Machine Learning Algorithms

Boosting

Markus Rupp 21.8.2020

Consider models

 $r_k = hs_k + v_k$; simple channel model (AWGN)

 $r_k = e^{j\alpha k} h s_k + v_k$; AWGN channel model with frequency offset

 $r_k = h_0 s_k + h_1 s_{k-1} + v_k$; channel model with memory

 $r_k = h_1 s_{1,k} + h_2 s_{2,k} + v_k$; MISO channel model

- Consider h=1
- AWGN Channel
- 4QAM transmission
- Variations are due to noise

- Consider $h(q^{-1})=1+0.5(1+j) q^{-1}$
- Channel with memory
- 4QAM transmission

No longer linearly separable!

- Consider two antenna transmission
- $r=h_1 s_1+h_2 s_2+v$
- MISO channel
- 2BAM transmission

• Similar problem as before

Symbols rotate over time

- Consider ideal AWGN channel
- 4QAM transmission
- but frequency offset

- Learning algorithm is very similar to the PLA, however, now with complex-valued signals and different non-linear functions.
- Consider the following reference equalizer:

- Utilizing a reference system of identical structure, we have
 - Output of reference system: f[y_k]
 - Output of equalizer:

$$f[\hat{y}_k]$$

• The update error is thus:

$$e_{o,k} = f[y_k] - f[\hat{y}_k]$$

$$= \frac{f[y_k] - f[\hat{y}_k]}{y_k - \hat{y}_k} e_{a,k}$$

$$\stackrel{\triangle}{=} h[y_k, \hat{y}_k] e_{a,k}$$

 Utilizing such new function h[], the update equations can again be written as:

And thus the stability condition reads:

$$\underline{\hat{w}}_{k} = \underline{\hat{w}}_{k-1} + \mu_{k} \underline{x}_{k}^{*} e_{o,k} = \underline{\hat{w}}_{k-1} + \mu_{k} \underline{x}_{k}^{*} h [y_{k}, \hat{y}_{k}] e_{a,k}$$

$$\delta_{N} = \max_{1 \le k \le N} \left| 1 - \frac{\mu_{k}}{\overline{\mu}_{k}} h[y_{k}, \hat{y}_{k}] \right| < 1$$

- **Example:** BPSK, s_k from {-1,1}
- For the non-linear function h[], we obtain applying the signfunction f[x]=sign(x)

$$h[y_k, \hat{y}_k] = \frac{\operatorname{sgn}[y_k] - \operatorname{sgn}[\hat{y}_k]}{y_k - \hat{y}_k} \ge 0$$

• Thus, a step-size exists that guarantees convergence based on the small gain theorem since y_k from $\{-1,+1\}$.

- Conclusion
 - We find the equalizer to be a machine learning problem
 - However, to use it in practice, many problems need to be solved
 - Nonlinearly separable: find the right dimensions and kernels
 - Quick learning required as channel may only valid for few symbols
 - Time variance: adapt channel model
- For this let's go back to the standard identification problem and solve it faster, e.g., by LS methods

The Momentum LMS Algorithm

Consider error surface

By taking old gradients into account, one may jump over the saddle point

The Momentum LMS Algorithm

- One simple way to increase the convergence speed and thus get better tracking is to increase the step-size.
- However, this comes with decreased noise sensitivity and instability problems.
- An alternative is to adapt the algorithm's updates by looking at its past:

$$\underline{\hat{w}}_{k} = \underline{\hat{w}}_{k-1} + \mu \underline{x}_{k} \left[d_{k} - \underline{x}_{k}^{T} \underline{\hat{w}}_{k-1} \right] + \eta \left[\underline{\hat{w}}_{k-1} - \underline{\hat{w}}_{k-2} \right]$$

The Momentum LMS Algorithm

- The momentum term, however, needs to be found empirically
- In large neural networks it helps (a little bit)

 An alternative is to move away from simple gradient approaches and include the Hessian for an improved directional term

Recall Newton's Approach

In order to take advantage of the quadratic form

$$g(\underline{w}) = g(\underline{w}_{k-1}) + \nabla g(\underline{w}_{k-1})(\underline{w} - \underline{w}_{k-1}) + (\underline{w} - \underline{w}_{k-1})^{H} \nabla^{2} g(\underline{w}_{k-1})(\underline{w} - \underline{w}_{k-1}) + \dots$$

An iterative update would look like

$$\underline{\hat{w}}_{k} = \underline{\hat{w}}_{k} - \left[\nabla^{2}g\left(\underline{\hat{w}}_{k-1}\right)\right]^{\#}\nabla g\left(\underline{\hat{w}}_{k-1}\right)$$

- With # denoting the pseudo inverse if for some reasons the inverse does not exist.
- Often an additional step-size (μ <1) is applied.

