Investigation of possibilities and limitations for bulk automated analysis of big datasets of reflectance spectra of asteroids

Jakub Morawski

University of Coimbra

18th of January 2024

Major components of the project:

1. Downloading data

- 1. Downloading data
- 2. Taxonomic classification (CANA)

- 1. Downloading data
- 2. Taxonomic classification (CANA)
- 3. Automatic absorption band detection

- 1. Downloading data
- 2. Taxonomic classification (CANA)
- 3. Automatic absorption band detection
- Mineralogical content estimates based on empirical formulas

- 1. Downloading data
- 2. Taxonomic classification (CANA)
- 3. Automatic absorption band detection
- Mineralogical content estimates based on empirical formulas
- 5. Visualisations with various plots

Development stages:

1. Simple download

Development stages:

- 1. Simple download
- 2. Unification between databases

Development stages:

- 1. Simple download
- 2. Unification between databases
- 3. Avoiding repeated downloads

Development stages:

- 1. Simple download
- 2. Unification between databases
- 3. Avoiding repeated downloads
- 4. Extracting supplementary information from JPL databases

Small Body Database Lookup - not useful

Supplementary information with APIs

Information	Query link
SBDB Query: name,	https://ssd-api.jpl.nasa.gov/sbdb_query.api?fields=name,a,e,i,diameter,
$a[AU], e, i[^{\circ}],$	rot_per,albedo&sb-cdata=%7B%20%22AND%22%20%3A%20%5B%20%22
diameter [km], synodic	spkid%7CEQ%7C 20000001 %22%20%5D%20%7D%0A
rotation period [h], albedo	
Horizons Query:	https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=
observation phase angle	"Name=Itokawa"&OBJ_DATA="NO"&MAKE_EPHEM="YES"&
	EPHEM_TYPE="OBSERVER"&CENTER="geo"&TLIST="2001-03-28"
	&QUANTITIES="24"
Horizons Query:	https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=
X,Y,Z coordinates \Longrightarrow	"Name=Itokawa"&OBJ_DATA="NO"&MAKE_EPHEM="YES"&
$d[km] = \sqrt{X^2 + Y^2 + Z^2}$	EPHEM_TYPE="VECTORS"&CENTER="@Sun"&TLIST="2001-03-28"
heliocentric distance	&QUANTITIES="1"

Small Body Database information - example

number	1	L. FALIT	I .	[<i>i</i> °]	L. P	I	albedo
	name	a [AU] 2.733	e 0.0797	L J	diameter [km]	rotation period [h]	
110	Lydia			5.96	86.09	10.927	0.1808
125	Liberatrix	2.743	0.0807	4.67	48.418	3.968	0.182
129	Antigone	2.867	0.2129	12.27	113.0	4.9572	0.151
132	Aethra	2.613	0.3871	24.97	42.87	5.1684	0.199
135	Hertha	2.429	0.2072	2.3	79.24	8.403	0.1436
16	Psyche	2.924	0.1342	3.1	226.0	4.196	0.1203
161	Athor	2.38	0.1368	9.06	40.992	7.28	0.23
201	Penelope	2.679	0.1791	5.76	85.877	3.7474	0.04
216	Kleopatra	2.793	0.251	13.12	122.0	5.385	0.1164
22	Kalliope	2.911	0.0987	13.7	167.536	4.1483	0.166
224	Oceana	2.645	0.045	5.85	58.236	9.401	0.166
250	Bettina	3.144	0.1363	12.82	120.995	5.0545	0.112
325	Heidelberga	3.216	0.1513	8.57	75.72	6.737	0.1068
338	Budrosa	2.912	0.0181	6.04	50.506	4.6084	0.276
347	Pariana	2.615	0.1638	11.69	48.615	4.0529	0.19
369	Aeria	2.649	0.0974	12.72	73.767	4.778	0.127
382	Dodona	3.122	0.1704	7.39	65.209	4.113	0.129
418	Alemannia	2.593	0.1188	6.82	40.33	4.671	0.201
441	Bathilde	2.806	0.0817	8.16	65.131	10.446	0.204
498	Tokio	2.652	0.2238	9.5	81.83	41.85	0.0694
516	Amherstia	2.677	0.2752	12.95	65.144	7.4842	0.202
55	Pandora	2.759	0.1444	7.18	84.794	4.804	0.204
558	Carmen	2.907	0.0383	8.37	54.811	11.387	0.131
69	Hesperia	2.976	0.17	8.59	138.13	5.655	0.1402
755	Quintilla	3.187	0.1355	3.24	41.21	4.552	0.124
785	Zwetana	2.572	0.2086	12.77	49.46	8.8882	0.12
849	Ara	3.144	0.201	19.54	80.756	4.116	0.186
860	Ursina	2.797	0.1084	13.29	34.561	9.386	0.116
872	Holda	2.732	0.0798	7.39	34.431	5.945	0.165
97	Klotho	2.668	0.2581	11.78	100.717	35.15	0.128

