

DESIGN MEMORANDUM NO. 3 FLOOD CONTROL PROJECT AND DRAFT ENVIRONMENTAL ASSESSMENT

East Creek Stage 3 Chaska, Minnesota DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20050210 005

DECEMBER 1993

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and co of information, including suggestions for reduci (0704-0188), 1215 Jefferson Davis Highway, Sui	mpleting and ng the burde te 1204, Arlin collection of i	reviewing the collection of infor an, to Department of Defense, ngton, VA 22202-4302. Resprintermental if it does not display	mation. Send com , Washington Head andents should be a recurrently valid O	ments regard dquarters Se aware that n MB control i	ding this burden estimate or any other aspect or this collete envices. Directorate for Information Operations and Ref notwithstanding any other provision of law, no person sha number.	il be
PLEASE DO NOT RETURN YOUR FOR	M TO THE	E ABOVE ADDRESS.	a Currently vanc 5			
1. REPORT DATE (DD-MM-YYYY)	2. REPOR				3. DATES COVERED (From - To)	
3/93		Final				
4. TITLE AND SUBTITLE				5a. CON	NTRACT NUMBER	
East Creek stage 3 Chaska, Minne	sota: desi	on memorandum no. 3	. flood			Ì
control project and draft environme			' "	Sh CRA	ANT NUMBER	
bonner project and mart the marting			. [DD. UNA	ANI NUMBER	1
			· I			1
			1	5c. PRO	GRAM ELEMENT NUMBER	
			1			1
		'				-
6. AUTHOR(S)			ĺ	5d. PRU	JECT NUMBER	- 1
•						1
!			t	Se. TAS	SK NUMBER	\dashv
		•	ŀ	 		1
			I			
			. [5f. WOF	RK UNIT NUMBER	
}	5	•		i		1
				<u> </u>	8. PERFORMING ORGANIZATION	\dashv
7. PERFORMING ORGANIZATION NA		D ADDRESS(ES)		!	REPORT NUMBER	
U.S. Army Corps of Engineers, St.	Paul			ļ		- 1
190 5th St. E.				ļ		
St. Paul, MN 55101				ļ		į
					TODIO ACCONVAVO	
9. SPONSORING/MONITORING AGE	ICY NAMI	E(S) AND ADDRESS(ES)		I	10. SPONSOR/MONITOR'S ACRONYM(S)	1
				I		
				!		
				1	11. SPONSOR/MONITOR'S REPORT	- 1
					NUMBER(S)	1
		•				
12. DISTRIBUTION/AVAILABILITY ST	ATEMENT	ſ				
Approved for public release, distril	bution					
Approved for paone release, distri-	Junon					
13. SUPPLEMENTARY NOTES		·	· .			
14. ABSTRACT						
			1 for a	3 mil	that sension of a dividuoism channel that	
This design memorandum presen	ts the desi	ign and discussion of p	lanning for si	tage 5 wi	hich consists of a diversion channel that	
protects Chaska from flooding of E	ast Creek	Works includes trape	2201dai riprap	cnammer	, articulated concrete channel, drop	
	Sagway o	nages, landscaping, 15	creauon nan	and me i	remaining stage 4 levee at the East Creek	
intersection.						
l ·						
·						
15. SUBJECT TERMS						
Flood control						
Minnesota River					•	
TYTIMINOUS THE TOTAL THE T						
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF	18. NUMBER	19a. NA	ME OF RESPONSIBLE PERSON	
a. REPORT b. ABSTRACT c. Th	IS PAGE	ABSTRACT	OF DAGES	1	-	
		<u> </u>	PAGES	19b. TEI	LEPHONE NUMBER (Include area code)	
Unclassified Unclassified Unc	lassified	!		ļ		

16-Feb-94

1	7	
	2	
1		
•	_	

PROJECT COST SUMMARY; CHASKA III

ACCOUNT CODE	ITEM	UNIT	QUANTITY	UNIT	AMOUNT	CONTINGENCIES AMOUNT PE	ICIES PERCENT	±	REASON
	LANDS AND DAMAGES								
11.18	PROJECT PLANNING	1.5	o .	20	20	\$0		0.00	_
11.11.1.	ACOUISITION: BY GOVT, DIRECT PEDBRAL	OSP,			0	0	0	0	_
H.B.2.—	BY GOVT. ON BEHALF OF LS	OSP. OSP	38	009	22,800 0	2,300		0.0	
11.15.4	GOVT. REVIEW OF LS ACTIVITIES	OSP .	38	345	13,100	1,900		0.0	
11.C	CONDUMNATIONS BY GOVY.	1.41.	ć	•	¢			:	
11.0.2	BY LOCAL SPONSOR	TKT		000.1	4.000	0 9	-	0.0	1 2 3 & 4
H.C.3.—	BY GOVT. ON BEHALF OF LS	TRT	0	0	0	0	-		- 1
1).(GOVI. REVIEW OF LS ACTIVITIES	TXT	4	200	800	100	_		2,3 &4
11.12	APPRAISALS:								
	BY GOVT. (IN HOUSE)	OSP	, .	0	0	0	0	0.0	
11.11.2	BY GOVI. (CONTRACT)	OSI	0	0	0	0		0.0	
11.19.4.	BY GOVE ON BRIDER OF 18	OSP	38	200	19,000	1,900	-		2,3 &4
71.15.5		OSP	o	0	0	C			-
		OSL	38	250	9,500	1,400		14.7 2,	2,3 &4
11.15	PL 91-646 ASSISTANCE								
11.1.1.	F.L.91-646 RFLOCATIONS - LOCAL SPONSOR	OSP	=	300	3,300	300		9.1 2.	2,3 &4
11 17 1	PECENTER OF DOCUMENTS	OSP	0	0	0	0	5		_
11.17.4	COVT DEVINE OF LS	OSP	0	0	0	0		0.0	
	CONTRACTOR OF LANCHVILLES	OSP	=	200	2,200	300	_	3.6 2,	2,3 &4
H.G	THEMPORARY PERMITS	OSP	0	0	0	0		0.0	-
1.5.1.	IV GOVT.	OSP	0	0	0	0	•	0.0	
1.0.7	IN COMP ON DESIGN	OSP	0	0	0	0		0.0	-
501	GOVT BIVING OF 18 A CTHVISHIS	OSP	0	0	0	0		0.0	-
1.G.S.	53.	OSE	0	0	0	0		0.0	-
		ds o		0 0	0	0	r	0.0	
		5	>	>	0	0		0.0	
•									

GES 01. LANDS AND

AY:CHASKA III PROJECT COST S

-Feb-94

H-29 REASON 2,3 &4 PERCENT 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CONTINGENCIES 110,000 34,000 \$153,000 \$1,657,000 AMOUNT AMOUNT 471,400 735,567 0 222,400 0 \$1,504,000 PRICE UNIT 000 42,850 C 0 **AUANTITY** 10.2% LIND 2.1.5 2.5.5 5.5.5 LS LS LS 25 25 S \sim SUBTOTAL CONTINGENCIES (AVER.) TOTAL 01. LANDS AND DAMAGES GOVT. RRVIBW OF LS ACTIVITIES SUBTOTAL REAL ESTATE COSTS GOVT. REVIEW OF LS ACTIVITIES GOVT. REVIEW OF LS ACTIVITIES REAL ESTATE RECEIPTS/PAYMENTS: PL 91-646 ASSISTANCE PAYMENTS BY GOVT. ON BEHALF OF LS BY GOVT. ON BRHALF OF LS BY GOVT. ON BEHALF OF LS ADMINISTRATIVE COSTS BY LOCAL SPONSOR BY LOCAL SPONSOR BY LOCAL SPONSOR PL 91-646 ASSISTANCI DAMAGE PAYMENTS LAND PAYMUNTS LAND PAYMENTS LURRD CRUDITS ITEM BY GOVT. BY GOVT. BY GOVT. ALL OTHER OTHUR ACCOUNT CODE 01.R.-.-01.R.1.-01.R.1.B 01.R.1.D 01.R.1.A 01.R.1.C 01.R.2.-01.R.2.A 01.R.2.B 01.R.2.C 01.R.2.D 01.R.3.-01.R.3.C 01.T.-.-01.R.3.A 01.R.3.B 01.R.3.D 01.12.9.n.T.1. 01.T.3. 01.T.2. 01.T.4.

REASONS FOR CONTINGENCIES:

- I. NOT APPLICABLE.
- 2. UNKNOWNS DUE TO LEGAL COST.
- 3. UNKNOWNS DUE TO LAND PRICES.
 - 4. UNKNOWNS DUE TO QUANTITIES.

A. FEDERAL, NONFEDERAL COST'TO BE IN ACCORDANCE WITH 1986 WRDA. B. UNIT PRICES ARE AT APRIL 1991 PRICE LEVEL. C. TRT = TRACT D. OSP = OWNERSHIP

NOTES:

E. LS = LUMPSUM

DEPARTMENT OF THE ARMY

ST. PAUL DISTRICT, CORPS OF ENGINEERS 190 FIFTH STREET EAST ST. PAUL, MINNESOTA 55101-1638

13 December 1993

CENCS-ED-M (1110)

MEMORANDUM FOR: Commander, North Central Division, ATTN: CENCD-

PE-ED, 111 North Canal Street, Chicago,

Illinois 60606-7205

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

- 1. Subject report is submitted in accordance with ER 1110-2-1150 for your review and approval.
- 2. This design memorandum presents the design improvements for construction of the East Creek Diversion Channel, levee at East Creek, and related structures as well as recreational features for the flood control project at Chaska, Minnesota.

FOR THE COMMANDER:

Encl (16 cys) Chaska Stage 3 DM

Sent under soparate cover

ROBERT F. POST, P.E.

Chief, Engineering Division

CENCD-PE-ED-TM (CENCS-ED-M/23 Dec 93) (1110-2-1150a) 1st End Mr. Ordonez/mgb/(312) 353-9057 SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

Commander, North Central Division, U.S. Army Corps of Engineers, 111 North Canal Street, Chicago, IL 60606-7205

FOR Commander, St. Paul District, ATTN: CENCS-ED-M

- 1. DM No. 3 is approved subject to satisfactory resolution of the enclosed comments.
- 2. The HQ, NCD, POC is Mr. Jose Ordonez, CENCD-PE-ED-TM, (312) 353-9057.

FOR THE COMMANDER:

2 Encls wd encl 1 Added 1 encl 2. as Director, Engineering and Planning Directorate

CENCS-PE-M (PE-M/23 Dec 93) (1110) 2nd End Mr. Heyerman/vjf/(612) 290-5432 SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

Commander, U.S. Army Corps of Engineers, St. Paul District, 190 Fifth Street East, St. Paul, Minnesota 55101-1638 2 MAR 74

- FOR Commander, North Central Division, ATTN: CENCD-PE-ED-TM,
 River Center Building, 14th Floor, 111 North Canal Street,
 Chicago, Illinois 60606-7205
- 1. Responses to comments contained in the 1st endorsement follow with reference to commenter name and number.
- 2. Simpson 1a. and 1b. The uplift on the riverward slope is not a concern since it is resisted by the weight of the water on top of the riverward slope. Since the cutoff trench depth is limited to 6 feet or the height of the levee for levee heights less than 6 feet, it is unlikely that this would increase the groundwater levels behind the levee.
- 3. Simpson 2. Any existing pipes will be exposed during channel excavation. The embankments are considerably wider than the levees and excessive pressures under the landside top stratum at an embankment are less likely to be a concern. A large portion of the larger embankments will also have less than 2 feet of head on them.
- 4. Simpson 3. Adequate consolidation should occur within 300 days.
- 5. Simpson 4. The 4 inch drains were to assist in drainage during the time the road surcharge was in place, approximately one year. After this period of time the drains are not needed and there should be no consequences caused by blocking the drains.
- 6. Simpson 5. Samples taken from the Chaska Stage 4 borrow area were taken and compacted to 95% of maximum density with a water content slightly below optimum. This was not sufficient to completely saturate the test specimens and therefore a phi value higher than zero can be expected. Due to the short duration of the design flood, it is unlikely that the levees will become saturated.

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

- Simpson 6. The relatively flat slope will be stable using 7. either drained or undrained strengths. Analyses done using approximately half the actual undrained strength show an adequate factor of safety. It is unlikely that there will be steady state groundwater flows out of the slope as the borings indicate fairly thick impervious soils in the vicinity of the cut. Springs are much more likely where a thin impervious layer is underlain by pervious soils. Design water loads were not included in the analyses of the slope but the shallow flow depth expected (1.5' per Table B-1 on page B-3) will not generate a substantial load. Ice loads were not considered during the slope stability analyses but will be looked at for the design of the slope protection. discussed in paragraph 61 on page D-18 rapid excavation of the lime is not recommended. Plate 3 shows that the existing material currently stands at steep slopes.
- 8. Simpson 7a. and 7b. In the majority of cases the expected settlement period will not be required for construction scheduling. The surcharge at drop structure 1 will be required only for a minimal amount of time (maybe a month) as it is primarily being used to preload the underlying pervious soils. Adequate consolidation at Outlet D should occur within 300 days of placing the surcharge during Stage 4 construction. Since it would be uneconomical to wait for complete consolidation before paving the trails the intent was to make the paving the last work item in the construction contract.
- 9. Simpson 8. The cutoffs are not deep and appear to be most economically constructed using concrete. Because of the question of percentage effectiveness, if sheetpile was used the cutoff lengths would need to be increased. Because of the small quantity and the locations a slurry wall cutoff would probably not be cost effective.
- 10. Occhipinti 9. The flood of 1993 is the only period since 1 October 1934 when pumping would have been required to eliminate interior flood damage in both the Outlet A and Pond D areas of Chaska. Based on a study of rainfall and streamflow records during this period, it appears the current design will allow the use of the same pump at both locations. Pumping in the Chaska Creek (Outlet A) area during the 1993 flood period, theoretically would have been required on 24 and 29 June, and 1 and 3 July. If the portable pump was temporarily moved to Pond D on 2 July, with about three hours of pumping from Pond D, the maximum pond D level would have been only about 712.7, or about 2.3 feet below the top of the dike separating Pond D and Courthouse Lake. Should no pump have been provided in the Pond D area, it is

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

estimated that about four acre feet of East Creek runoff would have discharged into Courthouse Lake between 11 July and 15 July when the Minnesota River would have receded below elevation 714.0 and the gravity outlet opened. Overflow from East Creek into Courthouse Lake could result in short term degradation of water quality in the lake, which could require restocking to restore or maintain the fishery levels in the lake.

- 11. Occhipinti 10. Table B-1 was moved and pages B-2 and B-3 revised accordingly.
- 12. Occhipinti 11. The revised page B-3 shows cfs being changed to cfs/ft.
- 13. Occhipinti 12. The average velocity was added to Table B-4 and a note was added to indicate that the average velocity is for the design discharge of 5500 cfs. The change is reflected in revised page B-6.
- 14. Occhipinti 13. The equation was corrected to: $y = (CV^2W)/(gr)$. The change is reflected in revised page B-9.
- 15. Occhipinti 14. Although the thickness could probably be reduced, the gradation would be unchanged. At this time it is felt that the 36 inches, although conservative, is recommended. The total length at this thickness is 70 feet.
- 16. Occhipinti 15. The bridge locations were added to Table B-
- 22. The change is reflected in revised page B-17.
- 17. Occhipinti 16. A Courthouse Lake level of 703.0 is specifically indicated on the USGS quad sheet. Storage volumes and surface areas were obtained from another map with a contour interval of two feet. Based on a contour interval of two feet, the consequence would be an error of only about one foot. The second sentence of paragraph 12 has been changed to include the following: "...715.0 (obtained from a topographic map with a 2-foot contour interval) is...". The change is reflected in revised page C-3.
- 18. Occhipinti 17. The HEC-1 and HEC-2 models were changed, not the programs. In the second line of paragraph 33, the word "programs" has been changed to "models". The change is reflected in revised page C-21.

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

- 19. Ordonez 18. We believe the guidance provided in ER 1105-2-100, paragraph 5-18 was followed.
- 20. Ordonez 19. The main safety concern for this type of drop structure would be the rollers created. The Chaska project is a diversion channel which would be used only during periods of flooding and would normally be dry. A stepped drop structure as used on the Fruen Mill project would create safety concerns due to it's attractive climbing potential.
- 21. Dice 20. Concur; no requirement for ponding was shown on drawings provided for the Stage 3 initial cost estimate. Additional cost estimating data will be provided when the information required to complete a cost estimate on ponding is received.
- 22. Dice 21. The 3.9 acres in fee are included within the total 35.3 acres required for Stage 3. Fee acres are required due to their function as part of the recreation trail/bike path. A proper allocation of Public Use space was not made in the initial estimate. The Permanent Levee/Channel allocation of Public Use has been corrected to 2.36 acres. Page 9 has been revised.
- 23. Dice 22. Contingencies are estimated because of the methods employed to arrive at values, unknown acreages due to meander of the river, no known boundary lines or ownership information, type of improvements involved in the take area, amount of elapsed time before the project may become a reality and other unknown elements that are not considered in this estimate. Page 9 has been revised.
- 24. Dice 23. Concur; the estimated value of the residences has been reflected as a part of the total lands and damages estimate. See attached Revised Real Estate Cost Estimate, Enclosure 4. Page H-5 should be deleted and replaced with a revised page H-5 and page H-5a. Also page 9 and 10 revised accordingly.
- 25. Dice 24. The modular/mobile homes are considered real estate; the estimated lands and damages included the value of the improvements.
- 26. Dice 25. No disposal areas were shown in the DM because Stage 3 spoil will be placed upon land ownerships where fill is wanted; therefore, this action will be accomplished with no cost to the project or to the Local Sponsor.

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

- 27. Dice 26. Concur; The real estate M-CACES data has been changed to properly reflect appropriate information and was coordinated with CENCS-PE-C to assure uniformity throughout. See revised page H-5 and page H-5a.
- 28. Dice 27. Concur; The real estate Attorney's Opinions of Compensability required for the project have been identified and are in the process of being completed.

FOR THE COMMANDER:

4 Encls 1-2 nc Added 1 encl 3-4.as ROBERT F. POST, P.E. Chief, Engineering & Planning Division CENCD-PE-ED-TM (CENCS-ED-M/13 Dec 93) (1110-2-1150a) 3d End Mr. Ordonez/mgb/(312) 353-9057 SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

Commander, North Central Division, U.S. Army Corps of Engineers, 111 North Canal Street, Chicago, IL 60606-7205

2 2 MAR 1994

FOR Commander, St. Paul District, ATTN: CENCS-PE-M

- 1. Responses to comments are satisfactory. Two additional comments are enclosed which are advisory in nature. These comments are in relation to two technical subjects addressed in your responses. No further response is required and the subject DM is approved.
- 2. The HQ, NCD, POC is Mr. Jose Ordonez, CENCD-PE-ED-TM, (312) 353-9057.

FOR THE COMMANDER:

5 Encls 1-4. nc Added 1 encl 5. as JOHN P. D'ANIELLO, P.E. Director, Engineering and Planning Directorate

CF (w/encls and 7 cys of DM):
CECW-EP-E

CENCD Comments Chaska, MN, DM No. 3, Stage 3 East Creek Diversion

ED-TG (Simpson, 312-886-6935)

- 1. Page D-4, para. 9.
- a. Discuss the location of the cutoff trench. It could be better to place this trench near the riverward toe in order to limit uplift under the riverward slope.
- b. Discuss if a total cutoff could block groundwater flow to the creek and increase the groundwater levels behind the levee.
- 2. Page D-5, para. 17. Consider the need for an inspection trench along the Engler Blvd. and Highway 17 road where their embankments are used as part of the levee system.
- 3. Page D-5, para. 19. Give approximate time of consolidation.
- 4. Page D-7, para. 29. Explain the consequences of blocking the 4 inch drains under the highway embankment.
- 5. Page D-9, para. 37 and elsewhere. Explain the 5 degree Phi value specified in the Q test results for CL levee fill.
- 6. Page D-13, para. 43. It would appear the 8.5 percent grade running from sta 0+00 to 3+75 which is underlain by OH and PT soils could be a critical slope and in need of more study and/or explanation of the analysis. Discuss if the following were taken into consideration:
- (1) Since earth loadings will be reduced by approximately 25 feet of excavation the soil will probably swell and strength will decrease with time. It was also noted LL and PI soil values are greater than 60 and 35 respectively indicating a significant potential for swelling. If swelling is indeed a problem using undrained strength could be unsafe.
- (2) The steady state groundwater flow coming out of the slope in the form of springs as described on page D-3, para. 8.
- (3) The design water level atop and running down the articulated concrete slope and/or other live loads like ice. Such loadings would appear suddenly without allowing time for consolidation.

- (4) References for cut slope design are 1, page 569 of "Soil Mechanics" by Perloff and Baron and 2, DM-7, page 7.1-313.
- 7. Page D-14, para. 46 through 51.
- a. Give estimated time duration of necessary settlement so it can be used for construction scheduling.
- b. Estimate and include gain of strength with consolidation.
- 8. Page D-19, para. 66. Consider alternative materials other than concrete for cutoffs under structures.

ED-WH (Occhipinti, 312-353-7132)

- 9. Page 3, para 10. The report mentions using the same 5,000 gpm pump at Pond D and Outlet A. Will the current design allow for using the same pump or will a pump be required at both locations at the same time?
- 10. Page B-2, Table B-1. This table should appear after the discussion of the design considerations of the articulated mat (Paragraph B-5.)
- 11. Page B-3, Table B-2. Unit discharge should be listed as cfs/ft of width.
- 12. Page B-6, Table B-4. Include the average velocity for the design water surface on this table.
- 13. Page B-9, para B-16. The equation should be corrected to:

y = (CV2W)/(gr)

- 14. Page B-13, para B-24. We concur with reducing the number of stone gradations to ease construction. At the Stoughton Avenue Bridge consider reducing the thickness to less than 36 inches.
- 15. Page B-17, Table B-22. List the bridge locations on this table.
- 16. Page C-13, para 12. The report states that a USGS quad sheet was used to determine the normal elevation of Courthouse Lake. What would be the consequences of this elevation being incorrect by one-half of a contour interval?
- 17. Page C-21, para 33. This paragraph starts out claiming that changes to the HEC-1 and HEC-2 programs resulted in the design changes. The remainder of the paragraph talks about refinements to the HEC-1 and HEC-2 models. Please clarify.

- 18. Page 14, para 47. The current estimates of project cost and benefits should be done in accordance with ER 1105-2-100, paragraph 5-18.
- 19. Plate B-1. This type of drop structure has been rejected by the District at the Basset Creek (Fruen Mill) project because of safety concerns. Explain why this is not a concern in this project.

RE (Dice, 312-353-7445)

20. Ponding area requirements are discussed on page 3, paragraphs 9 and 10, and in Appendix C, Interior Flood Control, page C-19, paragraphs 28 and 29. Appendix C, paragraph 29, states that "the estimated amount of real estate required at the Old Clay Hole, Courthouse Lake, and Outlet D Pond sites will be about 15, 12, and 11 acres, respectively". The standard estate required for a ponding area would be a flowage easement.

Based on the acreage and estates identified in the Real Estate Requirements Section, pages 9 and 10, the estimate of real estate costs does not include ponding areas. An informal telecon with NCSRE-A indicated that it was believed that the real estate requirements for the ponding areas were included in another DM. This should be confirmed or adjustments made, as necessary.

- 21. Page 9, paragraph 38 states that this stage of the project consists of approx. 35.3 acres of permanent levee and channel easement; however, the acreages shown in paragraph 39 for these easements totals only 31.86. If the 35.3 acreage figure is correct, the cost estimates shown in paragraph 39 need to be corrected. Adjustments should be made, as necessary.
- 22. Page 9, paragraph 39: Contingencies are not "compensation" for errors or omissions. This paragraph should be revised to reflect guidance in ER 405-1-12, Draft Chapter 12, para. 12-9.d.
- 23. Page 10, Relocation Assistance: Costs identified include acquisition of three residences. The estimated value of the residences should not be shown as a relocation assistance payment, but rather should be included as part of the total lands and damages estimate for the estates being acquired. Account 01.F., page H-5, should be revised appropriately to reflect only P.L. 91-646 relocation payments.
- 24. Page 10, Relocation Assistance: The discussion of the modular/mobile homes indicates they are "permanently affixed". Are the homes considered real estate and, if so, does the estimated lands and damages include the value of the improvements?

- 25. Page G-5, paragraphs 15 and 16, indicate that offsite disposal areas will be provided by the local sponsor. However, based on the estates identified in the Real Estate Requirements Section, it does not appear that the estimate includes lands required for disposal. If a real estate interest is to be acquired for disposal areas, the Real Estate Requirements Section and the cost estimates on page H-5 should be revised accordingly.
- 26. The Local Sponsor and the Federal administrative acquisition costs shown on page 10 do not match up with the total of the administrative costs reflected on page H-5. Also, there are no administrative costs shown for Local Sponsor or for Federal for account 01.F., P.L. 646 relocations, page H-5. It may be that the costs were included on page 10 but not properly distributed on page H-5. Revise/adjust accordingly.
 - 27. There are several utility/facility relocations required for this stage of the project, which require Attorney's Opinions of Compensability by a real estate attorney. A discussion of the Attorney's Opinions of Compensability should be in the Real Estate Requirements Section of the report.

CONSTRUCTIBILITY

36. Appendix G contains a discussion on the construction aspects of this project.

REAL ESTATE REQUIREMENTS

- 37. The City of Chaska will provide, without cost to the United States, and as generally provided by the Local Cooperation Agreement, all real estate interests, to include borrow and disposal areas, required for the construction, operation, and subsequent maintenance of the project. The City will also comply with all provisions of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Public Law 91-646, as amended).
- 38. This stage of the Chaska Flood Control project will consist of approximately 35.3 acres of Permanent Levee and Channel Easement, 3.91 acres of Fee title for recreational trails, and 1.25 acres of temporary easement. A Single Family Residence (SFR) at 1100 Stoughton Ave., 1503 Parallel St., and 1509 Parallel St. are estimated to be removed for project purposes. Eight permanently set mobile homes will be displaced by the project. Damages to the remainder are estimated as a percentage of the fee value. Taken into consideration in estimating the damages is the shape of the remainder, additional cloud on the title and triangulation of the remainder of the parcel.
- 39. Contingencies are estimated as a percentage of the total lands and damages.

REAL ESTATE ESTIMATE

Estimate of Cost (date	e of value)	27 Octobe	er 19	993
FEE Title:		:		
By land Classifica	tion			
Industrial	.55 ac	\$87,120	=	\$47,916
Residential	1.10 ac	\$64,000	=	\$70,400
Agricultural	1.58 ac		=	\$ 1,580
Flood Plain	.21 ac	\$ 100	=	\$ 21
Public Use	.48	\$ -0-	=	\$ -0-
Total Fee Title		•		\$119,917
Permanent Levee/ Chann	nel Easement			
By land Classificat	tion			
Industrial	6.53	\$87,120	=	\$568,894
Residential	2.90	\$64,000	=	\$185,600
Agricultural	13.14	\$ 1,000	=	\$ 13,140
Flood Plain	4.04	\$ 400	=	
River Bank/Ch	2.41	\$ 100	= '	\$ 241
Public Use/Rdwy		\$ 400 \$ 100 \$ -0-	=	\$ -0-
Total Levee/Channel Ea				\$769,491
Estimated at 80% of				\$615,600

Temporary Easement

Flood Plain 1.25 ac \$ 400 = \$ 50

(calculated at 10% of FEE) Total Lands

\$735,567

Damages estimated at 25% of Fee Value

\$222,400

Total Lands and Damages

\$958,000

Contingencies (15%)

\$144,000

\$22,500

Total Lands and Damages w/contingencies

\$1,102,000

RELOCATION ASSISTANCE

Single Family Residences

1100 Stoughton Avenue - Assessed value \$61,500 assumed 20% lower than FMV Estimated value \$73,800 Relocation Assistance

Total for 1100 Stoughton Ave.

\$96,300

1503 Parallel Street - Assessed value Unable to determine was not in cty records Estimated value \$80,000 Relocation Assistance \$22,500

Estimated total for 1503 Parallel St.

\$102,500

1509 Parallel Street - Assessed value \$75,500 assumed 20% lower than FMV Estimated value (Apt hse) \$90,600 Relocation Assistance \$22,500 Estimated total for 1509 Parallel St. \$113,100

Modular/Mobile Homes

Eight permanently affixed mobile homes to be removed from the take area with anticipated relocation assistance are estimated at \$20,000 each \$160,000

Administrative acquisition costs

Local Sponsor Federal

\$54,000 \$29,300

PROJECT TOTAL (ESTIMATED) (ROUNDED)

\$1,657,000

MEASURES FOR PHYSICAL SECURITY

40. Hatches at the gatewells would be secured with locks to prevent the public from entering. The gatewells will have railings around them to prevent falls from them. Public access to the tops of levees and pedestrian trail by vehicles will be prevented by removal guard post.

REVISED REAL ESTATE COST ESTIMATE FOR

CHASKA STAGE III FLOOD CONTROL PROJECT

- 1. Revised plans have been provided by ED-D, Matt Bray with a request to provide an updated cost estimate for Stage III of the Flood Control Project in Chaska, Minnesota.
- 2. It is understood that the City of Chaska will provide, without cost to the United States Government, U.S. Army Corps of Engineers and as generally provided by the local cooperation agreement, all real estate interests, to include borrow and disposal areas, required for the construction, operation, and subsequent maintenance of the project. The city will also comply with all provisions of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.
- 3. The revised Stage III flood control project will consist of approximately 35.3 acres of Permanent Levee and Channel Easement, 3.91 acres of Fee title for recreational trails, and 1.25 acres of temporary easement.
- 4. The real estate requirements were estimated from drawings and acreage provided to the Real Estate Division by ED-D.
- 5. A SFR at 1100 Stoughton Ave., 1503 Parallel St., and 1509 Parallel St. are estimated to be removed for project purposes.
- 6. Eight permanently set mobile homes will displaced by the project.

ASSUMPTIONS, LIMITATIONS, AND CLARIFYING STATEMENTS

- 1. This is a revision of the Real Estate Cost Estimate prepared and submitted on 23 October 1993.
- 2. Maps provided by ED-D do not distinguish between levee and channel easement, therefore the estimate for the channel and levee easement are the same.
- 3. Single family residences located at 1100 Stoughton Ave., 1503 Parallel Street and 1509 Parallel Street are privately owned and will need to be removed for project purposes.
- 4. That the various land classifications are estimates prepared by the appraiser from maps provided by ED-D.
- 5. Damages to the remainder are estimated as a percentage of the fee value. Taken into consideration in estimating the damages is the shape of the remainder, additional cloud on the title and triangulation of the remainder of the parcel.

TAC \$4

6. Contingencies are estimated because of the methods employed to arrive at values, unknown acreages due to meander of the river, no known boundary lines or ownership information, type of improvements involved in the take area, amount of elapsed time before the project may become a reality and other unknown elements that are not considered in this estimate.

REAL ESTATE ESTIMATE
Estimate of Cost (date of value) 27 October 1993

Estimate of Cos	t (date of	value) 27	7 Octobe	r 1993	
FEE Title:					
By land Cl	assificati	on.			
	trial		\$87,	120 =	\$47,916
	ential		\$64	000 =	\$70,400
	ultural		\$ 1	000 =	\$ 1 500
		.21 ac	\$ -,	100 =	\$ 1,580 \$ 21
		.48		-0-	\$ -0-
Total Fee Title		• • • • • • • • • • • • • • • • • • • •	•		\$119,917
Permanent Levee	/Channel E	asement			
By land Cla					
Indust	trial	6.53	\$87,	120	\$568,894
	ential		\$64.0	000	\$185,600
Agricı	ıltural 1	3.14	\$ 1,0	000	\$ 14,720
	Plain		\$ 4	400	\$ 1,616
River	Bank/Ch	2.41	\$ 1,0 \$ \$ \$	100	\$ 14,720 \$ 1,616 \$ 241
Public	Use/Rdwy	2.36	\$ -	-0-	\$ -0-
Total Levee/Char	nnel Easem	ent			\$769,491
Estimated a	at 80% of 3	Fee	•		\$615,600
Temporary Easeme	ent				
	Plain :	1.25 ac	\$ 4	00 calcul	ated at 10%
of FEE			•		\$ 50
Total Lands					\$735,567
					Ţ,
Damages estimate	ed at 25% o	of Fee Value			\$222,400
Total Lands and	Damages				\$958,000
Contingencies (1	5%)				\$144,000
m. L 3 w 3 -	_				•
Total Lands and	Damages v	<pre>// contingend</pre>	cies		\$1,102,000
					• •

RELOCATION ASSISTANCE

Single Family Residences

1100 Stoughton Avenue - Assessed value \$61,500 assumed 20% lower than FMV Estimated value \$73,800

Relocation Assistance \$22,500

Total for 1100 Stoughton Ave \$96,300

1503 Parallel Street - Assessed value Unable to determine - was not in county records. Estimated Value \$80,000 Relocation Assistance \$22,500

Estimated total 1503 Par 1509 Parallel Street - Assess lower than FMV Estimated valu Relocation Assistance Estimated total 1509 Par	sed value \$75,9 se (Apt house)	
Modular/Mobile Homes Eight permanently affixed mobile take area with anticipated relocat \$20,000 each		
Administrative acquisition costs Local Sponsor Federal		\$54,000 \$29,300
PROJECT TOTAL (ESTIMATED)	(ROUNDED)	\$1,657,000
SUMMARY OF REAL	ESTATE COSTS	
		•
LAND FEE		
	\$87,120	\$47,916
Residential 1.10	\$64,000	\$70,400
Agricultural 1.58	\$ 1,000	\$ 1,580
Flood Plain .21	\$ 1,000 \$ 100 \$ -0-	\$ 1,580 \$ 21 \$ -0-
Public Use .48	\$ -0-	\$ -0-
Total Fee Land	·	\$119,917
Permanent Levee/Channel Easement		•
Industrial 6.53	\$87,120	\$568,894
Residential 2.90	\$64,000	\$185,600
Agricultural 13.14	\$ 1,000 \$ 400 \$ 100 \$ -0-	\$ 14,720 \$ 1,616 \$ 241 \$ -0-
Flood Plain 4.04	\$ 400	\$ 1,616
River Bank/Ch 2.41	\$ 100	\$ 241
Public Use/Rd 2.36	\$ -0-	\$ - 0 -
Total	•	\$769,491
Estimated at 80% of Fee		\$615 , 600,
Improvements to Real Property		
1100 Stoughton Avenue		\$73,800
1503 Parallel Street		\$80,000
1509 Parallel Street		\$90,600
8 Mobile Homes		\$96,000
Total Improvements	•	\$340,400
Temporary Easement	6 400	A
Flood Plain 1.25 Minerals	\$ 400	\$ 50 \$ - 0-
Timber		
Damages estimated at 25%		\$ -0- \$222,400
ADMINISTRATIVE ACQUISITION COSTS		\$222,400
Local Sponsor		\$54,000
Federal		\$29,300
Total Administrative Costs		\$83,300
RELOCATION ASSISTANCE		700,000
1100 Stoughton Avenue		\$22,500
1503 Parallel Street		\$22,500

1509 Parallel Street 8 Mobile Homes Total Relocation Assistance CONTINGENCIES

\$131,500

\$22,500 \$64,000

Estimated at 9.5%

\$143,750

PROJECT TOTAL ESTIMATED ROUNDED

\$1,656,920 \$1,657,000

Larry R. Joachim Chief, Appraisal Branch Real Estate Division

CENCD-PE-ED-T

- 1. Response to Simpson comment 2. The implication that the wide levees will dissipate the under seepage pressures more effectively than the narrower levees is for practical purposes not true. A wide levee merely transfers the pressures under the levee further landward. See your own computations for the levees at Houston, and the mathematical derivations by Doug Spaulding (Case 5), located some where in your own files.
- 2. Response to Simpson comment 5. There will be times when the levees are saturated even though there is no flood. This is particularly true during the spring thaw when groundwater is high, snow is melting, and the frost is going out. This is also the time when the most flooding occurs. If saturated soils are a stability problem, than design for saturated soil strengths. Rethink the #=Zero concept, if appropriate.

DEPARTMENT OF THE ARMY

ST. PAUL DISTRICT, CORPS OF ENGINEERS 190 FIFTH STREET EAST ST. PAUL, MINNESOTA 55101-1636

13 December 1993

CENCS-ED-M (1110)

MEMORANDUM FOR: Co

Commander, North Central Division, ATTN: CENCD-

PE-ED, 111 North Canal Street, Chicago,

Illinois 60606-7205

SUBJECT: Flood Control at Chaska, Minnesota, Design Memorandum No. 3, Stage 3, East Creek

- 1. Subject report is submitted in accordance with ER 1110-2-1150 for your review and approval.
- 2. This design memorandum presents the design improvements for construction of the East Creek Diversion Channel, levee at East Creek, and related structures as well as recreational features for the flood control project at Chaska, Minnesota.

FOR THE COMMANDER:

Encl (16 cys) Chaska Stage 3 DM ROBERT F. POST, P.E. Chief, Engineering Division

FLOOD CONTROL EAST CREEK AT CHASKA, MINNESOTA

DESIGN MEMORANDUM NO. 3

MINNESOTA RIVER

DESIGN MEMORANDUM SCHEDULE

Number	Scheduled Completion	Submitted NCD	Submitted OCE	Approved
General	Mar 84	6 Mar 84	May 84	Jul 84
1. Chaska Creek (Stg 2)	Jul 84	Dec 84	Feb 85	Aug 85
2. Minnesota Rvr (Stg 4)	Mar 91	24 Apr 91	12 Aug 91	12 Aug 91
3. East Creek (Stg 3)	Dec 93			

EXECUTIVE SUMMARY

The Chaska, Minnesota Flood Control project was authorized for construction by Section 102 of the 1976 Water Resources Development Act, Public Law 94-587. Chaska is on the Minnesota River in Carver County in south-central Minnesota about 20 miles southwest of Minneapolis-St. Paul.

The flood control project provides flood protection to Chaska by diverting both Chaska and East Creeks and by providing a levee that protects against flooding by the Minnesota River. The creek diversions provide protection for about a 5500 cfs flow and the levee provides one-percent chance flood protection. Pertinent data is on the following page.

The total estimated project cost is \$42,400,000. Federal costs are estimated at \$30,000,000; non-Federal costs are estimated at \$12,400,000. The estimated cost for Stage 3, East Creek is \$16,456,000. Federal cost for Stage 3 are estimated at \$10,649,000; non-Federal costs are estimated at \$5,807,000.

The Local Cooperation Agreement was executed in September 1988. The Stage 1 construction contract was awarded in September 1988. The Stage 2 construction contract was awarded in August 1989. The Stage 4 construction contract was awarded in March 1993. Stage 3 is scheduled for a construction contract award in February 1995.

This Design Memorandum presents the recommended design for Stage 3, East Creek Diversion. The design includes four drop structures, articulated concrete channel, trapezoidal riprap channel, two 12' x 12' box culverts, three roadway bridges, landscaping, recreation trail, two outlets with gatewells and the remaining Stage 4 levee at the East Creek intersection.

PERTINENT DATA

<u>Project Document</u> - House Document 94-644, 94th Congress, 2nd Session.

<u>Project Authorization</u> - 1976 Water Resources Development Act (Public Law 94-587).

Project Purpose - Flood Control.

<u>Location</u> - The project is located on the Minnesota River in Carver County and Chaska, Minnesota, and includes both Chaska and East Creeks, which are tributaries of the Minnesota River.

Hydrology and Hydraulics

Watershed Dra	inage Area
---------------	------------

Chaska Creek Diversion Inlet 14.9 Square Miles
East Creek Diversion Inlet 10.1 Square Miles
Minnesota River 16,600 Square Miles

Design Flows

Chaska Creek Diversion 5,550 cfs
East Creek Diversion 5,500 cfs
Minnesota River 168,000 cfs (1 percent exceedence frequency event)

Principal Items of Work

Diversion Channel

 Stage 2
 5,800 LF

 Stage 3
 6,000 LF

Levee Improvement

 Stage 2
 2,100 LF

 Stage 4
 4,200 LF

New Levee, Stage 4 2,800 LF

Drop Structures, Stage 3 4

Pumping Station, Stage 4 1

Bridges

Stage 2 4
Stage 3 3

Economics Oct 83

Federal first cost \$23,200,000
Non-Federal first cost 9,500,000
Total first cost 32,700,000
Average annual operation & maintenance cost 37,400
Total average annual cost 2,948,000
Average annual benefits 2,289,000
Benefit-cost ratio .78

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

TABLE OF CONTENTS

<u>Item</u>	<u>Page</u>	<u>Paragraph</u>
Scope and Location	1	1
Project Authorization	1	2
Project Description - General	1	3
Departures from Approved General Design Memorandum	1	4
Alternative Plans Considered	2	5
Value Engineering	2	6
Description of Proposed Structures Channel Levee Ponding Area Outlets Landscaping Recreation	2 3 3 4 4	7 8 9-10 11-12 13 14
Relocations Utilities Sanitary Sewer and Lift Station Bridges Roads	4 4-5 5 5	15-16 17-18 19 20
Permits	5	21
Environmental Analysis Environmental Setting Environmental Site Assessment Environmental Impacts Cultural Resources	6 6 6-7 7	22-24 25 26-29 30-32
Construction Materials General Levee Fill Riprap and Bedding	8 8 8	33 34 35
Constructibility	9	36
Real Estate Requirements	9	37-39
Measures for Physical Security	10	40

TABLE OF CONTENTS (CONT.)

<u>Item</u>		<u>Paragraph</u>
Corrosion Mitigation		41
Water Quality	11	42-44
Cost Estimate	11-13	45-46
Current Benefit - Cost Analysis	14	47
Schedule for Design and Construction Design Construction	15 15	48 49
Funding Schedule		50
Operation and Maintenance		51
Recommendation	15	52
Number 1 Summary Comparison of Estimated Firs 2 Benefit - Cost Analysis	t Costs	<u>Page</u> 12 14

DRAWING INDEX

<u>Plate</u>	
	GENERAL
1	Location Map, Vicinity Map, Drawing Index
2	General Plan
3	Plan and Profile Sta. 0+00 to 10+00
4	Plan and Profile Sta. 10+00 to 20+00
5	Plan and Profile Sta. 20+00 to 30+00
6	Plan and Profile Sta. 30+00 to 40+00
7	Plan and Profile Sta. 40+00 to 50+00
8	Plan and Profile Sta. 50+00 to 60+00
9	Outlet D - Plan
10	
11	Ponding Area "D"
12	Typical Section - Sta. 0+50 to Sta. 2+85
13	Typical Section - Sta. 3+50 to Sta. 3+60
14	Typical Sections - Sta. 3+73 to Sta. 8+25
15	Typical Sections - Sta. 9+72 to Sta. 30+60
16	Typical Sections - Sta. 28+70 to Sta. 50+05
17	Typical Sections - Sta. 50+05 to Sta. 58+80
18	Typical Sections - Outlet E
19	Miscellaneous Details

TABLE OF CONTENTS (CONT.)

STRUCTURAL

- 20 Drop Str. 1 & Ret. Walls Plan, Profile, Elev. & Section
- 21 Drop Str. 1 Cut Off Walls Sections & Typ. Dtls.
- 22 Drop Str. 2 Plan, Profile & Section
- 23 Drop Str. 2 & Ret. Walls Elevations
- 24 Drop Str. 2 Ret. & Cut Off Walls Sections
- 25 Drop Str. 3 Plan, Profile & Section
- 26 Drop Str. 3 & Ret. Walls Elevations
- 27 Drop Str. 3 Ret. & Cut Off Walls Sections
- 28 Drop Str. 4 & Bridge Plan, Profile, Elev. & Sections
- 29 Drop Str. 4 & Ret. Walls Elevations
- 30 Drop Str. 4 Ret. & Cut Off Walls Sections
- 31 Outlets D & E Sections
- 32 Gatewell D Plan, Sections & Details
- 33 Gatewell E Plan, Sections & Details
- 34 Gatewell D Outlet Str. Plan, Profile, Elev. & Detail
- 35 Storm Sewer Outlts Sta. 7+07 & 34+95 Plan, Prfls. & Sect.

LANDSCAPE

- 36 Landscape Development Sta. 0+00 to Sta. 10+00
- 37 Landscape Development Sta. 10+00 to Sta. 20+00
- 38 Landscape Development Sta. 20+00 to Sta. 30+00
- 39 Landscape Development Sta. 30+00 to Sta. 40+00
- 40 Landscape Development Sta. 40+00 to Sta. 50+00
- 41 Landscape Development Sta. 50+00 to Sta. 61+93
- 42 Landscape Development Details
- 43 Landscape Development Details

Pages
EA-1 to EA-10

Draft Finding of No Significant Impact and Environment Assessment

APPENDIXES

<u>Letter</u>

- A Hydrology
- B Hydraulic
- C Interior Flood Control
- D Geotechnical
- E Structural
- F Recreation, Landscape Development & Aesthetic Considerations
- G Constructibility
- H Cost Estimate
- I Not Used
- J Hwy. 41 / East Creek Relocations

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

MAIN REPORT

SCOPE AND LOCATION

1. The flood control project at Chaska, Minnesota is divided into four stages of construction. This Design Memorandum (DM) presents the design and discussion of planning for Stage 3 which, in general, consists of a diversion channel that protects Chaska from flooding of East Creek. Work to be done includes approximately 5300 feet of riprap channel, 350 feet of grass lined channel, 380 feet of articulated concrete channel, one inlet structure, four drop structures, two outlets with gatewells, 200 feet of levee, 630 feet of 12' x 12' box culvert, three bridges, and two sanitary lift stations.

PROJECT AUTHORIZATION

2. This project was authorized for construction under Public Law 94-587.

PROJECT DESCRIPTION - GENERAL

- 3. The Chaska Flood Control project consists of the following four stages:
 - a. Stage 1, Road raise along Chaska Creek.
 - Stage 2, Chaska Creek Diversion Channel.
 - c. Stage 3, East Creek Diversion Channel.
 - d. Stage 4, Minnesota River Levee.

Also included are recreational improvements, an environmental mitigation plan, and aesthetic consideration.

DEPARTURES FROM APPROVED GENERAL DESIGN MEMORANDUM

- 4. The design presented here essentially conforms to that shown in the General Design Memorandum, Supplement No. 2, dated 21 December 1989. Exceptions include:
- a. The bridge proposed at the Highway 41/East Creek intersection has been changed to two 12' x 12' box culverts.
- b. The downstream portion of the diversion channel has been changed from a concrete and riprap channel to a riprap and articulated concrete channel.

- c. The diversion channel design flow is 5500 cfs whereas the current SPF is estimated at 6100 cfs. See Appendix A for additional information.
- d. The residual damages downstream of the point of diversion adjacent to the existing East Creek have been eliminated. See Appendix C.

ALTERNATIVE PLANS CONSIDERED

- 5. Other plans considered include:
- a. Drop structure at about Station 46+00 instead of at Station 33+00.
- b. Concrete U-structure channel from about Station 9+00 to 33+00 instead of riprapped channel.
- c. Concrete drop structure at the confluence of the Minnesota River, Station 0+00, instead of the articulated concrete.

VALUE ENGINEERING

6. The current channel alignment is the result of a VE study that was performed on the GDM in 1989. An additional VE study is scheduled to be performed on this approved DM approximately February 1994.

DESCRIPTION OF PROPOSED STRUCTURES

CHANNEL (Plates 2 - 8)

- 7. The diversion channel consists of the following, starting at the downstream end:
 - a. Approximately 380 feet of articulated concrete channel.
 - b. Approximately 350 feet of grass lined channel.
 - c. Approximately 100 feet of riprap channel.
 - d. Concrete drop structure.
 - e. Approximately 600 feet of riprap channel.
 - f. Concrete drop structure.
 - g. Approximately 1700 feet of riprap channel.
 - h. Concrete drop structure.
 - i. Approximately 1800 feet of riprap channel.
 - j. Concrete drop structure.
 - k. Approximately 700 feet of riprap channel.

Additional descriptions of the channel and concrete structures are contained in Appendixes B and E. Additional descriptions of the designs are contained in Appendix A - Hydrology, Appendix B - $\frac{1}{2}$

Hydraulic, Appendix C - Interior Flood Control, Appendix D - Geotechnical, Appendix E - Structural, Appendix F - Recreation, Landscape Development & Aesthetic Considerations and Appendix J - Hwy 41/East Creek Relocations.

LEVEE (Plate 9)

8. The levee construction will consist of about 200 feet of new levee about 25 feet high. This levee will complete the levee constructed under Stage 4. The levee design is discussed in Design Memorandum No. 2, dated March 1991, Appendixes B and C.

PONDING AREA (Plates 10 & 11)

- 9. A storm water ponding area at Outlet D will be provided. This ponding area will be in and adjacent to the existing East Creek just upstream from Outlet D. The house across East Creek from Courthouse Lake and about 800 feet west of the proposed levee currently has a dike with gated outlets that protect it from flooding of the Minnesota River. This dike and gates will protect it from flooding from the ponding area. However, their small pump will continue to be required to remove seepage resulting from an existing spring.
- 10. The sides slopes of the ponding area just upstream from Outlet D, will be graded, topsoiled and seeded so that the area can be maintained. Ponding markers will be added as required. Additional discussion on the ponding area is contained in Appendix C. A portable 5000 gpm pump will be provided to limit ponding levels at Pond D during rare events such as the summer flood of 1993. This pump can also be used at the ponding area constructed during Stage 4 on Chaska Creek at Outlet A. Some pumping was required at Pond A during the 1993 flood.

OUTLETS (Plates 8, 9, 31 - 35)

- 11. Two gated outlets with gatewells will be required. Outlet D will be constructed in the proposed levee to allow normal low flows from East Creek to pass through the levee. During high flows on the Minnesota River the sluice gate will be closed and water from East Creek will pond in the ponding area.
- 12. Outlet E will be constructed at the upstream end of the Stage 3 diversion channel. This outlet will allow normal low flows to pass through Chaska. When the Outlet E capacity is exceeded, the excess water will begin ponding to a depth of 5 feet and then begin flowing down the diversion channel. When rising Minnesota River flows indicate that Outlet D will need to be closed, Outlet E will be closed in advance.

LANDSCAPING

13. The levee, channel and surrounding project area will be restored and landscaped. The location and proximity of the surrounding residential or other land uses dictate the need for vegetative screening and provisions for enhancing or directing views. Design consideration include the ease of maintenance and the incorporation of plant material that will offer seasonal color, bloom, fruit, hardiness, and wildlife shelter and food values. Additional considerations will be providing shade for trail users and maintaining plant selections that are consistent with Stage 2 and 4. The levee will have turf grasses established.

RECREATION

14. A multi-use trail will be provided along the channel. It will consist of an 8-foot wide bituminous surface with 1-foot wide aggregate shoulders. In the vicinity of Courthouse Lake, (Stage 4 levee construction) at approximately Station 29+00, a bituminous surfaced trail will be constructed linking the levee-top trail with a trail constructed around Courthouse Lake. From approximately Station 29+00 to Station 0+00 the levee-top trail's surface will be stabilized aggregate during Stage 4 construction, with a bituminous trail added during Stage 3 construction. Safety rails will be provided as appropriate. A parking lot with one informational kiosk will be provided. The recreation trail will be fully accessible by mobility impaired visitors with the appropriate slopes and landings provided at major access points.

RELOCATIONS

UTILITIES

- 15. As provided in the Local Cooperation Agreement (LCA), the Local Sponsor shall "accomplish or arrange for accomplishment at no cost to the Government of all alterations and relocations of buildings; highways; railroads; bridges (other than railroad bridges and approaches thereto); storm drains; utilities (other than those portions which pass under or through the project structures); cemeteries; and other facilities, structures, and improvements determined by the Government to be necessary for construction of the project."
- 16. A table indicating the required utility modifications is given in Appendix G.

SANITARY SEWER AND LIFT STATION

17. Existing sanitary sewers cross the diversion channel at Stoughton Avenue and Highway 212. Two sanitary lift stations will be constructed in these areas along with appropriate sanitary piping. This construction is classified as a relocation and as

such is the Local Sponsor's responsibility to accomplish and pay for the design and construction. However, Chaska will be given the option of:

- a. Designing and constructing the relocation.
- b. Designing the relocation and having it constructed with the Stage 3 flood control construction contract.
- c. Having it designed with the Stage 3 plans and specifications and having it constructed with the Stage 3 flood control construction contract.
- 18. Chaska's future development will require construction of a new trunk sanitary sewer from north of Outlet E to the current sanitary treatment plant in the area of Courthouse Lake. Either the abandoned Highway 17 right-of-way will be used or an additional strip of land adjacent to and west of the diversion channel right-of-way will be acquired by Chaska.

BRIDGES

- 19. Three bridges will be required. They will be at the following locations and of the following types:
 - a. Stoughton Ave. 3 span, prestressed concrete beams.
 - b. Highway 212 3 span, prestressed concrete beams.
 - c. Engler Boulevard 3 span, steel beams.

ROADS

20. The Highway 41 roadway relocation is discussed in Appendix J. It consists of two 12' \times 12' box culverts, debris barrier and energy dissipator. The plan shown in Appendix J includes the construction required to accommodate the Minnesota Highway Department's future Highway 212 by pass plans. The completed roadway shown is higher and wider than the existing roadway.

PERMITS

21. Permits required for project construction include a Minnesota Department of Natural Resources Protected Waters Permit and a National Pollutant Discharge Elimination System (NPDES) permit for construction activities. The City of Chaska will obtain the Protected Waters Permit. The Corps and General Contractor will obtain the NPDES Permit. NPDES permit requirements for erosion control will be incorporated into the plans and specifications. Other miscellaneous permits at the local and State level will be obtained by the City and/or General Contractor.

ENVIRONMENTAL ANALYSIS

ENVIRONMENTAL SETTING

- 22. Land use along this reach of the project is a mix of residential development, commercial development, undeveloped lands and cropland. The inlet of the diversion channel is located in a residential area that is primarily a trailer park. Most of the channel is located in open fields. Some light industrial development and a nursery are adjacent to the channel alignment on the upstream end. The lower 1600 feet of the channel runs adjacent to the Crystal Sugar facilities. The floodplain of the Minnesota River is composed of a mix of riparian woods and floodplain wetlands. Riparian woods vegetation includes silver maple, American elm, box elder, cottonwood and willow with an understory of nettle, jewelweed and grasses.
- 23. A fen is located immediately to the east of the proposed channel. A fen is a type of wetland supported by groundwater discharge such as springs and seepages. The fen is about 5 acres in size and is fairly diverse in nature. During a recent survey four plant communities were identified within this fen: sedge meadow, shallow marsh, shrub-carr and lowland hardwood forest. The sedge meadow is dominated by tussock sedge and Canada bluejoint grass. Prairie sedge, marsh fern, asters and goldenrods are also present. The shallow marsh is dominated by lake sedge, cattail and reed canary grass, with marsh marigold and jewelweed as common forbs. The shrug-carr is dominated by willows and the lowland hardwoods are typical of riparian woods in the area.
- 24. An Environmental Site History was conducted for the proposed channel alignment to assess the potential of encountering contaminated soils during construction. A review of insurance maps, directories, aerial photos, data bases and a site survey did not indicate any potential for contaminated soils along the channel alignment.

ENVIRONMENTAL SITE ASSESSMENT

25. The Environmental Site Assessment for the East Creek Diversion channel is titled "Contaminated Materials and Groundwater Investigation Work Plan", and is contained in Supplement 3 to the General Design Memorandum, dated September 1992.

ENVIRONMENTAL IMPACTS

26. Construction of the proposed features will result in the loss of approximately 3 acres of grassland, 8 acres of cropland, and 3 acres of wooded areas. The trees that would be lost are located primarily in the residential area that will be relocated at the inlet. Habitat losses to wildlife with project construction were partially mitigated with the planting of upland vegetation on project lands in conjunction with the construction of Stage 2 along

- Chaska Creek. Shrubs and shrubby tree species such as dogweed, hazel and russian olive along with oak, wildplum, chokecherry, maple and ash were planted and will be managed for wildlife.
- 27. Mitigation for losses associated with construction of this and other stages of the project will be provided with the construction of fish and wildlife features on the Minnesota Valley National Wildlife Refuge. The features include the construction of an outlet control structure for Chaska Lake and the construction of a 16 acre moist soil unit just to the east of Chaska Lake. The outlet control structure will provide the capability to manipulate water levels on the lake to control aquatic vegetation. The moist soil unit will be managed to provide feeding habitat for waterfowl. The area will be created by diking a 16 acre site that is currently cropland. The system will consist of two cells that can be flooded to a depth of about 2 feet and managed independently. This feature will be constructed concurrently with Stage 4 of the project.
- 28. The outlet for the diversion channel is routed through an old lime settling pond that was used in the processing of sugar beets. The pond is now abandoned and is filled to height of about 15 feet with lime. The lime is occasionally mined by the current owners and sold to the surrounding agricultural community for soil adjustment. This alignment was selected to avoid the fen complex immediately to the east of the proposed channel.
- 29. The impacts of the Chaska Flood Control Project were described in the Final Supplement to the Final Environmental Impact Statement, dated August 1982 and the Final Supplement II, dated February 1985. Design departures from what was described in the General Design Memorandum have been evaluated. The proposed channel alignment, although similar to the one discussed in the 1982 Supplement, is a substantial departure from the selected plan described in the Final Supplement II. Therefore, an environmental assessment has been prepared addressing this change in project design. The assessment concludes that the impacts of the proposed channel alignment and design would not substantially differ in type or magnitude from what was described in earlier NEPA documents. No additional mitigation would be required with the proposed channel feature.

CULTURAL RESOURCES

30. In accordance with Section 106 of the National Historic Preservation Act of 1966, as amended, the National Register of Historic Places has been consulted. A standing structure survey of Carver County conducted for the Minnesota State Historic Preservation Office in 1978 recorded 23 historic National Register buildings and one National Register district in the City of Chaska. As of 1 July 1992, there are no sites listed on or eligible or inclusion on the National Register that will be affected by the proposed Stage 3. The trailer houses to be removed are all less than 50 years old. The private residences to be removed have been

evaluated as being not eligible for listing on the National Register. As a result, there will be no effect on significant historic properties if any of these buildings are removed as proposed.

- 31. The Stage 3 diversion channel alignment was surveyed for cultural resources in 1991 in conjunction with a survey of the Stage 4 levee alignment and moist soil unit. No cultural resources were encountered along the Stage 3 alignment either on the surface or below it in power auger tests drilled to a maximum depth of 8 meters (ca. 26 feet). The Minnesota State Historic Preservation Office concurs that "no properties eligible for or listed on the National Register of Historic Places are within the project's area of potential effect" (letter from MN SHPO, dated 16 December 1991).
- 32. The proposed Stage 4 borrow area, which will also be used for Stage 3, has likewise been cleared from a cultural resources standpoint. A cultural resources survey of the Kusske borrow pit during April 1992 encountered only one small chipped stone flake from the plowzone during shovel-testing. Based on the results of the survey, the Minnesota State Historic Preservation Office has concluded that "no properties eligible for or listed on the National Register of Historic Places are within the area of potential effect" (letter from MN SHPO, dated 26 May 1992). Any additional or alternate borrow or disposal areas chosen for use for Stage 3 may need a cultural resources survey prior to their use. The need for and results of such surveys will be coordinated with the Minnesota State Historic Preservation Office.

CONSTRUCTION MATERIALS

GENERAL

33. Concrete aggregate, impervious and pervious fill, and topsoil can be obtained from commercial sources in the area. See Appendix D for additional discussion on construction materials.

LEVEE FILL

34. Impervious levee fill will be obtained from a commercial borrow area located about two miles from the project. This is the same borrow area provided by Chaska for the Stage 2 and 4 levee.

RIPRAP AND BEDDING

35. Riprap and bedding of adequate quality can be obtained from existing quarries located within 20 miles of Chaska.

CONSTRUCTIBILITY

36. Appendix G contains a discussion on the construction aspects of this project.

REAL ESTATE REQUIREMENTS

- 37. The City of Chaska will provide, without cost to the United States, and as generally provided by the Local Cooperation Agreement, all real estate interests, to include borrow and disposal areas, required for the construction, operation, and subsequent maintenance of the project. The City will also comply with all provisions of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Public Law 91-646, as amended).
- 38. This stage of the Chaska Flood Control project will consist of approximately 35.3 acres of Permanent Levee and Channel Easement, 3.91 acres of Fee title for recreational trails, and 1.25 acres of temporary easement. A Single Family Residence (SFR) at 1100 Stoughton Ave., 1503 Parallel St., and 1509 Parallel St. are estimated to be removed for project purposes. Eight permanently set mobile homes will be displaced by the project. Damages to the remainder are estimated as a percentage of the fee value. Taken into consideration in estimating the damages is the shape of the remainder, additional cloud on the title and triangulation of the remainder of the parcel.
- 39. Contingencies are estimated as a percentage of the total lands and damages to compensate for any errors or omissions.

REAL ESTATE ESTIMATE

Estimate of Cost (date of	value)	27 October 1993	1
FEE Title: By land Classification			
Industrial	.55 ac		\$47,916
Residential	1.10 ac		\$70,400
Agricultural	1.58 ac		\$ 1,580
Flood Plain	.21 ac	\$ 100 =	\$ 21
Public Use	.48	\$ 100 = \$ -0- =	\$ -0-
Total Fee Title		·	\$119,917
Permanent Levee/ Channel	Easement		
By land Classification	n		
Industrial	6.53	\$87,120 =	\$568,894
Residential	2.90	\$64,000 =	\$185,600
Agricultural	13.14	\$ 1,000 =	\$ 13,140
Flood Plain	4.04	\$ 400 =	\$ 1,616
River Bank/Ch	2.41	\$ 100 =	\$ 241
Public Use/Rdwy			\$ -0-
Total Levee/Channel Easem		•	\$769,491
Estimated at 80% of F			\$615,600

Temporary Easement Flood Plain 1.25 ac (calculated at 10% of FEE)	\$ 400	=	\$	50
Total Lands			\$	735,567
Damages estimated at 25% of Fee Value			\$222	,400
Total Lands and Damages			\$	958,000
Contingencies (15%)			\$144	,000

Total Lands and Damages w/contingencies

RELOCATION ASSISTANCE

Single	Family	Residences
--------	--------	------------

1100 Stoughton Avenue - Assessed value \$61,500 assumed 20% lower than FMV Estimated value \$73,800 Relocation Assistance \$22,500 Total for 1100 Stoughton Ave. \$96,300

1503 Parallel Street - Assessed value Unable to determine - was not in cty records Estimated value \$80,000 Relocation Assistance \$22,500 Estimated total for 1503 Parallel St. \$102,500

1509 Parallel Street - Assessed value &75,500 assumed 20% lower than FMV Estimated value (Apt hse) \$90,600 Relocation Assistance \$22,500 Estimated total for 1509 Parallel St. \$102,500

Modular/Mobile Homes

Eight permanently affixed mobile homes to be removed from the take area with anticipated relocation assistance are estimated at \$20,000 each \$160,000

Administrative acquisition costs

Local Sponsor \$54,000 Federal \$29,300

PROJECT TOTAL (ESTIMATED)

\$1,657,200

7

0

\$1,102,000

MEASURES FOR PHYSICAL SECURITY

40. Hatches at the gatewells would be secured with locks to prevent the public from entering. The gatewells will have railings around them to prevent falls from them. Public access to the tops of levees and pedestrian trail by vehicles will be prevented by removable guard post.

CORROSION MITIGATION

41. There is no evidence that corrosion due to the water and soils in the Chaska area is a problem. Therefore, no corrosion mitigation is planned.

WATER QUALITY

- 42. The fill materials placed in the river channel would be uncontaminated materials obtained from approved quarries and borrow areas. This should insure that water quality standards would not be violated because of project-related activities. Although some minor temporary increase of turbidity would occur during construction, levels of turbidity would return to normal after construction. No long term ponding of water or operational procedures that would effect water quality would be associated with the project.
- 43. To meet EPA/MPCA non-point pollution standards the Local Sponsor has investigated the impacts of the East Creek diversion channel on water quality. Their findings are included in a report titled "Stormwater Quality Improvements for Chaska East Creek and West Creek at Chaska Lake, Chaska, Minnesota", dated June 1993. Among the reports recommendations are:
- a. Construction of a 3-cell sediment and Nutrient trap pond downstream of Outlet D.
- b. Construction of two 2-cell sediment trap ponds upstream of Outlet E.
- 44. The provisions of Section 404 of the Clean Water Act have been met with the submission of the EIS Supplement, including a Section 404(b)(1) Evaluation, to Congress on 26 April 1982. The provisions of Section 404 were further met with the submission of the EIS Supplement No. 2, including a Section 404(b)(1) Evaluation in April 1985. The final EIS for Supplement No. 2 was filed in May 1985.

COST ESTIMATE

45. The cost estimate in this DM is based on current price levels and reflects recent prices for similar work done in the St. Paul District. The following table (Table 1) presents a cost estimate for Chaska Stage 3 and a comparison of the cost estimate with the current approved PB-3 estimate. It should be noted that the PB-3 estimate was based on a value engineering proposal, VE89-12, dated September 1989. That design, starting at the upstream end, included a riprapped channel with a 30-foot bottom width, flanked with levees from the existing creek to a 20-foot wide drop structure at Highway 17. Downstream of the drop structure, a 10-foot bottom width riprapped channel flanked with levees continued

approximately 1,700 feet. It then transitioned into a 35-foot wide supercritical concrete channel for 2,400 feet and ended in a concrete stilling basin approximately 600 feet from the Minnesota River. A riprapped channel to the River would then be provided. The Value Engineering budget estimate was reduced by approximately \$1.7 million during further design stages due to the proposal of replacing the supercritical concrete channel with grass-lined and riprapped-lined channels, outlet D size reduction, and change of Highway 41 crossing from a bridge to box culverts. Groundwater problems resulted in changes to drop structure locations and channel geometry. Increased channel velocities eliminated the grass-lined channel. Also shown is an estimate of the local share of the costs. The cost sharing is in accordance with the 1986 Water Resources Development Act (Public Law 99-662). Appendix H contains the detailed cost estimate for this project.

ITEM	CURRENT APPROVED ESTIMATE FROM PB-3 (1 October 1993)	REVISED ESTIMATE THIS DM (1 October 1993)
First Cost Land and Damages	1,335,000	1,657,000
Relocations Federal		
Non-Federal	1,661,000	4,108,000 (1)
Levees and Floodwalls		522,000
Channels	7,802,000	7,099,000
Recreation Facilities	118,000	72,000
Plnng, Engnring & Dsgn	2,470,000	2,470,000
Construction Management	470,000	528,000
TOTAL FIRST COSTS	13,856,000	16,456,000
Federal/Non-Federal Federal First Cost Flood Control	10,328,000	10,607,000
Recreation	68,000	42,000
TOTAL	10,396,000	10,649,000
Non-Federal First Cost Flood Control	3,392,000	5,765,000
Recreation	68,000	42,000
TOTAL	3,460,000	5,807,000

TABLE 1: SUMMARY COMPARISON OF ESTIMATED FIRST COSTS

⁽¹⁾ Includes \$150,000 for County Road 17 relocation; which deleted the County Road 17 bridge.

- 46. The difference in project first cost (an increase of \$2,600,000) between this DM cost estimate and the current approved PB-3 is attributable to the following:
 - a. Price levels: None
 - b. Lands and Damages: +\$322,000
 - (1) Increase based on alignment change +322,000 and additional PL 91-646 assistance payments (110,000) and damage payments (212,000).
 - c. Relocations: +2,447,000
 - (1) Increase in bridge costs due to change +1,283,000 from rectangular concrete channel to trapezodial riprap channel.
 - (2) Addition of Engler Ave Bridge (bridge +854,000 was deleted in PB-3 estimate due to possibility of no Engler Ave extension by the city. City now has fixed schedule for Engler Ave extension.
 - (3) Increase due to more detailed utility +310,000 relocation information.
 - d. Levees and Floodwalls: +522,000
 - (1) Levee work in PB-3 estimate was +522,000 included in channel work.
 - e. Channels: -703,000
 - (1) Channel estimate has major changes due -703,000 to revised geometry, materials, alignment, and detail. PB-3 estimate had levee work in channel estimate.
 - f. Recreation Facilities: -46,000
 - (1) Decrease based on more detailed plans -46,000 and deletion of Engler Ave recreation trail underpass (trail now in channel under bridge).
 - g. Planning, Engineering and Design: No change.
 - h. Construction Management: +58,000
 - (1) PB-3 estimate based on 6% of construction. +58,000 DM estimate based on 7.5% of construction.

CURRENT BENEFIT - COST ANALYSIS

47. The current Benefit/Cost analysis is based on the procedures used for updating project budgets. The last approved economic analysis of the Chaska Flood Control project was for the GDM, dated February 1984, and is in October 1983 prices. Project first costs (\$42,400,000 Oct 93) have been deflated from October 1993 price levels to October 1983 price levels (\$32,700,000 Oct 83) using the ENR construction costs index. The factor is 1.297. Interest during construction has been calculated using the same method as presented in the GDM report in which interest during construction is discontinued after completion of each stage.

FEDERAL	
First Cost	\$23,200,000
Interest During Construction	1,820,000
Investment Cost	25,020,000
Annual Costs	2,064,900
NON-FEDERAL	
First Cost	9,500,000
Interest During Construction	750,000
Investment Cost	10,250,000
Annual Costs	845,900
Annual Operation and Maintenance	37,400
TOTAL INVESTMENT COST	32,705,000
Total Annual Cost	2,948,200
8.25% 100 year project life	
Int & amort factor (.08253)	
Annual Benefits	
Flood Control	2,260,900
Recreation	28,000
TOTAL	2,288,900
Benefit Cost Ratio	.78

TABLE 2: BENEFIT - COST ANALYSIS (All figures are in October 1983 price levels)

SCHEDULE FOR DESIGN AND CONSTRUCTION

DESIGN

48. Schedules for design and construction are based on the President's budget for Fiscal Year 1994. Plans and specifications are scheduled for completion in December 1994.

CONSTRUCTION

49. A continuing contract for East Creek Diversion channel construction is scheduled for award in February 1995. Completion of construction is scheduled for December 1996.

FUNDING SCHEDULE

- 50. On the basis of the revised estimate for this DM and the current schedule presented in the President's FY94 budget for completion of the project, the Federal funds required (by fiscal year) for construction are as follows:
 - a. Fiscal Year 1995 \$4,000,000
 - b. Fiscal Year 1996 \$5,100,000
 - c. Fiscal Year 1997 \$1,300,000

OPERATION AND MAINTENANCE

51. Under the terms of the Local Cooperation Agreement, the Local Sponsor will be responsible for the operation and maintenance (O&M) of the project. An O&M manual will be provided to the Local Sponsor prior to final acceptance of the project by the Local Sponsor.

RECOMMENDATION

52. I recommend the approval of the plan for Stage 3, East Creek, at Chaska, Minnesota, flood control project as presented in this DM.

JAMES T. SCOTT COL, EN Commander

	DRAWING INDEX			
PLATE NO.	SHT.	DESCRIPTION	CAD FILE	
		GENERAL		
PLATE I	1	LOCATION MAP, VICINITY MAP, DRAWING INDEX	NCO5POOLDGN	
PLATE 2	2	GENERAL PLAN	NCO5POO2.DGN	
PLATE 3	3	PLAN AND PROFILE STA. 0+00 TO STA. 10+00	NCO5POO3.DGN	
PLATE 4	4	PLAN AND PROFILE STA. 10+00 TO STA. 20+00	NCO5POO4.DGN	
PLATE 5	5	PLAN AND PROFILE STA. 20+00 TO STA. 30+00	NCO5POO5.DGN	
PLATE 6	6	PLAN AND PROFILE STA. 30+00 TO STA. 40+00	NCO5POO6.DGN	
PLATE 7	7	PLAN AND PROFILE STA, 40+00 TO STA, 50+00	NCO5POO7.DGN	
PLATE B	8	PLAN AND PROFILE STA. 50+00 TO STA. 60+00	NCO5POO8.DGN	
PLATE 9	9	PLAN - OUTLET D	NCO5POO9.DGN	
PLATE 10	10	PONDING SIGN DETAILS	NCO5P10.DGN	
PLATE II	Я	PONDING PLAN - OUTLET "D"	NCO5POILDGN	
PLATE 12	12	TYPICAL SECTION - STA0+28 TO STA. 2+85	NCOSPO12.DGN	
PLATE 13	13	TYPICAL SECTION - STA. 3+50 TO STA. 3+60	NCOSPOI3.DGN	
PLATE 14	14	TYPICAL SECTIONS - STA, 3+73 TO STA, 8+25	NCO5PO14.DGN	
PLATE 15	15	TYPICAL SECTIONS - STA, 9+72 TO STA, 30+60	NCO5POI5.DGN	
PLATE 16	16	TYPICAL SECTIONS - STA. 28+70 TO STA. 50+05	NC05P016.DGN	
PLATE IT	17	TYPICAL SECTIONS - STA. 50+05 TO STA. 58+80	NCO5PO17.DGN	
PLATE 18	18 .	TYPICAL SECTIONS - STA. 58+70 TO 58+80, OUTLET E & D	NCO5PO18.DGN	
PLATE 19	19	MISCELLANEOUS DETAILS	NCO5PO19.DGN	
		STRUCTURAL		
PLATE 20	20	DROP STR. I & RET. WALLS- PLAN, PROFILE, ELEV. & SECTION	NCSPRDIA.DGN	
PLATE 21	21	DROP STR. 1 CUT OFF WALLS SECTIONS & TYP. DTLS.	NCSPRD18.DGN	
PLATE 22	22	DROP STR. 2 PLAN, PROFILE & SECTION	NCSPRD2A.DGN	
PLATE 23	23	DROP STR. 2 & RET. WALLS - ELEVATIONS	NCSPRD2B.DGN	
PLATE 24	24	DROP STR. 2 RET. & CUT OFF WALLS - SECTIONS	NCSPRD2C.DGN	
PLATE 25	25	DROP STR. 3 PLAN, PROFILE & SECTION	NCSPRD3A.DGN	
PLATE 26	26	DROP STR. 3 & RET. WALLS - ELEVATIONS	NCSPRD3B.DGN	
PLATE 27	27	DROP STR. 3 RET. & CUT OFF WALLS - SECTIONS	NCSPRD3C.DGN	
PLATE 28	28	DROP STR. 4 & BRIDGE PLAN, PROFILE, ELEV. & SECTIONS	NCSPRD4A.DGN	
PLATE 29	29	DROP STR. 4 & RET. WALLS - ELEVATIONS	NCSPRO4B.DGN	
PLATE 30	30	DROP STR. 4 RET. & CUT OFF WALLS - SECTIONS	NCSPRD4C.DGN	
PLATE 3I	31	OUTLETS D & E - SECTIONS	NCSPRPP1.DGN	
PLATE 32	32	GATEWELL D - PLAN, SECTIONS & DETAILS	NCSPRO04.DGN	
PLATE 33	33	GATEWELL E - PLAN, SECTIONS & DETAIL	NCSPR003.DGN	
PLATE 34	34	GATEWELL D OUTLET STR PLAN, PROFILE, ELEV. & DETAIL	NCSPR311.DGN	
PLATE 35	35	STORM SEWER OUTLETS STA. 7+07 & 34+95 - PLAN,	L	
		PROFILES & SECTIONS	NCSPROLT.DGN	
	+			
		LANDSCAPE		
PLATE 36	7 36	LANDSCAPE DEVELOPEMENT - STA. 0+00 TO STA. 10+00	DPLI.DGN	
PLATE 37	37	LANDSCAPE DEVELOPEMENT - STA. 10+00 TO STA. 20+00	DPL2.DGN	
	38	LANDSCAPE DEVELOPEMENT - STA. 20+00 TO STA. 30+00	DPL3.DGN	
PLATE 38	38	LANDSCAPE DEVELOPEMENT - STA. 20-00 TO STA. 30-00 LANDSCAPE DEVELOPEMENT - STA. 30-00 TO STA. 40-00	DPL4.DGN	
PLATE 39		LANDSCAPE DEVELOPEMENT - STA. 30-00 TO STA. 40-00 LANDSCAPE DEVELOPEMENT - STA. 40-00 TO STA. 50-00	DPL5.DGN	
PLATE 40	40	LANDSCAPE DEVELOPEMENT - STA. 40-00 TO STA. 50-00 LANDSCAPE DEVELOPEMENT - STA. 50-00 TO STA. 61+93	DPL6.DGN	
PLATE 4L	41	LANDSCAPE DEVELOPEMENT - STA. 50+00 TO STA. 61+93	DELO.DUN	
PLATE 42	42	LANDSCAPE DEVELOPEMENT - DETAILS LANDSCAPE DEVELOPEMENT - DETAILS		
PLATE 43	43	LANDSCAFE DEVELOPEMENT - DETAILS		

		REFERENCE DRAWINGS
PLATE NO.	SHT.	DESCRIPTION
		GENERAL.
PLATE D-1	1	BORING LOCATIONS NOT SHOWN ON PLAN & PROFIL
PLATE D-2	2	GEOLOGIC PROFILE - STA. 0+00 TO 61+50
PLATE D-3	3	BORING LOGS 80-30M & 80-32M THRU 80-33M
PLATE D-4	4	BORING LOGS 80-34M & 82-42M THRU 82-44M
PLATE D-5	5	BORING LOGS 82-45M , 82-46M & 88-98M
PLATE D-6	6	BORING LOGS 90-131M THRU 90-133M
PLATE D-7	7	BORING LOGS 90-134M THRU 90-136M
PLATE D-8	8	BORING LOGS 90-137M THRU 90-139M
PLATE D-9	9	BORING LOGS 90-140M, 90-141M & 90-143M
PLATE D-10	10	BORING LOGS 91-144M, 91-145A & 91-146M
PLATE D-II	11	BORING LOGS 91-147M, 91-148A 92-167M & 92-1
PLATE D-12	12	BORING LOGS 92-169M THRU 92-171M
PLATE D-13	13	BORING LOGS 92-172M THRU 92-174M
PLATE D-14	14	BORING LOGS 92-195M THRU 92-198M
PLATE D-15	15	BORING LOGS 92-199M THRU 92-202M
PLATE D-16	16	BORING LOGS 92-203M THRU 92-204M

1GS	
	CAD FILE
PROFILE SHEETS	CHSPLANLDGN
5	CHS33PRO4.DGN
-33M	CHS3SHOO.DGN
4414	CHS3SH01.DGN
	CHS3SH02.DGN
	CHS3SH03.DGN
	CHS3SHO4.DGN
	CHS3SH05.DGN
43M	CHS3SH06.DGN
(8M	CHS3SHOT.DGN
& 92-168M	CHS3SH08.DGN
	CHS3SH09.DGN
	CHS3SHIO.DGN
	CHS3SH11.DGN
	CHS3SH12.DGN
	CHS3SH13.DGN

SIGNATURES AFFIXED BELOW INDICATE OFFICIAL RECOMMENDATION AND	TM						<u> </u>
APPROVAL OF ALL DRAWINGS IN THIS SET, AS INDEXED ON THIS SHEET. APPROVAL RECOMMENDED BY:	ENGINEER MANAGER!			DESCRIPTION	-	DATE	APPROVA
CHIEF ED BRANCH	CHIEF GENERAL ENGINEERING SECTION				DEPARTMENT OF ST. PAUL DISTRICT, CORPS ST. PAUL, MINNE	OF ENGINE	
CHEF EB-GH BRANCH	CHIEF STRUCTURAL SECTION Markin a. W. water	AE APPRO	VING OFFICIAL:	CH/	IGN MEMORANDUM		
CHIEF ENGINEERING DIVISION	CHIEF MECH/ELEC/ARCH SECTION CHIEF MARAMILICS SECTION	DESIGN		CHASKA PROJECT	OOD CONTROL	SKA, MIN	NESOTA
APPROVED BY:	Cher HYDROLOGY SECTION James Kydlen	DRAWN	: T.J. ED:		N MAP, VICINITY MAP DRAWING INDEX	AND	
COL., CORPS OF ENGINEERS	CHIEF GEOTECHNICAL DESIGN SECTION	CHECKE	I2-I0-93	CAD FILE NAME: NCOSPOOLDGE SPEC NO:	DRAWING NUMBER:	FI	SHT OF 43

STATION	(LOOKING D/S)	RIGHT LEVEE ELE
6+39	723.8'	-
6+75	723.8'	723.8'
8+25	723.81	723.8'
8+62	732.2	732.2
8+6 0	733.2	733.2

LEVEE OVERBUILD			
OVERBUILD HEIGHT	STATION RANGE	STATION RANGE	
2′	6+35 TO 8+25	6+65 TO 8+25	
۲	8+62 TO 11+10	· 8+62 TO II+10	

- I. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
- 2. TOPOGRAPHY FROM STATION 0+60 TO STATION 6+50 DOES NOT REFLECT CURRENT GROUND SURFACE.
- 3. SEE DETAIL PLATE 13 FOR LEVEE OVERBUILD

REF	ERENCES:	PLATE NO.
i. Li	OCATION MAP, VICINITY MAP, & DRAWING INDEX	ı
2. G	ENERAL PLAN	2
3. B	ORING LOGS	DI-DI6
4. T	YPICAL SECTIONS	12 - 14
5. A	CCESS ROAD	19
6. L	ANDSCAPE PLAN	36

_								
ı	l						l	i
Г								T
	$\neg \uparrow$						† — —	
SY	MBOL	_		DESCRIPT	ION		DATE	APPROVA
	•		·		Si	DEPARTMENT OF . PAUL DISTRICT, CORF ST. PAUL, MINN	S OF ENG	
AE -	APPROVI	NG G	OFFICIAL:			GN MEMORANDUM A - STAGE 3 EAST CREEK		
	DESIGNE	D:	MB	CHASKA PROJECT			SKA, MINI	NESOTA
E0-0	CHECKED: COS		cor	† F	-L00	D CONTROL		
ä	DRAWN:		T.J.	PLAN & PROFILE				
푱	DESIGNE	D:		STA. 0+00 TO 10+00				
ė	CHECKER			CAD FILE NAME: NCOSPO	O3.DGN	DRAWING NUMBER:		SHT 3
DA	TE:	12	-10-93	SPEC NO:		PLATE	3	OF 43

LEVEE ELEVATIONS			
STATION (LOOKING D/S) (LOOKING D/S)			
8+62	732.2*	732.2	
I+6 0	733.2*	733.2"	
12+60	735.2	735.2	
14+62	735.8′	735.8′	
15+i8	753.41	753.4*	
16+08	753.5*	753.5'	

LEVEE OVERBUILD				
OVERBUILD	LEFT LEVEE STATION RANGE	RIGHT LEVEE STATION RANGE		
r	8+62 TO 8+10	8+62 TO #+10		

- 1. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
- 2. SEE DETAIL PLATE 13 FOR LEVEE OVERBUILD

10' BOTTOM			BOTTOM WIDTH
IV ON 3H			SIDE SLOPES
(12" R6)			PROTECTION
D-137M APR 1990 (10° L.T.)			770 760
			C.
			750 PD7:750 TSW)
	EL. 7/9.23	\	740 S
			ELEV
G.S. 728.9 SM			730
SP LWAL 719.5	24" SEWER LINE APPROX. LOCATION		720
12+00	11+00	10+	00

REFERENCES:	PLAIL NO.
I. LOCATION MAP, VICINITY MAP, & DRAWING INDEX	ŀ
2. GENERAL PLAN	2
3. BORING LOGS	DI-DI6
4. TYPICAL SECTIONS	15
5. BIKE PATH DETAILS	19
6. ACCESS ROAD	19
7. LANDSCAPE PLAN	37

Г					I	1
SYN	4BOL		DESCRIPTION		DATE	APPROVA
			l l	DEPARTMENT OF PAUL DISTRICT, CORE ST. PAUL, MINE	S OF ENG	
AE -	APPROVING	OFFICIAL:	CHASK	N MEMORANDUM A - STAGE 3 EAST CREEK		
т	DESIGNED	: MB	CHASKA PROJECT	CHA	SKA, MINI	NESOTA
G-03	CHECKED:		FL00	D CONTROL		
Ξ.	DRAWN:	T.J.	I PLA	N & PROFILE		
푱	DESIGNED	:	STA. K	0+00 TO 20+00		
	CHECKED:		CAD FILE NAME: NCOSPOO4.DGN	DRAWING NUMBER:		SHT 4
DA	TE:	12-10-93	SPEC NO:	PLATE	4	OF 43

LEVEE ELEVATIONS			
STATION	(LOOKING D/S)	RIGHT LEVEE ELE (LOOKING D/S)	
28+70	756.8*	-	
29+60	757.0'	-	

1. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.

REFERENCES:	PLATE NO.
I. LOCATION MAP, VICINITY MAP, & DRAWING INDEX	1
2. GENERAL PLAN	2
3. BORING LOGS	DI-DI6
4. TYPICAL SECTIONS	15
5. BIKE PATH DETAILS	19
6 LANDSCAPE PLAN	70

				HTDIW MOTH
(12" R6)				IDE SLOPES
				PROTECTION
	,		1_	
			77	80
			J	
			1	
				70
			'	10
EXISTING GROUP	ND LINE		4	_
EXISTING GROOM	NO LINE		- 1	
3			- 7	Si Si ELEV. (MSL 1929 ADJ.)
				958
		· 1		2:
				<u>₹</u>
8" GAS LINE APPROX. LOCATION -				50 €
APPROX. LUCATION -		EL. 737.69	7	Ë.
			\ 1	급
		1	\ _	
	· · · · · · · · · · · · · · · · · · ·		7	40
			1	
			٦,	30
	r		'	30
			1	
			ì	
	l	i		
22+00	21+00		20+0	

SYM	BOL	DESCRIPTION DATE APPROV	
	•	DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA	
AE A	APPROVING OFFIC AL:	DESIGN MEMORANDUM CHASKA - STAGE 3 EAST CREEK	
1	DESIGNED: MB	CHASKA PROJECT CHASKA, MINNESOTA	
CHECKED: Ca FLOOD CONTROL			
	DRAWN: T.J.	PLAN & PROFILE	
3 [ESIGNED:	STA. 20+00 TO 30+00	
ш	CHECKED:	CAD FILE NAME: NCOSPOOS.DGN DRAWING NUMBER: SHT 5	
TATE	12-10-93	CREC NO. DI ATE 5	

Ĵ

LEVEE ELEVATIONS				
STATION	(LOOKING D/S) (LOOKING D/S)			
30+60	757.4′	-		
32+54	758.2′	-		
33+01	766.B'	766.8′		
48+70	770.9	770.9′		

	LEVEE OVERBUILD				
OVERBUILD HEIGHT	STATION RANGE	STATION RANGE			
0.25′	33+21 TO 44+00	33+2 T0 46+00			

- 1. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
- 2. SEE DETAIL PLATE 13 FOR LEVEE OVERBUILD

REFERENCES:	PLATE NO.
1. LOCATION MAP, VICINITY MAP, & DRAWING INDEX 2. GENERAL PLAN 3. BORING LOGS 4. TYPICAL SECTIONS 5. BIKE TRAIL DETAILS 6. 24" RCP STORM SEWER DETAIL	! 2 D!-D!6 !6 !9 35
7. LANDSCAPE PLAN	39

SYM	BOL	DESCRIPTION	DATE APPROVAL			
	DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESCTA					
AE	APPROVING OFFICIAL:	DESIGN MEMORANDI CHASKA - STAG EAST CREEK				
T	DESIGNED: MB	CHASKA PROJECT	CHASKA, MINNESOTA			
0-03	CHECKED: CFL	FLOOD CONTROL				
٦	DRAWN: T.J.	PLAN & PROFILE				
동 [DESIGNED:	STA. 30+00 TO 40+00				
	CHECKED:	CAD FILE NAME: NCOSPOOS.DGN DRAWING NUMB				
DAT	E: 12-10-93	SPEC NO: DACW37-91-B-XXXX PLA	TE 6 OF 43			

A)

STATION LEFT LEVEE ELEV. RIGHT LEVEE ELEV. (LOOKING D/S) (LOOKING D/S)					
33+01	766.81	766.8'			
45+80	770.1′	770.1			
48+70		770.9'			

LEVEE OVERBUILD					
OVERBUILD HEIGHT	LEFT LEVEE STATION RANGE	RIGHT LEVEE STATION RANGE			
0.25'	33+21 TO 44+00	33+21 TO 46+00			

- ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
 SEE DETAIL PLATE 13 FOR LEVEE OVERBUILD
 FINAL BIKE TRAIL ALIGNMENT AND ELEVATION BASED ON FINAL ENGLER BRIDGE DESIGN PROVIDED BY OTHERS

	■ BOTTOM WIDTH
R6)	SIDE SLOPES
1 92-20 M 10 15-18 DEC 1992 (16' R.T.) 90-133M 11 APR 1990 (61' R.T.)	PROTECTION 790
	780
EL. 753.82	770 G70V 6261
0.5: 760.9 CL	ELEV (MSL 192
CL SP-SC ML SM CL SEAM(0,17) CL	ਰ 750
SM CL SEAMS SM SC - CL SEAM CL TE	740

SEE BORING LOG FOR CONTINUATION

41+00

40+00

42+00

RI	EFERENCES:	PLATE NO.
i.	LOCATION MAP, VICINITY MAP, & DRAWING INDEX	1
2.	GENERAL PLAN	2
3.	BORING LOGS .	DI-DI6
4.	TYPICAL SECTIONS	16
5.	BIKE TRAIL DETAILS	19
6.	STORM SEWER DETAILS	· -
7.	LANDSCAPE PLAN	35
		40

SY	MBOL	DESCRIPTION	DATE	APPROVA
		ENT OF THE AFTERICT, CORPS OF EN		
At -	APPROVING OFFICIAL	DESIGN MEMORAN CHASKA - STA EAST CREEK	AGE 3	
)-D	DESIGNED: MB CHECKED: COE	CHASKA PROJECT FLOOD CONT	CHASKA, MIN	INESOTA
Ę	DRAWN: T.J. DESIGNED;	PLAN & PROF STA. 40+00 TO	ILE 50+00	
₽ PA1	CHECKED: [E: 12-10-93]	CAD FILE NAME: NCOSPOOT.DGN DRAWING NU. SPEC NO: PL	MBER: ATE 7	SHT 7

NOTE: INFORMATIONAL SIGNS SUPPLIED BY OTHERS

PONDING AREA INFORMATIONAL SIGN NO SCALE

HLTS

_	^	,	 ~

DENOTES PONDING AREA INFORMATIONAL SIGN LOCATIONS

DENOTES PONDING AREA

REFERENCES:

1. LOCATION MAP, VICINITY MAP, & DRAWING INDEX

PLATE NO.

F						
SYN	MBOL	DESCRIPTION		DATE	APPROVAL	
			DEPARTMENT OF ST. PAUL DISTRICT, CORE ST. PAUL, MINN	S OF ENG		
AE —	APPROVING OFFICIAL	CHA E	GN MEMORANDUM SKA STAGE 3 AST CREEK			
91	DESIGNED: MB CHECKED: COE DRAWN: T.J.	FLOO	CHASKA PROJECT CHASKA, MINNESO FLOOD CONTROL PONDING SIGN DETAILS			
ا ب	DESIGNED: CHECKED:	CAD FILE NAME: NCOSPIO.DGN	DRAWING NUMBER:		SHT IO	
1 1 1	F. 12-10-93	EDEC NO. DACWZZ GO B COOC		١٥	SR1 10	

TYPICAL SECTION
STA. 3+50 TO STA. 3+60
SCALE: AS SHOWN

j

TYPICAL LEVEE OVERBUILD

SCALE: NONE

NOTES:

- ELEVATIONS VARY, SEE PROFILE ON PLATE 3
 ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
- 3. SEE DETAIL H PLATE 19 FOR LANDSCAPE OVERBUILD.

REF	ERENCES:	PLATE NO.
1.	LOCATION MAP, VICINITY MAP, & DRAWING INDEX	1
2.	GENERAL PLAN	2
3.	PLAN AND PROFILE STA. 0+00 TO 10+00	3
4.	MISCELLANEOUS DETAILS	19

_								<u> </u>	
			· - · · · · · · · · · · · · · · · · · · ·					_	
691	ABOL		. DECADADE.					ļ	
214	KBUL		DESCRIPTION	N			DATE	APPR	OVA
				Si	DEPARTMENT - PAUL DISTRICT, ST. PAUL	CORP	S OF ENGI	• •	5
AE APPROVING OFFICIAL:				HASK	GN MEMORANDUM A - STAGE AST CREEK	_			
	DESIGNED	мв	CHASKA PROJECT				SKA, MINI	(ESO	TΑ
CHECKED: CX			FLOOD CONTROL TYPICAL SECTION						
3	DRAWN:	T.J.	STA. 3+50 TO 3+60						
÷	DESIGNED:	JRC/CB	31A. 3730 10 3760						
Ġ.	CHECKED:		CAD FILE NAME: NCO5POI3	.DGN	DRAWING NUMBER			SHT	3
DAT	re: 12-10-	93	SPEC NO:		PLATE	13		OF	43

(g)

- 1. ELEVATIONS VARY, SEE PROFILE ON PLATE 3-6.
 2. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.

770	3. SEE DETAIL H PLATE 19 FOR LANDSCAPE OVERBUILD.
ING GROUND LINE ID C & E PLATE 19 760	REFERENCES: 1. LOCATION MAP, VICINITY MAP, & DRAWING INDEX 2. GENERAL PLAN 3. PLAN AND PROFILE STA. 0+00 TO 10+00, 10+00 TO 20+00, 20+00 TO 30+00 & 30+00 TO 40+00 4. TOE DRAIN DETAILS 5. MISCELLANEOUS DETAILS 19
740	SYMBOL DESCRIPTION DATE APPROVAL DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA
) 50 60 70 80 90 100	DESIGN MEMORANDUM CHASKA - STAGE 3 DESIGNED: MB CHECKED: COT DRAWN: T.J. DESIGNED: MB CHECKED: JRC/CB CHECKED: JRC/CB CHECKED: CAD FILE NAME: NCO5POIS.OGN DATE: 12-10-93 SPEC NO: DESIGN MEMORANDUM CHASKA - STAGE 3 EAST CREEK CHASKA, MINNESOTA TYPICAL SECTIONS STA. 9+72 TO 30+60 DATE: 12-10-93 SPEC NO: DESIGN MEMORANDUM CHASKA, MINNESOTA TYPICAL SECTIONS STA. 9+72 TO 30+60 DATE: 12-10-93 SPEC NO: PLATE: 15 DF 43

- I. ELEVATIONS VARY, SEE PROFILES ON PLATES 5-8
- 2. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
- 3. SEE DETAIL H PLATE 19 FOR LANDSCAPE OVERBUILD.

REFERENCES:

PLATE NO.

2

- I. LOCATION MAP, VICINITY MAP, & DRAWING INDEX
- 2. GENERAL PLAN
- 3. PLAN AND PROFILE STA. 20+00 TO 30+00, 30+00 TO 40+00, 40+00 TO 50+00 & 50+00 TO 60+00

5. MISCELLANEOUS DETAILS

SYMBOL DESCRIPTION

DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL. MINNESOTA DESIGN MEMORANDUM
CHASKA - STAGE 3 AE APPROVING OFFICIAL: FLOOD CONTROL
TYPICAL SECTIONS
STA. 28+70 TO SOCIETY DESIGNED: MB CHASKA PROJECT CHECKED: COE DRAWN:

STA. 28+70 TO 50+05 등 DESIGNED DESIGNED: JRC/CB CAD FILE NAME: NCO5POIG.DCN DRAWING NUMBER:
SPEC NC: PLATE 16

- I. ELEVATIONS VARY, SEE PROFILE ON PLATE 8
- 2. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
 3. SEE DETAIL H PLATE 19 FOR LANDSCAPE OVERBUILD.

SPEC NO:

ı	LOC GEN	ERAL PLAN	ICINITY MAP, & DRAWIN E STA. 50+00 TO 60+0 ETAILS			TE NO 1 2 8 19) <u>.</u>
SY	VBCI		DESCRIPT	ION		DATE	APPROVA
3.	WBOL	<u> </u>	DESCRIPT	1	DEPARTMENT OF PAUL DISTRICT, COR ST. PAUL, MIN	THE ARM	AY .
G-03 HS	DESIGN CHECK	ED: COC.	CHASKA PROJECT	CHASK E FLOOI TYPIC	ON MEMORANDUM A - STAGE 3 AST CREEK CHA D CONTROL SAL SECTIONS 0+05 TO 58+80	SKA, MINI	NESOTA
à	CHECK		CAD FILE NAME: NCOSPI	DI7.DGN	DRAWING NUMBER:		SHT 17

CAD FILE NAME: NCOSPOIT.DCN DRAWING NUMBER: SPEC NO: PLATE 17

DATE: 12-10-93

- 1. ELEVATIONS VARY, SEE PROFILE ON PLATE 8
- 2. ALL ELEVATIONS SHOWN ARE MSL 1929 ADJ.
 3. SEE DETAIL H PLATE 19 FOR LANDSCAPE OVERBUILD.

REFE	RENCES:	PLATE NO.
l. LO	DEATION MAP, VICINITY MAP, & DRAWING INDEX	I
2. GE	NERAL PLAN	2
3. PL	AN AND PROFILE STA. 50+00 TO 60+00	8
4. MI	SCELLANEOUS DETAILS	19
5 . QL	JTLET E PROFILE	31

_						
SYI	MBOL	, nes	SCRIPTION		DATE	APPROVA
3	mout.	ULJ	SCRIP (1004		UATE	APPROVA
			51	DEPARTMENT OF . PAUL DISTRICT, CORF ST. PAUL, MINN	S OF ENGI	
AE -	APPROVING OF		CHASK A	N MEMORANDUM A - STAGE 3 AST CREEK		
	DESIGNED: MB	CHASKA PROJ	ECT CL OO	D CONTROL	KA, MINN	ESOTA
E0-0	CHECKED: Co	E.		D CONTROL		
ū	DRAWN: T.			AL SECTIONS TO TO STA. 58+80		
용	DESIGNED:		31A. 3071	U 10 31A. 38+80		
à	CHECKED:	CAD FILE NAME: N	COSPOI8.DCN	DRAWING NUMBER:		SHT 18
DA.	TE: 12-10-9	3 SPEC NO:		PLATE	18	OF 43

SECTION	I-U3
UPSTREAM CUT OFF WALL	PLATE 20
SCALE: 36"=!'-0"	

TYPICAL DETAIL	E
	PLATE 20
SCALE: 1/4"=1'-0"	PLATE 23
	PLATE 26
	PLATE 29

TYPICAL U/S VERTICAL JOINT DETAIL

SCALE: 1/2" = 1'-0".

SECTION			I-D3	3
DOWNSTREAM CUT	OFF	WALL	PLATE	20
SCALE: 3/4"=1"-0"				

TYPICAL D/S VERTICAL JOINT DETAIL SCALE: 1/2" = 1'-0"

NOTE:

I. HANDRAIL NOT SHOWN FOR CLARITY.

					-	
SYM	BOL	DESCRIPTION		DATE APP	ROVA	
			DEPARTMENT OF	S OF ENGINEER	RS	
AE A	APPROVING OFFICIAL:	CHAS FLOOD CON	N MEMORANDUM SKA STAGE 3 TROL - EAST CREEK			
1 - L	DESIGNED: JHM		D CONTROL	KA, MINNES		
ω ₅	DRAWN: LKT	DROP STRUCTURE I RETAINING & CUT OFF WALLS SECTIONS & TYPICAL DETAILS				
픙	DESIGNED: XXX/XXX		THIONG DETRIES	9		
ė	CHECKED:	CAD FILE NAME: NCSPRDIB.DGN	DRAWING NUMBER:	Smĭ	21	
DAT	F. 11-02-93	SPEC NO.	DIATEO	, 	43	

 \overline{n}

Г				T	1
				-	
SYM	BOL	DESCRIPTION		DATE	APPROV
		Sī	DEPARTMENT OF . PAUL DISTRICT, CORE ST. PAUL, MINE	PS OF ENG	
AE .	APPROVING OFFICIAL:	CHAS	N MEMORANDUM SKA STAGE 3		•
_	DESIGNED: JHM	CHASKA PROJECT	TROL - EAST CREEK CHAS	KA, MIN	NESOTA
2	CHECKED: KDH		D CONTROL E 2 & RETAINING	WALLS	
	DRAWN: LKT DESIGNED: XXX/XXX		EVATIONS		
7 ►	CHECKED:	CAD FILE NAME: NCSPRD28.DGN	DRAWING NUMBER:		SHT 23
DAT	E: 12-13-93	SPEC NO:	PLATE 2	3	OF 43

(D)

ECTION

STREAM CUT OFF WALL

ALE: 1/4"=1'-0"

2-U3 PLATE 22

EL. 718.5

EL. 721.0

SECTION
DOWNSTREAM CUT OFF WALL
SCALE: 1/4"=1'-0" 2-D3 NOTE:

1. HANDRAIL NOT SHOWN FOR CLARITY.

SYMBOL DESCRIPTION DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA AE APPROVING OFFICIAL: DESIGN MEMORANDUM CHASKA STAGE 3

DESIGNED: JHM CHECKED: KOH

FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA

FLOOD CONTROL
DROP STRUCTURE 2 RETAINING & CUT OFF WALLS
SECTIONS

B DESIGNED: XXX/XXX CAD FILE NAME: NCSPRD2C.DGN DRAWING NUMBER:
SPEC NO: PLATE 24 TE: 11-02-93

SHT 24

SCALE: 1/4" = 1'-0"

ELEVATION 3-1
DROP STRUCTURE AND
UPSTREAM RETAINING WALLS
SCALE: 1/8"=1'-0"

ELEVATION 3-2

DROP STRUCTURE AND
DOWNSTREAM RETAINING WALLS

SCALE: 1/8"=1'-0"

PLATE 25

1

SYMBOL DESCRIPTION DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA AE APPROVING OFFICIAL: DESIGN MEMORANDUM CHASKA STAGE 3 FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA DESIGNED: JHM FLOOD CONTROL
DROP STRUCTURE 3 & RETAINING WALLS
ELEVATIONS CHECKED: KOH B DESIGNED: XXX/XXX CAD FILE NAME: NCSPRD3B.DGN | DRAWING NUMBER:
SPEC NO: PLATE 26 SHT 26 ATE: 12-13-93 OF 43

(2

(1

. 766.8

. 753.0

SECTION
DOWNSTREAM CUT OFF WALL SCALE: 1/4"=1"-0"

I. HANDRAIL NOT SHOWN FOR CLARITY.

DESCRIPTION SYMBOL DEPARTMENT OF THE ARMY
ST. PAUL DISTRICT, CORPS OF ENGINEERS
ST. PAUL, MINNESOTA DESIGN MEMORANDUM
CHASKA STAGE 3
FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA
FLOOD CONTROL
DROP STRUCTURE 3 RETAINING & CUT OFF WALLS
SECTIONS AE APPROVING OFFICIAL: DESIGNED: JHM CHECKED: KOH DRAWN: LKT 중 DESIGNED: XXX/XXX CHECKED: CAD FILE NAME: NCSPRD3C.DGN DRAWING NUMBER: SHT 27 PLATE 27 DAIE: 09-08-93

ELEVATION 4-1
DROP STRUCTURE AND
UPSTREAM RETAINING WALLS
SCALE: 1/8 "= 1/-0"

10	8		16
SCALE:	1/8" =	1'-0"	

				1	1		
				T	1		
S۲	MBOL	DESCRIPTION		DATE	APPROVA		
ST. PAUL DIS			DEPARTMENT OF T. PAUL DISTRICT, COR ST. PAUL, MIN	PS OF ENG			
AE _	APPROVING OFFICIAL	CHA	ON MEMORANDUM SKA STAGE 3 NTROL - EAST CREEK				
-	DESIGNED: JHM	CHASKA PROJECT		SKA, MIN	INESOTA		
Q-03	CHECKED: KOHL	FLOOD CONTROL					
=	DRAWN: LKT		DROP STRUCTURE 4 & RETAINING WALLS				
HS	DESIGNED: XXX/XXX	ELEVATIONS					
H9-03	CHECKED:	CAD FILE NAME: NCSPRD4B.DGN	DRAWING NUMBER:		SHT 29		
DA	TE: 12-13-93	SPEC NO:	PLATE 2	9	OF 43		

EL. 783.7 EL. 766.8 **4-U3** PLATE 28 NOTE: EL. 762.5 1. HANDRAIL NOT SHOWN FOR CLARITY. SECTION
DOWNSTREAM CUT OFF WALL EL. 75?.45 PLATE 28 SCALE: 1/4"=1'-0" EL. 754.7 SYMBOL DESCRIPTION DATE APPROVA DEPARTMENT OF THE ARMY
ST. PAUL DISTRICT, CORPS OF ENGINEERS
ST. PAUL, MINNESOTA DESIGN MEMORANDUM
CHASKA STAGE 3
FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA
FLOOD CONTROL
DR.P STRUCTURE 4 RETAINING & CUT OFF WALLS
SECTIONS AE APPROVING OFFICIAL: DESIGNED: JHM CHECKED: KOH DRAWN: LKT 를 DESIGNED: XXX/XXX CAD FILE NAME: NCSPRD4C.DGN | DRAWING NUMBER: SHT 30 PLATE 30 SPEC NO:

(J)

84" DIA. FLANGE BACK SLUICE G. (AWWA C540)

PLAN
GATEWELL D
SCALE: 1/4"=1"-0"

SECTION C

DETAIL D

NOTES:

- 1. FACE BRICK WILL BE ADDED TO EXPOSED CONCRETE WALL. (TO MATCH STAGE 4 BRICKWORK)
- 2. CITY EMBLEM WILL BE ADDED TO HANDRAIL.

_								
								l
SY	MBOL		DESCRIPTION				DATE	APPROVAL
				51	DEPARTMENT OF PAUL DISTRICT, OF ST. PAUL, I	ORPS	OF ENGI	
AE	APPRO	VING OFFICIAL:	C FLOOD CO	HAS	N MEMORANDUM SKA STAGE 3 ROL - EAST CREEK			
_	DESIGN	ED: TSF	1 CHASKA PROJECT	_		ASKA	, MIN	NESOTA
0-03	CHECKE	D: KDH	1 F		OD CONTROL TEWELL D			
ü	DRAWN	: LAR/LKT	PLAN		CTIONS & DETA	11.		
H	DESIGN	ED: XXX/XXX	1	J.	a per			
ED-(CHECKE	D:	CAD FILE NAME: NCSPRO04.D	GN	DRAWING NUMBER:			SHT 32
DA	TE: 11-0	02-93	SPEC NO:		PLATE	32		OF 43

LADDER ----

PLAN GATEWELL E SCALE: 1/4*=1'-0' <u>SECT</u>

SCALE:

1'-0"

SECTI GATEW SCALE:

(1

SECTION C

DETAIL D

SECTION
GATEWELL E
SCALE: 1/4"=1"-0"

NOTES:

- I. FACE BRICK WILL BE ADDED TO EXPOSED CONCRETE WALL. (TO MATCH STAGE 4 BRICKWORK)
- 2. CITY EMBLEM WILL BE ADDED TO HANDRAIL.

							L	İ
							-	
SYN	MBOL		DESCRIPTION				DATE	APPROVAL
		· · · · · · · · · · · · · · · · · · ·		ST	DEPARTMENT PAUL DISTRICT ST. PAUL	r, core	S OF ENG	
AE -	APPROV	ING OFFICIAL:		CHAS	N MEMORANDUM SKA STAGE 3 ROL - EAST CR	EEK		
	DESIGN	ED: TSF	CHASKA PROJECT				KA, MIN	INESOTA
Q-03	CHECKE	D: KDH	1 1		D CONTRO	L		
13	DRAWN:		DIAN		TEWELL E CTIONS & DI	TAII		
НS	DESIGN	ED: XXX/XXX	TLAIN.	, ა	CITONS & DI	_ 1 AIL.		
-03	CHECKE	D:	CAD FILE NAME: NCSPROO3.	DGN	DRAWING NUMBER	R:		SHT 33
DA	TE: 11-0	2-93	SPEC NO:		PLA	TE 3	3	OF 43

12

TYPICAL OUTLET STA. 7+07 & 34+95
SCALE: \(\frac{\psi}{\psi}\)" = 1'-0"

SYMBOL DESCRIPTION DATE APPROVA DEPARTMENT OF THE ARMY
ST. PAUL DISTRICT, CORPS OF ENGINEERS
ST. PAUL, MINNESOTA AE APPROVING OFFICIAL: DESIGN MEMORANDUM CHASKA STAGE 3 FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA DESIGNED: BGS/JHM FLOOD CONTROL
STORM SEWER OUTLETS AT STA. 7+07 AND 34+95
PLAN, PROFILES & SECTION CHECKED: KOH DRAWN: LKT 를 DESIGNED: XXX/XXX CAD FILE NAME: NCSPROLT.DGN | DRAWING NUMBER: SPEC NO: PLATE 35 SHT 35 OF 43 DATE: 09-08-93

KEY

× × × FENCE

xxxxx RAILING

EXISITNG VEGETATION

. EXISITNG TREE

SHADE TREE

ORNAMENTAL TREE

CONIFEROUS TREE

SHRUB MASSING

NOTES:

- QUANTITY AND PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.
- PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

REFERENCES:

1. LOCATION, VICINITY MAP, & DRAWING SCHEDULE

2. GENERAL PLAN

3. PLAN & PROFILE

PLATE NO.

1

2

3

3. PLAN & PROFILE 3
4. LANDSCAPE DETAILS 42,43

SYMBOL DESCRIPTION DATE DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS
ST. PAUL, MINNESOTA AE APPROVING OFFICIAL: DESIGN MEMORANDUM CHASKA - STAGE III EAST CREEK DESIGNED: DMS CHASKA PROJECT CHASKA, MINNESOTA FLOOD CONTROL CHECKED: DRAWN: LANDSCAPE DEVELOPMENT STA. 0+00 TO 10+00 DMS/EMH DESIGNED: CAD FILE NAME: DPLI.DGN CHECKED: DRAWING NUMBER: ATE: DECEMBER 1993 SPEC NO: PLATE 36

(2

NOTES:

- I. QUANTITY AMD PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.
- 2. PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

REFERENCES:	PLATE NO.
I. LOCATION, VICINITY MAP, & DRAWING SCHEDULE	1
2. GENERAL PLAN	2
3. PLAN & PROFILE	4
4. LANDSCAPE DETAILS	42,43

		· · · · · · · · · · · · · · · · · · ·			
SYMBO	<u> </u>	DESCRIPTION		DATE A	PPROVAL
		s	DEPARTMENT OF T. PAUL DISTRICT, CORP. ST. PAUL, MINN	S OF ENGINE	
AE APP	PROVING OFFICIAL:		GN MEMORANDUM A - STAGE III EAST CREEK		
DES	SIGNED: DMS	CHASKA PROJECT		KA, MINNE	SOTA
유대	ECKED:	FLOOD CONTROL			
DR/	AWN: DMS/EMH	LANDSC			
풍 ŒS	SIGNED:	STA.I	STA. 10+00 TO 20+00		
⊕ CHE	ECKED:	CAD FILE NAME: DPL2.DGN	DRAWING NUMBER:		HT 37
DATE:	DECEMBER 1993	SPEC NO:	1 PLATE :	37 G	F 43

9

T. A.

<u>KEY</u>

*- FENCE

××××× RAILING

EXISITNG VEGETATION

EXISITNG TREE

SHADE TREE

ORNAMENTAL TREE

CONIFEROUS TREE

SHRUB MASSING

· NOTES:

- I. QUANTITY AND PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

 2. PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 3 MARCH 1993.

· <u>R</u> E	EFERENCES:	PLATE NO.
ı.	LOCATION, VICINITY MAP, & DRAWING SCHEDULE	t
2.	GENERAL PLAN	2
3.	PLAN & PROFILE	5
4.	LANDSCAPE DETAILS	42, 43

			+	
SY	MBOL	DESCRIPTION	DATE	APPROVAL
		DEPARTMENT OF ST. PAUL DISTRICT, CO ST. PAUL, M	ORPS OF EN	
AE -	APPROVING OFFICIAL:	DESIGN MEMORANDUM CHASKA - STAGE III EAST CREEK		
	DESIGNED: DMS		IASKA, MIN	NESOTA
0-03	CHECKED:	FLOOD CONTROL		
w.	DRAWN: DMS/EMH	LANDSCAPE PLAN		
СН	DESIGNED:	STA. 20+00 TO 30+00	•	
-03	CHECKED:	CAD FILE NAME: DPL3.DGN DRAWING NUMBER:		SHT 38
DA	TE: DECEMBER 1993	SPEC NO: PLATE	. 38	OF 43

KEY

FENCE

XXXXXX RAILING

EXISTING VEGETATION

EXISTING TREE

SHADE TREE

ORNAMENTAL TREE

CONIFEROUS TREE

SHRUB MASSING

NOTES:

- QUANTITY AND PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.
- PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

RI	EFERENCES:	PLATE NO.
ı.	LOCATION, VICINITY MAP, & DRAWING SCHEDULE	1
2.	GENERAL PLAN	2
3.	PLAN & PROFILE	6
4.	LANDSCAPE DETAILS	42, 43

						-
						<u> </u>
					†	1
SYM	BOL		DESCRIPTION		DATE	APPROVAL
			s	DEPARTMENT OF T. PAUL DISTRICT, CORP ST. PAUL, MINN	S OF ENG	
AE A	APPROVING	OFFICIAL:		GN MEMORANDUM A - STAGE III EAST CREEK		
٦	DESIGNED:	DMS	CHASKA PROJECT	CHAS	SKA, MIN	NESOTA
0.1	CHECKED:		fL00	D CONTROL		
	RAWN:	DMS/EMH	LAN	IDSCAPE PLAN		
푱	ESIGNED:			0+00 TO 40+00		
Ġ	CHECKED:		CAD FILE NAME: DPL4.DGN	DRAWING NUMBER:	_	SHT 39
DATE	: DECEM	BER 1993	SPEC NO:	1 PLATE 39	9	OF 43

(9)

NOTES:

- I. QUANTITY AND PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.
- 2. PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

REFERENCES:	PLATE NO.
1. LOCATION, VICINITY MAP, & DRAWING SCHEDULE	1
2. GENERAL PLAN	2
3. PLAN & PROFILE	7
4. LANDSCAPE DETAILS	42, 43

_					1	
_						
SYM	IBOL I	DESCRIPTION		DATE	APPROVA	
		1	PAUL DISTRICT, CORE ST. PAUL, MINN	S OF ENG		
AE	APPROVING OFFICIAL:	CHASKA	MEMORANDUM - STAGE III AST CREEK			
П	DESIGNED: DMS	CHASKA PROJECT		SKA, MINI	NESOTA	
9	CHECKED:	FL00E	CONTROL			
اتا	DRAWN: DMS/EMH	LAND	LANDSCAPE PLAN			
푱	DESIGNED:	STA. 40	+00 TO 50+00			
ΞĠ	CHECKED:	CAD FILE NAME: DPL5.DGN	DRAWING NUMBER:		SHT 40	
DAT	E: DECEMBER 1993	SPEC NO:	PLATE 4	40	OF 43	

(J.

KEY
FENCE

XXXXXX RAILING

EXISITNG VEGETATION

EXISITNG TREE

SHADE TREE

ORNAMENTAL TREE

CONIFEROUS TREE

SHRUB MASSING

REFERENC. S:

PLATE NO.

I. LOCATION, VICINITY MAP, & DRAWING SCHEDULE

2

2. GENERAL PLAN
3. PLAN & PROFILE

2 8

4. LANDSCAPE DERAILS

42, 43

NOTES:

- QUANTITY AND PLACEMENT OF OVERBUILD WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.
- PLACEMENT OF PLANTINGS AT LEVEES WILL COMPLY WITH CRITERIA SET FORTH IN EM 1110-2-301, 31 MARCH 1993.

_						
SY	MBOL	DESCRIPTION	DATE APPROVAL			
		DEPARTMENT OF ST. PAUL DISTRICT, CO ST. PAUL, M	ORPS OF ENGINEERS			
AE	APPROVING OFFICIALS	DESIGN MEMORANDUM CHASKA – STAGE III EAST CREEK				
Г	DESIGNED: DMS	CHASKA PROJECT C	HASKA, MINNESOTA			
E0-0	CHECKED:	FLOOD CONTROL				
3	DRAWN: DMS/EMH	AH LANDSCAPE PLAN				
СН	DESIGNED:	STA. 50+00 TO 60+93				
-03	CHECKED:	CAD FILE NAME: DPL6.DGN DRAWING NUMBER:	SHT 4I			
DA	TE: DECEMBER 1993	SPEC NO: PLATE	41 of 43			

PLANT	ING HO	LE DI	MENSIONS	
PLANT TYPE	PLANT (UP INCI	SIZE FO AND LUDING)	MINIMUM A OLE WIDTH (INCHES)	APPROXIMATE HOLE DEPTH (INCHES) B
EVERGREEN TREES	4'	B.B.	51	13
	6′	В.В.	66	15
SHADE &	1 3/4"	B.B.	72	16
ORNAMENTAL TREES	2"	B.B.	72	16
	21/2"	B.B.	84	19
	AII C	lump	114	23
SHRUBS	18"	B.B.	27	7
	2′	B.B.	30	8
	3′	B.B.	36	9
	24"	POT	36	13

BALLED & BURLAPPED STOCK

- SCARIFY SIDES AND BOTTOM OF HOLE.

- SCARIFY SIDES AND BOTTOM OF HOLE.
 PROCEED WITH CORRECTIVE PRUNING AS
 DIRECTED BY THE CONTRACTING OFFICER.
 SET PLANT ON UNDISTURBED NATIVE
 SOIL, OR THOROUGHLY COMPACTED
 BACKFILL SOIL AT THE SAME DEPTH
 AS IT WAS GROWN IN THE NURSERY.
 PLANT SHALL BE PLACED IN PLANTING
 HOLE WITH BURLAP AND WIRE BASKET,
 IF USED, INTRACT. ONCE IN PLACE,
 THE PLANT SHALL BE BACKFILLED TO
 WITHIN 12" OF THE TOP OF THE
 ROOTBALL. THE BURLAP SHALL BE
 FOLDED OR CUT BACK.
 PLUMB AND BACKFILL WITH THE
 BACKFILL SOIL SPECIFIED.
 BACKFILL VOIDS AND CONSTRUCT
 3" DEPTH WATERING BASIN.
 WATER THOROUGHLY WITHIN 2 HOURS.

- WATER THOROUGHLY WITHIN 2 HOURS.
- PLACE MULCH WITHIN 48 HOURS OF THE SECOND WATERING.

CONTAINER STOCK

- SCARIFY SIDES AND BOTTOM OF H PROCEED WITH CORRECTIVE PRUN!
- REMOVE CONTAINER AND SCORE OF OF SOIL MASS TO REDIRECT CIRCLE FIBROUS ROOTS AS NECESSARY.
- SET PLANT ON UNDISTURBED NATI SOIL, OR THOROUGHLY COMPACTED BACKFILL SOIL AT THE SAME DEP AS IT WAS GROWN IN THE NURSEF
- BACKFILL VOIDS AND CONSTRUCT 3" DEPTH WATERING BASIN. WATER THOROUGHLY WITHIN 2 HOL
- PLACE MULCH WITHIN 48 HOURS O THE SECOND WATERING.

- 1. THE PLANTING DETAILS REPRESENT ADEQUATELY DRAINED SOIL CONDITIONS. THE CONTRACTOR SHOULD EXERCISE DISCRETION IN SETTING PLANTS 17-37 HIGHER IN POORLY DRAINED SOILS.

 2. ON 2:1 SLOPES OR GREATER, DO NOT CONSTRUCT THE UPPHILL HALF OF THE WATERING BASIN.

 3. ON WET, POORLY DRAINED SOILS, DO NOT CONSTRUCT WATERING BASIN.

 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ADEQUATE DRAINAGE IN TRACE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ADEQUATE DRAINAGE IN HEAVY, POORLEY DRAINED OR IMPERVIOUS SOILS.

SHRUB AND TREE PLANTING DETAILS

NOTE: EXTEND EXCAVATION AND BACKFILL SOIL TO A POINT DOWNSLOPE EQUAL TO OR LOWER IN ELEVATION THAN THE BOTTOM OF THE HOLE DIRECTLY BENEATH THE PLANT TO INSURE ADEQUATE DRAINAGE IN HEAVY SOILS. GRANULAR SOIL SHALL BE ADDED AS BACKFILL IN AREAS OF POOR DRAINAGE.

PLANTING ON A SLOPE

TREE / SHRUB / GROUNDCOVER MASS BED PLANTING DETAIL

OF HOLE. RUNING CTING OFFICER.

RE OUTSIDE CIRCLING RY.

DEPTH JRSERY.

2 HOURS.

JRS OF

TOR

RUCT

MACHINE-TRANSPLANTED STOCK (TREE SPADE)

SCARIFY SIDES AND BOTTOM OF HOLE.
SET PLANT ON UNDISTURBED NATIVE
SOIL AT SAME DEPTH AS IT WAS
PREVIOUSLY GROWN.

PREVIOUSLY GROWN.
PLUMB AND BACKFILL WITH THE BACKFILL
SOIL SPECIFIED, FILLING ALL VOIDS.
AFTER PLANTING, THE SOIL IMMEDIATELY
ADJACENT TO THE SPADE MOVED SOIL.
FOR A MINIMUM DISTANCE OF 18" SHALL
BET TURNED OVER AND/OR ROTOTILLED
TO A MINIMUM DEPTH OF 12".
CONSTRUCT 3" DEPTH WATERING BASIN.
WATER THOROUGHLY WITHIN 2 HOURS.
PLACE MULCH WITHIN 48 HOURS OF THE
SECOND WATERING.

MINIMUM TREE SPADE SIZE REQUIREMENTS			
SPADE SIZE OAK DECIDIOUS EVERGREEN (DIAMETER) TREES TREES TREES (CALIPER) (HEIGHT)			
42" 60" 78" 85"	1.0" to 1.5 1.5" to 2.5 2.5" to 3.5 3.5" to 5.0	5" 3" to 5" 4" to	4" 7' to 9' 6" 9' to 14'

MASTER PLANT LIST	
	BOTANICAL NAME

GENERAL NOTES

SEE CONTRACT SPECIFICATIONS FOR SPECIFIC PROJECT REQUIREMENTS

PLANTING BED PREPARATION:

ALL MASS PLANTING BEDS SHALL BE TILLED TO A MINIMUM DEPTH OF 10". AMENDMENTS SHALL BE APPLIED AFTER CULTIVATION.

BACKFILL SOIL:

USE SOIL EXCAVATED FROM PLANTING HOLES AND PROVIDE AMENDMENTS. REMOVE ALL DEBRIS INCLUDING ROCKS LARGER THAN 3" IN ANY DIMENSION.

FERTILIZER:

FED. SPEC. 0-F-241 TYPE I (SOLID FORM) CLASS 2

SOIL AMENDMENTS SEE CONTRACT SPECIFICATIONS. AND CONDITIONERS:

MULCH MATERIAL:

UNLESS OTHERWISE SPECIFIED, MASS MULCH ALL PLANTING

TREE STAKING:

Mn/DOT 2571.3J. SEE CONTRACT SPECIFICATIONS. TREE STAKING (ALL SIZES) WILL NOT BE RECUIRED UNLESS NECESSARY TO MAINTAIN TREES IN A PLUMB CONDITION WHERE VANDALISM, SOIL, OR WIND CONDITIONS ARE A PROBLEM.

ARE A PROBLEM.

MASS PLANTINGS:

PLANT SPACING OF 5' OR LESS SHALL BE MASS EXCAVATED AND/OR CULTIVATED BY TILLING. PLANT IN STAGGERED ROWS ON THE PERIMETER FIRST, THEN UNIFORMLY FILL IN WITH REMAINING OUANTITY USING TRIANCULAR SPACING. PROVIDE 5' RADIUS CLEAR OF SHRUBS AROUND EACH EVERGREEN TREE. NOTIFY CONTRACTING OFFICER OF GROSS PLANT OUANTITY SURPLUS OR DEFICIENCY IMMEDIATELY. PLANT SPACINGS OF 5' OR LESS SHALL BE MASS MULCHED.

PLANTING PLAN:

RESPECT STATED DIMENSIONS. DO NOT SCALE DRAWINGS.

WATERING GUIDELINES:

AVERAGE AMOUNT OF WATER PER APPLICATION (GALLONS)

PLANT TYPE MACHINE TRANSPLANTED TREES (3" CALIPER+)

BALLED & BURLAPPED TREES BALLED & BURLAPPED SHRUBS

10

50-100

DESCRIPTION SYMBOL DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA

DESIGNED: DMS/ CHECKED: DRAWN:

AE APPROVING OFFICIAL

CHASKA - STAGE III CHASKA PROJECT

FLOOD CONTROL

DESIGN MEMORANDUM

CHASKA, MINNESOTA

LANDSCAPE PLAN PLANTING DETAIL DMS/ DESIGNED:

CAD FILE NAME: C3detali.DGN | DRAWING NUMBER CHECKED: PLATE 42 OF 43 ATE: DECEMBER, 1994 SPEC NO:

ZONE	1			BEL	WC	-50
ZONE	2			-50	to	~40
ZONE	3			-40	to	-30
ZONE	4		\Box	-30	to	-20
THE	ACCE BE L	VITHIN PTABLI ISED O THERW	GROWN ALL	ING F	CT	ΞE
ZONE	5			-20	to	-10
THE ARE	ACCE ALLO	ITHIN PTABLE WED OF	GROW	ING R	ANC	E

ACCEPTABLE GROWING RANGES FOR PLANT STOCK

SOURCE: U.S.D.A. PLANT HARDINESS ZONE MAP

- SPRING		FALL		
DECIDUOUS	EVERGREEN	DECIDUOUS	EVERGREEN	
APRIL I TO MAY 25	APRIL ! TO MAY !5	0CT. 15 10 NOV. 20	SEPT. 5 TO OCT. I	

NOTE: ACTUAL DATES MAY CHANGE DEPENDING UPON SEASONAL CONDITIONS AS DETERMINED BY THE CONTRACTING OFFICER.

OPTIMUM PLANTING DATES

NOTE: REMOVE MULCH PLACED TO A DEPTH GREATER THAN THAT SPECIFIED WHEN DIRECTED BY THE CONTRACTING OFFICER.

TYPE OF PLANT	X CENTER OF PLANT TO MULCH LINE	X EDGE OF BRANCHING TO MULCH LINE	Y DEPTH OF MULCH	Z DEPTH OF MULCH
DECIDUOUS TREES	3' MIN.	N/A	6"	6′′
EVERGREEN TREES	VARIES	3' MIN.	6"	6"
DECIDUOUS SHRUBS	3' MIN.	N/A	6"	6"
MACHINE-TRANSPLANTED TREES	12" BEYOND	EDGE OF HOLE	6"	6"

MULCH PLACEMENT DETAIL

FIRST CUT PART WAY THROUGH THE BRANCH AT "A" TIEN CUT IT OFF AT "B". MAKE THE FINAL CUT AT "C"-"D' IF "O" IS HARD TO FIND: DROP A LINE FROM POINT "C"-- THE ANGLE FORM XCE=THE ANGLE FROM XCD.

PRUNING DETAIL (Shigo Method)

NOTES:

- 1. DO NOT CUT LOWER BRANCHES TO PER 2. PLACE MULCH INSIDE CYLINDER TO SAMI 3. INSTALLATION UNLESS OTHERWISE DIREC

RODENT PROTECTION DETAIL

! "C"-"D". "C"--

- ____30" MIN. FOR DECIDIOUS TREES 12" MIN. FOR EVERGREEN TREES OR TO BOITOM WHORL OF BRANCHES IF LESS THAN 12".
- 8" MIN. DIAMETER PERFORATED DRAIN TILE CYLINDER. IF CYLINDER IS PROVIDED WITHOUT PERFORATIONS, 3.78" HOLES MUST BE DRILLED AT 6" SPACINGS CONTINUOUS ACROSS LENGTH AND CIRCUMFERENCE OF CYLINDER.
- FIRMLY ANCHOR CYLINDER BOTTOM IN SOIL AND MULCH WITHOUT DISTURBING TREE ROOTS.
- --- FINISHED GRADE

TO PERMIT PROTECTION.
TO SAME DEPTH AS OUTSIDE.
3E DIRECTED BY THE CONTRACTING OFFICER.

DRAFT

FINDING OF NO SIGNIFICANT IMPACT AND ENVIRONMENTAL ASSESSMENT

DEPARTMENT OF THE ARMY

ST. PAUL DISTRICT, CORPS OF ENGINEERS 190 FIFTH STREET EAST ST. PAUL, MINNESOTA 55101-1638

Environmental Resources Branch Planning Division

DRAFT

FINDING OF NO SIGNIFICANT IMPACT

In accordance with the National Environmental Policy Act, the St. Paul District, Corps of Engineers, has assessed the environmental impacts of the following project:

DESIGN CHANGES TO
CHASKA FLOOD CONTROL PROJECT - STAGE 3
CHASKA, MINNESOTA

The intent of the proposed changes is to provide protection to Chaska from flooding along East Creek in the most cost efficient and environmentally acceptable manner. The design change involves the selection of an alternate East Creek diversion channel alignment. The proposed alignment is substantially different from what was selected in 1985, but is very similar to the design that was recommended in 1982. The project is described in Section 3.00 of the assessment. This Finding of No Significant Impact is based on the following factors: the effects of the proposed design change would not differ substantially from what was described for the East Creek diversion feature in earlier NEPA documents; the changes would not require additional fish and wildlife mitigation features; the project would have no impact on the cultural environment; and continued coordination will be maintained with appropriate State and Federal agencies. See sections and 1.00 and 5.00 of the assessment for a discussion of the impacts.

The environmental review process indicates that the proposed action does not constitute a major Federal action significantly affecting the environment. Therefore, an environmental impact statement will not be prepared.

	James T. Scott
Date	Colonel, Corps of Engineers
	District Engineer

DRAFT

ENVIRONMENTAL ASSESSMENT

DESIGN CHANGES TO THE

CHASKA FLOOD CONTROL PROJECT - STAGE 3

CHASKA, MINNESOTA

U.S. Army Corps of Engineers St. Paul District

DRAFT ENVIRONMENTAL ASSESSMENT DESIGN CHANGE TO THE CHASKA FLOOD CONTROL PROJECT - STAGE 3 CHASKA, MINNESOTA

1.00 SUMMARY

- 1.01 The Water Resources Development Act of 1976 (Public Law 94-587) authorized the proposed flood control project at Chaska, Minnesota. The plan consists primarily of upgrading and extending an existing levee system along the Minnesota river, diverting the flow of Chaska Creek to the outside of the leveed area, and diverting the flood flow of East Creek to the outside of the leveed area. Fish and wildlife mitigation features include plantings on project lands, the construction of a moist soil unit, and the construction of an outlet/control structure for Chaska Lake. The moist soil unit and Chaska Lake outlet would be constructed on the Minnesota Valley National Wildlife Refuge. The plan is described in the Limited Reevaluation Report for the project dated August 1982. A Final Environmental Impact Statement for the project was filed in 1976. A Supplement to the Final EIS and 404(b)(1) evaluation was completed in 1982. A proposed change to the East Creek diversion feature of the project required the preparation of a Supplement II to the Final EIS, which was completed in 1985.
- 1.02 Implementation of the flood control project at Chaska is divided into four stages of construction. Advanced engineering and design studies for Stage 3, which involves the construction of the East Creek Diversion feature, has resulted in a change in the alignment of the diversion channel. The alignment is similar to what was presented in the 1982 Supplement to the Final EIS. This assessment was prepared to address the impacts of the currently proposed alignment.
- 1.03 An environmental review of the proposed changes indicates that they would not result in significant adverse effects to the environment. Therefore, a supplement to the EIS will not be prepared. Should public review of this EA identify significant concerns, a revised NEPA document may be prepared. A 404(b)(1) evaluation for the project was completed and submitted to Congress in 1982. Fill activities associated with the proposed design would not differ substantially from what was presented in the 1982 evaluation. Therefore, a revised 404(b)(1) evaluation will not be prepared.

Relationship to Environmental Requirements

1.04 The proposed activities would be in compliance with all applicable Federal environmental laws. Executive Orders and policies, and State and local laws and policies including the Clean Air Act, as amended; the Clean Water Act of 1977; the Endangered Species Act, as amended; the Land and Water Conservation Fund Act of 1965, as amended; the National Historic Preservation Act of 1966, as amended; the National Environmental Policy Act of 1969, as amended; the Fish and Wildlife Coordination Act of 1958, as amended; Executive Order 11988-Floodplain Management; and Executive Order 11990-Protection of Wetlands. The project reach

is located within the corporate limits of Chaska and is zoned for residential and commercial development. Therefore, the provisions of the Farmland Protection Policy Act of 1981 do not apply.

2.00 NEED FOR AND OBJECTIVES OF ACTION

- 2.01 The Water Resources Development Act of 1976 (Public Law 94-587) authorized the proposed flood control project as Chaska, Minnesota. A Final EIS for the project was filed in 1976. Postauthorization studies reanalyzed the authorized plan in view of updated study area information and new technical and environmental criteria. The Limited Reevaluation Report and Final Supplement to the Environmental Impact Statement, which included a 404(b)(1) evaluation, was completed in 1982. That document identified the need for fish and wildlife mitigation for unavoidable losses due to construction. Mitigation features include the planting of vegetation on project lands to provide wildlife habitat, and the construction of fish and wildlife features on the Minnesota Valley National Wildlife Refuge. The features include the construction of an outlet control structure for Chaska Lake and the construction of a moist soil unit just to the east of Chaska Lake. The outlet control structure will provide the capability to manipulate water levels on the lake to control aquatic vegetation. The moist soil unit will be managed to provide feeding habitat for waterfowl. Design changes to the East Creek feature of the project, which consisted of a major change in the location of the diversion channel, required the preparation of a Supplement II to the Final EIS in 1985. While additional mitigation was not recommended at that time, the Supplement II stated that detailed design studies of the revised plan may indicate the need for additional mitigation.
- 2.02 Implementation of the flood control project at Chaska is divided into four stages of construction. Work scheduled for Stage 3 consists of the construction of a diversion structure in East creek and the construction of a diversion channel that would convey flood flows to the Minnesota River. The present channel design and alignment is similar to what was presented in the 1982 Supplement to the Final EIS, but is substantially different from the selected plan that was discussed in the 1985 Supplement II to the Final EIS (Figure EA-1). This assessment is being prepared to address the effects of the proposed design. The proposed design would not require a substantial change in fill activities from what was presented in the 404(b)(1) evaluation prepared in 1982. Therefore a revised 404(b)(1) evaluation will not be prepared.

3.00 ALTERNATIVES

3.01 Alternatives to the proposed project were evaluated in the Final EIS and subsequent supplements. Proposed channel alignments for the East Creek Feature were also evaluated in these documents. The proposed changes in channel alignment and design for the East Creek Diversion are a result of the 1989 East Creek Value Engineering Study that was done to investigate ways to reduce the cost of this feature. The proposed design is a result of that effort and previously evaluated diversion alignments were not restudied. Only one other alternative was reconsidered at the request of the City of Chaska.

Plans Eliminated from Further Study

3.02 The City of Chaska indicated that they would prefer that an alternative diverting flood flows down an existing creek, known as Assumption Creek, be studied in more detail. This alternative was considered in 1982 and during the East Creek Value Engineering Study in 1989. The Minnesota Department of Natural Resources and the U.S. Fish and Wildlife Service indicated that the potential impacts with this alternative would be significant. Assumption Creek is designated by the Minnesota DNR as a native brook trout stream. The use of the headwaters of this creek as a ponding area and the attendant channel work that would be required would seriously degrade the suitability of the stream as brook trout habitat. In addition, several wetlands are located along Assumption Creek which would be adversely affected with this alternative. The selection of this alternative would most likely not be supported by natural resources agencies and would require additional mitigation features. Initial design studies also indicated that this alternative may also require extensive upgrading of an existing railroad embankment which would significantly increase the cost of this alternative. For these reasons this alternative was not considered in detail.

Selected Plan

3.03 Work Scheduled for the East Creek Diversion includes the construction of a diversion structure at East Creek, a 5600-foot diversion channel and 3 drop structures (Figure EA-2). A recreation trail would be built along a portion of the diversion channel. Landscaping to provide wildlife habitat would also be done along portions of the diversion channel. Excess material excavated as part of the project would be placed in areas immediately adjacent to the channel. Any required fill material would come from existing commercial borrow facilities. Detailed information on these features is presented in the main report.

4.00 AFFECTED ENVIRONMENT

Natural Resources

4.01 Land use along this reach of the project is a mix of residential development, commercial development, undeveloped lands and cropland. The inlet of the diversion channel is located in a residential area that is primarily a trailer park. Most of the channel is located in open fields. Some light industrial development and a nursery are adjacent to the channel alignment on the upstream end. The lower 1,600 feet of the channel runs adjacent to the Crystal Sugar facilities. The floodplain of the Minnesota River is composed of a mix of riparian woods and floodplain wetlands. Riparian woods vegetation includes silver maple, American elm, box elder, cottonwood and willow with an understory of nettle, jewelweed and grasses.

4.02 A fen is located immediately to the east of the proposed channel. A fen is a type of wetland supported by groundwater discharge such as springs and seepages. The fen is about 5 acres in size and is fairly diverse in nature. During a recent survey four plant communities were identified within this fen: sedge meadow, shallow marsh, shrub-carr and lowland hardwood forest. The sedge meadow is dominated by tussock sedge and Canada bluejoint grass. Prairie sedge,

marsh fern, asters and goldenrods are also present. The shallow marsh is dominated by lake sedge, cattail and reed canary grass, with marsh marigold and jewelweed as common forbs. The shrub-carr is dominated by willows and the lowland hardwoods are typical of riparian woods in the area.

4.03 As noted in the Final Supplement II to the EIS, no federally-listed or state-listed threatened or endangered species are present in the project area. The Higgins' eye pearly mussel (<u>Lampsilis higginsi</u>) has been extirpated from the lower Minnesota River. The peregrine falcon (<u>Falco peregrinus</u>) and the bald eagle (<u>Halaeetus leucocephalus</u>) may occasionally be sighted in the area during migration.

4.04 An Environmental Site History was conducted for the proposed channel alignment to assess the potential of encountering contaminated soils during construction (Supplement 3 to the General Design Memorandum). A review of insurance maps, directories, aerial photos, data bases and a site survey did not indicate any potential for contaminated soils along the channel alignment.

Cultural Resources

4.05 In accordance with Section 106 of the National Historic Preservation Act of 1966, as amended, the National Register of Historic Places has been consulted. A standing structure survey of Carver County conducted for the Minnesota State Historic Preservation Office in 1978 recorded 23 historic National Register buildings and one National Register district in the city of Chaska. As of 1 July 1992, there are no sites listed on or eligible for inclusion on the National Register that will be affected by the proposed Stage 3 East Creek diversion channel. The trailer houses to be removed are all less than 50 years old. The private residences to be removed have been evaluated as being not eligible for listing on the National Register. As a result, there will be no effect on significant historic properties if any of these buildings are removed as proposed.

4.06 The Stage 3 diversion channel alignment was surveyed for cultural resources in 1991 in conjunction with a survey of the Stage 4 levee alignment and moist soil unit. No cultural resources were encountered along the Stage 3 alignment either on the surface or below it in power auger tests drilled to a maximum depth of 8 meters (ca. 26 feet). The Minnesota State Historic Preservation Office concurs that "no properties eligible for or listed on the National Register of Historic Places are within the project's area of potential effect" (letter from MN SHPO dated December 16, 1991).

4.07 The proposed Stage 4 borrow area, which may be used for Stage 3, has likewise been cleared from a cultural resources standpoint. A cultural resources survey of the Kusske borrow pit during April 1992 encountered only one small chipped stone flake from the plowzone during shovel testing. Based on the results of the survey, the Minnesota State Historic Preservation Office has concluded that "no properties eligible for or listed on the National Register of Historic Places are within the project's area of potential effect" (letter from MN SHPO dated May 26, 1992).

5.00 ENVIRONMENTAL EFFECTS

5.01 An environmental analysis has been conducted for the proposed design change to the East Creek Diversion feature, and a discussion of those impacts is presented below. The discussion addresses only the effects of the proposed design changes and how they would differ from those discussed in previous NEPA documents. As specified in Section 122 of the 1970 Rivers and Harbors Act, the categories of impacts listed in table EA-1 were reviewed and considered in arriving at the final determination.

Natural Resources

- 5.02 The impacts of the proposed channel alignment and design would not differ substantially from what was described for the East Creek diversion feature in earlier NEPA documents. Construction of the proposed features would result in the loss of approximately 3 acres of grassland, 8 acres of cropland and 3 acres of wooded areas. About 1.5 acres of the woodlands that would be affected are riparian, and would be lost with the construction of the outlet at the Minnesota River. Previous designs would have resulted in the loss of up to 6 acres of riparian woods. Habitat losses to wildlife with project construction were partially mitigated with the planting of upland vegetation on project lands in conjunction with the construction of stage 2 along Chaska Creek. Shrubs and shrubby tree species such as dogwood, hazel and russian olive along with oak, wildplum, chokecherry, maple and ash were planted and will be managed for wildlife.
- 5.03 The outlet for the diversion channel is routed through an old lime settling pond that was used in the processing of sugar beets. The pond is now abandoned and is filled to a height of about 15 feet with lime. The lime is periodically mined by the current owners and sold to the surrounding agricultural community for soil adjustment. The channel alignment from 0.00 to 15.00 was selected to avoid the fen complex immediately to the east of the proposed channel and to minimise impacts on riparian woodlands. The bottom elevation of the diversion channel in this reach was designed to help ensure that the hydrologic regime of the fen is not adversely affected by the diversion channel.
- 5.04 Mitigation for losses associated with construction of this and other stages of the project will be provided with the construction of fish and wildlife features on the Minnesota Valley National Wildlife Refuge. The features include the construction of an outlet control structure for Chaska Lake and the construction of a moist soil unit just to the east of Chaska Lake. The outlet control structure will provide the capability to manipulate water levels on the lake to control aquatic vegetation. The moist soil unit will be managed to provide feeding habitat for waterfowl. The area will be created by diking a 16 acre site that is currently cropland. The system will consist of two cells that can be flooded to a depth of about 2 feet and managed independently. This feature will be constructed concurrently with Stage 4 of the project.

Cultural Resources

5.05 As of 1 July 1992, there are no cultural resources sites listed on or

TABLE EA-1: Evaluation of impacts of Design Changes

MAGNITUDE OF PROBABLE IMPACT

SUBSTANTIAL SIGNIFICANT ADVERSE IMPACT INCREASING MINOR APPRECIABLE EFFECT × MINOR BENEFICIAL IMPACT INCREASING SIGNIFICANT SUBSTANTIAL Pre-Hist & Historic Archeological Values 6. Community Cohesion (Sense of Unity) 7. Community Growth & Development C. NATURAL RESOURCE EFFECTS 5. Habitat Diversity and Interspersion 11. Threatened or Endangered Species IMPACT ASSESSMENT MATRIX 8. Business and Home Relocations 3. Public Facilities and Services 10. Energy Needs and Resources 9. Existing/Potential Land Use 1. Historic Architectural Values 3. Recreational Opportunities 5. Public Health and Safety B. ECONOMIC EFFECTS NAME OF PARAMETER D. CULTURAL EFFECTS 8. Commercial Navigation 7. Farmland/Food Supply 6. Biological Productivity A. SOCIAL EFFECTS 7. Surface Water Quality 2. Terrestrial Habitat 2. Aesthetic Values 6. Business Activity 4. Regional Growth 9. Flooding Effects 1. Property Values 4. Transportation 4. Aquatic Habitat 2. Tax Revenues I. Noise Levels 10. Controversy 5. Employment 8. Water Supply 9. Groundwater 1. Air Quality 3. Wetlands 10. Soils

eligible for inclusion on the National Register of Historic Places in the proposed Stage 3 construction area. A cultural resources survey in 1991 revealed no prehistoric or historic sites along the proposed East Creek diversion channel alignment. The Minnesota State Historic Preservation Office has concurred that the isolated flake found in the proposed Stage 3 and 4 borrow area is not eligible to the National Register of Historic Places. Therefore, no historic properties (per 36 CFR Part 800) will be affected by channel construction and use of the borrow area as proposed.

6.00 COORDINATION

- 6.01 Coordination with public and government agencies has been maintained. Coordination letters from the U.S. Fish and Wildlife Service (FWS) and the Minnesota Department of Natural Resources (MDNR) are included in exhibit 1.
- 6.02 The FWS recommended that impacts to the fen complex be avoided. The channel has been designed to avoid adverse impacts on this resource by the channel alignment and the elevation of the bottom of the channel. The FWS agrees with this approach. The FWS also recommended that plantings be included on project lands along the channel and to the use the guidelines that were presented in the 1981 Fish and Wildlife Coordination Act Report. These plantings are included in the project design. The Corps of Engineers agrees with the FWS recommendation that work activities in lowland hardwoods along the Minnesota River be minimized to the extent practicable.
- 6.03 The Corps recommended that the design of the moist soil unit be modified to facilitate the construction of the moist soil unit and to avoid impacts on areas that revegetated since the plan was originally proposed in 1982. The FWS agreed with this proposal.
- 6.04 The MDNR agreed with the recommendations of the FWS. No additional concerns were identified by the MDNR.
- 6.02 The Minnesota State Historic Preservation Office has been coordinated with regarding cultural resources along the proposed Stage 3 channel alignment and use of the Kusske borrow pit. The Minnesota State Historic Preservation Office has concurred that, based on the results of two cultural resources surveys, there are no significant historic properties in these areas.
- 6.03 The draft environmental assessment will be sent to interested citizens and the following agencies:

Federal

Department of Transportation
Environmental Protection Agency
U.S. Coast Guard
U.S. Fish and Wildlife Service
U.S. Geological Survey
National Park Service
Soil Conservation Service
Advisory Council on Historic Preservation

State of Minnesota

Department of Energy, Planning and Development
Department of Agriculture
Department of Health
Department of Natural Resources
Department of Transportation
Pollution Control Agency
State Archaeologist
State Historic Preservation Officer
Water Resources Board

<u>Others</u>

Mayor of Chaska Chaska City Council City Engineer, Chaska EXHIBIT 1

CORRESPONDENCE

FWS: AFWE-TOFO

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Twin Cities Field Office 4101 East 80th Street Bloomington, Minnesota 55425-1665

SEP 1 0 1992

Colonel Richard Craig District Engineer U.S. Army Corps of Engineers 1421 U.S. Post Office and Custom House St. Paul, Minnesota 55101-1479

Dear Colonel Craig:

This letter constitutes a supplemental report to the Final Fish and Wildlife Coordination Act Report dated December 1981, for the Chaska Flood Control Project in Chaska, Minnesota. The supplemental report was prepared at the request of the St. Paul District for revisions to the East Creek Diversion Channel component of the overall Chaska Project.

