Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Группа: М3115	К работе допущен:
Студент: Кочубеев Николай Сергеевич	Работа выполнена:
Преподаватель: Рахманова Гульназ Раифовна	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 1.04

«Исследование равноускоренного вращательного движения (маятник Обербека)»

1. Цель работы:

Проверка основного закона динамики вращения и зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи:

- 1. Провести многократное измерение времени прохождения кареткой с грузом определенного расстояния;
- 2. Выполнить необходимые косвенные измерения;
- 3. Объект исследования: лабораторная установка с маятником Обербека.
- 4. Метод экспериментального исследования: многократное измерение времени прохождения кареткой с грузом (связанной с маятником) расстояния от $h_1 = 700$ мм до $h_2 = 0$ мм;
- 5. Рабочие формулы и исходные данные:

Стартовое положение каретки: $h_1 = 700$ мм;

Финишное положение каретки: $h_0 = 0$ мм;

Высота спуска каретки с грузом: h = 700 мм ± 0.5 мм

1.
$$a = \frac{2h}{t^2}$$
 – ускорение груза, подвешенного на каретке;

2.
$$\varepsilon = \frac{2a}{d}$$
 – угловое ускорение;

- 3. $M = \frac{md}{2}(g a)$ момент силы натяжения нити;
- 4. $I\varepsilon = M M_{\rm Tp}$ основной закон динамики вращения для крестовины маятника Обербека;
- 5. $I = I_0 + 4m_{\rm yr}R^2$ зависимость момента инерции крестовины от расстояния между центрами грузов и осью вращения (по т. Штейнера);

Параметры лабораторной установки:

6. Измерительные приборы:

No॒	Наименование	Тип прибора	Используемый	$\Delta_{\scriptscriptstyle H}$
			диапазон	
1	Секундомер	цифровой	до 10 с	± 0,005 c
2	Линейка на	аналоговый	до 700 мм	± 0,5 мм
	лабораторной			
	установке			

7. Схема установки:

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки;

10 - каретка; 11 - система передних стоек.

8. Результаты прямых измерений:

m, 1 proced == 4,880.		
£1= 4,88 C.	2 pur	and Coponeur of.
t= 4,530.	my t	1= 2, 47C M3115
	t	== 2,940. Koryseel === 2,980. H. M3415.
top. =		
m2 £13 3,440.		ech-=
t ₂ =3,50c	Mars.	
t== 3,40C.		t ₁ =3,38c.
mg ty = 2,780		£3=3,47C.
t== 2,840.		
t3=2,84c.		tcp.=
	m ₂	6,=4,160.
t ch:		t2=4,220.
my == 2,440.		£3=4,06 C.
t2=2,47C.		top =
t3=2,50C.	my	ty=5,790.
		t2=5,600.
top:		12-5,000.

	Положение утяжелителей						
Масса груза, г						6	
	1 риска	2 риска	3 риска	4 риска	5 риска	риска	
	4,18	5,79	6,47	7,66	8,47	9,54	
267 + 0.5	4,53	5,6	6,67	7,75	8,41	9,47	
267 ± 0,5	4,56	5,56	6,67	7,15	8,38	9,97	
	4,42	5,65	6,60	7,52	8,42	9,66	
	3,44	4,16	4,91	5,5	6,13	6,9	
407 ± 0 F	3,5	4,22	5,09	5,1	5,94	6,58	
487 ± 0,5	3,4	4,06	4,63	5,47	6,31	6,84	
	3,44	4,14	4,88	5,36	6,13	6,77	
	2,78	3,38	4	4,59	4,97	5,5	
707 + 0 5	2,84	3,88	3,92	4,4	5	5,85	
707 ± 0,5	2,84	3,47	3,91	4,72	5	5,53	
	2,82	3,58	3,94	4,57	4,99	5,63	
	2,44	2,97	3,31	4,03	4,34	4,85	
027 ± 0.5	2,39	2,94	3,34	4,38	4,38	4,81	
927 ± 0,5	2,5	2,93	3,19	3,94	4,68	4,97	
	2,44	2,95	3,28	4,11	4,46	4,88	

Расчет погрешности измерения для $t_{\rm cp} = 4{,}42$ с (1 риска, 1 грузик на каретке):

$$\bar{x} = 4,38 c;$$

$$S_{\bar{x}} = \frac{S_n}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}} = 0.12 \text{ c}$$

$$\Delta_{tcp1} = t_{\alpha,x} * S_{\bar{x}} = 0.29 \text{ c}$$

9. Расчёт результатов косвенных измерений:

a, ε , M для всех масс груза и положений грузиков на крестовине:

Ta6 5,000 2	Положение утяжелителей						
Таблица 2	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
a1, m/c^2	0,072	0,044	0,032	0,025	0,020	0,015	
a2, m/c^2	0,118	0,081	0,059	0,049	0,037	0,031	
a3, m/c^2	0,176	0,109	0,090	0,067	0,056	0,044	
a4, m/c^2	0,235	0,161	0,130	0,083	0,070	0,059	
е1, рад/с^2	3,11	1,91	1,40	1,08	0,86	0,65	
е2, рад/с^2	5,12	3,54	2,56	2,12	1,62	1,33	
е3, рад/с^2	7,65	4,76	3,91	2,91	2,44	1,92	
е4, рад/с^2	10,20	7,01	5,66	3,59	3,05	2,56	
M1, H*M	0,06	0,06	0,06	0,06	0,06	0,06	
M2, H*M	0,11	0,11	0,11	0,11	0,11	0,11	
М3, Н*м	0,16	0,16	0,16	0,16	0,16	0,16	
M4, H*M	0,20	0,21	0,21	0,21	0,21	0,21	

