系、班______ 姓名 学号

- 一、填空题(每题4分,共36分,请直接填在试卷的横线上)
- 1. 设 $\alpha = (4, -1, 5)$, $\beta = (1, 2, 3)$, $\gamma = (3, 1, 1)$ 为一右手直角坐标系中的三个向 量,则以 (α, β, γ) 为棱边的平行六面体的体积为______.
- 2. 设A为3阶可逆矩阵,将A的第1列的a倍加到第2列得到的矩阵为B, 则

$$A^{-1}B =$$
_____.

- 3. 设 $\alpha = (\frac{1}{2}, 0, \dots, 0, \frac{1}{2})$, 矩阵 $A = -I + \alpha^T \alpha$, $B = I + 2\alpha^T \alpha$, 则 $AB = \underline{\hspace{1cm}}$.
- 4. 线性方程组 $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ 有解的充分必要条件是: ______.
- 5. 设A, B为n阶矩阵,伴随矩阵分别为 A^*, B^* ,则矩阵 $M = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ 的伴随矩

阵
$$M^* =$$
______.

- 6. 设A,B为3阶矩阵,且|A|=3,|B|=-2,则分块矩阵 $D=\begin{bmatrix}0&2A\\-B&0\end{bmatrix}$ 的行列 式|D| =______.
- 7. 设 $A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$,二阶方阵B满足BA B + 2I = 0,则 $B = \underline{\qquad}$
- 8. 在直角坐标系下,点A(0,1,0)关于平面2x y + z = 0的对称点B的坐标 为B =_____.

- 二、计算题和证明题(共64分)

10. (14分) 设
$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}$$
, $\beta = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, 已知线性方程组 $Ax = \beta$ 有解但不唯一

- (1) 求 a 的 值;
- (2) 求A的相抵标准形.
- 11. (16分) 计算

$$(1) \begin{bmatrix} 1 & 0 & -2 \\ -1 & -1 & 2 \\ 0 & 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 0 \\ -1 & -1 \\ 1 & 2 \end{bmatrix}, (2) \begin{bmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 1 \\ 1 & \cdots & 1 & 1+a_n \end{bmatrix}.$$

12.
$$(14 分)$$
 设 $A = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$.

- (1) 求所有与A交换的矩阵B(即满足AB = BA)
- (2) 求 A^n .

13. (6分) 设
$$\{O; e_1, e_2, e_3\}$$
为一个仿射坐标系,其度量矩阵为 $A = \begin{bmatrix} e_1 \cdot e_1 & e_1 \cdot e_2 & e_1 \cdot e_3 \\ e_2 \cdot e_1 & e_2 \cdot e_2 & e_2 \cdot e_3 \\ e_3 \cdot e_1 & e_3 \cdot e_2 & e_3 \cdot e_3 \end{bmatrix}$. 设有非零向量 $\alpha = (x_1, x_2, x_3)$ 和实数 λ 满足 $A\alpha^T = \lambda\alpha^T$. 证明 $\lambda > 0$.

14. (14分)设
$$M$$
为 n 阶可逆方阵,分块为 $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$,其中 D 为 k 阶可逆矩阵($k < n$).

(1) 证明:
$$|M| = |D||A - BD^{-1}C|$$
. (2) 求 M^{-1} .