ESc201A: Introduction to Electronics

Quiz 2

2 Nov 2023

Question 1

10 marks

Let $v_1 = 1V$ and $v_2 = 2V$. Find the output voltage v_0 . Also compute currents i_k for $k = 1, 2, \dots 8$.

Solution:

The circuit is divided into 3 parts

1 st part

v- is 0 volt. [1/2 marks]

Hence $i_1 = \frac{v_1}{2} = 0.5 \, mA \, [1/2 \, \text{marks}]$

I_in1 is zero. [1/2 marks]

Hence, $i_2 = i_1 = 0.5 \text{ mA}$. [1/2 marks]

$$v_a = -i_2.6 = -3 V [1 \text{ marks}]$$

2nd part

v- is 0 volt. [1/2 marks]

Hence $i_5 = \frac{v_2}{4} = 0.5 \, mA \, [1/2 \, \text{marks}]$

I_in2 is zero. [1/2 marks]

Hence, $i_6 = i_5 = 0.5 \, mA$. [1/2 marks]

 $v_b = -i_6.8 = -4 V [1 \text{ marks}]$

3rd part

v- is 0 volt. [1/2 marks]

Hence $i_4 = \frac{v_a}{5} = -0.6 \, mA \, [1/2 \, \text{marks}]$

Hence $i_8 = \frac{v_b}{15} = -0.27 \ mA \ [1/2 \ marks]$

I_in3 is zero. [1/2 marks]

Hence, $i_9 = i_4 + i_8 = -.87 \text{ mA}$. [1/2 marks]

 $v_o = -i_9.10 = 8.7 V [1/2 \text{ marks}]$

$$i_3 = i_4 - i_2 = -0.6 - 0.5 = -1.1 \, mA \, [1/2 \, \text{marks}]$$

$$i_7 = i_8 - i_6 = -0.27 - 0.5 = -.77 \, mA \, [1/2 \, marks]$$

Question 2 8 marks

Assume that BJT in the circuit (a) is biased in forward active mode and β = 100. The small signal model of BJT is given in (b). Compute the value of all the parameters.

Carry out small signal analysis to determine the ratio v_o/i_s .

Solutions

$$I_B = 10\mu A$$
 [1 marks]

$$I_C = 1mA$$
 [1 marks]

$$V_{CE} = 10 - I_C 5 = 5V$$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{25 \, mV}{10 \, \mu A} = 2.5 k\Omega$$
 [2 marks]

$$g_m = \frac{I_C}{V_T} = \frac{1 \, mA}{25 \, mV} = .04 \, \Omega^{-1} \, [2 \, \text{marks}]$$

IN small signal analysis

$$v_{\pi} = r_{\pi} i_s$$
 [1 marks]

$$v_o = -g_m v_\pi (5 k\Omega | |5 k\Omega) = -g_m r_\pi 2.5 k\Omega \times i_s$$

$$\frac{v_o}{i_s} = -g_m r_{\pi} 2.5 \ k\Omega = -.04 \times 2.5 \ k \times 2.5 \ k \ \Omega = -250 \ k\Omega \ [1 \text{ marks}]$$

Question B-1

13 marks

In this question, we will make a digital circuit which triples a n-bit number

Consider a 3-bit number $S = (S_2 S_1 S_0)$.

Output $Y = (Y_4Y_3Y_2Y_1Y_0)$ is a 5 bit number which is triple of S. (Example: if S is 011 (which is 3 in decimal) then Y= 01001 (which is 9 in decimal).

Write down the truth table of Y for all possible values of S. (Hint: write table for each bit of Y)

Find out the Minimized SOP Boolean expression of Y using the K Map.

Implement the expression using logic gates.

Solutions:

The truth table:

S_2	S_1	S_0	Y[4]	Y[3]	Y[2]	Y [1]	Y[0]
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	1	1	0
0	1	1	0	1	0	0	1
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	0	1	0
1	1	1	1	0	1	0	1

[3] Marks

Y[4]

S2\S1,S0	00	01	11	10
0	0	0	0	0
1	0	0	1	1

Y[4]=S2 S1

[1 marks]

Y[3]

S2\S1,S0	00	01	11	10
0	0	0	1	0
1	1	1	0	0

Y[3]=S2 S1'+S2' S1S0

[1 marks]

Y[2]

S2\S1,S0	00	01	11	10
0	0	0	0	1
1	1	1	1	0

Y[2]= S2 S1'+S2' S1S0'+S2 S0

[1 marks]

Y[1]

S2\S1,S0	00	01	11	10
0	0	1	0	1
1	0	1	0	1

Y[1]= S1 XOR S0

[1 marks]

Y[0]

S2\S1,S0	00	01	11	10
0	0	1	1	0
1	0	1	1	0

Y[0]= S0

[1 marks]

Implementation

Y[4]=S2 S1

Y[3]=S2 S1'+S2' S1S0

Y[2]= S2 S1'+S2' S1S0'+S2 S0

Y[1]= S1 XOR S0

Y[0]= S0

1 mark for each implementation

Question B-2

5 marks

Consider a binary number system consisting of signed 8 bit numbers. What is the range of decimal numbers this system can represent?

Now consider

A = 00010001

B = 11110101

Compute C=A+B by summing the two numbers in binary number system.

Write the equivalent decimal numbers for A,B and C and verify the summation is correct.

Solutions

A = 0001 0001

B = 1111 0101

+ 0000 0110

[1.5 marks]

A=17

[0.5 mark]

B is negative number, hence we need to compute 2s complement.

FLIP = 0000 1010

Add 1= 0000 1011 which is 11. Hence,

B=-11

[2.5 mark]

C=6

[0.5 mark]