UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

TEMA 3. SISTEMAS COMBINACIONALES. GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO

1º GRADO EN INGENIERÍA INFORMÁTICA.

TEMA 3°. SISTEMAS COMBINACIONALES.

GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO.

3.1.- PARTE TEÓRICA: El estudiante deberá:

- a) Descargar de la plataforma docente y leer detenidamente el material del Tema 3º ubicado en el fichero 03.-TEMA_3_TOC_SISTEMAS_COMBINACIONALES.PDF.
- b) Visualizar en los enlaces de más abajo dos videoclases referentes al Tema 3º de la asignatura:
 - Tema 3. Clase 1. https://drive.google.com/open?id=1LYnJsHz1OUzPIDzAcr6vlaYK1XLKCTeb
 - Tema 3. Clase 2. https://drive.google.com/open?id=1WJY2ZxF5grFL4WfDU2vcmlVtuPiZXT7O
 - Tema 3. Clase de Problemas.
 - https://drive.google.com/file/d/1pIZfI31KiLnNXSU1Pqqd_wL-8-SVcsVS/view?usp=sharing

3.2.- PARTE DE EJERCICIOS:

- 1. Las acciones de una compañía están repartidas en poder de cuatro accionistas de la siguiente forma: A, 12%; B, 23%; C, 30%; D, 35%. Las decisiones se toman por mayoría y cada uno de los accionistas tiene un botón particular de la mesa de juntas que se utiliza para las votaciones. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que indique si se aprueban las propuestas presentadas por la junta de accionistas.
 - a) Tabla de Verdad que modela el problema y mapa de Karnaugh para la simplificación: se entiende que f = 1 significa que se aprueba la moción presentada a votación y f = 0 en otro caso.

ABCD	% VOTOS	f
0000	0 %	0
0001	35 %	0 0 0
0010	30 %	
0011	65%	1
0100	23%	0
0101	58%	1
0110	53%	1
0111	88%	1
1000	12%	0
1001	47%	0
1010	42%	0
1011	77%	1
1100	35%	0
1101	70%	1
1110	65%	1
1111	100%	1

b) Expresión mínima AND/OR y NAND/NAND de la función de conmutación: todos los implicantes primos obtenidos en paso anterior son esenciales, por tanto, la expresión mínima de la función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND será:

$$f(A,B,C,D) = (B \cdot C) + (B \cdot D) + (C \cdot D) = \overline{\overline{(B \cdot C) + (B \cdot D) + (C \cdot D)}} = \overline{\overline{(B \cdot C)} \cdot \overline{(B \cdot D)} \cdot \overline{(C \cdot D)}}$$

c) Esquema del circuito mínimo que implementa la función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND:

d) (Addenda) Realice la función f utilizando un multiplexor de 8 a 1 (3 entradas de control) y multiplexores de 2 a 1 (1 entrada de control).

Se reagrupa la tabla de verdad de la función de conmutación:

ABCD	% VOTOS	f	Valor parcial
0000	0 %	0	f(000D) = 0
0001	35 %	0	I(000D) = 0
0010	30 %	0	f(001D) = D
0011	65%	1	1(0010) = 0
0100	23%	0	f(010D) = D
0101	58%	1	1(0100) = 0
0110	53%	1	f(011D) = 1
0111	88%	1	I(O I ID) = I
1000	12%	0	f(100D) = 0
1001	47%	0	I(IOOD) = 0
1010	42%	0	f(101D) = D
1011	77%	1	1(1010) = 0
1100	35%	0	f(110D) = D
1101	70%	1	1(1100) = 0
1110	65%	1	f(111D) = 1
1111	100%	1	1(11110) = 1

Este último esquema sirve como ejemplo de la implementación de un multiplexor de 8 a 1 (3 entradas de control) con multiplexores 2 a 1 (1 entrada de control).

- 2. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND con 4 entradas (A, B, C, D) y dos salidas (X, Y) que reúna las siguientes características:
 - 2.1. La salida X debe ser 1 cuando única y exclusivamente haya una o dos entradas con valor 1.
 - 2.2. La salida Y debe ser 1 cuando única y exclusivamente haya dos o tres entradas con valor 1.
 - a) Tabla de Verdad que modela el problema:

ABCD	Χ	Υ
0000	0	0 0 0 1
0001	1	0
0010	1	0
0011	1	1
0100	1	0 1 1
0101	1	1
0110	1	
0111	0	1
1000	1	0 1 1
1001	1 1 1	1
1010	1	1
1011	0	1
1100	1	1
1101	1 0 0	1 1 0
1110	0	1
1111	0	0

$$X = \Sigma m (1, 2, 3, 4, 5, 6, 8, 9, 10, 12)$$

 $Y = \Sigma m (3, 5, 6, 7, 9, 10, 11, 12, 13, 14)$

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 3. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que opere con dos datos de dos bits, $A = a_1 a_0$ y $B = b_1 b_0$, y realice la función Z = 2*A*B.
 - Tabla de Verdad que modela el problema: Los datos A y B son datos de dos bits (se suponen números enteros positivos sin signo) cuyos valores están comprendidos entre 0 y 3. Por tanto, el producto aritmético de A*B estará comprendido entre un mínimo de 0 (cuando A = B = 0; a₁a₀ = b₁b₀ = 00) y un máximo de 9 (cuando A = B = 3; a₁a₀ = b₁b₀ = 11). Consecuentemente, el producto aritmético de 2*A*B estará comprendido entre un mínimo de 0 (cuando A = B = 0; a₁a₀ = b₁b₀ = 00) y un máximo de 18 (cuando A = B = 3; a₁a₀ = b₁b₀ = 11) y el resultado será siempre un número par. Por tanto, como el valor máximo del resultado puede llegar a ser 18)₁₀ = 10010)₂, el máximo número de bits que requiere el resultado es 5 bits (Z = z₄ z₃ z₂ z₁ z₀)

$a_1 a_0 b_1 b_0$		2*A*B	Z_4	Z ₃	Z ₂	Z ₁	z_0
		DECIMAL					
0 0	0 0	0	0	0	0	0	0
0 0	0 1	0	0	0	0	0	0
0 0	10	0	0	0	0	0	0
0 0	11	0	0	0	0	0	0
0 1	0 0	0	0	0	0	0	0
0 1	0 1	2	0	0	0	1	0
0 1	10	4	0	0	1	0	0
0 1	11	6	0	0	1	1	0
1 0	0 0	0	0	0	0	0	0
10	0 1	4	0	0	1	0	0
10	10	8	0	1	0	0	0
10	11	12	0	1	1	0	0
11	0 0	0	0	0	0	0	0
11	0 1	6	0	0	1	1	0
11	10	12	0	1	1	0	0
11	11	18	1	0	0	1	0

$$Z_4 = \Sigma m (15)$$

 $Z_3 = \Sigma m (10, 11, 14)$
 $Z_2 = \Sigma m (6, 7, 9, 11, 13, 14)$
 $Z_1 = \Sigma m (5, 7, 13, 15)$
 $Z_0 = 0$

Nótese que $z_0 = 0$ siempre, dado que el resultado es un número entero positivo par.

b) Mapas de Karnaugh para la simplificación:

c) Expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación: todos los implicantes primos de todas las funciones obtenidos en paso anterior son esenciales, por tanto, la expresión mínima de cada función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND será:

$$\begin{aligned} z_4 &= a_1 \cdot a_0 \cdot b_1 \cdot b_0 = \overline{a_1 \cdot a_0 \cdot b_1 \cdot b_0} \\ z_3 &= (a_1 \cdot \overline{a_0} \cdot b_1) + (a_1 \cdot b_1 \cdot \overline{b_0}) = \overline{(\overline{a_1 \cdot \overline{a_0} \cdot b_1}) + (a_1 \cdot b_1 \cdot \overline{b_0})} = \overline{(\overline{a_1 \cdot \overline{a_0} \cdot b_1}) \cdot (\overline{a_1 \cdot \overline{b_0} \cdot b_1}) \cdot (\overline{a_1 \cdot \overline{b_0} \cdot b_1})} \\ z_2 &= (\underline{a_1 \cdot \overline{b_1} \cdot b_0}) + (\underline{a_1 \cdot \overline{a_0} \cdot b_1}) + (\overline{a_1 \cdot \overline{a_0} \cdot b_1}) + (\underline{a_0 \cdot b_1 \cdot \overline{b_0}}) = \overline{(\overline{a_1 \cdot \overline{b_1} \cdot b_0}) + (\overline{a_1 \cdot \overline{a_0} \cdot b_1}) + (\overline{a_1 \cdot \overline{a_0} \cdot b_1}) + (\overline{a_0 \cdot b_1 \cdot \overline{b_0}})} \\ &= \overline{(\overline{a_1 \cdot \overline{b_1} \cdot b_0}) \cdot (\overline{a_1 \cdot \overline{a_0} \cdot b_1}) \cdot (\overline{a_1 \cdot \overline{a_0} \cdot b_1}) \cdot (\overline{a_0 \cdot b_1 \cdot \overline{b_0}})} \\ z_1 &= \underline{a_0 \cdot b_0} = \overline{\overline{a_0 \cdot b_0}} \\ z_0 &= 0 \end{aligned}$$

d) Circuitos mínimos resultantes:

