#	ORIG	DEST	FLAGS	#SEQ	#ACK	LENGTH	
1 0	1.2.3.4:5678	20.232.1.1:80	S	0	_	0	-
2 🖁	1.1.1.1:2222	3.3.3.3:4444	S	42	_	0	
3 🐧	20.232.1.1:80	1.2.3.4:5678	SA	10000	1	0	
4	1.2.3.4:5678	20.232.1.1:80	Α	1	10001	0	_
5 🤄	3.3.3.3:4444	1.1.1.1:2222	SA	54321	43	0	_
6 🏮	1.2.3.4:5678	20.232.1.1:80	Α	1	10001	50	
7 \$	1.1.1.1:2222	3.3.3.3:4444	Α	43	54322	0	
- 8	20.232.1.1:80	1.2.3.4:5678	Α	10001	51	0	_
9 💆	20.232.1.1:80	1.2.3.4:5678	Α	10001	51	200	
10	1.1.1.1:2222	3.3.3.3:4444	SAU	43	64334	0	
- 11	20.232.1.1:80	1.2.3.4:5678	F	10201	_	0	_
12	1.2.3.4:5678	20.232.1.1:80	FA	51	10202	0	
13	3.3.3.3:4444	1.1.1.1:2222	RA	54321	43	0	
14	20.232.1.1:80	1.2.3.4:5678	Α	10202	52	0	_

Asociar cada segmento con cada una de las conexiones indicando el criterio usado para determinar a qué conexión pertenece un segmento. ¿Cuántas son? 2

Detectar el cierre anómalo de una de las conexiones e indique una posible causa.

Para la otra conexión, detallar los cambios de estado en cada extremo a lo largo de toda la comunicación.

El magenta cierra pipiQQ, fijate que tiene los 3 pasos de F, FA, A. El verde es mas polemico, tira un R que creo que viene de Reset.

La magenta empieza con el bello start de 3 pasos. Primero A = 1.2.3.4 le dice "che cuchame" a B = 20.232.1.1 y le manda #seq = 0. Entonces B escucha esto y le dice "te cucho", para esto le manda el ack = 1 y le contesta con su propio #seq = 10000. Cuestion que como es un Three-way A se entera que B lo cucha y entonces A le dice "Te cucho que me cuchas", para eso le manda el #seq = 1 (ojo al piojo que incrementó uno desde el #seq anterior) y el ack = 10001.

Ahora A como no es ningun boludo, aprovecha la conexion y le empieza a mandar cositas chanchas a B. EN particular le manda 50 bytes de esas cositas, esto lo hace con #seq = 1 y ack = 10001 igual que antes.

B recibe las cositas chanchas y se lo quiere hacer saber a A, para esto incrementa su ack en 50 (oh casualidad, los 50 bytes que recibio correctamente). Entonces responde con #seq = 10001 y ack = 51.

B en un estado de emocion violenta y de locura, envalentonado por los 50 bytes recibidos, le manda su paquete de 200 bytes a A (# = 10001, A=51)

B no obtiene respuesta de A, asi que le hace saber que es fea y promiscua y por ultimo le tira un F para archivar el chat (#=10201, A=x).

A se da cuenta que B es un salame y le contesta felizmente su F con un FA (#51, A=10202)

B no soporta la actitud de A, y en un afan de tener la ultima palabra (y de cerrar con three way) le manda un A a A. (#10202, A=52)

La siguiente captura de paquetes TCP corresponde a un programa corriendo en un host A comunicándose con el servicio corriendo en el puerto 5900 del host B:

No.	Source	Dest	Info	
1	A	В	26574 >5900	[SYN] Seq=0 Ack=0 Len=0
2	В	A	5900 >25674	[SYN, ACK] Seq=0 Ack=1 Len=0
3	A	В	26574 >5900	[ACK] Seq=1 Ack=1 Len=0
4	A	В	26574 >5900	[PSH, ACK] Seq=1 Ack=1 Len=1024
5	В	A	5900 >25674	[ACK] Seq=1 Ack=1025 Len=200
6	A	В	26574 >5900	[ACK] Seq=1025 Ack=201 Len=0

a. Extender la captura proponiendo una serie de paquetes que hagan que el socket del host A atraviese los siguientes estados:

 $\mathsf{ESTABLISHED} \to \mathsf{FIN}\text{-}\mathsf{WAIT}\text{-}1 \to \mathsf{FIN}\text{-}\mathsf{WAIT}\text{-}2 \to \mathsf{TIME}\text{-}\mathsf{WAIT} \to \mathsf{CLOSED}$

 Proponer otros dos escenarios de cierre que podrían darse en esta conexión mencionando los estados transitados por cada socket.

N. 9	SRC	DST	INFO	
7/	A	В	[F]	#=1025, Ack=Zo1, len =0
8	В	Α	[A]	#=201, Ack=1026, len =0
9	ß	A	[FT	#=201 ACK=1026, ly = 0
10	A	В	[[A]	#-1026, ACK=Zoz, len =0
			_	·

Máquina de estados de TCP:

