LECTURE 3 DENSITY OPERATOR AND PARTIAL TRACE

INF587 Quantum computer science and applications

Thomas Debris-Alazard

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

To answer the following questions:

- How can we model the quantum state after a measurement?
 ex: |0⟩ with prob. 1/2 and |1⟩ with prob. 1/2.
- How can we describe the quantum state relative to a subsystem? ex: the first qubit of the EPR-pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$.

→ Density operator/matrix and partial trace!

COURSE OUTLINE

- 1. General properties of density operators
- 2. The reduced density operator, partial trace and application to the teleportation
- 3. Schmidt decomposition and purification

→ This course gives the basis of quantum information theory!

DENSITY OPERATOR

OBSERVABLE: A REMINDER

Observable: an equivalent description of projective measurements

- Observable: M an Hermitian operator (i.e., $M^{\dagger} = M$),
- M is diagonalizable in an orthonormal basis: orthogonal projectors P_m onto the eigenspaces
 define the measurement.
- Given $|\psi\rangle$, average outcome value:

$$\langle \mathbf{M} \rangle = \langle \psi | \, \mathbf{M} \, | \psi \rangle = \mathrm{tr} \left(\mathbf{M} \, | \psi \rangle \! \langle \psi | \right).$$

An example:

X defines a measurement with outcome ± 1 :

$$X = |+\rangle\langle +| + (-1)|-\rangle\langle -|$$

Given |0\ (resp. |1\), the average outcome value is 0:

$$\left\langle 0\right|X\left|0\right\rangle =\left\langle 0\right|+\right\rangle \left\langle +\left|0\right\rangle -\left\langle 0\right|-\right\rangle \left\langle -\left|0\right\rangle =\frac{1}{2}-\frac{1}{2}=0.$$

$$\langle 1|\mathbf{X}|1\rangle = \langle 1|+\rangle \langle +|1\rangle - \langle 1|-\rangle \langle -|1\rangle = \frac{1}{2} - \frac{1}{2} = 0.$$

MEASUREMENTS ON A PROBABILITY MIXTURE OF QUANTUM STATES

Suppose that ρ is a probabilistic mixture of quantum states:

$$\rho: |\psi_j\rangle$$
 with prob. p_j .

What is the average outcome value given ρ and an observable M?

By linearity of the expectation it is given by:

$$\begin{split} \sum_{j} p_{j} \left\langle \psi_{j} \right| \mathbf{M} \left| \psi_{j} \right\rangle &= \sum_{j} p_{j} \operatorname{tr} \left(\mathbf{M} \left| \psi_{j} \middle\middle \times \psi_{j} \right| \right) \\ &= \operatorname{tr} \left(\mathbf{M} \sum_{j} p_{j} \left| \psi_{j} \middle\middle \times \psi_{j} \right| \right) \end{split}$$

Define the probabilistic mixture ρ as:

$$\rho = \sum_{j} p_{j} |\psi_{j}\rangle\!\langle\psi_{j}|$$

THE DENSITY MATRIX

The density matrix

The density matrix ρ corresponding to a probabilistic mixture of states $(|\psi_j\rangle)_j$, the corresponding quantum state being equal to $|\psi_j\rangle$ with probability p_j , is given by

$$\rho \stackrel{\mathsf{def}}{=} \sum_{\cdot} p_j \left| \psi_j \middle\rangle \! \left\langle \psi_j \right|$$

 $\longrightarrow \{p_i, |\psi_i
angle\}$ is a set of states generating a density matrix ho

The density matrix of a qubit

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \langle \psi | = \begin{pmatrix} \overline{\alpha} & \overline{\beta} \end{pmatrix}$$
$$|\psi\rangle\langle\psi| = \begin{pmatrix} |\alpha|^2 & \alpha\overline{\beta} \\ \overline{\alpha}\beta & |\beta|^2 \end{pmatrix}$$

• Density matrix of $|0\rangle$ (resp. $|1\rangle$) is

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \begin{pmatrix} resp. & \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

• Density matrix of $|+\rangle$ (resp. $|-\rangle$) is

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad \left(\text{resp. } \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \right)$$

COMPUTATION OF SOME DENSITY OPERATORS

Exercise

- Compute the density matrix of:
 - 1. the probabilistic mixture of $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$,
 - 2. the probabilistic mixture of $|+\rangle$ with prob. $\frac{1}{2}$ and $|-\rangle$ with prob. $\frac{1}{2}$,
 - 3. what can you conclude?
- Compare the density matrix of $|\psi\rangle$ with $e^{i\theta}$ $|\psi\rangle$. What can you conclude?

