ThinSat Program TSLPB Library 0.6.0

Generated by Doxygen 1.8.14

Contents

1	Twig	ıgs Spa	ce Lab Pa	yload Bo	ard Drive	er								1
	1.1	Basic l	Jsage					 	 	 	 	 		 1
	1.2	Installa	ation					 	 	 	 	 		 1
		1.2.1	Manual I	nstallation				 	 	 	 	 		 2
	1.3	Getting	Started					 	 	 	 	 		 2
		1.3.1	Example					 	 	 	 	 		 4
2	Clas	s Index												5
	2.1	Class I	List					 	 	 	 	 		 5
3	File	Index												7
	3.1	File Lis	st					 	 	 	 	 		 7
4	Clas	s Docu	mentation	1										9
	4.1	Thinsa	tPacket_t	Union Ref	erence .			 	 	 	 	 		 9
		4.1.1	Detailed	Descriptio	n			 	 	 	 	 		 9
	4.2	TSLPE	Class Re	ference				 	 	 	 	 		 9
		4.2.1	Detailed	Descriptio	n			 	 	 	 	 		 10
		4.2.2	Member	Function [Documer	ıtation		 	 	 	 	 		 10
			4.2.2.1	begin()				 	 	 	 	 		 11
			4.2.2.2	getMeml	3yte() .			 	 	 	 	 		 11
			4.2.2.3	isClearTo	Send()			 	 	 	 	 		 11
			4.2.2.4	pushDat	aToNSL()		 	 	 	 	 		 12
			4.2.2.5	putMeml	3yte() .			 	 	 	 	 		 12
			4.2.2.6	readAna	logSenso	or() .		 	 	 	 	 		 12
			4.2.2.7	readDigi ⁻	talSenso	r() .		 	 	 	 	 		 13
			4.2.2.8	readDigi	talSenso	rRaw())	 	 	 	 	 		 13
			4.2.2.9	readMen	nVar() .			 	 	 	 	 		 14
			4.2.2.10	sleepUnt	tilClearTo	Send(()	 	 	 	 	 		 14
			4.2.2.11	writeMer	nVar() .			 	 	 	 	 		 14
	4.3	UserDa	ataStruct_t	t Struct Re	eference			 	 	 	 	 		 15
		4.3.1	Detailed	Descriptio	n			 	 	 	 	 		 17

ii CONTENTS

5	File	Docum	entation	19
	5.1	MPU92	250_REGS.h File Reference	19
		5.1.1	Detailed Description	20
		5.1.2	Enumeration Type Documentation	20
			5.1.2.1 MPU9250_MAG_CONTROL_t	20
			5.1.2.2 MPU9250_MAG_REGISTER_t	21
	5.2	NSL_T	ThinSat.h File Reference	22
		5.2.1	Detailed Description	22
	5.3	ThinSa	at_DataPacket_generic.h File Reference	22
		5.3.1	Detailed Description	23
	5.4	TSLPE	3.cpp File Reference	23
		5.4.1	Detailed Description	23
	5.5	TSLPE	3.h File Reference	23
		5.5.1	Detailed Description	25
		5.5.2	Macro Definition Documentation	25
			5.5.2.1 LMA_TEMP_REG_UNUSED_LSBS	25
		5.5.3	Enumeration Type Documentation	25
			5.5.3.1 LM75A_REG	25
			5.5.3.2 TSLPB_AnalogSensor_t	26
			5.5.3.3 TSLPB_DigitalSensor_t	26
			5.5.3.4 TSLPB_I2CAddress_t	27
	5.6	VCSFA	A_ThinSat_DataPacket.h File Reference	27
		5.6.1	Detailed Description	27
Inc	dex			29

Chapter 1

Twiggs Space Lab Payload Board Driver

TSLPB is a driver class that can be instantiated and used to access the sensors and devices on the TSLPB V3 for the ThinSat program.

The driver sets up all the input and output pins required for accessing the analog sensors, and provides methods for reading both the analog and digital sensors.

1.1 Basic Usage

You will need to do the following to use this library:

- 1. Include TSLPB.h in your program.
- 2. Instantiate a TSLPB object
- 3. Run the TSLPB::begin() method

Once these steps are complete, you may call any of the public methods to interact with the TSL Payload Board.

1.2 Installation

Installing the library is easy using the Arduino IDE, which can be downloaded at $https://www.arduino. \leftarrow cc/en/Main/Software$

Once you have the Arduino IDE installed, use the menu and navigate to Sketch > Include Library > Manage Libraries...

This opens the Library Manager. Type "thinsat" into the search bar. Select the library, and click "Install"

Figure 1.1 Library Manager

1.2.1 Manual Installation

You can always download the latest version of the library as a zip file from $https://github.com/VCSFA-\leftarrow MARS/TSLPB/releases/latest$

Then use the Sketch > Include Library > Add Zip Library... feature of the Arduino IDE to install the library.

1.3 Getting Started

The TSLPB Library includes several sample sketches to help you get coding and illustrate some of the features.

