PROBLEMS

An EM wave propagating in a certain medium is described by

$$\mathbf{E} = 25 \sin (2\pi \times 10^6 t - 6x) \,\mathbf{a}_z \,\text{V/m}$$

- (a) Determine the direction of wave propagation.
- (b) Compute the period T, the wavelength λ , and the velocity u.
- (c) Sketch the wave at t = 0, T/8, T/4, T/2.
- 10.2 (a) Derive eqs. (10.23) and (10.24) from eqs. (10.18) and (10.20).
 - (b) Using eq. (10.29) in conjunction with Maxwell's equations, show that

$$\eta = \frac{j\omega\mu}{\gamma}$$

- (c) From part (b), derive eqs. (10.32) and (10.33).
- 10.5 At 50 MHz, a lossy dielectric material is characterized by $\varepsilon = 3.6\varepsilon_0$, $\mu = 2.1\mu_0$, and $\sigma = 0.08$ S/m. If $\mathbf{E}_s = 6e^{-\gamma x} \mathbf{a}_z$ V/m, compute: (a) γ , (b) λ , (c) u, (d) η , (e) \mathbf{H}_s .

19.4 A lossy material has $\mu = 5\mu_0$, $\varepsilon = 2\varepsilon_0$. If at 5 MHz, the phase constant is 10 rad/m, cal-

- (a) The loss tangent
- (b) The conductivity of the material
- (c) The complex permittivity
- (d) The attenuation constant
- (e) The intrinsic impedance

A nonmagnetic medium has an intrinsic impedance 240 /30° Ω . Find its

- (a) Loss tangent
- (b) Dielectric constant
- (c) Complex permittivity
- (d) Attenuation constant at 1 MHz

10.5 The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by 18% every meter. If the wave operates at 10 MHz and the electric field leads the magnetic field by 24°, calculate: (a) the propagation constant, (b) the wavelength, (c) the skin depth, (d) the conductivity of the medium.

Sea water plays a vital role in the study of submarine communications. Assuming that for sea water, $\sigma = 4$ S/m, $\varepsilon_r = 80$, $\mu_r = 1$, and f = 100 MHz, calculate: (a) the phase velocity, (b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

10.2 In a certain medium with $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$,

$$\mathbf{H} = 12e^{-0.1y} \sin{(\pi \times 10^8 t - \beta y)} \, \mathbf{a}_x \, \text{A/m}$$

find: (a) the wave period T, (b) the wavelength λ , (c) the electric field E, (d) the phase difference between E and H.

10.9 In a medium,

$$\mathbf{E} = 16e^{-0.05x} \sin(2 \times 10^8 t - 2x) \,\mathbf{a}_z \,\text{V/m}$$

find: (a) the propagation constant, (b) the wavelength, (c) the speed of the wave, (d) the skin depth.

10.10 A uniform wave in air has

$$\mathbf{E} = 10\cos\left(2\pi \times 10^6 t - \beta z\right) \mathbf{a}_{y}$$

- (a) Calculate β and λ .
- (b) Sketch the wave at z = 0, $\lambda/4$.
- (c) Find H.

19.11 The magnetic field component of an EM wave propagating through a nonmagnetic medium $(\mu = \mu_0)$ is

$$H = 25 \sin (2 \times 10^8 t + 6x) a_y \text{ mA/m}$$

Determine:

- (a) The direction of wave propagation.
- (b) The permittivity of the medium.
- (c) The electric field intensity.

10.12 If $\mathbf{H} = 10 \sin(\omega t - 4z)\mathbf{a}_x$ mA/m in a material for which $\sigma = 0$, $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, calculate ω , λ , and \mathbf{J}_d .

10.13 A manufacturer produces a ferrite material with $\mu = 750\mu_o$, $\varepsilon = 5\varepsilon_o$, and $\sigma = 10^{-6}$ S/m at 10 MHz.

- (a) Would you classify the material as lossless, lossy, or conducting?
- (b) Calculate β and λ .
- (c) Determine the phase difference between two points separated by 2 m.
- (d) Find the intrinsic impedance.

