30-day VIX 指数构建

Step 1

● 到期日选择条件

到期日选择区间:23<=T<=37, T为同一个underlying的不同到期日,该区间只可能存在两个到期日,选出来日期近的为nearterm,日期远的为nextterm

Eg: 当前时间current_time = 2022/10/17 9:46, current_time+23days = 2022/11/09 9:46, current_time + 37 days = 2022/11/23 9:46。ETH作为underlying的期权列表和到期时间选择如下:

T(Time to expiration)	T- current_time	是否选择
2022-10-18	1	N
2022-10-19	2	N
2022-10-21	4	N
2022-10-28	11	N
2022-11-04	25	Y(nearterm)
2022-11-11	32	Y(nextterm)
2022-11-25	46	N
2022-12-30		N

● 时间计算规则

选择出到期日后, nearterm为T1, nextterm为T2, 时间计算公式:

$$T = \{ M_{Current day} + M_{Settlement day} + M_{Other days} \} / Minutes in a year$$

M_currentDay 为当前时间距离当日零时的分钟数,上例 M_currentDay = 2022/10/18 00:00 - 2022/10/17 9:46=854

M_settlementDay为期权到期日凌晨距离到期日结算时间的分钟数,以nearterm举例,假设 nearterm到期日结算时间为2022/11/11 8:30, M_settlementDay = 2022/11/11 8:30 - 2022/11/11 0:00 = 510

M_otherDays为当日零时距离期权到期日零时的分钟数,以nearterm举例,M_otherDays = 2022/11/11 0:00 - 2022/10/18 00:00 = 34560

因此, T1 = (854+510+34560)/(365*24*60) = 0.0683486

按照上述方法, 假设nextterm的结算时间为2022/11/18 15:00, T2= 0.0882686

● 期权Forward price(F)计算规则

同一到期日, n个不同strike的put和call期权,计算difference = abs (call mark price - put mark price), 然后选min(difference)为k,然后进行F价格计算。下表绿色行即为nearterm和nextterm选择出来的k

HEAL COLLIN OPTIONS

Near Term Options			
Strike Price	Call	Put	Difference
1940	38.45	15.25	23.20
1945	34.70	16.55	18.15
1950	31.10	18.25	12.85
1955	27.60	19.75	7.85
1960	24.25	21.30	2.95
1965	21.05	23.15	2.10
1970	18.10	25.05	6.95
1975	15.25	27.30	12.05
1980	12.75	29.75	17.00

Next Term Options			
Strike Price	Call	Put	Difference
1940	41.05	18.80	22.25
1945	37.45	20.20	17.25
1950	34.05	21.60	12.45
1955	30.60	23.20	7.40
1960	27.30	24.90	2.40
1965	24.15	26.90	2.75
1970	21.10	28.95	7.85
1975	18.30	31.05	12.75
1980	15.70	33.50	17.80

Using the 1965 call and put in the near-term, and the 1960 call and put in the next-term contract applied to the formula:

 $F = Strike Price + e^{RT} x$ (Call Price - Put Price)

the forward index prices, F1 and F2, for the near- and next-term options, respectively, are:

$$F_1 = 1965 + e^{(0.000305 \times 0.0683486)} \times (21.05 - 23.15) = 1962.89996$$

$$F_2 = 1960 + e^{(0.000286 \times 0.0882686)} \times (27.30 - 24.90) = 1962.40006$$

F的公式如图中所示,需要对nearterm和nextterm进行F(forward price)的分别计算。其中r是给 定值,我们在回测中可以设定为0.

● K0选择

K0为小于F的第一个strike。因此,对于nearterm K0_1 = 1620;对于nextterm K0_2= 1620

● 期权列表筛选

用于VIX指数计算,需要选择的期权为OTM put和OTM call,因此,围绕上一部选择出的K0,需要选择对应的到期日所有的OTM put,及srike < K0; OTM call 为所有的srike > K0。 put 和call列表的筛选规则:

- 如果put列表中存在bid1 or ask1为0,则该strike在put列表中剔除
- 如果call列表中存在bid1 or ask1为0,则该strike在call列表中剔除
- 如果连续两个strike在put列表/call列表中存在bid1 or ask1为0,则自此之后的strike全部从列表中删除(对于put,连续两个0条件后,所有比这个小的strike删除;对于call是比这个大的strike删除)

举例:

Put Strike	Bid	Ask	Include?
1345	0	0.15	Not considered following two zero bids
1350	0.05	0.15	
1355	0.05	0.35	
1360	0	0.35	No
1365	0	0.35	No
1370	0.05	0.35	Yes
1375	0.1	0.15	Yes
1380	0.1	0.2	Yes

A Night graduation of the description of the control of the contro

Call Strike	Bid	Ask	Include?
2095	0.05	0.35	Yes
2100	0.05	0.15	Yes
2120	0	0.15	No
2125	0.05	0.15	Yes
2150	0	0.1	No
2175	0	0.05	No
2200	0	0.05	
2225	0.05	0.1	Not considered following two zero bids
2250	0	0.05	

