Операции квантификации.

Квантором общности (или *квантором всеобщности*) называется символ \forall .

Предикатом $\forall_{x_1} P(x_1, x_2, ..., x_n)$ называется предикат $T(x_2, ..., x_n)$, который принимает значение 1 на тех и только тех наборах $(a_2, ..., a_n)$, при которых предикат $P(x_1, a_2, ..., a_n)$ - тождественно истинный (относительно переменной x_1).

Переход от предиката $P(x_1, x_2, ..., x_n)$ к предикату $\forall_{x_1} P(x_1, x_2, ..., x_n)$ называется навешиванием квантора общности на переменную x_1 .

Заметим, что, по аналогии, операцию навешивания квантора общности можно определить на любую переменную предиката $P(x_1, x_2, ..., x_n)$, а не только на первую его переменную.

Из определения следует, что предикатом $\forall_{x_1} P(x_1, x_2, ..., x_n)$ является предикат $T(x_2, ..., x_n)$, который принимает значение 0 на тех и только тех наборах $(b_2, ..., b_n)$, при которых предикат $P(x_1, b_2, ..., b_n)$ - опровержимый (относительно переменной x_1).

Пример 4. Пусть $x \in \mathbb{Z}, y \in \mathbb{Z}, R(x,y)$: (x-3y>0).

Предикат $\forall_x R(x,y) = \forall_x (x-3y>0) = T(y)$ является тождественно-ложным, так как для любого y_0 предикат $x-3y_0>0$ опровержим (например, если $x_0=3y_0-1$, то

$$3y_0 - 1 + 3y_0 > 0 \Leftrightarrow (-1 > 0) = 0$$

Пример 5. Пусть $x \in R, y \in R, P(x,y)$: $(x^2 + 2y^4 + 1 > 0)$.

Предикат $\forall_y P(x,y) = Q(x)$ является тождественно истинным, т.к. для любого x_0 предикат $(x_0^2 + 2y^4 + 1 > 0) \equiv 1$ относительно переменной y.

Квантором существования называется символ \exists .

Предикатом $\exists_{x_1} P(x_1, x_2, ..., x_n)$ называется предикат $F(x_2, ..., x_n)$, который принимает значение 1 на тех и только тех наборах $(a_2, ..., a_n)$, при которых предикат $P(x_1, a_2, ..., a_n)$ - выполнимый (относительно переменной x_1).

Переход от предиката $P(x_1, x_2, ..., x_n)$ к предикату $\exists_{x_1} P(x_1, x_2, ..., x_n)$ называется навешиванием квантора существования на переменную x_1 .

Заметим, что, по аналогии, операцию навешивания квантора существования можно определить на любую переменную предиката $P(x_1, x_2, ..., x_n)$, а не только на первую его переменную.

Из определения следует, что предикатом $\exists_{x_1} P(x_1, x_2, ..., x_n)$ является предикат $F(x_2, ..., x_n)$, который принимает значение 0 на тех и только тех наборах $(b_2, ..., b_n)$, при которых предикат $P(x_1, b_2, ..., b_n)$ - тождественно-ложный (относительно переменной x_1).

Пример 6. Пусть $x \in \mathbb{Z}, y \in \mathbb{Z}, R(x,y)$: (x-3y>0).

Предикат $\exists_x R(x,y) = \exists_x (x-3y>0) = F(y)$ является тождественно-истинным, так как для любого y_0 предикат $x-3y_0>0$ выполним (например, если $x_0=3y_0+1$, то $3y_0+1+3y_0>0 \Leftrightarrow (1>0)=1$.

Пример 7. Пусть $x \in R, y \in R, P(x,y)$: $(x^2 + 2y^4 + 1 > 0)$.

Предикат $\exists_y P(x,y) = Q(x)$ является тождественно истинным, т.к. для любого x_0 предикат $(x_0^2 + 2y^4 + 1 > 0) \equiv 1$, а следовательно и выполним относительно переменной y.

Пример 8. Пусть $x \in \mathbb{N}, y \in \mathbb{N}, T(x, y)$: (1:(x+y)).

Предикат $\exists_{y} T(x, y) = L(x)$ является тождественно ложным, т.к.

для любого x_0 $(1:(x_0+y))\equiv 0$ относительно переменной y, так как для любого y_0 $(1:(x_0+y_0))=0$.

Так как результатом операции навешивания квантора, применённой к некоторому предикату, является также предикат, то к полученному предикату также может быть применена операция квантификации.

Пример 9. Выяснить местность и тип предиката $P = \bigvee_{x} \exists_{y} (zy = x^{2})$ каждый аргумент которого принимает значения из множества R. Из определения операции навешивания кванторов следует, что предикат P зависит от переменной z.

