2020-2021

Aprendizaje Automático

4. Máquinas de vectores soporte

Francisco Casacuberta Nolla

Enrique Vidal Ruiz

(fcn@dsic.upv.es) (evidal@dsic.upv.es)

Departament de Sistemas Informàtics i Computació (DSIC)

Universitat Politècnica de València (UPV)

Index

- 1 Funciones discriminantes lineales ≥ 2
- 2 Clasificadores de margen máximo: SVM ⊳ 7
- 3 Núcleos ⊳ 23
- 4 SVM para problemas de *C* clases ⊳ 31
- 5 Aplicaciones ▷ 49
- 6 Notación ⊳ 52

Index

- 1 Funciones discriminantes lineales > 2
 - 2 Clasificadores de margen máximo: SVM ⊳ 7
 - 3 Núcleos ⊳ 23
 - 4 SVM para problemas de *C* clases ⊳ 31
 - 5 Aplicaciones ▷ 49
 - 6 Notación ⊳ 52

Clasificación en dos clases con funciones discriminantes lineales

FUNCIÓN DISCRIMINANTE LINEAL (FDL)

$$\phi: \mathbb{R}^d \to \mathbb{R}: \ \phi(\boldsymbol{x}; \boldsymbol{\Theta}) = \boldsymbol{\theta}^t \boldsymbol{x} + \theta_0 = \sum_{i=1}^d \theta_i \ x_i + \theta_0$$

 $\Theta = (\theta, \theta_0)$: $\theta \in \mathbb{R}^d$ es un *vector de pesos* y $\theta_0 \in \mathbb{R}$ se denomina *umbral*.

El número de parámetros de Θ es pues D=d+1.

REGLA DE CLASIFICACIÓN (2 CLASES)

Asumiendo que las etiquetas de clase, c, son +1 y -1:

$$f(x) = \begin{cases} +1 & \operatorname{si} \phi(x; \mathbf{\Theta}) \geq 0 \\ -1 & \operatorname{si} \phi(x; \mathbf{\Theta}) < 0 \end{cases}$$

Propiedades de las funciones discriminantes lineales

- 1. Una FDL ϕ define el hiperplano de decisión $H = \{x \mid \phi(x; \Theta) = 0\}$.
- 2. H divide a \mathbb{R}^d en dos semiespacios: $\phi(x; \Theta) \ge 0, c = +1$ y $\phi(x; \Theta) < 0, c = -1$.
- 3. Si $\gamma \in \mathbb{R}^+$, entonces $\gamma \phi(x; \Theta)$ y $\phi(x; \Theta)$ representan al mismo H.

Propiedades de las funciones discriminantes lineales

- 1. Una FDL ϕ define el hiperplano de decisión $H = \{x \mid \phi(x; \Theta) = 0\}$.
- 2. H divide a \mathbb{R}^d en dos semiespacios: $\phi(x; \Theta) \ge 0, c = +1$ y $\phi(x; \Theta) < 0, c = -1$.
- 3. Si $\gamma \in \mathbb{R}^+$, entonces $\gamma \phi(x; \Theta)$ y $\phi(x; \Theta)$ representan al mismo H.

Ejemplo con d=1

Ejemplo con d=2

Propiedades de las funciones discriminantes lineales

- 1. Una FDL ϕ define el hiperplano de decisión $H = \{ \boldsymbol{x} \mid \phi(\boldsymbol{x}; \boldsymbol{\Theta}) = 0 \}$.
- 2. H divide a \mathbb{R}^d en dos semiespacios: $\phi(\boldsymbol{x};\boldsymbol{\Theta}) \geq 0, \ c = +1$ y $\phi(\boldsymbol{x};\boldsymbol{\Theta}) < 0, \ c = -1$.
- 3. Si $\gamma \in \mathbb{R}^+$, entonces $\gamma \phi(x; \Theta)$ y $\phi(x; \Theta)$ representan al mismo H.
- 4. La distancia de cualquier punto x_s a H es: $r_{x_s} = \frac{|\phi(x_s; \Theta)|}{||\theta||} = \frac{|\theta^i x_s + \theta_0|}{||\theta||}$

Ejemplo con d=1

Ejemplo con d=2

Aprendizaje de funciones discriminantes lineales

$$S = \{(\boldsymbol{x}_1, c_1), \dots, (\boldsymbol{x}_N, c_N)\}, \quad \boldsymbol{x}_n \in \mathbb{R}^d, c_n \in \{+1, -1\}, \ 1 \le n \le N.$$

S es *linealmente separable* si $\exists \ \theta \in \mathbb{R}^d, \ \theta_0 \in \mathbb{R}$, tales que:

$$c_n\left(\boldsymbol{\theta}^t\boldsymbol{x}_n+\theta_0\right)>0, \quad 1\leq n\leq N$$

Aprendizaje: Dada una muestra linealmente separable S, encontrar $\Theta = (\theta, \theta_0)$ que la separe.

Aproximación usual: Minimizar alguna función objetivo $q_S(\boldsymbol{\theta}, \theta_0)$ utilizando descenso por gradiente. Por ejemplo: el algoritmo Perceptrón, o el algoritmo Adaline.

Problema: probablemente hayan muchas soluciones.