First recursive form

- Let's consider the situation that we have already an a priori knowledge \underline{w}_{k-1} and we like to apply LS but not loosing this knowledge.
- we obtain a recursive form of the algorithm:

rather than LS:

$$\underline{\hat{w}}_{LS} = \left(X_N^H X_N\right)^{-1} X_N^H \underline{d}_N$$

we could apply it to the difference only:

$$\underline{\hat{w}}_{LS,N} = \underbrace{\underline{\hat{w}}_{LS,N-1}}_{\text{what we already know}} + \left(X_N^H X_{N,k}\right)^{-1} X_{N,k}^H \underbrace{\left[\underline{d}_N - X_N \underline{\hat{w}}_{LS,N-1}\right]}_{\text{difference to what we already know}}$$

let's keep operating like this also for the next values of k....

- Complexity problem
- With growing window (even with sliding one), the matrix inverse has to be recomputed at every iteration.
- Typical complexity is O(M³)+O(N²)
- How can such complexity be reduced?

- •R.L.Plackett, Some Theorems in Least Squares, Biometrika, 1950, 37, 149-157, ISSN 0006-3444
- •C.F.Gauss, Theoria combinationis observationum erroribus minimis obnoxiae, 1821, Werke, 4. Gottingen

The Matrix Inversion Lemma

• A central tool to formulate the LS equations in a recursive form, is the so-called matrix inversion lemma.

• Lemma (aka. Woodbury Identity): The inverse of the expression

$$A + BCD$$

Is given by:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

Proof: simply test it yourself.

Consider cost function at time N+1

$$g_{LS}(\underline{\hat{w}}_{N+1}) = (\underline{\hat{w}}_{N+1} - \underline{\overline{w}})^H \prod_o^{-1} (\underline{\hat{w}}_{N+1} - \underline{\overline{w}}) + (\underline{d}_{N+1} - X_{N+1} \underline{\hat{w}}_{N+1})^H (\underline{d}_{N+1} - X_{N+1} \underline{\hat{w}}_{N+1})$$

$$= (\hat{\underline{w}}_{N+1} - \overline{\underline{w}})^H \Pi_o^{-1} (\hat{\underline{w}}_{N+1} - \overline{\underline{w}}) + \left\| \begin{bmatrix} \underline{d}_N \\ d_{N+1} \end{bmatrix} - \begin{bmatrix} X_N \\ \underline{x}_{N+1} \end{bmatrix} \hat{\underline{w}}_{N+1} \right\|_2^2$$
• Split solution:

$$(\overline{w} = \underline{0})$$

$$\underline{\hat{w}}_{N+1} = \left[\Pi_o^{-1} + X_{N+1}^H X_{N+1} \right]^{-1} X_{N+1}^H \underline{d}_{N+1}
= \left[\Pi_o^{-1} + \left[X_N^H, \underline{x}_{N+1}^* \right] X_N^T \right]^{-1} \left[X_N^H, \underline{x}_{N+1}^* \right] \underline{d}_{N+1}
= \left[\Pi_o^{-1} + X_N^H X_N + \underline{x}_{N+1}^* \underline{x}_{N+1}^T \right]^{-1} \left[X_N^H \underline{d}_N + \underline{x}_{N+1}^* \underline{d}_{N+1} \right]$$

Univ.-Prof., Dr.-Ing. Markus Rupp

Use the definition

$$P_{N+1} \stackrel{\Delta}{=} \left[\Pi_o^{-1} + X_{N+1}^H X_{N+1}\right]^{-1}; P_o = \Pi_o$$

and we obtain the following recursion:

$$P_{N+1}^{-1} = P_N^{-1} + \underline{x}_{N+1}^* \underline{x}_{N+1}^T; P_o = \Pi_o$$

Utilizing the Matrix-Inversion-Lemma

$$P_{N+1} = P_N - \frac{P_N \underline{x}_{N+1}^* \underline{x}_{N+1}^T P_N}{1 + \underline{x}_{N+1}^T P_N \underline{x}_{N+1}^*}, P_o = \Pi_o$$

