(11) EP 1 097 926 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 09.05.2001 Bulletin 2001/19

(21) Application number: 99929832.6

(22) Date of filing: 14.07.1999

(51) Int. Cl.⁷: **C07D 235/28**, A61K 31/415

(86) International application number: **PCT/JP99/03799**

(87) International publication number: WO 00/03997 (27.01.2000 Gazette 2000/04)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:

LT LV MK RO SI

(30) Priority: 15.07.1998 JP 20025098

(71) Applicant: TEIJIN LIMITED
Osaka-shi Osaka 541-0054 (JP)

(72) Inventors:

 MATSUMOTO, Yoshiyuki, Teijin Limited Tokyo 191-0065 (JP) • TAKEUCHI, Susumu, Teijin Limited Tokyo 191-0065 (JP)

 HASE, Naoki, Teijin Limited Tokyo 191-0065 (JP)

(74) Representative:

Hallybone, Huw George CARPMAELS AND RANSFORD 43 Bloomsbury Square London WC1A 2RA (GB)

(54) THIOBENZIMIDAZOLE DERIVATIVES

(57) Thiobenzimidazole derivatives represented by general formula (1) or pharmaceutically acceptable salts thereof which have a potent human chymase inhibitory activity and, therefore, are usable as clinically applicable preventives and/or remedies for various diseases in which human chymase participates.

Description

Technical Field

[0001] The present invention relates to thiobenzimidazole derivatives represented by the formula (1) and, more specifically, thiobenzimidazole derivatives useful as inhibitors of human chymase activity.

Background Art

[0002] Chymase is one of the neutral proteases present in mast cell granules, and is deeply involved in a variety of biological processes in which mast cells participate. Various effects have been reported including, for example, the promotion of degranulation from mast cells, the activation of interleukin-1β (IL-1β), the activation of matrix protease, the decomposition of fibronectin and type IV collagen, the promotion of the release of transforming growth factor-β (TGF-β), the activation of substance P and vasoactive intestinal polypeptide (VIP), the conversion of angiotensin I (Ang I) to Ang II, the conversion of endothelin, and the like.

[0003] The above indicates that inhibitors of said chymase activity may be promising as preventive and/or therapeutic agents for diseases of respiratory organs such as bronchial asthma, inflammatory/allergic diseases, for example allergic rhinitis, atopic dermatitis, and urticaria; diseases of circulatory organs, for example sclerosing vascular lesions, intravascular stenosis, disturbances of peripheral circulation, renal failure, and cardiac failure; diseases of bone/cartilage metabolism such as rheumatoid arthritis and osteoarthritis, and the like.

[0004] As inhibitors of chymase activity, there are known triazine derivatives (Japanese Unexamined Patent Publication (Kokai) No. 8-208654); hydantoin derivatives (Japanese Unexamined Patent Publication (Kokai) No. 9-31061); imidazolidine derivatives (PCT Application WO 96/04248); quinazoline derivatives (PCT Application WO 97/11941); heterocyclic amide derivatives (PCT Application WO 96/33974); and the like. However, the structures of these compounds are entirely different from those of the compounds of the present invention.

[0005] On the other hand, an art related to the compounds of the present invention is disclosed in U.S. Pat. No. 5,124,336. Said specification describes thiobenzimidazole derivatives as having an activity of antagonizing thromboxane receptor. The specification, however, makes no mention of the activity of said compounds to inhibit human chymase.

[0006] Thus, it is an object of the present invention to provide novel compounds that are potential and clinically applicable inhibitors of human chymase.

Disclosure of the Invention

30

40

45

50

55

[0007] Thus, after intensive research to attain the above objective, the applicants of the present invention have found the following 1 to 15 and have thereby completed the present invention.

1. A thiobenzimidazole derivative represented by the following formula (1):

$$\begin{array}{c|c}
R^1 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

wherein,

 R^1 and R^2 , simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R^1 and R^2 together form -O-CH₂-O-, -O-CH₂-CH₂-O- or -CH₂-CH₂-CH₂-, in which the carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons;

A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted

heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, in which the substituent represents a halogen atom, OH, NO_2 , CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group;

E represents COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group in which R³ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbons:

G represents a substituted or unsubstituted, linear or branched alkylene group having 1-6 carbons that may be interrupted with one or a plurality of O, S, SO_2 , and NR^3 , in which R^3 is as defined above and the substituent represents a halogen atom, OH, NO_2 , CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group; m represents an integer of 0 to 2;

when m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring;

when m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring; or

when m is 0 and A is a single bond or when m is 1 or 2, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, in which the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, a COOR³ group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group; and

X represents CH or a nitrogen atom;

5

10

15

20

25

30

35

40

45

50

55

or a medically acceptable salt thereof (hereinafter referred to as "the thiobenzimidazole derivative of the present invention").

- 2. The thiobenzimidazole derivative characterized in that, in the above formula (1), A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
- 3. The thiobenzimidazole derivative characterized in that, in the above formula (1), A is a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
- 4. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 1, or a medically acceptable salt thereof.
- 5. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 2, or a medically acceptable salt thereof.
 - 6. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, and J is a substituted or unsubstituted aryl

group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.

- 7. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, and J is a substituted or unsubstituted aryl group having 6 to 11 carbons or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
- 8. The thiobenzimidazole derivative characterized in that, in the above formula (1), G is $-CH_2$, $-CH_2$ -CH₂-
- 9. The thiobenzimidazole derivative characterized in that, in the above formula (1), R^1 and R^2 simultaneously represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R^1 and R^2 , independently of each other, represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, a trihalomethyl group, a cyano group, or a hydroxy group, or a medically acceptable salt thereof.
- 10. The thiobenzimidazole derivative characterized in that, in the above formula (1), E represents COOH or a tetrazole group, or a medically acceptable salt thereof.
- 11. The thiobenzimidazole derivative characterized in that, in the above formula (1), X represents CH, or a medically acceptable salt thereof.
- 12. A thiobenzimidazole derivative characterized by having an activity of inhibiting human chymase, or a medically acceptable salt thereof.
- 13. A pharmaceutical composition comprising an at least one thiobenzimidazole derivative or a medically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 14. A pharmaceutical composition which is a preventive and/or therapeutic agent for a disease.
- 15. A preventive and/or therapeutic agent wherein said disease is an inflammatory disease, an allergic disease, a disease of respiratory organs, a disease of circulatory organs, or a disease of bone/cartilage metabolism.

Best Mode for Carrying Out the Invention

5

10

15

20

25

[0008] The present invention will now be explained in more detail below.

[0009] The above definitions concerning the substituents of the compounds of formula (1) of the present invention are as follows:

[0010] R^1 and R^2 , simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R^1 and R^2 together form -O-CH₂-O-, -O-CH₂-CH₂-O- or -CH₂-CH₂-, in which the carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons. As the alkyl group having 1 to 4 carbons, there can be mentioned a methyl group, an ethyl group, a (n, i) propyl group and a (n, i, s, t) butyl group, and preferably a methyl group may be mentioned. Preferably R^1 and R^2 simultaneously represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R^1 and R^2 , independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons, or an alkoxy group having 1 to 4 carbons. As the halogen atom, as used herein, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom and the like, and preferably a chlorine atom and a fluorine atom may be mentioned. As the alkyl group having 1 to 4 carbons, there can be mentioned a methyl group, an ethyl group, an ethyl group, an ethyl group having 1 to 4 carbons, there can be mentioned. As the alkoxy group having 1 to 4 carbons, there can be mentioned a methoxy group, an ethoxy group and a (n, i, t) butyl group, and preferably a methoxy group, an ethoxy group and a (n, i, t) butyloxy group, and preferably a methoxy group, an ethoxy group, and preferably a methoxy group having 1.

[0011] A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring. Preferably, there can be mentioned a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring. As the substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, there can be mentioned a methylene group, an ethylene group, a (n, i-) propylene group and a (n, i, t-) butylene group, and preferably an ethylene group may be mentioned. As the substituted or unsubstituted arylene group having 6 to 11 carbons, there can be mentioned a phenylene group, an indenylene group and a naphthylene group etc., and preferably a phenylene group

may be mentioned. As the substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, there can be mentioned a pyridilene group, a furanylene group, a thiophenylene group, an imidazolene group, a thiazolene group, a pyrimidilene group, an oxazolene group, an isoxazolene group, a benzphenylene group, a benzimidazolene group, a quinolilene group, an indolene group, a benzothiazolene group and the like, and preferably a pyridilene group, a furanylene group, and a thiophenylene group may be mentioned.

[0012] Furthermore, as the substituent, as used herein, there can be mentioned a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons in which the substituent may be joined to each other at adjacent sites via an acetal bond, a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, or a phenoxy group that may be substituted with one or more halogen atoms. They may be independently substituted at any one or more sites of the ring or the alkylene group. Specifically, there can be mentioned OH, a chloro group, a bromo group, a nitro group, a methoxy group, a cyano group, a methylenedioxy group, a trifluoromethyl group, a methyl group, an ethyl group, a (n, i-) propyl group, a (n, i, t-) butyl group, and the like.

[0013] As E, there can be mentioned COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group, and preferably COOR³ or a tetrazole group may be mentioned. As R³ as used herein, there can be mentioned a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbons, and preferably a hydrogen atom, a methyl group, an ethyl group, or a t-butyl group may be mentioned, and most preferably a hydrogen atom may be mentioned.

[0014] G represents a substituted or unsubstituted, linear or branched alkyl group having 1 to 6 carbons that may be interrupted with one or a plurality of O, S, SO_2 , and NR^3 , in which R^3 is as defined above and the substituent represents a halogen atom, OH, NO_2 , CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group. specifically, there can be mentioned -CH₂-, -CH₂CH₂-, -CH₂CO-, -CH₂CH₂O-, CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S-, -CH₂CH₂S- and the like, and preferably -CH₂-, -CH₂CH₂-, -CH₂CO- or -CH₂CH₂O- may be mentioned.

[0015] m represents an integer of 0 to 2, and preferably 0 or 2 may be mentioned.

When m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring. Preferably, a substituted aryl group having 10 to 11 carbons and a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring may be mentioned. As the substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, there can be mentioned a methyl group, an ethyl group, a (n, i-) propyl group, a (n, i, s, t-) butyl group, a (n, i, ne, t-) pentyl group and a cyclohexyl group. As the substituted or unsubstituted aryl group having 7 to 9 carbons, there can be mentioned an indenyl group, and as the substituted aryl group having 10 to 11 carbons, there can be mentioned a naphthyl group. As the substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, there can be mentioned a pyridyl group, a furanyl group, a thiophenyl group, an imidazole group, a thiazole group, a pyrimidine group, an oxazole group, an isoxazole group, a benzofurane group, a benzimidazole group, a quinoline group, an isoquinoline group, a quinoxaline group, a benzoxadiazole group, a benzothiadiazole group, an indole group, a N-methylindole group, a benzothiazole group, a benzothiophenyl group, a benzisoxazole group and the like, and preferably a benzothiophenyl group or a N-methylindole group may be mentioned.

[0017] When m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, and preferably a substituted or unsubstituted aryl group having 6 to 11 carbons and a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring may be mentioned. As the substituted or unsubstituted aryl group having 6 to 11 carbons, there can be mentioned a phenyl group, an indenyl group, a naphthyl group and the like, and preferably a phenyl group or a naphthyl group may be mentioned. As the substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons and as the substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, there can be mentioned those described above. As the substituent as used herein, there can be mentioned, halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons,

a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, or a phenoxy group that may be substituted with one or more halogen atoms. They may be independently substituted at any one or more sites of the ring or the alkyl group. Specifically, there can be mentioned OH, a chloro group, a bromo group, a nitro group, a methoxy group, a cyano group, a methylenedioxy group, a trifluoromethyl group, a trifluoromethoxy group, a methyl group, an ethyl group, a (n, i, s, t-) butyl group, an anilide group and the like.

10 [0018] X represents CH or a nitrogen atom, and preferably CH may be mentioned.

[0019] As the compound of formula (1), specifically those described in Tables 1 to 40 are preferred. Most preferred among them are compounds Nos. 37, 50, 63, 64, 65, 84, 115, 117, 119, 121, 123, 130, 143, 147, 168, 174, 256, 264, 272, 311, 319, 320, 321, 324, 349, 352, 354, 355, 358, 364, 380, 392, 395, 398, 401, 402, 444, 455, 459, 460, 506, 863, 866, and 869.

[0020] A1 to A21 and J1 to J85 described in Tables 1 to 40 are the groups shown below, in which E and G are as described above.

50

5	Q	\bigcap^{G}	ÇG	(C)G	F \bigcirc^{G}	F	\bigcirc_{F}^{G}
	IJ	J 2	J3	J4	J 5	J6	37
10	CI G	ÇI CI	Cl	Br CG	G Br	\bigcirc Br	
	18	J9	110	ш	Il2.	J13	
15	F ₃ C G	CF ₃	CC _{CF3}	MeO G	OMe	◯ G OMe	
20	J14	J15	J16	J1 7	718	119	
	F ₃ CO G	OCF ₃	COCF ₃	NC G	ÇN CN	\mathbb{Q}_{CN}^{G}	
25	J20	J21	J22	J23	J2 4	J2S	
30	EtO	OEt	○ G OEt	O_2N \bigcap^G	NO ₂	O _{NO2}	
	·J26	J27	J28	J29	J30	J3 i	•
35	но	ÇG OH	\mathbb{Q}_{OH}^G	Q ^G	QG	C G	
	Ј32	J33	J34	J3 5	136	J37	
40	Å ^G	CICI	CI CI	CI CIG	CI G CI	CLG.	
45	138	J39	140	J41	J42	Ј43	
50	MeO OMe	G OMe	MeO G OMe	MeO G	MeO OM	G C	
	144	J45	J 46	J47	J48	J 49	J 50

Table 1

50

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
1	Η	Н	A1	СООН	CH ₂ CH ₂	J1	0	СН
2	Н	Н	A1	СООН	CH ₂	J2	0	СН
3	Н	Н	A1	СООН	CH ₂	J3	0	СН
4	Н	Н	A 1	СООН	CH ₂	J4	0	СН

Table 1 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
5	Н	Н	A1	СООН	CH ₂	J5	0	СН
6	Н	Н	A1	СООН	CH ₂	J6	0	СН
7	Н	Н	A1	СООН	CH ₂	J7	0	СН
8	Н	Н	A1	СООН	CH ₂	J8	0	СН
9	Н	Н	A1	СООН	CH ₂	J9	0	СН
10	Н	Н	A1	СООН	CH ₂	J10	0	СН
11	Н	Н	A1	СООН	CH ₂	J11	0	СН
12	Н	Н	A1	СООН	CH ₂	J12	0	СН
13	Н	Н	A1	СООН	CH ₂	J13	0	СН
14	Н	Н	A1	СООН	CH ₂	J14	0	СН
15	Н	Н	A1	СООН	CH ₂	J15	0	СН
16	Н	Н	A1	СООН	CH ₂	J16	0	СН
17	Н	Н	A 1	СООН	CH ₂	J17	0	СН
18	Н	Н	A1	СООН	CH ₂	J18	0	СН
19	Н	Н	A1	СООН	CH ₂	J19	0	СН
20	Н	Н	A1	соон	CH ₂	J20	0	СН
21	Н	Н	A1	СООН	CH ₂	J21	0	СН
22	Н	Н	A1	СООН	CH ₂	J22	0	СН
23	Н	Н	A1	СООН	CH ₂	J23	0	СН
24	Н	Н	A1	СООН	CH ₂	J24	0	СН
25	Н	Н	A1	соон	CH ₂	J25	0	СН

Compound No.	R ¹	R ²	Α	E	G	J	m	Х		
26	Н	Н	A 1	СООН	CH ₂	J26	0	СН		
27	Н	Н	A 1	СООН	CH ₂	J27	0	СН		
28	Н	Н	A 1	СООН	CH ₂	J28	0	СН		
29	Н	Н	A 1	СООН	CH ₂	J29	0	СН		
30	Н	Н	A 1	соон	CH ₂	J30	0	СН		
31	Н	Н	A 1	СООН	CH ₂	J31	0	СН		
32	Н	Н	A 1	СООН	CH ₂	J32	0	СН		
33	Н	Н	A 1	СООН	CH ₂	J33	0	СН		
34	Н	Н	A 1	СООН	CH ₂	J34	0	СН		
35	Н	Н	A 1	СООН	CH ₂	J35	0	СН		
36	Н	Н	A 1	СООН	CH ₂	J36	0	СН		
37	Н	Н	A 1	СООН	CH ₂	J37	0	СН		
38	Н	Н	A 1	СООН	CH ₂	J38	0	СН		
			-	•		•				

Table 2 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
39	Ι	Н	A 1	соон	CH ₂	J39	0	СН
40	Н	Н	A 1	соон	CH ₂	J40	0	СН
41	Н	Н	A 1	соон	CH ₂	J41	0	СН
42	Н	Н	A 1	соон	CH ₂	J42	0	СН
43	Н	Н	A 1	соон	CH ₂	J43	0	СН
44	Н	Н	A 1	СООН	CH ₂	J44	0	СН
45	Н	Н	A 1	соон	CH ₂	J45	0	СН
46	Н	Н	A 1	соон	CH ₂	J46	0	СН
47	Н	Н	A 1	соон	CH ₂	J47	0	СН
48	Н	Н	A 1	соон	CH ₂	J48	0	СН
49	Н	Н	A 1	соон	CH ₂	J49	0	СН
50	Н	Н	A 1	соон	CH ₂	J50	0	СН

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
51	Н	Н	A 1	соон	CH ₂	J51	0	СН
52	Η	Н	A 1	соон	CH ₂	J52	0	СН
53	Η	Н	A 1	СООН	CH ₂	J53	0	СН
54	Ι	Н	A 1	СООН	CH ₂	J54	0	СН
55	Ι	Η	A 1	СООН	CH ₂	J55	0	CH
56	Ι	Н	A 1	СООН	CH ₂	J56	0	СН
57	Ι	Н	A 1	COOH	CH ₂	J57	0	CH
58	Ι	Н	A 1	COOH	CH ₂	J58	0	СН
59	Ι	Η	A 1	СООН	CH ₂	J59	0	CH
60	Ι	Ι	A 1	СООН	CH ₂	J60	0	CH
61	Ι	Н	A 1	COOH	CH ₂	J61	0	СН
62	Ι	Η	A 1	COOH	CH ₂	J62	0	СН
63	Ι	Н	A 1	СООН	CH ₂	J63	0	C T
64	Ι	Η	A 1	COOH	CH ₂	J64	0	СН
65	Ι	Н	A 1	СООН	CH ₂	J 6 5	0	CH
66	Ι	Ι	A 1	СООН	CH ₂	J66	0	CH
67	Ι	Ι	A 1	СООН	CH ₂	J67	0	CH
68	Ι	Н	A 1	СООН	CH ₂	J68	0	CH
69	Ι	Н	A 1	COOH	CH ₂	J69	0	СН
70	Ι	Н	A 1	COOH	CH ₂	J70	0	СН
71	Ι	Н	A 1	СООН	CH ₂	J71	0	СН
72	Η	Н	A 1	COOH	CH ₂	J72	0	СН

