DM bis nº10

Sous-groupes discrets de \mathbb{R}^n

On se propose d'établir quelques propriétés des sous-groupes discrets des espaces euclidiens. La première partie est consacrée aux sous-groupes de \mathbf{R} , la seconde au cas général de \mathbf{R}^n .

Dans tout le problème, on désigne par n un entier strictement positif, par \mathbf{E} l'espace \mathbf{R}^n , par $(\cdot \mid \cdot)$ son produit scalaire usuel et par $\|\cdot\|$ la norme correspondante.

Commençons par une définition:

Un sous-ensemble L de $\mathbf E$ est dit discret si tout élément x de L est isolé, i.e. admet un voisinage V dans $\mathbf E$ tel que $L \cap V = \{x\}$;

Préambule

Montrer qu'un groupe abélien G est isomorphe à un groupe \mathbf{Z}^m si et seulement s'il admet une \mathbf{Z} -base, c'est-à-dire une famille (e_1,\ldots,e_m) telle que tout élément g de G s'écrive d'une façon unique sous la forme $g=\sum_{i=1}^m k_i e_i$, avec $k_i \in \mathbf{Z}$.

Première partie

- 1. Démontrer les assertions suivantes :
 - (a) Un sous-groupe L de \mathbf{E} est discret si et seulement si l'élément 0 est isolé.
 - (b) Tout sous-groupe discret L de ${\bf E}$ est fermé dans ${\bf E}$.
 - (c) Les sous-groupes discrets de **R** sont exactement les sous-ensembles de la forme $a\mathbf{Z}$ avec $a \in [0, +\infty[$.
- 2. Déterminer les sous-groupes discrets du groupe multiplicatif $(\mathbf{R}_{+}^{*}, \times)$.
- 3. On désigne par α un nombre réel > 0 et par L le sous-groupe de \mathbf{R} , ensemble des réels $m + n\alpha$ où $n, m \in \mathbf{Z}$. Montrer que L est discret si et seulement si α est rationnel. Construire un sous-groupe discret L de \mathbf{R}^2 tel que sa première projection sur \mathbf{R} ne soit pas discrète.
- 4. Montrer qu'une application f de R dans R continue admettant 1 et $\sqrt{3}$ comme périodes est constante.

Deuxième partie

1. On se propose ici de démontrer que tout sous-groupe discret L de \mathbf{E} est isomorphe à un sous-groupe d'un groupe \mathbf{Z}^m . On désigne par \mathbf{F} le sous-espace vectoriel de \mathbf{E} engendré par L, par m sa dimension, par (a_1, \ldots, a_m) une base de \mathbf{F} contenue dans L, et par L' le sous-groupe de L engendré par cette base 1 . Enfin on pose

$$P = L \cap \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_i \in [0, 1[\right\}.$$

- (a) Vérifier que P est un ensemble fini.
- (b) Étant donné un élément x de L, construire un couple $(y,z) \in L' \times P$ tel que l'on ait x = y + z et démontrer son unicité.
- (c) Soit encore x un élément de L; écrivant $kx = y_k + z_k$ (pour k entier > 0), montrer qu'il existe un entier d > 0 tel que l'on ait $dx \in L'$.
- (d) Conclure.
- 2. Dans cette question, L est un sous-groupe de \mathbf{Z}^m . Ses éléments seront notés $x=(x_1,x_2,\ldots,x_m)$ et l'on posera $\pi(x)=x_m$.
 - (a) Montrer qu'il existe un entier $k \geq 0$ et un élément x^0 de L tel que l'on ait

$$\pi(L) = k\mathbf{Z} = \pi(x^0)\mathbf{Z}.$$

- (b) On suppose ici $\pi(L)$ non réduit à $\{0\}$; étant donné un élément x de L, construire un couple $(p, \tilde{x}) \in \mathbf{Z} \times L$ tel que l'on ait $\tilde{x}_m = 0$ et $x = px^0 + \tilde{x}$; démontrer son unicité.
- (c) En déduire que tout sous-groupe discret de ${\bf E}$ est isomorphe à un groupe ${\bf Z}^r$.
- 3. On suppose ici n=2 et on considère deux **Z**-bases (u_1,u_2) , (v_1,v_2) d'un même sous-groupe discret L de **E**. Comparer les aires des parallélogrammes construits respectivement sur (u_1,u_2) et (v_1,v_2) .

^{1.} L' est donc l'ensemble des éléments de E de la forme : $\sum_{i=1}^{m} k_i a_i$, avec $k_1, \ldots k_m$ des entiers.

