The physics package

Leedehai

https://github.com/leedehai/typst-physics

Version 0.7.3, May 28, 2023 Doc updated: May 28, 2023

NOTE (2023-04-02): Typst is version 0.x and evolving, and this package evolves with it. Also, the package itself is under development and fine-tuning. While the major version stays 0, no backward compatibility is guaranteed.

Contents

1.	Introduction	2
2.	Using physics	2
3.	The symbols	2
	3.1. Braces	2
	3.2. Vector notations	3
	3.3. Matrix notations	3
	3.4. Dirac braket notations	4
	3.5. Math functions	5
	3.6. Differentials and derivatives	
	3.6.1. Differentials	6
	3.6.2. Ordinary derivatives	7
	3.6.3. Partial derivatives (incl. mixed orders)	7
	3.7. Miscellaneous	8
	3.7.1. Reduced Planck constant (hbar)	8
	3.7.2. Tensors	8
	3.7.3. Isotopes	9
	3.7.4. Signal sequences (digital timing diagrams)	9
	3.8. Symbolic addition	10
4.	Acknowledgement	11

1. Introduction

<u>Typst</u> is typesetting framework aiming to become the next generation alternative to LATEX. It excels in its friendly user experience and performance.

The physics package provides handy Typst typesetting functions that make academic writing for physics simpler and faster, by simplifying otherwise very complex and repetitive expressions in the domain of physics.

This manual itself was generated using the Typst CLI and the physics package, so hopefully this document is able to provide you with a sufficiently self evident demonstration of how this package shall be used.

2. Using physics

• To use the physics package, you may import names specifically:

```
#import "physics.typ": curl, grad
The expression $op("curl")(op("grad") f) ident curl (grad f) = 0$ is not foreign to any trained eye in physical mathematics.
```

• or you may simply import all names:

```
#import "physics.typ": *
The expression $op("curl")(op("grad") f) ident curl (grad f)$ is not foreign
to any trained eye in physical mathematics.
```

• sometimes you may want to import the names under a name space:

```
#import "physics.typ"
The expression $op("curl")(op("grad") f) ident physics.curl (physics.grad f)$
is not foreign to any trained eye in physical mathematics.
```

3. The symbols

Some symbols are already provided as a Typst built-in. They are listed here just for completeness with annotation like ^{typst} this, as users coming from LATEX might not know they are already available in Typst out of box.

All symbols need to be used in **math mode** \$...\$.

3.1. Braces

Symbol	Abbr.	Example	Notes
typst abs (content)		abs(phi(x)) $ ightarrow arphi(x) $	absolute
typst norm(content)		$\mathrm{norm}(\mathrm{phi}(\mathbf{x})) \to \ \varphi(x)\ $	norm
order(content)		$\operatorname{order}(\mathbf{x}^{2}) \longrightarrow \mathcal{O}(x^2)$	order of magnitude
Set(content)		$\begin{split} & Set(a_n) , Set(a_i, forall i) \\ & \to \{a_n\}, \{a_i \forall i\} \\ & Set(vec(1,n), forall n) \\ & \to \left\{ \binom{1}{n} \middle \forall n \right\} \end{split}$	math set, use Set not set since the latter is a Typst keyword

$$\begin{array}{lll} \operatorname{evaluated}(\mathit{content}) & \operatorname{eval} & \operatorname{eval}(\mathsf{f}(\mathsf{x}))_0^\circ \inf \operatorname{inity} & \operatorname{attach a vertical bar on the right} \\ & & \to f(x)\big|_0^\infty & \operatorname{to denote evaluation boundaries} \\ & & \operatorname{eval}(\mathsf{f}(\mathsf{x})/\mathsf{g}(\mathsf{x}))_0^\circ 1 \\ & & & \to \frac{f(x)}{g(x)}\big|_0^1 \\ \\ \operatorname{expectationvalue} & \operatorname{expval}(\mathsf{u}) \to \langle u \rangle & \operatorname{expectation value} \\ & & \operatorname{expval}(\mathsf{f/N}) \to \left\langle \frac{f}{N} \right\rangle & \end{array}$$

