Structural Dynamics

Newtonian	Lagrangian
· Vector Calculus	· Calculus of Variations
· Newton's Law	· Hamilton's principle & Lagrange's ex
· Space coordinates	· Generalized condinates
FBD - need to compute	· Treat the system as a whole
interacting forces	— NOT individual bodies

Hamilton's Principle

Consider a system with N particles

From d'Alembert's principle

$$\sum_{n=1}^{N} (M_n \dot{Y}_n - F_n) \cdot \delta \dot{Y}_n = 0 \tag{1}$$

where

Mn is the mass of the nth particle

In is the position vector of the neh particle

For is the vector force applied to the new particle

SIn is the virtual displacement of the nth particle

Virtual dieplacement:

- infinitesimal, hypothetical change in the coordinates
- does NOT involve time

The virtual work is defined as

$$\delta W = \sum_{n=1}^{N} F_n \cdot \delta f_n \tag{2}$$

Consider the 1st term in eq (1),

$$\frac{\ddot{r}_{n} \cdot s t_{n}}{s t_{n}} = \frac{d}{dt} \left(\dot{r}_{n} \cdot s \dot{r}_{n} \right) - \delta \left(\pm \dot{r}_{n} \cdot \dot{r}_{n} \right) \tag{3}$$

Substitute ego (2) and (3) into eg (1),

$$\sum_{n=1}^{N} \left[m_n \left(\frac{d}{dt} \left(\dot{r}_n \cdot \delta f_n \right) - \delta \left(\frac{d}{dt} \dot{r}_n \cdot \dot{f}_n \right) \right] - \delta W = 0 \tag{4}$$

Define the total kinetic energy of the N particles as

$$T = \sum_{n=1}^{N} \frac{1}{2} m_n \dot{r}_n \cdot \dot{r}_n \qquad (5)$$

$$ST + SW = \sum_{n=1}^{N} m_n \frac{d}{dt} (\dot{r}_n \cdot \delta \dot{r}_n)$$
 (6)

True path
$$t^2$$
 Choose $8V_n$ $6V_n(t_1) = 8V_n(t_2) = 0$ t_1 Varied path t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_8

 $\int_{t_{1}}^{t_{2}} (\delta T + \delta W) dt = \int_{t_{1}}^{t_{2}} \sum_{n=1}^{\infty} M_{n} \frac{d}{dt} (\dot{Y}_{n} \cdot \delta Y_{n}) dt$ $= \sum_{n=1}^{\infty} M_{n} (\dot{Y}_{n} \cdot \delta Y_{n}) \Big|_{t_{1}}^{t_{2}}$

$$=0$$

$$\begin{cases} \frac{t_2}{\int_{t_1}^{t_2} (\delta T + \delta W) dt} = 0 \end{cases} : \text{ Extended Hamilton's Principle}$$

$$(\text{Generalized})$$

$$(\star)$$

For conservative force

SWc = - SV (9)
Via potential energy (P.E.)

SV is variation of P.E.

$$(x) \Rightarrow \int_{t_1}^{t_2} (ST - SV + SW_{NC}) dt = 0$$

Introduce Lagrangian
L=T-V

Lagrange's Equations	
Lagrange's Equations	
For a system of particles, t	each with diaplacement
vector $Y_i = Y_i(X_i, Y_i, \mathcal{F}_i)$ $i=1$	2 P
vector $L_i = \Gamma_i(x_i, y_i, \delta_i)$, $i=1$ \Rightarrow the number $n \in \mathcal{F}$ independent (g	eneralized) Coordinates
$\eta = 3p - c$	
where c is the number of con	
e.g. the plant the plant of th	nar motion ga pendulu
Constrai	$x^{2}y^{2}=1^{2}$
J. O.	$x^{2}+y^{2}=L^{2}$ $y=0$
$\Rightarrow n = 3 \times / -2 = /$,
only one generalized coordin	ate 0
n = DOF	
= Minimum no. of independent	coordinates needed
= No. of generalized coordin	ates