- 4. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que opere con dos datos enteros sin signo de dos bits, $A = a_1 a_0 y B = b_1 b_0$, y realice la función $Z = A^B$.
 - a) Tabla de Verdad que modela el problema: Los datos A y B son datos de dos bits (se suponen números enteros positivos sin signo) cuyos valores están comprendidos entre 0 y 3. Por tanto, la potencia de A^B estará comprendido entre un mínimo de 0 (cuando A = B = 0; a₁a₀ = b₁b₀ = 00) y un máximo de 27 (cuando A = B = 3; a₁a₀ = b₁b₀ = 11. Por tanto, como el valor máximo del resultado puede llegar a ser 27)₁₀ = 11011)₂, el máximo número de bits que requiere el resultado es 5 bits (Z = z₄ z₃ z₂ z₁ z₀). Se supone que 0⁰ = 0.

a ₁ a ₀	$b_1 b_0$	A ^B DECIMAL	z_4	z_3	z_2	Z ₁	z ₀
		DECIMAL					
0 0	0 0	0	0	0	0	0	0
0 0	0 1	0	0	0	0	0	0
0 0	10	0	0	0	0	0	0
0 0	11	0	0	0	0	0	0
0 1	0 0	0	0	0	0	0	0
0 1	0 1	1	0	0	0	0	1
0 1	10	1	0	0	0	0	1
0 1	11	1	0	0	0	0	1
10	0 0	1	0	0	0	0	1
10	0 1	2	0	0	0	1	0
10	10	4	0	0	1	0	0
10	11	8	0	1	0	0	0
11	0 0	0	0	0	0	0	1
11	0 1	3	0	0	0	1	1
11	10	9	0	1	0	0	1
11	11	27	1	1	0	1	1

$$Z_4 = \Sigma m (15)$$

 $Z_3 = \Sigma m (11, 14, 15)$
 $Z_2 = \Sigma m (10)$
 $Z_1 = \Sigma m (9, 13, 15)$
 $Z_0 = \Sigma m (5, 6, 7, 8, 12, 13, 14, 15)$

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 5. Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

Tabla de verdad de f:

АВС	mi	$n_1 = \overline{A} + \overline{B} + \overline{C}$	n ₂ = B + C	$f = n_1 \cdot n_2$
000	0	1	0	0
001	1	1	1	1
010	2	1	1	1
011	3	1	1	1
100	4	1	0	0
101	5	1	1	1
110	6	1	1	1
111	7	0	1	0

6. Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

Tabla de verdad de f:

ху	n_1	n_2	$f = n_1 \oplus n_2$
0 0	1	1	0
0 1	1	1	0
1 0	1	0	1
11	0	1	1

De la tabla de verdad resultante, se deduce que f = x.

7. Considere el circuito de la siguiente figura:

- a) Represente la función Z que realiza el circuito en un mapa-K.
 - a.1) Expresión algebraica de la función z:

$$\begin{split} z &= n_5 \cdot n_6 = (n_3 + \, n_4) \cdot (x_4 \, + \, \overline{x}_2) = \left[(\overline{x}_2 \cdot \, x_1) + (x_3 \cdot \, x_2) \right] \cdot (x_4 + \, \overline{x}_2) = \left[(\overline{x}_2 \cdot \, x_1) \cdot (x_4 + \, \overline{x}_2) \right] + \left[(x_3 \cdot \, x_2) \cdot (x_4 + \, \overline{x}_2) \right] = \\ &= \left[(x_4 \cdot \, \overline{x}_2 \cdot \, x_1) + (\overline{x}_2 \cdot \, \overline{x}_2 \cdot \, x_1) \right] + \left[(x_4 \cdot \, x_3 \cdot \, x_2) \, + (x_3 \cdot \, x_2 \cdot \, \overline{x}_2) \right] = (x_4 \cdot \, \overline{x}_2 \cdot \, x_1) + (\overline{x}_2 \cdot \, x_1) + (x_4 \cdot \, x_3 \cdot \, x_2) = \\ &= \left[(x_4 + \, 1) \cdot (\overline{x}_2 \cdot \, x_1) \right] + (x_4 \cdot \, x_3 \cdot \, x_2) = (\overline{x}_2 \cdot \, x_1) + (x_4 \cdot \, x_3 \cdot \, x_2) \end{split}$$

a.2) Tabla de verdad y mapa de Karnaugh de la función z:

				,
X_4	X_3	X ₂	X ₁	Z
	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0 0 0 0	0	<u>1</u>	1 0 1	0
0	1		0	0
0 0	1	0	1	1
0	1	1	0 1	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	U	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0 1 0 0 0 1 0 0 0 1 0 0 0
1	1	1	1	1

- b) Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que realice la misma función z.
 - b.1) Minimización de la función z usando su mapa de Karnaugh:

Ver el mapa de Karnaugh de más arriba. Se forman dos cubos con los unos de la función y ambos dan lugar a dos implicantes primos que son esenciales.

b.2) Expresión mínima AND/OR (Suma de Productos o forma mínima disyuntiva) y NAND/NAND de la función z:

$$z = (\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2) = \overline{(\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2)} = \overline{(\overline{x}_2 \cdot x_1) \cdot \overline{(x_4 \cdot x_3 \cdot x_2)}}$$

b.3) Circuitos mínimos AND/OR y NAND/NAND de la función z:

c) Complete el siguiente diagrama de tiempos, teniendo en cuenta el retardo de propagación (en nanosegundos) indicado para cada puerta.

- 8. Se desea diseñar un circuito combinacional mínimo que tenga 4 entradas (y_1,y_0,x_1,x_0) y una salida (z). Los pares de bits " y_1y_0 " y " x_1x_0 " representan números binarios enteros sin signo de dos bits, con y_1 y x_1 como los bits más significativos. La única salida del circuito, z, debe ser 1 si y sólo si el número binario x_1x_0 es mayor que o igual al número binario y_1y_0 . Determine una expresión mínima de suma de productos AND/OR y su equivalente NAND/NAND para z.
 - a) Tabla de Verdad que modela el problema: Los datos $Y = y_1y_0$, $X = x_1x_0$ son datos de dos bits (se suponen números enteros positivos sin signo) cuyos valores están comprendidos entre 0 y 3.

X ₁	\mathbf{x}_0	y ₁	y ₀	Z
0	0	0	0	
0	()	0		0
0	0	1	1 0	0
0 0 0	0		1	0
0	1	0 0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0 0 0	0	0	1
1	0	0	1	1
1	0	1	1	1
1	0		1	0
0 0 0 1 1 1 1 1	1	1 0 0	0	1 0 0 1 1 1 0 0 1 1 1 1 1 1
1	1	0	1	1
1 1	1	1	0	1
1	1	1	1	1

 $Z = \Sigma m (0, 4, 5, 8, 9, 10, 12, 13, 14, 15)$

b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.

- 9. Un número primo es aquél, distinto de 0 y 1, que es divisible sólo por sí mismo y por 1. Suponga que los números entre 0 y 15 están representados en binario utilizando 4 bits: $x_3x_2x_1x_0$, en donde x_3 es el bit más significativo. Diseñe un detector de números primos o, en otras palabras, un circuito lógico cuya salida Z será 1 si y sólo si los cuatro bits de entrada representan un número primo. Basar el diseño en la obtención de una expresión mínima de dos niveles como suma de productos AND/OR y su equivalente NAND/NAND para Z. Considere el número 0 como número NO primo.
 - a) Tabla de Verdad que modela el problema:

N.D.	$X_3 X_2 X_1 X_0$	Z
0		0
1	0 0 0 1	1
2	0 0 1 0	1
1 2 3 4 5 6 7	0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1	1
4	0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	0
5	0 1 0 1	1
6	0 1 1 0	0
7	0 1 1 1	1
8	1 0 0 0	0
9	1 0 0 0 1	0
10	1 0 1 0	0
11	1 0 1 0 1 0 1 0 1	1
8 9 10 11	1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0	0
13	1 1 0 1	0 1 1 0 1 0 0 1 0 0 1 0 0
14	1 1 1 0	0
15	1 1 1 1	0

$$Z = \Sigma m (1, 2, 3, 5, 7, 11, 13)$$

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 10. Un número primo es aquél, distinto de 0 y 1, que es divisible sólo por sí mismo y por 1. Suponga que los números entre 0 y 9 están representados en BCD (Binary Coded Decimal) están representados en binario utilizando 4 bits: x₃x₂x₁x₀, en donde x₃ es el bit más significativo. Diseñe un detector de números primos o, en otras palabras, un circuito lógico cuya salida Z será 1 si y sólo si los cuatro bits BCD de entrada representan un número primo. Basar el diseño en la obtención de una expresión mínima de dos niveles como suma de productos AND/OR y su equivalente NAND/NAND para Z. Considere el número 0 como número NO primo.
 - a) Tabla de Verdad que modela el problema:

