Mydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej nformatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny	
Sprawozdanie z ćwiczenia nr 0 Nyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego.	

1 Cel ćwiczenia

2 Wykonanie ćwiczenia

3 Opracowanie danych pomiarowych

Długość druta oporowego została zmierzona i wynosi $100~\mathrm{[cm]}$. Jest ona dana zmienną l

$$l = 100 \text{ cm} \tag{1}$$

Rezystancję z danych podanych w tabelach obliczamy za pomocą wzoru ??. Krok zmiany znanej rezystancji został dostosowany do danego opornika aby zmiana wychylenia na mikroamperomierza była zauważalna.

3.1 Pomiar dla opornika R_1

W tabeli 1 zestawiono pomiary przeprowadzone dla opornika 1. Przyjęty został krok zmiany znanej rezystancji $0.5\,\Omega$.

Rezystancja opornika znanego $[\Omega]$	12.5	13.0	13.5	14.0	14.5	12.0	11.5	11	10.5	10
Długość $a\ [mm]$	500	491	482	473	464	510	519	529	543	555
Opór R_1 obliczona $[\Omega]$	12.50	12.54	12.56	12.57	12.55	12.49	12.41	12.35	12.48	12.47

Tablica 1: Wyniki pomiarów dla opornika nr 1

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_1} = \frac{\sum_{i=1}^{10} R_{1_i}}{10} \approx 12.49 \,\Omega \tag{2}$$

3.2 Pomiar dla opornika R_2

W tabeli 2 zestawiono pomiary przeprowadzone dla opornika 2. Przyjęty został krok zmiany znanej rezystancji $1~\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500~\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	35.8	36.0	37.0	38.0	39.0	35.0	34.0	33.0	32.0	31.0
Długość $a\ [mm]$	500	494	487	480	473	502	509	517	524	533
Opór R_2 obliczona $[\Omega]$	35.80	35.15	35.12	35.08	35.00	35.28	35.25	35.32	35.23	35.38

Tablica 2: Wyniki pomiarów dla opornika nr 2

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_2} = \frac{\sum_{i=1}^{10} R_{2_i}}{10} \approx 35.26 \,\Omega \tag{3}$$

3.3 Pomiar dla opornika R_3

W tabeli 3 zestawiono pomiary przeprowadzone dla opornika 3. Przyjęty został krok zmiany znanej rezystancji $2~\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500~\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	72.1	74.0	76.0	78.0	80.0	70.0	68.0	66.0	64.0	62.0
Długość $a\ [{\sf mm}]$	500	491	481	476	469	506	508	513	520	527
Opór R_3 obliczona $[\Omega]$	72.10	71.38	70.44	70.85	70.66	71.70	70.21	69.52	69.33	69.08

Tablica 3: Wyniki pomiarów dla opornika nr 3

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_3} = \frac{\sum_{i=1}^{10} R_{3_i}}{10} \approx 70.53 \,\Omega \tag{4}$$

3.4 Pomiar dla połączenia szeregowego

W tabeli 4 zestawiono pomiary przeprowadzone połączenia szeregowego oporników R_1 , R_2 , R_3 . Przyjęty został krok zmiany znanej rezystancji $5~\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500~\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	116.3	120.0	125.0	130.0	135.0	110.0	105.0	100.0	95.0	90
Długość $a\ [mm]$	500	496	484	474	465	514	526	538	554	568
Opór R_s obliczona $[\Omega]$	116.30	118.10	117.25	117.15	117.34	116.34	116.52	116.45	118.00	118.33

Tablica 4: Wyniki pomiarów dla połączenia szeregowego

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_s} = \frac{\sum_{i=1}^{10} R_{s_i}}{10} \approx 117.18 \,\Omega \tag{5}$$

3.5 Pomiar dla połączenia szeregowego

W tabeli 5 zestawiono pomiary przeprowadzone połączenia równoległego oporników R_1 , R_2 , R_3 . Przyjęty został krok zmiany znanej rezystancji $0.5\,\Omega$ z wyjątkiem pierwszego pomiaru dla $a=500\,\mathrm{mm}$ (celem uzyskania wyniku równego rezystancji znanej).

Rezystancja opornika znanego $[\Omega]$	8.0	8.5	9.0	9.5	10.0	7.5	7.0	6.5	6.0	5.5
Długość $a\ [mm]$	500	485	472	459	450	519	534	552	557	596
Opór R_r obliczona $[\Omega]$	8.0	8.0	8.05	8.06	8.18	8.09	8.02	8.01	7.95	8.11

Tablica 5: Wyniki pomiarów dla połączenia szeregowego

Aby uzyskać rezystancję opornika obliczamy średnią arytmetyczną z wyników z tabeli powyżej:

$$\overline{R_r} = \frac{\sum_{i=1}^{10} R_{r_i}}{10} \approx 8.05 \,\Omega \tag{6}$$

- 3.6 Analiza niepewności
- 4 Podsumowanie