Table 3 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
73	Н	Н	A 1	СООН	CH ₂	J73	0	СН
74	Н	Н	A 1	COOH	CH ₂	J74	0	СН
75	Н	Н	A 1	СООН	CH ₂	J75	0	СН

			Tab	le 4				
Compound No.	R ¹	R ²	Α	E	G	J	m	Х
76	Н	Н	A1	соон	CH ₂	J76	0	СН
77	Н	Н	A1	СООН	CH ₂	J77	0	СН
78	Н	Н	A1	СООН	CH ₂	J78	0	СН
79	Н	Н	A1	соон	CH ₂	J79	0	СН
80	Н	Н	A1	СООН	CH ₂	J80	0	СН
81	Ме	Ме	A1	соон	CH ₂	J1	0	СН
82	Ме	Ме	A1	СООН	CH ₂	J2	0	СН
83	Ме	Ме	A1	СООН	CH ₂	J3	0	СН
84	Ме	Ме	A1	СООН	CH ₂	J4	0	СН
85	Ме	Ме	A1	СООН	CH ₂	J5	0	СН
86	Ме	Ме	A1	соон	CH ₂	J6	0	СН
87	Ме	Ме	A1	соон	CH ₂	J7	0	СН
88	Ме	Ме	A1	соон	CH ₂	J8	0	СН
89	Ме	Ме	A1	соон	CH ₂	J9	0	СН
90	Ме	Ме	A1	соон	CH ₂	J10	0	СН
91	Ме	Ме	A1	соон	CH ₂	J11	0	СН
92	Ме	Ме	A1	соон	CH ₂	J12	0	СН
93	Ме	Ме	A1	СООН	CH ₂	J13	0	СН
94	Ме	Ме	A1	соон	CH ₂	J14	0	СН
95	Ме	Ме	A1	СООН	CH ₂	J15	0	СН
96	Ме	Ме	A1	соон	CH ₂	J16	0	СН
97	Ме	Ме	A1	соон	CH ₂	J17	0	СН
98	Ме	Ме	A1	соон	CH ₂	J18	0	СН
99	Ме	Ме	A1	соон	CH ₂	J19	0	СН
100	Ме	Ме	A1	СООН	CH ₂	J20	0	СН

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
101	Me	Ме	A 1	COOH	CH ₂	J21	0	СН

Table 5 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
102	Ме	Ме	A1	СООН	CH ₂	J22	0	СН
103	Ме	Ме	A1	COOH	CH ₂	J23	0	СН
104	Ме	Ме	A1	СООН	CH ₂	J24	0	CH
105	Ме	Ме	A 1	СООН	CH ₂	J25	0	CH
106	Ме	Ме	A1	СООН	CH ₂	J26	0	CH
107	Ме	Ме	A1	COOH	CH ₂	J27	0	CH
108	Ме	Ме	A1	СООН	CH ₂	J28	0	CH
109	Ме	Ме	A1	СООН	CH ₂	J29	0	CH
110	Ме	Ме	A1	СООН	CH ₂	J30	0	CH
111	Me	Ме	A 1	СООН	CH ₂	J31	0	CH
112	Ме	Ме	A1	СООН	CH ₂	J32	0	СН
113	Ме	Ме	A1	СООН	CH ₂	J33	0	СН
114	Ме	Ме	A1	СООН	CH ₂	J34	0	СН
115	Ме	Ме	A1	СООН	CH ₂	J35	0	СН
116	Ме	Ме	A1	СООН	CH ₂	J36	0	СН
117	Me	Ме	A1	соон	CH ₂	J37	0	СН
118	Ме	Ме	A1	СООН	CH ₂	J38	0	СН
119	Ме	Ме	A1	СООН	CH ₂	J39	0	CH
120	Ме	Ме	A1	СООН	CH ₂	J40	0	CH
121	Ме	Ме	A1	СООН	CH ₂	J41	0	CH
122	Ме	Ме	A1	соон	CH ₂	J42	0	СН
123	Ме	Ме	A1	СООН	CH ₂	J43	0	СН
124	Ме	Ме	A 1	СООН	CH ₂	J44	0	CH
125	Ме	Ме	A 1	COOH	CH ₂	J45	0	CH

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
126	Me	Ме	A1	COOH	CH ₂	J46	0	CH
127	Me	Ме	A1	СООН	CH ₂	J47	0	CH
128	Me	Ме	A1	СООН	CH ₂	J48	0	СН
129	Ме	Ме	A1	соон	CH ₂	J49	0	СН
130	Me	Ме	A1	СООН	CH ₂	J50	0	CH
131	Me	Ме	A1	СООН	CH ₂	J51	0	CH
132	Ме	Ме	A1	соон	CH ₂	J52	0	CH
133	Ме	Ме	A 1	СООН	CH ₂	J53	0	CH
134	Me	Me	A1	COOH	CH ₂	J54	0	CH

Table 6 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
135	Me	Ме	A1	СООН	CH ₂	J55	0	СН
136	Ме	Ме	A1	COOH	CH ₂	J56	0	CH
137	Me	Ме	A1	СООН	CH ₂	J57	0	СН
138	Me	Ме	A 1	COOH	CH ₂	J58	0	СН
139	Ме	Ме	A1	COOH	CH ₂	J59	0	СН
140	Me	Ме	A 1	COOH	CH ₂	J60	0	CH
141	Me	Ме	A 1	COOH	CH ₂	J61	0	СН
142	Me	Ме	A 1	СООН	CH ₂	J62	0	СН
143	Ме	Ме	A1	СООН	CH ₂	J 6 3	0	СН
144	Me	Ме	A1	COOH	CH ₂	J64	0	СН
145	Ме	Ме	A 1	СООН	CH ₂	J 6 5	0	СН
146	Me	Ме	A1	СООН	CH ₂	J66	0	СН
147	Ме	Ме	A1	СООН	CH ₂	J67	0	СН
148	Me	Ме	A1	COOH	CH ₂	J68	0	СН
149	Me	Ме	A1	СООН	CH ₂	J69	0	СН
150	Me	Ме	A 1	COOH	CH ₂	J70	0	СН

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
151	Me	Me	A 1	COOH	CH ₂	J71	0	СН
152	Ме	Me	A 1	СООН	CH ₂	J72	0	СН
153	Ме	Me	A 1	COOH	CH ₂	J73	0	СН
154	Ме	Me	A 1	COOH	CH ₂	J74	0	СН
155	Ме	Me	A 1	СООН	CH ₂	J75	0	СН
156	Ме	Me	A 1	COOH	CH ₂	J76	0	СН
157	Ме	Me	A 1	СООН	CH ₂	J77	0	СН
158	Ме	Me	A 1	СООН	CH ₂	J78	0	СН
159	Ме	Me	A 1	СООН	CH ₂	J79	0	СН
160	Ме	Me	A 1	COOH	CH ₂	J80	0	СН
161	CI	CI	A 1	COOH	CH ₂ CH ₂	J1	0	СН
162	CI	CI	A 1	COOH	CH ₂	J4	0	СН
163	CI	CI	A 1	СООН	CH ₂	J10	0	СН
164	CI	CI	A 1	COOH	CH ₂	J18	0	СН
165	CI	CI	A 1	СООН	CH ₂	J21	0	СН
166	CI	CI	A 1	СООН	CH ₂	J28	0	СН
167	CI	С	A 1	СООН	CH ₂	J35	0	СН

Table 7 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
168	CI	C	A 1	СООН	CH ₂	J37	0	СН
169	CI	CI	A 1	COOH	CH ₂	J39	0	CH
170	CI	C	A 1	COOH	CH ₂	J43	0	СН
171	CI	ō	A 1	COOH	CH ₂	J46	0	CH
172	CI	C	A 1	COOH	CH ₂	J50	0	СН
173	CI	CI	A 1	COOH	CH ₂	J54	0	CH
174	CI	ō	A 1	COOH	CH ₂	J63	0	H
175	CI	ō	A 1	COOH	CH ₂	J64	0	CH

Table 8

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
176	CI	CI	A1	COOH	CH ₂	J65	0	СН
177	CI	CI	A1	COOH	CH ₂	J66	0	СН
178	CI	CI	A1	COOH	CH ₂	J67	0	СН
179	CI	CI	A1	СООН	CH ₂	J71	0	СН
180	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂ CH ₂	J1	0	СН
181	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J4	0	СН
182	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J10	0	СН
183	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J18	0	СН
184	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J21	0	СН
185	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J28	0	СН
186	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J35	0	СН
187	-CH ₂ CH ₂ CH ₂ -		A1	COOH	CH ₂	J37	0	СН
188	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J39	0	СН
189	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J43	0	СН
190	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J46	0	СН
191	-CH ₂ CI	H ₂ CH ₂ -	A 1	COOH	CH ₂	J50	0	СН
192	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J54	0	СН
193	-CH ₂ CI	H ₂ CH ₂ -	A1	COOH	CH ₂	J63	0	СН
194	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J64	0	СН
195	-CH ₂ CI	H ₂ CH ₂ -	A 1	СООН	CH ₂	J65	0	СН
196	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J66	0	СН
197	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J67	0	СН
198	-CH ₂ CI	H ₂ CH ₂ -	A1	СООН	CH ₂	J71	0	СН
199	-OCH ₂ O-		A1	СООН	CH ₂ CH ₂	J1	0	СН
200	-OCI	H ₂ O-	A1	СООН	CH ₂	J4	0	СН

Table 9

Ε

G

J

m

Х

R²

R¹

Compound No.

4	5	;	

10

15

20

25

30

35

40

45

50

55

201	-OCH ₂ O-	A1	COOH	CH ₂	J10	0	СН
202	-OCH ₂ O-	A1	COOH	CH ₂	J18	0	СН
203	-OCH ₂ O-	A1	соон	CH ₂	J21	0	СН
204	-OCH ₂ O-	A1	соон	CH ₂	J28	0	СН
205	-OCH ₂ O-	A1	соон	CH ₂	J35	0	СН
206	-OCH ₂ O-	A1	соон	CH ₂	J37	0	СН
207	-OCH ₂ O-	A1	соон	CH ₂	J39	0	СН
208	-OCH ₂ O-	A1	СООН	CH ₂	J43	0	СН
209	-OCH ₂ O-	A1	СООН	CH ₂	J46	0	СН
210	-OCH ₂ O-	A1	COOH	CH ₂	J50	0	СН
211	-OCH ₂ O-	A1	соон	CH ₂	J54	0	СН
212	-OCH ₂ O-	A1	COOH	CH ₂	J63	0	СН
213	-OCH ₂ O-	A1	COOH	CH ₂	J64	0	СН
214	-OCH ₂ O-	A1	COOH	CH ₂	J65	0	СН
215	-OCH ₂ O-	A1	соон	CH ₂	J66	0	СН
216	-OCH ₂ O-	A1	COOH	CH ₂	J67	0	СН
217	-OCH ₂ O-	A1	СООН	CH ₂	J71	0	СН
218	-OCH ₂ CH ₂ O-	A1	соон	CH ₂ CH ₂	J1	0	СН
219	-OCH ₂ CH ₂ O-	A1	соон	CH ₂	J4	0	СН
220	-OCH ₂ CH ₂ O-	A1	COOH	CH ₂	J10	0	СН
221	-OCH ₂ CH ₂ O-	A1	СООН	CH ₂	J18	0	СН
222	-OCH ₂ CH ₂ O-	A1	СООН	CH ₂	J35	0	СН
223	-OCH ₂ CH ₂ O-	A1	СООН	CH ₂	J37	0	СН
224	-OCH ₂ CH ₂ O-	A1	соон	CH ₂	J39	0	СН
225	-OCH ₂ CH ₂ O-	A1	соон	CH ₂	J50	0	СН
						_	

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
226	-OCH ₂	CH ₂ O-	A1	соон	CH ₂	J63	0	СН
227	-OCH ₂	CH ₂ O-	A1	соон	CH ₂	J64	0	СН
228	-OCH ₂	CH ₂ O-	A1	СООН	CH ₂	J65	0	СН
229	-OCH ₂	-OCH ₂ CH ₂ O-		соон	CH ₂	J67	0	СН
230	-OCH ₂	CH ₂ O-	A1	COOH	CH ₂	J71	0	CH
231	OMe	OMe	A1	соон	CH ₂ CH ₂	J1	0	СН

Table 10 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
232	OMe	OMe	A1	СООН	CH ₂	J4	0	СН
233	OMe	OMe	A1	COOH	CH ₂	J10	0	СН
234	OMe	OMe	A1	COOH	CH ₂	J18	0	СН
235	OMe	OMe	A 1	COOH	CH ₂	J35	0	СН
236	OMe	OMe	A1	COOH	CH ₂	J37	0	СН
237	OMe	OMe	A1	COOH	CH ₂	J39	0	СН
238	OMe	OMe	A1	COOH	CH ₂	J50	0	СН
239	OMe	OMe	A1	COOH	CH ₂	J63	0	СН
240	OMe	OMe	A1	COOH	CH ₂	J64	0	СН
241	OMe	OMe	A1	COOH	CH ₂	J65	0	СН
242	OMe	OMe	A1	СООН	CH ₂	J67	0	СН
243	OMe	OMe	A1	СООН	CH ₂	J71	0	СН
244	F	F	A1	COOH	CH ₂	J35	0	СН
245	F	F	A1	COOH	CH ₂	J37	0	СН
246	F	F	A1	СООН	CH ₂	J39	0	СН
247	F	F	A1	СООН	CH ₂	J50	0	СН
248	F	F	A1	COOH	CH ₂	J63	0	СН
249	F	F	A1	COOH	CH ₂	J64	0	СН
250	F	F	A1	COOH	CH ₂	J65	0	СН

Table 11

	_ 1	_ n						
Compound No.	R ¹	R ²	Α	E	G	J	m	Х
251	F	F	A1	соон	CH ₂	J 6 7	0	CH
252	Н	Н	A1	СООН	CH ₂	J 3 5	0	N
253	Н	Н	A1	соон	CH ₂	J37	0	Ν
254	Н	Н	A1	СООН	CH ₂	J39	0	N
255	Н	Н	A1	СООН	CH ₂	J50	0	N
256	Н	Н	A1	СООН	CH ₂	J 6 3	0	N
257	Н	Н	A1	СООН	CH ₂	J64	0	N
258	Н	Н	A1	СООН	CH ₂	J 6 5	0	N
259	Н	Н	A1	СООН	CH ₂	J67	0	N
260	Me	Н	A1	COOH	CH ₂	J35	0	СН
261	Me	Н	A1	СООН	CH ₂	J37	0	СН
262	Ме	Н	A1	СООН	CH ₂	J39	0	СН
263	Ме	Н	A1	СООН	CH ₂	J50	0	СН
264	Me	Н	A1	СООН	CH ₂	J 6 3	0	СН
265	Ме	Н	A1	соон	CH ₂	J64	0	СН

Table 11 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
266	Ме	Н	A 1	СООН	CH ₂	J 6 5	0	СН
267	Ме	Н	A 1	COOH	CH ₂	J67	0	СН
268	OMe	Н	A 1	СООН	CH ₂	J35	0	СН
269	OMe	Н	A 1	COOH	CH ₂	J37	0	СН
270	OMe	Н	A 1	СООН	CH ₂	J39	0	СН
271	OMe	Н	A 1	COOH	CH ₂	J50	0	СН
272	OMe	Н	A 1	СООН	CH ₂	J 6 3	0	СН
273	OMe	Н	A 1	СООН	CH ₂	J64	0	СН
274	OMe	Н	A 1	СООН	CH ₂	J 6 5	0	СН
275	OMe	Η	A 1	COOH	CH ₂	J67	0	СН

Table 12								
Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
276	OEt	Н	A1	соон	CH ₂	J63	0	СН
277	OEt	Н	A1	соон	CH ₂	J64	0	СН
278	OEt	Н	A1	СООН	CH ₂	J65	0	СН
279	CF3	Н	A1	соон	CH ₂	J63	0	СН
280	CF3	Н	A1	соон	CH ₂	J64	0	СН
281	CF3	Н	A1	СООН	CH ₂	J65	0	СН
282	CN	Н	A1	СООН	CH ₂	J63	0	СН
283	CN	Н	A1	СООН	CH ₂	J64	0	СН
284	CN	Н	A1	соон	CH ₂	J65	0	СН
285	CI	Н	A1	СООН	CH ₂	J63	0	N
286	CI	Н	A1	СООН	CH ₂	J64	0	N
287	CI	Н	A1	СООН	CH ₂	J65	0	N
288	Ме	Ме	A2	СООН	CH ₂	J35	0	СН
289	Ме	Ме	A 2	соон	CH ₂	J37	0	СН
290	Ме	Ме	A 2	СООН	CH ₂	J39	0	СН
291	Ме	Ме	A 2	СООН	CH ₂	J63	0	СН
292	Ме	Ме	A 2	СООН	CH ₂	J64	0	СН
293	Ме	Ме	A 2	соон	CH ₂	J65	0	СН
294	Ме	Ме	A 2	соон	CH ₂ CH ₂	J1	0	СН
295	Ме	Me	АЗ	соон	CH ₂	J1	0	СН
296	Me	Ме	АЗ	соон	CH ₂	J35	0	СН
297	Me	Ме	АЗ	соон	CH ₂	J37	0	СН
298	Me	Ме	АЗ	соон	CH ₂	J39	0	СН
299	Me	Me	А3	соон	CH ₂	J50	0	СН

Table 12 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
300	Ме	Ме	А3	СООН	CH ₂	J63	0	СН

Table 13

1	15	,

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
301	Me	Me	A 3	COOH	CH ₂	J64	0	CH
302	Me	Me	A 3	СООН	CH ₂	J65	0	CH
303	Ме	Me	A 3	COOH	CH ₂	J67	0	СН
304	Ме	Me	A 3	СООН	CH ₂ CH ₂	J1	0	СН
305	Ме	Me	A 3	СООН	CH ₂ CH ₂	J63	0	CH
306	Ме	Ме	A 4	СООН	CH ₂	J1	0	СН
307	Ме	Me	A 4	СООН	CH ₂	J35	0	СН
308	Ме	Me	A 4	COOH	CH ₂	J37	0	СН
309	Ме	Me	A 4	СООН	CH ₂	J39	0	СН
310	Ме	Ме	A 4	СООН	CH ₂	J50	0	СН
311	Ме	Me	A 4	СООН	CH ₂	J63	0	СН
312	Ме	Me	A 4	СООН	CH ₂	J64	0	СН
313	Me	Me	A 4	COOH	CH ₂	J65	0	СН
314	Ме	Me	A 4	СООН	CH ₂	J67	0	СН
315	Ме	Me	A 4	СООН	CH ₂ CH ₂	J1	0	СН
316	Ме	Me	A 4	СООН	CH ₂ CH ₂	J63	0	СН
317	Н	Н	A 4	СООН	CH ₂	J37	0	СН
318	Н	Н	A 4	СООН	CH ₂	J39	0	СН
319	Н	Н	A 4	СООН	CH ₂	J63	0	СН
320	Н	Н	A 4	COOH	CH ₂	J64	0	СН
321	Н	Н	A 4	СООН	CH ₂	J65	0	СН
322	CI	CI	A 4	СООН	CH ₂	J37	0	CH
323	CI	С	A 4	СООН	CH ₂	J39	0	CH
324	CI	С	A 4	СООН	CH ₂	J63	0	CH
325	CI	CI	A 4	СООН	CH ₂	J64	0	CH

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
326	CI	CI	A 4	соон	CH ₂	J65	0	СН
327	Н	Н	A 4	СООН	CH ₂	J37	0	N
328	Н	Н	A 4	СООН	CH ₂	J39	0	N

Table 14 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
329	Н	Н	A 4	соон	CH ₂	J63	0	N
330	Н	Н	A 4	соон	CH ₂	J64	0	N
331	Н	Н	A 4	соон	CH ₂	J65	0	N
332	Me	Me	A 5	СООН	CH ₂	J1	0	СН
333	Me	Me	A 5	соон	CH ₂ CH ₂	J1	0	СН
334	Me	Me	A 6	СООН	CH ₂	J1	0	CH
335	Me	Me	A 6	СООН	CH ₂ CH ₂	J1	0	CH
336	Me	Me	A7	соон	CH ₂	J1	0	СН
337	Me	Me	A7	соон	CH ₂ CH ₂	J1	0	СН
338	Me	Me	A 8	соон	CH ₂	J1	0	СН
339	Me	Me	A 8	СООН	CH ₂ CH ₂	J1	0	СН
340	Me	Me	A 9	СООН	CH ₂	J1	0	СН
341	Me	Me	A 9	соон	CH ₂ CH ₂	J1	0	СН
342	Me	Me	A 10	соон	CH ₂	J1	0	СН
343	Me	Me	A10	соон	CH ₂ CH ₂	J1	0	СН
344	Me	Me	A11	соон	CH ₂	J37	0	СН
345	Me	Me	A11	соон	CH ₂	J39	0	СН
346	Me	Me	A11	соон	CH ₂	J50	0	СН
347	Me	Me	A11	соон	CH ₂	J63	0	СН
348	Me	Me	A11	соон	CH ₂	J64	0	СН
349	Н	Н	A11	соон	CH ₂	J37	0	СН
350	Н	Н	A11	соон	CH ₂	J39	0	СН

Table 15

			Iai	ole 15				
Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
351	Н	Н	A11	СООН	CH ₂	J50	0	СН
352	Н	Н	A11	соон	CH ₂	J63	0	СН
353	Н	Н	A11	СООН	CH ₂	J64	0	СН
354	Н	Н	A11	СООН	CH ₂	J65	0	СН
355	CI	CI	A11	СООН	CH ₂	J37	0	СН
356	CI	CI	A11	СООН	CH ₂	J39	0	СН
357	CI	CI	A11	СООН	CH ₂	J50	0	СН
358	CI	CI	A11	СООН	CH ₂	J63	0	СН
359	CI	CI	A11	СООН	CH ₂	J64	0	СН
360	CI	CI	A11	СООН	CH ₂	J65	0	СН
361	Н	Н	A11	СООН	CH ₂	J37	0	N

Table 15 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
362	Н	Н	A11	СООН	CH ₂	J39	0	N
363	Н	Н	A11	СООН	CH ₂	J50	0	N
364	Н	Н	A11	СООН	CH ₂	J63	0	N
365	Н	Н	A11	СООН	CH ₂	J64	0	N
366	Н	Н	A11	СООН	CH ₂	J65	0	N
367	Me	Me	A 12	СООН	CH ₂	J1	0	СН
368	Me	Me	A 12	СООН	CH ₂ CH ₂	J1	0	СН
369	Me	Me	A13	СООН	CH ₂	J1	0	СН
370	Me	Me	A13	СООН	CH ₂ CH ₂	J1	0	СН
371	Me	Me	A 14	СООН	CH ₂	J1	0	СН
372	Me	Me	A14	СООН	CH ₂ CH ₂	J1	0	СН
373	Me	Me	A 15	СООН	CH ₂	J1	0	СН
374	Me	Me	A 15	СООН	CH ₂ CH ₂	J1	0	СН
375	Me	Me	A 16	СООН	CH ₂	J1	0	СН

Table 16

Compound No.	R ¹	R ²	Α	E	G	J	m	Х		
376	Me	Me	A 16	СООН	CH ₂ CH ₂	J1	0	СН		
377	Me	Me	A16	СООН	CH ₂	J37	0	СН		
378	Me	Me	A16	СООН	CH ₂	J39	0	СН		
379	Me	Me	A16	СООН	CH ₂	J50	0	СН		
380	Me	Me	A16	СООН	CH ₂	J63	0	СН		
381	Me	Me	A16	СООН	CH ₂	J64	0	СН		
382	Me	Me	A 16	соон	CH ₂	J65	0	СН		
383	Н	Н	A16	соон	CH ₂	J37	0	СН		
384	Н	Н	A16	СООН	CH ₂	J39	0	СН		
385	Н	Н	A16	СООН	CH ₂	J50	0	СН		
386	Н	Н	A 16	СООН	CH ₂	J63	0	СН		
387	Н	Н	A16	соон	CH ₂	J64	0	СН		
388	Н	Н	A16	СООН	CH ₂	J65	0	СН		
389	Me	Me	A17	соон	CH ₂	J1	0	СН		
390	Me	Me	A17	соон	CH ₂ CH ₂	J1	0	СН		
391	Me	Me	A 18	соон	CH ₂ CH ₂	J1	0	СН		
392	Me	Me	A 18	СООН	CH ₂	J37	0	СН		
393	Me	Me	A 18	СООН	CH ₂	J39	0	CH		
394	Me	Me	A18	соон	CH ₂	J50	0	СН		
395	Me	Me	A18	соон	CH ₂	J63	0	СН		

Table 16 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
396	Me	Ме	A18	СООН	CH ₂	J64	0	СН
397	Me	Ме	A 18	СООН	CH ₂	J65	0	CH
398	Н	Н	A 18	СООН	CH ₂	J37	0	СН
399	Н	Н	A 18	СООН	CH ₂	J39	0	СН
400	Н	Н	A 18	COOH	CH ₂	J50	0	СН

Table 17

Compound No.	R ¹	R ²	Α	E	G	J	m	Х			
401	Н	Н	A18	СООН	CH ₂	J63	0	CH			
402	Н	Н	A18	СООН	CH ₂	J64	0	CH			
403	Н	Н	A18	СООН	CH ₂	J65	0	CH			
404	CI	CI	A18	СООН	CH ₂	J37	0	CH			
405	CI	CI	A18	соон	CH ₂	J63	0	СН			
406	CI	CI	A18	СООН	CH ₂	J64	0	СН			
407	CI	CI	A18	СООН	CH ₂	J65	0	СН			
408	Н	Н	A18	СООН	CH ₂	J37	0	N			
409	Н	Н	A18	соон	CH ₂	J39	0	N			
410	Н	Н	A18	СООН	CH ₂	J63	0	N			
411	Н	Н	A18	СООН	CH ₂	J64	0	N			
412	Н	Н	A18	СООН	CH ₂	J65	0	N			
413	Ме	Н	A18	соон	CH ₂	J37	0	СН			
414	Ме	Н	A18	СООН	CH ₂	J39	0	СН			
415	Ме	Н	A18	СООН	CH ₂	J63	0	СН			
416	Ме	Н	A18	СООН	CH ₂	J64	0	СН			
417	Ме	Н	A18	СООН	CH ₂	J65	0	СН			
418	OMe	Н	A18	СООН	CH ₂	J37	0	СН			
419	OMe	Н	A18	СООН	CH ₂	J39	0	СН			
420	OMe	Н	A18	СООН	CH ₂	J63	0	CH			
421	OMe	Н	A18	СООН	CH ₂	J64	0	СН			
422	OMe	Н	A18	СООН	CH ₂	J65	0	СН			
423	OEt	Н	A18	СООН	CH ₂	J63	0	CH			
424	OEt	Н	A18	СООН	CH ₂	J64	0	СН			
425	OEt	Н	A18	СООН	CH ₂	J65	0	CH			
•											

Table 18

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
426	CF3	Н	A18	СООН	CH ₂	J63	0	СН
427	CF3	Н	A18	COOH	CH ₂	J64	0	СН
428	CF3	Н	A18	соон	CH ₂	J65	0	СН
429	CN	Н	A18	СООН	CH ₂	J63	0	СН
430	CN	Н	A18	СООН	CH ₂	J64	0	СН
431	CN	Н	A18	СООН	CH ₂	J65	0	СН
432	F	Н	A18	СООН	CH ₂	J63	0	СН
433	F	Н	A18	СООН	CH ₂	J64	0	СН
434	F	Н	A18	СООН	CH ₂	J65	0	СН
435	CI	Н	A18	COOH	CH ₂	J63	0	N
436	CI	Н	A18	соон	CH ₂	J64	0	N
437	CI	Н	A18	СООН	CH ₂	J65	0	N
438	Н	Н	A18	СООН	CH ₂	J37	0	N
439	Me	Me	A19	СООН	CH ₂	J1	0	СН
440	Me	Me	A19	СООН	CH ₂ CH ₂	J1	0	СН
441	Me	Me	A19	СООН	CH ₂	J37	0	СН
442	Me	Me	A19	соон	CH ₂	J39	0	СН
443	Me	Me	A19	соон	CH ₂	J50	0	СН
444	Me	Me	A19	соон	CH ₂	J63	0	СН
445	Me	Me	A19	СООН	CH ₂	J64	0	СН
446	Me	Me	A19	соон	CH ₂	J65	0	СН
447	Н	Н	A19	СООН	CH ₂	J1	0	СН
448	Н	Н	A19	СООН	CH ₂ CH ₂	J1	0	СН
449	Н	Н	A19	COOH	CH ₂	J37	0	СН
450	Н	Н	A19	СООН	CH ₂	J39	0	СН

457

Ме

Me

50

5

10

15

20

25

30

35

40

45

55

Compound No. R¹ R² Α Е G J Χ Н Н СООН CH₂ J50 0 СН 451 A19 Н CH₂ 452 A19 СООН J63 0 СН 453 Н Н СООН CH₂ СН A19 J64 0 454 Н Н A19 COOH CH₂ J65 0 СН 455 Ме Ме A20 COOH CH₂ J64 0 СН 456 Ме Ме A20 COOH CH₂ J**6**5 0 СН

A20

COOH

CH₂

J67

0

СН

Table 19 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
458	Ме	Me	A20	СООН	CH ₂	J71	0	СН
459	Н	Н	A20	COOH	CH ₂	J64	0	CH
460	Н	Н	A20	СООН	CH ₂	J65	0	СН
461	Н	Н	A20	СООН	CH ₂	J67	0	CH
462	Н	Н	A20	СООН	CH ₂	J71	0	СН
463	CI	CI	A20	СООН	CH ₂	J64	0	CH
464	CI	CI	A20	СООН	CH ₂	J 6 5	0	СН
465	CI	CI	A20	СООН	CH ₂	J67	0	СН
466	CI	CI	A20	соон	CH ₂	J71	0	СН
467	Н	Н	A20	СООН	CH ₂	J64	0	N
468	Н	Н	A20	СООН	CH ₂	J 6 5	0	N
469	Н	Н	A20	СООН	CH ₂	J67	0	N
470	Н	Н	A20	СООН	CH ₂	J71	0	N
471	Ме	Н	A20	СООН	CH ₂	J64	0	СН
472	Ме	Н	A20	СООН	CH ₂	J 6 5	0	СН
473	Ме	Н	A20	СООН	CH ₂	J67	0	СН
474	Ме	Н	A20	СООН	CH ₂	J71	0	СН
475	OMe	Н	A 20	COOH	CH ₂	J64	0	СН

			Table	20				
Compound No.	R ¹	R ²	Α	E	G	J	m	Х
476	OMe	Н	A20	СООН	CH ₂	J65	0	СН
477	OMe	Н	A20	СООН	CH ₂	J67	0	СН
478	OMe	Н	A20	СООН	CH ₂	J71	0	СН
479	OEt	Н	A20	СООН	CH ₂	J64	0	СН
480	OEt	Н	A20	СООН	CH ₂	J65	0	СН
481	OEt	Н	A20	СООН	CH ₂	J67	0	СН
482	OEt	Н	A20	соон	CH ₂	J71	0	СН
483	F	Н	A20	СООН	CH ₂	J64	0	СН
484	F	Н	A20	СООН	CH ₂	J65	0	СН
485	F	Н	A20	СООН	CH ₂	J67	0	СН
486	F	Н	A20	СООН	CH ₂	J71	0	СН
487	CF3	Н	A20	СООН	CH ₂	J64	0	СН
488	CF3	Н	A20	СООН	CH ₂	J65	0	CH
489	CF3	Н	A20	СООН	CH ₂	J67	0	CH
490	CF3	Н	A20	СООН	CH ₂	J71	0	СН

Table 20 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
491	CN	Н	A20	СООН	CH ₂	J64	0	СН
492	CN	Н	A20	COOH	CH ₂	J65	0	СН
493	CN	Н	A20	COOH	CH ₂	J67	0	СН
494	CN	Н	A20	СООН	CH ₂	J71	0	СН
495	CI	Н	A20	СООН	CH ₂	J64	0	N
496	C	Н	A20	COOH	CH ₂	J65	0	N
497	CI	Н	A20	СООН	CH ₂	J67	0	N
498	CI	Н	A20	СООН	CH ₂	J71	0	N
499	Н	Н	A21	СООН	CH ₂	J63	0	СН
500	Н	Н	A21	COOH	CH ₂	J65	0	СН

				DIC Z I				
Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
501	Ме	Ме	A1	соон	CH ₂ CH ₂	J1	0	СН
502	Ме	Me	A1	СООН	CH ₂ CH ₂	J37	0	СН
503	Ме	Me	A1	СООН	CH ₂ CH ₂	J39	0	СН
504	Ме	Me	A1	СООН	CH ₂ CH ₂	J50	0	СН
505	Ме	Ме	A1	СООН	CH ₂ CH ₂	J62	0	СН
506	Ме	Me	A1	СООН	CH ₂ CH ₂	J63	0	СН
507	Ме	Me	A1	СООН	CH ₂ CH ₂	J64	0	СН
508	Ме	Me	A1	СООН	CH ₂ CH ₂	J65	0	СН
509	Н	Н	A1	соон	CH ₂ CH ₂	J1	0	СН
510	Н	Н	A1	СООН	CH ₂ CH ₂	J37	0	СН
511	Н	Н	A1	СООН	CH ₂ CH ₂	J39	0	СН
512	Н	Н	A1	СООН	CH ₂ CH ₂	J50	0	СН
513	Н	Н	A1	СООН	CH ₂ CH ₂	J62	0	СН
514	Н	Н	A1	СООН	CH ₂ CH ₂	J63	0	СН
515	Н	Н	A1	СООН	CH ₂ CH ₂	J64	0	СН
516	Н	Н	A1	СООН	CH ₂ CH ₂	J65	0	СН
517	Ме	Ме	A 4	СООН	CH ₂ CH ₂	J37	0	СН
518	Ме	Me	A 4	СООН	CH ₂ CH ₂	J39	0	СН
519	Ме	Me	A 4	СООН	CH ₂ CH ₂	J67	0	СН
520	Me	Me	A 4	СООН	CH ₂ CH ₂	J64	0	СН
521	Ме	Me	A 4	СООН	CH ₂ CH ₂	J65	0	СН
522	Н	Н	A 4	СООН	CH ₂ CH ₂	J37	0	СН
523	Н	Н	A 4	СООН	CH ₂ CH ₂	J39	0	СН
524	Н	Н	A 4	соон	CH ₂ CH ₂	J63	0	СН

Table 21 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
525	Н	Н	A4	СООН	CH ₂ CH ₂	J64	0	СН

Table 23

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
551	Ме	Me	A4	соон	co	J1	0	СН
552	Ме	Me	A4	соон	CO	J63	0	СН
553	Н	Н	A4	СООН	CO	J1	0	СН

A1

СООН

СО

J63

СН

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
526	Н	Н	A 4	СООН	CH ₂ CH ₂	J65	0	СН
527	Н	Н	A11	СООН	CH ₂ CH ₂	J37	0	СН
528	Н	Н	A11	СООН	CH ₂ CH ₂	J39	0	СН
529	Н	Н	A11	СООН	CH ₂ CH ₂	J63	0	СН
530	Н	Н	A11	СООН	CH ₂ CH ₂	J64	0	СН
531	Н	Н	A11	соон	CH ₂ CH ₂	J65	0	СН
532	Н	Н	A 18	СООН	CH ₂ CH ₂	J37	0	СН
533	Н	Н	A 18	СООН	CH ₂ CH ₂	J39	0	СН
534	Н	Н	A 18	СООН	CH ₂ CH ₂	J63	0	СН
535	Н	Н	A 18	СООН	CH ₂ CH ₂	J64	0	СН
536	Н	Н	A 18	СООН	CH ₂ CH ₂	J65	0	CH
537	Me	Me	A20	СООН	CH ₂ CH ₂	J37	0	СН
538	Me	Me	A20	СООН	CH ₂ CH ₂	J39	0	СН
539	Me	Me	A20	соон	CH ₂ CH ₂	J63	0	СН
540	Me	Me	A20	СООН	CH ₂ CH ₂	J64	0	СН
541	Me	Me	A20	СООН	CH ₂ CH ₂	J65	0	СН
542	Н	Н	A20	COOH	CH ₂ CH ₂	J37	0	СН
543	Н	Н	A20	СООН	CH ₂ CH ₂	J39	0	СН
544	Н	Н	A20	СООН	CH ₂ CH ₂	J63	0	СН
545	Н	Н	A20	соон	CH ₂ CH ₂	J64	0	СН
546	Н	Н	A 20	СООН	CH ₂ CH ₂	J65	0	СН
547	Me	Ме	A1	соон	CO	J1	0	СН
548	Me	Me	A 1	СООН	CO	J63	0	СН
549	Н	Н	A 1	СООН	CO	J1	0	СН

Table 23 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
554	Н	Н	A4	соон	CO	J63	0	СН
555	Н	Н	A1 1	СООН	CO	J1	0	СН
556	Н	Н	A1 1	соон	CO	J63	0	СН
557	Н	Н	A18	СООН	CO	J1	0	СН
558	Н	Н	A18	СООН	CO	J 6 3	0	СН
559	Н	Н	A 20	COOH	CO	J1	0	СН
560	Н	Н	A 20	COOH	CO	J 6 3	0	СН
561	Ме	Me	A1	СООН	SO ₂	J1	0	СН
562	Ме	Me	A1	СООН	SO ₂	J63	0	СН
563	Н	Н	A1	СООН	SO ₂	J1	0	СН
564	Н	Ι	A1	COOH	SO ₂	J63	0	СН
565	Н	Н	A4	СООН	SO ₂	J1	0	СН
566	Н	Η	A4	СООН	SO ₂	J63	0	СН
567	Н	Н	A1 1	СООН	SO ₂	J1	0	СН
568	Н	Η	A1 1	СООН	SO ₂	J 6 3	0	СН
569	Н	Η	A18	COOH	SO ₂	J1	0	СН
570	Н	Н	A18	COOH	SO ₂	J63	0	СН
571	Н	Н	A 20	СООН	SO ₂	J1	0	СН
572	Н	Η	A 20	COOH	SO ₂	J63	0	СН
573	Н	Ι	A1	COOH	CH ₂ CO	J1	0	СН
574	Н	Н	A1	СООН	CH ₂ CO	J2	0	СН
575	Н	Н	A1	COOH	CH ₂ CO	J3	0	СН

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
576	Н	Н	A1	СООН	CH ₂ CO	J4	0	СН
577	Н	Н	A1	СООН	CH ₂ CO	J5	0	СН
578	Н	Н	A1	СООН	CH ₂ CO	J6	0	СН
579	Η	Ι	A1	СООН	CH ₂ CO	J7	0	CH
580	Η	Ι	A1	СООН	CH ₂ CO	J8	0	CH
581	Η	Ι	A1	СООН	CH ₂ CO	J9	0	CH
582	Н	Н	A1	СООН	CH ₂ CO	J10	0	СН
583	Н	Н	A1	СООН	CH ₂ CO	J11	0	СН
584	Н	Н	A1	СООН	CH ₂ CO	J12	0	СН
585	Н	Ι	A1	СООН	CH ₂ CO	J13	0	CH
586	Н	Н	A1	СООН	CH ₂ CO	J17	0	СН

Table 24 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
587	Н	Н	A1	соон	CH ₂ CO	J18	0	СН
588	Н	Н	A1	СООН	CH ₂ CO	J19	0	CH
589	Н	Н	A1	СООН	CH ₂ CO	J23	0	СН
590	Н	Н	A1	СООН	CH ₂ CO	J24	0	СН
591	Н	Н	A1	соон	CH ₂ CO	J25	0	СН
592	Н	Н	A1	СООН	CH ₂ CO	J36	0	CH
593	Н	Н	A1	СООН	CH ₂ CO	J47	0	СН
594	Н	Н	A1	соон	CH ₂ CO	J57	0	СН
595	Н	Н	A1	соон	CH ₂ CO	J62	0	СН
596	Me	Ме	A1	соон	CH ₂ CO	J1	0	СН
597	Me	Ме	A1	соон	CH ₂ CO	J2	0	CH
598	Ме	Ме	A1	СООН	CH ₂ CO	J3	0	CH
599	Ме	Ме	A1	СООН	CH ₂ CO	J4	0	CH
600	Me	Ме	A1	СООН	CH ₂ CO	J5	0	CH

				able 25				
Compound No.	R ¹	R ²	A	E	G	J	m	Х
601	Ме	Me	A1	СООН	CH ₂ CO	J6	0	СН
602	Ме	Me	A1	СООН	CH ₂ CO	J7	0	СН
603	Me	Me	A1	СООН	CH ₂ CO	J8	0	СН
604	Ме	Me	A1	СООН	CH ₂ CO	J9	0	СН
605	Me	Me	A1	СООН	CH ₂ CO	J10	0	СН
606	Ме	Me	A1	соон	CH ₂ CO	J11	0	СН
607	Me	Me	A1	соон	CH ₂ CO	J12	0	СН
608	Ме	Me	A1	соон	CH ₂ CO	J13	0	СН
609	Ме	Me	A1	СООН	CH ₂ CO	J17	0	СН
610	Ме	Me	A1	СООН	CH ₂ CO	J18	0	СН
611	Me	Me	A1	СООН	CH ₂ CO	J19	0	СН
612	Ме	Me	A1	СООН	CH ₂ CO	J23	0	СН
613	Ме	Me	A1	СООН	CH ₂ CO	J24	0	CH
614	Ме	Me	A1	СООН	CH ₂ CO	J25	0	CH
615	Ме	Me	A1	СООН	CH ₂ CO	J36	0	СН
616	Ме	Me	A1	СООН	CH ₂ CO	J47	0	СН
617	Ме	Me	A1	СООН	CH ₂ CO	J57	0	CH
618	Me	Me	A1	СООН	CH ₂ CO	J62	0	СН
619	Н	Н	A1	СООН	CH ₂ CONH	J1	0	СН
620	Н	Н	A 1	СООН	CH ₂ CONH	J2	0	СН

Table 25 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
621	Н	Н	A1	соон	CH ₂ CONH	J3	0	СН
622	Н	Н	A1	соон	CH ₂ CONH	J4	0	CH
623	Н	Н	A1	соон	CH ₂ CONH	J5	0	СН
624	Н	Н	A1	СООН	CH ₂ CONH	J6	0	СН
625	Н	Н	A1	соон	CH ₂ CONH	J7	0	CH

Table 26

			7	able 26				
Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
626	Н	Н	A1	СООН	CH ₂ CONH	J8	0	СН
627	Н	Н	A1	COOH	CH ₂ CONH	J9	0	СН
628	Н	Н	A1	СООН	CH ₂ CONH	J10	0	СН
629	Н	Н	A1	СООН	CH ₂ CONH	J11	0	СН
630	Н	Н	A1	СООН	CH ₂ CONH	J12	0	СН
631	Н	Н	A1	COOH	CH ₂ CONH	J13	0	СН
632	Н	Н	A1	СООН	CH ₂ CONH	J14	0	СН
633	Н	Н	A1	СООН	CH ₂ CONH	J15	0	СН
634	Н	Н	A1	СООН	CH ₂ CONH	J16	0	СН
635	Н	Н	A1	COOH	CH ₂ CONH	J17	0	СН
636	Н	Н	A1	COOH	CH ₂ CONH	J18	0	СН
637	Н	Н	A1	COOH	CH ₂ CONH	J19	0	СН
638	Н	Н	A1	СООН	CH ₂ CONH	J20	0	СН
639	Н	Н	A1	СООН	CH ₂ CONH	J21	0	СН
640	Н	Н	A1	СООН	CH ₂ CONH	J22	0	СН
641	Н	Н	A1	СООН	CH ₂ CONH	J23	0	СН
642	Н	Н	A1	СООН	CH ₂ CONH	J24	0	СН
643	Н	Н	A1	СООН	CH ₂ CONH	J25	0	СН
644	Н	Н	A1	СООН	CH ₂ CONH	J26	0	СН
645	Н	Н	A1	СООН	CH ₂ CONH	J27	0	СН
646	Н	Н	A1	СООН	CH ₂ CONH	J28	0	СН
647	Н	Н	A1	СООН	CH ₂ CONH	J29	0	СН
648	Н	Н	A1	СООН	CH ₂ CONH	J30	0	СН
649	Н	Н	A1	соок	CH ₂ CONH	J31	0	СН
650	Н	Н	A1	СООН	CH ₂ CONH	J32	0	СН

Table 27

5	

Table 21										
Compound No.	R ¹	R ²	Α	E	G	J	m	Х		
651	Η	Ι	A1	СООН	CH ₂ CONH	J33	0	СН		
652	Ι	Ι	A1	СООН	CH ₂ CONH	J34	0	СН		
653	Η	Ι	A1	соон	CH ₂ CONH	J35	0	СН		
654	Н	Н	A1	СООН	CH ₂ CONH	J37	0	СН		
655	Н	Н	A1	СООН	CH ₂ CONH	J39	0	СН		
656	Н	Н	A1	СООН	CH ₂ CONH	J62	0	СН		
657	Н	Н	A1	СООН	CH ₂ CONH	J63	0	СН		
658	Ме	Me	A1	СООН	CH ₂ CONH	J1	0	СН		
659	Ме	Me	A1	СООН	CH ₂ CONH	J2	0	СН		
660	Me	Me	A1	СООН	CH ₂ CONH	J3	0	СН		
661	Ме	Me	A1	СООН	CH ₂ CONH	J4	0	СН		
662	Ме	Me	A1	СООН	CH ₂ CONH	J5	0	СН		
663	Ме	Me	A1	СООН	CH ₂ CONH	J6	0	СН		
664	Ме	Me	A1	СООН	CH ₂ CONH	J7	0	СН		
665	Ме	Me	A1	СООН	CH ₂ CONH	J8	0	СН		
666	Ме	Me	A1	СООН	CH ₂ CONH	J9	0	СН		
667	Ме	Me	A1	СООН	CH ₂ CONH	J10	0	СН		
668	Ме	Me	A1	СООН	CH ₂ CONH	J11	0	СН		
669	Ме	Me	A1	СООН	CH ₂ CONH	J12	0	СН		
670	Ме	Me	A1	СООН	CH ₂ CONH	J13	0	СН		
671	Ме	Me	A1	СООН	CH ₂ CONH	J14	0	СН		
672	Ме	Me	A1	соон	CH ₂ CONH	J15	0	СН		
673	Ме	Me	A1	СООН	CH ₂ CONH	J16	0	СН		
674	Ме	Me	A1	СООН	CH ₂ CONH	J17	0	СН		
675	Ме	Me	A1	СООН	CH₂CONH	J18	0	СН		

Table 28

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
676	Ме	Ме	A1	СООН	CH ₂ CONH	J19	0	СН
677	Ме	Ме	A1	СООН	CH ₂ CONH	J20	0	CH
678	Ме	Ме	A1	СООН	CH ₂ CONH	J21	0	СН
679	Ме	Me	A1	СООН	CH₂CONH	J22	0	СН
680	Ме	Me	A1	СООН	CH ₂ CONH	J23	0	СН
681	Ме	Me	A1	СООН	CH ₂ CONH	J24	0	СН
682	Me	Me	A 1	СООН	CH ₂ CONH	J25	0	СН

Table 28 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
683	Me	Me	A1	СООН	CH ₂ CONH	J26	0	СН
684	Ме	Ме	A1	СООН	CH ₂ CONH	J27	0	СН
685	Me	Me	A1	СООН	CH ₂ CONH	J28	0	СН
686	Me	Me	A 1	СООН	CH ₂ CONH	J29	0	СН
687	Ме	Me	A1	СООН	CH ₂ CONH	J30	0	СН
688	Me	Me	A1	COOH	CH ₂ CONH	J31	0	СН
689	Me	Me	A1	СООН	CH ₂ CONH	J32	0	СН
690	Me	Me	A1	СООН	CH ₂ CONH	J33	0	СН
691	Ме	Me	A1	соон	CH ₂ CONH	J34	0	СН
692	Me	Me	A1	СООН	CH ₂ CONH	J35	0	СН
693	Ме	Me	A1	СООН	CH ₂ CONH	J37	0	СН
694	Me	Me	A1	СООН	CH ₂ CONH	J39	0	СН
695	Ме	Me	A1	СООН	CH ₂ CONH	J 6 2	0	СН
696	Me	Me	A1	СООН	CH ₂ CONH	J63	0	СН
697	Н	Н	A1	СООН	CH ₂ CH ₂ O	J1	0	СН
698	Н	Н	A1	соон	CH ₂ CH ₂ O	J2	0	СН
699	Н	Н	A1	СООН	CH ₂ CH ₂ O	J3	0	СН
700	Н	Н	A1	COOH	CH ₂ CH ₂ O	J4	0	CH

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
701	Н	Н	A1	соон	CH ₂ CH ₂ O	J5	0	СН
702	Н	Н	A1	соон	CH ₂ CH ₂ O	J6	0	СН
703	Н	Н	A1	СООН	CH ₂ CH ₂ O	J7	0	СН
704	Н	Н	A1	СООН	CH ₂ CH ₂ O	J8	0	СН
705	Н	Н	A1	СООН	CH ₂ CH ₂ O	J9	0	СН
706	Н	Н	A1	СООН	CH ₂ CH ₂ O	J10	0	СН
707	Н	Н	A1	СООН	CH ₂ CH ₂ O	J11	0	СН
708	Н	Н	A1	СООН	CH ₂ CH ₂ O	J12	0	СН
709	Н	Н	A1	СООН	CH ₂ CH ₂ O	J13	0	СН
710	Н	Н	A1	СООН	CH ₂ CH ₂ O	J14	0	СН
711	Н	Н	A1	СООН	CH ₂ CH ₂ O	J15	0	СН
712	Н	Н	A1	СООН	CH ₂ CH ₂ O	J16	0	СН
713	Н	Н	A1	СООН	CH ₂ CH ₂ O	J17	0	СН
714	Н	Н	A1	СООН	CH ₂ CH ₂ O	J18	0	СН
715	Н	Н	A1	соон	CH ₂ CH ₂ O	J19	0	СН

Table 29 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
716	Η	Н	A1	соон	CH ₂ CH ₂ O	J20	0	СН
717	Ι	Н	A1	СООН	CH ₂ CH ₂ O	J21	0	СН
718	Ι	Н	A1	СООН	CH ₂ CH ₂ O	J22	0	СН
719	Н	Н	A1	СООН	CH ₂ CH ₂ O	J23	0	СН
720	Н	Н	A1	соон	CH ₂ CH ₂ O	J24	0	СН
721	Η	Н	A1	СООН	CH ₂ CH ₂ O	J25	0	СН
722	Ι	Н	A1	СООН	CH ₂ CH ₂ O	J26	0	СН
723	Н	Н	A1	соон	CH ₂ CH ₂ O	J27	0	СН
724	Ι	Н	A1	соон	CH ₂ CH ₂ O	J28	0	СН
725	Н	Н	A1	COOH	CH ₂ CH ₂ O	J29	0	СН

Compound No.	4	Table 30										
	R ¹	R ²	Α	Е	G	J	m	Х				
726	Н	Η	A1	COOH	CH ₂ CH ₂ O	J30	0	СН				
727	Н	I	A 1	СООН	CH ₂ CH ₂ O	J31	0	СН				
728	Н	Τ	A 1	СООН	CH ₂ CH ₂ O	J32	0	СН				
729	Н	Ι	A 1	COOH	CH ₂ CH ₂ O	J33	0	СН				
730	Н	Ι	A1	СООН	CH ₂ CH ₂ O	J34	0	СН				
731	Н	I	A1	COOH	CH ₂ CH ₂ O	J35	0	СН				
732	Н	Ι	A 1	COOH	CH ₂ CH ₂ O	J37	0	СН				
733	Н	Ι	A 1	COOH	CH ₂ CH ₂ O	J39	0	СН				
734	Н	Ι	A1	СООН	CH ₂ CH ₂ O	J62	0	СН				
735	Н	I	A1	COOH	CH ₂ CH ₂ O	J63	0	СН				
736	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J1	0	СН				
737	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J2	0	СН				
738	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J3	0	CH				
739	Ме	Me	A1	COOH	CH ₂ CH ₂ O	J4	0	СН				
740	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J5	0	СН				
741	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J6	0	CH				
742	Ме	Me	A 1	COOH	CH ₂ CH ₂ O	J7	0	СН				
743	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J8	0	СН				
744	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J9	0	СН				
745	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J10	0	СН				
746	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J11	0	СН				
747	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J12	0	СН				
748	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J13	0	СН				
749	Ме	Me	A 1	СООН	CH ₂ CH ₂ O	J14	0	СН				

Table 30 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
750	Ме	Ме	A 1	СООН	CH ₂ CH ₂ O	J15	0	CH

5

10

15

20

25

30

35

40

45

50

55

Table 31

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
751	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J15	0	СН
752	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J16	0	СН
753	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J17	0	СН
754	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J18	0	СН
755	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J19	0	СН
756	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J20	0	СН
757	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J21	0	СН
758	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J22	0	СН
759	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J23	0	СН
760	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J24	0	СН
761	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J25	0	СН
762	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J26	0	СН
763	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J27	0	СН
764	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J28	0	СН
765	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J29	0	СН
766	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J30	0	СН
767	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J31	0	СН
768	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J32	0	СН
769	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J33	0	СН
770	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J34	0	СН
771	Ме	Me	A1	СООН	CH ₂ CH ₂ O	J35	0	СН
772	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J37	0	СН
773	Ме	Ме	A1	СООН	CH ₂ CH ₂ O	J39	0	СН
774	Ме	Ме	A1	соон	CH ₂ CH ₂ O	J62	0	СН

Table 32

СООН

CH₂CH₂O

J63

0

СН

A1

Ме

Ме

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
776	Н	Н	A 1	COOH	CH ₂ S	J1	0	СН
777	Н	Η	A 1	COOH	CH ₂ S	J2	0	СН
778	Н	Н	A 1	СООН	CH ₂ S	J3	0	СН

