T S1/5/1 1/5/1 DIALOG(R) File 351: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv. 010511293 **Image available** WPI Acc No: 1996-008244/199601 Related WPI Acc No: 1996-067030; 1997-287371 XRPX Acc No: N96-007557 Reading device for scanner, copier etc. - has roller for vertical movable image sensor with receiving component for projection light of horizontal document glass stand which is deviated by lens and upper mirror lens arrays Patent Assignee: RICOH KK (RICO) Inventor: ITOH Y Number of Countries: 002 Number of Patents: 004 Patent Family: Patent No Kind Date Applicat No Kind Date JP 7288656 Α 19951031 JP 9478727 Α 19940418 199601 US 5610731 19970311 US 95421919 Α Α 19950414 199716 US 5734483 Α 19980331 US 95421919 Α 19950414 199820 US 96715090 Α 19960917 JP 3364316 B2 20030108 JP 9478727 Α 19940418 200306 Priority Applications (No Type Date): JP 9478727 A 19940418; JP 94118892 A 19940531; JP 95288201 A 19951011 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes 6 H04N-001/04 JP 7288656 Α US 5610731 Α 14 H04N-001/04 patent JP 7288656 17 H04N-001/04 US 5734483 Α Cont of application US 95421919 Cont of patent US 5610731 JP 3364316 B2 6 H04N-001/04 Previous Publ. patent JP 7288656 Title Terms: READ; DEVICE; SCAN; COPY; ROLL; VERTICAL; MOVE; IMAGE; SENSE; RECEIVE; COMPONENT; PROJECT; LIGHT; HORIZONTAL; DOCUMENT; GLASS; STAND; DEVIATE; LENS; UPPER; MIRROR; LENS; ARRAY Derwent Class: P84; U13; W02 International Patent Class (Main): H04N-001/04 International Patent Class (Additional): G03G-015/28; G06T-001/00; H04N-001/10; H04N-001/107 File Segment: EPI; EngPI

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3364316号

(P3364316)

(45)発行日 平成15年1月8日(2003.1.8)

(24)登録日 平成14年10月25日(2002.10.25)

(51) Int.Cl.7		識別記号	FΙ		
H04N	1/04	106	H04N	1/04	106A
G06T	1/00	4 2 0	G06T	1/00	4 2 0 J
H04N	1/10		H04N	1/10	
	1/107				

請求項の数6(全 6 頁)

(21)出願番号	特願平6-78727	(73)特許権者 090006747	
(22)出願日 (65)公開番号 (43)公開日 審査請求日	平成6年4月18日(1994.4.18) 特開平7-288656 平成7年10月31日(1995.10.31) 平成12年7月13日(2000.7.13)	株式会社リコー 東京都大田区中馬込1丁目3番6号 (72)発明者 伊藤 喜也 東京都大田区中馬込1丁目3番6号 を 式会社リコー内 (74)代理人 100112128 弁理士 村山 光威	
		審查官 手島 强治	
		(56)参考文献 特開 平1-151873 (JP, A) 特開 昭62-294376 (JP, A) 特開 昭62-272658 (JP, A) 特開 昭61-130944 (JP, A)	
		(58)調査した分野(Int.Cl.', DB名) H04N 1/04 - 1/207	

(54) 【発明の名称】 読取装置

(57)【特許請求の範囲】

【請求項1】 原稿被読取部分に移動原稿用コンタクト ガラスを有し、かつ原稿を自動搬送する自動原稿搬送部 と、自動原稿撥送部と異なる位置に設けられて、原稿が 載置される原稿載置用コンタクトガラスと、原稿読み取 りのため前記原稿載置用コンタクトガラスの下側を往復 し、かつ自動原稿搬送時には前記<u>移動原</u>稿用コンタクト ガラスまで移動して固定状態にて原稿読み取りを行う密 着型イメージセンサと、前記<u>移動原稿</u>用コンタクトガラ スあるいは原稿載置用コンタクトガラスに接触して両コ 10 【請求項4】 前記分離部材の駆動源が、駆動部を電磁 ンタクトガラスと密着型イメージセンサとの間隔を一定 に保持するスペーサと、このスペーサを介して密着型イ メージセンサを前記<u>移動原稿</u>用コンタクトガラスあるい は原稿載置用コンタクトガラスに押圧する押圧部材と、 前記密着型イメージセンサにおける前記自動原稿搬送部

