Algebra 1R

Contents

1		NICJA GRUPY	3
	1.1 1.2	Działania, struktury	
	1.3	Podgrupy	
	1.4	Grupa cykliczna	
2	НОМ	10MORFIZMY	5
	2.1	Rodzaje	5
	2.2		5
	2.3	Zasadnicze twierdzenie o homomorfizmie	5
3		MUTACJE	6
		Transpozycje	
	3.2	Permutacje parzyste	6
4	WAR	STWY, DZIELNIK NORMALNY	7
	4.1	Warstwa, grupa ilorazowa	7
	4.2	Orbita	7
	4.3	Stabilizator	/
	4.4 4.5	Orbit-stabilizer theorem	-
	4.5	Dzielnik normalny	/
5	PRO	DUKT PÓŁPROSTY	8
	5.1	Twierdzenie Lagrange'a	8
	5.2	Produkt prosty	
	5.3	Produkt półprosty grup	۶
	5.5	Troduct potprosty grup	Ì
6		ERDZENIE SYLOWA	ç
6	TWI	ERDZENIE SYLOWA I twierdzenie Sylowa	9
6	TWI I 6.1 6.2	ERDZENIE SYLOWA I twierdzenie Sylowa	9
6	TWI 6.1 6.2 6.3	ERDZENIE SYLOWA I twierdzenie Sylowa	9
6	TWI 6.1 6.2 6.3	ERDZENIE SYLOWA I twierdzenie Sylowa	9
6 7	TWI I 6.1 6.2 6.3 6.4	ERDZENIE SYLOWA I twierdzenie Sylowa	9
	TWII 6.1 6.2 6.3 6.4 KLA	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa	9
	TWII 6.1 6.2 6.3 6.4 KLA 7.1	I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP	9
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1	I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ???	99 99 99 10 10 11
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne	99 99 99 10 10 11 11 11
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2	I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje	99 99 99 10 10 11 11 11
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE	10 11 11 11 11 12
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1	ERDZENIE SYLOWA I twierdzenie Sylowa	99 99 99 100 111 111 111 112 122
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne	99 99 99 10 11 11 11 11 12 12
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych	99 99 99 100 111 111 112 122 122 123
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3 9.4	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych Używanie twierdzeń Sylowa	99 99 10 11 11 11 12 12 12 12 12
7	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych	99 99 10 11 11 11 12 12 12 12 12
7 8	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3 9.4 9.5	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych Używanie twierdzeń Sylowa	99 99 10 11 11 11 12 12 12 12 12
7 8	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3 9.4 9.5 LEM 10.1	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych Używanie twierdzeń Sylowa Grupy nilpotentne AT O MOTYLU Ciąg kompozycyjny w grupie	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7 8	TWII 6.1 6.2 6.3 6.4 KLA 7.1 GRU 8.1 8.2 8.3 GRU 9.1 9.2 9.3 9.4 9.5 LEM 10.1 10.2	ERDZENIE SYLOWA I twierdzenie Sylowa Twierdzenie Cauchy'ego p-grupy Sylowa Twierdzenia Sylowa SYFIKACJA MAŁYCH GRUP Grupy rzędu ??? PY TORSYJNE Torsje Grupy torsyjne Skończone grupy abelowe PY ROZWIĄZALNE Komutator i komutant Grupy rozwiązalne Rozszerzenia grup rozwiązalnych Używanie twierdzeń Sylowa Grupy nilpotentne AT O MOTYLU	99 99 10 11 11 11 12 12 12 12 13 13

11 GRUPY WOLNE 11.1 Grupy wolne 11.2 Własności 11.3 Przykłady	14
12 PIERŚCIENIE	15
12.1 Definicja	
12.2 Dzielnik zera	
12.3 Grupa elementów odwracalnych pierścienia	15
12.4 Dziedzina	15
12.5 Ciało	15

1 DEFINICJA GRUPY

1.1 Działania, struktury

DZIAŁANIE w zbiorze A to funkcja

$$\star : A \times A \rightarrow A$$
$$(x, y) \mapsto x \star y$$

Zwykle rozważamy działania binarne, ale działaniem może być funkcją z A^n w A (jak na przykład branie średniej arytmetycznej 3 liczb). Zdarza się też, że mamy działanie unarne, takie jak na przykład branie liczby przeciwnej do $m \in \mathbb{Z}$.