Table 32 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
779	Н	Н	A 1	СООН	CH ₂ S	J4	0	СН
780	Н	Н	A 1	COOH	CH ₂ S	J8	0	СН
781	Н	Н	A 1	СООН	CH ₂ S	J9	0	СН
782	Н	Н	A 1	СООН	CH ₂ S	J10	0	СН
783	Ме	Me	A 1	СООН	CH ₂ S	J1	0	СН
784	Ме	Me	A 1	СООН	CH ₂ S	J2	0	СН
785	Ме	Me	A 1	СООН	CH ₂ S	J3	0	СН
786	Ме	Me	A 1	СООН	CH ₂ S	J4	0	СН
787	Ме	Me	A 1	СООН	CH ₂ S	J8	0	СН
788	Ме	Me	A 1	СООН	CH ₂ S	J9	0	СН
789	Ме	Me	A 1	СООН	CH ₂ S	J10	0	СН
790	Н	Н	A 1	СООН	CH ₂ SO ₂	J1	0	СН
791	Н	Н	A 1	СООН	CH ₂ SO ₂	J2	0	СН
792	Н	Н	A 1	СООН	CH ₂ SO ₂	J3	0	СН
793	Н	Н	A 1	СООН	CH ₂ SO ₂	J4	0	СН
794	Н	Н	A 1	соон	CH ₂ SO ₂	J8	0	СН
795	Н	Н	A1	СООН	CH ₂ SO ₂	J9	0	СН
796	Н	Н	A 1	СООН	CH ₂ SO ₂	J10	0	СН
797	Ме	Me	A 1	СООН	CH ₂ SO ₂	J1	0	СН
798	Me	Me	A 1	СООН	CH ₂ SO ₂	J2	0	СН
799	Ме	Me	A 1	соон	CH ₂ SO ₂	J3	0	СН
800	Ме	Me	A 1	COOH	CH ₂ SO ₂	J4	0	СН

Table 33

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
801	Ме	Me	A 1	COOH	CH ₂ SO ₂	J8	0	СН
802	Ме	Me	A 1	СООН	CH ₂ SO ₂	J9	0	СН
803	Ме	Me	A 1	СООН	CH ₂ SO ₂	J10	0	СН
804	Ме	Me	A 1	СООН	CH ₂	J81	0	СН
805	Ме	Me	A 1	СООН	CH ₂	J82	0	СН
806	Ме	Me	A 1	СООН	CH ₂	J83	0	СН
807	Ме	Me	A 1	СООН	CH ₂	J84	0	СН
808	Ме	Me	A 1	СООН	CH ₂	J85	0	СН
809	Н	Н	A 1	СООН	CH ₂	J81	0	СН
810	Н	Н	A 1	СООН	CH ₂	J82	0	СН
811	Ι	Ι	A 1	COOH	CH ₂	J83	0	СН

Table 33 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
812	Н	Н	A1	СООН	CH ₂	J84	0	СН
813	Н	Н	A1	COOH	CH ₂	J85	0	СН
814	Ме	Me	A1	COOH	CH ₂ CH ₂	J1	1	CH
815	Ме	Me	A1	COOH	CH ₂	J1	1	CH
816	Me	Me	A1	СООН	CH ₂	J37	1	СН
817	Ме	Me	A1	COOH	CH ₂	J39	1	CH
818	Ме	Me	A 1	COOH	CH ₂	J50	1	СН
819	Ме	Ме	A1	СООН	CH ₂	J63	1	СН
820	Ме	Ме	A1	СООН	CH ₂	J64	1	СН
821	Ме	Me	A 1	СООН	CH ₂	J65	1	СН
822	Н	Н	A 1	СООН	CH ₂	J37	1	СН
823	Η	Ι	A 1	СООН	CH ₂	J39	1	СН
824	Н	Н	A 1	СООН	CH ₂	J50	1	СН
825	Н	Н	A 1	СООН	CH ₂	J63	1	СН

Table 34

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х	
826	Н	Н	A 1	COOH	CH ₂	J64	1	СН	
827	Н	Н	A 1	COOH	CH ₂	J65	1	СН	
828	CI	CI	A 1	COOH	CH ₂	J37	1	СН	
829	CI	CI	A 1	СООН	CH ₂	J39	1	СН	
830	CI	CI	A 1	COOH	CH ₂	J50	1	СН	
831	CI	CI	A 1	СООН	CH ₂	J63	1	СН	
832	CI	CI	A 1	COOH	CH ₂	J64	1	СН	
833	CI	CI	A 1	COOH	CH ₂	J65	1	СН	
834	Н	Н	A 4	COOH	CH ₂	J37	1	СН	
835	Н	Н	A 4	СООН	CH ₂	J39	1	СН	
836	Н	Н	A 4	COOH	CH ₂	J50	1	СН	
837	Н	Н	A4	COOH	CH ₂	J63	1	СН	
838	Н	Н	A 4	СООН	CH ₂	J64	1	СН	
839	Н	Н	A 4	СООН	CH ₂	J65	1	СН	
840	Н	Н	A11	СООН	CH ₂	J37	1	СН	
841	Н	Н	A11	СООН	CH ₂	J39	1	СН	
842	Н	Н	A11	COOH	CH ₂	J50	1	СН	
843	Н	Н	A11	COOH	CH ₂	J63	1	СН	
844	Н	Н	A11	СООН	CH ₂	J64	1	СН	
845	Н	Н	A 11	COOH	CH ₂	J65	1	СН	

Table 34 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
846	Н	Н	A18	СООН	CH ₂	J37	1	СН
847	Н	Н	A18	COOH	CH ₂	J39	1	СН
848	Н	Н	A18	COOH	CH ₂	J50	1	CH
849	Н	Н	A18	СООН	CH ₂	J63	1	СН
850	Ι	Ι	A18	COOH	CH ₂	J64	1	CH

Table 35

	L p1	5 2		_			I	
Compound No.	R ¹	R ²	Α	E	G	J	m	Х
851	Н	Η	A 18	СООН	CH ₂	J65	1	СН
852	Н	Н	A20	COOH	CH ₂	J37	1	СН
853	Н	Н	A20	СООН	CH ₂	J39	1	СН
854	Н	Н	A20	СООН	CH ₂	J50	1	СН
855	Н	Н	A20	СООН	CH ₂	J63	1	СН
856	Н	Н	A20	СООН	CH ₂	J64	1	СН
857	Н	Н	A20	СООН	CH ₂	J65	1	СН
858	Me	Me	A 1	СООН	CH ₂ CH ₂	J1	2	СН
859	Me	Me	A1	СООН	CH ₂	J1	2	СН
860	Me	Me	A1	COOH	CH ₂	J37	2	СН
861	Me	Me	A 1	СООН	CH ₂	J39	2	СН
862	Me	Me	A 1	COOH	CH ₂	J50	2	СН
863	Me	Ме	A 1	СООН	CH ₂	J63	2	СН
864	Me	Me	A 1	СООН	CH ₂	J64	2	СН
865	Me	Me	A 1	СООН	CH ₂	J65	2	СН
866	Н	Н	A1	СООН	CH ₂	J37	2	СН
867	Н	Н	A 1	СООН	CH ₂	J39	2	СН
868	Н	Н	A 1	СООН	CH ₂	J50	2	СН
869	Н	Н	A1	СООН	CH ₂	J63	2	СН
870	Н	Н	A 1	COOH	CH ₂	J64	2	СН
871	Н	Н	A1	СООН	CH ₂	J65	2	СН
872	CI	CI	A 1	соон	CH ₂	J37	2	СН
873	CI	CI	A 1	соон	CH ₂	J39	2	СН
874	CI	CI	A 1	соон	CH ₂	J50	2	СН
875	CI	CI	A 1	соон	CH ₂	J63	2	СН
				1				

Table 36

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
876	CI	CI	A1	COOH	CH ₂	J64	2	СН
877	CI	CI	A1	COOH	CH ₂	J65	2	СН
878	Н	Н	A1	СООН	CH ₂	J37	2	N
879	Н	Н	A1	COOH	CH ₂	J39	2	N
880	Н	Ι	A1	COOH	CH ₂	J50	2	Ν
881	Н	Н	A1	СООН	CH ₂	J63	2	N
882	Н	Н	A1	СООН	CH ₂	J64	2	N
883	Н	Н	A1	СООН	CH ₂	J65	2	N
884	Me	Н	A1	COOH	CH ₂	J37	2	СН
885	Me	Н	A1	COOH	CH ₂	J 6 3	2	CH
886	Ме	Н	A1	СООН	CH ₂	J64	2	СН
887	Me	Η	A1	COOH	CH ₂	J65	2	СН
888	Н	Η	A4	COOH	CH ₂	J37	2	СН
889	Н	Н	A4	COOH	CH ₂	J63	2	СН
890	Н	Н	A4	СООН	CH ₂	J64	2	СН
891	Н	Η	A4	COOH	CH ₂	J65	2	CH
892	Ме	Ме	A4	COOH	CH ₂	J37	2	СН
893	Me	Me	A4	COOH	CH ₂	J 6 3	2	СН
894	Ме	Ме	A4	СООН	CH ₂	J64	2	СН
895	Me	Ме	A4	COOH	CH ₂	J65	2	CH
896	CI	Cl	A4	COOH	CH ₂	J37	2	СН
897	CI	С	A4	COOH	CH ₂	J 6 3	2	СН
898	CI	С	A4	СООН	CH ₂	J64	2	СН
899	CI	С	A4	COOH	CH ₂	J65	2	СН
900	Н	Н	A 4	COOH	CH ₂	J37	2	N

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
901	Н	Н	A4	СООН	CH ₂	J63	2	N
902	Н	Н	A4	COOH	CH ₂	J64	2	Ν
903	Н	Н	A4	СООН	CH ₂	J65	2	N
904	Н	Н	A1 1	СООН	CH ₂	J37	2	СН
905	Н	Η	A1 1	СООН	CH ₂	J63	2	СН
906	Н	Н	A1 1	COOH	CH ₂	J64	2	СН
907	Ι	Ι	A1 1	COOH	CH ₂	J65	2	СН

Table 37 (continued)

Compound No.	R ¹	R ²	Α	E	G	J	m	Х
908	Me	Me	A1 1	СООН	CH ₂	J37	2	Ċ
909	Me	Me	A1 1	COOH	CH ₂	J63	2	СН
910	Ме	Me	A1 1	СООН	CH ₂	J64	2	СН
911	Ме	Me	A1 1	СООН	CH ₂	J65	2	СН
912	CI	CI	A11	СООН	CH ₂	J37	2	СН
913	CI	CI	A1 1	COOH	CH ₂	J63	2	СН
914	CI	CI	A1 1	COOH	CH ₂	J64	2	СН
915	CI	CI	A11	COOH	CH ₂	J 6 5	2	СН
916	Н	Н	A1 1	СООН	CH ₂	J37	2	N
917	Н	Н	A1 1	СООН	CH ₂	J63	2	N
918	Н	Н	A1 1	СООН	CH ₂	J64	2	Ν
919	Н	Н	A1 1	СООН	CH ₂	J65	2	N
920	Ме	Me	A18	СООН	CH ₂	J37	2	СН
921	Ме	Me	A18	СООН	CH ₂	J63	2	СН
922	Me	Me	A18	СООН	CH ₂	J64	2	СН
923	Me	Me	A18	СООН	CH ₂	J 6 5	2	СН
924	Н	Н	A18	СООН	CH ₂	J37	2	C
925	Н	Н	A18	COOH	CH ₂	J63	2	СН

			Table	38				
Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
926	Н	Н	A18	СООН	CH ₂	J64	2	СН
927	Н	Н	A18	СООН	CH ₂	J65	2	СН
928	CI	CI	A18	СООН	CH ₂	J37	2	СН
929	CI	CI	A18	СООН	CH ₂	J63	2	СН
930	CI	CI	A18	СООН	CH ₂	J64	2	СН
931	CI	CI	A18	COOH	CH ₂	J65	2	СН
932	Н	Н	A18	СООН	CH ₂	J37	2	N
933	Н	Н	A18	COOH	CH ₂	J63	2	N
934	Н	Н	A18	COOH	CH ₂	J64	2	N
935	Н	Н	A18	COOH	CH ₂	J 6 5	2	N
936	Ме	Me	A 20	СООН	CH ₂	J37	2	СН
937	Ме	Me	A 20	COOH	CH ₂	J63	2	СН
938	Ме	Me	A 20	COOH	CH ₂	J64	2	СН
939	Ме	Me	A 20	COOH	CH ₂	J 6 5	2	СН
940	Н	Н	A20	СООН	CH ₂	J37	2	СН

Table 38 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
941	Н	Н	A 20	СООН	CH ₂	J63	2	СН
942	Н	Н	A 20	COOH	CH ₂	J64	2	СН
943	Н	Н	A 20	СООН	CH ₂	J 6 5	2	СН
944	CI	CI	A 20	СООН	CH ₂	J37	2	СН
945	CI	CI	A 20	СООН	CH ₂	J63	2	СН
946	CI	CI	A 20	COOH	CH ₂	J64	2	СН
947	CI	CI	A 20	СООН	CH ₂	J 6 5	2	СН
948	Н	Н	A 20	СООН	CH ₂	J37	2	N
949	Н	Н	A 20	СООН	CH ₂	J63	2	N
950	Н	Н	A 20	COOH	CH ₂	J64	2	N

Table 33								
Compound No.	R ¹	R ²	Α	E	G	J	m	Х
951	Н	Н	A 20	COOH	CH ₂	J65	2	N
952	Ме	Ме	A1	tetrazol	CH ₂	J37	0	СН
953	Ме	Ме	A 1	tetrazol	CH ₂	J63	0	СН
954	Me	Me	A1	tetrazol	CH ₂	J64	0	СН
955	Ме	Ме	A1	tetrazol	CH ₂	J65	0	СН
956	Н	Н	A1	tetrazol	CH ₂	J37	0	СН
957	Н	Н	A 1	tetrazol	CH ₂	J63	0	СН
958	Н	Н	A1	tetrazol	CH ₂	J64	0	СН
959	Н	Н	A1	tetrazol	CH ₂	J65	0	СН
960	CI	CI	A1	tetrazol	CH ₂	J37	0	СН
961	CI	CI	A1	tetrazol	CH ₂	J63	0	СН
962	CI	CI	A 1	tetrazol	CH ₂	J64	0	СН
963	CI	CI	A1	tetrazol	CH ₂	J65	0	СН
964	Н	Н	A1	tetrazol	CH ₂	J37	0	N
965	Н	Н	A1	tetrazol	CH ₂	J63	0	N
966	Н	Н	A1	tetrazol	CH ₂	J64	0	Ν
967	Н	Н	A 1	tetrazol	CH ₂	J65	0	N
968	Н	Н	A 4	tetrazol	CH ₂	J37	0	СН
969	Н	Н	A 4	tetrazol	CH ₂	J63	0	СН
970	Н	Н	A 4	tetrazol	CH ₂	J64	0	СН
971	Н	Н	A 4	tetrazol	CH ₂	J65	0	СН
972	Н	Н	A18	tetrazol	CH ₂	J37	0	СН
973	Н	Н	A18	tetrazol	CH ₂	J63	0	СН
974	Н	Н	A18	tetrazol	CH ₂	J64	0	СН

Table 39 (continued)

Compound No.	R ¹	R ²	Α	Е	G	J	m	Х
975	Н	Н	A18	tetrazol	CH ₂	J65	0	СН

Table 40

Compound No.	R ¹	R ²		_	_			
		11	A	E	G	J	m	X
976	Me	Ме	A19	tetrazol	CH ₂	J37	0	СН
977	Me	Ме	A19	tetrazol	CH ₂	J63	0	СН
978	Me	Ме	A19	tetrazol	CH ₂	J64	0	CH
979	Me	Ме	A19	tetrazol	CH ₂	J65	0	СН
980	Н	Η	A19	tetrazol	CH ₂	J37	0	СН
981	Н	Н	A19	tetrazol	CH ₂	J63	0	СН
982	Н	Н	A19	tetrazol	CH ₂	J64	0	СН
983	Н	Н	A19	tetrazol	CH ₂	J65	0	СН
984	Me	Ме	A20	tetrazol	CH ₂	J37	0	СН
985	Ме	Ме	A 20	tetrazol	CH ₂	J63	0	СН
986	Me	Ме	A20	tetrazol	CH ₂	J64	0	СН
987	Me	Ме	A20	tetrazol	CH ₂	J65	0	СН
988	Н	Н	A20	tetrazol	CH ₂	J37	0	СН
989	Н	Н	A20	tetrazol	CH ₂	J63	0	СН
990	Н	Н	A20	tetrazol	CH ₂	J64	0	СН
991	Н	Н	A20	tetrazol	CH ₂	J65	0	СН
	977 978 979 980 981 982 983 984 985 986 987 988 989	977 Me 978 Me 979 Me 980 H 981 H 982 H 983 H 984 Me 985 Me 986 Me 987 Me 988 H 989 H	977 Me Me 978 Me Me 979 Me Me 980 H H 981 H H 982 H H 983 H H 984 Me Me 985 Me Me 986 Me Me 987 Me Me 988 H H 989 H H	977 Me Me A19 978 Me Me A19 979 Me Me A19 980 H H A19 981 H H A19 982 H H A19 983 H H A19 984 Me Me A20 985 Me Me A20 986 Me Me A20 987 Me Me A20 988 H H A20 989 H H A20	977 Me Me A19 tetrazol 978 Me Me A19 tetrazol 979 Me Me A19 tetrazol 980 H H A19 tetrazol 981 H H A19 tetrazol 982 H H A19 tetrazol 983 H H A19 tetrazol 984 Me Me A20 tetrazol 985 Me Me A20 tetrazol 986 Me Me A20 tetrazol 987 Me Me A20 tetrazol 988 H H A20 tetrazol 989 H H A20 tetrazol 990 H H A20 tetrazol	977 Me Me A19 tetrazol CH ₂ 978 Me Me A19 tetrazol CH ₂ 979 Me Me A19 tetrazol CH ₂ 980 H H A19 tetrazol CH ₂ 981 H H A19 tetrazol CH ₂ 982 H H A19 tetrazol CH ₂ 983 H H A19 tetrazol CH ₂ 984 Me Me A20 tetrazol CH ₂ 985 Me Me A20 tetrazol CH ₂ 986 Me Me A20 tetrazol CH ₂ 987 Me Me A20 tetrazol CH ₂ 988 H H A20 tetrazol CH ₂ 989 H H A20 tetrazol CH ₂	977 Me Me A19 tetrazol CH ₂ J63 978 Me Me A19 tetrazol CH ₂ J64 979 Me Me A19 tetrazol CH ₂ J65 980 H H A19 tetrazol CH ₂ J37 981 H H A19 tetrazol CH ₂ J63 982 H H A19 tetrazol CH ₂ J64 983 H H A19 tetrazol CH ₂ J65 984 Me Me A20 tetrazol CH ₂ J37 985 Me Me A20 tetrazol CH ₂ J63 986 Me Me A20 tetrazol CH ₂ J63 987 Me Me A20 tetrazol CH ₂ J65 988 H H A20 tetrazol CH ₂ J65 989 H H A20 tetrazol CH ₂ J65 989 H H A20 tetrazol CH ₂ J65	977 Me Me A19 tetrazol CH ₂ J63 0 978 Me Me A19 tetrazol CH ₂ J64 0 979 Me Me A19 tetrazol CH ₂ J65 0 980 H H A19 tetrazol CH ₂ J37 0 981 H H A19 tetrazol CH ₂ J63 0 982 H H A19 tetrazol CH ₂ J64 0 983 H H A19 tetrazol CH ₂ J65 0 984 Me Me A20 tetrazol CH ₂ J37 0 985 Me Me A20 tetrazol CH ₂ J63 0 986 Me Me A20 tetrazol CH ₂ J63 0 987 Me Me A20 tetrazol CH ₂ J65 0 988 H H A20 tetrazol CH ₂ J65 0 989 H H A20 tetrazol CH ₂ J65 0

[0021] The thiobenzimidazole derivative (1) of the present invention in which E is COOH and m is 0 can be prepared by the synthetic method (A) or (B) shown below:

Synthetic method (A)

[0022]

5

10

15

50

55

$$R^1$$
 NO_2
 NH_2
 NH_2
 R^2
 NH_2
 R^2
 NH_2
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^4

$$\begin{array}{c|c}
\hline
z & A - COOR^3 \\
\hline
 & (a4) \\
\hline
 & R^2 & X & N \\
\hline
 & N \\
 & N \\
 & H
\end{array}$$
(a5)

wherein Z represents a halogen, R¹, R², R³, A, G, J, and X are as defined above.