- · EEPROM read and write to the onboard memory chip
- i2c_scanner find all I2C devices connected to the TSLPB
- serial_plot example of reading the accelerometer with live ouput plot
- simple a blank sketch with the library includes set up.
- · template a good starting point for developing your code
- · VCSFA ThinSat an example of the VCSFA ThinSat flight software

Open the serial_plot example in the Arduino IDE. File > Examples > ThinSat Program TSLPB Library > serial_plot

Plug your programming cable into the TSLPB diagnostic connector. Set the Arduino IDE port to use the programming cable with Tools > Port. Click the "Upload" button, which looks like an arrow pointing right (->)

1.3 Getting Started 3

Figure 1.2 Sketch compiled and uploaded

The example sketch will compile and upload to the board. When the upload completes, open the Serial Plotter (Tools > Serial Plotter) and set the baud rate to 9600, which is the default baud rate for the TSLPB diagnostic port.

The Serial Plotter will launch and begin graphing the values of the onboard gyroscope. Try moving the board around and watch how the plot changes.

Figure 1.3 Serial Plotter with Gyroscope data

1.3.1 Example

```
#include "TSLPB.h"

TSLBP tslpb;
ThinsatPacket_t missionData;

void setup() {
    tslpb.begin();
}

void loop() {
    uint16_t tslVolts = tslpb.readAnalogSensor(Voltage);
    uint16_t tslCurrent = tslpb.readAnalogSensor(Current);
    uint16_t tslTempExt = tslpb.readAnalogSensor(TempExt);

    uint16_t tslDTlRaw = tslpb.readTsLDigitalSensorRaw(DT1);
    double tslDT1C = tslpb.readTsLDigitalSensor(DT1);

    missionData.payloadData.solar = tslpb.readAnalogSensor(Solar);

    while (!tslpb.isClearToSend()) {
        delay(100);
    }

    tslpb.pushDataToNSL(missionData);
}
```

You probably noticed the "Voltage", "Current", etc arguments. The TSLPB driver has two enums that allow the client to call the read methods with human-readable code, and without worrying about keeping I2C addresses or managing low-level mux switching.

- TSLPB_AnalogSensor_t
- TSLPB_DigitalSensor_t

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ThinsatPacke	et_t	
	union of the UserDataStruct_t payloadData and a byte array that is used to send the user's ssion data to the NSL Mothership	9
TSLPB		
ber	e controller class for the TSL Payload Board. Create an instance of this class to use its mem- r functions for accessing the onboard analog and digital sensors. Methods for communicating the the NSL Mothership are also included	9
	·	3
UserDataStr	-	
Ag	generic data structure to hold any data the user intends to send back to Earth	15

6 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

MRHOOFO REOOK	
MPU9250_REGS.h	
Register map and configuration data for the MPU9250 IMU on the TSLPB V3	19
NSL_ThinSat.h	
Function prototypes, includes, and definitions for NSL to TSLPB Arduino interface	22
ThinSat_DataPacket_generic.h	
Defines the standard data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership. Users must define ThinSat_DataPacket _custom_h, write their own UserDataStruct_t definition, and include the ThinsatPacket_t union	
typedef	22
TSLPB.cpp	
Implementation of TSLPB interface for Arduino	23
TSLPB.h	
Function prototypes, includes, and definitions for TSLPB Arduino interface	23
VCSFA_ThinSat_DataPacket.h	
Defines the custom data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership	27

8 File Index

Chapter 4

Class Documentation

4.1 ThinsatPacket t Union Reference

A union of the UserDataStruct_t payloadData and a byte array that is used to send the user's mission data to the NSL Mothership.

```
#include <ThinSat_DataPacket_generic.h>
```

Public Attributes

- UserDataStruct_t payloadData
- byte NSLPacket [sizeof(UserDataStruct_t)]

4.1.1 Detailed Description

A union of the UserDataStruct_t payloadData and a byte array that is used to send the user's mission data to the NSL Mothership.

Warning

DO NOT MODIFY THIS UNION UNLESS YOU REALLY REALLY KNOW WHAT YOU ARE DOING. This datatype is used in the public method TSLPB::pushDataToNSL(ThinsatPacket_t data) and changing this union may break that functionality.

The documentation for this union was generated from the following file:

ThinSat_DataPacket_generic.h

4.2 TSLPB Class Reference

The controller class for the TSL Payload Board. Create an instance of this class to use its member functions for accessing the onboard analog and digital sensors. Methods for communicating with the NSL Mothership are also included.

```
#include <TSLPB.h>
```

10 Class Documentation

Public Member Functions

void begin ()

Initializes the TSLPB, starts the I2C bus, and configures the pins needed for reading the TSLPB analog sensors.

bool pushDataToNSL (ThinsatPacket_t data)

This function sends the user's payload data to NSL Mothership over the serial line. This function expects a ThinsatPacket_t union as an argument. That data type is defined in ThinSat_DataPacket.h, and the contents of the user data structure may be customized.

uint16_t readAnalogSensor (TSLPB_AnalogSensor_t sensorName)

This method returns the raw value from the specified analog sensor.

double readDigitalSensor (TSLPB DigitalSensor t sensor)

This API returns the process from the specified sensor as a double-precision floating point value in the appropriate units for the sensor.

uint16_t readDigitalSensorRaw (TSLPB_DigitalSensor_t sensor)

This API returns the raw value from the specified sensor. Handles endiannes and discarding unused bits.

uint8_t getMemByte (uint16_t reg)

