5 Correction des tests

Correction du test 1 (Retour à l'énoncé.)

Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \max(X, Y)$. On note F_Z la fonction de répartition de Z et F_X , F_Y celles de X et de Y.

• *Soit* $t \in \mathbb{R}$ *et montrons que* $[Z \leq t] = [X \leq t] \cap [Y \leq t]$. *Soit* $\omega \in \Omega$.

$$\omega \in [Z \leqslant t] \Longleftrightarrow Z(\omega) \leqslant t \Longleftrightarrow \max(X(\omega), Y(\omega)) \leqslant t \Longleftrightarrow X(\omega) \leqslant t \quad et \quad Y(\omega) \leqslant t \Longleftrightarrow \omega \in [X \leqslant t] \cap [Y \leqslant t].$$

$$Ainsi[Z \leq t] = [X \leq t] \cap [Y \leq t]$$

- On en déduit, par indépendance, que pour tout réel t, $P([Z \le t]) = P([X \le t])P([Y \le t])$.
- En d'autres termes,

$$\forall t \in \mathbb{R}, \quad F_Z(t) = F_X(t)F_Y(t).$$

Correction du test 2 (Retour à l'énoncé.)

Ici on sait que F_X est une fonction de répartition. Pour vérifier que c'est la fonction de répartition d'une variable aléatoire à densité, il s'agit de montrer que F_X est continue sur $\mathbb R$ et de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points.

1. Montrons que F_X est continue sur \mathbb{R} . F_X est continue sur $[0,+\infty[$ en tant que composée de fonctions continues et continue sur $]-\infty,0[$ car constante sur cet intervalle. Étudions la continuité en 0:

$$\lim_{x \to 0^+} F_X(x) = 0 = F_X(0) = \lim_{x \to 0^-} F_X(x).$$

Ainsi, F_X est continue en 0. Finalement, F_X est continue sur \mathbb{R} .

2. Montrons que F_X est de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points. F_X est de classe C^1 sur $[0, +\infty[$ et sur $]-\infty, 0[$ en tant que composée de fonctions de classe C^1 sur ces intervalles. Ainsi, F_X est de classe C^1 sur $\mathbb R$ sauf éventuellement en 0.

Ainsi, F_X est la fonction de répartition d'une variable aléatoire à densité. Comme la fonction de répartition caractérise la loi, X est à densité. De plus,

$$\forall x \in \mathbb{R}^*, \quad F_X'(x) = \begin{cases} 2xe^{-x^2} & si \ x > 0 \\ 0 & si \ x < 0 \end{cases}.$$

Donc, la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2xe^{-x^2} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

est une densité de X.

Correction du test 3 (Retour à l'énoncé.)

Il s'agit de montrer que f est positive, continue sauf éventuellement en un nombre fini de points et que l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et vaut 1.

- 1. Montrons que f est positive. Sur $]-\infty,-1[$ et sur $[1,+\infty[$, f est positive. De plus, pour tout $x \in [-1,0[$, $f(x)=1+x\geqslant 0$ et pour tout $x\in [0,1[$, $f(x)=1-x\geqslant 0$. Ainsi, f est positive.
- 2. Montrons que f est continue sauf éventuellement en un nombre fini de points. Il est évident que f est continue sur \mathbb{R} sauf éventuellement en -1, 0 et 1.
- 3. Comme f est continue sur \mathbb{R} sauf éventuellement en -1, 0 et 1, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ est impropre en $-\infty$, -1, 0, 1 et $+\infty$.
 - Étude de $\int_{-\infty}^{-1} f(t)dt$. Comme f est nulle sur $]-\infty,-1[$, on vérifie facilement que cette intégrale (doublement impropre) converge et vaut 0.
 - Étude de $\int_{-1}^{0} f(t)dt$. Comme f est prolongeable par continuité sur [-1,0] l'intégrale converge et

$$\int_{-1}^{0} f(t)dt = \int_{-1}^{0} (1+t)dt = \frac{1}{2}.$$

• Étude de $\int_0^1 f(t)dt$. Comme f est prolongeable par continuité sur [0,1] l'intégrale converge et

$$\int_0^1 f(t)dt = \int_0^1 (1-t)dt = \frac{1}{2}.$$

• Étude de $\int_1^{+\infty} f(t)dt$. Comme f est nulle sur $[1, +\infty[$, on vérifie facilement que cette intégrale converge et vaut 0.

Ainsi, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{-\infty}^{-1} f(t)dt + \int_{-1}^{0} f(t)dt + \int_{0}^{1} f(t)dt + \int_{1}^{+\infty} f(t)dt = 1$$

Ainsi, f est bien un densité de probabilité. Soit X une variable aléatoire de densité f. Alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2} + x + \frac{x^{2}}{2} & \text{si } -1 \leq x < 0 \\ \frac{1}{2} + x - \frac{x^{2}}{2} & \text{si } 0 \leq x < 1 \\ 1 & \text{si } x \geq 1. \end{cases}$$

Correction du test 4 (Retour à l'énoncé.)

Ici, on ne sait pas a priori que F est une fonction de répartition. Il s'agit donc de montrer que F est croissante sur \mathbb{R} , $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$, F est continue sur \mathbb{R} , F est de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de points.

