

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ ЭВОЛЬВЕНТНЫЕ ВНУТРЕННЕГО ЗАЦЕПЛЕНИЯ

РАСЧЕТ ГЕОМЕТРИИ

ГОСТ 19274-73

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ ЭВОЛЬВЕНТНЫЕ ВНУТРЕННЕГО ЗАЦЕПЛЕНИЯ

Расчет геометрии

ΓΟCT 19274—73

Cylindrical involute internal gear pairs. Calculation of geometry

Постановлением Государственного комитета стандартов Совета Министров СССР от 14 декабря 1973 г. № 2694 срок введения установлен

c 01.01.75

Настоящий стандарт распространяется на зубчатые передачи с постоянным передаточным отношением, зубчатые колеса которых соответствуют исходным контурам с равными делительными номинальными толщиной зуба и шириной впадины, с делительной прямой, делящей глубину захода пополам, без модификации и с модификацией головки.

Стандарт устанавливает метод расчета геометрических параметров зубчатой передачи, а также геометрических параметров зубчатых колес, приводимых на рабочих чертежах в соответствии с требованиями ГОСТ 2.403—75.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- Принципиальная схема расчета геометрии приведена на чертеже.
- Термины и обозначения, примененные в настоящем стандарте, соответствуют ГОСТ 16530—83 и ГОСТ 16531—83.
- 1.3. Наименования параметров, приводимых на рабочих чертежах зубчатых колес в соответствии с требованиями ГОСТ 2.403—75, а также межосевое расстояние передачи выделены в таблицах настоящего стандарта полужирным шрифтом.
- 1.4. При отсутствии в обозначениях параметров индексов «1» и «2», относящихся соответственно к шестерне и колесу, имеется в виду любое зубчатое колесо передачи.
- При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду главный торцовый профиль зуба, являющийся эвольвентой основной окружности диаметра d₆.
 - 1.6. Расчетом определяются номинальные параметры зубчатой передачи и зубчатых колес.
- 1.7. Расчет некоторых геометрических и кинематических параметров, применяемых в расчете зубчатой передачи на прочность, приведен в приложении 3.

Издание официальное

Переиздание, Июнь 1992 г.

- С Издательство стандартов, 1973.
- С Издательство стандартов, 1992

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

Нанменования парамотров		Обозна- чения	Расчетные формулы и уназания
10. Толщина по хорде		s _y	$\overline{s}_y = d_y \frac{\sin \psi_{yy}}{\cos^2 \beta_y}$
41 P	шестерин	hayt	$\overline{h}_{ay1} = 0.5 \left[d_{a1} - d_{y1} + \frac{d_{y1}}{\cos^2 \beta_{y1}} \left(1 - \cos \phi_{yv_1} \right) \right]$
11. Высота до хорды	колеса	h _{eg2}	$\overline{h}_{ay2}=0.5$ $\left[d_{y2}-d_{a2}-\frac{d_{y2}}{\cos^2\beta_{y2}} \left(1-\cos\psi_{yy2}\right) \right]$
,	' '	Расче	г размера по роликам (шарикам)
12. Днаметр родика (ш	арнка)	D	При $\alpha=20^\circ$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—81) рекомендуется принимать $D\approx 1.7~m$ для шестерии и $D\approx 1.5~m$ для колеса (для роликов допускается выбирать ближайшее значение по ГОСТ 2475—88). Контроль косозубых колес с внутренними зубьями по роликам не про-изводится
у шестерни 13. Угол профиля в точке на концентричес- кой окружности, прохо- дящей через центр ро- лика (шарика) у колеса		^α D1	$inv a_{D1} = \frac{D}{z_1 m \cos a} + inv a_t = \frac{\frac{\pi}{2} - 2x_1 iga}{z_1}$
	у колеса	α _D 2	$\operatorname{inv} a_{D2} = \frac{\frac{\pi}{2} + 2x_2 \operatorname{tg} \alpha}{z_2} - \frac{D}{z_2 \operatorname{mcos} \alpha} + \operatorname{inv} a_t$
 Диаметр вонцент; ружности зубчатого во- дящей через центр ролн; 	леса, прохо-	d_D	$d_D = d \frac{\cos a_f}{\cos a_D} \ .$ Должно выполняться условне: для шестерни $\rho_{Pl} < \rho_{nl} < \rho_{nl}$, для колеса $\rho_{Pl} > \rho_{n2} > \rho_{n2}$, где $\rho_P = no$ табл. 5, п. 3; $\rho_N = \rho_R$ по табл. 5, п. 3; $\rho_N = \rho_R$ по табл. 6 с главными поверхностими зубься;

Написнования пара	нетров	- ченыя ченыя	Расчедные формулы и указан	EX.
			$ ho_{\rm M1}=0.5(d_{b1}{ m tg} a_{D1}-D{ m cos}$ $ ho_{\rm M2}=0.5(d_{b1}{ m tg} a_{D2}+D{ m cos}$ где d_b — по табл. 5, п. 1. $ ho_b$ — по табл. 5, п. 11. Если имеется притупление продольной кривместо $ ho_a$ следует подставлять значение раднуств точке притупления $ ho_k=0.5d_k{ m sin} a_k$, где d_k и a_k — по табл. 5, п. 2. При модификации головки в неравенство в ставлять значение $ ho_g$, где $ ho_g$ — по табл. 5, п. 5.	β _b), омки зуба, в неравенство а кривизны профиля зуба
15. Размер по роли- кам (шарикам) прямо- зубых и косозубых зуб-		м,	$M_1 = d_{D1} + D$	
чатых колес с четным числом зубьев (в торцо- вом сечении)		М2	$M_2=d_{D2}-D$	Должно выполняться условне: для шестерни
16. Размер по роди- кам (шарикам) прямо- зубых и косозубых зуб- чатых колес с нечет- ным числом зубъев (в торяовом сечении)	М:	$M_1 = d_{D1} \cos \frac{90^{\circ}}{z_1} + D$	$d_{D1} + D > d_{a1}$, $d_{D1} - D > d_{f1}$, для колеса $d_{D2} - D < d_{a2}$. $d_{D2} + D < d_{f2}$.	
		М2	$M_2 = d_{D2} \cos \frac{90^{\circ}}{z_s} - D$	

Наименовання параз	метров	Обрана - чения	Расчетные формулы и указания	
17. Минимальный раз- мер по роликам (шари-	шестерни	-	$M_1 = \frac{d_{D1}}{2 { m tg} eta_{D1}} \sqrt{\lambda_1^2 + 4 { m tg}^2 eta_{D1}} \cos^2 \left(\frac{\gamma}{2} + \frac{\lambda_1}{2} \right) + D$ $M_2 = \frac{d_{D2}}{2 { m tg} eta_{D2}} \sqrt{\lambda_2^2 + 4 { m tg}^2 eta_{D2} \cos^2 \left(\frac{\gamma}{2} + \frac{\lambda_2}{2} \right)} - D$ Примечание. Минимальный размер по ролнкам (шарикам) косозубых зубчатых колесс четным числом зубьев при $eta < 45^\circ$ совпадает с размером в торцовом сечении	где ү=0 — для зубчатых колес с четным числом зубьев: ү= 180° — для зубчатых тых колес с нечетным числом зубьев. Упрощенное определение \(\lambda\) для зубчатых колес с нечетным числом зубьев приведено в табл. 2 приложения 1 к ГОСТ 16532—70. Должно выполняться условие: для шестерин
		Расчет	нормальной толщины зуба	$d_{D1} + \frac{D}{\cos \beta_{D1}} > d_{a1};$ $d_{D1} - \frac{D}{\cos \beta_{D1}} > d_{f1};$ для колеса $d_{D2} - \frac{D}{\cos \beta_{D2}} < d_{a2},$ $d_{D2} + \frac{D}{\cos \beta_{D2}} < d_{f2}.$
18. Нормальная тол-	шестерня	Sni	$s_{n_1} = \left(\frac{\pi}{2} + 2x_1 tg\alpha\right) m$	
щина зуба	колеса	Sn2	$s_{ma} = \left(\frac{\pi}{2} - 2x_a tg\alpha\right) m$	

Примечание. Выбор метода контроля настоящим стандартом не регламентируется.

Расчет размеров для контроля номинальной поверхности зуба

		Обозка-	Расчетьне формулы и указания	
	Расчет	размеров д	для контроля торцового профиля зуба.	
1. Основной диаметр		ds	$d_b = d\cos \theta$	×.
2. Угол профиля зуба в точке на окружности вершин		az	$\cos a_{a} = rac{d_{b}}{d_{a}}$ Если имеется притупление продольной считать угол профиля зуба в точке притумулу вместо d_{a} следует подставлять диак кромок d_{b} .	і кромки зуба, то следует рас- лідення сь. Для этого в фор-
3. Радиус кривизны активного профиля		Ррі	ρ _{ρ1} =0,5d _{bs} tgα _{as} —a _w sinσ _{iw}	Формула справедлива, если верхняя точка активного профиля сопряженного зубчатого колеса совпадает с точкой профиля на его окружности вершия. Если имеется притупление продольной кромки зуба, то вместо аст и аст следует подставлять соответственно ам в акв
зуба в нижней точке	колеса	P22	$ ho_{pq}=0$, $5d_{b1}$ tg $a_{a1}+a_{w3}$ in a_{tw}	

