Professor: Fred Khoury

- Determine whether each relation is a function and find the domain and the range. 1.
 - a) $\{(1, 2), (2, 3), (3, 2), (4, 5), (5, 4), (6, 1), (8, 2)\}$
 - b) $\{(-1, 2), (-2, -3), (3, 2), (5, 5), (5, 4), (-2, 1), (6, 2)\}$
 - c) $\{(1, 2), (2, 3), (3, 2), (4, 4), (5, 4), (6, 1), (7, 2), (-1, 2)\}$
- Given $g(x) = -2x^2 + x + 6$, find:

- a) g(0) b) g(-4) c) g(2) d) g(x+1)
- Given $f(x) = \begin{cases} -5x 8 & for & x < -2 \\ \frac{1}{2}x + 5 & for & -2 \le x \le 4 \\ 10 2x & for & x > 4 \end{cases}$
 - a. Graph f(x)
 - b. Find f(-1)
- 4. Given $f(x) = \begin{cases} x^2 2 & \text{if } x \le 2 \\ 1 & \text{if } x > 2 \end{cases}$ find:
 - a) f(-1) b) f(2)

- Given $g(x) = \begin{cases} -|x+2| & \text{if } x < -1 \\ -2x+3 & \text{if } x \ge -1 \end{cases}$ find: a) f(-1) b) f(2) c) f(4) d) f(-2)

- Determine if each function is odd, even, or neither. 6.

 - a) g(x) = |x| + 4 b) $h(x) = x^4 + 2x^2 8$
- c) $f(x) = -x^3 + 2x$
- d) $k(x) = x^2 x + 6$ e) $f(x) = \frac{x-1}{x-2}$
- 7. Let $f(x) = \sqrt{x+3}$, $g(x) = \frac{x+2}{x-1}$ and h(x) = x-5 Find the following:
 - *a*) Domain *f*
- b) Domain g

c) Domain h

- d) Domain $\frac{f}{h}$ e) Domain of g+f, g-f, and $g \cdot f$

f) Domain $\frac{g}{f}$

g) Domain of f + h, f - h, and $f \cdot h$

Let f(x) = 3x + 2 and $g(x) = 2x^2 - 1$. Find the following: 8.

a) $(f \circ g)(4)$ b) $(g \circ f)(2)$

c) $(f \circ g)(x)$

d) $(g \circ f)(x)$

Let $f(x) = \sqrt{x+1}$, $g(x) = x^2 - 3$, and $h(x) = \frac{1}{x}$. Find the following functions, and state the 9. domain of each:

a) $(f \circ g)(x)$

b) $(g \circ f)(x)$ c) $(h \circ f)(x)$

Find the difference quotient $\frac{f(x+h) - f(x)}{h}$ for

a) f(x) = 4x - 5 b) f(x) = 3 - 4x c) f(x) = 3x + 1 d) $f(x) = 2x^2$

- An airplane is flying at an altitude of 3700 ft. The slanted distance directly to the airport is d feet. 11. Express the horizontal distance h as a function of d.
- **12.** a) How can the graph of $f(x) = -(x-8)^2$ be obtained from the graph $y = x^2$?
 - b) How can the graph of $f(x) = \sqrt{x+6} 5$ be obtained from the graph $y = \sqrt{x}$?
 - c) How can the graph of f(x) = |x+7| + 2 be obtained from the graph y = |x|?
 - d) How can the graph of $f(x) = -(x-3)^2 + 4$ be obtained from the graph $y = x^2$?
 - e) How can the graph of $f(x) = \sqrt{-(x+6)} 5$ be obtained from the graph $y = \sqrt{x}$?
- **13.** For $f(x) = -x^2 + 6x 5$, find
 - a) Find the vertex point
 - b) Find the line of symmetry
 - State whether there is a maximum or minimum value and find that value
 - d) Find the zeros of f(x)
 - Find the range and the domain of the function.
 - Graph the function and label.
 - g) On what intervals is the function increasing? Decreasing?
- **14.** For $g(x) = x^2 + x 6$, find
 - a) Find the vertex point
 - b) Find the line of symmetry
 - State whether there is a maximum or minimum value and find that value

- d) Find the zeros of f(x)
- e) Find the range and the domain of the function.
- f) Graph the function and *label*.
- g) On what intervals is the function increasing? Decreasing?
- **15.** Determine the end behavior of the graph of the polynomial function.

