Unalterable copy

-1-

JC05 Rec'd PCT/PTO 0 6 SEP 2005

PH/5-70238P1

Process for the preparation of substituted nicotinic acid esters

The present invention relates to a novel process for the preparation of 6-haloalkyl-3-nicotinic acid esters and also to novel enamine intermediates for use in that process.

6-Haloalkyl-3-nicotinic acid esters are valuable intermediates for the preparation of herbicides such as those described, for example, in WO 01/94339.

From Heterocycles, Vol. 48, No. 4, 1998, pages 779-785 it is known to prepare 6-trifluoro-3-nicotinic acid ethyl esters substituted by aryl in the 4-position, corresponding to formula A, by means of dehydration and subsequent oxidation of the compound of formula B in accordance with the following scheme

As a result of the uneconomic multi-step procedure, that process is not well suited to the large-scale preparation of 6-haloalkyl-3-nicotinic acid ethyl esters.

According to Heterocycles, Vol. 46, 1997, pages 129-132, 6-trifluoro-3-nicotinic acid methyl esters substituted by phenyl or alkyl in the 2-position, corresponding to formula C,

can be prepared by reacting a compound of formula E with a compound of formula D in benzene and in the presence of trifluoroacetic acid. In addition to unsatisfactory yields, that process has the serious disadvantage for large-scale preparation that the quality of the enamine (E) used as starting material continuously deteriorates during storage as a result of polymerisation reactions, making it considerably more difficult to ensure a consistent product quality.

The problem of the present invention is consequently to make available a novel process for the preparation of 6-haloalkyl-3-nicotinic acid esters which makes it possible to prepare those compounds at reasonable cost, in high yields and with good quality.

The present invention accordingly relates to a process for the preparation of compounds of formula I

$$R_4$$
 N
 R_1
 X_1
 R_2
 R_2

wherein

R is C₁-C₆alkyl;

 R_1 is a C_1 - C_6 alkylene, C_3 - C_6 alkenylene or C_3 - C_6 alkynylene chain which may be substituted one or more times by halogen or by R_5 , the unsaturated bonds of the chain not being attached directly to the substituent X_1 :

R₄ is halomethyl or haloethyl;

 X_1 is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₁₇-, thio, sulfinyl, sulfonyl, -SO₂NR₇-, -NR₁₈SO₂- or -NR₈-;

 R_2 is hydrogen or C_1 - C_8 alkyl, or is a C_1 - C_8 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group which may be substituted one or more times by halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, halo-substituted C_3 - C_6 cycloalkyl, or by C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 haloalkoxy, C_3 - C_6 haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 Aloxy,

alkoxycarbonyl- C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, oxiranyl (which may in turn be substituted by C_1 - C_6 alkyl), or by (3-oxetanyl)oxy (which may in turn be substituted by C_1 - C_6 alkyl), or by benzylthio, benzylsulfinyl, benzylsulfonyl, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, $R_9S(O)_2O$, $R_{10}N(R_{11})SO_2$ -, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl; it being possible for the phenyl- or benzyl-containing groups to be in turn substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro groups, or

 R_2 is phenyl which may be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; or R_2 is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl

R₂ is a five- to ten-membered, monocyclic or fused bicyclic, ring system which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, or may contain the group C=O or C=NR₁₉, the ring system being attached to the substituent X₁ directly or by way of a C₁-C₄alkylene, C₂-C₄alkenyl-C₁-C₄alkylene, C₂-C₄alkynyl-C₁-C₄alkylene, -N(R₁₂)-C₁-C₄alkylene, -SO-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene group and each ring system containing no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for each ring system itself to be substituted one or more times by C₁-C₀alkyl, C₁-C₀haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, amino, hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- $C_1-C_3 alkylthio,\ cyano-C_1-C_3 alkylthio,\ C_1-C_6 alkylsulfinyl,\ C_1-C_6 haloalkylsulfinyl,$ C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,Ndi(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or by phenyl, it being possible for the phenyl group to be in turn substituted by hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₁-C₃alkoxy- C_1-C_3 alkylthio, C_1-C_4 alkylcarbonyl- C_1-C_3 alkylthio, C_1-C_4 alkoxycarbonyl- C_1-C_3 alkylthio, cyano-C₁-C₃alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)-

aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano or by nitro, and the substituents on the nitrogen in the heterocyclic ring being other than halogen;

 R_5 is hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or C_1 - C_6 alk

 R_6 , R_7 , R_8 , R_9 , R_{10} R_{11} , R_{12} , R_{17} , R_{18} and R_{18b} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 -alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, benzyl, or phenyl, it being possible for phenyl and benzyl to be in turn substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; R_6 not being hydrogen when R_9 is hydrogen, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylcarbonyl;

or the group $-R_1-X_1-R_2$ together is C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 -alkynyl, C_2-C_6 haloalkynyl, C_3-C_6 cycloalkyl, C_1-C_6 alkoxy, C_1-C_6 haloalkoxy, C_1-C_6 alkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfonyl, C_1-C_6 haloalkyl, C_1-C_6 haloalkylthio, C_1-C_6 haloalkylsulfonyl, C_1-C_6 alkoxycarbonyl, C_1-C_6 haloalkylsulfonyl, C_1-C_6 alkylamino, C_1-C_6 alkylaminosulfonyl, di(C_1-C_6 alkyl)aminosulfonyl, -NH-S-R₁₃, -N-(C_1-C_6 alkylthio)- C_1-C_6 alkylaminosulfonyl, di(C_1-C_6 alkylsulfonyl)- C_1-C_6 alkylsulfonyl)- C_1-C_6 alkylsulfonyl)- C_1-C_6 alkylsulfonyl)- C_1-C_6 alkylsulfonyl)- C_1-C_6 alkyl, oxiranyl, C_3-C_6 alkenyloxy, C_3-C_6 alkynyloxy, C_1-C_6 alkoxy, C_1-C_6 alkoxy, cyano- C_1-C_6 alkoxy, C_1-C_6 alkoxycarbonyl- C_1-C_6 alkoxy, C_1-C_6 alkylsulfonyl, alkoxycarbonyl- C_1-C_6 alkylsulfonyl, C_1-C_6 alkylsulfonyloxy, C_1-C_6 alkylsulfonyl, benzyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, benzylthio, benzylsulfinyl or benzylsulfonyl, it being possible for the phenyl groups to be substituted one or more times by halogen, methyl, ethyl, trifluoromethyl, methoxy or by nitro;

or the group $-R_1-X_1-R_2$ together is a five- to ten-membered, monocyclic or fused bicyclic, ring system, which may be aromatic or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system either being attached to the pyridine ring directly or being attached to the pyridine ring by way of a C_1-C_4 alkylene chain, and it being possible for each ring system to contain no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for the ring system itself to be substituted one, two or three times by C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 alkenyl, C_3-C_6 haloalkenyl, C_3-C_6 haloalkenyl, C_3-C_6 haloalkenyl, C_3-C_6 haloalkynyl, C_3-C_6 haloalkynyl, C_1-C_6 haloalkoxy, C_1-C_6 haloalkenyl, C_3-C_6 haloalkenyl, C_3-C_6 haloalkynyl, C_3-C_6 haloalkynyl, C_3-C_6 haloalkynyl, C_3-C_6 haloalkenyl, C_3-C_6 haloalkynyl, C_3-C_6

alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₆alkylsulfonyl, C₁-C₃alkylaminosulfonyl, C₁-C₃alkylene-R₁₆, N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl)-C₁-C₆alkyl)-C₁-C₆alkoxy, halogen, cyano, nitro, phenyl and by benzylthio, it being possible for phenyl and benzylthio to be in turn substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and substituents on the nitrogen in the heterocyclic ring being other than halogen;

 R_{13} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_{14} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkenyl, C₂-C₆alkynyl, C₃-C₆cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_{15} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkyl, C₁-C₃alkyl, C₁-C₃alkoxy, C₁-C₃alkoxy, C₁-C₃alkoxy, halogen, cyano or by nitro;

 R_{16} is C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl or phenyl, it being possible for phenyl to be in turn substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro; and R_{19} is hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; which process comprises reacting a compound of formula II

wherein R_3 is C_1 - C_8 alkyl or C_3 - C_6 cycloalkyl and R_4 is as defined for formula I, with a compound of formula III

wherein R, R_1 , R_2 and X_1 are as defined for formula I, in an inert solvent in the presence of a proton source.

The alkyl groups appearing in the substituent definitions may be straight-chained or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl and octyl and also the branched isomers thereof. Alkoxy, alkenyl and alkynyl groups are derived from the mentioned alkyl groups. The alkenyl and alkynyl groups may be mono- or poly-unsaturated.

Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine. The same is also correspondingly true for halogen in conjunction with other meanings such as haloalkyl or halophenyl.

Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl or 2,2,2-trichloroethyl; preferably trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl or dichlorofluoromethyl.

As haloalkenyl there come into consideration alkenyl groups substituted one or more times by halogen, halogen being fluorine, chlorine, bromine or iodine, especially fluorine or chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl and 4,4,4-trifluoro-but-2-en-1-yl. Among the C₃-C₂₀alkenyl groups substituted once, twice or three times by halogen, preference is given to those that have a chain length of from 3 to 5 carbon atoms.

