DCASE 2016: Detection & Classification of Audio Scenes and Events

Introduction and Philosophy

Mark Plumbley
Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK

DCASE 2016: Why?

- Huge potential for automatic recognition of real-world sounds
- Up to now: relatively little research activity, compared to e.g. image, speech, or even music
- Barrier? -> Shortage of good open datasets for research
 - Data is expensive/time-consuming to collect and label
 - Commercial data may be restricted, hard to compare
- Public evaluation data challenges:
 - (1) Provide open data that researchers can use
 - (2) Encourage reproducible research
 - (3) Attract new researchers into the field
 - (4) Create reference points for performance comparisons

Previous data challenges

- Some earlier evaluation challenges, e.g.:
 - MIREX: Music Information Retrieval (since 2005/6)
 - PASCAL CHiME: Speech Separation (since 2006)
 - CHIL CLEAR: AV from meetings (2007-8)
 - SiSEC: Source Separation (since 2008)
 - TRECVID Multimodal Event Detection (since 2010/11)
- IEEE Audio & Acoustics Sig Proc (AASP) TC support, e.g.:
 - CHiME 2, REVERB, ACE, ... and DCASE 2013
- DCASE 2013: Audio Scenes and Events
 - 3 Tasks: Acoustic Scenes; Office Live; Office Synthetic
 - 18 participating teams, presented at WASPAA 2013

DCASE 2016: Overview

- Build on and extend success of DCASE 2013
- More data, more complex, closer to real applications
 Four Tasks:
- Task 1: Acoustic scene classification
 - Audio environment, e.g. "park", "street", "office"
- Task 2: Sound event detection in synthetic audio
 - Office sound events, e.g. "coughing", "door slam"
- Task 3: Sound event detection in real life audio
 - Events in Home (indoor) and Residential area (outdoor)
- Task 4: Domestic audio tagging
 - Activity in the home, e.g. "child speech", "TV/Video"

DCASE 2016: How?

- International organizing team:
 - Tampere University of Technology (FI)
 - Queen Mary University of London (UK)
 - IRCCYN (FR)
 - University of Surrey (UK)
- Submissions
 - 82 submissions to the challenges
 - 23 Papers submitted to the workshop
- DCASE 2016 Workshop (Today)

DCASE 2016 Tasks and Results

Tuomas Virtanen
Tampere University of Technology
Finland

Task 1: Scene Classification

Task 1: Scene Classification

- 15 classes (bus / café / car / city center / forest path...)
- Binaural audio, 44.1 kHz, 24 bits
- Recorded in different locations in Finland
- Development set (9 h 45 min)
 - From each scene class: 78 segments, 30 seconds each
 - 4-fold cross-validation setup
- Evaluation set (3 h 15 min)
 - 26 segments per scene class
 - Evaluated using classification accuracy

Task 2: Event Detection, Synthetic Audio

Task 2: Event Detection, Synthetic Audio

- 11 sound event classes (clearing throat, coughing, door knock, door slam, drawer, human laughter, keyboard, keys, page turning, phone ringing, speech)
- Development set:
 - 20 isolated samples per class
 - 18 minutes of generated mixtures
- Evaluation set:
 - 54 audio files of 2 min duration each
 - Multiple SNR and event density conditions

Task 3: Event Detection, Real Life Audio

Task 3: Event Detection, Real Life Audio

- 11 (home context) and 7 (residential area) classes (cutlery, drawer, walking / bird singing, car passing by, children shouting...)
- Manually produced annotations of real audio
- Development set
 - Home (indoor), 10 recordings, totaling 36 min
 - Residential area (outdoor), 12 recordings, totaling 42 min
 - In total 954 annotated events
- Evaluation set
 - 18 minutes of audio per context

Task 4: Domestic Audio Tagging

Task 4: Domestic Audio Tagging

- 7 label classes: child speech, adult male speech, adult female speech, video game/TV, percussive sounds, broadband noise, other identifiable sounds
- Annotations sourced using 3 human annotators, we indicate which 4-second audio chunks have strong annotator agreement
- To simulate commodity hardware, use 16 kHz monophonic audio
- Development set (4.9h): 4378 chunks, incl. 1946 strong agreement chunks
- Evaluation set (54min): 816 strong agreement chunks

Number of submissions

Task	Submissions
1	48
2	10
3	16
4	8
total	82

- Increased number of participants:
 - DCASE 2013: 24 submissions
 - DCASE 2016: 82 submissions

