Paper Review

Extract Free Dense Labels from CLIP (ECCV 2022)

2023. 3. 24 (Fri)

Chanyoung Kim

MaskCLIP

- Extract Free Dense Labels from CLIP (Zhou et al., ECCV 2022)
- MaskCLIP: Masked Self-Distillation Advances Contrastive Language-Image Pretraining (Dong and Zheng et al., arXiv 2022)

Overview

- This paper examine the intrinsic potential of **CLIP for pixel-level dense prediction**, specifically in **semantic segmentation**.
- With minimal modification, this paper shows that MaskCLIP yields compelling segmentation results on open concepts across various datasets in the absence of annotations and fine-tuning.
- By adding pseudo labeling and self-training, MaskCLIP+ surpasses SOTA transductive zero-shot semantic segmentation methods by large margins

Fig. 1: Here we show the original image in (a), the segmentation result of MaskCLIP+ in (b), and the confidence maps of MaskCLIP and MaskCLIP+ for *Batman* in (c) and (d) respectively. Through the adaptation of CLIP, MaskCLIP can be directly used for segmentation of fine-grained and novel concepts (e.g., *Batman* and *Joker*) without any training operations and annotations. Combined with pseudo labeling and self-training, MaskCLIP+ further improves the segmentation result.

CLIP (Contrastive Language-Image Pre-Training)


```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
               - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
               - learned temperature parameter
# t
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12\_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

• CLIP (Contrastive Language-Image Pre-Training)'s Downstream Tasks

Zero-shot Prediction

Text-Driven Image Editing

(2) Create dataset classifier from label text

Figure 1. Examples of text-driven manipulations using StyleCLIP. Top row: input images; Bottom row: our manipulated results. The text prompt used to drive each manipulation appears under each column.

StyleCLIP (ICCV 2021)

• CLIP (Contrastive Language-Image Pre-Training)'s Downstream Tasks

Object Detection

Detic (ECCV 2022)

Text-to-Image Generation

Stable Diffusion (CVPR 2022)

CLIP (Contrastive Language-Image Pre-Training)'s Downstream Tasks

Object Detection

Text-to-Image Generation

Mainly leverage CLIP features as a global image representation

Detic (ECCV 2022)

Stable Diffusion (CVPR 2022)

Motivation

CLIP (Image + Language)

-> embed local image semantics in its features

Open vocabulary

Captures rich contextual information

ex) relation of certain objects & priors of the spatial locations

Potential for dense prediction tasks

Motivation

The man at bat readies to swing at the patch while the umpire looks on

man, bat, swing, patch, man at bat, man at patch, man readies to swing,

Align Local Semantics

A naïve solution

1) Initializing the backbone network with the ImageNet pre-trained weights

A naïve solution

2) Adding segmentation-specific network modules with randomly initialized weights

A naïve solution

3) Jointly fine-tuning the backbone and newly added modules

A naïve solution

Replace backbone weight to CLIP and map text embedding of CLIP to classifier. Then fine-tune the image encoder.

 $\mathcal{V}_{*l}(\cdot)$: Deeplab backbone, ResNet $\mathcal{H}(\cdot)$: Randomly initialized ASPP module

