Artificial Intelligence

Recommender Systems

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2022

Recommender Systems

- Algorithms suggesting relevant items to users
- Recommender system is an essential part in industry area

80% of movies watched came from recommendations

60% of video clicks came from recommendations.

Recommendation Systems

Recommend the items by predicting unknown rating values

	Harty-Potter	JORD RINGS	BEAUTY BEAST
	?	?	* × 1
	* * 5	?	?
2	?	* * 3	?

Collaborative Filtering

 Recommend items to users based on other users with similar patterns of selected items

Matrix Factorization (행렬 분해법)

- Matrix factorization is one of the popular method for recommendation systems
 - [M. Andriy and R.Salakhutdinov: NIPS 2008]
 - [X. He, H. Zhang, M. Kan and T. Chua: SIGIR 2016]
- The method predicts unknown rating values from incomplete rating matrix R

	I_1	 I_j	 I_{M}
u_1	5	 ?	 ?
:	÷	 ÷	 ÷
u_i	?	 ?	 3
÷	÷	 ÷	 :
u_N	5	 1	 1

Matrix Factorization (행렬 분해법)

- Matrix factorization
 - The latent models of users and items are represented k-dimensional vector
 - u_i^T : i-th user's latent vector, v_j : j-th item's latent vector
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_i)$

	I_1	 I_i	I_{M}	\underline{k}	
	T	 -)	 - IVI		
u_1	5	 ?	 ?	# of items (<i>M</i>)	
÷	÷	 :	 ÷	≈ (£)	k
u_i	?	 ?	 3	≈ Reserve T	70
÷	÷	 ÷	 :	v_j	
u_N	5	 1	 1	# Item latent	
				User latent matrix (U^T)	

- The goal of Matrix factorization
 - Predict unknown rating values
 - Find latent models of users (*U*) and items (*V*)
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_j)$

- The goal of Matrix factorization
 - Predict unknown rating values
 - Find latent models of users (*U*) and items (*V*)
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_j)$

- The goal of Matrix factorization
 - Predict unknown rating values
 - Find latent models of users (*U*) and items (*V*)
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_j)$

- The goal of Matrix factorization
 - Predict unknown rating values
 - Find latent models of users (*U*) and items (*V*)
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_j)$

- The goal of Matrix factorization
 - Predict unknown rating values
 - Find latent models of users (*U*) and items (*V*)
 - The estimated value of rating \hat{r}_{ij} is approximated by $u_i^T v_j$ $(\hat{r}_{ij} = u_i^T v_j)$

- A popular model-based collaborative filtering
- Matrix factorization is introduced because of sparsity of real data

- Given
 - Sparse rating matrix $R \in \mathbb{R}^{N \times M}$
- Minimize

 - where
 - Latent user matrix $\boldsymbol{U} = [\boldsymbol{u}_1 \quad ... \quad \boldsymbol{u}_N] \in \mathbb{R}^{k \times N}$
 - Latent item matrix $V = [v_1 \quad ... \quad v_M] \in \mathbb{R}^{k \times M}$
 - I_{ij} means indicator function s.t
 - $I_{ij} = 1$ if user i rated item j
 - $I_{ij} = 0$, otherwise

- $J(U, V) = \sum_{i}^{N} \sum_{j}^{M} I_{ij} e_{ij}^{2}$ where $e_{ij} = r_{ij} - u_{i}^{T} v_{j} = r_{ij} - \sum_{k=1}^{K} u_{ik} v_{kj}$
- Gradient descent

$$\frac{\partial}{\partial u_{ik}} e_{ij}^2 = 2e_{ij} \frac{\partial e_{ij}}{\partial u_{ik}} = -2e_{ij} v_{kj}$$

$$\frac{\partial}{\partial v_{kj}} e_{ij}^2 = 2e_{ij} \frac{\partial e_{ij}}{\partial v_{kj}} = -2e_{ij} u_{ik}$$

$$u_{ik} \leftarrow u_{ik} - \eta \left(\frac{\partial}{\partial u_{ik}} e_{ij}^2 \right) = u_{ik} + 2\eta e_{ij} v_{kj}$$

$$v_{kj} \leftarrow v_{kj} - \eta \left(\frac{\partial}{\partial v_{kj}} e_{ij}^2 \right) = v_{kj} + 2\eta e_{ij} u_{ik}$$

Binary Matrix Factorization

- Problem definition
 - Given
 - Binary matrix $I \in \mathbb{R}^{N \times M}$
 - Minimize

 - where
 - Latent user matrix $U \in \mathbb{R}^{k \times N}$
 - Latent item matrix $V \in \mathbb{R}^{k \times M}$
 - I_{ij} means indicator function s.t
 - $I_{ij} = 1$ if user i rated item j
 - $I_{ii} = 0$, otherwise
- Application
 - Click-stream data,

Implementing MF with PyTorch

<u>참고: 무노!</u>

https://wooono.tistory.com/150

MovieLens Dataset

- https://grouplens.org/datasets/movielens/
- # ratings: **100k**, 1M, 10M, 20M, 25M

