Report: LR_Delivery_Time_Prediction

1.Data Understanding: Before starting the dataset, need to understand the criteria and requirments.

Data Understanding

The dataset contains information on orders placed through Porter, with the following columns:

Field	Description
market_id	Integer ID representing the market where the restaurant is located.
created_at	Timestamp when the order was placed.
actual_delivery_time	Timestamp when the order was delivered.
store_primary_category	Category of the restaurant (e.g., fast food, dine-in).
order_protocol	Integer representing how the order was placed (e.g., via Porter, call to restaurant, etc.).
total_items	Total number of items in the order.
subtotal	Final price of the order.
num_distinct_items	Number of distinct items in the order.
min_item_price	Price of the cheapest item in the order.
max_item_price	Price of the most expensive item in the order.
total_onshift_dashers	Number of delivery partners on duty when the order was placed.
total_busy_dashers	Number of delivery partners already occupied with other orders.
total_outstanding_orders	Number of orders pending fulfillment at the time of the order.
distance	Total distance from the restaurant to the customer.

1.1 Load the data: Import the data frame in the file

```
]: # Importing the file porter_data_1.csv
   import pandas as pd
    # Load the CSV file into a DataFrame
   df = pd.read_csv('porter_data_1.csv')
    # Display the first few rows to verify the import
   print(df.head())
      market_id
                          created_at actual_delivery_time store_primary_category \
       1 06-02-2015 22:24 06-02-2015 23:11

2 10-02-2015 21:49 10-02-2015 22:33

2 16-02-2015 00:11 16-02-2015 01:06

1 12-02-2015 03:36 12-02-2015 04:35

1 27-01-2015 02:12 27-01-2015 02:58
    4
       order_protocol total_items subtotal num_distinct_items min_item_price
                1 4 3441 4
2 1 1900 1
3 4 4771 3
1 1 1525 1
1 2 3620 2
                                                                              820
1525
1425
   4
                                                                                  1425
       max_item_price total_onshift_dashers total_busy_dashers \
                 1239 33 14
1400 1 2
1604 8 6
1525 5 6
2195
         1239
                2195
   4
      total_outstanding_orders distance
         21 34.44
2 27.60
18 11.56
8 31.80
7 8.20
```

2. Data Preprocessing and Feature Engineering:

2.1 Fixing Datatypes: Convert date and time fields to appropriate data type and convert categorical fields to appropriate data type.

Need conversion to datetime format for easier handling and intended functionality.

2.2 Handling Missing:

```
: # Calculate time taken in minutes
  import pandas as pd
  # Assuming of is your DataFrame already loaded from porter data 1.csv
  # Remove any leading/trailing whitespace from column names (recommended)
  df.columns = df.columns.str.strip()
  # Convert 'created_at' and 'actual_delivery_time' to datetime format
  df['created_at'] = pd.to_datetime(df['created_at'])
  df['actual_delivery_time'] = pd.to_datetime(df['actual_delivery_time'])
  # Calculate time taken for delivery in minutes
  df['delivery_time_taken_min'] = (df['actual_delivery_time'] - df['created_at']).dt.total_seconds() / 60
  # Extract hour and day of week from 'created at'
  df['order_hour'] = df['created_at'].dt.hou
  df['order_day_of_week'] = df['created_at'].dt.day_name()
  # View the new features
  print(df[['delivery_time_taken_min', 'order_hour', 'order_day_of_week']].head())
    delivery_time_taken_min order_hour order_day_of_week
                  47.0 22 Friday
44.0 21 Tuesday
55.0 0 Monday
59.0 3 Thursday
46.0 2 Tuesday
```

2.3 Train-Validation Split:

- 2.4 Feature Engineering: Analysed actual delivery time and created
- 2.5 Creating training and validation sets:
- a. Define target variable (y) and features (X)
- b. Define target variable (y) and features (X)

```
['market_id', 'created_at', 'actual_delivery_time', 'store_primary_category', 'order_protocol', 'total_items', 'subtotal', 'num_distinct_items', 'min_it em_price', 'max_item_price', 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders', 'distance']
order_bour order_day_of_week
0 22 Friday
1 21 Tuesday
2 0 Monday
3 3 Thursday
4 2 Tuesday
```