Taxonomic classification - theory

C-complex classes (carbonaceuous chondrite like)

S-complex classes (Si, olivine/pyroxene, ordinary chondrites)

Taxonomic classification - theory

X-complex classes (few features, compositionally degenerate)

Taxonomic classification - theory

End member classes (extreme or distinct characteristics)

Taxonomic classification of the IRTF dataset

Parameter space representation

Taxonomic classification of asteroid spectra from the IRTF database, in the parameter space of semi-major axis [AU] and diameter[km]

Taxonomic classification of asteroid spectra from the IRTF database, in the parameter space of semi-major axis [AU] and eccentricity

Closeup look on the small V class asteroid cluster

Taxonomic classification of asteroid spectra from the IRTF database, in the parameter space of semi-major axis [AU] and inclination[*]

Absorption band detection - definitions

Continuum line:

$$cont(w) = r(w_{\min}) + \frac{w - w_{\min}}{w_{\max} - w_{\min}} \cdot (r(w_{\max}) - r(w_{\min}))$$

Band criterion:

$$V(w_{\min}, w_{\max}) = \begin{cases} 1 \text{ if } \forall_{w \in (w_{\min}, w_{\max})} r(w) < cont(w) \\ 0 \text{ otherwise} \end{cases}$$

Old algorithm

New algorithm

Absorption band detection - smoothing

Formula from the report (wrong):

$$\tilde{r}(w_i) = \frac{\min(-\lfloor \frac{n}{2}\rfloor + n - 1, N - i)}{\sum\limits_{j = \max(-\lfloor \frac{n}{2}\rfloor, 1 - i)} r\left(w_{i+j}\right)}{n}$$

Correct formula:

$$\tilde{r}(w_i) = \frac{\min(-\lfloor \frac{n}{2}\rfloor + n - 1, N - i)}{\sum\limits_{\substack{j=j_1\\j_2-j_1+1}} r\left(w_{i+j}\right)}$$

where:

$$j_1 = \max\left(-\lfloor \frac{n}{2} \rfloor, 1 - i\right)$$

$$j_2 = \min\left(-\lfloor \frac{n}{2} \rfloor + n - 1, N - i\right)$$

Results of applying the operation of average smoothing with a window of size 11 on the asteroid 26886 spectrum

Results of applying the operation of average smoothing with a window of size 29 on the asteroid 26886 spectrum

Onginal spectrum

After average smoothing with a window of size 29

Initial guess

$$w_{\text{max}} - w_{\text{min}} = 0.3 \mu \text{m}$$

Expanding

$$w_{\text{max}} - w_{\text{min}} = 0.6 \mu \text{m}$$

Moving left

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.9 \mu \mathsf{m}$$

Moving right

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.975 \mu \mathsf{m}$$

After the first loop

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 1.031 \mu \mathsf{m}$$

Halving a step until extended

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 1.031 \mu \mathsf{m}$$

Completed

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 1.097 \mu \mathsf{m}$$

Initial guess

$$w_{\text{max}} - w_{\text{min}} = 0.2 \mu \text{m}$$

Shrinking

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.15 \mu \mathsf{m}$$

After the first loop

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.309 \mu \mathsf{m}$$

Halving a step until extended

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.347 \mu \mathsf{m}$$

Another iteration

$$w_{\mathsf{max}} - w_{\mathsf{min}} = 0.366 \mu \mathsf{m}$$

Empirical formulas - corrections

Temperature:

$$T = \sqrt[4]{\frac{(1-A)L_{\odot}}{16\epsilon\sigma d^2}}$$

$$\Delta BAR = 0.00075 T - 0.23$$

Empirical formulas - corrections

Temperature:

$$T = \sqrt[4]{\frac{(1-A)L_{\odot}}{16\epsilon\sigma d^2}}$$

$$\Delta BAR = 0.00075 T - 0.23$$

Ordinary chondrites (S-complex?)

$$\Delta BII = 0.06 - 0.0002T$$

Howardites and eucrites (V class)

$$\Delta BI = 0.01656 - 0.0000552 T$$

$$\Delta BII = 0.05067 - 0.00017 T$$

Empirical formulas - corrections

Temperature:

$$T=\sqrt[4]{rac{(1-A)L_{\odot}}{16\epsilon\sigma d^2}}$$

$$\Delta$$
BAR = 0.00075 T - 0.23

Ordinary chondrites (S-complex?)

