EE 4301 - Communications Systems 1

Lecture 1

Dr. C.K.W.Seneviratne

Department of Electrical and Information Engineering,

University of Ruhuna

May 29, 2023

Module Aim

 The aim is to teach the fundamentals of modulation and demodulation processes of analogue and digital communication systems.

What we are going to study?

- Introduction to Communication Systems
- Amplitude Modulation and Demodulation
- Bandwidth Efficiency and Power Efficiency
- Angle Modulation and Demodulation
- Pulse Modulation
- Baseband Pulse Transmission
- Passband Data Transmission

Module Components

Section	Day	Start time	Duration	Location
Lecture	Monday	8.30 AM	120 (min)	DO1
Lecture	Wednesday	10.30 AM	60 (min)	LT2

- 4 x Lab Sessions
 - LAB 1 : AM Modulation
 - LAB 2 : FM Modulation
 - LAB 3 : Digital Carrier Wave Modulation(ASK,FSK,PSK)
 - LAB 4 : Pulse Code Modulation
- 2 x In class Tests
- 2 x In class Assignment
- End Semester Exam

Evaluations

Component	Weight
4 x Lab Sessions	20%
2 x In class Tests	20%
2 x In class Assignment	10%
End Semester Exam	50%

Eligibility to appear for the end semester evaluation

- Minimum of 80% attendance for theory class
- Completion of all laboratory sessions

Necessary condition to pass the module

- 35% marks in continuous assessments
- 35% marks in final evaluation
- 40% marks in overall marks

Suggested Books

- Bruce A. Carlson, Paul B. Crilly, Janet C. Rutledge: Communication Systems: An Introduction to Signals and Noise in Electrical Communication; McGraw-Hil, 2002; ISBN: 0-0712-1028-8.
- B.P. Lathi: Modern Digital and Analog Communication Systems Engineering; Oxford University Press, 1998; ISBN: 0-1951-1009-9.
- Simon Haykin: Communication Systems; John Wiley, 2002; ISBN: 0-0712-1028-8.U.A. Bakshi and A.V. Bakshi, Circuit Theory, Technical Publications, 2009, ISBN 81-843-1527-9.
- T.S.K.V. Iyer, Circuit Theory, Tata McGraw-Hill Education, 1985, ISBN 0-07-451681-7

 A communication system conveys information from its source to a destination some distance away. A typical communication system can be represented as below.

Block diagram of a communication system.

- Information Source: Generate a message. This message can be either analog message or digital message.
 - Human voice
 - Video
 - Picture
- **Input transducer**: Coverts the message to an electrical signal. This signal referred as a baseband signal. The frequencies of baseband signals are concentrated near f=0.
 - Microphone : converts acoustic signal to a voltage signal
 - Camera : converts image to voltage/current signal

- **Transmitter**: Adjust the baseband signal for efficient transmission over the channel. The necessary adjustments are determined by the input signal, the type of the communication system and the channel.
 - In a analog communication system, transmitter consists of components such as analog low pass filters, modulator, amplifiers
 - In a digital communication system, transmitter consists of components such as a sampler, quanitizer, coder and a modulator
- Channel: Physical media use for signal transmission. Various unwanted undesirable effects occur when signals transmit over the channel. They are
 - reduction of signal strength (eg. attenuation)
 - alternation of signal shape (eg. distortion, interference, noise)

- Receiver: Accepts the distorted signal and performs its recovery. It undo whatever the modification done by transmitter or channel to the original signal.
 - Demodulators, amplifiers, filters, decoders
- Output transducer: Convert the signal into native form.
 - Speakers
 - Screen
- Information Sink: Final destination that receives message
 - Voice
 - Received video
 - Picture