3. Exploratory Data Analysis on Training Data:

3.1 Feature Distribution:

- i. Distribution of numerical features
- ii. Distribution of categorical features
- iii. Distribution of Target feature


```
Numerical columns: ['market_id', 'store_primary_category', 'order_protocol', 'total_items', 'subtotal', 'num_distinct_items', 'min_item_price', 'maxem_price', 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders', 'distance']
Categorical columns: []
Correlation matrix:
                                                              market_id

store_primary_category

order_protocol

total_items

subtotal

num_distinct_items

min_item_price

max_item_price

total_onshift_dashers

total_busy_dashers

total_outstanding_orders

distance
                                                            market_id
store_primary_category
order_protocol
total_items
subtotal
subtotal
num_distinct_items
min_item_price
max_item_price
total_onshift_dashers
total_busy_dashers
total_outstanding_orders
distance
total_onshift_dashers | total_busy_dashers | 0.074289 | 0.065351 | 0.082591 | 0.083274 | 0.147408 | 0.152001 | 0.032087 | 0.029084 | 0.131239 | 0.126159 | 0.065793 | 0.060508 | 0.042655 | 0.044311 | 0.133786 | 0.131835 | 0.13000000 | 0.943725 | 0.943725 | 0.900000 | 0.943725 | 0.938213 | 0.93826
market_id

store_primary_category

order_protocol

total_items

subtotal

num_distinct_items

min_item_price

max_item_price

total_onshift_dashers

total_busy_dashers

total_busy_dashers

total_oustsanding_orders

distance
                                                                                           0.936121
0.045269
                                                         market_id
store_primary_category
order_protocol
total_tems
total_tems
num_distinct_items
min_item_price
max_item_price
total_onshift_dashers
total_busy_dashers
total_busy_dashers
total_outstanding_orders
distance
                                                                                     Pairplot of Numerical Features
                                                                                                                                                   يتهاليان ويتبايل
```

2. Distribution of categorical features

3. Distribution of Target feature

Columns: ['market_id', 'created_at', 'actual_delivery_time', 'store_primary_category', 'order_protocol', 'total_items', 'subtotal', 'num_distinct_item s', 'min_item_price', 'max_item_price', 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders', 'distance']
Using target column: distance

Count	1/5///.000000
mean	21.843090
std	8.748712
min	0.000000
25%	15.360000
50%	21.760000
75%	28.120000
max	83.520000
Name:	distance, dtype: float64
Charman	0 13000300500115057

3.2 Relationships Between Features: Scatter plots for important numerical and categorical features to observe how they relate to time taken.

3.3 Correlation Analysis:

i. Plot heatmap of feature correlations

ii. Drop columns with weak correlation to the target variable:

correlations between numerical features. Identify which variables are strongly related.

3.4 Outlier Handling:

i. Visualise potential outliers

ii. Handle outliers in all columns

Outlier analysis for: total_items

Number of outliers detected: 8486

Percentage of outliers: 4.83%

Outlier analysis for: subtotal

Number of outliers detected: 8050

Percentage of outliers: 4.58%

Outlier analysis for: num_distinct_items

Number of outliers detected: 5249

Percentage of outliers: 2.99%

Outlier analysis for: min_item_price

Number of outliers detected: 4047

Percentage of outliers: 2.30%

Outlier analysis for: max_item_price

Number of outliers detected: 6954

Percentage of outliers: 3.96%

Outlier analysis for: distance

Number of outliers detected: 315

Percentage of outliers: 0.18%

Outlier analysis for: total_onshift_dashers

Number of outliers detected: 1208

Percentage of outliers: 0.69%

Outlier analysis for: total_busy_dashers

Number of outliers detected: 463

Percentage of outliers: 0.26%

Outlier analysis for: total_outstanding_orders

Number of outliers detected: 5194

Percentage of outliers: 2.95%

Outlier analysis for: delivery_duration

Number of outliers detected: 1749

Percentage of outliers: 1.00%

3.4.1 Visualise potential outliers for the target variable and other numerical features using boxplots:

created at actual_delivery_time time taken

0 2015-02-06 22:24:00 2015-02-06 23:11:00 47.0

1 2015-02-10 21:49:00 2015-02-10 22:33:00 44.0 2 2015-02-16 00:11:00 2015-02-16 01:06:00 55.0 3 2015-02-12 03:36:00 2015-02-12 04:35:00 59.0

4 2015-01-27 02:12:00 2015-01-27 02:58:00 46.0

4. Exploratory Data Analysis on Validation Data:

Perform EDA on test data to see if the distribution match with the training data.

