9/8/22, 5:34 PM Salary prediction

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
%matplotlib inline
```

```
In [3]: data = pd.read_csv('Salary_Data.csv')
    data
```

Out[3]:		YearsExperience	Salary
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0
	5	2.9	56642.0
	6	3.0	60150.0
	7	3.2	54445.0
	8	3.2	64445.0
	9	3.7	57189.0
	10	3.9	63218.0
	11	4.0	55794.0
	12	4.0	56957.0
	13	4.1	57081.0
	14	4.5	61111.0
	15	4.9	67938.0
	16	5.1	66029.0
	17	5.3	83088.0
	18	5.9	81363.0
	19	6.0	93940.0
	20	6.8	91738.0
	21	7.1	98273.0
	22	7.9	101302.0
	23	8.2	113812.0
	24	8.7	109431.0
	25	9.0	105582.0
	26	9.5	116969.0
	27	9.6	112635.0

	YearsExperience	Salary
28	10.3	122391.0
29	10.5	121872.0

```
In [4]: data.head(7)
```

```
Out[4]:
             YearsExperience
                               Salary
          0
                              39343.0
                          1.1
          1
                          1.3
                              46205.0
          2
                          1.5 37731.0
                          2.0 43525.0
          3
                          2.2 39891.0
          4
                          2.9 56642.0
          5
                          3.0 60150.0
          6
```

```
In [5]: x = data['YearsExperience']
y = data['Salary']
```

```
plt.figure(figsize=(20,12))  #to set the size of the graph (optional)
plt.scatter(x,y)  #built-in function in matplotlib to visu
plt.title("Salary Prediction")
plt.xlabel("Years of experience")
plt.ylabel("Salary")
plt.show()
```



```
In [7]: regression_model = LinearRegression()
```

```
#reshapes the arrays to fit in the graph accodringly
In [8]:
          x = np.array(x).reshape((len(x), 1))
          #to minimize the residual sum of squares between the observed targets in the dataset
          #and the targets predicted by the linear approximation
          regression model.fit(x, y)
         LinearRegression()
Out[8]:
In [9]:
          y_predicted = regression_model.predict(x)
          y predicted
         array([ 36187.15875227, 38077.15121656, 39967.14368085, 44692.12484158,
Out[9]:
                 46582.11730587, 53197.09093089, 54142.08716303, 56032.07962732,
                 56032.07962732, 60757.06078805, 62647.05325234, 63592.04948449,
                 63592.04948449, 64537.04571663, 68317.03064522, 72097.0155738,
                 73987.00803809, 75877.00050238, 81546.97789525, 82491.9741274,
                 90051.94398456, 92886.932681 , 100446.90253816, 103281.8912346 ,
                108006.87239533, 110841.86109176, 115566.84225249, 116511.83848464,
                123126.81210966, 125016.80457395])
In [10]:
          mse = mean_squared_error(y, y_predicted)
          r2 = r2_score(y, y_predicted)
          print('Slope: ',regression_model.coef_)
          print('Intercept: ', regression_model.intercept_)
          print('Root mean squared error: ', mse)
          print('R2 score: ',r2)
         Slope: [9449.96232146]
         Intercept: 25792.20019866871
         Root mean squared error: 31270951.722280968
         R2 score: 0.9569566641435086
In [11]:
          plt.figure(figsize=(20,10))
          plt.scatter(x,y)
          plt.plot(x, y_predicted, color='yellow')
          plt.title('Graph with best fit line')
          plt.xlabel('Years of Experience')
          plt.ylabel('Salary')
          plt.show()
                                                 Graph with best fit line
         80000
```

In []: