ELETROTECNIA TEÓRICA

DIMENSIONAMENTO E ANÁLISE DA COMPENSAÇÃO DO FATOR DE POTÊNCIA DE UM MOTOR ELÉTRICO TRIFÁSICO

Classificação:	

Trabalho realizado pelos estudantes:

Nome: Simão Maravilhas Charrua Número: 63422

Nome: Gonçalo Filipe Cabaço Santos Número: 63235

Nome: Tiago Capelo Monteiro Número: 63368

Índice:

Introdução	3
Objetivo	4
Cálculo	5
Discussão de resultados	10
Conclusão	12

Introdução:

Qualquer tipo de instalação elétrica residencial, industrial ou comercial é composta por um circuito RL. A potência ativa, P, necessária vai ser determinada pela quantidade de potência dos equipamentos elétricos presentes no circuito. O fornecedor de energia deve fornecer uma energia aparente, S, que tem em conta a potencia reativa, Q, e a ativa.

Com o tempo, Q acaba por se tornar em energia reativa, medida normalmente em kvarh, e que será pago se este valor exceder o valor definido pela ERSE (Entidade Reguladora dos Serviços Energéticos). Em Portugal, a energia reativa será paga sempre que o fator de potência da instalação seja inferior a 0,957 (Q 2 16,7°). Esta energia é paga consoante estes três escalões:

1º escalão	2º escalão	3º escalão
cos φ entre 0,95 e 0,93	cos φ entre 0,93 e 0,89	cos φ < 0,89
tg φ entre 0,3 e 0,4	tg φ entre 0,4 e 0,5	tg φ > 0,5
Energia reativa paga a 1/3 do	Energia reativa paga ao preço	Energia reativa paga ao triplo
preço de referência	de referência estabelecido pela	do preço de referência
estabelecido pela ERSE	ERSE	estabelecido pela ERSE

Neste trabalho Prático, vamos explorar os principais benefícios associados à compensação do fator de potência com um exemplo pratico, destacando como essa prática pode contribuir para a otimização do consumo de energia, a redução de custos operacionais e a melhoria da qualidade da energia elétrica fornecida.

Objetivo:

Para estudar a compensação do fator de potência foi nos dado um problema pratico, cujo enunciado é o seguinte:

Um motor de indução trifásico industrial ligado em estrela alimentado à tensão simples a de 230 V e à frequência de 50 Hz, absorve à rede uma potência aparente de 240 kVA e uma potência ativa, P_{trif} . As potências aparente e ativa trifásicas são medidas com um analisador de energia colocado à entrada de instalação que alimenta o motor.

Neste trabalho pretende-se realizar o dimensionamento dos condensadores a colocar em paralelo com o motor de indução trifásico.

Desta forma, anulando ao máximo a potência reativa gerada pelo motor, fazendo assim os condensadores um investimento que, a longo prazo, poupe dinheiro á empresa que o mantém.

Finalmente, pretende-se também fazer com que o estudo de tal indique as vantagens da compensação do fator de potência quer para consumidor como fornecedor de energia. Principalmente em casos de instalações com potências médias ou superiores á estudada.

Cálculo:

A partir dos valores do enunciado podemos concluir que:

$$v_s = 230 \, V, f = 50 \, Hz, S = 240 \, KVA$$

$$P_{trif} = \frac{63422 + 63368 + 63235}{2} = 95012 \, w$$

4.1 - Cálculo do fator de potência do motor de indução.

$$P_{trif} = Scos(\varphi) \leftrightarrow cos(\varphi) = \frac{P_{trif}}{S} \leftrightarrow cos(\varphi) = 0.3958$$

 $cos(\varphi) = 0.3958 \leftrightarrow \varphi \approx 67^{\circ}$

4.2 - A potência reativa Q trifásica e monofásica absorvida á rede pelo motor.

$$Q_{trif} = Ssin(\varphi) \leftrightarrow Q_{trif} = 221 \: Kvar$$

$$Q = \frac{221000}{3} = 73667 \, Kvar$$

4.3 - O custo anual da energia reativa associada ao motor sabendo que a empresa fornecedora de energia cobra a energia reativa por escalões e cobra também a tarifa de acesso à rede, em €/kvarh.

