```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import sklearn
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import RepeatedKFold, cross_val_score
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

df=pd.read_csv('dataset_med.csv')

df.head()

	id	age	gender	country	diagnosis_date	cancer_stage	family_history
0	1	64.0	Male	Sweden	2016-04-05	Stage I	Yes
1	2	50.0	Female	Netherlands	2023-04-20	Stage III	Yes
2	3	65.0	Female	Hungary	2023-04-05	Stage III	Yes
3	4	51.0	Female	Belgium	2016-02-05	Stage I	No
4	5	37.0	Male	Luxembourg	2023-11-29	Stage I	No

df.shape

→ (80733, 17)

df.columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 80733 entries, 0 to 80732
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	id	80733 non-null	 int64
1	age	80733 non-null	float64
2	gender	80733 non-null	object
3	country	80733 non-null	object
4	diagnosis_date	80733 non-null	object
5	cancer_stage	80733 non-null	object
6	family_history	80732 non-null	object
7	smoking_status	80732 non-null	object
8	bmi	80732 non-null	float64
9	cholesterol_level	80732 non-null	float64
10	hypertension	80732 non-null	float64
11	asthma	80732 non-null	float64
12	cirrhosis	80732 non-null	float64
13	other_cancer	80732 non-null	float64
14	treatment_type	80732 non-null	object
15	<pre>end_treatment_date</pre>	80732 non-null	object
16	survived	80732 non-null	float64
	es: float64(8), int6	4(1) , object(8)	
memo			

```
df = df.drop('id', axis=1)
```

print(df.duplicated().sum())

→ (

df.describe()

	age	bmi	cholesterol_level	hypertension	asthma
count	80733.000000	80732.000000	80732.000000	80732.000000	80732.000000
mean	54.961651	30.496871	233.716791	0.752415	0.466655
std	9.981384	8.376907	43.495299	0.431612	0.498890
min	15.000000	16.000000	150.000000	0.000000	0.000000
25%	48.000000	23.200000	197.000000	1.000000	0.000000
50%	55.000000	30.500000	242.000000	1.000000	0.000000
75%	62.000000	37.800000	271.000000	1.000000	1.000000
max	101.000000	45.000000	300.000000	1.000000	1.000000

```
binary_col = ["hypertension", "asthma", "cirrhosis", "other_cancer", "survived"
category_col = ["cancer_stage", "smoking_status", "treatment_type"]
# Fill missing values in binary columns with 0
df[binary_col] = df[binary_col].fillna(0)
# Fill missing values in numerical columns with the mean
numerical_cols_to_fill = ['age', 'bmi', 'cholesterol_level']
df[numerical_cols_to_fill] = df[numerical_cols_to_fill].fillna(df[numerical_col
# Fill missing values in categorical columns with a placeholder
df[category_col] = df[category_col].fillna('Unknown')
df['age'] = df['age'].astype("int8")
df[binary_col] = df[binary_col].astype("int8")
df["gender"] = df["gender"].map({'Female': 1, 'Male': 0}).fillna(0).astype("int
df["family_history"] = df["family_history"].map({'Yes': 1, 'No': 0}).fillna(0).
df[category col] = df[category col].astype("category")
# Convert date columns to datetime objects and calculate treatment_time
df['diagnosis_date'] = pd.to_datetime(df['diagnosis_date'], errors='coerce')
df['end_treatment_date'] = pd.to_datetime(df['end_treatment_date'], errors='coe
df['treatment_time'] = (df['end_treatment_date'] - df['diagnosis_date']).dt.day
# Fill NaN/NaT values in treatment_time with a placeholder (e.g., -1) before co
df['treatment_time'] = df['treatment_time'].fillna(-1).astype(int)
# Drop the original date columns
```

```
df = df.drop(['diagnosis_date','end_treatment_date'],axis=1)

df.info()
df.head()
```

 \rightarrow <class 'pandas.core.frame.DataFrame'> RangeIndex: 80733 entries, 0 to 80732 Data columns (total 15 columns): Column Non-Null Count Dtype 0 80733 non-null int8 age 80733 non-null int8 1 gender 2 country 80733 non-null object 3 category 80733 non-null cancer stage family history 80733 non-null 4 int8 5 smoking status 80733 non-null category 6 80733 non-null float64 cholesterol level 80733 non-null float64 hypertension 80733 non-null int8 asthma 80733 non-null int8 10 cirrhosis 80733 non-null int8 11 other cancer 80733 non-null int8 12 treatment type 80733 non-null category 13 survived 80733 non-null int8 80733 non-null 14 treatment time int64 dtypes: category(3), float64(2), int64(1), int8(8), object(1) memory usage: 3.3+ MB age gender country cancer stage family history smoking status bmi 64 0 0 Passive Smoker 29.4 Sweden Stage I 1 50 Netherlands Passive Smoker Stage III 1 41.2 2 65 Hungary Stage III Former Smoker 44.0 3 Stage I Passive Smoker 51 Belgium 0 43.0 37 Luxembourg Stage I 0 Passive Smoker 19.7

