Guide to the MATLAB code for Coordinate-Wise sparse PCA

Amir Beck, Yakov Vaisbourd

1 General Description

This guide briefly describes the usage of the function presented in the paper:

Amir Beck and Yakov Vaisbourd, "Optimization Methods for Solving the Sparse PCA Problem".

In addition, Appendix A contains a complete list of the 20 gene expression data sets from the GeneChip oncology database that were used in order to conduct some numerical study in the aforementioned paper.

The package contains a single m-file with the function cwPCA, which is an implementation of the Greedy and Partial CW PCA algorithms presented in the paper. Both algorithms solve the sparse PCA problem which is given by

(SPCA)
$$\begin{aligned} \max_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{x}^T \mathbf{A} \mathbf{x} \\ \text{s.t.} & \|\mathbf{x}\|_2 \leq 1, \\ & \|\mathbf{x}\|_0 \leq s, \end{aligned}$$

where the l_0 -norm is defined as $\|\mathbf{x}\|_0 = |\{i : x_i \neq 0\}|$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the covariance matrix. The covariance matrix is given by $\mathbf{A} = \mathbf{D}^T \mathbf{D}$ where $\mathbf{D} \in \mathbb{R}^{m \times n}$ is the data matrix. The function cwPCA is designed to solve (SPCA) with either of the two matrices is given as an input.

The function cwPCA requires only two obligatory input arguments; the covariance or the data matrix and the sparsity level. The following list summarizes the additional arguments which are supported. This arguments should be provided by the user as a - name, value - pairs as it will be demonstrated in Section 2.

List of optional arguments:

• initial_support - The initial support.

```
Possible Values: any vector \mathbf{v} \in \{1, 2, \dots, n\}^s
Default Value: (1, 2, \dots, s)^T
```

• mat_type - Indicates which type of matrix is given as an input; covariance/correlation matrix (CMat) or data matrix (DMat).

```
Possible Values: 'CMat', 'DMat'
Default Value: 'CMat'
```

• type - Indicates the algorithm type; Greedy CW (GCW) or Partial CW (PCW).

```
Possible Values: 'GCW', 'PCW'
Default Value: 'GCW'
```

• max_iter - Additional stopping criteria - maximum number of iterations. If applied then there is no guarantee that the solution is CW maximal.

```
Possible Values: positive integer Default Value: 0 (Suppressed)
```

• display - Control output display.

```
Possible Values: logical (true, false)
```

Default Value: false

The function performs some input validation. Nevertheless, if a covariance/correlation matrix is given as an input, then it assumes that the matrix is symmetric positive semi definite.

2 Examples

Generate random data

```
m = 150; % Number of samples
n = 1000; % Number of variables
s = 100; % Sparsity level
D = (m^(-0.5))*randn(m,n); % Generate the zero mean
D = D - repmat(mean(D),m,1); % data matrix
A = D'*D; % Compute the covariance matrix
```

Some particular examples of applying the algorithms on the data just generated:

• Run the Greedy CW algorithm. Use the covariance matrix as input.

```
x = cwPCA(A, s);
```

• Run the Greedy CW algorithm. Use the data matrix as input. Initialize the algorithms with a random support.

• Run the Partial CW algorithm. Use the covariance matrix as input. Restrict to 5 iterations and display output at each iteration.

```
x = cwPCA(A, s, 'type', 'PCW', 'max_iter', 5, 'display', 'on');
```

Running the last command will produce the following output:

For each iteration the function will display the indices that were excluded and included in the support accompanied with the increase in the objective function of (SPCA).

A GeneChip oncology dataset list

The following table includes the list of GeneChip datasets used in the numerical study. For most of the datasets a PubMed¹ identification is also included.

#	Study Name	PubMed ID	Samples	Variables
1	brain_nutt	12670911	50	12625
2	brain_pomeroy	11807556	98	7129
3	brain_rickman	11559565	51	7129
4	brain_turkheimer	17140431	30	54675
5	brain_wang		102	12625
6	cervical_bachtiary	17020965	33	54675
7	colon_ancona		47	22283
8	headandneck_kuriakose	15170515	44	12625
9	kidney_copland	GSE6344	20	22283
10	leukemia_ferrando	12086890	39	7129
11	leukemia_haslinger	15459216	28	12626
12	leukemia_holleman	15295046	173	22283
13	leukemia_soulier	15774621	104	22283
14	leukemia_stegmaier	14770183	87	22283
15	leukemia_teuffel	15257931	31	22283
16	leukemia_yeoh	12086872	335	12625
17	lung_beer	12118244	96	7129
18	lung_bhattacharjee	11707567	254	12625
19	lung_lu	17194181	36	12625
20	lymphoma_piccaluga	17304354	60	54675

¹http://www.ncbi.nlm.nih.gov/pubmed