

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 3

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Pushdown Automata	7.1	1-17

Extra Questions

- 1. Create a PDA that recognizes the following context free languages: $L = \{a*wc^k \mid w \in \{a,b\}^* \text{ and } k = |w|_a \text{ (k = the number of a's in w)}\}$
- 2. Construct a PDA for the language of all non palindromes over {a,b}.
- 3. Consider the language $L = \{a^nba^n \mid n \ge 0\}$. Design the deterministic pushdown automata that recognizes the language.
- 4. Construct a PDA for the language over $\{a,b,c\}$ L = $\{ucv:u,v \in \{a,b\}^*, u \neq v\}$.
- 5. Construct a PDA for the language over $\{a,b,c\} L = \{w \in \{a,b,c\}^* \mid 2.\#_a(w) \le \#_b(w) \le 3.\#_c(w)\}.$
- 6. Construct a PDA for the language over $\{a,b,c\}$ L = $\{ucv \mid u,v \in \{a,b\}^*,u \neq v \text{ but } |u| = |v|\}$.
- 7. a^nbab^n , n > 0. Make sure that the PDA is deterministic
- 8. $a^n b^m c^k$ where 2n = m and $k \ge 2$. Make sure that the PDA is deterministic.
- 9. Construct a PDA for the language $L = a^nb^m$ where $m = n \mod 3$. How much stack memory do you need to handle this language?
- 10. The language of subtraction, that is, strings of the form $a^nb^mc^k$ where k=n-m if n-m or else k=m-n. Show an accepting sequence of configurations for the input aaabbbcc. Show the rejecting sequence of configurations for the input aaaabbccc.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- 11.Construct a PDA for the language $\{w \in \{a,b\}^*: P(w)\}$, where P(w) is the property:
 - a. |w| is odd and the middle symbol of w is b.
 - b. w starts and ends with the same symbol.
- $12.a^{n}b^{m}$ where m = n x 3. Make sure that the PDA is deterministic.
- 13. Design a PDA to accept the language is the set of all strings of 0's and 1's such that no prefix has more 1's than 0's.
- 14.aⁿb^m where n is a multiple of 3 and m is n/3. Make sure that the PDA is deterministic.
- 15. Construct a PDA for the language over $\{a,b,c\}$ L = $\{ab(ab)^n(ba)^n|n \in \mathbb{N}\}$.
- 16. Construct a PDA that recognizes the language $\{a^{2n}b^n | n \ge 0\}$ over $\Sigma = \{a,b\}$.
- 17.Proper nesting of parentheses and flower brackets. For example, $\{(())()\{\{()\}\}\}\}$. Show how it rejects $\{()\{\{(\})\}\}$.
- $18.a^nb^na^mb^m$, $n \ge 0$, $m \ge 0$. Show, along with two different accepting sequences of configurations, how non-determinism works to accept the string aaabbb in two different ways.
- 19. aⁿb^ma^mbⁿ. Can this be a deterministic PDA? Explain.
- 20. Consider the following PDA:

- a. Show that the PDA accepts the string aaadbabacc.
- b. Which language L does the given PDA accept?