- We have:
 - 1. Probabilistic mixture of $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$:

$$\frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

2. Probabilistic mixture of $|+\rangle$ with prob. $\frac{1}{2}$ and $|-\rangle$ with prob. $\frac{1}{2}$:

$$\frac{1}{2} \left| + \right\rangle\!\left\langle + \right| + \frac{1}{2} \left| - \right\rangle\!\left\langle - \right| = \frac{1}{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

- 3. These probabilistic mixtures have the same density operator: they are indistinguishable
- ullet | ψ | and $e^{i heta}$ | ψ | have the same density operator: they are indistinguishable

- We have:
 - 1. Probabilistic mixture of $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$:

$$\frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

2. Probabilistic mixture of $|+\rangle$ with prob. $\frac{1}{2}$ and $|-\rangle$ with prob. $\frac{1}{2}$:

$$\frac{1}{2} \left| + \right\rangle\!\left\langle + \right| + \frac{1}{2} \left| - \right\rangle\!\left\langle - \right| = \frac{1}{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

- 3. These probabilistic mixtures have the same density operator: they are indistinguishable
- $|\psi\rangle$ and $e^{i\theta}$ $|\psi\rangle$ have the same density operator: they are indistinguishable

→ We could have stated quantum mechanics using density operators as the primary model of states!

In particular: postulates of quantum mechanics given with density matrix point of view

UNITARY EVOLUTION

Let **U** be a unitary. Suppose that $|\psi\rangle$ is in the state $|\psi_i\rangle$ with probability p_i

 \longrightarrow After applying **U**: $|\psi\rangle$ will be in the state **U** $|\psi_i\rangle$ with probability p_i .

$$\left(|\psi_i\rangle\!\langle\psi_i| \stackrel{\mathsf{U}}{\longrightarrow} \mathsf{U}\,|\psi_i\rangle\!\langle\psi_i|\,\mathsf{U}^\dagger\right)$$

UNITARY EVOLUTION

Let **U** be a unitary. Suppose that $|\psi\rangle$ is in the state $|\psi_i\rangle$ with probability p_i

 \longrightarrow After applying **U**: $|\psi\rangle$ will be in the state **U** $|\psi_i\rangle$ with probability p_i .

$$\left(|\psi_i\rangle\!\langle\psi_i| \stackrel{\mathsf{U}}{\longrightarrow} \mathsf{U}\,|\psi_i\rangle\!\langle\psi_i|\,\mathsf{U}^\dagger\right)$$

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\!\langle\psi_{i}| \xrightarrow{\mathsf{U}} \sum_{i} p_{i} \mathsf{U} |\psi_{i}\rangle\!\langle\psi_{i}| \, \mathsf{U}^{\dagger} = \mathsf{U} \rho \mathsf{U}^{\dagger}$$

MEASUREMENT

Let $(M_m)_m$ be a quantum measurement. Suppose that $|\psi\rangle$ is in the state $|\psi_i\rangle$ with probability p_i .

• If the initial state is $|\psi_i\rangle$, the probability to measure m is:

$$p(m|i) = \langle \psi_i | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle = \operatorname{tr} \left(\mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle \langle \psi_i | \right)$$

• If the initial state is $|\psi_i\rangle$, the probability to measure m is:

$$p(m|i) = \langle \psi_i | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle = \operatorname{tr} \left(\mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle \langle \psi_i | \right)$$

• Using the law of total probability, we measure m with probability:

$$p(m) = \sum_{i} p(m|i)p_{i} = \sum_{i} \operatorname{tr} \left(\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} | \psi_{i} \rangle \langle \psi_{i} | \right) p_{i} = \operatorname{tr} \left(\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} \rho \right).$$

• If the initial state is $|\psi_i\rangle$, the probability to measure m is:

$$p(m|i) = \langle \psi_i | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle = \operatorname{tr} \left(\mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle \langle \psi_i | \right)$$