The position vector of each particle can be expressed as a function of the generalized coordinates and time,

$$Y_i = Y_i(x_1, x_2, \dots, x_n, t), \quad i=1,2,\dots, p$$
 (2)

The kinetic energy of a system of p particles:

$$T = \frac{1}{2} \sum_{i=1}^{\ell} m_i k_i \cdot \hat{r}_i \qquad (3)$$

where
$$\dot{r_i} = \sum_{r=1}^{n} \frac{\partial r_i}{\partial \beta_r} \frac{\dot{g}}{\partial r} + \frac{\partial r_i}{\partial t} \tag{4}$$

Untroducing eq. (4) into eq. (3), one obtains

$$T = T(\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n, \hat{x}_1, \hat{x}_2, \dots, \hat{x}_n, t)$$
 (5)

$$\delta T = \frac{\hat{\Sigma}}{|z|} \frac{\partial T}{\partial r} \delta g_r + \frac{\hat{\Sigma}}{|z|} \frac{\partial T}{\partial g_r} \delta g_r$$

$$(6)$$

where
$$\xi \dot{q}_r = \frac{d}{dt} \xi \dot{q}_r$$
 (7)

$$SW = \sum_{R=1}^{p} F_R \cdot SY_R \tag{8}$$

where
$$St_{R} = \frac{5}{r_{-1}} \frac{dT_{R}}{dq_{r}} Sq_{r}$$
 (9)

$$\delta W = \sum_{k=1}^{p} \sum_{r=1}^{n} \frac{\partial f_{k}}{\partial g_{r}} \delta g_{r} \qquad (10)$$

$$= \sum_{r=1}^{n} Q_r \, \delta_r^2 \tag{11}$$

$$Q_r = \sum_{k=1}^{p} F_k \cdot \frac{\partial Y_k}{\partial y_r} \tag{12}$$

: Generalized Force

Sub. 09. (8) and eq. (11) into the extended Hamiltonia principle,

$$\int_{t_i}^{t_2} \left(ST + SW \right) dt = \int_{t_i}^{t_2} \left(\sum_{r=i}^{n} \frac{\partial T}{\partial g_r} Sg_r + \sum_{r=i}^{n} \frac{\partial T}{\partial g_r} Sg_r^2 \right) dt$$

Integration by parts,

$$=\int_{t_{1}}^{t_{2}} \left\{ \frac{n}{r_{e,i}} \frac{\partial T}{\partial r_{e,i}} \delta_{r}^{2} - \frac{n}{r_{e,i}} \frac{d}{dt} \left(\frac{\partial T}{\partial \hat{r}_{r}} \right) \delta_{r}^{2} \right\} dt + \int_{t_{1}}^{t_{2}} \left(\frac{n}{r_{e,i}} Q_{r} \delta_{r}^{2} \right) dt$$

$$= -\frac{r}{r} \int_{t_1}^{t_2} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \hat{x}} \right) - \frac{\partial T}{\partial \hat{x}} - Q_r \right] \delta_r^2 dt = 0$$

Since 89r is arbitrary

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \hat{q}_r}\right) - \frac{\partial T}{\partial \hat{q}_r} = Q_r$$

r=1,2,...,1 Lagrange's equation

Extended Hamilton's principle,

$$\Rightarrow \int_{t_{1}}^{t_{2}} \left(\delta T - \delta V + \sum_{r=1}^{n} Q_{r_{NC}} \delta_{r}^{q_{r}} \right) dt = 0$$

$$\Rightarrow \frac{d(\partial L)}{dt(\partial \dot{q}_r)} - \frac{\partial L}{\partial g_r} = Q_{r_{NC}}, \quad r=1,2,\dots,n \quad (**)$$

