Serverless Computing: Security Risks, Tools and Ongoing Research

Presenter: G. Raffa

Co-authors: J. Blasco, D. O'Keeffe, S. Dash

i-4 Hybrid Roundtable, London, February 2024

Why Does Serverless Computing Matter?

Recent market research [1]

- Serverless market size expected to grow to USD 21.1 billion by 2025 at a CAGR of 22.7% during the forecast period 2020-2025
- A growing number of companies are using serverless platforms to reduce infrastructure cost

Why Does Serverless Security Matter?

Insecure Amazon S3 bucket exposed personal data on 500,000 Ghanaian graduates

John Leyden 06 January 2022 at 10:58 UTC Updated: 10 January 2022 at 09:40 UTC

Major jobs website left sensitive client data exposed for months

Catherine Chapman 24 July 2018 at 13:59 UTC Updated: 18 June 2021 at 09:34 UTC

Internal AWS credentials swiped by researcher via SQL payload

Adam Bannister 12 April 2022 at 15:47 UTC Updated: 12 April 2022 at 16:02 UTC

Misconfigured AWS bucket results in mass clinical data exposure

James Walker 10 October 2017 at 12:00 UTC Updated: 09 September 2019 at 13:38 UTC

Turkish flight operator Pegasus Airlines suffers data breach

Jessica Haworth 09 June 2022 at 12:29 UTC Updated: 09 June 2022 at 14:52 UTC

Vulnerability in AWS IAM Authenticator for Kubernetes could allow user impersonation, privilege escalation attacks

Jessica Haworth 13 July 2022 at 14:29 UTC

Serverless Computing Model

Shared Responsibility Model

Application Owner

Responsible for security "in" the cloud

FaaS Provider

Responsible for security "of" the cloud

Key concept

Serverless application developers must take care of security

Serverless Security Issues

Many different attacks possible [2]

- External attacks
- Malicious insider attacks
- Horizontal attacks between tenants
- Vertical attacks

Serverless-specific issues

- Large attack surface
- Many types of event triggers
- Tools are still evolving

Critical Risks for Serverless Applications

Risks identified by the Cloud Security Alliance [3]

Function Event Data Injection

Broken Authentication

Insecure Serverless Deployment Configuration

Over-Privileged Function Permissions & Roles

Inadequate Function Monitoring and Logging

Insecure Third-Party
Dependencies

Insecure Application Secrets Storage

DOS & Financial Resource Exhaustion

Serverless Business Logic Manipulation

Improper Exception Handling and Verbose Error Messages

Obsolete Functions, Cloud Resources and Event Triggers

Cross-Execution Data
Persistency

Injection Flaws

Well understood attacks

Execution of code based on untrusted inputs

Serverless context

- Multiple event sources can trigger code execution
- Different events include different message formats

Mitigation strategy

- Traditional strategies applicable, but not enough
- All possible event types and entry points should be considered

Cloud storage events

NoSQL database events

SQL database events

OS command injection

NoSQL injection

SQL injection

Amazon Web Services Security Tools

Inspector

- Automated vulnerability management service
- Scans both cloud infrastructure components and serverless functions
- Central management and integration into CI/CD tools

X-Ray

- Tracing tool to debug and analyze applications
- Provides end-to-end views of requests as they travel through the application
- Service maps can be used to identify data flows

GuardDuty

- Threat detection service for continuous monitoring
- Detects unauthorized behavior and malicious activity
- Relies on machine learning and malware scanning

All these tools require the deployment of resources in the cloud

Microsoft Azure Security Tools

Defender for Cloud

- Continuous assessment of configuration of cloud resources
- Monitoring tool to detect suspicious activities
- Scanning of application and infrastructure code prior to deployment

Multicloud, as some features are usable in AWS and Google Cloud Platform

Sentinel

- Security Information and Event Manager (SIEM) built into Azure
- Collects security events and contextual data from various data sources
- Supports threat detection, investigation and remediation

Relies on logging and monitoring of deployed resources

Our Serverless Security Research

Static analysis of serverless applications

- Effective supplement to dynamic methods
- Variety of sources and events
- Black-box nature of cloud services
- Models and approximations needed

AWSomePy dataset [4]

- Focus on AWS and Python
- Focus on Serverless Framework deployment tool

Dataset Config & Architectural Analysis

Plugin analysis

- Specified in the infrastructure code file
- 44 plugins in total

Results

- 1st and 2nd => configuration
- 3rd and 4th => functionality

Plugins	Occurrences
<pre>serverless-python-requirements</pre>	95
serverless-pseudo-parameters	25
serverless-domain-manager	15
serverless-step-functions	14
serverless-offline	9
serverless-dotenv-plugin	8
serverless-prune-plugin	8
<pre>serverless-iam-roles-per-function</pre>	7

Developers are not configuring permissions in a granular fashion

Dataset Application Code Analysis

Cloud services

- 46 services in total
- Data storage and NoSQL services the most common
- Configuration-oriented services frequently used

Cloud APIs

Programmatic creation of buckets and tables

Resources created programmatically cannot be statically checked via infrastructure code analysis

No. of Repositories	Occurrences
59	217
47	201
24	47
14	46
21	41
	59 47 24 14

s3		dynamodb	
API	#	API	#
put_object	61	put_item	143
get_object	52	scan	64
create_bucket	50	query	62
upload_file	48	get_item	58
download_file	24	update_item	57
<pre>list_objects_v2</pre>	22	create_table	41
other	111	other	93

Dataset Study Takeaways

All security-related

Granular configuration of handler permissions

→

Not widely adopted in the AWSomePy dataset

Configuration and management services

Workflows difficult to inspect before deployment

Programmatic creation of data stores and tables

Resources cannot be checked before deployment

Static Analysis Pipeline for Serverless

Identification of data flows

- Code injection
- Information leakage

Starting points

- Serverless-specific vulnerabilities
- AWSomePy dataset characterization

Two-pillar approach

- Information extraction (infrastructure and application)
- Injection of synthesized code into the application

A general-purpose static analysis tool not effective without information included in the synthesized code

Microbenchmarks Suite

Example [5]

What Have We Learned?

Paradigm

- Users focus on business logic as well as security
- Large attack surface because of multiple events
- Injection attacks considered the most critical risk by CSA

Tools

- Many tools exist to monitor deployed applications
- Serverless-specific tools often have a narrow scope
- Some tools compatible with multiple platforms

Research

- Focus on static analysis of serverless applications
- Novel dataset characterized and publicly released
- Generic static analysis pipeline being developed

References

- MarketandMarkets, Serverless Architecture Market Analysis,
 2020, https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
- 2. X. Li, X. Leng and Y. Chen, "Securing Serverless Computing: Challenges, Solutions, and Opportunities," in IEEE Network, vol. 37, no. 2, pp. 166-173, March/April 2023, DOI.
- 3. Cloud Security Alliance, The 12 Most Critical Risks for Serverless Applications, 2019, https://cloudsecurityalliance.org/blog/2019/02/11/critical-risks-serverless-applications
- 4. G. Raffa, J. Blasco Alis, D. O'Keeffe and S. K. Dash, "AWSomePy: A Dataset and Characterization of Serverless Applications," in Proceedings of the 1st Workshop on SErverless Systems, Applications and MEthodologies (SESAME '23), 2023, <u>DOI</u>.
- 5. G. Raffa, Serverless Microbenchmarks Suite, https://github.com/giusepperaffa/serverless-security-microbenchmarks

Thank you

Giuseppe Raffa

giuseppe.raffa.2018@live.rhul.ac.uk