This function reads data from the TSLPB EEPROM chip. This is used to retrieve data from nonvolatile storage. One byte is read from the specified register.

void putMemByte (uint16_t reg, uint8_t data)

This function writes data to the TSLPB EEPROM chip. This is used to store data in nonvolatile storage to allow persistance in the event of power loss. One byte is written to the specified register.

template<class TYPE >

void readMemVar (word reg, TYPE &result)

This function reads data from the TSLPB EEPROM chip. This is used to retrieve data from nonvolatile storage. The data argument will be filled with data from the EEPROM interpreted as data's typedef.

template < class TYPE >

void writeMemVar (word reg, TYPE varToWrite)

This function writes data to the TSLPB EEPROM chip. This is used to store data in nonvolatile storage to allow persistance in the event of power loss. The entire contents of the data argument will be written to the EEPROM.

void sleepUntilClearToSend ()

This function places the TSLPB into a low power sleep mode until the NSL "Mothership" signals that it is ready to receive data on the NSL Bus.

• bool isClearToSend ()

This function returns true if the NSL Mothership is ready to receive data over the serial line.

Public Attributes

SoftwareSerial NSLbus

NSL Software Serial bus object.

bool isMagnetometerOverflow = false

Overflow status of magnetometer registers.

4.2.1 Detailed Description

The controller class for the TSL Payload Board. Create an instance of this class to use its member functions for accessing the onboard analog and digital sensors. Methods for communicating with the NSL Mothership are also included.

4.2.2 Member Function Documentation

4.2.2.1 begin()

```
void TSLPB::begin ( )
```

Initializes the TSLPB, starts the I2C bus, and configures the pins needed for reading the TSLPB analog sensors.

Call this function in the setup() function as follows:

```
void setup() {
    tslpb.begin();
}
```

Note

This function changes the state of 4 I/O pins:

PIN	MODE
TSL_ADC	Analog Input
TSL_MUX_A	Digital Output
TSL_MUX_B	Digital Output
TSL_MUX_C	Digital Output
TSL_NSL_BUS_STATUS_PIN	Digital Input

4.2.2.2 getMemByte()

This function reads data from the TSLPB EEPROM chip. This is used to retrieve data from nonvolatile storage. One byte is read from the specified register.

Parameters

	in	reg	a two-byte (word) unsigned integer	1
--	----	-----	------------------------------------	---

Returns

data a single byte. May be signed, unsigned, char, etc.

4.2.2.3 isClearToSend()

```
bool TSLPB::isClearToSend ( )
```

This function returns true if the NSL Mothership is ready to receive data over the serial line.

Returns

true or false

12 Class Documentation

4.2.2.4 pushDataToNSL()

This function sends the user's payload data to NSL Mothership over the serial line. This function expects a ThinsatPacket_t union as an argument. That data type is defined in ThinSat_DataPacket.h, and the contents of the user data structure may be customized.

Parameters

in	data	A ThinsatPacket_t union.
out	bool	Successfull transmission status

Returns

nominal transmission: true or false

4.2.2.5 putMemByte()

This function writes data to the TSLPB EEPROM chip. This is used to store data in nonvolatile storage to allow persistance in the event of power loss. One byte is written to the specified register.

Parameters

in	reg	a two-byte (word) unsigned integer
in	data	a single byte. May be signed, unsigned, char, etc.

Note

This method will print an error message to the diagnostic serial port if the write fails.

4.2.2.6 readAnalogSensor()

This method returns the raw value from the specified analog sensor.

Parameters

	I	
in	sensorName	: TSLPB_AnalogSensor_t Sensor Name enum

4.2 TSLPB Class Reference 13

Returns

a uint16_t containing raw value of the Arduino Pro Mini's ADC.

Note

The TSLPB uses a 10-bit Analog-to-Digital Converter. The 6 MSbs of the return value will always be 0.

4.2.2.7 readDigitalSensor()

This API returns the process from the specified sensor as a double-precision floating point value in the appropriate units for the sensor.

Parameters

LPB_DigitalSensor_t Sensor Name Selection En	sensorName	in
--	------------	----

Returns

a value in the appropriate units for the sensor as a double precision floating point value.

4.2.2.8 readDigitalSensorRaw()

This API returns the raw value from the specified sensor. Handles endiannes and discarding unused bits.

Parameters

```
in sensorName: TSLPB_DigitalSensor_t Sensor Name Enum
```

Returns

a uint16 t containing the bit pattern from the sensor's register.

- < I2C buffer for read function
- < return value, after endian correction

14 Class Documentation

4.2.2.9 readMemVar()

This function reads data from the TSLPB EEPROM chip. This is used to retrieve data from nonvolatile storage. The data argument will be filled with data from the EEPROM interpreted as data's typedef.

Parameters

in	reg	a two-byte (word) unsigned integer
out	data	any type is allowed. assigned a value by readMemVar()

Note

This method will handle any data type and write the appropriate number of registers on the EEPROM. Care must be taken to ensure you start at the correct register.

4.2.2.10 sleepUntilClearToSend()

```
void TSLPB::sleepUntilClearToSend ( )
```

This function places the TSLPB into a low power sleep mode until the NSL "Mothership" signals that it is ready to receive data on the NSL Bus.

