

Designation

Fraxinus americana (T)

Typical uses

handles; oars; vehicle parts; baseball bats & other sporting & athletic

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

VVOOQ	100	%

Price

Price	* 0.912	- 1.22	USD/lb	
-------	---------	--------	--------	--

Physical properties

Density	0.0217	-	0.0267	lb/in^3		
---------	--------	---	--------	---------	--	--

wechanical properties				
Young's modulus	* 0.264	-	0.294	10^6 psi
Yield strength (elastic limit)	* 0.505	-	0.618	ksi
Tensile strength	0.841	-	1.03	ksi
Elongation	* 0.94	-	1.15	% strain
Compressive strength	1.04	-	1.28	ksi
Flexural modulus	0.239	-	0.268	10^6 psi
Flexural strength (modulus of rupture)	* 0.841	-	1.03	ksi
Shear modulus	* 0.0273	-	0.0374	10^6 psi
Shear strength	* 5.16	-	6.33	ksi
Rolling shear strength	* 0.191	-	0.576	ksi
Bulk modulus	* 0.135	-	0.151	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	5.28	-	6.46	HV
Hardness - Brinell	* 3.55	-	4.35	ksi
Hardness - Janka	1.19e3	-	1.45e3	lbf
Fatigue strength at 10^7 cycles	* 0.252	-	0.309	ksi

Ash (fraxinus americana) (t)

BEDUPIACK							
Mechanical loss coefficient (tan delta)	* 0.018	} -	0.022				
Differential shrinkage (radial)	* 0.17	-	0.2	%			
Differential shrinkage (tangential)	* 0.28	-	0.34	%			
Radial shrinkage (green to oven-dry)	4.4	-	5.4	%			
Tangential shrinkage (green to oven-dry)	7	-	8.6	%			
Volumetric shrinkage (green to oven-dry)	12	-	14.6	%			
Work to maximum strength	* 0.124	-	0.152	ft.lbf/in^3			
Impact & fracture properties							
Fracture toughness	* 0.451	-	0.551	ksi.in^0.5			
Thermal properties							
Glass temperature	171	-	216	°F			
Maximum service temperature	248	-	284	°F			
Minimum service temperature	* -99.4	-	-9.4	°F			
Thermal conductivity	0.075	51 -	0.0982	BTU.ft/hr.ft^2.°F			
Specific heat capacity	0.396	3 -	0.408	BTU/lb.°F			
Thermal expansion coefficient	* 17	-	22.9	µstrain/°F			
Electrical properties							
Electrical properties Electrical resistivity	* 8.546	e13 -	1.28e14	µohm.cm			
Dielectric constant (relative permittivity)	* 3.77	-	4.61	F • · · · · · · · · · · · · · · · · · ·			
Dissipation factor (dielectric loss tangent)	* 0.052	2 -	0.063				
Dielectric strength (dielectric breakdown)	* 25.4	-		V/mil			
Magnetic properties Magnetic type	Non-	magneti	C				
iviagnetic type	NOTE	nagneti	C				
Optical properties							
Transparency	Opac	lue					
Bio-data							
Food contact	Yes						
Restricted substances risk indicators							
RoHS (EU) compliant grades?	✓						
Durability							
Water (fresh)	Limit	ed use					
Water (salt)		ed use					
Weak acids		ed use					
Strong acids			e				
- · · · · · · · · · · · · · · · · · · ·	Sildo	Unacceptable					

Ash (fraxinus americana) (t)

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones,	2008)); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 253	-	280	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0441	-	0.0488	lb/lb
Fine machining energy (per unit wt removed)	* 692	-	765	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.121	-	0.133	lb/lb
Grinding energy (per unit wt removed)	* 1.18e3	-	1.3e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.206	-	0.228	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Ash (fraxinus americana) (t)

Links	
ProcessUniverse	
Reference	
Shape	

Designation

Fraxinus excelsior (T)

Typical uses

Sports equipment; tool handles; wheelwright's work; aircraft; bent

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O	

Material family	Natural				
Base material	Wood (hardwood)				
Renewable content	100	%			

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.912	- 1.22	USD/lb	
-------	---------	--------	--------	--

Physical properties

mechanical properties				
Young's modulus	* 0.286	-	0.319	10^6 psi
Yield strength (elastic limit)	* 0.714	-	0.87	ksi
Tensile strength	1.19	-	1.45	ksi
Elongation	* 1.23	-	1.5	% strain
Compressive strength	1.41	-	1.72	ksi
Flexural modulus	0.26	-	0.29	10^6 psi
Flexural strength (modulus of rupture)	* 1.19	-	1.45	ksi
Shear modulus	* 0.0296	-	0.0406	10^6 psi
Shear strength	* 4.63	-	5.64	ksi
Rolling shear strength	* 0.171	-	0.512	ksi
Bulk modulus	* 0.146	-	0.164	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.5			
Hardness - Vickers	* 5.08	-	6.21	HV
Hardness - Brinell	4.96	-	6.06	ksi
Hardness - Janka	* 1.14e3	-	1.4e3	lbf
Fatigue strength at 10^7 cycles	* 0.357	-	0.435	ksi

