boxes
	Dimension Clusters
	Direct Location prediction
	Fine-grained features
	Multi-scale training

Conv layers에 Batch Normalization 추가 -> mAP 2% 상승

Overfitting 없이 dropout 제거

Better	Batch Normalization
	High resolution Classifier
	Convolution with Anchor boxes
	Dimension Clusters
	Direct Location prediction
	Fine-grained features
	Multi-scale training

Image-net data set @224x224 pretrained

YOLO v1

Detection @448x448로 detection 커진 input size에 적응하면서 성능 저하 예상

YOLO v2 Fine-tuning Classifier network @448x448 for 10epoches

-> almost mAP 4% 상승

	Batch Normalization			
Better	High resolution Classifier			
	Convolution with Anchor boxes			
	Dimension Clusters			
	Direct Location prediction			
	Fine-grained features			
	Multi-scale training			

YOLO v1

- Prior anchor boxes 사용하지 않음
- Use fc layers
- Detection Input image size @448x448 Down sample 시 가운데에 4개 cell을 가짐
- 각 gird cell 마다 class prediction -> mAP 69.5, recall 81%

YOLO v2

- Anchor boxes 개념 도입
- Use conv layers
- Detection Input image size @416x416 Down sample 시 가운데에 1개 cell을 가짐
- anchor box 마다 class prediction -> mAP 69.2, recall 88% 성능 개선 여지를 찾음!

Batch
Normalization

High resolution
Classifier

Convolution with
Anchor boxes

Dimension
Clusters

Direct Location
prediction

Fine-grained
features

Multi-scale
training

How many anchor box??

Data set 에 맞는 anchor box 찾자!

GT Bbox를 k-means clustering 하여 Avg IOU 구함

Centroid와의 Euclidian distance -> IOU

K = 5 is chosen

(good trade off between complexity and high recall)

Better	Batch Normalization
	High resolution Classifier
	Convolution with Anchor boxes
	Dimension Clusters
	Direct Location prediction
	Fine-grained features
	Multi-scale training

Anchor box가 왼쪽 위에서 정의 되어도 regression 식

$$\hat{G}_x = P_w d_x(P) + P_x$$
$$\hat{G}_y = P_h d_y(P) + P_y$$

에 의하여 Image의 어느 위치로도 이동이 가능한 Instability 문제 해결하기 위한 방법 제안

Almost 5% improvement over the version with anchor boxes

	Batch Normalization
Better	High resolution Classifier
	Convolution with Anchor boxes
	Dimension Clusters
	Direct Location prediction
	Fine-grained features
	Multi-scale training

마지막 단의 feature map (큰 object detect) Input과 가까운 쪽의 feature map (작은 object detect)

13x13 feature map pooling 전의 26x26 feature map 통째로 13x13 feature map 에 concatenate 후 Bbox 뽑는 방식

1% performance increase

	Batch Normalization
	High resolution Classifier
Better	Convolution with Anchor boxes
	Dimension Clusters
	Direct Location prediction
	Fine-grained features
	Multi-scale training

Fc layer -> conv layer

Input size의 강건화

10 batches 마다 randomly image dimension choose

{320,352, ...,608}

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
$YOLOv2 352 \times 352$	2007+2012	73.7	81
$YOLOv2 416 \times 416$	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
$YOLOv2544 \times 544$	2007+2012	78.6	40

YOLO v2 : Faster

Faster	Darknet – 19
	Training for classification
	Training for detection

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7 × 7
Avgpool		Global	1000
Softmax			

ImageNet dataset

Darknet

5.58 billion operator :72.9% top-191.2% top-5 accuracy

VGG-16

30.69 billion operator : 90.0% top-5 accuracy

YOLO v2 : Faster

Classification

ImageNet 1000 classes for 160 epochs

Standard data augmentation 사용 : random crops, rotations, hue, saturation 등

Faster Darknet – 19
Training for classification
Training for detection

Initial training @224x224 이후 Fine tuning @448x448 for 10 epochs -> top-5 acc of 93.3%

Detection

Remove Global avg pooling layer Add 3x3 conv with 1024 filters + 1x1 conv layer

For PASCAL VOC (20 classes)
5 boxes with 5 coordinates (x, y, w, h, confidence)
-> 125 filters

Epochs: 160, Ir : 10^-3 (60, 90 epoch에 Ir decay)

