

Universidad Tecnologica Nacional

Facultad Regional San Francisco

CONTROL INALAMBRICO CNC MACH 3 (MPG)

Autores: Burgos, Fabian; Rubiolo,

Bruno.

Asignatura: Proyecto Final

Profesor: Ing. Daniel Musso

Institución: U.T.N. Facultad Regional

San Francisco.

Lugar: San Francisco_ Córdoba

Proyecto final de Ingeniería Electrónica

2

I. RESUMEN

El proyecto tiene como objetivo el diseño, construcción y programación de un

dispositivo de control MPG¹ para la industria CNC que permita mejorar la productividad y

eficiencia de los procesos de mecanizado. Se han investigado diversas alternativas existentes

en el mercado, pero estas suelen tener un alto costo. Por lo tanto, la propuesta es desarrollar

un dispositivo con prestaciones superiores y a un menor costo.

Se ha utilizado el sistema operativo FreeRTOS para programar el firmware del

dispositivo, que permite establecer comunicación mediante el protocolo TCP/IP con la

computadora cliente a través de una red WIFI. Para ello se utiliza sockets y se implementa un

servidor WIFI en el dispositivo. Además, se han estudiado los protocolos DNS y mDNS para

asegurar la correcta resolución de direcciones IP y nombres de dominio en la red.

En cuanto a aspectos ambientales, se ha tenido en cuenta que el dispositivo no presenta

peligros para el medio ambiente durante su vida útil, y que al finalizar su vida útil deberá ser

desechado siguiendo la normativa vigente del país donde se aplique debido a la presencia de

soldadura con plomo.

En conclusión, el proyecto nos permite desarrollar un dispositivo de control MPG de

bajo costo y alto rendimiento, que mejora la eficiencia en los procesos de mecanizado en la

industria CNC.

PALABRAS CLAVES: Control MPG; CNC, Firmware; TCP/IP; Socket; Wi-Fi; FreeRTOS;

Mdns.

¹ Manual Pulse Generator: Dispositivo utilizado para controlar de forma manual las operaciones de una máquina

CNC. El control MPG está compuesto por un dial y varios botones que permiten realizar diferentes acciones,

como mover la herramienta en diferentes direcciones y ajustar la velocidad de avance.

II. INDICE GENERAL

I.	RESUMEN	2
II.	INDICE GENERAL	3
III.	INDICE TABLAS	5
IV.	INDICE FIGURAS	6
1.	INTRODUCCION	8
2.	OBJETIVOS	10
2	2.1 Objetivo general	10
2	2.2 Objetivos específicos	10
3.	DESCRIPCION	11
4.	METAS	12
5.	JUSTIFICACION	13
6.	ALTERNATIVAS PROPUESTAS	14
7.	ASPECTOS DE MERCADO	15
8.	ASPECTOS FINANCIEROS	16
9.	ASPECTOS INSTITUCIONALES	18
10.	ASPECTOS DE IMPACTO AMBIENTAL	19
11.	CONTENIDO DEL PROYECTO	20
1	1.1 Requerimientos propuestos	20
12.	FUNCIONAMIENTO GENERAL	22
1	2.1 Funcionamiento del Firmware.	24
1	2.2 Funcionamiento del Software	30
1	2.3 Protocolo de comunicación	33
1	2.3.1. Protocolo TCP/IP	33
1	2.3.2. Protocolo de comunicación entre servidor/cliente	36
1	2.4 Diseño electrónico	42
1	2.4.1. uControlador.	42
1	2.4.2. Pantalla LCD	44
1	2.4.3. Modulo uSD.	46
1	2.4.4. Circuito de alimentación	47
1	2.4.5. Pulsadores y encoder rotativo	49
1	2.4.6. Circuito establecer cero eje Z	52
1	2.4.7. Circuito sensado tensión	54
1	2.4.8. Cálculos y criterios de diseño	55
1	2.5 Diseño mecánico y fabricación	63

12.5.1. Ensayo y rediseño	66
V. APENDICE	
VI. BIBLIOGRAFIA	72
VII. ANEXO	74
VII.I CÓDIGO OEM	
VII.II DISPLAY LCD	88
VII.III Esquemático	90

III. INDICE TABLAS

TABLA 1 : METAS E INDICADORES SEGÚN LOS OBJETIVOS ESPECÍFICOS	12
TABLA 2 : LISTA DE COMPONENTES Y COSTOS DE MANO DE OBRA	16
TABLA 3 : CONSUMO DE CORRIENTE VS MODO DE OPERACIÓN	68

IV. INDICE FIGURAS

FIGURA 1 : DIAGRAMA DE BLOQUE GENERAL DEL SISTEMA	22
FIGURA 2 : DIAGRAMA DE FLUJO CONEXIÓN A LA RED	24
FIGURA 3 : ACCESS POINT.	25
FIGURA 4 : ACCESS POINT.	27
FIGURA 5 : DIAGRAMA DE BLOQUE DEL MENÚ.	28
FIGURA 6 : RENDER TECLAS DEL DISPOSITIVO	29
FIGURA 7 : PANTALLA DEL DISPOSITIVO.	29
FIGURA 8 : CAPTURA SOFTWARE MPG	32
FIGURA 9 : CAPTURA SOFTWARE MACH3	32
FIGURA 10 : PROTOCOLO BÁSICO DE COMUNICACIÓN SERVIDOR/CLIENTE	36
FIGURA 11 : PROTOCOLO MENSAJE 01 DE COMUNICACIÓN SERVIDOR/CLIENTE	36
FIGURA 12 : PROTOCOLO MENSAJE 02 PARA ESTABLECER ZERO EN TODOS LOS EJES	37
FIGURA 13 : PROTOCOLO MENSAJE 02 PARA ESTABLECER ZERO EN EJE X	37
FIGURA 14 : PROTOCOLO MENSAJE 02 PARA ESTABLECER ZERO EN EJE Y	37
FIGURA 15 : PROTOCOLO MENSAJE 02 PARA ESTABLECER ZERO EN EJE Z	37
FIGURA 16 : PROTOCOLO MENSAJE 02 PARA ESTABLECER ZERO EN EJE A	37
FIGURA 17 : PROTOCOLO MENSAJE 02 PARA REINICIAR EL SISTEMA	37
FIGURA 18 : PROTOCOLO MENSAJE 02 PARA PARAR EL SISTEMA.	37
FIGURA 19 : PROTOCOLO MENSAJE 02 PARA RE-COMENZAR EL SISTEMA	37
FIGURA 20 : PROTOCOLO MENSAJE 02 PARA COMENZAR EL SISTEMA.	37
FIGURA 21 : PROTOCOLO MENSAJE 02 PARA PAUSAR EL SISTEMA	38
FIGURA 22 : PROTOCOLO MENSAJE 03 PARA INICIO ENVIÓ GCODE	38
FIGURA 23 : PROTOCOLO MENSAJE 03 PARA FIN ENVIÓ GCODE	
FIGURA 24 : PROTOCOLO MENSAJE 04 DE COMUNICACIÓN SERVIDOR/CLIENTE	39
FIGURA 25 : PROTOCOLO MENSAJE 51 DE COMUNICACIÓN SERVIDOR/CLIENTE	39
FIGURA 26 : PROTOCOLO MENSAJE 52 DE COMUNICACIÓN SERVIDOR/CLIENTE	40
FIGURA 27 : PROTOCOLO MENSAJE 53 DE COMUNICACIÓN SERVIDOR/CLIENTE	40
FIGURA 28 : PROTOCOLO MENSAJE 54 DE COMUNICACIÓN SERVIDOR/CLIENTE	40
FIGURA 29 : PROTOCOLO MENSAJE 55 DE COMUNICACIÓN SERVIDOR/CLIENTE	40
FIGURA 30 : DIAGRAMA DE MENSAJES.	41
FIGURA 31 : PINOUT ES-WROOM-32.	43
FIGURA 32 : PANTALLA LCD 20X4 CARACTERES.	45
FIGURA 33 : MÓDULO MINI TF MICRO SD READER.	46
FIGURA 34 : CIRCUITO ALIMENTACIÓN.	48
FIGURA 35 : FUNCIONAMIENTO ENCODER ROTATIVO.	49
FIGURA 36 : ENCODER ROTATIVO KY-040.	50

FIGURA 37 : CIRCUITO PULSADORES.	51
FIGURA 38 : CIRCUITO DETECTO CERO MECÁNICO EJE Z.	53
FIGURA 39 : PINZA Y CHAPA DE 30X30X15MM PARA DETECTAR CERO MECÁNICO	53
FIGURA 40 : CIRCUITO SENSADO DE TENSIÓN DE BATERÍA.	54
FIGURA 41 : CAPTURA HOJA DE DATOS DEL REGULADOR 7805	55
FIGURA 42 : RESPUESTA EN FRECUENCIA DEL CIRCUITO DE ENTRADA GPI	58
FIGURA 43 : CORRIENTE VS VOLTAJE DEL DIODO DEL OPTOACOPLADOR	60
FIGURA 44 : CURVA DE CARGA Y DESCARGA DE LA BATERÍA EMPLEADA	61
FIGURA 45 : MEDIDAS GABINETE PLÁSTICO ESTÁNDAR	63
FIGURA 46 : PCB.	64
FIGURA 47 : MECANIZADO DE PLAZA DE COBRE VIRGEN	65
FIGURA 48 : PROTOTIPO SIN GABINETE.	65
FIGURA 49 :MECANIZADO DE GABINETE	65
FIGURA 50 : CIRCUITO CARGADOR DE BACTERIA Y ELEVADOR DE TENSION	66
FIGURA 51 : ELEVADOR DE TENSIÓN MT3608.	66
FIGURA 52 : CARGADOR BACTERIA LITIO TP4056	67

1. INTRODUCCION

En esta tesis se presenta el diseño y desarrollo de un control inalámbrico para el manejo de router CNC que contienen el software Mach 3². El objetivo principal de este trabajo es presentar un dispositivo que permita mejorar la eficiencia y la productividad en el uso de estas herramientas de fabricación, al mismo tiempo que se facilita la labor del operador al no tener que estar en contacto físico con el router CNC.

Para lograr este objetivo, se ha llevado a cabo una revisión exhaustiva de la información disponible en el campo de los routers CNC y los controles MPG (Manual Pulse Generator o Generador de pulso manual) inalámbricos.

Se ha desarrollado un dispositivo que se comunica por medio de wifi con el software Mach 3, permitiendo al usuario controlar el router CNC desde una distancia considerable sin necesidad de estar cerca del equipo. Este dispositivo se ha diseñado para ser intuitivo y fácil de usar, incluso para aquellos usuarios que no tienen experiencia en la programación o el uso de routers CNC.

En esta tesis se presentan los resultados del diseño y desarrollo del control inalámbrico para el manejo de router CNC que contiene el software Mach 3. Además, se describe el proceso de construcción del dispositivo, así como los detalles técnicos necesarios para su funcionamiento.

Un control MPG inalámbrico para CNC presenta una serie de beneficios clave que lo hacen una herramienta indispensable para cualquier operador de router CNC. En primer lugar, el control MPG permite una mayor precisión y control en el proceso de fabricación, lo que se traduce en una reducción de errores y una mejora en la calidad de las piezas fabricadas.

_

² Mach3 convierte una computadora típica en un controlador de máquina CNC Mediante un software y hardware especifico. Tiene diversas funciones y ofrece un gran valor para aquellos que necesitan un paquete de control CNC.

Además, al ser inalámbrico, el control MPG permite al usuario trabajar a una distancia segura del router CNC, evitando posibles accidentes y mejorando la seguridad en el lugar de trabajo. Por último, el control MPG es fácil de usar y su diseño intuitivo permite que los usuarios sin experiencia en programación o en el uso de routers CNC puedan utilizarlo de manera eficiente, reduciendo así el tiempo de aprendizaje y mejorando la productividad en el lugar de trabajo.

2. OBJETIVOS

2.1 Objetivo general

El objetivo de esta tesis es desarrollar, diseñar y construir un dispositivo capaz de controlar routers CNC que contienen el software Mach 3, de manera inalámbrica y con alta precisión.

2.2 Objetivos específicos

- 1. Obtener un prototipo capaz de ser producido masivamente en el futuro.
- 2. Desarrollar un software capaz de procesar la información del control y transmitirla al software Mach 3,
- 3. Dominar la programación de firmware basado en sistemas operativos de tiempo real (RTOS).
- 4. Implementar el dispositivo en las áreas industriales.

3. DESCRIPCION

El proyecto desarrollado contemplo la creación de un equipo capaz de manejar diversos parámetros de un control numérico computarizado que utilice el software Mach 3. Dada la diversidad de funciones que contiene un router CNC, se fijó las siguientes funcionalidades del dispositivo:

- 1. Marcha/Comienzo del CNC.
- 2. Parada del CNC.
- 3. Reinicio del CNC.
- 4. Recomienzo del CNC.
- 5. Establecer en cero el eje actual.
- 6. Regresar al punto de inicio del CNC (HOME).
- 7. Selección de eje de trabajo.
- 8. Encendido/Apagado de Husillo.
- 9. Modificación de pasos a incrementar.
- 10. Movimientos de los ejes.
- 11. Ejecución de macros.