• Using the law of total probability, we measure m with probability:

$$\rho(m) = \sum_{i} \rho(m|i) p_{i} = \sum_{i} \operatorname{tr} \left(\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} \, | \psi_{i} \rangle \langle \psi_{i} | \right) p_{i} = \operatorname{tr} \left(\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} \rho \right).$$

• If the initial state is $|\psi_i\rangle$ and we have measured m, the state becomes:

$$\left|\psi_{i}^{m}\right\rangle = \frac{\mathbf{M}_{m}\left|\psi_{i}\right\rangle}{\sqrt{\operatorname{tr}\left(\mathbf{M}_{m}^{\dagger}\mathbf{M}_{m}\left|\psi_{i}\right\rangle\!\langle\psi_{i}\right|\right)}} = \frac{\mathbf{M}_{m}\left|\psi_{i}\right\rangle}{\sqrt{p(m|i)}}$$

• If the initial state is $|\psi_i\rangle$, the probability to measure m is:

$$p(m|i) = \langle \psi_i | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle = \operatorname{tr} \left(\mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle \langle \psi_i | \right)$$

• Using the law of total probability, we measure m with probability:

$$\rho(m) = \sum_i \rho(m|i) \rho_i = \sum_i \operatorname{tr} \left(\mathsf{M}_m^\dagger \mathsf{M}_m \, |\psi_i\rangle\!\langle\psi_i| \right) \rho_i = \operatorname{tr} \left(\mathsf{M}_m^\dagger \mathsf{M}_m \rho \right).$$

• If the initial state is $|\psi_i\rangle$ and we have measured m, the state becomes:

$$\left|\psi_{i}^{m}\right\rangle = \frac{\mathbf{M}_{m}\left|\psi_{i}\right\rangle}{\sqrt{\operatorname{tr}\left(\mathbf{M}_{m}^{\dagger}\mathbf{M}_{m}\left|\psi_{i}\right\rangle\!\left\langle\psi_{i}\right|\right)}} = \frac{\mathbf{M}_{m}\left|\psi_{i}\right\rangle}{\sqrt{\rho(m|i)}}$$

The corresponding density operator ρ_m is:

$$\rho_{m} = \sum_{i} p(i|m) |\psi_{i}^{m} \rangle \langle \psi_{i}^{m}| = \sum_{i} p(i|m) \frac{\mathsf{M}_{m} |\psi_{i}\rangle \langle \psi_{i}| \,\mathsf{M}_{m}^{\dagger}}{p(m|i)} = \sum_{i} \frac{p_{i}}{p(m)} \mathsf{M}_{m} |\psi_{i}\rangle \langle \psi_{i}| \,\mathsf{M}_{m}^{\dagger}$$

• If the initial state is $|\psi_i\rangle$, the probability to measure m is:

$$p(m|i) = \langle \psi_i | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle = \operatorname{tr} \left(\mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi_i \rangle \langle \psi_i | \right)$$

• Using the law of total probability, we measure m with probability:

$$\rho(m) = \sum_i \rho(m|i) \rho_i = \sum_i \operatorname{tr} \left(\mathsf{M}_m^\dagger \mathsf{M}_m \, |\psi_i\rangle\!\langle\psi_i| \right) \rho_i = \operatorname{tr} \left(\mathsf{M}_m^\dagger \mathsf{M}_m \rho \right).$$

• If the initial state is $|\psi_i\rangle$ and we have measured m, the state becomes:

$$\left| \left. \psi_{i}^{m} \right\rangle = \frac{\mathbf{M}_{m} \left| \psi_{i} \right\rangle}{\sqrt{\operatorname{tr} \left(\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} \left| \psi_{i} \right\rangle \! \left\langle \psi_{i} \right| \right)}} = \frac{\mathbf{M}_{m} \left| \psi_{i} \right\rangle}{\sqrt{\rho(m|i)}}$$

