1. BLOCK DIAGRAM

2. POWER FLOW

3. POWER ON SEQUENCE

4. Timing Diagram for G3 to S5

Timing Diagram for S5 to S0/M0

5. Frequency Flow

6. Socket reflow profile

Profile Feature	SMD Pb-Free Assembly	DIP Pb-Free Assembly	SMT Component Vendor Spec	DIP Component Vendor Spec	
Preheat/Soak Temperature Min (Tsmin) Temperature Max (Tsmax)	150 °C 200 °C 120 seconds	80 °C 135 °C 120 seconds	150 °C 200 °C need endure 120 seconds	135 °C need endure 80 seconds	
Time (ts) from (Tsmin to Tsmax)					
Ramp-up rate (TL to Tp)	3 °C/second max.	3 °C/second max.	need endure 3 °C/second max.	need endure3 °C/second max.	
Liquidous temperature (TL)	217 °C	NA	217 °C		
Time (tL) maintained above TL	90 seconds	INA	need endure 90 seconds	NA	
Peak package body temperature (Tp)	260 °C	270 °C	260 °C	270 °C	
Time (tp)* within 5 °C of the specified classification temperature (Tc), see	10* seconds	6* seconds	need endure 10* seconds	need endure 6* seconds	
Figure 1-1 .					
Ramp-down rate (Tp to TL)	6 °C/second max.	6 °C/second max.	need endure 6 °C/second max.	need endure 6 °C/second max.	
Time 25 °C to peak temperature	8 minutes max.	8 minutes max.	8 minutes max.	8 minutes max.	

Note 1: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within ± 2 °C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures refer to JEP140 for recommended thermocouple use.

- 2. DIP Plastic heat resistance capability
- (1) Direct contact 270°C, 6 seconds
 (2) In-direct contact 230°C, 5 seconds
- 3) no contact 130°C, 5 seconds

7. Lead-Free Rework Thermo profile Graphic for BGA & Chipset

Except for body temp, all temperatures are measured with thermo couples inside solder joints, for better accuracy

Primary Factors for Successful Rework:

- •Flux formulation and solder paste formulation and volume
- A capable thermal reflow profile
- Proper PCB pad solder preparation/wicking (clean-up of the residual solder from the PCB pads)

Caution: Always remove batteries and thermal solutions following the system design disassembly process steps prior to BGA rework to avoid damaging the BGA.

View this Intel®BGA / Socket Rework Video (10 minutes in length):

http://link.brightcove.com/services/player/bcpid1409165005001?bckey=AQ~~,AAA AqwZd9wk~,X1Exj3sUi-03b71FGkEmVWbi4T4yGcor&bctid=1519232885001

8. MB Baking Time: 120 °C, 8 hours

BGA Baking Time:

5.2 Floor Life The floor life of SMDs per Table 5-1 will be modified by environmental conditions other than 30 °C/60% RH. Refer to Clause 7 to determine maximum allowable time before rebake would be necessary. If partial lots are used, the remaining SMD packages must be resealed or placed in safe storage within one hour of bag opening (see 5.3). If one hour exposure is exceeded, refer to 4.1.

Table 5-1 Moisture Classification Level and Floor Life per J-STD-020

Level	Floor Life (out of bag) at factory ambient £ 30 °C/60% RH or as stated
1	Unlimited at £ 30 °C/85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label

Supplier Bake: Default Baking Times Used Prior to Dry-Pack that were Exposed to Conditions £ 60% RH ("MET" = 24 h)

Package Body	Level	Bake @ 125° C	Bake @ 150° C
Thickness		+10/-0 ° C	+10/-0 ° C
≤ 1.4 mm	2	7 hours	3 hours
	2a	8 hours	4 hours
	3	16 hours	8 hours
	4	21 hours	10 hours
	5	24 hours	12 hours
	5a	28 hours	14 hours
> 1.4 mm	2	18 hours	9 hours
≤ 2.0 mm	2a	23 hours	11 hours
	3	43 hours	21 hours
	4	48 hours	24 hours
	5	48 hours	24 hours
	5a	48 hours	24 hours
> 2.0 mm	2	48 hours	24 hours
≤ 4.5 mm	2a	48 hours	24 hours
	3	48 hours	24 hours
	4	48 hours	24 hours
	5	48 hours	24 hours
	5a	48 hours	24 hours

Note 1: If baking of packages > 4.5 mm thick is required see appendix B.

Note 2: The bake times specified are conservative for packages without blocking planes or stacked die. For a stacked die or BGA package with internal planes that impede moisture diffusion the actual bake time may be longer than that required in Table 4-2 if packages have had extended exposure to factory ambient before bake. Also the actual bake time may be reduced if technically justified. The increase or decrease in bake time shall be determined using the procedure in JEDEC JESD22-A120 (i.e., < 0.002 % weight loss between successive readouts) or per critical interface concentration calculations.

9. Voltage Measure Point

Voltage Measure Point				
Station	Net Name	Diode resistance		
PR308	+3VSB_ATX	260		
MU3009	+VCCCMP	264		
6MR4	+5VSB	508		
PL1003	+VCCGT	437		
PL401	+VCCSA	492		
EATX12V	12V_CPU	515		
TPM	+3VSB	305		
PQ607	+5V_DUAL_USBKB	566		
PU202	+VTTDDR	417		
EATXPWR	+5VSB_ATX	536		
PQ602	+5VDUAL	523		
EATXPWR	+12V	521		
EATXPWR	+5V	425		
EATXPWR	+3V	200		

10.Signal Measure Point

10.5ignai ivic		Signal Measure Point	
Station	Sequence	Net Name	Diode resistance
SR120	1	S_RTCRST#	781
SR121	1	S_SRTCRST#	781
NA	2	AC Power Switch ON	NA
6MR4	3	+5VSB	508
TPM	3	+3VSB	305
SR142	3.1	S_DPWROK	28
SR142	4	O_RSMRST#	28
PANEL	5	O_PWRBTN#IN	560
SC29	6	O_PWRBTN#	458
SD5	7/4.2	S_SLP_S3#	495
NA	7	S_SLP_A#	NA
NA	7.1	S_SLP_LAN#	NA
PQ3011	8/4.1	S_SLP_S4#	500
OR211	9	O_PSON#	551
EATXPWR		12V	521
EATXPWR	10	5V	425
EATXPWR		3V	200
EATXPWR	11	B_ATX_PWROK	570
SQ40	12	O_PWROK	35
SR75	13	H_PWRGD	441
HR210	14	H_VIDDATA	361
PR109	14	H_VIDCLK	362
PC184	15	+VCORE	420
PQ3016	16	VRMPWRGD_5	488
PQ9651	17	S_PLTRST#	440
HQ8	18	H_CPURST#	389
XC72		O_PCIRST#_PCIEX16_1	546
XC79	19	O_PCIRST#_PCIEX16_2	546
TPM		O_PCIRST#_PCIEX16_3	546