P425/2
APPLIED MATHEMATICS
Paper 2
Nov./Dec. 2023
3 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

APPLIED MATHEMATICS

Paper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and any five from section B.

Any additional question(s) answered will **not** be marked.

All necessary working must be shown clearly.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take acceleration due to gravity g, to be 9.8 ms⁻².

SECTION A (40 MARKS)

Answer all the questions in this section.

- 1. A coin is biased such that when it is tossed the head is twice as likely to occur as the tail. Find the probability that in seven tosses, there will be exactly two tails.

 (05 marks)
- Two bodies A and B of masses 6 kg and 2 kg moving along a straight line with velocities 4 ms⁻¹ and 2 ms⁻¹ respectively, collide head on. After collision, A moves with a velocity of 2.6 ms⁻¹ in the same direction.

Calculate the:

(a) velocity of B after collision.

(02 marks)

(b) loss in kinetic energy.

(03 marks)

3. The values of a function f(x) are given in the table below.

x	0,	1/2	1	11/2	2	21/2	3	
f(x)	0.1003	0.0391	0.0801	0.0602	0.0649	0.0380	0.0327	

Use the trapezium rule to estimate the value of

$$\int_0^3 f(x) \, dx$$

correct to three decimal places.

(05 marks)

- 4. A ball of mass 1 kg rolls from rest down a rough plane inclined at 30° to a horizontal ground. The ball rolls for 4 m before it reaches the ground. The coefficient of friction between the ball and the plane is ½. Find the velocity with which the ball reaches the ground.

 (05 marks)
- 5. The table below shows the age distribution of a population of a certain town in a census.

AGE (years)	NUMBER ('000)				
Under 10	15				
10 and under 20	19				
20 and under 30	16				
30 and under 40	18				
40 and under 60	30				
60 and under 80	6				
80 and under 90	1				
0					

(a) Draw a histogram for the data.

(03 marks)

Use the histogram to estimate the modal age of the population. (b)

(02 marks)

The numbers x = 6.45, y = 0.00215 and z = 2.7 are each rounded off to the 6. given number of decimal places.

Determine the interval in which $w = \frac{x+z^3}{\sqrt{v}}$ lies. (05 marks)

- Two independent events R and S are such that $P(R) = \frac{3}{4}$ and $P(S) = P(S' \cap R')$. 7. Find;
 - P(S). (a)

(03 marks)

 $P(S'\cap R)$. (b)

(02 marks)

A uniform lamina in form of a square with side 60 cm has a circular hole of 8. radius 20 cm made in it as shown in the diagram below.

Find the position of the centre of gravity of the lamina from side AD.

(05 marks)

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.

The table below shows the scores of 10 candidates in Biology and Economics. 9.

The table below	SHOW	s the se							т	т
		Ъ	C	n	E	F	G	H	1	J
CANDIDATE	A	B	<u></u>	<u> </u>		. 1	72	50.0	77	70
DIOLOGY	15	62 1	56 4	617	75 7	83 '	134	309	//2	105
BIOLOGY	4510	4310 03 6	30 2 01	01/	-		1000	05 0	53	6260
ECONOMICS	90.1	64 🚄	76 2	704	55 g	53g,5		85 2		0203
ECONOMICS	70 [9	70				F+7	-15 =	7-5	

- Plot a scatter diagram for the data. (a) (i)
 - Draw a line of best fit on the scatter diagram. (ii)
 - Use your line of best fit to estimate the Biology mark for a (iii) candidate who scored 57 in Economics.

(06 marks)

- Calculate a rank correlation coefficient between the candidates' (b) performance in the two subjects. (06 marks) Comment on your result.
- 10. Two points A and B are 526 m apart along a straight road. A car moving along the road passes point A with a constant speed of 25 ms⁻¹. The car maintains this speed for 10 seconds and then decelerates uniformly for 8 seconds until it attains a speed of V ms⁻¹. The car maintains this speed until it passes point B. The total time taken by the car to move from point A to B is 30 seconds.
 - Sketch a Velocity Time graph for the motion of the car. (04 marks) (a)
 - (b) Determine the;
 - (i) value of V.

(05 marks)

(ii) deceleration of the car.

(03 marks)

- Given that $f(x) = xe^x + 5x 10$: 11.
 - Evaluate f(1) and f(2), correct to **four** decimal places. (a) (i)
 - Deduce that the equation f(x) = 0 has a root between (ii) x = 1 and x = 2.

(04 marks)

Use linear interpolation twice to obtain the root of the equation ' (b)

$$xe^x + 5x - 10 = 0$$
,

correct to three decimal places.

(08 marks)

12. A continuous random variable X has a cumulative distribution function given by

$$F(x) = \begin{cases} \frac{1+x}{6}, & -1 \le x \le 0 \\ \frac{1+2x}{6}, & 0 \le x \le 2 \\ \frac{4+3x}{12}, & 2 \le x \le \frac{8}{3} \\ 1, & x \ge \frac{8}{3} \end{cases}$$

Find;

(b) the probability density function
$$f(x)$$
. (03 marks)

(c)
$$P(1 \le X \le 2.5)$$
. (03 marks)

(d) the mean of
$$X$$
. (03 marks)

13. Three forces $F_1 = (2i - 3j)$ N, $F_2 = (5i + 2j)$ N and $F_3 = (-2i - 11j)$ N act at points (2, 3), (-2, 3) and (3, -2) respectively.

Determine the;

(c) distance from the origin at which the resultant cuts the x-axis.
$$(02 \text{ marks})$$

14. (a) Show that the formula based on Newton Raphson method for approximating the k th root of a number N is given by

$$x_{n+1} = \frac{(k-1)x_n^{k} + N}{kx_n^{k-1}}$$
 $n = 0, 1, 2, 3, ...$

(04 marks)

- (b) Construct a flow chart that;
 - (i) reads in the initial approximation x_0 , k and N,
 - (ii) computes and prints N and its k th root correct to three decimal places. (05 marks)
- (c) Perform a dry run for your flow chart when N = 13, $x_0 = 1.6$ and k = 4.

 (03 marks)

A woman travelling to work by a car goes through three police check points A, B and C. The probabilities that she is delayed at A, at B and 15. (a) at C are 0.3, 0.5 and 0.7 respectively.

Determine the probability that she is delayed at;

(03 marks)

only one check point. (i)

(03 marks)

- two or more check points. (ii)
- A man goes to work by route P or route Q. The probability that he takes route P is 0.6. The probability that he is late given that he goes (b) through P is $^{2}/_{3}$ and through Q is $^{1}/_{3}$.
 - Find the probability that he is late for work on a certain day. (i) (03 marks)
 - Given that he is not late, determine the probability that he went (ii) (03 marks) through P.
- The diagram below shows three masses of 12 kg, 9 kg and 7 kg connected by 16. light inelastic strings. The string connecting the 12 kg and 9 kg masses passes over a smooth fixed pulley. The other string connects the 9 kg and 7 kg masses.

The system is released from rest and the 12 kg mass accelerates upwards.

- (a) Calculate the:
 - acceleration of the system. (i)
 - tensions in the strings. (ii)

(10 marks)

Determine the velocity of the 12 kg mass after 1.5 seconds. (b)

(02 marks)

END