El equipo obtenido consta de dos elementos. Por un lado, se tiene el instrumento de control. Este se encarga de interpretar los movimientos o comandos ejecutados por el operario. La información obtenida y procesada se envía por medio de WIFI a un software propio del control.

Por otro lado, se cuenta con un software creado y diseñado específicamente para recibir la información generada por el usuario. Esta información se procesa y se envía al software Mach 3, el cual se encarga de generar los movimientos pertinentes.

4. METAS

Las metas y sus respectivos indicadores se detallan en la Tabla 1.

Tabla 1 : metas e indicadores según los objetivos específicos.

Objetivos específicos	Metas	Indicadores			
1	Investigar alternativas.	Uso de información disponible en internet.			
	Determinar requerimientos.	Inferir según investigación realizada.			
	Desarrollo, diseño y construcción del dispositivo.	Obtención del control MPG.			
	Desarrollo, diseño y construcción del software.	Obtención del software			
2	Estudio del protocolo TCP/IP.	Uso de recursos bibliográficos afines.			
3	Estudio de la implementación de sistemas embebido en software de tiempo real.	Aplicación de RTOS.			
4	Realización de ensayos sobre dispositivo.	Ejecución de ciclados y normativas.			

5. JUSTIFICACION

El desarrollo de nuevas tecnologías y herramientas de trabajo en la industria de la fabricación se ha convertido en un factor clave para la competitividad de las empresas en el mercado global.

En este sentido, el uso de routers CNC se ha popularizado debido a su alta capacidad de producción, precisión y calidad en la creación de piezas mecánicas. Sin embargo, el manejo de estos dispositivos puede ser riesgoso y requerir de una proximidad cercana al router para poder operarlo, lo que puede ser peligroso para los trabajadores. Además, el uso de cables y controles con cables puede limitar la movilidad y la comodidad en el lugar de trabajo.

Es por ello que el desarrollo de un control inalámbrico para routers CNC se vuelve esencial, no sólo por razones de seguridad, sino también por su potencial para mejorar la eficiencia y calidad en la producción de piezas mecánicas.

El control MPG inalámbrico, que se propone en esta tesis, permitirá a los usuarios operar el router CNC de manera más segura y cómoda, evitando accidentes laborales y mejorando la movilidad en el lugar de trabajo. Además, este dispositivo permitirá la operación con mayor precisión y eficiencia, permitiendo la creación de piezas de alta calidad en un menor tiempo.

Por lo tanto, la realización de este proyecto se justifica en el contexto de la creciente necesidad de mejorar la seguridad y eficiencia en el manejo de routers CNC, así como en la búsqueda de nuevas soluciones tecnológicas que permitan mejorar la productividad y calidad de las empresas de fabricación.

6. ALTERNATIVAS PROPUESTAS

Existen varios tipos de controles MPG disponibles en el mercado, cada uno con sus propias características y beneficios. Uno de los tipos más comunes es el control MPG con cable, que permite una conexión directa entre el controlador y el router CNC. Este tipo de control MPG ofrece una alta precisión y una gran capacidad de respuesta en la operación del router. Sin embargo, su uso está limitado por la longitud del cable, lo que puede resultar incómodo y reducir la movilidad en el lugar de trabajo.

Otro tipo de control MPG que ha ganado popularidad en los últimos años es el control inalámbrico por Bluetooth, que permite la conexión inalámbrica entre el controlador y el router CNC. Este tipo de control MPG es más cómodo y fácil de usar, ya que no hay cables que limiten la movilidad. Sin embargo, la conexión inalámbrica puede resultar menos confiable que la conexión con cable, y puede estar sujeta a interferencias de señal.

Un tercer tipo de control MPG es el control inalámbrico por Wi-Fi, que utiliza la tecnología de comunicación Wi-Fi para establecer la conexión entre el controlador y el router CNC. Este tipo de control MPG ofrece una gran libertad de movimiento y la capacidad de controlar múltiples routers CNC desde un solo controlador. Sin embargo, la conexión Wi-Fi puede verse afectada por interferencias de señal y otros problemas de red, lo que puede afectar la confiabilidad y la precisión de la operación.

En resumen, existen varias alternativas de controles MPG disponibles en el mercado, cada una con sus propias ventajas y desventajas. En este proyecto, se propone el diseño y desarrollo de un control inalámbrico por Wi-Fi para routers CNC, con el objetivo de mejorar la seguridad y comodidad en el lugar de trabajo, al mismo tiempo que se mantienen altos niveles de precisión y confiabilidad en la operación del router.

7. ASPECTOS DE MERCADO

En el mercado actual existen diversas soluciones de controladores MPG disponibles para routers CNC. Sin embargo, muchas de estas soluciones son muy costosas y están fuera del alcance de pequeñas empresas y talleres de carpintería o metalurgia.

El proyecto "Control Inalámbrico CNC Mach 3 (MPG)" se enfoca en diseñar y desarrollar un controlador MPG de alta calidad y prestaciones, pero a un costo mucho más accesible para el mercado. Se busca mejorar la eficiencia y la seguridad en el lugar de trabajo, al mismo tiempo que se mantiene la precisión y la confiabilidad en la operación del router CNC.

La propuesta de este proyecto busca abordar el problema de los altos costos de los controladores MPG disponibles en el mercado, y ofrecer una alternativa asequible y de calidad para pequeñas y medianas empresas que buscan mejorar su eficiencia y productividad en la producción de piezas y componentes.

Además, el controlador MPG desarrollado en este proyecto ofrecerá mejoras en comparación con los controladores MPG disponibles en el mercado, como la posibilidad de buscar el cero en el eje Z y la compatibilidad con el software Mach 3. Todo esto, manteniendo un costo mucho más accesible para los clientes.

En resumen, el proyecto "Control Inalámbrico CNC Mach 3 (MPG)" busca ofrecer una alternativa más económica y de calidad a los controladores MPG disponibles en el mercado, sin sacrificar las prestaciones y la confiabilidad.

Se espera que este proyecto pueda ayudar a las pequeñas y medianas empresas a mejorar su productividad y eficiencia en la producción de piezas y componentes, a la vez que se reduce la inversión necesaria en equipos costosos.

8. ASPECTOS FINANCIEROS

El listado de componentes utilizados para la construcción del control y los respectivos costos de mano de obra se muestra en la *Tabla 2*.

Tabla 2 : Lista de componentes y costos de mano de obra.

Componente	Valor	Marca	Cant	Precio	Precio
				unit.	
Display LCD	20x4 Hd44780 5v	-	1	\$1800	\$1800
Optoacoplador	Pc817	Orient	1	\$73	\$73
Resistencia	220 Ohm ¼ w	-	1	\$50	\$50
Resistencia	1000 Ohm ¼ w	-	1	\$50	\$50
Resistencia	10000 Ohm ¼ w	-	14	\$100	\$1400
Resistencia	100 Ohm ¼ w	-	10	\$49,3	\$493
Diodo	1N4148 200ma 100	Diodes	2	\$100	\$200
	V	Incorporated			
Diodo	1N4007 1a 1000 V	Diodes	1	\$10	\$10
		Incorporated			
Transistor	2N2222	-	1	\$60	\$60
Transistor	IRF9640	-	1	\$342	\$342
Regulador	7805	-	1	\$120	\$120
Tira pines	Hembra x 40 pines	-	1	\$123	\$123
Tira pines	Macho x 40 pines	-	2	\$73	146\$
Diodo	Zener 3.3 V 1 W	-	10	\$42,8	\$428
Capacitor cerámico	Multicapa 1 nF 50v	-	10	\$30,8	\$308
Capacitor	100 nF 1000v	-	10	\$33,3	\$333

cerámico					
Modulo	-	-	1	\$409	\$409
memoria SD					
uC ESP32	-	-	1	\$3400	\$3400
Pulsadores	12x12x4,3 mm	-	10	\$154	\$1540
Encoder	Ky-040- 20 Pasos x	-	1	\$476	\$476
rotativo	Vuelta				
Fabricación	Capa simple de	pcbway	2	\$5000 ⁴	\$10000
PCB^3	10x15 cm				
Gabinete	GM2	Productos	1	\$2900	\$2900
plástico	(153x230x61mm)	Termoformados			
Etiquetas	-	-	1	\$1000	\$1000
Batería	9V	Energizer	1	\$890	\$890
		MAX			
Jack y cable	3.5 mm Hembra	-	1	\$1000	\$1000
Mano de obra	Horas de trabajo	-	3	\$510	\$1530
ensamblaje y					
test					
Varios	-	-	1	\$1500	\$1500
				Total:	\$25714

Teniendo en cuenta el valor del dólar a \$391 al día 05/04/2023 el equipo tiene un costo de 65,76 USD.

-

³ Norma IPC 6012 Clase 2 - Material TG140 FR-4 con las máscaras soldadura y serigrafía.

⁴ Valor tomado desde un valor de 20 PCB a un total de 250 UDS (incluye envió menor a 8 días). Actualmente 05/04/2023 1 UDS=\$391.

9. ASPECTOS INSTITUCIONALES

Este punto no corresponde al proyecto por no haberse realizado para institución alguna.

10.ASPECTOS DE IMPACTO AMBIENTAL

El proyecto "Control Inalámbrico CNC Mach 3 (MPG)" se enfoca en desarrollar un dispositivo de control MPG para routers CNC que tenga en cuenta los aspectos ambientales. Durante la vida útil del dispositivo, no existen riesgos para el medio ambiente, ya que el controlador MPG está diseñado para trabajar con eficiencia energética y no posee componentes que puedan ser dañinos para el medio ambiente.

Sin embargo, es importante tener en cuenta el correcto reciclaje del dispositivo después de su vida útil. El controlador MPG incluye componentes con soldadura de plomo, por lo que es necesario desecharlo adecuadamente de acuerdo con las normativas vigentes del país donde se aplique el proyecto.

Por lo tanto, se recomienda que después de la vida útil del dispositivo, se realice su desecho final a través de canales de reciclaje especializados en electrónica, para que se puedan recuperar los materiales y reducir los impactos ambientales del desecho.

En resumen, el proyecto "Control Inalámbrico CNC Mach 3 (MPG)" ha considerado los aspectos ambientales en el diseño y desarrollo del dispositivo de control MPG para routers CNC, asegurando que durante su vida útil no existan riesgos para el medio ambiente. Sin embargo, es importante tener en cuenta el correcto reciclaje final del dispositivo, de acuerdo con las normativas vigentes del país donde se aplique el proyecto, para minimizar los impactos ambientales.

11.CONTENIDO DEL PROYECTO

11.1 Requerimientos propuestos

La idea de concebir un control MPG trajo aparejado una serie de requisitos. Si bien se buscó desde el comienzo la creación de un instrumento similar a los disponibles en el mercado, también se incluyó la posibilidad de que el instrumento pudiese establecer el cero mecánico del eje Z mediante hardware externo.

Esto generó que en el diseño original se incluyeran ciertas características que otorgasen una ventaja a la hora ser utilizado para tal fin. A continuación, se presenta el listado de requerimientos propuestos:

- Alimentación del sistema mediante batería 9V.
- Comunicación WIFI mediante Servidor-Cliente TCP con computador.
- Interfaz máquina-usuario amigable.
- Funcionalidad de teclas:
 - o Marcha/Comienzo del CNC.
 - o Parada del CNC.
 - o Reinicio del CNC.
 - o Recomienzo del CNC.
 - o Establecer en cero el eje actual.
 - o Regresar al punto de inicio del CNC (HOME).

- o Selección de eje de trabajo.
- o Encendido/Apagado de Husillo.
- o Modificación de pasos a incrementar.
- o Movimientos de los ejes.
- o Ejecución de macros.
- Entrada externa con el fin de establecer el cero mecánico en eje Z.
- Lectura de microSD con el fin de cargar código G⁵ mediante el control.
- Software para computadores con sistemas operativos Windows.

Burgos, Fabian; Rubiolo Bruno

⁵ El G-code, también conocido como RS-274, es el nombre que habitualmente recibe el lenguaje de programación más usado en control numérico.

12. Funcionamiento general

A continuación se muestra un diagrama en bloques del sistema para comprender su funcionamiento.

Figura 1: Diagrama de bloque general del sistema.

El proyecto se divide en dos partes. Por un lado, se tiene el equipo en sí, el cual cuenta con un teclado y un display⁶ para interactuar con el usuario. Además, el dispositivo incluye una batería interna para lograr que el mismo pueda ser inalámbrico.

_

⁶ Se llama visualizador, display en inglés, a un dispositivo de ciertos aparatos electrónicos que permite mostrar información al usuario de manera visual o táctil.

El dispositivo dispone de un lector de tarjeta de memoria SD para cargar el código G y un periférico WIFI para la transmisión de datos al MACH3 mediante un protocolo diseñado específicamente para tal fin.

