Câu 1.
Cho đơn đổ thị có hướng G gồm 6 đình dưới dạng danh sách kể:
$Ke(1) = \{5\}, Ke(2) = \{3\}, Ke(3) = \{4\} Ke(4) = \{6\}, Ke(5) = \{2\}, Ke(6) = \{1\}, Ke(6$
Chọn phương án đúng trong các phương án:
OA.
Các phương án khác đều sai.
Ов.
G liên thông mạnh.
Oc.
G không liên thông mạnh nhưng liên thông yếu.
OD.
G không liên thông mạnh vì các đỉnh đều có bậc lẻ.
○E.
G là đồ thị liên thông.

Câu 2.

16 Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kể:

0111

1011

1101

1110

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s = 1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

			_	-	
•	r	٦		r	
	ŀ	u		U	
	E	s		٦,	
	L	1	4	3	

G không phải là đổ thị Euler nhưng là nửa Euler.

Câu 4.

Cho mạng G = (V,E) gồm 5 đỉnh dưới dạng ma trận trọng số:

00062

00003

24000

00001

00000

Chọn phương án đúng trong các phương án dưới đây:

OA.

Các phương án khác đều sai.

OB.

Lát cắt (X, X^*) với $X = \{3, 5\}$ có khả năng thông qua là $C(X, X^*) = 6$.

Oc.

Lát cắt (X, X^*) với $X = \{3, 5\}$ có khả năng thông qua là $C(X, X^*) = 12$.

OD.

Lát cắt (X, X^*) với $X = \{1, 3\}$ có khả năng thông qua là $C(X, X^*) = 12$.

OE.

Lát cắt (X, X^*) với $X = \{1, 3\}$ có khả năng thông qua là $C(X, X^*) = 14$.

Câu 5.

Đổ thị vô hướng G = (V, E) gồm 5 đỉnh được biểu diễn dưới dạng ma trận kề như bên dưới. Đâu là thứ tự duyệt các đỉnh của thuật toán BFS?

00111

00011

10000

11001

11010

OA.

{1, 5, 4, 2, 3}

OB.

{1, 3, 4, 5, 2}

Oc.

{1, 3, 4, 2, 5}

OD.

{1, 2, 3, 4, 5}

OE.

Các phương án khác đều sai.

-- -

Câu 6.

Cho đơn đổ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đình đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đình cuối	Trọng số
1	2	3	2	3	4
1	3	3	2	4	3
1	4	6	3	4	1

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

OA.

Các phương án khác đều sai.

OB.

Kruskal là T = {(1,4), (2,3), (1,3)} với WT = 13.

Oc.

 $T = \{(1,4), (2,3), (2,4)\} \text{ với WT} = 13.$

OD.

 $T = \{(1,4), (2,3), (1,2)\} \text{ với } WT = 14.$

OE.

 $T = \{(1,4), (2,3), (1,2)\} \text{ với } WT = 13.$

Câu 7. Cho mạng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đình đầu	Đỉnh cuối	Trọng số
1	4	6	4	3	7
1	5	5	5	2	6
3	2	6	5	3	7

Xét hàm f trong mạng G với các giá trị khác 0: f(1,4) = 6, f(3,2) = 5, f(3,2) = 6, f(5,2) = 5 Chọn phương án đúng trong các phương án sau:

OA.
Hàm f là luồng trong G với val (f) = 11, nhưng không phải là luồng cực đại.
Ов.
Hàm f không phải là luồng trong mạng G.
Oc.
Các phương án khác đểu sai.
OD.
Hàm f là luồng cực đại với val(f) = 11.
OE.

Hàm f là luống cực đại với val(f) = 12.

Câu 8.

Với đổ thị vô hướng G = (V, E), câu mô tả nào dưới đây là đúng?

- 1. Tổng của tất cả bậc của các đỉnh trong đổ thị luôn là số lẻ
- 2. Tổng của tất cả bậc của các đình trong đổ thị luôn là số chẵn
- 3. Số cạnh của đổ thị luôn nhỏ hơn tổng của tất cả bậc của các đỉnh trong đổ thị
- 4. Tổng của tất cả bậc của các đình trong đồ thị = (Số cạnh của đồ thị) x2 + 1
- 5. Số các đỉnh có bậc lẻ là một số lẻ

OA.

