4.1.

Last time: Restriction Rosers of scalars from (to 12. Proposition. There is an injection GLu(C) Resolve (IR)
and its image consists of matrices commuting with (The exact motrix depends on the perticular injections isomorphism there (x, tiy), ..., xntiyn) (" = 12". $\begin{pmatrix} -I & 0 \end{pmatrix}$ -> (x1, ... | xn | 411 --- , 4n)

There is also an injection $M_n(H) \longrightarrow M_{2n}(\mathbf{b}C)$ (and this also -> Myu (P).)

Represent a quadernion a + bit + cit + die as (a+bi c+di ARGH!!

why don't

books agree on

fueir conventions??

(b-ci a-di)

and expand everything out in blocks. Exercise. Characterize the image.

So the vice definition is: The set

{A & Gin(K): <Ax, Ay> = <x, y> for all xiy} e 100 Kin is the orthogonal group O(n) = On(12) when k=12, the unitary group U(n) = Un(C) when K=C, and the compact symplectic group Sp(n) otherwise.

4.2. Topological properties of Lie groups. We give $M_n(C) \cong C^{n^2} \cong \mathbb{R}^{2n^2}$ the Euclidean $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ (metric topology)

and any subgroups the subspace topology.

Heine-Borel Theorem => Any motrix Lie group (& Mn(C)) is the compact if it is closed and bounded.

Proposition. O(n), So(n), U(n), SU(n), Sp(n)
complex form

Proof. They are all closed; for example

O(n) = \(\langle \{ A: \langle Ax, Ay > = \langle x, y > \}

= 1 {A: @AR, AB < (A-I) x, (A-I) y > =0.

inverse image ander of O under a polynomial

They are also all bounded: they all satisfy $\overline{A}^T A = \overline{I}$ and so have orthonormal columns and hence all entries bounded by 1.

By contrast, sulu) and Olla) are not compact.

4.3. Def. A matrix lie group is partly connected

(book: connected) if for all A, B & G there is a continuous

path A(+), a = + = b lying in G with A(a) = A, A(b) = B.

(Note: we could demand a = 0, b = 1 if we liked)

Same as demanding a function $f: [a,b] \longrightarrow G$ as obvie.

Clater: parth connected for connected for lie groups)

Def. If G is a motive lie group (really, any monitold), the consented component of x = G is

EyeG: Facts path between x and y).
This relation portitions Ginto equivalence classes

Def. We the identity component is the component of 1 = 6.

Prop. If G is a motive Cir group, its identity component Go is
(1) a subgroup of G
(2) normal.

Proof. (1) Mothsphiedor (f A, B & Go, there are paths f, g convecting I to A, B respectively.

Then fig connects I to AB and Then fig connects I to A-1.

(2) If $A \leftarrow G_0$, $B \leftarrow G$, \exists a cts path connecting I to A.

Then $+ \rightarrow B \cdot A(+) \cdot B^{-1}$ connects I to BAB^{-1} .

4.4. Note: If f,g: [a,b] -> GLn(a)
one continuous, so one f.g and f. (cotactor expansion for inverse) Proposition. GLn(C) is connected for all n21. Proof. Use Jordan form. Given A = Mu(C), $A = CBC^{-1}$ for some C with $B = \begin{bmatrix} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix}$ etc. We just core that it's apper triangular. Now Bis in the same coun upt. as 1. Define a path (0:17 - Ctu(4) λ; : (0,1) → €x Choose your favorite continuous fins. 1=(0);1 Y; (1) = X1, and Define $B(+) = \begin{cases} \lambda_1(+) + \cdots \\ \lambda_n(+) \end{cases}$ etc.

Cet a path connecting I and B.

So B & Go.

By normality, so is CBC-1.

4.5. Prop. Sch(C) is cound for all n=1. Same; choose the li with The lift) = 1. Prop. U(u) and su(n) are connected. Proof, lecall that unitary matrices catisfy A* A = I and so are normal (def. A commutes u (adjoint) Spectral Theorem. If M is a normal matrix, then M has an orthonormal basis of eigenvectors. (if and only if!) Proof. Change of basis => make it upper triangular.
Now apply the definitions. So: Any unitary motrix is diagonolizable and we win as before. Def. If 6, H are metrix lie groups then £:6 -> H is a lie group homomorphism if it is a homomorphism and continuous. (some with isomorphisms.) Examples. GL(u, a) dets cx IR -> 50 (2) (ciro coso). Wait. What?? Is IR a Lie group?

