Comparateurs : applications pratiques

Application pratique hyst1

Sur la base de réflexions et de calculs théoriques, répondez aux questions suivantes concernant le schéma ci-contre :

Quel est le nom du circuit réalisé autour de U1 ?

Schéma du Circuit 1 :

Quelle condition la tension $U_{\rm e}$ doit-elle remplir afin que la LED D_1 soit allumée ?

Quelle condition la tension $U_{\rm e}$ doit-elle remplir afin que la LED D_1 soit éteinte ?

Dessinez la caractéristique de transfert théorique U_s = $f(U_e)$:

Résumez le comportement théorique de la LED D_1 en fonction de la tension d'entrée $U_{\rm e}$:

Hystérèse.docx Page: 1/5

Schéma de mesure :

Le générateur de fonctions G_1 réglé comme ceci est équivalent à une source de tension DC.

A l'aide du potentiomètre P_1 , on peut faire varier la tension DC d'entrée U_{eDC} entre 2 limites DC. On peut ainsi simuler le signal donné par le module du capteur lorsque la lumière naturelle varie. Calculez les valeurs théoriques minimale et maximale de U_{eDC} que P_1 permet de simuler :

Sur la base du schéma précédent, réalisez ce montage sur plaque d'expérimentation.

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

La LED D1 se comporte-t-elle réellement comme prévu théoriquement à la page 1 ?

Hystérèse.docx Page: 2/5

Schéma de mesure :

Modifiez les réglages du générateur de fonctions G_1 comme indiqué ci-dessus. Maintenant le générateur est équivalent à une source de tension DC sur laquelle on a ajouté du <u>bruit</u>. G_1 et P_1 simulent alors le signal donné par le module soumis à des parasites.

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

La LED D1 se comporte-t-elle réellement comme prévu théoriquement à la page 1 ?

A votre avis, d'où provient ce comportement ?

La LED D_1 symbolise l'éclairage public. Voyez-vous un problème de fonctionnement avec ce Circuit 1 ?

Hystérèse.docx Page: 3/5

Schéma du Circuit 2 :

Ajoutez au Circuit 1 la résistance R_1 comme ci-contre :

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

Que provoque la résistance R_1 ?

Hystérèse.docx Page: 4/5

On désire mesurer la caractéristique de transfert U_s = f(U_e) du Circuit 1 puis du Circuit 2 pour toute la plage de la tension d'entrée.

On pourrait relever point par point une succession de mesures statiques 1 en faisant varier manuellement U_{e} avec une alimentation de laboratoire et en mesurant Us avec un voltmètre, mais on peut aussi plus élégamment visualiser la caractéristique de transfert sur l'écran de l'oscilloscope en mode XY en mesure quasi-statique1. Cette mesure, de prime abord anodine, est cependant assez délicate et demande des réglages particuliers :

Il faut faire varier automatiquement Ue entre OV et 5V. Mais:

- Si Ue varie trop lentement, la trace ne sera pas visible sur l'oscillo, on ne verra qu'un point qui se déplace lentement.
- Si Ue varie trop rapidement, la vitesse de réaction limitée de l'AOP faussera la mesure (visible déjà à 400Hz, essayez !).
- Un bon compromis est de choisir la fréquence du signal à 25Hz.

Complétez ci-dessous le schéma de mesure nécessaire et donnez le réglage de tous les appareils :

S₁ ouvert = Circuit 1 S₁ fermé = Circuit 2

(LED D₁ enlevée)

Pour effectuer une bonne copie d'écran (c'est-à-dire une « photo instantanée » de l'écran), il faut que la trace « laisse une traînée » sur l'écran, il faut augmenter la persistance d'affichage : Bouton Display > Menu Persistence > choisir Variable persistence ; Menu Time > choisir 100ms.

Imprimez une copie d'écran de votre oscilloscope, mettez en évidence les valeurs particulières sur la copie d'écran imprimée, puis appelez, pour chaque mesure, le formateur afin qu'il puisse comparer l'affichage sur votre oscilloscope et votre impression sur papier.

Avec une échelle horizontale de 500mV/div, le phénomène à visualiser sur le Circuit 2 est de même ordre de grandeur que l'épaisseur de la trace, il n'est donc pas visible. Zoomez horizontalement à 50mV/div pour le voir. (Prenez une copie d'écran avec chaque échelle.)

Si vous deviez tout de même mesurer la caractéristique de transfert d'un comparateur à hystérèse manuellement point par point (mesure statique1), à quoi devriez-vous faire attention ?

Page: 5/5 Hystérèse.docx

¹ Voir extrait du glossaire d'électronique (p. 57, 28 et 45)