Fails to segment well on unseen classes

Mapper \mathcal{M}

- MaskCLIP
 - Revisiting the image encoder of CLIP

$$\begin{split} \operatorname{AttnPool}(\bar{q}, k, v) &= \mathcal{F}(\sum_{i} \operatorname{softmax}(\frac{\bar{q}k_{i}^{\mathsf{T}}}{C}) v_{i}) \\ &= \sum_{i} \operatorname{softmax}(\frac{\bar{q}k_{i}^{\mathsf{T}}}{C}) \mathcal{F}(v_{i}), \\ \bar{q} &= \operatorname{Emb}_{\mathsf{q}}(\bar{x}), \ k_{i} = \operatorname{Emb}_{\mathsf{k}}(x_{i}), \ v_{i} = \operatorname{Emb}_{\mathsf{v}}(x_{i}), \\ \mathcal{F}(\cdot) &: \mathsf{Linear layer} \end{split}$$

- MaskCLIP
 - Revisiting the image encoder of CLIP

$$\begin{aligned} \operatorname{AttnPool}(\bar{q}, k, v) &= \mathcal{F}(\sum_{i} \operatorname{softmax}(\frac{\bar{q}k_{i}^{\mathsf{T}}}{C}) v_{i}) \\ &= \sum_{i} \operatorname{softmax}(\frac{\bar{q}k_{i}^{\mathsf{T}}}{C}) \mathcal{F}(v_{i}), \\ \bar{q} &= \operatorname{Emb}_{q}(\bar{x}), \ k_{i} &= \operatorname{Emb}_{k}(x_{i}), \ v_{i} &= \operatorname{Emb}_{v}(x_{i}), \\ \mathcal{F}(\cdot) &: \mathsf{Linear\ layer} \end{aligned}$$

Authors think that $\mathcal{F}(v)$ contains rich local semantics cooresponding to the token in text embeddings

- MaskCLIP
 - Revisiting the image encoder of CLIP

CLIP's Global Attention Pooling Layer

-) Remove the *query* and *key* embedding layer
- 2) Replace linear layers to 1X1 conv layers

- MaskCLIP
 - Revisiting the image encoder of CLIP

- MaskCLIP
 - Revisiting the image encoder of CLIP

- MaskCLIP
 - Refinement strategies (**Key smoothing** and prompt denoising)

Key features can be viewed as the descriptor of the corresponding patch

Patches with similar key features should yield similar predictions

 k_1 and k_2 similar k_1 and k_3 not similar

- MaskCLIP
 - Refinement strategies (**Key smoothing** and prompt denoising)

Key features can be viewed as the descriptor of the corresponding patch

Patches with similar key features should yield similar predictions

$$pred_{i} = \sum_{j} cos(\frac{k_{i}}{\|k_{i}\|_{2}}, \frac{k_{j}}{\|k_{j}\|_{2}}) pred_{i}$$

- MaskCLIP
 - Refinement strategies (Key smoothing and **prompt denoising**)

A small proportion of the classes appear in a single image

Degrades performance

choonsik, Lyan, Sofa, Watermelon and calender

Removes the prompt with target class if its class confidence at all spatial locations is all less than a threshold t = 0.5

- MaskCLIP
 - Multiple unique merits of MaskCLIP

MaskCLIP can be used as a free segmentation annotator without any training

Possesses the ability to segment open vocabulary classes, as well as fine-grained classes

Demonstrates great robustness to **natural distribution shift** and **input corruptions**

Network architecture is rigid

MaskCLIP can be used as a free segmentation annotator without any training

Need advanced architectures tailored for segmentation

- MaskCLIP+
 - MaskCLIP-guided learning and self-training

- DeepLabV2 is used for target network (Backbone)
- Use the predictions of MaskCLIP as pseudo GT
- Use same classifier with that of MaskCLIP to preserve the ability for open vocabulary prediction
- When MaskCLIP+ outperform MaskCLIP, MaskCLIP+ generate pseudo labels for itself (self-training)

Quantitative Evaluation – Annotation-free segmentation