As haloalkynyl there come into consideration, for example, alkynyl groups substituted one or more times by halogen, halogen being bromine, iodine or, especially, fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl. Among the alkynyl groups substituted one or more times by halogen, preference is given to those that have a chain length of from 3 to 5 carbon atoms.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tertbutoxy or the pentyloxy or hexyloxy isomers; preferably methoxy or ethoxy. Alkylcarbonyl preferably is acetyl or propionyl. Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 8 carbon atoms. Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2difluoroethoxy or 2,2,2-trichloroethoxy; preferably difluoromethoxy, 2-chlorethoxy or trifluoromethoxy. Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl or tert-butylsulfinyl; preferably methylsulfinyl or ethylsulfinyl.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably

methylsulfonyl or ethylsulfonyl. Alkoxyalkoxy groups preferably have a chain length of from 1 to 8 carbon atoms. Examples of alkoxyalkoxy are: methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, ethoxyethoxy, propoxymethoxy and butoxybutoxy. Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the butylamine isomers. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino or diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms. Alkoxyalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkylthioalkyl groups preferably have from 1 to 8 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthiomethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl. The cycloalkyl groups preferably have from 3 to 8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Phenyl, including phenyl as part of a substituent such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl and phenoxyalkyl, may be present in substituted form, in which case the substituents may be in the ortho-, meta- and/or para-position(s). Preferred substituent positions are the positions ortho and para to the ring attachment position.

The process according to the invention is especially suitable for the preparation of those compounds of formula I wherein R_1 is $-CH_2$ -, $-CH_2CH_2$ -, $-CF_2$ -, $-CH=CHCH_2$ -, $-CH(CH_3)$ - or $-C=CCH_2$ -, but preferably $-CH_2$ -, the free valency on the left in each case being attached to the pyridine ring.

Preference is furthermore given to the preparation of those compounds of formula I wherein X_1 is oxygen, sulfonyl or a group -NR₁₈SO₂-, especially oxygen.

In accordance with the process according to the invention, special preference is given to the preparation of those compounds of formula I wherein R_2 is $-CH_2OCH_3$, $-CH_2OCH_2CH_3$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OCH_3$ or $-CH_2CH_2OCH_2CH_2OCH_3$, preferably $-CH_2CH_2OCH_3$, with very special preference being given to those compounds wherein X_1 is oxygen and R_1 is $-CH_2$. From that group, those compounds wherein R is ethoxy may be prepared especially advantageously.

Furthermore, in accordance with the process according to the invention there may be advantageously prepared compounds of formula I wherein R₂ is

indicated in those preferred meanings of R₂, as in the case of, for example, o—, the attachment position is at the carbon atom marked "CH".

In the context of the present invention, preference is given to R being methyl, ethyl, n-propyl and isopropyl, especially ethyl.

R₃ is preferably methyl or ethyl, very especially ethyl.

R₄ is preferably trifluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, especially trifluoromethyl.

As inert solvents for the method according to the invention there are suitable, for example, aromatic solvents such as benzene, chlorobenzene, fluorobenzene, xylenes, toluene, or alcohols such as methanol or ethanol, and also ethyl acetate, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, acetone, butanone, halogenated solvents such as, for example, methylene chloride, trichloromethane, dichloroethylene or trichlorethane, ethers such as tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, dioxane or methyl tert-butyl ether. Ethanol and toluene are especially preferred.

Organic or mineral acids are suitable as the proton source. Examples of suitable proton sources are HCl, HBr, H₂SO₄, carboxylic acids such as acetic acid and derivatives thereof such as trifluoroacetic acid and trichloroacetic acid, sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid and also carbonic acid. As the proton source for the process according to the invention special preference is given to trifluoroacetic acid.

The reactions can be carried out at ambient temperature or at elevated temperature. In general, addition of the reactants is carried out at a temperature from ambient temperature to the boiling point of the solvent, especially from 20 to 140°C, preferably from 40 to 120°C, with subsequent heating of the reaction mixture, advantageously to the boiling point of the solvent.

The compounds of formula II are known or are accessible by known methods. Processes for the preparation of compounds of formula II are described, for example, in J. Org Chem. (1995) vol 95, 3523, in H. Amil, T. Kobayashi, H. Terasawa, K. Uneyama, Org. Lett. 3(20), 3103-3105 (2001) and also A. Colla, G. Clar, S. Krimmer, P. Fischer, M.A.P. Martins, Synthesis-Stuttgart (6),483-486 (1991).

Some of the compounds of formula III are known. The preparation of such compounds is described in H. G. O. Becker, J. Prakt. Chem. (1961), Vol 12, 294., in WO 00/24714 and also in D.H. Wu, W. Wang, J. Labelled Compd. Rad 39(2),105-107(1997).

The compounds of formula III wherein -R₁-X₁-R₂ is -CH₂-O-CH₂-CH₂-O-CH₃, that is to say compounds of formula IIIa

wherein R is as defined for formula III, are novel and were developed specifically for the preparation of compounds of formula I, and the present invention accordingly relates thereto. In a preferred compound of formula IIIa, R is ethyl.

Compounds of formula III can be prepared using processes known to the person skilled in the art, for example by reacting the unsaturated ketones on which they are based with ammonia gas as described in Preparation Example P1 hereinbelow.

In a preferred embodiment of the process according to the invention, the starting compounds of formula III are prepared from the 3-oxo-carboxylic acid esters on which they are based by introducing ammonia gas and then, without further isolation, reacting directly with the compounds of formula II. That process is especially advantageous for the large-scale preparation of compounds of formula I.

The compounds of formula I either may be used directly in the reaction mixture for further reactions or alternatively may be isolated. Isolation of the compounds of formula I can be

carried out, for example, by extraction of the reaction mixture and subsequent removal of the solvent from the product-containing phase by customary methods.

The process according to the invention will be explained in greater detail in the following Preparation Examples:

Example P1: Preparation of 3-amino-4-methoxyethoxy-but-2-enoic acid ethyl ester:

A mixture of 1.37 g (6 mmol) of 3-oxo-4-methoxyethoxy-butanoic acid ethyl ester (1) in 13 ml of ethanol is introduced into a reaction vessel and cooled to a temperature of 0°C using an ice/water bath.

Ammonia gas is then introduced for a period of 30 minutes, with stirring, and the reaction mixture is stirred for a further 20 minutes at a temperature of 0°C. After removing the cooling bath, the reaction mixture is allowed to warm up to a temperature of 20°C and ammonia gas is then introduced for a further hour. The reaction mixture is then stirred for 20 hours.

After removal of the solvent *in vacuo*, there are obtained 1.3 g (95 % of theory) of 3-amino-4-methoxyethoxy-but-2-enoic acid ethyl ester (2) in the form of an orange-coloured oil.

¹H nmr (CDCl₃): 1.30 (t, 3H, C \underline{H}_3 CH₂O-), 3.40 (s, 3H, C \underline{H}_3 O-), 3.55 (m, 2H, OC \underline{H}_2 CH₂O), 3.60 (m, 2H, OCH₂C \underline{H}_2 O), 4.10 (s, 2H, C=CC \underline{H}_2 O-), 4.15 (q, 2H, CH₃C \underline{H}_2 O-), 4.50 (s, 1H, C \underline{H} =CNH₂).

¹³C nmr (CDCl₃): 14.7 (CH₃), 58.9 (CH₂), 59.2 (CH₃), 70.0 (CH₂), 71.0 (CH₂), 71.8 (CH₂), 81.9 (CH), 159.7 (C), 170.3 (C).

MS: 203 (M⁺), 158, 157, 144, 129, 114, 100, 98, 83, 71, 59, 45.

Example P2: Preparation of 2-methoxyethoxymethyl-3-ethyloxycarbonyl-6-trifluoromethyl-pyridine (4):

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

A mixture of 52.3 g (0.24 mol) of 3-oxo-4-methoxyethoxy-butanoic acid ethyl ester (1) in 150 ml of toluene is introduced into a reaction vessel equipped with a water separator.

Ammonia gas is then introduced into the reaction mixture for 2 hours, with stirring. Refluxing is then carried out for 30 minutes and the water is collected in the separator. After cooling the reaction mixture to a temperature of 20°C, the procedure is repeated. Ammonia gas is again introduced for 1.5 hours, with stirring, and the reaction mixture is then refluxed in order to separate off the water.

After cooling the reaction mixture, which contains 3-amino-4-methoxyethoxy-but-2-enoic acid ethyl ester (2), to a temperature of 20°C, 48 g (0.248 mol) of 1-ethoxy-3-oxo-4-trifluorobutene (3) are added and stirring is carried out at a temperature of 20°C for 18 hours. 1.5 ml of trifluoroacetic acid are then added, stirring is carried out at a temperature of 20°C for 2 hours and refluxing is carried out for a further 2 hours.

The reaction mixture is then allowed to cool down to a temperature of 20°C and is then washed with 100 ml of 1M NaHCO₃. The aqueous phase is separated off and is then extracted with 150 ml of toluene and the combined organic phases are then dried over MgSO₄.

After removal of the solvent *in vacuo*, there are obtained 65.4 g (62 % of theory) of 2-methoxyethoxymethyl-3-ethyloxycarbonyl-6-trifluoromethylpyridine in the form of a dark-brown oil.

¹H nmr (CDCl₃): 1.40 (t, 3H, CH₃CH₂O-), 3.35 (s, 3H, CH₃O-), 3.55 (m, 2H, OCH₂CH₂O), 3.70 (m, 2H, OCH₂CH₂O), 4.45 (q, 2H, CH₃CH₂O-), 5.00 (s, 2H, ArCH₂O-), 7.70 (s, 1H, ArH), 8.30 (s, 1H, ArH).

MS: 307 (M⁺), 262, 248, 233, 204, 202, 161, 128, 109, 59, 45

The other compounds listed in Table 1 can also be prepared in that manner.

