University of Waterloo CS 251 Midterm Exam Fall 2011

CS 251: Computer Organization & Design

Instructor: Elodie Fourquet and Stephen Mann

October 25, 2011

Start time: 4:30 PM. End Time: 6:20 PM.

Duration: 110 minutes

Number of exam pages (including this cover sheet): 12

CLOSED BOOK

Signature:	
0	

#	Points Possible	Score	Comments
1	8		
2	7		
3	6		
4	9		
5	6		
6	5		
7	6		
8	8		
Total	55		
Mark	100		

Directions

The instructor reserves the right to adjust the value of individual problems if they are deemed too hard or too easy.

If you need extra paper for a question, use the back of that question's page. If you need more paper beyond this, ask the proctors for blank pages. IT IS YOUR RESPONSIBILITY TO ENSURE THAT ANY EXTRA PAGES ARE STAPLED TO THIS EXAM.

1. (8 Points) Short Answer

(a) (2 pts) Give the *unreduced*, *minterm* expression for F based on the following truth table.

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(b) (2 pts) Circle the gate(s)/circuit(s) that are NOT equivalent to a NAND gate.

- (c) (1 pt) How many bits of information can one flip-flop store? Circle one.
 - (a) 0
- (b) 1
- (c) 4
- (d) 8
- (e) 16
- (f) 32
- (d) (1 pt) Label the value of the output of the following circuit:

(e) (2 pts) Draw a circuit for $F = A\bar{B} + BC + A\bar{C}$ using only NAND gates.

2. (7 Points)

In this question you are analyzing the following function F

$$F = \overline{A\overline{B} + \overline{A} + \overline{C}}$$

(a) (4 pts) Give the truth table for F and deduce the minimal expression for F.

A	В	С		F
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
			'	

$$F =$$

(b) (3 pts) Derive the truth table for the following circuit. Fill in for each label the intermediate gate outputs.

X	Y	A	В	\mathbf{C}	F
0	0				
0	1				
1	0				
1	1				

- 3. **(6 Points)**
 - (a) (1 pt) Negate the following number, expressed in 8-bit 2's complement representation.

0101 1010

(b) (2 pts) Compute the following bitwise logical operations.

01011110	1100 1110
XOR 0000 1111	OR 0000 1111

(c) (3 pts) Using 8-bit 2's complement **addition**, perform the following computations. You should take the 2's complement of any of the operands as needed. For each computation, circle if an overflow occured or not. Show your work.

$$1101 \ 0111$$
 $1010 \ 0111$ $+1011 \ 1101$ $-0101 \ 1010$

Overflow: $YES \setminus NO$ $YES \setminus NO$

4. (9 Points)

(a) (2 pts) Sign extend the following 4-bit 2's complement number to an 8-bit 2's complement number, and give the signed decimal value of the extended number.

1011

Given number:

Sign extension:

Signed Decimal:

(b) (2 pts) Draw the hardware to realize sign extension from a 4-bit 2's complement number, $B_3B_2B_1B_0$, to a 8-bit one, $C_7C_6C_5C_4C_3C_2C_1C_0$. Fill in how many gates are needed for this hardware.

Total Number of gates:

 B_3 —

 B_2 —

 B_1 —

 B_0 —

(c) (3 pts) Write the following number $-10.01_2 \times 2^3$ (the significant is given in binary form, while the exponent is in decimal) as a 32-bit, IEEE normalized floating point number with biased exponent. Show your work.

3	1 :	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
_																
	15	14	. 13	3 1	$2 1^{\circ}$	1 10) (8 (7	6	5	4	3	2	1	0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- (d) (2 pts) Circle the normalized binary floating point number that represents the value 5.625 (a decimal floating point).
 - (a) 1.0001×2^2
- (b) 1.010001×2^2
- (c) 101.101×2^0

- (d) 0.101011×2^2
- (e) 1.010001×2^0
- (f) 1.01101×2^2

- (g) 101.0001×2^0
- (h) 1.01011×2^2
- (i) 1.101011×2^0

5. (6 Points) A full subtractor is a combinational circuit which operates on three binary input digits, a, c and b_{in} . It computes as outputs the resulting difference, $r = a - c - b_{in}$ and a new borrow digit, b_{out} .

The truth table for a full subtractor is as follows:

a	c	b_{in}	b_{out}	r
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(a) (2 pts) Give a sum of minterms expression for b_{out} and r. Do **not** reduce this expression.

$$b_{out} =$$

$$r =$$

(b) (1 pt) The expression for r can be reduced significantly. Give a reduced form for r.

$$r =$$

(c) (3 pts) Connect a number of full subtractors to make a 4-bit subtractor unit that subtracts two 4-bit numbers $a_3a_2a_1a_0$ and $c_3c_2c_1c_0$, computing both the result $r_3r_2r_1r_0$ and its borrow out b_{out} . To build your 4-bit subtractor, use the following symbol FS as the full-substractor unit that performs 1-bit substraction for binary digits a and c with borrow in, b_{in} .

Be sure to label all inputs and outputs.

6. (5 Points) Consider the following next-state table and corresponding output table:

S_1	S_0	A	S_1'	S_0'
0	0	0	1	0
0	0	1	1	1
0	1	Χ	X	X
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	0

$$\begin{array}{c|cccc} S_1 & S_0 & B \\ \hline 0 & 0 & 0 \\ 0 & 1 & X \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

(a) (3 pts) Draw the finite state machine for this next state and output table pair.

(b) (2 pts) Complete the table below tracing the above finite state machine on a particular sequence of input bits A. Note that the Next State of one column is the Current State for the next column.

Current State	00					
\overline{A}	0	1	0	1	1	0
B						
Next State						

- 7. (6 Points) Below is the diagram for a 32-bit ALU. Modify this diagram to have the following three additional outputs. In the figure, label each output with the name given in bold in the question.
 - (a) (2 pts) **Positive**: This should be HIGH (1) when the output is strictly greater than 0.
 - (b) (2 pts) **Negative Even**: This should be HIGH (1) when the output is a negative even number.
 - (c) (2 pts) Multiple-of-4: This should be HIGH (1) when the output is a multiple of 4.

Name:	Student Number:

8. (8 Points) Consider the following assembly language instruction

5000: lw \$1,200(\$2)

You will find MIPS instruction formats on the last page of this exam.

In the figure on the next page, there are **eight** dark lines. On each line, write in the value that travels along the corresponding wires when executing this assembly language instruction. Note that all the marked wires are horizontal.

Assume that each register i (with i > 0) contains the decimal value 30 + i. In the data memory each address, a, contains the decimal value 40 + a.

Add

Instruction [31-0]

Read

address

Instruction

memory

Instruction [31 26]

Instruction [25 21]

Instruction [20 16]

Instruction [15 11]

Instruction [15 0]

Read

data

Data memory u x

⇒[0

Add $_{ m result}^{ m ALU}$ Shift PCSrc left 2 Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

ALU ALU

M u

X

ALU control result

→ Address

Write data

5000: lw \$1, 200(\$2)

Read register 1

Write

Instruction [5 0]

Read register 2 Registers Read data 2

Read data 1

Sign extend

11

MIPS and architecture details

(You may remove this page from your exam.)

• Instruction formats

Instruction	Action
add rd,rs,rt	R[rd] = R[rs] + R[rt]
lw rt, 50(rs)	R[rt] = M[rs + se 50]
sw rt, $50(rs)$	M[rs+se 50] = R[rt]
beq rs,rt,50	$if(R[rs]==R[rt])PC=PC+4+se\ 50\times4$