$$\begin{split} & \hat{\underline{w}}_{N+1} = P_{N+1} \Big[X_{N}^{H} \, \underline{d}_{N} + \underline{x}_{N+1}^{*} d_{N+1} \Big] \\ & = \Bigg[P_{N} - \frac{P_{N} \, \underline{x}_{N+1}^{*} \, \underline{x}_{N+1}^{T} P_{N}}{1 + \underline{x}_{N+1}^{T} P_{N} \, \underline{x}_{N+1}^{*}} \Bigg] \Big[X_{N}^{H} \, \underline{d}_{N} + \underline{x}_{N+1}^{*} d_{N+1} \Big] \\ & = \underbrace{P_{N} X_{N}^{H} \, \underline{d}_{N}}_{\hat{\underline{w}}_{N}} - \frac{P_{N} \, \underline{x}_{N+1}^{*} \, \underline{x}_{N+1}^{T}}{1 + \underline{x}_{N+1}^{T} P_{N} \, \underline{x}_{N+1}^{*}} \underbrace{P_{N} X_{N}^{H} \, \underline{d}_{N}}_{\hat{\underline{w}}_{N}} + P_{N} \, \underline{x}_{N+1}^{*} \Bigg[1 - \underbrace{P_{N} \, \underline{x}_{N+1}^{*} \, \underline{x}_{N+1}^{T}}_{1 + \underline{x}_{N+1}^{T} P_{N} \, \underline{x}_{N+1}^{*}} \Bigg] d_{N+1} \\ & = \underbrace{\hat{\underline{w}}_{N}}_{N} + \underbrace{P_{N} \, \underline{x}_{N+1}^{*}}_{1 + \underline{x}_{N+1}^{T} P_{N} \, \underline{x}_{N+1}^{*}}_{N} \Bigg[d_{N+1} - \underline{x}_{N+1}^{T} \, \hat{\underline{w}}_{N} \Bigg] \end{split}$$

- RLS has strong similarity with LMS algorithm
- Consider regression vector:

$$\underline{k}_{N+1} = \frac{P_N \underline{x}_{N+1}^*}{1 + \underline{x}_{N+1}^T P_N \underline{x}_{N+1}^*} \\
= P_{N+1} \underline{x}_{N+1}^* \\
= P_N x_{N+1}^* \gamma_{N+1}$$

• $\gamma_{N+1} = \frac{1}{1 + \underline{x}_{N+1}^T P_N \underline{x}_{N+1}^*}$ is the conversion factor

Interesting Relations

Consider error signals:

$$\widetilde{e}_{a,N+1} = d_{N+1} - \underline{x}_{N+1}^{T} \underline{\hat{w}}_{N}$$

$$\widetilde{e}_{p,N+1} = d_{N+1} - \underline{x}_{N+1}^{T} \underline{\hat{w}}_{N+1}$$

• we obtain:

$$\widetilde{e}_{p,N+1} = \gamma_{N+1} \widetilde{e}_{a,N+1}$$

• and:

$$P_{N+1} = P_N - \frac{\underline{k}_{N+1} \underline{k}_{N+1}^H}{\gamma_{N+1}}, P_o = \Pi_o$$

$$g_{LS}(\hat{\underline{w}}_{N+1}) = \left[\underline{d}_{N}^{H}, d_{N+1}^{*} \right] \frac{\underline{d}_{N} - X_{N} \hat{\underline{w}}_{N+1}}{d_{N+1} - \underline{x}_{N+1}^{T} \hat{\underline{w}}_{N+1}}$$

$$= \left[\underline{d}_{N}^{H}, d_{N+1}^{*} \right] \frac{\underline{d}_{N} - X_{N} \left\{ \hat{\underline{w}}_{N} + \underline{k}_{N+1} \tilde{e}_{a,N+1} \right\}}{d_{N+1} - \underline{x}_{N+1}^{T} \left\{ \hat{\underline{w}}_{N} + \underline{k}_{N+1} \tilde{e}_{a,N+1} \right\}}$$

$$= \left[\underline{d}_{N}^{H}, d_{N+1}^{*} \right] \frac{\underline{d}_{N} - X_{N} \hat{\underline{w}}_{N} - X_{N} \underline{k}_{N+1} \tilde{e}_{a,N+1}}{d_{N+1} - \underline{x}_{N+1}^{T} \hat{\underline{w}}_{N} - \underline{x}_{N+1}^{T} \underline{k}_{N+1} \tilde{e}_{a,N+1}}$$

$$= \underline{d}_{N}^{H} \left[\underline{d}_{N} - X_{N} \hat{\underline{w}}_{N} \right] - \underline{d}_{N}^{H} X_{N} \underline{k}_{N+1} \tilde{e}_{a,N+1}$$

$$+ d_{N+1}^{*} \left[\underline{d}_{N+1} - \underline{x}_{N+1}^{T} \hat{\underline{w}}_{N} \right] - d_{N+1}^{*} \underline{x}_{N+1}^{T} \underline{k}_{N+1} \tilde{e}_{a,N+1}$$

$$= g_{LS}(\hat{\underline{w}}_{N}) + \tilde{e}_{a,N+1} \left[\underline{d}_{N+1}^{*} - \underline{d}_{N+1}^{H} X_{N+1} \underline{k}_{N+1} \right]$$