Background

On December 23, 1981, the U.S. Fish and Wildlife Service (Service) submitted a draft Fish and Wildlife Coordination Act (FWCA) Report to the St. Paul District Corps of Engineers for the Chaska Flood Control Project. This report, adopted by the Service on August 27, 1982, as the final FWCA report, was based on the findings of a habitat evaluation conducted by a tri-agency team of biologists representing the Minnesota Department of Natural Resources, U.S. Army Corps of Engineers, and Service. The tri-agency team's analysis was conducted in accordance with the Service's Habitat Evaluation Procedures (HEP) and Mitigation Policy. The FWCA report recommended measures to improve project lands for wildlife purposes, quantified project impacts to fish and wildlife resources, and recommended three alternative compensation proposals to replace unavoidable habitat losses. One of these proposals (Compensation Proposal A) involving construction of a water control structure on Chaska Lake and a moist soil management unit was subsequently selected by the Corps of Engineers for implementation as part of the overall Chaska Flood Control Project.

In 1984, the St. Paul District proposed a new alignment for the East Creek Diversion Channel component of the Chaska Project and requested Service review of the revision. In March 1984, the Service submitted a Draft Supplemental Report to the Final Fish & Wildlife Coordination Act Report on the revised East Creek Diversion Channel. The report evaluated the impacts to fish and wildlife habitats in comparison to the original alignment and provided a variety of recommendations to avoid and minimize habitat losses. In general, the revised alignment for the East Creek Diversion Channel would result in additional habitat losses in comparison to the original alignment and would require additional mitigation beyond the Compensation Plan, the extent of which would depend on project-related impacts to a large wetland area bisected by the channel.

In 1992, the St. Paul District has again revised the alignment for the East Creek Diversion Channel and has requested Service review of the changes. Preliminary information on the proposed alignment have been provided for Service review and comment. In addition, the project has been reviewed in the field by personnel from the Minnesota Department of Natural Resources, St. Paul District and Service. This supplemental report will compare habitat losses for the newly-revised East Creek Diversion Channel to the original alignment.

Revised East Creek Diversion Channel Alignment

Enclosure A provides a map showing the alignments for the original and newly-proposed East Creek Diversion Channel. In general, the revised alignment follows the original alignment in the upper reaches of the project. It then shifts to the east of the original alignment and follows County Road 7, eventually crossing Stoughton Road and terminating at the Minnesota River.

The upper reaches of the revised project involve essentially similar habitat losses (grassland/cropland) as the original alignment (10.5 acres for the original alignment and 11.0 acres for the revised alignment). The lower reaches of the project are substantially different, however. From Stoughton Road, the proposed diversion channel heads in a southeast direction towards the Minnesota River crossing upland woods, grassy areas, a former lime settling pond of the Crystal Sugar facility, and lowland hardwoods.

The lower reaches of the revised project will result in the loss of approximately 1.5 acres of upland woods and 1.5 acres of bottomland hardwoods. In comparison, the original alignment would have taken approximately 6.0 acres of bottomland hardwoods. Therefore, the revised alignment will result in fewer adverse impacts to wooded habitats (approximately 3.0 acres). Given the original Habitat Unit Value of 57 for Lowland Hardwoods, this change in habitat loss is 171 Habitat Units.

Recommendations

The following recommendations are provided for use by the St. Paul District and City of Chaska in implementing the revised East Creek Diversion Channel and remaining portions of the overall Chaska Flood Control Project:

1. The downstream segment of the revised East Creek Diversion Channel is located adjacent to a 5-acre wetland area. This wetland was recently surveyed by St. Paul District personnel and described as a Fen Complex. The Service recommends that all project-related impacts to this wetland area be avoided. In particular, the outlet of the wetland is located immediately adjacent to the proposed diversion channel. The project should be located and designed to avoid impacts to the existing hydrology of this wetland basin.

This report assumes that impacts to the Fen Complex will be avoided by the project. If this is not the case, then the St. Paul District should conduct studies to adequately assess project-related impacts to the Fen Complex. This information should be provided for review by the Service and used to quantify habitat losses and compensation requirements for this segment of the Chaska

Flood Control Project.

- 2. A planting plan should be developed and implemented by the St. Paul District and City of Chaska for project lands adjacent to the revised East Creek Diversion Channel. Recommendations contained in the 1981 FWCA Report should be used for guidance in developing the vegetation plan.
- 3. Work activities in lowland hardwoods adjacent to the Minnesota River should be minimized to the greatest extent possible.
- 4. As indicated previously, the revised project will result in fewer impacts to fish and wildlife habitats than the original alignment. This change in impacts is approximately 171 Habitat Units. The original Mitigation Plan adopted by the St. Paul District involving construction of a water control structure on Chaska Lake and 19-acre moist soil unit was designed to offset losses for the original project as described in 1981.

In order to credit the reduction in habitat losses, the Service recommends that the 19-acre moist soil unit be reduced in size by approximately 3.5 acres by realignment of the eastern boundary. This modification has been proposed to District personnel and is shown on Enclosure B. Doing so will reduce the overall Compensation Plan by approximately 140 Habitat Units.

Summary

The proposed alignment of the East Creek Diversion Channel will result in fewer impacts to valuable fish and wildlife habitats than the original alignment. However, this report assumes that project-related impacts to the 5-acre Fen Complex are avoided. If this is not the case, the St. Paul District should adequately assess impacts to the Fen Complex and provide this information to the Service for further assessment of project-related impacts for the East Creek Diversion Channel.

If additional impacts to the Fen Complex are avoided, the Service recommends that the Compensation Plan for the overall Chaska Flood Control Project be revised to give appropriate credit to the Corps and City of Chaska in reducing project-related impacts.

We appreciate the opportunity to offer our comments on the revised project. Please contact Mr. Gary Wege at 725-3548 if you have any questions on the contents of this report. These comments have been prepared under the

Colonel Richard Craig

4.

authority of the Fish and Wildlife Coordination Act (16 U.S.C. 661 et seq.), the National Environmental Policy Act of 1969 (42 U.S.C. 4321-4327), the Endangered Species Act of 1973, (16 U.S.C. 1531-1543), as amended, and the U.S. Fish and Wildlife Service's Mitigation Policy.

Sincerely,

dynn M. Jewis Field Supervisor

Enclosures

cc: Minnesota Department of Natural Resources, St. Paul, Minnesota Minnesota Pollution Control Agency, St. Paul, Minnesota City of Chaska, Minnesota

PHONE NO.

FILE NO.

September 24, 1992

Colonel Richard Craig District Engineer U.S. Army Corps of Engineers 1421 U.S. Post Office and Custom House St Paul, MN 55101-1479

Re: Chaska Flood Control Project, Final Fish and Wildlife Coordination Act Report, December 1981.

Dear Colonel Craig:

The Minnesota Department of Natural Resources (DNR) has completed a review of the proposed changes to the alignment of the East Creek Diversion Channel. The following comments are provided for your consideration.

We concur with USFWS position that the wet soil unit berm be constructed along the edge of the wooded/shrub area (approximately along the existing field road) and not in the wooded/shrub area.

We also support the USFWS recommendation that the downstream segment of the revised East Creek Diversion Channel avoid impacts to the fen. The channel should neither drain this wetland nor cause a decline in water quality.

The Natural Heritage database contains a record for Sessile-flowered Cress (Rorippa sessiliflora), a species that is rare in Minnesota. This species occurs on mud flats and sand banks of the Minnesota River. The species was last observed in Carver County (T115, R23) in 1891 and it is unlikely that it will occur at the intersection of the proposed East Creek Diversion Channel and the Minnesota River.

If you have questions regarding our comments, or if you require additional information from the DNR, please contact Wayne Barstad from the Ecological Services Section at 772-7950.

SEP 28 1992 U.S. COMPS OF Early St. Paul Comps Chaska flood control project page 2

Sincerely,

David Leuthe

Acting Regional Administrator

Thomas Balcom, Planning and Review c. John Stine, Waters Con Christianson, Ecological Services Bonita Eliason, Natural Heritage

File: Chaskafc.car

MINNESOTA HISTORICAL SOCIETY

Fort Snelling History Center, St. Paul, MN 55111 • (612) 726-1171

May 26, 1992

Mr. Robert J. Whiting St. Paul District, Corps of Engineers 1421 U. S. Post Office & Custom House St. Paul, Minnesota 55101-1479

Dear Mr. Whiting:

Re: Phase I Cultural Resources Investigation of the State 3 Channel and the Stage 4 Levee and Ponds, CHaska Flood Control Project, Carver County MHS Referral File Number: 91-0695

Thank you for the opportunity to review and comment on the above project. It has been reviewed pursuant to the responsibilities given the State Historic Preservation Officer by the National Historic Preservation Act of 1966 and the Procedures of the Advisory Council on Historic Preservation (36CFR800), and to the responsibilities given the Minnesota Historical Society by the Minnesota Historic Sites Act and the Minnesota Field Archaeology Act.

We have reviewed the results of the survey of the borrow area by the Institute for Minnesota Archaeology. Based on the results of this survey, we feel that the probability of any unreported properties being located in the area of potential effect is low. Therefore, we conclude that no properties eligible for or listed on the National Register of Historic Places are within the area of potential effect for the project.

Please contact Dennis Gimmestad at 612-726-1171 if you have any questions on our review of this project.

Sincerely,

Britta L. Bloomberg

Deputy State Historic Preservation Officer

BLB: dmb

cc: Craig Johnson, IMA

Christy Caine

MINNESOTA HISTORICAL SOCIETY

Fort Snelling History Center, St. Paul, MN 55111 • (612) 726-117

FOUNDED IN 1849

December 16, 1991

Mr. Robert J. Whiting St. Paul District, Corps of Engineers 1421 U. S. Post Office & Custom House St. Paul, Minnesota 55101-1479

Dear Mr. Whiting:

Re: Phase I Cultural Resources Investigation of the Stage 3 Channel and the Stage 4 Levee and Ponds, Chaska Flood Control Project, Carver County MHS Referral File Number: 91-0695

Thank you for the information you have submitted on the above referenced project. It has been reviewed pursuant to the responsibilities given the State Historic Preservation Officer by the National Historic Preservation Act of 1966 and the Procedures of the Advisory Council on Historic Preservation (36CFR800), and to the responsibilities given the Minnesota Historical Society by the Minnesota Historic Sites Act and the Minnesota Field Archaeology Act.

Based on the archaeological survey of the area completed by the Institute for Minnesota Archaeology and the other information compiled by your staff, we have concluded that no properties eligible for or listed on the National Register of Historic Places are within the project's area of potential effect.

Please contact me if you have any questions regarding our review.

Sincerely,

Dennis A. Gimmestad

Government Programs and Compliance Officer

DAG: dmb

cc: Craig Johnson, The Institute for Minnesota Archaeology Christy Caine, State Archaeologist

APPENDIX A

HYDROLOGY

APPENDIX A

HYDROLOGY

TABLE OF CONTENTS

<u>ITEM</u>	PAGE	PARAGRAPH
INTRODUCTION General	A-1 A-1	1 - 4
CLIMATE General Temperature	A-2 A-2 A-2	· 5
Annual Precipitation	A-2	7
HISTORICAL FLOODS AND RAINFALL EVENTS East Creek and Chaska Creek	A-2 A-2 A-2	8
20 - 21 July 1951	A-2 A-3	9 10
20 - 21 July 1987	A-3 A-3	11 12
STREAMFLOW RECORDS	A-4 A-4 A-4	13 14
WATERSHED CHARACTERISTICS	A-5	
General	A- 5	15 - 16
East Creek	A-6	17 - 22
Lake Bavaria and Hazeltine Lake	A-7 A-7	23 24
North Lake Grace Dam	A-7	24 25
Storm Water Detention Pond, EC-P16	A-8	26
(CMSP) Railroad Embankment	A-8	27
Jonathan Boulevard	A-8	28
Lake Grace Dam	A-9	29 - 30
Proposed New Highway 212, East Creek Crossing .		31
Storm Water Detention Ponds EC-P57 and EC-P62 .		32
Highway No. 41, East Creek	A-11	33
HYDROLOGIC MODEL (HEC-1)		
General	A-12	34 - 35
Drainage Areas	A-12	36
Standard Project Storm Precipitation		37
Snyder's Unit Hydrograph Parameters		38
Baseflow		39
Loss Rates	A-13	40
Historic Event Modeling	A-13	41 - 44

APPENDIX A

HYDROLOGY

TABLE OF CONTENTS - Continued

ITEM	PAGE PAR	AGRAPH
STANDAI Proje	RD PROJECT FLOOD A-16 ect Condition, East Creek A-16 45	- 47
	DV FIOW MODEL (DAMEDY)	48
	NCES A-18	
	TABLES	
NUMBER	ITEM	PAGE
A-1	Streamflows Records, East Creek and Chaska Creek, Chaska, Minnesota	A-5
A- 2	Pertinent Data, Lake Grace Dam, North Lake Grace Dam, and IDS Dam, East Creek, Chaska, Minnesota	A-1 0
A- 3	Pertinent Data, Storm Water Detention Ponds, East Creek, Chaska, Minnesota	A-11
A-4	Summary of Watershed Characteristics and Synthetic Hydrograph Values, East Creek and Chaska Creek, Chaska, Minnesota	A-1 5
A- 5	Frequency Curves, Design Flood, and Standard Project Flood, East Creek, Chaska, Minnesota	
	PLATES	
NUMBER	ITEM	PAGE
A-1	East Creek and Chaska Creek Watershed, Chaska, Minnesota, Location Map	A-2 0
A-2	East Creek, Chaska, Minnesota, Subbasins	A-21
A-3	East Creek, Chaska, Minnesota, Basin Topography	
A-4	East Creek, Chaska, Minnesota, Projected Land Use	
A- 5	East Creek and Chaska Creek Watershed, Chaska, Minnesota, Basin Lag Versus, Basin Characteristics	

APPENDIX A

HYDROLOGY

TABLE OF CONTENTS - Continued

<u>PLATES</u> - Continued

NUMBER	ITEM	PAGE	
A-6	East Creek and Chaska Creek Watershed, Chaska,		
	Minnesota, Basin Lag Versus, Unit Hydrograph Peak	A-25	

APPENDIX A

HYDROLOGY

INTRODUCTION

General

- 1. The Feasibility Report (Reference 1) and the Limited Reevaluation Report (Reference 2) recommended that the East Creek diversion channel inlet be placed just upstream from Engler Boulevard (Plate A-1) at the outlet of subarea EC-9 (Plate A-2). The General Design Memorandum (GDM) (Reference 3) proposed a diversion tunnel and the inlet was moved to the center of subarea EC-10, just upstream from Crosstown Boulevard (Plate A-2). This study (Feature Design Memorandum) is recommending that the diversion channel be used with the inlet placed at the outlet to subarea EC-9 as proposed in the first two reports.
- 2. The Existing Condition assumes that the East Creek watershed, upstream of the City of Chaska, is rural with very little urbanization. In addition it is assumed that the existing culvert (8 ft. x 8 ft. box) and embankment at the Highway 41 crossing (Plate A-2) are in place. The Future Condition uses the same assumptions at Highway 41 with an urbanized watershed.
- 3. The Project Condition is defined as the Future Condition (urbanized watershed) with the single culvert under the Highway 41 embankment replaced with a structure with more flow capacity. The replacement of the existing culvert under Highway 41 with a larger capacity structure is a requirement of the Corps' authorized project. The new structure will be designed to prevent the failure of the embankment during a major flood due to overtopping or a head differential created by the storage of flood waters. The failure of Highway 41 during a flood would endanger the Corps' flood control project and the residents of Chaska (Reference 4). Details on the design of the culverts (and a larger embankment) can be found in Appendix J.
- 4. Two dams have been constructed (in 1989) within the East Creek basin since the GDM was published. In addition, the City of Chaska has plans (Reference 5) to construct a number of storm water detention ponds in the basin at some point in the future. The East Creek diversion channel hydrologic design model, from the GDM, was updated for this study to include the two new dams and three of the detention ponds that already exist.

CLIMATE

General

5. The climate of Chaska and its vicinity is moderate. It is characterized by wide variations in temperature, normally sufficient rainfall for crops, and moderate snowfall. There is a National Weather Service weather observation station within the City of Chaska. It was established in May 1925 and has been in operation since that time.

Temperature

6. The mean annual temperature for Chaska is about 44 degrees Fahrenheit. The mean monthly temperature varies from about 72 degrees in July to 12 degrees in January. The most extreme temperatures recorded were a high of 109 degrees on 4 July 1936 and a low of -43 degrees on 30 January 1951. The average number of days from spring to fall between freezing temperatures is 153.

Annual precipitation

7. The normal annual precipitation at Chaska is 26.0 inches. The normal monthly precipitation varies from a maximum of 4.00 inches in June to a minimum of 0.73 inches in January. Snowfall records for Minneapolis, Minnesota, which is located approximately 19 miles northeast of Chaska, indicate an average annual snowfall of about 44 inches. The snowfall represents approximately 16 percent of the yearly precipitation.

HISTORICAL FLOODS AND RAINFALL EVENTS

East Creek and Chaska Creek

24 - 28 July 1892

8. This storm was centered on Minneapolis, Minnesota (19 miles northwest of Chaska. The storm lasted from 24-28 July 1892 during which a maximum depth of 8.4 inches of rainfall occurred in 60 hours. Of this amount, 6.35 inches fell within 12 hours.

20 - 21 July 1951

9. The largest flash flood at Chaska from Chaska Creek or East Creek overflow, for which detailed information is available,

occurred in the late evening of 20 July 1951. The storm covered portions of southern and central Minnesota with widely varying In the vicinity of Chaska, the rainfall amounts of rainfall. occurred from approximately 8 p.m. on 20 July until 2 a.m. 21 July. Rainfall at the National Weather Bureau gage, 1 mile northeast of Chaska, totaled 3.95 inches. It was reported that an intense downpour at Chaska lasted 1 hour and 45 minutes and that the total rainfall was 4.5 inches. Within 1.5 hours, the creeks spread over two sections of the city causing damage to homes, businesses, and infrastructure. Although not as extensive and devastating as the overflow from the Minnesota River in April 1951, the flood inflicted a sudden scare to residents. The floodwaters vanished almost as quickly as the creeks had risen.

30 - 31 August 1977

10. During the evening of 30-31 August 1977, 4.73 inches of rainfall fell in the vicinity of Chaska. Both Chaska Creek and East Creek left their banks causing relatively minor damage to homes, businesses, and infrastructure.

20 - 21 July 1987

11. A severe storm passed through the Chaska area during the evening of 20-21 July 1987. Chaska and nearby Shakopee, Minnesota reported 7.83 and 9.75 inches of rainfall respectively within a 6 to 8 hour period. At Chaska, the rain started at about 7:15 p.m on 20 July 1987 and ended about 3:00 a.m. on 21 July. The creeks left their banks around 2:00 a.m. on 21 July. Some portions of Chaska reported up to 9 inches of rain. An isohyetal map for the storm was developed from a rainfall survey of the basin. rainfall over Chaska Creek and East Creek was 6.13 and 6.68 inches respectively. Very dry antecedent conditions were reported throughout the basin. As a result, discharges were smaller than might have been expected for an event of this magnitude and short duration. The peak discharge on East Creek at Engler Boulevard was later determined to be approximately 800 cfs. The damage due to flooding was relatively minor.

23 - 24 July 1987

12. A second severe storm passed through the area on the evening of 23-24 July 1987. The storm was centered over 9-Mile Creek near Minneapolis, Minnesota (19 miles northwest of Chaska). Edina and Bloomington, Minnesota reported 11.09 and 10.76 inches of rain respectively within a 6 to 8 hour period. At Chaska, the rain started at about 9:30 p.m on 23 July 1987 and ended about 2:30 a.m. on 24 July. The creeks left their banks around 11:45 p.m. on 23 July. Some portions of Chaska reported over 5 inches of rainfall.

An isohyetal map for the storm was developed from a rainfall survey of the basin. Average rainfall over Chaska Creek and East Creek was 3.61 and 4.54 inches respectively. Antecedent conditions were wet due to the 20-21 July storm two days earlier. The peak discharge on East Creek at Engler Boulevard was determined to be approximately 800 cfs (similar to the 20-21 July 1987 event). The damage due to flooding was relatively minor. An attempt to calibrate the HEC-1 rainfall/runoff model (Reference 6) to this event is discussed later in this report.

STREAMFLOW RECORDS

East Creek

13. The United States Geological Survey (U.S.G.S.) has made a few miscellaneous discharge and water quality measurements on East Creek at the U.S. Highway 212 bridge approximately 1 mile upstream from the mouth. The Corps set high water marks and calculated a discharge at Engler Boulevard following the storms the week of 20 July 1987. Table A-1 contains a summary of the available records.

Chaska Creek

14. The U.S.G.S. has also made a few miscellaneous discharge and water quality measurements on Chaska Creek at the U.S. Highway 212 bridge approximately 2 miles upstream from the mouth. The Corps set high water marks along the creek following the storms the week of 20 July 1987. Table A-1 contains a summary of the available records.

TABLE A-1

Streamflow Records East Creek and Chaska Creek Chaska, Minnesota

Chaska, Minnesoca							
U.S.G.S. Gage No.	Description	Years of Record (1)					
4447280- 93355201	East Creek at Chaska, MN, Hwy 212 Bridge 1 Mile Upstream From the Mouth	1979-80					
NA	East Creek at Chaska, MN, Culvert Under Engler Blvd. 1000 ft. West of Co. Rd. 17, 3000 ft. US From Crosstown Blvd.	1987 Corps Discharge Calc.					
05330700	Chaska Creek at Chaska, MN, Hwy 212 Bridge 2 miles Upstream From the Mouth	1967-70 75, 79-80					
NA	Chaska Creek at Chaska, MN, Staff gage on the First Street bridge	1987 Corps Stage Data					

(1) A number of highwater marks were set by the Corps on Chaska Creek and East Creek following the storms the week of 20 July 1987.

WATERSHED CHARACTERISTICS

General

15. Flows in East Creek are small during most of the year. There is normally some increase in flow in March and April during and immediately after the spring snowmelt. Spring rains often prolong this period of high flow. Intense summer rainstorms can bring a fast rise in discharge. The high flows usually have a short duration, ranging from a few hours to a few days. The lakes and wetlands in the basin help to sustain a continuous flow in the late spring and early summer and provide some natural storage. By late summer, the infiltration capacity is usually high resulting in the need for considerable rainfall to increase the streamflow. The headwaters of East Creek are on top of the steep bluffs that parallel the Minnesota River. The creek descends down a steep, deeply ravined channel to the Minnesota River flood plain and the City of Chaska (Plate A-3).

16. The City of Chaska has a stormwater management plan for the East Creek watershed. The city has recognized the fact that the basin is urbanizing rapidly (Plate A-4). The plan provides for the installation of numerous small storage ponds to control the increased runoff due to urbanization (Reference 5). The ponds are designed to provide a 1 percent exceedance frequency (100-year recurrence interval) level of protection. Natural storage areas exist at many of the sites. Three of the existing ponds were included in this study due to their size and location within the basin.

East Creek

- 17. The drainage area of the East Creek watershed above the confluence with the Minnesota River is approximately 11.8 square miles. The drainage area of East Creek above the inlet to the diversion channel near Engler Boulevard (outlet of subbasin EC-9) was determined to be 10.1 square miles. Engler Boulevard crosses East Creek just downstream from the diversion channel inlet (Plate A-2). Some portions of the drainage area do not contribute to the peak runoff.
- 18. East Creek is formed at the outlet of Hazeltine Lake (Plate A-1). The creek flows westward approximately 2,000 feet before entering IDS Reservoir. The outflow from IDS Dam immediately enters North Lake Grace Reservoir. The outflow from North Lake Grace Dam is controlled by the culvert under the Chicago, Minneapolis, St. Paul and Pacific (CMSP) railroad embankment during periods of high flow. The flow then enters the upper portion of Lake Grace Reservoir between Jonathan Boulevard and the CMSP railroad.
- 19. The outflow from Lake Bavaria flows approximately 3/4 mile east from its outlet through an intermittent channel to Pond EC-P16 (Plate A-1). The outflow from this area enters North Lake Grace Reservoir. After passing through North Lake Grace Dam and the CMSP culvert the flow also enters the upper portion of Lake Grace Reservoir upstream of Jonathon Boulevard.
- 20. Water in the upper portion of Lake Grace Reservoir must pass through the culvert under Jonathan Boulevard before eventually reaching the Lake Grace Dam outlet works.
- 21. From Lake Grace Dam, East Creek continues flowing to the south. It is joined by a western tributary in subwatershed EC-8 just upstream of the Minnesota Highway 41 crossing (Plate A-2). Between Lake Grace Dam and Highway 41, East Creek has a channel slope of approximately 28 feet/mile. Downstream of Highway 41, in subwatershed EC-9, the channel becomes more deeply ravined and the channel slope increases to 50 to 60 feet/mile. East Creek leaves the Minnesota River bluffs and enters the Minnesota River

floodplain in the vicinity of the Brandondale Mobile Home Park just upstream of Engler Boulevard. Downstream of Engler, East Creek meanders across the Minnesota River floodplain and into a densely urbanized area of the City of Chaska. East Creek then enters the Minnesota River at river mile 28.1.

22. The hydrologic features of the East Creek watershed are dominated by the presence of three dams (reservoirs), two lakes, and some natural storage (wetlands) areas. All of these features including a majority of the East Creek basin are contained within the corporate limits of the City of Chaska (Plate A-1). A description of the basin's major features, in general downstream order, follows.

Lake Bavaria and Hazeltine Lake

23. There are two natural lakes upstream of the East Creek diversion channel inlet. Both of the lakes (Bavaria and Hazeltine) are in the headwaters of the East Creek basin (Plate A-2). Lake Bavaria is in the northwest corner of the basin and has a water surface elevation of 971 feet (1929 NGVD). Hazeltine Lake is in the northeast corner of the basin and has a water surface elevation of 916 feet (1929 NGVD). The drainage areas of Lake Bavaria and Hazeltine are 1.3 and 0.59 square miles respectively. Elevation-discharge curves were developed for the lake outlets. The drainage areas above the lakes are essentially non-contributing due to the outlet capacities and the ratio of the drainage areas to the storage/surface areas of the lakes.

IDS Dam

24. IDS Dam (Plate A-2) was constructed in 1988-89 and is currently owned by the City of Chaska. The dam is primarily an earth embankment structure containing a free overflow spillway drop structure with a conduit. An emergency spillway (20 ft. wide) has been cut into the land adjoining the right abutment of the dam. The existing dam has: a total width of approximately 150 feet; a height of approximately 15.5 feet; and total storage equalling approximately 450 acre-feet. The total drainage area upstream of the dam is 2.1 square miles. The hydraulic and storage effects of IDS Dam were included in the updated hydrologic design models developed for this study. Pertinent data for IDS Dam is shown in Table A-2.

North Lake Grace Dam

25. North Lake Grace Dam (NLGD) (Plate A-2) was also constructed in 1988-89 and is currently owned by the City of Chaska. The dam is primarily an earth embankment structure containing a free

overflow spillway drop structure with a conduit. An emergency spillway (20 ft. wide) has been cut into the land adjoining the right abutment of the dam. The existing dam has: a total width of approximately 120 feet; a height of approximately 14 feet; and total storage equalling approximately 460 acre-feet. The total drainage area upstream of the dam is 5.8 square miles. The hydraulic and storage effects of NLGD dam were included in the updated hydrologic design models developed for this study. Pertinent data for North Lake Grace Dam is shown in Table A-2.

Storm Water Detention Pond, EC-P16

26. The construction of Pond EC-P16 was a requirement of the Minnesota Department of Natural Resources permit for upgrading Lake Grace Dam (LGD) to the appropriate dam safety standards (see LGD description). Pond P16 is upstream of Lake Grace Dam (Plate A-2). It outlets into North Lake Grace Dam through a culvert under McKnight Road. The road was raised 3 feet to increase storage in the pond and satisfy the permit requirements. The total drainage area upstream of the proposed pond is 3.41 square miles. Pertinent data for Pond EC-P16 is shown in Table A-3. A naturally occurring wetland exists at this location.

Chicago, Milwaukee, St. Paul, and Pacific (CMSP) Railroad Embankment

27. The CMSP railroad crosses East Creek immediately downstream of North Lake Grace Dam (Plate A-2). A 8 x 13 foot concrete box culvert under the CMSP railroad controls inflow into Lake Grace Reservoir during high flows. The backwater effects of Lake Grace Dam extend through and upstream of the culvert. The hydraulic effects of the CMSP culvert were considered in this study. When the water surface on Lake Grace is at the normal pool elevation, the CMSP culvert is approximately half full.

Jonathan Boulevard

28. Jonathan Boulevard crosses Lake Grace Reservoir at approximately the mid-point (Plate A-2). Prior to May of 1992, the culvert connecting the upper and lower pools of Lake Grace, under Jonathan Boulevard, was relatively large (22 foot diameter). As a result, the hydrologic model developed for the General Design Memorandum (Reference 3, Feb. 1984) did not consider the hydraulic effects of this structure. In May of 1992, however, the culvert failed and was subsequently replaced with a 12 x 12 foot culvert. As a result, the hydraulic effects of the Jonathan Boulevard culvert were considered in this study.

Lake Grace Dam

- 29. Lake Grace Dam (Plate A-2) was constructed in 1968 by the Jonathan Corporation and is currently owned by the City of Chaska. The existing dam is primarily an earth embankment structure containing a free overflow spillway drop structure with a conduit and a stilling basin. An emergency spillway (100 ft. wide) has been cut into the land adjoining the right abutment of the dam. The existing dam has: a total width of approximately 452 feet; a height of approximately 29 feet; and total storage equalling approximately 620 acre-feet. A rehabilitation plan for the dam (see next paragraph) includes raising the top of the dam 1 foot. The drainage area upstream of the dam is 6.5 square miles. Pertinent data for the existing Lake Grace Dam is shown in Table A-2.
- 30. Lake Grace Dam was inspected for the Corps of Engineers under the authority of the National Dam Safety Program on July 15, 1980. The inspection report (Reference 7) concluded that the dam did not meet accepted dam safety criteria. Since then, the authority for the dam safety program has been passed from the Corps of Engineers to the State of Minnesota, Department of Natural Resources (MNDNR). The MNDNR has approved a plan (References 8, 9, and 14), submitted by the City of Chaska, to bring the dam up to current dam safety standards. Pertinent data for Lake Grace Dam after the proposed upgrade, are shown in Table A-2.

TABLE A-2

Pertinent Data (1)
Lake Grace Dam, North Lake Grace Dam, and IDS Dam,
East Creek

Name of Dam	D.A. Sq.Mi. (2)	Dam Length Ft.	Dam Height Ft.	Elev. Top of Dam Ft.	Normal Pool Elev. Ft.	Emer. Spill. Elev. Ft.	Top of Dam Stor. Ac-ft
Lake Grace Dam Existing	6.5	452	29	905.2	900.0	902.4	620
Lake Grace Dam After Rehab.	6.5	452	30	906.2	899.5	901.9	670
North Lake Grace Dam	5.8	120	14	910.0	902.0	906.0	460
IDS Dam	2.1	150	15.5	920.0	914.0	917.0	450

- (1) Elevations are referenced to the 1929 NGVD
- (2) Some of the drainage area is non-contributing

Proposed New Highway 212, East Creek Crossing

31. Currently, Minnesota State Highway 212 passes through the City of Chaska. The State of Minnesota, however, plans to construct a new 4-lane freeway (also called Highway 212) north of the city at some point in the future. The freeway will cross East Creek between Lake Grace Dam and the point where Highway 41 crosses the creek (Plate A-1). The State of Minnesota's future plans were investigated to insure that the structure used to span the creek will not alter the hydrologic/hydraulic characteristics of the basin. The proposed freeway will cross the creek at a deeply ravined portion of the valley. The State has indicated that a large bridge will be installed that will not alter the flow characteristics of the stream or restrict flow and create a head differential across the embankment.

Storm Water Detention Ponds EC-P57, and EC-P62

32. There are 2 storm water detention ponds on the main stem of the tributary of East Creek that flows through subareas EC-7, and EC-7AB (Plate A-2). The storage created by these ponds was included in the hydrologic design model. Pertinent data for the ponds is shown in Table A-3. Naturally occurring wetland areas exist at these locations now.

	TABLE A-3 Pertinent Data (1) Storm Water Detention Ponds East Creek								
Name of Retention Pond	Drainage Area Sq. Mi. (2)	Elevation of Top of Berm Ft.	Storage at Top of Berm Ac-Ft						
EC-P16	3.41	920	373						
EC-P57	1.05	920	99						
EC-P62	1.67	883.5	23						

- (1) Elevations are referenced to the 1929 NGVD.
- (2) Some of the drainage area is non-contributing.

Highway No. 41, East Creek

Highway 41 also crosses East Creek at a deeply ravined portion of the valley (Plate A-3). It is located approximately 2 miles upstream from the Corps' diversion channel. The existing embankment is 30 feet high and has a 8 x 8 foot concrete box culvert underneath it. During high flows it is likely that the culvert entrance would plug with debris. The resulting head created by the restricted flow could fail the embankment endangering the residents of Chaska and the Corps flood control To prevent this, the East Creek flood control project project. will include the installation of two large culverts under Highway 41. The embankment will also be enlarged at the same time to accommodate an anticipated increase in traffic. Additional details on the design can be found in Appendix J. The slope of the stream bed between Highway 41 and the Corps' diversion channel inlet is

HYDROLOGIC MODEL (HEC-1)

General

- 34. The HEC-1 Flood Hydrograph model (Reference 6) was used to develop the design flood for East Creek (Plate A-2) and update the work that was done in the GDM. In addition to some parameter adjustments, two dams were added and some storm water detention ponds were considered. The two dams were built since the GDM (Reference 3) was published.
- 35. The hydraulic relationships along the reach between Lake Grace Dam and IDs Dam are complex. The numerous hydraulic structures along this reach result in constantly changing headwater and tailwater relationships during high flow. The HEC-1 models developed for the LRR and GDM (References 2 and 3) were able to model the situation adequately. However, in recent years, the addition of IDs Dam, North Lake Grace Dam, and the new Jonathan Boulevard culvert, has further complicated the situation. As a result, for this study, an unsteady flow model was developed for this reach. The HEC-1 model provided an input hydrograph to the unsteady flow model. Information concerning the unsteady flow model can be found in the next section.

Drainage Areas

36. The drainage area of the East Creek watershed above the confluence with the Minnesota River was determined to be 11.8 square miles. The East Creek watershed was divided into 12 subwatersheds using U.S.G.S. topographic maps with a scale of 1:24000 (10-foot contours). Field trips to the study area confirmed watershed boundaries. The subwatersheds are shown on Plate A-2 and are designated EC-1 through EC-11. The subwatersheds vary in size from 0.25 to 2.11 square miles (Table A-4). Some of the drainage area does not contribute to the peak flow.

Standard Project Storm Precipitation

37. The Standard Project Storm (SPS) was computed in accordance with EM-1110-2-1411, "Standard Project Flood Determinations" (Reference 10) and information contained in TD No. 15, "Hydrologic Analysis of Ungaged Watersheds Using HEC-1" (Reference 11). The SPS is a 96-hour duration event. The version of the HEC-1 model used has a limit of 2000 computation intervals. A 5-minute computation interval was used in the model in order to get adequate unit hydrograph definition on the smaller subbasins. As a result,

the complete 96-hour SPS event could not be input. However, the amount of excess precipitation (after losses) during the first 48 and last 24 hours of the SPS was minimal (0.35 and 0.06 inches respectively). As a result, only the most severe 24 hours (day 3) of the 96-hour SPS were modeled. Standard Project Storm policy loss rates of 1.00 inches initial loss and 0.15 inches/hour uniform loss were used. The SPS 24 hour index rainfall for the area was determined to be 10 inches.

Snyder's Unit Hydrograph Parameters

Snyder's unit hydrograph parameters were used in the HEC-1 computer model. The model uses Snyder's coefficients (Tn) and (Cn). relationships have been developed between characteristics and the Snyder coefficients. Plates A-5 and A-6 show examples of some relationships, which were first presented in an earlier District publication (Reference 12). To determine the Snyder's coefficients the following subwatershed characteristics had to be determined: length of watercourse from the outlet to the upstream limits of the drainage area; length from the outlet to the center of gravity of the drainage area along the watercourse; and the slope associated with the length of the watercourse to the upstream limits of the drainage area. Plates A-5 and A-6 were then used to determine the coefficients T_p and C_p . The natural basin curve (Linsey) on Plate A-5 was used to determine existing condition parameters. The average the of urban (Eagleson/VanSickle) on Plate A-5 was used to determine the Future/Project condition parameters.

Baseflow

39. The baseflow on the two creeks is not significant.

Loss Rates

40. For the Standard Project Flood, initial and uniform policy loss rates equal to 1.00 inch and 0.15 inch/hour respectively were used.

Historic Event Modeling

- 41. A historic rainfall/runoff event was analyzed to test the ability of the HEC-1 model to reproduce the hydrologic conditions in the watershed.
- 42. A severe storm occurred in the Chaska area on 20-21 July 1987 and on 23-24 July 1987 (see Historical Flood section). The antecedent moisture conditions prior to the first storm were dry.

High water marks were recorded for each event. In addition, isohyetal maps were developed for each storm based on a survey of rain gauges in the basin. A East Creek peak discharge of 800 cfs was calculated for the second storm from the high water marks at the box culvert under Engler Boulevard (Plate A-2). The average precipitation over each subbasin for the 23-24 July storm was calculated from the isohyetal map.

- 43. The precipitation for the 23-24 July storm was then input into a HEC-1 model. The conditions prior to the storm were assumed to approximate the Soil Conservation Service's (SCS) antecedent moisture condition II. The existing condition unit hydrograph parameters and antecedent moisture condition II curve numbers were adopted (Table A-4). The existing condition was assumed to be appropriate for 1987. A lot of development, however, has occurred since then.
- 44. The resulting model was calibrated to the 800 cfs value at Engler Boulevard near the outlet of subarea EC-9. The sensitivity of the model was tested by adjusting the value of Snyder's parameter C_p and the SCS curve numbers (CN). In the end the existing condition unit hydrograph parameters shown in Table A-4 were adopted. The AMC II curve numbers (Table A-4 and Reference 2, Table 4A-2), however, had to be lowered an average of 9 percent in order to match the 800 cfs value at Engler Boulevard. This was considered reasonable considering the unusually dry conditions that prevailed prior to the first storm and the unknown effect this may have had on the second event 2 days later. The unsteady flow model was not needed for this analysis.

Table A-4
Summary of Watershed Characteristics &
East Creek and Chaska Creek, C

		Wat	ershed Chara	cteristics				Existing	Conditi
Subarca	Watershed area	Length of drainage	Length to centriod	Representative slope	Water surface area	Snyder's Tp	Snyder's Cp	30-minute unit	Curve nut
designation								hydrograph peak	SCS AMO
	(square miks)	(miles)	(miles)	(percent)	(percent)	(hours)		(cfs)	(CN)
East Creek				4.00		0.80	0.58	540	79
EC1	1.30	0.95	0.49	1.28	14	0.80	0.56		(4)
EC2 (3)	2.11	2.05	0.91	1.02	2	1.50		(2)	1 1
EC2A (3)	0.25	0.38	0.19	5.03	20	0.35	0.53	(2)	(4)
EC3	0.63	1.67	0.70	1.02	0	1.22	0.64	210	73
EC4	0.59	1.25	0.70	1.06	0	0.60	0.54	330	80
EC5	0.91	0.61	0.22	2.19	23	0.41	0.50	700	82
EC6	0.70	0.74	0.21	2.18	37	0.30	0.47	650	75
EC7 (3)	1.05	1.74	0.76	0.76	0	1.35	0.74	(2)	(4)
EC7AB (3)	1	0.87	0.44	0.84	0 .	0.75	0.58	(2)	(4]
EC8 (3)]	1.44	0.64	1.67	0	0.60	0.55	302	73
EC9	1.35	2.02	1.11	2.10	0	0.27	0.46	1336	73
EC10	1.14	1.55	1.09	1.96	10	0.65	0.61	626	75
EC11	0.49	1.27	0.49	0.45	6	0.22	0.44	480	78
TOTAL	11.83			•					
Chaska Creek									
1	1.43	2.04	1.10	1.29	1	0.35	0.49	1325	77
1A	0.44	1.25	0.57	0.99	0	1.00	0.58	150	82
2	0.97	1.44	0.87	0.57	4	1.45	0.65	269	77
3	2.53	2.92	1.40	0.21	9	2.70	0.73	436	82
3A	0.65	1.10	0.49	0.05	. 7	1.50	0.61	165	74
4	3.04	2.50	1.17	0.21	5	2.50	0.74	580	7€
5	2.76	2.16	1.06	0.26	10	2.10	0.69	580	80
6	1.60	1.25	0.72	0.50	12	1.30	0.63	483	, 70
7	1.50	2.23	1.14	0.74	13	1.80	0.68	357	80
TOTAL.	14.92	_	1.17	J. 7 -	••				
TOTAL.	14.32					<u> </u>			

- (1) The Future Condition assumes an urbanized watershed with the existing Highway 41 culvert in place (6x8 foot RCl Highway 41 culvert will be replaced with a bridge/culvert that will not plug and cause water to be ponded.
- (2) The HEC-1 model used to develop the General Design Memorandum (GDM) frequency curves used a 30-minu. The updated SPF HEC-1 models (modified GDM models) developed for this study use a 5-minute computation
- (3) Subarea EC2 was split into subareas EC2 and EC2A for the updated SPF models. This was done to account for No Subarea EC7 from the GDM was split to account for storage ponds EC57 and EC62. Some additional area was ad
- (4) Policy loss rates (initial and uniform losses) were used in the updated SPF models adopted for this study.
- (5) The Future/Project Condition for Subareas EC10 and EC11 were modeled as part of the interior flood control por

Table A-4
mmary of Watershed Characteristics and Synthetic Hydrograph Values
East Creek and Chaska Creek, Chaska, Minnesota

			Existing	Conditions					Future/P	roject C
ce area	Spyder's Tp	Snyder's Cp	30-minute unit	Curve number	Wetness coefficient	Adjusted curve number	Snyder's Tp	Snyder's Cp	30-minute unit	Curve num
			hydrograph peak	SCS AMC-II	scs	SCS AMC-III			hydrograph peak	SCS AMC
t)	(hours)		(cfs)	(CN)		(CN)	(hours)		(cfs)	(CN)
	0.80	0.58	540	79	1.15	90.9	0.40	0.50	995	80
	1.50	0.76	(2)	(4)	(4)	(4)	0.35	0.52	(2)	(4)
1	0.35	0.53	(2)	(4)	(4)	(4)	0.053	0.30	(2)	(4)
.	1.22	0.64	210	73	1.19	86.9	0.35	0.49	490	78
İ	0.60	0.54	330	80	1.14	91.2	0.30	0.47	525	86
i	0.41	0.50	700	82	1.13	92.7	0.25	0.41	729	86
	0.30	0.47	650	75	1.17	87.8	0.15	0.41	779	79
	1.35	0.74	(2)	(4)	(4)	(4)	0.30	0.39	(2)	(4)
	0.75	0.58	(2)	(4)	(4)	(4)	0.15	0.42	(2)	(4)
	0.60	0.55	302	73	1.19	86.9	0.25	0.41	455	76
ĺ	0.27	0.46	1336	73	1.19	86.9	0.22	0.44	1405	77
	0.65	0.61	626	75	1.18	88.5	(5)			
	0.22	0.44	480	78	1.15	89.7	(5)			
	0.35	0.49	1325	77	1.16	89.3	0.18	0.45	1765	80
	1.00	0.58	150	82	1.13	92.3	0.19	0.43	490	83
	1.45	0.65	269	77	1.16	89.3	0.26	0.45	950	82
i	2.70	0.73	436	82	1.13	92.3	1.16	0.60	793	84
	1.50	0.61	165	74	1.19	87.7	0.67	0.64	400	79
	2.50	0.74	580	76	1.17	88.9	2.50	0.74	580	84
	2.10	0.69	580	80	1.14	91.2	2.10	0.69	580	84
	1.30	0.63	483	70	1.21	84.7	0.24	0.45	1706	80
:	1.80	0.68	357	80	1.14	91.2	0.78	0.55	670	81

ing Highway 41 culvert in place (6x8 foot RCP). The Project Condition (PC) also assumes an urbanized watershed. Howe plug and cause water to be ponded.

SPF models. This was done to account for North Lake Grace dam which was built in 1989. The GDM models used one st C57 and EC62. Some additional area was added to Subarea EC8.

SPF models adopted for this study.

deled as part of the interior flood control portion of this study.

m (GDM) frequency curves used a 30-minute computation interval. The (GDM) frequency curve models were not modied for this study use a 5-minute computation interval.

e A-4 Pristics and Synthetic Hydrograph Values Creek, Chaska, Minnesota

Conditions	3				Future/Project Conditions (1)					
Curve number	Wetness coefficient	Adjusted curve number	Snyder's Tp	Snyder's Cp	30-minute unit	Curve number	Wetness coefficient	Adjusted curve number		
SCS AMC-II	scs	SCS AMC-III			hydrograph peak	SCS AMC-II	scs	SCS AMC-III		
(CN)		(CN)	(hours)		(cfs)	(CN)		(CN)		
79	1.15	90.9	0.40	0.50	995	80	1.14	91.2		
(4)	(4)	(4)	0.35	0.52	(2)	(4)	(4)	(4)		
(4)	(4)	· (4)	0.053	0.30	(2)	(4)	(4)	(4)		
73	1.19	86.9	0.35	0.49	490	78	1.15	89.7		
80	1.14	91.2	0.30	0.47	525	86	1.10	94.6		
82	1.13	92.7	0.25	0.41	729	86	1.10	94.6		
75	1.17	87.8	0.15	0.41	779	79	1.15	90.9		
(4)	(4)	(4)	0.30	0.39	(2)	(4)	(4)	(4)		
(4)	(4)	(4)	0.15	0.42	(2)	(4)	(4)	(4)		
73	1.19	86.9	0.25	0.41	455	76	1.17	88.9		
73	1.19	86.9	0.22	0.44	1405	77	1.16	89.3		
75	1.18	88.5	(5)							
78	1.15	89.7	(5)							
77	1.16	89.3	0.18	0.45	1765	80	1.14	91.2		
82	1.13	92.3	0.19	0.43	490	83	1.12	93.1		
77	1.16	89.3	0.26	0.45	950	82	1.13	92.6		
82	1.13	92.3	1.16	0.60	793	84	1.11	93.2		
74	1.19	87.7	0.67	0.64	400	79	1.145	90.5		
76	1.17	88.9	2.50	0.74	580	84	1.11	93.2		
80	1.14	91.2	2.10	0.69	580	84	1.11	93.2		
70	1.21	84.7	0.24	0.45	1706	80	1.14	91.2		
80	1.14	91.2	0.78	0.55	670	81	1.13	91.5		

Out RCP). The Project Condition (PC) also assumes an urbanized watershed. However, the PC assumes that the

¹⁻minute computation interval. The (GDM) frequency curve models were not modified for this study. Jutation interval.

It for North Lake Grace dam which was built in 1989. The GDM models used one subarea called EC2. I was added to Subarea EC8.

trol portion of this study.

STANDARD PROJECT FLOOD

Project Condition, East Creek

- 45. The Standard Project Flood (SPF) was modeled under the Project Condition assumption. The Project Condition assumes the large culverts at Highway 41, $(2-12 \times 12 \text{ ft. RCPs})$ that are discussed in Appendix J, are in place. The Future Condition (urbanized watershed) was assumed to exist in the basin for the Project Condition for the purpose of computing the rainfall-runoff model parameters.
- The HEC-1 rainfall-runoff computer model was used to develop the Project Condition, Standard Project Flood (SPF) on East Creek. The model used in the 1984 General Design Memorandum (GDM) (Reference 3.) was modified. A new model was developed in order to account for two new dams that were installed by the City of Chaska since the GDM was published in 1984 (see Table A-2). Other changes were also made including using a shorter computation time interval, SPF policy loss rates, updated unit hydrograph parameters, and a modified Standard Project Storm (SPS) rainfall distribution. Changes in flood routing due to the proposed storm water detention ponds were also made. The Future Condition, Snyder's unit hydrograph parameters from Table A-4 were adopted. The East Creek watershed has been annexed into the City of Chaska. The basin is rapidly urbanizing due to its close proximity Minneapolis/St. Paul metropolitan area.
- 47. In order for this project to proceed on schedule, a preliminary diversion channel design discharge (5500 cfs) was developed (see Table A-5). The channel design proceeded under this assumption while the hydrologic design was being finalized. When the hydrologic design was finished, the resulting discharge (6100 cfs) did not differ enough (10 percent) to warrant a change (see Table A-5).

UNSTEADY FLOW MODEL (DAMBRK)

48. The HEC-1 model was not able to model the unsteady flow conditions between Lake Grace Dam and IDS Dam. The unsteady flow capability of the National Weather Service's dam break model (Dambrk) (Reference 13) was used to analyze this reach. A portion of the Dambrk model (Reference 14) that was used by the City of Chaska for the dam safety Study on Lake Grace Dam was used. The volume of the input hydrographs in the cities' model was verified with the HEC-1 model discussed in this appendix. The HEC-1 hydrograph for subareas EC-1 and EC-2 was substituted for the cities results due to differing assumptions regarding land use. Some assumptions had to be made regarding timing between the unsteady flow model and the HEC-1 model. The output from the unsteady flow model at Lake Grace Dam was input into a HEC-1 model

TABLE A-5

Frequency Curves (1), Design Flood (2), and Standard Project Flood (3)

East Creek
Chaska, Minnesota

			···						
		Recurrence Interval (Years) Discharge (cfs)							
(4) Location	(5) Condition	10	25	50	100	(2) Diver. Chann. Design Flood	Stan. Proj.		
E. Chaska Creek at Diversion Channel Inlet, (4)	Existing	2050	2550	2930	3350				
E. Chaska Creek at Diversion Channel Inlet, (4)	Future	2380	2930	3380	3820				
E. Chaska Creek at Diversion Channel Inlet, (4)	Project					5500	6100		

- (1) The frequency curves (10, 25, 50, 100-yr.) were not revised for the FDM. The values from the LRR (Reference 2) are listed here.
- (2) The diversion channel design flow. See Standard Project Flood description.
- (3) The Standard Project Flood was revised as part of this FDM.
- (4) The diversion channel is at the outlet to subarea EC-9.
- (5) See the introduction for a description of the conditions.

REFERENCES

- 1. U. S. Army Corps of Engineers, St. Paul District, <u>Feasibility</u> Report for Flood Control, <u>Minnesota River at Chaska</u>, <u>Minnesota</u>, August 1973.
- 2. U. S. Army Corps of Engineers, St. Paul District, <u>Limited Reevaluation Report</u>, <u>Technical Appendixes</u>, <u>Minnesota River at Chaska</u>, <u>Minnesota</u>, August 1982.
- 3 U. S. Army Corps of Engineers, St. Paul District, <u>General Design Memorandum</u>, <u>Minnesota River at Chaska</u>, <u>Minnesota</u>, <u>Flood Control Project</u>, February 1984, Revised August 1984.
- 4. Barr Engineering Company, Minneapolis, Minnesota, <u>Hydrologic Studies For Flood Control Project</u>, Chaska Creek and East Creek, <u>undated</u>.
- 5. Bonestroo, Rosene, Anderlik, and Associates, St. Paul, Minnesota, Stormwater Management Plan, City of Chaska, 1990.
- 6. U. S. Army Corps of Engineers, Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package, Generalized Computer Program, Davis, California, January 1990.
- 7. U. S. Army Corps of Engineers, St. Paul District, <u>Lake Grace Dam</u>, <u>National Dam Safety Program Inspection Report</u>, Inventory No. 808, September 1980.
- 8. Bonestroo, Rosene, Anderlik, and Associates, St. Paul, Minnesota, <u>Lake Grace Dam Final Improvements</u>, Chaska, Minnesota, File No. 92128, February 1993.
- 9. Minnesota Department of Natural Resources Letter to Bonestroo, Rosene, Anderlik, and Associates Dated 20 April 1993, RE: Lake Grace Dam.
- 10. Department of the Army, Office of the Chief of Engineers, Standard Project Flood Determinations, EM 1110-2-1411, 26 March 1952, Revised March 1965.
- 11. U. S. Army Corps of Engineers, Hydrologic Engineering Center, Hydrologic Analysis of Ungaged Watersheds Using HEC-1, Training Document No. 15, April 1982.
- 12. U. S. Army Corps of Engineers, St. Paul District, Flood Control, <u>Bassett Creek Watershed</u>, <u>Design Memorandum No. 1</u>, Hydrology and Hydraulics, May 1981.
- 13. National Weather Service, Hydrologic Research Laboratory, <u>DAMBRK, Dam Break Flood Forecasting Model</u>, Silver Spring, Maryland, 1988.

14. Bonestroo, Rosene, Anderlik, and Associates, St. Paul, Minnesota, <u>Lake Grace Dam, Dam Failure Analysis</u>, Chaska, Minnesota, File No. 92115, November 1990.

APPENDIX B HYDRAULIC DESIGN

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX B

HYDRAULIC DESIGN

TABLE OF CONTENTS

Item	<u>Page</u>	<u>Paragraph</u>
GENERAL DESCRIPTION OF THE PROJECT	B-1	1
Outlet Structure	B-1	2-7
Transition Section	B-4	8
Channel	B-4	9-10
Design Water surface Elevations	B-5	11
Levees	B-7	12-13
Bridges	B-8	14-15
Curves	B-9	16
Erosion Control Structures	B-10	17
Riprap Design	B-11	18
Straight Channel	B-11	19-20
Channel Bends	B-12	21-22
Bridges	B-13	23-24
Drop Structures	B-14	25-28
Diversion Structure	B-16	29-30
Riprap Gradations	B-16	31

TABLES

Number	<u>Title</u>	<u>Page</u>
B-1	Design Data for Articulated Concrete Channel	B-2
B-2	Summary of Required Depth of Protection at outlet	B-3
B-3	Pertinent Channel Information	B-4
B-4´	Design Water Surface Elevations	B-6
B-5	Pertinent Levee Information	B-7
B-6	Pertinent Bridge Information	B-8
B-7	Curve Data	B-9
B-8	Drop Structures - Hydraulic Data	B-10
B-9	Scour Protection Design References	B-11
B-10	Riprap Design - Straight Channel	B-11
B-11	Riprap Gradation - Straight Channel	B-12
B-12	Riprap Design - Bend Analysis	B-12

TABLES (continued)

Number	<u>Title</u>	<u>Page</u>
B-13	Riprap Gradation - Bend Station 52+50 to 54+50	B-13
B-14 B-15 B-16 B-17	Riprap Design - Bridge Analysis Riprap Gradation - Bridges Riprap design - Downstream of Drop Structures Riprap Gradations - Downstream of Drop Structures Riprap Design - Upstream of Drop Structures	B-13 B-14 B-14 B-15
B-19 B-20 B-21 B-22	Riprap Gradation - Upstream of Drop Structures Riprap Design - Diversion Structure Summary of Riprap Gradations Summary of Riprap by Station	B-15 B-16 B-16 B-17
	<u>PLATES</u>	
Number	<u>Title</u>	
B-1 B-2	Details and Design Chart for Typical Drop Struc Rating Curve Upstream of Diversion Structure - Outlet E	ture

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX B

HYDRAULIC DESIGN

GENERAL

This appendix covers the hydraulic design of only those portions of the Chaska flood control project that are included in this feature design memorandum. This includes the East Creek channel diversion. The East Creek channel diversion includes four control structures, an articulated concrete lined supercritical channel from station 0+00 to station 3+75 where the proposed East Creek diversion enters the Minnesota River, a trapezoidal shaped transition section from station 3+75 to station 8+25, a riprapped trapezoidal channel from station 8+25 to station 58+42, and a riprapped overflow diversion structure from station 58+42 to station 58+95. There will be three bridges that cross the proposed diversion channel: Stoughton Avenue at station 16+82, U.S. Highway 212 at station 25+35, and proposed Engler Avenue extension at station 46+25. The design discharge is 5500 c.f.s. at the upstream diversion structure. A discussion of the design discharge is included in Appendix A, Hydrology.

DESCRIPTION OF THE PROJECT

Outlet Structure. The outlet structure consists of an articulated concrete lined supercritical flow channel with a channel slope of 10 horizontal to 1 vertical. The width of the channel is 250 feet from station 0+00 to 2+85. The invert of the channel is elevation 682.9 at the Minnesota River, station 0+00, and 719.0 at the crest, station 3+50. A profile view is shown on Plate 3 and a typical section view is shown on Plate 12 of the main report. The crest elevation of 719.0 is five feet above the invert elevation of the approach channel. The width of the channel at the crest is 280 feet. This serves as an overflow structure which allows for a high enough tail water in the approach channel, which reduces the velocities and the stilling basin depth for the drop structure located at station 8+25. This was an important consideration in the design of the portion of the diversion channel downstream of Stoughton Ave. because of the existence of a fen in the immediate area. A fen is a type of wetland supported by groundwater discharge, i.e., springs and seepage. A low stilling basin could impact the ground water levels and thus the fen.

Pertinent design information for the articulated concrete lined channel is shown in Table B-1.

Table B-1. Design Data for Articulated Concrete Channel

Manning's	Channel Slope	Normal <u>Depth</u>	Velocity	Froude No.
 0.025	0.10	1.3	17.0	2.63
0.035	0.10	1.5	15.0	2.16

An articulated concrete lined channel is proposed from station 0+00 to station 3+75. The design was based on model studies and design guide by Dr. J.A. McCorquodale, Professor of Engineering, Department of Civil and Environmental Engineering, University of Windsor, Windsor, Ontario. A range of Manning's "n" values of 0.025 to 0.035 was considered. A concrete block with a base of 15" by 15", a top of 12" by 12" and a depth of 8.5" connected together by cable to comprise a mat would meet the criteria in Table B-1. The resulting mat would have a weight of 70 pounds per square foot. With a channel slope of 10-percent, the maximum permissible velocity would be 23.3 ft/sec assuming good placement with good anchoring and good, well compacted and drained subgrade. A geotextile filter cloth would provide a beneficial effect to the stability of the granular subgrade material which in turn would further stabilize the mats. Care should be exercised in the preparation and placement of the mats to minimize unevenness during construction and future settlement.

B-4. Two 24 inch RCP's with a length of 90 feet are proposed through the overflow structure to allow low flows from ground water and local runoff to enter the articulated concrete lined supercritical flow channel without having these low flows flowing over the crest. A low flow channel is proposed from station 0+00 to station 2+85, the outlet of the proposed 24 inch RCP's.

B-5. To determine the depth of the articulated concrete mat below bottom of the Minnesota River, the d2/d1=0.5[((1+8(F1)*2)*0.5)-1] was used. The Froude No., F1, was determined using the equation F1=V1/(gd1)*0.5. The depth, d1, and velocity, V1, were determined using the WASURO computer program developed by the U.S. Army Corps of Engineers, Los Angeles District. This resulted in a depth, d1, of 1.5 feet and a velocity, v1 of 15 fps. Since, over time, there may be an unevenness in the concrete mat, a 0.5 foot change in elevation was assumed to determine the difference in depth, d2, required. It is difficult to determine the level of the Minnesota River during the occurrence of the design flood on East Creek. Low pool on the Minnesota River at the East Creek outlet is 688.0. Pertinent results are shown in Table B-2.

Table B-2. Summary of Required Depth of Protection at Outlet

	With No	Unevenness	With a 0.5 Foot Variation
Unit Discharge, q Approach Depth, d1		cfs	22 cfs
Approach Velocity, v1 Conjugate Depth, d2	1.5 15 4.0	fps	1.0 ft 22 fps 5 ft

Using a 0.5 foot variation in the concrete mat, a depth, d2, of 5.0 feet is required. Since an ultra conservative tail water of 688.0 was used, no additional depth is recommended.

B-6. Other alternatives were considered for the reach from Stoughton Ave. to the Minnesota River. One alternative considered a rectangular concrete supercritical flow channel from Stoughton Ave which would flow into a parabolic drop into a Saint Anthony Falls type stilling basin. This alternative was not acceptable because of the required depth of the stilling basin. Affects on the fen as well as stability problems were evident. Widening the stilling basin to lower the unit discharge enough to raise the stilling basin floor to minimize the impact on the fen and eliminate the stability problems was not recommended because of the cost associated with this alternative.

B-7. Another alternative considered a subcritical channel from Stoughton Ave. with a drop structure at the confluence with the Minnesota River. The same problems existed with this alternative as with the supercritical channel from Stoughton Ave. alternative. The selected plan is the least costly alternative.

- B-8. Transition Section. A trapezoidal shaped transition section is proposed from station 3+75 at the overflow section to station 8+25 which is at the sill of drop structure No. 1. The bottom width expands from 40 feet at station 8+25 to 250 feet at station 3+75. Flows from ground water and local runoff would be conveyed to the two 24-inch RCP's and into the articulated concrete lined supercritical flow channel. Typical sections of the transition reach are shown on Plate 14 of the main report. Additional information is contained in following paragraphs.
- The proposed East Creek diversion above the Channel. articulated concrete lined supercritical channel consists of four drop structures connected by trapezoidal channels. Channel reach 1 is the supercritical reach discussed in paragraphs 2 through 6. The flow above channel reach 1 is subcritical. Channel reach 2 extends from station 3+75 to the end sill of drop structure 1 at station 8+25. Channel reach 3 extends from the crest of drop structure 1 at station 8+62 to the end sill of drop structure 2 at station 14+62. Channel reach 4 extends from the crest of drop structure 2 at station 15+18 to the end sill of drop structure $\bar{3}$ at station 32+54. Channel reach 5 extends from the crest of drop structure 3 at station 33+00 to the end sill of drop structure $\bar{4}$ at station 51+40. Channel reach 6 extends from the crest of drop structure 4 at station 51+88 to the downstream side of the diversion structure at station 58+52. Pertinent information for the subcritical channel reaches are shown in Table B-3.

Table B-3. Pertinent Channel Information

Reach	Stati From	oning To	Bottom Width	Side slopes	Invert D/S	Elevation U/S	Channel slope
2 3 4 5 6	3+75 8+62 15+18 33+00 51+88	8+25 14+62 32+54 51+40 58+52	Varies 10 10 25 10	1:3 1:3 1:3 1:3	714.0 719.0 736.0 752.0 769.6	715.0 720.0 742.0 756.8 771.4	0.00222 0.00167 0.00346 0.00261 0.00271

- The channel inverts and slopes were established based on B-10. bridge crossing elevations, existing buildings, existing ground line, and geotechnical considerations. The most critical areas were the reach from station 3+75 to Stoughton Ave., drop structure 3 near station 33+00, and the proposed Engler Ave. extension at station 46+25. The area downstream of Stoughton Ave. was critical because of affects on the fen. The area near drop structure 3 was a concern because of problems with uplift due to artisan pressure. The city of Chaska has plans to extend Engler Blvd. The channel at the proposed crossing had to be designed to match the proposed low chord elevation of 770.5 at the west end of the bridge. considerations are discussed geotechnical in Appendix Geotechnical Design.
- B-11. <u>Design Water Surface Elevations.</u> Design water surface elevations were computed for the subcritical flow reaches using the backwater computer program HEC-2. A model was developed separately for each subcritical reach. The model for channel reach 2 assumes critical depth at the crest of the overflow section into the articulated concrete lined supercritical channel and extends to drop structure 1. The model for channel reach 3 assumes critical depth at the crest of drop structure 1 at station 8+62 and extends to drop structure 2. Channel reach 4 assumes critical depth at the crest of drop structure 2 at station 15+18 and extends to drop structure 3. The model for channel reach 5 assumes critical depth at the crest of drop structure 3 at station 33+00 and extends to drop structure 4. The model for channel reach 6 extends from the crest of drop structure 4 at station 51+88 and extends upstream of the diversion structure. A Mannings "n" value of 0.037 was the riprapped channel which begins selected for at 7+25. Contraction and expansion coefficients of 0.1 and 0.3 respectively were selected. The design discharge used in the design of the East Creek diversion is 5500 cfs as discussed in Appendix A, Hydrology. When the hydrologic design was finished, the Standard Project Flood (SPF) was computed to be 6100 cfs. Table B-4 presents the design water surface elevations at selected cross sections for the design discharge of 5500 cfs and the final SPF of 6100 cfs.

Table B-4. Design Water Surface Elevations

~	Invert	Water Sur	face Elev	-
Station	Elevation	5500 cfs	6100 cfs	Comments
2.50	710 0			
3+50 3+60	719.0	721.5	721.6	Dc - Crest of Overflow
3+75	719.0	721.9	722.1	Overflow Section
7+25	714.0	722.8	723.0	D/S End of Transition
	714.8	722.8	723.0	100' D/S Drop Structure 1
8+62	719.0	727.4	728.0	Dc - U/S Drop Structure 1
10+60	719.4	731.7	732.5	<u>-</u>
11+60	719.5	732.2	733.0	
12+60	719.7	732.7	733.4	
13+60	719.9	733.0	733.6	100' D/S Drop Structure 2
15+18	736.0	746.0	746.8	Dc - U/S Drop Structure 2
15+60	736.1	750.9	752.1	, - ===P ===============================
16+50	736.4	751.1	752.2	D/S Stoughton Ave.
17+50	736.5	751.2	752.3	U/S Stoughton Ave.
19+00	737.2	751.6	752.6	,
22+00	738.3	752.2	753.2	
25+10	739.4	753.0	753.9	D/S Hwy 212
25+70	739.6	753.4	754.2	U/S Hwy 212
29+00	740.7	754.3	755.1	-, <u>,</u>
30+00	741.1	754.6	755.3	
31+00	741.4	754.9	755.6	150' D/S Drop Structure 3
33+00	752.0	760.4	761.0	Dc - U/S Drop Structure 3
34+00	752.3	764.5	765.4	-, Doladdald 5
36+00	752.8	764.9	765.8	
38+00	753.3	765.4	766.2	
40+00	753.8	765.9	766.6	
42+00	754.3	766.4	767.1	
44+00	754.9	766.8	767.6	
45+80	755.3	767.3	768.0	D/S Engler Blvd.
16+60	755.5	767.6	768.3	U/S Engler Blvd.
48+00	755.9	768.2	768.8	5 = 2.00
50+00	756.4	768.6	769.3	150' D/S Drop Structure 4
51+85	769.6	777.9	778.5	Dc - U/S Drop Structure 4
52+65	769.8	781.6	782.8	, = ===p DDDddddd 4
53+85	770.3	782.1	783.0	
55+85	770.7	783.2	784.0	
57+35	771.1	784.2	785.0	
8+52	771.4	784.8	785.5	D/S Diversion Structure
8+80	776.0	784.3	785.0	Crest of Diversion Structure
8+92	772.0	785.4		U/S Diversion Structure
50+87	<u>773.0</u>	786.0	786.6	, Delucture

B-12. <u>Levees</u>. Levees are required on both the right and left bank to confine the design flood in the proposed East Creek diversion. Table B-5 lists pertinent levee information. The table indicates the design water surface elevation, the water surface elevation for a 6100 cfs event, the top of levee elevation, and the amount of freeboard. The 6100 cfs event is contained in the freeboard.

Table B-5. Pertinent Levee Information

•	1	Ele	vation		Ī
Station	5500 cfs			e Left Levee	Freeboard
6+39	722.8	723.0	Not Needed	723.8	1.0'
6+75	722.8	723.0	723.8	723.8	1.0'
8+25	722.8	723.0	723.8	723.8	1.0'
8+62	727.4	728.0	732.2	732.2	See Note 1
10+60	731.7	732.5	732.7	732.7	1.0'
11+60	732.2	733.0	733.2	733.2	1.0'
12+60	732.7	733.4	735.2	735.2	2.5'
13+60	733.0	733.6	735.5	735.5	2.5'
15+18	746.0	746.8	753.4	753.4	See Note 1
16+08	751.0	752.1	753.5	753.5	2.5'
16+09	751.0	752.1	Not Needed	Not Needed	
28+70	754.3	755.0	Not Needed	756.8	2.5'
29+60	754.5	755.4	Not Needed		2.5
29+61	754.5	755.4		Not Needed	2.5
30+60	754.9	755.6	757.4	Not Needed	2.5'
32+54	755.7	756.4	758.2	Not Needed	2.5'
33+00	760.4	761.0	766.8	766.8	See Note 1
34+00	764.5	765.4	767.0	767.0	2.5'
38+00	765.4	766.2	767.9	767.9	2.5'
44+00	766.8	767.6	769.3	769.3	2.5'
46+60	767.6	768.3	770.1	770.1	2.5'
48+70	768.4	769.0	Not Needed	770.9	2.5'
48+71	768.4	769.0		Not Needed	
51+86	777.9	778.5	783.7	783.7	See Note 1
52+65	781.6	782.8	784.1	784.1	2.5'
55+60	783.2	784.0	785.7	785.7	2.5'
55+61	783.2	784.0	Not Needed	785.7	2.5'
58+52	784.8	785.5	Not Needed	787.3	2.5'
59+55	785.9	786.6	Not Needed	788.4	2.5'

Note 1. Plate B-48 of EM 1110-2-1601 shows a typical approach head wall of 1.5 Dc + freeboard. This was compared to the top of levee approaching the drop structure from upstream assuming a constant slope to the structure which turned out to be higher. The upstream walls were, therefore, set at this elevation.

B-13. A 1.0 foot freeboard was selected from station 6+39 to 11+60. The freeboard would then increase to 2.5 feet at station 12+60. In order to minimize the effects on the fen downstream of Stoughton Ave. it was desirable to minimize the freeboard in this reach. A 1.0 foot freeboard is considered adequate. Downstream of station 6+40, levees are not required because of high ground; thus, freeboard is not an issue. The area from station 6+40 to about station 12+60 is in the present 100-yr floodplain of the Minnesota River. Any flows that would exceed the top of levee in this reach would flow overland to the Minnesota River with minimal impacts. A higher freeboard is required upstream because flows exceeding the top of levee for the East Creek bypass would impact on areas not presently subject to flooding.

B-14. <u>Bridges.</u> There are two existing roads that will cross the East Creek diversion: Stoughton Avenue at station 16+82 and U.S. Highway 212 at station at station 25+35. There will also be a crossing at the proposed Engler Blvd. extension at station 46+25. Pertinent information on the proposed bridges crossing the East Creek diversion are presented in Table B-6.

Table B-6. Pertinent Bridge Information

Bridge	Station	Low Chord	Design <u>Water Surface</u>	Freeboard	No. of Piers
Stoughton Ave.	16+82	760.6	751.2	9.4	2
Hwy. 212	25+35	755.0	753.4	1.6	2
Engler Blvd.	46+25	770.5 \ <u>1</u>	767.6	2.9	2

B-15. U.S. Highway 41 crosses East Creek in a deeply ravined portion of the valley approximately 2 miles upstream from the Corps' diversion channel. The existing embankment is 30 feet high and has an 8x8 foot concrete box culvert under it. During high flows it is likely that the culvert entrance could plug with debris. The resulting head created by the restricted flow could cause the embankment to fail endangering the residents of Chaska and the flood control project. To prevent this, the East Creek flood control project will include the installation of two large culverts under Hwy 41. The embankment will also be enlarged at the same time to accommodate an anticipated increase in traffic. A trash barrier is proposed upstream of Hwy. 41 which will eliminate plugging of the proposed culverts. The majority of debris in the

basin is above Hwy. 41; thus, no additional debris barriers are proposed for the project. Additional details on the design of the Hwy. 41 crossing can be found in appendix J.

B-16. <u>Curves.</u> For design purposes a ratio of radius to width of 3.0 is suggested in EM1110-2-1601. Pertinent information is presented in Table B-7. The actual radius of curvature for each curve is reasonably close to the minimum required radius. The equation

y=(CV W)/(gr) where:

- y = rise in water surface between a theoretical level
 water surface at the center line and outside water surface elevation (superelevation)
- C = coefficient
- V = mean channel velocity
- W = channel width at elevation of center-line water surface
- g = acceleration of gravity
- r = radius of channel center-line curvature

Table 2-4 of EM 1110-2-1601 recommends a coefficient C of 0.5 for a trapezoidal cross section. Use of the coefficient allows computation of the total rise in water surface due to superelevation and standing waves. If the total rise in water surface is less than 0.5 ft., the normally determined channel freeboard is considered adequate.

Table B-7. Curve Data

Approx. Station	Top Width (ft)	Average <u>Velocity</u> (fps)	Minimum <u>Radius</u> (ft)	Actual <u>Radius</u> (ft)	Superelev. (ft)
19+00	95	7.2	285	280	0.3
44+00	96	7.5	288	470	0.2
53+30	78	9.3	234	230	0.5

B-17. Erosion Control Structures. There are four drop structures proposed for the East Creek diversion designed to reduce channel slopes to effect nonscouring velocities. The drop structures are CIT- type and were designed using design curves in Plate 48 of EM1110-2-1601. Plate 48 is included in this appendix as Plate B-1. Pertinent hydraulic design data is presented in Table B-8.

Table B-8. Drop Structures - Hydraulic Design Data

	Drop Structure			
	1	2	3	4_
Yc = Critical Depth (ft) Head on Weir (1.5Yc) Tailwater Elevation Height of Drop, h (ft) h/Yc h'/Yc (From Design Chart) Required Depth of Basin (h') Selected Depth of Basin (h') Elevation of Pasin Elevation	722.8 5.0 0.6 0.23 1.9	15.2 733.2 16.0 1.58 0.37	755.7 10.0 1.19 0.31 2.60 2.60 739.4 5.0 46	12.6 769.2 12.8 1.53 0.35 2.90 2.90 754.0 4.6

B-18. <u>Riprap Design.</u> Scour protection for the East Creek channel diversion were designed using the following references:

Table B-9. Scour Protection Design References

Protection for	Design References
Channel	EM 1110-2-1601, July 91 Plates B33-B40 ETL 110-2-120, May 71 Enclosure 1
Bridges	EM 1110-2-1601, July 70 Plate 29 (1) ETL 1110-2-120, May 71 Enclosure 3
Note: (1) Curve recommendation	between isolated cube and USBR per WES

B-19. Straight Channel. A velocity profile of the East Creek diversion was obtained using the HEC-2 computer program. The pertinent information for the channel reaches is presented in Table B-10. As shown in the table, the average velocities for channel reach 2 range from 2.7 and 5.0 fps to station 7+25. In this reach 12 inch riprap for the low flow channel only is proposed. The riprap requirements downstream and upstream of the drop structures and at the bridges are discussed in later paragraphs.

Table B10. Riprap Design - Straight Channel

Channel Reach	Stationing From to	Average Flow Depth (ft)	Average <u>Velocity</u> (fps)	Computed(ft)	Selected
2	3+75 7+25	9.5	2.7/5.0		.48
3	8+87 13+52	12.5	9.0	.30	.48
4	21+00 24+70	13.7	7.8	.13	.48
. 4	25+90 31+10	13.5	8.1	.14	.48
5	33+25 41+00	12.1	7.5	.12	.48
5	47+10 50+40	12.2	7.3	.12	.48
6	54+50 57+90	12.5	9.6	.22	.48

B-20. Based on a minimum D30 of 0.48 the riprap gradation was selected from Table 3-1 of EM 1110-2-1601. Geotech selected a riprap gradation similar to that and is shown as the selected gradation with a geotech designation of R6. These gradations are shown in Table B-11.

Table B-11. Riprap Gradation - Straight Channel

	Percent Lighter by Weight (lbs) 100 50 15 <u>Max Min Max Min Max Min</u>						
	<u>Max</u>	Min	<u>max</u>	Min	<u>Max</u>	Min	<u>Thickness</u>
EM 1110-2-1601	86	35	26	17	13	5	12"
Selected Gradation (R6)	85	40	35	20	20	5	12"

B-21. <u>Channel Bends.</u> Channel bend velocities were examined to determine the riprap requirements for the three bends discussed in paragraph 15. Table B-12 shows the results of the bend analysis.

Table B-12. Riprap Design - Bend Analysis

Stationing From to	Bend <u>Radius</u> (ft)	Flow Depth (ft)	Channel <u>Width</u> (ft)	Average <u>Velocity</u> (fps)	Computed D30 (ft)	Selected D30 (ft)
17+20 21+00	280	14.2	95	7.2	.46	.48
42+00 46+00	430	12.0	97	7.5	.36	.48
52+50 54+50	230	11.7	78	9.3	.94	.97

B-22. Additional riprap is not required for the bends from station 17+20 to 21+00 and 42+00 to 46+00; however, a riprap with a minimum D30 of 0.94 for the bend from station 52+50 to 54+50 is required. This results in a D30 from EM 1110-2-1601 of 0.97 and a gradation as shown in Table B-13. Geotech selected a riprap gradation similar to that and is shown in Table B-12 as the selected gradation with a geotech designation of R12.

Table B-13. Riprap Gradations - Bend Station 52+50 to 54+50

		Percent Lighter by Weight (lbs) 100 50 15					
	<u>Max</u>	Min	<u>Max</u>	Min	Max	Min	Thickness
EM 1110-2-1601	691	276	205	138	102	43	24"
Selected Gradation (R12)	690	280	290	140	150	45	24"

B-23. <u>Bridges.</u> Design parameters and riprap requirements for bridges along the proposed reaches of the East Creek diversion are shown in Table B-14.

Table B-14. Riprap Design - Bridge Analysis

Bridge	Approx. Station	Flow <u>Depth</u> (ft)	Average <u>Velocity</u> (fps)	Froude <u>Number</u>	
Stoughton Ave.	16+50 to 17+20	14.7	7.2	0.45	58
Highway 212	24+70 to 25+90	13.6	8.2	0.55	130
Engler Blvd.	45+40 to 47+10	11.9	8.1	0.52	125

B-24. From Table 3-1 of EM 1110-2-1601, a minimum W50 of 58 pounds would be required for Stoughton Ave. and a minimum W50 of 138 would be required for Highway 212 and Engler Blvd. It is desireable to minimize the number of gradations used in the project if possible for cost and ease of construction. Since the amount of riprap for Stoughton Ave. is not large in comparison to the total riprap required for the project, the same gradation is recommended for the three bridges. Based on a minimum W50 of 138 pounds, a riprap gradation was selected from Table 3-1 of EM 1110-2-1601. Geotech selected a riprap gradation similar to that and is shown as the selected gradation with a geotech designation of R12. These gradations are shown in Table B-15. Riprap layer thicknesses are increased by 50 percent because of turbulent conditions at the bridges. The riprap extends upstream and downstream of the bridges as shown by stationings in Table B-14.

Table B-15. Riprap Gradation - Bridges

	Perc 10 <u>Max</u>	_	5	by We 0 <u>Min</u>	ight 1! <u>Max</u>	5	Thickness
EM 1110-2-1601	691	276	205	138	102	43	36"
Selected Gradation (R12)	690	280	290	140	150	45	36"

B-25. <u>Drop Structures</u>. Riprap requirements downstream of the drop structures were determined from Hydraulic Design Chart 712-1 presented as Plate B-29 in EM 1110-2-1601 dated 1 July 1991. The high turbulence curves for stilling basins were used. Pertinent information is shown in Table B-16.

Table B-16. Riprap Design - Downstream of Drop Structure

Drop Structure	Stat <u>From</u>	ioning To	Average <u>Velocity</u>	Min <u>W50</u>
1	7+75	8+25	10.6	260
2	14+02	14+62	10.9	300
3	31+60	32+54	10.5	250
4	50+90	51+40	11.2	350

B-26. From Table 3-1 of EM 1110-2-1601, a minimum W50 of 270 pounds with a D100(max) of 30 inches would be required for drop structures 1 and 3, and a minimum W50 of 359 pounds with a D100(max) of 33 inches would be required for drop structures 2 and 4. It is desireable to minimize the number of gradations used in the project for cost and ease of construction. Since the amount of riprap needed downstream of drop structures 1 and 3 is not large in comparison to the total riprap required for the project, the same gradation is recommended for all four drop structures. A riprap gradation was selected from Table 3-1 of EM 1110-2-1601 which meets the minimum W50 requirements. Geotech selected a riprap gradation the same as that and is shown as the selected

gradation with a geotech designation of 33. These gradations are shown in Table B-17. Riprap layer thicknesses are increased by 50 percent because of turbulent conditions downstream of the drop structures.

Table B-17. Riprap Gradations - Downstream of Drop Structures

	Percent Lighter by Weight (lbs)						;)
	10	0	50		15		
	Max	Min	<u>Max</u>	Min	<u>Max</u>	<u>Min</u>	<u>Thickness</u>
EM 1110-2-1601	1797	719	532	359	266	112	48"
Selected Gradation (33)	1797	719	532	359	266	112	48"

B-27. Pertinent information for the reaches upstream of the drop structures is shown in Table B-18.

Table B-18. Riprap Design - Upstream of Drop Structures

Drop <u>Structure</u>	Stationing From to	Average Flow Depth	Average <u>Velocity</u>	ComputedD30	Selected D30
1	8+62 8+87	8.4	16.4	.92	.97
2	15+20 15+45	10.5	17.0	.95	.97
3	33+00 33+25	8.4	16.4	.92	.97
4	51+86 52+50	8.4	16.4	.92	.97

B-28. Based on a minimum D30 as shown in Table B-19, a riprap gradation was selected from Table 3-1 of EM 1110-2-1601 with a minimum D30 of 0.97. Geotech selected a riprap gradation similar to that and is shown as the selected gradation with a geotech designation of R12. These gradations are shown in Table B-19.

Table B-19. Riprap Gradation - Upstream of Drop Structures

	Perce 100 <u>Max</u> I		r by W 50 <u>Min</u>	Weight (lbs) 15 <u>Max Min</u> <u>Thickne</u>		
EM 1110-2-1601	691	276 205	138	102	43	24"
Selected Gradation (R12)	690	280 290	140	150	45	24"

B-29. <u>Diversion Structure</u>. Technical Report No. 2-650, June 1964, titled "Stability of Riprap and Discharge Characteristics, Overflow Embankments, Arkansas River, Arkansas". The Technical Report was based on a hydraulic model investigation by WES. The riprapped overflow diversion structure from station 58+42 to station 58+95 was designed along with a 48-inch RCP upstream of the diversion. The 48-inch RCP, outlet E, will allow low flows to continue to flow through the existing East Creek. The design of outlet E is discussed in detail in Appendix C. A rating curve upstream of the diversion structure at outlet E is shown on Plate B-2. Design information for the overflow structure is shown in Table B-20.

Table B-20. Riprap Design - Diversion Structure

Stationing From to	Height of Embankment	Unit <u>Discharge</u>	Average <u>Velocity</u>	Approach Energy Depth	Tailwater <u>Depth</u>
58+42 58+95	4.0 ft	68 cfs/ft	10.6 fps	9.9 ft	8.3 ft

B-30. From Plate 47 of TR 2-650 a riprap gradation with a geotech designation of R33 as shown in Table B-18.

B-31. <u>Riprap Gradations</u>. Table B-21 gives the standard riprap gradations to be used throughout the project. Table B-22 gives the riprap type by station throughout the project.

Table B-21. Summary of Riprap Gradations

Geotech	10	0	5	0	1	.5	<u>Max</u>	5
<u>Designation</u>	<u>Max</u>	<u>Min</u>	<u>Max</u>	<u>Min</u>	<u>Max</u>	<u>Min</u>		Min
R6 R12 R33	85 690 1797	40 280 719	35 290 532	20 140 359	20 150 266	5 45 112	15 130	2 25

Table B-22. Summary of Riprap by Station

From	to	<u>Length</u>	Type	Thickness
		(ft)		(inch)
3+75	7+25	350	R6	12
7+25	7+75	50	R12	24
7+75	8+25	50	33	48
	Dr	op Structur	re 1	
8+62	8+87	25	R12	24
8+87	13+52	465	R6	12
13+52	14+02	50	R12	24
14+02	14+62	60	33	48
	Dr	op Structur	e 2	
15+20	15+45	25	R12	24
15+45	16+50	105	R12	24
16+50	17+20	70	R12	36
17+20	21+00	380	R6	12
21+00	24+70	370	. R6	12
24+70	25+90	120	R12	3,6
25+90	31+10	520	R6	12
31+10	31+60	50	R12	24
31+60	32+54	85	33	48
		op Structur	e 3	
33+00	33+25	25	R12	24
33+25	41+00	775	R6	12
41+00	45+40	440	R6	12
45+40	47+10	170	R12	36
47+10	50+40	330	R6	12
50+40	50+90	50	R12	24
50+90	51+40	50	33	48
		op Structur	e 4 .	
51+86	54+50	264	R12	24
54+50	57+90	340	R6	12
57+90	58+42	50	R12	24
58+42	58+92	50	33	48
58+92	59+35	43	R6	12

PLATE B-48

APPENDIX C

INTERIOR FLOOD CONTROL

MINNESOTA RIVER AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX C

INTERIOR FLOOD CONTROL

TABLE OF CONTENTS

ITEM	PAGE	PARAGRAPH
RAINFALL DATA RUNOFF HYDROGRAPH	C-3 C-3 C-4 C-4 C-5	10 - 13 14 15 - 17 18 19 - 20 21 - 22
GENERAL GRAVITY OUTLETS RIPRAP REQUIREMENTS	C-19	24 25 - 26 27 28 - 29
DEPARTURES FROM GENERAL DESIGN MEMORANDUM, SUPPLEMENT NO. 2 GRAVITY OUTLETS SCOUR HOLES NEED FOR PORTABLE PUMPING FACILITY AT POND D ADDITION TO STAGE 4 INTERCEPTOR STORMSEWER POND - FREQUENCY RELATIONSHIPS STREAMFLOW PROFILES	C-20 C-20 C-21 C-22 C-22 C-23 C-23 C-25 C-29	35 - 36 37 38 - 40 41 42 43
DESIGN OF GRAVITY DESIGN FEATURES DEVELOPMENT OF EAST CREEK WATER SURFACE PROFILES RIPRAP AND SCOUR HOLE DESIGN SELECTION OF GATE CLOSURE ELEVATIONS ALTERNATE PLANS	C-33 C-33 C-34 C-34 C-36 C-39	51 - 52 53

TABLES

NUMBER	TITLE	PAGE
C-1	RAINFALL DATA FOR INPUT TO COMPUTER PROGRAM HEC-1	C-6
C-2	HISTORICAL RAINFALL WITH 48-HOUR ACCUMULATION OF 3.00 INCHES OR MORE	C-8
C-3	PRECIPITATION RUNOFF DURING PAST EVENTS AT CHASKA, MINNESOTA, WHEN THE MINNESOTA RIVER WAS AT OR ABOVE ELEVATION 706.0 AND ACCUMULATED ONE-HOUR RAINFALL EQUALLED OR EXCEEDED 0.5 INCHES	C-9
C-4	INTERIOR WATERSHED HYDROLOGICAL CHARACTERISTICS	C-10
C-5	5 - MINUTE UNIT HYDROGRAPHS	C-11
C-6	RUNOFF HYDROGRAPHS FOR PORTION OF COURTHOUSE LAKE AREA TO BE DIVERTED TO STAGE 4 INTERCEPTOR (Courthouse Lake - South)	C-12
C-7	RUNOFF HYDROGRAPHS FOR PORTION OF COURTHOUSE LAKE AREA TO BE DIVERTED INTO EAST CREEK (Courthouse Lake - North)	C-13
C-8	RUNOFF HYDROGRAPHS FOR RUNOFF INTO COURTHOUSE LAKE (Courthouse Lake - Lake)	C-14
C-9	EAST CREEK RUNOFF HYDROGRAPHS AT POINT OF DIVERSION	C-15
C-10	RUNOFF HYDROGRAPHS FROM EAST CREEK WATERSHED	C-16
C-11	RUNOFF HYDROGRAPHS FROM EAST CREEK WATERSHED DURING PERIODS WHEN MINNESOTA RIVER WAS ABOVE ELEVATION 706.0	C-17
C-12	DESCRIPTION OF EXISTING STORMSEWER CONNECTING OLD CLAY HOLE TO EAST CREEK	C-24
C-13	PROPOSED PLAN FOR STORMSEWER EXTENSION BETWEEN COURTHOUSE LAKE AREA AND STAGE 4 INTERCEPTOR	C-24
C-14	DETERMINATION OF POND - FREQUENCY RELATIONSHIPS FOR COURTHOUSE LAKE	C-26
C-15	POND - FREQUENCY DATA FOR OLD CLAY HOLE AND	C-26

TABLES

NUMBER	TITLE	PAGE
C-16	EAST CREEK WATER SURFACE PROFILES AND CROSS- SECTION INFORMATION	C-27 and C-28
C-17	PERIODS WHEN MINNESOTA RIVER AT CHASKA, MN EQUALLED OR EXCEEDED ELEVATION 706.0	C-30
C-18	PERIODS WHEN MINNESOTA RIVER AT CHASKA, MN EQUALLED OR EXCEEDED ELEVATION 709.0	C-31
C-19	COMPARISON OF HISTORICAL RIVER, RAINFALL AND STORAGE DATA FOR VARIOUS GATE CLOSURE LEVELS	C-32
C-20	RATE OF RISE IN LEVEL OF MINNESOTA RIVER AT CHASKA, MN DURING SIX HISTORICAL EVENTS WITH THE FASTEST RATE OF RISE	C-32
C-21	SUMMARY OF EAST CREEK CHANNEL INPUT TO HEC-2 COMPUTER PROGRAM	C-35
C-22	DETERMINATION OF REQUIRED RIPRAP SIZE DOWNSTREAM OF OUTLETS D AND E	C-37
C-23	DETERMINATION OF REQUIRED SIZE OF PORTABLE PUMPING STATION	C-38

PLATES

NUMBER	TITLE
C-1	WATERSHED MAP
C-2	ONE PERCENT AND STANDARD PROJECT STORM FLOOD OUTLINES FOR COURTHOUSE LAKE AND OUTLET D POND AND LOCATION OF PROPOSED STORMSEWER EXTENSION
C-3	ELEVATION - AREA - STORAGE CURVES FOR OLD CLAY HOLE, OUTLET D POND AND COURTHOUSE LAKE AREA
C-4	ELEVATION - DAMAGE CURVES FOR COURTHOUSE LAKE WATERSHED AND EAST CREEK WATERSHED DOWNSTREAM OF BEECH STREET
C-5	DISCHARGE - DAMAGE CURVE FOR EAST CREEK WATERSHED UPSTREAM OF BEECH STREET
C-6	ELEVATION - FREQUENCY CURVES, MINNESOTA RIVER AT CHASKA, HIGHWAY 41 BRIDGE
C-7	ELEVATION - DISCHARGE CURVE, MINNESOTA RIVER AT HIGHWAY 41 BRIDGE
C-8	STAGE - DURATION CURVES, MINNESOTA RIVER AT HIGHWAY 41 BRIDGE
C-9	STANDARD PROJECT FLOOD STAGE - DISCHARGE HYDROGRAPHS, MINNESOTA RIVER AT CHASKA, MN
C-10	PROFILES ALONG EAST CREEK, OUTLET D UPSTREAM TO POINT OF DIVERSION
C-11	LOCATION OF BRIDGES, HYDRAULIC FEATURES AND ONE PERCENT AND STANDARD PROJECT FLOOD OUTLINES ALONG EAST CREEK
C-12	
C-13	POINT RAINFALL DEPTH - DURATION CURVES, CHASKA, MN
C-14	PREFORMED SCOUR HOLE PLANS FOR PROPOSED OUTLETS D AND E
C-15	ELEVATION - FREQUENCY CURVES FOR STORAGE IN THE THREE DESIGNATED PONDING AREAS
C-16	ELEVATION - HEAD - DISCHARGE CURVES FOR PROPOSED OUTLET D AND DOWNSTREAM TAILWATER
C-17	ELEVATION - HEAD - DISCHARGE CURVES FOR EXISTING 18" CMP OUTLET BETWEEN COURTHOUSE LAKE AND EAST CREEK AND OVERFLOW FROM EAST CREEK INTO COURTHOUSE LAKE

PLATES

NUMBER	TITLE
C-18	ELEVATION - HEAD - DISCHARGE CURVES FOR EXISTING 15"/18" STORMSEWER BETWEEN OLD CLAY HOLE AND EAST CREEK AND OVERFLOW FROM OLD CLAY HOLE TO EAST CREEK
C-19	ELEVATION - DISCHARGE CURVES FOR EAST CREEK AT POINT OF DIVERSION

MINNESOTA RIVER AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX C

INTERIOR FLOOD CONTROL

EXISTING CONDITIONS

DESCRIPTION OF WATERSHEDS AND DRAINAGE PATTERNS

- 1. The contributing watershed to the Stage 3 line of protection under proposed conditions includes about 912 acres located along both sides of and contributing runoff to East Creek, from the proposed point of diversion (Proposed Outlet E) downstream to the proposed line of protection (Proposed Outlet D) as shown on Plate C-1.
- 2. The portion of the East Creek watershed downstream of the proposed Outlet E, excluding the Courthouse Lake area, covers about 894.8 acres. Subsection 4-1, as shown on Plate C-1, consists of about 403 acres located between Outlet E and Crosstown Blvd. Subsection 4-2 includes about 337 acres between Crosstown Boulevard and Highway 212. Subsection 4-3 consists of about 82 acres between Highway 212 and Beach Street/Stoughton Road. Subsection 4-4 includes about 65 acres between Beech Street, Stoughton Road, the proposed line of protection, and the dike (perimeter of subarea "Courthouse Lake Area-Lake") separating Courthouse Lake from East Creek.
- 3. Except for subareas 4-2B and 4-2C, runoff from Section 4 is by overland flow directly into the East Creek channel. Runoff from areas 4-2B and 4-2C discharges into a depressed area referred to by local interests as the Old Clay Hole. Outflow from the Old Clay Hole is through an existing stormsewer into East Creek. The existing stormsewer connecting the Old Clay Hole with East Creek consists of one 15-inch Rcp, 143 feet long, and three segments of 18-inch Rcp with a total length of about 103 feet. As indicated in Table C-12 (page C-24), the pipe inverts are 726.4(*) at the upstream end of the 15-inch pipe, and about 723.3 at the downstream end of the 18-inch sewer.
- 4. Elevations in the Section 4 area vary from about 790 at the upstream (north) end to about 706 at the downstream end along the Minnesota River. The Courthouse Lake area is relatively flat ranging from about elevation 725 at the west end to about 705 adjacent to the lake. The estimated size of contributing

^(*) All elevations indicated in this appendix refer to National Geodetic Vertical Datum of 1929.

watersheds in acres (Ac) and in square miles (Sm) are indicated on Plate C-1 and in Table C-4 (page C-10).

- 5. Subsections 4-1 and 4-2 are generally undeveloped, except for some scattered residential development along the hills. Subsections 4-3 and 4-4 contain a mixture of residential and commercial development. The Courthouse Lake watershed contains the Carver County Courthouse and some additional residential development.
- 6. In watershed 4-4 across the creek from Courthouse Lake (as shown on Plate C-1), there is an existing dike with a top elevation of about 718.1, which protects one farmstead from East Creek flood waters. The farmstead consists of a house, garage, and a barn. The first floor of the house and barn are at elevation 716.0 and 713.0, respectively. There are two outlets with sluice gates located beneath the dike to carry runoff from the farmstead into East Creek: a 24-inch Cmp, about 70 feet long, located near the upstream end of the dike; and a 12-inch Cmp, about 70 feet long, at the downstream end.
- The watershed area referred to in earlier reports as the Courthouse Lake Area consisted of Courthouse Lake and much of the residential and commercial area located to the southwest to an old railroad embankment, including the Carver County Courthouse and adjacent facilities. At the request of the Lower Minnesota River Watershed District, the City of Chaska now plans to modify their stormwater sewerage system to prevent runoff from this residential commercial development from entering Courthouse Lake. Subsequently, the city has subdivided the former Courthouse Lake watershed into three sub-watersheds referred to as the Courthouse Lake Area-South, Courthouse Lake Area-North, and the Courthouse Lake Area-Lake; as shown on Plate C-1. Runoff from all three areas will flow overland to the northeast. Runoff from the Courthouse Lake-South area will be intercepted in the Courthouse' south parking lot and carried by a new stormsewer extension in a southwesterly direction to the intercepting stormsewer constructed by the Corps along the Minnesota River during stage 4 construction. Runoff from the Courthouse Lake-North area will be intercepted in the Courthouse' north parking area and diverted by ditch to the north into East Creek just to the west of Courthouse Lake. remaining Courthouse Lake-Lake area includes the lake and lands immediately adjacent to and which contribute runoff to the lake. A suggested design for the proposed stormsewer extension from the Courthouse Lake-South area to the stage 4 interceptor is described in paragraph 41 (page C-23) and shown on Plate C-2.
- 8. The Courthouse Lake-Lake area consists of about 12.3 acres of lake surface at elevation 703.0, plus about 4.9 acres of contributing watershed surrounding the lake, or a total of about 17.2 acres. The outlet between Courthouse Lake and East Creek consists of a 18-inch Cmp, about 65 feet long, with a flapgate at

the creek end, and an invert elevation of about 705.6 on the lake side and 706.7 on the creek side. The top of the dike separating the lake from the creek is at about elevation 715.0 or higher. (Unless the level of Courthouse Lake rises above elevation 706.7, there will be no outflow from the Lake into East Creek.)

9. The city of Chaska does not presently have an extensive stormsewer system. All runoff from lands located within the city, with few exceptions, is by overland flow. According to a representative from the city, future stormsewers are to be designed to carry the runoff from about a 20-percent rainfall event, if there are good overflow conditions in the area; and a 10-percent event, if overland flow conditions are relatively poor. The use of supplemental retention basins at interior locations is encouraged and such basins are to be designed to contain the runoff from a 1-percent event.

PONDING AREAS

- 10. There are currently three temporary ponding areas located within the stage 3 (East Creek) watershed: the Old Clay Hole, Courthouse Lake, and the proposed Outlet D pond (portion of East Creek located adjacent to the Courthouse Lake dike and inside the proposed flood barrier). The location of the Old Clay Hole and Courthouse Lake ponding areas are shown on Plate C-1. The location of the proposed Outlet D pond is shown on Plate C-2. Elevation-area-storage curves for the temporary ponding areas, determined from quad sheets, are presented on Plate C-3.
- 11. Storage in the Old Clay Hole begins at about elevation 727.0 and, because the area located adjacent to the hole is undeveloped, can satisfactorily store more than 65 acre feet of runoff below about elevation 731.0 without resulting in flood damage.
- 12. Based on the water surface elevation indicated on the USGS quad sheet, the base level of Courthouse Lake is 703.0, or about 3.7 feet below the lake level where outflow to East Creek will commence. The available storage between elevations 703.0 and 715.0 is about 166 acre feet. The surface area of the lake increases from about 11.7 acres at elevation 703.0 to only about 15.8 acres at elevation 715.0.
- 13. The capacity of the proposed Outlet D ponding area ranges from zero at elevation 700.0 up to about 84 acre feet at elevation 715.0.

DAMAGE-ELEVATION RELATIONSHIPS

14. Elevation-damage curves developed for the Courthouse Lake area and the temporary ponding area adjacent to Outlet D are presented on Plate C-4. A discharge-damage curve for the East Creek Watershed located upstream of Beech Street is presented on Plate C-5. The

curves presented on Plate C-4 were obtained by updating the curves presented on plates B-9 and B-10 of the revised General Design Memorandum (August 1984) from October 1990 price levels to June 1993 price levels, using the ENR (Engineering News Record) building The discharge-damage curve presented on Plate C-5 was obtained from the discharge-damage information presented Appendix E to same memorandum, updating this information from October 1980 to June 1993 price levels, and plotting the curve presented on Plate C-5. (The ENR Building index for October 1980, October 1990, and June 1993 are 1981.4, 2727.73, and 3066.21, respectively.) The estimated discharge in East Creek upstream of the Highway 212 crossing at commencement of flood damage was determined to be about 900 cfs, based on the discharge rate required to obtain a water surface elevation equal to the top of the adjacent creek bank. Based on the above curves, the zero damage level for the Courthouse Lake area and the area adjacent to Outlet D are about 718.5 and 719.0, respectively. Additional information relative to the development of the damage-elevationdischarge relationships and the location and type of damage which would occur are presented in Appendix E of the revised 1984 Design Memorandum.

STREAM DISCHARGE AND STAGE DATA

Minnesota River

- Elevation-frequency curves for the Minnesota River at Chaska, obtained from Plate 4-4A of the Limited Reevaluation Report, dated August 1982, are presented on Plate C-6. An elevation-discharge curve for the Minnesota River at the Highway 41 (Chestnut Street) bridge, based on one of a family of curves developed from HEC-2 backwater profiles, is shown on Plate C-7. Based on past HEC-2 studies, a comparison of streamflow levels at the Highway 41 bridge with those at the mouth of East Creek has indicated that the river level at the mouth of East Creek (or proposed Outlet D) will be about 1.0 foot below the level at the Highway 41 bridge. discharge elevation for the Minnesota River at Chaska is 787.2, which corresponds to the flat pool level for the Mississippi River above Lock & Dam No. 2. A stage-duration curve for the Minnesota River at the Highway 41 bridge is presented on Plate C-8. standard project flood (SPF) hydrograph for the Minnesota River at Chaska is presented on Plate C-9.
- 16. The United States Geological Survey (USGS) has maintained a stream gaging station on the Minnesota River near either Carver, or Jordan, Minnesota since 1934. The USGS gage was originally located near Carver, Minnesota, (river mile 36.0) but in 1966 was moved to its present location near Jordan, Minnesota, (river mile 39.4) about 9.8 miles upstream from Chaska. The drainage area of the Minnesota River is about 16,200 square miles at the Jordan gage site and about 16,600 square miles at Chaska. Since this is a relatively small increase in drainage area, the discharge-frequency

relations at the Jordan gage were also used for Chaska. At the selected gate closure elevations of 706.0 and 709.0, the discharge in the Minnesota River at the Highway 41 bridge is about 16,000 and 25,400 cfs., respectively, which are equalled or exceeded about 4.0 and 1.5 percent of the time, respectively, or a return period of once in about 25 and 67 years, respectively.

17. The SPF hydrograph for the Minnesota River at Chaska was obtained by increasing the flow rates obtained from the SPF hydrograph for Mankato by the ratio of their respective peak flow rates. The estimated peak SPF flow rate of 168,000 cfs at Chaska was obtained from paragraph 11, page A-3 of the revised GDM for Chaska, dated August 1984. The SPF hydrograph for the Minnesota River at Mankato was obtained from Plate A-20, "Flood Control, Minnesota River, Minnesota, Report On Probable Maximum Floods And Standard Project Floods, Minnesota River Basin, Minnesota," dated January 1971.

East Creek

18. Discharge-frequency information for East Creek is presented in Table A-5, page A-18 of Appendix A. A flood profile for East Creek downstream of the point of diversion, including the one percent; July 21, 1987; and SPF events; is presented on Plate C-10 and in Table C-16 (pages C-27 and C-28). A map indicating the location of bridges over East Creek, and containing an existing flood outline for the one percent and SPF events is presented on Plate C-11.

RAINFALL DATA

- 19. The 1/4, 1/2, 1-, 2-, 3-, 6-, 12-, 24-, 48-, and 96-hour point rainfall depths for the 40-, 20-, 10-, 4-, 2-, 1-, 0.2-, and 0.1-percent all-year theoretical rainfall events in the Chaska area were developed from National Weather Service (U.S. Weather Bureau) publications HYDRO-35, TP-40, and TP-49 and are presented on Plates C-12 and C-13. A tabulation of the rainfall amounts for durations of 5-, 15-, and 60-minute, and 2-, 3-, 6-, and 12-hours for the above frequency events and the SPS are presented in Table C-1. The point rainfall amounts for the standard project storm, developed in accordance with criteria presented in EM 1110-2-1411, is also presented in Table C-1 and on Plate C-13.
- 20. Historical rainfall data were obtained from the U. S. Department of Commerce publication "Climatological Data" and from the City of Chaska (for 1993 events only). Recorded daily rainfall records for Chaska are available from August 1911 through August 30, 1993. Since there is no recording gage located in the Chaska area, estimated hourly rainfall amounts have been obtained by use of the hourly amounts from nearby recording gages and proportioning these recorded hourly amounts equal to the recorded daily rainfall amounts at Chaska. The recording gages used are located at either the Minneapolis-St. Paul international airport (located about 22

TABLE C-1

RAINFALL DATA FOR INPUT TO COMPUTER PROGRAM HEC-1

Theoretical Events

Frequency Duration:

Of Event 5-Min 15-Min 60-Min 2-Hour 3-Hour 6-Hour 12-Hour In Years

1000	1.14	2.38	3.95	4.62	5.04	5.75	
SPS	1.05	2.15	3.66	5.10	6.44	9.60	11.15
500	0.95	2.00	3.33	3.90	4.24	4.85	
100	0.85	1.80	3.00	3.53	3.88	4.41	
50	0.77	1.62	2.63	3.16	3.47	4.01	
25	0.69	1.45	2.32	2.79	3.06	3.57	
10	0.59	1.22	2.06	2.47	2.71	3.14	
5	0.48	1.06	1.75	2.09	2.30	2.65	
2.5	0.42	0.92	1.51	1.81	1.98	2.33	

Six Most Intense Historical Events

Date			infal ours:		unts:									Total Rainfall
	1	2	3	4	5	6	7	8	9	10	11	12	13	(Inches)
July 26-27, 1949	0.08	0.90	1.25	2.49	0.25									
July 21, 1951			0.17											4.97
July 7-8, 1955														3.95
	0.23	1.51	0.07	0.01	0.24	1.25	0.35	1./1	0.09	0.01				5.33
August 7-8, 1984	0.07	0.29	0.11	1.10	0.11	2.31	0.24	0.00	0.00	0.15	0.33	0.09	0.04	4.84
July 21, 1987	0.27	2.91	0.49	0.31	0.64	1.05	1.61	0.30	0 16					
July 1-2, 1992	0.34	0 11		2 45	4 03			4.37	0.10					7.83
001, 12, 1,,2	٠	0.11	0.11	2.15	1.02	0.23				0.11			0.11	4.18

miles east- northeast of Chaska), LeSueur, Minnesota (located about 28 miles to the southwest), Northfield, Minnesota (located about 32 miles to the southeast), or at Hutchinson, Minnesota (located about 40 miles to the west-northwest). The hourly rainfall distribution for rainfall events at Chaska with a 48 hour total of 3 inches of more are presented in Table C-2. The six most intense historical rainfall events to occur in the Chaska area occurred July 26-27, 1949; July 21, 1951; July 7-8, 1955; August 7-8, 1984; July 21, 1987; and July 1-2, 1992; and are identified in Tables C-1 and C-2. Table C-3 presents all rainfall events which occurred during or adjacent to periods when the Minnesota River level at Chaska equalled or exceeded elevation 706.0 and had an hourly rainfall of 0.5 inches or more.

RUNOFF HYDROGRAPHS

Runoff hydrographs for each of the interior watersheds, located downstream of the point of diversion, were developed based on criteria presented in Soil Conservation Service (SCS) Technical Release 55 (TR55), dated June 1986, titled: "Urban Hydrology for Small Watersheds," and using the HEC-1 computer program. Key parameters used in the computer program are presented in Table C-4. Five-minute unit-hydrographs obtained for each of the East Creek subwatersheds are presented in Table C-5. Runoff hydrographs for the 40-, 20-, 10-, 4-, 2-, 1-, 0.2 and 0.1-percent and standard project theoretical storms and six most intense historical events from the three Courthouse Lake sub-areas are presented in Tables C-6, C-7 and C-8. Runoff hydrographs for East Creek upstream from the proposed point of diversion (Outlet E) for the 10-, 4-, 2-, 1-, and 0.2-percent and standard project storm theoretical events with project conditions, obtained from Plates 4-33A through 4-38A of the Phase I General Design Memorandum, are presented in Table C-9. The East Creek inflow hydrograph for the 0.1-percent event, presented in Table C-9, was obtained by first estimating the peak inflow rate, then assuming the remaining inflow rates for this event are proportional to those obtained for the 0.2-percent event. estimated peak inflow rate of 5,550 cfs for the 0.1-percent event was obtained by first determining the ratio of the peak inflow rates for the 1-, 2-, and 4-percent events (obtained from Table C-9) to the 6-hour rainfall amounts (obtained from Table C-1), and multiplying the average of these ratios times 5.75, the 6-hour rainfall amount for the 0.1-percent event. Also presented in Table C-9 is the estimated runoff which occurred during the July 1987 historical event. Runoff hydrographs for the 10-, 4-, 2-, 1-, 0.2and 0.1-percent and standard project theoretical storms and the July 1987 historical event from the remaining interior watersheds (excluding Courthouse Lake) are presented in Table C-10. hydrographs for the 13 events which occurred during periods of high Minnesota River levels and used in determining the required size of portable pump(s) for Pond D are presented in Table C-11.

TABLE C-2

MISTORICAL RAINFALL EVENTS WITH 48-HOUR ACCUMULATION OF 3.00 INCHES OR MORE January 1, 1940 Through August 30, 1993

												•															
Year Date	•	Precip	٠. د	c. Sta	Precip. Loc. Start Hour:	Ë																					
		Total		Hour	5	-	M ~	4	5	•	_	6	2	Ξ	12	13	14 15	16	17	5	4	20		22 2	22 22	x	
1944 Jun 4	17800	0 4.28	X	22	2 0.80	30 0.32	2 0.12														ì	•		2		;	
1949 Jul 26	970	0 0.31	<u> </u>	_		10 0.14	0.01														9	U./o U.46 U.84 U.90 U.11	5	S		6.1	
፷	1070	60.5	S S	M	0.01	1 0.04	0.05	0.01	0.01 0.	08 0	0.08 0.90 1.25 2.49 0.25	5.40	25												8		
	9090	3.95	×	22		27 3.14	0.17	0.37					}														
1955 Jul 7	1810		4	19	0.23		0.07	0.0	0.24 1.	1.28																	
מ זהר	3510	0 2.19	2	_	0.38)																	
1956 Aug 2	1820	2.80		8		=				Ö	0.01 0.16 0.12 0.50 0.80 0.05 0.05 0.07 0.05 0.05 0.05 0.05 0.0	0.12	0.50	8	50	ט ט כנ	2	5	-	7 7 6	13	22	9	9			
\$	2600	1.11	x	8		8 0.14	9.0	0.23	0.38 0.	0.02					}	;	5		5	2	9	.36 0.	2.0				
1957 Jun 22	8660	3.26	9	22		15 1.30	0.40	0.15		05 0.	0.05 0.03 0.08 0.08	80.0	C	5	0 0 1 0 04 0 10 0		_						3	8.0 9.0	^		
	11600	0.25	2	4		2 0.12	0.05			9.0			•		5	2	-										
1959 Jun 25	962	3.15	×	8	0.12	2				!	0.05			C	50	c	07 0	1 20	K	50 0 30 0 27 0 35 0 06 1 07 0 C0 0	9	5					
ş	1470		2	4	0.46	· o					5			5	3			3.	 	3.	5.5	70.					
1960 May 18	4480	0.86	9	10		δ.	0.03	0.15 0.07		02 0.0	0.02 0.09 0.21 0.15 0.07	0.15	0.07				0										
May 19	2680	0.97	7	M	0.22	2 0.39	0.19			!			;				•						•				
May	7780			-	0.05		0.0	0.02 0	0.10 0.24	72										75.0	9)	,			
13 May 21	12100	2.08	-	-	0.30		0.07	0.47 0	0.17 0.	10 0.0	0,10 0,03 0,02 0,02 0,31 0,09 0,02 0 00 0 0 0 0 0	0.02	0.31 0	8	ט ט ט	9	20	5	6	* ·	2	0.34 0.10 0.31 0.64 0.21 0.19 0.02	7. 7		0.02		
1968 Jun	-14 4680	3.87	I	٥	0.0	9 0.16	0.63							-	1.64 1.06 0.52		3		3.0								
Jul 12	1880	1.97	I	4	0.19		0.20	0.02					c	: 20 0	?	ì	.•			•	6		;				
Jul 13	2520		x	-	0.0		0.05		0.25 0.	21 0.0	0.21 0.07 0.26		•	3						_	.02 0	0.02 0.08 0.05	2				
Jul 14	4240		X	-	0.02	2 0.02				0	0.89 0.06 0.10 0.01 0.15 0.03	0.10	0.01 0	Ť.	ř										2		
1978 Jun 15	3840	0.96	3	15				0.24 0.24	24 0.16			2		•	3												
Jun 16	3750	2.26	Z	*	0.25	10							•	80.0	0 0		6			•							
7t r2L	4030		=	٥	0.08	•							•	}	;		3		3	9							
Aug 26	1070		*	22	0.03	0.15	0.63																				
	138		I	-	6.3		0.29	0.80 0.29 0.54 0.19	4		0.0	0.04 0.02 0.01 0.02	0.01 0	0.0													
1980 Jun 4	11000		*	19	0.0				0.03	5				!													
5	11900		*	-	9.8	5 0.02	0.49	0.90	0.15 0.0	0.02 0.01	_								11	0.11 0.14 0.25	X						
Ş	_		=	-	0	4 0.85	0.28	0.01												})						
•-			_	-	0.29	•	Ū	0.11 1.	1.29 0.	50 0.3	0.50 0.33 0.48																
_			=	4	0.78	0.32	0.16	0.16 0	0.32											•	1 24 0 14	71					
1983 Jun 20			x	٥	0.30	_														-	9	<u>0</u>					
Ş	22 12600	2.82	=	۰	2.55	0.27																					
Ş			x	57	0.07		0.29 0.11 1	1.10 0.11		2.31 0.24	•		0.15 0.33 0.09 0.04	33 0.0	9	~				•	5		9	_			
1987 Jul 21			I	4	0.27		2.91 0.49 0	.31 0.		5 1.6	1.05 1.61 0.39 0.16									•	•	-	5				
Jul 2		3.25	I	20	O.73		0.84	0.16 0.	0.35 0.28			!															
1988 Aug 2	2260		x	٥	0.03	_					0.13	0.13 0.22 0.07 0.03	.07 0.	03													
Aug 3		1.52	I	m	0.01									!						•	7	** 0 ** 0 *0 0 ** 0		_			
Pop .		1.61	I	-	6		0.90 0.34 0.15	.15 0.	0.03					,						•	; }		;	•	20 00 00		
1992 Jul 1-2	2 <16000	4.18	_	•	0.34	0.1	0.11 0.11 2.15	.15 1.	1.02 0.23	20		•	0.11		0.11	_									3		

PRECIPITATION RUNOFF DURING PAST EVENTS AT CHASKA, MINNESOTA WHEN THE MINNESOTA RIVER LAS AT OR ABOVE ELEVATION 706.0
AND ACCUMULATED ONE-HOUR RAINFALL EQUALLED OR EXCEEDED 0.5 INCHES JANUALY 1, 1940 - August 30, 1993

₩.		4	9																										
X		2	3																										
*			_																										
ສ		5	3																										
22		9																											
23		2																											
20		70 0 10 0 02 0 17 0 76 0	?																										
<u> </u>		7	9																										
5	•																									.35	1		
5																													
٥																													
€0	0.08										90.0																		
	0.43										0.36 0.08														90.0				
•	0.03								7.05										87.0						0.01 0.03 0.04 0.13 0.14 0.08				
•	8.0							==	.26										0.24 0.98 0.28				.0		.13				
4	.11					.23		80.	.34 0							50.			.24 0				0.27 0.01		5.				٥.
m	.24 0	20.				0 07		44.0	.02 0			19.	50.	٠		0.04 0.05			0				0		.03			0.19	.03
~	20 0	0.08 0.27 0.07	i !		0.25	0.55 0.40 0.23	0.20	1.20 0.44 0.08 0.11	0.26 0.02 0.34 0.26 0.02			13 0	0.11 0.05	0.08	0.10	-	5		13				8	0.97 0.18	0 0		ĸ	0	410
Hour:	0.03 0.83 0.24 0.11 0.06 0.03 0.43 0.08	9.0	0.15	0.50		Ö	0.01 0.	0.13 1.	_		0.11	0.20 0.13 0.61	0.06 0.	0.03 0.	0.78 0.	0.0	0.28 0.05	0.16	0.25 0.13	0.32	0.0	0.01	0.09 0.36	2.06 0.	0.14 0.	0.05	0.88 0.25	0.02	0.22 0.41 0.03 0.01
Start Of Runoff (Hour)	2 9	25	12	2	-	•	2	22	2	2	9	*	17	5	t	%	%	£ 1	~	-	\$	-	2	12	%	5	12	~	•
8	* :	: X	×	I	_	I	_	_	I	×	¥	×	×	×	x	=	=	X	_	X	×	×	×	ب	×	×	x	x	I
Total Runoff In Inches (*)	1.81	3.15	0.15	0.50	0.34	1.18	0.21	1.96	1.24	0.62	0.55	0.94	0.22	0.11	0.88	0.18	0.33	0.16	1.88	0.32	0.0	0.01	0.73	3.21	0.57	1.40	1.13	0.21	79.0
Total Precip. In	1.16	4.28	1.1	1.05	0.89	1.83	1.07	2.09	1.34	1.17	1.54	1.54	1.23	0.90	1.43	1.33	1.12	0.8	2.64	1.27	1.63	1.23	2.52	4.18	1.94	2.73	2.15	1.35	1.70
o	14700																							•	_				
0 e t e	~ ~	٠ 4	13	ຄ	13	m	13	7-8	~	7.	27	&	•	12-13	•	20	2-9	12	10-11	5	82	=	22	_	16-17	_	m	6-9	2
0	N N																												
۲ e a ۲	1944				1953	1957	1960	1965	1967	1972	1973	1979	1983			1984				1986				1992	1993				
									_																				

^(*) Runoff determined assuming an infiltration rate of 0.5-inch during first hour and 0.05-inch during each succeeding hour.

TABLE C-4 INTERIOR WATERSHED HYDROLOGICAL CHARACTERISTICS

Section	4-1cc	1 4-1b	4-1a	4-2c	4-25	4-2a	4-3	4-4	Courthou North	se Lake South	
Area in Acres	176.8	112.6	113.7	165.7	55.7	115 8	#2.0	41.4	7.9		
Area In Square Hiles	0.278	0.176	0.178	0.259	0.087	0.181	02.0	0 101		9.5 0.01484	(1)4.9
Slope In Feet/Feet					••••	•	٠.,٢	0.101	0.012	0.01404	0.00766
Sheet Flow	0.020	0.040	0.020	0.100	0.130	0 020	0.005	0 070	0.00323	0.04550	
Shallow Concentrated Flow	0.020	0.025	0.005	0.021	0 100	0.070	0.005	0.070	0.00323	0.01550	0.07500
Channel Flow	0.038	0.055	0.006	•	-	0.100	0.004	0.011	0.00325	0.00320	•
Watershed Length In Feet						-	-	•	•		
Sheet Flow	300	300	300	300	300	300	300	300	700		
Shallow Concentrated Flow	600		1800	2600	1100	2600	2400			200	200
Channel Flow	4200		1200		-	2000	2400	1400		750	•
Sheet Flow Surface Description (*)	DG		DG	DG	LU	DG		•	•	•	•
Manning's n	0.24		0.24	0.24	0.4		S 0.011	LU		DG	DG
Two-Year, 24-Hour Rainfall (P2)	2.8		2.8	2.8	2.8	2.8	2.8	0.40		0.24	0.24
Shallow Concentrated Flow Surface Description (*)	LIP		P	UP	UP	z.o UP	2.0 P	2.8	2.8	2.8	2.8
Average Velocity In Feet/Second	2.3	•	1.4	2.2	5.0	5.0	•	UP A	P/UP	P/UP	•
Channel Flow		,		2.2	5.0	5.0	1.4	1.6	1.3	1.3	
Cross Sectional Flow Area In Square Feet	32	32	•		•		_	_	•		
Wetted Perimeter In Feet	22.6	22.6	•	•		•	-	_		•	•
Hydraulic Radius In Feet	1.4	1.4	1.4	•	•			_		•	•
Mannings Roughness Coefficient (n)	0.035	0.030	0.030	-	•		_	_	_	•	•
Velocity In Feet/Second	10.4	14.6	4.8	-	•				_	•	•
Time Of Concentration In Hours									0.16867	n 71402	A EATT
Sheet Flow	0.61	0.46	0.61	0.32	0.44	0.37	0.09	0.56	1.27		
Shallow Concentrated Flow	0.07	0.19	0.36	0.33	0.06	0.14	0.48	0.24		0.49	0.26
Channel Flow	0.11	0.05	0.07	•	- **		0.46	0.24	0.28	0.16	•
Total	0.79	0.70		0.65		0.20	0.57			•	•
Lag Time In Hours	0.47	0.42		0.39	0.30	0.43	0.34	0.80	1.55	0.65	0.26
SCS Curve Number - Existing Conditions (2)	62	62	75	62	55	88	69	0.48	0.93	0.39	0.16
- Future Conditions (10% Increase				68.2	60.5	%.8	75.9	75.9	83	81 -	69 -

^(°) Surfaces were assumed to be either: dense grass (DG), light underbrush (LU), smooth surface (S), paved (P), or unpaved (UP).

^(**) Channel flow in East Creek (HEC-2 code).

⁽¹⁾ Area contributing to lake is 4.9 acres. The area of Courthouse Lake at elevation 703.0 is about 12.3 acres.

⁽²⁾ Assumes antecedent moisture condition II and hydrologic soil group B.

TABLE C-5

5 - MINUTE UNIT HYDROGRAPHS

Time	Area	Area	Area	Area	Area	Area	Area	Area	Court	house	Lake
In	4-1cd	4-1b	4-1a	4-2c	4-2b	4-2a	4-3	4-4	Are		
Hours	3								South	North	Lake
									Area	Area	Area
0.000		0	0	0	0	0	0	0	0	0	0
0.083		16	6	28	17	16	18	7	2	0	6
0.167		50	19	85	56	47	58	20	5	1	18
0.250		103	37	181	105	98	118	41	10	1	17
0.333		159	63	262	123	153	154	68	15	2	9
0.417		186	93	290	113	182	157	87	17	3	5
0.500		187	116	278	88	184	135	93	16	4	2
0.583		167	129	238	56	168	102	92	14	5	1
0.667		139	131	182	38	142	68	82	10	5	1
0.750		101	128	126	26	106	47	69	7	6	0
0.833		73	117	92	17	77	34	53	5	6	
0.917	105	54	104	68	12	57	23	39	4	6	
1.000	80	41	88	50	8	44	16	30	3	6	
1.083	63	31	69	36	5	33	12	24	2	6	
1.167	48	23	55	27	4	25	8	18	2	5	
1.250	37	17	44	19	2	18	6	14	1	5	
1.333	28	13	36	14	2	14	4.	11	1	4	
1.417	22	9	30	10	1	10	3	8	1	4	
1.500	17	7	25	8	1	8	2	6	0	3	
1.583	13	5	20	6	0	6	1	5		. 3	
1.667	10	4	16	4		4	1	4		2	
1.750	7	3	13	3		3	1	3		2	
1.833	6	2	11	2		2	0	2		2	
1.917	4	2	9	2		2		2		2	
2.000	3	1	7	1		2		1		1	
2.083	3	1	6	1		1		1		1	
2.167	2	1	5	0		1		1		1	
2.250	2	0	4			0		1		1	
2.333	1		3					0		1	
2.417	1		3			•				1	
2.500	0		2							1	
2.583			2							1	
2.667			1							0	
2.750			1								
2.833			1								
2.917			1								•
3.000			1								
3.083			0								

TABLE C-6

RUNOFF HYDROGRAPHS FOR PORTION OF COURTHOUSE LAKE AREA TO BE DIVERTED TO STAGE 4 INTERCEPTOR (Courthouse Lake - South)

Time 1	'haa		! 1	P	•-													
						12	0.2%	0 17	cpc	Histor				4	44	Time		
Hr.Min	~~~			~~	6.7	'~	U. Z.A	U. 1A	ara	26-27			August 7-8		July 1-2	ln "- **-	SPS	August
										1949	1951		1984		1992	Hr.Min		7-8 1984
														1701	1772			1704
1 10											0			0		10 10	3	1
20											1			1		20	3	2
30											4	0		3		30	3	2
40											8	1		7		40	3	2
50										0	13	2		11		50	2	3
2 0										1	16	3		14		11 0	2	3
10										1	18	4		16		10	2	3
20								0		2	15	3		14		20	2	2
30							0	1		4	10	2		10		30	2	2
40				0	0	0	1	1		5	6	1		7		40	2	1
50		0	0	1	1	1	3	2		6	4	1		6		50	2	1
3 0	0	1	1	2	2	3	7	5	0	6	3	1		5		12 0	2	1
10	2	3	5	7	8	10	13	16	1	7	2	1		4	0	10	_	i
20	6	8	11	14	18	21	21	32	1	10	2	0	0	4	1	20		1
30	7	10	13	17	20	24	24	36	2	13	2	-	1	3	3	30		Ö
40	6	8	11	14	17	20	22	29	3	15	1		2	3	6	40		ō
50	5	6	8	10	12	14	17	20	3	17	0		3	3	8	50		1
4 0	3	4	6	7	8	10	12	14	4	18	_		3	3	11	13 0		i
10	3	3	4	5	6	7	9	10	5	18			4	3	12	10		i
20	2	3	3	4	5	5	6	7	5	15		0	3	3	11	20		Ö
30	2	2	3	3	4	4	5	6	6	10		1	2	4	10			•
40	1	2	2	3	3	4	4	5	7	6		1	2	4	9			
50	1	1	2	2	3	3	3	4	7	4		1	1	5	8			
5 0	1	1	2	2	2	2	3	3	8	3		1	1	5	8			
10	1	1	1	2	2	2	2	3	9	3		2	2	5	8			
20	1	1	1	2	2	2	2	2	9	2		3	4	6	6			
30	1	1	1	1	2	2	2	2	10	1		5	8	7	5			
40	1	1	1	1	1	2	2	2	10	1		6	11	8	3			
50	1	1	1	1	1	1	2	2	11	0		7	14	8	3			
6 0	1	1	1	1	1	1	2	2	14			8	15	9	2			
10	1	1	1	1	1	1	1	2	25			8	15	9	2			
20	0	1	1	1	1	1	1	1	39			7	13	10	1			
30		0	0	0	1	1	1	1	42			6	9	12	1			
40					0	0	0	0	32			4	6	13	0			
50									24			4	4	13				
7 0									19			3	3	14				
10									16			4	3	13				
20									14			6	2	11				
30									13			9	1	8				
40									13			1	1	6				
50									12			12	0	5				
8 0									11			13		4				
10 20									11			13		4				
20 30									11		•	10		3				
30 40									10			7		3				
									10			4		2				
50 9 0									10			3		2				
9 0 10									9			2		2				
20									9 7			1		1				
3 0												1	0	1				
40									6			1	1	1				
50									•			0	1	0				
10 0									•				1					
10 0									3				1					

TABLE C-7

RUNOFF HYDROGRAPHS FOR PORTION OF COURTHOUSE LAKE AREA TO BE DIVERTED INTO EAST CREEK (Courthouse Lake - North)

									,	COUP	nouse L	oke .	MOFT	n)			Runoff H			/C+	
	The	ore	tical	Ever	its						Histor	ical	Event				KORDIT H	yaroy	гарпъ	(cont.	,
Time				10%		2%	1%	0.2%	0.1%	SPS				August	July	July	Time	SPS	July	August	July
In											26-27			7-8		1-2	In		7-8	7-8	21
Hrs.Mi	n										1949	1951	1955	1984	1987	1992	Hrs.Min		1955	1984	1987
1 2															0		10 10			1	1
3												0			1		20		1	1	1
4												1	_		1	,	30		1	1	0
5												3			2		40	3	1	1	
2											•	5	1		4		50	3		1	
1											0	7			6		11 0	3		1	
2: 3:											1	8 10	2		8 9		10 20	3 2		2 2	
4									0		2	10	2		9		30	2		2	
5							0	0	1		2	9	2		9		40	2		2	
3				0	0	0	1	1	1		3	8	2		8		- 50	2		2	
10		0	0	1	1	1	2	2	3		4	7	2		7		12 0	2		1	
2	0	1	1	2	2	3	3	4	5	0	4	5	1		6	0	10			1	
34	0	2	2	3	4	5	6	7	9	1	5	4	1		5	1	20			1	
41		3	4	5	6	8	9	10	14	1	7	4	1	0	5	1	30			1	
50		3	5	6	8	9	11	13	16	1	8	3	1	1	4	2	40			1	
4 (4	5	7	8	10	12	14	18	2	10	3	1	1	4	3	50			1	
10		4	5	7	8	10	12	14	17	2	11	3	. 0	2	3	5	13 0			1	
20		4	5	6	8	9	11	12	16	3	12	3		2	3	6	10			1	
3(4(3	4	6	7	8	9	11	14	3	12	3		2	3	7	20			1	
50		3 2	4 3	5 4	6 5	7 6	8 7	9 7	11	4	12 11	2	0	2	3 3	8	30			1	
5 (2	3	3	4	5	6	6	8	5	9	2	1	2	3	8 8	40			0	
10		2	2	3	3	4	5	5	7	5	8	1	i	. 2	4	8					•
20		2	2	2	3	4	4	4	5	6	6	1	1	2	4	7					
30)	1	2	2	3	3	3	4	5	6	5	1	1	2	4	7					
40)	1	1	2	2	3	3	3	4	7	4	1	2	3	5	6					
50		1	1	2	2	2	3	3	3	7	3	0	3	5	5	5					
6 0		1	1	1	2	2	2	2	3	8	2		4	6	6	5					
10		1	1	1	2	2	2	2	3	10	2		4	8	6	4					
20		1	1	1	1	2	2	2	2	12	1		5	9	7	3					
30 40		1	1	1	1	1	1	2	2	16	1		5	10	7	3					
50		1	1	1	1	1	1	1	2	19 22	1		5 5	9 9	8 8	2 2					
7 0		•	'n	•	•	1	1	i	1	22	ò		5	8		1					
10	·)		•	Ö	i	1	1	1	i	22	•		4	6	10	i					
20					-	0	0	1	1	20			4	5	10	i					
30									0	18			4	4	10	1					
40										16			5		9	0					
50 8 0										15			6	3 3 2	8						
8 0										14			7	2	8						
10										13			8	2	7						
20										12		-	8	1	6						
30 40										11 10			9	1	5						
40 50										10			8 7	1	4						
50 9 0										9			6	0	3						
10										9			5	v	3						
20										9			4		2						
30										8			3		2						
40										7			3		2						
50										6			2	0	1						

TABLE C-8

RUNOFF HYDROGRAPHS FOR RUNOFF, INTO COURTHOUSE LAKE (Courthouse Lake- Lake)

Time 1										Histor						Tim	e	
un Hr.Hin	40%	20%	10%	4%	2%	1%	0.2%	0.12	SPS	July	July	July	August	July	July	In		SP:
HIII										26-27			7-8		1-2	Hr.M		
										1949	1951	1955	1984	1987	1992			
1 10																		
20											0			0		10 1		1
30											2			2			20 30	1
40											4			3			.0	•
50											6	0		5			iO	1
2 0											8	1		6		11		1
20										0	5	1		5			0	1
30										1	2	0		3			0	1
40										1	1			2		3	0	1
50				0	0	0	0	0		1	1			2	•	4	0	1
3 0	0	0	0	1	1	3	2	4		2	1			1		5		1
10	1	2	4	6	8	12	15	20		4	1			1		12	0	1
20	2	3	5	7	10	10	12	17		5	1			1	_			
30	1	2	3	4	5	6	7	9	0	6	i			1	0			
40	1	1	2	2	3	4	4	5	1	7	i		0	1	1			
50	1	1	1	2	2	2	3	3	1	8	1		1	1	2 3			
4 0	1	1	1	1	2	2	2	3	1	. 8	1		1	i	4			
10 20	0	1	1	1	1	1	2	2	2	5	1		1	1	4			
30		1	1	1	1	1	1	2	2	2	0		0	2	3			
40		U	1	1	1	1	1	2	2	1				2	3			
50			0	1	1	1	1	1	3	1				2	3			
5 0			•	i	i	1	1	1	3 3	1		_		2	3			
10				1	i	•	•	1	3	1		0	0	2	3			
20				1	1	1	1	1	4	Ö		2	2 3	3 3	2			
30				0	1	1	1	1	4	•		2	5 5	4	1 1			
40					1	1	1	1	4			3	5	4	1			
50 6 0					1	1	1	1	5			3	6	4	1			
10					0	0	1	1	10			3	7	4	1			
20							0	0	27			2	5	5	0			
30									21			1	2	6				
40									11			1	1	6				
50									8			1	1	6				
7 0									ά.			1	1	6				
10									6			1	1 0	6				
20									6			4	U					
30									6			5		3 2				
40									5			6						
50 8 0									5 5 5 5			6		2 2 2				
10									5 .			6		2				
20									5			4		1				
30									5			1		1				
40									5			1		1				
50									4			0 .		1				
9 0									4					1				
10									3					1				
20									3 2 2					Ų				
30									2									
40									1									
50 0 0									1									
U									1									

EAST CREEK RUNOFF HYDROGRAPHS AT POINT OF DIVERSION

TIME EAST CREEK INFLOW IN CFS.		ESTIMATED DISCHARGE IN CFS.		ESTINATED DISCHARGE IN CFS.
		HROGER PROPOSED 40-18CH REPORTED TT1.0 (2)	IN PROJECT CONDITIONS (1) HOURS	THROUGH PROPOSED 48-1HCH RCP WITH INLET INVERT AT ELEVATION 771.0 (2)
	Historical	Theoretical Events: Mistorical	Theoretical Evants: Mistorical	al Theoretical Events: Mistorical
Jency Of Events In Percent		Jency Of Events In Percent	mncy Of Events in Percent	frequency Of Eventa in Percent
10 2 0 1 2 4 01 (3)	Jakt Vibr	10 4 2 1 0.2 0.1 sPs July 1957	10 4 2 1 0.2 0.1 8PS July 1967 (3)	67 10 4 2 1 0.2 0.1 ses July 1967
	,			
	0	0 0 0 0 0 0 0	340 500 715 1050 1250 1416 5580	115 122 127 139 144 150 194
6 C C C C C C		15 10 5 5 6 55	310 470 650 950 1140 1291 5000	113 121 127 136 141 147 189
15 20 15 10 10		20 15 10 10 11 55	288 430 590 840 1090 1235 4350	111 120 125 133 140 144 184
71 51 51 02 22 02		22 20 15 15 17 60	265 400 550 770 960 1087 3625	118 124 130 136 140 177
22 22 23 23 23 23 23 23 23 23 23 23 23 2		22 22 22 23 23	242 380 505 710 875 991 2650	109 117 122 129 134 137
30 27 30 25 25 26		30 25 25 28 75	220 370 470 650 800 906	116 121 127 131 135 164
35 30 35 30 30 34		30 35 30 30 34 80	360 430 590 760 861	116 120 125 130 133 158
57 07 07 57 58 57		35 45 40 40 45 96	340 405 554 700 793	118 124 128 131
55 40 60 50 50 57		. 66 25 05 05 09 07	330 375	114 117 122 127 129 154
70 55 70 55 60 68		55 70 55 60 68 102	320	113 115 121 126 128 152
86 75 88 85 38 88		90 60 75 85 104	310 330 430 570 646	114 120 124 127
100 80 110 70 90 102		2 8 8 8 21		112 118 123 126 150
120 110 130 100 105 119		95 97 94 95 1		116 122 124
6.5 140 120 150 120 120 136 150	167	221 66 66 66 67 66 155	280 340 450 510	115 120 123
170 135 175 140 135 153	997	26 66 26	420 476	113 119 121
200 170 210 160 150 170	445	105 101 106 100 99 101 97 120	290 390 442	112 117 120
240 190 215 175 170 193		104 107 102 101 104 97	255 270 370 419	116 119
253 210 250 195 190 215		106 109 104 104 106 97	245 240 340	711 211 901
260 260 265 220 215 244		110 110 107 107 108	220 325 368	107 114 116
750 310 290 250 240	367		195 310 351	113 115
2850 340 325 285 275 311		115 114 111 111 113 102	180 285 323	111
2950 1020 370 325 315 357		170 138 116 114 113 115 108 114	160 270 306	110 113
2000 3420 425 370 360 408		119 116 116 118 111	130 280 295	110 112
1350 3480 520 420 410 464		123 119 119 121 113	250 263	100
920 2500 1250 475 465 527		165 144 121 121 123		
	575	150 179 125 123 125 117		221
770 1190 3810 1480 750 850		142 179 148 130 133 118		971
750 1020 2875 4250 1250 1416		130 169 164 144 147		: 1 <u>2</u>
760 930 1825 3430 4900 5550		135 154 175 169 195 120		<u> </u>
755 910 1450 3730 4050 4587		135 146 176 182 186 120		zī
745 905 1230 2300 4300 4871		135 143 162 184		21
740 900 1140 1775 2750 3115		134 141 153 168 174 121		121
720 895 1120 1550 2275 2577		134 140 150 162 168 126		621
690 890 1090 1400 2070 2345		134 140 148 158 165 139		611
670 880 1070 1320 1950 2209		128 134 139 145 156 163 150 101		211
620 870 1035 1270 1825 2067	-	133 136 144 154 161 157	38.0	117
550 840 1005 1225 1720 1948		133 138 143 152 159 164		25
490 760 975 1165 1620 1835		130 137 142 151 157 169		\$E
450 670 935 1150 1530 1733	•	128 135 141 149 155 194	39.5	7.1
19.5 410 610 865 1120 1450 1642 5500		134 140 148 153 193		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
380 550 620 1060 1360 1540	130	124 132 140 146 152 193		?

⁽¹⁾ Inflow rates obtained from Chaska Phase I General Design Memorandum Plates 4-33A through 4-36A. (2) Assumes no storege volume upstream of point of diversion and a Manning's "n" of 0.014. (3) Based on ratio of peak inflow rates and 6-hour precipitation rates for 10-, 4-, 2-, 1-, and 0.2-percent rainfall events. (See paragraph 21 for further details.

RUNOFF HYDROGRAPHS FROM EAST CREEK WATERSHED (Courthouse Lake Watershed Not Included)

								,	Historical									_	
			tical	Events					Event	Ti	ine T	heoret	ical F	vents:				ı	listoric
H	r Hin	10%	4%	2%	1%	0.2%	0.1%	SPS	July			10%	4%	2%	1%	0.2%	0.1%	SPS	Event July
									21						****		•••••		21
									1987										1987
	0 0	0	0	0	•	•			_	_									
	10	2		2	0		1		0	8	10	108	107	110	108	108	113	992	652
	20	2	_	2	i	-	1		2 2		20	108	108	110	108	108	113	967	570
	30	4	5	4	2	-	2		2		30 40	109	108	111	108	108	114	955	492
	40	7	10	7	3		4		3		50	109 109	109 109	111 111	108	108	114	942	427
	50	10	14	10	5	5	7		7	9		109	110	112	109 109	109 109	115	929	379
	1 0	12	18	13	8	8	10	58	16	•	10	109	110	112	110	110	115 116	916 897	342 309
	10	14	20	16	11	12	15	61	38		20	111	111	112	110	111	117	857	278
	20	17	24	20	14	16	20	64	89		30	115	111	112	111	111	118	795	249
	30	21	26	24	18	21	25	67	184		40	121	112	112	111	112	118	718	225
	. 40	24	29	28	22	25	31	71	312		50	128	113	113	112	112	119	633	206
	50	28	33	32	27	30	37	75	443	10	0	137	113	113	112	113	120	556	189
	2 0	32	36	37	33	36	44	80	560		10	148	114	114	113	113	121	495	173
	20	36 42	41 46	43	40	41	51	85	645		20	156	116	115	113	113	122	450	159
	30	48	52	50 58	47	48	60	90	676		30	159	121	115	114	114	123	419	147
	40	56	60	68	55 65	57 70	71 89	95	679		40	160	127	116	115	114	123	395	138
	50	68	73	86	87	96	124	98 102	678 677		50	160	135	117	115	115	124	377	131
	3 0	96	105	128	139	158	207	107	665	11	0 10	156	145	117	116	116	125	362	127
	10	191	221	269	310	358	465	114	627		20	152 147	157 166	118	116	116	126	350	124
	20	367	439	529	615	711	914	130	565		30	143	169	119 120	117 118	117 118	127	340	121
	30	513	618	745	871	1009	1297	158	497		40	140	170	121	118	119	128 129	3 32 325	120
	40	589	701	856	1010	1176	1521	193	437		50	137	169	123	119	120	130	320	119 118
	50	586	716	880	1044	1220	1585	230	392	12	0	135	165	127	119	120	131	316	118
•	. 0	549	664	824	974	1136	1473	265	359		10							310	118
	10 20	484	576	717	835	968	1246	301	340		20							297	117
	30	407 340	475 388	592	676	775	989	340	334		30							278	117
	40	289	300 324	482 400	538 437	609	772	379	338		40							255	117
	50	253	278	341	437 363	488 402	614	420	347		50							230	116
5		226	246	300	309	343	503 426	463 508	360	13	0							208	116
	10	206	223	272	269	302	372	553	377 400		10							190	116
	20	192	207	250	239	272	332	595	433		20 30							178	116
	30	184	195	233	217	252	302	636	470		30 40							170	115
	40	179	187	220	202	239	279	680	506		50							165	115
	50	174	182	210	192	229	262	732	538	14	0.							161 158	115 115
6	0	170	179	202	188	220	249	830	568		10							156	115
	10	165	177	194	187	211	237	1089	605		20							154	115
	20	157	171	184	181	199	222	1496	655	. :	30							152	114
	30	148	160	170	169	183	203	1837	711	4	40							151	114
	40 50	138 128	147	156	154	166	182	2043	763		50							150	114
7	0	120	134 124	142	140	148	161	2091	811	15								149	114
•	10	114	116	130 122	128 119	134	143	1954	857		10							147	114
	20	110	111	116	114	123 116	130 121	1713 1475	888		20							146	113
	30	108	108	113	110	112	117	1295	886 862		30							146	113
	40	108	107	112	109	110		1173	825		60 50							145	113
	50	108	107	111	108	108		1092	781	16								144	113
8	0	108	107	110	108	108	112		724	.0	•							144	112
							_												

BUNGE NYDROGRAPHS FROM EAST CREEK WATERSHED DURING

PERIODS WHEN MINNESOTA RIVER WAS ABOVE ELEVATION 706.0 (Courthouse Lake Watershed Not Included)

Time		orical										=		Time		rical E		
ar ain	Jun 4 1944	Jun 5 1944	Jul 3 1957	Hey 7		Aug 29			Jun 16		Jul 1	Jul 3	Jul 3	Nr Min	Jun 5		Jun 16	
	Hour	Hour	Hour	1965 Hour	1967 Hour	1979 Nour	1983 Hour	1984 Nour	1993 Hour	1993 Hour	1993 Hour	1993 Nour	1993 Nour		1944 Hour	1964 Hour	1993 Hour	1993
	22	16	5	22	17	14	13	7	1	1	21	1	16		16	7	1	Nour 1
0 0	0	0		0		0	٥	0			0			8 10	12	4	23	14
10	0	0		0		0	0	0			1			20			21	13
20	1	1		1		1	5	1			9		0	30		3	21	10
30		_		4		6		-	0		38	0	1	40	6		21	7
40	21			12	0	16			1		89	2		50			22	5
50	37			24	1	30		32	2		152	5	9	9 0		_	22	3
1 0	53 65			35 47	3			47	5 7		216	9	15	10	4		23	2
20	71	68			6	53 55	143 150	58 62	9		269 286	14 26	20	20	4	2	23 24	1
30	49				10	49	136	56	11		265	49	21 17	30 40	4	2	25	1
40	64				13	41	115	47	14		223	77	11	50	•	2	26	•
50	60	76	62	166	15	36	95	40	16		171	107	6	10 0	4	2	26	
2 0	59	80	. 86	192	17	32	79	36	18		120	135	4	10	4	2	28	
10	58	87	107	218	18	32	64	33	19		78	159	2	20	4	2	30	
20	55	102			20	40	51	29	18	. 0		167	1	30	4	2	34	
30	49	126			24	57	39	23	17	1		161	1	40	4	2	40	
40 50	44 39	153			30	77	28	17	15	4		148	0	50	4	2	45	
3 0	35	181 207	112 113	221 209	38	96	20	13	14	8	-	135		11 0	4	2	49	
10	32	232		198	46 53	114 129	13 8	10 8	13 13	12 15	8 5	122		10	4	2	53	
20	28	258		183	60	127	5	12	13	18	3	110 96		20 30	4	2	56 58	
30	22	285	110	162	64	111	3	22	13	20	2	78		40	3	. 2	59	
40	17	311	105	139	65	88	5	33	12	23	Ş	59		50	3	2	61	
50	12	336	101	115	64	65	1	43	11	25	1	42		12 0	3	5	62	
4 0	8	359	96	95	64	44	1	51	11	27	1	28		10	3	2	64	
10	5	373	94	79	64	28	1	62	12	29	1	18		20	3	2	66	
20	3	362	86	69	64	18	0	85	16	28	1	11		30	3	2	65	
30	2	325	73	64	62	11		123	25	26	. 1	7		40	3	2	63	
40 50	1	274	58	63	56	7		166	36	23	1	5		50	, 3	2	59	
5 0	1	218 166	45 32	63 65	50	5 3		210	46	20	1	3		13 0	3	2	56	
10		125	23	65	43 35	2		251 283	54 61	18 17	1	2		10	3	2	52	
20	•	93	15	62	26	1		295	63	15		1		20 30	3	2	46 40	
30		68	10	54	19	i		284	55	12	i	· i		40	3	2	34	
40		49	7	44	13	1		260	45	9	i	i		50	3	2	29	
50		34	5	33	8	1		230	36	7	1	1		14 0	3	ž	25	
6 0		23	3	23	5	0		202	29	6	1	1		10	3	2	22	
10		17	2	15	3			177	24	4	1	1		20	3	2	19	
20 30		16	2	10	2			151	24	4	1	1		30	3	2	16	
40		21	1	7	1			123	27	4	1	1		40	3	2	13	
50		28 37	1	5	1			95 40	33	3	1	1		50	3	2	10	
7 0		44	1	3	٥			68 46	38 43	3 3	1	1		15 0	3	2	7	
10		48	;	3	J			30	46	3	1	1		10 20	3	2	5 3	
20		46	į	2				19	45	4	i	;		30	3	2	3	
30		40	1	2				13	41	7	i	i		40	3	2	2	
40		32	1	2				9	36	10	•	i		50	3	2	2	
50		24	1	2				6	30	11	1	1		16 .0	3	2	ī	
8 0		17	1	2				5	26	13	1	1			-	_	•	

The size of each sub-watershed and estimated ground slopes 22. (presented in Table C-4) used to obtain time of concentrations were obtained from USGS quad sheets. Time of concentrations were obtained using Worksheet 3 of TR55. The two-year, 24-hour rainfall amount for Chaska was obtained from Figure III-lb, page III-8 of the National Weather Service publication "Hydro - 35." Lag time was assumed to be equal to 60 percent of the time of concentration as defined on page 15-6, SCS National Engineering Handbook, Section 4, "Hydrology." The SCS curve numbers based on existing conditions were obtained based on a soil group B and an antecedent moisture condition II, then increased 10 percent to account for future development. It is assumed all local rainfall runoff will occur simultaneously with a like frequency event on East Creek upstream of the proposed point of diversion.

