Topological Sorting

Kumkum Saxena

Introduction

- There are many problems involving a set of tasks in which some of the tasks must be done before others.
- For example, consider the problem of taking a course only after taking its prerequisites.
- Is there any systematic way of linearly arranging the courses in the order that they should be taken?

Yes! - Topological sort.

Definition of Topological Sort

- Topological sort is a method of arranging the vertices in a directed acyclic graph (DAG), as a sequence, such that no vertex appear in the sequence before its predecessor.
- The graph in (a) can be topologically sorted as in (b)

Topological Sort is not unique

Topological sort is not unique.

The following are all topological sort of the graph below:

$$s1 = {a, b, c, d, e, f, g, h, i}$$

$$s2 = {a, c, b, f, e, d, h, g, i}$$

$$s3 = \{a, b, d, c, e, g, f, h, i\}$$

Topological Sort Algorithm

- One way to find a topological sort is to consider in-degrees of the vertices.
- The first vertex must have in-degree zero -- every DAG must have at least one vertex with in-degree zero.
- The Topological sort algorithm is:

```
int topologicalOrderTraversal(){
    int numVisitedVertices = 0;
    while (there are more vertices to be visited) {
        if(there is no vertex with in-degree 0)
             break:
        else{
        select a vertex v that has in-degree 0;
        visit v;
        numVisitedVertices++;
        delete v and all its emanating edges;
   return numVisitedVertices;
```

Topological Sort Example

Demonstrating Topological Sort.

Ordering a graph

- Suppose we have a directed acyclic graph (DAG) of courses, and we want to find an order in which the courses can be taken.
 - Must take all prereqs before you can take a given course. Example:
 - [142, 143, 140, 154, 341, 374, 331, 403, 311, 332, 344, 312, 351, 333, 352, 373, 414, 410, 417, 413, 415]
 - There might be more than one allowable ordering.
 - How can we find a valid ordering of the vertices?

Topological Sort

- **topological sort:** Given a digraph G = (V, E), a total ordering of G's vertices such that for every edge (v, w) in E, vertex v precedes w in the ordering. Examples:
 - determining the order to recalculate updated cells in a spreadsheet
 - finding an order to recompile files that have dependencies
 - (any problem of finding an order to perform tasks with dependencies)

How many valid topological sort orderings can you find for the vertices in the graph below?

[A, B, C, D, E, F], [A, B, C, D, F, E],

[A, B, D, C, E, F], [A, B, D, C, F, E], (B)

[B, A, C, D, E, F], [B, A, C, D, F, E],

[B, A, D, C, E, F], [B, A, D, C, F, E],

[B, C, A, D, E, F], [B, C, A, D, F, E],

...

Topo sort: Algorithm 1

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be reted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.
 - ordering = { B }

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v .
 - ordering = { B, C }

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.
 - ordering = { B, C, A }

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be rted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.
 - ordering = { B, C, A, D }

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.
 - ordering = { B, C, A, D, F }

- function topologicalSort():
 - ordering := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v .
 - ordering = { B, C, A, D, F, E }

Revised algorithm

We don't want to literally delete vertices and edges from the graph while trying to topological sort it; so let's revise the algorithm:

```
map := {each vertex \rightarrow its in-degree}.
```

- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 - Dequeue the first vertex v from the queue.
 - ordering += v.
 - Decrease the in-degree of all v's neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- If all vertices are processed, success.
 Otherwise, there is a cycle.

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue.
 - ordering += v.
 - Decrease the in-degree of all v's neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=1, D=2, E=2, F=2 }
 - queue := { B, A }
 - ordering := { }

function topologicalSort():

- \blacksquare map := {each vertex \rightarrow its in-degree}.
- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // B
 - ordering += v.
 - Decrease the in-degree of all v's // C, D neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- map := { A=0, B=0, C=0, D=1, E=2, F=2 }
- queue := { A, **C** }
- ordering := { B }

function topologicalSort():

- $map := \{each \ vertex \rightarrow its \ in-degree\}.$
- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // A
 - ordering += v.
 - Decrease the in-degree of all v's // D neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- map := { A=0, B=0, C=0, **D=0**, E=2, F=2 }
- queue := { C, D }
- ordering := { B, A }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // C
 - ordering += v.
 - Decrease the in-degree of all v's // E, F neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=1, F=1 }
 - queue := { D }
 - ordering := { B, A, C }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // D
 - ordering += v.
 - Decrease the in-degree of all v's // F, E neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=0, F=0 }
 - queue := { F, E }
 - ordering := { B, A, C, **D** }

E

function topologicalSort():

- $map := \{each \ vertex \rightarrow its \ in-degree\}.$
- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // F
 - ordering += v.
 - Decrease the in-degree of all v's // none neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- map := { A=0, B=0, C=0, D=0, E=0, F=0 }
- queue := { E }
- ordering := { B, A, C, D, F }

function topologicalSort():

- $map := \{each \ vertex \rightarrow its \ in-degree\}.$
- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // E
 - ordering += v.
 - Decrease the in-degree of all v's // none neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- map := { A=0, B=0, C=0, D=0, E=0, F=0 }
- queue := { }
- ordering := { B, A, C, D, F, E }

Topo sort runtime

- What is the runtime of our topological sort algorithm?
 - (with an "adjacency map" graph internal representation)
 - function topologicalSort():

```
■ map := \{each \ vertex \rightarrow its \ in-degree\}. // O(V)
```

- queue := {all vertices with in-degree = 0}.
- ordering := { }.
- Repeat until queue is empty:
 // O(V)
 - Dequeue the first vertex v from the queue. // O(1)
 - ordering += v. // O(1)
 - Decrease the in-degree of all v's // O(E) for all passes neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
- Overall: O(V + E); essentially O(V) time on a sparse graph (fast!)