Lab 1 Experiments On Resistive Circuits

Aim: Verify Thevenin's and Norton's equivalent representations.

1. Breadboard & Resistors

Fig. 1.1 Breadboard Schematic

Resistors: Go through this link

2. Thevenin's Theorem: Thevenin's theorem states that "Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load".

Theoretical Calculations:

a) Refer to the circuit as shown in Fig. 1

Fig. 1

- b) You need to find Thevenin's resistance (R_{TH}) , Thevenin's voltage (V_{TH}) , Load Voltage (V_L) and Load Current (I_L) .
- c) For calculating Thevenin's resistance (R_{TH}) , remove load R_L , short all voltage sources, open all current sources & calculate equivalent resistance (R_{TH}) between nodes A & G as shown below.

d) To calculate the Thevenin's voltage (V_{TH}) , remove load R_L , reconnect the voltage sources back into the circuit and calculate the voltage between nodes A & G as shown below.

e) Once you have both (R_{TH}) and (V_{TH}) values, connect the circuit as shown in Fig. 2

- f) Now calculate the voltage (V_L) & current (I_L) across the load (R_L) .
- 3. Norton's Theorem: Thevenin's theorem states that "Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor".

Theoretical Calculations:

- a) Refer to the circuit as shown in Fig. 1
- b) You need to find Short Circuit/Norton's current (I_N) , Equivalent resistance (R_N) (which is same as R_{TH}), Load Voltage (V_I) and Load Current (I_I) .
- c) Equivalent resistance ($R_{_N}$) calculation will remain same as Thevenin's resistance.
- d) To calculate the Norton's current (I_N) , remove load R_L and short circuit the terminals A & G with a wire. Reconnect the voltage sources back into the circuit and now calculate the current between nodes A & G as shown below.

e) Once you have both $(R_{_{N}}$ or $R_{_{TH}})$ and $(I_{_{N}})$ values, connect the circuit as shown in Fig. 3.

f) Now calculate the voltage (V_I) & current (I_I) across the load (R_I) .

4. Experimental procedure using LTSpice :

- a) Connect the circuit in the LTSpice schematic window as shown in Fig. 1
- b) Assign values to the components (i.e. resistors, voltage source)
- c) Measure the current I_L by keeping the cursor on top of the resistor R_L (the ammeter icon will show up, then click on it). Measure the voltage V_L across R_L by placing the cursor on node A and dragging it to node G. This will give you the load voltage and current directly.

(For Thevenin's Theorem)

- d) Now remove the R_L(220 Ω) resistor between A and G (ground) and measure the voltage at node A. This gives Thevenin's Voltage V_{TH} across AG.
- e) Now you have both R_{TH} (calculated manually) and V_{TH} values, connect the circuit as shown in Fig. 2 and measure load current & voltage by keeping the cursor at node A (for voltage) and on R_{T} (for current).
- f) Compare the values of load voltage and current in point (c) and (e).

(For Norton's Theorem)

- g) Short node A to G (just replace the resistor R_L with a wire) and measure the current through the short circuit path (i.e R_4). This will be the short circuit current or Norton's Current (I_N) in the branch AG.
- h) Now you have both R_{TH} (calculated manually) and (I_N) values, connect the circuit as shown in Fig. 3 and measure load current & voltage by keeping the cursor at node A (for voltage) and on R_{T} (for current).
- i) Compare the values of load voltage and current in point (c) and (h).

5. Hardware Implementation:

Draw the same circuit as done on LTSpice and repeat all steps. Note down the practical values.

6. Observation Table:

Thevenin's and Norton's equivalence across the branch AG i.e. $R_{_L} = 220\Omega$

S. No	Parameter	Theoretical results	LTspice results	Practical results
1	R_{TH} (Equivalent Resistance)			
2	$V_{\it TH}$ (Thevenin's voltage)			
3	$I_{_{N}}$ (Norton's current)			
4	$V_{_L}$ (Load Voltage)			
5	$I_{_L}$ (Load Current)			

Table 1

Deliverables:

When coming to the lab:

- Check the file format & grading rubrics (already posted on the classroom (BE Lab Flow).
- Submit the LTSpice file (.asc) to the classroom (individual task).
- Keep the theoretical & LTSpice results with you on a rough copy.