2, 3, 5

OB.

Các phương án khác đều sai.

Oc.

2,3

OD.

1, 3, 4, 5

OE.

1, 3, 4

Câu 9. Cho đơn đổ thị có hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đình cuối	Trọng số	Đình đầu	Đỉnh cuối	Trọng số
1	2	3	3	2	6
1	3	5	3	4	1
2	3	-5	4	1	-6

Kí hiệu d[i][j] là độ dài đường đi ngắn nhất từ i đến j và e[i][j] là đỉnh trước j trên đường đi ngắn nhất từ i đến j. Sử dụng thuật toán Floyd tìm đường đi ngắn nhất giữa các cặp đỉnh của G. Chọn phương án đúng trong các phương án dưới đây:

Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 1 là 41 với độ dài d[4][1] = -6.
ОВ.
Các phương án khác đều sai.
Oc.
Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 3 là 43 với độ dài d[4][1] = 1.
O D.
Đường đi ngắn nhất từ đỉnh 2 đến đỉnh 3 là 23 với độ dài d[2][3] = -5.
OE.
G chứa chu trình âm.

OA.

Câu 10.
Cho đơn đổ thị vô hướng G = (V, E) gồm 6 đỉnh được biểu diễn dưới dạng ma trận kể như dưới. Số thành phần liên thông của đồ thị là bao nhiêu?
000010
001000
010001
000011
100100
001100
OA.
1
OB.
2
Oc.
Các phương án khác đều sai.
Op.
0
OE.
3

Cho đơn đổ thị vô hướng G gồm 4 đình dưới dạng ma trận kể:

0100

1011

0101

0110

Biểu diễn G dưới dạng danh sách cạnh gồm các cạnh theo thứ tự là:

OA.

(1,2), (1,3), (2,4) và (3,4).

OB.

(1,2), (2,3), (4,2) và (4,3).

OC.

(1,2), (2,3), (3,4) và (2,4).

OD.

(1,2), (2,3), (2,4) và (3,4).

OE.

Các phương án khác đều sai.

Câu 12.

Cho đơn đổ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đình cuối	Trọng số
1	2	1	2	3	1
1	3	2	2	4	1
1	4	1	3	4	-1

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đình s = 4. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

OA.

 $T = \{(4,3), (4,2), (4,1)\} \text{ với WT} = 1.$

OB.

Không sử dụng được thuật toán Prim do G chứa trọng số âm.

Oc.

 $T = \{(4,3), (3,2), (2,1)\} \text{ v\'eti } WT = 1.$

OD.

Các phương án khác đều sai.

OE.

 $T = \{(4,3), (4,1), (1,2)\} \text{ v\'et } WT = 1.$

Câu 13.
Cho đơn đổ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:
0781
7023
8206
1360
Sử dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ đình s = 1 đến các đình còn lại của G. Đình t có đường đi ngắn nhất từ s đến t có giá trị lớn nhất là:
O A.
Dinh t = 4.
Ов.
Dinh t = 2.
OC.
Các phương án khác đều đúng.
O D.
Dinh t = 3.
OE.
Các phương án khác đều sai.

Câu 14.
Cho đơn đổ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:
0781
7023
8206
1360
Sử dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ đình s = 1 đến các đình còn lại của G. Chọn phương án đúng trong các phương án dưới đây:
OA.
Đường đi ngắn nhất từ đỉnh 1 đến đỉnh 2 là 142 với độ dài d[2] = 4.
OB.
Các phương án đưa ra đường đi ngắn nhất và độ dài tương ứng đều đúng.
Oc.
Các phương án khác đều sai.
O D.
Đường đi ngắn nhất từ đỉnh 1 đến đỉnh 3 là 1423 với độ dài d[3] = 6.
OE.
Đường đi ngắn nhất từ đình 1 đến đình 4 là 14 với độ dài d[4] = 1.

