Retail Credit

Estimating probability of default with XGBoost

Motivation

- Liquidity
- IFRS 9 & Basel II compliance
- Modern

Data Pre-Processing I

1- Create mapping column for target variable (Multi-class classification)

Class 0 (Non-default)	Class 1 (At risk)	Class 2 (Default)
"Current" "Fully Paid"	"Late (31-120 days)" "Late (16-30 days)" "In Grace Period"	"Charged Off" "Default"

2- Drop columns with excessive missing values

Threshold = 30%	Threshold = 10%	Threshold = 5%
49 columns dropped	50 columns dropped	52 columns dropped

3- Drop insignificant columns (e.g. loan_url, loan_id)

Data Pre-Processing II

4- Apply transformations

7.1% → 0.071

5- Convert data to correct types (e.g. numbers, dates)

6- Replace missing values

7- Convert categorical data to numerical

sub_grade (categorical)	→	sub_grade (numerical)
A1	\rightarrow	1
A2	\rightarrow	2

Feature Selection

- 1- Selected most relevant features using LASSO
- 2- Optimal LASSO regularisation parameter α obtained using k-fold cross-validation
- 3- TOP 30 feature selection avoid overfitting & computational trade-off
- 4- Remove highly correlated features
- 5- Economic intuition
 - Lasso selected features
 - Keep the Interest Rate predictor (Basel II compliance)

Feature Selection - Correlation Heatmap

30 features selected with LASSC (+ loan int. rates) 20 features selected after correlation analysis (+ loan int. rates)

Data Balancing

1- Split dataset into 80% training and 20% testing Ensure train and test sets maintain same class distribution as original dataset

2- Apply SMOTE to training data
Why SMOTE? - Dataset highly imbalanced
Why not apply to testing set too? - Prevent introducing artificial data, prevent data leakage when testing

$$F(x) = \sum_{m=1}^{M} \gamma_m T_m(x)$$

$$\lambda_i = ARGMIN\left(\sum_{i=1}^{N} L(y_i, \hat{y}_i + \lambda T_m(x_i))\right)$$

$$L_{\log}(y, p) = -\sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$

XGBoost

Model Performance

Class	Precision	Recall	F1
No Default	0.95	0.98	0.96
At Risk	0.09	0.17	0.11
Default	0.99	0.74	0.84

	Predicted				
			No Default	At Risk	Default
Actual		No Default	333,916	5413	519
	Actual	At Risk	2741	564	35
		Default	16,004	578	46,221

Next steps

- Rebalancing
- Macroeconomic enhancement