3.2. Vector notations

Symbol	Abbr.	Example	Notes
^{typst} vec()		$vec(1,2) \to \binom{1}{2}$	column vector
vecrow()		$vecrow(1,2) \to (1,2)$	row vector
		<pre>vecrow(sum_0^n a_i, b)</pre>	
		$ ightarrow \left(\sum_{0}^{n} a_{i}, b\right)$	
TT		$\mathbf{v}^{\smallfrown}\mathbf{TT},\ \mathbf{A}^{\smallfrown}\mathbf{TT} \longrightarrow v^{T}, A^{T}$	transpose
<pre>vectorbold(content)</pre>	vb	vb(a),vb(mu_1) $ ightarrow a, \mu_1$	vector, bold
<pre>vectorarrow(content)</pre>	va	va(a),va(mu_1) $ ightarrow ec{a},ec{\mu}_1$	vector, arrow
<pre>vectorunit(content)</pre>	vu	vu(a),vu(mu_1) $ ightarrow \hat{a},\hat{\mu}_1$	unit vector
gradient	grad	grad f $ ightarrow oldsymbol{ abla} f$	gradient
divergence	div	div vb(E) $ ightarrow oldsymbol{ abla} \cdot oldsymbol{E}$	divergence
curl		curl vb(B) $ ightarrow oldsymbol{ abla} imes B$	curl
laplacian		diaer(u) = c^2 laplacian u	Laplacian, different from
		$\rightarrow \ddot{u} = c^2 \nabla^2 u$	$^{ m typst}$ laplace Δ
dotproduct	dprod	a dprod b $ ightarrow a \cdot b$	dot product
crossproduct	cprod	a cprod b $ ightarrow a imes b$	cross product

3.3. Matrix notations

Symbol	Abbr.	Example	Notes
TT		$\mathbf{v}^{TT}, \ \mathbf{A}^{TT} \longrightarrow v^{T}, A^{T}$	transpose
typst mat()		$mat(1,2;3,4) o \left(egin{smallmatrix} 1 & 2 \ 3 & 4 \end{smallmatrix}\right)$	matrix
<pre>matrixdet()</pre>	mdet		matrix determinant
diagonalmatrix()	dmat	$dmat(1,2) \rightarrow \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	diagonal matrix
antidiagonalmatrix()	admat	$\begin{aligned} & \operatorname{dmat}(1,a,xi,\operatorname{delim}:"[",\operatorname{fill}:\\ & \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & \xi \end{bmatrix} \\ & \operatorname{admat}(1,2) \to \begin{pmatrix} 1 \\ 2 \\ \end{aligned} \\ & \operatorname{admat}(1,a,xi,\operatorname{delim}:"[",\operatorname{fill}:\\ & \to \begin{bmatrix} \cdot & \cdot & 1 \\ \cdot & a & \cdot \\ \xi & \cdot & \cdot \end{bmatrix} \end{aligned}$	anti-diagonal matrix

Jacobian matrix: jacobianmatrix(...), i.e. jmat(...).

$$\begin{split} & \text{jmat}(\textbf{f}_{-}\textbf{1},\textbf{f}_{-}\textbf{2};~\textbf{x},\textbf{y}) & \text{jmat}(\textbf{f}_{-}\textbf{1},\textbf{f}_{-}\textbf{2};~\textbf{x},\textbf{y},\textbf{z};~\text{delim:"["]}) \\ & \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} & & \\ & \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{bmatrix} \end{split}$$

Hessian matrix: hessianmatrix(...), i.e. hmat(...).

Matrix built with an element building function: xmatrix(m, n, func), i.e. xmat(...). The element building function func takes two integers which are the row and column numbers starting from 1.

