福宁古五校教学联合体 2023-2024 学年第二学期期中质量监测

高一数学试题答案

1. B 2. B 3. D 4. A 5. D 6. B 7. A 8. C

二、多项选择题

9. BD **10.** AC **11.** ACD **12.** ACD

三、填空题

13. 16

14. $\omega = 1 + i$ (答案不唯一,满足 $\omega = a + ai$ ($a \in \mathbb{R}$, a不为0)均可)

15.
$$\frac{\sqrt{7}}{14}$$

16. 0

四.解答题

17. 【答案】(1)
$$m = -\frac{3}{2}$$
 (2) [4,6)

$$= \frac{(m-6)+i(-2m-3)}{1^2+2^2} - 3$$

$$=\frac{(m-6)}{5}+\frac{(-2m-3)i}{5}\cdots \qquad 4 \$$

$$\therefore \frac{z_1}{z_2}$$
 是实数,所以 $-2m-3=0$, $m=-\frac{3}{2}$ …… 5 分

(2) $\frac{z_1}{z_2}$ 在复平面内对应的点在第三象限,

18. 【答案】(1)
$$\overrightarrow{OC} = 2\vec{a} - \vec{b}$$
 (2) $\frac{3}{4}$

$$\overrightarrow{DC} = \overrightarrow{OC} - \overrightarrow{OD} = \overrightarrow{OC} - \frac{2}{3}\overrightarrow{OB} = 2\overrightarrow{a} - \frac{5}{3}\overrightarrow{b}, \qquad 6 \text{ }$$

 $: \overrightarrow{OC} 与 \overrightarrow{OA} + k\overrightarrow{DC}$ 共线,

$$\begin{cases} 2 = \lambda(2k+1) \\ -1 = -\frac{5}{3}\lambda k \end{cases}, \qquad 10 \ \%$$
根据平面向量基本定理,得

19. 解:

(1) 若选^①

因为 $B \in (0,\pi)$,所以得

若选②

得
$$a^2+c^2-b^2=ac$$

得
$$\cos B = \frac{a^2 + c^2 - b^2}{ac} = \frac{1}{2}$$

因为
$$B \in (0,\pi)$$
, 所以

```
则 ac = 16. ……7 分
   又由 (1) 知b^2 = a^2 + c^2 - ac \ge 2ac - ac = ac = 16, ……9 分
   当a = c = 4 取"="············10 分
   b≥4, ······11分
20(1) 方法一:
 证明:连接A<sub>1</sub>C,交AC<sub>1</sub>于O,连接OD,
 所以 OD / /AB
 又OD 二平面ADC_1, AB_1 ⊄ 平面ADC_1
 方法二:
因为DN是平行四边形CC,B,B的中位线.
所以DN / /CC_1, DN = CC_1,
所以四边形ANDA是平行四边形.
所以A_1N/AD, 又A_1N \subset 平面ADC_1, AD \subset 平面ADC_1
所以AN//平面
因为C_1N//DB, C_1N=DB=\frac{1}{2}BC
所以四边形 C<sub>1</sub>NBD 是平行四边形
所以C_1D//BN,又C_1D\subset平面ADC_1,BN\not\subset平面ADC_1
所以BN / / 平面
ADC_1 \cdots \cdots 5
```

 $\bigvee A_1N \cap NB = N,BN,A_1N \subset \text{\overline{Y} in A_1NB}$

所以平面 A_1NB / / 平面 ADC_1 , A_1B \subset 平面 A_1NB

21【解析】

【小问1详解】

【小问2详解】

且
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$$
,所以 $0 \le \theta - \frac{\pi}{4} \le \frac{\pi}{4}$,

$$0 \le \sin\left(\theta - \frac{\pi}{4}\right) \le \frac{\sqrt{2}}{2}$$
, $\therefore 0 \le t \le 1$, $\cdots 10$

又因为函数 $y = t^2 + t + 1$ 在 $0 \le t \le 1$ 单调递增,

即
$$\sin\left(\theta - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
,则有 $\theta = \frac{\pi}{2}$,

22.【答案】(1)120° (2)
$$\lambda = \frac{3-\sqrt{3}}{3}$$

【详解】

(1) 在 *△ABC* 中,由余弦定理,

$$AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cos B, \qquad 1$$

(2) 设
$$\angle ACB = \alpha$$
,则 $\angle ACD = 120^{\circ} - \alpha$, $D = 30^{\circ} + \alpha$, $\angle CAB = 60^{\circ} - \alpha$,

在
$$\triangle ACD$$
 中,由正弦定理, $\frac{CD}{\sin \angle CAD} = \frac{AC}{\sin D}$,

两式作商,得

即
$$\sin(60^{\circ} + 2\alpha) = \frac{1}{2}$$
,因为 $\alpha \in (0^{\circ}, 120^{\circ})$,所以 $60^{\circ} + 2\alpha = 150^{\circ}$, $\alpha = 45^{\circ}$,

假设
$$S_1 = \lambda S_2$$
, 所以 $\frac{1}{2}AC \cdot BC \cdot \frac{\sqrt{2}}{2} = \lambda \cdot \frac{1}{2}AC \cdot DC \cdot (\frac{\cancel{b}}{2} \times \frac{\cancel{b}}{2} + \frac{1}{2} \times \frac{\cancel{b}}{2})$,