Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

Functions and Relations

To do

- Weekly recap
- Real world applications
- Hands on practice
- Questions

• Upcoming Deadline: 19.11.2024 10:00 AM CET | Problem Set 01 | Algebra

Chapter 3 | Functions and Relations

Functions

Functions $f(x): A \rightarrow B$

- 'f maps A into B'
- describe the relationship between two variables as a unique one-to-one mapping where each value of the domain A is mapped to one value of the codomain B
 - → if this mapping is NOT unique, we are talking about a correspondence
- values reached by $x \in A$ are known as **image**
 - → the **image** is a subset of the **codomain B**

Function composition

- We are 'sending' the result of f(x) through g(x)
- \rightarrow ,g of f of x'
- NOTE: keep domain conditions in mind! some functions might be defined for e.g. \mathbb{R}^+

$$(g \circ f)(x) = g(f(x))$$

• Example:

$$f(x) = 3x - 4$$
 and $g(x) = x^2$ for $x = 2$
 $g(f(x)) = (3x - 4)^2$
 $g(f(2)) = (3 \cdot 2 - 4)^2 = (2)^2 = 4$

Hands on – Function composition

Task: Solve g(f(x))for x = 2!

1)
$$f(x) = 6x$$
 and $g(x) = x^3$

2)
$$f(x) = x + \frac{3}{4}$$
 and $g(x) = x + 2$

(2)
$$g(f(x)) = (x + \frac{3}{4}) + 2$$

 $= x + \frac{3}{4} + 2$
 $= x + \frac{3 + 8}{4}$
 $= x + \frac{11}{4}$
 $= 2 + \frac{11}{4}$
 $= 8 + 11 = \frac{19}{4} = 4.75$

Hands on – Function composition

Solution:

1)
$$g(f(2)) = (6 \cdot 2)^3 = 12^3 = 1728$$

2)
$$g(f(2)) = (x + \frac{3}{4}) + 2 = (2 + \frac{3}{4}) + 2 = 2.75 + 2 = 4.75$$

Further practice: https://www.mathsisfun.com/sets/functions-composition.html

Inverse and Identity functions

Inverse functions – 'Inverse'

- functions that return identity function when composed with their original functions
- $f^{-1}(x): B \to A$
- 'invertible functions' have an inverse!

Identity function

• returns value of input **argument x**: f(x) = x

$$f(5) = 5$$

$$f(5) = 0$$

$$f(-5) = -5$$

Inverse functions

Algorithm for
$$f^{-1}(x)$$
: $B \to A$

- 1) replace f(x) with y in original function
- 2) 'switch' instances of x and y (any variables) in original function
- 3) solve for y
- 4) change y to $f^{-1}(x)$

Example: find $f^{-1}(x)$ of f(x) = 3x - 4

Inverse functions

Example: Find $f^{-1}(x)$ of f(x) = 3x - 4!

- 1) replace f(x) with y in original function y = 3x 4
- 2) 'switch' instances of x and y (any variables) in original function x = 3y 4
- 3) solve for y $x + 4 = 3y \mid \div 3$ $y = \frac{x+4}{3}$
- 4) change y to $f^{-1}(x)$ $f^{-1}(x) = \frac{x+4}{3}$

Hands on – Inverse functions

Task: Find the respective inverse of the following functions!

1)
$$f(x) = 2x + 6$$

2)
$$g(x) = x^2 - 1$$

3)
$$h(x) = \frac{1}{3}x + 10$$

$$(7)$$
 $f(x) = 2x + 6$

$$1. \quad Y = 2x + 6$$

$$2. \times = 2 + 6 \quad 1-6$$

3.
$$x-6 = 27$$
 $1/2$ $y = \frac{x-6}{2}$

$$\varphi^{-1}(x) = \frac{x-6}{2}$$

$$(2) \quad y(x) = x^2 - ($$

$$1. \quad y = x^2 - |$$

$$2. \quad x = y^2 - (+)$$

$$y = \sqrt{x+1}$$

4.
$$f^{-1}(x) = \sqrt{x+1}$$

(3)
$$h(x) = \frac{1}{3}x + 10$$

1.
$$y = \frac{1}{3}x + 10$$

7.
$$x = \frac{1}{3}y + 10$$
 [-10

3.
$$x-10 = \frac{1}{3}$$
 $y = \frac{1}{3}$

$$y = \frac{3}{1} \cdot x - \frac{3}{1} \cdot 10$$

$$y = 3x - 30$$

$$4.f^{-1}(x) = 3x - 30$$

what happens when we compose
$$h(x)$$
 with $h^{-1}(x)$? Will we receive the identity? for $x = 2$

$$h(h^{-1}(x)) = \frac{1}{3}(3x-30)+10$$

$$= \frac{1}{3}(3\cdot2-30)+10$$

$$= \frac{1}{3}(6-30)+10$$

$$= -\frac{24}{3}+10$$

$$= -8+10$$

Hands on – Inverse functions

Solution:

