СОДЕРЖАНИЕ

ВВЕДЕНИЕ

дискретный ввод/вывод

ДИСКРЕТНЫЙ ВХОД (DI)

ДИСКРЕТНЫЙ ВХОД: НОРМАЛЬНЫЙ

ДИСКРЕТНЫЙ ВХОД: СЧЕТЧИК ИМПУЛЬСОВ

ДИСКРЕТНЫЙ ВХОД: ЧАСТОТОМЕР / ТАХОМЕТР

ДИСКРЕТНЫЙ ВХОД: ИНКРЕМЕНТАЛЬНЫЙ ЭНКОДЕР

ДИСКРЕТНЫЙ ВХОД: ВЫКЛЮЧЕН

ДИСКРЕТНЫЙ ВЫХОД (DO)

ДИСКРЕТНЫЙ ВЫХОД: НОРМАЛЬНЫЙ

ДИСКРЕТНЫЙ ВЫХОД: БЫСТРЫЙ

ДИСКРЕТНЫЙ ВЫХОД: ШИМ

ДИСКРЕТНЫЙ ВЫХОД: ВЫКЛЮЧЕН

ДИСКРЕТНЫЙ ВЫХОД: БЕЗОПАСНОЕ СОСТОЯНИЕ

КОНТАКТ "СУХОЙ" И "МОКРЫЙ"

АНАЛОГОВЫЙ ВВОД/ВЫВОД

АНАЛОГОВЫЙ ВХОД (АІ)

АНАЛОГОВЫЙ ВХОД: НОРМАЛЬНЫЙ

АНАЛОГОВЫЙ ВХОД: КАЛИБРОВКА

АНАЛОГОВЫЙ ВХОД: ВЫКЛЮЧЕН

АНАЛОГОВЫЙ ВЫХОД (АО)

АНАЛОГОВЫЙ ВЫХОД: НОРМАЛЬНЫЙ

АНАЛОГОВЫЙ ВЫХОД: БЫСТРЫЙ

АНАЛОГОВЫЙ ВЫХОД: КАЛИБРОВКА

АНАЛОГОВЫЙ ВЫХОД: ВЫКЛЮЧЕН

АНАЛОГОВЫЙ ВЫХОД: БЕЗОПАСНОЕ СОСТОЯНИЕ

ВВЕДЕНИЕ

В цифровой электронике каналы В/В предназначены для связи управляющего устройства (микропроцессор, микроконтроллер) с подключаемыми к нему внешними устройствами (датчики, исполнительные устройства, сторонние управляющие устройства).

Функционал канала В/В реализуется с помощью определенного набора аппаратных и программных средств (электронные схемы и программные алгоритмы):

- защита от нештатных токов и напряжений (гальваническая опторазвязка),
- искрозащита (для взрывоопасных зон),
- аналого-цифровое преобразование,
- цифро-аналоговое преобразование,
- нормирование преобразование (приведение),
- фильтрация,
- цифровая обработка.

GND

По направлению передачи сигналов каналы В/В делятся на:

- Каналы Ввода (INPUT / IN / I) сигнал из датчика в канал ввода
- Каналы Вывода (OUTPUT / OUT / O)
 сигнал из канала вывода в исполнительный механизм

По типу сигнала каналы В/В делятся на:

- Каналы Аналоговые (ANALOG / ANA / A) аналоговый ввод (AI) аналоговый вывод (AO)
- Каналы Дискретные (DIGITAL / DIG / D) **цифровой ввод (DI) цифровой вывод (DO)**
- Каналы специальные (неунифицированные) ввод сигнала термосопротивления ввод сигнала термопары ввод сигнала тензодатчика ввод цифровой бинарный счетный (энкодер / тахометр / COUNTER / CNT) вывод широтно-импульсной модуляции (ШИМ / PWM)

DIO 🗀 DO0 🗀 AIO 🗆 AO0 🗀 DI1 🗅 DO1 🗆 Al1 🗅 AO1 DI2 🗀 DO2 -Al2 🗀 AO2 🗀 COM [COM [COM [

A00 + ---

групповые каналы В/В (с общей точкой СОМ на группу)

GND

индивидуальные каналы B/B

дискретный вход

Приемник, измеритель дискретного сигнала.

Обобщенная функциональная схема

Для дискретных входов выделяют следующие режимы работы:

- 1) Нормальный
- 2) Счетчик импульсов
- 3) Частотомер / Тахометр
- 4) Инкрементальный энкодер
- 5) Комбинированный
- 6) Выключен

Режимы 4 и 5 являются групповыми — для работы используется пара соседних каналов цифрового (дискретного) ввода.

Конструктивно, каналы дискретного ввода могут поддерживать как один конкретный режим работы, так и несколько (универсальные каналы). Универсальные каналы являются более дорогими по причине сложности аппаратной и программной частей. Для каждого режима доступен набор своих программных регистров (числовых переменных в памяти). Настройка режима работы каждого канала выполняется с помощью специальной сервисной программы.