SEEPAGE

23. Seepage is not considered to be significant in the stage 3 (East Creek) area.

RECOMMENDED INTERIOR FLOOD CONTROL PLAN

GENERAL

24. The recommended interior flood control plan will consist of a gated gravity inlet (Outlet E) with flared end section and preformed scour hole at the point of diversion, a gated gravity outlet with concrete apron and preformed scour hole at Outlet D, three designated ponding areas, and a portable 5,000 gpm pump with power take-off located on top of the berm at the upstream end of Outlet D with discharge into Gatewell D. The required facilities are further defined in the following paragraphs.

GRAVITY OUTLETS

- 25. Outlet E will consist of a 48-inch RCP, about 269 feet long, with gatewell, flared end section, an inlet invert elevation of 771.0 and an outlet invert elevation of 770.0. The structure is to be constructed as part of the overflow weir structure required to divert excess runoff from East creek into the proposed diversion channel. (The proposed diversion channel is discussed in Appendix B.) To prevent channel scouring downstream from the inlet structure, a preformed scour hole with a 8-foot by 12-foot base at elevation 768.0, 1 on 3 side slopes (as shown on Plate C-14), and an 18-inch layer of riprap will be required.
- 26. Outlet D will consist of a 84-inch RCP, about 197 feet long, with a gatewell, and an invert elevation of 699.0. To prevent scour or erosion adjacent to this structure, a 12-inch bed of riprap will be required at the upstream end and a 25-foot by 19-foot, 10-inch concrete apron, and preformed scour hole with a 27-inch bed of riprap will be required at the downstream end. The upstream riprap bed will extend upstream of the entrance to the

pipe about 20 feet, extend laterally in each direction to the top of the existing creek bank, and extend up the side of the levee to elevation 717.0, and laterally in both directions about 14 feet from the pipe centerline. The proposed preformed scour hole will be constructed as shown on Plate C-14 with a 14-foot by 21-foot base at elevation 695.5 and 1 on 3 side slopes.

RIPRAP REQUIREMENTS

27. Based on a stone specific weight of 165 pounds per cubic foot, the required riprap specifications are as follows:

Location:	Scour 1	Holes	Downstrea	m o	f	Adjace	
	Outle	et E	Outlet	. D		Outle	t D
Thickness (Inches)	: 18	В	27			12	!
Percent Lighter	Limits	of	f Stone	<u>:</u>	Weight	in Po	unds:
By Weight:	Max.	Min.	Max. M	lin.	_	Max.	Min.
100	86	35	292	117		26	10
50	36	17	123	58		11	5
15	18	5	62	18		5	2

DESIGNATED PONDING AREAS

- 28. Under proposed conditions, there are to be three designated ponding areas: the lower area located adjacent to Outlet D referred to as the Outlet D ponding area; Courthouse Lake; and the low area located north and west of East Creek and east of Highway 41 referred to as the Old Clay Hole. The location of these designated ponding areas is shown on Plates C-1, and C-2. Elevation-areastorage relationships for each of these areas are presented on Plate C-3.
- The required volume of storage in the Old Clay Hole is about 23 acre feet between elevations 727.0 and 728.5 (for a 1-percent event). The required storage in Courthouse Lake is about 5.2 acre feet between elevations 703.0 and 703.4 (1% event, see Table C-14, page C-26). The required storage in the Outlet D area, based on the estimated runoff from a one percent event, is about 44 acre feet between elevations 700.0 and 711.7. Easements to the 1percent level are required adjacent to each of the three designated ponding areas to prevent encroachment and development within the designated ponding areas. It is also recommended that local interests maintain the existing ponding areas to prevent the potential for future flood damage downstream. The estimated amount of real estate required at the Old Clay Hole, Courthouse Lake, and Oulet D Pond sites will be about 15, 12, and 11 acres, respectively. The sides of the ponding areas are to be graded, topsoiled, and seeded to permit proper maintenance of the areas. Also, ponding markers are to be added as required.

PLAN OF OPERATION

- 30. During low flows on the Minnesota River (gravity flow conditions), the sluice gates in gatewells D and E will be open. Runoff from East Creek upstream of the point of diversion up to about 92 Cfs. (as indicated on Plate C-19) will discharge through Outlet E, the protected area and Outlet D into the Minnesota River. When the discharge rate in East Creek at the point of diversion exceeds 92 cfs, runoff will discharge both through Outlet E and over the overflow embankment into the diversion channel. from the Courthouse Lake-South area will discharge through the new stormsewer constructed by the city to the Stage 4 interceptor and into the Minnesota River. Except for the area immediately adjacent to Courthouse Lake, runoff from the remaining area located within the protected area will flow into East Creek and through Outlet D into the Minnesota River. Unless the level of Courthouse Lake rises above elevation 706.7, there will be no runoff from the lake into East Creek.
- 31. During flood periods when the Minnesota River at the Highway 41 bridge equals or exceeds elevation 706.0, the sluice gate in gatewell E will be closed to prevent any further inflow from East When and if the Minnesota River at Highway 41 equals or exceeds elevation 709.0, the sluice gate in gatewell D will be closed until the river recedes below the same elevation. the recorded rainfall accumulate to more than one inch after the closure of outlet D, portable pumping facilities should be installed and operated if the interior pond level rises above elevation 710.0. If during a flood period the level of Pond D rises above the level of the Minnesota River, or the Minnesota River recedes below the level of Pond D, the city may elect to temporarily open outlet D to lower the pond level. When the Minnesota River recedes below elevation 709.0 at the Highway 41 bridge, the gate on Outlet D should be opened. The gate on Outlet E will be opened when the Minnesota River recedes below elvation 706.0. The City of Chaska may elect to close the gate in Gatewell E more frequently, such as during the winter season to prevent the build up of ice in the creek adjacent to the Crosstown Boulevard This operating plan will be incorporated into the operation and maintenance manual.

PROJECT JUSTIFICATION

DEPARTURES FROM GENERAL DESIGN MEMORANDUM, SUPPLEMENT NO.2

32. The proposed plan recommended above includes two changes from the recommended plan presented in the earlier reports. The proposed location for Outlet D is about the same as previously indicated, however, the recommended size has been greatly reduced from a twin 108-inch Rcp to only a single 84-inch Rcp. The replacement of the existing 18-inch culvert between Courthouse Lake and East Creek with a new 48-inch Rcp, recommended in the earlier reports, is no longer required.

- The change in recommended size of Outlet D is the result of modifications to the HEC-1 and HEC-2 programs used to determine the volume of runoff and upstream profiles. The HEC-1 model for determining the runoff from the interior watershed located downstream of the point of diversion was originally developed in This model used the SCS methodology of rainfall-runoff computations, but assumed only one unreasonably high runoff curve number (CN) of 92 for the entire watershed, and assumed wet antecedent moisture conditions (AMC III). (A curve number of 92 is used where an entire watershed is developed into a business and industrial district.) In the current study, the HEC-1 hydrological model, as presented in Table C-4 (page C-10), was updated using more reasonable curve numbers taking into account soil type, residential development, and average antecedent moisture conditions (AMC II), resulting in lower runoff volumes. Also in the current study, runoff from areas 4-2b and 4-2c is assumed to flow into the Old Clay Hole and routed through the existing stormsewer to East Creek; whereas in earlier studies, runoff from these areas was assumed to discharge directly unrestricted into East Creek. this study the estimated inflow through Outlet E, during gravity flow conditions, was based on the appropriate inflow hydrographs presented in Table C-9 (page C-15) instead of assuming a constant inflow rate of 80 cfs.
- 34. Since the last interior runoff study, additional channel cross-section data has been obtained along East Creek upstream of the Highway 212 crossing and incorporated into the HEC-2 model. The additional cross-sections were obtained because of deposition near the highway bridge and development in the floodplain since when the original cross-sections were obtained. (The HEC-2 model for East Creek downstream of the proposed point of diversion, used for the earlier interior studies, included cross-sections upstream of the Highway 212 crossing developed from USGS quad sheets).

GRAVITY OUTLETS

- 35. An 84-inch RCP was selected as the size of Outlet D to limit the maximum interior pond level during a 0.1-percent rainfall event to 715.0. In the Limited Reevaluation Report ..., dated August 1982 (reference 61p), it indicates that overflow from East Creek into Courthouse Lake should not occur more frequently than about once every 1000 years; and the lowest elevation on the levee separating the lake from the creek is 715.0. An elevation-head-discharge curve for Outlet D is presented on Plate C-16.
- 36. A 48-inch RCP was selected as the required size of Outlet E to permit all flows less than about 92 cfs to pass into the protected area during gravity flow conditions. (A discharge rate of 85 cfs is considered to be the mean annual flow on East Creek at that location and the rate the city requested to be the minimum allowable inflow rate on East Creek without overflow into the diversion channel). With the proposed 48-inch pipe outlet, it is

estimated that the maximum inflow to the existing creek channel during a 1-percent and Standard Project Storm will be, as indicated in Table C-9 (page C-15), about 178 and 194 cfs, respectively, which can be expected to occur during hours 14.5 and 19.0, respectively; or about the same time that local runoff to Outlet D will terminate. As indicated in Table C-10 (pages C-16 and C-17), the peak inflow rate to Outlet D for the same two rainfall events will occur at about hours 3:50 and 6:50, respectively when the estimated inflow through Outlet E will be about 50 and 97 cfs respectively. Since the maximum inflow rates through Outlet E generally will not occur until after most of the interior runoff has passed Outlet D, it does not appear that there will be a need to limit the rate of inflow through Outlet E during gravity flow conditions. Elevation-discharge curves for Outlet E are presented on Plate C-19. The curve based on a Manning's "n" of 0.012 was used for sizing of riprap required downstream of the outlet and the curve based on an "n" value of 0.014 was used for determining the design discharge rates.

SCOUR HOLES

37. A preformed scour hole will be required at the downstream end of Outlets D and E to prevent damage from erosion and scour at the pipe outlets and to possibly prevent the formation of sedimentation deposits within the pipes.

NEED FOR PORTABLE PUMPING FACILITY AT POND D

- 38. Prior to the 1993 flood on the Minnesota River at Chaska, there would have been no need to provide a pumping facility adjacent to Outlet D to remove interior runoff during periods of blocked gravity drainage. However, with the long period of high river levels and the five periods of intense rainfall during this time, it became necessary to require a pumping facility with a capacity of about 5,000 gpm to satisfactorily remove the interior runoff. Since the 1993 flood appears to be a rare event with only a small chance of reoccurring, it is recommended that only temporary pumping facilities be provided.
- 39. Tables C-17, C-18, and C-23 present the estimated maximum Pond D level which would occur during periods of blocked gravity drainage with and without pumping. As indicated in Table C-23, a pumping capacity of about 5 cfs would be required to keep the pond level below elevation 715.0 if the Outlet D gate is closed when the river rises above elevation 709.0 at Highway 41 as recommended. Should the city, however, mistakenly close the gate on Outlet D when the Minnesota River reaches elevation 706.0, an additional 5 cfs pumping capacity would be required to limit ponding to elevation 715.0 or less.
- 40. As indicated in paragraph 6 (page C-2), the top of the dike around the farmstead located north of Courthouse Lake is at about

elevation 718.1 and the floor of the enclosed farmhouse is at about elevation 716.0. Since the minimum elevation of the top of the dike separating Courthouse Lake from East Creek is about 715.0, or about one foot below the floor level to the farmhouse, there will be no need to provide additional protection to the farmstead area. Also, there are existing gate structures located on the outlets from the farmstead, and if properly operated, would prevent flood damage to the farmstead even if the Pond D level rises above elevation 716.0

ADDITION TO STAGE 4 INTERCEPTOR STORMSEWER

With the required subdivision of the Courthouse Lake watershed and incorporation of the proposed drainage plan suggested by the city (defined in paragraph 7, page C-2), the additional runoff from the Courthouse Lake - North watershed into East Creek will result in only a small insignificant rise in the level of the Outlet D pond; and the volume of runoff into Courthouse Lake will be greatly reduced, eliminating the need for modifications to the existing gravity outlet from the lake into East Creek. Since the proposed stormsewer from the south parking area is to be connected to the Stage 4 interceptor, a proposed plan for the sewer extension has been developed and is shown on Plate C-2 and defined in Table The recommended pipe size and invert elevations for the proposed sewer extension are presented in Table C-13 as sewer segments 15-14 and 16-15. Segment 16-15 (as shown on Plate C-2), if required, will be placed in the south parking lot along the west side of the existing levee (dike) separating the parking lot from Segment 15-14 will extend about 550 feet from the south end of the parking lot to manhole 14 of the Stage 4 interceptor. To permit the extension of the Stage 4 intercepting storm sewer to the Courthouse Lake area, Stage 4 sewer segments 13-12 and 14-13, as originally recommended, will have to be increased from 24- and 18-inch pipe to a 30- and 24-inch pipe respectively; and the recommended invert elevations for these two pipe sections will have to be lowered 6-inches. With this recommended storm sewer plan, about 0.3 and 1.6 acre feet of temporary ponding will occur in the south parking area during a 1-percent and SPS event, respectively. plan, the existing SPF level of 712.5 will not be With this exceeded and the hydraulic gradient for the 10-percent event will not rise more than two feet above the pipe crown. (As indicated in paragraph 9, (page C-3), the City of Chaska plans to design their future stormwater sewerage system based on the runoff from a 10percent event.)

POND - FREQUENCY RELATIONSHIPS

42. Pond level - frequency curves for the three designated ponding areas are presented on Plate C-15. Tables C-14 and C-15 present the estimated maximum pond levels for Courthouse Lake and the proposed Outlet D pond for the nine theoretical and six historical rainfall events investigated, including the SPS. The elevation-

TABLE C-12

DESCRIPTION OF EXISTING STORMSEWER CONNECTING OLD CLAY HOLE TO EAST CREEK

Pipe Location (Section)	1	2	3	4
Pipe Diameter In Inches	15	18	18	18
Pipe Type	RCP	RCP	RCP	RCP
Pipe Length In Feet Pipe Invert Elevation:	143	52.1	22.2	29.1
Upstream	726.4	724.6	723.9	723.7
Downstream	724.6	723.9		723.28
Top Of Manhole Elevation			,,	
Upstream End	•	729.0	729.22	727.38

TABLE C-13

PROPOSED PLAN FOR STORMSEWER EXTENSION BETWEEN
COURTHOUSE LAKE AREA AND STAGE 4 INTERCEPTOR

Sewer Segment		10	11-10	12-11	13-12	14-13	15-14	4/ 45
Required Pipe	Length-Feet	93	416	232	258	254		16-15
Required Pipe	Diameter-Inches	66		36	30		550	350
	Crown Level (1)	699.00		699.97	700.36	24	18	15
Upstream Inver		693.50		696.97	697.86	700.74 698.74	701.84 700.35	702.54 701.29
Standard Projec	ct Storm							
	Discharge-Cfs.	266	111	64	37	12	12	-
	Head-Feet	3.63	3.12	2.73	2.61	0.87	8.47	•
	Hyd. Grad.	702.31	705.43	708.16	710.77	711.64	720.11	-
One Percent Eve	ent							
	Discharge-Cfs.	198	87	53	37	14	14	
	Head-Feet	1.97	1.92	1.87	2.61	1.19	11.53	•
	Hyd. Grad.	700.11	702.03	703.90	706.51	707.70	719.23	-
Ten Percent Eve	nt							
	Discharge-Cfs.	128	58	36	26	13	13	8
	Head-Feet	0.83	0.85	0.86	1.30	1.03	9.94	6.56
	Hyd. Grad.	698.23	699.08	700.07	701.37	702.40	712.34	718.90

⁽¹⁾ Assumes a pipe slope of 0.002 feet per foot.

frequency curves for the Outlet D Pond presented in Table C -14 and on Plate C-15 were developed assuming a low Minnesota River stage; however, further studies have indicated the estimated interior pond level resulting from the same rainfall events with a Minnesota River stage of 705.3 at the mouth of East Creek will rise from about 8-inches for a 40% chance event to only about 2-inches for a 0.2% event. (The maximum pond levels were obtained from the HEC-1 computer runs using the rainfall data presented in Table C-1 and the hydrological data presented in Table C-4 (see page 10) using the curve numbers with future development. The maximum pond levels for the SPS event includes the overflow of about 164.8 acre feet from East Creek into Courthouse Lake. Note on Plate C-4 that the zero damage levels for Courthouse Lake and the proposed Outlet D pond are about 718.6 and 719.0, respectively, which are much higher than the resulting pond levels indicated on Plate C-15 and in (Therefore no economic analysis has been Tables C-14 and C-15. performed relative to this study.) Since there is more storage available in Courthouse Lake than is required to store the runoff from a SPS, there is no longer a need to modify the existing outlet to East Creek. Under present conditions, Courthouse Lake will be flooded by the Minnesota River about once every 10 years, whereas under proposed conditions, it will be flooded once in about 100 years from the Minnesota River and once in about 1,000 years from East Creek. With the proposed 84-inch pipe at Outlet D, it will, therefore, take a less frequent event on East Creek to result in flood damage to the farmstead north of Courthouse Lake.

STREAMFLOW PROFILES

Based on this most recent analysis, there will be no areas along East Creek between Outlet E and Outlet D located within the 1-percent (100-year) residual floodplain. As shown in Table C-16 and on Plate C-10, the residential area between Crosstown and Engler Boulevards and the developed areas located downstream of the Highway 212 bridge, which were previously located within the floodplain, will no longer be. The new East Creek residual flood outline is contained generally within the existing creek channel banks, or within non-damaging areas of the creek's floodplain. The new design 1-percent water surface elevation will have significant impact on the Brandondale Trailer Park, because areas of the trailer park on the lower terrace adjacent to the creek will be protected by the levees, and the remainder of the trailer park is located on the upper terraces of the Minnesota River, over 20 feet above the top of the levee. A discharge-damage curve for the area located along East Creek upstream of Beech Street is presented The "without project" flooded area is outlined on on Plate C-5. Plate C-11. The floodplain near Courthouse Lake is shown on Plate C-2. Also, interior pond levels in Pond D will have little to no effect on the floodplain upstream of the Courthouse Lake area.

TABLE C-14

DETERMINATION OF POND-FREQUENCY RELATIONSHIPS FOR COURTHOUSE LAKE

Freq.	Rainfall	Rainfall	Runoff In A	Acre Feet:		Accum.	Max.	
Or Year Of Event		Excess	Lake	Adjac.	Total	Storage	Pond	
OI EVEIL				To Lake		(Acft.)	Level	
			(12.3 Ac.)	(4.9 Ac.)		(*)	(**)	
40-Percent	2.33	0.35	2.39	0.14	2.53	36.5	703.2	
20-	2.65	0.49	2.72	0.20	2.92	36.9	703.2	
10-	3.14	0.75	3.22	0.31	3.52	37.5	703.3	
4-	3.57	1.00	3.66	0.41	4.07	38.1	703.3	
5.	4.01	1.27	4.11	0.52	4.63	38.6	703.4	
1-	4.41	1.54	4.52	0.63	5.15	39.1	703.4	
0.2-	4.85	1.85	4.97	0.76	5.73	39.7	703.5	
0.1-	5.75	2.52	5.89	1.03	6.92	40.9	703.5	
SPS	11.15	8.05	11.43	3.29	14.72	48.7	715.9	***
1949	4.97	1.94	5.09	0.79	5.89	39.9	703.5	
1951	3.95	1.23	4.05	0.50	4.55	38.6	703.4	
1955	5.33	2.20	5.46	0.90	6.36	40.4	703.5	
1984	4.84	1.86	4.96	0.76	5.72	39.7	703.5	
1987	7.83	4.21	8.03	1.72	9.74	43.7	703.8	
1992	3.96	1.24	4.06	0.51	4.57	38.6	703.4	

^(*) Assumes an initial storage of 34.0 acre feet at elevavation 703.0.

POND-FREQUENCY DATA FOR OLD CLAY HOLE AND OUTLET D POND

	Old Clay Ho	ole	Outle	et D Pond	
Freq. Or Year	Accum. Runoff	Max. Pond	Maximum Po Assuming 1		int Of Diversion:
Of Event	(AcFt)	Level	Constant 80 Cfs.	Hydrographs	Ratio Of Depths Above Elevation 700. (Col 2)/(Col 1)
40-Percent	4.7	727.29	706.97	706.78 *	
20-	6.9	27.43	07.93	07.72 •	
10-	10.8	27.67	09.12	08.79	0.964
4-	14.7	27.91	10.05	09.65	0.960
2-	19.0	28.21	11.00	10.73	0.975
1-	23.4	28.52	11.99	11.66	0.973
0.2-	28.5	28.88	13.06	12.71	0.973
0.1-	39.8	29.58	15.01	14.88	0.973
SPS	92.0	32.35	16.60 **		
1949	30.8	729.03	713.07		
1951	18.7	28.19	10.96		
1955	34.6	29.27	10.78		
1984	28.7	28.75	10.58		
1987	67.2	31.10	12.80	13.43	
1992	19.0	28.21	10.36	13.43	

^(*) Assumed tobe 97.3% of level obtained with a constant 80 cfs inflow.

(There are no existing runoff hydrographs for these events available for East Creek upstream of the point of diversion.

^(**) Assumes there is no outflow to East Creek.

^(***) Includes 164.8 acre feet of overflow from East Creek.

^(**) Adjusted to account for overflow into Courthouse take.

EAST CREEK WATER SURFACE PROFILES AND CROSS-SECTION INFORMATION

Cross-Section Information:

Water Surface Profiles:

Computer (Channa	i Eleve	tione	Max. Min.							
				Low Top 0	•	Existi	~~		Propos	a.d	
(Upstream				Chord Road			itions		•	eu itions	_
From Mn.			901 M	CHOI'G KOGG		COL	CIONS	•	COIN	LICITS	•
River)						1%	SPF	1987	1%	SPF	1987
20.90 24.70	704.0	701.0	704.0		Outlet D	713.5	713.5		711.7	716.6	713.4
	711 4	704.6	714 0		Outlet From	74/ 0	74//	708.0 712.6			49.4
30.70	711.0	704.5	7 10.0		Courthouse Lake		/14.4	714.6	11.7	10.0	13.4
	710.0	707.2	712.0				716.4		12.4	16.8	13.5
33.90								716.3			
37.60								717.4			
37.75	720.0	710.6	720.0			718.4	719.9		15.1	17.4	14.5
38.10	720.0	710.8	720.0	718.0 720.2	Beach Street			718.8			
		711.9				721.3	722.5		17.3	19.3	16.8
40.80								719.2			
41.00	718.7	712.9	721.2			723.1	724.5	719.4	18.4	20.8	18.0
41.01	718.7	712.9	721.2	721.2 718.7	Pedestrian Bridge	723.3	724.7	720.4	18.8	21.2	18.3
43.70	720.0	714.3	722.2	*		724.2	725.5	723.0	20.7	22.6	20.3
47.30	722.0	717.1	724.0			725.6	726.6	724.0	22.8	24.4	22.4
47.55	722.0	717.1	724.0			725.7	726.6	725.4	23.1	24.7	22.7
47.60	724.5	717.4	724.8	724.8 724.5	6th Street	725.7	726.7	725.9	23.0	24.6	22.6
47.85	724.3	717.4	724.8			725.9	726.8		23.1	24.9	22.7
48.75	724.0	718.0	724.0			726.2	727.0		24.1	25.4	23.6
49.90								726.9			
50.09					•			728.3			
50.25	724.0			725.0 733.0	Covered Walk Bdge	. 727.4	728.0				
50.50	726.3	719.3			C. & NW. Ry.	727.5	728.1		24.7	26.2	24.2
50.80				726.3 728.0	Bridge	728.8	729.3	728.5	24.7	27.3	24.3
		720.1				728.8	729.3		25.0	27.3	24.5
		720.2				728.8				27.4	
52.25 3 53.90	726.0	720.2	724.0	726.0 726.5	Highway 212 Bdge.	728.8	729.4		25.3	27.4	24.9
	728 A	722.4	728 A			729.9	770 6	728.5	22.2	20.0	27.2
58.30	720.0	122.4	720.0			129.9		732.8	21.1	28.9	21.2
61.30								734.4			
	732.0	726.0	732.0			734.0		134.4	71 7	32.8	31 4
64.10			.54.0			134.0		735.2	31.7	JE.0	31.4
	734.0	728.5	734.0			736.2		133.2	34 1	35.1	33 0
67.10		, 2010						736.5	34. 1	JJ. 1	33.7
	736.0	730.0	736.0			737.8			36.0	0 35	35.7
70.10								740.1	50.0	<i>5</i> 0.7	33.1
	738.0	733.0	738.0		x	739.7		. 40. 1	37 A	38.5	37 A
73.30					overbank rises	/		741.8	J. 10		J. 47
	740.0	734.2	750.0		x abruptly	743.0			39.9	41.5	39.5
76.30					F			742.9			
80.00 7	42.0	736.0	742.0			745.9		_ • •	43.5	44.6	43.2
82.70							-	744.9			
83.50 7	46.3	737.3	745.9			746.9	747.6	747.2	44.6	45.8	44.3
				744.0 744.6	Crosstown Blvd.	747.1			44.9		
84.50 7	46.3	740.0	745.9		Bdge.	747.4	748.0		45.4	46.3	45.2

TABLE C-16 (Cont.)

EAST CREEK WATER SURFACE PROFILES AND CROSS-SECTION INFORMATION

Cross-Section Information:

Water Surface Profiles:

Computer Ch	annel	Eleva	tions	Max. Min.							
Station L	eft 1	halweg	Right	LOW Top Of	ţ	Existi	na		Propos		
(Upstream B				Chord Road				: :		itions	
From Mn.								••	COL	i ti turis	•
River)						1%	SPF	1987	1%	SPF	1987
86.50								747.2			
89.50								748.6			
90.00 7	50.0	743.2	750.0	ı		751 /	751.0	/40.0)		FA /	
93.00 7										20.4	49.0 50.7
93.30						133.2	733.0	751.6		32. 0	50.7
96.00 7	54.0	746.7	754.0			755 2	756.4			e, 5	
96.30						0.00	730.4			24.2	52.7
99.00 7	56.0	748.5	756.0			757 5	758.1	753.2			
99.30						131.3	730.1			22.2	54.5
102.00 7	58.0	750.2	758.0			759.5	740.0	755.5			
102.30						737.3	700.0	757.7	22.2	56.8	55.6
105.00 75	58.0	752.0	760.0			761.4	744 4		-/-	/	
105.30						701.4	/01.0	760.0	20.2	58.6	57.0
108.00 76	50.0	753.8	762.0			763.5	74/ 0				
108.30						163.5	704.0	762.4	37.4	59.7	58.0
111.00 76	52.0	755.6	762.0			765.0	745 0		F0 7	/A P	
111.30						103.0	703.6	764.2	20.3	60.5	28.5
113.20								765.3			
114.00 76	8.4	757.2	765.2		•	769.2	760 7		40.	63.1	44.5
115.20							107.1	768.4	80.8	o.,	01.5
116.00 76	8.4	759.6	765.2	769.7 773.1	Engler Blvd.	773.9	774 2		45 8	68.9	
118.70					10'x10' RCB			770.2	67.8	00.7	00.0
119.50 76						773.9	774.2		47 Z	70.3	49 1
120.50 77						774.1	774.5	770.4	67.6	70.5	49.7
121.35 76	9.5	764.6	770.1			774.2				70.4	
122.05								771.5	J		W.7
122.45								772.0			
122.85 77						775.5			67.9	70.4	48.7
123.25 77	8.8	766.3	769.7	778.8 776.1	Brandon Blvd.	776.7			67.9		
123.70								772.6			
124.50 78	0.0	767.4	776.0			777.9			68.8	70.4	69.4
125.70		_						775.7		,	
126.50 78	0.0	769.8	776.0			780.2	781.3		71.7	72.4	72.6
127.20								776.7			
128.00 777					Bike Path	782.7	783.9		-	•	-
128.25		771.4	;	780.9 780.9	Old 1922 Bridge	783.5	784.5		•	•	-
128.50								778.4			
129.30 783	5.1	772.2	779.5		Point Of Diversion	783.8 7	784.5		74.4	76.2	77.2 *

^(*) Based on a dischage through Outlet E (n = 0.014) of 56-, 98-, and 114-cfs for the 1%, SPF, and 1987 events, respectively.

- As indicated in paragraph 31 (page C-20), there are two selected gate closure elevations: 706.0 and 709.0. Elevation 706.0 was selected as the Minnesota River level when the gate in gatewell E should be closed, because it is the same level at which the gates in Outlets B and C of Stage 4 are to be closed, and to permit adequate time to drain the remaining runoff from the interior East Creek watershed before the closure of Outlet D. Elevation 709.0 was selected as the recommended elevation for the closure of the gate in gatewell D to again permit an adequate time period after the closure of Outlet E to empty the Outlet D pond. If the gates at Outlets D and E are operated and the portable pump(s) are installed and operated as suggested in paragraph 31, the overflow of ponded inflow from East Creek into Courthouse Lake can be avoided.
- 45. Periods when the level of the Minnesota River has equalled or exceeded elevations 706.0 and 709.0 at Chaska are presented in Tables C-17 and C-18, respectively. Table C-19 provides a summary of the number of years, periods, and days of blocked gravity drainage; the total rainfall which would have occurred; and ponding data with various gate closure elevations. Also presented in Tables C-17 and C-18 are the number of days that the river was above the selected elevation, the maximum river level recorded, the total recorded precipitation, the estimated runoff, and the estimated maximum interior (Outlet D) pond level which would have occurred during each period. Note in Table C-18 that during the 59 years of record there would have been only four events with a significant amount of runoff.
- 46. Presented in Table C-20 are the six periods with the fastest rise in the level of the Minnesota River at Chaska. Note there have been two events when the Minnesota River rose more than 5 feet during a 24-hour period and at least three additional events when the river has risen more than 2 feet in a days time. This is equivalent to two events where the river has risen a foot in 8 to 12 hours. Since the estimated time required for runoff in East Creek to travel from Outlet E to Outlet D is about six hours (see paragraph 59 (page C-39)), it is essential there be at least a two foot difference in the river level between when the gate in gatewell E is closed and when the gate in gatewell D is closed.
- 47. Based on the 59 years of record from October 1934 through August 1993, there would have been (as indicated in Table C-18) 28 periods of blocked gravity drainage at Outlet D, and 18 years during which a flood period would have occurred. During this same period there would have been about 382 days of blocked gravity drainage and a total of about 31.79 inches of precipitation. As indicated in Table C-18, the estimated runoff during the period would have been about 4.1 acre feet. Based on a flood period

PERIODS WHEN MINNESOTA RIVER AT CHASKA, MINNESOTA EQUALLED OR EXCEEDED ELEVATION 706.0 October 1, 1934 Through August 30, 1993 (Q = 16,000 Cfs.)

Year Dates: Number Minnesota River Accumulative Accum. Est. Acom. From To Of Days Peak & Peak Stage Precip. Runoff In Storage Max. Storage in Cfs. Hwy. East In (Inch.) (Acft.) (Acft.) Pand Above 41 Creek Inches (1) (3) Level (2) EL. 712.0 1936 Mar 24 Mar 29 23200 708.4 707.5 1.62 (4) 1943 Jun 17 Jun 26 10 25900 9.2 8.3 0.03 1944 Ney 4 Jun 12 25100 40 9.0 8.0 8.51 3.15 234.89 237.66 >715.0 Jun 15 Jun 25 11 19100 7.1 6.2 1.19 0.50 37.28 40.05 711.4 1945 Mar 18 Mar 22 17700 6.6 5.7 0.00 Jun 17 Jun 22 6 18000 6.7 5.8 0.51 1947 Apr 19 Hay 10 22 20422 7.6 6.5 2.29 Jul 9 Jul 15 7 18300 4.0 5.9 0.86 1948 Mar 23 Apr 3 12 21800 8.0 7.0 0.52 1949 Mar 31 Apr 16 17 31600 10.7 9.8 1.03 1951 Apr 9 Nay 11 33 42900 17.6 16.5 2.80 8 Jul E Jul 19800 7.4 6.4 0.48 1952 Apr 3 May 7 35 59100 16.8 15.8 1.09 1953 Jun 12 Jun 17 6 22900 8.3 7.4 0.92 0.34 25.35 28.12 710.3 Aug 8 Aug 9 2 16300 6.1 5.2 0.05 Aug 11 Aug 12 2 16100 6.0 5.1 0.51 1957 Jun 25 Jul 6 12 40200 12.8 11.9 2.28 1.18 87.99 90.76 714.3 1960 Apr 4 **Apr 21** 18 24200 8.7 7.8 1.09 0.21 15.66 18.43 709.0 May 23 Jun 1 10 35100 11.6 10.7 0.84 1962 Apr 2 Apr 28 27 39400 12.7 11.7 0.74 May 25 May 28 17100 6.4 5.5 0.56 Jul 13 Jul 15 3 16500 6.2 5.3 0.52 1965 Apr 8 May 7 30 112000 22.2 21.2 4.55 May 9 **May 15** 17200 6.4 5.5 1.35 1.96 146.15 148.92 >715.0 Jun 1 Jun 4 4 16600 6.2 5.3 1.40 Jun 12 Jun 13 16800 6.3 5.4 0.00 1966 Apr 6 16000 1 6.0 5.1 0.00 1967 Apr 5 Apr 12 8 19300 7.2 6.3 1.42 1.24 92.46 95.23 714.4 Jun 21 Jun 24 17500 6.6 5.7 . 1.04 1968 Oct 20 Nov 2 14 37200 12.1 11.2 0.19 1969 Mar 28 May 12 46 84500 20.3 19.3 2.61 1971 Har 20 Apr 10 22 24100 8.7 7.8 0.15 1972 Mar 21 Mar 24 16600 6.2 5.3 0.52 Jun 13 Jun 16 16800 6.3 5.4 1.17 0.62 46.23 49.00 712.3 1973 Har 15 Har 25 11 21500 7.9 7.0 0.62 1975 Apr 26 Nay 9 14 22900 8.3 7.4 2.68 0.55 41.01 43.78 711.8 1979 Apr 1 May 7 37 32000 10.8 9.9 1.67 May 16 Hay 19 4 16600 6.2 5.3 0.27 Aug 25 Sep 7 14 27200 9.6 8.6 1.97 0.94 70.09 72.86 714.1 1982 Mar 23 Mar 29 7 17200 6.4 5.5 0.01 1983 Mar 2 Mar 25 24 30000 10.3 9.4 2.14 0.22 16.40 19.17 709.1 Apr 4 May 3 30 33300 11.2 10.2 3.13 May 8 May 21 14 22100 8.1 7.2 1.35 0.11 8.20 10.97 707.8 Jul 4 Jul 14 11 25500 9.1 8.2 1.43 0.88 65.62 68.39 713.9 1984 Mar 29 May 20 53 33500 11.2 10.3 4.94 0.51 38.03 40.80 711.5 Jun 16 Jul 12 27 44800 13.8 12.9 4.16 2.04 152.12 154.89 >715.0 1985 Har 16 Apr 11 31900 27 10.8 9.9 1.74 Apr 25 Hay 7 13 20200 7.5 6.5 0.11 1986 Mar 22 May 28 68 36600 12.0 11.0 7.59 0.42 31.32 34.09 710.9 Jun 23 Jul 3 11 26300 9.4 8.4 0.79 Sep 24 Oct 7 14 24400 8.9 7.8 0.54 1990 Aug 1 16800 Aug 3 6.3 5.4 0.08 1991 May 9 May 16 22100 8 8.1 7.1 0.14 Jun 6 Jul 8 33 33000 11.1 10.2 3.93 1992 Mar 4 Mar 27 26200 74 9.4 8.4 1.07 Apr 26 Apr 29 17180 6.4 5.5 0.02 Jul 3 Jul 16 14 20600 7.8 6.9 1.11 1993 Apr 2 May 28 57 43000 13.6 12.7 5.00 Jun 7 Aug 30 (5) 85 84000 20.8 19.8 18.78 3.98 296.78 299.55 >715.0

Totals:

108.11 18.85

962 Days

59 Periods

⁽¹⁾ Obtained from Table C-3.

⁽²⁾ Equal to the indicated rainfall runoff in inches, times 894.8 acres, divided by 12.
(3) The Minnesota River level at East Creek will be about 705.1 when the level at Highway 41 is 706.0. The accumulated storage at elevation 705.1 is about 2.77 acre feet.

⁽⁴⁾ Runoff can not be determined, because hourly rainfall is not available.

⁽⁵⁾ On August 30, the river had receeded to only 707.89 feet.

TABLE C-18

PERIODS WHEN MINNESOTA RIVER AT CHASKA, MINNESOTA EQUALLED OR EXCEEDED ELEVATION 709.0 October 1, 1934 Through August 30, 1993

(Q = 25,400 Cfs.)

Year	Dat	es:		ı	lumber	Minnesot	a Rive	r	Accum.	Accumul	ative	Accum.	Est.	Accum.
	Fro	M	To	(Of Days	Peak Q	Peak S	tage	Precip.	Runoff	In	Stor.	Max.	Storage
						In Cfs.	Hwy.	East	In	(Inch.)	(AcFt.)	(AcFt.)	Pond	Above
							41	Creek	Inches	(1)	(2)	(3)	Level	El. 712.0
1943	Jur	ı 20	Jun	21	4	2 25900	9.	2 8.3	3 0.00	•			•	
1949	Apr	. 3	Apr	7	5	31600	10.	7 9.8	0.00	•				
1951	Apr	. 9	Apr	26	18	62900	17.	6 16.5	1.24	•				
1952	Apr	. 4	Apr	29	26	5 59100	16.	8 15.8	0.65	•				
1957	Jur	25	Jul	1	7	40200	12.	8 11.9	0.45	-				
1960				29	6	35100	11.	6 10.7	0.82	-				
1962	Apr	3	Apr		11	39400	12.		0.34	-				
1965	Apr	9	Apr	29	21	112000	22.	2 21.2	2.40	-				
1968	Oct	22	Oct	28	7	37200	12.	1 11.2	0.19	-				
1969	Арг	6	Apr	28	23	84500	20.	3 19.3	1.35	-				
1979	Apr	3	Apr	11	9	32000	10.	8 9.9	0.00	•				
	Aug	30	Sep	2	4	27200	9.	6 8.6	0.18	•				
1983	Mar	5	Mar	14	10	30000	10.	3 9.4	0.78	0.22	16.40	28.14	710.3	3
	Apr	8	Apr	25	18	33300	11.3	2 10.2	1.61	-				
	Jul	8			1	25500	9.	1 8.2	0.00	-				
1984	Apr	1	Apr	23	23	33500	11.2	2 10.3	0.97	. -				
	May	8	May	10	3	26100	9.3	3 8.3	0.03	•				
	Jun	19	Jul	4	16	44800	13.8	B 12.9	1.12	•				
1985	Mar	18	Mar	23	6	31900	10.8	8 9.9	0.00	•				
1986	Mar	24	Apr	25	33	36000	11.8	8 10.8	3.57	0.32	23.86	35.60	711.0)
	Apr	28	May	9	12	36600	12.0	0 11.0	1.80	0.09	6.71	18.45	709.0)
	Jun	26	Jun	27	2	26300	9.4	6 8.4	0.02	-				
1991	Jun	8	Jun	17	10	33000	11.1	1 10.2	1.13	-				
1992	Mar	6	Har	14	9	26200	9.4	8.4	0.99	•				
1993	Apr	3	Apr	30	28	42000	13.4	12.5	1.31	•				
	May	12	May	23	12	43000	13.6	5 12.7	0.27	-				
	Jun	18	Aug	7	51	84000	20.8	19.8	9.8	2.53	188.65	200.39	>715.0	•
	Aug	19	Aug	27	9	12.64	12.6	5 11.7	0.77	-				
	Tot	als:	:			Days			31.79	4.10				
					28	Periods								

⁽¹⁾ Obtained from Table C-3.

⁽²⁾ Equal to the indicated rainfall runoff in inches, times 894.8 acres, divided by 12.

⁽³⁾ The Minnesota River level at East Creek will be about 708.0 when the level at Highway 41 is 709.0. The accumulated storage at elevation 708.0 is about 11.74 acre feet.

TABLE C-19

COMPARISON OF HISTORICAL RIVER, RAINFALL AND STORAGE DATA FOR VARIOUS GATE CLOSURE LEVELS October 1, 1934 Through August 30, 1993

Proposed Gate Closure Elevation At Highway 41		706		707	708	709	710	711	712	713	
Number Of Years With Closures		32		27					9		
Number Of Periods		59		44				19	_	_	
Number Of Days	•	962	•	767				171	119	_	
Maximum Duration In Days	•	85	•	84	58	51	37	35	31	27	
Total Rainfall During Periods	10	08.11	7	1.00	50.98	31.79	20.33	18.38	12.31	9.94	
Number Of Events Pond Level Exceeded:											
Elevation 715.0		4		1	1	1	1	1	1	۵	
714.0		7		3	2	2	1	;	,	0	
713.0		. 8		3	3	2	;	•		0	
743 A					-	_	•	•		U	

^(*) On August 30, 1993 the river had receeded to only 707.89 feet.

713.0 712.0

TABLE C-20

RATE OF RISE IN LEVEL OF MINNESOTA RIVER AT CHASKA, MINNESOTA DURING SIX HISTORICAL EVENTS WITH THE FASTEST RATE OF RISE

Year	Date Of Day One	Day 1		Day 2	Day 3	Day 4
1951	April 8					
	Q	13,500		30,000	58,200	
	Stage	705.0		710.3	716.6	
	Rise/Day		5.3		6.3	
1957	June 24					
	Q	13,400		31,800	40,200	
	Stage	704.9		710.8		
	Rise/Day		5.9	•	2.1	
1965	April 7					
	Q	8,900		19,000	43,500	94,000
	Stage	•		707.1	713.6	
	Rise/Day		•		6.5	8.9
1952	April 2					
	Q	15,100		23,200	32,800	36,600
	•	705.6		708.4	711.0	
	Rise/Day		2.8		2.6	1.0
1962	April 1					•
	Q	12,500		17,300	29,900	38,800
	Stage	704.4		706.5	710.3	
	Rise/Day		2.1		3.8	
1960	May 22					
	Q	14,600		19,800	29,200	34,900
	Stage	705.4		707.4	710.1	•
	Rise/Day		2.0		2.7	1.5

during 18 of the 59 years of record, the average frequency of interior flooding is about once every 3.3 years. The duration of flooding is about 382 days during 28 events, or about 13.6 days per event. At elevation 706.0, the flow in the Minnesota River is about 16,000 cfs, which is equalled or exceeded about 4.0 percent of the time. At elevation 709.0, the flow in the Minnesota River is about 25,400 cfs, which is equalled or exceeded about 1.5 percent of the time.

DESIGN CRITERIA

DESIGN OF GRAVITY DESIGN FEATURES

- 48. Elevation-head-discharge curves for proposed outlet D, existing outlet from Courthouse Lake into East Creek, and the existing stormsewer connecting the Old Clay Hole with East Creek are presented on Plates C-16, C-17, and C-18, respectively. Elevation-discharge curves for proposed Outlet E, and overflow from East Creek into the proposed Diversion Channel are presented on Plate C-19. Elevation-discharge curves for overflow from East Creek into Courthouse Lake and from the Old Clay Hole into East Creek are presented on Plates C-17 and C-18, respectively.
- The design of the two storm sewers and gravity outlets is based on criteria presented in TM 5-820-4. The design of the proposed intercepting sewer extension is based on the allowable head between the outlet invert elevation at Outlet C and the estimated existing SPS interior pond level of 712.5 for Section 3 of the Stage 4 construction. All of the proposed gravity outlets and interceptor sewers are to be constructed of reinforced concrete The Manning's roughness coefficient for concrete and corrugated metal pipe is assumed to be 0.014 and 0.024, respectively; and the entrance loss coefficient is assumed to be 0.5 for the gravity outlets and beginning point of stormsewers, and 0.2 at interior stormsewer manholes. The intercepting stormsewer extension is designed with matching crowns and a constant slope of 0.002 feet/foot. Overflow from East Creek into Courthouse Lake was obtained using the following weir equation obtained from the reference presented in paragraph 61Z (page C-41):

$Q = 2.66 * L * H^1.6$

where L is the weir length in feet and H is the equivalent head in feet for a rectangular section. The cross-section of the weir is assumed to be a triangular cross-section with a low point at elevation of 715.0 and one on 250 feet side slopes. The elevation-discharge curve for overflow from East Creek into the diversion channel was obtained from Plate B-2 of Appendix B.

50. The elevation-discharge curves for proposed outlets D and E were developed using tailwater rating curves for East Creek downstream from each respective outlet. The tailwater rating

curves, shown on Plates C-16 and C-19 were obtained by backwater analysis using computer program HEC-2. The tailwater rating curve for East Creek downstream of proposed Outlet D (station 14+00 as shown on Plate C-16) was obtained based on constant discharge runs of 27, 100, 200, 300, 400, 500, 600, and 700 cfs, assuming critical depth at the Minnesota River, and using cross-sections at 200-foot intervals obtained from a USGS quad sheet. In developing the HEC-2 model for East Creek downstream of proposed Outlet D, Manning's "n" was assumed to be 0.04 in the channel and 0.08 in the overbank areas. Also at cross-sections 800, 1200 and 1400 feet upstream from the Minnesota River, it was assumed the effective flow area is limited to a flare angle of 1:2 from Outlet D.

DEVELOPMENT OF EAST CREEK WATER SURFACE PROFILES

- 51. Water surface profiles for the 1-percent and Standard Project theoretical events and the July 1987 historical event on East Creek for both existing and proposed conditions are presented on Plate C-10 and in Table C-16 (pages C-27 and C-28). profiles were developed using the HEC-2 computer model based on the Manning "n" values, coefficients of enlargement and contraction, and limits of encroachment presented in Table C-21. The profiles presented on Plate C-10 and in Table C-16 were obtained using the discharge rates from the hydrographs presented in Table C-9 (page C-15) for the time period which will result in the maximum water surface level along the East Creek channel. The HEC-2 model was calibrated to high water marks obtained from the July 1987 event. The new discharge rates were then used to compute the 1-percent chance and SPS residual flood profiles. The East Creek water surface profiles for existing conditions were obtained assuming a 10-percent event occurs simultaneously on the Minnesota River. is also assumed the frequency of event on East Creek upstream of proposed Outlet E is the same as the frequency of the event occurring within the protected area.
- 52. The tailwater rating curve for East Creek downstream of proposed outlet E (Station 126.5) was obtained based on HEC-2 computer runs using constant discharge rates at 20-cfs intervals between 20- and 240-cfs in East Creek from proposed Outlet D (Station 20.9) upstream and assuming a starting elevation based on the elevation-discharge curve developed for Outlet D as presented on Plate C-16.

RIPRAP AND SCOUR HOLE DESIGN

53. The design of the riprap cover required over and adjacent to the preformed scour holes and adjacent to the gravity outlets is based on standard project storm conditions and criteria presented in Hydraulic Design Criteria (HDC), sheet 712-1, ETL 1110-2-120 and computer program H7220. The assumed outlet pipe diameter, tailwater depth, and design discharge rate at Outlet D and at Outlet E are presented in Table C-22. The required minimum

TABLE C-21
SUMMARY OF EAST CREEK CHANNEL INPUT TO NEC-2 COMPUTER PROGRAM

)

	"NC" Car					"S8" Card			5 -46	.	M - 4		*	1			
Station)		-	Channel			Coefficier			Bottom		Het	-	Channel				
	Over-	Over-		Contrac-	•	Yarnell's			Brdge.		Bridge	slope	Eleve	tion: Dwnst.			
	benk	benk		tion	sion	Pier		Dischars	•	(reet)	Opening Selow		upat.	PHINT.			
						Shape	Loss		(feet)		Low						
											Chord						
20.90	0.150	0.150	0.060	0.1	0.3												
37.75	0.150	0.150	0.000	0.1	4.3	1.05	2.00	2.4	35		275		710.77	710.56			
43.70	0.100	0.100	0.050	0.3	0.5		2.00	•••	•								
50.65	0.100	0.100		0.3			2.00	2.6	37		255						
52.00	0.100	0.100	0.050	0.2	0.4	1.05	1.56	2.4	31		197						
52.25	0.125	0.125	0.060	0.1	0.3												
69.00				0.4	0.6												
80.00				0.2													
83.50	0.125	0.125		0.2			2.50	1.8	25		100		740.00	740.00			
84.10	0.125	0.125		0.1													
84.50	0.150	0.150		0.1													
105.00	0.100	0.100	0.070	0.1	0.3				•-				~ ^ -	WA **			
114.00						1.05	2.05	2.2	10		100		759.6	759.00			
116.00	0.080	0.080	0.050	0.1													
119.50 121.35				. 0.1							•						
122.85				0.2	0.4	1.05	1.56	2.5	19	0.5	384	1:1	766 30	766.30			
123.25				0.1	0.3		1.50	2.5	19	0.5	304	1.1	700.30	. 100.30			
126.50				0.1													
128.00				٧.٤	0. 7		1.60	2.4	18		171		771.40	771.40			
128.25				0.1	0.3						•••		*****				1
			Min			d - Encros					d - Encro		Limits:			imiter	
Station)		Max. Low Chord Elev.	Min. Top Of Roadway Elev.	Repeat Previous BT Card	Total Cross- section Area	Left End Dist.			ncroach.	ET" Car Run 1 Left Over- bank	d - Encro Right Over- bank	Run 2 Left Over- bank	Limits: Right Over- benk	Run 3 Left Over- benk	fight Over- benk	Limits:	
	Special Bridge Method	Max. Low Chord	Top Of Roadway	Repeat Previous	Total Cross- section	Left End Dist.	roach.	Right E	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over-	Limits:	
Station)	Special Bridge Method	Max. Low Chord	Top Of Roadway	Repeat Previous	Total Cross- section	Left End Dist.	roach.	Right Endings of the Dist.	ncroach. Elev.	Run 1 Left Over-	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70	Special Bridge Method	Max. Low Chord	Top Of Roadway	Repeat Previous	Total Cross- section	Left End Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00	Special Bridge Method	Max. Low Chord	Top Of Roadway	Repeat Previous	Total Cross- section Area	Left Enc Dist.	roach.	Right Endings of the Dist.	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00 37.75	Special Bridge Hethod Used	Max. Low Chord Elev.	Top Of Roadway Elev.	Repeat Previous	Total Cross- section Area	Left Enc Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00	Special Bridge Hethod Used	Max. Low Chord Elev.	Top Of Roadway	Repeat Previous	Total Cross- section Area	Left Enc Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00 37.75 38.10	Special Bridge Hethod Used	Max. Low Chord Elev.	Top Of Roadway Elev.	Repeat Previous BT Card	Total Cross- section Area	Left Enc Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00 37.75 38.10 41.04	Special Bridge Hethod Used	Max. Low Chord Elev.	Top Of Roadway Elev.	Repeat Previous BT Card	Total Cross- section Area	Left Enc Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limits:	
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75	Special Bridge Method Used	Max. Low Chord Elev. 718.00	Top Of Roadway Elev.	Repeat Previous BT Card	Total Cross- section Area 10 10	Left End Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limite:	
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75	Special Bridge Method Used	Max. Low Chord Elev. 718.00	Top Of Roachray Elev. 720.20	Repeat Previous BT Card	Total Cross- section Area 10 10 10	Left Enc Dist.	roach.	Right Ed Dist. 5250 5155	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limite:	
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25	Special Bridge Method Used	Max. Low Chord Elev. 718.00	Top Of Roadway Elev. 720.20	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limíte:	
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank	Limíte:	
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roachray Elev. 720.20	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- bank	Right Over-	Run 2 Left Over-	Right Over-	Run 3 Left Over-	Right Over- bank		0.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 85.50 84.10 90.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- benk	Right Over- bank	Run 2 Left Over- benk	Right Over- benk	Run 3 Left Over- benk	Right Over- benk	0 9.1	9.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 36.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 93.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- benk	Right Over- bank	Run 2 Left Over- bank	Right Over- benk	Run 3 Left Over- benk	Right Over- benk	0 9.1 0 5.1	7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 93.00 96.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- benk 4350 4550	Right Over- bank	Run 2 Left Over- bank 4300 4300	Right Over- bank 5830 5780	Run 3 Left Over- bank 4250 4250	Right Over- benk 5830 5780	0 9.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 93.00 99.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- benk 4350 4550 4550	Right Over- bank 5830 5780 5600	Run 2 Left Over- bank 4300 4300 4350	Right Over- bank 5830 5780 5600	Run 3 Left Over- bank 4250 4250 4250	Right Over- benk	0 9.1 0 5.1 0 5.1	7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 93.00 99.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- bank 4350 4550 4550	Right Over- bank 5830 5780 5600	Run 2 Left Over- bank 4300 4300	Right Over- bank 5830 5780	4250 4250 4200 4100	Right Over- benk 5830 5780 5600	0 9.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.25 83.50 84.10 90.00 93.00 96.00 102.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	Run 1 Left Over- benk 4350 4550 4550	Right Over- bank 5830 5780 5600 5500	Run 2 Left Over- bank 4300 4300 4350 4450	81ght Over- bank 5830 5780 5600 5500	4250 4250 4200 4100	Right Over- benk 5830 5780 5600 5500	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 93.00 94.00 93.00 94.00 102.00 105.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4560 4700 4800	Right Over- bank 5830 5780 5500 5600 5600	Run 2 Left Over- bank 4300 4300 4350 4450	81ght Over- benk 5830 5780 5600 5500 5600	4250 4250 4250 4200 4100 4000	81ght Over- benk 5830 5780 5500 5600	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.25 83.50 84.10 90.00 93.00 99.00 102.00 105.00 108.00 111.00	Special Bridge Method Used	Max. Low Chord Elev. 718.00 726.30	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4600 4700	Right Over- bank 5830 5780 5600 5600 5600 5250	Run 2 Left Over- bank 4300 4300 4450 4500	\$830 5780 5600 5500 5500	4250 4250 4250 4200 4000 4000 4000	Right Over- benk 5830 5780 5600 5600 5600	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 99.00 102.00 105.00 108.00 111.00	Special Bridge Hethod Used	Max. Low Chord Elev. 718.00 726.30 726.00	Top Of Roadway Elev. 720.20 728.00 726.50 744.60	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4550 4600 4800 4800	Right Over- bank 5830 5780 5600 5600 5600	Run 2 Left Over- bank 4300 4300 4500 4550 4550	\$830 5780 5600 5500 5500	4250 4250 4250 4200 4000 4000 4000	Right Over- benk 5830 5780 5600 5500 5600 5300	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 90.00 96.00 99.00 102.00 108.00 111.00 116.00	Special Bridge Hethod Used	Max. Low Chord Elev. 718.00 726.30 726.00	Top Of Roadiery Elev. 720.20 728.00 726.50	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	rosch. Elev.	Right E. Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4550 4600 4800 4800	Right Over- bank 5830 5780 5600 5600 5600	Run 2 Left Over- bank 4300 4300 4500 4550 4550	\$830 5780 5600 5500 5500	4250 4250 4250 4200 4000 4000 4000	Right Over- benk 5830 5780 5600 5500 5600 5300	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 94.00 99.00 99.00 102.00 108.00 111.00 111.00	Special Bridge Hethod Used	Max. Low Chord Elev. 718.00 726.30 726.00 744.00	Top Of Roadway Elev. 720.20 728.00 726.50 744.60	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	roach.	Right E. Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4550 4600 4800 4800	Right Over- bank 5830 5780 5600 5600 5600	Run 2 Left Over- bank 4300 4300 4500 4550 4550	\$830 5780 5600 5500 5500	4250 4250 4250 4200 4000 4000 4000	Right Over- benk 5830 5780 5600 5500 5600 5300	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1
20.90 27.70 32.00 37.75 38.10 41.04 47.80 50.65 50.75 52.00 52.25 83.50 84.10 99.00 99.00 102.00 105.00 111.00 111.00 116.00	Special Bridge Method Used	718.00 726.30 726.00 744.00	Top Of Roadway Elev. 720.20 728.00 726.50 744.60	Repeat Previous BT Card	Total Cross- section Area 10 10 10 10 10 10	Left Enc Dist.	rosch. Elev.	Right E. Dist. 5250 5155 5100	ncroach. Elev.	4350 4350 4550 4550 4600 4800 4800	Right Over- bank 5830 5780 5600 5600 5600	Run 2 Left Over- bank 4300 4300 4500 4550 4550	\$830 5780 5600 5500 5500	4250 4250 4250 4200 4000 4000 4000	Right Over- benk 5830 5780 5600 5500 5600 5300	0 9.1 0 5.1 0 5.1 0 5.1 0 5.1	7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1 7.1 9.1

allowable 50-percent stone diameters and weights for the two outlets are also indicated in Table C-22. The scour holes required at the downstream end of Outlets D and E were designed based on the criteria presented in Miscellaneous Paper H-72-5 and using a depth equal to one-half of the pipe diameter.

SELECTION OF GATE CLOSURE ELEVATIONS

- 54. A period of record analysis was performed based on the 59 years of record from 1 October 1934 through 30 August 1993; and a selected gate closure level of 706.0 for Outlet E and 709.0 for Outlet D.
- The need for a ponding area during the 59 year period of **55.** record based on the selected gate closure levels is summarized in Tables C-17 (page C-30), C-18 (page C-31), and C-23 (page C-38). The periods of blocked gravity drainage indicated in Tables C-17 and C-18 include all periods from 1934 through 1993 during which the Minnesota River stage at the Highway 41 bridge equalled or exceeded the indicated proposed gate closure elevation. maximum river stages indicated are the maximum stages recorded during each period of blocked gravity drainage. The precipitation indicated is the sum of all rainfall and/or snowmelt which occurred during the selected period based on the recorded daily amounts at Chaska. The estimated runoff was determined by obtaining all rainfall events which occurred with a Minnesota River stage above the selected gate closure elevation and determining the hourly amount of rainfall excess assuming a loss rate of 0.5 inch the first hour and 0.05 inch during each additional hour. which occurred with a Minnesota River stage equal to or higher than 706.0 and would have accumulated rainfall excess are presented in Table C-3. The maximum pond elevations indicated in Tables C-17 and C-18 were then obtained by multiplying the accumulated rainfall excess from Table C-3 by 894.8 acres of watershed and divided by 12 to obtain the required volume of inflow; then adding this value to the initial storage volume to obtain the total storage required; and then obtaining the equivalent pond level from Plate C-3. gates on the gravity outlets are assumed to remain closed throughout the flood period.
- 56. Because of the long duration of high river levels and large amounts of precipitation during the 1993 flood, this analysis was further refined as indicated in Table C-23 and the size of a portable pumping facility determined. The size of portable pump required (adjacent to Outlet D) was determined by preparing a detailed study of runoff during the nine historical flood events presented in Table C-17, which without pumping would result in a maximum pond level higher than 712.0. The estimated hourly inflow occurring during these nine periods was obtained from Table C-3. Inflow hydrographs to Pond D for 13 of the Table C-3 events were obtained using computer program HEC-1 and are presented in Table C-11. The estimated storage required for various pumping rates was

TABLE C-22

DETERMINATION OF REQUIRED RIPRAP SIZE DOWNSTREAM OF OUTLETS D AND E

Determination of Required Variables:

	Q	TW	TW Height	Area	Ave.	Velocity	y
Outlet E:			Above Invert	(1)	At	At	
D=48					Pipe	Apron	
A=12.57	0	769.75					
Inv 770.0	20	770.83	0.83	5.25	1.59	3.81	
2-Hr. Dur.	40	771.40	1.40	8.86	3.18	4.51	
	60	771.82	1.82	11.52	4.77	5.21	
	80	772.17	2.17	13.74	6.36	5.82	
Apron (4):	100	772.44	2.44	15.45	7.96	6.47	
L=6.00'	120	772.69	2.69	17.03	9.55	7.05	
W=7.0'	140	772.90	2.90	18.36	11.14	7.63	
We=D+2L/6	160	773.09	3.09	19.56	12.73	8.18	
=6.33	180	773.27	3.27	20.70	14.32	8.70	
	200	773.43	3.43	21.71	15.91	9.21	
	220	773.58	3.58	22.66	17.50	9.71	*
	240	773.73	3.73	23.61	19.09	10.16	
Outlet D:							
D=84	0	700.60	1.60	24.53	0.00	0.00	
A=38.48	100	702.55	3.55	54.42	2.60	1.84	
Inv. 699.0	200	703.18	4.18	64.08	5.20	3.12	
1-Hr. Dur.	300	703.49	4.49	68.83	7.80	4.36	
	400	703.71	4.71	72.20	10.40	5.54	
Apron (4):	500	703.91	4.91	75.27	12.99	6.64	
L=25.0'	600	704.08	5.08	77.88	15.59	7.70	
W=19.83'	700	704.23	5.23	80.18	18.19	8.73	*
We=D+2L/6							
=15.33					•		
Outlet Locat	ion:	D	E				
Q:		697	220				
D:		84	48				
D50: (2)		20.8	6 13.93				
0.62*D50:		12.9	3 8.64				
W50:		108	32				

Required Gradiations: (Based on a specic weight of 165 lbs/cu.ft.)

Based On ETL 1110-2-120 (Incl. 3): (Minimum Allowable Graduation)

Thickness In Inches 27 18 12

% Lighter By Weight

100	292 117	86 35	26 10
50	123 58	36 17	11 5
15	62 18	18 5	5 2

^(*) Design condition.

⁽¹⁾ Area is equal to the height of the tailwater above the pipe invert elevation times an effective width of 4.75' for outlet E and 15.33 for outlet D.

⁽²⁾ D50^3 = (6*w50)/(3.1416*165)
(D50 was obtained using computer program H7220.)

⁽³⁾ Obtained from EM 1601 (1991 version).

⁽⁴⁾ Given length and width of concrete apron upstream of scour hole.

TABLE C-23

DETERMINATION OF REQUIRED SIZE OF PORTABLE PUMPING STATION Based On Periods Indicated In Table C-16 With An Estimated Maximum Pond Level Of 713.0 Or Higher

Selected	Yes					Pesk	ı	Date O	f	Runoff:		No	Max fm.m	Pond Lev	els (3):	
Gate			Fra		To	Strea		Period	B	Ļn	In	Pumping	Vithout	Pumping	5 Cfe	10 Cfs
Closure						flow		With		Inches	Acft.	Accum.	AcFt.	Elev.	Elev.	Elev.
Elevation)					(Cfs) 1	Runoff			(2)	Storage				
								(1)								
704	194	. w.			- 45	25.40										
100	174	* 78	y •	· Ju	1 12	2510	_									
								n 4			12.66		15.43	708.6	708.3	708.1
	100	.						1 5	•		82.45		97.88	>15.0	>15.0	15.0
					6	4020			•		28.26	28.26	31.03	10.6	10.6	10.3
		5 Ka				1720			•		54.12	54.12	56.89	12.9	omit	
		7 Ap				19300		-	•		14.79	14.79	17.56	8.9	8.8	8.6
					7	27200			•		19.55	19.55	22.32	9.6	omit	
		Ju				25500		4	•		16.85	16.85	19.62	9.2	omit	
	1984	Ju	16	Jul	. 12	44800)									
							Jur	17		0.16	11.93	11.93	14.7	8.5	8.4	8.4
							Jul	10-11	•		56.27		70.97	14.1	12.6	12.4
	1993	Ju	1 7	' Aug	30	84000)								12.0	16.4
							Jun	16-17	•		37.82	37.82	40.59	11.5	10.8	10.7
							Jul		•		6.69			12.1	7.7	10.3
							•••	•			29.34					6.9
							Jul	3					76.62	14.5	11.2	10.8
							Jul	,	_		24.73		101.35	>15.0	12.4	11.0
										0.04		100.12		>15.0		
							-	8-9			15.66			>15.0	8.8	8.8
							AUG	18		0.67	49.96	165.74	168.51	>15.0	12.5	12.5
708	1944	w	. ^		47	2/400										
700						24100				•						
	1944					25100										
	1957					40200										
	1979					27200		29	*		19.55	19.55	27.57	10.2	omit	
	1983					25500										
	1984					44800										
	1993	Jun	15	Aug	11	84000										
							Jun	16-17	•		37.82	37.82	45.84	12.0	11.3	10.8
							Jul	1	•		6.69	44.51	52.53	12.6	8.6	8.2
											29.34	73.85	81.87	14.9	11.7	11.3
							Jul	3	•		24.73	98.58	106.6	>15.0	12.9	11.5
											1.54	100.12		>15.0		••••
							Aug	8-9		0.21	15.66	115.78	123.8	>15.0	9.6	9.6
	1993	Aug	18	Aug	29	39000	Aug	18			49.96	165.74		>15.0	12.9	12.9
							•			••••	******	103.74		713.0	16.7	12.7
709	1957	Jun	25	Jul	1	40200										
	1979				2	27200										
	1983				_	25500										
	1984			Jul	4	44800										
	1993					84000										
				uy	•	5-000	1. —	44.47			77 44					
								16-17	-		37.82	37.82	49.56	12.3	11.7	11.1
							Jul	1	-		6.69	44.51	56.25	12.9	9.1	8.7
									_		29.34	73.85	85.59	>15.0	12.1	11.7
							Jul	5	•		24.73		110.32	>15.0	13.2	11.8
		4	10	4 -	~~	****				•	1.54		111.86	>15.0		
		Aug	17	AUG	21	39000	AUG	18		0.67	49.96	49.96	61.7	13.3	13.2	13.2
(1) 0	nt a i n			7 _L		. 7										

⁽³⁾ Initial storage values:

Selected closure elevation:	706	708	709
Elevation at Outlet D:	705.1	707	708
Initial storage in AcFt.:	2.77	8.02	11 74

⁽¹⁾ Obtained from Table C-3.(2) Assumes a contributing watershed of 894.8 acres.

Based on inflow hydrographs prepared for event. (See Table C-11.)

then developed from each of these 13 hydrographs. Pondage during these events for which inflow hydrographs were not developed was determined by multiplying the rainfall excess values from Table C-3 times the 894.8 acres of contributing watershed, divided by 12.

- 57. Pond elevation-frequency curves developed for each temporary ponding area are presented on Plate C-15.
- 58. To select the best operating plan during periods of blocked gravity drainage, it became necessary to determine the rate of rise of flood levels along the Minnesota River and the estimated time required to drain/empty the proposed Outlet D pond prior to the closure of Gatewell D.
- 59. The estimated time required for flows in East Creek to travel from proposed Outlet E to proposed Outlet D was obtained by determining the travel time between the HEC-2 cross-sections for each of four events and summing the incremental travel times. The estimated travel time between sections was determined by dividing the distance between the sections by the indicated average channel velocity. The resulting estimated travel time from Outlet E to Outlet D was determined for a constant channel discharge of 20 and 100 cfs, for the theoretical 1-percent event and for the historical July 1987 event. The estimated total travel time for these events was 6.14, 3.84, 2.66, and 2.83 hours, respectively. Based on these results, it is assumed it will take up to 6 hours to drain the interior creek channel.

ALTERNATE PLANS

60. Six alternate plans were considered for providing erosion and scour protection at the downstream end of Outlets D and E. Considered were the construction of a preformed scour hole, an SAF Stilling Basin, an impact energy dissipator, deflector buckets, and a riprap blanket. The riprap blanket was eliminated because of its enormous size. The stilling basins, energy dissipator and the deflector buckets were eliminated because of their enormous size and excessive costs.

REFERENCES

- 61. The following references were used in the development of the interior flood control plan:
- a. EM 1110-2-1411, "Standard Project Flood Determination," (Civil Works Engineer Bulletin No. 52-8, March 1952).
- b. EM 1110-2-1413, "Hydrologic Analysis of Interior Areas," January 1987.
- c. EM 1110-2-1601, "Hydraulic Design of Flood Control Channels."

- d. EM 1110-2-1602, "Hydraulic Design of Reservoir Outlet Works."
- e. ETL 1110-2-120, "Engineering And Design, Additional Guidance For Riprap Channel Protection."
 - f. TM 5-820-4, "Drainage for Areas Other Than Airfields."
- g. Hydraulic Design Criteria, Sheet 712-1, "Stone Stability, Velocity Versus Stone Diameter," Revised 9-70.
- h. "Water Resources Data for Minnesota," U.S. Department of the Interior, Geological Survey.
- i. National Weather Service HYDRO-35, "Five- to 60-Minute Precipitation Frequency For The Eastern And Central United States," June 1977.
- j. National Weather Service Technical Report No. 40, "Rainfall Frequency Atlas of the United States," May 1961.
- k. National Weather Service Technical Report No. 49, "Two-to Ten-day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States," 1964.
- 1. Soil Conservation Service Technical Release No. 55, "Urban Hydrology for Small Watersheds," June 1986.
- m. SCS National Engineering Handbook, Sections 4 and 6, Soil Conservation Service, U.S. Department of Agriculture, August 1972.
- n. "Climatological Data," National Oceanic and Atmospheric Administration, Environmental Data Service, U. S. Department of Commerce.
- o. "Minnesota River At Chaska, Minnesota, Flood Control Project, Phase I General Design Memorandum and Draft Supplement To Final Environmental Impact Statement," April 1982.
- p. "Minnesota River At Chaska, Minnesota, Limited Reevaluation Report And Final Supplement To The Final Environmental Impact Statement For Flood Control And Related Purposes," August 1982.
- q. "Minnesota River At Chaska, Minnesota, Flood Control Project, General Design Memorandum," Revised August 1984.
- r. "Minnesota River At Chaska, Minnesota, Flood Control Project, General Design Memorandum, Supplement No. 1," April 1986.
- s. "Minnesota River At Chaska, Minnesota, Flood Control Project, General Design Memorandum, Supplement No. 2," December

- t. "Flood Control, Minnesota River, Minnesota, Report On Portable Maximum Floods And Standard Project Floods, Minnesota River Basin, Minnesota," January 1971.
- u. "Hydraulic Charts for the Selection of Highway Culverts," Hydraulic Engineering Circular No. 5, U.S. Department of Transportation, Federal Highway Administration, April 1977.
- v. "Erosion Control Measures At Storm Sewer And Culvert Outlets," by John L. Grace, Jr., Waterways Experiment Station, Vicksburg, Mississippi.
- w. "Practical Guidance For Estimating And Controlling Erosion At Culvert Outlets," Miscellaneous Paper H-72-5, by B.P. Fletcher and J.L. Grace, Jr., U.S. Army Waterways Experiment Station, Vicksburg, Mississippi, May 1972.
- x. Conversationally Oriented Real-Time Program Generating System (CORPS) computer program H7220: "Erosion at Culvert Outlets and Riprap Requirements," November 1988 version.
- y. "Straight Drop Spillway Stilling Basin," by Charles A. Donnelly and Fred W. Blaisdell, Hydraulic Engineers, USDA, ARS, Technical Paper No. 15, Series B, University Of Minnesota St. Anthony Falls Hydraulic Laboratory, November 1954.
- z. "Flow of Flood Water Over Railway and Highway Embankments," by David L. Yarnell and Floyd A. Nagler, published in "Public Works," April 1930.
- aa. "Hydraulic Design of Stilling Basins and Energy Dissipators, " Engineering Monograph No. 25, U.S. Department of the Interior, Bureau Of Reclamation.
- bb. "Evaluation of Flared Outlet Transitions," Hydraulic Model Investigation," Research Report H-72-1, by B.P. Fletcher and J.L. Grace, Jr., June 1972.
- cc. "HEC-1 Flood Hydrograph Package, User's Manual," U.S. Army Corps Of Engineers' Hydrologic Engineering Center, Davis California, September 1990.
- dd. "HEC-2 Water Surface Profiles, User's Manual," U.S. Army Corps Of Engineers' Hydrologic Engineering Center, Davis, California, September 1990.

PRINTED IN U. S. A.

GRAPH PAPER

PLATE C-9

Point Rainfall Depth In Inches

Point Rainfall Depth In Inches

DOWNSTREAM OF OUTLET D

Minnesota River At Chaska, Minnesota Stage 3 Feature Design Memorandum Flood Control Project

PREFORMED SCOUR HOLE PLANS FOR PROPOSED OUTLETS D AND E

Minnesota River At Chaska, Minnesota Stage 3 Feature Design Memorandum Flood Control Project

ELEVATION - FREQUENCY CURVES
FOR
STORAGE IN THE THREE DESIGNATED PONDING AREAS

APPENDIX D

GEOTECHNICAL DESIGN

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

CHASKA STAGE 3

APPENDIX D

GEOTECHNICAL DESIGN

TABLE OF CONTENTS

Item	Page	Paragrap
TOPOGRAPHY	D-1	1
REGIONAL GEOLOGY	D-1	3
SUBSURFACE INVESTIGATIONS	D-2	4
GEOLOGIC PROFILE	D-2	7
PROJECT FEATURES	D-4	9
GROUND WATER CONSIDERATIONS	D-5	20
GENERAL	D-5	20
DRAWDOWN OF THE GROUNDWATER TABLE	D-5	21
UPLIFT	D-6	24
SEEPAGE	D-7	25
SLOPE STABILITY	D-8	34
SETTLEMENT	D-13	44
FROST	D-15	52
RIPRAP AND BEDDING	D-15	53
ARTICULATED SLOPE PROTECTION	D-16	54
PARAMETERS FOR STRUCTURAL DESIGN	D-16	55
LANDSCAPING	D-17	56
CONSTRUCTION MATERIALS	D-17	57
CONSTRUCTIBILITY CONCERNS	D-18	58
MISCELLANEOUS	D-18	62
FURTHER INVESTIGATIONS AND/OR ANALYSES	D-19	66

TABLES

TABLES

NUMBER	TITLE								
D-1	Foundation Soil Parameters below Lime Pile	D-9							
D-2	Foundation Soil Parameters outside Lime Pile	D-9							
D-3	Foundation Soil Parameters at Station 42+50	D-10							
D-4	Foundation Soil Parameters Upstream of Engler	D-10							
D-5	Foundation Soil Parameters U/S of Highway 17 D.S.	D-11							
D-6	Foundation Soil Parameters at Outlet E	D-11							
D-7	Foundation Soil Parameters at Outlet D	D-12							
D-8	Summary of Slope Stability Analyses	D-13							
D-9	Summary of Settlement Subcutting	D-14							
D-10	Summary of Required Overbuild	D-15							
D-11	Summary of Frost Depth Subcuts	D-15							
D-12	Generalized Backfill Soil Parameters	D-17							

PLATES

NUMBER	TITLE
D-1	Boring Locations Not Shown On Plan And Profile Sheets
D-2	Geologic Profile(Station 0+00 to Station 61+50)
D-3	Boring Logs 80-30M and 80-32M Thru 80-33M
D-4	Boring Logs 80-34M and 82-42M Thru 82-44M
D-4 D-5	Boring Logs 82-45M, 82-46M and 88-98M
D-6	Boring Logs 90-131M Thru 90-133M
D-7	Boring Logs 90-134M Thru 90-136M
D-8	Boring Logs 90-137M Thru 90-139M
D-9	Boring Logs 90-140M, 90-141M, and 90-143M
D-10	Boring Logs 91-144M, 91-145A, and 91-146M
D-10 D-11	Boring Logs 91-147M, 92-176M, and 92-168M
D-11 D-12	Boring Logs 92-169M Thru 92-171M
D-12 D-13	Boring Logs 92-172M Thru 92-174M
D-13 D-14	Boring Logs 92-195M Thru 92-198M
D-15	Boring Logs 92-199M Thru 92-202M
D-16	Boring Logs 92-203M Thru 92-204M
D-17	Calculation of Radius of Influence at Drop Structure 1
D-18	F.E. Analysis at Engler and Highway 17 (Boundary Conditions)
D-19	F.E. Analysis at Engler and Highway 17(Soil Stratification
	and Permeabilities)
D-20	F.E. Analysis at Engler and Highway 17(Drawdown Curves)
D-21	Station 10+00, Boring 90-141M Evaluation Sheet
D-22	Station 10+00, Analysis of Underseepage
D-23	Station 13+50, Boring 90-137M Evaluation Sheet
D-24	Station 13+50, Analysis of Underseepage
D-25	Finite Element Grid and Permeability- Downstream of
	Stoughton(Station 8+60 to 14+60)
D-26	Station 42+50, Boring 92-201M Evaluation Sheet
D-27	Station 42+50, Analysis of Underseepage
D-28	Typical Section - Highway 17
D-29	Finite Element Grid and Permeability- Highway 17
D-30	Outlet E outlet pipe, Boring 80-33M Evaluation Sheet
D-31	Outlet E outlet pipe, Analysis of Underseepage
D-32	Outlet E outlet pipe, Berm Requirements
D-33	Outlet E Abutment, Boring 80-33M Evaluation Sheet
D-34	Outlet E abutment, Analysis of Underseepage
D-35	Creep Calculations for Drop Structures
D-36	Creep Calculations for Drop Structures(cont.) Typical CFRAG Calculation
D-37	Typical CFRAG Calculation(cont.)
D-38 D-39	CFRAG Calculation Summary(Drop Structures)
D-40	CFRAG Calculation Summary(Wingwalls at Drop Structures)
D-41	Q strengths of lime pile
D-42	Q strengths of organic stratum under lime pile
D-43	R strengths of lime pile
D-44	R strengths of organic stratum under lime pile
D-45	S strengths of lime pile
D-46	S strengths of organic stratum under lime pile
D-47	Q strengths of organic stratum outside lime pile
D-48	R strengths of organic stratum outside lime pile
D-49	S strengths of organic stratum outside lime pile
D-50	Q strength(group 1) - ENGLER
D-51	R strength(group 1) - ENGLER
D-52	S strength(group 1) - ENGLER
D-53	Q strength(group 1) - HWY 17

```
Q strength(group 2) - HWY 17
D-54
            Q strength(group 3) - HWY 17
D-55
D-56
            Q strength(group 4) - HWY 17
            R strength(group 1) - HWY 17
D-57
            R strength(group 2) - HWY 17
D-58
            R strength(group 3) - HWY 17
D-59
            R strength(group 4) - HWY 17
D-60
D-61
            S strength(group 1) - HWY 17
D-62
            S strength(group 2) - HWY 17
            S strength(group 3) - HWY 17
D-63
D-64
            S strength(group 4) - HWY 17
D-65
            Slope Stability Results (End of Construction)
thru D-71
D-72
thru D-76
            Slope Stability Results (Intermediate River Stage)
D-77
            Slope Stability Results(Steady Seepage)
thru D-81
            Settlement of Left Bank Levee (6+00 to 8+00)
D-82
            Settlement of Right Bank Levee (6+00 to 8+00)
D-83
D-84
            Settlement of Buildings Near Engler & Highway 17(parameters)
            Settlement of Buildings Near Engler & Highway 17(soil profile)
D-85
            Settlement of Buildings Near Engler & Highway 17(settlement
D-86
            vs. drawdown)
            Settlement of Fill North of Drop Structure 4(52+00)
D-87
D-88
            Outlet E settlement(consolidation settlement)
D-89
            Outlet E settlement(sand settlement)
            Outlet E plot of total settlement
D-90
            Material Distribution(Used in determination of usable fill
D-91
            materials from required excavation)
            Well Log, North of Engler Blvd. & West of Highway 17
D-92
D-93
            Cross Section - Upstream RR Embankment
D-94
            Boring 90-142M(Through RR Embankment)
            Summary of Soil Testing, Borings 80-30M Thru 90-131M
D-95
D-96
            Summary of Soil Testing, Borings 90-131M Thru 90-140M
            Summary of Soil Testing, Borings 90-140M Thru 90-195M
D-97
            Summary of Soil Testing, Borings 90-195M Thru 90-203M
D-98
```

LABORATORY TEST DATA

	FIGURE		BORII	NG	CONTENTS
	thru D-4	80-30M	thru	82-46M	AL,MC,& MA
D-5				88-98M	AL,MC,& MA
				92-174M	AL,MC,& MA
				92-170M	AL,MC,& MA
				92-174M	AL,MC,& MA
D-19	thru D-20	92-195M	thru	92-204M	AL,MC,& MA
D-21	thru D-40			82-42M	AL,MC,MA,H,SG,Q,R, & C
D-41	thru D-59			90-132M	AL,MC,MA,H,SG,UC,R, & C
D-60	thru D-81			90-133M	AL,MC,MA,H,SG,UC,R, & C
D-82	thru D-111			90-134M	AL,MC,MA,H,SG,UC,R, & C
D-112	thru D-172			90-139M	AL, MC, MA, H, SG, UC, Q, R, & C
D-173	thru D-199			90-143M	AL, MC, MA, H, SG, UC, Q, R, & C
D-200	thru D-212			91-144M	AL,MC,MA,H,SG,Q,R, & C
D-213	thru D-231			91-148A	AL,MC,MA,SG, & C
D-232	thru D-239			92-169M	AL,MC,MA,H,SG,Q, & R
D-240	thru D-274			92-171M	AL,MC,MA,H,SG,UC,R, & C
D-275	thru D-282	~		92-172M	AL,MC,MA,H,SG,UC, & R
D-283	thru D-298			92-173M	AL,MC,MA,H,SG,UC, & R
D-299	thru D-345			92-195M	AL,MC,MA,H,SG,Q, & R
D-346	thru D-347			92-197M	AL,MC,MA,H,SG
D-348	thru D-355			92-198M	AL, MC, MA, H, SG, Q, & R
D-356	thru D-357			92-199M	AL,SG, & COMPACTION
-	thru D-391			92-200M	AL, MC, MA, H, SG, Q, R, & C
	thru D-393			92-202M	AL, SG, & COMPACTION
	thru D-395			92-203M	AL,SG, & COMPACTION

Note: The abbreviations used above denote the following.

AL= Atterberg Limits

MC= Moisture Content

MA= Mechanical Analysis

H= Hydrometer Analysis

SG= Specific Gravity

Q= Unconsolidated-Undrained Triaxial Test

UC= Unconfined Compression Test

R= Consolidated-Undrained Triaxial Test w/pore pressure measurement

C= Consolidation Test

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

CHASKA STAGE 3

APPENDIX D

GEOTECHNICAL DESIGN

TOPOGRAPHY

- 1. The proposed flood control improvements will be located within an eastern portion of the city of Chaska, in the Minnesota River Valley. The valley trends northeast and is approximately 2.5 miles wide in this reach. The floodplain of the Minnesota River in the project area lies at an approximate elevation of 705, averages 1 mile in width, and is characterized by extensive marshy areas and shallow lakes. Alluvial and bedrock terraces rise above the floodplain and form narrow, regionally prominent plateaus between elevations 700 and 800. The protected portion of Chaska is situated between the elevations of 710 and 730, at the upstream end of a terrace that trends northeast along the base of the valley wall. The river valley walls rise sharply above the floodplain and terraces to form a bluff that grades into a hummocky, poorly drained regional highland at approximate elevation 850 on the north side of the valley, and at approximate elevation 900 on the south side of the valley.
- 2. East Creek emerges from a deep, steep-walled ravine onto a large terrace about 1.5 miles northeast of downtown Chaska. The creek flows southwesterly across the terrace, loops through the northeast corner of the central city area, and joins the Minnesota River east of downtown Chaska. Topographic features at the mouth of the East Creek ravine indicate the presence of an alluvial fan on the terrace and a previous flowage path of East Creek near the valley wall toward the northeast. The normal low flow in the creek is sustained by groundwater discharging from pervious strata in thick deposits of glacial till that comprise the surrounding regional highlands.

REGIONAL GEOLOGY

3. The region surrounding the project area was glaciated extensively during the Pleistocene Epoch. Advancing and reteating glaciers laid down thick deposits of unsorted till and outwash sand that today form a hummocky, poorly-drained plain dotted with numerous marshes and small lakes. The glacial drift reaches a thickness of between 200 and 250 feet in the upland region and lies unconformably on dolomitic limestone and sandstone of the Prairie du Chien and Jordan Formations. The large valley of the present Minnesota River was carved by glacial River Warren, which carried large volumes of water discharging from the now-extinct glacial Lake Agassiz located in western Minnesota and eastern North Dakota. Glacial River Warren cut deeply into bedrock and formed the terraces that are prominent today. As the flows decreased,

the valley was filled to approximately its present level with alluvium. Recent borings and historic water well records indicate alluvium approximately 180 feet in thickness. The top-of-bedrock elevation is between 530 and 542. The upper bedrock in the river valley consists of weathered to slightly weathered fine-grained, silty, glauconitic sandstone of the Franconia Formation. Sandstones of the Dresbach and Hinkley Formations underly the Franconia.

SUBSURFACE INVESTIGATIONS

- 4. Soil borings were obtained in several phases over a substantial period of time for the East Creek diversion investigations and design. Four borings were obtained in 1980 and five in 1982 for an East Creek diversion channel and conduit plan presented in the 1982 Limited Reevaluation Report (The Reevaluation alignment was similar to the current alignment upstream (west) of County Highway 17, but proceeded south-southeast toward the Minnesota River downstream of County Highway 17, rather than the generally south heading of the current alignment in this reach.) One boring was obtained in 1988 near the proposed diversion channel inlet. Twelve borings were obtained in 1990, five in 1991 and seventeen in 1992 along the current alignment (including an earlier alternative alignment downstream of Stoughton Ave.) for this feature design memorandum.
- 5. The locations of borings not shown on the project plan drawings(Plates 3 to 8) are shown on Plate D-1. Boring logs are shown on Plates D-3 to D-16. Boring logs for Outlet D(Plate 9) are shown in the Stage 4 Feature Design Memorandum. Undisturbed soil samples were obtained with 3-inch Shelby tubes or a 5-inch piston sampler depending on equipment availability and limited site access conditions. The type of equipment used for undisturbed samples is indicated in the corresponding notes of applicable boring logs.
- 6. The results of classification, shear strength and consolidation tests performed on numerous soil samples are shown on Figures D-1 to D-395. Plates D-95 to D-98 show a summary of all testing. A significant number of the samples tested exhibited borderline classifications. This reflected the substantial variability of the alluvial deposits encountered and indicated the associated variability of engineering characteristics.

GEOLOGIC PROFILE

7. The substantial variability of alluvial deposits encountered by subsurface investigations along the alternative East Creek diversion channel alignments does not permit a clear definition of precise boundaries between depositional time periods. However, evaluation of topographic features in combination with subsurface exploration data enabled the development of a general geologic profile across the terrace and floodplain between the valley wall and the Minnesota River in the area of the proposed diversion channel. Although this geologic profile is general in nature, it was quite useful for engineering analysis and design. The subject geologic profile is shown on Plate D-2. Note the indication of glacial till in the valley wall, highly variable alluvial material within the terrace downstream from the mouth of the East Creek ravine, more uniform

sand strata within the riverward portion of the terrace, and finer-grained and more variable alluvium within the floodplain of the Minnesota River. Also note the presence of significant fill material on the surface near the downstream end of the proposed diversion channel alignment. Referring to borings 92-172M, 92-173M, 92-195M, and 92-196M on Plates 3, D-13 and D-14, note that the upper clay fill material between approximate channel stations 1+00 and 7+00 consists of lime(sugar beet processing residue) deposited by the adjacent American Crystal Sugar processing plant. Lime is no longer being deposited in this area, and the existing material is currently being mined for agricultural use. Boring 92-174M on Plates 3 and D-13 shows some fill that appears to be primarily construction debris and miscellaneous sandy material. Also worthy of note is the general ground water profile across the terrace. A more detailed picture of the soil strata and ground water profile at the time of the borings is shown on the project plan and profile drawings (Plates 3 to 8), in conjunction with the boring log drawings (Plates D-3 to D-16).

8. The geologic profile (Plate D-2) along the channel alignment can be separated into four parts based on stratigraphic relationships determined from soil borings and well logs:

Sta. 0+00 to 9+00: From the confluence of East Creek Diversion Channel and the Minnesota River to about Sta. 9+00, an agricultural lime pile on top of an organic clay deposit overlies fluvial sand which extends to an undefined depth. The organic clay deposit was once utilized by the sugar plant as a settling pond for sugar beet residue. Strong organic odors were detected from soil samples taken from this unit. The clay deposit appears to be hydrologically connected to the fen complex located to the east of the channel alignment. The high water table and numerous seeps along this section of the alignment originate from the sandy aquifer located below the organic clay deposit and the agricultural lime pile.

Sta. 9+00 to 28+00: Upstream of approximate Sta. 9+00, the profile stratigraphy shows thick deposits of alluvial sand. The alluvial sand deposit underlies the entire channel alignment. Recent borings and historic water well records indicate alluvial thicknesses of at least 180 feet above the bedrock surface. It is Chaska's primary alluvial aquifer. Upstream of Stoughton Avenue it forms an alluvial terrace which extends to the valley wall. The terrace is a regionally prominent feature found throughout the Minnesota River Valley. The alluvial sand deposit is poorly graded and differentiated by minor amounts of silt and occasional gravel. The sand was most likely derived from the glacial drift of the upland region and fluvially deposited as glacial outwash.

Sta. 28+00 to 36+00: A transition zone occurs on the alluvial terrace between the fluvial outwash deposits downstream of approximate Sta. 28+00, and the alternating strata of pervious and cohesive alluvial fan stratigraphy upstream of approximate Sta. 36+00. The transition zone marks the downstream edge of a confining till unit beneath the alluvial deposits. The water table gradient shown on the profile reflects the change in stratigraphy through this part of the alignment. The gravel deposits are the result of fluvial processes.

Sta. 36+00 to 61+25: Alternating strata of impervious organic clay layers and pervious granular deposits overlie a confining unit of

glacial till through this part of the channel alignment. The till unit overlies the alluvial aquifer. In borings where the aquifer was penetrated through the confining till unit near Sta. 45+00 and Sta. 46+00, significant artesian pressures were encountered. Flowing conditions with heads exceeding 13 feet above the ground surface were observed. However, at approximate Sta. 54+00, a boring which penetrated the aquifer beneath the till unit showed no flowing conditions at the time of the boring. The artesian pressure which exists through this part of the alignment accounts for the elevated water table shown on this section of the profile.

PROJECT FEATURES

- 9. A 6000 foot channel will control drainage from East Chaska Creek and discharge directly to the Minnesota River. Where design constraints limited the depth of excavation, levees will be constructed to contain the design discharge. The typical levee section will have 1V to 3H side slopes and a top width of 10 feet. Fill for the levee will be impervious. A bituminous trail on an aggregate base will be located on the west side of the channel downstream of drop structure number 4 and on both sides of the channel upstream of drop structure number 4. Erosion protection will generally consist of riprap on the channel side of the levees. Areas not receiving riprap will receive top soil and seeding. Levees will be constructed with a cutoff trench which will have a 6 foot bottom width and side slopes no steeper than 1V to 1H. Trench depth will be 6 feet for levee heights equal or greater than 6 feet. For levee heights less than 6 feet, the trench depth will be equal to the levee height. The trench will be backfilled with impervious material. The project site will be landscaped.
- 10. Drop structures will be located at stations 8+50, 15+00, 32+50, and at 51+50. The bottom width of the drop structures varies from 30 to 40 feet. A short transition will be provided upstream and downstream of the drop structures to transition from drop structure width to channel width.
- 11. Bridges will be located at Stoughton Avenue(station 17+00), Highway 212(station 25+00) and Engler Boulevard(station 46+00).
- 12. Station 0+00 to 3+75, will consist of the trapezoidal channel chute and a tailwater control dike. The channel will be approximately 250 feet wide. Articulated concrete slope protection will be used because of the high channel velocities. Channel side slopes will be 1V:4H.
- 13 Station 3+75 to 8+25 will consist of a trapezoidal channel with flanking levees. The channel width will vary from 250 to 50 feet and side slopes will be 1V:4H. Erosion protection will be provided by topsoil and seed except directly downstream of Drop Structure 1 where riprap will be provided.
- 14. Station 8+62 to 14+62 will consist of a trapezoidal riprapped channel with a 10 foot bottom width and flanking levees. Levee side slopes will be 1V:3H above station 8+62. The flanking levees will be provided with a landside pervious toe drain.
- 15. Station 15+18 to 32+54 will consist of a trapezoidal riprapped channel with a 10 foot bottom width.

- 16. Station 33+01 to 45+88 will consist of a trapezoidal riprapped channel with with a 25 foot bottom width and flanking levees. Beginning at approximately station 43+00 the new Highway 17 road embankment will be used as the levee on the east side of the channel.
- 17. Station 46+60 to 51+40 will consist of a 25 foot wide trapezoidal riprapped channel with flanking levees. The new Highway 17 road embankment will be used as the levee on the east side of the channel. The new Engler Blvd. embankment and the existing Highway 17 road embankment will provide the flanking levee on the west side of the channel.
- 18. Station 51+88 to 59+52 will consist of a 10 foot wide trapezoidal riprapped channel with flanking levees. Outlet E will be located in the existing east creek channel.
- 19. Outlet D will be placed through the Stage 4 Chaska levee after consolidation is complete. The existing East Creek diversion opening through the Stage 4 levee will then be filled.

GROUND WATER CONSIDERATIONS

-- GENERAL

20. Based on the ground water levels encountered during subsurface exploration, the bottom of the proposed diversion channel will be at or beneath the existing ground water table within the general area of the East Creek alluvial fan (upstream of approximately station 30+00) and near the toe of the sand terrace (downstream of approximately station 15+00). Consideration was given to the effects of the drainage measures along the channel on the adjacent wetlands at the downstream end of the channel. The channel will have minimum impact on these wetlands. Ground water seepage from the banks of the diversion channel will also be a concern within the reach between stations 30+00 and 52+00. The artesian pressure in this reach has an effect on the channel design. Note the 10 foot difference in water levels between borings 90-139M, 92-202M and 92-203M which shows there may be a considerable seasonal or yearly variation in the water table. The borings and geologic profile indicate the underlying aquifer at the site will have confined flow from station 0+00 to 9+00 and 30+00 to 60+00. Unconfined flow appears to exist from 9+00 to 30+00.

-- DRAWDOWN OF THE GROUNDWATER TABLE

- 21. Wherever the channel invert will be below the existing groundwater table there will be some localized drawdown of the water table. The two main areas of concern are near drop structure number 1 where the channel will be adjacent to the fen and near the intersection of Engler Boulevard and County Highway 17.
- 22. The channel should have a minimal impact on the fen which is located east of the channel between stations 0+00 and 12+00. A large drawdown of the water table near the fen could affect the groundwater flow and cause degradation of the fen. Calculations indicate that the radius of influence from a one foot lowering of the groundwater at the drop structure would not affect the fen. Lowering the water table two

feet should only have minimal impact on the fen. The radius of influence that has been calculated will be conservative because it does not account for the partial penetration of the channel into the aquifer or for the uneven ground surface. It was originally thought a liner would be required to prevent the water table from being lowered from approximately elevation 717 at the drop structure at station 8+50 to 710 or 711 because water would flow through the bedding and under the culvert in the tailwater control structure located at station 3+50. The radius of influence of the 6 or 7 foot drop might have affected the fen. The planned alternative which deleted a low flow channel should only allow drawdown to a little below elevation 715. The insitu soils downstream of the 24 inch riprap(~7+50) are sufficiently impervious to prevent further drawdown of the water table. Calculations are shown on Plate D-17.

23. Drawdown of the water table near Engler Boulevard and Highway 17 may induce settlement in the three buildings closest to the channel and the adjacent roads. A finite element analysis, using COE program X8202, indicated a maximum possible drawdown of 7' at 100' and a minimum drawdown of 0' at 50' from the toe of the channel slope. The drawdown is greatly affected by the assumed permeabilities of the individual soil layers and the assumed boundary conditions. When higher permeabilities are used for impervious layers the artesian pressure tends to reduce the amount of drawdown, when lower permeabilities are used the artesian pressure has almost no effect on the amount of drawdown. The model assumes pervious material at the bottom of the channel. If there is clay at the bottom of the channel large uplift pressures are generated. The model does not include the riprap and bedding at the channel invert which may result in additional drawdown. Calculations are shown on Plates D-18 to D-20.

-- UPLIFT

24. Uplift from artesian pressures upstream of station 33+00 dictated the depth of the channel in that reach. Boring 92-204M, drilled to elevation 668, did not encounter artesian pressures. Borings 90-134M and 92-200M encountered the confined flow region at approximately elevation 705. A well log from an abandoned city of Chaska well near Outlet E indicated some artesian pressure at that location. The well log(see Plate D-92) shows the bottom of the confining clay layer at elevation 715 and the bottom of the screen at elevation 669. The factor of safety against uplift was determined by dividing the buoyant soil weight above the confining layer by the excess pressure head. A saturated soil weight of 110 pcf was used. The soil profile from boring 90-134M was used. Artesian pressure below the confining layer was assumed to be equivalent to a water level to elevation 779. With a channel invert elevation of 752 the factor of safety against uplift will be approximately 1.3. This factor of safety should be adequate since a failure of the channel bottom would not be catastrophic but might only cause additional maintenance. With a channel invert at elevation 755 the factor of safety would be approximately 1.5(the channel invert is at elevation 755 at approximately station 44+50). The calculations assume no flow through the confining layer. If the confining layer is not continuous or effectively impermeable, the pressure will be dissipated through either horizontal or vertical flow paths and the factor of safety may be less than anticipated. Additional borings to determine this would not be economically feasible and if problems are encountered during

construction they will need to be solved at that time.

-- SEEPAGE

- 25. Levee through-seepage and underseepage are generally not a problem for the proposed diversion channel plan, because the required levee heights are quite low, the proposed levee fill material is impervious, and substantial semi-pervious to impervious top strata are present within the upper levee reaches. An exception to this is at Gatewell E where the levee height is substantial and a relatively thin semipervious top blanket is underlain by a pervious foundation material. There is also an area between drop structures 1 and 2 where a thin semipervious stratum covers pervious foundation materials.
- 26. A cutoff trench will be excavated along the levee centerline to cut off pervious or semipervious soil layers near the ground surface.
- 27. Levee underseepage and uplift calculations were made at several locations along the channel. Criteria and methods used in the analysis were from EM 1110-2-1913 which require a minimum factor of safety of 1.5 against uplift and a maximum allowable upward gradient of 0.5 at the levee toe. Horizontal permeabilities for the pervious layer under the levees were based on D10 sizes and Figure 3-5 in EM 1110-2-1913. The vertical permeabilities of the landside top stratum were obtained from Table 38 in TM 3-424. Seepage quantities were calculated using the design water surface elevation. Uplift pressures were calculated using the water surface at the top of the levee.
- 28. A toe drain will be provided downstream of Stoughton Avenue(from station 8+62 to 14+62) to keep uplift pressures within safe levels. The drain will be five feet deep and thirteen feet wide at the base of the trench. The drain will be SP or SW material from the required excavation. CSEEP(X8202) was used to determine the required width of the drain. Levee underseepage and uplift calculations are shown on Plates D-21 to D-25.
- 29. The new Highway 17 road embankment will be used as the levee on the east channel bank north of station 43+00(see Plate 7). A typical cross section of the Highway 17 embankment is shown on Plate D-28. The top of the embankment is 100 feet wide. The side slopes are 1V:3H. The geotextile was equivalent to Mirafi 500X. The pervious fill has less than 5% passing the number 200 sieve and less than 35% passing the #40 sieve. One foot of MnDOT 3149.2B Select Granular Borrow with less than 35% passing the #40 sieve was placed directly below the pavement. The majority of the embankment fill is clay. The embankment was analyzed as if the three foot sand layer ran under an impervious levee. A finite element analysis(using the COE X8202 finite element seepage program) showed the exit gradient was less than 0.5 which means the embankment will be suitable to use as the levee. The input parameters are shown on Plate D-29. It is anticipated that a portion of the 4" pipes can be grouted full to prevent direct water passage under the embankment.
- 30. A pervious seepage berm has been placed at the downstream levee toe at Outlet E(station 59+50) to keep uplift pressures and exit gradients within safe levels. Boring 80-33M was used for the levee underseepage analysis near outlet E, although the boring did not reach the bottom of the pervious zone it has been assumed to end at the bottom of the boring

based on the geologic soil profile. Calculations are shown on Plates D-30 to D-34.

- 31. The drop structures were checked to determine if piping of materials might be a problem using a creep path along the structures and Lane's weighted creep ratio equation. The calculations showed piping of materials could occur at all drop structures. This will be prevented by placing reverse filters at the downstream side of all structures. Creep ratio calculations are shown on Plates D-35 to D-36.
- 32. The drop structures were checked to insure the exit gradients would be 0.50 or less using the COE program CFRAG which uses the Method of Fragments to determine seepage pressures and flow quantities. Horizontal permeabilities for the pervious layer under the drop structure were determined in the same manner as for the levee underseepage and uplift analysis. Vertical permeabilities were assumed to be one fourth of the horizontal permeabilities. Exit gradients were determined using the head differential between the upstream and downstream levee heights or the head differential between the drop structure's upstream and downstream sill elevation, whichever was greater. The wingwall analysis assumed a fictitious slab between the upstream and downstream walls to maintain confined flow so the CFRAG computer program could be used. This analysis determined additional "cutoffs" were required under all the drop structures. Calculations are shown on Plates D-37 to D-40.
- 33. Potential seepage along any conduits through the levees and the associated exit gradients which can cause piping of levee material, will be controlled by the placement of pervious drainage fill around the landside one-third of the conduit lengths, in accordance with guidance presented in EM 1110-2-1913. Impervious fill will placed around the riverside two-thirds of any conduit.

SLOPE STABILITY

- 34. Criteria for the slope stability analyses were taken from EM 1110-2-1913. Design conditions analyzed include end of construction, intermediate river stage, and steady seepage from full flood stage. The sudden drawdown case was not analyzed since the duration that the channel will be flowing will be too short to saturate the impervious levees. Computations were done using the computer program UTEXAS2 (program number I0029). The actual possibility of the levees or foundation soils becoming saturated as shown during the intermediate river case or steady seepage case is also questionable although these cases are included.
- 35. The in situ foundation soils were grouped according to material type, Standard Penetration Test results, and location within the same geological stratum. Foundation soil strength parameters are based on shear strength envelopes developed from triaxial compression test results as outlined in EM 1110-2-1902 and EM 1110-2-1913. Soil strength data was reduced by plotting the top point of the Mohr's circles and using the equations "tan(alpha)=sin(phi)" and "c=(a)*sec(phi)". Strength parameters for granular soil layers without test results are based on the NAVFAC DM-7.1, May 1982. If triaxial compression test results were not available for a soil layer in question, parameters from a similar material of a near-by boring were used.

36. The soil strengths used in the stability analyses at station 1+60, for the typical section in the lime pile are given below. Foundation soil parameters for material types 1 and 2 are based on shear strength envelopes (see Plates D-41 to D-46) developed from triaxial compression test results. The lime and the soft organic soil layers at the lime pile had unusually high consolidated-drained(S) strength envelopes, resulting in phi values of 32-38 degrees. For design purposes, an effective phi value of 30 degrees was used.

Table D-1: Foundation Soil Parameters below Lime Pile (Station 1+60)

	Material Type	Draina Condit	ge Cohesi	
	-7F-			
1.	MH (Lime)	Q (U-1 R (C-1 S (C-1	J) 240	0 20 30
2.	OL,SM,OH (Organic)	Q (U-1 R (C-1 S (C-1	J) 180	0 19 30
3.	SP,SP-SM Semi-Pervious)	All	0	30

37. The soil strengths used in the stability analyses at station 7+00 and station 9+00 are given below. Foundation soil parameters for material type 2 are based on shear strength envelopes (see Plates D-47 to D-49) developed from triaxial compression test results.

Table D-2: Foundation Soil Parameters outside Lime Pile (Station 7+00 and 9+00)

	Material Type	Drainage Condition	Shear Str Cohesion (psf)	Pength Phi (deg.)
1.	CL LEVEE FILL	Q (U-U) R (C-U) S (C-D)	450 500 0	5 9 29.5
2.	MH,OH (Organic)	Q (U-U) R (C-U) S (C-D)	170 105 0	0 17 30
3.	SP	All	0	30
4.	SM	All	0	28

38. The soil strengths used in the stability analyses at station 42+50,

for the typical section between the two upstream drop structures are given below. The strengths for materials 1 and 3 were based on tests from boring 92-200MU.

Table D-3: Foundation Soil Parameters at Station 42+50

			Shear St	rength
	Material	Drainage	Cohesion	Phi
	Type	Condition	(psf)	(deg.)
1.	CH,CL,SC	Q (U-U)	380	0
		R (C-U)	62	20
		S (C-D)	0	30
2.	ML,SW-SM, SM	All	0	27
3.	CL, CL-ML	Q (U-U)	1360	0
	ML	R (C-U)	847	23
		S (C-D)	0	30
4.	SW-SM,SM	All	o	30
5.	CL	Q (U-U)	450	5
	LEVEE	R (C-U)	500	9
	FILL	S (C-D)		29.5

39. Boring 90-134MU and 92-169MU provided the necessary geologic information to develop the foundation soil parameters near boring 90-134M. Foundation soil parameters for material type 2 are based on shear strength envelopes (see Plates D-50 to D-52) developed from triaxial compression test results. Table D-4 summarizes the results.

Table D-4: Foundation Soil Parameters Upstream of Engler (Station 48+00)

			Shear St	rength
	Material Type	Drainage Condition	Cohesion (psf)	Phi (deg.)
			(PBI)	(deg.)
1.	CL	Q (U-U)	340	0
		R (C-U)	950	15
		S (C-D)	0	30
2.	sc	Q (U-U)	460	0
		R (C-U)	520	20
		S (C-D)	0	32
3.	SP, SP-SM	All	o	29
4.	not used	NA	NA	NA

5.	CL	Q (U-U)	920	0
		R (C-U)	730	18
		S (C-D)	0	30
6.	SP-SM	All	0	33

40. The in situ foundation soils were grouped according to the information contained in boring 90-139MU and 92-171MU. Plates D-53 to D-64 represent shear strength envelopes developed for material type 1, 2, 3 and 4. Table D-5 summarizes the results.

Table D-5: Foundation Soil Parameters Upstream of Highway 17 D.S. (Station 53+00)

			Shear Strength	
	Material	Drainage	Cohesion	-
	Type		(psf)	
1.	CL	Q (U-U)	340	0
		R (C-U)	950	15
		S (C-D)	0	30
2.	CL	Q (U-U)	920	0
		R (C-U)	730	18
		S (C-D)	0	30
3.	SM,SC	Q (U-U)	430	0
	·	R (C-U)	390	18
		S (C-D)	0	32
4.	SC-SM	Q (U-U)	1060	0
		R (C-U)	350	30
		s (C-D)	0	33
5.	CL	Q (U-U)	450	5
	LEVEE	R (C-U)	500	9
	FILL	S (C-D)		29.5
6.	sw-sm	All	0	32
7.	SP	All	0	35

41. Foundation soil parameters for Outlet E are tabulated below. The geologic profile formed by boring 88-98M and 80-33M represent the basis by which in situ foundation soils were grouped.

Table D-6: Foundation Soil Parameters at Outlet E

		Shear Str	ength
Material	Drainage	Cohesion	Phi
Type	Condition	(psf)	(deg.)

1.	CL LEVEE FILL	R (U-U) C-U) C-D)	450 500	5 9 29.5
2.	SP,SP-SM	A	11	0	30
3.	CL	R (U-U) C-U) C-D)	340 950 0	0 15 30
4.	SP, SP-SM	A	11	0	28
5.	SM, SP	A	11	0	34
6.	CL	R (U-U) C-U) C-D)	920 730 0	0 18 30
7.	CL	R (U-U) C-U) C-D)	1100 730 0	0 18 30

42. The in situ foundation soils were characterized as clay that will be continuously saturated with the soil parameters tabulated in Table D-7. The analyses of Outlet D are contained in the Stage 4 Final Design Memorandum.

Table D-7: Foundation Soil Parameters at Outlet D

	Material Type		ainage ndition	Shear Str Cohesion (psf)	rength Phi (deg.)
1.	Impervious Fill		(U-U) (C-U)	1000 500	20 9
			(C-D)	0	29.5
2.	soft foundation soils		(U-U) (C-U)	300 270	0 13
3.	firm foundation soils	Q	(C-D) (U-U) (C-U) (C-D)	0 1200 600 0	28 0 18 27

43. The results of the slope stability analyses are given below. The results for the end of construction analysis at station 7+00 and 9+00 are lower than required but the consolidation of the foundation soils from the load of the levee embankments should increase the factors of safety to the required level within a short period of time. The levee fill from station 8+62 to 10+00 should be placed and allowed to consolidate foundation soils prior to the channel excavation in that area. Although the result for the steady seepage case at station 7+00

is lower than required it should be acceptable as it is very unlikely that the steady seepage condition will ever develop. Some of the sections analyzed and the critical surfaces obtained are shown on Plates D-65 through D-81.

Table D-8: Summary of Slope Stability Analyses

Stability Case	Factor of Safety Required* Computed
II.End of Construction	1
Station 1+60(lime pile)	1.3 1.6
Station 7+00(mat. 2:c=170 psf)	1.3 1.1
(F.S.=1.5 w/mat. 2:c=250 psf)	
Station 9+00 (mat.2:c=170 psf)	1.3 0.8
(F.S.=1.3 w/mat. 2:c=300 psf)	
Station 42+50	1.3 1.3
Upstream of Engler	1.3 1.8
Upstream of Hwy 17	1.3 1.3
Outlet E	1.3 1.6
IV.Sudden Drawdown	1.0 NA
V.Intermediate River Stage	
Station 1+60	1.4 1.8
Station 42+50	1.4 1.4
Upstream of Engler	1.4 1.6
Upstream of Hwy 17	1.4 1.5
Outlet E	1.4 1.6
VI.Steady Seepage from Full Flood Stage	
Station 1+60(lime pile)	1.4 NA
Station 7+00	1.4 1.3
Station 9+00	1.4 1.4
Station 42+50	1.4 1.6
Upstream of Engler	1.4 NA
Upstream of Hwy 17	1.4 1.5
Outlet E	1.4

*As stated in EM 1110-2-1913

SETTLEMENT

44. At all of the proposed drop structures, a net unloading will occur for the main chamber of the structures. Except for Drop Structure 1 satisfactorily competent foundation strata also appear to exist beneath these structures. Some overexcavation will be required underneath the adjacent wingwalls to minimize settlement. In general the overexcavation will be uniform under the drop structures and the adjacent retaining walls. The following table indicates the overexcavation required at each drop structure.

Table D-9: Summary of Settlement Overexcavation

Drop Structure	Boring	Minimum Excavation Depth(elevation)
2	90-136M	725
3	92-199M	735
4	92-171M	750
4(wingwalls)	90-139M	755

- 45. A surcharge will be used in addition to dewatering to improve the foundation strength at Drop Structure 1. The surcharge height will be chosen to approximate the maximum footing load of the downstream retaining walls (5000 psf).
- 46. Calculations for the east side of the channel at approximately station 7+00 show primary consolidation settlements of 1.7' and 2.7' for fill heights of 5' and 10' respectively. For quantity purposes a two foot overbuild will be used downstream of the drop structure at 8+50 and a one foot overbuild will used for a short distance upstream of this drop structure. Calculations are shown on Plates D-82 to D-83.
- 47. A settlement analysis using a groundwater drawdown of 8' near Engler and County Highway 17 indicated a possible total consolidation settlement of 3". Comparison of the drawdown curves at the near and far sides of the the structures showed a maximum difference of two feet in the expected drawdown which could lead to a differential settlement of about one inch. Based on this estimate the nearest structures should not be severely impacted. Calculations are shown on Plates D-84 to D-86.
- 48. Calculations indicated a potential settlement of about 10 inches at the fill being placed for the trail north of Drop Structure 4. An overbuild of 12 inches will be provided. Calculations are shown on Plate D-87.
- 49. A total settlement profile was developed over the length of the cross-section along the outlet pipe. Settlement calculations used a geologic profile formed by borings 80-33M and 88-98M, which essentially confined settlement to 10 feet below existing grade. A settlement of 7 inches was calculated at the levee centerline, of which 4.5 inches was due to consolidation of a soft clay layer. In order to reduce settlement of the gatewell and outlet pipe to an acceptable level, excavation along the outlet pipe down to elevation 765.0 to remove the compressible layer is planned. An eight inch overbuild will be required from approximately station 58+70 to station 60+00. Calculations are shown on Plates D-88 to D-90.
- 50. A surcharge was to be placed along the pipe alignment at Outlet D during the 1993 construction season to consolidate soils so the majority of the anticipated settlement would occur prior to construction of the outlet in the Stage 3 construction contract. Due to high water during the 1993 construction season the surcharge was not placed. Outlet D will not be constructed until the surcharge has had adequate time to consolidate the foundation soils. The time required for this will be evaluated when a revised schedule has been furnished by the construction contractor.

51. It is recommended that all levees constructed on clay foundations be allowed some settlement period before final levee grooming and before trails are paved. This will insure required levee freeboards are as designed. The following table summarizes the recommended overbuild for the levees.

Table D-10: Summary of Required Overbuild Looking Downstream

LOOKING DOWNBUTEAM

stati		
left bank	right bank	overbuild height
6+35 - 8+25	6+65 - 8+25	2′
8+60 - 11+10	8+60 - 11+10	1'
33+21 - 44+00	33+21 - 46+00	3"
	51+86 - 58+00	6"
	58+00 - 60+00	1'
53+00 - 55+00		3"
51+88 - 52+60		1'

FROST

52. The expected depth of frost penetration was taken from the Design Memorandum for the Stage 2 Chaska Project. For unsaturated sands a maximum frost penetration of eight feet is possible, if the sands are saturated the frost will penetrate to a depth of five and one half feet. The drop structures are the most susceptible to frost damage. All the base slabs will be located below the water table and the foundation materials should remain saturated. A minimal amount of excavation will be required to remove frost-susceptible materials from below the base slabs. The base material shall then be tested to insure that less than 6% passes 0.02 mm to insure low to medium frost-susceptible material is present within 5.5 feet of the bottom of the slabs. The base of the retaining wall footings adjacent to the drop structures appear to be below the frost depth. Soil classification has been based on Table 2-1 of TM 5-818-2. The following table indicates minimum excavation at the drop structures required to remove frost-susceptible materials.

Table D-11: Summary of Frost Depth Subcuts

Drop S	structure	Boring	Minimum Excavation	Depth(elevation)
1		92-198M	707	
2	2	90-136M	709	
3	,	92-199M	738	
4	L	92-171M	750	

RIPRAP AND BEDDING

53. Ripraps, beddings, drainage fill, and geotextile have or will be designed using the filter criteria from Appendix D of EM 1110-2-1901 (Change 1). Except for the areas directly downstream of the drop structures a geotextile was used instead of intermediate beddings. In

order to reduce the number of required material types the number of ripraps shown in the Hydraulics Appendix were combined so only 3 types of riprap are required. In areas where the channel invert will be above the existing water table (from station 15+20 to 25+90 where the majority of the soils are granular) a geotextile will be used to filter the existing soils. A 6" layer of pervious fill will be placed above the geotextile to protect the the geotextile during riprap placement. In areas where the channel invert will be below the existing water table and the soils consist of layered sands and clays a drainage fill is provided under the geotextile. Since the drop structures are backfilled with pervious soils a bedding will be used instead of the geotextile to form an inverted filter which should prevent piping of material due to the seepage under the drop structures.

ARTICULATED SLOPE PROTECTION

54. The final geotechnical design of the articulated slope protection remains to be done. The current layout has been based on manufacturers' literature for a typical installation on a well drained and compacted subgrade. It is important to note that a well compacted and drained subgrade cannot be insured where the slope protection will be placed in or under the water. If the the construction contractor tried to place the slope protection when the river level is about elevation 705 then the first 250' of slope protection would have to be placed underwater. It is anticipated that to get heavy equipment in place a 2' overexcavation will be required. This area will be backfilled with granular material to form a working pad. This material will also provide a drained foundation for the area outside of the river. The conceptual design has anchors(duck-billed) installed at 2' o.c. around the perimeter of the slope protection. Interior anchors will be located at 4' o.c. around the perimeter of the interior of each 4' x 16' individual mat. The two foot overexcavation will be filled with 1.5' of pervious material underlain with 6" of filter material. Topsoil and seed or gravel will be required for filling the spaces between the individual blocks. The type of anchor finally chosen needs to be load tested at the construction site. After high flows the city will need to check that the gravel or topsoil and grass has not washed out of the areas between the individual concrete blocks. Loss of the gravel or top soil could lead to degradation of the underlying geotextile.

PARAMETERS FOR STRUCTURAL DESIGN

55. Backfill around concrete structures will include both pervious and impervious fill. The backfill for the gatewells will be impervious material. Pervious drainage material will be used as backfill around the landside one-third of the outlet pipe lengths and impervious material will placed around the riverside two-thirds of the outlet pipes. Below grade backfill for the drop structures will be pervious material. Lateral earth pressure coefficients for backfill material were determined in accordance with guidance presented in EM 1110-2-2502 which essentially requires at-rest pressures be used for design. Pervious fill will extend outward from the base of the foundation slabs at a 45 degree angle to insure the failure plane remains within the pervious fill. A six inch layer of drainage fill will be placed outside the pervious fill at Drop Structures 1,3 and 4 to prevent fines from the adjacent

foundation materials from contaminating the pervious fill. To provide continuity with the impervious levees, above grade fill will be impervious material. The generalized soil parameters used for these materials are tabulated in Table D-12 below.

Table D-12: Generalized Backfill Soil Parameters

Material Type	Unit Moist (pcf)	Weights Saturated (pcf)	Drainage Condition	Shear S Cohesion (psf)	Strength Phi (degrees)
Pervious	114	127	All	0	33
Impervious	115	125	Q (U-U) R (C-U) S (C-D)	1000 500 0	20 9 29.5

Note: The impervious backfill strength was based on material from the Stage 4 borrow area.

LANDSCAPING

56. The final landscaping plan will be developed during the preparation of the plans and specifications. Landscaping will be in compliance with EM 1110-2-301. Plantings will be selected from shallow rooting species. As discussed in the landscaping appendix the majority of roots will only penetrate 18 to 24 inches into the soil. The size and density of the roots which penetrate further than 24 inches has yet to be determined. Because the design flow in the channel and levees will only last a short time(less than a day) it is not anticipated that seepage along plant roots which penetrate further than twentyfour inches would create a problem. The three foot root free zone for this project will be a three foot "mostly" root free zone. It will be assumed that the surface roots develop to the same radius as the crown of the trees, therefore trees should be placed so the roots do not penetrate into the root free zone. If it is desired to place trees that will eventually shade the trail on top of the levees a biobarrier should be placed to keep the roots from the root free zone.

CONSTRUCTION MATERIALS

57. Ample satisfactory pervious material is available in the project area and could be available from the channel excavation. Impervious levee fill material will come from the diversion channel excavation and a borrow area. It is assumed the borrow area used for stage 4 will be used and no additional soil strength testing will be required. Plate D-91 was used in determining usable quantities of materials from the required excavation. Tested and approved concrete aggregate can be obtained within 25 miles of the project site. Acceptable quality riprap can be obtained within 20 miles of the project site.

- 58. Preconstruction surveys should be obtained to assess the conditions of the two buildings near Engler Boulevard and County Highway 17 to determine what damage construction of the new channel will cause. The new Engler Blvd embankment may cause some settlement of the northernmost building. The new Highway 17 and Engler Blvd may also experience some settlement caused by drawdown when the channel is excavated.
- 59. In the Engler-Highway 17 area, if soil strengths are considerably lower than assumed or the water table is not drawn down as expected it would be possible to stabilize the slopes by the use of trench drains and/or sand or stone columns. The following construction procedure is recommended between stations 33+00 and 60+00:
 - a. channel is excavated
 - b. allow one month to determine if slope will remain stable, if the area had been dewatered then dewatering will be stopped at the beginning of this time frame.
 - c. if slope is not stable, install trench drains
 - d. place drainage fill, geotextile and riprap
- 60. Dewatering will be needed at the drop structures and the outlets. NCSPD-ER has determined that there will be no environmental problems or concerns caused by the short term construction dewatering near the fen.
- 61. Drying out the lime pile may be a problem. Currently the lime is removed in thin lifts after a surface crust has formed, the deep excavation anticipated during this construction may have to be done in stages and by dragline. Borings 92-172M, 92-173M, 92-195M and 92-196M all show the water content of the lime is above the liquid limit. The contract must also have a mechanism to determine where the bottom of the lime pile is so no soil is mixed with the lime.

MISCELLANEOUS

- 62. Several dams and embankments upstream of the channel inlet are used to limit the flows to the channel. A complete listing is shown in the Hydrology Appendix. The St. Paul District has determined that these structures do not have to be reviewed to determine if they meet COE criteria. Upstream dams with the exception of Lake Grace Dam do not have any outstanding MNDNR safety concerns. The City of Chaska is currently making improvements to Lake Grace Dam because of concerns mentioned in a 1980 Dam Safety Report. An existing RR embankment will be depended on to pond water, a sketch of the embankment and a boring, 90-142M, through the embankment are shown on Plates D-93 and D-94.
- 63. The city is designing a new embankment at Highway 41 and East Creek. A new set of culverts will be installed in a widened embankment.
- 64. The city is designing bridges over the channel at Stoughton Avenue, Engler Boulevard, and at Highway 212.
- 65. Additional soil borings and testing were done by the city of Chaska for the design of Highway 17 and Engler Boulevard. These boring encountered fairly thick layers of peat along the new highway alignment north of the new intersection of the two roads. The design of the new highway embankment includes a 6' surcharge and a settlement period of 1 year. A very weak clay(unconfined ultimate strength of 108 psf at

approx. 50% strain, 45 psf at approx 12% strain) was found at a depth of 7.5 to 8.5' at the Engler and Highway 17 intersection. It is expected that the road surcharge or embankment will consolidate the material.

FURTHER INVESTIGATIONS AND/OR ANALYSES

- 66. The items listed below require further investigations or analyses prior to completion of the plans and specifications.
- a. The borrow area for impervious fill must be located, sampled and tested unless the stage 4 borrow area is used.
- b. The final geotechnical design for the articulated concrete slope protection needs to be completed.
- c. Design instrumentation plan for monitoring building settlement near Engler and Highway 17.
- d. Selection of geotextiles.
- e. Look at the feasibility of using zoning of materials (both random and impervious fill) in levees rather than requiring them to all be impervious.
- f. Insure final landscaping plan meets criteria.
- g. Determine the plan for stabilizing slopes if required between stations 33+00 and 60+00.
- h. Determine a method of providing equivalent uplift protection near station 12+80 where the installation of the toe drain would require relocation of the gas pressure regulating station.
- i. If the final material disposal areas(described in Appendix G) are to be located directly adjacent to the channel, additional slope stability and settlement calculations may be required.

200 0 200 40 SCALE IN FEET

BORING LO

STMBOL DESCRIPTION DATE APPROVAL

DEPARTMENT OF THE ARMY
ST. PAIL DISTRICT, COMPS OF ENGINEERS
ST. PAIL, IMMESOTA

DESIGNED:

DESIGNED:

CHASKA - STAGE 3
FLOOD CONTROL - EAST CREEK
CHASKA, MINNESOTA

DECKED:
DRAWN T.J.

BORNING LOCATIONS NOT SHOWN ON
PLAN & PROFILE SHEETS

CHECKED: JRC
CHECKED: JRC
CHECKED: JRC
CHECKED: JRC
CHECKED: JRC
CHECKED: JRC
CAD FILE NAME: CheSpion.ogn
DATE: OCTOBER 1993
SPEC NO: DACW37-90-8-0000

DRAWING MARGER:
PLATE D-1

OF 16

(g)

PROFI STATION 0+00 TC

LEGEND:

CREWIC	SUGAR BEET PROCESS RESIDUE CONSISTING OF CALCAREGUS MI CL AND OL FLOOD PLAIN DEPOSITS OF ORGANIC RICH OIL OIL OIL OIL ALL AND
PERVIOUS TILL	P1 OCCASIONAL SM AND ML SEAMS. ALLIATAL DEPOSITS OF GP, GP, AND GRANALAR SP. GLACIALLY DERIVED GRAVELLY CLAYS WITH VARYING AMPLIATS OF SAMO.

AND SILT, STIFF TO MAND.

+ INDICATES SOTTOM OF SAMPLER WHEN WATER LEVEL OSTAINED.

MIDICATES BOTTOM OF PORTI

0

- I. WATER LEVEL DETERMINED AFTER UNKNOWN AMOUNT OF TIME WITH BOTTOM OF HOLLOW STEM AUGER SET TO EL. 728.4' AND SAMPLER DRIVEN TO EL. 723.4'.

 2. HSA ADVANCED TO EL. 714.4'. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 714.4'.

 3. CASING WAS PULLED AND HOLE BACKFILLED WITH NATIVE SOILS AND CEMENT.

NOTES:

- WATER LEVEL DETERMINED AFTER UNKNOWN AMOUNT TIME WITH HOLLOW STEM AUGER SET TO EL. 770-C SAMPLER DRIVEN TO EL. 765.0.
 HOLLOW STEM AUGER WAS SET FROM EL. 775.0 TD 745.0. SAMPLER WAS DRIVEN TO EL. 740.3.
 SCASING WAS PULLED AND HOLE BACKFILLED WITH N

GENERAL BORING LEGEND

YEAR OF BORING-BORING NUMBER, BORING TYPE (EG: M=MACHINE, A=AUGER, TP=TEST PIT, P=PIEZOMETER). 84-IM IMAY 1984 GROUND SURFACE ELEVATION AT BORING G.S. 1020.2 WELL GRADED GRAVELS, GRAVEL - SAND MIXTURE, LITTLE OR NO FINES GW GP POORLY GRADED GRAVELS, LITTLE OR NO FINES GM SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES œ CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES SW WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES SP POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES SM SILTY SANDS, SAND - SILT MIXTURES sc CLAYEY SANDS, SAND - CLAY MIXTURES ML INORGANIC SILTS, LIQUID LIMIT LESS THAN 50 MH INORGANIC SILTS, LIQUID LIMIT GREATER THAN 50 CL. INORGANIC CLAYS, LOW TO MEDIUM PLASTICITY, LIQUID LIMIT LESS THAN 50 INORGANIC CLAYS, HIGH PLASTICITY, LIQUID LIMIT GREATER THAN 50 CH ORGANIC SILTS OR CLAYS, LOW PLASTICITY, LIQUID LIMIT LESS THAN 50 OL ORGANIC SILTS OR CLAYS, MEDIUM TO HIGH PLASTICITY, LIQUID LIMIT GREATER THAN $50\,$ ОН PT PEAT SP-BORDERLINE MATERIAL SP8 SM STRATIFIED MATERIAL LOCATION AND SAMPLE NUMBER FOR UNDISTURBED SAMPLE WATER LEVEL ON DATE OF BORING

ELEVATION AT BOTTOM OF BORING

GENERAL BORING NOTES

THE UNIFIED SOIL CLASSIFICATION SYST L GENERAL : REPRESENTS ONLY THE BASIC SOLS. 1 IS ADDED TO THE RIGHT OF THE BORN SHOWN BELOW THE BORNG STAFF. THE

ON THE ORIGINAL FIELD LOGS. THESE I

2. MOISTURE CONTENT:

THE NATURAL MOISTURE CONTENT IN THE BORING STAFF.

BLOW COUNTS ARE SHOWN TO THE LE OF BLOWS NECESSARY TO DRIVE THE 3. BLOW COUNT (SPT): ARE FOR A STANDARD PENETRATION TO DROP, FOR NON-STANDARD BLOW COUNTY ARE AS SHOWN, WT SKINFIES PENETRA WITHOUT DRIVING THE SAMPLER UNDER CONSISTENCIES GREATER THAN WT BU

4. ATTERBERG LIMITS:

LIQUID LIMIT (LL) AND PLASTIC LIMIT

5. D₁₀ SIZE: THE GRAIN SIZE IN MILLIMETERS OF WOOF THE BORING STAFF.

(2)

DESIGNED CHECKE

80-33M 13 AUG 1980 010 SPT MC LL PL 790 G.S. 782.0 SAND, M-F, CLAYEY, GRAVELLY, M. DENSE DRY-MOIST, BRN.... 780 SAND, F-C, SILTY, M. DENSE, MOIST, DK. BRN. SM :-M. SILTY, GRAVELLY, LOOSE, MOIST, L-BLK. (TOPSOIL)

ILTY. V. SOFT-SOFT, WET. RED-BRN.

ILTY. S. SILTY, SDFT. SAT., BLK.-GR.

S. GR.

SANDY, SILTY, SDFT. SAT., DRGANICS, V-BLK.

C. GLAYEY, GRAVELLY, LOOSE,

R.

ILTY. SANDY, ORGANICS, SDFT.

K. GR.-BLK.

ILTY, SOFT, SAT., BUFF-BRN. 15 22.3 CLAY, SILTY, M. STIFF, MOIST-WET, BRN. CI SAND, F., SILTY, CLAYEY, LOOSE, WET, BRN.
SAND, F-C, LOOSE, SAT., BRN.
CLAY, GRAVELLY, SANDY, SDET, SAT.,
ORGANICS, BRN.
SAND, F-C, LOOSE, SAT., BRN.
SAND, M-F, SILTY, M. DENSE, SAT., BRN.
SAND, M-F, SANDY, M. DENSE, SAT., BRN.
SAND, F-C, GRAVELLY, M. DENSE, SAT.,
SAND, F-C, GRAVELLY, M. DENSE, SAT.,
SAND, F-C, GRAVELLY, M. DENSE, SAT.,
BRN. 6 W.L. 770.6 26.0 0.088 35.9 CL 47 SP 0.23 2 SP-SM 760 SP BRN. GRAVEL, F. SANDY, M. DENSE. SAT., BRN. SAND. F-C. GRAVELLY. LDOSE. SAT.. BRN. 752.3 ILTY, SOFT, SAT., BRN. 9 0.17 . SILTY, CLAYEY, LOOSE, SAT. 750 OFT. POSSIBLE ARTESIAN PRESSURE -C. GRAVELLY, LOOSE-M. DENSE, RN. 740 730 720

NN AMOUNT OF EL. 770.0 AND

775-0 TO EL. LED WITH NATIVE

1. WATER LEVEL DETERMINED AFTER UNKNOWN AMOUNT OF TIME WITH HOLLOW STEM AUGER SET TO EL. 772.0 AND SAMPLER DRIVEN TO EL. 769.0. 2. HOLLOW STEM AUGER WAS SET FROM EL. 782.0 TO EL. 757.0. SAMPLER WAS DRIVEN TO EL. 752.3.

CATION SYSTEM IS USED TO IDENTIFY BASIC SOIL TYPE THE LEGEND SIC SOILS. TO COMPLETE THE CLASSIFICATION, PERTINENT INFORMATION F THE BORING STAFF. NOTES PERTAINING TO A SPECIFIC BORING ARE STAFF. THE BORINGS SHOW SUMMARIES OF INFORMATION RECORDED IGS. THESE LOGS ARE AVAILABLE FOR INSPECTION AT THE ST. PAUL ÆNTS TO INSPECT THE LOGS CAN BE MADE BY CALLING (612) 220-0599.

ONTENT IN PERCENT OF DRY WEIGHT ONC) IS SHOWN TO THE LEFT OF

To the left of the boring staff and, except as noted, are the number drive the sampler used a distance of 12° . Standard blow counts ETRATION TEST (SPT) USING A 1-3/8'X 2'SAMPLER, 140 LB. HAMMER AND A 30' BLOW COUNTS, SAMPLER SIZE, HAMMER WEIGHT AND HEIGHT OF DROP ES PENETRATION UNDER THE CUMULATIVE WEIGHT OF SAMPLING TOOLS PLER UNDER SPT CONDITIONS, SPT VALUES OF 0 DEFINE DENSITIES AND HAN WT BUT LESS THAN ONE BLOW PER FOOT.

ISTIC LIMIT (PL) ARE SHOWN TO THE RIGHT OF THE BORING STAFF.

TERS OF WHICH 10% OF THE SAMPLE IS FINER IS SHOWN TO THE LEFT

_										
57	MBOL		DESCRIPT	ion		DATE	APPROVA			
				sı	DEPARTMENT OF PAUL DISTRICT, CO ST. PAUL, MI	NPS OF ENGI				
Æ	APPROVING OFFI	CIALs		CHASKA	N MEMORANDUM - STAGE 3 ROL - EAST CREEK					
	DESIGNED:	CHASI	A PROJECT		CHA	SKA, MINN	ESOTA			
i	CHECKED:		GEOLOGICAL DATA							
۳	DRAWN		BORING LOGS							
8		-33M								
ė	CHECKED: CWB/	JPC CAD FIL	E NAME: ahe3ehi	00.dgn	DRAWING HUMBER:		SHT 3			
DA	TE OCTOBER 199	3 SPEC NO	DACW37-90-B	-0000	PLATE D	-3	OF 16			

82-42M 15 OCT 1982 80-34M 13 AUG 1980 SPT PIO. MC IL PL SPI ᄟ 770 16 760 26 11 750 13 14 740 104 70 730 122 G.S. 720.4 720 SILT, ORGANICS, SANDY, SOFT, MOIST, BLK. OL P+ SFAM 32 163 99 SILT, SANDY, ORGANICS, LODSE, MOIST, DK. BRN. 165.0 OH SAND, M. ORGANICS, LOOSE-M. DENSE, WET, PLANT DEBRIS, BRN. 710 27 134.5 SP W.L. 706.6 CLAY, SILTY, SANDY, ORGANICS, SOFT, WET, DK. BRIN.-BRN. (ALLUV.) 없-60 176.4 SILT, ORGANICS, SANDY, LOOSE, SAT.

199 108 700 PEAT, SILTY, CLAYEY, V. SOFT, WET, OCC. SEAM OF ONLY PLANT MATERIAL EVERY O.S-O.6' DK. BRN. 164.0 2 Pt-OH 98.42 29 0.17 SAND, M-F, M. DENSE, SAT., BRN. 2 690. 288.5 335 祝 690 PEAT, CLAYEY, SILTY, V. SOFT, WET, SHELLS, DK. BRN. 51 핝 42 FIMIL SEAMS PEAT, SHELLS, SILTY, ORGANICS, WET, ... HIGH ORGANIC ORDOR, TAN CLAY, ORGANICS, SILTY, "SILT, CLAYEY, SANDY, SOFT, SAT., GRAY -CLAY, ORGANIC, SILTY, SOFT, WET, SHELLS, 67.65 P1-115 OLSM SEAM 680 OH 69.6 CLAY, ORGANIC, SILTY, SUPI, WEI, DK. BRN. SAND, SILTY, LOOSE, SAT., CRAY CLAY, SILTY, SOFT, WET, GRAY SHELLS, SILTY, SOFT, WET, GRAY SHELLS, SILTY, SOFT, WET, BRN. 41 CL 40.3 36 PLANT MATER. м 54 WT-2/0.5 72.1 PT SEAM SAND, F, SILTY, LOOSE, SAT., BRN.-GRAY SHELLS, SILTY, SOFT, WET, BRN 63 SAND, F. SILTY, M. DENSE, SAT., BRN.-GRAY 660 73 <u>656.</u> -LAMINATED CLAY SEAMS 650 NOTES NOTES NOTES 1. WATER LEVEL DETERMINED AFTER UNKNOWN AMOUNT OF TIME WITH BOTTOM OF HOLLOW STEM AUGER SET TO EL. 713.4' AND SAMPLER DRIVEN TO EL TOS.4'.

2. HAS ADVANCED TO EL. 895.4.

3. CASING PULLED AND HOLE BACKFILLED WITH LOCAL SOILS. I. ARTESIAN FLOW CONDITIONS ENCOUNTERED AFTER SAMPLING TO EL. 686.1'. AND BOTTOM OF HSA SET TO EL. 686.1'. WATER FLOWED SLOWLY FROM CASING STICK-UP OF 2.0' (EL. 708.1')
2. FIVE S' UNDISTURBED SHELBY SAMPLES TAKEN FROM THE PILOT BORING. NO OFFSET HOLE WAS DRILLED.
3. HSA ADVANCED TO EL. 661.1'. L W 2. H 3. Č

<u>/i</u>

82-4 15 OCT		•	82-43 23-25 OCT			
SPT DIO MC	IT SI	SPT DO	. MC.	Пъ	SPT	<u>Dio</u>
		<u> 6.S.</u>	762.2 SM	SAND, F, SILTY, CLAYEY, LOOSE, MOIST-WET, DK. 9RN.		
·		18	СМ	GRAVEL, F-M, SANDY, SILTY, M. DENSE, WET, BRN.		
	•••••	II	SP- SM	SAND, F-C, GRAVELLY, SILTY, M. DENSE, MOIST, BRN.		
		13	SP	SAND, F-C, GRAVELLY, SILTY, M. DENSE, MOIST, BRNL		
	·	14	-			
		70 <u>w.L.</u>		GRAVEL, SANDY, SILTY, V. DENSE, MOIST, GRAVEL, F-C, SANDY, SILTY, V. DENSE,		<u>G.S.</u> 0.11
		0.06		GRAVEL, F-C, SANDY, SILTY, V. DENSE, SAT., GRN.	,	W.L.71 0.02
BRN. PLANT		32	SM		34	
6.S. 706.1 34.8 CL- 0L	48 2! CLAY, SILTY, SANDY, ORGANICS, SOFT, WET, DK. BRNBRN. (ALLUY.)	27 0.08 60	SP- SM	SAND, F, SILTY, M. DENSE-V. DENSE, SAT., GRAY	9	
2 98.4 TOH	PEAT, SILTY, CLAYEY, V. SOFT, WET, OCC. 98 36 SEAM OF ONLY PLANT MATERIAL EVERY 0.5-0.6' OK. BRN.	34	SM	SAND, F, SILTY, CLAYEY, M. DENSE-DENSE, SAT., OCC. THIN SILT SEAMS, BRN. GRAY	20 17	0.18
2 2 2 2 2 2 2 2 3 1 0 1	212 87 335 172 PEAT, CLAYEY, SILTY, V. SOFT, WET, SHELLS, DK. BRN.	0.08 51 0.08	SP-		20	0.10
67.65 PH-	HIGH ORGANIC ORDOR, TAN ITS 47 PEAT, SHELLS, SILTY, ORGANICS, WET,	42 0.11 37	SP- SM -		20 32	0.11
69.6 OH 4 40.3 CL 32.6 ML	SM CLAY, ORGANIC, SILTY, SOFT, WET, SHELLS,	41 0.15	SP- SM	SAND, F, SILTY, DENSE, SAT., GRAY BRN.		
WT-2/0.5' 72.1 -	MATER. SHELLS, SILTY, SOFT, WET, GRAY SHELLS, SILTY, SOFT, WET, BRN.	54 6 3		SAND, F, SILTY, V. DENSE, SAT., GRAY ML SEAMS SEAMS SEAMS ML LAM. (0.3) SAND, F, SILTY, DENSE, SAT., THIN SILT LAM. (0.3) SEAMS, GRAY BRN.		•
17 <u>656. i</u>	SAND, F, SILTY, M. DENSE, SAT., BRNGRAY	73	657.2	MIL LAME, U. T. CEARS, UTA I DITU.	•	

1. ARTESIAN FLOW CONDITIONS ENCOUNTERED AFTER SAMPLING TO EL. 681. I' AND BOTTOM OF HSA SET TO EL. 686. I'. WATER FLOWED SLOWLY FROM CASING STICK-UP OF 2.0' (EL. 708. I')
2. FIVE 5" LUMDISTURBED SHELBY SAMPLES TAKEN FROM THE PILOT BORING. NO OFFSET HOLE WAS DRILLED.
3. HSA ADVANCED TO EL. 681. I'.

NOTES

JEES

1. WATER LEVEL DETERMINED AFTER 15 MINUTES WITH BOTTOM OF HSA AT EL. 727.2°, AFTER SAMPLING TO EL. 722.2.

2. HSA ADVANCED TO EL. 718.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 718.2°, HEAVING SAMOS ENCONTERED BELOW EL. 707.2°. HSA RESET TO EL. 702.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 702.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 702.2°.

3. CASING WAS PULLED AND HOLE WAS ALLOWED TO CAVE IN. TOP OF HOLE CAPPED WITH CEMENT.

NOTES

I. WATER LEVI STEM AUGE 2. HOLE STAB 3. TWO 5" UN 4. CASING WAI CEMENT.

SYMBOL

AE APPRI

P CHECK DRAW B DESIG B CHECK DATE OC

- 1. WATER LEVEL DETERMINED AFTER 15 MINUTES WITH BOTTOM OF HSA AT EL. 727.2°, AFTER SAMPLING TO EL. 722.2.

 2. HSA ADVANCED TO EL. 718.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 718.2°, HEAVING SAMOS ENCONTERED BELOW EL. 707.2°. HSA RESET TO EL. 702.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 702.2°. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 702.2°.

 3. CASING WAS PULLED AND HOLE WAS ALLOWED TO CAVE IN. TOP OF HOLE CAPPED WITH CEMENT.

NOTES

- 1. WATER LEVEL DETERMINED AFTER SO MINUTES WITH BOTTOM OF HOLLOW STEM AUGER AT EL. 717.4' AND SAMPLER DRIVEN TO EL. 712.4'.

 2. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 717.4'.

 3. TWO S" UNDISTURBED SHELBY SAMPLES TAKEN FROM AN OFFSET HOLE.

 4. CASING WAS PULLED AND HOLE BACKFILLED WITH NATIVE SOILS AND

_				
┝				
	MBOL		1	APPROVA
3	HBUL	DESCRIPTION	DATE	APPROVA
		DEPARTMENT OF ST. PAUL DISTRICT, CO ST. PAUL, MI	RPS OF ENG	
Æ	APPROVING OFFICIAL	DESIGN MEMORANDUM		
ŀ		CHASKA - STAGE 3		
-	*	FLOOD CONTROL - EAST CREEK		
Н	DESIGNED:	CHASKA PROJECT CHA	ISKA, MINN	JESOTA
9	CHECKEDI	GEOLOGICAL DATA		
₩	DRAWN:	BORING LOGS		
퓽	DESIGNED: LJL/PAW	80-34M AND 82-42M THRU 82	-44M	
Ā	CHECKED: CWB/JPC	CAD FILE NAME: CHS3SHOLDGN DRAWING HUMBERS		SHT 4
DA	TE OCTOBER 1993	SPEC NOI DACW37-90-B-0000 PLATE D	-4	OF 16

- WATER LEVEL DETERMINED AFTER 1 HR 30 MIN. WITH HOLLOW STEM AUGER SET AT EL. 755.9 AND SAMPLER DRIVEN TO EL. 752.9.
- HOLLOW STEM AUGER WAS SET FROM EL. 760.9 TO EL. 755.9. DRILLING MUD WAS USED TO STABILIZE HOLE TO EL. 720.9. SAMPLER WAS DRIVEN TO EL. 715.9.
- CASING WAS PULLED AND HOLE BACKFILLED WITH CEMENT GROUT. 3.

- 1. WATER LEVEL DETERMINED AFTER APPOXIMATELY IT OF HOLLOW STEM AUGER SET TO EL. 724.0 AND S. EL. 719.0'.

 2. HSA ADVANCED TO EL. 890.0' DUE TO WATER LOGS BETWEEN EL. 714.0' AND EL. 884.0'. HOLE STABIL DRILLING MUD BELOW EL. 690.0.

