Movimento de projéteis

Universidade de Aveiro

João Figueiredo, José Mota, Orlando Marinheiro

Movimento de Projéteis

Dept. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

(112930) joaofafigueiredo@ua.pt, (113985) jfteixeiramota@ua.pt, (114060) orlandomarinheiro@ua.pt

Resumo

Neste relatório iremos abordar o que foi feito em todas as fases de uma atividade laboratorial realizada no âmbito da cadeira de Mecânica e Campo Eletromagnético. Procedemos ao lançamento de um projétil, com o intuito de determinar a sua velocidade inicial. Posteriormente, repetimos o lançamento, variando o seu ângulo, para observar como tal alteração afeta a distância alcançada pelo projétil. Por fim, efetuamos o lançamento do projétil em direção a um pêndulo, com o objetivo de determinar até que ângulo o pêndulo é deslocado, o que nos permite calcular uma velocidade inicial, que será utilizada para comparação com a obtida anteriormente.

Conteúdo

1	Introdução Detalhes experimentais relevantes						
2							
	2.1 Material Utilizado						
	2.2 Procedimento e precauções experimentais						
		2.2.1 Parte A - Determinação da velocidade inicial		3			
		2.2.2 Parte B - Dependência do alcance com o ângulo de	disparo	4			
		2.2.3 Parte C - Pêndulo Balístico: Método alternativo pa	ra determi-				
		nação da velocidade inicial de um projétil		5			
3	Análise e discussão						
	3.1	Parte A - Determinação da velocidade inicial		6			
	3.2	Parte B - Dependência do alcance com o ângulo de disparo		6			
	3.3	Parte C - O Pêndulo Balístico		7			
4	Con	nclusões		10			
5	Ane	PXOS		11			

Introdução

A atividade laboratorial movimento de projéteis que nos foi proposta envolve a combinação de movimentos horizontais e verticais, o que desafia a nossa compreensão da cinemática e das leis de newton, tendo diversas aplicações em varias áreas da física e engenharia. Nesta atividade, iremos analisar o comportamento de um projétil em termos de altura máxima atingida e alcance horizontal.

Detalhes experimentais relevantes

Figura 2.1: As três fases da atividade experimental [1]

Neste capítulo, serão demonstrados todos os detalhes experimentais relevantes no âmbito da atividade laboratorial. Descreveremos de forma detalhada todos os passos da montagem da experiência, apresentaremos a lista do material utilizado, o número de medidas a serem efetuadas, bem como as principais precauções a serem tomadas na realização da atividade.

2.1 Material Utilizado

Para a realização da atividade experimental foi utilizado o seguinte material:

- Lançador de projéteis;
- Sensores de passagem;

- Sensor de impacto;
- Esfera metálica;
- Papel químico;
- Papel milimétrico;
- Fita métrica.

2.2 Procedimento e precauções experimentais

A atividade laboratorial foi subdividida em três fases, sendo a Parte A e Parte B realizadas numa única aula e a Parte C na aula seguinte.

2.2.1 Parte A - Determinação da velocidade inicial

Figura 2.2: Esquema de montagem experimental A

Procedemos à montagem conforme a figura tendo o devido cuidado às seguintes situações:

- fixar a base (2) à mesa com um grampo adequado e colocar o LP (1) na posição horizontal.
- garantir que o sistema de controlo (5) está ligado à fonte de alimentação e que se encontra na posição de desligado (OFF).
- garantir que o sensor (3) está colocado imediatamente à saída do LP (1) e que o sensor (4) está ligado ao sistema de controlo.

Tendo em conta os cuidados mencionados procedemos à medição da distância entre os sensores. O LP foi carregado na posição "SHORT RANGE". Colocamos a esfera na boca do LP, empurrando-a para o interior com a vareta de carregar (tubo de plástico preto) até o indicador amarelo, no LP, se encontrar na posição pretendida. Procedemos ao posicionamento do sistema de controlo na configuração "TWO GATES" e carregamos em START/STOP. De forma a disparar o LP puxamos o fio do disparador verticalmente e com suavidade, registando o tempo indicado pelo sistema de controlo (5). Todos os passos foram repetidos três vezes, de forma a obter três medidas, tendo sempre o cuidado de verificar a horizontalidade do LP antes de cada lançamento.

2.2.2 Parte B - Dependência do alcance com o ângulo de disparo

Figura 2.3: Esquema de montagem experimental B

Efetuamos a montagem de acordo com a figura tendo o cuidado de:

• fixar a base (2) à mesa com um grampo adequado e colocar o LP a fazer um ângulo de 30°com a horizontal.

