AI 期中報告

7106029070 徐紹恩

第一周 09/13 回家作業

使用三階多項式做10個樣本、100個樣本、1000個樣本做多項式凝合。

使用六階多項式做10個樣本、100個樣本、1000個樣本做多項式凝合。

使用九階多項式做10個樣本、100個樣本、1000個樣本做多項式凝合。

結論:

在樣本數目很少的情況下,盡量使用低階多項是避免出現過凝合的情況,而樣本數夠多的化可以提高多項式的階層。

第二周 09/20 回家作業

Epoch: 50236

loss: 6755.21, Weight: 1.97, Bias: 4.55

使用梯度下降的方式進行多項式凝合

樣本:

隨機生成 100 個線性樣本

收斂條件:

練續 500 個迭代訓練誤差為下降,或是誤差值低於 1 則結束訓練。

訓練結果:

於第 50236 個迭代結束訓練,訓練誤差 6755.21

求出的多項是為:

$$F(X) = 1.97X + 4.55$$

結論:

在訓練過程中發現學習率設太大的話會導致震盪無法收斂。

第三、四周 09/27, 10/04 回家作業

使用 UCI 中的 Statlog (Heart) Data Set 資料集,此資料集為與心臟疾病相關的資料集,為分類任務,以是否有心臟相關疾病為類別進行分類,以下使用相同資料與不同模型進行訓練測試。

資料總筆數:

- 270 筆
- 切分 80/20 做訓練與測試
- 訓練集 189 筆,測試集 81 筆

隨機森林法

使用 Entropy 做為評估標準,樹的最大深度設定為 3。

訓練結果:

訓練集正確率: 84.13%

測試集正確率: 71.60%

以下為各個特徵在此次分類中所佔的重要性:

	Feature	Feature_importance
12	thal	0.284580
9	oldpeak	0.183576
7	heart_rate	0.143212
11	vessels	0.099113
8	exercise_induced_angina	0.082411
4	serum_cholestoral	0.067933
3	resting_blood_pressure	0.060719
0	age	0.051887
1	sex	0.026568
2	chest_pain_type	0.000000
5	fasting_blood_sugar	0.000000
6	resting_electrocardiographic_results	0.000000
10	ST	0.000000

決策樹

使用 Entropy 做為評估標準,樹的最大深度設定為3。

訓練結果:

訓練集正確率: 82.54%

測試集正確率: 67.90%

以下為各個特徵在此次分類中所佔的重要性:

	Feature	Feature_importance
12	thal	0.497345
2	chest_pain_type	0.195624
9	oldpeak	0.163891
7	heart_rate	0.143139
0	age	0.000000
1	sex	0.000000
3	resting_blood_pressure	0.000000
4	serum_cholestoral	0.000000
5	fasting_blood_sugar	0.000000
6	resting_electrocardiographic_results	0.000000
8	exercise_induced_angina	0.000000
10	ST	0.000000
11	vessels	0.000000

第五周 10/11 回家作業

使用KNN模型做分類,比較各個K值所得出的結果。

結論:

在本資料集中找出最適的 K 值為 13。

第七周 10/25 回家作業

使用 SVC 模型進行分類,比較不同核心所得出的結果。

以相同的參數 C=1、Gamma=0.01,不同的核心 linear、poly、rbf、sigmoid 做比較,的出在使用 linear 的核心時做分類出的結果為最好的。