Warning

This function is not implemented

4.2.2.11 writeMemVar()

This function writes data to the TSLPB EEPROM chip. This is used to store data in nonvolatile storage to allow persistance in the event of power loss. The entire contents of the data argument will be written to the EEPROM.

Parameters

in	reg	a two-byte (word) unsigned integer
in	data	any type is allowed.

Note

This method will handle any data type and write the appropriate number of registers on the EEPROM. Care must be taken to ensure you do not overwrite existing data.

The documentation for this class was generated from the following files:

- TSLPB.h
- TSLPB.cpp

4.3 UserDataStruct_t Struct Reference

A generic data structure to hold any data the user intends to send back to Earth.

```
#include <ThinSat_DataPacket_generic.h>
```

Public Attributes

```
    char header [NSL_PACKET_HEADER_LENGTH]

    int8_t b1

      b1 (Generic packet byte 1 of 35)

    int8_t b2

      b2 (Generic packet byte 2 of 35)

    int8_t b3

      b3 (Generic packet byte 3 of 35)

    int8_t b4

      b4 (Generic packet byte 4 of 35)
• int8_t b5
      b5 (Generic packet byte 5 of 35)
• int8 t b6
      b6 (Generic packet byte 6 of 35)

    int8_t b7

      b7 (Generic packet byte 7 of 35)

    int8_t b8

      b8 (Generic packet byte 8 of 35)

    int8_t b9

      b9 (Generic packet byte 9 of 35)
• int8_t b10
      b10 (Generic packet byte 10 of 35)

    int8_t b11

      b11 (Generic packet byte 11 of 35)

    int8_t b12

      b12 (Generic packet byte 12 of 35)

    int8 t b13

      b13 (Generic packet byte 13 of 35)

    int8 t b14

      b14 (Generic packet byte 14 of 35)

    int8 t b15
```

b15 (Generic packet byte 15 of 35)

16 Class Documentation

```
• int8_t b16
      b16 (Generic packet byte 16 of 35)

    int8_t b17

      b17 (Generic packet byte 17 of 35)

    int8_t b18

      b18 (Generic packet byte 18 of 35)

    int8_t b19

      b19 (Generic packet byte 19 of 35)
• int8 t b20
      b20 (Generic packet byte 20 of 35)
• int8 t b21
      b21 (Generic packet byte 21 of 35)

    int8_t b22

      b22 (Generic packet byte 22 of 35)

    int8_t b23

      b23 (Generic packet byte 23 of 35)

    int8_t b24

      b24 (Generic packet byte 24 of 35)

    int8_t b25

      b25 (Generic packet byte 25 of 35)

    int8_t b26

      b26 (Generic packet byte 26 of 35)

    int8 t b27

      b27 (Generic packet byte 27 of 35)

    int8_t b28

      b28 (Generic packet byte 28 of 35)

    int8_t b29

      b29 (Generic packet byte 29 of 35)
• int8_t b30
      b30 (Generic packet byte 30 of 35)

    int8_t b31

      b31 (Generic packet byte 31 of 35)

    int8_t b32

      b32 (Generic packet byte 32 of 35)
• int8 t b33
      b33 (Generic packet byte 33 of 35)
• int8 t b34
      b34 (Generic packet byte 34 of 35)

    int8_t b35

      b35 (Generic packet byte 35 of 35)

    int16_t quatw

      1 - 2 (value from -4000 to 4000) 4.000 (unitless)

    int16_t quatx

      3 - 4 (value from -1000 to 1000) 1.000 (unitless)

    int16_t quaty

      5 - 6 (value from -1000 to 1000) 1.000 (unitless)

    int16_t quatz

      7 - 8 (value from -1000 to 1000) 1.000 (unitless)

    int16 t bnomagx

      9 - 10 (value from -20480 to 20470) 2047.0 uT (from BNO)
```

int16_t bnomagy

```
11 - 12 (value from -20480 to 20470) 2047.0 uT
```

int16_t bnomagz

13 - 14 (value from -20480 to 20470) 2047.0 uT

uint8 t bnoCal

15 (sys, gyro, accel, mag) 01010101b

unsigned long bmePres

16 - 19 (values from 0 to 1010000) 101000.0 Pa

int16 t bmeTemp

20 - 21 (values from -1000 to 1000) 100.0 C

uint16 t tslTempExt

22 - 23 (10 bits 0-1023) ADC Raw Counts

uint16_t tslVolts

24 - 25 (10 bits 0-1023) ADC Raw Counts

uint16_t tslCurrent

26 - 27 (10 bits 0-1023) ADC Raw Counts

int16_t tslMagXraw

28 - 29 Raw value (2's compliment form) -0x7FF8 to 0x7FF8

· int16 t tslMagYraw

30 - 31 Raw value (2's compliment form) -0x7FF8 to 0x7FF8

· int16 ttslMagZraw

32 - 33 Raw value (2's compliment form) -0x7FF8 to 0x7FF8

uint16_t solar

34 - 35 (10 bits 0-1023) ADC Raw Counts

4.3.1 Detailed Description

A generic data structure to hold any data the user intends to send back to Earth.

A user-customizable structure to hold any data the user intends to send back to Earth.

