Akella Ravi Tej

Interests

Reinforcement Learning, Generative Modeling, Meta-Learning, Continual Learning

Education

Indian Institute of Technology Roorkee

B. Tech in Electronics & Communication Engineering Minor Specialization in Computer Science & Engineering

2014-2018

GPA: 8.129/10

Exam Scores

Graduate Record Examination TOEFL

329/340 (*V*: 159, *Q*: 170, AWA: 4.0) **106/120** (*R*: 29, *L*: 28, *S*: 22, *W*: 27)

Publication

Interpretable Fusion Mechanishms for Multimodal Representation Learning $\ensuremath{\square}$

Under Review

Authors: Akella Ravi Tej, A. Shandilya, H. Chauhan, Asif Ekbal, Pushpak Bhattacharyya

- We propose a multimodal fusion strategy that captures the inter-modality dynamics while working with a tractable number of learnable parameters.
- o Block-superdiagonal tensor decomposition is used to capture expressive multilinear interactions across modalities.
- Submitted to International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020) ☑.

More to Perceptual Loss in Super Resolution [2]

Under Review

Authors: **Akella Ravi Tej**, S. Halder, A. Shandilya, Vinod Pankajakshan

- o Besides visually-pleasing features, perceptual loss also implants high-frequency artifacts in super-resoluted images.
- We propose a novel content loss to adaptively filter the unwanted information transferred from perceptual loss.
- Submitted to IEEE Winter Conference on Applications of Computer Vision (WACV 2020)

A Randomized Kernel-Based Secret Image Sharing (SIS) Scheme [2]

WIFS 2018

Authors: **Akella Ravi Tej**, R. Teja, Vinod Pankajakshan

- Proposed a novel SIS scheme that offers perfect threshold secrecy, optimal share size, and complete decentralization.
- Presented at IEEE International Workshop on Information Forensics and Security (WIFS), 2018 .

Experience

Research Experience.

Bayesian Trust Region Policy Optimization &

(remote work)

Supervisors: Prof. Anima Anandkumar, Bren Professor, CMS Caltech

Oct 2018-Present

- $\circ \ \ A \ \ Bayesian \ \ actor-critic \ \ algorithm \ \ for \ sample-efficient \ \ learning \ \ with \ \ guaranteed \ \ monotonic \ policy \ improvements.$
- o Uses the uncertainty in policy gradient estimates to compute robust policy update with non-trivial step sizes.

End-to-End Incremental Learning for Sequence Transduction Tasks

(research assistant)

Supervisor: Prof. Pushpak Bhattacharya, Professor & Director, IIT Patna

Jul 2019-Present

- o Releasing a benchmark for Lifelong and Incremental Learning of sequence transduction tasks.
- o Propose a novel attention distillation loss to preserve the rich contextual information in the attention maps.

Multi-hop Question Generation

(research assistant)

Supervisor: Prof. Pushpak Bhattacharya, Professor & Director, IIT Patna

Apr 2019-Jul 2019

- Most question generation (QG) systems only use a single supporting fact from the context and consequently generate easy questions. We design a QG system whose outputs are conditioned on multiple supporting facts.
- Using self-critical reinforcement learning, we enforce maximal coverage over all the supporting facts in a context.

Akella Ravi Tej Page 1

Paper Implementations.....

Language Identification ☐ by Mathur et al., (2017)☐

• Character-level LSTM model for language identification based on Stanford Language Identification Engine(SLIDE).

Disentangled Learning with β -Variational Auto-Encoders \square by Burgess et al., (2018) \square

- o Balanced the trade-off between learning disentangled representations and reconstruction fidelity by adjusting the hyperparameter β to extract disentangled factors from *dsprites* dataset.
- Achieved more robust disentangling at a higher reconstruction fidelity using the modified objective function that performs a controlled increase of encoding capacity.

Handwriting Synthesis ♂ by Graves et al., (2013)♂

o Mixture distribution parameterized using an LSTM network (Mixture Density Network) to generate realistic cursive handwriting, demonstrating the ability of recurrent neural networks to capture long-range structure.

Face Recognition with One-Shot Learning by Schroff et al., (2015)♂

• Used a siamese network with triplet loss function to recognize faces from a single example.

A Neural Algorithm of Artistic Style by Gatys et al., (2015)

o Generated artwork of high perceptual quality by blending low-level features and high-level features of two images.

Debiasing Word Embeddings by Bolukbasi et al., (2016)♂

• Eliminated common biases in word embeddings such as gender, age, etc., emerging from unbalanced training sets.

Academic Achievements

- o Recipient of Nehru Memorial Scholarship for overall excellence in undergraduate.
- Ranked of 315/13388 teams in **Codechef SnackDown-2016**: Global Competitive Programming Tournament.
- **KVPY fellowship** (SX Stream-2014) in recognition of aptitude for research.
- Ranked in top 1% students of the country in **IIT-JEE Advance 2014**.
- o Secured 99.99% tile in IIT-JEE Mains 2014.

Academic Services

Machine Learning and the Physical Sciences (ML4PS 2019)

Subreviewer

Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS)

AAAI Conference on Artificial Intelligence (AAAI-20)

Subreviewer

Technical skills

Programming Languages: Python, Java, C, C++, MATLAB and Simulink

Frameworks: TensorFlow, PyTorch, Keras

Simulators: MuJoCo Physics Engine, Box2D Physics Engine, OpenAl Gym

Relevant courses

Undergraduate Courses.....

Online Courses

Linear Algebra: Mathematics-I(MAN 001) and Mathematical Methods(MAN 002)

Statistics: Probability and Statistics (MAN 006)

Machine Learning: Machine Learning(CSN 106)

Coursera: Deep Learning Specialization by Andrew NG, deeplearning.ai

o Neural Networks and Deep Learning ♂, Improving DNNs: Hyperparameter tuning, Regularization and Optimization ♂, Structuring Machine Learning Projects ♂, Convolutional Neural Networks ♂, Sequence Models ♂

Coursera: Neural Networks for Machine Learning by Geoffrey Hinton, University of Toronto 2

Coursera: Machine Learning by Andrew NG, Stanford University &

Other MOOCs: RL course by David Silver, Deep RL Bootcamp, Deep RL(CS 294-112) by Sergey Levine, CNN for Visual Recognition(CS231n) by Andrej Karpathy, NLP with Deep Learning(CS224n) by Christopher Manning.