ДИСКРЕТНЫЙ ВХОД: НОРМАЛЬНЫЙ

Вход работает как нормальный дискретный:

- отсутствие напряжения на физическом входе кодируется как FALSE (0)
- наличие напряжения на физическом входе кодируется как TRUE (1)

Используемые программные регистры

• Значение нормального входа = FALSE (0) или TRUE (1)

Алгоритм работы

дискретный вход: нормальный

Диаграмма работы

где,

DI — значение на физическом входе

DI.Norm — «Значение нормального входа»

дискретный вход: счетчик импульсов

Это расширение нормального входа, когда он дополнительно работает на счет количества поступающих импульсов (обычно по переднему фронту). Счет инкрементный, накапливаемый (вверх / Up, +1).

Используемые программные регистры (дополнительно к нормальному режиму)

- Значение счетчика = 0 ... 4294967295 импульсов (для 32-битного счетчика)
- Признак переполнения счетчика (опционально, может отсутствовать) = FALSE (0) или TRUE (1)
- Команда сброса счетчика
 = FALSE (0) или TRUE (1)

Алгоритм работы (дополнительно к нормальному режиму)

дискретный вход: счетчик импульсов

Работа по уставке

Это расширение счетного режима.

Как только значение счетчика достигло значения уставки, то формируется признак.

<u>Используемые программные регистры</u> (дополнительно к счетному режиму)

- Уставка для счетчика
 - = 0 ... 4294967295 импульсов (для 32-битного счетчика)
- Разрешение работы счетчика по уставке
 - = FALSE (0) или TRUE (1)
- Признак достижения уставки
 - = FALSE (0) или TRUE (1)

Алгоритм работы (дополнительно к счетному режиму)

дискретный вход: счетчик импульсов

Диаграмма работы

где,

— значение на физическом входе

DI.Cnt — «Значение счетчика» DI.Sp — «Уставка счетчика»

DI.SpFlag — «Признак достижения уставки»

DI.Reset — «Команда сброса значения счетчика»

ДИСКРЕТНЫЙ ВХОД: ЧАСТОТОМЕР / ТАХОМЕТР

Это расширение счетного режима, когда вход работает также на счет количества поступающих импульсов за определенный период времени (обычно по переднему фронту, за секунду).

Используемые программные регистры (дополнительно к счетному режиму)

- Значение частотомера / тахометра = 0 ... 65535 импульсов/секунду
- Обнуления значения частотомера для этого режима не предусмотрено (сбрасывается автоматически при наступлении следующего временного периода / секунды / сэмпла).

Алгоритм работы (дополнительно к счетному режиму)

ДИСКРЕТНЫЙ ВХОД: ЧАСТОТОМЕР / ТАХОМЕТР

Работа по уставке

Это расширение режима частотомера/тахометра. Как только значение частотомера достигло значения уставки, то формируется признак.

<u>Используемые программные регистры</u> (дополнительно к режиму частотомера)

- Уставка для частотомера
 = 0 ... 65535 импульсов/секунду
- Разрешение работы по уставке = FALSE (0) или TRUE (1)
- Признак достижения уставки = FALSE (0) или TRUE (1)

Алгоритм работы (дополнительно к режиму частотомера)

ДИСКРЕТНЫЙ ВХОД: ЧАСТОТОМЕР / ТАХОМЕТР

Диаграмма работы

где,

DI — значение на физическом входе

DI.Freq — «Значение частотомера» DI.Sp — «Уставка частотомера»

DI.SpFlag — «Признак достижения уставки» TIM.IRQ — прерывание от таймера (1 сек.)

ДИСКРЕТНЫЙ ВХОД: ИНКРЕМЕНТАЛЬНЫЙ ЭНКОДЕР

Вход работает на счет количества поступающих импульсов (по переднему фронту).

Для данного режима задействуется, обычно, пара соседних каналов ввода (входы работают попарно), например:

• DI0-DI1

где,

вход 0 – первичный вход пары («Фаза А»)

вход 1 – вторичный вход пары («Фаза Б»)

Режим применяется ко всем входам пары. Например, задали режим Инкрементального энкодера для входа DI0: для входа DI1 автоматически устанавливается этот же режим.

Используемые программные регистры

- Значение счетчика первичного входа
 = 0 ... 4294967295 импульсов (для 32-битного счетчика)
- Значение счетчика вторичного входа
 - = 0 ... 4294967295 импульсов (для 32-битного счетчика)
- Признак переполнения счетчика (опционально)
 - = FALSE (0) или TRUE (1)
- Команда сброса счетчика
 - = FALSE (0) или TRUE (1)

Обобщенный принцип работы

К паре входов подключают специальное устройство (датчик) — энкодер, который может быть механический, оптический, ультразвуковой, индуктивный.

