Exercise Guide for $Complex\ Analysis$ by Lars Ahlfors

Muthu Chidambaram

Last Updated: July 12, 2019

Contents

1	Con	pplex Numbers	3
	1.1	Arithmetic Operations	3
		111 Exercise 3	9

About

"One of the jewels in the crown of mathematics is complex analysis..." - Tim Gowers, The Princeton Companion to Mathematics

I believe some solutions for this book are available here. What follows are some of my solutions to some exercises in the book.

1 Complex Numbers

1.1 Arithmetic Operations

1.1.1 Exercise 3

This exercise is much easier if we represent the complex numbers in polar form (which has not been introduced yet). We see that

$$\begin{split} &\frac{-1\pm i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}, \ e^{i\frac{4\pi}{3}} \\ &\frac{\pm 1\pm i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}, \ e^{i\frac{4\pi}{3}}, \ e^{i\frac{\pi}{3}}, \ e^{i\frac{5\pi}{3}} \end{split}$$

which gives us the desired equality since $e^{i2\pi} = 1$.