Aritmética modular, Euler e RSA

Carlos Florentino^{1,2}

¹Departmento de Mathemática, FCUL, ²CMAFcIO e GFM Univ. de Lisboa, (Não se usa o AO 90)

Notas de Matemática Discreta / Finita

Outline

- Conjuntos, Funções e Relações de Equivalência
 - Conjuntos e Cardinalidade
 - Funções e Relações de Equivalência

Outline

- Conjuntos, Funções e Relações de Equivalência
 - Conjuntos e Cardinalidade
 - Funções e Relações de Equivalência

Conjuntos - Linguagem/Terminologia

- ullet $A=\{a,b,c,\cdots\}$, conjunto definido por extensão, $a\in A$
- $B=\{n\in\mathbb{Z}\mid n^2>24\}$, subconjunto definido por propriedade. Temos $4\notin B,\ B\subset\mathbb{Z}$.
- Se C é subconjunto de D, escreve-se $C \subset D$ (podem ser iguais)

Conjuntos - Linguagem/Terminologia

- ullet $A=\{a,b,c,\cdots\}$, conjunto definido por extensão, $a\in A$
- $B=\{n\in\mathbb{Z}\mid n^2>24\}$, subconjunto definido por propriedade. Temos $4\notin B,\ B\subset\mathbb{Z}$.
- ullet Se C é subconjunto de D, escreve-se $C\subset D$ (podem ser iguais)

Conjuntos fundamentais:

- Naturais $\mathbb{N} = \{1, 2, 3, \cdots\}, \quad \mathbb{N}_0 = \{0, 1, 2, 3, \cdots\} = \mathbb{N} \cup \{0\}$
- Inteiros $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, 3, \cdots \}$
- Racionais $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N} \}$
- Reais \mathbb{R} , Complexos \mathbb{C} , etc.

Conjuntos - Linguagem/Terminologia

- ullet $A=\{a,b,c,\cdots\}$, conjunto definido por extensão, $a\in A$
- $B=\{n\in\mathbb{Z}\mid n^2>24\}$, subconjunto definido por propriedade. Temos $4\notin B,\, B\subset\mathbb{Z}$.
- ullet Se C é subconjunto de D, escreve-se $C\subset D$ (podem ser iguais)

Conjuntos fundamentais:

- Naturals $\mathbb{N} = \{1, 2, 3, \dots\}, \quad \mathbb{N}_0 = \{0, 1, 2, 3, \dots\} = \mathbb{N} \cup \{0\}$
- Inteiros $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, 3, \cdots \}$
- Racionais $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N} \}$
- Reais ℝ, Complexos ℂ, etc.

Operações com conjuntos:

- União $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
- Intersecção $A \cap B = \{x \mid x \in A \text{ e } x \in B\}$
- Complemento como subconjunto de U, $A^c = U \setminus A$
- Diferença $A \setminus B = \{x \in A \mid x \notin B\};$
- Diferença simétrica $A \triangle B := (A \setminus B) \cup (B \setminus A)$
- União disjunta $A \sqcup B := A \cup B$, sempre que $A \cap B = \emptyset$
- Produto (cartesiano) $A \times B = \{(a,b) \mid a \in A, b \in B\}$

O cardinal |X| de um conjunto finito X é o número de elementos.

O cardinal |X| de um conjunto finito X é o número de elementos.

Exemplo:
$$[n] := \{1,2,3,\cdots,n\} \subset \mathbb{N} \text{ tem } n \text{ elementos: } |[n]| = n.$$

• $[n]_0 := \{0, 1, 2, 3, \dots, n\} \subset \mathbb{N}_0 \text{ tem } n+1 \text{ elementos.}$

O cardinal |X| de um conjunto finito X é o número de elementos.

Exemplo:
$$[n] := \{1,2,3,\cdots,n\} \subset \mathbb{N} \text{ tem } n \text{ elementos: } |[n]| = n.$$

• $[n]_0 := \{0, 1, 2, 3, \dots, n\} \subset \mathbb{N}_0$ tem n+1 elementos.

$$\bullet |A \cup B| = |A| + |B| - |A \cap B|$$

O cardinal |X| de um conjunto finito X é o número de elementos.

- Exemplo: $\bullet \mid n \mid := \{1,2,3,\cdots,n\} \subset \mathbb{N} \text{ tem } n \text{ elementos: } |[n]| = n.$
 - $[n]_0 := \{0, 1, 2, 3, \cdots, n\} \subset \mathbb{N}_0$ tem n+1 elementos.
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - Numa união disjunta:

$$|A_1 \sqcup A_2 \sqcup \cdots \sqcup A_k| = \sum_j |A_j|$$

• Conjunto **potência** de X (ou conjunto das partes de X):

$$\mathcal{P}(X) = \{A \mid A \subset X\}$$
 tem $|\mathcal{P}(X)| = 2^{|X|}.$

Exemplo: se $X = \{0, 3, \alpha\}$ então

$$\mathcal{P}(X) = \{\emptyset, \{0\}, \{3\}, \{\alpha\}, \{0, 3\}, \{0, \alpha\}, \{3, \alpha\}, X\}$$

