Институт информационных и вычислительных технологий

Кафедра вычислительных машин, систем и сетей

Курсовая работа ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ УСИЛИТЕЛЬ СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

Студент	Балашов Савва Арсеньевич
Группа	A-08-19
Дата	4 июня 2021 г.
	Принял
	припла
Преподаватель	Жохова Марина Павловна
Оценка	
Дата	

Выполнил

Введе	ние	3
1. O	боснование и синтез элементов усилительного каскада	4
1.1.	Параметры транзистора и предельно допустимые параметры	4
1.2.	Снятие входной и выходных характеристик транзистора	
1.3.	ОБОСНОВАНИЕ ВЫБОРА СХЕМЫ УСИЛИТЕЛЬНОГО КАСКАДА	6
1.4.	ГРАФИЧЕСКОЕ ОБОСНОВАНИЕ ВЫБОРА РАБОЧЕЙ ТОЧКИ	7
1.5.	Расчет рабочей точки	8
1.6.	Определение малосигнальных параметров транзистора	10
1.7.	Расчет сопротивлений резисторов	12
1.8.	РАСЧЕТ РЕЖИМА КАСКАДА ДЛЯ ВЫБРАННЫХ СОПРОТИВЛЕНИЙ	16
1.9.	ПРОВЕРКА РАСЧЕТОВ РАБОЧЕГО РЕЖИМА С ПОМОЩЬЮ ПРОГРАММЫ	
ORC	AD	18
1.10	. РАСЧЕТ ВОЗМОЖНОГО УХОДА РАБОЧЕЙ ТОЧКИ	19
	. Графический расчет рабочего режима для выбранных	
	РОТИВЛЕНИЙ	
	. Расчет сопротивлений на эмиттере	22
	. Расчет входного и выходного сопротивлений усилителя и	
	ФФИЦИЕНТА УСИЛЕНИЯ НАПРЯЖЕНИЯ	
	. Расчет емкостей конденсаторов	
1.15	. Определение верхней граничной полосы пропускания	25
2. П	еречень элементов (спецификация)	26
3. M	оделирование работы усилительного каскада на эвм	27
3.1.	Расчет рабочего режима	27
3.2.	Амплитудно-частотная характеристика	28
3.3.	Определение входного сопротивления каскада	29
3.4.	Расчет нагрузочной характеристики усилителя	30
3.5.	Расчет амплитудной характеристики усилителя	
3.6.	ОСЦИЛЛОГРАММА ВЫХОДНОГО НАПРЯЖЕНИЯ И СПЕКТР ФУРЬЕ	32
Заклю	учение	34
Списс	к использованной литературы	36
Прило	эжение	38

Введение

Целью работы является получение навыка синтеза, анализа и схемотехнического моделирования схемы усилительного каскада на основе биполярного транзистора.

Ниже представлено техническое задание на курсовую работу.

Рассчитать элементы схемы однокаскадного усилителя, удовлетворяющего указанным ниже техническим требованиям.

- 1. Рекомендуемый транзистор КТ814в, тип транзистора p-n-p;
- 2. Амплитуда неискаженного выходного сигнала не менее 4 В;
- 3. Коэффициент усиления напряжения $K_e = \frac{U_{\rm вых}}{e_{\scriptscriptstyle \Gamma}}$ при заданном сопротивлении нагрузки $R_{\scriptscriptstyle \rm H} = 1.2$ кОм и внутреннем сопротивлении источника сигнала $R_{\scriptscriptstyle \Gamma} = 0.2$ кОм не менее 3;
- 4. Усилитель при заданной емкости нагрузки $C_{\rm H}=0.7$ нФ должен обеспечить полосу пропускания от $f_{\rm H}$ =450 Γ Ц до $f_{\rm B}$ =35 к Γ Ц ;
 - 5. Температурный диапазон: -40°C ... +60°C.

Данные технического задания представлены в табл. 1.

Таблица 1

Название транзистора	Параметр	K_{e0}	$U_{\scriptscriptstyle m BMX}, \ { m B}$	<i>R</i> _н , кОм	<i>R</i> _г , кОм	<i>f</i> н, Гц	<i>f</i> в, кГц	С _н , нФ
KT814B	Значение	3	4	1.2	0.2	450	35	0.7

1. Обоснование и синтез элементов усилительного каскада

1.1. Параметры транзистора и предельно допустимые параметры

В табл. 2 представлены параметры транзистора КТ814в

Таблица 2

Тип транзистора	Параметр	$\beta_{min}\beta_{max}$	$f_{\scriptscriptstyle m T}$, М Γ ц	Скп, пФ	Сэп, пФ
p-n-p	Значение	40275	3	<60	<75

В табл. 3 представлены предельно допустимые параметры транзистора.

Таблица 3

Параметр	$U_{ ext{ iny доп}}, \mathrm{B}$	$I_{ ext{ iny K}}$ доп, A	$P_{ m доп},$ Вт
Значение	60	1.5	10

1.2. Снятие входной и выходных характеристик транзистора

Для заданного типа транзистора с помощью программы схемотехнического проектирования *OrCad* 9.2 снимем входные и выходные характеристики для схемы усилительного каскада с общим эмиттером, чтобы определить положение рабочей точки.

На рис. 1 изображена схема для получения входной и выходных характеристик транзистора КТ814в.

Рис. 1. Схема для получения вольтамперных характеристик транзистора KT814в

На рис. 2 изображена входная характеристика транзистора.

Рис. 2. Входная характеристика транзистора КТ814в

На рис. 3 изображена выходная характеристика и предельные допустимые значения тока коллектора I_K и напряжения между коллектором и эмиттером $U_{K\mathfrak{I}}$.

Рис. 3. Семейство выходных характеристик транзистора КТ814в

1.3. Обоснование выбора схемы усилительного каскада

Рассмотрим виды каскадных усилителей на биполярных транзисторах. Существует три вида усилителей, по количеству возможных соединений транзистора с заземлением: с общим эмиттером (далее ОЭ), с общим коллектором (далее ОК) и с общей базой (далее ОБ). На рис. 4 изображены принципиальные схемы этих усилителей.

Рис. 4. Виды каскадных усилителей на биполярных транзисторах

В нашем случае, поскольку коэффициент усиления каскада $K_{0e} = 3$ больше 1, то выбираем схему ОЭ, потому что только этот каскад обеспечивает усиление больше 1. Отсюда, схема усилительного каскада примет вид, изображенный на рис. 5.

Рис. 5. Схема усилительного каскада с общим эмиттером на биполярном транзисторе КТ814в

1.4. Графическое обоснование выбора рабочей точки

Определим рабочий режим транзистора и номинальное напряжение источника питания, используя выходные характеристики по максимальной амплитуде выходного сигнала и сопротивлению нагрузки.

Построим выходные характеристики транзистора КТ814в и ограничим рабочую область допустимыми значениями тока и напряжения, а также гиперболой $I_K = \frac{P_{\text{ДОП}}}{U_{\text{K9}}}$. Результат построения представлен на рис. 6.

