# **Multirate Signal Processing**

Prof. Tai-kyong Song
Dept. of Electronic Engineering
SOGANG UNIVERSITY

# **Multirate Signal Processing**

### **Multirate systems**

- **❖ Input rate → Multiple data processing rate → output rate**
- Sampling (or data) rate conversion required
  - Down sampling → Decimation
  - Expansion, up sampling → Interpolation
  - Rate conversion (by an arbitrary ratio)
- Advantages
  - Better performance: expansion
  - Less data : decimation
  - can accurately support all the devices with different rate requirements
- ❖ Filter bank: Subband processing, data compression

# **Multirate Signal Processing**

#### **Decimation and Expansion**



**Figure 12.3** Block-diagram notations for (a) *M*-fold decimation and (b) *L*-fold expansion.

#### Decimation

$$y(n) = x_D(n) = x_{(\perp M)}(n) = x(nM)$$

#### **\*** Expansion

$$y(n) = x_E(n) = x_{(\uparrow L)}(n) = \begin{cases} x(n/L), & n = kL \ (k \text{ integer}) \\ 0, & \text{otherwise} \end{cases}$$

Decimation and expansion are both time variant operations

$$\longrightarrow \boxed{\uparrow_M} \longrightarrow \boxed{\downarrow_M} \longrightarrow \boxed{\uparrow_M} \longrightarrow \boxed{\uparrow_M}$$

**■ Example: L=M=3** 



### Theorem 12.1: If M and L are relatively prime, then



**❖** Proof

$$\{x_{(\downarrow M)}\}_{(\uparrow L)}(n) = \begin{cases} x(nM/L), & nM = kL \\ 0, & otherwise \end{cases}$$

$$\{x_{(\uparrow L)}\}_{(\downarrow M)}(n) = \begin{cases} x(nM/L), & n = mL \\ 0, & otherwise \end{cases}$$

Since M and L are coprime, nM = kL only when n = jL, which implies that the above two expressions are identical.

Hence,

$$\{x_{(\perp M)}\}_{(\uparrow L)}(n) = \{x_{(\uparrow L)}\}_{(\perp M)}(n)$$

### Transform domain analyses of decimation and expansion

#### Decimation

• Let's introduce the comb sequence IDFT of an M-long sequence of 1

$$c_{M}(n) = \sum_{-\infty}^{\infty} \delta(n - kM) = \frac{1}{M} \sum_{m=0}^{M-1} W_{M}^{mn}, \text{ where } W_{M} = e^{\frac{j2\pi/M}{M}}$$

Then,

$$x_D(n) = x(nM)c_M(nM)$$

$$X_D(z) = \sum_{n=-\infty}^{\infty} x(nM)c_M(nM)z^{-n} = \sum_{n=-\infty}^{\infty} x(n)c_M(n)z^{-n/M}$$

$$= \frac{1}{M} \sum_{m=0}^{M-1} \sum_{n=-\infty}^{\infty} x(n) \frac{W_M^{mn} z^{-n/M}}{(W_M^{-m} z^{1/M})^{-n}} = \frac{1}{M} \sum_{m=0}^{M-1} X(z^{1/M} W_M^{-m}) \frac{W_M^{-m} z^{1/M}}{e^{j\theta/M} e^{-j2\pi m/M}}$$

$$\Leftrightarrow X_D(\Theta) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Theta - 2\pi m}{M}\right) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Theta}{M} - \frac{2\pi m}{M}\right)$$

#### Decimation

- Aliasing error will occur if sampling rate is lower than the Nyquist rate.
- Anti-aliasing filter is required.
- Input signal or the anti-aliasing filter output should be band-limited

to 
$$\Theta \in [-\pi/M, \pi/M]$$



**Figure 12.5** Aliasing caused by decimation: (a) Fourier transform of the original signal; (b) shifted and frequency-scaled replicas of part a; (c) Fourier transform of the decimated signal.

$$X\!\!\left(\frac{\theta - 2\pi m}{M}\right) = X\!\!\left(\frac{\theta}{M} - \frac{2\pi m}{M}\right)$$

$$X\!\!\left(\!\frac{\theta-2\pi\,\boldsymbol{\cdot}\,m+2\pi M}{M}\!\right)\!\!=X\!\!\left(\!\frac{\theta-2\pi\,\boldsymbol{\cdot}\,m}{M}\!+\!2\pi\!\right)$$

$$\rightarrow$$
 Period in  $\theta = 2\pi M = 6\pi$ 

#### Decimation

#### No aliasing case



**Figure 12.7** Alias-free decimation of a complex band-pass signal: (a) Fourier transform of the original signal; (b) shifted and frequency-scaled replicas of part a; (c) Fourier transform of the decimated signal.

x(n) must be  $\frac{\pi}{M}$  band limited.



