Aufgaben

Inhaltsverzeichnis

Analysis	
1.1 Gleichungen	
1.2 Integralrechnung	2
1.3 Konvergenz	7
	9
2.1 Endliche Summen	9
2.2 Rekursionsgleichungen	9
2.3 Kombinatorische Probleme	14

1 Analysis

1.1 Gleichungen

Aufgabe 1.1. Man bestimme $L = \{x \in \mathbb{R} \mid x^3 = 2\}.$

Lösung. Wir definieren zunächst die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x^3$. Gesucht ist das Urbild $f^{-1}(\{2\})$. Ein Plot des Graphen zeigt, dass f offenbar streng monoton ist, was wir verifizieren wollen. Das Kritierium für strenge Monotonie lautet:

$$\forall x, y \in \mathbb{R} (x < y \implies f(x) < f(y)). \tag{1.1}$$

Wir setzen nun y = x + h mit h > 0, dann ist ja automatisch x < y. Es ergibt sich nun

$$f(y) = f(x+h) = (x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$
(1.2)

und weiter

$$f(x) < f(y) \iff 0 < 3x^2h + 3xh^2 + h^3.$$
 (1.3)

Division durch h > 0 ergibt dann

$$0 < 3x^2 + 3xh + h^2. (1.4)$$

Wir haben $x^2 > 0$ und $h^2 > 0$. Ein Problem bereitet nur xh. Nimmt man aber x > 0 an, dann ist auch xh > 0. Der Fall x < 0 ergibt sich über die Punktsymmetrie von f. Bei Punktsymmetrie bedeutet f(-x) = -f(x). Wegen $(-x)^3 = (-1)^3 x^3 = -x^3$ liegt Punktsymmetrie vor.

Haben wir nun x < y mit x < 0 und y < 0, so ist -y < -x. Aus f(-y) < f(-x) erhalten wir über die Punktsymmetrie -f(y) < -f(x) und daher f(x) < f(y).

Damit ist gezeigt dass f streng monoton steigend, und somit auch injektiv ist. Es muss daher eine Linksinverse g mit g(f(x)) = x geben. Wir schreiben einfach $g(y) = \sqrt[3]{y}$. Wird der Wert y = 2 überhaupt von f getroffen? Die Frage kann über den Zwischenwertsatz

positiv beantwortet werden. Dazu muss zuächst gezeigt werden dass f auch stetig ist. Es muss also $\lim_{x\to a} f(x) = f(a)$ für jede Stelle a gelten. Über $\lim_{x\to a} x = a$ sind wir uns sicher. Über die Grenzwertsätze ergibt sich nun

$$\lim_{x \to a} f(x) = \lim_{x \to a} (x \cdot x \cdot x) = (\lim_{x \to a} x)(\lim_{x \to a} x)(\lim_{x \to a} x) = a \cdot a \cdot a = a^3 = f(a). \tag{1.5}$$

Wir haben nun f(1) = 1 und f(2) = 8. Nach dem Zwischwertsatz muss es ein x mit f(x) = 2 geben. Für uns ergibt sich insgesamt, dass die Einschränkung

$$f: [a, b] \to \mathbb{R}, f(x) := x^3 \tag{1.6}$$

bijektiv ist, egal wie α und b gewählt werden.

Die Lösung lautet demnach

$$L = \{\sqrt[3]{2}\}. \tag{1.7}$$

Der numerische Wert kann über das Newton-Verfahren bestimmt werden, oder über

$$\sqrt[3]{2} = 2^{1/3} = \exp(\frac{1}{3}\ln(2)). \tag{1.8}$$

1.2 Integralrechnung

Aufgabe 1.2. Berechne $\int x^2 \sin x \, dx$.

Lösung. Die partielle Integration lautet

$$\int f(x)g'(x) dx = fg - \int f'(x)g(x) dx.$$
 (1.9)

Für $f(x) = x^2$ und $g(x) = \sin x$ bekommt man

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int 2x (-\cos x) \, dx. \tag{1.10}$$

und weiter

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x. \tag{1.11}$$

Zusammen ergibt das

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x. \tag{1.12}$$

Probe durch Ableiten: ok.

Aufgabe 1.3. Berechne
$$\int e^x \sin x \, dx$$
.