 3. DRILLER NOTED ROUGH DRILLING ACTION BETWEEN E EL. 854.0'.

 4. CASING WAS PULLED AND HOLE BACKFILLED WITH M

88-98M

	SPT	010	11 / MC	APR 	1988 <u>LL PL</u>						
	·		• • • • • •	·						· · · · · ·	780
			. 776.9	_	SP-SM	MATTER.	SILTY, LOOSE, MOIS LT. BRN.				
	14	<u> </u>	773.1	SP		SAND. M- SAT., BR	F, GRAVELLY, M. DEN	YSE. W	T-		770
	4	0.12		SP-		SAND. M- SAT. BR	F. SILTY, GRAVELLY, N.	LOOS	•		7 ''`
	4			SP		SAND. N-	f, GRAVELLY, LOOSE,	SAT.	BRN-		
	40			SM]	SAND, M-	f, GRAVELLY, SILTY. BRN.	M. DE	ense.		760
IAND, GRAVELLY, CLAYEY, SILTY, LOOSE, IOIST, OCC. THIN CLAY AND SILT SEAMS, IKDK. BRN. (TOPSOIL)	12	,	10.5	CL	22 10	CLAY, SA BRN. (TI	NDY. GRAVELLY. M. S	TIFF.	WET.		1
HAND, SILTY, M. DENSE, MOIST, BRN. BRAVEL, F-C. SANDY, SILTY, M. DENSE.	20			CL		CLAY, SA WET, GR.	NDY, GRAVELLY, V. S (TILL)	TIFF-	IARD.		750
KOIST, BRN. IAND, F-C, GRAVELLY, SILTY, M. DENSE, KOIST, BRN.	36			CL	- cp ==	CLAY, SA BRN. (TI	NDY, GRAVELLY, V. S	TIFF,	WET.		
IDIST, BRIN.	19			CL G	SP SEAM		MOY, GRAVELLY, V. S	TIFF.	WET,		
RAVEL, F-C, SANDY, SILTY, DENSE, MOIST,	16		_ 9.0 .	ML.	16 13	SILT, CL WET, GR.	AYEY, SANDY, GRAVEL	LY. V	STIFF		740
RAVEL, F-C, SANDY, SILTY, M. DENSE, 101ST, BRN.				CL		CLAY, SA	NDY. GRAVELLY. V. S L)	TIFF.	WET.		
	26 										730
RAVEL, F-C, SANDY, SILTY, DENSE, SAT.,	8		726.9	SP		SAND, F. BRN.	GRAVELLY, CLAYEY,	LOOSE,	SAT.,		
RN.											
RAVEL, F-C, SANDY, SILTY, V. DENSE, AT., GRAY				• • • •	· • • • • • •						720
AND, SILTY, GRAVELLY, V. DENSE, ET-SAT., GRAY											-
RAYEL, F-C, SANDY, SILTY, V. DENSE, AT., GRAY											710
AND, F-C, V. DENSE, SAT., OCC. DK. RAY SILT SEAM, GRN.	NO.	TES:					•				
AND, F, SILTY, DENSE, SAT., GRAY BRN.		STE	M AUGE	R SET	TO EL. 77	1.9. SAMPL	N. WITH HOLLOW ER DRVEN TO EL.				
		2. HOL 768	LOW ST	EM AL ILLIN	JGER WAS SE	T FROM EL.	776.9 TD EL.				
AMD, F-C, SILTY, GRAVELLY, DENSE, AT., BRN. AMD, F-C, SILTY, DENSE, SAT., BRN.		FRO TO	M EL. EL. 72	768.4 6.9.	1 TO EL. 73	1.9. SAMPL	ER WAS DRIVEN				;
***************************************		501					WITH NATURAL LBS PORTLAND				
AND, F, SILTY, DENSE, SAT., GRAY BRN.											
AND, F-C, GRAVELLY, SILTY, V. DENSE,											
RAVEL, F-C, SANDY, M. DENSE, SAT., RAY BRN.											-
AMD, F, SILTY, M. DENSE, SAT., GRAY										-	٠
RAVEL, F-C, SANDY,M. DENSE, SAT., GRAY											
RAVEL F-C. SANDY, SILTY, V. DENSE											
ET-SAT., GRAY									7		
NID, F-C, SILTY, V. DENSE, SAT., GRAY											1
NND, F, SILTY, V. DENSE, SAT., GRAY											
SH'									7		
										,	,
											-
IMATELY 17 HRS. WITH BOTTOM 24.0 AND SAMPLER DRIVEN TO					SYMBOL		DESCRIPT	TON		DATE	APPROVAL
VATER LOGS ENCOUNTERED					3		proving (Ī	DEPARTMENT OF		
AE STABILIZED WITH								57	. PAUL DISTRICT, CORP ST. PAUL, MINN	S OF ENG	
SETWEN EL. 664.0' AND					AE APPROV	ING OFFICIAL:			N MEMORANDUM		
-ED WITH NEAT CEMENT.							FL000		A - STAGE 3 ROL - EAST CREEK	V4 1	
					CHECKET		CHASKA PROJECT	GEOLO	CHAS IGICAL DATA	Ka, minin	ESUIA
					DRAWN	D: LJL/PAW]	80	RING LOGS		
						D: CWB/JRC	82-45 CAD FILE NAME: CHS3SHO				SHT 5
F					DATE OCTO	DER 1993	SPEC NO: DACW37-90-8-	-0000	PLATE D-	5	0F 16

J

90-132M 90-131M 9-10 APR 1990 10-11 APR 1990 LL PL SPT MC D10 LL PL SPT MC 780 770 IN FT. (NGVD 1929.) SILT. SANDY. CLA
(TDPSDIL)
CLAY, SANDY, SIL
SAND, FIL DOSE,
CLAY, SILTY, SOF
IRON STAINS, GR.
CLAY, SANDY, MEI
DRK. BRN. BLK.
SAND, F-M. CLAYE
MDO. IRON STAINS
CLAY, SILTY, SAN
BLK. (ALLUY.)
SAND. CLAYEY, MEI
FIBERS, GRAY (AL
GRAVEL, CLAYEY.
SAND, F-C, CLAYE
SAT. GRAY
CLAY, SILTY, V.
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY
SILT, SANDY, CLAY G.S. 759.9 CLAY, SILTY, SANDY, MED. STIFF, MOIST, SL. FIBEROUS, BRN. (TOPSDIL) SAND, F. SILTY, CLAYEY, LOOSE, MOIST, BRN. (TOPSDIL) SAND, F. GRAVELLY, SILTY, MED. DENSE, MOIST, BRN. (ALLUV.) SAND, F. GRAVELLY, SILTY, LOOSE, MOIST—MET. BRN. (ALLUV.) SAND, F—M. GRAVELLY, CLAYEY, SILTY, MED. DENSE, WET—SAT., IRON STAINS, ORANGE—BRN. SAND, F—M. CLAYEY, SILTY, GRAVELLY, CLAYEY, SILTY, SAND, F—M. CLAYEY, SILTY, GRAVELLY, MED. DENSE, SAT., DRANGE—BRN. SAND, F—M. GRAVELLY, MED. DENSE, SAT., GRAVELLY, MED. DENSE, SAT., BRN. 760 ML CL G.S. 756.6 CL SEAM 23.7 CH 19 17 0.19 750 0.16 SP-5 25 34 28 22 Ë 32.9 W.L. 743.4. SC CH 22 0.02 740 - 0.17 20 13 SP 0.14 37 22 21 SAND, F. SILTY, MED. DENSE, SAT., BRN. SP-SM 730 GRAVEL, F-C, SAN GW 36 27 20 58 28 33 SAND, F, SILTY, MED. DENSE, SAT., REG. SILT LAMINATIONS, OLIVE BRN. W/ DK. GR. LAMINAE SAND, F-M. GRAVELLY, SILTY, MED. DENSE, SAT., OLIVE BRN. 48 SM 49 720 25 42 SM 716.6 710

NOTES:

1. WATER LEVEL DETERMINED AFTER 40 MIN. WITH HOLLOW STEM AUGER SET AT EL. 742.6 AND HOLE OPEN TO EL. 742.1. HOLE SAMPLED TO EL. 740.6. 2. HOLLOW STEM AUGER WAS SET FROM EL. 756.6 TD 736.3. DRILLED WITH MUD FROM EL. 756.3 TO EL. 718.6. SAMPLER DRIVEN TO EL. 716.6. 3. HOLE BACKFILLED WITH TRMIED CEMENT-BENTONITE GROUT.

NOTES:

WATER LEVEL WAS DETERMINED AFTER 15 MIN. WIT HOLLOW STEM AUGER SET TO EL. 739.9. HOLE OPE EL. 740.1. AND SAMPLER DRIVEN TO EL. 737.9. 1.

EL. 740.1. AND SAMPLER DRIVEN ID EL. (37.3. HOLLOW STEM AUGER WAS SET FROM EL. 759.9 TO 739.9. DRILLED WITH MUD TO EL. 721.9. SAMPLE DRIVEN TO EL. 719.9. UNDISTURBED SAMPLES WERE TAKEN IN AN ADJACEN HOLE WITH 3" X 30" SHELBY TUBES. HOLES BACKFILLED WITH TREMIED CEMENT-BENTONI GROUT.

90-133M 11-12 APR 1990 010 SPT LL PL 780 770 CLAY, SILTY, SANDY, V. STIFF, MDIST, PLANT FRAGMENTS, DRK. BRN. (TOPSOIL) SAND, F. SILTY, CLAYEY, LOOSE, MOIST, BRN. (FILL) SAND, F. SILTY, CLAYEY, LOOSE, SAT., GR.-BLK. 45 22 12.3 CL ILT, SANDY, CLAYEY, STIFF, MOIST, BRN.

TOPSOIL)

LAY, SANDY, SILTY, M. STIFF, MOIST, BRN.

AND, F. LOUSE, MOIST
LAY, SILTY, SOFT—M. STIFF, MOIST,
RON STAINS, GR.

LAY, SANDY, MED. STIFF, WET.

RK. BRN.—BLK.

AND, F-M. CLAYEY, GRAVELLY, SOFT. SAT.,
DD. IRON STAINS, BRN.
LAY, SILTY, SANDY, SFT, WET, FIBEROUS,
LK. (ALUV.)

ANY, SILTY, LOOSE,
ANY, CLAYEY, GRAVELLY, LOOSE,
ATT, GRAY

LAY, SILTY, V. SOFT, WET, GR.

LAY, SILTY, V. SOFT, BRN.

AND, F-C, CLAYEY, GRAVELLY, LOOSE,
ATT, GRAY

LAY, SILTY, V. SOFT, WET, GR.

RAVEL, F-C, SANDY, DENSE, SAT., GR. 760.1 SM 760 OL SEAM CLAY, SILTY, V. SOFT, MOIST-WET, FIBEROUS, ORGANICS, BLK. (LACUSTRINE) CH SAND. F-M. GRAYELLY, SILTY, CLAYEY, MED.
DENSE, SAT., GR.
SILT, CLAYEY, SANDY, SOFT, WET-SAT., OLIVE GR.
SAND. F-C. SILTY, GRAYELLY, LODSE, SAT., BRN.
20 CLAY, SILTY, SOFT, WET, OLIVE GR. SP-SAND. SILTY. GRAVELLY, LODSE. SAT., BRN. SM SAND, F-N. CLAYEY, GRAVELLY, LOOSE, SAT., BRN. CLAY, SILTY, SANDY, SOFT, SAT., GR. SAND, F-N. SILTY, CLAYEY, LOOSE, SAT., BRN. 0.007 23.0-740 SC SM SAND. F-M. CLAYEY, SILTY, LOOSE, SAT., BRN. 730 -CL SEAM CLAY, SILTY, SANDY, SOFT, SAT., SL. IRON STAINS, BRN. RAVEL, F-C, SANDY, DENSE, SAT., GR. 33.7 31 21 CL SAND, F-M. CLAYEY, SILTY, LODSE, SAT. SC CL SEAM SAND. F-C. GRAVELLY. SILTY. DENSE. SAT., BRN. SILT, SANDY. M. DENSE. SAT., LAM., GR. W/ BRN. 720 SAND, F-N, GRAVELLY, SILTY, DENSE-V. DENSE, SAT., BRN.

ER 15 MIN. WITH 39-9- HOLE OPEN TO TO EL. 737.9. EL. 759.9 TO EL. 721.9. SAMPLER

ÎN AN ADJACENT

ZENENT-BENTON I TE

1. WATER LEVEL WAS DETERMINED AFTER 30 MIN. WITH HOLLOW STEM AUGER SET TO EL. 755.5. HOLE OPEN TO EL. 753.6 AND SAMPLER DRIVEN TO EL. 750.5.
2. HOLLOW STEM AUGER WAS SET FROM EL. 764.5 TO EL. 740.5. DRILLED WITH MUD TO EL. 716.5. SAMPLER DRIVEN TO EL. 715.5. WHERE TAKEN IN AN ADJACENT HOLE WITH 3" X 30" SHELBY TUBES.
4. HOLES BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

SYMBOL DEPARTMENT OF THE ARMY ST. PALL DISTRICT, CORPS OF ENGINEERS ST. PALL, MINNESOTA AE APPROVING DEFICIAL DESIGN MEMORANDUM CHASKA - STAGE 3 FLOOD CONTROL - EAST CREEK CHASKA PROJECT CH CHASKA, MINNESOTA DESIGNED CHECKED: GEOLOGICAL DATA DRAWN BORING LOGS DESIGNED: LJL/PAW 90-I3IM THRU 90-I33M CHECKED: CWB/JRC CAD FILE NAME: CHS3SH03.DGN DRAWING NUMBER: DATE OCTOBER 1993 SPEC NO: DACW37-90-8-0000 PLATE D-6

90-135M 90-134M 17 APR 1990 12-16 APR 1990 010 LL PL SPT MC D10 SPT MC LL PL 770 SAND, M. SILTY, LOOSE, DRY, BRN.
CLAY, SILTY, MED. STIFF, MOIST, DK. BRN.
SAND, CLAYEY, SILTY, LOOSE, WET,
CLAYEY, SILTY, SANDY, SOFT-Y, SOFT, WET,
OCC. FIBERS, SHELLS, ICX. BLX.
CCC. FIBERS, SHELLS, BLX.
CLAYEY, SILTY, LOOSE, SAT., GR.
SAND, CLAYEY, SILTY, LOOSE, SAT., GR.
SAND, CLAYEY, SILTY, LOOSE, SAT., GR. G.S. 766.7 r L SC. 760 C# 7<u>22</u> 13 SAND. F. SILTY. L (TOPSOIL) G.S. 756.9 22.5² SM 24.6 SC 15 39 27 27 0.11 SP-30 14 SAND, SILTY, GRAV MDIST, BRN. (FILL 0.01 SAND, F-C. GRAVELLY, SILTY, CLAYEY, LODSE-MED. DENSE, SAT., BRN. SAND, F-M. GRAVELLY, SILTY, LODSE, SAT., GRN. GR. 750 39 18 0.28 0.19 SP 0.35 16 17 SAND, F-M. GRAVEL BRN. SP 0.35 SAND, F-M. CLAYEY, SILTY, GRAVELLY. ---LOOSE-MED. DENSE, SAT., BRN. 740 SC 26 16 23 17 SAND, F-M. SILTY. CLAY, SILTY, SANDY, MED. STIFF, SAT., IRON STAINS, GR....SAND, F-M. CLAYEY, SILTY, LOOSE, SAT., BRN. SILT, MED. STIFF, SAT., IRON STAINS, GR. MOIST. BRN. CL 730 13 SC ML SAND, F-M. MED. C 0.21 SP SP SAND. F-M. MED. D SAND, F-C. SILTY. GRAVELLY, MED. DENSE, SAT., IRON STAINS, BRN. 18 SAND, F-M. MED. E SM SAND, F-M, GRAVEL SILT, CLAYEY, STIFF, SAT., GR.
CLAY, SILTY, SANDY, STIFF, WET, GR. 40 720 ML 16 716.9 SP SAND, F-M. GRAVEL 21 15 CL SAND, F-N. GRAVELLY, LOOSE-MED. DENSE. SAT. BRN. 0.24 SP 710 CLAY, SANDY, SILTY, GRAVELLY, V. STIFF, WET, GR. 100/0.5 QL. 22 SAND. F-M. GRAVELLY, LOOSE, SAT., GRK. BRN. SP 702.7 700

NOTES:

690

- WATER LEVEL DETERMINED AFTER APPROX. 17 HRS. WITH:
 BOTTOM OF AUGER AT EL.751.7
 BOTTOM OF HOLE AT EL.751.7
 BOTTOM OF HOLE AT EL.754.0
 AFTER SAMPLING TO EL.750.7.
 HOLLOW STEM AUGER WAS SET FROM EL. 766.7 TO EL.
 751.7. DRILLED WITH MUD TO EL. 700.7. SAMPLER WAS
 DRIVEN TO EL. 702.7.
 ENCOUNTERED ARTESIAN CONDITION WITH SAMPLER DRIVEN
 TO EL. 702.7. DISCHARGE WAS 25 GAL/MIN AFTER 10 MIN.
 UNDISTURBED SAMPLES WERE TAKEN FROM AN ADJACENT
 HOLE WITH 3" X 30" SHELBY TUBES.
 HOLE WITH SENTONITE. TOP 10 FT BACKFILLED WITH
 SAND AND CLAY CUTTINGS.

NOTES:

- WATER LEVEL WAS DETERMINED AFTER 1 HR WITH HOLLOW STEM AUGER SET TO EL. 718.9. HOLE OP EL. 719.4 AND SAMPLER DRIVEN TO EL. 716.9. HOLE BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

90-135M 90-136M 17 APR 1990 17-18 APR 1990 D₁₀ LL PL SPT MC D10 SPT MC RN. T. DK. BRN. ET. OFT. WET. SE. WET. SMD, F. SILTY, LODSE, MOIST, DK. BRN. SM OFT. WET. 27 0.11 AT. GR. 27 SED, SILTY, GRAVELLY, MED. DENSE-DENSE, _AYEY. 39 18 0.28 DOSE, SAT., 0.35 D. F-M. GRAVELLY, MED. DENSE, MOIST, SP G.S. 736.8 26 SAND, F. 16 0.18 SP-15 0.08 23 SP-SM SMO, F-M, SILTY, GRAVELLY, M. DENSE, SAND. F-F. SAT.. SE. SAT.. 13 D. F-M. MED. DENSE, MOIST, BRN.
D. F-M. MED. DENSE, MOIST, BRN.
D. F-M. MED. DENSE, MOIST-WET, BRN.
ND, F-M. GRAVELLY, DENSE, SAT., BRN.
D. F-M. GRAVELLY, DENSE, SAT., BRN. 0.20 SP SAND, F-13 SP STAINS. GR. SP SP 15 0.19 18 ED. DENSE. 10 W.L. 720.8 W.L. 0.20 SAND, F-BRN. 40 12 SP 14 24 716.9 SP f. GR. SAND. F-0.20 63 31). DENSE. ML SILT, CL RUST BR 40 34 44 23 V. STIFF. SP-SAND. F. AT. GRN. 24 SAND. F-696.8 SP 40

NOTES:

WATER LEVEL WAS DETERMINED FOR 1 HR WITH HOLLOW STEM AUGER SET TO ELS 718.9. HOLE OPEN TO EL. 719.4 AND SAMPLER DRIVER TO EL. 716.9. HOLE BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

NOTES:

- WATER LEVEL WAS DETERMINED AFTER 16 HOLLOW STEM AUGER SET TO EL. 716.8. EL. 718.3. AND SAMPLER DRIVEN TO EL. HOLLOW STEM AUGER WAS SET FROM EL. 7 716.8. DRILLING MUD WAS USED TO EL. EDRIVEN TO EL. 696.8. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

AE APPROVING O

CHECKED: DRAWN

DESIGNED: L. DATE OCTOBER

90-136M 17-18 APR 1990 D₁₀ LL PL SPT MC F. SILTY, LOOSE, MOIST, DK. BRN. SILTY, GRAVELLY, MED. DENSE-DENSE, BRN. (FILL) F-M. GRAVELLY. MED. DENSE. MOIST. SAND, F. SILTY, LOOSE, MOIST, DK. BRN. (TOPSOIL) G.S. 736.8 SP-0.08 15 F-N. SILTY. GRAVELLY, M. DENSE, 0.19 SAND, F-M. SILTY, LOOSE, WET, LAM., GRN. BRN. W/ DK. BRN. (ALLUV.) SP-F-M. MED. DENSE, MOIST, BRN. SAND, F-M. LOOSE-MED. DENSE, MOIST-WET, BRN. SP F-M. MED. DENSE. MOIST. BRN. 15 0.19 F-N. MED. DENSE, MOIST-WET. BRN.

SP

SP-

696.8 SP

NOTES:

12 ---- W.L. 0.20

63

40

44

40

1 HR WITH 9. HOLE OPEN TO L. 716.9.

F-M. GRAVELLY, DENSE, SAT., BRN. -F-M. GRAVELLY, DENSE, SAT., BRN. -

SANO, F-M, MED. DENSE, WET-SAT., GRN BRN.

SILT. CLAYEY, V. STIFF, WET, LAM., GR. W/RUST BRN.

SAND, F-M, SILTY, GRAVELLY, DENSE, SAT., MOD. IRON STAINS, RUST BRN.

SAND. F. SILTY. MED. DENSE-DENSE. SAT., MOD. IRON STAIRS. BRN.

SAND, F-M. MED. DENSE-DENSE, SAT. .. MOD. IRON STAINS, BRN.

- WATER LEVEL WAS DETERMINED AFTER 16 HRS WITH HOLLOW STEM AUGER SET TO EL. 716.8. HOLE DPEN TO EL. 716.8. HOLE DPEN TO EL. 716.8. AND SAMPLER DRIVEN TO EL. 714.8. HOLLOW STEM AUGER WAS SET FROM EL. 736.8 TO EL. 716.8. DRILLING MUD WAS USED TO EL.698.8. SAMPLER DRIVEN TO EL. 696.8. HOLE BACKFILLED WITH TREMIED CEMENT—
- BENTONITE GROUT.

DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA AE APPROVING OFFICIAL DESIGN MEMORANDUM CHASKA - STAGE 3 CHASKA - STAGE C FLOOD CONTROL - EAST CREEK CHASKA, MINNESOTA CHASKA PROJECT DESIGNED. GEOLOGICAL DATA CHECKED BORING LOGS 90-134M THRU 90-136M DRAWN DESIGNED: LJL/PAW 90-134M THRU 90-136M
CHECKED: CWB/JRC CAD FILE NAME: CHS3SH04.DGN DRAWING NAMEDER. SPEC NO: DACW37-90-B-0000 PLATE D-7 DATE OCTOBER 1993

770

760

750

740

720

710

700

690

90-138M 90-137M 20 APR 1990 18-19 APR 1990 SPT D10 MC LL PL LL PL SPT 780 IN FT. (NGVD 1929) 770 760 E. SAND. N. SILT SM 18 SP-SAND. N. GRAY! DENSE. WET. BF 750 0.23 18 19 0.35 SAND, N. GRAVI WET. BRN. ---SF 740 21 36 24 28 730 27 60 38 24 22 18 24 61 68 50 100/0.7' SP-SAND. N-C. SII DENSE-DENSE. \ G.S. 726.9 0.27 SAND, F. SILTY, LOOSE, MOIST, BLK. (TOPSDIL) 7 23 6 5 3 4 37 17 32 30 15 21 13 SM SAND, F. SILTY, GRAVELLY, MED. DENSE, MOIST, BUFF-BRN. (ALLUY.) SM W.L. 721.5 0-21 SAND, F-M, LOOSE, MOIST-SAT., MOD.-V. IRON STAINED, RUST BRN. 720 719.51 SP SAND, F-M, GRAVELLY, V. DENSE, SAT., MOD. IRON STAINS, RUST BRN. 0.45 SAND, F-M. GR SAT., DK. BRN SW-SM 0.09 710 SAND, F. SILTY, MED. DENSE. SAT., BRN. 0.08 SILT. SANDY, GR.-BRN. ML 73 36 73 58 0.08 0.10 SAND, F-44, SI 700 26 35 40 43 25 SAND, F-M. TRACE DRG. SILT & GRAVEL. NED. DENSE-DENSE. SAT.. BRN. SP 690 38 28 686. 680

NOTES:

- WATER LEVEL DETERMINED AFTER 1 HR WITH HOLLOW STEM AUGER SET TO EL. 716.9. HOLE OPEN TO EL. 718.2. AND SAMPLER DRIVEN TO EL. 714.9. HOLLOW STEM AUGER WAS SET FROM EL. 726.9 TD EL. 716.9. DRILLING MUD WAS USED TO STABILIZE HOLE TO EL. 688.9. SAMPLER WAS DRIVEN TO EL. 686.9. HOLE BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

NOTES:

- WATER LEVEL DETERMINED AFTER 15 MINUTES STEM AUGER SET TO EL. 719.8, HOLE DPEN T EL. 720.5 AND SAMPLER DRIVEN TO EL. 717. HOLLOW STEM AUGER WAS SET FROM EL. 755.8 719.8. DRILLING MUD WAS USED TO STABILIZ EL. 697.8. SAMPLER WAS DRIVEN TO EL. 695
- HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

WATER LEVEL DETERMINED AFTER 1 HR WITH HOLLOW STEM AUGER SET TO EL. 716.9, HOLE OPEN TO EL. 718.2. AND SAMPLER DRIVEN TO EL. 714.9. HOLLOW STEM AUGER WAS SET FROM EL. 726.9 TO EL. 716.9. ORILLING MUD WAS USED TO STABILIZE HOLE TO EL. 688.9. SAMPLER WAS DRIVEN TO EL. 686.9. HOLE BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

NOTES:

WATER LEVEL DETERMINED AFTER 15 MINUTES W STEM AUGER SET TO EL. 719.8. HOLE DPEN TO EL. 720.5 AND SAMPLER DRIVEN TO EL. 717.8 HOLLOW STEM AUGER WAS SET FROM EL. 755.8 719.8. DRILLING MUD WAS USED TO STABILIZE EL. 697.8. SAMPLER WAS DRIVEN TO EL. 695.

HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

90-139M 24-25 APR 1990

<u>PL</u>	SPT	D ₁₀	MC	Ţ	LL	PL		
								780
•	9	<u>G.S</u>	. 777.	TCL	٦		CLAY, SANDY, GRAVELLY, MED. STIFF, MOIST, DK. BRN. (FILL)	5
	15		19.2	- GL	35	18	CLAY, SILTY, SANDY, MED. STIFF, MOIST,	
	8		27.8		- 46	18	DK. BRN.	
	. 4			CL				770
	5			\vdash	SP SP	SEAM	1	ı
	3			l	1		SAND, CLAYEY, SILTY, SOFT, WET, DRGANICS, DK. BRNGR.	
	4	0.01	33.6 ¹	SM	120	16	ORGANICS, DK. BRNGR.	ŀ
•	2	_ W.L.		4	_b20 \$P	SEAMS	;	760
	·	-	21.8	sc		15	SAND. CLAYEY, LDDSE. SAT ROUT FRAGS.,	
	3		2	750	1		BLUE-GR-	
SAND. N. SILTY. GRAVELLY. NED. DENSE. MDIST-WET. BRNORANGE (FILL)	10			l			SAND, N-C, SILTY, GRAVELLY, MED. DENSE	
	14	0.08		15W	1		-DENSE. SAT. BRN.	I
SAND, N, GRAYELLY, SILTY, MED	. 30			1			PLAY, STITY, ACD STIES-STIES WET.	750
DERSE: WE! DRK.	15		3	<u></u>	LCL A	16	THINLY LAM., GR. CLAY, MED. STIFF-STIFF, WET, THINLY	
	14		27.4	CL	E_44.	20	CLAY, MED. STIFF-STIFF, WET, THINLY	l
·	18		21.9	}—	- 44	. SEAN 18	•	ı
SAND, N. GRAVELLY, NED. DENSE.	. 18			CL	1		CLAY, SILTY, MED. STIFF, WET, SAND	740
· WET. BRN.	15			L]		SEAMS, GR.	
					1			- 4
	27		. 4	sc-			SAND, F. CLAYEY, SILTY, GRAVELLY, MED.	ł
•	22 25	0.01	10.6	SM	17	11		
	- 25 21			ł	=== s	SEAL		730
SAND, M-C, SILTY, GRAVELLY, MED.	15			-	1 -			- 1
DENSE-DENSE, WET-SAT., BRN.	18		5	ŀ			1	- 1
	14		12.7	٠.	- 21	12	CLAY, SANDY, GRAVELLY, MED. STIFF, WET-	- 1
***************************************	_ 14			100			SAT. GRAY-BRN. (TILL)	720
	26			ŀ	SF	SEAN	/ 5	
AMS	7						SAND, M. CLAYEY, GRAVELLY, MED. DENSE.	L
SAND, F-M, GRAYELLY, SILTY, V. DENSE,	11 22				SP-SC		SAT., BRN.	- 1
SAT. DK. BRNORANGE	42			SP	1		SAND, M. MED. DENSE-DENSE, SAT., BRN	710
	22			١.			SARDI MI MED. DERSE DERSE! SAIL! BRIX.	''ĕ
SILT. SANDY, HARD, WET-SAT., LAN.,	22				1			ı
GRBRN.	16			SP			SAND, F-N, MED. DENSE-DENSE, SAT.,	- 1
SAND. F-M. SILTY, V. DENSE-DENSE,	37			1	l		YELLOW-BRN.	1
WET-SAT., GRNGR.	- ⁴⁵		699.7		J			700
							·	- 1
							1	j
•								3
***************************************							(690
								_
							<u> </u>	l
							·	l
							· · · · · · · · · · · · · · · · · · ·	80
***************************************								90U
								- 1

FTER 15 MINUTES WITH HOLLOW 9.8. HOLE OPEN TO IVEN TO EL. 717.8. T FROM EL. 755.8 TO EL. USED TO STABILIZE HOLE TO RIVEN TO EL. 695.8. MIED CEMENT—

NOTES:

- 1. WATER LEVEL DETERMINED AFTER 1 HR WITH HOLLOW STEM AUGER SET TO EL. 759.7. HOLE OPEN TO EL. 759.7. AND SAMPLER DRIVEN TO EL. 759.7.

 2. HOLLOW STEM AUGER WAS SET FROM EL. 777.7 TO EL. 759.7. DRILLING MUD WAS USED TO STABILIZE HOLE TO EL. 701.7. SAMPLER WAS DRIVEN TO EL. 699.7.

 3. UNDISTURBED SAMPLES WERE TAKEN FROM AN ADJACENT HOLE WITH 3" X 30" SHELBY TUBES. UNDISTURBED SAMPLE #M SHOWED SP IN THE TOP 17".

 4. HOLES BACKFILLED WITH TREMIED CEMENTBENTONITE GROUT.

Г									T-	-	
Н									+		
H						_			+-		
SΥ	MBOL			DE	SCRIPTION			DATE	APP	ROYAL	
							DEPARTMENT OF ST. PALL, M	ORPS OF EN		is	
Æ	APPROVIN	G OFFICIAL:			DE	ici	MEMORANDUM				
ŀ		,			CHAS	KA	- STAGE 3				
I -			1		FL000 C01	ITR	OL - EAST CREEK				
Г	DESIGNED		CHASK	A PROJ	ECT		CH	aska, min	NES0	TA	
å	CHECKED:		GEOLOGICAL DATA								
ľ	DRAWN		BORING LOGS								
X	DESIGNED	LJL/PAW	1		90-13	М	THRU 90-139M				
ĕ		CWB/JRC	CAD FILE	NAME C			DRAWING HUMBERS		SHT	8	
	TE. OCTOR	FP 1993	SPEC NO.	DACW37	90-8-000		PI SATE	D-8	OF.	¥:	

- 1. WATER LEVEL DETERMINED AFTER 30 MIN. WITH HOLLOW STEM AUGER SET TO EL. 718.4, HOLE DPEN TO EL. 719.3, AND SAMPLER DRIVEN TO EL. 716.4.
 2. HOLLOW STEM AUGER WAS SET FROM EL. 760.4 TO EL. 718.4. DRILLING MUD WAS USED TO STABILIZE HOLE TO EL. 704.4. SAMPLER WAS DRIVEN TO EL. 702.4.
 3. HOLE BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT.

- WATER LEVEL DETERMINED AFT STEM AUGER SET TO EL. 712. 713.7. AND SAMPLER DERIVEN HOLLOW STEM AUGER WAS SET 1712.9. DRILLING MUD WAS US EL. 660.9. SAMPLER WAS DRI HOLE BACKFILLED WITH TREMI BENTONITE GROUT.

D-141M 90-143M MAY 1990 15-16 MAY 1990 010 LL PL SPT MC LL PL 730 720 CH SP-SAND, M. SILTY, LOOSE, SAT., BRN. SAND, M. CLAYEY, LOOSE, SAT., BRN. SAND, M. LOOSE, SAT., BRN. 710 SP SAND, M. MED. DENSE, SAT., TR. GRAVEL, BRN. SP CLAY, SILTY, SOFT, MOIST, ORGANICS, DK. BRN. G.S. 703.3 Q. 700 SC CLAY, SANDY, V. SOFT, WET, PLANT MATTER, DK. BRN.-BRN. o 690 ----- 115.B 165 98 ----- SAND. N-C. MED. DENSE. SAT., BRN.----SILT, SANDY, CLAYEY, DRGANICS, V. SOFT, WET-SAT, PLANT MATTER, SHELLS, DK. BRN.-BRN. ō SP ОН SILT. SANDY. CLAYEY. ORGANICS. V. SOFT. SAT., PLANT MAJJER: SHELLS: BRN.-LT. BRN., GR. 134.9 157 84 OH 680 SAND, M. SILTY, LOOSE, WET-SAT., PLANT FRAGS., BL.-GR. SM SAND. M. GRAVELLY. MED. DENSE. SAT., BRN.-GR. SAND, F-N. N. DENSE-V. DENSE, SAT., BRN. SP 670 0.12 SP-SAND, N. SILTY, MED. DENSE, SAT., CLAY SEAMS, BRN. W/ GR. SAMO, M. GRAVELLY, DENSE, SAT... YEL.-BRN. - SAND, M. GRAVELLY, NED. DENSE-LOOSE,..... SAT., BRN. SP 660 SP CLAY, SANDY, SILTY, SOFT, WET, THINLY LAM., GR. 650 SAND. M. GRAVELLY, MED. DENSE-DENSE. SAT.. GR. SP 32 640

DETERMINED AFTER 25 MIN. WITH HOLLOW SET TO EL. 712.9. HOLE OPEN TO EL. SAMPLER DRIVEN TO EL. 710.9.
AUGER WAS SET FROM EL. 718.9 TO EL. LING MUD WAS USED TO STABILIZE HOLE TO SAMPLER WAS DRIVEN TO EL. 658.9.
LLED WITH TREMIED CEMENT—ROUIT.

NOTES:

- 1. WATER LEVEL DETERMINED AFTER 20 MIN. WITH HOLLOW STEM AUGER SET TO EL. 697.3, HOLE OPEN TO EL. 695.0, AND SAMPLER ORIVEN TO EL. 693.3.
 2. HOLLOW STEM AUGER WAS SET FROM EL. 703.3 TO EL. 683.3. DRILLING MID WAS USED TO STABILIZE HOLE TO EL. 641.3. SAMPLER WAS DRIVEN TO EL. 639.3.
 3. 1 GAL./MIN. ARTESIAN FLOW ENCOUNTERED AT EL. 673.3.
 4. UNDISTURBED SAMPLES WERE TAKEN FROM SAME HOLE WITH 3" X 30" SHELBY TUBES.
 5. HOLE BACKFILLED WITH TREMIED CEMENTBENTONITE GROUT.

- BENTONITE GROUT.

SYMBOL DESCRIPTION DEPARTMENT OF THE ARMY ST. PALL DISTRICT, CORPS OF ENGINEERS ST. PALL, MINNESOTA DESIGN MEMORANDUM CHASKA - STAGE 3 FLOOD CONTROL - EAST CREEK CHASKA PROJECT CHASKA, MINNESOTA DESIGNED CHECKED: GEOLOGICAL DATA BORING LOGS 90-140M, 90-14IM AND 90-143M B DESIGNED: LJL/PAW CHECKED: CWB/URC CAD FILE NAME: CHS3SHO6.DCN DRAWING NUMBERS SHT 9 DATE: OCTOBER 1993 PLATE D-9 OF K SPEC NO: DACW37-90-8-0000

- WATER LEVEL DETERMINED AFTER 1 HR. 10 MIN. WITH HOLLOW STEM AUGER SET TO EL. 738.8, SAMPLER DRIVEN TO EL. 733.8, AND HOLE OPEN TO EL. 741.4. HOLLOW STEM AUGER WAS SET FROM EL. 758.8 TO EL. 738.8. DRILLING MUD WAS USED TO STABILIZE HOLE TO EL. 703.8. SAMPLER MAS DRIVEN TO EL. 698.6. UNDISTURBED SAMPLER WAS DRIVEN TO EL. 698.6. UNDISTURBED SAMPLES WERE TAKEN FROM AN ADJACENT HOLE WITH A 5" DIAMETER PISTON SAMPLER. HOLES BACKFILLED WITH CEMENT-BENTONITE CROUT. 1.

NOTES:

- WATER LEVEL WAS NOT ENCOUNTERED. HOLLOW STEM AUGER ADVANCED TO EL. 747.7'.

91-146M 22-23 JAN 1991 SPT LL PL 800 SILT. GRAVELLY, DRY-MOIST, LT. BRN. CLAY, SILTY, GRAVELLY, V. STIFF. 790 СL 23 12 CLAY, SILTY, V.STIFF, MOIST, 47 18 LT. BRN. (TILL) 10.2 23 CL 28.5 -BOULDER SILT, GRAVELLY, V. STIFF, MOIST, GR. (TILL) 101/.51 ¥ 780 17 13 CLAY, SILTY, GRAVELLY, V. STIFF, MOIST, GR. (TILL) 15.5 CL 27 770 -SP SEAN 32 D. M. SILTY. GRAVELLY. MDIST. CLAY, SILTY, GRAVELLY, V. STIFF-HARD, MOIST, GR. (TILL) αL 27 750 D. GRAVELLY. SILTY, MOIST. -40 740 CLAY, SILTY, V. STIFF-HARD, MOIST, LAMINATED, GR. (TILL) 27 735.9 730 720 710 700 690 NOTES: 1. WATER LEVEL NOT DETERMINED
2. HOLLOW STEM AUGER WAS SET FROM EL. 795.4 TO EL. 740.9. SAMPLER WAS DRIVEN TO EL. 735.9.
3. CASING WAS PULLED AND HOLE BACKFILLED WITH AUGER CUTTINGS TO EL. 790.4. CEMENT-CLAY GROUT USED TO BACKFILL TOP OF HOLE. TERED. TO EL. 747.7'.

SYMBOL DESCRIPTION DATE APPROVAL

DEPARTMENT OF THE ARMY
ST. PALL DISTRICT, CORPS OF ENGINEERS
ST. PALL DISTRICT, MINNESOTA

AE APPROVING DEFICIAL

DESIGN MEMORANDUM
CHASKA - STAGE 3

CHASKA - STAGE 3
FLOOD CONTROL - EAST CREEK
CHASKA PROJECT CHASKA, MINNESOTA
GRECKED:
GREWIN BORING LOGS

SHT 10

B DESIGNED: LUL/PAW 91-144M, 91-145A AND 91-146M
B CHECKED: CYB/JRC CAD FILE NAME: CHS3SH07.DGN DRAWING MARGERI
DATE: OCTOBER 1993 SPEC NO: DACW37-90-8-0000 PLATE D-10

(7)

91-147M 91-148A 25-28 JAN 1991 28 JAN 1991 SPI SPT D10 MC LL PL D10 MC LL PL SPT 740 G.S. 736.2 SAND, F-N, SILTY, GRAVELLY, MOIST, DK. BRN. (TOPSOIL) SM 18761 SAND. MOIST. BRN. (ALLUV.) SP 730 1300 SAND. M. LOOSE, MOIST. LT. BRN. SP : . 720 G.S. 715.8 į CLAY, ORGANICS, V. SOFT, MOIST-WET, PLANT MATERIAL, BLK. 710 2 SAND, M-C, LOOSE-M. DENSE, SAT., _____LT. BRN. 700 2 SP 0.17 2 690 SAND, N-C, LOOSE-M. DENSE, SAT., IRON STAINS, ORANGE BRN. SP 11 6 SAND, F-C, MED. DENSE, SAT., LT. BRN. 2 680 SP 17 35 SAND, F-C. MED. DENSE, WET-SAT., LT. BRN.-BRN. 670 SP 26 SAND, F, CLAYEY, MED. DENSE, WET-SAT., GRAY 23 660 SP SAND. F-C. MED. DENSE. WET-SAT., BRN. 30 650 NOTES NOTES: NOTES: WATER LEVEL DETERMINED AFTER 25 MIN. WITH HOLLOW STEM AUGER SET TO EL. 710.8. SAMPLER DRIVEN TO EL. 705.8 AND HOLE DPEN TO EL. 710.1. HOLLOW STEM AUGER WAS SET FROM EL. 715.8 TO EL. 706.8 ORILLING MUD WAS USED TO STABILIZE HOLE TO EL. 660.8. SAMPLER WAS DRIVEN TO EL. 655.8. HEAVING SANDS ENCOUNTERED BETWEEN EL. 700.8' AND EL. 690.8' AND AGAIN AT EL. 670.8'. OVERNIGHT CAVE-IN TO EL. 695.8' AFTER SAMPLING TO EL. 655.8' THE PREVIOUS DAY. WITH HSA SET TO EL. 706.8'. HOLE ABANDONED AND BACKFILLED WITH TREMIED CEMENT—BENTONITE GROUT. i. W/ WATER LEVEL WAS NOT ENCOUNTERED.
HOLLOW STEM AUGER ADVANCED TO EL. 724.2'.
TO DBTAIN BAG SAMPLE.
CASING WAS PULLED AND HOLE BACKFILLED WITH
NATURAL MATERIAL. 2. 4° 3. AF 4. L(

5. IK

92-167M 92-168M 20-21 MAY 1992 27-28 MAY 1992 SPT PIO MC ᄪ 740 IST. 730 720 G.S. 712.3 W.L. 711.0-PEAT, CLAYEY, SILTY, V. SOFT, WET, FIBEROUS, ORGANIC ODOR, BLK. 710 CLAY, SILTY, SOFT, MOIST-WET, ORGANICS, BRN. (ALLUY.)

**CLAY, M. STIFF, WET LAYERED, WHITE & -GRAY (ALLUY.)

**CLAY, SILTY, M. STIFF, MOIST-WET,

ORGANICS, BRN. (ALLUY.)

CLAY, ORGANICS, V. SOFT, MOIST-WET,

SANDY ZONES, SHELL FRASS., BLK.-GRAY 2 703.4 CLAY, SILTY, SANDY, ORGANICS, V. SOFT, WET, ORGANIC ODOR, FIBEROUS, SHELLS, LAMINATED, BRN.-BLK. CH 700 2 CH QL. 2 164.4 95 SM SEAM WOOD FRAGS. CLAY, SILTY, SOFT, WET-SAT., SHELLS, GRAY SAND, F, SILTY, LOOSE, SAT., BRNL-BUFF 690 CLAY, SILTY, ORGANICS, SANDY, V. SOFT, WET, ORGANIC ODOR, SHELLS, CALCAREOUS, YLW. GRAY BRN. ō 71.2 SM SP-SILT, CLAYEY, ORGANICS, V. SOFT,
MOIST-WET, PLANT MATTER, DK. GRAY
CLAY, SILTY, ORGANICS, SANDY, V. SOFT,
WET, ORGANICS DOOR SHELLS, CALICARIOLS,
YLW, GRAY BRN.
SILT, CLAYEY, SANDY, V. SOFT, WET-SAT.,
INTERBEDDED SAND SEAMS, GRAY
GRAYEL, F-C, SANDY, SILTY, DENSE, SAT.,
IRON STAIN, GRAY 680 SAND, F-M, SILTY, LOOSE, SAT., BUFF ---SAND, F-M, GRAVELLY, SILTY, M. DENSE, SAT., BRN. OL -WOOD FRAGS. ML CP-CM CH SEAM (0.2') 670 SAND, M. M. DENSE, SAT., SOME SILT, GRAY 660 650

NOTES

- ITES

 1. WATER LEVEL DETERMINED AFTER 40 MINUTES WITH:

 NO CASING IN HOLE. HOLE OPEN TO EL. 709.7

 AFTER SAMPLING TO EL. 707.3

 2. 4" CASING INSTALLED TO EL. 708.3. HOLE STABILIZED WITH
 DRILLING MUD BELOW EL. 708.3. HOLE STABILIZED WITH
 DRILLING MUD BELOW EL. 708.3.

 3. ARTESIAN TEUW ENCOUNTENED AFTER SAMPLING TO EL. 682.3. DRILL
 MUD MEASURED ONE FOOT ABOVE GROUND SURFACE. WATER GAIN IN
 DRILL OUTS BELOW EL. 682.3. HOLE FLOWING APPROX. 2 GAL/MIN.
 OVER ONE FOOT CASING STICK-UP AFTER SAMPLING TO EL. 679.3.

 4. LOST MUD CIRCULATION BETWEEN EL. 678.3 AND EL. 677.3. DRILL
 HOLE ABANDONED AFTER SAMPLING TO EL. 674.3 AND SAND HEAVED TO
 EL. 685.3.
- FL. 685.3.
- 5. HOLE BACKFILLED WITH BENTONITE CHIPS FROM EL. 885.3 TO TOP OF HOLE.

NOTES

- I. WATER LEVEL DETERMINED AFTER 35 MINUTES WITH:
 BOTTOM OF HOLE AT EL. 697.7'
 AFTER SAMPLING TO EL. 693.4'.
 2. SET 4' CASING TO EL. 699.4'.
 AND BARITE ADDITIVES BELOW EL. 699.4'.
 3. ARTESIAN GROUNDWATER CONDITIONS DETERMINED BY DRIVING A 1/4" X 3'. * NO SLOT WELL POINT INTO SAMPLE BORING TO EL. 658.4. TOTAL HEAD MEASURED AT EL. 706.6.
 4. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

SYMBOL DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA AE APPROVING OFFICIAL DESIGN MEMORANDUM CHASKA - STAGE 3 FLOOD CONTROL - EAST CREEK CHASKA PROJECT CHASKA, MINNESOTA DESIGNED 8 CHECKED: GEOLOGICAL DATA DRAWN BORING LOGS DESIGNED: LJL/PAW 91-147M, 91-148A, 92-167M AND 92-168M S DESIGNED: LJL/PAW 91-147M, 91-148A, 92-167M AND CHECKED: CWB/JRC CAD FILE NAME; CHS3SHOB, DRAWING MARKER SHT II DATE: OCTOBER 1993 SPEC NOI DACW37-90-8-0000 PLATE D-II

- I. WATER LEVEL DETERMINED AFTER I HR. WITH: BOTTOM OF AUGER AT EL. 760.8' BOTTOM OF HOLE AT EL. 759.8' AFTER SAMPLING TO EL. 755.8'.
- AFTER SAMPLING TO EL. 755.8'.

 2. HSA ADVANCED TO EL. 756.8'. HOLE STABILEZED WITH DRILLING MUD BELOW EL. 756.8'.

 3. TWO 5" UNDISTURBED PISTON SAMPLES TAKEN FROM AN ADJACENT HOLE.

 4. HOLES BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES

- I. WATER LEVEL DETERMINED AFTER 1 HR. WITH
 BOTTOM OF HSA AT EL. 758.2'
 BOTTOM OF HOLE AT EL. 758.2'
 AFTER SAMPLING TO EL. 753.4'.
 2. HSA ADVANCED TO EL. 754.4'. HOLE STABILEZED WITH
 BELOW EL. 754.4'.
 3. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE G
 CAPPED WITH NATURAL MATERIAL.

32-169M 30 MAY 1992		92- 1 JU			
: ше	SPT	DIO MC		IT BF	
			į		
			-+-		
.B			1		•••••
SM CH CLAY, SILTY, SOFT, WET, ROOTS, BRN. (TOPSOIL) SAND, F-M, SILTY, LOOSE, MOIST, WHITE & BLK. SAND, F-M, CLAYEY, SILTY, LOOSE, WET-SAT., IRON	6	G.S. 763.4	SW-	ML	SILT, CLAYEY, GRAVELLY, SANDY, SOFT, MOIST, BRN. (TOPSOIL) SAND, F-C, GRAVELLY, SILTY, LOOSE, MOIST-WET, IRON STAINS, BRNGRAY
SAND, F-M, CLAYEY, SILTY, LOOSE, WET-SAT., IRON STAINS, MOTTLED BRN. & ORANGE & BLK. CLAY, SILTY, ORGANICS, V. SOFT, WET-SAT., BLK. CLAYSTRIND SAND, M-G, CLAYEY, SILTY, LOOSE, SAT., GRAY	2	W.L. 758.7 69.1	OH	- 88 46 -SC SEAN(0.4)	SILT, CLAYEY, ORGANICS, SOFT, WET, DK. GRAY-BLK.
SAND, M-C, CLAYEY, SILTY, LOOSE, SAT., GRAY SAND, M-C, CLAYEY, SILTY, LOOSE, SAT., GRAY CLAY, SILTY, ORGANICS, V. SOFT, WET-SAT., BLK. SW-SILT, CLAYEY, SANDY, V. SOFT, WET-SAT., GRAY (ALLIV.) SM SAND, M-C, SILTY, LOOSE, SAT., SOME CLAY, GRAY (ALLIV.)		75.6	он	SP SEAN(0.3) - 90 37	CLAY, SILTY, SANDY, ORGANICS, V. SOFT, WET, DK. GRAY-BLK.
SM (ALLUV.) SAND, F. SILTY, LOOSE, SAT., GRAY SAND, F. SILTY, SANDY, V. SFT, MOIST-SAT., GRAY CL-SSM, SEAN, SAND, M-C, GRAYELY, SILTY, LOOSE, SAT., BRN. TAN M. CLAY, SILTY, SANDY, V. SOFT, MOIST-WET, IRON STAINS, TR. GRAYEL, MOTICED GRAY & BRN.	3	25.7 -	SC- SM ML	23 16	SAND, M-C, CLAYEY, SILTY, GRAVELLY, LOOSE, SAT., ORGANICS, GRAY SILT, CLAYEY, SANDY, SOFT, SAT., ROOTS,
SW-CH SEAM SAND, M-C, GRAVELLY, SILTY, LOOSE, SAT., TAN	2		SM	43 20 SP-SN	GRAY SAND, M-C, GRAVELLY, SILTY, LOOSE, SAT, IRON STAINS, SOME CLAY, ORANGE
3 cl 29 20 CLAY, SILTY, SANDY, V. SOFT, MOIST-WET-SAT., GRAY	2		SP- SM CL		-CLAY, SILTY SANDY, SOFT, -V. SOFT, WET, ROOTS, SAND SEAMS, GRAY SSAND, F-C, SILTY, LOOSE, SAT., SOME CLAY SEAMS, BRN.
CL SEAM CL SEAM CL SEAM CL SEAM CL SEAM CL SEAM SP- CL SEAM SAND, M-C, GRAVELLY, SILTY, LOOSE, SAT., BRN.	2			CD-CM GEVN	SAND, F-C. SILTY, LOOSE, SAT., SOME CLAY, SEAMS, BPN. CLAY, SILTY, & SAND, M-C, SILTY, SOFT, WET-SAT., LAMINATED, IRON STAINS, GRAY R BRN. CLAY, SILTY, SOFT, WET-SAT., LAMINATED.
CL SEAM	35		a	SP SEAM	CLAY, SILTY, SOFT, WET-SAT., LAMINATED, TR. SAND, IRON STAINS, GRAY & BRN.
SILT, CLAYEY, SANDY, ORGANICS, SOFT, WET-SAT., GRAY SP-SM SAND, M-C, GRAVELLY, SILTY, M. DENSE, SAT., IRON STAINS, GRAY	65	713.4	SP- SM		SAND, F-C, GRAVELLY SILTY, DENSE- V. DENSE, WET-SAT., IRON STAINS, BRNL

DETERMINED AFTER 1 HR. WITH:
AUGER AT EL. 760.8'
HOLE AT EL. 759.8'
'LING TO EL. 755.8'.
TO EL. 756.8'. HOLE STABILEZED WITH DRILLING MUD
B.8'.
ILRBED PISTON SAMPLES TAKEN FROM AN ADJACENT HOLE.
LED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES

- I. WATER LEVEL DETERMINED AFTER I HR. WITH:
 BOTTOM OF HSA AT EL. TS8.4'
 BOTTOM OF HOLE AT EL. TS8.2'
 AFTER SAMPLING TO EL. TS3.4'.
 2. HSA ADVANCED TO EL. TS4.4'. HOLE STABILEZED WITH DRILLING MUD
 BELOW EL. TS4.4'.
 3. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT AND
 CAPPED WITH NATURAL MATERIAL.

92-17 IM 2 JUN 1992 SPT DIO MC IL PL 800 ASPHALT GROAD FILL)
SAND, M. GRAVELLY, SILTY, CLAYEY, M. DENSE,
MOIST, DK. BRN. (FILL)
SAND, M-C. GRAVELLY, CLAYEY, SILTY, M. DENSE,
MOIST, ASPHALT CHUNKS, LAYERED, GRAY & BRN.
GFILL) 790 G.S. 789.4 0.04 780 SAND, CLAYEY, GRAVELLY, SILTY, M. DENSE, MOIST, LAMINATED, ASPHALT CHUNKS, GRAY BRN. BLK (FILL) LAMINATED, ASPHALT CHUNKS, GRAY BRN. BLK GILL)

CLAY, SILTY, SANDY, SOFT, MOIST, BLK. BRN.
SAND, F-C, SILTY, CLAYEY, LOOSE, MOIST, DK.
BRN.-GRAY
-CLAY, SILTY, SANDY, SOFT, MOIST, SAND SEAMS, GRAY
-CLAY, SILTY, SANDY, SOFT, MOIST-WET, IRON STAINS,
DRGANICS, BLK. BRN.
-SAND, CLAYEY, SILTY, LOOSE, MOIST-WET, ORGANICS,
BLK.
-SAND, M-C, SILTY, CLAYEY, LOOSE, SAT., TR.
GRAVEL BRN.
-SAND, SILTY, CLAYEY, LOOSE, MOIST-WET, ROOTS &
SHELLS, BLK.
-SAND, M-C, SILTY, CLAYEY, LOOSE, SAT., CLAY
-SAND, M-C, SILTY, CLAYEY, LOOSE, SAT., CLAY
-SAND, TR. ROOTS, BRN.
-CLAY, SILTY, GRANKES, SOFT-M. STIFF, MOIST-WET,
-SAND, TRINGERS, SHILS, BLK.
-SAND, F, SILTY, CLAYEY, LOOSE, SAT., TAN BRN.
-SAND, F, SILTY, CLAYEY, LOOSE, SAT., TAN BRN.
-SAND, F, SILTY, CLAYEY, LOOSE, SAT., TAN BRN. LAL SEAM SM W.L. 769.8 770 댒뚮 21.5 sc 35 SILT, CLAYEY, GRAVELLY, SANDY, SOFT, WOIST, BRN. (TOPSOIL) SAND, F-C, GRAVELLY, SILTY, LOOSE, --WOIST-WET, IRON STAINS, BRN.-GRAY 760 SILT, CLAYEY, ORGANICS, SOFT, WET, LAY, SILTY, SANDY, ORGANICS, V. SOFT, WET, DK. GRAY-BLK. 750 ND, M-C, CLAYEY, SILTY, GRAVELLY, OSE, SAT., ORGANICS, GRAY T, CLAYEY, SANDY, SOFT, SAT., ROOTS, GRAVEL, F-C, SANDY, SILTY, M. DENSE-DENSE, WET-SAT., SOME CLAY, BRN. GP-GM DOSE, SAT., ORGANICS, GRAY SET, CLAYEY, SANDY, SOFT, SAT., ROOT. RAY JAND, M-C, GRAYELLY, SILTY, LOOSE, AT., IRON STAINS, SOME CLAY, ORANGE 740 CLAY, SILTY, GRAVELLY, SANDY, V. STIFF, MOIST, GRAY (TILL) 734.4 CL RN.

TAY, SILTY SANDY, SOFT, -V. SOFT, WET,
BOTS, SAND SEAMS, GRAY
MAD, F-C, SILTY, LOOSE, SAT., SOME
LAY SEAMS, BRN.
LAY, SILTY, & SAND, M-C, SILTY, SOFT,
BET-SAT, LAMINATED, IRON STAINS, GRAY
LERN. 730 LERN. LAY, SILTY, SOFT, WET-SAT., LAMINATED, R. SAND, IRON STAINS, GRAY & BRN. 720 AND, F-C, GRAVELLY SILTY, DENSE-! DENSE, WET-SAT., IRON STAINS, BRN. 710 NOTES

WITH

BILEZED WITH DRILLING MUD

SENTONITE GROUT AND

I. WATER LEVEL DETERMINED AFTER 55 MINUTES WITH:
BOTTOM OF HSA AT EL. 769.4'
BOTTOM OF HOLE AT EL. 768.6'
AFTER SAMPLING TO EL. 768.4'.
2. HSA ADVANCED TO EL. 765.4'. HOLE SATABILIZED WITH DRILLING MUD BELOW EL. 765.4'.
3. THREE 5" UNDISTURBED PISTON SAMPLES TAKEN FROM AN OFFSET HOLE.
4. HOLES BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

	T-								Т	
		_						1	T	
š	MBOL			DESCR	RIPTION			DATE	APP	ROVA
				:	51	DEPARTMENT. PAUL DISTRI		PS OF ENG		s
Æ	APPROVIN	G OFFICIALS				N MEMORANDU				
-			1	FL	.000 CONTE	OL - EAST O	CREEK			
Г	DESIGNED		CHASKA	A PROJEC	τ		CHAS	SKA, MINI	VESO	TA
9	CHECKED:		1		GEOLO	GICAL DA	TA			
9	DRAWN		1			RING LOGS				
3	DESIGNED	LJL/PAW	1		92-169M	THRU 92-	17 IM			
Á	CHECKED:	CWB/JRC	CAD FILE	NAME CHS	SHO9.DGN	DRAWING NUM	BEA:		SHT	12:
6	TE. OCTOR	FR 1993	SPEC NO.	DACW37-96	2-B-0000	I PLA	TF D-	12	OF.	16

92-173M 92-172M 6-8 JUN 1992 4-5 MAR 1992 LL PL PIO MC SPT SPT DIO MC 727.5 730 G.S. 725.3 (NOVD 1929) SILT, CLAYEY, V. SOFT, WET-SAT., ORGANIC LAYERS, CALCAREOUS, LACUSTRINE LAYERS, WHITE-GRAY (SUGAR BEET PROCESSING RESIDUE) 91.6 76 54 720 715.L WT IN FT. 710 CLAY, ORGANIC SHELLS, BLK. SILT, CLAYEY, V. SOFT, WET-SAT., CALCAREOUS, ORGANICS, GRAY W/SOME BLK. (SUGAR BEET PROCESSING RESIDUE) 72 113 0.01 110.5 177 107 ڼ 4 SAND, ORGANIC SHELLS, PLANT 700 CLAY, ORGANICS, SILTY, M. STIFF, MOIST-WET, SHELLS & DECOMPOSED PLANT MATTER, BILT, GRGANICS, CLAYEY, M. STIFF, MOIST, SHELLS, PLANT MATTER, CALCAREOUS, BILK & BRN. 347 201 2 191.8 OH 690 0.02 98.3 **157 88** CLAY, SILTY, TR. SAND, SHE -CLAY, ORGANIC SHELLS, PLANT -GRAVEL SANDY BRNL 49 25 27. I CLAY, ORGANICS, SANDY, V. SOFT-SOFT, WET-SAT., PEAT SEAMS, SHELLS, CALCAREOUS, BRN.-BLK. BRN. OL GP-60 680 BRN. SAND, F-C, SI TR. GRAVEL, (SILT, CLAYEY, SOFT, MOIST-WET, ORGANIC SEAMS, GRAY PEAT, CLAYET, M. STIFF, MOIST-WET, SPONGY, ORGANICS, BLK. BRN 18 SAND, M-C, SI SP 29 667.5 SAND, M-C, GRAVELLY, SILTY, V. DENSE, SAT., BRN. 670 SP-SM SAND, M-C, GRAVELLY, SILTY, M. DENSE, DENSE, SAT., CALCARIOUS, TAN SP-660 40 SAND, F-C, GRAVELLY, SILTY, M. DENSE, - SAT., TAN BRN. 20 650 SP-SM 16 640

NOTES

- 1. WATER WAS ENCOUNTERED AT EL. 703.1' AND ROSE TO EL. 712.1'
 WITHIN 125 MIN. FINAL STATIC WATER LEVEL WAS NOT DETERMINED.
 2. HSA ADVANCED TO EL. 701.3'. HOLE STABILIZED WITH DRILLING MUD
 BELOW EL. 701.3'.
 3. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES

- IVATER LEVEL DETERMINED AFTER | HR. WITH:
 BOTTOM OF AUGER AT EL. 702.5'
 BOTTOM OF HOLE AT EL. 702.5'
 BOTTOM OF HOLE AT EL. 701.3'
 AFTER SAMPLING TO EL. 697.5'
 1NSPECTOR NOTED VIGOROUS BUBBLING DOWNHOLE WHI
 WAS FOUND TO BE FLAMMABLE, POSSIBLY METHANE.
 3. HSA ADVANCED TO EL. 698.5' HOLE STABILIZED WITH
 BELOW EL. 698.5'.
 4. THREE 5" UNDISTURBED PISTON SAMPLES TAKEN FROM
 5. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE I

92-174M 8 JUN 1992 SPI DIO MC LL PL 730 720 G.S. 719.2 SILT, CLAYEY, ORGANICS, V. SOFT, SAT., GRAY (SUGAR BEET PROCESSING RESIDUE) SAND, M-C, RUBBLY, SILTY, CLAYEY, ORGANICS, LOOSE-M. DENSE, MOIST, METAL, CONCRETE, WOOD, PLANT MATER, (FILL) SAND, F-C, SILTY, CLAYEY, ORGANICS, LOOSE, SAT., WOOD, BLK. MALIUY. SM 713. -105.9 710 SILT, ORGANICS, CLAYEY, V. SOFT, SPONGY, SAT., SHELLS, BLK. BRN.
SILT, CLAYEY, SANDY, ORGANICS, M. STIFF, WETSAT., GRAY SLK. OH CLAY, ORGANICS, SILTY, SOFT, MOIST, PLANT MATTER, SHELLS, BLK. 700 SAND, ORGANICS, SILTY, LOOSE, SAT., SPONGY, SHELLS, PLANT MATTER, BLK. & BRN. SAND, F-C, SILTY, LOOSE-M. DENSE, SAT., INTERBEDDED, TR. GRAVEL, TAN BRN. SP 690 0.19 SP-SAND, SILTY, M. DENSE, SAT., TR. GRAVEL, TAN BRN. 680 18 ---- 0.12 -----BRN. SAND, F-C, SILTY, M. DENSE, SAT., IRON STAINS, TR. GRAVEL, ORANGE-TAN BRN. -CH SEAM 670 SAND, M-C, SILTY, M. DENSE, SAT., GRN. TAN " 660 650 640

R. WITH

ING DOWNHOLE WHILE MEASURING THE WAS CONTAINED IN A BAG AND STABILIZED WITH DRILLING MUD

PLES TAKEN FROM AN OFFSET HOLE. MENT-BENTONITE GROUT.

NOTES

- I. WATER LEVEL DETERMINED AFTER I HR. WITH
 BOTTOM OF HSA AT EL. 709.2'
 BOTTOM OF HOLE AT EL. 709.3'
 AFTER SAMPLING TO EL. 709.2'.
 2. HSA ADVANCED TO EL. 705.2'. HOLE STABILIZED WITH DRILLING MUD
 BELOW EL. 705.2'.
 3. HOLE BACKFILLED WITH TREWIED CEMENT-BENTONITE GROUT.

DESCRIPTION DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ST. PAUL, MINNESOTA AE APPROVING OFFICIAL: DESIGN MEMORANDUM CHASKA - STAGE 3 FLOOD CONTROL - EAST CREEK FCT CHASKA, MINNESOTA CHASKA PROJECT DESIGNED CHECKED. GEOLOGICAL DATA DRAWN BORING LOGS 92-172M THRU 92-174M # DESIGNED: LUL/PAW 92-172N

CHECKED: CWB/JRC CAD FILE NAME: CHS3SHOLDGN SHT ES DRAWING NUMBER DATE OCTOBER 1993 SPEC NO. DACW37-90-8-0000 PLATE D-13

NOTES

I. WATER LEVEL DETERMINED AFTER 15 HOURS:
BOTTOM OF AUGER AT EL. 699.8
BOTTOM OF HOLE AT EL. 699.8
BOTTOM OF HOLE AT EL. 698.2
AFTER SAMPLING TO EL. 694.8.
2. HOLLOW STEM AUGER ADVANCED TO EL. 665.6. HOLE STABILIZED WITH DRILLING MID BELOW EL. 665.6.
3. APPROX 4 GPM WATER LOSS BETWEEN EL. 664.6 AND EL. 659.4.
4. SIX 5° UNDISTURBED PISTOM SAMPLES TAKEN FROM AN OFFSET HOLE.
5. BOTH HOLES BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES I. WATER LEVEL DETERMINED AFTER 1.5 HOURS: 1. WATER LEVEL DETERMINED AFTER 1.5 MOUNTS!

BOTTON OF HOLE AT EL. 702.3

AFTER SAMPLING TO EL. 701.3.

2. HOLLOW STEM AUGER ADVANCED TO EL. 672.3. HOLE STABILIZED WITH DRILLING MIJD BELOW EL. 672.3. AFTER SAMPLING TO EL. 671.3.

4. SAND HEAVED IN AUGER TO EL. 684.5 AFTER SAMPLING TO EL. 663.3.

I. WA

2. HOI 3. ONI 0. 4. DR EL

5. HO Œ

5. SPT VALUE BETWEEN EL. 062.8 AND EL. 061.8 MAY BE INACCURATE DUE TO HEAVING SAND. 6. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

- ITES

 1. WATER LEVEL DETERMINED AFTER 2 ½ DAYS:
 BOTTOM OF AUGER AT EL. 7:13.9
 BOTTOM OF HOLE AT EL. 7:13.9
 BOTTOM OF HOLE AT EL. 7:18.9
 AFTER SAMPLING TO EL. 708.9.
 2. HOLE ABANDONED AFTER ENCOUNTERING HARD OBJECT AT EL. 708.1.
 3. ONE 5° UNDISTURBED PISTOM SAMPLE TAKEN FROM AN OFFSET HOLE 0.6° RECOVERY DUE TO SAMPLER BLOCKAGE.
 4. DRILLER NOTES STANDING WATER IN BOTTOM OF OFFSET HOLE AT EL. 7:14.3.
 5. HOLES BACKFILLED WITH BENTONITE CHIPS, LOCAL SOILS, AND CEMENT-BENTONITE GROUT.

NOTES

- JIES

 1. WATER LEVEL DETERMINED AFTER I HOUR:
 BOTTOM OF AUGER AT EL. 717.1
 BOTTOM OF HOLE AT EL. 715.1
 AFTER SAMPLING TO EL. 715.1
 2. HOLLOW STEM AUGER ADVANCED TO EL. 701.1. SAND HEAVED TO EL. 700.2 WITH BOTTOM OF AUGER AT EL. 700.1 HOLE STABILIZED WITH DRILLING MUD BELOW EL. 701.1.
 3. SAND HEAVED INTO HOLE TO EL. 663.6 AFTER SAMPLING TO EL. 662.1.
 4. CHE 5" UNDISTURBED PISTON SAMPLE TAKEN FROM AN OFFSET HOLE.
 5. BOTH HOLES BACKFILLED WITH TREMMIED CEMENT-BENTONITE GROUT.

I. WATER LEVEL DETERMINED AFTER 2 HOURS:
BOTTOM OF AUGER AT EL. 743.6
BOTTOM OF HOLE AT EL. 738.6
AFTER SAMPLING TO EL. 738.6
2. SAND HEAVED TO EL. 743.6 AFTER ADVANCING HOLLOW STEM AUGER TO EL. 738.6. ROSET AUGER TO EL. 739.6. HOLE STABILIZED WITH DRILLING MAD BELOW EL. 739.6 TO EL. 708.6.
3. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES

1. WATER LEVEL DETERMINED AFTER 45 MINUTES:
BOTTOM OF AUGER AT EL. 780.2
BOTTOM OF HOLE AT EL. 780.8
AFTER SAMPLING TO EL. 755.2.
2. HOLLOW STEM AUGER ADVANCED TO EL. 750.2. SAND HEAVED TO EL. 753.2 AFTER SAMPLING TO EL. 747.2. RESET AUGER TO EL. 750.7. HOLE STABILIZED WITH DRILLING MUD BELOW ET. 750.7.

N

EL. 750.7. HOLE STABILIZED WITH DRILLING MUD BELOW
EL. 750.7.

3. AUGER ADVANCED TO EL. 741.2 AFTER SAMPLING TO EL. 730.2. SAND
HEAVE ENCOUNTERED AFTER SAMPLING TO EL. 715.2.

4. ARTESIAN CONDITIONS ENCOUNTERED BELOW EL. 705.2. ARTESIAN
HEAD MEASURED 14 FEET ABOVE GROUND SURFACE AFTER SAMPLING

TO EL. 702.2.
5. THREE 5" UNDISUTRBED PISTON SAMPLES TAKEN FROM TWO OFFSET

HOLES.

6. ALL HOLES BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

- I. WATER LEVEL DETERMINED AFTER 50 MINUTES:
 BOTTOM OF AUGER AT EL. 758.2
 BOTTOM OF HOLE AT EL. 758.2
 AFTER SAMPLING TO EL. 753.2.
 2. HOLLOW STEM AUGER ADVANCED TO EL. T54.2. HOLE STABILIZED WITH DRILLING MUD BELOW EL. 754.2.
 3. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.

NOTES

- I. WATER LEYEL DETERMINED AFTER 50 MINUTES:
 BOTTOM OF AUGER AT EL. 772.1
 BOTTOM OF HOLE AT EL. 769.9
 AFTER SAMPLING TO EL 767.1
 2. HOLLOW STEM AUGER ADVANCED TO EL. 766.8.
 3. HOLE BACKFILLED WITH LOCAL SOILS AND BENTONITE CHIPS.

92-204M 17-18 DEC 1992 DIO MC SPI ᄪ G.S. 758.6 CC GRAVEL, F-C, SANDY, CLAYEY, SILTY, V. DENSE, SAT., LT. GRN. BRN. SAND, F-M, SILTY, M. DENSE, SAT., LT. GRN. SP SAND, F-M, SILTY, M. DENSE-DENSE, SAT., OCC. CLAY SEAMS, LT. GRN. BRN. SP 29 60 SAND, F, SILTY, TR. GRAVEL, V. DENSE-M. DENSE, SAT., SL. CALCAREOUS, LT. GRN. BRN. SP 27 -----SP SAND, M-C, GRAVELLY, SILTY, DENSE, SAT., LT. GRN. BRN. ---- 31 -SAND, F-C, SILTY, TR. GRAVEL, M. DENSE-DENSE, SAT., LT. GRN. BRN.

NOTES

- ITES

 1. WATER LEVEL NOT DETERMINED.
 2. SET 4" BLACK IRON CASING TO EL 741.1. DRILLED-OUT TO EL 713.6. ESING MID-ROTARY METHODS. HOLE STABILIZED WITH DRILLING MID BELOW EL 713.6.
 3. PARTIAL WATER LOSS BETWEEN EL 733.8 AND EL 713.8. SAND HEAVED INTO HOLE BETWEEN EL 703.6 AND EL 698.6.
 4. HOLE BACKFILLED WITH TREMIED CEMENT-BENTONITE GROUT.
 5. BORING IS LOCATED ADJACENT TO 92-199M.

AE APPROVIA

DESIGNED CHECKED: DRAWN

S DESIGNED DATE OCTOR

	•	_	•							
		•								i
						-				790
										5
										780
										770
									ŀ	\dashv
	·		•							750
	•••••						• • • • • •			760
										750
										- {
										740
										140
										- [
										730
			•						i	4
										720
									7	
										710
									1	J
										700
•										
•										690
										`
			-			· · · · · · · · · · · · · · · · · · ·				680
									1	-
										670
							1			
]	660
										l
								•		
										l
				SYMBOL.		DESCRIPTIO	N		DATE	APPROVAL
				31-501		SESCRIP III	D	EPARTMENT OF	THE ARM	Y
							ST.	PAUL DISTRICT, CORF ST. PAUL, MINN	S OF ENGI ESOTA	NEEPIS
				AE APPROVIN	G OFFICIAL:	~	DESIGN	MEMORANOUM - STAGE 3		
•								- EAST CREEK	Ka, Minni	FSOTA
				OESIGNED OHECKED:			EOLOG	ICAL DATA	mul	
				DRAWN.			BOR	NG LOGS THRU 92-204M		
				E CHECKED	CWB/JRC	CAD FILE NAME CHS3SHI3.	DCN E	RAWING NUMBER:		SHT 16
	•	£	1	DATE: OCTOR	ER 1993	SPEC NO. DACW37-90-8-0	20000	PLATE D-	6	of 16

file:/usr4/jrc/chaska/STAGE3/FDM92/fen/drop/altdd1.w20
10-NOV-1993

10:50:22 AM

This spreadsheet used to determine the radius of influence near the first drop structure of the stage 3 channel

Determine an amount of drawdown that won't impact the fen.

Using figure 4-23 from the TM, determine the radius of influence. Plot the range of radius of influence(R) vs. permeability(k)

R=C*(H-hw)*sqrt(k)

C=1.5-2.0 for line of wellpoints, 3 for wells(according to TM)

Note that a value of C=3 is appropriate if D10 permeabilities used

С	3	3	3	3			
H(ft)	717	717	717	717			•
hw(ft)	715	715	715	715			
H-hw(ft)	2	2	2	2	<<	2′	drawdown
$k(10^-4 \text{ cm/sec})$	250	500	750	1000			
R(ft)	94.8683	134.164	164.317	189.737	7		
С	3	3	3	3			
H(ft)	717	717	717	717			
hw(ft)	716	716	716	716			
H-hw(ft)	1	1	1	1	<<	1'	drawdown
$k(10^-4 \text{ cm/sec})$	250	500	750	1000			
R(ft)	47.4342	67.082	82.1584	94.8683	3		
c	3	3	3	3			
H(ft)	717	717	717	717			
hw(ft)	716.5	716.5	716.5	716.5			
H-hw(ft)	0.5	0.5	0.5	0.5	<<	1/2	2' drawdown
k(10^-4 cm/sec)	250	500	750	1000			
R(ft)	23.7171	33.541	41.0792	47.4342	?		

Summary

A drawdown of less than 1/2 foot should no effect on the fen.

A drawdown of less than 2 feet should have minimal effect on the fen.

File:/usr4/cwb/chaska3/uplime/perm/90141m.w20

Project: Chaska Stg. 3

BORING EVALUATION SHEET Date: 10-NOV-1993 FOR UPLIFT

I BOTTOM ELEVATION OF BLANKET: 716.3
II BOTTOM ELEVATION OF AQUIFER: 525.0

Boring log 90-141M 718.9 Top Elev.

III BLANKET EVALUATION

718.9	-, 0	Soi l Uni t	Eleva From -		Thick (z act.)	Kv FPM	Trans. Factor	Zb	Zt	Moist Density	Zt x D
		СН	718.9	716.3	2.6	0.0008	1	2.6	2.6	110	286.0
			0		0.0			0	0.0		0.0
708.9	10				0.0			0	0.0		0.0
					0.0			0	0.0		0.0
					0.0			0	0.0		0.0
698.9	20				0.0			0	0.0		0.0
0,0.7					0.0				0.0		0.0
					0.0				0.0		0.0
											0.0
688.9	30	·			0.0					!	·'
				of Kv to	2.6 o use in			2.6	2.6		286.0
				_	3 below:	0.0008	•				
678.9	40		IV	EVALUA1	TION OF PE	RVIOUS /	AQUI FER				·
		Soil Unit	Eleva From -		Thick d	D10	Source D10	Kh	Khxd	Remarks	3
		SP-SM	716.3	712.5	3.8	0.16		0.12	0.456		
668.9	50	SP-SC	712.5	711.2	1.3	0.12	Α	0.075	0.098		
	1	SP	711.2	708.9	2.3	0.15		0.1	0.23		
		SP	708.9	698.9	10.0	0.2	G	0.2	2		
658.9	60	SP	698.9	678.9	20.0	0.17		0.14	2.8		
										,	
		SP-SM	678.9			0.15		0.1		l 	
648.9	70	Source	: "G" =		= 53.7 tion, ™P™ sum [Kh x		bility		= 7.2 "A" = A: 0.134		
			EQUIVAL	ENT BL	ANKET LENG	TH (X3)	(see i	note be	low)		

Note: Depending on boundary conditions "X3" may be defined differently.

MATHEMATICAL ANALYSIS OF UNDERSEEPAGE AND SUBSTRATUM PRESSURE

Chaska Stg. 3 Section 9 Sta. 10+00 10-NOV-1993

From Appendix B of MEM 1110-2-1913H & MTM 3-424H

```
Note: The data from boring evaluation sheet # 90-141M # is used in this spreadsheet.
Case 6, Semipervious Landside Top Stratum and No Riverside Top Stratum.
 Input from Boring Evaluation Sheet and cross-section.
         0.130 fpm of pervious substratum
 Kbl = 0.0008 fpm
  Zt =
         2.6 ft.
                            Landside cL = [(Kbl)/(Kf*Zbl*d)]^.5

McM cL = 0.00346

(cL*L3)= 1.03723
 Zbl =
           2.6 ft.
  d =
           198 ft.
 L2 =
            75 ft.
 L3 =
          300 ft.
                               tanh(cLL3) = 0.77679
Determine distance from Landside Levee Toe to Effective Seepage Exit, x3.
       For L3 = infinity
(B-3)
      x3 = 1/cL = [(Kf*Zbl*d)/(Kbl)]^.5
        x3 = 289.2 ft.
       For L3 = finite distance to a seepage block
(B-4) x3 = 1/(cL*tanh(cLL3))
        x3 = 372.3 \text{ ft.}
       For L3 = finite dist. to an open seepage exit.
(B-5) x3 = (tanh(cLL3))/cL
        x3 =
               224.7 ft.
Case 6. d = 198 L2 = 75.0 x3 = 289.232
Shape factor ^{H$H} = d/(0.43d+L2+x3) = 0.44062
Uplift Head = ho = H^*(x3/(0.43d+L2+x3)) =
                                              7.7 ft
Input resisting soil wt. from Boring log sheet. [ SUM (gemma'n x ztn) ]
 Wt. = 165 psf =
                      2.6 ft. of water ASSUME gamma sat = 124 pcf
  Factor of Safety = -----
                                      0.34 Min. F.S. > 1.5
                          7.7
                                            *Berm Required*
 Calculate seepage per ft of levee. Check Uplift Gradient
  Qs = (\$)(Kf)(H)
                                    Io = ho/Zt Zt = 2.6 ft.
  Qs = 0.573 ft^3/min/ft.
                                     Io = 2.97
  Qs = 4.285 \text{ gpm/ft.}
```

file: /usr4/cwb/chaska3/uplime/seep/s1000-c6.w20 *Berm Required*

No Berm Required

File :/usr4/cwb/chaska3/uplime/perm/90137m.w20
Project: Chaska Stg. 3

BORING EVALUATION SHEET

Date: 10-NOV-1993

FOR UPLIFT

I BOTTOM ELEVATION OF BLANKET: 722.9
II BOTTOM ELEVATION OF AQUIFER: 525.0

Boring log 90-137M 726.9 Top Elev.

III BLANKET EVALUATION

726.9	; 0	Soil Unit	Eleva From	ation To	Thick (z act.)	K∨ FPM	Trans. Factor	Zb	Zt	Moist Density	Zt x D
		SM	726.9	724.4	2.5	0.002	1	2.5	2.5	112	280.0
		SM	724.4	722.9	1.5	0.002	1	1.5	1.5	112	168.0
716.9	10		0		0.0			0	0.0		0.0
					0.0	******		0	0.0		0.0
				******	0.0			0	0.0		0.0
706.9	20				0.0			0	0.0		0.0
					0.0			0	0.0		0.0
					0.0		•••••	0	0.0	•	0.0
696.9	30				0.0			0	0.0		0.0
686.9	40		calcula	of Kv to ating X	4.0 o use in 5 below: TION OF PE	0.002 ERVIOUS /	•	4.0	4.0		448.0
		Soil Unit	Eleva From -	tion To	Thick d	D10	Source D10	Kh	Kh x d	Remarks	
676.9	50	SP	722.9	714.4	8.5	0.2	G	0.2	1.7		
0/0.9	30	SP-SM	714.4	703.5	10.9	0.09	G	0.035	0.382		
		SP	703.5	686.9	16.6	0.2	A	0.2	3.32		
666.9	60		0		0.0				0		
500.9					0.0				0		
					0.0				0		
656.9	70	Source	: MGH =	# [d] = Gradat Kf = (t	= 36.0 tion, HPH sum [Kh x	= Permea d])/(sum	bility	x d) = Test, t			
			EQUIVAL	ENT BL/	NKET LENG	TH (X3)	(see i	note be	OM)		
646.9	80				(Kf*d*Zb)/			103.9			
		Note: [ependir	ng on bo	oundary co	onditions	3 HX3H E	may be o	sefined	differen	itly.

MATHEMATICAL ANALYSIS OF UNDERSEEPAGE AND SUBSTRATUM PRESSURE

From Appendix B of MEM 1110-2-1913H & HTM 3-424H

```
Note: The data from boring evaluation sheet * 90-137M * is used in this spreadsheet.
 Case 6, Semipervious Landside Top Stratum and No Riverside Top Stratum.
 Input from Boring Evaluation Sheet and cross-section.
 Kf =
           0.150 fpm of pervious substratum
 Kbl =
           0.002 fpm
 Zt =
             4.0 ft.
            4 ft.
36 ft.
  Zbl =
                              Landside cL = [(Kbl)/(Kf*Zbl*d)]^.5

"c" cL = 0.00962

(cL*L3) = 1.00074
  d =
                                        (cL*L3)= 1.00074
 L2 =
             35 ft.
          104 ft.
L3 = 104 ft.
Top of levee = 734.0
Flood elev. = 733.0 Uplift head = 4.0 ft.
Base of levee = 730.0 Seepage MHM = 3.0 ft.
 L3 =
Determine distance from Landside Levee Toe to Effective Seepage Exit, x3.
        For L3 = infinity
(B-3) x3 = 1/cL = [(Kf*Zbl*d)/(Kbl)]^.5

x3 = 103.9 \text{ ft.}
        For L3 = finite distance to a seepage block
(B-4) x3 = 1/(cL*tanh(cLL3))
                  136.4 ft.
        For L3 = finite dist. to an open seepage exit.
(B-5) x3 = (tanh(cLL3))/cL
         x3 =
                 79.2 ft.
Case 6. d = 36 L2 = 35.0 x3 = 103.923
Shape factor *$^{*} = d/(0.43d+L2+x3) = 0.23316
Uplift Head = ho = H^*(x3/(0.43d+L2+x3)) = 2.7 ft
Input resisting soil wt. from Boring log sheet. [ SUM (gamma'n x ztn) ]
            165 psf =
                            2.6 ft. of water ASSUME gamma sat = 124 pcf
                            2.6
  Factor of Safety = -----
                                            0.98 Min. F.S. > 1.5
                                               *Berm Required*
 Calculate seepage per ft of levee. Check Uplift Gradient
  Qs = (\$)(Kf)(H)
                              Io = ho/Zt Zt = 4.0 ft.
  Qs = 0.105 ft^3/min/ft.
                                      Io = 0.67
  Qs = 0.785 \text{ gpm/ft.}
file: /usr4/cwb/chaska3/uplime/seep/s1350-c6.w20
```

Berm Required
No Berm Required

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/engler/bes92201.w20
Project:Chaska Stage 3 BORING EVALUATION SHEET Date: 10-NOV-1993
FOR UPLIFT

1 BOTTOM ELEVATION OF BLANKET: 758.7
11 BOTTOM ELEVATION OF AQUIFER: 754.4

Boring log 763.2 Top Elev.

III BLANKET EVALUATION

		Soil	Eleva	tion	Thick	Kv	Trans.	<u> </u>	I	Buoyant	ı
763.2	; 0	Unit	From	To	(z act.)	FPM	Factor	Zb	Zt	Density	Zt x D
		SM	763.2	762.8	0.4	0.002	0.4	0.16	0.4	57.6	23.0
: 		ML	762.8	760.7	2.1	0.001	0.8	1.68	2.1	47.6	100.0
753.2	10	OL	760.7	758.7	2.0	0.0008	1	2	2.0	47.6	95.2
ļ.					0.0			0	0.0		0.0
					0.0			0	0.0		0.0
743.2	20				0.0			0	0.0		0.0
į					0.0			0	0.0		0.0
					0.0			0	0.0		0.0
733.2	30				0.0			0	0.0		0.0
			Sum !	_	4.5 buse in			3.8	4.5		218.2
					below:	0.0008	fpm				
723.2	40		IV	EVALUAT	TION OF PE	RVIOUS A	QUI FER			*	
		Soil	Eleva	tion	Thick		Source		-		
		Unit	From -	To	d	D10	D10	Kh	Kh x d	Remarks	
713.2	50	SP-SM	<i>7</i> 58.7	754.4	4.3	0.05	G	0.004	0.017		
					0.0				0		
					0.0				0		
703.2	60				0.0				0		
					0.0				0		
					0.0				0		
693.2	70	Source	: "G" =	m [d] = : Gradat Kf = (s	: 4.3 ion, ^{mps} sum [Kh x	= Permea d])/(sum	Sum [Kh nbility n [d])	x d] = Test, =	0.017 AM = As 0.004		
			EQUIVAL	ENT BLA	NKET LENG	TH (X3)	(see r	ote bel	OW)		
683.2	80		(B-3)	x3 = [((Kf*d*Zb)/	(Kb)]^0.	.5 ×	9.086	ft.		
œ	Ien	Note: D	ependin	g on bo	oundary co	nditions	**X3" n	way be d	lefined	differen	tly.

******end of spreadsheet

file: /usr4/jrc/chaska/STAGE3/FDM92/seepage/engler/sc6-92201.w20 MATHEMATICAL ANALYSIS OF UNDERSEPAGE AND SUBSTRATUM PRESSURE 10-NOV-1993

```
From Appendix B of MEM 1110-2-1913" & MTM 3-424"
 Note: The data from boring evaluation sheet * 92-201M" is used in this spreadsheet.
 Case 6, Semipervious Landside Top Stratum and No Riverside Top Stratum.
 Input from Boring Evaluation Sheet and cross-section.
           0.004 fpm of pervious substratum
  Kbl = 0.0008 fpm
  Zt =
           4.5 ft.
                                Landside cL = [(Kbl)/(Kf*Zbl*d)]^.5

McM cL = 0.11063

(cL*L3)= 110.634
            3.8 ft.
  Zbl =
  d =
           4.3 ft.
  L2 =
           57.4 ft.
                                  tanh(cLL3) =
 L3 =
           1000 ft.
Top of levee = 768.9
Flood elev. = 766.4 Uplift head =
Base of levee = 761.0 Seepage "H" =
                                             7.9 ft.
                                           5.4 ft.
Determine distance from Landside Levee Toe to Effective Seepage Exit, x3.
        For L3 = infinity
(B-3) x3 = 1/cL = [(Kf*Zbl*d)/(Kbl)]^.5
         x3 =
                    9.0 ft.
        For L3 = finite distance to a seepage block
(B-4) \quad x3 = 1/(cL*tanh(cLL3))
         x3 =
                    9.0 ft.
        For L3 = finite dist. to an open seepage exit.
(B-5) x3 = (tanh(cLL3))/cL
         x3 =
                   9.0 ft.
Case 6. d = 4.3 L2 = 57.4 x3 = 9.03881
Shape factor ^{H} = d/(0.43d+L2+x3) = 0.06297
Uplift Head = ho = H^*(x3/(0.43d+L2+x3)) =
                                                   1.0 ft
Input resisting soil wt. from Boring log sheet.
 Wt. = 218.2 psf =
                           3.5 ft. of water
                            3.5
  Factor of Safety = -----
                                            3.34 Min. F.S. > 1.5
                                                *No Berm Required*
                                        Check Uplift Gradient
  Calculate seepage per ft of levee.
                                                          4.5 ft.
                                        Io = ho/Zt Zt =
  Qs = (\$)(Kf)(H)
  Qs = 0.001 ft^3/min/ft.
                                         Io =
                                                0.23
          0.010 gpm/ft.
  Qs =
```

Berm Required *No Berm Required*

Plate D-28

Plate D-29

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/bes8033a.w20
Project:Chaska Stage 3 BORING EVALUATION SHEET

FOR UPLIFT

Date : 10-NOV-1993

I BOTTOM ELEVATION OF BLANKET: 765.6
II BOTTOM ELEVATION OF AQUIFER: ?

Boring log 782.0 Top Elev.

Outlet E

III BLANKET EVALUATION

		Soil	Elevi	tion	Thick	Kvb	Trans.	T	ī ·	Moist		Kvr	Trans.	
782.0	 0	Unit	From		(z act.)	FPM	Factor	Zbl	Zt	Density	Zt x D	FPM	Factor	Zbr
		SW-SM	770	768.2	1.8	0.002	0.3	0.54	1.8	57.6	103.7	0.0014	0.071	0.129
		CL	768.2	765.6	2.6	0.0006	1	2.6	2.6	47.6	123.8	0.0001	1	2.6
772.0	10				0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
762.0	20				0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
					0.0		 -	0	0.0		0.0			0
752.0	30				0.0			0	0.0		0.0			0
			Sum ¹		4.4			3.1	4.4		227.4			2.7
					use in below:	0.0006	fpm							
742.0	40		IV	EVALUAT	ION OF PE	ERVIOUS /	AQUIFER							
		Soil	Eleva	tion	Thick		Source							
		Unit	From		d d	D10	D10	Kh	Khxd	Remarks	3			
		SC	772	770.9	1.1		A	0	0					4
732.0	50	SW-SM	770.9	768.2	2.7	0.088			0 400					
								0.04	0.108					
		CL	768.2	765.6	2.6		A	0	0					
722.0	60	SP	765.6	762	3.6	0.23	G	0.26	0.936					
722.0	00	SP-SM	762	761.4	0.6		A	0.14	0.084	*******	•			
		GP	761.4	760.2	1.2		A	0.26	0.312		•••••			
		SP	760.2	758	2.2		A	0.26	0.572					
712.0	70	GP	758	757	1.0		Α	0.26	0.26		••••••			
		SP-SM												
		37°3M	757 	752.3	4.7	0.17		0.14	0.658					
702.0	80	?	<u>-</u>	m [d] =	0.0		Sim (K)	المد	. 20	<u> </u>				

Sum [d] = 19.7 Sum [Kh x d] = 2.9 Source : "G" = Gradation, "P" = Permeability Test, "A" = Assumed Kf = (sum [Kh x d])/(sum [d]) = 0.149 fpm

EQUIVALENT BLANKET LENGTH (X3) (see note below)

(B-3) $X3 = [(Kf*d*Zb)/(Kb)]^0.5 = 123.8 ft.$

Note: Depending on boundary conditions "X3" may be defined differently.

******end of spreadsheet

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/sc68033a.w20 MATHEMATICAL ANALYSIS OF UNDERSEEPAGE AND SUBSTRATUM PRESSURE

No Berm Required

10-NOV-1993

From Appendix B of MEM 1110-2-1913" & MTM 3-424"

```
Note: The data from boring evaluation sheet # 80-33M * is used in this spreadsheet.
Case 6, Semipervious Landside Top Stratum and No Riverside Top Stratum.
Input from Boring Evaluation Sheet and cross-section.
          0.149 fpm of pervious substratum
  Kf =
  Kbl = 0.0006 fpm
  Zt =
            4.4 ft.
3.1 ft.
                                 Landside cL = [(Kbl)/(Kf*Zbl*d)]^.5

wcw cL = 0.00812

(cL*L3)= 8.12023
  Zbl =
  d =
           19.7 ft.
             124 ft.
  L2 =
                                   tanh(cLL3) =
  L3 =
            1000 ft.
Top of levee = 789.0
Flood elev. = 786.5 Uplift head =
Base of levee = 770.0 Seepage "H" =
                                             19.0 ft.
                                           16.5 ft.
Determine distance from Landside Levee Toe to Effective Seepage Exit, x3.
        For L3 = infinity
(B-3) x3 = 1/cL = [(Kf*Zbl*d)/(Kbl)]^.5
x3 = 123.1 ft.
        For L3 = finite distance to a seepage block
(B-4) x3 = 1/(cL*tanh(cLL3))
         x3 =
                 123.1 ft.
       For L3 = finite dist. to an open seepage exit.
(B-5) x3 = (tanh(cLL3))/cL
         x3 = 123.1 \text{ ft.}
Case 6. d = 19.7 L2 = 124.0 x3 = 123.149
Shape factor ^{H}$H = d/(0.43d+L2+x3) = 0.07707
Uplift Head = ho = H*(x3/(0.43d+L2+x3)) =
Input resisting soil wt. from Boring log sheet.
 Wt. = 227.4 psf =
                            3.6 ft. of water
                             3.6
                                             0.40 Min. F.S. > 1.5
   Factor of Safety = -----
                                                  *Berm Required*
                                         Check Uplift Gradient
  Calculate seepage per ft of levee.
                                         Io = ho/2t Zt =
                                                               4.4 ft.
  Qs = (\$)(Kf)(H)
          0.189 ft^3/min/ft.
1.417 gpm/ft.
                                          Io =
                                                     2.08
  Qs =
  Qs =
*Berm Required*
```

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/bm8033af.w20 10-NoV-1993

SEEPAGE BERM DESIGN - EM 1110-2-1913

```
i0 =
           0.5
                   Allowable gradient at levee toe
  i1 =
           8.0
                   Allowable gradient at berm toe
             O ft. Distance to seepage entrance from riverside Levee toe
  x1 =
  x3 = 123.149 ft. Distance to seepage exit from landside levee toe
  L2 =
           124 ft. Levee width
  ho =
           9.2 ft. Head at landside toe of levee without berm
  H =
          19.0 ft. Total net head on levee
         0.149 fpm Permeability of pervious substratum
  Kf =
 Kbl = 0.0006 fpm Permeability of landside top stratum
           3.1 ft. Transformed thickness of landside top stratum
 Zbl =
  Zt =
           4.4 ft. Actual thickness of landside top stratum
  D =
          19.7 ft. Effective thickness of pervious substratum
          52.5 pcf Submerged unit weight of berm, impervious & semipervious
  Yt =
          57.5 pcf Submerged unit weight of berm, sand & pervious
  Yt =
  Yz =
          52.5 pcf Submerged unit weight of top stratum
  Γ =
         0.625
                   i0/i1
  c = 0.00812
                   [(Kbl)/(Kf*Zbl*d)]^0.5
          124 ft. x1+L2 = dist. to effective seepage entrance from levee toe
  8 =
  A =
          10.9
                   6 + 3sc(r+1)
  ha =
         3.5 ft. allowable head at toe of berm = i1*2t
 Calculate required berm width, "Xsp" semipervious berm
 Xsp = 171.9 \text{ ft. } (-A+[A^2-24*(2+r)*(1+s*c-(H/ha))]^.5)/(2c*(2+r))
 Calculate head at landside toe of levee with berm
 h'o = 11.4 ft. ha*[1+c*(Xsp)+((2+r)/6)(c*(Xsp))^2]
 Calculate required thickness of berm
 t = 6.2 \text{ ft. (h'o - i0*Zt)/(1+i0)}
 Calculate required berm for: "Xp" pervious berm with collector
 Xp = 118.3 \text{ ft. } x3*log(e)(h'o/ha) h'o=ho
 h'o =
         9.2 ft. = ho = (H*x3)/(s+x3)
  t =
          4.4 ft. [h'o-Zt(Y'z/F^*Yw)]/[1+(Y't/F^*Yw)] F = 1.6
 Qb = 0.139 cfm [(Kf*H*d)/(s+x3)]*[1-EXP(-Xp/x3)]
Qb = 1.04 gpm flow per ft. of levee
 Calculate required berm for: "Xs" sand berm
 Xs = 154.1 \text{ ft. } (1/3)*(Xp+2Xsp)
        10.3 ft. ha*[1+c*Xs+(2+r)/6*(c*Xs)^2]
 t =
        5.1 ft. [h'o-Zt*(Y'z/F*Yw)]/(1+(Y't/F*Yw))
 Calculate required berm for: "XI" Impervious berm
 XI = 417.6 \text{ ft. } x3*[(H/ha)-1]-s
 h'o =
         15.5 ft. H*[(x3+XI)/(s+x3+XI)]
          8.6 ft. [h'o-Zt*(Y'z/F*Yw)]/(1+(Y't/F*Yw))
 t =
                             Thick Design Thick 25 % increase in size Const.
 type
                                            Levee Berm Levee cu. yd. Slope
Toe Crown Toe per 100' 1 on
 of
                             Berm
                                    Slope
 Berm Width t
                     h'o Crown 10n
          418 8.6
Imper
                       15.5
                               2.0
                                    75
                                               8.6 2.50
                                                             10.8 10,903
Semip
           172 6.2
                       11.4
                                2.0
                                     75
                                               6.2
                                                      2.50
                                                               7.7 3,575
                                                                                 33
           154 5.1
Sand
                       10.3
                               2.0
                                     75
                                               5.1
                                                       2.50
                                                               6.4 2,753
                                                                                 40
P w/C
          118 4.4
                       9.2
                               2.0 75
                                               4.4
                                                      2.50
                                                               5.5 1,910
```

Outlet E

FOR UPLIFT

Date : 10-NOV-1993

I BOTTOM ELEVATION OF BLANKET : 772.0 II BOTTOM ELEVATION OF AQUIFER :

Boring log 782.0 Top Elev.

III BLANKET EVALUATION

782.0	· 0	Soil Unit	Eleva From		Thick (z act.)	K∨b FPM	Trans. Factor	Zbl	Zt	Moist Density	Zt x D	Kvr FPM	Trans. Factor	Zbr
782.0 .55	i												0.074	0.24/
		SP-SC	782	779	3.0	0.002	0.3	0.9	3.0	57.6	1/2.8	0.0014	0.071	0.214
		SM	779	777	2.0	0.002	0.3	0.6	2.0	57.6	115.2	0.0014	0.071	0.143
772.0	10	CL	777	772	5.0	0.0006	1	5	5.0	47.6	238.0	0.0001	1	5
•					0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
762.0	20				0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
					0.0			0	0.0		0.0			0
752.0	30				0.0			0	0.0		0.0			0
752.0	30				10.0			6.5	10.0		526.0			5.4
	ľ			of Kv to	use in			6.5	10.0		320.0			3.4
					5 below:	0.0006	•							
742.0	40		IV	EVALUAT	TION OF PE	ERVIOUS A	AQUI FER							
		Soil	_	ation	Thick	240	Source D10	Kh	Kh x d	Remarks				
		Unit	From .	- To	d	D10								
732.0	50	SC	772	770.9	1.1		A	0	0					
732.0	٦	SW-SM	770.9	768.2	2.7							l		
						0.088	G	0.04	0.108					
i		CL	768.2	765.6	2.6	0.088	G 	0.04	0.108 0					
					2.6		A	0	0					
722.0	60	SP	765.6	762	2.6 3.6	0.23	A G	0.26	0.936					
722.0	60				2.6		A	0	0					
722.0	60	SP	765.6	762	2.6 3.6		A G	0.26	0.936					
		SP SP-SM	765.6 762	762 761.4	2.6 3.6 0.6		A G A	0.26	0.936 0.084					
722.0	60 70	SP-SM GP	765.6 762 761.4	762 761.4 760.2	2.6 3.6 0.6		A G A	0.26 0.14 0.26	0.936 0.084 0.312					
		SP-SM GP	765.6 762 761.4 760.2	762 761.4 760.2 758	2.6 3.6 0.6 1.2		A A A	0.26 0.14 0.26	0.936 0.084 0.312 0.572					
		SP-SM GP GP	765.6 762 761.4 760.2 758	762 761.4 760.2 758 757	2.6 3.6 0.6 1.2 2.2	0.23	A A A	0.26 0.14 0.26 0.26	0.936 0.084 0.312 0.572 0.26					

Sum [d] = 19.7 Sum [Kh x d] = 2.9 Source: $^{\text{MGH}}$ = Gradation, $^{\text{MPH}}$ = Permeability Test, $^{\text{MAH}}$ = Assumed Kf = (sum [Kh x d])/(sum [d]) = 0.149 fpm

EQUIVALENT BLANKET LENGTH (X3) (see note below)

(B-3) $X3 = [(Kf*d*Zb)/(Kb)]^0.5 = 178.2 ft.$

Note: Depending on boundary conditions "X3" may be defined differently.

******end of spreadsheet

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/sc68033z.w20 MATHEMATICAL ANALYSIS OF UNDERSEEPAGE AND SUBSTRATUM PRESSURE

10-NOV-1993

```
From Appendix B of MEM 1110-2-1913" & MTM 3-424H
 Note: The data from boring evaluation sheet # 80-33M # is used in this spreadsheet.
 Case 6, Semipervious Landside Top Stratum and No Riverside Top Stratum.
 Input from Boring Evaluation Sheet and cross-section.
  Kf =
          0.149 fpm of pervious substratum
  Kbl = 0.0006 fpm
  Zt =
          10.0 ft.
  Zbl =
                               Landside cL = [(Kbl)/(Kf*Zbl*d)]^.5

"c" cL = 0.00561

(cL*L3)= 5.6078
            6.5 ft.
           19.7 ft.
43 ft.
   d =
  L2 =
  L3 =
          1000 ft.
                                  tanh(cLL3) = 0.99997
Top of levee = 787.5
Flood elev. = 785.0 Uplift head = 8ase of levee = 782.0 Seepage "H" =
                                            5.5 ft.
                                           3.0 ft.
Determine distance from Landside Levee Toe to Effective Seepage Exit, x3.
        For L3 = infinity
(B-3) x3 = 1/cL = [(Kf*Zbl*d)/(Kbl)]^.5
         x3 =
                178.3 ft.
        For L3 = finite distance to a seepage block
(B-4) x3 = 1/(cL*tanh(cLL3))
                178.3 ft.
         x3 =
        For L3 = finite dist. to an open seepage exit.
(B-5) x3 = (tanh(cLL3))/cL
         x3 = 178.3 \text{ ft.}
Case 6. d = 19.7 L2 = 43.0 x3 = 178.323
Shape factor ^{1}$" = d/(0.43d+L2+x3) = 0.08573
Uplift Head = ho = H^*(x3/(0.43d+L2+x3)) =
                                                  4.3 ft
Input resisting soil wt. from Boring log sheet.
 Wt. = 526 psf =
                        8.4 ft. of water
                            8.4
                                   # 1.98 Min. F.S. > 1.5
  Factor of Safety = -----
                                               *No Berm Required*
 Calculate seepage per ft of levee. Check Uplift Gradient
```

Qs =

Qs = (\$)(Kf)(H)

Qs = 0.038 ft^3/min/ft. Qs = 0.287 grm/f+

0.287 gpm/ft.

Io = ho/Zt Zt = 10.0 ft.

Io = 0.43

^{*}Berm Required*

^{*}No Berm Required*

excerpt from file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/creep.w20 18-NOV-1993 10:50:27 AM Сгеер Creep path distances from microstation drawing: on fdip2b, file:/usr/jrc/chaska/stage3/bor/section1.dgn The microstation drawing generated from coordinates listed above. The d.w.s. elev. will be at u.s. and d.s. structure curbs, if available. If difference between u.s. & d.s. curb elev. > d.w.s., that will contol design Creep path will not include riprap thicknesses. The design min. creep ratio is 7, assumes fine sand for fndt. materials. Drop structure 1 Lane's "weighted" creep ratio Cw=((H/3)+(V+Vs))/h H h CM ft ft ft ft existing structure, design water surface 4.7 42.7 7.2 0 4.6 shows creep path may be problem 4.6 existing structure, design water surface 5.9 42.7 12.95 0 with riprap included 6.2 42.7 7 4.6 planned design Drop structure 2 Lane's "weighted" creep ratio Cw=((H/3)+(V+Vs))/h H ٧s h Cw ft ft ft ft 17.9 existing structure, design water surface 2.3 62.6 20.8 0 shows creep path may be problem 17.9 existing structure, design water surface 2.6 62.6 26.55 0 with riprap included 12.74 17.9 planned design 62.6 Drop structure 3 Lane's "weighted" creep ratio Cw=((H/3)+(V+Vs))/h Н ٧s h CW ft fŧ ft ft 2.9 49.25 12.4 0 10 existing structure, difference in curb elevations shows creep path may be problem 49.25 existing structure, difference in curb elevations 3.5 18.15 0 10 with riprap included 49.25 12.4 8.8 10 planned design 3.8 Drop structure 4 Lane's "weighted" creep ratio Cw=((H/3)+(V+Vs))/h Н ٧ h ۷s CM ft ft ft ft 49.25 12.8 existing structure, difference in curb elevations 2.5 15.5 shows creep path may be problem 12.8 existing structure, difference in curb elevations 2.9 49.25 21.25 0 with riprap included 49.25 15.5 5.6 12.8 planned design 2.9

Bligh's c	reep ra	tio	• • • • • • • • • • • • • • • • • • • •	*************	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••
C O	L 0	h 1					
•••••	••••••	•••••	TM 3-424 page 61 Table 2	•••••		••••••••••	

MINIMUM CREEP RATIOS

	Creep ratios			
	Bligh	Lane		
Material	C	CW		

very fine sand or silt	18	8.5		
fine sand	15	7		
medium sand		6		
coarse sand	12	5		
fine gravel or sand and gravel	9	4		
coarse gravel including cobbles	4 to 6	3		
boulders with some cobbles and gravel	• •	2.5		

from table 5.2 , pg 126 Groundwater and Seepage by Milton E. Harr (Neil's book)

Recommended Weighted Creep Ratio's(Lane)

Safe weighted creep-head ratios,Rc

Material	Lane Cu	
very fine sand or silt		
	8.5	
fine sand	7	
medium sand	6	
coarse sand	5	
fine gravel	4	
medium gravel	3.5	
coarse gravel, including cobbles	3	
boulders with some cobbles and gravel	2.5	
soft clay	3	
medium clay	2	
hard clay	1.8	
very hard clay or hardpan	1.6	

exerpt from file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/creep.w20

CFRAG input files

Assumes bottom of pervious stratum at elev. 525 unless otherwise noted. Uses max. design water surface for uplift pressures. Uses difference in curb elevations for gradient if greater than the difference in design water surface elevations. Corrected for nonisotropic permeabilities(see pg. 20 instruction man. Using highest permeability at any structure location. Files on fdip2b in /usr/jrc/chaska/stage3/seepage/ Files are ds1, ds2, etc. for drop structure 1 or 2, etc. Output are in files ds1.o, ds2.o, etc. Assumes riprap has no effect on flow.

final d.s. 4 wingwalls 100 name d.s. 4 ww w/3.5's.d.,18.15's.p. note 20' sheetpile cuts off flow 110 units ft min (k from D10=0.08 mm) 0.024 19.75 120 water 27.75 49.25 130 2 13.35 frag 22 19 33.4 140 frag 150 frag 16.2 4.8 160 end transformation factors Ky X 0.024 0.006 0.012 0.5 2 100 name d.s. 4 ww w/3.5's.d.,18.15's.p. , trans. perm. 110 units ft min 0.012 120 19.75 12.8 water 130 frag 2 55.5 26.7 38 140 frag 6 24.625 66.8 150 2 32.4 9.6 frag 160 end

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/cfu4m.w20 10-NOV-1993 01:31:13 PM

reducing CFRAG output

file:name d.s. 4 ww w/3.5's.d.,18.15's.p. 12.8=total head loss

no	frag type	L	A	В	T	S1	\$2	form fac	head loss
1 2 3	2 6 2	24.63			55.5 66.8 32.4	26.7 44 9.6	38	0.97 0.79 0.74	4.98 4.06 3.77

19.8= head above u.s. grade(from CFRAG input)

see sketch for pressure locations 0.03808=gradient for 2nd fragment

Pa= 1232 63168.7=Lateral force, headwater side
Pc= 2588
Pd= 126 2396.39=uplift force
Pe= 68.3
Pf= 2709
Pg= 1875 50179.4=Lateral force, tailwater side

check exit gradient(pg 19 of CFRAG manual,also page 11) Ie=(h*pi)/(2*K*T*m) for type 2 fragments,m=sin((pi*s)/(2*T)) obtain K from table

Ie h K T m s m^2 Ie 0.25 3.77 1.66 32.4 0.4488 9.6 0.20142 0.24533

revising above from transformed section to actual dimensions and pressures

L, T, ,S1, & S2 from pre-input file for file :/w4m.o 12.8=total head loss

no	frag type	L	Α	В	T	S1	S2	form fac	head loss
1 2	2 6 2	49.25		•	27.75 33.4 16.2	13.35 22 4.8	19	0.97 0.79 0.74	4.98 4.06 3.77

19.8= head above u.s. grade(from CFRAG input)

0.04499=gradient for 2nd fragment

Pa= 1232 32108.8=Lateral force, headwater side
Pc= 1755
Pd= 516 22011.7=uplift force
Pe= 378
Pf= 1689
Pg= 1154 17502.8=Lateral force, tailwater side

Ie h K T m s m^2 Ie
0.49 3.77 1.66 16.2 0.4488 4.8 0.20142 0.49067

file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/cfhelp.w20

10-NOV-1993 01:39:08 PM rechecked based on GENERALS REVISED safety drop of 3.5' vs 3' check of revised cutoffs on drop structures based on above info for help in determining CFRAG input files

for drop structures

	w/3.5' s	afety dr	ор	
	ds1	ds2	ds3	ds4
u.s.t.l.*upstream top of levee	732.2	753.4	767	784.1
u.s.c.i.*upstream channel invert	715.5	732.5	748.5	766.1
u.s.r.r.*upstream riprap thickness(ft)	1.75	1.75	1.75	1.75
b.o.b. *bottom of basin	709.5	712.7	<i>7</i> 36.57	750.8
d.s.r.r.*upstream riprap thickness(ft)	4	4	4	4
d.s.c.i.*upstream channel invert	715	720	742	756.8
d.s.t.l.*upstream top of levee	723.8	735.5	758	771.3
b.o.a. *bottom of aquifer	525	525	525	736.6
HDWT	18.45	22.65	20.25	19.75
Н	8.4	17.9	10	12.8
S1	4.25	18.05	10.18	13.55
T1	188.75	205.75	221.75	27.75
\$2,1	3.5	6.7	4.57	2.8
\$2,2	0	0	0	0
TŽ	184.5	187.7	211.57	14.2
\$3	5	10	6	4.8
T3	186	191	213	16.2
bot u.s.*bottom of u.s. sheetpile cutoff	709.5	712.7	736.57	750.8
bot d.s.*bottom of d.s. sheetpile cutoff	706	706	732	748
c.o.l. *total vertical length of cutoff	9.25	28.05	16.18	18.35

Files were adjusted to transformed permeability with Kh=4*Kv

file	ds1fb	ds2fb	ds3fb	ds4fb
I.E.(transformed)	0.2509			
I.E.(actual)	0.5018	0.4824	0.4634	0.4702

excerpt from file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/cfhelp.w20

Recheck wingwalls

09-JUL-1993

rechecked based on GENERALS REVISED safety drop of 3.5' vs 3' rechecked based on STRUCTURES REVISED bottom of slab elevation check of revised cutoffs on drop structures based on above info for help in determining CFRAG input files

for wingwalls

	w/3.5' safety drop			
	ww1	HH2	WH3	ww4
u.s.t.l.*upstream top of levee	732.2	753.4	767	784.1
u.s.c.i.*upstream channel invert	715.5	732.5	748.5	766.1
u.s.r.r.*upstream riprap thickness(ft)	1.75	1.75	1.75	1.75
b.o.b. *bottom of basin	720	730	750	770
d.s.r.r.*upstream riprap thickness(ft)	4	4	4	4
d.s.c.i.*upstream channel invert	715	720	742	756.8
d.s.t.l.*upstream top of levee	723.8	735.5	758	771.3
b.o.a. *bottom of aquifer	525	525	525	736.6
HDWT	18.45	22.65	20.25	19.75
Н	8.4	17.9	10	12.8
S1	4.25	14.75	6.75	13.35
T1	188.75	205.75	221.75	27.75
\$2,1	14	24	18	22
\$2,2	10.5	14	10	19
T2	195	205	225	33.4
S3	5	10	6	4.8
T3	186	191	213	16.2
bot u.s.*bottom of u.s. sheetpile cutoff	709.5	716	740	751
bot d.s.*bottom of d.s. sheetpile cutoff	706	706	732	748
c.o.l. *total vertical length of cutoff	9.25	24.75	12.75	18.15

Files were adjusted to transformed permeability with Kh=4*Kv

file	wu1f	ww2f	ww3f	uu4f
I.E.(transformed)	0.2522	0.2494	0.2429	0.245
I.E.(actual)			0.4858	

exerpt from file:/usr4/jrc/chaska/STAGE3/FDM92/seepage/cfhelp.w20

for help in determining CFRAG input files summary of files used in wingwall analysis from above for wingwalls w/o safety drop

	w/o safe	ty drop		
	HW1	ww2	EHH	11114
u.s.t.l.*upstream top of levee	732.2	753.4	767	784.1
u.s.c.i.*upstream channel invert	719	736	752	769.6
u.s.r.r.*upstream riprap thickness(ft)	1.75	1.75	1.75	1.75
b.o.b. *bottom of basin	720	730	750	770
d.s.r.r.*upstream riprap thickness(ft)	4	. 4	4	4
d.s.c.i.*upstream channel invert	715	720	742	756.8
d.s.t.l.*upstream top of levee	723.8	735.5	758	771.3
b.o.a. *bottom of aquifer	525	525	525	736.6
HDWT	14.95	19.15	16.75	16.25
H	8.4	17.9	10	12.8
\$1	5.25	18.25	10.25	16.85
Ti	192.25	209.25	225.25	31.25
\$2,1	14	24	18	22
\$2,2	8	14	10	19
T2	195	205	225	33.4
\$3	5	10	6	4.8
T3	186	191	213	16.2
bot u.s.*bottom of u.s. sheetpile cutoff	712	716	740	751
bot d.s.*bottom of d.s. sheetpile cutoff	706	706	732	748
c.o.l. *total vertical length of cutoff	10.25	28.25	16.25	21.65

Files were adjusted to transformed permeability with Kh=4*Ky

file	w1h	w2k	w3110	₩4 i
I.E.(transformed)	0.2475	0.2427	0.2321	0.237
I.E.(actual)	0.495	0.4854	0.4642	0.474

Plate D-41

Plate D-42

Plate D-43

Plate D-44

Plate D-45

Plate D-46

Plate D-47

Plate D-48

PLATE D-52

PLATE D-65

PLATE D-66

PLATE D-77

PLATE D-79

PLATE D-80

FOUNDATION SETTLEMENT OF LEFT LEVEE PRISM FROM APPROX. STA. 6+00 TO 8+00 (downstream of ds #1)

Primary Consolidation of CL-OL and OH layers based on approximate soil stratigraphy of borings 92-174M, 92-197M and 92-198M

Soil Type	Approx. Elev- ation (ft)	Thickness of Layer (ft)	SPT	Average Moisture Content (%)	Average Liquid Limit			
CL-OL	719	6	1	37	45		RESULTS	FROM
OH	713 705	8	1-3	168	159	JAR	SAMPLES	

Compute compression index Cc based on the following correlation CL-OL

> Cc = 0.009(LL-10)Cc = 0.32 (Terzaghi & Peck, 1967) where LL = 45%

ASSUME A VOID RATIO eo = 1.2 (Terzaghi & Peck, 1967)

ASSUME A VOID RATIO eo = 3.0 For a soft organic clay, eo => 2.5-3.2 (Das,1990)

Compute compression index Cc based on the following correlation

Cc = 0.0115wn Cc = 1.9(Das, 1990) where wn = insitu water content = 168%

CALCULATION OF PRIMARY CONSOLIDATION SETTLEMENT ASSUMING A NORMALLY CONSOLIDATED MATERIAL

1	ncrease	Effective	
Depth	in ov'	Vertical	Primary Consolidation Settlement
Below	due to	Stress	•
G.S.	levee	before levee	S = [CcH/(1+eo)]log [(po+delta p)/po]
(ft)	(psf)	(pef)	
1	1087	48	
2	1075	95	
2 3 4 5	1064	143	\$ = (0.32*6'/(1+1.2))*log((143+1064)/143)
4	1052	190	S = 0.81 ft
5	1040	238	
6	1027	286	
7	1015	333	
8	1002	381	
9	989	428	
10	977	476	\$ = (1.9*8'/(1+3.0))*log((476+977)/476)
11	964	524	S = 1.84 ft
12	951	571	1107 16
13	938	619	
14	925	666	
15	913	714	
16	900	762	
17	887	809	
18	875	857	
19	862	904	
20	850	952	
	0,0	,,,	

TOTAL PRIMARY >>>>> S = 2.65 ft = 31.8 in CONSOLIDATION SETTLEMENT

ASSUMPTIONS / ADDITIONAL INFORMATION

- secondary consolidation settlement is not included in the analysis since limited information is available (secondary consolidation can be significant in organic soils)
- the increase in effective vertical stress due to the levee prism was modeled as follows: levee height = 10 ft top width = 10 ft side slope = 1 on 4 levee length = 200 ft
- stress increase computed using NCSVERT (10016), linearly elastic, Boussiness solution
- increase in effective vertical stress computed at levee centerline
- groundwater table at the ground surface (i.e., \$=100%)
- assumed foundation gamma sat. = 110 pcf

FOUNDATION SETTLEMENT OF RIGHT LEVEE PRISM FROM APPROX. STA. 6+00 TO 8+00 (downstream of ds #1)

Primary Consolidation of CL-OL and OH layers based on approximate soil stratigraphy of borings 92-174M, 92-197M and 92-198M

a -21	Approx.	Thickness		Average Moisture	Average Liquid Limit			
Soil	ation	of Layer		Content	Limit			
Туре	(ft) 719	(ft)	SPT	(%)				
CL-OL		6	1	37	45	ALL	RESULTS	FROM
	713					JAR	SAMPLES	
OH		8	1-3	168	159			
	705							

CL-OL Compute compression index Cc based on the following correlation

> (Terzaghi & Peck, 1967) Cc = 0.32Cc = 0.009(LL-10)where LL = 45%

ASSUME A VOID RATIO eo = 1.2 (Terzaghi & Peck, 1967)

ASSUME A VOID RATIO eo = 3.0

For a soft organic clay, eo => 2.5-3.2

(Das, 1990)

OH

Compute compression index Cc based on the following correlation

Cc = 1.9(Das, 1990) Cc = 0.0115wnwhere wn = insitu water content = 168%

CALCULATION OF PRIMARY CONSOLIDATION SETTLEMENT ASSUMING A NORMALLY CONSOLIDATED MATERIAL

I	ncrease	Effective	
Depth	in ov'	Vertical	Primary Consolidation Settlement
Below	due to	Stress	
G.S.	levee	before levee	S = [CcH/(1+eo)]log [(po+delta p)/po]
(ft)	(psf)	(psf)	
1	555	48	
2	546	95	•
2 3	535	143	s = (0.32*6'/(1+1.2))*log((143+535)/143)
4	524	190	S = 0.59 ft
5	511	238	
6	499	286	
7	485	333	
8	472	381	
9	459	428	
10	446	476	s = (1.9*8'/(1+3.0))*log((476+446)/476)
11	433	524	s = 1.09 ft
12	420	571	
13	408	619	
14	395	666	
15	384	714	
. 16	372	762	
17	361	809	
18	351	857	
19	341	904	
20	331	952	

1.68 ft = 20.2 TOTAL PRIMARY >>>>> S = CONSOLIDATION SETTLEMENT

ASSUMPTIONS / ADDITIONAL INFORMATION

- secondary consolidation settlement is not included in the analysis since limited information is available (secondary consolidation can be significant in organic soils)
- the increase in effective vertical stress due to the levee prism was modeled as follows: levee height = 5 ft top width = 10 ft side slope = 1 on 4

levee length = 200 ft

- stress increase computed using NCSVERT (10016), linearly elastic, Boussinesq solution increase in effective vertical stress computed at levee centerline
- groundwater table at the ground surface (i.e., S=100%)
- assumed foundation gamma sat. = 110 pcf

FOUNDATION SETTLEMENT NEAR ENGLER BLVD. DUE TO LOWERING OF THE WATER TABLE

Primary Consolidation of strata based on geologic profile developed from 90-134, 92-169, and 92-200 $\,$

Soil Liquid Plastic Moist. Elevation Strata Type Limit Limit Content SPT (ft)		
A. SC-CL 35 17 23.9 2 766-751		
B. CL-ML 26 19 32.1 1 746-740		
C. CL 31 19 37.1 0 733-728		
For Undisturbed Clays, the following empirical correlation exists		
A	B.	C.
Cc = 0.009(LL-10) (Terzaghi & Peck) Cc = 0.23	0.15	0.19
Compute in situ void ratio eo based on the following correlations		
(for all clays) Assuming Cc = 0.23	0.15	0.19
Cc = 0.156eo + 0.0107 eo = 1.41	0.89	1.15
$CC = 0.3(eo-0.27)$ (Hough) $e_0 = 1.02$		0.90
Cc = 0.75(eo-0.5) (Soils with low plasticity) eo = 0.81		0.75
Void ratio range for soft clay Average eo = 1.08	0.79	0.94
(0.9 - 1.4)		
Results of Consolidation Tests		
Soil Elevation		
Strata Type Boring Sample (ft) OCR eo Co	Cr	
A. SC 90-134 1 763.7-762.4 3.5 0.63 0.13		
A. SC 92-200 1 762.2-760.2 4.3 1.09 0.4		•
A. SC 90-134 2 758.7-756.7 1.7 1.37 0.51		
A. SC 90-134 3 753.7-751.7 1.8 0.67 0.14	0.01	
Average Values 2.8 0.94 0.30	0.03	

Filename: usr4/cwb/chaska3/engler/sett/drawd1.w20 Date: 10-NOV-1993

Settlement at Engler and Highway 17

elevations(ft)	soil type	Case 1	Case 2	Case 3	Case 4
99)	80-01	Cr=0.03 e0=0.94	cr=0.07 e0=1.37	Cr=0.03 e0=0.94	Cr=0.07 e0=1.37
751	sands				
746 -	0 = E	Cc=0.15 e0=0.79	Cc=0.15 e0=0.79	Cc=0.15 e0=0.79	Cc=0.15 e0=0.79
740 -	sands				
(33	- 0	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94
7.5	sm-ml	Cc=0.04 e0=0.24	Cc=0.04 e0=0.24	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94
719	-0	Cc=0.08 e0=0.40	Cc=0.08 e0=0.40	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94
	sands				
607	- o	Cc=0.04 e0=0.24	Cc=0.04 e0=0.24	Cc=0.19 e0=0.94	Cc=0.19 e0=0.94
(05 100	sands				
90					

file:/usr/jrc/chaska/stage3/seepage/engler/section.dgn gamma moist=120 pcf gamma sat=125 pcf

FOUNDATION SETTLEMENT OF LEVEE NEAR HIGHWAY 17 DROP STRUCTURE Primary Consolidation of CL & CH layers based on boring 80-32M

	Depth	_1			Atter		
	Below Thi	CKNess			Limi	78	
Soil	G.S. of		SPT	M.C.	LL	PL	
Туре	(ft) 5	(ft)	(#/ft)	(%)	(%)	(%)	
CL & CH	7	2	2	33			
CL	8	3	2	28	41	14	
	11		_	-			
CL & CH	14	9	2	36	55	16	
CL & Ch	23	,	•	32 28 40	39	15	
F	SSUME A VO or a soft (Das,1990)			0.9 9-1.4)	res	ults for a	M, sample 2, consolidation test m CL material with similar index rovided suspect information

Compute compression index Cc based on the following correlation (EM 1110-1-1904)
Cc = 0.012wn (for wn=34%)
Cc = 0.41

CALCULATION OF PRIMARY CONSOLIDATION SETTLEMENT . ASSUMING A NORMALLY CONSOLIDATED CLAY

Ir	crease	Effective	
epth	in ov'	Vertical	Primary Consolidation Settlement
Below	due to	Stress	·
G.S.	levee	before levee	S = [CcH/(1+eo)]log [(po+delta p)/po]
(ft)	(psf)	(psf)	
2	1378	250	
3	1374	375	
4	1367	500	
5	1358	625	No. of the second secon
6	1346	750	s = (0.41*2'/(1+0.9))*log((750+1346)/750)
7	1333	875	s = 0.19 ft
8	1319	1000	•
9	1303	1125	S = (0.41*3'/(1+0.9))*log((1187+1295)/1187)
10	1287	1250	S = 0.21 ft
11	1270	1313	
12	1253	1375	
13	1236	1438	
14	1218	1500	
15	1200	1563	
16	1182	1626	
17	1164	1688	
18	1146	1751	S = (0.41*9'/(1+0.9))*log((1782+1155)/1782)
19	1128	1813	s = 0.42 ft
20	1110	1876	
21	1092	1939	
22	1074	2001	
23	1057	2064	
24	1039	2126	
25	1022	2189	

TOTAL PRIMARY >>>>> S = 0.82 ft = 10 in.
CONSOLIDATION SETTLEMENT

ASSUMPTIONS / ADDITIONAL INFORMATION

- Cc = 0.41 is a representative average value for clay soils in this area
- secondary consolidation was not considered
- the increase in effective vertical stress due to
 the levee prism was modeled as follows: normal loading
 levee height = 11.5 ft
 top width = 10 ft
 levee length = 120 ft
- increase in effective vertical stress computed at levee centerline
- groundwater table 10 ft below the ground surface (based on boring 80-32m)
- gamma sat. = 125 pcf (foundation soil) gamma moist = 120 pcf (levee fill)

OUTLET E SETTLEMENT

Primary Consolidation of CL layer between elevation 768.2 - 765.6 based on boring 80-33M

Soil Liquid Plastic Moist. Limit Limit Content SPT Type CL 47 15 35.9 1-2

For Remolded Clays, the following empirical correlations exist

Cc = 0.007(LL-10)Cc = 0.007(LL-7)

(Terzaghi & Peck) (Skempton)

Cc = 0.259Cc = 0.28

Compute in situ void ratio eo based on the following correlations (for all clays)

> Cc = 0.156eo + 0.0107Cc = 1.15(eo-0.27)

(Nishida)

1.6 e0 = eo = 0.5

Void ratio range for soft clay (0.9 - 1.4)

Average eo = 1.05

CHECK OF PRIMARY CONSOLIDATION SETTLEMENT VS. CSETT RESULTS

Stress increase under centerline of Levee Prism (Das 1983) delta p = qo/pi[((B1+B2)/B2)(alpha1+alpha2)-(B1/B2)alpha2]

alpha1 = arctan((B1+B2)/z)-arctan(B1/z)alpha2 = arctan(B1/z)

Effect of Levee Prism

gamma = 120 pcf B1 = 5 ft alpha1 = 0.48962 radians H = 18 ft B2 = 54 ft alpha2 = 1.03038 radians qo = gamma(H) = 2160 psfZ = 3 ft delta p1= 2152.48 psf

Effect of Seepage Berm

gamma = 120 pcf B1 = 191 ft B2 = 15 ft z = 3 ft alpha1 = 0.00114 radians H = 5 ft alpha2 = 1.55509 radians qo = gamma(H) = 600 psfdelta p2= 300 psf

Effect of Seepage Berm

gamma = 120 pcf B1 = 56 ft alpha1 = 9.5e-06 radians H = 5 ft B2 = 0.01 ft alpha2 = 1.51728 radians qo = gamma(H) = 600 psfz = 3 ftdelta p3= 299.98 psf

delta p = delta p1+delta p2-delta p3 = 2152.5 psf

ASSUMING A NORMALLY CONSOLIDATED CLAY

S = [CcH/1+eo] log po+delta p/po >>>>> s = 0.373 ft

> CSETT Results S = 0.362 ft

> > Settlement under levee centerline (@ x=0)

file:usr4/cwb/chaska3/settle/outlete.w20

RESULTS OF CSANDSET FOR OUTLET E

SETTLEMENT (in.)

	LEVEE	RIVERWARD	LANDWARD	SEEPAGE	
METHOD	CENTER	SLOPE	SLOPE	BERM	
A. Terzaghi					
B. Teng	3.56	6.5	6.5		
C. Alpan	3.72	0.98	0.98	0.36	
D. Elastic Theory: Rigid	0.88	0.43	0.43	0.22	
Center	0.95	0.46	0.46	0.24	
Average	0.8		0.39		
E. D'Appolonia (1968)	0.6	0.35	0.35		
F. D'Appolonia (1970)	0.32	0.18			
G. Peck and Bazaraa	2.51	4.12	4.12	3.18	
H. Schmertmann (1970)	5.55				
I. Schmertmann (1978)	2.34			• • •	
J. Schultz & Sherif	1.52	0.37			
K. Meyerhof	2.96	3.44	3.44	3.18	
L. Peck, Hanson, Thornburn	5.62	4.5	4.5	3.66	
M. Bowles				2.36	
N. NAVFAC DM 7.1	4.24	2.35	2.35	4.09	
O. Oweis: Rigid					
Center					
Edge					
AVERAGE	2.54	2.01	2.01	1.49	
FOOTING WIDTH (ft)	10	54	54	150	
FOOTING LENGTH (ft)	200	200	200	200	
LOAD INTENSITY, q (tsf)	1.08		0.54	0.3	
EMBEDMENT DEPTH (ft)	1.00	0.54	0.54	0.5	
DEPTH OF WATER TABLE BELOW	•		•	•	
GROUND SURFACE (ft)	0.5	0.5	0.5	0.5	
AVERAGE SPT VALUE OF	V. ,	V. 5			
PERVIOUS STRATUM	2	2	2	2	

ASSUMPTIONS MADE IN SETTLEMENT ANALYSIS OF PERVIOUS STRATA

- Embankment loading approximated by a series of footing loads
 Immediate settlement restricted to a depth of 10 ft. below the
 natural ground surface, below the 10 ft. depth effects of the
 embankment loading on the higher blow count material would lead to an overly conservative estimate
- 10 ft. pervious stratum, SPT value of 2, includes the 2.6 ft. CL layer, therefore an immediate & consolidation settlement was computed for this layer

SETTLEMENT PROFILE Consolidation + Average Immediate Settlement

Distance	Settlemen
(ft)	(in)
-53	0
-26	5.6
0	7
28	5.5
55	2.5
132	1.5
260	0

FILENAME:usr4/cwb/chaska3/settle/oecss.w20

Plate D-90

Chaska Stage 3 Material Distribution

Used in determining quantities of usable fill from required excavation. Does not account for material wasted during stripping and grubbing.

By Station

0 650 assume water level at elev 715 wet clays to be wasted(25%) Lime to be moved to west(MH is the lime)(75%) no usable excavation 650 1450 assume water at elev 719 10% wasted 80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious	From	To	
Lime to be moved to west(MH is the lime)(75%) no usable excavation 650 1450 assume water at elev 719 10% wasted 80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious	0	650	assume water level at elev 715
no usable excavation 650 1450 assume water at elev 719 10% wasted 80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious			
650 1450 assume water at elev 719 10% wasted 80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious			•
10% wasted 80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious			
80% random fill 10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious	650	1450	
10% pervious fill all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious			
all material below water level wasted(except pervious) 1450 2600 assume water at elev 730 30% pervious			
1450 2600 assume water at elev 730 30% pervious			
30% pervious	1.450	0.00	
	1450	2600	
709 wandom			70% random
2600 3000 assume water at elev 745	2600	3000	
10% pervious	2000	3000	
80% random			-
10% wasted			10% wasted
all material below water level wasted			all material below water level wasted
3000 3300 assume water at elev 745	3000	3300	assume water at elev 745
30% impervious			30% impervious
40% random			
30% wasted			
all material below water level wasted			
3300 4000 assume water at elev 752	3300	4000	
20% impervious			_
30% random 50% wasted			
all material below water level wasted			
4000 4800 assume water at elev 760	4000	4800	
20% impervious			20% impervious
50% random			•
30% wasted			30% wasted
all material below water level wasted			all material below water level wasted
4800 6000 assume water at elev 770	4800	6000	
60% impervious			-
30% random			
10% wasted			201 112000
all material below water level wasted			

- 1. WATER LEVEL NOT ENCOUNTERED.
- 2. HOLLOW STEM AUGER ADVANCED TO EL. 883.0'.
- 3. FIVE 2' UNDISTURBED SAMPLES TAKEN FROM THE PILOT BORING.
- 4. HOLE BACKFILLED WITH CEMENT-BENTONITE GROUT.

Boring	Sample	Sample	Depth	Atterberg	Moisture	Mechanica	Hydro-	Specific	Triaxi	al Shear	Unconfined	Consolidatio
No.	No.	Туре	(ft)	Limits	Content		meter		Q	Rbar		
80 - 30 M		jar	9.2									
80 - 30 M		jar	15.0			ļ		ļ	ļ	<u> </u>		
80 - 30 M 80 - 30 M		jar	21.2	 	ļ				ļ			
80 - 30 M		jar jar	31.5 41.4	 	 	 				ļ	ļ	
80 - 32 M		jar	1.5	 	 	 			 	 		
80 - 32 M		jar	6.6							 		
80 - 32 M		jar	11.0									
80 - 32 M	6	jar	13.9									
80 - 32 M	7	jar	16.1									
80 - 32 M	8	jar	19.4							ļ		
80 - 32 M 80 - 32 M	10 11	jar jar	21.8 23.1	-						 		
80 - 32 M	13	jar	26.3	 								
80 - 33 M	2	jar	4.1		 				·			
80 - 33 M	3	jar	6.7									l
80 - 33 M	4	jar	11.1									
80 - 33 M	5	jar	13.8							ļ		
80 - 33 M 80 - 33 M	6 7	jar jar	16.4 19.1							ļ		
80 - 33 M	10	jar	29.7	-						-		
80 - 34 M	2	jar	8.6									
80 - 34 M	3	jar	11.2									
80 - 34 M	4	jar	16.3									
80 - 34 M	5	jar	22.2									
80 - 34 M 82 - 42 M	6	jar	25.8									
82 - 42 M	1 2	jar jar	1.5 6.5									
82 - 42 M	4	jar	16.5									
82 - 42 M	7	jar	29.5									
82 - 42 M	8	jar	31.5								· · · · · · · · · · · · · · · · · · ·	
82 - 42 M	9	jar	34.5									
82 - 42 M	10	jar	36.5									
82 - 42 M 82 - 42 M	11.	jar undist	39.5 10-11.4	NP					************	************		
82 - 42 M	3	undist	15-16.3									
82 - 42 M	5	undist	25-26.4								•	
82 - 43 M	7	jar	31.5				***********	***************************************				
82 - 43 M	10	jar	41.5									· · · · · · · · · · · · · · · · · · ·
82 - 43 M	13	jar	56.5									
82 - 43 M 82 - 43 M	16 17	jar	71.5 76.5									
82 - 43 M	18	jar jar	81.5									
82 - 43 M	20	jar	91.5									
82 - 44 M	1	jar	1.5									
82 - 44 M	2	jar	7.0									
82 - 44 M	3	jar	9.0									
82 - 44 M 82 - 44 M	5 8	jar jar	11.5 31.5								· · · · · · · · · · · · · · · · · · ·	
82 - 44 M	10	jar	41.5									
82 - 44 M	11	jar	46.5									
82 - 45 M	. 1	jar	1.5									
82 - 45 M	2	jar	4.0									
82 - 45 M	3	jar	6.0]			
82 - 45 M 82 - 45 M	4 5	jar	9.5 11.5									
82 - 45 M	6	jar jar	15.5									
32 - 45 M	8	jar	25.5									
32 - 45 M	9	jar	31.5						-			
32 - 46 M	8	jar	36.5									
32 - 46 M	12	jar	51.0									
32 - 46 M	15	jar	66.5									
32 - 46 M	17 20	jar	76.5 80.6									
38 - 98 M	3	jar jar	8.8									
38 - 98 M	5	jar	15.7			-	 +					
38 - 98 M	6	jar	20.8									
38 - 98 M	9	jar	36.7									
90 - 131 M	1	jar	1.0									
90 - 131 M	2	jar	3.7									
90 - 131 M	3 4	jar	4.6 6.8									
90 - 131 M	5	jar jar	12.0									
90 - 131 M	6	jar	16.5									
00 - 131 M	8	jar	21.7						-			
00 - 132 M	2	jar	3.5			-						
00 - 132 M	3	jar	5.5									
0 - 132 M	4	jar	7.7									
0 - 132 M	5	jar	9.1			1	T		T			

Boring	Sample	Sampl	e Depth	Atterberg	Moisture	Mechanic	of Hude	0			T	
No.	No.	Туре	(ft)	Limits	Content	Analysis				ial Shea R bar		
90 - 132 M 90 - 132 M	13	jar undist	27.0 1 14-16	***************************************	***************************************					11.00	Compression	LOZGANED.
90 - 132 M	2	undist		-				4				
90 - 133 M	1	jar	1.5						4-		<u> </u>	
90 - 133 M 90 - 133 M	2	jar	12.0				*		 	_	 	
90 - 133 M	5	jar	16.0 19.0		ļ <u>.</u>							
90 - 133 M	11	jar	26.5				<u> </u>		-			
90 - 133 M	12	jar	34.7						-	 	 	
90 - 133 M 90 - 133 M	13	jar	53.0				1		+		 	
90 - 133 M	2	undist										
90 - 133 M	3	undist		-			4		<u> </u>			
90 - 134 M	1	jar	1.5		***********				-	+		
90 - 134 M 90 - 134 M	3	jar	7.5						+	+		<u> </u>
90 - 134 M	6	jar jar	12.0 16.0			*******************						
90 - 134 M	7	jar	19.0	 			<u> </u>		ļ			
90 - 134 M	8	jar	26.5			•••••	-	 	-	 	ļ	
90 - 134 M	10	jar	34.7			*******	7	-	+	 		
90 - 134 M 90 - 134 M	16 1	jar	53.0						1	 		
90 - 134 M	2	undist	3-4.3 8-10									
90 - 134 M	3	undist	13-15				-	4				
90 - 135 M	2	jar	3.5						1			
90 - 135 M 90 - 135 M	3	jar	9.5					<u> </u>	<u> </u>	1		
90 - 135 M	5	jar jar	11.5 16.0									
90 - 135 M	6	jar	21.5	+						<u> </u>		
90 - 135 M	8	jar	31.5				-	 	 	+		
90 - 136 M	1	jar	3.5				-	 		 		
90 - 136 M 90 - 136 M	3	jar	6.0								-	
90 - 136 M	-3 -	jar jar	10. 14.0									
90 - 136 M	5	jar	18.0	1			-					
90 - 136 M	6	jar	22.0			•••••		 		 		
90 - 136 M 90 - 136 M	- 7 - 8	jar	26.8							1		
90 - 137 M	3	jar jar	29.5 6.0	-								
90 - 137 M	4	jar	10.			•••••						
90 - 137 M	6	jar	13.5			•••••		 				
90 - 137 M	- 7 - 8	jar	17.5									
90 - 138 M	2	jar jar	7.2									
90 - 138 M	3	jar	11.9			••••••						
90 - 138 M	6	jar	29.2			•••••						
90 - 138 M 90 - 138 M	9 11	jar	42.0									
90 - 138 M	13	jar jar	49.4 53.0	 								
90 - 139 M	2	jar	3.1		<u> </u>							
90 - 139 M	3	jar	6.0					 				
90 - 139 M	7	jar	25.2									
90 - 139 M	9	jar undist	35.5 14-16			***************************************						
90 - 139 M	2	undist	19-20.8	 								
90 - 139 M	3	undist	31-33									
90 - 139 M	5	undist	44-46									
90 - 140 M	1	undist jar	54-56 3.0									
90 - 140 M	2	jar	9.0									
90 - 140 M	3	jar	13.0									
90 - 140 M 90 - 140 M	5	jar	18.7									
90 - 140 M	8	jar jar	23.6 36.8									
90 - 140 M	11	jar	50.7					 				
90 - 140 M	12	jar	55.2									
90 - 141 M	2	jar	4.8									
90 - 141 M	6	jar jar	9.2 19.0									
90 - 141 M	8	jar	27.8									
90 - 141 M	11	jar	41.6									
90 - 143 M	3	jar	7.0						-			
90 - 143 M	7	jar jar	10.9									
90 - 143 M	9	jar jar	26.8 35.7									
90 - 143 M	1	undist	4-5				**********					
90 - 143 M	2	undist	12-14						I	-		
90 - 143 M 91 - 144 M	3	undist	20-22									
- 144 M	4	undist	14.5-17.2							**************************************		

Boring	Sample	Sample	Depth	Atterberg	Moisture	Mechanica	Hydro	- Specific	Triovi	al Shear	Unconfined	Consolidation
No.	No.	Туре	(ft)	Limits	Content	Analysis	mete		Q	Rbar		1
91 - 144 M	2	jar	8.9									
91 - 144 M	7	jar	23.0		ļ					ļ		
91 - 144 M 91 - 144 M	8 11	jar jar	30.0 45.0	 					-	1		
91 - 146 M	3	jar	8.5				1					
91 - 146 M	4	jar	10.5							 		
91 - 146 M	7	jar	21.5									
91 - 147 M 91 - 148 A	4	jar	20.0	ļ								
91 - 148 A	1	undist remold	8-12 8-12					-				<u> </u>
92 - 167 M	4	jar	19.5									
92 - 168 M	6	jar	20.0						l			
92 - 169 M	1	jar	4.5									
92 - 169 M 92 - 169 M	<u>3</u>	jar	9.0	ļ								
92 - 169 M	9	jar jar	18.9 25.0					 				
92 - 169 M	10	jar	30.0					 				-
92 - 169 M	11	jar	35.0					†i				
92 - 169 M	1	undist	12.5-14.5									
92 - 170 M	2	jar	5.0	*******************************								
92 - 170 M 92 - 170 M	3 4	jar jar	9.0 13.0					-				
92 - 170 M	5	jar	20.0									
92 - 170 M	6	jar	22.8					† 				
92 - 170 M	7	jar	24.6									
92 - 170 M 92 - 171 M	8	jar	26.5					ļ				
92 - 171 M	2	jar jar	2.0 5.0					 				
92 - 171 M	4	jar	15.0					1				
92 - 171 M	6	jar	18.0									
92 - 171 M	8	jar	20.0									
92 - 171 M 92 - 171 M	9	jar undist	22.7 24-26				***********					
92 - 171 M	2	undist	30-32					 				
92 - 171 M	3	undist	34-36									
92 - 172 M	4	jar	20.0									
92 - 172 M 92 - 173 M	1	undist	29-31									
92 - 173 M 92 - 173 M	10	jar jar	10.0 44.4									
92 - 173 M	1	undist	23-25									
92 - 173 M	3	undist	40-42									
92 - 174 M	1	jar	3.0									
92 - 174 M 92 - 174 M	3	jar	8.0									
92 - 174 M	8	jar jar	10.0 35.0					<u> </u>				
92 - 174 M	9	jar	40.0									
92 - 195 M	6	jar	27.5		· ·							
92 - 195 M	7	jar	29.5									
92 - 195 M 92 - 195 M	8 10	jar jar	32.5 44.5									
92 - 195 M	1	undist	2-4									
92 - 195 M	2	undist	11-13						##			
92 - 195 M	3	undist	15-17									
92 - 195 M 92 - 195 M	4	undist	23-25									
92 - 195 M	5 6	undist undist	36-38 38-40									
92 - 196 M	1	jar	9.0						***********			
92 - 196 M	3	jar	19.5									
92 - 196 M	5	jar	29.5									
92 - 196 M 92 - 196 M	6 9	jar iar	34.5 49.5									
92 - 197 M	1	jar jar	2.5									
92 - 197 M	3	jar	8.4					<u> </u>				
92 - 197 M	4	jar	12.0									
92 - 197 M	1	undist	4-4.6									
92 - 198 M 92 - 198 M	4	jar jar	9.0 19.5									
92 - 198 M	6	jar	27.0									
92 - 198 M	1	undist	3-4.2	1	,							
92 - 199 M	1	јаг	10.0									
92 - 199 M	2	jar	4.0									
92 - 199 M 92 - 199 M	3	jar	8.5									
92 - 199 M	5	jar jar	11.5 15.0									
92 - 199 M	6	jar	17.0									
92 - 199 M	7	jar	19.5									
92 - 199 M	8	jar	21.5									
92 - 200 M 92 - 200 M	4	jar	10.0									
92 - 200 M	5	jar	12.0		***************************************			ŀ	1	- 1	1	

Boring No.	Sample No.	Sample Type	Depth (ft)	Atterberg Limits	Moisture Content	Mechanical Analysis	Hydro- meter	Specific Gravity	Triaxia			Consolidation
92 - 200 M	6	jar	14.5	4	Oomon	Allalysis	merei	Gravity	· ·	H Dar	Compression	Load&Reb.
92 - 200 M	9	jar	24.5									ļ
92 - 200 M	10	jar	29.0		*******************************							
92 - 200 M	12	jar	39.5									
92 - 200 M	1-1	undist	3-5						*******	**********		
92 - 200 M	1-2	undist	20-22					•••••				
92 - 200 M	2-2	undist	20.5-21.7				******	••••••	•			
92 - 200 M	2-3	undist	34-36					•••••				· · · · · · · · · · · · · · · · · · ·
92 - 201 M	1	jar	1.5					•••••		***********		
92 - 201 M	2	jar	3.8									-
92 - 201 M	3	jar	8.6									
92 - 201 M	4	jar	9.5						$\overline{}$			
92 - 201 M	5	jar	11.0									
92 - 201 M	6	jar	14.0									—·———
92 - 201 M	7	jar	15.0									
92 - 201 M	9	jar	24.2									
92 - 202 M 92 - 202 M	1	jar	9.0						1			
92 - 202 M	2	jar	3.0									
92 - 202 M	4	jar	13.0									
92 - 203 M		jar	10.0									-
32 - 203 M	2	jar	5.0									

NOTE: TESTING OF SAMPLE 92-200M 2-2 WAS CONDUCTED BY SOIL ENGINEERING TESTING, INC.