Устройство энкодера, как правило, имеет встроенные (аппаратные) схемы подавления дребезгов и неопределенностей и, соответственно, генерирует четкие прямоугольные сигналы. В таких случаях увеличивается качество счета и допускается большая частота следования импульсов.

Функции энкодера, обычно, применяют для определения следующих показателей:

- угол поворота (например, угол поворота вала двигателя)
- направленение вращения / движения (вперед или назад)
- расстояние / длина
- скорость

Выделяют несколько функций работы Инкрементального энкодера:

- двухканальный инкрементный счетчик,
- двухканальный инкрементальный счетчик + тахометр,
- одноканальный инкрементальный счетчик.

ДИСКРЕТНЫЙ ВХОД: ИНКРЕМЕНТАЛЬНЫЙ ЭНКОДЕР

Функция 1

Двухканальный инкрементный счетчик с детектором фаз («вращения») Inc. Pulse / Inc. Pulse

- Один источник импульсов подключается к Первичному входу канала
- Другой источник импульсов подключается ко Вторичному входу канала
- Импульсы одного источника сдвинуты по фазе относительно импульсов другого
- Вход, на который импульсы приходят первыми:
 - работает на счет количества поступающих импульсов (по переднему фронту)
 - счет инкрементный (Вверх / Up, +1)
- Вход, на который импульсы идут с задержкой (со сдвигом):
 - · счет не ведет
- Смена фазы не сбрасывает счетчики
- Сброс счетчиков пары каналов осуществляется подачей команды «Сброс счетчиков»

ДИСКРЕТНЫЙ ВХОД: ИНКРЕМЕНТАЛЬНЫЙ ЭНКОДЕР

Функция 2

Двухканальный инкрементный счетчик с детектором фаз («вращения») + частотомер Inc. Pulse / Inc. Pulse + Frequency

- Базовый принцип работы аналогичен «Функции 1» Дополнительно:
- В регистр «Значение частотомера» вторичного канала записывается количество импульсов за период времени (импульсы/сек) вне зависимости от направления фазы.

Функция 3

Одноканальный инкрементный/декрементный счетчик Inc. Pulse / Dir

- Источник импульсов подключается к первичному каналу
- Переключатель направления счета подключаекся ко вторичному каналу
- Первичный вход:
 - работает на счет импульсов (по переднему фронту)
 - счет типа «инкремент» (+1, Вверх/Up), если Переключатель =FALSE (0)
 - счет типа «декремент» (-1, Вниз/Down), если Переключатель =TRUE (1)
- Вторичный вход:
 - ∘ счет импульсов не ведет
- Сброс счетчика осуществляется подачей команды «Сброс счетчиков»

дискретный вход: выключен

Вход не работает.

Изменения на входе игнорируются.

Обнулены все программные регистры со значениями (нормальный, счетчик, частотомер).

дискретный выход

Источник, генератор дискретного сигнала.

Обобщенная функциональная схема

Для дискретных выходов выделяют следующие режимы работы:

- 1) Нормальный
- 2) Быстрый
- 3) ШИМ
- 4) Выключен
- 5) Безопасное состояние

Конструктивно, каналы цифрового (дискретного) вывода могут поддерживать как один конкретный режим работы, так и несколько (универсальные каналы). Универсальные каналы являются более дорогими по причине сложности аппаратной и программной частей. Для каждого режима доступен набор своих программных регистров (числовых переменных в памяти). Настройка режима работы каждого канала выполняется с помощью специальной сервисной программы.

дискретный выход: нормальный

Выход работает как нормальный дискретный:

- цифровой код FALSE (0) отключает напряжение на физическом выходе
- цифровой код TRUE (1) включает напряжение на физическом выходе

Используемые программные регистры

• Значение нормального выхода = FALSE (0) или TRUE (1)

Алгоритм работы

Диаграмма работы

где,

DO.Norm — «Значение нормального выхода»

DO — значение физического выхода

ДИСКРЕТНЫЙ ВЫХОД: БЫСТРЫЙ

Быстрый дискретный выход по базовому функционалу аналогичен нормальному выходу.

Разница лишь в том, в какой момент времени кодовое числовое значение передается на физический канал выхода:

- для Нормального выхода:
 - код передается только после завершения рабочего цикла программы.
- для Быстрого выхода:
 - изменение передается сразу

Используемые программные регистры

• Значение быстрого выхода = FALSE (0) или TRUE (1)

Алгоритм работы

дискретный выход: шим

Выход работает в режиме широтно-импульсной модуляции (ШИМ, PWM).

Работа ШИМ и управление уровнем соответствующего физического выхода реализуется аппаратно-программными средствами (с помощью аппаратных или программных таймеров).