Lösung. Mit partieller Integration ergibt sich

$$\int e^{x} \sin x \, dx = e^{x} \sin x - \int e^{x} \cos x \, dx,$$

$$\int e^{x} \cos x \, dx = e^{x} \cos x + \int e^{x} \sin x \, dx.$$
(1.13)

Zusammen ist das ein Gleichungssystem. Die Aussage der unteren Gleichung wird in die obere eingesetzt. Somit ergibt sich

$$\int e^{x} \sin x \, dx = e^{x} \sin x - e^{x} \cos x - \int e^{x} \sin x \, dx. \tag{1.15}$$

Umformen ergibt

$$2\int e^{x}\sin x = e^{x}\sin x - e^{x}\cos x \tag{1.16}$$

und somit

$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) \tag{1.17}$$

Probe durch Ableiten: ok. □

Auf diese Art lässt sich auch $\int e^{ax} \sin x \, dx$ berechnen.

Alternative Lösung. Ansatz: Substitution x := iu. Das bringt

$$e^{x} \sin x = e^{iu} \sin(iu). \tag{1.18}$$

Nun gilt aber

$$\sin(iu) = i \sinh u = \frac{i}{2} (e^u - e^{-u}).$$
 (1.19)

Somit ergibt sich

$$e^{x} \sin x = \frac{i}{2} e^{iu} (e^{u} - e^{-u}).$$
 (1.20)

Nun ist $\frac{dx}{du} = i$, also dx = idu. Damit ergibt sich

$$\int e^{x} \sin x \, dx = \frac{i^{2}}{2} \int e^{iu} (e^{u} - e^{-u}) \, du$$
 (1.21)

Kurze Kosmetik: Setze noch schnell $i^2 = -1$. Mit dem Minus wird die Differenz im Integral umgedreht. Dann das Produkt mit dem Faktor e^{iu} ausmultiplizieren. Es ergibt sich

$$\int e^{x} \sin x \, dx = \frac{1}{2} \int (e^{iu} e^{-u} - e^{iu} e^{u}) \, du.$$
 (1.22)

Nun ist aber $e^a e^b = e^{a+b}$. Somit ergibt sich für den Term im Integral

$$e^{iu-u} - e^{iu+u} = e^{(i-1)u} - e^{(i+1)u}$$
 (1.23)

Jetzt können wir straight forward integrieren, ohne uns um die partielle Integration bemühen zu müssen. Es ergibt sich

$$\int e^{x} \sin x = \frac{1}{2} \left[\frac{1}{i-1} e^{(i-1)u} - \frac{1}{i+1} e^{(i+1)u} \right]. \tag{1.24}$$

Nun gilt $\frac{1}{i-1} = -\frac{1}{2} - \frac{1}{2}i$ und $\frac{1}{i+1} = \frac{1}{2} - \frac{1}{2}i$. Damit ergibt sich

$$\int e^{x} \sin x \, dx = \frac{1}{4} \Big[(-1 - i)e^{u(i-1)} - (1 - i)e^{u(i+1)} \Big]$$
 (1.25)

$$= \frac{e^{ui}}{4} \left[(-1-i)e^{-u} - (1-i)e^{u} \right] = \frac{e^{ui}}{4} \left[(i-1)e^{u} - (i+1)e^{-u} \right]$$
 (1.26)

$$= \frac{e^{ui}}{4} \left[i(e^u - e^{-u}) - (e^u + e^{-u}) \right] = \frac{e^{ui}}{2} \left[i \sinh u - \cosh u \right]$$
 (1.27)

$$=\frac{e^{ui}}{2}\Big[\sin(iu)-\cos(iu)\Big]. \tag{1.28}$$

Jetzt kann man Resubstituieren und bekommt

$$\int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x). \tag{1.29}$$

Alternativ kann auch

$$\sin x = -i \sinh(ix) = \frac{1}{i} \sinh(ix) = \frac{e^{ix} - e^{-ix}}{2i}$$
 (1.30)

benutzt werden. Dabei ergibt sich eine äquivalente Rechnung. Man braucht in diesem Fall aber keine Substitution.