Project:																			N odin			MBO		
		Chaska Minnesota	•	- Flood	d Con	Control Froject	rojec	at										ŏ∝	0-29M	throug	80-29M through 80-31M	2 K	D. NO: 80/227	
Station:		•	ı			Range:		1					Surf.	Surf. Elev:				ٔ م	Depth To Water Table:	Water	Table:	Bottom	Bottom Of Hole:	
Sample	Depth	Moist-	Plasticity (Att. Limits)	icity imits)		Hyd. Anolsis		ing ((Cumul.	Grading (Cumulative Percents Finer)	ercen d Siev	ts Fin	١		H	Grada	tion C	urve A	Gradation Curve Analysis	i.				
	Somole	8	د د	<u>a.</u>	1 '	Fines	H	1	Sand	وا			lo-	15	og _Q	-	030	010	ت	ပ်	Classification	uc .	Remarks	
lole 8	80-29М				3		+-	┿		<u> </u>	1		;	2/.	ui c	-	_	4	+	,	lecn.MEMO 3-357, May 67	, May 67		ם
	2.1						िया	ample r	- 5	ved						+	+	\dagger	T					1
\top	10.9					1	7	-	+	-	92	86				H		Н						
	16.2	,	5	- 1		\dagger	9	9 18	8 29	9 42	20	99	62	100	5.8	\dashv	0.92 0.	0.18	32.2	0.81				
	22.04	577	3 2	١	1	\dagger	+	+	+	\downarrow	\downarrow	I	1	+	+	+	+	\dagger	†	1				16
T	28.6	23.8	3	2			+		+	-	\perp		†	+	+	+	+	+	+	Ì				17
Т	29.5	25.3				-	-		-						+	-	+	+	+					
						\vdash	-	-	-							-	+	+	\dagger					
Hole 8	80-30M					Н	H	H	H	_				-	L		-	\dagger	\dagger					
3	9.2					, ,	27 5	51 92	Н	100						\vdash	\vdash	I	T					
T	15.0					1	\dashv	-	+	7 34	44	51	-	100	14.0	-		-	127.3	0.94				
+	21.2		1		†	+	8 1	12 32	+	+	89	78	-+	100	1.8	\dashv	0.40	-		0.68				
†	21.5		1		1	+	+	-	+	+	40	61		100	0.6	-	1	_	27.5	1.7				
9	41:4	T			\dagger	\dagger	η Ω	10 16	58	8 49	72	93		+	3.2	+	0.00	0.16		1.6				
Holo	80-71M	T			+	+	+	+	+	+			\dagger	+	\downarrow	+	1	+	+	1		í		
	1.9					t	6	21 52	74	88	8	100	\dagger	+	2	-	76	600	,	1				
	T	17.4	12	17	T	+	╁	╀	╀	+-	3	3	+	+	5	+	5	_	+	1:4				`
F		25.0	92	11		\mid			-	-			\dagger	$\frac{1}{1}$		+	+	+	\dagger					<u> </u>
	T				T		\vdash	\mid	-	L		I	T	+	\downarrow	+	+	+	t	T				2
Hole 8	80-32M						-		_					_	-	-	1	\dagger	\dagger	T				
1	1.5					1	46 6	60 72	82	2 91	97	66	100	-	-	+	+	1	\dagger	T				
	9.9	33.0					L	L	⊢	+-	L		T			1		\dagger	-	T				
5	11.0	28.2	41	22	Н		H	H						\vdash		-	+	-		T				Þ
6 1	13.9	25.9	Н		Н		H	L	L	L	L			\vdash	-		+	H	t	T				:
		36.0	55	39		Н	Н	Н								-		\vdash	\dagger	T				9
ι 1	19.4	32.3	\dashv	24						_				-		ŀ	H		-					
10	7	28.2			1	1	-	-	\Box						_	L	-	-	\vdash	T				3
7	1	39.5	1	1	7	\dagger	\dashv	-	4						Ц	H	H			T			• • • • • • • • • • • • • • • • • • • •	
13 2	26.3	+	1		\dagger	(,)	35 8	83 100	9		Ш		H	H		Н	H							
+	+				\dagger	+	+	+	+	\bot			\dagger	+	-	4	+							
	1				-	-	+	+	\downarrow	+	\int		+		+	+	-	+	+					

	7	,			ī		15		15				ŝ	ŝ	105	108			1												
	80/227			Remarks																											
	MRD Lab. No:	Bottom Of Hole			1									L																	
_	MRDL	Bottom		on	, may 6/						-																				
·	80-34H	Table:		Classification	recn.mcmU3-337, May 67																										
	Boring No: 80-33H and 80-34H	Depth To Water Table:	sis/	ပိ				1.6		0.98	1:1																				
	Boring 80-3	Depth	Curve Analysis	3	<u>ا</u> ـــ			7.4	ىــــــــــــــــــــــــــــــــــــــ	4.3	4.7					7	4.4														
SIFICATION RECORD SHEET			n Curv	000	+		1	0.088		0.23	0.17					4.4	71.0														Ī
CORI			Gradation	030				0.30		0.47	0.39					0 02	77.0														
RE			٦	3 (+			0.65		0.98	0.80					Ş	9:40												$oldsymbol{\perp}$		
TON		: lev :		1 5	2/ -		-				$\frac{1}{1}$	$\frac{1}{1}$	+			+	\downarrow	\downarrow		1	+			\downarrow	╀			\downarrow	+	L	
FICA.		Surf. Elev:	٦	S .	,			-		100	\dashv		I	_		+	+	-						+	ł	-		1	+		
SSII			nts Finer)			100				26	100										I										
SOIL CLAS			Grading (Cumulative Percents U.S. Standard Sieve	l ⊦	•	9	+	8		93	<u>&</u>	\downarrow					1	_		4	$oldsymbol{\downarrow}$			\downarrow							L
10			Standa	Sand	-	26 2	+	96	П	5 83	"T	-	100		Н	5	1	-		_	\downarrow		Ц	1	1	\perp	\dashv	-	-		L
Ñ	oject		Cumus U.S.	S	+	80 87	+	4C 70	H	55	\top	+	3 95		H	8	1	╀		+	╀	H	H	+	\mid	H	\dashv	+	╀		-
	ol Pr	١	ding		+-	59 8	\dagger	19 4	М	4 25	10 3	\dagger	70 83	_	\dashv	10	Т			+	\dagger	Н		+	\dagger	\parallel		\dagger	+		L
	Cont		1	900		35		ø		2	2		53			,	T			†	T				T			1	Ť		l
	Flood Control Project	Range:	Hyd. Analsis	Fines		\prod	\prod			1	I	T				I	I			1						П			T		
_	ota -			- - -	<u> </u>	H	-		Ц	1	$\frac{1}{1}$	<u> </u>				+	ļ		-	+	+			+	L	$\ \cdot \ $			igapha		
	Minnes		Plasticity (Att. Limits)	L.L. P.	+	П	12	H	32	+	+	+	3 64		Т	9	-		-	-	-				H		+	1	\downarrow		
	Chaska Minnesota		_	<u> </u>	<u> </u>	H	28	H	9 47	+	1	<u> </u>	.0 163	.5		.0	\downarrow	H	_		\downarrow		+				\downarrow		_		
			L≊				22.3		35.9	+	+	2	165.0	134.5	176.4	164.0	\downarrow	H		+	-		+		-	$\ $	+	1	+		L
-	i:	: : :	Depth Potom			4-1	111	13.8	16.4	100	29.7	30-34M		11.2	16.3	22.2	3		_												L
	Project:	Station:	Sample	Š	Hole	2	-	4	g	7	9	Hole	2	3	4	ی ام															

MRD FORM IN TO NOV. 75 IS ED

OF MAY 70 IS OBSOLETE

Project:	Chas	Chaska Flood	lood Control	ʻo,				İ								82-	Boring No: 82-39M through	ronoh	82-42M	MRD Lab. No:	b. No:	
Station:		'			Range:						Sur	Surf. Elev:	,			å	Depth To Water Table:	Water	able:	Bottom Of Hole	۱	
Sample	Depth Moist-	- 3 te (Plosticity (Att. Limits)		Hyd. Analsis	Gradir	10) 6	Grading (Cumulative Percents Fi	ve Perc	ieve Siz	iner)		H	Gradation	ition C	urve A	Curve Analysis					
		<u>.</u>	-	ı	Fines	F		Sand		\vdash	1	Gravel	f	-	┝	ᆫ	\vdash	T	Classification	_	Remarks	
		\dashv	L. L. P. 1.	.005	.02mm 200	08	\$	20	01	4 3/8	3	1,7	3 in (r	(mm)	(mm)	(E E	ت ت	ိ ပိ	Tech. MEMO 3-357, May 67	May 67		PL
Hole 82-39M	-	-				-	\vdash	-			Н		Ц	H	H	\vdash	-					
2 6.5	$\overline{}$	4.	-	\downarrow	27 6	26 79	66	-	+	+	-		+		H	+						
T	18.9	9 0	-		7	3 8	+	200	96	90	 -		-	2 2 2	20 0	2000		†;				
						+	╀	_	+	82 100	0		2 12	+	_	+-	-	* M				
7 26.5	5	H			H	2	22	Ц	\vdash	95 100	o.		H	H	П	H	Н					
	+	+			+	$\frac{1}{1}$		1	+	+	+		+	+	-	1	1					
o le	Т	+	+	+	°	-+-	+	+	+	\dagger	+		+	+	+		+	+				
7.0	2 34.0	+	32 12	+	* ·	83 94	8	7	- 13	1	+	#	+	1	-	+	+		Loss on Ignition 3.4%	3.4%		20
T	Т	<u>,</u>	-		1	+	+	3 5	33 70	100	i	5	ľ	十			-	1				
	Т	c	_		۲	+-	1	╀	4-	╁	+-	3	1	7	7 0) • 7	2 07.0	23.5					
7 31.5	5 22.5	╄	34 18		1	+				\perp	-		-	-	-	-	+	\dagger				:
П		Н	49 29		H	_			_	_							\vdash					45
	П	\dashv			\dashv	\dashv			H	H			H	H								3
ole 82	T	+	\dashv		+	+	\downarrow		+	\downarrow							Н					
1.5	5 35.9	+	36 19	+	+	+	\downarrow		+	+	4		+	-								17
2 .	2	+			+	+	\downarrow		+	1	1			+	$\frac{1}{1}$	\dashv			Loss on Ignition 8.3%	8.3%		
16.5	Т	┿	70	\downarrow	$\frac{1}{1}$	+	\downarrow		\dagger	+	+		+	+	+	+	1		oss on Ignition	%9.9		
T	0 25.2	╄	24 4	\downarrow	+	+	1	I	\dagger	+	\downarrow	#	+	+	+	+	\dagger	1	Loss on Ignition 5.5%	5.5%		Į,
71.5	Т	┿	+	1	+	+	1		\dagger	+	\downarrow		+	+	+	+	+	1				20
-	П	╁	H		H	H			H	H			H	$\frac{1}{1}$	+	+	+					4
ole	T	Т	\dashv		+	1				\dashv			` ,									
1	I	8 48	┪	1	$\frac{1}{2}$	4			1	\dashv					Н		-	F	Loss on Ignition	4.9%		=
2 6.5	5 106.6	3.6	69 23	1	+	+	\downarrow		+	+	+					H	Н	H	Loss on Ignition 18.2%	М	Peat	53
†	2 200 6		776 167	1	+	+	\downarrow	1	+	+	+	1		+	+	\dashv	+		Loss on Ignition 13.8%	13.8%		
+	Т	_1_	+	1	+	+	\downarrow	1	+	+	1	1	+	+	+	+	+	1	Loss on Ignition 43.2%	_	Peat	172
\dagger	5 32.1	┿	31 14	_	+	+	1	I	+	+	+	#	+	+	+	+	+	+	Peat, Limestone, Sand m	_	×	;
8 31.5	Γ	╄	t		-	-			H	H	L	t	l	-	\vdash	1	1	f	Lose on Tonition 19 0%	1.0 00/		;
		H	\vdash		-	-				-	-		_	_	-				5	0/2071		1 5
10 36.5	5 32.6	⊢	36 19		L	L	L		L	L	L		L	L	L	-		+				177
	I	ł	1		-	1			1	1	-	-				_	-					17

Table - 1

MRD FORM OF MAY TO IS OBSOLFTE

FIGURE D-3

SOIL CLASSIFICATION RECORD SHEET

Thaska Flood Cc	Grading (Cc 6	Croding (Cumulative Percents Fire Standard Sieve Size Standard Size Standard Sieve Size Standard Size		Gradation Gradation Deo Dao (mm) (mm) 16.5 2.6 9.0 2.6 0.30 0.18 0.55 0.13 0.55 0.32 0.44 0.24 0.40 0.28	O O O O O O O O O O		Analysis Classification Cu Cc 7ech.MEMO3-357, May 67 55.0 1.4 55.0 1.4 55.9 1.4 3.5 1.3 3.1 1.0 3.5 1.0 3.1 1.0 3.9 1.0 4.0 1.2 4.0 1.2	Of Hole: 83/67 Of Hole: Remai	PL PL B3
Depth Moist (Att. Limits) Hyd. Sample (%) L.L. P.1	Grading (Ct. 6 oc.	20 101 2 2 2 2 2 2 2 2 2	Surf. Elev 64 100 83 100 97 100	Gradat (mm) (mr 16.5 2.6 9.0 2.6 0.15 0.15 0.15 0.14 0.25 0.10 0.58 0.10 0.14 0.2	O O O O O O O O O O	Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu C	C C C C C C C C C C C C C C C C C C C	Of Hole:	
Pepth Moist- (Aft Limits) Sonple (%) L.L. P. I. 5 82-43M 31.5 71.5 71.5 71.5 71.5 72.0 104.0 11.5 31.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46	Grading (Ct.) 00 00 00 00 00 00 00 00 10 12 10 15 10 15 10 15 10 15 10 15 10 13 10 15 10 13 10 16 10 16 10 16 10 16 10 16 10 17 10 17 10 17 10 17 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <	20 10 4 3, 20 10 10 10 10 10 10 10 10 10 10 10 10 10	S Gravel 3/4 11/2 64 100 83 100 97 100	Gradat Deo Da (mm) (mr 16.5 2.6 9.0 2.6 0.30 0.1 0.55 0.3 0.65 0.3 0.65 0.3 0.65 0.3 0.64 0.2		Analysis Cu (55.0 1 180.0 1 3.3 1 3.5 1 3.5 1 3.9 1 4.0 1	C C C C C C C C C C C C C C C C C C C	Peat	
Sample (%) L.L. P.I. or 182–43M 31.5 56.5 71.5 71.5 81.5 91.5 91.5 91.5 91.5 11.5 7.0 104.0 11.5 41.5 46.5 41.5 46.5 11.5 41.5 41.5 41.5 41.5 41.5 41.5 41	00 00 00 40 40 40 40 40 40 40 40 40 40 4	20 10 4 3 16 25 41 55 17 24 40 66 23 100 24 98 100 25 37 100 25 37 100 26 77 86 94 26 77 86 94 27 99 100 27 98 99 10	64 100 83 100 87 100 97 100	(mm) (mr) (mr) (mr) (mr) (mr) (mr) (mr)	mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peat	
82-43M 11.5 11.5 11.5 12.5 12.5 13.5 13.5 13.5 14.5 14.5 15.5 16.5 17.0 18.2 19.0 11.5 11.5 11.5 11.5 11.5 12.5 13.5 14.5 15.5 16.5 17.0 18.0 19.0 11.5	200 60 40 4 6 12 10 10 12 15 15 10 35 89 1 7 28 83 6 8 15 36 6 8 15 45 6 10 13 55 40 40 54 89 1 12 16 60 60 5 9 60 60 7 14 56	24 40 24 40 100 100 37 100 77 86 99 100 98 99	3/4 1 ¹ / ₂ 64 100 83 100 97 100	▀▐▔▕▘▘▎▕▘▐▘▍▘▍▕▗▗▍▗▋▗▋▗▋▗▋▗▋ ▃▋▃▊▃		55.0 180.0 13.5 3.5 3.9 3.9 3.9 4.0	0		PL 83
82-43M 31.5 56.5 71.5 76.5 81.5 91.5 91.5 11.5 700 11.5 41.5	6 12 15 15 15 15 15 15 15 15 15 15 15 15 15	25 41 24 40 98 100 97 100 77 86 99 100 98 99 98 100	83 FE 87 P 87 P 87 P 87 P 87 P 87 P 87 P 87	╏╴╎╶╎┈╎┈┠┈┝┈┝┈┼┈┞┈╏┈╏┈╏ ┈╏		180.0 180.0 3.5 3.1 5.9 3.9 3.9 4.0			PL 83
31.5 41.5 56.5 71.5 82-44M 1.5 9.0 11.5 31.5 46.5 46.5 6.5 102.7 99 9.5 11.5 12.5 13.5 13.5 14.0 15.0 16.5 17.0 18.0 19.	12 15 15 15 15 15 15 15 15 15 15 15 15 15	25 41 24 40 38 100 100 97 100 77 86 99 100 98 99	97 83	┞┈┆┈┞┈┞┈╂┈┞┈┞┈┞┈┞┈╏┈╏┈╏┈╏┈╏┈╏ ┈	<u> </u>	55.0 180.0 3.5 3.1 5.9 3.9 3.9 4.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peat	83
41.5 56.5 77.5 82-44M 1.5 9.0 11.5 31.5 46.5 46.5 46.5 6.5 102.7 99 9.5 11.5 12.5 13.5 14.0 15.5 16.5 17.0 18.0 19.0	12 15 35 89 28 83 44 80 15 36 12 45 13 55 14 49 14 46 16 60 16 66 17 66 16 66 16 66 17 66 16 66 16 66 16 66 17 66 18 66 10	24 40 98 100 100 77 86 77 86 99 100 98 99	88 76	▝ ▘▘ ▝ ▝▘▐▘ Ŷ ▘▐ ▘ ▍ ▗┞▃┞▃▊▃	 	180.0 3.5 3.5 3.9 3.9 4.0	5.0 1.1 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Peat	83
26.5 71.5 81.5 91.5 91.5 1.5 7.0 104.0 164 8 9.0 104.0 164 8 11.5 31.5 41.5 27.3 46.5 46.5 6.5 102.7 99 9.5 102.7 99	28 83 44 80 15 36 12 45 12 45 13 55 13 55 14 49 60 14 49 60	98 100 97 100 77 86 99 100 99 100 98 99	26	┞╸┞╸╊╺┞╸┞╸┞╸┠╸┨ ╌ ╏╶╏ ╺╏	▝╀┈╀┈╀┈┼┈╀┈┼┈╀┈┼┈╏┈╏┈	3.3 3.5 3.9 3.9 4.0 4.0	0.0000000000000000000000000000000000000	Peat	83
71.5 76.5 81.5 82-44M 1.5 7.0 11.5 31.5 41.5 46.5	28 83 44 80 15 36 12 45 12 45 13 55 13 55 16 60 14 49 14 49	98 100 97 100 77 86 99 100 98 100 98 100	76	╵╸┫┈┞┈┞┈┞┈┞┈╏┈╏┈╏		3.5 3.1 3.9 3.9 4.0 4.0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Peat	88
76.5 81.5 91.5 82-44M 1.5 7.0 11.5 31.5 41.5 46.5	15 36 12 45 12 45 13 55 13 55 16 60 14 49 14 56	99 100 99 100 99 100 98 99	26	╋┈┝┈┝┈┝┈┞ ╌╂ ╌╏ ╌╏		3.1 5.9 3.9 3.9 4.0	5. 4. 0. 2. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Peat	88
81.5 91.5 82-44M 1.5 7.0 11.5 31.5 41.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 47.5 46.5 47.5 48.5 48.5 49.0 49.0 40.0	15 36 12 45 13 55 14 89 1 16 60 14 46 14 56	97 100 77 86 99 100 98 99 98 100	26	┍┞┈┞┈┞┈┞┈╏┈╏┈╏┈╏		┪┪┪┩	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Peat	60
91.5 82-44M 1.5 7.0 10.0 11.5 31.5 41.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 47.5 46.5 47.5 47.5 48.5 48.5 49.0 49.0 49.0 40.0	12 45 13 55 15 89 1 16 60 9 60 14 56	99 100 98 99 98 100 98 99	26	┞┈┞┈┞┈┠┈┠┈╏┈ ╏┈	 	┤╎┤╏ ╃┼┼┼	4 0. 2. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0	Peat	83
82-44M 1.5 7.0 104.0 164 8 9.0 11.5 31.5 41.5 46.5 46.5 4.0 23.6 6.5 102.7 99 9.5 11.5	13 55 54 89 1 16 60 9 60 14 56	99 100 98 99 98 100		┞┈┞┈┠┈┞┈╎┈╎┈╏┈	 	┼┼╂┞╎	2, 9,0	Peat	83
82-44M 1.5 7.0 104.0 164 8 9.0 11.5 31.5 46.5 46.5 46.5 4.0 23.6 6.5 102.7 99 9.5 11.5	13 55 54 89 1 16 60 9 60 14 49	99 100 98 99 98 100		┤╌╂┈┤┈┧┈┧┈ ┞┈╂┈	 	┤╏ ╃┼┼┼	6 6	Peat	83
1.5 7.0 104.0 164 8 9.0 11.5 11.5 41.5 46.5 46.5 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5	13 55 54 89 1 16 60 14 49 14 49	99 100 98 99 98 100		╉╍┩╌┤╌ ┤╌ ╏╸		╂┼┼┼	2 9	Peat	83
7.0 104.0 164 8 9.0 11.5 31.5 44.5 46.5 46.5 46.5 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8	54 89 1 16 60 9 60 14 49 14 56	98 99 98 100		╃╼┼╌┼╌┼╌	+	╀┼┼	9	Peat	83
9.0 11.5 31.5 41.5 46.5 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5	54 89 16 60 14 49 14 56	98 99 98 100 93 02		+		++,-	9 0	Peat	83
11.5 31.5 44.5 46.5 82-45M 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5	16 60 9 60 14 49 14 56	98 99 98 100			15	1.	9		
31.5 46.5 46.5 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5	9 60 14 49 14 56	98 100		+	-	╁	0		
46.5 46.5 82-45M 1.5 4.0 6.5 102.7 9.5 11.5 11.5 15.5 25.8 27.3 4.0 11.5	14 49	20 20	Г	+-	-		-		
46.5 82-45M 1.5 4.0 23.6 6.5 102.7 99 9.5 11.5 15.5 25.8 27	14 56	30	100			╆	1.4		
82-45M 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5	;	90 97 100		-		╁			
82-45M 1.5 27.3 4.0 23.6 6.5 102.7 99 9.5 11.5				+-		+			
27.3 23.6 102.7 99 25.8 27									
23.6 102.7 99 25.8 27						-			
102.7 99 25.8 27	41 71 92 9	97 100							
25.8 27								4	
25.8 27	18 31	43 57 68 83	97 100					Peat	49
25.8 27	12 20 33 41	55 73	┿	3.7 0.38	8000	0 8 29	29 0		
	_	100	+-	\dagger		4			
27.3	62 09	1			1	1			26
31.5 28.9 32 10	┢	100			†				15
		+			1				22
Hole 82-46M					1				
36.5	7 8 12 20	37 57 73	84 100	4.8 1.4	0 25	10 0 1 6	u		
51.0	11 17 17 20	00		十	2	,+			
66.5	100	34		+-	90.0	+	2		
76.5	3,0	3	1001	+	210	╅			
80.6	Ľ	100			21.0	7	Σ.		
	15.03	1		0.32 0.25	0.14	2.3 1.4	4		

		• • • • • • •								
			#0 ie	9 5 5 E	6 ± 2 = =	S 4	=======================================	SAR SAR		2 2
		29.0	99-994	42 22 12 00 55 05 5 5 9 71 00 71 00 32	88-97H 1.7 10.8	3.8 11.0	12 to 12 to 15 to	48	DEPTH	PROJECT:
				₩ E 5 is				(8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9		Chaska Flood Control Project - Bast Creek
				22 16			13	PLAS		lood
							25	(AIT. LIMITS)	PANGE.	Control
								-	-	rojec
								#TD.ANALTSIS U.S. STANDARD SIRVE SIZE PINES SANDS 10 10 4		t - Bas
		5 ص د	3 5	∷	11 28		 	200	9	Cree
		 دی و	 20 t3	23 56	1 5 5 5	9 2	9 53	8		
		22 99	 , , ,	5 £		9, 60	9 5 2		SORY. BUBY.	
		5 5 5	 ເພ	25 GS	5 7 9	2 3	-3 52	.9. STANDAR SANDS 40 20		
		70	3 7	5 1 <u>9</u>	355	ē s	22	10 81	9	
		8	7	6 4	792	**************************************	100	- 3		
\$18V.		9	92	6. 9	# #	<u>42</u>		3/8		
F 3		=	100	79	5 4	100		SRAY!	3	:01130
		100		100	100		·	GRAVEL 3/8 3/4 1-1/2 3 IN	DEPTH TO WATER TABLE	8081NG: 88-948 Prough 88-998
								1 2		- Drou
		0.25	0.70	0.42	0. 50 . 50	 0.45		1 —		1 88-99
		0.10	0.20	e :5	0.30	0.20		GRADATION CURVE ANALYSIS DED D30 D10 (mm) (mm) Cm		-
		0.08	0.08	0 12	0.0 0.0 0.0	0.09		DIO AN		
		5 u	œ æ	es is	T 2.	Ē		C2 18		
		1.5	0.7		5.5	Ξ		ខ		
								1301		
								CLASSIFICATION TECH MENO 3-357, 1	B0110H 0	100 E
								TION 57, BAY 67	N OF NOLE:	LAB NO.
1		···		· · · · · · · · · · · · · · · · · · ·				ļ. s		- 1
										1611/88
	-				•	Loss or Ispition				
						5 2		5		
	·			· •••• ••••				<u> </u>		
			5	: =		:	=	2		

SOIL CLASSIFICATION RECORD SHEET

310S
CLASSIFICATION
RECORB
13345

											3		Mer. As taken in the as the same	-	4					- .		906/07
SIATION		:RAMGE	, in			ISURF.ELEV	ELEV.:				2	10 E	DEPTH TO WATER TABLE		ŀ				İ		-	DATE: 7 August 1990
DEPTH 1			-		GRADIN	Ĉ.	CUMULATIVE PERCENTS FI	200	JIS FI	3	į			-				İ				-
			_	ATP. MARLISTS	1515	_	U.S. STANDARD SIEVE SIZE	MOAN	SIEVE	3115	,					10 CM	黑色	SISLA		SSVTD	SIFICATION	-
	= =	- =	-	E FINES		;	_	. ~			**	2		_	1 010 1 056 1 090	<u>z</u>	=			_		
	 F	 3	 3	.020.1 200.	28	.	. .	୪ 	= 	-	¥	- 3/4	1-1/2 3	=	Ē	3	•	ß	<u>ہ</u>	1 1603 163	TECH NEND 3-357, MAY 67	671 REMARKS
Hole 190-13181	-¦-	 -	-	-¦-			_	_ _	_ _	<u>. </u>	<u>.</u> -	<u>.</u> -	<u>.</u>	Ļ	Ļ	Ļ	L					
	≟. 5	프. ස																	-	-		
					3	29	3	2	3	Ž 	 .	 .		- -					_	IFAT CLAY		9 5
3 - 4.6					-	•	19:	x	=	S		8		<u> </u>	: 	Ë	• = =	¤ ≐ .	2			5
		·			_	=	¥		3	9	#	8		:	-		0.16	2	=	5 5	- S S S S S S S S	K I
B : 21.7 :					. =	=	2		5	33		8					••			3	velly sand SH	≝ !
nie :90-1178:				• •		17	2		8						0.31 1 6	9.21	÷:	2.31	3	ž '	- S-ES	**
7					:	;	:	: 				-										:
3.0 7.7					. 5	. 2	2	3	2 2	8							_			Sandy clay		#
4 -: 9.1 : 32.4				, <u>.</u>			٠						-		0.42 : 0	2	9.	3.07		Sand		**
5 /1 : 14.2	3				•••								. <u>.</u> .							THE CLAY		2 8
13 : 27.0 :					ш 		2	3	2	ස 	=	H	Ē.		- •)) (:			: <u>-</u>
ole (90-133H)		••	••					:	:	•-		!		- ;					:	TRAP OF ABURE		
1 1.5 12.3		23	•-											 .		. .				-		-
2 - 4.0 -	••				28 :	:: ::	=	:: ::	<u>s</u>				 .	 .		 .				יייייייייייייייייייייייייייייייייייייי	<u>e</u>	ť
5.4					5	상 :-	69 :				8					 .	·			ISIN SIN		
5 : 11.7 :	••				=	5	28	=			5	22	8	<u></u>	6. 92 : o.	.	0 0 0 1	134.	Ē			* =
29.9					2		=		1 36	8						. ب				Ĕ		SE :
7	 :	 S	• •		5	=		=			100									Silty sand		#
= .	:	=	٠,٠	·- ·									- 							iLean clay	_	2
	••	·- ·			<u>.</u>	.	<u> </u>	<u> </u>	8 	} 					٠	٠						
4 : 12.0 : 24.1	 	 2	•- •		.	2	======================================	ž	- -											Sandy clay	2 2	. ==
6 : 16.0 :					52:	27 :		۲ 	=				ē 					3 5 _		LEAD CLAY		: 57
7 : 19.0 :					-	-	\$	59	7	77	里:	8 :		- 0.58		0.29	5 5	3.14	2 5	Stravelly su	Y. SIM YA-	- 3
8 : 26.5	:	• •-			32	5	 	21	76 : 1							 .						
16 : 51.0 : 41.7 :		۔ ۔			· 	•	: ·	: 	: 											Lean clay	_	
• 8											97 : 10	9		11.17		51	0.24	4.93	0.93	Send	Æ	
- 7				·- ·		= -	3 						Ē	<u>-</u>								••
						<u>د</u>	= :	X :	= :	2 :	2 2						7 :	. ¥		Silty grav.	2	
			••		<u>-</u>	-	ະ	:		70	•- •			0.45				2.61	3 2	3		- 3
				. ,	2 :	<u>-</u>	47 :		97 : 9	99 : 16	~			9.5						Sand	ğ 1	
e 190-136H		• ••	-															:				
	• ••		•		5	25	35	25	19:100					- 0.32	 •	200	9	12.	 	Silty sand		
					•	-	 8							: 0.47				••		Silty sand	2 :	- - .
	• •								8					-			••	2.32	9. 93. 	isand	s.	
27.0	•						2 2		- -	- -	:			1 0.42		•		2.06		Sand	16	
	•				3 o	•	6				1 : 74		8	7.02		••	-	5		Silty grav.	S-12 bres	
. 24				-	74		1 : 44	ĕ	•			-		-	2 : 0.33	28 : 0.20 53 : 0.20	-					
24.4		• •			:	: :						-		-							- 2 - 1	
24.9					=	25		99 : 16	<u></u>					: 0.21				2.96		Silty sand		

FIGURE D-6

Ë
CLASSIFICATION
RECURD
黑黑

NI NOIST-I PLASTICITY NYD. AMALYSIS PI UME (ATT. LIMITS) FIRES FIRES AMP (1) LL PI .005 02ma 200 NAP (1) LL PI .005 02ma 200 NAP (2) S 17 5 NAP (3) S 17 5 NAP (4) S 17 5 NAP (4) S 17 5 NAP (4) S 17 5 NAP (5) S 17 5 NAP (5) S 17 5 NAP (6) S 17 5 NAP (6) S 17 5 NAP (7) S 17 5 NAP (8) S 17 5 NAP (8) S 17 5 NAP (8) S 17 NAP (8)		PROJECT:	Chaska, East Cree	E .	Te P							2		SUIL CLASSITICATION BORING: 9	BORING: 90-137M through	KECUKO : 0-137N ti	through	=	h 90-1431	h 90-143H	h 90-143H	h 90-1438	h 90-1439	h 90-1431
DEPTN INDIST PLASTICITY WE ANALYSIS U.S. SHAWARD SIEVE SIE SAMP U.S. SHAWARD SIEVE SIE SAMP U.S. SHAWARD SIEVE SIEVEN U.S. SHA	The part	STATION:			IRAM6E:				. Sugar	SURF. ELEV. 1			=	PH H	WIER	ME			_					
FIRST CATE	STOTING STOT	1 DEPT		PL AS						LATIV	PERCE	22 F.	20								18.5		2	25
PP-127H PP-1	19-1378 10-			= A	- PI		F1ME	8	8	5	 ≥ §	5 					Ξ	Ē	<u> </u>	Ê	F 	z 	7 2 2	E 3
10-1378 13-14 20 100 10-14 2-29 1-29	10-0-13781 10-0-13781		!	- 1	:		}	!	!				<u>. </u>		:		_ :	- !	-		1	1		
13.5 3.4 39 100 6.28 6.28 6.29 6.21 6.29 6.22 6.29 6.21 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29 6.22 6.29	12.5. 1	:	711	-		'				_								· '					.	
12.2 1.2	10-1381 17-1381 18-138 19-1381 19-13			• ••					: -	: 2		<u>:</u> 							=	0.21	2.5	: 5		Ĺ
Political Poli	Po-Libert 7.2 5 7 52 43 53 73 69 100 5.39 6.73 6.	2							2 5	4 2		2 5		š 					3 5	»	1 2 2	3 5	-	200
7.2. 6. 8 17 33 43 33 72 84 100 5.31 6.73 6.23 127.30 0.39 1511y grav. 42.0 5 7 16 13 13 83 75 86 100 5.41 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	27.2		¥ :						:			2								:			-	
22.2 5 7 115 28 43 58 77 106 15.31 6.72 6.72 19.50 6.29 19.50 6.29 1117 years 69.4 19.6 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	22.2 23.2 25.3		2 -					-	···	7	ដ	≈	<u>ដ</u>			8				0.23	27.32	0.37	Silty	FAV.
97.4 (4) (4) (7) (8) (100 (5) (1,00)	92.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19		2 :	••					7	5	28 :	<u>څ</u>	 %			8				0.27	19.50	0.59	Silty	Tav.
\$3.0 8 51 99 100 0.21 0.2 0.08 2.36 0.83 Sharty Clay 5.0 27.8 46 28 10 21 50 63 74 86 96 100 0.21 0.25 0.08 2.36 0.83 Shifty sand 27.8 46 28 10 21 50 63 74 86 96 100 0.21 0.25 0.08 0.24 1.02 Shifty sand 23.5 21.9 44 2.6 28 20 31 41 28 48 67 78 42 100 0.25 0.25 0.25 1.05 Shifty sand 23.5 21.9 42 28 28 30 11 42 37 30 100 0.25 0.25 0.25 0.25 0.25 1.05 Shifty sand 25.2	\$3.0 80 77 96 100 0.21 0.02 0.02 0.08 Sility stand 70-1384 192 25 17 8 91 100 0.21 0.08 2.50 0.83 Sility stand 70-1384 192 25 27 102 0.08 2.50 0.83 Sility stand 70-1484 102 27 28 28 29 100 0.71 0.72 0.09 1.34 1.02 Sility stand 70-1484 10.22 10.23 1.02 Sility stand 70-1484 10.23 1.02 Sility stand 70-1484 10.23 1.02 Sility stand 70-1484 10.23 Sility stand 70-1484 10.24		-					 	 !	5	5	<u>년</u>	4			8		5.69		0.45	12.741		SII ty	Yav.
33.1 19.2 33 17 100	19-11998 19-21 25 17 19-21 25 27 28 28 29 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 29 20 20		-					 . 8	: 3	2	8									}	: :	2	550	=
3.1 19.2 35 17	3.1 19.2 35 171 3.6 27.8 45 28 10 21 50 63 74 86 96 100 1.23 0.28 0.08 9.34 1.02 Silty sand 129 180. 3.5 21.9 44 2.6 2 9 16 36 61 92 93 100 1.40 0.70 0.24 7.88 1.60 Silty sand 18.7 2 19. 3.6 9 16 36 41 98 100 1.20 1.20 0.25 0.25 0.22 0.23 1.20 Silty sand 18.7 2 100 1.20 0.28 0.28 0.28 1.30 Silty sand 19. 3.6 8 20 31 42 94 63 72 100 1.23 0.28 0.22 0.23 1.20 Silty sand 19. 3.6 8 30 81 97 100 1.23 0.29 0.21 0.16 0.85 Stard 19. 3.6 9 10 98 99 100 1.23 0.29 0.21 0.15 1.20 1.00 Silty sand 19. 3.6 14 93 100 1.20 0.29 0.29 0.21 0.15 1.20 1.00 Silty sand 19. 3.6 18 19 19 100 1.23 0.29 0.21 0.15 1.20 1.00 Silty sand 19. 3.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 -						<u>ب</u>	 	8									9.9	2.3	9	Silty	Sano
25.2 27.8 46 28 100 21 50 63 74 86 96 100 0.71 0.23 0.08 9.34 1.02 Silty sand specially speciall	25.2 21.9 44 24 10 21 50 63 74 86 96 100 0.71 0.23 0.08 9.34 1.02 SSITy stand 35.5 21.9 44 24 10 21 50 63 74 86 96 100 1.50 0.71 0.23 0.08 9.34 1.02 SSITy stand 35.8 1 23 100 1.50 0.71 0.24 7.88 1.06 SSITy stand 50.7 1 2 3 4 10 28 48 67 78 82 100 1.50 0.72 1.03 1.04 SSITy stand 9.2 100 1.50 0.72 1.03 1.04 SSITy stand 9.2 100 1.50 0.72 1.05 1.00 1.50 1.00			 ਖ਼																			֭֡֜֞֝֟֝֟֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֡֡֟֝֟֝֡֟֝֟֜֟֝֡֡֟֝֜֟֝	¥
75.2 21.9 44 26 10 21 50 63 74 66 76 100 10.73 0.08 7.34 1.02 islity stand 5.5 21.9 44 26 19 16 36 61 91 16 36 61 82 93 100 1.49 0.70 0.24 7.88 1.06 islity grav. 1 6.7 3 4 10 28 48 67 78 82 100 3.43 0.89 0.42 8.16 0.55 isavelly asavelly sand 4.8 5 18 20 31 42 98 100 5 23 3.49 0.38 islity grav. 1 7.8 1.08 1.08 islity grav. 1 7.8 1.08 1.08 islity grav. 1 7.8 1.08 1.08 islity grav. 1 7.8 1.08 1.08 islity grav. 1 7.8 1.08 1.08 islity grav. 1 7.8 1.08 islity grav	25.2 21.9 44 2h			#				 :	 !	!		! 	! 					· !		: 	·	i	Lean c	₹.
TOP- ODI:	10-1001 1-17			 :				 5	21	8	2	74	8		8			0.71	0.23	0.08	: 2	1.02	Silty	San d
3.0 6 9 16 36 82 93 100 1.90 0.70 0.24 7.80 1.66 1511 y grav. 1 18.7 18.7 19.8 1.00 1.90 0.70 0.47 8.16 0.35 Gravelly sand 50.7 1.00 1.00 1.33 0.19 0.42 8.16 0.35 Gravelly sand 50.7 1.00	3.0 6 9 16 36 61 82 93 100 1.90 0.70 0.74 7.88 1.06 Silty grav. 9 18.7 19.8 10.0 2.3 41 98 100 0.78 2.3 0.89 0.42 8.16 0.55 Gravelly sand 90.41 1.96 100 0.25 0.35 0.35 0.35 0.72 2.3 1.05 Sind grav. 9 100 1.33 0.78 0.72 2.3 1.05 Sind grav. 9 100 1.33 0.78 0.72 0.72 0.73 0.78 0.72 0.73 0.78 0.72 0.73 0.78			 2																				•
18.7 3. 4 10 28 48 57 78 62 100 3.43 0.89 0.42 8.14 0.55 Seavelly sand 50.7 5 8 20 31 42 54 53 72 100 1.33 0.71 0.22 3.49 0.35 Sility sand 55.2 1.49 1.00 1.29 0.18 0.29 0.18 0.20 5.51 1.30 Sility sand 69.14 1.5 14 75 100 1.33 0.22 0.24 0.15 1.20 1.51 1.30 Sility sand 69.2 1.30 1.	18.7 3. 4 10 28 40 77 80 10.2 10.2 1.33 0.29 0.42 8.14 0.55 Gravelly sand 50.7 5 8 20 31 42 54 55 72 100 17.33 0.79 0.42 27.3 1.05 Sand 90.14 8.14 9.15 9.10 17.33 0.79 0.29 2.23 1.05 Sand 90.14 8.14 9.1 9.1 9.1 9.1 9.1 9.1 9.2 9.1 9.1 9.2 9.1 9.1 9.2 9.1 9.1 9.2 9.1 9.1 9.2 9.1 9.2							·	·	5	살	=	22		8					0.24	7.88		Silty	
33.6 33.6 34.7 39.6 30.7 33.5 34.7 39.6 30.7 33.5 34.7 39.6 30.7 33.5 34.7 39.6 39.6 39.6 37.7 39.6	33.6	• : E	7 !					 u	_	5	28 -	6	67 :		2 2 :	8				0.42 :	B. 16	9	Bravel	Ş
55.7.1 5 6 20 31 62 32 6.78 6.28 5.31 1.30 5311 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	55.7.2 50.0 51.0	: :						 , N	 	; =	: 2	: 8	: 		<u> </u>	<u> </u>		2.5		2. t	2.32	 	Sand	į
90-44/H	90-44/8		·- ·					 	 8 a	=	3 5	ē :								0.08	2 2	 	Silty	
4.8 5 14 93 100 10.29 0.21 0.16 1.86 1.01 1511ty 92 102 1.23 0.25	4.8 3 100 100 10.29 0.21 0.16 1.86 1.01 1511ty 0.29 0.21 0.16 1.86 1.01 1511ty 0.29 0.21 0.25 0.2						•	•	:		:	:								:	- :	;	-	
9.2 3 14 81 99 99 100 0.27 0.15 2.70 1.00 Sand 41.6 1 5 14 75 97 100 0.23 0.24 0.17 2.30 0.25 Sand 7.0 1 1 1 1 1 1 1 1 1	9.2 3 14 81 99 100 0.27 0.22 0.15 2.20 1.00 Sand 1.10 1.00								=	2	8									0.16	F		-	Sand
41.6 5 14 75 97 100 0.34 0.23 0.15 2.24 1.00 Silty	41.6 5 14 75 97 100 0.34 0.23 0.15 2.24 1.00 Silty 90-1438	2 + 27 +	B 12		- 	. 		 - v	 = =	5 5	= #		§ §			. .				? : :	3 .Z		San San	
7.0 - 4.3Ni	100-1438	= : = :				;		 	·	3 5	3:		:			<u></u> .			0.23		2.24		-	Š
51 66 81 91 98 100 51 52ndy 52 89 99 100 527 0.12 5.99 1.17 521ty 6 16 51 90 99 99 100 6.49 0.27 0.12 5.99 1.17 521ty	51 65 80 97 99 100 1 1 5 5 6 5 1 5 5 6 5 80 97 99 100 1 1 5 5 6 5 1 5 5 6 5 80 97 99 100 1 1 6 6 1 6 5 1 6 5 1 90 99 100 1 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7		SH																				-	
51 65 80 97 99 100 0.49 0.27 0.12 5.98 1.17	51 65 80 92 99 100 1 0.49 0.27 0.12 3.78 1.17	3 : 7.							5	=	2		8										Sandy	Clay
6 16 51 90 99 99 100 0.49 0.27 0.12 3.98 1.17 53117	6 16 51 90 99 100 0.49 0.27 0.12 3.98 1.17 531ty	7 .							 2 %	8 8	3 2		8	. -									Yeurs:	¥
		 						 - :	 = 9	2 3	s 8	. .		<u>.</u> 				.	.	- -	2 2			
		۰. ي						 G		2	 			 						12.0	ž		SILLY	5476
													 -				 .		 .	 .				
																						-		
													<u></u>			·	. .							
			- -																					
																	 .						•	
									••															
	 -						- -		-			

San Carlotte Control of

FIGURE D-8

1		æ		=			:	- ··		•			٠- :	• ··		·					- :-	<u></u> -		·	:-	<u>,</u> -	
		<u> </u>	- 4	E e	= ~	7	~ ₹	F 6-	=	u ·	ω n	, 플		-	-	₹.	. 플	s	u	Ē.			5 4			드	3
	<u></u> :	91-147	 = -	191-146	 æ 6			19.0	11-06	~			: 11.9	é					;			3			 	STATION:	PRUJECT:
	20.0	21.5	55	5	5.0	23.0			Ξ	23.6		90-140	11.9	17.5	ī0.0	96-137	Ē	16.0		90-15	Ė	1	DE CAMP	3		=	=
	•	5	26.2		,. . .			- ••	••													•			-	ĺ	5
		ان•	5 5				20.7 :			<u></u> .		.										•	3 5	7			Chaska Flood Control, Stage 3, East Greek
		и:	5 23				i;															,	CATT. LIMITS)	2			100
 	· - ·															- -							· <u>-</u>	PLASTICITY			5
		26	¥ =				19															2	215	₹		ANDE:	3
						. 																<u>'</u> -;			-		S
 										 .	·					<u>-</u> .			<u>. </u>	. .		. 3	<u> </u>	3		į	ā
																								2			-
																						200		HYD. AMALYSIS			35
 		 .					-			٠- :		.			~	۔۔۔	.	٠ 	7 .	7 :			5 			_	2
	=				<u>ہ</u> =	8		•				,	u	=	u			_ :	••	5	;	ę	9	į	2	SURF. ELEV	
	*				:: 23			· پ		 :: :	 5 =				3		·		· 			-	-	E.S			
 		· · · ·							'				 					- 3						22		-	
	 			;	☆ ₩	8		36	:	ដ	3 2	:	₩	8	8	ğ		8	뛿	~ ~		2	SAN	3		ł	
	2				5 4	!		23		# :	2 2	!	\$					2	# #	2		7	•	2	É		
		- -		:		. .																	-	U.S. STANDARD SIEVE SIZE	ME (PING) ATTUC DEDICATE CINCO		
	92 :-							2 2		S 5	2 2		5					8	≃.					3115	9		
	2			:	8 8			100		ä ;	3 🛎	:	79					23 :	2	77	1	3/4	•				-
	.9				2 3	}			:	\$:	3 8	:	:: :3					8		 =			SRAVE			DEPTH TO WATER TABLE:	2
																		:								S.	20
	8				8				;	§ §	3 8		<u> </u>					;	Ē	ŝ		7.1.1	;			2	BURING: 90-131, 135, 136, 137, 138, 140, 141, 91-144, 146, & 147
				•										•								·				5	,
														. 		. -						. :	: 		.		
	0.54			:	2.75 1.95	0.28		0.61	į	•	2.95		5	0.25	0.36	0.45		9.93	2.33	:5		Ē	86	2			•
								9						•			•-				'			E		İ	5, 1
	0.29				2 .9 2 .9	8			:	0.76	, 8		9 89	0.15	8	0.27		9.54	2	9.5		Ē	100	물		į	ě,
	6.17			:	9. 3. 3.	9.		0.20	;	6.38	9 9		0.35	0.08	0.19	0.19		0.35	0.78	0.17		į	5	SAADATION CURVE ANALYSIS	İ	İ	10,
		- ·- -																						₹			111
	3.21			i	18.68	2.57		3. 98 		12.75	7.5		9.57	 15	 B	2.31		2.66	8. 32	9.37		Ξ	•	SIS			3
	0.96			:	2 . E	1.32		1.03		2	0.68		0.55	1.03	 0.80	0.85		0.89	 	2		 F	·				,
		· = ;					:	:: :::	}	:				:: :::				36	<u>.</u>				· 		.		146
	5 and	ilean clay	Lean clay	į	===	Sand		Sand		13117	= =	-	7	~	ES.	Sand			į	3117		5		n		İ	-
		14		•	Silty grav. sa Silty gravelly	į	46[3			Silty oravelly	Silty gravelly	,	isilty orayeliy	Sand				Silty gravelly	3	Silty grav. sa		IELH NEMU 3-33/, MAT 6/	•	CLASSIF ICATION	ļ	. .	
												:	<u>.</u>					= :	2	. 51		Ş		FIGA			· 遭
					. i						E	1	É					ž,	ž.	5		1,0	:	101		1	-6 -6
	Š.	P F	2 2		25-25 18:-18:	% :	₽	æ.		£ 5			€	: 4S-H3	£	æ		ج ا	£	SH-SH:		5				E	
		- 1- 1			٠. ٠.	-2 :			:		2 .5	:	·		҈.	- 33			٠.	. =	}				- ;	3) (AB 110. B39
																										DATE: 77 Harri	-4
																						ē	ļ				
																						KENAKKS				2	
-																						J.					
							·- ··	• •-															. 		1		
······································					·- ·-	:	:				 -	. . .			·· ·	. 						25 			.l.,	_[_	
																								-			

TABLE 1

SOIL CLASSIFICATION RECORD SHEET

STRING S			٠							-							**********	****************		
SINGE STAT										NB: 70-13	th chroug	U 7/1-3/ U						RE LAS NO.	1535	
DEPTH	STATICAL	RAN			<u>::</u>	AF.ELEV.			EPTH 1	IO WATER T	SE:							ATE:	28 July 1992	
Second Color Color	5 5	:		9	- 5	WILLIAM	E PERCENT	IS FINER				-				Bried:		4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0. (FF Sheef LTD LL P) 1. 605 1786 200 80 40 70 19 4 17 19 100 100 100 100 100 100 100 100 100	STOR : MOTSO	-: PLASTI	Ξ	FINES		E.S. S	SANDARD S	SIEVE SIZ		DAUF!		I GAMDAT	I ON CURVE	ANAL YSI	-	; 5	CLASS	IFICATION		· ·
19-1-19-19-19-19-19-19-19-19-19-19-19-19	OF SAMP:			.0200		- :- ಕ			3/8 : 1			Ē		٦ 	۲ 	Oven?!	TECH NEND	3-357, MAY 67	REMARKS	 22
1.15 1.15			-	- <u> </u>	¦-	<u> </u>	-		- <u> </u> -					- -						<u> </u>
Fig. 144.4 15 30 59 75 44 99 100 77 11 12 100 77 11 12 100 77 11 12 100 77 11 12 100 1.27				·					100							·	_	¥		
17 18 17 18 17 18 18 18	19.81	 ? 						. 												:
20.0 17.2 99 17 44 69 77 91 91 100 1.47 1.68 17 2.4 2.5	192-16871															7 15	-	羣		
1. 171-1418 17	: 20.0 :	 9	7:		± 				·								-	2		
1.5. 27.4 26 127 29 10 17 2.4 29 19 10 17 11 21 15 15 12 19 19 10 1 2.48 2.29 10 10 2.48 2.29 10 10 2.48 2.29 10 10 2.48 2.29 10 10 2.48 2.29 10 10 2.49 10 10 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49	le :92-169M;															7 .2	-			
19 31 26 7 11 26 65 91 100 2.45 6.25	1.5	: 26 :	2 :		39 : 60				9							•	bors veve	ĸ		·
2.2. 23.1. 26. 7 1 14. 27. 5 6. 5 12. 27. 5 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.				·	17 : 2					••	••					22.	ity Sand	,¥ ;		-
33.0 27.3 29 9 10 22 52 57 189 191 192	75.0	· - •	7 -								·					12:	lty Sand	SV-SM		
18.50 18.51 18.52 18.5	0 : 30.0 :			·	5 5					8			:			2	ndy Silty	lay CL-AL		.
18 18 17 17 18 18 17 18 18	: 35.0 :	29:	•							:						-	יים הוא ליים מושר ליים	1		·
1.0. 69.1 88 42 9 19 44 67 75 85 96 100 0.78 0.79 0.79 0.79 0.79 105 1551ty Savetly Sand SP-58 12.0 75.7 23 7 7 35 50 75 88 96 100 0 75 80 100 1 75 80 97 10				·	·										•••	;		•		
11.0 25.4 91 53 53 53 53 53 53 53 5		·	2 .							8		0.78				· <u>i</u>	Ity Gravel	y Sand SN-SM		
20.0 25.7 28 7 35 50 75 88 95 100 24.6 24.6 24.6 24.6 25 97 100 25.6 25.6 25 97 25 97 25 97 25 97 25 25.6 25.6 25 25 25 97 25 97 25 97 25 25.6 25.6 25 25 25 25 25 25 25 25.6 25.6 25 25 25 25 25 25 25.6 25.6 25 25 25 25 25 25.6 25.6 25 25 25 25 25.6 25.6 25 25 25 25 25.6 25 25 25 25 25 25.6 25 25 25 25 25.6 25 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 25 25.6 25 25 2	13.0 :	 96 								. 		. <u> </u>			- -		ganic Sile	2 5		·
27.8 M.A. M.A. M.A. M.A. M.A. M.A. M.A. M.	20.0	23 :	7 :								 .						aver Sand	SC-SM		 - L
18. 18.			•		60 - 82											:5:	ndy Silt	_		
12-17/18 12-1			ш 		 					8						:2:	lty Bravel	y Sand SM		.
2.0 2.0 2.0 2.0 2.0 18.5 26 11 22 17 29 43 59 72 85 92 100 2.09 0.44 0.04 52.23 2.33 iSity bravelly Sand SH-SH 15.0 18.5 26 11 33 47 66 79 88 95 97 100 2.09 0.44 0.04 52.23 2.33 iSity bravelly Sand SH 15.0 18.5 26 11 33 47 66 79 88 95 97 100 2.09 0.44 0.04 52.23 2.33 iSity bravelly Sand SH 15.0 18.5 26 11 23 24 6 71 85 99 100 2.09 0.44 0.02 52 2.3 22 46 71 85 99 100 2.09 100 2.09 100 2.09 0.44 0.04 52.23 2.33 iSity Sand SH 15.0 18.1 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	-					 					 .					·- <u> </u>				
15.0 18.3 26 11 33 47 66 79 88 95 97 100 19.0 26.1 55 36 38 53 75 87 95 99 100 19.0 26.1 55 36 38 53 75 87 95 99 100 19.0 113.0 72 20 99 99 100 19.0 113.0 72 20 99 99 100 19.0 14.4 27.1 49 24 19.0 14.4 27.1 49 24 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.5 19.5 19.5 19.0 19.	·- ·-										. <u> </u>		=	04 : 52.2	3: 2.33		lty Bravell	y Sand SM-SM		 -
18.0 2.1 55 3.0 12 2.1 55 3.0 12 32 46 71 85 94 98 100 1 15.1	15.0	 2		·- ·		-				3 8	<u></u> .					2 22	ity Gravel	y Sand SM		
22.7 22.7 30 12 32 46 71 85 94 98 100 Clayery Sand SC Clayery Sc Clayery Sand SC Clayery Sc Clayery Sand SC Clayery Sand SC Clayery Sc Clayery Sand SC Clayery Sand Sc Clayery	19.0		:									·				<u> </u>	lty Sand (¥ ¥		
22.77 21.3 30 12 32 46 71 85 94 98 100	20.0	• ••														<u>.</u>		•		 =
10.0 113.0 72 20 99 99 100 101.0 102.173N; 102.14.4 27.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 12.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1	e 192-17281	٠							 8 	- 					·	Ē		SC		 =
10. 10.0 91.6 76 22 14 15.1 PH 10. 14.4 27.1 49 24 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	: 20.0 :					••										<u>.</u>				 !?
10: 44.4 27.1 49 24 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 24 27.1 49 2	10 0 .																			
18: 192-1748; 18: 192-1748; 22: 30: 43: 55: 71: 83: 91: 100 10: 0.0: 105.9: 117: 57: 23: 31: 44: 56: 70: 84: 91: 100 10: 0.0: 105.9: 117: 57: 23: 31: 44: 56: 81: 96: 100 10: 0.0: 105.9: 117: 57: 23: 31: 44: 56: 81: 96: 100 10: 0.0: 105.9: 117: 57: 117: 117: 151: 151: 151: 151:	44.4					. .										. 25	₹		-	
3.0 22 30 43 55 71 83 91 100 Silty Gravelly Sand SH 10.0 105.9 117 57 23 31 44 56 70 84 91 100 Silty Gravelly Sand SH 15.0 105.9 117 57 5 8 36 81 96 100 5.59 6.55 0.12 3.11 1.10 Silty Sand SP-SH 40.0 6 14 56 81 93 95 95 100 6.46 6.25 0.12 3.79 1.11 ISILty Sand SP-SH 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	92-174H:				 .		 .					. <u>.</u> .					LIAY			
10.0 193.9 117 57 23 31 44 30 70 84 91 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						: a				: .	·					13:	lty Gravell			
33.0 5 8 34 81 96 100 10.55 0.35 0.19 3.11 1.10 151ty Sand SP-5M 6.14 56 87 93 95 95 100 10.44 0.25 0.12 3.79 1.11 151ty Sand SP-5M						 :							·			12:	ity Gravell			
6. 14. 56, 87 93 95 100 0.46 0.25 0.12 3.79 1.11 Silky Sand			?			 #							# 			y Or	anic Silt	2	. •••	<u>-</u>
					6 : :	<u>د</u> د				8 			51 2			<u> </u>		- SH		
																		•	•	
	·	· ••																		
				·																
														. 						
									į	•		•		•						

ABLE

LIQUID AND PLASTIC LIMITS TEST REPORT

	Location + Description	LL	PL	ΡI	-200	ASTM D 2487-85
	90-134M D-3 7'- 7.5'	58	55	36	71.6	CH, Fat clay with sand
\	92-167M D-4 18.5'- 19.5'	95	65	30	58.8	MH, Sandy elastic silt
•	92-168M D-6 17'- 20'	59	42	17	44.4	SM, Silty sand
•	92-169M D-1 3'- 4.5'	26	14	12	38.9	SC, Clayey sand
K	92-170M D-3 6.5'- 9	88	46	42		OH, Organic silt

Project No.: 1535

Project: CHASKA FLOOD CONTROL

Client: ST. PAUL DISTRICT

Location: MINNESOTA

Date: 7-28-92

LIQUID AND PLASTIC LIMITS TEST REPORT

COE - MISSOURI RIVER DIV. LAB

Remarks:

Fig. No. 1

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

Project:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 1

Location and description: 90-134M D-3 7'- 7.5'

Run No.	1	LIQUID 2	LIMITS 3
₩T w+t	4.475		
dry	3.417	3.536	
WT tare	1.594	1.597	
# Blows	24	25	
Moisture	58.0	58.0	

Moisture	58.0	58.0	
-	PLAST	CIC LIMITS	
Run No.	1	2 3	
WT w+t	3.478	3.126	
WT dry	3.137	2.851	
WT tare			
Moisture	22.1	21.9	

Liquid Limit = 58 Plastic Limit = 22 Plasticity Index = 36

CLASSIFICATION DATA

%-4 = 99.2 **%-10** = 98.6 **%-40** = 91.4 **%-200** = 71.6 Uniformity Coefficient = Curvature Coefficient = PL = 22 PI = 36 LL (oven dry) = 51LL = 58

ASTM = CH, Fat clay with sand

AASHTO = A-7-6(26)

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

Project:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 2

Location and description: 92-167M

D-4 18.5'- 19.5'

Run No.	1	LIQUID 2	LIMITS 3	4
Run NO.	1	4	3	٦
WT w+t	3.989	3.978		
WT dry	2.825	2.811		
WT tare	1.596	1.588		
# Blows	21	33		
Moisture	94.7	95.4		
	PLAST	ric Limi	TS	

Liquid Limit = 95 Plastic Limit = 65 Plasticity Index = 30

CLASSIFICATION DATA

PL = 65 PI = 30 LL (oven dry) = 80 LL = 95

ASTM = MH, Sandy elastic silt

AASHTO = A-7-5(20)

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client: Project: ST. PAUL DISTRICT CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 3

Location and description: 92-168M D-6 17'- 20'

Run No.	1	LIQUID 2	LIMITS 3	4
₩T w+t	4.307	3.544	3.09	3.736
dry	3.274	2.806	2.526	2.948
WT tare	1.607	1.589	1.59	1.582
# Blows	20	22	24	28
Moisture	62.0	60.6	60.3	57.7
	PLAST	CIC LIMI	TS	

Run No.	1	2
WT w+t	2.634	2.457
WT dry	2.324	2.202
WT tare	1.592	1.576
Moisture	42.3	40.7

Liquid Limit = 59 Plastic Limit = 42 Plasticity Index = 17

CLASSIFICATION DATA

PL = 42 PI = 17 LL (oven dry) = 49 LL = 59

ASTM = SM, Silty sand

AASHTO = A-7-5(5)

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

?roject No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

?roject:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 4

Location and description: 92-169M

D-1 3'- 4.5'

Run No.	1	LIQUID LIMITS 2 3	4
√T w+t	4.51	5.225	
T dry	3.907	4.476	
VT tare	1.583	1.585	
Blows	25	29	
loisture	25.9	25.9	

1 2 3 Run No. YT w+t 3.788 3.755 T dry 3.511 3.481 **VT** tare 1.577 1.59 Moisture 14.3 14.5

Liquid Limit = 26 Plastic Limit = 14 Plasticity Index = 12

CLASSIFICATION DATA

PL = 14 PI = 12 LL (oven dry) = 25 LL = 26

ASTM = SC, Clayey sand

AASHTO = A-6(1)

LIOUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

Project:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 5

Location and description: 92-170M

D-3 6.5'- 9

			LIQUID	LIMITS	
	Run No.	1	2	3	4
4	WT w+t	4.392	5.561		
€	dry	3.079	3.702		
•	WT tare				
	# Blows	25	27		
	Moisture	87.8	87.8		
		PLAST	CIC LIMI	TS	
	Run No.	1	2	3	
	WT w+t	2.948	2.894		
	WT dry	2.515	2.483		
	WT tare				
	Moisture	45.9	45.5		

Liquid Limit = 88 Plastic Limit = 46 Plasticity Index = 42

CLASSIFICATION DATA

COE - MISSOURI RIVER DIV. LAB

%-4 = **%-10 =** Uniformity Coefficient =

\$-40 = \$-200 =
Curvature Coefficient =

LL = 88ASTM = OH, Organic silt

PL = 46 PI = 42 LL (oven dry) = 65

AASHTO = A-7-5(48)

LIQUID AND PLASTIC LIMITS TEST REPORT

LIQUID LIMIT

	Location + Description	LL	PL	PI	-500	ASTM D 2487-85
•	92-170M D-4 12'- 13'	90	36	54	90	OH, Organic clay
A	92-174M 0-3 8'- 10'	117	61	56	90	OH, Organic silt

Project No.: 1535

Project: CHASKA FLOOD CONTROL

Client: ST. PAUL DISTRICT

Location: MINNESOTA

Date: 7-28-92

LIQUID AND PLASTIC LIMITS TEST REPORT

COE - MISSOURI RIVER DIV. LAB

Remarks:

FIGURE D-16 Fig. No. 7

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

Project:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

8

TEST DATA - Test number 1

Location and description: 92-170M

D-4 12'- 13'

Run No.	1	LIQUID LIMITS 2 3	5 4
WT w+t	4.278	4.022	
T dry	3.009	2.874	
WT tare	1.587	1.578	
# Blows	26	27	
Moisture	89.2	88.6	

PLASTIC LIMITS 1 2 Run No.

WT w+t 3.056 3.094 WT dry 2.663 2.693 WT tare 1.584 1.587 Moisture 36.4 36.3

Liquid Limit = 90 Plastic Limit = 36 Plasticity Index = 54

CLASSIFICATION DATA

8-4 = Uniformity Coefficient = Curvature Coefficient = LL = 90 PL = 36 PI = 54 LL (oven dry) = 60

1-10 = 1-40 = 1-200 = 1-40 =

ASTM = OH, Organic clay

AASHTO = A-7-5(57)

LIQUID & PLASTIC LIMIT TEST DATA

PROJECT DATA

Project No.:

1535

Date: 7-28-92

Client:

ST. PAUL DISTRICT

Project:

CHASKA FLOOD CONTROL

Project location: MINNESOTA

Remarks:

Figure Number:

TEST DATA - Test number 2

Location and description: 92-174M

D-3 8'- 10'

		LIQUID LIMITS	
Run No.	1	2 3	4
WT w+t	4.036	3.707	
WT dry	2.713	2.56	
WT tare	1.584	1.579	
# Blows	25	24	
Moisture	117.2	116.9	
	PLAST	CIC LIMITS	
Run No.	1	2 3	
WT w+t	2.739	2.837	

WT dry 2.301 2.361 WT tare 1.578 1.573 Moisture 60.6

Liquid Limit = 117 Plastic Limit = 61 Plasticity Index = 56

CLASSIFICATION DATA

\$-4 = \$-10 = \$-40 = \$-200 =
Uniformity Coefficient = Curvature Coefficien

ASTM = OH, Organic silt

AASHTO = A-7-5(67)

COE - MISSOURI RIVER DIV. LAB

13

- 20.

	MIST- MASTER MARCHINE PRESENTE MARCHINE PRESENTE MARCHIN	Note	The control	STATION:	!KANGE:	KANGE	E.			SURF.ELEV.	EV.:			DEPTH T	DEPTH TO MATER	TABLE:								DATE:	B Har	8 March 1993
10 MOIST MASTICITY MTD. AGMINISS U.S. STAMMAND SIEVE SIET	ID	ID	Inc.	DEPTH :					GRADINE		ATIVE PE	RCENTS	FIRE		1	1					5	7.				
### CHAPT 100	### COLUMN NOTE 1911 1005 1006	### CHAPT CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CAMPA CASE CA	## Common	10:	9015T-1 PL	ASTICITY		TAMAL	1818		S. STANI	ARD SIE	3115 3A	à	•		 2 92	MOLTAGA	URVE AM	AL YSIS		5	CLAS	SIFICATION		
92-1950 92-1950 92-1950 93-	92-1980 92-1980 93-1980 94-1980 94-1980 95-	92-1991 72-21	92-1951 72-25 73-25 73-25 73-25 73-35	OF SAMP				5 1.02	200					3/8 : 3	/4:1-1	u		1	9			Ven?	TECH MEN) 3-357, HAY (ARKS
27.5 31.7 34 56 39 39 47 15 15 16 17 17 17 10 10 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79	27.5 38.7 M 19 15 15 15 16 17 17 18 19 19 19 100 10.41 0.79 0.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1	27.5 38.9 48 38 38 39 39 40 39 39 39 39 39 39 39 39 39 39 39 39 39	27.5 38.9 28.9 38 39 39 39 39 39 39 39 39 39 39 39 39 39	- ·	-	-	-			-				;-	-		 -	-	i		_ -	-			- -	
22.5 201.5 26.8 129. 23.5 201.5 26.8 129. 24.5 64.7 75 31 25.7 101.5 62 129. 25.8 113	22.5 201.4 26.9 23 39 27 27 28 12 27 29 100 2.2 0.12 2.40 1.27 251t MH 99 1100 2.40 2.2 0.12 2.40 1.27 251t MH 99 1100 2.40 2.2 0.12 2.40 1.27 251t MH 99 1100 2.40 2.2 0.12 2.40 1.2 251t MH 99 1100 2.40 2.40 2.2 0.15 2.7 2.1 251t MH 99 1100 2.40 2.2 0.15 2.7 2.1 251t MH 99 1100 2.40 2.2 0.15 2.7 2.1 251t MH 99 1100 2.40 2.2 0.10 2.2 0.1 2.2 0	22.5. 301.6. 289 289 221 44.5. 46.7 75 31 92. 101.6. 101 92. 101.6. 101 93. 111.5. 102 93. 111.5. 103 94. 111 95. 101.6. 101 95. 101 95. 1	22.5. 301.6. 268 129 44.5. 667 75 31 79. 166. 139 79. 166. 139 79. 166. 147 79. 167 79.	27.5		••						-						·					n Clav	P		
13.5. 20.1. 266 124 14.5. 60.7 75 31 14.6. 60.7 75 31 15.7. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 267 17. 10.1. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27	13.5. 20.1. 288 124 14.5. 10.1. 289 124 15. 10.1. 10.1 11 17. 10.1 11 18. 10.1 12 18. 10.1	13.5. 20.1. 288 124 14.5. 167. 75 31 17. 181 181 18. 19. 181 18. 181 18	13.5 20.7 288 124 14.5 10.7 289 124 17.6 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.7 10.8 10.8 129 18.5 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8				60															iF.	C1 * C	-		
93. 117.4 149 31 11 11 12 12 12 13 13 14 15 16 16 17 17 17 18 100 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79	92-1946 93-111.3 62 29 94-11.4 194 39 95-111.3 62 20 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 29 95-111.3 62 20 95-111.3 62 29 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 20 95-111.3 62 2	9-0-19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	97-1986 97 75 31 11 11 11 11 11 11 11 11 11 11 11 11		••																	Y iOrg	anic Sil	무		
92-1944 9 31 9 19 19 19 19 19 19 19 19 19 19 19 19	92-1946. 91 31 31 31 32 99 99 99 99 100 9.31 0.21 0.02 2.50 1.22 Stand SP-58 10.0 39 99 100 9.31 0.21 0.04 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.02 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.02 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.02 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.02 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.02 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.05 7.92 7.15 1511 MH 97-299 10.0 9.31 0.21 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.22 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0 9.31 0.25 0.25 7.25 0.25 1511 MH 97-299 10.0	Fig. 11.1.5 R2 29 29 29 29 29 29 29	9-3-1914. 91 31 31 31 31 31 31 31 31 31 31 31 31 31	#.5:																		, 15T	Ŧ		With	some organics
9.0 104.1 91 31 91 92 92 92 92 92 92 92 92 92 92 92 92 92	9.5 110.4. 91 31 31 31 31 31 31 31 31 31 31 31 31 31	9.5 113.5 68 2 29 9 9 9 9 9 100 1.31 0.21 0.22 0.22 2.60 1.72 1.81 1.81 M 9 19 19 100 1.31 0.21 0.22 0.22 2.60 1.72 1.81 1.81 M 9 19 19 100 1.31 0.21 0.22 0.22 2.60 1.72 1.81 1.81 M 9 19 100 1.31 0.21 0.22 0.22 2.60 1.72 1.81 1.81 M 9 19 100 1.31 0.21 0.22 0.22 2.60 1.72 1.81 1.81 M 9 19 100 1.81 0.81 1.81 1.81 M 9 19 100 1.81 0.81 1.81 1.81 1.81 1.81 1.81	9.5 113.5 68 2 29 9 9 9 9 100	92-196M					 																	,
73.5 104.8 101 39 79 79 79 79 79 79 79	27.5 194.8 101 39 49.5 197.2 149 65 49.5 197.2 151 131 49.5 197.2 149 65 49.5 197.2 149 65 49.5 197.2 149 65 49.5 197.2 149 65 49.5 197.2 149 65 49.5 197.2 149 65 49.5 197.2 149 65 49.6 197.2 1	73.5 194.8 101 39 75.1 194.8 101 39 75.1 194.8 101 39 75.1 194.8 101 39 77.1 45 18 18 77.1	27.5 194.8 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.5 197.2 101 39 49.6 197.2 10											. <u></u>	. . -	·	·	·				- 4	.		=======================================	organics
19.5 117.4 199 53 1 199 54 199 57 100 1 1.27 1.50 1.27 1.28 11 199 511 M. 12.29 11 19 50 1 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 19 50 1 199 512 M. 2.5 17.1 45 18 18 19 512 M. 2.5 17.1 45 18 18 19 512 M. 2.5 17.1 45 18 18 19 512 M. 2.5 17.1 45 18 18 18 18 18 18 18 18 18 18 18 18 18	37.5 117.4 196 37 40.5 17.7 196 38 197-1978 2.5 17.1 49 63 111 50 2.6 17.1 197 50 2.7 2 11 50 2.8 17.1 197 50 3.1 15 50 3.1	9.5 197.4 194 63 9.5 197.2 51 33 9.7 197 197 197 197 197 197 197 197 197 19	9.5 197.4 PV 53 19 19 19 19 19 19 19 19 19 19 19 19 19				, -				. <u>.</u> - -	· - -	,				· F		E 1	organics
9.5.5 37.2 147 8.5 19 19 19 19 10 10 10.51 0.79 1.79 1 17 19 19 19 19 10 10.51 0.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1	97-19781 177 187 63 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.5.5 37.2 197 6.3 17.2 197 6.3 17.2 197 6.3 17.2 197 197 197 197 197 197 197 197 197 197	9.7.5 37.2 197 6.5 37.2 197 100 1.77 6.70 1.77 6.10 1.77							٠							. . -	. 			. 	Y 151	. ₹	-	Hith	organics
27-1978 2.5 3.1 45 18 18 19 19 19 10 10 1.31 0.21 0.12 2.40 1.22 Y Chaptic Sitt OH P2-1988 8.4 61.3 11 50 18 18 19 18 19 19 100 1.45 0.40 0.21 0.02 2.40 1.22 Y Chaptic Sitt OH P2-1988 9.0 47.4 134 55 3 11 65 96 96 97 100 1.45 0.40 0.21 0.02 2.40 1.22 Y Chaptic Sitt OH P2-1988 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.27 Stand SP-588 10.0 35 21 30 46 86 87 97 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 86 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 95 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 97 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 97 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 97 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 97 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 97 99 100 1.41 0.24 0.11 4.08 1.17 Stand SP-588 10.0 35 21 30 46 85 37 70 75 86 100 100 1.41 0.24 0.12 1.00 1.20 1.20 1.20 1	22-1978	27-1978 2.5 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.8	22.5 17.1 4.5 18 2.5 18 17.7 19.1 18.6 18.6 18.7 19.1 10.0 17.7 19.1 19.1 19.1 19.1 19.1 19.1 19.1																				anic Sil	· ·		
2.5 37.1 45 18 18 25 18 18 27 18 18 18 27 18 18 18 27 18 18 18 27 18 18 18 27 18 18 18 18 18 18 18 18 18 18 18 18 18	2.5 37.1 45 10	2.5 37.1 45 18 20 Y Clayer Silt M. 12.0 24.0.1 11.1 50 Y Clayer Silt M. 12.0 24.0.1 11.1 50 Y Clayer Silt M. 12.0 24.0.1 11.1 50 Y Clayer Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y Departs Silt DH Y DEPARTS Silt DH Y DEPARTS Silt Silt Silt Silt Silt DH Y DEPARTS Silt Silt Silt Silt DH Y DEPARTS Silt Silt DH Y DEPARTS Silt DH Y DEPARTS Silt Silt Silt Silt DH Y DH Y DEPARTS Silt DH Y DH Y DEPARTS Silt Silt Silt Silt DH Y DH Y DEPARTS Silt Silt Silt Silt Silt DH Y DH Y DEPARTS Silt Silt Silt Silt Silt Silt Silt Sil	2.5 37.1 45 18 20 Y Clayer Silt M. 12.0 24.0 6.1 311 50 Y Clayer Silt M. 12.0 24.0 6.1 311 50 Y Clayer Silt DH Y Clayer Silt Silt Silt Silt Silt Silt Silt Silt	197-197																			911C 211	9		
8.4 61.3 111 50 Y 10rganic Sitt DH 12.0 28.0 274 86 Y 100	12.0 243.6 13.3 111 50 Y 10 capacit Sitt DH 12.0 243.6 124 86 Y 100 O43 040 021 300 121 Sind SP 19.5 96 97 100 O43 040 021 300 121 Sind SP 19.5 97 100 O43 040 021 300 121 Sind SP 19.5 99 100 O44 024 011 409 117 Sind SP 19.5 99 100 O44 024 011 409 117 Sind SP 19.5 99 100 O44 024 011 409 117 Sind SP 19.5 99 100 O44 024 011 409 117 Sind SP 19.5 99 100 O44 024 011 409 117 Sind SP 19.5 99 100 O40 021 300 121 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 020 010 010 010 Sind SP 19.5 99 100 O40 020 010 010 O40 021 005 7.92 215 Sind SP 19.5 99 100 O40 020 010 010 010 O50 020 010 010 Sind SP 10.00 O50 020 010 010 O50 010 Sind SP 10.00 O40 020 010 010 O50 010 Sind SP 10.00 O40 020 010 010 O50 050 Sind SP 10.00 O40 020 000 050 050 Sind SP 10.00 O40 050 050 050 O50	12.0 26.0. 274 86 86 86 96 97 100 0.31 0.21 0.12 2.60 1.22 Sand SP 97 100 0.31 0.21 0.12 2.60 1.22 Sand SP 97 100 0.40 0.21 0.02 3.00 1.22 Sand SP 97 100 0.40 0.21 0.02 3.00 1.22 Sand SP 97 100 0.40 0.21 0.05 7.92 1.25 Sand SP 97 100 0.40 0.21 0.05 7.92 1.25 Sand SP 97 100 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.40 0.21 0.05 7.92 2.15 Sand SP 97 100 0.40 0.21 0.40	8.4 6.3 111 50	2.5	37.1 :				- 												. .	< 3		*	;	
12.0 260.0 274 86 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 77 98 198	12.0 246.0 274 86 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 1.25 1.25 1.26 1.27	12.0 240.0 274 86 86 97 100 10.31 0.21 0.12 2.60 1.22 72.168 134 55 3 16 85 96 96 97 100 10.40 0.21 0.12 2.60 1.22 72.168 134 55 3 16 83 78 96 100 10.40 0.21 0.40 0.21 0.02 1.21 12.169 10.0 1.21 12.169 10.0 1.21 12.169 1.22 12.169 10.0 1.21 12.169 1.22 12.169 10.0 1.21 12.169 1.22 1.22 1	12.0 246.0 274 86 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 97 198 19							٠			····	 .								7	anic Sil	2 7	- 1	SOME OF GREATER
192-1998 194 195 3 16 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 195 195 27.0 4 8 33 78 96 100 0.43 0.40 0.21 3.00 1.21 19-1998 100 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.08 1.17 11.5 1.15 32.8 38 39 39 102 4.5 84 97 100 0.40 0.21 0.05 7.92 2.15 11.5 32.8 38 39 39 30 47 45 47 70 73 84 100 0.68 0.28 0.18 3.78 0.66 11.7 11.5 11.5	192-1998 134 55 3 14 85 96 96 97 100	192-198H 19.5. 134 55 3 16 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 19.5 19.5 100 0.43 0.40 0.21 3.00 1.21 122 122 123 123 124 12	192-1988 134 55 3 16 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 19.5 27.0 243.6 134 55 3 16 85 96 96 97 100 0.63 0.40 0.21 3.00 1.21 19.5 10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 0.06 1.17 15.5 40.1 75 48 49 49 40 40 40 40 40 40				ة 															Y 10r	anic Sil	2		
9.0 243.6 134 55 3 16 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 21.0 27.0 4 8 33 78 96 100 0.53 0.40 0.21 3.00 1.21 1.00 1.22 1	9.0 243.6 134 55 3 16 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 27.0 27.0 4 8 33 78 96 100 0.63 0.40 0.21 3.00 1.21 12.0 12.0 12.0 12.0 12.0 12.0 1	9.0 243.6 134 55 3 16 65 96 96 97 100 0.31 0.21 0.12 2.60 1.22 72.0 12.0 1 35 21 3.0 46 88 95 95 99 100 0.44 0.24 0.11 0.06 1.21 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 243.6 134 55 3 16 65 96 96 97 100 0.31 0.21 0.12 2.60 1.22 72.0 12.0 1 2.10 1.22 72.0 1.20 1.22 72.0 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1																							
77.0 3.1 4.8 8.5 9.6 96 97 100 0.41 0.21 0.12 2.60 1.22 2.70 1.22 2.70 1.22 1.20 1.20	77.0 3 14 85 96 96 97 100 0.31 0.21 0.12 2.60 1.22 17.0 35 21 30 46 88 85 95 99 100 0.44 0.24 0.11 4.08 1.21 10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.08 1.17 8.5 40.1 75 48 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 11.5 32.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 19.5 37.2 38 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 19.5 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 19.5 37.0 32 32 37 10 47 47 9	77.0 7.0	77.0					·					:									Y iOrg	anic Sil	9		
10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.06 1.17	10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.06 1.21	10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.06 1.17	12.0 15.0 17.5 18 19 19 19 19 100 1.21 1.05 1.21 1.06 1.21 1.07 1.06 1.21 1.07 1.06 1.21 1.07 1.06 1.21 1.07 1.06 1.21 1.07 1.06 1.21 1.07 1.06 1.21 1.07	14.5						5			96		8		0.3			2.60	1.22	iS.	ş			
10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.08 1.17 4.0 1.5 40 175 48 82 95 99 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 12 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 17.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 17.0 34.0 49 32 10.0 34.0 49 32 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 24.5 38.6 39 20 10 20 37 50 61 77 96 100 0.69 23.75 0.65 39.5 38.6 39 20 12 25 57 73 83 94 100 0.69 23.75 0.65 39.5 38.6 39 20 12 25 57 73 83 94 100 0.69 23.75 0.65 39.5 38.6 39 20 12 25 57 73 83 94 100 0.69 23.75 0.65 39.5 38.6 39 20 12 25 57 73 83 94 100 0.69 23.75 0.65 39.5 38.6 39 20 12 25 57 73 83 94 100 0.69 23.75 0.65 39.5 38.6 39 20 30 30 30 30 30 30 30 30 30 30 30 30 30	10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 0.06 1.17 0.07 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 12 24 63 84 97 100 0.68 0.28 0.18 3.78 0.66 19.5 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 19.5 2001 34.0 49 32 2 6 41 77 97 100 0.68 0.28 0.18 3.78 0.89 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 39.5 39.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 39.5	10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 4.08 1.17	10.0 35 21 30 46 68 85 95 99 100 0.44 0.24 0.11 0.06 1.17 0.5 40.1 75 48 19 19 58 82 95 99 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 15.0 32.8 58 39 17 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 17.5 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 17.0 38.4 49 32 2 6 41 77 97 100 0.59 0.52 0.20 2.98 0.89 24.5 38.6 39 20 10 20 37 50 61 77 96 100 0.79 0.30 0.08 23.75 0.65 39.5 39.5 39 20 10 20 37 38 39 49 100 0.68 0.79 0.70 1.50 1.50 1.50			. .			-				8							3.00	1.21	. <u>::</u>	SP			
40.1 75 48 19 58 82 99 100 0.44 0.24 0.11 4.08 1.17 150 151 152 152 153 154 155 157 70 73 84 100 0.46 0.21 0.05 7.92 2.15 33.8 58 39 100 12 24 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 15.8 17 2 15.8 17 2 15.8 17 2 15.8 17 2 16 20 37 50 61 77 95 100 1.79 0.30 0.08 23.75 0.55 38.6 39 20 10 22 37 73 83 94 100 1.79 0.30 0.08 23.75 0.55 38.6 39 20 10 22 37 73 83 94 100 1.79 0.30 0.08 23.75 0.55 38.6 39 20 10 20 37 30 61 77 95 100 1.79 0.30 0.08 23.75 0.55	40.1 75 48 81 99 100 0.44 0.24 0.11 4.08 1.17 75 48 58 82 99 100 0.40 0.21 0.05 7.92 2.15 32.8 58 39 12 24 63 84 97 100 0.40 0.22 0.05 7.92 2.15 38.4 56 38 77 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 31.0 49 32 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 38 3 94 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 38 3 94 100 0.47 0.21 0.06 7.80 1.50	40.1 75 48 81 99 100 0.44 0.24 0.11 4.08 1.17 100 0.40 0.21 0.05 7.92 2.15 32.8 58 39 12 24 63 84 97 100 0.40 0.22 0.05 7.92 2.15 38.4 56 38 7 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.4 39 20 10 20 37 50 61 77 95 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 38 41 77 95 100 0.47 0.21 0.06 7.80 1.50	40.1 75 48 81 99 100 0.44 0.24 0.11 4.08 1.17 75 48 58 82 99 100 0.44 0.24 0.11 4.08 1.17 32.8 58 39 100 0.40 0.21 0.05 7.92 2.15 38.4 56 38 77 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 13.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 38 3 94 100 0.47 0.21 0.06 7.80 1.50		. - -		Ξ.		٠. ځ				 B 	. 			- -					; -		:		
40.1 75 48 12 24 63 84 97 100 10.40 0.21 0.05 7.92 2.15 32.8 58 39 12 12 14 65 67 70 73 84 100 10.48 0.28 0.18 3.78 0.66 27.7 22 3 3 7 10 47 65 67 70 73 84 100 10.48 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 10.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.60 23.75 0.65 38.6 39 20 10 20 37 83 94 100 10 0.47 0.21 0.06 7.80 1.59	40.1 75 48 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 32.8 58 39 12 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.69 0.28 0.18 3.78 0.66 34.0 49 32 3 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 97 100 0.40 0.47 0.21 0.66 7.80 1.50 38.6 39 20 10 20 37 83 94 100 0.47 0.21 0.66 7.80 1.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3	40.1 75 48 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 32.8 58 39 12 12 14 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 38.0 17 22 3 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 38.0 19 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50	40.1 75 48 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 32.8 58 39 12 24 63 84 97 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 31.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 83 94 100 0.47 0.21 0.06 7.80 1.50	3 - 10.6									8 3				 -			} }	: 	2 2	yey Sand	; 55		
33.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 38.4 56 38 39 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 23 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 80 61 77 96 100 1.79 0.30 0.68 23.75 0.65 38.6 39 20 10 20 37 88 94 100 0.47 0.21 0.06 7.80 1.50	32.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 38.4 56 38 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 7 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 97 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50	33.8 58 39 12 24 63 84 97 100 0.40 0.21 0.05 7.92 2.15 38.4 56 38 39 7 10 47 65 67 70 73 84 100 0.48 0.28 0.18 3.78 0.66 27.2 2 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 15.8 177 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	32.8 58 39 58 39 50 61 62 64 97 100 0.40 0.21 0.05 7.92 2.15 38.4 56 38 77 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 7.2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 0.47 0.21 0.06 7.80 1.50 38.6 39 20 112 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	B.5	• • •									-		-						; ;	Oure As	F 07-50		
32.8 58 39 39 39 38 39 39 39 30 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 32 5 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 38 39 40 100 0.47 0.21 0.66 7.80 1.50	32.8 58 39 39 39 47 55 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 17 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	32.8 58 39 39 39 47 55 47 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 38 39 20 10 20 37 83 94 100 0.47 0.21 0.06 7.80 1.50	32.8 58 39 39 39 38 39 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 38 64 37 73 83 94 100 0.47 0.21 0.06 7.80 1.50	• : 11.5 :					12 :				5	 .					 .	7.92	2.15	5	ty Sand	54-53		
38.4 56 38 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 77.2 72 3 7 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 7 7 10 49 32 7 10 10 10 10 10 10 10 10 10 10 10 10 10	38.4 56 38 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 77.7 72 72 72 72 72 72 72 72 72 72 72 72 72	38.4 56 38 7 10 47 65 67 70 73 B4 100 0.68 0.28 0.18 3.78 0.66 77.2 72 72 72 72 72 72 72 72 72 72 72 72 72	38.4 56 38 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	5 : 15.0 :	32.8		¥5															ij.	7	•		
27.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 1 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 38.6 39 20 10 22 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50 1.50	77.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.52 0.70 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	77.2 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.70 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	77.7 22 3 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.52 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 98 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	6 : 17.0 ;	38.4 :		86															Ŧ	Clay	.		
34.0 49 32 7 10 47 65 67 70 73 84 100 0.68 0.28 0.16 3.78 0.66 15.8 17 7 2 15.8 17 7 97 100 0.59 0.32 0.20 2.98 0.89 15.8 39 20 10 20 37 50 61 77 97 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	34.0 49 32 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 15.8 17 2 7 6 41 77 97 100 0.59 0.32 0.70 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	34.0 49 32 7 10 47 65 67 70 73 84 100 0.68 0.28 0.18 3.78 0.66 15.8 17 7 2 7 6 41 77 97 100 0.59 0.32 0.70 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	34.0 49 32 7 10 47 65 67 70 73 84 100 0.69 0.28 0.18 3.78 0.66 15.8 17 2 7 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	7 : 19.5 :	27.2																	13	₹.			
34.0 49 32 15.8 177 2 2 6 41 77 97 100 10.59 0.32 0.20 2.98 0.89 15.8 39 20 10 20 37 50 61 77 96 100 11.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 10.47 0.21 0.06 7.80 11.50	34.0 49 32 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.70 2.98 0.89 15.8 17 2 2 6 41 77 97 100 0.59 0.32 0.70 2.98 0.89 18.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	34.0 49 32 15.8 177 2 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 15.8 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	34.0 49 32 15.8 177 2 2 6 41 77 97 100 10.59 0.32 0.20 2.98 0.89 15.8 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 0 0.47 0.21 0.06 7.80 1.50	8 : 21.5 :		· 			7	5			70			100 :	1 0.6			3.78	0.66	:S:	ty Grave	lly Sand SP-	<u>열</u>	
34.0 49 32 15.8 17 37 100 10.59 0.32 0.20 2.98 0.89 18.6 39 20 10 20 37 50 61 77 96 100 11.79 0.30 0.60 23.75 0.65 12 25 57 73 83 94 100 10.47 0.21 0.06 7.60 11.50	34.0 49 32 15.8 17 27 170 10.59 0.32 0.20 2.98 0.89 18.6 39 20 10 20 37 30 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 37 73 83 94 100 10.47 0.21 0.06 7.80 1.50 1.50	34.0 49 32 15.8 177 97 100 10.59 0.32 0.20 2.98 0.89 18.6 39 20 10 20 37 50 61 77 96 100 11.79 0.30 0.08 23.75 0.65 122 25 37 73 83 94 100 10.47 0.21 0.06 7.60 11.50	34.0 49 32 15.8 177 97 100 10.59 0.32 0.20 2.98 0.89 18.4 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.60 23.75 0.65 12 25 57 73 83 94 100 10.47 0.21 0.06 7.80 1.50	11e :97-200M																						
10.8 17 2 2 4 41 77 97 100 0.59 0.32 0.70 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	10. 8 17 7 97 100 10.59 10.32 10.20 2.98 10.89 10.80 20 110 20 37 50 61 77 98 100 11.79 10.30 10.08 23.75; 0.65 12 25 37 73 83 94 100 10.47 10.21 10.06 7.80 11.50 11.50	38.6 39 20 20 41 77 97 100 0.59 0.32 0.20 2.98 0.89 100 20 37 50 61 77 98 100 1.79 0.30 0.08 23.75 0.65 122 25 57 73 83 94 100 0.47 0.21 0.06 7.60 1.50	38.6 39 20 2 6 41 77 97 100 0.59 0.32 0.20 2.98 0.89 38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75; 0.65 12 25 37 73 83 94 100 0.47 0.21 0.06 7.80 1.50	10.0	34.0		2															ä	-	ρ		
38.6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 37 73 83 94 100 0 1.79 0.20 7.80 1.50 1.50	38.6 39 20 2 6 41 77 97 100 10.59 0.32 0.20 2.98 0.89 10 20 37 50 61 77 96 100 11.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 10.47 0.21 0.06 7.80 1.50	38.6 39 20 2 6 41 77 97 100 10.59 0.32 0.20 2.98 0.89 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50 1.50	38.6 39 20 20 41 77 97 100 10.59 0.32 0.20 2.98 0.89 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	5 : 12.0 :	15.8	•-	2 :															13:	3			
38-6 39 20 10 20 37 30 61 77 96 100 11.79 0.30 0.68 23.75 0.65 122 25 57 73 83 94 100 10.47 0.21 0.06 7.60 11.50	38-6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 1 0.47 0.21 0.06 7.60 1.50	38-6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.68 23.75 0.65 12 25 57 73 83 94 100 0.47 0.21 0.06 7.80 1.50	38-6 39 20 10 20 37 50 61 77 96 100 1.79 0.30 0.08 23.75 0.65 122 25 57 73 83 94 100 0.47 0.21 0.06 7.60 1.50	6 : 14.5 :					2 !	•							0.5			2.98	0.89	Ş				
10 20 37 30 61 77 96 100 1.79 10.30 10.08 23.75; 0.65 1 12 25 57 73 83 94 100 1 10.47 10.21 0.06 7.80 11.50	10 20 37 30 61 77 96 100 1 1.79 0.30 10.08 23.75; 0.65 1 12 25 37 73 83 94 100 1 0.47 0.21 0.06 7.80 1.50 1.50 1 1	10 20 37 30 61 77 96 100 1 1.79 0.30 0.08 23.75; 0.65 122 25 37 73 83 94 100 1 0.47 0.21 0.06 7.80 1.50 1.50	10 20 37 30 61 77 96 100 1.79 0.30 0.08 23.75 0.65 122 25 57 73 83 94 100 1.47 0.21 0.06 7.80 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	9 : 24.5 :	38.6 :		~			<u>.</u>												Ë	n Clay	Þ		
12 25 57 77 3 83 94 1000	127 25 37 73 83 94 1000	12 25 57 73 83 94 1000	73 83 94 1000	0 : 29.0 ;					5	20 :			; 77 ;		8		- 1.7				9	S	ty Gravi	lly Sand SP-	¥ 	
				12 : 39.5 :					12 1	25			24							_	5	5	ty Sand	SK-SH		
					. 															:		;		1		
									. 								 -	<u>.</u>	<u>-</u>	<u>,</u>		-			<u>.</u> .	
						<u>-</u>	. -		. 							<u>-</u>			ئىسىسى ,	يسيو.	ئىي د.				,;;;= :	
				. - -			. - -	. - *	-					· 					نس	ند	_ _ -	ئىي. ئىي				
				. ••	- - -	- •		-								· .										

SOIL CLASSIFICATION RECORD SHEET

SOIL CLASSIFICATION RECORD SHEET

Substitute Sub		Chaska Flood Control. East Creek Stage	East Greek Stage 3		: 80A1NG: 92-201M through 92-203M	gh 92-203M		MRD LAB NO.	1897 HRD LAB NO. 1897	
10 10 10 11 11 12 13 14 15 15 15 15 15 15 15	STATION:	RANGE	••	SURF.ELEV.:	DEPTH TO WATER TABLE:			DATE	8 March 1993	
	:		GRADI	€:			-=			!
175 Sape 101 LL 17 0.05 10m 200 80 10 20 10 4 108 37 1172 3 118 (am) (am) (am) (am) (b. 1 Cc (bent) (EC) HERD \$337, MAY \$7 175 201 11 11 11 11 11 11 11 11 11 11 11 11 1	1001108	E :(ATT. LIMITS)				: DAO : DAO : DIO :		CLASSIFICATION		
17-2006 1.13 1.14 1.17 1.15 1.16 1.17 1.17 1.17 1.17 1.17 1.17 1.17	OF SAMP:			80 : 40 : 20 ;		(an) (an) (an)	: 0ven?:	MEND 3-357, MAY 67	REMARKS	
1.5 Hz.4 42 22 1 1 1 53 1 1 1 7 45 87 98 99 100 1 1.1.1 27 1 1.1.1 27 1 1.1.1 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ole :92-2015:									_
3.8 77.2 111 535 111 17 45 87 98 99 100 10.55 0.30 0.05 11.111 3.79 150 paint Shit on the first of the first	. 5.1	12:		 			: Y :Lean Cl	≱ Y CF	With some organics	
11. 10 26.5 M 200 11. 10 45 89 99 100 10.5 0.30 0.05 11.14 3.29 15.1ty San Gry 91 11. 10 26.1 31 16 16 17 0.1 11. 11. 11. 11. 11. 11. 11. 11. 11.	• •-	Ξ					· ~	STIF OH		.
11.1.1.2 28.1.3 31 16.6 16.7 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17				45 87 98		0.30 0.05	 <	and SP-SN	With some property	
13.0 17.5 17 2 50 72 90 96 99 100 1511t 15.0 151t 15.1 151t 15.2 2.2 26.3 20 5 27 90 96 99 100 15.1 151t 151t 151t 151t 151t 151t 151t	-	۔۔۔ د ب					: iLean Ci	2 5	sates some organics	 .
15.0 2.4.2 20.3 20 5 20 73 90 96 99 100 11 1511Y 12-20210 12 20.3 20 5 20 19 19 49 55 99 100 11 1511Y 12-20210 12 20.3 20 19 19 49 65 79 100 11 1511Y 12-20210 12 20.3 20 19 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20 19 19 100 11 1511Y 12-20210 12 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.		17:					18.11. M	1	-	
29.22 26.3 20 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••		: : 50	: 90 : 96 : 98 :	1 100 : : :		i isiity s	and SM		
72-24-07 72-24-07 73-19 74-07 75-10 75-25-07 75-25	24.2	• ••	· ••	·		·	: :Clayey	Silt ML-CL	• •-	. . .
3.0 24.6 37 19 19 1646 17 18 18 19 100 1646 17 18 18 18 18 18 18 18 18 19 100 18 18 18 18 18 18 18 18 18 18 18 18 18						 	: ::::::::::::::::::::::::::::::::::::	Sand SC		
13.0 23.4 32 17	••	37 :					: iLean Ci	S, C		
102-2058: 103 18 25 71 86 94 98 99 100 15.0 23.0 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 22					: :Lean CI	₽ Y CL		
22.0 25 14 18 29 20 20 20 20 20 20 20 20 20 20 20 20 20			 	:				•		
			 				t team (1	* P		
							:	1		 .
	• 	 	 	 						
	· •-			·					- 	
									-	
									•••	
							- 			
	 				 				•	
		 		·	 	·	. 			
		·• •·								
		 		 			 		• ••	
		·	• ••							
	- - -									

Figure 1

Figure 2

EFFECTIVE STRESS VECTOR CURVES ON STDEGREE PLANE

NORMAL STRESS, TSF

REMARKS: COMPUTER PRINT-OUT SYMBOLS SAME AS FORM 2089 R TRIAXIAL TEST: PORE PRESSURE

MONITORED DURING SHEAR

PROJECT: CHASKA NCS-IA-82-126-ED-GH BORING NO: SAMPLE NO: 82-42 DEPTH/ELEV: 10.-11.4

DATE: 08 MAR 1983 MRD LAB NO: 95/67

TRIAXIAL COMPRESSION TEST REPORT

FIGURE: 3

FIGURE D-23

MRD Form 756, 1 May 80

SHEAR STRESS, TSF

CHASKA NCS-IA-82-126-ED-GH

SAMPLE NO: 2

MRD LAB NO:

- 83/67

24 MAR 1983

BORING NO:

82-42MU

DEPTH/ELEV: 19.0-11.4

COMPUTER PRINT-OUT FORMAT

SAME AS ENG FORM 2088

CONSOLIDATION TEST--TIME CURVES

FIGURE:

CHASKA NCS-IA-82-126-ED-GH

MRD LAB NO:

83/67

DATE: 24 MAR 1983

BORING NO:

82-42MU

SAMPLE NO: 2

DEPTH/ELEV:

18.8-11.4

COMPUTER PRINT-OUT FORMAT

SAME AS ENG FORM 2088

CONSOLIDATION TEST-TIME CURVES

FIGURE:

3

y 80

FIGURE D-27

ENG , MAY 63 2087

FIGURE

EFFECTIVE STRESS VECTOR CURVES ON 60. DEGREE PLANE

NORMAL STRESS, TSF

DEPTH/ELEV:

REMARKS: COMPUTER PRINT-OUT SYMBOLS SAME AS FORM 2089 **R** TRIAXIAL TEST: PORE PRESSURE

MONITORED DURING SHEAR

PROJECT: CHASKA NCS-IA-82-126-ED-SH SAMPLE NO: BORING NO:

82-42

15.-16,5

MRD LAB NO: 85/67 DATE: 08 MAR 1983

TRIAXIAL COMPRESSION TEST REPORT

FIGURE: 7

FIGURE D-31

MRD Form 756, 1 May 80

SHEAR STRESS, TSF

Туре	of Specimen	undisi	TURBED			Before !	<u>l'est</u>			After Test	
Diam	4.29	in. Ht	.998	in.	Water Con	tent, vo	253.	\$	v _f	161.	*
Over	ourden Press	sure, po		T/sq ft	Void Rati	o, e _o	5.45	7	e _f	3.21	
Preco	msol. Press	sure, p _c		T/sq ft	Saturatio	n, S _o	120.	\$	Sf	188.	\$
Comp	ression Inde	x, C _c			Dry Densi	ty, 7 _d	21.2	1b/m ³			
Class	ification S	andy or	ganic	clay,0H	k ₂₀ at e	=	× 10	cm/sec			
ш	212	G.	2.19		Project	CHASKA N	ICS-IA-82	2-126-FD-	- CH		
PL	125	D ₁₀				•					
Remar	ks Note t	he seco	ndary		Area	HRO LAB	NO: 83/6		-1		
cons	olidation				Boring No	82-42MU	•	Sample	No.	3	
					Depth El	15.0-16.	3	Date	24	MAR 1983	
					CO	NSOLI	OITAC	N TES	T R	EPORT	

ا استنداد

CHASKA NCS-IA-82-126-ED-6H

MRD LAB NO:

83/67

DATE: 24 MAR 1983

BORING NO:

82-42MU

SAMPLE NO: 3 DEPTH/ELEV: 15.0-16.3

FIGURE:

CONSOLIDATION TEST-TIME CURVES

COMPUTER PRINT-OUT FORMAT SAME AS ENG FORM 2088

CHASKA NCS-IA-82-126-ED-GH

SAMPLE NO:

3

MRD LAB NO:

83/67

DATE: 24 MAR 1983

BORING NO:

82-42MU

DEPTH/ELEV:

15.8-16.3

COMPUTER PRINT-OUT FORMAT

SAME AS ENG FORM 2088

CONSOLIDATION TEST-TIME CURVES

FIGURE:

7

CHASKA NCS-IA-82-126-ED-GH

MRD LAB NO:

83/67

DATE: 24 M

24 MAR 1983

BORING NO:

82-42MU

SAMPLE NO: 3

DEPTH/ELEV:

15.8-16.3

COMPUTER PRINT-OUT FORMAT

SAME AS ENG FORM 2088

CONSOLIDATION TEST-TIME CURVES

FIGURE: 8

∞ FIGURE

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS DESOLETE

TRANSLUCENT

(EM 1110-2-1906)

NO. 2009 PREVIOUS EDITION IS DESOLETE

TRANSLUCENT

(EM 1110-2-1906)

EFFECTIVE STRESS VECTOR CURVES ON 65 DEGREE PLANE

NORMAL STRESS, TSF

REMARKS: COMPUTER PRINT-OUT SYMBOLS SAME AS FORM 2089 K TRIAXIAL TEST: PORE PRESSURE MONITORED DURING SHEAR

MRD LAB NO:

PROJECT:

CHRISKA NCS-IR-82-126-ED-8N SAMPLE NO:

BORING NO: DEPTH/ELEV:

25-28.4 85/87

DATE: 08 MAR 1983

TRIAXIAL COMPRESSION TEST REPORT

11 FIGURE:

SHEAR STRESS, TSF

FIGURE 12

FIGURE-D-40

Type of Specimen	NDISTURBED	Before	Test			After Test	
Diam 2.5 in. I	t .75 in.	Water Content, Wo	34.5	\$	v _f	35.7	*
Overburden Pressure,	o T/sq ft	Void Ratio, e	1.10		ef	0.78	
Preconsol. Pressure, I	oc T/sqft	Saturation, S	90	\$	Sf	100	\$
Compression Index, Cc		Dry Density, 7 _d	85.5 ¹	b/nt ³			
Classification Sandy	clay, CH	k ₂₀ at e ₀ =	× 10 - c	m/sec			
止 55 G	2.88	Project CH	ASKA: CEN	CS-IA	-90-	-78-ED-GH	
PL 19 D	ro						
Remarks Black. To	rvane = 0.325	Area MR	D LAB NO.		90/3	358	
TSF. Slightly or	ganic, non-	Boring No. 90-	-132 MU	Sample	e No.	S-1	
calcareous.		Depth El 14	'-16 <i>'</i>	Date	07	7-16-90	
carcarcous.		CONSOLI		TES			

MRD LAB NO.

90/358

LEGEND

TSF

TSF

TSF

TSF

PROJECT

BORING NO.

90-132 MU

SAMPLE NO.

S-1

DEPTH/ELEV

14'-16'

MRD LAB NO.

90/358

Project CHASKA; CENCS-IA-90-78-ED-GH

90-132 MU

Boring No. 90-132 Sample No. S-1
Depth/Elev 14'-16'
MRD Lab No. 90/358

Gs = 2.88 eo = 1.102 0.42eo = 0.463

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
34.⁄5	82.7	85.5	1.102		90.2
35.7	82.7	86.0	1.090	0.10	94.4
35.7	82.7	86.7	1.072	0.25	95.9
35.7	82.7	87.9	1.046	0.50	98.3
35.7	82.7	89.9	1.000	1.00	100.0
35.7	82.7	94.3	0.906	2.00	100.0
35.7	82.7	100.1	0.795	4.00	100.0
35.7	82.7	106.6	0.686	8.00	100.0
35.7	82.7	105.4	0.704	2.00	100.0
35.7	82.7	103.6	0.735	0.50	100.0
35.7	82.7	100.9	0.781	0.10	100.0

Axial Strain	ነ (%)	Void Ratio
--------------	-------	------------

1	1.081
2	1.060
3	1.039
4	1.018
5	0.997
6	0.976
7	0.955
8	0.933
9	0.912
10	0.891
11	0.870
12	0.849
13	0.828
14	0.807
15	0.786
16	0.765
17	0.744
18	0.723
19	0.702
20	0.681
20	0.661

42

LEGEND

+ = .5 TSF

* = 1 TSF

X = 2 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

/ 90-132 MU

0.4454 E 446

. .

SAMPLE NO.

14'-16'

DEPTH/ELEV MRD LAB NO.

90/358

Table 1 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-132 MU : S-1

Project : CHASKA;
Boring Number : 90-132 Project
Sample Number : S-1
Depth : 14'-16'
Confining Pressure : .5 TSF

		Deviator	Induced	Dwinsins	D (37 3	6 1
Time	Strain		Pore Pressure	Principal	Pore /	Normal	Shear
(min)	(%)	(TSF)		Eff. Stress		Stress	Stress
(1111)	(*)	(151)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	0.481	0.037	2.039	0.078	0.582	0.208
30	0.07	0.810	0.075	2.904	0.092	0.626	0.250
45	0.07	0.935	0.133	3.548	0.143		
60	0.12	0.996	0.122	3.638	0.123	0.598	0.403
90	0.26	1.038	0.171	4.158	0.166	0.625	0.430
120	0.44	1.079	0.166	4.231		0.586	0.448
150	0.61	1.102	0.184		0.154	0.601	0.466
180	0.95	1.148	0.197	4.489	0.168	0.589	0.476
210	1.33	1.158	0.203	4.788	0.172	0.587	0.496
240	1.67	1.168		4.902	0.176	0.584	0.500
300	2.01		0.212	5.053	0.182	0.577	0.504
360	2.35	1.178	0.232	5.397	0.197	0.560	0.509
		1.171	0.265	5.984	0.227	0.525	0.505
420	2.69	1.172	0.282	6.380	0.241	0.508	0.506
480	3.39	1.166	0.252	5.706	0.217	0.537	0.503
540	4.09	1.151	0.254	5.686	0.222	0.531	0.497
600	4.82	1.135	0.254	5.622	0.225	0.527	0.490
720	5.57	1.128	0.229	5.158	0.203	0.550	0.487
840	6.35	1.111	0.260	5.623	0.234	0.515	0.479
960	7.10	1.103	0.252	5.453	0.229	0.521	0.476
080	8.60	1.079	0.255	5.412	0.237	0.512	0.466
200	10.03	1.056	0.236	5.006	0.224	0.526	0.456
320	11.48	1.033	0.262	5.338	0.254	0.494	0.446
440	12.96	1.009	0.228	4.707	0.226	0.522	0.435
560	14.53	0.998	0.241	4.848	0.242	0.506	0.433
596	15.00	0.990	0.241	4.817	0.244	0.504	0.431
I				7.04/	V • & 7 7	0.504	U.42/

Table 2 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-132 MU

Project : CHASKA;
Boring Number : 90-132 N
Sample Number : S-1
Depth : 14'-16'
Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.05	0.343	0.007	1.345	0.021	1.078	0.148
30	0.07	0.523	0.044	1.547	0.085	1.086	0.226
45	0.07	0.584	0.035	1.605	0.061	1.110	0.252
60	0.12	0.884	0.033	1.915	0.038	1.186	0.382
90	0.27	1.183	0.153	`2.397	0.130	1.140	0.511
120	0.44	1.279	0.171	2.542	0.134	1.146	0.552
150	0.62	1.355	0.232	2.765	0.172	1.104	0.585
180	0.96	1.447	0.269	2.980	0.187	1.089	0.624
210	1.36	1.497	0.299	3.135	0.200	1.072	0.646
240	1.70	1.528	0.306	3.202	0.201	1.072	0.659
300	2.05	1.558	0.361	3.437	0.232	1.025	0.673
360	2.39	1.589	0.405	3.668	0.255	0.988	0.686
420	2.74	1.599	0.410	3.710	0.257	0.986	0.690
480	3.45	1.619	0.389	3.649	0.241	1.012	0.699
540	4.17	1.619	0.401	3.704	0.248	1.000	0.699
600	4.91	1.638	0.410	3.775	0.251	0.996	0.707
720	5.67	1.636	0.369	3.594	0.226	1.036	0.706
40	6.46	1.633	0.382	3.642	0.234	1.022	0.705
60	7.22	1.631	0.387	3.660	0.238	1.017	0.704
1080	8.75	1.625	0.392	3.674	0.242	1.010	0.701
1200	10.21	1.585	0.359	3.472	0.227	1.033	0.684
1320	11.69	1.579	0.382	3.554	0.242	1.009	0.681
1440	13.19	1.571	0.336	3.366	0.214	1.053	0.678
1560	14.79	1.543	0.371	3.454	0.241	1.011	0.666
1575	15.00	1.539	0.370	3.443	0.241	1.011	0.664

Table 3 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH
Boring Number : 90-132 MU
Sample Number : S-1
Depth : 14'-16'
Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.05	0.572	0.024	1.290	0.042	2.118	0.247
30	0.08	1.156	0.244	1.659	0.212	2.042	0.499
45	0.08	1.571	0.471	2.027	0.300	1.918	0.678
60	0.13	1.890	0.682	2.435	0.362	1.786	0.816
90	0.28	2.018	0.856	2.763	0.425	1.644	0.871
120	0.46	2.125	0.944	3.013	0.445	1.582	0.917
150	0.64	2.194	0.993	3.179	0.453	1.550	0.947
180	1.00	2.276	1.073	3.456	0.472	1.490	0.982
210	1.40	2.337	1.156	3.769	0.495	1.423	1.009
240	1.76	2.380	1.177	3.892	0.495	1.412	1.027
300	2.12	2.423	1.223	4.118	0.505	1.377	1.046
360	2.48	2.429	1.257	4.268	0.518	1.344	1.048
420	2.84	2.453	1.249	4.268	0.510	1.358	1.059
480	3.58	2.463	1.286	4.452	0.523	1.324	1.063
540	4.32	2.491	1.300	4.557	0.522	1.317	1.075
600	5.08	2.499	1.280	4.473	0.513	1.339	1.078
720	5.88	2.505	1.279	4.474	0.511	1.341	1.081
840	6.69	2.510	1.254	4.363	0.500	1.367	1.083
960	7.48	2.498	1.294	4.537	0.519	1.324	1.078
080	9.07	2.489	1.249	4.316	0.502	1.367	1.074
200	10.57	2.449	1.214	4.115	0.496	1.392	1.057
320	12.11	2.440	1.248	4.245	0.512	1.356	1.053
440	13.67	2.429	1.239	4.192	0.511	1.362	1.048
536	15.00	2.390	1.202	3.997	0.504	1.389	1.031
536	15.00	2.390	1.202	3.997	0.504	1.389	1.031

.5 TSF1 TSF

TSF

LEGEND

PROJECT CHASKA: CENCS-IA-90-78-ED-GH

BORING NO. 90-132 MU SAMPLE NO. S-2 DEPTH/ELEV 19'-21'

MRD LAB NO. 90/358

Table 4 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

: 90-132 MU

Boring Number Sample Number : S-2 : 19'-21' Depth Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator	Normal Stress (TSF)	Shear Stress (TSF)
15	0.02	0.194	0.019	1.403	0.097	0.529	0.084
30	0.12	0.220	-0.012	1.430	-0.052	0.566	0.095
45	0.29	0.236	0.004	1.476	0.019	0.554	0.102
60	0.46	0.234	0.009	1.477	0.037	0.549	0.101
90	0.65	0.295	0.020	1.615	0.069	0.553	0.127
120	0.84	0.482	0.004	1.972	0.009	0.615	0.208
150	1.03	0.767	0.048	2.695	0.063	0.642	0.331
180	1.47	0.921	0.123	3.439	0.134	0.605	0.397
210	1.85	1.003	0.187	4.208	0.187	0.561	0.433
240	2.26	1.057	0.167	4.176	0.159	0.595	0.456
300	2.65	1.093	0.167	4.285	0.154	0.604	0.472
360	3.04	1.120	0.166	4.353	0.149	0.611	0.484
420	3.44	1.138	0.208	4.893	0.183	0.574	0.491
80	4.21	1.157	0.216	5.077	0.188	0.570	0.499
40	4.98	1.166	0.173	4.566	0.149	0.616	0.503
600	5.78	1.174	0.185	4.723	0.158	0.606	0.507
720	6.57	1.165	0.192	4.782	0.165	0.597	0.503
840	7.37	1.173	0.180	4.669	0.154	0.610	0.506
960	8.16	1.147	0.173	4.509	0.151	0.611	0.495
1080	9.70	1.146	0.141	4.195	0.124	0.643	0.495
1200	11.24	1.136	0.147	4.219	0.130	0.634	0.490
1320	12.81	1.125	0.153	4.239	0.136	0.625	0.485
1440	14.42	1.111	0.157	4.242	0.142	0.618	0.480
1481	15.00	1.101	0.137	4.052	0.125	0.635	0.475

Table 5 - Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-132 MU

Project
Boring Number
Sample Number
Depth : S-2 : 19'-21' Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.02	0.015	0.003	1.015	0.192	1.001	0.006
30	0.12	0.694	0.085	1.759	0.124	1.087	0.299
45	0.29	1.001	0.168	2.204	0.168	1.080	0.432
60	0.46	1.153	0.221	2.481	0.192	1.064	0.498
90	0.66	1.207	0.244	2.596	0.202	1.055	0.521
120	0.86	1.241	0.266	2.691	0.215	1.041	0.536
150	1.05	1.294	0.280	2.798	0.217	1.040	0.559
180	1.49	1.323	0.342	3.010	0.259	0.986	0.571
210	1.88	1.352	0.352	3.085	0.260	0.983	0.584
240	2.30	1.361	0.359	3.122	0.264	0.978	0.588
300	2.69	1.390	0.367	3.195	0.264	0.977	0.600
360	3.08	1.380	0.371	3.195	0.269	0.971	0.596
120	3.50	1.371	0.396	3.270	0.290	0.943	0.592
180	4.28	1.370	0.395	3.265	0.289	0.944	0.591
540	5.06	1.352	0.380	3.178	0.281	0.955	0.583
500	5.87	1.350	0.427	3.357	0.317	0.907	0.583
720	6.67	1.331	0.422	3.301	0.317	0.908	0.574
3 4 0	7.48	1.330	0.422	3.298	0.318	0.907	0.574
∌60	8.29	1.328	0.401	3.215	0.302	0.928	0.573
080	9.85	1.307	0.370	3.074	0.283	0.954	0.564
200	11.42	1.286	0.373	3.050	0.290	0.945	0.555
320	13.01	1.281	0.374	3.046	0.292	0.943	0.553
140	14.65	1.273	0.378	3.048	0.297	0.937	0.550
64	15.00	1.265	0.371	3.011	0.293	0.942	0.546

Table 6 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-132 MU

Project
Boring Number
Sample Number
Depth : S-2 : 19'-21' Confining Pressure : 2 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
			, ,			•	` '
15	0.02	0.278	0.082	1.145	0.294	1.987	0.120
30	0.12	0.623	0.144	1.335	0.232	2.010	0.269
45	0.29	0.729	0.168	1.398	0.231	2.012	0.315
60	0.46	0.853	0.186	1.470	0.218	2.025	0.368
90	0.66	1.121	0.180	1.616	0.161	2.098	0.484
120	0.86	1.135	0.203	1.632	0.179	2.078	0.490
150	1.05	1.149	0.222	1.646	0.194	2.062	0.496
180	1.49	1.930	0.715	2.502	0.371	1.763	0.833
210	1.88	2.312	1.038	3.402	0.449	1.534	0.998
240	2.30	2.529	1.270	4.465	0.503	1.356	1.092
300	2.69	2.621	1.416	5.488	0.541	1.233	1.131
360	3.08	2.695	1.567	7.223	0.582	1.100	1.163
420	3.49	2.714	1.617	8.091	0.596	1.055	1.172
480	4.28	2.771	1.723	11.007	0.622	0.963	1.196
40	5.06	2.792	1.787	14.126	0.641	0.904	1.205
00	5.87	2.794	1.819	16.395	0.651	0.873	1.206
720	6.67	2.796	1.879	24.151	0.673	0.813	1.207
840	7.48	2.813	1.897	28.207	0.675	0.800	1.214
960	8.29	2.797	1.879	24.160	0.672	0.813	1.207
1080	9.85	2.781	1.898	28.356	0.683	0.791	1.200
1200	11.41	2.781	1.890	26.198	0.680	0.798	1.200
1320	13.01	2.761	1.895	27.257	0.687	0.788	1.191
1440	14.64	2.722	1.860	20.462	0.684	0.814	1.175
1465	15.00	2.719	1.863	20.829	0.686	0.811	1.174

Type of Specimen UNDISTURBED		Before	Test			After Test	
2.5 in. Ht .75	in.	Water Content, Wo	21.1	*	٧f	21.1	*
	ą ft	Void Ratio, e	0.64		e _f	0.36	
	g ft	Saturation, So	77	*	s _f	100	*
Compression Index, C _c		Dry Density, 7 _d	88.3	lb/m ³			
Classification Sandy clay, CH		k ₂₀ at e ₀ =	× 10	cm/sec			
LL 115 G _s 2.32		Project CHA	SKA; CENC	S-IA-	90-7	78-ED-GH	
PL 46 ^D 10							
Remarks Black. Too soft for		Area MRD	LAB NO.	9	0/3	58	
Torvane, organic. Non-calcare	ous	Boring No. 90-	133 MU	Sample	No.	S-1	
		Depth El 8'-:	10'	Date	07-	17-90	
		CONSOLI	DATION	ITES	ST I	REPORT	

TSF Wet

.25 TSF

. 5 TSF PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-133 MU

SAMPLE NO.

S-1

DEPTH/ELEV

8'-10'

MAD LAB NO.

90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-133 MU

Sample No. S-1 Depth/Elev 8'-10' MRD Lab No. 90/358

> Gs = 2.32 eo = 0.639 0.42eo = 0.268

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
21.1	85.4	88.3	0.639		76.6
21.1	85.4	89.2	0.623	0.10	78.6
21.1	85.4	90.6	0.598	0.25	81.9
21.1	85.4	92.4	0.567	0.50	86.4
21.1	85.4	96.0	0.509	1.00	96.3
21.1	85.4	100.9	0.435	2.00	100.0
21.1	85.4	107.1	0.352	4.00	100.0
21.1	85.4	113.8	0.272	8.00	100.0
21.1	85.4	112.6	0.285	2.00	100.0
21.1	85.4	110.3	0.313	0.50	100.0
21.1	85.4	106.5	0.360	0.10	100.0

Axial Strain (%) Void Ratio

_	
1	0.623
2	0.606
3	0.590
4	0.574
5	0.557
6	0.541
7	0.525
8	0.508
9	0.492
10	0.475
11	0.459
12	0.443
13	0.426
14	0.410
15	0.393
16	0.377
17	0.361
18	0.344
19	0.328
20	0.311

3 2 t HEAR STREM. 1 0 2 3 5 6 4 **R-3** 3.00 NORMAL STRESS, #, T/SQ FT 2 (X) J W **1** (+) SPECHIEN NO. 89.9 2.25 WATER CONTENT, % ۳. 56.5 47.3 54.4 DRY DEMSITY LB/ CU FT - 08. T/80 FT 100 100 100 SATURATION, & 2.05 1.66 1.57 VOID SATIO 1.50 59.5 57.1 WATER CONTENT. 3 ۳, 64.8 DRY : EMBITY 62.4 51.4 74, LB/CU PT DEVIATOR STRESS. 100 100 **400** SATURATION, S 1.24 1.82 1.32 0.75 VOID RATIO 5.543 FINAL BACK 5.543 5.543 PRESSURE, T/SQ FT MINOR PRINCIPAL STRESS, T/SQ FT 0.878 1.638 2.530 10, -0,1 MAXIMUM DEVIATOR 0.00 STRESS, T'SQ FT 1440 600 10 20 TIME TO 10, - "; 2.514 ULTIMATE DEVIATOR 10, - 01 1.38 1.38 INITIAL DIAMETER, IN AXIAL STRAIN, 4, 5 STRAIN INITIAL HEIGHT, IN. CONTROLLED 1.0 1.0 DESCRIPTION OF SPECIMENS Sandy clay, CH B-Value **FIBAR** UNDISTURBED .. 2.32 TYPE OF TEST TYPE OF SPECIMEN 69 46 LL 115 CHASKA; CENCS-IA-90-78-ED-6H PROJECT REMARKS: Too soft for Torvane Non calcareous. The high oranic. 90-133 MU S-1 SAMPLE NO. water contents and the low dry BORING NO B -10 density were probably due to burning DEPTH FLEV 07-12-90 90/358 DATE the organic material in high temp. LABORATORY TRIAXIAL COMPRESSION TEST REPORT oven (210°F) during the draing procedure. ENG FORM NO. REV JUNE 1970 2080 (EM 1110-2-1906) TRANSLUCENT PREVIOUS EDITION IS DESOLETE

The results of pore pressure for specimen #1 are questionable due to a malfunction of the Transducer.

FIGURE D-65

+ = .5 TSF * = 1 TSF X = 2 TSF

LEGEND

PROJECT CHASKA: CENCS-IA-90-78-ED-6H

BORING NO. 90-133 MU SAMPLE NO. S-1 DEPTH/ELEV 8'-10' MRD LAB NO. 90/358

FIGURE 18

Table 7 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-133 MU

Project Boring Number Sample Number : S-1 Depth : 8'-10' Confining Pressure : .5 TSF

		Danishan	T 3 3	Di	Dana /	Ma	Chann
Time	Strain	Deviator	Induced	Principal	Pore /	Normal	Shear
		Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	0.456	-0.110	. 1.748	-0.240	0.723	0.197
30	0.10	0.687	-0.182	2.006	-0.265	0.852	0.296
45	0.26	0.713	-0.276	1.918	-0.387	0.952	0.308
60	0.44	0.729	-0.352	1.856	-0.482	1.033	0.315
90	0.60	0.745	-0.403	1.826	-0.540	1.088	0.322
120	0.77	0.752	-0.438	1.802	-0.581	1.124	0.325
150	0.94	0.759	-0.491	1.766	-0.646	1.179	0.328
180	1.33	0.781	-0.563	1.734	-0.721	1.256	0.337
210	1.69	0.813	-0.651	1.706	-0.800	1.352	0.351
240	2.05	0.816	-0.717	1.671	-0.878	1.419	0.352
300	2.41	0.829	-0.796	1.639	-0.960	1.501	0.358
360	2.77	0.850	-0.857	1.626	-1.008	1.568	0.367
20	3.13	0.853	-0.949	1.589	-1.112	1.660	0.368
80	3.85	0.868	-1.072	1.552	-1.234	1.787	0.375
540	4.60	0.873	-1.187	1.517	-1.359	1.903	0.377
600	5.30	0.878	-1.252	1.501	-1.425	1.969	0.379
720	6.02	0.874	-1.317	1.481	-1.506	2.033	0.377
840	6.77	0.878	-1.398	1.463	-1.591	2.115	0.379
960	7.49	0.873	-1.476	1.442	-1.690	2.192	0.377
1080	8.99	0.863	-1. 562	1.419	-1.809	2.276	0.372
1200	10.46	0.827	-1.627	1.389	-1.967	2.332	0.357
1320	11.90	0.774	-1.568	1.374	-2.025	2.260	0.334
1440	13.40	0.764	-1.380	1.406	-1.807	2.069	0.330
1560	14.96	0.760	-1.246	1.435	-1.640	1.934	0.328
1563	15.00	0.759	-1.245	1.435	-1.639	1.933	0.328

Table 8 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH Project

: 90-133 MU

Boring Number Sample Number : S-1 Depth : 8'-10' Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	0.375	0.032	1.387	0.086	1.061	0.162
30	0.10	0.834	0.075	1.901	0.090	1.131	0.360
45	0.27	1.101	0.176	2.337	0.160	1.097	0.475
60	0.44	1.160	0.230	2.507	0.199	1.057	0.501
90	0.61	1.239	0.269	2.695	0.218	1.038	0.535
120	0.79	1.297	0.300	2.852	0.232	1.021	0.560
150	0.96	1.355	0.347	3.076	0.257	0.989	0.585
180	1.35	1.407	0.384	3.286	0.274	0.964	0.607
210	1.72	1.439	0.401	3.404	0.279	0.955	0.621
240	2.09	1.491	0.422	3.578	0.283	0.947	0.644
300	2.45	1.502	0.476	3.865	0.317	0.896	0.648
360	2.82	1.533	0.488	3.992	0.319	0.891	0.662
420	3.19	1.564	0.479	4.002	0.307	0.908	0.675
480	3.93	1.604	0.510	4.271	0.318	0.887	0.692
540	4.69	1.603	0.545	4.524	0.341	0.852	0.692
600	5.40	1.622	0.547	4.580	0.338	0.855	0.700
720	6.14	1.621	0.564	4.717	0.348	0.837	0.700
840	6.90	1.638	0.567	4.786	0.347	0.839	0.707
960	7.64	1.636	0.586	4.951	0.359	0.819	0.706
080	9.16	1.630	0.623	5.326	0.383	0.781	0.704
200	10.66	1.624	0.615	5.214	0.379	0.787	0.701
320	12.13	1.617	0.642	5.514	0.397	0.758	0.698
440	13.65	1.608	0.655	5.664	0.408	0.743	0.694
541	15.00	1.582	0.657	5.608	0.416	0.735	0.683
541	15.00	1.582	0.657	5.608	0.416	0.735	0.683

1

Table 9 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-133 MU Project

Boring Number Sample Number : S-1 Depth : 8'-10' Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure			Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
			• •			•	, ,
15	0.05	0.892	0.091	1.467	0.103	2.130	0.385
30	0.10	1.434	0.200	1.796	0.140	2.155	0.619
45	0.27	1.523	0.222	`1.857	0.146	2.155	0.657
60	0.44	1.645	0.223	1.926	0.136	2.184	0.710
90	0.61	1.696	0.278	1.985	0.164	2.142	0.732
120	0.79	1.748	0.299	2.028	0.172	2.134	0.755
150	0.96	1.768	0.327	2.056	0.185	2.111	0.763
180	1.35	1.823	0.354	2.107	0.195	2.097	0.787
210	1.72	1.882	0.396	2.173	0.211	2.070	0.812
240	2.09	1.936	0.407	2.216	0.211	2.072	0.836
300	2.45	2.001	0.416	2.264	0.208	2.080	0.864
360	2.82	2.095	0.462	2.362	0.221	2.057	0.904
420	3.19	2.105	0.481	2.385	0.229	2.040	0.908
480	3.93	2.159	0.510	2.449	0.237	2.025	0.932
000	4.69	2.247	0.523	2.522	0.233	2.033	0.970
-00	5.40	2.304	0.553	2.592	0.240	2.018	0.995
720	6.14	2.324	0.699	2.786	0.301	1.876	1.003
840	6.90	2.369	0.791	2.960	0.335	1.796	1.023
960	7.63	2.397	0.852	3.089	0.356	1.742	1.035
1080	9.16	2.428	0.900	3.208	0.371	1.701	1.048
1200	10.65	2.471	0.955	3.364	0.387	1.657	1.066
1320	12.13	2.511	0.990	3.485	0.395	1.632	1.084
1440	13.65	2.530	0.978	3.476	0.387	1.648	1.092
154 1	15.00	2.514	0.985	3.478	0.392	1.637	1.085
1541	15.00	2.514	0.985	3.478	0.392	1.637	1.085

+ = .5 TSF * = 1 TSF X = 2 TSF

LEGEND

PROJECT CHASKA: CENCS-IA-90-78-ED-GH

BORING NO. 90-133 MU
SAMPLE NO. S-2
DEPTH/ELEV 17'-19'
MRD LAB NO. 90/358

Table 10 - Triaxial \overline{R} Test Results

Project Boring Number Sample Number : CHASKA; CENCS-IA-90-78-ED-GH

: 90-133 MU

: S-2

: 17'-19' Depth Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	0.382	0.037	1.825	0.098	0.558	0.165
30	0.14	0.534	0.112	2.376	0.210	0.520	0.230
45	0.31	0.631	0.158	2.843	0.251	0.498	0.272
60	0.48	0.709	0.171	3.153	0.241	0.505	0.306
90	0.67	0.769	0.182	3.419	0.238	0.508	0.332
120	0.83	0.811	0.197	3.672	0.243	0.504	0.350
150	1.03	0.861	0.205	3.920	0.239	0.508	0.372
180	1.36	0.908	0.208	4.111	0.229	0.517	0.392
210	1.74	0.946	0.194	4.088	0.205	0.540	0.408
240	2.10	0.957	0.201	4.198	0.210	0.536	0.413
300	2.46	0.968	0.205	4.282	0.213	0.535	0.418
360	2.81	0.970	0.211	4.354	0.218	0.529	0.419
420	3.20	0.971	0.211	4.359	0.218	0.529	0.419
480	3.94	0.974	0.198	4.225	0.204	0.543	0.420
540	4.70	0.976	0.217	4.446	0.222	0.525	0.421
600	5.47	0.979	0.192	4.180	0.197	0.550	0.422
720	6.23	0.972	0.218	4.448	0.225	0.523	0.420
840	6.99	0.974	0.185	4.092	0.191	0.556	0.420
960	7.76	0.967	0.212	4.361	0.220	0.527	0.417
080	9.26	0.961	0.208	4.293	0.217	0.530	0.415
200	10.77	0.955	0.224	4.459	0.235	0.513	0.412
320	12.15	0.935	0.218	4.318	0.234	0.514	0.404
440	13.89	0.923	0.185	3.932	0.201	0.544	0.399
524	15.00	0.911	0.171	3.773	0.188	0.555	0.393

Table 11 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-133 MU

Project
Boring Number
Sample Number
Depth : S-2 : 17'-19' Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	0.423	0.046	1.443	0.109	1.059	0.182
30	0.14	0.811	0.153	1.958	0.189	1.048	0.350
45	0.31	0.964	0.247	`2.281	0.257	0.992	0.416
60	0.48	1.058	0.322	2.560	0.305	0.940	0.457
90	0.67	1.112	0.353	2.720	0.318	0.922	0.480
120	0.84	1.167	0.359	2.821	0.308	0.930	0.504
150	1.03	1.202	0.353	2.858	0.295	0.944	0.519
180	1.37	1.271	0.415	3.173	0.327	0.900	0.549
210	1.75	1.320	0.405	3.218	0.307	0.922	0.570
240	2.11	1.370	0.419	3.358	0.307	0.920	0.591
300	2.47	1.418	0.412	3.412	0.291	0.939	0.612
360	2.83	1.429	0.422	3.472	0.296	0.932	0.617
420	3.22	1.438	0.449	3.611	0.313	0.907	0.621
_480	3.96	1.476	0.438	3.626	0.297	0.927	0.637
40	4.73	1.494	0.426	3.605	0.286	0.944	0.645
3 00	5.50	1.493	0.381	3.411	0.255	0.989	0.645
720	6.27	1.510	0.422	3.613	0.280	0.952	0.652
840	7.04	1.527	0.405	3.566	0.266	0.973	0.659
960	7.80	1.543	0.385	3.508	0.250	0.997	0.666
1080	9.32	1.574	0.363	3.472	0.231	1.027	0.679
1200	10.83	1.602	0.402	3.679	0.251	0.995	0.692
1320	12.22	1.632	0.383	3.647	0.235	1.021	0.705
1440	13.98	1.649	0.325	3.443	0.197	1.083	0.712
1517	15.00	1.630	0.328	3.428	0.202	1.075	0.704

Table 12 - Triaxial R Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

1.427

1.454

440

510

14.06

15.00

1.708

1.688

Boring Number : 90-133 MU

Sample Number : S-2
Depth : 17'-19'
Confining Pressure : 2 TSF

Shear Normal Pore / Principal Deviator Induced Stress Stress Pore Pressure Eff. Stress Deviator Time Strain Stress (TSF) (TSF) (TSF) Ratio A (%) (TSF) (min) 0.187 2.033 0.236 1.288 0.102 0.05 0.547 15 0.510 1.876 0.352 1.746 0.416 30 0.14 1.181 0.626 1.720 0.441 2.065 0.31 1.450 0.639 45 0.686 2.297 0.487 1.620 1.591 0.774 0.48 60 2.568 1.499 0.731 0.543 0.920 90 0.68 1.694 0.574 1.433 0.752 2.742 0.84 1.743 0.999 120 0.750 1.401 0.592 2.789 1.738 150 1.04 1.029 0.785 1.302 0.632 1.148 3.135 1.818 1.38 180 0.795 1.238 3.355 0.661 1.843 1.218 210 1.76 0.783 1.148 3.595 0.717 1.815 1.301 240 2.13 1.115 0.794 0.729 1.840 3.789 1.340 2.49 300 0.789 1.140 3.661 0.718 2.85 1.829 1.313 360 0.785 1.110 0.738 1.340 3.756 1.818 420 3.24 0.775 1.021 4.116 0.793 480 3.99 1.796 1.424 0.773 1.056 0.775 3.922 1.387 4.76 1.791 540 0.763 0.809 1.009 4.095 1.768 1.429 600 5.53 0.761 1.019 4.021 0.804 1.762 1.417 720 6.30 0.758 4.253 0.832 0.975 1.460 7.08 840 1.757 0.748 0.998 0.826 1.431 4.045 1.734 960 7.85 0.997 0.743 0.830 4.014 9.37 080 1.722 1.429 0.745 0.996 0.830 1.431 4.030 1.725 10.90 200 0.733 0.851 0.977 4.058 1.699 1.444 12.29 320

3.982

4.094

0.737

0.729

0.996

0.965

0.836

0.862

r/_

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

GPO - 1964 OF-214-946

Figure 25 FIGURE D-79

Type of Specimen	UNDISTURBED	Before	Test			After Test	
Diam 2.5 in.	Ht .75 in.	Water Content, wo	22.6	\$	٧f	17.8	*
Overburden Pressure	, po T/sq ft	Void Ratio, e	0.63		ef	0.50	
Preconsol. Pressure		Saturation, So	95	\$	Sf	95	*
Compression Index,	c _c	Dry Density, 7 _d	101.7	.b/nt ³			
Classification Cla	yey sand, SC	k ₂₀ at e ₀ =	× 10 0	cm/sec			
ഥ 33	G _s 2.66	Project CH	ASKA; CEN	CS-IA-	-90-	78-ED-GH	
PL 17	D ₁₀						1
Remarks Grey-brow	wn. Too brittle	Area MR	D LAB NO.		90/3	58	
for Torvane, nor	n-calcareous.	Boring No. 90-	-134 MU	Sample	No.	S-1	
		Depth El 3'-	-4.3'	Date	08-	-07-90	
		CONSOLI	DATION	TES	ST F	REPORT	

LEGEND + = 1 TSF * = 2 TSF X = 4 TSF - = 8 TSF PROJECT CHASKA; CENCS-IA-90-78-ED-GH

BORING NO. 90-134 MU
SAMPLE NO. S-1
DEPTH/ELEV 3'-4.3'
MRD LAB NO. 90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

90-134 MU

Boring No. Sample No. Sample No. S-1
Depth/Elev 3'-4.3'
MRD Lab No. 90/358

> Gs = 2.66eo = 0.6310.42eo = 0.265

Water	Dry	Dry	Void		
Content (%)	Weigĥt (gms)	Density (PCF)	Ratio	Pressùre (TSF)	Saturation (%)
22.6	0.9.4	101 7	0 621		95.2
22.6	98.4	101.7	0.631		
17.8	98.4	102.4	0.622	0.10	76.2
17.8	98.4	103.1	0.609	0.25	77.7
17.8	98.4	104.1	0.595	0.50	79.6
17.8	98.4	105.2	0.577	1.00	82.0
17.8	98.4	106.8	0.554	2.00	85.5
17.8	98.4	109.1	0.521	4.00	90.9
17.8	98.4	111.9	0.484	8.00	97.9
17.8	98.4	111.5	0.488	2.00	97.0
17.8	98.4	111.2	0.492	0.50	96.2
17.8	98.4	110.7	0.499	0.10	94.8

Axial	Strain	(%)	Void	Ratio

1	0.615
2	0.599
3	0.582
4	0.566
5	0.550
6	0.534
7	0.517
8	0.501
9	0.485
10	0.468
11	0.452
12	0.436

2.00 **FAILURE SKETCHES** 1.50 COMPRESSIVE STRESS, 1/5Q FT 1.00 0.50 CONTROLLED STRESS 0.00 8 12 16 0 4 20 CONTROLLED STRAIN AXIAL STRAIN, % TEST NO. TYPE OF SPECIMEN UNDISTURBED % 20.8 WATER CONTENT **VOID RATIO** 0.66 e, % % S. 85 SATURATION 101.5 DRY DENSITY, LB/CU FT γa TIME TO FAILURE, MIN 38.0 tr UNCONFINED COMPRESSIVE STRENGTH, T/SQ FT 1.05 q۷ UNDRAINED SHEAR STRENGTH, T/SQ FT Sı SENSITIVITY RATIO D. INITIAL SPECIMEN DIAMETER, IN 2.89 H. INITIAL SPECIMEN HEIGHT, IN. 6.55 CLASSIFICATION Clayey sand, SC 2.7 EST. G. 17 16 33 PROJECT CHASKA; CENCS-IA-90-78-ED-GH REMARKS Grey-brown. Too brittle for Torvane, non-calcareous. AREA MRD LAB NO. : 90/358 BORING NO. SAMPLE NO. 90-134 MU S-1 DEPTH DATE 3'-4.3' 07-30-90 UNCONFINED COMPRESSION TEST REPORT

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

6PO : 1966 OF-214-946

PLATE XI-2 FTGIJRF D-87 8-

Type of Specimen UNDISTURBED After Test Before Test .75 in. Water Content, wo 50.4 37.2 2.5 in. Void Ratio, e 1.37 0.92 T/sq ft Overburden Pressure, Po Sf T/sq ft Saturation, So 100 98 Preconsol. Pressure, pc 69.8 lb/m³ Dry Density, 7_d Compression Index, Cc x 10 cm/sec k₂₀ at e₀ = Classification Clayey sand, 2.65 27 CHASKA; CENCS-IA-90-78-ED-GH Project D₁₀ 13 MRD LAB NO. 90/358 Remarks Black and gray. Torvane= 90-134 MU Sample No. 0.35 TSF. Slightly organic. Boring No. S-2 Depth B'-10' 09-07-90 CONSOLIDATION TEST REPORT

.25 TSF

TSF

. 5

BORING NO. 90-134 MU
SAMPLE NO. S-2
DEPTH/ELEV B'-10'
MRD LAB NO. 90/358

+ = 2 TSF Rebound

* = .5 TSF Rebound

X = .1 TSF Rebound

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-134 MU

SAMPLE NO.

S-2

DEPTH/ELEV

8'-10'

MRD LAB NO.

90/358

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-134 MU

Sample No. S-2 Depth/Elev 8'-10' MRD Lab No. 90/358

> Gs = 2.65 eo = 1.369 0.42eo = 0.575

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
50.4	67.5	69.8	1.369		97.6
37.2	67.5	70.0	1.363	0.10	72.4
37.2	67.5	70.8	1.335	0.25	73.9
37.2	67.5	72.3	1.288	0.50	76.6
37.2	67.5	75.3	1.197	1.00	82.4
37.2	67.5	80.1	1.065	2.00	92.6
37.2	67.5	86.5	0.912	4.00	100.0
37.2	67.5	92.9	0.780	8.00	100.0
37.2	67.5	91.4	0.809	2.00	100.0
37.2	67.5	88.9	0.859	0.50	100.0
37.2	67.5	85.9	0.925	0.10	100.0

Axial Strain (%) Void Ratio

1	1.346
2	1.322
3	1.298
4	1.275
5	1.251
6	1.227
7	1.203
8	1.180
9	1.156
10	1.132
11	1.109
12	1.085
13	1.061
14	1.038
15	1.014
16	0.990
17	0.967
18	0.943
19	0.919
20	0.895
20	0.055

FIGURE D-94

+ = .5 TSF * = 1 TSF

LEGENO

PROJECT CHASKA: CENCS-IA-90-78-ED-6H

BORING NO. 90-134 MU

 SAMPLE NO.
 S-2

 DEPTH/ELEV
 8'-10'

 MRD LAB NO.
 90/358

Table 1 - Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-134 MU

Project Boring Number Sample Number : S-2 Depth : 8'-10' Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
25	0.05	0 800	0.006	2.638	0.008	0.694	0.349
15	0.05	0.809		3.219	0.092	0.643	0.398
30	0.12	0.922	0.085			0.690	0.425
45	0.24	0.986	0.054	3.213	0.056		
60	0.40	1.039	0.057	3.348	0.056	0.700	0.449
90	0.59	1.083	0.085	3.606	0.079	0.683	0.467
120	0.95	1.169	0.079	3.777	0.068	0.711	0.505
150	1.30	1.227	0.085	3.955	0.069	0.719	0.530
180	1.68	1.284	0.065	3.949	0.051	0.753	0.554
210	2.04	1.332	0.075	4.132	0.056	0.755	0.575
240	2.42	1.388	0.024	3.919	0.018	0.820	0.599
300	2.80	1.416	0.049	4.139	0.035	0.802	0.611
360	3.56	1.508	-0.010	3.957	-0.006	0.883	0.651
420	4.32	1.553	0.011	4.178	0.008	0.873	0.670
480	5.03	1.597	-0.043	3.942	-0.026	0.938	0.689
540	5.74	1.641	-0.043	4.023	-0.026	0.949	0.708
600	6.50	1.683	-0.072	3.944	-0.042	0.989	0.726
720	7.24	1.716	-0.083	3.942	-0.048	1.008	0.741
840	8.66	1.780	-0.096	3.986	-0.053	1.037	0.768
960	9.28	1.831	-0.123	3.937	-0.067	1.076	0.790
080	10.01	1.869	-0.133	3.950	-0.071	1.096	0.807
200	10.70	1.907	-0.115	4.102	-0.060	1.087	0.823
320	12.62	1.881	-0.112	4.074	-0.059	1.078	0.812
440	14.14	1.882	-0.148	3.906	-0.078	1.114	0.812

Table 2 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-134 MU

Project Boring Number Sample Number : S-2 Depth : 8'-10' Confining Pressure : 1 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
, ,	• •	•	•			` '	• •
15	0.05	0.794	-0.004	1.790	-0.005	1.201	0.343
30	0.12	1.468	0.101	2.632	0.069	1.262	0.634
45	0.24	1.739	0.094	.2.919	0.054	1.337	0.751
60	0.41	1.861	0.159	3.212	0.086	1.302	0.803
90	0.60	1.960	0.163	3.342	0.084	1.322	0.846
120	0.97	2.075	0.190	3.562	0.092	1.324	0.896
150	1.33	2.189	0.189	3.698	0.087	1.353	0.945
180	1.72	2.281	0.194	3.831	0.086	1.371	0.984
210	2.08	2.352	0.199	3.935	0.085	1.383	1.015
240	2.46	2.421	0.167	3.908	0.070	1.432	1.045
300	2.85	2.470	0.179	4.007	0.073	1.432	1.066
360	3.63	2.565	0.111	3.884	0.044	1.524	1.107
420	4.40	2.618	0.125	3.991	0.048	1.523	1.130
480	5.13	2.671	0.105	3.985	0.040	1.556	1.153
40	5.85	2.724	0.085	3.977	0.032	1.589	1.176
bo	6.63	2.753	0.064	3.941	0.024	1.618	1.188
720	7.37	2.782	0.060	3.959	0.022	1.629	1.201
840	8.82	2.823	0.050	3.970	0.018	1.649	1.218
960	9.45	2.856	-0.001	3.852	0.000	1.708	1.233
1080	10.20	2.871	0.013	3.908	0.005	1.698	1.239
1200	10.90	2.936	0.034	4.039	0.012	1.693	1.267
1320	12.86	2.879	0.055	4.048	0.020	1.658	1.243
1440	14.41	2.867	-0.007	3.847	-0.002	1.717	1.237

Table 3 - Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-134 MU

Project Boring Number Sample Number : S-2 : 8'-10' Depth : 8'-10'
Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.05	1.333	0.364	1.815	0.274	1.966	0.576
30	0.12	1.815	0.517	2.223	0.285	1.932	0.783
45	0.24	2.043	0.638	2.500	0.313	1.868	0.882
60	0.41	2.153	0.742	2.712	0.345	1.791	0.929
90	0.61	2.262	0.765	2.831	0.339	1.795	0.976
120	0.97	2.365	0.916	3.181	0.388	1.670	1.021
150	1.34	2.448	0.924	3.276	0.378	1.682	1.057
180	1.73	2.510	0.976	3.452	0.389	1.645	1.083
210	2.09	2.554	1.058	3.711	0.415	1.574	1.102
240	2.48	2.596	1.080	3.823	0.417	1.563	1.121
300	2.87	2.638	1.034	3.730	0.392	1.619	1.139
360	3.65	2.684	1.037	3.787	0.387	1.627	1.158
420	4.43	2.728	1.079	3.961	0.396	1.596	1.177
480	5.16	2.736	1.040	3.851	0.381	1.637	1.181
540	5.89	2.762	1.016	3.807	0.368	1.668	1.192
600	6.67	2.767	1.023	3.832	0.370	1.662	1.194
720	7.42	2.772	1.035	3.874	0.374	1.651	1.197
840	8.88	2.784	1.016	3.829	0.366	1.673	1.201
960	9.51	2.810	0.983	3.764	0.350	1.713	1.213
080	10.27	2.848	1.008	3.870	0.354	1.697	1.229
200	10.97	2.887	0.966	3.792	0.335	1.749	1.246
320	12.94	2.835	0.957	3.719	0.338	1.745	1.224
440	14.50	2.817	0.969	3.734	0.345	1.729	1.216

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

Figure 7 FIGURE D-99

TSF Wet

.25 TSF

.5 TSF PROJECT

CHASKA: CENCS-IA-90-78-ED-6H

BORING NO.

90-134 MU

SAMPLE NO.

S-3

DEPTH/ELEV

13'-15'

MRD LAB NO.