Рис. 6. Семейство выходных характеристик транзистора КТ814в

1.5. Расчет рабочей точки

Напряжение рабочей точки $U_{\kappa_{2}A}$ должно удовлетворять неравенству:

$$|U_{\text{K}\ni A}| \ge \triangle U_{\text{H}\in J} + \triangle U_{\text{T}} + U_{\text{BbIX}}(2).$$

Выходное напряжение $U_{\text{вых}} = 4 \text{ B}$ задано в техническом задании. Выберем запас напряжений, связанный с нелинейностью выходных вольтамперных характеристик биполярного транзистора из диапазона 🛆 $U_{\text{нел}} = 1..2 \text{ B.}$ Возьмем $\triangle U_{\text{нел}} = 1 \text{ B.}$ Также выберем запас напряжений, связанный с уходом рабочей точки из-за изменения температуры и разброса параметров транзистора из диапазона $\triangle U_{\rm T} = 1..2$ В. Возьмем $\triangle U_{\rm T} = 1$ В. Найдем минимальное напряжение рабочей точки $U_{\kappa A}$:

$$|U_{K3A}| \ge 1 + 1 + 4 = 6 B (2.1)$$

Напряжение питания можно найти с помощью неравенства:

$$|E_{\text{пит}}| \ge \triangle U_{\text{нел}} + 2 \cdot \triangle U_{\text{вых}} + 2 \cdot \triangle U_{\text{T}} + k \cdot U_{\text{вых}}(3)$$

Также должно выполняться неравенство:

$$|E_{\text{пит}}| < U_{\text{кэ доп}}(4)$$

При k = 5 имеем:

$$|E_{\text{пит}}| \ge 1 + 2 \cdot 1 + 2 \cdot 4 + 5 \cdot 4 = 31 \text{ B } (3.1)$$

Значение | Епит | возьмем из номинального ряда напряжений источников:

$$E\pi = (6, 9, 10, 12, 15, 18, 20, 24, 27, 36, 40)B$$

Поскольку $E_{\text{пит}} > 31 \text{ B}$, то можно выбрать $E_{\text{пит}} = 40 \text{ B}$.

Сравним полученное значение напряжения питания $E_{\text{пит}}$ с максимально допустимым значением $U_{\kappa_{9} \text{ доп}}$:

$$E_{\text{пит}} = 40 \text{ B},$$
 $U_{\text{кэ доп}} = 60 \text{ B} \Rightarrow$
 $E_{\text{пит}} < U_{\text{кэ доп}}$

неравенство выполняется.

 $\mathbf{U}_{\mbox{\tiny K9}}$ рекомендовано брать из диапазона $|U_{\mbox{\tiny K9A}}| \approx (0.4..0.6) \cdot |E_{\mbox{\tiny ПИТ}}|.$

При $E_{\text{пит}} = 40 \text{ B}$ диапазон принимает вид $|U_{\text{кэA}}| \approx (16..24) \text{ B}$

Возьмем $|U_{\kappa A}| = 23 \text{ B}$

Значение тока коллектора должно удовлетворять неравенству:

$$I_{\text{\tiny K}\sim} \geq \frac{U_{\text{\tiny BMX}} + \triangle U_{\text{\tiny T}}}{R_{\text{\tiny A}}} (4).$$

Выражение из правой части неравенства (4) можно привести к виду:

$$\frac{U_{\text{BbIX}} + \triangle U_{\text{T}}}{R_{\text{T}}} = (2..5) \cdot \frac{U_{\text{BbIX}}}{R_{\text{T}}} = 5 \cdot \frac{4}{1200} = 16.6665 \text{ mA } (4.1)$$

Таким образом, значение тока коллектора должно удовлетворять неравенству:

$$I_{\rm K^{\sim}} \ge 16.6665 \,\mathrm{mA} \, (4.2)$$

Рассчитаем ток коллектора в рабочей точке с учетом теплового тока I_{k0} . Тепловой ток рекомендуется брать из диапазона $I_{k0}=(1..2)$ мА. Пусть $I_{k0}=2$ мА. Тогда ток в рабочей точке будет равен:

$$I_{\text{KA}} \ge I_{k\sim} + I_{k0} = 16.6665 \cdot 10^{-3} + 2 \cdot 10^{-3} = 18.6665 \text{ MA} \Rightarrow I_{\text{KA}} \approx 19 \text{ MA} (5)$$

Результаты расчета рабочей точки представлены в табл. 4.

Таблица 4

Параметр	$U_{ ext{ iny K9A}},\mathrm{B}$	I_{KA} , MA	E_{π} , B
Значение	23	19	40

Рассчитаем сопротивление для построения нагрузочной прямой на графике выходных характеристик транзистора:

$$R_{=} = \frac{|E_{\text{пит}}| - |U_{\text{кэA}}|}{I_{\text{кA}}} = \frac{40 - 23}{19 \cdot 10^{-3}} = 894.7368 \text{ Om}$$

Построим эту прямую на графике с выходными характеристиками и отметим рабочую точку. Результаты построения представлены на рис. 7.

Рис. 7. Семейство выходных характеристик транзистора КТ814в с рабочей точкой A, нагрузочной прямой и допустимыми значениями тока и напряжения

1.6. Определение малосигнальных параметров транзистора

Определим коэффициент β , равный коэффициенту усиления h_{219} и коэффициент h_{119} , равный входному сопротивлению, по выходным характеристикам и входной характеристике транзистора в области рабочей точки для дальнейших расчетов параметров усилителя.

На ранее построенных выходных характеристиках найдем и отметим ближайшие к рабочей две точки A1 и A2. Найденные точки отмечены на графике на рис. 8.

Рис. 8. Семейство выходных характеристик транзистора КТ814в с рабочей точкой A и дополнительными точками A1 и A2

Рассчитаем коэффициент усиления h_{21} по формуле: $h_{21} = \frac{\triangle I_{\text{K}}}{\triangle I_{6}}$ (6).

Для расчета найдем ΔI_6 и ΔI_{κ} :

$$\Delta I6 = |I_{6\text{A}2} - I_{6\text{A}1}| = |200 \cdot 10^{-6} - 150 \cdot 10^{-6}| = 50 \text{ MKA (6.1)}$$

$$\Delta I\kappa = |I_{\kappa\text{A}2} - I_{\kappa\text{A}1}| = |19.497 \cdot 10^{-3} - 14.584 \cdot 10^{-3}| = 4.9126 \text{ MA (6.2)}$$

Из уравнений (6), (6.1) и (6.2) получаем:

$$h_{21} = \frac{\triangle I_{\text{K}}}{\triangle I_{6}} = \frac{4.9126 \cdot 10^{-3}}{50 \cdot 10^{-6}} = 98.25$$

Найденный коэффициент лежит в диапазоне допустимых значений:

$$h_{219} = 98.25 \in (\beta_{min}..\beta_{max}) = (40..275)$$

Рассчитаем ток базы по формуле: $I_{6A} = \frac{I_{KA}}{h_{219}}$ (7)

$$I_{6A} = \frac{I_{\text{кA}}}{h_{219}} = \frac{19 \cdot 10^{-3}}{98.25} = 193.384 \text{ мкA}$$

Полученное значение лежит в диапазоне токов базы, отраженном на графике на рис. 9:

$$I_{6A} \in (150..200)$$
мкА

На ранее построенной входной характеристике найдем и отметим рабочую точку A и дополнительную точку A2 для определения коэффициента h_{119} . Найденные точки отмечены на графике на рис. 9.