Soluciones con *margen* $b \in \mathbb{R}^{\geq 0}$: $c_n \left(\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0 \right) \geq b$

Ejercicio: Escribir el algoritmo Perceptrón con margen

Forma canónica respecto a un conjunto de puntos

Para un hiperplano separador H dado, hay múltiples posibilidades de definirlo mediante diferentes FDLs $\phi(x; \Theta)$.

La *FDL canónica* de un H dado con respecto a un conjunto S de N puntos se define por $\check{\Theta} \equiv (\check{\theta}, \check{\theta}_0)$, tal que:

$$\min_{1 \le n \le N} |\phi(\boldsymbol{x}_n; \check{\boldsymbol{\Theta}})| = \min_{1 \le n \le N} |\check{\boldsymbol{\theta}}^t \boldsymbol{x}_n + \check{\boldsymbol{\theta}}_0| = 1$$

Por tanto, la distancia \check{r} del vector $\check{x} \in S$ más próximo al hiperplano separador H es:

$$\check{r} = \frac{|\check{\boldsymbol{\theta}}^t \check{\boldsymbol{x}} + \check{\boldsymbol{\theta}}_0|}{\|\check{\boldsymbol{\theta}}\|} = \frac{1}{\|\check{\boldsymbol{\theta}}\|}$$

Index

- 1 Funciones discriminantes lineales ≥ 2
- 2 Clasificadores de margen máximo: SVM > 7
 - 3 Núcleos ⊳ 23
 - 4 SVM para problemas de C clases > 31
 - 5 Aplicaciones ▷ 49
 - 6 Notación ⊳ 52

Forma canónica y margen de un clasificador respecto a un conjunto de puntos

Dado un hiperplano separador H y su FDL canónica con respecto a un conjunto S de N puntos $\check{\mathbf{\Theta}} \equiv (\check{\boldsymbol{\theta}}, \check{\theta}_0)$.

Hemos visto que la distancia \check{r} del vector $\check{x} \in S$ más próximo al hiperplano separador H es:

$$\check{r} = \frac{1}{\|\check{\boldsymbol{\theta}}\|}$$

Y el margen de H con respecto a S se define como:

$$2\check{r} = \frac{2}{\|\check{\boldsymbol{\theta}}\|}$$

En adelante se asume que Θ es siempre canónico respecto a S; es decir $\check{\mathbf{\Theta}} \to \mathbf{\Theta}$

Clasificadores de margen máximo

- *Aprendizaje*: dada una muestra linealmente separable S, encontrar $\theta \in \mathbb{R}^d$ y $\theta_0 \in \mathbb{R}$ que:
 - maximicen: $\frac{2}{\|\boldsymbol{\theta}\|}$
 - sujetas a: $c_n (\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0) \geq 1, \quad 1 \leq n \leq N$
- Equivalentemente, buscar $\theta \in \mathbb{R}^d$ y $\theta_0 \in \mathbb{R}$ que:
 - minimicen: $\frac{1}{2} \theta^t \theta$
 - sujetas a: $c_n (\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0) \geq 1, \quad 1 \leq n \leq N$

Aplicación de la técnica de los multiplicadores de Lagrange

• Función de Lagrange:

$$\Lambda(\boldsymbol{\theta}, \theta_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\theta}^t \boldsymbol{\theta} - \sum_{n=1}^{N} \alpha_n \left(c_n \left(\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0 \right) - 1 \right)$$

donde $\alpha_n \geq 0, \ 1 \leq n \leq N$ son los *multiplicadores de Lagrange*.

• Resolver $\nabla_{\boldsymbol{\theta},\theta_0}\Lambda(\boldsymbol{\theta},\theta_0,\boldsymbol{\alpha})=\mathbf{0}$

$$\nabla_{\boldsymbol{\theta}} \Lambda = \mathbf{0} \implies \boldsymbol{\theta}^{\star} = \sum_{n=1}^{N} c_n \, \alpha_n \, \boldsymbol{x}_n; \qquad \frac{\partial \Lambda}{\partial \theta_0} = 0 \implies \sum_{n=1}^{N} \alpha_n \, c_n = 0$$

• Lagrangiana dual (sustituyendo las anteriores expresiones en $\Lambda(\theta, \theta_0, \alpha)$):

$$\Lambda_D(\boldsymbol{\alpha}) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N c_n \ c_m \ \alpha_m \ \boldsymbol{x}_n^t \boldsymbol{x}_m$$

• Maximizar $\Lambda_D(\pmb{\alpha})$ sujeto a: $\sum_{n=1}^N \alpha_n \ c_n = 0; \quad \alpha_n \geq 0, \quad 1 \leq n \leq N \quad \longrightarrow \quad \pmb{\alpha}^\star$

Ejercicio: Desarrollar completamente los pasos anteriores hasta obtener $\Lambda_D(\alpha)$.

Maximización del margen: problemas equivalentes

- Original: minimizar $\frac{1}{2} \boldsymbol{\theta}^t \boldsymbol{\theta}$, sujeto a: $c_n(\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0) \geq 1, \ 1 \leq n \leq N$
- *Primal:* minimizar $\Lambda(\boldsymbol{\theta}, \theta_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\theta}^t \boldsymbol{\theta} \sum_{n=1}^N \alpha_n \left(c_n \left(\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0 \right) 1 \right)$ sujeto a $\alpha_n \geq 0, \ 1 \leq n \leq N$ $\longrightarrow \boldsymbol{\theta}^{\star}(\boldsymbol{\alpha})$

Dual: maximizar
$$\Lambda_D(\alpha) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N c_n \ c_m \ \alpha_n \ \alpha_m \ \boldsymbol{x}_n^t \boldsymbol{x}_m$$
 sujeto a: $\sum_{n=1}^N \alpha_n \ c_n = 0; \quad \alpha_n \geq 0, \quad 1 \leq n \leq N \longrightarrow \alpha^\star$

Los dos son problemas de *optimización cuadrática*, para los que existen técnicas de optimización más o menos costosas; típicamente en $\mathcal{O}(N^3)$.

