13.18 FORMULAE OF LAPLACE TRANSFORM

S.No.	f(t)	F (s)
1.	e^{at}	$\frac{1}{s-a}$
2.	t^n	$\frac{\lceil n+1}{s^{n+1}} \text{ or } \frac{n!}{s^{n+1}}$
3.	sin at	$\frac{a}{s^2 + a^2}$
4.	cos at	$\frac{s}{s^2 + a^2}$
5.	sinh at	$\frac{a}{s^2 - a^2}$
6.	cosh at	$\frac{s}{s^2 - a^2}$
7.	U(t-a)	$\frac{e^{-as}}{s}$
8.	$\delta(t-a)$	e ^{- as}
9.	$e^{bt}\sin at$	$\frac{a}{(s-b)^2 + a^2}$
10.	$e^{bt}\cos at$	$\frac{s-b}{\left(s-b\right)^2+a^2}$
11.	$\frac{t}{2a}\sin at$	$\frac{s}{(s^2+a^2)^2}$
12.	t cos at	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
13.	$\frac{1}{2a^3}(\sin at - at\cos at)$	$\frac{1}{(s^2+a^2)^2}$
14.	$\frac{1}{2a}(\sin at + at \cos at)$	$\frac{s^2}{(s^2+a^2)^2}$

13.19 PROPERTIES OF LAPLACE TRANSFORM

13.19	I KOI EKIIES OF LAI	LACE TRANSFORM	
S.No.	Property	f(t)	F (s)
1.	Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right) \qquad \qquad a > 0$
2.	Derivative	$\frac{df(t)}{dt}$	$ s F(s) - f(0) \qquad s > 0$
		$\frac{d^2f(t)}{dt^2}$	$s^2 F(s) - sf(0) - f'(0)$ $s > 0$
		$\frac{d^3f(t)}{dt^3}$	$s^3 F(s) - s^2 f(0) - s f'(0) - f'(0)$
3.	Integral	$\int_0^t f(t) dt$	$\frac{1}{s}F(s) \qquad s>0$
4.	Initial Value	$\lim_{t\to 0} f(t)$	$\lim_{s\to\infty} sF(s)$
5.	Final Value	$\lim_{t\to\infty}f(t)$	$\lim_{s\to 0} s F(s)$
6.	First shifting	$e^{-at}f(t)$	F(s+a)
7.	Second shifting	f(t) U(t-a)	$e^{-as} \mathbf{L} f(t+a)$
8.	Multiplication by t	tf(t)	$-\frac{d}{ds}F(s)$
		$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
9.	Division by t	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(s) ds$
10.	Periodic function	f(t)	$\frac{\int_{0}^{T} e^{-st} f(t)}{1 - e^{-st}} i i \text{RçQDÇ\^{O}ç\^{y}}$ $f(t+T) = f(t)$
11.	Convolution	f(t) * g(t)	F(s) G(s)