In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: df=pd.read_csv("used_car_dataset.csv")

In [4]: df.head()

Out[4]:

	Brand	model	Year	Age	kmDriven	Transmission	Owner	FuelType	PostedDate	Addit
0	Honda	City	2001	23	98,000 km	Manual	second	Petrol	Nov-24	Honda teck co valid
1	Toyota	Innova	2009	15	190000.0 km	Manual	second	Diesel	Jul-24	Innov (D
2	Volkswagen	VentoTest	2010	14	77,246 km	Manual	first	Diesel	Nov-24	Volks Venta 2013 I
3	Maruti Suzuki	Swift	2017	7	83,500 km	Manual	second	Diesel	Nov-24	Suzu 2017 Cc
4	Maruti Suzuki	Baleno	2019	5	45,000 km	Automatic	first	Petrol	Nov-24	Alpt 2019

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9582 entries, 0 to 9581
        Data columns (total 11 columns):
             Column
                            Non-Null Count Dtype
              -----
                            _____
                                             ----
         0
             Brand
                            9582 non-null
                                             object
         1
             model
                            9582 non-null
                                             object
         2
             Year
                            9582 non-null
                                             int64
         3
             Age
                            9582 non-null
                                             int64
         4
                            9535 non-null
             kmDriven
                                             object
         5
             Transmission 9582 non-null
                                             object
         6
                            9582 non-null
                                             object
             Owner
         7
             FuelType
                            9582 non-null
                                             object
         8
             PostedDate
                                             object
                            9582 non-null
         9
             AdditionInfo 9582 non-null
                                             object
         10 AskPrice
                                             object
                            9582 non-null
        dtypes: int64(2), object(9)
        memory usage: 823.6+ KB
In [6]: | df.isnull().sum()
Out[6]: Brand
                          0
        model
                          0
        Year
                          0
                          0
        Age
        kmDriven
                         47
        Transmission
                          0
        Owner
                          0
        FuelType
                          0
        PostedDate
                          0
        AdditionInfo
                          0
        AskPrice
                          0
        dtype: int64
In [7]: df=df.dropna(subset=['kmDriven'])
In [8]: | df.isnull().sum()
Out[8]: Brand
                         0
        model
                         0
        Year
                         0
                         0
        Age
                         0
        kmDriven
        Transmission
                         0
        Owner
                         0
        FuelType
                         0
        PostedDate
                         0
        AdditionInfo
                         0
        AskPrice
                         0
        dtype: int64
```

changing data type of ask price as float to plot the graph

```
In [9]: # Remove ₹ symbol and commas if present, then convert to float
df['AskPrice'] = df['AskPrice'].replace('[₹,]', '', regex=True).astype(float)
print(df['AskPrice'].dtype)
```

float64

1.DISTRIBUTION OF CAR PRICES

```
In [11]: plt.figure(figsize=(10,6))

# Use fewer bins (e.g., 40 instead of auto)
sns.histplot(df['AskPrice'], kde=True, bins=40, color='skyblue')

plt.title('Distribution of Used Car Prices')
plt.xlabel('Price')
plt.ylabel('Count')
plt.grid(True)
plt.show()
```


2. Top 10 Most Common Car Brands

```
In [12]: plt.figure(figsize=(10,6))
    df['Brand'].value_counts().head(10).plot(kind='bar')
    plt.title('Top 10 Most Common Car Brands')
    plt.xlabel('Brand')
    plt.ylabel('Count')
    plt.xticks(rotation=45)
    plt.show()
```


3. Car Price vs. Age

In [14]: price_age = df.groupby(['Age'],as_index=False)['AskPrice'].sum().sort_values(by=
sns.barplot(x='Age',y='AskPrice',data=price_age)

Out[14]: <Axes: xlabel='Age', ylabel='AskPrice'>

4. Car Price vs. Kilometers Driven

In [15]: price_km= df.groupby(['kmDriven'],as_index=False)['AskPrice'].sum().sort_values(tsns.barplot(x='kmDriven',y='AskPrice',data=price_km)

Out[15]: <Axes: xlabel='kmDriven', ylabel='AskPrice'>