Version	Users	Movies	Ratings	Released	Format
100k	1k	1.7k	100k	4/1998	Txt
1M	6k	4k	1M	2/2003	Csv
10M	72k	10k	10M	1/2009	Csv
20M	138k	27k	20M	4/2015	Csv
Latest	230k	27k	21M	4/2015	Csv

movielens

Non-commercial, personalized movie recommendations.

sign up now

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

Load MovieLens dataset

test_loader = DataLoader(test_data, batch_size = batch_size, shuffle = False)

```
import torch
import pandas as pd
import torch.nn.functional as F
import matplotlib.pvplot as plt
from torch import nn
from torch.utils.data import Dataset, DataLoader
class MovieLensDataset(Dataset):
   def __init__(self, datapath):
       self.data_pd = pd.read_csv(datapath, sep="\t", names=['user', 'movie', 'rating', 'timestamp'])
       self.items = torch.LongTensor(self.data_pd['movie'])
       self.users = torch.LongTensor(self.data_pd['user'])
       self.ratings = torch.FloatTensor(self.data_pd['rating'])
   def __len__(self):
       return len(self.ratings)
   def __getitem__(self.idx):
       return self.users[idx], self.items[idx], self.ratings[idx]
   def get_datasize(self):
       return self.users.max()+1, self.items.max()+1, len(self.ratings)
train_data = MovieLensDataset("datasets/ml-100k/ua.base")
test_data = MovieLensDataset("datasets/ml-100k/ua.test")
batch_size = 128
train_loader = DataLoader(train_data, batch_size = batch_size, shuffle = True)
```

Initialization

```
n_users, n_items, n_ratings = train_data.get_datasize()
_, _, n_ratings_test = test_data.get_datasize()
class MF(nn.Module):
    def __init__(self, num_users, num_items, rank = 10):
        super().__init__()
        self.U = torch.nn.Parameter(torch.randn(num_users, rank))
        self.V = torch.nn.Parameter(torch.randn(num_items, rank))
   def forward(self, users, items):
        ratings = torch.sum(self.U[users]*self.V[items], dim = -1)
        return ratings
mf_model = MF(n_users, n_items, rank = 16)
optimizer = torch.optim.Adam(mf_model.parameters(), Ir= 0.01)
criterion = nn.MSELoss()
```

Training

```
for epoch in range(20):
    cost = 0
    for users, items, ratings in train_loader:
        optimizer.zero_grad()
        ratings_pred = mf_model(users,items)
        loss = criterion(ratings_pred , ratings)
       loss.backward()
        optimizer.step()
        cost += loss.item() + len(ratings)
   cost/=n_ratings
   print(f"Epoch: {epoch}")
   print("train cost: {:.6f}" .format(cost))
   #print(ratings pred[:5])
    #print(ratings[:5])
    cost test = 0
    for users, items, ratings in test_loader:
        ratings_pred = mf_model(users,items)
        loss = criterion(ratings_pred ,ratings)
        cost_test += loss.item() * len(ratings)
   cost_test/=n_ratings_test
   print("test cost: {:6f}".format(cost_test))
```

Epoch: 0 train cost: 21,231961 test cost: 17.587405 Epoch: 1 train cost: 7,298090 test cost: 5.693044 Epoch: 2 train cost: 1.651690 test cost: 3.067293 Epoch: 3 train cost: 1.063861 test cost: 2,386656 Epoch: 4 train cost: 0.898847 test cost: 2,094314 Epoch: 5 train cost: 0.834799 test cost: 1.957692 Epoch: 6 train cost: 0.801918 test cost: 1,903030 Epoch: 7 train cost: 0.775600 test cost: 1,886208 Epoch: 8 train cost: 0.753672 test cost: 1,838627 Epoch: 9 train cost: 0.731245 test cost: 1,810325

Recommender Systems with Deep Learning

Hybrid recommender systems

Types of Recommender Systems

Suffer from Cold start and Sparsity

Limited to recommending content of the same type as the user is already using

Types of Recommender Systems

Collaborative filtering

+

Content-based filtering

Ш

Hybrid Recommender System

Hybrid Recommender System

Hybrid Recommender System

Technologies

Session-based recommender systems

■ 로그인 없이 (학습된 사용자 벡터 u_i) 없이 추천

2) Deep neural network검색

1) 로그인없이 접속시 홈화면

3) 검색후 홈화면

Session-based recommender systems

기존 MF

 $r_{ij} \approx u_i^T v_j$

 $r_j \approx f($ 세션데이터 $)^{\mathsf{T}}v_j$

Session based MF

f: Sequence data 처리가 가능한 DNN (e.g., RNN)

세션데이터

- 검색기록
- 시청기록
- ...

Diversified Recommendation

Personalization awareness

Location based Recommender Systems

Location based Recommender Systems : Privacy

Fig. 1: Spatial frequency distributions