期末考试

林陈冉

2016年12月28日

1 说明

以下为中国科学院大学2016年秋季学期泛函分析考试试题, 解答均为本人个人想法, 仅作参考. 提及的书本为 泛函分析、索伯列夫空间和偏微分方程, Haim Brezis, 世界图书出版社, 2015年7月第一次版.

2 考题

- 1 (20分)
 - (a) 叙述一致凸 Banach 空间的定义.
 - (b) 设 E 是一致凸 Banach 空间, 设 $\{x_n\}$ 是 E 中序列使得 $x_n \rightharpoonup x$ 对 $\sigma(E, E^*)$ 弱收敛, 且

 $\limsup \|x_n\| \le \|x\|$

证明: x_n 强收敛到 x.

2 (15分)

证明: 设 E 是 Banach 空间, E^* 是可分的, 则 E 是可分的.

3 (15分)

证明: 设 $\Omega = (0,1)$, $1 , <math>g_n(x) = n^{\frac{1}{p}} e^{-nx}$, 则有下面的结论成立: (a) $g_n \to 0$ a.e.; (b) g_n 在 $L^p(\Omega)$ 中有界; (c) 在 $L^p(\Omega)$ 范数下, $g_n \to 0$; (d) 在 $\sigma(L^p, L^{p'})$ 拓扑下, $g_n \to 0$.

- 4 (20分)
 - (a) 叙述磨光子的定义;

(b) 设 $(\rho_n)_{n\geq 1}$ 是一列磨光子, $f\in L^p(\mathbb{R}^n)$, $1< p<\infty$, 证明: 在 L^p 中, $(\rho_n*f)\to f(n\to\infty)$.

5 (15分)

证明: 设 H 是一个 Hilbert 空间, M, N 是它的两个闭线性子空间, 并且满足

$$(u, v) = 0, \forall u \in M, \forall v \in N$$

证明 M+N 是闭的.

6 (15分)

证明: 设 H 是一个可分的 Hilbert 空间, T 是自共轭紧算子, 则 H 拥有 T 的特征向量构成的 Hilbert 基.

3 证明

1

- (a) 一个空间是一致凸的, 即 $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $\|\frac{x+y}{2}\| < 1-\delta$, $\forall x,y \in E$, $\|x\| \le 1$, $\|y\| \le 1$, $\|x-y\| \ge \varepsilon$.
 - (b) 见书本78页命题3.32.

 $\mathbf{2}$

见书本73页定理3.26.

- 3 (书本122页习题4.15)
 - (a) 由洛必达法则

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{n^{\frac{1}{p}}}{e^{nx}} = \lim_{n \to \infty} \frac{n^{\frac{1}{p}-1}}{pxe^{nx}} = \frac{0}{\infty} = 0$$

(b)
$$||g_n|| = \left(\int_0^1 |n^{\frac{1}{p}} e^{-nx}|^p\right)^{\frac{1}{p}} = \left(\int_0^1 n e^{-npx}\right)^{\frac{1}{p}} = \left(\frac{1 - e^{-np}}{p}\right)^{\frac{1}{p}} \le \left(\frac{1}{p}\right)^{\frac{1}{p}}$$

(c)
$$\lim_{n \to \infty} \|g_n\| = \lim_{n \to \infty} \left(\frac{1 - e^{-np}}{p}\right)^{\frac{1}{p}} = \left(\frac{1}{p}\right)^{\frac{1}{p}} > 0$$

(d) $f \in L^{p'}$, $\forall \varepsilon > 0$, $\exists f_0 \in C_c$, $\|f - f_0\|_p < \frac{\varepsilon^p}{k}$, 其中 k 是一个正整数. 记 $A_k = \{x \in (0,1) \mid f_0(x) - f(x) > \varepsilon\}$, 则 $|A_k| < \frac{1}{k}$, 否则 $\|f - f_0\|_p = \int_0^1 |f(x) - f_0(x)|^p dx \ge \int_{A_k} |f(x) - f_0(x)|^p dx \ge \frac{\varepsilon^p}{k}$. 当 $k \to \infty$, $|A_k| \to 0$, 即 $|f(x) - f_0(x)| < \varepsilon$ a.e.

记 $M = \sup |f_0(x)|$

4

(a) 磨光子 (ρ_n) 是一族函数, 满足

$$\rho_n \in C_c^{\infty}, \quad \text{supp } \rho_n \subset B(0, \frac{1}{n}), \quad \int \rho_n = 1, \quad \rho_n(x) \ge 0$$

- (b) 见书本109页定理4.22.
- 5 (书本151页习题5.17)

设 $\{a_n\}$ 是 H 中的柯西列, $a_n\to a$, $a_n=u_n+v_n$, $u_n\in M$, $v_n\in N$. $\forall \varepsilon>0$, $\exists N>0$, $\forall m,n>N$

$$|a_n - a_m|^2 = ((u_n + v_n) - (u_m + v_m), (u_n + v_n) - (u_m + v_m)) = |u_n - u_m|^2 + |v_n - v_m|^2 \le \varepsilon$$

故 $\{u_m\}$, $\{v_n\}$ 也是柯西列,记 $u_n\to u\in M$, $v_n\to v\in N$. 则对于上面给定的 ε , $\exists N_1>0$, $n>N_1$ $|u_n-u|<\varepsilon/2$, 同理 $\exists N_2>0$, $n>N_2$ $|v_n-v|<\varepsilon/2$, 那么取 $N=\max\{N_1,N_2\}$, $\forall n>N$

$$|a_n - (u+v)| < |u_n - u| + |v_n - v| < \varepsilon$$

即 $a_n \to u + v$, 而已知 $a_n \to a$, 则 $a = u + v \in M + N$, 即 M + N 是闭的.

6

见书本167页定理6.11.