CMM HW5

Xuanhao Lin

December 3 2023

1 The Ising Model

1.1 Part 1

Figure 1: M vs. Temperature

This part requires to plot magnetization M vs. Temperature T. For simplification, the Boltzmann constant k_B is set to be 1. Given that J=1.5, the analytical solution of the critical temperature of the Ising model should be $T_c=3.402$. To equilibrate a system with a size of $n\times n$, $10000n^2$ Monte Carlo sweeps are needed (very heavy computation). Figure 1 is the plot generated by Metropolis-Hastings algorithm. We can find that the T_c of the system approximately equals to 3.402.

1.2 Part 2

Theoretically, the maximum heat capacity C_{max} will appear at T_c . Due to the heavy computation of the large system (e.g. n=100), I only equilibrate the system at theoretical $T_c=3.402$ to find C_{max} . I haven't get the answer of the system with size of 200 and 500, since these sizes broke my PC system. The result is shown as Figure 2.

Figure 2: C_{max}/N vs. n

Figure 3: C/N vs. Temperature at n=5 $\,$

Figure 4: C/N vs. Temperature at n=10 $\,$

However, the results look not convincing. Additionally, there are some result of C/N vs. T for systems with small sizes (Figure 3, Figure 4).