Der Kern dieser Rechnungen sind die eulersche Formel¹

$$e^{ix} = \cos x + i \sin x \tag{1.31}$$

und die Zerlegung

$$e^{x} = \cosh x + \sinh x. \tag{1.32}$$

Daneben braucht man die Gleichung

$$e^{a+b} = e^a e^b. ag{1.33}$$

Zweite alternative Lösung. Mir ist jetzt noch eine wesentlich radikalere Technik eingefallen. Verwende die Substitution $e^x = u$. Nun ist $\frac{du}{dx} = e^x$ und daher $du = e^x dx$.

$$\int e^{x} \sin x \, dx = \int \sin x \, du = \int \frac{e^{ix} - e^{-ix}}{2i} du = \frac{1}{2i} \int (u^{i} - u^{-i}) du$$
 (1.34)

$$= \frac{1}{2i} \left(\frac{u^{i+1}}{i+1} - \frac{u^{-i+1}}{-i+1} \right) = \frac{u}{2i} \left(\frac{u^{i}}{i+1} + \frac{u^{-i}}{i-1} \right)$$
 (1.35)

$$= \frac{u}{2i} \left[\left(\frac{1}{2} - \frac{1}{2} i \right) u^{i} + \left(-\frac{1}{2} - \frac{1}{2} i \right) u^{-i} \right] = \frac{u}{2} \left[\frac{u^{i} - u^{-i}}{2i} - \frac{u^{i} + u^{-i}}{2} \right]$$
(1.36)

$$= \frac{e^{x}}{2} \left[\frac{e^{ix} - e^{-ix}}{2i} - \frac{e^{ix} + e^{-ix}}{2} \right] = \frac{e^{x}}{2} (\sin x - \cos x). \ \Box$$
 (1.37)

¹Bei der eulerschen Formel handelt es sich um eine Identität. Aus historischen Gründen wird nur der Spezialfall $x = \pi$ als *eulersche Identität* bezeichnet.

Dritte alternative Lösung. Mir war die Idee gekommen, dass e^x bei der Laplace-Transformation vielleicht wegfällt. Das klappt auf eine gewisse Art tatsächlich.

Also aufgepasst. Bei Integration im Originalbereich erhält man eine Division durch die abhängige Variable im Bildbereich. Du siehst also, Integrieren ist im Bildbereich ganz einfach. Bezeichnen wir mit L(f) die Laplace-Trafo. Die macht aus einer Funktion eine neue Funktion. Man schreibt daher $F(p) = L\{f(t)\}(p)$. Hier ist f(t) die Originalfunktion und F(p) die Bildfunktion.

Was ich nun gesagt habe, lässt sich so ausdrücken:

$$L\left\{\int_{0}^{t} f(x) dx\right\}(p) = \frac{1}{p} L\{f(t)\}(p). \tag{1.38}$$

Somit ergibt sich

$$L\left\{\int_{0}^{t} e^{x} \sin x \, dx\right\}(p) = \frac{1}{p} L\left\{e^{t} \sin t\right\}(p). \tag{1.39}$$

Jetzt brauchen wir die Definitionsformel für die Laplace-Trafo:

$$L\{f(t)\}(p) := \int_0^\infty e^{-pt} f(t) dt.$$
 (1.40)

Damit ergibt sich

$$L\{e^t \sin t\}(p) = \int_0^\infty e^{-pt} e^t \sin t \, dt = \int_0^\infty e^{-(p-1)t} \sin t \, dt = L\{\sin t\}(p-1). \tag{1.41}$$

Die Laplace-Trafo der Sinus-Funktion kann als bekannt vorausgesetzt werden. Dem Bronstein entnimmt man

$$L\{\sin(at)\}(p) = \frac{a}{p^2 + a^2}.$$
 (1.42)

Damit ergibt sich

$$L\{\sin t\}(p-1) = \frac{1}{(p-1)^2 + 1}.$$
(1.43)

Also insgesamt

$$L\left\{\int_{0}^{t} e^{x} \sin x \, dx\right\}(p) = \frac{1}{p} \left[\frac{1}{(p-1)^{2} + 1}\right]. \tag{1.44}$$

Jetzt wendest du auf beiden Seiten die Umkehr-Trafo an. Es ist $L^{-1}L=\mathrm{id}$. Somit ergibt sich

$$\int_0^t e^x \sin x \, dx = L^{-1} \left\{ \frac{1}{\rho} \left[\frac{1}{(\rho - 1)^2 + 1} \right] \right\} (t). \tag{1.45}$$

Der Bruch wird nun einer Partialbruchzerlegung unterworfen. In Maxima bringt die Eingabe

Term: partfrac(1/p*1/((p-1)^2+1),p);
expand(Term);

das Ergebnis

$$\frac{1}{p^2 - 2p + 2} - \frac{p/2}{p^2 - 2p + 2} + \frac{1}{2p}.$$
 (1.46)

Leider verwendet Maxima dabei keine komplexen Zahlen. Dann würden auch die Terme mit quadratischen Divisoren in Partialbrüche mit linearen Divisoren zerlegt werden.