Используемые программные регистры

- Разрешение работы ШИМ
 - = FALSE (0) или TRUE (1)
- Период ШИМ
 - = 100 ... 4294967295 (миллисекунд)
 - < 100 равносильно 0 мс, на физическом выходе постоянно FALSE (0)
- Коэффициент заполнения ШИМ длительность импульса — код TRUE (1) на физическом выходе
 0.0 ... 100.0 % от периода
 0.0 — нет длительности, на физическом выходе постоянно FALSE (0)
 100.0 — полная длительность, на физическом выходе постоянно TRUE (1)

Время длительности импульса (время существования TRUE (1) на физическом выходе) вычисляется по следующей формуле:

$$t_{TRUE} = \left(\frac{T}{100}\right) \cdot D$$

где, t_{true} — время длительности импульса ШИМ (миллисекунды)

Т — период ШИМ (миллисекунды)

D — коэффициент заполнения ШИМ (% от периода)

Период ШИМ, Коэффициент заполнения ШИМ, Разрешение работы ШИМ — можно менять в любой момент («на лету»), подстраивая его под конкретную логику работы системы управления в текущий момент времени.

дискретный выход: шим

Диаграмма работы

дискретный выход: выключен

Выход не работает.

На выходе нет напряжения (низкий уровень), FALSE (0).

дискретный выход: безопасное состояние

Для каждого дискретного выхода, вне зависимости в каком режиме он работает, может быть активирован дополнительный подрежим «Безопасное состояние» - защита от нештатной работы устройства управления (например, на случай зависания или сбоя в работе программы ПЛК).

Используемые программные регистры

- Период сторожевого таймера
 - = 0 ... 65535 сек
 - 0 сторожевой таймер отключен, выключен подрежим «Безопасное состояние»
- Уровень безопасного состояния для выхода
 - = FALSE (0) или TRUE (1)
- Команда сброса флага сторожевого таймера
 - = FALSE (0) или TRUE (1)

Алгоритм работы

Сторожевой таймер через заданный период времени проверяет специальный флаг:

- если флаг равен FALSE (0) (сброшен), то:
 - флаг устанавливается в TRUE (1) (взводится)
 - выход работает в штатном режиме
 - таймер перезапускается
- если флаг равен TRUE (1) (взведен, не был сброшен), то:
 - на дискретный выход принудительно подается определенный безопасный уровень
 - таймер перезапускается

Для обеспечения штатного режима работы выхода (нормальный, быстрый, ШИМ), управляющая программа в начале или в конце своего выполнения должна сбрасывать флаг сторожевого таймера — устанавливать его в значение FALSE (0). Программа должна успевать сбрасывать флаг, пока таймер не завершил свой счет.

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Общий смысл

В АСУ ТП обычно разделяют зоны ответственности:

- «поле» (КИПиА) / field,
- шкафы управления (ШУ) / *control*.

Термины «*cyxoй*» (*dry contact*) и «*мокрый*» (*wet contact*) контакт применимы для дискретных входов и выходов, где контакт соединяет две электрические цепи, образующие контрольно-измерительную линию, по которой передается дискретный сигнал.

Один и тот же контрольно-измерительный сигнал имеет:

- контакт в «поле»,
- контакт в ШУ.

Если мысленно отсоединить «поле» от ШУ, то:

- с одной стороны на клеммах контакта будет напряжение («мокрый» контакт),
- с другой стороны на клеммах контакта напряжения не будет («сухой» контакт).

Для одного и того же контрольно-измерительного сигнала справедливо:

- если контакт в «поле» «мокрый», то в ШУ «сухой»;
- если контакт в «поле» «сухой», то в ШУ «мокрый».

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

«Сухой» контакт / Dry Contact

Контакт является составной частью прибора (как канал В/В):

• Датчик (Sensor), Исполнительный механизм (Actuator), Модуль B/B (Module I/O).

Контакт **безпотенциальный, пассивный**, т. е. на его клеммах нет напряжения, пока к ним с внешней стороны не будет подключено какое-либо активное оборудование. Подключаемое внешнее активное оборудование должно иметь в своем составе источник напряжения или тока, который будет являться опорным (питанием) для контрольно-измерительного сигнала.

Контакт гальванически развязан (изолирован) от внутренних цепей прибора, т. е. цепь контакта напрямую электрически не связана с другими цепями этого же прибора или его «землей». В то же время, имеется связь иной природы (неэлектрическая): электромагнитная, оптическая — для управления цепью контакта (если требуется). Применительно к дискретным входам и выходам, управляет контактом специальное устройство (устройство управления, входящее в состав этого же прибора): для входов — чтение состояния цепи контакта (замкнута или разомкнута), для выходов — изменение состояния цепи контакта (замыкание или размыкание).

Способы гальванической развязки:

- механическая / электромеханическая:
 - кнопка, переключатель, концевой выключатель, геркон, электромагнитное реле;
- оптическая / электронная:
 - ∘ оптрон, оптопара, оптореле.

Прибор с «сухим» контактом и подключаемое к нему активное оборудование, как правило, питаются от разных источников (независимых друг от друга, в том числе и различного номинала).