Działanie jest łączne [

assosiative], jeżeli

$$(\forall a, b, c \in A) a(bc) = (ab)c$$

a przemienne [commutative], qdy

$$(\forall a, b \in A)$$
 ab = ba

Tutaj warto zaznaczyć, że jeśli działanie jest łączne dla 3 argumentów, to jest również łączne dla k argumentów. Dowód przez indukcję jest trywialny.

.....

Algebrą nazywamy niepusty zbiór A ze wszystkimi działaniami na nim określonymi, to znaczy zestawienie $(A, f_1, ..., f_k)$. Zbiór A nazywamy uniwersum lub dziedziną struktury. Mówimy, że dwie algebry $A = (A, f_1, ..., f_k)$ i $B = (B, g_1, ..., g_k)$ są podobne, jeśli dla każdego i \leq k arność (czyli liczba argumentów) f_i jest równa arności g_i , czyli liczbie l_i .

Dwie algebry są izomorficzne, jeżeli istnieje F : A $\xrightarrow{1-1}$ B takie, że

$$(\forall i \leq k)(\forall a_1,...,a_{l_i} \in A) F(f_i(a_1,...,a_{l_i})) = g_i(F(a_1),...,F(a_{l_i}))$$

Struktury izomorficzne oznaczamy $A \cong B$. Warto zauważyć, że \cong ma własności relacji równoważności, to znaczy jest zwrotny, symetryczny i przechodni.

SŁOWNICZEK:

- \hookrightarrow epi-morfizm -> "na"
- \hookrightarrow mono-morfizm -> 1-1
- \hookrightarrow endo-morfizm -> w samego siebie
- \hookrightarrow auto-morfizm -> endomorfizm który jest bijekcją.

 $B = (B, g_1, ..., g_k)$ jest podalgebrą $A = (A, f_1, ..., f_k)$, jeżeli

$$\hookrightarrow \mathsf{B} \mathrel{\overset{-}{\subseteq}} \mathsf{A}$$

$$\hookrightarrow$$
 (\forall i \leq k) g_i = $f_i \upharpoonright_B$

Niech B \subseteq A, wtedy B jest uniwersum podstruktury struktury A z naturalnymi działaniami \iff B jest zamknięty na działania $f_1,...,f_k$. W takim przypadku B traktujemy jako strukturę będącą podstrukturą struktury A.

Jeżeli $F : A \rightarrow B$ jest homomorfizmem struktur, to Im(F) jest podstrukturą B.

Złożenie homomorfizmów jest homomorfizmem a odwzorowanie odwrotne do izomorfizmu jest izomorfizmem.

DOWÓD:

Niech $f:(X,\cdot)\to (Y,\circ)$ i $g:(Y,\circ)\to (Z\star)$ są homomorfizmami, a h(x)=g(f(x)) jest ich złożeniem, to dla dowolnego a, $b\in X$ mamy

$$h(a \cdot b) = q(f(a \cdot b)) = q(f(a) \circ f(b)) = q(f(a)) \star q(f(b)) = h(a) \star h(b)$$

więc h spełnia warunki homomorfizmu. Jeżeli f, g były epi, mono, ... morfizmami, to zachowanie odpowiednich własności wynika z własności składania funkcji różnowartościowych, na czy bijekcji.

Niech $\phi:(X,\cdot)\xrightarrow[na]{1-1}(Y,\circ)$ będzie izomorfizmem. Chcemy pokazać, że ϕ^{-1} jest homomorfizmem. Weźmy a, b \in Y i c, d \in X takie, że $\phi(c)$ = a oraz $\phi(d)$ = b. Wtedy

$$ab = \phi(c)\phi(d) = \phi(cd),$$

czyli

$$\phi^{-1}$$
(ab) = cd,

a ponieważ ϕ^{-1} (a) = c i ϕ^{-1} (b) = d, to mamy

$$\phi^{-1}(ab) = cd = \phi^{-1}(a)\phi^{-1}(b).$$

Natomiast fakt, że ϕ^{-1} jest bijekcją wynika z tego, że ϕ jest bijekcją.

