(51) Int. Cl.⁶:

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENTAMT

P 44 24 712.5 (21) Aktenzeichen: 13. 7.94 Anmeldetag: 18. 1.96 Offenlegungstag:

C 07 C 7/20 C 07 B 63/04 C 07 C 229/72 C 07 C 223/06 G 01 N 33/22 C 10 L 1/22 // C07C 229/60,C07D 295/112,311/80, 311/58,209/14,C09B 23/10

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder: ...

Kräh, Claudia, Dr., 67112 Mutterstadt, DE; Schlösser, Ulrike, Dr., 67071 Ludwigshafen, DE; Beck, Karin Heidrun, Dr., 67067 Ludwigshafen, DE; Mayer, Udo, Dr., 67227 Frankenthal, DE

- (54) Verwendung von Benzaldehyden zum Markieren von Kohlenwasserstoffen
- Verwendung von Benzaldehyden der Formel

Benzaldehyde.

BUNDESDRUCKEREI 11.95 508 063/269

in der der Ring A benzoanelliert sein kann und R1, R2 und R3 Wasserstoff, Hydroxy, C1-C15-Alkyl, C1-C15-Alkoxy, Cyano, Nitro oder einen Rest der Formel NR⁴R⁵ oder COOR⁸ bedeuten, worin R⁴ für Wasserstoff oder gegebenenfalls substituiertes

C1-C15-Alkyl. Rest der Formel L-NX¹-X², worin L die Bedeutung von C₂-C₈-Alkylen und X² unabhängig voneinander jeweils die Bedeutung von C₁-C₈-Alkyl oder zusammen mit dem sie verbindenden Stickstoffatom die Bedeutung eines heterocyclischen Rests besitzen, und

 R^8 für Wasserstoff, gegebenenfalls substituiertes C_1 - C_{15} -Al-kyl oder für einen Rest der Formel L-NX 1 X 2 , worin L, X 1 und X² jeweils die obengenannte Bedeutung besitzen, stehen, als Markierungsmittel für Kohlenwasserstoffe, ein Verfahren zum Nachweis dieser Benzaldehyde in Kohlenwasserstoffen

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von Benzaldehyden der Formel I

15 in der

der Ring A benzoanelliert sein kann.

 R^1 , R^2 und R^3 unabhängig voneinander jeweils Wasserstoff, Hydroxy, $C_1 - C_{15}$ -Alkyl, $C_1 - C_{15}$ -Alkoxy, Cyano, Nitro oder einen Rest der Formel NR⁴R⁵ oder COOR⁶ bedeuten, worin

R⁴ für Wasserstoff oder C₁-C₁₅-Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen sein kann und gegebenenfalls durch Phenyl substituiert ist.

 R^5 für C_1 — C_{15} -Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen sein kann und gegebenenfalls durch Phenyl substituiert ist, oder einen Rest der Formel L— NX^1X^2 , worin L die Bedeutung von C_2 — C_8 -Alkylen und X^1 und X^2 unabhängig voneinander jeweils die Bedeutung von C_1 — C_6 -Alkyl oder zusammen mit dem sie verbindenden Stickstoffatom die Bedeutung eines 5- oder 6-gliedrigen gesättigten heterocyclischen Rests, der noch ein Sauerstoffatom im Ring enthalten kann, besitzen, und

 R^6 für Wasserstoff, $C_1 - C_{15}$ -Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen sein kann, oder für einen Rest der Formel L-NX¹X², worin L, X¹ und X² jeweils die obengenannte Bedeutung besitzen, stehen,

als Markierungsmittel für Kohlenwasserstoffe, ein Verfahren zum Nachweis dieser Benzaldehyde in Kohlenwasserstoffen sowie Kohlenwasserstoffe, enthaltend die obengenannten Benzaldehyde.

Aus der US-A-5 145 573, US-A-5 182 372 sowie der EP-A-499 845 sind bereits Azofarbstoffe bekannt, die als Markierungsmittel für Mineralöle dienen. In der US-A-4 009 008 wird weiterhin ein Verfahren zum Markieren von Mineralölen mittels Disazofarbstoffen beschrieben, bei dem man den dem Mineralöl zugesetzten Farbstoff sichtbar macht, indem man ein Adsorptionsmittel dem markierten Mineralöl zusetzt, das andere farbige Bestandteile des Mineralöls bindet.

