1. Answer sheet yangyiwei 2018533218

1. First. let the set of K's subgroup in G is Σ , the set of subgroups of G/N is Γ . $\forall G_1 \in \Sigma, \because \pi(G_1)$ is the image G_1 under $\pi \mid G_1 f(G_1)$ is the subgroup of $\pi(G_1)$, which is $\pi(G_1) \in \Gamma$ where π is the natural homomorphism from G to G/N.

Reversely, let $H_1 \in \varGamma$ The set of π 's original image of H_1 .

$$G_1 = \pi^{-1}(H_1) = \{x \in G \mid \pi(x) \in H_1\} \supseteq \{x \in G \mid \pi(x) = e', e' \text{ is the magnoid of H}\}.$$

And $\forall x,y\in G_1$, $\pi(xy^{-1})=\pi(x)\pi(y)^{-1}$. So $xy^[-1]\in G_1$ so G_1 is the subgroup of G. So $G_1\in \Sigma$ π^{-1} is the injective from Γ to Σ .

From $\pi(\pi^{-1}(H_1))=H_1$, we have $\pi\cdot\pi^{-1}=id_\Sigma$. Let $G_1\in\Sigma$, we have $G_1\subseteq\pi^{-1}(\pi(G_1))$. If $u\in\pi^{-1}(\pi(G_1))$, we have $v\in G_1$ s.t. $\pi(u)=\pi(v)$. So that $uv^{-1}\in K\subseteq G_1\to u\in G\to\pi^{-1}(\pi(G_1))=G_1\to\pi^{-1}\pi=id_\Gamma$... π establish a one on one injection form K to G/N

Then let $G_1\in \Sigma$ and $G_1 \triangleleft G$ if $a\in G, x\in G$, we have $\pi(x)\pi(a)\pi^{-1}(x)=f(xax^{-1})\in f(G_1)$. Notice that π is surjective, $\pi(G_1)\triangleleft H$, reversely, if $H_1\in \Gamma, H_1 \triangleleft H$ and let $b\in f^{-1}(H_1), y\in G$ we have $f(yby^{-1})=f(y)f(b)f(y)^{-1}\in H_1$. so that $yby^{-1}\in f^{-1}(H_1)$ so that $f^{-1}(H_1)\triangleleft G$, thus the subgroup is injected to subgroup.

Finally, let $G\in \Gamma$ and $G_1\triangleleft G$ from above we have $\pi(G_1)\triangleleft G/N$ Let π_2 be the natural isomorphism from G/N to $G/N/\pi(G_1)$, and π_1 be the natural isomorphism from G to G/G_1 . We have

 $ker(\pi'\pi)=\{x\in G\mid \pi_2\pi(x)=f(G_1)\}$ = $\{x\in G\mid \pi(x)\in\pi(G_1)\}=\pi^{-1}(\pi(G_1))=G_1$ So that the figure is satisfied, and $G/H\simeq (G/N)/(H/N)$

2.a.

Suppose A and B are the adjacency matrices of G and its complement. Since G is self-complementary, there is a permutation matrix P such that $P^TAP=B$. Now if J is the all-ones matrix then B=J-I-A and $P^TJP=J$, so we find that $\left(P^2\right)^TAP^2=A$. This implies that P^2 represents an automorphism of G. And $P^2\neq I$, thus Auf(G) is a group.

$$\{(3,4),(2,4,3),(1,3)(2,4),(1,2)(3,4)\}$$
 c.
$$\{I,(13)(24),(12)(34),(14)(23)\}$$
 3. $D_n=\mathrm{Sym}(\{1,2,\ldots,n\},\mathrm{s}),$ where $n\geq 3$ and

$$s = \{\{1,2\}, \dots, \{i,i+1\}, \dots, \{1,n\}, \{n,1\}\}$$

is called the dihedral group of degree n. This group contains the subgroup $C_n = <\sigma>$, where $\sigma=(12\cdots n)$. Since C_n is its own centralizer in S_n , any element τ of D_n which is not in C_n does not commute with σ . But then, if $\tau(1)=i$, we must have $\tau(2)=\sigma^{-1}(i)$; otherwise, $\tau(2)=\sigma(i)$ which implies inductively that $\tau(j)=\sigma^{j-1}(i)$ and hence that $\tau(j)=\sigma^{i-1}(j)$, i.e., that $\tau=\sigma^{i-1}$ It follows inductively that $\tau(j)=\sigma^{-j+1}(i)=\sigma^{i-j}(1)$. Thus $\tau(j)=i-j$ for $1\leq j\leq i$ and $\tau(j)=n-j+i+1$ for $i+1\leq j\leq n$ which imply that $\tau^2=1$. Moreover, any function τ defined in this way is in D_n . It follows that $|D_n|=2n$ and hence that C_n is a normal subgroup of D_n . Thus D_n is generated by σ and any element τ not in C_n . Moreover, $\tau\sigma\tau^{-1}=\sigma^{-1}$. Hence $C_n\cong C_n\rtimes_\rho C_2$, where $\rho:C_2\to \operatorname{Aut}(C_n)$ is the homomorphism defined by $\rho(\tau)(\sigma)=\sigma^{-1}$. It follows that D_n has the presentation $D_n=<\sigma,\tau\mid\sigma^n=1,\tau^2=1,\tau\sigma\tau^{-1}=\sigma^{-1}>$. since any group having these generators and relations is of order at most 2n. Indeed, the elements in such a group are of the form $\sigma^i\tau^j$ with $0\leq i< n, 0\leq j< 2$. The group D_n is also isomorphic to the group of symmetries of a regular n-gon. If $a,b\in D_n$ with o(a)=n,o(b)=2 and $b\not\in <a>$, we have

$$D_n = < a, b \mid a^n = 1, b^2 = 1, bab^{-1} = a^{-1} >$$

.: there is an automorphism ψ such that $\psi(\sigma)=a, \psi(\tau)=b$ and any automorphism of D_n is of this form. Thus $|\mathrm{Aut}(D_n)|=n\phi(n)$, where $\phi(n)=|(\mathbb{Z}/n\mathbb{Z})^*|$.

4. Both F_n and $F_n/[F_n:F_n]$ are left adjoint and preserve coproduts. we can have up to canonical isomorphism $(FX)^{\mathrm{ab}}=\left(F\coprod_{x\in X}\{x\}\right)^{\mathrm{ab}}=\left(*_{x\in X}F_1\right)^{\mathrm{ab}}=\bigoplus_{x\in X}\mathbb{Z}$ since $F_1=\mathbb{Z}$