- 1. Montrons que F est croissante sur \mathbb{R} .
 - F est croissante sur] $-\infty$,0[car la fonction exponentielle l'est,
 - F est croissante sur $[0, +\infty[$ (en étudiant le signe de la dérivée sur $]0, +\infty[$),
 - pour tout $x \in]-\infty,0[$ et tout $y \in [0,+\infty[$ on a

$$F(x) = \frac{1}{2}e^x \le \frac{1}{2} \le 1 - \frac{1}{2}e^{-y} = F(y).$$

Ainsi F est croissante sur \mathbb{R} .

- 2. Par limites usuelles, on a : $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.
- 3. Montrons que F est continue sur \mathbb{R} . F est continue sur $]-\infty,0[$ et sur $]0,+\infty[$ car la fonction exponentielle est continue sur ces intervalles. De plus, F est continue en 0 car

$$\lim_{x \to 0^{-}} F(x) = \frac{1}{2} = F(0) = \lim_{x \to 0^{+}} F(x).$$

Ainsi F est continue sur \mathbb{R} .

4. F est de classe C^1 sur $]-\infty$, 0[et sur]0, $+\infty[$ car la fonction exponentielle est de classe C^1 sur ces intervalles. Ainsi F est bien la fonction de répartition d'une variable aléatoire à densité X. Comme

$$\forall x \in \mathbb{R}^*, \quad F'(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ \frac{1}{2}e^{-x} & \text{si } x > 0 \end{cases}$$

La fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ \frac{1}{2}e^{-x} & \text{si } x \ge 0 \end{cases}$$

est une densité de X.

Correction du test 5 (Retour à l'énoncé.)

D'après l'exemple 5, la fonction de répartition de X est

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \left\{ \begin{array}{cc} 0 & si \ x < 1 \\ 1 - \frac{1}{x^{2}} & si \ x \geq 1. \end{array} \right.$$

On note Y = 3X - 1

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leqslant t] = [3\mathbf{X} - 1 \leqslant t] = \left[\mathbf{X} \leqslant \frac{t+1}{3}\right].$$

Donc

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \mathrm{P}\left(\left[\mathrm{X} \leqslant \frac{t+1}{3}\right]\right) = \mathrm{F}_{\mathrm{X}}\left(\frac{t+1}{3}\right) = \left\{\begin{array}{cc} 0 & \text{si } t < 2 \\ 1 - \frac{9}{(t+1)^2} & \text{si } t \geqslant 2 \end{array}\right.$$

• Montrons que Y est une variable à densité. La fonction F_Y est continue sur \mathbb{R} : elle est continue sur $]-\infty,2[$ et sur $[2,+\infty[$ par opérations sur les fonctions usuelles et elle est continue en 2 car

$$\lim_{t \to 2^{-}} F_{Y}(t) = 0 = \lim_{t \to 2^{+}} F_{Y}(t) = F_{Y}(2).$$

Enfin, F_Y est de classe C¹ sauf éventuellement en 2. Ainsi, Y est à densité.

• Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R}$ sauf éventuellement en 2 :

$$F'_{Y}(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t > 2 \end{cases}$$

Au final, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t \ge 2 \end{cases}$$

est une densité de Y.

Correction du test 6 (Retour à l'énoncé.)

Soit X une variable aléatoire de loi $\mathcal{E}(2)$. Déterminer la loi de Y = e^{X} .

• On a $Y(\Omega) \subset \mathbb{R}_+^*$. Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leq t] = [e^{\mathbf{X}} \leq t] = \left\{ \begin{array}{cc} [\mathbf{X} \leq \ln{(t)}] & si \; t > 0 \\ \varnothing & si \; t \leq 0 \end{array} \right.$$

Donc

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} \mathrm{P}\left([\mathrm{X} \leqslant \ln{(t)}] \right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} \mathrm{F}_{\mathrm{X}} \left(\ln{(t)} \right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right.$$

Or, comme X suit une loi exponentielle de paramètre 2, on a

$$F_{X}(\ln(t)) = \begin{cases} 1 - e^{-2\ln(t)} & si \ln(t) \ge 0 \\ 0 & si \ln(t) < 0 \end{cases} = \begin{cases} 1 - \frac{1}{t^{2}} & si \ t \ge 1 \\ 0 & si \ t < 1 \end{cases}$$

Donc finalement,

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 1 - \frac{1}{t^{2}} & \text{si } t \ge 1\\ 0 & \text{si } t < 1 \end{cases}$$

• Montrons que Y est une variable à densité.

La fonction F_Y est continue sur \mathbb{R} : elle est continue sur $]-\infty,1[$ et sur $[1,+\infty[$ par opérations sur les fonctions usuelles et elle est continue en 1 car

$$\lim_{t \to 1^{-}} F_{Y}(t) = 0 = \lim_{t \to 1^{+}} F_{Y}(t) = F_{Y}(1).$$

Enfin, F_Y est de classe C^1 sur \mathbb{R} sauf éventuellement en 1. Ainsi, Y est à densité.

• Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R}$ sauf en 1 :

$$F'_{Y}(t) = \begin{cases} \frac{2}{t^3} & \text{si } t > 1\\ 0 & \text{si } t < 1 \end{cases}$$

Au final, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} \frac{2}{t^3} & \text{si } t \ge 1\\ 0 & \text{si } t < 1 \end{cases}$$

est une densité de Y.