Ash (fraxinus excelsior) (t)

Mechanical loss coefficient (tan delta)	* (0.017	-	0.022		
Differential shrinkage (radial)	().17	-	0.21	%	
Differential shrinkage (tangential)	().27	-	0.38	%	
Radial shrinkage (green to oven-dry)	4	4.6	-	5	%	
Tangential shrinkage (green to oven-dry)	7	7.4	-	9	%	
Volumetric shrinkage (green to oven-dry)	•	12.8	-	13.6	%	
Work to maximum strength	* (0.0665	-	0.081	ft.lbf/in^3	
Impact & fracture properties						
Fracture toughness	(0.764	-	0.933	ksi.in^0.5	
Thermal properties						
Glass temperature	,	171	-	216	°F	
Maximum service temperature	2	248	-	284	°F	
Minimum service temperature	* _	99.4	-	-9.4	°F	
Thermal conductivity	(0.0809	-	0.0924	BTU.ft/hr.ft^2.°F	
Specific heat capacity	(0.396	-	0.408	BTU/lb.°F	
Thermal expansion coefficient	* /	17.3	-	23.2	μstrain/°F	
Electrical properties						
Electrical resistivity	* 2	2.1e14	-	7e14	µohm.cm	
Dielectric constant (relative permittivity)	* 3	3.85	-	4.71		
Dissipation factor (dielectric loss tangent)	* (0.053	-	0.065		
Dielectric strength (dielectric breakdown)	* 2	25.4	-	50.8	V/mil	
Magnetic properties						
Magnetic type	1	Non-mag	netic	:		
Optical properties		3				
Transparency		Opaque				
Bio-data						
Food contact	`	Yes				
Restricted substances risk indicators						
RoHS (EU) compliant grades?		✓				
Durability						
Water (fresh)	l	_imited ι	ıse			
Water (salt)	L	Limited use				
Weak acids	l	_imited ι	ıse			
Strong acids	l	Unacceptable				
	•					

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					
0.5 MI/kg (Vimonos, 2006): 2 MI/kg (Vimonos, 2006): 0.1 MI/kg (Hammond and	Innac 2009): 1	1161	II/ka /Hubbar	d and Powe 20	10). 22 7

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 268	-	296	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0468	-	0.0517	lb/lb
Fine machining energy (per unit wt removed)	* 844	-	933	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.147	-	0.163	lb/lb
Grinding energy (per unit wt removed)	* 1.48e3	-	1.64e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.259	-	0.286	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Ash (fraxinus excelsior) (t)

inks	
rocessUniverse	
eference	
hape	
nape	

Designation

Fraxinus nigra (T)

Typical uses

Cooperage; furniture; shipping

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.912	- 1.22	USD/lb	
-------	---------	--------	--------	--

Physical properties

Density	0.0177	- 0.0217	lb/in^3	
---------	--------	----------	---------	--

wechanical properties				
Young's modulus	* 0.144	-	0.161	10^6 psi
Yield strength (elastic limit)	* 0.374	-	0.461	ksi
Tensile strength	0.624	-	0.769	ksi
Elongation	* 1.28	-	1.56	% strain
Compressive strength	0.685	-	0.835	ksi
Flexural modulus	0.131	-	0.146	10^6 psi
Flexural strength (modulus of rupture)	* 0.624	-	0.769	ksi
Shear modulus	* 0.0148	-	0.0205	10^6 psi
Shear strength	* 4.24	-	5.16	ksi
Rolling shear strength	* 0.157	-	0.468	ksi
Bulk modulus	* 0.074	-	0.0827	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.5			
Hardness - Vickers	3.4	-	4.16	HV
Hardness - Brinell	* 2.76	-	3.38	ksi
Hardness - Janka	764	-	935	lbf
Fatigue strength at 10^7 cycles	* 0.187	-	0.231	ksi

Ash (fraxinus nigra) (t)