$$\begin{split} g_{LS}(\hat{\underline{w}}_{N+1}) &= g_{LS}(\hat{\underline{w}}_{N}) + \widetilde{e}_{a,N+1} \Big[d_{N+1}^{*} - \underline{d}_{N+1}^{H} X_{N+1} \underline{k}_{N+1} \Big] \\ &= g_{LS}(\hat{\underline{w}}_{N}) + \widetilde{e}_{a,N+1} \Big[d_{N+1}^{*} - \underline{d}_{N+1}^{H} X_{N+1} P_{N+1} \underline{x}_{N+1}^{*} \Big] \\ &= g_{LS}(\hat{\underline{w}}_{N}) + \widetilde{e}_{a,N+1} \Big[d_{N+1} - \underline{x}_{N+1}^{T} \hat{\underline{w}}_{N+1} \Big]^{*} \\ &= g_{LS}(\hat{\underline{w}}_{N}) + \widetilde{e}_{a,N+1} \widetilde{e}_{p,N+1}^{*} \\ &= g_{LS}(\hat{\underline{w}}_{N}) + \left| \widetilde{e}_{a,N+1} \right|^{2} \gamma_{N+1} \end{split}$$

• Reconsider the reference model:

$$\underline{d}_N = X_N \underline{w}_o + \underline{v}_N$$

Consider matrix:

$$P_{N+1} \stackrel{\Delta}{=} \left[\Pi_o^{-1} + X_{N+1}^H X_{N+1}\right]^{-1}; P_o = \Pi_o$$

- This is an estimate for the inverse ACF matrix.
- Compare also to Newton LMS algorithm.

- Consider RLS algorithm with exponential forgetting factor
- (Note change in notation N+1→k)

$$\frac{\hat{w}_{k}}{\hat{w}_{k}} = \frac{\hat{w}_{k-1} + \underline{k}_{k} \left[d_{k} - \underline{x}_{k}^{T} \hat{w}_{k-1} \right]}{\lambda^{-1} P_{k-1} \underline{x}_{k}^{*}}$$

$$\underline{k}_{k} = \frac{\lambda^{-1} P_{k-1} \underline{x}_{k}^{*}}{1 + \lambda^{-1} \underline{x}_{k}^{T} P_{k-1} \underline{x}_{k}^{*}}$$

$$P_{k} = \lambda^{-1} \left[P_{k-1} - \underline{k}_{k} \underline{x}_{k}^{T} P_{k-1} \right]$$

• Set Π^{-1} =0,Q= Λ and obtain:

$$\mathbf{E}_{\mathbf{v}} \left[\left(\underline{w}_{o} - \hat{\mathbf{w}}_{k} \right) \left(\underline{w}_{o} - \hat{\mathbf{w}}_{k} \right)^{H} \right] = \left[X_{k-1}^{H} \Lambda X_{k-1} \right]^{-1} \left[X_{k-1}^{H} \Lambda^{2} X_{k-1} \right] X_{k-1}^{H} \Lambda X_{k-1}^{-1} \right]^{-1} \sigma_{\mathbf{v}}^{2}$$

• Expectation over \underline{x}_k gives approximately:

$$\mathbf{E}_{\mathbf{x}} \left\{ \!\! \begin{bmatrix} X_{k-1}^H \boldsymbol{\Lambda} \boldsymbol{X}_{k-1} \end{bmatrix}^{\!-1} \!\! \begin{bmatrix} X_{k-1}^H \boldsymbol{\Lambda}^2 \boldsymbol{X}_{k-1} \end{bmatrix} \!\! \begin{bmatrix} X_{k-1}^H \boldsymbol{\Lambda} \boldsymbol{X}_{k-1} \end{bmatrix}^{\!-1} \right\}$$

$$\approx \left(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \sum_{i=1}^k \boldsymbol{\lambda}^{k-i} \right)^{\!-1} \!\! \left(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \sum_{i=1}^k \boldsymbol{\lambda}^{2k-2i} \right) \!\! \left(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \sum_{i=1}^k \boldsymbol{\lambda}^{k-i} \right)^{\!-1}$$

• Eventually, one obtains:

$$\lim_{k\to\infty} \mathbf{E}_{\mathbf{v}} \left[(\underline{w}_o - \underline{\hat{\mathbf{w}}}_k) (\underline{w}_o - \underline{\hat{\mathbf{w}}}_k)^H \right] \approx \frac{1-\lambda}{1+\lambda} R_{\underline{\mathbf{x}}\underline{\mathbf{x}}}^{-1} \sigma_{\mathbf{v}}^2$$

$$\lim_{k \to \infty} \operatorname{trace} \left[\mathbf{E}_{\mathbf{v}} \left[(\underline{w}_{o} - \underline{\hat{\mathbf{w}}}_{k}) (\underline{w}_{o} - \underline{\hat{\mathbf{w}}}_{k})^{H} \right] \right] \approx \frac{1 - \lambda}{1 + \lambda} \operatorname{trace} \left[R_{\underline{\mathbf{x}}\underline{\mathbf{x}}}^{-1} \right] \sigma_{\mathbf{v}}^{2}$$

$$= \frac{1 - \lambda}{1 + \lambda} \sigma_{\mathbf{v}}^{2} \sum_{i=1}^{M} \frac{1}{\lambda_{i}}$$

