

MV.

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO FACULTAD DE INGENIERIA

Fundamentos de Energía Nuclear

Profesor: M.C. Edgar Salazar

Capitulo 2, Tarea 1

Nombre del alumno

1 Valor 10 puntos : Cuantos neutrones y protones se encuentran en el núcleo de los siguientes átomos: (a) ⁷ Li, (b) ²⁴ Mg, (c) ¹³⁵ Xe, (d) ²⁰⁹ Bi, (e) ²²² Rn ?
2 Valor 20 puntos : La fisión del núcleo de ²³⁵ U libera aproximadamente 200 MeV. Cuanta energía es liberada por fisión de 1 g de ²³⁵ U ? (Calcularlo en kilowatt-hora y megawatt-día).
3 Valor 20 puntos: a) Comparar el radio nuclear y la densidad del núcleo del ¹ H y del ²³⁵ U (ver sección 2.4).
b) ¿Cuál es la proporción del espacio total del átomo de aluminio ocupádo por el núcleo (la densidad del aluminio es 2.7 gr/cm³)?
4 Valor 20 puntos: a). ¿Cuál es la longitud de onda de un electrón con 1 keV de energía cinética?
b). ¿Cuál es la longitud de onda de una pelota de golf de 50 gr. Que viaja a 50 m/s?
5 Valor 30 puntos: Un acelerador de partículas es usado para crear rayos de electrones de alta energía.

Si esto se logra permitiendo que los electrones se aceleren a través de un potencial de 300 V:

c) Repetir los cálculos para el electrón y el protón si el voltaje que acelera las partículas se incrementa a 1

a) Determinar la energía cinética del electrón, la energía total y la velocidad.

b) Repetir los cálculos utilizando un protón en lugar de un electrón.