单片机实验指导书

自动化专业用·基于启东 DVCC-58B 实验平台

自动化学院 自动化系

目 录

实验一	Keil C51 集成开发环境的使用练习	1	
实验二	基于 Keil C51 集成开发环境的仿真与调试	3	
实验三	单片机 I/O 口控制实验	6	
实验四	简单工序控制实验	9	
实验五	继电器控制实验	14	
实验六	数据存储器扩展实验	17	
实验报台	告撰写要求	21	

实验一 Keil C51 集成开发环境的使用练习

一、实验目的

熟悉 Keil C51 集成开发环境的使用方法

二、实验设备及器件

IBM PC 机 一台

三、实验内容

按照 Keil C51 软件的使用说明进行 Keil C51 集成开发环境的安装和使用练习,然后按照以下内容建立并编译产生 HEX 文件。

ORG 0000H

LJMP Main

ORG 00F0H

Main: MOV R7, #0

Loop: MOV R6, #0

DJNZ R6, \$

DJNZ R6, \$

DJNZ R6, \$

DJNZ R6, \$

DJNZ R7, Loop ; 延时

CPL P1.0 ; P1.0 取反

CPL P1.1 ; P1.1 取反

CPL P1.2 ; P1.2 取反

CPL P1.3 ; P1.3 取反

CPL P1.4 ; P1.4 取反

CPL P1.5 ; P1.5 取反

CPL P1.6 ; P1.6 取反

CPL P1.7 ; P1.7 取反

SJMP Main

END

四、实验要求

熟练掌握 Keil C51 集成开发环境的工程建立、编辑与编译功能。

五、实验预习要求

认真阅读 Keil C51 软件的使用说明。

六、实验思考题

试写一条把片内 RAM 50H~59H 单元清零的程序。

实验二 基于 Keil C51 集成开发环境的仿真与调试

一、实验目的

熟悉 Keil C51 集成开发环境调试功能的使用和 DVCC-58B 单片机仿真实验综合开发平台的使用。

二、实验设备及器件

IBM PC 机 一台

DVCC-58B 实验平台 一台

三、实验内容

按照 Keil C51 软件的使用说明进行 Keil C51 集成开发环境的仿真调试练习,然后按照以下内容建立文件并编译仿真调试。

ORG 0000H

LJMP Main

ORG 00F0H

Main: MOV R7, #0

Loop: MOV R6, #0

DJNZ R6, \$

DJNZ R6,\$

DJNZ R6,\$

DJNZ R6,\$

DJNZ R7, Loop ;延时

CPL P1.0 ; P1.0 取反

CPL P1.1 ; P1.1 取反

CPL P1.2 ; P1.2 取反

CPL P1.3 ; P1.3 取反

CPL P1.4 ; P1.4 取反

CPL P1.5 ; P1.5 取反

CPL P1.6 ; P1.6 取反

CPL P1.7 ; P1.7 取反

SJMP Main

END

四、实验要求

熟练掌握结合 DVCC-58B 单片机仿真实验综合开发平台和 Keil C51 集成开发环境进行仿真调试。

五、实验步骤

1. 使用导线把开关量显示区中8颗LED 的L0~L7接口与51CPU系统I/O区的P1.0~P1.7接口顺序连接,如下图所示。

- 2. 取出随实验平台提供的串口通信电缆,一端连接实验箱侧方的 RS-232 串行通信口, 而另一端则连接到 PC 机的串口上。
- 3.检查实验箱中接线无误后,用随箱提供的三插市电线连接实验箱和实验台面的市电插座,期间务必注意用电安全,然后打开实验平台的工作电源,准备开始实验。
- 5. 参见 Keil C51 集成开发环境说明进行硬件仿真环境的设置,注意选择器件时要选择与所使用的 51 系列芯片相同的型号。

六、实验预习要求

认真阅读 Keil C51 集成开发环境说明中关于硬件仿真调试的内容。

七、实验思考题

试写一条把片内 RAM 33H~60H 区域奇数地址单元写入 01H,偶数地址单元写入 02H 的程序。

实验三 单片机 I/O 口控制实验

一、实验目的

利用单片机的 P1 口作 I/O 口, 学会利用 P1 口作为基本输入和输出口。

二、实验设备及器件

IBM PC 机 一台 DVCC-58B 实验平台 一台

三、实验内容

- 1. 编写一段程序,用 P1 口作为控制端口,使开关量显示区的 LED 轮流亮。
- 2. 编写一段程序,用 P1.0~P1.6 口控制 LED, P1.7 控制 LED 的亮和灭(P1.7 接按键,按下时 LED 亮,不按时 LED 灭)。

四、实验要求

学会使用单片机的 P1 口作 I/O 口。

五、实验步骤

1. 使用导线把开关量显示区中 8 颗 LED 的 L0~L7 接口与 51 CPU 系统 I/O 区的 P1.0~P1.7接口顺序连接,如下图 A 所示。

2. 先编写一个延时程序。

- 3. 将 LED 轮流亮的程序编写完整并使用实验平台调试运行。
- 4. 使用导线把开关量显示区中7颗LED 的L0~L6接口与51CPU系统I/O区的P1.0~P1.6接口顺序连接,另外开关量输出区中的 K1 接口与 51CPU 系统 I/O 区的 P1.7 相连。原理如上图 B 所示。
 - 5. 编写 P1.7 控制 LED 的程序,并调试运行,拨动开关 K1 观察 LED 的亮灭情况。