• MSE:

$$\lim_{k \to \infty} \mathbf{E} \left[\mathbf{\tilde{e}}_{a,k} \right]^{2} = \sigma_{\mathbf{v}}^{2} + \operatorname{trace} \left[\mathbf{E} \left[(\underline{w}_{o} - \mathbf{\hat{w}}_{k}) (\underline{w}_{o} - \mathbf{\hat{w}}_{k})^{H} \right] R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \right]$$
$$= \sigma_{\mathbf{v}}^{2} \left(1 + M \frac{1 - \lambda}{1 + \lambda} \right)$$

• Excess MSE:

$$g_{ex,LS} = \sigma_{v}^{2} M \frac{1 - \lambda}{1 + \lambda}$$

• Misadjustment:

$$\mathbf{m}_{LS} = M \frac{1-\lambda}{1+\lambda}$$

LMS vs RLS steady-state behavior

LMS

$$\begin{split} &\lim_{k\to\infty} \mathbf{E} \Big[\Big| \underline{w}_o - \hat{\underline{\mathbf{w}}}_k \Big|_2^2 \Big] \colon \quad \mu \frac{M}{2} \sigma_{\mathbf{v}}^2 \qquad \qquad \frac{1-\lambda}{1+\lambda} \operatorname{trace} \Big(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}}^{-1} \Big) \sigma_{\mathbf{v}}^2 \\ &\lim_{k\to\infty} \mathbf{E} \Big[\Big| \widetilde{\mathbf{e}}_{a,k} \Big|^2 \Big] \colon \quad \sigma_{\mathbf{v}}^2 + \mu \frac{\operatorname{trace} \Big(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \Big)}{2} \sigma_{\mathbf{v}}^2 \qquad \quad \sigma_{\mathbf{v}}^2 + \frac{1-\lambda}{1+\lambda} M \sigma_{\mathbf{v}}^2 \\ g_{ex} \colon \qquad \qquad \mu \frac{\operatorname{trace} \Big(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \Big)}{2} \sigma_{\mathbf{v}}^2 \qquad \qquad \frac{1-\lambda}{1+\lambda} M \sigma_{\mathbf{v}}^2 \\ &\mathbf{misadjustment} \ \frac{g_{ex}}{g_o} \colon \qquad \mu \frac{\operatorname{trace} \Big(R_{\underline{\mathbf{x}}\underline{\mathbf{x}}} \Big)}{2} \qquad \qquad \frac{1-\lambda}{1+\lambda} M \end{split}$$

Note for white processes: $\lambda=1-\mu$

Prof.Dr.-Ing. Markus Rupp

Can we apply RLS in Neural Networks?

• With some modification we can use it for PLA

Need additional step-size to accommodate non-linear activation function f()

$$\underline{\hat{w}}_{k} = \underline{\hat{w}}_{k-1} + \mu \underline{k}_{k} \left[d_{k} - f\left(\underline{x}_{k}^{T} \underline{\hat{w}}_{k-1}\right) \right]$$

$$\underline{k}_{k} = \frac{\lambda^{-1} P_{k-1} \underline{x}_{k}^{*}}{1 + \lambda^{-1} \underline{x}_{k}^{T} P_{k-1} \underline{x}_{k}^{*}}$$

$$P_{k} = \lambda^{-1} \left[P_{k-1} - \underline{k}_{k} \underline{x}_{k}^{T} P_{k-1} \right]$$

 \underline{k}_k and P_k are independent of estimation process and just serve to compute inverse Hessian and direction for update!

Additional terms in backpropagation may become challenging

What is better with RLS? ...in comparison to LMS

- The initial learning phase is typically much superior with the RLS compared to LMS
- Note that for LMS we first have to find the best step-size
- Even with a best step-size LMS, the RLS learns typically much faster
- However, its complexity is also much larger O(M²) instead of 2M
 Linear implementations exist but are not numerically stable

Are they different in tracking?

Tracking Behavior

- Possible forms of time-variant systems:
 - Rotation of systems

$$d_k = \underline{x}_k^T \underline{w}_o e^{j\Omega_o k} + \nu_k$$

- Jump $\frac{w_{o,k} = \underline{w}_o e^{j\Omega_o k}}{\underline{w}_{o,k} = \begin{cases} \underline{w}_o & ; k \ge 0 \\ \underline{0} & ; \text{else} \end{cases}}$
- Stochastic variations

$$\underline{\mathbf{w}}_{o,k} = F_k \underline{\mathbf{w}}_{o,k-1} + G_k \underline{\mathbf{u}}_k, \quad k = 1,2,...$$

