MTH142 Intro to Stats:: CHEAT SHEET

Getting started

Signing into RStudio

http://hcc-rstudiosrv1.hcc.edu:8787/

Username: Your HCC email with @hcc.edu Password: Your HCC password

.Rmd files

Uploading a file Lower Right quadrant click upload

Knitting a file click the knit button and save.

Exporting a file select file in lower right quadrant click **more** then **Export...**

Screen Shots

Mac: Shift + Command + 3

Windows:

Shift + S

Chromebook: Shift + Ctrl +

Libraries

library(openintro) library(tidyverse) library(broom)

To get more info on a dataset, load a library then use? library(openintro)?cars93

View Data Sets

cars93 is the data set

glimpse(data = cars93)

head(cars93)

First six rows (tail() works too)

view(cars93)

makes window for all data

names(cars93)

show variable names only

Summary Statistics

fivenum(cars93\$price)

Just the five number summary

summary(cars93)

summarizes all the variables

tally(cars93)

counts the observations

mean(cars93\$weight, na.rm = TRUE)

calculates the mean of the weights and removes missing values.

sd(cars93\$weight)

calculates the standard deviation

Variables

a_variable <- c(1,2,3)

takes the vector 1,2,3 and saves it as a variable with the assignment operator

Math Type

Use \$\$ to enclose math type. \$\mu\$ \$\sigma\$

\$\mu\$ \$\bar{x}\$ \$H o\$

x}\$ \$\hat{p}\$ 5 \$\alpha\$

\$\ne\$ \$\approx.\$ \$\sim\$

Graphs

box plots

histograms

ggplot(cars93, aes(x = weight)) +
geom_histogram()

oar

ggplot(cars93, aex(x= type)) +
geom_bar()

scatter plots

ggplot(data=cars93, aes(x = weight, y = mpg_city)) +
geom_point()+
geom_smooth(method = "lm", se=FALSE)

titles and labels

ggplot(cars93, aes(x= type)) +
geom_bar()+
labs(x= 'WEIGHTS', title = 'Cars from 93')

Confidence Intervals

For a mean from a vector of data t.test(cars93\$weight)

produces a 95% confidence interval for the mean weights of cars sold in 1993.

For a proportion from Statistics

prop.test(x = 20, n = 60, conf.level=0.90,correct=FALSE)

produces a 90% confidence interval for the population proportion given 20 successes in 60 trials.

For mean use formula below

For the confidence interval of the mean from statistics we use the following formula: $\overline{\chi} \pm t^* \; SE$

List of Standard Error formulas

$$SE = \sqrt{\frac{p(1-p)}{n}}$$

SE for a single proportion

$$SE = \frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}}$$

SE for a single mean or paired means.

$$SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

SE for two means (not paired)

MTH142 Intro to Stats:: CHEAT SHEET

R Markdown cont.

New chunk click the green c+ and select r

Rename a file

Click the box next to the file and chose rename.

Uploading Data

- 1. Copy and paste data into a spreadsheet.
- 2. Variables are column headers (no spaces in variable name)
- 3. Save as an .xls file to your computer (no spaces in file names)
- 4. Upload .xls file

5. Click on the file you uploaded > Import Dataset

normal distribution

Pnorm(q=1, mean=0, sd=1)

Outputs the probability if z=1 from a standard normal dist.

qnorm(p = 0.01, mean = 0, sd = 1)

Outputs the z-score if probability=0.01

$$z^* = \frac{\hat{p} - p}{(SE)}$$

This is the formula for a z*-score for a single proportion.

student t distribution

pt(1,df=11, lower.tail = FALSE)

outputs the p-value if t = 1 and 11 degrees of freedom on the upper tail of the distribution

qt(0.01,df=11)

outputs the t-score if probability = 0.01

$$t^* = \frac{\overline{x} - \mu}{SE}$$

This is the formula for a t*-score for a single mean.

simulation

library(infer)

1. Make a vector to mimic data

```
more_than_1_relationship <- c( rep(TRUE, 152), rep(FALSE, 51)
```

2. change the vector to a data frame

more_than_1_relationship <- as.data.frame(more_than_1_relationship)</pre>

#3 run infer chain

set.seed(2024)

```
null_distn_one_prop <- more_than_1_relationship |>
specify(response = more_than_1_relationship, success = "TRUE") |>
hypothesize(null = "point", p = 0.5) |>
generate(reps = 10000, type = "draw") |>
calculate(stat = "prop")
```

4 Take a look at the distribution

visualise(data = null_distn_one_prop)

Hypothesis Tests

Proportions

prop.test(x=20, n=60, p=0.5, correct=FALSE)

Outputs the results of hypothesis test with 20 successes in 60 trials

Single Mean

t.test(cars93\$weight, mu=2000, alternative="g")

Outputs of a right tailed hypothesis test with parameter mu=2000.

Difference of Means

t.test(time_hrs~division,data=nyc_marathon, alternative="t")

Computes the difference of men and women winning times in NYC marathon

ANOVA

cars_anova<-aov(weight~type,data=cars93)</pre>

performs the analysis of variance and saves it as a variable "cars_anova" anova(cars_anova)

outputs the summary of the analysis

Linear Regression

cars_linear<-lm(price~weight,data=cars93)

performs the linear regression and saves it as a variable "cars_linear"

summary(cars_linear)

outputs the linear summary of the regression