Câu 15.
Cho đơn đổ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kể:
00101
00111
11010
01100
11000
Hãy chọn phương án đúng trong các phương án sau:
O A.
G liên thông và chỉ có hai đỉnh 2 và 3 với bậc lẻ nên là đồ thị nửa Euler.
○в.
G liên thông và chỉ có hai đỉnh 2 và 5 với bậc lẻ nên là đổ thị nửa Euler.
Oc.
Các phương án khác đều sai.
○ D.
G liên thông và chỉ có hai đình 3 và 4 với bậc lẻ nên là đồ thị nửa Euler.
OE.
G không phải là đổ thị nửa Euler cũng không phải là đổ thị Euler.

Câu 17.

25 Cho đơn đổ thị vô hướng có trọng số G gồm 4 đình dạng ma trận trọng số:

0133

1022

3202

3220

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T của G. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

OA.

 $T = \{(1,2), (2,3), (2,4)\} \text{ và } WT = 4.$

OB.

 $T = \{(1,2), (2,3), (2,4)\} \text{ và } WT = 5.$

OC.

 $T = \{(1,2), (2,3), (3,4)\} \text{ và WT} = 5.$

OD.

 $T = \{(1,2), (2,4), (3,4)\} \text{ và WT} = 5.$

OE.

Các phương án khác đều sai.

Câu 18. Cho mạng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đình đầu	Đình cuối	Trọng số	Đình đầu	Đỉnh cuối	Trọng số
1	2	3	2	4	6
1	3	6	3	5	5
1	5	6	4	5	6

Xét luồng f trong mạng G với giá trị khác 0 là f(1,5) = 6. Đổ thị tăng luồng Gf bao gồm các cạnh cùng trọng số tương ứng là:

OA.

$$c(1,2) = 3$$
, $c(1,3) = 5$, $c(2,4) = 6$, $c(3,5) = 5$, $c(4,5) = 6$, $c(5,1) = 6$.

OB.

$$c(1,2) = 3$$
, $c(1,3) = 5$, $c(1,5) = 6$, $c(2,4) = 6$, $c(3,5) = 5$, $c(5,4) = 6$.

OC.

$$c(1,2) = 3$$
, $c(1,5) = 6$, $c(2,4) = 6$, $c(3,1) = 6$, $c(3,5) = 5$, $c(4,5) = 6$..

OD.

$$c(1,2) = 3$$
, $c(1,3) = 6$, $c(1,5) = 6$, $c(3,5) = 5$, $c(4,2) = 6$, $c(4,5) = 6$.

OE.

Các phương án khác đều sai.

Câu 19.

Cho đơn đổ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	1	2	3	2
1	3	1	2	4	5
1	4	3	3	4	2

Sử dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ đình s = 2 đến đình t = 4 của G. Chọn phương án đúng trong các phương án dưới đây:

○ A.
Các phương án khác đều sai.
○ B.
Đường đi ngắn nhất từ đỉnh 2 đến đỉnh 4 là 234 với độ dài d[4] = 4.
○ C.
Không sử dụng được thuật toán Dijkstra cho đổ thị vô hướng.
○ D.
Đường đi ngắn nhất từ đỉnh 2 đến đỉnh 4 là 214 với độ dài d[4] = 4.

Đường đi ngắn nhất từ đình 2 đến đình 4 là 2134 với độ dài d[4] = 4.

OE.

Câu 20.
Cho đơn đổ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kể:
01010
10101
01011
10101
01110
Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton H của G bắt đàu tại đỉnh s = 1. Các đỉnh xuất hiện theo thứ tự khi thực hiện thuật toán trong H đầu tiên được liệt kê là:
OA.
$H = \{1, 2, 5, 3, 4\}.$
Ов.
$H = \{1, 4, 3, 5, 2\}.$
Oc.
Các phương án khác đều sai.
O D.
$H = \{1, 4, 5, 3, 2\}.$
ÖE.
$H = \{1, 2, 3, 5, 4\}.$