2019-2020-(2) 大学物理 B(上) 期末试卷

一、 选择题(每题3分,共 15题,共45分)
1. 下列说法中哪一个是正确的()
A、速率越大的物体,运动状态越不易改变 2305201452
B、 质量越大状态越不易改变
C、合力一定大于分力
D、物体速率不变,所受合外力一定为零
2. 下列哪一种说法是正确的()
A、 作直线运动的物体,加速度越来越小,速度一定也越来越小
B、切向加速度与速度同方向时,质点运动加快
C、 法向加速度越大,质点运动的法向速度变化越快
D、运动物体加速度越大,速度一定越大
3. 对功的概念有以下几种说法正确的是 ()
A、 保守力作正功时,系统内相应的势能增加
B、作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零
C、在保守力作用下,质点运动经一闭合路径一周,保守力对质点作的功为零
D、以上三种说法都不正确
4. 对于一个物体系来说,在下列哪种情况下系统的机械能守恒()
A、 合外力为零 B、 合外力不作功
C、 外力和保守内力都不作功 D、 外力和非保守内力都不作功
5. 一质点沿 x 轴作简谐振动,振动方程为 $x = 0.04\cos(2\pi + \frac{\pi}{3})$,从 t=0 时刻起,
到质点位置在 x=-0.02m 处,且向 x 轴正方向运动的最短时间间隔为()。
$\frac{1}{4}s$ $\frac{1}{2}s$ $\frac{1}{8}s$ $\frac{1}{6}s$
6. 质量为 20 g 的子弹沿 x 轴正向以 500 m/s 的速率射入一木块后,与木块一起 仍沿 x 轴正向以 50 m/s 的速率前进,在此过程中木块所受冲量的大小为()
A, -9 N•s B, 9 N•s C, -10 N•s D, 10 N•s
7. 行星环绕太阳作椭圆轨道运动,则在运动过程中,行星对太阳中心的()
A、 角动量守恒, 动能不守恒 B、 角动量守恒, 动能也守恒
C、 角动量不守恒,动能守恒 D、 角动量不守恒,动量也不守恒

- 角速度从小到大, 角加速度从小到大
- 角速度从小到大, 角加速度从大到小
- C、 角速度从大到小, 角加速度从小到大
- 角速度从大到小,角加速度从大到小
- 9. 小球以角速度 α 在半径为R的圆周上运动,如图今 以均匀的速度向下拉绳,则小球

- 动量的大小变,动能不变,对圆心的角动量改变;
- В、 动量的大小和动能都变,对圆心的角动量不变;
- 动量的大小不变,动能变,对圆心的角动量改变; C_{\sim}
- D、三者都不变。
- 10. 两个同方向且频率相同的简谐振动,他们的相位差 $\varphi_1 \varphi_2 = 2\pi$ 则合振动的振 幅为()。

A,
$$A_1 + A_2$$
 B, $A_1 - A_2$ C, $A_1 - \frac{1}{2}A_2$ D, A_1

- 11. 已知一平面简谐波的方程 $y = A\cos\pi(4t + 2x)$ (m),则简谐波的波速为 ()。
- $A \cdot 1m/s$
- $B_{s} 2m/s$
- $C \sim 3 \text{m/s}$
- $D_{s} 4m/s$
- 12. 一平面简谐波速度 u=10m/s, 沿 x 轴的负方向传播。已知 A 点的振动方程为 $y=3\cos 2\pi$, 则以A点为坐标原点的波动方程为(

$$y = 3\cos 2\pi \left(t + \frac{x}{20}\right)$$
By
$$y = 3\cos 2\pi \left(t + \frac{x}{10}\right)$$

$$y = 3\cos 4\pi \left(t + \frac{x}{20}\right)$$
D
$$y = 3\cos 4\pi \left(t + \frac{x}{10}\right)$$

- 13. 弹簧振子做简谐振动,其振动方程为 $_{x=A\cos(\omega t+\frac{\pi}{3})}$,在 $_{t}=0$ 时谐振子 []
- A、正处于 $+\frac{A}{2}$,向x轴负向运动; B、正处于 $+\frac{A}{2}$,向x轴正向运动;

