MATH 7343 Applied Statistics

Prof. (Aidong) Adam Ding

Review

• Last time, we finished Module 3 (confidence intervals)

• We also started on the hypothesis testing (Chapter 10).

Two types of errors in hypothesis testing

True state

H₀ is true

H_A is true

Decision

Fail to reject H₀
(Not guilty)

Reject H₀

Correct

1-α

Type I error

 α

Type II error

B

Correct

 $1-\beta$

 α = P(reject H₀ | H₀ is true) is also called **significance level** (or size)

 β = P(fail to reject H₀ | H_A is true). 1- β is called the **power**.

How to conduct hypothesis testing

At α level (type I error rate):

• To test $\mathbf{H_0}$: $\mu \ge \mu_0$ versus $\mathbf{H_A}$: $\mu < \mu_0$

Reject
$$H_0$$
 if $T_{obs} = \frac{\bar{X}_{obs} - \mu_0}{s/\sqrt{n}} < -t_{n-1,\alpha}$

$$\Leftrightarrow \overline{X}_{obs} < \mu_0 - t_{n-1,\alpha} s / \sqrt{n}$$

• To test \mathbf{H}_0 : $\mu \leq \mu_0$ versus \mathbf{H}_{Δ} : $\mu > \mu_0$

Reject
$$\mathbf{H_0}$$
 if $T_{obs} = \frac{\overline{X}_{obs} - \mu_0}{s/\sqrt{n}} > \mathbf{t}_{\text{n-1},\alpha}$.

2-sided hypothesis testing

We may need to test 2-sided hypothesis (E.g., do the new drug perform different from the standard drug?)

• To test, at α level, $\mathbf{H_0}$: $\mu = \mu_0$ versus $\mathbf{H_A}$: $\mu \neq \mu_0$

Reject
$$\mathbf{H_0}$$
 if $T_{obs} = \lfloor \frac{\bar{X}_{obs} - \mu_0}{s/\sqrt{n}} \rfloor > \mathbf{t}_{cutoff}$

Since we want $\alpha = P(|\frac{\overline{X}_{obs} - \mu_0}{s/\sqrt{n}}| > t_{cutoff}| \mu = \mu_0)$ = $P(|t_{n-1}| > t_{cutoff})$

So
$$t_{cutoff} = t_{n-1,\alpha/2}$$
.

Pain reliever example: 2-sided test

Do the new drug and standard drug perform differently?

- Test H_0 : μ =3.5 versus H_{Δ} : $\mu \neq$ 3.5
- At α =0.05 level, from Table A.4, $t_{119,0.025} \approx t_{120,0.025} = 1.98$ (If use R, qt(1-0.025, df=119) gives a more accurate number) In fact, we observe $T_{obs} = \left| \frac{3.2 - 3.5}{1.14 / \sqrt{120}} \right| = 2.88$ indeed >1.98 Hence, we do reject H_0 at α =0.05 level

Conclusion: Two drugs do perform differently.

Significance test (p-value)

P-value

= $P(\text{obtaining data as extreme or more extreme than observed } \mid H_0 \text{ is true})$

Pain reliever example: 2-sided p-value

Do the new drug and standard drug perform differently?

p-value =
$$P(|t_{119}| \ge 2.88)$$

From Table A.4,

$$t_{120,0.005} = 2.617, t_{120,0.0005} = 3.373$$

So 2(0.0005)<p-value<2(0.005)

Or 0.001< p-value< 0.01

TABLE A.4	
Percentiles of the	t distribution

Area in Upper Tail						
df	0.10	0.05	0.025	0.01	0.005	0.0005
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31,599
3	1.638	2,353	3.182	4.541	5.841	12.924
4	1.533	2.132	2.776	3.747	4.604	8.610

•	• • •					
100	1.270	1,000	45707	2.307		0.070
110	1.289	1.659	1.982	2.361	2.621	3.381
120	1.289	1.658	1.980	2.358	(2.617)	(3.373)
00	1.282	1.645	1.960	2.327	2.576	3.291

So reject H_0 at 0.01 level but not at 0.001 level.

Using R, we get a more accurate number:

$$2(1-pt(2.88, df=119)) = 0.004717498$$

Significance test versus hypothesis test

• A hypothesis test rejects H_0 if and only if p-value of the corresponding significance test is less than α .

• For example, to test $\mathbf{H_0}$: $\mu \leq \mu_0$ versus $\mathbf{H_A}$: $\mu > \mu_0$ 1-sided test rejects H_0 when $T_{obs} > t_{cutoff}$ where $P(T \ge t_{cutoff} \mid H_0) = \alpha$. Recall p-value= $P(T \ge T_{obs} \mid H_0)$ So p-value $< \alpha \iff T_{obs} > t_{cutoff}$

Confidence interval versus hypothesis test

- A (1- α) 1-sided upper CI for μ is $(-\infty, \overline{X} + t_{n-1, \alpha}, \frac{s}{\sqrt{n}})$.
- The 1-sided test for $\mathbf{H_0}$: $\mu = \mu_0$ versus $\mathbf{H_A}$: $\mu < \mu_0$ rejects H_0 at α level when $T_{obs} < -t_{n-1,\alpha}$

$$\Leftrightarrow \frac{\bar{X}_{obs} - \mu_0}{s/\sqrt{n}} < -t_{n-1,\alpha}$$

$$\Leftrightarrow \bar{X}_{obs} - \mu_0 < -t_{n-1,\alpha} s/\sqrt{n}$$

$$\Leftrightarrow \mu_0 > \bar{X}_{obs} + t_{n-1,\alpha} s/\sqrt{n}$$

So <u>rejects</u> H_0 at α level if and only if true parameter value μ_0 is <u>outside</u> the (1- α) confidence interval.