と原稿載置用コンタクトガラス間の移動時に、前記スペ ーサをその移動域の接触可能部分から離す分離部材とを 備えたことを特徴とする読取装置。

【請求項2】 前記分離部材を、前記密着型イメージセ ンサを上下動させる駆動部と駆動源とから構成したこと を特徴とする請求項1記載の読取装置。

【請求項3】 前記分離部材の駆動源が、駆動部を回転 駆動させるモータであることを特徴とする請求項2記載 の読取装置。

作用にて直線移動させるソレノイド装置であることを特 徴とする請求項2記載の読取装置。

【請求項5】 前記分離部材が、前記密着型イメージセ ンサをスペーサ分離方向へ移動させる突起体であること を特徴とする請求項1記載の読取装置。

【請求項6】 原稿被読取部分に移動原稿用コンタクト ガラスを有し、かつ原稿を自動搬送する自動原稿搬送部 と、自動原稿搬送部と異なる位置に設けられて、原稿が 載置される原稿載置用コンタクトガラスと、原稿読み取 りのため前記原稿載置用コンタクトガラスの下側を往復 し、かつ自動原稿搬送時には前記移動原稿用コンタクト ガラスまで移動して固定状態にて原稿読み取りを行う密 着型イメージセンサと、前記移動原稿用コンタクトガラ スあるいは原稿載置用コンタクトガラスに接触して両コ に保持するスペーサと、このスペーサを介して密着型イ メージセンサを前記移動原稿用コンタクトガラスあるい は原稿載置用コンタクトガラスに押圧する押圧部材と、 前記スペーサの移動域における前記自動原稿搬送部と原 稿載置用コンタクトガラスとの境部分を被う薄板材とを 備えたことを特徴とする読取装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、複写機、ファクシミリ 用いて原稿画像情報を読み取る読取装置に関する。

[0002]

【従来の技術】従来のスキャナ(読取装置)において、C CDイメージセンサあるいは密着型イメージセンサが用 いられているが、原稿を固定した状態で原稿画像情報を 読み取るブック対応型のスキャナでは、CCDイメージ センサに比べて密着型イメージセンサの方が外形厚みを 小さくでき、駆動系も大幅に簡略化されて調整がほとん ど必要なくなり、しかも読取画像に縮小光学系による "ゆがみ"が発生しないという利点を有する。

【0003】しかしながら、密着型イメージセンサは、 上述した利点を有するものの、その支持構造に精度が出 ていないと最適焦点が安定せず、正確な画像情報の読み 取りがなされないという問題がある。

【0004】特開平3-276958号公報のイメージスキャ ナでは、密着型イメージセンサを搭載したキャリッジ基 台とコンタクトガラスとの間に間隔規制機構を介在さ せ、コンタクトガラスの読取基準面に対する密着型イメ ージセンサの位置関係(焦点)が一定になるようにしてい る。

[0005]

【発明が解決しようとする課題】前記密着型イメージセ ンサの焦点を一定化させる方法としては、コンタクトガ ラスに対して何らかの手段を介在させて、密着型イメー ジセンサを圧接させることが有効である。

【0006】ところが、自動原稿搬送装置(ADF)を備 え、このADF使用による原稿読み取りと前記ブック対 応型のスキャナ機能による原稿読み取りとが行え、しか も両原稿読み取りの読取位置が異なる構成の読取装置で は、同一のコンタクトガラス上に両読取位置が設置され 50 【0013】また前記分離部材の駆動源が、駆動部を電