```
from sklearn.preprocessing import LabelEncoder
import pandas as pd

le = LabelEncoder()
df['cancer_stage'] = le.fit_transform(df['cancer_stage'])

df = pd.get_dummies(df, columns=['smoking_status', 'treatment_type'], drop_firs

df.head()
```


	age	gender	country	cancer_stage	family_history	bmi	cholesterol_le
0	64	0	Sweden	1	1	29.4	19
1	50	1	Netherlands	3	1	41.2	28
2	65	1	Hungary	3	1	44.0	26
3	51	1	Belgium	1	0	43.0	24
4	37	0	Luxembourg	1	0	19.7	17
5 rc	ws × 2	21 columns	3				

```
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
sns.histplot(df, x="age", binwidth=3, edgecolor="white", element="bars", kde=Tr
axes[0].set_title("Age of patients")
sns.histplot(df["bmi"], bins=30, edgecolor="white", kde=True, ax=axes[1])
axes[1].set_title("BMI Distribution of patients")
sns.histplot(df["cholesterol_level"], bins=30, edgecolor="white", kde=True, ax=axes[2].set_title("Cholestrol Level of patients")
plt.tight_layout()
fig.show()
```



```
if len(cols) < len(axes):
    fig.delaxes(axes[-1]) # Remove unused subplot

plt.tight_layout()
plt.show()</pre>
```



```
category = ['gender', 'cancer_stage',
            'family_history']
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
for ax, col in zip(axes.flatten(), category):
    sns.countplot(data=df, x=col, ax=ax, color="#4682A9")
    for p in ax.patches:
        height = p.get_height()
        ax.annotate(f'{int(height)}',
                    (p.get_x() + p.get_width() / 2, height),
                    ha='center', va='bottom', fontsize=9)
    ax.set title(f'Count of {col}')
    ax.tick_params(axis='x', rotation=45)
axes_flat = axes.flatten()
if len(category) < len(axes_flat):</pre>
    for i in range(len(category), len(axes_flat)):
        fig.delaxes(axes_flat[i])
plt.tight_layout()
plt.show()
```


ProjectLungCancer.ipynb - Colab 30/08/25, 10:00 PM

df_model=df.copy()

```
scaler = StandardScaler()
diff_unit = ["age", "bmi", "cholesterol_level", "treatment_time"]
df_model[diff_unit] = scaler.fit_transform(df_model[diff_unit])
df_model.head()
```


,		age	gender	country	cancer_stage	family_history	bmi	choles
	0	0.905526	0	Sweden	1	1	-0.130941	
	1	-0.497094	1	Netherlands	3	1	1.277710	
	2	1.005713	1	Hungary	3	1	1.611967	
	3	-0.396906	1	Belgium	1	0	1.492590	
	4	-1.799526	0	Luxembourg	1	0	-1.288901	
	5 rc	ows × 21 colu	ımns					

corr = df_model.corr(numeric_only=True)
print(corr)

```
\rightarrow
                                                gender
                                                         cancer_stage \
                                         age
    age
                                    1.000000 -0.002221
                                                            -0.003801
                                   -0.002221 1.000000
                                                            -0.000489
    gender
    cancer_stage
                                   -0.003801 - 0.000489
                                                             1.000000
    family_history
                                    0.002229 0.003749
                                                            -0.002629
    bmi
                                    0.002007 -0.000582
                                                            -0.001202
    cholesterol_level
                                    0.002242 0.002760
                                                            -0.002119
    hypertension
                                    0.000134 0.002087
                                                             0.008178
    asthma
                                   -0.002869 -0.001366
                                                            -0.005568
    cirrhosis
                                   -0.004315 -0.001532
                                                            -0.005262
    other_cancer
                                    0.003551 0.001887
                                                             0.003934
    survived
                                    0.002426 -0.005908
                                                             0.001805
    treatment_time
                                    0.000596 -0.006978
                                                            -0.289022
    smoking status Former Smoker
                                   -0.007115 -0.002232
                                                            -0.007114
    smoking status Never Smoked
                                   -0.001931
                                              0.004712
                                                             0.003873
    smoking_status_Passive Smoker
                                    0.006795 0.002114
                                                             0.003497
    smoking_status_Unknown
                                   -0.002807 -0.003511
                                                            -0.007879
    treatment_type_Combined
                                   -0.000393 0.002451
                                                            -0.004990
    treatment_type_Radiation
                                    0.005471 - 0.003039
                                                             0.001206
    treatment_type_Surgery
                                    0.001156 -0.002190
                                                             0.000802
    treatment_type_Unknown
                                   -0.002807 -0.003511
                                                            -0.007879
                                    family_history
                                                              bmi
                                                    2.007202e-03
                                          0.002229
    age
    gender
                                          0.003749 -5.820157e-04
    cancer_stage
                                         -0.002629 -1.201590e-03
```