六、实验预习要求

先把程序编好,然后在 Keil C51 环境下进行软件仿真。

七、实验参考程序

程序一:

ORG 0000H

LJMP Main

ORG 0100H

Main: MOV A, #0FFH

CLR C

MainLoop: CALL Delay

RLC A

MOV P1, A

SJMP MainLoop

Delay: MOV R7, #0

Loop: MOV R6, #0

DJNZ R6, \$

DJNZ R6, \$

DJNZ R6, \$

DJNZ R7, Loop

RET

END

程序二:

ORG 0000H

LJMP Main

ORG 0100H

Main: JB P1.7, SETLED

CLRLED: CLR P1.0

CLR P1.1

CLR P1.2

CLR P1.3

CLR P1.4

CLR P1.5

CLR P1.6

SJMP Main

SETLED: SETB P1.0

SETB P1.1

SETB P1.2

SETB P1.3

SETB P1.4

SETB P1.5

SETB P1.6

SJMP Main

END

八、实验思考题

编写并调试流水灯的实现程序,让 LED 从左到右循环逐一点亮后又逐一熄灭。

实验四 简单工序控制实验

一、实验目的

掌握工业顺序控制程序的简单编写和中断的使用。

二、实验设备及器件

IBM PC 机 一台 DVCC-58B 实验平台 一台

三、实验预备知识

在工业控制中,像冲压、注塑、轻纺、制瓶等生产过程,都是一些断续生产过程,按 某种程序有规律地完成预定的动作,对这类断续生产过程的控制称顺序控制,例:注塑机 工艺过程大致按"合模→注射→延时→开模→产伸→产退"顺序动作,用单片机最易实现。

四、实验内容

利用 51 单片机的 P1.0~P1.6 控制注塑机的七道工序,现模拟控制七只发光二极管的点亮,高电平有效,设定每道工序时间转换为延时,P3.4 为开工启动开关,低电平启动。P3.3 为外故障输入模拟开关,P3.3 为 0 时不断告警,P1.7 为报警声音输出。

五、实验要求

学会使用单片机的 I/O 口控制简单的工业生产顺序,并掌握中断服务程序编写的关键:

- 1. 保护进入中断时的状态,并在退出中断之前恢复进入中断前的状态;
- 2. 必须在中断程序中设定是否允许中断重入,即设置 EXO 位;
- 3. 一般中断程序进入时应保护 PSW、ACC 以及中断程序中使用到的但并非其专用的寄存器。

六、实验步骤

1. 如下图所示,用导线连接 P3.4 和 K1, P3.3 连 K2, P1.0~P1.6 分别连到 L0~L6, P1.7 连 SIN (电子音响驱动控制区),电子音响驱动控制区短路片选择 FM 是蜂鸣器,选择 LB 是喇叭。

- 2. K1 开关拨在上面, K2 拨在上面。
- 3. 程序流程如下图所示,编写、调试和运行工序控制代码。

- 4. K1 拨至下面(低电平),各道工序应正常运行。
- 5. K2 拨至下面(低电平),应有声音报警(人为设置故障)。
- 6. K2 拨至上面(高电平),即排除故障,程序应从刚才报警的那道工序继续执行。

七、实验预习要求

先把实验电路原理看懂,然后编好程序在 Keil C51 环境下进行软件仿真。

八、实验参考程序

ORG 0000H

AJMP 0030H

ORG 0013H

LJMP HA2S3

ORG 0030H

HA2S: MOV P1, #0FFH

ORL P3, #00H

HA2S1: JB P3.4, HA2S1

ORL IE, #84H

ORL IP, #04H

MOV PSW, #00H

MOV SP, #53H

HA2S2: MOV P1, #081H

ACALL HA2S7

MOV P1, #082H

ACALL HA2S7

MOV P1, #084H

ACALL HA2S7

MOV P1, #088H

ACALL HA2S7

MOV P1, #090H

ACALL HA2S7

MOV P1, #0A0H

ACALL HA2S7

MOV P1, #0C0H

ACALL HA2S7

SJMP HA2S2

HA2S3: MOV B, R2

HA2S5: SETB P1.7

ACALL HA2S6

CLR P1.7

ACALL HA2S6

JNB P3.3, HA2S5

MOV R2, B

RETI

HA2S6: MOV R2, #06H

ACALL DELAY

RET

HA2S7: MOV R2, #30H

ACALL DELAY

RET

DELAY: PUSH 02H

DELAY1: PUSH 02H

DELAY2: PUSH 02H

DELAY3: DJNZ R2, DELAY3

POP 02H

DJNZ R2, DELAY2

POP 02H

DJNZ R2, DELAY1

POP 02H

DJNZ R2, DELAY

RET

END

九、实验思考题

不使用中断,编写实现上述工序控制功能的程序并试验。

实验五 继电器控制实验

一、实验目的

掌握用继电器控制的基本方法和编程。

二、实验设备及器件

IBM PC 机 一台 DVCC-58B 实验平台 一台

三、实验预备知识

现代自动化控制设备都存在一个电子与电气电路的互相联结问题,一方面要使电子电路的控制信号能够控制电气电路的执行元件(电动机、电磁铁、电灯等),另一方面又要为电子电路和电气电路提供良好的电隔离,以保护电子电路和人身的安全,电子继电器便能完成这一桥梁作用。

