Documentation 1B:

1. Introduction:

In this analysis, we explore the application of Principal Component Analysis (PCA) and linear regression to predict salary values in a baseball dataset. The code follows a structured approach, including data loading, preprocessing, exploratory data analysis, model implementation, and results analysis.

Here is the following data description:

	AtBa	t Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	\
0	29	3 66	1	30	29	14	1	293	66	1	30	
1	31	5 81	7	24	38	39	14	3449	835	69	321	
2	47	9 130	18	66	72	76	3	1624	457	63	224	
3	49	6 141	20	65	78	37	11	5628	1575	225	828	
4	32	1 87	10	39	42	30	2	396	101	12	48	
	CRBI	CWalks	Put0	uts As	sists	Errors	s Sala	ry				
0	29	14	1 4	446	33	20) N	aN				
1	414	375	5	632	43	10	475	.0				
2	266	263	3	880	82	14	480	.0				
3	838	354	1 :	200	11	3	500	.0				
4	46	33	3	805	40	4	1 91	.5				
		AtE	Bat	Hit	S	HmRur	ı	Runs		RBI	Walks	\
co	unt	322.0000	900 32	2.00000	0 32	2.000000	322.	000000	322.000	000 322	.000000	
me	an	380.9285	71 10	1.02484	5 1	0.770186	50.	909938	48.027	950 38	.742236	
std 153.		153.4049	981 4	6.45474	1	8.709037	7 26.	024095	26.166	895 21	.639327	
min 16.00		16.0000	900	1.000000		0.000000	0.	000000	0.000	000	.000000	
25	%	255.2500	900 6	4.00000	90	4.000000	30.	250000	28.000	000 22	.000000	
50	%	379.5000	900 9	6.00000	90	8.000000	48.	000000	44.000	000 35	.000000	
75	%	512.0000	900 13	7.00000	00 1	6.000000	69.	000000	64.750	000 53	.000000	
ma	x	687.0000	900 23	8.00000	00 4	0.000000	130.	000000	121.000	000 105	.000000	

2. Data Loading and Preprocessing

The dataset is loaded from an Excel file (Hitters.xlsx), and categorical columns are dropped. To handle missing values, entries with NaN in the 'Salary' feature are removed.

Here in the below we can see that Salary has NAN:

	CRBI	CWalks	PutOuts	Assists	Errors	Salary
0	29	14	446	33	20	NaN
1	414	375	632	43	10	475.0
2	266	263	880	82	14	480.0
3	838	354	200	11	3	500.0
4	46	33	805	40	4	91.5

The number of NAN are depicted below:

AtBat	0
Hits	0
HmRun	0
Runs	0
RBI	0
Walks	0
Years	0
CAtBat	0
CHits	0
CHmRun	0
CRuns	0
CRBI	0
CWalks	0
PutOuts	0
Assists	0
Errors	0
Salary	59
dtype: int6	54

3. Exploratory Data Analysis (EDA)

Basic statistics and a pair plot are generated to gain insights into the dataset's structure and relationships between variables.

Here is the sns pair plot :

4. Principal Component Analysis (PCA)

• Features are standardized to ensure uniformity.

- The covariance matrix, eigenvalues, and eigenvectors are calculated.
- Eigenvalues and eigenvectors are sorted to determine the principal components.
- Explained variance ratio and cumulative explained variance are computed.
- The number of components necessary for efficient prediction is identified through cumulative explained variance.

Here is the plot to determine the establishment of number of components vs Cumulative Variance

5. Number of Components vs RMSE

A loop iterates over different numbers of principal components, and for each iteration:

- Training and test data are transformed using PCA.
- Linear regression is applied.

• Root Mean Squared Error (RMSE) is calculated for each iteration.

6. Results Analysis

• The cumulative explained variance and RMSE vs number of components are presented graphically.

The optimal number of components is selected based on minimal RMSE.

	Num o	of	Principal	Components	RMSE
0				1	397.135817
1				2	406.284985
2				3	404.594695
3				4	407.488046
4				5	406.552058
5				6	405.300602
6				7	386.470377
7				8	380.968342
8				9	380.142136
9				10	374.898270
10				11	366.128983
11				12	363.906810
12				13	361.919565
13				14	361.701757
14				15	359.003059
15				16	362.870206

- From the above table we have decided to take the optimal number of components but there might be a question of not taking into account lower RMSE when the number of features are 12,13,14.
- But the reason for taking the optimal no of components to be taken as 15 is described in the below table:

Num of Principal Components Percentage Variance covered 45.311913 70.998464 81.798318 87.238195 91.596762 94.799095 96.372127 97.528009 98.355667 98.967987 99.351456 99.695435 99.871587 99.961897 99.992487 100.000000

- Since the encapsulated variance is maximum in case of 15 features and RMSE being close enough wrt to the number of features being 12, we therefore consider 15 as the optimal number of features.
- Upon mounting Linear Regression model and running it through the testing data here is the tabulation of Actual vs Predicted Values:

	Actual Values	Predicted Values
154	277.5	344.055982
279	150.0	951.286871
221	210.0	128.226948
7	100.0	987.963759
307	277.5	-250.433812
17	175.0	344.729344
176	86.5	85.873782

• Here is the Corresponding plot to depict the Actual vs Predicted values :