Tracking Behavior

- We consider rotational change.
- Due to the new reference model, we have a new parameter error vector:

$$\underline{\widetilde{w}}_{k}^{\Delta} = \underline{w}_{o} e^{j\Omega_{o}k} - \underline{\hat{w}}_{k}$$

Tracking Behavior

 Due to the new parameter error vector, we have a new form for the a priori error:

$$\begin{aligned}
\widetilde{e}_{a,k} &= d_k - \underline{x}_k^T \underline{\hat{w}}_{k-1} \\
&= v_k + \underline{x}_k^T \underline{w}_o e^{j\Omega_o k} - \underline{x}_k^T \underline{\hat{w}}_{k-1} \\
&= v_k + \underline{x}_k^T \underline{\widetilde{w}}_{k-1} + \underline{x}_k^T \underline{w}_o e^{j\Omega_o k} \left(1 - e^{-j\Omega_o} \right)
\end{aligned}$$

$$\widetilde{e}_{p,k} = v_k + \underline{x}_k^T \underline{\widetilde{w}}_k$$
Prof.Dr.-Ing. Markus Rupp

 Due to new parameter error vector, also a new form for the update equations arises:

$$\underline{\widetilde{w}}_{k} = \left(I - \underline{g}_{k}^{*} \underline{x}_{k}^{T}\right) \underline{\widetilde{w}}_{k-1} - v_{k} \underline{g}_{k}^{*} - \left(I - \underline{g}_{k}^{*} \underline{x}_{k}^{T}\right) \underline{w}_{o} e^{j\Omega_{o}k} \left(1 - e^{-j\Omega_{o}}\right)$$

Unified representation of LMS and RLS algorithm with

$$\underline{g}_{k} = \begin{cases} \mu \underline{x}_{k} & LMS \\ \underline{k}_{k} = P_{k} \underline{x}_{k} & RLS \end{cases}$$

Can be computed in average to:

$$E[\underline{\widetilde{w}}_{k}] = (I - A)E[\underline{\widetilde{w}}_{k-1}] - (I - A)\underline{w}_{o}e^{j\Omega_{o}k}(1 - e^{-j\Omega_{o}})$$

with

$$A = \begin{cases} \mu R_{\underline{x}\underline{x}}^* & LMS \\ (1 - \lambda)I & RLS \end{cases}$$

Theorem: The stationary solution for the parameter error vector of the LMS and RLS algorithm under a periodically changing system with frequency Ω_o is given in average by:

$$E\left[\underline{\widetilde{w}}_{k}\right] = \left(1 - e^{-j\Omega_{o}}\right)\left[e^{j\Omega_{o}}I - (I - A)\right]^{-1}(I - A)\underline{w}_{o}e^{j\Omega_{o}(k+1)}$$

Proof: Since $E[\widetilde{w}_k]$ stems from a linear system, $E[\widetilde{w}_k] = ae^{j\Omega_o(k+1)}$

The solution for \underline{a} can be obtained by substitution:

$$\underline{a} = \left(1 - e^{-j\Omega_o}\right) \left[e^{j\Omega_o}I - (I - A)\right]^{-1} (I - A)\underline{w}_o$$

• Thus the expectation of the parameter error vector also becomes time-variant. For k→oo, the transients disappear and the error vector finally becomes:

$$E\left[\underline{\widetilde{w}}_{k}\right] = \left(1 - e^{-j\Omega_{o}}\right)\left[e^{j\Omega_{o}}I - (I - A)\right]^{-1}(I - A)\underline{w}_{o}e^{j\Omega_{o}(k+1)}$$

• And the average estimate reads:

$$E[\underline{\hat{w}}_k] = \left(I - \left(e^{j\Omega_o} - 1\right)\left[e^{j\Omega_o}I - (I - A)\right]^{-1}(I - A)\underline{w}_o e^{j\Omega_o k}\right)$$

Obviously, the frequency Ω_o as well as algorithmic parameters like μ und λ influence the result. Essentially, we can conclude that the estimate runs behind the true value \underline{w}_o in modulus and phase.

The result can also be given for a small frequency range $d\Omega$:

$$d \operatorname{E}\left[\underline{\hat{w}}_{k}\right] = \left(I - \left(e^{j\Omega} - 1\right)\left[e^{j\Omega}I - (I - A)\right]^{-1}(I - A)\underline{w}_{o}(\Omega)e^{j\Omega k}d\Omega$$

Such interpretation allows to compute the algorithmic result for every system alternation:

$$E\left[\underline{\hat{w}}_{k}\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(I - \left(e^{j\Omega} - 1\right)\left[e^{j\Omega}I - (I - A)\right]^{-1}(I - A)\right) \underline{w}_{o}(\Omega)e^{j\Omega k}d\Omega$$

George Green (14.7.1793 - 31.5.1841) was a <u>British mathematical physicist</u> Tracking Behavior

