Lab 08: Dynamic Programming

17 ตุลาคม 2568

ซิกแซก (Z)

เราจะให้ว่าลำดับของ y_1, y_2, \ldots, y_n เป็นลำดับ**ซิกแซก** ถ้าสมาชิกสามตัวที่อยู่ติดกัน (y_i, y_{i+1}, y_{i+2}) มี สมบัติอย่างใดอย่างหนึ่งในสองข้อนี้:

- $y_i < y_{i+1}$ และ $y_{i+1} > y_{i+2}$
- $y_i > y_{i+1}$ และ $y_{i+1} < y_{i+2}$

เมื่อให้ลำดับ x_1, x_2, \ldots, x_n มา เป้าหมายของเราคือการทำ Dynamic Programming เพื่อหาความ ยาวที่ยาวที่สุดของ**ลำดับย่อย (Subsequence)** ที่ซิกแซก โดยให้นิยามว่า $\mathrm{DP}(\mathbf{i}, \mathbf{b})$ คือความยาวของ ลำดับย่อยซิกแซกที่ยาวที่สุดที่จบด้วย x_i และมีเงื่อนไขสำหรับตัว \mathbf{b} ต่อไปนี้

- หากว่า b มีค่าเป็น TRUE หมายความว่าต้องจบด้วยตัว x_i ที่คู่สุดท้ายเป็นแบบ Ascending Pair (ตัว ก่อนสุดท้ายมีค่าน้อยกว่า x_i)
- หากว่า b มีค่าเป็น FALSE หมายความว่าต้องจบด้วยตัว x_i ที่คู่สุดท้ายเป็นแบบ Descending Pair (ตัวก่อนสุดท้ายมีค่ามากกว่า x_i)

และหากมีความยาวเพียง 1 จะถือว่าเป็นลำดับซิกแซกแบบทั้งจบด้วย Ascending และ Descending Pair ยกตัวอย่างสมมติเรามีลำดับต่อไปนี้

$$x_1 = 13$$
, $x_2 = 93$, $x_3 = 86$, $x_4 = 50$, $x_5 = 63$, $x_6 = 4$

เราจะได้ว่า DP(5, TRUE) จะมีค่าเท่ากับ 4 เพราะว่าลำดับย่อยซิกแซกที่ยาวที่สุดที่จบที่ x_5 และ คู่สุดท้ายเป็นแบบ Ascending Pair คือ x_1, x_2, x_4, x_5 หรือ x_1, x_3, x_4, x_5 ในขณะที่ DP(5, FALSE) = 3 โดยเป็นลำดับย่อย x_1, x_3, x_5 (เราจะได้ข้อสังเกตว่าลำดับย่อย (Subsequence) สมาชิกไม่จำเป็นต้อง เป็นตัวติดกันก็ได้)

งานของนักศึกษา

เมื่อให้ลำดับมาเป็น $\{x_1,x_2,\ldots,x_n\}$ จงหา $\mathsf{DP}(\mathbf{i},\;\mathbf{b})$ เมื่อ $i=1,2,\ldots,n$ และ b=True,False (ลองดูตัวอย่างประกอบ)

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม n บอก จำนวน ของ สมาชิก ใน ลำดับ ดัง กล่าว โดยที่ $1 \leq n \leq 1,000,000$
บรรทัดที่ 2	จำนวนเต็ม x_1,x_2,\ldots,x_n แทนสมาชิกในลำดับ แต่ละตัวคั่นด้วยช่องว่างหนึ่ง ช่อง

CPE231 : Algorithms 1 / 2025

ข้อมูลส่งออก (Output)

CPE231 : Algorithms 1 / 2025

บรรทัดที่ 1	 ผลการคำนวณของ DP(1, True), DP(2, True),, DP(n, True) แต่ละตัวคั่นด้วยช่องว่างหนึ่งช่อง ผล การ คำนวณ ของ DP(1, False), DP(2, False),, DP(n, False) แต่ละตัวคั่นด้วยช่องว่างหนึ่งช่อง 	
บรรทัดที่ 2		

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
6	1 2 2 2 4 1
13 93 86 50 63 4	1 1 3 3 3 5
10	1 2 2 4 4 6 6 8 8 10
1 45 2 44 3 43 4 42 5 41	1 1 3 3 5 5 7 7 9 9
11	1 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 10 11	1111111111

KM CCC

เจ้าที่ (Jaothi)

เจ้าที่ ตามติดจนขายได้ เป็นมือขายสินค้าระหว่างภพอันดับ 1 ด้วยวิธีการเชิญแบรนด์มานำเสนอสินค้าผ่าน ควันธูปแบบไม่เหมือนใคร โดยในแต่ละวัน เจ้าที่มีเวลาจำกัดในการใช้ควันธูปขายสินค้า อีกทั้งแต่ละแบรนด์ที่ เชิญมาขายใช้เวลานำเสนอแตกต่างกัน และสร้างรายได้แตกต่างกัน

