# "Complex Stuff"

#### YEAR 13 UNIT 5 TEST 4

## **4.4 TRANSITION METALS**

## **Answer all questions**

#### **Bonne Chance!**

| Name:                 |
|-----------------------|
| Mark for section A/37 |
| Mark for section C/15 |
| Total:/52             |
| Grade                 |

## **SECTION A**

| 1. |     | State           | what is meant by each of the following terms.                                                                                                                                                                                                                                            |                         |
|----|-----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|    |     | (i)             | Ligand                                                                                                                                                                                                                                                                                   |                         |
|    |     | (ii)            | Complex ion                                                                                                                                                                                                                                                                              |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     | (iii)           | Co-ordination number                                                                                                                                                                                                                                                                     |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          | (3) (Total 3 marks)     |
| 2. | (a) | State           | e the origin of the colour of transition-metal complexes.                                                                                                                                                                                                                                |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          | (2)                     |
|    | (b) | Give            | three changes to a transition-metal complex which result in a change in col                                                                                                                                                                                                              |                         |
|    | (-) |                 | rge 1                                                                                                                                                                                                                                                                                    |                         |
|    |     |                 | nge 2                                                                                                                                                                                                                                                                                    |                         |
|    |     | Chan            | nge 3                                                                                                                                                                                                                                                                                    | (2)                     |
|    | (c) | spect<br>this a | are provided with a 1.00 mol dm <sup>-3</sup> solution of iron(III) ions and a visible-lig trophotometer (colorimeter). Outline a plan for experiments using this soluting apparatus which would enable you to determine the concentration of iron(III) it ion of unknown concentration. | on and                  |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          |                         |
|    |     |                 |                                                                                                                                                                                                                                                                                          | (5)<br>(Total 10 marks) |

| 3. | (a) | The ion $C_2O_4^{2-}$ can act as a bidentate ligand. |                                                                                                                                                                                         |              |
|----|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    |     | (i)                                                  | Explain the meaning of the term <i>bidentate ligand</i> .                                                                                                                               |              |
|    |     | (ii)                                                 | Sketch the structure of the octahedral complex ion formed by ${\rm Fe}^{3+}$ ions which contains ${\rm C_2O_4^{2-}}$ as the only ligand. Include the overall charge on the complex ion. |              |
|    |     |                                                      |                                                                                                                                                                                         | (5)          |
|    | (b) | The o                                                | chloride ion can act as a monodentate ligand.                                                                                                                                           |              |
|    |     | (i)                                                  | Deduce the formula of the linear complex formed when an excess of concentrated hydrochloric acid is added to silver chloride.                                                           |              |
|    |     | (ii)                                                 | Explain why metal(II) ions do not usually form octahedral complexes when chloride ions are the only ligands.                                                                            |              |
|    |     |                                                      | (Total 7 ma                                                                                                                                                                             | (2)<br>arks) |
| 4. | (a) |                                                      | tify a reagent, or mixture of reagents, necessary to carry out each of the following ersions.                                                                                           |              |
|    |     | (i)                                                  | $[Cr(H_2O)_6]^{3+}(aq) \rightarrow CrO_4^{2-}(aq)$                                                                                                                                      |              |
|    |     | (ii)                                                 | $VO_2^+(aq) \rightarrow [V(H_2O)_6]^{2+}(aq)$                                                                                                                                           |              |
|    |     | (iii)                                                | $[Ag(NH_3)_2]^+(aq) \rightarrow Ag(s)$                                                                                                                                                  |              |
|    |     |                                                      |                                                                                                                                                                                         | (5)          |

| ions, which are reduced to Mn <sup>2+</sup> ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| (i) Write half-equations for the reactions occurring and use these to deduce the overall equation for this reaction.                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Half-equation for the oxidation of $H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| Half-equation for the reduction of manganate(VII) ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| Overall equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| <ul> <li>(ii) 20.0 cm<sup>3</sup> of an acidified solution of H<sub>2</sub>O<sub>2</sub> was found to react with exactly 15.7 cm<sup>3</sup> of a 0.0180 mol dm<sup>-3</sup> solution of potassium manganate(VII).</li> <li>Calculate the concentration, in g dm<sup>-3</sup>, of the solution of hydrogen peroxide. (If you have been unable to complete the overall equation in part (b)(i), assume that the mole ratio of manganate(VII) to H<sub>2</sub>O<sub>2</sub> is 3:5. This is not the correct ratio.)</li> </ul> |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| (Total 12 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7 <sub>)</sub><br>narks |

| 5. | stand<br>proce | concentration of $C_2O_4^{2-}$ ions can be determined by titration in acidic solution using a ard solution of potassium manganate(VII). At room temperature, the reaction seds very slowly at first but becomes faster after some of the manganate(VII) ions reacted. |
|----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (i)            | Suggest why this reaction is very slow at first.                                                                                                                                                                                                                      |
|    |                |                                                                                                                                                                                                                                                                       |
|    | (ii)           | This is an example of an autocatalytic reaction. State the meaning of the term <i>autocatalytic</i> and identify the catalyst.                                                                                                                                        |
|    |                | Meaning of the term autocatalytic                                                                                                                                                                                                                                     |
|    |                |                                                                                                                                                                                                                                                                       |
|    |                | Catalyst                                                                                                                                                                                                                                                              |
|    | (iii)          | Suggest how this catalyst might be involved in the reaction.                                                                                                                                                                                                          |
|    |                |                                                                                                                                                                                                                                                                       |
|    |                |                                                                                                                                                                                                                                                                       |
|    |                | (E)                                                                                                                                                                                                                                                                   |
|    |                | (5)<br>(Total 5 marks)                                                                                                                                                                                                                                                |

5.

## **SECTION B**

| 6.   | (a)               | Describe an experiment to show that vanadium has several oxidation states.  (6)                                                                                                                                                                                                      |
|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (b)               | Describe the essential features of catalysis and explain what is meant by the term <i>heterogeneous catalyst</i> . State an industrial process which uses vanadium(V) oxide as a heterogeneous catalyst and explain, with the help of equations, the mode of action of the catalyst. |
|      |                   | (9)<br>(Total 15 marks)                                                                                                                                                                                                                                                              |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
| •••• | • • • • • • • •   |                                                                                                                                                                                                                                                                                      |
| •••• | • • • • • • • •   |                                                                                                                                                                                                                                                                                      |
| •••• | • • • • • • • • • |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
| •••• |                   |                                                                                                                                                                                                                                                                                      |
|      |                   |                                                                                                                                                                                                                                                                                      |