Aber wir können auch hiermit weiterarbeiten, da der Bronstein die Rücktrafo für diese Terme enthält. Dabei ergibt sich

$$e^t \sin t - \frac{1}{2}(\cos t + \sin t)e^t + \frac{1}{2}$$

Kürzen führt uns zu

$$\frac{e^t}{2}(\sin t - \cos t) + \frac{1}{2}. (1.47)$$

Also ist

$$\int_{0}^{t} e^{x} \sin x \, dx = \frac{e^{t}}{2} (\sin t - \cos t) + \frac{1}{2}. \, \Box$$
 (1.48)

Vierte alternative Lösung.

Mir ist jetzt noch etwas eingefallen. Sieh mal, die Funktionen

$$s[A, d](x) := A \sin(x + d)$$
 (1.49)

bilden einen Funktionenraum der gegen Differentiation und Integration abgeschlossen ist. D. h. dass die Ableitung und eine Stammfunktion wieder von der Form $A \sin(x+d)$ sein wird. Die Suche eines Integrals kann damit auf die Suche von A, d beschränkt werden. Zwei Zahlen sind viel einfacher zu finden als eine ganze Funktion.

Nun rechnet man folgendes:

$$\frac{d}{dx}(e^x \sin x) = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x)$$
 (1.50)

$$= e^{x} \sqrt{2} \sin(x + \pi/4) = e^{x} A \sin(x + d). \tag{1.51}$$

Das legt die Vermutung nahe, dass auch die Funktionen

$$e^{x}A\sin(x+d) \tag{1.52}$$

einen gegen Integration und Ableitung abgeschlossenen Funktionenraum bilden. Wir machen daher den Ansatz

$$\int e^x \sin x \, dx = e^x A \sin(x+d). \tag{1.53}$$

Leitet man nun auf beiden Seiten ab, so ergibt sich

$$e^{x} \sin x = e^{x} A \sin(x+d) + e^{x} A \cos(x+d).$$
 (1.54)

Da $e^x > 0$ für alle x ist, können wir e^x sorgenlos rausdividieren. Somit erhält man

$$\frac{1}{A}\sin x = \sin(x+d) + \cos(x+d). \tag{1.55}$$

Jetzt benutzt man die Additionstheoreme

$$\sin(x+d) = \sin x \cos d + \cos x \sin d, \tag{1.56}$$

$$\cos(x+d) = \cos x \cos d - \sin x \sin d. \tag{1.57}$$

Damit ergibt sich

$$\frac{1}{A}\sin x = (\cos d - \sin d)\sin x + (\sin d + \cos d)\cos x. \tag{1.58}$$

Da auf der linken Seite kein Kosinus-Term ist, würden wir den Kosinusterm auf der rechten Seite gerne zum verschwinden bringen.

Dann muss aber $\sin d + \cos d = 0$ sein. Man kann nun die Identität

$$\sin d + \cos d = \sqrt{2}\sin(d + \pi/4)$$
 (1.59)

benutzen, die schon weiter oben vorkam. Damit ergibt sich

$$\sin(d + \pi/4) = 0. \tag{1.60}$$

Da Sinus periodisch ist, gibt es unendlich viele Lösungen. Davon nehmen wir die einfachste Lösung, also $d=-\pi/4$.

Somit erhalten wir

$$\sin x = A \sin(x - \pi/4) + A \cos(x - \pi/4).$$
 (1.61)

Um A zu bestimmen, können wir uns jetzt ein x aussuchen. Man beobachtet, dass x=0 nichts bringt. Stattdessen nimmt man $x=\pi/4$. Damit ergibt sich

$$\frac{1}{\sqrt{2}} = \sin(\pi/4) = A\sin(0) + A\cos(0) = A. \tag{1.62}$$

Damit erhalten wir

$$\int e^{x} \sin x \, dx = \frac{e^{x}}{\sqrt{2}} \sin(x - \pi/4). \tag{1.63}$$

Mit dem Additionstheorem ergibt sich

$$\sin(x - \pi/4) = \sin x \cos(-\pi/4) + \cos x \sin(-\pi/4) \tag{1.64}$$

$$= \sin x \cos(\pi/4) - \cos x \sin(\pi/4) \tag{1.65}$$

$$= \frac{\sin x}{\sqrt{2}} - \frac{\cos x}{\sqrt{2}} = \frac{1}{\sqrt{2}} (\sin x - \cos x). \tag{1.66}$$

