Singular values of covariance matrices under localization

Travis Harty

1 Optimal linear transform

We update our state $x \sim N(\mu, \mathbf{P})$ using observation $y = \mathbf{H}\mu + \epsilon$, where $\epsilon \sim N(0, \mathbf{R})$, dim $x = N_x$, and dim $y = N_y$. We will perform this update by first transforming our variables using linear transformations \mathbf{T}_x and \mathbf{T}_y for x and y respectively such that $\mathbf{T}_x x = \tilde{x} \sim N(\tilde{\mu}, \mathbf{I})$ and $\mathbf{T}_y y = \tilde{y} = \mathbf{\Sigma}\tilde{\mu} + \tilde{\epsilon}$, where $\mathbf{\Sigma}$ is diagonal, and $\tilde{\epsilon} \sim N(0, \mathbf{I})$. Take,

$$x' = \mathbf{P}^{-1/2}x$$
 and $y' = \mathbf{R}^{-1/2}y$.

We then have,

$$y = \mathbf{H}\mu + \epsilon$$

$$\mathbf{R}^{1/2}y' = \mathbf{H}\mathbf{P}^{1/2}\mu' + \epsilon$$

$$y' = \mathbf{R}^{-1/2}\mathbf{H}\mathbf{P}^{1/2}\mu' + \epsilon',$$

where $\epsilon \sim N(0, \mathbf{I})$. We can then take the singular value decomposition of $\mathbf{R}^{-1/2}\mathbf{HP}^{1/2}$ yielding,

$$y' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mu' + \epsilon'$$
$$\mathbf{U}^T y' = \mathbf{\Sigma} (\mathbf{V}^T \mu') + \tilde{\epsilon}$$
$$\tilde{y} = \mathbf{\Sigma} \tilde{\mu} + \tilde{\epsilon}$$

where Σ is diagonal and $\tilde{\epsilon} \sim N(0, \mathbf{I})$. We have $\mathbf{T}_x = \mathbf{V}^T \mathbf{P}^{-1/2}$ and $\mathbf{T}_y = \mathbf{U}^T \mathbf{R}^{-1/2}$.

2 Dimension reduction optimal linear transform

We again update our state $x \sim N(\mu, \mathbf{P})$ with observations $y = \mathbf{H}x + \epsilon$, where $\epsilon \sim N(0, \mathbf{R})$. We will now calculate

$$\mathbf{P} = \mathbf{Q}_x \mathbf{\Lambda}_x \mathbf{Q}_x^T$$
 and $\mathbf{R} = \mathbf{Q}_y \mathbf{\Lambda}_y \mathbf{Q}_y^T$

and choose N_{λ_x} and N_{λ_y} that are the number of eigenvalues to keep for P and R respectively such that,

$$\dim(\mathbf{Q}_x) = (N_x, N_{\lambda_x}); \ \dim(\mathbf{\Lambda}_x) = (N_{\lambda_x}, N_{\lambda_x})$$
 and
$$\dim(\mathbf{Q}_y) = (N_y, N_{\lambda_y}); \ \dim(\mathbf{\Lambda}_y) = (N_{\lambda_y}, N_{\lambda_y})$$

We can then repeat the above calculations while reducing the transformed variables' dimensions. Take,

$$x' = \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T x$$
 and $y' = \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T y$

Note that we have,

$$x \approx \mathbf{Q}_x \Lambda_x^{1/2} x'$$
$$y \approx \mathbf{Q}_y \Lambda_y^{1/2} y'$$

where there is equality when N_{λ_x} (N_{λ_y}) is the true rank of **P** (\mathbf{R}) .

Assuming that N_{λ_x} and N_{λ_y} are the ranks of P and R respectively, we have,

$$y = \mathbf{H}\mu + \epsilon$$
$$\mathbf{Q}_y \mathbf{\Lambda}_y^{1/2} y' = \mathbf{H} \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mu' + \epsilon$$
$$y' = \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mu' + \epsilon',$$

where $\epsilon' \sim N(0, \mathbf{I}_{N_{\lambda_y}})$. We can then take the singular value decomposition of $\mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2}$ yielding,

$$y' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mu' + \epsilon'$$
$$\mathbf{U}^T y' = \mathbf{\Sigma} (\mathbf{V}^T \mu') + \tilde{\epsilon}$$
$$\tilde{y} = \mathbf{\Sigma} \tilde{\mu} + \tilde{\epsilon}$$

where Σ is diagonal and $\tilde{\epsilon} \sim N(0, \mathbf{I}_{N_{\lambda_y}})$. We have $\mathbf{T}_x = \mathbf{V}^T \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T$ and $\mathbf{T}_y = \mathbf{U}^T \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T$. Note that we have,

$$\mathbf{T}_x \mathbf{T}_x^{-R} = \mathbf{V}^T \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mathbf{V} = \mathbf{I}_{N_{\lambda_x}},$$

but there is no left inverse.