YOLO v2 : Experiment

	YOLO								YOLOv2
batch norm?		✓	√	✓	✓	√	√	√	√
hi-res classifier?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	✓
dimension priors?						\checkmark	\checkmark	\checkmark	✓
location prediction?						\checkmark	\checkmark	\checkmark	✓
passthrough?							\checkmark	\checkmark	✓
multi-scale?								\checkmark	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Method	data	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
	07++12																					
Faster R-CNN [15]	07++12	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
YOLO [14]	07++12	57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
SSD300 [11]	07++12	72.4	85.6	80.1	70.5	57.6	46.2	79.4	76.1	89.2	53.0	77.0	60.8	87.0	83.1	82.3	79.4	45.9	75.9	69.5	81.9	67.5
SSD512 [11]	07++12	74.9	87.4	82.3	75.8	59.0	52.6	81.7	81.5	90.0	55.4	79.0	59.8	88.4	84.3	84.7	83.3	50.2	78.0	66.3	86.3	72.0
ResNet [6]	07++12	73.8	86.5	81.6	77.2	58.0	51.0	78.6	76.6	93.2	48.6	80.4	59.0	92.1	85.3	84.8	80.7	48.1	77.3	66.5	84.7	65.6
YOLOv2 544	07++12	73.4	86.3	82.0	74.8	59.2	51.8	79.8	76.5	90.6	52.1	78.2	58.5	89.3	82.5	83.4	81.3	49.1	77.2	62.4	83.8	68.7

Stronger	Hierarchical classification
	Dataset Combination With World-tree
	Joint classification and detection

WordNet 의 구조를 Shorter path만을 남기고 나머지 가지 치기하여 Tree 형태로 변형 Root node는 Physical Object

Stronger	Hierarchical classification
	Dataset Combination With World-tree
	Joint classification and detection

Conditional probability 구하기

Pr(Norfolk terrier|terrier)

Pr(Yorkshire terrier|terrier)

Pr(Bedlington terrier|terrier)

Norfolk terrier 확률 구하기

Pr(Norfolk terrier) = Pr(Norfolk terrier|terrier) *Pr(terrier|hunting dog) $*\dots*$ *Pr(mammal|Pr(animal) *Pr(animal|physical object)

Stronger	Hierarchical classification
	Dataset Combination With World-tree
	Joint classification and detection

Build WordTree 1k (add intermediate nodes)
-> 1369개 label
정답 label 을 위로 propagate
자손 node label(Norfolk terrier) 값이 1이면
모든 조상 node label(Dog, mammal, ...) 1로 변경

Multiple softmax 방식으로 classification - 같은 level 끼리 softmax

71.9% top-1 accuracy 90.4% top-5 accuracy

Concept

General (Higher node)

Stronger

Hierarchical classification

Dataset Combination With World-tree

Joint classification and detection

Specific (Lower node)

YOLO9000 : Stronger

Stronger Hierarchical classification Dataset Combination With World-tree Joint classification and detection

Create New dataset!

COCO detection dataset

- + Top 9000 classes from full ImageNet release
- + ImageNet detection challenge dataset
 - -> 9418 classes

Anchor Box k = 5 -> 3 으로 제한

Detection dataset image

backpropagation 하여 loss 구함

Classification dataset image

Image class에 맞는 level로부터 classification loss만 backpropagate

Bbox를 통해 class를 예측한 것 중 가장 높은 것을 계산

YOLO9000 : Stronger

ImageNet(detection data set)과 COCO 는 44 object categories를 공유

한번도 보지못한 disjoint 156 object classes 에 대하여 19.7mAP overall with 16.0mAP

0.0

	Hierarchical classification
Stronger	Dataset Combination With World-tree
	Joint classification and detection

Coco data set의 특성 으로 인하여

dianer

diapei	0.0	
horizontal bar	0.0	0 71.11
rubber eraser	0.0	옷, 장비 category
sunglasses	0.0	학습 불가능
swimming trunks	0.0	
red panda	50.7	
fox	52.1	새로운 동물 category
koala bear	54.3	학습 가능
tiger	61.0	78 70
armadillo	61.7	

03 YOLO v3

: An Incremental Improvement

Better, NotFaster, Stronger (?)

Brand NEW!

- 1. Bonding Box Prediction
- 2. Class Prediction
- 3. Predictions Across Scales
- 4. Darknet-53

Bonding Box Prediction

- 기존 YOLO 처럼 각 Bbox의 objectness score를 logistic regression으로 예측
- YOLO v3 에서 Ground truth 와 IOU가 높은 Bbox의 confidence score을 1로 지정
- R-CNN: GT에 가장 높은 IOU 가진 Bbox + thresh hold 이상인 Bbox다 할당
- YOLO v3 : 각 GT 마다 1개의 Bbox 할당

Class Prediction

Multilabel classification

COCO dataset의 80 class에 각각 sigmoid 취해서 binary multiclass classification 진행

Google Open Image : dataset 계층적인 600 classes 존재 ex) person, women 둘 다 1되는 경우가 필요

Logistic regression 으로 예측 모든 class에 대하여 classification 진행

Predictions Across Scales

```
3가지 Scale에 3가지 Bbox: total 9 box
```

```
Tensor size : N \times N \times [3 * (4 + 1 + 80)]
{#of Anchors * [(t_{x'}, t_{y'}, t_{w'}, t_{h'}, P_o) + (C_{1 to 80})]}
```