Ventajas de la formulación *dual*: Permite soluciones computacionales más eficientes.

Resumen de propiedades de los clasificadores de máximo margen

Las soluciones $\theta^*, \theta_0^*, \alpha^*$ verifican:

1.
$$\boldsymbol{\theta}^{\star} = \sum_{n=1}^{N} c_n \; \alpha_n^{\star} \; \boldsymbol{x}_n$$

2.
$$\sum_{n=1}^{N} \alpha_n^{\star} c_n = 0$$

3.
$$\alpha_n^{\star} \ge 0, \ 1 \le n \le N$$

4. Condición complementaria de Karush-Kuhn-Tucker (KKT):

$$\alpha_n^{\star} \left(c_n \left(\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \theta_0^{\star} \right) - 1 \right) = 0, \quad 1 \le n \le N$$

Esto implica que hay dos posibilidades para cada n:

$$\alpha_n^* = 0$$
, o bien $\alpha_n^* \neq 0$, $c_n (\boldsymbol{\theta}^{*t} \boldsymbol{x}_n + \theta_0^*) = 1$

Vectores soporte

• *Vectores soporte:* muestras de entrenamiento x_n para las que $\alpha_n^* \neq 0$

$$\mathcal{V} = \left\{ n \in \mathbb{N}, \ 1 \le n \le N \mid (\boldsymbol{x}_n, c_n) \in S, \ c_n(\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \boldsymbol{\theta}_0^{\star}) = 1 \right\}$$

• Todos los vectores soporte equidistan del hiperplano separador:

$$\forall n \in \mathcal{V}, \ r_{\boldsymbol{x}_n} = \frac{|\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \boldsymbol{\theta}_0^{\star}|}{\|\boldsymbol{\theta}^{\star}\|} = \frac{|c_n|}{\|\boldsymbol{\theta}^{\star}\|} = \frac{1}{\|\boldsymbol{\theta}^{\star}\|}$$

• Las propiedades: $\sum_{n=1}^{N} \alpha_n^{\star} c_n = 0$ y $\alpha_n^{\star} > 0$, $n \in \mathcal{V}$, implican que hay al menos un vector soporte de cada clase; es decir, $\exists n, n' \in \mathcal{V}$ tales que

$$c_n = +1, c_{n'} = -1$$
$$\alpha_n^*, \alpha_{n'}^* > 0,$$
$$n \neq n'$$

Máquinas de vectores soporte

Un clasificador de máximo margen queda definido por la función discriminante lineal $\phi(x; \Theta) \stackrel{\text{def}}{=} \theta^{\star t} x + \theta_0^{\star}$, donde $\theta^{\star}, \theta_0^{\star}$ son parámetros óptimos del problema *original* (maximizar el margen), o de los correspondientes problemas *primal-dual*.

 θ^* se obtiene mediante combinación lineal de vectores soporte, por lo que estos clasificadores también se denominan *máquinas de vectores soporte*.

• Por la primera propiedad:
$$m{ heta}^\star = \sum_{n=1}^N c_n \; lpha_n^\star \; m{x}_n = \sum_{n \in \mathcal{V}} c_n \; lpha_n^\star \; m{x}_n$$

ullet Por KKT, para cualquier $m \in \mathcal{V}$: $heta_0^\star = c_m - oldsymbol{ heta}^{\star t} oldsymbol{x}_m = c_m - \sum_{n \in \mathcal{V}} c_n \; lpha_n^\star \; oldsymbol{x}_n^t oldsymbol{x}_m$

Función discriminante lineal que maximiza el margen:

$$\phi_{\text{svm}}(\boldsymbol{x};\boldsymbol{\Theta}) = \sum_{n \in \mathcal{V}} \alpha_n^{\star} c_n \boldsymbol{x}_n^t \boldsymbol{x} + \theta_0^{\star}$$

DEMO

Ejercicios

- 1. Sea $S = \{((1,1)^t, +1), ((2,2)^t, -1)\}$ una muestra de entrenamiento. Mediante el método de los multiplicadores de Lagrange, obtener (analíticamente) θ^* y θ_0^* que clasifiquen S con el máximo margen.
- 2. Sea *S* una muestra linealmente separable. Demostrar que el margen óptimo es:

$$2\left(\sum_{n\in\mathcal{V}}\alpha_n^\star\right)^{-1/2}$$

Caso de no separabilidad lineal: "márgenes blandos"

A la función a minimizar, $\frac{1}{2} \|\theta\|^2$, se le añade un término que pondera cómo de mal clasificado (o fuera del margen) se tolera que esté cada vector x_n de S.

