Distributed Systems MIEEC, Fall 2018

Clock Synchronization

Luis Almeida
Faculty of Engineering – University of Porto
Portugal

Time across a network

- In a distributed system each node has its own clock
 - Without specific support, there is no explicit coherent notion of time across a distributed system
 - Worse, due to drift, clocks tend to permanently diverge

Time across a network

- Why developing a coherent notion of time?
 - Carry out actions at desired time instants
 - e.g. synchronous data acquisition, synchronous actuation
 - Time-stamp data and events
 - e.g. establish causal relationships that led to a system failure
 - Compute the age of data
 - Coordinate transmissions
 - e.g. TDMA clock-based systems

But how to synchronize the clocks across the network?

Few definitions

Offset

$$-\theta_{ij}(t) = |Cp_i(t) - Cp_j(t)|$$

Drift rate and drift

$$- \rho_i(t) = \left| \frac{(Cp_i(t + \Delta t) - Cp_i(t))}{\Delta t} - 1 \right|$$

$$- \xi_i(t, \Delta t) = 2 * \rho_i(t) * \Delta t$$

. Accuracy α

$$- \max_{it} |Cp_i(t) - t| \le \alpha$$

• Precision δ

$$- \max_{ijt} \left| Cp_i(t) - Cp_j(t) \right| \le \delta \Leftrightarrow \max_{ijt} \left(\theta_{ij}(t) \right) \le \delta$$

Cp_i(t) is the clock of node i at instant t

Digital clocks

- A digital clock is a counter incremented every tick (fixed interval)
 - A tick is implemented counting a fixed number (n) of microticks that represent oscillator pulses

- Main clock parameter is the drift rate
 - Real clocks have drift rates between 10⁻² and 10⁻⁸ depending on the quality of their oscillators

Fault model of digital clocks

Clocks can suffer offset errors and drift errors

- Offset errors are stochastic errors in tick counting
- Drift errors can be sistematic (due to inherent drift rate) and stochastic
- Sistematic drift >> stochastic drift
 - allows algorithmic correction → clock synchronization

Clock synchronization

- Clocks can be synchronized:
 - Externally an external source sends a time update regularly (e.g. GPS)
 - Quality metric: accuracy
 - Internally nodes exchange messages to come up with a global clock
 - Master-Slave The time master spreads its own clock to all other nodes
 - Distributed All nodes perform a similar role and agree on a common clock, typically an average
 - Quality metric: precision
 - Both methods are complementary
 - Internal synchronization provides high availability and good short-term stability
 - External synchronization provides long-term stability but has lower availability
- Standards:
 - NTP, SNTP, IEEE 1588 (PTP)

Synchronizing clocks

- Requires regularly
 - Exchanging clock values
 - Measuring differences
 - Computing and applying a correction term
 - In the form of increment/decrement of the microticks counter (n)
 - (not so common) Directly in the clock tick value

Network delay and precision

Impact of network delay jitter on the achievable precision

Network delay and precision

- Network delay jitter (ϵ) limits the achievable precision (δ)
 - Clock synchronization algorithms allow correcting systematic errors
 - not the impact of ε ($\varepsilon = d_{max} d_{min} \rightarrow$ jitter in the network delay d)
 - Typical precision with SW methods in small networks is worse than 10μs
 - In LANs it is common to achieve 1-5ms precision
 - With special HW support, it is possible to reach 1µs or better
 - Ludelius and Lynch showed that the precision δ achievable in a network with N nodes (with drift-free oscillators) and ϵ network delay jitter is never better (smaller) than

$$\delta \ge \varepsilon \left(1 - \frac{1}{N} \right)$$

Network delay and precision

- In shared networks with collisions and back-off/retry mechanisms
 - Typical distribution of the network-induced delay (d)

- Ludelius and Lynch's bound is a deterministic bound
- Stochastic approaches can achieve unbounded precision

Measuring the network delay

- Round-trip delay RTD
 - estimated from $((t_4-t_1)-(t_3-t_2))/2$ on node B
 - used to correct delay at B upon reception of time marks from A

delay
$$\approx \frac{RTD}{2} = \left| \frac{(t_4 - t_1) - (t_3 - t_2)}{2} \right| \frac{(t_4 - t_1) - \sigma}{2} \right|$$

