Using BibTeX to Automatically Generate Labeled Data for Citation Field Extraction

Dung Thai, Zhiyang Xu, Nicholas Monath, Boris Veytsman, Andrew McCallum

Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," *Proceedings of the Nobeyama Symposium*, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30, Provided by the SAO/NASA Astrophysics Data System.

Krucker, S.; Benz, A. O. In Bastian, T. S., Gopalswamy, N., Shibasaki, K., Eds., *Proceedings of the Nobeyama Symposium*, Vol. 479, pages 25–30, 1999.

S. Krucker, A.O. Benz, in *Proceedings of the Nobeyama Symposium*, vol. 479, ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (1999), vol. 479, pp. 25–30. URL http://esoads.eso.org/abs/1999spro.proc.25K. Provided by the SAO/NASA Astrophysics Data System

Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," Proceedings of the Nobeyama Symposium, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30,


```
K. Shibasakii EDITOR , Vol.
                                                     479 VOLUME
                                                                   December MONTH
N. Gopalswamy EDITOR
                     , and
```

25-30 PAGES 1999 YEAR , pp.

and

Krucker, S AUTHOR

Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," *Proceedings of the Nobeyama Symposium*, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30,

Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," *Proceedings of the Nobeyama Symposium*, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30, Provided by the SAO/NASA Astrophysics Data System.

Krucker, S.; Benz, A. O. In Bastian, T. S., Gopalswamy, N., Shibasaki, K., Eds., *Proceedings of the Nobeyama Symposium*, Vol. 479, pages 25–30, 1999.

S. Krucker, A.O. Benz, in *Proceedings of the Nobeyama Symposium*, vol. 479, ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (1999), vol. 479, pp. 25–30. URL http://esoads.eso.org/abs/1999spro.proc.25K. Provided by the SAO/NASA Astrophysics Data System

Motivation

Scientific Impact

- CFE is a useful test bed for sequence labeling problems
- Dense, complex labeling space

Practical Applications

- Citation knowledge graph (CORA, WebKB)
- Document classification (CiteSeer, PubMed Diabetes)
- Entity resolution (CiteSeer, Arxiv High-Energy Physics)

Lack of Dataset

- Human annotated dataset is costly
- Coverage of scarce citation field, citation style, etc.
- Available dataset UMass Citation Field Extraction is fairly small

Motivation

Scientifically Interesting

- Clear sequence-to-sequence learning setting
- Dense, complex labeling space

Practical Applications

- Citation knowledge graph (CORA, WebKB)
- Document classification (CiteSeer, PubMed Diabetes)
- Entity resolution (CiteSeer, Arxiv High-Energy Physics)

Lack of Dataset

- Human annotated dataset is costly
- Coverage of scarce citation field, citation style, etc.
- Available dataset UMass Citation Field Extraction is fairly small

Motivation

Scientifically Interesting

- Clear sequence-to-sequence learning setting
- Dense, complex labeling space

Practical Applications

- Citation knowledge graph (CORA, WebKB)
- Document classification (CiteSeer, PubMed Diabetes)
- Entity resolution (CiteSeer, Arxiv High-Energy Physics)

Lack of Dataset

- Human annotated dataset is costly
- Coverage of scarce citation field, citation style, etc.
- Available dataset UMass Citation Field Extraction is fairly small

Contributions

- Most previous work focused on complicated sequence modeling
- Would straightforward Deep Neural Networks training on noisy, large-scale data work better?

Research Question

- Automatically generate labeled citations from BibTeX
- Simple, reliable way to extract citation field labels

Data Generation Process

- Achieve 24.48% relative error reduction on UMass CFE, results in span level F1 96.3%
- A pre-trained MLM for citations
- New benchmarks for the Citation Field Extraction task

Experimental Results

Contributions

- Most previous work focused on complicated sequence modeling
- Would straightforward Deep Neural Networks training on noisy, large-scale data work better?