The kernel of the integral is the Fourier Transform of the algorithmic impulse response, or, equivalently, the Fourier-Transform $G(\Omega)$ of the Averaged Green's Function g_k of the LMS/RLS algorithm:

$$G(\Omega) \stackrel{\triangle}{=} \left(I - \left(e^{j\Omega} - 1 \right) \left[e^{j\Omega} I - \left(I - A \right) \right]^{-1} (I - A) \right)$$

Such averaged Green's Function g_k can thus be obtained by the inverse Fourier Transform:

$$g_k = \{ I - (I - A)^k u_k + (I - A)^{k-1} u_{k-1} \}$$

Unit step

Example 1: In case of a frequency offset, we have:

$$\underline{w}_o(\Omega) = \underline{w}_o \delta(\Omega - \Omega_o)$$

We thus obtain:

$$E[\underline{\hat{w}}_k] = \left(I - \left(e^{j\Omega_o} - 1\right)\left[e^{j\Omega_o}I - \left(I - A\right)\right]^{-1}(I - A)\underline{w}_o e^{j\Omega_o k}\right)$$

Example 2: In the initial phase (jump) we obtain:

$$\underline{w}_{o}(\Omega) = \frac{\underline{w}_{o}}{1 - e^{-j\Omega}}$$

$$E[\hat{\underline{w}}_{k}] = (I - [I - A]^{k+1})\underline{w}_{o}$$
Prof.Dr.-Ing. Markus Rupp

Theorem: Under statistically white excitation, LMS and RLS algorithm exhibit the same tracking behavior in average.

<u>Proof</u>: Matrix A becomes μI for the LMS and $[1-\lambda]I$ for the RLS algorithm. In other words, the choice μ =1- λ results in identical tracking behavior in average.

• As LMS and RLS are not superior in tracking, we wonder if there is anything we can do if the movement of the "data" is too fast.

State-Space Description

A linear, time - variant system can be described by the following state - space equations:

$$\begin{split} &\underline{x}_{k+1} = F_k \underline{x}_k + G_k \underline{u}_k, \quad \underline{x}_{k_o} = \text{start value} \\ &\underline{y}_k = H_k \underline{x}_k + K_k \underline{u}_k, \quad k \geq k_o \\ &\text{with the matrices } \big\{ F_k, G_k, H_k, K_k \big\} \text{ of dimension} \end{split}$$

 $n \times n, n \times q, p \times n,$ and $p \times q,$ respectively.

Correspondingly, \underline{u}_k is of dimension $q \times 1$ and \underline{y}_k is of $p \times 1$. The n-dimensional vector \underline{x}_k is called state of the system.

State-Space Description

The solution of the state \underline{x}_k can be found by help of the so-called transition matrix $\Phi[k,j]$:

$$\underline{x}_{k} = \Phi[k, j]\underline{x}_{j} + \sum_{l=j}^{k-1} \Phi[k, l+1]G_{l}\underline{u}_{l}$$

In this case, the transition matrix is given by:

$$\Phi[k,j] = F_{k-1}F_{k-2}...F_{j}, \Phi[k,k] = I$$

State-Space Description

In the special case of the time-invariant system {F,G,H,K}, the transition matrix reads simply:

$$\Phi[k,j] = F^{k-j} \quad ; k \ge j$$

In some situations, the time-invariant system can be diagonalized:

$$F = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$$

 In the following we use a simplified description that fits well the tracking problem included in a system identification:

Dynamic of the system to identify

$$\underline{\mathbf{w}}_{k} = F_{k} \underline{\mathbf{w}}_{k-1} + G_{k} \underline{\mathbf{u}}_{k}, \quad k = 1, 2, \dots$$

$$\underline{\mathbf{d}}_{k} = X_{k} \underline{\mathbf{w}}_{k-1} + \underline{\mathbf{v}}_{k}$$
 Conventional

input output relation

Approach for linear estimator:

$$\hat{\mathbf{w}}_{k} = F_{k} \hat{\mathbf{w}}_{k-1} + M_{k} \tilde{\mathbf{e}}_{a,k}, \quad k = 1,2,\dots$$

• Assumptions:

$$\mathbf{E} \left[\begin{bmatrix} \mathbf{\underline{u}}_{k} \\ \mathbf{\underline{v}}_{k} \\ \mathbf{\underline{w}}_{0} \\ 1 \end{bmatrix}^{H} \mathbf{\underline{u}}_{i} \right]^{H} = \begin{bmatrix} R_{\underline{\mathbf{u}}} \delta_{k-i} & 0 & 0 \\ 0 & R_{\underline{\mathbf{v}}} \delta_{k-i} & 0 \\ 0 & 0 & P_{o} \\ 0 & 0 & 0 \end{bmatrix}$$

Lowest row: zero mean!