Confidence interval versus hypothesis test

• For one-sided test, <u>rejects</u> H_0 at α level if and only if true parameter value μ_0 is <u>outside</u> the (1- α) one-sided confidence interval.

• Similarly, for two-sided test, <u>rejects</u> H_0 at α level if and only if true parameter value μ_0 is <u>outside</u> the $(1-\alpha)$ two-sided confidence interval.

• Due to this equivalence, t.test() gave CI.

R commands for hypothesis testing

Recall the grocery example (In CalculateCI.pdf)

```
H_0: \mu=22 versus H_{\Delta}: \mu \neq 22
Test
> t.test(x, mu=22)
          One Sample t-test
data: x
t = 1.6794, df = 49, p-value = 0.09945
alternative hypothesis: true mean is not equal to 22
95 percent confidence interval:
21.24567 30.42713
sample estimates:
mean of x
 25.8364
• T_{obs} = |\frac{X_{obs}-22}{s/\sqrt{n}}| = \frac{1.6794}{1.6794}, df=n-1=49, p-value=P(|t<sub>49</sub>| \ge 1.6794)=0.09945 >0.05
```

- So fail to reject H_0 : μ =22 at α =0.05 level
- Corresponding, the 95% 2-sided CI (21.25, 30.43) contains 22.

R commands for hypothesis testing

Recall the grocery example (In CalculateCI.pdf)

• How about 1-sided test H_0 : $\mu \le 22$ versus H_{Δ} : $\mu > 22$

From R outputs above, we already get

$$T_{obs} = \left| \frac{\bar{X}_{obs} - 22}{s/\sqrt{n}} \right| = 1.6794, \text{ df=n-1=49},$$

2-sided p-value= $P(|t_{49}| \ge 1.6794) = 0.09945^{3}$

1-sided p-value=?

$$= P(t_{49} \ge 1.6794) = \frac{1}{2}P(|t_{49}| \ge 1.6794) = \frac{1}{2}(0.09945) = 0.0497$$

- So <u>reject</u> H_0 : $\mu \le 22$ at $\alpha = 0.05$ level.
- Notice that we do the test through p-value in R outputs always.
- For 1-sided test, we can let R do it directly by

Statistical significance vs. practical significance

- Example: Does Coca-Cola 2-liter bottle contains 2 liter coca on average?
- Statistical Test H_0 : μ = 2 versus H_A : μ ≠2 Assume that σ =0.01 liter. Test at α =0.05 level
- Sample 10 bottles, reject H_0 if $Z = |\frac{\bar{X}-2}{0.01/\sqrt{10}}| > z_{\alpha/2} = 1.96$
- $\Leftrightarrow \overline{X} > 2 + (1.96)0.01/\sqrt{10} = 2.0062$ or $\overline{X} < 2 (1.96)0.01/\sqrt{10} = 1.9938$
- Sample 1 million bottles, reject H_0 if $Z = |\frac{\bar{X}-2}{0.01/\sqrt{1,000,000}}| > 1.96$
- $\Leftrightarrow \bar{X} > 2 + (1.96)0.00001 = 2.000022$ or $\bar{X} < 1.99998$
- Do we really care if μ = 2.00001 or 1.999?

Statistical significance vs. practical significance

• Example: Kepler's Law says that the orbit of a planet is an ellipse with the Sun at one of the two foci.

planet

- Statistical Test formulation
 - H_0 : The orbit is an ellipse.
 - H_{Δ} : The orbit is NOT an ellipse.
- Using Kepler's measurements, we can not reject H_0 (so accept H_0).
- If we use today's measurements, we will reject H_0
- More accurate measurements bring punishment.

Statistical significance vs. practical significance

How to deal with this issue?

One way: define practical importance first then test.

Cola example:

We are concerned only if the Cola 2-liter bottle μ <1.99

Then we test H_0 : $\mu \ge 1.99$ (instead of $\mu \ge 2$) versus H_{Δ} : $\mu < 1.99$

Second way: always report the confidence interval.

For example, in two cases the 95% CIs are respectively (1.85, 1.95) and (1.9997, 1.99998). While both case reject $\mu \ge 2$, you can make judgement on the CI on whether practically the results are significant.

Power calculation

Recall that **power** = $1 - \beta = P(Reject H_0 | H_A is true)$.

We can calculate this if we know the truth under H_A.

