Task 4

Task 4: Use 5-fold cross-validation to select the best λ . Compare the prediction performance between the "optimal" model and "full" model.

5-fold CV

We write an R function cv.logit.lasso to conduct 5-fold cross-validation to select the best λ .

```
cv.logit.lasso <- function(x, y, nfolds = 5, lambda) {</pre>
  auc <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
  folds <- createFolds(y, k = nfolds)</pre>
  for (i in 1:nfolds) {
    valid_index <- folds[[i]]</pre>
    x_training <- x[-valid_index, ]</pre>
    y_training <- y[-valid_index]</pre>
    training_dat <- data.frame(cbind(y_training, x_training))</pre>
    x_valid <- cbind(rep(1, length(valid_index)), x[valid_index, ])</pre>
    y_valid <- y[valid_index]</pre>
    res <- LogisticLASSO(dat = training_dat, start = rep(0, ncol(training_dat)), lambda = lambda)
    for (k in 1:nrow(res)) {
      betavec <- res[k, 2:ncol(res)]</pre>
      u_valid <- x_valid %*% betavec
      phat_valid <- sigmoid(u_valid)[, 1]</pre>
      roc <- roc(response = y_valid, predictor = phat_valid)</pre>
      auc <- rbind(auc, c(lambda[k], i, roc$auc[1]))</pre>
    }
  }
  colnames(auc) <- c("lambda", "fold", "auc")</pre>
  cv_res <- auc %>%
    group_by(lambda) %>%
    summarize(auc_mean = mean(auc),
               auc_se = sd(auc) / sqrt(5),
               auc_low = auc_mean - auc_se,
               auc_high = auc_mean + auc_se) %>%
    mutate(auc ranking = min rank(desc(auc mean)))
  bestlambda <- max(cv_res$lambda[cv_res$auc_ranking == 1])</pre>
  return(cv_res)
```

Compare the results of cross-validation using glmnet and using our algorithm.

1. Our function cv.logit.lasso:

```
set.seed(1)
folds \leftarrow createFolds(y, k = 5)
lambda_max_i <- rep(NA, 5) # lambda_max for each training set in CV (4/5 of the whole training data)
for (i in 1:5) {
    valid_index <- folds[[i]]</pre>
   x_training <- x[-valid_index, ]</pre>
   y_training <- y[-valid_index]</pre>
   lambda_max_i[i] <- max(abs(t(x_training) %*% (y_training - mean(y_training)))) / length(y_training)</pre>
lambda_max <- max(lambda_max_i) + 1e-10 # max of lambda_max's so that all beta_i's = 0 except intercept
lambdas <- exp(seq(log(lambda_max), log(lambda_max) - 6, length = 30))</pre>
set.seed(1)
res_cv = cv.logit.lasso(x, y, nfolds = 5, lambda = lambdas)
as.matrix(res_cv %>% arrange(-lambda))
##
              lambda auc_mean
                                              auc_low auc_high auc_ranking
                                    auc_se
## [1,] 0.411544526 0.5000000 0.000000000 0.5000000 0.5000000
## [2,] 0.334628402 0.9760054 0.010592380 0.9654130 0.9865978
                                                                         29
   [3,] 0.272087611 0.9796678 0.010375900 0.9692919 0.9900437
                                                                          28
## [4,] 0.221235460 0.9816903 0.009512584 0.9721777 0.9912029
                                                                         27
## [5,] 0.179887384 0.9828852 0.008738249 0.9741469 0.9916234
                                                                         26
## [6,] 0.146267108 0.9841071 0.007957927 0.9761492 0.9920651
                                                                         25
## [7,] 0.118930336 0.9853029 0.007306301 0.9779966 0.9926092
                                                                         24
## [8,] 0.096702703 0.9861031 0.007243727 0.9788594 0.9933468
                                                                         23
## [9,] 0.078629332 0.9872060 0.007099766 0.9801063 0.9943058
                                                                         20
## [10,] 0.063933805 0.9885875 0.006862409 0.9817250 0.9954499
                                                                         15
## [11,] 0.051984817 0.9893408 0.006624454 0.9827164 0.9959653
                                                                         12
## [12,] 0.042269050 0.9895397 0.006405661 0.9831340 0.9959454
                                                                         11
## [13,] 0.034369124 0.9898394 0.006335376 0.9835040 0.9961747
                                                                          10
## [14,] 0.027945664 0.9903360 0.005905664 0.9844304 0.9962417
                                                                          5
## [15,] 0.022722724 0.9903354 0.005871355 0.9844640 0.9962067
                                                                          6
## [16,] 0.018475933 0.9903346 0.005795855 0.9845387 0.9961304
                                                                          8
                                                                          7
## [17,] 0.015022850 0.9903347 0.005776185 0.9845585 0.9961109
## [18,] 0.012215136 0.9904332 0.005623032 0.9848102 0.9960562
                                                                          4
## [19,] 0.009932173 0.9905325 0.005536136 0.9849964 0.9960687
                                                                          1
## [20,] 0.008075887 0.9905317 0.005476448 0.9850553 0.9960082
                                                                          3
## [21,] 0.006566534 0.9905324 0.005476956 0.9850554 0.9960093
                                                                          2
## [22,] 0.005339274 0.9902345 0.005741539 0.9844929 0.9959760
                                                                          9
## [23,] 0.004341384 0.9893390 0.006354172 0.9829848 0.9956931
                                                                          13
## [24,] 0.003529995 0.9887423 0.006823535 0.9819188 0.9955659
                                                                         14
## [25,] 0.002870252 0.9880447 0.007261041 0.9807837 0.9953058
                                                                          17
## [26,] 0.002333813 0.9881480 0.007498966 0.9806490 0.9956469
                                                                          16
## [27,] 0.001897632 0.9875518 0.008002341 0.9795495 0.9955542
                                                                         18
## [28,] 0.001542972 0.9875498 0.007823489 0.9797263 0.9953733
                                                                         19
## [29,] 0.001254596 0.9867502 0.007946196 0.9788040 0.9946964
                                                                         21
## [30,] 0.001020117 0.9863500 0.007967195 0.9783828 0.9943171
                                                                         22
# best lambda
best_lambda <- max(res_cv$lambda[res_cv$auc_ranking == 1])</pre>
best_lambda
```