Note

This is a sample UserDataStruct_t. It was developed to be used by ThinSat participants who do not want to make their own UserDataStruct_t. Each field is simply the byte position (1-based) from 1 to 35. Users will need to split multi-byte data appropriately and will need to type cast their data when storing it in this structure. We recommend adding comments that show the expected ranges and units of any data being put into a field. This will ensure that you can translate the data later.

Warning

The struct must be NSL_PACKET_SIZE bytes in total size. The first member must always be called "header" and have a size of NSL_PACKET_HEADER_LENGTH

Note

This is a sample <code>UserDataStruct_t</code>. It was developed for the VCSFA ThinSat custom payload. Some of the fields are for external sensors and some of the fields are for <code>TSLPB</code> sensors.

We recommend adding comments that show the expected ranges and units of any data being put into a field. This will ensure that you can translate the data later.

Warning

The struct must be NSL_PACKET_SIZE bytes in total size. The first member must always be called "header" and have a size of NSL_PACKET_HEADER_LENGTH

The documentation for this struct was generated from the following files:

- ThinSat_DataPacket_generic.h
- · VCSFA ThinSat DataPacket.h

18 Class Documentation

Chapter 5

File Documentation

5.1 MPU9250_REGS.h File Reference

Register map and configuration data for the MPU9250 IMU on the TSLPB V3.

Macros

- #define GYRO_FULL_SCALE_250_DPS 0x00
 Gyroscope range parameter.
- #define GYRO_FULL_SCALE_500_DPS 0x08

Gyroscope range parameter.

#define GYRO_FULL_SCALE_1000_DPS 0x10

Gyroscope range parameter.

#define GYRO_FULL_SCALE_2000_DPS 0x18

Gyroscope range parameter.

• #define ACC_FULL_SCALE_2_G 0x00

Accelerometer range parameter.

• #define ACC_FULL_SCALE_4_G 0x08

Accelerometer range parameter.

• #define ACC_FULL_SCALE_8_G 0x10

Accelerometer range parameter.

• #define ACC_FULL_SCALE_16_G 0x18

Accelerometer range parameter.

• #define MAG_MAX_BYTE_VALUE 0x7FF8

Max register for scaling.

• #define MAG_MAX_VALUE_FLOAT 4912

in units of uT for scaling

20 **File Documentation**

Enumerations

```
    enum MPU9250 TEMP REGISTER t { MPU9250 TEMP OUT MSB = 0x41, MPU9250 TEMP OUT L ←

    SB = 0x42
   enum {
    MPU9250 ACCEL XOUT MSB = 0x3B, MPU9250 ACCEL XOUT LSB = 0x3C, MPU9250 ACCEL Y↔
    OUT_MSB = 0x3D, MPU9250 ACCEL_YOUT_LSB = 0x3E,
    MPU9250 ACCEL ZOUT MSB = 0x3F, MPU9250 ACCEL ZOUT LSB = 0x40, MPU9250 ACCEL SE↔
    LF TEST X = 0x0D, MPU9250 ACCEL SELF TEST Y = 0x0E,
    MPU9250_ACCEL_SELF_TEST_Z = 0x0F }

    enum MPU9250 GYRO REGISTER t {

    MPU9250 GYRO XOUT MSB = 0x43, MPU9250 GYRO XOUT LSB = 0x44, MPU9250 GYRO YOUT ←
     MSB = 0x45, MPU9250 GYRO YOUT LSB = 0x46,
    MPU9250 GYRO ZOUT MSB = 0x47, MPU9250 GYRO ZOUT LSB = 0x48, MPU9250 GYRO SELF↔
     TEST X = 0x00, MPU9250_GYRO_SELF_TEST_Y = 0x01,
    MPU9250 GYRO SELF TEST Z = 0x02

    enum MPU9250 MAG REGISTER t {

    MPU9250_MAG_REG_DEVICE_ID = 0x00, MPU9250_MAG_REG_INFORMATION = 0x01, MPU9250_MAG_REG_STATUS_
    = 0x02, MPU9250_MAG_REG_X_DATA_LSB = 0x03,
    MPU9250 MAG REG X DATA MSB = 0x04, MPU9250 MAG REG Y DATA LSB = 0x05, MPU9250 MAG REG Y DATA
    = 0x06, MPU9250_MAG_REG_Z_DATA_LSB = 0x07,
    MPU9250_MAG_REG_Z_DATA_MSB = 0x08, MPU9250_MAG_REG_STATUS_2 = 0x09, MPU9250_MAG_REG_CONTROL
    = 0x0A, MPU9250_MAG_REG_SELF_TEST = 0x0C,
    MPU9250 MAG REG I2C DISABLE = 0x0F, MPU9250 MAG REG X SENSITIVITY = 0x10, MPU9250 MAG REG Y SEN
    = 0x11, MPU9250 MAG REG Z SENSITIVITY = 0x12 }

    enum MPU9250 MAG CONTROL t {

    MPU9250 MAG STATUS 1 DATA READY BIT = 0x00, MPU9250 REG INT PIN BYPASS = 0x37,
    MPU9250 PASSTHROUGH ON = 0x02, MPU9250 PASSTHROUGH OFF = 0x00,
    MAG MODE SINGLE MEAS = 0b0001, MAG MODE CONTINUOUS 8HZ = 0b0010, MAG MODE CONTINUOUS 100HZ
    = 0b0011, MAG MODE POWER DOWN = 0b0000,
    MAG MODE SELF TEST = 0b1000, MAG MODE BITMASK = 0x0F, MAG MODE 14 BIT = 0x00,
    MAG MODE 16 BIT = 0x10,
    MAG_MASK_DATA_OVERRUN = 0x02, MAG_MASK_DATA_READY = 0x01, MAG_MASK_DATA_OVERFLOW
    = 0x08, MAG MASK DATA BIT RESOLUTION = 0x10 }
Variables
   enum { ... } MPU9250_ACCEL_REGISTER_t
5.1.1 Detailed Description
Register map and configuration data for the MPU9250 IMU on the TSLPB V3.
Author
    Nicholas Counts
Date
    06/19/18
```