Por otro lado, se tiene un computador con el software MACH3 para que controle los drivers del Router CNC y el software MPG desarrollado específicamente para interpretar el protocolo de comunicación y transmitir los datos desde el MPG al MACH3 mediante conexión WIFI por medio de un servidor TCP/IP que lidera el control.

El software MACH3 recibe los datos enviados del software MPG y los procesa para enviar las señales correspondientes a los drivers que moverán los motores del CNC.

El equipo dispone de un microcontrolador ESP32 y un regulador de tensión para realizar las actividades necesarias del control. Para controlar las actividades del microcontrolador, se utilizan un teclado, un display⁷, un encoder⁸ y un módulo para memorias uSD⁹ como interacción entre el operador y la máquina.

-

⁷ Se llama visualizador, display en inglés, a un dispositivo de ciertos aparatos electrónicos que permite mostrar información al usuario de manera visual o táctil.

⁸ Dispositivo electromecánico usado para convertir la posición angular de un eje a un código digital, lo que lo convierte en una clase de transductor.

⁹ Secure Digital es un dispositivo en formato de tarjeta de memoria para dispositivos portátiles.

12.1 Funcionamiento del Firmware

Dado que ambos dispositivos cuentan con periférico WIFI, resulta conveniente utilizar un servidor/sitio web que a través de la red, envié y reciba los comandos necesarios. Los datos se comunican según el protocolo indicado en la sección 12.3.

En la figura se muestra un diagrama en flujo del proceso de conexión a la red mediante el ESP.

Figura 2: Diagrama de flujo conexión a la red.

Al iniciar el programa, se accede a la memoria EEPROM del microcontrolador para buscar los datos de la red con la cual se quiere establecer conexión. Si el dispositivo no logra conectarse, repite el proceso hasta 3 veces.

Si la falla en la vinculación persiste, quiere decir que la red no se encuentra disponible o las credenciales son erróneas, por lo que el microcontrolador pasa a hacer de Access Point y permite que el usuario configure la red a la que se va a conectar el dispositivo mediante un sitio web en la dirección IP "http:// MPG000001.local/" (*Figura 3*).

Los nuevos datos recibidos se guardan en la memoria EEPROM del microcontrolador y se repite el proceso de vinculación hasta lograr la conexión.

Figura 3: Access Point.

En caso de que el domicilio no posea red de internet, la computadora que contiene el software MPG se puede conectar a la red que genera el control MPG, obteniendo una funcionalidad al 100%.

El firmware utilizado en el "Control Inalámbrico CNC Mach 3 (MPG)" está basado en FreeRTOS, un sistema operativo en tiempo real de código abierto diseñado para sistemas embebidos y de bajo consumo. FreeRTOS es conocido por su escalabilidad, portabilidad y su capacidad para administrar múltiples tareas y procesos en sistemas con recursos limitados.

En el contexto del proyecto, el uso de FreeRTOS permite implementar una arquitectura flexible y escalable para el firmware del controlador MPG. Además, FreeRTOS proporciona una amplia variedad de características de tiempo real, tales como interrupciones de hardware y planificación basada en prioridades, lo que mejora la capacidad del firmware para responder rápidamente a los eventos.

En resumen, el uso de FreeRTOS en el firmware del "Control Inalámbrico CNC Mach 3 (MPG)" permite implementar un sistema escalable y flexible, con capacidad de respuesta en tiempo real, lo que es fundamental para un controlador MPG de CNC.

Si la conexión es exitosa, en cualquiera de los dos métodos, se crea una nueva tarea encargada de ejecutar las instrucciones necesarias para la funcionalidad el control y otra tarea encargada de recibir los mensajes entrantes por medio del socket TCP/IP¹⁰.

Entre estas funcionalidades se incluyen la inicialización del socket en el servidor TCP/IP, el control de voltaje de la batería del dispositivo, el incremento del encoder rotativo (el cual se incrementa mediante interrupción ¹¹ para evitar perder movimientos), la obtención de datos desde el cliente, la visualización de los datos en el display LCD y la obtención de teclas presionadas.

Según las teclas presionadas, se envía un mensaje determinado al cliente por medio del socket para impactar en la funcionalidad específica en el software MACH3. El dispositivo también posee teclas específicas para acceder al menú y cambiar el eje actual de trabajo. Estas funcionalidades pueden ser apreciadas en la Figura 6.

¹¹ Las interrupciones son eventos que hacen que el microcontrolador deje de realizar la tarea actual y pase a efectuar otra actividad. Al finalizar la segunda actividad retorna a la primera y continúa a partir del punto donde se produjo la

interrupción.

¹⁰ Se explica en la sección 12.3.1.

Figura 4: Access Point.

Figura 5: Diagrama de bloque del menú.

Figura 6: Render¹² teclas del dispositivo.

Figura 7: Pantalla del dispositivo.

Burgos, Fabian; Rubiolo Bruno

¹² El término renderización es un anglicismo para representación gráfica, usado en la jerga informática para referirse al proceso de generar imagen fotorrealista, o no, a partir de un modelo 2D o 3D por medio de programas informáticos.

Dentro de las actividades del menú se puede encontrar la acción de:

- Establecer en cero el eje Z mediante hardware externo.
- Cargar GCODE desde memoria SD.
- Visualización del nombre del dispositivo.
- Apagado del dispositivo.
- Salir del menú.

12.2 Funcionamiento del Software

El software MPG es una herramienta diseñada específicamente para ser utilizada con el controle MPG de este proyecto. Funciona como una interfaz entre el control y el software MACH3, permitiendo al operador controlar el movimiento de los ejes de la máquina en tiempo real mediante la utilización de un control manual.

El software MPG está diseñado en el lenguaje de programación C# utilizando el entorno de desarrollo integrado "Visual Studio" y se comunica con el control MPG mediante un protocolo específico a través de una conexión inalámbrica Wi-Fi.

Dicho software funciona en sistemas operativos Windows y recibe los datos del control por medio de un Socket TCP/IP. Estos datos son procesados según el protocolo indicado en la sección 12.3.2 y se realiza la acción correspondiente.

Si la acción a ejecutar posee un impacto directo sobre el CNC, se envía un nuevo comando desde el software MPG al software MACH3 para que este último envié la señal a los drivers y motores del CNC. Para realizar esta actividad, se incluyeron los archivos DLL¹³ del software MACH3 en el software MPG.

¹³ Biblioteca de enlace dinámico: una biblioteca de enlace dinámico es el término con el que se refiere a los archivos con código ejecutable que se cargan bajo demanda de un programa por parte del sistema operativo.

Por medio de estos DLL se puede obtener datos desde el software MACH3 tales como posicionamiento de los ejes, tiempo de ejecución, entre otros y manipularlos en el software MPG. Estos datos recibidos son procesados por este último programa y luego enviado al control según el protocolo de comunicación.

Para obtener o escribir datos en MACH3 los DLL mencionados, brindan la herramienta de código OEM¹⁴ con comandos DROs¹⁵. Estos códigos se muestran en la sección VII.

OEM code se refiere a un código numérico de tres dígitos que se utiliza para realizar ciertas funciones dentro del software. Estos códigos OEM son utilizados por los fabricantes de equipos originales para personalizar el funcionamiento del software en sus máquinas y equipos.

Por ejemplo, en Mach3, los códigos OEM se utilizan para realizar acciones específicas, como mover los ejes de la máquina, activar la refrigeración o ajustar la velocidad del husillo. Estos códigos se pueden enviar al software a través de un control MPG (Manual Pulse Generator) o desde un programa de control CNC.

DRO es una función del software que muestra las posiciones actuales de los ejes de la máquina CNC. Estas posiciones se muestran en una pantalla y se actualizan en tiempo real a medida que se mueve la máquina.

DRO también puede incluir otras funciones como la capacidad de ajustar la escala o la resolución de la pantalla, la posibilidad de cambiar entre diferentes sistemas de unidades (métrico o imperial), y la capacidad de configurar el número de decimales que se muestran en la pantalla.

-

¹⁴ Original Equipment Manufacturer

¹⁵ Digital ReadOut

Figura 8: Captura software MPG.

Figura 9: Captura software MACH3.

Si software MPG recibe datos que no impactan directamente sobre el CNC, se procesa la información internamente en dicho programa y se ejecutan las acciones correspondientes.

En resumen, el software MPG es una herramienta esencial para lograr la interacción entre el control inalámbrico y el software de control del CNC.

12.3 Protocolo de comunicación

12.3.1. Protocolo TCP/IP

Para el "Control Inalámbrico CNC Mach 3 (MPG)", se ha utilizado una arquitectura de servidor/cliente a través de Wi-Fi, utilizando el protocolo TCP/IP con la utilización de sockets. En esta arquitectura, el control MPG actúa como servidor y se conecta a un cliente Wi-Fi que se ejecuta en la computadora.

La comunicación entre el control MPG y la computadora se realiza a través de un enlace inalámbrico Wi-Fi, y la conexión se establece utilizando sockets TCP/IP. La utilización de sockets TCP/IP proporciona una comunicación fiable y estable entre el control MPG y la computadora.

La arquitectura de servidor/cliente permite separar la lógica de control de la máquina CNC de la lógica del control MPG, lo que facilita la mantenibilidad y actualización de cada componente por separado. Además, la utilización de Wi-Fi como medio de comunicación inalámbrica ofrece una solución práctica y flexible para el control inalámbrico de la máquina CNC.

El protocolo TCP/IP es un conjunto de protocolos de comunicación utilizados para conectar dispositivos en una red. Este protocolo es la base de Internet y se utiliza en una gran cantidad de redes locales. TCP/IP se compone de dos protocolos principales: TCP (Transmission Control Protocol) e IP (Internet Protocol).

TCP es un protocolo orientado a la conexión, que garantiza la entrega de paquetes de datos de manera ordenada y sin errores. Cuando dos dispositivos se conectan a través de TCP, se establece una conexión y se negocian los parámetros de la comunicación. Una vez establecida la conexión, se pueden enviar los datos de manera segura y fiable.

IP, por otro lado, es un protocolo sin conexión que se encarga del direccionamiento y enrutamiento de los paquetes de datos. Cada dispositivo en una red tiene una dirección IP única que se utiliza para dirigir los paquetes a su destino.

La combinación de TCP y IP proporciona una solución robusta y escalable para la comunicación en redes. TCP garantiza que los datos se entreguen de manera segura y fiable, mientras que IP se encarga de la gestión de la red y el enrutamiento de los paquetes.

El protocolo TCP/IP se divide en cuatro capas, cada una de las cuales tiene un conjunto de protocolos asociados que se utilizan para realizar tareas específicas.

La capa de aplicación es la capa superior del modelo TCP/IP y se utiliza para aplicaciones de red. Algunos de los protocolos más comunes en esta capa son HTTP (Hypertext Transfer Protocol), FTP (File Transfer Protocol) y SMTP (Simple Mail Transfer Protocol).

La capa de transporte es la siguiente capa y se utiliza para la transferencia de datos de extremo a extremo entre dispositivos. TCP es el protocolo más común en esta capa y se utiliza para garantizar que los datos se entreguen de manera segura y fiable.

La capa de Internet es la siguiente capa y se utiliza para enrutar los paquetes de datos a través de la red. IP es el protocolo más común en esta capa y se utiliza para asignar direcciones únicas a los dispositivos y enrutar los paquetes de datos a través de la red.

La capa de acceso a la red es la capa más baja del modelo TCP/IP y se utiliza para acceder a la red física. Esta capa se divide en dos subcapas: la capa de enlace de datos y la capa física. La capa de enlace de datos se encarga de la transferencia de datos entre dispositivos cercanos, mientras que la capa física se encarga de la transmisión de los datos a través del medio físico.

Con el fin de facilitar la conexión IP entre cliente y servidor, se utiliza un mDNS.

DNS (Domain Name System) es un protocolo utilizado para convertir nombres de dominio en direcciones IP numéricas que puedan ser utilizadas para identificar dispositivos en Internet. Cuando un usuario ingresa una URL en un navegador, el navegador envía una consulta DNS al servidor DNS para obtener la dirección IP correspondiente al nombre de dominio.

Por otro lado, mDNS (Multicast Domain Name System) es un protocolo de resolución de nombres de red que permite a los dispositivos en una red local descubrir y comunicarse entre sí utilizando nombres de dominio legibles por humanos.

En lugar de enviar consultas DNS a un servidor DNS, los dispositivos mDNS envían solicitudes de multicast a la red local para buscar otros dispositivos y servicios.

En resumen, la utilización de una arquitectura de servidor/cliente a través de Wi-Fi con la utilización de sockets TCP/IP permite establecer una conexión estable y fiable entre el control MPG y la computadora. Esto proporciona una solución robusta y escalable para el control inalámbrico de la máquina CNC.

12.3.2. Protocolo de comunicación entre servidor/cliente

Con el fin de lograr que el servidor y el cliente se entiendan, se ideó un proceso de comunicación específico. Este protocolo se basa en la utilización de exactamente 53 caracteres dispuestos de la siguiente manera:

Figura 10: Protocolo básico de comunicación servidor/cliente.

El primer carácter (C1) debe ser siempre el carácter 'N' e indica un nuevo mensaje. El último carácter (C53) debe ser siempre el carácter 'F' e indica el fin del mensaje.

