Übungsblatt 4

Aufgabe 1

Es seien K ein Körper, V ein endlich-dimensionaler K-Vektorraum und $f,g:V\to V$ Endomorphismen mit $g^2=\operatorname{id}$ und $f^2=a\cdot f$ für ein gewisses $a\in K\setminus\{0\}$. Geben Sie alle möglichen Eigenwerte von f,g für $K=\mathbb{C}$ an.

Aufgabe 2

Betrachten Sie den Endomorphismus $f: K^n \to K^n$ mit $f(e_j) = e_{j+1}$ und $f(e_n) = e_1$, wobei $(e_j)_i = \delta_{ji}$ den jeweiligen Einheitsvektor darstellt.

- (a) Zeigen Sie, dass das charakteristische Polynom $\chi_f(\lambda) = (-1)^n (\lambda^n 1)$ ist.
- (b) Geben Sie für $K=\mathbb{C}$ alle Eigenwerte λ von f und jeweils einen zugehörigen Eigenvektor v_{λ} an.

Aufgabe 3

(a) Zeigen Sie, dass die Eigenwerte einer Matrix $A \in \text{Mat}(2,2,K)$ gilt

$$\lambda_{1,2} = \frac{1}{2} \left[\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^2 - 4 \det(A)} \right].$$

Hier bezeichnet $\operatorname{tr}(A) = \sum_{i=1}^{\dim(A)} A_{ii}$ die *Spur* von *A*.

(b) Sei \mathbb{R}^n ein euklidischer Vektorraum mit dem Standardskalarprodukt. Zeigen Sie: Falls $A \in \operatorname{Mat}(n, n, \mathbb{R})$ diagonalisierbar ist und die Eigenvektoren von A eine Orthonormalbasis von \mathbb{R}^n bilden, dann ist A symmetrisch, d.h. $A^T = A$.

(c) Diagonalisieren Sie die folgenden Matrizen oder begründen Sie, warum sie nicht diagonalisierbar sind.

a)
$$\begin{pmatrix} 2020 & 2021 \\ 2021 & 2020 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2021 \\ 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 5 \\ 5 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 5 \\ 1 & 3 \end{pmatrix}$

Aufgabe 4

Sei V ein endlich-dimensionaler K-Vektorraum und $f \in \text{End}(V)$. Zeigen Sie, dass $f = \lambda$ id für ein $\lambda \in K$ genau dann ist, wenn jeder Vektor $v \in V \setminus \{0\}$ ein Eigenvektor von f ist.

Aufgabe 5

Bestimmen Sie die Eigenwerte und Eigenräume der folgenden Matrizen:

$$A = \begin{pmatrix} -3 & -4 & -9 & -2 \\ 7 & 8 & 11 & 4 \\ -2 & -2 & 0 & -2 \\ -9 & -9 & 1 & -7 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & -1 & 1 & -2 \\ -2 & 3 & -1 & 2 \\ -8 & 4 & -2 & 8 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 1 \end{pmatrix}$$

Aufgabe 6

Die Spur haben Sie bereits in mehreren Übungen verwendet:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}, \qquad A \in \operatorname{Mat}(n, n, K)$$

- (a) Zeigen Sie, dass die Argumente der Spur zyklisch vertauschbar sind, also $\operatorname{tr}(A_1 \cdots A_k) = \operatorname{tr}(A_k A_1 \cdots A_{k-1})$, falls alle A_i die gleiche Dimension haben, und ferner, dass die Spur damit invariant unter Basiswechsel ist.
- (b) Folgern Sie daraus, dass die Spur einer diagonalisierbaren Matrix die Summe ihrer Eigenwerte ist.
- (c) Zeigen Sie, dass die Determinante einer diagonalisierbaren Matrix das Produkt ihrer Eigenwerte ist.

Anmerkung: Im Allgemeinen ist die Diagonalisierbarkeit keine Voraussetzung für diese Eigenschaften. Wir wollen diese jedoch der Einfachheit halber hier behalten.

Aufgabe 7

Betrachten Sie den Untervektorraum $W = \text{span}(1, x, x^2) \subseteq V = \mathbb{R}[x]$. Wir definieren folgende Abbildung:

$$u: V \times V \to \mathbb{R}, \qquad (f,g) \mapsto \int_0^1 f(x)g(x) \, \mathrm{d}x$$

- (a) Zeigen Sie, dass W tatsächlich ein Untervektorraum ist.
- (b) Zeigen Sie, dass u ein Skalarprodukt definiert.
- (c) Wir definieren nun einen weiteren Untervektorraum $U = \mathrm{span}(1-x,x-x^2) \subset W$ (dies muss nicht gezeigt werden). Geben Sie den zugehörigen orthogonalen Raum $U_{\perp} := \{w \in W \mid \langle v,w \rangle_u = 0 \quad \forall v \in U\}$ in Bezug auf das Skalarprodukt u an.

