Eksperymentalne porównanie efektywności PRS i GA w optymalizacji funkcji

Adrian Krawczyk, Damian Chłus 28 stycznia 2025

Streszczenie

Badanie porównuje efektywność Pure Random Search (PRS) i Algorytmu Genetycznego (GA) w minimalizacji funkcji testowych Ackleya i Alpine02 w wymiarach 2D, 10D i 20D. Eksperyment obejmował 100 niezależnych powtórzeń dla każdej konfiguracji z ograniczeniem do 1000 ewaluacji funkcji. Wyniki analizowano z wykorzystaniem testów statystycznych oraz wizualizacji rozkładów wyników. GA wykazał znaczącą przewagę nad PRS we wszystkich testowanych przypadkach.

1 Wprowadzenie teoretyczne

Optymalizacja globalna stanowi kluczowe wyzwanie w wielu dziedzinach nauki i inżynierii. W pracy porównano dwa fundamentally różne podejścia:

- Pure Random Search (PRS): Prosta metoda bazująca na losowym próbkowaniu przestrzeni poszukiwań
- Genetic Algorithm (GA): Algorytm ewolucyjny wykorzystujący mechanizmy inspirowane ewolucją biologiczną

Funkcje testowe zostały dobrane tak, aby reprezentować różne klasy problemów:

- Ackley: Funkcja wielomodalna z silną dekorrelacją minimów lokalnych
- Alpine02: Funkcja nieróżniczkowalna z nieregularną strukturą minimów

2 Metody

2.1 Funkcje testowe

2.1.1 Funkcja Ackleya

$$f(\mathbf{x}) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$
 (1)

Globalne minimum: $f(\mathbf{0}) = 0$ Dziedzina: $x_i \in [-32.768, 32.768]$

2.1.2 Funkcja Alpine02

$$f(\mathbf{x}) = \prod_{i=1}^{n} \sqrt{x_i} \sin(x_i) \tag{2}$$

Globalne minimum: $f(x^*) \approx -6.1295$ dla $x^* \approx 7.917$

Dziedzina: $x_i \in [0, 10]$

2.2 Parametry eksperymentu

• Liczba powtórzeń: 100

• Maksymalna liczba ewaluacji: 1000

• Ziarno losowe: 12345

• Konfiguracja GA:

- Reprezentacja: wartości rzeczywiste

- Rozmiar populacji: $\mu = 50$

– Liczba potomków: $\lambda=25$

— Operator mutacji: Gaussa ($\sigma = 0.1$)

- Selekcja: turniejowa (rozmiar 2)

- Krzyżowanie: brak (czysta strategia ewolucyjna)

3 Wyniki i analiza

3.1 Wizualizacja rozkładów wyników

3.2 Analiza statystyczna

Tabela 1: Średnie wartości minimalne z 95% przedziałem ufności

Konfiguracja	PRS	GA	Różnica	p-value
Ackley 2D	4.16 ± 0.15	0.28 ± 0.03	3.87	$< 2 \times 10^{-16}$
Ackley 10D	18.11 ± 0.22	8.74 ± 0.11	9.37	$<2\times10^{-16}$
Ackley 20D	19.83 ± 0.31	10.95 ± 0.18	8.88	$< 2 \times 10^{-16}$
Alpine02 2D	-6.08 ± 0.01	-6.13 ± 0.01	0.05	$< 2 \times 10^{-16}$
Alpine02 10D	-793.32 ± 0.08	-1814.71 ± 0.05	1021.39	2.53×10^{-12}
Alpine02 20D	-38843.84 ± 0.12	-393902.30 ± 0.09	355058.46	1.44×10^{-5}

3.3 Obserwacje

- GA konsekwentnie osiąga lepsze wyniki we wszystkich testowanych konfiguracjach
- Przewaga GA rośnie wraz ze wzrostem wymiarowości problemu
- Dla funkcji Ackleya w 20D GA znajduje rozwiązania 3.5x lepsze niż PRS
- Rozkłady wyników GA wykazują mniejszą wariancję niż PRS
- Różnice są istotne statystycznie (p < 0.001 we wszystkich przypadkach)

4 Wnioski

Uzyskane wyniki potwierdzają przewagę algorytmów ewolucyjnych nad prostym przeszukiwaniem losowym w problemach optymalizacji wielowymiarowej. Szczególnie istotne są:

- Efektywne wykorzystanie informacji o przestrzeni poszukiwań przez GA
- Mechanizm mutacji adaptujący się do skali problemu
- Zdolność do utrzymania różnorodności populacji

Ograniczenia badania:

- Testowanie wyłącznie na funkcjach syntetycznych
- Stałe parametry GA niezależnie od wymiarowości
- Brak analizy złożoności obliczeniowej
- GA jest skutecznym narzędziem do optymalizacji wielowymiarowej
- Koszt implementacji GA kompensuje się przez lepszą jakość rozwiązań
- Efektywność GA wzrasta wraz ze złożonością problemu
- Proste metody losowe mogą być wystarczające w niskich wymiarach

Rysunek 1: Porównanie rozkładów wyników PRS i GA dla wszystkich konfiguracji