При всем этом, «сухой» контакт не подразумевает безразличия к параметрам подключаемого оборудования (электрическим характеристикам подключаемого сигнала). В спецификации прибора, где есть «сухой» контакт, должны быть указаны допустимые параметры коммутации, номиналы подключаемого сигнала, включая требования к соблюдению полярности.

Как правило, для одного «сухого» контакта в приборе выделяется две клеммы. Иногда один «сухой» контакт занимает три клеммы: общий (СОМ), нормально-закрытый (NC) и нормально-открытый (NO). В некоторых случаях несколько «сухих» контактов могут иметь одну общую клемму.

Обобщенная схема

⁻ гальваническая развязка (оптрон, реле)

К — механический контакт реле

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

«Мокрый» контакт / Wet contact

Контакт является составной частью прибора (как канал В/В):

• Датчик (Sensor), Исполнительный механизм (Actuator), Модуль B/B (Module I/O).

Контакт **потенциальный, активный**, т. е. на его клеммах есть напряжение: в цепь контакта включен источник напряжения (или тока) или питание в цепь контакта подается от внутренней схемы прибора.

Контакт может быть гальванически развязан (изолирован) от внутренних цепей прибора, а также может не иметь изоляции. Изоляцию, в данном случае, делают для преобразования входного или выходного сигнала и для защиты внутренних цепей прибора.

Способы гальванической развязки и управления контактом со стороны прибора — в общем аналогичны «сухому» контакту.

Прибор с «мокрым» контактом и подключаемое к нему оборудование могут питаться от одного источника.

Обобщенная схема

- гальваническая развязка (оптрон, реле)

К - механический контакт реле

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 1

- Модуль дискретного ввода (DI)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
- Распределительная коробка
 - ∘ «сухой» контакт
- Датчик (24 В DC)
 - ∘ «сухой» контакт
 - коммутатор контрольного-измерительного дискретного сигнала (24 В DC)

Рекомендуется устанавливать промежуточное реле перед Модулем DI:

• защита канала ввода от нештатных ситуаций в цепи «поля» (например, случайная подача 220 В АС в цепь «поля» может повредить канал ввода)

концевой выключатель, бесконтактный переключатель, обратная связь от привода,

SENSOR.K = OPENED SENSOR.DO = FALSE (0) SENSOR.K = CLOSED SENSOR.DO = TRUE (1)

SENSOR.DO = FALSE (0) $A_1 = 0$

SENSOR.DO = TRUE ($A_1 = > 0$

 $V_1 = 24$ $A_2 = 0$ $V_1 = 24$ $A_2 = > 0$

DI = FALSE(0)

DI = TRUE (1)

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 2

- Модуль дискретного ввода (DI)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
- Питание «~220 В АС»
 - источник питания контрольно-измерительного дискретного сигнала (220 В АС)
- Промежуточное реле
 - «сухой» контакт (как со стороны катушки, так и со стороны ключа)
 - преобразователь уровня контрольно-измерительного дискретного сигнала с гальваническая развязкой (220 В АС в 24 В DC)
- Распределительная коробка
 - ∘ «сухой» контакт
- Датчик (220 В АС)
 - «сухой» контакт
 - коммутатор контрольного-измерительного дискретного сигнала (220 В АС)

концевой выключатель, бесконтактный переключатель, обратная связь от привода,

 $\begin{array}{lll} \text{SENSOR.K} &= \text{OPENED} & \text{SENSOR.K} &= \text{CLOSED} \\ \text{SENSOR.DO} &= \text{FALSE (0)} & \text{SENSOR.DO} &= \text{TRUE (1)} \\ A_1 &= 0 & A_1 &= > 0 \\ Y1 &= \text{OFF} & Y1 &= \text{ON} \\ K1 &= \text{OPENED} & K1 &= \text{CLOSED} \\ V_1 &= 24 & V_1 &= 24 \\ A_2 &= 0 & A_2 &= > 0 \end{array}$

 $A_2 = 0$ $A_2 = 0$ $A_2 = 0$ DI = TRUE (1)

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 3

- Модуль дискретного ввода (DI)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
- Промежуточное реле
 - «сухой» контакт (как со стороны катушки, так и со стороны ключа)
 - преобразователь уровня контрольно-измерительного дискретного сигнала с гальваническая развязкой (220 В АС в 24 В DC)
- Распределительная коробка
 - ∘ «сухой» контакт
- Датчик (220 В АС)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (220 В АС)
 - коммутатор контрольного-измерительного дискретного сигнала (220 В АС)

концевой выключатель, бесконтактный переключатель, обратная связь от привода,

...