Lagrangéé ez. in alter form

$$(*) \equiv (**)$$

 $Y_{1} = L_{1} \sin \theta_{1} \hat{c} - L_{1} \cos \theta_{1} \hat{f}$ $V_{1} = Y_{1} = \dot{\theta}_{1} L_{1} \cos \theta_{1} \hat{c} + \dot{\theta}_{1} L_{1} \sin \theta_{1} \hat{f}$ $V_{1}^{2} = V_{1} \cdot V_{1} = \dot{\theta}_{1}^{2} L_{1}^{2} \cos^{2} \theta_{1} + \dot{\theta}_{1}^{2} L_{1}^{2} \sin^{2} \theta_{1} = \dot{\theta}_{1}^{2} L_{1}^{2}$ $Y_{2} = (L_{1} \sin \theta_{1} + L_{2} \sin \theta_{2}) \hat{c} - (L_{1} \cos \theta_{1} + L_{2} \cos \theta_{2}) \hat{f}$ $V_{2} = (L_{1} \dot{\theta}_{1} \cos \theta_{1} + L_{2} \dot{\theta}_{2} \cos \theta_{2}) \hat{c} + (L_{1} \dot{\theta}_{1} \sin \theta_{1} + L_{2} \dot{\theta}_{2} \sin \theta_{2}) \hat{f}$ $V_{3}^{2} = V_{3} \cdot V_{2} = L_{1}^{2} \dot{\theta}_{1}^{2} + L_{2}^{2} \dot{\theta}_{2}^{2} + 2L_{1}^{2} L_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \theta_{2} + 2L_{1}^{2} L_{3} \dot{\theta}_{1} \dot{\theta}_{2} \cos \theta_{3} + 2L_{1}^{2} L_{3} \dot{\theta}_{1} \dot{\theta}_{2} \cos \theta_{3} + 2L_{1}^{2} L_{3} \dot{\theta}_{1} \dot{\theta}_{3} \cos \theta_{3} + 2L_{1}^{2} L_{3}^{2} \dot{\theta}_{3} \dot{\theta}_{3} \cos \theta_{3} \dot{\theta}_{3} \dot{\theta}_{3} \cos \theta_{3} \dot{\theta}_{3} \dot{\theta}_{3} \cos \theta_{3} \dot{\theta}_{3} \dot{\theta}_{3}$

 $V = m_{i}gL_{i} + m_{s}gh_{s}$ $= -m_{i}gL_{i}(\omega_{0}, -m_{s}g(L_{i}(\omega_{0}) + L_{s}(\omega_{0}))$ $L = T - V = \frac{1}{2}m_{s}(L_{i}^{2}\dot{\theta}_{i}^{2} + L_{s}^{2}\dot{\theta}_{i}^{2} + 2L_{i}L_{s}\dot{\theta}_{i}\dot{\theta}_{s} (\omega_{i} - \theta_{s}))$ $+ \frac{1}{2}m_{i}\dot{\theta}_{i}^{2}L_{i}^{2} + m_{i}gL_{i}(\omega_{0}) + m_{s}g(L_{i}(\omega_{0}) + L_{s}(\omega_{0}))$

Lot
$$q_1 = 0$$
, $q_2 = 0$.

 $8W_{MK} = F \delta(L_1 Sin \theta_1 + L_2 Sin \theta_2)$
 $= F(L_1 Coo \theta_1, 8\theta_1 + L_2 Coo \theta_2, 8\theta_2)$
 $\Rightarrow \theta_{1MC} = F L_1 Coo \theta_1$, $\theta_{2MC} = F L_2 Coo \theta_2$
 $\frac{\delta L}{\delta \theta_1} = m_2 L_1^2 \dot{\theta}_1 + m_2 L_1 L_2 \dot{\theta}_2 Coo (\theta_1 - \theta_2) + m_1 L_1^2 \dot{\theta}_1$
 $\frac{\delta L}{\delta \theta_1} = m_2 L_1^2 \dot{\theta}_1 + m_2 L_1 L_2 \dot{\theta}_2 Coo (\theta_1 - \theta_2) - m_2 L_1 L_2 (\dot{\theta}_1 - \dot{\theta}_2) \dot{\theta}_2 Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_1} = -m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - g(m_1 + m_2) L_1 Sin \theta_1$
 $\frac{\delta L}{\delta \theta_1} = -m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - g(m_1 + m_2) L_1 Sin^2 Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_1} = m_2 L_1^2 \dot{\theta}_1 + m_2 L_1 L_2 \dot{\theta}_2 Coo (\theta_1 - \theta_2) + m_2 L_1 L_2 \dot{\theta}_2^2 Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_2^2 \dot{\theta}_2 + m_2 L_1 L_2 \dot{\theta}_1 Coo (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 (\dot{\theta}_1 - \dot{\theta}_2) Sin (\theta_1 - \theta_2)$
 $\frac{\delta L}{\delta \theta_2} = m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) - m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 Sin (\theta_1 - \theta_2) Sin (\theta_1 - \theta_2)$

