United College of Engineering & Research, Prayagraj

Department of Computer Science & Engineering

Automata Theory(KCS-402)

Assignment-4

Q. No.	Question	СО	Bloom's level
	Section-A		
1	What do you mean by Two stack Pushdown Automata?	CO5	L1
2	Define Deterministic Pushdown Automata(DPDA).	CO5	L1
3	Design PDA for L = $\{a^nb^m ! m,n > 0\}$.	CO5	L2
4	Can we make Deterministic Pushdown Automata for the language L={ww ^R	CO5	L2
5	Is the power of PDA and DPDA equal? Justify.	CO5	L1
	Section-B		
6	Convert the grammar S \rightarrow aAA, A \rightarrow a aS bS to a PDA that accepts the language by empty stack.	CO5	L3
7	Design a PDA for the following language: $L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$	CO5	L4
8	Design a PDA for the Language L ={ww ^R w ∈{a,b}* }	CO5	L3
9	Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S)$ where the productions are – $S \rightarrow XS \mid \epsilon, \qquad A \rightarrow aXb \mid Ab \mid ab$	CO5	L2
10	Consider the CFG ({S, A, B} {a, b}, P, S), where productions P are as follows: S→aABB/ aAA, A→aBB/a, B→bBB / A. Convert the given grammar to PDA that accept the same language by empty stack.	CO5	L2
11	Obtain PDA to accept all strings generated by the language, $L=\{a^n b^m a^n ! m, n \ge 1\}$.	CO5	L3
12	Prove that language recognized by final state PDA is also recognized by empty stack PDA and vice-versa i.e. L(M) = N(M).	CO5	L3
13	Construct PDA for the following language $L = \{a^nb^mc^md^n \mid m, n \ge 1\}$.	CO5	L4
14	Consider following PDA:- $M = (\{q_0\}, \{0,1\}, \{a,b,Z_0\}, \delta, q_0, Z_0, \emptyset)$ Where, δ is defined as following:- $\delta (q_0, 0, Z_0) = (q_0, aZ_0)$ $\delta (q_0, 1, Z_0) = (q_0, bZ_0)$ $\delta (q_0, 0, a) = (q_0, aa)$ $\delta (q_0, 0, b) = (q_1, bb)$ $\delta (q_0, 0, b) = (q_1, bb)$ $\delta (q_0, 0, b) = (q_0, \epsilon)$ $\delta (q_0, 1, a) = (q_0, \epsilon)$ $\delta (q_0, \epsilon, Z_0) = (q_0, \epsilon)$	CO5	L3

	Convert this PDA into corresponding CFG.		
15	Let G be a CFG and its language is L(G). How do you decide that L(G) is	CO5	L2
	finite?		

CO - Course Outcome

Bloom's Levels

1- Remembering2-Understanding3-Applying4-Analyzing5-Evaluating6-Creating