[0023] Thus, the nitro group of a 2-nitroaniline derivative (a1) is reduced to give an orthophenylene diamine (a2). CS₂ is reacted with this diamine to produce a compound (a3), with which a halide ester derivative (a4) is reacted to obtain (a5). A halide derivative (a6) is reacted therewith to obtain (a7), which is hydrolyzed to yield a benzimidazole derivative (a8) of the present invention.

[0024] The reduction of the nitro group may be carried out under a standard condition for catalytic reduction. For example, a reaction is carried out with hydrogen gas in the presence of a catalyst such as Pd-C at a temperature of room temperature to 100°C. Alternatively, a method of treatment using zinc or tin under an acidic condition, or a method of using zinc powder at a neutral or alkaline condition can be used.

[0025] The reaction of an orthophenylene diamine derivative (a2) with CS₂ may be carried out using, for example, a method as described in J. Org. Chem. 19: 631-637, 1954, or J. Med. Chem. 36: 1175-1187, 1993 (EtOH solution).

[0026] The reaction of a thiobenzimidazole (a3) and a halide ester (a4) may be carried out according to the condition of the conventional S-alkylation, for example in the presence of a base such as NaH, Et₃N, NaOH, or K₂CO₃ at a temperature of 0°C to 200°C under stirring.

[0027] The reaction of a thiobenzimidazole (a5) and a halide derivative (a6) may be carried out according to the condition for the conventional N-alkylation or N-acylation, for example in the presence of a base such as NaH, Et₃N, NaOH, or K_2CO_3 at a temperature of 0°C to 200°C under stirring.

[0028] As the elimination reaction of the carboxy protecting group R³, preferably a method of hydrolysis is employed using an alkali such as lithium hydroxide or an acid such as trifluoroacetic acid.

Synthetic method (B)

[0029]

40

[0030] Thus, the amino group of a 2-nitroaniline derivative (a1) can be protected with L to give (b1). A halide derivative (a6) is reacted therewith to obtain (b2), from which L is deprotected to obtain (b3). The nitro group of (b3) is reduced to obtain an orthophenylene diamine derivative (b4). CS₂ is reacted therewith to yield a compound (b5), with which a halide ester derivative (a4) is reacted to obtain (a7) which may be hydrolyzed to yield a benzimidazole derivative of the present invention. Alternatively, it is also possible to obtain a compound (b3) directly by allowing the 2-nitroaniline derivative (a1) as it is unprotected to be reacted to a halide derivative (a6) or an aldehyde derivative (b6). As the protecting group L, there can be mentioned a trifluoroacetic acetyl group, an acetyl group, a t-butoxycarbonyl group, a benzyl group, and the like. The reaction of the 2-nitroaniline derivative (a1) and the aldehyde derivative (b6) may be carried out according to the conditions of the conventional reductive amination using a reducing agent such as a complex hydrogen compound, for example LiAlH₄, NaBH₄, NaB₃CN, NaBH(OAc)₃, etc. or diborane, in a solvent such as ethanol, methanol, and dichloromethane at a temperature condition of 0°C to 200°C. The other reactions may be carried out as in the Synthetic method (A).

[0031] The thiobenzimidazole derivative (1) of the present invention in which E is COOH, m is 0, and G is an amide bond can be prepared by the synthetic method (C) shown below:

Synthetic method (C)

[0032]

40

45

50

55

5 COOR3 z^QCOOtBu (c1) 10 COOtBu (a5) (c2) COOR3 COOR3 J-NH₂ (c4) 15 HOOC 20 (c3)(c5)

wherein Q represents a methylene group, a phenylene group, etc., and Z represents a halogen. R¹, R², R³, A, J, and X are as defined above, provided that R³ is a protecting group such as an ethyl group, a methyl group, etc. inactive in an acid.

[0033] Thus, a tert-butyl ester halide derivative (c1) is reacted with a thiobenzimidazole compound (a5) to obtain a compound (c2), which is subjected to hydrolysis under an acidic condition to yield (c3). An amine derivative (c4) is reacted therewith to yield (c5), which is subjected to hydrolysis to obtain the benzimidazole derivative of the present invention.

[0034] The condensation amidation may be carried out by a conventional method using a condensing agent. As the condensing agent, there can be mentioned DCC, DIPC, EDC=WSCI, WSCI • HCI, BOP, DPPA, etc., which may be used alone or in combination with HONSu, HOBt, HOOBt, etc. The reaction may be carried out in a appropriate solvent such as THF, chloroform, t-butanol, etc. at a temperature condition of 0°C to 200°C. The other reactions may be carried out as in the Synthetic method (A).

[0035] The thiobenzimidazole derivative (1) of the present invention in which E is COOH, m is 0, and G is an ether bond can be prepared by the synthetic method (D) shown below:

Synthetic method (D)

[0036]

wherein Z represents a halogen, R1, R2, R3, A, J, and X are as defined above.

[0037] Thus, a thiobenzimidazole compound (a5) is reacted with, for example, a halide alcohol derivative (d1) to yield a compound (d2). A phenol derivative (d3) is reacted therewith to yield an ether (d4), which is subjected to hydrolysis to yield a benzimidazole derivative (a8) of the present invention.

[0038] The etherification may be carried out using a phosphine compound such as triphenyl phosphine and tributyl phosphine and an azo compound such as DEAD and TMAD in a suitable solvent such as N-methylmorpholine and THF at a temperature of 0°C to 200°C in a Mitsunobu reaction or a related reaction thereof. The other reactions may be carried out as in the Synthetic method (A).

[0039] The thiobenzimidazole derivative (1) of the present invention in which E is a tetrazole and m is 0 can be prepared by the synthetic method (E) shown below:

Synthetic method (E)

[0040]

40

45

50

25

wherein R¹, R², A, G, J, and X are as defined above.

[0041] A nitrile (e1) is reacted with various azi compounds to be converted to a tetrazole (e2).

[0042] As the azi compound, there can be mentioned a trialkyltin azide compound such as trimethyltin azide, and hydrazoic acid or an ammonium salt thereof. When an organic tin azide compound is used, 1-4 fold molar amount is used relative to the compound (e1). When hydrazoic acid or an ammonium salt thereof is used, 1-5 fold molar amount of sodium azide or a tertiary amine such as ammonium chloride and triethylamine may be used relative to the com-

pound (e1). Each reaction may be carried out at at temperature of 0°C to 200°C in a solvent such as toluene, benzene and DMF.

[0043] The thiobenzimidazole derivative (1) of the present invention in which m is 1 or 2 can be prepared by the synthetic method (F) shown below:

Synthetic method (F)

[0044]

5

10

15

20

25

 R^{1} R^{2} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{4} R^{4} R^{4} R^{2} R^{4} R^{4

wherein R¹, R², R³, A, G, J, and X are as defined above.

[0045] Thus, a thiobenzimidazole compound (a7) may be reacted with a peroxide compound in a suitable medium to yield a sulfoxide derivative (f1) and/or a sulfone derivative (f2). As the peroxide compound used, there can be mentioned perbenzoic acid, m-chloroperbenzoic acid, peracetic acid, hydrogeny peroxide, and the like, and as the solvent used, there can be mentioned chloroform, dichloromethane, and the like. The ratio of the compound (a7) to the peroxide compound used is selected from, but not limited to, a broad range as appropriate, and generally 1.2 to 5 fold molar amount, for example, may be preferably used. Each reaction is carried out generally at about 0 to 50°C, and preferably at 0°C to room temperature, and is generally complete in about 4-20 hours.

[0046] The benzimidazole derivatives of the present invention can be converted, as needed, to medically acceptable non-toxic cation salts. As such a salt, there can be mentioned an alkali metal ion such as Na⁺ and K⁺; an alkaline earth metal ion such as Mg²⁺ and Ca²⁺; a metal ion such as Al³⁺ and Zn²⁺; or an organic base such as ammonia, triethylamine, ethylenediamine, propanediamine, pyrrolidine, piperidine, piperadine, pyridine, lysine, choline, ethanolamine, N,N-diethylethanolamine, 4-hydroxypiperidine, glucosamine, and N-methylglucamine. Among them, Na⁺, Ca²⁺, lysine, choline, N,N-dimethylethanolamine and N-methylglucamine are preferred.

[0047] The benzimidazole derivatives of the present invention inhibit human chymase activity. Specifically, their IC50 is not greater than 1000, preferably not smaller than 0.01 and less than 1000, and more preferably not smaller than 0.05 and less than 500. The benzimidazole derivatives of the present invention having such excellent inhibitory action on human chymase can be used as clinically applicable preventive and/or therapeutic agents for various diseases.

[0048] The benzimidazole derivatives of the present invention can be administered as pharmaceutical compositions together with pharmaceutically acceptable carriers by oral or parenteral routes after being shaped into various dosage forms. As the parenteral administration, there can be mentioned intravenous, subcutaneous, intramuscular, percutaneous, rectal, nasal, and eye drop administration.

[0049] Dosage forms for said pharmaceutical compositions include the following. For example, in the case of oral administration, there can be mentioned dosage forms such as tablets, pills, granules, powders, solutions, suspensions, syrups, and capsules.

[0050] As used herein, tablets are shaped by a conventional method using a pharmaceutically acceptable carrier such as an excipient, a binder, and a disintegrant. Pills, granules, and powders can also be shaped by a conventional method using an excipient etc. Solutions, suspensions, and syrups may be shaped by a conventional method using glycerin esters, alcohols, water, vegetable oils, and the like. Capsules can be shaped by filling a granule, a powder, and a solution into a capsule made of gelatin etc.

[0051] Among the parenteral preparations, those for intravenous, subcutaneous, and intramuscular administration can be administered as an injection. As injections, a benzoic acid derivative is dissolved in a water soluble liquid such as physiological saline, or in a non-water soluble liquid comprising an organic ester such as propylene glycol, polyethylene glycol, and a vegetable oil.

[0052] In the case of percutaneous administration, dosage forms such as ointments and creams can be used. Ointments can be prepared by mixing a benzoic acid derivative with a fat or lipid, vaseline, etc., and creams can be prepared by mixing a benzoic acid derivative with an emulsifier.

[0053] In the case of rectal administration, gelatin soft capsules can be used to prepare suppositories.

[0054] In the case of nasal administration, they can be used as a formulation comprising a liquid or powder composition. As the base for liquid formulations, water, saline, a phosphate buffer, an acetate buffer etc. can be used, and furthermore they may include a surfactant, an antioxidant, a stabilizer, a preservative, and a thickening agent. As the base for powder formulations, there can be mentioned polyacrylic acid salts that are readily solubule in water, cellulose lower alkyl ethers, polyethylene glycol, polyvinylpyrrolidone, amylose, pullulan, etc. that are water-absorptive, or celluloses, starches, proteins, gums, crosslinked vinyl polymers, etc. that are hardly water-soluble, and preferably they are water-absorptive. Alternatively, they may be combined. Furthermore, for powder formulations, an antioxidant, a colorant, a preservative, a disinfectant, a corrigent, etc. can be added. Such liquid formulations arid powder formulations can be administered using, for example, a spraying device etc.

[0055] For eye drop administration, they can be used as aqueous or non-aqueous eye drops. For the aqueous eye drops, sterile purified water, physiological saline etc. can be used as a solvent. When sterile purified water is used as the solvent, a suspending agent such as a surf actant and a polymer thickener may be added to prepare an aqueous eye drop suspension. Alternatively, a solubilizing agent such as a nonionic surf actant may be added to prepare a soluble eye drop solution. The non-aqueous eye drop can use a non-aqueous solvent for injection as a solvent, and can be used as a non-aqueous eye drop solution.

[0056] In the case where administration to the eye is performed by a method other than the eye drop, dosage forms such as an eye ointment, an application solution, an epipastic, and an insert can be used.

[0057] In the case of nasal or oral inhalation, they are inhaled as a solution or a suspension of the benzimidazole derivatives of the present invention with a commonly used pharmaceutical excipient using, for example, an aerosol spray for inhalation, etc. Alternatively, the benzimidazole derivatives of the present invention in a lyophilized powder form can be administered to the lung using an inhaling device that permits direct contact to the lung.

[0058] To such various formulations, pharmaceutically acceptable carriers such as an isotonic agent, a preservative, a disinfectant, a wetting agent, a buffering agent, an emulsifier, a dispersant, a stabilizer, etc. can be added as needed.

[0059] To these formulations, blending of an antimicrobial agent, a treatment such as filtration through a bacteriaretaining filter, heating, radiation, etc. can be carried out for sterilization. Alternatively, sterile solid formulations can be prepared, which may be used by dissolving or suspending them in an appropriate sterile solution immediately prior to

[0060] The dosages of the benzimidazole derivatives of the present invention vary depending on the type of diseases, route of administration, the condition, age, sex, body weight etc. of the patient, but they are generally in the range of about 1 to 500 mg/day/patient for oral administration, and preferably 1 to 300 mg/day/patient. In the case of parenteral administration such as intravenous, subcutaneous, intramuscular, percutaneous, rectal, nasal, eye drop, and inhalation administration, they are about 0.1 to 100 mg/day/patient, and preferably 0.3 to 30 mg/day/patient.

[0061] When the benzimidazole derivatives of the present invention are used as a preventive agent, they can be administered according to a known method depending on each condition.

[0062] As the target diseases for the preventive and/or therapeutic agents of the present invention, there can be mentioned, for example, diseases of respiratory organs such as bronchial asthma, inflammatory/allergic diseases such as allergic rhinitis, atopic dermatitis, and urticaria; diseases of circulatory organs such as sclerosing vascular lesions, intravascular stenosis, disturbances of peripheral circulation, renal failure, and cardiac failure; diseases of bone/cartilage metabolism such as rheumatoid arthritis and osteoarthritis.

50 Examples

[0063] The present invention will now be explained in more detail with reference to Preparation Examples, Working Examples, and Test Examples. It should be noted, however, that these examples do not limit the scope of the invention in any way.

Reference Example 1. Preparation of 5,6-dimethylbenzimidazole-2-thiol

[0064] To 5,6-dimethylorthophenylene diamine (4.5 g, 33 mmol) in pyridine (40 ml) was added carbon disulfide (40

ml, 0.66 mol). The resulting solution was heated to reflux under stirring for 18 hours, to which was added water, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous magnesium sulfate, it was concentrated, and dried under reduced pressure at 80°C for 6 hours to obtain the title compound (4.1 g, yield 70%).

5 Reference Example 2. Preparation of 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methyl ester

[0065] To the resulting 5,6-dimethylbenzimidazole-2-thiol (89 mg, 0.50 mmol) in dimethylformamide (2 ml), triethylamine (84 μ l, 0.6 mmol) and 2-bromomethyl benzoic acid methyl ester (137 mg, 0.6 mmol) were added. After the resulting solution was stirred at 80°C for 1.5 hours, water was added, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous magnesium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to obtain the title compound (146 mg, yield 90%). The compound was confirmed by identification of molecular weight using LC-MS. Calculated M = 326.11, measured (M+H)⁺ = 327.2

15 Reference Example 3.

[0066] In a similar manner to Reference Example 2, the following compounds were synthesized. The compounds were confirmed by identification of molecular weight using LC-MS.

3-((5,6-dimethylbenzimidazole-2-ylthio)methyl)pyridine-2-carboxylic acid ethyl ester

[0067]

25

30

35

45

Calculated M = 341.12, found $(M+H)^+$ = 342.2

2-((5,6-dimethylbenzimidazole-2- ylthio)methyl)furane-3-carboxylic acid methyl ester

[0068]

Calculated M = 316.09, found $(M+H)^+$ = 317.2

3-((5,6-dimethylbenzimidazole-2-ylthio)methyl)thiphene-2-carboxylic acid methyl ester

[0069]

Calculated M = 332.07, found $(M+H)^+$ = 333.2

2-(benzimidazole-2-ylthiomethyl)benzoic acid methyl ester

40 [0070]

Calculated M = 298.08, found $(M+H)^+ = 299.2$

3-(benzimidazole-2-ylthiomethyl)pyridine-2-carboxylic acid ethyl ester

[0071]

Calculated M = 313.09, found $(M+H)^+$ = 314.2

50 3-(benzimidazole-2-ylthiomethyl)thiophene-2-carboxylic acid methyl ester

[0072]

Calculated M = 304.03, found $(M+H)^+ = 305.2$

55

2-(benzimidazole-2-ylthiomethyl)furane-3-carboxylic acid methyl ester

[0073]

5 Calculated M = 288.06, found $(M+H)^+ = 289.2$

4-benzimidazole-2-ylthiobutanoic acid methyl ester

[0074]

10

Calculated M = 264.09, found $(M+H)^+ = 265.2$

2-((5,6-dichlorobenzimidazole-2-ylthio)methyl)-5-chlorobenzoic acid methyl ester

i5 [0075]

Calculated M = 399.96, found $(M+H)^+ = 401.2$

2-(benzimidazole-2-ylthiomethyl)-5-chlorobenzoic acid methyl ester

[0076]

20

30

Calculated M = 332.04, found $(M+H)^+ = 333.2$

25 4-((5,6-dimethylbenzimidazole-2-ylthio)butanoic acid ethyl ester

[0077]

Calculated M = 292.12, found $(M+H)^+ = 293.40$

2-((5,6-dichlorobenzimidazole-2-ylthio)methyl)benzoic acid methyl ester

[0078]

35 Calculated M = 366.00, found $(M+H)^+ = 367.0$

2-((5,6-dichlorobenzimidazole-2-ylthio)methyl)pyridine-3-carboxylic acid methyl ester

[0079]

40

Calculated M = 366.99, found $(M+H)^+ = 368.0$

Example 1 Preparation of compound No. 143

[0080] Sodium hydride (11 mg, 0.306 mmol) and 2 ml of tetrahydrofuran was added to a previously dried reaction vessel. To the mixture were added 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methyl ester (50 mg, 0.153 mmol) and 1-chloromethylnaphthalene (69 μl, 0.459 mmol), which was then stirred at 60°C for 45 minutes. Water was added thereto, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain 2-((5,6-dimethyl-1-(1-naphthylmethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (yield 32%).