Назменования перам	тров	Обозна- чения	Расчетные формулы и указа	BKB
4. Угол развернутости го профиля зуба в нижнеі	активно- і точке	Ψρ	$v_{\rho} = \frac{2\rho_{\rho}}{d_{\phi}}$	
Допол	д йынақэтин	асчет при	модификации головки исходного контура	
 Б. Радиус кривизны профиля зуба в на- чальной точке моди- 	шестерны	ρes	$\rho_{g1}=0.5d_1\sin\alpha_t + \frac{h_0^{\bullet} - h_g^{\bullet} + x_1}{\sin\alpha_t} m$	Для зубчатых колес, окончательно обработан- ным зуборезным долбя- ком, рат определяется
фикации	колеса	P es	$\rho_{g2}=0,5d_2\sin\alpha_t-\frac{h_a^*-h_g^*-x_2}{\sin\alpha_t}\ m$	по приложению 4 к ГОСТ 16532—70, а рас- по табл. 8, п. 4
6. Угол развернутости зуба, соответствующий точке модификации голови	йональной	Vs	$v_g = \frac{2\rho_g}{d_b}$	
7. Диаметр окружности ции головок зубьев	и модифика-	đ _g	$d_{\mathcal{E}} = \sqrt{-\frac{d_b^2 + 4\rho_g^2}{d_b^2 + 4\rho_g^2}}$	
8. Угол линин модифи цового исходного контур ной точке модификации	кации тор- а в началь-	Œ f te	$tga_{tM} = \frac{\Delta^{\bullet}}{h_{g}^{\bullet} \cos\beta} + tga_{t}$	
9. Днаметр основной эвольвенты, являющейся дификации головки зуба	окружности линией мо-	dtus	d _{bM} =dsosα _{tM}	Формулы справедли- вы, если линия модифи- кации головки исходно- го контура — прямая

Наныенования пара	метров	Обозна- Обозна-	Расчетные формулы и указания	
10. Нормальная глубина модифи- кации торцового	шестерны	Δ_{at1}	$\Delta_{\alpha t 1} \! \approx \frac{d_{b1} \! - \! d_{b \bowtie 1}}{2 d_{b \bowtie 1}} \left(\sqrt{-d_{a1}^2 \! - \! d_{b \bowtie 1}^2} \! - \! \sqrt{-d_{a1}^2 \! - \! d_{b \bowtie 1}^2} \right)$	Формулы спра- ведливы, если ли- ния модификации
профиля головки зуба	колеса	$\Delta_{lpha t 2}$	$\Delta_{ad2} \approx \frac{d_{bb} - d_{bub}}{2d_{bub}} \left(\sqrt{-d_{g2}^2 - d_{bu2}^2} - \sqrt{-d_{a2}^2 - d_{bu2}^2} \right)$	головки неходного контура—прямая
Расче	ет размеров д	ля контроля	в контактиой линин поверхности зуба	'
Основной угол наклон	a	βε	sinβ _δ =sinβcosα.	

Таблица 6

Расчет размеров для контроля взаимного положения одноименных профилей зубьев

Намменования параметров	Обозначения	Расчетные формулы к указания
1. War зацепления	p_{α}	$p_{\alpha} = \pi m \cos \alpha$
2. Осевой шаг	Pπ	$p_{x} = \frac{\pi m}{\sin \beta}$
3. Ход	Pu	ρ _s τρ g

Проверка качества зацепления по геометрическим показателям

Наименования параметров	Обозна- чения	Расчетные формулы и указания	
Проверка	отсутстви	я подрезания зуба шестерни	
1. Коэффициент нанменьшего сме- щения у шестерни	#Lmin	$x_{1 m i n} = h_i^* - h_a^* - \frac{x_1 \sin^2 \alpha_f}{2 \cos \beta}$ При $x_1 > x_{1 m i n}$ подрезание вуба шестерни исходной производящей рейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $h_i^* - h_a^* = 1$ (вклюрейкой отсутствует. При $\alpha = 20^\circ$ и $\alpha $	
Провер	жа отсутст	вия срезания зуба шестерии	
2. Высота зуба шестерия	ħ;	$h_1\!=\!0,5(d_{a1}\!-\!d_{f1})$. При $h_1\!<\!(2h_a^{f w}\!+\!c^{f w})m$ срезание зуба шестерни исходной производящей рейкой отсутствует и дальнейшая проверка не производится	
3. Раднус кривизны профиля зуба шестерня в точке на окружности вершин	р 41	$ ho_{a_1}=0$ " $5d_{a_1}\sin a_{a_1}$, где $lpha_{a_1}=\pi_0$ табл. 5 , п. 2	
4. Радиус кривизны профидя зуба шестерни в точке начада среза	Pjt	$ ho_{f_1} = 0.5 d_1 \sin a_f + \frac{(h_{f0}^* - h_{\sigma}^* - c^* + x_1)}{\sin a_f} m.$ При $\rho_{f_1} > \rho_{s1}$ срезание вуба шестерии исходной производящей рейкой отсутствует. Граничная высота зуба исходной производящей рейки $h_{f0}^* > 2h_{\sigma}^* + c^*$	
 Расстояние между окружностью вершин шестерни и концентрической окружностью, проходящей через точки начала среза зуба 	h _{j1}	$h_{f_1}\!\!=\!\!0$, $5d_{a_1}\!\!-\!$	

Наименования параметров.		Оболна- ченяя	Расчетные формулы и указания	
		Проверка	раднального зазора в передаче	
6. Радиальный зазор	во впадине шестерии	e _l	$c_1 = 0.5(d_{\sigma^2} - d_{f_1}) - a_{w}$	Действительный ради- альный зазор определя-
	во впадине колеса	C2	$c_1=0,5(d_{f_2}-d_{a_1})-a_w$	ется по фактическим ди- аметрам

Проверка отсутствия интерференции продольной кромки зуба одного зубчатого колеса с переходной поверхностью зуба другого зубчатого колеса (проверка отсутствия интерференции кромки зуба с переходной поверхностью)

7. Раднус кривизиы в	шестерни	ρl_1		При $\rho l_1 \leq \rho_{>1}$ и $\rho l_2 \gg \rho_{>2}$ нитерференция отсутствует.
граничной точке профи- ля зуба	колеса		$ ho l_2 = 0,5 d_2 \sin \alpha_t + \frac{h_t^* - h_a^* + x_2}{\sin \alpha_t} m$. Для колеса, окончательно обработанного зуборезным долбяком, р $_{I2}$ определяется по табл. 8, в. 2	ρ _p — по табл. 5, п. 3. При подрезании зуба шестерни ρl ₁ ≪0∵

Проверка отсутствия интерференции продольной кромки зуба одного зубчатого колеса с главной поверхностью зуба другого зубчатого колеса (проверка отсутствия интерференции вершии зубьев)

8. Вспомогательная величина	Y12	$\gamma_{13} = \frac{z_1}{z_2} inva_{a_1} - inva_{a_3} + \left(1 - \frac{z_1}{z_2}\right) inva_{tw}$	При $\alpha = 20^{\circ}$ и $h_a^{\bullet} = 1$
9. Наибольшее значение вспомо- гательного угла	μтих		(включая исходные ковтуры по ГОСТ 13755—81 и ГОСТ 9587—81), если дваметры вершин зубъев зубчатых колес рассчитаны по формулам табл. 2, п. 13, упрощенная проверка отсутствия интерференция вершин при β—0° производится по черт, 7 приложения 1
 Параметр, определяющий на- личие интерференции 	δ	$\delta=rac{z_1}{z_2}$ $\mu-$ arcsin $\left(rac{d_{d1}}{d_{d2}}\sin\mu ight)+\gamma_{12}.$ Если при подстановке $\mu=\mu_{\max}$ окажется, что $\delta>0$, то интерференция отсутствует.	

Наименования нараметров	Обозначения	Расчетные формулы и указания				
Проверка	Проверка отсутствия интерференции вершии зубьев при радиальной сборке передачи (производится в случае, если осевая сборка невозможна)					
 Вспомогательный угол, соответствующий ми- иимальному значению δ 	μ'	$\mu' = \arccos \sqrt{\frac{\left(\frac{d_{a9}}{d_{a1}}\right)^2 - 1}{\left(\frac{z_4}{z_1}\right)^2 - 1}}.$ При $\frac{d_{a9}}{d_{a1}} < 1$ радиальная сборка невозможна и дальнейшая проверка не производится. Есля $\mu' > \mu_{\max}$ — витерференция отсутствует и дальнейшая проверка не производится. Есля $\mu' < \mu_{\max}$, следует определить параметр δ по п. 10 настоящей таблицы с подстановкой $\mu = \mu'$. При $\delta > 0$ интерференция отсутствует. При $\delta < 0$ проверку следует продолжить				
 Половина угловой толщины зуба шестерии на окружности вершин 	ψαι	$\psi_{a_1} = \frac{\pi}{2z_1} + \frac{2z_1 \operatorname{tga}}{z_1} + \operatorname{inv} a_t - \operatorname{inv} a_{a_1}$				
13. Вспомогательная величина, соответствующая минимальному значению δ	n*	$n' = rac{arrho_1}{\pi} \; (\mu' - \psi_{a1}).$ Для дальнейшего расчета следует взять два ближайших целых числа $n < n'$ и два ближайших целых числа $n > n'$				
14. Вспомогательный угол	μ	 μ=ψ_{α1} + ππ / Σ₁. Подставляя в эту формулу найденные по п. 13 настоящей таблицы значения в, получают четыре значения μ, по которым по п. 10 настоящей таблицы следует определить четыре значения δ. Если все значения положительны, то сборка возможна по оси симметрии как зуба, так и впадины. Если одно из значений δ отрицательно при четном п, то радиальная сборка возможна только по оси симметрии впадины шестерии. Если одно из значений δ отрицательно при нечетном п, то радиальная сборка возможна только по оси симметрии зуба шестерии. 				