Рис. 9. Входная характеристика транзистора КТ814в с рабочей точкой A и дополнительной точкой A1

Рассчитаем входное сопротивление h_{11_9} по формуле: $h_{11_9}=\frac{\Delta U_{6_9}}{\Delta I_6}$ (8) Для расчета найдем ΔI_6 и ΔU_{6_9} :

$$\triangle I_6 = (I_{6A1} - I_{6A}) \cdot 2 = (198.384 \cdot 10^{-6} - 193.384 \cdot 10^{-6}) \cdot 2 = 10$$
 мкА (8.1)
 $\triangle U_{69} = (|U_{6A1}| - |U_{6A}|) \cdot 2 = (725.278 \cdot 10^{-3} - 734.561 \cdot 10^{-3}) \cdot 2 = 1,4346$ мВ (8.2)
 Из уравнений (8), (8.1) и (8.2) получаем:

$$h_{119} = \frac{\triangle U_{69}}{\triangle I_6} = \frac{1,4346 \cdot 10^{-3}}{10 \cdot 10^{-6}} = 143.46 \text{ Om}$$

Результаты расчетов малосигнальных параметров представлены в табл. 5.

Таблица 5

Параметр	h_{219}	<i>h</i> _{11э} , Ом
Значение	98.25	143.46

1.7. Расчет сопротивлений резисторов

Рассчитаем сопротивления резисторов выходной цепи каскада. По заданному типу транзистора и его предельным параметрам, определенным по справочным данным, обоснуем возможность применения транзистора в заданной схеме усилительного каскада.

Ранее (п. 1.5) было рассчитано сопротивление $R_{=}=894.7368$ Ом для построения нагрузочной прямой по постоянному току. Для схемы с ОЭ:

$$R_{=}=R_{_{\mathrm{9}}}+R_{_{\mathrm{K}}}(9)$$

Согласно номинальному ряду: $R_{=} = 910 \, \text{Ом}$

Рассчитаем сопротивление по переменному току R_{\sim} по формуле для графического метода расчета:

$$R_{\sim} = \frac{\frac{\triangle U_{\rm T} + U_{\rm H} + 1}{\triangle I_{\rm K} \sim}}{\frac{\triangle I_{\rm K} \sim}{10 \cdot 10}} (10):$$

$$R_{\sim} = \frac{\frac{\triangle U_{\rm T} + U_{\rm H} + 1}{\triangle I_{\rm K} \sim}}{\frac{1}{19 \cdot 10^{-3}}} = 315.7895 \text{ Om},$$

на рис. 10 изображено правило треугольника для расчета.

Рассчитаем сопротивление коллектора по формуле $R_{\rm K} = \frac{R_{\rm H} \cdot R_{\sim}}{R_{\rm H} - R_{\sim}}$ (11):

$$R_{\rm K} = \frac{R_{\rm H} \cdot R_{\sim}}{R_{\rm H} - R_{\sim}} = \frac{1200 \cdot 315.7895}{1200 - 315.7895} = 428.5714 \, {\rm Om} = 430 \, {\rm Om} \, ({\rm по} \, {\rm номинальному} \, {\rm ряду})$$

Найдем сопротивление эмиттера из равенства (9):

$$R_{3} = R_{=} - R_{\kappa} = 910 - 430 = 480 \,\text{Om}$$

Рис. 10. Семейство выходных характеристик с нагрузочной прямой по переменному току для расчета R_{\sim}

Проверим допуски транзистора с помощью неравенств:

$$|E_{\text{пит}}| < U_{\text{кэ доп}}(12), \ I_{\text{к макс}} < I_{\text{к доп}}(12.1) \ \text{и} \ P_{\text{A}} < P_{\text{доп}}(12.2)$$

 $|E_{\text{пит}}| = 40 \ \text{B}, \ U_{\text{кэ доп}} = 60 \ \text{B} \Rightarrow |E_{\text{пит}}| < U_{\text{кэ доп}}$

 $I_{\mbox{\tiny K MAKC}}-$ максимальный ток коллектора, который ищется по формуле:

$$I_{\text{K MAKC}} = I_{\text{KA}} + \frac{|U_{\text{K3A}}|}{R_{\sim}} = 19 \cdot 10^{-3} + \frac{23}{315.7895} = 91.8333 \text{ MA } (12.4),$$

$$I_{\text{K ДОП}} = 1500 \text{ Ma} \Rightarrow I_{\text{K MAKC}} < I_{\text{K ДОП}}$$

РА – мощность рабочей точки, которая ищется по формуле:

$$P_{\rm A} = |U_{{\scriptscriptstyle {
m K9A}}}| \cdot I_{{\scriptscriptstyle {
m KA}}} = 23 \cdot 19 \cdot 10^{-3} = 0.437 \; {
m Bt} \; (12.5),$$

$$P_{{\scriptscriptstyle {
m ДО\Pi}}} = 10 \; {
m Bt} \Rightarrow P_{\rm A} < P_{{\scriptscriptstyle {
m ДО\Pi}}}$$

Соотношения выполняются, следовательно найденные значения удовлетворяют ограничениям максимально допустимых значений напряжения, тока и мощности.

Рассчитаем сопротивления резисторов входной цепи схемы с учетом разброса коэффициента усиления транзистора и колебаний внешней температуры.

$$\triangle I_{\text{K ДОП}} = \frac{U_{\text{T}}}{R_{=}} = \frac{1}{910} = 1.099 \text{ MA } (13)$$

Возьмем ξ из диапазона $\xi=(1.5..2)\left(\frac{\text{мB}}{^{\circ}\mathcal{C}}\right)$, равное $2\frac{\text{мB}}{^{\circ}\mathcal{C}}$.

Возьмем коэффициент $\beta = h_{219} = 98.25$

Рассчитаем уход рабочей точки из — за технологического разброса коэффициента β :

$$\Delta \beta = max((\beta_{max} - \beta), (\beta - \beta_{min})) = max((275 - 98.25), (98.25 - 40)) =$$

$$= ((176.75), (58.25)) = 176.75 (13.1)$$

Рассчитаем максимальные колебания температуры, T = 20 (нормальные условия):

$$\Delta T = max((T_{max} - T), (T - T_{min})) = max((60 - 20), (20 - (-40))) = max((40), (60)) = 60^{\circ}C(13.2)$$

Рассчитаем R_6 по формуле из литературы (1, c. <>):

$$\begin{split} R_6 & \leq \frac{\beta \cdot \left(\triangle \ I_{\text{\tiny K ДОП}} \cdot R_{\tiny 9} - |\xi \cdot \triangle \ T| \right)}{\triangle \ \beta \cdot I_{\text{\tiny 6A}} - \triangle \ I_{\text{\tiny K ДОП}}} - R_{\tiny 9} = \\ & = \frac{98.25 \cdot (1.099 \cdot 10^{-3} \cdot 480 - |2 \cdot 10^{-3} \cdot 60|)}{176.75 \cdot 198.384 \cdot 10^{-6} - 1.099 \cdot 10^{-3}} - 480 = 730.1586 \ \text{Om} \ (13.3) \end{split}$$

 $R_6 > 0$, значит удалось обеспечить стабильность схемы.