In der DE-A-36 08 215 und der DE-A-37 24 757 sind Benzopyranderivate sowie deren Verwendung in Aufzeichnungssystemen beschrieben.

Im Beispiel 1 der DE-A-36 08 215 ist die Umsetzung von 2,3-Dimethylbenzopyrylium-trichlorozinkat mit 4-Dimethylaminobenzaldehyd in Methanol unter Bildung des Farbsalzes der Formel

beschrieben.

40

45

In der WO-A-11 466/1994 ist die Verwendung von substituierten Anilinen zum Markieren von Mineralölen beschrieben.

Aufgabe der vorliegenden Erfindung war es, neue Mittel zum Markieren von Kohlenwasserstoffen bereitzustellen. Die neuen Mittel sollten leicht zugänglich und gut in Kohlenwasserstoffen löslich sein. Außerdem sollten sie in einfacher Weise nachgewiesen werden können. Dabei sollten selbst noch sehr kleine Mengen an Markierstoff durch eine starke Farbreaktion sichtbar gemacht werden können.

Demgemäß wurde gefunden, daß sich die eingangs näher bezeichneten Benzaldehyde der Formel I vorteilhaft als Markierungsmittel für Kohlenwasserstoffe eignen.

Alle in der obengenannten Formel I auftretenden Alkyl- und Alkylenreste können sowohl geradkettig als auch verzweigt sein.

Wenn X¹ und X² zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest, der noch ein Sauerstoffatom im Ring enthalten kann, bedeuten, so können dafür z. B. Pyrrolidinyl, Piperidinyl oder Morpholinyl in Betracht kommen.

Reste R¹, R², R³, R⁴, R⁵, R⁶, X¹ und X² sind z. B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl oder 2-Methylpentyl.

Reste R¹, R², R³, R⁴, R⁵ und R⁶ sind weiterhin z. B. Heptyl, Octyl, 2-Ethylhexyl, Isooctyl, Nonyl, Isononyl, Decyl, Isodecyl, Undecyl, Dodecyl, Tridecyl, 3,5,5,7-Tetramethylnonyl, Isotridecyl, Tetradecyl oder Pentadecyl (die obigen Bezeichnungen Isooctyl, Isononyl, Isodecyl und Isotridecyl sind Trivialbezeichnungen und stammen von den nach der Oxosynthese erhaltenen Alkoholen — vgl. dazu Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. Al, Seiten 290 bis 293, sowie Vol. A 10, Seiten 284 und 285).

Reste R¹, R² und R³ sind weiterhin z. B. Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec-Butoxy, Pentyloxy, Isopentyloxy, Neopentyloxy, tert-Pentyloxy, Hexyloxy, 2-Methylpentyloxy, Heptyloxy, Octyloxy, 2-Ethylhexyloxy, Isooctyloxy, Nonyloxy, Isononyloxy, Decyloxy, Isodecyloxy, Undecyloxy, Dodecyloxy, Tridecyloxy, 3,5,5,7-Tetramethylnonyloxy, Isotridecyloxy, Tetradecyloxy oder Pentadecyloxy.

Reste R⁴ und R⁵ sind weiterhin z. B. 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2- oder 3-Methoxypropyl, 2- oder 3-Ethoxypropyl, 2- oder 3-Propoxypropyl, 2- oder 3-Butoxypropyl, 2- oder 4-Methoxybutyl, 2- oder 4-Ethoxybutyl, 2- oder 4-Propoxybutyl, 2- oder 4-Butoxybutyl, 3,6-Dioxanonyl, 3,6-Dioxanonyl, 3,7-Dioxanonyl, 4,7-Dioxanonyl, 4,7-Dioxanonyl, 4,8-Dioxadecyl, 3,6,8-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9,12-Tetraoxatridecyl, Benzyl oder 1- oder 2-Phenylethyl.

Reste L sind z. B. (CH₂)₂, (CH₂)₃, (CH₂)₄, (CH₂)₅, (CH₂)₆, (CH₂)₇, (CH₂)₆, CH(CH₃)CH₂ oder CH(CH₃)CH(CH₃). Erfindungsgemäß bevorzugt werden Benzaldehyde der Formel I verwendet, bei denen mindestens einer der Reste R¹ bis R³ einen Rest der Formel NR⁴R⁵ bedeutet, worin R⁴ und R⁵ jeweils die obengenannte Bedeutung besitzen.

