

RC Quick Byte: Maximizing Efficiency Using Parallelization

Maximizing Efficiency Using Parallelization

Date: March 5, 2025

Instructor: Andrew Monaghan

Contributors: Layla Freeborn, Trevor Hall,

Brandon Reyes, Shelley Knuth

• Website: www.rc.colorado.edu/rc

Documentation: https://curc.readthedocs.io

• Helpdesk: <u>rc-help@colorado.edu</u>

• Survey: http://tinyurl.com/curc-survey18

Slides

https://github.com/ResearchComputing/max_efficiency_parallel_quick_byte

Learning Objectives and Outline

- What is parallelization?
- Types of parallelization
- Is parallelization for me?

What is parallelization?

Serial

Image source: https://www.freepic.com

Parallel

Image source: https://bxjmag.com

Types of parallelization

Code-external parallelization

Example: Image processing

Code-internal parallelization

Example: Climate Model

Code-external parallelization

- Also referred to as:
 - HTC: High throughput computing
 - "Embarrassingly" parallel computing
- Used for repetitive, independent tasks
 - Processing images from satellites, microscopes
 - Monte Carlo-type statistical modeling
- CURC has lots of tools to facilitate HTC!
 - https://github.com/ResearchComputing/easy_parallelization_n_htc_primer

Image source:

https://www.mdpi.com/journal/remotese nsing/special issues/Al rs

Code-internal parallelization

- Types:
 - 1. <u>Shared-memory</u> ("multithreading") single node (computer)
 - 2. <u>Distributed-memory</u> ("multiprocessing or "MPI")– multiple nodes
 - 3. Accelerated -- GPUs
- Used for dependent, independent tasks
 - Climate or earthquake simulations (PDEs)
 - Machine learning (GPUs)
- CURC supports all types of code-internal parallelization!

Image source:

www.earthmagazine.org/article/to days-weather-forecast-goodstrong-chance-improvement

Information source:

https://researchcomputing.princeton.edu/support/knowledge-base/parallel-code

Additional topics (if time allows)

- <u>Is parallelization for me?</u>
 - Computational time constraints?
 - Computational memory constraints?
 - Level of effort to parallelize?
- How do I get started with parallelization?
 - Look for existing code!
 - Consult with your Research Computing staff

Thank you!

Survey and feedback

http://tinyurl.com/curc-survey18