Como:

$$cos(\varphi) = 0.3958 < 0.89$$

Estamos no 3º escalão. Logo o preço de referência será:

$$3\times PR_r=3\times 0,0108=0,0324 \in /kvarh$$

Sabendo que a fábrica trabalha das 8 ás 24 horas, 360 dias por ano:

$$\Delta t = (24 - 8) \times 360 = 5760 \ horas \ por \ ano$$

Logo, o total de energia que gasta ao longo do ano:

$$E = P \times \Delta t = 221 \ k \times 5760 = 1272960 \ kvarh$$

$$T_{\epsilon} = taxa \ de \ escal\~ao = 0,0314 \times 1272960 = 41243,9 \in$$

$$T_{u} = taxa \ de \ uso = 1272960 \times 0,0108 = 13747,97 \in$$

Logo, o preço total será:

$$(T_{\epsilon} + T_u) \times 1.23 \approx 67640 \in$$

4.4 - A corrente \bar{I} absorvida à rede pelo motor e a corrente na linha da instalação que o alimenta, \bar{I}_{LS} , antes da compensação (por fase).

Em primeira instância podemos afirmar que:

$$\bar{I} = \bar{I}_{LS}$$

Como o sistema está em equilíbrio de cargas:

$$S = 3 \times U_{ef} \times I_{ef} \leftrightarrow 240\ 000 = 3 \times 230 \times I_{ef} \leftrightarrow I_{ef} \approx 348\ A$$

Logo:

$$Z = \frac{U}{I} = \frac{230}{348} = 0.66 \,\Omega$$

Assim:

$$\bar{z} = 0.66e^{j67^{\circ}}\Omega$$

Logo, as correntes em linha são dadas por:

$$\overline{I_{LS1}} = \overline{I_1} = \frac{230e^{j0^{\circ}}}{0,66e^{j67^{\circ}}} \approx 349e^{-j67^{\circ}} A$$

$$\overline{I_{LS2}} = \overline{I_2} = \frac{230e^{-j120^{\circ}}}{0,66e^{j67^{\circ}}} \approx 349e^{-j187^{\circ}} A$$

$$\overline{I_{LS3}} = \overline{I_3} = \frac{230e^{-j240^{\circ}}}{0.66e^{j67^{\circ}}} \approx 349e^{-j307^{\circ}} A$$

4.5- A capacidade CY total do banco de condensadores a colocar em paralelo com o motor para que se proceda à compensação total do fator de potência e considerando que os condensadores estarão também ligados em estrela. Sabemos que:

$$I_c = Isin(\varphi)$$
$$I_c = wcu$$

Logo:

$$Isin(\varphi) = wcu \leftrightarrow C_Y = \frac{Isin(\varphi)}{wu} = \frac{349 \times sin (67^\circ)}{50 \times 2\pi \times 230} \approx 4.4mF$$

Assim, o total de capacitância a ter é:

$$c_{Y Total} = 3 \times 4.4 = 13.2 \, mF$$

4.6- Diagrama vetorial da instalação (por fase) após a compensação do fator de potência. Calcular a corrente nas linhas após compensação, \bar{I}_{Lc} .

$$\overline{\overline{I}_c} = \overline{\overline{I_{rl}}} \sin(67) = 321,3 A$$

$$\overline{\overline{z}_c} = -j \frac{1}{wc} = 0,72e^{-j90^\circ}$$

Logo, as correntes que compensam as correntes das impedâncias são dadas por:

$$\overline{\overline{I_{c1}}} = \frac{230e^{j0^{\circ}}}{\overline{\overline{Z_c}}} = 319,4e^{j90^{\circ}}$$

$$\overline{\overline{I_{c2}}} = \frac{230e^{-j120^{\circ}}}{\overline{\overline{Z_c}}} = 319.4e^{-j30^{\circ}}$$

$$\overline{\overline{I_{c3}}} = \frac{230e^{-j240^{\circ}}}{\overline{\overline{Z_c}}} = 319.4e^{-j150^{\circ}}$$

Assim, as correntes após serem compensadas são dadas por:

$$\overline{\overline{I_{LC1}}} = \overline{\overline{I_1}} + \overline{\overline{I_{C1}}} \approx 136.4e^{-j0^{\circ}} A$$

$$\overline{\overline{I_{Lc2}}} = \overline{\overline{I_2}} + \overline{\overline{I_{c2}}} \approx 136.4e^{-j120^{\circ}} A$$

$$\overline{\overline{I_{Lc3}}} = \overline{\overline{I_3}} + \overline{\overline{I_{c3}}} \approx 136,4e^{-j240^{\circ}} A$$

Figura 1- Diagrama vetorial da instalação após a compensação do fator de potência.

4.7-A capacidade C Δ total do banco de condensadores no caso destes serem ligados em triângulo. Comparar com o resultado obtido em 4.5.