Besonders bevorzugt werden Benzaldehyde der Formel Ia

15

25

30

45

50

in der R¹, R², R⁴ und R⁵ jeweils die obengenannte Bedeutung besitzen, zum Markieren von Kohlenwasserstoffen verwendet.

Besonders geeignet sind Benzaldehyde der Formel Ia, in der R^1 und R^2 unabhängig voneinander jeweils Wasserstoff, Hydroxy, C_1-C_{15} -Alkyl, C_1-C_{15} -Alkoxy oder einen Rest der Formel COOR⁶, worin R^6 die obengenannte Bedeutung besitzt, R^4 Wasserstoff oder C_1-C_{15} -Alkyl und R^5 C_1-C_{15} -Alkyl bedeuten.

Besonders bevorzugt werden Benzaldehyde der Formel Ia, in der R^4 und R^5 unabhängig voneinander jeweils C_1-C_{13} -Alkyl, sowie R^1 und R^2 jeweils Wasserstoff bedeuten, zum Markieren von Kohlenwasserstoffen verwendet.

Gegenstand der Erfindung ist außerdem ein Verfahren zum Nachweis der Anwesenheit von Benzaldehyden der Formel I in Kohlenwasserstoffen, wobei man den Kohlenwasserstoff mit einem wäßrig-alkoholischen oder alkoholischen Medium behandelt, das eine Protonsäure, mindestens eine Verbindung aus der Gruppe der Verbindungen, bestehend aus substituierten Benzopyryliumsalzen der Formel II

$$\begin{array}{c|c}
 & \mathbb{R}^7 \\
 & \mathbb{R}^8
\end{array}$$

$$\begin{array}{c}
 & \mathbb{R}^7 \\
 & \mathbb{R}^9
\end{array}$$
(II),

in der R⁷ für $C_1 - C_8$ -Alkyl, Phenyl, $C_1 - C_5$ -Alkoxy oder Halogen und R⁸ für Methyl oder R⁷ und R⁸ zusammen für 1,4-Butylen stehen und der Ring B durch einen Benzolring anelliert sein kann und gegebenenfalls durch $C_1 - C_4$ -Alkyl, Pyrrolidino, Piperidino, Morpholino, Chlor oder Brom oder in Ringposition 7 gegebenenfalls auch durch Hydroxy, $C_1 - C_4$ -Alkoxy, $C_1 - C_5$ -Mono- oder Dialkylamino, das jeweils wiederum durch Chlor oder Phenyl substituiert sein kann, substituiert ist und X⁹ ein beliebiges Anion bedeutet, und Indolen der Formel III

$$\begin{array}{c}
\mathbb{R}^{10} \\
\mathbb{R}^{9}
\end{array}$$
(III),

in der R⁹ und R¹⁰ unabhängig voneinander jeweils für Wasserstoff, Hydroxy, einen Rest der Formel NR⁴R⁵, worin R⁴ und R⁵ jeweils die obengenannte Bedeutung besitzen, C₁—C₆-Alkyl, Phenyl, C₁—C₅-Alkoxy oder Halogen stehen,

und gegebenenfalls ein Halogenid der Metalle Zink, Aluminium oder Zinn enthält.

Bevorzugt werden erfindungsgemäß Indole der Formel III, insbesondere 2-Phenylindol, verwendet.

Beispiele für geeignete Anionen X^o sind Tetrachlorozinkat, Halogenid, Sulfat, Tetrafluoroborat oder Phosphat.

Die Benzaldehyde I, die Benzopyryliumsalze II sowie die Indole III sind in der Regel an sich bekannt. Unter Markierung im erfindungsgemäßen Sinn ist ein Zusatz der Benzaldehyde der Formel I in solcher

44 24 712

Konzentration zu Kohlenwasserstoffen zu verstehen, daß die Kohlenwasserstoffe dadurch für das menschliche Auge entweder überhaupt nicht oder nur wenig sichtbar angefärbt sind, wobei jedoch die Benzaldehyde der Formel I durch die hier näher beschriebenen Nachweismethoden leicht und deutlich sichtbar detektierbar sind.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Kohlenwasserstoffe, enthaltend einen oder mehre-

re der Benzaldehyde der Formel I.