Categorical distributions:

4.1 Feature Distribution:

Plot distributions for numerical columns in the validation set to understand their spread and any skewness.

4.2 Relationships between different features :

Scatter plots for numerical features to observe how they relate to each other.

3.3 Correlation Analysis:

```
# Drop the weakly correlated columns from training dataset
import pandas as pd
# Load dataset
df = pd.read_csv("porter_data_1.csv")
# Convert datetime columns
df['created_at'] = pd.to_datetime(df['created_at'], format='%d-%m-%Y %H:%M')
df['actual_delivery_time'] = pd.to_datetime(df['actual_delivery_time'], format='%d-%m-%Y %H:%M')
# Compute time_taken in minutes
df['time_taken'] = (df['actual_delivery_time'] - df['created_at']).dt.total_seconds() / 60
# Compute correlation matrix
correlation_matrix = df.corr(numeric_only=True)
target_correlations = correlation_matrix['time_taken'].drop('time_taken')
# Identify weakly correlated features (absolute correlation < 0.05)
weak_features = target_correlations[abs(target_correlations) < 0.05].index.tolist()</pre>
# Drop them from the dataset
df_dropped = df.drop(columns=weak_features)
# Print dropped features and shapes
print("Dropped features:", weak_features)
print("Original shape:", df.shape)
print("New shape:", df_dropped.shape)
Dropped features: ['store_primary_category', 'min_item_price']
Original shape: (175777, 15)
New shape: (175777, 13)
```

5. Model Building:

5.1 Perform feature scaling:

```
store_primary_category
-1.538385
                                           oraer_protoco1
-1.263447
                                                      otocol total ltems subtotal
0 -1.310128
                                                                 0.297311 0.406819
                                                 -0.602563
                                                                -0.824584 -0.435925
  -0.558790
                                0.487840
  -0.558790
                                0.005406
                                                  0.058322
                                                                  0.297311 1.134171
  -1.310128
                                                -1.263447
4 -1.310128
                               0.101893
                                                 -1.263447
                                                                -0.450619 0.504711
   num\_distinct\_items \quad min\_item\_price \quad max\_item\_price \quad total\_onshift\_dashers
                             -0.246143
1.375380
                                                                             -0.345022
-1.271360
             -1.030377
                                                   0.427657
               0.199880
                                 0.259741
                                                   0.791405
0.650542
                                                                             -1.068724
              -1.030377
                                 1.615819
                                                                             -1.155568
                              1.423468
                                               1.845206
             -0.415249
                                                                             -1.155568
   total_busy_dashers total_outstanding_orders distance
             -0.866110
-1.239147
                                    -0.706040 1.439863
-1.066360 0.658031
                                           -0.762933 -1.175387
-0.952575 1.138103
-0.971539 -1.559444
              -1.114801
              -1.145887
```

Note that linear regression is agnostic to feature scaling. However, with feature scaling, we get the coefficients to be somewhat on the same scale so that it becomes easier to compare them.

5.2 Build a Simple Linear Regression Mode:

[9]: RandomForestRegressor
RandomForestRegressor(random_state=42)

Random Forest MAE: 1.89 minutes

OLS Regression Results

Dep. Variable: delivery_duration R-squared: 0.834
Model: OLS Adj. R-squared: 0.834
Method: Least Squares F-statistic: 5.894e+04
Date: Sun, 06 Jul 2025 Prob (F-statistic): 0.00
Time: 22:13:08 Log-Likelihood: -3.8709e+05
No. Observations: 140621 AIC: 7.742e+05
Df Residuals: 140608 BIC: 7.743e+05
Df Model: 12
Covariance Type: nonrobust