N.D.	X ₃	X ₂	X ₁	х ₀	f
0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 1 1	0 0 0 0 1 1 1 1 0	0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1	0 1 1 0 1 0 1 0

Ν	1	0	1	0	-
0	1	0	1	1	-
	1	1	0	0	-
В	1	1	0	1	-
B C D	1	1	1	0	-
D	1	1	1	1	-

$$Z = \Sigma m (1, 2, 3, 5, 7) + d(10, 11, 12, 13, 14, 15)$$

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 11. Dada la siguiente función de conmutación, en la que " x_0 " representa la variable menos significativa: $f(x_3, x_2, x_1, x_0) = \sum m(1, 4, 5, 7, 11) + d(0, 12, 14)$

Minimícela e impleméntela (dibuje los circuitos) mediante síntesis AND/OR (Suma de Productos) y NAND/NAND.

a) Tabla de Verdad que modela el problema:

X ₃	X ₂	X ₁	X ₀	Ζ
0	0	0	0	-
0	0	0	1	1
0	0	1	0	0
0 0 0	0	1	1	0
0 0 0	1	1 0 0	0 1	1
0	1	0	1	1
0	1	1	0	0
0	1	1	0	1
1	0 0 0 0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0		1 0 1	1
1 1 1 1 1	1	1 0 0	0	1 0 0 1 1 0 0 0 0 1 -
1	1	0	1	0
1	1	1	0	-
1	1	1	1	0

b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.

12. Dada la siguiente función de conmutación, en la que " x_0 " representa la variable menos significativa: $f(x_3, x_2, x_1, x_0) = \sum m(4, 5, 7, 11) + d(0, 1, 2, 3, 12, 14)$

Minimícela e impleméntela (dibuje los circuitos) mediante síntesis AND/OR (Suma de Productos) y NAND/NAND.

a) Tabla de Verdad que modela el problema:

X_3	X ₂	X ₁	\mathbf{x}_0	Ζ
0	0	0	0	-
0 0	0	0	1	-
0	0	1	0	-
	0	1	1	-
0 0 0	1	0	0	1
0	1	0	1	1
0	1	1	0 1	0
0	1	1	1	1
1	0 0 0 0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0		1 0 1	1
1 1 1 1	1	0	0	- - 1 1 0 0 0 0 1
1	1	0	1	0
1	1	1	0	-
1	1	1	1	0

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 13. Un "codificador" de posición de un eje proporciona una señal de 4 bits que indica la posición del eje en incrementos de 30°, utilizando el código que se da en la siguiente tabla. Diseñar un circuito combinacional mínimo con dos niveles de puertas AND/OR y NAND/NAND tal que a su salida detecte si la posición del eje corresponde al primer cuadrante (entre 0° y 90°).

Posición del eje (en grados)	Salida del codificador			
(ori grados)	Χ	У	Z	u
0-30	0	0	1	1
30-60	0	0	1	0
60-90	0	1	1	0
90-120	0	1	1	1
120-150	0	1	0	1
150-180	0	1	0	0
180-210	1	1	0	0
210-240	1	1	0	1
240-270	1	1	1	1
270-300	1	1	1	0
300-330	1	0	1	0
330-360	1	0	1	1

NOTA: Se supone que las combinaciones de bits de salida del codificador que no aparecen en la tabla nunca se presentan y se puede tomar como 0 o como un 1, a conveniencia del diseñador.

a) Tabla de Verdad que modela el problema:

Х	у	Z	u	f
0	0	0	0	
0	0	0	1	-
0	0	1	0	1
0	0	1	1	1 1
0 0 0 0	1	0	0	
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
0 1 1	0	0	0	- 0 1 0 0 - 0 0 0 0
1	0	0	1	-
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$Z = \Sigma m (2, 3, 6) + d(0, 1, 4, 9)$$

- b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.
- 14. Diseñe un comparador binario para números enteros sin signo de 2 bits.
 - a) Tabla de Verdad que modela el problema: Los datos $X = x_1x_0$ e $Y = y_1y_0$ son datos de dos bits (se suponen números enteros positivos sin signo) cuyos valores están comprendidos entre 0 y 3. Se supone que:
 - Si X > Y entonces M = 1, I = 0, N = 0
 - Si X = Y entonces M = 0, I = 1, N = 0
 - Si X < Y entonces M = 0, I = 0, N = 1