$$\Delta BII = 0.06 - 0.0002T$$

Howardites and eucrites (V class)

$$\Delta BI = 0.01656 - 0.0000552 T$$

$$\Delta BII = 0.05067 - 0.00017 T$$

Phase angle:

$$\Delta BAR = -0.0292 \cdot \alpha$$

Corrections in practice

Empirical formulas - mineralogy

Ordinary chondrites (S-complex?)

$$\frac{opx}{opx+ol} = 0.242 \cdot BAR + 0.272 \text{ , } \frac{ol}{opx+ol} = -0.242 \cdot BAR + 0.728$$

Empirical formulas - mineralogy

Ordinary chondrites (S-complex?)

$$\begin{split} \frac{\text{opx}}{\text{opx} + \text{ol}} &= 0.242 \cdot \text{BAR} + 0.272 \;,\; \frac{\text{ol}}{\text{opx} + \text{ol}} = -0.242 \cdot \text{BAR} + 0.728 \\ &\frac{\text{fa}}{\text{ol}} = -12.849 \cdot (\text{BI})^2 + 26.565 \cdot \text{BI} - 13.423 \\ &\frac{\text{fs}}{\text{px}} = -8.791 \cdot (\text{BI})^2 + 18.249 \cdot \text{BI} - 9.217 \end{split}$$

Empirical formulas - mineralogy

Ordinary chondrites (S-complex?)

$$\frac{opx}{opx+ol} = 0.242 \cdot BAR + 0.272 \text{ , } \frac{ol}{opx+ol} = -0.242 \cdot BAR + 0.728$$

$$\frac{fa}{ol} = -12.849 \cdot (BI)^2 + 26.565 \cdot BI - 13.423$$

$$\frac{\mathsf{fs}}{\mathsf{px}} = -8.791 \cdot (\mathsf{BI})^2 + 18.249 \cdot \mathsf{BI} - 9.217$$

Howardites and eucrites (V class)

$$\frac{\text{fs}}{\text{px}} = 10.234 \cdot \text{BI} - 9.1382$$

$$\frac{\text{wo}}{\text{px}} = 3.961 \cdot \text{BI} - 3.6055$$

IRTF S-complex asteroids

Asteroid	opx opx+ol	fa ol	$\frac{fs}{px}$	
	Sv class			
1662 Hoffmann	63.0%	17.8%	15.7%	
179 Klytaemnestra	85.0%	17.8%	15.7%	
1858 Lobachevskij	32.0%	18.7%	16.4%	
2042 Sitarski	76.5%	21.0%	18.0%	
2504 Gaviola	61.3%	19.5%	16.9%	
	Sr class			
17 Thetis	76.6%	18.8%	16.5%	
	Sa class			
25143 Itokawa	21.5%	30.6%	25.3%	
43 Ariadne	21.1%	30.7%	25.4%	

IRTF V class asteroids

$$\frac{fs}{px} = 10.234 \cdot BI - 9.1382$$
 , $\frac{wo}{px} = 3.961 \cdot BI - 3.6055$

▶ It is possible to access bulk spectroscopic data on asteroids and supplementary information about their orbital and physical parameters

- It is possible to access bulk spectroscopic data on asteroids and supplementary information about their orbital and physical parameters
- Observation date is an important parameter which should always be provided for the sake of phase angle corrections

- It is possible to access bulk spectroscopic data on asteroids and supplementary information about their orbital and physical parameters
- Observation date is an important parameter which should always be provided for the sake of phase angle corrections
- Empirical formulas have limited ranges of applicability, researchers should design experiments and observations to improve them

- It is possible to access bulk spectroscopic data on asteroids and supplementary information about their orbital and physical parameters
- Observation date is an important parameter which should always be provided for the sake of phase angle corrections
- Empirical formulas have limited ranges of applicability, researchers should design experiments and observations to improve them
- While a bulk approach can help highlight interesting cases from a larger group, they should still be verified individually, especially when making mineralogical statements

- It is possible to access bulk spectroscopic data on asteroids and supplementary information about their orbital and physical parameters
- Observation date is an important parameter which should always be provided for the sake of phase angle corrections
- Empirical formulas have limited ranges of applicability, researchers should design experiments and observations to improve them
- While a bulk approach can help highlight interesting cases from a larger group, they should still be verified individually, especially when making mineralogical statements
- Including Modified Gaussian Model and Shkuratov model in the code could help support the statements made and discover further insights into the data