a)
$$f(x) = 2x^4 - 9x^3 - 5x^2 + 57x - 45$$

b)
$$f(x) = x(x-2)^3(x+2)^2$$

c)
$$f(x) = -4x^5 + 16x^4 + 13x^3 - 76x^2 - 3x + 18$$

d)
$$f(x) = (x-2)^2(x-5)$$

e)
$$f(x) = -(x-2)^2(x-5)^2$$

16. Find the quotient and the remainder:

a)
$$\frac{x^3 + x^2 - 11x - 10}{x - 3}$$

$$b) \quad \frac{3x^3 + 8x^2 + 5x + 10}{x + 2}$$

c)
$$\frac{2x^3 - x + 6}{x + 4}$$

d)
$$(x^4 + 3x^3 + 3x^2 + 3x + 2) \div (x+2)$$

17. Use the Intermediate Value Theorem to determine whether the function has zeros between a and b.

a)
$$f(x) = x^3 + 3x^2 - 9x - 13$$
; $a = 1, b = 2$

b)
$$f(x) = 4x^2 - 5x - 3$$
; $a = 1$, $b = 2$

c)
$$f(x) = x^3 - 8x^2 + x + 2$$
; $a = -1$, $b = 0$

d)
$$f(x) = x^3 - 8x^2 + x + 2$$
; $a = 2$, $b = 3$

18. Use synthetic division to find the indicated function value

a)
$$f(x) = x^3 + 2x^2 - 13x + 10$$
; $f(-2)$

b)
$$f(x) = x^4 - 16$$
; $f(-2)$

- **19.** Find all solutions of the equation: $x^4 + 9x^3 + 31x^2 + 49x + 30 = 0$
- 20. Use the Rational Zero theorem to list all possible rational zero for each of the following:

3

a)
$$f(x) = x^3 + 3x^2 - 6x - 8$$

b)
$$f(x) = 2x^3 + x^2 - 25x + 12$$

c)
$$f(x) = 3x^4 + 23x^3 + 56x^2 + 52x + 16$$

21. Find the vertical and horizontal asymptotes (if any) of:

a)
$$y = \frac{x-2}{x^2 - 4x + 3}$$

c)
$$y = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

b)
$$y = \frac{(x+2)(x-1)}{x^2 - 3x - 10}$$

$$d) \quad y = \frac{-x+1}{-2x^2 + 5x - 3}$$

22. A rancher has 360 *yd.* of fencing with which to enclose two adjacent rectangular corrals, one for sheep and one for cattle. A river forms one side of the corrals. Suppose the width of each corral is *x* yards.

- a) Express the total area of the two corrals as a function of x.
- b) Find the domain of the function.
- c) Find the maximum area
- d) Find the dimensions that maximize the corrals area
- 23. A projectile is fired vertically upward, and its height s(t) in feet after t seconds is given by the function defined by $s(t) = -16t^2 + 800t + 600$
 - a) From what height was the projectile fired?
 - b) After how many seconds will it reach its maximum height?
 - c) What is the maximum height it will reach?
- **24.** A ball is thrown upwards, and its height *s* at time *t* can be determined by the function $s(t) = -16t^2 + 48t + 8$, where *s* is measured in feet above the ground and *t* is the number of seconds of flight. Find:
 - a) The time it takes the ball to reach its maximum height.
 - b) The maximum height the ball attains.

SOLUTION

- a) Function; Domain = $\{1,2,3,4,5,6,8\}$ Range = $\{1,2,3,4,5\}$ 1.
 - b) Not a function; Domain = $\{-2, -1, 1, 3, 5, 6\}$ Range = $\{-3, 1, 2, 4, 5\}$
 - c) Function; $Domain = \{-1,1,2,3,4,5,6,7\}$ $Range = \{1,2,3,4\}$
- 2. *a*) 6

- b) -30 c) 0 d) $-2x^2 3x + 5$
- **3.** a)

- b) $f(-1) = \frac{1}{2}(-1) + 5 = \frac{9}{2}$
- 4. *a*) -1
- *b*) 0
- c) 1 d) 2