1)
$$f^{-1}(x) = \frac{x-6}{2}$$

2)
$$g^{-1}(x) = \sqrt{x+1}$$
 \leftarrow Note: We typically imply both $\sqrt{x+1}$ and $-\sqrt{x+1}$

3)
$$h^{-1}(x) = 3x - 30$$

Further practice: https://www.mathsisfun.com/sets/function-inverse.html

Hands on – Inverse functions & function composition

Task: Are these functions inverses of each other? Show using function composition! Check, if the composed functions produce the identity function!

1)
$$f(x) = 2x - 4$$
 and $g(x) = \frac{x+4}{2}$

2)
$$f(x) = 4x + 3$$
 and $g(x) = \frac{x-4}{3}$

$$P(x) = 2x - 4 \qquad g(x) = \frac{x + 9}{2} \qquad composition \qquad 3$$

$$\int P(x) = \frac{x + 9}{2} \qquad f(g(x)) = \frac{x + 2}{2} \qquad x = 2$$

$$f^{-1}(x) = \frac{x}{2} \qquad f(g(x)) = \frac{x + 2}{2} \qquad x = 2$$

$$f(g(x)) = \frac{x}{2} \qquad y = \frac{x + 4}{2} \qquad = 2(\frac{2 + 4}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{2 + 4}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{2 + 4}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x)) = \frac{x + 4}{2} \qquad = 2(\frac{6}{2}) - 4$$

$$f(g(x$$

11/12/2024 Mathematics for Social Scientists | Jördis Strack

$$f(x) = 4x + 3$$
; $g(x) = \frac{x-4}{3}$

1. Find inverse

$$f(x) = 4x + 3$$

$$y = 4x + 3$$

$$x = 4y + 3 \quad 1-3$$

$$x-3 = 4y \quad 1:4$$

$$y = \frac{x-3}{4}$$

$$f^{-1}(x) = \frac{x-3}{4} + g(x) = \frac{x-4}{3}$$

g(x) is NOT the inverse of f(x)!

2. Function composition
$$f(y(x)) = 4\left(\frac{x-4}{3}\right) + 3$$

$$= 4\left(\frac{2-4}{3}\right) + 3$$

$$= 4\left(\frac{-2}{3}\right) + 3$$

$$= \frac{4\cdot (2)}{3} + 3$$

$$= \frac{4\cdot (2)}{3} + 3$$

$$= -\frac{8}{3} + 3$$

composing f(x) with g(x) does NOT yield the identity!

 $=\frac{1}{3} + 2$

Hands on – Inverse functions & function composition

Solution:

1) Yes!

$$f(g(x)) = 2\left(\frac{x+4}{2}\right) - 4 = x$$

2) No!

$$\rightarrow f(g(x)) = \frac{4x}{3} - \frac{16}{3} + 3 \neq x$$

Injective, bijective, surjective functions...

... are classes of functions that describe, how arguments \boldsymbol{x} are mapped to images \boldsymbol{y}

Injective, bijective, surjective functions

"Injective" (one-to-one)

A function f is...

- injective if and only if whenever f(x) = f(y), x = y
- surjective iff f(A) = B or for every y in B, there is at least one x in A such that f(x) = y
- **bijective** (from set A to B) if, for every y in B, there is exactly one x in A such that f(x) = y

https://www.mathsisfun.com/sets/injective-surjective-bijective.html

Monotonicity

Monotonicity is a concept to describe **order**:

- a function f is called **monotonically increasing**, if for every $x \le y, f(x) \le f(y)$ so that f preserves order
- a function f is called **monotonically decreasing**, if for every $x \ge y, f(x) \ge f(y)$ so that f preserves order

Monotonicity

Table 3.2: Monotonic Function Terms

Term	Meaning
Increasing	Function increases on subset of domain
Decreasing	Function decreases on subset of domain
Strictly increasing	Function always increases
	on subset of domain
Strictly decreasing	Function always decreases
	on subset of domain
Weakly increasing	Function does not decrease
	on subset of domain
Weakly decreasing	Function does not increase
	on subset of domain
(Strict) monotonicity	Order preservation;
	function (strictly) increasing over domain

Moore & Siegel, 2013, p.51

NOTE: ALL strictly monotonic functions are invertible due to a strict one-to-one mapping!

