學號: 806902028 系級: 資工二 姓名: 林柏劭

 (2%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何? 並請用與上述 CNN 接近的參數量,實做簡單的 DNN model,同時也說明 其模型架構、訓練參數和準確率為何?並說明你觀察到了什麼?

(Collaborators:) 答:

# CNN model:

| model1                          | model2                | model3                               |
|---------------------------------|-----------------------|--------------------------------------|
| Conv(64,3,3)+BN+relu            | Conv(64,3,3)+BN+relu  | Conv(64,3,3)+BN+LeakyReLU            |
| Conv(64,3,3)+BN+relu            | Conv(64,3,3)+BN+relu  | MaxPooling(2, 2)+Dropout(0.1)        |
| MaxPooling(2, 2)                | MaxPooling(2, 2)      | Conv(128,3,3)+BN+LeakyReLU           |
| Conv(128,3,3)+BN+relu           | Conv(128,3,3)+BN+relu | MaxPooling(2, 2)+Dropout(0.1)        |
| Conv(128,3,3)+BN+relu           | Conv(128,3,3)+BN+relu | Conv(256,3,3)+BN+LeakyReLU           |
| MaxPooling(2, 2)                | MaxPooling(2, 2)      | MaxPooling(2, 2)+Dropout(0.1)        |
| Conv(256,3,3)+BN+relu           | Conv(256,3,3)+BN+relu | Conv(512,3,3)+BN+LeakyReLU           |
| Conv(256,3,3)+BN+relu           | Conv(256,3,3)+BN+relu | MaxPooling(2, 2)+Dropout(0.1)        |
| MaxPooling(2, 2)                | Conv(256,3,3)+BN+relu | Conv(512,3,3)+BN+LeakyReLU           |
| Conv(512,3,3)+BN+relu           | MaxPooling(2, 2)      | MaxPooling(2, 2)+Dropout(0.1)        |
| Conv(512,3,3)+BN+relu           | Conv(512,3,3)+BN+relu | ]                                    |
| MaxPooling(2, 2)                | Conv(512,3,3)+BN+relu | 1                                    |
|                                 | Conv(512,3,3)+BN+relu | ]                                    |
|                                 | MaxPooling(2, 2)      | ]                                    |
|                                 | Conv(512,3,3)+BN+relu |                                      |
|                                 | Conv(512,3,3)+BN+relu |                                      |
|                                 | Conv(512,3,3)+BN+relu |                                      |
|                                 | MaxPooling(2, 2)      |                                      |
|                                 | Flatten()             | -                                    |
| Dense(512)+BN+relu+dropout(0.5) |                       | Dense(512)+BN+LeakyReLU +dropout(0.5 |
| Dense(512)+BN+relu+dropout(0.5) |                       | Dense(512)+BN+LeakyReLU +dropout(0.5 |
| Dense(512)+BN+relu+dropout(0.5) |                       | Dense(512)+BN+LeakyReLU +dropout(0.5 |
|                                 | Dense(7)+softmax      |                                      |
| about 7600000 params            | about 15500000 params | about 4700000 params                 |
| 0.70799/0.69824                 | 0.68598/0.68013       | 0.68124/0.67706                      |
|                                 |                       |                                      |

(public score/private score)

## Training:

data normalization(全部除以 255)

data augmentation(使用 ImageDataGenerator)

batch\_size=128, epochs=250~500

#### Result:

最後 kaggle 我是以 model1,2,3 各 train 出 3 個 model,最後將 9 個 model ensemble,得到了 public score: 0.73279 / private score: 0.73307

### **DNN** model:

| Dense(2048)+BN+relu+dropout(0.5)             |  |  |
|----------------------------------------------|--|--|
| Dense(2048)+BN+relu+dropout(0.5)             |  |  |
| Dense(2048)+BN+relu+dropout(0.5)             |  |  |
| Dense(1024)+BN+relu+dropout(0.5)             |  |  |
| Dense(512)+BN+relu+dropout(0.5)              |  |  |
| Dense(7)+softmax                             |  |  |
| about 15500000 params                        |  |  |
| public score: 0.39537/private score: 0.40261 |  |  |

Training: 與 CNN 一樣

## Result:

與 model2 相比,在接近同樣的參數量下以及同樣的 epochs,DNN 的成效十分的差。或許將 epochs 拉到很大或是再將參數量加多,DNN 也會有不錯的成果。不過其所付出的成本就會比 CNN 多很多。

## 以下討論皆以 model2 為代表

2. (1%) 承上題,請分別畫出這兩個 model 的訓練過程 (i.e., loss/accuracy v.s. epoch) (Collaborators: ) 答:

## CNN model:



### DNN model:



3. (1%) 請嘗試 data normalization, data augmentation,說明實作方法並且說明實行 前後對準確率有什麼樣的影響?

# (Collaborators:) 答:

|                            | Public socre | Private score |
|----------------------------|--------------|---------------|
| without data normalization | 0.68598      | 0.68013       |
| without data augmentation  |              |               |
| with data normalization    | 0.64112      | 0.62162       |
| without data augmentation  |              |               |
| with data normalization    | 0.64084      | 0.62134       |
| with data augmentation     |              |               |

若未做 data augmentation,雖然 training 時的準確率可達到 99 點多,但從實際結 過卻下降很多,可推論應該是發生了 overfitting。

若未做 data normalization,對於整體的準確率並沒有太大的影響。

4. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]

(Collaborators:) 答:



以紅圈圈出大於 0.1 的,可觀察出在 class4(難過)與 class0(生氣),class4(難過)與 class2(恐懼),class4(難過)與 class6(中立),接比較容易用混。