*10.14 By assuming the time-dependent fields $\mathbf{E} = \mathbf{E}_0 e^{j(\mathbf{k} \cdot \mathbf{r} - \omega t)}$ and $\mathbf{H} = \mathbf{H}_0 e^{j(\mathbf{k} \cdot \mathbf{r} - \omega t)}$ where $\mathbf{k} = k_x \mathbf{a}_x + k_y \mathbf{a}_y + k_z \mathbf{a}_z$ is the wave number vector and $\mathbf{r} = x \mathbf{a}_x + y \mathbf{a}_y + z \mathbf{a}_z$ is the radius vector, show that $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ can be expressed as $\mathbf{k} \times \mathbf{E} = \mu \omega \mathbf{H}$ and deduce $\mathbf{a}_k \times \mathbf{a}_E = \mathbf{a}_H$.

10.15 Assume the same fields as in Problem 10.14 and show that Maxwell's equations in a source-free region can be written as

$$\mathbf{k} \cdot \mathbf{E} = 0$$

$$\mathbf{k} \cdot \mathbf{H} = 0$$

$$\mathbf{k} \times \mathbf{E} = \omega \mu \mathbf{H}$$

$$\mathbf{k} \times \mathbf{H} = -\omega \varepsilon \mathbf{E}$$

From these equations deduce

$$\mathbf{a}_k \times \mathbf{a}_E = \mathbf{a}_H$$
 and $\mathbf{a}_k \times \mathbf{a}_H = -\mathbf{a}_E$

10.16 The magnetic field component of a plane wave in a lossless dielectric is

$$H = 30 \sin (2\pi \times 10^8 t - 5x) \, a_z \, \text{mA/m}$$

- (a) If $\mu_r = 1$, find ε_r .
- (b) Calculate the wavelength and wave velocity.
- (c) Determine the wave impedance.
- (d) Determine the polarization of the wave.
- (e) Find the corresponding electric field component.
- (f) Find the displacement current density.

10.27 In a nonmagnetic medium,

$$\mathbf{E} = 50 \cos (10^9 t - 8x) \,\mathbf{a}_y + 40 \sin (10^9 t - 8x) \,\mathbf{a}_z \,\text{V/m}$$

find the dielectric constant ε_r and the corresponding **H**.

10.18 In a certain medium

$$\mathbf{E} = 10\cos\left(2\pi \times 10^7 t - \beta x\right)(\mathbf{a}_v + \mathbf{a}_z) \text{ V/m}$$

If
$$\mu = 50\mu_o$$
, $\varepsilon = 2\varepsilon_o$, and $\sigma = 0$, find β and **H**.

10.19 Which of the following media may be treated as conducting at 8 MHz?

- (a) Wet marshy soil ($\varepsilon = 15\varepsilon_0$, $\mu = \mu_0$, $\sigma = 10^{-2}$ S/m)
- (b) Intrinsic germanium ($\varepsilon = 16\varepsilon_0$, $\mu = \mu_0$, $\sigma = 0.025$ S/m)
- (c) Sea water ($\varepsilon = 81\varepsilon_0$, $\mu = \mu_0$, $\sigma = 25$ S/m)

Calculate the skin depth and the velocity of propagation for a uniform plane wave at frequency 6 MHz traveling in polyvinylchloride ($\mu_r = 1$, $\varepsilon_r = 4$, $\tan \theta_{\eta} = 7 \times 10^{-2}$).

10.21 A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/m at 10⁷ Hz and its magnitude is reduced by 60% for every 2 m traveled. Find the skin depth and speed of the wave.

10.22 (a) Determine the dc resistance of a round copper wire ($\sigma = 5.8 \times 10^7 \text{ S/m}$, $\mu_r = 1$, $\varepsilon_r = 1$) of radius 1.2 mm and length 600 m.

- (b) Find the ac resistance at 100 MHz.
- (c) Calculate the approximate frequency where dc and ac resistances are equal.

10.23 A 40-m-long aluminum ($\sigma = 3.5 \times 10^7$ S/m, $\mu_r = 1$, $\varepsilon_r = 1$) pipe with inner and outer radii 9 mm and 12 mm carries a total current of 6 sin 10^6 πt A. Find the skin depth and the effective resistance of the pipe.

