

Olimpiada Națională de Matematică Etapa Finală, Târgu Mureș, 20 aprilie 2016 CLASA a 11-a

Soluții și bareme orientative

Problema 1. Fie $A \in \mathcal{M}_2(\mathbb{R})$ o matrice care satisface următoarele condiții: $\det(A^{2014} - I_2) = \det(A^{2014} + I_2)$ și $\det(A^{2016} - I_2) = \det(A^{2016} + I_2)$. Demonstrați că $\det(A^n - I_2) = \det(A^n + I_2)$, pentru orice număr natural nenul n.

Soluție. Pentru $M \in \mathcal{M}_2(\mathbb{R})$ are loc relația

$$\det(M - xI_2) = x^2 - \operatorname{tr}(M)x + \det(M), \ \forall \ x \in \mathbb{R}.$$
 (1)

Fie $A \in \mathcal{M}_2(\mathbb{R})$ o matrice care satisface condițiile din enunț. Din (1) obținem

$$\operatorname{tr}(A^{2014}) = \operatorname{tr}(A^{2016}) = 0.$$
 (2)

Conform teoremei Cayley-Hamilton, avem

$$A^{2} - \operatorname{tr}(A)A + \det(A)I_{2} = O_{2}.$$
(3)

1) Dacă tr(A) = 0, atunci din (3) obținem $A^2 = -\det(A)I_2$, de unde 2) Dacă det(A) = 0, atunci din (3) obținem $A^2 = tr(A)A$. Prin inducție, $A^{n+1} = \operatorname{tr}^n(A)A, \ \forall \ n \in \mathbb{N}^*.$ Rezultă $\operatorname{tr}(A^n) = \operatorname{tr}^n(A), \ \forall \ n \in \mathbb{N}^*.$ În particular, conform (2), $0 = \operatorname{tr}(A^{2014}) = \operatorname{tr}^{2014}(A)$, deci $\operatorname{tr}(A) = 0$ 1 punct Presupunem, prin reducere la absurd, $tr(A) \neq 0$ și $det(A) \neq 0$. Din (3), $A^{2016} - \operatorname{tr}(A)A^{2015} + \det(A)A^{2014} = O_2$. Atunci $\operatorname{tr}(A^{2016}) - \operatorname{tr}(A)\operatorname{tr}(A^{2015}) +$ $\det(A)\operatorname{tr}(A^{2014})=0$. Conform (2) şi presupunerii, obţinem $\operatorname{tr}(A^{2015})=0$. Din (3), deducem $\operatorname{tr}(A^n) = \frac{1}{\det(A)} \left[\operatorname{tr}(A) \operatorname{tr}(A^{n+1}) - \operatorname{tr}(A^{n+2}) \right], n \in \mathbb{N}^*.$ Astfel, pornind de la tr $(A^{2014}) = \operatorname{tr}(A^{2015}) = 0$, obţinem, în mod recurent, $\operatorname{tr}(A^{2013}) = 0$, $\operatorname{tr}(A^{2012}) = 0$, ..., $\operatorname{tr}(A) = 0$. Contradicție. Din (3) rezultă $A^2 = O_2$, de unde obținem $A^n = O_2$, $\forall n \geq 2$. Atunci, pentru $n \geq 2$, avem $\det(A^n - I_2) = \det(-I_2) = 1 = \det(I_2) = \det(A^n + I_2)$. Pentru n = 1, conform (1), $\det(A - I_2) = 1 = \det(A + I_2)$ 1 punct

Problema 2. Pornind de la o matrice inversabilă $A \in \mathcal{M}_n(\mathbb{C})$ având liniile L_1, L_2, \dots, L_n , construim matricele $B \in \mathcal{M}_n(\mathbb{C})$ cu liniile O, L_2, \dots, L_n şi $C \in \mathcal{M}_n(\mathbb{C})$ cu liniile L_2, \dots, L_n, O , unde O desemnează o linie cu toate elementele nule. Fie matricele $D = A^{-1} \cdot B$ şi $E = A^{-1} \cdot C$. Arătaţi că:

- a) $\operatorname{rang}(D) = \operatorname{rang}(D^2) = \dots = \operatorname{rang}(D^n);$
- b) $\operatorname{rang}(E) > \operatorname{rang}(E^2) > \dots > \operatorname{rang}(E^n)$.

Soluţie. a) Considerăm matricea $P \in \mathcal{M}_n(\mathbb{C})$,

$$P = \left(\begin{array}{ccccc} 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \end{array}\right).$$

$$\mathbb{Q} = \left(\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{array} \right).$$

rang
$$(E^k)$$
 = rang (Q^k) = $n - k$, $k = \overline{1, n}$,

Problema 3. Fie $a \in \mathbb{R}$. Considerăm o funcție $f:(0,\infty) \to (0,\infty)$. Arătați că următoarele două afirmații sunt echivalente:

(i)
$$\lim_{x\to\infty}\frac{f(x)}{x^{a+\varepsilon}}=0$$
 și $\lim_{x\to\infty}\frac{f(x)}{x^{a-\varepsilon}}=\infty$, pentru orice $\varepsilon>0$;

(ii)
$$\lim_{x \to \infty} \frac{\ln f(x)}{\ln x} = a.$$

Soluție.

$$a - \frac{\varepsilon}{2} < \frac{\ln f(x)}{\ln x} < a + \frac{\varepsilon}{2}, \ \forall \ x > m.$$

Obţinem $x^{a-\varepsilon/2} < f(x) < x^{a+\varepsilon/2}, \ \forall \ x > m$. Ca urmare, $\frac{f(x)}{x^{a+\varepsilon}} < \frac{1}{x^{\varepsilon/2}}, \ \forall \ x > m$ şi $\frac{f(x)}{x^{a-\varepsilon}} > x^{\varepsilon/2}, \ \forall \ x > m$. Dar $\lim_{x \to \infty} x^{\varepsilon/2} = \infty$ şi $f(x) > 0, \ \forall \ x > 0$. Conform criteriilor cleşte şi al majorării se obţin limitele de la (i). 4 puncte

Problema 4. Determinați funcțiile $f: \mathbb{R} \to \mathbb{R}$ cu proprietatea că f^2 este derivabilă pe \mathbb{R} și $(f^2)' = f$.

Soluţie.

$$a = \inf \left\{ t \in (-\infty, x_0) | f^2(x) > 0, \ \forall \ x \in [t, x_0] \right\},$$
$$b = \sup \left\{ t \in (x_0, \infty) | f^2(x) > 0, \ \forall \ x \in [x_0, t] \right\}.$$

 am obține $0=f^2(b)=\lim_{x\uparrow b}\left(\frac{x-a}{2}\right)^2=\frac{(b-a)^2}{4};$ contradicție. Deci $b=\infty$ și prin urmare $f(x)=\frac{x-a}{2},\ x\in[a,\infty).$

1.
$$f(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{2}, & x \ge a \end{cases}, a \in \mathbb{R};$$

2.
$$f(x) = \begin{cases} \frac{x-b}{2}, & x \leq b \\ 0, & x > b \end{cases}, b \in \mathbb{R};$$

3.
$$f(x) = \begin{cases} \frac{x-b}{2}, & x \le b \\ 0, & x \in (b,a) \\ \frac{x-a}{2}, & x \ge a \end{cases}$$
, $a, b \in \mathbb{R}, b < a$;

4.
$$f(x) = \frac{x}{2} + c$$
, $x \in \mathbb{R}$, $c \in \mathbb{R}$.