Наименования параметров	Офозначения	Расчетные формулы и укладиния
		Если два или более значений б отрицательны, то радиальная сборка пере- дачи невозможна
	Про	: верка коэффициента перекрытия
		$s_{\alpha} = \frac{z_1 t g a_{\alpha 1} \cdots z_k t g a_{\alpha k} + (z_1 \cdots z_1) \cdot t g a_{\beta m}}{2\pi} ,$
15. Коэффициент торцо- вого перекрытия		где $\alpha_{\theta 1}$ и α_{42} — по табл. 5, п. 2, Формула справедлива, если отсутствует интерференция зубьев и верхняя граничная точка активного профиля совпадает с точкой профиля на окружности вершин, а так же если подрезание не захватывает активный профильзуба шестерин, т. е. $\rho_{\theta 1} \gg \rho_{f_2}$. Если же $\rho_{\theta 1} \ll \rho_{f_1}$, расчет e_{t_2} производится по табл. 1, п. 26 приложения 1.
	£04	Если имеется притупление продольной кромки зуба, то вместо α_{d1} и α_{d2} следует соответственно подставлять α_{d1} и α_{d2} , где α_{d1} α_{d2} — по табл. 5, п. 2 для прямозубых передач рекомендуется $\epsilon_{cc} \geqslant 1,2$.
		Для косозубых передач рекомендуется $\varepsilon_{\alpha}\gg 1$ При $\alpha=20^{\circ}$ и $h_{\alpha}^{*}=1$ (включая исходные контуры по ГОСТ 13755—81 к ГОСТ 9587—81) упрощенный расчет ε_{α} приведен в табл, і приложення і
16. Коэффициент осевого перекрытия	ep	$\epsilon_{eta} = rac{b_w}{\rho_x}$, где b_w — рабочая ширина венца, ρ_x — по табл. 6, п. 2. Рекомендуется $\epsilon_{eta} > 1$
17. Қоэффициент перек- рытия	e _p	$\epsilon_{\varphi} = \epsilon_{\alpha} + \epsilon_{\beta}$

Дополнительный расчет при модификации головки исходного контура

 Угол профиля зуба в начальной точке модифи- кации головки 	αs	$\cos a_g = \frac{d_b}{d_g} \ ,$ где d_b и d_g — по табл. 5, пп. I и 7.	Для опредсления коэффици- ента торцового перекрытия, получающегося вследствие срезания профиля зубьев шес- терни и колеса технологичес- ким утолщением ножки зуба зуборезного долбяка, в фор-
			мулу вместо о следует под- ставлять значение угла про-
19. Часть коэффициента перекрытия, определяемая участками торцовых профилей зубьев, совпадающими с главными профилями	£¤,	$8a_{_{ m M}}=rac{z_1 { m tg} a_{{ m g}_1} - z_2 { m tg} a_{{ m g}_8} + (z_2 - z_1) { m tg} a_{{ m f}_{0}}}{2\pi}$. При исходном контуре по ГОСТ 13755—81 в нем приведены допустимые значения $s lpha_{_{ m M}}$	филя в точке начала среза α_j tg $\alpha_j = \frac{\rho_j}{d_b}$, где

Принципнальная схема расчета геометрии

Таблица 8

Наяменования нараметров Обозначения			Расчетные формулы и указання		
		Проверка но	рмальной толщины на поверхности вершин		
20. Угол наклона линин β _е вершин зуба			$tg\beta_a = \frac{d_a}{d} tg\beta$		
21. Нормальная толщина зуба на поверхности вер-	шестерии	Smaj	$s_{na_1} = d_{a_1} \left(\frac{\frac{\pi}{2} + 2x_1 g^a}{z_1} + inva_t - inva_{a_1} \right) \cos \beta_{a_1}$	Рекомендуется s _{ne} >0,3 m при однород- ной структуре материа-	
шин	колеса	S _{M32}	$s_{max} = d_{ax} \left(\frac{\pi}{2} - 2x_2 tga - inva_{\ell} + inva_{ax} \right) \cos \beta_{ax}$	ла зубься и s _{n4} >0,4 m при поверхностном уп рочнения зубьев	

Примечания:

1. При исходном контуре по ГОСТ 13755—81, если прямозубое колесо с внутренними зубьями окончательно обрабатывается зуборезным долбяком по ГОСТ 9323—79 без притупления продольной кромки зуба и без модификации профиля ножки зуба, а диаметры вершин и впадии зубчатых колес рассчитаны по формулам табл. 3, пл. 8 и 9, качество зацепления по геометрическим показателям рекомендуется проверять по приложению 2, кроме проверки коэффициента торцового перекрытия, получающегося вследствие срезания профиля зубьев шестерии и колеса технологическим утолщением ножки зуба долбяка.

2. При окончательной обработке щестерии зуборезным долбяком проверка отсутствия подрезания зуба, расчет

р₁₁ и р₁₁ приведены в приложении 4 к ГОСТ 16532—70.

Проверка отсутствия интерференции и срезания при обработке колеса с внутренними зубьями зуборезным долбяком

Наименования Обозна-Расчетные формулы и указания параметров RHEBP Проверка отсутствия интерференции продольной кромки зуба шестерии с переходной поверхностью зуба колеса При $\alpha = 20^\circ$, $h_a = 1$ (включая исходный кон $cosa_{a0} = \frac{d_0}{d_{ab}} cosa_i$. Угол профи- α_{s0} тур по ГОСТ (3755-81), ля в точке на окесли диаметр вершив зубьев рассчитан по форружности вершин При наличии притупления продольной кромки зуба зуборезнозубьев зуборезномулам табл. 2, п. 13, а го долбяка следует рассчитать угол профиля в точке притуплего долбяка окончательная обработка ния селе, где селе -arctgv to колеса производится зуборезным долбяком с $a_{a0} = 1.25$ без притупления продольной кромки, $\rho_{sa}=0.5d_{aa}\sin\alpha_{aa}+a_{aaa}\sin\alpha_{fmaa}$, проверку отсутствия интерференции в прямозугде а mez н а mez — по табл. 3, пп. 4 н 5. 2. Радиус кри-Die бой передаче для $x_1 = x_2$ визны профиля зу-При $\rho_{I2} \gg \rho_{F2}$ интерференция отсутствует. рекомендуется прово ба колеса в градить по графикам на черт. 8 и 9 приложеρ₂ — по табл. 5 п. 3. вичной точке ния 1 При наличии притупления продольной кромки зуба зуборезного долбяка в формулу вместо α_{ab} следует подставлять α_{kb}

Навыснования параметров	Обозначения	Расчетные формулы и указання					
Проверка отсутствия срезания зуба колеса технологическим утолщением ножки зуба зуборезного долбяка							
3. Раднус кривизны профиля зуба колеса в точке на окружности вершин	Paz	$ ho_{as}=0.5d_{as}\sin a_{as}$, где $lpha_{as}=0.5d_{as}\sin a_{as}$,					
4. Раднус конвизны профиля зуба колеса в точке начала среза технологическим утолизеннем зуба долбяка	P /2	$ ho_{j_2} = a_{wee} \sin a_{twee} + 0$, $5 v_{re} d_e \cos a_f$, где $a_{wee} = a_{twee} - a_e$ то табл. 3, пп. 4 и 5. При $\rho_{j_2} \ll \rho_{a2}$ срезание зуба колеса отсутствует высоты модификации головки ρ_{s2} и высоты модификации h_{s2} в формулы вместо v_{ro} и ρ_{f2} следует соответственно подставлять v_{g0} и ρ_{g2}					
5. Расстояние между окружностью вершин колеса и концентричес- кой окружностью, про- ходящей через точки начала среза	ĥ ₁₉	$h_{f2} = \sqrt{- ho_{f2}^2 + 0.25 d_{b2}^2} - 0.5 d_{ab}$, где d_{db} — по табл. 5, п. 1					
	Проверк	а отсутствия срезания зуба колеса переходной кривой зуба зуборезного долбяка					
6, Раднус кривизны профиля зуба колеса в точке начала среза переходной кривой зуба зуборезного долбяка	012	$\rho_{j_2} = a_{woe} \sin a_{two_2} + 0.5 \gamma_{to} d_0 \cos a_t \ ,$ где a_{wos} , α_{two_2} — по табл. 3, оп. 4 и 5. При $\rho_{j_2} < \rho_{a2}$ срезание зубьев колеса отсутствует					
7. Расстояние между окружностью вершин колеса и концентричес-	h ₁₂	$h_{I_2} = \sqrt{\rho_{I_2}^2 + 0.25d_{h_2}^2} - 0.5d_{a_3}$					

где d , — по табл. 5, п.1

 $h_{f_2} = \sqrt{\rho_{f_2}^2 + 0.25d_{b_2}^2} - 0.5d_{a_2}$

окружностью вершив колеса и концентричес-кой окружностью, про-ходящей через точки начала среза

Наныенования пярамотров	HE#		
8. Вспомогательная величана	γισ	$\gamma_{02}=rac{z_0}{z_2}$ inv $a_{d0}-{ m inv}a_{d2}+$ $\left(1-rac{z_0}{z_2} ight)$ inv a_{tw02}	При α=20°, h _a * =1 (вклю- чая исходный контур по ГОСТ 13755—81), если диаметр вер-
9. Наибольшее зна- чение вспомогательного угла	Magasax	$\mu_{02\text{max}} = \arccos\left(\frac{d_{a2}^2 - d_{a0}^2 - 4a_{a02}^2}{4a_{a00}d_{a0}}\right)$	шин зубьев рассчитан по формулам табл. 2, п. 13, а окончательная обработка колеса пронзводится зуборезным долбяком, с $h_{\alpha 0} = 1,25$ без притупления продольной кромки, проверку отсутствия срезания прямозубого колеса рекомендуется производить по черт.
 Параметр, опре- деляющий наличие сре- зания 	δ _{e2}	$\delta_{02} = \frac{z_0}{z_2}$ $\mu_{02} - \arcsin\left(\frac{d_{00}}{d_{02}} - \sin\mu_{02}\right) + \gamma_{02}$. Если при подстановке $\mu_{02} - \mu_{02}$ окажется, что $\delta_{02} < 0$, то срезание имеется. При $\delta_{02} > 0$ проверку следует продолжить	10 приложения 1
11. Вспомогательный угол, соответствующий минимальному значению бое	µ'(2	$\mu_{02}^{'}=\arccos$ $\sqrt{\frac{\left(\frac{d_{02}}{d_{00}}\right)^2-1}{\left(\frac{z_2}{z_0}\right)^2-1}}$ Если $\mu_{02}^{'}>\mu_{03\max}$, то срезание отсутствует и дальнейшая проверка производится. Если $\mu_{02}^{'}<\mu_{02\max}$, то определяют параметр δ_{02} по п. 10 настоящей таблицы с подстановкой $\mu_{02}^{'}=\mu_{02}$. При $\delta_{02}>0$ срезание отсутствует	

