

>>> IMAGE PROCESSING AND COMPUTATIONAL PHOTOGRAPHY

SESSION 4: ADVANCED FILTERING

Oriol Pujol & Simone Balocco

TAKE HOME QUESTIONS

1. Match the spatial domain image to the Fourier magnitude image

TODAY'S LECTURE

- Template matching
- Coarse-to-fine alignment
- Denoising
- Sharpening
- Anisotropic filtering

TEMPLATE MATCHING

- Goal: find image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized CrossCorrelation

- Goal: find in image
- Method 0: filter the image with eye patch

$$h(m,n) = \sum_{k,l} g(k,l) f(m+k,n+l) \qquad \text{f = image } \\ \text{g = filter}$$

Input

Filtered Image

What went wrong?

- Goal: find in image
- Method 1: filter the image with a zero mean filter

$$h(m,n) = \sum_{k,l} (g(k,l) - \bar{g}) f(m+k,n+l) \quad \text{f = image g = filter}$$

Input

Filtered Image (scaled)

Thresholded Image

- Goal: find in image
- Method 2: sum of squared differences

$$h(m,n) = \sum_{k,l} (g(k,l) - f(m+k,n+l))^2 \qquad \text{f = image } \\ \text{g = filter}$$

Input

1- sqrt(SSD)

Thresholded Image

Question: Can this be implemented using linear filters?

$$h(m,n) = \sum_{k,l} (g(k,l) - f(m+k,n+l))^2$$

- Goal: find in image
- Method 2: sum of squared differences

$$h(m,n) = \sum_{k,l} (g(k,l) - f(m+k,n+l))^2 \qquad \text{f = image } \\ \text{g = filter}$$

Input

1- sqrt(SSD)

Potential downside!

- Goal: find in image
- Method 3: normalized cross-correlation

f = image g = filter

$$h(m,n) = \frac{\sum_{k,l} (g(k,l) - \bar{g})(f(m+k,n+l) - f_{m,n}^-)}{\sqrt{\sum_{k,l} (g(k,l) - \bar{g})^2 \sum_{k,l} (f(m+k,n+l) - f_{m,n}^-)^2}}$$

Matlab: normxcorr2 (template, im)

- Goal: find in image
- Method 3: normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

- Goal: find in image
- Method 3: normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

A: Depends

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

REVIEW OF SAMPLING

GAUSSIAN PYRAMID

Source: Forsyth

LAPLACIAN FILTER

LAPLACIAN PYRAMID

Source: Forsyth

COMPUTING GAUSSIAN/LAPLACIAN PYRAMID

HYBRID IMAGE IN LAPLACIAN PYRAMID

High frequency → Low frequency

COARSE TO FINE IMAGE REGISTRATION

- 1. Compute Gaussian pyramid
- Align with coarse pyramid
- 3. Successively align with finer pyramids
 - Search smaller range

Why is this faster?

Are we guaranteed to get the same result?

DENOISING

Typical noise models:

Additive

Gaussian noise

Local variance

Poisson

$$oldsymbol{-} I_f = I + \eta, \quad \eta \in \mathcal{N}(0,1)$$

Shot noise: Often modeled as a Gaussian

Other

Salt and pepper

Speckle

$$-I_f = I + \eta \cdot I, \quad \eta \in \mathcal{U}(0,1)$$

DENOISING ADDITIVE GAUSSIAN NOISE

Additive Gaussian noise (0,1)

Gaussian filter (sigma=1)

Gaussian filter (sigma=3)

Gaussian filter (sigma=6)

DENOISING S&P WITH GAUSSIAN FILTER

Salt & Pepper noise (20%)

Gaussian filter (sigma=1)

Gaussian filter (sigma=3)

Gaussian filter (sigma=6)

ALTERNATIVE IDEA: MEDIAN FILTER

 A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

DENOISING S&P WITH MEDIAN FILTER

Salt & Pepper noise (20%)

Median filter (w=5)

Median filter (w=10)

Median filter (w=20)

DENOISING S&P WITH MEDIAN FILTER

CLOSE UP

DENOISING G-N WITH MEDIAN FILTER

Additive Gaussian noise

Median filter (w=5)

Median filter (w=10)

Median filter (w=20)

MEDIAN FILTER

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

ADVANCED FILTERING

Gaussian and median filtering tend to destroy details.

Would not it be nice to have a filter that smooths but preserve structures?

RECONSTRUCTION GENERALITIES

The problem of signal reconstruction from observations involves problems such as denoising, deblurring, interpolation, etc.

Goal: To reconstruct the red signal from the blue samples.

RECONSTRUCTION GENERALITIES

Goal: To reconstruct the green signal from the blue samples.

How can we measure the quality of the reconstruction?

RECONSTRUCTION GENERALITIES

How can we measure the quality of the reconstruction?

Creating a function representing our dislike or unacceptability about how well the reconstructed function approximates the ideal one.

minimize
$$\phi(y-z)$$

The most well known quality function is:

Least euclidean norm (aka Least Squares or Sum of Least Squares)

$$egin{aligned} & ext{minimize} & \|y-z\|_2^2 \ &= (y-z)^T (y-z) = \sum_i (y_i-z_i)^2 \end{aligned}$$

A GENERAL FRAMEWORK FOR NON-LINEAR FILTERING

We can easily extend the measure by adding a weight that depends on the position in the image (p) and the value of the image pixel (y)

$$\hat{z}(p_j) = \arg\min_{z(p_j)} \sum_{i=1}^n (y_i - z(p_j))^2 K(p_i, p_j, y_i, y_j)$$

Measures the similarity between two pixels

Observations: for each pixel j we use the weighted value of all the image

WEIGHTED LEAST SQUARES PROBLEM

$$\hat{z}(p_j) = \arg\min_{z(p_j)} (y - z(p_j)1_n)^T K_j (y - z(p_j)1_n)$$

where

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} 1_n = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} K_j = \text{diag} \begin{pmatrix} K(p_1, p_j, y_1, y_j) \\ K(p_2, p_j, y_2, y_j) \\ \vdots \\ K(p_n, p_j, y_n, y_j) \end{pmatrix}$$

WEIGHTED LEAST SQUARES PROBLEM

$$\hat{z}(p_j) = rg \min_{z(p_j)} (y - z(p_j)1_n)^T K_j (y - z(p_j)1_n)$$
 $\hat{z}(p_j) = (1_n^T K_j 1_n)^{-1} 1_n^T K_j y$
 $= \sum_i \frac{K(p_i, p_j, y_i, y_j)}{\sum_i K(p_i, p_j, y_i, y_j)} y_i$
 $= \sum_i W_{i,j} y_i$ Convex combination of all the data
 $= w_j^T y$

Recall a basic Gaussian filter

$$J = I \otimes g$$

$$J(x) = \sum_{\xi} g(\xi, x) I(\xi)$$

Recall a basic Gaussian filter. Observe that it can be seen as a weighted average in which g encodes the notion of distance.

But $I(\xi)$ pollutes the estimate ... it is so different to I(x)!!!

So, why don't we penalize intensity differences?

$$J(x) = \frac{1}{k(x)} \sum_{\xi} g_a(\xi, x) g_b(I(\xi) - I(x)) I(\xi)$$

Formulation:

$$J(x) = \frac{1}{k(x)} \sum_{\xi} g_a(\xi, x) g_b(I(\xi) - I(x)) I(\xi)$$

$$k(x) = \sum_{\xi} g_a(\xi, x) g_b(I(\xi) - I(x))$$

