```
gpu_info = !nvidia-smi
gpu_info = '\n'.join(gpu_info)
if gpu_info.find('failed') >= 0:
   print('Not connected to a GPU')
else:
   print(gpu_info)
```

→ Fri Mar 18 15:05:20 2022

GPU	Name					 Disp.			
Fan	-					Memory-Usag	İ		MIG M.
0 N/A	Tesla 62C	T4 P8	11W /	Off 70W	0000000 0M.	0:00:04.0 Of iB / 15109Mi	f B	0%	0 Default N/A

	Proce	sses:						
ĺ	GPU	GI	CI	PID	Туре	Process name	GPU Memory	ĺ
		ID	ID				Usage	
	No r	===== unning	processes	found	=====	=======================================	========	

#Import Stuff here

from sklearn.model selection import train test split

import matplotlib.pyplot as plt

```
import tensorflow.keras as keras
from tensorflow.keras import layers, Model, optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten, Glofrom tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import classification_report, confusion_matrix
import pandas as pd
import numpy as np
import time
```

from numpy.random import seed seed(1)

from tensorflow.keras.utils import plot_model
from tensorflow.keras.optimizers import RMSprop

from datetime import datetime

import tensorflow

```
tensorflow.random.set seed(2)
```

```
from google.colab import drive, files
drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibly remount, call dri
def load_data():
    datagen = ImageDataGenerator(rescale = 1/255)
    train it = datagen.flow_from_directory ('/content/drive/My.Drive/Colab.Notebooks/]
                                             class_mode = 'categorical', color_mode="rq
    val_it = datagen.flow_from_directory ('/content/drive/My_Drive/Colab Notebooks/IFI
                                             class_mode = 'categorical', color_mode="rq
    test_it = datagen.flow_from_directory ('/content/drive/My Drive/Colab Notebooks/II
                                             class mode = 'categorical', color mode="rc
    return train it, val it, test it
train it, val it, test it = load data()
    Found 13600 images belonging to 17 classes.
    Found 1700 images belonging to 17 classes.
    Found 1700 images belonging to 17 classes.
batchX, batchy = train it.next()
print('Batch shape=%s, min=%.3f, max=%.3f' % (batchX.shape, batchX.min(), batchX.max()
    Batch shape=(64, 256, 256, 3), min=0.000, max=1.000
from keras.applications.vgg16 import VGG16
# load model
\# model = VGG16()
# summarize the model
#model.summary()
# Fine-tune
# Part 1: Pre train
nclass = len(train it.class indices)
```

```
# create the base pre-trained model
base_model = VGG16(input_shape = (224, 224, 3), # Shape of our images
                          include top = False, # Leave out the last fully connected La
                          weights = 'imagenet',
                          classes = nclass)
base model.trainable = False
# add a global spatial average pooling layer
x = base model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
predictions = Dense(nclass, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional layers
# for layer in base model.layers:
      layer.trainable = False
# model.compile(loss='categorical crossentropy',
                # optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
#
#
                optimizer = 'Adam',
                metrics=['AUC', 'accuracy'])
model.summary()
plot model(model, to file='model.png', show shapes=True, show layer names=True)
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
<pre>def compile model(model):</pre>		
- - · · · ·	n!	
	.CategoricalCrossentrop	у(),
metrics=['AUC', '	accuracy'])	
return model		
<pre>def train_model(model, train_it,</pre>	<pre>val_it):</pre>	
<pre>callback = keras.callbacks.Ea history = model.fit(train_it, return model, history</pre>		
<pre>model = compile_model(model)</pre>		
<pre>model, history = train_model(model)</pre>	el, train_it, val_it)	
<pre>print (model.summary())</pre>		