Los caracteres C2 y C3 indican el tipo del mensaje y dependen si el mensaje proviene del servidor (control MPG) o del cliente (software MPG). Los valores posibles de estos caracteres se indican a continuación:

Mensaje 01

Mensaje proveniente del control MPG para realizar movimientos lineales en el CNC. los caracteres del mensaje deben contener la siguiente información:

- Carácter C4 = 'S'.
- Caracteres desde C5 a C10: Multiplicador de pasos a realizar en formato 0.0001.
- Carácter C11: Eje en el cual se quiere generar el movimiento. Puede ser 'X', 'Y', 'Z', 'A'.
- Carácter C12: Indica sentido del movimiento lineal. Puede ser '+', '-'.
- Caracteres desde C13 a C16: Cantidad de pasos a realizar en formato 0001.
- Caracteres desde C17 a C52= '*'.

Figura 11: Protocolo mensaje 01 de comunicación servidor/cliente.

Mensaje proveniente del control MPG para ejecutar comandos simples en el CNC. Se soportan 10 funcionalidades en este tipo de mensaje y se detalla a continuación.

Figura 12: Protocolo mensaje 02 para establecer zero en todos los ejes.

Figura 13: Protocolo mensaje 02 para establecer zero en eje X.

Figura 14: Protocolo mensaje 02 para establecer zero en eje Y.

Figura 15: Protocolo mensaje 02 para establecer zero en eje Z.

Figura 16: Protocolo mensaje 02 para establecer zero en eje A.

Figura 17: Protocolo mensaje 02 para reiniciar el sistema.

Figura 18: Protocolo mensaje 02 para parar el sistema.

Figura 19: Protocolo mensaje 02 para re-comenzar el sistema.

Figura 20: Protocolo mensaje 02 para comenzar el sistema.

Figura 21: Protocolo mensaje 02 para pausar el sistema.

Mensaje proveniente del control MPG para enviar gcode al software. En necesario seguir los siguientes pasos:

Enviar mensaje de inicio de envió de gcode con el número de líneas a enviar en el formato xxxxx (Caracteres C48 a C52).

Figura 22: Protocolo mensaje 03 para inicio envió gcode.

Luego se debe enviar cada línea del gcode por separado cada 50 ms sin ningún protocolo.

Una vez envidas todas las líneas del código, es necesario indicar su fin con el siguiente mensaje especificando la cantidad de caracteres totales enviados en todas las líneas de gcode. Esto se debe indicar entre los caracteres C43 y C52 del mensaje en formato xxxxxxxxxx.

Figura 23: Protocolo mensaje 03 para fin envió gcode.

Mensaje 04

Mensaje proveniente del control MPG para solicitar información al software. Los caracteres del mensaje deben contener la siguiente información:

- Caracteres desde C4 a C5: Tipo de mensaje que se le solicita al cliente (software). Estos se detallan a continuación y tienen el formato 5x.
- Caracteres desde C6 a C50= '*'.
- Caracteres desde C51 a C52: Tipo de mensaje que se le solicita al cliente (software). Estos se detallan a continuación y tienen el formato 5x.

Figura 24: Protocolo mensaje 04 de comunicación servidor/cliente.

Mensaje proveniente del software MPG para indicar posición actual de los ejes. Los caracteres del mensaje deben contener la siguiente información:

- Carácter C4 = 'E'.
- Caracteres desde C5 a C16: Indica la posición actual del eje x en el formato +00000.0000x.
- Caracteres desde C17 a C28: Indica la posición actual del eje y en el formato +00000.0000y.
- Caracteres desde C29 a C40: Indica la posición actual del eje z en el formato +00000.0000z.
- Caracteres desde C41 a C52: Indica la posición actual del eje a en el formato +00000.0000a.

Figura 25: Protocolo mensaje 51 de comunicación servidor/cliente.

Mensaje 52

Mensaje proveniente del software MPG para indicar la información del proceso. Los caracteres del mensaje deben contener la siguiente información:

- Caracteres desde C4 a C10: Indica el tiempo transcurrido en el formato EL00:00.
- Caracteres desde C11 a C17: Indica el tiempo estimado en el formato ES00:00.
- Caracteres desde C41 a C52: Indica la cantidad de líneas del gcode en el formato NL0000.
- Caracteres desde C18 a C23: Indica la línea actual del gcode en el formato LA0000.
- Caracteres desde C24 a C52= '*'.

Figura 26: Protocolo mensaje 52 de comunicación servidor/cliente.

Mensaje proveniente del software MPG para indicar que se cargó el gcode sin error. Los caracteres del mensaje deben contener la siguiente información:

Figura 27: Protocolo mensaje 53 de comunicación servidor/cliente.

Mensaje 54

Mensaje proveniente del software MPG para indicar que se conectó con éxito. Los caracteres del mensaje deben contener la siguiente información:

Figura 28: Protocolo mensaje 54 de comunicación servidor/cliente.

Mensaje 55

Mensaje proveniente del software MPG para indicar que el sistema está "vivo". Los caracteres del mensaje deben contener la siguiente información:

Figura 29: Protocolo mensaje 55 de comunicación servidor/cliente.

Procedimiento normal de operación

A continuación se detalla un procedimiento normal de operación donde el servidor le solicita un mensaje al cliente por medio del envió de un mensaje 04.

Figura 30: Diagrama de mensajes.

12.4 Diseño electrónico

12.4.1. uControlador

La elección del microcontrolador ESP32 para el diseño del control MPG tiene varias razones. En primer lugar, su bajo costo y alta disponibilidad en el mercado hacen que sea una opción atractiva para la producción en masa. Además, el ESP32 cuenta con conectividad WiFi incorporada, lo que facilita la comunicación inalámbrica con la computadora cliente.

También tiene un procesador dual-core de alto rendimiento y una gran cantidad de memoria RAM y flash, lo que permite un procesamiento rápido y eficiente de los datos del control MPG. Finalmente, el soporte y la documentación disponible para el ESP32 son excelentes, lo que facilita el desarrollo y la depuración del firmware.

El ESP32 es un microcontrolador de bajo consumo diseñado por Espressif Systems. Cuenta con una amplia gama de periféricos integrados, incluyendo múltiples puertos de entrada/salida (E/S) analógicos y digitales, interfaces de comunicación SPI, I2C y UART.

En cuanto al sistema operativo, el ESP32 utiliza FreeRTOS, un sistema operativo en tiempo real de código abierto, altamente eficiente y escalable para sistemas embebidos. FreeRTOS proporciona una interfaz de programación de aplicaciones (API) fácil de usar, lo que permite a los desarrolladores programar el ESP32 con facilidad y rapidez.

La combinación del ESP32 y FreeRTOS es muy popular en la industria debido a su bajo consumo de energía, alto rendimiento y facilidad de programación. Es una opción popular para sistemas embebidos que requieren conectividad Wi-Fi, como el control MPG que estamos desarrollando.

El microcontrolador es utilizado para procesar las acciones del usuario y comunicarlas al software de control, no obstante, también se utiliza para obtener el valor de la batería mediante su convertidor analógico-digital (ADC) y para comunicarse con la memoria SD a través de su puerto SPI. Además, el sistema operativo en tiempo real FreeRTOS es utilizado para la gestión de tareas y la sincronización de procesos.

En resumen, el microcontrolador ESP32 es una opción sólida y bien fundamentada para el diseño del control MPG.

Figura 31: PinOut ES-WROOM-32.

12.4.2. Pantalla LCD

Para la interfaz de usuario, se utiliza una pantalla LCD 20x4 conectada al microcontrolador mediante un formato de 4 cables. Este display muestra información importante del proceso de mecanizado en tiempo real, la posición actual de la máquina, las coordenadas del eje que se está moviendo, la posición de la herramienta y otros parámetros relevantes. La comunicación con el display se realiza mediante el protocolo de comunicación HD44780, el cual es ampliamente utilizado en displays de cristal líquido de caracteres.

El display LCD 20x4 es un módulo de visualización de caracteres que utiliza la tecnología de cristal líquido para mostrar información al usuario.

El módulo del display LCD 20x4 cuenta con una matriz de puntos de 20 columnas y 4 filas, lo que permite la visualización de hasta 80 caracteres en total. Además, cuenta con un controlador interno que se encarga de administrar la memoria y la presentación de la información en la pantalla.

El display se controla mediante el microcontrolador integrado que se encarga de gestionar la comunicación entre la placa del control MPG y el display mediante la configuración de 4 cables. Esto significa que se utilizan cuatro líneas de datos (D4, D5, D6 y D7) además de las líneas RS y E.

En la configuración de 4 cables, también conocida como 4 bits, se utiliza un bus de datos de 4 bits para enviar información al display LCD. En lugar de utilizar los 8 bits del bus de datos, como se hace en la configuración de 8 bits.

En este tipo de configuración, se deben enviar los bits de datos en dos paquetes de 4 bits. Primero se envían los bits de datos de los bits más significativos (D7-D4) y luego los bits de datos de los bits menos significativos (D3-D0).

Este tipo de configuración se utiliza para reducir el número de pines necesarios para conectar el display al microcontrolador. Además, permite utilizar los pines de datos del

microcontrolador para otras funciones, lo que resulta útil en el proyecto debido a que los pines son limitados.

Para controlar el display, se desarrolló una librería específica basada en los valores binarios que se necesitan enviar al display según la actividad que se quiere realizar, estos valores están indicados en la hoja de dato del display y se puede ver en el anexo.

La librería se utiliza en conjunto con el microcontrolador ESP32 para enviar los datos al display y mostrar la información correspondiente.

En conclusión, el uso del display LCD 20x4 en el control MPG permite al usuario obtener información en tiempo real sobre la máquina CNC, lo que facilita el monitoreo y control del proceso de mecanizado. Además, su conexión de 4 cables y la biblioteca específica simplifican su integración con el microcontrolador ESP32 utilizado en el proyecto.

Figura 32: Pantalla LCD 20X4 caracteres.

12.4.3. Modulo uSD

El módulo uSD utilizado en el control MPG se comunica a través del protocolo SPI con el microcontrolador. Este módulo sirve para cargar el G-code, el cual contiene las instrucciones para la máquina CNC, desde una tarjeta SD al CNC mediante el control MPG.

La tarjeta SD se conecta directamente al módulo uSD, el cual se encarga de manejar la comunicación y la lectura de datos de la tarjeta SD. De esta manera, el control MPG puede leer el G-code necesario para ejecutar las instrucciones y llevar a cabo el proceso de mecanizado correspondiente.

El módulo Mini TF Micro SD Reader es un lector de tarjetas micro SD capaz de leer y escribir archivos en la tarjeta micro SD y su velocidad de transferencia de datos puede alcanzar hasta 25 MB/s. Este módulo es compatible con tarjetas micro SD de hasta 2 GB.,

En el caso del control MPG, este módulo se utiliza para cargar el archivo G-code desde una tarjeta micro SD al CNC. La conexión entre el módulo y el microcontrolador se realiza a través de cuatro pines SPI, que incluyen MOSI, MISO, SCK y CS. Cuando se desea cargar un archivo G-code en el CNC, el microcontrolador envía los comandos necesarios al módulo para acceder al archivo y transferirlo al CNC a través de la interfaz WIFI de forma inalámbrica.

El módulo Mini TF Micro SD Reader cuenta con un regulador de voltaje interno que le permite operar con una fuente de alimentación de entre 3.3V y 5V. Por lo tanto, puede ser alimentado directamente desde los pines de alimentación del microcontrolador ESP32, lo que simplifica la conexión y el diseño del circuito.

Figura 33: Módulo Mini TF Micro SD Reader.

12.4.4. Circuito de alimentación

Se ha decidido utilizar un regulador lineal 7805 para este proyecto, ya que tanto el display LCD como el módulo uSD requieren una entrada de alimentación de 5V. Sin embargo, el voltaje de alimentación del dispositivo es de 9V (voltaje proveniente de la batería).

El regulador lineal 7805 es capaz de proporcionar una salida de voltaje constante de 5V a partir de una entrada de voltaje mayor, asegurando así que tanto el display como el módulo uSD reciban la alimentación necesaria para funcionar correctamente. Además, este regulador lineal es una opción de bajo costo y fácil de conseguir en el mercado, lo que lo hace ideal para este proyecto.

Se ha colocado un diodo en la entrada de alimentación como medida de seguridad para evitar daños al dispositivo en caso de conexión inversa de la batería. Este diodo, que actúa como protección de polaridad, permite que la corriente fluya en una sola dirección y evita que la batería se descargue a través del circuito inverso. De esta manera, se protege el circuito y se asegura su correcto funcionamiento.

Se ha diseñado un circuito específico para evitar el uso de llaves de encendido en el control. Este circuito se compone de un mosfet que se conecta en serie entre la batería y la entrada del regulador, permitiendo que la corriente pase o no.

Cuando se presiona el pulsador conectado al terminal de gate, el mosfet permite la circulación de corriente y enciende el microcontrolador. Una vez que el microcontrolador se enciende, activa un pin de salida y provoca la saturación de un transistor BJT enclavando el mosfet y manteniendo la alimentación del dispositivo.