SENSOR.K = OPENED	SENSOR.K = CLOSED
SENSOR.DO = FALSE (0)	SENSOR.DO = TRUE (1)
$V_1 = 0$	$V_1 = 220$
$A_1 = 0$	$A_1 = > 0$
Y1 = OFF	Y1 = ON
K1 = OPENED	K1 = CLOSED
$V_2 = 24$	$V_2 = 24$
$A_2 = 0$	$A_2 = > 0$
DI = FALSE (0)	DI = TRUE (1)

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 4

- Модуль дискретного вывода (DO)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
 - коммутатор контрольно-измерительного дискретного сигнала (24 В DC)
- Распределительная коробка
 - ∘ «сухой» контакт
- Исполнительный механизм (24 В DC)
 - ∘ «сухой» контакт

Рекомендуется устанавливать промежуточное реле перед Модулем DO:

• защита канала вывода от нештатных ситуаций в цепи «поля» (например, случайная подача 220 В АС в цепь «поля» может повредить канал ввода)

светозвуковая сигнализация, блок управления клапана, устройство пуска привода,

 $\begin{array}{ll} \text{DO} &= \text{FALSE (0)} & \text{DO} &= \text{TRUE (1)} \\ \text{DO.K} &= \text{OPENED} & \text{DO.K} &= \text{CLOSED} \\ \text{V}_1 &= 0 & \text{V}_1 &= 24 \end{array}$

 $V_1 = 0$ $V_1 = 24$ $A_2 = 0$ $A_1 = 0$ $A_1 = > 0$

ACTUATOR.DI = FALSE (0) ACTUATOR.DI = TRUE (1)

ACTUATOR = OFF ACTUATOR = ON

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 5

- Модуль дискретного вывода (DO)
 - «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 B DC)
 - коммутатор контрольно-измерительного дискретного сигнала (24 В DC)
- Промежуточное реле
 - гальваническая развязка цепей «поля» и управления
 - преобразование дискретного сигнала «24 В DC» в «24 В DC (2)»
- Распределительная коробка
 - «сухой» контакт
- Исполнительный механизм (24 B DC (2))
 - «сухой» контакт

светозвуковая сигнализация, блок управления клапана, устройство пуска привода,

DO = FALSE(0)DO = TRUE(1)DO.K = OPENED DO.K = CLOSED $V_1 = 0$ $V_1 = 24$ $A_2 = 0$ $A_2 = > 0$ Y1 = OFF Y1 = ON K1 = OPENED K1 = CLOSED $A_1 = 0$ $A_1 = > 0$

ACTUATOR.DI = TRUE (1) ACTUATOR.DI = FALSE (0)

ACTUATOR = OFF ACTUATOR = ON

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 6

- Модуль дискретного вывода (DO)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
 - коммутатор контрольно-измерительного дискретного сигнала (24 В DC)
- Промежуточное реле
 - гальваническая развязка цепей «поля» и управления
 - ∘ преобразование дискретного сигнала «24 В DC» в «24 В DC (2)»
- Распределительная коробка
 - ∘ «сухой» контакт
- Исполнительный механизм (24 B DC (2))
 - ∘ «сухой» контакт

Такая конфигурация, как правило, не является предпочтительной.

светозвуковая сигнализация, блок управления клапана, устройство пуска привода,

DO = FALSE(0)DO = TRUE(1)DO.K = OPENED DO.K = CLOSED $V_1 = 0$ $V_1 = 24$ $A_1 = 0$ $A_1 = > 0$ Y1 = OFF Y1 = ON K1 = CLOSED K1 = OPENED $A_1 = 0$ $A_1 = > 0$ ACTUATOR.DI = FALSE (0) ACTUATOR.DI = TRUE (1) ACTUATOR = OFF ACTUATOR = ON

КОНТАКТ «СУХОЙ» И «МОКРЫЙ»

Пример 7

- Модуль дискретного вывода (DO)
 - ∘ «мокрый» контакт
 - источник питания контрольно-измерительного дискретного сигнала (24 В DC)
 - коммутатор контрольно-измерительного дискретного сигнала (24 B DC)
- Промежуточное реле
 - гальваническая развязка цепей систем управления (разные источники питания)
 - преобразование дискретного сигнала «24 В DC» в «24 В DC (2)»
- Распределительная коробка
 - ∘ «сухой» контакт
- Модуль дискретного ввода (DI) (24 B DC (2))
 - «мокрый» контакт
 - ∘ источник питания контрольно-измерительного дискретного сигнала (24 В DC(2))

сторонняя система управления,

...

DO = FALSE (0)	DO = TRUE(1)
DO.K = OPENED	DO.K = CLOSED
$V_2 = 0$	$A_2 = > 0$
$A_2 = 0$	$V_2 = 24$
Y1 = OFF	Y1 = ON
K1 = OPENED	K1 = CLOSED
$A_1 = 0$ (2)	$A_1 = > 0 (2)$
$V_1 = 24 (2)$	$V_1 = 24 (2)$
DI = FALSE (0)	DI = TRUE(1)

АНАЛОГОВЫЙ ВХОД

Приемник, измеритель аналогового сигнала.

Обобщенная функциональная схема:

Для Аналоговых входов выделяют следующие режимы работы:

- 1) Нормальный
- 2) Калибровка (опционально)
- 3) Выключен

АНАЛОГОВЫЙ ВХОД: НОРМАЛЬНЫЙ

Канал работает как аналого-цифровой преобразователь (АЦП):

• считывает электрический сигнал со входа и преобразует его в числовой код.