Dado $S = \{(\boldsymbol{x}_1, c_1), \dots, (\boldsymbol{x}_N, c_N)\}$ y una constante C > 0, obtener $\boldsymbol{\theta} \in \mathbb{R}^d$, $\theta_0 \in \mathbb{R}$ y $\boldsymbol{\zeta} \in \mathbb{R}^N$ tales que:

$$ullet rac{1}{2} oldsymbol{ heta}^t oldsymbol{ heta} \, + \, \mathcal{C} \sum_{n=1}^N \zeta_n \quad ext{sea minimo}$$

$$-c_n\left(\boldsymbol{\theta}^t\boldsymbol{x}_n+\theta_0\right) \geq 1-\zeta_n, \ 1\leq n\leq N$$

$$-\zeta_n > 0, 1 < n < N$$

Caso de no separabilidad lineal: "márgenes blandos"

A la función a minimizar, $\frac{1}{2}||\boldsymbol{\theta}||^2$, se le añade un término que pondera cómo de mal clasificado (o fuera del margen) se tolera que esté cada vector \boldsymbol{x}_n de S.

Dado $S = \{(\boldsymbol{x}_1, c_1), \dots, (\boldsymbol{x}_N, c_N)\}$ y una constante C > 0, obtener $\boldsymbol{\theta} \in \mathbb{R}^d$, $\theta_0 \in \mathbb{R}$ y $\boldsymbol{\zeta} \in \mathbb{R}^N$ tales que:

$$ullet$$
 $\frac{1}{2} oldsymbol{ heta}^t oldsymbol{ heta} + \mathcal{C} \sum_{n=1}^N \zeta_n$ sea mínimo

- sujeto a:
 - $-c_n\left(\boldsymbol{\theta}^t\boldsymbol{x}_n+\theta_0\right) \geq 1-\zeta_n, \ 1\leq n\leq N$
 - $-\zeta_n \ge 0, \ 1 \le n \le N$

SVM en el caso de no separabilidad lineal

Lagrangiana primal:

$$\begin{aligned} & \text{Minimizar } \Lambda(\boldsymbol{\theta}, \theta_0, \boldsymbol{\zeta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \\ & \frac{1}{2} \boldsymbol{\theta}^t \boldsymbol{\theta} \, + \, \mathcal{C} \sum_{n=1}^N \zeta_n - \sum_{n=1}^N \alpha_n \left(c_n \, \left(\boldsymbol{\theta}^t \boldsymbol{x}_n + \theta_0 \right) + \zeta_n - 1 \right) - \sum_{n=1}^N \beta_n \zeta_n \\ & \text{sujeto a } \alpha_n \geq 0, \; \beta_n \geq 0 \; \text{y} \; \zeta_n \geq 0 \; \text{para} \; 1 \leq n \leq N \end{aligned}$$

Lagrangiana dual:

$$\begin{aligned} & \text{Minimizar } \Lambda_D(\pmb{\alpha},\pmb{\beta}) \ = \ \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N c_n \ c_m \ \alpha_n \ \alpha_m \ \pmb{x}_n^t \ \pmb{x}_m \end{aligned}$$
 sujeto a $\alpha_n \geq 0, \alpha_n + \beta_n = C$ para $1 \leq n \leq N$ y a $\sum_{n=1}^N \alpha_n \ c_n = 0$

Desarrollo similar al caso separable (*ejercicio*)

SVM en el caso de no separabilidad lineal

Lagrangiana dual:

$$\Lambda_D(\boldsymbol{\alpha},\boldsymbol{\beta}) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N c_n c_m \alpha_n \alpha_m \boldsymbol{x}_n^t \boldsymbol{x}_m$$

• Las soluciones θ^* , θ_0^* , ζ^* , α^* , β^* verifican:

1.
$$\boldsymbol{\theta}^{\star} = \sum_{n=1}^{N} c_n \; \alpha_n^{\star} \; \boldsymbol{x}_n$$

1.
$$\theta^* = \sum_{n=1}^{N} c_n \ \alpha_n^*$$
 2. $\sum_{n=1}^{N} \alpha_n^* \ c_n = 0$

$$3. \ 0 \le \alpha_n^{\star} \le \mathcal{C} \quad 1 \le n \le N$$

4.
$$\beta_n^{\star} = \mathcal{C} - \alpha_n^{\star} \quad 1 \leq n \leq N$$

5. Condición complementaria de Karush-Kuhn-Tucker

$$\alpha_n^{\star} \left(c_n \left(\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \boldsymbol{\theta}_0^{\star} \right) - 1 + \zeta_n^{\star} \right) = 0 \\ \beta_n^{\star} \zeta_n^{\star} = 0 \end{cases} \} 1 \le n \le N$$

Vectores soporte "erróneos"

$$1 \le n \le N \quad \begin{cases} \alpha_n^{\star} \left(c_n(\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \boldsymbol{\theta}_0^{\star}) - 1 + \zeta_n^{\star} \right) = 0 \\ \beta_n^{\star} \zeta_n^{\star} = (\mathcal{C} - \alpha_n^{\star}) \zeta_n^{\star} = 0 \end{cases}$$
(1)