 $+ M_2 \mathcal{L}_1 \mathcal{L}_2 \mathcal{G}_1 \left(o_2 \left(\mathcal{O}_1 - \mathcal{O}_2 \right) - M_2 \mathcal{L}_1 \mathcal{L}_2 \mathcal{G}_1 \right) + M_2 \mathcal{G}_2 \mathcal{L}_2 \mathcal{G}_1 \mathcal{G}_2 \mathcal{G}_2$

A Beam with a Surface Mounted Piezoelectric Element

Assumptions:

- The piezoelectric element is perfectly bonded
- The applied voltage is uniform along the beam, i.e., v(x,t) = v(t)

Potential energies:

$$V_b = \frac{1}{2} \int_0^L E_b I_b \left(\frac{\partial^2 w}{\partial x^2} \right)^2 dx \tag{1}$$

$$V_{p} = \frac{1}{2} \int_{0}^{L} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} [H(x - x_{1}) - H(x - x_{2})] dx$$
 (2)

where *H* is the Heaviside's function.

Kinetic energies:

$$T_b = \frac{1}{2} \int_0^L \rho_b A_b \left(\frac{\partial w}{\partial t} \right)^2 dx \tag{3}$$

$$T_p = \frac{1}{2} \int_0^L \rho_p A_p \left(\frac{\partial w}{\partial t}\right)^2 [H(x - x_1) - H(x - x_2)] dx \tag{4}$$

Virtual work:

$$\delta W_d = \int_0^L f(x,t) \delta w(x,t) dx \tag{5}$$

From the constitutive equation of the piezoelectric materials,

$$S_1 = S_{11}^E T_1 + d_{31} E_3 (6)$$

$$T_1 = E_p(S_1 - d_{31}E_3) (7)$$

where
$$E_p = \frac{1}{s_{11}^E}$$
, $E_3 = \frac{v(t)}{t_p}$ (8)

The virtual work done by the induced strain (force) is:

$$\delta W_p = \int_0^L E_p d_{31} b v(t) \delta \left(\frac{\partial u_p}{\partial x} \right) [H(x - x_1) - H(x - x_2)] dx$$
 (9)

where b is the width of beam and piezo layer

$$u_p = -\left(\frac{t_b + t_p}{2}\right) \frac{\partial w}{\partial x} \tag{10}$$

Let
$$a = \frac{t_b + t_p}{2} \tag{11}$$

$$\delta W_p = -\int_0^L E_p d_{31} abv(t) \delta \left(\frac{\partial^2 w}{\partial x^2} \right) \left[H(x - x_1) - H(x - x_2) \right] dx \tag{12}$$

Apply extended Hamilton's principle,

$$\int_{t}^{t_2} (\delta T - \delta V + \delta W_{NC}) dt = 0$$

$$\int_{t_1}^{t_2} \left(\delta \left\{ \frac{1}{2} \int_0^L \rho_b A_b \left(\frac{\partial w}{\partial t} \right)^2 dx \right\} + \delta \left\{ \frac{1}{2} \int_0^L \rho_p A_p \left(\frac{\partial w}{\partial t} \right)^2 [H(x - x_1) - H(x - x_2)] dx \right\} \\
- \delta \left\{ \frac{1}{2} \int_0^L E_b I_b \left(\frac{\partial^2 w}{\partial x^2} \right)^2 dx \right\} - \delta \left\{ \frac{1}{2} \int_0^L E_p I_p \left(\frac{\partial^2 w}{\partial x^2} \right)^2 [H(x - x_1) - H(x - x_2)] dx \right\} \\
+ \int_0^L f(x, t) \delta w(x, t) dx - \int_0^L E_p d_{31} abv(t) \delta \left(\frac{\partial^2 w}{\partial x^2} \right) [H(x - x_1) - H(x - x_2)] dx dt \\
= 0 \tag{13}$$