เจ้าที่ต้องการเลือกสินค้าจากหลายแบรนด์มาขายให้ได้ **รายได้รวมสูงสุด** โดยมีเงื่อนไขว่าเวลาที่ใช้ทั้งหมด ต้องไม่เกินเวลาที่ธูปจะดับ

สมมติว่าเจ้าที่มีธูปที่จุดได้เป็นเวลา 180 นาที และมีสินค้า 5 แบรนด์ดังนี้:

รายชื่อแบรนด์	เวลาที่ใช้ (นาที)	รายได้ (ล้านบาท)
แบรนด์ สหัสชัยควายธนู	30	100
แบรนด์ กุมารทองของข [ั] ลัง	60	300
แบรนด์ สายสิญจน์จีนแดง	90	400
แบรนด์ วายป่วงพวงมาลัย	120	600
แบรนด์ ป่าช้าผ้าดิบ	50	200

ในกรณีนี้จึงเห็นว่า หากเลือกแบรนด์ กุมารทองของขลัง และแบรนด์ วายป่วงพวงมาลัย จะใช้เวลา 180 นาที พอดี และได้รายได้รวม 900 ล้านบาท ซึ่งเป็นค่าที่มากที่สุด

งานของนักศึกษา

เมื่อเจ้าที่ มีแบรนด์ที่จะเชิญเข้ามาจำนวน n แบรนด์ และเจ้าที่มีเวลาไม่เกิน T นาที ให้นักศึกษาหาว่าเจ้า ที่จะเลือกเชิญแบรนด์อย่างไรให้ทำให้รายได้รวมมากที่สุด ภายใต้เวลาธูปที่จำกัด

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม บวก n แสดง จำนวน แบรนด์ ทั้งหมด และ จำนวนเต็ม บวก T แสดงเวลารวมที่ใช้ได้ (หน่วย: นาที)
บรรทัดที่ 2 ถึง $n+1$	สำหรับแต่ละบรรทัด แสดงเวลา t_i และรายได้ของแต่ละแบรนด์ v_i แยก ด้วยช่องว่าง

ข้อมูลส่งออก (Output)

บรรทัดที่ 1	แสดงค่ารายได้สูงสุดที่สามารถทำได้ โดยไม่เกินเวลารวมที่กำหนด (หน่วย:
	ล้านบาท)

CPE231 : Algorithms 1 / 2025

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
5 180	900
30 100	
60 300	
90 400	
120 600	
50 200	
5 65	94
4 20	
5 9	
9 21	
10 18	
7 26	

KM COC

EOD Return (Explosive Ordnance Disposal)

จากสถานการณ์ก่อนหน้านี้ที่ได้มีการพิพาทตามแนวชายแดน และทหารก็ได้รับบาดเจ็บจากกับระเบิดเป็น จำนวนมาก ผู้บังคับบัญชากองทัพจึงได้มาขอความช่วยเหลือจากนักศึกษาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัย เทคโนโลยีอันดับ 1 ของประเทศไทย เพื่อช่วยออกแบบวิธีการเก็บกู้ระเบิดให้กับกองทัพ

เป็นอีกครั้งที่น้อง ๆ ได้เป็นสมาชิกพิเศษในหน่วยเก็บกู้ระเบิด (EOD) และได้รับมอบหมายให้เคลียร์เส้นทาง ลับเส้นใหม่ที่เต็มไปด้วยระเบิดจำนวนมาก ซึ่งวางเรียงตัวตามแนวทางเดินยาว ๆ และน้องต้องค่อย ๆ เลือกเก็บ กู้จากต้นทางจนถึงสิ้นสุดทางที่รับผิดชอบ

ทว่าในรอบนี้กองทัพได้รับงบประมาณที่มากขึ้น ทำให้น้อง ๆ สามารถใช้ชุดกอบกู้ระเบิดได้แบบไม่จำกัด จำนวน ชุดกอบกู้ระเบิดเหล่านี้เมื่อติดตั้งที่ระเบิดลูกใด ก็จะทำให้ระเบิดลูกนั้นระเบิดออกพร้อมทำลายระเบิด ลูกอื่น ๆ ที่อยู่ถัดไปภายในระยะทำลายล้างของระเบิดลูกที่ถูกติดตั้งอุปกรณ์ไปด้วย ด้วยประสิทธิภาพของชุด อุปกรณ์จะมั่นใจได้ว่าจะไม่มีการทำลายล้างย้อนกลับมาด้านหลังจนโดนน้อง ๆ ที่เป็นหน่วยเก็บกู้ และระเบิด ลูกอื่น ๆ ภายในระยะที่โดนทำลายล้างจะทำลายแค่ตัวเอง ไม่ทำให้ระเบิดใกล้เคียงระเบิดต่อ