**Figure 12.6** Alias-free decimation of a band-limited signal: (a) Fourier transform of the original signal; (b) shifted and frequency-scaled replicas of part a; (c) Fourier transform of the decimated signal.

$$x(t) \xrightarrow{f_S/M} x_{\downarrow M}(n)$$

#### Expansion

$$X_{E}(z) = \sum_{n=-\infty}^{\infty} x_{E}(n) z^{-n} = \sum_{n=multiple \ of \ L} x(n/L) z^{-n} = \sum_{n=-\infty}^{\infty} x(n) z^{-nL} = X(z^{L})$$

$$\Leftrightarrow X_E(\Theta) = X(L\Theta)$$

$$X_{E}(\theta) = X(e^{jL\theta}) = X(e^{j(L(\theta + (2\pi/L)k))}) = X(e^{j(L\theta + 2\pi k)})$$

 $X(e^{jL\theta})$  repeats at regular intervals  $(\frac{2\pi}{I})k, k = 0,1,2,...,L-1$ 

#### Expansion

$$X_{E}(z) = \sum_{n=-\infty}^{\infty} x_{E}(n) z^{-n} = \sum_{n=multiple \ of \ L} x(n/L) z^{-n} = \sum_{n=-\infty}^{\infty} x(n) z^{-nL} = X(z^{L})$$

$$\Leftrightarrow X_E(\Theta) = X(L\Theta)$$

$$\Leftrightarrow X_E(\Theta) = X(L\Theta) \quad X_E(\theta) = X(e^{jL\theta}) = X(e^{j(L(\theta + (2\pi/L)k))}) = X(e^{j(L\theta + 2\pi k)})$$

• L = 3







Bandwidth is scaled by 1/L

$$L-1$$
 images

#### **M-fold decimation**



#### M-fold decimation



$$y(n) = \sum_{i=-\infty}^{\infty} h(i)x(nM-i) = \sum_{i=-\infty}^{\infty} x(i)h(nM-i)$$

H(z): Lowpass anti-aliasing filter with  $\Theta_c = \pi/M$ 

### **L-fold Interpolation**



H(z): Lowpass anti-aliasing filter with  $\Theta_c = \pi/L$ 

### **L-fold Interpolation**





0 1

$$\begin{split} y(n) &= \sum_{i=-\infty}^{\infty} x_E(\ i) h(n-i) \\ &= \sum_{i=-\infty}^{\infty} x(i) h(n-Li) \end{split}$$

### Sampling rate conversion

 **riangle Non-integer conversion rate that can be expressed as L/M.** 

Ex) 
$$3/4 = 0.75$$
,  $4/3 = 1.25$ , ....

#### **❖ Implementation**



$$H(z): \Theta_c = \min[\pi/L, \pi/M]$$

$$y(n) = \sum_{i=-\infty}^{\infty} x(i)h(Mn - Li)$$

### **Multirate Identities**

### **Decimation identity**

#### **❖ Time domain analysis**



### **Multirate Identities**

### **Decimation identity**

#### **❖ Z-domain analysis**

$$\begin{split} Y(z) &= \{X(z)H(z^{M})\}_{\perp M} = \frac{1}{M} \sum_{m=0}^{M-1} X(z^{1/M} \ W_{M}^{-m}) H\{(z \ W_{M}^{-mM})\} \\ &= \frac{1}{M} \sum_{m=0}^{M-1} X(z^{1/M} \ W_{M}^{-m}) H(z) = X_{D}(z) H(z) \end{split}$$
 Note) 
$$W_{M}^{-mM} = e^{-j\frac{2\pi}{M}mM} = e^{-j2\pi m} = 1$$

### **Multirate Identities**

### **Expansion identity**



$$Y(z) = \{H(z)X(z)\}_{\perp L} = H(z^L)X_E(z) = H(z^L)X(z^L)$$

### Polyphase representation of decimation

$$P_0(z^3)$$
  $h_0$  0 0  $h_3$  0 0  $h_6$  0 0  $h_9$  0 0  $h_{12}$   
 $z^{-1}P_1(z^3)$   $h_1$  0 0  $h_4$  0 0  $h_7$  0 0  $h_{10}$  0 0  $h_{13}$   
 $z^{-2}P_2(z^3)$   $h_2$  0 0  $h_5$  0 0  $h_8$  0 0  $h_{11}$  0 0  $h_{14}$ 

