Computer Science and Information Management School of Engineering and Technology

AT70.02 Data Structures and Algorithm August 2022 Semester

FINAL EXAM

Time: 2 hours

STUDENT NAME: STUDENT ID. NO.

- This exam accounts for 40% of the overall course assessment.
- This exam is **open-booked**; **open-internet**.

Instructor: CHAKLAM SILPASUWANCHAI

- Don't write only the answer. "Precise" proof (and steps) is required for ALL questions.
- The completed exams shall be submitted at the Google Classroom
- Good luck!

EXAMINATION RULES:

- For offline students, you may leave the room temporarily with the approval and supervision of the proctors. No extra time
 will be added to the exam in such cases.
 - O You can submit as paper if you want
 - O You can also submit via Google classroom
- For online students, you are required to turn on your webcam during the entire period of the exam time
- Students will be allowed to leave at the earliest 45 minutes after the exam has started
- All work should belong to you. A student should <u>NOT</u> engage in the following activities which proctors reserve the right to interpret any of such act as academic dishonesty without questioning:
 - o Chatting with any human beings physically or via online methods
 - o Plagiarism of any sort, i.e., copying from internet sources or friend
- No make-up exams are allowed. Special considerations may be given upon a valid reason on unpredictable events such as
 accidents or serious sickness.

For problems below (1 pt. each), use the following graph (assume undirected graph for MST problem):

1. Perform a DFS and BFS, and write out the resulting array

2. Find an MST using Prim algorithm (reminder: assume undirected graph)

3. Find the shortest path with s = a using Bellman-Ford and Dijkstra algorithm

4. Find all-pair shortest path using Floyd-Warshall algorithm

5.	Create a red-black tree by inserting $A = <1, 8, 3, 5, 7, 1, -2, 4, 0>$.	(1 pt.)
----	---	---------

6. Solve this 0/1 Knapsack problem with m = 11 using Dynamic Programming (2 pts.)

No.	V	W	0	1	2	3	4	5	6	7	8	9	10
1	2	1											
2	1	3											
3	6	4											
4	2	5											
5	9	7											

What is the maximum value?	
What are the items?	

7. Solve this Coin Changing Problem using Dynamic Programming (4 pts.)

Table showing number of ways:

C\N	0	1	2	3	4	5	6	7
1								
2								
3								
4								

Total number of coin combinations to reach N: ______

Table showing the number of coins: _____

C\N	0	1	2	3	4	5	6	7
1								
2								
3								
4								

Minimum number of coins to reach N:	
What are those coins:	

8. Solve this Huffman coding problem (1 pt.)

Char	Freq.
a	62
b	7
С	33
d	5
e	14

Original cost without Huffman =	
Cost with Huffman (cost of transmitting message + table) =	

Scratch paper

GOOD LUCK! ☺