Рассчитаем R_{cm} , R_1 и R_2 :

$$\begin{split} R_{\text{\tiny CM}} &= R_6 + (1+\beta) \cdot R_9 = 730.1586 + (1+98.25) \cdot 480 \ = \ 48.3702 \ \text{кОм} \\ R_1 &= \frac{E_{\text{\tiny ПИТ}} \cdot R_6}{0.7 + I_{\text{\tiny GA}} R_{\text{\tiny CM}}} = \frac{40 \cdot 730.1586}{0.7 + 198.384 \cdot 10^{-6} \cdot 48.3702 \cdot 10^3} = \ 2904.9402 \ \text{Ом} \end{split}$$

Округлим R_1 по номинальному ряду:

$$R_1 = 2904.9402 \,\mathrm{Om} \approx 3000 \,\mathrm{Om}$$

$$R_2 = \frac{R_6 \cdot R_1}{R_1 - R_6} = \frac{730.1586 \cdot 3000}{3000 - 730.1586} = 965.0347 \text{ Om}$$

Округлим R_2 по номинальному ряду:

$$R_2 = 965.03470 \text{m} \approx 10000 \text{m}$$

Результаты расчетов сопротивлений представлены в табл. 6.

Таблица 6

Параметр	<i>R</i> ₁ , кОм	<i>R</i> ₂ , кОм	<i>R</i> э, Ом	$R_{\scriptscriptstyle m K}$, Om	<i>R</i> =, Ом	R∼, Ом
Аналитически рассчитанное	2904.9402	965.0347	480	428.5714	894,7368	315.7895
Значение из ряда E24	3000	1000	-	430	****	****

Значения округляются в большую сторону для избежания проблем с обеспечением коэффициента усиления каскада.

На рис. 11 изображена синтезированная схема усилительного каскада с ОЭ.

Рис. 11. Синтезированная схема усилительного каскада с ОЭ

1.9. Расчет режима каскада для выбранных сопротивлений

Аналитически рассчитаем рабочий режим каскада и проверим, совпадает ли он с выбранным в п. 1.5.

На рис. 12 изображена эквивалентная схема усилителя с ОЭ для расчета рабочего режима при постоянном токе.

Рис. 12. Эквивалентная схема усилителя с ОЭ для расчета рабочего режима

Система уравнений для расчета рабочего режима:

$$\begin{cases} E_{\text{CM}} = E_{\text{ПИТ}} \cdot \frac{R_2}{R_1 + R_2} (14.1) \\ R_6 = \frac{R_1 \cdot R_2}{R_1 + R_2} (14.2) \\ E_{\text{ПИТ}} = -U_{\text{K3}} + I_{\text{K}} \cdot R_{\text{K}} + I_{\text{3}} \cdot R_{\text{3}} (14.3) \\ E_{\text{CM}} = -U_{69} + I_{\text{3}} \cdot R_{\text{3}} + I_{\text{6}} \cdot R_{\text{6}} (14.4) \\ I_{\text{K}} = \beta \cdot I_{\text{6}} (14.5) \\ I_{\text{3}} = I_{\text{K}} + I_{\text{6}} (14.6) \\ U_{69} \approx -0.7 \text{ B} (14.7) \end{cases}$$

Расчет рабочего режима каскада:

Из
$$(14.1) \rightarrow E_{\text{CM}} = E_{\text{ПИТ}} \cdot \frac{R_2}{R_1 + R_2} = 40 \cdot \frac{1000}{3000 + 1000} = 10 \text{ B}$$

Из $(14.2) \rightarrow R_6 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1000 \cdot 3000}{1000 + 3000} = 750 \text{ OM}$

Из (14.4) , (14.5) , (14.6) и $(14.7) \rightarrow I_{6A} = \frac{E_{\text{CM}} + U_{63}}{R_6 + R_3 \cdot (1 + \beta)} = \frac{40 + (-0.7)}{750 + 480 \cdot (1 + 98.25)} = 192.188 \text{ мкА}$

Из $(14.5) \rightarrow I_{\text{KA}} = \beta \cdot I_{6A} = 98.25 \cdot 192.188 \cdot 10^{-6} = 18.8825 \text{ мA}$

Из (14.5) и $(14.6) \rightarrow I_3 = (1 + \beta) \cdot I_{6A} = (1 + 98.25) \cdot 192.188 \cdot 10^{-6} = 19.0747 \text{ мA}$

Из $(14.3) \rightarrow U_{\text{K3A}} = -E_{\text{ПИТ}} + I_{\text{K}} \cdot R_{\text{K}} + I_3 \cdot R_3 = 0$
 $= -40 + 18.8825 \cdot 10^{-3} \cdot 430 + 19.0747 \cdot 10^{-3} \cdot 480 = -22.7247 \text{ B}$
 $|U_{\text{K3A}}| = 22.7247 \text{ B}$

Результаты расчета и сравнение с предыдущими представлены в табл. 7

Таблица 7

	U _{кэА} . В	I _K A, MA	UбэA, В	ІбА, мкА
Расчет п. 1.5	23	19	0.734561	193.384
Расчет п. 1.8	22.7247	18.8825	0.7	192.188

1.10. Проверка расчетов рабочего режима с помощью программы OrCad

Используя программу OrCad, проверим правильность расчетов. Результаты представлены на табл.8.

$$I_{6\mathrm{A}}=193.500\,\mathrm{mkA}$$
 $I_{\mathrm{KA}}=18.83\,\mathrm{mA}$ $U_{\mathrm{K9A}}=U_{\mathrm{K}}-U_{\mathrm{9}}=31.9-9.13=22.77\,\mathrm{B}$ $U_{6\mathrm{9A}}=U_{6}-U_{9}=9.86-9.13=0.73\,\mathrm{B}$

Таблица 8

Параметр	<i>U</i> бэА, В	I_{6A} , мк A	$U_{ ext{ iny K} ext{ iny A}},\mathrm{B}$	I_{KA} , MA
П. 5	0.7	192.188	22.7247	18.8825
П. 9	0.73	193.5	22.77	18.83

Схема для моделирования рабочего режима транзистора изображена на рис. 13.

Рис. 13. Схема каскадного усилителя на транзисторе КТ814в для моделирования рабочего режима

1.11. Расчет возможного ухода рабочей точки

Рассчитаем возможный уход рабочего тока из-за колебаний температуры и из-за разброса коэффициента усиления.

Максимальные колебания температуры были посчитаны в п. 1.7 (13.2):

$$\triangle T = 60^{\circ}C$$

Возьму $\xi = \frac{2 \text{ мВ}}{{}^{\circ}C}$, аналогично п.1.7.

