Predictive design

Tianxiang Gao University of North Carolina at Chapel Hill

August 14, 2015

1 Introduction

The aim of predictive design is to produce a design (or a series of design) that can estimate parameter θ (or other metric score) accurately with all the information at hand. We consider the following model in this text: μ is the current prior for the true parameter θ , so we have a prior model $p(\theta|\mu)$. Given the true parameter θ^* and Design D from space \mathbb{D} , we can sample the observed data $p(\mathbf{X}|D,\theta)$. We can calculate the estimation error through an estimation procedure $\delta(D,\theta,\mathbf{X})=(\hat{\theta}(\mathbf{X})-\theta)^2$. We call $V(D,\theta)=\int_{\mathbf{X}}\delta(D,\theta,\mathbf{X})p(\mathbf{X}|\theta,D)d\mathbf{X}$. And $\bar{V}(D,\mu)=\int_{\theta}V(D,\theta)p(\theta|\mu)d\theta$ as the expected loss under knowledge μ . An optimal design $D^*=\operatorname{argmin}_{D\in\mathbb{D}}\bar{V}(D,\mu)$.