Einsetzen bringt

$$\int e^{x} \sin x \, dx = \frac{e^{x}}{2} (\sin x - \cos x). \, \Box$$
 (1.67)

1.3 Konvergenz

Aufgabe 1.4. Berechne

$$g = \lim_{x \to 0} \frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)}. \quad (\forall k : a_k \neq 0)$$

Lösung. Wegen $x \neq 0$ kann der Bruch mit $\frac{bx}{bx}$ erweitert werden. Damit ergibt sich

$$\frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)} = \underbrace{\left(\frac{bx}{\sin(bx)}\right)}_{\rightarrow 1} \underbrace{\left(\frac{a_1}{b} + \sum_{k=2}^{n} \frac{a_k}{b} x^{k-1}\right)}_{\rightarrow a_1/b}.$$

Nach den Grenzwertsätzen ist der gesamte Ausdruck konvergent, wenn die beiden Faktoren konvergent sind und g ist das Produkt der Grenzwerte der Faktoren. Somit ist $g = a_1/b$. \square

Verwende alternativ die Regel von L'Hôpital.

Aufgabe 1.5. Berechne

$$g = \lim_{x \to \frac{\pi}{2a}} \frac{1 - \sin(ax)}{(\pi - 2ax)^2}. \qquad (a \neq 0)$$

Lösung. Verwende die Substitution $x = \frac{\pi}{2a} - \frac{u}{a}$. Nun ist

$$\frac{1-\sin(\alpha x)}{(\pi-2\alpha x)^2} = \frac{1-\sin(\frac{\pi}{2}-u)}{4u^2} = \frac{1-\cos u}{4u^2} = \frac{\frac{u^2}{2!} + \frac{u^4}{4!} + \dots}{4u^2} = \frac{1}{4}(\frac{1}{2!} + \frac{u^2}{4!} + \dots).$$

Wenn $x \to \pi/4$ geht, muss $u \to 0$ gehen.

Somit ist q = 1/8. \square

Verwende alternativ die Regel von L'Hôpital zweimal hintereinander.

Aufgabe 1.6. Bestimme

$$g = \lim_{x \downarrow 0} x^x.$$

Lösung. Es ist $x^x = \exp(x \ln x)$. Wegen der Stetigkeit von exp gilt nun

$$\lim_{x\to 0} \exp(f(x)) = \exp(\lim_{x\to 0} f(x)).$$

Nun ist $x \ln x = (\ln x)/(1/x)$. Mit der Regel von L'Hôpital ergibt sich

$$\lim_{x \downarrow 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \downarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \downarrow 0} \frac{x^2}{x} = \lim_{x \downarrow 0} x = 0.$$

Somit ist q = 1. \square

Aufgabe 1.7. Bestimme

$$g = \lim_{x \downarrow 0} x^{1/x}.$$

Lösung. Es ist $x^{1/x} = \exp(\frac{\ln x}{x})$. Nun gilt

$$\lim_{x\downarrow 0} \frac{\ln x}{x} \stackrel{\text{L'H}}{=} \lim_{x\downarrow 0} \frac{1}{x} = -\infty = \lim_{x\downarrow -\infty} x.$$

Somit ist

$$g = \exp(\lim_{x\downarrow -\infty} x) = \lim_{x\downarrow -\infty} \exp(x) = 0. \square$$

2 Kombinatorik

2.1 Endliche Summen

Aufgabe 2.1. Vereinfache $\sum_{k=1}^{n} (2k+4)$.

Lösung. Man verwendet die Rechenregeln für endliche Summen. Es ergibt sich:

$$\sum_{k=1}^{n} (2k+4) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 4 = 2 \cdot \frac{n}{2} (n+1) + 4n = n^2 + n + 4n = n^2 + 5n.$$
 (2.1)

2.2 Rekursionsgleichungen

Aufgabe 2.2. Gegeben ist die Rekursionsgleichung $a_{n+1} = qa_n$ mit der Anfangsbedingung $a_0 = A$. Gesucht ist die explizite Form von a_n .

Aufgabe 2.3. Gegeben ist die Rekursionsgleichung $a_{n+1} = qa_n + r$ mit der Anfangsbedingung $a_0 = A$. Gesucht ist die explizite Form von a_n .

