EE 240C Analog-Digital Interface Integrated Circuits

Digital Filter Production Testing

L63

Production Testing

It's obvious that decimation filters obscure many details of modulator analog performance

- Most of the shaped quantization noise is filtered away
- Was the modulator fabricated correctly? Are there defects in a given chip?
- We need production test modes ...

- ΣΔ ADC designs must provide <u>at least</u> the following test modes:
 - Output unfiltered 1-bit modulator output samples
 - Insert test vectors at the decimation filter input
- Any mixed-signal IC which includes an ADC must provide for observability of unprocessed ADC output samples
- Let's see how our decimation filter obscures a typical modulator manufacturing defect ...

- Suppose the modulator is built with an open fault in a metal trace which connects up the switched capacitor implementing the b₂ capacitor
 - b₂ sets one of the quantization noise zeroes
 - If the b_2 capacitor is missing, $b_2=0$
 - In the real world, this defect might occur in 1–10ppm of production units
- The next two slides highlight the loop filter defect, and show decimated DFTs with and without the defect

Loop Filter Defect

[Eric Swanson]

ΣΔ ADC Output DFT

- The small increase in noise above 20kHz would probably be missed in production test
 - Dynamic range is specified to include only noise from 0– 20kHz
- Should we ship the defective unit?
 - Absolutely not
 - The metal pattern associated with the defect is unknown, and it may lead to a catastrophic failure later (reliability problem)
- Let's see if a 1-bit test mode can detect the fault ...

ΣΔ ADC 1-bit Test Mode

ΣΔ ADC 1-bit Test Mode

- Models can analyze whether or not a specific defect is observable with a given test mode
 - Many defect-observability analyses are required to improve quality levels from ~100ppm defective to <10ppm defective
- These models improve over the production life of a chip and from generation-to-generation
 - If big customers detect a quality defect, they demand corrective action to improve tests so that units with the same defect won't be shipped again
 - Without 1-bit test modes, you're sunk!

EE 240C Analog-Digital Interface Integrated Circuits

Multi-tone Tests

Multitone Tests

 As long as we're on the subject of testing, let's examine a fast, effective method to look at the frequency response of a filter or ADC

- This method is used extensively in production tests of both analog filters and ADCs
- It is <u>not</u> a substitute for classic, fault coverage testing of digital filters

Multitone Tests

- IC testers can synthesize and add sinewaves at many different frequencies in the digital domain
 - The digital sum is sent to a test system DAC which generates the analog input for a device under test
 - Frequency response at many different input frequencies can be determined with one test
- Let's see how our $\Sigma\Delta$ ADC responds to an input which is a sum of 20, 21, 22, 23, 24.375, 25.375, 26.375, and 27.375kHz sinewaves

ΣΔ ADC Multitone DFT

ΣΔ ADC Multitone DFT

Multitone Tests

 Note how elegantly the multitone output amplitudes trace the transition band of the decimation filter

- Total observation time must be long enough to resolve each of the individual frequencies
 - Hz/bin is the reciprocal of the total observation time
 - ~1000 ADC output samples in this example