The corresponding density operator ρ_m is:

$$\rho_{m} = \sum_{i} p(i|m) |\psi_{i}^{m}\rangle\langle\psi_{i}^{m}| = \sum_{i} p(i|m) \frac{\mathsf{M}_{m} |\psi_{i}\rangle\langle\psi_{i}| \,\mathsf{M}_{m}^{\dagger}}{p(m|i)} = \sum_{i} \frac{p_{i}}{p(m)} \mathsf{M}_{m} |\psi_{i}\rangle\langle\psi_{i}| \,\mathsf{M}_{m}^{\dagger}$$

$$\rho_{\text{m}} = \frac{\mathbf{M}_{\text{m}} \rho \mathbf{M}_{\text{m}}^{\dagger}}{\mathsf{tr} \left(\mathbf{M}_{\text{m}}^{\dagger} \mathbf{M}_{\text{m}} \rho \right)}$$

A SUMMARY

• Unitary Evolution **U**:

$$\rho \xrightarrow{\mathsf{U}} \mathsf{U} \rho \mathsf{U}^{\dagger}$$

- Measurement $(M_m)_m$:
 - 1. Probability to measure *m*:

$$\operatorname{tr}\left(\mathsf{M}_{m}^{\dagger}\mathsf{M}_{m}\rho\right)$$

2. After measuring m:

$$\frac{\mathsf{M}_{m}\rho\mathsf{M}_{m}\rho}{\mathsf{tr}\left(\mathsf{M}_{m}^{\dagger}\mathsf{M}_{m}\rho\right)}$$

$$\frac{\mathsf{M}_{m}\rho\mathsf{M}_{m}^{\dagger}}{\mathsf{tr}\left(\mathsf{M}_{m}^{\dagger}\mathsf{M}_{m}\rho\right)}$$

CHARACTERIZATION OF DENSITY OPERATORS

Theorem

An operator ho acting on an Hilbert space is a density operator if and only if

- 1. ρ is positive,
- 2. $tr(\rho) = 1$.

→ This characterization does not rely on a set interpretation!

In particular: give a description of quantum mechanics with density operators that does not take as its foundation the state vector.

 \Rightarrow : Suppose $\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|$. Then

$$\operatorname{\mathsf{tr}}(\rho) = \sum_i p_i \operatorname{\mathsf{tr}}(|\psi_i\rangle\!\langle\psi_i|) = \sum_i p_i \operatorname{\mathsf{tr}}(\langle\psi_i|\psi_i\rangle) = \sum_i p_i = 1.$$

as $(p_i)_i$ defines a distribution. Let $|\psi\rangle$ be an arbitrary vector in the state space

$$\langle \psi | \rho | \psi \rangle = \sum_{i} p_{i} \langle \psi | \psi_{i} \rangle \langle \psi_{i} | \psi \rangle = \sum_{i} p_{i} |\langle \psi | \psi_{i} \rangle|^{2} \geq 0.$$

 \Leftarrow : Suppose ρ positive operator with trace one.

By the spectral decomposition theorem, there exists an orthonormal basis $(|i\rangle)_i$ (in particular the $|i\rangle$'s have norm 1) with associated positive eigenvalue $(\lambda_i)_i$ s.t

$$\rho = \sum_{i} \lambda_{i} |i\rangle\langle i|$$

But,

$$\operatorname{tr}(\rho) = \sum_{i} \lambda_{i} = 1.$$

Therefore ρ is a $(\lambda_i)_i$ -probabilistic mixture of the quantum states $(|i\rangle)_i$.

PURE VERSUS MIXED STATES

Pure state

A state is called pure if it cannot be represented as a mixture (convex combination) of other states.

This is equivalent to the density matrix being a one dimensional projector, *i.e.*, $\rho = |\psi\rangle\langle\psi|$ where $|\psi\rangle$ is a state (a unit vector).

Mixed States

A quantum system which is not in pure state is said to be in mixed states.

Example

- 1. $|0\rangle$, $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$, $|01\rangle$ and $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ are pure states,
- 2. The probabilistic state " $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$ " is a mixed state.

A CHARACTERIZATION

Theorem

Any density operator ho verifies

$$\operatorname{tr}\left(
ho^{2}
ight) \leq 1.$$

Furthermore,

$$\operatorname{tr}\left(\rho^{2}\right)=1\iff\rho\text{ is a pure state.}$$

First: any density operator ρ can be written as $\sum_i \lambda_i |i\rangle\langle i|$ where $(|i\rangle)_i$ orthonormal basis, $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$.

 \longrightarrow Consequence of the fact that ρ positive operator and $\operatorname{tr}(\rho)=1$.