- 4. Dans cette question, on désigne par B la base canonique de \mathbf{E} et par $GL(\mathbf{E})$ le groupe des automorphismes linéaires de \mathbf{E} . Pour toute partie X de \mathbf{E} , on note L(X) le sous-groupe de \mathbf{E} engendré par X.
 - Soit G un sous-groupe fini de $\mathcal{GL}(\mathbf{E})$ tel que les matrices des éléments de G dans la base B soient à coefficients rationnels. On note GB l'ensemble des vecteurs g(x) où $g \in G$ et $x \in B$.
 - (a) Montrer qu'il existe un entier d > 0 tel que l'on ait $dL(GB) \subset L(B)$.
 - (b) Démontrer l'existence d'une base de $\bf E$ dans laquelle les matrices des éléments de G sont à coefficients entiers.

Troisième partie

1. On désigne par O(E) le groupe des automorphismes linéaires orthogonaux de E (ensemble des $u \in GL(E)$ tels que ||u(x)|| = ||x|| pour tout x de E), et par AO(E) l'ensemble des transformationsg de E de la forme

$$g: x \mapsto u(x) + a$$
, où $u \in O(E)$ et $a \in E$;

on écrit alors g = (u, a). On note e l'élément neutre de O(E).

- 2. Montrer que O(E) est compact.
- 3. (a) Vérifier que AO(E) est un groupe, écrire sa loi de groupe, préciser son élément neutre, puis l'inverse d'un élément (u, a).
 - (b) Calculer $(u, a)(e, b)(u, a)^{-1}$.
- 4. On note ρ le morphisme AO(E) > O(E) défini par $\rho(u,a) = u$. On fixe un sous-groupe discret L de E qui engendre linéairement E et on note G le sous-groupe de AO(E) formé des éléments g tels que g(L) = L.
 - (a) Vérifier que, si un élément (u, a) de AO(E) appartient à G, il en est de même de (u, 0) et (e, a).
 - (b) Montrer que $\rho(G)$ est fini.
 - (c) Déterminer G dans le cas où n=2 et où L est l'ensemble des couples (x_1,x_2) tels que $x_1\in 2\mathbb{Z}, x_2\in \mathbb{Z}$.

* *

*

Indications pour le DM bis n°10 Première partie

- 1. (a) Si 0 est isolé alors il existe un voisinage V de 0 tel que $L \cap V = \{0\}$. Pour tout élément x de L considérer son voisinage, x + V, pour montrer qu'il est isolé...
 - (b) Soit x_n une suite d'éléments de L (supposé discret) qui converge. On montre alors qu'elle est stationnaire : on peut considérer la suite $(x_{n+1}-x_n)_{n\in\mathbb{N}}$, ou dire qu'à partir d'un certain rang $n_0, x_n-x_{n_0}\in V...$
 - (c) Si L n'est pas trivial considérer la borne inférieure a de $L \cap [\eta, +\infty[$, où η est tel que $]-\eta, \eta[\subset V.$ a est dans L car...
- 2. Penser au logarithme, c'est bien connu c'est un isomorphisme du groupe (\mathbf{R}_+^*, \times) sur le groupe $(\mathbf{R}, +)$, de surcroît c'est un homéomorphisme, ce qui est bien agréable pour la conservation du caractère discret...

3.

4.

Seconde partie

- 1. (a) Supposons a contrario P infini. On peut construire une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments deux à deux distincts de P. Cette suite va contredire le caractère discret de L. En effet elle est donc...
 - (b) Décomposer soigneusement chaque coordonnée x_i de x dans la base (a_1,a_2,\ldots,a_n) ...
 - (c) L'ensemble P est fini donc les éléments $z_k, k \in \mathbf{N}^*$ ne sont pas tous distincts...
 - (d) Trouver d'abord un entier $d^* > 0$ qui marche pour tout les élément de $P : d^*P \subset L'$. On en déduit, d'après (b) que $L \subset \frac{1}{d}L'$. reste à vérifier que $\frac{1}{d}L'$ est un sous-groupe isomorphe \mathbf{Z}^m
- 2. (a) $\pi(L)$ est un sous groupe de **Z**, il est de la forme...
 - (b) Posons $p := \pi(x)$. $x = px^{o} + (x px^{o})$, le reste en découle mécaniquement...
 - (c) Récurrer, récurrer!
- 3. L'aire du parallélogramme construit sur des vecteurs x et y est $|\det_B(x,y)|$. (u_1,u_2) et (v_1,v_2) sont des bases (au sens des espaces vectoriels), pourquoi? et on a la formule :

$$\det_{B}(u_1, u_2) = \det_{B}(v_1, v_2) \operatorname{Det} \mathcal{P}_{(v_1, v_2); (u_1, u_2)}$$

Or la matrice de passage $\mathcal{P}_{(v_1,v_2);(u_1,u_2)}$ est inversible et ses coefficients sont des éléments de ... C'est fini!

4. ah!