YOLO v2에서 사용한 k-means clustering 사용

COCO dataset 9 clusters : (10x13) (33x23) (30x61) / small Scale (30x61) (62x45) (59x119) / medium Scale (116x90) (156x198) (373x326) / large Scale

YOLO v2 와 비교하면 @416x416 기준 x10배 이상의 box를 사용한다

Darknet - 53

	Type	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64 × 64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32 × 32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

				1초 연산량	
Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

Better utilize GPU

YOLO v3 Architecture

Experiment

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608×608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

04

YOLOv4

Optimal Speed and Accuracy of Object Detection

Introduction

YOLO v3에 학계에서 발표된 성능을 올리는 다양한 기법들을 적용

Bag of Freebies

YOLO v3 + Bag of Specials

Selection of Architecture

Bag of Freebies (pre-processing + training strategy)

Change Training strategy or Only Increase the training costs

Data Augmentation

- Photometric distortion, geometric distortion
- Simulating occlusions: random erase, CutOut, hide-and-seek, grid mask
- To feature maps: DropOut, DropConnect, DropBlock

Biased data (imbalacne)

- Hard negative example mining, online hard example mining, focal loss
- Label smoothing

Objective function

MSE, IoU loss, GloU loss, DIoU loss

Bag of Specials (plugin modules + post-processing)

Plugin modules and post-processing methods Inference cost가 조금 올라가는 것에 비해 성능 향상

Enhancement of receptive field

SPP, ASPP, RFB

Attention

Squeeze-and-Excitation(SE), Spatial Attention Module (SAM)

Feature integration

FPN, SFAM, ASFF, BiFPN

Activation functions

LReLU, PReLU, ReLU6, SELU, Swish, hard-Swish, Mish

Post processing

NMS, soft NMS, DIoU NMS

Selection of Architecture

Detector Requirement

Higher input network size (resolution) - small object 탐지 가능

More layers - Higher Receptive field

More parameters - 여러 size의 object를 탐지 가능

Backbone model	Input network resolution	Receptive field size	Parameters	Average size of layer output (WxHxC)	BFLOPs (512x512 network resolution)	FPS (GPU RTX 2070)
CSPResNext50	512x512	425x425	20.6 M	1058 K	31 (15.5 FMA)	62
CSPDarknet53	512x512	725x725	27.6 M	950 K	52 (26.0 FMA)	66
EfficientNet-B3 (ours)	512x512	1311x1311	12.0 M	668 K	11 (5.5 FMA)	26

Additional Improvements

New data augmentation method

Mosaic

aug_-319215602_0_-238783579.jpg

aug_1715045541_0_603913529.jpg

SAT (Self-Adversarial Training)

Additional Improvements

Modify existing methods

SAM

CmBN(Cross mini-batch Normalization)

YOLO v4

• Backbone : CSPDarknet53

Neck : SPP, PANHead : YOLOv3

Backbone

- Bag of Freebies : CutMix and Mosaic data augmentation, DropBlock regularization, Class label smoothing
- **Bag of Specials**: Mish activation, Cross-stage partial connections (CSP), Multi- input weighted residual connections (MiWRC)

Detector

- **Bag of Freebies**: CloU-loss, CmBN, DropBlock regularization, Mosaic data augmentation, Self-Adversarial Training, Eliminate grid sensitivity, Using multiple anchors for a single ground truth, Cosine annealing scheduler, Optimal hyper- parameters, Random training shapes
- Bag of Specials : Mish activation, SPP-block, SAM-block, PAN path-aggregation block, DIoU-NMS

Network Architecture

Cross Stage Partial network (CSPNet)

첫 layer feature 절반을 나눈 후 하나는 dense block에 통과, 나머지는 transition layer에 concatenate Computational bottleneck 제거, memory cost 절감, Inference 속도 향상

Network Architecture

SPP Block (Spatial Pyramid Pooling)

SPP Block to increase the receptive field

Network Architecture

PANet (Path Aggregation Network)

기존 FPN 구조에서 정보 전달이 잘 되지 않는 점을 보안하기위해 추가적인 Short cut을 추가하여 shorten the information path

Replace addition shortcut connection of PAN to concatenation

Influence of different features on Classifier training

Table 2: Influence of BoF and Mish on the CSPResNeXt-50 classifier accuracy.

MixUp	CutMix	Mosaic	Bluring	Label Smoothing	Swish	Mish	Top-1	Top-5
							77.9%	94.0%
✓							77.2%	94.0%
	✓						78.0%	94.3%
		\checkmark					78.1%	94.5%
			✓				77.5%	93.8%
				✓			78.1%	94.4%
					\checkmark		64.5%	86.0%
						✓	78.9%	94.5%
	✓	✓		✓			78.5%	94.8%
	\checkmark	√		√		\checkmark	79.8%	95.2%

Table 3: Influence of BoF and Mish on the CSPDarknet-53 classifier accuracy.

