# Information Theoretic Clustering using Kernel Density Estimation

Shashank Singh <sup>1</sup> Bryan Hooi<sup>1</sup>

10-715 Advanced Introduction to Machine Learning

October 21, 2014

<sup>&</sup>lt;sup>1</sup>Machine Learning Dept. and Dept. of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA

# Background

- Between 2010-2012, several papers proposed an approach to nonparametric clustering based on maximizing the estimated mutual information between the data points and their labels (MIMax)
- Steeg et al., 2014, showed that MIMax was asymptotically biased towards clusters of equal sample size, and thus sometimes performed worse with more data

# Background

- Intead, Steeg et al. used the axiomatic foundations of information theory to justify an approach based on minimizing the estimated conditional entropy  $\hat{H}(Y|X)$  of the labels (Y) given the data (X)
- They proposed an algorithm using a k-nearest neighbor estimate  $\hat{H}(Y|X)$

### Main Contributions

#### Our work...

- provides further motivation for Conditional Entropy
  Minimization in terms of Minimum Description Length (MDL)
- suggests a principled approach to determining the number of clusters using MDL
- provides a theoretical link between clustering CHMin and the K-means algorithm
- provides a novel approach to Conditional Entropy clustering via Kernel Density Estimation (CHMin)
- empirically compares the performance of CHMin on synthetic and real datasets with K-means and Hierachical Clustering



### Theoretical Results

# Theoretical Results



# Minimum Description Length (MDL)

- Principle of parsimony
- Select the hypothesis that compresses the data the most.

### Two-stage MDL

$$\underset{H}{\mathsf{minimize}} \ L(H) + L(D|H)$$

# Conditional Entropy Minimization and MDL

#### $\mathsf{Theorem}$

Under the conditions:

- Fixed number of clusters K
- Estimate  $\hat{p}$  as a mixture of a parametric distribution (e.g. mixture of Gaussians)

Minimizing description length is equivalent to minimizing estimated CE  $\hat{H}(Y) + \hat{H}(X|Y)$ .



## **Implications**

- Justifies minimizing CE
- Can use MDL to select the number of clusters K

# Selecting number of clusters using MDL

#### Theorem

To select the number of clusters K using MDL, we minimize

$$\hat{H}(Y) + \hat{H}(X|Y) + \log^*(K) + Kd(\log(2B) + \frac{1}{2}\log(n)) + \log(K!)$$

- Can be seen as  $\hat{H}(Y) + \hat{H}(X|Y) + \text{penalty on } K$
- Penalty grows as  $O((\text{no. of parameters}) \times \log n)$ 
  - Same as BIC



# Conditional Entropy and the K-Means Algorithm

#### **Theorem**

• Using a Gaussian kernel function  $K(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ , the estimated conditional entropy  $\hat{H}(X|Y)$  satisfies:

$$\hat{H}(X|Y) \leq \log(h) + \frac{1}{2}\log(2\pi) + \frac{1}{2h^2n}\sum_{k=1}^K \sum_{i \in C_k} (x_i - \mu_k)^2$$

- Minimizing the K-means objective  $\sum_{k=1}^K \sum_{i \in C_k} (x_i \mu_k)^2$  is equivalent to minimizing an upper bound for  $\hat{H}(X|Y)$ .
- Use K-means to initialize gradient descent for conditional entropy (CE) minimization



# **Empirical Results**

# **Empirical Results**

### Intuition

Why do we want to minimize

$$\frac{\hat{H}(Y|X)}{\hat{H}(Y)}$$
?

- Points with similar x-values and different y values increase  $\hat{H}(Y|X)$
- Having a small range of y values decreases  $\hat{H}(Y)$
- $\Rightarrow$  minimizing the objective causes nearby x-values to have similar y-values

# CHMin: A Simple Optimization Procedure

Want to solve:

$$\min_{y_1,\dots,y_n\in\{0,1\}}\frac{\hat{H}(Y|X)}{\hat{H}(Y)}.$$

We use gradient descent + rescaling into [0,1]; i.e., repeatedly:

0

$$y \leftarrow y - \alpha \nabla_y \frac{\hat{H}(Y|X)}{\hat{H}(Y)}$$

2

$$y \leftarrow \frac{y - \min_i y_i}{\max_i y_i - \min_i y_i}$$

For K > 2 clusters, use soft clustering: rescale onto convex hull of  $(0,0,\cdots,0,1),(0,0,\cdots,1,0),\cdots,(1,0,\cdots,0,0)$ .

### CHMin: Parameter Selection

**KDE Bandwidth:** Literature suggests undersmoothing (relative to optimal density derivative estimate). In practice, Silverman's Rule of Thumb seems to work better than AMISE.

**KDE Kernel:** We use a Gaussian kernel, but, for well-separated clusters, bounded kernels (e.g., Epanechnikov, Uniform) work very well (converge quickly).

**Gradient Step Size:** Anything approaching 0 slowly appears to work  $(1/\log i, 1/\sqrt{i}, \text{ etc.})$ ; affects convergence, but not final result

**Initialization:** K-means + random restarts (1-2 seems sufficient)



### Three Gaussians

3 spherical Gaussians in  $\ensuremath{\mathbb{R}}^3$ 

• Very easy data set



### Three Gaussians

Three clusters (chance = 0.33)

| CHMin | K-means++ | HC (complete) | HC (average) |
|-------|-----------|---------------|--------------|
| 0.991 | 0.998     | 0.984         | 0.994        |

### Concentric Circles: Results

Two concentric circles in  $\mathbb{R}^2$ 

- Not linearly-separable
- 2/3 of data points in inner cluster MIMax doesn't work well.



### Concentric Circles: Results

Two clusters (chance = 0.5)

| CHMin | K-means++ | HC (complete) | HC (average) |
|-------|-----------|---------------|--------------|
| 0.894 | 0.671     | 0.677         | 0.605        |

Cluster 3 iris species using 4 flower measurements (150 samples)

- One fairly distinct, linearly separable cluster.
- Two overlapping clusters.
- Chance = 0.33.

| CHMin | K-means++ | HC (complete) | HC (average) |
|-------|-----------|---------------|--------------|
| 0.929 | 0.893     | 0.840         | 0.906        |



### Wine

Cluster 3 wine source using 13 chemical properties (178 samples)

- One cluster is fairly distinct and linearly separable. Remaining two overlap.
- Chance = 0.33

| CHMin | K-means++ | HC (complete) | HC (average) |
|-------|-----------|---------------|--------------|
| 0.675 | 0.702     | 0.674         | 0.612        |

- Difficulty in high-dimensional nonparametric density estimate
- Improved performance on (arbitrary) 5 feature subset:

| CHMin | K-means++ | HC (complete) | HC (average) |
|-------|-----------|---------------|--------------|
| 0.700 | 0.494     | 0.500         | 0.500        |



# **Empirical Conclusions**

- CHMin works well on a number of (relatively small) datasets
- Scales poorly with dimension
  - Only depends on pairwise distances, so could combine with dimension reduction

### Future Work

- Empirically, how does CHMin fare against other nonparametric clustering approaches (e.g., MIMax, mean shift)
- Empirically, how well does MDL identify number of clusters?
- Can other optimization procedures speed up convergence?
- Can we adapt error bounds from kernel density estimation?