Part 1.1: Theory

 $H(a,b) = -\frac{a}{a+b}\log_2\frac{a}{a+b} - \frac{b}{a+b}\log_2\frac{b}{a+b}$

 $Y_positive = 3 + 4 + 4 + 1 = 12$

 $Y_negative = 0 + 1 + 3 + 5 = 9$

$$H(Y) = H(9,12) = 0.985$$

B.

A.

Feature X1:

$$P \quad _{T} = 7, N \quad _{T} = 1$$

$$P \quad _{F} = 5, N \quad _{F} = 8$$

$$E(H(X1)) = \frac{8}{21}H(7,1) + \frac{13}{21}H(5,8) = 0.20707 + 0.59505 = 0.802$$

$$IG(X1) = H(Y) - E(H(X1)) = 0.985 - 0.802 = 0.183$$

Feature X2:

$$P_{T} = 7, N_{T} = 3$$

$$P_{5} = 5, N_{F} = 6$$

$$E(H(X1)) = \frac{10}{21}H(7,3) + \frac{11}{21}H(5,6) = 0.420 + 0.5207 = 0.940$$

$$IG(X1) = H(Y) - E(H(X1)) = 0.985 - 0.940 = 0.045$$

C.

Part 1.2: Theory

A.

$$P(A = Yes) = 3/5$$

 $P(A = No) = 2/5$

B.

X =		X =	Class A:
[[216.	5.68]	[[0.05509059 1.24771393]	[[0.05509059 1.24771393]
[69.	4.78]	[-0.95719904 0.56878857]	[-0.95719904 0.56878857]
[302.	2.31] => Standardize =>	[0.64731446 -1.29448434]	[-1.01917595 -0.65327706]
[60.	3.16]	[-1.01917595 -0.65327706]	mean_A = [-0.640 0.387]
[393.	4.2]]	[1.27396994 0.1312589]]	$Stdev_A = [0.603 0.963]$
		mean = [208 4.026]	Class non A:
		Stdev = [145.2 1.326]	[0.64731446 -1.29448434]
			[1.27396994 0.1312589]
			mean_nonA = $[0.961 -0.582]$
			Stdev nonA = $[0.443 1.008]$

C.

$$Gaussian(x_k, \mu_i, \sigma_i) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x_k - \mu_i)^2}{2\sigma_i^2}}$$

$$F = [242 \ 4.56] = > standardize = > F = [0.234 \ 0.403]$$

$$P(Y = A) = P(A = Yes) \ Gaussian(0.234, -0.640, 0.603) \ Gaussian(0.403, 0.387, 0.963)$$

$$= 0.6 * 0.231 * 0.414 = 0.0574$$

$$P(Y != A) = P(A = No) \ Gaussian(0.234, 0.961, 0.443) \ Gaussian(0.403, -0.582, 1.008)$$

$$= 0.4 * 0.234 * 0.2455 = 0.0229$$

P(Y = A) > P(Y != A) => That student get an A

Part 1.3 Theory

A.

Since g(x) has to be in range [0,1] but tanh(x) is in range [-1,1] =>

$$g(x\theta) = \frac{tanh(x\theta) + 1}{2}$$

B.

$$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Proof: $\frac{\partial}{\partial \theta_j}(tanh(x\theta)) = x_j(1 - tanh(x\theta)^2).$

Solve:

Note
$$\frac{d}{d\theta_{j}} e^{x\theta} = x_{j}e^{x\theta}$$
 and $\frac{d}{d\theta_{j}} e^{x\theta} = x_{j}e^{x\theta}$

$$\frac{d}{d\theta_{j}} tanh(x\theta)$$

$$= \frac{\frac{d}{d\theta_{j}} (e^{x\theta} - e^{-x\theta})(e^{x\theta} + e^{-x\theta}) - (e^{x\theta} - e^{-x\theta}) \frac{d}{d\theta_{j}} (e^{x\theta} + e^{-x\theta})}{(e^{x\theta} + e^{-x\theta})^{2}}$$

$$= \frac{(x_{j}e^{x\theta} + x_{j}e^{-x\theta})(e^{x\theta} + e^{-x\theta}) - (e^{x\theta} - e^{-x\theta})(x_{j}e^{x\theta} - x_{j}e^{-x\theta})}{(e^{x\theta} + e^{-x\theta})^{2}}$$

$$= \frac{d}{d\theta_{j}} tanh(x\theta)$$

$$= x_{j} \frac{(e^{x\theta} + e^{-x\theta})(e^{x\theta} + e^{-x\theta}) - (e^{x\theta} - e^{-x\theta})(e^{x\theta} - e^{-x\theta})}{(e^{x\theta} + e^{-x\theta})^{2}}$$

$$= \frac{d}{d\theta_{j}} tanh(x\theta) = x_{j} (1 - \frac{(e^{x\theta} - e^{-x\theta})^{2}}{(e^{x\theta} + e^{-x\theta})^{2}}) = x_{j} (1 - tanh(x\theta)^{2})$$

Part 2: Naive Bayes

Precision: 0.719660 Recall: 0.962662 F-Measure: 0.823611 Accuracy: 0.834312

Part 3: Recall and Precision:

Dataset:

https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex/version/2?#500 Person Gender Height Weight Index.csv

This dataset was modified to be similar to given format (no header and last column is label) in order to be used in our function