90/358

FIGURE 11

Rebound TSF

Rebound **TSF** TSF

Rebound

PROJECT

CHASKA: CENCS-IA-90-78-ED-8H

BORING NO.

90-134 MU

SAMPLE NO.

5-3

DEPTH/ELEV

13'-15'

MRD LAB NO.

90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-134 MU

Sample No. S-3 Depth/Elev 13'-15' MRD Lab No. 90/358

> Gs = 2.69 eo = 0.671 0.42eo = 0.282

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
23.3	96.7	100.4	0.671		93.4
16.8	96.7	101.4	0.655	0.10	68.9
16.8	96.7	102.5	0.638	0.25	70.7
16.8	96.7	104.0	0.614	0.50	73.4
16.8	96.7	105.4	0.592	1.00	76.2
16.8	96.7	107.2	0.566	2.00	79.6
16.8	96.7	109.2	0.537	4.00	84.0
16.8	96.7	112.3	0.495	8.00	91.0
16.8	96.7	111.9	0.500	2.00	90.2
16.8	96.7	111.6	0.504	0.50	89.4
16.8	96.7	111.0	0.513	0.10	87.9

Axial Strain	(%)	Void	Ratio
--------------	-----	------	-------

1	0.654
2	0.638
3	0.621
4	0.604
5	0.588
6	0.571
7	0.554
8	0.537
9	0.521
10	0.504
11	0.487
12	0.471
13	0.454

FIGURE D-106

+ = .5 TSF * = 1 TSF X = 2 TSF

LEGEND

PROJECT CHASKA; CENCS-IA-90-78-ED-6H

BORING NO. 90-134 MU SAMPLE NO. 9-3 DEPTH/ELEV 13'-15' MRD LAB NO. 90/358

Table 4 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH Project

: 90-134 MU

Boring Number Sample Number : S-3 Depth : 13'-15'

Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.07	0.601	0.040	2.305	0.066	0.609	0.259
30	0.22	0.802	0.013	2.647	0.017	0.685	0.346
45	0.34	0.873	0.045	2.918	0.052	0.671	0.377
60	0.49	0.898	0.016	2.857	0.019	0.706	0.388
90	0.68	0.941	0.054	3.109	0.058	0.679	0.406
120	0.86	0.974	0.024	3.048	0.026	0.717	0.420
150	1.05	0.989	0.027	3.093	0.028	0.718	0.427
180	1.44	1.027	0.057	3.318	0.056	0.697	0.443
210	1.78	1.066	0.020	3.222	0.020	0.744	0.460
240	2.15	1.095	0.024	3.301	0.023	0.747	0.472
300	2.52	1.114	0.028	3.362	0.026	0.748	0.481
360	2.91	1.151	0.024	3.420	0.022	0.761	0.497
420	3.28	1.170	0.002	3.349	0.002	0.788	0.505
480	4.04	1.198	0.005	3.421	0.005	0.792	0.517
540	4.82	1.243	-0.003	3.470	-0.002	0.811	0.536
600	5.60	1.260	0.005	3.546	0.005	0.807	0.544
720	6.33	1.295	-0.030	3.441	-0.023	0.851	0.559

Table 5 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

: 90-134 MU

Boring Number Sample Number : S-3 Depth : 13'-15' Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.07	0.051	0.088	1.056	1.739	0.925	0.022
30	0.22	0.165	0.129	1.190	0.780	0.912	0.071
45	0.34	0.564	0.152	1.665	0.270	0.988	0.243
60	0.48	0.751	0.130	1.863	0.174	1.056	0.324
90	0.68	0.810	0.184	1.993	0.228	1.017	0.350
120	0.85	0.849	0.159	2.010	0.188	1.051	0.366
150	1.04	0.887	0.175	2.076	0.198	1.045	0.383
180	1.43	0.942	0.221	2.209	0.235	1.012	0.407
210	1.76	0.998	0.204	2.254	0.205	1.043	0.431
240	2.13	1.052	0.194	2.306	0.185	1.067	0.454
300	2.49	1.127	0.194	2.399	0.173	1.085	0.487
360	2.87	1.160	0.184	2.421	0.159	1.103	0.501
420	3.24	1.213	0.178	2.476	0.147	1.122	0.524
480	3.99	1.297	0.172	2.568	0.133	1.149	0.560
40	4.76	1.400	0.169	2.685	0.122	1.178	0.604
5 00	5.53	1.460	0.153	2.724	0.106	1.208	0.630
720	6.25	1.857	0.134	3.145	0.073	1.326	0.802

Table 6 - Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-134 MU

Project
Boring Number
Sample Number
Depth : S-3 : 13'-15' Confining Pressure : 2 TSF

rime (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.07	0.044	0.092	1.023	2.088	1.919	0.019
30	0.22	0.230	0.177	1.126	0.768	1.880	0.099
45	0.35	0.453	0.256	1.260	0.566	1.856	0.196
60	0.49	1.255	0.371	1.770	0.296	1.940	0.542
90	0.69	1.978	0.509	2.326	0.258	1.981	0.854
120	0.87	2.196	0.585	2.552	0.267	1.959	0.948
150	1.07	2.282	0.669	2.715	0.294	1.896	0.985
180	1.46	2.435	0.723	2.907	0.297	1.880	1.051
210	1.81	2.534	0.784	3.084	0.310	1.843	1.094
240	2.18	2.630	0.809	3.208	0.308	1.842	1.135
300	2.55	2.708	0.797	3.251	0.295	1.873	1.169
360	2.95	2.784	0.831	3.382	0.299	1.858	1.201
120	3.32	2.841	0.797	3.362	0.281	1.906	1.226
180	4.09	2.990	0.789	3.470	0.264	1.951	1.291
540	4.88	3.100	0.770	3.520	0.249	1.998	1.338
500	5.68	3.189	0.739	3.529	0.232	2.051	1.377
720	6.42	3.279	0.729	3.580	0.223	2.083	1.415

Type of Specimen UNDISTURBED After Test Before Test * 35.0 .75 Water Content, vo 35.6 2.5 in. 0.77 1.18 Void Ratio, e T/sq ft Overburden Pressure, Po Sr \$ 100 T/sq ft Saturation, So 80 Preconsol. Pressure, Pc 16/12³ 75.9 Dry Density, 7d Compression Index, Cc x 10 cm/sec k₂₀ at e₀ = Classification Silty sand, SM 2.65 CHASKA: CENCS-IA-90-78-ED-GH 20 Project 16 90/358 MRD LAB NO. Area Remarks Gray Brown. Too soft for 90-139 MU Sample No. Boring No. Torvane. Non-calcareous. Depth 09-10-90 14'-16' Date CONSOLIDATION TEST REPORT

+ = 1 TSF

* = 2 TSF

X = 4 TSF

- - 8 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO.

S-1

DEPTH/ELEV

14'-16'

MRD LAB NO.

90/358

TSF Rebound

BORING NO.	90-139 MU
SAMPLE NO.	S-1
DEPTH/ELEY	14'-16'
MRD LAB NO.	90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-139 MU

Sample No. S-1 Depth/Elev 14'-16' MRD Lab No. 90/358

> Gs = 2.65 eo = 1.179 $0.42\dot{e}o = 0.495$

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
35.6	73.0	75.9	1.179		80.1
35.0	73.0	76.6	1.158	0.10	80.1
35.0	73.0	77.6	1.132	0.25	81.9
35.0	73.0	79.7	1.075	0.50	86.2
35.0	73.0	82.6	1.003	1.00	92.4
35.0	73.0	87.2	0.897	2.00	100.0
35.0	73.0	92.8	0.782	4.00	100.0
35.0	73.0	98.7	0.676	8.00	100.0
35.0	73.0	97.8	0.691	2.00	100.0
35.0	73.0	95.9	0.725	0.50	100.0
35.0 35.0	73.0	93.2	0.774	0.10	100.0

Axial Strain (%) Void Ratio

1	1.157
2	1.135
3	1.114
	1.092
4	1.070
5	
6	1.048
7	1.026
8	1.005
9	0.983
10	0.961
11	0.939
12	0.918
	0.896
13	0.874
14	
15	0.852
16	0.830
17	0.809
18	0.787
19	0.765
	0.743
20	0.743

FIGURE D-117

LEGEND

+ = .5 TSP

= 1 TSF

X = 2 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-6H

BORING NO.

90-139 MU

SAMPLE NO.

9-4

DEPTH/ELEV

14'-16'

MRD LAB NO.

Table 7 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Boring Number Sample Number Depth : S-1 : 14'-16' Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator	Normal Stress (TSF)	Shear Stress (TSF)
15	0.09	0.566	0.018	2.175	0.033	0.622	0.244
30	0.24	0.667	0.106	< 2.691	0.159	0.559	0.288
45	0.43	0.719	0.134	2.964	0.186	0.544	0.310
60	0.64	0.753	0.142	3.105	0.189	0.544	0.325
90	0.81	0.787	0.167	3.362	0.212	0.528	0.340
120	1.03	0.820	0.174	3.519	0.213	0.529	0.354
150	1.24	0.835	0.202	3.803	0.243	0.505	0.360
180	1.55	0.885	0.185	3.808	0.210	0.534	0.382
210	1.91	0.924	0.189	3.973	0.205	0.540	0.399
240	2.27	0.935	0.210	4.221	0.225	0.522	0.404
300	2.63	0.974	0.211	4.366	0.217	0.530	0.420
360	2.99	0.985	0.244	4.846	0.248	0.500	0.425
420	3.37	0.996	0.226	4.629	0.227	0.521	0.430
80	4.09	1.035	0.229	4.818	0.222	0.527	0.447
40	4.86	1.055	0.256	5.318	0.243	0.505	0.455
600	5.62	1.075	0.224	4.887	0.208	0.542	0.464
720	6.41	1.084	0.255	5.417	0.235	0.513	0.468
840	7.18	1.094	0.248	5.344	0.227	0.523	0.472
960	7.91	1.087	0.229	5.009	0.211	0.540	0.469
1080	9.47	1.079	0.222	4.887	0.207	0.545	0.466
1200	10.95	1.055	0.200	4.517	0.190	0.561	0.455
1320	12.41	1.040	0.231	4.866	0.223	0.526	0.449
1440	13.96	1.030	0.216	4.628	0.210	0.539	0.445
1522	15.00	1.241	0.219	5.418	0.179	0.588	0.535

Table 8 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project
Boring Number
Sample Number : S-1 : 14'-16' Depth Confining Pressure: 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
				1 000	0.050	1.160	0.364
15	0.10	0.844	0.049	1.888	0.058		0.556
30	0.24	1.288	0.162	2.536	0.126	1.157	
45	0.43	1.506	0.159	2.790	0.106	1.214	0.650
60	0.65	1.238	0.106	2.385	0.086	1.201	0.534
90	0.82	1.416	0.132	2.630	0.093	1.219	0.611
120	1.03	1.350	0.130	2.552	0.097	1.204	0.583
150	1.25	1.366	0.123	2.557	0.091	1.215	0.589
180	1.56	1.838	0.076	2.989	0.042	1.379	0.793
210	1.92	2.048	0.047	3.149	0.024	1.460	0.884
240	2.28	2.195	0.022	3.245	0.010	1.522	0.948
300	2.65	2.322	-0.010	3.299	-0.004	1.585	1.002
360	3.01	2.468	0.008	3.489	0.004	1.603	1.065
420	3.39	2.573	-0.044	3.464	-0.017	1.681	1.110
480	4.11	2.761	-0.094	3.523	-0.034	1.777	1.192
540	4.88	2.905	-0.133	3.564	-0.045	1.852	1.254
600	5.65	3.009	-0.214	3.478	-0.071	1.959	1.299
720	6.44	3.128	-0.248	3.506	-0.079	2.022	1.350
840	7.21	3.226	-0.288	3.504	-0.089	2.087	1.393
960	7.96	3.324	-0.317	3.524	-0.095	2.140	1.435
080	9.52	3.473	-0.420	3.446	-0.120	2.280	1.499
200	11.01	3.600	-0.454	3.477	-0.126	2.345	1.554
200 320	12.48	3.686	-0.499	3.459	-0.135	2.412	1.591
		3.780	-0.526	3.477	-0.139	2.462	1.631
440	14.04			3.469	-0.145	2.511	1.661
5 15	15.00	3.847	-0.558	3.403	-0.143	2.711	1.001

Table 9 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-139 MU Project Boring Number Sample Number

: S-1 Depth : 14'-16' Confining Pressure : 2 TSF

		Deviator	Induced	Principal			
Time	Strain		Pore Pressure				Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0 10	1 071	0 170	1 507	0 166	2 007	0.462
15	0.10	1.071	0.178	1.587	0.166	2.087	0.462
30	0.24	2.143	0.364	2.310	0.170	2.167	0.925
45	0.43	2.770	0.530	2.885	0.192	2.156	1.196
60	0.65	3.096	0.617	3.239	0.200	2.149	1.336
90	0.82	3.439	0.644	3.536	0.188	2.208	1.484
120	1.04	3.745	0.635	3.743	0.170	2.292	1.616
150	1.26	4.013	0.604	3.876	0.151	2.390	1.732
180	1.57	4.537	0.529	4.083	0.117	2.594	1.958
210	1.93	5.054	0.431	4.221	0.086	2.820	2.181
240	2.29	5.550	0.283	4.231	0.051	3.091	2.395
300	2.66	6.076	0.117	4.226	0.020	3.387	2.622
360	3.02	6.530	0.003	4.270	0.001	3.614	2.818
420	3.40	7.029	-0.160	4.254	-0.022	3.900	3.034
480	4.13	7.833	-0.412	4.247	-0.052	4.351	3.381
40	4.90	8.737	-0.744	4.184	-0.085	4.907	3.771
o	5.67	9.292	-0.901	4.203	-0.097	5.201	4.010
720	6.47	10.081	-1.254	4.098	-0.124	5.750	4.351
840	7.24	10.711	-1.500	4.060	-0.140	6.152	4.623
960	7.99	11.268	-1.746	4.008	-0.154	6.536	4.863
1080	9.56	12.242	-2.180	3.929	-0.178	7.211	5.284
1200	11.05	13.015	-2.454	3.922	-0.188	7.676	5.617
1320	12.53	13.627	-1.892	4.502	-0.138	7.266	5.882
1440	14.09	13.965	-1.579	4.902	-0.113	7.036	6.027
1511	15.00	14.169	-1.344	5.253	-0.095	6.852	6.115

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

GPO : 1966 OF--214-946

PLATE XI-2

Figure 22 FIGURE D-122

Туре	of Specim	en	נסאט	STURBED	Before	Test			After Test	
Diam	2.5	in.	Ht	.75 in.	Water Content, W	21.5	*	v _f	19.0	\$
	urden Pre			T/sq ft	Void Ratio, e	0.58		ef	0.47	
	nsol. Pre			T/sq ft	Saturation, So	99	\$	Sf	100	*
	ession In				Dry Density, 7 _d 105.1 lb/ft ³					
	ification			and, &L	k ₂₀ at e _o =	× 10	cm/sec			
ш	24		G _g	2.66	Project (HASKA; C	ENCS-I	1-90	-78-ED-6H	
PL	15		D ₁₀		·					
Remar	ks Gray.	To	rvane	=0.25 TSF.	Area	ARD LAB N	10.	90/	358	
Non-c	alcareou	ıs.			Boring No. 9	0-139 MU	Sample	No.	S-2	
					Depth El	9'-20.8'	Date	0	9-11-90	
					CONSOL	IDATIC	N TE	5T	REPORT	,

TSF Rebound

TSF Rebound

PROJECT CHASKA; CENCS-IA-90-78-ED-6H

BORING NO. 90-139 MU

S-2

SAMPLE NO. DEPTH/ELEV 19'-20.8'

MRD LAB NO. 90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. Sample No. 90-139 MU

S-2

Depth/Elev 19'-20.8' MRD Lab No. 90/358

Gs = 2.66eo = 0.5790.42eo = 0.243

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
21.5	101.7	105.1	0.579		98.8
19.0	101.7	106.6	0.558	0.10	90.5
19.0	101.7	107.5	0.544	0.25	92.8
19.0	101.7	108.4	0.532	0.50	94.9
19.0	101.7	109.4	0.517	1.00	97.6
19.0	101.7	110.7	0.499	2.00	100.0
19.0	101.7	112.2	0.479	4.00	100.0
19.0	101.7	114.0	0.455	8.00	100.0
19.0	101.7	113.8	0.459	2.00	100.0
19.0	101.7	113.6	0.462	0.50	100.0
19.0	101.7	113.2	0.467	0.10	100.0

0.421

Axial Strain (%)	Void Ratio
1	0.563
2	0.547
3	0.531
4	0.515
5	0.500
6	0.484
7	0.468
8	0.452
9	0.436

10

LEGEND

+ - 1 TSF

* = 2 TSF

X - 4 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-6H

BORING NO.

90-139 MU

S-2

SAMPLE NO. DEPTH/ELEV

19'-20.8'

MRD LAB NO.

Table 10 - Triaxial \overline{R} Test Results

₹

Project Boring Number Sample Number : CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

: S-2

Depth : 19'-20.8'

Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.15	0.487	0.102	1.542	0.209	1.019	0.210
30	0.26	0.780	0.261	. 2.056	0.335	0.932	0.337
45	0.41	0.952	0.373	2.520	0.393	0.863	0.411
60	0.58	1.050	0.414	2.793	0.395	0.846	0.453
90	0.75	1.139	0.444	3.046	0.390	0.838	0.491
120	0.94	1.199	0.459	3.217	0.384	0.838	0.517
150	1.13	1.249	0.501	3.505	0.402	0.808	0.539
180	1.49	1.351	0.495	3.675	0.367	0.839	0.583
210	1.88	1.423	0.501	3.854	0.353	0.851	0.614
240	2.24	1.505	0.474	3.862	0.315	0.899	0.650
300	2.62	1.559	0.471	3.946	0.303	0.915	0.673
360	3.03	1.620	0.458	3.991	0.283	0.943	0.699
420	3.42	1.672	0.448	4.029	0.268	0.966	0.722
80	4.19	1.785	0.415	4.052	0.233	1.027	0.770
340	4.96	1.886	0.396	4.125	0.211	1.071	0.814
600	5.71	1.978	0.364	4.109	0.185	1.126	0.854
720	6.45	2.050	0.318	4.005	0.156	1.190	0.885
840	7.17	2.130	0.294	4.016	0.138	1.233	0.919
960	7.90	2.217	0.276	4.062	0.125	1.273	0.957
1080	9.37	2.344	0.199	3.927	0.086	1.381	1.012
1200	10.93	2.470	0.167	3.964	0.068	1.444	1.066
1320	12.49	2.581	0.117	3.925	0.046	1.522	1.114
1440	14.06	2.671	0.043	3.791	0.017	1.618	1.153
1512	15.00	2.717	0.013	3.752	0.006	1.659	1.172

Table 11 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-139 MU

Project
Boring Number
Sample Number

: S-2

: 19'-20.8' Depth : 19'-20 Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
	, .	•					
15	0.15	0.400	0.124	1.213	0.309	1.975	0.173
30	0.27	0.908	0.489	1.601	0.539	1.736	0.392
45	0.42	1.149	0.722	1.899	0.629	1.562	0.496
60	0.58	1.288	0.893	2.163	0.694	1.426	0.556
90	0.76	1.365	0.947	2.296	0.694	1.391	0.589
120	0.95	1.421	1.020	2.449	0.718	1.332	0.613
150	1.14	1.457	1.096	2.612	0.753	1.265	0.629
180	1.51	1.548	1.126	2.771	0.728	1.257	0.668
210	1.90	1.599	1.176	2.941	0.736	1.220	0.690
240	2.27	1.649	1.197	3.054	0.727	1.211	0.712
300	2.66	1.718	1.218	3.197	0.709	1.207	0.742
360	3.07	1.746	1.211	3.214	0.694	1.221	0.754
420	3.46	1.795	1.171	3.165	0.653	1.273	0.775
480	4.24	1.890	1.202	3.370	0.637	1.266	0.816
540	5.02	1.964	1.194	3.436	0.608	1.292	0.848
600	5.78	2.037	1.157	3.417	0.569	1.347	0.879
720	6.53	2.109	1.143	3.462	0.543	1.379	0.910
840	7.26	2.161	1.119	3.453	0.518	1.416	0.933
960	7.20	2.250	1.081	3.447	0.481	1.476	0.971
080	9.48	2.346	1.037	3.437	0.443	1.544	1.013
200	11.07	2.453	1.041	3.557	0.425	1.566	1.059
320	12.65	2.554	0.981	3.507	0.385	1.651	1.102
	14.23	2.614	0.893	3.361	0.342	1.754	1.128
440	15.00	2.649	0.888	3.382	0.336	1.768	1.144
498	T3.00	2.043	0.000	3.302	0.000		

Table 12- Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-139 MU Project Boring Number

Sample Number : S-2

: 19'-20.8' Depth

Confining Pressure : 4 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.15	0.724	0.123	1.187	0.171	4.056	0.313
30	0.27	0.969	0.183	1.254	0.189	4.057	0.418
45	0.42	1.061	0.213	.1.280	0.201	4.050	0.458
60	0.60	1.134	0.284	1.305	0.251	3.997	0.489
90	0.77	1.338	0.369	1.369	0.277	3.962	0.578
120	0.97	2.240	0.911	1.725	0.407	3.644	0.967
150	1.17	2.761	1.400	2.062	0.507	. 3.284	1.192
180	1.54	3.160	2.023	2.598	0.641	2.759	1.364
210	1.94	3.331	2.288	2.945	0.687	2.537	1.437
240	2.31	3.463	2.418	3.190	0.699	2.439	1.495
300	2.71	3.594	2.460	3.333	0.685	2.430	1.551
360	3.13	3.722	2.501	3.482	0.672	2.420	1.606
420	3.53	3.850	2.501	3.567	0.650	2.452	1.662
480	4.32	4.157	2.493	3.758	0.600	2.536	1.794
40	5.12	4.440	2.418	3.807	0.545	2.681	1.916
300	5.89	4.719	2.392	3.935	0.507	2.776	2.037
720	6.66	4.975	2.299	3.925	0.463	2.933	2.147
840	7.40	5.246	2.243	3.986	0.428	3.056	2.264
960	8.15	5.512	2.165	4.003	0.393	3.200	2.379
1080	9.67	5.974	2.012	4.004	0.337	3.467	2.578
1200	11.28	6.426	1.833	3.965	0.286	3.758	2.773
1320	12.90	6.874	1.650	3.924	0.240	4.052	2.967
1440	14.51	7.251	1.530	3.936	0.212	4.265	3.130
1476	15.00	7.340	1.489	3.923	0.204	4.329	3.168

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

SPO : 1966 OF-214-946 PLATE XI-2

Figure 30FIGURE D-134

Type of	Specimen	UNDIST	JRBED		Before	Test			After Test	
Diam	2.5 in.	Ht	.75	in.	Water Content, Wo	26.9	*	٧f	24.6	\$
	rden Pressure		T/s	q ft	Void Ratio, e	0.71		eţ	0.67	
	T/sq ft Saturation, So 100					\$	Sf	100	*	
Compression Index, C _c Dry Density, 7 _d 99.0 lt					1b/m ³					
Classification Lean clay, CL					k ₂₀ at e ₀ =	× 10	cm/sec			
	44	Gg	2.71		Project CH	IASKA; CE	NCS-I	<u>-90</u> -	-78-ED-GH	
PL	20	D ₁₀								
Remarks	Gray bro	wn. Tor	vane=1	. 25	Area MF	RD LAB NO	0.	90/	358	
TSF.	Highly cal				Boring No. 90	-139 MU	Sample	e No.	S-3	
					Depth El 31	.'-33 <i>'</i>	Date	09	9-21-90	
					CONSOLI	DATIO	N TE	5T	REPORT	

LEGEND

+ = .1 TSF Wet

* = .25 TSF

X = .5 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO.

S-3

DEPTH/ELEY MAD LAB NO.

31'-33' 90/358

> FIGURE 2 FIGURE D-137

LEGEND	PROJECT	CHASKA: CENCS-IA-90-78-ED-GH
+ = 1 TSF		
* = 2 TSF	BORING NO.	90-139 MU
X = 4 TSF	SAMPLE NO.	S-3
8 TSF	DEPTH/ELEV	31'-33'
	MAD LAB NO.	90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-139 MU

Sample No. S-3 Depth/Elev 31'-33' MRD Lab No. 90/358

> Gs = 2.71 eo = 0.708 0.42eo = 0.297

Water	Dry	Dry	Void	,	
Content (%)	Weight (gms)	Density (PCF)	Ratio	Pressure (TSF)	Saturation (%)
26.9	95.7	99.0	0.708		100.0
24.6	95.7	99.2	0.705	0.10	94.7
24.6	95.7	99.7	0.697	0.25	95.8
24.6	95.7	100.3	0.686	0.50	97.3
24.6	95.7	100.9	0.677	1.00	98.7
24.6	95.7	101.7	0.663	2.00	100.0
24.6	95.7	103.0	0.642	4.00	100.0
24.6	95.7	104.9	0.613	8.00	100.0
24.6	95.7	103.9	0.628	2.00	100.0
24.6	95.7	102.6	0.648	0.50	100.0
24.6	95.7	101.2	0.671	0.10	100.0

Axial	Strain	(१)	Void	Ratio

1	0.691
2	0.674
3	0.657
4	0.640
5	0.623
6	0.605
7	0.588
8	0.571

LEGEND

+ = 1 TSF

X = 4 TSF

PAOJECT

CHASKA; CENCS-IA-90-78-ED-6H

BORING NO.

90-139 MU

SAMPLE NO.

S-3

DEPTH/ELEV

31'-33'

MRD LAB NO.

Table 1 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

Boring Number : 90-139 MU

Sample Number : S-3
Depth : 31'-33'
Confining Pressure : 1 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress		Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.10	0.666	0.059	1.707	0.089	1.106	0.287
30	0.19	1.087	0.181	2.327	0.167	1.088	0.469
45	0.38	1.254	0.261	2.697	0.209	1.049	0.541
60	0.53	1.376	0.339	3.081	0.247	1.002	0.594
90	0.72	1.479	0.369	3.343	0.250	0.997	0.638
120	0.88	1.546	0.422	3.675	0.273	0.961	0.667
150	1.05	1.596	0.428	3.788	0.269	0.967	0.689
180	1.41	1.666	0.402	3.786	0.242	1.011	0.719
210	1.77	1.701	0.409	3.879	0.241	1.012	0.734
240	2.15	1.709	0.380	3.758	0.223	1.043	0.738
300	2.51	1.734	0.356	3.693	0.206	1.073	0.749
360	2.86	1.751	0.369	3.775	0.211	1.065	0.756
420	3.22	1.767	0.369	3.801	0.209	1.069	0.763
480	3.91	1.792	0.346	3.739	0.194	1.098	0.773
540	4.68	1.830	0.313	3.664	0.171	1.140	0.790
600	5.39	1.844	0.291	3.602	0.159	1.166	0.796
720	6.18	1.847	0.293	3.611	0.159	1.164	0.797
840	6.97	1.857	0.235	3.429	0.127	1.225	0.802
960	7.76	1.867	0.267	3.547	0.143	1.195	0.806
1080	9.28	1.879	0.214	3.390	0.114	1.251	0.811
1200	10.81	1.913	0.205	3.407	0.108	1.269	0.826
1320	12.24	1.940	0.167	3.327	0.086	1.313	0.837
1440	13.79	1.968	0.138	3.283	0.071	1.349	0.849
1534	15.00	1.983	0.151	3.337	0.077	1.340	0.856

Table $_2$ - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project
Boring Number
Sample Number : S-3 Depth : 31'-33' Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.10	0.841	0.199	1.467	0,237	2.009	0.363
30	0.19	1.501	0.540	2.028	0.361	1.832	0.648
45	0.38	1.885	0.710	2.461	0.377	1.757	0.813
60	0.53	2.171	0.858	2.901	0.396	1.680	0.937
90	0.72	2.359	0.912	3.169	0.387	1.672	1.018
120	0.89	2.508	0.968	3.430	0.386	1.653	1.082
150	1.06	2.637	1.006	3.652	0.382	1.647	1.138
180	1.42	2.817	0.971	3.737	0.345	1.726	1.216
210	1.78	2.918	0.986	3.878	0.338	1.736	1.259
240	2.17	3.017	0.922	3.799	0.306	1.825	1.302
300	2.53	3.079	0.877	3.743	0.286	1.885	1.329
360	2.89	3.102	0.866	3.736	0.280	1.902	1.339
420	3.25	3.143	0.850	3.733	0.271	1.928	1.357
480	3.95	3.170	0.779	3.596	0.246	2.006	1.368
540	4.72	3.156	0.733	3.491	0.233	2.048	1.362
600	5.44	3.133	0.681	3.375	0.218	2.095	1.352
720	6.23	3.106	0.656	3.311	0.212	2.113	1.341
840	7.03	3.098	0.600	3.213	0.194	2.167	1.337
960	7.82	3.089	0.596	3.200	0.194	2.169	1.333
080	9.36	3.047	0.557	3.112	0.183	2.197	1.315
200	10.90	2.991	0.578	3.103	0.194	2.162	1.291
320	12.34	2.966	0.510	2.991	0.172	2.224	1.280
440	13.91	2.918	0.510	2.958	0.175	2.213	1.260
525	15.00	2.871	0.512	2.929	0.179	2.199	1.239

Table 3 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project Boring Number Sample Number : S-3 Depth : 31'-33' Confining Pressure : 4 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
1 5	0 10	1 000	0 277	1 201	0 247	2 002	0 470
15	0.10	1.090	0.377	1.301	0.347	3.893	0.470
30	0.19	2.006	0.821	1.631	0.410	3.676	0.866
45	0.39	2.600	1.224	\1.937	0.471	3.420	1.122
60	0.53	3.087	1.518	2.244	0.492	3.246	1.332
90	0.72	3.431	1.777	2.543	0.519	3.072	1.481
120	0.89	3.651	1.896	2.735	0.520	3.008	1.576
150	1.06	3.801	1.961	2.864	0.517	2.980	1.640
180	1.42	3.888	1.939	2.887	0.499	3.024	1.678
210	1.79	3.974	1.931	2.921	0.486	3.053	1.715
240	2.17	4.094	1.948	2.995	0.476	3.066	1.767
300	2.53	4.144	1.988	3.059	0.480	3.038	1.789
360	2.90	4.160	1.948	3.027	0.469	3.082	1.795
420	3.26	4.226	1.935	3.047	0.458	3.111	1.824
480	3.96	4.325	1.970	3.131	0.456	3.101	1.867
0	4.73	4.417	1.882	3.086	0.427	3.212	1.907
3 00	5.45	4.511	1.821	3.070	0.404	3.296	1.947
720	6.25	4.598	1.777	3.068	0.387	3.361	1.984
840	7.05	4.666	1.716	3.043	0.368	3.439	2.014
960	7.84	4.716	1.637	2.996	0.348	3.531	2.036
1080	9.39	4.782	1.479	2.897	0.310	3.705	2.064
1200	10.93	4.796	1.373	2.826	0.287	3.814	2.070
1320	12.38	4.797	1.281	2.764	0.268	3.907	2.070
1440	13.95	4.786	1.242	2.735	0.260	3.943	2.066
1521	15.00	4.707	1.206	2.685	0.257	3.959	2.032

Type of Specimen	Before Test			After Test				
Diam 2.5 in.	Ht .75	in.	Water Content, wo	8.9	*	v _f	8.9	*
Overburden Pressure,	Ро	T/sq ft	Void Ratio, e	0.24		e _f	0.19	
Preconsol. Pressure,	Pc	T/sq ft	Saturation, So	99	\$	Sf	100	*
Compression Index, C			Dry Density, 7 _d	132.8	1b/ft ³			
Classification Silt	y sand, 🔀	-SM	k ₂₀ at e _o =	× 10	cm/sec			
<u>II.</u> 17	G _s 2.6	33	Project CH	ASKA; CEN	NCS-IA-	-90-	78-FD-GH	
PL 11	D ₁₀						· · · · · · · · · · · · · · · · · · ·	
Remarks Gray Brown	. Slightl	у	Area MR	D LAB NO	. !	90/3	58	
organic, slightly	y calcareo	us.	Boring No. 90-	-139 MU	Sample	No.	S-4	
			Depth El 44	'-46'	Date	10-	-12-90	
			CONSOLI	DATION	N TES	T F	REPORT	

TSF Wet

TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO. DEPTH/ELEV

44'-46'

MRD LAB NO.

+ = 2 TSF Rebound

* = .5 TSF Rebound

X = .1 TSF Rebound

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO.

S-4

DEPTH/ELEV

44'-46'

MRD LAB NO.

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-139 MU

Sample No. S-4
Depth/Elev 44'-46'
MRD Lab No. 90/358

Gs = 2.63 eo = 0.236 0.42eo = 0.099

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
8.9	128.4	132.8	0.236		99.1
8.9	128.4	133.2	0.232	0.10	100.0
8.9	128.4	133.9	0.226	0.25	100.0
8.9	128.4	134.5	0.220	0.50	100.0
8.9	128.4	135.3	0.213	1.00	100.0
8.9	128.4	136.1	0.205	2.00	100.0
8.9	128.4	137.2	0.196	4.00	100.0
8.9	128.4	138.5	0.185	8.00	100.0
8.9	128.4	138.4	0.186	2.00	100.0
8.9	128.4	138.2	0.188	0.50	100.0
8.9	128.4	137.8	0.191	0.10	100.0

Axial Strain (%)	Void Ratio
1	0.223
2	0.211
3	0.199
4	0.186
5	0.174
6	0.162
7	0.149

FIGURE D-154

LEGEND

TSF

TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO.

DEPTH/ELEV

44'-46'

MRD LAB NO.

90/358

Table 4 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project Boring Number Sample Number : S-4 Depth : 44'-46 Confining Pressure : 1 TSF : 44'-46'

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain		Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(11111)	(8)	(101)	(101)		•	` .	•
15	0.02	0.249	0.017	1.254	0.070	1.045	0.108
30	0.02	0.371	0.027	1.382	0.074	1.065	0.160
45	0.12	0.633	0.052	1.668	0.082	1.105	0.273
60	0.30	1.156	0.151	2.361	0.131	1.135	0.499
90	0.50	1.413	0.255	2.898	0.181	1.095	0.610
	0.67	1.596	0.322	3.355	0.202	1.073	0.689
120			0.352	3.670	0.204	1.076	0.747
150	0.87	1.731			0.206	1.081	0.831
180	1.27	1.924	0.395	4.183			0.909
210	1.67	2.107	0.375	4.371	0.179	1.147	
240	2.07	2.242	0.358	4.491	0.160	1.197	0.968
300	2.49	2.366	0.306	4.410	0.130	1.280	1.021
360	2.89	2.489	0.292	4.516	0.118	1.324	1.074
420	3.29	2.594	0.275	4.576	0.106	1.367	1.120
480	4.11	2.780	0.206	4.501	0.075	1.482	1.200
540	4.86	2.975	0.139	4.455	0.047	1.598	1.284
600	5.66	3.129	0.080	4.402	0.026	1.695	1.351
720	6.41	3.291	0.006	4.311	0.002	1.809	1.420
840	7.18	3.422	-0.024	4.341	-0.007	1.871	1.477
960	7.95	3.551	-0.094	4.245	-0.026	1.973	1.533
1080	9.52	3.816	-0.191	4.205	-0.049	2.136	1.647
		4.019	-0.264	4.180	-0.065	2.259	1.734
1200	11.09			4.107	-0.084	2.402	1.821
1320	12.69	4.218	-0.358	4.10/	-0.004	2.702	2.001

Table 5 - Triaxial R Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project
Boring Number
Sample Number : S-4 Depth : 44'-46' Confining Pressure: 2 TSF

	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0 00	0 200	0.016	. 1 156	0.052	2.061	0 124
15	0.02	0.309	0.016	1.156	0.053		0.134
30	0.02	0.571	0.043	1.292	0.075	2.098	0.246
45	0.12	1.152	0.195	1.638	0.170	2.090	0.497
60	0.30	1.549	0.451	2.000	0.291	1.933	0.669
90	0.49	1.684	0.637	2.236	0.379	1.780	0.727
120	0.67	1.779	0.750	2.424	0.422	1.691	0.768
150	0.87	1.834	0.812	2.544	0.443	1.642	0.791
180	1.26	1.922	0.915	2.771	0.476	1.561	0.830
210	1.66	1.970	0.978	2.927	0.497	1.510	0.850
240	2.05	2.037	1.000	3.037	0.491	1.504	0.879
300	2.47	2.103	0.982	3.066	0.468	1.539	0.907
360	2.87	2.149	0.993	3.133	0.462	1.539	0.927
420	3.26	2.195	1.003	3.201	0.457	1.540	0.947
480	4.08	2.284	1.001	3.287	0.439	1.564	0.986
540	4.82	2.374	0.979	3.326	0.413	1.609	1.025
600	5.61	2.460	0.982	3.418	0.400	1.627	1.062
720	6.36	2.547	0.922	3.363	0.363	1.708	1.099
840	7.12	2.649	0.906	3.421	0.342	1.750	1.143
960	7.89	2.731	0.859	3.393	0.315	1.817	1.179
1080	9.45	2.851	0.822	3.421	0.289	1.884	1.231
1-200	11.01	3.002	0.778	3.457	0.260	1.965	1.296
1320	12.59	3.161	0.724	3.477	0.229	2.059	1.364
1000	20.00	3.101	00,24	3.477	V. 22.	2.003	

Table $_{6}$ - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH Project

: 90-139 MU

Boring Number Sample Number : S-4 Depth ': 44'-46' Confining Pressure: 4 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress		Normal Stress (TSF)	Shear Stress (TSF)
(min)	(%)	(TSF)	(TSF)	Ratio	A	(ISF)	(151)
15	0.02	0.122	0.061	1.031	0.499	3.969	0.053
30	0.02	0.278	0.069	1.071	0.248	4.000	0.120
45	0.12	1.457	0.381	1.403	0.262	3.980	0.629
60	0.29	2.717	0.879	1.871	0.324	3.794	1.173
90	0.48	3.315	1.382	2.266	0.417	3.439	1.431
120	0.65	3.705	1.678	2.595	0.453	3.239	1.599
150	0.85	3.971	1.860	2.856	0.469	3.123	1.714
180	1.23	4.381	2.071	3.271	0.473	3.014	1.891
210	1.62	4.702	2.144	3.533	0.456	3.020	2.029
240	2.01	5.038	2.099	3.650	0.417	3.148	2.174
300	2.42	5.352	2.030	3.717	0.380	3.295	2.310
360	2.81	5.631	2.034	3.865	0.362	3.360	2.430
420	3.19	5.907	1.978	3.921	0.335	3.484	2.550
480	3.99	6.435	1.811	3.940	0.282	3.782	2.777
540	4.72	6.958	1.597	3.895	0.230	4.126	3.003
600	5.49	7.436	1.443	3.908	0.195	4.398	3.210
720	6.22	7.910	1.301	3.930	0.165	4.657	3.414
840	6.97	8.356	1.110	3.892	0.133	4.959	3.607
960	7.71	8.763	0.936	3.860	0.107	5.234	3.782
.080	9.24	9.486	0.652	3.834	0.069	5.697	4.094
.200	10.76	10.211	0.336	3.787	0.033	6.192	4.407
.320	12.31	10.598	0.109	3.724	0.011	6.515	4.574

LEGEND

+ = .1 TSF Wet

* - .25 TSF

X = .5 TSF

PROJECT

CHASKA: CENCS-IA-90-78-ED-GH

BORING NO.

90-139 MU

SAMPLE NO.

S-5

DEPTH/ELEV

5-3 54'-56'

MRD LAB NO.

90/358

Consolidation Test Data

Project CHASKA; CENCS-IA-90-78-ED-GH

Boring No. 90-139 MU

Sample No. S-5
Depth/Elev 54'-56'
MRD Lab No. 90/358

Gs = 2.71 eo = 0.403 0.42eo = 0.169

	ater ntent (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
	12.9	116.0	120.6	0.403		87.1
	11.7	116.0	121.1	0.396	0.10	79.6
	11.7	116.0	121.9	0.388	0.25	81.4
	11.7	116.0	122.9	0.376	0.50	83.9
	11.7	116.0	123.9	0.365	1.00	86.5
	11.7	116.0	125.1	0.352	2.00	89.8
	11.7	116.0	126.8	0.334	4.00	94.5
	11.7	116.0	128.7	0.314	8.00	100.0
)	11.7	116.0	128.3	0.318	2.00	99.4
•	11.7	116.0	127.9	0.322	0.50	97.9
	11.7	116.0	127.0	0.331	0.10	95.3

Axial Strain (%)	Void Ratio
1	0.389
2	0.375
3	0.361
4	0.346
5	0.332
6	0.318
7	0.304
8	0.290
Q	0.276

₹ 3 2 1 0-5 0 3 5 6 2 4 0 2.00 NORMAL STRESS, #, T/SQ FT 1 (+) 2 (¥) SPECIMEN NO. 1.60 12.4 12.7 WATER CONTENT, & ۳. 123.4 121.6 URY DEMOITY 74. LR' CU PT 91.0 88.0 SATURATION, & 1.20 0,39 0.37 ٠. V010 RATIO 13.8 12.6 w, WATER CONTENT. 3 123.8 122.0 DA - DERUITY 74 0.80 LO/GUP! 93.0 96.0 SATURATION, S 0.37 0.39 VOID MATIO FINAL BACK 0.0 0.0 0.40 u. MINOR PRINCIPAL 1.0 4.0 STRESS, T/SQ FT 1,69 1.07 MAXIMUM DEVIATOR 10, -0,1 0.00 STRESS, T'SQ FT TIME TO 10, - 11,1 31.5 32.3 ŧ 20 10 1.69 ULTIMATE DEVIATOR (0, - 0) 1.07 STRESS, T/SQ PT 1.38 1.37 INITIAL DIAMETER, IN. ٥. AXIAL STRAIN, 4, 7 3.00 2.99 STRAIN INITIAL HEIGHT, IN. TEST CONTROLLED DESCRIPTION OF SPECIMENS S andy clay, CL UNDISTURBED TYPE OF TEST 0, 2, 71 TYPE OF SPECIMEN 12 LL 21 CHASKA: CENCS-IA-90-78-ED-9H PROJECT Torvane=0.56TSF REMARKS: Gray brown. Slightly organic, slightly calcareou 90-139 MU SAMPLE NO. 5-5 --Material becomes more sandy toward 54'-56' DEPTH FLEV the top. 90/358 10-30-90 DATE LABORATORY TRIAXIAL COMPRESSION TEST REPORT FIGURE 22 (EM 1110-2-1906) ENG FORM NO. 2000 MEY JUNE 1970

TRANSLUCENT

PREVIOUS EDITION IS DESCLETE

FIGURE D-167

LEGEND + = 1 TSF x = 2 TSF X = 4 TSF PROJECT CHASKA: CENCS-IA-90-78-ED-GH

BORING NO. 90-139 MU SAMPLE NO. S-5 DEPTH/ELEV 54'-56' MRD LAB NO. 90/358

Table 7 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Boring Number Sample Number Depth : S-5 : 54'-56' Confining Pressure : 1 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.07	0.790	0.084	1.862	0.106	1.112	0.341
30	0.16	1.208	0.162	2.441	0.134	1.137	0.521
45	0.35	1.376	0.170	2.658	0.124	1.171	0.594
60	0.49	1.496	0.193	2.855	0.130	1.177	0.646
90	0.71	1.586	0.204	2.991	0.129	1.189	0.685
120	0.87	1.658	0.230	3.151	0.139	1.180	0.715
150	1.06	1.728	0.219	3.214	0.127	1.209	0.746
180	1.42	1.851	0.204	3.324	0.110	1.254	0.799
210	1.82	1.943	0.195	3.413	0.101	1.286	0.839
240	2.14	2.045	0.179	3.492	0.088	1.327	0.883
300	2.52	2.127	0.156	3.520	0.074	1.371	0.918
360	2.90	2.218	0.131	3.553	0.060	1.418	0.957
420	3.30	2.279	0.139	3.645	0.061	1.425	0.983
480	4.03	2.392	0.077	3.590	0.032	1.515	1.033
540	4.88	2.490	0.046	3.611	0.019	1.571	1.075
600	5.66	2.589	0.006	3.604	0.003	1.635	1.117
720	6.46	2.667	-0.055	3.528	-0.020	1.715	1.151
840	7.19	2.745	-0.058	3.596	-0.021	1.738	1.185
960	7.92	2.805	-0.077	3.606	-0.027	1.771	1.211
1080	9.38	2.902	-0.139	3.549	-0.047	1.858	1.253
1200	10.89	2.967	-0.152	3.577	-0.051	1.887	1.281
1320	12.52	3.023	-0.214	3.491	-0.070	1.962	1.305
1440	14.10	3.060	-0.260	3.429	-0.084	2.017	1.321
1508	15.00	3.079	-0.268	3.428	-0.086	2.030	1.329

Table 8 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH

: 90-139 MU

Project
Boring Number
Sample Number
Depth : S-5 : 54'-56' Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(11111)	(8)	(101)	(2007				
15	0.07	0.805	0.136	1.432	0.169	2.063	0.347
30	0.17	1.651	0.464	2.075	0.281	1.945	0.713
45	0.35	1.969	0.641	2.449	0.326	1.846	0.850
60	0.50	2.125	0.759	2.713	0.358	1.767	0.917
90	0.71	2.279	0.799	2.899	0.351	1.765	0.984
	0.87	2.374	0.859	3.082	0.362	1.729	1.025
120	1.07	2.468	0.899	3.242	0.365	1.712	1.065
150		2.615	0.901	3.379	0.345	1.746	1.129
180	1.42	2.720	0.896	3.465	0.330	1.777	1.174
210	1.82		0.879	3.557	0.307	1.831	1.237
240	2.15	2.866	0.871	3.665	0.290	1.874	1.299
300	2.53	3.009	0.827	3.651	0.266	1.943	1.343
360	2.91	3.111	0.794	3.662	0.248	2.001	1.386
420	3.32	3.212 3.433	0.721	3.684	0.211	2.129	1.482
480	4.05	3.586	0.697	3.751	0.195	2.191	1.548
540	4.90 5.68	3.797	0.634	3.779	0.167	2.306	1.639
600	6.49	3.946	0.532	3.689	0.135	2.445	1.703
720	7.22	4.096	0.505	3.740	0.124	2.509	1.768
840	7.22	4.205	0.460	3.730	0.110	2.581	1.815
960	9.42	4.417	0.343	3.665	0.078	2.750	1.906
1080		4.616	0.270	3.668	0.059	2.873	1.992
1200	10.94	4.745	0.201	3.638	0.043	2.974	2.048
1320	12.57		0.120	3.590	0.025	3.085	2.101
1440	14.16	4.869	0.096	3.595	0.020	3.126	2.132
1503	15.00	4.939	0.090	3.333			

Table 9 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-90-78-ED-GH : 90-139 MU

Project Boring Number Sample Number : S-5 Depth : 54'-56 Confining Pressure : 4 TSF : 54'-56'

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator		Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
, ,							
15	0.07	1.213	0.218	1.321	0.181	4.082	0.523
30	0.17	2.638	0.865	1.842	0.328	3.788	1.139
45	0.36	3.194	1.398	2.228	0.438	3.393	1.379
60	0.50	3.488	1.721	2.531	0.494	3.142	1.505
90	0.71	3.684	1.949	2.796	0.529	2.963	1.590
120	0.88	3.825	2.071	2.983	0.542	2.876	1.651
150	1.07	3.965	2.115	3.103	0.534	2.867	1.711
180	1.43	4.133	2.211	3.310	0.535	2.812	1.784
210	1.83	4.315	2.193	3.388	0.509	2.875	1.862
240	2.16	4.536	2.224	3.554	0.491	2.899	1.958
300	2.54	4.680	2.189	3.584	0.468	2.970	2.020
360	2.93	4.859	2.198	3.696	0.453	3.005	2.097
420	3.33	4.999	2.150	3.701	0.431	3.088	2.157
480	4.07	5.314	2.053	3.730	0.387	3.263	2.294
540	4.93	5.580	1.957	3.732	0.351	3.425	2.409
600	5.71	5.864	1.866	3.747	0.319	3.586	2.531
720	6.52	6.087	1.831	3.806	0.301	3.676	2.627
840	7.26	6.328	1.708	3.761	0.270	3.859	2.731
960	7.99	6.531	1.630	3.755	0.250	3.987	2.819
1080	9.47	6.888	1.533	3.793	0.223	4.172	2.973
1200	10.99	7.243	1.354	3.738	0.187	4.439	3.126
1320	12.64	7.487	1.215	3.688	0.163	4.639	3.231
1440	14.23	7.722	1.158	3.717	0.150	4.754	3.333
1497	15.00	7.821	1.099	3.696	0.141	4.838	3.375

4 ł 3 2 SMEAR STRESS, r. T/80 FT 1 R-2 -0 0 1 2 3 4 5 6 6.00 HORMAL STRESS, #, T/SQ FT 2 (x) SPECIMEN NO. 90.7 130.3 WATER CONTENT. S 4.50 DRY DENSITY 44.3 35.7 74. LB/ CU FT DEVIATOR STRESS, $\sigma_1 - \sigma_3$, T/SQ FT F 89 96 SATURATION, % 2.58 3.44 VOID RATIO 3.00 88.5 94.6 WATER CONTENT. 3 DRY DENSITY 50.3 48.9 LB/CU FT 100 100 SATURATION, 3 2.15 2.24 1.50 VOID RATIO 3.383 3.383 MINOR PRINCIPAL .5 2 STRESS, T/SQ FT MAXIMUM DEVIATOR 0.961 3.522 10, -0,1 STRESS, T'SQ FT 0.00 TIME TO IN . "3" 1080 960 10 20 3.401 STRESS, T'SQ FT 0.888 1.39 1.4 INITIAL DIAMETER, IN. ۰. AXIAL STRAIN, 4, 7 2.99 2.99 STRAIN INITIAL HEIGHT, IN. TEST CONTROLLED-1.0 1.0 1.0 DESCRIPTION OF SPECIMENS FAT clay, ₽A SC B-Value UNDISTURBED ABAR c. 2.54 TYPE OF TEST TYPE OF SPECIMEN 75 35 40 CHASKA: CENCS-IA-91-45-ED-GH PROJECT MEMARKS: Dark brown-black. Highly calcareous. 90-143 W-1 SAMPLE NO. BORING NO 4'-5' DEPTH ELEV DATE 04-17-91 839 L ABORATORY TRIAXIAL COMPRESSION TEST REPORT (EM 1110-2-1906) ENG FORM NO TRANSLUCENT REV JUNE 1970 2089 PREVIOUS EDITION IS OBSOLETE

FIGURE D-173

FIGURE 1

LEGEND - .5 TSF - 2 TSF PROJECT CHASKA: CENCS-IA-91-45-ED-GH

BORING NO. 90-143
SAMPLE NO. W-1
DEPTH/ELEV 4'-5'
MRD LAB NO. 839

Table 1 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-91-45-ED-GH

Project Boring Number Sample Number : 90-143 : W-1 Depth : 4'-5' Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(,	()	(/	(/			(,	(,
15	0.05	0.282	0.028	1.598	0.102	0.542	0.122
30	0.20	0.392	0.092	1.961	0.234	0.505	0.169
45	0.39	0.474	0.130	2.280	0.274	0.487	0.205
60	0.59	0.527	0.148	2.496	0.281	0.482	0.228
90	0.76	0.562	0.177	2.740	0.316	0.462	0.242
120	0.96	0.596	0.198	2.975	0.333	0.450	0.257
150	1.15	0.630	0.203	3.117	0.322	0.453	0.272
180	1.57	0.688	0.232	3.567	0.338	0.438	0.297
210	1.98	0.727	0.265	4.090	0.365	0.415	0.314
240	2.40	0.765	0.254	4.114	0.333	0.436	0.330
300	2.82	0.786	0.290	4.742	0.370	0.404	0.339
360	3.21	0.815	0.304	5.152	0.373	0.398	0.352
420	3.63	0.825	0.329	5.828	0.399	0.375	0.356
480	4.44	0.873	0.324	5.956	0.371	0.392	0.377
540	5.22	0.903	0.319	5.974	0.353	0.404	0.390
600	6.03	0.922	0.343	6.866	0.372	0.385	0.398
720	6.82	0.933	0.333	6.596	0.358	0.398	0.403
840	7.63	0.960	0.316	6.230	0.330	0.422	0.414
960	8.41	0.961	0.332	6.729	0.346	0.406	0.415
1080	10.01	0.945	0.317	6.179	0.336	0.417	0.408
1200	11.58	0.929	0.310	5.894	0.334	0.420	0.401
1320	13.12	0.914	0.297	5.510	0.326	0.429	0.394
1440	14.71	0.888	0.298	5.409	0.336	0.422	0.383
1462	15.00	0.888	0.298	5.400	0.336	0.422	0.383

Table 2 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-91-45-ED-GH

Project
Boring Number
Sample Number
Depth : 90-143 : W-1 : 41-51 Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(11111)	(• /	(,	\				
15	0.05	0.361	0.049	1.185	0.136	2.040	0.156
30	0.21	0.526	0.044	1.269	0.083	2.086	0.227
45	0.42	0.601	0.047	1.308	0.080	2.102	0.259
60	0.63	0.630	0.062	1.325	0.099	2.094	0.272
90	0.82	0.649	0.032	1.330	0.049	2.129	0.280
120	1.03	0.656	0.037	1.334	0.057	2.125	0.283
150	1.24	0.651	0.004	1.326	0.007	2.157	0.281
180	1.69	0.643	0.046	1.329	0.072	2.113	0.277
210	2.14	0.634	0.062	1.327	0.098	2.095	0.274
240	2.59	0.964	0.203	1.537	0.211	2.036	0.416
300	3.05	1.715	0.589	2.216	0.344	1.836	0.740
360	3.47	2.460	1.019	3.508	0.415	1.590	1.062
420	3.92	2.798	1.192	4.462	0.426	1.501	1.208
480	4.79	2.997	1.090	4.294	0.364	1.652	1.294
540	5.64	3.139	0.869	3.775	0.277	1.908	1.355
600	6.51	3.214	0.514	3.163	0.160	2.282	1.387
720	7.36	3.289	0.261	2.891	0.080	2.553	1.419
840	8.23	3.421	0.455	3.214	0.133	2.392	1.476
960	9.08	3.511	0.492	3.328	0.141	2.377	1.515
1080	10.80	3.522	0.510	3.364	0.145	2.362	1.520
1200	12.50	3.501	0.585	3.475	0.168	2.282	1.511
1320	14.16	3.441	0.572	3.410	0.167	2.280	1.485
1378	15.00	3.401	0.909	4.460	0.269	1.933	1.468
1378	15.00	3.401	0.909	4.460	0.269	1.933	1.468

,	CLASSIFICATION	ON TEST REQUEST		
Choska P	bod Contro	2/	020	
PROJECT: 5 tage 3,	, Fast Cleek	MRD LAB	. но.: <i>839</i>	
ACCOMPANYING TEST:	X, F	REQUEST	NO. CENCS:	TA-91-45-FD-01
container - type: 3	"TUBE	NO.:		•
SAMPLE IDENTIFICATION	in: 90-143 W-	1 4.0-5.0	?'	
SAMPLE IDENTIFICATION	M:			- 1, 7, 7 - 11 - 11 - 2
Structure: () B	rittle () Plasti	o ()		
	listurbed () So		- ·	
	nolded () Insen			nsitive
	ngth () Low(e () None ()	_		• /)
	: Test () None		•	• •
Torvane: Ma		Odor: None	•	•
color: dark brown	Llack		high = react	rue to HCI
Disturbance:		Date Core Ope	. •	•
Est. Max. Particle S			e description imen location)	
Remarks: no tags,		Han		
Dalley W	· 3 & C.			
	5" .1	24 1 -	ŧ	
san	z" day -	ian rag	sluff	, 1
R3	R2 K-R.			TOP
111	12			101
	2011			1

Technician ____

₹ 2 7. T/80 1 SHEAR STRESS. 0 0 1 2 3 4 1.00 HORMAL STRESS, #, T/SQ FT 1 (+) 2 (*) 3 (X) SPECIMEN NO. 0.80 99.8 104.4 102.9 WATER CONTENT. S ۳. DRY DENSITY 74. 44.9 45.7 40.5 LB/ CU FT 100.0 100.0 92.0 SATURATION, & 0.60 2.21 2.63 2.27 ŧ, VOID RATIO 94.4 91.4 139.2 WATER CONTENT. 3 w, 45.0 45.8 40.6 DRY DENSITY 74 0.40 LB/CU FT 98.0 100.0 98.0 SATURATION, T 2.26 2.20 2.61 VOID RATIO FINAL BACK 0.0 0.0 0.0 0.20 u. PRESSURE, T/SQ FT HINOR PRINCIPAL 0.5 1.0 2.0 STRESS, T/SQ FT 0.18 MAXIMUM DEVIATOR 10, -0, 0.09 0.13 STRESS, T'SQ FT 0.00 TIME TO (# - "3" 13.8 24.0 9.0 , MIN ŧ, 10 20 0.08 0.13 0.16 ULTIMATE DEVIATOR (0, - 03) STRESS, T/SO FT 1.36 1.39 1.39 ٥, INITIAL DIAMETER, IN. AXIAL STRAIN, 4, 5 2.96 2.96 3.05 STRAIN INITIAL HEIGHT. IN TEST CONTROLLED-DESCRIPTION OF SPECIMENS Organic Silt, OH UNDISTURBED c, 2.35 TYPE OF TEST TYPE OF SPECIMEN **P** 67 LL 165 98 CHASKA: CENCS-IA-91-45-ED-6H PROJECT REMARKS: Dark brown. Too soft for Torvane calcareous. M-5 90-143 SAMPLE NO. BORING NO 12'-14 DEPTH FLEV 839 03-27-91 DATE LABORATORY TRIAXIAL COMPRESSION TEST REPORT FIGURE 4 (EM 1110-2-1906) ENG FORM NO. TRANSLUCENT

MEY JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

FIGURE D-179

₹ 3 2 Ľ SHEAR STRESS, F. T/80 0 5 6 2 1 · 3 4 0 3.00 NORMAL STRESS, #, T/SQ FT 3 (X) 1 (+) 2 (x) SPECIMEN NO. 133.9 134.4 119.7 WATER CONTENT. 3 2.25 35.2 35.2 38 DRY DENSITY LB./ CU FT 100 98 99 SATURATION, % 1.80 3.17 2.86 3.17 VOID RATIO 1.50 102.3 102.1 90.4 WATER CONTENT. 3 46.9 43 43.4 DRY DENSITY 74, LB/CU FT DEVIATOR STRESS. 100 100 100 SATURATION, 3 2.38 2.13 2.41 0.75 VOID RATIO 3.383 3.383 FINAL BACK PRESSURE, T/SQ FT 3.383 .5 MINOR PRINCIPAL STRESS, T/SQ FT 2.245 0.768 1.606 MAXIMUM DEVIATOR STRESS, T'SQ FT 420 **600** 0.00 150 TIME TO 10 - "3" tf 10 20 2.245 ULTIMATE DEVIATOR 10, - 03 0.707 1.548 STRESS, T/SO FT 1.39 1.38 1.39 INITIAL DIAMETER, IN. AXIAL STRAIN, 4, 7 2.99 2.98 2.99 STRAIN INITIAL HEIGHT, IN TEST CONTROLLED-1.0 1.0 1.0 Organic Silt, OH B-Value DESCRIPTION OF SPECIMENS RBAR UNDISTURBED TYPE OF TEST _c, 2.35 TYPE OF SPECIMEN 67 98 LL 165 CHASKA: CENCS-IA-91-45-ED-6H Too soft for PROJECT REMARKS Dark brown. Torvane. Calcareous. M-5 90-143 SAMPLE NO. BORING NO 12'-14 DEPTH FLEV DATE 03-29-91 839 LABORATORY TRIAXIAL COMPRESSION TEST REPORT (EM 1110-2-1906) TRANSLUCENT ENG FORM HO MEV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

FIGURE D-180

FIGURE 5

LEGEND PROJECT CHASKA: CENCS-IA-91-45-ED-GH

- .5 TSF

- 1 TSF BORING NO. 90-143

- 2 TSF SAMPLE NO. W-2
DEPTH/ELEV 12'-14'

MRD LAB NO.

839

Table 4 - Triaxial R Test Results

Project : CHASKA; CENCS-IA-91-45-ED-GH

Project : CHASKA;
Boring Number : 90-143
Sample Number : W-2
Depth : 12'-14'
Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator	Normal Stress (TSF)	Shear Stress (TSF)
15	0.10	0.146	0.046	1.322	0.316	0.490	0.063
30	0.32	0.222	0.074	1.522	0.334	0.481	0.096
45	0.47	0.289	0.100	1.723	0.346	0.472	0.125
60	6.06	0.738	0.278	4.327	0.378	0.405	0.318
90	6.88	0.760	0.273	4.346	0.360	0.415	0.328
120	7.68	0.764	0.293	4.695	0.385	0.396	0.330
150	8.45	0.768	0.290	4.658	0.378	0.400	0.331
180	11.03	0.747	0.278	4.368	0.373	0.407	0.322
210	11.23	0.743	0.283	4.417	0.381	0.401	0.321
240	11.45	0.730	0.273	4.215	0.374	0.408	0.315
300	11.68	0.726	0.264	4.081	0.364	0.416	0.313
360	11.87	0.731	0.251	3.941	0.344	0.430	0.316
420	12.10	0.727	0.249	3.899	0.343	0.431	0.314
480	12.32	0.723	0.277	4.245	0.384	0.402	0.312
540	12.55	0.719	0.250	3.879	0.349	0.428	0.310
600	12.97	0.720	0.270	4.124	0.375	0.408	0.311
720	13.39	0.712	0.269	4.076	0.378	0.407	0.307
840	13.81	0.713	0.278	4.213	0.391	0.398	0.308
960	14.21	0.705	0.264	3.992	0.375	0.411	0.304
1080	14.61	0.715	0.259	3.964	0.363	0.418	0.308
1198	15.00	0.707	0.262	3.973	0.371	0.413	0.305
1198	15.00	0.707	0.262	3.973	0.371	0.413	0.305

Table 5 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-91-45-ED-GH

Project Boring Number Sample Number : 90-143 : W-2 Depth : 12'-14 Confining Pressure : 1 TSF : 12'-14'

•		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0 10	0 505	0.045	1.529	0.090	1.080	0.218
15	0.10	0.505	0.045				
30	0.33	0.699	0.113	1.788	0.162	1.060	0.302
45	0.49	0.806	0.155	1.954	0.192	1.045	0.348
60	6.24	1.484	0.587	4.593	0.396	0.780	0.641
90	7.08	1.522	0.573	4.566	0.377	0.804	0.657
120	7.90	1.520	0.599	4.792	0.395	0.777	0.656
150	8.69	1.558	0.603	4.922	0.387	0.783	0.673
180	11.35	1.600	0.648	5.542	0.405	0.748	0.690
210	11.56	1.594	0.665	5.759	0.418	0.730	0.688
240	11.78	1.587	0.636	5.355	0.401	0.757	0.685
300	12.01	1.599	0.660	5.703	0.413	0.736	0.690
360	12.22	1.593	0.630	5.311	0.396	0.764	0.688
420	12.45	1.606	0.601	5.023	0.375	0.797	0.693
480	12.68	1.579	0.634	5.314	0.402	0.757	0.682
540	12.91	1.592	0.590	4.887	0.371	0.804	0.687
600	13.34	1.579	0.623	5.193	0.395	0.768	0.681
720	13.78	1.566	0.630	5.236	0.403	0.758	0.676
840	14.22	1.553	0.634	5.241	0.409	0.750	0.670
960	14.62	1.559	0.615	5.047	0.395	0.771	0.673
1070	15.00	1.548	0.631	5.192	0.408	0.753	0.668
1070	15.00	1.548	0.631	5.192	0.408	0.753	0.668
1070	15.00	1.548	0.631	5.192	0.408	0.753	0.668

Table 6 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-91-45-ED-GH

Project : CHASKA;
Boring Number : 90-143
Sample Number : W-2
Depth : 12'-14'
Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(mrii)	(3)	(151)	(202)	4		•	
15	0.11	0.163	0.084	1.085	0.515	1.956	0.070
30	0.34	0.243	0.117	1.129	0.479	1.943	0.105
45	0.50	0.597	0.185	1.329	0.310	1.963	0.258
60	6.41	1.721	0.941	2.625	0.548	1.485	0.743
90	7.28	1.868	1.072	3.012	0.574	1.390	0.806
120	8.12	1.974	1.173	3.387	0.595	1.316	0.852
150	8.94	2.040	1.257	3.745	0.616	1.248	0.881
	11.67	2.200	1.389	4.599	0.632	1.156	0.949
180		2.191	1.395	4.622	0.637	1.147	0.946
210	11.88	2.191	1.387	4.591	0.631	1.158	0.950
240	12.11		1.432	4.892	0.649	1.115	0.954
300	12.35	2.209		4.975	0.650	1.107	0.958
360	12.56	2.219	1.442	5.176	0.659	1.086	0.962
420	12.80	2.228	1.466	5.158	0.662	1.083	0.958
480	13.04	2.218	1.466	5.068	0.653	1.099	0.961
540	13.27	2.227	1.452	5.322	0.660	1.076	0.969
600	13.72	2.245	1.480		0.672	1.049	0.969
720	14.17	2.245	1.507	5.552	0.675	1.043	0.969
840	14.61	2.245	1.513	5.610			0.969
950	15.00	2.245	1.520	5.680	0.678	1.036	
950	15.00	2.245	1.520	5.680	0.678	1.036	0.969
950	15.00	2.245	1.520	5.680	0.678	1.036	0.969
950	15.00	2.245	1.520	5.680	0.678	1.036	0.969

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 68102-2586 420 SOUTH 18th STREET - OMAHA, NE

,		ı		U.S. STANDARD SIEVE OPENING IN INCHES						U. S. STANDARD SIEVE HUMBERS											HYDROMETER																				
					1n.		3 m	2 sn.	1-1/2 in.	1 55.	X4 10.	1.2 in.	378 in.		نج						90	87		<u>2</u>		97		9149	1	3											-
				199						1					1											1															
				90																																					
			돐	94																						1	8														
		•	WE I GHT	79		\parallel						-	╫	\prod	+	-							$\ $	1				V													
•		٠ No.	¥	68		+	\parallel	\parallel					H	H	+	-	-						$\ $	1	+				6	+								+			
	≗	Contract	INER	50		\parallel	#	\parallel						H	+	-	-	+						\dagger	+	-			 -			1			₩				-		
M. 0.	Req.	Cont	PERCENT FINER	40									$\frac{1}{1}$	\prod	+	_	-	-					H	+	+				-			1	\forall						+		
			RCE	30		+	-	-					$\left\{ \right\} $	$\frac{1}{1}$	+	-	-	+					H	+	+	+		-		+				7	\prod	\parallel	\parallel	-	+		
			<u> </u>	29									\prod	\parallel	+		\vdash	+					$\left \cdot \right $	+	+	1			 	-				4		\parallel	H	+	+		
				10		-								H	-		-	+			\parallel		$\left \cdot \right $	+	-	1		\dashv		-		-	-			1		+	+		
				8		199		59				10		Ц	5				•	1			<u> </u>	5					1	•.	95			8.	∭_ .⊕1	<u>.</u>	205		4	Ю ø.	001
-нв	·n						<u> </u>		• •	<u> </u>					`(3R	A	۱۱ <u>,</u>	1							IL	L I	ME	ET	ER	S	•/	SI	ıT		<u> </u>	<u></u>	۸۷	,		1
NO	-228		<u>8</u>	0.	Ø Ø	<u> </u>			<u> </u>	0	. 0	<u>/ E (</u>	-	_	+		_				<u>'</u>	42	H!	9 4D								<u>/•</u>	51	.0		<u>n</u>	Ï	-111	2.8	3	
DIVISION LAB	68162-2586													_	1		_						<u> </u>							_						_					
				Sa	amp	le	H	ο.		Ε	le	v	01	•	De	P.	ti	١	N	at	-	W/A	:		LI				P				ΡI				C _C			Cu	
3IVE	<u> </u>		0		h	1-2	2				1	2'	_	-	14	!'							-	16	55		3	9	77	. 8		6	7.	5	(9.	43		1	3.2	2
JRI 1	OMPHA,																			101	<u> </u>	_	<u> </u>	À.	T 1	O															
\$S01	S I		00									···						<u></u>	L.F	13.	21		10	<u>- </u>	1 1	O	1														
, MI	L L		0	RG	ANI	С	SI	Ll	,	OH	4																														
ORPS OF ENGINEERS, MISSOURI RIVER	S S																																								
NI 9	18th		Re	∍ws	ırk	s:									P	۳¢	o j	e	c t	=	CH	ΙA	Sk	(A	F	L(00:	D	CC	JH.	ΓR	OL									
F EI	Ξ.														A	re	Pa	ı					L	.al	b	No	٥.	9	1/	'8:	39										
PS C	ਤ ਤ													-					9	H	٥.	_	96	3 — (14	3						Dat	:e	4-	12	-	91				
CY .	2)												_		Ξ											_	ES		=												

· /	CLASSIFICATION	LEST REQUEST
PROJECT: 5 103 ACCOMPANYING TO	KA Flood CONTROL Re 3, Fast CREEK'	nrd lab. no.: 839 request no.: <i>CENCS-IA-91-45</i>
	PE: 3' TUBE	NO.:
SAMPLE IDENTII	PICATION: 90-143 W-2	2 12:0-14:0'
SAMPLE IDENTII	PICATION:	
Structure:	(Brittle () Plastic	
Consistency:		() Med () Stiff () Hard ive () Sl. Sens. () Sensitive
PL Thread:	Strength () Low ()	
	•••	11 () Gloss () H. Gloss ()
	Shake Test () None () Slow () Fast () Rapid ()
Torvane: N/G Color: da-k Disturbance:		Odor: hone Cementation: reactive to HC1 Date Core Opened: 3/27/91
Est. Max. Par Remarks: Ac +		Sketch: (Core description and specimen location)

Technician Milew

ENG FORM 2090

PREVIOUS EDITIONS ARE OBSOLETE.

Figure 8

LEGEND	PROJECT	CHASKA: CENCS-IA-91-45-ED-GH
+ = .1 TSF		
* = .25 TSF	BORING NO.	90-143
X = .5 TSF	SAMPLE NO.	К-3
	DEPTH/ELEV	50,-55,
	MRO LAB NO.	839
	J L	

LEGEND	PROJECT	CHASKA: CENCS-IA-91-45-ED-GH	
+ = 2 TSF Rebound			li
* = .5 TSF Rebound	BORING NO.	90-143	
X = .1 TSF Rebound	SAMPLE NO.	W-3	I
	DEPTH/ELEV	50,-55,	
	MRD LAB NO.	839	
			_

Consolidation Test Data

Project CHASKA; CENCS-IA-91-45-ED-GH

Boring No. 90-143 Sample No. W-3 Depth/Elev 20'-22' MRD Lab No. 839

> Gs = 2.7 eo = 4.118 0.42eo = 1.729

Water Conter (%)		Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
139.9	31.7	32.9	4.118		91.7
80.0	31.7	37.8	3.458	0.10	62.5
80.0	31.7	38.0	3.430	0.25	63.0
80.0	31.7	39.5	3.269	0.50	66.1
80.0	31.7	41.3	3.075	1.00	70.2
80.0	31.7	44.7	2.767	2.00	78.1
80.0	31.7	48.9	2.445	4.00	88.3
80.0	31.7	54.5	2.092	8.00	100.0
80.0	31.7	53.5	2.146	2.00	100.0
80.0	31.7	52.4	2.218	0.50	97.4
80.0	31.7	50.9	2.309	0.10	93.5

Axial	Strain	(१)	Void	Ratio

•	4 066
1	4.066
2	4.015
3	3.964
4	3.913
5	3.862
6	3.810
7	3.759
8	3.708
9	3.657
10	3.606
11	3.555
12	3.503
13	3.452
14	3.401
15	3.350
16	3.299
17	3.248
18	3.196
19	3.145
20	3.094

Table 7 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-91-45-ED-GH

Project : CHASKA;
Boring Number : 90-143
Sample Number : W-3
Depth : 20'-22'
Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
	• •	•					
15	0.14	0.107	0.044	1.236	0.412	0.483	0.046
30	0.40	0.196	0.089	1.477	0.457	0.460	0.085
45	0.65	0.258	0.130	1.697	0.506	0.434	0.111
60	0.91	0.307	0.155	1.889	0.507	0.421	0.132
90	1.14	0.355	0.187	2.137	0.528	0.401	0.153
	1.39	0.391	0.175	2.200	0.447	0.422	0.169
120	1.59	0.414	0.208	2.416	0.503	0.394	0.178
150		0.471	0.220	2.682	0.467	0.397	0.203
180	2.05		0.223	2.817	0.444	0.402	0.217
210	2.47	0.503		2.985	0.432	0.401	0.231
240	2.93	0.535	0.231	3.343	0.478	0.373	0.239
300	3.38	0.553	0.264		0.465	0.376	0.246
360	3.84	0.571	0.265	3.430		0.377	0.254
420	4.26	0.589	0.269	3.555	0.458		
480	5.17	0.624	0.286	3.911	0.458	0.369	0.269
540	6.08	0.658	0.293	4.182	0.446	0.370	0.284
600	6.99	0.680	0.294	4.302	0.433	0.374	0.293
720	7.96	0.699	0.314	4.750	0.449	0.359	0.302
840	8.90	0.718	0.310	4.787	0.432	0.368	0.310
960	9.80	0.714	0.310	4.764	0.435	0.367	0.308
1080	11.60	0.751	0.297	4.709	0.396	0.389	0.324
1200	13.47	0.774	0.298	4.838	0.386	0.394	0.334
1296	15.00	0.754	0.305	4.855	0.404	0.382	0.325
1296	15.00	0.754	0.305	4.855	0.404	0.382	0.325
1296	15.00	0.754	0.305	4.855	0.404	0.382	0.325

Table 8 - Triaxial \overline{R} Test Results

Project : CHASKA Boring Number : 90-143 Sample Number : W-3 Depth : 20'-22 Confining Pressure : 1 TSF : 90-143 : 20'-22'

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	-		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
, ,		, ,	• •				•
15	0.12	0.488	0.083	1.532	0.171	1.038	0.211
30	0.35	0.484	0.073	1.522	0.152	1.047	0.209
45	0.57	0.481	0.139	1.558	0.291	0.980	0.207
60	0.80	0.477	0.117	1.540	0.246	1.001	0.206
90	1.00	0.494	0.131	1.569	0.265	0.991	0.213
120	1.22	0.614	0.179	1.747	0.291	0.973	0.265
150	1.40	0.713	0.292	2.008	0.410	0.885	0.308
180	1.80	0.849	0.366	2.338	0.431	0.844	0.366
210	2.17	0.943	0.405	2.584	0.430	0.828	0.407
240	2.57	0.975	0.456	2.792	0.468	0.785	0.421
300	2.97	1.007	0.508	3.048	0.505	0.741	0.435
360	3.37	1.039	0.551	3.313	0.531	0.706	0.448
420	3.74	1.070	0.544	3.348	0.509	0.721	0.462
480	4.54	1.112	0.593	3.735	0.534	0.682	0.480
540	5.34	1.114	0.656	4.240	0.590	0.620	0.481
600	6.14	1.134	0.627	4.044	0.554	0.654	0.490
720	6.99	1.153	0.685	4.662	0.595	0.600	0.498
840	7.81	1.153	0.670	4.491	0.582	0.615	0.497
960	8.61	1.171	0.677	4.623	0.578	0.613	0.506
1080	10.18	1.189	0.680	4.717	0.572	0.614	0.513
1200	11.83	1.167	0.707	4.986	0.607	0.582	0.504
1320	13.50	1.161	0.716	5.086	0.617	0.572	0.501
1420	15.00	1.109	0.731	5.129	0.660	0.544	0.479
1420	15.00	1.109	0.731	5.129	0.660	0.544	0.479

Table 9 - Triaxial \overline{R} Test Results

Project
Boring Number
Sample Number
Depth : 90-143 : W-3 : 201-221 Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
()	(•)	(,	\ /				
15	0.13	0.263	0.056	1.135	0.212	2.009	0.114
30	0.36	0.365	0.063	1.188	0.174	2.027	0.157
45	0.59	0.863	0.240	1.490	0.278	1.974	0.372
60	0.82	1.484	0.484	1.979	0.327	1.883	0.640
90	1.03	1.811	0.699	2.392	0.386	1.749	0.782
120	1.26	1.929	0.795	2.600	0.412	1.683	0.833
150	1.44	2.006	0.908	2.836	0.453	1.589	0.866
180	1.85	2.096	1.109	3.351	0.529	1.410	0.905
210	2.23	2.166	1.200	3.706	0.554	1.336	0.935
240	2.64	2.193	1.257	3.951	0.574	1.286	0.946
300	3.05	2.199	1.303	4.156	0.593	1.241	0.949
360	3.46	2.246	1.297	4.195	0.578	1.259	0.969
420	3.85	2.232	1.347	4.416	0.604	1.206	0.963
480	4.67	2.264	1.371	4.601	0.606	1.189	0.977
540	5.49	2.254	1.419	4.881	0.630	1.139	0.973
600	6.31	2.264	1.438	5.027	0.636	1.123	0.977
720	7.18	2.272	1.430	4.986	0.630	1.132	0.980
840	8.03	2.241	1.480	5.305	0.661	1.075	0.967
960	8.85	2.230	1.476	5.259	0.663	1.076	0.962
1080	10.47	2.246	1.486	5.367	0.662	1.070	0.969
1200	12.16	2.220	1.461	5.119	0.659	1.089	0.958
1320	13.88	2.192	1.458	5.043	0.666	1.085	0.946
1392	15.00	2.160	1.464	5.033	0.679	1.070	0.932
1392	15.00	2.160	1.464	5.033	0.679	1.070	0.932

	FAILURE SKETCHES		1.	.00			:		Т	······································	T]
		E a	0.	. 75									
			0.	.50									
		COMPRESSIVE STRESS, 1/SQ FT	0.	25				+					
	CONTROLLED STRESS		Ο.	.00) 4			3	12	11		50	
	X CONTROLLED STRAIN							STRAIN, '					
TE	5T NO.						, '						
TY	PE OF SPECIMEN UNDISTURBED												
	WATER CONTENT			₩.	154.7	%		91	5		%		%
=	VOID RATIO			e,	3.53								
INITIAL	SATURATION			s.	100	%		90			%		%
	DRY DENSITY, LB/CU FT			γa	31.7								
TIA	AE TO FAILURE, MIN			tr	23.5								
	CONFINED COMPRESSIVE RENGTH, T/SQ FT			٩u	0.20								
UN	DRAINED SHEAR STRENGTH, T/SQ FT			Su	0.10								
SE	NSITIVITY RATIO			Sı									
INI	TIAL SPECIMEN DIAMETER, IN			D.	1.39								
INI	TIAL SPECIMEN HEIGHT, IN.			н.	2.96								
	ASSIFICATION Organic, OH								٦				
	157 PL	84		PROJE	CT CUI		3	NCC T		2.3			
1	warks Brown-light brown,				- CH/	ASK/	A; CE	NUS-1	<u>A-91</u>	-45-ED-	<u>יטרו</u>		
1	oo soft for Torvane. Hig alcareous. Organic.	шту		AREA	NAI) L/	AB NO	. : 8	39				
					IG NO. 90-	-14			SAMPLE	E NO.	1-3		
_			_	DEPTH EL		5			DATE			2-91	
		_			UNCO	VFIN	HED CO	OMPRE	SSIO	N TEST RE	POF	<u>tT</u>	

			U.S. STANDARD SIEVE OPENING IN INCHES					U.S. STANDARD SIEVE HUMBERS								HYDROMETER																						
	•			6 in.		3 In.	2 in.	1-1/2 in	- i	<u>.</u>	5 5			I			ē			}		9	3		46													
			108	Ť			T									(·					1																	
			20											1	1							1														t.		
		도	949		\parallel		+	+						1	+						+			0														
		WE16HT	76		+							\parallel		+	+						+							\dagger										
	r No.	ΒY	60		+						\dashv	\parallel		+	+						+	-						\dagger	-			$\parallel \parallel$		\dagger				
2 2	Contract	NER	50		+		+	-	-		\dashv	+		+	+				$\left\{ \right\} $	+	+		<u> </u>				1	+	-	-		$\frac{1}{1}$	+	-				
M. 0.	Cont	T FI	40				+	-			\dashv	+		$\frac{1}{1}$	+				+		+	+	_	-			8	4		-	_		+	+				
		PERCENT FINER	30		-		\perp	+			-	$\frac{\parallel}{\parallel}$	$\frac{ \cdot }{ \cdot }$	+	+		_				+	<u> </u>		-			H	+	3					-			-	
		PE	29					+			\dashv	$\prod_{i=1}^{n}$		+	+				$\frac{1}{1}$		+	-					+	-	-	-				+			-	
			18		4			1	-		\perp			1	\downarrow					$\frac{1}{1}$		+	-	-				-	-	_			9	-			-	
																			Ш				<u></u>		_	Щ	Щ				9.		•.•			0	9.001	
AB			20		199		54				10.	•		G	RA	ìI	H						ΜI	LL	IM	ËΤ	ER								AU.			
DIVISION LAB 68102-2586		% (0	0.	BLE 0	ES			<u>"</u>	<u>GR</u> 0.	AVI 0	EL								<u>%</u>	<u>S</u> 37	AN • '	<u> </u>							% SILT OR CLAY 50.7 11.6									
JISI 102-																																						
			Sa	mp	le	N	0.		E	lev	, (or	Ī)eį	Рt	 :h	Н	at	: 1	٨%	:		LL	,	Τ	PI	L	T	F) I			C	<u>-</u>		Cı	u	
IN HE		0			1-3					28	3,	_	2	22	,						1	15	6.	9		34	. 1	7	72	2.8	3	1		75		17.	6	-
RI R																			==	_	<u> </u>																	1
SOU		00	u –														LF	4S	SI	F	IC	AT	10	MC			· · · · · ·			 -								
MIS - T		0	П																																			
RS, TREE																																						
ORPS OF ENGINEERS, MISSOURI RIVER 20 SOUTH 18th STREET - OMAHA, NE		D-		rks									T	Pr	_	ie) C 4	-	<u></u>	ΙΔ!	SK	Ά	FI	_00	מנ	CC	TM	RO	IL								1	
ENG H 18		r:e	-ma	1 K S	→•								\parallel								L	ab.) h	٠o.	8	39			_									
S OF													Ш								UL.	. I	OIS	STF	RIC	T		•) .	~ !	5	2-	01					
9. Q		Boring No. 90-143 Date 5-2-91																																				

Figure 15

1	CLASSIFICATION	TEST REQUEST					
PROJECT: 5 fa	KA Flood CONTION Re 3, Fast CREEK	MRD LAB. NO.: 839					
ACCOMPANYING	TEST: P. R., CON.	request no.:CFNCS-IA-91-45-FD-GH					
CONTAINER - TYPE: 3" TUBE NO.:							
SAMPLE IDENTIF	SAMPLE IDENTIFICATION: 90-143 W-3 200-22.0'						
SAMPLE IDENTIF	FICATION:						
Structure: Consistency:		() Hed () Stiff () Hard					
PL Thread:	Shake Test () None	ill () Gloss () H. Gloss () () Slow () Fast () Rapid ()					
	n-light brown, & gray	Odor: NONE, ORGANIC Cementation: Highly Colloreous					
Disturbance: Est. Max. Par Remarks:	ticle Size:	Date Core Opened: 3-25-9/ Sketch: (Core description and specimen location)					

Technician _____

After Test Type of Specimen UNDISTURBED Before Test ٧f 18.9 21.5 Water Content, vo in. Diam. T/sq ft Void Ratio, eo 0.45 0.63 Overburden Pressure, Po \$ T/sq ft Saturation, So 100 91 Preconsol. Pressure, Pc 101.8 lb/rt³ Dry Density, 7_d Compression Index, Cc x 10 cm/sec Classification Clayey sand, SC CHASKA: IA-91-45-ED-GH 2.66 Project 50 18 839 MRD LAB NO. Remarks Dark gray. Too soft for W-4 Sample No. 91-144 M Boring No. torvane. Depth 03-28-91 14.5'-17.2 Date El CONSOLIDATION TEST REPORT

Figure 16

FIGURE 18

Consolidation (Test Data

Project CHASKA; IA-91-45-ED-GH

Boring No. Sample No. 91-144 M

W-4

Depth/Elev 14.5'-17.2' MRD Lab No. 839

Gs = 2.66eo = 0.6310.42eo = 0.265

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
21.5	382.5	101.8	0.631		90.7
18.9	382.5	103.3	0.607	0.10	82.8
18.9	382.5	104.3	0.592	0.25	85.0
18.9	382.5	105.7	0.570	0.50	88.2
18.9	382.5	108.4	0.531	1.00	94.7
18.9	382.5	112.0	0.482	2.00	100.0
18.9	382.5	116.1	0.429	4.00	100.0
18.9	382.5	120.6	0.377	8.00	100.0
18.9	382.5	120.0	0.383	2.00	100.0
18.9	382.5	118.1	0.406	0.50	100.0
18.9	382.5	114.6	0.449	0.10	100.0

Axial Strain (%)	Void Ratio
1	. 0.615
2	0.599
3	0.582
4	0.566
5	0.550
6	0.533
7	0.517
8	0.501
9	0.484
10	0.468
11	0.452
12	0.436
13	0.419
14	0.403
15	0.387
16	0.370
17	0.354
18	0.338

FIGURE D-205

6 4 SHEAR STRESS, r. T/SQ 2 R-2 0 12 4 6 8 10 2 0 12.00 HORMAL STRESS, #, T/SQ FT 3 (X) 2 (*) 1 (+) SPECIMEN NO. 20.9 19.4 20.4 WATER CONTENT, S 9.00 107.6 ORY DENSITY LB.' CU FT 108.8 108.7 T.'80 FT 100 98 100 SATURATION, % .53 .53 .54 VOID RATIO 19.3 6.00 19 19.5 WATER CONTENT. S 109.6 109.2 111 DRY DENSITY 74, LB/CU FT 100 100 100 SATURATION, 3 .52 . 52 .5 VOID RATIO 3.00 FINAL BACK PRESSURE, T/SQ FT 4.103 4,103 4.103 .5 1 MINOR PRINCIPAL STRESS, T/SQ FT 8.079 6.475 3.963 MAXIMUM DEVIATOR STRESS, T'SQ FT 1504 1512 1519 0.00 TIME TO (#, - ") 20 10 STRESS. T/SO FT 6.475 8.079 3.963 1.38 1.37 1.37 INITIAL DIAMETER, IN. AXIAL STRAIN, 4, 5 2.96 2.97 3.01 STRAIN INITIAL HEIGHT, IN. TEST CONTROLLED-1.0 1.0 DESCRIPTION OF SPECIMENS Clayey sand, SC B-Value RABAR UNDISTURBED TYPE OF TEST c, 2.66 TYPE OF SPECIMEN 32 18 LL 50 CHASKA: CENCS-IA-91-45-ED-6H PROJECT Too soft for Dark gray. REMARKS: Torvane. SAMPLE NO. 91-144M BORING NO 14.5'-17.2' DEPTH FLEV DATE 03-28-91 839 LABORATORY TRIAXIAL COMPRESSION TEST REPORT (EM 1110-2-1906) TRANSLUCENT

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS DESOLETE

FIGURE D-206

FIGURE

Table $_{10}$ - Triaxial $\overline{\mathtt{R}}$ Test Results

Project Boring Number Sample Number : 91-144M

: W-4

Depth : 14.5'-17.2'

Confining Pressure : .5 TSF

					Dane /:	Marma 1	Choor
		Deviator	Induced	Principal	Pore /	Normal	Shear Stress
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	
(min)	(୫)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
					0 160	0 525	0.026
15	0.07	0.060	-0.010	1.118	-0.169	0.525	0.020
30	0.27	0.271	0.008	1.552	0.031	0.559	
45	0.43	0.888	0.058	3.011	0.066	0.662	0.383
60	0.60	1.005	0.116	3.615	0.116	0.633	0.434
90	0.82	1.093	0.128	3.938	0.118	0.643	0.472
120	0.99	1.172	0.130	4.168	0.111	0.660	0.506
150	1.20	1.241	0.130	4.354	0.105	0.677	0.536
180	1.54	1.371	0.085	4.303	0.062	0.754	0.592
210	1.98	1.488	0.073	4.483	0.049	0.795	0.642
240	2.36	1.606	0.039	4.482	0.025	0.859	0.693
300	2.74	1.704	0.036	4.672	0.022	0.886	0.736
360	3.08	1.821	-0.001	4.635	0.000	0.952	0.786
420	3.47	1.918	-0.044	4.525	-0.022	1.019	0.828
480	4.21	2.101	-0.095	4.529	-0.045	1.115	0.907
540	4.98	2.279	-0.153	4.493	-0.066	1.217	0.984
600	5.71	2.430	-0.215	4.399	-0.088	1.317	1.049
720	6.50	2.567	-0.285	4.272	-0.110	1.421	1.108
		2.721	-0.339	4.244	-0.124	1.513	1.174
840	7.25		-0.408	4.134	-0.143	1.613	1.229
960	7.97	2.847		4.028	-0.168	1.788	1.336
1080	9.51	3.095	-0.522		-0.198	1.999	1.450
1200	11.02	3.359	-0.667	3.878		2.161	1.549
1320	12.52	3.589	-0.772	3.822	-0.215		1.652
1440	14.08	3.829	-0.897	3.741	-0.234	2.345	
1512	15.00	3.963	-0.956	3.723	-0.241	2.437	1.711

Table 11 - Triaxial \overline{R} Test Results

Project Boring Number Sample Number : 91-144M : W-4

Depth : 14.5'-Confining Pressure : 1 TSF : 14.5'-17.2'

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
		(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(min)	(%)	(151)	(151)	RACIO	A	(151)	(151)
15	0.07	0.788	0.105	1.881	0.134	1.090	0.340
30	0.26	1.243	0.226	2.605	0.182	1.082	0.536
45	0.43	1.458	0.270	2.997	0.186	1.091	0.629
60	0.60	1.612	0.316	3.358	0.197	1.083	0.696
90	0.81	1.745	0.285	3.441	0.164	1.147	0.753
120	0.98	1.879	0.307	3.712	0.164	1.158	0.811
150	1.20	1.991	0.276	3.751	0.139	1.217	0.859
180	1.53	2.178	0.215	3.775	0.099	1.324	0.940
210	1.96	2.379	0.202	3.981	0.085	1.387	1.027
240	2.35	2.561	0.128	3.936	0.050	1.506	1.105
300	2.73	2.722	0.113	4.068	0.042	1.561	1.175
360	3.06	2.883	0.086	4.155	0.030	1.628	1.245
420	3.45	3.022	0.003	4.031	0.001	1.745	1.304
480	4.19	3.298	-0.064	4.100	-0.019	1.880	1.423
540	4.96	3.586	-0.172	4.059	-0.048	2.060	1.548
600	5.67	3.853	-0.282	4.006	-0.073	2.236	1.663
720	6.46	4.112	-0.376	3.989	-0.091	2.394	1.775
840	7.21	4.368	-0.453	4.007	-0.103	2.534	1.885
960	7.92	4.584	-0.591	3.882	-0.128	2.726	1.979
1080	9.45	5.035	-0.770	3.844	-0.153	3.016	2.173
1200	10.96	5.468	-0.946	3.811	-0.172	3.300	2.360
1320	12.45	5.851	-1.107	3.777	-0.189	3.556	2.525
1440	14.00	6.246	-1.323	3.689	-0.211	3.869	2.696
1519	15.00	6.475	-1.424	3.671	-0.220	4.027	2.794

Table 12 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-91-45-ED-GH : 91-144M

Project Boring Number Sample Number : W-4

: 14.5'-17.2'

Depth : 14.5' Confining Pressure : 2 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
()	(•)	(/	, ,				
15	0.07	1.031	0.187	1.568	0.182	2.068	0.445
30	0.27	2.040	0.449	2.315	0.221	2.056	0.880
45	0.44	2.486	0.632	2.818	0.255	1.984	1.073
60	0.61	2.733	0.742	3.173	0.272	1.935	1.179
90	0.83	2.941	0.838	3.531	0.286	1.890	1.269
120	0.99	3.078	0.838	3.649	0.273	1.924	1.328
150	1.21	3.212	0.872	3.849	0.272	1.923	1.386
180	1.55	3.430	0.891	4.093	0.260	1.958	1.480
210	1.99	3.624	0.824	4.082	0.228	2.073	1.564
240	2.38	3.801	0.809	4.191	0.213	2.132	1.640
300	2.76	3.976	0.787	4.277	0.198	2.197	1.716
360	3.10	4.134	0.732	4.260	0.178	2.292	1.784
420	3.49	4.306	0.699	4.311	0.163	2.367	1.859
480	4.24	4.596	0.607	4.299	0.133	2.531	1.984
540	5.02	4.930	0.526	4.345	0.107	2.695	2.128
600	5.75	5.227	0.406	4.280	0.078	2.888	2.256
720	6.55	5.514	0.286	4.217	0.052	3.079	2.380
840	7.30	5.765	0.170	4.150	0.030	3.257	2.488
960	8.03	6.046	0.065	4.125	0.011	3.432	2.610
1080	9.58	6.552	-0.120	4.091	-0.018	3.742	2.828
1200	11.11	7.023	-0.324	4.022	-0.046	4.063	3.031
1320	12.61	7.443	-0.535	3.937	-0.071	4.378	3.213
1440	14.19	7.853	-0.680	3.930	-0.086	4.624	3.390
1503	15.00	8.079	-0.781	3.906	-0.096	4.781	3.487

FIGURE

. ,	CLASSI	FICATION TEST REQU	ŒS <u>T</u>
PROJECT: 5 far ACCOMPANYING	KA Flood Col 9c 3, Fast C 1est: Q, R, CC	<i>17 101</i> P <i>ECK</i> MR DN: RE	ud lab. no.: 839 Equest no.: <i>CENCS-IA-91-4</i>
	PE: 5'TUBE	•) .:
SAMPLE IDENTI	pication: 91 - 144	W W-4 1	4.5-17.2
SAMPLE IDENTIF	FICATION:		
Structure: Consistency:	Undisturbed	(Soft () Ned	I () Stiff () Hard Sl. Sens. () Sensitive
PL Thread:		(-Y Dull ()	High () Gloss () H. Gloss () () Fast () Rapid ()
Torvane: N/A		Odor: M	one
color: Dark G	ray	Cementat	ion: Mone
Disturbance: \		Date Cor	re Opened: 3/20/91
Est. Max. Pari	cicle Size:	Sketch:	(Core description and specimen location)

Remarks:

Sand		1eancley	clayey sand	1
save	R	Q	Conso (TOP
	22			1

Technician Myke Wolkerma.

Type of Specimen UNDISTURBED After Test Before Test 0.0 4.4 in. 0.0 Water Content, Vo in. Ht Diam. 0.69 0.74 er Void Ratio, e T/sq ft Overburden Pressure, Po 0 T/sq ft | Saturation, So Preconsol. Pressure, pc 95.6 lb/m³ Dry Density, 7_d Compression Index, Cc x 10 cm/sec k20 at e = Sandy, SP Classification CHASKA; CENCS-91-45-ED-6H 2.66 Project PL 839 MRD LAB NO. Area Remarks Brown. The sand was Sample No. SN-1 91-148A placed inside the consolidometer Boring No. Depth 04-29-91 8'-12' ring in a state dense as possible CONSOLIDATION TEST REPORT

FIGURE 35

LEGEND	PROJECT	CHASKA: CENCS-91-45-ED-6H
+ = 5 TSF Dry		
* = 8 TSF Dry	BORING NO.	91-14BA
	SAMPLE NO.	SN-1
	DEPTH/ELEV	815.
	MRD LAB NO.	839
	<u> </u>	

Consolidation Test Data

Project CHASKA; CENCS-91-45-ED-GH

Boring No. 91-148A Sample No. SN-1 Depth/Elev 8'-12' MRD Lab No. 839

> Gs = 2.66 eo = 0.736 0.42eo = 0.309

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
0.0	388.4	95.6	0.736		0.0
0.0	388.4	95.9	0.731	0.10	0.0
0.0	388.4	96.1	0.728	0.25	0.0
0.0	388.4	96.1	0.728	0.10	0.0
0.0	388.4	96.1	0.728	0.25	0.0
0.0	388.4	96.3	0.724	0.50	0.0
0.0	388.4	96.6	0.719	1.00	0.0
0.0	388.4	96.6	0.719	0.50	0.0
0.0	388.4	96.5	0.719	0.25	0.0
0.0	388.4	96.5	0.719	0.50	0.0
0.0	388.4	96.6	0.719	1.00	0.0
0.0	388.4	97.0	0.712	2.00	0.0
0.0	388.4	97.6	0.700	5.00	0.0
0.0	388.4	98.2	0.690	8.00	0.0
0.0	388.4	98.2	0.691	5.00	0.0
0.0	388.4	98.1	0.692	2.00	0.0
0.0	388.4	98.0	0.693	0.50	0.0
0.0	388.4	98.0	0.694	0.10	0.0

Axial Strain (%)	Void Ratio
1 .	0.719
2	0.701
- 3	0.684
4	0.667
5	0.649

Type of Specimen REMOLDED	Before	Test		After Test
Diam 4.4 in. Ht 1	n. Water Content, Wo	0.1	\$ vr	0.1 \$
Overburden Pressure, po T/sq	rt Void Ratio, e	0.80	ef	0.71
Preconsol. Pressure, Pc T/sq	ft Saturation, So	0	s s	1 \$
Compression Index, Cc	Dry Density, 7 _d	92.4 16/	n ³	
Classification Sandy, SP	k ₂₀ at e _o =	× 10 cm/	sec	
ц G _s 2.66	Project	CHASKA; CEN	CS-IA-9	31-45-ED-GH
PL D ₁₀				
Remarks Brown. The sand was	Area	MRD LAB NO.	83	39
placed in the consolidometer ri	Boring No.	91-148A Sa	mple No.	SN-1
in a state as loose as possibl	Depth	8'-12' De	ite	04-11-91
In a state as love as jossibi		IDATION 1	rest	REPORT

Pressure, p. T/sq ft

REMOLDED	Before	Test		After Test
Ht. 1 1	. Water Content, Vo	0.1	i v _r	0.1 \$
- /		0.80	et	0.71
		0	s s	1 \$
	Dry Density, 7 _d	92.416/11	.3	
	k ₂₀ at e ₀ =	x 10 cm/s	ec	
G _s 2.66	Project	CHASKA; CEN	S-IA-	-91-45-ED-GH
The sand was	Ares	MRD LAB NO.		B39
e consoliometer	Boring No.	91-148A Sem	ple No	. SN-1
	Depth El	8'-12' Dat	e	04-11-91
	CONSOL	IDATION T	EST	REPORT
	Ht 1 11 , Po T/sq 1 , Pc T/sq 1 Cc and G 2.66	## 1 in. Water Content, wo Po	## 1 in. Water Content, vo 0.1 5 Po	Ht

LEGEND	PROJECT	CHASKA; CENCS-IA-91-45-ED-GH
+ = .5 TSF Dry * = 1 TSF Dry	BORING NO.	91-148A SN-1
X = .5 TSF Dry Rebound - = .25 TSF Dry Rebound	DEPTH/ELEV MRD LAB NO.	8'-12' 839

BORING NO. 91-148A

SAMPLE NO. SN-1

DEPTH/ELEV 8'-12'

MRD LAB NO. 839

Project CHASKA; CENCS-IA-91-45-ED-GH

Boring No. 91-148A Sample No. SN-1 Depth/Elev 8'-12' MRD Lab No. 839

> Gs = 2.66 eo = 0.797 0.42eo = 0.335

Water Content (%)	Dry Weight (gms)	Dry Density (PCF)	Void Ratio	Pressure (TSF)	Saturation (%)
0.1	375.2	92.4	0.797		0.5
0.1	375.2	94.8	0.752	0.10	0.5
0.1	375.2	94.9	0.749	0.25	0.5
0.1	375.2	94.9	0.749	0.10	0.5
0.1	375.2	94.9	0.749	0.25	0.5
0.1	375.2	95.1	0.745	0.50	0.5
0.1	375.2	95.5	0.738	1.00	0.5
0.1	375.2	95.5	0.738	0.50	0.5
0.1	375.2	95.5	0.738	0.25	0.5
0.1	375.2	95.5	0.738	0.50	0.5
0.1	375.2	95.5	0.738	1.00	0.5
0.1	375.2	96.0	0.728	2.00	0.5
0.1	375.2	96.8	0.715	5.00	0.5
0.1	375.2	97.4	0.705	8.00	0.5
0.1	375.2	97.3	0.705	5.00	0.5
0.1	375.2	97.3	0.706	2.00	0.5
0.1	375.2	97.2	0.708	0.50	0.5
0.1	375.2	97.1	0.709	0.10	0.5

Axial Strain (%) Void Ratio 0.779 1 2 0.761 0.743 3 0.725 4 0.707 5 6 0.689 7 0.671 0.653

FIGURE 46

FIGURE D-233

LEGEND
- .5 TSF
- .1 TSF
- .2 TSF

PROJECT CHASKA: CENCS-IA-92-97-ED-GH

BORING NO.

92-169 MU

SAMPLE NO. W

M-1

DEPTH/ELEV

12.5'-14.5'

MAD LAB NO.

1535

Table 1 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-169 MU

Project Boring Number Sample Number

: W-1

: 12.5'-14.5' Depth

Confining Pressure : .5 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator		Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
				2 400	0.000	0.400	0 000
15	0.34	0.190	0.055	1.429	0.292	0.492	0.082
30	0.34	0.249	0.065	1.573	0.260	0.497	0.108
45	0.68	0.296	0.070	1.689	0.236	0.503	0.128
60	0.68	0.348	0.068	1.805	0.195	0.518	0.150
90	1.02	0.387	0.066	1.890	0.170	0.530	0.167
120	1.36	0.420	0.060	1.953	0.143	0.544	0.181
150	1.36	0.456	0.058	2.030	0.127	0.555	0.197
180	1.70	0.523	0.042	2.143	0.082	0.587	0.226
210	2.04	0.581	0.028	2.231	0.049	0.616	0.251
240	2.38	0.633	0.014	2.302	0.022	0.643	0.273
300	2.72	0.683	-0.002	2.360	-0.003	0.671	0.295
360	3.40	0.719	-0.018	2.388	-0.025	0.696	0.310
420	3.75	0.760	-0.035	2.419	-0.046	0.723	0.328
480	4.43	0.840	-0.061	2.497	-0.072	0.769	0.363
540	5.11	0.908	-0.089	2.541	-0.098	0.814	0.392
600	5.79	0.961	-0.117	2.557	-0.122	0.855	0.415
720	6.81	1.000	-0.143	2.554	-0.143	0.891	0.431
840	7.49	1.044	-0.168	2.563	-0.160	0.926	0.451
960	8.85	1.072	-0.205	2.521	-0.191	0.971	0.463
1080	10.55	1.020	-0.223	2.411	-0.218	0.976	0.440
1200	11.92	0.977	-0.215	2.367	-0.219	0.957	0.421
1320	13.62	0.875	-0.209	2.234	-0.238	0.926	0.378
1417	15.00	0.786	-0.174	2.165	-0.221	0.869	0.339
1417	15.00	0.786	-0.174	2.165	-0.221	0.869	0.339

Table 2 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH Project Boring Number Sample Number

: 92-169 MU

: W-1

: 12.5'-14.5' Depth

Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
					0 226	1 040	0.137
15	0.34	0.318	0.037	1.330	0.116	1.042	
30	0.34	0.397	0.042	1.414	0.106	1.056	0.171
45	0.68	0.529	0.094	1.584	0.177	1.037	0.228
60	0.68	0.925	0.269	2.265	0.291	0.960	0.399
90	1.03	1.090	0.397	2.806	0.365	0.873	0.470
120	1.37	1.190	0.459	3.197	0.386	0.836	0.513
150	1.37	1.272	0.503	3.561	0.396	0.812	0.549
180	1.71	1.400	0.528	3.965	0.377	0.819	0.604
210	2.05	1.517	0.537	4.278	0.354	0.839	0.655
240	2.40	1.615	0.536	4.483	0.333	0.864	0.697
300	2.74	1.716	0.528	4.634	0.308	0.897	0.741
360	3.42	1.797	0.516	4.710	0.287	0.929	0.776
420	3.77	1.887	0.496	4.745	0.263	0.971	0.815
480	4.45	2.046	0.463	4.811	0.227	1.044	0.883
540	5.14	2.198	0.415	4.756	0.189	1.129	0.949
600	5.82	2.301	0.364	4.620	0.159	1.206	0.993
720	6.85	2.413	0.323	4.562	0.134	1.274	1.041
840	7.53	2.535	0.282	4.528	0.112	1.345	1.094
960	8.90	2.731	0.193	4.384	0.071	1.483	1.179
	10.62	2.887	0.096	4.196	0.034	1.619	1.246
1080		3.029	0.030	4.121	0.010	1.720	1.307
1200	11.99	3.119	-0.062	3.938	-0.019	1.834	1.346
1320	13.70		-0.094	3.911	-0.029	1.882	1.374
1411	15.00	3.183		3.911	-0.029	1.882	1.374
1411	15.00	3.183	-0.094	3.911	-0.029	1.002	2.07.

Table 3 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

Project Boring Number Sample Number : 92-169 MU

: W-1

: 12.5'-14.5' Depth : 12.5'-Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.34	0.003	0.082	1.001	30.841	1.919	0.001
30	0.34	0.434	0.106	1.229	0.244	2.001	0.187
45	0.69	0.787	0.277	1.457	0.353	1.918	0.340
60	0.69	1.250	0.519	1.844	0.416	1.791	0.540
90	1.03	1.517	0.732	2.196	0.483	1.644	0.655
120	1.38	1.681	0.860	2.475	0.512	1.556	0.726
150	1.38	1.796	0.957	2.722	0.533	1.488	0.775
180	1.72	1.973	1.047	3.070	0.531	1.442	0.852
210	2.07	2.091	1.101	3.326	0.527	1.417	0.903
240	2.41	2.199	1.129	3.525	0.514	1.415	0.949
300	2.75	2.288	1.143	3.670	0.500	1.423	0.987
360	3.44	2.358	1.147	3.765	0.487	1.437	1.018
	3.79	2.431	1.142	3.833	0.470	1.460	1.049
420		2.555	1.125	3.919	0.441	1.508	1.103
480	4.48		1.125	3.932	0.412	1.565	1.148
540	5.16	2.659	1.056	3.880	0.389	1.617	1.174
500	5.85	2.720		3.858	0.379	1.661	1.200
720	6.88	2.779	1.027		0.351	1.706	1.229
840	7.57	2.846	0.999	3.843		1.773	1.246
960	8.95	2.888	0.942	3.729	0.327		
1080	10.67	2.889	0.895	3.615	0.310	1.820	1.247
1200	12.05	2.972	0.886	3.668	0.299	1.850	1.283
1320	13.77	2.992	0.816	3.527	0.273	1.925	1.292
1405	15.00	2.934	0.860	3.575	0.294	1.866	1.266
1405	15.00	2.934	0.860	3.575	0.294	1.866	1.266

CENCS-IA-92-97-ED-GH 90 80 BY WEIGHT 70 CH92169 60 Req. No. Contract PERCENT FINER 20 10 0.0 0.1 0.05 0.01 0.005 1.0 0.5 10.0 5 100 50 200 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % GRAVEL % SAND % COBBLES 12.0 51.8 36.2 0.0 0.0 DIVISION LAB 68102-2586 $c_{\mathbf{u}}$ ΡI PL C^{C} LL Sample No. Elev or Depth Nat W% 2.95 18.2 23 19 12.5'-14.5' S-1 CORPS OF ENGINEERS, MISSOURI RIVER 420 SOUTH 18th STREET - OMAHA, NE CLASSIFICATION SANDY SILT, ML SPECIFIC GRAVITY = 2.69 Project CHASKA FLOOD CONTROL Remarks: Lab No. 1535 Area Date 7/28/92 Boring No. 92-169 MU GRADATION CURVES Figure 2 FIG D-238

U.S. STANDARD SIEVE NUMBERS

U.S. STANDARD SIEVE OPENING IN INCHES

ï

100

1 in. 3/4 in. 1/2 in. 3/8 in. HYDROMETER

#140 #200

CLASSIFICATION TEST REQUEST

PROJECT: Ch	aska.	MRD LAB. NO.;
ACCOMPANYING '	TEST: Q, \overline{R}	REQUEST NO.:
CONTAINER - T	YPE: Tobe	NO.:
SAMPLE IDENTII	FICATION: 92-169 MU	5-1 12.5 - 14.5
SAMPLE IDENTIE	FICATION:	
Structure: Consistency:	() Brittle (4 Plasti Undisturbed (1) So Remolded (1) Inser	ic () oft () Med () Stiff () Hard nsitive (ゴSl. Sens. () Sensitive
PL Thread:	Strength (T Low (Shine (X None ()	Dull () Gloss () H. Gloss () () Slow () Fast () Rapid ()
Torvane: OG Color: grey	TSFZ	Odor: None Cementation: None
Disturbance:		Date Core Opened: July 2,1992
Super saturat	of free surface water	Sketch: (Core description and specimen location)

8"	457	412"_	125"	
pocter of sand-	Q	R	discard	TOP
	19 ½ 		————	

Technician

FIGURE D-239

LEGEND + = .5 TSF * = 1 TSF X = 2 TSF PROJECT CHASKA: CENCS-IA-92-97-ED-GH

BORING NO. 92-171 MU SAMPLE NO. W-1

SAMPLE NO. W-1
DEPTH/ELEV 24'-26'
MRD LAB NO. 1535

Table 4 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH Project

: 92-171 MU

Boring Number Sample Number

: W-1 : 24'-26' Depth Confining Pressure : .5 TSF

_		Deviator	Induced	Principal	Pore /	Normal	Shear Stress
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
						0.465	0 041
15	0.00	0.094	0.058	1.213	0.622	0.465	0.041
30	0.34	0.267	0.166	1.799	0.624	0.400	0.115
45	0.68	0.344	0.229	2.268	0.667	0.356	0.148
60	0.68	0.411	0.264	2.744	0.643	0.338	0.177
90	1.02	0.456	0.282	3.087	0.618	0.331	0.197
120	1.02	0.501	0.291	3.395	0.581	0.333	0.216
150	1.36	0.527	0.300	3.639	0.570	0.331	0.228
180	1.36	0.568	0.299	3.821	0.527	0.342	0.245
210	1.70	0.616	0.297	4.029	0.482	0.355	0.266
240	2.38	0.654	0.293	4.161	0.448	0.369	0.282
300	2.72	0.688	0.284	4.193	0.414	0.386	0.297
360	3.06	0.735	0.274	4.249	0.372	0.408	0.317
420	3.40	0.761	0.260	4.168	0.342	0.428	0.328
480	4.08	0.818	0.235	4.093	0.288	0.468	0.353
540	5.10	0.860	0.210	3.970	0.245	0.503	0.371
600	5.78	0.891	0.186	3.834	0.209	0.535	0.384
		0.920	0.165	3.746	0.180	0.563	0.397
720	6.46			3.610	0.150	0.592	0.405
840	7.48	0.938	0.140		0.110	0.632	0.414
960	9.18	0.959	0.105	3.428			
1080	10.54	1.000	0.069	3.322	0.070	0.679	0.432
1200	12.24	1.025	0.050	3.276	0.049	0.704	0.442
1320	13.94	1.028	0.010	3.098	0.010	0.744	0.444
1395	15.00	1.019	-0.004	3.022	-0.004	0.757	0.440

Table 5 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-171 MU

Project
Boring Number
Sample Number
Depth : W-1 : 24'-26' Confining Pressure : 1 TSF

		Deviator	Induced	Principal			Shear
Time	Strain	Stress	Pore Pressure		Deviator		Stress
(min)	(%)	(TSF)	(TSF)	Ratio	Α	(TSF)	(TSF)
15	0.00	0.404	0.275	1.558	0.681	0.825	0.174
30	0.34	0.649	0.511	2.327	0.788	0.650	0.280
45	0.68	0.784	0.626	3.098	0.800	0.568	0.338
60	0.68	0.882	0.698	3.919	0.791	0.520	0.381
90	1.02	0.951	0.745	4.732	0.784	0.490	0.410
120	1.02	1.026	0.773	5.523	0.755	0.481	0.443
150	1.36	1.079	0.793	6.225	0.736	0.474	0.466
180	1.36	1.140	0.797	6.616	0.700	0.485	0.492
210	1.70	1.235	0.819	7.808	0.664	0.487	0.533
240	2.38	1.307	0.814	8.039	0.624	0.510	0.564
300	2.72	1.359	0.815	8.348	0.600	0.521	0.587
360	3.06	1.420	0.804	8.225	0.567	0.547	0.613
420	3.40	1.462	0.791	7.978	0.541	0.571	0.631
480	4.08	1.535	0.768	7.604	0.500	0.612	0.663
540	5.10	1.576	0.736	6.967	0.467	0.654	0.680
600	5.78	1.612	0.708	6.529	0.440	0.691	0.696
720	6.46	1.642	0.688	6.256	0.419	0.719	0.709
840	7.49	1.662	0.655	5.821	0.395	0.757	0.717
960	9.19	1.671	0.625	5.455	0.375	0.789	0.721
1080	10.55	1.666	0.552	4.716	0.331	0.861	0.719
1200	12.25	1.676	0.575	4.946	0.344	0.840	0.723
1320	13.95	1.655	0.482	4.193	0.292	0.928	0.714
1394	15.00	1.644	0.496	4.262	0.302	0.911	0.709

Table 6 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-171 MU Project

Boring Number Sample Number : W-1 : 24'-26' Depth Confining Pressure : 2 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress		Normal Stress	Shear Stress (TSF)
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	•
15	0.00	0.080	0.072	1.042	0.896	1.948	0.035
30	0.34	0.641	0.355	1.389	0.555	1.804	0.276
45	0.68	1.027	0.629	1.749	0.613	1.625	0.443
60	0.68	1.253	0.827	2.069	0.661	1.483	0.541
90	1.02	1.401	0.950	2.334	0.678	1.397	0.605
120	1.02	1.500	1.015	2.523	0.677	1.356	0.647
150	1.36	1.567	1.079	2.700	0.689	1.309	0.676
180	1.36	1.646	1.107	2.844	0.673	1.301	0.711
210	1.70	1.754	1.153	3.070	0.658	1.281	0.757
240	2.38	1.823	1.174	3.206	0.644	1.277	0.787
300	2.72	1.888	1.181	3.304	0.626	1.286	0.815
360	3.06	1.970	1.173	3.382	0.596	1.315	0.850
420	3.40	2.019	1.128	3.314	0.559	1.372	0.872
480	4.08	2.108	1.145	3.465	0.544	1.377	0.910
540	5.10	2.179	1.094	3.406	0.503	1.446	0.941
600	5.78	2.251	1.074	3.430	0.477	1.483	0.972
720	6.46	2.303	1.055	3.437	0.458	1.515	0.994
840	7.48	2.343	1.027	3.409	0.439	1.553	1.011
960	9.18	2.408	0.995	3.396	0.414	1.601	1.039
1080	10.54	2.439	0.972	3.373	0.399	1.632	1.053
1200	12.24	2.459	0.954	3.351	0.388	1.655	1.061
1320	13.94	2.439	0.948	3.319	0.389	1.656	1.053
1394	15.00	2.426	0.952	3.314	0.393	1.649	1.047

W.O. No. 15351711 Req. No. 92-97-ED-GH

	c c								HES	ES U.S. STANDARD SIEVE NUMBERS										HYDROMETER																					
		100	6 in.		3 in.	2 in.	1-1/2	in.	3/4 in.	,,	1/2 In.	;)	_	4.4			#10			# 20		# 40		€ 60		#140		\$200													
		90	<u>'</u>															<u> </u>						1																	
		80						_	1				1										_																		
	WEIGHT	70		\parallel				-	+				-									١	1											$\prod_{i=1}^{n}$							
No.	ıY WE]	60					-	-			\parallel		+										1																		
		50					-		-		-		+						_					1	1		$\frac{\parallel}{\parallel}$														_
Contract	ш			#					+		-	$\frac{1}{1}$	+								-		1				1							\parallel							_
	PERCE	30		\parallel							$- \parallel$						-						+					1	$\frac{1}{1}$									+	+		_
		20							_		-		+			-							1					I	1									+	$\frac{1}{1}$		_
		10							+				 													+		H				•	_					-		_	
		o i	0	100	LL.	50	1	L	1_	1	.0.0)	5			ΑI								LL	 _IM				.05 S				0.	01	0	0.0				0	 .001
}	% (0.	BLE	S	<u> </u>		%	GF	PA) . (L			F							5A	ND 6	· · ·				-			9	ر د د	5 I I)R	1 (CL	ΑY	5.4	1	
																																								•	1
		Sa	amp.	le	N	ο.		E	Ξ1	ev		יוי		e	pt	h	I	va 1	 	w9	6		LI				Ρl				P	I		 		C	 	T		C	
	•		W	I – 1					2	4.	0.	-;	26	. (0 ,								35	5			1 4	4			2	1				_	36	1		5.	
F	<u>.</u>					_		<u>_</u>			_							AS		7 =	1						-														
ŀ			ΈΥ															AS			10	- A	ΙL	UN																	
	SF	PEC	:IF]	C	GF	'AF	VΙ	ΤY	=	2	? . 6	52																													
	Re	mai	rks	:										Pr	0	ј е	ct	: (Н	ΔS	SK,	Δ	FL	00) D (CC	IN.	TR	OL									==			
-														۸r	e	3					La	эb	Ν	ο.	15	53	35													¥	
					_									Во	_	_		No	-	_					IU				[Оа	te	8	-5	j — !	92	2					

Figure 3

Figure 5

Figure 6

Tue Jul 14 07:09:48 1992

Page: 1

CONSOLIDATION TEST DATA

Project : CHASKA FLOOD CONTROL

Location:

Project No. : 1535

Test No. :

Boring No. : 92-171MU

Test Date : 7/1/92

Tested by : MJW

Sample No. : W-2

Sample Type : UNDISTURB

Depth : 301-321

Checked by :

Soil Description :

Remarks :

	APPLIED FINAL		VOID	STRAIN	FITT	ING	COEFFIC	IENT OF CONSOL	IDATION
	PRESSURE	DISPLACEMENT	RATIO	AT END	TIME (min)		(in ² /s)	
	(t/ft^2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.10	0.132	0.498	13.23	3.4	0.0	2.10E-004	0.00E+000	0.00E+000
2)	0.25	0.135	0.494	13.47	13.5	0.0	4.58E-005	0.00E+000	0.00E+000
3)	0.50	0.141	0.483	14.10	10.7	0.0	5.71E-005	0.00E+000	0.00E+000
4)	1.00	0.153	0.463	15.28	10.4	0.0	5.77E-005	0.00E+000	0.00E+000
5)	2.00	0.175	0.424	17.52	7.9	0.0	7.27E-005	0.00E+000	0.00E+000
6)	4.00	0.211	0.363	21.07	7.8	0.0	6.82E-005	0.00E+000	0.00E+000
7)	8.00	0.254	0.288	25.39	7.3	0.0	6.62E-005	0.00E+000	0.00E+000
8)	2.00	0.250	0.294	25.04	3.8	0.0	1.20E-004	0.00E+000	0.00E+000
9)	0.50	0.241	0.311	24.08	17.4	0.0	2.68E-005	0.00E+000	0.00E+000
10)	0.10	0.228	0.333	22.79	53.6	0.0	8.98E-006	0.00E+000	0.00E+000

FIGURE D-253

LEGEND PROJECT CHASKA: CENCS-IA-92-97-ED-GH

+ = 1 TSF

* = 2 TSF BORING NO. 92-171 MU

SAMPLE NO. W-2

DEPTH/ELEV 30'-32'

MRD LAB NO. 1535

Table 7 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

: 92-171 MU

Project Boring Number Sample Number : W-2 Depth : 30'-32' Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
						, ,	,
15	0.34	0.590	0.007	1.594	0.013	1.139	0.255
30	0.34	0.581	0.006	1.585	0.010	1.138	0.251
45	0.68	0.673	0.049	1.708	0.073	1.118	0.290
60	0.68	0.968	0.189	2.194	0.196	1.051	0.418
90	1.01	1.124	0.284	2.569	0.253	0.994	0.485
120	1.01	1.238	0.344	2.887	0.279	0.962	0.534
150	1.35	1.300	0.387	3.120	0.298	0.935	0.561
180	1.69	1.419	0.445	3.556	0.314	0.906	0.612
210	2.03	1.497	0.472	3.834	0.315	0.899	0.646
240	2.37	1.567	0.487	4.053	0.311	0.901	0.676
300	2.70	1.632	0.498	4.247	0.305	0.906	0.704
360	3.04	1.683	0.504	4.393	0.300	0.913	0.726
420	3.38	1.717	0.505	4.471	0.295	0.920	0.741
480	4.39	1.778	0.503	4.575	0.283	0.937	0.767
540	5.07	1.839	0.498	4.660	0.271	0.957	0.794
600	5.75	1.882	0.486	4.662	0.259	0.980	0.812
20	6.42	1.920	0.470	4.624	0.245	1.005	0.829
840	7.44	1.935	0.461	4.588	0.239	1.018	0.835
960	8.79	1.974	0.438	4.516	0.223	1.051	0.852
1080	10.48	1.973	0.419	4.396	0.213	1.069	0.852
1200	11.83	1.989	0.400	4.316	0.202	1.092	0.858
1320	13.52	1.972	0.372	4.138	0.189	1.116	0.851
1424	15.00	1.944	0.356	4.021	0.184	1.125	0.839

Table 8 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-171 MU : W-2 Project

Boring Number

Sample Number Depth : 30'-32' Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15 30	0.34 0.34	0.047 0.718	0.001 0.006	1.023 1.360	0.016 0.009	2.011	0.020
45	0.68	0.807	0.014	1.406	0.017	2.172 2.186	0.310 0.348
60	0.68	0.807	0.020	1.408	0.025	2.180	0.348
90	1.03	0.932	0.083	1.486	0.089	2.148	0.402
120	1.03	1.252	0.246	1.714	0.197	2.064	0.540
150	1.37	1.608	0.476	2.055	0.297	1.922	0.694
180	1.71	1.939	0.743	2.542	0.384	1.737	0.837
210	2.05	2.125	0.878	2.894	0.414	1.648	0.917
240	2.40	2.238	0.959	3.150	0.429	1.595	0.966
300	2.74	2.338	1.015	3.374	0.435	1.564	1.009
360	3.08	2.415	1.052	3.547	0.436	1.546	1.042
420	3.42	2.469	1.076	3.673	0.437	1.535	1.065
480	4.45	2.559	1.106	3.862	0.433	1.527	1.104
540	5.13	2.624	1.122	3.988	0.428	1.528	1.133
600	5.82	2.689	1.125	4.074	0.419	1.541	1.160
720	6.50	2.731	1.119	4.099	0.410	1.557	1.179
840	7.53	2.754	1.114	4.107	0.405	1.568	1.189
960	8.90	2.807	1.097	4.110	0.391	1.598	1.212
1080	10.61	2.831	1.076	4.065	0.381	1.625	1.222
L200	11.98	2.842	1.058	4.016	0.373	1.646	1.227
1320	13.69	2.813	1.027	3.892	0.366	1.669	1.214
L411	15.00	2.787	1.011	3.818	0.364	1.679	1.203

	FAILURE SKETCHES	2.00	0				
	/	50					
	COMPRESSIVE STRESS, 1/SQ FT	.00)				
		.50					
		.00	0 4	8	12	16	20
L	X CONTROLLED STRAIN		,	AXIAL STRAIN		10	20
ľ	EST NO.						
ľ	YPE OF SPECIMEN UNDISTURBED						
	WATER CONTENT	w.	27.9 %		%	%	%
I₹	VOID RATIO	e.	0.74				
N I	SATURATION	S.	98 %		%	%	%
	DRY DENSITY, LB/CU FT	Ya	93.4				
TI	ME TO FAILURE, MIN	t,	32.5				
UIST	NCONFINED COMPRESSIVE RENGTH, T/SQ FT	qu	1.28				
Ur	IDRAINED SHEAR STRENGTH, T/SQ FT	Su	0.64				
SENSITIVITY RATIO							
ž	ITIAL SPECIMEN DIAMETER, IN	D _o	1.38				
7	ITIAL SPECIMEN HEIGHT, IN.	H.	3.01				
CLASSIFICATION Sandy Clay, CL							
ιι	42 PL 14			28	G, 2	.6	
RE	MARKS Dark gray. Torvane=.45 TSF	PROJE	CHASK	A: CENCS-	IA-92-97	7-ED-GH	
		AREA	MAD I	AB NO. :	1535		
			IG NO. MU 92		SAMPLE NO). W-2	
			30'-3		DATE	7-1-92	
7 8 4 6	1 508 M	UNCONFIR	NED COMPR	ESSION TE	ST REPORT		

1 JUN 45 3659 (EM 1110-2-1906)

(TRANSLUCENT)

PLATE XI-2 Figure 9 FIG D-257

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

ch92171

. No

¥.0.

CLASSIFICATION TEST REQUEST

PROJECT: Cheske ACCOMPANYING TEST: UNC, R, CON CONTAINER - TYPE: Tube SAMPLE IDENTIFICATION: 92-171 MU U-2	MRD LAB. NO.: REQUEST NO.: NO.: 36'-32'
PL Thread: Strength () Low () Med Shine () None () Dull	Med () Stiff () Hard () Sl. Sens. () Sensitive
Torvane: 45TSF Bottom .75TSF top Odor Color: dark gray Disturbance: Cracks at top 5" Date	entation: Not reactive to HC core Opened: 7/1/92 ch: (Core description and specimen location)

6"	2"	43/4"	714"	
Save	Correl	Suc	Save	TOP
		—20" —		->

Technician MJu

Figure 11

Figure 13

Figure 15

Tue Jul 14 06:47:51 1992

Page: 1

CONSOLIDATION TEST DATA

Project : CHASKA FLOOD CONTROL

Location:

Project No. : 1535

Test No. :

Boring No. : 92-171MU

Test Date : 7/1/92

Tested by : MJW

Sample No. : W-3

Sample Type : UNDISTURB

Checked by :

Depth : 341-361

Soil Description : Remarks :

	APPLIED	FINAL	VOID	STRAIN	FITT	ING	COEFFIC	IENT OF CONSOL	IDATION
	PRESSURE	DISPLACEMENT	RATIO	AT END	TIME (min)		(in ⁻ 2/s)	
	(t/ft^2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.10	0.005	0.622	0.53	6.3	0.0	1.29E-004	0.00E+000	0.00E+000
2)	0.25	0.007	0.619	0.69	18.7	0.0	4.33E-005	0.00E+000	0.00E+000
3)	0.50	0.009	0.615	0.92	34.9	0.0	2.32E-005	0.00E+000	0.00E+000
4)	1.00	0.012	0.611	1.21	17.4	0.0	4.63E-005	0.00E+000	0.00E+000
5)	2.00	0.016	0.604	1.60	25.7	0.0	3.10E-005	0.00E+000	0.00E+000
6)	4.00	0.021	0.596	2.13	26.2	0.0	3.02E-005	0.00E+000	0.00E+000
7)	8.00	0.029	0.584	2.85	23.4	0.0	3.33E-005	0.00E+000	0.00E+000
8)	2.00	0.028	0.585	2.77	3.7	0.0	2.07E-004	0.00E+000	0.00E+000
9)	0.50	0.027	0.587	2.67	7.7	0.0	1.01E-004	0.00E+000	0.00E+000
10)	0.10	0.025	0.589	2.52	8.4	0.0	9.23E-005	0.00E+000	0.00E+000

LEGEND

CHASKA: CENCS-IA-92-97-ED-GH PROJECT

BORING NO.

92-171 MU

SAMPLE NO.

DEPTH/ELEV

34'-36'

MAD LAB NO.

1535

FIGURE 9

Table 9 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

: 92-171 MU

Project Boring Number Sample Number : W-3 Depth : 34'-36' Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.34	0.601	-0.025	2.144	-0.041	0.674	0.259
30	0.34	0.883	-0.020	2.697	-0.022	0.739	0.381
45	0.68	1.089	-0.053	2.969	-0.048	0.823	0.470
60	1.02	1.300	-0.122	3.091	-0.093	0.944	0.561
90	1.02	1.521	-0.205	3.157	-0.134	1.082	0.657
120	1.36	1.734	-0.293	3.187	-0.168	1.222	0.749
150	1.70	1.951	-0.366	3.254	-0.187	1.349	0.749
180	2.04	2.429	-0.564	3.284	-0.232	1.665	1.048
210	2.38	2.916	- 0.756	3.322	-0.259	1.978	1.259
240	2.72	3.433	-0.958	3.354	-0.279	2.308	1.482
300	3.06	3.963	-1.178	3.362	-0.297	2.659	1.710
360	3.74	4.484	-1.385	3.378	-0.308	2.995	1.935
420	4.07	5.049	-1.616	3.386	-0.320	3.366	2.179
480	4.75	6.178	-2.091	3.385	-0.338	4.121	2.666
40	5.43	7.272	-2.565	3.373	-0.352	4.865	3.139
600	6.11	8.311	- 3.019	3.362	-0.363	5.577	3.587
720	6.79	9.291	-3.472	3.339	-0.373	6.272	4.010
840	7.47	10.115	9.688	-0.101	0.958	-6.684	4.365
960	8.83	11.242	5.734	-1.148		-2.451	4.852
1080	10.87	11.547	9.688	-0.257	0.839	-6.329	4.984
1200	13.24	11.371	9.688	-0.238	0.852	-6.373	4.908
1288	15.00	11.115	9.688	-0.210	0.872	-6.436	4.797

Table 10 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-92-97-ED-GH : 92-171 MU

Boring Number : 92-171
Sample Number : W-3
Depth : 34'-36
Confining Pressure : 1 TSF : 34'-36'

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.34	1.195	0.386	2.947	0.323	0.910	0.516
30	0.34	1.247	0.459	3.304	0.368	0.850	0.538
45	0.68	1.235	0.489	3.417	0.396	0.817	0.533
60	1.02	1.275	0.469	3.402	0.369	0.847	0.550
90	1.02	1.382	0.428	3.418	0.310	0.914	0.597
120	1.36	1.472	0.395	3.434	0.269	0.969	0.635
150	1.70	1.524	0.387	3.485	0.254	0.990	0.658
180	2.04	1.636	0.344	3.495	0.211	1.061	0.706
210	2.38	1.835	0.269	3.511	0.147	1.185	0.792
240	2.72	2.092	0.184	3.562	0.088	1.334	0.903
300	3.05	2.365	0.074	3.554	0.032	1.512	1.021
360	3.73	2.665	-0.039	3.565	-0.014	1.699	1.150
420	4.07	2.997	-0.162	3.579	-0.054	1.904	1.293
480	4.75	3.679	-0.415	3.600	-0.112	2.326	1.588
540	5.43	4.303	-0.658	3.595	-0.152	2.723	1.857
600	6.11	4.833	-0.860	3.599	-0.177	3.057	2.086
720	6.79	5.364	-1.084	3.574	-0.202	3.412	2.315
840	7.47	5.830	- 1.305	3.530	-0.223	3.748	2.516
960	8.83	6.403	-1.711	3.361	-0.267	4.296	2.764
1080	10.86	5.311	- 1.587	3.053	-0.298	3.902	2.292
1200	13.24	2.346	-0.338	2.753	-0.143	1.919	1.012
1288	15.00	0.993	0.270	2.200	0.648	0.976	0.429

Table 11 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-171 MU

Project
Boring Number
Sample Number
Depth : W-3 : 34'-36' Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15 30 45 60 90 120 150 180 210 240 300 360	0.34 0.68 1.02 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.74	1.600 2.296 2.850 3.352 3.815 4.283 4.734 5.725 6.727 7.741 8.785 9.631	0.361 0.469 0.521 0.486 0.436 0.287 0.277 0.042 -0.181 -0.433 -0.726 -0.898	1.976 2.500 2.926 3.214 3.440 3.501 3.748 3.923 4.085 4.181 4.223 4.323	0.226 0.205 0.183 0.145 0.115 0.068 0.059 0.008 -0.026 -0.055 -0.082 -0.093	2.035 2.099 2.185 2.344 2.508 2.773 2.895 3.375 3.846 4.350 4.901 5.282	0.691 0.991 1.230 1.447 1.646 1.849 2.043 2.471 2.903 3.341 3.792 4.157
420 480 540 500 720 840 960 1080 1200 1287	4.08 4.76 5.44 6.12 6.80 7.48 8.84 10.88 13.26 15.00	10.403 11.809 12.844 13.519 13.316 11.977 7.273 4.811 3.970 3.727	-1.076 -1.415 -1.740 -1.918 -2.117 -1.966 -0.971 -0.104 0.138 0.230	4.382 4.458 4.435 4.450 4.234 4.020 3.448 3.286 3.132 3.105	-0.103 -0.119 -0.135 -0.141 -0.158 -0.164 -0.133 -0.021 0.035 0.063	5.651 6.339 6.920 7.265 7.414 6.931 4.772 3.295 2.845 2.693	4.490 5.097 5.544 5.835 5.747 5.169 3.139 2.076 1.713 1.609

	FAILURE SKETCHES	1.0	0				
					ļ		
					 		
		0.7	5				
	COMPRESSIVE STRESS, 1/5Q FT						
	STRESS	0.5	o				
	SSIVE						
	Jadwo O						
		0.25	5				
		0.2.				•	
			1			-	
	CONTROLLED STRESS	0 00	, #				
	X CONTROLLED STRAIN	0.00	0 2	2 4		6 8	10
_				AXIAL S	TRAIN, %		, = •
TE	ST NO.						
TY	PE OF SPECIMEN UNDISTURBED						
	WATER CONTENT	w.	30.8	%	%	%	ģ
INITIAL	VOID RATIO	e.	0.88				
ž	SATURATION	S.	92	%	96	%	9
			35				
	DRY DENSITY, LB/CU FT	γd	87.3				
	E TO FAILURE, MIN	Yd Er					
JNO	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT		87.3				
TRI	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT	t,	87.3 7.0				
TRI	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO	t,	87.3 7.0				
TRI	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT	t, qu su	87.3 7.0				
JNC STRI JNC SEN VIT	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO IAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN.	qu Su Si	87.3 7.0 0.30				
JNG TRI INC EN VIT	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO IAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN. JUSTIFICATION SILTY Sand, SM	tr qu su Si Do	87.3 7.0 0.30 1.40 3.00			2.52	
JAC STRING	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO IAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN. JOIFICATION SILTY SAND, SM PL N.P. ARKS Light gray-brown. Torvane	qu su Si Do	87.3 7.0 0.30 1.40 3.00	SKA; CENC		2.63	
UNIT ILA:	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO TAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN. JOIFICATION SILTY Sand, SM PL N.P. ARKS Light gray-brown. Torvane TSF. Non-calcareous. Sample	qu su Si Do Ho	87.3 7.0 0.30 1.40 3.00		S-IA-9	12-97-ED-GH	
UNIT ILA	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO TAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN. JOIFICATION SILTY Sand, SM PL N.P. ARKS Light gray-brown. Torvane	qu su Si Do Ho	87.3 7.0 0.30 1.40 3.00	LAB NO.	: 1535	12-97-ED-GH	
UNIT ILA	E TO FAILURE, MIN CONFINED COMPRESSIVE ENGTH, T/SQ FT PRAINED SHEAR STRENGTH, T/SQ FT SITIVITY RATIO TAL SPECIMEN DIAMETER, IN AL SPECIMEN HEIGHT, IN. JOIFICATION SILTY Sand, SM PL N.P. ARKS Light gray-brown. Torvane TSF. Non-calcareous. Sample	Qu Su Si Do Ho PROJEC	87.3 7.0 0.30 1.40 3.00 PI T CHA		: 1535	12-97-ED-GH	

Figure 17 FIG D-272

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1/2 in. 3/8 in. 3/4 in. 2 in. 3 in. Ë. #140 ₽200 20 #60 100 90 80 WEIGHT Contract No. NA 60 В PERCENT FINER
8 8 8 20 10 50 200 100 10.0 5 1.0 0.5 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS COBBLES % GRAVEL % SAND % SILT OR CLAY 0.0 0.0 72.4 20.3 7.3 Sample No. Elev or Depth PL Nat W% LL ΡI C^{C} C_{u} U-3 34'- 36' N.V. N.P. 6.07 20.3 CLASSIFICATION • SILTY SAND SM Remarks: Project CHASKA FLOOD CONTROL Trimmings from consolidation specimen. Lab No. 1535 Area Boring No. 92-171MU Date 7-16-92 GRADATION CURVES

1535

W.O. No.

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB

68102-2586

岁

- OMAHA,

420 SOUTH 18th STREET

CLASSIFICATION TEST REQUEST

PROJECT: (A	_			MRD LAB. NO.:	
ACCOMPANYING	TEST: UNC,	e, con.		REQUEST NO.:	•
CONTAINER - T	YPE: TUBE			NO.:	
SAMPLE IDENTI	FICATION: 92	?-171 MU	V V-3	34-36-	
SAMPLE IDENTI	FICATION:				
Structure: Consistency:	Undisturb	ed 🕢	Soft ()	Med () Stiff (() Sl. Sens. ()) Hard
PL Thread:	Strength Shine ((Y Low None (() Med () Dull (() High ()) Gloss () H. Gl w () Fast () R.	oss ()
Torvane: 15	TS F			none	• , ,
Color: ight 9 Disturbance: v Est. Max. Part Remarks: ots	icle Size:	ndine wa	Date Sketc	tation: No reaction Core Opened: July † h: (Core description specimen location	n and
Remarks: Lots	surface of	sample	1-01		· ,
San	burry set by with se top and b	me clay p	ockets		·
<u> </u>	2"	45"	5	1 55	
5000	(CIN	UNL	R	discord	TOP
		23	′′	~	

Technician _______

FIGURE D-275

LEGEND
+ = .5 TSF

* = 1 TSF

X = 2 TSF

DEPTH/ELEV
MRD LAB NO. 1535

PROJECT CHASKA; CENCS-IA-92-97-ED-GH

CHASKA; CENCS-IA-92-97-ED-GH

DEPTH/ELEV
29'-31'
MRD LAB NO. 1535

Table 12 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-172 MU

Project
Boring Number
Sample Number
Depth : W-1 : 29'-31' Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.066	0.059	1.150	0.896	0.457	0.028
30	0.34	0.113	0.096	1.279	0.858	0.432	0.049
45	0.68	0.150	0.127	1.403	0.843	0.410	0.065
60	0.68	0.190	0.149	1.540	0.786	0.398	0.082
90	1.03	0.220	0.174	1.675	0.793	0.380	0.095
120	1.03	0.248	0.198	1.821	0.799	0.363	0.107
150	1.37	0.276	0.215	1.967	0.778	0.353	0.119
180	1.37	0.302	0.236	2.146	0.782	0.339	0.130
210	1.71	0.350	0.268	2.509	0.765	0.319	0.151
240	2.40	0.390	0.295	2.906	0.757	0.302	0.168
300	2.74	0.425	0.320	3.369	0.754	0.285	0.184
360	3.08	0.464	0.341	3.921	0.737	0.274	0.200
420	3.42	0.489	0.359	4.475	0.735	0.262	0.211
480	3.76	0.514	0.374	5.067	0.728	0.253	0.222
540	4.45	0.557	0.396	6.357	0.711	0.242	0.240
600	5.48	0.591	0.418	8.176	0.707	0.228	0.255
720	6.16	0.626	0.430	9.929	0.687	0.225	0.270
840	6.84	0.654	0.439	11.758	0.672	0.223	0.282
960	7.53	0.677	0.444	13.144	0.657	0.224	0.292
1080	9.24	0.685	0.444	13.121	0.648	0.225	0.295
1200	10.61	0.693	0.449	14.464	0.648	0.222	0.299
1320	12.32	0.687	0.451	14.931	0.657	0.219	0.296
1440	13.69	0.683	0.433	11.255	0.636	0.236	0.295
1531	15.00	0.654	0.432	10.671	0.662	0.230	0.282
1531	15.00	0.654	0.432	10.671	0.662	0.230	0.282

Table 13 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

: 92-172 MU

Project Boring Number Sample Number : W-1 Depth : 29'-31' Confining Pressure : 1 TSF

Deviato Time Strain Stress		Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min) (%) (TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15 0.00 0.303	0.010	1 200	0.060	1 056	0 101
		1.309	0.062	1.056	0.131
30 0.36 0.435	* * * * * *	1.475	0.191	1.025	0.188
45 0.72 0.501		1.571	0.246	1.001	0.216
60 0.72 0.610	0.166	1.732	0.272	0.985	0.263
90 1.08 0.686	0.215	1.874	0.314	0.955	0.296
120 1.08 0.751	. 0.258	2.013	0.344	0.928	0.324
150 1.45 0.810	0.288	2.137	0.356	0.912	0.349
180 1.45 0.875	0.324	2.294	0.371	0.893	0.378
210 1.81 0.965	0.380	2.557	0.394	0.859	0.417
240 2.53 1.036	. 0.433	2.826	0.418	0.823	0.447
300 2.89 1.103	0.477	3.107	0.433	0.796	0.476
360 3.25 1.169	0.523	3.450	0.448	0.766	0.505
420 3.62 1.214	0.551	3.702	0.454	0.750	0.524
480 3.98 1.269	0.580	4.018	0.457	0.734	0.548
540 4.70 1.340	0.628	4.601	0.469	0.704	0.578
600 5.78 1.401	0.682	5.403	0.487	0.665	0.605
720 6.51 1.464		6.202	0.491	0.643	0.632
840 7.23 1.516		7.177	0.498	0.620	0.654
960 7.95 1.546		7.976	0.504	0.605	0.667
1080 9.76 1.590		9.800	0.516	0.575	0.686
1200 11.21 1.630		13.381	0.533	0.536	0.704
1320 13.02 1.652		16.519	0.541	0.515	0.713
1440 14.46 1.664		18.012	0.543	0.510	0.718
1475 15.00 1.653		19.359	0.551	0.501	0.713
1475 15.00 1.653		19.359	0.551	0.501	0.713

Table 14 - Triaxial \overline{R} Test Results

Project Boring Number Sample Number : CHASKA; CENCS-IA-92-97-ED-GH

: 92-172 MU

: W-1 Depth : 29'-31' Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15 30 45 60 90 120 150 180 210	0.00 0.38 0.76 0.76 1.14 1.14 1.51 1.51	0.417 0.534 0.737 0.935 1.080 1.222 1.334 1.445	0.060 0.137 0.251 0.333 0.425 0.501 0.559 0.635 0.717	1.215 1.287 1.421 1.561 1.685 1.815 1.926 2.058	0.144 0.257 0.341 0.356 0.394 0.411 0.419 0.440	2.043 1.995 1.931 1.898 1.842 1.801 1.771	0.180 0.230 0.318 0.403 0.466 0.527 0.576 0.624
240 300 360 420 480 540 00 720 840 960	2.65 3.03 3.41 3.79 4.17 4.92 6.06 6.82 7.57 8.33	1.721 1.842 1.937 2.014 2.090 2.216 2.308 2.388 2.461 2.515	0.796 0.866 0.932 0.996 1.049 1.130 1.216 1.279 1.346 1.391	2.251 2.429 2.624 2.815 3.005 3.198 3.547 3.944 4.311 4.761 5.131	0.447 0.463 0.471 0.482 0.495 0.502 0.510 0.527 0.536 0.547	1.680 1.630 1.590 1.548 1.503 1.468 1.419 1.355 1.312 1.263 1.232	0.693 0.743 0.795 0.836 0.869 0.902 0.957 0.996 1.031 1.062 1.086
1080 1200 1320 1428 1428 1428	10.22 11.74 13.63 15.00 15.00	2.575 2.651 2.668 2.686 2.686 2.686	1.477 1.564 1.624 1.672 1.672	5.927 7.079 8.088 9.216 9.216 9.216	0.574 0.590 0.609 0.623 0.623	1.160 1.092 1.036 0.992 0.992	1.111 1.144 1.151 1.159 1.159

	FORM 3659 (EM 1110			TD 41	SLUCENT)	· 114			V-214-94		PLATE X	
			— EL	·	NNCON 59.	_				7-7-92 T REPORT		
				EPTH	MU		·172	DAT		W-1		
			L	ORING	NO		B NO. :		5 IPLE NO.			_
п1	ghly calcareous.		— <u> </u>	REA								
		ane=.45 TSF.	P	ROJEC	T CHA	SKA	CENC					-
LL	347	PL 20	1		PI		146	· 	G. 1.	86		
CLA	ssification Organic	Silt, OH			3.00							
NIT	IAL SPECIMEN HEIGHT, IN.			H.	3.00	\top						
NIT	TAL SPECIMEN DIAMETER,	IN		D.	1.38	+						_
EN	ISITIVITY RATIO			Sı							·····	
M	DRAINED SHEAR STRENGTH,	T/SQ FT		Su		+						-
UN	CONFINED COMPRESSIVE ENGTH, T/SQ FT			q _u	1.09	\dashv						_
TIN	NE TO FAILURE, MIN	-		e,	22.5	+						_
	DRY DENSITY, LB/CU FT			γd	24.2							_
INITIAL	SATURATION			S _o	95	%		96		%		_
7	VOID RATIO	,		e.	3.80							
	WATER CONTENT			w.	194.5	96		%		96		_
TY	PE OF SPECIMEN UNDI	STURBED	· · · · · · · · · · · · · · · · · · ·							-		_
TE	ST NO.											_
[X CONTROLLED STRAIN			'		†	B AXIAL ST	RAIN, %	12	16	20	
[CONTROLLED STRESS		0.	.00	0 4	 4			42			
					<i>f</i>							
					1			····				!
			0	. 50	-	+						
		ſ ŝ				*						
	-	$\frac{1}{2}$	T T T T T T T T T T T T T T T T T T T									
			1	.00		-		****				
			Š/- 'Š									1
			t .							}		
	1	7	1	.50)	-						
Į	FAILURE S	KETCHES	2	2.00)							_

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 68102-2586 420 SOUTH 18th STREET - OMAHA, NE

	l	U.S.	STANDA	RD	SIE	VE 4	OPE	NIN	G IN	V II	NCH	ES		U	. S	. s	TAN	AO.	RD	S	ΙE۷	E	NUM	BERS	3					НΥ	DRON	4ET	EΑ					
		100	6 in.			2 in.	UT 2/1-1	1 in.	./2 in.	3/8 in.			4		•	0		00			# 40		•60		#140	000	000											
		90			Ħ	П							1									X			1									#				
-6н		80 _		$\parallel \parallel$	\parallel	\parallel	1	\dashv		\parallel	H	H	\dagger	\dagger	+						+		1	<u> </u>	+		+								H	_		
7-ED		王 70 三 70		$\parallel \parallel$	\parallel	\dashv	+	+		\parallel	H	H	+	1						H	+	+	+		Y		+						$\parallel \parallel$		H	+	+	
1535 92-97-ED-GH No. NA		BY WEIGHT		\prod	\parallel	H	+	+		#	\prod	H	+	\perp	+				+	\perp	+	+	-		+									$\frac{1}{11}$	$\frac{1}{1}$	-	+	
					\prod	\prod		+		-		\prod	+	+	-					+	_	-					1							$\prod_{i=1}^{n}$	$\frac{ }{ }$	_		
W.O. No. Req. No. Contract		H H H 40		Щ		\coprod	_	1		\parallel			_	\perp				Щ			1		_						1	\								
3 (2 ()		PERCENT FINER																												1								
	i																													_	\							
		20				П																											1					
		10			$\ $	П								1													+									+	-	
		90	00 10	00	5	0			1	0.0	Ш	5	ا ا	 ₽∧	 TN	ı c	1.).5 TN		<u> </u>		IM	_U 0.1 ET						L	0.0	01	0.	005	l_		0.001
	%		BLES	3		- %			VE	L				_						AN									9	6 9	SIL		0	R	CL	ΑY		
ΑВ	•	0.	. 0	+	,		-	0.4	0			4							39	. е	}			_			_			4	9.	0				1	1.	2
DIVISION LAB 68102-2586	_																																					
102-		S	ampl		No	<u> </u>	\Box	Εl	ev		_			th		Na	t	W	1%			LL				PL	-			P) _C			Cu
	_		W-							 } ' -		J 1										34	<u>/</u>	1		20	1			14	16) <u>.</u>	80		1	6.4
AIVE													==			LA		- T	<u> </u>	<u></u>	A T	T.C	201															
OMAHA.	•	ORGA	ANIC	s	ĪL.	Γ	OH	1													<u> </u>		J14												•			
MISSOURI RIVER ET - OMAHA, NE																																						
ERS, M																																						
111 1	F		rks:									T-				+	CL	_ ^	S.		==			D (NIT		01						==				
ENGINE 18th										-				, ,		_	U,	1.4						15				0	•									
CORPS OF 6													re																									
20 S								<u> </u>				В	or	ìr C	_	AD.		-	_	-		_			_=	-		()a1	te	7	-3	0-	92	2			

U.S. STANDARD SIEVE OPENING IN INCHES

CLASSIFICATION TEST REQUEST

CONTAINER - T	TEST: Unc., R	MRD LAB. NO.: \$\instrum{1535}{\text{REQUEST NO.: CENC3-1A-92-97-ED-GH}} NO.: \(\lambda - 1 \) 29 - 31'
SAMPLE IDENTI	FICATION:	
Structure: Consistency:	Undisturbed () Soft	() (V) Med () Stiff () Hard tive (V) Sl. Sens. () Sensitive
PL Thread:	Strength (None () D	Med () High () ull () Gloss () H. Gloss () () Slow () Fast () Rapid ()
Torvane: 0.45		Odor: organic smell
Color: black		Cementation: highly reaching to HCI
Disturbance: Y		Date Core Opened: 7-7-92
Est. Max. Part Remarks: decay	cicle Size: ing urganic material	Sketch: (Core description and specimen location)
1	1 .	