Рассчитаем уход рабочей точки из-за колебаний температуры:

$$\triangle I_{\text{K1}} = \frac{|\xi \cdot \triangle T| \cdot \beta}{R_6 + R_9 \cdot (1 + \beta)} = \frac{|2 \cdot 10^{-3} \cdot 60| \cdot 98.25}{750 + 480 \cdot (1 + 98.25)} = 246.086 \text{ MKA } (14.1)$$

Рассчитаем уход рабочей точки из-за разброса коэффициента усиления:

Разброс коэффициента усиления был посчитан в п.1.7 (13.1):

$$\Delta\beta = 176.75$$

$$\gamma_6 = \frac{R_9}{R_6 + R_9} = \frac{480}{750 + 480} = 0.3902 \ (14.2)$$

$$\Delta I_{\text{K2}} = \frac{\Delta\beta}{\beta \cdot (1 + \beta \cdot \gamma_6)} \cdot I_{\text{KA}} = \frac{176.75}{98.25 \cdot (1 + 98.25 \cdot 0.3902)} \cdot 19 \cdot 10^{-3} = 863.448 \ \text{MKA} \ (14.3)$$

Рассчитаем возможный уход рабочей токи, сложив уходы рабочей точки из-за разных факторов:

$$\triangle\:I_{\mbox{\tiny K}}= \triangle\:I_{\mbox{\tiny K1}}+ \triangle\:I_{\mbox{\tiny K2}}=246.086\cdot 10^{-6}+863.448\cdot 10^{-6}=1.1095$$
 мА

Рассчитаем запас напряжений из-за ухода рабочей точки $\triangle U_T$:

$$\triangle U_T = \triangle I_{\kappa} \cdot R_{=} = 1.1095 \cdot 10^{-3} \cdot 894,7368 = 0,9927 \text{ B} (14.4)$$

Таблица 9

	п. 3	п. 8
$\DeltaU_{ m T},\!{ m B}$	1	0,9927

Рассчитанное значение \triangle $U_T = 0,9927$ В меньше выбранной в п.1.5 \triangle $U_T = 1$ В

1.12. Графический расчет рабочего режима для выбранных сопротивлений

Для выбранных сопротивлений резисторов схемы определим рабочий режим графически, используя ВАХ транзистора. Вычислим максимальную амплитуду неискаженного выходного сигнала.

Построим входную характеристику транзистора и нагрузочную прямую на одном графике.

Для построения нагрузочной прямой используем формулу

$$U_{69}(I_6) = E_{CM} - I_6 \cdot R_6 - I_9 \cdot R_9 (15.1)$$

Подставим значения известных параметров и запишем уравнение (15.1) для среды OrCad:

$$10 - IB(Q1) \cdot 750 - (IB(Q1) + IC(Q1)) \cdot 480$$

Входная характеристика и нагрузочная прямая изображены на рис. 14.

Рис. 14. Входная характеристика транзистора КТ814в

Построим выходные характеристики транзистора и нагрузочную прямую на одном графике.

Для построения нагрузочной прямой используем формулу

$$U_{\text{K9}}(I_{\text{K}}) = E_{\text{II}} - I_{\text{K}} \cdot R_{=} (15.2)$$

Подставим значения известных параметров и запишем уравнение (15.2) для среды OrCad:

$$\frac{(40 - V_{V1})}{894,7368}$$

Выходные характеристики и нагрузочная прямая изображены на рис. 15.

Рис. 15. Семейство выходных характеристик транзистора КТ814в В табл. 10 представлены результаты графического и аналитического расчетов.

Таблица 10

Параметр	$U_{69\mathrm{A}},\mathrm{B}$	$I_{\mathrm{бA}}$, мк A	$U_{ ext{k9A}}$, В	I_{KA} , MA
П. 5	0.7	192.188	22.7247	18.8825
П. 8	0.73	193.5	22.77	18.83
П. 11	0.7185	155.650	23	19

Определим максимальную амплитуду неискаженного выходного сигнала:

$$U_{\Pi} = I_{\text{KA}} \cdot R_{\sim} = 19 \cdot 10^{-3} \cdot 315.7895 = 6 \text{ B}$$

$$\triangle U_{T} = 0.9927 \text{ B}$$

$$U_{\text{H MAKC}} = U_{\text{H}} - \triangle U_{T} = 6 - 0.9927 = 5.0073 \text{ B}$$

Сравним результат с данными из ТЗ:

$$U_{\rm H~MAKC} = 5.0073~{\rm B}$$
, $U_{\rm H~T3} = 4~{\rm B} \Rightarrow U_{\rm H~T3} < U_{\rm H~MAKC}$ - условие выполняется.

1.13. Расчет сопротивлений на эмиттере

Рассчитаем сопротивления резисторов на эмиттере: R_{91} и R_{92} . Используем формулы для вычисления коэффициента усиления, подставив в итог коэффициент усиления из Т3 и выведем формулу расчета R_{91} :

$$\begin{split} R_{\rm BbIX} &= R_{\rm K} = 430~{\rm OM}~(16.1) \\ R_{\rm BX} &= \frac{R_{\rm G}\cdot(h_{113}+(1+\beta)\cdot R_{31})}{R_{\rm G}+(h_{113}+(1+\beta)\cdot R_{31})}~(16.2) \\ \xi_{\rm BbIX} &= \frac{R_{\rm H}}{R_{\rm H}+R_{\rm BbIX}}~(16.3) \\ \xi_{\rm BX} &= \frac{R_{\rm BX}}{R_{\rm BX}+R_{\rm F}}~(16.3) \\ K_{\chi\chi} &= \frac{-\beta\cdot R_{\rm K}}{h_{113}+(1+\beta)\cdot R_{31}}~(16.4) \\ K_{01} &= K_{\chi\chi}\cdot\xi_{\rm BbIX}\cdot\xi_{\rm BX}~(16.5) \\ K_{02} &= \frac{-\beta\cdot\left(\frac{R_{\rm K}\cdot R_{\rm H}}{R_{\rm K}+R_{\rm H}}\right)}{h_{113}+(1+\beta)\cdot R_{31}}~(16.6) \\ K_{0} &= \frac{(K_{01}+K_{02})}{2}~(16.7) \\ {\rm M3}~{\rm T3}~K_{0} &= 3.0 \end{split}$$

Из уравнений выходит:

$$K_{0} = |\frac{\left(\frac{-\beta \cdot R_{K}}{h_{113} + (1+\beta) \cdot R_{31}} \frac{R_{H}}{R_{H} + R_{BblX}} \frac{\frac{R_{6} \cdot (h_{113} + (1+\beta) \cdot R_{31})}{R_{6} + (h_{113} + (1+\beta) \cdot R_{31})}}{\frac{R_{6} \cdot (h_{113} + (1+\beta) \cdot R_{31})}{R_{6} + (h_{113} + (1+\beta) \cdot R_{31})} + R_{\Gamma}} + \frac{-\beta \cdot \left(\frac{R_{K} \cdot R_{H}}{R_{K} + R_{H}}\right)}{h_{113} + (1+\beta) \cdot R_{31}}\right)}{1 = 3.0}$$

$$|K_{0} = |\frac{\left(\frac{-98.25 \cdot 430}{143.46 + (1+98.25) \cdot R_{31}} \frac{1200}{1200 + 430} \frac{\frac{750 \cdot (143.46 + (1+98.25) \cdot R_{31})}{750 \cdot (143.46 + (1+98.25) \cdot R_{31})}}{\frac{750 \cdot (143.46 + (1+98.25) \cdot R_{31})}{750 \cdot (143.46 + (1+98.25) \cdot R_{31})} + 200}}{\frac{750 \cdot (143.46 + (1+98.25) \cdot R_{31})}{143.46 + (1+98.25) \cdot R_{31}}} + \frac{-98.25 \cdot \left(\frac{430 \cdot 1200}{430 + 1200}\right)}{143.46 + (1+98.25) \cdot R_{31}}}\right| = 3.0$$

После расчета на портале www.wolframalpha.com получаем (расчет приведен в приложении 1):

$$R_{91} = 95.6167 \, \text{Om}$$

Округляя по номинальному ряду в меньшую сторону, получаем:

$$R_{\rm al} \approx 910 \,\mathrm{M}$$

Из уравнения $R_9 = R_{91} + R_{92} \Rightarrow R_{92} = R_9 - R_{91} = 480 - 91 = 389 Ом$ Округляя по номинальному ряду, получаем:

$$R_{92} \approx 390 \, \mathrm{Om}$$

1.14. Расчет входного и выходного сопротивлений усилителя и коэффициента усиления напряжения