Используемые программные регистры

- Значение нормального входа = число от 0 до N (код АЦП) N — максимальное значение кода, зависит от разрядности АЦП (например, для 12-битного АЦП N₁₂ = 4095)
- В некоторых реализациях могут быть доступны регистры с коэффициентами для автоматического масштабирования и фильтрации.

Алгоритм работы

АНАЛОГОВЫЙ ВХОД: НОРМАЛЬНЫЙ

Диаграмма работы

где, AI — значение на физическом входе в диапазоне от Vmin до Vmax AI.Norm — «Значение нормального входа» (код АЦП)

АНАЛОГОВЫЙ ВХОД: КАЛИБРОВКА

Цель калибровки:

• вычислить коэффициенты масштабирования для автоматического преобразования полученного кода АЦП в человеко-понятную физическую величину (например, в °С и т.п.).

Используемые программные регистры

- Команда фиксации кода АЦП для нижней калибровочной точки (A)
 = FALSE (0) или TRUE (1)
- Значение нижней калибровочной точки, код АЦП (**A**_x) (определяется автоматически при подаче команды фиксации кода) = 0 ... N (где, N зависит от разрядности АЦП)
- Значение нижней калибровочной точки, физическая величина (A_Y)
 (вводится вручную через специальный интерфейс или из сервисной программы)
 = ЧИСЛО СО ЗНАКОМ (например, ± °C)
- Команда фиксации кода АЦП для верхней калибровочной точки (C)
 = FALSE (0) или TRUE (1)
- Значение верхней калибровочной точки, код АЦП (*C_x*) (определяется автоматически при подаче команды фиксации кода) = 0 ... N (где, N зависит от разрядности АЦП)
- Значение верхней калибровочной точки, физическая величина (C_Y)
 (вводится вручную через специальный интерфейс или из сервисной программы)
 = ЧИСЛО СО ЗНАКОМ (например, ± °C)
- Команда вычисления коэффициентов масштабирования
 = FALSE (0) или TRUE (1)
- Значение коэффициента масштабирования (*Ka*) (вычисляется автоматически при подаче команды вычисления) = ЧИСЛО СО ЗНАКОМ
- Значение коэффициента смещения нуля (*Kb*) (вычисляется автоматически при подаче команды вычисления) = ЧИСЛО СО ЗНАКОМ

АНАЛОГОВЫЙ ВХОД: КАЛИБРОВКА

Пример

Дано:

- датчик температуры, аналоговый
 - диапазон измерения
 - = -40 +120 °C
 - диапазон выходного электрического сигнала
 - = 0-10 B
 - текущий выходной электрический сигнал
 - = 5 B
- аналоговый вход
 - разрядность
 - = 12 бит (код АЦП от 0 до 4095)

Необходимо:

- подключить датчик к аналоговому входу,
- выполнить опрос датчика,
- считанное значение (код АЦП) привести к человеко-понятному виду (°С).

Опрос и оцифровка датчика — выполняется автоматически на аппаратном уровне модуля ввода, для чего не требуются какие-либо дополнительные настройки.

Для последующего приведения кода АЦП к человеко-понятному виду (°C) необходимо знать соответствуеющие коэффициенты масштабирования.

Коэффициенты масштабирования можно вычислить вручную по известным (паспортным) данным на датчик и на модуль аналогового ввода: минимальное и максимальное значение °С, минимальный и максимальный код АЦП. Значения коэффициентов, вычисленные подобным способом, будут являться эталонными.

В реальности датчик и схема АЦП модуля ввода имеют некоторые погрешности при выполнении измерений, поэтому получение коэффициентов масштабирования желательно выполнять с использованием реального оборудования и реальных сигналов по определенной методике — называемой, процедура калибровки канала ввода.

Так как, на практике может быть довольно сложно и длительно по времени привести показания датчика к требуем значениям (минимум и максимум), то при калибровке вместо реальных датчиков применяют специальное устройство - *задатчик сигналов* (например, электрических: 0-10B, 0-20мA, 4-20мA и т.п.).