X ₁	\mathbf{x}_0	y ₁	y ₀	М	I	Ν
0	0	0	0	0	1	0
0	0	0	1		0	
0	0	1	0	0 0	0 0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	1 0 0 0	1	0
0	1	1	0	0	1 0 0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0 0 1	0
1	0	1	0	0	1	0
1	0	1	1	1 0 0	0	1
1	1	0	0	1		1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	0	1	1 1 0	0 0 0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

b) Mapas de Karnaugh para la simplificación, expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación y circuitos mínimos resultantes: se deja como ejercicio.

15. Se desea diseñar un comparador binario para números enteros sin signo de 4 bits. Para realizar el diseño dispone de dos comparadores de 2 bits cuyo funcionamiento se indica en la Figura.

Escriba la expresión mínima como Suma de Productos (AND/OR) para las funciones M, I y N de salida del circuito combinacional de la Figura para que el circuito globalmente funcione como un comparador binario de 4 bits.

Se tiene que hacer el circuito combinacional a implementar en función de MH IH y ML IL. Para ello hay que tener en cuenta las siguientes premisas:

- a) Si MH = 1 e IH = 0 (y, por tanto, NH = 0) entonces $b_3b_2 > a_3a_2$ y, por tanto, $b_3b_2b_1b_0 > a_3a_2a_1a_0$ y entonces M = 1, I=0 y N=0.
- b) Si MH = 0 e IH = 1 (y, por tanto, NH = 0) entonces $b_3b_2 = a_3a_2$ y entonces tiene que decidir la comparación el comparador de b1b0 con a1a0
 - 1) Si ML = 1 e IL = 0 (y, por tanto, NL = 0) entonces $b_1b_0 > a_1a_0$ y por tanto $b_3b_2b_1b_0 > a_3a_2a_1a_0$ y entonces M = 1, I = 0 y N = 0.
 - 2) Si ML = 0 e IL = 1 (y, por tanto, NL = 0) entonces $b_1b_0 = a_1a_0$ y por tanto, $b_3b_2b_1b_0 = a_3a_2a_1a_0$ y entonces M = 0, I = 1 y N = 0.
 - 3) Si ML = 0 e IL = 0 (y, por tanto, NL = 1) entonces $b_1b_0 < a_1a_0$ y, por tanto, $b_3b_2b_1b_0 < a_3a_2a_1a_0$ y entonces M = 0, I = 0 y N = 1.
- c) Si MH = 0 e IH = 0 (y, por tanto, NH = 1) entonces $b_3b_2 < a_3a_2$ por tanto $b_3b_2b_1b_0 < a_3a_2a_1a_0$ y entonces M = 0 (también I = 0 y N = 1)
- d) Las tres funciones M, I, L, son mutuamente excluyentes, es decir, NO se pueden producir casos en los que M = I = N = 1. Sólo se pueden producir los casos:
 - 1) M = 1, I = 0 y N = 0
 - 2) M = 0, I = 1 y N = 0
 - 3) M = 0, I = 0 y N = 1

Porque si no fuera así se indicaría que el dato A y el dato B podrían ser mayor e igual a la vez o mayor o menor a la vez y/o igual y menor a la vez y eso sería una indeterminación (-). Lo mismo pasa con los valores parciales MH, IH, LH y ML, IL y NL.

Por tanto, la tabla de verdad que relacionaría MH,IH,ML,IL con M,I, N sería

МН	ΙH	ML	ILD	М	I	Ζ
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	-
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	-	-	-
1	0	0	0	1	0 0	0
1	0	0	1	1		0
1	0	1	0	1	0	0
1	0	1	1	1	0	-
1	1	0	0	-	-	-
1	1	0	1	-	-	-
1	1	1	0	-	-	-
1	1	1	1	-	-	-

Las indeterminaciones corresponden a los casos en los que se daría igualdad entre las funciones MH, IH y NH ó ML, IL y NL. Resolviendo las funciones y minimizándolas se tiene que:

$$M = MH + (IH \cdot ML)$$
$$I = IH \cdot IL$$
$$N = NH + (IH \cdot NL)$$

20. Implemente un multiplexor 8-a-1 a partir de 2 multiplexores 4-a-1 y un multiplexor 2-a-1 y con multiplexores 2 a 1.

21. Implemente un demultiplexor 1-a-8 a partir de 2 demultiplexores 1-a-4 y un demultiplexor 1-a-2 y con demultiplexores de 1 a 2.

