Mining the Success for Movies

Student Project Data Mining HWS17 Team 6

Presented by

Steffen Jung Adrian Kochsiek Martin Koller Marvin Messenzehl Daniel Szymkowiak

Submitted to the Data and Web Science Group Prof. Dr. Heiko Paulheim University of Mannheim

October - December 2017

Contents

1	Application Area and Goals	1
	1.1 Introduction	1
	1.2 Theoretical framework	1
2	Data Selection	2
3	Preprocessing and Transformation	3
4	Data Mining	4
	4.1 Algorithms	4
5	Interpretation / Evaluation	5

List of Algorithms

List of Figures

List of Tables

Application Area and Goals

1.1 Introduction

- Problem Statement and idea behind the project
- General introduction similar to Project outline

1.2 Theoretical framework

- keep it small
- roughly 1 Page

Data Selection

- In slides named: "structure and size of data"
- min. 1 Page
- Selection:
 - What data is available?
 - What do I know about the provenance of the data?
 - What do I know about the quality of the data?
- Exploration
 - Get an intitial understanding of the data
 - Calculate basic summarization statistics
 - Visualize the data
 - Identify data problems such as outliers, missing values, duplicate records

Preprocessing and Transformation

- Transform data into a representation that is suitable for the chosen data mining methods
 - number of dimensions
 - scales of attributes (nominal, ordinal, numeric)
 - amount of data (determines hardware requirements)
- Methods
 - Aggregation, sampling
 - Dimensionality reduction / feature subset selection
 - Attribute transformation / text to term vector
 - Discretization and binarization
- Good data preparation is key to producing valid and reliable models
- Data preparation estimated to take 70-80% of the time and effort of a data mining project!

Data Mining

- Input: Preprocessed Data
- Output: Model / Patterns
- 1. Apply data mining method
- 2. Evaluate resulting model / patterns
- 3. Iterate:
 - Experiment with different parameter settings
 - Experiment with different alternative methods Improve preprocessing and feature generation Combine different methods

4.1 Algorithms

Interpretation / Evaluation

- Output of Data Mining
 - Patterns
 - Models
- In the end, we want to derive value from that, e.g.,
 - gain knowledge
 - make better decisions
 - increase revenue