Research Question

- Automatically generate labeled citations from BibTeX
- Simple, reliable way to extract citation field labels

Data Generation Process

- Achieve 24.48% relative error reduction on UMass CFE, results in span level F1 96.3%
- A pre-trained MLM for citations
- New benchmarks for the Citation Field Extraction task

Experimental Results

Contributions

- Most previous work focused on complicated sequence modeling
- Would straightforward Deep Neural Networks training on noisy, large-scale data work better?

Research Question

- Automatically generate labeled citations from BibTeX
- Simple, reliable way to extract citation field labels

Data Generation Process

- Achieve 24.48% relative error reduction on UMass CFE, results in span level F1 96.3%
- A pre-trained MLM for citations
- New benchmarks for the Citation Field Extraction task

Experimental Results

Generate Citation from BibTeX

```
@inproceedings{kingma:vae,
  title={Auto-encoding variational {Bayes}},
  author={Kingma, Diederik P and Welling, Max},
  booktitle={ Int. Conf. on Learning Representations },
  year={2014}
}
```

BibTeX Entry

BibTeX Style

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In *Int. Conf. on Learning Representations*.

Citation PDF

Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," *Proceedings of the Nobeyama Symposium*, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30, Provided by the SAO/NASA Astrophysics Data System.

Krucker, S.; Benz, A. O. In Bastian, T. S., Gopalswamy, N., Shibasaki, K., Eds., *Proceedings of the Nobeyama Symposium*, Vol. 479, pages 25–30, 1999.

S. Krucker, A.O. Benz, in *Proceedings of the Nobeyama Symposium*, vol. 479, ed. by T.S. Bastian, N. Gopalswamy, K. Shibasaki (1999), vol. 479, pp. 25–30. URL http://esoads.eso.org/abs/1999spro.proc.25K. Provided by the SAO/NASA Astrophysics Data System

Annotated Generate Citation from BibTeX

```
@inproceedings{kingma:vae,
  title={[T] Auto-encoding variational {Bayes} [T]},
  author={Kingma, Diederik P and Welling, Max},
  booktitle={[B] Int. Conf. on Learning Representations [B]},
  year={[Y] 2014 [Y]}
}
```

Annotated
BibTeX Entry

BibTeX Style

Diederik P Kingma and Max Welling. [Y] 2014 [Y]. [T] Autoencoding variational Bayes [T]. In [B] *Int. Conf. on Learning Representations* [B].

Annotated Citation PDF

BibTeX CFE Dataset

Parameter	BIBT _E X dataset
Number of annotated references	41,572,904
Average reference length (in tokens)	33.09
Number of segment labels	59
Number of segments	298,013,391
Average segment length (in tokens)	3.26
Vocabulary size	2,823,254
Number of styles	26
Number of BIBTEX sources	6023

Label	Number of segments					
author	91,324,094					
year	52,946,966					
title	42,846,934					
journal	20,620,003					
publisher	9,777,982					
editor	3,481,227					
location	3,125					
category	219					

Table 1: Summary of our BIBTEX CFE dataset.

Table 2: Segment counts for some labels of interest.

Pre-trained MLM on CFE Dataset

S. Krucker, A.O. Benz, in *Proceedings of the Nobeyama Symposium*, vol. 479, ed. Krucker, S.; Benz, A. O. In Bastian, T. S., Gopalswamy, N., Shibasaki, K., Eds., Krucker, S. and Benz, A. O., "Heating Events in the Quiet Solar Corona," Proceedings of the Nobeyama Symposium, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Vol. 479, December 1999, pp. 25–30, Provided by the SAO/NASA Astrophysics Data System. ng ıki Krucker, S.; Benz, A. O. In Bastian, T. S., Gopalswamy, N., Shibasaki, K., Eds., na Proceedings of the Nobeyama Symposium, Vol. 479, pages 25–30, 1999. ao 5K S. Krucker, A.O. Benz, in *Proceedings of the Nobeyama Symposium*, vol. 479, ed. ng by T.S. Bastian, N. Gopalswamy, K. Shibasaki (1999), vol. 479, pp. 25–30. URL http://esoads.eso.org/abs/1999spro.proc.25K. Provided by the 2 SAO/NASA Astrophysics Data System