Unter Kohlenwasserstoffen im erfindungsgemäßen Sinn sind aliphatische oder aromatische Kohlenwasserstoffe zu verstehen, die unter Normalbedingungen in flüssigem Aggregatzustand vorliegen.

Dies sind insbesondere Mineralöle, beispielsweise Treibstoffe, wie Benzin, Kerosin oder Dieselöl, oder Öle, wie Heizöl oder Motorenöl.

Die Benzaldehyde der Formel I eignen sich insbesondere zum Markieren von Mineralölen, bei denen eine Kennzeichnung gefordert wird, z. B. aus steuerlichen Gründen. Um die Kosten der Kennzeichnung gering zu halten, strebt man dabei an, für die Markierung möglichst geringe Mengen an Markierungsmittel anzuwenden.

Zum Markieren von Kohlenwasserstoffen werden die Benzaldehyde der Formel I entweder in Substanz oder in Form von Lösungen angewandt. Als Lösungsmittel eignen sich organische Lösungsmittel. Vorzugsweise kommen aromatische Kohlenwasserstoffe, wie Toluol, Xylol, Dodecylbenzol, Diisopropylnaphthalin oder ein Gemisch höherer Aromaten, das unter dem Namen Shellsol® AB (Fa. Shell) handelsüblich ist, zur Anwendung. Um eine hohe Viskosität der resultierenden Lösungen zu vermeiden, wählt man im allgemeinen eine Konzentra-

tion an Benzaldehyden I von 5 bis 80 Gew.-%, bezogen auf die Lösung.

Zur Verbesserung der Löslichkeit können auch noch weitere Cosolventien, z. B. Alkohole, wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, Isobutanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol oder Cyclohexanol, Glykole, wie Butylethylenglykol oder Methylpropylenglykol, Amine, wie Triethylamin, Diisooctylamin, Dicyclohexylamin, Anilin, N-Methylanilin, N,N-Dimethylanilin, Toluidin oder Xylidin, Alkanolamine, wie 3-(2-Methoxyethoxy)propylamin, o-Kresol, m-Kresol oder p-Kresol, Ketone, wie Diethylketon oder Cyclohexanon, Lactame, wie γ-Butyrolacton, Carbonate, wie Ethylencarbonat oder Propylencarbonat, Phenole, wie t-Butylphenol oder Nonylphenol, Ester, wie Phthalsäuremethylester, Phthalsäureethylester, Phthalsäure-(2-ethylhexyl)ester, Essigsäureethylester, Essigsäurebutylester oder Essigsäurecyclohexylester, Amide, wie N,N-Dimethylformamid, N,N-Diethylacetamid oder N-Methylpyrrolidinon, oder deren Mischungen verwendet werden.

Mittels den erfindungsgemäß anzuwendenden Benzaldehyden der Formel I gelingt es sehr einfach, markierte Kohlenwasserstoffe nachzuweisen, selbst wenn die Markierungssubstanzen nur in einer Konzentration von

ungefähr 10 ppm oder darunter vorliegen.

Der Nachweis der Anwesenheit der als Markierungsstoffe angewandten Verbindungen der Formel I in Kohlenwasserstoffen gelingt vorteilhaft, wenn man den Kohlenwasserstoff mit einem wäßrig-alkoholischen oder alkoholischem Medium behandelt, das ein Pyryliumsalz der Formel II und/oder ein Indol der Formel III, eine Protonsäure und gegebenenfalls ein Halogenid der Metalle Zink, Aluminium oder Zinn enthält. Bei der Verwendung von wäßrig-alkoholischen Medien beträgt das Gewichtsverhältnis Wasser: Alkohol 0,5:1 bis 4:1, vorzugsweise ca. 1:1. Es resultiert eine deutlich sichtbare Farbänderung der wäßrig-alkoholischen Phase.

Geeignete Alkohole sind z. B. Ethanol, Propanol, Isopropanol, 1-Methoxypropan-2-ol, Ethylenglykol oder 1,2-

oder 1,3-Propylenglykol. Die Verwendung von Ethanol ist bevorzugt.

