单片机控制 LED 点阵显示屏

周诗虎

(武汉职业技术学院计算机系 湖北 武汉 430074)

[摘 要]LED 点阵显示屏在现代商业广告或信息指示牌中得到广泛的应用。本人采用 AT89S52 单片机制作了一块 16*40 的 640 点阵 LED 显示屏。可用于滚动显示汉字信息。其实物照片见图 1。本文则以较为简单的 8*8 点阵 LED 显示屏为例,介绍动态滚动显示屏的基本工作原理。并以滚动显示英文 I LOVE YOU 为例,给出了硬件电路图和完整的汇编源程序。

【关键词】单片机;LED点阵显示屏;动态显示

LED 点阵显示屏在现代商业广告或信息指示牌中得到广泛的应用。图 1 实物照片是本人采用 AT89S52 单片机制作了一块 16*40 的640 点阵 LED 显示屏。可用于滚动显示汉字信息。本文则是以较为简单的8*8 点阵 LED 显示屏为例,介绍动态滚动显示屏的基本工作原理。并以滚动显示英文 I LOVE YOU 为例,给出了硬件电路图和完整的汇编源程序。

图 1

一、LG7088BH 8*8 点阵LED 显示屏引脚介绍。

LG7088BH 是一块 8*8 点阵的 LED 显示屏,共有 16 根引脚。当型号朝上并面对显示面时。下方 8 根引脚从左至右依次为 1 号引脚到 8 号引脚, 上方 8 根引脚从右至左依次为 9 号引脚到 16 号引脚。8*8 点阵可看作一个 8*8 矩阵。在矩阵的每一个交叉点均接有一个发光二极管。其行线接发光二极管正极,列线接发光二极管负极。在以下硬件电路图中,行线与 AT89S52 单片机的 P2 口 8 根引脚相连,列线与 AT89S52 单片机的 P1 U 8 根引脚相连。矩阵的 8 根行线 5 大级 5 大级 5 时期,行线 6 对应 2 号引脚,行线 4 对应 12 号引脚,行线 5 对应 1 号引脚,行线 6 对应 7 号引脚,行线 4 对应 12 号引脚,行线 8 对应 1 号引脚,行线 6 对应 7 号引脚,行线 7 对应 2 号引脚,约线 8 对应 5 号引脚。矩阵的 8 根列线与 LG7088BH的 8 根引脚对应关系为;列线 1 对应 13 号引脚,列线 5 对应 6 号引脚,列线 3 对应 4 号引脚,列线 4 对应 10 号引脚,列线 5 对应 6 号引脚,列线 6 对应 11 号引脚,列线 4 对应 10 号引脚,列线 8 对应 6 号引脚,列线 6 对应 11 号引脚,列线 7 对应 15 号引脚,列线 8 对应 16 号引脚,具体见图 2

LG7088BH: 行線正振列線金振

二、单片机控制 8*8 点阵 LED 显示屏硬件电路。

8*8 点阵的 LED 显示屏硬件电路如图 3 所示。图中单片机为 AT89S52.它是美国 Atmel 公司的产品。AT89S52 是一种低功耗、高性 能 CMOS8 位微控制器、具有 8K 在系统可编程 Flash 存储器。使用 Atmel 公司高密度非易失性存储器技术制造, 与工业 80C51 产品指令 和引脚完全兼容。在单芯片上,拥有灵巧的 8 位 CPU 和在系统可编程 Flash, 使得 AT89S52 为众多嵌入式控制应用系统提供高灵活、超有效 的解决方案。另外它还具有掉电后中断可唤醒、看门狗定时器、三级加 密程序存储器等功能。且 8K 字节在系统可编程 Flash 存储器有 1000 次的擦写周期。目前市场售价仅约8元人民币,性价比极高。图中 7805C 为+5V 三端稳压器。为整个电路提供+5V 电源。晶体三极管 9013 用于列线驱动,用以减轻 P1 口的负载。晶体二极管 IN5401 用于 输入电源保护,当误将输入电源接反时,D1 将处于截止状态,从而阻 止输入电源接入,对整个电路起到保护作用。根据行线接发光二极管 正极,列线接发光二极管负极。加之晶体三极管 9013 所反相作用。因 此当 P2.i 输出"1"时对应行发光二极管将亮。P1.i 输出"1"时对应列将 显示。

