

Implementation of a System for Image Describing on Mobile Phones

Presenter:

Bahar Amirian Varnousefaderani

Supervisor:

Dr. Mohsen Ebrahimi Moghadam

Shahid Beheshti University
Computer Science and Engineering Department
Summer 2021

Purpose

Implementing a system to use Artificial Intelligence models and particularly Computer Vision models on mobile phones with Android operating system

Introduction of the implemented system

Client Side

Server Side

Implementation Methods

Model on Device

(e.g. using TensorFlow Lite)

Model on Server

Comparison between Implementation Methods

Issue	Model on Device	Model on Server
Latency	Lower latency enhances the real-time experience	Asynchronous communication and available bandwidth can affect latency
Resources	The particular device's resources, like processing power and storage, can limit performance	Cloud-based resources are more powerful and storage is more plentiful
Offline/Online	The ability to operate offline is a plus for running with poor or non-existing network infrastructure	A network connection is required
Cost	Battery usage, model download time for end users	Bandwidth for data transfer for end users, computing charges for developers
Privacy	User data never leaves the device	Data may leave the device, additional precautions may be necessary

Introduction of the implemented system

Client Side

Server Side

Overall Look

Introduction of the implemented system

Client Side

Server Side

Server Side

Implemented using python and flask framework under the Microservice Architecture

Includes services for:

- Signup and login of a user
- Using the describer models (Object Recognition and Detection, Image Captioning, Music Play List Recommender)
- Configuring the database

Any of these services can be run separately as normal or using Docker and Docker Compose

Server Side – Signup and Login

Server Side – Describer Models

Server Side – Database

Introduction of the implemented system

Client Side

Server Side

Client Side

Implemented using Java on Android Studio for mobile phones with Android operating system

Includes facilities for:

- Accessing services (Object Recognition and Detection, Image Captioning, and Music Play List Recommendation based on the models on server)
- Showing an album of previous results produced in the image captioning services
- Information
- Setting
- Login and Signup

Client Side – Menus

Client Side - Services

Client Side – Album of Results

Client Side – Information

Client Side – Setting: User Permission

Client Side – Login and Signup

Introduction of the implemented system

Client Side

Server Side

Some Applications

- Assistive tool for visually impaired people to gain an understanding of the surrounding environment or images
- Platform for using other Artificial Models, specially Computer Vision Models
- Producing datasets