[1] 0.009932173

```
# plot of best lambda
plot(log(res_cv$lambda),
    res_cv$auc_mean,
    pch = 16,
    xlab = "log(lambda)",
    ylab = "AUC",
    col = "red")
abline(v = log(res_cv$lambda[which((res_cv$auc_ranking == 1))]), col = "gray", lty = 3)
```



```
# plot of best lambda with std.error interval
ggplot(res_cv, aes(log(lambda), auc_mean)) +
  geom_point(col = "red") +
  geom_errorbar(aes(ymin = auc_low, ymax = auc_high), col = "darkgray") +
  geom_vline(aes(xintercept = log(lambda[which((auc_ranking == 1))])), color = "grey", linetype = "dash xlab("log lambda") +
  ylab("AUC")
```



```
# coefficients of the best model
res_coef <- LogisticLASSO(dat = Training, start = rep(0, ncol(Training)),</pre>
                        lambda = lambdas) %>% as.data.frame
res_coef[res_coef$lambda == best_lambda, -1]
##
     (Intercept) radius_mean texture_mean perimeter_mean area_mean
## 19 -0.613828 0 0.3958698
##
     smoothness_mean compactness_mean concavity_mean concave.points_mean
## 19
                                  0
     symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
##
## 19
                                      0 0.7660262 0
##
     area_se smoothness_se compactness_se concavity_se concave.points_se
              0
                                0
##
     symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
## 19
                         -0.03644811 2.587817 0.4394404
##
     area_worst smoothness_worst compactness_worst concavity_worst
## 19
                      0.4980005
##
     concave.points_worst symmetry_worst fractal_dimension_worst
## 19
                1.008792
                          0.3617036
# plot of coefficients
i = 3
```

plot(log(res_coef\$lambda),
 res_coef[, 1],
 type = "l",

```
xlab = "log(lambda)",
   ylab = "coefficients",
   ylim = c(min(res_coef), max(res_coef)),
   col = colors(1)[1])
abline(h = 0, col = colors(1)[length(res_coef) + 1])
abline(v = log(res_cv$lambda[which((res_cv$auc_ranking == 1))]), col = "gray", lty = 3)
while (i < length(res_coef)) {
   lines(log(res_coef$lambda), res_coef[, i], col = colors(1)[i], lty = 1)
   i = i + 1
}</pre>
```