5.1.2 Enumeration Type Documentation

5.1.2.1 MPU9250 MAG CONTROL t

enum MPU9250_MAG_CONTROL_t

Enumerator

MPU9250_REG_INT_PIN_BYPASS	READ/WRITE: Allow passthrough mode.
MPU9250_PASSTHROUGH_ON	When asserted, the i2c_master interface pins go into 'bypass
	mode' when the i2c master interface is disabled. The pins will float
	high due to the internal pull-up if not enabled and the i2c master
	interface is disabled.
MPU9250_PASSTHROUGH_OFF	& with current register
MAG_MODE_SINGLE_MEAS	Single Measurement Mode.
MAG_MODE_CONTINUOUS_8HZ	Continuous register update mode (8 Hz)
MAG_MODE_CONTINUOUS_100HZ	Continuous register update mode (100 Hz)
MAG_MODE_POWER_DOWN	Low power standby mode.
MAG_MODE_SELF_TEST	Perform a self test with internal magnetic field generator.
MAG_MODE_BITMASK	bit mask for mode-setting register
MAG_MODE_14_BIT	bit 4 off for 14-bit output
MAG_MODE_16_BIT	bit 4 on for 16-bit output
MAG_MASK_DATA_OVERRUN	ST1 bit mask for data overrun.
MAG_MASK_DATA_READY	ST1 bit mask for data ready.
MAG_MASK_DATA_OVERFLOW	ST2 bit mask for "Magnetic sensor overflow occurred" - true if true.
MAG_MASK_DATA_BIT_RESOLUTION	ST2 bit mask: 0 if 14-bit output, 1 if 16-bit output.

$5.1.2.2 \quad MPU9250_MAG_REGISTER_t$

enum MPU9250_MAG_REGISTER_t

Enumerator

MPU9250_MAG_REG_DEVICE_ID	READ: Device ID.
MPU9250_MAG_REG_INFORMATION	READ: Information.
MPU9250_MAG_REG_STATUS_1	READ: Data status.
MPU9250_MAG_REG_X_DATA_LSB	READ: X-axis data (LSB)
MPU9250_MAG_REG_X_DATA_MSB	READ: X-axis data (MSB)
MPU9250_MAG_REG_Y_DATA_LSB	READ: Y-axis data (LSB)
MPU9250_MAG_REG_Y_DATA_MSB	READ: Y-axis data (MSB)
MPU9250_MAG_REG_Z_DATA_LSB	READ: Z-axis data (LSB)
MPU9250_MAG_REG_Z_DATA_MSB	READ: Z-axis data (MLSB)
MPU9250_MAG_REG_STATUS_2	READ: Data Status.
MPU9250_MAG_REG_CONTROL	READ/WRITE: Mode Setting.
MPU9250_MAG_REG_SELF_TEST	READ/WRITE:
MPU9250_MAG_REG_I2C_DISABLE	READ/WRITE:
MPU9250_MAG_REG_X_SENSITIVITY	READ:
MPU9250_MAG_REG_Y_SENSITIVITY	READ:
MPU9250_MAG_REG_Z_SENSITIVITY	READ:

22 File Documentation

5.2 NSL_ThinSat.h File Reference

Function prototypes, includes, and definitions for NSL to TSLPB Arduino interface.

Macros

• #define NSL PACKET SIZE 38

Total bytes in the TSL Payload Packet.

#define NSL_PACKET_HEADER_LENGTH 3

Total Bytes.

#define NSL_PACKET_HEADER {0x50, 0x50, 0x50}

The 3 byte preabmpe to NSL Payload Packets.

#define NSL_BAUD_RATE 38400

From ETSat_Payload_ICD_v5.9.pdf page 10.

- #define NSL_SERIAL_ACK {0xAA, 0x05, 0x00}
- #define NSL_SERIAL_NAK {0xAA, 0x05, 0xFF}
- #define NSL SERIAL READY LOW

The NSL Mothership is able to receive a payload data packet.

• #define NSL_SERIAL_BUSY HIGH

The NSL Mothership is unable to receive a payload data packet.

5.2.1 Detailed Description

Function prototypes, includes, and definitions for NSL to TSLPB Arduino interface.

Author

Nicholas Counts

Version

0.6.0

Date

06/12/18

This header is used by TSLPB.h and TSLPB.cpp to define the interface to the NSL Mothership.