Technician _____

FIGURE D-283

LEGEND

+ = .5 TSF

* = 1 TSF

X = 2 TSF

DEPTH/ELEV

MRD LAB NO. 1535

PROJECT CHASKA: CENCS-IA-92-97-ED-GH

CHASKA: CENCS-IA-92-97-ED-GH

BORING NO. 92-173 MU

SAMPLE NO. W-1

DEPTH/ELEV

1535

Table 15 - Triaxial \overline{R} Test Results

Project : CHASKA; CENCS-IA-92-97-ED-GH

: 92-173 MU

Boring Number Sample Number : W-1 : 23'-25' Depth Confining Pressure : .5 TSF

		B ! !					
mi ma	C+	Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
1 5	0 00	0.066				•	• •
15	0.00	0.066	0.015	1.136	0.229	0.501	0.029
30	0.00	0.159	0.045	1.350	0.281	0.494	0.069
45	0.34	0.209	0.067	1.483	0.321	0.485	0.090
60	0.34	0.270	0.089	1.656	0.332	0.478	0.116
90	0.68	0.321	0.109	1.819	0.340	0.470	0.138
120	0.68	0.363	0.121	1.959	0.333	0.469	0.157
150	1.02	0.397	0.129	2.068	0.326	0.469	0.171
180	1.02	0.436	0.139	2.209	0.319	0.469	0.188
210	1.36	0.493	0.148	2.402	0.301	0.474	0.213
240	1.70	0.556	0.155	2.611	0.279	0.483	0.240
300	2.38	0.605	0.154	2.748	0.255	0.496	0.261
360	2.72	0.657	0.158	2.920	0.240	0.505	0.284
420	3.05	0.705	0.156	3.051	0.222	0.519	0.304
480	3.39	0.755	0.156	3.195	0.208	0.531	0.326
540	4.07	0.844	0.153	3.435	0.182	0.556	0.364
600	4.75	0.929	0.149	3.646	0.161	0.581	0.401
720	5.77	0.985	0.143	3.760	0.146	0.601	0.425
840	6.45	1.039	0.135	3.844	0.130	0.622	0.448
960	7.13	1.078	0.130	3.915	0.121	0.637	0.465
1080	8.49	1.132	0.111	3.908	0.098	0.669	0.488
1200	9.84	1.144	0.089	3.779	0.078	0.694	0.494
1320	11.54	1.132	0.076	3.668	0.067	0.704	0.489
1440	13.24	1.113	0.050	3.476	0.046	0.726	0.489
1560	14.94	1.075	0.026	3.267	0.025	0.740	0.464
1564	15.00	1.073	0.025	3.260	0.024	0.740	0.464
				- · - · ·	0.024	J. / TU	0.403

Table 16 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-173 MU

: W-1

Project
Boring Number
Sample Number
Depth Depth : 23'-25'
Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.290	0.030	1.299	0.102	1.042	0.125
30	0.00	0.661	0.086	1.724	0.131	1.042	0.125
45	0.34	0.885	0.198	2.104	0.224	1.021	0.283
60	0.34	1.020	0.278	2.413	0.273	0.975	0.382
90	0.69	1.133	0.344	2.727	0.304	0.975	
120	0.69	1.217	0.388	2.989	0.319	0.936	0.489
150	1.03	1.289	0.426	3.247	0.331	0.913	0.525
180	1.03	1.363	0.459	3.519	0.337	0.879	0.556 0.588
210	1.37	1.484	0.509	4.023	0.344	0.858	
240	1.71	1.584	0.547	4.498	0.344	0.845	0.640 0.684
300	2.40	1.664	0.575	4.918	0.346	0.837	0.004
360	2.74	1.762	0.600	5.402	0.341	0.836	0.718
420	3.08	1.845	0.613	5.772	0.333	0.844	
480	3.43	1.922	0.630	6.194	0.333	0.844	0.796
540	4.11	2.046	0.654	6.908	0.320	0.852	0.829
600	4.80	2.143	0.669	7.473	0.320	0.862	0.883
720	5.82	2.205	0.678	7.836	0.313	0.868	0.925
840	6.51	2.266	0.678	8.027	0.308	0.883	0.951 0.978
960	7.19	2.303	0.682	8.238	0.297	0.888	0.978
1080	8.56	2.356	0.672	8.194	0.297	0.911	1.017
1200	9.93	2.370	0.660	7.961	0.279	0.911	1.023
1320	11.65	2.348	0.647	7.642	0.276	0.934	1.023
1440	13.36	2.319	0.630	7.268	0.278	0.944	1.013
1554	15.00	2.250	0.608	6.742	0.272	0.944	0.971
1554	15.00	2.250	0.608	6.742	0.271	0.949	0.971
					,-		0.011

Table 17 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

: 92-173 MU

Project Boring Number Sample Number : W-1 Depth : 23'-25' Confining Pressure : 2 TSF

Time	Strain	Deviator Stress	Induced	Principal	Pore /	Normal	Shear
			Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.00	0.178	0.134	1.096	0.751	1.910	0.077
30	0.00	0.477	0.233	1.270	0.490	1.885	0.206
45	0.35	0.769	0.426	1.489	0.555	1.764	0.332
60	0.35	1.026	0.563	1.714	0.549	1.691	0.443
90	0.69	1.220	0.710	1.946	0.582	1.592	0.527
120	0.69	1.356	0.795	2.125	0.587	1.541	0.585
150	1.04	1.452	0.876	2.292	0.604	1.484	0.627
180	1.04	1.552	0.940	2.465	0.606	1.444	0.670
210	1.39	1.688	1.049	2.775	0.622	1.369	0.729
240	1.74	1.798	1.125	3.054	0.626	1.320	0.776
300	2.43	1.876	1.181	3.290	0.630	1.283	0.810
360	2.78	1.964	1.221	3.522	0.622	1.265	0.848
420	3.12	2.022	1.251	3.701	0.619	1.250	0.873
480	3.47	2.084	1.287	3.921	0.618	1.229	0.899
540	4.17	2.178	1.343	4.314	0.617	1.196	0.940
00	4.86	2.255	1.382	4.652	0.613	1.176	0.973
720	5.90	2.291	1.412	4.895	0.617	1.155	0.989
840	6.59	2.351	1.426	5.093	0.607	1.156	1.015
960	7.29	2.382	1.449	5.320	0.609	1.141	1.028
1080	8.68	2.433	1.440	5.344	0.592	1.162	1.050
1200	10.07	2.457	1.454	5.504	0.592	1.154	1.061
1320	11.80	2.430	1.463	5.526	0.603	1.139	1.049
1440	13.54	2.402	1.451	5.373	0.605	1.144	1.037
1541	15.00	2.348	1.439	5.184	0.613	1.143	1.013
1541	15.00	2.348	1.439	5.184	0.613	1.143	1.013

	FAILURE SKETCH	IES	1	.00	<u></u>			,					1
			-					_	.			ĺ	
								<i>y</i>			ļ		
l													
			0	. 75			#						
		þ- -					1						
		SOF					/						
	Y	55, 1,				1			ĺ				
		o ši	0	. 50		_			-		-		
		COMPRESSIVE STRESS, 1/SQ FT			1 /								
		APRE,			 								
		Õ											
	•		0	. 25	 				\dashv		-		
İ													
					 				_				
_	7				V								
<u> </u>	CONTROLLED STRESS		0 .	.00	0 4		لــــــــــــــــــــــــــــــــــــ	<u> </u>	12	16	 `	 20	
	CONTROLLED STRAIN			,	U 4			TRAIN, %		1.0	,	20	
,	T NO.			-							1		
 											_		
TYP	E OF SPECIMEN UNDIST	JABED		r		96		%			%		%
	WATER CONTENT			₩.	158.3	70		70			70		70
¥	VOID RATIO			e.	3.80								
INITIAL	SATURATION			S.	93	%		%			%		%
	DRY DENSITY, LB/CU FT		·	γe	29.1								
TIM	E TO FAILURE, MIN			tr	21.5								
UNC	ONFINED COMPRESSIVE			q۰	0.94								
UND	RAINED SHEAR STRENGTH, T/S	SQ FT		Su									
SEN	SITIVITY RATIO			S,									
TIMI	IAL SPECIMEN DIAMETER, IN			D.	1.39								
INIT	IAL SPECIMEN HEIGHT, IN.			H.	3.00	Ì						-	
CLA	ssification Organic Si	lty Sand, S	SM										
LL	177	Pt 107			PI		0		-	2.24			_
	ARKS Layered dark b			PROJE	CT CH	ASH	(A: CE	NCS-IA	-92	-97-ED-I	3 <u>H</u>		\dashv
	own. Torvane=.35	TSF. Highl	У	AREA	MDi		AB NO	. 45	35			-	\dashv
			—	BORIN	CNO		73 MU	15 SA	MPLE	NO. W	-1		\dashv
			_	DEPTH	23			DA	TE		-08-	.92	\neg
								MPRES:	SION	TEST REF			\neg

ENG FORM 3659 (EM 1110-2-1906)

(TRANSLUCENT)

Figure 21 FIG D-288

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 3/4 in. 1/2 in. 3/8 in. 1 in. 3 in. 2 in. 6 in. #140 #200 #40 \$60 **\$**50 100 90 PERCENT FINER BY WEIGHT Contract No. NA 20 10 200 100 50 10.0 5 1.0 0.5 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS % COBBLES % GRAVEL % SAND % SILT OR CLAY 0.0 0.0 57.0 40.1 2.9 Sample No. Elev or Depth Nat W% LL PL ΡI $C_{\mathbf{u}}$ CC S-1 23'- 25' 177 107 70 1.35 15.6 CLASSIFICATION ORGANIC SILTY SAND Remarks: Project CHASKA FLOOD CONTROL Lab No. 1535 Boring No. 92-173MU Date 7-30-92 GRADATION CURVES

W.O. No. 1535 Req. No. 92-97-ED-GH

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB

420 SOUTH 18th STREET - OMAHA, NE

68102-2586

CLASSIFICATION TEST REQUEST

PROJECT: Cha	ska	MRD LAB. NO.: /535					
ACCOMPANYING	iest: UNC., R	REQUEST NO.:					
CONTAINER - TY	MPE: Tube	NO.:					
SAMPLE IDENTIE	FICATION: 92-173 MU 5	-1 23-25					
SAMPLE IDENTIF	FICATION:						
Structure:	() Brittle () Plastic	· ·					
Consistency:	Undisturbed () Soft Remolded () Insensiti	() Med () Stiff () Hard ve () S1. Sens. () Sensitive					
PL Thread:	Strength (Low () M Shine () None () Dul	led () High () 1 () Gloss () H. Gloss ()) Slow () Fast () Rapid ()					
Est. Max. Part Remarks: 500	TSF rown + light brain livered none	Odor: Organic smell Cementation: highly reactive to HC/ Date Core Opened: 7-8-57 Sketch: (Core description and specimen location)					

G-'-	4 1/2 "	+ 44 =-	* 7 ==	- 1
Seveel	R	UNC	Saved	TOP
	25 ~ -	.		-

Technician

FIGURE D-291

EFFECTIVE STRESS VECTOR CURVES ON 60 DEGREE PLANE

LEGEND PROJECT CHASKA; CENCS-IA-92-97-ED-GH
+ = .5 TSF

* = 1 TSF
BORING NO. 92-173 MU

X = 2 TSF
SAMPLE NO. W-3
DEPTH/ELEY 40'-42'
MRD LAB NO. 1535

Table 18 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-173 MU

Project
Boring Number
Sample Number
Depth : W-3 : 40'-42' Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.088	-0.001	1.176	-0.016	0.523	0.038
30	0.34	0.150	0.014	1.309	0.091	0.523	0.065
45	0.34	0.204	0.006	1.414	0.032	0.545	0.088
60	0.67	0.247	0.012	1.506	0.047	0.549	0.107
90	0.67	0.288	0.003	1.579	0.011	0.568	0.124
120	1.01	0.328	0.012	1.672	0.036	0.569	0.142
150	1.34	0.360	0.003	1.724	0.009	0.586	0.155
180	1.34	0.398	0.005	1.803	0.013	0.593	0.172
210	1.68	0.466	-0.010	1.913	-0.021	0.625	0.201
240	2.02	0.527	-0.022	2.010	-0.041	0.652	0.227
300	2.35	0.590	-0.024	2.125	-0.041	0.670	0.255
360	2.69	0.646	-0.031	2.217	-0.047	0.691	0.279
420	3.36	0.692	-0.035	2.295	-0.049	0.706	0.299
480	3.70	0.740	-0.038	2.375	-0.051	0.721	0.319
40	4.37	0.814	-0.051	2.477	-0.062	0.753	0.351
600	5.04	0.872	-0.065	2.545	-0.074	0.781	0.377
720	5.71	0.907	-0.080	2.564	-0.088	0.805	0.392
840	6.72	0.923	-0.099	2.540	-0.107	0.827	0.398
960	7.39	0.929	-0.130	2.473	-0.140	0.860	0.401
1080	8.74	0.932	-0.153	2.426	-0.164	0.884	0.402
1200	10.42	0.892	-0.199	2.277	-0.222	0.920	0.385
1320	11.76	0.874	-0.213	2.225	-0.243	0.929	0.377
1440	13.45	0.850	-0.238	2.153	-0.279	0.948	0.367
1551	15.00	0.832	-0.256	2.101	-0.308	0.963	0.359

Table 19 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH

: 92-173 MU

Project
Boring Number
Sample Number
Depth : W-3 : 40'-42' Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.489	0.072	1.527	0.148	1.049	0.211
30	0.34	0.719	0.210	1.910	0.292	0.968	0.310
45	0.34	0.861	0.294	2.221	0.342	0.919	0.372
60	0.68	0.923	0.331	2.380	0.359	0.898	0.398
90	0.68	1.006	0.379	2.619	0.377	0.870	0.434
120	1.02	1.077	0.418	2.852	0.389	0.849	0.465
150	1.36	1.143	0.446	3.064	0.391	0.837	0.493
180	1.36	1.201	0.468	3.257	0.390	0.829	0.518
210	1.70	1.304	0.501	3.614	0.385	0.822	0.563
240	2.04	1.393	0.528	3.949	0.379	0.817	0.601
300	2.39	1.485	0.549	4.295	0.370	0.819	0.641
360	2.73	1.562	0.562	4.570	0.360	0.825	0.674
420	3.41	1.616	0.577	4.818	0.357	0.823	0.697
480	3.75	1.683	0.588	5.079	0.350	0.829	0.726
540	4.43	1.767	0.602	5.439	0.341	0.835	0.763
600	5.11	1.832	0.611	5.712	0.334	0.842	0.791
720	5.79	1.876	0.614	5.863	0.328	0.850	0.810
840	6.81	1.905	0.614	5.938	0.323	0.858	0.822
960	7.50	1.916	0.610	5.911	0.319	0.864	0.827
1080	8.86	1.946	0.602	5.887	0.310	0.880	0.840
1200	10.56	1.923	0.582	5.597	0.303	0.894	0.830
1320	11.93	1.853	0.549	5.113	0.297	0.910	0.800
1440	13.63	1.698	0.498	4.384	0.294	0.922	0.733
1536	15.00	1.596	0.488	4.122	0.307	0.907	0.689

Table 20 - Triaxial \overline{R} Test Results

: CHASKA; CENCS-IA-92-97-ED-GH : 92-173 MU

Project : CHASKA
Boring Number : 92-173
Sample Number : W-3
Depth : 40'-42
Confining Pressure : 2 TSF : 40'-42'

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress	Shear Stress
	, ,	, ,	(/	Nacio	Α	(TSF)	(TSF)
15	0.00	0.225	0.089	1.118	0.397	1.967	0 007
30	0.35	0.641	0.274	1.372	0.428		0.097
45	0.35	1.042	0.479	1.685	0.460	1.885	0.277
60	0.69	1.249	0.632	1.913	0.507	1.779	0.450
90	0.69	1.399	0.768	2.136	0.550	1.677	0.539
120	1.04	1.510	0.893	2.364	0.592	1.578	0.604
150	1.38	1.595	0.985	2.571	0.618	1.481	0.652
180	1.38	1.655	1.086	2.811	0.657	1.410	0.688
210	1.73	1.729	1.230	3.245	0.712	1.324	0.714
240	2.07	1.768	1.324	3.616	0.749	1.198	0.746
300	2.42	1.788	1.405	4.003	0.786	1.114	0.763
360	2.76	1.783	1.467	4.342	0.788	1.038	0.772
420	3.46	1.743	1.513	4.577	0.868	0.974	0.769
480	3.80	1.689	1.550	4.755		0.918	0.752
540	4.49	1.617	1.575	4.807	0.918	0.868	0.729
00	5.18	1.573	1.575	4.705	0.975	0.825	0.698
720	5.87	1.488	1.573	4.486	1.002	0.815	0.679
840	6.91	1.334	1.565	4.466	1.058	0.795	0.642
960	7.60	1.084	1.539	3.352	1.174	0.765	0.576
1080	8.98	0.754	1.542	2.646	1.421	0.729	0.468
1200	10.71	0.622	1.520	2.295	2.044	0.645	0.326
L320	12.09	0.614	1.525		2.445	0.634	0.268
L440	13.82	0.569	1.495	2.292	2.484	0.627	0.265
L521	15.00	0.548	1.470	2.126	2.628	0.646	0.246
_		0.040	1.7/0	2.035	2.687	0.665	0.236

	FAILURE SKETCHES	,	2.	00			:	T	
						;	1	1	
						i :			
			1.	50					
		F			!))	!	į	
		, 1/80					!		
		TRESS	4	00					
		COMPRESSIVE STRESS, 1/SQ FT	٠.	00					
		APRES					1		
		ð							
			0.	50	<i>y</i>				
					*	} 			
					*				
١٢	CONTROLLED STRESS		0.	00	<i>‡</i> *				
	CONTROLLED STRAIN		0.		2	4	6	8	10
						AXIAL STRAIN,	%		
TES	T NO.								
TYP	E OF SPECIMEN UNDISTUR	BED							
	WATER CONTENT			₩.	90.0 %	%		%	%
۱۷I	VOID RATIO			e,	2.32				
INITIAL	SATURATION			S.	93 %	%		%	%
	DRY DENSITY, LB/CU FT			γe	45.3				
TIM	E TO FAILURE, MIN			tr	16.8				
	CONFINED COMPRESSIVE ENGTH, T/SQ FT			qu	1.05				
UND	RAINED SHEAR STRENGTH, T/SQ	FT		Su					
SEN	SITIVITY RATIO			S,					
INIT	IAL SPECIMEN DIAMETER, IN			D.	1.40				
INITIAL SPECIMEN HEIGHT, IN.				H.	3.01				
	SSIFICATION Organic Silt								
LL	157 PL			ROJE		69	G. 2.41		
	ARKS layered black an own. No torvane. Hi				<u>CHASK</u>	(A; CENCS-IA	4-92-9/-E	J-6H	
	reous.	.only cal		REA	MRO 1	.AB NO. : 15	535		
			— ī	ORIN	G NO. 92-17	·	AMPLE NO.	W-3	
			— <u> </u>	EPTH			ATE	07-14-92	
	WATER CONTROL OF THE		一 片	-		NED COMPRES			
								·	

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

Req. No. 92-97-ED-GH

W.O. No. 1535

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 3/4 in. 1/2 in. 3/8 in. 1 in. #140 # 10 #20 49 9 100 90 60 BY WEIGHT Contract No. NA PERCENT FINER 20 10 100 50 10.0 1.0 0.5 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS % COBBLES % GRAVEL % SAND % SILT OR CLAY 0.0 0.0 54.2 42.2 3.6 Sample No. Elev or Depth Nat W% LL PL ΡI C_{C} c_{u} S-3 40'- 42' 157 88 69 2.15 8.1 CLASSIFICATION • ORGANIC SILTY SAND Remarks: Project CHASKA FLOOD CONTROL Lab No. 1535 Area Boring No. 92-173MU Date 7-30-92

GRADATION CURVES

CLASSIFICATION TEST REQUEST

PROJECT: Charle

MRD LAB. NO .:

ACCOMPANYING TEST: UNC, R

REQUEST NO .:

CONTAINER - TYPE: Tube

NO.:

SAMPLE IDENTIFICATION: 92-173MU 5-3 40'-47'

SAMPLE IDENTIFICATION:

Structure:

() Brittle (\(\sigma \) Plastic ()

Consistency:

Undisturbed

() Soft () Med () Stiff () Hard

Remolded

() Insensitive (Sl. Sens. () Sensitive

PL Thread:

(T LOW (メ Med

() High

() Gloss

() H. Gloss

Shake Test

Strength

Shine

(W None () Dull () None

() Slow

() Fast () Rapid

Torvane:

Color: black & light Brown layered

Disturbance: none

Est. Max. Particle Size:

Remarks: Some organics + shells

Odor: organic oder

Cementation: highly reactive to HCI

Date Core Opened: 7-13-92

Sketch: (Core description and

specimen location)

Technician

LEGEND

.25 TSF .5 TSF

TSF

PROJECT CHASKA FLOOD C.P.; IA-93-30

BORING NO. 92-195 MU

SAMPLE NO. W-1

DEPTH/ELEV 2'-4'

MRD LAB NO. 1897

Table 1 - Triaxial R Test Results

Project : CHASKA FLOOD C.P.;IA-93-30

Boring Number : 92-195 MU

Sample Number : W-1
Depth : 2'-4'
Confining Pressure : .25 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal	Pore /	Normal	Shear
(min				Eff. Stress		Stress	Stress
(11111)) (%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.34	0.265	0.006	2.087	0.025	0.310	0.114
30	0.34	0.393	0.012	2.654	0.032	0.335	0.170
45	0.67	0.522	0.027	3.343	0.053	0.352	0.225
60	0.67	0.621	0.036	3.902	0.058	0.368	0.268
90	1.01	0.687	0.037	4.231	0.055	0.383	0.296
120	1.01	0.748	0.035	4.473	0.047	0.400	0.323
150	1.34	0.804	0.023	4.542	0.029	0.426	0.347
180	1.34	0.851	0.021	4.714	0.025	0.440	0.367
210	1.68	0.948	0.006	4.883	0.007	0.479	0.409
240	2.35	1.010	-0.002	5.007	-0.002	0.502	0.436
300	2.69	1.074	-0.017	5.016	-0.016	0.533	0.463
360	3.02	1.127	-0.022	5.138	-0.019	0.551	0.486
420	3.36	1.166	-0.034	5.108	-0.029	0.573	0.503
480	3.69	1.196	-0.036	5.181	-0.030	0.582	0.516
540	4.36	1.241	-0.044	5.221	-0.035	0.601	0.535
600	5.04	1.280	-0.053	5.232	-0.041	0.620	0.553
720	6.04	1.298	-0.060	5.190	-0.046	0.631	0.560
840	6.71	1.323	-0.100	4.778	-0.075	0.677	0.571
960	7.39	1.342	-0.145	4.394	-0.108	0.727	0.579
1080	8.73	1.354	-0.161	4.298	-0.118	0.746	0.584
1200	10.07	1.364	-0.172	4.233	-0.126	0.760	0.589
1320	11.41	1.327	-0.196	3.977	-0.147	0.775	0.573
1440	13.09	1.253	-0.202	3.771	-0.161	0.762	0.541
1560	14.43	1.278	-0.205	3.808	-0.160	0.771	0.552
1600	15.00	1.275	-0.210	3.773	-0.164	0.775	0.550

Table 2 - Triaxial R Test Results

Project : CHASKA FLOOD C.P.; IA-93-30

: 92-195 MU

Boring Number Sample Number : W-1 : 2'-4' Depth Confining Pressure : .5 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.34	0.155	0.030	1.329	0.191	0.508	0.067
30	0.34	0.453	0.141	2.262	0.312	0.471	0.196
45	0.68	0.607	0.186	2.935	0.308	0.464	0.262
60	0.68	0.717	0.200	3.391	0.280	0.477	0.309
90	1.01	0.807	0.202	3.711	0.251	0.498	0.348
120	1.01	0.898	0.198	3.972	0.221	0.524	0.387
150	1.35	0.982	0.189	4.161	0.193	0.554	0.424
180	1.35	1.139	0.189	4.667	0.167	0.593	0.492
210	1.69	1.189	0.171	4.610	0.144	0.623	0.513
240	2.36	1.208	0.158	4.528	0.131	0.641	0.521
300	2.70	1.247	0.138	4.441	0.111	0.671	0.538
360	3.04	1.273	0.130	4.436	0.102	0.685	0.549
20	3.38	1.331	0.114	4.445	0.086	0.715	0.574
480	3.72	1.369	0.109	4.506	0.080	0.730	0.591
540	4.39	1.404	0.089	4.419	0.064	0.759	0.606
600	5.07	1.425	0.068	4.301	0.049	0.785	0.615
720	6.08	1.459	0.058	4.304	0.040	0.803	0.630
840	6.76	1.487	0.049	4.298	0.033	0.819	0.642
960	7.43	1.515	0.038	4.280	0.026	0.837	0.654
1080	8.78	1.511	0.020	4.149	0.014	0.854	0.652
1200	10.14	1.506	0.001	4.017	0.001	0.872	0.650
1320	11.49	1.539	-0.024	3.939	-0.015	0.905	0.664
1440	13.18	1.502	-0.032	3.826	-0.021	0.904	0.648
1560	14.53	1.495	-0.035	3.793	-0.023	0.905	0.645
1593	15.00	1.483	-0.038	3.756	-0.025	0.905	0.640

Table 3 - Triaxial R Test Results

Project : CHASKA FLOOD C.P.;IA-93-30

Boring Number : 92-195 MU
Sample Number : W-1 Depth : 2'-4' Confining Pressure: 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(૪)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.34	0.112	0.009	1.113	0.078	1.019	0.048
30	0.34	0.165	0.007	1.166	0.044	1.034	0.071
45	0.68	0.463	0.032	1.479	0.070	1.083	0.200
60	0.68	0.933	0.196	2.160	0.210	1.035	0.403
90	1.02	1.161	0.302	2.662	0.260	0.985	0.501
120	1.02	1.314	0.345	3.005	0.263	0.980	0.567
150	1.36	1.411	0.342	3.144	0.243	1.007	0.609
180	1.36	1.492	0.392	3.455	0.264	0.977	0.644
210	1.70	1.611	0.387	3.630	0.241	1.012	0.695
240	2.38	1.674	0.426	3.918	0.255	0.988	0.723
300	2.72	1.721	0.383	3.790	0.223	1.043	0.743
360	3.06	1.754	0.441	4.136	0.252	0.993	0.757
420	3.40	1.759	0.397	3.916	0.226	1.038	0.759
480	3.74	1.764	0.462	4.279	0.263	0.975	0.761
540	4.41	1.754	0.480	4.370	0.274	0.954	0.757
600	5.09	1.744	0.490	4.422	0.282	0.942	0.753
720	6.11	1.720	0.499	4.434	0.291 .	0.927	0.743
840	6.79	1.711	0.506	4.464	0.296	0.917	0.738
960	7.47	1.701	0.507	4.449	0.299	0.914	0.734
1080	8.83	1.663	0.508	4.381	0.306	0.904	0.718
1200	10.19	1.633	0.514	4.362	0.315	0.890	0.705
1320	11.54	1.694	0.492	4.333	0.291	0.927	0.731
1440	13.24	1.624	0.477	4.107	0.294	0.925	0.701
1560	14.60	1.573	0.487	4.068	0.310	0.902	0.679
1588	15.00	1.557	0.485	4.022	0.312	0.901	0.672

CENCS-IA-93-30-ED-6H 90 в0 ch92195w1 WEIGHT æ ⁶⁰ No. . No Contract PERCENT FINER
8 8 6 Req. 20 10 100 500 50 10.0 1.0 0.5 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE IN MILLIMETERS % COBBLES % GRAVEL % SAND % SILT OR CLAY 0.0 0.0 0.4 32.0 67.6 CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 68102-2586 Sample No. Elev or Depth Nat W% PL LL ΡI C_{C} C_{u} W-12.0'-4.0' 67 57 10 - OMAHA, NE CLASSIFICATION • ELASTIC SILT, MH Specific Gravity = 2.63420 SOUTH 18th STREET Remarks: Project CHASKA FLOOD CONTROL EAST CREEK, STAGE 3 Lab No. 1897 Area Boring No. 92–195 MU1 Date 02/04/93 GRADATION CURVES

U.S. STANDARD SIEVE NUMBERS

#20

HYDROMETER

#140 #200

U.S. STANDARD SIEVE OPENING IN INCHES

100 _ 9

1 in. 3/4 in. č č

CLASSIFICATION TEST REQUEST

' <i>Y</i>							
PRO	JECT: CA	laska F	Flood (2. P.	MRD LAR.	NO.: 189	27
ACC	OMPANY ING	TEST: E,	Ø				•
	TAINER - 1	•	1		REQUEST N	10.: @CE	NCS-Z
					NO.:	. 30.	- ED-K
SAMP	LE IDENTI	FICATION:					· /
•		90	2-195M	'U u	V-1 2-	4	*
SAMP	LE IDENTI	FICATION:					
PL Th	nread:	Undisturb Remolded Strength Shine Shake Test	Plasti () Insen () Low (() None ()	oft () Notice () Med (Dull () Slow Odor:) High) Gloss () Fas	s. () Se () () H. Glos t () Rap	ensitive
Distu	rbance:	7. 5.00	7	Cement	ation: Lle	ept	
		icle Size:+5				2-1-93	
Remark	is: (and	fle fort	outlets?	Sketch	(Core de specimen	scription a location)	and
·			V				

	9"		41/ 31/	
Saved Ds		0:0	15	· · · · · · · · · · · · · · · · · · ·
O'SCARD	151	N. S	J 4	TOP
			-	

Technician WHark

Figure 5

FIGURE D-308

LEGEND PROJECT CHASKA FLOOD C.P.; IA-93-30

+ = .25 TSF

* = .5 TSF BORING NO. 92-195 MU

X = 1 TSF SAMPLE NO. W-2

DEPTH/ELEV 11.0'-13.0'

MRD LAB NO. 1897

Table 4 - Triaxial \overline{R} Test Results

: CHASKA FLOOD C.P.; IA-93-30 Project Boring Number Sample Number

: 92-195 MU

: W-2

: 11.0'-13.0' Depth Confining Pressure : .25 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
•	, ,	• .					
15	0.00	0.315	0.020	2.369	0.065	0.308	0.136
30	0.00	0.431	0.030	2.956	0.069	0.327	0.186
45	0.00	0.520	0.030	3.358	0.057	0.349	0.224
60	0.34	0.575	0.030	3.618	0.053	0.362	0.248
90	0.34	0.622	0.026	3.775	0.042	0.378	0.268
120	0.68	0.649	0.023	3.861	0.036	0.388	0.280
150	0.68	0.691	0.023	4.044	0.034	0.398	0.298
180	1.01	0.718	0.024	4.183	0.035	0.404	0.310
210	1.35	0.777	0.019	4.359	0.025	0.423	0.335
240	1.69	0.835	0.009	4.471	0.012	0.448	0.360
300	2.03	0.889	0.003	4.596	0.004	0.467	0.384
360	2.36	0.924	-0.005	4.621	-0.005	0.484	0.399
420	2.70	0.981	-0.012	4.741	-0.012	0.505	0.423
480	3.04	1.024	-0.025	4.722	-0.024	0.529	0.442
540	3.71	1.092	-0.040	4.761	-0.036	0.560	0.471
600	4.39	1.167	-0.056	4.813	-0.048	0.595	0.504
720	5.06	1.233	-0.071	4.845	-0.057	0.626	0.532
840	6.08	1.280	-0.084	4.830	-0.065	0.651	0.553
960	6.75	1.326	-0.096	4.834	-0.072	0.674	0.572
1080	8.10	1.358	-0.146	4.429	-0.107	0.732	0.586
1200	9.45	1.360	-0.153	4.377	-0.112	0.740	0.587
1320	11.14	1.306	-0.174	4.084	-0.132	0.747	0.564
1440	12.49	1.290	-0.190	3.932	-0.147	0.759	0.557
1560	14.18	1.249	-0.204	3.749	-0.163	0.763	0.539
1618	15.00	1.235	-0.204	3.722	-0.164	0.759	0.533

Table 5 - Triaxial R Test Results

: CHASKA FLOOD C.P.; IA-93-30

Project Boring Number Sample Number : 92-195 MU

: W-2

Depth : 11.0'-1
Confining Pressure : .5 TSF : 11.0'-13.0'

Time (min)	Strain	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.131	0.009	1.266	0.067	0.523	0.056
30	0.00	0.341	0.013	1.700	0.039	0.571	0.147
45	0.00	0.495	0.028	2.048	0.057	0.594	0.214
60	0.34	0.722	0.100	2.807	0.139	0.579	0.312
90	0.34	0.839	0.124	3.230	0.148	0.584	0.362
120	0.68	0.893	0.138	3.464	0.154	0.583	0.385
150	0.68	0.949	0.150	3.708	0.158	0.585	0.409
180	1.02	0.988	0.157	3.882	0.159	0.588	0.427
210	1.36	1.074	0.162	4.177	0.151	0.604	0.464
240	1.70	1.145	0.163	4.403	0.143	0.621	0.494
300	2.04	1.211	0.161	4.569	0.133	0.639	0.523
360	2.37	1.268	0.157	4.696	0.124	0.657	0.547
420	2.71	1.333	0.150	4.806	0.113	0.680	0.575
480	3.05	1.388	0.138	4.830	0.100	0.706	0.599
540	3.73	1.449	0.114	4.751	0.079	0.745	0.625
600	4.41	1.504	0.089	4.655	0.059	0.783	0.649
720	5.09	1.531	0.062	4.495	0.041	0.817	0.661
840	6.11	1.466	0.045	4.224	0.031	0.818	0.633
960	6.78	1.353	0.050	4.005	0.037	0.785	0.584
1080	8.14	1.235	0.043	3.704	0.035	0.763	0.533
1200	9.50	1.153	0.073	3.699	0.064	0.713	0.498
1320	11.19	1.083	0.080	3.577	0.074	0.688	0.467
1440	12.55	1.041	0.086	3.517	0.084	0.672	0.449
1560	14.25	0.988	0.089	3.403	0.090	0.656	0.427
1613	15.00	0.976	0.094	3.404	0.097	0.648	0.421

Table 6 - Triaxial R Test Results

: CHASKA FLOOD C.P.;IA-93-30 Project

Boring Number : 92-195 MU Sample Number : W-2

: 11.0'-13.0' Depth

Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
				1 220	0 176	1.023	0.138
15	0.00	0.320	0.056	1.339	0.176		
30	0.00	0.685	0.189	1.845	0.277	0.980	0.295
45	0.00	0.950	0.279	2.318	0.295	0.956	0.410
60	0.34	1.090	0.320	2.604	0.294	0.950	0.471
90	0.34	1.194	0.346	2.825	0.290	0.950	0.515
120	0.68	1.262	0.364	2.983	0.289	0.948	0.545
150	0.68	1.319	0.379	3.125	0.288	0.947	0.569
180	1.02	1.353	0.390	3.217	0.288	0.945	0.584
210	1.36	1.448	0.404	3.429	0.279	0.955	0.625
240	1.70	1.519	0.409	3.570	0.270	0.967	0.656
300	2.04	1.590	0.413	3.706	0.260	0.981	0.686
360	2.38	1.627	0.418	3.797	0.258	0.985	0.702
420	2.72	1.711	0.417	3.933	0.244	1.006	0.738
480	3.06	1.766	0.413	4.009	0.235	1.024	0.762
540	3.74	1.856	0.406	4.126	0.219	1.054	0.801
600	4.42	1.950	0.396	4.228	0.204	1.087	0.842
720	5.10	2.042	0.384	4.314	0.188	1.122	0.881
840	6.12	2.095	0.372	4.337	0.178	1.147	0.904
960	6.81	2.135	0.364	4.358	0.171	1.165	0.921
1080	8.17	2.134	0.334	4.205	0.157	1.194	0.921
1200	9.53	2.158	0.335	4.244	0.156	1.199	0.931
1320	11.23	2.046	0.338	4.089	0.166	1.169	0.883
1440	12.59	1.860	0.367	3.940	0.198	1.094	0.803
1560	14.29	1.661	0.395	3.743	0.238	1.016	0.717
1610	15.00	1.598	0.404	3.683	0.254	0.991	0.690

CENCS-IA-93-30-ED-GH 80 BY WEIGHT ₩.O. No. Contract PERCENT FINER
8 & 6 20 10 10.0 1.0 0.5 0.1 0.05 0.01 0.005 0.001 100 50 5 200 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % COBBLES % GRAVEL % SAND 0.4 41.7 57.9 0.0 0.0 DIVISION LAB 68102-2586 Sample No. Elev or Depth Nat W% LL PL PΙ C^{C} c_{u} 11.0'-13.0' 90 60 30 W-2 MISSOURI RIVER - OMAHA, NE CLASSIFICATION • ELASTIC SILT, MH 420 SOUTH 18th STREET CORPS OF ENGINEERS, Project CHASKA FLOOD CONTROL Remarks: Lab No. 1897 Area Date 2-18-93 Boring No. 92-195MU GRADATION CURVES

U.S. STANDARD SIEVE NUMBERS

HYDROMETER

₽200

U.S. STANDARD SIEVE OPENING IN INCHES

Š

in.

9

100

90

CLASSIFICATION TEST REQUEST

PROJECT: Chaska Flood C.P.	MRD LAB. NO.:
accompanying test: \overline{R}_{1}	REQUEST NO.:
CONTAINER - TYPE: 5" Shelly	NO.: -
SAMPLE IDENTIFICATION:	w-2 //-/3
SAMPLE IDENTIFICATION:	
Structure: () Brittle () Plastic	()
Consistency: Undisturbed (X) Sof	
Remolded () Insens	itive 🔀 Sl. Sens. () Sensitive
PL Thread: Strength (A Low () Med () High ()
Shine 🚫 None 🔀 I	Oull () Gloss () H. Gloss ()
Shake Test () None	Slow Fast () Rapid ()
Torvane: 0, 29	Odor: Slight
color: It guy & white grey	Cementation: Alight
Color: Lt guy & white grey Disturbance: none	Date Core Opened: Z-4-93
Est. Max. Particle Size: +50	Sketch: (Core description and
Remarks: calcum & wood chi throughout sa, i,ile	specimen location)

	4,1	4"	2"	
saved	Q'2	Ris		TOP
	-24"			

Technician CWBlack

LEGENO + = .5 TSF * = 1 TSF X = 2 TSF PROJECT CHASKA FLOOD; CENCS-IA-93-30-ED-6H

BORING NO. 92-195MU SAMPLE NO. W-3

SAMPLE NO. W-3
DEPTH/ELEV 15.0'-17.0'

MRD LAB NO. 1897

Table 7 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project Boring Number

: 92-195MU

Sample Number : W-3

: 15.0'-17.0' Depth

Confining Pressure : .5 TSF

m:	Chusin	Deviator	Induced Pore Pressure	Principal Eff. Stress	Pore / Deviator	Normal Stress	Shear Stress
Time	Strain	Stress		Ratio	A	(TSF)	(TSF)
(min)	(%)	(TSF)	(TSF)	Racio		(101)	(/
15	0.00	0.476	0.040	2.036	0.085	0.578	0.206
30	0.35	0.697	0.072	2.628	0.104	0.600	0.301
45	0.35	0.768	0.099	2.914	0.129	0.591	0.332
60	0.33	0.839	0.110	3.152	0.132	0.598	0.362
90	0.71	0.895	0.115	3.326	0.129	0.607	0.386
	1.06	0.919	0.122	3.434	0.134	0.606	0.397
120		0.980	0.119	3.571	0.122	0.624	0.423
150	1.06	1.014	0.132	3.753	0.130	0.619	0.437
180	1.42		0.132	3.919	0.118	0.642	0.469
210	1.77	1.087		4.105	0.115	0.653	0.494
240	2.12	1.145	0.131	4.229	0.108	0.668	0.517
300	2.48	1.198	0.129		0.105	0.677	0.533
360	2.83	1.235	0.129	4.329		0.660	0.522
420	3.54	1.210	0.140	4.358	0.116		0.557
480	3.89	1.291	0.133	4.520	0.104	0.687	
540	4.60	1.363	0.132	4.701	0.097	0.705	0.588
600	5.31	1.429	0.125	4.806	0.088	0.729	0.617
720	6.37	1.456	0.116	4.790	0.080	0.744	0.628
840	7.08	1.471	0.107	4.740	0.073	0.757	0.635
960	7.79	1.444	0.103	4.637	0.072	0.754	0.623
1080	9.20	1.413	0.102	4.545	0.072	0.748	0.610
1200	10.97	1.350	0.105	4.418	0.078	0.729	0.583
1320	12.74	1.337	0.107	4.399	0.080	0.724	0.577
1440	14.16	1.240	0.083	3.972	0.067	0.724	0.535
1497	15.00	1.199	0.089	3.919	0.075	0.708	0.518

Table 8 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project Project
Boring Number : 92-195mo
Sample Number : W-3
: 15.0'-17.0'

Confining Pressure : 1 TSF

_		Deviator		Principal		Normal	Shear
Time	Strain		Pore Pressure				Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
15	0.00	0.606	0.109	1.680	0.180	1.041	0.262
30	0.35	0.781	0.233	2.019	0.299	0.960	0.337
				2.224	0.328	0.930	0.377
45	0.35	0.874	0.286			0.904	
60	0.69	0.916	0.323	2.354	0.353		0.395
90	0.69	0.955	0.365	2.504	0.383	0.871	0.412
120	1.04	0.973	0.386	2.584	0.397	0.855	0.420
150	1.04	1.031	0.388	2.685	0.377	0.867	0.445
180	1.39	1.053	0.411	2.788	0.391	0.850	0.454
210	1.73	1.094	0.432	2.926	0.395	0.839	0.472
240	2.08	1.130	0.451	3.060	0.400	0.829	0.488
300	2.43	1.156	0.466	3.164	0.403	0.820	0.499
360	2.77	1.182	0.473	3.243	0.401	0.820	0.510
420	3.47	1.205	0.474	3.289	0.394	0.824	0.520
480	3.81	1.225	0.479	3.351	0.391	0.824	0.529
540	4.51	1.261	0.476	3.406	0.378	0.836	0.544
600	5.20	1.301	0.475	3.479	0.366	0.847	0.561
720	6.24	1.327	0.466	3.484	0.352	0.863	0.573
840	6.93	1.360	0.463	3.533	0.341	0.874	0.587
960	7.63	1.416	0.453	3.588	0.320	0.898	0.611
1080	9.01	1.466	0.435	3.593	0.297	0.928	0.633
1200	10.75	1.455	0.421	3.514	0.290	0.939	0.628
1320	12.48	1.452	0.405	3.440	0.279	0.955	0.627
1440	13.86	1.420	0.398	3.359	0.281	0.953	0.613
1518	15.00	1.389	0.398	3.308	0.287	0.946	0.600

Table 9 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project

Boring Number Sample Number : 92-195MU

: W-3

: 15.0'-17.0' Depth

Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.487	0.062	1.251	0.128	2.059	0.210
30	0.35	0.957	0.243	1.545	0.255	1.994	0.413
45	0.35	1.325	0.425	1.841	0.321	1.903	0.572
60	0.70	1.901	0.683	2.444	0.360	1.788	0.821
90	0.70	2.198	0.880	2.962	0.401	1.664	0.949
120	1.05	2.317	0.983	3.278	0.425	1.591	1.000
150	1.05	2.392	1.030	3.465	0.431	1.562	1.033
180	1.40	2.435	1.112	3.744	0.457	1.491	1.051
210	1.75	2.473	1.171	3.982	0.474	1.441	1.067
240	2.10	2.510	1.237	4.290	0.493	1.384	1.083
300	2.45	2.542	1.277	4.517	0.503	1.352	1.097
360	2.81	2.584	1.302	4.704	0.505	1.338	1.115
420	3.51	2.597	1.315	4.789	0.507	1.328	1.121
480	3.86	2.613	1.336	4.937	0.512	1.311	1.128
540	4.56	2.654	1.347	5.065	0.508	1.310	1.146
600	5.26	2.685	1.374	5.288	0.512	1.291	1.159
720	6.31	2.701	1.372	5.299	0.508	1.297	1.166
840	7.01	2.721	1.385	5.421	0.509	1.289	1.174
960	7.71	2.744	1.376	5.397	0.502	1.303	1.184
1080	9.12	2.780	1.365	5.379	0.492	1.323	1.200
1200	10.87	2.721	1.344	5.145	0.494	1.330	1.174
1320	12.62	2.622	1.308	4.791	0.499	1.341	1.132
1440	14.03	2.521	1.303	4.619	0.517	1.321	1.088
1506	15.00	2.451	1.306	4.530	0.533	1.301	1.058

1-1/2 in. 3/4 in. 1/2 in. 3/8 in. 1 in. 3 in. 100 Req. No. CENCS-IA-93-30-ED-GH 90 80 WEIGHT ₽ 60 Contract PERCENT FINER
8 & 6 W.O. No 20 10 0.05 0.01 0.005 0.001 200 100 10.0 1.0 0.5 GRAIN SIZE IN MILLIMETERS % SAND % SILT OR CLAY % COBBLES % GRAVEL 0.0 0.0 59.2 40.8 0.0 ENGINEERS, MISSOURI RIVER DIVISION LAB 68102-2586 cu Sample No. Elev or Depth Nat W% LL PL ΡI C_{C} 15.0'-17.0 69 61 8 0.15 30.2 W-3 420 SOUTH 18th STREET - OMAHA, NE CLASSIFICATION • ELASTIC SILT, MH Project CHASKA FLOOD CONTROL Aemarks: Lab No. 1897 CORPS OF Area Date 2-18-93 Boring No. 92-195MU GRADATION CURVES Figure 14 FIG D-3

U.S. STANDARD SIEVE NUMBERS

HYDROMETER

1200

U.S. STANDARD SIEVE OPENING IN INCHES

- iacous	CLASSIFICATION	TEST	REQU	ÆS:
----------	----------------	------	------	-----

ACCOMPANYING :	-, , ,	MRD LAB. NO.:/897 REQUEST NO. EMS-14-93-30 F NO.: - 3 15 0-170
SAMPLE IDENTIF Structure: Consistency: PL Thread:	() Brittle (V Plastic Undisturbed () Soft Remolded () Insensit Strength () Low ()	() () Med () Stiff () Hard ive () Sl. Sens. () Sensitive Med () High () 11 () Gloss () H. Gloss () () Slow () Fast () Rapid ()
Torvane: ,3TSF Color: grey Disturbance: Est. Max. Parti Remarks: wate		Odor: (iver silt Cementation: reactive to HC! Date Core Opened: 2/9/93 Sketch: (Core description and specimen location)

discard	41/2"	Q	11/4" Saved Top	TOP
		24"	-	<u> </u>

Technician MTW

FIGURE D-324

+ = .5 TSF

x = 1 TSF

X = 2 TSF

Define NO.

SAMPLE NO.

BORING NO. 92-195MU SAMPLE NO. W-4 DEPTH/ELEV 23'-25' MRD LAB NO. 1897

Table 10 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH

: 92-195MU

Project
Boring Number
Sample Number : W-4 Depth : 23'-25' Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15 30 45 60 90 120 150 180 210 240 300 360 420 480 540 600 720	0.00 0.34 0.34 0.68 1.02 1.36 1.36 2.05 2.39 2.73 3.07 3.41 4.09 4.77 5.46 6.48	0.210 0.562 0.707 0.783 0.834 0.882 0.928 0.957 1.015 1.056 1.091 1.126 1.161 1.188 1.243 1.287 1.304	(TSF) 0.003 0.039 0.058 0.071 0.075 0.077 0.076 0.075 0.078 0.085 0.079 0.079 0.082 0.083 0.083 0.083 0.078 0.075 0.075	1.423 2.220 2.600 2.826 2.963 3.086 3.191 3.251 3.408 3.543 3.593 3.676 3.778 3.849 3.978 4.048 4.068 4.104	0.014 0.070 0.083 0.092 0.090 0.088 0.083 0.079 0.078 0.071 0.071 0.071 0.071 0.070 0.067 0.061 0.058 0.053	0.549 0.600 0.617 0.623 0.632 0.641 0.654 0.662 0.673 0.676 0.700 0.705 0.711 0.725 0.741 0.748 0.759	0.091 0.243 0.305 0.338 0.360 0.381 0.401 0.413 0.438 0.456 0.471 0.486 0.501 0.513 0.536 0.555 0.563 0.575
840 960 1080 1200 1320 1440 1511	7.16 7.84 9.55 10.91 12.62 13.98 15.00	1.333 1.353 1.373 1.387 1.374 1.273	0.071 0.066 0.055 0.053 0.046 0.020	4.104 4.113 4.088 4.104 4.026 3.652 3.534	0.049 0.041 0.039 0.034 0.016	0.769 0.785 0.790 0.794 0.795 0.773	0.584 0.593 0.599 0.593 0.549 0.520

Table 11 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project Boring Number

: 92-195MU

Sample Number : W-4 : 23'-25' Depth Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain		Pore Pressure	•		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
• • • • • • • • • • • • • • • • • • • •	(- /	` ,	, ,			•	•
15	0.00	0.320	0.063	1.341	0.196	1.016	0.138
30	0.34	0.691	0.189	1.852	0.274	0.982	0.298
45	0.34	0.869	0.241	2.145	0.278	0.974	0.375
60	0.69	0.949	0.282	2.322	0.298	0.953	0.410
90	1.03	0.985	0.305	2.417	0.310	0.939	0.425
120	1.03	1.048	0.325	2.551	0.310	0.934	0.452
150	1.37	1.079	0.336	2.625	0.312	0.931	0.466
180	1.37	1.107	0.343	2.687	0.311	0.931	0.478
210	2.06	1.154	0.366	2.822	0.318	0.920	0.498
240	2.40	1.190	0.388	2.944	0.327	0.906	0.513
300	2.74	1.224	0.392	3.015	0.321	0.911	0.528
360	3.08	1.249	0.401	3.086	0.321	0.908	0.539
420	3.43	1.270	0.407	3.140	0.321	0.907	0.548
480	4.11	1.282	0.416	3.195	0.325	0.901	0.553
540	4.80	1.321	0.427	3.305	0.324	0.900	0.570
600	5.48	1.350	0.425	3.348	0.315	0.909	0.583
720	6.51	1.362	0.430	3.388	0.316	0.907	0.588
840	7.19	1.381	0.432	3.431	0.313	0.910	0.596
960	7.88	1.399	0.426	3.436	0.305	0.920	0.604
1080	9.59	1.404	0.413	3.393	0.295	0.935	0.606
1200	10.96	1.412	0.417	3.422	0.296	0.933	0.609
1320	12.68	1.372	0.414	3.341	0.302	0.926	0.592
1440	14.05	1.336	0.397	3.218	0.298	0.934	0.577
1506	15.00	1.291	0.400	3.153	0.311	0.920	0.557

Table 12 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project

: 92-195MU

Boring Number Sample Number : W-4 : 23'-25' Depth Confining Pressure : 2 TSF

		Deviator	Induced	Principal		Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	Α	(TSF)	(TSF)
(,		(,	, .				
15	0.00	0.108	0.066	1.056	0.615	1.961	0.047
30	0.36	0.668	0.122	1.356	0.183	2.043	0.288
45	0.36	1.474	0.301	1.868	0.205	2.064	0.636
60	0.71	2.097	0.512	2.409	0.245	2.007	0.905
90	1.07	2.331	0.601	2.667	0.258	1.976	1.006
120	1.07	2.443	0.667	2.833	0.273	1.938	1.055
150	1.43	2.484	0.710	2.925	0.286	1.905	1.072
180	1.43	2.500	0.734	2.975	0.294	1.885	1.079
210	2.14	2.521	0.795	3.092	0.316	1.829	1.088
240	2.50	2.524	0.837	3.170	0.332	1.788	1.089
300	2.85	2.532	0.863	3.226	0.341	1.764	1.093
360	3.21	2.540	0.866	3.240	0.342	1.763	1.096
420	3.57	2.557	0.896	3.317	0.351	1.737	1.104
480	4.28	2.557	0.917	3.361	0.359	1.716	1.103
540	4.99	2.586	0.941	3.442	0.364	1.699	1.116
600	5.70	2.620	0.942	3.477	0.360	1.707	1.131
720	6.77	2.628	0.958	3.522	0.365	1.693	1.134
840	7.49	2.660	0.961	3.561	0.362	1.698	1.148
960	8.20	2.681	0.960	3.578	0.358	1.704	1.157
1080	9.98	2.711	0.933	3.541	0.345	1.738	1.170
1200	11.41	2.714	0.950	3.586	0.351	1.722	1.171
1320	13.19	2.616	0.948	3.487	0.363	1.700	1.129
1440	14.62	2.386	0.960	3.295	0.403	1.631	1.030
1465	15.00	2.304	0.967	3.228	0.423	1.604	0.994

U.S. STANDARD SIEVE NUMBERS HYDROMETER U.S. STANDARD SIEVE OPENING IN INCHES 1-1/2 in. 3/4 in. 1/2 in. 3/8 in. 1 in. #140 #200 ü 100 CENCS-IA-93-30-ED-6H 90 80 BY WEIGHT Req. No. Contract PERCENT FINER
8 6 6 50 10 0.01 0.005 0.001 0.05 0.1 100 50 10.0 1.0 0.5 500 GRAIN SIZE IN MILLIMETERS % SAND % SILT OR CLAY % GRAVEL % COBBLES 0.2 63.6 36.2 0.0 0.0 68102-2586 PL ΡI C_{C} $C_{\mathbf{u}}$ Elev or Depth Nat W% LL Sample No. 28.0 23.0'-25.0' 76 60 16 0.21 W-4 • - OMAHA, NE CLASSIFICATION • ELASTIC SILT, MH 420 SOUTH 18th STREET Project CHASKA FLOOD CONTROL Remarks: Lab No. 1897 Area Date 2-18-93 Boring No. 92-195MU GRADATION CURVES

DIVISION LAB

CORPS OF ENGINEERS, MISSOURI RIVER

Figure 19FIG D-329

CLASSIFICATION TEST REQUEST

ACCOMPANYING CONTAINER - 1	YPE: 5"WAX	,	MRD LAB. NO.:/897 REQUEST NO. CENCS-IA-9 NO.: 23.0-25.0	B-30 k
SAMPLE IDENTI	FICATION:			
Structure: Consistency: PL Thread:	Undisturbed Remolded Strength Shine ()	() Insensitive () Low () Med) None () Dull	(X) S1. Sens. () Sens	itive
Torvane: ,3 Torvan	SF	Odo Cen Dat	er: None mentation: reactive to HC me Core Opened: 2/10/93 tch: (Core description and specimen location)	- 1

3"	414"	4%"	11 ''	(½"
dixand	Ř	Q	Saved Top	Just Top
-			—— 24" ——	>

Technician MJW

LEGEND PROJECT CHASKA FLOOD; CENCS-IA-93-30-ED-6H
+ = .5 TSF

* = 2 TSF

BORING NO. 92-195MU

SAMPLE NO. N-5

DEPTH/ELEV 36.0'-38.0'

MRD LAB NO. 1897

Table 13 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project Boring Number Sample Number

: 92-195MU

: W-5

: 36.0'-38.0' Depth

Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
,						0.400	0 041
15	0.00	0.095	0.024	1.199	0.252	0.499	0.041
30	0.00	0.222	0.030	1.473	0.133	0.525	0.096
45	0.34	0.346	0.094	1.851	0.271	0.492	0.149
60	0.34	0.419	0.130	2.134	0.311	0.474	0.181
90	0.68	0.473	0.162	2.400	0.343	0.455	0.204
120	1.02	0.527	0.179	2.642	0.341	0.451	0.227
150	1.02	0.580	0.194	2.899	0.336	0.450	0.250
180	1.36	0.633	0.215	3.224	0.340	0.442	0.273
210	1.69	0.725	0.240	3.784	0.331	0.439	0.313
	2.03	0.805	0.261	4.365	0.324	0.438	0.348
240	2.03	0.870	0.277	4.904	0.319	0.438	0.375
300		0.870	0.284	5.389	0.299	0.451	0.410
360	3.05		0.291	5.781	0.291	0.457	0.432
420	3.39	1.000	0.300	6.255	0.286	0.460	0.453
480	3.73	1.050	0.317	7.168	0.281	0.463	0.488
540	4.41	1.130	0.320	7.506	0.273	0.470	0.506
600	5.42	1.173		7.521	0.258	0.489	0.526
720	6.10	1.218	0.313	7.437	0.249	0.500	0.535
840	6.78	1.239	0.307	7.292	0.245	0.504	0.535
960	7.80	1.239	0.303	6.926	0.230	0.523	0.542
1080	9.15	1.256	0.288		0.235	0.528	0.521
1200	10.85	1.208	0.271	6.284		0.529	0.513
1320	12.20	1.189	0.265	6.057	0.223		0.496
1440	13.90	1.149	0.236	5.355	0.206	0.548	0.496
1517	15.00	1.121	0.241	5.332	0.216	0.536	0.404

Table 14 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH : 92-195MU

Project
Boring Number
Sample Number

: W-5

: 36.0'-38.0' Depth

Confining Pressure: 2 TSF

Time	Strain	Deviator Stress	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
(min)	(%)	(TSF)	(151)	Racio	A	(151)	(151)
15	0.00	0.025	-0.202	1.012	- 7.959	2.208	0.011
30	0.00	0.042	-0.390	1.017	-9.379	2.400	0.018
45	0.36	0.694	-0.418	1.287	-0.602	2.590	0.299
60	0.36	1.183	-0.401	1.493	-0.339	2.694	0.511
90	0.72	1.384	-0.413	1.574	-0.298	2.756	0.597
120	1.07	1.524	-0.464	1.619	-0.304	2.841	0.658
150	1.07	1.631	-0.535	1.643	-0.327	2.939	0.704
180	1.43	1.701	-0.607	1.652	-0.356	3.028	0.734
210	1.79	1.791	-0.813	1.637	-0.453	3.257	0.773
240	2.15	1.850	-1.014	1.614	-0.548	3.472	0.798
300	2.87	1.870	-1.213	1.582	-0.648	3.676	0.807
360	3.22	2.319	1.396	4.839	0.603	1.178	1.001
420	3.58	2.368	1.468	5.453	0.620	1.118	1.022
480	3.94	2.387	1.512	5.891	0.634	1.079	1.030
540	4.66	2.448	1.578	6.795	0.645	1.028	1.057
600	5.73	2.480	1.621	7.538	0.654	0.993	1.070
720	6.45	2.518	1.613	7.504	0.641	1.010	1.087
840	7.16	2.541	1.668	8.642	0.657	0.961	1.097
960	8.24	2.544	1.693	9.278	0.666	0.937	1.098
1080	9.67	2.566	1.724	10.309	0.673	0.911	1.107
1200	11.46	2.551	1.728	10.379	0.678	0.904	1.101
1320	12.89	2.531	1.743	10.852	0.689	0.884	1.092
1440	14.68	2.462	1.667	8.390	0.677	0.943	1.063
1461	15.00	2.453	1.677	8.623	0.684	0.931	1.059

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 68102-2586 420 SOUTH 18th STREET - OMAHA, NE

CENCS-IA-93-30-ED-GH

CH92195W5

. No

. Req. No. Contract

U.S. STANDARD SIEVE NUMBERS HYDROMETER U.S. STANDARD SIEVE OPENING IN INCHES 1/2 in. 3/8 in. 3/4 in. 1-1/2 #140 #200 2 in. 3 1n. 'n \$40 \$60 ω 100 90 80 WEIGHT 20 ВУ 60 PERCENT FINER
8 & 9 20 10 0.001 0.01 0.005 1.0 0.5 0.1 0.05 10.0 100 50 200 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % SAND % GRAVEL % COBBLES 37.8 0.0 57.6 0.0 c_u PL ΡI C_{C} Nat W% LL Elev or Depth Sample No. 12.4 0.70 38 84 122 36.0'-38.0' W-5 • CLASSIFICATION • ORGANIC SILTY SAND, SM SPECIFIC GRAVITY=2.43 Project CHASKA FLOOD CONTROL Remarks: EAST CREEK, STAGE 3 Lab No. 1897 Area Date 02/18/93 Boring No. 92-195MU GRADATION CURVES

Figure 24 FIGURE D-336

CLASSIFICATION TEST	EQUES 7
---------------------	---------

ACCOMPANYING CONTAINER - 1	SKA FLACT CONTION TEST: (1), R REQUEST NO. CENCS-1A-93-30-ED-GH NO.: FICATION: 92-195111 W-5 36.6-380
SAMPLE IDENTI	FICATION:
Structure:	(X) Brittle () Plastic ()
Consistency:	Undisturbed () Soft () Med () Stiff () Hard
	Remolded (X) Insensitive () Sl. Sens. () Sensitive
PL Thread:	Strength (X) Low () Med () High ()
	Shine (X) None () Dull () Gloss () H Class
	Shake Test () None () Slow (Fast () Rapid ()
Torvane: .457	Odor: Name
Color: Dark g	casist brown Cementation: Figure 12 in HCI
Disturbance:	Date Core Opened: 2 /11/27
Est. Max. Part	icle Size: Sketch: (Core description and
Remarks:	specimen location)

3"	4/4"	44"	1211	1 1/2
giscard	R	Q	saved top	TOP
-			— 25" ——————————————————————————————————	>

Technician	MJW
------------	-----

FIGURE D-339

+ = .5 TSF * = 1 TSF X = 2 TSF PROJECT

CHASKA FLOOD; CENCS-IA-93-30-ED-6H

BORING NO.

92-195MU

38.0'-40.0'

SAMPLE NO.

W-6

1897

DEPTH/ELEV

MRD LAB NO.

Table 15 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project

Boring Number Sample Number : 92-195MU

: W-6

Depth : 38.0'-40.0'

Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress		Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
			0.006	1 550	0.100	0.539	0.113
15	0.00	0.262	0.026	1.552			
30	0.34	0.362	0.054	1.813	0.150	0.536	0.156
45	0.34	0.462	0.086	2.117	0.187	0.528	0.199
60	0.68	0.512	0.107	2.304	0.210	0.520	0.221
90	1.02	0.562	0.130	2.517	0.231	0.509	0.242
120	1.02	0.611	0.150	2.749	0.247	0.501	0.264
150	1.36	0.655	0.174	3.008	0.265	0.488	0.283
180	1.36	0.700	0.189	3.248	0.270	0.484	0.302
210	2.05	0.777	0.222	3.800	0.287	0.470	0.335
240	2.39	0.849	0.248	4.376	0.293	0.462	0.367
300	2.73	0.931	0.274	5.112	0.294	0.456	0.402
360	3.07	1.017	0.299	6.053	0.294	0.453	0.439
420	3.41	1.102	0.318	7.038	0.289	0.455	0.476
480	3.75	1.177	0.333	8.061	0.284	0.458	0.508
540	4.77	1.302	0.350	9.677	0.269	0.472	0.562
600	5.46	1.414	0.353	10.609	0.250	0.497	0.610
720	6.48	1.492	0.353	11.137	0.237	0.516	0.644
840	7.16	1.554	0.354	11.661	0.228	0.531	0.671
960	7.84	1.582	0.353	11.747	0.224	0.539	0.683
1080	9.55	1.486	0.337	10.117	0.227	0.531	0.642
1200	10.91	1.473	0.329	9.616	0.224	0.536	0.636
1320	12.62	1.410	0.301	8.086	0.214	0.548	0.609
1440	14.32	1.332	0.278	6.997	0.209	0.552	0.575
1499	15.00	1.306	0.270	6.697	0.208	0.553	0.564

Table 16 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH : 92-195MU Project
Boring Number
Sample Number

: W-6

: 38.0'-40.0' Depth

Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore / Deviator	Normal Stress	Shear Stress
Time	Strain	Stress	Pore Pressure	Eff. Stress		(TSF)	(TSF)
(min)	(୫)	(TSF)	(TSF)	Ratio	Α	(131)	(151)
				1 200	0.293	0.991	0.085
15	0.00	0.197	0.058	1.209		0.957	0.137
30	0.35	0.318	0.122	1.362	0.385	0.925	0.185
45	0.35	0.428	0.181	1.522	0.423		0.103
60	0.70	0.512	0.222	1.657	0.434	0.905	
90	1.05	0.569	0.260	1.768	0.458	0.881	0.245
120	1.05	0.641	0.297	1.913	0.464	0.862	0.277
150	1.40	0.703	0.332	2.052	0.473	0.842	0.303
180	1.40	0.755	0.361	2.180	0.479	0.826	0.326
210	2.11	0.850	0.416	2.456	0.490	0.794	0.367
240	2.46	0.940	0.462	2.749	0.492	0.771	0.406
300	2.81	1.041	0.508	3.117	0.489	0.750	0.449
360	3.16	1.135	0.552	3.535	0.487	0.729	0.490
420	3.51	1.219	0.590	3.970	0.484	0.712	0.526
	3.86	1.296	0.625	4.456	0.483	0.696	0.559
480	4.91	1.416	0.685	5.490	0.484	0.666	0.611
540	5.62	1.512	0.732	6.632	0.484	0.642	0.653
600	6.67	1.577	0.766	7.742	0.486	0.624	0.681
720		1.635	0.790	8.782	0.483	0.615	0.706
840	7.37		0.804	9.468	0.483	0.608	0.718
960	8.07	1.664	0.817	10.084	0.493	0.594	0.717
1080	9.83	1.661		9.472	0.511	0.582	0.687
1200	11.23	1.591	0.812	7.704	0.526	0.588	0.639
1320	12.99	1.481	0.779		0.546	0.567	0.628
1440	14.74	1.454	0.793	8.016	0.550	0.566	0.621
1462	15.00	1.438	0.790	7.849	0.550	0.500	0.051

Table 17 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH

Project : CHASKA Boring Number : 92-195 Sample Number : W-6 Depth : 38.0'-Confining Pressure : 2 TSF : 92-195MU

: 38.0'-40.0'

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
				2 066	0.160	2 011	0.056
15	0.00	0.131	0.021	1.066	0.160	2.011	0.056
30	0.36	0.306	0.109	1.162	0.356	1.967	0.132
45	0.36	0.677	0.266	1.390	0.394	1.901	0.292
60	0.71	0.871	0.380	1.538	0.437	1.836	0.376
90	1.07	1.021	0.477	1.670	0.467	1.776	0.441
120	1.07	1.167	0.559	1.810	0.479	1.730	0.504
150	1.43	1.331	0.632	1.973	0.475	1.698	0.574
180	1.43	1.466	0.694	2.122	0.474	1.669	0.633
210	2.14	1.608	0.804	2.344	0.500	1.594	0.694
240	2.50	1.731	0.892	2.562	0.516	1.537	0.747
300	2.85	1.853	0.971	2.800	0.524	1.488	0.800
360	3.21	1.959	1.042	3.045	0.532	1.443	0.845
420	3.57	2.048	1.102	3.279	0.538	1.405	0.884
480	3.92	2.136	1.158	3.536	0.543	1.371	0.922
540	4.99	2.256	1.248	4.001	0.554	1.310	0.974
600	5.71	2.370	1.326	4.513	0.560	1.261	1.023
720	6.78	2.437	1.389	4.988	0.570	1.214	1.052
840	7.49	2.501	1.441	5.478	0.577	1.178	1.080
960	8.21	2.574	1.490	6.051	0.580	1.147	1.111
1080	9.99	2.641	1.555	6.937	0.589	1.099	1.140
1200	11.42	2.679	1.606	7.804	0.600	1.057	1.156
1320	13.20	2.660	1.621	8.014	0.610	1.038	1.148
1440	14.98	2.551	1.615	7.626	0.633	1.017	1.101
1441	15.00	2.550	1.615	7.619	0.633	1.017	1.100

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

CENCS-IA-93-30-ED-6H

CH92195W6

. N N

. 0 . **M** Req. No.

U.S. STANDARD SIEVE NUMBERS HYDROMETER U.S. STANDARD SIEVE OPENING IN INCHES 1/2 in. 3/8 in. 3/4 in. 2 in. 3 in. #140 #200 Ę 9 **‡**40 100 90 80 BY WEIGHT Contract PERCENT FINER
W & G 20 10 0 0.01 0.005 0.001 1.0 0.5 0.1 0.05 50 10.0 100 200 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % SAND % COBBLES % GRAVEL 35.6 59.6 0.0 0.0 $C_{C_{\underline{c}}}$ $C_{\mathbf{u}}$ ΡI PL Nat W% LL Elev or Depth Sample No. 0.42 28.5 89 68 21 38.0. -40.0 • W-6 CLASSIFICATION SILTY SAND, SM, WITH ORGANICS SPECIFIC GRAVITY = 2.50 Project CHASKA FLOOD CONTROL Remarks: EAST CREEK, STAGE 3 Lab No. 1897 Area Date 02/22/93 Boring No. 92-195MU GRADATION CURVES

CLASSIFICATION TEST REQUEST

PROJECT: MACCOMPANYING CONTAINER - T SAMPLE IDENTIF	test: (7), R ype: 5" WAX	control 195Mi l	RI	rd lab. no.:/897 equest no. CFNC3-14-93-30-4 o.: • 38-0'- 40-0'
SAMPLE IDENTI	FICATION:			
Structure: Consistency: PL Thread:	Strength Shine	None () Dul	led ()	() Stiff () Hard S1. Sens. () Sensitive High () Gloss () H. Gloss () () Fast () Rapid ()
Torvane: .42 - Color: Yellowich Disturbance: Est. Max. Part Remarks:	TSF brown	1	Odor: Ao Cementat Date Cor	

134"				11/4"	
discolor sources	4/20 R	4'4" Q	saved for	Jucar	TOP
-		- 24* -			

Technician MTW

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

CENCS-IA-93-30-ED-GH

CH92197W1

W.O. No.

U.S. STANDARD SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1/2 in. 3/8 in. 3/4 in. 1 in #140 **#**200 Ľ. Ę 100 90 80 BY WEIGHT 60 Contract PERCENT FINER 20 10 0.01 0.005 1.0 0.5 0.1 0.05 10.0 100 50 200 GRAIN SIZE IN MILLIMETERS % SILT OR CLAY % SAND % GRAVEL % COBBLES 14.3 7.7 22.1 55.9 0.0 PΙ C_{C} c_{u} LL PL Elev or Depth Nat W% Sample No. 4.84 1396.4 62 27 35 4.0'-4.6' W-1• 26.5 CLASSIFICATION • CLAYEY SANDY GRAVEL, GC SPECIFIC GRAVITY = 2.62 Project CHASKA FLOOD CONTROL Remarks: EAST CREEK, STAGE 3 Lab No. 1897 Area Date 02/25/93 Boring No. 92-197MU GRADATION CURVES

Figure 31 FIG D-3

CLASSIFICATION TEST REQUEST

ACCOMPANYING TEST: (CONTAINER - TYPE: F SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION	8 5"WAX on: 92-197MU' (MRD LAB. NO.:/897 REQUEST NO. CENCS-IA-B-30-ED-0 NO.: - ///-/ 40'-46'
Structure: () 1 Consistency: Und Ren PL Thread: Stren Shine Shake	Brittle (Plastic disturbed () Soft molded () Insensitingth () Low () e () None () None (() (Med () Stiff () Hard ive () Sl. Sens. () Sensitive Med (High () 11 () Gloss () H. Gloss ()) Slow () Fast () Rapid ()
Torvaile: nonetaten.	too rocky	Odor: Mane
Disturbance: rocce	•	Cementation: reactive to HCI
Est. Max. Particle S	ize: 3"	Date Core Opened: 2/23/93
Remarks: Sampe ==	- any Q speciment	Sketch: (Core description and specimen location)

			•	
				_
	•) .		TOP
-	 			
1	6		7	

Technician MJW

2 7. 1/80 1 SHEAR STRESS. 0 3 4 2 1 0 1.00 NORMAL STRESS, #, T/SQ FT 2 (*) 3 (X) 1 (+) SPECIMEN NO. 0.80 102.5 109.8 97.3 WATER CONTENT. 3 45.0 DRY DENSITY 43.3 40.9 LB/ CU FT 99.0 98.0 99.0 SATURATION, % 0.60 2.74 2.40 2.53 e. VOID RATIO 105.1 96.2 101.7 w, WATER CONTENT. 3 45.1 43.4 40.9 DRY DENSITY 74 0.40 LB/CU FT 99.0 94.0 99.0 SATURATION, 5 2.74 2.39 2.53 VOID RATIO 0.0 FINAL BACK 0.0 0.0 u. 0.20 PRESSURE, T/SQ FT 1.0 MINOR PRINCIPAL 0.3 0.5 STRESS, T/SQ FT 0.19 0.17 MAXIMUM DEVIATOR 0.13 STRESS, T'SQ FT 13.5 25.3 12.5 0.00 TIME TO 10, - "," t, 50 10 0.17 0.16 ULTIMATE DEVIATOR (0, - 0,) 0.11 STRESS, T/SQ FT 1.42 1.40 1.39 ٥. INITIAL DIAMETER, IN. AXIAL STRAIN, 4, 5 2.98 2.96 2.98 INITIAL HEIGHT, IN. STRAIN TEST DESCRIPTION OF SPECIMENS Slightly Organic Sandy Silt, MH TYPE OF TEST UNDISTURBED c. 2.45 TYPE OF SPECIMEN PL 51 27 LL 78 CHASKA FLOOD CONTROL; CEMCS-IA-93-30-ED-G PROJECT REMARKS Yellowish gray/black. Torvane=0.35 TSF. Calcareous. SAMPLE NO. W-1 92-198MU BORING NO 3.0'-4.2' DEPTH FLEV 2-25-93 1897 LABORATORY TRIAXIAL COMPRESSION TEST REPORT FIGURE 1 (EM 1110-2-1906) TRANSLUCENT ENG FORM NO

PREVIOUS EDITION IS DESOLETE

MEV JUNE 1970 2089

FIGURE D-348

+ = .25 TSF * = .5 TSF PROJECT CHASKA FLOOD C.P.; IA-93-30

BORING NO. 92-198 SAMPLE NO. W-1 DEPTH/ELEV 3-4.2 MRD LAB NO. 1897

Table 1 - Triaxial R Test Results

Boring Number : 92-198
Sample Number : W-1
Depth : 3-4.2
Confining Pressure : .25 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(/	(- /	(,				, ,	•
15	0.00	0.139	0.023	1.612	0.166	0.261	0.060
30	0.00	0.162	0.038	1.766	0.236	0.252	0.070
45	0.00	0.190	0.032	1.875	0.171	0.265	0.082
60	0.34	0.201	0.048	1.992	0.237	0.252	0.087
90	0.34	0.219	0.042	2.058	0.194	0.262	0.095
120	0.67	0.234	0.050	2.174	0.216	0.258	0.101
150	1.01	0.245	0.062	2.300	0.254	0.249	0.106
180	1.01	0.263	0.054	2.342	0.206	0.261	0.114
210	1.35	0.292	0.066	2.586	0.228	0.256	0.126
240	2.02	0.316	0.068	2.731	0.215	0.260	0.136
300	2.35	0.339	0.076	2.943	0.224	0.258	0.146
360	2.69	0.362	0.070	3.010	0.193	0.270	0.156
420	3.03	0.385	0.065	3.080	0.169	0.280	0.166
480	3.36	0.399	0.065	3.154	0.163	0.284	0.172
540	4.37	0.417	0.064	3.243	0.154	0.289	0.180
600	5.05	0.448	0.042	3.159	0.095	0.319	0.193
720	5.72	0.474	0.040	3.260	0.086	0.327	0,.205
840	6.73	0.477	0.038	3.253	0.080	0.330	0.206
960	7.40	0.476	0.035	3.218	0.075	0.333	0.206
1080	9.08	0.473	0.035	3.198	0.073	0.332	0.204
1200	10.43	0.483	0.012	3.026	0.024	0.358	0.209
1320	12.11	0.491	0.012	3.061	0.024	0.360	0.212
1440	13.45	0.512	0.012	3.146	0.023	0.365	0.221
1550	15.00	0.514	0.006	3.107	0.013	0.371	0.222

Table 2 - Triaxial \overline{R} Test Results

Project : CHASKA
Boring Number : 92-198
Sample Number : W-1
Depth : 3-4.2
Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15 30	0.00	0.278 0.297 0.537	0.009 0.009 0.021	1.565 1.604 2.121	0.032 0.030 0.039	0.560 0.565 0.612	0.120 0.128 0.232
45 60 90	0.00 0.34 0.34	0.748 0.810	0.076 0.113	2.765 3.093	0.103 0.140	0.609 0.588	0.323 0.350
120 150	0.68	0.837 0.874	0.127 0.137	3.243	0.152 0.157	0.580 0.579	0.361 0.377
180 210	1.02	0.903 0.958	0.137	3.485 3.713	0.152 0.154	0.586 0.590	0.390 0.413
240 300	2.04	0.997 1.042	0.151 0.144	3.858 3.926	0.152 0.139	0.596	0.430
360 420	2.73 3.07	1.096 1.121	0.142 0.137	4.059 4.087	0.130 0.123	0.629 0.641 0.665	0.473 0.484 0.505
480 540	3.41	1.170	0.125 0.120	4.121 4.227 4.215	0.108 0.099 0.082	0.683	0.529
600 720 840	5.11 5.79 6.81	1.274 1.304 1.325	0.104 0.086 0.068	4.147 4.069	0.066 0.052	0.737	0.563 0.572
960 1080	7.50 9.20	1.353 1.386	0.054 0.027	4.033	0.040 0.020	0.781 0.816	0.584 0.598
1200 1320	10.56	1.399 1.381	0.005 -0.015	3.826 3.680	0.004 -0.010	0.841 0.857	0.604 0.596
1440 1536	13.63 15.00	1.362 1.311	-0.035 -0.055	3.545 3.363	-0.025 -0.042	0.872 0.879	0.588 0.566

Table 3 - Triaxial R Test Results

: CHASKA FLOOD C.P.; IA-93-30

Project Boring Number Sample Number : 92-198 : W-1 : 3-4.2 Depth Confining Pressure : 1 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.00	0.249	-0.003	1.248	-0.011	1.065	0.107
30	0.00	0.249	0.011	1.251	0.044	1.051	0.107
45	0.00	0.307	0.019	1.313	0.064	1.057	0.133
60	0.34	0.535	0.017	1.545	0.033	1.116	0.231
90	0.34	0.763	0.075	1.825	0.099	1.114	0.329
120	0.69	0.989	0.184	2.213	0.187	1.061	0.427
150	1.03	1.189	0.304	2.708	0.256	0.990	0.513
180	1.03	1.295	0.358	3.017	0.277	0.963	0.559
210	1.37	1.398	0.426	3.433	0.305	0.920	0.603
240	2.06	1.467	0.456	3.699	0.312	0.907	0.633
300	2.40	1.506	0.474	3.861	0.315	0.899	0.650
360	2.75	1.563	0.495	4.093	0.317	0.892	0.675
420	3.09	1.601	0.495	4.173	0.310	0.901	0.691
480	3.44	1.635	0.500	4.272	0.307	0.905	0.705
540	4.47	1.686	0.513	4.459	0.305	0.904	0.728
600	5.15	1.754	0.521	4.665	0.298	0.913	0.757
720	5.84	1.808	0.517	4.743	0.286	0.931	0.780
840	6.87	1.841	0.513	4.778	0.279	0.943	0.795
960	7.56	1.875	0.510	4.824	0.272	0.954	0.809
1080	9.28	1.928	0.498	4.838	0.259	0.979	0.832
1200	10.65	1.963	0.484	4.803	0.247	1.002	0.847
1320	12.37	1.955	0.471	4.694	0.241	1.013	0.844
1440	13.74	1.981	0.458	4.654	0.232	1.032	0.855
1527	15.00	1.948	0.413	4.328	0.212	1.069	0.841

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

Req. No. CENCS-IA-93-30-ED-GH

Contract No.

W.O. No. ch198w1

U	U.S. STANDARD SIEVE OPENING IN INCHE							S U.S. STANDARD SIEVE NUMBERS						НҮ	DROM	ETER	A											
	100	6 in.	3 in. 2 in.	1-1/2 1	1 in. 3/4 in.	1/2 in. 3/8 in.		4	ç :	#10		02.	40	₽60		₩140	₩500											
	100					1																						
	90			$\dagger \dagger$							1						\parallel											
	80			+		$-\parallel$	\prod	\parallel				$\left \cdot \right $	+	<u> </u>					+			+	\prod					1
THU.	70			+	_	-		H			-		+	-	-				+	-	-	_		\parallel	-			-
BY WETGHT	60				-			\prod	-		-	\prod	$\frac{1}{1}$	-	-				4			-		+	-			-
																				1								
FINER																					1							
DEBCENT	40																				1							
Jaza	30																					1						
	20			$\frac{1}{1}$	-			+			-			\dagger		1		$\dagger \dagger$		T			N					1
	10			+	-		╫	\parallel			$-\parallel$		++	-		\dashv			+	-	-							-
	0							\perp				Ш	Ш				Ш	Ш		1	<u></u>		Ш					
		ኅብ ፋስ	0 50			10.0)	5			1.0	. (.5			٥.	1	0.0)5			0.0	11	0.0	05		0.	٠,
	اح	00 10	0 50			10.0)	5 GI	RAI	N S		E		MIL	_LII)5								0.	7
%	CO	00 10 BBLES			GRA\ 0.4	/EL			RAI	N S	SIZ %	E	IN AND	MIL	_L II				05		SI:	LT				Y 12		
% •	CO	BBLES				/EL			RAI	N S	SIZ %	E S	IN AND	MIL	LII				05			LT				_		
% •	0	BBLES	5	%	0.4	VEL		G			% %	S 23	AND . 2				EF	as	05		53.	LT		3 0	CLA	_	.9	
% •	0	BBLES	e No.	%	0.4 Ele	/EL	or	G	th		SIZ %	S 23	AND . 2	MIL LL 78				as	05			LT	OF		CLA C	_		
•	0	BBLES .O	e No.	%	0.4 Ele	VEL	or	G	th		% %	S 23	AND . 2	LL			PL	as			53. PI	LT	OF	C	CLA C	_	. 9 C ₍	
•	0	BBLES .O	e No.	%	0.4 Ele	VEL	or	G	th	Ne	%	S 23	AND . 2	LL 78			PL	as	05		53. PI	LT	OF	C	CLA C	_	. 9 C ₍	
•	C000 0 S	BBLES .O	e No.	%	0.4 E16	VEL	y 5	Gep	th	Ne CLA	%	S 23	AND . 2	LL 78			PL	as	05		53. PI	LT	OF	C	CLA C	_	. 9 C ₍	
	COM O S	BBLES .0	e No.	%	0.4 E16	VEL	y 5	Gep Dep .2'	oje	Ne CLA MH	%SSS	S 23	IN AND CF	LL 78	DN	MEI	PL 5:	TRE	FOL	1	53. PI	LT	OF	C	CLA C	_	. 9 C ₍	
	COM O S	BBLES .0	e No.	%	0.4 E16	VEL	y 5	Gep Dep .2'	oth	Ne CLA MH	SIZ %	S 23 W%	IN AND . 2	LL 78	DOD K.,	CO ST.	PL 5:	TRE	OL. 3		53. PI	_T 5	1	C C 1 . 3	CLA CC 355	_	. 9 C ₍	

CLASSIFICATION	TEST	PEOUTCE
		TEQUEST

	CLASSIFICA	TION TEST REQUEST
ACCOMPANYING CONTAINER - SAMPLE IDENT:	15Ka Flad CONTON TEST: Q, R IYPE: 5"WAX IFICATION: 92-198MU	MRD LAB. NO.:/897 REQUEST NO. CENCS-IA-93-30-ED-GH NO.:
SAMPLE IDENTI	FICATION:	
Structure: Consistency: PL Thread:	Strength () Low (Shine () None ()	oft () Med () Stiff () Hard nsitive () Sl. Sens. () Sensitive () Med () High () Dull () Gloss () H. Gloss () () Slow () Fact ()
Torvane: 3579	- 1	
Est. Max. Part: Remarks: Samp	reks, wire, roots.	Odor: None Cementation: Feactive to HCI Date Core Opened: 2/23/93 Sketch: (Core description and specimen location)

("			2 4
ducard R	4'	Saved Top	
	16.11	TOP	discord TOP
	16		-

Technician ___ MJW

WORK ORDER NO. 93-30-ED-GH Req. No. CENCS-IA-93-30-ED-GH Contract No. NA

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

Standard compaction test EM-1110-2-1906
25 blows per each of 3 layers, with 5.50 lb. sl. weight rammer and 12.0 inch drop.
4.0 inch diameter mold

Sample No.	Elev/ Depth	Classi	fication		6	L	L.	PL	Ņ	// > lo.4	% 3∕4	> in.
1	1.5'-	CLAYEY	SAND SC	2	.69	3	5	14	(a.7	(3
	10.0'											
		Sample No.			1							
Water	content	, percent			3.	0	Aiı	· dri	ed			
		content,	percent		12.							
		ty, lb/cu			116	.8						
Remark	s:				SKA F		0 00	NTROL	_, E	AST C	REEK	· · · · · · · · · · · · · · · · · · ·
				<u> </u>	- H			Lab N	lo.:	1897		
			Area:									
			Boring No	.: (92M-1	99		Dat	e: 2	-9-9	3	
			CON	1P6	CTI	ON	T	EST	RE	POR	T	

Project: CHASKA FLOOD CONTROL, EAST CREEK
Lab No.: 1897 Boring No.: 92M-199
POINT NO. 1 2 3 4 5 6
WM + WS 8.70 8.60 8.61 8.52 8.30 8.70
WM + WS 8.70 8.60 8.61 8.52 8.30 8.70
WM + WS 8.70 8.60 8.61 8.52 8.30 8.70
WM + WS 8.70 8.60 8.61 8.52 8.30 8.70
WM + WS 8.70 8.60 8.61 8.52 8.30 8.70
WM + WS 8.70 8.60 8.61 8.52 8.30 1979.20
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.62 1979.20
WM + WS 8.70 8.60 8.61 8.62 1979.20
WM + WS 8.70 8.70 8.70
WM + WS 8.70 8.70
WM + WS 8.70 8.60 8.61 8.70
WM + WS 8.70 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52 8.70
WM + WS 8.70 8.60 8.61 8.52
WM + WS 8.70 8.60 8.61 8.52
WM + WS 8.70 8.60 8.61 8.52
WM + WS 8.70 8.60 8.61 8.52
WM + WS 8.70 8.60 8.61 8.52
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61 8.62
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61
WM + WS 8.70 8.60 8.61

+ = .25 TSF * = .5 TSF X = 1 TSF PROJECT CHASKA FLOOD C.P.; IA-93-30

BORING NO. 92-200 MU1 SAMPLE NO. W-1

DEPTH/ELEV 3'-5'
MRD LAB NO. 1897

Table 4 - Triaxial R Test Results

Boring Number : 92-200 MU1

Sample Number : W-1
Depth : 3'-5'
Confining Pressure : .25 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
15	0.34	0.449	0.025	2.999	0.057	0.336	0.194
30	0.34	0.567	0.035	3.639	0.063	0.355	0.245
45	0.34	0.627	0.058	4.261	0.092	0.347	0.271
60	0.68	0.655	0.052	4.305	0.080	0.360	0.283
90	1.02	0.687	0.068	4.768	0.099	0.352	0.296
120	1.02	0.715	0.058	4.729	0.082	0.369	0.309
150	1.36	0.728	0.058	4.798	0.081	0.372	0.314
180	1.36	0.746	0.055	4.822	0.074	0.380	0.322
210	2.03	0.763	0.054	4.892	0.071	0.385	0.329
240	2.37	0.780	0.052	4.937	0.067	0.391	0.337
300	2.71	0.802	0.048	4.974	0.061	0.401	0.346
360	3.05	0.810	0.045	4.942	0.056	0.405	0.349
420	3.39	0.817	0.041	4.911	0.051	0.411	0.353
480	3.73	0.825	0.040	4.934	0.049	0.414	0.356
540	4.75	0.829	0.034	4.837	0.041	0.421	0.358
600	5.42	0.839	0.027	4.759	0.032	0.431	0.362
720	6.44	0.834	0.020	4.630	0.025	0.437	0.360
840	7.12	0.840	0.014	4.553	0.017	0.444	0.362
960	7.80	0.840	0.008	4.471	0.010	0.450	0.363
1080	9.49	0.830	0.000	4.321	0.001	0.456	0.358
1200	10.85	0.826	-0.007	4.212	-0.008	0.462	0.357
1320	12.54	0.774	-0.035	3.720	-0.044	0.477	0.334
1440	14.24	0.735	-0.031	3.616	-0.042	0.463	0.317
1507	15.00	0.728	-0.038	3.530	-0.052	0.468	0.314
1507	15.00	0.728	-0.038	3.530	-0.052	0.468	0.314

Table 5 - Triaxial R Test Results

Boring Number : 92-200 MU1

Sample Number : W-1
Depth : 3'-5'
Confining Pressure : .5 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator	Normal Stress (TSF)	Shear Stress (TSF)
			0.001	1.563	0.346	0.477	0.102
15	0.34	0.236	0.081		0.341	0.469	0.145
30	0.34	0.336	0.114	1.871	0.341	0.444	0.176
45	0.34	0.409	0.157	2.192		0.444	0.196
60	0.68	0.454	0.168	2.367	0.370		0.190
90	1.02	0.490	0.197	2.616	0.401	0.424	
120	1.02	0.527	0.198	2.744	0.376	0.432	0.227
150	1.36	0.553	0.207	2.886	0.374	0.430	0.239
180	1.36	0.585	0.210	3.014	0.359	0.435	0.252
210	2.04	0.619	0.219	3.203	0.354	0.434	0.267
240	2.37	0.641	0.224	3.322	0.350	0.435	0.277
300	2.71	0.658	0.230	3.434	0.350	0.433	0.284
360	3.05	0.670	0.230	3.479	0.343	0.436	0.289
420	3.39	0.674	0.233	3.518	0.346	0.434	0.291
480	3.73	0.681	0.236	3.582	0.347	0.433	0.294
540	4.75	0.682	0.238	3.599	0.349	0.431	0.294
600	5.43	0.684	0.235	3.585	0.345	0.434	0.295
720	6.45	0.684	0.235	3.579	0.344	0.434	0.295
840	7.12	0.677	0.233	3.531	0.344	0.435	0.292
960	7.80	0.678	0.230	3.516	0.340	0.438	0.293
1080	9.50	0.671	0.230	3.481	0.343	0.436	0.289
	10.85	0.660	0.226	3.409	0.343	0.437	0.285
1200			0.210	3.200	0.328	0.448	0.276
1320	12.55	0.639	0.213	3.182	0.341	0.442	0.270
1440	14.25	0.626		3.148	0.337	0.445	0.269
1506	15.00	0.624	0.210		0.337	0.445	0.269
1506	15.00	0.624	0.210	3.148	0.337	0.773	0.20

Table 6 - Triaxial \overline{R} Test Results

Boring Number : 92-200 MU1

Sample Number : W-1
Depth : 3'-5'
Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
	0 04	0 100	0.026	1.112	0.237	1.001	0.047
15	0.34	0.109	0.026			1.040	0.047
30	0.34	0.212	0.012	1.214	0.055		
45	0.34	0.375	0.054	1.396	0.145	1.039	0.162
60	0.68	0.403	0.048	1.423	0.119	1.052	0.174
90	1.02	0.486	0.072	1.523	0.149	1.048	0.210
120	1.02	0.759	0.144	1.886	0.190	1.044	0.327
150	1.36	0.937	0.264	2.273	0.283	0.968	0.404
180	1.36	1.043	0.328	2.553	0.315	0.930	0.450
210	2.05	1.157	0.426	3.017	0.369	0.860	0.499
240	2.39	1.223	0.485	3.372	0.397	0.818	0.528
300	2.73	1.252	0.526	3.638	0.420	0.784	0.540
360	3.07	1.280	0.553	3.864	0.432	0.764	0.552
420	3.41	1.308	0.575	4.081	0.440	0.749	0.565
480	3.75	1.314	0.602	4.301	0.459	0.723	0.567
540	4.78	1.317	0.626	4.517	0.476	0.700	0.568
600	5.46	1.305	0.641	4.633	0.492	0.682	0.563
720	6.48	1.298	0.649	4.703	0.501	0.672	0.560
840	7.16	1.291	0.654	4.728	0.507	0.666	0.557
960	7.85	1.279	0.658	4.740	0.515	0.659	0.552
1080	9.55	1.259	0.662	4.730	0.527	0.650	0.544
1200	10.92	1.239	0.666	4.710	0.538	0.641	0.535
1320	12.62	1.206	0.639	4.345	0.531	0.660	0.521
1440	14.33	1.178	0.652	4.387	0.554	0.640	0.508
1498	15.00	1.169	0.650	4.343	0.556	0.640	0.505
1498	15.00	1.169	0.650	4.343	0.556	0.640	0.505

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

CENCS-IA-93-30-ED-GH

ch92200w1

. No

. 0 **M** Req. No.

CERUSTI TO	TITUN TEST REQUEST
TEST: (ON, Q, R TYPE: 5" W9X	MRD LAB. NO.: REQUEST NO. CENCS-IA-93-3 NO.: - 50
Remolded () Ins Strength () Low Shine () None (tic () Soft () Med () Stiff () Hard ensitive () S1. Sens. () Sensitive () Med () High () Dull () Gloss () H. Gloss () e () Slow () Fast () Rapid ()
st ourfare cracks	Odor: None Cementation: Select reaction to HC Date Core Opened: 2/1/93 Sketch: (Core description and
	TEST: CON, Q, R TYPE: 5" WQX FICATION: 92-200M FICATION: () Brittle (YPlas Undisturbed () Remolded () Ins Strength () Low Shine () None (

١,,,		21/2"	5"	41/4"	42"	23/4"	
	Saled Ertar	Cans to c	105	Q	sarec Top	discarci	TOP
24"							

Technician	MIW
•	

Figure 6

Page: 1

Thu Feb 25 14:17:22 1993

CONSOLIDATION TEST DATA

Project : CHASKA FLOOD CONTROL

Location : EAST CREEK, STAGE 3

Project No.: 1897

Test No. :

Boring No. : 92-200 MU1

Test Date : 2/1/93

Tested by : MJW

Sample No. : W-1

Sample Type : UNDISTURB

Depth : 3.0'-5.0'

Checked by :

Soil Description: Black, slightly calcareous, torvane 0.3 TSF.

Remarks :

	APPLIED	FINAL	VOID	STRAIN	FITT	ING	COEFFIC	IENT OF CONSOL	IDATION
	PRESSURE	DISPLACEMENT	RATIO	AT END	TIME (min)		(in ² /s)	
	(t/ft ⁻ 2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.10	0.006	1.077	0.56	1.2	0.0	6.75E-004	0.00E+000	0.00E+000
2)	0.25	0.012	1.063	1.20	7.7	0.0	1.05E-004	0.00E+000	0.00E+000
3)	0.50	0.022	1.042	2.23	9.5	.0.0	8.31E-005	0.00E+000	0.00E+000
4)	1.00	0.044	0.996	4.41	11.6	0.0	6.61E-005	0.00E+000	0.00E+000
5)	2.00	0.086	0.909	8.61	7.8	0.0	9.17E-005	0.00E+000	0.00E+000
6)	4.00	0.138	0.800	13.80	5.7	0.0	1.13E-004	0.00E+000	0.00E+000
7)	8.00	0.188	0.696	18.81	5.6	0.0	1.02E-004	0.00E+000	0.00E+000
8)	2.00	0.184	0.704	18.40	7.5	0.0	7.27E-005	0.00E+000	0.00E+000
9)	0.50	0.173	0.727	17.29	15.5	0.0	3.58E-005	0.00E+000	0.00E+000
10)	0.10	0.158	0.759	15.75	38.2	0.0	1.50E-005	0.00E+000	0.00E+000

TRIAXIAL TEST Chaska, Stage 3 - P.O. #DACW37-93M-0610 4-20-93 Date Job No. Location _ 92-200 5" Core Boring No. MU2 Sample No. SN-2 Depth (ft.) 20.5-21.7 Type of Sample ____ Soil Type ___Sand W/Silt, fine grained (SP-SM) C-U w/Pore Pressure _ Type of Test _ Remarks Specimens trimmed to given sizes; saturated, backpressured and consolidated for 7-9 days; drainage valves closed and stressed to given strains at constant rate of 0.005 "/min. Mohr Circles at maximum pore pressure buildup. 40 Liquid SPECIMEN NO. С D Limit Plastic 1.41 Diameter (inches) 1.41 1.41 Limit **Plasticity** Height (inches) 3.14 3.12 3.14 Index Specific 30 2.65 Water Content (%) 20.9 19.7 19.5 Gravity Deviator Stress (tsf) Dry Density (pcf) 99.5 100.4 101.5 Specimen A 0.58 0.63 0.65 Void Ratio 20 1.39 1.39 1.39 Diameter (inches) Consolidation 3.12 3.10 3.12 Height (inches) Specimen B 23.0 21.5 22.5 Water Content (%) Sketches After Failure 10 Dry Density (pcf) 102.7 105.4 103.6 Void Ratio 0.81 3.57 0.60 Specimen C 5.04 Back Pressure (tsf) 5.04 5.04 Minor Principal Stress tsf· o-3 0.50 1.00 2.00 0 Max. Deviator Stress 6.01 24.57 30.47 tsf (σ - σ - σ - 3) Pore Pressure (tsf) Ultimate Deviator Stress Specimen D $tsf(\sigma_1 \cdot \sigma_3)$ **≃**1.8 Ü **≃** 18 **~**18 Max. Pore Pressure 0.25 Buildup - tsf 0.06 0.44 Pore Pressure Parameter 1.0 5 10 15 20 Axial Strain (%) Shear Stress (tsf) 0 0 2 3 5 6 Normal Stress (tsf) 9301 Bryant Avenue South Suite 107 Suite 107 Bloomington, Minnesota 55420-3436 ESTING, INC.

FIGURE D-373

Laboratory Test Summary

Reported To:5	it. Paul Jist	. U.S. Army C	anne of Eacin				
loring No			Job No.: 1906				
loring No			7			1	
John G 110.		:-200 1U2					
Sample No.	s	iN-2					
Depth (Ft)	20	.5-21.7					
ype of Sample		5" Core					
Soil Classification		nd w/Silt,					
ASTM: D2487/24	(ne grained SP-SM)					
dechanical Analys	sis						
Dry Weight (Gran	ms)	463					
Percent Passing							
Gravel 3"	'						
2"							
1"	•						
3/	'4"						
Sand #4	+		·				
#1	10	100					
#4		99.1					
#1	100	33.6					
#2	200	10.5					
Atterberg Limits					-		
Liquid Limit							
Plastic Limit							
Plasticity Index							
Moisture - Density	y						
Water Content (%	%)					<u>.</u>	
Dry Density (PCI	F)						
Inconfined Comp	ression						
/laximum Load (psf))						
land Penetromete	er (tsf)						
Organic Content ((%)						
pH (Meter Method	d)						
Specific Gravity		2.65					
Resistivity (ohm-c	cm)						
- R5(a)	9301 Presol	Avenue South	Suite 107 F NG	INEERING B	loomington, Mini	nesota 55420-3436	FIGURE D-3

SET - R5(a)

Figure 16

Page: 1

Thu Feb 25 13:29:18 1993

CONSOLIDATION TEST DATA

Project : CHASKA FLOOD CONTROL

Location : EAST CREEK, STAGE 3

Project No.: 1897

Test No. :

Boring No. : 92-200 MU1

Test Date : 2/1/93

Tested by : MJW

Sample No. : W-2

Sample Type : UNDISTURB

Depth : 20.01-22.0

Checked by :

Soil Description : Yellowish brown, non-calcareous. No torvane.

Remarks :

	APPLIED	FINAL	VOID	STRAIN	FITT	ING	COEFFIC	IENT OF CONSOL	IDATION			
	PRESSURE	DISPLACEMENT	RATIO	AT END	TIME (min)	(in ² /s)					
	(t/ft ²)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE			
1)	0.10	0.004	0.648	0.36	18.2	0.0	4.48E-005	0.00E+000	0.00E+000			
2)	0.25	0.006	0.644	0.64	17.3	0.0	4.71E-005	0.00E+000	0.00E+000			
3)	0.50	0.010	0.637	1.04	47.0	0.0	1.72E-005	0.00E+000	0.00E+000			
4)	1.00	0.015	0.629	1.52	27.2	0.0	2.94E-005	0.00E+000	0.00E+000			
5)	2.00	0.021	0.619	2.10	22.3	0.0	3.56E-005	0.00E+000	0.00E+000			
6)	4.00	0.029	0.607	2.85	24.8	0.0	3.15E-005	0.00E+000	0.00E+000			
7)	8.00	0.038	0.591	3.83	26.6	0.0	2.89E-005	0.00E+000	0.00E+000			
8)	2.00	0.038	0.591	3.79	2.9	0.0	2.58E-004	0.00E+000	0.00E+000			
9)	0.50	0.037	0.594	3.65	6.1	0.0	1.24E-004	0.00E+000	0.00E+000			
10)	0.10	0.034	0.597	3.43	24.4	0.0	3.13E-005	0.00E+000	0.00E+000			

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

Req. No. CENCS-IA-93-30-ED-GH

W.O. No. Ch92200w2

	U.S. STANDARD SIEVE OPENING IN INCH						CHE	ES U.S. STANDARD SIEVE NUMBERS						HYDROMETER				ROM																										
			6 in.		3 JU.	2 in.	1-1/2 ir	t in.	3/4 in.	1/2 in.	3/8 in.		;	T		9	10			#20			# 40	V				#140	₩500							, , , ,								
	:	100	Ť							Т		1																																
		90											1		1							T		1																				
		80			+	-							+	+	-	,							\mid	'		_					1													
	WEIGHT	70			+	-							+	+	\dagger		-		+			+	+	-		t		-			1									\dagger				
90	ВУ WE	60			$\frac{1}{1}$	+							-	1	1		_		-	\parallel	\parallel	+	$\frac{1}{1}$	<u> </u>		_	-	\parallel	 		+	+							-	-	1			
	INER	50		-	\prod	+		ļ					+	+	$\frac{1}{1}$				1		$\left\{ \left\{ \right\} \right\}$	$\frac{1}{1}$	-	-	1		+		$\frac{1}{1}$	-		1							+	+	+			
Contract	ш	40				-			-		\parallel			-	1		-		-	$\frac{1}{1}$	\prod	+		-	1			1	$\prod_{i=1}^{n}$	-		+							+	$\frac{\perp}{1}$	-			
O ;	ACEN	30					<u> </u>		_		\parallel			_	-		-			$\frac{1}{1}$		-	-	-	_	_						+							$\frac{1}{1}$	+	-		_	
	PE	50									\parallel			1										-				4				V							-					
	į																																_	-	^									
		10																																									-4	
		5	00	100		50				10	0.0)	5	G	;R,	ΔI	N	S	1. SI	o ZE	Ξ	1.0 1I	5 V	ΜI	Ll	LΙ	C ME				05				0	. 0 1	L C	0.0	05	*		0	d	
	%		BBL	ES	I		%	GF			L			L	_		_					Al	ND						1			. 9		SI	LT	- (OP) (CL T		9.	6		
	•		. 0				_) . C) 													-																					
														L					_																									
		9	amp	1e		lo .		- 1		e v 0 .			_	_	_	_	+	Na	t		N %	-		L N			+		PI NI				F	·I		-	6		<u>c</u> 15			26 26	u . 4	
								1	<u> </u>		<u> </u>		_				+					1		·			+				_					$ar{1}$								
	╙									·				==			CI	A	s	S1	F	I	CA	ΤI	:01	N		==	=															
	• 5	Sil	ty cif	Sai	nd G	, ra	SM	1 tv	, .	. 2		67	,							,																								
		.			_																																							
																																						,						:
	А	ema	ark:	s:										Pi	^0	je	ec	t	C E	H	AS S1	Γ	CF	REI	ΕK	ί.	S	iT,	٩G	Έ	30 3	_												
							EAST CREEK, STAGE 3 Lab No. 1897 Area																																					
							Boring No. 92-200 MU1 Da						Date 02/04/93																															

GRADATION CURVES

CLASSIFICATION TEST REQUEST

ACCOMPANYING	SKA Fluid Control TEST: CON, Q, R TEST: CON, Q, R REQUEST NO.: CANS-14.93-30-FD NO.: $200-22.0$ FICATION: $97-200MV1$ $W-2$ $200-22.0$
SAMPLE IDENTI	FICATION:
Structure:	(Brittle () Plastic ()
Consistency:	Undisturbed (X) Soft () Med () Stiff () Hard Remolded (X) Insensitive () Sl. Sens. () Sensitive Strength (X) Low () Med () High () Shine (X) None () Dull () Gloss () H. Gloss ()
Torvane: Too be Color: yellow: Disturbance: F Est. Max. Part Remarks: Some	ocks + sand () None () Slow () Fast () Rapid () Odor: Mone Cementation: No reaction to HC Date Core Opened: 71, 197

(7"	311 211	
discarded gravel + sand	consol discard sand	TOP
-22"-		

Technician MJW

LEGEND + = .5 TSF % = 1 TSF X = 2 TSF PROJECT CHASKA FLOOD; CENCS-IA-93-30-ED-6H
BORING NO. 92-200 MU2

SAMPLE NO. W-3
DEPTH/ELEV 34'-36'
MRD LAB NO. 1897

Table 7 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH

: 92-200 MU2

Project
Boring Number
Sample Number
Depth : W-3 : 34'-36' Confining Pressure : .5 TSF

		Deviator	Induced	Principal	Pore /		Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
, ,	• •	•					
15	0.00	0.373	0.050	1.827	0.134	0.542	0.161
30	0.00	0.468	0.121	2.235	0.259	0.495	0.202
45	0.34	0.541	0.146	2.529	0.271	0.488	0.233
60	0.68	0.595	0.154	2.720	0.259	0.493	0.257
90	0.68	0.645	0.162	2.907	0.252	0.498	0.278
120	1.02	0.689	0.155	2.996	0.225	0.516	0.297
150	1.02	0.739	0.150	3.113	0.204	0.533	0.319
180	1.36	0.783	0.147	3.216	0.188	0.547	0.338
210	1.70	0.866	0.132	3.353	0.153	0.583	0.374
240	2.04	0.959	0.115	3.491	0.121	0.622	0.414
300	2.38	1.041	0.096	3.581	0.093	0.662	0.449
360	3.06	1.112	0.076	3.620	0.068	0.699	0.480
420	3.40	1.189	0.052	3.652	0.044	0.742	0.513
480	3.74	1.265	0.028	3.680	0.023	0.785	0.546
540	4.42	1.411	-0.017	3.727	-0.012	0.866	0.609
600	5.10	1.537	-0.061	3.740	-0.039	0.942	0.664
720	5.78	1.645	-0.105	3.718	-0.063	1.012	0.710
840	6.46	1.742	-0.149	3.684	-0.085	1.080	0.752
960	7.48	1.832	-0.192	3.649	-0.104	1.145	0.791
1080	8.84	1.979	-0.271	3.566	-0.137	1.261	0.854
1200	10.20	2.088	-0.351	3.455	-0.167	1.368	0.901
1320	11.56	2.088	-0.420	3.271	-0.200	1.437	0.901
1440	13.26	2.040	-0.462	3.120	-0.226	1.467	0.881
1560	14.96	1.961	-0.474	3.014	-0.241	1.459	0.846
1563	15.00	1.968	-0.473	3.022	-0.240	1.460	0.849

Table 8 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH Project

: 92-200 MU2

Boring Number Sample Number : W-3 : 34'-36' Depth Confining Pressure : 1 TSF

		Deviator	Induced	Principal	Pore /	Normal	Shear
Time	Strain	Stress	Pore Pressure	Eff. Stress	Deviator	Stress	Stress
(min)	(%)	(TSF)	(TSF)	Ratio	A	(TSF)	(TSF)
(111211)	(• /	(/	\ · /				
15	0.00	0.323	0.040	1.336	0.123	1.040	0.139
30	0.00	0.800	0.225	2.032	0.281	0.973	0.345
45	0.34	1.054	0.392	2.735	0.373	0.869	0.455
60	0.67	1.206	0.434	3.131	0.361	0.864	0.520
90	0.67	1.330	0.479	3.552	0.360	0.850	0.574
120	1.01	1.432	0.478	3.744	0.334	0.877	0.618
150	1.01	1.537	0.474	3.921	0.309	0.907	0.664
180	1.35	1.643	0.463	4.060	0.282	0.944	0.709
210	1.68	1.829	0.443	4.282	0.243	1.010	0.789
240	2.02	2.032	0.410	4.443	0.202	1.093	0.877
300	2.36	2.220	0.364	4.488	0.164	1.186	0.958
360	3.03	2.409	0.318	4.530	0.132	1.278	1.040
420	3.37	2.612	0.255	4.505	0.098	1.392	1.127
480	3.70	2.813	0.200	4.517	0.072	1.496	1.214
540	4.38	3.221	0.081	4.503	0.026	1.716	1.390
600	5.05	3.645	-0.043	4.494	-0.011	1.945	1.573
720	5.73	4.050	-0.179	4.436	-0.044	2.182	1.748
840	6.40	4.452	-0.317	4.381	-0.071	2.419	1.922
960	7.41	4.837	-0.463	4.306	-0.095	2.660	2.088
1080	8.76	5.607	-0.762	4.183	-0.135	3.150	2.420
1200	10.10	6.322	- 1.069	4.056	-0.169	3.634	2.729
1320	11.45	6.851	-1.340	3.928	-0.195	4.036	2.957
1440	13.14	7.010	-1.525	3.776	-0.217	4.261	3.026
1560	14.82	6.969	-1.607	3.673	-0.230	4.332	3.008
1576	15.00	6.937	-1.609	3.659	-0.231	4.326	2.994

Table 9 - Triaxial \overline{R} Test Results

: CHASKA FLOOD; CENCS-IA-93-30-ED-GH

: 92-200 MU2

Project Boring Number Sample Number : W-3 Depth : 34'-36' Confining Pressure : 2 TSF

Time (min)	Strain (%)	Deviator Stress (TSF)	Induced Pore Pressure (TSF)	Principal Eff. Stress Ratio	Pore / Deviator A	Normal Stress (TSF)	Shear Stress (TSF)
		0 147	0.007	1.077	0.662	1.939	0.063
15	0.00	0.147	0.097			1.940	0.003
30	0.00	0.630	0.216	1.353	0.343		
45	0.33	1.385	0.456	1.897	0.330	1.887	0.598
60	0.67	1.725	0.628	2.257	0.364	1.799	0.745
90	0.67	1.923	0.752	2.540	0.391	1.724	0.830
120	1.00	2.054	0.814	2.732	0.397	1.694	0.886
150	1.00	2.166	0.854	2.890	0.395	1.682	0.935
180	1.34	2.258	0.878	3.012	0.389	1.681	0.975
210	1.67	2.411	0.905	3.201	0.376	1.692	1.040
240	2.01	2.538	0.906	3.320	0.357	1.722	1.096
300	2.34	2.656	0.894	3.400	0.337	1.764	1.146
360	3.01	2.751	0.876	3.446	0.319	1.805	1.187
420	3.35	2.857	0.850	3.483	0.298	1.857	1.233
480	3.68	2.949	0.823	3.505	0.280	1.907	1.273
540	4.35	3.130	0.778	3.561	0.249	1.997	1.351
600	5.02	3.295	0.730	3.595	0.222	2.086	1.422
720	5.69	3.466	0.678	3.621	0.196	2.180	1.496
840	6.36	3.617	0.623	3.626	0.173	2.272	1.561
960	7.36	3.730	0.572	3.613	0.154	2.352	1.610
1080	8.70	3.935	0.487	3.601	0.124	2.487	1.699
1200	10.04	4.039	0.457	3.618	0.114	2.543	1.743
1320	11.38	4.108	0.465	3.677	0.114	2.552	1.773
1440	13.05	4.005	0.553	3.768	0.139	2.439	1.729
1560	14.73	3.903	0.589	3.766	0.151	2.377	1.685
1584	15.00	3.876	0.593	3.755	0.153	2.367	1.673

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE 68102-2586

m 1, 1

Req. No. CENCS-IA-93-30-ED-GH

W.O. No. CH92200W3

U.	ċ	ENING IN INCHES U.S	S. STANDARD SIEVE NUMB	ERS	HYDROMETER	7	
BY WEIGHT	90 80 80 80 90 1-1/2 10.	1 in. 3/4 in. 1/2 in. 1/2 in. 3/8 in.	1.0 0.5 IN SIZE IN MILL	0.1 0.05		1 0.005	0.00
	COBBLES %	GRAVEL 0.0	% SAND 53.0		% SILT 36.1	OR CLAY	0.9
	0.0	0.0					
•	Sample No. W-3	Elev or Depth 34.0'-36.0'	Nat W% LL	PL 15	PI 9	C _C	C _u 40.7
			CLASSIFICATION				
5	CLAYEY SAND, S SPECIFIC GRAVI	C TY = 2.62	ect CHASKA FLOO EAST CREEK,	DD CONTROL STAGE 3			
-		Area	Lab No.	1897			•

CLASSIFICATION TEST REQUEST

PROJECT: MACCOMPANYING CONTAINER - TO SAMPLE IDENTIFY	TEST: Q, R	MRD LAB. NO.:/897 REQUEST NO. CENCS-1A-93-30 ED-0 NO.: - 22 U-3 340-360
SAMPLE IDENTIF Structure: Consistency: PL Thread: Torvane: 15 T: Color: 19th yell	() Brittle () Plasti Undisturbed () So Remolded () Insens Strength () Low () Shine () None () Shake Test () None	oft () Med () Stiff () Hard sitive () S1. Sens. () Sensitive () High () Dull () Gloss () H. Gloss () () Slow () Fast () Rapid () Odor: Nowe
Disturbance: Est. Max. Parti		Cementation: Date Core Opened: 7/23/93 Sketch: (Core description and specimen location)

dis card	472 " R	4724	4 hy	642" discard	TOP
-			3"	>	<u> </u>

Technician MJW

CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 420 SOUTH 18th STREET - OMAHA, NE

Req. No. CENCS-IA-93-30-ED-GH MORK ORDER NO. 93-30-ED-GH 68102-2586

Standard compaction test EM-1110-2-1906 25 blows per each of 3 layers, with 5.50 lb. sl. weight rammer 4.0 inch diameter mold and 12.0 inch drop.

Sample No.	Elev/ Depth	Classi	ficati	on	G	<u> </u>	L	PL	% > No.4	% > 3/4 in.	
1 & 2	1.5'-	CLAYEY	SAND	SC	2.65	3	5	17	0.9	0	
	9.0'										
		Sample No.			1 &	2					
Water content, percent				2.	2.3 Air dried						
		content,	percer	nt	17.	5					
		ty, lb/cu			108	.5					
			Proje	ct: C	HASKA F	L00	D CC	NTROL	, EAST C	REEK	
Remarks:			STAGE # 3								
		Lab No.: 1897									
A				Area:							
ļ											
Boring No.: 92M-202 Date: 2-19-93							93				

COMPACTION

REPORT

TEST

Req. No. CENCS-IA-93-30-ED-GH MORK ORDER NO. 93-30-ED-GH No. NA

Contract 105 Dru 100 95 CORPS OF ENGINEERS, MISSOURI RIVER DIVISION LAB 18 20 12 14 16 68102-2586 Water content, percent of dry weight Standard compaction test EM-1110-2-1906 25 blows per each of 3 layers, with 5.50 lb. sl. weight rammer 4.0 inch diameter mold and 12.0 inch drop. Sample Elev/ - OMAHA, NE G LL PL Classification Depth No. SANDY CLAY 35 16 2.69 1.5' -BAG 10.0' BAG Sample No. 420 SOUTH 18th STREET 2.0 Air-dried Water content, percent 14.2 percent Optimum water content, 112.5 Max dry density, lb/cu CHASKA FLOOD CONTROL, EAST CREEK Project: Remarks: STAGE # 3 Lab No.: 1897 Area: Boring No.: 92M-203 Date: 3-8-932 **TEST** REPORT COMPACTION

120 100 % ? 90 115 # 110 1b/cu density, 22 24

% > No.4

% > 3/4 in.

0.1

Project: CHASKA FLOOD CONTROL, EAST CREEK Lab No.: 1897 Boring No.: 92M-203 POINT NO. 1 2 3 4 WM + WS 8.82 8.56 8.40 8.48 WM 4.33 4.33 4.33 4.33 WM+T #1 2397.50 2447.10 2300.80 2463.60 WD+T #1 2152.50 2168.00 2099.90 2163.10 WT #1 456.00 529.60 455.00 582.90 MOIST #114.4 17.0 12.2 19.0

moret 9814.4 17.0 11.2 19.0 DRY DEN 112.5 108.4 108.8 104.6 Max dry den= 112.5 pc+ Cpt moisture= 14.2 %

APPENDIX E

STRUCTURAL DESIGN

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX E

STRUCTURAL DESIGN

TABLE OF CONTENTS

Item	Page	<u>Paragraph</u>
PURPOSE	E-1	1
REFERENCES	E-1	2
DESIGN CRITERIA		
REINFORCED CONCRETE UNIT WEIGHTS FROST PROTECTION STEEL SHEETPILING SEEPAGE CUTOFF WALLS DESIGN FOR SAFETY	E-1 E-2 E-2 E-2 E-2 E-2	3 4 5 6 7 8
DESIGN OF STRUCTURES		
GATEWELLS		
GENERAL DESIGN	E-2 E-3	9 10
STORM SEWERS		
GENERAL DESIGN	E-2 E-3	11 12
DROP STRUCTURES		
GENERAL DESIGN DROP STRUCTURE NO. 1 DROP STRUCTURE NO. 2 DROP STRUCTURE NO. 3 DROP STRUCTURE NO. 4	E-3 E-3 E-4 E-4 E-4 E-5	13 14-17 18 19 20 21
PEDESTRIAN/BIKE PATH BRIDGE	E-5	22
BRIDGE RELOCATIONS	E-5	23
SAMPLE COMPUTATIONS	E-5	24
GATEWELL COMPUTATION RETAINING WALL COMPUTATION DROP STRUCTURE COMPUTATION	E-6 E-34 E-60	

UNIT WEIGHTS

4. The assumed unit weights for design were as follows:

Concrete 150 pcf Water 62.5 pcf Steel 490 pcf

PERVIOUS BACKFILL

Moist 114 pcf Saturated 127 pcf

IMPERVIOUS BACKFILL

Moist 115 pcf Saturated 125 pcf

FROST PROTECTION

5. In general a minimum of 5.5 feet of cover was maintained over retaining wall footings. Riprap was <u>not</u> included as frost protective cover. Frost protection for the drop structure floor slabs, where providing 5.5 feet of frost cover is impractical, will consist of providing free draining material underneath the slab. In-situ material may be used if it is designated as free draining.

STEEL SHEETPILING

6. Steel sheetpiling was assumed to conform to the requirements of ASTM A328 having a yield stress (Fy) of 38,500 psi. The maximum allowable stress conformed to the requirements of EM 1110-1-2101.

SEEPAGE CUTOFF WALLS

7. Cutoff walls were required to control seepage beneath the drop structures and some of the retaining walls. The cutoff walls were designed as reinforced concrete walls and assumed to be 100% effective in order to keep the downstream exit gradient below 0.5 as required by CENCS-ED-GH.

DESIGN FOR SAFETY

8. All of the structures on this project pose a threat to public safety because they are high enough to cause serious injury in case of a fall when in the dry condition and may result in drowning when water is present. In designing for safety, consideration was given to developing features that will help prevent people from falling off the structures and will help prevent drowning. Practical solutions such as handrails and concrete parapets will be implemented.

DESIGN OF STRUCTURES

GATEWELLS

GENERAL

9. Outlet D consists of an 84" RCP, reinforced concrete gatewell, 84" sluice gate, one 84" end section with safety-trash rack and one outlet structure with trash gate and will be constructed at the downstream end of East Creek to prevent Minnesota River flood waters from backing into East Creek and the City of Chaska. Outlet E consists of a 48" RCP, two 48" end sections with safety-trash racks, reinforced concrete gatewell and 48" sluice gate and will be constructed at the upstream end of the project to control the flow in East Creek. Emergency closure

- load case 'Drawdown', no interior water, uplift and exterior water at 3 ft. above end sill elevation, and 250 psf surcharge on backfill. The side walls were then analyzed at the downstream end to determine the reduced reinforcing steel required. The drop wall was analyzed using the Bureau of Reclamation, Monograph No. 27, to determine moments and reactions for rectangular plates, and the end sill was analyzed as a cantilever beam.
- 16. The retaining wall designs were analyzed using a program written for the Lotus 123 spreadsheet software based on EM 1110-2-2502. Three load cases were analyzed for the downstream retaining walls. The first load case 'R1', no water on front or backside of wall, no riprap in channel, 50 psf surcharge on backfill, SMF=2/3 and load factor=2.21; the second load case 'R2', water in front at sill elevation, water in backfill at 3 ft. above sill elevation, riprap in channel, 100 psf surcharge, SMF=3/4 and load factor=2.21; the third load case 'X', water in front at 4 ft. below sill elevation, water in backfill at design flood elevation, riprap in channel, 100 psf surcharge, SMF=1 and load factor=1.7. Load cases R1 and R2 were analyzed for the upstream retaining walls and no surcharge was used since the backfill actually decreases as you move away from the wall.
- 17. Joint reinforcement details as well as construction joint location for each drop structures will be determined during the Plans and Specification phase.

DROP STRUCTURE NO. 1

18. Drop structure number 1 is located approximately 825 feet from the end of the diversion channel. The drop structure is a reinforced concrete structure and consists of a 40 foot wide drop wall, a 37 foot long basin, 2 side walls and an end sill. A seepage cutoff wall is required beneath the downstream end of the drop structure. Approximately 67 feet of upstream and 73 feet of downstream retaining walls will be constructed perpendicular to the drop structure. Seepage cutoff walls are required beyond the end of each retaining wall as well as beneath limited portions of the upstream retaining walls.

DROP STRUCTURE NO. 2

19. Drop structure number 2 is located near Stoughton Avenue at station 14+60 of the diversion channel. The drop structure is a reinforced concrete structure and consists of a 30 foot wide drop wall, a 56 foot long basin, 2 side walls and an end sill. A seepage cutoff wall is required beneath the downstream end of the drop structure. The top of the two side walls is setback 2 inches to offset possible deflections in the 37 foot high walls. During design, surcharge was not applied to the sloped backfill behind the side walls. Approximately 95 feet of upstream and 85 feet of downstream retaining walls will be constructed perpendicular to the drop structure. Seepage cutoff walls are required beyond the end of each retaining wall as well as beneath them.

DROP STRUCTURE NO. 3

20. Drop structure number 3 is located at station 32+53 of the diversion channel. The drop structure is a reinforced concrete structure and consists of a 40 foot wide drop wall, a 46 foot long basin, 2 side walls and an end sill. A seepage cutoff wall is required beneath the downstream end of the drop structure. Approximately 77 feet of upstream and 90 feet of downstream retaining walls will be constructed perpendicular to the drop structure. Seepage cutoff walls are required beyond the end of each retaining wall as well as beneath the upstream retaining walls and limited portions of the downstream retaining walls.

SAMPLE COMPUTATIONS

GATEWELL D

110 A 0		T	T	1	T	
US Army Corps of Engineers	PROJECT TITLE: Chaska - STAGE 3	COMPUTED BY:	DATE:	SHEET:	28	
Saint Paul District	SUBJECT TITLE: GATEWELL D	CHECKED BY:	į.		CONTRACT NO.:	
NGBN. 6 1.18	18 19 40 105 100 107 18 19 40 80 81 81 81 81 81 81 81 81 81 81 81 81 81	12 13		,	3 4	
N, 47, 0, 3, 4, 4 N, 47, 0, 3, 4, 4 N, 47, 0, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	N, 45, 0, 10.5, 2 N, 46, 0, 315, 2 T3 N, 81, 10, 3.5, 6 N, 83, 10, 80.5, 6 N, 93, 0, 10, 5, 6 N, 94, 0, 3.5, 6 1, 1, 0, 0, 8 T, 130, 1, 0, 0, 2	48	0 a	68 / 68 / 44	0 U3 47	

STAGE 4 - GATEWELL D

GATEWELL DESIGN VALUES

FRIM ED-GH

9/28

IMPERVIOUS FILL for stage 4 level Q - C = 0.5 tsf $\phi = 20^{\circ}$ C = 0.25 tsf $\phi = 9^{\circ}$ C = 0.25 tsf $\phi = 29.5^{\circ}$

8m ~115 pef 8s -125 pef

O - FOURTHON PRAGMETERS.

STAGE 3 - GATEWELL "E"

SAME PARAMETERS AS CATELLE """

m£				700 000
	ell eleva			728.000
Top of f	727.500			
Water el	725.000			
Inside w	ater elev	ation =		699.000
Ko =				0.515
Y -				0.115
Yw =		•		0.063
Y satura	ted =			0.125
Ys =				0.063
Middle	Soil	Element	Soil	Element

Middle Element Elevation	Soil Pressure	Element Pressure	Soil Water Prewssur	Element Pressure ce	Inside Water Pressure	Element Pressure	Net Element Pressure
727.000 725.000 723.000	0.000 0.097 0.148	0.048 0.122 0.180	0.000 0.000 0.000	0.000 0.000 0.063	0.000 0.000 0.000	0.000 0.000 0.000	0.048 0.122 0.243
721.000 719.000	0.212 0.277 0.341	0.245	0.125 0.250	0.188 0.313	0.000	0.000	0.432
/17.000 715.000	0.406 0.470	0.373	0.375 0.500 0.625	0.438	0.000 0.000 0.000	0.000	0.811
713.000 711.000 709.000	0.534	0.502 0.567 0.631	0.750	0.688 0.813 0.938	0.000	0.000 0.000 0.000	1.190 1.379 1.568
707.000 705.000	0.663 0.727 0.792	0.695	1.000 1.125 1.250	1.063	0.000 0.000 0.000	0.000	1.758
703.000 701.000 699.000	0.856	0.824 0.888 0.959	1.375	1.313 1.438 1.563	0.000	0.000 0.000 0.000	2.137 2.326 2.522
697.000 695.000	0.998 1.062 1.127	1.030 1.094	1.625 1.750 1.875	1.688	0.000 0.125 0.250	0.063 0.188	2.655

```
TITLE, GATEWELL DESIGN, D, CHASKA STAGE 3, NORMAL LOAD CASE
EG, 1, SHELL4T, 0, 0, 0, 1
EG,2,SPRING,0, , , , ,1, ,
EX,1,519120
DENS, 1, 0.15 ---
RC,1,1,1.5
RC,1,2,1.0
RC, 2, 4, 500
RC, 2, 5, 1200
N,1,0,0,0
NGEN,5,1,1, ,1,2,0,0
NGEN,7,1,6, ,1,0,2,0
NGEN,5,1,13, ,1,-2,0,0
NGEN, 6, 1, 18, , 1, 0, -2, 0
NGEN, 3, 24, 1, 7, 1, 0, 0, 2
N,32,10,3.4,2
N,33,10,3.5,2
N,34,10,10.5,2
N,35,10,10.6,2
NGEN, 3, 24, 12, 19, 1, 0, 0, 2
N,44,0,10.6,2
N,45,0,10.5,2
N,46,0,3.5,2
N,47,0,3.4,2
NGEN, 3, 24, 24, 24, ,0,0,2
N,56,10,3,4
N,59,10,11,4
N,68,0,11,4
N,71,0,3,4
N,80,10,3.4,6
N,81,10,3.5,6
N,82,10,10.5,6
N,83,10,10.6,6
N,92,0,10.6,6
N,93,0,10.5,6
N,94,0,3.5,6
N,95,0,3.4,6
NGEN,1,96,1,24,1,0,0,8
NGEN, 11, 24, 97, 120, 1, 0, 0, 2
N,385,2,2,0
NGEN,3,1,385, ,1,2,0,0
NGEN, 5, 4, 385, 388, 1, 0, 2, 0
N,500,0,0,-1
NGEN,5,1,500, ,1,2,0,0
NGEN, 7, 6, 500, 505, 1, 0, 2, 0
ACTIVE, MAT, 1
ACTIVE, GROUP, 1
ACTIVE, REAL, 1
E,1,1,2,26,25
EGEN, 6, 1, 1, , ,
E,8,8,9,33,32
E, 10, 10, 11, 35, 34
E, 11, 11, 12, 36, 35
EGEN, 8, 1, 11, , 1
E,20,20,21,45,44
```

E,421,397,398,402,401 E,422,398,399,403,402 E,423,399,400,404,403 E,424,400,10,11,404 E,425,20,401,405,19 E,426,401,402,406,405 E,427,402,403,407,406 E,428,403,404,408,407 E,429,404,11,12,408 E,430,19,405,17,18 E,431,405,406,16,17 E,432,406,407,15,16 E,433,407,408,14,15 E,434,408,12,13,14 ACTIVE, GROUP, 2 ACTIVE, REAL, 4 E,500,1,500 EGEN, 6, 1, 500, , 1 E,506,24,506 E,511,7,511 E,512,23,512 E,517,8,517 E,518,22,518 E,523,9,523 E,524,21,524 E,529,10,529 E,530,20,530 E,535,11,535 E,536,19,536 E,541,12,541 E,542,18,542 E,543,17,543 E,544,16,544 E,545,15,545 E,546,14,546 E,547,13,547 ACTIVE, GROUP, 2 ACTIVE, REAL, 5 E,507,385,507 EGEN, 3, 1, 507 E,513,389,513 EGEN, 3, 1, 513 E,519,393,519 EGEN, 3, 1, 519 E,525,397,525 EGEN, 3, 1, 525 E,531,401,531 EGEN, 3, 1, 531 E,537,405,537 EGEN, 3, 1, 537 D,1,UX, ,24,1,UY D,25,UX, ,49,24,UY D,30,UX, ,54,24,UY D,37,UX, ,61,24,UY D,42,UX, ,66,24,UY


```
236,-1.586+01,-3.986+00,-5.736-01,-3.426+00, 9.246-01,-8.546+00,-3.096+00,-2.446-01, 10.0,
 237,-1.946+01,-4.916+00, 7.826-02,-1.616-02, 1.086+00,-8.596+00,-3.046+00, 3.226-02, 18.0,
                                                                                             0.27.
                                                                                                    0.05. 0.00.
 238,-1.59E+01,-4.00E+00, 7.02E-01, 3.40E+00, 8.78E-01,-8.53E+00,-3.07E+00, 3.19E-01, 10.0,
 239,-5.52E+00,-1.22E+00, 1.00E+00, 6.79E+00, 2.74E-01,-8.43E+00,-3.17E+00, 4.71E-01, 10.0,
                                                                                             8.00, 0.00, 0.37, 0.01
 240, 1.15E+01, 3.55E+00, 6.63E-01, 1.00E+01,-5.72E-01,-8.30E+00,-3.24E+00, 4.83E-01, 17.9,
                                                                                             0.12. 0.03. 0.53.
 241, 1.475.01, 2.935.00,-2.425.01,-5.625.00,-7.205.01,-9.465.00,-3.375.00, 1.225.01, 10.0,
                                                                                                    0.03,
                                                                                                           0.30.
                                                                                                                  ....
 242, 4.945+00, 1.366+00,-1.266-01,-2.886+00,-2.976-01,-9.136+00,-3.006+00, 7.236-02, 18.0,
                                                                                             ....
                                                                                                   ....
                                                                                                          0.00.
 243, 1.46E+00, $.67E-01, 9.75E-02, 1.95E-02,-2.04E-01,-9.05E+00,-3.07E+00, 9.14E-02, 18.0,
                                                                                                   0.00, 0.00, 0.01
 244, 4.48E+00, 1.21E+00, 2.05E-01, 2.89E+00,-5.45E-01,-9.07E+00,-3.02E+00, 7.03E-02, 18.0,
                                                                                             .... .... ....
 245, 1.375+01, 3.695+00, 6.995-02, 5.585+00,-8.425-01,-9.465+00,-3.405+00,-1.075-01, 18.0,
                                                                                             0.15.
                                                                                                           0.30. 0.05/
 246, 1.18E+01, 3.27E+00,-5.40E-01,-8.69E+00,-6.46E-01,-6.82E+00,-2.65E+00,-4.60E-01, 18.0,
                                                                                             0.13.
                                                                                                    0.03.
                                                                                                          0.46. 0.04
 247,-4.945.00,-7.985.01,-4.525.01,-5.925.00, 7.055.02,-6.665.00,-2.265.00,-4.385.01, 18.0,
                                                                                                    *.00, 0.32, 0.00
 248,-1.52E+01,-2.01E+00,-2.37E-01,-2.96E+00, 4.66E-01,-6.76E+00,-2.40E+00,-2.35E-01, 18.0,
                                                                                             0.21, 0.03, 0.16, 0.03
 249,-1.87E+01,-3.77E+00, 1.14E-01, 8.04E-02, 5.73E-01,-6.81E+00,-2.40E+00, 5.51E-03, 18.0,
                                                                                             0.27 . 0.04 . 0.00, 0.03
 250,-1.548+01,-3.118+00, 4.438-01, 3.058+00, 3.808-01,-6.758+00,-2.388+00, 2.378-01, 18.0,
                                                                                                    0.03, 0.16,
                                                                                             0.21.
 251,-5.59E+00,-1.00E+00, $.32E-01, $.95E+00,-2.09E-01,-6.63E+00,-2.26E+00, 4.28E-01, 18.0,
                                                                                             0.02.
                                                                                                    ....
                                                                                                          0.32,
 252, 1.04E+01, 2.99E+00, 3.32E+01, 8.64E+00,-7.77E-01,-6.82E+00,-2.49E+00, 5.42E-01, 18.0,
                                                                                             0.11, 0.03, 0.46 0.04
 253, 1.496+01, 3.986+00,-3.066-01,-5.656+00,-7.346-01,-9.446+00,-3.406+00, 1.266-01, 18.0,
                                                                                                   0.03. 0.30. 0.44
 254, 5.10E+00, 1.39E+00,-1.22E-01,-2.94E+00,-3.21E-01,-9.12E+00,-3.03E+00, 4.60E-02, 18.0,
                                                                                             0.00. 0.00. 0.01.
 255, 1.48E.00, 5.65E-01, 8.07E-02,-4.21E-02,-2.04E-01,-9.04E.00,-2.08E.00, 5.47E-02, 18.0,
                                                                                             0.00.
                                                                                                    0.00.
                                                                                                          0.00.
 256, 4.36E+00, 1.18E+00, 1.97E-01, 2.83E+00,-5.24E-01,-9.06E+00,-3.00E+00, 3.50E-02, 18.0,
                                                                                                   ....
                                                                                                          0.08.
 257, 1.34E+01, 3.63E+00, 9.32E-02, S.54E+00,-8.25E-01,-9.45E+00,-3.36E+00,-1.22E-01, 10.0,
                                                                                             0.14.
                                                                                                   0.03. 0.30.
258, 1.13E+01, 2.19E+00,-4.48E-01,-8.64E+00,-5.85E-01,-6.76E+00,-2.62E+00,-4.31E-01, 18.0,
 259,-4.93E+00,-8.56E-01,-3.35E-01,-5.87E+00, 7.99E-02,-4.58E+00,-2.35E+00,-3.95E-01, 18.0,
                                                                                             0.01, 0.00, 0.32, 0.00
260,-1.500+01,-3.060+00,-1.630-01,-2.930+00, 4.500-01,-6.640+00,-2.410+00,-2.050-01, 10.0,
                                                                                             0.20, 0.03,
                                                                                                          0.16,
261,-1.84E+01,-3.81E+00, 1.17E-01, 5.28E-02, 5.61E-01,-6.68E+00,-2.42E+00, 1.04E-02, 18.0,
                                                                                                   0.04,
                                                                                                          0.00 . 0.03
262,-1.52E+01,-3.15E+00, 3.72E-01, 3.02E+00, 3.73E-01,-6.63E+00,-2.40E+00, 2.14E-01, 10.0,
                                                                                            0.21, 0.03, 0.16, 0.02
263,-5.536+00,-1.066+00, 4.136-01, 5.906+00,-2.006-01,-6.546+00,-2.276+00, 3.876-01, 18.0,
                                                                                            0.02, 0.00, 0.32, 0.01
264, 1.036+01, 2.926+00, 2.276-01, 8.596+00,-7.126-01,-6.756+00,-2.476+00, 5.016-01, 18.0,
                                                                                            0.11, 0.02, 0.46, 0.04
265, 4.41E+00, 1.57E+00,-1.08E-02,-2.18E+00,-4.51E-01,-4.32E+00,-1.92E+00, 2.87E-01, 12.0,
                                                                                            0.08.
                                                                                                  0.02. 0.20.
266, 1.556+00, 6.396-01,-4.666-02,-1.176+00,-3.666-01,-4.686+00,-2.436+00, 1.676-01, 12.0,
                                                                                                   ....
                                                                                                          0.06.
267, 5.17E-01, 2.09E-01,-9.13E-03,-1.16E-02,-1.97E-01,-4.73E-00,-2.44E-00, 1.28E-01, 12.0,
                                                                                            0.00. 0.00. 0.00. 0.01
268, 1.368-00, 5.218-01, 3.588-02, 1.128-00,-2.468-01,-4.618-00,-2.448-00, 8.318-02, 12.0,
269, 4.025+00, 1.405+00, 4.825-02, 2.185+00,-3.465-01,-4.205+00,-1.935+00,-5.215-02, 12.0,
                                                                                            0.07. 0.02. 0.20. 0.03
270, 3.34E+00, 1.05E+00,-1.42E-01,-3.49E+00,-4.40E-01,-2.83E+00,-1.53E+00,-1.64E-01, 12.0,
                                                                                            0.07, 0.01, 0.31,
271,-1.65E+00,-8.52E-01,-2.10E-01,-2.46E+00,-7.85E-02,-3.34E+00,-1.96E+00,-1.61E-01, 12.0,
                                                                                                          0.22, 0.01
272,-4.77E+00,-2.23E+00,-1.52E-01,-1.24E+00, 3.26E-01,-3.48E+00,-1.90E+00,-7.92E-02, 12.0,
                                                                                                   0.04, 0.11, 0.03
                                                                                            0.10.
273,-5.866+00,-2.756+00,-1.156-03, 2.106-02, 4.856-01,-3.526+00,-1.876+00, 3.866-02, 12.0,
                                                                                            0.14, 0.04, 0.00, 0.04
274,-4.88E+00,-2.32E+00, 1.46E-01, 1.26E+00, 3.87E-01,-3.47E+00,-1.88E+00, 1.73E-01, 12.0,
                                                                                            0.11, 0.05, 0.11, 0.04
275,-1.916+00,-1.026+00, 2.076-01, 2.446+00, 8.936-02,-3.286+00,-1.896+00, 2.926-01, 12.0,
                                                                                            0.01, 0.01, 0.22,
                                                                                                                 0.01
276, 2.94E+00, 8.60E-01, 1.98E-01, 3.51E+00,-2.43E-01,-2.75E+00,-1.44E+00, 2.75E-01, 12.0,
277, 4.45E+00, 1.59E+00, 6.03E-04,-2.19E+00,-4.60E-01,-4.29E+00,-1.93E+00, 2.91E-01, 12.0,
                                                                                                   0.02.
                                                                                                          0.20.
                                                                                                                0.04
278, 1.59E.00, 6.52E.01,-4.59E.02,-1.19E.00,-3.81E.01,-4.67E.00,-2.45E.00, 1.52E.01, 12.0,
                                                                                                  0.00. 0.06, 0.02
279, 5.23E-01, 2.10E-01,-1.40E-02,-3.05E-02,-1.99E-01,-4.72E-00,-2.44E-00, 1.04E-01, 12.0,
280, [.336+00, 5.096-01, 3.316-02, 1.116+00,-2.356-01,-4.626+00,-2.436+00, 6.406-02, 12.0,
                                                                                            0.00.
                                                                                                   0.00, 0.05, 0.01
281, 3.988+00, 1.398+00, 5.508-02, 2.188+00,-3.358-01,-4.238+00,-1.938+00,-5.008-02, 12.0,
                                                                                                   0.02, 0.20,
                                                                                            0.07.
282, 3.306+00, 1.026+00,-1.186-01,-3.496+00,-4.116-01,-2.836+00,-1.526+00,-1.556-01, 12.0,
                                                                                                   0.01, 0.31,
                                                                                                                0.04
283,-1.66E+00,-8.85E-01,-1.80E-01,-2.46E+00,-6.96E-02,-3.31E+00,-1.95E+00,-1.46E-01, 12.0,
                                                                                            0.01.
                                                                                                  0.00, 0.22, 0.01
284,-4.746.00,-2.266.00,-1.326.01,-1.236.00, 3.226.01,-3.446.00,-1.906.00,-6.646.02, 12.0,
                                                                                                 0.04, 0.11, 0.03
285,-5.812+00,-2.772+00, 3.902-05, 2.062-02, 4.752-01,-3.472+00,-1.882+00, 4.172-02, 12.0,
                                                                                            0.14, 0.06, 0.00, 0.04
286,-4.852.00,-2.352.00, 1.272.01, 1.262.00, 3.802.01,-3.422.00,-1.892.00, 1.642.01, 12.0,
                                                                                            0.11.
                                                                                                  0.05, 0.11,
287,-1.90E+00,-1.04E+00, 1.75E-01, 2.43E+00, 9.29E-02,-3.25E+00,-1.89E+00, 2.75E-01, 12.0,
                                                                                            0.02,
                                                                                                  0.01, 0.22, 0.01
266, 2.91E.00, 0.43E.01, 1.71E.01, 3.51E.00,-2.12E.01,-2.73E.00,-1.43E.00, 2.57E.01, 12.0,
                                                                                            0.05.
                                                                                                  0.01, 0.31,
289, 3.955+00, 1.165+00,+5.995-02,-1.715+00,-2.765-01,-3.315+00,-1.475+00, 3.255-01, 12.0,
                                                                                            0.00, 0.02, 0.15, 0.02
290, 1.496+00, 3.196-01,-1.716-01,-8.176-01, 3.216-02,-3.316+00,-1.666+00, 2.536-01, 12.0,
                                                                                           0.00, 0.00, 0.07, 0.00
```

0.08. 0.11, 0.10, 0.05

```
346,-3.42E+00,-1.80E-01, 1.33E-01, 6.73E-01, 1.69E-01,-4.02E-01,-2.67E-01, 1.57E-02, 12.0,
347,-1.350.00, 2.290.03, 1.030.01, 1.190.00,-6.480.02,-3.410.01,-1.860.01, 9.330.02, 12.0,
                                                                                             #.#4, #.#0, D.11, 0.00
348, 1.59E+00, 4.08E-01, 1.34E-01, 1.35E+00,-3.15E-01,-1.57E-01,-2.69E-01, 2.75E-01, 12.0,
                                                                                             0.05,
                                                                                                    0.01 / 0.12 / 0.03
349, 2.95£+00, 5.31E-01,-2.60E-01,-3.80E-01,-4.38E-01,-9.83E-01,-6.09E-01, 6.00E-02, 12.6,
                                                                                             0.00,/0.01, 0.03, 0.04
350, 1.82E+88, 1.42E-<del>81,..</del>4.63E-81,-2.36E-81,-4.74E-82,-8.51E-81,-2.49E-81, 1.12E-82, 12.8,
                                                                                             e.es, e.eo, e.es, e.es
351, 1.26E+00, 5.40E-02, 2.45E-02, -2.64E-02, 5.95E-03, -7.49E-01, -2.73E-01, -6.36E-03, 12.0,
                                                                                            0.43. 0.00. 0.00. 0.00
352, 1.60E+00, 1.30E-01, 1.71E-01, 2.85E-01,-1.45E-01,-0.15E-01,-2.42E-01,-2.52E-02, 12.0.
                                                                                             0.04. 0.00. 0.03.
353, 2.585+00, 4.995-01, 1.825-01, 3.605-01,-3.115-01,-9.415-01,-5.515-01,-5.175-02, 12.0,
                                                                                                          .....
354, 1.95E-00, 5.16E-01,-2.05E-01,-1.35E-00,-3.57E-01,-2.02E-01,-3.24E-01,-2.14E-01, 12.0,
                                                                                             ....
                                                                                                   0.01. 0.12.
385,-1.07E+00, 1.11E-02,-1.83E-01,-1.18E+00, 9.64E-02,-3.66E-01,-1.01E-01,-1.00E-01, 12.0,
356,-3.28E-08,-1.79E-01,-4.25E-02,-6.51E-01, 2.41E-01,-4.14E-01,-2.61E-01,-2.66E-02, 12.6,
                                                                                            0.10, 0.00, 0.06, 0.02
357,-4.10E+00,-2.41E-01,-4.90E-02, 1.65E-02, 2.55E-01,-4.21E-01,-2.79E-01,-5.82E-03, 12.0,
                                                                                             ....
                                                                                                   0.00.
                                                                                                          0.00.
358,-3.41E+00,-1.91E-01, 1.28E-01, 6.77E-01, 1.71E-01,-4.10E-01,-2.67E-01, 1.67E-02, 12.0,
                                                                                             0.10.
                                                                                                   0.00. 0.06. 0.02
359,-1.35E+00,-1.96E+05, 1.75E+01, 1.19E+00,-6.34E+02,-3.47E+01,-1.85E+01, 9.49E+02, 12.0.
                                                                                                  ....
                                                                                                         0.11. 0.00
360, 1.59E+00, 4.03E-01, 1.27E-01, 1.35E+00,-3.08E-01,-1.58E-01,-2.67E-01, 2.78E-01, 12.0,
                                                                                            0.05, 0.01, 0.12, 0.03
400,-4.225.08,-4.205.00,-2.475.00, 1.915.00, 9.445.01, 2.595.01,-1.725.01, 2.345.02, 18.0,
                                                                                                   0.11. 0.10. 0.05
                                                                                            0.00.
401,-7.276-01,-9.166+00,-2.386+00, 3.606-01, 9.126+00, 1.286-01,-1.286-01, 8.286-02, 18.0,
                                                                                                   0.17, 0.02, 0.48
402, 1.285-01,-1.065-01,-8.255-02, 4.325-01, 1.215-01, 1.555-01,-1.705-01, 6.465-02, 18.0,
                                                                                            ....
                                                                                                   0.20. 0.02. 0.44
403,-2.62E-01,-9.08E+00, 2.30E+00, 3.77E-01, 9.21E+00, 1.38E-02,-2.51E-01, 9.87E-02, 10.0,
404,-4.562.00,-6.292.00, 2.422.00,-2.962.00, 1.542.00,-5.462.01, 5.312.02, 1.302.01, 18.0,
                                                                                            0.08. 0.12. 0.16. 0.00
405,-6.08E+00,-2.86E+00,-2.43E+00, 1.03E+01, 9.44E-01,-6.06E-01, 6.58E-01,-3.76E-02, 18.0.
                                                                                            0.11.
                                                                                                   0.06. 0.54.
406, 5.74E+00, 2.36E+00,-2.59E+00, 3.44E+00, 5.07E+00, 1.26E-01, 2.76E-01,-2.13E-01, 18.0,
                                                                                                  0.05, 0.18,
                                                                                            0.11.
407, 8.63E+00, 4.07E+00,-2.79E-02, 1.04E-01, 6.26E+00, 2.42E-01, 8.95E-02,-1.88E-01, 18.0,
                                                                                            0.16, 0.08, 0.01, 0.32
408, 5.962+00, 2.722+00, 2.502+00,-3.322+00, 4.872+00, 1.102-01, 2.722-01,-1.792-01, 10.0,
409,-5.69E+00,-2.35E+00, 3.26E+00,-1.05E+01, 8.47E-01,-6.34E-01, 5.87E-01,-2.22E-02, 17.9,
                                                                                            0.10, 0.05, 0.56, 0.04
410,-2.156.00, 2.206.00,-2.456.00, 1.116.01, 5.336.00,-1.116.01,-3.376.01, 1.316.01, 18.0,
                                                                                            0.04, 0.04, 0.50, 0.28
411, 1.036.01, 9.726.00,-1.096.00, 4.096.00, 4.136.00, 3.116.03,-1.416.01, 3.176.02, 18.0,
                                                                                            0.19, 0.18, 0.215
412, 1.356+01, 1.186+01, 3.926-02,-4.216-02, 3.536+00, 7.006-02,-4.076-02,-2.396-02, 18.0,
                                                                                            0.26. 0.22. 0.00. 0.19
413, 1.000+01, 9.610+00, 1.170+00,-4.260+00, 4.100+00, 1.110-01, 3.410-02,-4.190-02, 18.0,
414,-2.215+00, 2.015+00, 2.195+00,-9.715+00, 4.135+00, 1.975-01, 1.745-01,-8.425-02, 18.0,
                                                                                            0.04, 0.04, 0.50, 0.21
415, 3.856+00, 1.256+01, 2.306-01, 4.686+00,-2.506-01, 5.976-01,-6.026-01, 4.476-02, 18.0,
                                                                                                   ,0.23, /0.24, 0.01
416, 1.216+01, 1.366+01, 7.146-02, 3.426+00, 2.866-01, 7.916-03,-3.506-01, 1.506-01, 18.0,
                                                                                                  40.25
417, 1.518.01, 1.498.01, 1.238.01, 2.178.03,-1.158.02,-8.178.02,-1.848.01, 1.278.01, 18.0,
418, 1.218.01, 1.368.01, 1.048.01,-3.418.00,-3.358.01,-4.748.03,-3.648.01, 1.608.01, 18.0,
                                                                                                   0.25, 0.10, 0.02
419, 3.67E+00, 1.25E+01, 3.00E-01,-4.63E+00, 9.51E-02, 6.04E-01,-6.36E-01, 5.63E-02, 18.0,
                                                                                            0.08. 0.23. 0.24. 0.01
420,-2.296.00, 1.826.00, 2.236.00, 9.786.00,-4.156.00, 2.226.01, 1.566.01,-8.716.02, 18.0,
                                                                                            0.05. 0.04. 0.51. 0.21
421, 9.97E+00, 9.50E+00, 1.18E+00, 4.28E+00,-4.14E+00, 1.21E-01, 3.27E-02,-4.14E-02, 18.0.
                                                                                            0.19. 0.18. 0.22. 0.21
422, 1.355+01, 1.175+01, 3.485-02, 5.345-02,-3.565+00, 7.285-02,-3.235-02,-2.325-02, 18.0,
                                                                                            0.26, 0.22, 0.00, 0.19
423, 1.035.01, 9.645.00,-1.095.00,-4.115.00,-4.155.00,-6.715.03,-1.275.01, 3.395.02, 10.0,
                                                                                            0.19, 0.18, 0.22,
424,-2.235.00, 2.055.00,-2.465.00,-1.125.01.-5.325.00.-1.525.01.-3.245.01. 1.415.01. 18.0
                                                                                                          0.39,
                                                                                            0.04, 0.03.
                                                                                                                ). . . .
425,-5.90E-00,-2.83E-00, 3.35E-00, 1.06E-01,-8.10E-01,-6.00E-01, 5.00E-01,-3.06E-02, 18.0,
                                                                                                   0.05,
426, 5.87E+00, 2.60E+00, 2.83E+00, 3.38E+00,-4.90E+00, 1.16E-01, 2.78E-01,-1.83E-01, 18.0,
                                                                                            0.11.
                                                                                                   0.05, 0.18, 0.25
427, 8.621.00, 4.001.00, 3.391.02, 6.541.02, 6.251.00, 2.401.01, 1.041.01, 1.931.01, 18.0,
                                                                                            0.17, 0.00, 0.00, 0.32
428, 5.786.00, 2.316.00, 2.596.00, 3.446.00, 4.996.00, 1.166.01, 3.056.01, 2.206.01, 18.0,
                                                                                            0.11, 0.05, 0.18, 0.26
429,-6.09E+00,-2.92E+00,-2.37E+00,-1.03E+01,-8.20E-01,-6.40E-01, 7.10E-01,-4.20E-02, 17.9,
                                                                                            0.11, 0.06, 0.55, 0.04
430,-4.900.00,-6.450.00, 2.540.00, 3.060.00,-1.440.00,-5.520-01, 9.110-02, 1.240-01, 10.0,
                                                                                                   0.12, 0.17, 0.07
431,-4.506-01,-9.186.00, 2.376.00,-2.486-01,-9.256.00, 1.616-02,-2.306-01, 9.366-02, 18.0.
                                                                                            0.01. 0.17. 0.01. 0.49
432, 1.128-01,-1.068+01,-5.548-02,-3.058-01,-1.218+01, 1.508-01,-1.528-01, 6.298-02, 18.0,
                                                                                                   ص, 20, 0.02,
433,-6.052-01,-9.112-00,-2.362-00,-2.562-01,-9.012-00, 1.142-01,-1.212-01, 5.982-02, 18.0,
                                                                                            0.01. 0.17. 0.01.
```

434,-4.00E-00,-6.15E-00,-2.40E-00,-1.86E-00,-9.85E-01, 2.97E-01,-2.05E-01, 2.48E-02, 18.0,

US Army Corps of Engineers	PROJECT TITLE: CHASKA STAGE 3	COMPUTED BY:	DATE:	SHEET:	28
Saint Paul District	SUBJECT TITLE: GOTELUFILL D	CHECKED BY:	DATE: 8-11-93	CONTRA	ACT NO.:

CHECK THE COSMOS, COMPUTER AIDED DESIGN, RESULTS!