14. 在水平冰面上以一定速度向东行驶的炮车,斜向上方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力())

- A、总动量守恒
- B、 总动量在炮身前进的方向上的分量守恒, 其它方向动量不守恒
- C、 总动量在水平面上任意方向的分量守恒, 竖直方向分量不守恒
- D、总动量在任何方向的分量均不守恒

15. 如图所示,两列波长为 λ 的相干波在P 点相遇, S_1 点的初位相是 φ_1 , S_1 到P 点的距离是 r_1 , S_2 点的初位相是 φ_2 , S_2 到P 点的距离是 r_2 ,以k 代表零或正、负整数,则P 点是干涉相长的条件为: (

$$(A) r_2 - r_1 = k\lambda$$

(B)
$$\varphi_2 - \varphi_1 = 2k\lambda$$

(C)
$$\varphi_2 - \varphi_1 + \frac{2\pi(r_2 - r_1)}{\lambda} = 2k\pi$$

(D)
$$\varphi_2 - \varphi_1 + \frac{2\pi(r_1 - r_2)}{\lambda} = 2k\pi$$

二、填空题(每空3分,共5题,共15分)

- 1. 某质点在力 Fx = (2+4x) (SI 制)的作用下沿 x 轴作直线运动,在从 x = 0 移动到 x = 6m 的过程中,力 Fx 所做的功为 _____ J。
- **2.** 质量为 1 kg 的质点以 5 m/s 的速率沿一直线运动,则它对直线外垂直距离为 3 m 的一点的角动量大小等于_____kg m^2/s 。
- 3. 飞轮以 600 rad/s 的转速旋转,转动惯量为 $0.5 \text{ kg} \cdot \text{m}^2$,现加一恒定的制动力矩使飞轮在 1 s 内停止转动,则该恒定制动力矩的大小 _____ N \cdot m。
- **4.** 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 $6 \log \cdot m^2$,角速度为 20 rad/s。然后她将两臂收回,使转动惯量变为 $5 \log \cdot m^2$ 。这时她转动的角速度为 ______ rad/s。
- 5. 作用在质量为 5kg 的物体上的合力,在 4 秒内均匀地从零增加到 50N,使物体沿力的方向由静止开始作直线运动,则物体最后的速率为___m/s。

三、计算题(4 题, 40 分) 解题要求: (1) 有必要的文字说明、图形; (2) 方程式、重要的演算步骤; (3) 有数值计算的题,答案中必须明确写出数值和单位。

- 1. (10 分) 一电子在电场中运动,其运动方程为: x = 4t , $y = 6 3t^2$, 其中 x, y 的单位为米, t 的单位为秒。求: (1) 0^2 2s 内质点走过的位移; (2) 第 2s 末的速度; (3) 第 3s 末的加速度. (4) 电子运动的轨迹方程。
- 2. (10 分) 如图所示的系统中, $m_1 = 50kg$, $m_2 = 40kg$,圆盘形滑轮质量 M=16kg,半径 R=0.1m,若斜面是光滑的,倾角为 30^0 ,绳与轮滑间无相对滑动,不计滑轮轴上的摩擦。(1) 请分别对 m_1 、 m_2 及滑轮分析受力或力矩,分别列出它们的运动方程。(2) 求出 m_1 的加速度大小。(要求隔离物体,并画受力分析图,g 取 9. $8m/s^2$,图中右边物块是 m_1)

- 3. (10 分)质量 $_{m=50g}$ 的小球与轻质弹簧组成振动系统,按 $_{x=0.4\cos(6\pi t+\frac{2\pi}{3})}$ 的规律作自由振动,式中 $_{t}$ 以秒作为单位, $_{x}$ 以米作为单位。(1)求此振动的角频率、周期、和初相位;(2)求此振动的机械能;(3)若与振动 $_{x_{2}}=0.5\cos(6\pi-\frac{\pi}{3})$ 合成后,求合振动的振动方程。
- **4.** (10 分) 一平面简谐波在 t=0 时刻的波形图如图,设频率v = 2.5Hz,A=5m,且此时 P点的运动方向向下,(1) 用旋转矢量画出原点的振动初相位 φ ;(2) 求该波的波函数;(3) 求原点的振动方程。