れば、密着型イメージセンサを圧接状態で移動させると とに何ら支障はない。

【0007】しかし、同一のコンタクトガラス上に両読 取位置を設置する場合、ADFにおいて搬送ローラをガ ラス上面より下には設置できず、小型化が不可能にな り、また図6に示すように、原稿の搬送案内をするガイ ド体 1 を単にコンタクトガラス 2 上に載置すると、図 6 に2点鎖線で示すようにガイド体1が、搬送路3のコン タクトガラス2に面する部分では、搬送下流側において ンタクトガラスと密着型イメージセンサとの間隔を一定 10 搬送路3内で突出状態となって原稿の撥送障害を発生し やすい。そこで搬送障害をなくすため、図6に示すよう に、当該ガイド体1が設置されるコンタクトガラス2の 部分を切削して凹所4を形成し、この凹所4内にガイド 体1の下部を入れて、搬送路3に搬送障害部分が形成さ れないようにする等の工夫が必要である。

[0008]一方、前記両読取位置にそれぞれ独立した コンタクトガラスを設けるようにすると、両コンタクト ガラスの設置部分の境に形成される段差等によって密着 型イメージセンサの間隔規制機構を介した圧接状態での 等の画像形成装置に適用され、密着型イメージセンサを 20 円滑なる移動が阻害されて衝撃が発生し、繰り返し動作 にて密着型イメージあるいは間隔規制機構に損傷を与え るおそれが生じる。

> 【0009】本発明の目的は、密着型イメージセンサを 用い、安定した画像読み取りが長期にわたって可能な読 取装置を提供することにある。

[0010]

【課題を解決するための手段】前記目的を達成するた め、本発明の読取装置は、原稿被読取部分に移動原稿用 コンタクトガラスを有し、かつ原稿を自動搬送するAD 30 Fと、ADFと異なる位置に設けられて、原稿が載置さ れる原稿載置用コンタクトガラスと、原稿読み取りのた め前記原稿載置用コンタクトガラスの下側を往復し、か つ自動原稿搬送時には前記移動原稿用コンタクトガラス まで移動して固定状態にて原稿読み取りを行う密着型イ メージセンサと、前記移動原稿用コンタクトガラスある いは原稿載置用コンタクトガラスに接触して両コンタク トガラスと密着型イメージセンサとの間隔を一定に保持 するスペーサと、とのスペーサを介して密着型イメージ センサを前記移動原稿用コンタクトガラスあるいは原稿 40 載置用コンタクトガラスに押圧する押圧部材と、前配密 着型イメージセンサにおける前記ADFと原稿載置用コ ンタクトガラス間の移動時に、前記スペーサをその移動 域の接触可能部分から離す分離部材とを備えたことを特 徴とする。

【0011】また前記分離部材を、前記密着型イメージ センサを上下動させる駆動部と駆動源とから構成したと とを特徴とする。

【0012】また前記分離部材の駆動源が、駆動部を回 転駆動させるモータであることを特徴とする。

磁作用にて直線移動させるソレノイド装置であることを 特徴とする。

【0014】また前記分離部材が、前記密着型イメージセンサをスペーサ分離方向へ移動させる突起体であることを特徴とする。

【0015】さらに原稿被読取部分に移動原稿用コンタ クトガラスを有し、かつ原稿を自動搬送するADFと、 ADFと異なる位置に設けられて、原稿が載置される原 稿載置用コンタクトガラスと、原稿読み取りのため前記 原稿載置用コンタクトガラスの下側を往復し、かつ自動 10 原稿搬送時には前記移動原稿用コンタクトガラスまで移 動して固定状態にて原稿読み取りを行う密着型イメージ センサと、前記移動原稿用コンタクトガラスあるいは原 稿載置用コンタクトガラスに接触して両コンタクトガラ スと密着型イメージセンサとの間隔を一定に保持するス ペーサと、このスペーサを介して密着型イメージセンサ を前記移動原稿用コンタクトガラスあるいは原稿載置用 コンタクトガラスに押圧する押圧部材と、前記スペーサ の移動域における前記ADFと原稿載置用コンタクトガ ラスとの境部分を被う薄板材とを備えたことを特徴とす 20 る。

[0016]