Therefore,

$$\rho^2 = \sum_i \lambda_i^2 |i\rangle\langle i|$$

Using that $(\lambda_i)_i$ is a distribution concludes the proof.

BE CAREFUL: UNITARY FREEDOM IN THE SET FOR DENSITY MATRICES

It may be tempting to interpret: $\rho \stackrel{\text{def}}{=} \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1|$ as " $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$ ". But, ρ also verifies: $\rho = \frac{1}{2} |+\rangle\langle +| + \frac{1}{2} |-\rangle\langle -| \dots$

Eigenvectors and eigenvalues of a density operator just indicates one of many possible sets that may give rise to a specific density matrix

 \longrightarrow What class of states does give rise to a particular density operator?

BE CAREFUL: UNITARY FREEDOM IN THE SET FOR DENSITY MATRICES

It may be tempting to interpret: $\rho \stackrel{\text{def}}{=} \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1|$ as " $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$ ". But, ρ also verifies: $\rho = \frac{1}{2} |+\rangle\langle +| + \frac{1}{2} |-\rangle\langle -| \dots$

Eigenvectors and eigenvalues of a density operator just indicates one of many possible sets that may give rise to a specific density matrix

→ What class of states does give rise to a particular density operator?

Theorem (admitted)

 $\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| = \sum_{i} q_{i} |\varphi_{i}\rangle\langle\varphi_{i}|$ for quantum states $(|\psi_{i}\rangle)_{i}$ and $(|\varphi_{i}\rangle)_{i}$ and distributions $(p_{i})_{i}$ and $(q_{i})_{i}$ if and only if

$$\forall i, \quad \sqrt{p_i} \ket{\psi_i} = \sum_j u_{i,j} \sqrt{q_j} \ket{\varphi_j}$$
 where $\mathbf{U} = (u_{i,j})_{i,j}$ be a unitary.

THE REDUCED DENSITY OPERATOR, PARTIAL TRACE

PARTIAL TRACE: REDUCTION TO A SUBSYSTEM

Problem

Given $\rho^{AB} \in A \otimes B$, what is the quantum state with respect to A?

Abuse of notation, ρ density operator over $A \otimes E$

$$\longrightarrow \text{Answer: } \rho^{\text{A}} \stackrel{\text{def}}{=} \operatorname{tr}_{\text{B}} \left(\rho^{\text{AB}} \right) \text{ where: } \left\{ \begin{array}{ll} \rho^{\text{A}} & \text{the reduced density operator for A,} \\ \operatorname{tr}_{\text{B}} & \text{partial trace over B.} \end{array} \right.$$

Definition: partial trace

Given $|a_1\rangle\langle a_2|\in A$ and $|b_1\rangle\langle b_2|\in B$, define

$$\mathsf{tr}_{B}\left(|a_{1}\rangle\langle a_{2}|\otimes|b_{1}\rangle\langle b_{2}|\right)=|a_{1}\rangle\langle a_{2}|\,\mathsf{tr}\left(|b_{1}\rangle\langle b_{2}|\right)=\langle b_{1}|b_{2}\rangle\,|a_{1}\rangle\langle a_{2}|\in\mathsf{A}.$$

then extend tr_B by linearity.

We could have defined tr_B directly as:

$$\mathsf{tr}_{B}\left(
ho^{\mathsf{AB}}
ight) = \sum_{i} \left(\mathsf{I} \otimes \langle i|\right)
ho^{\mathsf{AB}} \left(\mathsf{I} \otimes |i\rangle\right) \quad \mathsf{where} \left(|i\rangle\right)_{i} \mathsf{orthonormal} \; \mathsf{basis} \; \mathsf{of} \; \mathsf{B}$$

PARTIAL TRACE: REDUCTION TO A SUBSYSTEM

Problem

Given $\rho^{AB} \in A \otimes B$, what is the quantum state with respect to A?

a Abuse of notation, ρ density operator over $A \otimes E$

$$\longrightarrow \text{Answer: } \rho^{\text{A}} \stackrel{\text{def}}{=} \operatorname{tr_{B}} \left(\rho^{\text{AB}} \right) \text{ where: } \left\{ \begin{array}{ll} \rho^{\text{A}} & \text{the reduced density operator for A,} \\ \operatorname{tr_{B}} & \text{partial trace over } B. \end{array} \right.$$