19.24 Show that in a good conductor, the skin depth δ is always much shorter than the wavelength.

469

- Brass waveguides are often silver plated to reduce losses. If at least the thickness of silver ($\mu = \mu_0$, $\varepsilon = \varepsilon_0$, $\sigma = 6.1 \times 10^7$ S/m) must be 5δ , find the minimum thickness required for a waveguide operating at 12 GHz.
- 19.26 A uniform plane wave in a lossy nonmagnetic media has

$$\mathbf{E}_{s} = (5\mathbf{a}_{r} + 12\mathbf{a}_{v})\mathbf{e}^{-\gamma z}, \gamma = 0.2 + j3.4/m$$

- (a) Compute the magnitude of the wave at z = 4 m.
- (b) Find the loss in dB suffered by the wave in the interval 0 < z < 3 m.
- (c) Calculate the Poynting vector at z = 4, t = T/8. Take $\omega = 10^8$ rad/s.
- 10.27 In a nonmagnetic material,

$$\mathbf{H} = 30 \cos (2\pi \times 10^8 t - 6x) \,\mathbf{a}_{v} \,\mathrm{mA/m}$$

find: (a) the intrinsic impedance, (b) the Poynting vector, (c) the time-average power crossing the surface x = 1, 0 < y < 2, 0 < z < 3 m.

- *10.28 Show that eqs. (10.67) and (10.68) are equivalent.
- 19.29 In a transmission line filled with a lossless dielectric ($\varepsilon = 4.5\varepsilon_0$, $\mu = \mu_0$),

$$\mathbf{E} = \frac{40}{\rho} \sin (\omega t - 2z) \, \mathbf{a}_{\rho} \, \text{V/m}$$

find: (a) ω and **H**, (b) the Poynting vector, (c) the total time-average power crossing the surface z=1 m, 2 mm $< \rho < 3$ mm, $0 < \phi < 2\pi$.

10.30 (a) For a normal incidence upon the dielectric-dielectric interface for which $\mu_1 = \mu_2 = \mu_0$, we define R and T as the reflection and transmission coefficients for average powers, i.e., $P_{r,ave} = RP_{i,ave}$ and $P_{t,ave} = TP_{i,ave}$. Prove that

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 and $T = \frac{4n_1n_2}{(n_1 + n_2)^2}$

where n_1 and n_2 are the reflective indices of the media.

- (b) Determine the ratio n_1/n_2 so that the reflected and the transmitted waves have the same average power.
- 10.31 The plane wave $\mathbf{E} = 30\cos(\omega t z)\mathbf{a}_x$ V/m in air normally hits a lossless medium $(\mu = \mu_0, \varepsilon = 4\varepsilon_0)$ at z = 0. (a) Find Γ , τ , and s. (b) Calculate the reflected electric and magnetic fields.
- 10.32 A uniform plane wave in air with

$$\mathbf{H} = 4 \sin (\omega t - 5x) \, \mathbf{a}_{v} \, A/m$$

is normally incident on a plastic region with the parameters $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, and $\sigma = 0$. (a) Obtain the total electric field in air. (b) Calculate the time-average power density in the plastic region. (c) Find the standing wave ratio. 470

- 10.34 Region 1 is a lossless medium for which $y \ge 0$, $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, whereas region 2 is free space, $y \le 0$. If a plane wave $\mathbf{E} = 5\cos(10^8t + \beta y)\,\mathbf{a}_z\,\mathrm{V/m}$ exists in region 1, find: (a) the total electric field component of the wave in region 2, (b) the time-average Poynting vector in region 1, (c) the time-average Poynting vector in region 2.
- **10.35** A plane wave in free space $(z \le 0)$ is incident normally on a large block of material with $\varepsilon_r = 12$, $\mu_r = 3$, $\sigma = 0$ which occupies $z \ge 0$. If the incident electric field is

$$\mathbf{E} = 30\cos\left(\omega t - z\right)\mathbf{a}_{v} \,\mathrm{V/m}$$

find: (a) ω , (b) the standing wave ratio, (c) the reflected magnetic field, (d) the average power density of the transmitted wave.

10.36 A 30-MHz uniform plane wave with

$$\mathbf{H} = 10 \sin (\omega t + \beta x) \mathbf{a}_z \, \text{mA/m}$$

exists in region $x \ge 0$ having $\sigma = 0$, $\varepsilon = 9\varepsilon_0$, $\mu = 4\mu_0$. At x = 0, the wave encounters free space. Determine (a) the polarization of the wave, (b) the phase constant β , (c) the displacement current density in region $x \ge 0$, (d) the reflected and transmitted magnetic fields, and (e) the average power density in each region.