Como:

$$Z_{\Delta} = 3Z_{Y}$$

Então:

$$c_Y = \frac{I_{Ly} sin(\varphi)}{wu} = \frac{sin(\varphi)}{wz_Y}$$

$$c_{\Delta} = \frac{\sin(\varphi)}{wz_{\Lambda}} = \frac{\sin(\varphi)}{3wz_{Y}}$$

Logo:

$$3c_{\Delta} = c_Y \leftrightarrow c_{\Delta} = 1.47 \ mF$$

Assim, a capacidade total no banco é:

$$c_{\Delta Total} = 3 \times 13,2 = 4.41 \, mF$$

4.8- Sabendo que a resistência elétrica por fase da instalação que alimenta o motor é de $20~\text{m}\Omega$, calcular as perdas totais na rede trifásica de alimentação antes e depois da compensação do fator de potência.

$$R = 0.02 \Omega$$

Como o sistema está em equilíbrio de cargas:

• Antes da compensação:

$$P_{1perdas} = P_{2perdas} = P_{3perdas} = 0.02 \times 349^2 = 2436 w$$

• Depois da compensação:

$$P_{1perdas}' = P_{2perdas}' = P_{3perdas}' = 0.02 \times 136^2 = 370 w$$

Discussão de resultados:

4.9- Explicar detalhadamente as vantagens associadas à diminuição da corrente na instalação trifásica que alimenta a máquina, após a compensação.

Com a compensação do fator de potência, reduzimos a potência reativa. Sendo esta associada às perdas de energia, pois não realiza qualquer trabalho de forma efetiva do sistema. Esta redução traduz-se em vantagens para o fornecedor: Entrega de menos energia de forma mais eficaz, implicado menores secções de cabos o que leva a uma redução de custos do serviço. O tempo de vida das máquinas aumenta devido a uma menor flutuação de tensões provocada pela tensão reativa. No ponto de vista do cliente, existe o incentivo financeiro e um maior fator de potencia levar a uma menor tarifa de acesso á rede, dado que o custo da energia reativa existem em função ao fator de potencia associados a diferentes escalões.

4.10- A potência aparente S' da instalação que alimenta o motor depois da compensação do fator de potência. Comparar com a potência aparente da instalação antes da compensação do fator de potência e comentar sobre as vantagens e/ou desvantagens associadas a esta variação de S.

$$S' = 230 \times 136 = 31280 \, VA$$

Potencia aparente da instalação após a compensação do fator de potência:

$$S_Y' = 3 \times S'$$

$$S_V' = 3 \times 31280 = 93840 \, VA$$

Potencia aparente da instalação antes da compensação do fator de potência:

$$S_V = 240000 \, VA$$

Logo:

$$\frac{S_Y}{S_V'} = \frac{240000}{93840} \approx 2.5$$

Assim, concluímos que após a compensação com o banco de condensadores, a eficiência da instalação aumenta consideravelmente.

Levando esta a durar mais tempo e ao longo do tempo a poupar dinheiro. Permitindo assim uma poupança para futuros investimentos ou manutenção da instalação

A desvantagem é que só passado algum tempo o investimento do banco de condensadores será amortizado e se a instalação trabalhar pouco tempo pode não viresta poupança pode não ser a melhor.

4.11- O tempo que demorará a amortizar o investimento para compensar o fator de potência, sabendo que a instalação completa do banco de condensadores tem um custo associado de, aproximadamente,120 € por kvar de potência reativa da instalação (com IVA já incluído).

$$Q = 221kvar$$

Custo:

$$120 \cdot 221 = 26520 \in$$

Logo, o tempo para amortizar á dado por:

$$\Delta t_{amortizar} = \frac{26520}{67640} = 0.39$$

Assim, como 1 ano tem 12 meses:

$$12 \cdot 0.39 = 4.68 \approx 5 \text{ meses}$$

Assim, irá demorar, aproximadamente, 5 meses para amortizar.

Conclusão:

A compensação do fator de potência é uma estratégia essencial para melhorar a eficiência energética numa empresa podemos ver por 4.11 que após 5 meses da instalação dos condensadores deixamos de pagar energia reativa e a instalação dos mesmos fica paga. Com este trabalho alem de trabalhas bastante com o fator de potência foi possível aprofundar os conhecimentos sobre circuitos trifásicos quer estejam dispostos em estrela ou em triangulo.

Em suma, podemos concluir que a compensação do fator de potencia é uma excelente aquisição a nível energético quando se trata de instalações elétricas de média potência ou superior