5.3 ThinSat_DataPacket_generic.h File Reference

Defines the standard data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership. Users must define ThinSat_DataPacket_custom_h, write their own UserDataStruct_t definition, and include the ThinsatPacket_t union typedef.

```
#include "NSL_Thinsat.h"
```

Classes

struct UserDataStruct t

A generic data structure to hold any data the user intends to send back to Earth.

· union ThinsatPacket_t

A union of the <u>UserDataStruct_t</u> payloadData and a byte array that is used to send the user's mission data to the NSL Mothership.

5.3.1 Detailed Description

Defines the standard data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership. Users must define ThinSat_DataPacket_custom_h, write their own UserDataStruct_t definition, and include the ThinsatPacket_t union typedef.

Author

Nicholas Counts

Date

06/20/18

5.4 TSLPB.cpp File Reference

Implementation of TSLPB interface for Arduino.

```
#include "TSLPB.h"
```

5.4.1 Detailed Description

Implementation of TSLPB interface for Arduino.

Author

Nicholas Counts

Date

05/15/19

5.5 TSLPB.h File Reference

Function prototypes, includes, and definitions for TSLPB Arduino interface.

```
#include "WProgram.h"
#include "avr/sleep.h"
#include "Wire.h"
#include <SoftwareSerial.h>
#include "NSL_ThinSat.h"
#include "ThinSat_DataPacket_generic.h"
#include "MPU9250_REGS.h"
```

24 File Documentation

Classes

· class TSLPB

The controller class for the TSL Payload Board. Create an instance of this class to use its member functions for accessing the onboard analog and digital sensors. Methods for communicating with the NSL Mothership are also included.

Macros

```
    #define TSL DIAGNOSTIC BAUD 9600
```

TSLPB diagnostic serial port baud rate.

#define TSL_NSL_BUS_STATUS_PIN 4

NSL Serial Busy Line monitoring pin.

• #define TSL_NSL_BUS_RX_PIN 3

Pin for software serial connectino to NSL Serial Bus.

• #define TSL NSL BUS TX PIN 5

Pin for software serial connectino to NSL Serial Bus.

#define TSL ADC A7

ADC reading the MUX_Output.

• #define TSL_MUX_A 7

Mux A - TSLPB pin number.

• #define TSL MUX B 8

Mux B - TSLPB pin number.

#define TSL_MUX_C 9

Mux C - TSLPB pin number.

• #define TSL_MUX_RESPONSE_TIME 10

10 miliseconds to change

#define TSL_SENSOR_READY_TIMEOUT 100

number of milliseconds to wait for an I2C device to become ready

• #define LMA_TEMP_REG_UNUSED_LSBS 5

TSLPB Digital Temperature Sensor (LMA75A) Macros.

#define LMA_TEMP_REG_SIGN_BIT 9

The bit that contains indicates the sign. 0-based.

• #define LMA TEMP REG DEGREES PER LSB 0.125

Temperature resolution in ℃ per LSb.

Enumerations

```
    enum TSLPB_AnalogSensor_t {
        Solar = 0b000, IR = 0b001, TempInt = 0b010, TempExt = 0b011,
        Current = 0b100, Voltage = 0b101 }
        TSLPB Analog Sensor Selection Enum.
    enum TSLPB_I2CAddress_t {
        DT1_ADDRESS = 0x4A, DT2_ADDRESS = 0x4C, DT3_ADDRESS = 0x4D, DT4_ADDRESS = 0x48,
        DT5_ADDRESS = 0x49, DT6_ADDRESS = 0x4B, IMU_ADDRESS = 0x69, MAG_ADDRESS = 0x0C,
        MEM_ADDRESS = 0x50 }
```

TSLPB Digital Sensor Address enum. Used by TSLPB private methods to communicate with the digital sensors over I2C.

```
    enum TSLPB_DigitalSensor_t {
        DT1, DT2, DT3, DT4,
        DT5, DT6, Accelerometer_x, Accelerometer_y,
        Accelerometer_z, Gyroscope_x, Gyroscope_z,
        Magnetometer_x, Magnetometer_y, Magnetometer_z, IMU_Internal_Temp }
        TSLPB Digital Sensor selection Enum. Used as arguments for TSLPB::readDigitalSensor() and TSLPB::readDigitalSensorRaw()
    enum LM75A_REG {
        LM75A_TEMPERATURE = 0x0, LM75A_CONFIGURATION = 0x1, LM75A_T_HYST = 0x2, LM75A_T_OS = 0x3,
        LM75A_PRODUCT_ID = 0x7 }
        TSLPB Digital Temperature Sensor (LMA75A) Register Selection Enum.
```

5.5.1 Detailed Description

Function prototypes, includes, and definitions for TSLPB Arduino interface.

Author

Nicholas Counts

Version

0.6.0

Date

06/12/18

5.5.2 Macro Definition Documentation

```
5.5.2.1 LMA_TEMP_REG_UNUSED_LSBS
```

```
#define LMA_TEMP_REG_UNUSED_LSBS 5
```

TSLPB Digital Temperature Sensor (LMA75A) Macros.

The number of bits to be discarded (from LSb)

5.5.3 Enumeration Type Documentation

5.5.3.1 LM75A_REG

```
enum LM75A_REG
```

TSLPB Digital Temperature Sensor (LMA75A) Register Selection Enum.

