Alcantara, Kristian Diether A. INF-231

VLSM Activity 7: Creating 7 Subnetworks

Base Network: 192.168.10.0/24

Subnet Requirements:

Divide this network into 7 subnets with the following host requirements:

Subnet A → 60 hosts

Subnet B → 30 hosts

Subnet C → 28 hosts

Subnet D → 12 hosts

Subnet E → 6 hosts

Subnet F → 2 hosts

Subnet $G \rightarrow 2$ hosts

Table:

Subnet	Required Hosts	Subnet Mask	CIDR	Network Address	First Host	Last Host	Broadcast
Α	60	255.255.255.192	/26	192.168.10.0	192.168.10.1	192.168.10.62	192.168.10.63
В	30	255.255.255.224	/27	192.168.10.64	192.168.10.65	192.168.10.94	192.168.10.95
С	28	255.255.255.224	/27	192.168.10.96	192.168.10.97	192.168.10.126	192.168.10.127
D	12	255.255.255.240	/28	192.168.10.128	192.168.10.129	192.168.10.142	192.168.10.143
E	6	255.255.255.248	/29	192.168.10.144	192.168.10.145	192.168.10.150	192.168.10.151
F	2	255.255.255.252	/30	192.168.10.152	192.168.10.153	192.168.10.154	192.168.10.155
G	2	255.255.255.252	/30	192.168.10.156	192.168.10.157	192.168.10.158	192.168.10.159

Explanation:

I arranged the subnets in descending order of host requirements: A (60), B (30), C (28), D (12), E (6), F (2), G (2). Then for each subnet, I applied the formula $2^n - 2 \ge 1$ hosts to find the subnet mask: A \Rightarrow /26, B \Rightarrow /27, C \Rightarrow /27, D \Rightarrow /28, E \Rightarrow /29, F \Rightarrow /30, G \Rightarrow /30. Then I started allocating from 192.168.10.0 and continued without overlap, using each block's natural size (/26 = 64, /27 = 32, /28 = 16, /29 = 8, /30 = 4). Lastly, for each subnet, I identified the network address, subnet mask, first host, last host, and broadcast.

Bonus Question

If a new subnet requiring 100 hosts is added, can it still fit inside the original 192.168.10.0/24? Why or why not?

I cannot fit the new subnet with 100 hosts inside the original 192.168.10.0/24 without changing my current allocations. To get 100 hosts, I added 2 more addresses for the network and broadcast, so I need 102 in total. The smallest block that can handle this is 128 addresses, which is a /25 subnet with 126 usable hosts. In my work, I already used 192.168.10.0 up to 192.168.10.159, leaving only 96 addresses from .160 to .255. Since 96 is less than the 126 I need, the new subnet will not fit. The whole /24 has 256 addresses, so it could fit a /25 if I planned it from the start, but with my current setup I would have to reorganize everything to make space.