Linear Systems: Extras

Matrices

- 1. If the augmented matrix $\left[\mathbf{A}|\mathbf{b}\right]$ is reduced to the matrix $\left[\mathbf{E}|\mathbf{c}\right].$
 - (a) Is $[\mathbf{E}|\mathbf{c}]$ in row echelon form if \mathbf{E} is?
 - (b) If $[\mathbf{E}|\mathbf{c}]$ is in row echelon form, is \mathbf{E} also in row echelon form?
- 2. Reducing a matrix ${\bf A}$ to its reduced row echelon through row operations form reveals the relationship between the different columns of ${\bf A}$. Explain why the row operations on ${\bf A}$ leave the relationship between its columns unaffected.
- 3. Consider the following reduced row echelon form.

$$\mathbf{E_A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Is A unique? If it is, then find A. If it is not unique, (a) Explain why A is not; and (b) What additional information would you need to uniquely determine A?
- 4. Can a parabola $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$ pass through the points: $\{(0,1),(1,4),(2,11),(-1,2)\}$?
- 5. Explain why the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ cannot be inconsistent if $rank\left(\mathbf{A}\right) < n$.
- 6. Consider a homogeneous system of equations which has n unknowns and l free variables. What is rank of Δ ?
- 7. Can a linear system Ax = b have exactly 2 solutions? Explain you answer.
- 8. Consider a augmented matrix $[\mathbf{A}|\mathbf{b}]$ of a consistent system, with the number of equations greater than the number of unknowns, i.e. $m \geq n$. What will $\mathbf{E}_{\mathbf{A}}$ look like for a consistent system?
- 9. Explain how the ${f LU}$ factors of a matrix ${f A}$ can be used to determine ${f A}^{-1}$.
- 10. Consider two matrices $\mathbf{A} \in \mathbb{R}^{m \times p}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$. Prove that,

$$C([\mathbf{A}|\mathbf{B}]) = C(\mathbf{A}) + C(\mathbf{B})$$

- 11. Are the following statements true? Explain your answer.
 - (a) $C(\mathbf{AB}) \subseteq C(\mathbf{A})$
 - (b) $N(\mathbf{AB}) \supseteq C(\mathbf{B})$
- 12. Consider a set of vector $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$. Prove that the set $\mathbf{A}(B) = \{\mathbf{Ab}_1, \mathbf{Ab}_2, \dots, \mathbf{Ab}_n\}$ spans $C(\mathbf{AB})$.
- 13. Consider a consistent set of linear equations, $\mathbf{A}\mathbf{x} = \mathbf{b}$, and let $\mathbf{a} \in C(\mathbf{A}^T)$. Prove that $\mathbf{a}^T\mathbf{x}$ is constant for a all solutions x of the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- 14. If $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$ is a square matrix, with $N(\mathbf{A}_1) = C(\mathbf{A}_2^T)$. Then prove that \mathbf{A} is non-singular.
- 15. Prove that the rank of a matrix $\bf A$ is invariant under multiplication by a non-singular matrix.

Miscellaneous

16.

1

- 17. Prove that $\mathbf{A}^T \mathbf{A}$ is symmetric positive definite, if the columns of the \mathbf{A} are independent.
- 18. Demonstrate that a full rank, symmetric matrix **A** can be expressed as a sum of a series of simple rank one matrices of the form,

$$\mathbf{A} = \sum_{i=1}^n \mathbf{l}_i d_i \mathbf{l}_i^T$$

- 19. Show that the quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$ can be reduced to the form $\mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$, where $\tilde{\mathbf{A}} = \hat{\mathbf{A}}^T$.
- 20. Prove that $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ when \mathbf{A} is skew symmetric.
- 21. Consider a matrix ${\bf A}$ with m rows, ${\bf A}=\begin{bmatrix} \tilde{\bf a}_1^T\\ \tilde{\bf a}_2^T\\ \vdots\\ \tilde{\bf a}_m^T \end{bmatrix}$, where

 $ilde{\mathbf{a}}_i \in \mathbb{R}^n.$ If a new row $ilde{\mathbf{a}}_{m+1}^T$ is added to \mathbf{A} , how does $\mathbf{A}^T\mathbf{A}$ change?