22. Obtenga la tabla de verdad y el mapa de Karnaugh de la función que realiza el circuito de la Figura.

m	f_0	f ₁	$f=f_0+f_1$
0	0	0	0
1	1	0	1
2	1	0	1
3	1	1	1
4	0	0	0
	0	0	0
6	1	1	1
7	0	1	1
	0 1 2 3 4 5 6	0 0 1 1 2 1 3 1 4 0 5 0 6 1	0 0 0 1 1 0 2 1 0 3 1 1 4 0 0 5 0 0 6 1 1

- a) Minimice dicha función en la forma AND/OR
- b) Impleméntela utilizando un multiplexor de 8 a 1 (3 variables de control).
- c) Impleméntela utilizando un multiplexor de 4 a 1 (2 variables de control).
- d) Implementela utilizando multiplexores de 2 a 1 (1 variable de control).

Resolución:

Tabla de Verdad y Mapa de Karnaugh de la función: Se va a obtener primero la expresión algebraica de la función de conmutación resultante f.

En el multiplexor superior
$$(M_0)$$
 se genera una función f_0 :
$$f_0 = (\overline{x} \cdot \overline{z} \cdot w) + (\overline{x} \cdot z \cdot 1) + (\overline{x} \cdot \overline{z} \cdot 0) + (\overline{x} \cdot z \cdot \overline{w}) = (\overline{x} \cdot \overline{z} \cdot w) + (\overline{x} \cdot z) + (\overline{x} \cdot z \cdot \overline{w})$$
 En el multiplexor inferior (M_1) se genera una función f_1 :
$$f_1 = (\overline{x} \cdot \overline{z} \cdot x) + (\overline{x} \cdot z \cdot w) + (\overline{x} \cdot \overline{z} \cdot z) + (\overline{x} \cdot z \cdot w) + (\overline{x} \cdot z) + (\overline{x} \cdot z \cdot w) + (\overline{x} \cdot z)$$
 Por tanto como $f = f_0 + f_1 = (\overline{x} \cdot \overline{z} \cdot w) + (\overline{x} \cdot z) + (\overline{x} \cdot z \cdot w) + (\overline{x} \cdot z \cdot$

Por tanto, la tabla de verdad y mapa de Karnaugh de la función resultante f es:

XZW	f
000	0
001	1
010	1
011	1
100	0
101	0
110	1
111	1

ZW				
x	00	01	11	10
0	00	11	13	12
1	04	05	17	16
		f		

a) Minimice dicha función en la forma AND/OR

$$f = (x \cdot w) + z$$

b) Impleméntela utilizando un multiplexor de 8 a 1 (3 variables de control).

Х	ZW	f
С	000	0
C	01	1
C	10	1
C	11	1
1	00	0
1	01	0
1	10	1
1	11	1

c) Impleméntela utilizando un multiplexor de 4 a 1 (2 variables de control).

XZW	f	Valor
		parcial
000 001	0	$f_0(00w) = w$
010	1	$f_0(01w) = 1$
011	1	$I_0(O IW) = I$
100	0	$f_0(10w) = 0$
101	0	$I_0(10W) = 0$
110	1	f (11w) - 1
111	1	$f_0(11w) = 1$

d) Impleméntela utilizando multiplexores de 2 a 1 (1 variable de control).

Hay dos formas de hacerlo: sin reducción del número de multiplexores (izquierda) o con reducción del número de multiplexores (derecha), empleando la tabla de valores parciales del apartado c).

- 30. Diseñe un conversor de un dato binario de 3 bits a un visualizador de 7 segmentos utilizando una memoria ROM de tamaño adecuado. Dibuje tanto la estructura de la ROM como su implementación interna.
- a) Tabla de Verdad que modela el problema:

xyz	Nº	а	b	С	d	е	f	g	VIS.
000	0	1	1	1	1	1	1	0	dot 9
001	1	0	1	1	0	0	0	0	dot 9 1 1
010	2	1	1	0	1	1	0	1	dot g
011	3	1	1	1	1	0	0	1	g g g g g g g g g g g g g g g g g g g
100	4	0	1	1	0	0	1	1	dot 9 1 1
101	5	1	0	1	1	0	1	1	dot g

