CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #9

Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Chapter 12

Aims of this lecture

- We've seen a lot of binary trees already
 - Recurrence tree for visualising runtime in recursive calls
 - HeapSort uses imaginary trees
 - Decision trees in the lower bound for comparison sorts
- Now: discussing binary trees more thoroughly, including how to prove inductive statements about trees.
- To introduce binary search trees and their typical operations.
- To work out the running time for operations on binary search trees.

Recall

- Elements can contain satellite data and a key is used to identify the element.
- Typical operations:
 - Search(S, k): returns element x with key k, or NIL
 - Insert(S, x): adds element x to S
 - Delete(S, x): removes element x from S
 - Minimum(S), Maximum(S): return x resp. with smallest or largest key
 - Successor(S, x), Predecessor(S, x): next larger (smaller) than Key(x)
- Time often measured using n as the number of elements in S.

Binary trees

- Intuitively: trees where every node has at most two children.
- We can define binary trees recursively:
- A **binary tree** is a structure defined as finite set of nodes such that either
 - The tree is empty (no nodes) or
 - It is composed of a root node, a left subtree and a right subtree
- This view is very handy for proving statements about trees by induction (see later).
- The root of the left subtree of a node is called **left child**, that of the right subtree is called **right child**.

Definitions for binary trees

We tacitly assume that all nodes are labelled by numbers.

- A path in a tree is a sequence of nodes linked by edges. The length of a path is the number of edges.
- A leaf of a tree is a node that has no children; otherwise it is called internal node.
- We speak about siblings, parents, ancestor, descendant in the obvious way.

Depth and height

- The depth of a node in a tree is the length of a (simple) path from that node to the root.
- A level of a tree is a set of nodes of the same depth.
- The height of a node in a tree is the length of the longest path from that node to a leaf.
- The height of a tree is the height of its root.
- A binary tree is full if each node is either a leaf or has exactly two children.
- It is complete if it is full and all leaves have the same level.

Inductive proofs on trees

 We can use the recursive definition to prove statements about trees inductively. The general recipe is this:

Proof:

- Base case: show that the statement holds for the "smallest" tree, e.g. an empty tree or just the root node (depending on the statement).
- Induction step: any larger tree has a root and two subtrees (possibly empty). Assume that the statement holds for both subtrees and show that it then holds for the whole tree.
- Caveat: if a statement reads "for all non-empty trees", in the induction step we may need to watch out for empty subtrees.

Inductive proofs on trees: example

- Theorem: A binary tree of height at most h has no more than 2^h leaves.
 - We have used this statement in the lower bound for comparison sorts. Now we prove it.

Proof:

- Base case: a tree of height 0 has no more than $2^0=1$ leaves.
- Induction step: a tree of height h>0 has a root and two subtrees (possibly empty) of height at most h-1. Assume that the statement holds for both subtrees. Then the subtrees have at most 2^{h-1} leaves, so the whole tree has at most $2 \cdot 2^{h-1} = 2^h$ leaves.

Binary search trees

- A binary search tree (BST) is a binary tree where all labels (keys) satisfy the binary search tree property:
 - If y is a node in the left subtree of x, then y.key \leq x.key.
 - If y is a node in the right subtree of x, then y.key \geq x.key.

▶ Binary search trees: representation

- Linked list
- Key
- Satellite data
- Attributes:
 - T.Root
 - Left child pointer
 - Right child pointer
 - Parent pointer
- Parent of T.root is NIL

(b)

Searching in a BST

- Search(x, k): returns the element with key k in a tree rooted in x, or NIL
- Idea: compare against current key and stop or go down left or right.

Runtime: *O*(*h*), *h* the height of the tree

```
TREE-SEARCH(x, k)
   if x == NIL or k == x. key
       return x
  if k < x. key
       return TREE-SEARCH(x.left, k)
   else return TREE-SEARCH(x.right, k)
ITERATIVE-TREE-SEARCH(x, k)
   while x \neq NIL and k \neq x.key
       if k < x.key
           x = x.left
       else x = x.right
   return x
```

Minimum, Maximum, Successor in a BST

Minimum: starting from the root, go left until the left child is NIL.

Maximum: starting from the root, go right until the right child is NIL.

TREE-MINIMUM(x)

- 1 while $x.left \neq NIL$
- 2 x = x.left
- 3 return x

TREE-MAXIMUM(x)

- 1 **while** $x.right \neq NIL$
- x = x.right
- 3 return x

Runtime: *O*(*h*), *h* the height of the tree

Minimum, Maximum, Successor in a BST

```
TREE-SUCCESSOR(x)

1 if x.right \neq NIL

2 return TREE-MINIMUM(x.right) // leftmost node in right subtree

3 else // find the lowest ancestor of x whose left child is an ancestor of x

4 y = x.p

5 while y \neq NIL and x == y.right

6 x = y

7 y = y.p

8 return y
```

Runtime: *O*(*h*), *h* the height of the tree

CS-217: Data Structures & Algorithm Analysis

Searching in a BST: Summary

Searching in a BST: Worst case runtime

- BSTs can be imbalanced and even degenerate to a single path!
- Height can be as bad as n-1, e.g. when the input is sorted.
- So the worst-case runtime is $\Theta(n)$.
- If keys are inserted in uniform random order, the expected height is $O(\log n)$.
- Can we rely on our data being random?
 Such inputs might be very unlikely.
- We'll see **balanced trees** later on, guaranteeing a height of $O(\log n)$.