2 2	Х	X	1
-----	---	---	---

Figure 1: เมื่อเก็บกู้ระเบิดในช่องที่สองที่มีอานุภาพ 2 ช่วง หลังจากเก็บกู้ ระเบิดในช่องที่สามและช่องที่สี่จะ ถูกทำลายไปด้วย แต่ระเบิดในช่องแรกจะไม่ได้รับผลกระทบ

สมมติว่าน้อง ๆ รับผิดชอบเส้นทางเป็นลำดับจำนวน 10 ช่วง (ช่วงละ 1 ตารางเมตร) แต่ละช่วงมีระเบิด อานุภาพตามนี้ (อานุภาพคือระยะที่ระเบิดลูกนั้น ๆ สามารถทำลายล้างเพิ่มจากตำแหน่งที่ระเบิดลูกนั้นถูกติด ตั้ง)

- ช่วงที่หนึ่ง มีระเบิดอานุภาพ 2 ช่วง
- ช่วงที่สอง มีระเบิดอานุภาพ 1 ช่วง
- ช่วงที่สาม มีระเบิดอานุภาพ 3 ช่วง
- ช่วงที่สี่ มีระเบิดอานุภาพ 2 ช่วง
- ช่วงที่ห้า มีระเบิดอานุภาพ 1 ช่วง
- ช่วงที่หก มีระเบิดอานุภาพ 4 ช่วง
- ช่วงที่เจ็ด มีระเบิดอานุภาพ 1 ช่วง
- ช่วงที่แปด มีระเบิดอานุภาพ 4 ช่วง
- ช่วงที่เก้า มีระเบิดอานุภาพ 2 ช่วง
- ช่วงที่สิบ มีระเบิดอานุภาพ 1 ช่วง

CPE231: Algorithms 1 / 2025

สังเกตได้ว่า ถ้าจะเก็บกู้ระเบิดให้ได้**พื้นที่ที่ถูกเก็บกู้มากที่สุด** นับรวมระยะที่อยู่นอกเหนือความรับผิดชอบ ด้วยหากระเบิดลูกที่ทำลายมีอานุภาพไกลออกไป ต้องเก็บระเบิดตำแหน่งที่ 1 (ระยะทำลาย 3: พื้นที่ที่ระเบิด ถูกติดตั้ง + ระยะอานุภาพ), ตำแหน่งที่ 4 (ระยะทำลาย 3) และตำแหน่งที่ 8 (ระยะทำลาย 5) (ไม่จำเป็นต้องใช้ ชุดเก็บกู้ครบทั้ง 4 ชุด และสามารถที่จะเลือกข้ามการเก็บระเบิดบางลูกได้) จะได้ผลรวมพื้นที่เก็บกู้เท่ากับ 11 ตารางเมตร

Figure 2: การเก็บกู้ระเบิดให้ได้พื้นที่ที่ถูกเก็บกู้รวมมากที่สุด

งานของนักศึกษา

จงหาว่าถ้าเส้นทางที่น้องต้องเก็บกู้ระเบิดมีระยะทาง n ช่วง แต่ละช่วงมีระเบิดอานุภาพ B_1, B_2, \ldots, B_n ช่วง <mark>พื้นที่ที่มากที่สุดที่สามารถเก็บกู้ระเบิดได้</mark>จะมีพื้นที่เท่าใด โดยผู้บังคับบัญชากองทัพรับประกันว่าเส้นทาง ที่น้องได้รับมอบหมายจะสามารถใช้ชุดเก็บกู้เท่าไหร่ก็ได้

ข้อมูลนำเข้า (Input)

บรร	รทัด 1	จำนวนเต็ม n แสดงจำนวนช่วงที่ต้องเก็บกู้ระเบิด	
บรร	รทัด 2	จำนวนเต็ม n จำนวน ดังนี้ B_1, B_2, \ldots, B_n (แต่ละตัวคั่นด้วยช่องว่างหนึ่งตัว) แสดง	
		อานุภาพของระเบิดในแต่ละช่วง ซึ่งเป็นจำนวนเต็ม ≥ 0	

ข้อมูลส่งออก (Output)

_		
		d dd d d d d v 0 4 9
- 1	• .	
	9 1559/00 1	โ พันท์ที่มากที่สดที่สามารถเก็บกระเบิดโด
	บรรทด 1	
- 1		9 - 91

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
10	11
2 1 3 2 1 4 1 4 2 1	
8	8
1 1 1 1 1 1 1	
13	14
4 5 3 6 2 7 3 5 4 6 2 4 1	
15	17
2 3 2 4 2 2 2 5 2 6 2 3 2 4 2	

CPE231 : Algorithms 1 / 2025