Para apagar el dispositivo, el microcontrolador debe desactivar el pin conectado a la base del BJT, provocando que este entre en zona de corte y desenclave el mosfet. En este momento, el mosfet cortará la corriente que circula desde la batería hacia el regulador y apagará el dispositivo. Este circuito de encendido/apagado proporciona una forma segura y conveniente de controlar la alimentación del dispositivo.

Con el fin de que el pulsador función también para comandar acciones del control, se agregan unos diodos y resistencias para lograr obtener la señal del pulsador con el microcontrolador.

Para asegurar un voltaje de salida estable y evitar fluctuaciones en la alimentación del dispositivo, se han colocado capacitores en la entrada y salida del regulador lineal 7805. En la entrada se ha colocado un capacitor electrolítico de 160 uF y un capacitor cerámico de 0.1 uF, mientras que en la salida se ha colocado un capacitor cerámico de 0.1 uF.

El capacitor electrolítico de la salida se encarga de suavizar la señal de salida del regulador y reducir el ripple, mientras que el capacitor cerámico de la salida se encarga de filtrar las altas frecuencias.

La combinación de ambos tipos de capacitores ayuda a mantener una alimentación estable y libre de ruido eléctrico para el correcto funcionamiento del dispositivo.

Figura 34: Circuito alimentación.

12.4.5. Pulsadores y encoder rotativo

Para la interfaz de usuario-máquina (Control MPG), se ha utilizado un encoder rotativo y pulsadores mecánicos. El encoder rotativo es un dispositivo electromecánico que convierte el movimiento rotativo en señales eléctricas, permitiendo al usuario mover los ejes del CNC mediante el control MPG.

Los pulsadores mecánicos, por otro lado, son interruptores momentáneos que permiten al usuario iniciar acciones específicas, como iniciar o detener una tarea de mecanizado. La combinación de estas dos interfaces proporciona una forma intuitiva y fácil de usar para interactuar con el control MPG.

El control MPG utiliza un encoder rotativo Ky-040 como parte de su interfaz de usuario. Este componente es capaz de detectar el movimiento rotativo del eje y de proporcionar información sobre su posición y dirección de giro. El encoder se comunica con el microcontrolador a través de los pines CLK y DT.

El KY-040 tiene 5 pines: VCC, GND, CLK, DT y SW. VCC y GND son los pines de alimentación del dispositivo, mientras que CLK y DT son las salidas del encoder que envían señales cuadradas con 90 grados de desfase entre sí, para detectar la dirección y velocidad del giro. El pin SW es un pulsador mecánico integrado que se utiliza para enviar una señal de entrada adicional.

Figura 35: Funcionamiento encoder rotativo.

El KY-040 tiene una resolución de 20 pasos por revolución y un diámetro de eje de 6 mm. Es compatible con diferentes microcontroladores y sistemas, y su funcionamiento puede ser programado para adaptarse a diferentes aplicaciones. Además, es un dispositivo de bajo consumo que requiere una corriente de operación de 10 mA o menos.

El Ky-040 es un componente económico y ampliamente disponible en el mercado de componentes electrónicos, lo que lo hace una buena opción para proyectos de este tipo. Además, su tamaño compacto y su facilidad de uso lo hacen ideal para aplicaciones que requieren una interfaz de usuario intuitiva y sencilla.

Figura 36: Encoder rotativo Ky-040.

Se ha agregado un circuito de protección a la salida de los pulsadores para evitar que se ingrese más de 3.3V al ESP32 en caso de un defecto. Este circuito consta de un diodo Zener que limita la tensión a 3.3V, una resistencia limitadora de corriente y un capacitor de filtro que ayuda a suavizar la señal y reducir el ruido. De esta manera, se asegura que el ESP32 no se dañe debido a una sobretensión y que no recibirá señales erróneas o ruido eléctrico.

Esto es especialmente importante en sistemas de control en los que se espera una alta precisión y exactitud en la lectura de las entradas. El capacitor actúa como un filtro pasivo que elimina las fluctuaciones de voltaje no deseadas en la señal y mejora la integridad de la señal de entrada.

Figura 37: Circuito Pulsadores.

12.4.6. Circuito establecer cero eje Z

El equipo cuenta con un circuito específico que permite detectar cuando el eje Z se encuentra en su valor cero de forma mecánica, gracias a un interruptor de límite conectado al microcontrolador. En caso de que el eje Z no esté en su valor cero y el usuario de la orden de establecer en cero, se envía un comando para que el motor comience a bajar el eje hasta que se detecte el valor cero. Esto asegura que el equipo siempre comience su trabajo desde el punto de referencia correcto.

Para detectar el valor cero del eje Z, se diseñó un circuito específico que utiliza una chapa metálica y una pinza. Estos elementos se conectan a través de un jack 3.5 al dispositivo, mientras que la pinza se encarga de apretar la fresa del CNC. Cuando el eje Z está en su valor cero mecánico, se establece una conexión eléctrica entre la chapa y la pinza, lo que permite que el circuito detecte esta posición. En caso contrario, se envía el comando para que el eje comience a bajar hasta que alcance su valor cero. Este circuito de detección del valor cero es esencial para garantizar una precisión adecuada en el mecanizado de las piezas.

El circuito diseñado para detectar el valor cero del eje Z del CNC cuenta con un optoacoplador que garantiza la aislación eléctrica entre el microcontrolador y el exterior del dispositivo. Esta característica es importante ya que evita interferencias electromagnéticas y posibles daños en los componentes. El optoacoplador es un dispositivo que consta de un diodo emisor de luz y un fototransistor en un encapsulado, que permite el acoplamiento óptico entre dos circuitos eléctricos, aislándolos galvánicamente. En este caso, el optoacoplador se utiliza para detectar la presencia o ausencia de la chapa metálica conectada al dispositivo y enviar la señal correspondiente al microcontrolador para que este envíe el comando de bajada del eje Z en caso de ser necesario.

Figura 38: Circuito detecto cero mecánico eje Z.

Figura 39: Pinza y chapa de 30x30x15mm para detectar cero mecánico.

12.4.7. Circuito sensado tensión

Se diseñó un circuito de sensado de tensión de la batería del dispositivo, en el cual se utilizó un divisor resistivo para reducir el voltaje de la batería a un nivel adecuado para la lectura del microcontrolador.

Para evitar que la entrada del microcontrolador reciba voltajes mayores a los tolerados, se agregó un diodo zener de 3.3V como protección. De esta manera, se asegura que la medición de la tensión de la batería sea precisa y que no se dañe el microcontrolador.

Figura 40: Circuito sensado de tensión de batería.

12.4.8. Cálculos y criterios de diseño

Filtros regulador lineal

El valor de los capacitores de filtro del regulador lineal 7805, se obtuvieron por medio del circuito típico de aplicación en la hoja de dato del componente.

TYPICAL APPLICATION CIRCUIT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

Figura 41: Captura hoja de datos del regulador 7805.

Según la nota de aplicación del fabricante, se determina colocar un capacitor electrolítico de 0.33 uF a la entrada y otro de 0.1 uF a la salida del regulador.

Cálculos de potencia de regulador, mosfet y resistencias.

El regulador 7805 es un regulador lineal y por lo tanto su potencia está dada por:

$$P_{U3} = I_{\text{max } u3} * (V_{IN} - V_{out}) = 200 \text{ mA} (9 \text{ V} - 5 \text{ V}) = 0.8 \text{ W}$$

La potencia máxima que puede disipar el integrado es de 1 W a una temperatura ambiente de 30°. La temperatura máxima de operación del regulador es de 125 °C. Por ende se determina que no es necesario colocar un disipador ya que se está en una condición operativa correcta.

La potencia disipada por el mosfet es:

$$P_{Q2} = Rds * Ids = 0.02 \Omega * 200 mA = 4 mW$$

La potencia máxima que puede disipar el transistor es de 200 W a una temperatura ambiente de 25°. La temperatura máxima de operación del regulador es de 175 °C. Por ende se determina que no es necesario colocar un disipador ya que se está en una condición operativa correcta.

La potencia disipada por R30 es:

$$P_{R30} = I_{R30}^{2} * R_{30} = \left(\frac{V_{Max_{R30}}}{R_{30}}\right)^{2} * R_{30} = \left(\frac{9 V}{10 k}\right)^{2} * 10 k = 8.1 \ mW < \frac{1}{4} W$$

Divisor resistivo entrada

Con el fin de lograr una adecuada señal de entrada sobre los pines GPI¹⁶ del microcontrolador, se realizó un circuito de acondicionamiento de voltaje. En primer lugar se agregó una resistencia pullup para mantener una tensión alta frente ausencia de pulsación de tecla.

Por otro lado se implementó un circuito de seguridad mediante un diodo zener de 3.3 V y una resistencia de 100 ohms limitadora de corriente. De esta forma se logra proteger la entrada del microcontrolador frente a eventuales fallas eléctricas que intente producir una tensión mayor a 3.3 V sobre los pines GPI.

Por último, se agregó un capacitor ubicado lo más cerca posible de cada pin para actuar como filtro de señales indeseadas evitando que estas ingresen al microcontrolador.

Los valores de corriente que atraviesan las resistencias son pequeños y por lo tanto con resistencias de ¼ W se loga trabajar en un punto de operación correcto.

El capacitor del filtro pasa bajo se calculó para lograr una frecuencia de corte de 45 Hz:

$$C = \frac{1}{2 \pi * f_c * R} = \frac{1}{2 \pi * 45 Hz * 100 Ohm} = 35 uF$$

Nota que se utilizó la resistencia de 100 Ohm para el cálculo y no la resistencia de 10000 Ohm ya que la señal de alterna se dirige hacia masa por medio de la fuente de 3.3 V mediante esta última resistencia.

En lo siguiente se muestra la respuesta en frecuencia del circuito:

-

¹⁶ GPI: "General Purpose Input" (Entrada de Propósito General), se refiere a un pin de entrada en un microcontrolador que se puede utilizar para leer señales digitales o analógicas.

Figura 42: Respuesta en frecuencia del circuito de entrada GPI.

Calculo ADC

El divisor resistivo para el ADC se diseñó teniendo en cuenta que se puede tener una tensión de entrada máxima de 9 volts en las entradas GPI. Como protección se hizo un divisor resistivo con una relación 10:1 para proteger a la entrada del microcontrolador ante una tensión superior a la mencionada, y se colocó un diodo zener 3.3 V para aumentar la protección.

Las resistencias que se utilizan tienen una tolerancia del 5%, el error que puede producirse en la lectura del ADC es el error producido en el voltaje de referencia Vref, si se utiliza el voltaje de referencia interno (Vref = 1,1 V), el mismo tiene una desviación de ±100 mV entre diferentes chips de diversos lotes de producción. Sin embargo, este voltaje de referencia se puede corregir mediante una calibración del ADC, logrando que el error de tensión sea nulo. El ADC del microcontrolador opera de 0 a 3,3 V con una atenuación de 11 dB interna.

Se procede a calcular el divisor resistivo estableciendo R18 = 1 k.

$$1 V = \frac{10 V}{R17 + R18} * R18 = \frac{10 V}{R17 + 1 K\Omega} * 1 K\Omega \rightarrow R17 = 9 K\Omega \approx 10 K\Omega$$

La tolerancia de la medición queda determinada por.

$$Vbat = \frac{Bateria}{R17 + R18} * R18 = > Bateria = \frac{Vbat}{R18} * (R17 + R18) = Vbat * 11$$

Calculo propagación de errores en la lectura de tensión.

$$Bateria = \frac{Vbat}{1~K\Omega \pm 0.05~K\Omega} * (11~K\Omega \pm 0.55~K\Omega) = Vbat * \frac{(11~K\Omega \pm 0.55~K\Omega)}{(1~K\Omega \pm 0.05~K\Omega)}$$

$$Bateria = \frac{Vbat*11\ K}{1\ K} \pm \frac{Vbat*11\ K}{1\ K} \left(\frac{0.05\ K\Omega}{1\ K\Omega} + \frac{0.55\ K\Omega}{11\ K\Omega}\right) = Vbat*11\ \pm\ 1.1$$

 $^{^{17}\ \}underline{https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc\ calibration.html}$

Calculo OPTOAcoplador

El optoacoplador utilizado es el PC817, que según el datasheet, el diodo emisor tiene una caída de tensión de 1.3 volt, y una corriente de 10 mA, lo que provoca una tensión sobre la resistencia de 2 volt si lo alimentamos con una tensión de 3.3 volt, lo que nos da un valor de una resistencia de 220 ohms.

Figura 43: Corriente vs voltaje del diodo del optoacoplador.