- **10.37** A uniform plane wave in air is normally incident on an infinite lossless dielectric material having $\varepsilon = 3\varepsilon_0$ and $\mu = \mu_0$. If the incident wave is $\mathbf{E}_i = 10 \cos{(\omega t z)} \, \mathbf{a}_y \, \text{V/m}$, find:
 - (a) λ and ω of the wave in air and the transmitted wave in the dielectric medium
 - (b) The incident \mathbf{H}_i field
 - (c) Γ and τ
 - (d) The total electric field and the time-average power in both regions

*10.38 A signal in air $(z \ge 0)$ with the electric field component

$$\mathbf{E} = 10 \sin (\omega t + 3z) \mathbf{a}_x \text{ V/m}$$

hits normally the ocean surface at z=0 as in Figure 10.19. Assuming that the ocean surface is smooth and that $\varepsilon=80\varepsilon_0$, $\mu=\mu_0$, $\sigma=4$ mhos/m in ocean, determine

- (a) ω
- (b) The wavelength of the signal in air
- (c) The loss tangent and intrinsic impedance of the ocean
- (d) The reflected and transmitted E field
- **10.39** Sketch the standing wave in eq. (10.87) at t = 0, T/8, T/4, 3T/8, T/2, and so on, where $T = 2\pi/\omega$.

Figure 10.19 For Problem 10.38.

ocean
$$\varepsilon = 80\varepsilon_{\rm o}, \ \mu = \mu_{\rm o}, \ \sigma = 4$$

- **10.40** A uniform plane wave is incident at an angle $\theta_i = 45^{\circ}$ on a pair of dielectric slabs joined together as shown in Figure 10.20. Determine the angles of transmission θ_{t1} and θ_{t2} in the slabs.
- 10.41 Show that the field

$$\mathbf{E}_s = 20 \sin(k_x x) \cos(k_y y) \mathbf{a}_z$$

where $k_x^2 + k_y^2 = \omega^2 \mu_o \varepsilon_o$, can be represented as the superposition of four propagating plane waves. Find the corresponding \mathbf{H}_s .

10.42 Show that for nonmagnetic dielectric media, the reflection and transmission coefficients for oblique incidence become

$$\Gamma_{\parallel} = \frac{\tan (\theta_t - \theta_i)}{\tan (\theta_t + \theta_i)}, \qquad \tau_{\parallel} = \frac{2 \cos \theta_i \sin \theta_t}{\sin (\theta_t + \theta_i) \cos (\theta_t - \theta_i)}$$

$$\Gamma_{\perp} = \frac{\sin (\theta_t - \theta_i)}{\sin (\theta_t + \theta_i)}, \qquad \tau_{\perp} = \frac{2 \cos \theta_i \sin \theta_t}{\sin (\theta_t + \theta_i)}$$

*10.43 A parallel-polarized wave in air with

$$\mathbf{E} = (8\mathbf{a}_y - 6\mathbf{a}_z) \sin(\omega t - 4y - 3z) \text{ V/m}$$

impinges a dielectric half-space as shown in Figure 10.21. Find: (a) the incidence angle θ_i , (b) the time average in air ($\mu = \mu_o$, $\varepsilon = \varepsilon_o$), (c) the reflected and transmitted **E** fields.

free space Figure 10.20 For Problem 10.40.

Figure 10.21 For Problem 10.43.

10.44 In a dielectric medium ($\varepsilon = 9\varepsilon_0$, $\mu = \mu_0$), a plane wave with

$$\mathbf{H} = 0.2 \cos (10^9 t - kx - k\sqrt{8}z) \,\mathbf{a}_{v} \,\mathrm{A/m}$$

is incident on an air boundary at z = 0, find

- (a) θ_r and θ_t
- (b) *k*
- (c) The wavelength in the dielectric and air
- (d) The incident E
- (e) The transmitted and reflected \mathbf{E}
- (f) The Brewster angle

*10.45 A plane wave in air with

$$\mathbf{E} = (8\mathbf{a}_x + 6\mathbf{a}_y + 5\mathbf{a}_z)\sin(\omega t + 3x - 4y) \, \text{V/m}$$

is incident on a copper slab in $y \ge 0$. Find ω and the reflected wave. Assume copper is a perfect conductor. (*Hint:* Write down the field components in both media and match the boundary conditions.)

10.46 A polarized wave is incident from air to polystyrene with $\mu = \mu_0$, $\varepsilon = 2.6\varepsilon$ at Brewster angle. Determine the transmission angle.