### Polyphase representation of decimation

#### Derivation

Let 
$$i = i'M + m$$
,  $0 \le m \le M - 1$ 

Then we get

$$y(n) = \sum_{i=0}^{N} h(i)x(nM-i) = \sum_{m=0}^{M-1} \sum_{i=0}^{I} h(i'M+m)x((n-i')M-m), \quad 0 \le m \le M-1$$

where 
$$I = \lfloor N/M \rfloor$$

Ex) N = 29, M=4 
$$I' = \lfloor 29/4 \rfloor = 7$$



### Polyphase representation of decimation

#### Derivation

Let's define following sequences

$$\begin{split} p_m(n) &= h(nM+m) \text{ and } u_m(n) = x(nM-m) \text{ for } 0 \leq m \leq M-1 \\ \text{Then, } y(n) &= \sum_{m=0}^{M-1} \{p_m(n)^* u_m(n)\} \\ y(n) &= \sum_{i=0}^{N} h(i) x(nM-i) = \sum_{m=0}^{M-1} \sum_{i=0}^{I} h(iM+m) x((n-i)M-m), \quad 0 \leq m \leq M-1 \end{split}$$

$$p_0(n)$$
  $p_1(n)$   $p_2(n)$   $p_3(n)$ 



"For efficient computation and low hardware complexity"

### Polyphase representation of decimation

- **\diamond** Poly phase components of h(n)
  - M FIR filters  $p_m(i')$

 $p_m(i)$  obtained by advancing the h(n) by m and then decimating by M

• 
$$P_m(z) = \sum_i p_m(i') z^{-i'} = \sum_i h(i'M + m) z^{-i'}$$

 $u_m(n)$  obtained by delaying the x(n) by m and then decimating by M  $u_m(n) = x(nM-m)$ 

$$u_0(n)$$
  $\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$   $x_2$   $\begin{bmatrix} x_3 \\ x_2 \end{bmatrix}$   $x_4$   $x_5$   $\begin{bmatrix} x_6 \\ x_5 \end{bmatrix}$   $x_6$   $x_7$   $x_8$   $\begin{bmatrix} x_9 \\ x_5 \end{bmatrix}$   $x_{10}$   $x_{11}$   $x_{12}$   $x_{13}$   $x_{14}$   $x_{15}$   $x_{14}$   $x_{15}$   $x_{15}$ 

### Polyphase representation of decimation

**❖ Type 1 polyphase:** Polyphase implementation of a M-fold decimator



#### Polyphase representation of decimation

**❖ Type 1 polyphase:** Polyphase implementation of a M-fold decimator









$$Ex1)H(z) = 0.1 + 0.2z^{-1} + 0.3z^{-3} + 0.4z^{-4} + 0.5z^{-5} + 0.7z^{-7} + 0.8z^{-8} + 0.9z^{-9}$$

$$p_0(n) = \{ 0.1, 0, 0.4, 0, 0.8 \}$$

$$p_1(n) = \{ 0.2, 0.3, 0.5, 0.7, 0.9 \}$$

### Polyphase representation of decimation

**❖ Type 1 polyphase:** Polyphase implementation of a M-fold decimator

$$Ex2)H(z) = 0.1 + 0.2z^{-1} + 0.3z^{-3} + 0.4z^{-4} + 0.5z^{-5} + 0.7z^{-7} + 0.8z^{-8} + 0.9z^{-9}$$

$$x(n) \longrightarrow H(z) \longrightarrow \downarrow 3 \longrightarrow y(n)$$

$$p_0(n) = \{ 0.1, 0.3, 0, 0.9 \}$$

$$p_1(n) = \{ 0.2, 0.4, 0.7 \}$$

$$p_2(n) = \{ 0, 0.5, 0.8 \}$$

$$P_0(z) = 0.1 + 0.3z^{-1} + 0.9z^{-3}$$

$$P_1(z) = 0.2 + 0.4z^{-1} + 0.7z^{-2}$$

$$P_2(z) = 0.5z^{-1} + 0.8z^{-2}$$

### **Cf) Direct implementation of decimation**



- # memories = N
- # multipliers = N+1
- Multiplier speed =  $F_s$

- # memories = 2N
- # multipliers = N+1
- Multiplier speed =  $F_s/M$

### Polyphase representation of decimation

**❖** Polyphase implementation of a M-fold decimator

Compare the # of memories, # of multipliers, and multiplication speed



### Polyphase representation of decimation

#### Commutator model



**Figure 12.16** Polyphase decomposition of filtering and M-fold decimation (shown for M = 3).



**Figure 12.17** Polyphase decomposition of filtering and M-fold decimation with a commutator instead of delays and decimation (shown for M = 3).