A continuación se detallan los cálculos para la correcta elección de la resistencia.

$$Vin - V_R - V_{OPTO} = 0 V$$

$$V_{R19} = Vin - V_{OPTO} = 3.3 V - 1.3 V = 2 V$$

$$R_{19} = \frac{V_{R19}}{I_R} = \frac{2 V}{10 mA} = 200 \Omega \approx 220 \Omega$$

$$P_{R19} = V_{R19} * I_{R19} = 2 V * 10 mA = 20 mW < 1/4 W$$

Calculo duración batería

Tomando un consumo teórico del ESP32 de 100 mA/hs para el funcionamiento con comunicación wifi (el resto de los componentes no se contemplan ya que las corrientes es muy baja respecto a la del esp32 y se puede despreciar) y contemplando una capacidad máxima de descarga de la batería en 1000 mA:

$$N^{\circ}$$
 horas en funcionamiento $\sin cargar = \frac{Capacidad\ maxima\ de\ descarga}{Capacidad\ descargada\ x\ hora} = \frac{1000\ \text{mA}}{100\frac{mA}{hs}}$

$$= 10\ hs$$

La batería empleada es una batería Ion Litio de la marca Samsung modelo INR18650-25R de 2500 mAh de capacidad. La curva de carga y descarga de la batería se puede observar a continuación.

Figura 44: Curva de carga y descarga de la batería empleada.

Para evitar que la batería se deteriore en el corto plazo, se recomienda realizar la carga de la misma antes de que se descargue completamente.

Los colores de las curvas indican la tasa de descarga, es decir el consumo con el cual se descarga constantemente. La curva 1C significa una vez la descarga, es decir que se descargaría a una tasa de 1*2500mA.

El voltaje mínimo de funcionamiento para el dispositivo es de 3.65V, según la gráfica del fabricante para la curva 1C=2500mA, se llega a este voltaje cuando se descargó aproximadamente 1000 mA.

12.5 Diseño mecánico y fabricación

Para el diseño mecánico del dispositivo, se optó por seleccionar un gabinete plástico estándar para electrónica. Esta elección se realizó con el fin de aprovechar las características y dimensiones apropiadas para el tipo de proyecto en cuestión, además de permitir una fácil integración de los componentes electrónicos y una apariencia estética adecuada.

El gabinete seleccionado cuenta con dimensiones de 153 mm x 230 mm x 61 mm, con un acabado liso y una cubierta removible para un fácil acceso a los componentes internos.

Figura 45: Medidas gabinete plástico estándar.

Dado que el proyecto se basó en el uso de un gabinete plástico estándar para electrónica, se realizó el diseño del PCB de la placa electrónica para que los componentes principales, como los pulsadores, el encoder rotativo y el display, coincidieran con las medidas y forma del gabinete. De esta manera, se logró un diseño compacto y estético que se ajusta a las necesidades del usuario y a las limitaciones del espacio físico disponible en el gabinete.

Se diseñaron dos placas para el proyecto, de forma que puedan conectarse apiladas. La placa inferior está destinada a la electrónica de control y la placa superior al hardware al que accede el usuario. De esta forma, se logra una distribución eficiente del espacio y una mejor organización del sistema.

Figura 46: PCB.

Para la fabricación del prototipo de ambas PCB se utilizó un router CNC para remover el cobre sobrante de la placa virgen. De esta manera, se logró obtener los trazos de cobre y orificios necesarios para el correcto funcionamiento de la placa.

El uso de esta herramienta permitió obtener una alta precisión en la realización de las pistas y orificios requeridos para el proyecto.

Figura 47: Mecanizado de plaza de cobre virgen

Figura 48: Prototipo sin gabinete.

Figura 49:Mecanizado de gabinete

12.5.1. Ensayo y rediseño

Ensayo de duración de batería

La duración de la batería de 9 V no fue la esperada y se tomó la decisión de rediseñar el circuito de alimentación. Para esto se empleó el siguiente circuito a la entrada del circuito mencionado en la sección 12.4.4.

Figura 50: Circuito cargador de bacteria y elevador de tension.

Debido a que el voltaje máximo de la batería es 4.1 V en su máxima carga, y este disminuye al descargarse la misma, es necesario utilizar un elevador de tensión (Figura 7) el cual está regulado para mantener constantemente a una tensión de 9V a su salida, y una tensión de 2 A. El voltaje de entrada puede rondar entre 2 y 24 V. Este módulo se llama MT3608 y es un integrado hibrido que eleva una tensión de entrada mediante la conmutación de sus componentes internos.

Figura 51: Elevador de tensión MT3608.

También se colocó un cargador de batería TP4056, el cual es un circuito integrado que se utiliza para cargar baterías de iones de litio de una sola celda. Es un chip de bajo costo y fácil de usar que se encuentra comúnmente en módulos de carga de baterías.

El TP4056 tiene una corriente de carga máxima de 1A y puede cargar la batería a una tasa constante hasta que la tensión de la batería alcanza un cierto umbral, momento en el que cambia a una carga de corriente constante. También tiene protección contra sobrecarga y protección contra descarga excesiva para garantizar la seguridad de la batería.

Figura 52: Cargador bacteria litio TP4056.

Medición de consumo del equipo

Con el fin de verificar el tiempo máximo teórico de utilización del dispositivo, se realizan mediciones de consumo en diversos modos de operación del mismo. Los resultados se resumen en la siguiente tabla:

Tabla 3 : Consumo de corriente vs modo de operación.

Modo de operación	Consumo medido [mA]
Dispositivo apagado	0 mA
Dispositivo encendido (sin conexión con software y en modo AP)	100 mA
Dispositivo encendido (con conexión con software y en modo AP)	150 mA
Dispositivo encendido (sin conexión con software y en modo STA)	150 mA
Dispositivo encendido (con conexión con software y en modo STA)	200 mA

Realizando nuevamente el cálculo de duración de la batería:

$$N^{\circ}$$
 horas en funcionamiento sin cargar = $\frac{Capacidad\ maxima\ de\ descarga}{Capacidad\ descargada\ x\ hora} = \frac{1000\ \text{mA}}{200\frac{mA}{hs}}$

 N° horas en funcionamiento sin cargar = 5 hs

De esta forma se puede garantizar el uso del dispositivo durante 5 horas en modo de operación de estación (genera su propio WIFI) conectado al software en todo momento. Este caso no suele darse ya que el dispositivo solo se utiliza en la puesta en marcha del CNC y no durante el proceso de mecanizado.

Verificación de funcionamiento

Para verificar el correcto funcionamiento del control, se lo ensayo con un router CNC.

Mediante esta prueba se determinaron diversos errores tempranos en diversos comandos y funcionalidades del equipo. De esta forma se permitió optimizar el código del sistema embebido, para lograr un óptimo funcionamiento del dispositivo evitando inconvenientes a la hora de una producción masiva.

CONCLUSIONES

En conclusión, el desarrollo de un control MPG inalámbrico para routers CNC con software Mach 3, basado en el protocolo TCP/IP con la utilización de sockets, es una solución tecnológica viable y necesaria para optimizar el proceso de control y manejo de estas máquinas.

Las alternativas propuestas en el mercado son costosas y no ofrecen las mismas prestaciones y ventajas que este proyecto. Además, el uso de tecnologías como FreeRtos y DNS/mDNS hace posible una implementación segura y efectiva del dispositivo.

En cuanto a los aspectos ambientales, se destaca que el dispositivo no presenta peligro para el medio ambiente durante su vida útil y que, al final de la misma, debe ser desechado según la normativa vigente del país donde se aplique debido a la presencia de soldadura con plomo.

En definitiva, el control MPG inalámbrico para routers CNC es una herramienta que puede mejorar significativamente el rendimiento de estas máquinas, reducir costos y aumentar la productividad en la industria.

V. APENDICE

- MachSupport. (2023). Mach3 CNC Control Software. Recuperado de https://www.machsupport.com/ (Consultado: 30/03/2023).
- FreeRTOS: FreeRTOS. (2023). About FreeRTOS. Recuperado de https://www.freertos.org/about-RTOS.html (Consultado: 30/03/2023).
- ESP-IDF Programming Guide. (2023). Recuperado de https://docs.espressif.com/projects/esp-idf/en/latest/esp32/ (Consultado: 30/03/2023).
- Wireless_handwheel_MPG_mach3. (2023). Recuperado de https://github.com/burger1473/Wireless_handwheel_MPG_mach3 (Consultado: 30/03/2023).

VI. BIBLIOGRAFIA

- Manual pulse generator: (2023). Recuperado de https://en.wikipedia.org/wiki/Manual_pulse_generator (Consultado: 30/03/2023).
- Modelo TCP/IP. (2023). Recuperado de https://es.wikipedia.org/wiki/Modelo_TCP/IP (Consultado: 30/03/2023).
- TCP/IP Protocol Suite. (2023). Recuperado de https://www.scaler.com/topics/computer-network/tcp-ip-protocol-suite/ (Consultado: 30/03/2023).
- mDNS Service. Recuperado de https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html (Consultado: 30/03/2023).
- ESP32 Pinout Reference. (2023). Recuperado de https://lastminuteengineers.com/esp32-pinout-reference/ (Consultado: 30/03/2023).
- Formulario plano moderno. (2023). Recuperado de https://rjcodeadvance.com/parte-2-formulario-plano-moderno-con-menuanimado-efecto-sliding-one-window-version-completa-c-winform-pasar-datosentre-forms/ (Consultado: 30/03/2023).
- How to programing C# with Mach3. (2023). Recuperado de https://www.youtube.com/watch?v=-IviSnDKsAY/ (Consultado: 30/03/2023).

- Introduction of INR18650-25R. (2023). Recuperado de https://www.powerstream.com/p/INR18650-25R-datasheet.pdf (Consultado: 30/03/2023).
- Añadir cargador de batería a ESP8266 y ESP32 (bien hecho). (2023). Recuperado de https://emariete.com/cargador-bateria-esp8266-esp32-bien-hecho/ (Consultado: 30/03/2023).

VII. ANEXO

VII.I Código OEM

OEM DROs

Function	OEMCode
Jog Inc Inc DRO	1
Pulse Freq DRO	2
Slow Jog % DRO	3
X min DRO	4
Y min DRO	5
Z min DRO	6
A min DRO	7
B min DRO	8
C min DRO	9
X max DRO	10
Y max DRO	11
Z max DRO	12
A max DRO	13
B max DRO	14
C max DRO	15
X G92 Axis Off DRO	16
Y G92 Axis Off DRO	17
Z G92 Axis Off DRO	18
A G92 Axis Off DRO	19
B G92 Axis Off DRO	20
C G92 Axis Off DRO	21
Queue Depth DRO	22
Time Scale DRO	23
PWM Base DRO	24
Torch Correction Speed DRO	25
Torch Height Corrorrection DRO	26
Torch Height Max DRO	27
CPU Load DRO	28
Encoder 1 (X) position DRO	29
Encoder 2 (Y) position DRO	30
Encoder 3 (Z) position DRO	31
Tool length offset	32
X axis Ref Sw DRO	33
Y axis Ref Sw DRO	34
Z axis Ref Sw DRO	35

A axis Ref Sw DRO	36
B axis Ref Sw DRO	37
C axis Ref Sw DRO	38
True spindle DRO	39
Worst Case DRO	40
Tool X Offset DRO	41
Tool Z Offset DRO	42
Tool Dia DRO	43
Tool Tip Rad DRO	44
Touch Correction DRO	45
Current Fixture Number DRO	46
Part X Offset DRO	47
Part Y Offset DRO	48
Part Z Offset DRO	49
Part A Offset DRO	50
Part B Offset DRO	51
Part C Offset DRO	52
CPU Speed DRO	53
Safe Z DRO	54
Overidden Feed Rate DRO (read only?)	55
Pulley DRO	56
Max Spindle Speed on current pulley DRO	57
Velocity per Rev DRO	58
X Scale DRO	59
Y Scale DRO	60
Z Scale DRO	61
A Scale DRO	62
B Scale DRO	63
C Scale DRO	64
Lowest Torch Correction DRO	65
Threading Entrance Angle DRO	66
Max Entrance Points DRO	67
Rotational Time Error DRO	68
Entrance Trigger DRO	69
Time Correction Derivative DRO	70
Interrupts per spindle rev DRO	71
Current Spin Counts DRO	72
Spin Adder DRO	73
Spindle Speed Override DRO	74
Stock Size DRO	75
Laser X Grid DRO	76
Laser Y Grid DRO	77
Repetitions DRO	78

Lower Z-Inhibit By DRO	79
Z-Inhibit DRO	80
Port Bit-test DRO (diagnostic)	81
Anti-dive limit DRO	82
X Machine Coord DRO	83
Y Machine Coord DRO	84
Z Machine Coord DRO	85
A Machine Coord DRO	86
B Machine Coord DRO	87
C Machine Coord DRO	88
Blend factor DRO	89
Number of spindle disc slots DRO	90
G73 Pull-off value DRO	91
Tangential lift threshold angle DRO	92
Tangential lift Z level DRO	93
reserved	94
reserved	95
reserved	96
CV Feedrate DRO	97
Feed override increment value DRO	98
??? Spindle ratio DRO	99
Encoder 4 position DRO	100
MPG 1 count DRO	101
MPG 2 count DRO	102
MPG 3 count DRO	103
Rapid feedrate DRO	104
Diameter of current tool DRO	105
Tip direction of current tool DRO	106
Tool nose radius of current tool DRO	107
X offset of current tool DRO	108
Z offset of current tool DRO	109
X wear offset of current tool DRO	110
Z wear offset of current tool DRO	111
Tool turret angle of current tool DRO	112
Velocity of MPG 1 DRO	113
Velocity of MPG 2 DRO	114
Velocity of MPG 3 DRO	115
Angle of taper to be cut with MPG tapering DRO	116
Spindle speed as surface speed DRO	117
Angle of rotation of X/Y coordinate system (cf G68)	118
Laser grid spacing DRO	119

