

California Polytechnic State University Pomona

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Digital Logic LAB ECE 2300L Lab#9

Prepared by

Paul Yang Ryan Balatbat Jason Nguyen

Presented to **Keji Baril**

Introduction

Today we will try to use flip flop to create a sequential circuit

Objective

Using T-flip flops we will create a sequential counter that will go through the following numbers in the given order:

0,1,2,4,5,6,7

After 7 the counter will go back to 0 and repeat this sequence

Requirement

Given no input other than a clock input the circuit must cycle through the sequential sequence State table T-flip flop

Т	Q _n	Q _{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Start		Next			T(input)			
C2	C1	C0	C2	C1	C0	C2	C1	C0
0	0	0	0	0	1	0	0	1

0	0	1	0	1	0	0	1	1
0	1	0	1	0	0	1	1	0
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Parts List

- 1. Resistors
- 2. 7 segment display (common anode)
- 3. 74ls47
- 4. And gates
- 5. Or gates
- 6. Breadboard
- 7. Jumpers
- 8. Power Source
- 9. T flip flop (in this case we will make a t flip flop out of a j-k flip flop)

Design and Implementation

Not self-correcting

Self-Correcting given a 3 input

The difference between self-correcting and non-self-correcting is that in our nonself correcting we use our 3 as an I dont care since we assume it will never occur. However in order to make it self-correcting in the instance it is given a 3 input we just need to replace the dont care values with 1's in our K map. In this case, it will not effect a lot except out last flip-flop input as will be shown in the circuit diagram and is denoted in red.

Test and set up

Results and Verification

These are the results of the given display recorded by an Arduino which is also acting as our clock input

```
Binary: 1 1 1 Decimal: 7
Binary: 0 0 0 Decimal: 0
Binary: 0 0 1 Decimal: 1
Binary: 0 1 0 Decimal: 2
Binary: 1 0 0 Decimal: 4
Binary: 1 0 1 Decimal: 5
Binary: 1 1 0 Decimal: 6
Binary: 1 1 1 Decimal: 7
Binary: 0 0 0 Decimal: 0
Binary: 0 0 1 Decimal: 1
Binary: 0 1 0 Decimal: 2
Binary: 1 0 0 Decimal: 4
Binary: 1 0 1 Decimal: 5
Binary: 1 1 0 Decimal: 6
Binary: 1 1 1 Decimal: 7
Binary: 0 0 0 Decimal: 0
Binary: 0 0 1 Decimal: 1
Binary: 0 1 0 Decimal: 2
Binary: 1 0 0 Decimal: 4
Binary: 1 0 1 Decimal: 5
Binary: 1 1 0 Decimal: 6
Binary: 1 1 1 Decimal: 7
Binary: 0 0 0 Decimal: 0
Binary: 0 0 1 Decimal: 1
Binary: 0 1 0 Decimal: 2
Binary: 1 0 0 Decimal: 4
Binary: 1 0 1 Decimal: 5
Binary: 1 1 0 Decimal: 6
Binary: 1 1 1 Decimal: 7
Binary: 0 0 0 Decimal: 0
Binary: 0 0 1 Decimal: 1
Binary: 0 1 0 Decimal: 2
```

CLR	T input	Present state	Next state
-----	---------	---------------	------------

Н	C2	C1	C0	C2	C1	C0	C2	C1	C0
Н	0	0	1	0	0	0	0	0	1
Н	0	1	1	0	0	1	0	1	0
Н	1	1	0	0	1	0	1	0	0
Н	1	1	1	0	1	1	1	0	0
Н	0	0	1	1	0	0	1	0	1
Н	0	1	1	1	0	1	1	1	0
Н	0	0	1	1	1	0	1	1	1
Н	1	1	1	1	1	1	0	0	0

Arduino Code

```
int outPort=13;
int lsb=A0;
int nsb=A1;
int msb=A2;
void setup() {
pinMode(outPort,OUTPUT);
pinMode(lsb, INPUT);
pinMode(nsb, INPUT);
pinMode(msb, INPUT);
void loop() {
 digitalWrite(outPort, HIGH);
 delay(500);
 if(C2<200){
   C5=0;
 int C1=analogRead(nsb);
  int C4=1;
```

```
C4=0;
int C0=analogRead(lsb);
 C3=0;
int decimal=0;
if (C5==1) {
 decimal=decimal+4;
if (C4==1) {
  decimal=decimal+2;
if(C3==1){
  decimal=decimal+1;
Serial.print(C3);
Serial.print(decimal);
Serial.println(' ');
```

Post-Lab Questions

1. Is T- flip-flop commercially available? If so, draw the pin assignments from the Internet. If not, draw block diagrams for obtaining T- flip flops in two different ways

T-flip flops are not commercially available. They however can be made from jk or d flip flops if wired a certain way

2. How many flip flops are needed to design a counter to count in the following sequence:

12, 20,1,0, and then repeat?

This sequence needs 5 flip flops because each flip flop essentially represents 1 bit thus to accommodate for a number as large as 20(the largest number in the sequence) we would need 5 flip flops