3.4. Dirac braket notations

Symbol	Abbr. Example	Notes
bra(content)	$bra(u) \to \langle u $	bra
	$bra(vec(1,2)) o \left\langle inom{1}{2} \right $	
ket(content)	$ket(u) \to u\rangle$	ket
	$ket(u) o \ket{u}$ $ket(vec(1,2)) o \ket{\binom{1}{2}}$	

expval(content)		$\begin{array}{l} expval(u) \to \left\langle u \right\rangle \\ expval(vec(1,2)) \to \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \end{array}$	expectation
braket(a,b)		$\begin{array}{l} braket(a), braket(u, v) \\ \to \langle a a\rangle, \langle u v\rangle \\ braket(vec(1,2), b) \to \left\langle \binom{1}{2} \middle b \right\rangle \end{array}$	braket
ketbra(a, b)		ketbra(a), ketbra(u, v) $ \rightarrow a\rangle\langle a , u\rangle\langle v $ ketbra(vec(1,2), b) $\rightarrow \left \binom{1}{2}\right\rangle\langle b\right $	ketbra
innerproduct(<i>a</i> , <i>b</i>)	iprod	$\begin{array}{l} iprod(a), \; iprod(u, \; v) \\ \to \langle a a\rangle, \langle u v\rangle \\ iprod(a, \; vec(1,2)) \to \left\langle a \middle \binom{1}{2} \right\rangle \end{array}$	innerproduct = braket
outerproduct(a,b)	oprod	oprod(a), oprod(u, v)	outerproduct = ketbra
matrixelement(n, M, m)	mel	$\begin{array}{l} \operatorname{mel}(\mathbf{n},\;\operatorname{diff_nu}\;\mathbf{H},\;\mathbf{m})\\ \to \langle n \partial_{\nu}H m\rangle\\ \operatorname{mel}(\mathbf{n},\operatorname{vec}(\mathbf{U},\mathbf{V}),\mathbf{m}) \to \left\langle n\left \binom{U}{V}\right m\right\rangle \end{array}$	matrix element

3.5. Math functions

Expressions

Typst built-in math operators: <u>source code</u>.

<pre>sin(x), sinh(x), arcsin(x),</pre>	asin(x)	$\sin(x), \sinh(x), \arcsin(x), \sin(x)$
cos(x), $cosh(x)$, $arccos(x)$,	acos(x)	$\cos(x), \cosh(x), \arccos(x), \cos(x)$
<pre>tan(x), tanh(x), arctan(x),</pre>	atan(x)	$\tan(x), \tanh(x), \arctan(x), \tan(x)$
<pre>sec(x), sech(x), arcsec(x),</pre>	asec(x)	$\sec(x), \operatorname{sech}(x), \operatorname{arcsec}(x), \operatorname{asec}(x)$

Results

Expressions	Results	Notes
typst Pr(x)	$\Pr(x)$	probability
^{typst} exp x	$\exp x$	exponential
^{typst} log x, lg x, ln x	$\log x, \lg x, \ln x$	logarithmic
^{typst} det A	$\det A$	matrix determinant
diag(-1,1,1,1)	$\operatorname{diag}(-1,1,1,1)$	diagonal matrix, compact form (use dmat for the "real" matrix form)
trace A, tr A	$\operatorname{trace} A,\operatorname{tr} A$	matrix trace
Trace A, Tr A	$\operatorname{Trace} A,\operatorname{Tr} A$	matrix trace, alt.
rank A	$\operatorname{rank} A$	matrix rank
erf(x)	$\operatorname{erf}(x)$	Gauss error function
Res A	$\operatorname{Res} A$	residue (complex analysis)

Re z, Im z	$\operatorname{Re} z, \operatorname{Im} z$	real, imaginary (complex analysis)
sgn x	$\operatorname{sgn} x$	sign function

