Travaux Dirigés

Intelligence artificielle, apprentissage automatique et big data Licence "Agriculture de Précision" – L3

Exercice 1 (Arbres de décision)

Soient des données contenues dans le tableau ci-dessous. Les attributs sont "Ensoleillement", "Espèce" et "Hydratation". La classe est "Maladie".

Ensoleillement	Espèce	Hydratation	Maladie
oui	E1	non	A
non	E1	oui	A
oui	E2	non	В
oui	E2	oui	В
non	E2	oui	C
oui	E3	non	aucune
oui	E3	oui	D
non	E3	oui	E
non	E3	non	aucune

- 1) D'une façon naïve (sans utiliser la fonction Gain), proposer un arbre de décision pour l'attribut classe « Maladie »
- 2) Soit la formule de gain :

Gain
$$(\mathcal{X}, a_j) = H(\mathcal{X}) - \sum_{v \in valeurs(a_j)} \frac{|\mathcal{X}_{a_j = v}|}{|\mathcal{X}|} H(\mathcal{X}_{a_j = v}) \qquad H(\mathcal{X}) = -\sum_{i=1}^{i=n} p_i \log_2 p_i$$

Calculer le gain de chaque attribut du tableau donné.

Exercice 2 (KNN)

Soient des données sur des types de maladies relatifs à des plantes :

Nom	Propriété 1	Propriété 2	Propriété 3	Propriété 4	Maladie
Plante 1	9	4	7	10	Maladie1
Plante 2	9	3	4	7	Maladie2
Plante 3	10	6	5	9	Maladie2
Plante 4	2	8	8	3	Maladie1

Soit une plante dont les propriétés sont :

Nom	Propriété 1	Propriété 2	Propriété 3	Propriété 4	Maladie
Plante A	8	6	6	6	?

1) Déterminer la maladie de la « Plante A » en exploitant KNN (les k plus proches voisins), en choisissant le paramètre K adapté.

Exercice 3 (Kmeans)

Soit l'ensemble D des entiers suivants : $D = \{2, 5, 8, 10, 11, 18, 20\}$

On veut répartir les données de D en trois (3) clusters, en utilisant l'algorithme Kmeans. La distance d entre deux nombres a et b est calculée ainsi : d(a, b) = |a - b| (la valeur absolue de a moins b)

1) Appliquez Kmeans en choisissant comme centres initiaux des 3 clusters respectivement : 8, 10 et 11. Montrez toutes les étapes de calcul.