Выбор параметров в методе Monte Carlo SSA

Потешкин Егор Павлович

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Процессы управления и устойчивость 2 апреля 2024, Санкт-Петербург

Введение

Вопрос: это чистый шум или там есть сигнал?

Постановка задачи

 $\mathsf{X} = (x_1, \dots, x_N)$, $x_i \in \mathbb{R}$ — временной ряд.

AДано: X = T + H + R, где T - тренд, H - сезонность и R - шум.

Проблемы:

- Как выделить неслучайные компоненты?
- ② Как проверить наличие сигнала S = T + H?

Методы:

- Singular spectrum analysis (SSA) [Broomhead and King, 1986].
- Monte-Carlo SSA (MC-SSA) [Allen and Smith, 1996] проверяет $H_0: S = 0$.

Задача: исследовать зависимость радикальности и мощности MC-SSA от параметра L.

Обозначения и известные результаты: оператор вложения и ганкелизации

$$X = (x_1, \dots, x_N)$$
. Зафиксируем L (1 < L < N).

Оператор вложения T_{SSA} :

$$\label{eq:Tssa} \begin{split} \mathfrak{T}_{\mathsf{SSA}}(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_N \end{pmatrix}, \end{split}$$

где
$$K = N - L + 1$$
.

Оператор ганкелизации \mathcal{H} — усреднение матрицы по побочным диагоналям.

Обозначения и известные результаты: SSA

Входные данные: временной ряд $X = (x_1, \dots, x_N)$.

Параметр: длина окна L.

Результат: m восстановленных составляющих временного ряда.

Входные данные: X-1. Вложение Сумма матриц единичного ранга Траекторная матрица 2. Разложение $\mathbf{X} = \sum_{j=1}^{u} \mathbf{X}_{j}$ $\mathbf{X} = \mathfrak{T}_{SSA}(\mathsf{X})$ 3. Группировка Сгруппированные Результат: SSA разложение матрицы $X = \widetilde{X}_{I_1} + \ldots + \widetilde{X}_{I_m}$ 4. Восстановление $\mathbf{X} = \mathbf{X}_{I_1} + \ldots + \mathbf{X}_{I_m}$ $\mathbf{X}_{I_k} = \sum_{i \in I_k} \mathbf{X}_i$ $\widetilde{X}_{I_{L}} = \mathcal{T}_{SSA}^{-1} \circ \mathcal{H}(\mathbf{X}_{I_{L}})$

Рис.: Алгоритм SSA

Обозначения и известные результаты: Toeplitz SSA

Модификации SSA отличаются только шагом разложения.

Basic SSA: сингулярное разложение траекторной матрицы, универсальный метод.

Toeplitz SSA: теплицево разложение траекторной матрицы, имеет преимущество для стационарных рядов:

$$\mathbf{X} = \sum_{i=1}^{L} \sigma_i P_i Q_i^{\mathrm{T}} = \mathbf{X}_1 + \ldots + \mathbf{X}_L,$$

где $Q_i=\mathbf{X}^{\mathrm{T}}P_i/\sigma_i$, $\sigma_i=\|\mathbf{X}^{\mathrm{T}}P_i\|$, $\{P_i\}_{i=1}^L$ — собственные векторы матрицы $\mathbf C$ с элементами

$$c_{ij} = \frac{1}{N - |i - j|} \sum_{m=1}^{N - |i - j|} x_m x_{m+|i - j|}, 1 \le i, j \le L.$$

Обозначения и известные результаты: Monte-Carlo SSA

Рассмотрим задачу поиска сигнала (неслучайной составляющей) во временном ряде.

Модель: $X = S + \xi$, где S — сигнал, ξ — стационарный процесс с нулевым средним.

Задача: проверить $H_0: S = 0$ — отсутствие сигнала.

Метод: Monte-Carlo SSA.

Определение

Случайный вектор $\boldsymbol{\xi}=(\xi_1,\dots,\xi_N)$ называют красным шумом с параметрами φ и δ , если $\xi_n=\varphi\xi_{n-1}+\delta\varepsilon_n$, где $0<\varphi<1$, $\varepsilon_n\sim N(0,1)$ и $\xi_1\sim N(0,\delta^2/(1-\varphi^2))$.

Далее предполагаем, что $\pmb{\xi}$ — красный шум. Для исследования предполагаем, что параметры известны.

Обозначения и известные результаты: Monte-Carlo SSA. Алгоритм

Дано: X = S + R, где S -сигнал, R -реализация ξ .

Параметры: длина окна $L,\ W\in\mathbb{R}^L$ — вектор с какой-то частотой.

Результат: решение, отвергать H_0 или нет.

- ① Построить статистику критерия $\widehat{p} = \|\mathbf{X}^{\mathrm{T}}W\|^2$.
- ② Построить доверительную область случайной величины $p = \|\mathbf{\Xi}^{\mathrm{T}} W\|^2$: распределение p оценивается методом Монте-Карло.
- $oldsymbol{3}$ Если \widehat{p} не попадает в построенный интервал, то H_0 отвергается.

