Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6677/01)

June 2008 6677 Mechanics M1 Final Mark Scheme

Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) 7.5	
	$ \begin{array}{ccc} & 0.4 \\ & v \\ & & 5 \end{array} $	
	LM $0.4 \times 7.5 = 0.4v + 0.6 \times 5$ $0 = 0.4v \implies v = 0$ * cso	M1 A1 A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7} (s)$	DM1 A1 (4)
	Alternatives for (b) $u+v$ 17.5+-10.5	[7]
	$s = (\frac{u+v}{2})T \Rightarrow 10 = (\frac{17.5 + -10.5}{2})T$ $\frac{20}{7} = T$	M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$	M1 A1 f.t.
	Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$	M1 A1
	Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u .	A1 (4)

Question Number	Scheme	Mark	S
3.	(a) $\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$	M1 A1	(2)
	(b) $\mathbf{F} = 0.4 \left(6\mathbf{i} + 8\mathbf{j} \right) \left(= 2.4\mathbf{i} + 3.2\mathbf{j} \right)$ $\left \mathbf{F} \right = \sqrt{2.4^2 + 3.2^2} = 4$ The method marks can be gained in either order.	M1 M1 A1	(3)
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ $= 39\mathbf{i} + 30\mathbf{j} \text{ (ms}^{-1})$	M1 A1 A1	(3) [8]
4.	(a) 25 shape 25, 10, 30, 90 O 30 90 t	B1 B1	(2)
	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$ 7.5t = 60 t = 8 (s) $a = \frac{25-10}{8} = 1.875$ (ms ⁻²) $1\frac{7}{8}$	M1 <u>A1</u> DM1 A1 M1 A1	
	7.5t = 60 $t = 8 (s)$		

Question Number	Scheme	Marks
	Scheme (a) $ \begin{array}{c} 30^{\circ} & 50^{\circ} \\ \hline (\uparrow) & 15\sin 30^{\circ} = R\sin 50^{\circ} \\ R \approx 9.79 \text{ (N)} \end{array} $ (b) $ \begin{array}{c} (\rightarrow) X - 15\cos 30^{\circ} = R\cos 50^{\circ} \\ X \approx 19.3 \text{ (N)} \end{array} $ Alternatives using sine rule in (a) or (b); cosine rule in (b) $ \begin{array}{c} (a) & \frac{R}{\sin 30^{\circ}} = \frac{15}{\sin 50^{\circ}} \\ R \approx 9.79 \text{ (N)} \end{array} $	M1 A1 DM1 A1 (4) M1 A2 ft DM1 A1 (5) [9] M1 A1 DM1 A1 (4)
	(b) $\frac{X}{\sin 100^{\circ}} = \frac{15}{\sin 50^{\circ}} = \frac{R}{\sin 30^{\circ}}$	M1 A2 ft on R
	$X \approx 19.3 \text{ (N)}$ $X^{2} = R^{2} + 15^{2} - 2 \times 15 \times R \cos 100^{\circ}$	DM1 A1 (5)
	OR: cosine rule; any of $R^2 = X^2 + 15^2 - 2 \times 15 \times X \cos 30^\circ$ $15^2 = R^2 + X^2 - 2 \times X \times R \cos 50^\circ$ $X \approx 19.3 \text{ (N)}$	M1 A2 ft on <i>R</i> DM1 A1 (5)

Question Number	Scheme	Marks
6.	(a) $A \longrightarrow 2.4 \longrightarrow B$ $8g \longrightarrow 12g$ $M(A) \qquad 8g \times 0.8 + 12g \times 1.2 = X \times 2.4$ $X \approx 85 \text{ (N)} \qquad \text{accept 84.9, } \frac{26g}{3}$ (b) $X + 10 \longrightarrow A \longrightarrow B$	M1 A1 DM1 A1 (4)
	$R(\uparrow) \qquad \underbrace{(X+10)}_{} + \underbrace{X}_{} = 8g + 12g$ $(X = 93)$ $M(A) \qquad 8g \times 0.8 + 12g \times x = X \times 2.4$ $x = 1.4 \text{ (m)} \qquad \text{accept } 1.36$	M1 <u>B1</u> A1 M1 A1 A1 (6) [10]

Question Number	Scheme	Marks
7.	(a) 45 N μR 30°	
	$R = 45\cos 40^{\circ} + 4g\cos 30^{\circ}$ $R \approx 68$ accept 68.4	M1 A2 (1, 0) DM1 A1 (5)
	(b) Use of $F = \mu R$ $F + 4g \sin 30 = 45 \cos 50^{\circ}$ Leading to $\mu \approx 0.14$ accept 0.136	M1 M1 A2 (1, 0) DM1 A1 (6) [11]

Question Number	Scheme	Marks
8.	(a) $T \qquad T \qquad 30$ $\mu 2g \qquad \mu 3g$	
	$s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} \text{ (ms}^{-2}\text{)}$	M1 A1 (2)
	(b) N2L for system $30 - \mu 5g = 5a$ ft their a, accept symbol	M1 A1ft
l	$\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	DM1 A1 (4)
	(c) N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$	M1 A1 ft
	Leading to $T = 12$ (N) awrt 12	DM1 A1 (4)
	Alternatively N2L for Q $30 - T - \mu 3g = 3a$ Leading to $T = 12$ (N) awrt 12	M1 A1 DM1 A1
	(d) The acceleration of P and Q (or the whole of the system) is the same.	B1 (1)
	(e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$	B1 ft on a
	N2L (for system or either particle) $-5\mu g = 5a \qquad \text{or equivalent}$ $a = -\mu g$	M1
	$v = u + at \implies 0 = 4 - \mu gt$	DM1
	Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857	A1 (4) [15]