Multi-echelon Supply Chain Optimisation with Multiple Time Series Modelling

Client: Pepperl + Fuchs Asia Pte Ltd

Present by: Shen Chen A0058260J

Agenda

Client Introduction

process industries

■ Singapore

Recap

Data Preparation

- Dataset introduction
- Data selection process
- Data cleaning

Project Planning

- Overall planning
- Project objectives
- Timeframe

Predictive Modelling

- Modelling objectives
- Initial modelling outcome with machine learning algorithms

The P&F Supply Chain

Process Flow

Modelling Objectives

Standalone Solutions

Products are <u>forecasted separately</u> at each stage and parameters are set based on forecast output

Pros:

- Simple and reliable solution to current void in forecast process
- Cater for administrative separation

Cons:

- Silo processes, may not be optimal solution from company perspective
- High computational expense for the predictive models (~45 sec per time series)

Short Term Solution

Integrated Solutions

Products are <u>forecasted stages</u> by <u>stages</u>, with limited application of model to products in the upper stream

Pros:

 Integrated planning, able to optimize the entire Supply Chain

Cons:

- Complex process involving multiple frameworks and models
- High computational expense to retrieve the entire aggregated BoM
- Required cross-functional collaboration for implementation

Long Term Solution

Time Series Modelling -Setup

Decomposition Analysis

Dimension	R package	Function	0
Seasonality	forecast	tbats()	T F
Trend	forecast	ets()	A N
Stationarity	tseries tseries	kpss.test() adf.test()	d st tr u
Difference	forecast	ndiffs()	0 1 2
Seasonal difference	forecast	nsdiffs	0

Outcome	
TRUE	20%
FALSE	80%
A	9%
N	80%
M	11%
difference stationary	10%
stationary	17%
trend stationary	42%
unit root	31%
0	52.5%
1	47.4%
2	0.1%
0	99.9%
1	0.1%

Arima Modelling

Network Analysis Insights

Centrality – Identify critical shared subassembly products • Finished Goods • Raw Material • Subassembly

In-degree - Identify critical shared raw

Strength – Identify critical **shared** raw

Operational Implications

- Visualization of BoM compositions
- Priorities material planning on critical components (subassemblies and raw materials)
- 3. Identify affected high level products given missing raw materials to mitigate risk
- 4. Incorporate with Multiechelon model for more accurate planning on the raw materials and subassemblies

Evaluation and Conclusion

	Benefits
Reduce inventory volume	Optimize inventory at all warehouses based on considerations for external demand
Improve product mix	Forecast and planning on the SKU level
Improve service level	Account for safety stock measures in RDCs
Prevent supply shortage	Flexible planning horizon and prevent mitigation with network theory
Low cost implementation	Uses open source tools and internal data

Limitations		
Model limitations	Model assumptions may not hold	
High computational expense	Takes time to run full scale analysis on predictive model and network model	
Dataset limitations	Accuracy relies on data integrity	
User expertise	User must have knowledge on using the tool for modifications in the future	

Objectives		
85% accuracy on test and holdout set	Partial → 85% on test → 33% on holdout	
Robust and integrated analytical process	Met → Applicable on all SKUs → Cater for short and long term planning	

Further Research
Level 1 Arima model considered for standard raw materials. There better fit with slightly more complicated models for other types of products
Review model assumptions (i.e. EOQ model may not be appropriate for all)
Reviews model for newly released products which are excluded from the scope

End of Phase 2 Presentation