A Note on the PARETO Distribution

By M. RAGHAVACHARI¹)

In a recent paper MALIK derived the distributions of several statistics obtained from independent observations from the PARETO distribution with density

$$f(x) = v a^{v} x^{-v^{-1}}$$
 $a > 0, v > 0, x \ge a.$ (1.1)

This brief note points out that all the results in the above paper can be obtained almost immediately from the properties of exponential distribution in virtue of the following well-known and easily proved Theorem.

Theorem:

A random variable X is distributed with density given by (1.1) if and only if $Y = \log X$ is distributed with density $g(y) = v e^{-v(y-b)}$, $y \ge b$; v > 0 where $b = \log a$.

In fact many of the properties associated with order statistics from the exponential distribution can be translated to the case of the PARETO distribution.

Reference

MALIK, H. J.: Distribution of Product Statistics from a Pareto Population, Metrika 15, 1970, 19-22.

¹⁾ Carnegie-Mellon University.