N.B.: dans ce qui suit, μ désigne la mesure de Lebesgue.

Fonctions intégrables

Exercice 1 Inégalité de Tchebychev

Soit f une fonction positive mesurable et a est un réel ≥ 0 , montrer que l'on a:

$$\mu(\{x \in X, f(x) \ge a\}) \le \frac{1}{a} \int_X f d\mu$$

Exercice 2 Démontrer que si f est intégrable sur \mathbb{R} , alors f est finie presque partout. Indication : Raisonner par l'absurde et considérer les ensembles :

$$A_k = \{ x \in \mathbb{R}; |f(x)| \ge k \}$$

pour k > 0.

Exercice 3 Existe-t-il une application g Lebesgue-intégrable sur \mathbb{R} telle que :

$$\forall n \in \mathbb{N} \text{ et } \forall x \in \mathbb{R}^*, ne^{-n|x|} < q(x)$$

Exercice 4

Soit f une fonction Lebesgue-intégrable sur [0,1]. La quantité suivante a-t-elle une limite lorsque α $(\alpha > 0)$ tend vers zéro :

$$I_{\alpha} = \int_{0}^{1} f(x) |\sin \frac{\pi}{x}|^{\alpha} d\mu$$

Exercice 5

- 1. $f \in L^1(\mathbb{R})$ et $a_n \to +\infty \Rightarrow \int_{[a_n,+\infty[} f d\mu \to 0$
- **2.** De même, si $f \in L^1(\mathbb{R}^N)$ et $a_n > 0, a_n \to +\infty \Rightarrow \int_{|x| \geq a_n} f d\mu \to 0$
- **3.** $f \in L^1(\mathbb{R}^N)$, $A_n \subset \mathbb{R}^N$ mesurable $A_{n+1} \subset A_n$ et $\mu(A_n) \to 0 \Rightarrow \int_{A_n} f d\mu \to 0$
- **4.** $A_n \subset \mathbb{R}^N$ mesurable, $A_n \subset A_{n+1}$, $A = \bigcup_n A_n$ Montrer que : $f \in L^1(\mathbb{R}) \Rightarrow \int_A f d\mu = \lim_n \int_{A_n} f d\mu$
- **5.** Si f est définie p.p. sur A, et que $A_n \subset A_{n+1}$, $A = \bigcup_n A_n$ montrez que l'on a : $f \in L^1(A)$ \iff $\sup_n \int_{A_n} |f| d\mu < +\infty$

Applications: Soit $f(x) = x^{\alpha}, x > 0, \alpha \in \mathbb{R}$

- Montrer que $f \in L^1(0,1) \iff \alpha > -1$
- Montrer que $f \in L^1(1, +\infty) \iff \alpha < -1$

Application des théorèmes de convergence

Exercice 6 Soit $f_n \in L^1(\Omega)$ ($\Omega \subset \mathbb{R}^N$ ouvert) telle que :

$$\sum_{n} \int_{\Omega} |f_n| d\mu < +\infty$$

Montrer qu'alors $\sum\limits_n f_n$ converge p.p sur Ω et

$$\sum_{n} \int_{\Omega} f_n d\mu = \int_{\Omega} \sum_{n} f_n d\mu$$

Exercice 7

1. Soit f une fonction positive, intégrable sur \mathbb{R} . Montrer que :

$$\sum_{n \in \mathbb{Z}} \int_0^1 f(x+n) d\mu = \int_{-\infty}^{+\infty} f(x) d\mu$$

2. En déduire que la série $\sum_{n \in \mathbb{Z}} f(x+n)$ converge pour presque toute valeur de x.

Exercice 8

1. Montrer la majoration suivante :

$$\forall x \in [0, \frac{\pi}{2}], \quad \ln(\cos x) \le -\frac{x^2}{2}$$

2. En déduire

$$\lim_{n \to +\infty} \sqrt{n} \int_0^{\pi/2} \cos^n x \ d\mu = \int_0^{+\infty} e^{-\frac{x^2}{2}} d\mu$$

Exercice 9

1. Soit p > -1 et $q \in \mathbb{N}$. Montrer

$$\lim_{n\to +\infty} \int_0^n x^p (\ln x)^q \left(1-\frac{x}{n}\right)^n d\mu = \lim_{n\to +\infty} \int_0^{+\infty} x^p (\ln x)^q e^{-x} d\mu$$

2. En déduire $\int_0^{+\infty} e^{-x} \ln x \ d\mu = \lim_{n \to +\infty} \left[\ln n - \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right) \right]$

Exercice 10 Soit f une fonction définie sur \mathbb{R} , périodique de période 2π , et intégrable sur $[0, 2\pi]$. Soit $A = \int_0^{2\pi} |f(x)| d\mu$.

- 1. On pose $\varphi_n(x) = \frac{f(nx)}{n^2}$. Calculer $\int_0^{2\pi} |\varphi_n(x)| d\mu$ en fonction de A. En déduire que la série $\sum_{n=1}^{\infty} \varphi_n(x)$ converge presque partout sur $[0, 2\pi]$.
- **2.** Montrer que la fonction $(\ln |\cos x|)^2$ est intégrable sur $[0, 2\pi]$. En déduire que la suite de fonctions $|\cos nx|^{1/n}$ converge presque partout vers 1.

Exercice 11 Soit $f(x) = \frac{\sin x}{|x|}$ et $f_{\lambda}(x) = e^{-\lambda |x|} \frac{\sin x}{|x|}$ ($\lambda > 0$). Montrer que f et f_{λ} appartiennent à $L^2(\mathbb{R})$, et que f_{λ} converge vers f dans $L^2(\mathbb{R})$ quand λ tend vers 0.