Mechanical loss coefficient (tan delta)	* 0.024 - 0.	.03	
Differential shrinkage (radial)	* 0.13 - 0.	.16	%
Differential shrinkage (tangential)	* 0.22 - 0.	.27	%
Radial shrinkage (green to oven-dry)	4.5 - 5	.5	%
Tangential shrinkage (green to oven-dry)	7 - 8.	.6	%
Volumetric shrinkage (green to oven-dry)	13.7 - 10	6.7	%
Work to maximum strength	* 0.111 - 0.	.137	ft.lbf/in^3
Impact & fracture properties			
Fracture toughness	* 0.333 - 0.	.407	ksi.in^0.5
Thermal properties			
Glass temperature	171 - 2	16	°F
Maximum service temperature	248 - 28	84	°F
Minimum service temperature	* -99.49	9.4	°F
Thermal conductivity	* 0.048 - 0.	.0584	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396 - 0.	.408	BTU/lb.°F
Thermal expansion coefficient	* 15.2 - 20	0.8	μstrain/°F
Electrical properties			
Electrical resistivity	* 2.1e14 - 7	e14	μohm.cm
Dielectric constant (relative permittivity)	* 3.22 - 3.	.93	
Dissipation factor (dielectric loss tangent)	* 0.042 - 0.	.051	
Dielectric strength (dielectric breakdown)	* 25.4 - 50	0.8	V/mil
Magnetic properties			
Magnetic type	Non-magnetic		
Optical properties			
Transparency	Opaque		
	2 1 2 4 2		
Bio-data Food contact	Voo		
1 OOU COIRACT	Yes		
Restricted substances risk indicators			
RoHS (EU) compliant grades?	✓		
Durability			
Darabinty			
Water (fresh)	Limited use		
•	Limited use		
Water (fresh)			

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	ond and Jones,	2008)); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 243	-	269	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.0469	lb/lb
Fine machining energy (per unit wt removed)	* 597	-	660	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.104	-	0.115	lb/lb
Grinding energy (per unit wt removed)	* 990	-	1.09e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.173	-	0.191	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Ash (fraxinus nigra) (t)

Links	
ProcessUniverse	
Reference	
Shape	

Designation

Fraxinus pennsylvanica (T)

Typical uses

Veneer for furniture; paneling; wire-bound

Cellulose/Hemicellulose/Lignin/12%H2O

Composition overview

Compositional summary

Material family	Natural				
Base material	Wood (hardwood)				
Renewable content	100	%			

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price * 0.912	-	1.22	USD/lb	
---------------	---	------	--------	--

Physical properties

Density	0.0202	-	0.0249	lb/in^3	
---------	--------	---	--------	---------	--

Mechanical properties				
Young's modulus	* 0.215	-	0.239	10^6 psi
Yield strength (elastic limit)	* 0.374	-	0.461	ksi
Tensile strength	0.624	-	0.769	ksi
Elongation	* 0.86	-	1.05	% strain
Compressive strength	1.18	-	1.44	ksi
Flexural modulus	0.196	-	0.218	10^6 psi
Flexural strength (modulus of rupture)	* 0.624	-	0.769	ksi
Shear modulus	* 0.0222	-	0.0305	10^6 psi
Shear strength	* 5.16	-	6.33	ksi
Rolling shear strength	* 0.191	-	0.576	ksi
Bulk modulus	* 0.11	-	0.123	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	4.8	-	5.87	HV
Hardness - Brinell	* 3.34	-	4.08	ksi
Hardness - Janka	1.08e3	-	1.32e3	lbf
Fatigue strength at 10^7 cycles	* 0.187	-	0.231	ksi

Ash (fraxinus pennsylvanica) (t)

BIEDOFIACK				
Mechanical loss coefficient (tan delta)	* 0.019	-	0.025	
Differential shrinkage (radial)	* 0.15	-	0.19	%
Differential shrinkage (tangential)	* 0.26	-	0.31	%
Radial shrinkage (green to oven-dry)	4.1	-	5.1	%
Tangential shrinkage (green to oven-dry)	6.4	-	7.8	%
Volumetric shrinkage (green to oven-dry)	11.3	-	13.8	%
Work to maximum strength	* 0.1	-	0.123	ft.lbf/in^3
mpact & fracture properties				
Fracture toughness	* 0.407	-	0.497	ksi.in^0.5
Thermal properties				
Glass temperature	171	-	216	°F
Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F
Thermal conductivity	* 0.055	5 -	0.0676	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	* 16.3	-	22.1	μstrain/°F
Electrical properties Electrical resistivity	* 2.1e1	4 -	7e14	µohm.cm
·	* 3.57		4.36	μοτιπι.cm
Dielectric constant (relative permittivity) Dissipation factor (dielectric loss tangent)	* 0.048	-	0.059	
Dielectric strength (dielectric breakdown)	* 25.4		50.8	V/mil
Selectific Strength (dielectric breakdown)	25.4		30.0	V/IIIII
Magnetic properties				
Magnetic type	Non-n	nagneti	С	
Optical properties	Ones			
Transparency	Opaq	ue		
Bio-data				
Food contact	Yes			
Restricted substances risk indicators				
RoHS (EU) compliant grades?	✓			
, -, 1 g	•			
Durability				
Water (fresh)	Limite	ed use		
Water (salt)	Limite	ed use		
Weak acids	Limite	ed use		
Strong acids	Unaco	ceptabl	е	

