Makine Öğrenmesi ipuçları ve püf noktaları El Kitabı VIP

Afshine Amidi and Shervine Amidi

April 30, 2019

Seray Beşer, Ayyüce Kızrak ve Yavuz Kömeçoğlu tarafından çevrilmiştir

Sınıflandırma metrikleri

İkili bir sınıflandırma durumunda, modelin performansını değerlendirmek için gerekli olan ana metrikler aşağıda verilmiştir.

□ Karışıklık matrisi – Karışıklık matrisi, bir modelin performansını değerlendirirken daha eksiksiz bir sonuca sahip olmak için kullanılır. Aşağıdaki şekilde tanımlanmıştır:

Tahmini sınıf

+ TP False Negatives Gerçek sınıf FP TN False Negatives Type II error FP TN False Positives

Type I error

 $\hfill \Box$ Ana metrikler – Sınıflandırma modellerinin performansını değerlendirmek için aşağıda verilen metrikler yaygın olarak kullanılmaktadır:

True Negatives

Metrik	Formül	Açıklama
Doğruluk	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Modelin genel performansı
Kesinlik	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Doğru tahminlerin ne kadar kesin olduğu
Geri çağırma	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Gerçek pozitif örneklerin oranı
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Gerçek negatif örneklerin oranı
F1 skoru	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Dengesiz sınıflar için yararlı hibrit metrik

□ İşlem Karakteristik Eğrisi (ROC) – İşlem Karakteristik Eğrisi (receiver operating curve), eşik değeri değiştirilerek Doğru Pozitif Oranı-Yanlış Pozitif Oranı grafiğidir. Bu metrikler aşağıdaki tabloda özetlenmiştir:

Metrik	Formül	Eşdeğer
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Geri çağırma
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity

□ Eğri Altında Kalan Alan (AUC) – Aynı zamanda AUC veya AUROC olarak belirtilen işlem karakteristik eğrisi altındaki alan, aşağıdaki şekilde gösterildiği gibi İşlem Karakteristik Eğrisi (ROC)'nin altındaki alandır:

Regresyon metrikleri

 $\hfill\Box$ Temel metrikler – Bir fregresyon modeli verildiğinde aşağıdaki metrikler genellikle modelin performansını değerlendirmek için kullanılır:

Toplam karelerinin	Karelerinin toplamının	Karelerinin toplamından
toplamı	açıklaması	artanlar
$SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	

 \square Belirleme katsayısı – Genellikle R^2 veya r^2 olarak belirlien belirleme katsayısı, gözlemlenen sonuçların model tarafından ne kadar iyi kopyalandığının bir ölçütüdür ve aşağıdaki gibi tanımlanır:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

□ Ana metrikler – Aşağıdaki metrikler, göz önüne aldıkları değişken sayısını dikkate alarak regresyon modellerinin performansını değerlendirmek için yaygın olarak kullanılır:

Mallow's Cp	AIC	BIC	Adjusted R^2
$\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\Big[(n+2)-\log(L)\Big]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

burada L olabilirlik ve $\widehat{\sigma}^2$, her bir yanıtla ilişkili varyansın bir tahminidir.

Model seçimi

□ Kelime Bilgisi – Bir model seçerken, aşağıdaki gibi sahip olduğumuz verileri 3 farklı parçaya ayırırız:

Eğitim seti	Doğrulama seti	Test seti
- Model eğitildi - Genelde veri kümesinin %80'i	- Model değerlendirildi - Genelde veri kümesinin %20'si - Ayrıca doğrulama için bir kısmını bekletme veya geliştirme seti olarak da bilinir	- Model tahminleri gerçekleştiriyor -Görülmemiş veri

Model bir kere seçildikten sonra, tüm veri seti üzerinde eğitilir ve görünmeyen test setinde test edilir. Bunlar aşağıdaki şekilde gösterilmiştir:

□ Çapraz doğrulama – Çapraz doğrulama, başlangıçtaki eğitim setine çok fazla güvenmeyen bir modeli seçmek için kullanılan bir yöntemdir. Farklı tipleri aşağıdaki tabloda özetlenmiştir:

k-fold	Leave-p-out
- $k-1$ katı üzerinde eğitim ve geriye kalanlar üzerinde değerlendirme - Genel olarak $k=5$ veya 10	- $n-p$ gözlemleri üzerine eğitim ve kalan p üzerinde değerlendirme - Durum $p=1$ 'e bir tanesini dışarıda bırak denir

En yaygın olarak kullanılan yöntem k-kat çapraz doğrulama olarak adlandırılır ve k-1 diğer katlarda olmak üzere, bu k sürelerinin hepsinde model eğitimi yapılırken, modeli bir kat üzerinde doğrulamak için eğitim verilerini k katlarına ayırır. Hata için daha sonra k-katlar üzerinden ortalama alınır ve çapraz doğrulama hatası olarak adlandırılır.

□ Düzenlileştirme (Regularization) – Düzenlileştirme prosedürü, modelin verileri aşırı öğrenmesinden kaçınılmasını ve dolayısıyla yüksek varyans sorunları ile ilgilenmeyi amaçlamaktadır. Aşağıdaki tablo, yaygın olarak kullanılan düzenlileştirme tekniklerinin farklı türlerini özetlemektedir:

| LASSO | Bidge | Elaştic Net |

LASSO	Ridge	Elastic Net
- Değişkenleri 0'a kadra küçült - Değişken seçimi için iyi	Katsayıları daha küçük yap	Değişken seçimi ile küçük katsayılar arasındaki çelişki
$ \theta _1 \leqslant 1$	$ \theta _{2} \leq 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
	$ \dots + \lambda \theta _2^2 $ $ \lambda \in \mathbb{R} $	$ \dots + \lambda \left[(1 - \alpha) \theta _1 + \alpha \theta _2^2 \right] $ $ \lambda \in \mathbb{R}, \alpha \in [0, 1] $

Tanı

- \square Önyargı Bir modelin önyargısı, beklenen tahmin ve verilen veri noktaları için tahmin etmeye çalıştığımız doğru model arasındaki farktır.
- □ Varyans Bir modelin varyansı, belirli veri noktaları için model tahmininin değişkenliğidir.
- □ Önyargı/varyans çelişkisi Daha basit model, daha yüksek önyargı, ve daha karmaşık model, daha yüksek varyans.

	Underfitting	Just right	Overfitting
Belirtiler	- Yüksek eğitim hatası - Test hatasına yakın eğitim hatası - Yüksek önyargı	- Eğitim hatasından biraz daha düşük eğitim hatası	- Çok düşük eğitim hatası - Eğitim hatası test hatasının çok altında - Yüksek varyans
Regresyon			My
Sınıflandırma			
Derin öğrenme	Doğrulama Eğitim Epochs	Doğrulama Eğitim Epochs	Hata Doğrulama Eğitim Epochs
Olası çareler	- Model karmaşıklaştığında - Daha fazla özellik ekle - Daha uzun eğitim süresi ile eğit		- Düzenlileştirme gerçekleştir - Daha fazla bilgi edin

 $\hfill\Box$ Hata analizi
 – Hata analizinde mevcut ve mükemmel modeller arasındaki performans farkının temel nedeni analiz edilir.

 $\hfill\Box$ Ablatif analiz
 — Ablatif analizde mevcut ve başlangıç modelleri arasındaki performans farkının temel nedeni analiz edilir.