```
Epoch 1/24
107/107 - 4077s - loss: 2.5861 - auc: 0.6950 - accuracy: 0.1907 - val loss: 2
Epoch 2/24
107/107 - 1381s - loss: 2.1175 - auc: 0.8364 - accuracy: 0.3303 - val loss: 1
Epoch 3/24
107/107 - 763s - loss: 1.8767 - auc: 0.8780 - accuracy: 0.3881 - val loss: 1.
Epoch 4/24
107/107 - 469s - loss: 1.7380 - auc: 0.8970 - accuracy: 0.4340 - val loss: 1.
Epoch 5/24
107/107 - 295s - loss: 1.6371 - auc: 0.9089 - accuracy: 0.4673 - val loss: 1.
Epoch 6/24
107/107 - 222s - loss: 1.5821 - auc: 0.9155 - accuracy: 0.4827 - val loss: 1.
Epoch 7/24
107/107 - 185s - loss: 1.5228 - auc: 0.9225 - accuracy: 0.5009 - val loss: 1.
Epoch 8/24
107/107 - 157s - loss: 1.4554 - auc: 0.9296 - accuracy: 0.5171 - val_loss: 1.
Epoch 9/24
107/107 - 156s - loss: 1.4157 - auc: 0.9339 - accuracy: 0.5251 - val_loss: 1.
Epoch 10/24
107/107 - 151s - loss: 1.3959 - auc: 0.9356 - accuracy: 0.5353 - val loss: 1.
Epoch 11/24
107/107 - 149s - loss: 1.3262 - auc: 0.9426 - accuracy: 0.5549 - val loss: 1.
Epoch 12/24
107/107 - 146s - loss: 1.3129 - auc: 0.9435 - accuracy: 0.5560 - val_loss: 1.
Epoch 13/24
107/107 - 145s - loss: 1.3019 - auc: 0.9447 - accuracy: 0.5625 - val loss: 1.
Epoch 14/24
107/107 - 145s - loss: 1.2532 - auc: 0.9487 - accuracy: 0.5803 - val loss: 1.
Epoch 15/24
107/107 - 145s - loss: 1.2501 - auc: 0.9489 - accuracy: 0.5717 - val loss: 1.
Epoch 16/24
107/107 - 145s - loss: 1.1969 - auc: 0.9538 - accuracy: 0.5936 - val loss: 1.
Epoch 17/24
107/107 - 146s - loss: 1.1982 - auc: 0.9530 - accuracy: 0.5898 - val loss: 1.
Epoch 18/24
107/107 - 147s - loss: 1.1690 - auc: 0.9556 - accuracy: 0.6002 - val loss: 1.
Epoch 19/24
107/107 - 145s - loss: 1.1300 - auc: 0.9590 - accuracy: 0.6170 - val loss: 1.
Epoch 20/24
107/107 - 146s - loss: 1.1338 - auc: 0.9585 - accuracy: 0.6081 - val loss: 1.
Epoch 21/24
107/107 - 145s - loss: 1.0995 - auc: 0.9608 - accuracy: 0.6250 - val loss: 1.
Epoch 22/24
107/107 - 147s - loss: 1.0882 - auc: 0.9619 - accuracy: 0.6291 - val loss: 1.
Epoch 23/24
107/107 - 146s - loss: 1.0737 - auc: 0.9627 - accuracy: 0.6376 - val loss: 1.
Epoch 24/24
107/107 - 147s - loss: 1.0346 - auc: 0.9655 - accuracy: 0.6455 - val loss: 1.
Model: "model"
Layer (type)
                            Output Shape
                                                      Param #
______
 input 1 (InputLayer)
                            [(None, 224, 224, 3)]
                            (None, 224, 224, 64)
block1 conv1 (Conv2D)
                                                      1792
```

print(classification_report(test_it.classes, y_predict, target_names=test_it.class_inc

	precision	recall	f1-score	support
1977	0.38	0.58	0.46	100
Amaro	0.35	0.49	0.41	100
Brannan	0.48	0.36	0.41	100
Clarendon	0.28	0.53	0.36	100
Gingham	0.38	0.27	0.31	100
He-Fe	0.50	0.22	0.31	100
Hudson	0.37	0.45	0.40	100
Lo-Fi	0.33	0.40	0.36	100
Mayfair	0.20	0.17	0.19	100
Nashville	0.80	0.85	0.83	100
Original	0.27	0.15	0.19	100
Perpetua	0.42	0.50	0.45	100
Sutro	0.64	0.54	0.59	100
Toaster	0.76	0.74	0.75	100
Valencia	0.37	0.18	0.24	100
Willow	0.96	0.90	0.93	100
X-ProII	0.53	0.48	0.50	100
accuracy			0.46	1700
macro avg	0.47	0.46	0.45	1700
eighted avg	0.47	0.46	0.45	1700

```
y_predict
```

```
array([ 6, 0, 0, ..., 16, 12, 16])
```

y predict = np.argmax(preds,axis=1)

```
error_count = 0
for x in range (0,len(y_predict)):
    if y_predict[x] != test_it.classes[x]:
        error count += 1
error_count
    919
def plot result(history):
    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    epochs = range(len(acc))
    plt.plot(epochs, acc, 'r', label='Training accuracy')
    plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
    plt.title('Training and validation accuracy')
    plt.legend(loc=0)
    plt.figure()
    plt.show()
```

plot_result(history)


```
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
```

```
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```

```
model loss
   2.6
               train
               test
   2.4
   2.2
   2.0
§ 1.8
  1.6
  1.4
  1.2
  1.0
          Ò
                        5
                                                                 20
                                     10
                                                   15
```

#Fine-Tune part 2
Visualize layer names and layer indices to see how many layers need to be freeze
for i, layer in enumerate(base_model.layers):
 print(i, layer.name)

0 input 1 1 block1_conv1 2 block1 conv2 3 block1 pool 4 block2 conv1 5 block2 conv2 6 block2 pool 7 block3 conv1 8 block3 conv2 9 block3 conv3 10 block3 pool 11 block4 conv1 12 block4_conv2 13 block4 conv3 14 block4 pool 15 block5 conv1 16 block5 conv2

17 block5_conv3 18 block5 pool

we chose to train the top 2 blocks, try freeze the first 3 layers and unfreeze the 1
for layer in model.layers[:3]:
 layer.trainable = False
for layer in model.layers[3:]:
 layer.trainable = True

```
\# we need to recompile the model for these modifications to take effect \# try a low learning rate
```