Fine-tune Sequence Labeling


```
Variational Inference TITLE ( 2014 YEAR)
                                              Kingma B AUTH
 T. S. Bastian EDITOR ,
                       N. Gopalswamy EDITOR , and
                                                        an
Krucker, S AUTHOR and
                        Benz, A. O. AUTHOR, "
                                                       CC
Heating events in the quiet solar corona TITLE ,"
Proceedings of the Nobeyama Symposium JOURNAL, eds.
T. S. Bastian EDITOR
                      N. Gopalswamy EDITOR
K. Shibasakii EDITOR
                    , Vol.
                          479 VOLUME
December MONTH
                   1999 YEAR
                                     25-30 PAGES ,
                               , pp.
```


Performance on UMass CFE

(a.k.a., performance on human labeled dataset)

	U	Mass D	ev	UMass Test			
Model	P	R	F1	P	R	F1	
Thai et al. [2018]	-	-	5 	10-00	 8	0.951	
GloVe	0.982	0.923	0.925	0.940	0.934	0.937	
ELMo	0.954	0.947	0.950	0.955	0.946	0.951	
BERT	0.941	0.932	0.936	0.932	0.925	0.928	
RoBERTa	0.932	0.944	0.938	0.925	0.940	0.933	
RoBERTa (+LM)	0.940	0.948	0.944	0.934	0.948	0.940	
RoBERTa (+BIBTEX)	0.956	0.960	0.958	0.959	0.963	0.961	
RoBERTa (+BIBTEX+LM)	0.954	0.964	0.959	0.960	0.967	0.963	

Table 3: Span level results on UMass CFE dataset.

Performance on UMass CFE

(a.k.a., performance on human labeled dataset)

	SoTa	Our	Δ
title	0.9258	0.9661	+0.0403
publisher	0.8525	0.9180	+0.0655
booktitle	0.4416	0.6769	+0.2353
institution	0.5455	0.9091	+0.3636
school	0.5000	0.8000	+0.3000
year	0.9944	0.9929	-0.0015
journal	0.9583	0.9409	-0.0174

Table 4: Per label F1 of **RoBERTa (+BIBT_EX+LM)** compared to SoTA.

BibTeX CFE Benchmark

Labels	Precision	Recall	F1	Count
author	0.981	0.988	0.984	119,003
title	0.937	0.951	0.944	564,813
year	0.998	0.964	0.981	555955
pages	0.997	0.989	0.993	376960
journal	0.970	0.997	0.983	307,135
volume	0.994	0.986	0.990	232883
institution	0.889	0.832	0.860	22,558
school	0.893	0.873	0.883	12,271
organization	0.905	0.952	0.928	8,040
edition	0.876	0.551	0.677	1,538
chapter	0.960	0.582	0.725	1,278
overall	0.972	0.968	0.970	3,760,465

Table 5: Performance of **RoBERTa** (+**BIBT**EX+LM) on a subset of citation field labels.

BibTeX CFE Benchmark

Models	Math		Physics		Econs			CompSci				
	P	R	F1	P	R	F1	P	R	F1	P	R	F1
RoBERTa	0.832	0.809	0.820	0.860	0.803	0.831	0.832	0.784	0.807	0.858	0.810	0.833
RoBERTa	0.846	0.819	0.832	0.874	0.811	0.841	0.850	0.796	0.822	0.872	0.820	0.845
$(+LM-BIBT_EX)$												

Table 6: Sequence tagger performances on selected domain.

Conclusion

- We confirm that standard Transformer-based model training on noisy, large-scale data works better
- Achieve new SoTA UMass CFE (span level F1 96.3%)

- We release the code and the BibTeX entries for generating the dataset as well as the evaluation dataset
- The pre-trained MLM model will be provided

Data & Pre-trained

- A more effective training procedure on noisy largescale dataset
- Further improve the new CFE benchmark

Future Work

Research Findings

Thanks!