Так как предикат $y \cdot 0 = 1$ не является выполнимым, следовательно, высказывание $\exists_y (y \cdot 0 = 1)$ ложно. Значит, предикат $\exists_y (y \cdot 0 = x)$ не является тождественно истинным предикатом относительно x,

следовательно, высказывание $\bigvee_{x} \exists_{y} (y \cdot 0 = x)$ ложно, то есть P(0)=0.

Для произвольного x_0 предикат $y \cdot 1 = x_0^2$ выполним относительно y (при $y = x_0^2$), значит, высказывание $\exists_y (y \cdot 1 = x_0^2)$ истинно. Следовательно, ввиду произвольности x_0 , имеем, что предикат $\exists_y (y \cdot 1 = x^2)$ - тождественно-истинный (относительно x). Но тогда высказывание $\forall_x \exists_y (y \cdot 1 = x^2)$ истинно, то есть P(1) = 1.

Т.к. P(0) = 0, P(1) = 1, то P(z) – выполнимый и опровержимый предикат.

Если предикатная формула, кроме кванторов, содержит символы булевых функций, но не содержит скобок, то *порядок выполнения действий* такой: \forall , \neg , \wedge , +, \vee , \longrightarrow , При использовании других

символов булевых функций для определения порядка выполнения действий применяют скобки.

Если множество значений переменной, на которую навесили квантор, конечно, то операции квантификации можно заменить конъюнкцией или дизъюнкцией.

Теорема о представлении квантора общности через конъюнкцию.

Пусть дан предикат $P(x, y_1, y_2, ..., y_n)$, причём переменная x принимает конечное множество значений, $x \in \{a_1, a_2, ..., a_k\}$. Тогда операцию навешивания на переменную x квантора общности можно заменить применением конъюнкции по формуле

$$\forall_{x} P(x, y_{1}, y_{2}, ..., y_{n}) = P(a_{1}, y_{1}, ..., y_{n}) \cdot P(a_{2}, y_{1}, ..., y_{n}) \cdot ... \cdot P(a_{k}, y_{1}, ..., y_{n})$$

Показательство

Возьмём произвольный набор $(b_1, b_2, ..., b_n)$, на котором предикат

Доказательство.

 $\forall_x P(x, y_1, y_2, ..., y_n)$ принимает значение 1: $\forall_x P(x, b_1, ..., b_n) = 1$. По определению навешивания квантора общности это равносильно тому, что $P(x, b_1, ..., b_n) = 1$ относительно переменной x, то есть $P(a_1, b_1, ..., b_n) = 1$, $P(a_2, b_1, ..., b_n) = 1$, ..., $P(a_k, b_1, ..., b_n) = 1$, что, на основании определения конъюнкции, равносильно равенству

 $P(a_1,b_1,...,b_n)\cdot P(a_2,b_1,...,b_n)\cdot ...\cdot P(a_k,b_1,...,b_n)=1$. Таким образом доказано, что множество единичных наборов левой и правой части соотношения (1) совпали, а, значит, и доказана теорема.

<u>Замечание.</u> Теорема справедлива для любой переменной предиката P, а не только для переменной x.

Пример 9. Пусть дан P(x, y, z), $y \in \{1, 2, 3, 4\}$. Применим теорему о представлении квантора общности через конъюнкцию, используя конечность множества изменений переменной y:

$$\forall_{y} P(x, y, z) = P(x, 1, z) \cdot P(x, 2, z) \cdot P(x, 3, z) \cdot P(x, 4, z)$$

Будем называть утверждение *двойственным* к данному утверждению, если оно получено из данного заменой одновременно конъюнк-

ции на дизъюнкцию, дизъюнкции на конъюнкцию, квантора общности на квантор существования, квантора существования на квантор общности, 0 на 1 и 1 на 0.

Сформулируем и докажем теорему, двойственную к теореме о представлении квантора общности через конъюнкцию.

Теорема о представлении квантора существования через дизъюнкцию.

Пусть дан предикат $P(x, y_1, y_2, ..., y_n)$, причём переменная x принимает конечное множество значений, $x \in \{a_1, a_2, ..., a_k\}$. Тогда операцию навешивания на переменную x квантора существования можно заменить применением дизъюнкции по формуле

$$\exists_{x} P(x, y_{1}, y_{2}, ..., y_{n}) = P(a_{1}, y_{1}, ..., y_{n}) \lor P(a_{2}, y_{1}, ..., y_{n}) \lor ... \lor P(a_{k}, y_{1}, ..., y_{n})$$
 (2)

Возьмём произвольный набор $(b_1, b_2, ..., b_n)$, на котором предикат

Доказательство.