Bemerkung. Es gilt:

$$\sum_{k=0}^{n} q^{n-k} = \sum_{0 \le k \le n} q^{n-k} \quad \stackrel{k:=(n-k)}{=} \quad \sum_{0 \le (n-k) \le n} q^{n-(n-k)} = \sum_{0 \le (n-k) \le n} q^{k}.$$

Nun besteht aber $0 \le n - k \le n$ aus den beiden Ungleichungen

$$0 \le n - k$$
 und $n - k \le n$.

Multipliziert man beide Seiten einer Ungleichung mit -1, so dreht sich das Relationszeichen um:

$$0 \ge -(n-k)$$
 und $-(n-k) \ge -n$.

Somit ergibt sich:

$$0 \ge k - n$$
 und $k - n \ge -n$.

Addiere jetzt n auf beiden Seiten der jeweiligen Ungleichung:

$$n \ge k$$
 und $k \ge 0$.

Somit ergibt sich $0 \le k \le n$ und daher

$$\sum_{k=0}^{n} q^{n-k} = \sum_{k=0}^{n} q^{k}.$$

Einfach ausgedrückt heißt das, dass die Reihenfolge egal ist:

$$\sum_{k=0}^{3} q^{3-k} = q^3 + q^2 + q^1 + q^0 = q^0 + q^1 + q^2 + q^3 = \sum_{k=0}^{3} q^k.$$

Voraussetzung ist, dass das Kommutativgesetz gilt. Bei unendlichen Reihen darf man nur endliche Partialsummen umordnen, es sei denn die Reihe ist absolut konvergent.

Lösung. Sei

$$s_b := \sum_{k=a}^{b-1} q^k.$$

Nun gilt:

$$qs_b = q \sum_{k=a}^{b-1} q^k = \sum_{k=a}^{b-1} q^{k+1} \stackrel{k:=k-1}{=} \sum_{k=a+1}^{b} q^k.$$

Es ergibt sich:

$$qs_b - s_b = (q^{a+1} + q^{a+2} + \dots + q^b) - (q^a + q^{a+1} + \dots + q^{b-1}) = q^b - q^a$$

D. h. alle Summanden q^{a+1} bis q^{b-1} kommen sowohl im Minuend als auch im Subtrahend vor und entfallen somit.

Mit $qs_b - s_b = (q-1)s_b$ ergibt sich nun

$$\sum_{k=a}^{b-1} q^k = \frac{q^b - q^a}{q-1}. \square$$

Bemerkung. Hinter diesem *Trick* verbirgt sich ein mathematischer Formalismus. Was eben beschrieben wurde, nennt sich *Teleskopsumme*. *Teleskopieren* nennt man die Rechenregel:

$$\sum_{k=a}^{b-1} f_{k+1} - \sum_{k=a}^{b-1} f_k = \sum_{k=a}^{b-1} (f_{k+1} - f_k) = f_b - f_a,$$

welche für eine beliebige Folge f_k gilt. In diesem Fall ist $f_k = q^k$. Man muss bestimmte Eigenschaften einer Partialsummen-Folge ausnutzen, um sie in Teleskopform bringen zu können. Das ist aber nicht immer möglich.

Hinter Teleskopsummen verbigt sich nun ein kleiner mathematischer Formalimus. Zunächst definiere die *Vorwärts-Differenz*:

$$\Delta f_k \equiv (\Delta f)_k := f_{k+1} - f_k$$
.

Nun gilt:

$$\sum_{k=a}^{b-1} (\Delta f)_k = f_b - f_a.$$

In dieser Form ist die Teleskopsummen-Regel völlig analog zu

$$\int_a^b \frac{\mathrm{d}f(x)}{\mathrm{d}x} \, \mathrm{d}x = \int_a^b \mathrm{d}f(x) = f(b) - f(a).$$

Es gibt weitere Rechenregeln. Man spricht von *Differenzenrechnung* (engl. *finite calculus*). Dieser Kalkül ist unter anderem im Buch »Concrete Mathematics« beschrieben.

Homogene Koordinaten. Es gibt noch ein alternatives Verfahren zur Lösung der Aufgabe. Was im Gegensatz zu Aufgabe 2.2 jetzt stört, ist der Summand r. Es gibt nun ein Verfahren, um Additionen in Multiplikationen umzuwandeln, das allgemein für die Addition von Vektoren funktioniert.

Zunächst führt man auf folgede Weise homogene Koordinaten ein:

$$x \triangleq \begin{bmatrix} x \\ 1 \end{bmatrix}$$
.