- 5. *a*) 5
- b) -1 c) -5 d) 0

- 6. a) even
- b) even c) odd
- d) neither e) neither

- 7.
- a) $\left[-3,\infty\right)$ b) $\left(-\infty,1\right) \cup \left(1,\infty\right)$ c) $\left(-\infty,\infty\right)$ d) $\left[-3,1\right) \cup \left(1,\infty\right)$
- e) $(-3,1) \cup (1,\infty)$ f) $[-3,\infty)$ g) $[-3,5) \cup (5,\infty)$

- 8. *a*) 95

- b) 127 c) $6x^2 1$ d) $18x^2 + 24x + 7$
- **9.** a) $(f \circ g)(x) = \sqrt{x^2 2}$; $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
 - *b*) $(g \circ f)(x) = x 2$; $(-\infty, \infty)$
 - c) $(h \circ f)(x) = \frac{1}{\sqrt{x+1}}$; $(-1, \infty)$

- **10.** a) 4 b) -4 c) 3 d) 4x + h

11. $h(t) = \sqrt{d^2 - (3700)^2}$

12. *a*) Reflected across *x*-axis (or upside-down) and shifted right 8 units.

- b) Shifted left 6 units and down 5 units.
- c) Shifted left 7 units and up 2 units.
- d) Reflected across x-axis (or upside-down) and shifted right 3 units and up 4 units.
- e) Reflected across y-axis, shifted left 6 units and down 5 units.

13. Vertex: $x = -\frac{b}{2a}$ $f(x) = -x^2 + 6x - 5$ = $-\frac{6}{2(-1)}$ = 3

$$y = f(3) = -(3)^{2} + 6(3) - 5$$
$$= 4$$

Vertex point: (3,4)

Axis of symmetry: x = 3

Maximum point @ (3,4)

x-intercept: x = 1,5

y-intercept: y = -5

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4]$

Increasing: $(-\infty,3)$

Decreasing: $(3, \infty)$

14. Vertex: $x = -\frac{1}{2(1)} = -\frac{1}{2}$

$$y = f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 6 = -\frac{25}{4}$$

Vertex point: $\left(-\frac{1}{2}, -\frac{25}{4}\right)$

Axis of symmetry: $x = -\frac{1}{2}$

Maximum point @ $\left(-\frac{1}{2}, -\frac{25}{4}\right)$

x-intercept: x = -3, 2

y-intercept: y = -6

Domain: $(-\infty, \infty)$

Range: $\left[-\frac{25}{4},\infty\right)$

Increasing: $\left(-\frac{1}{2},\infty\right)$

Decreasing: $\left(-\infty, -\frac{1}{2}\right)$

- **15.** *a*) Leading Term: $2x^4$; rises left and right
 - b) Leading Term: x^6 ; rises left and right
 - c) Leading Term: $-4x^5$; rises left and falls right
 - d) Leading Term: x^3 ; fall left and rises right
 - e) Leading Term: $-x^4$; falls left and right
- **16.** a) $Q(x) = x^2 + 4x + 1$; R(x) = -7
 - b) $Q(x) = 3x^2 + 2x + 1$; R(x) = 8
 - c) $Q(x) = 2x^2 8x + 31$; R(x) = -118
 - d) $Q(x) = x^3 + x^2 + x + 1$; R(x) = 0
- **17.** *a*) Can't be determined
 - b) Yes
 - c) Yes
 - d) Can't be determined

18. *a*)
$$f(-2) = 36$$

b)
$$f(-2) = 0$$

19.
$$-3$$
, -2 , -2 , $\pm i$

20. a)
$$\pm \{1, 2, 4, 8\}$$

b)
$$\pm \left\{1, 2, 4, 6, 12, \frac{1}{2}, \frac{3}{2}\right\}$$

c)
$$\pm \left\{ 1, 2, 4, 8, 16, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}, \frac{16}{3} \right\}$$

- **21.** *a)* VA: x = 1, x = 3; HA: y = 0
 - b) VA: x = 5; HA: $y = \frac{4}{3}$
 - c) VA: n/a; HA: n/a
 - *d*) $VA: x = \frac{3}{2}$; HA: y = 0
- **22.** *a*) $A(x) = 360x 3x^2$
- b) Domain: 0 < x < 120
- c) 10800 yd^2
- *d*) 60 by 180 yd.

- **23.** *a*) Height = $600 \, ft$. (t = 0)
 - *b*) t = 25 sec.

c) Max. Height: 10,600 ft.

- **24.** *a*) t = 1.5 secs
- b) Max height is 44 feet.