MPC for Group Reconstruction Circuits

Lúcás Críostóir Meier

June 7, 2022

Abstract

In this paper, we present a thing.

1 Introduction

Write the introduction

2 Background

Throughout this paper, we let \mathbb{G} denote a group of prime order q, with generators G and H. Let \mathbb{F}_q denote the scalar field associated with this group, and let $\mathbb{Z}/(q)$ denote the additive group of elements in this field.

We make heavy use of group homomorphisms throughout this paper. We let

$$\varphi(P_1,\ldots,P_m):\mathbb{A}\to\mathbb{B}$$

denote a homomorphism from \mathbb{A} to \mathbb{B} , parameterized by some public values P_1, \ldots, P_m . Commonly \mathbb{A} will be a product of several groups $\mathbb{G}_1, \ldots, \mathbb{G}_n$, in which case we'd write:

$$\varphi(P_1,\ldots,P_m)(x_1,\ldots,x_n)$$

to denote the application of φ to an element (x_1, \ldots, x_n) of the product group. We also often leave the public values P_i implicit.

2.1 Pedersen Commitments

2.2 Sigma Protocols

2.3 Maurer's φ -Proof

In [Mau09], Maurer generalized Schnorr's sigma protocol for knowledge of the discrete logarithm cite to a much larger class of relations. In particular, Maurer provided a sigma protocol for proving knowledge of the pre-image of a group homomorphism φ . We denote this protocol as a " φ -proof", and recapitulate the scheme here.

- 2.4 UC Security and the Hybrid Model
- 2.5 Ideal Functionalities for Sigma Protocols
- 2.6 Broadcast Functionalities
- 3 Group Reconstruction Circuits
- 3.1 Formal Definition
- 3.2 Normalized Form
- 4 MPC Protocol for GRCs
- 5 Security Analysis
- 6 Applications
- 7 Limitations and Further Work
- 8 Conclusion

References

[Mau09] Ueli Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In AFRICACRYPT~2009, volume 5580 of LNCS, pages 272–286. Springer, Berlin, Heidelberg, 2009.