Definition: partial trace

Given $|a_1\rangle\langle a_2|\in A$ and $|b_1\rangle\langle b_2|\in B$, define

$$\mathsf{tr}_{B}\left(|a_{1}\rangle\langle a_{2}|\otimes|b_{1}\rangle\langle b_{2}|\right)=|a_{1}\rangle\langle a_{2}|\,\mathsf{tr}\left(|b_{1}\rangle\langle b_{2}|\right)=\langle b_{1}|b_{2}\rangle\,|a_{1}\rangle\langle a_{2}|\in\mathsf{A}.$$

then extend tr_B by linearity.

We could have defined tr_B directly as:

$$\operatorname{tr}_{B}\left(
ho^{AB}\right)=\sum_{i}\left(\mathbf{I}\otimes\left\langle i\right|
ight)
ho^{AB}\left(\mathbf{I}\otimes\left|i\right\rangle
ight)$$
 where $\left(\left|i\right\rangle
ight)_{i}$ orthonormal basis of B

→ But why this definition?

[&]quot;Reduced density operator provides the correct measurement statistics for measurements made on system A"

Given an observable M on a A:

 \longrightarrow We want average measurements be the same when computed via ρ^{A} or ρ^{AB} , namely:

$$tr\left(M\rho^{A}\right)=tr\left(\left(M\otimes I\right)\rho^{AB}\right) \tag{1}$$

 \longrightarrow Equation that is verified by $\rho^A = \operatorname{tr}_B\left(\rho^{AB}\right)$ (little exercise using $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B)$)

tr_B is the unique operator which verifies Equation (1)

Let f be a linear map of density operators on $A \otimes B$ to density operators on A which verifies the "average measurements"

$$\operatorname{\mathsf{tr}}\left(\mathsf{M}\,f(
ho^{\mathsf{AB}})
ight) = \operatorname{\mathsf{tr}}\left(\left(\mathsf{M}\otimes\mathsf{I}\right)
ho^{\mathsf{AB}}
ight)$$

Let M_i be an orthonormal basis to the space of Hermitian operators on A with respect to the inner-product (X,Y) = tr(XY):

$$\mathit{f}(\rho^{AB}) = \sum_{i} M_{i} \operatorname{tr}\left(M_{i} \, \mathit{f}(\rho^{AB})\right) = \sum_{i} M_{i} \operatorname{tr}\left(\left(M_{i} \otimes I\right) \rho^{AB}\right) = \sum_{i} M_{i} \operatorname{tr}\left(M_{i} \rho^{A}\right) = \rho^{A}$$

Therefore: any operator which verifies the "average measurements" is the partial trace!

AN IMPORTANT PROPERTY

Proposition

Given two density operators ρ^A and ρ^B on a A and B:

$$\operatorname{tr}_{{B}}\left(\rho^{{A}}\otimes\rho^{{B}}\right)=\rho^{{A}}\quad \text{and}\quad \operatorname{tr}_{{A}}\left(\rho^{{A}}\otimes\rho^{{B}}\right)=\rho^{{B}}$$

 tr_B : "trace out B"; tr_A : "trace out A".

AN IMPORTANT PROPERTY

Proposition

Given two density operators ρ^A and ρ^B on a A and B:

$$\operatorname{tr}_{{\mathit{B}}}\left(\rho^{{\mathit{A}}}\otimes\rho^{{\mathit{B}}}\right)=\rho^{{\mathit{A}}}\quad \text{and}\quad \operatorname{tr}_{{\mathit{A}}}\left(\rho^{{\mathit{A}}}\otimes\rho^{{\mathit{B}}}\right)=\rho^{{\mathit{B}}}$$

 tr_B : "trace out B" ; tr_A : "trace out A".

Proof:

Write $ho_A=\sum_i\lambda_i\,|i\rangle\!\langle i|$ and $ho_B=\sum_j\mu_j\,|j\rangle\!\langle j|$ (for orthonormal bases). By definition

$$\operatorname{\mathsf{tr}}_{\mathsf{B}}\left(\rho^{\mathsf{A}}\otimes \rho^{\mathsf{B}}\right) = \sum_{i,j} \lambda_{i} \mu_{j} \operatorname{\mathsf{tr}}_{\mathsf{B}}\left(|i\rangle\langle i|\otimes |j\rangle\langle j|\right)$$

$$= \sum_{i,j} \lambda_{i} |i\rangle\langle i| \left(\sum_{j} \mu_{j} \langle j|j\rangle\right)$$

$$= \rho^{\mathsf{A}}$$

where in the last line we used 1 = $\operatorname{tr}\left(
ho^{B}\right) = \sum_{j} \mu_{j}$.