[0081] To 2-((5,6-dimethyl-1-(1-naphthylmethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (23 mg, 0.08 mmol) in tetrahydrofuran (1 ml) and methanol (0.5 ml), 4N aqueous sodium hydroxide solution (0.25 ml) was added. After stirring at room temperature for 5 hours, 6N hydrochloric acid was added to stop the reaction, followed by extraction with ethyl acetate. The ethyl acetate phase was washed with saturated saline, and then dried in anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound (24 mg, yield quantitative).

[0082] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 452.16, found $(M+H)^+ = 453.2$

Example 2.

⁵ **[0083]** In a similar manner to Working Example 1, the compounds in Tables 41 to 45 were synthesized using the compounds in Reference Examples 2 or 3 and various halide derivatives. The compounds were confirmed by identification of molecular weight using LC-MS.

Table 41

Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
390	406.14	407.2	29
391	422.11	423.2	16
315	417.15	418.2	32
376	406.14	407.2	25
333	417.15	418.2	6
82	416.16	417.2	12
83	416.16	417.2	9
84	416.16	417.2	33
97	432.15	433.2	18
98	432.15	433.2	26
99	432.15	433.2	8
94	470.13	471.2	14
95	470.13	471.2	10
96	470.13	471.2	13
100	486.12	487.2	26
101	486.12	487.2	8
85	420.13	421.2	9
86	420.13	421.0	12
87	420.13	421.2	44
88	436.10	437.2	42
89	436.10	437.2	40
90	436.10	437.2	28
91	480.07	481.0	12
103	427.14	428.2	12
104	427.14	428.2	6
105	427.14	428.2	11
784	434.11	435.2	36

Table 42

	Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
5	787	468. 07	469.2	31
	112	418.14	419.2	40
	141	480.12	481.0	72
10	138	494.17	495.2	34
	135	446.13	447.2	19
	137	478.17	479.2	6
	143	452.16	453.2	35
15	142	452.16	453.0	30
	139	428.16	429.4	22
	140	458.20	459.2	5
20	63	424.12	425.2	25
	311	453.15	454.5	21
	115	430.17	431.5	68
25	116	430.17	431.5	52
25	117	430.17	431.5	41
	118	430.17	431.5	56
	125	462.16	463.0	59
30	126	462.16	463.0	25
	128	492.17	493.0	27
	134	446.13	447.0	34
<i>35</i>	108	446.17	447.0	75
	107	446.17	447.0	57
	119	470.06	471.0	36
	120	470.06	471.0	57
40	121	470.06	471.0	60
	122	470.06	471.0	37
	123	430.17	431.3	57

45

50

55

Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
124	462.16	463.3	67
127	462.16	463.3	62
129	446.17	447.3	47
130	446.17	447.3	40
319	425.12	426.3	30

Table 43 (continued)

Compound No.	Calculated M	Found (M+H) ⁺	Recovery % (overall)
506	466.17	467.2	16
505	466.17	467.0	14
93	480.07	481.0	45
136	478.17	479.2	60
37	402.14	403.4	25
39	442.03	443.0	51
317	403.14	404.0	56
318	443.03	444.0	46
380	442.14	443.2	51
377	420.15	421.2	34
378	460.04	461.0	30
386	414.10	415.2	37
383	392.12	393.2	30
384	432.01	433.0	29
395	458.11	459.2	23
392	436.13	437.2	15
393	476.02	477.0	15
401	430.08	431.2	50
398	408.10	409.2	20
399	447.99	449.0	7

Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
544	476.18	377.2	62
50	418.14	419.2	42
459	382.08	383.2	65
402	436.04	437.2	50
1	388.12	389.0	38
161	456.05	457.0	54
81	402.14	403.3	57
154	444.13	445.0	32
160	408.10	409.0	72
159	421.15	422.2	84
148	482.17	483.5	64
149	453.15	454.5	71
155	459.11	460.0	64

Table 44 (continued)

Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
150	453.15	454.2	36
151	487.11	488.1	62
153	460.10	461.0	69
152	454.15	455.0	62
64	430.08	431.2	85
455	410.11	411.2	17
596	430.14	431.2	56
539	418.17	419.2	20
349	436.10	437.1	50
352	458.09	459.2	74
168	470.06	471.1	57
355	504.02	505.0	26
174	492.05	493.0	89
358	526.01	527.1	38

Table 45			
Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
324	493.04	494.2	32
320	431.08	432.1	15
147	466.17	467.2	72
616	490.16	491.2	22
805	382.17	383.2	52
804	368.16	369.2	56
66	438.14	440.2	54
592	430.14	432.3	5
811	380.16	382.2	72
582	436.06	437.1	59
580	436.06	437.1	59
584	480.03	483.1	37
583	480.03	483.0	52
578	420.09	421.2	30
574	416.12	417.2	39
595	452.12	453.2	22
594	478.14	479.1	23
588	432.11	433.1	65
587	432.11	433.2	48
586	432.11	433.1	50

Table 45 (continued)

Compound No.	Calculated M	Found (M+H)+	Recovery % (overall)
590	427.10	428.2	24
589	427.10	428.3	17

Example 3. Preparation of compound No. 547

5

10

35

55

[0084] Triethylamine (276 μ l, 1.98 mmol) and 2-(bromoethyl)benzoic acid t-butyl ester (538 mg, 1.99 mmol) were added to 5,6-dimethylbenzimidazole-2-thiol (236 mg, 1.32 mmol) in 2 ml of dimethylformamide, which was then stirred at 80°C for 3 hours. After the reaction was complete, water was added, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester (288 mg, yield 59%).

[0085] 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester (30 mg, 0.082 mmol) was dissolved in 3 ml of chloroform, to which triethylamine (17 μ l, 0.123 mmol) and benzoyl chloride (14 μ l, 0.123 mmol) were sequentially added and the mixture was stirred at room temperature for 2 hours. After the reaction was complete, water was added, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous sodium sulfate, it was concentrated, and 2-((5,6-dimethyl-1-(phenylcarbonyl)benzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester was obtained (38 mg, yield quantitative).

[0086] 2-((5,6-dimethyl-1-(phenylcarbonyl)benzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester was dissolved in 1 ml of dichloromethane, to which trifluoroacetic acid (1 ml) was added and the mixture was stirred at room temperature for 6 hours. After the reaction was complete, the solvent was evaporated under reduced pressure and dried overnight to obtain the title compound (33 mg, yield quantitative).

[0087] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 416.12, found $(M+H)^+ = 417.0$

Example 4. Preparation of compound No. 561

[0088] The title compound was obtained in a similar manner to Working Example 3.

[0089] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 452.09, found $(M+H)^+ = 453.2$

Reference Example 4. Preparation of 3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-thiol

[0090] To 2-amino-3-nitropyridine (1680 mg, 12 mmol) in a dimethylformamide (20 ml), sodium hydride (75 mg, 0.55 mmol) and 1-chloromethylnaphthalene (74 μ l, 0.55 mmol) were added. After the resulting solution was stirred at 80°C for 17 hours, water was added thereto, followed by extraction with ethyl ether. After drying the ethyl ether phase with anhydrous magnesium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain of naphthylmethyl(3-nitro(2-pyridil))amine (903 mg, yield 27%).

[0091] To naphthylmethyl(3-nitro(2-pyridil))amine (900 mg, 3.2 mmol) in ethanol (40 ml), 90.0 mg of 10% Pd-C was added. After the resulting solution was stirred in a hydrogen atmosphere at 50°C for 8 hours, it was filtered through celite to remove Pd-C. The resulting solution was concentrated to obtain (3-amino(2-pyridil))naphthylmethylamine (860 mg, yield 99%). To the resulting (3-amino(2-pyridil))naphthylmethylamine (860 mg, 3.2 mmol) in ethanol (20 ml), carbon disulfide (6.1 ml, 102 mmol) was added. After the resulting solution was heated to reflux under stirring for 12 hours, it was allowed to stand at room temperature for 5 hours. The precipitate that deposited was filtered, and was washed three times with ethanol (5 ml). It was dried at 80°C under reduced pressure for 5 hours to obtain the title compound (555 mg, yield 56%)

[0092] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 291.08, found $(M+H)^+$ = 292.3

Reference Example 5. Preparation of 3-((2,5-dimethylphenyl)methyl)imidazolo(5,4 -b)pyridine-2-thiol

[0093] The title compound was synthesized in a similar manner to Reference Example 4.

[0094] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 269.01, found $(M+H)^+ = 270.2$

5 Example 5. Preparation of compound No. 256

[0095] Using 3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-thiol (30 mg, 0.1 mmol) obtained in Reference Example 4 in a similar manner to Reference Example 2, 2-((3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-ylthio)methyl)benzoic acid methyl ester was obtained (30 mg, yield 70%).

[0096] The 2-((3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-thio)methyl)benzoic acid methyl ester (30 mg, 0.068 mmol) thus obtained was subjected to hydrolysis in a similar manner to Example 1 to obtain the title compound (18.3 mg, yield 66%).

[0097] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 425.12, found $(M+H)^+$ = 426.1

Example 6.

15

25

30

35

40

45

50

55

[0098] The compounds in Table 46 were synthesized using the compounds obtained in Reference Examples 4 and 5 and various halide ester derivatives in a similar manner to Example 5.

[0099] The compounds were confirmed by identification of molecular weight using LC-MS.

Table 46

Found (M+H)+ Yield (Overall) % Compound No. Calculated M 253 403.14 407.2 67 327 404.13 423.2 46 58 329 426.12 418.2 361 437.10 438.0 52 364 459.08 460.0 66

Table 47

Compound No.	Calculated M	Found (M+H) ⁺	Yield (Overall) %
321	428.13	429.2	27
354	461.10	462.2	20
460	379.14	380.2	19

Table 48

Compound No.	Calculated M	Found (M+H)+	Yield (Overall) %
52	493.15	494.2	12
53	493.15	494.2	11

Example 7. Preparation of compound No. 264

[0100] 4-methyl-2-nitroaniline (913 mg, 6 mmol) was dissolved in acetonitrile (18 ml), to which anhydrous trifluoro-

acetic acid (1.00 ml, 7.2 mmol) was added and the mixture was subjected to reflux for 1.5 hours. After cooling to room temperature, it was concentrated under reduced pressure and dried to obtain 4-methyl-2-nitro trifluoroacetanilide (1.396 g, yield 94%).

[0101] 4-methyl-2-nitro trifluoroacetanilide (1.396 g, 5.63 mmol) was dissolved in dimethylformamide (14 ml), and then potassium carbonate (940 mg, 6.80 mmol) and 1-chloromethylnaphthalene (1.15 g, 6.51 mmol) were sequentially added at room temperature and heated to 100°C. After 1 hour and 40 minutes, 5N aqueous sodium hydroxide solution (7.5 ml) was added and refluxed as it was for 15 minutes. After 15 minutes, it was cooled to room temperature, and water (180 ml) was added and stored at 4°C overnight. The crystals that deposited were filtered and were dried to obtain ((1-naphthyl)methyl)(4-methyl-2-nitro-phenyl)amine (1.587 g, yield 96%).

[0102] To (1-naphthyl)methyl)(4-methyl-2-nitro-phenyl)amine (1.0021 g, 3.43 mmol), ethanol (5 ml) and 1,4-dioxane (5 ml) were added, and 2.058 M aqueous sodium hydroxide solution (1 ml) was further added, and refluxed in an oil bath. After 15 minutes, it was removed from the oil bath, and zinc powder (897 mg, 13.72 mmol) was fed thereto in portions. Then it was refluxed again in the oil bath for 2 hours. After 2 hours, it was concentrated under reduced pressure, and dissolved in ethyl acetate (50 ml), and washed twice with saturated saline (25 ml). After drying with magnesium sulfate, it was concentrated under reduced pressure and dried to obtain a brown oil of ((1-naphthyl)methyl)(2-amino-4-methyl-phenyl)amine (943.1 mg).

Subsequently, ((1-naphthyl)methyl)(2-amino-4-methyl-phenyl)amine (943.1 mg, 3.59 mmol) was dissolved [0103] in ethanol (6.4 ml), to which carbon bisulfide (7 ml, 116 mmol) was added, and then refluxed. After 10 hours, it was returned to room temperature, concentrated under reduced pressure. Ethanol (2 ml) was added to the residue, which was stirred at room temperature for 30 minutes, and was further stirred on ice for 30 minutes. The resulting crystals were filtered, and dried to obtain 1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-thiol (459.1 mg, yield 44%, 2 steps). [0104] 1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-thiol (431.1 mg, 1.42 mmol) was dissolved in dimethylformamide (12 ml), to which triethylamine (0.296 ml, 2.12 mmol) and 2-bromomethyl benzoic acid methyl ester (390.1 mg, 1.70 mmol) were added and heated to 80°C. After 5 hours and 50 minutes, triethylamine (0.296 ml, 2.12 mmol) and 2bromomethyl benzoic acid methyl ester (325 mg, 1.42 mmol) were added, and heated for 1 hour and 10 minutes. Thereafter, it was concentrated under reduced pressure, and dissolved in ethyl acetate (80 ml), washed twice with water (30 ml), and dried in magnesium sulfate. The solvent was concentrated under reduced pressure. The residue was crystallized in ethyl acetate-hexane to obtain 410 mg, and the mother liquor was purified by silica gel column chromatography (hexane: ethyl acetate = 6:1) to recover 87 mg of the same fraction as the crystals, with a total of 497 mg of 2-((1-((1naphthyl)methyl)-6-methyl-benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (yield 78%).

[0105] 2-((1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (497 mg, 1.098 mmol) was dissolved in methanol (10 ml) and tetrahydrofuran (10 ml), to which 4N aqueous lithium hydroxide solution (6.86 ml) was added. After stirring at room temperature for 2 hours and 30 minutes, saturated aqueous citric acid solution (10 ml) was added thereto to stop the reaction, and the mixture was concentrated under reduced pressure to reduce the amount of the solvent to about 1/3, which was dissolved in ethyl acetate (80 ml) and washed five times with water (20 ml). After concentrating the organic layer under reduced pressure, acetonitrile (10 ml) was added to the residue, which was again concentrated under reduced pressure, and the resulting crystals were filtered off and dried to obtain the title compound (439.1 mg, yield 91%).

[0106] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 438.14, found $(M+H)^+ = 439.3$

Example 8. Preparation of compound No. 272

40

45

[0107] In a similar method to working Example 7, the title compound was obtained.

[0108] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 454.14, found $(M+H)^+ = 455.3$

Example 9. Preparation of compound No. 65

[0109] 2-nitroaniline (829 mg, 6 mmol) and 1-methylindole carboxaldehyde (1242 mg, 7.8 mmol) were dissolved in 20 ml of tetrahydrofuran, to which acetic acid (200 μ l) and NaBH(OAc)₃ (5087 mg, 24 mmol) were sequentially added and stirred at room temperature overnight. A saturated aqueous sodium hydrogen carbonate solution was added thereto, followed by extraction with ethyl acetate, dried with anhydrous sodium sulfate, and the solvent was evaporated. After purification by silica gel column chromatography (hexane : ethyl acetate = 95:5), ((1-methylindole-3-yl)methyl)(2-nitrophenyl)amine was obtained (264 mg, yield 18%).

[0110] ((1-methylindole-3-yl)methyl)(2-aminophenyl)amine (264 mg, 0.939 mmol) was dissolved in ethanol (10 ml),

and Pd-C (50 mg, 10% Pd, 0.047 mmol) was added thereto, and stirred in hydrogen atmosphere at room temperature for 6 hours. After the reaction was complete, Pd-C was filtered off and the solvent was evaporated to obtain ((1-methyl-indole-3-yl)methyl)(2-aminophenyl)amine (212 mg, yield 90%).

[0111] ((1-methylindole-3-yl)methyl)(2-aminophenyl)amine (212 mg, 0.845 mmol) was dissolved in pyridine (1 ml), and carbon bisulfide (1 ml, 16.9 mmol) was added thereto. The mixture was refluxed in nitrogen atmosphere for 1 hour. After the solvent was evaporated, it was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain ((1-methylindole-3-yl)methyl)benzmidazole-2-thiol (96 mg, yield 39%).

[0112] Sodium hydride (12 mg, 0.342 mmol) and dimethylformamide (2 ml) were added to a previously dried reaction vessel. To the mixture were added ((1-methylindole-3-yl)methyl)benzimidazole-2-thiol (50 mg, 0.171 mmol) and 2-bromomethyl benzoic acid methyl ester (59 mg, 0.257 mmol), and then the mixture was stirred at 60°C for 1 hour. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain 2-((1-((-methylindole-3-yl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (54 mg, yield 74%).

[0113] To 2-((1-((1-methylindole-3-yl)methyl)benzimdazole-2-ylthio)methyl)benzoic acid methyl ester (54 mg, 0.122 mmol) in tetrahydrofuran (2 ml) and methanol (1 ml), 4N aqueous lithium hydroxide solution (0.5 ml) was added. After stirring at room temperature overnight, 6N hydrochloric acid was added to stop the reaction, followed by extraction with ethyl acetate. After washing the ethyl acetate phase with saturated saline, it was dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound (48 mg, yield 92%).

[0114] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 427.14, found $(M+H)^+ = 428.2$

Example 10.

<u>LXample 10</u>

25

30

[0115] The compounds in the above Table 47 were synthesized using various halide ester derivatives in a similar manner to Working Example 9. The compounds were confirmed by identification of molecular weight using LC-MS.

Example 11. Preparation of compound No. 51

[0116] Sodium hydride (104 mg, 2.86 mmol) and tetrahydrofuran (16 ml) were added to a previously dried reaction vessel. To the mixture were added 2-(benzimidazole-2-ylthiomethyl)benzoic acid methyl ester (428 mg, 1.43 mmol) and 2-(bromomethyl)benzoic acid t-butyl ester (466 mg, 3.46 mmol), and then the mixture was stirred at 60°C for 50 minutes. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain 2-((1-((2-((t-butyl)oxycarbonyl)phenyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (495 mg, yield 71%).