In the following Table, the valency on the left of the radical R_1 is attached to the pyridine ring. When no free valency is indicated in the case of the substituent R_2 , as in the case of,

Table 1: Compounds of formula la

$$CF_3$$
 N
 R_1
 R_2
 R_2

wherein R is ethyl:

Comp. no.	R ₁	R ₂	X ₁
A1	CH₂	CH₃	0
A2	CH₂	CH₂CH₃	0
A3	CH ₂	(CH₃)₂CH	0
A4	CH₂	PhCH₂	0
A5	CH₂	CH₃	S
A6	CH₂	CH₃	so

Comp. no.	R ₁	R ₂	X ₁
A7	CH₂	CH₃	SO ₂
A8	CH₂	CH₃OCH₂	0
A9	CH₂	CH₃CH₂OCH₂	0
A10	CH ₂	CH₃OCH₂CH₂	0
A11	CH ₂	CH₃CH₂OCH₂CH₂	0
A12	CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A13	CH₂	CH₃OCH(CH₃)CH₂	0
A14	CH ₂	CH₃OCH₂CH(CH₃)	0
A15	CH₂	CH₃OCH₂C(CH₃)₂	0
A16	CH₂	CH₃OCH(CH₃)	0
A17	CH ₂	CH₃OC(CH₃)₂	0
A18	CH₂	HC≡CCH ₂	0
A19	CH₂	H₂C=CHCH₂	0
A20	CH₂	CH₃C≡CCH₂	0
A21	CH₂	Сн	0
A22	CH₂	ССН	0
A23	CH₂	Ссн	0
A24	CH₂	/_cн о√	0
A25	CH₂	СН	0
A26	CH₂	СН	0
A27	CH₂	СН	0
A28	CH₂	ОСН	0
A29	CH₂	ОСН	0
A30	CH₂	ОСН	0
A31	CH₂	O CH	0

Comp. no.	R ₁	R ₂	X ₁
A32	CH₂		0
A33	CH₂	OCH ₃	0
A34	CH₂	ОН	0
A35	CH₂	OCH ₃	0
A36	CH₂	ОН	0
A37	CH ₂		0
A38	CH₂	CH ₃ CH ₃	0
A39	CH₂	CH ₃	0
A40	CH₂	N N CH ₃	0
A41	CH₂	C _N	0
A42	CH₂		0
A43	CH₂		0
A44	CH₂	OCH ₃	0
A45	CH₂	OH N	0

Comp. no.	R ₁	R₂ och₃	X ₁
A46	CH₂	N N	0
A47	CH₂	OH OH	0
A48	CH₂	OCH ₃	0
A49	CH₂	OH OH	0
A50	CH₂	O'N	0
A51	CH₂		0
A52	CH₂	FOCH ₃	0
A53	CH₂	OCH ₃	0
A54	CH₂	CH=CH OCH ₃	0
A55	CH₂	CH ₂	0
A56	CH₂	CH₂	0
A57	CH₂	о >—сн ₂	0
A58	CH₂	CH₂	0
A59	CH₂	O CH₂	0
A60	CH₂	CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A61	CH₂	CH ₂	0
A62	CH₂	CH ₂	0
A63	CH₂	O CH ₂	0
A64	CH₂	CH ₂	0
A65	CH₂	OCH ₂	0
A66	CH₂	O CH ₂	0
A67	CH ₂	CH ₂	0
A68	CH₂	CH ₂ OCH ₃	0
A69	CH₂	OH	0
A70	CH₂	OCH ₃	0
A71	CH₂	CH ₂	0
A72	CH₂	CH ₂	0
A73	CH₂	CH ₃ OCH ₂ CH ₂	0
A74	CH₂	CH ₃ N N OCH ₂ CH ₂ CH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A75	CH₂	OCH ₂ CH ₂	0
A76	CH₂	CH ₂	0
A77	CH₂	CH ₂	0
A78	CH₂	CH ₂	0
A79	CH₂	OCH ₃ CH ₂	0
A80	CH₂	OH CH ₂	0
A81	CH₂	OCH ₃ CH ₂	0
A82	CH₂	OH N CH ₂	0
A83	CH₂	OCH ₃ CH ₂	0
A84	CH₂	OH CH ₂	0
A85	CH₂	CH ₂	0
A86	CH₂	CH ₂	0
A87	CH₂	F OCH ₃	0
A88	CH₂	OCH ₂ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A89	CH₂	OCH ₂ CH ₂	0
A90	CH₂	OCH ₂	0
A91	CH₂CH₂	CH₃	0
A92	CH₂CH₂	CH₃CH₂	0
A93	CH₂CH₂	(CH₃)₂CH	0
A94	CH ₂ CH ₂	PhCH₂	0
A95	CH₂CH₂	CH₃	S
A96	CH₂CH₂	CH₃	so
A97	CH₂CH₂	CH₃	SO ₂
A98	CH₂CH₂	(CH ₃) ₂ CHCH ₂	0
A99	CH₂CH₂	CH₃OCH₂	0
A100	CH ₂ CH ₂	CH₃CH₂OCH₂	0
A101	CH ₂ CH ₂	CH₃OCH₂CH₂	0
A102	CH ₂ CH ₂	CH₃CH₂OCH₂CH₂	0
A103	CH ₂ CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A104	CH ₂ CH ₂	CH₃OCH(CH₃)CH₂	0
A105	CH₂CH₂	CH ₃ OCH ₂ CH(CH ₃)	0
A106	CH₂CH₂	CH ₃ OCH ₂ C(CH ₃) ₂	0
A107	CH₂CH₂	CH₃OCH(CH₃)	0
A108	CH₂CH₂	CH₃OC(CH₃)₂	0
A109	CH₂CH₂	HC≡CCH₂	0
A110	CH₂CH₂	H ₂ C=CHCH ₂	0
A111	CH₂CH₂	CH₃C≡CCH₂	0
A112	CH₂CH₂	Сн	0
A113	CH₂CH₂	О∕сн	0
A114	CH₂CH₂	Сн	0
A115	CH₂CH₂	√_сн о_/	0
A116	CH₂CH₂	СН	0
A117	CH₂CH₂	СН	0

		T	T
Comp. no.	R ₁	R ₂	X ₁
A118	CH₂CH₂	СН	0
A119	CH₂CH₂	ОСН	0
A120	CH₂CH₂	ОСН	0
A121	CH₂CH₂	ОСН	0
A122	CH₂CH₂	O_CH	0
A123	CH₂CH₂		0
A124	CH₂CH₂	OCH ₃	0
A125	CH₂CH₂	ОН	0
A126	CH₂CH₂	OCH ₃	0
A127	CH₂CH₂	ОН	0
A128	CH₂CH₂	√ _s √	0
A129	CH₂CH₂	CH ₃ CH ₃	0
A130	CH₂CH₂	CH ₃	0
A131	CH₂CH₂	N CH ₃	0
A132	CH₂CH₂		0

Comp. no.	R ₁	R ₂	X ₁
A133	CH₂CH₂		0
A134	CH₂CH₂	N	0
A135	CH₂CH₂	OCH ₃	0
A136	CH₂CH₂	OH N	0
A137	CH₂CH₂	OCH ₃	0
A138	CH₂CH₂	OH OH	0
A139	CH₂CH₂	OCH ₃	0
A140	CH₂CH₂	OH N	0
A141	CH ₂ CH ₂	- N	0
A142	CH₂CH₂	O'N	0
A143	CH₂CH₂	FOCH ₃	0
A144	CH₂CH₂	OCH ₃	0
A145	CH₂CH₂	CH=CH OCH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A146	CH₂CH₂	OCH ₃	0
A147	CH₂CH₂	CH₂	0
A148	CH₂CH₂	О >─СН ₂	0
A149	CH₂CH₂	CH ₂	0
A150	CH₂CH₂	O CH ₂	0
A151	CH₂CH₂	CH ₂	0
A152	CH₂CH₂	CH ₂	0
A153	CH₂CH₂	CH ₂	0
A154	CH₂CH₂	O CH ₂	0
A155	CH₂CH₂	CH ₂	0
A156	CH₂CH₂	OCH ₂	0
A157	CH₂CH₂	O CH ₂	0
A158	CH₂CH₂	CH ₂	0
A159	CH₂CH₂	OCH ₃	0
A160	CH₂CH₂	OH	0
A161	CH₂CH₂	CH ₂	0
		oсн _з	

Comp. no.	R ₁	R ₂	X ₁
A162	CH₂CH₂	CH ₂	0
A163	CH₂CH₂	CH ₂	0
A164	CH₂CH₂	CH ₃ OCH ₂ CH ₂	0
A165	CH₂CH₂	CH ₃ N OCH ₂ CH ₂ CH ₃	0
A166	CH₂CH₂	OCH ₂ CH ₂	0
A167	CH₂CH₂	CH ₂	0
A168	CH₂CH₂	CH ₂	0
A169	CH₂CH₂	CH ₂	0
A170	CH₂CH₂	OCH ₃ CH ₂	0
A171	CH₂CH₂	OH CH₂ N	. 0
A172	CH₂CH₂	OCH ₃ CH ₂	0
A173	CH₂CH₂	OH CH ₂	0
A174	CH₂CH₂	OCH ₃ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A175	CH₂CH₂	OH CH ₂	0
A176	CH₂CH₂	CH ₂	0
A177	CH₂CH₂	CH ₂	0
A178	CH₂CH₂	F OCH ₃	0
A179	CH₂CH₂	OCH ₂ CH ₂	0
A180	CH₂CH₂	OCH ₂ CH ₂	0
A181	CH₂CH₂	OCH ₂	0
A182	CH(OCH₃)CH₂	CH₃	0
A183	CH(OCH ₃)CH ₂	CH₃CH₂	0
A184	CH(OCH₃)CH₂	(CH₃)₂CH	0
A185	CH(OCH ₃)CH ₂	PhCH₂	0
A186	CH(OCH ₃)CH ₂	CH₃	S
A187	CH(OCH ₃)CH ₂	CH₃	so
A188	CH(OCH ₃)CH ₂	CH₃	SO ₂
A189	CH(OCH ₃)CH ₂	CH₃CH₂CH₂	0
A190	CH(OCH₃)CH₂	CH₃OCH₂	0
A191	CH(OCH ₃)CH ₂	CH₃CH₂OCH₂	0
A192	CH(OCH₃)CH₂	CH₃OCH₂CH₂	0
A193	CH(OCH ₃)CH ₂	CH3CH2OCH2CH2	0
A194	CH(OCH₃)CH₂	CH₃OC(CH₃)₂CH₂	0
A195	CH(OCH₃)CH₂	CH₃OCH(CH₃)CH₂	0
A196	CH(OCH₃)CH₂	CH₃OCH₂CH(CH₃)	0
A197	CH(OCH₃)CH₂	CH₃OCH₂C(CH₃)₂	0
A198	CH(OCH₃)CH₂	CH₃OCH(CH₃)	0