Ash (fraxinus pennsylvanica) (t)

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					
0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and	Jones. 2008): 1	1.6 M	J/kg (Hubbar	d and Bowe. 2010): 23.7	

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 263	-	291	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0459	-	0.0508	lb/lb
Fine machining energy (per unit wt removed)	* 795	-	879	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.139	-	0.153	lb/lb
Grinding energy (per unit wt removed)	* 1.39e3	-	1.53e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.242	-	0.267	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Ash (fraxinus pennsylvanica) (t)

Links	
ProcessUniverse	
Reference	
Shape	

Designation

Fraxinus quadrangulata (T)

Typical uses

Veneer for furniture; paneling; wire-bound

Cellulose/Hemicellulose/Lignin/12%H2O

Composition overview

Compositional summary

Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.912	- 1.22	USD/lb	
-------	---------	--------	--------	--

Physical properties

Density	0.021	-	0.0257	lb/in^3		
---------	-------	---	--------	---------	--	--

wechanical properties				
Young's modulus	* 0.238	-	0.267	10^6 psi
Yield strength (elastic limit)	* 0.374	-	0.453	ksi
Tensile strength	* 0.624	-	0.754	ksi
Elongation	* 0.76	-	0.93	% strain
Compressive strength	1.28	-	1.56	ksi
Flexural modulus	0.216	-	0.242	10^6 psi
Flexural strength (modulus of rupture)	* 0.624	-	0.754	ksi
Shear modulus	* 0.0245	-	0.0339	10^6 psi
Shear strength	* 5.48	-	6.7	ksi
Rolling shear strength	* 0.203	-	0.609	ksi
Bulk modulus	* 0.122	-	0.136	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	* 4.43	-	5.42	HV
Hardness - Brinell	* 3.32	-	4.06	ksi
Hardness - Janka	* 996	-	1.22e3	lbf
Fatigue strength at 10^7 cycles	* 0.187	-	0.226	ksi

Ash (fraxinus quadrangulata) (t)

FEDUPICK						
Mechanical loss coefficient (tan delta)	* 0.019	-	0.024			
Differential shrinkage (radial)	* 0.16	-	0.2	%		
Differential shrinkage (tangential)	* 0.27	-	0.33	%		
Radial shrinkage (green to oven-dry)	3.5	-	4.3	%		
Tangential shrinkage (green to oven-dry)	5.9	-	7.2	%		
Volumetric shrinkage (green to oven-dry)	10.5	-	12.9	%		
Work to maximum strength	* 0.108	-	0.132	ft.lbf/in^3		
Impact & fracture properties						
Fracture toughness	* 0.429	-	0.524	ksi.in^0.5		
Thermal properties						
Glass temperature	171	-	216	°F		
Maximum service temperature	248	-	284	°F		
Minimum service temperature	* -99.4	-	-9.4	°F		
Thermal conductivity	* 0.0578	-	0.0705	BTU.ft/hr.ft^2.°F		
Specific heat capacity	0.396	-	0.408	BTU/lb.°F		
Thermal expansion coefficient	* 16.7	-	22.5	μstrain/°F		
Electrical properties						
Electrical resistivity	* 2.1e14	-	7e14	µohm.cm		
Dielectric constant (relative permittivity)	* 3.67	-	4.49	<u>'</u>		
Dissipation factor (dielectric loss tangent)	* 0.05	-	0.061			
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil		
Magnatia proportica						
Magnetic properties Magnetic type	Non-mac	Non-magnetic				
inagricus type	Non mag	Non-magnetic				
Optical properties						
Transparency	Opaque					
Bio-data						
Food contact	Yes					
Restricted substances risk indicators						
RoHS (EU) compliant grades?	✓					
Durability						
Water (fresh)	Limited ι	ıse				
Water (salt)	Limited ι	Limited use				
Weak acids	Limited ι	Limited use				
Strong acids	Unaccep	Unacceptable				

Ash (fraxinus quadrangulata) (t)

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	ond and Jones,	2008)); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 266	-	294	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0465	-	0.0513	lb/lb
Fine machining energy (per unit wt removed)	* 825	-	912	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.144	-	0.159	lb/lb
Grinding energy (per unit wt removed)	* 1.45e3	-	1.6e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.252	-	0.279	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Ash (fraxinus quadrangulata) (t)

inks	
rocessUniverse	
eference	
nape	