AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Original) A development method in which, while stirring a developer which is a mixture of a magnetic carrier and a toner and supplying the toner of the developer, a toner density TD (%) of the developer is measured, and the toner is supplied to the developer, depending on a reduction in the measured toner density TD (%), wherein

the toner is supplied to the developer so that the measured toner density TD (%) falls within a range specified by:

TD
$$\leq \{\gamma t \cdot Vt/Nt/(\gamma c \cdot Vc)\} \times 100$$
 (1)
Vt = $(/6) \cdot (Dtav_pop)^3$
Sc = $\cdot (Dcav_pop + Dtav_pop)^2$
Nt = Sc/ $[(3^{0.5}/2) \cdot (Dtav_pop)^2]/2$
Vc = $(/6) \cdot (Dcav_pop)^3$

where a number average diameter of the magnetic carrier is represented by Dcav_pop (μ m), a number average diameter of the toner is represented by Dtav_pop (μ m), a specific gravity of the magnetic carrier is represented by γ c, and a specific gravity of the toner is represented by γ t.

2. (Original) A development method in which, while stirring a developer which is a mixture of a magnetic carrier and a toner and supplying the toner of the developer, a toner density TD (%) of the developer is measured, and the toner is supplied to the developer, depending on a reduction in the measured toner density TD (%), wherein

the toner is supplied to the developer so that the measured toner density TD (%) falls within a range specified by:

$$TD \le \{\gamma t \cdot Vt/Nt/(\gamma c \cdot Vc)\} \times 100 \quad (2)$$

$$Vt = \dot{(}/6) \cdot (Dtav \ vol)^3$$

Sc =
$$\cdot$$
 (Dcav_vol+Dtav_vol)²
Nt = Sc/[(3^{0.5}/2) \cdot (Dtav_vol)²]/2
Vc = \cdot (/6) \cdot (Dcav_vol)³

where a volume average diameter of the magnetic carrier is represented by Dcav_vol (μm), a volume average diameter of the toner is represented by Dtav_vol (μm), a specific gravity of the magnetic carrier is represented by γc , and a specific gravity of the toner is represented by γt .

3. (Original) A development method in which, while stirring a developer which is a mixture of a magnetic carrier and a toner and supplying the toner of the developer, a toner density TD (%) of the developer is measured, and the toner is supplied to the developer, depending on a reduction in the measured toner density TD (%), wherein

the toner is supplied to the developer so that the measured toner density TD (%) falls within a range specified by:

$$TD \le [5.1(Dcav vol)^{-1.17}] \times 100$$
 (3)

where a volume average diameter of the magnetic carrier is represented by Dcav_vol (μ m), and a volume average diameter of the toner is 5.5 (μ m).

4. (Currently Amended) A development method in which, while stirring a developer which is a mixture of a magnetic carrier and a toner and supplying the toner of the developer, a toner density TD (%) of the developer is measured, and the toner is supplied to the developer, depending on a reduction in the measured toner density TD (%), wherein

the toner is supplied to the developer so that the measured toner density TD (%) falls within a range specified by:

$$TD/(Dtav_vol)^{1.2} \le [5.1(Dcav_vol)^{-1.17}/5.5^{1.2}] \times 100$$
 (4)

where a volume average diameter of the magnetic carrier is represented by Dcav_vol (µm), and a volume average diameter of the toner is represented by Dtav_vol

(μ m), and with a proviso that the volume average diameter of the toner Dtav_vol (μ m) is in the vicinity of 5.5 (μ m).

- 5. (Previously Presented) The development method according claim 1, wherein the toner is a toner produced by a pulverizing method.
- 6. (Previously Presented) The development method according to claim 1, wherein the toner has a diameter distribution with a standard deviation σ of 15 (%) or more.
- 7. (Previously Presented) The development method according to claim 1, wherein the toner has a pigment concentration of 5 (%) or more.
- 8. (CANCELLED) A development apparatus in which a developer which is a mixture of a magnetic carrier and a toner is stirred and the toner of the developer is supplied, comprising detecting means for measuring a toner density TD (%) of the developer and supplying means for supplying the toner to the developer, depending on a reduction in the measured toner density TD (%), wherein

the supplying means supplies the toner to the developer so that the measured toner density TD (%) falls within a range specified by:

TD
$$\leq \{ \gamma t \cdot V t / N t / (\gamma c \cdot V c) \} \times 100 \quad (1)$$

Vt = $(/6) \cdot (Dtav_pop)^3$

Sc = $\cdot (Dcav_pop + Dtav_pop)^2$

Nt = Sc/ $[(3^{0.5}/2) \cdot (Dtav_pop)^2]/2$

Vc = $(/6) \cdot (Dcav_pop)^3$

where a number average diameter of the magnetic carrier is represented by Dcav_pop (μm), a number average diameter of the toner is represented by Dtav_pop (μm), a specific gravity of the magnetic carrier is represented by γc , and a specific gravity of the toner is represented by γt .

ONDA ET AL. Appl. No. 10/577,491

9. (CANCELLED) A development apparatus in which a developer which is a mixture of a magnetic carrier and a toner is stirred and the toner of the developer is supplied, comprising detecting means for measuring a toner density TD (%) of the developer and supplying means for supplying the toner to the developer, depending on a reduction in the measured toner density TD (%), wherein

the supplying means supplies the toner to the developer so that the measured toner density TD (%) falls within a range specified by:

TD
$$\leq \{\gamma t \cdot Vt/Nt/(\gamma c \cdot Vc)\} \times 100$$
 (2)
Vt = $(/6) \cdot (Dtav_vol)^3$
Sc = $\cdot (Dcav_vol + Dtav_vol)^2$
Nt = Sc/ $[(3^{0.5}/2) \cdot (Dtav_vol)^2]/2$
Vc = $(/6) \cdot (Dcav_vol)^3$

where a volume average diameter of the magnetic carrier is represented by Dcav_vol (μ m), a volume average diameter of the toner is represented by Dtav_vol (μ m), a specific gravity of the magnetic carrier is represented by γ c, and a specific gravity of the toner is represented by γ t.