Chapitre 1

La logique

1.1 Algèbre booléenne

Ex. 1 — Identifier dans les phrases suivantes les propositions et leur valeur de vérité.

- a. $10_b + 11_b = 101_b$ (indice b indique un nombre en binaire)
- b. $D_x = 1010$ (l'indice x indique un nombre en hexadécimal)
- c. Nintendo est une entreprise multinationale japonaise fondée en 1889.
- d. C'est très important.
- e. Dennis Ritchie est un des pionniers de l'informatique moderne, inventeur du langage C et codéveloppeur de Unix.
- f. John Von Newmann, quel génie!
- g. Il est plus important d'étudier en mathématique qu'en physique.
- h. Steeve Job était-il un génie?

Ex. 2 — Soit les propositions suivantes :

L: Larry a faim.

H: Il y a 12 hot-dogs au réfrigérateur.

Écrire en langage courant les propositions suivantes :

a.
$$\neg L$$
 e. $L \wedge H$
b. $\neg H$ f. $H \vee \neg H$
c. $L \rightarrow \neg H$ g. $(L \vee H) \wedge \neg (L \wedge H)$
d. $H \rightarrow \neg L$ h. $(L \wedge \neg H) \vee (\neg L \wedge H)$

Ex. 3 — Soit les propositions suivantes :

B: Bob réussit son examen.

W : La sortie de Warhammer 40,000 : Darktide est reportée.

Écrire les phrases suivantes en utilisant **B** et **W** et les opérateurs logiques $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$

- a. Bob ne réussit pas son examen.
- b. Bob ne réussit pas son examen et la sortie de Warhammer 40,000 : Darktide n'est pas reportée.
- c. Bob réussit son examen seulement si la sortie de $Warhammer\ 40,000: Darktide$ est reportée.
- d. Bob ne réussit pas son examen ou la sortie de sortie de Warhammer 40,000 : Darktide est reportée.
- e. Le report de la sortie de Warhammer 40,000 : Darktide est une condition nécessaire et suffisante pour que Bob réussisse son examen.
- f. Bob ne réussit pas son examen lorsque la sortie de Warhammer 40,000 : Darktide n'est pas reportée.

- g. Si Bob réussit son examen alors Warhammer 40,000 : Darktide sortira à temps ou pas.
- h. Le report de la sortie de Warhammer 40,000 : Darktide est équivalent à la réussite de l'examen par Bob.

$\mathbf{Ex.}\ \mathbf{4}$ — Soit les propositions suivantes :

 ${f B}$: Bruce a ses raquettes.

N: Il y a de la neige.

Écrire les phrases suivantes en utilisant \mathbf{B} et \mathbf{N} et les opérateurs logiques $(\neg, \wedge, \vee, \rightarrow, \leftrightarrow)$

- a. S'il y a de la neige, alors Bruce a ses raquettes.
- b. Il y a de la neige et Bruce a ses raquettes.
- c. Il y a de la neige ou Bruce a ses raquettes.
- d. Il n'arrive jamais que Bruce n'a pas ses raquettes et qu'il y ait beaucoup de neige.
- e. Bruce a ses raquettes, mais il n'y pas beaucoup de neige.
- f. Quand Bruce a ses raquettes, c'est qu'il y a de la neige.
- g. Il est suffisant qu'il y ait de la neige pour que Bruce ait ses raquettes.
- h. Bruce a ses raquettes chaque fois qu'il neige.

Ex. 5 — Dans chacun des cas suivants, selon le contexte, indiquer s'il s'agit d'une disjonction (\lor) ou d'une disjonction exclusive (\oplus) .

- a. Au restaurant vous devez choisir thé ou café.
- b. Pour arracher un clou, il faut un marteau ou un pied-de-biche.
- c. On peut payer son nouvel ordinateur en argent ou par crédit.
- d. Pour faire de l'ombre, il faut planter un érable ou un chêne.
- e. Pour avoir accès à internet, il faut un accès filaire ou sans-fil.
- f. Un programme peut être développé en Java ou en C#.

Ex. 6 — Pour chacune des phrases suivantes, écrire la réciproque et la contraposée.

- a. Si tu fais du sport, alors tu es plus en santé.
- b. Il est nécessaire qu'une personne étudie pour réussir un cours de mathématique.
- c. Il est suffisant d'étudier pour réussir un cours de mathématique.
- d. Si le travail était une si magnifique chose, les riches en auraient gardé plus pour eux.

