Q1 Assume that you are given a dataset $\mathcal{X} \times \mathcal{L} = \{(\mathbf{x}_n, \ell_n); n = 1, \dots, N\}$, where $\mathbf{x}_n \in \mathbb{R}^D$ and ℓ_n is the class label of \mathbf{x}_n . Also assume that the dataset is divided into K classes such the set \mathcal{C}_k comprises the vector indexes for which the vectors belong to the k-th class. Linear discriminant analysis (LDA) can project \mathbf{x}_n onto an M-dimensional space to give vector \mathbf{y}_n :

$$\mathbf{y}_n = \mathbf{W}^\mathsf{T}(\mathbf{x}_n - \boldsymbol{\mu}), \quad \mathbf{y}_n \in \mathbb{R}^M$$

where $\mathbf{W} = [\mathbf{w}_1 \cdots \mathbf{w}_M]$ is a $D \times M$ projection matrix comprising M eigenvectors with the largest eigenvalues and $\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$ is the global mean of the vectors in \mathcal{X} .

(a) What is the maximum value of M? Briefly explain your answer.

(5 marks)

(b) The projection matrix \mathbf{W} can be obtained by maximizing the following objective function:

 $J(\mathbf{W}) = \operatorname{Tr} \left\{ \left(\mathbf{W}^{\mathsf{T}} \mathbf{S}_{B} \mathbf{W} \right) \left(\mathbf{W}^{\mathsf{T}} \mathbf{S}_{W} \mathbf{W} \right)^{-1} \right\},\,$

where \mathbf{S}_B and \mathbf{S}_W are the between-class and the within-class scatter matrices, respectively, and Tr stands for matrix trace. Given that the total scatter matrix \mathbf{S}_T is the sum of \mathbf{S}_B and \mathbf{S}_W , i.e.,

$$\mathbf{S}_T = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - oldsymbol{\mu}) (\mathbf{x}_n - oldsymbol{\mu})^\mathsf{T} = \mathbf{S}_B + \mathbf{S}_W,$$

show that

$$\mathbf{S}_B = \sum_{k=1}^K N_k (\boldsymbol{\mu}_k - \boldsymbol{\mu}) (\boldsymbol{\mu}_k - \boldsymbol{\mu})^\mathsf{T} \text{ and } \mathbf{S}_W = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^\mathsf{T},$$

where N_k is the number of samples in class k, i.e., $N_k = |\mathcal{C}_k|$.

(10 marks)

(c) The maximization of $J(\mathbf{W})$ with respect to \mathbf{W} can be achieved by the following constrained optimization:

$$\max_{\mathbf{W}} \quad \operatorname{Tr}\{\mathbf{W}^{\mathsf{T}}\mathbf{S}_{B}\mathbf{W}\}$$
 subject to
$$\mathbf{W}^{\mathsf{T}}\mathbf{S}_{W}\mathbf{W} = \mathbf{I}$$

where **I** is an $M \times M$ identity matrix. Show that **W** comprises the M eigenvectors of $\mathbf{S}_W^{-1}\mathbf{S}_B$. *Hints*: The derivative of matrix trace is

$$\frac{\partial}{\partial \mathbf{X}}\mathrm{tr}\{\mathbf{X}^\mathsf{T}\mathbf{B}\mathbf{X}\mathbf{C}\} = \mathbf{B}\mathbf{X}\mathbf{C} + \mathbf{B}^\mathsf{T}\mathbf{X}\mathbf{C}^\mathsf{T}.$$

(10 marks)

Q2 (a) The output of a support vector machine (SVM) is given by

$$f(\mathbf{x}) = \sum_{i \in \mathcal{S}} a_i K(\mathbf{x}, \mathbf{x}_i) + b,$$

where **x** is an input vector on \mathbb{R}^D , \mathcal{S} comprises the indexes to a set of support vectors, b is a bias term, a_i 's are SVM parameters and $K(\cdot, \cdot)$ is a kernel. For a 2nd-degree polynomial kernel, $K(\cdot, \cdot)$ is given by

$$K(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^\mathsf{T} \mathbf{y})^2,$$

where \mathbf{x} and \mathbf{y} are any input vectors on the D-dimensional input space.