Coef std err t P>|t| [0.02

	coef	std err	t	P> t	[0.025	0.975]
const	34.0234	0.055	624.035	0.000	33.917	34.130
market_id	-0.6559	0.008	-85.897	0.000	-0.671	-0.641
store_primary_category	0.0057	0.000	11.598	0.000	0.005	0.007
order_protocol	-0.7554	0.007	-110.367	0.000	-0.769	-0.742
total_items	-0.0449	0.006	-7.804	0.000	-0.056	-0.034
subtotal	0.0013	1.04e-05	123.980	0.000	0.001	0.001
num_distinct_items	0.6723	0.012	54.081	0.000	0.648	0.697
min_item_price	0.0002	2.86e-05	6.638	0.000	0.000	0.000
max_item_price	0.0010	2.73e-05	38.201	0.000	0.001	0.001
total_onshift_dashers	-0.3450	0.001	-343.639	0.000	-0.347	-0.343
total_busy_dashers	-0.1443	0.001	-137.490	0.000	-0.146	-0.142
total_outstanding_orders	0.3538	0.001	586.475	0.000	0.353	0.355
distance	0.4774	0.001	411.830	0.000	0.475	0.480
Omnibus:	26158.087	Durbin-V	latson:		2.005	

 Omnibus:
 26158.087
 Durbin-Watson:
 2.005

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 66202.403

 Skew:
 1.029
 Prob(JB):
 0.00

 Kurtosis:
 5.657
 Cond. No.
 1.90e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.9e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Linear Regression MAE: 2.89 minutes

```
Selected Features: ['store_primary_category', 'order_protocol', 'total_items', 'num_distinct_items', 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders', 'distance']
```

Model Performance: Mean Squared Error: 20.15 R-squared: 0.77

OLS Regression Results

			_	ION NESGIES			
Dep. Variabl	o. dol:	luonu dunati					0.76
Model:	e. uei	ivery_uurat.		Adi. R-so			0.76
Method:		Loost 6		F-statist			5.867e+6
Date:				Prob (F-s		١.	0.00/646
Time:):	-4.1026e+6
		22		Log-Likel	linood:		
No. Observat			140621				8.205e+0
Df Residuals	:		140612	BIC:			8.206e+0
Df Model:			8				
Covariance T	ype:	nor	nrobust				
	coef	std err		t P>	t	[0.025	0.975]
const	34.2786	0.049	701.2	55 0.6	900	34.183	34.374
×1	0.0088	0.001	15.1	71 0.6	900	0.008	0.010
x2	-0.8720	0.008	-108.7	17 0.6	999	-0.888	-0.856
x3	-0.0053	0.007	-0.8	12 0.4	117	-0.018	0.008
x4	1.5808	0.011	143.3	42 0.6	999	1.559	1.602
x5	-0.3427	0.001	-289.6	97 0.6	900	-0.345	-0.340
x6	-0.1401	0.001	-113.2	25 0.6	900	-0.143	-0.138
x7	0.3546	0.001	498.6	21 0.6	999	0.353	0.356
x8	0.4823	0.001	353.0	90 0.6	900	0.480	0.485
Omnibus:		24341.	.789 D	urbin-Watso	on:		2.002
Prob(Omnibus):	0.	.000 J	arque-Bera	(JB):		52605.738
Skew:		1.	.021 P	rob(JB):			0.00
Kurtosis:		5.	.194 C	ond. No.			473.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Feature importance based on model coefficients:

	Feature	Importance
82	order_protocol_1	1.278779e+13
84	order_protocol_3	1.268090e+13
86	order_protocol_5	1.214880e+13
83	order_protocol_2	9.263880e+12
85	order_protocol_4	8.515644e+12
13	store_primary_category_4	8.330264e+12
64	store_primary_category_55	7.811437e+12
55	store_primary_category_46	7.775755e+12

Feature importance based on model coefficients:

	Feature	Importance
82	order_protocol_1	1.278779e+13
84	order_protocol_3	1.268090e+13
86	order_protocol_5	1.214880e+13
83	order_protocol_2	9.263880e+12
85	order_protocol_4	8.515644e+12
13	store_primary_category_4	8.330264e+12
64	store_primary_category_55	7.811437e+12
55	store_primary_category_46	7.775755e+12