Расчеты для измерений с $m_1=267~{\rm rp}$:

$$a_1 = 0.052 \frac{\text{м}}{\text{c}^2}$$
; $\varepsilon_1 = 2.28 \frac{\text{рад}}{\text{c}^2}$;

$$M = \frac{md}{2} * (g - a) = 0.06 \text{ H} * \text{M};$$

Расчеты погрешностей для первых значений a, ε, M :

$$\bar{a} = 0.035 \frac{M}{c^2};$$

$$S_{\bar{x}} = \frac{S_n}{\sqrt{n}} = 0.0084 \frac{M}{c^2};$$

$$\Delta_{a1} = t_{\alpha,x} * S_{\bar{x}} = 0$$
,001372649 $\frac{M}{c^2} = >$ доверительный интервал для 1 риски:

$$0,072\pm0,013\frac{M}{c^2}$$

$$\bar{\varepsilon} = 1,50 \frac{\text{рад}}{\text{c}^2};$$

$$S_{\bar{x}} = 0.368832879 \frac{\text{рад}}{\text{c}^2};$$

$$\Delta_{arepsilon}=t_{lpha,x}*S_{ar{x}}=0$$
,78 $rac{{
m pag}}{{
m c}^2}=>$ доверительный интервал для 1 риски: 3,11 \pm 0,78 $rac{{
m pag}}{{
m c}^2}$

График зависимостей $M(\varepsilon)$:

Таблица с расчетами момента инерции I и момента силы трения $M_{\rm Tp}$ для каждого положения утяжелителей на крестовине:

Ta6 2	Положение утяжелителей						
Таблица 3	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
Мср, Н*м	0,132	0,133	0,133	0,134	0,134	0,134	
Еср, рад/с^2	6,521	4,304	3,382	2,426	1,994	1,615	
delta M 1	-0,072	-0,073	-0,073	-0,074	-0,074	-0,074	
delta M 2	-0,024	-0,024	-0,024	-0,024	-0,024	-0,025	
delta M3	0,024	0,025	0,025	0,025	0,025	0,025	
delta M4	0,072	0,073	0,073	0,074	0,074	0,074	
delta E 1	-3,41	-2,40	-1,99	-1,35	-1,14	-0,96	
delta E 2	-1,40	-0,76	-0,82	-0,30	-0,37	-0,29	
delta E 3	1,13	0,45	0,53	0,49	0,45	0,31	
delta E 4	3,67	2,71	2,28	1,17	1,06	0,94	
I (i), кг*м^2	0,021	0,030	0,037	0,055	0,065	0,077	
Мтр <i>,</i> Н*м	-0,01	0,00	0,01	0,00	0,00	0,01	

Проведем расчеты аналогично для всех положений грузиков на крестовине, объединим полученные значения R, R^2 и I в одну таблицу:

To6 5,410 A	Положение утяжелителей					
Таблица 4	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
R, м	0,10	0,12	0,15	0,17	0,20	0,22
R^2, M	0,010	0,014	0,023	0,029	0,040	0,048
I, кг*м^2	0,017	0,028	0,033	0,050	0,059	0,078

Установим экспериментальные точки зависимости $I(R^2)$ на графике (отражено на графике зависимости $I(R^2)$), и затем проведем подсчет суммы моментов инерции I_0 и массы утяжелителей $m_{\rm vr}$.

Средние значения момента инерции и квадратичного расстояния между осью вращения и центром утяжелителя:

$$R_{\rm cp}^2 = 0.027 \; {\rm m};$$
 $I_{\rm cp} = 0.044 \; {\rm kr} * {\rm m}^2;$

Средние значения R^2 , I для первого положения утяжелителей:

$$\Delta R_{cp1}^2 = -0.017$$
 м;
$$\Delta I_{\rm cp1} = -0.03~{\rm KF*M^2};$$

$$4m_{
m yt}=1,\!35$$
 кг; $m_{
m yt}=0,\!34$ кг;
$$I_0=0,\!032$$
 кг * м²;

Значения для всех положений грузиков на крестовине

To6 1,410 4	Положение утяжелителей					
Таблица 4	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
R, м	0,10	0,12	0,15	0,17	0,20	0,22
R^2, M	0,010	0,014	0,023	0,029	0,040	0,048
I, кг*м^2	0,017	0,028	0,033	0,050	0,059	0,078
R^2(cp), M	0,027					
Icp	0,044					
delta r^2	-0,017	-0,013	-0,005	0,002	0,013	0,021
delta I	-0,027	-0,016	-0,011	0,006	0,015	0,034
(delta r^2)^2	0,000302	0,000168	0,000024	0,000002	0,000160	0,000442
delta li * delta						
r^2i	0,000460	0,000211	0,000055	0,000009	0,000185	0,000705
4Мут	0,6750687					
Мут	0,168767169					
10	0,025497041					
I0+4Мут*R^2	0,032247728	0,03521803	0,04068609	0,04500653	0,05249979	0,05817037

График зависимости $I(R^2)$:

10. Вывод и анализ результатов работы

Был установлен факт линейности зависимостей и тот факт, что момент инерции зависит от изменения положения масс относительно оси вращения подтверждается опытным путем, эта зависимость показана на графике $I(R^2)$. Также, из-за того, что зависимость $M(\varepsilon)$ почти совпала с экспериментальными точками, мы можем говорить о справедливости основного закона динамики вращения.