 $\mathbf{Ex.}\ 7$ — Construire la table de vérité des propositions suivantes :

a.
$$p \rightarrow (q \lor r)$$
 e. $(q \oplus r) \leftrightarrow p$
b. $(p \rightarrow q) \lor r$ f. $(p \leftrightarrow r) \oplus \neg q$
c. $p \land (p \rightarrow q)$ g. $(p \rightarrow q) \leftrightarrow (q \rightarrow p)$
d. $(p \land q) \rightarrow (p \lor q)$ h. $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

1.2 Équivalence

Propriétés des opérateurs logiques

1.2. ÉQUIVALENCE

า	

$p \land V \equiv p$ $p \lor F \equiv p$	Identité
$p \land F \equiv F$ $p \lor V \equiv V$	Domination
$p \land p \equiv p$ $p \lor p \equiv p$	Idempotence
$\neg(\neg p)$	Double négation
$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	Commutativité
$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$	associativité
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributivité
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan
$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv q$	Absorbotion
$p \land \neg p \equiv F$ $p \lor \neg p \equiv V$	Simplification

 $\mathbf{Ex.~8}$ — Utiliser des tables de vérité afin de vérifier que les expressions suivantes sont équivalentes.

a.
$$\neg (p \land \neg q) \Leftrightarrow \neg p \lor q$$

b.
$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

Ex. 9 — Identifier parmi les propositions suivantes les contradictions, les tautologies et les contingences.

a.
$$(p \land q) \rightarrow (p \rightarrow q)$$

d.
$$\neg (p \land q) \rightarrow \neg q$$

b.
$$p \land q \lor p$$

e.
$$\neg (p \land q) \land \neg q$$

c.
$$\neg (p \lor q) \land q$$

f.
$$(p \lor q) \to \neg (\neg p \land q)$$

Ex. 10 — Donner une expression de s sous forme canonique en fonction de p,q,r respectant les tables de vérité suivantes :

	p	q	s
	V	V	V
a.	V	F	F
	F	V	V
	F	F	F

	p	q	r	s
	V	V	V	F
	V	V	F	F
	V	F	V	V
b.	V	F	F	F
	F	V	V	V
	F	V	F	F
	F	F	V	F
	F	F	F	V

				O1
	р	q	r	s
	V	V	V	F
	V	V	F	V
	V	F	V	F
c.	V	F	F	F
	F	V	V	V
	F	V	F	F
	F	F	V	V
	F	F	F	V
	р	q	r	s
	V	V	V	V
	V	V	F	V
d.	V	F	V	V
	V	F	F	V
	F	V	V	F
	F	V	F	V
	F	F	V	V
	F	F	F	V

Ex. 11 — Démontrer les équivalences suivantes en utilisant les propriétés des opérateurs logiques.

a.
$$\neg (p \land q) \lor \neg (\neg q \land r) \Leftrightarrow V$$

$$p \lor (\neg q \land \neg r)$$

a.
$$\neg (p \land q) \lor \neg (\neg q \land r) \Leftrightarrow V$$
 $p \lor (\neg q \land \neg r)$
b. $\neg ((\neg p \land q) \lor (r \land \neg p)) \lor ((p \land q) \lor (p \land \neg q)) \Leftrightarrow$ c. $(p \land \neg q) \lor \neg (\neg p \lor \neg q) \lor (\neg p \land q) \Leftrightarrow (p \lor q) \Leftrightarrow p \lor q$

c.
$$(p \land \neg q) \lor \neg (\neg p \lor \neg q) \lor (\neg p \land q) \Leftrightarrow (p \lor q) \Leftrightarrow p \lor q$$

Ex. 12 — Donner une expression de s simplifiée en fonction de p,q,r en utilisant seulement les opérateurs \neg, \wedge, \lor .

	p	q	r	s
	V	V	V	F
	V	V	F	F
	V	F	V	V
a.	V	F	F	F
	F	V	V	F
	F	V	F	V
	F	F	V	V
	F	F	F	F
	p	q	r	s
	V	V	V	F
	V	V	F	F
	V	F	V	V
b.	V	F	F	V
	F	V	V	F
	F	V	F	V
	F	F	V	F
	F	F	F	F

	p	q	r	s
	V	V	V	V
	V	V	F	F
	V	F	V	F
c.	V	F	F	V
	F	V	V	V
	F	V	F	F
	F	F	V	F
	F	F	F	V
	p	q	r	s
	V	V	V	F
	V	V	F	V
	V	F	V	F
d.	V	F	F	V
	F	V	V	V
	F	V	F	F
	F	F	V	F
	1	_		
	F	F	F	V

Ex. 13 — Démontrer que les propositions suivantes sont équivalentes en utilisant les propriétés.

