

Proof-Carrying Communication for the Internet of Things

2. Probleem

- In de context van IoT is het cruciaal om de geldigheid van ontvangen berichten na te kunnen gaan.
- Bestaande oplossingen verifiëren de integriteit van IoT apparaten periodiek om voordien verzonden berichten te valideren.

3. Aanpak

4. Trusted Computing

- Bescherming van data & uitvoeringsomgeving
- Speciale hardware, software of hybride
- De Security MicroVisor^[2]
 zorgt voor een TC omgeving
 zonder speciale hardware

Proof-carrying messages

5. Highlights

- Bewijs integriteit van verzender met een hash van het instructiegeheugen
- Implementatie op Arduino Uno WiFi Rev2
- Symmetrische sleuteluitwisseling met Elliptic Curve Diffie-Hellman

6. Resultaten en Conclusies

- → Aanzienlijke kost om sessie op te starten
- ☐ Een bewijs in ieder bericht verwerken is enkel praktisch voor netwerken met lage doorvoer

7. Verder Werk

- Integratie met de Security MicroVisor
- Onderzoek het gebruik van policies voor het genereren van een bewijs.