Comp. no.	R ₁	R ₂	X ₁
A199	CH(OCH₃)CH₂	CH ₃ OC(CH ₃) ₂	0
A200	CH(OCH₃)CH₂	HC≡CCH₂	0
A201	CH(OCH₃)CH₂	H₂C=CHCH₂	0
A202	CH(OCH₃)CH₂	CH₃C≡CCH₂	0
A203	CH(OCH₃)CH₂	Сн	0
A204	CH(OCH₃)CH₂	ССН	0
A205	CH(OCH₃)CH₂	Сн	0
A206	CH(OCH₃)CH₂	√_CH	0
A207	CH(OCH ₃)CH ₂	СН	0
A208	CH(OCH₃)CH₂	СН	0
A209	CH(OCH₃)CH₂	Сн	0
A210	CH(OCH₃)CH₂	ОСН	0
A211	CH(OCH₃)CH₂	ОСН	0
A212	CH(OCH₃)CH₂	ОСН	0
A213	CH(OCH₃)CH₂	ОСН	0
A214	CH(OCH ₃)CH ₂		0
A215	CH(OCH₃)CH₂	OCH ₃	0
A216	CH(OCH₃)CH₂	ОН	0
A217	CH(OCH₃)CH₂	OCH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A218	CH(OCH₃)CH₂	ОН	0
A219	CH(OCH₃)CH₂	S	0
A220	CH(OCH₃)CH₂	CH ₃ CH ₃	0
A221	CH(OCH₃)CH₂	CH ₃	0
A222	CH(OCH ₃)CH ₂	CH ₃	0
A223	CH(OCH₃)CH₂	₩ N	0
A224	CH(OCH ₃)CH ₂		0
A225	CH(OCH₃)CH₂		0
A226	CH(OCH₃)CH₂	OCH ₃	0
A227	CH(OCH₃)CH₂	OH N	0
A228	CH(OCH₃)CH₂	OCH ₃	0
A229	CH(OCH₃)CH₂	OH N	0
A230	CH(OCH₃)CH₂	OCH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A231	CH(OCH₃)CH₂	OH	0
A232	CH(OCH₃)CH₂	C N	0
A233	CH(OCH₃)CH₂	(N)	0
A234	CH(OCH₃)CH₂	POCH ₃	0
A235	CH(OCH₃)CH₂	OCH ₃	0
A236	CH(OCH₃)CH₂	CH ₂ CH=CH OCH ₃	0
A237	CH(OCH₃)CH₂	OCH ₃	0
A238	CH(OCH₃)CH₂	CH₂	0
A239	CH(OCH₃)CH₂	O CH ₂	0
A240	CH(OCH₃)CH₂	CH ₂	0
A241	CH(OCH₃)CH₂	O CH ₂	0
A242	CH(OCH₃)CH₂	CH ₂	0
A243	CH(OCH₃)CH₂	CH ₂	0
A244	CH(OCH₃)CH₂	CH ₂	0
A245	CH(OCH₃)CH₂	O CH ₂	0
A246	CH(OCH₃)CH₂	CH ₂	0

Comp. no.	R₁	R ₂	X ₁
A247	CH(OCH₃)CH₂	OCH ₂	0
A248	CH(OCH₃)CH₂	O CH ₂	0
A249	CH(OCH₃)CH₂	CH ₂	0
A250	CH(OCH₃)CH₂	OCH ₃	0
A251	CH(OCH₃)CH₂	CH ₂	0
A252	CH(OCH₃)CH₂	OCH ₃	0
A253	CH(OCH₃)CH₂	CH ₂	0
A254	CH(OCH₃)CH₂	CH ₂	0
A255	CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	0
A256	CH(OCH₃)CH₂	CH ₃ N OCH ₂ CH ₂	0
A257	CH(OCH₃)CH₂	OCH ₂ CH ₂	0
A258	CH(OCH₃)CH₂	CH ₂	0
A259	CH(OCH₃)CH₂	CH ₂	0
A260	CH(OCH₃)CH₂	CH ₂	0

	T		
Comp. no). R ₁	R ₂ och ₃	X ₁
A261	CH(OCH₃)CH₂	CH ₂	0
A262	CH(OCH₃)CH₂	OH CH₂ N	0
A263	CH(OCH₃)CH₂	OCH ₃ CH ₂	0
A264	CH(OCH₃)CH₂	OH CH ₂	0
A265	CH(OCH₃)CH₂	OCH ₃ CH ₂	0
A266	CH(OCH₃)CH₂	OH CH ₂	0
A267	CH(OCH₃)CH₂	CH ₂	0
A268	CH(OCH₃)CH₂	CH ₂	0
A269	CH(OCH₃)CH₂	F CH₂ OCH₃	0
A270	CH(OCH₃)CH₂	OCH ₂ CH ₂	0
A271	CH(OCH₃)CH₂	OCH ₂ CH ₂	0
A272	CH(OCH₃)CH₂	OCH ₂	0
A273	CH ₂ CH(OCH ₃)CH ₂	CH₃	0
A274	CH₂CH(OCH₃)CH₂	CH₃CH₂	0
A275	CH ₂ CH(OCH ₃)CH ₂	(CH₃)₂CH	0
A276	CH ₂ CH(OCH ₃)CH ₂	PhCH₂	0

Comp. no.	R ₁	R ₂	X ₁
A277	CH ₂ CH(OCH ₃)CH ₂	CH₃	S
A278	CH ₂ CH(OCH ₃)CH ₂	CH ₃	so
A279	CH ₂ CH(OCH ₃)CH ₂	CH₃	SO ₂
A280	CH ₂ CH(OCH ₃)CH ₂	CH₃CH₂CH₂	0
A281	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH₂	0
A282	CH ₂ CH(OCH ₃)CH ₂	CH₃CH₂OCH₂	0
A283	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH₂CH₂	0
A284	CH₂CH(OCH₃)CH₂	CH₃CH₂OCH₂CH₂	0
A285	CH₂CH(OCH₃)CH₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A286	CH₂CH(OCH₃)CH₂	CH₃OCH(CH₃)CH₂	0_
A287	CH₂CH(OCH₃)CH₂	CH ₃ OCH ₂ CH(CH ₃)	0
A288	CH₂CH(OCH₃)CH₂	CH ₃ OCH ₂ C(CH ₃) ₂	0
A289	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH(CH₃)	0
A290	CH₂CH(OCH₃)CH₂	CH ₃ OC(CH ₃) ₂	0
A291	CH ₂ CH(OCH ₃)CH ₂	HC≡CCH ₂	0
A292	CH ₂ CH(OCH ₃)CH ₂	H ₂ C=CHCH ₂	0
A293	CH ₂ CH(OCH ₃)CH ₂	CH₃C≡CCH₂	0
A294	CH₂CH(OCH₃)CH₂	Сн	0
A295	CH ₂ CH(OCH ₃)CH ₂	СН	0
A296	CH₂CH(OCH₃)CH₂	Сн	0
A297	CH₂CH(OCH₃)CH₂	O CH	0
A298	CH₂CH(OCH₃)CH₂	СН	0
A299	CH₂CH(OCH₃)CH₂	СН	0
A300	CH₂CH(OCH₃)CH₂	СН	0
A301	CH₂CH(OCH₃)CH₂	ОСН	0
A302	CH₂CH(OCH₃)CH₂	ОСН	0
A303	CH₂CH(OCH₃)CH₂	ОСН	0

Comp. no.	. R ₁	R ₂	X ₁
A304	CH₂CH(OCH₃)CH₂	ОСН	0
A305	CH ₂ CH(OCH ₃)CH ₂		0
A306	CH₂CH(OCH₃)CH₂	OCH ₃	0
A307	CH₂CH(OCH₃)CH₂	ОН	0
A308	CH₂CH(OCH₃)CH₂	OCH ₃	0
A309	CH₂CH(OCH₃)CH₂	OH	0
A310	CH₂CH(OCH₃)CH₂	S	0
A311	CH₂CH(OCH₃)CH₂	CH ₃ CH ₃	0
A312	CH₂CH(OCH₃)CH₂	CH ₃	0
A313	CH₂CH(OCH₃)CH₂	N CH ₃	0
A314	CH₂CH(OCH₃)CH₂ ·		0
A315	CH ₂ CH(OCH ₃)CH ₂		0
A316	CH₂CH(OCH₃)CH₂		0
A317	CH₂CH(OCH₃)CH₂	OCH ₃	0