•
$$\int_{t_1}^{t_2} \delta \left\{ \frac{1}{2} \int_0^L \rho_b A_b \left(\frac{\partial w}{\partial t} \right)^2 dx \right\} dt = -\int_{t_1}^{t_2} \int_0^L \rho_b A_b \left(\frac{\partial^2 w}{\partial t^2} \right) \delta w dx dt$$
 (14)

$$\bullet \quad -\int_{t_1}^{t_2} \delta \left\{ \frac{1}{2} \int_0^L E_b I_b \left(\frac{\partial^2 w}{\partial x^2} \right)^2 dx \right\} dt$$

$$=-\int_{t_1}^{t_2} E_b I_b \left(\frac{\partial^2 w}{\partial x^2}\right) \delta\left(\frac{\partial w}{\partial x}\right) \Big|_0^L dt + \int_{t_1}^{t_2} E_b I_b \left(\frac{\partial^3 w}{\partial x^3}\right) \delta w \Big|_0^L dt - \int_{t_1}^{t_2} \int_0^L E_b I_b \left(\frac{\partial^4 w}{\partial x^4}\right) \delta w dx dt \qquad (15)$$

•
$$\int_{t_1}^{t_2} \delta \left\{ \frac{1}{2} \int_0^L \rho_p A_p \left(\frac{\partial w}{\partial t} \right)^2 [H(x - x_1) - H(x - x_2)] dx \right\} dt$$

$$= -\int_{t_1}^{t_2} \int_0^L \rho_p A_p \left(\frac{\partial^2 w}{\partial t^2} \right) [H(x - x_1) - H(x - x_2)] \delta w dx dt$$
 (16)

$$\bullet \qquad -\int_{t_1}^{t_2} \delta \left\{ \frac{1}{2} \int_0^L E_p I_p \left(\frac{\partial^2 w}{\partial x^2} \right)^2 [H(x - x_1) - H(x - x_2)] dx \right\} dt$$

$$=-\int_{t_1}^{t_2}\int_0^L E_p I_p \left(\frac{\partial^2 w}{\partial x^2}\right) [H(x-x_1) - H(x-x_2)] \delta\left(\frac{\partial^2 w}{\partial x^2}\right) dx dt$$

$$=-\int_{t_1}^{t_2} E_p I_p \left(\frac{\partial^2 w}{\partial x^2}\right) [H(x-x_1) - H(x-x_2)] \delta \left(\frac{\partial w}{\partial x}\right) \Big|_0^L dt$$

$$+ \int_{t_1}^{t_2} \int_0^L E_p I_p \left(\frac{\partial^3 w}{\partial x^3} \right) \left[H(x - x_1) - H(x - x_2) \right] \delta \left(\frac{\partial w}{\partial x} \right) dx dt \tag{17}$$

$$+ \int_{t_1}^{t_2} \int_0^L E_p I_p \left(\frac{\partial^2 w}{\partial x^2} \right) \left[H'(x - x_1) - H'(x - x_2) \right] \delta \left(\frac{\partial w}{\partial x} \right) dx dt$$

$$=\int_{t_1}^{t_2} E_p I_p \left(\frac{\partial^3 w}{\partial x^3}\right) [H(x-x_1) - H(x-x_2)] \delta w \bigg|_0^L dt - \int_{t_1}^{t_2} \int_0^L E_p I_p \left(\frac{\partial^4 w}{\partial x^4}\right) [H(x-x_1) - H(x-x_2)] \delta w dx dt$$