### Polyphase representation of expansion (interpolation)

#### ❖ Type 2 polyphase

$$H(z) = \sum_{l=0}^{L-1} z^{-(L-1-l)} Q_l(z^L)$$

$$Q_l(z) = P_{L-1-l}(z)$$

$$q_l(n) = h(nL + L - 1 - l)$$

$$v_l(n) = y(nL + L - 1 - l)$$

$$H(z) = \sum_{l=0}^{L-1} z^{-l} P_l(z^L)$$

$$H(z) = \sum_{m=0}^{M-1} z^{-m} P_m(z^M)$$

### Polyphase representation of expansion

#### **❖** Expander

$$Y(z) = H(z) \cdot X_{E}(z) = \sum_{l=0}^{L-1} z^{-(L-1-l)} Q_{l}(z^{L}) X(z^{L})$$

$$= \sum_{l=0}^{L-1} z^{-(L-1-l)} \{ Q_{l}(z) X(z) \}_{\uparrow L} = \sum_{l=0}^{L-1} z^{-(L-1-l)} \{ V_{l}(z) \}_{\uparrow L}$$

where  $V_I(z) = Q_I(z)X(z)$ 





### Polyphase representation of expansion

#### **❖** Direct implementation



What are the problems with this structure ??

### Polyphase representation of expansion

**❖** Direct implementation



#### **❖** Polyphase implementation



### Polyphase representation of expansion

#### **❖** Polyphase implementation



### Polyphase representation of expansion

**❖ Polyphase implementation: Commutator model** 



**Figure 12.19** Polyphase decomposition of *L*-fold expansion and filtering with a commutator instead of expansion and delays (shown for L = 3).

# **Summary**

Efficient structures for decimation and interpolation filters

#### Decimation filter: M=2

#### Direct implementation



N+1 multiplications and N additions at Fs

(N+1) MPUs and N APUs

During the odd clock cycles, resting

#### Polyphase implementation: Type 1



N+1=n0+n1+2 multiplications and N additions at Fs/2 = (N+1)/2 multiplications and N/2 additions at Fs

(N+1)/2 MPUs and N/2 APUs



## **Summary**

Efficient structures for decimation and interpolation filters

*Interpolation filter: L=2* 

#### Direct implementation



2(N+1) MPUs and 2N APUs

Half of the samples are zero

Polyphase implementation: Type 2

Fs 
$$R_0(z^2)$$
  $Z^{-1}$   $R_1(z^2)$ 

$$H(z) = z^{-1}R_0(z^2) + R_1(z^2)$$



(N+1) MPUs and (N-1) APUs

$$\bigvee y_1(0) y_0(0) y_1(1) y_0(1) y_1(2) y_0(2)$$

# **Summary**

# **Summary**

Ex: M=3, L=2; M/L=1.5

#### **Multistage schemes**

- Lower rate operation
- **❖** Lower computation amount: Simple filter spec

### **Multistage decimation**





### **Multistage Expansion (or interpolation)**



#### **Motivation of multistage implementation**

❖ Length of a linear phase FIR filter

$$N \approx \frac{D(\delta_1, \delta_2)}{\Delta f}$$

**❖ Multistage implementation helps to reduce the overall filter length.** 





#### IFIR (Interpolated FIR) approach



Optimum # of stages ?

Neuvo. Et al. [1984]

#### Multistage design of decimation filter





Design example 4.4.2



$$F_s = 8KHz$$

$$\delta_1 = 0.01, \quad \delta_2 = 0.001$$

$$F_1 \approx 70 Hz$$
,  $F_2 \approx 80 Hz$ 

$$N = 2028$$
  $2\pi \frac{80}{9V} = \frac{\pi}{50}$ 









### Multistage design of decimation filter

Design example 4.4.2

|                        |                      | Multistage Design |      |        |
|------------------------|----------------------|-------------------|------|--------|
|                        | Direct design $H(z)$ | G(z)              | I(z) | Total  |
| Filter order           | 2,028                | 90                | 139  | 2,389  |
| MPUs                   | ≈21                  | 0.92              | 2.8  | 3.72   |
| APUs                   | ≈41                  | 1.8               | 5.56 | 7.36   |
| Mul per sec<br>(8 kHz) | 168,000              |                   |      | 29,760 |
| Add per sec<br>(8 kHz) | 328,000              | -                 |      | 58,880 |

#### Multistage design of decimation filter







#### Multistage design of interpolator



### **Digital audio**

- **\*** A/D
- **❖ D/A**
- Fractional sampling rate conversion

Studio: 48KHz CD mastering: 44.1KHz

Broadcasting: 32KHz

48K -- 44.1K: L=441, M=480









#### Subband coding of speech and image signals



DPCM, ADPCK: Jayant and Noll, 1984

Image compression: subband coding Woods and O'Neil, 1986 Smith and Eddins, 1990 Woods, 1990

Music signals: DCC Veldhuis, et al., 1989 pp. 3597-3620, ICASSP, 1991 Fettweis, et al., 1990



# **Analog voice privacy systems Multirate adaptive filters**

Shynk [1992]

### **Transmultiplexers**



Time domain multiplexing

Demultiplexing

### **Transmultiplexer structure**





#### **Transmultiplexer structure**