Рассчитаем входное и выходное сопротивление каскадного усилителя и с их помощью вычислим коэффициент усиления напряжения K_{e0} :

$$K_{e0}$$
:
$$R_{\rm BbIX} = R_{\rm K} = 430~{\rm OM}$$

$$R_{\rm BX} = \frac{R_6 \cdot (h_{113} + (1+\beta) \cdot R_{31})}{R_6 + (h_{113} + (1+\beta) \cdot R_{31})} = 750 \cdot \frac{(143.46 + (1+98.25) \cdot 91)}{750 + (143.46 + (1+98.25) \cdot 91)} = 693.3261~{\rm OM}$$

$$\xi_{\rm BbIX} = \frac{R_{\rm H}}{R_{\rm H} + R_{\rm BbIX}} = \frac{1200}{1200 + 430} = 0.7362$$

$$\xi_{\rm BX} = \frac{R_{\rm BX}}{R_{\rm BX} + R_{\rm F}} = \frac{693.3261}{693.3261 + 200} = 0.7761$$

$$K_{\chi\chi} = \frac{-\beta \cdot R_{\rm K}}{h_{113} + (1+\beta) \cdot R_{31}} = \frac{-98.25 \cdot 430}{143.46 + (1+98.25) \cdot 91} = -4.6045$$

$$K_{01} = K_{\chi\chi} \cdot \xi_{\rm BbIX} \cdot \xi_{\rm BX} = -4.6045 \cdot 0.7362 \cdot 0.7761 = -2.6309$$

$$K_{02} = \frac{-\beta \cdot \left(\frac{R_{\rm K} \cdot R_{\rm H}}{R_{\rm K} + R_{\rm H}}\right)}{h_{113} + (1+\beta) \cdot R_{31}} = \frac{-98.25 \cdot \left(\frac{430 \cdot 1200}{430 + 1200}\right)}{143.46 + (1+98.25) \cdot 91} = -3.3898$$

$$K_{e0} = \frac{(K_{01} + K_{02})}{2} = \frac{(-4.6045 + -3.3898)}{2} = -3.0104$$

$$K_{e0~T3} = 3.0 \Rightarrow 0.9 K_{e0~T3} \leq |K_{e0}| \leq 1.1 K_{e0~T3} - \text{неравенство выполняется}$$

 $K_{e0~{\rm T}3} = 3.0 \, \Rightarrow 0.9 K_{e0~{\rm T}3} \leq |K_{e0}| \leq 1.1 K_{e0~{\rm T}3}^{-}$ – неравенство выполняется

Малосигнальная схема замещения усилительного каскада с ОЭ изображена на рис. 16.

Рис. 16. Малосигнальная схема замещения усилительного каскада с ОЭ коэффициента Результаты расчетов сопротивлений И усиления представлены в табл. 11.

Таблица 11

	$R_{\mathrm{BX}},\mathrm{OM}$	$R_{ m \scriptscriptstyle BMX},$ Ом	$K_{ m e0}$
Значение	693.3261	460	-3.0104

1.15. Расчет емкостей конденсаторов

Рассчитаем емкости конденсаторов по заданной нижней границе полосы пропускания.

Определим постоянную времени усилителя для диапазона низких частот $\tau_{\rm H}$ по формуле:

$$\tau_{\rm H} = \left(\frac{1}{\tau_{\rm HI}} + \frac{1}{\tau_{\rm H2}} + \frac{1}{\tau_{\rm C3}}\right)^{-1} (17.1), \rm rde$$

$$\tau_{\rm H1} = C_{p1} \cdot (R_{\rm r} + R_{\rm BX}) (17.2),$$

$$\tau_{\rm H2} = C_{p2} \cdot (R_{\rm BbIX} + R_{\rm H}) (17.3),$$

$$\tau_{\rm C3} = C_{3} \cdot (R_{32}||r_{\rm TP.3}) (17.4),$$

$$r_{\rm TP.3} = \frac{h_{113} + (R_{6}||R_{\rm r})}{1 + h_{213}} + R_{31} (17.5)$$

$$C \, {\rm yyerom \, Toro, \, yro}$$

$$\tau_{\rm H} = \frac{1}{\omega_{\rm H}} = \frac{1}{2 \cdot \pi \cdot f_{\rm H}} (17.6), \, {\rm rde} \, f_{\rm H} - {\rm yactota \, u3 \, T3},$$

$${\rm для \, Kackada \, 0.9 \, momho \, npuhstis}$$

$$\tau_{\rm H1} = \tau_{\rm H2} = \tau_{C_{3}} = 3 \cdot \tau_{\rm H} (17.7)$$

$${\rm M3} \, (17.6) : \tau_{\rm H} = \frac{1}{2 \cdot \pi \cdot f_{\rm H}} = \frac{1}{2 \cdot \pi \cdot 450} = 353.678 \, {\rm mkc}$$

$${\rm M3} \, (17.7) : \tau_{\rm H1} = \tau_{\rm H2} = \tau_{C_{3}} = 3 \cdot \tau_{\rm H} = 3 \cdot 353.678 \cdot 10^{-6} = 1.0610 \, {\rm mc}$$

$${\rm M3} \, (17.5) : r_{\rm TP.3} = \frac{h_{113} + (R_{6}||R_{\rm r})}{1 + h_{213}} + R_{31} = \frac{143.46 + (750||200)}{1 + 98.25} + 91 = 94.0363 \, {\rm Om}$$

$${\rm M3} \, (17.2) : C_{p1} = \frac{\tau_{\rm H1}}{(R_{\rm r} + R_{\rm BX})} = \frac{1.0610 \cdot 10^{-3}}{200 + 693.3261} = 1.1877 \, {\rm mk\Phi}$$

$${\rm M3} \, (17.3) : C_{p2} = \frac{\tau_{\rm H2}}{(R_{\rm BbIX} + R_{\rm H})} = \frac{1.0610 \cdot 10^{-3}}{430 + 1200} = 0.6509 \, {\rm mk\Phi}$$

$${\rm M3} \, (17.2) : C_{3} = \frac{\tau_{\rm C3}}{(R_{32}||r_{\rm TP.3})} = \frac{1.0610 \cdot 10^{-3}}{390 \, || \, 94.0363} = 1.4 \, {\rm mk\Phi}$$

Округлим значения емкостей по номинальному ряду:

$$C_{p1} = 1.5 \text{ мк}\Phi$$
 $C_{p2} = 0.68 \text{ мк}\Phi$
 $C_{9} = 1.5 \text{ мк}\Phi$

Таблица 12

Параметр	$C_{ m pl}$, мк Φ	$C_{ m p2}$, мк Φ	C э, мк Φ
Значение	1.5	0.68	1.5

1.16. Определение верхней граничной полосы пропускания

Определим верхнюю границу полосы пропускания, используя справочные данные на транзистор и данные на емкость нагрузки.

