Statistical Machine Learning (STAT W4400)

Homework 2

Linan Qiu 1q2137

October 13, 2015

- 1 Linear Classification
- 1.1 Classification Results

 \mathbf{v}_h is a unit vector.

$$r_1 = \operatorname{sgn}(\langle \mathbf{x}_1, \mathbf{v}_h \rangle - c) = -1$$
$$r_1 = \operatorname{sgn}(\langle \mathbf{x}_2, \mathbf{v}_h \rangle - c) = 1$$

1.2 SVM with Margin

The values of the cross products with offset c are as follows:

 \mathbf{x}_1 is still on the negative side and classified the same. However, \mathbf{x}_2 is not greater than the margin of 1, hence will not be classified as positive. If \mathbf{x}_2 was in the training set, \mathbf{v}_h and c would not have been selected as the classifier as the classifier for a SVM with margin would have ensured that $\langle \mathbf{v}_h, \mathbf{x} \rangle - c \rangle 1$ or $\langle -1$ for all training data.

1.3 Cost Function Approximated by Perceptron Cost Function

It approximates the empirical risk function. Empirical risk function is piece-wise constant, hence would not allow us to gradient descent optimally. The perceptron cost function, by using $\left|\left\langle \mathbf{z}, \begin{pmatrix} 1 \\ \hat{\mathbf{x}}_i \end{pmatrix} \right\rangle\right|$ instead of just the loss function.

2 Perceptron

2.1 Classify

Included in file problem2.R

2.2 Perceptron Training Algorithm

Included in file problem2.R

2.3 Train and Test

Included in file problem2.R

2.4 2D Representation

Slope can be obtained from \mathbf{v}_h by

$$v_x x + v_y y - c = 0$$

and solving accordingly.

Figure 1: Plot of test data against obtained classifier from ${\tt z}.$

Figure 2: Plot of training data against history of classifiers from **z_history**. Earlier iterations have lower alpha.

3 SVM

3.1 Cross Validation Estimates

Figure 3: Plot of error against margin parameter (cost) for linear kernel SVM

Figure 4: Plot of error against margin parameter (cost) for different kernel bandwidth (gamma) for RBF kernel SVM

3.2 Test

Selected parameter values are:

```
Parameter tuning of 'svm':

16
17 - sampling method: 10-fold cross validation

18
19 - best parameters:
20 gamma cost
21 0.001 2
22
23 - best performance: 0.1704325
```

It seems from the training data tuning that the RBF kernel has a better performance. However, upon testing, this is not immediately clear.

```
1 > classAgreement(table(pred = linear_predict, true = testset
   [, ncol(data)]))
2 $diag
3 [1] 0.025
4
5 $kappa
6 [1] 0
8 $rand
9 [1] 0.5076923
10
11 $crand
12 [1] 0
13
14 > classAgreement(table(pred = rbf_predict, true = testset[,
    ncol(data)]))
15 $diag
16 [1] 0.025
17
18 $kappa
19 [1] 0
20
21 $rand
22 [1] 0.5076923
23
24 $crand
25 [1] 0
```