АНАЛОГОВЫЙ ВХОД: КАЛИБРОВКА

Процедура калибровки

- 1. Подключить задатчик сигналов к калибруемому аналоговому входу.
- 2. Определение показателей для нижней калибровочной точки:
- 2.1 На вход подать сигнал, соответствующий нижней точке измеряемого диапазона:
 - -40 °С (физическое значение)
 - 0 В (электрический сигнал)

(с задатчика сигналов подать 0 В)

2.2 Подать Команду фиксации кода АЦП для нижней точки

= TRUE (1)

(пусть, для 0 В будет зафиксирован код АЦП: **A**_X **=0**, с учетом погрешностей)

2.3 Ввести физическое значение нижней точки

 $A_{Y} = -40$ (для масштабирования кода АЦП в °C)

 $A_Y = 0$ (для масштабирования кода АЦП в Вольты)

- 3. Определение показателей для верхней калибровочной точки:
- 3.1 На вход подать сигнал, соответствующий верхней точке измеряемого диапазона:

120 °С (физическое значение)

10 В (электрический сигнал)

(с задатчика сигналов подать 10 В)

3.2 Подать Команду фиксации кода АЦП для верхней точки

= TRUE (1)

(пусть, для 10 В будет зафиксирован код АЦП: **С**_х **=4095**, с учетом погрешностей)

3.3 Ввести физическое значение верхней точки

 $C_Y = 120$ (для масштабирования кода АЦП в °C)

 $C_Y = 10$ (для масштабирования кода АЦП в Вольты)

4. Подать Команду вычисления коэффициентов масштабирования

= TRUE (1)

АНАЛОГОВЫЙ ВХОД: КАЛИБРОВКА

Для выше приведенного примера, получим:

$$K_a = \frac{C_Y - A_Y}{C_X - A_X} = \frac{120 - (-40)}{4095 - 0} = 0,039072$$

$$K_b = \frac{A_Y \cdot C_X - C_Y \cdot A_X}{C_X - A_X} = \frac{(-40) \cdot 4095 - 120 \cdot 0}{4095 - 0} = -40$$

По исходным данным примера, текущий выходной электрический (аналоговый) сигнал с датчика =5В (точка В), а это:

- половина от диапазона электрического сигнала 0-10 В
- половина от диапазона 12-битного кода АЦП 4095/2 ≈ 2048 (В_х)
- половина от диапазона физической величины -40 +120 °C \approx 40 °C (B_Y)

Последнее значение (**B**_Y) проверим по формуле мастабирования с учетом коэффициентов, полученных ранее при калибровке:

$$B_{\rm y} = (K_a \cdot B_{\rm x}) + K_b = (0.039072 \cdot 2048) + (-40) = 40.01954$$

Все верно.

АНАЛОГОВЫЙ ВХОД: ВЫКЛЮЧЕН

Вход не работает.

Любые изменения сигнала на входе игнорируются (не воспринимаются). Обнулены все программные регистры со значениями (нормальный).

АНАЛОГОВЫЙ ВЫХОД

Источник, генератор аналогового сигнала.

Обобщенная функциональная схема:

Для Аналоговых выходов выделяют следующие режимы работы:

- 1) Нормальный
- 2) Быстрый
- 3) Калибровка (опционально)
- 4) Выключен
- 5) Безопасное состояние (подрежим)

АНАЛОГОВЫЙ ВЫХОД: НОРМАЛЬНЫЙ

Канал работает как ЦАП (цифро-аналоговый преобразователь):

• числовой код (из системы управления) преобразуется в электрический сигнал соответствующего уровня и передается на физический выход.

Используемые программные регистры

Значение нормального выхода
 число от 0 до N (код ЦАП)
 N — максимальное значение кода, зависит от разрядности ЦАП (например, для 12-битного ЦАП N₁₂ = 4095)

В некоторых реализациях могут быть доступны регистры с коэффициентами для автоматического масштабирования и фильтрации.

<u>Алгоритм работы</u>

По сути, выполняется обратная операция АЦП, также с операцией масштабирования:

• числовой код масштабируется в уровень электрического сигнала (вольты, амперы).

АНАЛОГОВЫЙ ВЫХОД: БЫСТРЫЙ

Быстрый аналоговый выход по базовому функционалу аналогичен нормальному выходу.

Разница лишь в том, в какой момент времени код ЦАП передается на физический канал выхода:

- для Нормального выхода:
 - код передается только после завершения рабочего цикла программы
- для Быстрого выхода:
 - изменение передается сразу

Используемые программные регистры

• Значение быстрого выхода = число от 0 до N (код ЦАП) N — максимальное значение кода, зависит от разрядности ЦАП (например, для 12-битного ЦАП N₁₂ = 4095)

Алгоритм работы

АНАЛОГОВЫЙ ВЫХОД: КАЛИБРОВКА

Процесс калибровки аналогового выхода похож на процесс калибровки аналогового входа, только порядок действий является обратным:

• Человеко-понятный формат > Код ЦАП > Запись в ЦАП > Аналоговый выход

Набор программных регистров такой же как для аналогового входа (калибровка).

АНАЛОГОВЫЙ ВЫХОД: ВЫКЛЮЧЕН

Выход не работает.

На выходе нет электрического сигнала (низкий уровень), 0.

АНАЛОГОВЫЙ ВЫХОД: БЕЗОПАСНОЕ СОСТОЯНИЕ

Набор программных регистров и алгоритм работы — аналогичны безопасному режиму дискретного выхода, только уровни безопасного состояния здесь не булевого формата, а в виде целого числа (для кода ЦАП) или числа с плавающей точкой (для человеко-понятного формата).