Вычислим постоянную времени усилителя для диапазона верхних частот $\tau_{\rm B}$:

$$\tau_{\rm B} = \sqrt{\tau_{\rm BX}^2 + \tau_{\rm BbIX}^2 + \tau_{\rm T}^2} \, (18.1), \rm где$$

$$\tau_{\rm BX} = C_{\rm BX} \cdot (R_{\rm BX}||R_{\rm \Gamma}) (18.2)$$

$$C_{\rm H \, 9KB} = C_{\rm H} + C_{\rm KII} \cdot \beta = 330 \cdot 10^{-6} + 60 \cdot 10^{-12} \cdot 98.25 = 6.595 \cdot 10^{-9}$$

$$\tau_{\rm BbIX} = C_{\rm H \, 9KB} \cdot (R_{\rm H}||R_{\rm BbIX}) = 6.595 \cdot 10^{-9} \cdot (1200||430) = 2.0877 \, {\rm mKc} \, (18.3)$$

$$\tau_{\rm T} = \frac{\beta}{2 \cdot \pi \cdot f_{\rm T} \cdot (1 + \gamma \cdot \beta)} = \frac{98.25}{2 \cdot \pi \cdot 3 \cdot 10^6 \cdot (1 + 0.3902 \cdot 98.25)} = 132.489 \, {\rm Hc} \, (18.4)$$

$$C_{\rm BX} = C_{\rm 9II} + C_{\rm KII} \cdot |K_{\rm 0 \, T3}| = 75 \cdot 10^{-12} + 60 \cdot 10^{-12} \cdot |3.0| = 255.6227 \, (18.5) \pi \Phi$$

$$\rm H3 \, (18.2) \, \, \text{H} \, (18.5) : \tau_{\rm BX} = C_{\rm BX} \cdot (R_{\rm BX}||R_{\rm F}) = 255.6227 \cdot 10^{-12} \cdot (693.3261||200) = 39.6786 \, {\rm Hc}$$

$$\rm H3 \, (18.1) : \, \tau_{\rm B} = \sqrt{\tau_{\rm BX}^2 + \tau_{\rm BbIX}^2 + \tau_{\rm T}^2} =$$

$$= \sqrt{(39,6786 \cdot 10^{-9})^2 + (2.0877 \cdot 10^{-6})^2 + (132,489 \cdot 10^{-9})^2} = 2.0923 \, {\rm mkc}$$

$$C_{\rm 9II} \, \, \text{H} \, C_{\rm KII} - \text{ это емкости эмиттерного и коллекторного переходов транзистора.}$$

Рассчитаем f_в и сравним с данными Т3:

$$f_{\text{B}} = \frac{1}{2 \cdot \pi \cdot \tau_{\text{B}}} = \frac{1}{2 \cdot \pi \cdot 2.0923 \cdot 10^{-6}} = 76.0663 \,\mathrm{кГц} \,(18.6)$$
 $f_{\text{B T3}} = 35 \,\mathrm{кГц} \Rightarrow f_{\text{B T3}} < f_{\text{B}}$

2. Перечень элементов (спецификация)

№	Позиция	Название	Количество	Примечание
		Резисторы (//поиск реальных рез	висторов)	
1	R ₁	RC0402FR-073KL 0.062Вт 0402 3 кОм, 1%	1	3 кОм
2	R ₂	RC0402FR-071KL 0.062Вт 0402 1 кОм, 1%	1	1 кОм
3	R ₃	СF-50 (С1-4) 0.5 Вт, 430 Ом, 5%	1	430 Ом
4	R ₄	СF-50 (С1-4) 0.5 Вт, 91 Ом, 5%	1	91 Ом
5	R ₅	СF-100 (С1-4) 1 Вт, 390 Ом, 5%	1	390 Ом
6	R ₆	RC0402FR-07200RL 0.062Вт 0402 200 Ом, 1%	1	200 Ом
7	R ₇	RC0402FR-071K2L 0.062Вт 0402 1.2 кОм, 1%	1	1.2 кОм
		Конденсаторы		
1	C_1	К73-17 имп, 1.5 мкФ, 250 В, 5-10%	1	1.5 мкФ
2	C_2	К73-17 имп, 0.68 мкФ, 250 В, 5-10%	1	0.68 мкФ
3	C ₃	К73-17 имп, 1.5 мкФ, 250 В, 5-10%	1	1.5 мкФ
4	C ₄	К10-17Б М1500 750 пф, 50В, 5-20%	1	0.7 нФ
		Транзисторы		
1	Q1	KT814v	1	P-N-P

3. Моделирование работы усилительного каскада на ЭВМ

Проверим работоспособность схема, используя программу схемотехнического моделирования OrCad 9.2. Рассчитаем:

- Режим схемы;
- Амплитудно-частотную характеристику;
- Входное сопротивление усилителя;
- Выходное сопротивление усилителя;
- Амплитудную характеристику;
- Коэффициент нелинейных искажений для максимального неискаженного сигнала.

3.1. Расчет рабочего режима

Рассчитаем потенциалы и токи в программе OrCad 9.2. Схема для моделирования каскада с ОЭ изображена на рис. 17.

Рис. 17. Схема для моделирования каскада с ОЭ

$$I_{6\mathrm{A}}=193,08\,\mathrm{mkA}$$
 $I_{\mathrm{KA}}=18,79\,\mathrm{mA}$ $U_{\mathrm{K9A}}=U_{\mathrm{K}}-U_{\mathrm{9}}=31.92\,-\,9.131\,=\,22.789\,\mathrm{B}\,(19.1)$ $U_{6\mathrm{9A}}=U_{6}-U_{9}=9.86\,-\,9.131\,=\,0.729\,\mathrm{B}\,(19.2)$

Результаты расчета изображены на рис. 18.

Рис. 18. Рассчитанные потенциалы и токи

3.2. Амплитудно-частотная характеристика

АЧХ каскада изображена на рис. 19. Определим граничные частоты по уровню -3 дБ от L K_0 при средней частоте $f_{\rm cp}=14.734$ к Γ ц:

$$f_{\scriptscriptstyle
m H} \ = \ 434.893 \ \Gamma$$
ц

 $f_{\scriptscriptstyle \rm B} \ = \ 488.041 \ {\rm к} \Gamma {\rm ц}$

Рис. 19. АЧХ каскада в логарифмическом масштабе

Рассчитаем коэффициент усиления:

$$LK_0 = 20 \cdot \log(K_0) \Rightarrow K_0 = 10^{\frac{LK_0}{20}} = 10^{\frac{10.304}{20}} = 3.2749(20)$$

Результаты расчета частот и коэффициента усиления представлены в табл. 13.

Таблица 13

Параметр	LK ₀ , дБ	K_0	f _н , Гц	f _в , кГц
Техническое	9.5424	3.0	450	35
задание				
Эксперимент	10.304	3.2749	434.893	488.041

3.3. Определение входного сопротивления каскада

Определим входное сопротивление по графику его зависимости от частоты в области средних частот: $R_{\rm BX} = 889.180~{\rm OM}$

График зависимости входного сопротивления от частоты изображен на рис. 20.

Рис. 20. График зависимости входного сопротивления от частоты

3.4. Расчет нагрузочной характеристики усилителя

На рис. 21 изображена АЧХ и нагрузочная характеристика каскадного усилителя, а на рис. 20 — нагрузочная характеристика с отмеченными точками 1 и 2 со значениями $K_{u\,xx}$ и $K_{u\,xx}/2$ соответственно.