Hinweis: Geben Sie eine Basis von U in Vektorschreibweise an und finden Sie die Matrix A, welche in dieser Form das Skalarprodukt definiert $u(w, v) = w^T A v$.

Aufgabe 8

Gegeben sei

$$A(\phi) = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \in \operatorname{Mat}(2, 2, \mathbb{R}), \qquad \phi \in \mathbb{R}.$$

- (a) Diagonalisieren Sie A, indem Sie eine Diagonalmatrix $D \in \text{Mat}(2,2,\mathbb{C})$ und eine Basiswechselmatrix $C \in \text{Mat}(2,2,\mathbb{C})$ angeben, sodass $D = C^{-1}AC$.
- (b) Benutzen Sie dieses Ergebnis, um zu zeigen, dass $A(\phi)$ eine Drehmatrix um den Winkel $\phi \in \mathbb{R}$ ist, d.h. dass $||A(\phi)v|| = ||v||$, $\langle v, A(\phi)v \rangle = \cos(\phi) ||v||^2$ für alle $v \in \mathbb{R}^2$ und $A(\phi)A(\psi) = A(\phi + \psi)$ für alle $\phi, \psi \in \mathbb{R}$ gilt.

Hinweis: Die Norm werde durch das Standardskalarprodukt induziert.

Aufgabe 9

Das Matrixexponential ist definiert über

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

Zeigen Sie:

- (a) Ist $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ eine Diagonalmatrix, dann ist $e^D = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$.
- (b) Ist A diagonalisierbar, dann gilt

$$\det(e^A) = e^{\operatorname{tr}(A)}, \qquad \operatorname{tr}(A) := \sum_{i=1}^{\dim(A)} A_{ii}.$$

Aufgabe 10

Wir betrachten den euklidischen Vektorraum \mathbb{R}^4 mit dem Standardskalarprodukt. Es sei W der Spann der folgenden Vektoren:

$$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix}$$

Finden Sie eine Basis von W_{\perp} , indem Sie die Vektoren zu einer Basis des \mathbb{R}^4 ergänzen und das Gram-Schmidt'sche Orthogonalisierungsverfahren anwenden.

Aufgabe 11

Wir betrachten den euklidischen Vektorraum \mathbb{R}^3 mit dem Standardskalarprodukt. Die Matrix

$$U = \frac{1}{30} \begin{pmatrix} 20 & 4 & 22\\ 20 & 10 & -20\\ -10 & 28 & 4 \end{pmatrix}$$

definiert eine lineare Abbildung $\mathbb{R}^3 \to \mathbb{R}^3$. Das ist eine Drehung (muss nicht gezeigt werden!). Was ist die Achse dieser Drehung und was ist der Kosinus des Drehwinkels?

Aufgabe 12

Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle_V$ und $v := \{v_j\}_{1 \leq j \leq n}$ eine Orthonormalbasis bezüglich dieses Skalarprodukts. Weiterhin bezeichne $\phi_V : V \to \mathbb{R}^n$ die Koordinatenabbildung bezüglich v.

- (a) Seien $a, b \in V$ beliebig, aber fest, und $\langle \cdot, \cdot \rangle_{\mathbb{R}^n}$ bezeichne das Standardskalarprodukt im \mathbb{R}^n . Zeigen Sie, dass dann gilt $\langle a, b \rangle_V = \langle \phi_V(a), \phi_V(b) \rangle_{\mathbb{R}^n}$.
- (b) Zeigen Sie:

$$a \perp b \quad \Leftrightarrow \quad \phi_V(a) \perp \phi_V(b) \qquad \forall a, b \in V$$

(c) Warum sind die Aussagen in den vorigen Teilaufgaben falsch, falls v keine Orthonormalbasis ist? Nennen Sie ein Gegenbeispiel.

Aufgabe 13

Die Vektoren $v_1 = (0, i, 1)^T$ und $v_2 = (2, -i, 1 + i)^T$ spannen einen zweidimensionalen Unterraum des \mathbb{C}^3 auf. Bestimmen Sie zunächst eine Orthonormalbasis des Unterraums, wobei auf \mathbb{C}^3 das Standardskalarprodukt zugrundegelegt wurde.

Zeigen Sie, dass $w = (2, 1/2, 2 + i/2)^T$ in diesem Unterraum liegt und stellen Sie w als Linearkombination der Vektoren der von Ihnen gefundenen Orthonormalbasis dar.

3