Université de Marne-la-Vallée 2011/2012

Licence L2-SM Algèbre

2. Changements de bases, réduction des endomorphismes.

Exercice 1. Soit E un espace vectoriel de dimension 3 et soit (i, j, k) une base de E. Soit m un nombre réel. Soit f l'endomorphisme de E dont la matrice dans la base (i, j, k) est :

$$A = \frac{1}{4} \left(\begin{array}{ccc} 3 & -3 & m \\ -1 & 1 & 1 \\ 0 & 0 & m+3 \end{array} \right).$$

- 1. Calculer la matrice A^2 .
- 2. Démontrer qu'il existe exactement deux valeurs du nombre m pour lesquelles on a : $f \circ f = f$.

Dans la suite, on suppose que $\underline{m}=\underline{1}$.

3. Soit $u \in E$, de coordonnées $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ dans la base (i,j,k). Ecrire les coordonnées du vecteur

f(u). Trouver Ker(f). En déduire les coordonnées d'un vecteur non nul e_1 tel que : $f(e_1) = 0$.

- 4. Trouver une base de Im(f).
- 5. Soit (e_2, e_3) une base de $\operatorname{Im}(f)$. Montrer que : $f(e_2) = e_2$ et $f(e_3) = e_3$.
- 6. Démontrer que (e_1, e_2, e_3) est une base de E. Prouver que f est la projection vectorielle sur Im(f), parallèlement à Ker(f).
- 7. Ecrire la matrice de f dans la base (e_1, e_2, e_3) . On notera B cette matrice.
- 8. Soit P la matrice de passage de la base (i, j, k) à la base (e_1, e_2, e_3) . Donner une relation qui lie les matrices A, B et P.
- 9. Ecrire la matrice P.

Exercice 2. (Projecteurs) Soit E un espace vectoriel sur \mathbb{K} de dimension finie ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit f un endomorphisme de E tel que $f \circ f = f$.

- 1. Montrez que $\operatorname{Im}(f) = \{u \in E \mid f(u) = u\}.$
- 2. Montrer que $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.
- 3. Montrer que les seules valeurs propres possibles pour f sont 0 et 1.
- 4. Déduire des questions précédentes qu'il existe une base de E telle que la matrice de f dans cette base soit diagonale, avec des 0 ou des 1 sur la diagonale.
- 5. Application : en utilisant les questions précédentes, diagonaliser la matrice

$$A = \frac{1}{4} \left(\begin{array}{cc} 6 & -4 \\ 3 & -2 \end{array} \right).$$

Exercice 3. (Symétries) Soit E un espace vectoriel sur \mathbb{K} de dimension finie ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit f un endomorphisme de E tel que $f \circ f = Id$.

- 1. Montrer que les seules valeurs propres possibles pour f sont -1 et 1.
- 2. On pose $A_1 = \operatorname{Ker}(f Id)$ et $A_{-1} = \operatorname{Ker}(f + Id)$. Montrer que, pour tout $u \in E$, $u + f(u) \in A_1$ et $u f(u) \in A_{-1}$.
- 3. Montrer que $E = A_1 \oplus A_{-1}$.

- 4. En déduire qu'il existe une base de E telle que la matrice de f dans cette base soit diagonale, avec des 1 ou des -1 sur la diagonale.
- 5. En utilisant les questions précédentes, diagonaliser la matrice

$$A = \left(\begin{array}{cc} 2 & -2\\ 3/2 & -2 \end{array}\right).$$

Exercice 4. Montrer que la matrice $A = \begin{pmatrix} -3 & -2 & -2 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{pmatrix}$ est diagonalisable sur \mathbb{R} . Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 5. Montrer que la matrice $\begin{pmatrix} 2 & 0 & 0 & -2 \\ 5 & 0 & 0 & -4 \\ -2 & 1 & -1 & 1 \\ 2 & 0 & 0 & -1 \end{pmatrix}$ est diagonalisable sur \mathbb{C} .

Exercice 6. Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice dont tous les coefficients valent $1 \ (n \ge 2)$.

- 1. Quel est le rang de J? Donner deux preuves de l'identité : $J^2 = nJ$.
- 2. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que les n-1 premières colonnes de $P^{-1}JP$ soient nulles. En déduire le polynôme caractéristique de J.

Exercice 7. Soient E et F deux espaces vectoriels de dimensions finies et soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, E)$. montrer qu'un scalaire non nul $\lambda \in \mathbb{C}$ est valeur propre de $g \circ f$ si et seulement si il est valeur propre de $f \circ g$.

Exercice 8. On donne

$$A = \left(\begin{array}{ccc} 1 & m & m \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{array}\right).$$

- 1. La matrice A est-elle diagonalisable? Si oui, la diagonaliser.
- 2. Montrer que A est trigonalisable et calculer une matrice semblable triangulaire, ainsi que la matrice de passage.