Теорема Чевы и Менелая

Теорема 1 (**Теорема Чевы**). На сторонах AB, BC и CA треугольника ABC взяты соответственно точки C_1 , A_1 , B_1 (либо одна на стороне и две на продолжениях). Докажите, что отрезки AA_1 , BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда

$$\frac{AB_1}{B_1C} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = 1.$$

Теорема 2 (**Теорема Менелая**). Дан треугольник ABC. Пусть точка C_1 лежит на стороне AB, точка B_1 — на стороне AC, а точка A_1 — на продолжении стороны BC (либо все три на продолжени), тогда точки ABC лежат на одной прямой тогда и только тогда, когда

$$\frac{AB_1}{B_1C} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = 1.$$

Упражнение 1. На прямой расположены три точки A,B и C в указанном порядке. Известно, что $\frac{AC}{BC}=\frac{p}{q}$, найдите $\frac{BC}{AB}$.

Упражнение 2. Дан прямоугольный треугольник ABC прямым углом C. Известно, что AB=c, BC=a, CA=b. а) Найдите, в каком отношении высота из точки C делит гипотенузу. б) Найдите отношение $\frac{AA_1}{AB}$, где A_1 — точка касания вневписанной окружности гипотенузы.

Задача 1. Докажите, что середины оснований, точка пересечения боковых сторон, точка пересечения диагоналей в трапеции лежат на одной прямой.

Задача 2. Докажите, что прямые, соединяющие основания чевиан точки P в треугольнике, пересекают его соответственные стороны (прямые) в трех коллинеарных точках.

Задача 3. Середина основания трапеции соединена с вершинами другого основания. Эти прямые пересекают диагонали трапеции в точках P и Q. Докажите, что прямая PQ параллельна основаниям и ее отрезок, заключенный между боковыми сторонами трапеции, делится точками P и Q на три равные части.

Задача 4 (Теорема Ван–Обеля). Чевианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в одной точке K. Докажите а) используя теорему менелая и чевы, б) с помощью площадей, что

$$\frac{AK}{KA_1} = \frac{AB_1}{B_1C} + \frac{AC_1}{C_1B}.$$

Задача 5. Биссектрисы двух внутренних углов треугольника и биссектри- са внешнего угла, не смежного с ними, пересекают прямые, содержащие соответственные стороны треугольника в трех коллинеарных точках. Докажите.

Задача 6. Пусть BM медиана прямоугольного треугольника ABC ($\angle B=90^\circ$). Окружность, вписанная в треугольник ABM, касается сторон AB,AM в точках A_1,A_2 , аналогично определяются точки C_1,C_2 . Докажите, что прямые A_1A_2 и C_1C_2 пересекаются на биссектрисе угла ABC.

Задача 7. Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.