Train our model again (fine-tuning the top 2 blocks alongside the top Dense layers
model, history = train_model(model, train_it, val_it)
print (model.summary())

```
Epoch 1/24
107/107 - 158s - loss: 3.0452 - auc: 0.5826 - accuracy: 0.0822 - val loss: 2.
Epoch 2/24
107/107 - 149s - loss: 2.0223 - auc: 0.8458 - accuracy: 0.2985 - val loss: 1.
Epoch 3/24
107/107 - 152s - loss: 1.1837 - auc: 0.9539 - accuracy: 0.5695 - val loss: 1.
Epoch 4/24
107/107 - 150s - loss: 0.8030 - auc: 0.9779 - accuracy: 0.7167 - val loss: 0.
Epoch 5/24
107/107 - 150s - loss: 0.6126 - auc: 0.9871 - accuracy: 0.7849 - val loss: 0.
Epoch 6/24
107/107 - 150s - loss: 0.5154 - auc: 0.9903 - accuracy: 0.8091 - val loss: 0.
Epoch 7/24
107/107 - 149s - loss: 0.4852 - auc: 0.9914 - accuracy: 0.8264 - val loss: 0.
Epoch 8/24
107/107 - 150s - loss: 0.4028 - auc: 0.9936 - accuracy: 0.8568 - val loss: 0.
Epoch 9/24
107/107 - 150s - loss: 0.3333 - auc: 0.9951 - accuracy: 0.8787 - val loss: 0.
Epoch 10/24
107/107 - 149s - loss: 0.2972 - auc: 0.9962 - accuracy: 0.8946 - val loss: 0.
Epoch 11/24
107/107 - 150s - loss: 0.3063 - auc: 0.9961 - accuracy: 0.8925 - val loss: 0.
Epoch 12/24
107/107 - 151s - loss: 0.2909 - auc: 0.9963 - accuracy: 0.8935 - val loss: 0.
Epoch 13/24
107/107 - 151s - loss: 0.2571 - auc: 0.9970 - accuracy: 0.9039 - val loss: 0.
Epoch 14/24
107/107 - 150s - loss: 0.2163 - auc: 0.9978 - accuracy: 0.9247 - val loss: 0.
Epoch 15/24
107/107 - 150s - loss: 0.2049 - auc: 0.9981 - accuracy: 0.9263 - val loss: 0.
Epoch 16/24
107/107 - 150s - loss: 0.2280 - auc: 0.9973 - accuracy: 0.9175 - val loss: 0.
Epoch 17/24
107/107 - 151s - loss: 0.1951 - auc: 0.9979 - accuracy: 0.9338 - val loss: 0.
Epoch 18/24
107/107 - 151s - loss: 0.1420 - auc: 0.9985 - accuracy: 0.9520 - val loss: 0.
Epoch 19/24
107/107 - 151s - loss: 0.1122 - auc: 0.9992 - accuracy: 0.9613 - val loss: 0.
Epoch 20/24
107/107 - 150s - loss: 0.1693 - auc: 0.9981 - accuracy: 0.9375 - val loss: 0.
Epoch 21/24
107/107 - 149s - loss: 0.1259 - auc: 0.9990 - accuracy: 0.9553 - val loss: 0.
Epoch 22/24
107/107 - 150s - loss: 0.1060 - auc: 0.9991 - accuracy: 0.9632 - val loss: 0.
Epoch 23/24
107/107 - 149s - loss: 0.0829 - auc: 0.9995 - accuracy: 0.9743 - val loss: 0.
```

```
Epoch 24/24

107/107 - 150s - loss: 0.1164 - auc: 0.9986 - accuracy: 0.9614 - val_loss: 0
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792

```
test_loss, test_auc, test_accuracy = eval_model(model, test_it)
```

```
test_it.reset()
preds = model.predict(test_it, steps = 27)
y_predict = np.argmax(preds,axis=1)
```

print(classification_report(test_it.classes, y_predict, target_names=test_it.class_inc

	precision	recall	f1-score	support
1977	0.88	0.99	0.93	100
Amaro	0.75	0.96	0.84	100
Brannan	0.99	0.91	0.95	100
Clarendon	0.74	0.85	0.79	100
Gingham	0.88	0.91	0.90	100
He-Fe	0.98	0.95	0.96	100
Hudson	0.98	0.89	0.93	100
Lo-Fi	0.93	0.71	0.81	100
Mayfair	0.75	0.93	0.83	100
Nashville	0.95	1.00	0.98	100
Original	0.85	0.66	0.74	100
Perpetua	0.97	0.92	0.94	100
Sutro	0.96	0.95	0.95	100
Toaster	0.97	0.99	0.98	100
Valencia	0.96	0.73	0.83	100
Willow	1.00	1.00	1.00	100
X-ProII	0.91	0.97	0.94	100
n iioii	0.71	0.37	0.51	100
accuracy			0.90	1700
macro avq	0.91	0.90	0.90	1700
weighted avg	0.91	0.90	0.90	1700
crgcca avg	0.71	0.00	0.00	1,00

plot_result(history)


```
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```


