TD 04: Présentations de groupes fondamentaux et Van Kampen

► Cette feuille de TD 4 nous occupera une semaine.

Exercices fondamentaux

1. PRÉSENTATION DE GROUPES

- (a) Montrer que le groupe de présentation $\langle a,b \mid a^n=b^2=(ab)^2=e \rangle$ possède 2n éléments et qu'il est isomorphe au groupe des isométries du plan laissant invariant un polygone régulier à n côtés.
- (b) Montrer que $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$ est isomorphe à $\langle a,b \mid b^2=(ab)^2=e \rangle$ et au groupe des isométries de \mathbb{Z} . On parle de groupe diédral infini.

2. $SL_2(\mathbf{Z})$ et le groupe modulaire

(a) On appelle groupe modulaire le groupe $PSL_2(\mathbf{Z}) = SL_2(\mathbf{Z})/\{\pm I_2\}$. Montrer qu'on a un morphisme surjectif $f: \mathbf{Z}/2\mathbf{Z}*\mathbf{Z}/3\mathbf{Z} \to PSL_2(\mathbf{Z})$.

Indication : On pourra commencer par établir que $\operatorname{SL}_2(\mathbf{Z})$ est engendré par $S=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ et $T=\begin{pmatrix}0&1\\-1&1\end{pmatrix}$.

(b) En considérant l'action de $PSL_2(\mathbf{Z})$ sur $\mathbf{R} \smallsetminus \mathbf{Q}$ donnée par

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$

et en remarquant que pour tout $x \in \mathbf{R} \setminus \mathbf{Q}$ positif, $S \cdot x < 0$ et pour tout $x \in \mathbf{R} \setminus \mathbf{Q}$ négatif, $T \cdot x > 1$ et $0 < T^{-1} \cdot x < 1$, montrer que f est injective. Conclure.

(c) Montrer que $SL_2(\mathbf{Z})$ est isomorphe à $\mathbf{Z}/4\mathbf{Z} *_{\mathbf{Z}/2\mathbf{Z}} \mathbf{Z}/6\mathbf{Z}$ pour les inclusions évidentes $\mathbf{Z}/2\mathbf{Z} \hookrightarrow \mathbf{Z}/4\mathbf{Z}$ et $\mathbf{Z}/2\mathbf{Z} \hookrightarrow \mathbf{Z}/6\mathbf{Z}$.

3. APPLICATIONS DU THÉORÈME DE VAN KAMPEN

Utiliser le théorème de Van Kampen pour décrire les groupes fondamentaux des espaces suivants :

- (a) La bouteille de Klein;
- (b) Le plan projectif réel $\mathbf{P}_2(\mathbf{R})\cong_{\{\pm\mathrm{Id}\}}\backslash\mathbf{S}^2$.

4. GROUPE FONDAMENTAL DE PARTIES DU PLAN

Soit $n \in \mathbb{N} \setminus \{0\}$.

- (a) Montrer que $\mathbb{R}^2 \setminus \{1, \dots, n\}$ se rétracte par déformation sur un bouquet de n cercles.
- (b) Décrire le groupe fondamental de $\mathbb{R}^2 \setminus \{1, \dots, n\}$.
- (c) Soit Σ' une partie finie de \mathbf{S}_2 . Décrire le groupe fondamental de $\mathbf{S}_2 \setminus \Sigma'$.

Exercices complémentaires

5. CALCUL DU GROUPE FONDAMENTAL D'UN RECOLLEMENT

Pour $i \in \{1,2\}$, soient $p_i \in \mathbf{N}^*$, B_i une copie du disque \mathbf{B}^2 et S_i une copie de \mathbf{S}^1 pointée en $x_i = 1$. On identifie S_i avec son image dans le bouquet de cercles $S_1 \vee S_2$. Soit $f_i : \partial B_i \to S_i$ l'application $z \mapsto z^{p_i}$ et soit X l'espace topologique recollement suivant

$$X := (B_1 \bigsqcup B_2) \cup_{f_1 \bigsqcup f_2} (S_1 \vee S_2).$$

Calculer le groupe fondamental de X.

6. VARIÉTÉS TOPOLOGIQUES

Soit X une variété topologique connexe par arcs de dimension $d\geqslant 3$. Montrer que, pour toute partie finie $\Sigma\subset X$, pour tout $x\in X\setminus \Sigma$, on a $\pi_1(X\setminus \Sigma,x)\simeq \pi_1(X,x)$. On pourra utiliser le théorème de Van Kampen.

7. GROUPE FONDAMENTAL DE PARTIES DE ${\bf R}^3$

On s'intéresse dans cet exercice aux groupes fondamentaux de certaines parties de ${\bf R}^3$. Soient C le cercle $\{x^2+y^2-1=z=0\}$, D la droite $\{x=y=0\}$ et x=(3,0,0).

- (a) Montrer, en utilisant la projection stéréographique, que $\pi_1(\mathbf{R}^3 \setminus D, x) \simeq \pi_1(\mathbf{R}^3 \setminus C, x)$ et en déduire $\pi_1(\mathbf{R}^3 \setminus C, x)$.
- (b) Soient L_1, \ldots, L_n des droites verticales et deux à deux disjointes de \mathbf{R}^3 . Calculer le groupe fondamental de $\mathbf{R}^3 \setminus \bigcup_{i=1}^n L_i$.

(c) Soient deux droites D, D' de \mathbf{R}^3 qui s'intersectent en un unique point. Montrer que $\pi_1(\mathbf{R}^3 \setminus (D \cup D'))$ est un groupe libre à 3 générateurs.

8. Sous-variétés et groupe fondamental

Soient r,R deux réels strictement positifs. On pose

$$T = \left\{ \left((R + r \cos(\varphi)) \cos(\theta), (R + r \cos(\varphi)) \sin(\theta), r \sin(\varphi) \right) \mid (\theta, \varphi) \in \mathbf{R}^2 \right\} \subseteq \mathbf{R}^3.$$

- (a) Préciser les valeurs de r et de R telles que T soit une sous-variété de \mathcal{C}^{∞} de \mathbf{R}^3 dont on précisera alors la dimension.
- (b) Montrer que T est homéomorphe à un espace connu.
- (c) Décrire, en utilisant le théorème de Van Kampen, le groupe fondamental de T puis le groupe fondamental de T privé d'un point.