Geeignete Protonsäuren für die erfindungsgemäßen Verfahren sind insbesondere sogenannte starke Säuren, d. h. Protonsäuren deren pKa-Wert ≤3,5 ist. Als solche Säuren kommen beispielsweise anorganische oder organische Säuren, wie Perchlorsäure, Iodwasserstoffsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Flußsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Benzolsulfonsäure, Toluolsulfonsäure, Naphthalinsulfonsäure, Methansulfonsäure, Oxalsäure, Maleinsäure, Chloressigsäure, Dichloressigsäure oder Bromessigsäure in Betracht. In manchen Fällen kann es von Vorteil sein, diese Säuren, z.B. durch Zugabe von Essigsäure, abzupuffern.

Neben o- oder p-Toluolsulfonsäure sind besonders anorganische Säuren hervorzuheben, wobei Salzsäure

oder Schwefelsäure besondere Bedeutung zukommt.

Geeignete Halogenide der Metalle Zink, Aluminium oder Zinn sind z. B. Zinkchlorid, Zinkbromid, Aluminiumchlorid, Aluminiumbromid oder Zinntetrachlorid. Besonders hervorzuheben ist Zinkchlorid.

Es genügt in der Regel, eine Menge von ungefähr 10 bis 50 ml des erfindungsgemäß markierten Kohlenwasserstoffs mit 1 bis 50 ml einer wäßrig-alkoholischen oder alkoholischen Lösung eines Pyryliumsalzes der Formel II und/oder eines Indols der Formel III, einer Protonsäure, gegebenenfalls unter Zusatz des Metallhalogenids, auszuschütteln, um eine Farbänderung zu erhalten. Es ist auch möglich, anstelle der Lösung der Protonsäure eine wäßrig-alkoholische Lösung des Metallhalogenids alleine zu benutzen, da diese ebenfalls sauer reagiert.

Die Konzentration der Protonsäure in der wäßrig-alkoholischen oder alkoholischen Lösung beträgt dabei in der Regel 5 bis 50 Gew.-%, vorzugsweise 10 bis 30 Gew.-%. Die Konzentration an Metallhalogenid liegt im allgemeinen bei 0 bis 50 Gew.-%, vorzugsweise bei 5 bis 20 Gew.-%, jeweils bezogen auf das Gewicht der

Ein großer Vorteil der Erfindung besteht darin, daß zwei verschiedene Methoden zum Nachweis der Benzaldehyde der Formel I benutzt werden können. Der Nachweis kann daher auch bei möglichen Störeinflüssen (z. B. Zusätze in Dieselkraftstoff) sehr zuverlässig durchgeführt werden.

Die folgenden Beispiele sollen die Erfindung näher erläutern.

Allgemeine Vorschrift 1

65

Handelsüblicher Dieselkraftstoff wurde mit jeweils 10 ppm eines Benzaldehyds versetzt. Hierzu wurde der Aldehyd 0,1 gew.-%ig in Toluol vorgelöst und diese Lösung zum Dieselkraftstoff gegeben.

In den folgenden Beispielen 1 bis 12 wurden jeweils 10 ml so markierten Dieselkraftstoffes mit 2 ml Reagenz-

DE 44 24 712 A1

lösung versetzt und 5 Minuten geschüttelt. Anschließend wurde 1 ml Wasser zugegeben und weitere 5 Minuten geschüttelt. Die wäßrige Phase zeigte die in der folgenden Tabelle Nr. 1 angegebenen Farben.

Reagenzlösung 1:	5
5 ml 1-gew%ig Indol in Ethanol 5 ml Salzsäure konz. 5 g Zinkchlorid 95 ml Essigsäure	
Reagenzlösung 2:	10
5 ml 1-gew%ig 2-Methylindol in Ethanol 5 ml Salzsäure konz. 5 g Zinkchlorid 95 ml Essigsäure	15
Reagenzlösung 3:	
5 ml 1-gew%ig 2-Phenylindol in Ethanol 5 ml Salzsäure konz. 5 g Zinkchlorid 95 ml Essigsäure	20
Besonders vorteilhafte Ergebnisse werden erhalten, wenn der Dieselkraftstoff zuerst über Kieselgel filtriert wird.	25
•	
	30
·	
	35
	40
	45
	,,,
·	50
•	55
	60
	65