Comp. no.	R ₁	R.	V
A318	CH ₂ CH(OCH ₃)CH ₂	R ₂ OH	O O
A319	CH₂CH(OCH₃)CH₂	N	0
A320	CH₂CH(OCH₃)CH₂	N N	0
A321	CH₂CH(OCH₃)CH₂	OCH ₃	0
A322	CH₂CH(OCH₃)CH₂	OH OH	0
A323	CH₂CH(OCH₃)CH₂	O.N	0
A324	CH₂CH(OCH₃)CH₂		0
A325	CH₂CH(OCH₃)CH₂	FOCH ₃	0
A326	CH₂CH(OCH₃)CH₂	NOCH ₃	0
A327	CH₂CH(OCH₃)CH₂	CH=CH OCH ₃	0
A328	CH₂CH(OCH₃)CH₂	CH ₂	0
A329	CH₂CH(OCH₃)CH₂	CH ₂	0
A330	CH₂CH(OCH₃)CH₂	CH ₂	0
A331	CH₂CH(OCH₃)CH₂	CH ₂	0
A332	CH₂CH(OCH₃)CH₂	CH ₂	0

		_	
Comp. no.		R ₂	X ₁
A333	CH₂CH(OCH₃)CH₂	CH ₂	0
A334	CH₂CH(OCH₃)CH₂	6—/	0
A335	CH₂CH(OCH₃)CH₂	CH ₂	0
A336	CH₂CH(OCH₃)CH₂	O CH ₂	0
A337	CH₂CH(OCH₃)CH₂	O_CH ₂	0
A338	CH₂CH(OCH₃)CH₂	OCH ₂	0
A339	CH₂CH(OCH₃)CH₂	O CH ₂	0
A340	CH₂CH(OCH₃)CH₂	CH ₂	0
A341	CH₂CH(OCH₃)CH₂	CH₂ OCH₃	0
A342	CH₂CH(OCH₃)CH₂	OH	0
A343	CH₂CH(OCH₃)CH₂	OCH ₃	0
A344	CH₂CH(OCH₃)CH₂	CH₂ OH	0
A345	CH₂CH(OCH₃)CH₂	CH ₂	0
A346	CH₂CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	0
A347	CH ₂ CH(OCH ₃)CH ₂	CH ₃ NOCH ₂ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A348	CH₂CH(OCH₃)CH₂	OCH ₂ CH ₂	0
A349	CH ₂ CH(OCH ₃)CH ₂	CH ₂	0
A350	CH ₂ CH(OCH ₃)CH ₂	CH ₂	0
A351	CH₂CH(OCH₃)CH₂	CH ₂	0
A352	CH₂CH(OCH₃)CH₂	OCH ₃ CH₂	0
A353	CH₂CH(OCH₃)CH₂	OH CH₂	0
A354	CH₂CH(OCH₃)CH₂	OCH ₃ CH ₂	0
A355	CH₂CH(OCH₃)CH₂	OH N CH₂	0
A356	CH₂CH(OCH₃)CH₂	OCH ₃	0
A357	CH₂CH(OCH₃)CH₂	OH CH₂	0
A358	CH₂CH(OCH₃)CH₂	CH ₂	0
A359	CH₂CH(OCH₃)CH₂	CH ₂	0
A360	CH₂CH(OCH₃)CH₂	FOCH ₃	0
A361	CH₂CH(OCH₃)CH₂	OCH ₂ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A362	CH₂CH(OCH₃)CH₂	OCH ₂ CH ₂	0
A363	CH₂CH(OCH₃)CH₂	O_CH ₂ OCH ₃	0
A364	CH=CHCH₂	CH₃	0
A365	CH=CHCH ₂	CH₃CH₂	0
A366	CH=CHCH₂	(CH₃)₂CH	0
A367	CH=CHCH₂	PhCH₂	0
A368	CH=CHCH₂	CH₃	S
A369	CH=CHCH₂	CH₃	so
A370	CH=CHCH₂	CH₃	SO ₂
A371	CH=CHCH₂	CH₃CH₂CH₂	0
A372	CH=CHCH₂	CH₃OCH₂	0
A373	CH=CHCH₂	CH₃CH₂OCH₂	0
A374	CH=CHCH₂	CH₃OCH₂CH₂	0
A375	CH=CHCH₂	CH₃CH₂OCH₂CH₂	0
A376	CH=CHCH₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A377	CH=CHCH₂	CH₃OCH(CH₃)CH₂	0
A378	CH=CHCH₂	CH₃OCH₂CH(CH₃)	0
A379	CH=CHCH₂	CH₃OCH₂C(CH₃)₂	0
A380	CH=CHCH₂	CH₃OCH(CH₃)	0
A381	CH=CHCH₂	CH₃OC(CH₃)₂	0
A382	CH=CHCH₂	HC≡CCH₂	0
A383	CH=CHCH₂	H ₂ C=CHCH ₂	0
A384	CH=CHCH₂	CH ₃ C≡CCH ₂	0
A385	CH=CHCH₂	Сн	0
A386	CH=CHCH₂	СН	0
A387	CH=CHCH ₂	Сн	0
A388	CH=CHCH₂	√ CH	0
A389	CH=CHCH₂	Сн	0
A390	CH=CHCH₂	СН	0

Comp. no.	R ₁	R ₂	X ₁
A391	CH=CHCH₂	СН	0
A392 ·	CH=CHCH₂	ОСН	0
A393	CH=CHCH₂	ОСН	0
A394	CH=CHCH₂	ОСН	0
A395	CH=CHCH₂	O_CH	0
A396	CH=CHCH₂		0
A397	CH=CHCH₂	OCH ₃	0
A398	CH=CHCH₂	ОН	0
A399	CH=CHCH₂	OCH ₃	0
A400	CH=CHCH₂	ОН	0
A401	CH=CHCH₂	S	0
A402	CH=CHCH₂	CH ₃	0
A403	CH=CHCH₂	CH ₃	0
A404	CH=CHCH₂	NNN CH3	0
A405	CH=CHCH₂	₩ N	0

Comp. no.	R ₁	R ₂	X ₁
A406	CH=CHCH₂		0
A407	CH=CHCH₂		0
A408	CH=CHCH₂	OCH ₃	0
A409	CH=CHCH₂	OH N	0
A410	CH=CHCH₂	OCH ₃	0
A411	CH=CHCH ₂	N OH	0
A412	CH=CHCH₂	OCH ₃	0
A413	CH=CHCH ₂	OH	0
A414	CH=CHCH₂	C.N	0
A415	CH=CHCH₂	()N	0
A416	CH=CHCH₂	FOCH ₃	0
A417	CH=CHCH₂	OCH ₃	0
A418	CH=CHCH₂	CH ₂ CH=CH OCH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A419	CH=CHCH₂	OCH ₃	0
A420	CH=CHCH₂	CH ₂	0
A421	CH=CHCH₂	O → CH ₂	0
A422	CH=CHCH₂	CH ₂	0
A423	CH=CHCH₂	O CH ₂	0
A424	CH=CHCH₂	CH ₂	0
A425	CH=CHCH₂	CH ₂	0
A426	CH=CHCH₂	CH ₂	0
A427	CH=CHCH₂	O CH ₂	0
A428	CH=CHCH₂	CH ₂	0
A429	CH=CHCH₂	OCH ₂	0
A430	CH=CHCH₂	O CH ₂	0
A431	CH=CHCH₂	CH ₂	0
A432	CH=CHCH₂	CH ₂ OCH ₃	0
A433	CH=CHCH₂	CH ₂	0
A434	CH=CHCH₂	CH ₂	0
		осн3	

Comp. no.	R ₁	R ₂	X ₁
A435	CH=CHCH₂	OH CH ₂	0
A436	CH=CHCH₂	CH ₂	0
A437	CH=CHCH₂	CH ₃ OCH ₂ CH ₂	0
A438	CH=CHCH₂	CH ₃ N N OCH ₂ CH ₂	0
A439	CH=CHCH₂	OCH ₂ CH ₂	0
A440	CH=CHCH₂	CH ₂	0
A441	CH=CHCH₂	CH ₂	0
A442	CH=CHCH₂	CH ₂	0
A443	CH=CHCH₂	OCH ₃ CH ₂	0
A444	CH=CHCH₂	OH CH ₂	0
A445	CH=CHCH₂	OCH ₃ CH ₂	0
A446	CH=CHCH₂	OH CH ₂	0
A447	CH=CHCH₂	OCH ₃ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A448	CH=CHCH₂	R ₂	0
,,,,,	5 552	CH ₂	
		N CH ₂	
A449	CH=CHCH₂	_\(\sigma^{\chi_2}\)	0
		CO.N	
A450	CH=CHCH₂	CH ₂	0
		O,N	
A451	CH=CHCH ₂	CH ₂	0
	_	F OCH ₃	
A452	CH=CHCH₂	OCH ₂ CH ₂	0
7452	G11 G116112	осн _з	
		OCH ₃	
A453	CH=CHCH₂		0
		OCH ₃	
A454	CH=CHCH₂	O_CH ₂	0
		OCH ₃	
A455	C≡CCH ₂	CH ₃	0
A456	C≡CCH ₂	CH₃CH₂	0
A457	C≡CCH ₂	(CH₃)₂CH	0
A458	C≡CCH ₂	PhCH₂	0
A459	C≡CCH ₂	CH₃	S
A460	C≡CCH ₂	CH₃	so
A461	C≡CCH ₂	CH ₃	SO ₂
A462	C≡CCH ₂	CH₃CH₂CH₂	0
A463	C≡CCH ₂	CH₃OCH₂	0
A464	C≡CCH ₂	CH₃CH₂OCH₂	0
A465	C≡CCH ₂	CH₃OCH₂CH₂	0
A466	C≡CCH ₂	CH₃CH₂OCH₂CH₂	0
A467	C≡CCH₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A468	C≡CCH ₂	CH₃OCH(CH₃)CH₂	0
A469	C≡CCH ₂	CH ₃ OCH ₂ CH(CH ₃)	0
A470	C≡CCH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	0
A471	C≡CCH₂	CH₃OCH(CH₃)	0

