Adversarial Search and Game Playing Motivations

• Breadth-first, depth-first, hill-climbing, best-first, and A* assume a non-hostile search space. •

The goals just sit there somewhere in the graph.

- The 8-puzzle game did not try to stop you from reaching the goal.
- But in a real 2-person game, you opponent does try to beat you and make it difficult for you to reach your goal.
- Game Trees complexity:-

```
Tic-Tac-Toe - 9! - 362,280 states

Connect Four - 10^13 states

Checkers - 10^18 states

Chess - 10^50 states

Go - 10^170 states
```

Typical assumptions in adversial search

- Two agents whose actions alternate
- Utility values for each agent are the opposite of the other
 - creates the adversarial situation

- Fully observable environments
- In game theory terms:
 - "Deterministic, turn-taking, zero-sum games of perfect information"

Search versus Games

- Search no adversary
 - Solution is (heuristic) method for finding goal
 - can find optimal solution
 - Evaluation function: estimate of cost from start to goal through given node
 - Examples: path planning, scheduling activities
- Games adversary
 - Solution is strategy (strategy specifies move for every possible opponent reply).
 - Time limits force an *approximate* solution
 - Evaluation function: evaluate "goodness" of game position
 - Examples: chess, checkers, Othello, backgammon

Types of Games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information		bridge, poker, scrabble nuclear war

- •Imperfect information:- dont know all actions of other player ,don't recall all past moves of opponent or self .
- •Solved games (for which best strategy is found)

Tic-tac-toe

Four In A Line

Checkers

Size of search trees

• b = branching factor

- d = number of moves by both players
- Search tree is O(b^d)
- Chess
 - $b \sim 35$
 - D ~100
 - completely impractical to search this
- Game-playing emphasizes being able to make optimal decisions in a finite amount of time
 - Somewhat realistic as a model of a real-world agent
 - Even if games themselves are artificial

Static (Heuristic) Evaluation Functions

- An Evaluation Function:
 - estimates how good the current board configuration is for a player.
 - Typically, one figures how good it is for the player, and how good it is for the opponent, and subtracts the opponents score from the players
 - Othello: Number of white pieces Number of black pieces
 - Chess: Value of all white pieces Value of all black pieces

Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

If the board evaluation is X for a player, it's -X for the opponent

- Example:
 - Evaluating chess boards,
 - Checkers
 - Tic-tac-toe

Game Setup

- Two players: MAX and MIN
- MAX moves first and they take turns until the game is over
 - Winner gets award, loser gets penalty.
- Games as search:
 - Initial state: e.g. board configuration of chess
 - Successor function: list of (move, state) pairs specifying legal moves.
 - Terminal test: Is the game finished?
 - Utility function: Gives numerical value of terminal states. E.g. win (+1), lose
 (-1) and draw (0) in tic-tac-toe or chess

MAX uses search tree to determine next move.

Partial Game Tree for Tic-Tac-Toe

Game tree (2-player, deterministic, turns)

do we search this tree to find the optimal move?

Heuristic measuring for adversarial tic-tac-toe

X has 4 possible win paths;

O has 6 possible wins
$$E(n) = 4 - 6 = -2$$

X has 5 possible win paths; O has 4 possible wins E(n) = 5 - 4 = 1

$$E(n) = 5 - 4 = 1$$

Heuristic is E(n) = M(n) - O(n)

where M(n) is the total of My possible winning lines

O(n) is total of Opponent's possible winning lines

E(n) is the total Evaluation for state n

Maximize E(n)

E(n) =

0 when my opponent and I have equal number of possibilities.

Minimax strategy

- Find the optimal strategy for MAX assuming an infallible MIN opponent
 - Need to compute this all the down the tree
- Assumption: Both players play optimally!
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node:

```
MINIMAX-VALUE(n) =

{ UTILITY(n) If n is a terminal OR
max (MINIMAX-VALUE(s)) from all successors (s) If n is a max node OR
min (MINIMAX-VALUE(s) from all successors (s) If n is a min node }

Simple game for example:
Minimax decision
```

MIN (opponent)

3 12 8 2 4 6 14 5 2

Simple game for example: Minimax decision

MIN (opponent)

3 2 2

3 12 8 2 4 6 14 5 2

Example 2:- Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max

The minimax decision

What if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally:
 - maximizes worst-case outcome for MAX
- But if MIN does not play optimally, MAX will do even better
 Multiplayer games
- Games allow more than two players
- Single minimax values become vectors

- standard minimax analysis assumes that each player operates to maximize only their own utility
- If game is not zero-sum (i.e., utility(A) = utility(B) then alliances can be useful even with 2 players
 - e.g., both cooperate to maximum the sum of the utilities

