2020

CHEMISTRY — HONOURS — PRACTICAL

Paper: CC-1P

Full Marks: 30

The figures in the margin indicate full marks.

INORGANIC CHEMISTRY

(Marks: 20)

- 1. For the estimation of the quantity of Fe^{III} and Cu^{II} present in a mixture in g/L:
 - (a) Write down the principle of estimation mentioning all the equations involved and derive the working formula.
 - (b) Using the following data calculate the strength of \sim (N/20) Na₂S₂O₃ solution.
 - (i) 0.6430 g of $\text{K}_2\text{Cr}_2\text{O}_7$ has been accurately weighed, transferred to a 250 ml volumetric flask and volume is made up with distilled water.
 - (ii) Standardization of $Na_2S_2O_3$ by standard $K_2Cr_2O_7$.

No. of titrations	Volume of	Burette reading of Na ₂ S ₂ O ₃ solution (ml)			
	standard K ₂ Cr ₂ O ₇ taken (m1)	Initial.	Final	Difference	Most frequent reading
1	25	0	25.2	25.2	25.2
2	25	0	25.2	25.2	
3	25	0	25.3	25.3	

- (c) Using the above data, calculate the amount of Fe^{III} and Cu^{II} in g/L using the following specimen results:
 - (i) Table for estimation of Cu^{II}:

No. of titrations	Volume stock solution taken (ml)	Burette reading of Na ₂ S ₂ O ₃ solution (ml)			
		Initial	Final	Difference	Most frequent reading
1	25	0	31.4	31.4	31.4
2	25	0	31.3	31.3	
3	25	0	31.4	31.4	

(ii) Table for estimation of Fe^{III}:

No. of	Volume stock	Burette reading of K ₂ Cr ₂ O ₇ solution (ml)			
titrations	solution taken (ml)	Initial	Final	Difference	
1	25	0	28.7	28.7	

10+(2+2)+(3+3)

(2)

ORGANIC CHEMISTRY (IA)

(Marks: 10)

2. You are given a 1:1 mixture of two pure solids, (a) p-Chlorobenzoic acid and (b) Naphthalene.

How would you separate them into two pure components using their solubility in different solvents only? Describe the procedure of separation and give reasons for the choice of solvent.

- (a) Choice of solvent
- (b) Procedure of separation
- (c) Explanation. 2+4+4