● 计算期权列表midPrice

midPrice = (bid1+ask1)/2, 对于strike = K0 期权,midPrice = (call+put)/2 对于nearterm和nextterm需要分别计算midPrice。下图例子中的报价,K0的部分可以参照本文第一个图得出。

Near term Strike	Option Type	Mid-quote Price
1370	Put	0.2
1375	Put	0.125
1380	Put	0.15
1950	Put	18.25
1955	Put	19.75
1960	Put/Call Average	22.775
1965	Call	21.05
1970	Call	18.1
2095	Call	0.2
2100	Call	0.1
2125	Call	0.1

Next term Strike	Option Type	Mid-quote Price
1275	Put	0.075
1325	Put	0.15
1350	Put	0.15
1950	Put	21.60
1955	Put	23.20
1960	Put/Call Average	26.10
1965	Call	24.15
1970	Call	21.10
2125	Call	0.1
2150	Call	0.1
2200	Call	0.08

● 波动率计算

Nearterm的波动率为sigam1,nextterm的波动率为sigma2。计算公式如下图。其中 delta_K_i =[K_(i+1) - K_(i-1)]/2。

举例:上图中K_i = 1375,则K_(i+1) = 1380,K_(i-1) = 1370,因此delta_K_i = 5 R1, R2都为利率,可以都设置成0(但本例中不为0) Q(K_i) = midPrice(上一步已计算) F1, F2, T1, T2在上文中都有计算。

$$\sigma_{I}^{2} = \frac{2}{T_{1}} \sum_{i} \frac{\Delta K_{i}}{K_{i}^{2}} e^{R_{1}T_{1}} Q(K_{i}) - \frac{1}{T_{1}} \left[\frac{F_{1}}{K_{0}} - 1 \right]^{2}$$

$$\sigma^{2}_{2} = \frac{2}{T_{2}} \sum_{i} \frac{\Delta K_{i}}{K_{i}^{2}} e^{R_{2}T_{2}} Q(K_{i}) - \frac{1}{T_{2}} \left[\frac{F_{2}}{K_{0}} - 1 \right]^{2}$$

举例:

表里的contribution by strike就是 $rac{\Delta K_i}{K_i^2} e^{\imath k \tau_i} \, \mathit{Q}(K_i)$

$$\frac{\Delta K_{1370Put}}{K_{1370Put}^2} e^{R_1 T_1} Q(1370Put) = \frac{5}{1370^2} e^{.000305 (0.0683486)} (0.20) = 0.0000005328$$

Near term Strike	Option Type	Mid-quote Price	Contribution by Strike
1370	Put	0.2	0.0000005328
1375	Put	0.125	0.0000003306
1380	Put	0.15	0.0000003938
1950	Put	18.25	0.0000239979
1955	Put	19.75	0.0000258376
1960	Put/Call Average	22.775	0.0000296432
1965	Call	21.05	0.0000272588
1970	Call	18.1	0.0000233198
2095	Call	0.2	0.0000002278
2100	Call	0.1	0.0000003401
2125	Call	0.1	0.0000005536
$rac{2}{T_{_1}}\sum_irac{\Delta K_{_i}}{K_i^2}arrho^{R_iT_{_i}}\mathcal{Q}(K_{_i})$		0.018495	

Near term Strike	Option Type	Mid-quote Price	Contribution by Strike
1275	Put	0.075	0.0000023069
1325	Put	0.15	0.0000032041
1350	Put	0.15	0.0000020577
1950	Put	21.6	0.0000284031
1955	Put	23.2	0.0000303512
1960	Put/Call Average	26.1	0.0000339711
1965	Call	24.15	0.0000312732
1970	Call	21.1	0.0000271851
2125	Call	0.1	0.0000005536
2150	Call	0.1	0.0000008113
2200	Call	0.075	0.0000007748
$\frac{2}{T}$	$\frac{2}{T_2}\sum_i\frac{\Delta K_i}{K_i^2}e^{R_iT_2}\mathcal{Q}(K_i)$		0.018838

*这里有个trick,比如说1370的strike为我们选择的最后一个PUT,但是计算delta_K_i的时候其实用到了比1370更小的strike = 1365,作为了K_(i-1)的计算参数。同理,Call的最后一个delta_K_i 用到了比列表更大的K_(i+1)

● VIX指数价格

VIX指数的计算公式如下入所示。 T和sigma我们上面都已经计算过了。这里N30为30天的分钟数 = 30*24*60 N365为365天的分钟数 N_T1为T1的分钟数 = T1*365*24*60 N_T2计算同理。

$$\text{VIX} = 100 \times \sqrt{\left\{T_{1}\sigma_{1}^{2}\left[\frac{N_{T_{2}}-N_{30}}{N_{T_{2}}-N_{T_{1}}}\right] + T_{2}\sigma_{2}^{2}\left[\frac{N_{30}-N_{T_{1}}}{N_{T_{2}}-N_{T_{1}}}\right]\right\} \times \frac{N_{365}}{N_{30}} }$$

单点VIX就计算出来了~~

例子的reference:

https://www.sfu.ca/~poitras/419 VIX.pdf