Примечания:
1. Проверка по геометрическим показателям возможности обработки шестерни зуборезным долбяком производится по приложению 4 к ГОСТ 16532—70.
2. При исходном контуре по ГОСТ 13755—81, если прямозубое колесо с внутренними зубьями обрабатывается зуборезным долбяком по ГОСТ 9323—81 без притупления продольной вромки зуба и без модификации профиля ножки зуба, а диаметры вершии зубчатых колес рассчитаны по формулам табл. 3, пл. 8 и 9, отсутствие интерференции и срезания при обработке колеса долбяком рекомендуется проверять по приложению 2, кроме срезания зуба шестерии и колеса технологическим утолщением ножки зуба зуборезного долбяка,

УПРОЩЕННЫЙ РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

Расчет некоторых геометрических параметров

Таблица 1

Нанизнования парамотров	осиня- Обозна-	Расчетные формулы и указания				
Расчет коэффициент	Расчет коэффициента разности смещений x_d при заданном межосевом расстоянии a_u					
1. Қоэффициент воспринимаемого смещения	<i>y</i>	$y = \frac{a_w}{m} - \frac{z_s - z_1}{2\cos\beta}$				
	Λ	$A = \frac{1000y\cos\beta}{z_2 - z_1}$				
2. Вспомогательная величина	Б	Определяется по номограмме на черт. 1				
	μ	Определяется по черт. 2. Если β=0, то μ=0				
3. Коэффициент уравнительного смещения	Δy	$\Delta y = \left(\frac{B}{1000} - \mu\right) \frac{z_2 - z_1}{\cos \beta}$				
4. Қоэффициент разности смеще- ния	x_d	$x_d = y + \Delta y$				
Расчет межосе	вого рассто	ояния a_w при заданных коэффициентах смещения x_1 и x_2				
 Коэффициент разности смеще- ний 	Хd	$x_d = x_2 - x_1$				
	В	$B_{m} = \frac{1000x_d \cos \beta}{z_2 - z_1}$				
6. Вспомогательная величина	Г	Определяется по номограмме на черт. З				
	ν	Определяется по черт. 4. Если β=0, то v=0				
7. Қоэффициент уравнительного смещения	Δ#	$\Delta y = \left(\frac{\Gamma}{1000} - v\right) \frac{z_3 - z_1}{\cos \beta}$				
8, Коэффицисит воспринимаемого смещен <u>ня</u>	y	$y = x_d - \Delta y$				

Наименования параметров

Обозначения

Расчетные формулы и указания

9. Межосевое расстоя	ние	a _u	$a_{w} = \left(\frac{z_{2} - z_{1}}{2\cos\beta} + y\right) m$
	Расчет угла	зацепления	прямозубой передачи α_w и угла профиля α_t
10. Вспомогательная в	ьличина	В	$B = \frac{1000x_d}{z_2 - z_1}$
11 Угол зацепления		a_{ω}	Определяется по номограмме на черт, 5
12. Угол профиля		αı	Определяется по номограмме на черт. 6. Если $\beta = 0$, то $\alpha_t \mapsto \alpha$
	Расчет п	остоянной э	орды зуба и высоты до постоянной хорды
13. Постоянная хорда	шестерни	S.	Определяется по табл. 4 приложения 1 к ГОСТ 16532—70
зуба, выраженная в до- лях модуля	колеса	-* *a	Определяется по табл. 2
	шестерны		$\overline{s}_{c1} = \overline{s}_{c1}^* m$
14. Постоянная хор- да зуба	колеся	Sej	$\overline{s_{cb}} = \overline{s_{c2}} m$. Если значения $\overline{s_{c2}}$ находятся в пределах, определяемых табл. 2 при $h_I^* - h_a^* > 1$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—81), проверку условия $\rho_{sb} < \rho_{g2}$ производить не требуется. ρ_{sa} — по табл. 4, л. 1 настоящего стандарта; ρ_{pa} — по табл. 5, л. 3 настоящего стандарта. При исходном контуре по ГОСТ 13755—81 с модификацией головки зуба $h_g^* = 0,45$ и $x>0$ проверку условия $\rho_{sb} > \rho_{g2}$ производить не требуется. ρ_{gb} — по табл. 5, л. 5 настоящего стандарта.
15. Расстояние постоянной хорды от дели- тельной окружности, выраженное в долях мо- дуля	шестерни	ች <u>å</u> ፤	Определяется по табл. 4 приложения 1 к ГОСТ 16532—70
	колеса	\bar{h}^*_{Δ}	Определяется по табл. 2

Наименования пара	шетров	обожа- чения	Расчетные ф	ормулы и указания	
16. Высота до посто	шестерня	\overline{h}_{01}	h̄ _{c1} =0,5(d _c	$a_1-d_1)-\widetilde{h}_{\Delta 1}^*m$	
янной хорды	колеса	\overline{h}_{a2}	$\overline{h}_{c2}=0,5(d_2-d_{a2})-\overline{h}_{\Delta 2}^*m$		
	Расчет і	коэффициен	та торцового перекрытия прямозубой	передачи	
12 P	шестерин	Да1	$A_{a_1} = \frac{d_{a_1} - d_1}{d_1}$	Если имеется притупление про- дольной кромки зуба, то вместо	
 Вспомогательная величина 	колеса	Даз	$\mathcal{A}_{ab} = \frac{d_{ab} - d_b}{d_b}$	d_{a_1} и d_{a_2} следует соответствен подставлять d_{k_2} и d_{k_2}	
	передачи	\mathcal{I}_w	$\mathcal{I}_{w} = \frac{a_{w} - a}{a}$		
	шестерни	Eat			
18. Вспомогательная величина	колеса	$E_{\alpha 2}$	Определяется по табл, 3		
	передачи	Eu			
эффициента торцового перекрытия	шестерии	ϵ_{at}	$e_{a_1} = z_1(E_{a_1} - E_{w})$	Формулы справедливы при ус-	
	колеса	Eag	$\varepsilon_{ab} = \varepsilon_2 (E_w - E_{ab})$	ловиях, указанных в табл. 7, в. 15 настоящего стандарта	
 Коэффициент торк крытия 	тового пере-	e _{Cs}	ε	$\alpha = \epsilon_{a1} + \epsilon_{a2}$	
	Пополически				

Дополнительный расчет при наличии подрезания зуба шестерня прямозубой передачи, если $\rho_{\mathcal{P}^1} \! < \! \rho_{f_1}$

21. Вспомогательная величина	ж	$\mathcal{H}_1 = \frac{2000}{z_1 \cos z}$ ($x_{\text{1min}} - x_1$), где x_{1min} — по табл. 7, п. 1 настоящего стандарта	Определяется при подрезавни
22 Угол профиля в граничной точ- ке профиля зуба шестерии, подре- занной исходной производящей рей- кой	α_{i_1}	tgα _{/1} определяется по черт, II	нсходной производящей рейкой
23. Вспомогательный угол	λ	$ ag\lambda = rac{z_1 + z_0}{z_0} aglpha_{\infty_0}$, где $lpha_{\infty_0}$ — по табл. 2 приложения 4 ГОСТ 16532—70	Определяется при подрезанки зуборезным долбяком
24. Вспомогательная величина	u_1	Определяется по черт, 12	
 Угол профиля в граничной точке профиля зуба шестерии, под- резанной долбяком 	α_{l1}	${ m tg}a_{I_1}{=}0,01745(a_{ab}{-}\lambda)u_1.$ где a_{ab} н λ — в градусах	
 Коэффициент торцового пере- крытия передачи, в которой шестер- ня имеет подрезавные зубья 	εα	$arepsilon_{lpha}=rac{z_1(\mathrm{tg}z_2)}{z_2}$ где $lpha_{lpha_1}$ — по табл. 5, п.	^х а1—tg¤ ₍₁) 2л 2 настоящего стандарта

Номограмма для определения вспомогательной величины \mathcal{B} при заданном межосевом расстоянии a_{α}

Черт 1

Пример: Дано: $z_1 = 20$, $z_2 = 60$, m = 5 мм, $a_{\mu} = 101,35$ мм.

Расчет
$$y = \frac{a_w}{m} - \frac{z_4 - z_1}{2} = 0.271$$
,

$$A = \frac{1000y}{z_2 - z_1} = \frac{1000 \cdot 0.271}{40} = 6.78.$$

По номограмме определяем E = 0,328.

График для определения вспомогательной величины μ в зависимости от A и $\beta(\alpha=20^\circ)$

$$\mu = \frac{\text{inv}\alpha_{\text{sw}} - \text{iov}\alpha}{2\text{tg}\alpha} - \frac{\text{inv}\alpha t_{\text{sw}} - \text{Inv}\alpha_t}{2\text{tg}\alpha_t},$$
где $\cos\alpha_{\text{sw}} = \frac{\cos\alpha}{1 + \frac{A}{500}}$; $\cos\alpha_{\text{rw}} = \frac{\cos\alpha_t}{1 + \frac{A}{500}}$

Черт, 2

Пример, Дано: $A=20.97,~\beta=22^\circ.$ По графику определяем $\mu=0.00040$ (см. пунктир).

C. 28 FOCT 19274-73

Номограмма для определения вспомогательной величины I' при заданном коэффициенте разности смещений x_d

 $(\alpha = 20^{\circ}; a_{w} > a)$

Пример. Дано: $z_1 = 20$, $z_2 = 60$, m = 5 мм, $x_1 = 0.242$, $x_2 = 0.526$. Расчет $B = \frac{1000 x_d}{z_2 - z_1} = \frac{1000 \cdot 0.284}{40} = 7.1$. По номограмме определяем $\Gamma = 0.328$.

График для определения вспомогательной величины у в зависимости от В и β ($\alpha = 20^{\circ}$)

$$\begin{array}{c} _{t=0}, 5\left(\frac{\cos \alpha_{t}}{\cos \alpha_{tw}} - \frac{\cos \alpha}{\cos \alpha_{w}}\right), \quad \text{rge inv} \alpha_{tw} = B \frac{\lg \alpha_{t}}{500} + \mathrm{inv} \alpha_{t}; \\ \\ \mathrm{inv} \; \alpha_{w} = B \frac{\lg \alpha}{500} + \mathrm{inv} \alpha \end{array}$$

Черт. 4

Пример. Дано: B=23,49, $\beta=22^\circ$. По графику определяем $\nu=0,00032$ (см. пунктир).

2. РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

Исходные данные для расчета

Таблица 1

	Наименование п	араметров	Обозначения	Расчетные формулы и указания
Число з	When	шестерни	z _t	
	youtu	колеса		_
Модуль			m	
Угол на	клона		в	
	Угол профиля		α	_
	Коэффициент высоты головки	h_5		
контур	Коэффициент раднуса кривизи	ны переходной кривой	o _t	
Нормальный исходный контур	Коэффициент граничной высот	ты	h*	_
SALKER I	Коэффициент радиального заз	ора	¢*	_
Д. Линия модификации головки				_
	Коэффициент высоты модифи	кации головки	h*	_
	Коэффициент глубины модиф	икации головки	Δ*	
	Межосевое р	асстояние	a_{φ}	Входит в состав исходных дан- ных, если его значение задано
Коэффициент смещения у шестерни			x_1	Входят в состав исходных дан- ных, если значение межосевого
		у колеса	x ₂	расстояния а и не задано. Рекомендации по выбору коэф- фициентов смещения настоящим стандартом не устанавливаются. Величины коэффициентов смеще- иня определяются требуемыми прочностными и геометрическими показателями качества передачи

Номограмма для определения величины α_x в зависимости от x_d и z_2-z_1 ($\alpha=20^\circ, x_d>0$)

Черт, 5

Пример. Дано: $z_2 = z_1 = 40$, $x_d = 0.284$. Расчет $B = \frac{1000 x_d}{z_2 - z_1} = \frac{1000 \cdot 0.284}{40} = 7.1$, По номограмме определяем $\alpha_w = 22^\circ$.

Номограмма для определения величины α_t в зависимости от β ($\alpha = 20^\circ$)

Пример. Дано: $\beta = 22^\circ$. По номограмме определяем $\alpha_t = 21^\circ 26'$.

График для проверки отсутствия интерференции вершин зубьев ($\alpha = 20^\circ$, $h_a^* = 1$, $\beta = 0$, d_{a_1} и d_{a_2} — по табл. 2, п. 13 настоящего стандарта)

Черт. 7

 Π римечание. Область отсутствия интерференции над кривой соответствующего смещения x_1 . В непосредственной близости под кривой находится область, требующая уточнения.

Графики для проверки отсутствия витерференции продольной кромки зуба шестерии с переходной поверхностью зуба колеса ($\alpha=20^{\circ},\ h_{\alpha}^{*}=1,\ h_{\alpha\theta}^{*}=1,25,\ \beta=0,\ d_{s1}$ и d_{s2} — по табл. 2, п. 13 настоящего стандарта)

Справедливо только

Черт. 9

Примечание к черт. 8 и 9. Область отсутствия интерференции — под кривой соответствующего числа зубьев долбяка z_0 . Область над кривой требует уточнения в зависимости от числа зубьев колеса z_2 .

C. 34 FOCT 19274-73

График для проверки отсутствия срезания зуба колеса при радиальной подаче зуборезного долбяка $(\alpha=20^{\circ},\,h_{a}^{*}=1,\,h_{a0}^{*}=1,25,\,\beta=0,\,d_{a2}$ — по табл. 2, п. 13 настоящего стандарта)

Черт. 10

Примечание. Область отсутствия срезания над кривой соответствующего смещения x₀. В непосредственной близости под кривой находится область, требующая уточнения.

График для определения величины $\{g\alpha_{i}\}$ в зависимости от вспомогательной величины \mathcal{K}_{i} ($\alpha = 20^{\circ}$)

График для определения вспомогательной величины u_1 зависимости от угла α_{mi} и отношения $\frac{z_1}{z_0}$ $(\alpha=20^\circ)$

Значения постоянной хорды зуба колеса s_{e2} и расстояния ее от делительной окружности $\overline{h}_{\Delta 2}^*$, выраженные в долях модуля ($\alpha=20^\circ$)

$$\overline{s}_{c2}^{\bullet} = \frac{\pi}{2} \cos^{4}\alpha - x_{2}\sin 2\alpha$$

$$\overline{h}_{\Delta 2}^{\bullet} = 0.5 \overline{s}_{c2}^{\bullet} \cdot \log \alpha$$

**	5 ₆₂	$h_{\Delta 2}^{\bullet}$	х3	8 12	ħ. Δ2
-0.50 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34	1,7084 1,7020 1,6956 1,6892 1,6827 1,6763 1,6699 1,6635 1,6570 1 6506 1,6442 1,6377 1,6313 1,6249 1,6185 1,6120 1,6056	0,3109 0,3098 0,3086 0,3074 0,3062 0,3051 0,3039 0,3027 0,3016 0,3004 0,2992 0,2891 0,2969 0,2957 0,2945 0,2934 0,2922	0,330,320,310,300,290,280,270,260,250,240,230,220,210,200,190,180,17	1,5992 1,5927 1,5863 1,5799 1,5735 1,5670 1,5606 1,5542 1,5477 1,5413 1,5349 1,5285 1,5220 1,5156 1,5092 1,5028 1,4963	0,2910 0,2899 0,2887 0,2875 0,2864 0,2852 0,2840 0,2828 0,2817 0,2805 0,2793 0,2782 0,2770 0,2758 0,2747 0,2735 0,2735

Продолжение табл. 2

x,					
-"	* *c2	$\overline{h}_{\Delta 2}^*$	x _±	*c2	h _{A2}
-0,16	1,4899	0,2711	0,43	1,1107	0,2021
-0.15	1,4835	0.2700	0,44	1,1042	0,2010
-0,14	1,4770	0,2688	0,45	1,0978	0,1998
-0,13	1,4706 1,4642	0,2676 0,2665	0,46 0,47	1,0914 1,0850	0,1986 0,1975
-0,12 -0,11	1,4578	0,2000	0,47	1,0785	0,1963
-0.10	1,4513	0,2653 0,2641 0,2630	0,49	1,0721	0,1951
-0,09	1,4449	0,2630	0,50	1,0657	0,1940
0,08	1,4385	0,2618	0,50 0,51	1,0593	0,9278
-0,07	1,4320	0,2606	0,52	1,0528	1,9159
0,06 0,05	1,4256 1,4192	0,2954 0,2583 0,2571	0,53 0,54	1,0464 1,0400	1,9043 1,8925
0,04	1,4128	0.2571	0.55	1,0336	1.8810
0,03	1,4063	0,2559	0,56 0,57	1,0271	1,8692 1,8575
0.02	1,3999	0,2559 0,2548	0,57	1,0207	1,8575
0,01	1.3935 1,3870	0,2536	0,58 0,59	1,0143	1,8459
-0,00	1,3806	0,2524	0,59	1,0078 1,0014	1,8340
0,01 0,02	1,3742	0.2501	0,61	0,9950	1,8224 1,8108
0.03	1,3678	0,2536 0,2524 0,2513 0,2501 0,2490	0.62	0,9886	1,7991
0.04	1,3614	0,2478	0,63	0,9821	1,7991 1,7873 1,7756
0,05	1,3549	0,2466	0,63 0,64 0,65	0,9757	1,7756
0,06	1,3485 1,3421	0,2454 0,2443	0,65	0,9693 0,9629	1,7590
0,06 0,07 0,08	1,3356	0,2431	0,66 0,67	0,9564	1,7640 1,7523 1,7405 1,7289
0.09	1,3292	0,2419	0,68	0,9500	1,7289
0,10	1,3228	0,2419 0,2408	0,69	0.9436	1.7172
0.11	1,3164	0,2396 0,2384 0,2372 0,2361 0,2349 0,2326	0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77	0,9371	1,7054 1,6939 1,6821 1,6704
0,12 0,13	1,3099 1,3035	0,2384	0,71	0,9307 0,9243	1,0939
0,14	1,2971	0.2361	0.72	0,9179	1.6704
0,15	1,2906	0,2349	0.74	0,9114	1,6586
0,16	1,2842	0,2337	0,75	0,9050	1,6470
0,17	1,2778	0,2326	0.76	0,8986	1,6353
0,18	1,2714 1,2649	0,2314	0,77	0,8921 0,8857	1,6235 1,6118
0,19 0,20	1,2585	0,2302 0,2291	0,78 0,79	0,8793	1.6002
0,21	1,2521	0,2279	0,80	0,8729	1,5885 1,5767
0.22	1,2457	0,2267	0,81	0,8664	1,5767
0,23	1,2392 1,2328	0,2255 0,2244	0,82 0,83	0,8600 0,8536	1,5651 1,5534
6,24 0,25	1,2264	0,2232	0,84	0,8471	1,5416
0,26	1,2199	0.2220	0,85	0,8407	1,5299
0,27	1,2135	0,2209	0,86	0,8343	1,5183
0.28	1,2071	0,2197	0,87	0,8279 0,8214	1,5067 1,4948
0,29 0,30	1,2007 1,1942	0,2185 0,2174	0,88 0,89	0,8150	1,4540
0.31	1,1878	0.2162	0.90	0.8086	1,4832 1,4715 1,4599
0,31 0,32	1,1814	0,2150	0,90 0,91	0,8086 0,8022 0,7957	1,4599
0,33 0,34	1,1749	0.2138	0.92	0,7957	1,4481
0,34 0,35	1,1685 1,1621	0,2127 0,2115	0,93 0,94	0,7893	1,4364
0,36	1,1557	0.2103	0,95	0.7829 0.7764	1,4248 1,4129
0,37	1,1492	0.2092	0,96	I 10,7700 I	1.4013
0,38 i	1,1428	0,2080	0,97	0,7635 0,7571	1,3895 1,3778
0,39	1,1364	0,2068	0,98	0,7571	1,3778
0,40 0,41	1,1299 1,1235	0,2057 0,2045	0,99 1,00	0,7507 0,7443	1,3662 1,3545
0,41	1,1200	0,2048	1,00	0,7440	1,0040