3.6. Differentials and derivatives

Symbol	Abb	r.Example	Notes
<pre>differential()</pre>	dd	e.g. df , $dxdy$, d^3x , $dx \wedge dy$ See Section 3.6.1	differential
variation()	var	${ m var(f)} ightarrow \delta f$ ${ m var(x,y)} ightarrow \delta x \delta y$	<pre>variation, shorthand of dd(, d: delta)</pre>
difference()		$\begin{array}{l} \mathrm{difference(f)} \to \Delta f \\ \mathrm{difference(x,y)} \to \Delta x \Delta y \end{array}$	<pre>difference, shorthand of dd(, d: Delta)</pre>
derivative()	dv	e.g. $\frac{\mathrm{d}}{\mathrm{d}x}, \frac{\mathrm{d}f}{\mathrm{d}x}, \frac{\Delta^k f}{\Delta x^k}, \mathrm{d}f/\mathrm{d}x$ See Section 3.6.2	derivative
partialderivative()	pdv	e.g. $\frac{\partial}{\partial x}$, $\frac{\partial f}{\partial x}$, $\frac{\partial^4 f}{\partial x^2 \partial y^2}$, $\frac{\partial^5 f}{\partial x^2 \partial y^3}$, $\frac{\partial}{\partial f} / \frac{\partial}{\partial x}$ See Section 3.6.3	partial derivative, could be mixed order

3.6.1. Differentials

Functions: differential(*args, **kwargs), abbreviated as dd(...).

- positional *args*: the variable names, then at the last **optionally** followed by an order number e.g. 2, or an order array e.g. [2,3], [k], [m n, lambda+1].
- named kwargs:
 - d: the differential symbol [default: upright(d)].
 - p: the product symbol connecting the components [default: none].

Order assignment algorithm:

- If there is no order number or order array, all variables has order 1.
- If there is an order number (not an array), then this order number is assigned to *every* variable, e.g. dd(x,y,2) assigns $x \leftarrow 2, y \leftarrow 2$.
- If there is an order array, then the orders therein are assigned to the variables in order, e.g. dd(f,x,y,[2,3]) assigns $x \leftarrow 2, y \leftarrow 3$.
- If the order array holds fewer elements than the number of variables, then the orders of the remaining variables are 1, e.g. dd(x,y,z,[2,3]) assigns $x \leftarrow 2, y \leftarrow 3, z \leftarrow 1$.
- If a variable x has order 1, it is rendered as dx not $d^{1}x$.

Examples

$$\mathrm{d}t \wedge \mathrm{d}x_1 \wedge \mathrm{d}x_2 \wedge \mathrm{d}x_3$$
 $\mathrm{D}t\mathrm{D}x_1\mathrm{D}x_2\mathrm{D}x_3$

3.6.2. Ordinary derivatives

Function: derivative(f, *args, **kwargs), abbreviated as dv(...).

- *f*: the function, which can be #none or omitted,
- positional args: the variable name, then at the last **optionally** followed by an order number e.g. 2,
- named kwargs:
 - d: the differential symbol [default: upright(d)].
 - s: the "slash" separating the numerator and denominator [default: none], by default it produces the normal fraction form $\frac{\mathrm{d}f}{\mathrm{d}x}$. The most common non-default is slash or simply \/, so as to create a flat form $\mathrm{d}f/\mathrm{d}x$ that fits inline.

Order assignment algorithm: there is just one variable, so the assignment is trivial: simply assign the order number (default to 1) to the variable. If a variable x has order 1, it is rendered as x not x^1 .

Examples

(1)
$$\text{dv}(,x)$$
, $\text{dv}(,x,2)$, $\text{dv}(f,x,k+1)$ (2) $\text{dv}(,\text{vb}(r))$, $\text{dv}(f,\text{vb}(r)_e,2)$
$$\frac{\text{d}}{\text{d}x}, \frac{\text{d}^2}{\text{d}x^2}, \frac{\text{d}^{k+1}f}{\text{d}x^{k+1}}$$
 (2) $\text{dv}(,\text{vb}(r))$, $\text{dv}(f,\text{vb}(r)_e,2)$
$$\frac{\text{d}}{\text{d}r}, \frac{\text{d}^2}{\text{d}r_e^2}$$
 (3) $\text{dv}(f,x,2,s:\)$, $\text{dv}(f,xi,k+1,s:slash)$ (4) $\text{dv}(,x,\text{d:delta})$, $\text{dv}(,x,2,\text{d:Delta})$
$$\frac{\delta}{\delta x}, \frac{\Delta^2}{\Delta x^2}$$
 (5) $\text{dv}(\text{vb}(u),t,2,d:upright(D))$ (6) $\text{dv}(\text{vb}(u),t,2,d:upright(D),s:slash)$
$$\frac{D^2u}{Dt^2}$$

3.6.3. Partial derivatives (incl. mixed orders)

Function: partialderivative (f, *args, **kwargs), abbreviated as pdv (...).