Number of incremental jogs that can be buffered DRO	120
Minimum spindle speed on current pulley DRO	121
Feed rate ignoring that set in F word DRO	122
Tool post offset (between front and rear posts DRO	123
Current velocity of MPG 1 DRO	124
Current velocity of MPG 2 DRO	125
Feedrate for use with MPG step jogs DRO	126
Error between Encoder 1 and abs X position DRO	127
Error between Encoder 2 and abs Y position DRO	128
Error between Encoder 3 and abs Z position DRO	129
Time (uSec) in interrupt handler DRO	130
SLS Dist - laser position measurement DRO	131
Axis 6 Tripcount - system debug use only DRO	132
??? Engine lookahead DRO	133
Count of actual pulses output on X - debug use only DRO	134
Count of actual pulses output on Y - debug use only DRO	135
Count of actual pulses output on Z - debug use only DRO	136
Count of actual pulses output on A - debug use only DRO	137
Count of actual pulses output on B - debug use only DRO	138
Count of actual pulses output on C - debug use only DRO	139
Actual count from encoder 1 - debug use only DRO	140
Actual count from encoder 2 - debug use only DRO	141
Actual count from encoder 3 - debug use only DRO	142
Actual count from encoder 4 - debug use only DRO	143
Actual count from encoder 5 - debug use only DRO	144
Actual count from encoder 6 - debug use only DRO	145
ModBus input 64 DRO	146
ModBus input 65 DRO	147
ModBus input 66 DRO	148

ModBus input 67 DRO	149
Softlimit X Maximum DRO	150
Softlimit Y Maximum DRO	151
Softlimit Z Maximum DRO	152
Softlimit A Maximum DRO	153
Softlimit B Maximum DRO	154
Softlimit C Maximum DRO	155
Softlimit X Minimum DRO	156
Softlimit Y Minimum DRO	157
Softlimit Z Minimum DRO	158
Softlimit A Minimum DRO	159
Softlimit B Minimum DRO	160
Softlimit C Minimum DRO	161
Distance from front to rear toolpost DRO	162
Encoder 1 position (in units) DRO	170
Encoder 2 position (in units) DRO	171
Encoder 3 position (in units) DRO	172
Encoder 4 position (in units) DRO	173
Part X radius/diameter for Touching to tooltable DRO	175
Part Z location for Touching to tooltable DRO	176
reserved DRO	177
Machine X coord - X Work Offset DRO	178
Machine Y coord - Y Work Offset DRO	179
Machine Z coord - Z Work Offset - Tool length DRO	180
Machine A coord - A Work Offset DRO	181
Machine B coord - B Work Offset DRO	182
Machine C coord - C Work Offset DRO	183
X Cont. Pnt. coord (Machine - Work - G52/G92) DRO	184
Y Cont. Pnt. coord (Machine - Work - G52/G92) DRO	185
Z Cont. Pnt. coord (Machine - Work - Tool len G52/G92) DRO	186
A Cont. Pnt. coord (Machine - Work - G52/G92) DRO	187
B Cont. Pnt. coord (Machine - Work - G52/G92) DRO	188
C Cont. Pnt. coord (Machine - Work - G52/G92) DRO	189
X axis home location used by G28 DRO	190
Y axis home location used by G28 DRO	191
Z axis home location used by G28 DRO	192
A axis home location used by G28 DRO	193

B axis home location used by G28 DRO	194
C axis home location used by G28 DRO	195
X axis Distance to Go DRO	196
Y axis Distance to Go DRO	197
Z axis Distance to Go DRO	198
A axis Distance to Go DRO	199
B axis Distance to Go DRO	200
C axis Distance to Go DRO	201
Overriden spindle speed DRO	202
Current pulley reversed direction	203
Current X offset of Turn tool	204
reserved	205
reserved	206
reserved	207
Encoder X reading corrected by offsets	208
Encoder Y reading corrected by offsets	209
Encoder Z reading corrected by offsets	210
X soft limits Max	211
y soft limits Max	212
Z soft limits Max	213
X soft limits Min	214
y soft limits Min	215
Z soft limits Min	216
Spindle Seconds CW	217
reserved	218
reserved	219
Brains exe time (ms)	220
Probe Radius	221
Sub Program depth	222
Rapid Override	223
Number of macros currently running	224
X DRO	800
Y DRO	801
Z DRO	802
A DRO	803
B DRO	804
C DRO	805
X Vel DRO	806
Y Vel DRO	807
Z Vel DRO	808
A Vel DRO	809
B Vel DRO	810
C Vel DRO	811
Blended Velocity DRO	813

Elapsed DRO	814
Estimate DRO	815
Curr Line no DRO	816
Spindle requested DRO	817
Feedrate DRO	818
Motion Mode (G0, G1, G2 etc) DRO	819
Feedrate Override (FRO)	821
Tool number DRO	824
Rot A diameter DRO	825
Rot B diameter DRO	826
Rot C diameter DRO	827
Jog Inc DRO	828
X Fixture Off DRO	830
X Fixture Orig Off DRO	830
Y Fixture Off DRO	831
Y Fixture Orig Off DRO	831
Z Fixture Off DRO	832
Z Fixture Orig Off DRO	832
A Fixture Off DRO	833
A Fixture Orig Off DRO	833
B Fixture Orig Off DRO	834
B Fixture Off DRO	834
C Fixture Orig Off DRO	835
C Fixture Off DRO	835
Current Tool length DRO	836

OEM Buttons

Screen 1 select(e.g. Program Run screen)	1
Screen 2 select (e.g. MDI screen select)	2
e.g. Toolpath screen select	3
e.g. Positioning screen select	4
e.g. Diagnostics screen select	5
e.g. Corrections screen select	6
e.g. Tables screen select	7
Inc Inc Up	100
Inc Inc Down	101
Reset Interp	102
Jog mode toggle	103
Goto Safe Z	104

Home Z then X then Y, A, B, C - set machine coords		
Mach coords 107 Feed raise 108 Feed lower 109 Spindle CW, reset THC height 110 Slow Jog Up 111 Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Y 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load X 125 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Opath Toggle 132 Zero X Encoder 133 Zero Z Encoder 135	Home Z then X then Y, A, B, C - set machine coords	105
Feed raise 108 Feed lower 109 Spindle CW, reset THC height 110 Slow Jog Up 111 Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Z 127 Enc Load Z 129 Enc To Z 130 Togle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero X Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 <	Units	106
Feed lower 109 Spindle CW, reset THC height 110 Slow Jog Up 111 Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Y 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load Y 127 Enc Load Y 127 Enc Load Z 129 Enc To Z 130 Tool Path Toggle 131 Zero X Encoder 133 Zero X Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138	Mach coords	107
Spindle CW, reset THC height 110 Slow Jog Up 111 Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc To Z 130 Togle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138	Feed raise	108
Slow Jog Up 111 Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 140	Feed lower	109
Slow Jog Dn 112 Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load Y 127 Enc To X 126 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 <tr< td=""><td>Spindle CW, reset THC height</td><td>110</td></tr<>	Spindle CW, reset THC height	110
Flood toggle 113 Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tould button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Cal Zero 124 Enc Load X 125 Enc Load X 125 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Z Encoder 134 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part B Offset Touch 142 <td>Slow Jog Up</td> <td>111</td>	Slow Jog Up	111
Mist toggle 114 Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 142	Slow Jog Dn	112
Edit G-code 115 Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load Y 127 Enc Load Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part Y Offset Touch 140 Part A Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Flood toggle	113
Zero radius DRO on X 116 Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Z Encoder 134 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Mist toggle	114
Zero radius DRO on Y 117 Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc Load Y 127 Enc Load Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Edit G-code	115
Zero radius DRO on Z 118 Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Zero radius DRO on X	116
Software limits 119 Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 140 Part A Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Zero radius DRO on Y	117
Touch button for Tool length offset 120 Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 140 Part A Offset Touch 141 Part B Offset Touch 142 Part B Offset Touch 143	Zero radius DRO on Z	118
Tool Tab Save 121 Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Software limits	119
Fixture Tab Save 122 Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Touch button for Tool length offset	120
Torch Enable Toggle 123 Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 141 Part B Offset Touch 143	Tool Tab Save	121
Torch Cal Zero 124 Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Fixture Tab Save	122
Enc Load X 125 Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Y Offset Touch 141 Part A Offset Touch 141 Part B Offset Touch 143	Torch Enable Toggle	123
Enc To X 126 Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Y Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Torch Cal Zero	124
Enc Load Y 127 Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc Load X	125
Enc To Y 128 Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc To X	126
Enc Load Z 129 Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc Load Y	127
Enc To Z 130 Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc To Y	128
Toggle Mill/Turn mode 131 Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 140 Part Y Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc Load Z	129
Tool Path Toggle 132 Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Enc To Z	130
Zero X Encoder 133 Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Toggle Mill/Turn mode	131
Zero Y Encoder 134 Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Tool Path Toggle	132
Zero Z Encoder 135 Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Zero X Encoder	133
Tool Offset Tog 136 Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Zero Y Encoder	134
Fixture Off 137 Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Zero Z Encoder	135
Go Home 138 Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Tool Offset Tog	136
Part X Offset Touch 139 Part Y Offset Touch 140 Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Fixture Off	137
Part Y Offset Touch Part Z Offset Touch Part A Offset Touch Part B Offset Touch 140 141 142	Go Home	138
Part Z Offset Touch 141 Part A Offset Touch 142 Part B Offset Touch 143	Part X Offset Touch	139
Part A Offset Touch 142 Part B Offset Touch 143	Part Y Offset Touch	140
Part B Offset Touch 143	Part Z Offset Touch	141
	Part A Offset Touch	142
Part C Offset Touch 144	Part B Offset Touch	143
1	Part C Offset Touch	144
Tool X Offset Touch 145	Tool X Offset Touch	145

Tool Z Offset Touch	146
Joy Throttle select	147
Touch Corr Enable Toggle	148
Auto Lim Override Toggle	149
OverRide Limits	150
SS on Act4 Toggle	151
reserved	152
reserved	153
reserved	154
Units/rev - Units/min toggle	155
Set this line as next to execute	156
Jog Follow	157
Joystick ON	158
Joystick OFF	159
Regen toolpath display	160
Zero X-Z to stock as defined in DROs (Turn)	161
Coordinate mode (G90/91)	162
Raise spindle speed	163
Lower spindle speed	164
Laser Probe Enable Toggle	165
Zero laser grid at current location	166
Z inhibit toggle	167
Ignore Tool Change toggle	168
Close current file	169
Re-load last file	170
Jog increment cycle	171
Clear error label	172
Spindle CCW toggle	173
Parallel Port Encoder3 MPG Jog Toggle	174
Cycle axis controlled by MPG 1	175
Block Delete "switch" toggle	176
Optional Stop "switch" toggle	177
Offline toggle	178
Display Abs Machine coordinates (i.e. macnine coords ON)	179
Display Work + G92 coordinates (i.e. Machine coords OFF)	180
Display Work coords (i.e. not with G92)	181
??? Toggle Spindle actual	182
Home X, Home Z (Turn)	184
Select X for MPG 1	185
Select Y for MPG 1	186

Select Z for MPG 1	187
Select A for MPG 1	188
Select B for MPG 1	189
Select C for MPG 1	190
Select Jog Increment 1	191
Select Jog Increment 2	192
Select Jog Increment 3	193
Select Jog Increment 4	194
Select Jog Increment 5	195
Select Jog Increment 6	196
Select Jog Increment 7	197
Select Jog Increment 8	198
Select Jog Increment 9	199
Select Jog Increment 10	200
Feed override Off	201
Feed override Jog	202
Feed override Feed	203
Jog mode Continuous (same as button 276)	204
Jog mode Step (same as button 275)	205
Joystick On	206
Joystick Off	207
Clear Z tool offset (Turn)	208
Clear X tool offset (Turn)	209
Set stock correction to Zero (Turn)	210
Home X Home Z (Turn)	211
Home X (Turn)	212
Home Z (Turn)	213
Show recent G-code files list	214
Display history	215
Load G-code	216
Tool flip toggle (Turn front/rear toolposts)	217
Z-inhibit ON	218
Z-inhibit OFF	219
Port Bit-Test Set (diagnostic)	220
Anti-dive enabled toggle	221
THC Anti-dive OFF	222
THC Anti-dive ON	223
Flood ON	224
Flood OFF	225
Mist ON	226
Mist OFF	227