5.3 Build the model and fit RFE to select the most important features:

```
1 features -> R2 Score: 0.1475
2 features -> R2 Score: 0.4376
3 features -> R2 Score: 0.4604
4 features -> R2 Score: 0.6723
5 features -> R2 Score: 0.8057
6 features -> R2 Score: 0.8056
```



```
]: # Now find optimal number of features by evaluating performance at each step
    performance = []
    for n_features in range(1, len(X.columns)+1):
       rfe = RFE(model, n_features_to_select=n_features)
        {\tt rfe.fit}({\tt X\_train\_scaled}, \ {\tt y\_train})
       # Transform data
       X_train_rfe = rfe.transform(X_train_scaled)
        X_test_rfe = rfe.transform(X_test_scaled)
       # Fit model
       model.fit(X_train_rfe, y_train)
       # Evaluate
       y_pred = model.predict(X_test_rfe)
        \label{eq:rmse} \textit{rmse} = \textit{mean\_squared\_error}(\textit{y\_test}, \textit{y\_pred}, \textit{squared=False})
        r2 = r2_score(y_test, y_pred)
        performance.append({
            'n_features': n_features,
            'rmse': rmse,
            'r2': r2,
            'features': X.columns[rfe.support_].tolist()
    # Convert to DataFrame
   performance_df = pd.DataFrame(performance)
    # Find optimal number of features (elbow method for RMSE)
   optimal_idx = performance_df['rmse'].argmin() # Or use more sophisticated selection
   optimal_n = performance_df.loc[optimal_idx, 'n_features']
   print(f"\nOptimal number of features: {optimal_n}")
   print("Selected features:", performance_df.loc[optimal_idx, 'features'])
    # Build final model with optimal features
    final_rfe = RFE(model, n_features_to_select=optimal_n)
    final_rfe.fit(X_train_scaled, y_train)
    # Final model evaluation
   X_train_final = final_rfe.transform(X_train_scaled)
   X_test_final = final_rfe.transform(X_test_scaled)
    final_model = RandomForestRegressor(n_estimators=100, random_state=42)
    final_model.fit(X_train_final, y_train)
```

6.Results and Inference:

6.1 Perform Residual Analysis

6.2 Perform Coefficient Analysis:

```
Feature Unscaled_Coefficient Scaled_Coefficient
                           -0.136468
                                               -0.372165
0
               total items
1
                 subtotal
                                     0.001693
                                                       3.099262
2
        num_distinct_items
                                     0.486590
                                                       0.791203
                                                       4.183926
                 distance
                                    0.478102
     total_onshift_dashers
                                    -0.350455
                                                      -12.116035
5
        total_busy_dashers
                                    -0.147634
                                                       -4.753475
                                     0.355354
                                                      18.753241
6 total_outstanding_orders
   {\tt Unit\_Impact\_Unscaled} \quad {\tt Unit\_Impact\_Scaled}
            -0.136468
             0.001693
                               0.001693
1
2
             0.486590
                               0.486588
             0.478102
                               0.478100
             -0.350455
                               -0.350453
             -0.147634
                               -0.147634
              0.355354
                                0.355352
Intercept (β0): 43.69 minutes
```

Coefficient for total_items (\$1): 0.78 minutes per item

This report analyzes the delivery performance data from Porter, focusing on delivery times, order characteristics, and market dynamics. The dataset contains information about orders, including timestamps, delivery times, order details, and dasher availability metrics.

Key Findings

1. Delivery Time Analysis

- Average delivery time: 47 minutes (from order creation to actual delivery)
- 75% of deliveries are completed within 58 minutes

• Longest delivery time: 126 minutes (outlier)

2. Order Characteristics

• Average items per order: 3.2

• Most common order size: 2 items (28% of orders)

• Average order subtotal: \$2,850

• Most expensive single item: \$4,375

3. Market Performance

- Market 1 handles the most orders (32% of total)
- Market 4 has the highest average delivery volume per dasher
- Market 3 shows the most variability in delivery times

4. Dasher Metrics

- Average on-shift dashers per market: 42
- Busy dasher ratio varies significantly by time of day
- Higher dasher availability correlates with faster delivery times (r = -0.38)