Comp. no.	R ₁	R₂	X ₁
A472	C≡CCH₂	CH ₃ OC(CH ₃) ₂	0
A473	C≡CCH₂	HC≡CCH ₂	0
A474	C≡CCH₂	H₂C=CHCH₂	0
A475	C≡CCH ₂	CH₃C≡CCH₂	0
A476	C≡CCH ₂	Сн	Ο.
A477	C≡CCH ₂	ОСН	0
A478	C≡CCH ₂	∠ cH	0
A479	C≡CCH ₂	√ CH	0
A480	C≡CCH₂	Сн	0
A481	C≡CCH ₂	СН	0
A482	C≡CCH ₂	Сн	0
A483	C≡CCH ₂	CH	0
A484	C≡CCH ₂	O CH	0
A485	C≡CCH ₂	ОСН	0
A486	C≡CCH ₂	O CH	0
A487	C≡CCH ₂		0
A488	C≡CCH ₂	OCH ₃	0
A489	C≡CCH₂	ОН	0
A490	C≡CCH ₂	OCH ₃	0

		В	Y
Comp. no.	R ₁	R ₂	X ₁
A491	C≡CCH ₂		0
		ÓН	
A492	C≡CCH ₂		0
		s	
A493	C≡CCH ₂	CH ₃	0
A493	C≡CCH ₂		J
		S CH ₃	
A494	C≡CCH ₂	CH ₃	0
		N' _N	
		ĊH₃	
A495	C≡CCH ₂		0
A495	C≣CC⊓ ₂	N, N	Ü
		CH₃	
A496	C≡CCH ₂		0
/400	0=00112	, N	
A497	C≡CCH ₂		0
A497	C=CC112		
		N /	
A498	C≡CCH ₂		0
		OCH ₃	
A499	C≡CCH ₂		0
		N	
		ОН	_
A500	C≡CCH ₂		0
		OCH -	
A501	C≡CCH ₂	OCH ₃	0
		N N	
		ОН	
A502	C≡CCH ₂		0
		N	
		OCH ₃	_
A503	C≡CCH ₂		0
		N.	
			l

Comp. no.	R ₁	R₂ OH	X ₁
A504	C≡CCH₂		0
A505	C≡CCH ₂		0
A506	C≡CCH ₂		0
A507	C≡CCH ₂	F OCH ₃	0
A508	C≡CCH ₂	OCH ₃	0
A509	C≡CCH ₂	CH=CH OCH ₃	0
A510	C≡CCH ₂	OCH ₃	0
A511	C≡CCH ₂	CH₂	0
A512	C≡CCH ₂	О>—сн ₂	0
A513	C≡CCH ₂	CH ₂	0
A514	C≡CCH ₂	O CH₂	0
A515	C≡CCH ₂	CH ₂	0
A516	C≡CCH ₂	CH ₂	0
A517	C≡CCH ₂	CH ₂	0
A518	C≡CCH₂	O CH ₂	0
A519	C≡CCH₂	O_CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A520	C≡CCH ₂	OCH ₂	0
A521	C≡CCH ₂	O CH ₂	0
A522	C≡CCH ₂	CH ₂	0
A523	C≡CCH ₂	OCH ₃	0
A524	C≡CCH ₂	CH ₂	0
A525	C≡CCH ₂	OCH ₃	0
A526	C≡CCH ₂	CH ₂	0
A527	C≡CCH ₂	CH ₂	0
A528	C≡CCH ₂	CH ₃ OCH ₂ CH ₂	0
A529	C≡CCH ₂	CH ₃ N N OCH ₂ CH ₂ CH ₃	0
A530	C≡CCH ₂	N OCH ₂ CH ₂	0
A531	C≡CCH ₂	CH ₂	0
A532	C≡CCH ₂	CH ₂	0
A533	C≡CCH ₂	CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A534	C≡CCH ₂	CH ₂	0
A535	C≡CCH ₂	OH CH₂ N	O
A536	C≡CCH ₂	OCH ₃ CH ₂	O
A537	C≡CCH ₂	OH N CH₂	0
A538	C≡CCH ₂	OCH ₃ CH ₂	0
A539	C≡CCH ₂	OH CH₂	0
A540	C≡CCH ₂	CH ₂	0
A541	C≡CCH ₂	CH ₂	0
A542	C≡CCH ₂	F OCH ₃	0
A543	C≡CCH ₂	OCH ₂ CH ₂ OCH ₃	0
A544	C≡CCH ₂	OCH ₂ CH ₂	0
A545	C≡CCH ₂	O_CH ₂ OCH ₃	0
A546	CH ₂	CH ₃	0
A547	CH₂	CH₃CH₂	0
A548	CH₂	(CH₃)₂CH	0
A549	CH ₂	PhCH₂	0

Comp. no.	R ₁	R ₂	X ₁
A550	CH ₂	CH₃	S
A551	CH₂	CH ₃	SO
A552	CH₂	CH₃	SO ₂
A553	CH₂	CH₃CH₂CH₂	0
A554	CH₂	CH₃OCH₂	0
A555	CH₂	CH₃CH₂OCH₂	0
A556	CH₂	CH₃OCH₂CH₂	0
A557	CH₂	CH ₃ CH ₂ OCH ₂ CH ₂	0
A558	CH₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A559	CH₂	CH₃OCH(CH₃)CH₂	0
A560	CH ₂	CH ₃ OCH ₂ CH(CH ₃)	0
A561	CH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	0
A562	CH₂	CH₃OCH(CH₃)	0
A563	CH₂	CH ₃ OC(CH ₃) ₂	0
A564	CH ₂	HC≡CCH ₂	0
A565	CH ₂	H ₂ C=CHCH ₂	0
A566	CH ₂	CH ₃ C≡CCH ₂	0
A567	CH₂	СН	0
A568	CH ₂	СН	0
A569	CH₂	Ссн	0
A570	CH₂	o√cH	0
A571	CH ₂	СН	0
A572	CH ₂	СН	0
A573	CH₂	СН	0
A574	CH ₂	ОСН	0
A575	CH₂	ОСН	0
A576	CH₂	ОСН	0

Comp. no.	R ₁	R ₂	X ₁
A577	CH₂	O CH	0
A578	CH ₂		0
A579	CH₂	OCH ₃	0
A580	CH₂	ОН	0
A581	CH₂	OCH ₃	0
A582	CH₂	OH	0
A583	CH₂	s	0
A584	CH₂	CH ₃ CH ₃	0
A585	CH₂	CH ₃	0
A586	CH₂	N N CH ₃	0
A587	CH₂	₩ N	0
A588	CH₂		0
A589	CH₂		0
A590	CH₂	OCH ₃	0

Comp. no.	R₁	R₂ oh	_X ₁
A591	CH₂	OH	0
A592	CH₂	OCH ₃	0
		N N	
A593	CH₂	OH N	0
		Z Z	
A594	CH₂	OCH ₃	0
		N	
A595	CH₂	OH	0
A596	CH₂		0
		O,N	
A597	CH₂		0
A E 0 9	CI	0	0
A598	CH₂	F OCH₃	
A599	CH₂		0
		N OCH₃	
A600	CH ₂	CH=CH	0
		осн ₃	
A601	CH₂	CH ₂	0
		OCH ₃	
A602	CH₂	CH ₂	0
A603	CH₂	O CH ₂	0
A604	CH₂	CH₂	0
A605	CH₂	CH₂	0
	<u></u>	l	

Comp. no.	R ₁	R₂	X ₁
A606	CH₂	CH ₂	0
A607	CH₂	CH ₂	0
A608	CH₂	CH ₂	O
A609	CH₂	O CH ₂	0
A610	CH₂	CH ₂	0
A611	CH₂	O CH ₂	0
A612	CH₂	O CH ₂	0
A613	CH₂	CH ₂	0
A614	CH₂	OCH ₃	0
A615	CH₂	CH ₂	0
A616	CH₂	OCH ₃	0
A617	CH₂	CH ₂	0
A618	CH₂	CH ₂	0
A619	CH₂	CH ₃ OCH ₂ CH ₂	0
A620	CH₂	CH ₃ N OCH ₂ CH ₂ CH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A621	CH₂	OCH ₂ CH ₂	0
A622	CH₂	CH ₂	0
A623	CH₂	CH ₂	0
A624	CH₂	CH ₂	0
A625	CH₂	OCH ₃ CH ₂	0
. A626	CH₂	OH CH₂ N	0
A627	CH₂	OCH ₃ CH ₂	0
A628	CH₂	OH CH₂	0
A629	CH₂	OCH ₃ CH ₂	0
A630	CH₂	OH CH ₂	0
A631	CH₂	CH ₂	0
A632	CH₂	CH ₂	0
A633	CH₂	CH ₂ OCH ₃	0
A634	CH₂	OCH ₂ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A635	CH₂	OCH ₂ CH ₂	0
A636	CH₂	OCH ₂	0
A637	CH ₂	CH₃	0
A638	CH₂	CH₂CH₃	0
A639	CH ₂	(CH₃)₂CH	0
A640	CH₂	PhCH₂	0
A641	CH₂	CH₃	S
A642	CH₂	CH₃	0
A643	CH ₂	CH₃	0
A644	CH ₂	CH₃OCH₂	0
A645	CH₂	CH₃CH₂OCH₂	0
A646	CH ₂	CH₃OCH₂CH₂	0
A647	CH₂	CH₃CH₂OCH₂CH₂	0
A648	CH₂	CH₃OC(CH₃)₂CH₂	0
A649	CH ₂	CH₃OCH(CH₃)CH₂	0
A650	CH₂	CH₃OCH₂CH(CH₃)	0
A651	CH₂	CH₃OCH₂C(CH₃)₂	0
A652	CH ₂	CH₃OCH(CH₃)	0
A653	CH ₂	CH ₃ OC(CH ₃) ₂	0
A654	CH ₂	HC≡CCH ₂	0
A655	CH₂	H₂C=CHCH₂	0
A656	CH₂	CH₃C≡CCH₂	0
A657	CH ₂	Сн	0
A658	CH ₂	ОСН	0
A659	CH ₂	СН	0
A660	CH₂	√CH O√	0
A661	CH₂	Сн	0
A662	CH₂	СН	0

