Kernel Methods in Machine Learning - Course Notes

Hugo Cisneros

1 Kernels and RKHS

1.1 Positive Definite Kernels

Definition ^{*}

A kernel K is a comparison function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

With n data point $\{x_1, x_2, ..., x_n\}$ a $n \times n$ matrix \mathbf{K} can be defined by $\mathbf{K}_{ij} = K(x_i, x_j)$. A kernel K is **positive definite** (p.d.) if it is **symmetric** (K(x, x') = K(x', x)) and for all sets of a and x

$$\sum_{i} \sum_{j} a_i a_j K(x_i, x_j) \ge 0$$

This is equivalent to the kernel matrix being **positive semi-definite**.

Examples:

- Kernel on $\mathbb{R} \times \mathbb{R}$ defined by K(x, x') = xx' is p.d. $(xx' = x'x \text{ and } \sum_i \sum_j a_i a_j K(x_i, x_j) = (\sum_i a_i x_i)^2 \ge 0$.
- Linear kernel $(K(x, x') = \langle x, x' \rangle_{\mathbb{R}^d})$ is p.d
- More generally for any set \mathcal{X} , and function $\Phi : \mathcal{X} \to \mathbb{R}^d$, the kernel defined by $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathbb{R}^d}$ is p.d.

Theorem 1: Aronszajn, 1950

K is a p.d. kernel on the set \mathcal{X} if and only if there exists a **Hilbert space** \mathcal{H} and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that, for any x, x' in \mathcal{X} :

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

(A Hilbert space is a vector space with an inner product and complete for the corresponding norm).

1.2 Reproducing Kernel Hilbert Spaces (RKHS)

Let \mathcal{X} be a set and $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ a class of functions forming a Hilbert space.

Definition 2: Reproducing kernel

A kernel K is called a **reproducing kernel** (r.k.) of \mathcal{H} if

 \bullet \mathcal{H} contains all functions of the form

$$\forall x \in \mathcal{X}, K_x : t \to K(x, t)$$

• For every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, $f(x) = \langle f, K_x \rangle_{\mathcal{H}}$

If there exists a r.k., \mathcal{H} is called a RKHS.

Theorem 2: Equivalent Definition of RKHS

 \mathcal{H} is a RKHS if and only if for any $x \in \mathcal{X}$, the mapping

$$F: \mathcal{H} \to \mathbb{R}$$

 $f \mapsto f(x)$

is continuous.

As a corollary, convergence in a RKHS implies point-wise convergence.

Proof 1: of Theorem 2

(⇒) If a r.k. exists in \mathcal{H} then for any $(x, f) \in \mathcal{X} \times \mathcal{H}$:

$$|f(x)| = |\langle f, K_x \rangle_{\mathcal{H}}|$$

$$\leq ||f||_{\mathcal{H}} \cdot ||K_x||_{\mathcal{H}}$$

$$\leq ||f||_{\mathcal{H}} \cdot K(x, x)^{\frac{1}{2}}$$
(Cauchy-Schwarz)

Therefore, $f \in \mathcal{H} \to f(x) \in \mathbb{R}$ is a linear continuous mapping because F is linear and $\lim_{f \to 0} F(f) = 0$

 (\Leftarrow) F is continuous, by the Riesz representation theorem: there exists a unique $g_x \in \mathcal{H}$ such that $f(x) = \langle f, g_x \rangle_{\mathcal{H}}$.

The function $K:(x,y)\mapsto g_x(y)$ is then a r.k. for \mathcal{H}

Theorem 3: Uniqueness of RKHS

If \mathcal{H} is a RKHS, it has a **unique r.k.**, and a function K can be **the r.k of at most one RKHS**.

Proof 2: of Theorem 3

(Uniqueness) If K and K' are two r.k. of a RKHS, then for any x

$$||K_x - K_x'||^2 = K_x(x) - K_x'(x) - K_x(x) + K_x'(x) = 0$$

So $K_x = K_X'$

Theorem 4

A function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is p.d. if and only if it is a r.k.

Proof 3: of Theorem 4

- (\Leftarrow) A r.k. is symmetric, and $\sum_{i,j} a_i a_j K(x_i, x_j) = \|\sum_i a_i K_{x_i}\|_{\mathcal{H}}^2 \ge 0$
- (\Rightarrow) Let \mathcal{H}_0 be the subspace spanned by the functions $(K_x)_{x\in\mathcal{X}}$. If $f=\sum_i a_iK_{x_i}$ and $g=\sum_j b_jK_{y_j}$. Let (not an inner product yet)

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} a_i b_j K(x_i, y_j)$$
$$= \sum_i a_i g(x_i)$$
$$= \sum_j b_j f(y_j)$$

 $(\langle f, g \rangle_{\mathcal{H}_0} \text{ does not depend on the expansion of } f \text{ or } g)$ For any $x \in \mathcal{X}$ and $f \in \mathcal{H}_0$, $\langle f, K_x \rangle_{\mathcal{H}_0} = f(x)$.

$$||f||_{\mathcal{H}_0}^2 = \sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$$

And since Cauchy-Schwarz is valid,

$$|f(x)| = |\langle f, K_x \rangle_{\mathcal{H}_0}| \le ||f||_{\mathcal{H}_0} \cdot K(x, x)^{\frac{1}{2}}$$

Therefore $||f||_{\mathcal{H}_0} = 0 \implies f = 0$. $\langle .,. \rangle$ is an inner product on \mathcal{H}_0 . For a Cauchy sequence $(f_n)_{n \geq 0}$,

$$|f_m(x) - f_n(x)| \le ||f_m - f_n||_{\mathcal{H}_0} \cdot K(x, x)^{\frac{1}{2}}$$

For any x the sequence $(f_n(x))$ is Cauchy in \mathbb{R} and therefore converges.

If the functions defined as the point-wise limits of Cauchy sequences are added \mathcal{H}_0 , it becomes a Hilbert space with K as r.k..

Proof 4: of Aronszajn's theorem

If K is p.d. over a set \mathcal{X} , it is the r.k. of a Hilbert space \mathcal{H} . The mapping Φ is defined by $\forall x \in \mathcal{X}$, $\Phi(x) = K_x$.

By the reproducing property

$$\forall (x,y) \in \mathcal{X}^2, \quad \langle \Phi(x), \Phi(y) \rangle_{\mathcal{X}} = \langle K_x, K_y \rangle_{\mathcal{X}} = K(x,y)$$

- 1.3 Examples
- 1.3.1 Linear Kernel
- 2 Kernel tricks
- 3 Kernel Methods: Supervised Learning
- 4 Kernel Methods: Unsupervised Learning
- 5 The Kernel Jungle
- 6 Open Problems and Research Topics