Обозначения и известные результаты: множественное тестирование

Если частота ω сигнала S известна, то в качестве W можно взять синусоиду с частотой ω . Но на практике ω редко бывает известна, поэтому необходимо рассматривать несколько векторов W_k , $k=1,\ldots,H$.

Проблему множественного тестирования решает метод Multiple MC-SSA [Golyandina, 2023].

Гипотеза об отсутствии сигнала отвергается, если хотя бы для одного вектора $W=W_k$ значение \widehat{p} оказывается значимым.

Monte Carlo SSA: пример

 $\mathsf{X}=\mathsf{S}+\pmb{\xi}$, где $\mathsf{S}=\{A\cos(2\pi\omega n)\}_{n=1}^N$, A=1, $\omega=0.1$, N=400, $\pmb{\xi}$ — красный шум с параметрами $\varphi=0.7$ и $\delta=1$.

Monte Carlo SSA: пример

Рис.: Результат работы метода MC-SSA

MC-SSA: выбор векторов для проекции

В качестве векторов для проекции будем брать собственные векторы матрицы ${f C}$ теплицева разложения ${f X}$.

Плюс: если H_0 отверглась, можно восстановить сигнал с помощью SSA на основе значимых W_k .

Минус: этот вариант дает радикальный критерий, поскольку W_k зависят от ряда X, в котором ищется сигнал.

Решение: использовать метод эмпирической поправки критерия, чтобы сделать его точным.

Поправка неточных критериев

Зафиксируем H_0 , уровень значимости α^* , количество выборок M_1 для оценки $\alpha_I(\alpha)$ и их объем N:

- lacksquare Моделируется M_1 выборок объема N при верной $H_0.$
- ② По моделированным данным строится зависимость ошибки первого рода от уровня значимости $\alpha_I(\alpha)$.
- ① Рассчитывается формальный уровень значимости: $\widetilde{\alpha}^* = \alpha_I^{-1}(\alpha^*)$. Критерий с таким уровнем значимости является асимптотически точным при $M_1 \to \infty$.

Заметим, что если критерий сильно радикальный, то функция $\alpha_I(\alpha)$ имеет большую производную в нуле, что существенно затрудняет оценку $\alpha_I^{-1}(\alpha^*).$

ROC-кривая

Определение

ROC-кривая — это кривая, задаваемая параметрически

$$\begin{cases} x = \alpha_I(\alpha) \\ y = \beta(\alpha) \end{cases}, \quad \alpha \in [0, 1],$$

где $\alpha_I(\alpha)$ — функция зависимости ошибки первого рода α_I от уровня значимости α , $\beta(\alpha)$ — функция зависимости мощности β от уровня значимости α .

С помощью ROC-кривых можно сравнивать по мощности неточные (в частности, радикальные) критерии после того, как к ним применена поправка.

Зависимость радикальности и мощности MC-SSA от параметра ${\cal L}$

Задача: выбрать такую длину окна L, которая дает максимально мощный критерий, но при этом не слишком радикальный, чтобы можно было применить поправку.

В следующих примерах рассматриваем следующую модель:

$$X = S + \xi$$

где $\mathsf{S}=\{A\cos(2\pi\omega n)\}_{n=1}^N$ — сигнал, $\pmb{\xi}$ — красный шум с параметрами φ и $\delta=1.$ Тогда $H_0:A=0,\ H_1:A\neq 0.$

Пример 1. $\varphi = 0.7$, N = 100

(а) Ошибка первого рода

(b) ROC-кривая ($\omega=0.075$)

Рис.: Пример 1. $\varphi=0.7$, N=100

Пример 2. arphi=0.3, N=100

(а) Ошибка первого рода

(b) ROC-кривая ($\omega=0.075$)

Рис.: Пример 2. $\varphi=0.3$, N=100

Пример 3. N = 400

(a) ROC-кривая ($\varphi=0.7$, $\omega=0.075$)

(b) ROC-кривая ($\varphi=0.3$, $\omega=0.075$)

Рис.: Пример 3. N = 400

Пример 4. Зависимость от параметров сигнала

(a) ROC-кривая ($\omega=0.175$)

(b) ROC-кривая ($\omega=0.025$)

Рис.: Пример 4. $\varphi=0.7$, N=100

Заключение

Численные эксперименты показали, что длина окна L, дающая наибольшую мощность, зависит от параметров шума, длины ряда и частоты сигнала в H_1 .

На их основе были выработаны следующие рекомендации:

- ① Первый вариант использовать поправленный критерий MC-SSA с L=10. Плюсы: нетрудозатратно, а также критерий не сильно радикальный. Минус: такой выбор L может являться неоптимальным, т.е. возможна некоторая потеря в мощности.
- Второй вариант построить зависимость оптимальной длины окна от параметров ряда с помощью численного моделирования. Это возможно, если есть дополнительная информация о диапазоне возможных частот в ряде.