Tabelle Nr. 1

	Bsp. Nr.	Aldehyd	Reagenz	Farbe
5	1		1	
10		СНО	-	magenta
10				
15	2	N (CH ₃) ₂	2	
20		СНО	2	violett
25		N (CH ₃) ₂		
30	3		3	violett
30		CHO		
35		N (CH ₃) ₂		
40	4	СНО	1	orange
45				
50	5	N(C ₂ H ₅) ₂	2	
55	·	СНО	2	rot-violett
60	·	N(C ₂ H ₅) ₂		

DE 44 24 /12 A1

Bsp. Nr.	Aldehyd	Reagenz	Farbe	
6	CHO OH N (C ₂ H ₅) ₂	3	magenta	5
7	CHO	1	orange	15 20
				25
	СНО	2	rot-violett	30
9	СНО	3	magenta	40 45 50
10	CHO CO ₂ CH ₃	1	rot-violett	55
	N (CH ₃) ₂			

DE 44 24 712 A1

	Bsp. Nr.	Aldehyd	Reagenz	Farbe
5	11	CHO CO ₂ CH ₃ N (CH ₃) ₂		blau-violett
15	12	CHO I	3	blau-violett
20		N (CH ₃) ₂		
25				

Ähnlich günstige Ergebnisse werden erzielt, wenn man die in der folgenden Tabelle Nr. 2 aufgeführten Benzaldehyde als Markierungsmittel anwendet.

Tabelle Nr. 2

Bsp. Nr.	Aldehyd
13	CHO N(C ₂ H ₅) ₂
	CHO N (CH ₂ C ₆ H ₅) ₂

DE 44 24 712 A1

Bsp. Nr.	Aldehyd	
15	СНО	5
		10
16	СНО	15
		20
	V	25
17	СНО	30
	CH ₃ -N-C ₂ H ₄ CN	35
18	СНО	40
·	N (CH ₃) 2	45
19	СНО	50
	N((CH ₂ C ₆ H ₅) ₂	55
20	ОСН3	60
	N (C ₂ H ₅) ₂	65

DE 44 24 712

Allgemeine Vorschrift 2

Handelsüblicher Dieselkraftstoff wurde mit jeweils 10 ppm Benzaldehyd versetzt. Hierzu wurde der Benzal-

dehyd 0,1-gew.-%ig in Toluol vorgelöst und diese Lösung zum Dieselkraftstoff gegeben. In den Beispielen 21 bis 30 wurden jeweils 10 ml des markierten Dieselkraftstoffes mit 2 ml Reagenzlösung 4 versetzt und 5 Minuten unter Rückfluß erhitzt. Anschließend wurde 1 ml Wasser/Ethanol (1:1 v/v) zugegeben und weitere 5 Minuten geschüttelt. Die wäßrige Phase zeigte die in der folgenden Tabelle Nr. 3 angegebene Farbe.

10 Reagenzlösung 4:

5 ml Benzopyryliumsalz der Formel

1-gew.-%ig in Wasser 25 ml Salzsäure konz. 225 ml Essigsäure

55

60

65

Tabelle 3 25

	Bsp. Nr.	Aldehyd	Q	Farbe
0	21	СНО	. C ₆ H ₅	blau
5		N (CH ₃) ₂		
)		1. (0.13, 2		
	22	CHO I	CH ₃	blau
5				
)		N (CH ₃) ₂		

DE 44 24 712 A1

Bsp. Nr.	Aldehyd	Q	Farbe	
23	CHO CO ₂ CH ₃ N (CH ₃) ₂	C ₆ H ₅	blau	5
24	CHO CO ₂ CH ₃ N (CH ₃) ₂	H	blau	15 20 25
25	CHO OH N(C ₂ H ₅) ₂	CH ₃	blau	30 35
26	СНО	CH ₃	blau	40 45
27	СНО	H	blau	50 55 60

DE

	Bsp. Nr.	Aldehyd	Ω	Farbe
5	28	CHO OH	СН3	rot-violett
15	29	СНО	CH ₃	rot-violett
20		OCH ₃		
25	30		CH ₃	violett
30	·	CHO OCH ₃		
33				

Ähnlich günstige Ergebnisse werden erzielt, wenn man das in Reagenzlösung 5 enthaltene Benzopyryliumsalz durch das der Formel

ersetzt.