Task 1 results

48 submissions / 34 teams / 113 authors

- Features: MFCCs or log-mel energies used in most systems
 - provide a reasonably good representation
- Also other features used in some systems, leading to improved results

- Most common classifiers:
 - 22 DNN based (enough data to learn deep models)
 - 10 SVM based
 - 10 ensemble classifiers
- Factor analysis methods (i-vectors, NMF) perform well
 - Each scene composed of multiple sources
- Fusion of classifiers leads to good results
- One-versus-all classifier for each class works well
- CNNs outperform MLPs or GMMs (SVMs also good, no direct comparison)

- Generalization properties
 - Most systems have comparable or better performance for evaluation compared to development dataset
 - Utilization of all development data improves results

The cross-validation setup needs to be carefully designed

to avoid problems

- Some classes similar to each other and more difficult to recognize:
 - Bus / train / tram
 - Residential area / park

Predicted label

Task 2 results

10 submissions / 9 teams / 37 authors

- Features: most methods use log-scale time-frequency representations (mel spectrograms, CQT, VQT)
- Classifiers
 - 5 DNN-based methods
 - 2 NMF-based methods
 - random forests, kNN, template matching
- Best results by NMF with Mixture of Local Dictionaries (Komatsu et al), followed by DNN (Choi et al) and BLSTM-based (Hayashi et al) methods
- Most systems report a drop in event-based metrics (which imply temporal tracking)

- Generalisation capabilities
 - Most systems report a significant drop in performance (10-30%) compared with results from the development dataset
- Results on sound classes differ: system by Komatsu et al reports F-score 90.7% on door knock, 37.7% on door slam

Task 3 results

16 submissions / 12 teams / 45 authors

Task 3 results

- Acoustic features
 - 9 systems using MFCCs
 - 4 systems use mel energies
 - -> provide a reasonably good representation
 - Possible to obtain improvements by other features (e.g. Gabor filterbank, spatial features)

- Classifiers:
 - 7 DNN-based methods
 - 5 random forest based methods
 - 2 ensemble classifiers
- Top 7 submitted systems based on DNN
 - Easy way to do multilabel classification
- Second best system is the GMM baseline
 - Was extended in various ways (GMM-HMMs, tandem DNN-GMM)
- GMMs and DNNs perform better than NMF
- Temporal models effective: HMMs, LSTMs, CNNs

- Several submitted results where ER > 1
 - Did the participants optimize their systems for the F-score / not optimization of all system parameters?
- Residential Area context easier (ER 0.78) than the Home context (ER 0.91)
 - Resid. area classes clearly distinct (bird / car / children...)
 - Home classes more similar to each other
- Manual annotations are subjective and there is a degree of uncertainty
 - Affects evaluation scores and training of methods

- Top system (Adavanne) practically detects only most frequent classes
 - Home context 76% F-score on water tap and 16.5 % on washing dishes
 - Resid. area 62% F-score on bird singing, 76.7% on car passing by, 32% on wind blowing, other classes 0%
- Amount of sound events is unbalanced
 - Small number of instances is a problem for machine learning, especially for deep learning
 - Small classes are undetected by most systems

Synthetic vs. real data

- Tasks 2 and 3 address the same task and use the same metrics, but use different material (synthetic vs. real)
- Large difference in results

	Error rate	F-score
Task 2 (synthetic)	0.33	80.2 %
Task 3 (real)	0.81	47.8 %

Task 4 results

• 8 submissions / 7 teams / 23 authors

- 3 best-performing systems respectively use CQT features, Mel spectra, MFCCs
- Classifiers: 3 CNNs, 3 FNNs, 1 RNN, 1 GMM
- Both CNN- and GMM-based systems rank above alternative FNN-based systems

- Best-performing system (Lidy) outperforms baseline by 21%; 4.3 percentage points
- Averaging performance across systems reveals:
 - Least challenging label classes: Video Game/TV (6.1%), Broadband Noise (8.4%), Child Speech (20.5%)
 - Most challenging label classes: Other Identifiable Sounds (27.1%), Adult Male Speech (26.7%), Adult Female Speech (24.1%)

General trends

- Emergence of deep neural network based methods
 - DCASE 2013: no DNN-based methods
 - 2016: majority of methods involve DNNs
- -> Data-driven approaches replace manual design
- -> Development of methods requires for more data

Discussion