№ 10 «Лослідження радіоактивного випромінювання»

Дата виконання:	Розрахунковий лист		
Відмітка про виконання:	до лабораторної роботи №10		
Відмітка про оформлення:	(v.1.01)		
«Лоспідження падіоактивного виппомінювання»			

група	ступент
група	студент

Мета роботи

- 1 Експериментально переконатися у справедливості закону Бугера.
- 2 Визначити радіоактивний фон навколишнього середовиша.
- 3 Визначити коефіцієнт поглинання заданого матеріалу.

Виконання роботи

Визначте середній природний фон І, іонізуючого випромінювання в лабораторії, тобто середнє число іонізуючих частинок за хвилину, що попадають до лічильника Гейгера-Мюллера, при умові відсутності випромінювання від радіоактивного препарату. Проводимо 5 вимірів числа іонізуючих частинок, що попадають до лічильника, за одну хвилину. Отримані значення запишемо до таблиці 1.

Знаходимо середнє значення та похибку

$$< I_{\hat{o}} > = \left(\sum_{i=1}^{N} I_{\hat{o}i}\right) / N =$$

$$\Delta I_{\phi} = 3\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (I_{\phi i} - \langle I_{\phi} \rangle)^{2}} =$$

Визначимо початкову інтенсивність випромінювання радіоактивного джерела з природнім фоном Іоф. Проведемо 5 вимірів Отримані значення запишіть до таблині 1.

Знаходимо середнє значення та похибку

$$< I_{0\phi} > = \left(\sum_{i=1}^{N} I_{0\phi i}\right) / N =$$

$$\Delta I_{0\phi} = 3\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (I_{0\phi i} - < I_{0\phi} >)^{2}} =$$

№ 10 «Дослідження радіоактивного випромінювання»

Визначимо інтенсивність випромінювання радіоактивного джерела з природнім фоном $I_{1,h}$, якщо на шляху іонізуючих частинок розташована одна пластина відомої товщини. Отримані значення запишемо до таблиці 1. До таблиці 1 запишемо товщину пластинки.

Знаходимо середнє значення та похибку

$$\langle I_{1\phi} \rangle = \left(\sum_{i=1}^{N} I_{1\phi i}\right) / N =$$

$$\Delta I_{1\phi} = 3\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (I_{1\phi i} - \langle I_{1\phi} \rangle)^{2}} =$$

Таблиця 1

Умова досліду	Номер досліду	Інтенсивність, імп/хв	Товщина пластинок, мм
Без препарату, без поглинача, (Іф)	1 2 3 4 5		
3 препаратом, без поглинача, (ІОф)	Середнє 1 2 3 4 5 Середнє		
3 препаратом, з однією пластинкою, (Пф)	1 2 3 4 5 Середнє		
3 препаратом, 3 двома пластинками, (I2ф)	1 2 3 4 5 Середнє		

№ 10 «Дослідження радіоактивного випромінювання»

Визначимо інтенсивність випромінювання радіоактивного джерела з природнім фоном $I_{2\phi}$, якщо на шляху іонізуючих частинок розташована дві пластину відомої товщини. Отримані значення запишемо до таблиці 1. До таблиці 1 запишемо товщину пластинки.

Знаходимо середнє значення та похибку

$$< I_{2\phi} > = \left(\sum_{i=1}^{N} I_{2\phi i}\right) / N =$$

$$\Delta I_{2\phi} = 3\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (I_{2\phi i} - < I_{2\phi} >)^{2}} =$$

Обчислюємо відповідні інтенсивності без природного фону, а також їх похибки $I_0 \! = \! I_{0d} \! - \! I_d \! = \!$

$$I_1 = I_{1\phi} - I_{\phi} =$$

$$I_2 = I_{2\phi} - I_{\phi} =$$

$$\Delta I_0 = \sqrt{(\Delta I_{0\phi})^2 + (\Delta I_{\phi})^2} =$$

$$\Delta I_1 = \sqrt{(\Delta I_{1\phi})^2 + (\Delta I_{\phi})^2} =$$

$$\Delta I_2 = \sqrt{(\Delta I_{2\phi})^2 + (\Delta I_{\phi})^2} =$$

Обчислимо лінійний коефіцієнт поглинання радіоактивного випромінювання досліджуваної речовини та його похибку у випадку, коли проводили дослідження з однією пластиною

$$\mu_{1} = \frac{1}{d_{1}} \ln \frac{I_{0}}{I_{1}} = \Delta \mu_{1} = \sqrt{\left(\frac{\Delta d_{1}}{d_{1}^{2}} \ln \frac{I_{0}}{I_{1}}\right)^{2} + \frac{1}{d_{1}^{2}} \left(\left(\frac{\Delta I_{0}}{I_{0}}\right)^{2} + \left(\frac{\Delta I_{1}}{I_{1}}\right)^{2}\right)} = \Delta \mu_{1} = \frac{1}{d_{1}} \ln \frac{I_{0}}{I_{1}} = \frac{1}{d_{1}^{2}} \ln \frac{I_{$$

№ 10 «Дослідження радіоактивного випромінювання»

Прийміть, що $\Delta d1=0.01$ мм.

Обчислимо лінійний коефіцієнт поглинання радіоактивного випромінювання досліджуваної речовини та його похибку у випадку, коли проводили дослідження з двома пластинами

$$\mu_{2} = \frac{1}{d_{2}} \ln \frac{I_{0}}{I_{2}} = \Delta \mu_{2} = \sqrt{\left(\frac{\Delta d_{2}}{d_{2}^{2}} \ln \frac{I_{0}}{I_{2}}\right)^{2} + \frac{1}{d_{2}^{2}} \left(\left(\frac{\Delta I_{0}}{I_{0}}\right)^{2} + \left(\frac{\Delta I_{2}}{I_{2}}\right)^{2}\right)} = \Delta \mu_{2} = \sqrt{\frac{\Delta d_{2}}{d_{2}^{2}} \ln \frac{I_{0}}{I_{2}}} = \frac{1}{2} \left(\frac{\Delta I_{0}}{I_{0}}\right)^{2} + \frac{1}{2} \left($$

ВИСНОВКИ

В результаті проведення лабораторної роботи знайшли лінійний коефіцієнт поглинання радіоактивного випромінювання речовиною пластин. Для двох випадків отримали

$$\mu_1 = <\mu_1> \pm \Delta \mu_1 =$$

$$\mu_2 = <\mu_2> \pm \Delta \mu_2 =$$
Бачимо, що ці результати з точністю до похибки експерименту
$$\frac{}{\text{(співпадають або не співпадають між собою)}}.$$
що описує зменшення інтенсивності іонізуючого випромінювання, є
$$\frac{}{\text{(вірним або не вірним)}}.$$

ТЕОРЕТИЧНИЙ МАТЕРІАЛ ДО ЛАБОРАТОРНОЇ РОБОТИ

«Дослідження радіоактивного випромінювання»