- *f*: the function, which can be #none or omitted,
- positional *args*: the variable names, then at last **optionally** followed by an order number e.g. 2, or an order array e.g. [2,3], [k], [m n, lambda+1].
- named kwargs:
 - s: the "slash" separating the numerator and denominator [default: none], by default it produces the normal fraction form $\frac{\partial f}{\partial x}$. The most common non-default is slash or simply \/, so as to create a flat form $\partial f/\partial x$ that fits inline.
 - total: the user-specified total order.
 - If it is absent, then (1) if the orders assigned to all variables are numeric, the total order number will be **automatically computed**; (2) if non-number symbols are present, computation will be attempted with minimum effort, and a user override with argument total may be necessary.

Order assignment algorithm:

- If there is no order number or order array, all variables has order 1.
- If there is an order number (not an array), then this order number is assigned to *every* variable, e.g. pdv(f,x,y,2) assigns $x \leftarrow 2, y \leftarrow 2$.
- If there is an order array, then the orders therein are assigned to the variables in order, e.g. pdv(f,x,y,[2,3]) assigns $x \leftarrow 2, y \leftarrow 3$.

- If the order array holds fewer elements than the number of variables, then the orders of the remaining variables are 1, e.g. pdv(f,x,y,z,[2,3]) assigns $x \leftarrow 2, y \leftarrow 3, z \leftarrow 1$.
- If a variable x has order 1, it is rendered as x, not x^1 .

Examples

$$\frac{\partial}{\partial x}, \frac{\partial^2}{\partial t^2}, \frac{\partial^k}{\partial \lambda^k}$$

$$rac{\partial arphi}{\partial oldsymbol{r}}, rac{\partial^2 arphi}{\partial oldsymbol{r}^2}$$

(3)
$$pdv(,x,y)$$
, $pdv(,x,y,2)$

$$\frac{\partial^2}{\partial x \partial y}, \frac{\partial^4}{\partial x^2 \partial y^2}$$

(4)
$$pdv(f,x,y,2)$$
, $pdv(f,x,y,3)$

$$\frac{\partial^4 \varphi}{\partial x^2 \partial y^2}, \frac{\partial^6 \varphi}{\partial x^3 \partial y^3}$$

$$\frac{\partial^3}{\partial x^2 \partial y}, \frac{\partial^3}{\partial x \partial y^2}$$

$$\partial^2/\partial t^2, \partial^2 f/\partial x \partial y$$

$$(7) pdv(, (x^1), (x^2), (x^3), [1,3])$$

$$\frac{\partial^5}{\partial(x^1)\partial(x^2)^3\partial(x^3)}$$

$$\frac{\partial^7 \varphi}{\partial x^2 \partial y^2 \partial z^2 \partial \tau}$$

$$\frac{\partial^{\eta+\xi+5}}{\partial x \partial y^{\xi} \partial z^2 \partial t^{\eta+2}}$$

$$\frac{\partial^{(\xi+1)n}}{\partial x^{\xi n}\partial y^{n-1}\partial z}$$

(11) integral_V dd(V) $(pdv(cal(L), phi) - diff_mu (pdv(cal(L), (diff_mu phi)))) = 0$

$$\int_{V} \mathrm{d}V \left(\frac{\partial \mathcal{L}}{\partial \varphi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi \right)} \right) \right) = 0$$

3.7. Miscellaneous

3.7.1. Reduced Planck constant (hbar)

In the default font, the Typst built-in symbol planck. reduce \hbar looks a bit off: on letter "h" there is a slash instead of a horizontal bar, contrary to the symbol's colloquial name "h-bar". This package offers hbar to render the symbol in the familiar form: \hbar . Contrast:

Typst's planck.reduce
$$E=\hbar\omega$$
 $\frac{\pi G^2}{\hbar c^4}$ $Ae^{\frac{i(px-Et)}{\hbar}}$ $i\hbar\frac{\partial}{\partial t}\psi=-\frac{\hbar^2}{2m}\nabla^2\psi$

this package's hbar
$$E=\hbar\omega$$
 $\frac{\pi G^2}{\hbar c^4}$ $Ae^{\frac{i(px-Et)}{\hbar}}$ $i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi$

3.7.2. Tensors

Tensors are often expressed using the <u>abstract index notation</u>, which makes the contravariant and covariant "slots" explicit. The intuitive solution of using superscripts and subscripts do not suffice if both upper (contravariant) and lower (covariant) indices exist, because the notation rules require the

indices be vertically separated: e.g. T^a_b and T_a^b , which are of different shapes. " T^a_b " is flatly wrong, and T^(space w)_(i space j) produces a weird-looking " T_i^w " (note w, j vertically overlap).

Function: tensor(symbol, *args).

- *symbol*: the tensor symbol,
- positional *args*: each argument takes the form of +... or -..., where a + prefix denotes an upper index and a prefix denotes a lower index.

Examples

(9) grad_mu A^nu = diff_mu A^nu + tensor(Gamma, +nu, -mu, -lambda) A^lambda

$$\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + \Gamma^{\nu}_{\ \mu\lambda}A^{\lambda}$$

3.7.3. Isotopes

Function: isotope(element, a: ..., z: ...).

- *element*: the chemical element (use ".." for multi-letter symbols)
- *a*: the mass number *A* [default: none].
- z: the atomic number Z [default: none].

Change log: Typst merged my PR, which fixed a misalignment issue with the surrounding text.

Examples

(3) isotope("Bi",a:211,z:83) --> isotope("Tl",a:207,z:81) + isotope("He",a:4,z:2)
$$^{211}_{83} \text{Bi} \longrightarrow ^{207}_{81} \text{Tl} + ^{4}_{2} \text{He}$$

3.7.4. Signal sequences (digital timing diagrams)

In engineering, people often need to draw digital timing diagrams for signals, like \(\bigcap\) .

Function: signals(str, step::..., style:...).

- str: a string representing the signals. Each character represents an glyph (see below).
- step (optional): step width, i.e. how wide each glyph is [default: #1em].

• color (optional): the stroke color [default: #black].

Glyph characters

Examples

(1)
$$signals("10.1")$$
, $signals("1|0|1|0R")$, $signals("CD")$, $signals("CD", step: #2em)$

(2) signals("M'H|L|h|l|^|v,&|H'M'H|l,m,l|") (the ampersand & serves as a separator)

 $\overline{}$, $\overline{}$ $\overline{}$ $\overline{}$

$$\textbf{(4)} \ signals("R1..F0..", \ step: \#.5em) signals("R1.|v|1", \ step: \#.5em, \ color:\#fuchsia)$$

(5)

3.8. Symbolic addition

This package implements a very rudimentary, **bare-minimum-effort** symbolic addition function to aid the automatic computation of a partial derivative's total order in the absence of user override (see Section 3.6.3). Though rudimentary and unsophisticated, this should suffice for most use cases in partial derivatives.

 $Function: {\tt BMEsymadd([...])}.$

• ...: symbols that need to be added up e.g. [1,2], $[a+1,b^2+1,2]$.

Examples

(1) BMEsymadd([1]), BMEsymadd([2, 3])
$$\rightarrow \qquad 1,5$$
 (2) BMEsymadd([a, b^2, 1])
$$\rightarrow \qquad a+b^2+1$$
 (3) BMEsymadd([a+1,2c,b,2,b])
$$\rightarrow \qquad a+2b+2c+3$$

4. Acknowledgement

Huge thanks to these LATEX packages, for lighting the way of physics typesetting.

- physics by Sergio C. de la Barrera,
- derivatives by Simon Jensen,
- tensor by Philip G. Ratcliffe et al.