Let's consider again the error vector $\underline{\widetilde{\mathbf{e}}}_{a,k}$

$$\underline{\widetilde{\mathbf{e}}}_{a,k} = \underline{\mathbf{d}}_k - X_k \underline{\hat{\mathbf{w}}}_{k-1} = X_k \underline{\widetilde{\mathbf{w}}}_{k-1} + \underline{\mathbf{v}}_k$$

Let us define the parameter (error vector) co-variance matrix as:

$$P_{k} = E\left[\underline{\widetilde{\mathbf{w}}}_{k} \underline{\widetilde{\mathbf{w}}}_{k}^{H}\right]$$

The co-variance matrix of the error is then:

$$E\left[\underline{\widetilde{\mathbf{e}}}_{a,k}\,\underline{\widetilde{\mathbf{e}}}_{a,k}^{H}\right] = R_{\underline{\mathbf{v}}\underline{\mathbf{v}}} + X_{k}P_{k-1}X_{k}^{H} = R_{\underline{\mathbf{e}}\underline{\mathbf{e}}}$$

The desired optimal step-size matrix can be found by minimizing the recursion for the parameter co-variance matrix with respect to M_k :

$$P_{k} = F_{k} P_{k-1} F_{k}^{H} + M_{k} \operatorname{E} \left[\underbrace{\widetilde{\mathbf{e}}}_{a,k} \underbrace{\widetilde{\mathbf{e}}}_{a,k}^{H} \right] M_{k}^{H} + G_{k} R_{\underline{\mathbf{u}}\underline{\mathbf{u}}} G_{k}^{H}$$

$$- F_{k} \operatorname{E} \left[\underbrace{\widetilde{\mathbf{w}}}_{k-1} \underbrace{\widetilde{\mathbf{e}}}_{a,k}^{H} \right] M_{k}^{H} - M_{k} \operatorname{E} \left[\underbrace{\widetilde{\mathbf{e}}}_{a,k} \underbrace{\widetilde{\mathbf{w}}}_{k-1}^{H} \right] F_{k}^{H}$$

quadratic im M_k

Minimizing with respect to M_k can be accomplished by investigating $(M_k - \overline{M}_k)B(M_k - \overline{M}_k)^H$ and comparing the terms. We find $B=R_{\underline{ee}}$ and

$$\overline{M}_{k} = F_{k} \operatorname{E} \left[\underbrace{\widetilde{\mathbf{w}}_{k-1}}_{k-1} \underbrace{\widetilde{\mathbf{e}}_{a,k}^{H}}_{k-1} R_{\underline{\mathbf{e}}\underline{\mathbf{e}}}^{-1} \right]$$

$$= F_{k} \operatorname{E} \left[\underbrace{\widetilde{\mathbf{w}}_{k-1}}_{k-1} \left(X_{k} \underbrace{\widetilde{\mathbf{w}}_{k-1}}_{k-1} + \underline{\mathbf{v}}_{k} \right)^{H} \right] R_{\underline{\mathbf{e}}\underline{\mathbf{e}}}^{-1}$$

$$= F_{k} P_{k-1} X_{k}^{H} R_{\underline{\mathbf{e}}\underline{\mathbf{e}}}^{-1}$$

Kalman Equations

$$\begin{split} \overline{M}_{k} &= F_{k} P_{k-1} X_{k}^{H} \Big[R_{\underline{\mathbf{v}}\underline{\mathbf{v}}} + X_{k} P_{k-1} X_{k}^{H} \Big]^{-1} \\ \underline{\hat{\mathbf{w}}}_{k} &= F_{k} \underline{\hat{\mathbf{w}}}_{k-1} + \overline{M}_{k} \underline{\tilde{\mathbf{e}}}_{a,k} \\ P_{k} &= F_{k} P_{k-1} F_{k}^{H} - \overline{M}_{k} \Big[R_{\underline{\mathbf{v}}\underline{\mathbf{v}}} + X_{k} P_{k-1} X_{k}^{H} \Big] \overline{M}_{k}^{H} + G_{k} R_{\underline{\mathbf{u}}\underline{\mathbf{u}}} G_{k}^{H} \\ &= F_{k} \Big[P_{k-1} + P_{k-1} X_{k}^{H} \Big[R_{\underline{\mathbf{v}}\underline{\mathbf{v}}} + X_{k} P_{k-1} X_{k}^{H} \Big]^{-1} X_{k} P_{k-1} \Big] F_{k}^{H} + G_{k} R_{\underline{\mathbf{u}}\underline{\mathbf{u}}} G_{k}^{H} \end{split}$$

Note that the Kalman algorithm requires the signals to be of stochastic nature!

- In applications with high system dynamic (low orbit satellites) using a model to predict the movement has been successfully supporting neural networks to make decisions.
- In general the original Kalman algorithm needs to be modified including some unknowns in the state (extended Kalman). Perfect tracking can then not be guaranteed any more.