Избрани глави от комбинаториката и теорията на графите (изпит — СУ, ФМИ, 13 юли 2020 г.)

Задача 1. Нека a, b и p са цели неотрицателни числа, като p е просто число. Докажете, че

$$\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p}.$$

Задача 2. Пресметнете в явен вид обикновената и експоненциалната пораждаща функция на броя на подмножествата на n-елементно множество, $n \ge 0$.

Задача 3. Играч хвърля монета многократно. Всяко ези се брои за 1 точка; тура — за 2 точки. Каква е вероятността да съществува момент, в който играчът има точно n точки?

Задача 4. Да се намери броят на целочислените решения (x_1, x_2, \ldots, x_n) на системата

$$\begin{vmatrix} x_1 \ge 0, & x_2 \ge 0, & \dots & , & x_n \ge 0; \\ x_1 \le 1, & x_1 + x_2 \le 2, & \dots & , & x_1 + x_2 + \dots + x_{n-1} \le n-1; \\ x_1 + x_2 + \dots + x_{n-1} + x_n = n. \end{vmatrix}$$

Задача 5. Пребройте съвършените съчетания в пълния неориентиран граф (без примки) с n номерирани върха.

Задача 6. Нека n е произволно естествено число. Разглеждаме разбивания на n от два вида:

- разбивания, несъдържащи събираеми, кратни на 4;
- разбивания, несъдържащи повторени четни числа.

Докажете, че има равен брой разбивания от двата вида.

РЕШЕНИЯ

Задача 1. Нека $a = \overline{a_1 a_2 \dots a_n}_{(p)}$ и $b = \overline{b_1 b_2 \dots b_n}_{(p)}$ са записите на a и b в позиционната бройна система с основа p. Тогава $ap = \overline{a_1 a_2 \dots a_n 0}_{(p)}$ и $bp = \overline{b_1 b_2 \dots b_n 0}_{(p)}$. Ако трябва, допълваме числата с нули отляво. Тъй като числото p е просто, имаме право да приложим теоремата на Люка:

$$\begin{pmatrix} a \\ b \end{pmatrix} \equiv \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \cdots \begin{pmatrix} a_n \\ b_n \end{pmatrix} \pmod{p};$$

$$\begin{pmatrix} ap \\ bp \end{pmatrix} \equiv \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \cdots \begin{pmatrix} a_n \\ b_n \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \pmod{p}.$$

Понеже $\binom{0}{0} = 1$, то десните страни на двете сравнения са равни. Следователно левите им страни са сравними по модул p, което трябваше да се докаже.

Задача 2. ЕПФ:
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = e^{2x}$$
. ОПФ: $\sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2x)^n = \frac{1}{1-2x}$.

Задача 3 е от Италианското национално състезание по математика през 1989 г. Тя се решава с помощта на рекурентно уравнение. Нека p_n е търсената вероятност, тоест относителният дял на игрите, в които играчът успява да събере точно n точки, спрямо множеството на всички игри. При n > 0 има две възможности:

- Играчът успява да събере точно n-1 точки в някой момент от протичането на играта. Относителният дял на тези игри е p_{n-1} и в половината от тях играчът събира точно n точки, като хвърли ези в момента, в който е събрал точно n-1 точки.
- Играчът никога няма точно n-1 точки. Относителният дял на тези игри е $1-p_{n-1}$ и във всички тях играчът успява да събере точно n точки: щом е прескочил бройката n-1, значи в някой момент е имал n-2 точки и тогава е хвърлил тура.

Като съберем относителните дялове от двата случая, получаваме рекурентното уравнение

$$p_n = \frac{1}{2} p_{n-1} + (1 - p_{n-1}), \text{ TOECT } p_n = 1 - \frac{1}{2} p_{n-1}.$$

Началното условие е $p_0 = 1$, защото играчът със сигурност има 0 точки в началото на играта. С помощта на характеристично уравнение намираме търсената вероятност:

$$p_n = \frac{2}{3} + \frac{1}{3} \left(-\frac{1}{2} \right)^n.$$

Задача 4. С помощта на начупена линия свързваме последователно точките (0;0), (1;0), $(1;x_1)$, $(2;x_1)$, $(2;x_1+x_2)$, $(3;x_1+x_2)$, $(3;x_1+x_2+x_3)$, ..., $(n;x_1+x_2+x_3+\ldots+x_{n-1})$, $(n;x_1+x_2+x_3+\ldots+x_{n-1}+x_n)$. Последната от тях всъщност е точката (n;n). Тази линия има за върхове само целочислени точки. Ако я обходим от точката (0;0) до точката (n;n), на всеки ход ще се движим само нагоре или само надясно и във всеки миг ординатата ще бъде не по-голяма от абсцисата. Обратно, на всяка такава начупена линия съответства едно решение на системата, образувано от разликите на ординатите на точките с четни индекси. Ето защо на различни начупени линии съответстват различни решения на системата, тоест има биекция между решенията на системата и начупените линии. Затова броят на решенията на системата е равен на броя на начупените линии от описания вид, тоест на числото на Каталан $\frac{1}{n+1}\binom{2n}{n}$.

Задача 5. Ако броят на върховете n е нечетно число, то те не могат да се разделят на двойки, тоест в този случай пълният граф не съдържа нито едно съвършено съчетание и отговорът е 0.

Затова нека n е четно число. Избираме произволен връх на графа. Той може да се съчетае с кой да е от другите n-1 върха. След като изберем ребро през този връх, махаме двата края на реброто. Остават n-2 върха. Пак избираме един от тях произволно. Той може да се съчетае с който и да било от другите n-3 върха. Избираме един от тях и изтриваме тези два върха. Като продължим тези разсъждения, установяваме, че броят на съвършените съчетания е равен на (n-1)(n-3)(n-5) ... 5 . 3 . 1=(n-1)!!, т.е. произведението на нечетните числа от 1 до n.

Задача 6. Между забранените подмножества (мултимножества) от двата вида има биекция, запазваща сборовете от техните елементи:

- числа, които се делят на 4: $\{4\}$, $\{8\}$, $\{12\}$, ..., $\{4k\}$, ...
- повторени четни числа: $\{2\,;\,2\},\ \{4\,;\,4\},\ \{6\,;\,6\},\ \dots$, $\{2k\,;\,2k\},\ \dots$

Биекцията между забранените подмножества поражда биекция между "лошите" разбивания. Следователно те са равен брой, значи и "добрите" разбивания са равен брой.