3 Equivalence to standard KF

Sticking with the above notation, we can calculate the standard Kalman filter update and the corresponding equations:

$$\mathbf{K} = \mathbf{P}\mathbf{H}^T(\mathbf{H}\mathbf{P}\mathbf{H}^T + \mathbf{R})^{-1},$$

$$x^a = x + \mathbf{K}(y - \mathbf{H}x),$$

$$\mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}.$$

Alternatively, in terms of our transformed equations, we have:

$$\mathbf{K}' = \mathbf{I_x} \mathbf{\Sigma}^T (\mathbf{\Sigma} \mathbf{I_x} \mathbf{\Sigma} + \mathbf{I_y})^{-1} = \mathbf{\Sigma}^T (\mathbf{\Sigma} \mathbf{\Sigma}^T + \mathbf{I_y})^{-1}$$
$$x^{a\prime} = x' + \mathbf{K}' (y' + \mathbf{\Sigma} x')$$
$$\mathbf{P}^{a\prime} = (\mathbf{I} - \mathbf{K}' \mathbf{\Sigma}) \mathbf{P}'$$

For the sake of greater generality take

4 Transformation from coarse

We have two ensembles representing the same system. The ensemble X is a coarse representation of the state, but has many ensemble members. The ensemble Z is a fine representation of the sates, but has few ensemble members.

$$\dim X = N_x, N_{ex}$$

$$\dim Z = N_z, N_{ez}$$

In order to find the eigenvalues and eigenvectors of the sample correlation of X, we take the singular value decomposition of $\tilde{X} = (N_{ex} - 1)^{-1/2}(X - \bar{X})/\operatorname{sd}(X)$, where $\operatorname{sd}(X)$ is the standard deviation of each element of X.

$$U_x S_x V_x^T = \tilde{X}$$

This means that,

$$U_x S_z^2 U_x^T = \hat{C}_x$$

where \hat{C}_x is the sample correlation of X.

We want to then use U_x , or its leading columns, to estimate the leading U_z . To do this, we interpolate U_x to the z space and then use QR factorization to ensure the interpolated u_x 's are orthonormal:

$$U_x = interp(U_x)$$

$$U_{xi}, R = QR(U_{xi}).$$

We then must choose how many of the columns of U_{xi} should be used. The best way to make this choice is unclear. A few ways that I am considering are:

- 1. Keep U_{xi} based on the cumulative sum of their corresponding eigenvalues.
- 2. Keep U_{xi} based on the rate of change of their corresponding eigenvalues.
- 3. Keep U_{xi} based on some measure of the length scale produced by the low rank approximation of \hat{C}_x and the residual.
- 4. Keep U_{xi} based on how orthogonal the interpolated vector is in z space before orthogonalization.

It should be noted that keeping all columns can be detrimental to the assimilation process. If some of the columns of U_{xi} are representing small scale structures, then in the following steps they will still be used to represent some of these small scale structures.

After choosing which columns of U_{xi} to keep, we must determine what eigenvalues they should have. We do this by taking $\lambda = u_{xi}^T \hat{C}_z u_{xi}$ as the eigenvalue of uxi for our approximation of C_z . Alternatively, we can take $\lambda = (\tilde{Z}^T u_{xi})^T (\tilde{Z}^T u_{xi})$ where \tilde{Z} is defined similarly as \tilde{X} . This will give us the leading eigenvectors and an approximation of their eigenvalues of C_Z .

These eigenvectors and eigenvalues represent the large scale structure of the problem. To then find the small scales of the problem, we take

$$C_z^{\perp} = C_z^{\parallel} - \hat{C}_z$$

where

$$C_z^{\parallel} = U_{xi} \Lambda_{xi} U_{xi}^T$$

and Λ_{xi} is the diagonal matrix with the λ s described above on the diagonal. We can then localize C_z^{\perp} to get at the small scales that are represented in Z.

We must choose how to localize C_z^{\perp} . One reasonable expectation is that the scales in C_z^{\perp} will be shorter or similar to N_z/N_x . This choice will also be affected by the choice of how many columns of U_{xi} to keep. Once the localization matrix L is chosen, we can then generate our localized correlation matrix as:

$$C_z^{loc} = C_z^{\parallel} + L \circ C_Z^{\perp}$$

and the corresponding covariance matrix as:

$$P_z^{loc} = D_z C_z^{loc} D_z.$$

where D_z is the diagonal matrix with sample standard deviations of Z on the diagonal. We can then find the leading eigenvectors and eigenvalues of C_z^{loc} :

$$Q\Lambda Q^T = C_z^{loc}$$

and use them to transform the z variable. First, we must calculate a whitening transformation

$$T_w = \Lambda^{-1/2} Q^T$$

and its right inverse

$$T_w^i = Q\Lambda^{1/2}$$

and the singular value decomposition

$$U\Sigma V^T = R^{-1/2}HT_w^i.$$

We can then define transformations for both z and y

$$T_z = V^T T_w$$
$$T_y = U^T R^{-1/2}$$

We then know $z^* = T_z z$ and $y^* = T_y y$ have identity covariance matrices and

$$\begin{split} y^* &= \Sigma z^* + \epsilon^* \\ U^T R^{-1/2} y &= \Sigma V^T \Lambda^{-1/2} Q^T z + \epsilon^* \\ y &= R^{1/2} U \Sigma V^T \Lambda^{-1/2} Q^T z + \epsilon \\ y &= R^{1/2} R^{-1/2} H Q \Lambda^{1/2} \Lambda^{-1/2} Q^T z + \epsilon \\ y &= H z + \epsilon \end{split}$$

The question is: can I do this better? Specifically:

- 1. Can I calculate the eigenvectors and values of C^{loc} without generating C^{\parallel} or C^{\perp} explicitly?
- 2. Can I calculate the eigenvectors and values of P from those of C without generating C?
- 3. Can I calculate the singular vectors and values of $R^{-1/2}HT_w^i$ from the singular value decomposition of R, H, and T_w^i ?