Consider the EPR-pair: $\frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$

- 1. Compute the density matrix ρ^{12} (1 and 2: first and second qubit) of the EPR-pair,
- 2. Compute the reduced density matrices ho^1 and ho^2 with respect to the first and second qubit, respectively. What can you conclude?
- 3. Is $\rho^{12} = \rho^1 \otimes \rho^2$?

1. We have

$$\rho^{12} = \frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|),$$

therefore (basis is ordered as $(|00\rangle, |01\rangle, |10\rangle, |11\rangle)$)

$$\rho^{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

2. Rewrite ρ^{12} as

$$\rho^{12} = \frac{1}{2} \left(|0\rangle\langle 0| \otimes |0\rangle\langle 0| + |0\rangle\langle 1| \otimes |0\rangle\langle 1| + |1\rangle\langle 0| \otimes |1\rangle\langle 0| + |1\rangle\langle 1| \otimes |1\rangle\langle 1| \right)$$

Therefore,

$$\rho^1 = \operatorname{tr}_2\left(\rho^{12}\right) = \frac{1}{2}\left(|0\rangle\langle 0| + |1\rangle\langle 1|\right) = \frac{I_2}{2} \quad \text{and} \quad \rho^2 = \operatorname{tr}_1\left(\rho^{12}\right) = \frac{1}{2}\left(|0\rangle\langle 0| + |1\rangle\langle 1|\right) = \frac{I_2}{2}$$

Although the original system was prepared as a pure state (complete knowledge), the first and the second qubit are a uniform mixture of qubits...

3. No:
$$\rho^{12} \neq \rho^1 \otimes \rho^2 = \frac{I_4}{4}$$
.

CONSEQUENCE

If Alice and Bob share an EPR-pair:

- Alice's qubit is a mixed state for which she has strictly no information/knowledge,
- ► Bob's qubit is a mixed state for which he has strictly no information/knowledge

The joint state of the EPR pair is known exactly while both its first and second qubit is completely unknown (maximal uncertainty)!

Teleportation

1. Recall that after Alice's measurement, the quantum state that Alice and Bob share is with probability $\frac{1}{4}$ the three-qubits state $|a,b\rangle |\psi_{ab}\rangle$:

$$|\psi_{ab}\rangle\stackrel{\mathrm{def}}{=} \alpha |b\rangle + (-1)^a\beta |1-b\rangle$$
.

where $a, b \in \{0, 1\}$.

Compute the reduced density operator ρ_B of Bob's system (by tracing out the first two qubits) once Alice has performed her measurement but before Bob has learned a, b.

2. What can you conclude?

DENSITY OPERATOR VIEWPOINT: APPLICATION TO THE TELEPORTATION

1. We have the following computation:

$$\rho^{ab} = |ab\rangle\langle ab| \otimes |\psi_{ab}\rangle\langle \psi_{ab}|
= |ab\rangle\langle ab| \otimes (|\alpha|^2 |b\rangle\langle b| + (-1)^a \alpha \overline{\beta} |b\rangle\langle 1 - b| +
(-1)^a \overline{\alpha} \beta |1 - b\rangle\langle b| + |\beta|^2 |1 - b\rangle\langle 1 - b|)$$

The density operator of the shared quantum state is:

$$\rho = \frac{1}{4} \left(\sum_{a,b \in \{0,1\}} \rho^{ab} \right)$$

By tracing out the first two qubits we get

$$\begin{split} \rho_{B} &= \frac{1}{4} \left(\left(2|\alpha|^{2} + 2|\beta|^{2} \right) |0\rangle\langle 0| + \left(2|\alpha|^{2} + 2|\beta|^{2} \right) |1\rangle\langle 1| \right) \\ &= \frac{1}{2} \left(|0\rangle\langle 0| + |1\rangle\langle 1| \right) \\ &= \frac{I_{2}}{2} \end{split}$$

2. Bob's state has no dependence upon the state $|\psi\rangle$ being teleported: any measurements performed by Bob will contain no information about $|\psi\rangle$

→ It prevents Alice to transmit information to Bob faster than light!