```
In [16]: plt.figure(figsize=(8,5))
    sns.scatterplot(x='kmDriven', y='AskPrice', data=df)
    plt.title('Car Price vs. Kilometers Driven')
    plt.xlabel('Kilometers Driven')
    plt.ylabel('Price')
    plt.show()
```


Kilometers Driven

```
In [17]: # Remove " km" and commas, then convert to float
    df['kmDriven'] = df['kmDriven'].str.replace(' km', '', regex=False)
    df['kmDriven'] = df['kmDriven'].str.replace(',', '', regex=False)
    df['kmDriven'] = df['kmDriven'].astype(float)
```

```
In [18]: print(df['kmDriven'].dtype)  # should be float64
print(df['kmDriven'].head())  # should show numeric values like 98000.0
```

float64

- 98000.0
- 1 190000.0
- 2 77246.0
- 3 83500.0
- 4 45000.0

Name: kmDriven, dtype: float64

In [19]: price_km= df.groupby(['kmDriven'],as_index=False)['AskPrice'].sum().sort_values(texts)
sns.barplot(x='kmDriven',y='AskPrice',data=price_km)

Out[19]: <Axes: xlabel='kmDriven', ylabel='AskPrice'>

5. Average Price by Fuel Type

```
In [21]: plt.figure(figsize=(8,5))
    sns.barplot(x='FuelType', y='AskPrice', data=df)
    plt.title('Average Price by Fuel Type')
    plt.xlabel('Fuel Type')
    plt.ylabel('Average Price')
    plt.show()
```


Code to Flag Good-Value Cars:

```
In [22]: # 1. Model-wise average price and kmDriven
    model_avg = df.groupby('model')[['AskPrice', 'kmDriven']].mean().reset_index()
    model_avg.columns = ['model', 'avg_price', 'avg_km']

In [23]: # 2. Merge with original DataFrame
    df = df.merge(model_avg, on='model', how='left')

In [24]: # 3. Calculate median age
    median_age = df['Age'].median()
```

View Good-Value Cars

