## LOCAL AND GLOBAL STRESS ANALYSIS



- ▶ Draft:  $D = \frac{\nabla}{L*B*CB*\rho}$
- ▶ Displacement:  $\nabla = Lw + Dw$
- ► DAF = Dynamic Amplification Factor
- ► Stiffener distance = s
- ► Girder distance = I
- ▶ Normal stress:  $\sigma = 160 MPa$

## SHIP DATA

### **Local Strength of Bottom Plating**

Pressure (N/mm^2): 0.0975509328358209

#### Stiffener

Section Modulus (cm<sup>3</sup>): 156.8436092000933

Inertia (cm<sup>4</sup>): 1783

Profile (mm): 160x9

#### Girder

Section Modulus (cm<sup>3</sup>): 15492.307520988807

#### Plate

Plate Thickness (mm): 8.642189129637547

Equivalent Plate Thickness (mm): 10.699331986780404

Inertia (mm^4): 3547541842416.8228

Section Modulus (cm<sup>3</sup>): 506791.69177383184

## LOCAL STRENGTH

▶ Pressure:  $P = \rho * g * D * \frac{DAF}{1000}$ 

Stiffener

► Section Modulus:  $Z = \frac{P*s*l^2}{12*\sigma} * \frac{1}{1000}$ 

Inertia and Profile from Table 1

Girder

► Section Modulus :  $Z_g = \frac{P*l*B^2}{10*\sigma} * \frac{1}{1000}$ 

▶ Plate

► Thickness:  $t = \frac{s}{2} \sqrt{\frac{P}{\sigma}}$ 

• Equivalent Thickness:  $t_{eq} = t + \frac{A_{profile}}{s}$ 

► Neutral Axis:  $NA = \frac{L}{ST} * 2 * 1000$ 

• Inertia:  $I = \frac{l}{2} * t_{eq} * NA^2 * 2 + \frac{1}{12} \frac{L}{ST}^3 * t_{eq}$ 

Section Modulus:  $Z_{plat} = \frac{I}{NA} * \frac{1}{1000}$ 

# Global Strength Ship Divisions (tanks): 8 Number of tanks with load: 4 Buoyancy (ton/m): 112.75 Lightweight Distributed (ton/m): 53.57142857142857 Deadweight Distributed (ton/m): 118.35714285714286

The deadweight is distributed in the outer tanks in bow and stern.

- Ship divisions: Ship equally divided in number of tanks (ST).
- ► Tanks with load: Paired number of tanks in each end of the ship (LT)
- ► Bouyancy =  $\frac{\nabla}{L}$
- ► LW distributed =  $\frac{LW}{L}$
- ► DW distributed =  $\frac{DW}{L*\frac{LT}{ST}}$

## GLOBAL STRENGTH DATA

#### **Resulting Load**

Load Full Tanks (ton/m): -59.17857142857143

Load Empty Tanks (ton/m): 59.17857142857143

Established conditions: Always hogging.

Maximum Force (N\*m): 1657

Maximum Moment (MN\*m): 463.96

#### **DNV Rules**

Wave Coefficient (Cw): 8.172273870249207

Stillwater Bending Moment (kN\*m): 253606.91918153374

Wave Bending Moment (kN\*m): 287097.917401594

Worst case scenario, seagoing condition.

## GLOBAL STRENGTH DATA

## Resulting load

- $ightharpoonup L_{full} = Buoyancy LW_d DW_d$
- $ightharpoonup L_{empty} = Buoyancy LW_d$
- Always hogging condition, loaded tanks on the sides of the ship
- $ightharpoonup F_{max}$  and  $M_{max}$  from applying resulting loads to the ship
- ► DNV rules
  - ► CW: Table in pag 53.
  - $M_{so} = C_w * L^2 * B * (0.1225 0.015 * Cb)$  Pag 69.
  - $M_{wo} = 0.19 * C_w * L^2 * B * Cb$  Pag 70

#### Strenght Evaluation

Stillwater Bending Moment (kN\*m): 463960

Total Bending Moment (kN\*m): 751057.917401594

Midship Section Modulus (cm<sup>3</sup>): 429175.9528009108

Conclusion: Plate holds

## ► Strength evaluation Comparison between

- ► Comparison between DNV rules and values obtained in Resulting load
- Maximum value is used
- $ightharpoonup M_{tot} = \overline{M_{so} + M_{wo}}$

$$ightharpoonup Z_{midship} = \frac{M_{tot}}{175}$$

- ► Conclusion
  - ightharpoonup Check:  $Z_{plat} > Z_{midship}$

## GLOBAL STRENGTH DATA