Amodal Completion via Progressive MC Diffusion

CV심화 김수란

Table of contents

I. Introduction

II. Method

III. Experiments

IV. Discussion

What is Amodal completion?

The ability to see an entire object despite parts of it being covered by another object in front of it.

Task & Previous Approaches

Fill in the hidden regions of occluded objects

- Two-step approach
 - 1. Completing a binary amodal mask
 - 2. Synthesizing RGB pixel values within the mask

->directly regressing the amodal mask is an ill-posed formulation due to the diversity of possible completions

Previous Approaches vs. Our Approach

Fill in the hidden regions of occluded objects

- Two-step approaches
 - 1. Com ing a ry amodal mask
 - 2. Synthage sixel values within the mask

Problem Setup

 M_{modal} in $\mathbb{R}^{H \times W}$

Output Bundle

 $I_{amodal} ext{ in } \mathbb{R}^{H' imes W' imes 3}$ $M_{amodal} ext{ in } \mathbb{R}^{H' imes W'}$

$$I_{out} = F_{s \to e}(I_{in}, M_{in}, P)$$

Progressive MC Diffusion

1 Progressive Occlusion-aware Completion

+

Original

Naive Outpainting vs. Our Approach

 $I_{amodal} = F_{0 \to N}(I_{in}, 1 - M_{modal}, P)$

 $I_{amodal} = F_{0 \to N}(I_{in}, M_{occ}, P)$

Naive Outpainting Output

Overextension
Orientation changed

Ours

Identity preservation Orientation maintained

Co-occurrence Problem

Directly using a pre-trained diffusion inpainting model?

-> Co-occurrence problem

Ablation study

$$I_{amodal} = F_{k \to N}(I_{amodal}^k, M_{occ}, P)$$

Counterfactual Completion Curation System

Comparisons with Previous Methods

Comparisons with Previous Methods

Method	CLIP ↑	Easy Cases DreamSim ↓	LPIPS ↓
SSSD [55]	0.280 / 0.263	0.186 / 0.216	0.096 / 0.142
LaMa [43]	0.288 / 0.265	0.098 / 0.124	0.054 / 0.091
Inst-Inpaint [52]	0.264 / 0.257	0.325 / 0.304	0.185 / 0.195
Ours	0.290 / 0.266	0.096 / 0.106	0.054 / 0.078

CLIP↑	Hard Cases DreamSim ↓	LPIPS ↓	User Preference
0.267 / 0.263	0.315 / 0.334	0.166 / 0.225	1.8%
0.279 / 0.268	0.236 / 0.292	0.130 / 0.205	7.3%
0.252 / 0.254	0.451 / 0.446	0.263 / 0.283	0.0%
0.290 / 0.267	0.184 / 0.185	0.110 / 0.141	90.9%

Comparisons

- Extends objects only where necessary
- Avoid generating co-occurring objects

IV. Discussion

IV. Discussion

Contributions

IV. Discussion

Limitations

Enclosed by Occluder

Shadows

Hard Co-occurrence

Thank you