【作用】前記構成の本発明に係る読取装置は、ADFと原稿を固定状態で読み取るための原稿載置用コンタクトガラスとを備え、ADFの原稿被読取部分に前記原稿載置用コンタクトガラスとは独立した移動原稿用コンタクトガラスを設けたので、シート状原稿とブック状原稿との2タイプの原稿情報の読み取りが可能で、しかもADF自体にコンタクトガラスを備えているので1つのユニットとして脱着、取り扱いが容易になる。

【0017】前記原稿情報の読み取りは共通の密着型イメージセンサで行え、読取時には密着型イメージセンサと前記両コンタクトガラスとの間隔がスペーサによって一定に保持されるため、最適な焦点距離が保たれる。

【0018】しかも密着型イメージセンサにおけるADFと原稿載置用コンタクトガラス間の移動域に境目,段差等の移動障害部分が存在していても、その部分からスペーサが離された状態で密着型イメージセンサが移動するので、密着型イメージセンサおよびスペーサに衝撃等が加わらず、損傷、寸法ずれ等の発生を防げ、長期にわたって最適な焦点距離が維持されることになる。

【0019】前記スペーサを移動障害部分から離す分離 手段としては、駆動源にモータやソレノイド装置を用い たり、駆動源を用いずに移動障害部分に分離用の突起体 を設けることが考えられる。

【0020】またADFと原稿載置用コンタクトガラスとの境目部分に薄板材を設けることで、境目部分でもスペーサの移動が円滑になされ、低コストで密着型イメージセンサおよびスペーサへの衝撃が抑制される。

(0021]

【実施例】以下、本発明の実施例を図面に基づいて説明 する、

【0022】図1は本発明の第1実施例の概略構成を示す正面断面図、図2は図1の第1実施例の側面断面図であり、11は装置本体、12は装置本体11上部に固定されて上面に原稿が載置される原稿載置用コンタクトガラス、13は原稿載置用コンタクトガラス12の設置部分の隣りの装置本体11上部に設置された自動原稿搬送装置(ADF)、14は原稿載置用コンタクトガラス12とADF13の下面を往復動する走行体、15は走行体14に搭載された密着型イメージセンサ、16は走行体14の移動の案内をする案内軸である。

【0023】前記ADF13は、原稿台20公積載された原稿を順次給紙する給紙コロ21と、複数の搬送ローラ対22と、原稿の搬送案内をする搬送路を形成するガイド板23と、原稿被読取部分の搬送路に設置された移動原稿用コンタクトガラス24等から構成されたユニット対であって、装置本体11に対する脱着および取り扱いを容易にしている。

【0024】前記走行体14は、図2に示すように、一側部が前記案内軸16に支持され、他側部には、装置本体11に設けたレール体25に摺動可能に載置される案内用突出部26が形成されている。さらに走行体14の案内軸16側の側部には、走行体14をけん引して所定方向へ移動させるためのワイヤ27の端部が固定されている。ワイヤ27は、ブーリ28に巻回され、ブーリ28を駆動するモータ29の回転によって移動する。

【0025】前記密着型イメージセンサ15は、前記原稿 載置用コンタクトガラス12の下面を移動し、またはAD F13の移動原稿用コンタクトガラス24の下面に停止し て、原稿を公知のように光学的に読み取るものである。 密着型イメージセンサ15の上部にはスペーサであるロー ラ30が回転可能に設けられている。さらに密着型イメー ジセンサ15の両側には、前記走行体14に立設された軸31 に設けた押圧部材である押上はね32の弾発力を受けて、 前記ローラ30を原稿載置用コンタクトガラス12あるいは 移動原稿用コンタクトガラス24に押圧する張出片33が設 けられている。

【0026】密着型イメージセンサ15の長手方向の側部 にはラック35が固定され、走行体14に駆動モータ36を設け、この駆動モータ36の出力軸に前記ラック35と噛合して密着型イメージセンサ15を下方へ移動させる一部が欠 歯状のビニオンギア37が固定されている。前記ラック35 およびビニオンギア37との駆動部と、駆動源である駆動モータ36によって、前記ローラ30を原稿載置用コンタクトガラス12あるいはADF13の下面から離す分離部材を 構成している。