Рис. 21. Семейство АЧХ и нагрузочная характеристика усилителя

Рис. 22. Нагрузочная характеристика усилителя

Рассчитаем R_{вых} по отмеченным точкам на графике (рис. 22):

$$R_{\text{Bbix}} = \frac{R_{\text{H1}} \cdot R_{\text{H2}} \cdot (K_{u2} - K_{u1})}{K_{u2} \cdot R_{\text{H2}} - K_{u1} \cdot R_{\text{H1}}} = \frac{312.885 \cdot 2335.5 \cdot (3 - 1.5)}{3 \cdot 2335.5 - 1.5 \cdot 312.885} = 167.6741 \text{ Om } (21)$$

Результаты расчетов $R_{\text{вх}}$ представлены в табл. 14.

Таблица 14

Параметр	$R_{\rm BX}$, Om	$R_{ m BMX},{ m OM}$
Расчет п. 10	693.3261	430
Расчет п. 14	889.180	167.6741

3.5. Расчет амплитудной характеристики усилителя

На рис. 23 изображены семейство выходных напряжений и амплитудная характеристика усилителя.

Рис. 23. Амплитудная характеристика и семейство выходных напряжений На рис. 24 отмечены граничные точки линейного участка амплитудной характеристики для определения коэффициента усиления и динамического диапазона.

Рис. 24. Амплитудная характеристика

Рассчитаем коэффициент усиления:

$$K_{e0} = \frac{\triangle U_{\text{BbIX}}}{\triangle U_{\text{pv}}} = \left| \frac{0.510951 + 7.3632}{0.16 + 2.4} \right| = 3.0758 (22)$$

Динамический диапазон входного сигнала $\triangle U_{\text{вх макс}} = 7.3632 \text{ B}$

Результаты расчетов коэффициента усиления и динамического диапазона напряжения представлены в табл. 15.

Таблица 15

Параметр	K _{e0 T3}	$K_{ m e0}$	$\Delta U_{ extsf{BX_Max}}, \mathrm{B}$
Значение	3.0	3.0758	7.3632

3.6. Осциллограмма выходного напряжения и спектр Фурье

Амплитуда генератора вычисляется по формуле:

$$E_{\Gamma} = \frac{U_{\text{H MAKC}}}{K_{e0}} = \frac{5.0073}{3.0758} = 1,6279 \text{ B } (22.1)$$

Осциллограмма входного и выходного напряжений изображена на рис. 25.

Рис.25. Осциллограммы входного и выходного сигналов

Результаты Фурье-анализа представлены на рис. 26.

HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	5.000E+03	4.102E+00	1.000E+00	-1.651E+02	0.000E+00
2	1.000E+04	9.799E-03	2.389E-03	-5.478E+01	2.754E+02
3	1.500E+04	3.819E-03	9.311E-04	-1.360E+02	3.593E+02
4	2.000E+04	1.062E-03	2.589E-04	1.460E+02	8.063E+02
5	2.500E+04	3.260E-04	7.946E-05	6.862E+01	8.941E+02

TOTAL HARMONIC DISTORTION = 2.578076E-01 PERCENT

Рис. 26. Результаты Фурье-анализа

Рассчитаем коэффициент нелинейных искажений (КНИ), подставив в формулу результаты Фурье-анализа:

$$K_{\rm H} = \frac{\sqrt{{U_2}^2 + {U_3}^2 + {U_4}^2 + {U_5}^2}}{U_1} = \frac{\sqrt{0.009799^2 + 0.003819^2 + 0.001062^2 + 0.000326^2}}{4.102} = 0.002578 \implies KHM = 0.2578\%$$

Заключение

В процессе выполнения курсовой работы были приобретены навыки синтезирования, анализа и схемотехнического моделирования схемы усилительного каскада на основе биполярного транзистора. С помощью этих навыков была определена рабочая точка и синтезирована схема на ее основе. Также, был выполнен обратный расчет параметров для проверки правильности выбора рабочей точки. При вычислениях удалось сохранять значения параметров в допустимых пределах и значение коэффициента усиления.

Результаты расчетов удобно представить в виде итоговых сравнительных таблиц.

Расчет режима схемы по постоянному току представлены в табл. 16.

Таблица 16

	Расчет	Моделирование на ЭВМ
<i>I</i> к, мА	18.83	19
$U_{ ext{ iny K}}$, B	22.77	23
<i>I</i> б, мкА	193.5	155.650

Основные параметры каскада.

Таблица 17

	Техническое задание	Расчет	Моделирование на ЭВМ
K_u	3.0	3.0104	3.0758
	3.0		
R_{BX} , KOM		693.3261	889.180
$R_{\text{вых}}$, Ом		430	167.6747
$f_{\text{в}}$, Гц	35000	76066.3	488041
$f_{\scriptscriptstyle m H}$, Гц	450		434.893
$U_{ m вых \ макс}, { m B}$	4		5.0073
КНИ, %			0.2578

Список использованной литературы

- 1. Степаненко И.П. Основы теории транзисторов и транзисторных схем, издание 3-е. М.: Энергия, 1973.
- 2. Степаненко И.П. Основы микроэлектроники. М.: Сов. Радио, 1980.
- 3. Степаненко И.П. Основы микроэлектроники: Учебное пособие для ВУЗов. /
 - 2-ое изд. -М.: Лаборатория Базовых Знаний. 2001. -488с.
- 4. Ткаченко Ф.А. Техническая электроника. М.: Дизайн ПРО, 2002. 368с.

(УДК 621.38; Т484)

5. Электротехника и электроника. Учебник для вузов.- В 3-х кн. Кн. 3.

Электрические измерения и основы электроники/ Г.П.Гаев, В.Г.Герасимов, О.М.Князьков и др.; Под ред. проф. В.Г.Герасимова. – М.: Энергоатомиздат, 1998. (УДК 621.3; Э45)

- Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов /Под ред.
 О.П.Глудкина. М.: Горячая линия Телеком, 2000. –768с.: ил. (О-60 УДК 621.396.6)
- Войшвилло Г.В. Усилительные устройства: учебник для вузов. 2-е изд.-М.: Радио и связь. 1983.
- 8. Транзисторы для аппаратуры широкого применения: справочник. / под ред. Б.Л. Перельмана. -М.: Радио и связь. 1981.

- 9. Кобяк А.Т., Новикова Н.Р., Паротькин В.И., Титов А.А. Применение системы Design Lab 8.0 в курсах ТОЭ и электроники: Метод. пособие. –М.: Издательство МЭИ, 2001. –128с. (УДК 621.3 П–764).
- 10.Кобяк А.Т., Батенина А.П., Лагутина С.В. Применение программы схемотехнического моделирования Design Lab 8.0 в курсе электроники: Метод. Пособие.–М.: Издательство МЭИ, 2014. –36с. (УДК 621.3).
- 11.ГОСТ 2.743-88 «Обозначения условные графические в схемах. Элементы цифровой техники». -Госстандарт СССР.
- 12. Разработка и оформление конструкторской документации радиоэлектронной аппаратуры. Справочник. /Под ред. Романычевой 3.Т. М.: Радио и связь. -1989.

Приложение

Расчет сопротивления R_{31} на интернет-портале <u>www.wolframalpha.com</u> представлен на рис. 27.

Рис. 27. Расчет сопротивления через wolframalpha