Es ergibt sich nun

$$qx \triangleq \begin{bmatrix} qx \\ 1 \end{bmatrix} = \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$
 und $x + r \triangleq \begin{bmatrix} x + r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$.

Beide Operationen zusammen:

$$\begin{bmatrix} qx+r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} q & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}.$$

Die Aufgabe lässt sich nun in der Form $\underline{a}_{n+1} = Q\underline{a}_n$ mit

$$Q := \begin{bmatrix} q & r \\ 0 & 1 \end{bmatrix}, \quad \underline{a}_n := \begin{bmatrix} a_n \\ 1 \end{bmatrix}$$

formulieren, was aber Aufgabe 2.2 entspricht. Die Lösung ist demnach $\underline{a}_n = Q^n \underline{a}_0$. Jetzt muss man einen Weg finden, die Matrixpotenz Q^n zu berechnen. Dazu wird eine Diagonalzerlegung $Q = TDT^{-1}$ vorgenommen. Bei

$$Q^{n} = QQQ...Q = TDT^{-1}TDT^{-1}TDT^{-1}...TDT^{-1}$$

können die Faktoren $T^{-1}T$ nämlich gekürzt werden. Man erhält somit

$$O^n = TD^nT^{-1}$$
.

Zunächst bestimmt man die Eigenwerte von Q. Die Eigenwerte sind die Lösungen der Gleichung

$$P(\lambda) = \det(Q - \lambda E) = 0.$$

Man nennt $P(\lambda)$ das charakteristische Polynom.

In diesem Fall ist

$$P(\lambda) = \det \begin{pmatrix} \begin{bmatrix} q & r \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} q - \lambda & r \\ 0 & 1 - \lambda \end{bmatrix} \end{pmatrix}$$
$$= (q - \lambda)(1 - \lambda) = \lambda^2 - (q + 1)\lambda + q.$$

Die Lösungen dieser quadratischen Gleichung sind

$$\lambda = \frac{1}{2}(q+1\pm\sqrt{(q+1)^2-4q}) = \frac{1}{2}(q+1\pm\sqrt{(q-1)^2}),$$

also $\lambda_1 = q$ und $\lambda_2 = 1$.

Nun ergeben sich aus dem Eigenwertproblem $Qv = \lambda v$ zwei linear unabhängige Eigenvektoren, die den Eigenraum aufspannen. Diese beiden Eigenvektoren sind die Spaltenvektoren der Transformationsmatrix T.

Aus dem Eigenwertproblem ergibt sich das Gleichungssystem

$$\begin{vmatrix} qx + ry &=& \lambda x \\ y &=& \lambda y \end{vmatrix}.$$

Die untere Gleichung lässt sich umformulieren:

$$y = \lambda y \iff y = 0 \lor \lambda = 1.$$

Gehen wir nun von y=0 aus, so haben wir den Fall $\lambda_1=q$. Für x können wir uns etwas aussuchen und nehmen sinnvollerweise x=1. Natürlich wäre x=0 noch schöner, aber das darf nicht sein, weil beim Eigenwertproblem der Nullvektor verboten ist. Für den zweiten Eigenvektor soll betrachten wir nun den Fall $\lambda_2=1$. Hier ergibt sich die Gleichung qx+ry=x. Wählt man nun y=1, so ergibt sich x=r/(1-q). Somit ist

$$Q = TDT^{-1} = T \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} T^{-1} = \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix}^{-1}.$$

Zur Matrix-Inversion einer 2×2-Matrix verwendet man nun noch die Formel

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

Es ergibt sich nun

$$Q^n = TD^nT^{-1} = \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q^n & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{r}{q-1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} q^n & \frac{rq^n-r}{q-1} \\ 0 & 1 \end{bmatrix}.$$

Es ergibt sich

$$\underline{a}_n = Q^n \underline{a}_0 = \begin{bmatrix} q^n & \frac{rq^n-r}{q-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A \\ 1 \end{bmatrix} = \begin{bmatrix} Aq^n + \frac{rq^n-r}{q-1} \\ 1 \end{bmatrix}.$$

Die Lösung ist somit

$$a_n = Aq^n + \frac{rq^n - r}{q - 1}.$$

Jetzt muss man noch die pathologischen Fälle untersuchen und entsprechende Fallunterscheidungen dazu vornehmen. In diesem Fall ist nur q = 1 problematisch. \Box

Das wesentliche Vorgehen besteht hier also aus zwei Schritten:

- 1. Formulierung des Problems bezüglich homogenen Koordinaten.
- 2. Berechnung von Matrixpotenzen via Eigenzerlegung.