►Insert(T,z)

Idea

Go down the tree like in Search to find where the new element needs to go.

- 1. The search will end in NIL, hence we record the **search** path (e.g. 12, 18, 15, NIL).
- Add the element as a left or right subtree to last non-NIL node.

►Insert(T,z)

TREE-INSERT (T, z)1 x = T.root

$$y = NIL$$

3 **while**
$$x \neq NIL$$

$$4 y = x$$

5 **if**
$$z.key < x.key$$

$$6 x = x.left$$

7 **else**
$$x = x.right$$

$$8 \quad z.p = y$$

9 **if**
$$y == NIL$$

$$T.root = z$$

11 **elseif**
$$z$$
. $key < y$. key

12
$$y.left = z$$

13 **else**
$$y.right = z$$

Example: Insert(T,13)

Runtime: *O*(*h*), *h* the height of the tree

► Delete(T,z)

- Idea: Three cases
- 1. Easy when z is a **leaf** (delete z).
- If z has one child, have the child replace z.
- 3. Otherwise, if z has two children, we can't leave a hole in the tree!
 - Solution: replace z with its successor.
 - z's successor is the minimum in the right subtree (this subtree exists since z has two children).
 - z's successor has no left child.
 - Hence we can swap it with z and then delete z.

- (a) Node has no children or only right child
- (b) Node has only left child
- (c) Special case where right child is the successor.
- (d) Successor y is the minimum in right subtree; y's left child is NIL. Swapping z and y.

(a) NIL

Transplant(T,u,v)

(c)
$$z$$
 y NIL x

TRANSPLANT(T, u, v)

1 **if**
$$u.p == NIL$$

$$T.root = v$$

elseif
$$u == u.p.left$$

$$4 u.p.left = v$$

5 **else**
$$u.p.right = v$$

if
$$v \neq NIL$$

$$v.p = u.p$$

Replaces subtree rooted in u with a subtree rooted in v

Transplant does not update v.left and v.right: this is the responsibility of the caller of *Transplant!!*

CS-217: Data Structures & Algorithm Analysis

Runtime (Transplant)? O(1)

Runtime: *O*(*h*), *h* the height of the tree

Tree walks

We can print out the keys of a BST by a tree walk:

$\overline{\text{Preorder}(x)}$		Inorder(x)		$\overline{\text{Postorder}(x)}$	
1: if $x \neq \text{NIL then}$		1: if $x \neq \text{NIL then}$		1: if $x \neq \text{NIL then}$	
2:	print x .key	2:	Inorder($x.left$)	2:	Postorder($x.left$)
3:	Preorder(x.left)	3:	print x .key	3:	Postorder(x .right)
4:	PREORDER $(x.right)$	4:	INORDER $(x.right)$	4:	print x .key

Inorder tree walk outputs sorted sequence.

Inorder: 2, 4, 5, 6, 7, 8, 9

Preorder: 6, 4, 2, 5, 8, 7, 9

Postorder: 2, 5, 4, 7, 9, 8, 6

Tree walks: runtime

• Theorem: Inorder (Preorder/Postorder) tree walk of the root of an n-node tree takes time $\Theta(n)$.

$\overline{\text{Preorder}(x)}$		$\overline{\text{Inorder}(x)}$		Post	$\overline{\text{Postorder}(x)}$	
1: if $x \neq \text{NIL then}$		1: if $x \neq \text{NIL then}$		1: if $x \neq \text{NIL then}$		
2:	print x .key	2:	Inorder($x.left$)	2:	Postorder($x.left$)	
3:	Preorder(x.left)	3:	print x .key	3:	Postorder(x.right)	
4:	Preorder(x.right)	4:	Inorder(x.right)	4:	print x .key	

- Book gives a rather dull proof based on recurrences.
- A simpler proof:
 - Assign costs (time) for operations made at x to node x.
 - Cost at each node is $\Theta(1)$, and all costs are accounted for.
 - Sum of costs = runtime is $n \cdot \Theta(1) = \Theta(n)$.
- NB: This kind of argument is called accounting method.

Algebraic Expressions

- Algebraic expression with binary operators
- + * /
- We can use a binary tree to represent it because the operations are binary
- Internal nodes: operators
- Leaves: operands
- (a+(b*c)) (d/e)

Print (before left visit and) after right subtree visit

- Postorder tree walk? abc*+de/-
- Preorder tree walk? (+(a,*(b,c)),/(d,e)) add commas, after left visit

Inorder: infix expression; **Postorder:** postfix expression (stack);

Preorder: functional programming notation

Summary

- Binary trees have at most 2 children and can be defined recursively:
 - A tree is either empty or it contains a root and two subtrees (=trees).
 - Very useful for inductive proofs for trees.
- Binary search trees store data such that smaller keys are in the left subtree and larger keys are in the right subtree.
- BSTs of height h execute the following operations in time O(h)
 - Searching, Minimum, Maximum, Successor
 - Insertion
 - Deletion
- Binary search trees can be **imbalanced**: trees can degenerate to height $h = \Theta(n)$ and worst-case time $\Theta(n)$ for many operations.
- Inorder/preorder/postorder walks output all elements in time $\Theta(n)$.