(i) Assume that D=2, show that the kernel function maps the input vectors to a 6-dimensional space, where the decision boundary becomes linear.

(10 marks)

(ii) Explain why $f(\mathbf{x})$ is a nonlinear function of \mathbf{x} .

(3 marks)

(b) The stochastic gradient-descent algorithm of a single-output deep neural network (DNN) aims to minimize the following instantaneous cross-entropy error:

$$E_{ce}(\mathbf{W}) = -t \log y - (1 - t) \log(1 - y),$$

where **W** comprises the weights of the network, y is the actual output subject to an input vector \mathbf{x} , and t is the target output. Assume that the DNN has L layers, show that the error gradient with respect to the weights in the output layer is

$$\frac{\partial E_{\text{ce}}}{\partial w_j^{(L)}} = (y - t)o_j^{(L-1)},$$

where $w_j^{(L)}$ is the weight connecting the j-th hidden neuron in the (L-1)-th layer to the output node (at layer L) and $o_j^{(L-1)}$ is the output of this hidden neuron.

(6 marks)

(c) Denote $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ as a set of R-dimensional vectors. In factor analysis, \mathbf{x}_i 's are assumed to follow a linear model:

$$\mathbf{x}_i = \mathbf{m} + \mathbf{V}\mathbf{z}_i + \boldsymbol{\epsilon}_i \qquad i = 1, \dots, N$$

where **m** is the global mean of vectors in \mathcal{X} , **V** is a low-rank $R \times D$ matrix, \mathbf{z}_i is a D-dimensional latent factor with prior density $\mathcal{N}(\mathbf{z}|\mathbf{0},\mathbf{I})$, and $\boldsymbol{\epsilon}_i$ is the residual noise following a Gaussian density with zero mean and covariance matrix $\boldsymbol{\Sigma}$. Based on the Bayes theorem, the posterior density of the latent factor \mathbf{z}_i is given by

$$p(\mathbf{z}_i|\mathbf{x}_i) \propto p(\mathbf{x}_i|\mathbf{z}_i)p(\mathbf{z}_i)$$

= $\mathcal{N}(\mathbf{x}_i|\mathbf{m} + \mathbf{V}\mathbf{z}_i, \mathbf{\Sigma})\mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}),$

where $\mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$ represents a Gaussian distribution with mean $\boldsymbol{\mu}_z$ and covariance matrix $\boldsymbol{\Sigma}_z$. Show that the posterior mean and posterior moment of \mathbf{z}_i is given by

$$egin{aligned} \langle \mathbf{z}_i | \mathbf{x}_i
angle &= \mathbf{L}^{-1} \mathbf{V}^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \mathbf{m}) \ \langle \mathbf{z}_i \mathbf{z}_i^\mathsf{T} | \mathbf{x}_i
angle &= \mathbf{L}^{-1} + \langle \mathbf{z}_i | \mathcal{X}
angle \langle \mathbf{z}_i^\mathsf{T} | \mathbf{x}_i
angle, \end{aligned}$$

respectively, where $\mathbf{L}^{-1} = (\mathbf{I} + \mathbf{V}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{V})^{-1}$ is the posterior covariance matrix of \mathbf{z}_i .

 Hints : The Gaussian distribution of random vectors \mathbf{z} 's can be expressed as

$$\begin{split} \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_z, \mathbf{C}_z) &\propto \exp\left\{-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_z)^\mathsf{T}\mathbf{C}_z^{-1}(\mathbf{z} - \boldsymbol{\mu}_z)\right\} \\ &\propto \exp\left\{\mathbf{z}^\mathsf{T}\mathbf{C}_z^{-1}\boldsymbol{\mu}_z - \frac{1}{2}\mathbf{z}^\mathsf{T}\mathbf{C}_z^{-1}\mathbf{z}\right\}, \end{split}$$

where μ_z and Σ_z are the mean vector and covariance matrix, respectively. (6 marks)

- END -