Chemistry Lab Report

Exp No: 01

Exp Name: Standardization of HCl using 100mL of 0.1(M) Na_2CO_3 .

Equipments: 1. Burette(500mL) 2. Conical flask(250mL) 3. Funnel 4. Wash bottle

5. Pipette 6. Burette stand.

Theory: Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte (a substance to be analyzed). A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

Chemicals: 1. HCl 2. Na_2CO_3 3. Distilled water 4. Indicator(Methyl orange).

Chemical Reaction:

$$Na_2CO_3 + 2HCL \rightarrow 2NaCl + H_2O + CO_2$$

Now,
 $e_1S_1V_1 = e_2S_2V_2 \Rightarrow S_2 = \frac{e_1S_1V_1}{e_2V_2} \dots \dots (1)$
Where, $e_1 = 2$, $e_2 = 1$
 $S_1 = \text{concentration of } Na_2CO_3$
 $S_2 = \text{concentration of } HCl$
 $V_1 = \text{volume of } Na_2CO_3$
 $V_2 = \text{volume of } Na_2CO_3$

Description:

- **01.** $0.1(M)Na_2CO3$ solution preparation: At first we weight 1.061g, then we take it into a 250mL flask and mixed it with 250ml distilled water. After mixing it for some time, it's ready for experimental work.
- **02.** Standardization of HCl solution: At first fil the burette with HCl solution and record the initial burette reading. Then take $10mLNa_2CO3$ in conical flask and mix it up with 1/2 drops of Methyl Orange.
- **03.** Determination: Mix HCl with Na_2CO_3 drop by drop carefully until Na_2CO_3 solution changes it's color. When Na_2CO_3 changes it's color that means it's the end point of our titration. Now mark the reading for HCl from burette for our further calculation.

Data Table:

	Burette H		
$V_{1Na_2CO_3}$	$Initial_{(mL)}$	$Final_{(mL)}$	$Diff_{initial-fi}$
10mI	0mL	21.6mI	21.6m I

	SN	$V_{1Na_2CO_3}$	$Initial_{(mL)}$	$Final_{(mL)}$	$Diff_{initial-final}$
	01	10mL	0mL	21.6mL	21.6mL
ĺ	02	10mL	21.6mL	49.9mL	21.3mL

Calculation:

From the table, Mean value of
$$HCl = \frac{21.6 + 21.3}{2} = 21.45 mL$$

From equation (1) we get, $S_2 = \frac{e_1 S_1 V_1}{e_2 V_2} = \frac{2 \times 0.100094 \times 100}{21.45} = 0.93327$ M

Result: The concentration of HCl is **0.93327** M.

Discussion: The molarity of HCl may not be totally correct for same certain chemical fault.

Precaution:

- **01.** Usually an air bubble is present in the nozzele of the burette. It must be removed before taking the inital readint.
- **02.** There should not be any kind of leakage from the burette during titration.
- **03.** Always add acid to water.
- **04.** Dont't let base level in burrete to reach zero.