1 Определение полигона

Пусть $\Gamma \subset \mathbb{R}^2$ — замкнутая ломаная без самопересечений. $\Gamma = e_0 \cup e_1 \cup ... \cup e_{n-1}, e_i = [v_i, v_{i+1}], v_i = v_{n+i}$. Определим

функцию $isects(p, ray) \to \{0,1\}, \ p \in \mathbb{R}^2 \setminus \Gamma$ возвращающую четность числа пересечений луча ray с началом в точке p с Γ . При подсчете числа пересечений необходимо учитывать два особых случая:

- $ray \cup \{v_{i-1}v_iv_{i+1}\} = v_i$,
- $ray \cup \{v_{i-1}v_i...v_jv_{j+1}\} = e_i \cup ... \cup e_{j-1}.$

Рис. 1: особый случай пересечения первого типа

В случае (1) будем считать, что если вершины v_{i-1} , v_{i+1} лежат по одну сторону от луча ray (a), то пересечение в точке v_i не засчитывается, а если по разные (b), то засчитывается ровно одно.

Рис. 2: особый случай пересечения второго типа

Случай (2) на самом деле не сильно отличается от случая (1), если представить себе, что цепь $\{v_iv_{i+1}...v_j\}$ схлопывается в одну точку. Соответственно, если вершины v_{i-1} , v_{j+1} лежат по одну сторону от луча ray (a), то пересечение по цепи $\{v_iv_{i+1}...v_j\}$ не засчитывается, а если по разные (b), то засчитывается ровно одно.

Утверждение 1.1. Φ ункция isect(p, ray) зависит только от p.

Доказательство. Функция isect(p, ray) непрерывна по аргументу ray и принимает дискретные значения, значит она постоянна.

Определение 1.1. Задавшись замкнутой ломаной Γ , определим полигон P следующим образом.

$$int(P) \stackrel{\text{def}}{=} \{p \mid isect(p) = 1\},$$

$$ext(P) \stackrel{\text{def}}{=} \{p \mid isect(p) = 0\},$$

$$P \stackrel{\text{def}}{=} int(P) \cup \Gamma.$$

Интуитивно понятные термины границы, внутренности, связности полигона совпадают с тем, как они определяются в топологии.

Утверждение 1.2. $\Gamma - \mathit{граница} \ P.$

Доказательство. Напомним, что граница это множество точек, в каждой окрестности которых есть точки как принадлежащие P, так и нет.

Точка p лежащая строго внутри e_i — граничная. Рассмотрим окрестность p с радиусом $r = \min_{j \neq i} dist(e_j, p)$, внутри которой выберем две точки $p_1, p_2 \notin e_i$ так, чтобы p_1, p, p_2 лежали на одной прямой, причем точка p находилась между p_1 и p_2 . Ясно, что луч пущенный из p_1 в сторону p_2 имеет на одно пересечение с Γ больше, чем его подлуч с началом в p_2 , а значит, либо $p_1 \in P, p_2 \notin P$, либо наоборот.

Точка p совпадающая с вершиной v_i — граничная. Этот случай отличается от предыдущего тем, что $r = \min_{j \neq i-1, i} dist(e)$ и $p_1, p_2 \notin e_{i-1}, e_i$.

Точка p **не принадлежащая** Γ **не принадлежит границе.** Рассмотрим окрестность p с радиусом $r = \min dist(p, \Gamma) = \min_{i=1..n} dist(p, e_i)$ (из последнего равенства видно, что r > 0). Луч пущенный из всех точек этой окрестности, так чтобы он проходил через p пересекается с Γ такое же число раз, как и луч пущенный из p, а значит, все точки этой окрестности принадлежат P, если $p \in P$, и не принадлежат иначе.

Утверждение 1.3. int(P) - внутренность P.

Доказательство. Напомним, что внутренность это максимальное по включению открытое подмножество.

int(P) — **открыто.** Следует из последнего пункта доказательства предыдущего утверждения.

int(P) — максимальное из открытых. Так как точки Γ — граничные, они не могут входить во внутренность.

Утверждение 1.4. int(P), ext(P) - cesshu. $int(P) \cup ext(P) = \mathbb{R}^2 \setminus \Gamma - hecesshu$.

Доказательство. Напомним, что необходимым и достаточным условием связности множества в \mathbb{R}^2 , является то, что любые две точки множества можно соединить непрерывнм путем, принадлежащим множеству.

Существует путь между произвольными точками $p_1, p_2 \in int(P) (ext(P))$.