50

Patentansprüche

1. Verwendung von Benzyldehyden der Formel I

der Ring A benzoanelliert sein kann und R¹, R² und R³ unabhängig voneinander jeweils Wasserstoff, Hydroxy, $C_1 - C_{15}$ -Alkyl, $C_1 - C_{15}$ -Alkoxy, Cyano, Nitro oder einen Rest der Formel NR⁴R⁵ oder COOR⁶ bedeuten, worin R⁴ für Wasserstoff oder $C_1 - C_{15}$ -Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen

sein kann und gegebenenfalls durch Phenyl substituiert ist,

R⁵ für C₁-C₁₅-Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen sein kann und gegebenenfalls durch Phenyl substituiert ist, oder-einen Rest der Formel L-NX1X2, worin L die Bedeutung $von C_2 - C_8$ -Alkylen und X^1 und X^2 unabhängig voneinander jeweils die Bedeutung von $C_1 - C_6$ -Alkyl oder zusammen mit dem sie verbindenden Stickstoffatom die Bedeutung eines 5- oder 6-gliedrigen gesättigten heterocyclischen Rests, der noch ein Sauerstoffatom im Ring enthalten kann, besitzen, und

R⁶ für Wasserstoff, C₁-C₁₅-Alkyl, das durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen sein kann, oder für einen Rest der Formel L-NX¹X², worin L, X¹ und X² jeweils die obengenannte Bedeutung besitzen, stehen,

als Markierungsmittel für Kohlenwasserstoffe.

2. Verwendung von Benzaldehyden nach Anspruch 1, dadurch gekennzeichnet, daß die Benzaldehyde der

$$\begin{array}{c}
 & \mathbb{R}^{1} \\
 & \mathbb{R}^{2}
\end{array}$$

$$\begin{array}{c}
 & \mathbb{R}^{4} \\
 & \mathbb{R}^{5}
\end{array}$$
(Ia)

entsprechen, in der R1, R2, R4 und R5 jeweils die in Anspruch 1 genannte Bedeutung besitzen.

3. Verwendung von Benzaldehyden nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß R1 und R2 unabhängig voneinander jeweils Wasserstoff, Hydroxy, C1-C15-Alkyl, C1-C15-Alkoxy oder einen Rest der Formel COOR⁶, worin R⁶ die in Anspruch 1 genannte Bedeutung besitzt, R⁴ Wasserstoff oder C₁ - C₁₅-Alkyl und $R^5 C_1 - C_{15}$ -Alkyl bedeuten.

4. Verfahren zum Nachweis der Anwesenheit von Benzaldehyden der Formel I gemäß Anspruch 1 in Kohlenwasserstoffen, dadurch gekennzeichnet, daß man den Kohlenwasserstoff mit einem wäßrigalkoholischen oder alkoholischen Medium behandelt, das eine Protonsäure, mindestens eine Verbindung aus der Gruppe der Verbindungen, bestehend aus substituierten Pyryliumsalzen der Formel II

$$\begin{array}{c|c}
 & \mathbb{R}^7 \\
 & \mathbb{R}^8 & \mathbb{R}^9
\end{array} \tag{II),}$$

in der R⁷ für C₁-C₆-Alkyl, Phenyl, C₁-C₅-Alkoxy oder Halogen und R⁸ für Methyl oder R⁷ und R⁸ zusammen für 1,4-Butylen stehen und der Ring B durch einen Benzolring aneiliert sein kann und gegebenenfalls durch C₁-C₄-Alkyl, Pyrrolidino, Piperidino, Morpholino, Chlor oder Brom oder in Ringposition 7 gegebenenfalls auch durch Hydroxy, C₁-C₄-Alkoxy, C₁-C₅-Mono-oder Dialkylamino, das jeweils wiederum durch Chlor oder Phenyl substituiert sein kann, substituiert ist und X^o ein beliebiges Anion bedeutet, und Indolen der Formel III

in der R9 und R10 unabhängig voneinander jeweils für Wasserstoff Hydroxy, einen Rest der Formel NR4R5, worin R4 und R5 jeweils die in Anspruch 1 genannte Bedeutung besitzen, C1-C8-Alkyl, Phenyl, C1-C5-Alkoxy oder Halogen stehen,

und gegebenenfalls ein Halogenid der Metalle Zink, Aluminium oder Zinn enthält. 5. Kohlenwasserstoffe, enthaltend als Markierungsmittel einen oder mehrere Benzaldehyde der Formel I gemäß Anspruch 1.

65

60

45

- Leerseite -