1 4 - Lema do Bombeamento (ou Lema da iteracao) para linguagens reconheciveis

Quais das linguagens a seguir sao reconheciveis?

$$A = \{a^ib^i : i \geq 0\}$$

$$B = \{\omega \in \{a,b\}^* : |\omega|_a = |\omega|_b\}$$

 $C = \{\omega \in \{a,b\}^* : Ondeocorrencias do fator a bem \omega eigual a ondeocorrencias do fator baem \omega \}$

• A linguagem A nao e reconhecivel. Suponha que A seja reconhecivel. Entao, existe um afd $\mathcal{A}=(Q,\Sigma,\delta,s,F)$ tq $L(\mathcal{A})=A$. Seja n=|Q| a ocorrencia

—-TODO OMI—-

1.1 Lema do Bombeamento

Seja L uma linguagem reconhecivel.

Entao, existe um inteiro $n \ge 1$ t
q para cada palavra $\omega \in L$, com $|\omega| \ge n$, existem palavras x, y e
 z tq $x = xyz, y \ne \lambda, |xy| \le n$ e para todo $k \ge 0$,
 $xy^kz \in L$.

Prova:

Seja L uma linguagem reconhecivel.

Entao, existe um afd $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ to $L(\mathcal{A}) = L$.

Considere n = |Q|.

Seja em L nao existem palavras de comprimento $\geq n,$ nada ha para provar.

Caso contrario, seja $\omega \in L$, com $|\omega| \ge n$.

Entao, $w = \sigma_1 \sigma_2 \dots \sigma_n \omega'$, com $\sigma_i \in \Sigma$ (para $1 \le i \le n$) e $\omega \in \Sigma^+$