Задача 0.1. Нека $A = \langle \Sigma, Q, S, \Delta, F \rangle$ е краен автомат с $\Delta \subseteq Q \times \Sigma \times Q$. За състояние $p \in Q$ с A_p означаваме автомата $A_p = \langle \Sigma, Q, \{p\}, \Delta, F \rangle$, а $L_A(p) = L(A_p)$. Да се докаже, че:

- 1. $a\kappa o f \in F$, $mo \varepsilon \in L_A(f)$.
- 2. $a \kappa o \langle p, a, q \rangle \in \Delta$, $mo \{a\} \circ L_A(q) \subseteq L_A(p)$.
- 3. за всяко $p \in Q$ е в сила равенството¹:

$$L_A(p) = \bigcup_{(a,q): \langle p, a, q \rangle \in \Delta} (\{a\} \circ L_A(q)) \cup \{\varepsilon \mid p \in F\}.$$

4. ако $L'(p) \subseteq \Sigma^*$ за $p \in Q$ са произволни езици, за които са изпълнени равенствата:

$$L'(p) = \bigcup_{(a,q): \langle p,a,q\rangle \in \Delta} (\{a\} \circ L'(q)) \cup \{\varepsilon \,|\, p \in F\}$$

за всяко $p \in Q$, то $L_A(p) \subseteq L'(p)$ за всяко $p \in Q$.

Задача 0.2. Нека Σ и Ω са азбуки, а $h: \Sigma^* \to \Omega^*$ е (тотална) функция, за която за всеки две думи α и β над Σ е изпълнено, че:

$$h(\alpha \cdot \beta) = h(\alpha) \cdot h(\beta).$$

За език L над Σ c h(L) означаваме множеството:

$$h(L) = \{h(\alpha) \, | \, \alpha \in L\}.$$

Да се докаже, че:

- 1. $h(\varepsilon) = \varepsilon$.
- 2. за всеки два езика L_1 и L_2 над Σ , $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$.
- 3. за всеки два езика L_1 и L_2 над Σ , $h(L_1 \cdot L_2) = h(L_1) \cdot h(L_2)$.
- 4. за всеки език L над Σ , $h(L^*) = h(L)^*$.
- 5. за всеки език L над Σ , $h(L^+) = h(L)^+$.

Функциите $h: \Sigma^* \to \Omega^*$ със свойството $h(\alpha \cdot \beta) = h(\alpha) \cdot h(\beta)$ за всеки две думи над Σ се наричат $xomomop \phi u s m u$. Смисълът им, както целят да покажат горните равенства, е, че те позволяват да пренесем съществена информация (подобия) на думите над Σ в думи над Ω , но не всички (вж. по-долу). Следващата задача показва, че хомомор физмите се задават еднозначно от еднобуквените думи. Това означава, че такива подобия зависят само от крайна информация.

Задача 0.3. Нека Σ и Ω са азбуки, а $h_0: \Sigma \to \Omega^*$ е (тотална) функция от еднобуквените думи в думите над Ω . Да се докаже, че:

- 1. има $h: \Sigma^* \to \Omega^*$, за която:
 - $h(a) = h_0(a)$ за всяко $a \in \Sigma$ и

¹Множеството $\{\varepsilon \mid p \in F\}$ трябва да се разбира като $\{\varepsilon\}$ ако $p \in F$ и като \emptyset , ако $p \notin F$.

- $h(\alpha \cdot \beta) = h(\alpha) \cdot h(\beta)$ за всеки две думи $\alpha, \beta \in \Sigma^*$.
- 2. функцията от точка 1 е единствена.

Задача 0.4. Нека $A = \langle \Sigma, Q, I, \Delta, F \rangle$ е краен автомат и $h_0 : \Delta \to \Sigma^*$ е функцията:

$$h_0(\langle p, a, q \rangle) = a$$
 за всеки преход $\langle p, a, q \rangle \in \Delta$.