[0117] To 2-((1-((2-((t-butyl)oxycarbonyl)phenyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (248 mg, 0.51 mmol), 4N hydrochloric acid in dioxane (1.28 ml, 5.1 mmol) was added, and stirred at room temperature overnight. After the solvent was evaporated, it was dried under reduced pressure to obtain 2-((2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)methyl) benzoic acid (220 mg, yield quantitative).

[0118] 2-((2-((2-((e-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)methyl) benzoic acid (180 mg, 0.42 mmol) was dissolved in chloroform (6 ml), to which HOBT (68 mg, 0.504 mmol), aniline (46 μ l, 0.504 mmol), t-butanol (1.2 ml) and EDCI (97 mg, 0.504 mmol) were sequentially added and stirred overnight at room temperature. Water was added thereto, followed by extraction with dichloromethane. After drying with anhydrous sodium sulfate, it was filtered, and the solvent was evaporated. It was purified by silica gel column chromatography (hexane : ethyl acetate = 3:2) to obtain 2-((1-((2-(N-phenylcarbamoyl)phenyl)methylthio)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (86 mg, yield 40%).

[0119] To the thus obtained 2-((1-((2-(N-phenylcarbamoyl)phenyl)methylthio)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (86 mg, 0.169 mmol) in tetrahydrofuran (2 ml) and methanol (1 ml), 4N aqueous lithium hydroxide solution (0.5 ml) was added, and stirred at 60°C for about 2 hours. 6N aqueous hydrochloric acid solution was added to stop the reaction, which was extracted with ethyl acetate. After washing the ethyl acetate phase with saturated saline, it was dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound (83 mg, yield quantitative).

[0120] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 493.15, found $(M+H)^+ = 494.2$

Example 12.

[0121] In a similar method to Working Example 11, the compounds shown in the above Table 48 were obtained using various benzoic acid ester derivatives. The compounds were confirmed by identification of molecular weight using LC-MS.

Example 13. Preparation of compound No. 619

[0122] Sodium hydride (400 mg, 10.0 mmol) and dimethylformamide (30 ml) were added to a previously dried reaction vessel. To the mixture were added 2-(benzimidazole-2-ylthiomethyl)benzoic acid methyl ester (1500 mg, 5.0 mmol) and bromoacetate t-butyl ester (1463 mg, 7.5 mmol), and the mixture was stirred at 80°C for 2 hours. Water was added thereto, followed by extraction with ether. After the ether phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5:1) to obtain 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid t-butyl ester (1298 mg, yield 63%).

[0123] To 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid t-butyl ester (1290 mg, 3.13 mmol), trifluoroacetic acid (15 ml) was added, and stirred at room temperature overnight. After the solvent was evaporated, it was dried under reduced pressure to obtain 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid (715 mg, yield 64%).

[0124] 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid (35 mg, 0.1 mmol) was dissolved in tetrahydrofuran (3 ml), to which aniline (11.2 mg, 0.12 mmol) and EDCI (23 mg, 0.12 mmol) were added, and then the mixture was stirred overnight at room temperature. Water was added thereto, followed by extraction with ethyl acetate. After drying with anhydrous sodium sulfate, it was filtered, the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:2) to obtain 2-((1-((N-phenylcarbamoyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (27.5 mg, yield 64%).

[0125] 2-((1-((N-phenylcarbamoyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (20 mg, 0.046 mmol) thus obtained was subjected to hydrolysis as in Working Example 1 to obtain the title compound (6.9 mg, yield 36%).

[0126] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 417.11, found $(M+H)^+$ = 418.0

Example 14

30

40

45

50

[0127] In a similar method to Example 13, the compounds shown in the above Table 49 were obtained using various aniline derivatives.

[0128] The compounds were confirmed by identification of molecular weight using LC-MS.

Table 49

Compound No.	Calculated	M Found (M+H)+	Yield (Overall) %
622	431.13	432.3	5
621	431.13	432.3	5
620	431.13	432.3	21
637	447.13	448.2	13
636	117.13	448.1	23
635	447.13	448.3	44
642	442.11	443.2	27
657	467.13	488.1	19

55

Table 50

Compound No.	Calculated M	Found (M+H)+	Yield (Overall) %
765	457.15	458.2	5
767	457.15	458.2	32

Table 51

Compound No.	Calculated M	Found (M+H)+	Yield (Overall) %
866	434.13	435.2	76
869	456.11	457.3	83
904	468.09	469.1	52
937	436.15	437.2	61

Table 52

Compound No.	Calculated M	Found (M+H)+	Yield (Overall) %
953	476.18	477.2	36
985	428.18	429.2	67
977	400.15	401.4	2

Reference Example 6. Preparation of 2-((1-(2-hydroxyethyl)-5,6-dimethylbenzimidazole-2-ylthio)]methyl)benzoic acid methyl ester

[0129] To 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl) benzoic acid methyl ester (326 mg, 1 mmol) obtained in Reference Example 2 in dimethylformamide, potassium carbonate (207 mg, 1.5 mmol) and 2-bromoethanol (150 mg, 1.2 mmol) were added, and the resulting solution was stirred at 80°C for 12 hours. After the reaction was complete, it was extracted with ether and the solvent was evaporated. The residue was purified by a flash column chromatography (hexane: ethyl acetate = 4:1) to obtain the the title compound (248 mg, yield 67%).

[0130] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 370.14, found $(M+H)^+ = 371.2$

Example 15. Preparation of compound No. 736

5

10

15

20

25

30

45

[0131] To 2-((1-(2-hydroxyethyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methyl ester (45 mg, 0.23 mmol) in N-methylmorpholine (3 ml), Pph₃ (62 mg, 0.24 mmol) and DEAD (10.6 ml, 40% in toluene, 0.24 mmol) were added and the mixture was stirred at room temperature. After 10 minutes, phenol (11.3 mg, 0.12 mmol) was added thereto, which was stirred at room temperature for 12 hours. The solvent was evaporated and the residue was purified by thin layer chromatography (hexane: ethyl acetate = 1:1) to obtain 2-((5,6-dimethyl-1-(2-phenoxyethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (44 mg, yield 81%).

[0132] Using 2-((5,6-dimethyl-1-(2-phenoxyethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (35 mg, 0.078 mmol) in a similar method to Example 1, a hydrolysis reaction was carried out to obtain the title compound (31 mg, yield 94%). The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 432.15, found $(M+H)^+ = 433.2$

Example 16.

[0133] In a similar method to Example 15, the compounds shown in the above Table 50 were obtained using various phenol derivatives.

[0134] The compounds were confirmed by identification of molecular weight using LC-MS.

Example 17.

Preparation of compound No. 825

[0

10

20

[0135] To an ester (33 mg, 0.075 mmol) of compound No. 68 obtained in Example 2 in dichloromethane, 50 to 60% m-chloroperbenzoic acid (26 mg, 0.083 mmol) was added while cooling on ice. After the resulting solution was stirred on ice for 2 hours, a saturated sodium hydrogen carbonate solution was poured and the solution obtained was extracted with chloroform. After washing the chloroform phase with water, it was concentrated and the residue was purified by thin layer chromatography (hexane: ethyl acetate = 1:1) to obtain 2-(((5,6-dimethyl-1-(1-naphthylmethyl)benzimidazole-2-yl)sulfinyl)methyl)benzoic acid methyl ester (7.1 mg, yield 21%).

[0136] In a manner similar to Example 1, this was subjected to hydrolysis to obtain the title compound (5.2 mg, yield 76%).

[0137] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 440.12, found $(M+H)^+ = 441.3$

Example 18. Preparation of compound No. 869

[0138] To an ester (39 mg, 0.094 mmol) of compound No. 37 obtained in Example 2 in dichloromethane (5 ml), 50 to 60% m-chloroperbenzoic acid (64 mg, 0.374 mmol) was added while cooling on ice. After the resulting solution was stirred at room temperature for 4 hours, a saturated sodium hydrogen carbonate solution was poured and the solution obtained was extracted with chloroform. After washing the chloroform phase with water, it was concentrated and the residue was purified by flash layer chromatography (hexane: ethyl acetate = 5:1) to obtain 2-(((1-((2,5-dimethylphenyl)methyl)benzimidazole-2-yl)sulfonyl)methyl)benzoic acid methyl ester (37 mg, yield 87%).

[0139] In a manner similar to Example 1, 2-(((1-((2,5-dimethylphenyl)methyl)benzimidazole-2-yl)sulfonyl)methyl)benzoic acid methyl ester (64 mg, 0.14 mmol) was subjected to hydrolysis to obtain the title compound (53 mg, yield 87%).

[0140] The compound was confirmed by identification of molecular weight using LC-MS.

35

Calculated M = 434.13, measured $(M+H)^{+} = 435.2$

Example 19.

[0141] In a manner similar to Example 18, the compounds shown in the above Table 51 were synthesized using the esters of the compounds obtained in Working Example 2. The compounds were confirmed by identification of molecular weight using LC-MS.

Example 20. Preparation of compound No. 952

45

[0142] To 5,6-dimethylbenzimidazole-2-thiol (713 mg, 4 mmol) in dimethylformamide (10 ml), triethylamine (836 μ l, 6 mmol) and 2-bromomethylbenzonitrile (1176 mg, 6 mmol) were added. After stirring at 80°C overnight, water was added to the mixture, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:2) to obtain 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (1159 mg, yield 99%).

[0143] Sodium hydride (178 mg, 4.90 mmol) and tetrahydrofuran (30 ml) were added to a previously dried reaction vessel. To the mixture were added 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (719 mg, 2.45 mmol) and 2,5-dichlorobenzyl chloride (543 μ l, 4.90 mmol), and the mixture was stirred at 60°C for 40 minutes. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 3:1) to obtain 2-((1-((2,5-dimethylphenyl)methyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (370 mg, yield 37%).

[0144] 2-((1-((2,5-dimethylphenyl)methyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (165

mg, 0.401 mmol) was dissolved in toluene (3 ml), to which Me_3SnN_3 (124 mg, 0.602 mmol) was added, and refluxed in nitrogen atmosphere overnight. After the reaction was complete, the solvent was evaporated, and the residue was purified by silica gel column chromatography (dichloromethane : methanol = 19:1) to obtain the title compound (75 mg, yield 41%).

[0145] The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 454.19, found $(M+H)^+ = 455.2$

Example 21.

10

[0146] In a manner similar to Example 20, the compounds shown in the above Table 52 were obtained.

[0147] The compounds were confirmed by identification of molecular weight using LC-MS.

Example 22. Preparation of recombinant human mast cell chymase

15

[0148] Recombinant pro-type human mast cell chymase was prepared according to the method reported by Urada et al. (Journal of Biological Chemistry 266: 17173, 1991). Thus, a culture supernatant of the insect cell (Tn5) infected with a recombinant baculovirus containing cDNA encoding human mast cell chymase was purified by heparin Sepharose (Pharmacia). After it was further activated by the method reported by Murakami et al. (Journal of Biological Chemistry 270: 2218, 1995), it was purified with heparin Sepharose to obtain an activated human mast cell chymase.

Example 23. Determination of the activity of inhibiting recombinant human mast cell chymase

[0149] After a DMSO solution (2 μ l) containing the compound of the present invention was added to 50 μ l of buffer A (0.5-3.0 M NaCl, 50 mM Tris-HCl, pH 8.0) containing 1-5 ng of the activated human mast cell chymase obtained in working Example 22, 50 μ l of buffer A containing, as a substrate, 0.5 mM succinyl-alanyl-histidyl-prolylphenylalanyl-paranitroanilide (Bacchem) was added thereto and the mixture was allowed to react at room temperature for 5 minutes. Changes in absorbance at 405 nm with time were measured to evaluate the inhibitory activity.

[0150] As a result, IC50 = not smaller than 1 nM and less than 10 nM was observed in compounds No. 63, 64, 65, 143, 174, 256, 264, 272, 311, 354, 319, 349, 358, 395, 401, and 402, and IC50 = not smaller than 10 nM and not greater than 100 nM was observed in compounds No. 37, 50, 84, 115, 117, 119,, 121, 123, 130, 147, 168, 256, 320, 321, 324, 352, 355, 364, 380, 392, 398, 444, 455, 459, 460, 506, 863, 866, and 869.

[0151] As hereinabove described, the benzimidazole derivatives of the present invention exhibit a potent chymase inhibitory activity. Thus, it was revealed that the benzimidazole derivatives of the present invention are clinically applicable inhibitory substances for human chymase activity and can be used for prevention and/or therapy of various diseases in which human chymase is involved.

Example 24. Manufacture of tablets

10 **[0152]** Tablets comprising, per tablet, the following were manufactured:

45

Compound (No. 37)	50 mg
Lactose	230 mg
Potato starch	80 mg
Polyvinylpyrrolidone	11 mg
Magnesium stearate	5 mg

50

[0153] The compound of the present invention (the compound in Working Example 2), lactose and potato starch were mixed, and the mixture was evenly soaked in 20% polyvinylpyrrolidone in ethanol. The mixture was filtered through a 20 nm mesh, dried at 45°C, and filtered again through a 15 nm mesh. Granules thus obtained were mixed with magnesium stearate and were compressed into tablets.

Industrial Applicability

[0154] The thiobenzimidazole derivatives of the present invention and the medically acceptable salts thereof exhibit a potent activity of inhibiting human chymase. Thus, said thiobenzimidazole derivatives and the medically acceptable salts thereof can be used, as a human chymase inhibitor, as clinically applicable preventive and/or therapeutic agents for inflammatory diseases, allergic diseases, diseases of respiratory organs, diseases of circulatory organs, or diseases of bone/cartilage metabolism.

Claims

10

15

20

25

30

35

40

45

50

55

A thiobenzimidazole derivative represented by the following formula (1):

 $\begin{array}{c|c}
R^1 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$

wherein,

 R^1 and R^2 , simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R^1 and R^2 together form -O-CH₂-O-, -O-CH₂-CH₂-O or -CH₂-CH₂-CH₂-, in which the carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons;

A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, in which the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group;

E represents COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group in which R³ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbons;

G represents a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons that may be interrupted with one or a plurality of O, S, SO_2 , and NR^3 , in which R^3 is as defined above and the substituent represents a halogen atom, OH, NO_2 , CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group; m represents an integer of 0 to 2;

when m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring;

when m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a sub-

stituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring; or

when m is 0 and A is a single bond or when m is 1 or 2, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, in which the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, a COOR³ group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group; and

X represents CH or a nitrogen atom;

5

10

15

30

40

45

50

55

or a medically acceptable salt thereof (hereinafter referred to as "the thiobenzimidazole derivative of the present invention").

- 2. The thiobenzimidazole derivative according to claim 1 characterized in that, in the above formula (1), A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
- 25 3. The thiobenzimidazole derivative according to claim 1 or 2 characterized in that, in the above formula (1), A is a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
 - 4. The thiobenzimidazole derivative according to any one of claims 1, 2, and 3 characterized in that, in the above formula (1), m is 1, or a medically acceptable salt thereof.
 - 5. The thiobenzimidazole derivative according to any one of claims 1, 2, and 3 characterized in that, in the above formula (1), m is 2, or a medically acceptable salt thereof.
- 35 **6.** The thiobenzimidazole derivative according to any one of claims 1, 2, and 3 characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, and J is a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
 - 7. The thiobenzimidazole derivative according to any one of claims 1, 2, and 3 characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, and J is a substituted or unsubstituted aryl group having 6 to 11 carbons or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms on the ring, or a medically acceptable salt thereof.
 - **8.** The thiobenzimidazole derivative according to any one of claims 1 to 7 characterized in that, in the above formula (1), G is -CH₂-, -CH₂-CH₂-, -CH₂CO-, -CH₂CH₂O-, -CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S- or -CH₂CH₂S-, or a medically acceptable salt thereof.
 - 9. The thiobenzimidazole derivative according to any one of claims 1 to 8 characterized in that, in the above formula (1), R¹ and R² simultaneously represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R¹ and R², independently of each other, represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, a trihalomethyl group, a cyano group, or a hydroxy group, or a medically acceptable salt thereof.
 - 10. The thiobenzimidazole derivative according to any one of claims 1 to 9 characterized in that, in the above formula

(1), E represents COOH or a tetrazole group, or a medically acceptable salt thereof.

- **11.** The thiobenzimidazole derivative according to any one of claims 1 to 10 characterized in that, in the above formula (1), X represents CH, or a medically acceptable salt thereof.
- **12.** The thiobenzimidazole derivative according to any one of claims 1 to 11 characterized by having an activity of inhibiting human chymase, or a medically acceptable salt thereof.
- 13. A pharmaceutical composition comprising at least one thiobenzimidazole derivative according to any one of claims
 1 to 12 or a medically acceptable salt thereof and a pharmaceutically acceptable carrier.
 - 14. The pharmaceutical composition according to claim 13 which is a preventive and/or therapeutic agent of a disease.
 - **15.** A preventive and/or therapeutic agent according to claim 14 wherein said disease is an inflammatory disease, an allergic disease, a disease of respiratory organs, a disease of circulatory organs, or a disease of bone/cartilage metabolism.

NTERNATIONAL SEARCH REPORT

International application No. PCT/JP99/03799

	SIFICATION OF SUBJECT MATTER C1 CO7D235/28, A61K31/415		
According to	o International Patent Classification (IPC) or to both na	ational classification and IPC	
B. FIELD	S SEARCHED		
	ocumentation searched (classification system followed C1 C07D235/28, A61K31/415	by classification symbols)	
Documentat	tion searched other than minimum documentation to the	e extent that such documents are include	d in the fields searched
	lata base consulted during the international search (nam .US (STN), REGISTRY (STN)	ne of data base and, where practicable, s	earch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap		Relevant to claim No.
х	US, 5124336, A (Laboratoires 23 June, 1992 (23. 06. 92)	UPSA),	1, 2, 8-15
A	& FR, 2658511, A		3-7
х	J. Med. Chem., 36(9), 1175-8	7 (1993)	1, 2, 8-15
х	<pre>X JP, 5-155858, A (Laboratories UPSA), 22 June, 1993 (22. 06. 93) & US, 5021443, A & FR, 2658511, A & CA, 2035710, A & EP, 442820, A</pre>		
х	Chem. Abs. <u>85</u> , 172661 (1976)		1, 2, 8-12
Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" later document published after the international filing date or priority date and sot in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an invention cannot be considered novel or cannot be considered to involve an invention cannot be considered novel or cannot be considered novel or cannot be repaired in the art when the principle or theory underlying the invention cannot be considered novel or cannot be considered nov			
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer			
Facsimile N	io.	Telephone No.	

Form PCT/ISA/210 (second sheet) (July 1992)