三、动态扫描显示英文 I LOVE YOU 的源程序。

该动态滚动显示屏采用列扫描方式。定时依次发出列扫描信号。 当第1列到第8列依次显示一次后,由于人眼的惰性,我们将看到一 帧完整的图象。至于各列的哪几个发光二极管亮,则由行输出信号决 定。而从右至左的滚动显示,则是采取每帧完整的图象显示 20 次后, 修改数据指针使其指向下一帧完整的图象的第一个数据。并重复以上 操作周而复始来实现的。具体源程序如下;

ORG 0000H

AJMP MAIN
ORG 000BH
AJMP CTCO
ORG 0030H
MAIN: MOV TMOD, #01H
MOV TLO, #18H
MOV THO, #0FCH
MOV E, #82H

(下转第 46 页)

融、印染、后整理阶段。

无论是屏蔽剂还是吸收剂都要具有耐光稳定性,对织物各项服用 性能无不良影响,并达到使用要求。

〇科教前沿〇

主要是通过浸渍或者涂层的方法将防紫外线添加剂附加到纺织 品上。包含两种:第一是在织物的整理加工过程中,使纤维或者织物附 着或吸收紫外线吸收剂;这种方法可进行小批量、多品种生产。得到的 防紫外线织物耐光性、耐洗涤牢度较差,且织物风格变化较小。第二是 格紫外线屏蔽剂和粘合树脂涂层于织物上。这种方法得到的防紫外线 织物耐洗涤、耐弯曲及摩擦牢度较差,同时存在一定的环境污染问题。 制成品手感变硬、透气性差,穿着闷热感。

3.1.5 其他因素

纺织品防紫外线性能的一般规律为:短纤织物优于长丝织物;加 工丝产品优于化纤原丝产品;细纤维织物比粗纤维织物好。湿衣服较 干衣服具有较低的紫外线透过率,湿衣服中的水分能够阻挡紫外线的 通过。

3.2 提高防紫外线织物的途径

综上可以看出提高防紫外线的途径:一是提高织物对紫外线的吸 收能力,可选用适当的纤维和用紫外线吸收剂整理来达到。此外,也可 选用合适的织物结构。另一种是提高织物对紫外线的反射能力,可以 选用适当的织物结构和用紫外线屏蔽剂。

4.防紫外线织物的发展

防紫外线织物的发展应追随国际市场的流行,当今国际市场织物 的流行趋势是采用新纤维与传统纤维的混纺或交织,以达到纤维原料 的优势互补,赋予织物新的外观与内在品质,以满足人们追求舒适、美 观,保健的要求。

目前防紫外线织物也应根据产品的最终用途、纱线细度、价格等 因素选择不同的天然纤维和化学纤维以及高性能纤维生产混纺纱、包 芯纱,花式纱线等,使织物同时具有两种以上的防护功能。此外,采用 多样化的加工手段,段染纱、玻璃丝,镂空手段的透孔效果,双轴织造 的立体花纹等等,后整理、透明涂层,针织与机织布的复合,麂皮绒轧 花,数码印花等等。以及遵循生态环保的生产,遵循绿色纺织的理念, 不仅包括原料的来源及使用后的可降解性,还涉及整个生产过程中使 用的染料,助剂,整理剂及废水排放等系统工程。

其次开发一些新型的天然防紫外线整理剂,如扇贝、沙棘油等中 提取的成分、经过天然防紫外整理剂加工的织物不仅具有防护功能, 还具有良好的免疫功能,真正做到了绿色纺织产品。

当今采用纳米、微胶囊等技术,对纤维或织物进行防紫外线处理, 使纺织品的防紫外性能更加优良持久。由于纳米微粒具有了量子尺寸 效应、小尺寸效应、表面效应和量子隧道效应等特性而展现出许多特 有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广 阔的应用前景。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、 光催化、吸收性能好、吸收紫外线能力强、表面活性大、热导性好、分散 性好、所制悬浮液稳定等优点,因此倍受关注。