Colocamos o alvo (conjunto de papel químico + papel milimétrico) a uma distância tal que a esfera metálica caia sobre a sua superfície, onde a distância foi determinada por tentativa e erro. O LP foi carregado na posição "SHORT RANGE" com a esfera e de seguida fizemos um disparo com o LP, registando o alcance, x, e o ângulo de lançamento, θ , tendo o cuidado de verificar se o ângulo de lançamento se mantém constante. Todos os passos anteriores foram repetidos para ângulos de 34°, 38°, 40°e 43°, três vezes para cada um. Por último, medimos a altura (yi) em relação à bancada, a que a esfera metálica é lançada.

2.2.3 Parte C - Pêndulo Balístico: Método alternativo para determinação da velocidade inicial de um projétil

Figura 2.4: Esquema de montagem experimental B

Para a última parte da experiência medimos as as massas do projétil, m, e do pêndulo, M, bem como o seu comprimento, l. Carregamos o LP na posição "SHORT RANGE" e efetuamos um disparo, medindo o ângulo máximo, θ , descrito pelo pêndulo. Na totalidade, todos os passos anteriores foram repetidos três vezes.

Análise e discussão

Neste capítulo serão mostrados todos os cálculos efetuados e todos os dados coletados no âmbito da atividade laboratorial. Para além será feita uma discussão dos resultados obtidos, bem como uma comparação dos resultados experimentais com as expectativas teóricas.

3.1 Parte A - Determinação da velocidade inicial

Começamos por contabilizar o tempo de passagem da bola entre as duas células. Foram feitas três medidas e de seguida uma média aritmética entre elas, sendo o seu respetivo erro de 0,0001s.

$$\Delta t = \frac{0.0416 + 0.0418 + 0.0419}{3} \approx 0.0417667$$

Como a distância medida entre as duas células foi de 10 cm, a velocidade inicial v_0 pode ser calculada da seguinte forma:

$$v_0 = \frac{\Delta x}{\Delta t}$$
 (Fórmula Original)
 $v_0 = \frac{0.1 \,\text{m}}{0.0418 \,\text{s}}$ (Substituição de Valores)
 $v_0 \approx 2.3923 \,\text{m/s}$ (Resultado Aproximado)

3.2 Parte B - Dependência do alcance com o ângulo de disparo

Iniciamos esta fase realizando uma média aritmética das três medidas dos alcances para cada ângulo:

•
$$30^{\circ}$$

$$\theta = \frac{72.1 + 80 + 72.5}{3} \approx 74.86667$$

•
$$34^{\circ}$$

$$\theta = \frac{81.7 + 81.4 + 81.4}{3} \approx 81.5$$
• 38°
$$\theta = \frac{80.7 + 81.1 + 81.4}{3} \approx 81.06667$$
• 40°
$$\theta = \frac{80.4 + 80.3 + 80.3}{3} \approx 80.33333$$
• 43°
$$\theta = \frac{78.4 + 78.4 + 79.6}{3} \approx 78.8$$

Tendo em conta as médias dos alcances apresentadas anteriormente, podemos chegar à conclusão de que o alcance aumentou entre os ângulos de 30° e 34° e desceu entre os ângulos de 38° e 43° .

De seguida passamos à determinação de θ_{max} correspondente ao maior alcance da seguinte forma (para todos os casos assumimos g = 9.804):

$$\begin{aligned} \theta_{\text{max}} &= \arctan\left(\frac{1}{\sqrt{1+\frac{2g\Delta y}{\nu_0^2}}}\right) & \text{(F\'ormula Original)} \\ &= \arctan\left(\frac{1}{\sqrt{1+\frac{2\cdot 9.804\cdot 0.262}{(2\cdot 3943)^2}}}\right) & \text{(Substituiç\~oes com os Valores)} \\ &\approx 35.98767^{\circ} & \text{(Resultado)} \end{aligned}$$

3.3 Parte C - O Pêndulo Balístico

Nesta última fase da atividade laboratorial, começamos por calcular a média dos ângulos obtidos através dos quatro lançamentos feitos.