Real world applications - Monotonicity

Monotonicity describes strength of relationships between variables!

- think about correlation and probability theory!
- if X is a RV, its cumulative distribution function is a monotonically increasing function!
- $F_X(x) = P(X \le x)$

Linear functions & equations

- Intercept • linear equations in slope-intercept form f(x) = mx + b
 - consist only of terms like x^1 and $x^0=1$ multiplied by constants x_{μ_1,μ_2,μ_3}
 - are also called 'affine function'
- linear functions are of the same form but additionally satisfy ...
 - because they are fixed at the origin! f(x) = mx + 0additivity superposition $f(x_1 + x_2) = f(x_1) + f(x_2)$ is at the oxient.
 - scaling homogeneity $f(ax) = a \cdot f(x)$ for all a
- Note: We often call the equation above a 'linear function' even though it does not satisfy the scaling and additivity properties!

Linear functions & equations - Additivity

Linear functions y = f(x) = B(x) $f(x_1 + x_2) = 0 + B(x_1 + x_2) = B \times 1 + B \times 2$ $f(x_1 + x_2) = b \times 1 + B \times 2$

$$x \neq 0$$

$$y = f(x) = x + \beta x$$

Linear equations/affine functions

$$f(x_1 + x_2) = x + B(x_1 + x_2) = x + Bx_1 + Bx_2$$

 $f(x_1) + f(x_2) = (Bx_1 + x_2) + (Bx_2 + x_1)$

Linear functions & equations - Scaling

Linear functions y = f(x) = B(x)

$$f(\alpha x) = \beta(\alpha x) = \alpha \beta(x)$$

$$\alpha f(x) = \alpha \beta(x)$$

$$x \neq 0$$

$$y = f(x) = x + \beta x$$

Linear equations/affine functions

$$f(ax) = x + (\beta(ax)) = x + \alpha\beta x$$

$$af(x) = ax + a\beta x$$

$$x + \alpha\beta x + a\beta x$$

$$x + \alpha\beta x$$

$$x + \alpha\beta x$$

Real world applications – linear equation

But don't you worry, there are many applications of linear equations, including your potentially favorite one – random variables!

Distribution of parameters of random variables:

- Let X be a RV with expected value E(X) and variance Var(X) \rightarrow generate a new RV using the linear transformation of X:
- Y = a + bX with expected value $E(Y) = a + b \cdot E(X)$ and $Var(Y) = b^2 \cdot Var(X)$
- \rightarrow if X is distributed normally, Y will be distributed normally, too!

Exponents, roots, logarithms

Idea: Let's look at b^n

- How do I solve for x in $b^n = x$?
 - \rightarrow exponents
- How do I solve for n in $b^{n} = x$?
 - → logarithms
- How do I solve for $b \text{ in } b^n = x$?
 - → radicals/roots

Exponentials

$$x^1 = x$$

$$x^0 = 1$$

$$x^{-1} = \frac{1}{x}$$

$$x^m x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(x^m)^n = x^{mn}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$x^{-n} = \frac{1}{x^n}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

Logarithms

Logarithmic form: $log_b m = x$

Exponential form: $b^x = m$

$$\ln x = \log_{e^x}$$

$$\ln e^x = x$$

$$\log 10^x = x$$

$$log_n n^x = x$$

$$log_b(x) = log_b(n) \rightarrow x = n$$

$$log_b(m) + log_b(n) = log_b(mn)$$

$$log_b(m) - log_b(n) = log_b\left(\frac{m}{n}\right)$$

$$k \cdot log_b(m) = log_b(m^k)$$

$$\log_b(m) = \frac{\log m}{\log b}$$

Radicals/Roots

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m-n]{a}$$

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$\sqrt{a^n} = (\sqrt{a})^n = a^{\frac{n}{2}}$$

→ even more rules (you probably won't need): https://www.mathwords.com/s/square_root_rules.htm

Chapter 4 | Limits, Continuity, Sequences & Series

Sequences

Sequences are an ordered ,list' of things $a = \{1,3,5,7,9, ...\}$

- can be finite $\{a_i\}_{i=1}^n$ or infinite $\{a_n\}_{n=1}^\infty$
- use {} and a comma as delimiter
- have 'rules' that 'predict/give' the next value
- values have an order, which identifies them $a_3 \leftarrow$ the third value!

Differences between sequences and sets:

- sets contain every element once, sequences may contain one element many times
- sequences are ordered, whereas order does not matter in sets

Series

A series is the summation of a sequence $S = 1 + 3 + 5 + 7 + 9 + \cdots$

- can also be finite or infinite, depending on their sequence
- if $a_1 + a_2 + a_3 + \dots + a_n = S_n$ then $S_n = \sum_{i=1}^n a_i$
- geometric series $\sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$ if $|\delta| < 1$
 - the sum of an infinite number of terms with a constant ratio between them
 - the **geometric series** converges if if $|\delta| < 1$
- harmonic series $\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{\infty}$
 - the sum of all positive unit fractions

Limits

A limit is the value a function/sequence approaches if argument x approaches some value c

- $\lim_{x\to c} f(x) = L$ 'the limit of f of x as x approaches c equals L'
- limits are often challenging to compute, to decide whether a limit exists, we may choose to carry out a convergence test first!
 - convergent ← finite limit
 - divergent \leftarrow limit DoesNotExist or limit = $\pm \infty$

Limits

Fun fact: the word 'limit' is derived from the Latin 'limes' and means boundary wall ← the same word the Romans used for their military boundary walls in Europe, the Middle East and North Africa

https://www.dw.com/de/der-limes-mehr-als-ein-grenzwall-der-r%C3%B6mer/a-51926911, 07.11.2023

Limits of...

- a sequence a_i is a number L such that $\lim a_n = L$
 - limits of sequences are unique
- a series S_n considers the sum of its elements and is a number S such that $\lim \sum_{i=1}^n = S$
- a function y = f(x) are values of y given arbitrarily small steps toward an argument x = c such that $\lim_{x \to c} f(x) = L$
 - it is possible to approach the limit from two sides! $\lim_{x \to c^+} f(x) = L^+ \text{ and } \lim_{x \to c^-} f(x) = L^-$ • the limit exists iff $L^+ = L^- = L$

Hands on – limits of sequences

Task: Do the sequences converge or diverge?

- 1) $\lim_{n\to\infty} \left\{\frac{1}{4^n}\right\}$
- $2) \lim_{n\to\infty} \{2n\}$

Solution:

- 1. converges, approaches 0
- 2. diverges, appraoches ∞

Note:

$$\lim_{n \to \infty} \delta^n = 0 \text{ if } |\delta| < 1$$

$$\lim_{n \to \infty} \frac{1}{n^z} = 0 \text{ if } z > 0$$

$$\lim_{x \to 4} \frac{x^2 - 2x - 3}{x^2 - 9}$$

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

Limits of functions - computation

Substitution

$$\lim_{x \to 4} \frac{x^2 - 2x - 3}{x^2 - 9}$$

$$=\frac{(4)^2-2\cdot(4)-3}{(4)^2-9}=\frac{5}{7}$$

Factoring

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

$$\frac{-(3)^2 - 2 \cdot (3) - 3}{(3)^2 - 9} = \frac{0}{0}$$

$$\Rightarrow \lim_{x \to 3} \frac{(x - 3)(x + 1)}{(x - 3)(x + 3)}$$

$$= \lim_{x \to 3} \frac{x + 1}{x + 3}$$

$$= \frac{3 + 1}{3 + 3} = \frac{4}{6} = \frac{2}{3}$$

Note: This does not always stop us from finding limits!

When direct substitution does not work, we can try some other options!

$$\lim_{x\to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$

$$\lim_{x\to 0}\frac{(x+2)^2-4}{x}$$

Limits of functions - computation

Common denominator

$$\lim_{x \to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x} \leftarrow \text{pluggin in 0 is baaad idea...} \odot$$

$$\lim_{x \to 0} \frac{\frac{2}{2} \cdot \frac{1}{x+2} \cdot \frac{x+2}{x+2} \cdot \frac{1}{2}}{x} = \lim_{x \to 0} \frac{\frac{2 - (x-2)}{2 \cdot (x+2)}}{x}$$

$$= \lim_{x \to 0} \frac{\frac{-x}{2(x+2)}}{x} = \lim_{x \to 0} \frac{-x}{2(x+2)} \cdot \frac{1}{x}$$

$$= \lim_{x \to 0} \frac{-1}{2(x+2) \cdot 1} = \frac{-1}{2(0+2)} = \frac{-1}{4}$$

Opening parentheses

$$\lim_{x \to 0} \frac{(x+2)^2 - 4}{x}$$

$$\lim_{x \to 0} \frac{x^2 + 4x + 4 - 4}{x} = \lim_{x \to 0} \frac{x^2 + 4x}{x}$$

$$= \lim_{\substack{x \to 0 \\ = 4}} \frac{x(x+4)}{x} = x+4 = 0+4$$

→ we first expand, then simplify!

Hands on – limits of functions

Task: Find the limit to the following functions!