Erzeugende Funktionen. Jetzt kommt noch ein Verfahren. Für eine Folge a_n definiert man die *erzeugende Funktion*

$$G\{a_n\}(x):=\sum_{k=0}^\infty a_k x^k.$$

Man definiert außerdem den Translationsoperator

$$T^h\{a_n\} := a_{n+h}$$
.

Der Operator G ist linear:

$$G\{a_n + b_n\} = G\{a_n\} + G\{b_n\},$$

$$G\{ra_n\} = rG\{a_n\}.$$

Es gilt außerdem

$$G\{T^h\{a_n\}\}(x) = G\{a_{n+h}\}(x) = \sum_{k=0}^{\infty} a_{k+h}x^k.$$

Somit gilt

$$x^h G\{a_{n+h}\}(x) = \sum_{k=0}^{\infty} a_{k+h} x^{k+h} = G\{a_n\}(x) - \sum_{k=0}^{h-1} a_k x^k.$$

Speziell gilt

$$xG\{a_{n+1}\}(x) = G\{a_n\}(x) - a_0.$$

Durch Polynomdivision findet man zunächst die grundlegende erzeugende Funktion

$$G\{q^n\}(x) = \frac{1}{1 - qx} = \sum_{k=0}^{\infty} q^k x^k$$

mit Spezialfall

$$G\{1\}(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k.$$

Jetzt betrachten wir die Rekursionsgleichung

$$a_{n+1} = qa_n + r$$
.

Auf beiden Seiten der Gleichung wendet man den Operator G an:

$$G\{a_{n+1}\}(x) = gG\{a_n\}(x) + rG\{1\}(x).$$

Auf beiden Seiten multipliziert man nun noch mit x und erhält

$$xG\{a_{n+1}\}(x) = qxG\{a_n\}(x) + rxG\{1\}(x).$$

Mit $y = G\{a_n\}(x)$ gilt nun

$$y - a_0 = qxy + \frac{rx}{1 - x}.$$

Umformen nach y bringt

$$y = \frac{a_0}{1 - qx} + \frac{rx}{(1 - x)(1 - qx)}.$$

Jetzt appliziert man den Umkehroperator G^{-1} auf beiden Seiten der Gleichung. Es ergibt sich

$$a_n = a_0 G^{-1} \left\{ \frac{1}{1 - qx} \right\}_n + r G^{-1} \left\{ \frac{x}{(1 - x)(1 - qx)} \right\}_n.$$

Beachte nun die Regel

$$G^{-1}\{xf(x)\}_n=T^{-1}G^{-1}\{f(x)\}_n=G^{-1}\{f(x)\}_{n-1}.$$

Für den übrigen Ausdruck muss eine Partialbruchzerlegung vorgenommen werden. Der Ansatz ist

$$\frac{1}{(1-x)(1-qx)} = \frac{A}{1-x} + \frac{B}{1-qx}.$$

Damit ist

$$1 = A(1 - qx) + B(1 - x) = A + B - Aqx - Bx = A + B - (Aq + B)x.$$

Koeffizientenvergleich von linker und rechter Seite bringt A + B = 1 und Aq + B = 0. Beachte dabei $1 = 0x^0 + 1x^1$.

Die Lösungen dieses linearen Gleichungssystems sind A=1/(1-q) und B=q/(q-1). Nun ergibt sich

$$a_n = a_0 q^n + rT^{-1} \underbrace{G^{-1} \left\{ \frac{A}{1-x} + \frac{B}{1-qx} \right\}}_{A+Bq^n}.$$

Hierbei ist

$$A + Bq^{n} = \frac{1}{1 - q} + \frac{q}{q - 1}q^{n} = \frac{q^{n+1} - 1}{q - 1}.$$

Insgesamt ergibt sich

$$a_n = a_0 q^n + r \frac{q^n - 1}{q - 1}$$
. \square

2.3 Kombinatorische Probleme

Aufgabe 2.4. In einem euklidischen Raum gibt es zwischen zwei Punkten genau einen kürzesten Weg. Wie viele kürzeste Wege von Knoten (0,0) zu Knoten (m,n) gibt es auf einem diskreten Gitter mit Manhatten-Metrik?

Dieses Heft steht unter der Creative-Commons-Lizenz CCO.