

Chang Heen Sunn, Cao Shuwen, Huang Runtao, Yin Jia Rui

O1 INTRODUCTION

DATASET

- Glass
- Wine
- Iris
- Pima
- Tic-tac-toe

Dataset in paper

- Caesarian
- Car

Other dataset

Data Preprocessing (e.g. Iris data)

4 attributes & 1 class label

3 4.7,3.2,1.3,0.2, Iris-setosa

Split points:

```
Sepal Length, split points: [5.6, 6.2]
Sepal Width, split points: [3.0, 3.4]
Petal Length, split points: [3.0, 4.8]
Petal Width, split points: [1.0, 1.8]
The number of distict class label in the dataset is: 3
Total number of attributes in the dataset: 4
```

Output:

[1, 2, 1, 1, 'Iris-setosa'],

Results of CBA_M2 algorithm

	Dataset	Accuracy	No. of class label	No. of attributes	Rule generator run time/s	Classifier run time/s	No. of CARs generated (with pruning)
Dataset in paper	glass	97.1%	6	9	3.60	0.01	19
	wine	100.0%	2	486	4.62	0.18	2965
	iris	100.0%	3	4	0.00	0.00	5
	pima	99.9.%	2	8	66.67	0.17	220
	tic-tac-toe	100.0%	2	9	7.27	0.51	857
Others	caesarian	100.0%	2	5	2.23	0.03	448
	car	99.0%	4	6	9.60	0.51	370

Results of Open source software Classifiers

2	Dataset	DT accuracy	DT f_score	RF accuracy	RF f_score	SVM accuracy	SVM f_score
0	glass	0.583117	0.563330	0.752597	0.708526	0.354978	0.186279
1	wine	0.921895	0.920598	0.972222	0.959691	0.551634	0.465381
2	iris	0.960000	0.952997	0.960000	0.959731	0.973333	0.973064
3	pima	0.710834	0.693754	0.773462	0.752278	0.757861	0.740124
4	tic-tac-toe	0.848739	0.837071	0.898783	0.901619	0.873739	0.871520
5	caesarian	0.537500	0.551479	0.575000	0.561486	0.575000	0.421795
6	car	0.903391	0.908216	0.866356	0.861814	0.710626	0.679711

Comparison of results CBA M2 vs Open source classifiers

Detecat	Accuracy					
Dataset	CBA M2	Decision Tree	Random Forest	SVM		
glass	97.7%	58.3%	75.3%	35.5%		
wine	98.7%	92.2%	97.2%	55.2%		
iris	100.0%	96.0%	96.0%	97.3%		
pima	99.9%	71.1%	77.3%	75.8%		
tic-tac-toe	100.0%	84.9%	89.9%	87.4%		
caesarian	100.0%	53.8%	57.5%	57.5%		
car	100.0%	90.3%	86.6%	71.1%		

Classification based on Multiple Association Rules Method (CMAR)

Implemented Algorithms in CMAR

- Rule Mining: FP-tree with FP-growth
- Pruning:
 - 1. Prune more specific and low confidence rules
 - 2. Prune rules with X^2 lower than 0.05 probability threshold
- 3. Keep the rules with higher rank which can cover the database a few times

• Classifier: Compare weighted X^2

Results of CMAR Algorithm

Dataset		CMAR (Paper)		
	# rules	generator runtime	accuracy	accuracy
glass	16	0.17s	33.2%	70.1%
wine	23	0.17s	55.0%	95%
iris	30	0.01s	52.0%	94%
pima	73	0.89s	64.9%	75.1%
tic-tac-toe	60	0.75s	65.3%	99.2%
caesarian	73	0.03s	60.6%	-
car	186	1.42s	70.0%	- 1

CMAR Results Discussion

Low accuracy: may be resulted from the rule mining part

Fast rule generator: use of compact structures (FP-tree & CR-tree)

	Accuracy						
Detect	Part 2 & 3	Part 5					
Dataset	CBA M2	Decision Tree	Random Forest	SVM	CMAR (Self Developed)		
glass	97.7%	58.3%	75.3%	35.5%	33.2%		
wine	98.7%	92.2%	97.2%	55.2%	55.0%		
iris	100.0%	96.0%	96.0%	97.3%	52.0%		
pima	99.9%	71.1%	77.3%	75.8%	64.9%		
tic-tac-toe	100.0%	84.9%	89.9%	87.4%	65.3%		
caesarian	100.0%	53.8%	57.5%	57.5%	60.6%		
car	100.0%	90.3%	86.6%	71.1%	70.0%		

- Best performing: CBA M2
- Worst performing: CMAR

Takeaways

Implemented classification methods: CBA M2, CMAR, Decision Tree, Random Forest, SVM

Gained a greater understanding of FP-growth and Apriori Algorithms

CONTRIBUTION

Name	Assigned Tasks
Cao Shuwen	Data preprocessing & CBA classifier
Chang Heen Sunn	CBA classifier & open source software classifier
Huang Runtao	CBA Rule Generator & CMAR algorithm

P/S: In fact, we have another member in our group (Yin Jia Rui) but she never contribute anything to the project.

References

- 1. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD'98, New York, NY, Aug. 1998.
- 2. Wenmin Li, Jiawei Han and Jian Pei, "CMAR: accurate and efficient classification based on multiple class-association rules," Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp. 369-376, doi: 10.1109/ICDM.2001.989541.
- 3. T. D. V. Swinscow, "Statistics at square one: The BMJ," *The BMJ | The BMJ: leading general medical journal. Research. Education. Comment*, 28-Oct-2020. [Online]. Available: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one. [Accessed: 20-Oct-2021].
- 4. https://github.com/Williano/Data-Mining/tree/b24247ff3cb8eb0227885dd27287d4dace7aa629/wine_data_mining_research/association_classification