1)
$$\lim_{x\to 5} 10$$

2)
$$\lim_{x\to 0} \sqrt{36-x^2}$$

3)
$$\lim_{x \to (-1)} \frac{x^2 + 2x - 8}{x^2 + 5x + 4}$$

Hands on – limits of functions

Solution:

1)
$$\lim_{x\to 5} 10 = 10$$

2)
$$\lim_{x \to 0} \sqrt{36 - x^2} = \sqrt{36 - 0^2} = \sqrt{36} = 6$$

3)
$$\lim_{x \to (-1)} \frac{x^2 + 2x - 8}{x^2 + 5x + 4} = \lim_{x \to (-1)} \frac{(x + 4)(x - 2)}{(x + 4)(x + 1)} = \lim_{x \to (-1)} \frac{x - 2}{x + 1} = -\frac{(-1) - 2}{(-1) + 1} = \frac{-3}{0} \leftarrow DNE$$

Limits – computation rules

$$\lim_{x\to c} g(x) \neq 0$$
:

```
\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x), 

\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x), 

\lim_{x \to c} (f(x)g(x)) = (\lim_{x \to c} f(x))(\lim_{x \to c} g(x)), 

\lim_{x \to c} (f(x)/g(x)) = (\lim_{x \to c} f(x))/(\lim_{x \to c} g(x)).
```

Moore & Siegel, 2013, p.91

Continuous functions

A continuous function's graph does not have sudden breaks!

- the pencil test: can you draw the graph without lifting up a pencil?
- the limit test: a function is continuous at argument x, if x exists and is equal to

$$f(x)$$
 such that $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = f(c)$

NOTE: a discontinuous function's graph has at least one break in it!

Hands on – Continuity I

$$f(x) = \frac{1}{x}$$

$$f(x) = x^2$$

$$f(x) = \begin{cases} x^2, & \text{if } x < 2\\ (x-2)^2, & \text{if } x \ge 2 \end{cases}$$

$$\lim_{x\to 0} f(x)$$
?

$$\lim_{x\to 2} f(x)$$
?

$$\lim_{x\to 2} f(x)$$
?

Hands on — Continuity I

$$f(x) = \frac{1}{x}$$

$$\lim_{x \to 0} \frac{1}{x} = \frac{1}{0} \leftarrow \mathsf{DNE}$$

$$f(x) = x^2$$

$$\lim_{x \to 2} x^2 = 2^2 = 4$$

$$f(x) = \begin{cases} x^2, & \text{if } x < 2\\ (x-2)^2, & \text{if } x \ge 2 \end{cases}$$

$$\lim_{x \to 2^{-}} x^{2} = 2^{2} = 4 \text{ and}$$

$$\lim_{x \to 2^{+}} (x - 2)^{2} = (2 - 2)^{2} = 0^{2}$$

$$\leftarrow \text{DNE}$$

Hands on — Continuity II

Task: Are the following functions continuous?

1)
$$f(x) = \frac{x^2 - 16}{x - 4}$$

2) $f(x) = \begin{cases} x^2, & \text{if } x < 2\\ x^3 - 4, & \text{if } x \ge 2 \end{cases}$

Hands on – Continuity II

Solution:

1)
$$f(x) = \frac{x^2 - 16}{x - 4}$$

 \rightarrow No, f is undefined for f(4) and thus discontinuous

2)
$$f(x) = \begin{cases} x^2, & \text{if } x < 2 \\ x^3 - 4, & \text{if } x \ge 2 \end{cases}$$

 $L^+ = \lim_{x \to 2} x^2 = 2^2 = 4$
 $L^- = \lim_{x \to 2} x^3 - 4 = 2^3 - 4 = 8 - 4 = 4$

 \rightarrow Yes, f is continuous since $L^+ = L^- = L$

Real world applications – Continuity

Continuity is required for the following:

- differentiation
- integration

• sin(x) and cos(x) are continuous and describe e.g. oscillation, e.g.

 $f(x) = \sin(2x^3)$

Open, closed, compound sets

Open set like (0,1)

- there is some (arbitrarily small) distance between elements at all times
- like 'a room, in which you can keep walking and never quite reach the walls'

Closed set like [0,1]

limits are clearly defined and do belong to set!

Compound set

- limits are clearly defined, and set lies itself in a bounded space
- without metrics the term 'bounded' is meaningless!

Hands on – Sets

Task: Classify the type of set for each of the following!

- 1) [-5, 20]
- 2) (-5, 20)
- (-5, 20)

Hands on – Sets

Solution:

- 1) Closed
- 2) Open
- 3) Neither

Further practice: What is the complement of [-5, 20]?

$$\rightarrow$$
 $(-\infty,-5) \cup (20,\infty)$

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