```
family history
                                     1.000000 -1.065642e-03
bmi
                                    -0.001066 1.000000e+00
cholesterol_level
                                    -0.000358 7.480522e-01
hypertension
                                    -0.004445
                                               2.758397e-03
                                    -0.005626 -3.059462e-04
asthma
                                     0.003925 1.329084e-03
cirrhosis
other cancer
                                    -0.000724 -2.268058e-03
survived
                                    -0.004931 - 4.734229e - 03
treatment_time
                                    -0.003118 -4.295175e-03
smoking_status_Former Smoker
                                     0.003670 -4.723461e-03
smoking_status_Never Smoked
                                     0.001097 6.496740e-04
smoking_status_Passive Smoker
                                    -0.005782 4.918737e-04
smoking_status_Unknown
                                    -0.003513 - 9.354595e - 19
treatment_type_Combined
                                     0.001464 3.749931e-03
treatment_type_Radiation
                                    -0.004656 -6.339500e-03
treatment_type_Surgery
                                     0.002839 6.018004e-05
treatment_type_Unknown
                                    -0.003513 -9.354595e-19
```

	cholesterol_level	hypertension asthma
age	2.242015e-03	0.000134 -0.002869
gender	2.760413e-03	0.002087 -0.001366
cancer_stage	-2 . 119179e-03	0.008178 -0.005568
family_history	-3.579847e-04	-0.004445 -0.005626
bmi	7.480522e-01	0.002758 -0.000306
cholesterol_level	1.000000e+00	0.000446 -0.001701
hypertension	4.455175e-04	1.000000 0.103190
asthma	-1.700743e-03	0.103190 1.000000
cirrhosis	-1.288772e-03	0.097863 0.055177
other_cancer	-3.940041e-03	0.074388 0.036185
survived	-2.410907e-03	-0.001534 0.003804
treatment_time	-5.801593e-03	-0.013976 -0.001586
smoking_status_Former Smoker	-6.157001e-03	-0.000170 0.004439

```
plt.figure(figsize=(20,15))
sns.heatmap(corr, annot=True)
plt.show()
```



```
one_hot_columns = [
    'gender',
    'family_history',
]

df_encoded = pd.get_dummies(df_model[one_hot_columns], drop_first=False)

df_encoded = df_encoded.replace({True: 1, False: 0}).astype(int)
```

```
30/08/25, 10:00 PM
from sklearn.model_selection import train_test_split
# Define features (X) and target (y)
X = df model.drop('survived', axis=1)
y = df model['survived']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randon
print("Training set shape:", X_train.shape)
print("Testing set shape:", X_test.shape)
\rightarrow Training set shape: (64586, 20)
    Testing set shape: (16147, 20)
from imblearn.over sampling import SMOTE
# Apply SMOTE only to the training data
smote = SMOTE(random state=42)
X_train_smote, y_train_smote = smote.fit_resample(X_train.select_dtypes(include)
print("Shape of training data after SMOTE:", X_train_smote.shape)
print("Distribution of 'survived' in training data after SMOTE:")
print(y_train_smote.value_counts())
    Shape of training data after SMOTE: (100624, 11)
    Distribution of 'survived' in training data after SMOTE:
    survived
         50312
     1
         50312
    Name: count, dtype: int64
# Initialize models
log reg = LogisticRegression(max iter=1000, random state=42)
rf_clf = RandomForestClassifier(random_state=42)
xgb clf = XGBClassifier(random state=42)
models = {
    "Logistic Regression": log_reg,
```

```
"Random Forest": rf_clf,
    "XGBoost": xgb_clf
}
accuracy scores = {}
# Train and evaluate models
for name, model in models.items():
```

```
print(f"Training {name}...")
model.fit(X_train_smote, y_train_smote)
y_pred = model.predict(X_test.select_dtypes(include=np.number))
report = classification_report(y_test, y_pred, output_dict=True)
accuracy = report['accuracy']
accuracy_scores[name] = accuracy
print(f"Evaluation for {name}:")
print(classification_report(y_test, y_pred))
print("-" * 30)
```

→ Training Logistic Regression...

Evaluation for Logistic Regression:

	precision	recall	f1-score	support
0 1	0.77 0.21	0.38 0.60	0.51 0.32	12578 3569
accuracy macro avg weighted avg	0.49 0.65	0.49 0.43	0.43 0.41 0.46	16147 16147 16147

Training Random Forest...

Evaluation for Random Forest:

LVacaacion		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	pre	ecision	recall	f1-score	support
(0	0.78	0.85	0.82	12578
	1	0.23	0.16	0.19	3569
accurac	У			0.70	16147
macro av	g	0.51	0.51	0.50	16147
weighted av	g	0.66	0.70	0.68	16147

Training XGBoost...

Evaluation for XGBoost:

Lvatuation	101	precision	recall	f1-score	support
	0 1	0.78 0.24	0.95 0.06	0.86 0.09	12578 3569
accura macro a weighted a	vg	0.51 0.66	0.50 0.75	0.75 0.47 0.69	16147 16147 16147

30/08/25, 10:00 PM ProjectLungCancer.ipynb - Colab

```
# Plot the accuracy of the models
plt.figure(figsize=(10, 6))
sns.barplot(x=list(accuracy_scores.keys()), y=list(accuracy_scores.values()), pa
plt.title("Accuracy of Different Models")
plt.ylabel("Accuracy")
plt.ylim(0, 1)
plt.show()
```