 $\exists_x P(x,y_1,y_2,...,y_n)$ принимает значение 0: $\exists_x P(x,b_1,...,b_n)=0$. По определению навешивания квантора существования это равносильно тому, что $P(x,b_1,...,b_n)\equiv 0$ относительно переменной x, то есть $P(a_1,b_1,...,b_n)=0$, $P(a_2,b_1,...,b_n)=0$, ..., $P(a_k,b_1,...,b_n)=0$, что, на основании определения дизъюнкции, равносильно равенству

$$P(a_1,b_1,...,b_n) \lor P(a_2,b_1,...,b_n) \lor ... \lor P(a_k,b_1,...,b_n) = 0$$
. Таким образом доказано, что множество нулевых наборов левой и правой части соотношения (2) совпали, а, значит, и доказана теорема.

<u>Замечание.</u> Теорема справедлива для любой переменной предиката P, а не только для переменной x.

Пример 10. Пусть дан P(x,y,z), $z \in \{1,2,3,4\}$. Применим теорему о представлении квантора существования через дизьюнкцию, используя конечность множества изменений переменной z:

$$\forall_{y} P(x, y, z) = P(x, y, 1) \lor P(x, y, 2) \cdot \lor P(x, y, 3) \lor P(x, y, 4)$$

Докажем критерии тождественной истинности и тождественной ложности предикатов.

Теорема о тождественной истинности предиката.

Предикат $P(x, y_1, y_2, ..., y_n)$ является тождественно-истинным тогда и только тогда и только тогда, когда тождественно-истинным является и предикат $\forall x P(x, y_1, y_2, ..., y_n)$.

Эту теорему можно записать в виде формулы:

$$P(x, y_1, y_2, ..., y_n) \equiv 1 \Leftrightarrow \forall x P(x, y_1, y_2, ..., y_n) \equiv 1$$
 (3)

Доказательство.

Пусть $P(x, y_1, y_2, ..., y_n) \equiv 1$. Это равносильно тому, что для любого x_0 и для любого набора $(a_1, a_2, ..., a_n)$ выполнено $P(x_0, a_1, a_2, ..., a_n) = 1$, а это, в свою очередь, равносильно тому, что для любого набора $(a_1, a_2, ..., a_n)$ предикат $P(x, a_1, a_2, ..., a_n)$ является тождественно-истинным относительно переменной x, и это равносильно тому, что $\forall x P(x, a_1, a_2, ..., a_n) = 1$ на любом наборе $(a_1, a_2, ..., a_n)$, а это равносильно тому, что предикат $\forall x P(x, y_1, y_2, ..., y_n)$ является тождественно - истинным. Теорема доказана.

Теорема о тождественной ложности предиката.

Предикат $P(x, y_1, y_2, ..., y_n)$ является тождественно-ложным тогда и только тогда и только тогда, когда тождественно-ложным является и предикат $\exists x P(x, y_1, y_2, ..., y_n)$.

Эту теорему можно записать в виде формулы:

$$P(x, y_1, y_2, ..., y_n) \equiv 0 \Leftrightarrow \exists x P(x, y_1, y_2, ..., y_n) \equiv 0$$
 (4)

Доказательство.

Пусть $P(x,y_1,y_2,...,y_n)\equiv 0$. Это равносильно тому, что для любого x_0 и для любого набора $(a_1,a_2,...,a_n)$ выполнено $P(x_0,a_1,a_2,...,a_n)=0$, а это, в свою очередь, равносильно тому, что для любого набора

 $(a_1,a_2,...,a_n)$ предикат $P(x,a_1,a_2,...,a_n)$ является тождественно-ложным относительно переменной x, и это равносильно тому, что $\exists x P(x,a_1,a_2,...,a_n) = 0$ на любом наборе $(a_1,a_2,...,a_n)$, а это равносильно тому, что предикат $\exists x P(x,y_1,y_2,...,y_n)$ является тождественно - ложным. Теорема доказана.

Вопросы для самопроверки.

- 1) Является ли истинным высказывание 25≥25 ?
- 2) Является ли высказыванием предложение, приписываемое Черчиллю: «Демократия наихудшая форма правления, не считая всех остальных»?
- 3) Совпадает ли определение предиката с определением булевой функции, а если нет, то в чём могут быть отличия?
- 4) Можно ли навесить квантор общности на переменную y_n предиката $P(x, y_1, y_2, ..., y_n)$?
- 5) Всегда ли операцию навешивания квантора существования можно заменить применением дизъюнкции?

Ответы:

предиката.

5. Heτ.

правления не обязательно является множество $\{0;1\}^n$. 4. Да, квантор можно навесить на любую переменную

разные мнения предиката и булевой функции не совпадают, так как у произвольного предиката областью от-

1. Да 2. Нет, так на этот счёт у различных людей могут быть различнамия

Теорема об отрицании кванторов.