- (1) \rightarrow muestras x_n tales que $\alpha_n^\star \neq 0$ son vectores soporte. En este caso, $c_n(\boldsymbol{\theta}^{\star t} \boldsymbol{x}_n + \boldsymbol{\theta}_0^\star) = 1 - \zeta_n^\star$
- (2) $\rightarrow (\mathcal{C} \alpha_n^{\star}) \zeta_n^{\star} = 0$

$$-\mathcal{C}-\alpha_n^{\star}>0 \Rightarrow \zeta_n^{\star}=0 \Rightarrow c_n \left(\boldsymbol{\theta^{\star}}^t \boldsymbol{x}_n + \theta_0^{\star}\right)=1 \Rightarrow \sin \text{error de margen}$$

$$-\zeta_n^\star>0 \ \Rightarrow \ \mathcal{C}=\alpha_n^\star \ \Rightarrow \ \text{error de margen} \left\{ \begin{array}{l} \zeta_n^\star \ > \ 1 \\ \zeta_n^\star \ \leq \ 1 \end{array} \right. \ \text{dentro del margen}$$

- ullet se determina mediante validación cruzada y controla el compromiso entre el margen y los errores de margen
- Ejercicio: ¿Qué ocurre con el resto de muestras ($\alpha_n^{\star} = 0$) ?

C-SVM

- Calcular α_n^{\star} , $1 \leq n \leq N$, que maximicen $\Lambda_D(\alpha)$, sujeto a las restricciones: $\sum_{n=1}^{N} \alpha_n \ c_n = 0$ y $0 \leq \alpha_n \leq C$, $1 \leq n \leq N$
- Vectores soporte: $\mathbf{x}_n \in S, n \in \mathcal{V}, \quad \mathcal{V} = \{n \in \mathbb{N}, 1 \le n \le N \mid \alpha_n^* \ne 0\}$
- Coeficientes de la FDL:

$$- \boldsymbol{\theta}^{\star} = \sum_{n \in \mathcal{V}} c_n \; \alpha_n^{\star} \; \boldsymbol{x}_n$$

$$\theta_0^\star = c_n - {m{ heta}^\star}^t {m{x}}_n$$
 para algún $n \in \mathcal{V}$ tal que $lpha_n^* < \mathcal{C}$

Función discriminante lineal de margen máximo:

$$\phi_{\text{svm}}(\boldsymbol{x};\boldsymbol{\Theta}) = \sum_{n \in \mathcal{V}} \alpha_n^{\star} c_n \boldsymbol{x}_n^{t} \boldsymbol{x} + \theta_0^{\star}$$

Métodos de optimización para SVM

Problema: maximizar la Lagrangiana dual:

$$\underset{\boldsymbol{\alpha}}{\operatorname{arg\,max}} \quad \Lambda_D(\boldsymbol{\alpha})$$

$$\sum_{n=1}^{N} c_n \alpha_n = 0$$

$$0 < \alpha_n < C, \ 1 < n < N$$

- Solución analítica, si $N \ll$ (generalmente $N \leq 3$)
- Ascenso por gradiente, en general
- Algoritmos de descomposición, si $N \lesssim 5000$
- Optimización minimal sequencial, $N \gg 5000$ ("Sequential minimal optimization algorithm", SMO)

Index

- 1 Funciones discriminantes lineales > 2
- 2 Clasificadores de margen máximo: SVM ⊳ 7
- 3 Núcleos ▷ 23
 - 4 SVM para problemas de *C* clases ▷ 31
 - 5 Aplicaciones ▷ 49
 - 6 Notación ⊳ 52

Funciones discriminantes lineales generalizadas (FDLG)

FDLG para un problema de clasificación en dos clases:

$$\phi(\boldsymbol{x};\boldsymbol{\Theta}) = \sum_{i=1}^{d'} \theta_i \, \psi_i(\boldsymbol{x}) + \theta_0 = \boldsymbol{\theta}^t \boldsymbol{\psi}(\boldsymbol{x}) + \theta_0$$

donde:
$$-\boldsymbol{x} \in \mathbb{R}^d$$
, $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (típicamente $d' \gg d$), $-\boldsymbol{\psi}$ es una función no lineal: $\boldsymbol{\psi} : \mathbb{R}^d \to \mathbb{R}^{d'}$

Ejemplo: Linealización de funciones cuadráticas:

$$\phi(\mathbf{x}; \mathbf{\Theta}) = \sum_{i=1}^{d} \sum_{j=1}^{d} a_{ij} x_i x_j + \sum_{j=1}^{d} b_j x_j + c$$

$$\phi(\boldsymbol{x}; \boldsymbol{\Theta}) = \boldsymbol{\theta}^t \boldsymbol{\psi}(\boldsymbol{x}) + \theta_0 \quad \text{con } \boldsymbol{\psi} : \mathbb{R}^d \to \mathbb{R}^{d'}, \ d' = \frac{1}{2}d(d+3) :$$

$$\psi(x_1, \dots, x_d) = (x_1 x_1, x_1 x_2, \dots, x_2 x_1, x_2 x_2, \dots, x_d x_d, x_1, \dots, x_d)^t$$

$$\boldsymbol{\theta} = (a_{11}, a_{12}, \dots, a_{21}, a_{22}, \dots, a_{dd}, b_1, \dots, b_d)^t, \quad \theta_0 = c$$

Ejemplo: Problema de la 'O' exclusiva (XOR)

