幾何学 I 1. 多様体の定義と例

超曲面の局所座標

Euclid 空間 \mathbf{R}^{n+1} 上の C^1 級関数 $F(x_1, \dots, x_{n+1})$ によって

$$F(x_1,\cdots,x_{n+1})=0$$

で定まる超曲面 V を考える . V の任意の点 a において , ある $i,1 \leq i \leq n+1$ に対して

$$\frac{\partial F}{\partial x_i}(a) \neq 0 \tag{1}$$

であると仮定する.例えば i=1 に対してこの仮定が満たされているとすると,陰関数定理より, (a_2,\cdots,a_{n+1}) を含む \mathbf{R}^n の開集合 W_1 が存在して,a の近傍で V は $x_1=f_1(x_2,\cdots,x_{n+1})$ のグラフとして表すことができる. $U_1=f_1(W_1)$ とおき,自然な射影を $\varphi_1:W_1\to U_1$ とする.この φ_1 により,a のまわりで,局所座標を導入することができる.また,a のまわりで,i=2 についても仮定(1)が満たされているとすると,座標変換 $\varphi_2\circ\varphi_1^{-1}$ は C^1 級写像となる.

可微分多様体の定義

位相空間 M の開集合の族 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ と,それぞれの U_{λ} から \mathbf{R}^n への連続写像 φ_{λ} が与えられていて,以下の条件 (1), (2), (3) を満たしているとする.

- (1) $M = \bigcup_{\lambda \in \Lambda} U_{\lambda}$
- (2) $\varphi_{\lambda}(U_{\lambda})$ は, \mathbf{R}^n の開集合であり, $\varphi_{\lambda}:U_{\lambda}\to \varphi_{\lambda}(U_{\lambda})$ は同相写像である.
 - (3) $U_{\alpha} \cap U_{\beta} \neq \emptyset$ のとき,

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

は C^r 写像である.

このような開集合の族 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を M の C^r 級局所座標系という.このとき, $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ の逆写像 $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$ も定義より C^r 級となり,座標変換 $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ は C^r 級微分同相写像となる.

位相空間 M が Hausdorff , かつ第二可算公理を満たし , さらに , C^r 級局所座標系 $\{U_\lambda, \varphi_\lambda\}_{\lambda \in \Lambda}$ が与えられているとき , M を n 次元 C^r 多様体とよぶ . また , C^∞ 多様体を可微分多様体とよぶこともある .

いくつかの例

例 1. $M = \mathbb{R}^n$ はそれ自身 , 可微分多様体とみなせる .

例 2. *M* として *n* 次元球面

$$S^n = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbf{R}^{n+1} \mid x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\}$$

をとる . $U_i^+=\{(x_1,x_2,\cdots,x_{n+1})\in S^n\mid x_i>0\}, U_i^-=\{(x_1,x_2,\cdots,x_{n+1})\in S^n\mid x_i<0\}$ とおき , φ_i^+ , φ_i^- を

$$\varphi_i^{\pm}(x_1, x_2, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}), \quad i = 1, \dots, n+1$$

と定義することにより, S^n はn 次元可微分多様体の構造をもつ.

例 3. $\mathbf{R}^{n+1}-\{0\}$ に同値関係 \sim を以下のように定める. $x\sim y$ とは,0 でない実数 λ が存在して, $x=\lambda y$ となることとする.実射影空間 $\mathbf{R}P^n$ を,商空間 $\mathbf{R}^{n+1}-\{0\}/\sim$ として定義する. $(x_1,\cdots,x_{n+1})\in\mathbf{R}^{n+1}-\{0\}$ の定める同値類を $[x_1:\cdots:x_{n+1}]$ で表す.

$$U_i = \{ [x_1 : \dots : x_{n+1}] \in \mathbf{R}P^n \mid x_i \neq 0 \}, \quad i = 1, \dots, n+1$$

とおき, $\varphi_i:U_i\to\mathbf{R}^n$ を

$$\varphi_i([x_1:\cdots:x_{n+1}])=(x_1/x_i,\cdots,x_{i-1}/x_i,x_{i+1}/x_i,\cdots,x_{n+1}/x_i)$$

と定義すると, $\mathbf{R}P^n$ は n 次元可微分多様体の構造をもつ.

例 4. S^1 の n 個の直積 $T^n=S^1 \times \cdots \times S^1$ は,n 次元可微分多様体の構造をもつ. T^n を n 次元トーラスとよぶ.