本实验采用 JZC—23F 型继电器,其控制电压为 5V。继电器电路中一般要在继电器的 线圈两头加一个二极管以吸收继电器线圈断电时产生的反电势,防止干扰。

四、实验内容

利用 P1 口输出高低电平,控制继电器的开合,以实现对外部装置的控制。

五、实验要求

学会使用单片机的 I/O 口控制小功率继电器的动作。

六、实验步骤

1. 如下图所示,利用导线连接 51 单片机的 P1.0 和继电器的 JIN 端。

- 2. 把继电器的 JZ(中心轴头)接 GND, JB 常闭开关接 LO, JK 常开开关接 L1。
- 3. 按照下图所示流程编制程序,使 P1.0 电平变化,高电平时继电器吸合,常开触点接上 L1 灭,L0 亮,低电平时继电器不工作,常闭触点闭合,L0 灭,L1 亮。

4. 调试运行程序,观察 L1、L0 交替亮灭情况。

七、实验预习要求

先把实验电路原理看懂,然后编好程序在 Keil C51 环境下进行软件仿真。

八、实验参考程序

ORG 0000H

AJMP START

ORG 0030H

START: SETB P1.0

LCALL DELAY

CLR P1.0

LCALL DELAY

SJMP START

DELAY: MOV R7, #0FFH

DELAY1: MOV R6, #0FFH

DELAY2: DJNZ R6, DELAY2

DJNZ R7, DELAY1

RET

END

九、实验思考题

利用实验箱上的开关或按键控制继电器的动作,要求相邻两次动作期间加入 1 s 延时以保护继电器,编写实现上述工序控制功能的程序并试验。

实验六 数据存储器扩展实验

一、实验目的

- 1. 学习片外存储器扩展方法。
- 2. 学习数据存储器不同的读写方法。

二、实验设备及器件

IBM PC 机 一台 DVCC-58B 实验平台 一台

三、实验预备知识

本实验采用的是 55H(0101,0101)与 AAH(1010,1010),一般采用这两个数据的读写操作就可查出数据总线的短路、断路等,在实验调试用户电路时非常有效。编写程序对片外扩展的数据存储器进行读写,若 L0 灯闪动说明 RAM 读写正常。

四、实验内容

使用一片 62256 RAM, 作为片外扩展的数据存储器, 对其进行读写。

五、实验要求

掌握使用并行数据接口的存储器扩展单片机存储系统的方法,熟悉并行接口存储器的读写方式。

六、实验步骤

1. 如下图所示,用导线将 RAM CS 插孔和译码输出 P2.7 插孔相连, P1.0 连接到 LO。

2. 按照如下流程编写、调试和运行程序,实现对62256进行读写。

3. 调试运行程序,全速运行时,若 L0 灯闪动,表示 62256 RAM 读写正常。

七、实验预习要求

先把实验电路原理看懂,然后编好程序在 Keil C51 环境下进行软件仿真。

八、实验参考程序

ORG 0000H

AJMP START

ORG 0030H

START: MOV SP, #60H

ram0: MOV DPTR, #0000H

MOV R6, #0FH

MOV A, #55H

RAM1: MOV R7, #0FFH

RAM2: MOVX @DPTR, A

CLR P1.0

INC DPTR

DJNZ R7, RAM2

DJNZ R6, RAM1

MOV DPTR, #0000H

MOV R6, #0FH

RAM3: MOV R7, #0FFH

RAM4: MOVX A, @DPTR

CJNE A, #55H, RAM6

SETB P1.0

INC DPTR

DJNZ R7, RAM4

DJNZ R6, RAM3

RAM5: CLR P1.0

CALL DELAY

SETB P1.0

CALL DELAY

SJMP RAM5

DELAY: MOV R5, #0FFH

DELAY1: MOV R4, #0FFH

DJNZ R4, \$

DJNZ R5, DELAY1

RET

RAM6: SETB P1.0

SJMP ram0

END

九、实验思考题

编写程序,将 62256 内部的奇地址单元置入 11H,偶地址单元置入 66H。

实验报告撰写要求

内容需包含:

- 一、实验目的
- 二、实验仪器及材料
- 三、实验内容(要有实验原理图)
- 四、实验要求
- 五、实验结果(实验程序编制情况、程序调试情况、实验中出现的异常现象和原因等)
- 六、实验总结(实验收获、意见和建议)

格式排版:

必须采用学校指定的实验报告纸,按照实验报告纸抬头位置上的规定填写实验的各项 详细信息,并按照实验结果如实填写报告内容。