Substances with large decay constants have short half-lives. The relationship between half-life and decay constant is given in the equation below. A derivation of this equation is beyond the scope of this book, but it involves the natural logarithm of 2. Because $\ln 2 = 0.693$, this factor occurs in the final equation.

HALF-LIFE

$$T_{1/2} = \frac{0.693}{\lambda}$$

half-life =
$$\frac{0.693}{\text{decay constant}}$$

Consider a sample that begins with N radioactive nuclei. By definition, after one half-life, $\frac{1}{2}N$ radioactive nuclei remain. After two half-lives, half of these will have decayed, so $\frac{1}{4}N$ radioactive nuclei remain. After three half-lives, $\frac{1}{8}N$ will remain, and so on.

SAMPLE PROBLEM C

Measuring Nuclear Decay

PROBLEM

The half-life of the radioactive radium (226 Ra) nucleus is 5.0×10^{10} s. A sample contains 3.0×10^{16} nuclei. What is the decay constant for this decay? How many radium nuclei, in curies, will decay per second?

SOLUTION

1. DEFINE Given:

$$T_{1/2} = 5.0 \times 10^{10} \,\mathrm{s}$$
 $N = 3.0 \times 10^{16}$

Unknown:

$$\lambda = ?$$
 activity = ? Ci

2. PLAN Choose an equation or situation:

To find the decay constant, use the equation for half-life.

$$T_{1/2} = \frac{0.693}{\lambda}$$

The number of nuclei that decay per second is given by the equation for the activity of a sample.

activity =
$$\lambda N$$

Rearrange the equation to isolate the unknown:

The first equation must be rearranged to isolate the decay constant, λ .

$$\lambda = \frac{0.693}{T_{1/2}}$$