Nota: A incerteza das medidas da massa é 0.1, pois é a medida da menor escala da balança, que é um aparelho digital.

$$\alpha = \frac{24.5 + 25.5 + 24 + 25}{4} \approx 24.75^{\circ}$$

Passando ao cálculo do valor da altura h, temos que:

$$h = L(1-\cos\alpha)$$
 (Fórmula Original)
= $0.265(1-\cos(24.75^\circ))$ (Substituição dos valores l e α)
 $\approx 0.0243\,\mathrm{m}$
= $2.4\,\mathrm{cm}$

Já o seu erro Δh pode ser calculado da seguinte forma:

$$\Delta h = \left| \frac{dh}{dL} \right| \Delta L + \left| \frac{dh}{d\alpha} \right| \Delta \alpha$$

$$\Delta h = (1 - \cos(\alpha))\Delta L + (L \cdot \sin(\alpha))\Delta \alpha$$

$$\Delta h = (1 - \cos(24.75^{\circ})) \cdot 0.0005 + (0.265 \cdot \sin(24.75^{\circ})) \cdot 0.013$$

$$\Delta h = 0.0019 \,\mathrm{m}$$

1 - cos a =	0,8996		Δh =	0,001864	
ΔΙ =	0,0005				
I * sin a =	0,108				
Δa =	0,75				
Δa (rad) =	0,01309				

Figura 3.1: Tabela com os dados para o cálculo do erro

Posto isto, procedemos ao cálculo do valor da velocidade:

$$\frac{1}{2}v_f^2 = g \cdot h$$

$$\frac{1}{2} \left(\frac{m}{m+M} \right)^2 v_0^2 = g \cdot h$$

$$v_0 = \left(\frac{m+M}{m}\right)\sqrt{2gh}$$

Substituindo as variáveis, ficamos com:

$$v_0 = \left(\frac{0.0633 + 0.264}{0.0633}\right) \sqrt{2 \cdot 9.804 \cdot 0.0243}$$

$$v_0 = 3.57 m/s$$

O seu erro Δv pode ser calculado da seguinte forma:

$$\Delta v = \left| \frac{dv}{dm} \right| \Delta m + \left| \frac{dv}{dM} \right| \Delta M + \left| \frac{dv}{dh} \right| \Delta h$$

No processo de realização da atividade, é fundamental não apenas calcular os resultados finais, mas também compreender quais são as fontes de erro que podem afetar a precisão desses resultados. Por esse motivo podemos concluir que a principal fonte de erro é o ângulo medido.

Através da seguinte formula é possível comparar a velocidade inicial v_0 da Parte A com a calculada no passo anterior (Parte C):

Diferença (%) =
$$\left(\frac{V_{\text{Maior}} - V_{\text{Menor}}}{V_{\text{Menor}}}\right) \times 100$$

Diferença (%) =
$$\left(\frac{3.57 - 2.39}{2.39}\right) \times 100$$

Assim sendo, podemos concluir que v_0 da Parte C é 49.24 % maior que v_0 da Parte A.

Conclusões

Com a realização desta atividade laboratorial, tivemos a oportunidade de aplicar os princípios teóricos do lançamento de projéteis, permitindo-nos observar de perto os efeitos dos diferentes ângulos de lançamento e da velocidade na trajetória do projétil. Além disso, a prática com os instrumentos de medição permitiu aprimorar a nossa habilidade nessa área. Dessa forma, concluímos que a precisão e a consistência na execução das medições são fundamentais para obter resultados confiáveis e interpretar com precisão os fenómenos estudados. Um ponto que nos saltou bastante à vista foi a grande discrepância entre o calculo da velocidade inicial ν_0 na Parte A e na Parte C, sendo umas das principais razões desse acontecimento o desgaste dos materiais usados nas experiências e troca dos lançadores.

Anexos

Neste capitulo serão mostradas todas as tabelas onde foram organizados todos os dados experimentais, bem como o gráfico que relaciona o ângulo em que foi feito o disparo com o alcance atingido.

A B	С	D	E	F G		JKL	M
1 lançamento			2 lançame	ento	3 lançamento		
30°			30°		30°	media	
72,1			80		72,5	74,86667	
34°							
1º lançamento		2 lançamento		3 lançamento		media	
81,7		81,4		81,4		81,5	
38°							
1º lançamento	2 lançame	mento 3º lançame		ento		media	
80,7	81,1		81,4			81,06667	
40°						media	
1º lançamento	2º lançame	ento	3º lançame	ento		80,33333	
80,4	80,3		80,3				
80,4 43° 1° lançamento 78,4							
1º lançamento	2º lançame	ento	3º lançame	ento		media	
78,4	78,4		79,6			78,8	

Figura 5.1: Tabela com as medidas do alcance para os quatro ângulos e a respetiva média

Figura 5.2: Dados para a realização dos cálculos da parte C

Figura 5.3: Gráfico de relação ângulo do disparo - alcance