Table 1: Annotation-free segmentation (mIoU). (a) We evaluate the performance of MaskCLIP(+) on two standard datasets. For Pascal Context, we ignore the evaluation on the background class. The target model of MaskCLIP+ is Deeplabv2-ResNet101. KS and PD denote key smoothing and prompt denoising respectively. And they are not used in MaskCLIP+. (b) We test the robustness of MaskCLIP on Pascal Context under various types of corruption

(4)					
Method	CLIP	PASCAL COCO			
Method	CLII	Context	Stuff		
Baseline	r50	8.3	4.6		
Daseille	vit16	9.0	4.3		
MaskCLIP	r50	18.5	10.2		
	+KS	21.0	12.4		
	+PD	19.0	10.8		
	+KS+PD	21.8	12.8		
	vit16	21.7	12.5		
	+KS	23.9	13.8		
	+PD	23.1	13.2		
	+KS+PD	25.5	14.6		
MaskCLIP+	r50	23.9	13.6		
WiaskOLIF+	vit16	31.1	18.0		

(a)

C	lev	el 1	level 5		
Corruption	r50	vit16	r50	vit16	
None	18.5	21.7	18.5	21.7	
Gaussian Noise	13.7	19.6	2.1	6.8	
Shot Noise	14.0	19.6	2.4	7.5	
Impulse Noise	9.9	17.3	2.1	7.2	
Speckle Noise	15.1	20.0	5.6	11.4	
Gaussian Blur	17.4	21.6	4.3	14.1	
Defocus Blur	15.7	20.8	6.6	15.5	
Spatter	17.1	20.5	7.8	12.2	
JPEG	15.7	20.8	7.6	14.5	

Quantitative Evaluation – Zero-shot setting

Table 2: **Zero-shot segmentation performances.** ST stands for self-training. mIoU(U) denotes mIoU of the unseen classes. SPNet-C is the SPNet with calibration. On PASCAL Context, all methods use DeepLabv3+-ResNet101 as the backbone segmentation model and the rest two datasets use DeepLabv2-ResNet101. For MaskCLIP+, CLIP-ResNet-50 is used to generate pseudo labels

26.421	PASCAL-VOC		COCO-Stuff			PASCAL-Context			
Method	mIoU(U) mIoU	hIoU	mIoU(U)	mIoU	hIoU	mIoU(U)	mIoU	hIoU
Inductive									
SPNet	0.0	56.9	0.0	0.7	31.6	1.4			
SPNet-C	15.6	63.2	26.1	8.7	32.8	14.0			
ZS3Net	17.7	61.6	28.7	9.5	33.3	15.0	12.7	19.4	15.8
CaGNet	26.6	65.5	39.7	12.2	33.5	18.2	18.5	23.2	21.2
Transductive	19								
SPNet+ST	25.8	64.8	38.8	26.9	34.0	30.3			
ZS3Net+ST	21.2	63.0	33.3	10.6	33.7	16.2	20.7	26.0	23.4
CaGNet+ST	30.3	65.8	43.7	13.4	33.7	19.5			
STRICT	35.6	70.9	49.8	30.3	34.9	32.6	•		
${\it MaskCLIP} +$	86.1	88.1	87.4	54.7	39.6	45.0	66.7	48.1	53.3
	+50.5	+17.2	+37.6	+24.4	+4.7	+12.4	+46.0	+22.1	+29.9
Fully Sup.		88.2	•	•	39.9			48.2	

Qualitative Evaluation – PASCAL Context

Fig. 3: Qualitative results on PASCAL Context. Here all results are obtained without any annotation. PD and KS refer to prompt denoising and key smoothing respectively. With PD, we can see some distraction classes are removed. KS is more aggressive. Its outputs are much less noisy but are dominated by a small number of classes. Finally, MaskCLIP+ yields the best results

Qualitative Evaluation – Web Images

Fig. 4: Qualitative results on Web images. Here we show the segmentation results of MaskCLIP and MaskCLIP+ on various unseen classes, including fine-grained classes such as cars in different colors/imagery properties, celebrities, and animation characters. All results are obtained without any annotation

Ablation Study

Table 3: **Ablations of MaskCLIP+.** Experiments are performed on the PAS-CAL VOC dataset under the zero-shot setting

Method	mIoU(S)	mIoU(U)	mIoU	hIoU
Adapted DeepLabv2	83.4	3.7	63.5	
+ MaskCLIP-Guided	$\bf 89.5$	72.8	85.3	80.3
+ Self-Training	88.8	86.1	88.1	87.4

Thank you

Any question?