STUDYING COMPOSITE QUANTUM SYSTEMS

Density operators and partial trace:

 $\longrightarrow {\sf Useful} \ {\sf for} \ {\sf studying} \ {\sf composite} \ {\sf quantum} \ {\sf systems!}$

Two new useful tools:

- Schmidt decomposition,
- Purification.

SCHMIDT DECOMPOSITION

Theorem: Schmidt decomposition (that we admit)

For any (pure) $|\psi\rangle\in A\otimes B$, there exists

- a unique integer d,
- an orthonormal set $|a_1\rangle, \cdots, |a_d\rangle \in A$,
- an orthonormal set $|b_1\rangle, \cdots, |b_d\rangle \in B$,
- $\lambda_1, \cdots, \lambda_d > 0$

such that

$$|\psi\rangle = \sum_{i=1}^{d} \lambda_i |a_i\rangle |b_i\rangle$$

First Consequence:

Given (pure) $|\psi\rangle\in A\otimes B$, then

$$\rho^{\mathrm{A}} = \mathrm{tr}_{\mathrm{B}}(|\psi\rangle\!\langle\psi|) = \sum_{i=1}^{d} \lambda_{i}^{2} \,|a_{i}\rangle \quad \text{and} \quad \rho^{\mathrm{B}} = \mathrm{tr}_{\mathrm{A}}(|\psi\rangle\!\langle\psi|) = \sum_{i=1}^{d} \lambda_{i}^{2} \,|b_{i}\rangle$$

Therefore:

 ρ^{A} and ρ^{B} have the same eigenvalues: the λ_{i}^{2} 's and possibly 0!

SCHMIDT'S NUMBER AND ENTANGLEMENT

Definition: Schmidt's number

Given (pure) $|\psi\rangle\in {\it A}\otimes {\it B}$ with Schmidt decomposition

$$|\psi\rangle = \sum_{i=1}^{a} \lambda_i |a_i\rangle |b_i\rangle$$

The integer d is called Schmidt number. This number does not depend on the decomposition and it depends only on $|\psi\rangle$.

Theorem: a useful characterization of entanglement

A pure state $|\psi\rangle\in A\otimes B$ is entangled if and only if its Schmidt's number is > 1 if and only if ρ_A and ρ_B are mixed states (where $\rho=|\psi\rangle\langle\psi|$)

---> Proof in exercise session!

PURIFICATION

Question:

Given a mixed state ho of A: is it possible to introduce another system R and a pure state

 $|\psi\rangle\in A\otimes R$ such that

$$ho = \operatorname{tr}_{\it R}\left(|\psi\rangle\!\langle\psi|\right)$$

Yes!

Spectral decomposition in an orthonormal basis of ρ :

$$ho = \sum_{i=1}^n \lambda_i |i\rangle\langle i| \quad ext{(the λ_i's are ≥ 0)}$$

It is enough (exercise!) to define $|\psi\rangle$ as:

$$|\psi\rangle = \sum_{i=1}^{n} \sqrt{\lambda_i} |i\rangle |i\rangle.$$

→ This process is known as purification!

PURIFICATION

Question:

Given a mixed state ρ of A: is it possible to introduce another system R and a pure state

 $|\psi\rangle\in A\otimes R$ such that

$$ho = \operatorname{tr}_{R}\left(|\psi\rangle\!\langle\psi|\right)$$

Yes!

Spectral decomposition in an orthonormal basis of ρ :

$$\rho = \sum_{i=1}^{n} \lambda_i |i\rangle\langle i| \quad \text{(the } \lambda_i\text{'s are } \geq 0\text{)}$$

It is enough (exercise!) to define $|\psi\rangle$ as:

$$|\psi\rangle = \sum_{i=1}^{n} \sqrt{\lambda_i} |i\rangle |i\rangle.$$

→ This process is known as purification!

Relation between Schmidt decomposition and purification

Purifying a mixed state: define a pure state whose Schmidt basis is just the basis in which the mixed state is diagonal!