Toolpath Machine/Job toggle 229 Display Wizard selection window 230 Load the normal screens when Wizard done 231 Simple Complex screen toggle 232 Output 4 ON 233 Output 5 ON 235 Output 5 OFF 236 Output 6 ON 237 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed Togle 247 CV feed OFF 248 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on ax	Load Teach file	228
Load the normal screens when Wizard done 231 Simple Complex screen toggle 232 Output 4 ON 233 Output 5 ON 235 Output 5 OFF 236 Output 6 ON 237 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis B 254 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis B 254 Disable movement on axis B 255	Toolpath Machine/Job toggle	229
done 231 Simple Complex screen toggle 232 Output 4 ON 233 Output 5 ON 235 Output 5 OFF 236 Output 6 ON 237 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG 245 as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed ToFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Z 252 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257	Display Wizard selection window	230
Output 4 OFF 234 Output 5 OF 235 Output 6 OFF 236 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine OFFline 257 Select encoder jog on axis X 259 Select encoder jog on axis A 260 Select encoder jog on axis A 262 Sel		231
Output 4 OFF 234 Output 5 OFF 236 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 with midpoint selection 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis X 251 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine OFFline 257 Select encoder jog on axis X 259 Select encoder jog on axis A 262 Select encoder jog on axis B 263	Simple Complex screen toggle	232
Output 5 ON 235 Output 6 ON 237 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Z 252 Disable movement on axis B 254 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select	Output 4 ON	233
Output 5 OFF 236 Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis A 262 Select encoder jog on axis B 263	Output 4 OFF	234
Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis A 260 Select encoder jog on axis B 261 Select encoder jog on axis B 263 Select encoder jog on axis C 264	Output 5 ON	235
Output 6 OFF 238 Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis A 253 Disable movement on axis B 254 Disable movement on axis C 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis B 263 Select encoder jog on axis C 264	Output 5 OFF	236
Set Help context 239 Def-Ref all axes 240 Tangential toggle 241 Save XYZ to G59.254 work offset 242 do G0G53 to G59.254 offset location 243 Move to G59.254 with midpoint selection 244 Toggle Jog Mode through Cont/Step/MPG as relevant 245 Force Referenced on all axes 246 CV feed toggle 247 CV feed OFF 248 CV feed ON 249 Disable movement on axis X 250 Disable movement on axis Y 251 Disable movement on axis Z 252 Disable movement on axis B 254 Disable movement on axis B 255 Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 262 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis C 264 Select Step value 1 265	Output 6 ON	237
Def-Ref all axes Tangential toggle Save XYZ to G59.254 work offset do G0G53 to G59.254 offset location Move to G59.254 with midpoint selection Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis B Disable movement on axis B Disable movement on axis C Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select Step value 1 Select Step value 2	Output 6 OFF	238
Tangential toggle Save XYZ to G59.254 work offset do G0G53 to G59.254 offset location Move to G59.254 with midpoint selection Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis B Disable movement on axis B Disable movement on axis C Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select Step value 1 Select Step value 2	Set Help context	239
Save XYZ to G59.254 work offset do G0G53 to G59.254 offset location Move to G59.254 with midpoint selection Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF 248 CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis C Select encoder jog on axis C Select Step value 1 Select Step value 2	Def-Ref all axes	240
do G0G53 to G59.254 offset location Move to G59.254 with midpoint selection Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis Z Disable movement on axis B Disable movement on axis B Disable movement on axis C Machine Coordinates toggle Engine OFFline Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis C Select encoder jog on axis B Select encoder jog on axis C Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Tangential toggle	241
Move to G59.254 with midpoint selection Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF 248 CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis Z Disable movement on axis A Disable movement on axis B Disable movement on axis C Disable movement on axis C Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Save XYZ to G59.254 work offset	242
Toggle Jog Mode through Cont/Step/MPG as relevant Force Referenced on all axes CV feed toggle CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis A Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Disable movement on axis B Disable movement on axis C Select encoder jog on axis X Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select step value 1 Select Step value 2	do G0G53 to G59.254 offset location	243
as relevant Force Referenced on all axes CV feed toggle CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis Z Disable movement on axis B Disable movement on axis B Disable movement on axis C Machine Coordinates toggle Engine OFFline Select encoder jog on axis X Select encoder jog on axis X Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Move to G59.254 with midpoint selection	244
CV feed OFF CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Y Disable movement on axis Z Disable movement on axis A Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Machine Coordinates toggle Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select encoder jog on axis C Select encoder jog on axis C Select Step value 1 Select Step value 2		245
CV feed OFF 248 CV feed ON 249 Disable movement on axis X Disable movement on axis Y 251 Disable movement on axis Z Disable movement on axis A 252 Disable movement on axis B Disable movement on axis B Disable movement on axis C Machine Coordinates toggle Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis A Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select encoder jog on axis C Select encoder jog on axis C Select step value 1 Select Step value 2	Force Referenced on all axes	246
CV feed ON Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis Z Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Machine Coordinates toggle Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis B Select select encoder jog on axis C Select Step value 1 Select Step value 2	CV feed toggle	247
Disable movement on axis X Disable movement on axis Y Disable movement on axis Z Disable movement on axis A Disable movement on axis A Disable movement on axis B Disable movement on axis C Disable movement on axis C Disable movement on axis C Engine OFFline Engine OFFline Select encoder jog on axis X Select encoder jog on axis X Select encoder jog on axis Z Select encoder jog on axis Z Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	CV feed OFF	248
Disable movement on axis Y Disable movement on axis Z Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Disable movement on axis C Machine Coordinates toggle Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	CV feed ON	249
Disable movement on axis Z Disable movement on axis A Disable movement on axis B Disable movement on axis B Disable movement on axis C Disable movement on axis C Engine Ordinates toggle Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Disable movement on axis X	250
Disable movement on axis A Disable movement on axis B Disable movement on axis C Disable movement on axis C Disable movement on axis C Engine Ore Coordinates toggle Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Disable movement on axis Y	251
Disable movement on axis B Disable movement on axis C Disable movement on axis C Engine Oreline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Disable movement on axis Z	252
Disable movement on axis C Machine Coordinates toggle Engine OFFline Engine ONline Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2	Disable movement on axis A	253
Machine Coordinates toggle 256 Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis Y 260 Select encoder jog on axis Z 261 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis C 264 Select Step value 1 265 Select Step value 2 266	Disable movement on axis B	254
Engine OFFline 257 Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis Y 260 Select encoder jog on axis Z 261 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis C 264 Select Step value 1 265 Select Step value 2 266	Disable movement on axis C	255
Engine ONline 258 Select encoder jog on axis X 259 Select encoder jog on axis Y 260 Select encoder jog on axis Z 261 Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis C 264 Select Step value 1 265 Select Step value 2 266	Machine Coordinates toggle	256
Select encoder jog on axis X Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2 259 260 261 262 263 264 265 265	Engine OFFline	257
Select encoder jog on axis Y Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2 260	Engine ONline	258
Select encoder jog on axis Z Select encoder jog on axis A Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2 261 262 263 264 265 Select Step value 2	Select encoder jog on axis X	259
Select encoder jog on axis A 262 Select encoder jog on axis B 263 Select encoder jog on axis C 264 Select Step value 1 265 Select Step value 2 266	Select encoder jog on axis Y	260
Select encoder jog on axis B Select encoder jog on axis C Select Step value 1 Select Step value 2 263 264 265	Select encoder jog on axis Z	261
Select encoder jog on axis C Select Step value 1 Select Step value 2 265 Select Step value 2	Select encoder jog on axis A	262
Select Step value 1 265 Select Step value 2 266	Select encoder jog on axis B	263
Select Step value 2 266	Select encoder jog on axis C	264
	Select Step value 1	265
Select Step value 3 267	Select Step value 2	266
	Select Step value 3	267

Select Step value 4	268
Select Step value 5	269
Select Step value 6	270
Select Step value 7	271
Select Step value 8	272
Select Step value 9	273
Select Step value 10	274
Set Jog mode STEP (same as button 205) Set Jog mode CONT (same as button	275
204)	276
Increment feedrate	277
Decrement feedrate	278
Run reverse	279
Switch to last used Wizard	280
Cycle axis controlled by MPG 2	281
Toggle taper mode on MPG 2	282
Toggle dual MPG flag	283
Toggle shuttle mode for MPG	284
Return to paused state	285
Remember paused state	286
Toggle override of rapid feeds	287
Crop current dwell now	288
??? Set formlas	289
Inhibit jog of X axis	290
Inhibit jog of Y axis	291
Inhibit jog of Z axis	292
Inhibit jog of A axis	293
Inhibit jog of B axis	294
Inhibit jog of C axis	295
Do screw calibration routine	296
Unconditional crop any dwell now	297
reserved	298
Toggle bypass feed (enables value in OEM DRO 122)	299
Toggle current tool is in front toolpost	300
Code for OEMTriggers runs the macro in SetTriggerMacro	301
Cycle MPG jogging mode	302
Set MPG jogging mode = Velocity	303
Set MPG jogging mode = Velocity/Step	304
Set MPG jogging mode = do single eaxct steps	305

Set MPG jogging mode = do multiple exact steps		306
Push to jog X++		307
Push to jog X		308
Push to jog Y++		309
Push to jog Y		310
Push to jog Z++		311
Push to jog Z		312
Push to jog A++		313
Push to jog A		314
Calibrate MPGs		315
Save tool table		316
Save work offset table		317
Drag on toolpath does Zoom toggle		318
Drag on toolpath does Pan toggle		319
Display Wizard select dialog		320
Run Newfangled Wizard		321
Emergency bailout - tester use only		322
Toggle visibility of screen 50		323
Turn mode tool touch off X axis		324
Toggle use of spindle step line to control Torch volts		325
Turn mode tool touch off Z axis		326
Select MPG jog mode		327
unknown		328
Push to Jog B++		329
Push to Jog B		330
Push to Jog C++		331
Push to Jog C		332
Toggle axis DROs display Dist to Go		333
Toggle X jog off		334
Toggle Y jog off		335
Toggle Z jog off		336
Toggle A jog off		337
Toggle B jog off		338
Toggle C jog off		339
Set a temporary softlimit minimum at current location		340
Set a temporary softlimit maximum at current location		341
reserved	343 - 347	
Turn off display of menu bar		348
Turn on display of menu bar		349

Increment spindle speed by value not % (Turn)	350
Decrement spindle speed by value not %	351
(Turn)	
Jog X and A axis ++ together (foam machines)	352
Jog X and A axis together (foam machines)	353
Jog Y and B axis ++ together (foam machines)	354
Jog Y and B axis together (foam machines)	355
Cycle start	1000
Pause (Feed Hold)	1001
Rewind	1002
Stop	1003
Single	1004
Resume	1005
Edit File	1006
Zero All	1007
Zero X	1008
Zero Y	1009
Zero Z	1010
Zero A	1011
Zero B	1012
Zero C	1013
Feedrate reset	1014
Estimate Job	1015
Run from here	1016
GotoZs	1017
Coord System	1018
Verify	1020
Reset	1021
Ref X	1022
Ref Y	1023
Ref Z	1024
Ref A	1025
Ref B	1026
Ref C	1027
Joystick Toggle	1028
Softlimits Toggle	1029
Radius Tracking Toggle	1030
Jog Toggle	1031

VII.II Display LCD

	Code									Execution Time (max) (when f _{cp} or		
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 270 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	
Return home	0	0	0	0	0	0	0	0	1	_	Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.52 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 μs
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	37 μs
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	_	_	Moves cursor and shifts display without changing DDRAM contents.	37 μs
Function set	0	0	0	0	1	DL	N	F	_	_	Sets interface data length (DL), number of display lines (N), and character font (F).	37 μs
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	37 μs
Set DDRAM address	0	0	1	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	37 μs						
Read busy flag & address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 μs						

			Code				Execution Time (max) (when f _{so} or	
Instruction	RS	R/W	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Desc	ripti	on	f _{OSC} is 270 kHz)	
Write data to CG or DDRAM	1	0	Write data	Write CGR		ta into DDRAM or	$37 \mu s$ $t_{ADD} = 4 \mu s^*$	
Read data from CG or DDRAM	1	1	Read data	Reads data from DDRAM or CGRAM.			$37 \mu s$ $t_{ADD} = 4 \mu s^*$	
	I/D S S/C S/C R/L DL N F BF	= 1: = 0: = 1: = 0: = 1: = 1: = 1:	Increment Decrement Accompanies display shift Display shift Cursor move Shift to the right Shift to the left 8 bits, DL = 0: 4 bits 2 lines, N = 0: 1 line 5 × 10 dots, F = 0: 5 × 8 dots Internally operating Instructions acceptable	ACG:	AM: : (corr addr Addr both	Display data RAM Character generator RAM CGRAM address DDRAM address esponds to cursor ess) ess counter used for DD and CGRAM esses	Execution time changes when frequency changes Example: When f_{cp} or f_{OSC} is 250 kHz, $37 \ \mu s \times \frac{270}{250} = 40 \ \mu s$	

Note: — indicates no effect.

^{*} After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In Figure 10, t_{ADD} is the time elapsed after the busy flag turns off until the address counter is updated.

Figure 24 4-Bit Interface

VII.III Esquemático

Burgos, Fabian; Rubiolo Bruno

Control Inalámbrico CNC Mach 3 (MPG)