```
In [26]: # Show top good-value cars sorted by price
good_cars = df[df['GoodValue']].sort_values(by='AskPrice')
good_cars[['Brand', 'model', 'Year', 'Age', 'kmDriven', 'AskPrice']]
```

Out[26]:

	Brand	model	Year	Age	kmDriven	AskPrice
3020	Maruti Suzuki	Baleno	2024	0	9000.0	18500.0
5638	Maruti Suzuki	Wagon-R	2020	4	68000.0	49999.0
6694	Volkswagen	Ameo	2017	7	83000.0	50000.0
7344	Maruti Suzuki	Fronx	2024	0	0.0008	100000.0
9430	Maruti Suzuki	Celerio	2023	1	1234.0	130000.0
3303	Mercedes-Benz	GLS	2018	6	59950.0	6211000.0
5442	Mercedes-Benz	GLS	2018	6	54855.0	6750000.0
5117	Porsche	Panamera	2017	7	16800.0	6900000.0
8484	Land Rover	Range Rover Sport	2019	5	64000.0	7900000.0
3536	Mercedes-Benz	GLE COUPE	2019	5	30000.0	8000000.0

812 rows × 6 columns

Only diesel cars

In [27]: diesel_cars = good_cars[good_cars['FuelType'].str.lower() == 'diesel']
diesel_cars

Out[27]:

	Brand	model	Year	Age	kmDriven	Transmission	Owner	FuelType	PostedDate	A		
6694	Volkswagen	Ameo	2017	7	83000.0	Automatic	first	Diesel	Nov-24	(
1903	Mahindra	Bolero	2017	7	3.0	Manual	first	Diesel	Nov-24	E [
8107	Honda	Amaze	2018	6	42000.0	Manual	second	Diesel	Nov-24	SI 2		
7080	Ford	Free Style	2019	5	51000.0	Manual	first	Diesel	Nov-24	2		
5453	Maruti Suzuki	Vitara- Brezza	2019	5	65000.0	Manual	first	Diesel	Nov-24	Si E D		
2122	Mercedes- Benz	GLS	2017	7	53000.0	Automatic	first	Diesel	Nov-24	2		
3303	Mercedes- Benz	GLS	2018	6	59950.0	Automatic	first	Diesel	Nov-24			
5442	Mercedes- Benz	GLS	2018	6	54855.0	Automatic	first	Diesel	Nov-24	2		
5117	Porsche	Panamera	2017	7	16800.0	Automatic	second	Diesel	Nov-24	D		
8484	Land Rover	Range Rover Sport	2019	5	64000.0	Automatic	first	Diesel	Oct-24	F 2		
266 ro	266 rows × 14 columns											
4	←											

only automatic cars

In [28]: automatic_cars = good_cars[good_cars['Transmission'].str.lower() == 'automatic']
automatic_cars

Out[28]:

	Brand	model	Year	Age	kmDriven	Transmission	Owner	FuelType	PostedDate
6694	Volkswagen	Ameo	2017	7	83000.0	Automatic	first	Diesel	Nov-24
6275	Maruti Suzuki	Swift- Dzire	2024	0	1234.0	Automatic	first	Hybrid/CNG	Nov-24
5919	Maruti Suzuki	Swift- Dzire-Tour	2020	4	66000.0	Automatic	second	Hybrid/CNG	Nov-24
8997	Maruti Suzuki	Swift Dzire	2024	0	36.0	Automatic	first	Hybrid/CNG	Nov-24
3393	Datsun	GO	2019	5	70000.0	Automatic	second	Petrol	Nov-24
3303	Mercedes- Benz	GLS	2018	6	59950.0	Automatic	first	Diesel	Nov-24
5442	Mercedes- Benz	GLS	2018	6	54855.0	Automatic	first	Diesel	Nov-24
5117	Porsche	Panamera	2017	7	16800.0	Automatic	second	Diesel	Nov-24
8484	Land Rover	Range Rover Sport	2019	5	64000.0	Automatic	first	Diesel	Oct-24
3536	Mercedes- Benz	GLE COUPE	2019	5	30000.0	Automatic	first	Petrol	Nov-24

400 rows × 14 columns


```
In [29]: | disel_auto_cars=good_cars[(good_cars['FuelType'].str.lower()=='diesel')
                                          (good_cars['Transmission'].str.lower()=='automatic')
                                          ]
In [30]:
           disel_auto_cars
Out[30]:
                      Brand
                                model
                                       Year
                                             Age
                                                  kmDriven Transmission
                                                                          Owner
                                                                                 FuelType PostedDate
            6694 Volkswagen
                                 Ameo
                                       2017
                                                7
                                                    83000.0
                                                                Automatic
                                                                             first
                                                                                     Diesel
                                                                                                Nov-24
                                Bolero 2022
                                                                                                Nov-24
            3609
                    Mahindra
                                                2
                                                    55800.0
                                                                Automatic second
                                                                                     Diesel
            3254
                    Hyundai
                                 Verna 2017
                                                    70000.0
                                                                                     Diesel
                                                                Automatic
                                                                             first
                                                                                                Nov-24
                      Maruti
                                 Vitara
                                       2019
            2193
                                                    35000.0
                                                                Automatic second
                                                                                     Diesel
                                                                                                Nov-24
                      Suzuki
                                Brezza
```

Count of Good-Value Cars per Brand

```
In [32]: plt.figure(figsize=(10,6))
    ax = sns.countplot(data=good_cars, x='Brand', order=good_cars['Brand'].value_cour
    plt.title('Good-Value Cars per Brand')
    plt.xlabel('Brand')
    plt.ylabel('Number of Good-Value Cars')
    plt.xticks(rotation=45)
    for container in ax.containers:
        ax.bar_label(container)
    plt.tight_layout()
    plt.show()
```