True state

Fail to reject H_0 Decision

Reject H_0

(Not guilty)

H ₀ is true	H _A is true
Correct 1-α	Type II error
Type I error	Correct 1-β

Power calculation

• Example: 1-sided Test H_0 : μ = 2 versus H_A : μ <2

Assume that σ =0.1. Reject H₀ if $\frac{\bar{X}-2}{0.1/\sqrt{n}} < -z_{\alpha}$.

Say n=100, α =0.05 and true μ =1.98.

Then power =P(Reject H₀ | μ =1.98) =P($\frac{X-2}{0.1/\sqrt{100}}$ < -1.645 | μ =1.98)

$$=P(\frac{\bar{X}-1.98-0.02}{0.01}<-1.645\,|\,\mu=1.98)=P(Z-\frac{0.02}{0.01}<-1.645)$$

$$=P(Z < 0.355) = 1 - P(Z \ge 0.355) = 1 - \frac{0.361}{0.361} = 0.639$$
 (TableA.3)

Power calculation

- Notice that the power changes with α and n.
- As $\alpha \nearrow$, the cutoff line \nearrow , thus the power \nearrow .

• As $n \nearrow$, the two distributions are more separated.

1.28

Sample size calculation

• For cola bottles, we want to test H_A : μ <2 at level α =0.05 (assume that we know σ =0.1).

We also want the power to be 90% when $\mu = 1.99$.

How many bottles are needed?

• Solution: Want

$$0.90 = power = P(\frac{\bar{X}-2}{0.1/\sqrt{n}} < -1.645 | \mu=1.99)$$

$$= P(\frac{\bar{X}-1.99}{0.1/\sqrt{n}} - \frac{0.01}{0.1/\sqrt{n}} < -1.645 | \mu=1.99)$$

$$= P(Z - 0.1\sqrt{n} < -1.645) = P(Z < 0.1\sqrt{n} -1.645)$$

So
$$\frac{1.28}{1.28} = 0.1\sqrt{n}$$
 -1.645 (TableA.3) $\Rightarrow \sqrt{n} = 29.25$, so $n = (29.25)^2 = 855.6 = 856$ (Round up!)

At least 856 bottles are needed for the test.

Sample size calculation

- Notice that for sample size calculation, we have used z-interval and z-test. Why?
- Generally for inference, we use t-interval and t-test. For sample size calculation in experimental design, we used z-interval and z-test. (Actually, more precise calculation should also use t-interval and t-test. Special software is needed for this.)

Inferences about the population mean μ

• Point estimator
$$\overline{X}$$
: $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1), \quad \frac{\overline{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$

• Confidence intervals: σ known or σ unknown

2-sided:
$$(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$
 or $(\overline{X} - t_{n-1, \alpha/2} \frac{s}{\sqrt{n}}, \overline{X} + t_{n-1, \alpha/2} \frac{s}{\sqrt{n}})$
1-sided: $(\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty) / (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$ or $(\overline{X} - t_{n-1, \alpha} \frac{s}{\sqrt{n}}, \infty) / (-\infty, \overline{X} + t_{n-1, \alpha} \frac{s}{\sqrt{n}})$

Test $\mathbf{H_0}$: $\mu = \mu_0$ versus $\mathbf{H_\Delta}$: $\mu \neq \mu_0$

Reject
$$\mathbf{H_0}$$
 if $T_{obs} = |\frac{\overline{X}_{obs} - \mu_0}{s/\sqrt{n}}| > \mathbf{t}_{n-1,\alpha/2}$

p-value= $P(T \ge T_{obs} \mid H_0)$ = max level to reject H_0 for observed data.

Reject H₀ if p-value<\alpha. (equivalent to μ_0 outside 1- α CI).

Inferences about the population mean μ

How much of these inferences we can do without probability theory?

- Point estimator is the best guess. So obviously we will use the sample mean \overline{X} .
- Interval estimate gives an assessment of uncertainty. We may not get the interval, but can have an intuitive comparison.
- Data set one: 11, 52, -3. Data set two: 20,21,20.5

$$\bar{X}_1 = \frac{11+52+(-3)}{3} = 20, \qquad \bar{X}_2 = \frac{20+21+20.5}{3} = 20.5$$

Obviously X_2 is more accurate and data set two should have a shorter confidence interval.

Inferences about the population mean μ

How much of these inferences we can do without probability theory?

• Test $\mathbf{H_0}$: μ = 22 versus $\mathbf{H_A}$: $\mu \neq$ 22

Without theory, can not say if reject or not. But Date Two is more likely to reject by intuition.

• Test H_0 : μ = 20.5 versus H_{Δ} : $\mu \neq$ 20.5

Data set one more likely to reject. (That is also very unlikely, but more likely than data set two which has \bar{X}_2 =20.5)

• Theory enable us to quantify the inference.

Summary

Module 4 done. You should know:

- How to set up your study as a hypothesis test
- Which test to use? t or z, 1-sided vs. 2-sided
- Sample size calculation for achieving power.
- Concepts related to hypothesis testing: Type I/II error rates, practical significance, p-value, etc.
- Homework 4 will be on this module and next together.
- Next lecture we cover the next module on two sample comparison (chapter 11).