GL_{(IR): 2 {[x] & GL, (IR): x > 0] is, and IR exp \(GL_{(IR)} \).

4.6. A more interesting example.

Prof. There is a Lie group hom $SU(2) \longrightarrow SO(3)$ which is 2-1 and outs.

Should you believe it?

$$5u(2) = \begin{cases} 0 = \begin{pmatrix} a+di & b-ci \\ b-ci & a-di \end{pmatrix} : det 0 = 1 \\ a^2 + b^2 + c^2 + d^2 \end{pmatrix}$$

= unit quotenions.

How do you get a map to so(3) ??

Let
$$V = \{ X \in M_2(C) : X^* = X, dr X = 0 \}$$
.

('self-adjoint')

Then any X looks like (x, x2+ix3)

and V is the set of all such. So can identify YZP3.

Claim. The inner product is given by the trace form:

$$\langle x_1, x_2 \rangle = \frac{1}{2} + race (x_1 x_2)$$

i.e. $\frac{1}{2} + race ((x_1 x_2 + ix_3) (x_2 + ix_3) (x_2 - ix_3) - x_1^2)$
 $= x_1 x_1^2 + x_2 x_2^2 + x_3 x_3^2$.

Sui For each V ∈ SU(2), define $\Psi_V: V \to V$ $X \to U \times V^{-1}$.

Why is the image in V? (U is unitary!) (x is alf-adjoint) $(UXU^{-1})^* : (U^{-1})^* X^* U^* = UX^* U^{-1} = UXU^{-1}$ 4.7 We have that Du is clearly a honomorphism, and 1/2 trace (CUX, V-1) (UX2 U-1) = 1/2 trace (UX, X2 U-1) = = + roce (X, X2). So preserves the inner product. Cet a homomorphism SU(2) -> O(3). why into SO(3)? Because SU(2) is connected! Clearly - I is in the henel. Can check: That's all. Finally, why is it outs? Could get this out. But... Example. Suppose U= (e'6/2 0 -i0/2). $U\begin{pmatrix} x_1 & x_2 + ix_3 \\ x_2 - ix_3 & -x_1 \end{pmatrix}$ $U\begin{pmatrix} x_1 & x_2 + ix_3 \\ x_2 - ix_3 & -x_1 \end{pmatrix}$ where: x' = x, V2+ix3 = ei0 (x2+ix3) = (x2 cos 0 - x, sin 0) + i(x2 sin 0 + x3 cos 0).

U -> rotation by 0 in (x2, x3) - plane.

4.8

Some facts (exercises to prove).

1. Every element A & SO(3) is rotation about some axis.

Axis determined by an eigenvector of EVI.

2. With Voir 183, can write

X = U0 (0 - X,) U0 for some U0 + BU(2).

Plane orthogonal to this is space of matrices

 $\chi' = U_0 \left(\begin{array}{ccc} v_2 + i x_3 \\ v_2 - i x_3 \end{array} \right) U_0^{-1}$ and we have $U = U_0 \left(\begin{array}{ccc} e^{i\theta/2} & o \\ o & e^{-i\theta/2} \end{array} \right) U_0^{-1}$

were with $UXU^{-1} = X$, $U\{\text{space of } X'\}$ $U^{-1} = \{\text{space of } X'\}$ $UX'U^{-1} = \text{some as } (*), \text{ but with}$ (x_2, x_3) rotated by 0.

So: U mops to rotation by O in the plane perpendicular to V, so V mops to ou A.

S.I. Last time: the topology of Lie groups.

Prop. It G is a matrix Lie group, its identity component Go is a normal subgroup of G.

Proposition. Oln(c) is path connected.

Proof. Given $A \in M_n(C)$, $A \cap B$ of B upper triangular by Jordan form.

Compute an explicit path from I to B.

Same for U(u) and Su(n).

Def. If G, H motrix Lie groups then I: G -> H is a Lie group homomorphism if it is a homomorphism and continuous.