【0027】前記構成の第1実施例では、原稿載置用コンタクトガラス12上に載置された原稿を読み取る場合、 50 押上ばね32の弾発力を受けてローラ30が原稿載置用コン

タクトガラス12の下面に弾接し、走行体14は、密着型イ メージセンサ15がローラ30によって原稿載置用コンタク トガラス12との間隔が一定に保持された状態で、案内軸 16、レール体25によって案内され、ワイヤ27のけん引に より所定方向に走行する。この走行時に密着型イメージ センサ15による原稿読み取りが行われる。

【0028】上述した原稿載置用コンタクトガラス12上 に載置された原稿の読み取りからADF13での原稿読み 取りへ移行する場合、駆動モータ36を動作させてピニオ ンギア37を回転させる。回転したビニオンギア37は、ラ ック35と 噛合して密着型イメージセンサ15を下方へ移動 させる。との移動によって、ローラ30が原稿載置用コン タクトガラス12から離れる。

【0029】ローラ30が原稿載置用コンタクトガラス12 から離れた状態で走行体14は、ADF 13方向へ移動さ れ、密着型イメージセンサ15をADF13の移動原稿用コ ンタクトガラス24の下面に位置させる。この状態で、ビ ニオンギア37とラック35との噛合を解除する。すると、 ローラ30は移動原稿用コンタクトガラス24の下面に弾接 し、密着型イメージセンサ15と移動原稿用コンタクトガ 20 ラス24との間隔を一定に保持する。その後、ADF13を 動作させると、原稿の移動原稿用コンタクトガラス24へ の搬送が行われ、移動原稿に対して固定状態の密着型イ メージセンサ15によって読み取りがなされる。

【0030】ADF13による原稿の読み取りから原稿載 置用コンタクトガラス12での原稿の読み取りに移行する 場合、駆動モータ36を動作させてピニオンギア37を回転 させ、既述したと同様にラック35と噛合させてローラ30 をADF13から離し、走行体14を原稿載置用コンタクト ガラス12へ移行させる。

【0031】とのように、原稿載置用コンタクトガラス 12とADF13との間における走行体14と密着型イメージ センサ15との移動に際し、ローラ30を原稿載置用コンタ クトガラス12とADF13間の移動域における接触可能部 分から離すととにより、移動域に存在する境目、段差等 によってローラ30に損傷を与えたり、移行時に振動を発 生させて、密着型イメージセンサ15に衝撃を伝えて、悪 影響を与えてしまうことを防止でき、長期にわたって前 記両コンタクトガラス12, 24と密着型イメージセンサ15 との間隔を一定に保持して、密着型イメージセンサ15の 焦点深度を安定させることができ、良好な原稿読み取り がなされる。

【0032】図3は本発明の第2実施例における要部の 正面断面図である。なお、以下の説明において、図1, 図2に基づいて説明した部材と対応する部材には同一符 号を付して詳しい説明は省略した。

【0033】第2実施例では、前記分離部材を、プラン ジャ40を電磁作用にて出入させるソレノイド装置41を駆 動源とし、前記プランジャ40と、プランジャ40によって

した突出腕部42とを駆動部としたものであって、ソレノ イド装置41をオン/オフさせることによって密着型イメ ージセンサ15およびローラ30とを、第1実施例と同様に 原稿載置用コンタクトガラス12あるいはADF13から比 較的低騒音で下降させるようにしたものである。

【0034】図4(a), (b)は本発明の第3実施例におけ る要部の構成、および動作を説明するための正面断面図 であり、この第3実施例では、原稿載置用コンタクトガ ラス12とADF13との設置部分の境部分45に分離部材で ある突起体46を設けており、この突起体46の下面によっ て密着型イメージセンサ15の上面を押し下げて、前記境 部分45にローラ30が接触しないようにして、走行体14の 移動時における境部分45でのローラ30の損傷や衝撃の発 生を防いでいる。