Comp. no.	R ₁	R ₂	X ₁
A663	CH₂	СН	0
A664	CH ₂	ОСН	0
A665	CH ₂	O_CH	0
A666	CH ₂	ОСН	0
A667	CH₂	O_CH	0
A668	CH ₂		0
A669	CH₂	OCH ₃	0
A670	CH₂	ОН	0
A671	CH₂	OCH ₃	0
A672	CH₂	ОН	0
A673	CH₂	s	0
A674	CH₂	CH ₃ CH ₃	0
A675	CH ₂	CH ₃	0
A676	CH₂	NNN CH3	0
A677	CH₂	₩ N	0

Comp. no.	R ₁	R ₂	X ₁
A678	CH₂		0
A679	CH₂		0
A680	CH₂	OCH ₃	0
A681	CH₂	OH N	0
A682	CH₂	OCH ₃	S
A683	CH₂	OH OH	so
A684	CH₂	OCH ₃	SO ₂
A685	CH₂	OH OH	0
A686	CH₂		0
A687	CH ₂		0
A688	CH₂	F OCH ₃	0
A689	CH₂	OCH ₃	0
A690	CH₂	CH=CH OCH ₃	0

Comp. no.	R ₁	R ₂	X ₁
A691	CH₂	CH ₂	0
		OCH ₃	
A692	CH ₂	CH₂	0
A693	CH₂	O CH ₂	0
A694	CH₂	CH ₂	0
A695	CH ₂	O CH ₂	0
A696	CH ₂	CH ₂	0
A697	CH₂	CH ₂	0
A698	CH₂	CH ₂	0
A699	CH ₂	O CH ₂	0
A700	CH ₂	CH ₂	0
A701	CH₂	OCH ₂	0
A702	CH₂	O CH ₂	0
A703	CH ₂	CH ₂	0
A704	CH₂	OCH ₃	0
A705	CH ₂	CH ₂	0
A706	CH₂	CH ₂	0
		осн _з	

Comp. no.	R ₁	R ₂	X ₁
A707	CH₂	CH ₂	0
A708	CH₂	CH ₂	0
A709	CH₂	CH ₃ OCH ₂ CH ₂	0
A710	CH₂	CH ₃ N N OCH ₂ CH ₂	0
A711	CH₂	N OCH ₂ CH ₂	0
A712	CH₂	CH ₂	0
A713	CH₂	CH ₂	0
A714	CH₂	CH ₂	0
A715	CH₂	OCH ₃ CH ₂	0
A716	CH₂	OH CH ₂	0
A717	CH₂	OCH ₃ CH ₂	0
A718	CH ₂	OH CH ₂	0
A719	CH₂	OCH ₃ CH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A720	CH₂	CH ₂	0
A721	CH₂	CH ₂	0
A722	CH₂	CH ₂	0
A723	CH₂	F OCH ₃	0
A724	CH₂	OCH ₂ CH ₂	0
A725	CH₂	OCH ₂ CH ₂	0
A726	CH₂	O_CH ₂	0
A727	CH₂	CH₃	0
A728	CH₂	CH₂CH₃	0
A729	CH₂	(CH ₃)₂CH	0
A730	CH₂	PhCH₂	0
A731	CH₂	CH₃	S
A732	CH ₂	CH₃	so
A733	CH ₂	CH₃	SO₂
A734	CH ₂	CH₃OCH₂	0
A735	CH ₂	CH₃CH₂OCH₂	0
A736	CH₂	CH₃OCH₂CH₂	0
A737	CH ₂	CH₃CH₂OCH₂CH₂	0
A738	CH₂	CH ₃ OC(CH ₃) ₂ CH ₂	0
A739	CH₂	CH₃OCH(CH₃)CH₂	0
A740	CH ₂	CH₃OCH₂CH(CH₃)	0
A741	CH₂	CH₃OCH₂C(CH₃)₂	0
A742	CH₂	CH₃OCH(CH₃)	0
A743	CH₂	CH ₃ OC(CH ₃) ₂	0

		5	
Comp. no.	R ₁	R ₂	X ₁
A744	CH₂	HC≡CCH₂	0
A745	CH₂	H₂C=CHCH₂	0
A746	CH₂	CH₃C≡CCH₂	0
A747	CH₂	Сн	0
A748	CH₂	ОСН	0
A749	CH₂	Ссн	0
A750	CH₂	√CH O√	0
A751	CH ₂	СН	0
A752	CH₂	СН	0
A753	CH₂	Сн	0
A754	CH₂	O_CH	0
A755	CH₂	O_CH	0
A756	CH₂	ОСН	0
A757	CH ₂	O_CH	0
A758	CH₂		0
A759	CH₂	OCH ₃	0
A760	CH₂	ОН	0
A761	CH₂	OCH ₃	0
A762	CH₂	ОН	0

Comp. no.	R₁	R ₂	X ₁
A763	CH₂	s	0
A764	CH₂	CH ₃	0
A765	CH₂	CH ₃	0
A766	CH₂	N N CH ₃	0
A767	CH₂	₩ N	0
A768	CH₂		0
A769	CH₂		0
A770	CH₂	OCH ₃	0
A771	CH₂	OH N	0
A772	CH₂	OCH ₃	0
A773	CH₂	OH	0
A774	CH ₂	OCH ₃	0
A775	CH₂	OH N	0

Comp. no	D	R ₂	X ₁
Comp. no.	R ₁	/\2	
A776	CH₂	Ç,N	0
A777	CH₂		0
A778	CH ₂	F OCH₃	0
A779	CH₂	OCH ₃	0
A780	CH ₂	CH ₂ CH=CH OCH ₃	0
A781	CH₂	OCH ₃	0
A782	CH₂	CH₂	0
A783	CH₂	O CH ₂	0
A784	CH₂	CH ₂	0
A785	CH₂	O CH ₂	0
A786	CH₂	CH ₂	0
A787	CH₂	CH ₂	0
A788	CH ₂	CH ₂	0
A789	CH₂	O CH ₂	0
A790	CH₂	O_CH ₂	0
A791	CH₂	OCH ₂	0

Comp. no.	R ₁	R ₂	X ₁
A792	CH₂	O CH ₂	0
A793	CH₂	CH ₂	0
A794	CH₂	CH ₂ OCH ₃	0
A795	CH₂	CH ₂	0
A796	CH₂	OCH ₃	0
A797	CH₂	OH CH₂	0
A798	CH₂	CH₂ S	0
A799	CH₂	CH ₃ OCH ₂ CH ₂	0
A800	CH₂	CH ₃ N N OCH ₂ CH ₂	0
A801	CH₂	OCH ₂ CH ₂	0
A802	CH₂	CH ₂	0
A803	CH₂	CH ₂	0
A804	CH₂	CH ₂	0
A805	CH₂	OCH ₃ CH ₂	0

Comp. no.	R₁	R ₂	X ₁
A806	CH₂	OH CH ₂	0
A807	CH₂	OCH ₃ CH ₂	0
A808	CH₂	OH CH ₂	0
A809	CH₂	OCH ₃ CH ₂	0
A810	CH₂	OH CH ₂	0
A811	CH₂	CH ₂	0
A812	CH₂	CH ₂	0
A813	CH₂	F CH₂ OCH₃	0
A814	CH₂	OCH ₂ CH ₂	0
A815	CH₂	OCH ₂ CH ₂	0
A816	CH₂	O_CH ₂	0
A817	CH₂	CH₃SCH₂CH₂	0
A818	CH₂	CH₃SOCH₂CH₂	0
A819	CH₂	CH₃SO₂CH₂CH₂	0
A820	CH₂	CH₃OCH₂CH₂	0
A821	CH₂	CH₃OCH₂CH₂	0
A822	CH₂	CH₃OCH₂CH₂	0
A823	CH₂	CH₃OCH₂CH₂	0

