A GROUP-DELAY INTERPRETATION OF POLYPHASE FILTERS*

Phil Schniter

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0^{\dagger}

Previously, polyphase interpolation and decimation were derived from the Noble identities and motivated for reasons of computational efficiency. Here we present a different interpretation of the (ideal) polyphase filter

Assume that H(z) is an ideal lowpass filter with gain L, cutoff $\frac{\pi}{L}$, and constant group delay of d:

$$H\left(e^{i\omega}\right) = \begin{cases} Le^{-(id\omega)} & \text{if } \omega \in \left[-\frac{\pi}{L}, \frac{\pi}{L}\right) \\ 0 & \text{if } \omega \in \left[-\pi, -\frac{\pi}{L}\right) \wedge \left[\frac{\pi}{L}, \pi\right) \end{cases}$$

Recall that the polyphase filters are defined as

$$\forall p, p \in \{0, \dots, L-1\} : (h_p[k] = h[kL+p])$$

In other words, $h_p[k]$ is an advanced (by p samples) and downsampled (by factor L) version of h[n] (see Figure 1).

Figure 1

The DTFT of the p^{th} polyphase filter impulse response is then

$$H_p(z) = \frac{1}{L} \sum_{l=0}^{L-1} V\left(e^{(-i)\frac{2\pi}{L}l} z^{\frac{1}{L}}\right)$$
 (1)

^{*}Version 2.12: Sep 16, 2005 2:30 pm -0500

[†]http://creativecommons.org/licenses/by/1.0

where $V\left(z\right)=H\left(z\right)z^{p}$

$$H_p(z) = \frac{1}{L} \sum_{l=0}^{L-1} e^{(-i)\frac{2\pi}{L}lp} z^{\frac{p}{L}} H\left(e^{(-i)\frac{2\pi}{L}l} z^{\frac{1}{L}}\right)$$
(1)

$$H_{p}\left(e^{i\omega}\right) = \frac{1}{L} \sum_{l=0}^{L-1} e^{i\frac{\omega-2\pi l}{L}p} H\left(e^{i\frac{\omega-2\pi l}{L}}\right)$$

$$= \forall \omega, |\omega| \leq \pi : \left(\frac{1}{L} \left(e^{i\frac{\omega}{L}p} H\left(e^{i\frac{\omega}{L}}\right)\right)\right)$$

$$= \forall \omega, |\omega| \leq \pi : \left(e^{(-i)\frac{d-p}{L}\omega}\right)$$
(1)

Thus, the ideal p^{th} polyphase filter has a constant magnitude response of one and a constant group delay of $\frac{d-p}{L}$ samples. The implication is that if the input to the p^{th} polyphase filter is the unaliased T-sampled representation $x[n] = x_c(nT)$, then the output of the filter would be the unaliased T-sampled representation $y_p[n] = x_c\left(\left(n - \frac{d-p}{L}\right)T\right)$ (see Figure 2).

$$x_c(t) \xrightarrow{nT} x_c(nT) \xrightarrow{x_c(nT)} H_p(z) \xrightarrow{x_c((n-\frac{d-p}{L})T)}$$

Figure 2

Figure 3 shows the role of polyphase interpolation filters assume zero-delay (d=0) processing. Essentially, the p^{th} filter interpolates the waveform $\frac{p}{L}$ -way between consecutive input samples. The L polyphase outputs are then interleaved to create the output stream. Assuming that $x_c(t)$ is bandlimited to $\frac{1}{2T}$ Hz, perfect polyphase filtering yields a perfectly interpolated output. In practice, we use the casual FIR approximations of the polyphase filters $h_p[k]$ (which which correspond to some casual FIR approximation of the master filter h[n]).

Figure 3