Таблица 3

Значения коэффициента \ddot{E} для прямозубой передачи ($\alpha \! = \! 20^{\circ}$)

ЗНАЧЕНИЯ E, ПРИ $\mathcal{I} < 0$

Д	-0,000	-0,001	-0,002	-0.003	-0,004	-0,005	-0,006	-0,007	-0,008	-0,009
0,000 0,010 0,020 0,030 0,040 0,050	0,0579 528 471 0,0408 333 236	0,0574 522 465 0,0401 324 224	0,0569 517 459 0,0394 316 212	0,0564 511 453 0,0387 307 199	0,0559 506 447 0,0379 298 185	0,0554 500 440 0,0372 288 170	0,0549 495 434 0,0364 279 153	0,0544 489 428 0,0357 269 134	0,0538 483 421 0,0349 259 112	0,0533 477 414 0,0341 248 084
ЗНАЧЕНИЯ E _y ПРИ Д>0										
Д	0,000	100,0	0,002	0,003	0,004	0,005	0,006	0,007	0,608	0,009
0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0,080 0,090 0,110 0,120 0,130 0,130 0,150 0,150 0,160 0,170 0,180 0,190	0,0579 627 672 714 755 0,0793 831 867 902 935 0,0968 0,1001 0,1032 063 093 0,1123 152 181 209 237	0,0584 632 676 718 759 0,0797 834 870 905 939 0,0972 0,1004 035 066 096 0,1126 155 183 212 239	0,0589 636 680 722 762 0,0801 838 874 908 942 0,0975 0,1007 038 069 099 0,1129 158 186 214 242	0,0594 640 685 726 766 0,0805 842 877 912 945 0,0978 0,1010 041 072 102 0,1132 161 189 217 245	0,0598 645 689 730 770 0,0808 845 881 915 949 0,0981 0,1013 044 075 105 0,1134 163 163 192 220 248	0,0603 649 693 734 774 0,0812 849 884 919 952 0,0985 0,1016 048 078 108 0,1137 166 195 223 250	0,0608 654 697 739 778 0,0816 852 888 922 955 0,0988 0,1020 051 081 111 0,1140 169 198 225 253	0,0613 658 702 743 782 0,0820 856 891 925 959 0,0991 0,1023 054 084 114 0,1143 172 200 228 256	0,0618 663 706 747 786 0,0823 860 895 929 962 0,0994 0,1026 057 087 117 0,1146 175 203 231 259	0,0622 667 710 751 790 0,0827 863 898 932 965 0,0997 0,1029 060 090 120 0,1149 178 206 234 261
0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290	0,1264 291 318 344 370 0,1396 422 447 472 497	0,1267 294 320 347 373 0,1399 424 449 475 499	0,1269 296 323 349 375 0,1401 427 452 477 502	0,1272 299 326 352 378 0,1404 429 454 479 504	0.1275 302 328 355 381 0,1406 432 457 482 507	0,1278 304 331 357 383 0,1409 434 460 484 509	0,1280 307 334 360 386 0,1411 437 462 487 512	0,1283 310 336 362 388 0,1414 439 465 489 514	0,1286 312 339 365 391 0,1417 442 467 492 517	0,1288 315 342 368 394 0,1419 444 470 494 519
0,300	0,1521	0,1524	0,1526	0,1529	0,1531	0,1534	0,1536	0,1539	0,1541	0,1543

Примечание. Для произвольной концентрической окружности заданного диаметра $d_y E_y = \frac{\mathrm{i} g \alpha_y}{2\pi}$.

БЛОКИРУЮЩИЕ КОНТУРЫ

Приведенные блокирующие контуры* построены для прямозубых передач без модификации профиля зубьев, у которых колесо окончательно обрабатывается стандартным зуборезным долбяком по ГОСТ 9323—79 без притуплення продольной кромки зуба и без технологического утолщения ножки зуба, шестерия—гольной продольной червачной фрезой по ГОСТ 9324—80, а диаметры вершии рассчитаны по формулам, приведенным в табл. 3, п. 8 настоящего стандарта (без учета притупления продольных кромок зубьев). Тип и параметры конкретного инструмента учитывают следующим образом:

1) шестерню нарезают червячной фрезой или любым долбяком с номинальным делительным днаметром не менее 75 мм;
 колесо нарезают любым долбяком с номинальными делительными диаметрами, приведенными в таблице.

Модуль т, им	Число зубьёж колеса 24	Номинальный делительный дизметр долбяка, мы
От 1 до 2	От 63 до 100 Св. 100 до 200	38 38, 50
От 2,25 до 3,5	От 40 до 80 Св. 80 до 200	50 75, 100
От 3,75 и выше	От 40 до 200	75 н более

При модулях от 3,75 мм и выше блокирующие контуры не распространяются на зубчатые колеса, нарезаемые долбяками с числами зубьев го менее 16.

При выборе коэффициентов смещения с помощью блокирующих контуров коэффициент торгового перекрытия ϵ_{α} , толщина зуба на поверхности вершин шестерен s_{a_1} и величина радиального зазора c рассчитываются во формулам, приведенным в табл. 7 настоящего стандарта только в случаях, когда необходимо получить их уточненные значения.

Отсутствие интерференции и срезания вершин зубьев рекомендуется проверять только в тех случаях, когда на контуре выбрана точка, лежащая в разрешенной зоне контура в непосредственной близости от соответствующей ограничительной линии. Проверка производится по формулам, приведенным в настоящем стандарте, после окончательного уточнения типа и параметров применяемого инструмента.

зона недопустимых значений коэффициента смещения исходного контура и зона подрезания зубьев;

На черт, 1 приведен пример блокирующего контура.

На чертежах приняты следующие обозначения:

1 -диния $\epsilon = \epsilon_{\alpha} = 1,0.$

2 — линия $s_{a1} = 0$,

3 — линия $s_{02} = 0$; 4, 5 — линия h = 2,5 m;

диния срезания вершин зубьев щестерии переходной поверхностью зуба фрезы или долбяка;

7 — линия срезания вершин зубъев колеса переходной поверхностью зуба долбяка;

8 — линия интерференции с переходной поверхностью зуба шестерни, нарезанной долбяком;
 9 — линия интерференции с переходной поверхностью зуба колеса;

10 — линня интерференции с переходной поверхностью зуба шестерии, нарезанной червячной фрезой;

— линия срезания при радиальной подаче долбяка;

12 — линия интерференции вершии при радиальной оборке передачи;

13 — линия х_{тіп} шестерии;

14 — лвния α. ш = 0;

зазора во впадине колеса $c_0 = 0,1 m$; 15 — линия раднального

16 — линия $ε = ε_α ⇔ 1,2$;

17 — линия s _{a1} = 0,3m; 18 — линия s_{a2} = 0,3m. Пунктиром обозначены линии для зубчатых колес, нарезанных долбяком, переточенным до ½ своей первона-чальной высоты (при модулях 1—2 мм — до ½ своей первоначальной высоты).

На некоторых контурах линии 6 и 7 имеют дополнительные обозначения в скобках, например, 6(17) указывающие, при каком числе зубьев переточенного до предела додбяка возникает данное ограничение.

Пример.

Дано: $z_1 = 17$, $z_2 = 77$, m = 4, $x_d := 0.5$. Разбивку x_d произвести так, чтобы при условиях $\varepsilon_{\alpha} > 1.2$ и $s_{\alpha 1} > 0.3$ m получить наибольшее значение x_1 . По блокирующему контуру с числами зубьев, ближайщими к заданным ($z_1 = 20$, $z_2 = 80$, m > 3,75), находим, что этим услокоэффициенты смещения $x_1 = 0.9$ и $x_2 = 1.4$ удовлетворяют

Определение дано в приложении 3 к ГОСТ 16532—70.

Наименования параметров	Обозна- чения	Расчетные формулы и указания			
Параметры, относящиеся к зуборезному долбяку					
Число зубьев	Z ₀				
Модуль	m_0	$m_0 = m$			
Угол наклона	βο	$\beta_0 = \beta$			
Делительный диаметр	d _a				
Днаметр вершин	dos				
Номинальная нормальная толщина зуба	5 ₇₀				
Угол развернутости профиля в точке притупления продольной кромки зуба	Vikg		Входят в состав исходных данных, если предполагается окончательная обработка коле-		
Угол развернутости профиля в на- чальной точке модификации ножки зуба	₩03		са с внутренними зубьями зу- борезным долбяком. При ис- кодном контуре по ГОСТ 13755—81 и ГОСТ 9587—81		
Угол развернутости профиля в точке начала технологического утол- щения ножки зуба	Vr0	Для зуборезных долбяков по ГОСТ	принимать зуборезные долбя- ки по ГОСТ 9323—79 и ГОСТ 10059—80		
Угол развернутости профиля в граничной точке	Via	_			
Қоэффициент смещения исходного контура	* ₃	Для долбяков по ГОСТ 9323—79 и ГОСТ 10059—80, не подвергавшихся переточке, значения х ₀ приведены в указанных стандартах. Если значение х ₀ не задано, его определяют по табл. 3, п. 3			
Коэффициент высоты головки в исходном сечения	h _{a0}	_			

Таблица 2

Расчет основных геометрических параметров

Наименования параметров Обозна- чения		Расчетыме формулы и указания				
Расчет коэффициентов смещения x_1 и x_2 при заданном межосевом расстоянии						
I. Делительное меж- осевое расстояние	а	$a = \frac{(z_2 - z_1)}{2\cos\beta}$	mz			
2. Угол профиля	αι	$tg\alpha_f = \frac{tg\alpha}{\cos\beta}$				
3. Угод зацепления	aiv	$\cos a_{fw} = \frac{a}{a_w} \cdot \cos a_f$	При $\alpha = 20^{\circ}$ (вилючая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587.—81) упрощенный расчет x_4 , α_1 и угла запепления прямозубой передачи α_2 приведен в табл. 1			
4. Коэффициент раз- ности смещений	X _d	$x_d = \frac{(z_b - z_1) \operatorname{inva}_{tw} - \operatorname{inva}_t)}{2 \operatorname{ig} \alpha}$	передачи со приведен в табл. I приложения 1			
5. Коэф- фициент	<i>x</i> ₁	Рекомендации по разбивке значения $x_d = x_2 - x_1$ на составляющие x_1 и x_2 настящим стандартом не устанавливаются. Величины коэффициентов смещения определются требуемыми качествами передачи во прочностным и геометрическим показателя				
у колеса	X2					