2. glmnet from ${\bf R}$ package caret

[1] 0.009932173

coefficients of the best model coef(fit.logit.lasso, fit.logit.lasso\$lambda.min)

```
## 31 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                           -0.60486590
## radius_mean
                            0.38113717
## texture_mean
## perimeter_mean
## area_mean
## smoothness_mean
## compactness_mean
## concavity_mean
## concave.points_mean
                            0.44764990
## symmetry_mean
## fractal_dimension_mean
## radius_se
                            0.83791365
## texture_se
## perimeter_se
## area_se
## smoothness_se
## compactness_se
## concavity_se
```

The results are slightly different (mean AUC values).

lambda	ours_AUC	cv.glmnet_AUC
0.4115445	0.5000000	0.5000000
0.3346284	0.9760054	0.9725915
0.2720876	0.9796678	0.9787526
0.2212355	0.9816903	0.9817053
0.1798874	0.9828852	0.9834002
0.1462671	0.9841071	0.9847216
0.1189303	0.9853029	0.9850192
0.0967027	0.9861031	0.9858166
0.0786293	0.9872060	0.9873215
0.0639338	0.9885875	0.9887026
0.0519848	0.9893408	0.9892575
0.0422691	0.9895397	0.9894566
0.0343691	0.9898394	0.9896556
0.0279457	0.9903360	0.9902522
0.0227227	0.9903354	0.9901527
0.0184759	0.9903346	0.9904508
0.0150229	0.9903347	0.9903518
0.0122151	0.9904332	0.9904501
0.0099322	0.9905325	0.9906491
0.0080759	0.9905317	0.9904501
0.0065665	0.9905324	0.9905479
0.0053393	0.9902345	0.9903485
0.0043414	0.9893390	0.9893569
0.0035300	0.9887423	0.9889618
0.0028703	0.9880447	0.9880654
0.0023338	0.9881480	0.9881674
0.0018976	0.9875518	0.9877693
0.0015430	0.9875498	0.9876669
0.0012546	0.9867502	0.9867649
0.0010201	0.9863500	0.9865655

The best λ 's are the same, and the coefficients are very similar.

```
## [1] 0.009932173
```

[1] 0.009932173

predictor	$ours_coef$	$cv.glmnet_coef$
(Intercept)	-0.6138280	-0.6048659
radius_mean	0.0000000	0.0000000
texture_mean	0.3958698	0.3811372
perimeter_mean	0.0000000	0.0000000
area_mean	0.0000000	0.0000000
$smoothness_mean$	0.0000000	0.0000000
compactness_mean	0.0000000	0.0000000
concavity_mean	0.0000000	0.0000000
concave.points_mean	0.4850029	0.4476499
symmetry_mean	0.0000000	0.0000000
fractal_dimension_mean	0.0000000	0.0000000
radius_se	0.7660262	0.8379136
texture_se	0.0000000	0.0000000
perimeter_se	0.0000000	0.0000000
area_se	0.0000000	0.0000000
$smoothness_se$	0.0000000	0.0000000
$compactness_se$	0.0000000	0.0000000
concavity_se	0.0000000	0.0000000
concave.points_se	0.0000000	0.0000000
symmetry_se	0.0000000	0.0000000
fractal_dimension_se	-0.0364481	-0.0368622
radius_worst	2.5878169	2.5734608
texture_worst	0.4394404	0.4590245
perimeter_worst	0.0000000	0.0000000
area_worst	0.0000000	0.0000000
$smoothness_worst$	0.4980005	0.4945458
$compactness_worst$	0.0000000	0.0000000
concavity_worst	0.1437060	0.1253231
concave.points_worst	1.0087922	1.0692685
symmetry_worst	0.3617036	0.3641634
$\underline{\text{fractal_dimension_worst}}$	0.0000000	0.0000000