Measuring the clocks offset

- Offset Compensating the clocks average difference
 - estimated from $((t_2+t_3)-(t_4+t_1))/2$ on node B
 - used to correct offset at B upon reception of time marks from A

offset
$$\approx \left| \frac{(t_2 + t_3) - (t_4 + t_1)}{2} \right| t_M - \frac{(t_4 + t_1)}{2} \right|$$

Synchronization with IEEE 1588

- Follow up messages
 - Timestamps on "end of transmission"
 - Synchronization messages do not carry timestamps
- Slave to Master offset: estimated from $(t_{S1}-t_{M1})$ at t_{S1} , corrected at t_{S1} , $\leftarrow t_{S1}-(t_{S1}-t_{M1})$
- Network induced delay: estimated from $(t_{S2}-t_{M2})/2$ at t_{S2} corrected at t_{S3} \leftarrow t_{S3} - $(t_{S3}-t_{M3})$ -delay

Clock correction

Most applications require monotonic clocks

A chronoscopic behavior implies rate correction

Correcting the local clock

- Rate correction with feedback (servo-clock)
 - Cp_i = local clock (as seen by the local applications)
 - Cm = master clock (as received in master messages)
 - $\rho_n = 1 (Cp_i(s_n) (Cm(s_n) + d)) / T$
 - ρ_n is the microticks (rate) correction term
 - T =sync interval, $s_n =$ synchronization point n

-
$$Cp_i(t) = Cp_i(s_n) + \rho_n^*(t-s_n)$$
 $s_n < t < s_{n+1}$
$$\delta = \xi + \epsilon$$

It is common to consider:

- ρ_{min} < ρ_{n} < ρ_{max} to bound the clock growth
- k*T (k>1) instead of T to stabilize the local clock (less reactive)

Correcting the local clock

- Rate correction with feedback (servo-clock)
 - The clock correction as a feedback control loop
 - $e_m \rightarrow$ delays affecting the time stamping in the master
 - $e_s \rightarrow$ errors affecting the oscillator in the slave
 - d → network delay

- . There is no master clock
 - All nodes exchange their clock values among themselves
 - A virtual reference clock Cm_i is built averaging all N clocks

$$Cm_i(s_n) = \frac{1}{N} \sum_{k=1}^{N} Cp_k(s_n) \rightarrow \text{error divided by N (convergence factor } \Pi)$$

Under certain conditions, all nodes converge to this virtual ref

$$\delta_{dist} \geq \Pi + \xi + \varepsilon$$
 and $\Pi = \frac{\delta_{dist}}{N}$

$$\delta_{dist} \ge (\xi + \varepsilon) \frac{N}{N-1}$$

 Crashed nodes can be removed from the group and do not affect the global clock

- Fault-Tolerant Average (FTA)
 - The usual average is sensitive to very poor clocks that diverge a lot from the others, in the presence of network errors
 - Good clocks can end up with less weight than poor clocks
 - In sparsely connected networks, normal average can lead to different nodes computing different virtual references
 - The usual average is also sensitive to Byzantine errors
 - Nodes that send inconsistent information to different destinations
 - In this case, the whole set of nodes will not converge to a virtual reference

- Fault-Tolerant Average (FTA)
 - sort differences between local clocks and average
 - eliminate the clocks with the k highest and k lowest differences to the average
 - Use the average of the remaining clocks as the virtual reference
 - This allows tolerating k Byzantine clocks

$$\Pi = k \frac{\delta_{dist}}{N - 2k}$$

$$\delta_{dist} \ge (\xi + \varepsilon) \frac{N - 2k}{N - 3k}$$

- Interactive Consistency
 - All nodes:
 - Send a vector with their view of all other clocks
 - Build a local matrix with all views of all clocks

Clock of node 4 received by others

- Allows immediate detection of Byzantine clocks
 - · Can be readily excluded
 - Remaining ones averaged to generate the virtual reference
- Tolerant to any Byzantine clocks
- Requires more communication

Clocks received by node 4 in one round

					_	Δ		
		0	1	2	3	4	5	
	0	21	20	21	22	19	20	
	1	31	30	29	30	29	30	
	2	41	41	40	39	60	39	
	3	50	51	50	50	51	49	
	4	61	60	59	60	24	60	
	5	71	70	69	70	71	70	
						\7		

