| _ |                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------|
|   | PHVS 107 - Week 08 - Wednesday                                                                                   |
|   |                                                                                                                  |
|   | * Static equilibrium: constant velocity (dynamic equilibrium or special case: rero velocity (static equilibrium) |
|   | - 1.                                                                                                             |
|   | 17 romslant [7] v=0 equilibrium)                                                                                 |
|   | dynamic equilibrium static equilibrium                                                                           |
|   | → no acceleration → net force is zero, Fret = 0                                                                  |
|   | But, does Fret = 0 outomatically also mean equilibrium?                                                          |
|   |                                                                                                                  |
|   | Consider  Fret = 0, \$\vec{a}\$ = 0  but the object will start  to rotate → not in                               |
|   | equilibrium!                                                                                                     |
|   | It matters where the force applies!                                                                              |
|   | * Torque of a force (about a pivot point                                                                         |
|   | To z = r F sin O (units: Nom)                                                                                    |
|   | r= distance from the pijot to where                                                                              |
|   | the force is applied                                                                                             |
|   | $r$ = distance from the pisot to where the force is applied $\theta$ = angle between $\vec{r}$ and $\vec{F}$     |
|   | F                                                                                                                |



| At + 1 1-1 1-11 11. 1                                                      |
|----------------------------------------------------------------------------|
| * Other geometric interpretations of the definition of torque              |
|                                                                            |
| 1 Fro . 0 +6 0 1 - 11                                                      |
| 1 = distance of pivol point to                                             |
| The line of action                                                         |
| pivot point line of action l= r sin 0                                      |
| proof of line of action 1 = 1 suit                                         |
| pivot noi l'e distance of pivot point to  the line of action  l'e r sin d' |
| $\tau = F.\ell = From 0$                                                   |
|                                                                            |
| = product of force and                                                     |
| distance from pivot point                                                  |
|                                                                            |
| to line of action                                                          |
| → \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                    |
| Fig. F = component of the force propor dicular to the line                 |
| tick in the text of the text of                                            |
| pivot 2 perpendicular to the line                                          |
| from pivot point to where                                                  |
| Fis applied = Foin O                                                       |
| - T F ib                                                                   |
| $\rightarrow \tau = F_1 r = F r suid$                                      |
| = product of perpendicular                                                 |
| component of the force with                                                |
| congression of the force with                                              |
| distance to privat point.                                                  |
|                                                                            |
| Q Equilorium 1, grob-c                                                     |
| & Cancerum ( gr v - c                                                      |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |

\* Where do forces apply exactly? Weight/gravity of extended object is an extended force: applies to all "atoms". But which point moves with acceleration  $\vec{a} = \frac{\vec{F}_{net}}{m}$ ?  $\vec{r}_{CM} = \frac{\vec{r}_{i} m_{i} + \vec{r}_{e} m_{e} + \cdots}{m_{m_{i}} + m_{e} + \cdots}$ s center of man: [...] O.O (cm can be outside object) Demo: throwing hammer with LED \* Stability of equilibrium: Stable equilibrium: small changes in position from the equilibrium will result in a restoring force that brings the system back to the equilibrium Unwalle equilibrium result in force The removing from equilibrium

| Neutral equilibrium: sy small diplacment                               |
|------------------------------------------------------------------------|
| leave no ellect                                                        |
| were the effect                                                        |
|                                                                        |
|                                                                        |
| * Conditions for stability under gravity                               |
| if CM is over the area of contact -> stable                            |
| That = 0 restoring to  stable equilibrium                              |
| Thet=0 restoreing to                                                   |
| stable equilibrium                                                     |
| Thet=0 small diplacement will result in unstable that brings object    |
| further away from equilibrium                                          |
| Lower CM → need larger angle before stability is loss<br>— more stable |
| Larger area of support - more stable                                   |
|                                                                        |

\* Problems with equilibrain

- 1) Fret=0 and That=0
  2) determine unknown force using these equations

Q Equilibrium 3 a.b