С. 40 ГОСТ 19274-73

Блокирующие контуры для зубчатых передач с модулем m=1,0...2,0 мм

ГОСТ 19274-73 С. 41

C. 42 FOCT 19274-73

C. 44 FOCT 19274-73

Черт. 33 Черт. 34

Блокирующие контуры для зубчатых колес с модулем $m=2,25...3,50\,$ мм

ГОСТ 19274-73 C. 47

C. 48 FOCT 19274-73

Наименования параметров — Обозна- чения			Расчетные формулы и указания				
	P	асчет меже	осевого расстояния а, при заданных	коэффициентах смещения	X ₁ н Х ₂		
6. Коэффициент раз- ности смещений		X4	$x_d = x_2 - x_1$	1			
7. Угол профиля		αı	$tga_{\ell} = -$	При с — 20° (включая всходные контуры по ГОСТ 13755—81 и ГОСТ			
8. Угол зацепления		atu	$invx_{tw} = \frac{2x_d \log x}{z_1 - z_1}$	9587 -81) упрощенный расчет α _m , α, и угла зацепления прямозубой передачи α _m приведен в табл. 1 приложения 1			
9. Межосевое рас- стояние		a_w	$a_{00} = \frac{(z_2 - z_2)}{2\cos z_2}$	β · cosa _t cosa _{tw}	- Apolitonia -		
			Расчет диаметров зубчатых	колес	ı		
10. Дели- тельный днаметр		d_{\parallel}		$d_1 = \frac{z_1 m}{\cos \beta}$			
	колеса	d ₂		$d_2 \rightarrow \frac{z_2 m}{\cos \beta}$			
11. Передаточное число и		u		$u = \frac{z_1}{z_1}$			
12. Hava-	шестерни	d_{wt}		$d_{w1} = \frac{2a_w}{u-1}$			
льный дна- метр	колеса	d _{ie2}		$d_{w2} = \frac{2a_wu}{u-1}$			
13. Диа-	шестерни	d _{a1}	$d_{a1} = d_1 + 2(h_a^* + x_1)m$	Допускается изменение личин диаметров и расч по другим формулам дл лучения требуемых ка	ет нх		
метр вер- шин зубь- ев	колеса	d_{sj}	$d_{a2}=d_2-2(h_a^*-x_2-0.2)m$	Зацепления по геомет ким показателям	Расчет произ- водится для слу- чая, когда не учи- тывается конкрет-		
14. Диа- метр владин	шестерня	d _{f1}	$d_{f_1} = d_1 - 2(h_a^* + c^* - x_1)m$	Размеры являются спр ными. Для зубчатых в окончательно обработа зуборезным долбяком, ф	ный зуборезный равоч- инструмент колес, инных		
	колеса	d_{f2}	$d_{f_2} = d_2 + 2(h_\alpha^* + c^* + x_2)m$	ческий диаметр впадии	шес- при- 2—70, впа-		
Прим	ечаныя:			Ann marke - no teat of	46 01		

- Примечания: 1. Для прямозубых передач $\beta=0^\circ$, тогда a=0.5 $(z_2-z_1)m;$ $\alpha_f=\alpha;$ d=zm. 2. При $a=a_w$ получаем $\alpha_{fw}=\alpha_f:$ $x_d=0;$ $d_w=d$. 3. При $x_d=0$ получаем $\alpha_{fw}=\alpha_f:$ $a=a_w:$ $d_w=d$. 4. Расчет дваметров вершин зубчатых колес для случая предполагаемой окончательной обработки колеса с внутренними зубъями зуборезным додбяком приведен в табл. 3.

C. 50 FOCT 19274-73

C. 52 FOCT 19274-73

Блокирующие контуры для зубчатых колес с модулем т≥3,75 мм

C. 56 FOCT 19274-73

C. 58 FOCT 19274-73

Расчет диаметров вершин и впадин зубчатых колес для случая предполагаемой окончательной обработки колеса с внутренними зубьями зуборезным долбяком

Наименование па	раметров	чения чения	Расчетные формулы и	указания
1. Коэффициент восприин- маемого смещения		g	$y = \frac{a_w - a}{m}$	
2. Қозффициент ного смещения	уравнитель-	Δy	$\Delta y = x_d - y$	
3. Коэффициент долбяка	смещения у	<i>x</i> ₀	$x_{\phi} = \frac{2s_{n\phi} - \pi m}{4m tga}$	
4. Угол станочн ния колеса с долбя		Christa	$inva_{fwaz} = \frac{2(x_2 - x_0)tg\alpha}{z_2 - z_0}$	$+inva_t$
5. Межосевое расстояние в станочном зацеплении колеса с долбяком		a=62	$a_{woz} = \frac{(z_2 - z_0)m}{2\cos\beta}$.	cosa _f
6. Коэффициент воспринк- маемого смещения в станоч- ном зацеплении колеса с дол- бяком		<i>Y</i> 02	$y_{qq} = \frac{a_{qqq}}{m} - \frac{z_2}{2c0}$	z ₀ 8β
7. Коэффициент уравнитель- ного смещения в станочном зацеплении колеса с долбяком		Δ1/02	$\Delta y_{02} = x_2 - x_0 - y_{02}$	
	шестерни	dei	$d_{a1} = d_1 + 2(h_a^* + x_1 + \Delta y - \Delta y_{a2})m$	Допускается изменение ве- личин диаметров и расчет их по другим формулам для по-
8. Диаметр вер- шин зубьев	колеса	d _{a2}	$d_{a2}=d_{2}-2(h_{a}^{*}-x_{2}+\Delta y-K_{2})m$, где $K_{2}=0$,25-0,125 x_{2} при $x_{2}<2$, $K_{2}=0$ при $x_{2}>2$	лучения требуемых качеств звцеплення по геометричес- ким показателям
9. Диаметр вла- дин	шестерни	d _{f1}	$d_{f_1} = d_1 - 2(h_a^* + c^* - x_1)m$	Размер является справочным. Фактический днаметр впадин шестерии, окончательно обработанной зуборезным долбяком, определяется по приложению 4 к ГОСТ 16532— —70
	колеса	dia	$d_{f_2}=2a_{w_{02}}+d_{a_0}$	

C. 60 FOCT 19274-78

РАСЧЕТ НЕКОТОРЫХ ГЕОМЕТРИЧЕСКИХ И КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ, ИСПОЛЬЗУЕМЫХ В РАСЧЕТЕ ЗУБЧАТОЙ ПЕРЕДАЧИ НА ПРОЧНОСТЬ

Расчет геометрических параметров

Таблица 1-

Наимснования параметров	Обозна- Обозна-	Расчетные формулы и укладиля		
1. Раднус кривизны профиля ау в заданной точке на концентрическо окружности днаметром d_g		$ ho_y \! = \! 0,\! 5d_y { m sin} a_y,$ где $a_y = \!\!\!\! -$ по табл. 4, п. 6 настояшего стандарта		
2. Разность раднусов кривиз профилей зубьев шестерии и коле в контактими точках		$\rho_d = a_{\mathbf{w}} \sin_{a_{\mathbf{f}\mathbf{w}}}$		
3. Составляющая ко- эффициента торцового перекрытия, определяе- мая начальными голов-	Baj	$e_{a1} = \frac{z_1}{2\pi}$ $(tg\alpha_{a1} - tg\alpha_{tw})$	Формулы справедливы при ус- ловиях, указанных в табл. 7, п. 15 настоящего стандарта	
ками зубьев колеса	Eag	$\varepsilon_{a2} = \frac{z_b}{2\pi} \left(tg \alpha_{tw} - tg \alpha_{ob} \right)$		

Параметры, относящиеся только к косозубым передачам

4. Средняя суммарная длина кон- тактных линий	l_m	$I_m = rac{b_w e_m}{\cos eta_b}$, где b_w — рабочая ширина венца e_α — по табл. 7, п. 15 настоящего стандарта; eta_b — по табл. 5, п. 11 настоящего стандарта	
 Наименьшая суммарная длина контактных линий 	Imin	$t_{\min} = t_m \left(1 - \frac{n_\alpha - n_\beta}{\varepsilon_\alpha - \varepsilon_\beta}\right) \text{ при } n_\alpha + n_\beta < 1;$ $t_{\min} = t_m \left[1 - \frac{(1 - n_\alpha)(1 - n_\beta)}{\varepsilon_\alpha - \varepsilon_\beta}\right] \text{ при } n_\alpha + n_\beta > 1.$ Здесь $n_\alpha - n_\beta = 0$ дробные части величин ε_α и ε_β , рассчитанных по	
6. Коэффициент среднего изменения суммарной длины контактных линий	k _e	$k_{\rm g}=\frac{l_{\rm mis}}{l_{\rm m}}$. Упрощенное определение $k_{\rm e}$ при ${\rm s}_{\beta}$ <3 производится по черт. 1 и 2 приложения 5 к ГОСТ 16532—70. При $e_{\beta}>$ 3 допускается принимать $k_{\rm g}=1$.	