Practical problem with minimax search

- Number of game states is exponential in the number of moves.
 - Solution: Do not examine every node
 - => pruning
 - Remove branches that do not influence final decision

Alpha-Beta Pruning: Example

3

MAX (player)

MIN (opponent)

3

Stop right here when evaluating this node: •opponent takes minimum of these nodes, •player will take maximum of nodes above

Alpha-Beta Example

Do DF-search until first

leaf

$$[-\infty,+\infty]$$

Alpha-Beta Example (continued)

$$[-\infty,3]$$

Alpha-Beta Example (continued)

$$[-\infty,3]$$

ple (continued)

$$[3,+\infty]$$

Alpha-Beta Example

MAX

(continued)

This node is worse for MAX

Alpha-Beta Pruning: Concept

There are two rules for terminating search:

- Search can be stopped below any MIN node having a beta value less than or equal to the alpha value of any of its MAX ancestors.
- Search can be stopped below any MAX node having an alpha value greater than or equal to the beta value of any of its MIN ancestors.

Alpha-Reta Fxample (continued)

[3,14]

•

[3,3] $[-\infty,14]$ $[-\infty,2]$

Alpha-Beta Example (continued)

[3,5] $[3,3] [-\infty,5] [-\infty,2]$

Alpha-Beta Example (continued)

[3,3]

[3,3]
$$[-\infty,2]$$
 [2,2] Alpha-Beta Example (continued)

[3,3]

[3,3]

 $[-\infty,2]$ [2,2]

General alpha-beta pruning

- Consider a node n somewhere in the tree
- If player has a better choice at – Parent node of n

 Or any choice point further up
- n will never be reached in actual play.

 Hence when enough is known about n, it can be pruned.

Alpha-beta Algorithm

- Depth first search only considers nodes along a single path at any time
- α = highest-value choice we have found at any choice point along the path for MAX
- β = lowest-value choice we have found at any choice point along the path for MIN
- update values of α and β during search and prunes remaining branches as soon as the value is known to be worse than the current α or β value for MAX or MIN Minimax without pruning

Alpha-beta pruning example

F

G н I^J Unevaluated nodes

Effectiveness of Alpha-Beta Search

Worst-Case

 branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over exhaustive search

Best-Case

- each player's best move is the left-most alternative (i.e., evaluated first)
- in practice, performance is closer to best rather than worst-case

- In practice often get O(b^(d/2)) rather than O(b^d) this is the same as having a branching factor of sqrt(b),
 since (sqrt(b))^d = b^(d/2)
 - i.e., we have effectively gone from b to square root of b
 - e.g., in chess go from b \sim 35 to b \sim 6
- this permits much deeper search in the same amount of time
 Final Comments about Alpha-Beta

Pruning • Pruning does not affect final

results

- Entire subtrees can be pruned.
- Good move ordering improves effectiveness of pruning
 Iterative (Progressive) Deepening
 - In real games, there is usually a time limit T on making a move

 In practice, iterative deepening search (IDS) is used – IDS runs depth-first search with an increasing depth-limit – when the clock runs out we use the solution found at the previous depth limit

The State of Play

Checkers:

- Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.

• Chess:

 Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997.

• Othello:

 human champions refuse to compete against computers: they are too good.

• Go:

- human champions refuse to compete against computers: they are

too bad - b > 300 (!) **Deep Blue**

- 1957: Herbert Simon
 - "within 10 years a computer will beat the world chess champion"
- 1997: Deep Blue beats Kasparov
- Parallel machine with 30 processors for "software" and 480
 VLSI processors for "hardware search"
- Searched 126 million nodes per second on average
 - Generated up to 30 billion positions per move
 - Reached depth 14 routinely
- Uses iterative-deepening alpha-beta search with transpositioning
 - Can explore beyond depth-limit for interesting moves

Example :- Complete game tree for Nim-7

√ 7 coins are placed on a table between the two

opponents

✓ A move consists of dividing a pile of coins into two nonempty piles of different sizes

✓ For example, 6 coins can be divided into piles of 5 and 1 or 4 and 2, but not 3 and 3

✓ The first player who can no longer make a move loses the game

P1

P2

P1

P2 loses

P1 starts

P2 losesP1 loses

MIN vs. MAX in a Nim game

The best that MIN (Player1) can do is to lose unless Player2 makes a mistake.

moves first to minimize

to maximize

Node score = 0 means MIN wins.

1 means MAX wins.

Bold edges indicate forced win for MAX, Player2.

What should be the winning statergy?

MIN wins

MAX wins

MIN wins

Summary

- Game playing can be effectively modeled as a search problem
- Game trees represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for the Max player.
- Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them

- Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper
- For many well-known games, computer algorithms based on heuristic search match can out-perform human world experts.