【0035】との第3実施例では、前記第1, 第2実施 例と異なり、モータあるいはソレノイド装置等の電気的 駆動源や電気的制御系が必要なく、簡単な構成で第1. 第2実施例と同様なローラの上下動が行われるため、コ ストおよび省スペースの面から有利である。

【0036】図5は本発明の第4実施例における要部の 正面断面図であり、この第4実施例では、原稿載置用コ ンタクトガラス12とADF13間の境部分45を被うように 薄板材であるシート50を貼着し、走行体14の移動時に密 着型イメージセンサ15のローラ30は原稿載置用コンタク トガラス12とADF13に常に接触するが、前記境部分45 におけるローラ30の移行をシート50の存在にて円滑に し、境部分45で受ける衝撃をできる限り小さくし、ロー ラ外周の保護を図るようにしている。

【0037】第4実施例では、低コストで、密着型イメ 30 ージセンサ15およびローラ30への衝撃付加を防ぎ、しか もローラ30の損傷を防ぐととができる。

[0038]

【発明の効果】以上説明したように、本発明の読取装置 は、請求項1記載の発明によれば、ADFは、原稿載置 用コンタクトガラスと独立した移動原稿用コンタクトガ ラスを備えたユニット体であって、その脱着,取り扱い を容易にでき、しかも両コンタクトガラスでの読み取り を共通の密着型イメージセンサで行うようにした簡単な 構成になり、さらに両コンタクトガラスと密着型イメー 40 ジセンサとの間隔を一定に保持するスペーサが、両コン タクトガラス間の移動域に存在する境目、段差等とは接 触しないように分離部材によって離されるので、密着型 イメージセンサの移動に際して衝撃がスペーサに加わら ず、密着型イメージセンサあるいはスペーサにおける損 傷、寸法ずれの発生が防げ、長期にわたって最適な焦点 距離が維持でき、良好な画像読み取りが行える。

【0039】請求項2、3、4記載の発明によれば、モ ータあるはソレノイド装置を駆動源として密着型イメー ジセンサを上下動させる分離部材によって、前記スペー 下降されるように密着型イメージセンサ15の側方に突出 50 サの接触可能部分に対する接離動作が確実に行える。

【0040】請求項5記載の発明によれば、密着型イメ ージセンサを突起体を用いてスペーサ分離方向に移動さ せることができ、前記分離部材が簡単な構成で、低コス トで備えられる。

【0041】請求項6記載の発明によれば、請求項1記 載の発明と同様の効果を奏し、ADFと原稿載置用コン タクトガラスの境部分を薄板材で被うことで、境部分で のスペーサの移動が円滑になり、単純で低コストの構成 で、スペーサおよび密着型イメージセンサへの衝撃付加 が抑制でき、長期にわたって最適な焦点距離が維持で き、良好な画像読み取りが行える。

【図面の簡単な説明】

【図1】本発明の読取装置の第1実施例の概略構成を示 す正面断面図である。

【図2】図1の第1実施例の側面断面図である。

【図3】本発明の第2実施例における要部の正面断面図 である。

*【図4】本発明の第3実施例における要部の構成、およ び動作を説明するための正面断面図である。

10

【図5】本発明の第4実施例における要部の正面断面図

【図6】従来の読取装置の問題点を説明するための説明 図である。

【符号の説明】

12…原稿載置用コンタクトガラス、 1.3…ADF (自動 原稿搬送部)、 14…走行体、 15…密着型イメージセ ンサ、 21…給紙コロ、 22…搬送ローラ対、 23…ガ イド板、 24…移動原稿用コンタクトガラス、 ーラ(スペーサ)、31…軸、 32…押上ばね(押圧部材)、 35…ラック(駆動部)、 36…駆動モータ(駆動源)、 37…ピニオンギア(駆動部)、 40…プランジャ(駆動 部)、 41…ソレノイド装置(駆動源)、 42…突出腕部 (駆動部)、 45…境部分、 46…突起体(分離部材)、 50…シート(薄板材)。

【図1】

[図5]

【図2】

[図4]

【図6】