另外单一产品已经不能满足要求,积极开发多种功能于一身的织 物,如吸湿排汗的防紫外线面料,具有自洁功能,可温控的防紫外线产 品。

5.结束语

近年来, 氟化物的排放使得地球上空臭氧层变薄, 局部出现空洞, 太阳活动也较为活跃,辐射较强,影响人们的身体健康,对人类生活及 生命造成危害。因此,提高纺织品的抗紫外线性能,减少紫外线辐射对 人体的损害为人心所向,有着广泛的发展前景。随着经济的发展,消费 水平的提高,防紫外线织物应用的领域将会越来越广。

【参考文献】

- [1]孟家光,王秀.纳米技术在纺织工业中的应用[J].西安工程科技学院学报, 2004, 18(4): 391~394.
- [2]尉霞,超拒水、防紫外线功能型织物的研究[D].天津工业大学,2006,4~16.
- [3] 蒋少军, 防晒织物的开发和应用, 广西纺织科技[J]. 2001, (4): 38-41.
- [4]吴军玲,崔淑玲,防紫外纺织品的性能测试,印染,2005,(5):41-43.
- [5]周立祥,邢建伟,苏开弟,棉织物防紫外线整理剂的制备及应用,北京纺织, 2005.(2):36-38.
- [6]万震,刘嵩,李克让.防紫外线织物的最新研究进展,印染,2002(1):42-44.

[责任编辑:韩铭]

(上接第80页)

SETB TRO

MOV R2, #01H: R2 暂存列扫描输出信号。

MOV A, R2

MOV P1. A

MOV DPTR, #TAB

MOV R3, #00H; R3 暂存查表指令 MOVC A,@A+DPTR 中的偏移量。

MOV A. R3

MOVC A, @A+DPTR ·

MOV P2, A

MOV R4, #00H; R4 为本帧显示次数计数器。

MOV RO, #82H; RO 作为地址指针指向 DPL,由 DPL 的取 值判是否已在显示最后帧。

SIMP \$

ORG 0100H

CTCO: MOV TLO, #18H

MOV THO, #OFCH

MOV P2, #00H; 关显示。

MOV A, R2

RL A

MOV R2, A

MOV P1, A;显示下一列。

MOV A, R3;修改偏移量,用于取本帧一下列的行数据。

CJNE A, #08, LOOP1; 本帧未显示完转移, 输出本帧下一 数据。

INC R4;本帧显示次数计数器加1。

CJNE R4, #20, LOOP; 本帧显示次数不足 20 次转移,从. 头输出本帧第一个行数据。

INC DPTR:本帧显示次数达20次,则修改数据指针,使其 指向下一帧的第一个数据。

MOV R4, #00H

MOV R5, DPL

CJNE R5, #44, LOOP; 显示未到最后一帧转移,显示下一 帧的第一个数据,

MOV DPTR, #TAB: 从第一帧开始重复显示。

LOOP: MOV R3, #00H

MOV A. R3

LOOP1: MOVC A. @A+DPTR

MOV P2. A

RETI

ORG 1000H

TAB:DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 82H,0FEH,82H,00H,00H,00H,0FEH,80H

DB 80H.80H.7CH.82H.82H.7CH.3EH.40H

DB 80H,40H,3EH,0FEH,92H,92H,92H,00H

DB 00H,00H,06H,08H,0F0H,08H,06H,7CH

DB 82H,82H,7CH,7EH,80H,80H,80H,7EH

DB 00H,80H,00H 😰

【参考文献】

- [1]丁志刚,李刚民编《单片微型计算机原理与应用》。电子工业出版社、
- [2]李玉峰,倪虹霞编著.《MCS-51 糸列单片机原理与接口技术》.人民邮电出版
- [3]王津,周卫华,朱华贵编,《单片机原理与应用》,重庆大学出版社,

[责任编辑:韩铭]