Funções

Uma função $f: X \to Y$ é uma associação: a cada $x \in X$, f associa um único $y = f(x) \in Y$. $X = \text{conjunto de partida (domínio)}, \ Y = \text{conjunto de chegada } \text{Imagem de } f \in f(X) = \{f(x) \in Y \mid x \in X\} \subset Y$ $\text{Imagem de } A \subset X$: $f(A) = \{f(x) \in Y \mid x \in A\} \subset f(X)$ $\text{Imagem inversa de } B \subset Y$: $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X$

Funções

Uma função $f:X \to Y$ é uma associação: a cada $x \in X$, f associa um único $y=f(x) \in Y$. X=conjunto de partida (domínio), Y= conjunto de chegada lmagem de f é $f(X)=\{f(x)\in Y\mid x\in X\}\subset Y$ lmagem de $A\subset X$: $f(A)=\{f(x)\in Y\mid x\in A\}\subset f(X)$ lmagem inversa de $B\subset Y$: $f^{-1}(B)=\{x\in X\mid f(x)\in B\}\subset X$

Definição (Seja $f.X \to Y$ uma função)

f é injectiva se $f(x) \neq f(y)$ para $x \neq y$ f é sobrejectiva se f(X) = Y f é bijectiva se é injectiva e sobrejectiva

Funções

Uma função $f:X \to Y$ é uma associação: a cada $x \in X$, f associa um único $y=f(x) \in Y$. X=conjunto de partida (domínio), Y= conjunto de chegada lmagem de f é $f(X)=\{f(x)\in Y\mid x\in X\}\subset Y$ lmagem de $A\subset X$: $f(A)=\{f(x)\in Y\mid x\in A\}\subset f(X)$ lmagem inversa de $B\subset Y$: $f^{-1}(B)=\{x\in X\mid f(x)\in B\}\subset X$

Definição (Seja f.X o Y uma função)

f é injectiva se $f(x) \neq f(y)$ para $x \neq y$ f é sobrejectiva se f(X) = Y f é bijectiva se é injectiva e sobrejectiva

Teorema (Seja $f.X \rightarrow Y$ uma função)

Se |X| > |Y| então f não pode ser injectiva. Se |X| < |Y| então f não pode ser sobrejectiva.

Relação de equivalência em X - uma partição de X em subconjuntos disjuntos - cada subconjunto fica com os objectos equivalentes.

Relação de equivalência em X - uma partição de X em subconjuntos disjuntos - cada subconjunto fica com os objectos **equivalentes**.

Exemplos: (1) Com $X=\{x,y,\xi,\phi,\mathfrak{g},\mathfrak{h}\}$, podemos tornar equivalentes as letras do mesmo alfabeto - obtém-se a relação $\{\{x,y\},\{\xi,\phi\},\{\mathfrak{g},\mathfrak{h}\}\}$. (2) Seja Y um conjunto de bolas. Dizemos que duas bolas são equivalentes se se usam no mesmo desporto.

Relação de equivalência em X - uma partição de X em subconjuntos disjuntos - cada subconjunto fica com os objectos **equivalentes**.

Exemplos: (1) Com $X=\{x,y,\xi,\phi,\mathfrak{g},\mathfrak{h}\}$, podemos tornar equivalentes as letras do mesmo alfabeto - obtém-se a relação $\{\{x,y\},\{\xi,\phi\},\{\mathfrak{g},\mathfrak{h}\}\}$. (2) Seja Y um conjunto de bolas. Dizemos que duas bolas são equivalentes se se usam no mesmo desporto.

Usualmente, a relação é descrita por um símbolo de operação binária, por ex. \sim . Escrevemos $x \sim y$, $\xi \sim \phi$ e $\mathfrak{g} \sim \mathfrak{h}$, ou $b_1 \equiv b_2$.

Relação de equivalência em X - uma partição de X em subconjuntos disjuntos - cada subconjunto fica com os objectos **equivalentes**.

Exemplos: (1) Com $X=\{x,y,\xi,\phi,\mathfrak{g},\mathfrak{h}\}$, podemos tornar equivalentes as letras do mesmo alfabeto - obtém-se a relação $\{\{x,y\},\{\xi,\phi\},\{\mathfrak{g},\mathfrak{h}\}\}$. (2) Seja Y um conjunto de bolas. Dizemos que duas bolas são equivalentes se se usam no mesmo desporto.

Usualmente, a relação é descrita por um símbolo de operação binária, por ex. \sim . Escrevemos $x \sim y$, $\xi \sim \phi$ e $\mathfrak{g} \sim \mathfrak{h}$, ou $b_1 \equiv b_2$.

Proposição: A relação \sim é uma relação de equivalência em X, se e só se, para todos $x,y,z\in X$:

- Reflexiva: $x \sim x$
- Simétrica: se $x \sim y$, então $y \sim x$
- Transitiva: se $x \sim y$ e $y \sim z$, então $x \sim z$.