$$-\int_{t_{1}}^{t_{2}} \int_{0}^{L} E_{p} I_{p} \left(\frac{\partial^{3} w}{\partial x^{3}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] \delta w dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] dx dx dt + \int_{t_{1}}^{t_{2}} E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H'(x-x_{1}) - H'(x-x_{2}) \right] dx dx dt dt dx dt dx dt dx dx dx dx dx dx dx d$$

$$-\int_{t_{1}}^{t_{2}}\int_{0}^{L}E_{p}I_{p}\left(\frac{\partial^{3}w}{\partial x^{3}}\right)\left[H'(x-x_{1})-H'(x-x_{2})\right]\delta w dx dt -\int_{t_{1}}^{t_{2}}\int_{0}^{L}E_{p}I_{p}\left(\frac{\partial^{2}w}{\partial x^{2}}\right)\left[H''(x-x_{1})-H''(x-x_{2})\right]\delta w dx dt$$

$$- \int_{t_1}^{t_2} \int_0^L E_p d_{31} abv(t) \delta \left(\frac{\partial^2 w}{\partial x^2} \right) [H(x - x_1) - H(x - x_2)] dx dt$$

$$= - \int_{t_1}^{t_2} \int_0^L E_p d_{31} abv(t) [H''(x - x_1) - H''(x - x_2)] \delta w dx dt$$
(18)

Substituting eqs. (14) - (18) into eq. (13),

$$\int_{t_{1}}^{t_{2}} \left\{ \int_{0}^{L} \left(-\rho_{b} A_{b} \left(\frac{\partial^{2} w}{\partial t^{2}} \right) - \rho_{p} A_{p} \left(\frac{\partial^{2} w}{\partial t^{2}} \right) \left[H(x - x_{1}) - H(x - x_{2}) \right] - E_{b} I_{b} \left(\frac{\partial^{4} w}{\partial x^{4}} \right) \right] \\
- E_{p} I_{p} \left(\frac{\partial^{4} w}{\partial x^{4}} \right) \left[H(x - x_{1}) - H(x - x_{2}) \right] - 2 E_{p} I_{p} \left(\frac{\partial^{3} w}{\partial x^{3}} \right) \left[H'(x - x_{1}) - H'(x - x_{2}) \right] \\
- E_{p} I_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left[H''(x - x_{1}) - H''(x - x_{2}) \right] + f(x, t) - E_{p} d_{31} abv(t) \left[H''(x - x_{1}) - H''(x - x_{2}) \right] \right) \delta w dx \\
- E_{b} I_{b} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \delta \left(\frac{\partial w}{\partial x} \right) \Big|_{0}^{L} + E_{b} I_{b} \left(\frac{\partial^{3} w}{\partial x^{3}} \right) \delta w \Big|_{0}^{L} \right\} dt = 0 \tag{19}$$

For arbitrary δw in 0 < x < L,

Equation of motion:

$$\rho_{b}A_{b}\left(\frac{\partial^{2}w}{\partial t^{2}}\right) + E_{b}I_{b}\left(\frac{\partial^{4}w}{\partial x^{4}}\right) + \left\{\rho_{p}A_{p}\left(\frac{\partial^{2}w}{\partial t^{2}}\right) + E_{p}I_{p}\left(\frac{\partial^{4}w}{\partial x^{4}}\right)\right\} [H(x-x_{1}) - H(x-x_{2})]$$

$$+ 2E_{p}I_{p}\left(\frac{\partial^{3}w}{\partial x^{3}}\right) [H'(x-x_{1}) - H'(x-x_{2})] + E_{p}I_{p}\left(\frac{\partial^{2}w}{\partial x^{2}}\right) [H''(x-x_{1}) - H''(x-x_{2})]$$

$$+ E_{p}I_{a}abv(t) [H''(x-x_{1}) - H''(x-x_{2})] = f(x,t)$$

$$(20)$$

with boundary conditions:

$$\left(\frac{\partial^2 w}{\partial x^2}\right) \delta \left(\frac{\partial w}{\partial x}\right) \Big|_0^L = 0 \text{ and } \left(\frac{\partial^3 w}{\partial x^3}\right) \delta w \Big|_0^L = 0$$
 (21)