Esame di Ricerca Operativa del 13/06/17

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 5 \ y_1 - 5 \ y_2 + 12 \ y_3 + 4 \ y_4 + 6 \ y_5 - 7 \ y_6 + 11 \ y_7 \\ y_1 + y_2 + y_3 - 2 \ y_4 - y_5 - y_6 = 1 \\ 2 \ y_2 - y_3 - y_4 - y_5 + y_6 - y_7 = -6 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(81/110)	(81/110)
$\{1, 2\}$	x =		
{2, 4}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{1,7}					
2° iterazione						

Esercizio 3. Un'industria chimica produce una soluzione per la quale sono utilizzati 3 diversi composti chimici: C_1 , C_2 e C_3 . La composizione di ciascun composto e il costo unitario (Euro/Kg) sono indicati nella seguente tabella:

	% silicio	% calcio	% ferro	Costo
C_1	3	5	8	300
C_2	6	3	2	350
C_3	2	4	6	250

Il prodotto finale deve contenere una percentuale di silicio tra il 3 e l'8 %, una percentuale di calcio tra il 2 e il 7 % ed una percentuale di ferro non inferiore al 5 %. Determinare la composizione della soluzione che minimizza i costi.

riabili decisionali:	
dello:	

COMANDI DI MATLAB								
c=	intlinprog=							
A=	b=							
Aeq=	beq=							
lb=	ub=							

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,5)				
(4,6) (5,7) (7,6)	(2,4)	x =		
(1,2) (2,4) (3,2)				
(4,6) (5,7) (7,6)	(2,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,4) (2,5) (3,2) (5,7) (7,6)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	iter 3 iter 4		iter 5		iter 6		iter 7			
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 5 x_1 + 11 x_2 \\ 16 x_1 + 10 x_2 \ge 55 \\ 15 x_1 + 19 x_2 \ge 68 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		98	59	58
3			13	11
4				16

a)	Trovare una	valutazione	inferiore d	lel v	valore otti	mo cale	colando	il 4	-albero	di	costo	mini	mo

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni

sottoproblema ed istanziando, nell'ordine, le variabili $x_{35},\,x_{34},\,x_{45}.$

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 8x_2 \le 0, \quad x_1^2 + x_2^2 - 4x_1 - 6x_2 = 0\}.$$

Soluzioni del sist	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(0,0)							
(3.2, 6.4)							
$(2,3+\sqrt{13})$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 x_1^2 - 4 x_1 x_2 + 4 x_2^2 + 4 x_1 + 9 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-4,3) , (-3,-2) , (3,-3) e (4,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(\frac{4}{3},3\right)$				•		

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min & 5 \ y_1 - 5 \ y_2 + 12 \ y_3 + 4 \ y_4 + 6 \ y_5 - 7 \ y_6 + 11 \ y_7 \\ y_1 + y_2 + y_3 - 2 \ y_4 - y_5 - y_6 = 1 \\ 2 \ y_2 - y_3 - y_4 - y_5 + y_6 - y_7 = -6 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (5, -5)	SI	NO
$\{2, 4\}$	$y = \left(0, -\frac{13}{3}, 0, -\frac{8}{3}, 0, 0, 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	$\{1, 7\}$	(5, -11)	(1, 0, 0, 0, 0, 0, 6)	3	1, 6	1
2° iterazione	${3, 7}$	(1, -11)	(0, 0, 1, 0, 0, 0, 5)	4	5 3	7

Esercizio 3. Indichiamo con x_1 , x_2 ed x_3 rispettivamente, le quantità percentuali di composto di tipo 1 2 e 3 da usare nella soluzione. Il modello di programmazione lineare è il seguente:

$$\begin{cases} & \min \ 300 \ x_1 + 350 \ x_2 + 250 \ x_3 \\ & x_1 + x_2 + x_3 = 1 \\ & 0.03 \le 0.03 \ x_1 + 0.06 \ x_2 + 0.02 \ x_3 \le 0.08 \\ & 0.02 \le 0.05 \ x_1 + 0.03 \ x_2 + 0.04 \ x_3 \le 0.07 \\ & 0.08 \ x_1 + 0.02 \ x_2 + 0.06 \ x_3 \ge 0.05 \\ & x \ge 0 \end{cases}$$