1.2 Grupy

Grupa to struktura $G = (G, \cdot)$ taka, że:

- \hookrightarrow · jest działaniem łącznym
- \hookrightarrow istnieje element neutralny e \in G dla działania \cdot
- \hookrightarrow dla każdego g \in G istnieje element odwrotny g $^{-1}$ \in G takie, że gg $^{-1}$ = g $^{-1}$ g = e

Tutaj warto zaznaczyć, że element neutralny jest jedyny. W przeciwnym przypadku istniałyby co najmniej dwa elementy neutralne e_1 , e_2 , ale wtedy

$$e_1 = e_1 \cdot e_2 = e_2$$
.

Z łączności działania na grupie wynika, że dla każdego $g \in G$ istnieje co najwyżej jeden element odwrotny. Gdyby x, y były dwoma elementami odwrotnymi do g, to

$$x = xe = x(gy) = (xg)y = ey = y,$$

co prowadzi do sprzeczności.

1.3 Podgrupy

1.4 Grupa cykliczna

2 HOMOMORFIZMY

- 2.1 Rodzaje
- 2.2 Jądro, obraz
- 2.3 Zasadnicze twierdzenie o homomorfizmie

3 PERMUTACJE

- 3.1 Transpozycje
- 3.2 Permutacje parzyste

4 WARSTWY, DZIELNIK NORMALNY

- 4.1 Warstwa, grupa ilorazowa
- 4.2 Orbita
- 4.3 Stabilizator
- 4.4 Orbit-stabilizer theorem
- 4.5 Dzielnik normalny

5 PRODUKT PÓŁPROSTY

- 5.1 Twierdzenie Lagrange'a
- 5.2 Produkt prosty
- 5.3 Produkt półprosty grup

6 TWIERDZENIE SYLOWA

6.1 I twierdzenie Sylowa

I twierdzenie Sylowa:

Jeżeli p jest liczbą pierwszą, a G jest grupą skończoną rzędu |G| = p^k m dla k ≥ 1 i p∤m, to istnieje podgrupa H \leq G mająca p^k elementów. Taka grupa nazywa się podgrupą Sylowa.

DOWÓD:

Niech G będzie grupą rzędu |G| = p^k m taką jak w twierdzeniu. Niech X będzie zbiorem wszystkich p^k elementowych podzbiorów grupy G. Możemy teraz określić działanie ψ grupy G na zbiór X. Jeśli H = $\{h_1,...,h_{p^k}\}\in X$, a $g\in G$, to

$$\psi(H) = \{gh_1, gh_2, ..., gh_{p^k}\}.$$

Wiemy, że

$$\begin{split} |H| &= \binom{p^k m}{p^k} = \frac{(p^k m)!}{(p^k m - p^k)!(p^k)!} = \\ &= \frac{p^k m(p^k m - 1)...(p^k m - p^k + 1)}{(p^k)!} = \prod_{i=1}^{p^k} p^k m - i + 1 \end{split}$$

6.2 Twierdzenie Cauchy'ego

Twierdzenie Cauchy'ego:

Jeżeli liczba pierwsza p dzieli rząd grupy G, to G zawiera element rzędu p.

6.3 p-grupy Sylowa

6.4 Twierdzenia Sylowa

7 KLASYFIKACJA MAŁYCH GRUP

7.1 Grupy rzędu ???

8 GRUPY TORSYJNE

- 8.1 Torsje
- 8.2 Grupy torsyjne
- 8.3 Skończone grupy abelowe

9 GRUPY ROZWIĄZALNE

- 9.1 Komutator i komutant
- 9.2 Grupy rozwiązalne
- 9.3 Rozszerzenia grup rozwiązalnych
- 9.4 Używanie twierdzeń Sylowa
- 9.5 Grupy nilpotentne

10 LEMAT O MOTYLU

- 10.1 Ciąg kompozycyjny w grupie
- 10.2 Lemat motyla
- 10.3 Twierdzenie Schreiera

11 GRUPY WOLNE

- 11.1 Grupy wolne
- 11.2 Własności
- 11.3 Przykłady

12 PIERŚCIENIE

- 12.1 Definicja
- 12.2 Dzielnik zera
- 12.3 Grupa elementów odwracalnych pierścienia
- 12.4 Dziedzina
- 12.5 Ciało