Нека $h: \Delta^* \to \Sigma^*$ е функция, за която $h(\tau) = h_0(\tau)$ за всеки преход и $h(\pi_1 \cdot \pi_2) = h(\pi_1) \cdot h(\pi_2)$ за всеки два нетривиални пътя в A.

Да се докаже, че:

- 1. $h(\pi) = \lambda(\pi)$ за всеки нетривиален път π в A.
- 2. ako $\Pi = \{ \pi \text{ nom } e A \mid \sigma(\pi) \in I, \tau(\pi) \in F, |\pi| > 0 \}, mo$

$$L(A) = \begin{cases} h(\Pi), & a\kappa o \ I \cap F = \emptyset \\ h(\Pi) \cup \{\varepsilon\}, & a\kappa o \ I \cap F \neq \emptyset. \end{cases}$$

По дефиницията на краен автомат, Δ е крайно множество. Така че Δ е азбука и тогава Δ^* са всички последователности от преходи от Δ . Това е смисълът, който е употребен тук. В литературата това означение обикновено има друг смисъл, а именно:

$$\Delta^* = \{ \langle p, \alpha, q \rangle \in Q \times \Sigma^* \times Q \mid p \stackrel{\alpha}{\to}_A^* q \}.$$

В някакъв смисъл, горната задача, дава обяснение за връзката между двете.

Задача 0.5. За дума $\alpha = a_1 a_2 \dots a_n$, където $a_i \in \Sigma$ са символи, с α^{rev} бележим думата $\alpha^{rev} = a_n a_{n-1} \dots a_1$. По-общо, за език $L \subseteq \Sigma^*$ с L^{rev} бележим езика:

$$L^{rev} = \{ \alpha^{rev} \mid \alpha \in L \}.$$

Да се докаже, че:

- 1. $(\alpha \cdot \beta)^{rev} = \beta^{rev} \cdot \alpha^{rev}$ за всеки две думи $\alpha, \beta \in \Sigma^*$.
- 2. $(\alpha^{rev})^{rev} = \alpha$ за всяка дума $\alpha \in \Sigma$.
- 3. $(L^{rev})^{rev} = L$ за всеки език L над Σ .
- 4. $(L_1 \circ L_2)^{rev} = L_2^{rev} \circ L_1^{rev}$ за всеки два езика L_1 и L_2 над Σ^* .

Задача 0.6. Нека $A=\langle \Sigma,Q,S,\Delta,F\rangle$ е краен автомат с $\Delta\subseteq Q\times (\Sigma\cup \{\varepsilon\})\times Q$. Ако

$$\Delta^{rev} = \{ \langle q, a, p \rangle \mid \langle p, a, q \rangle \in \Delta \}$$

 $u\ A^{rev} = \langle \Sigma, Q, F, \Delta^{rev}, S \rangle$ да се докаже, че $L(A^{rev}) = (L(A))^{rev}$.

Упътване 0.1. 1. Разгледайте тривиалния път (f).

- 2. За всеки път π с $\sigma(\pi) = q$ и $\tau(\pi) \in F$ разгледайте пътя $\pi' = \langle p, a, q \rangle \pi$.
- 3. Включването отдясно наляво следва от първи две подточки. За включването отляво надясно забележете, че всеки път π със $\sigma(\pi) = p$ и $\tau(\pi) \in F$ попада в един от следните лва класа:
 - $\pi = (p)$ и тогава $p \in F$ и $\lambda(\pi) = \varepsilon$.
 - $\pi = \langle p, a, q \rangle \pi'$ като $\sigma(\pi') = q$ и $\tau(\pi') = \tau(\pi) \in F$.
- 4. Разсъждавайте с индукция по дължината на дума, която принадлежи на някой от езиците $L_A(p)$. По-точно нека $\phi(n)$ е свойството:

$$\phi(n) \stackrel{def}{\longleftrightarrow} \forall w \in \Sigma^n \forall p \in Q(w \in L_A(p) \Rightarrow w \in L'(p)).$$

Докажете $\phi(n)$ с индукция по n като използвате предишната подточка.

Упътване 0.2. 1. Използвайте, че $\varepsilon \cdot \varepsilon = \varepsilon$. Докажете, че $h(\varepsilon) = h(\varepsilon) \cdot h(\varepsilon)$. Аргументирайте, че дължината на $h(\varepsilon)$ е 0. Довършете.

- 2. Заместете в дефиницията на h(L) и използвайте, че $\alpha \in L_1 \cup L_2$ е еквивалентно на $\alpha \in L_1$ или $\alpha \in L_2$.
- 3. Използвайте, че ако $\alpha \in L_1 \cdot L_2$, то по дефиниция, има $\alpha_1 \in L_1$ и $\alpha_2 \in L_2$, за които $\alpha = \alpha_1 \cdot \alpha_2$. Заключете, че от една страна $h(\alpha_1) \in h(L_1)$ и $h(\alpha_2) \in L_2$, а от друга $h(\alpha) = h(\alpha_1) \cdot h(\alpha_2)$. Аргументирайте, че оттук следва $h(L_1 \cdot L_2) \subseteq h(L_1) \cdot h(L_2)$. За включването $h(L_1) \cdot h(L_2) \subseteq h(L_1 \cdot L_2)$ разгледайте произволни $\beta_1 \in h(L_1)$ и $\beta_2 \in h(L_2)$. Аргументирайте, че има $\alpha_1 \in L_1$ и $\alpha_2 \in L_2$, за които $h(\alpha_1) = \beta_1$ и $h(\alpha_2) = \beta_2$. Заключете, че $\alpha_1 \cdot \alpha_2 \in L_1 \cdot L_2$ и $h(\alpha_1 \cdot \alpha_2) = \beta_1 \cdot \beta_2$. Покажете, че оттук следва, че $\beta = \beta_1 \cdot \beta_2 \in h(L_1 \cdot L_2)$.
- 4. Припомнете си дефиницията за итерация, $L^* = \bigcup_{n=0}^{\infty} L^n$. Обобщете част 2, за да покажете, че $h(\bigcup_{n=0}^{\infty} L^n) = \bigcup_{n=0}^{\infty} h(L^n)$. Припомнете си дефиницията за L^n , $L^0 = \{\varepsilon\}$ и $L^{n+1} = L^n \cdot L$. Използвайте част 1, за да аргументирате, че $h(L^0) = h(L)^0$ и част 3 заедно с индуктивен аргумент по n, за да покажете, че $h(L^n) = h(L)^n$. Довършете.

Използвайте, че $L^+ = \bigcup_{n=1}^\infty L^n$. Абстрахирайте аргументите от част 3 така, че резултатът да е директно следствие от вече доказани свойства.

Упътване 0.3.

За дума $\alpha = a_1 a_2 \dots a_n$ над Σ , дефинирайте $h(\alpha) = h_0(a_1) \cdot h_0(a_2) \cdot \dots \cdot h_0(a_n)$. В частност $h(\varepsilon) = \varepsilon$. Използвайте дефиницията за конкатенация на две думи, за да проверите, че $h(\alpha \cdot \beta) = h(\alpha) \cdot h(\beta)$.

Ако $h': \Sigma^* \to \Omega^*$ е произволна функция, която изпълнява свойствата от точка 1, използвайте част 1 от задача 2, за да аргументирате, че $h'(\varepsilon) = \varepsilon$. След това използвайте свойство 2, т.е. $h'(\alpha \cdot \beta) = h'(\alpha \cdot \beta)$, за да покажете с индукция по n, че за всеки $a_1, a_2, \ldots, a_n \in \Sigma$:

$$h'(a_1 \dots a_n) = h_0(a_1) \cdot h_0(a_2) \cdot \dots \cdot h_0(a_n).$$

Упътване 0.4. 1. Използвайте явната дефиниция на h от решението на предишната задача.

2. Заместете в дефиницията език на краен автомат. Съобразете, че пътищата с дължина 0, тоест тези които не влизат в Π имат етикет ε и такива има от I до F тогава и само тогава, когато $I \cap F \neq \emptyset$.