- a. $(p \land q) \lor (p \land \neg q) \Leftrightarrow p$
- b. $p \land (p \lor q) \land (p \lor \neg q) \Leftrightarrow p$
- c. $(p \lor q) \land \neg (p \lor \neg q) \Leftrightarrow q \land \neg p$

Ex. 14 — Démontrer que non (\neg) et ou (\lor) forme un ensemble d'opérateurs logiques fonctionnellement complet.

1.3 Quantificateur

Ex. 15 — Écrire la négation des propositions suivantes en langage courant.

- a. Tous les étudient l'examen de mathématique.
- b. Aucun étudiant n'a obtenu 100%.
- c. Certains étudiants réussissent l'examen de mathématique.

- d. Chaque étudiant a au moins un ordinateur.
- e. Il y a un langage que tous les étudiants connaissent.

Ex. 16 — Écrire les énoncés demandés à partir des deux fonctions propositionnelles suivantes :

- -E(x): x est un étudiant d'info.
- -G(x): x est un gamer.
- a. Il y a des étudiants d'info qui sont des gamers.
- b. Tous les étudiants d'info sont des gamers.
- c. Seuls les étudiants d'info sont des gamers.
- d. Aucun étudiant d'info n'est un gamer.
- e. Tout le monde est un gamer et un étudiant d'info.
- f. Les gens sont étudiants d'info ou gamer.

Ex. 17 — Soit la fonction propositionnelle A(x,y): x aime y. Exprimer les énoncés suivants à l'aide des quantificateurs.

- a. Tout le monde aime Chris.
- b. Tout le monde aime quelqu'un.
- c. Il y a quelqu'un que tout le monde aime.
- d. Personne n'aime tout le monde.
- e. Il y a quelqu'un que personne n'aime.
- f. Chaque personne s'aime.
- * g. Il y a exactement une personne que tout le monde aime.
- * h. Il y a exactement deux personnes qui aiment Chris.
- * i. Il y a une personne qui n'aime qu'elle-même.

Ex. 18 — Lewis Caroll (Charles Lutwidge Dodgson), un professeur de Christ Church, écrivit sous le nom de plume Lewis Caroll

les romans « Les Aventures d'Alice au pays des merveilles » (1865) et sa suite : « De l'autre côté du miroir » (1871). Mais il écrivit également des manuels scolaires sur la logique. Dans l'un d'eux, il présente les problèmes suivants :

- a. (problème #12) Dans une savane remplie d'animaux divers, soit les propositions suivantes :
 - Tous les lions sont féroces.
 - Certains lions ne boivent pas de café.
 - Certaines créatures qui boivent du café ne sont pas féroces.

Soit les fonctions propositionnelles suivantes :

- L(x): x est un lion.
- F(x): x est féroce.
- C(x): x boit du café.

Exprimer les trois propositions en utilisant ces fonctions propositionnelles.

- b. Soit les propositions suivantes :
 - Tous les petits oiseaux ont des couleurs vives.
 - Aucun gros oiseau ne mange de miel.
 - Les oiseaux qui ne mangent pas de miel ont des couleurs fades.

Soit les fonctions propositionnelles suivantes :

- P(x): x est un petit oiseau.
- M(x): x mange du miel.
- V(x): x a des couleurs vives.

Exprimer les trois propositions en utilisant ces fonctions propositionnelles.

Ex. 19 — Pour chacun des exemples suivants, déterminer la valeur de vérité de $\forall x \forall y, \ \forall x \exists y, \ \exists x \forall y \ \text{et} \ \exists x \exists y$

- $\bullet\; x+y=4$
- $\bullet\; x-y=4$
- $\bullet xy = yx$
- $\bullet \ x + y = y$
- $\bullet (x+3)(y-2) = 0$
- $\bullet x^2 + y^2 + 1 = 0$