26 File Documentation

Enumerator

LM75A_TEMPERATURE	0x00 Read only
LM75A_CONFIGURATION	0x01 Read/Write
LM75A_T_HYST	0x02 Read/Write
LM75A_T_OS	0x03 Read/Write
LM75A_PRODUCT_ID	0x07 Read only

5.5.3.2 TSLPB_AnalogSensor_t

enum TSLPB_AnalogSensor_t

TSLPB Analog Sensor Selection Enum.

Enumerator

Solar	0b000 (Solar Sensor)
IR	0b001 (IR)
TempInt	0b010 (Temp Int)
TempExt	0b011 (Temp Ext)
Current	0b100 (Current)
Voltage	0b101 (Vcc)

5.5.3.3 TSLPB_DigitalSensor_t

enum TSLPB_DigitalSensor_t

 $TSLPB\ Digital\ Sensor\ selection\ Enum.\ Used\ as\ arguments\ for\ TSLPB::readDigital\ Sensor()\ and\ TSLPB::readDigital\ Sensor\ Raw()$

Enumerator

DT1	Select LM75A DT1.
DT2	Select LM75A DT2.
DT3	Select LM75A DT3.
DT4	Select LM75A DT4.
DT5	Select LM75A DT5.
DT6	Select LM75A DT6.
Accelerometer_x	Select MPU-9250 Accelerometer x-axis.
Accelerometer_y	Select MPU-9250 Accelerometer y-axis.
Accelerometer_z	Select MPU-9250 Accelerometer z-axis.
Gyroscope_x	Select MPU-9250 Gyroscope x-axis.
Gyroscope_y	Select MPU-9250 Gyroscope y-axis.
Gyroscope_z	Select MPU-9250 Gyroscope z-axis.
Magnetometer_x	Select MPU-9250 Magnetometer x-axis.
Magnetometer_y	Select MPU-9250 Magnetometer y-axis.
Magnetometer_z	Select MPU-9250 Magnetometer z-axis.
IMU_Internal_Temp	Select MPU-9250 Internal Temperature.

5.5.3.4 TSLPB I2CAddress t

```
enum TSLPB_I2CAddress_t
```

TSLPB Digital Sensor Address enum. Used by TSLPB private methods to communicate with the digital sensors over I2C.

Note

May be used by client code to access any of the I2C devices on the TSLPB. (with caution!)

Enumerator

DT1_ADDRESS	LM75A.
DT2_ADDRESS	LM75A.
DT3_ADDRESS	LM75A.
DT4_ADDRESS	LM75A.
DT5_ADDRESS	LM75A.
DT6_ADDRESS	LM75A.
IMU_ADDRESS	MPU-9250.
MAG_ADDRESS	MAGNETOMETER I2C Address (slave on the MPU-9250)
MEM_ADDRESS	EEPROM I2C Address for the Microchip 24LC256.

5.6 VCSFA_ThinSat_DataPacket.h File Reference

Defines the custom data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership.

```
#include "NSL_ThinSat.h"
```

Classes

struct UserDataStruct_t

A generic data structure to hold any data the user intends to send back to Earth.

5.6.1 Detailed Description

Defines the custom data structure used to store the user's payload data, and the union that is used to transmit the data to the NSL Mothership.

Author

Nicholas Counts

Date

06/20/18

28 File Documentation

Index

begin TSLPB, 10	TS
getMemByte TSLPB, 11	TS
isClearToSend TSLPB, 11	
LM75A_REG TSLPB.h, 25 LMA_TEMP_REG_UNUSED_LSBS TSLPB.h, 25	
MPU9250_MAG_CONTROL_t MPU9250_REGS.h, 20 MPU9250_MAG_REGISTER_t MPU9250_REGS.h, 21 MPU9250_REGS.h, 19 MPU9250_MAG_CONTROL_t, 20 MPU9250_MAG_REGISTER_t, 21	Th Th Us
NSL_ThinSat.h, 22	wr
pushDataToNSL TSLPB, 11 putMemByte TSLPB, 12	
readAnalogSensor TSLPB, 12 readDigitalSensor TSLPB, 13 readDigitalSensorRaw TSLPB, 13 readMemVar TSLPB, 13	
sleepUntilClearToSend TSLPB, 14	
TSLPB.cpp, 23 TSLPB.h, 23 LM75A_REG, 25 LMA_TEMP_REG_UNUSED_LSBS, 25 TSLPB_AnalogSensor_t, 26 TSLPB_DigitalSensor_t, 26 TSLPB_I2CAddress_t, 27 TSLPB_AnalogSensor_t TSLPB_h, 26 TSLPB_DigitalSensor_t	

```
TSLPB.h, 26
SLPB_I2CAddress_t
  TSLPB.h, 27
SLPB, 9
  begin, 10
  getMemByte, 11
  isClearToSend, 11
  pushDataToNSL, 11
  putMemByte, 12
  readAnalogSensor, 12
  readDigitalSensor, 13
  readDigitalSensorRaw, 13
  readMemVar, 13
  sleepUntilClearToSend, 14
  writeMemVar, 14
ninSat_DataPacket_generic.h, 22
ninsatPacket_t, 9
serDataStruct_t, 15
CSFA_ThinSat_DataPacket.h, 27
riteMemVar
  TSLPB, 14
```