Наименования параметров		Обозна- чения	Расчетные формулы и указания	
	Парамет	ры, относя	щиеся только к прямозубым передача	PM.
7. Раднус кривизны профиля зуба в верхней граничной точке одно-		ρωι	$\rho_{a_1} = \rho_{P_1} + p_{\alpha}$	Здесь: р _р — по табл. 5, п. 3 настоящего
парного зацепления	колеса	Pus	$\rho_{ut} = \rho_{pt} - p_{cc}$	стандарта; P_{∞} — по табл. 6, п. 1 настоящего стандарта
Бугол профиля зуба в верхней граничной точке однопарного зацепления Диаметр окружности верхних граничных точек однопарного зацепления		αu	где dъ — по табл. 5, п. 1 настоящего	$tg\sigma_{a}=rac{2 ho_{a}}{d_{b}}$ о стандарта
		d_u	$d_{\underline{u}}$ =	$\frac{2\rho_u}{\sin a_u}$

Таблица 2

Расчет кинематических параметров

Расчет кинематических параметров						
Наяменования парам	этров	Обозна- чения	Расчетные фор	Расчетные формулы и указания		
 Скорость общей точ филю зуба в заданной точке 		DPU	υ _μ Здесь ω — угловая скорость зубчатог ρ _у — по табл. 1	у = шор _у о колеса;		
2. Сумма скоростей общей точки по профилям зубьев в заданных контактных точках		D EN	$v_{xy}=v_{Fy1}+v_{Fy2}$			
3. Скорость скольже- ния в задавной контакт-	шестерни	Uspi	v_{sy_1} =	v _{Fy1} v _{Fy2}		
ной точке профиля зуба	колеса	U +1/2	$v_{sy_2 = -v_s y_1}$			
4. Скорость скольже ния в точке профиля и окружности вершив		U pa }	$v_{sa1}=0,5\omega_1d_{b1}(\operatorname{tg} a_{a1}-\operatorname{tg} a_{fw})(u-1)$	Если имеется притупление про- дольной кромки зуба, то следует рассчитать скорость скольжения в точке притупления. Для этого		
	колеса	U.42	$v_{sax}=0.5\omega_2 d_{bt}(\operatorname{tga}_{tw}-\operatorname{tga}_{at})(u-1)$	вместо α_{a1} н α_{a2} следует подставлять α_{k1} н α_{k2} . Здесь d_b , α_a н α_k — по табл. 5, пп. 1 и 2, настоящего стандарта		
5. Удельное скольжение в задан- ной контактной точке профиля зуба			8,	v _{sy}		

Наимскования параметрев	Обозна- чония	Расчетные фо	рыулы в указания
6. Удельное скольже-шестерни ние в нижисй точке ак- тивного профиля зуба колеса	θ _{pt}	$\theta_{\rho 1} = -\frac{(tg a_{\rho 2} - tg a_{f w})(u - 1)}{tg a_{f w} + u(tg a_{\rho 2} - tg a_{f w})}$ $\theta_{\rho 2} = -\frac{(tg a_{\sigma 1} - tg a_{f w})(u - 1)}{utg a_{f w} + (tg a_{\sigma 1} - tg a_{f w})}$	Если имеется притупление продольной кромки зуба, вместо α _{σ1} и σ _{σ2} следует подставлять соответственно α _{λ1} и α _{λ2} . Здесь α _σ и α _λ —по табл. 5, п. 2 настоящего стандарта

Параметры, относящиеся только к прямозубым передачам

7. Угол профиля зуба в вижней граничной точке однопарного заце- пления	i	tg and	$tg\alpha_{v_1} = \frac{2(\rho_{u1} - a_{w}\sin\alpha_{w})}{d_{b_1}}$ $tg\alpha_{v_2} = \frac{2(\rho_{u1} + d_{w}\sin\alpha_{w})}{d_{b_1}}$	Здесь ра — по табл. 1, п. 7
8. Скорость скольже ния в верхней гранич ной точке однопарного	1	Ueul	$v_{su1}=0,5\omega_2d_{b1}(tga_{u1}-tga_{w})(u-1)$	Здесь α_{H} — по табл. 1, п. 8
зацепления	колеса	U _{AW2}	$v_{sus}=0,5\omega_{s}d_{bs}(\log a_{sp}-\log a_{ss})(u-1)$	ogen of a second of
9 Удельное скольже ние в нижней граничной		₽wi		$\begin{array}{l} - \operatorname{tg} a_{\mathbf{w}} (u-1) \\ + u (\operatorname{tg} a_{\mathbf{v}2} - \operatorname{tg} a_{\mathbf{w}}) \end{array}$
точке однопарного за- цепления	колеса	Ð ₁₀₂	$\vartheta_{va} = -\frac{(tga_{v})}{utga_{v}}$	$u_1-tg\alpha_w)(u-t)$ $w+(tg\alpha_{w_1}-tg\alpha_w)$

Редактор Р. С. Федорова Техвический редактор В. Н. Прусакова Корректор Т. А. Васильева

Сдано в наб 23.07.92 Полл. в пет. 05.10/82 Усл. пет. л. 8,0. Усл. кр.-отт. 8.26. Уч.-язд. л. 6,30 Тирож 1004 экз.

Расчет размеров для контроля взаимного положения разноименных профилей зубьев

Наимемования параметров чения ———————————————————————————————————		Оборна- чения	Расчетные формулы и указан	ия
Расчет постоянной х			і корды зуба и высоты до постоянной хорды	
1. Постоянная хорда	шестерни	-Sot	$\bar{s}_{\epsilon_1} = \left(\frac{\pi}{2} \cos^2 \alpha + x_1 \sin 2\alpha\right) m$	
зуба	колеса	842	$\overline{s}_{cs} = \left(\frac{\pi}{2} \cos^2 \alpha - x_2 \sin 2\alpha\right) m$	
			филей зуба зубчатого колеса в точках, опре- деляющих постоянную хорду; $\rho_{s1}{=}0.5 \left(d_{b1} t g x_f {+} \overline{s_{c1}} \frac{\cos \beta_b}{\cos \alpha} \right),$	При α — 20° (вилючая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—81) упрощенный расчет s _{c1} , s _{c2} и h _{c1} , h _{c2} приведен в табл. 1 приложения 1
2. Высота до посто янной хорды зуба	шестерян	h _{ol}	$\overline{h}_{c1} = 0,5(d_{a1}-d_1-\overline{s}_{c1} + ga)$	
The second secon	колеса	ħaş	\overline{h}_{eq} =0,5(d_{q} - d_{eq} - \overline{s}_{eq} ($g\alpha$)	

Наименования параметров	Обозна- чения	Расчетные формулы и указания		
Расчет длины общей нормали				
3. Угол профиля в точке на кон- центрической окружности днаметра $d_x = d + 2xm$	CL _{II}	$\cos a_{x^{m-}} = \frac{z \cos a_t}{z + 2x \cos \beta}$. При $\frac{z \cos a_t}{z + 2x \cos \beta} \gg 1$ следует принимать $z_n \gg 3$		
4. Расчетное число зубьев в дли- не общей нормали шестерии (число впадин в длине общей нормали ко- леса)	ž _n ,	$z_{nr}=rac{z}{\pi}\left(rac{\mathrm{tg}a_s}{\mathrm{cos}\beta_b}-rac{2x\mathrm{tg}a}{z} ight.$ —inv a_t $\Big)+0.5;$ где β_b — не табл. 5, п. 11		
5. Длина общей нормали	W	$W=[\pi(z_n-0.5)+2x ig\alpha+z inv\alpha_t]mcos\alpha,$ где z_n — округленное до ближайшего целого числа значение z_{nt} . Должно выполняться условие: для шестерни $\rho_{pl} < \rho_{Wl} < \rho_{al}$. для колеса $\rho_{p2} > \rho_{W2} > \rho_{a2}$.		
		где ρ_P — по табл. 5, п. 3, $\rho_W = 0.5W \cos \beta_b - \text{раднус кривизим разноименных профилей зубьев в точках, определяющих длину общей нормали при симметричном ее положении относительно основного цилиндра; \rho_\alpha = 0.5d_\alpha \sin \alpha_\alpha - \text{раднус кривизиы профиля зуба в точке на окружности вершине:} \alpha_a - \text{по табл. 5, п. 2.} Если имеется притупление продольной кромки зуба, в неравенство вместо \rho_\alpha следует подставлять значение раднуса кривизиы профиля зуба в точке притупления \rho_k = 0.5d_k \sin \alpha_k, где d_k и \alpha_k — по табл. 5, п. 2. При модификации головки в неравенство вместо \rho_\alpha следует подставлять значение \rho_g, где \rho_g — по табл. 5, п. 5.$		

Наименевания параметров	обозна- Обозна-	Расчетные формулы и указания
		Если условие левой части неравенства не выполняется, следует пересчитать значение W при увеличенном значении z_n для шестерни и уменьшенном значении z_n для колеса. Если условие правой части неравенства не выполняется, следует пересчитать значение W при уменьшенном значении z_n для колеса.
		При увелячения или уменьшении числа зубьев (впадии) в длине общей нормали x_n на один зуб длина общей нормали x_n на один зуб длина общей нормали x_n соответственио увеличивается или уменьшвется на шаг зацепления x_n , где x_n — по табл. 6, п. 1
		Для косозубых зубчатых колес должно выполняться дополнятельное условне
		$W < \frac{b}{\sin \beta_b}$,
		где b — ширина венца.
		При α = 20° (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—81) упрощенный расчет W приведен в табл. 2 приложения 1 к ГОСТ 16532—70

Расчет толицины по хорде зуба и высоты до хорды

			· !
 Угол профиля в то центрической окружност дваметра d_q 	очке на кон- ги заданного	a _s	$\cos a_y = \frac{d}{d_y} \cos a_t$
7. Окружная тол- щина на заданном диаметре d _v	шестерия	Styl	$s_{ty1} = d_{y1} \left(\frac{\frac{\pi}{2} + 2x_1 tg^2}{x_1} + inva_t - inva_{y1} \right)$
	колеса	Styp	$s_{ty2} = d_{y2} \left(\frac{\pi}{2} - 2x_1 tga - inva_t + inva_{y2} \right)$
 Угол ваклона линии зуба на со- осной цилиндрической поверхности днаметром d_w 		βν	$tg\beta_y = -\frac{d_y}{d} tg\beta$
 Половина угловой толщины зуба эквивалентного зубчатого ко- леса, соответствующая концентри- ческой окружности диаметром		ψν	$ψ_{yv} \approx \frac{s_{ty}}{d_y} \cos^3 \beta_y$
		'	•