Mediante la función escalón $E: \mathbb{R} \to \{0,1\}$ definida como $E(x) = \left\{ \begin{array}{ll} 1 & \text{si } x \geq 0 \\ 0 & \text{si } x < 0 \end{array} \right.$ el cambio de espacio de representación:

$$\psi_1(x_1, x_2) = E(x_1 - x_2 - 0.5)$$
 y $\psi_2(x_1, x_2) = E(-x_1 + x_2 - 0.5)$

permite definir una FDLG que linealiza el problema XOR:

$$\phi(x_1, x_2; \theta_0, \theta_1, \theta_2) = \sum_{k=1}^{2} \theta_k \psi_k(x_1, x_2) + \theta_0$$

$$//\theta_1 = \theta_2 = 1, \ \theta_0 = -0.5// = E(x_1 - x_2 - 0.5) + E(-x_1 + x_2 - 0.5) - 0.5$$

Generalización de SVM¹: Núcleos

Se aprovecha la propiedad de que una SVM se puede expresar en base a productos escalares entre muestras de entrenamiento:

$$\phi(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n c_n \boldsymbol{x}_n^t \boldsymbol{x} + \theta_0$$

$$\psi$$

$$\phi_{\psi}(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n c_n \boldsymbol{\psi}(\boldsymbol{x}_n)^t \boldsymbol{\psi}(\boldsymbol{x}) + \theta_0$$

$$\psi$$

$$\phi_{\mathcal{K}}(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n c_n \mathcal{K}(\boldsymbol{x}_n, \boldsymbol{x}) + \theta_0$$

donde $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ es una función que se denomina núcleo si $\exists \boldsymbol{\psi}: \mathbb{R}^d \to \mathbb{R}^{d'}$ tal que $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\psi}(\boldsymbol{x})^t \boldsymbol{\psi}(\boldsymbol{x}'), \ \ \forall \boldsymbol{x}, \boldsymbol{x}' \in \mathbb{R}^d$. A $\mathbb{R}^{d'}$ se le suele llamar espacio de características

¹ Una generalización similar puede hacerse también para el perceptrón (*Kernel perceptron*)

Núcleos: ejemplo

Sean
$$\mathbf{x}=(x_1,x_2,x_3)^t$$
, $\mathbf{y}=(y_1,y_2,y_3)^t$ y $\mathcal{K}:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ definida como:

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{y}) = (x_1 y_1 + x_2 y_2 + x_3 y_3)^2$$

¿Es $\mathcal{K}(\boldsymbol{x}, \boldsymbol{y})$ un núcleo?

Núcleos: ejemplo

Sean $x=(x_1,x_2,x_3)^t$, $y=(y_1,y_2,y_3)^t$ y $\mathcal{K}\colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida como: $\mathcal{K}(x,y) \ = \ (x_1\ y_1 + x_2\ y_2 + x_3\ y_3)^2$

¿Es $\mathcal{K}(\boldsymbol{x},\boldsymbol{y})$ un núcleo? ... Si, ya que:

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{y}) = (x_1 y_1 + x_2 y_2 + x_3 y_3)^2$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 + 2 x_1 y_1 x_2 y_2 + 2 x_1 y_1 x_3 y_3 + 2 x_2 y_2 x_3 y_3$$

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\psi}(\boldsymbol{x})^t \boldsymbol{\psi}(\boldsymbol{y}) \text{ si } \boldsymbol{\psi} : \mathbb{R}^3 \to \mathbb{R}^6 \text{ se define como:}$$
 $\boldsymbol{\psi}(\boldsymbol{x}) = (x_1^2, x_2^2, x_3^2, \sqrt{2} x_1 x_2, \sqrt{2} x_1 x_3, \sqrt{2} x_2 x_3)^t$ $\boldsymbol{\psi}(\boldsymbol{y}) = (y_1^2, y_2^2, y_3^2, \sqrt{2} y_1 y_2, \sqrt{2} y_1 y_3, \sqrt{2} y_2 y_3)^t$

Alternativas para calcular $\mathcal{K}(\boldsymbol{x}, \boldsymbol{y})$:

- *Directamente* en \mathbb{R}^3 , mediante $\mathcal{K}(\boldsymbol{x},\boldsymbol{y})$: 3+2+1=6 productos + sumas
- Obtener primero $\psi(x)$, $\psi(y)$ en \mathbb{R}^6 y calcular $\psi(x)^t \psi(y)$: $2 \cdot 6 + 6 + 5 = 23$ productos + sumas

Construcción de núcleos

- Elegir $\psi : \mathbb{R}^d \to \mathbb{R}^{d'}$ y el núcleo es $\mathcal{K}(x,x') = \psi(x)^t \psi(x')$ Es necesario trabajar en $\mathbb{R}^{d'}$, $d' \gg d$: ¡amenaza de la dimensionalidad!
- Elegir $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ y:
 - Demostrar que $\exists \psi: \mathbb{R}^d o \mathbb{R}^{d'}$: $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \psi(\boldsymbol{x})^t \psi(\boldsymbol{x}'), \ \ \forall \boldsymbol{x}, \boldsymbol{x}' \in \mathbb{R}^d$
 - Condición de Mercer: \mathcal{K} es un núcleo si y solo si, para cualquier conjunto de vectores $\{x_1,\ldots,x_N\}$, la matriz $[\mathcal{K}(x_n,x_m)]_{1\leq n,m\leq N}$ (llamada matriz de Gramm) es semidefinida positiva
 - Mediante "álgebra de núcleos": construir \mathcal{K} a partir de núcleos simples. Si \mathcal{K}_1 y \mathcal{K}_2 son núcleos, entonces también son núcleos:
 - * La suma, el producto o cualquier polinomio con coeficientes no negativos de \mathcal{K}_1 y \mathcal{K}_2
 - * $\exp\left(\mathcal{K}_1(\boldsymbol{x}, \boldsymbol{x}')\right)$
 - Núcleos de base radial (RBK): $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') \stackrel{\text{def}}{=} f(r), \ r = ||\boldsymbol{x} \boldsymbol{x}'||$ Ejemplo: núcleos gaussianos: $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-c \mid|\boldsymbol{x} - \boldsymbol{x}'\mid|^2\right)$ ver: http://en.wikipedia.org/wiki/Radial_basis_function
 - · · · Etc.

