Maple Exercise 1: Calculus Review

1 Functions and Polynomials

- 1. Let $f(x) = x^7 9x^6 + 29x^5 59x^4 + 95x^3 71x^2 8x + 4$.
 - a) Factor f(x) over the real numbers.
 - b) Factor f(x) over the complex numbers.
- 2. Let $f(x) = e^{\sin(x)}$.
 - a) Define f(x) as a function.
 - b) Evaluate the values of f at $x \in \{-5, -4, -3, ..., 5\}$.
 - c) Plot f(x) on x = [-5, 5].
- 3. a) Plot the function $y = x^3$ for $-1 \le x \le 1$.
 - b) Now plot the functions $y = x, x^2, ..., x^6$ together.
 - c) Describe the pattern in words. What do you think that the graph of x^{100} looks like? Use Maple to check your answer.

2 Limit

- 4. Let $f(x) = \frac{\sin(x)}{x}$.
 - a) Evaluate the values of f at $x \in \{1, 0.1, 0.01, ..., 0.000001\}$.
 - b) Find $\lim_{x\to 0} f(x)$.
- 5. Let $x_n = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ and $y_n = \frac{a^n b + ab^n}{a^n + b^n}$, where a = 10 and b = 20.
 - a) Find the values of x_n and y_n for n = 1, 2, 3, ..., 50.
 - b) What do you think are the limiting values? (No need for proof, let's just do Experimental math.).

3 Derivative

6. Find the first and second derivative of

a)
$$f(x) = \frac{x^2 + 1}{x - 2}$$
.

b)
$$g(x) = \frac{\cot(x) + 1}{\csc(x)}$$
.

4 Riemann Sum

7. Estimate the area under the graph of $f(x) = \sin(x)$ from x = 0 to x = 3 using

a) three approximating rectangles and mid-points. ie. f(0.5) + f(1.5) + f(2.5).

b) six approximating rectangles and mid-points.
$$f(0.25)$$
 $f(0.75)$ $f(1.25)$ $f(1.75)$ $f(2)$

ie.
$$\frac{f(0.25)}{2} + \frac{f(0.75)}{2} + \frac{f(1.25)}{2} + \frac{f(1.75)}{2} + \frac{f(2.25)}{2} + \frac{f(2.75)}{2}$$

c) twelve approximating rectangles and mid-points.

d) twenty four approximating rectangles and mid-points.

e) Compare your results to the actual area, $\int_0^3 \sin(x) dx$.

5 Integration

8. Evaluate the following integrals:

a)
$$\int_0^2 (1+x^2)^3 dx$$
.

b)
$$\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}})^2 dx$$
.

c)
$$\int \frac{\arcsin(x)}{\sqrt{1-x^2}} dx.$$

d)
$$\int_0^5 \frac{1}{\sqrt{x^2 - 1}} dx$$
.

6 Parametric Curve

9. Look up help plot to find the command to plot the parametric curve: $x = \sin(t + \sin(t)), y = \cos(t + \cos(t)), -4\pi \le t \le 4\pi.$

2

7 Sequences and Series

- 10. List the first 10 terms of the sequence, $a_n = \frac{n^3}{n!}$.
- 11. a) Find $\sum_{n=1}^{k} \frac{1}{n(n+1)}$ for k = 10, 100, 1000 and 10000.

What do you think about the value of the infinite sum: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$

b) Find $\frac{1}{\pi^2} \sum_{n=1}^{k} \frac{1}{n^2}$ for k = 10, 100, 1000 and 10000.

What do you think about the value of the infinite sum: $\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}$. Answer in term of fraction.

Note: You might curious about other infinite sums like $\sum_{n=1}^{\infty} \frac{1}{n^4}, \sum_{n=1}^{\infty} \frac{1}{n^6}, \dots$

These are options for you to explore!

12. Use command taylor to find the first ten terms of the Taylor series for $f(x) = \cos(x^2)$ centered at $x = \pi$.

8 Vector and Matrix

- 13. Let $A = \langle a, b, c \rangle$ and $B = \langle x, y, z \rangle$. Add package VectorCalculus to perform the operation $A \cdot B$ and $A \times B$.
- 14. Come up with your own 3-by-3 matrix A, use package LinearAlgebra to find A^2 , A^{-1} , $\det(A)$, eigenvalues and eigenvectors of A.

3

9 Surfaces in Three dimension

15. Use the command plot3d to sketch the following surfaces:

a)
$$x^2 + y^2 + z^2 = 1$$
.

b)
$$x^2 + y^2 = z^2$$
.

c)
$$x^2 + y^2 = z$$
.

d)
$$x^2 + y^2 - z^2 = 1$$
.

e)
$$x^2 - y^2 = z$$
.