Visualizador de 7 Segmentos

110	6	1	0	1	1	1	1	1	dot 9
111	7	1	1	1	0	0	0	0	dot 9

Funciones:

```
a (x,y,z) = \Sigma m (0, 2, 3, 5, 6, 7)
b (x,y,z) = \Sigma m (0, 1, 2, 3, 4, 7)
c (x,y,z) = \Sigma m (0, 1, 3, 4, 5, 6, 7)
d (x,y,z) = \Sigma m (0, 2, 3, 5, 6)
e (x,y,z) = \Sigma m (0, 2, 6)
f (x,y,z) = \Sigma m (0, 4, 5, 6)
g (x,y,z) = \Sigma m (2, 3, 4, 5, 6)
```

NO hay que minimizar las funciones. Se implementa en el plano AND los 8 minterms de las 3 variables y se hace la OR de los mínterms correspondientes para cada función.

b) Circuito de la memoria ROM: Tamaño 3·2³·7 (3 entradas, 8 términos producto AND minterms y 7 salidas) con entrada de habilitación E.

- 31. Dadas las siguientes funciones de conmutación, en las que "x₀" representa la variable menos significativa:
 - $f_0(x_2, x_1, x_0) = \sum m(0, 3, 5, 6, 7)$
 - $f_1(x_2, x_1, x_0) = \sum m(1, 2, 5)$
 - $f_2(x_2, x_1, x_0) = \sum m(0, 2, 4, 6, 7)$
 - a) Implemente dichas funciones mediante una memoria ROM de tamaño adecuado. ¿Cuál es el tamaño de dicha memoria ROM? Dibuje explícitamente la estructura interna de la ROM (plano AND y plano OR programado con las conexiones adecuadas para implementar dichas funciones).

Las tablas de verdad de las tres funciones son:

$X_2 X_1 X_0$	f_0	f ₁	f ₂
000	1	0	1
0 0 1	0	1	0
010	0	1	1
011	1	0	0
100	0	0	1
101	1	1	0
010	1	0	1
011	1	0	1

Circuito de la memoria ROM: Tamaño 3·2³·3 (3 entradas, 8 términos producto AND minterms y 3 salidas) con entrada de habilitación E.

b) Implemente dichas funciones con tres multiplexores de 4 a 1 (uno para cada función). En las entradas de control se aplican las variables x_2, x_1 . Teniendo en cuenta que se dispone de la variable x_0 y de su complemento como entradas, dibuje los multiplexores indicando en sus entradas los valores posibles de: {0, 1, x_0 ó complemento de x_0 }. Dentro del símbolo del multiplexor se deben especificar las entradas en decimal de las combinaciones de (x_2, x_1) para las que se selecciona cada entrada.

Se reagrupan las tablas de verdad de las funciones de conmutación:

$X_2 X_1 X_0$	f_0	Valor		
		parcial		
000	1	f (00:)		
001	0	$f_0(00x_0) = \overline{x_0}$		
010	0	f (01y) y		
011	1	$f_0(01x_0) = x_0$		
100	0	f (10v) v		
101	1	$f_0(10x_0) = x_0$		
010	1	f (11v) 1		
011	1	$f_0(11x_0) = 1$		

$\mathbf{X}_{2} \mathbf{X}_{1} \mathbf{X}_{0}$	f_1	Valor		
		parcial		
000	0	f (00x) - x		
0 0 1	1	$f_1(00x_0) = x_0$		
010	1	$f_1(01x_0) = x_0$		
011	0			
100	0	f (10v) v		
101	1	$f_1(10x_0) = x_0$		
010	0	f (11)		
011	0	$f_1(11x_0) = 0$		

$x_2 x_1 x_0$	f_2	Valor
		parcial
000	1	f (00:)
0 0 1	0	$f_2(00x_0) = x_0$
010	1	. (04) –
011	0	$f_2(01x_0) = x_0$
100	1	f (40) -
101	0	$f_2(10x_0) = x_0$
010	1	f /11v \ 1
011	1	$f_2(11x_0) = 1$

32. Determine las salidas de los siguientes circuitos combinacionales para los valores de las entradas que se indican en cada uno de ellos. La señal E es la de habilitación.

Realice los ejercicios siguientes:

- Ejercicios de la relación de problemas del Tema 3º ubicado en el fichero 03.-TEMA_3_TOC_SISTEMAS_COMBINACIONALES_PROBLEMAS.PDF.
- Ejercicios del Tema 5º del libro [PRI06]: Prieto, A., Lloris, A., Torres, J. C.. Introducción a la Informática, 4ª Edición, McGraw-Hill, 2006.