Máquinas de vectores soporte y núcleos

- *Problema*: Dado un muestra de entrenamiento $S = \{(\boldsymbol{x}_1, c_1), \dots, (\boldsymbol{x}_N, c_N)\}$, una constante $C \geq 0$ y un núcleo $\mathcal{K}(\boldsymbol{x}_n, \boldsymbol{x}_m) = \boldsymbol{\psi}(\boldsymbol{x}_n)^t \boldsymbol{\psi}(\boldsymbol{x}_m)$, obtener $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ y $\theta_0 \in \mathbb{R}$ tales que:
 - $\frac{1}{2} \boldsymbol{\theta}^t \boldsymbol{\theta} + \mathcal{C} \sum_{n=1}^N \zeta_n$ sea mínimo
 - sujeto a $c_n(\boldsymbol{\theta}^t \boldsymbol{\psi}(\boldsymbol{x}_n) + \theta_0) \geq 1 \zeta_n$ y $\zeta_n \geq 0, \ 1 \leq n \leq N$
- *Solución:* Lagrangiana dual: $\Lambda_D(\boldsymbol{\alpha}) = \sum_{n=1}^N \alpha_n \frac{1}{2} \sum_{n,m=1}^N c_n c_m \alpha_n \alpha_m \mathcal{K}(\boldsymbol{x}_n, \boldsymbol{x}_m)$
 - Calcular α^* que maximice $\Lambda_D(\alpha)$ sujeto a $\sum_{n=1}^N \alpha_n c_n = 0$, $0 \le \alpha_n \le \mathcal{C}, \ 1 \le n \le N$
 - Vectores soporte: $\mathbf{x}_n \in S : n \in \mathcal{V}, \ \mathcal{V} = \{n \in \mathbb{N}, 1 \le n \le N \mid \alpha_n^* \ne 0\}$
 - FDLG: $\phi_{\mathcal{K}}(\boldsymbol{x}) = \sum_{n \in \mathcal{V}} c_n \, \alpha_n^{\star} \, \mathcal{K}(\boldsymbol{x}_n, \boldsymbol{x}) + \, \theta_0^{\star}$ $\operatorname{con} \; \theta_0^{\star} = c_n \sum_{m \in \mathcal{V}} c_m \; \alpha_m^{\star} \, \mathcal{K}(\boldsymbol{x}_m, \boldsymbol{x}_n) \; \operatorname{para algún} \; n \in \mathcal{V} : \alpha_n^{\star} < \mathcal{C}$

Cuestión: ¿Dónde están ψ y θ^* ?

Index

- 1 Funciones discriminantes lineales ≥ 2
- 2 Clasificadores de margen máximo: SVM ⊳ 7
- 3 Núcleos ⊳ 23
- 4 SVM para problemas de C clases > 31
 - 5 Aplicaciones ▷ 49
 - 6 Notación ⊳ 52

Clasificación en C clases con funciones discriminantes lineales

FUNCIONES DISCRIMINANTES LINEALES GENERALIZADAS

$$\phi_c(\boldsymbol{x};\boldsymbol{\Theta}) = \boldsymbol{\theta}_c^{\ t} \boldsymbol{\psi}(\boldsymbol{x}) + \theta_{c0} = \sum_{i=1}^{d'} \theta_{ci} \ \psi_i(\boldsymbol{x}) + \theta_{c0}, \quad 1 \le c \le C$$

donde:

- ullet $\psi: \mathbb{R}^d o \mathbb{R}^{d'}$ es una función de cambio de espacio
- $oldsymbol{ heta}_c \in \mathbb{R}^{d'}$ es el vector de pesos de la clase c
- $\theta_{c0} \in \mathbb{R}$ es el umbral de la clase c

REGLA DE CLASIFICACIÓN

$$f(\boldsymbol{x}) \stackrel{\mathsf{def}}{=} \hat{c} = \underset{1 \le c \le C}{\operatorname{arg max}} \phi_c(\boldsymbol{x}; \boldsymbol{\Theta}) \iff \phi_{\hat{c}}(\boldsymbol{x}; \boldsymbol{\Theta}) > \phi_c(\boldsymbol{x}; \boldsymbol{\Theta}) \ \forall c \ne \hat{c}$$

El problema de C clases: uno-contra-uno

$$S = \{(\boldsymbol{x}_1, c_1), ..., (\boldsymbol{x}_N, c_N)\}, \text{ con } \boldsymbol{x}_n \in \mathbb{R}^d, c_n \in \{1, ..., C\}$$