MixUp	CutMix	Mosaic	Bluring Label Smoothing	Swish Mish	Top-1	Top-5
					77.2%	93.6%
	✓	✓	✓		77.8%	94.4%
	√	\checkmark	✓	✓	78.7%	94.8%

CutMix

Mosaic

Label Smoothing

Mish

Influence of different features on Detector training

BoF

Table 4: Ablation Studies of Bag-of-Freebies. (CSPResNeXt50-PANet-SPP, 512x512).

S: Eliminate grid sensitivity

M: Mosaic data augmentation

IT: IoU threshold

GA: Genetic algorithms

LS: Class label smoothing

CBN: CmBN

CA: Cosine annealing scheduler

DM: Dynamic mini-batch size

OA: Optimized Anchors

Loss: GloU, CloU, DloU, MSE

S	M	IT	GA	LS	CBN	CA	DM	OA	loss	AP	AP ₅₀	AP ₇₅
									MSE	38.0%	60.0%	40.8%
\checkmark									MSE	37.7%	59.9%	40.5%
	\checkmark								MSE	39.1%	61.8%	42.0%
		✓							MSE	36.9%	59.7%	39.4%
			\checkmark						MSE	38.9%	61.7%	41.9%
				✓					MSE	33.0%	55.4%	35.4%
					✓				MSE	38.4%	60.7%	41.3%
						✓			MSE	38.7%	60.7%	41.9%
							✓		MSE	35.3%	57.2%	38.0%
✓									GIoU	39.4%	59.4%	42.5%
✓									DIoU	39.1%	58.8%	42.1%
✓									CIoU	39.6%	59.2%	42.6%
\checkmark	_	\	_						CIoU	41.5%	64.0%	44.8%
	✓		✓					✓	CIoU	36.1%	56.5%	38.4%
\checkmark	_	_	_					_	MSE	40.3%	64.0%	43.1%
\	√	√	_					✓	GIoU	42.4%	64.4%	45.9%
\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	CIoU	42.4%	64.4%	45.9%

Influence of different features on Detector training

BoS

Table 5: Ablation Studies of Bag-of-Specials. (Size 512x512).

Model	AP	AP_{50}	AP ₇₅
CSPResNeXt50-PANet-SPP	42.4%	64.4%	45.9%
CSPResNeXt50-PANet-SPP-RFB	41.8%	62.7%	45.1%
CSPResNeXt50-PANet-SPP-SAM	42.7%	64.6%	46.3%
CSPResNeXt50-PANet-SPP-SAM-G	41.6%	62.7%	45.0%
CSPResNeXt50-PANet-SPP-ASFF-RFB	41.1%	62.6%	44.4%

Other Influences on Detector training

Influence of different backbones and pretrained weightings on Detector training

Table 6: Using different classifier pre-trained weightings for detector training (all other training parameters are similar in all models).

Model (with optimal setting)	Size	AP	AP_{50}	AP_{75}
CSPResNeXt50-PANet-SPP	512x512	42.4	64.4	45.9
CSPResNeXt50-PANet-SPP (BoF-backbone)	512x512	42.3	64.3	45.7
CSPResNeXt50-PANet-SPP (BoF-backbone + Mish)	512x512	42.3	64.2	45.8
CSPDarknet53-PANet-SPP (BoF-backbone)	512x512	42.4	64.5	46.0
CSPDarknet53-PANet-SPP (BoF-backbone + Mish)	512x512	43.0	64.9	46.5

Other Influences on Detector training

Influence of different mini-batch size on Detector training

Table 7: Using different mini-batch size for detector training.

Model (without OA)	Size	AP	AP_{50}	AP ₇₅
CSPResNeXt50-PANet-SPP (without BoF/BoS, mini-batch 4)	608	37.1	59.2	39.9
CSPResNeXt50-PANet-SPP (without BoF/BoS, mini-batch 8)	608	38.4	60.6	41.6
CSPDarknet53-PANet-SPP (with BoF/BoS, mini-batch 4)	512	41.6	64.1	45.0
CSPDarknet53-PANet-SPP (with BoF/BoS, mini-batch 8)	512	41.7	64.2	45.2

Results

다른 state-of-the-art object detectors 와 비교했을 때 성능이 좋음을 보임

Conclusions

Offer a state-of-the-art detector which is faster (FPS) and more accurate

YOLO v4 can be Trained and used on a conventional GPU with 8-16 GB-VRAM this makes its broad use possible

verified a large number of features, and selected for use such of them for improving the accuracy of both the classifier and the detector