He существует пути между $p_1 \in int(P)$, $p_2 \in ext(P)$.

Зачем нужно столь формализованное опеределение полигона? Одно из применений — алгоритм определения принадлежности точки полигону, для которого обоснование корректности тривиально. Соответсвует ли полигон, определенный таким образом, тем свойствам, которые ожидаются? Давайте покажем парочку.

Утверждение 1.5. Выпуклый полигон (в смысле пересечение конечного числа полуплоскостей) — полигон в определенном выше смысле.

Доказательство. Как и все почти, доказывается по индукции.

Утверждение 1.6. Если вершины границы полигона конечны, то полигон ограничен.

2 Триангуляция полигона¹

Art Gallery Problem (точная формулировка в Wikipedia). Дана картинная галерея в форме полигона, необходимо расставить в ней минимальное возможное число охранников так, чтобы каждая точка галереи была под наблюдением.

Идея решения. Понятно, что для любого выпуклого полигона (в частности, треугольника) хватит одного охранника, расположенного в любой точке, к примеру, в вершине. Поэтому, мы бы решили задачу, если бы нам удалось разбить исходный полигон на треугольники, и расставить охранников в некоторые из вершин получившихся треугольников так, чтобы каждому треугольнику была инцидентна хотя бы одна вершина с охранником. Скажем, если бы вершины треугольников были покрашены в три цвета так, чтобы вершины каждого трегольника были разных цветов, то ответом могли бы стать все вершины одного из цветов. Если множество вершин треугольника совпадает с множеством вершин полигона (пусть его мощность n), то по принципу Дирихле мощность ответа не превосходит $\lfloor n/3 \rfloor$.

С другой стороны существует примеры полигонов со сколько угодно большим числом вершин n, для которых $\lfloor n/3 \rfloor$ — нижняя граница ответа.

Для формализации разбиения на полигона на треугольники трианугляции.

Определение 2.1. Диагональ полигона — отрезок, концы которого — вершины полигона, а внутрении точки принадлежат внутренности полигона.

Будем говорить, что две диагонали не пересекаются, если не пересекаются множества их внутренних точек.

Определение 2.2. Триангуляция полигона — максимальное по включению множество попарно непересекающихся диагоналей.

Утверждение 2.1. Если число вершин полигона больше трех, он имеет диагональ.

Утверждение 2.2. Диагональ разбивает полигон. А именно, пусть полигон P имеет границу $\Gamma = \{v_0v_1v_2...v_{n-1}v_n\}$, u_iv_j его диагональ, обозначим как P_1 полигон c границей $\Gamma_1 = \{v_iv_{i+1}...v_jv_i\}$, как P_2 полигон c границей $\Gamma_2 = \{v_jv_{j+1}...v_iv_j\}$. Тогда $P_1 \cup P_2 = P$, $P_1 \cap P_2 = v_iv_j$.

Утверждение 2.3. То что мы определили как "триангуляция" названо так неслучайно, а именно, триангуляция разбивает полигон на треугольники.

Последнее утверждение кажется очевидным, и действительно, с помощью утверждений (2.1) и (2.2) его несложно доказать индукцией по числу вершин: база — треугольник, переход осуществляется разбиением полигона на два с помощью какой-нибудь диагонали. Но оно нетривиально и, не определяя полигон формально, доказать его без рукомахательства непросто. Чтобы продемонстрировать это, попробуйте доказать что любой политоп триангулируем, то есть разбивается на тетраэдры (подсказка: это неправда).

Для раскраски вершин, рассмотрим *двойственный граф триангуляции* — граф, вершинам которого соответствуют треугольники, и две вершины смежны тогда и только тогда, когда треугольники имеют общее ребро (диагональ полигона).

Утверждение 2.4. Граф двойственный триагуляции полигона есть дерево.

Утверждение 2.5. Определенная выше (2) раскраска триангуляции существует.

Доказательство. Докажем индукцией по n — числу вершин полигона. База — n=3 — очевидна. Для n>3 рассмотрим произвольную триангуляции, в двойственном графе найдется лист, будем называть соответствующий ему треугольник ухом. Диагональ, соответсвующая инцидентному листу ребру, разбивает полигон на ухо и полигон с n-1-й вершиной, который мы по индукционному предположению умеем красить. Таким образом, осталось покрасить только одну вершину полгона, которая принадлежала уху, что мы, очевидно, сможем сделать, так как ее степень — 2.

 $^{^{1}}$ Эта тема хорошо изложена у О'Рурка