Un núcleo $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

- C(C-1)/2 clasificadores uno-contra-uno
 - Aprendizaje: Para $1 \le c < c' \le C$,

$$S_{cc'}: (\boldsymbol{x}_n, c_{ncc'}) \in S_{cc'} \text{ si } (\boldsymbol{x}_n, c_n) \in S \text{ con } c_n = c \text{ o } c_n = c' \text{ y } c_{ncc'} = \left\{ \begin{array}{ll} +1 & c_n = c \\ -1 & c_n = c' \end{array} \right.$$

$$\begin{aligned} \phi_{cc'}(\boldsymbol{x}) &= \sum_{\boldsymbol{x}_n \in \mathcal{SV}_{cc'}} \alpha^{\star}_{ncc'} \ c_{ncc'} \ \mathcal{K}(\boldsymbol{x}_n, \boldsymbol{x}) + \theta^{\star}_{cc'0} \\ f_{cc'}(\boldsymbol{x}) &= \begin{cases} +1 & \text{si } \phi_{cc'}(\boldsymbol{x}) \geq 0 \\ -1 & \text{si } \phi_{cc'}(\boldsymbol{x}) < 0 \end{cases} \end{aligned}$$

- Clasificación por votación: $O(C^2)$ (or $O(M^2 \cdot |\overline{\mathcal{V}}|)$ cálculos de kernels)
- Clasificación utilizando DAGs (directed acyclic graphs): O(C)

El problema de 3 clases: uno-contra-uno y DAGs

• Formulación equivalente a la clasificación por votación: A partir de los clasificadores binarios $f_{cc'}$ para $1 \le c, c' \le C$: La decisión multi-clase se define:

$$f(\boldsymbol{x}) = \operatorname*{arg\,max}_{1 \le c \le C} \sum_{c' \ne c} f_{cc'}(\boldsymbol{x})$$

• Clasificación utilizando grafos dirigidos y acíclicos (DAGs): Para C=3,

Clasificación multi-clase mediante clasificadores binarios: ejemplo anterior mediante DAGs

Otras técnicas de clasificación multi-clase para SVM

- *Uno-contra-el-resto:* Se entrenan C FDLs binarias, ϕ_c , $1 \le c \le C$, usando como muestras positivas *solo* los vectores de la clase c y como negativas el resto.
- *SVM*^{multiC}: Optimización directa de márgenes en *C* clases [Cramer & Singer, 01]
- Construcción de Kesler: Transformación de un problema de C clases on otro de 2 clases (aumentando la dimensionalidad).
 [Duda & Hart, 73], [Franc & Hlaváč, 02]
- En la práctica: Las técnicas que parecen más adecuadas son uno-contra-uno con DAG. [Hsu & Lin, 03]
- *Demo:* http://www.csie.ntu.edu.tw/~cjlin/libsvm

Index

- 1 Funciones discriminantes lineales ≥ 2
- 2 Clasificadores de margen máximo: SVM ⊳ 7
- 3 Núcleos ⊳ 23
- 4 SVM para problemas de *C* clases ▷ 31
- 5 Aplicaciones ▷ 49
 - 6 Notación ⊳ 52

Aplicaciones: reconocimiento de caracteres manuscritos off-line

K.-R. Müller et al: An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. on Neural networks. 2001 $^{
m 1}$

A.M. HafizK & G.M. Baht: Handwritten Digit Recognition using Slope Detail Features. International Journal of Computer Applications. 2014^2

Q. Wang et al. Convolutional 2D LDA for Nonlinear Dimensionality Reduction. Joint Conference on Artificial Intelligence. $2017.^2$

Corpus USPS: 7291 muestras

Técnica	Tasa de error (%)
SVM sin kernel	8.71
k-vecino más próximo	5.7^{1}
Redes neuronales radiales	4.1 ¹
SVM virtuales	3.0^{1}
Vecino más próximo utilizando la distancia tangente	2.5^{1}
Humano	2.5^{1}
SVM (características especiales)	1.3 ²
Redes convolucionales	2.1 ³

Aplicaciones diversas

- Búsqueda de imágenes
- Detección de caras
- Localización de las matrículas
- Detección de texto en imágenes
- Detección de humanos en movimiento
- Detección de mensajes ocultos en imágenes
- Clasificación de texto
- Predicción del nivel del agua de un lago
- Series temporales financieras
- Reconocimiento de secuencias en texto genómico

Index

- 1 Funciones discriminantes lineales ≥ 2
- 2 Clasificadores de margen máximo: SVM ⊳ 7
- 3 Núcleos ⊳ 23
- 4 SVM para problemas de *C* clases ▷ 31
- 5 Aplicaciones ▷ 49
- ∘ 6 Notación ⊳ 52

Notación

- Representación de un objeto y su clase: $x \in \mathbb{R}$ y $c \in \{+1, -1\}$ (para problemas de dos clases).
- Funciones discriminantes lineales: $\phi(x; \Theta)$ para una entrada x y parámetros Θ compuestos por vector de pesos y umbral (θ, θ_0) .
- Conjunto de N muestras de entrenamiento: $S = \{(\boldsymbol{x}_1, c_1), \dots, (\boldsymbol{x}_N, c_N)\}$
- Función de Lagrange: $\Lambda(\theta, \theta_0, \alpha)$ con multiplicadores de Lagrange α_n
- Lagrangiana dual: $\Lambda_D(\alpha)$
- Conjunto de vectores soporte: \mathcal{V}
- Coeficientes de tolerancia para "márgenes blandos": ζ_n
- Núcleo: K