Prediction performance comparison

Below is the prediction performance on the test data.

```
# test data
X_test <- cbind(rep(1, nrow(Test)), model.matrix(diagnosis ~ ., Test)[, -1])
y_test <- Test$diagnosis

# logistic model
res_logit <- NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, ncol(Training)))

## Warning in NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, :
## Complete separation occurs. Algorithm does not converge.

betavec_logit <- res_logit[nrow(res_logit), 3:ncol(res_logit)]
u <- X_test %*% betavec_logit
phat <- sigmoid(u)[, 1]
roc.logit <- roc(response = y_test, predictor = phat)</pre>
```

```
logit_spec <- specificity(as.factor(y_test), as.factor(round(phat)))</pre>
logit_sens <- sensitivity(as.factor(y_test), as.factor(round(phat)))</pre>
# logistic LASSO model
betavec_logit.lasso <- res_coef[res_coef$lambda == best_lambda, -c(1, 2)]
col_nonzero <- names(betavec_logit.lasso)[betavec_logit.lasso != 0]</pre>
df_nonzero <- Training[c("diagnosis", col_nonzero)]</pre>
refit_logit <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero)))
betavec_lasso.refit <- refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]</pre>
betavec_lasso.refit <- bind_rows(betavec_logit.lasso, betavec_lasso.refit)[2,] %>% select("(Intercept)"
betavec_lasso.refit[is.na(betavec_lasso.refit)] <- 0</pre>
betavec_lasso.refit <- as.numeric(betavec_lasso.refit)</pre>
u <- X_test %*% betavec_lasso.refit
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso <- roc(response = y_test, predictor = phat)</pre>
11_spec <- specificity(as.factor(y_test), as.factor(round(phat)))</pre>
ll_sens <- sensitivity(as.factor(y_test), as.factor(round(phat)))</pre>
# logistic LASSO model (cv.qlmnet)
betavec_logit.lasso.glm_temp <- coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
betavec_logit.lasso.glm <- betavec_logit.lasso.glm_temp %>% as.vector
names(betavec_logit.lasso.glm) <- betavec_logit.lasso.glm_temp@Dimnames[[1]]</pre>
col_nonzero <- names(betavec_logit.lasso.glm)[betavec_logit.lasso.glm != 0][-1]</pre>
df_nonzero <- Training[c("diagnosis", col_nonzero)]</pre>
refit_logit.glm <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero
betavec_lasso.refit.glm <- refit_logit.glm[nrow(refit_logit.glm), 3:ncol(refit_logit.glm)]</pre>
betavec_lasso.refit.glm <- bind_rows(betavec_logit.lasso, betavec_lasso.refit.glm)[2,] %>% select("(Int
betavec_lasso.refit.glm[is.na(betavec_lasso.refit.glm)] <- 0</pre>
betavec_lasso.refit.glm <- as.numeric(betavec_lasso.refit.glm)</pre>
u <- X_test %*% betavec_lasso.refit.glm
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso.glm <- roc(response = y_test, predictor = phat)</pre>
# draw rocs
auc <- c(roc.logit$auc[1], roc.logitlasso$auc[1], roc.logitlasso.glm$auc[1])</pre>
## [1] 0.9661130 0.9983389 0.9983389
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
plot(roc.logitlasso.glm, col = 3, add = TRUE)
modelNames <- c("logistic", "logistic LASSO", "logistic LASSO (cv.glmnet)")</pre>
legend("bottomright", legend = paste0(modelNames, ": ", round(auc, 3)),
col = 1:3, lwd = 2)
```



```
# draw rocs(only 2)
auc <- c(roc.logit$auc[1], roc.logitlasso$auc[1])
auc</pre>
```

[1] 0.9661130 0.9983389

```
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
modelNames <- c("logistic", "logistic LASSO")
legend("bottomright", legend = pasteO(modelNames, ": ", round(auc, 3)),
col = 1:2, lwd = 2)</pre>
```


Model	specificity	sensitivity	AUC	N_Predictors
full	0.9268293	0.9305556	0.9661130	30
optimal	0.9545455	0.9855072	0.9983389	10

Correlation Plot

```
corrplot::corrplot(cor(Training[names(betavec_logit.lasso)[betavec_logit.lasso != 0]]))
```


LASSO model coefficients

Re-fit the logistic regression with the predictors selected by LASSO.

refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]

##	(Intercept)	texture_mean	concave.points_mean
##	-0.09092737	0.94392378	0.84754704
##	radius_se	<pre>fractal_dimension_se</pre>	radius_worst
##	3.77040802	-1.12476354	6.01510669
##	texture_worst	smoothness_worst	concavity_worst
##	1.23805580	1.67539455	1.19425400
##	<pre>concave.points_worst</pre>	symmetry_worst	
##	1.87249528	0.69899461	