Examples 1. GL(n, 0) det;
$$C^{\times}$$

2. $GL_{\uparrow}(\mathbb{R}) \stackrel{?}{=} \mathbb{R}$
 $\longrightarrow SO(2)$
 $GL_{\downarrow}(\mathbb{R}) \stackrel{?}{=} \mathbb{R}$
 $GL_{\downarrow}(\mathbb{R}) \stackrel{?}{=} \mathbb{R}$
 $GL_{\downarrow}(\mathbb{R}) \stackrel{?}{=} \mathbb{R}$
 $GL_{\downarrow}(\mathbb{R}) \stackrel{?}{=} \mathbb{R}$

3. (Symmetric square)

GL(2) -> GL(3).

5:2. Proposition. There is a Lie group homomorphism Su(2) -> So(3)
which is surjective and exactly 2-1. surjective and exactly 2-1. $SU(2) = \left\{ A \in Gi_2(\alpha) : A^* = A^{-1} \right\}$ = { (a+di -b-ci) : det 0 = 1 }. Let It' be the unit quaternions {a+bi+cj+dk+H: a2+b2+c2+d2=1} Proposition. These groups are isomorphic (the isomorphism given by letters having the same meaning). You can regard either of these as being the unit 3 sphere 53.
So 53 is a group. (If you think this is obvious: try to find a group structure A pure imaginary quaternion is one with a = 0.

or equivelently $\bar{x} = -x$.

and |x| = 1Check. If x = IH is pore imaginary then x2 = -1. So : if tell, can write

> + = cos 0 + usin 0 Toure inc

Zpre inoginary guedratic

5.3. Proposition. Let + = cos 0 + usin & unit quotenion X = aT + bT + ck pure imag, quoterion Then to xt is a pure imaginary quoternion with $\left(+^{-1}\times+\right)=\left(\times\right).$ (Latter follows by multiplicativity of the norm.) Proof. You can check it by hand. Alternatively, the map x -> + 1 x + sends IR & IH to IR. Also the map is an isometry: for any 7 = HI, any unit + = HI, So |+ | x + | = |x| and right or left multiplication by + preserves inner products: <+ 7, + 72> = <7,72> <+"+,+" =2+>= <=,,+2> hence: +12, + 1 +12+ =>> 7, 172. This the map sends IR - IR - IR - This the map sends IR - quoternions to themselves.

We thus get a representation $SU(2) \longrightarrow GL(3)$ |H'| $+ \longrightarrow \{x \rightarrow +^- x + \}$ And, we claimed $\langle +^{-1}z, +, +^{-1}zz + \rangle = \langle z_1, z_2 \rangle$ so this says exactly that the element of $\{x \rightarrow +^{-1}xt\} \in GL(3)$ is in fact in SO(3).

We can do better.

Proposition. If t = cos 0 + usin 0 (u < 127 + 127 + 12)

then the map x >> + 1 x + is rotation through angle

20 about axis u.

Proof. Claim 1. This map fixes multiples of u.
(cos 0 - usin 0) u (cos 0 + u sin 0)

= u cos 0 - u sin 0 cos 0 + u cos 0 sin 0

 $-u^3 \sin^2 \theta = u.$

so: look what conjugation does to a vector orthogonal to u.

Let v = PT+ PT+ IPR be such a vector.

Then u.v (= <u, v>) = 0.

Let w = u x v (usual vector calculus cross product).

Have uv = -u·v + u x x (in general; check it)

= u v V lure.

So {u,v, w} is an ONB, uv=w, vw=u, wu=v vu=-w, wv=-u, uw=-v. 5.5.

Remains to show to the proposition.

Remains to show to the proposition.

 $f^{-1}vf = (\cos\theta - u\sin\theta) \times (\cos\theta + u\sin\theta)$ $= v\cos^{2}\theta - uv\sin\theta\cos\theta + vu\cos\theta\sin\theta$ $= uvu\sin^{2}\theta$ $= uvu\sin^{2}\theta$ $= v(\cos^{2}\theta - \sin^{2}\theta) - uv(2\sin\theta\cos\theta).$ $= v(\cos^{2}\theta - \sin^{2}\theta) - uv(2\sin\theta\cos\theta).$ = Done!

Similarly for w.

Now: Every element of so(3) is rotation about some axis (i.e. has I as an eigenvalue, prove it!)

The rotation is determined by the axis and ongle except that $(u, a) \ n(-u, -a)$.

This proves the proposition!