

VehID

Remington Greko, Spencer Hirsch, Thomas Johnson, Alexis Nagle

Faculty Advisor(s): Marius Silaghi, Dept. of Electrical Engineering and Computer Science,

Florida Institute of Technology

Goal

To improve public safety by utilizing machine learning to recognize vehicles based upon a variety of characteristics such as color, body type, make, and/or license plate.

Design

Neural Network (NN) Subsystem

- > Utilized pre-exisitng NN architectures
 - MiniVGG (Body and Color Classifications)
 - VoloV8 (Vehicle, Logo, Plate, and Character Detections)
- > Exports results to a JSON file for use in the

Motivation

- ➤ Aid in AMBER alerts, stolen vehicles, and criminal offenses, which tends to rely on pure human interaction to spot and report the specified vehicles.
- > Existing automation only identifies license plate numbers and is not beneficial when only other characteristics are available.

Database

- > Car database: Stores entries of vehicles detected by the NN subsystem.
 - Includes image path, color, body type, make, plate, camera ID, and timestamp.

Web Application

- ➤ Allows for users to interact with the data contained within the databases.
- > User functionalities:
 - Perform queries to search for vehicles with desired characteristics
 - Filter detected vehicle entries to be displayed on its respective web page
 - Edit and delete detected vehicle car entries
 - View saved images for each car entry for manual verification
- ➤ Example Query for any detected Grey-Silver vehicles and corresponding results displayed in the modal.

Implementation

- > Neural Network Subsystem Tools:
 - Utilized various Python libraries
 - OpenCV
 - **■** Tensorflow: Keras, MiniVGG model
 - Ultralytics: YoloV8 models
- > Web Application Tools:
 - HTML/CSS
 - JavaScript
 - Node

Evaluation Results

- > Neural Network Subsystem Evaluation:
 - 95% positive vehicle predictions
 - 45% positive color predictions
 - 32% positive body type predictions
 - 47% positive make predictions (out of the ones that had predictions)
 - 71% had 1 or more attributes correctly predicted
 - 28% had 2 or more attributes correctly predicted
- > Web Application Evaluation:
 - Accurate and timely query results
 - Accurate and timely filter results
 - Timely table population
 - Sleek and intuitive web application design

Limitations

- > Image/Video Quality
- > Weather/Environmental Factors

Improvements

- > Further training and tuning on select models to improve individual performances.
- ➤ Implement web scraping to automatically populate the database with queries from sources such as AMBER alerts.
- ➤ Host web application so queries can be ran repeatedly at set time increments
- > Incorporate into a network of existing cameras.