Пусть даны предикаты $\forall x P(x, y_1, y_2, ..., y_n), \exists x P(x, y_1, y_2, ..., y_n).$

Тогда, при применении отрицания к этим предикатам, кванторы меняются на двойственные, а отрицание переносится на предикат P, то есть справедливы формулы (1) и (2).

$$\overline{\nabla_{x}P(x,y_{1},y_{2},...,y_{n})} = \overline{\exists_{x}}\overline{P(x,y_{1},y_{2},...,y_{n})}$$

$$\tag{1}$$

$$\overline{\exists_{x}P(x,y_{1},y_{2},...,y_{n})} = \forall_{x}\overline{P(x,y_{1},y_{2},...,y_{n})}$$
(2)

Доказательство.

Докажем формулу (1).

Возьмём произвольный набор $(b_1, b_2, ..., b_n)$, на котором предикат

$$\forall_x P(x, y_1, y_2, ..., y_n)$$
 принимает значение 0: $\forall_x P(x, b_1, ..., b_n) = 0$. Тогда $\forall_x P(x, b_1, ..., b_n) = 1$. Из определения навешивания квантора общности следует, что $P(x, b_1, ..., b_n) \equiv 1$ относительно переменной x . Тогда

 $\overline{P(x,b_1,...,b_n)} \equiv 0$ относительно переменной x. Из определения наве-

шивания квантора существования следует, что $\exists_x P(x,b_1,...,b_n) = 0$.

Таким образом, получена цепочка равносильных высказываний:

$$\forall_{x} P(x,b_{1},...,b_{n}) = 0 \Leftrightarrow \forall_{x} P(x,b_{1},...,b_{n}) = 1 \Leftrightarrow P(x,b_{1},...,b_{n}) \equiv 1 \Leftrightarrow$$

$$\Leftrightarrow \overline{P(x,b_{1},...,b_{n})} \equiv 0 \Leftrightarrow \exists_{x} P(x,b_{1},...,b_{n}) = 0 .$$
 Итак, доказано, что множество нулевых наборов левой и правой части соотношения (1)

Подставим в формулу (1) вместо предиката $P(x_1, x_2, ..., x_n)$ его отрицание $\overline{P(x_1, x_2, ..., x_n)}$.

Получим
$$\overline{\forall_x P(x, y_1, y_2, ..., y_n)} = \exists_x \overline{P(x, y_1, y_2, ..., y_n)} \Leftrightarrow$$

равны, следовательно, формула (1) доказана.

 $\Leftrightarrow \overline{\nabla_x P(x, y_1, y_2, ..., y_n)} = \exists_x P(x, y_1, y_2, ..., y_n)$. Возьмём отрицание от обеих частей последнего равенства.

Получим $\forall_x \overline{P(x, y_1, y_2, ..., y_n)} = \overline{\exists_x P(x, y_1, y_2, ..., y_n)}$, что совпадает с формулой (2). Теорема доказана.

Пример 1.

- а) Записать с помощью кванторов определение того, что числовая последовательность $\{x_n\}$ является ограниченной;
- б) взяв отрицание, получить определение неограниченной числовой последовательности;
- в) на основании полученного определения доказать, что последовательность с общим членом $x_n = \frac{(-1)^n}{2} \cdot n$ является неограниченной.

Решение.

а) Вспомним определение ограниченной числовой последовательности: числовая последовательность ограничена, если существует положительное число C такое, что все члены последовательности по модулю не превосходят C.

Запишем это определение с помощью кванторов. Последовательность $\{x_n\}$ является ограниченной: $\exists_C \forall_n (|x_n| \le C)$ (*)

б) Получим определение неограниченной последовательности, взяв отрицание от (*):

$$\overline{\exists_{C} \nabla_{n} (|x_{n}| \leq C)} = \nabla_{C} \overline{\nabla_{n} (|x_{n}| \leq C)} = \nabla_{C} \overline{\exists_{n} (|x_{n}| \leq C)} = \nabla_{C} \overline{\exists_{n} (|x_{n}| \leq C)} = \nabla_{C} \overline{\exists_{n} (|x_{n}| > C)}.$$

Получили определение: числовая последовательность неограниченна, если для любого положительного числа C найдётся член последовательности, по модулю превосходящий C.

в) На основании полученного определения докажем, что последовательность с общим членом $x_n = \frac{(-1)^n}{2} \cdot n$ является неограниченной.

Пусть C – произвольное положительное число. Возьмём n = 2C + 1. Тогда $\frac{n}{2} > C$ и $\left| x_n \right| = \left| \frac{(-1)^n}{2} \cdot n \right| = \frac{n}{2} > C$. Итак, для произвольного по-

Тогда $\frac{n}{2} > C$ и $|x_n| = \left|\frac{1}{2} \cdot n\right| = \frac{1}{2} > C$. Итак, для произвольного положительного числа C найден n = 2C + 1 такой, что $|x_n| > C$. Неограниченность последовательности $x_n = \frac{(-1)^n}{2} \cdot n$ доказана.