Comp. no.	R ₁	R₂	X ₁
A824	CH₂	CH₃OCH₂CH₂	0
A825	CH₂	CH₃OCH₂CH₂	S
A826	CH₂	CH₃OCH₂CH₂	so
A827	CH₂	CH₃OCH₂CH₂	SO ₂
A828	CH₂	CH₃SO₂CH₂CH₂	0
A829	CH₂	CH ₃ S S	S
A830	CH₂	CH ³ O N N N N N N N N N N N N N N N N N N N	S
A831	CH₂	CH ₃ N N CH ₃	S
A832	CH ₂	N, H	S
A833	CH₂	CH ₃ C(O)	0
A834	CH₂	CF₃CH₂	0
A835	CH₂	CH ₃ OCH ₂ CH ₂ OCH ₂ CH ₂	0
A836	CH₂	HC≡CCH₂CH₂	0
A837	CH₂	ССН	0
A838	CH₂	CH₃CH₂C(OCH₃)HOCH₂CH₂	0
A839	CH₂	(CH₃)₃CC(O)	0
A840	CH ₂	CH ₂ =CHCH ₂ OCH ₂ CH ₂	0
A841	CH₂	CH₃CH₂CH₂OCH₂CH₂	0
A842	CH₂	O_CH ₂	0
A843	CH₂	n-heptyl-C(O)	0
A844	CH₂	phenyl-C(O)	0
A845	CH₂	CF₃CH₂OCH₂CH₂	0
A846	CH₂	CH₃OCH₂CH₂CH₂	0
A847	CH₂	HOCH₂CH₂CH₂	0
A848	CH₂	CH ₂	0

	n	P	V
Comp. no.	R ₁	R ₂	X ₁
A849	CH₂	N≡CCH ₂ CH ₂	0
A850	CH ₂	CICH ₂ CH ₂	0
A851	CH₂	СН	0
A852	CH₂	°CH₂	0
A853	CH₂	CH₃OCH₂C(Br)HCH₂	0
A854	CH₂	€S CH₂	0
A855	CH ₂	O_CH ₂	0
A856	CH₂	HOCH₂CH₂	0
A857	CH₂	O_O_CH ₂	0
A858	CH ₂	CH ₃ (OCH ₂ CH ₂) ₃	0
A859	CH₂	CH3CH2OC(CH3)HOCH2CH2	0
A860	CH ₂	n-heptyl-C(O)OCH ₂ CH ₂	0
A861	CH₂	CH₃C(O)OCH₂CH₂	0
A862	CH ₂	CH₃SO₂OCH₂CH₂	0
A863	CH₂	O	0
A864	CH₂	CH₃	-N(CH₃)SO₂-
A865	CH₂	HOCH₂C(OH)HCH₂	0
A866	CH₂	phenyl-C(O)OCH ₂ CH ₂	0
A867	CH₂	tert-butyl-C(O)OCH ₂ CH ₂	0
A868	CH₂	CH₃OC(O)CH₂	0

Patent claims:

1. A process for the preparation of a compound of formula I

$$R \stackrel{O}{\longleftarrow} OR$$

$$R \stackrel{I}{\longleftarrow} OR$$

$$R \stackrel{I}{\longleftarrow} R_2$$

$$R_2$$

wherein

R is C₁-C₆alkyl;

 R_1 is a C_1 - C_6 alkylene, C_3 - C_6 alkenylene or C_3 - C_6 alkynylene chain which may be substituted one or more times by halogen or by R_5 , the unsaturated bonds of the chain not being attached directly to the substituent X_1 ;

R₄ is halomethyl or haloethyl;

 X_1 is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₁₇-, thio, sulfinyl, sulfonyl, -SO₂NR₇-, -NR₁₈SO₂- or -NR₈-;

R₂ is hydrogen or C₁-C₈alkyl, or is a C₁-C₈alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group which may be substituted one or more times by halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, halo-substituted C₃-C₆cycloalkyl, or by C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆haloalkoxy, C₃-C₆haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio- C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfonyl- C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl-C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, oxiranyl (which may in turn be substituted by C₁-C₆alkyl), or by (3oxetanyl)oxy (which may in turn be substituted by C₁-C₆alkyl), or by benzylthio, benzylsulfinyl, benzylsulfonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, R₉S(O)₂O, R₁₀N(R₁₁)SO₂-, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl; it being possible for the phenyl- or benzyl-containing groups to be in turn substituted by one or more C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or nitro groups, or

 R_2 is phenyl which may be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; or R_2 is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, 3-oxetanyl or C_1 - C_6 alkyl-substituted 3-oxetanyl; or R_2 is a five- to ten-membered, monocyclic or fused bicyclic, ring system which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms

aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, or may contain the group C=O or C=NR₁₉, the ring system being attached to the substituent X₁ directly or by way of a C₁-C₄alkylene, C₂-C₄alkenyl-C₁-C₄alkylene, C₂-C₄alkynyl-C₁-C₄alkylene, -N(R₁₂)-C₁-C₄alkylene, -SO-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene group and each ring system containing no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for each ring system itself to be substituted one or more times by C₁-C₀alkyl, C₁-C₀haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, amino, hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₁-C₃alkoxy-C₁-C₃alkylthio, C₁-C₄alkylcarbonyl-C₁-C₃alkylthio, C₁-C₄alkoxycarbonyl- C_1-C_3 alkylthio, cyano- C_1-C_3 alkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6 haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,Ndi(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or by phenyl, it being possible for the phenyl group to be in turn substituted by hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₁-C₃alkoxy- C_1-C_3 alkylthio, C_1-C_4 alkylcarbonyl- C_1-C_3 alkylthio, C_1-C_4 alkoxycarbonyl- C_1-C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano or by nitro, and the substituents on the nitrogen in the heterocyclic ring being other than halogen;

 R_5 is hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy or C_1 - C_6 al

 R_6 , R_7 , R_8 , R_9 , R_{10} R_{11} , R_{12} , R_{17} , R_{18} and R_{18b} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, benzyl, or phenyl, it being possible for phenyl and benzyl to be in turn substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by

nitro; R_6 not being hydrogen when R_9 is hydrogen, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylcarbonyl;

or the group -R₁-X₁-R₂ together is C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, $C_1-C_6 alkylsulfinyl,\ C_1-C_6 alkylsulfonyl,\ C_1-C_6 haloalkyl,\ C_1-C_6 haloalkyl-1 haloalkyl-1$ sulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylamino, $di(C_1-C_6alkyl)amino,\ C_1-C_6alkylaminosulfonyl,\ di(C_1-C_6alkyl)aminosulfonyl,\ -NH-S-R_{13},$ $-N-(C_1-C_4$ alkylthio)- R_{13} , $-NH-SO-R_{14}$, $-N-(C_1-C_4$ alkylsulfonyl)- R_{14} , $-NH-SO_2-R_{15}$, -N-(C1-C4alkylsulfonyl)-R15, nitro, cyano, halogen, hydroxy, amino, formyl, rhodano-C1-C6alkyl, cyano- C_1 - C_6 alkyl, oxiranyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, cyano- C_1 - C_6 alkenyloxy, C_1 - C_6 alkoxycarbonyloxy- C_1 - C_6 alkoxy, C_3 - C_6 alkynyloxy, $cyano-C_1-C_6 alkoxy,\ C_1-C_6 alkoxy carbonyl-C_1-C_6 alkoxy,\ C_1-C_6 alkoxy,\ C_1-C_6$ alkoxycarbonyl- C_1 - C_6 alkylthio, alkoxycarbonyl- C_1 - C_6 alkylsulfinyl, alkoxycarbonyl- C_1 - C_6 alkylsulfonyl, C₁-C₆alkylsulfonyloxy, C₁-C₆haloalkylsulfonyloxy, phenyl, benzyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, benzylthio, benzylsulfinyl or benzylsulfonyl, it being possible for the phenyl groups to be substituted one or more times by halogen, methyl, ethyl, trifluoromethyl, methoxy or by nitro; or the group -R₁-X₁-R₂ together is a five- to ten-membered, monocyclic or fused bicyclic, ring system, which may be aromatic or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system either being attached to the pyridine ring directly or being attached to the pyridine ring by way of a C₁-C₄alkylene chain, and it being possible for each ring system to contain no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for the ring system itself to be substituted one, two or three times by C1-C6alkyl, C1-C6haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4 dialkylaminosulfonyl, C_1 - C_3 alkylene- R_{16} , N(H)- C_1 - C_6 alkyl, $N(H)-C_1-C_6 \\ alkoxy, \ N-(C_1-C_6 \\ alkyl)-C_1-C_6 \\ alkyl, \ N-(C_1-C_6 \\ alkyl)-C_1-C_6 \\ alkoxy, \ halogen, \ cyano, \ halogen, \ h$ nitro, phenyl and by benzylthio, it being possible for phenyl and benzylthio to be in turn substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and substituents on the nitrogen in the heterocyclic ring being other than halogen;

 R_{13} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkyl, C₃-C₆haloalkyl, C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_{14} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_{15} is N(H)-C₁-C₆alkyl, N(H)-C₁-C₆alkoxy, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkyl, N-(C₁-C₆alkyl)-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_{16} is C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl or phenyl, it being possible for phenyl to be in turn substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro; and R_{19} is hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; which process comprises reacting a compound of formula II

wherein R_3 is C_1 - C_8 alkyl or C_3 - C_6 cycloalkyl and R_4 is as defined for formula I, with a compound of formula III

wherein R, R_1 , R_2 and X_1 are as defined for formula I, in an inert solvent in the presence of a proton source.

2. A compound of formula IIIa

wherein R is as defined for formula III in claim 1.

3. Use of a compound of formula III

$$\begin{array}{c}
OR \\
O \\
H_2N \\
R_1-X_1-R_2
\end{array}$$
(III),

wherein R, R_1 , R_2 and X_1 are as defined for formula I in claim 1, in the preparation of a compound of formula I according to claim 1.

Abstract:

The present invention relates to a process for the preparation of compounds of formula I

$$\begin{array}{c|c}
O \\
OR \\
R_4 & N & R_1 \\
X_1 & R_2
\end{array}$$
(I),

wherein the substituents are as defined in claim 1, by reaction of a compound of formula II

wherein R_3 is C_1 - C_8 alkyl or C_3 - C_6 cycloalkyl and R_4 is as defined for formula I, with a compound of formula III

$$\begin{array}{c}
OR \\
O \\
H_2N \\
R_1-X_1-R_2
\end{array}$$
(III),

wherein R, R_1 , R_2 and X_1 are as defined for formula I in claim 1, in an inert solvent in the presence of a proton source.