COMANDI DI MATLAB

c=[300;350;250]

A=[-3,-6,-2;3,6,2;-5,-3,-4;5,3,4;-8,-2,-6]

b=[-3; 8; -2; 7; -5]

Aeq=[1;1;1] beq=[1]

1b=[0;0;0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,5)				
(4,6) (5,7) (7,6)	(2,4)	x = (11, -7, 9, 9, 0, 0, 3, 0, 4, 0, 1)	NO	NO
(1,2) $(2,4)$ $(3,2)$				
(4,6) (5,7) (7,6)	(2,5)	$\pi = (0, 10, 1, 18, 11, 26, 16)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,4) (2,5) (3,2) (5,7) (7,6)	(1,2) (2,4) (2,5) (3,2) (5,7) (7,6)
Archi di U	(3,5)	(3,5)
x	(0, 4, 6, 5, 4, 7, 0, 0, 7, 0, 4)	(4, 0, 6, 5, 0, 7, 0, 0, 7, 0, 4)
π	(0, 12, 3, 20, 20, 35, 25)	(0, 10, 1, 18, 18, 33, 23)
Arco entrante	(1,2)	(4,6)
ϑ^+,ϑ^-	8,4	3, 4
Arco uscente	(1,3)	(2,4)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	: 1	iter	2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		(6	Ç	}	<i>c</i> 2	2	Ę	5		7
nodo 2	14	1	14	1	14	1	14	1	14	1	14	1	14	1
nodo 3	15	1	12	4	12	4	12	4	12	4	12	4	12	4
nodo 4	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 5	$+\infty$	-1	$+\infty$	-1	22	6	15	3	15	3	15	3	15	3
nodo 6	$+\infty$	-1	10	4	10	4	10	4	10	4	10	4	10	4
nodo 7	$+\infty$	-1	$+\infty$	-1	23	6	23	6	23	6	19	5	19	5
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 3	, 6	2, 3,	5, 7	2, 5	5, 7	5,	7	7	7	(A)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	11	(0, 11, 0, 0, 11, 0, 0, 0, 11, 0, 0)	11
1 - 4 - 6 - 7	5	(0, 11, 5, 0, 11, 0, 5, 0, 11, 0, 5)	16
1 - 2 - 4 - 6 - 7	2	(2,11,5,2,11,0,7,0,11,0,7)	18

Taglio di capacità minima:
$$N_s = \{1, 2, 3, 4\}$$
 $N_t = \{5, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 5 \ x_1 + 11 \ x_2 \\ & 16 \ x_1 + 10 \ x_2 \ge 55 \\ & 15 \ x_1 + 19 \ x_2 \ge 68 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{68}{15}, 0\right)$$
 $v_I(P) = 23$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		98	59	58
3			13	11
4				16

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(1,3)(3,4)(3,5)(4,5)$$
 $v_I(P) = 77$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo:
$$3-5-4-2-1$$
 $v_S(P)=123$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} . Dire se l'algoritmo è terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + x_2^2 - 8x_2 \le 0, \quad x_1^2 + x_2^2 - 4x_1 - 6x_2 = 0\}.$$

Soluzioni del sist	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(0,0)	1/8	0	NO	NO	SI	SI	NO
(3.2, 6.4)	3/40	-1/5	NO	NO	NO	SI	NO
$(2,3+\sqrt{13})$	0	$-\sqrt{13}/26$	SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 x_1^2 - 4 x_1 x_2 + 4 x_2^2 + 4 x_1 + 9 x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-4,3), (-3,-2), (3,-3) e (4,3). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	rezione Max spostamento]		Nuovo punto
				possibile		
$\left(\frac{4}{3},3\right)$	(0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(\frac{56}{3},0\right)$	$\frac{1}{7}$	$\frac{1}{7}$	(4,3)