ASSUME THE WAILS WILL ACT AS A FIXED END SLAB THEN

THE HOMENT IN THE MIDDLE OF THE WALL AND JUST ABOVE

THE PIPE OPENING WILL BE WE'L

M = (3.34) (12.5) = 37.28 K-FT

HOMENT PROM COMPUTATION = 32.3 + 0.4264 ILD = 34.64 K-FT

MX VX 24

SHEAR ARM

37.28 > 34.64, BUT TAKING INTO CONSIDERATION

THAT THE WALL WILL ACT AS A PLATE, THEN THE RESULT IS OK

			DATE:	SHEET:	ĺ
W.w.Y	CHASKA STG 3 , DM	TONY FARES	8/4/92	27	28
	SUBJECT TITLE, ,, GATIC WEIL D STOPLOG DPSIGN	CHECKED BY:	DATE: 8/11/93	CONTRA	ACT NO.:
LOAD:		es ian			

DW

- EL 727.5 \$L 712

$$P = [[727.5 - 699.25) - (712 - 699.25)](0.0625)$$

$$= 0.97 \text{ KSF} - GOURANS,}$$

$$= 0.86 \text{ KSF}$$

Wu = (1.7)(0.91) = 1.65 KSF

LOAD =
$$\frac{1.65 \times 6''}{12''} = 0.825 \text{ K/FT}$$
 ASSUMING 6"X4" STOPLOG.

Mu = $\frac{(0.825)(9.5)^2}{12} = 6.2 \text{ K-FT}$ P 9.5'

= 744.41 K.in

$$S = \frac{M}{6} = \frac{74.41}{15} = 4.96 \text{ IN}^3$$

$$S = \frac{6 \times 4^3 - 5.5 \times 3.5^3}{6(4)} = 6.17 \text{ IN}^3 > 4.96 \text{ IN}^3 \text{ OK}$$

 $f = \frac{74.41}{6.17} = 12.06 \text{ KSI} < 15 \text{ KSI} \text{ OK}$

SHEAR IN WEBS.

SAMPLE COMPUTATIONS

RETAINING WALL

US Arm	/ Corps	of	Engineers
--------	---------	----	-----------

PROJECT TITLE: CHASKA STAGE 3	COMPUTED BY:	DATE: 7-15-93	SHEET:	51
SUBJECT TITLE: DROP STRUCTURE I UP STREAM MONOUTH (4)	CHECKED BY:	DATE: 8/26/12	CONTRA	ACT NO.:

SLIDING STABILITY CHECK

$$FS = \frac{N'TAN\phi + cL}{EH} = \frac{33.4'TAN30' + 0}{11.4''} = 1.69 \% 1.5$$

. SLIDING CRITERIA IS SATISFIED

$$e = B/2 - \bar{X} = 13.5/2 - 4.53' = 2.22'$$

$$g' = P = \frac{N'}{B} (1 \pm 6c/B) = \frac{33.4}{13.5} (1 + 6(2.22)/13.5) = 4.92 \text{ KSF } (MAX)$$

.03 KSF (MIN)

S = TAN (T/N) = 18,85° = ,33 RADIANS

$$\mathcal{E}_{\mathbf{g}} d = 1 + .1 \left(\frac{D}{B} \right) TAN \left(45 + \frac{30\%}{Z} \right) = 1 + .1 \left(\frac{8.8}{9.00} \right) TAN \left(60^{\circ} \right) = 1.168$$

$$\mathcal{E}_{8i} = (1 - 18.85\%)^2 = .625$$

$$\mathcal{E}_{8i} = (1 - 18.85/40)^2 = .625$$
 $\mathcal{E}_{88} = \mathcal{E}_{89} = (1 - TANB)^2 = 1.0$

$$Q = 9.06 \left[1.168 (.625)(1.0)(1.0)(18.4) + 1.168(.138)(1.0)(9.06)(.114)(15.67)/2 \right]$$
= 133, 5 K/FT

US Army Corps of Engineers	PROJECT TITLE: CHASKA - STAGE 3	COMPUTED BY:	DATE: 7-15-93	SHEET:	51
Saint Paul District	SUBJECT TITLE: DROP STRUCTURE 1	CHECKED BY:	DATE:	CONTRA	ACT NO.:

(2) IN HEEL AT FACE of STEM.

$$21.2^{K} \times 4.25' = 90.1 \text{ K-FT}$$

 $-12.3^{K} \times 2.83' = 34.8 \text{ K-FT}$
 8.9 K
 55.3 K-FT

$$\frac{M_{4}}{\Phi} = \frac{1.9(55.3)(12)}{.90} = 1400.9 \text{ K-IN}$$

$$Ku = 1 - \sqrt{1 - \frac{1400.9}{.425(4.0)(12)(28.5)^{2}}} = 0.0432$$

$$Cu = Tu = .85(4)(.0432)(12)(28.5) = 50.2 \text{ K}$$

$$A_s = \frac{50.2}{60} = 0.84 \text{ In}^2$$

$$P = \frac{84}{12(28.5)} = .00246 < Pmin$$

US ARMY CORPS OF ENGINEERS	PROJECT TITLE: CHASKA STAGE 3	СОМРИТЕЮ ВУ:	DATE: 07/13/93	SHEET:	51
SAINT PAUL DISTRICT	SUBJECT TITLE: US	CERCKED BY:	DATE	CONTRACT	NO.:
UP STREAM WING WALL, MONOI	DROP STRUCT. 1, DS WING WALLS JTH NO. 4, LOAD CASE -	R1	4126:42	<u> </u>	
,					
KETAINING WALL DESIGN KDH Version 3	BASED ON ENGINEER MANUAL EM 1110-	2-2502			
	L SECTION PROPERTIES	_			
TOTAL HEIGHT,VT (FT.) FOOTING DEPTH TOE,V1 (FT.)	22.700 HEEL DEPTH @ BACK,V8 (F	r)	1.500	. 0625	۰k
STEM HEIGHT,V2 (FT.)	2.750 STEM BATTER	.	0.0627	. 0623	
STRAIGHT WALL HT.,V3 (FT.)	19.950 WALL WIDTH AT TOP,H1 (F.	•	1.250	2,497	ρĸ
SLOPED WALL HT., V4 (FT.)	0.000 WALL WIDTH AT BOT.,H2 (F 19.950 WALL SLOPE,H3 (FT.)	1.)	2.500	21110	
B.O.F. TO T.O.S., V5 (FT.)	8.800 FOOTING TOE WIDTH,H4 (F	T.	1.250		
SOIL DEPTH, V6 (FT.)	6.050 FOOTING HEEL WIDTH,H5 (•	2.500		
FOOTING DEPTH HEEL, V7(FT)	2.750 FOOTING WIDTH,HT (FT.)	r I.)	8.500 13.500		
	UNIT WEIGHT CONC.,(K/CUI	er.	0.150		
DEPTH OF RIPRAP IN CHANNEL	0.000 UNIT WEIGHT RIPRAP (K/CU	•	0.135		
	MONAL VERTICAL LOADS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.133		
LOADS ON BACKFILL	LOADS ON STRUCTUR	AL WEDGE ***			
HIGHWAY L.L. SURCHARGE	0.000 K/FT HIGHWAY LL SURCH	ARGE	0.000	K/FT	
LIVE LOAD SURCHARGE (vd)*	0.000 K/FT LIVE LOAD SURCHAR	GE	0.000	•	
Vd =	0.000 K SURCHARGE (Vs)**		0.000	K	-
SURCHARGE LOCATION S =	12.461 FT DIST. TO F. WALL FAC	E	6.125	FT	
(DRIVING WEDGE) X =	0.000 FT SURCHARGE LOCATION	ON X1=	1.250	FT	
OADS ON RESISTING WEDGE	FROM F. FACE OF WAI	LX2=	11.000	FT	
RIPRAP (vr)**	0.000 K/FT				
	PARAPETLOAD				
	- HEIGHT		0.000	FT	
	- WIDTH		0.000	FT	
A CHECK IS MADE TO DETERMINE IF THE					
LIE WITHIN THE INFLUENCE OF THE DR					
* IT IS CONSERVATIVE TO NEGLECT SUR					
ASSURE THEY WILL STAY IN PLACE FOR					
** THESE LOADS ARE ASSUMED TO ACT					···· , ···-
OADING CONDITIONS CASE =====>	LITY REQUIREMENTS				
6 OF PASSIVE PRESSURE USED	R1				
AIN. BASE AREA IN COMPRESS.	50 SLIDING SAFETY FACTOR 100 BEARING CAP, SAFETY FAC	MOB.	1.50		
	OPERTIES (DRIVING WEDGE)	OK	3.00		
RICTION ANGLE OF SOIL (01)	33.000 DEG.(DRIVING WEDGE)				
RICTION ANGLE OF SOIL (02)	33.000 DEG.(STRUCT. WEDGE)				
LOPE OF BACKFILL RISE/RUN	0.000				
ETA ANGLE (B1)	0.000 DEG.				
OINT AT WHICH BACKFILL SLOPE BEGIN	S 2.00 1=SLOPE BEG	INS @ STEM			
OIL DEPTH BACK of HEEL(Hz)		INS@BACK OF	HEEL		
TR. MOBILIZATION FACTOR	0.667 (SMF)	-			
OIL UNIT Wt.,MOIST (§m1)	0.1140 K/CUFT				
OIL UNIT WL.SATUR. (§s1)	0.1270 K/CUFT {ENTER §m1 IF	NOT SATUR.			
OIL UNIT WL,BOUYANT (§b1)	0.0645 K/CUFT	•			
EPTH OF CRACK (dc)	0.000 FT.				
OHESION ON SLIP PLANE C=	0.000 KSF				
OHESION ON SLIP PLANE Cd=	0.000 KSF(DEVELOPED) =	Cd = (SMF)*C			

	CORPS OF E	RICT	SUBJECT TITLE:	AGE 3	JI- CHBCK		07/15/93 DATE:	SHEET: 4 CONTRACT N	ا <u>5</u> ا
TID COTTO	14111111111111			JCT. 1, DS WING WALLS		+	= 121/17		
UPSIKEA		•	•		R1				
	KDH Version 3			GINEER MANUAL EM 1110-2	-2502				
SLIP-PLAN	E ANGLE WITHO			ROPERTIES					
0d=ARC	ran(smf*tano)	=	23.41						
A=	TAN0d+			2*V(1+TAN0d^2)		N 4320 '	EQU. 3-30		
	2877410102 :	\$m1(Hz+d 4*Cd(TAN0d	k) I+TANB1)	\$m1(Hz^2-dc^2) 4*V*TANB1(1+TAN0D^2) 				
C1=[2°1ANOG*2 +	§m1(Hz+d	k)	§m1(Hz^2-dc^2)	y <i>A</i>	* =	0.8659	EQU.3-28	
C2=[TANOd(1-TANO	WT4 ND1_T4 N	JD1⊥	2*Cd(1-TAN0dTANB1)					
	•	•		§m1(Hz+dc)	Τ				
	2V*TANB1 ^ +	-2(1+TAN0D^2 	?)]/A=	1.0000 EQU3-29					
CRIT. ALPH	A (a1)= E §avg FOR DRIV	ARCTAN((C1+)	(C1^2*4C2)^_	5)/2 = CHARGE		56.705	(DRIVING)		
									
šavg =	[ANB1)	2*TANa1	1^2 Hz^2] / 2*(TANa1-	TANB1	=	0.114	icf "	
LIP-PLANI	E ANGLE WITHO	UTSURCHAR	GE WITH AVE	RAGE SOIL UNIT WEIGHT				*	
A=	TANOd +			2*V(1+TAN0d^2)		0.4329 1	EQU. 3-30		
C1=[2*TAN0d^2+ -	\$avg(Hz+d 4°Cd(TAN0d	k) +TANB1)	\$avg(Hz^2-dc^2) 4*V*TANB1(1+TAN0D^2))	=		EQU.3-28	
		\$avg(Hz+de	c)	\$avg(Hz^2-dc^2)	ул	_	0.8039 1	5QU3-26	
C2=[TANOd(1-TANO	dTANB1)-TAN	JB1 +	2*Cd(1-TAN0dTANB1)	.				
		`2(1+TAN0D ^:		\$avg(Hz+dc)	•				
	+]/A=	1.0000 EQU.3-29					
RIT. ALPHA	A (a1)=	ARCTAN((C1+(C1^2*4C2)^.5)/2 =		56.705 <u>(</u>	DRIVING)		
HECK IF SU	RCHARGE EFF	ECTS DRIVING	WEDGE						
	O/S DIST. TO SU WEDGE LENGT			12.46 Ft. 14.91 Ft.					•
===> LIP-PLANE	SURCHARGE LANGLE WITH S		WEDGE						
A ==	TANOL	2*Cd(1-TAN	Odtanbi)	2*V(1+TAN0d^2)	_	. 4000 -			
A=	TANOd+ -	§m1(Hz+d 4°Cd(TAN0d		§m1(Hz^2-dc^2) 4°V°TANB1(1+TAN0D^2)		J.4 <i>5</i> Z9 E	3QU. 3-30		
C1=[2*TAN0d^2+ +	\$m1(Hz+dc	;)	§m1(Hz^2-dc^2) 2*Cd(1-TAN0dTANB1)	y A :	=	0.8659 E	EQU.3-28	
C2=[TANOd(1-TANO	dtanb1)-tan	B1 + -	\$m1(Hz+dc)	+				
		2(1+TAN0D ^2							

56.705 (DRIVING)

ARCTAN((C1+(C1^2*4C2)^5)/2 =

CRIT. ALPHA (a1)=

	Y CORPS OF		<u> </u>	AGE 3	сомичтео ву: ЈНМ	DATE: 07/15/93	16	5
SAII	NT PAUL DIST	RICT	DROP STRI	ICT. 1, DS WING WALLS	CHECKED BY:	8/26/93	CONTRACT N	D.:
UP STRE	EAM WING WA	LL, MONOI			R1	0/26/13	<u> </u>	
	RETAINING W KDH Version 3		BASED ON ENG	GINEER MANUAL EM 1110-	2-2502			
		RESISTIN	G WEDGE	PROPERTIES				
03d =	23.41	DEG.						
		2*Cr(1+T/	AN03dTANB3)	2*V(1+TAN03d^2)				
A=	TAN03d +	§m3*V5		\$m3(V5^2)	0.4329	EQU. 3-38		
		4°Cr(TAN	03d-TANB3)	4*V*TANB3(1+TAN03d	^2)			
C1=[2*TAN03d^2+	§m3*V5		§m3*(V5^2)]/A =	0.8659	EQU.3-36	
				2°Cr(1+TAN03dTANB3)				
C2=[TAN03d(1+TA	N03dTANB3) +	TANB3 +	§m3*V5	· -			
	2V*TANB3^	2(1+TAN03d^2	2) 1/A=	1.0000 EQU.3-37				
	§m3*(V5	^2)	y/ - -	1.000 EQU.3-31				
CRIT. ALPI	HA (a3)=	ARCTAN((-CI	+(C1^2*4C2)^	.5)/2 =	33.295	RESIST.)		
DETERMIN	NE §avg FOR RESI	STING WEDGE	<u>.</u>					
	§m3*V5^	2	(§m3-8b3)*!	12^2 V5^2				
šavg =	[2°TANa3	12^2 V5^2] / 2*(TANa3-	=	0.1140	:	
	2 (111112	•		•	•			
A=	TANO +		NOSTANB3)	•	0.4329	EQU. 3-38		
		§avg*V5		§avg(V5^2)	•			
	2*TAN03^2+	4°Cr(TAN03	-TANB3)	4*V*TANB3(1+TAN03^2)	0.8650	EOU.3-36	
C1=[- 11 L 103 - 1]/A =	0.0039		
C1=[§avg*V5		\$avg*(V5^2)	yA =	0.8039		
·		§avg*V5			yA =	0.6039		
C1=[C2=[TAN03(1+TAN	§avg*V5 (GTANB3) + TA	ANB3 + -	\$avg*(V5^2)	yx = · -	0.8039		
·	TAN03(1+TAN 2V*TANB3 +	\(\frac{\parts^*\sqrt{5}}{60\) \(\text{COTANB3} \) + TA \(\frac{\parts^2(1+\text{TAN03}^2}{	ANB3 + -	\$avg*(V5^2) 2*Cr(1+TAN03TANB3)	yA =	0.8039		
C2=[TAN03(1+TAN 2V*TANB3 + \$avg*(V5	\$avg*V5 (GTANB3) + TA 	ANB3 + -	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37	· <u>-</u>	RESIST.)		
C2=[CRIT. ALPF	TAN03(1+TAN 2V*TANB3 + \$avg*(V5	\$avg*V5 03TANB3) + TA ^2(1+TAN03^ ^2) ARCTAN((-C1	ANB3 +2)	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37	· <u>-</u>			
C2=[CRIT. ALPI	TAN03(1+TAN 2V*TANB3 + \$avg*(V5 HA (a3)= G SIDE PRESSURE DEF. K =	\$avg*V5 03TANB3) + TA -2(1+TAN03 ^ -2) ARCTAN((-C1 COEFFICIENT	ANB3 +2)	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37 .5)/2 = Hp. H-9)	· <u>-</u>			
C2=[CRIT. ALPI RESISTING BASIC CO	TAN03(1+TAN 2V*TANB3 + \$avg*(V5 HA (a3)= G SIDE PRESSURE DEF. K = T K =	\$avg*V5 03TANB3) + TA -2(1+TAN03 - -2) ARCTAN((-C1 COEFFICIENT (1+TAN03 -CO: (1-SIN(03)) = K*(TANa3/(TAN	ANB3 +	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37 -5)/2 = Hp. H-9) TANa3) =	33.295 (2.3184			
C2=[CRIT. ALPE RESISTING BASIC CO AT RES	TAN03(1+TAN 2V*TANB3 + §avg*(V5 HA (a3)= G SIDE PRESSURE PEF. K = T K = ST K1= K1=	\$avg*V5 (GTANB3) + TA (^2(1+TAN03^ (^2) ARCTAN((-C1 COEFFICIENT (1+TAN03*CO* (1-SIN(03)) = K*(TAN23/(TAN23)/(TAN33)/(TAN23)/(TAN23)/(TAN23)/(TAN23)/(TAN23)/(TAN23)/(TAN23)/(TA	ANB3 +2)	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37 .5)/2 = Hp. H-9) TANa3) = K * 1.0000	33.295 (2.3184			and the law
C2=[CRIT. ALPH RESISTING BASIC CO AT RES FILL MOIS	TAN03(1+TAN 2V*TANB3 + §avg*(V5 HA (a3)= G SIDE PRESSURE OEF. K = TK = ST K1= K1= YANTKb=	\$avg*V5 (GTANB3) + TA (2(1+TAN03^ 22) ARCTAN((-C1 COEFFICIENT (1+TAN03*CO* (1-SIN(03)) = K*(TANa3/(TANa)/(TANa3/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(TANa)/(T	ANB3 +	\$avg*(V5^2) 2*Cr(1+TAN03TANB3) \$avg*V5 1.0000 EQU.3-37 .5)/2 = Hp. H-9) TANa3) = K* 1.0000 -1}(\$m3/\$b3)] =	33.295 (2.3184			

US ARMY CORPS OF ENGINEERS CHASKA STAGE 3 SAINT PAUL DISTRICT SUBJECT TITLE: CHASKA STAGE 3 SUBJECT TITLE: DROP STRUCT. 1, DS WING WALLS COMPUTED BY: DATE: O7/13/93 CHECKED BY: DATE: CHECKED BY: DATE: CHECKED BY: DATE: CONTRACT NO.: 8/24/93

UP STREAM WING WALL, MONOLITH NO. 4, LOAD CASE -

R1

RETAINING WALL DESIGN BASED ON ENGINEER MANUAL EM 1110-2-2502 KDH Version 3

		SUMMATI	ON OF MO	MENTS ABO	OUT THE TO	OE		
AREA	VERT.	HORIZ.	WIDTH (FT)	UNIT WT. (K/CU.FT)	P VERT. (K/FT)	D (ARM)	M (FT-kips)	
1	19.950	1.250	1.000	0.150	3.741	3.125	11.69	
2	19.950	0.625	1.000	0.150	1.870	4.167	7.79	
3	2.750	5.000	1.000	0.150	2.063	2.500	5.16	
4	2.125	8.500	1.000	0.150	2.709	8.833	23.93	
5	6.050	2.500	1.000	0.114	1.724	1.250	2.16	
5A	0.000	2.500	1.000	0.127	0.000	1.250	0.00	
5B	0.000	2.500	1.000	0.135	0.000	1.250	0.00	
5C	0.000	2.500	1.000	0.063	0.000	1.250	0.00	
6	0.000	1.250	1.000	0.114	0.000	4.375	0.00	
6A	0.000	1.250	1.000	0.127	0.000	4.375	0.00	
7	19.950	0.625	1.000	0.114	1.421	4.583	6.51	
7A	0.000	0.000	1.000	0.127	0.000	5.000	0.00	
8	19.950	8.500	1.000	0.114	19.332	9.250	178.82	
′ 8A	0.000	0.000	1.000	0.127	0.000	9.250	0.00	
. 9	1.250	4.250	1.000	0.114	0.606	10.667	6.46	
10	0.000	4.875	1.000	0.114	0.000	10.250	0.00	
ARAPET	0.000	0.000	1.000	0.150	0.000	3.125	0.00	*
EAD LOAD T	TOTAL				33.466	7.247	242.52	.**:
ODIZONTAL	WEDGE LOA	ane.		P HOR.	n vænæ			\$
E.P. SOIL (DR		ъs.		-12.669	P VERT.	7.57	00.00	
VERTICAL CO				-12.009	0.00		-95.86	
ATERAL WAT				0.00	0.00	0.00	0.00	
URCHARGE (7		-0.00		0.00	-0.00	
•	,	PECICITALCY		0.00		0.00	0.00	
E.P. SOIL + SI	•	,		2.01	0.00	2.93	5.90	
	•	OT COMPUTED	')	0.000	0.00	0.00	0.00	
ATERAL WAT	EK (KESIS IIN	iG)		0.000		0.00	0.00	
PLIFT			_		-0.00	6.75	-0.01	
	s	SUBTOTAL ==	===>	-10.66	33.46	4.56	152.5	
DDITIONAL	LOADS:							
		- FM BACKFII	L	0.00		11.35	0.00	
	STRUCTURAL			-	0.00	8.625	0.00	
		WEDGE - Vs)			0.00	8.63	0.00	
`		•	_					

OVERTURNING STABILITY ANALYSIS

Xr= SUM MOMENT ABOUT TOE/SUM OF VERTICAL FORCES

SUM MOM=

152.5 F-kips

Pvert =

33.46 kips

-X =

4.56 FT.

ECCENTRICITY e=

TOTAL WEIGHT OF STRUCTURAL WEDGE =

 $HT/2 - \overline{X} =$

2.19 <

33.46 kips

2.25 = HT/6

% BASE IN COMP.= 3*\(\bar{X}\)/HT =*

100.0 %

CRITERIA SATISFIED

PROJECT TITLE: COMPUTED BY: DATE SHEET: US ARMY CORPS OF ENGINEERS CHASKA STAGE 3 51 **JHM** 20 07/13/93 SAINT PAUL DISTRICT SUBJECT TITLE: CHECKED BY: DATE: CONTRACT NO.: DROP STRUCT. 1, DS WING WALLS 8/24/93

UP STREAM WING WALL, MONOLITH NO. 4, LOAD CASE -

RETAINING WALL DESIGN BASED ON ENGINEER MANUAL EM 1110-2-2502 KDH Version 3

BASE PRESSURES DISTRIBUTION (FOOTING)

 $p1 = P/HT^*(1+6e/HT) =$

IF e IS IN MIDDLE 1/3 OF FOOTING

 $p1 = 2*P/{3*(HT/2-e)} =$

IF e IS OUTSIDE MIDDLE 1/3 OF FOOTING

p2 = P/HT*(1-6*e/HT) =

p2 = 0

IF e IS IN MIDDLE 1/3 OF FOOTING IF e IS OUTSIDE MIDDLE 1/3 OF FOOTING

DISTANCE TO p2 =

13.50 FT

p1 =

4.8933 KSF

p2 =

0.0644 KSF

STEM DESIGN (ULTIMATE STRENGTH)

CONC. STRENGTH (KSI) fc=	4.00	REINF.STR.(KSI)fy=	60.00
COVER TO C.G. REINF.(IN) WALL INCREMENT (FT) As max based on p max =	4.50	LOAD FACTOR	2.21
	1.00	STR. REDUCT FACTOR	0.90
	2.18 in ^2	MAX CRACK MOMENT	71.15

DISTANCE ABOVE FT TOP (FT)	WALL THICK. (IN)	d (IN)	ULT. MOMENT (F-K)	REQUIRED As (IN^2)	As min. 200/fy (IN^2)	,0014 bD T&S As (IN^2)	DESIGN As (IN^2)	CHECK p <= p max p max = 0.00713
0.00	30.00	25.50	139.57	1.26	1.02	-0.32 .50	1.26	0.00413
1.00	29.25	24.75	120.79	1.12	0.99	0.32	1.12	0.00378
2.00	28.50	24.00	103.48	0.99	0.96	0.31	0.99	0.00343
3.00	27.74	23.24	87.66	0.86	0.93	0.30	0.93	0.00343
4.00	26.99	22.49	73.33	0.74	0.90	0.29	0.90	0.00333
5.00	26.24	21.74	60.50	0.63	0.87	0.28	0.84	0.00333
6.00	25.49	20.99	49.17	0.53	0.84	0.28	0.71	0.00323
7.00	24.74	20.24	39.33	0.44	0.81	0.27	0.59	0.00281
8.00	23.98	19.48	30.91	0.36	0.78	0.26- .40	-0:48 i	
9.00	23.23	18.73	23.78	0.29	0.75	0.25 , 39	0.46 /	0.00264
10.00	22.48	17.98	17.84	0.22	0.72	0.24	0.30	0.00137
11.00	21.73	17.23	12.98	0.17	0.69	0.23		0.00137
12.00	20.98	16.48	9.10	0.12	0.66	0.23	0.23 -	0.00109
13.00	20.23	15.73	6.08	0.09	0.63	0.22	0.22 -	0.00061
14.00	19.47	14.97	3.82	0.06	0.60	0.21	7 0.21	0.00042
15.00	18.72	14.22	2.20	0.03	0.57	0.20	0.21 0.20	
16.00	17.97	13.47	1.12	0.02	0.54	0.20 0.19		0.00027
17.00	17.22	12.72	0.46	0.02	0.51	0.19 -	0.19	0.00015
18.00	16.47	11.97	0.13	0.00	0.48		- 0.19	0.00007
19.00	15.71	11.21	0.02	0.00	0.45	0.18	-0.18	0.00002
20.00	15.00	10.50	0.00	0.00	0.42	0.17	0.17	0.00000
21.00	15.00	10.50	0.00	0.00	0.42	0.16	0.16	0.00000
22.00	15.00	10.50	0.00	0.00	0.42	0.16 0.16	9:16 9:16	0.00000

CHECK SHEAR (STEM)

SIR. RED FACI	IOR 0=	0.85	Vc = 2 ULT.SHEAR AT CUT OF PO	•		ACI EQU.(11-3) ACI 12.10.5.1
DISTANCE ABOVE FT BOTTOM (FT)	WALL THICK. (IN)	D (IN)	ULT. SHEAR (kip)	Vc SHEAR (kip)	0°Vc SHEAR (kip)	
0.00	30.00	25.50	19.53	38.71	32.90	

JS ARMY CO	ORPS OF EN	IGINEERS	PROJECT TITLE: CHASKA STA	AGE 3		сомичитер ву: ЈНМ	DATE: 07/13/93	SHEET:	51
	PAUL DISTRI		SUBJECT TITLE: DROP STRU	ن CT. 1, j 0S WII	NG WALLS	CHRCKED BY:	B/26/93	CONTRACT NO.:	
	WING WAL		•			R1			
R K	ETAINING WAI DH Version 3	LL DESIGN 1	BASED ON ENG	INEER MANU	ALEM 1110-2	2-2502			
		•	CHECK SHEAR	R (TOE)					
TR. RED FACT	TOR 0=	0.85	Vc = 2 ULT.SHEAR <	*(fc)^.5*b*d : 0*Vc		ACI EQU.(11-3 ACI 12.10.5.1)		
DISTANCE ROM TOE (FT)	WALL THICK. (IN)	d (IN)	ULT. SHEAR (kip)	Vc SHEAR (kip)	0°Vc SHEAR (kip)				
2.50	33.00	28.50	22.29	43.26	36.77				
***************************************			QUANTITIE	is					
ONCRETE STEM PARAPET FOOTING	_	0.00	CU.YD. CU.YD. CU.YD.				·		
TOTAL		2.56 (CU.YD.					. +	
								i i	-
									,
							•		
							•		

US ARMY CORPS OF ENGINEERS		COMPUTED BY:	DATE: 07/12/93	24	51
SAINT PAUL DISTRICT	SUBJECT TITLE:	CHECKED BY:	DATE:	CONTRACT	NO.:
UP STREAM WING WALL, MONOL	DROP STRUCT. 1, DS WING WALLS	R2	8/26/93	<u> </u>	
or street, with which, worker	anno. 4, load call -	N2			
RETAINING WALL DESIGN KDH Version 3	BASED ON ENGINEER MANUAL EM 1110-2	2-2502			
WAI	L SECTION PROPERTIES				
TOTAL HEIGHT, VT (FT.)	22.700 HEEL DEPTH @ BACK,V8 (F)	n	1.500		
` ′	1,75 -2500 STEM BATTER	•)	0.0619		
STEM HEIGHT, V2 (FT.)	20.200 WALL WIDTH AT TOP,H1 (FT	2)	1.250		
STRAIGHT WALL HT., V3 (FT.)	0.000 WALL WIDTH AT BOT.,H2 (F	•	2,500		
SLOPED WALL HT., V4 (FT.)	20.200 WALL SLOPE,H3 (FT.)	,	1.250		
B.O.F. TO T.O.S., V5 (FT.)	8.800 FOOTING TOE WIDTH,H4 (F.	Γ.)	2.500		
SOIL DEPTH, V6 (FT.)	6.300 FOOTING HEEL WIDTH,H5 (FT.)	8.500		
FOOTING DEPTH HEEL, V7(FT)	2.500 FOOTING WIDTH,HT (FT.)	•	13.500		
	UNIT WEIGHT CONC. (K/CUI	T)	0.150		
DEPTH OF RIPRAP IN CHANNEL	1.800 UNIT WEIGHT RIPRAP (K/CL	FT)	0.135		
ADDI	ITONAL VERTICAL LOADS				
LOADS ON BACKFILL	LOADS ON STRUCTUR	AL WEDGE ***	•		
HIGHWAY LL SURCHARGE	0.000 K/FT HIGHWAY LL SURCH	ARGE	0.000	K/FT	
LIVE LOAD SURCHARGE (vd)*	0.000 K/FT LIVE LOAD SURCHAR	GE	0.000	K/FT	
Vd =	0.000 K SURCHARGE (Vs)**		0.000	K .	
SURCHARGE LOCATION S =	12.034 FT DIST. TO F. WALL FAC	E	6.125	FT :	
(DRIVING WEDGE) X =	0.000 FT SURCHARGE LOCATION	ON X1=	1.250	FT	
LOADS ON RESISTING WEDGE	FROM F. FACE OF WAI	LL X2=	11.000	FT	
RIPRAP (vr)**	0.131 K/FT				
)	PARAPETLOAD				
	- HEIGHT	•	0.000	FT	
	- WIDTH		0.000	FT	
A CHECK IS MADE TO DETERMINE IF THE AUTHOR OF THE PROPERTY OF THE PROPERT					
LIE WITHIN THE INFLUENCE OF THE DR ** IT IS CONSERVATIVE TO NEGLECT SUR					
ASSURE THEY WILL STAY IN PLACE FOR					
*** THESE LOADS ARE ASSUMED TO ACT		•			
	LITY REQUIREMENTS				
LOADING CONDITIONS CASE =====>	R2				
% OF PASSIVE PRESSURE USED	50 SLIDING SAFETY FACTOR		1.33		
MIN. BASE AREA IN COMPRESS.	75 BEARING CAP. SAFETY FAC	ror	2.00		
SOIL PR	OPERTIES (DRIVING WEDGE)			- · · · · · · · · · · · · · · · · · · ·	
FRICTION ANGLE OF SOIL (01)	33.000 DEG. (DRIVING WEDGE)				
FRICTION ANGLE OF SOIL (02)	33.000 DEG. (STRUCT. WEDGE)				
SLOPE OF BACKFILL RISE/RUN	0.000				
BETA ANGLE (B1)	0.000 DEG.				
POINT AT WHICH BACKFILL SLOPE BEGIN	S 2.00 1=SLOPE BEG	INS @ STEM			
SOIL DEPTH BACK of HEEL(Hz)	22.700 2=SLOPE BEG	INS@BACK OF	HEEL		
STR. MOBILIZATION FACTOR	0.750 (SMF)				
SOIL UNITWL.,MOIST (§m1)	0.1140 K/CUFT				
SOIL UNIT Wt., SATUR. (§s1)	0.1270 K/CUFT {ENTER §m1 IF	NOT SATUR.			
SOIL UNITWL,BOUYANT (§b1)	0.0699 K/CUFT				
DEPTH OF CRACK (dc)	0.000 FT.				
COHESION ON SLIP PLANE C=	0.000 KSF				
COHESION ON SLIP PLANE Cd=	0.000 KSF(DEVELOPED) =	Cd = (SMF)*C			

IO ADMY CORDS OF THOMESTS	PROJECT TITLE:	05.6		COMPUTED BY:		SHEEL:	51
IS ARMY CORPS OF ENGINEERS SAINT PAUL DISTRICT		IGE 3		JHM	07/12/93		<u> </u>
SAINT FACE DISTRICT	DROP STRUC	CT 1 DS WIN	G WALLS	CHERCKED BY:	DATE 8/16/93	CONTRACTIN	O.:
P STREAM WING WALL, MONOI	ITH NO. 4, LO	DAD CASE -	G WALL	R2	0/20/73		
DETAINING WALL DEGICN	DASED ON ENG	**************************************	. .	0500			
RETAINING WALL-DESIGN KDH Version 3	BASED ON ENG	INEEK MANUA	L EM 1110-2	-2502			
	UPLIFT FO	ORCES					
(BY LINE (OF CREEP M	ETHOD – F	IG. 3–32)				
L-ab = SAT. HEIGHT			12.50	-			
L-bc = FOOTING WIL L-cd' = SAT. HEIGHT,)TH,HT (FT.) = 52 (FT.) =		13.50 8.80				
LENGTH OF SEEPAGE PATH (Ls) = L(ab)	, ,		3.00				
		22		34.80	F1.		
: bz -MEASURED TO ELEVATION OF PO WHERE UPLIFT IS CALCULATED	INT						
$Ja = (hz - \langle h(L - a/Ls)) \otimes w =$		Uc = (hz - < h(L -	ac/Ls))\$w=		0.6412		
$Ub = (hz - \langle h(L - ab/Ls)) $	0.7139	Ud = hw*§w =			0.0437		
U(DW) = (Ua + Ub/2)*L(a*b) = U(SW) = (Ub + Ub/2)*I(b*a) = (Ub + Ub/2)*I(b*a) = (Ub/2)*I(b*a)	4.462 K		Y (FT) =		FROM BASE		
U(SW) = (Ub+Uc/2)*L(bc) = U(RW1) = (Uc+Ud/2)*L(cd') =	9.147 K 3.014 K		X (FT) = Y (FT) =		FROM TOE FROM BASE		
U(RW2) = Ud/2*(h2-L(cd')) =	0.015 K	/FT.	Y (FT) =	9.03	FROM BASE		
U(RWT) = U(RW1) + U(RW2) =	3.029 K	<u>/FT </u>	Y (FT) =	3.15	FROM BASE		
LATERAL FORC	E COEFFICI	ENTS, FRO	M CALCU	LATIONS		Ą	
Driving Side Mo	ist Coefficient			0.39			
	arated Coefficient			0.39		4	
	t Rest Coefficient oist Passive Coefffi	icient		0.46 2.56			
	turated Passive Co			2.56			
LATERAL	FORCES USI	NG COEFFI	CIENTS				
RIVING SIDE FORCES							
Moist	Moist	Saturated			Live		
Triangle	Rectangle	Triangle	Total		Load		
Force 2.32	5.68	2.13	10.14 1	ζ.	0.00		
Ybar 15.90	6.25	4.17	8.02		16.28		
Moment 36.86	35.51	8.89	81.27		0.00		
Pw = 4.462	K						
ESISTING SIDE EARTH PRESSURE WITH	SURCHARGE						
RESISTING SII	E, FULL PASSIV	E (WITH PHId)					
Moist	Moist	Saturated	Riprap				
Triangle	Rectangle	Triangle	Load	Total	•		
Force 0.00 Ybar 9.27	0.00	5.85	0.33	6.19			
Ybar 9.27 Moment 0.00	4.75 0.00	2.93 17.17	4.40 1.47	3.01 - 18.64			
RESISTING SIL			4177	20.07			
		•					
Moist Triangle	Moist Rectangle	Saturated Triangle	Riprap Load	Total			
Force 0.00	0.00	1.04	0.52	1.57			
Ybar 9.27	4.75	2.93	4.40°	3.42		* - *	
Moment 0.00	0.00	3.06	2.30	5.36			
Pw = 3.014	ĸ					•	
= 3.014 .							

US ARMY CORPS OF ENGINEERS	PROJECT TITLE: CHASKA STAGE 3		COMPUTED BY: JHM	DATE: 07/12/93	EHERT: 28	51
SAINT PAUL DISTRICT	SUBJECT TITLE	AMAIC NAMA	CEEBCICED BY:	DATE	CONTRACT NO).:
UP STREAM WING WALL, MONOL	DROP STRUCT. 1, DS V JTH NO. 4, LOAD CASE		R2	8126/93	<u> </u>	
RETAINING WALL DESIGN KDH Version 3	·					
SIDING	STABILITY ANALYS	170				
		112				
N' = Vsum = 26.27 1 0 = 30.00 L = % BASE 1 C = 0.00	kips T = Hsum IN COMPRESSION * HT =	= FS =	10.00 12.15 1.33	kips (AT REST)		
N'•TAN0 + CI		,				
FS = SUM Fh		1.52		USING AT RE	ST PRESSUI	RE
-> SLIDING CRITERIA IS:	SATISFIED					
FORCES FOR OVERTURNING						
	, 1 11 11 11 1 1 1 1 1 1	15161				
N'*TAN(0) (no cohesion) = RESISTING FORCE NEEDED	=	15.16 i 0.00 i				
MAX ALLOW RESIST FORCE	(N/n) =	3.09 1	•			
			<u>upa</u>			
CHECK	BEARING CAPACITY	,				
BEARING CAPACITY = Q $Q = \overline{B}[(EcdEciEctEcgCNc) + (EqdEqiEqtEqgqc)]$	EQU. 5-2 DNq)+(ErdEriErtErgB(§m-f)N	Ir)/2]	,			
ECCEN. OF LOAD e= 2.70					•	
EFFECTIVE WIDTH OF BASE B= HT-2e =	8.10)				
BEARING CAPACITY FACTORS FROM TAB	F S-1 FM 1110-2-2502					
Nq = 18.40						
Nc = 30.14 Nr = 15.67						
EMBEDMENT FACTORS						v*
Ecd = 1 + 0.2(V5/B)TAN	i(45+0/2) =		EQU.5-4a			
Eqd=Erd = Eqd=Erd = 1+0.1(V5/B)TAN	: ====================================		EQU.5-4b 1 EQU.5-4c 1	IF(0 = O) IF(0 > 10)		
Eqd=Erd =		1.200 F	OR (O<0<=10	O)` ´		
INCLINATION FACTORS	INTERPOLAT	E BETWEEN EQ	U. 5-46 AND 4	c		
\$0 = ARCTANI(SUM	Hysum v] =	20.85 I	DEG.			
Eqi=Eci = (1-\$0/90)^2 =			EQU.5-5a			
Eri = 1F 90 > FRIC. Al Eri = (1\$0/0)^2 =	NGLE(0) THEN Eri = 0,		ELSE, 3QU.5—5b			
BASE TILT FACTORS (A2 IN RADIAN	<i>s</i>					
$Eqt = Ert = (1 - a2*TAN0)^2$		1.000 F	EQU.5-6a			
Ect = 1 - (2*a2/PI + 2)	7-M7 A \$10\3			(IF 0 = O)		
Ect = Eqt-[(1-Eqt)/(N Ect =	ic (ANU)j	1.000	3QU.5-6c ((IF 0 > O)		
GROUND SLOPE FACTORS			•			
$Erg = Eqg = [1 - TAN(-B3)]^{\circ}$	`2 =	1.000 F	3QU.5-7a			
$Ecg = 1 - [2^{\circ}(-B3)/(PI - B3)]$		E	QU.5-76 (
Ecg = Eqg-[(1-Eqg)/N Ecg =	c TAN0]	1.000	3QU.5-7d ((IF 0 > O)		
EFFECTIVE OVERBURDEN PRESSURE		•				
qo = (\$3*V5+RIPRAE	²)*COS/B3/ =	0.651 E	3QU.5-8a			

	ORPS OF EN		PROJECT TITLE: CHASKA ST	AGE 3		COMPUTED BY: JHM	DATE: 07/12/93	SHEET:	51
SAINT I	PAUL DISTRI	CT	SUBJECT TITLE:			CEBCKED BY:	DATE:	CONTRACT NO	D.;
ID CTDT AL	(WINC WAT	T MONOT	DROP STRU				8126/93		
JPSIKEAM	WING WAL	L, MUNUL	11H NO. 4, L	OAD CASE	. 	R2			
	ETAINING WAI	LL DESIGN 1	BASED ON ENG	GINEER MAN	UAL EM 1110-2	2-2502			
		-1	HEEL DESI	GN (ULTI	MATE STRE	ENGTH)			
CONC. STRENG	GTH (KSI)		4.00		REINF. STR.(K	SI)	60.00		
OOTING INC			1.00		LOAD FACTOR	R	2.21		
COVER TO C.G			4.50		STR. REDUCT		0.90		
as max based on	p max =		2.18 i	n^2	MAX CRACK N	MOMENT	71.15		
								CHECK	
DISTANCE	HEEL		ULT	REQUIRED	As min.	T&S	DESIGN	p <= p max	
ROM HEEL BACK (FT)	THICK. (IN)	d (IN)	MOMENT	As (IN ^2)	200/fy	As (IN A2)	As (D) As	p max =	
PUCK (L1)	(114)	(IN)	(F-K)	(IN^2)	(IN^2)	(IN^2)	(IN^2)	0.00713	•
8.500	30.00	25.50	119.25	1.07	1.02	0.32	1.07	0.00350	
7.500	28.59	24.09	99.48	0.95	0.96	0.31	0.96	0.00333	
6.500	27.18	22.68	79.59	0.80	0.91	0,29	0.91	0.00333	
5.500	25.76	21.26	60.35	0.65	0.85	0.28	0.85	0.00333	
4.500	24.35	19.85	42.51	0.48	0.79	0.26	0.65	0.00271	
3.500 2.500	22.94	18.44	26.86	0.33	0.74	0.25	0.44	0.00198	
1,500	21.53 20.12	17.03 15.62	14.15 5.16	0.19 0.07	0.68	0.23	0.25	0.00121	
0.500	18.71	14.21	3.16 0.57	0.07	0.62 0.57	0.22 0.20	0.22 0.20	0.00052 0.00007	
0.000	18.00	13.50	0.00	0.00	0.54	0.19	0.20	0.00007	
0.000	18.00	13.50	0.00	0.00	0.54	0.19	0.19	0.00000	
0.000	18.00	13.50	0.00	0.00	0.54	0.19	0.19	0.00000	
0.000	18.00	13.50	0.00	0.00	0.54	0.19	0.19	0.00000	
		•	CHECK SHEA	R (HEEL)					
TR. RED FACT	TOR 0=	0.85	Vc = 2 ULT.SHEAR	2*(fc)^.5*b*d < 0*Vc		ACI EQU (11-3 ACI 12.10.5.1)		
NOTANOE	*** * * *					101100011			
DISTANCE U	WALL THICK.	đ	ULT. SHEAR	Vc SHEAR	0°Vc SHEAR				
BACK (FT)	(IN)	(IN)	(kip)	(kip)	(kip)				
`-´ 8.50	30.00		19.45	38.71	32.90				
			15.43	30.71	32.70				
		•	roe desig	N (ULTIM	ATE STREN	IGTH)			
CONC. STRENG	TH (KSI)		4.00	•	REINF. STR.(K.	SI)	60.00		
FOOTING INCR	REMENTS		0.50		LOAD FACTOR	ł	2.21		
COVER TO C.G			4.50		STR. REDUCT		0.90		
As max based on	p max =		2.18 i	n^2	MAX CRACK M	IOMENT	71.15		
DISTANCE	TOE		ULT	REQUIRED	As min.	T&S ·	DESIGN		
FROM TOE	THICK.	d	MOMENT	As	200/fy	As	As	CHECK	
(FT)	(IN)	(IN)	(F-K)	(IN^2)	(IN^2)	(IN^2)	(IN^2)	p <= p max	
2.50	30.00	25.50	22.95	0.20	1.02	0.32	0.32	0.00088	
2.00	30.00	25.50 25.50	14.95	0.13	1.02	0.32	0.32	0.00057	
1.50 1.00	30.00 30.00	25.50 25.50	8.55 3.87	0.07 0.03	1.02 1.02	0.32 0.32	0.32 0.32	0.00033	
0.50	30.00	25.50	0.98	0.03	1.02	0.32	0.32	0.00015 0.00004	
0.00	30.00	25.50	0.00	0.00	1.02	0.32	0.32	0.00000	
0.00									

SAMPLE COMPUTATIONS

DROP STRUCTURE 1

	PROJECT TITLE:	COMPUTED E	DATE:	SHEET:	OF:
US Army Corps of Engineers Saint Paul District	CHASKA – STAGE 3	ЈНМ	06/30/93	5	40
	SUBJECT TITLE:	CHECKED BY	DATE:	CONTRA	ACT NO.:
	DROP STRUCTURE 1 - LOAD CASES	<i>→</i>	=/1.17		

DS1A.WK

CFRAME INPUT (CONTINUED)

0220 LOAD CASE 7 1 4 0 0 0 MOIST & SATURATED SOIL 2
0221 Y -2.03 1 16
0222 0.518 14.32 .098 0 18
0223 14.32 .098 16.2 0 0 18
0224 0 -.518 14.32 -.098 0 20
0225 14.32 -.098 16.2 0 0 20
0230 LOAD CASE 8 0 2 0 0 0 EXTERIOR WATER 2
0231 0.894 14.32 0 0 18
0232 0 -.894 14.32 0 0 20
0240 COMBINATION 9 1 1.0,2 1.0,3 1.0,DEWATERED
0241 COMBINATION 10 1 1.0,5 1.0,7 1.0,8 1.0,INTERIOR WATER
0242 COMBINATION 11 1 1.0,3 1.0,4 1.0,6 1.0,DRAWDOWN

END OF INPUT

G

KSI

.1634E+04

.1634E+04

.1634E+04

.1634E+04

.1634E+04

.1634E+04

.1634E+04

.1634E+04

	END	END					
MEMBER	A	В	LENGTH	I	A	AS	E
			FT	IN**4	IN**2	IN**2	KSI
13	12	14		7/008.05	E0/07:03	E0/05.00	200/5.0/
14	13 14	14 15	4.00 1.00	.7409E+05	.5040E+03	.5040E+03	.3824E+04
15	15	16	1.50	.7409E+05	.5040E+03	.5040E+03	.3824E+04
. 16	16	17	1.00	.7409E+05	.5040E+03	.5040E+03	.3824E+04
17	3	18	1.75	.7409E+03	.5040E+03	.5040E+03	.3824E+04
18	- 18	19	20.20	.1382E+05	.5040E+03 .2880E+03	.5040E+03	.3824E+04
19	15	20	1.75	.7500E+08	.5040E+03		.3824E+04
20	20	21	20.20	.1382E+05	.2880E+03	.5040E+03	.3824E+04 .3824E+04
			20.20	.13022.03	.20002103	.20002103	. 30246704
*** LO	AD CA	ASE	1 DEAI	LOADS			
			PROJ	ECTED			
MEMBER	DIF	RECTI		DAD			
			KIP	/ FT			•
1		37					
1 2		Y		0E+00			
3		Y Y		0E+00			
4		Y		60E+00 60E+00	•		
5		Ÿ		60E+00			
6		Ÿ		60E+00			
7	*	Y		0E+00			
8		Y		0E+00			
9		Y					
10				0E+00			
11		Y	•	0E+00			
12		Y Y		0E+00 0E+00			
13		Y		0E+00			
14		Y		0E+00			•
15		Ÿ		0E+00			
16	•	Ÿ		0E+00			
10		•	525	OETOU			
JOINT	FOR	CE X	FORCE	Y MON	1ENT		
	. K	IP	KIF	FT-	-KIP		
18	.000	0E+0	05700E	+01 .000	00E+00		
20	.000	0E+0	05700E	+01 .000	00E+00		
*** LOA	בע CA	SE	2 MOIS	T SOIL LOA ECTED	ADS		
MEMBER	חדם	ድ ረጥፕ.					
MEMBER	DIK	ECI1	KIP				
			185				-
16		Y		·			
MEMBER			PA	LB	PB		
	FT		KIP / FT	FT	KIP / FT	DEG	
10	• • • •				00000.0		
18 20		.00	0400E+0	0 16.20	0+3000E+0	0 .00	
20		. 00	04UUE+U	U 16.20	.0000E+0	0 .00	

.00

.00

MEMBER	DIRECTI	PROJE ON LOAD KIP/)		
10 10 11 11 12 12 13 13 14 15 16	Y Y Y Y Y Y Y Y Y	.1112E 6740E .1112E 6740E .1112E 6740E .1112E 6740E .1112E	+00 +01 +00 +01 +00 +01 +00 +01 +01		*
MEMBER	LA FT	PA KIP / FT	LB FT	PB KIP / FT	ANGLE DEG
18 20		6740E+00 .6740E+00	10.80 10.80	.0000E+00	.00

*** LOAD CASE 6 EXTERIOR WATER 1

MEMBER	DIRECTION	PROJECTED LOAD KIP / FT
1	Y	.5300E+00
1	Y	3120E+00
2	Y	.5300E+00
3	Y	.5300E+00
4	Y	.5300E+00
5	Y	.5300E+00
6	Y	.5300E+00
7	Y	.5300E+00
8	Y	.5300E+00
9	Y	.5300E+00
10	Y	.5300E+00
11	Y	.5300E+00
.12	Y	.5300E+00
13	Y	.5300E+00
14	Y	.5300E+00
15	Y	.5300E+00
16	Y	.5300E+00
16	Y	3120E+00

MEMBER	LA FT	PA KIP / FT	LB FT	PB KIP / FT	ANGLE DEG
18	.00	.3120E+00	5.00	.0000E+00	.00
20	.00	3120E+00	5.00	.0000E+00	.00

LOAD CASE 9 DEWATERED

	JOINT DIS	PLACEMENTS	
JOINT	DX	DY	DR
	IN	IN	RAD
1	.0000E+00	8481E+00	1670E-03
2	.0000E+00	8501E+00	1671E-03
3	.0000E+00	8531E+00	1686E-03
4	5386E-04	8548E+00	1380E-03
5	2693E-03	8586E+00	4541E-04
6	4848E-03	8592E+00	.0000E+00
7	7002E-03	8583E+00	.2057E-04
8	9157E-03	8573E+00	.1568E-04
9	1131E-02	8568E+00	.0000E+00
10	1347E-02	8573E+00	1568E-04
11	1562E-02	8583E+00	2057E-04
12	1777E-02	8592E+00	.0000E+00
13	1993E-02	8586E+00	.4541E-04
14	2208E-02	8548E+00	.1380E-03
15	2262E-02	8531E+00	.1686E-03
16	2262E-02	8501E+00	.1671E-03
17	2262E-02	8481E+00	.1670E-03
18	.3762E-02	8531E+00	1687E-03
19	.1709E+00	8531E+00	7941E-03
20	6025E-02	8531E+00	.1687E-03
21	1732E+00	8531E+00	.7941E-03

MEMBER	JOINT	AXIAL KIP	SHEAR KIP	MOMENT IN-KIP	MOMENT EXTREMA IN-KIP	LOCATION IN
1	1	.0000E+00	.4240E+00	.0000E+00	.4110E+00	1.92
	2	.0000E+00	.2201E+01	1066E+02	1066E+02	12.00
2	2	.0000E+00	1138E+01	1066E+02	1066E+02	.00
	3	.0000E+00	.1926E+01	3824E+02	3824E+02	18.00
3	3	8651E+01	6560E+01	.7638E+03	.7638E+03	.00
	4	8651E+01	.7085E+01	.6820E+03	.6820E+03	12.00
4	4	8651E+01	4948E+01	.6820E+03	.6820E+03	.00
	5	8651E+01	.7048E+01	.3941E+03	.3941E+03	48.00
5	5	8651E+01	3613E+01	.3941E+03	.3941E+03	.00
	6	8651E+01	.5713E+01	.1703E+03	.1703E+03	48.00
6	6	8651E+01	2276E+01	.1703E+03	.1703E+03	.00
	7	8651E+01	.4376E+01	.1061E+02	.1061E+02	48.00
7	7	8651E+01	9428E+00	.1061E+02	.1061E+02	.00
	8	8651E+01	.3043E+01	8505E+02	8505E+02	48.00
8	8	8651E+01	.3863E+00	8505E+02	8334E+02	8.64
	9	8651E+01	.1714E+01	1169E+03	1169E+03	48.00
9	9	8651E+01	.1714E+01	1169E+03	8334E+02	39.36
	10	8651E+01	.3863E+00	8505E+02	1169E+03	.00
10	10	8651E+01	.3043E+01	8505E+02	.1061E+02	48.00
	11	8651E+01	9428E+00	.1061E+02	8505E+02	.00
11	11	8651E+01	.4376E+01	.1061E+02	.1703E+03	48.00
	12	8651E+01	2276E+01	.1703E+03	.1061E+02	.00

LOAD CASE 10 INTERIOR WATER

JOINT DIS	PLACEMENTS	
DX	DY.	DR
IN	IN	RAD
.0000E+00	2989E+00	2190E-03
.0000E+00	3015E+00	2191E-03
.0000E+00	3055E+00	2198E-03
4523E-04	3079E+00	1934E-03
2261E-03	3147E+00	1093E-03
4071E-03	3184E+00	5538E-04
5880E-03	3201E+00	2425E-04
7689E-03	3207E+00	.0000E+00
9498E-03	3209E+00	.0000E+00
1131E-02	3207E+00	.0000E+00
1312E-02	3201E+00	.2425E-04
1493E-02	3184E+00	.5538E-04
1673E-02	3147E+00	.1093E-03
1854E-02	3079E+00	.1934E-03
1900E-02	3055E+00	.2198E-03
1900E-02	3015E+00	.2191E-03
1900E-02	2989E+00	.2190E-03
.4802E-02	3055E+00	2199E-03
.1605E+00	3055E+00	7202E-03
		.2199E-03
1624E+00	3055E+00	.7202E-03
	DX	IN IN .0000E+00

MEMBER	JOINT	AXIAL KIP	SHEAR KIP	MOMENT IN-KIP	MOMENT EXTREMA IN-KIP	LOCATION IN
1	1	.0000E+00	.1494E+00	.0000E+00	.9276E-01	1.20
	2	.0000E+00	.1294E+01	6865E+01	6865E+01	12.00
2	2	.0000E+00	9167E+00	6865E+01	6865E+01	.00
	3	.0000E+00	.3616E-01	1544E+02	1544E+02	18.00
3	3	7264E+01	5354E+01	.6559E+03	.6559E+03	.00
	4	7264E+01	.4767E+01	.5951E+03	.5951E+03	12.00
4	4	7264E+01	3998E+01	.5951E+03	.5951E+03	.00
	5	7264E+01	.4346E+01	.3949E+03	.3949E+03	48.00
5	5	7264E+01	3087E+01	.3949E+03	.3949E+03	.00
	6	7264E+01	.3435E+01	.2384E+03	.2384E+03	48.00
6	6	7264E+01	2161E+01	.2384E+03	.2384E+03	.00
	7	7264E+01	.2509E+01	.1263E+03	.1263E+03	48.00
7	7	7264E+01	1229E+01	.1263E+03	.1263E+03	.00
		7264E+01	.1577E+01	.5897E+02	.5897E+02	48.00
8	8	7264E+01	2938E+00	.5897E+02	.5897E+02	.00
	9	7264E+01	.6418E+00	.3651E+02	.3651E+02	48.00
. 9	9	7264E+01	.6418E+00	.3651E+02	.5897E+02	48.00
	10	7264E+01	2938E+00	.5897E+02	.3651E+02	.00
10	10	7264E+01	.1577E+01	.5897E+02	.1263E+03	48.00
	11	7264E+01	1229E+01	.1263E+03	.5897E+02	.00
11	11	7264E+01	.2509E+01	.1263E+03	.2384E+03	48.00
	12	7264E+01	2161E+01	.2384E+03	.1263E+03	.00

LOAD CASE 11 DRAWDOWN

	JOINT DIS	PLACEMENTS	
JOINT	DX	· · · DY	DR
	IN	IN	RAD

1	.0000E+00	3202E+00	1726E-03
2	.0000E+00	3223E+00	1727E-03
3	.0000E+00	3254E+00	1743E-03
4	5699E-04	3272E+00	1429E-03
5	2849E-03	3312E+00	4878E-04
6	5129E-03	3319E+00	.0000E+00
7	7409E-03	3311E+00	.1925E-04
8	9688E-03	3301E+00	.1507E-04
9	1197E-02	3297E+00	.0000E+00
10	1425E-02	3301E+00	1507E-04
11	1653E-02	3311E+00	1925E-04
12	1881E-02	3319E+00	.0000E+00
13	2109E-02	3312E+00	.4878E-04
14	2337E-02	3272E+00	.1429E-03
15	2394E-02	3254E+00	.1743E-03
16	2394E-02	3223E+00	.1727E-03
17	2394E-02	3202E+00	.1726E-03
18	.3894E-02	3254E+00	1744E-03
19	.1731E+00	3254E+00	8028E-03
20	6288E-02	3254E+00	.1744E-03
21	1755E+00	3254E+00	.8028E-03

MEMBER	JOINT	AXIAL KIP	SHEAR KIP	MOMENT IN-KIP	MOMENT EXTREMA IN-KIP	LOCATION IN
1	1	.0000E+00	.1601E+00	.0000E+00	.7088E-01	. 96
	2	.0000E+00	.1997E+01	1102E+02	1102E+02	12.00
2	2	.0000E+00	1594E+01	1102E+02	1102E+02	.00
	3	.0000E+00	.1587E+01	3965E+02	3965E+02	18.00
3	3	9153E+01	6880E+01	.7832E+03	.7832E+03	.00
	4	9153E+01	.6875E+01	.7006E+03	.7006E+03	12.00
4	4	9153E+01	6057E+01	.7006E+03	7006E+03	.00
	5	9153E+01	.6037E+01	.4104E+03	.4104E+03	48.00
5	5	9153E+01	4712E+01	.4104E+03	.4104E+03	.00
	6	9153E+01	.4692E+01	.1847E+03	.1847E+03	48.00
6	6	9153E+01	3364E+01	.1847E+03	.1847E+03	.00
	7	-:9153E+01	.3344E+01	.2367E+02	.2367E+02	48.00
7	7	9153E+01	2020E+01	.2367E+02	.2367E+02	.00
	8	9153E+01	.2000E+01	7280E+02	7280E+02	48.00
8	8	9153E+01	6794E+00	7280E+02	7280E+02	.00
	9	9153E+01	.6594E+00	1049E+03	1049E+03	48.00
9	9	9153E+01	.6594E+00	1049E+03	7280E+02	48.00
	10	9153E+01	6794E+00	7280E+02	1049E+03	.00
10	10	9153E+01	.2000E+01	7280E+02	.2367E+02	48.00
	11	9153E+01	2020E+01	.2367E+02	7280E+02	.00
11	11	9153E+01	.3344E+01	.2367E+02	.1847E+03	48.00
	12	9153E+01	3364E+01	.1847E+03	.2367E+02	.00

		1	MEMBER END I	FORCES			
	LOAD					MOMENT	
MEMBER	CASE	JOINT	AXIAL	SHEAR	MOMENT	EXTREMA	LOCATION
			KIP	KIP	IN-KIP	IN-KIP	IN
1	9	1	.0000E+00	.4240E+00	.0000E+00	.4110E+00	1.92
		2	.0000E+00	.2201E+01	1066E+02	1066E+02	12.00
	10	1	.0000E+00	.1494E+00	.0000E+00	.9276E-01	1.20
		2	.0000E+00	.1294E+01	6865E+01	6865E+01	12.00
	. 11	ī	.0000E+00	.1601E+00	.0000E+00	.7088E-01	.96
		2	.0000E+00	.1997E+01	1102E+02	1102E+02	12.00
		-	.0000100	.1337101	IIOZETOZ	II02E+02	12.00
2	9	2	.0000E+00	1138E+01	1066E+02	1066E+02	.00
		3	.0000E+00	.1926E+01	3824E+02	3824E+02	18.00
	10	2	.0000E+00	9167E+00	6865E+01	6865E+01	.00
		3	.0000E+00	.3616E-01	1544E+02	1544E+02	18.00
	11	2	.0000E+00	1594E+01	1102E+02	1102E+02	.00
		3	.0000E+00	.1587E+01	3965E+02	3965E+02	18.00
		,	.0000	.1J07ETUI	*.390JETUZ	390JE+UZ	18.00
. 3	9	3	8651E+01	6560E+01	.7638E+03	.7638E+03	.00
		4	8651E+01	.7085E+01	.6820E+03	.6820E+03	12.00
	10	3	7264E+01	5354E+01	.6559E+03	.6559E+03	.00
	,	4	7264E+01	.4767E+01	.5951E+03	.5951E+03	12.00
	11	3	9153E+01	6880E+01	.7832E+03	.7832E+03	.00
		4	9153E+01	.6875E+01	.7006E+03	.7006E+03	12.00
		, ~	.71331101	.00752101	.70002703	.70002703	12.00
4	9	4	8651E+01	4948E+01	.6820E+03	.6820E+03	.00
		5	8651E+01	.7048E+01	.3941E+03	.3941E+03	48.00
	10	4	7264E+01	3998E+01	.5951E+03	.5951E+03	.00
		5	7264E+01	.4346E+01	.3949E+03	.3949E+03	48.00
	11	4	9153E+01	6057E+01	.7006E+03	.7006E+03	.00
		5	9153E+01	.6037E+01	.4104E+03	.4104E+03	48.00
		•	.,1332.01	.003/11/01	.41046103	.41046703	48.00
5	9	5	8651E+01	3613E+01	.3941E+03	.3941E+03	.00
		6	8651E+01	.5713E+01	.1703E+03	.1703E+03	48.00
	10	5	7264E+01	3087E+01	.3949E+03	.3949E+03	.00
		6	7264E+01	.3435E+01	.2384E+03	.2384E+03	48.00
	11	. 5	9153E+01	4712E+01	.4104E+03	.4104E+03	.00
		6	9153E+01	.4692E+01	.1847E+03	.1847E+03	48.00
•		•	.,	. 40722.02	120472103	.104/2103	40.00
6	9	- 6	8651E+01	2276E+01	.1703E+03	.1703E+03	.00
		7	8651E+01	.4376E+01	.1061E+02	.1061E+02	48.00
	10	6	7264E+01	2161E+01	.2384E+03	.2384E+03	.00
		7	7264E+01	.2509E+01	.1263E+03	.1263E+03	48.00
	11	6	9153E+01	3364E+01	.1847E+03	.1847E+03	.00
		7	9153E+01	.3344E+01	.2367E+02	.2367E+02	48.00
		-					
7	9	7	8651E+01	9428E+00	.1061E+02	.1061E+02	.00
		8	8651E+01	.3043E+01	8505E+02	8505E+02	48.00
	10		7264E+01	1229E+01	.1263E+03	.1263E+03	.00
	•	8	7264E+01	.1577E+01	.5897E+02	.5897E+02	48.00
	11	7	9153E+01	2020E+01	.2367E+02	.2367E+02	.00
		8	9153E+01	.2000E+01	7280E+02	7280E+02	48.00
			· -	-	· · - · · - · ·		

		1	MEMBER END I	FORCES			
MEMBER	LOAD CASE	JOINT	AXIAL KIP	SHEAR KIP	MOMENT IN-KIP	MOMENT EXTREMA IN-KIP	LOCATION IN
15	9	15	.0000E+00	.1926E+01	3824E+02	1066E+02	18.00
		16	.0000E+00	1138E+01	1066E+02	3824E+02	.00
	10	15	.0000E+00	.3616E-01	1544E+02	6865E+01	18.00
		16	.0000E+00	9167E+00	6865E+01	1544E+02	.00
	11	15	.0000E+00	.1587E+01	3965E+02	1102E+02	18.00
		16	.0000E+00	1594E+01	1102E+02	3965E+02	.00
16	9	16	.0000E+00	.2201E+01	1066E+02	.4109E+00	10.08
		17	.0000E+00	.4240E+00	.0000E+00	1066E+02	.00
	10	16	.0000E+00	.1294E+01	6865E+01	.9276E-01	10.80
		17	.0000E+00	.1494E+00	.0000E+00	6865E+01	.00
	11	16	.0000E+00	.1997E+01	1102E+02	.7088E-01	11.04
		17	.0000E+00	.1601E+00	.0000E+00	1102E+02	.00
17	9	3	5700E+01	.8651E+01	8021E+03	6204E+03	21.00
		18	5700E+01	8651E+01	6204E+03	8021E+03	.00
	10	3	5700E+01	.7264E+01	6713E+03	5188E+03	21.00
		18	5700E+01	7264E+01	5188E+03	6713E+03	.00
	11	3	5700E+01	.9153E+01	8228E+03	6306E+03	21.00
		18	5700E+01	9153E+01	6306E+03	8228E+03	.00
18	9	18	.0000E+00	.8651E+01	6204E+03	.4917E-03	223.01
		19	.0000E+00	.0000E+00	.0000E+00	6204E+03	.00
	10	18	.0000E+00	.7264E+01	5188E+03	.7876E-03	218.16
		19	.0000E+00	.0000E+00	.0000E+00	5188E+03	.00
	11	18	.0000E+00	.9153E+01	6306E+03	.5677E-03	223.01
		19	.0000E+00	.0000E+00	.0000E+00	6306E+03	.00
19	9	15	5700E+01	8651E+01	.8021E+03	.8021E+03	.00
		20	5700E+01	.8651E+01	.6204E+03	.6204E+03	21.00
	10	15	5700E+01	7264E+01	.6713E+03	.6713E+03	.00
		20	5700E+01	.7264E+01	.5188E+03	.5188E+03	21.00
	11	15	5700E+01	9153E+01	.8228E+03	.8228E+03	.00
		20	5700E+01	.9153E+01	.6306E+03	.6306E+03	21.00
20	9	20	.0000E+00	8651E+01	.6204E+03	.6204E+03	.00
		21	.0000E+00	.0000E+00	.0000E+00	4917E-03	223.01
	10	20	.0000E+00	7264E+01	.5188E+03	.5188E+03	.00
		21	.0000E+00	.0000E+00	.0000E+00	7876E-03	218.16
	11	20	.0000E+00	9153E+01	.6306E+03	.6306E+03	.00
		21	.0000E+00	.0000E+00	.0000E+00	5677E-03	223.01

US Army Corps of Engine	ers
Saint Paul District	

PROJECT TITLE:	COMPUTED BY:	DATE:	SHEET:	OF:
CHASKA – STAGE 3	JHM	06/30/93	21	40
SUBJECT TITLE:	CHECKED BY:	DATE:	CONTRA	CT NO.:
DROP STRUCTURE 1		3/ 1/	į	į

TRIAL 2 - FOR MINIMUM WALL STEEL

Reinforced Concrete Design

TRY 30" WALL, 25.5 IN (to allow for batter)

Mn = As Fy (d - (As Fy / .85 F'c b) / 2)

Input

F'c =4.0 ksi

a = Fy (Fy/(.85F'c b)/2) 44.12 $(b^2-4ac)^5 = 1437.93$

Fy =60.0 ksi 12.0 in

b = Fy dc = Mn (12)/Phi

1530.00 2a =88.24 1548.47

d =25.5 in

116.1 k-ft

Beta 1 = 0.85

Phi = 0.9

Output

Rho min = 0.0033

Mu =

-> 200/Fy

Rho max = 0.0071

-> .25 Rho bal

As min = 1.02 in ^ 2

As max = 2.18 in ^2

Rho req'd = 0.0034

-> As/bd

As req'd =1.04 in ^ 2 $-> (b-(b^2-4ac)^5)/2a$

4/3 As =1.39 in ^2

Design As : 1.04 in ^2

<---- OK USE 30" THICK WALL USE #7 BARS @ 6"

TEMP & SHRINK = .0014 (12)(30) = 0.504 IN2

USE #5 BARS @ 6"

ſ			Ph our car		1	T	
US Ar	my Corps of	Engineers	PROJECT TITLE: CHASKA – STAGE 3	COMPUTED BY: JHM	DATE:	1	OP:
	aint Paul Dis		SUBJECT TITLE:	CHECKED BY:	09/03/93 DATE:		40
			DROP STRUCTURE 1	OMPOSED DI;	DAIB:	WNIKA	CI NO.
						DCIBA	W2-
DETERM	IINE WALL	THICKNESS: S	ECTION B-B ATLOV	WER WALL	A II		1 1
		M LOAQD CASE 10 - HEAR = 5.3 (1.7)(1.3)		/50	ee All Frame	achech	')
	vu – DESIGN S	near = 3.5 (1.7)(1.5)) =	11.71 K (C	.Frame	Dutp	uT)
,	Vu = Phi b d 2 (F	"c) ^ .5	ACI 318 SECTION 11		ı		
	dmin = Vu/(Phi t	2 (F'c) ^.5) = 11.71(1	000)/(.85(12)(2)(63.25)) =	9.1 IN			
C	d = 9.1 + 4 + .5 =	= 13.6 IN	TRY 24" WALL, d = FOR BATTER = .75 IN/FT	19.5 IN			
DETERM	INE MINIM	UM WALL STE	EL:				
MAYMON	CNT 081 C TY	K FOR LOAD CO	740 BB				
MAX MUMI	ENI = 2/1.6 IN -	-ĸ, for load cas	E 10 – DRAWDOWN, FROM	I CFRAME			
N	Mu = DESIGN M	10MENT = (271.6/12) (1.7)(1.3) =	50.0 FT-K			
Reinforced C	oncrete Design						
Mn=As Fy (d	l-(As Fy /.85 F'c	b) /2)					
Input			، _{نوب} د سے بننے بنان جور ہوں سے بنان بنان بنان جو سے سے بنان کی		•	;	\
F'c =	4.0 ksi	a = Fy (Fy/(.85))	5F°c b)/2) 44.12 (b^2-4	$ac)^5 = 1118.57$,	
Fy =	60.0 ksi		1170.00 2a =	88.24			
	12.0 in	c = Mn (12)/P	hi 666.93				
	19.5 in	Date 1 0.05					
Mu = Phi =	50.0 k-ft 0.9	Beta $1 = 0.85$					
· · · · · · · · · · · · · · · · · · ·	U.7			، سے جب میں جب جب مند ، شہ شاہ کا کا جب ایک اللہ			.**
Output							
Rho min =	0.0033	-> 200/F	у				
Rho max =	0.0071	-> .25 R	ho bal				
As min =	0.78 in ^2						:
As max =	1.67 in ^2						
Rho req'd =	0.0025	-> As/bo	l				
As req'd =	0.58 in ^2	·	o^2-4ac)^.5)/2a				
4/3 As =		- (5 (way wyam		4		
Design As :	0.78 in ^2	< OK	USE 24" THICK WALL	Q 6 # Jan CONTINUE TO US		ا کونا ع خت	8
			V SIDE WALL BY MAINTAI				'-3"
			ERTICAL REINFORCING	AND TEMP & SHR	UNKAG	E	
reinfukul	ng should R	EMAIN THE SAME	FOR ENTIRE WALL,				

.8000E+04 .2400E+03 .2400E+03 18 19 11.80 .3824E+04 .1634E+04 .7500E+08 .5040E+03 19 15 20 1.75 .5040E+03 .3824E+04 .1634E+04 20 20 21 11.80 .8000E+04 .2400E+03 .2400E+03 .3824E+04 .1634E+04

*** LOAD CASE 1 DEAD LOADS

MEMBER	DIRECTION	PROJECTED LOAD KIP / FT	
1	Y	5250E+00	
2	Ÿ	5250E+00	
3	Ÿ	5250E+00	
4	Ÿ	5250E+00	
5	Y	5250E+00	
6	Y	5250E+00	
7	Y	5250E+00	
8	Y	5250E+00	
9	Y	5250E+00	
10	Y	5250E+00	
11	Y	5250E+00	
12	Y	5250E+00	
13	Y	5250E+00	
14	Y	5250E+00	
15	Y	5250E+00	
16	Y	5250E+00	
JOJNI	FORCE X	FORCE Y	MOMENT

18 .0000E+00 -.2900E+01 .0000E+00 20 .0000E+00 -.2900E+01 .0000E+00

*** LOAD CASE 2 MOIST SOIL LOADS

MEMBER DIRECTION PROJECTED LOAD KIP / FT

1 Y -.1350E+01
16 Y -.1350E+01

MEMBER LA PA **ANGLE** KIP / FT FT FT KIP / FT DEG 18 .00 .6100E+00 11.80 .0000E+00 .00 20 -.6100E+00 .00 11.80 .0000E+00 .00

*** LOAD CASE 3 SURCHARGE

PROJECTED PROJECTED LOAD

```
13 Y -.6740E+00
14 Y .1112E+01
15 Y .1112E+01
16 Y .1112E+01
```

MEMBER	LA FT		PA KIP / FT	LB FT	PB KIP / FT	ANGLE DEG
18 20		.00	6740E+00 .6740E+00	10.80 10.80	.0000E+00	.00

*** LOAD CASE 6 EXTERIOR WATER 1

		PROJECTED
MEMBER	DIRECTION	LOAD
		KIP / FT
1	Y	.5300E+00
1	Y	3120E+00
2	Y	.5300E+00
3	Y	.5300E+00
4	Y	.5300E+00
5	Y	.5300E+00
6	Y	. 5300E+00
7	Y	.5300E+00
8	Y	.5300E+00
9	Y	.5300E+00
-30	Y	.5300E+00
<i>)</i> 1	Y	.5300E+00
12	Y	.5300E+00
13	Y	.5300E+00
14	Y	.5300E+00
15	Y	.5300E+00
16	Y	.5300E+00
16	Y	3120E+00

MEMBER	LA	PA	LB	PB	ANGLE
	FT	KIP / FT	FT	KIP / FT	DEG
18 20	.00	.3120E+00 3120E+00	5.00 5.00	.0000E+00	.00

*** LOAD CASE COMBINATIONS ***

LOAD LOAD CASE FACTORS 1 CASE 2 3 5 7 8 9 1.00 1.00 1.00 .00 .00 .00 .00 .00 10 1.00 .00 1.00 1.00 .00 1.00 .00 .00

LOND Courfer Interior leater & Design Upl. H does Not Apply

LOAD CASE 9 DEWATERED

3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21	.0000E+003320E-041660E-032988E-034316E-035644E-036972E-038300E-039628E-021228E-021248E-021394E-021394E-024319E-011891E-024319E-01	1906E+00 1906E+00 1896E+00 1874E+00 1850E+00 1834E+00 1834E+00 1850E+00 1850E+00 1896E+00 1906E+00 1906E+00 1906E+00 1906E+00 1906E+00 1906E+00 1906E+00	1718E-04 .0000E+00 .3445E-04 .4737E-04 .4180E-04 .2396E-04 .0000E+00 2396E-04 4180E-04 4737E-04 3445E-04 .0000E+00 .1718E-04 .1591E-04 .1580E-04 1720E-04 3634E-03 .1720E-04 .3634E-03
JOINT	STRUCTURE FORCE X KIP	REACTIONS FORCE Y KIP	MOMENT IN-KIP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	.0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	.9506E-01 .2379E+00 .2382E+00 .4766E+00 .7582E+00 .7494E+00 .7402E+00 .7335E+00 .7310E+00 .7402E+00 .7494E+00 .7582E+00 .4766E+00 .2382E+00	.0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00

TOTAL .0000E+00 .8789E+01

1	LOAD		MEMBER END	FORCES		MONTH	
MEMBER	CASE	JOINT	AXIAL KIP	SHEAR KIP	MOMENT IN-KIP	MOMENT EXTREMA IN-KIP	LOCATION IN
1	9	1	.0000E+00	.3600E+00	.0000E+00	.3648E+00	1.92
	10	2	.0000E+00	.1765E+01	8430E+01	8430E+01	12.00
	10	2	.0000E+00 .0000E+00	.9506E-01 .1512E+01	.0000E+00 8501E+01	.3373E-01 8501E+01	.72 12.00
) ²	9	2	.0000E+00	8648E+00	8430E+01	8430E+01	.00
لو:		3	.0000E+00	.1652E+01	3108E+02	3108E+02	18.00
	10	2	.0000E+00	1274E+01	8501E+01	8501E+01	.00
		3	.0000E+00	.1267E+01	3137E+02	3137E+02	18.00
3	9	3	4944E+01	3652E+01	.3379E+03	.3379E+03	.00

	10	16	00005.00				
	10	17	.0000E+00		8501E+01	.3373E-01	11.28
		17	.0000E+00	.9506E-01	.0000E+00	8501E+01	.00
17	9	3	2900E+01	.4944E+01	3689E+03	06517.00	
		18	2900E+01	4944E+01	2651E+03	2651E+03	21.00
	10	3	2900E+01	.5332E+01	3836E+03	3689E+03	.00
		18	2900E+01	5332E+01	2716E+03	2716E+03	21.00
			,		2/105703	3836E+03	.00
18	9	18	.0000E+00	.4944E+01	2651E+03	00000.00	
		19	.0000E+00	.0000E+00	.0000E+00	.0000E+00	141.60
	10	18	.0000E+00	.5332E+01)	2716E+03	2651E+03	.00
		19	.0000E+00	:0000E+00	.0000E+00	.0000E+00	141.60
1.0	_				.00002700	2716E+03	.00
19	9	15	2900E+01	4944E+01	.3689E+03	√. 3689E+03	
	10	20	2900E+01	.4944E+01	.2651E+03	.2651E+03	.00
	10	15	2900E+01	5332E+01	.3836E+03	.3836E+03	21.00
	•	20	2900E+01	.5332E+01	.2716E+03	.2716E+03	.00
20	0				121202103	.2/106+03	21.00
20	9	20	.0000E+00	4944E+01	.2651E+03	.2651E+03	00
	10	21	.0000E+00	.0000E+00	.0000E+00	.0000E+00	.00
	10	20	.0000E+00	5332E+01)	.2716E+03	.2716E+03	141.60
		21	.0000E+00	.0000E+00	.0000E+00	.0000E+00	.00 141.60
					3 - 1 - 1	.00001	141.00

US Army Corps of Engineers Saint Paul District

PROJECT TITLE:		DATE:		OF:
CHASKA – STAGE 3	JHM	06/30/93	33	140
SUBJECT TITLE:	CHECKED BY:	DATE:	CONTRACT NO	
DROP STRUCTURE 1	1	: 10 /45		

DS1C.WK1

DESIGN END SILL:

USE FULL PASSIVE, ASSUME SILL ACTS AS CANTILEVER DUE TO LENGTH/HEIGHT RATIO. $K_D = 3$ Pg 3-4 EM 1110-2-2502

$$Pp = Kp (.114)(715.0-712.0) =$$

1.03 KSF

EL. 712.0

SHEAR =
$$1/2$$
 (Pp) H =

1.54 K

MOMENT = 1/2 (Pp) H (H/3) =

1.54 FT-K

EVALUATE 15" THICK END SILL (MIN CONSTRUCTABLE WITH 4" COVER)

$$d = 15 - 4 - .5 =$$

$$Vn = Phi b d 2 (F'c) \land 5 = 0.85(12)10.5(2)(4000) \land 5 =$$

13.55 K

$$Vu = V(1.7)(1.3) = 1.54(1.7)(1.3) =$$

3.40 K ≤ 13.55 K ∴ OK

USE MIN STEEL FOR TEMP & SHRINKAGE

$$As = .0014 \text{ b D} = .0014 (12)(15) =$$

0.252 IN^2

TRY #4 BARS @ 6" $As = 0.40 \text{ IN}^2$ Rho = $.40/(12\ 10.5) = .00317$

CHECK MOMENT CAPACITY

Mu = Phi As Fy (d-(As Fy /.85 F'c b) /2) = .9(.40)(60)(10.5-(.40(60)/.85(4)12)/2)/12 =18.37 FT-K

Mu = M (1.7)(1.3) = 1.54 (1.7)(1.3) =

3.40 FT−K ≤ 18.37 FT−K ∴ OK

	PROJECT TITLE:	COMPUTED BY:	DATE:	SHEET:	OF:
US Army Corps of Enginee	rs CHASKA – STAGE 3	JHM	06/30/93	35	40
Saint Paul District	SUBJECT TITLE:	CHECKED BY:	DATE:	CONTRA	CT
	DROP STRUCTURE 1		2/17/2		
DETERMINE WELCHES A	ND EODOES, OES E	T OF WIDTH			DS1D.
DETERMINE WEIGHTS A	ND FORCES: (PER F				-
			MTARM		
VERTICAL		(K)	(FT)	(FT-K)	•
E1 = 40/47 (.127)(3)(719.0 – 712.0) =		2	3 41.0	93.1	
E2 = 1/47 (2)[42.5(723.8 - 712.0)((1 +	1.73)/2) .127] =	3.	7 21.3	78.6	
E3 = $1/47$ (2)[26.4(1/2)(732.2 - 723.8)	((1.73 + 2.25)/2).127] =	1.3	2 33.7	40.2	
C1 = 1/47 (2)[18(732.2 - 723.8)((1.25)	+ 1.77)/2).150] =	1.	33.5	48.8	
C2 = 1/47 (2)[8.4(1/2)(732.2 - 723.8)(6)	(1.25 + 1.77)/2).150] =	0.1	3 21.7	7.4	
C3 = 1/47 (2)[42.5(723.8 - 712.0)((1.7)	7 + 2.5)/2).150] =	6.	3 21.3	145.2	
C4 = (40/47)(.150)(1.25)(719.0 - 712.0)) =	1.	1 38.9	43.4	
C5 = .150 (42.5)(2.5) =		15.9	21.3	338.7	
C6 = (40/47)(.150)(1.25)(715.0 - 712.0)) =	33.3 0.5	0.6	0.3	79
W1 = 40/47 (.0624)(37)(715.0 - 712.0)	=	5.9	19.8	116.4	
U = -(42.5) .0624 ((8.49 + 6.30)/2) = (See Line of Creep below)		-22.	22.3	-506.9	
,	NE	ET WEIGHT 16.5	;		
HORIZONTAL Pw1 = $-1/2$ (.0624)(719.0 - 709.5) 2	! =	-2.5	3.2	-8.9	
Po = -1/2 Ko (.1270624)(719.0 -	709.5)^2 =	-13	3.2	-4.2	
5Pp = 1/2 (1/2)(3)(.1270624)(715.0) - 709.5) ^ 2 =	1.5	5 1.8	2.7	
Pw2 = 1/2 (.0624)(715.0 - 709.5)^2 =	=	0.9	_	1.7	
	SUM HOR	IZONTAL -1.3	1		
LINE OF CREEP FOR UPLIFT:	NE	T OVERTURNING MO	MENT	396.5	
TOT HEADd = 719.0 - ((9.5+5+5)/(9.5+5+5+42.5+5+5+5.5))(7	19.0 - 715.0) =		717.99	
HEADd = 717.99 - 709.5 = 8.4	9 FT				
TOT HEADe = 719.0 - ((9.5+5+5+	12.5)/(9.5+5+5+42.5+5+5+5	.5))(719.0 - 715.0) =		715.80	
·					

PROJECT TITLE: COMPUTED BY: DATE: SHEET: OF: US Army Corps of Engineers CHASKA - STAGE 3 ЈНМ . 40 06/30/93 Saint Paul District SUBJECT TITLE: CHECKED BY: DATE: CONTRACT NO .: DROP STRUCTURE 1

DS1D.WK1

$$Nq = 26.09$$
 $N = 26.17$ FOR Phi = 33° TABLE 5-1, EM 2502

$$\mathcal{E}_{qd} = 1 + .1(D/B)TAN(45 + 33/2) = 1 + .1(5.5/37.25)1.842 = 1.027$$

$$\mathcal{E}_{ld} = \mathcal{L}_{qd} = 1.027$$

N' = 33.3

$$\mathcal{E} = TAN^{-1} (T/N') = 0^{\circ}$$

$$T = 0$$

 $\mathcal{L}_{qi} = (1 - 0.90)^2 = 0$

$$C = 0$$

 $C = (1 - 0.90)^2 = 0$
 $C = (1 - TAN 0)^2 = 1.00$

$$\mathcal{E}_{\delta i} = (1 - 0/33)^2 =$$

$$\mathcal{E} qt = \mathcal{E} \delta t = (1 - (0) \text{ TAN } 33)^2 = 1.00$$

$$Q = 37.25 \left[(1.027)(1.00)(1.00)(0.63)(26.09) + (1.027)(1.00)(1.00)(37.25)(.114)(26.17)/2 \right] = 27.25 \left[(1.027)(1.00)(1.00)(0.63)(26.09) + (1.027)(1.00)(1.00)(37.25)(.114)(26.17)/2 \right] = 27.25 \left[(1.027)(1.00)(1.00)(1.00)(0.63)(26.09) + (1.027)(1.00)(1.00)(37.25)(.114)(26.17)/2 \right] = 27.25 \left[(1.027)(1.00)(1.00)(1.00)(1.00)(0.63)(26.09) + (1.027)(1.00)(1.00)(37.25)(.114)(26.17)/2 \right] = 27.25 \left[(1.027)(1.00)(1.0$$

= 2751.9 K/FT

$$FS = Q/N' = 2751.9/(16.5+22.7-5.9) = 82.6 \ge 3.0$$
 OK

$$82.6 \ge 3.0 ... OK$$

CHECK REGULAR LOADING CASE:

$$\overline{B} = B - 2e = 42.5 - 2(3.33) = 35.83 \text{ FT}$$
 Assume $c = 0$

$$\xi_{\rm qd} = 1 + .1(D/B)TAN(45 + 33/2) = 1 + .1(5.5/35.83)1.842 =$$

1.028

$$\mathcal{E}_{d} = \mathcal{E}_{qd} = 1.028$$

N' = 16.5

$$6 = \text{TAN}^- - 1 (\text{T/N}') = 6.0$$

$$T = 1.7$$

$$e^{\text{Qi}} = (1 - 6.0/90)^{\text{Q}} = 0$$

$$\langle i = (1 - 6.0/33)^2 = 0.669$$

$$\int qt = \int dt = (1 - (0.00) \text{ TAN } 33)^2 = 1.000$$

Q = 35.83 [(1.028)(0.871)(1.000)(0.63)(26.09) + (1.028)(0.669)(1.000)(35.83)(.114)(26.17)/2] =

= 1843.5 K/FT

$$FS = Q/N' = 1843.5 / 16.5 =$$

111.8 > 3.0 . OK

US ARMY CORPS OF ENGINEERS CHASKA STAGE 3 SAINT PAUL DISTRICT SUBJECT TITLE: DROP STRUCTURE 1 COMPUTED BY: DATE: SHEET: 3/9 4/0 CHECKED BY: DATE: CONTRACT NO.:

REINFORCING STEEL DESIGN

FOR HIGHWALL

WALL (See Moment Graph) USE #7 BARS @ 6", As = 1.20 in ^2 CUT ALT. #7 BARS @ 7 '- 0 " FROM BASE

TEMP & SHRINK As REQ'D/SIDE = $0.50 \text{ in } ^2$ VERTICAL: USE #5 BARS @ 6" As = $0.62 \text{ in } ^2$ HORIZONTAL: USE #5 BARS @ 6" As = $.62 \text{ in } ^2$

Mn = As Fy (d - (As Fy/(.85 fc b))/2)

FROM BASE	fc	Fy	ь	d	As	Phi	Phi Mn	.75 Phi Mn
ft	ksi	ksi	in	in	in ^ 2		k-ft	k-ft
0.00	4.0	60	12	25.65	1.20	0.9	133.75	
10.00	4.0	60	12	18.15	1.20	0.9	93.25	
8.00	4.0	60	12	19.65	0.60	0.9	51.86	38.90
15.00	4.0	60	12	14.40	0.60	0.9	37.69	28.27

WALL MOMENT GRAPH:

APPENDIX F

RECREATION, LANDSCAPE DEVELOPMENT AND AESTHETIC CONSIDERATIONS

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

CHASKA STAGE 3

APPENDIX F

RECREATION, LANDSCAPE DEVELOPMENT, AND AESTHETIC CONSIDERATIONS

TABLE OF CONTENTS

ITEM	Page No.	Para No
Recreation	F-1	1
Landscape Development	F-1	2
Aesthetic Considerations	F-2	3

REFERENCES

- 1. EM 1110-2-38, Environmental Quality in Design of Civil Works Projects.
- 2. EM 1110-2-301, Guidelines for Landscape Planting at FLoodwalls, Levees, and Embankment Dams.

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

CHASKA STAGE 3

APPENDIX F

RECREATION, LANDSCAPE DEVELOPMENT, AND AESTHETIC CONSIDERATIONS

RECREATION

1. A recreation trail will accommodate walkers, joggers, and cyclists. The new trail will begin at approximately station 16+00 where it ties into an existing trail. Following the west side of the channel, it will pass under Stoughton Avenue and U.S. Highway 212. Railing will provide protection for the trial user at underpasses. Between Highway 212 and the drop structure at Station 33+00, berming, trees, and shrubs will create a park experience for the trail user and provide an attractive visual buffer for nearby home owners. North of the drop structure, the trail will be located on the top of the levee; and at the proposed alignment for Engler Avenue, the trail will be accessible from the street. Continuing, the trail will pass under the Engler bridge. On the north side of Engler, a twenty-car parking lot will accommodate trail users; and a walkway from the lot will connect to the trail. A kiosk will be located in this area. At the drop structure at station 52+00, the trail will divide. One route will continue along the top of the right bank levee and tie into an existing trail. The other will cross the drop structure and follow the left bank levee tying into another existing trail.

LANDSCAPE DEVELOPMENT AND AESTHETIC CONSIDERATIONS

2. Plantings will include trees, shrubs, native grasses and forbes; in selected areas, sod and turf grasses will be used. The removal of existing vegetation will impact wildlife as well as increase the visibility of the channel and levees. Consequently, the plant material for this project will have to be chosen to reflect the types and varieties of vegetation lost in each of several areas. The upstream end of the project will require replacement of a large number of trees. The west bank of the central portion will require trees, shrubs, and grasses compatible with suburban residential areas while the east bank should receive trees, shrubs, grasses and forbes suitable to wildlife found in the area. The downstream end of the project crosses a fen which will dictate a specific combination of suitable plant material.

APPENDIX G

CONSTRUCTIBILITY

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX G

CONSTRUCTIBILITY

TABLE OF CONTENTS

<u>Item</u>	<u>Page</u>	<u>Paragraph</u>
INTRODUCTION	G-1	1
MAJOR CONSTRUCTION ACTIVITIES	G-1	2
CONSTRUCTION SCHEDULING CONSIDERATIONS	G-1	3
CONSTRUCTION CONTRACTS	G-2	4
WATER CONTROL Ground Water	G-3 G-3	5 6
UTILITY MODIFICATION SCHEDULE	G-3	7
TRAFFIC CONSIDERATIONS	G-4	8-9
CONSTRUCTION MATERIALS	G-4	10-11
DISPOSAL AREAS Debris	G-4	12-16

EAST CREEK AT CHASKA, MINNESOTA STAGE 3 FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX G

CONSTRUCTIBILITY

INTRODUCTION

1. This appendix presents the construction aspects of the proposed flood control improvements on East Creek at Chaska, Minnesota. Information is presented on major construction activities, scheduling, water control, utility modifications, traffic considerations, construction material, and disposal areas.

MAJOR CONSTRUCTION ACTIVITIES

- 2. Stage 3 of the flood control project consists primarily of a diversion channel that protects Chaska from flooding of East Creek. The work includes the following major construction activities:
 - a. Excavations of about 300,000 CY of channel.
 - b. Construction of about 30,000 CY of riprap and bedding.
 - c. Construction of about 60,000 CY of impervious levee.
 - d. Construction of 4 concrete drop structures.
 - e. Construction of 2 gatewells with concrete pipe.
 - f. Construction of 3 roadway bridges.
 - g. Construction of 12,000 SY of articulated concrete.
 - h. Construction of 630 LF of 12' x 12' concrete box culvert.

These activities can be accomplished using ordinary construction equipment and methods.

CONSTRUCTION SCHEDULING CONSIDERATIONS

3. The construction of this project is scheduled to start in February 1995 and be completed in December 1996. The construction contractor will be responsible for the construction schedule and be required to prepare and receive approval on a network analysis system that shows his proposed construction schedule. Construction items that will require special consideration include:

WATER CONTROL

GROUND WATER

It is expected that dewatering wells or wellpoints will be required to lower the ground water level for all 4 drop structures and the channel between Stations 35+00 and 51+00.

RIVER WATER

It is anticipated that the downstream portion of the articulated concrete will be constructed underwater.

UTILITY MODIFICATION SCHEDULE

Table G-1 summarizes the required telephone, electric, gas, sewer, water, etc., utility modifications required.

TABLE G-1 UTILITY MODIFICATION SCHEDULE

<u>Minnegasco</u>

Approximate		
Station	<u>Facility</u>	<u>Relocate</u>
* 12+00	6" steel 450 psi	200'
17+00	8" steel 95 psi	150′
17+00	3" steel 50 psi	150′
20+00 to 25+00	8" steel 95 psi	500′
* 52+00	8" steel 95 psi	300′

<u>United Telephone System</u>

- * 1) Stoughton Avenue crossing
 - 2) County Road 17 & TH 212
- * 3) South of Engler 4) County Road 17 crossing
- * 5) Brandondale Trailer Park

City of Chaska Power

- Between Stoughton & TH 212
- County Road 17
- Brandondale Trailer Park

<u>Sewer and Water Utility Relocations</u>

- Hazeltine Interceptor
- * County Road 17 water main
- * Brandondale water service
- Sanitary sewer lift stations (2)
- Revise miscellaneous piping

Minnesota Valley

Power Poles Station 41+00

Those indicated with and asterisk are included in project cost. Additional possible utility modifications are included on pages H-7 and H-8 of Appendix H, Cost Estimate.

- 14. Random fill, 85,000 CY inplace volume. This fill material must be placed so that it does not cause channel stability, settlement, seepage or drainage problems.
- a. About 37,000 CY will be deposited east of and adjacent to the channel at Station 40+00 in a triangular area 500' \times 500' \times 8' deep.
- b. About 7,000 CY will be deposited west of and adjacent to the channel at Station 39+00 in a triangular area 200' \times 480' \times 4' deep.
- c. About 26,000 CY will be deposited about 500' east of channel at Station 20+00 between Stoughton and the railroad track in an area 400° x 500° x 3.5° deep.
 - d. Use 15,000 CY for landscaping overbuild.
- 15. Unsatisfactory material above water table 30,200 CY inplace. Deposit offsite in disposal area provided by local sponsor.
- 16. Unsatisfactory material below water table, 53,200 CY inplace. Deposit offsite in disposal area provided by local sponsor.

APPENDIX H

COST ESTIMATE

EAST CREEK AT CHASKA, MINNESOTA STAGE 3, FEATURE DESIGN MEMORANDUM FLOOD CONTROL PROJECT

APPENDIX H

COST ESTIMATE

1. This is a summary of the current working estimate presented in accordance with EC 1110-2-538, "Civil Works Project Cost Estimating Code of Accounts", and EC 1110-2-263, Civil Works Construction Cost Estimating". It has been prepared as part of the DM for the Chaska Flood Control Project at Chaska, Minnesota. A detailed estimate has been prepared using the MCACES GOLD estimating computer program.

DESCRIPTION OF WORK

- 2. The project provides 5500 CFS level of protection and consists of a 6000 LF diversion channel, 4 drop structures, 3 bridges, 2 sanitary lift stations, electrical power lines, channel excavation, lime excavation, pervious fill, drainage fill, impervious fill, dewatering, outlet D, outlet E, articulated concrete, bedding, riprap, landscaping and other related work. The following are major items of work:
 - a. Bridges and Hwy. 41 Relocation -by others
 - b. Channel Excavation
 - c. Articulated Concrete

CONSTRUCTION METHODS

- 3. Standard construction methods will be employed for the entire project. Unique or expensive construction methods will not be required. Typical equipment consists of hydraulic excavators, cranes, trucks, dozers, rollers/compactors, motorgraders, and other related equipment.
- 4. Construction for the channel excavation will include various types of equipment and methods of construction. Construction for

- estimates provided by the City of Chaska and by the COE. The city obtained information from the local utilities and affected private owners as necessary. Contingencies for the gas relocations are 100% due to limited information. Contingencies for telephone related work are 20%. Contingencies for City power are at 20%. Contingencies for water utilities are at 20%. Contingencies for bridges are at 5%. These contingencies are for City provided costs only. Other contingencies for this code of account are contingencies for quantities provided by COE and appear in the estimate.
- c. 09.-.-. Channels and Canals: Contingencies are 40% for lime excavation due to the uncertainties in the extent, disposal and content of the material. Other contingencies such as articulated concrete are 45% due to higher level of uncertainty. The 45% contingency for dewatering is due to the uncertainty of dewatering required. Most other items of work have contingencies of 25% or less.
- d. 11.-.- Levees and Floodwalls: Contingencies are generally at 25% or more for all items of work.
- e. 14.-.- Recreation Facilities: Contingencies are 30% or less for all items of work.
- f. 30.-.-. Planning, Engineering and Design: Costs and contingencies are provided by each separate engineering function and are based on experience with past projects. City portion of this cost is provided in the actual MCACES estimate.
- g. 31.-.-. Construction Management: Costs and contingencies are provided by Construction Division and are based on experience with past projects. City portion of this cost is provided in the actual MCACES estimate.

ACCOUNT			ESTIMATED	UNIT		CONTINGE	ENCIES	
CODE	ITEM		QUANTITY	PRICE	AMOUNT	AMOUNT	X	REASON
=======			:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	:========		=====	
01 1	LANDS AND DAMAGES							
01.B	ACQUISITION							
01.B.2.	BY LOCAL SPONSOR	OSP	38	700.00	26,600	4,000	15%	2,3,4
01.B.4.	GOVT. REVIEW OF LS ACTIVITIES	OSP	38	315.00	12,000	1,800	15%	2,3,4
01.C	CONDEMNATIONS							
01.C.2	BY LOCAL SPONSOR	TRT	4	1,000.00	4,000	600	15%	2,3,4
01.c.2	GOVT. REVIEW OF LS ACTIVITIES	TRT	4	200.00	800	100	15%	2,3,4
01.E	APPRAISALS							
01.E.3	BY LOCAL SPONSOR	OSP	38	500.00	19,000	2,900	15%	2,3,4
01.E.3	GOVT. REVIEW OF LS ACTIVITIES	OSP	38	250.00	9,500	1,400	15%	2,3,4
01.F	PL 91-646 ASSISTANCE							
	PL 91-646 RELOCATIONS - LOCAL SPONSOR	OSP	11	42,900	471,900	0	0%	1
01.R	REAL ESTATE RECEIPT/PAYMENTS							
01.R.1	LAND PAYMENTS							
01.R.1.A	BY LOCAL SPONSOR	LS	1 7	733,800.00	733,800	110,400	15%	2,3,4
01.R.3	DAMAGE PAYMENTS							
01.R.3.B	BY LOCAL SPONSOR	LS	1 2	224,400.00	224,400	33,400	15%	2,3,4
	Subtotal, Lands and Damages				1,502,000			
	Contingency		10.3%			155,000		
	Subtatal Lands and Damages plus Cant	ingono				1,657,000		
	Subtotal, Lands and Damages plus Cont	. mgency	•			1,007,000		

REASON FOR CONTINGENCY

1. Not Applicable

- 2. Unknowns due to legal cost
- 3. Unknowns due to land prices
- 4. Unknowns due to qunatities

NOTES

1. Federal, Non-federal cost to be in accordance with 1986 WRDA

- 2. Unit prices are at April 1991 price level
- 3. TRT = Tract
- 4. OSP = Ownership
- 5. LS = Lump Sum

ACCOUNT			ESTIMATED	UNIT	1	CONTING	ENCIES	
CODE	ITEM	HINTT	QUANTITY	PRICE	AMOUNT	AMOUNT	*	REASON
							=======	
02.1.J.B	CIP CONCRETE TEST PILES	EA	4	2,000.00	8,000	400	5%	1
02.1.J.B	CIP CONC PILE DRIVEN	LF	2,640	3.00	7,920	400	5%	1
02.1.J.B	CIP CONC PILE DELIVERED	LF	2,640	17.00	44,880	2,200	5,%	1
02.1.K.B	STRUCTURE CONCRETE 1A43	CY	122	200.00	24,400	1,200	5%	1
02.1.K.B	STRUCTURE CONCRETE 3Y43	CY	282	260.00	73,320	3,700	5%	1
02.1.K.B	SPIRAL REINFORCMENT	LB	1,900	0.90	1,710	100	5%	1
02.1.L.C	REINFORCMENT BARS	LB	6,800	0.40	2,720	100	5%	1
02.1.L.C	REINF. BARS EPOXY	LB	84,000	0.48	40,320	2,000	5%	1
02.1.L.C	BRIDGE SLAB CONCRETE	SF	6,425	5.00	32,125	1,600	5%	1
02.1.L.C	SIDEWALK CONCRETE	SF	1,842	4.50	8,289	400	5%	1
02.1.L.C	RAILING CONCRETE TYPE F	LF	257	35.00	8,995	400	5%	1
02.1.L.C	BRIDGE APPROACH PANELS	SY	160	80.00	12,800	600	5%	1
02.1.L.C	PRESTRESSED CONC. BEAM	EA	21	3,280.00	68,880	3,400	5%	1
02.1.L.C	DIAPHRAGMS TYPE 28M	LF	270	50.00	13,500	700	5%	1
02.1.L.E	ORNAMENTAL RAILING	LF	257	100.00	25,700	1,300	5%	1
02.1.L.E	EXPANSION JOINT TYPE 4	LF	100	75.00	7,500	400	5%	1
02.1.L.E	BEARING ASSEMBLY	EA	42	500.00	21,000	1,100	5%	1
02.7.2.2	DEARING ASSERDE!			300.00	,	.,		·
02.1.1.J	HIGHWAY 41 RELOCATION 929,3	500						
02.1.J.B	SITE PREPARATION	LS	1	20,000.00	20,000	1,000	5%	1
02.1.J.B	EXCAVATION	CY	21,000	1.50	31,500	1,600	5%	1
02.1.J.B	BACKFILL	CY	68,000	1.50	102,000	5,100	5%	1
02.1.J.B	BORROW	CY	47,000	4.50	211,500	10,600	5%	1
02.1.J.B	REMOVE EXISTING CULVERT	LS	1	10,000.00	10,000	500	5%	1
02.1.J.B	12 X 12 BOX CULVERTS	LF	628	600.00	376,800	18,800	5%	1
02.1.J.B	CULVERT INLETS	EA	2	15,000.00	30,000	1,500	5%	1
02.1.J.B	DEBRIS CONTROL STRUCTURE	LS	1	10,000.00	10,000	500	5%	1
02.1.J.B	INLET WEIR STRUCTURE	LS	1	10,000.00	10,000	500	5%	1
02.1.J.B	CULVERT OUTLETS .	EA	2	15,000.00	30,000	1,500	5%	1
02.1.J.B	RIPRAP	CY	500	30.00	15,000	800	5%	1
02.1.J.B	ROAD SURFACE	LF	310	250.00	77,500	3,900	5%	1
02.1.J.B	SLOPE RESTORATION, SEED	LS	1	5,000.00	5,000	300	5%	1
	•			•	•			
02.3.2.0	UTILITIES AND STREETS 1,102,7	734				•		
02.3.2.Q	GAS LINES 6" 450 PSI	LF	200	75.00	15,000	15,000	100%	1,2,3
02.3.2.Q	GAS LINES 8" 95 PSI	LF	300	50.00	15,000	15,000	100%	1,2,3
02.3.3.R	TELEPHONE STOUGHTON AVE	JOB	1	60,000.00	60,000	12,000	20%	1
02.3.3.R	TELEPHONE @ ENGLER AVE.	JOB	1	10,000.00	10,000	2,000	20%	1
02.3.3.R	TELE. @ TRAILER PARK	JOB	1	15,000.00	15,000	3,000	20%	1
02.3.3.R	CITY POWER HWY. 212	JOB	1	30,000.00	30,000	6,000	20%	1
02.3.3.R	CITY POWER HWY. 17	JOB	1	10,000.00	10,000	2,000	20%	1
	Mn. VALLEY P.P. STA. 41+00	JOB	1	12,000.00	12,000	2,400	20%	1
02.3.3.R	CITY POWER TRAILER PARK	JOB	1	15,000.00	15,000	3,000	20%	1
02.3.2.Q	HAZELTINE INTERCEPTOR	JOB	1	34,000.00	34,000	6,800	20%	1
02.3.2.Q	WATER MAIN HWY. 17	JOB	1	30,500.00	30,500	6,100	20%	1
02.3.2.9	WATER @ TRAILER PARK	JOB	1	48,900.00	48,900	9,800	20%	1
02.3.2.0	SANITARY SEWER LIFT STA	EA	2	70,000.00	140,000	28,000	20%	1
02.3.2.0	MISCELLANEOUS PIPING	JOB	1	10,000.00	10,000	2,000	20%	1
02.1.2.B	ROAD RELOCATION	JOB	1	4,160.00	4,160	1,500	35%	1,3
02.1.R.B	REMOVE FENCE	JOB	1	325.00	325	100	35%	1,3
02.1.R.B	INSTALL FENCE	JOB	1	725.00	725	300	35%	1,3
02.3.2.9	24" SEWER LINE	LF	210	45.00	9,450	3,300	35%	1,3
~L.J.L.#	ST VENDO SING	Li	210	43.00	,,750	2,300	3370	.,.

H - 7 FDM0003.WK1

ITEM ELS TRAFFIC CONTROL CLEARING AND GRUBBING STRIPPING CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"			12,900.00 2,050.00 0.79 3.87 3.57 4.34 31.65	12,900 10,250 12,079 872,867 266,393 103,084 327,799	1,300 4,100 2,400 261,900 106,600 30,900 98,300 4,500	10x 40x 20x 30x 40x 30x 30x	1,2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2
TRAFFIC CONTROL CLEARING AND GRUBBING STRIPPING CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB ACR CY CY CY CY CY CY CY JOB JOB	1 5 15,290 225,547 74,620 23,752 10,357 19,875 46,446	12,900.00 2,050.00 0.79 3.87 3.57 4.34 31.65	12,900 10,250 12,079 872,867 266,393 103,084 327,799	1,300 4,100 2,400 261,900 106,600 30,900 98,300	10X 40X 20X 30X 40X 30X	1,2,3 1,2 1,2 1,2 1,2 1,2
TRAFFIC CONTROL CLEARING AND GRUBBING STRIPPING CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	ACR CY CY CY CY CY CY CY LY CY LY CY LY LY LY LY LY LY LY LY LY LY LY LY LY	5 15,290 225,547 74,620 23,752 10,357 19,875 46,446	2,050.00 0.79 3.87 3.57 4.34 31.65	10,250 12,079 872,867 266,393 103,084 327,799	4,100 2,400 261,900 106,600 30,900 98,300	40% 20% 30% 40% 30%	1,2 1,2 1,2 1,2
CLEARING AND GRUBBING STRIPPING CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	ACR CY CY CY CY CY CY CY LY CY LY CY LY LY LY LY LY LY LY LY LY LY LY LY LY	5 15,290 225,547 74,620 23,752 10,357 19,875 46,446	2,050.00 0.79 3.87 3.57 4.34 31.65	10,250 12,079 872,867 266,393 103,084 327,799	4,100 2,400 261,900 106,600 30,900 98,300	40% 20% 30% 40% 30%	1,2 1,2 1,2 1,2
STRIPPING CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	CY CY CY CY CY CY JOB JOB	15,290 225,547 74,620 23,752 10,357 19,875 46,446	0.79 3.87 3.57 4.34 31.65	12,079 872,867 266,393 103,084 327,799	2,400 261,900 106,600 30,900 98,300	20% 30% 40% 30%	1,2 1,2 1,2 1,2
CHANNEL EXCAVATION LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	CY CY CY CY CY CY CY	225,547 74,620 23,752 10,357 19,875 46,446	3.87 3.57 4.34 31.65	872,867 266,393 103,084 327,799	261,900 106,600 30,900 98,300	30% 40% 30%	1,2 1,2 1,2
LIME EXCAVATION PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB CY CY CY CY CY	74,620 23,752 10,357 19,875 46,446	3.57 4.34 31.65 0.75	266,393 103,084 327,799 14,906	106,600 30,900 98,300	40% 30%	1,2 1,2
PERVIOUS FILL DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	CY CY CY CY CY	23,752 10,357 19,875 46,446	4.34 31.65 0.75	103,084 327,799 14,906	30,900 98,300	30%	1,2
DRAINAGE FILL NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	TOB TOB CA CA	10,357 19,875 46,446	31.65 0. <i>7</i> 5	327,799 14,906	98,300		
NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	TOB TOB CA CA	19,875 46,446	0.75	14,906	·	30%	1,2
NON-FEDERAL IMPERVIOUS BORROW ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB CY	46,446			<u> </u>		
ROYALTY/MATERIAL PRICE FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB CY	46,446			4 E00		
FEDERAL IMPERVIOUS FILL MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB CY	46,446			7,500	30%	
MAINTENANCE ACCESS DEWATERING BEDDING R6 RIPRAP-12"	JOB JOB	•	3.55	164,883	49,500	30%	1,2,3
DEWATERING BEDDING R6 RIPRAP-12"	JOB		32,000.00	32,000	6,400	20%	1,2
BEDDING R6 RIPRAP-12"			288,100.00	288,100	72,000	25%	1,2
R6 RIPRAP-12"		1,370	33.00	45,210	9,000	20%	1,2
	CY	15,827	24.00	379,848	76,000	20%	1,2
		-				20%	1,2
		-		-			1,2
K35 K1PKAP-40"	U	5,400	30.40	105,704	33,200	LUM	.,.
DROP STRUCTURE NO. 1	58,854						
EXCAVATION	CY	2,569	2.55	6,551	2,300	35%	1,2
FORMWORK- SLAB	SF	1,422	2.95	4,195	1,000	25%	1,2
FORMWORK- WALL	SF	8,817	4.25	37,472	9,400	25%	1,7
REBAR	LBS		0.57	42,250	10,600	25%	1,3
CONCRETE -SLAB	CY	304	78.55	23,879	6,000	25%	1,2
	CY	273	81.20	22,168	5,500	25%	1,8
						30%	1,3
		10.528			200	10%	
		-		-	1,500	35%	1,7
		_				25%	1,2
			20120	,	-,		•
	•	7 750	2.55	10 763	6.900	35%	1,2,3
		•		-			1,
							1,
		-		-			1,
							1,
							1,
							1,
				•			','
		-					
		-					1,
HANDRAIL	LF	317	56.20	17,815	4,500	25%	1,2
DROP STRUCTURE NO. 3	69,985						
EXCAVATION	CY	5,904	2.55	15,055	5,300	35%	1,2,3
	SF	-				25%	1,2
							1,2
							1,3
		_					1,3
							1,
							1,
					•		1,4
	EXCAVATION FORMWORK- SLAB FORMWORK- WALL REBAR CONCRETE -SLAB CONCRETE -WALLS WATERSTOP CURING COMPOUND BACKFILL HANDRAIL DROP STRUCTURE NO. 2 EXCAVATION FORMWORK- SLAB FORMWORK- WALL REBAR CONCRETE -SLAB CONCRETE -WALLS WATERSTOP CURING COMPOUND BACKFILL HANDRAIL DROP STRUCTURE NO. 3	R33 RIPRAP-48" CY DROP STRUCTURE NO. 1 158,854 EXCAVATION CY FORMWORK- SLAB SF FORMWORK- WALL SF REBAR LBS CONCRETE -SLAB CY WATERSTOP LF CURING COMPOUND SF BACKFILL CY HANDRAIL LF DROP STRUCTURE NO. 2 386,190 EXCAVATION CY FORMWORK- WALL SF REBAR LBS CONCRETE -SLAB CY CONCRETE -WALLS SF CONCRETE -WALLS CY WATERSTOP LF CURING COMPOUND SF CONCRETE -WALLS CY WATERSTOP LF CURING COMPOUND SF EXCAVATION CY BACKFILL CY HANDRAIL LF DROP STRUCTURE NO. 3 269,985 EXCAVATION CY FORMWORK- SLAB SF FORMWORK- WALL SF EXCAVATION CY FORMWORK- WALL SF CONCRETE -SLAB CY CONCRETE -SLAB CY CY FORMWORK- WALL SF FORMWORK- WALL SF CONCRETE -SLAB CY CONCRETE -SLAB CY CONCRETE -SLAB CY CONCRETE -SLAB CY CONCRETE -SLAB CY CONCRETE -WALLS CY WATERSTOP LF	R33 RIPRAP-48" DROP STRUCTURE NO. 1 158,854 EXCAVATION	R33 RIPRAP-48" CY 5,460 30.40 DROP STRUCTURE NO. 1 158,854 EXCAVATION	DROP STRUCTURE NO. 1 158,854	DROP STRUCTURE NO. 1 158,854 EXCAVATION FORMMORK- SLAB SF 1,422 2.95 4,195 1,000 1	R33 RIPRAP-48" CY 5,460 30.40 165,984 33,200 20% DROP STRUCTURE NO. 1 158,854 EXCAVATION

ACCOUNT			ESTIMATED	UNIT	ı	CONTING	ENCIES	
CODE	ITEM	UNIT	QUANTITY	PRICE	AMOUNT	AMOUNT	*	REASON
=========			========		=======================================		=====	
09.0.2.В	SHRUBS	EA	350	87.10	30,485	6,100	20%	1,2
09.0.2.B	OVERBUILD FOR TREES	CY	15,310	3.05	46,696	18,700	40%	1,2
09.0.2.B	STRIPPING	CY	1,270	1.10	1,397	600	40%	1,2
0	TOPSOIL	CY	940	3.00	2,820	1,100	40%	1,2
	Subtotal, Channels and Canals				5,535,821			
	Contingency		28%			1,562,800		
					_			
	Subtotal, Channels and Canals plus	s Continge	ncy			7,098,621		

REASON FOR CONTINGENCY

1. Quantity or Product Variations

2. Unit Price or Price Uncertainties

3. Unknown Site Conditions

NOTES

ACCOUNT			ESTIMATED	UNIT	1	CONTING	ENCIES	
CODE	ITEM	UNIT	QUANTITY	PRICE	AMOUNT	AMOUNT	×	REASON
	=======================================	=======	*********	=======================================				=======
14RE	CREATION							
14.0.A	MOB, DENOB, PREPATORY	JOB	1	1,700.00	1,700	300	20%	1,2
14.0.1.B	STRIPPING	CY	177	0.70	124	0	20%	1,2
14.0.1.B	EXCAVATION	CY	1,130	2.05	2,317	700	30%	1,2,3
14.0.1.B	FILL	CY	8	1.90	15	0	30%	1,2
14.0.1.B	AGGREGATE BASE COURSE	CY	298	15.00	4,470	900	20%	1,2
14.0.1.B	CURB & GUTTER	LF	330	12.60	4,158	800	20%	1,2
14.0.1.B	CONCRETE SIDEWALK	SF	1,320	3.50	4,620	900	20%	1,2
14.0.1.B	BITUMINOUS PAVEMENT	SY	8,690	4.20	36,498	9,100	25%	1,2
14.0.1.B	TOPSOIL	CY	44	10.00	440	100	25%	1,2
14.0.1.B	SEEDING	ACR	0.11	1,100.00	121	0	25%	1,2
14.0.1.B	KIOSK WITH SIGN	LS	1	4,000.00	4,000	1,200	30%	1,2
	Subtotal, Recreation Facilities				58,463			
	Contingency		24%		_	14,000		
	Subtotal, Recreation Facilities plu	as Contin	gency		-	72,463		

REASON FOR CONTINGENCY

1. Quantity or Product Variations

2. Unit Price or Price Uncertainties

3. Unknown Site Conditions

NOTES

11/16/93

ED-C

CHASKA, STAGE 3 DM .. EAST CREEK at CHASKA MINNESOTA

11/16/93

ACCOUNT ESTIMATED UNIT | CONTINGENCIES

CODE ITEM UNIT QUANTITY PRICE AMOUNT | AMOUNT % REASON

=========

Subtotal, Planning, Engineering and Design plus Contingency

2,470,200

REASON FOR CONTINGENCY

1. Quantity or Product Variations

APPENDIX J

HIGHWAY 41 / EAST CREEK
RELOCATIONS

TABLE OF CONTENTS

INTROD	UCTION .		•			•	•	•	•	•	•	•	•	•	•	•		•	•	J-1
WATERS	HED DESC	RIPTIO	N	•			•	•	•	•		•		•		•	•	•	•	J-1
MODELI	NG					•	•				•	•	•	•			•	•		J-2
A.	EXISTION OF Existing Alternat	J Stru	ctu	re			•				•									J-2 J-2 J-2
A. B.	Modeling The Exis The Brid The New	g Evalı sting (lge Ali	uat Cul ter	ior ver nat	n . ct civ	(Ca e (se Ca	s se	1 3	and)	d :	2)	•	•	•	•	•	•	•	J-3 J-3 J-4 J-6 J-7
CONSTR	UCTION D	URATIO	N	•		•		•	•		•	•		•	•			•	•	J-15
ESTIMA	TED COST:	s	•			•	•	•	•		•		•	•	•		•	•	•	J-15
A. B. C. D.	ENDATIONS Hydrauli Construct Cost Con Recommer Conclusi	ction (parison)	par Com on n	iso par •	on cis	on	•	•	•	•	•	•	•	•	•	•	•	•	•	J-17 J-17 J-18 J-18 J-18 J-20
HEHRE	NCES																			J-20

INTRODUCTION

Appendix J investigates hydraulic structures at Trunk Highway 41 (T.H. 41) and East Creek north of old downtown Chaska. The future upgrade of T.H. 41 and the design of the Stage 3 East Creek Diversion Channel have raised the need for a hydrologic and hydraulic evaluation of the T.H. 41 crossing. The Minnesota Department of Transportation (MnDOT) requires an analysis confirming the safety of the highway and areas immediately upstream and downstream. The Army Corps of Engineers requires the analysis because of the impact of a T.H. 41 hydraulic structure on the East Creek Ravine and the Flood Control Stage 3 Project.

Based on the requirements associated with T.H. 41, the City of Chaska has requested an evaluation of possible hydraulic structure alternatives for the T.H. 41 crossing of East Creek. The location of the T.H. 41 watershed is shown on Plate J-1, and on Plate A-1 and A-2 of Hydrology Appendix A.

The main objective of this appendix is to recommend the most hydraulically efficient and cost-effective crossing structure for T.H. 41 that meets MnDOT and Corps of Engineers safety standards.

Three previously conducted studies are referenced by this appendix: The Lake Grace Dam Failure Analysis (1990), The Lake Grace Dam Final Improvements (1993), and The City of Chaska Stormwater Management Plan (1990).

This appendix describes the analysis of the alternatives, evaluates the alternatives using established criteria, and proposes a future hydraulic structure.

WATERSHED DESCRIPTION

The watershed contributing to T.H. 41 and the associated hydrologic properties is described in Hydrology Appendix A.

Three structures were initially considered:

- 1. A Bridge
- 2. New or additional culverts
- 3. A Benton-Boogen Arch (Be-Bo)

The Be-Bo was not considered feasible based on construction requirements. The amount of estimated overburden eliminated this alternative from further investigation. The bridge and culvert configurations were pursued as viable alternatives.

The following sections of this appendix discuss the alternatives in terms of hydraulic results, construction time frames, and construction costs.

HYDRAULIC RESULTS

A. Modeling Evaluation

In the evaluation of the alternatives, the following criteria were observed.

The selected alternative must:

- 1. Maintain a reasonable water elevation differential across the T.H.41 embankment.
- 2. Include the possibility of accommodating a pedestrian path under T.H. 41.
- 3. Address the need for scour protection upstream and downstream of T.H. 41.
- 4. Be based on a the future T.H. 41 embankment approximately 36 feet high and 90 feet wide, with 3:1 side slopes.

Additional criteria were established for alternatives which included culverts.

The culvert alternative must:

- 1. Maintain open channel flow throughout the modeled storm event.
- 2. Maintain the inverts of the culverts at similar elevations.
- 3. Include an appropriate debris barrier upstream of the culvert entrances.

Location	Peak Flow Rate (cfs)	Maximum Water Elevation
Upstream of T.H. 41 (Case 1)	3,830	878.8
Upstream of T.H. 41 with 50% plugging (Case 2)	3,830	884.7
Downstream of T.H. 41 (Case 1)	1,480	-
Downstream of T.H. 41 with 50% plugging (Case 2)	860	-
At Diversion Channel Inlet (Case 1)	4,400	-
At Diversion Channel Inlet with 50% plugging (Case 2)	3,820	

TABLE J-2. TR-20 model results for Cases 1 and 2.

Hydraulic Head Differential

The hydraulic head across the T.H. 41 embankment represents a major concern with the present culvert. The existing highway embankment elevation is at 882.0. The modeled SPF produces a maximum water level 878.8. The head across the embankment would be approximately 25 feet. If the culvert were 50% plugged, the maximum water level would increase to 884.7 which would overtop the roadway. This would endanger the safety of the roadway, and upstream flooding could occur. The backwater effect produced under this assumption at Lake Grace Dam is also unacceptable in that it would substantially increase the chances of a sequence of dam breaks that would produce substantial downstream damage.

2. Other Factors

Other factors create a need for the replacement of the present hydraulic structure. The current culvert would not maintain open channel flow under SPF conditions. Because the current embankment is not wide enough to support a MnDOT highway expansion project and will be replaced and expanded there is an opportunity to increase the hydraulic capacity.

4. Other Factors

Energy dissipation is not needed under this alternative. The cross-section of the excavated embankment maintains approach flow velocities. Some scour protection at exposed bridge supports would be required.

Pedestrian traffic could easily be accommodated with this alternative. The high clearance under the bridge provides flexibility in locating the pedestrian trail.

D. The New Culvert Alternative (Case 4)

This alternative consists of two 12' x 12' box culverts, one to serve as a primary culvert and the other as a pedestrian culvert. The primary culvert serves as the main hydraulic channel, and the pedestrian culvert serves as a pedestrian tunnel and a hydraulic channel during major storm events. Plate J-5 illustrates the site plan of the two-culvert system.

1. Culvert Description

Primary Culvert

The proposed primary culvert orientation lies perpendicular to T.H. 41, reflecting the existing flow route. The culvert length of approximately 320 feet is based on future embankment slopes of 3:1. The upstream invert matches the creekbed elevation of 850.0. The slope is 1.0 percent corresponding to the natural grade through the ravine.

Pedestrian Culvert

The proposed pedestrian culvert remains dry during storm events with a recurrence interval less than 100 years. The design length of 308 feet measures 12 feet shorter than the primary culvert. The invert elevation is 852.0 and the slope is 0.375 percent. The inlet of the pedestrian culvert is offset approximately 14 feet north of the primary culvert. The distance aids in culvert separation during small storm events as discussed below. Approximately 4 feet separate the outlets of the two culverts. The invert of the pedestrian culvert outlets four feet above the invert of the primary culvert.

Description of the Inlet (Efficient Culvert Inlets)

The design of culvert inlets promote efficient flow into the culvert (entrance loss coefficient equal to 0.2) by providing smooth transition flow lines. Wingwalls at 45 degrees with respect to the culvert wall were designed for all culvert inlets. In the hydraulic model, edges were considered to be rounded.

plate J-5 shows the location of the East Creek debris deflector. The apex of the deflector is located 80 feet upstream of the inlet of the primary culvert. From the apex, one side reaches 80 feet to the northern point of the separation weir, continues across the pedestrian trail, and approximately 20 feet up the north embankment. The other side reaches 100 feet to the south side embankment. The piling used in the deflector rises to an elevation of 864.0, or 14 feet above the invert of the primary culvert. The proposed separation between pilings is 6 feet. The sides form an apex angle of approximately 80 degrees. The deflector provides 2,000 square feet of surface area which represents approximately 7 times the entrance area of the culverts.

This debris deflector requires periodic inspection and maintenance, including the removal of accumulated debris and the replacement of damaged members. The design operation and maintenance manual must outline an inspection schedule and procedure.

Description of the Outlet

Similar to the culvert inlets, an outlet separation must prevent flow from reentering the pedestrian culvert during small storm events. The outlet invert elevation of 850.6 provides four feet of clearance above the invert of the primary culvert. The downstream water elevation for a 100-year storm event is 3.7 feet, which established the four-foot differential between outlets. Plate J-7 illustrates the plan view of the outlet.

2. Peak Flows

Table J-4 lists the peak flows and maximum water elevations for the two-culvert alternative. This case includes two $12' \times 12'$ box culverts with the SPF under fully developed conditions.

Location	Peak Flow Rate (cfs)	Maximum Water Elevation
Upstream of T.H. 41	3,830	863.4
Downstream of T.H. 41	3,380	855.8 (9.0 feet above the channel invert)
Diversion Channel	6,100	-

TABLE J-4. TR-20 model results for Case 4.

For the pedestrian culvert, the separation weir controls flows up to water elevation 860.0 (3.2 feet above the weir). Above this point, the culvert length and slope control the flow.

The maximum discharge of the hydraulic structure and the channel cross-sections determine the maximum tailwater elevation. The tailwater elevation peaks at nine feet above the downstream invert of the primary culvert. Tailwater does not limit the flow in either culvert.

Water Surface Elevations

The model reflected a maximum water elevation upstream of the culverts of 863.4. This elevation is 6.6 feet above the inlet separation weir, 1.4 feet above the crown of the primary culvert, and 0.6 feet below the crown of the pedestrian culvert.

The maximum water surface elevation assures open channel flow conditions in the pedestrian culvert regardless of the flow conditions because the water surface elevation never exceeds the crown elevation.

The 1.4 feet of water above the crown of the primary culvert does not assure either open channel flow or submerged flow conditions. Open channel flow is defined in this study as conditions in which the water surface does not come in contact with the crown of the culvert. Submerged flow conditions would be the converse. Literature sources indicate that the water surface will not come in contact with the crown of the culvert when the upstream water depth remains less than 1.2 times the diameter of the culvert (Henderson, Chow). This assumes that approaching flows increase in velocity and decrease in depth with critical flow and depth occurring at the entrance of the culvert. The application of this criterion implies that the water surface profile could rise to 864.4 (one foot higher than the modeled maximum water elevation) before the critical depth at the culvert entrance reaches the crown and submerged conditions occur.

Flow Conditions in the Culverts

The parameters listed in Table J-5 were used to analyze flow conditions in the proposed culverts.

Pedestrian culvert

Based on Manning's Equation, the flow in the culvert was approximately critical. The flow in this culvert does not make the transition into supercritical flow because of the lower culvert slope. The assumptions made with the primary culvert, therefore, cannot be applied to this culvert. However, the maximum upstream water level, 863.4, does not exceed the elevation of the crown, 864.0, which assures open channel flow.

The clearance at the pedestrian channel inlet could be expected to be even greater than the difference between the crown elevation and the maximum water level (0.6 feet). The critical flow condition in the culvert indicates that the entering flow increases in velocity and decreases in depth. If the flow approaches the critical depth, 7.4 feet, at the culvert inlet, 4.6 feet of clearance would be provided. This assumes that the inlet separation weir does not influence the location of the critical depth. At peak flow, the weir will be fully submerged, and will not control the flow into the pedestrian culvert or the water depth upstream of the culvert. The characteristics of the culvert control the water surface profile of the water entering the culvert.

6. Energy Dissipation

In order to minimize downstream erosion, the high discharge velocities from the culverts must be dissipated. The velocities at peak flow range from 7.0 to 10.0 feet per second based on the review of downstream channel cross-sections. The peak velocity of 24.4 feet per second from the primary culvert must be reduced to the downstream range in a controlled manner. An energy dissipator will be constructed to serve this function.

The flow in the primary and pedestrian culverts is supercritical and critical, respectively. At peak flow, the primary culvert conveys approximately 60 percent of the flow. The energy dissipator merges the flow from both outlets and provides a transition area for the flow to pass into subcritical flow.

Previously, Plate J-7 presented the plan view of the outlet. Plate J-8 illustrates the profile view of the energy dissipator. The initial 20 feet of the outlet apron continues at the same slope as the primary culvert, 1.0 percent. A flat apron directs flow from the pedestrian culvert towards the main channel. The apron also serves as an entrance landing for a pedestrian path. A sloped surface connects the aprons of the two culverts. The two aprons provide approximately a one second residence time for the flows from the outlets to merge. The aprons and all other channel bottom surfaces upstream of the energy dissipator will be constructed with

7. Operation Time

Plates J-2 and J-9 show the inflow and outflow hydrographs at T.H. 41, respectively. Comparison of the two hydrographs illustrates the decrease in peak flow due to the culverts.

Plate J-10 presents the water elevations upstream of T.H. 41 during the SPF. This figure provides information to determine the hydraulic operation time of the pedestrian culvert under SPF conditions. The water surface elevation exceeds the weir elevation of 856.8 for approximately 6.3 hours.

CONSTRUCTION DURATION

A. General

Both proposed alternatives will require permits from the Army Corps of Engineers and the Department of Natural Resources.

B. Duration

T.H. 41 represents a vital transportation and utility corridor for the City of Chaska. Disruption of this corridor impacts a variety of City services. The removal of T.H. 41 from service is obviously undesirable; therefore, a short construction schedule becomes another factor in selecting a T.H. 41 hydraulic structure.

Construction of the culverts offers an advantage over a conventional bridge structure relative to the length of construction. Culverts can be constructed in a significantly shorter time period.

A conventional bridge structure of this type normally requires 5 to 6 months for construction. Incentive clauses in the construction documents can shorten this time. However, 4 months is an optimistic schedule for a bridge of this size.

Culverts can be constructed in a significantly shorter period of time than conventional bridge structures. This project will require 2 to 3 months for construction of the proposed culvert alternative. Incentive clauses could shorten the construction time even further. A recent project in Chaska of similar magnitude was completed in less than 4 weeks under an emergency situation.

ESTIMATED COSTS

The cost of the alternatives serves as the final criterion in evaluating alternatives. Construction cost estimates were completed to facilitate the accurate comparison of alternative

	Cost Estimate for the Bridge	Amount			
1.	Site preparation and removals	\$	20,000		
2.	Excavation = 21,000 CY x \$ 2.50	\$	52,500		
3.	Haul fill = 21,000 CY x \$ 4.00	\$	84,000		
4.	Remove existing culvert	\$	10,000		
5.	Bridge structure = (340' x 84') x \$ 55	\$:	1,570,800		
6.	Slope restoration, seed	\$	5,000		
	TOTAL	\$:	1,742,300		

TABLE J-8. Cost estimate for the proposed bridge alternative

As indicated in Tables J-7 and J-8, the proposed culvert require a significantly lower investment. The difference between the two alternatives is \$813,000.

RECOMMENDATIONS AND CONCLUSIONS

The alternative selection is based on three subjects discussed in this report: The hydraulic benefits upstream and downstream of T.H. 41, the construction time frame, and the cost of the hydraulic structure.

A. Hydraulic Comparison

Upstream of and near T.H. 41

The bridge alternative does not produce upstream ponding. All flow passes underneath the bridge with no accumulation of debris. The new culvert alternative produces upstream ponding approximately 13.4 feet in depth. The increase in upstream ponding caused by the culverts is not significant. An additional 5.0 acres would be flooded upstream, and no property damaged. For the culvert alternative, the collection of debris behind the debris deflector would have to be cleaned periodically, particularly after major storm events.

The bridge would maintain the approaching channel velocities. The culvert alternative would increase flow velocities in the vicinity of the inlets and outlets. The culvert would require the construction of an energy dissipator.

	Culvert Alternative	Bridge Alternative
Hydraulic Performance (Upstream of and at T.H. 41)	- Upstream Ponding - Debris Control Required - Energy Dissipator Required - Tunnel Pedestrian Path	- No Upstream Ponding - No Debris Barrier - No Energy Dissipator - Open Pedestrian Path RECOMMENDED
Hydraulic Performance (Downstream of T.H. 41)	- Decreased flow in downstream and diversion channels - Increased protection for the City of Chaska	- Increased flow at the diversion channel - Downstream improvements required or lower protection rating of diversion channel
Construction Requirements	- T.H. 41 will be closed for 2 to 3 months RECOMMENDED	- T.H. 41 will be closed for 5 to 6 months
Construction Costs	- All requirements for this alternative will cost \$ 929,000 RECOMMENDED	- All requirements for this alternative will cost \$ 1,742,300

TABLE J-9. Comparison of Alternatives

The culvert alternative is the most beneficial from a hydraulic, construction, and economic perspective. The bridge alternative does provide benefits with no upstream ponding, no debris control requirement, and no energy dissipation structure. However, these advantages do not overcome the advantages of the culvert alternative. The culvert provides hydraulic benefits to the Diversion Channel, a shorter time of construction, and the significantly lower cost. Also, the disadvantages of the culvert alternative can be accommodated through the proper design of a debris control structure and energy dissipator. The upstream ponding produced by the culverts is not extensive and does not create the threat of upstream flooding and property damage. ensure upstream safety, development should not occur below an elevation of 864.0.

CITY OF CHASKA

TRUNK HIGHWAY 41 HYDRAULIC STRUCTURE

PLATE J-1

Engineers & Architects St. Paul • Milwaukee

PLATE J-3
POND ELEVATION-DISCHARGE-STORAGE TABLES

T.H. 41	Elevation	Discharge (cfs)	Storage Volume (Acre-feet)
Proposed	850.0	0.0	0.02
12'x12'	851.0	48.9	0.06
culverts	852.0	136.1	0.16
	853.0	250.5	0.34
	856.0	707.3	2.20
	860.0	2186.0	10.6
	864.0	3623.0	40.9
	868.0	4914.0	81.0
	872.0	6162.0	151.0
	876.0	7192.0	261.0
	880.0	8067.0	428.0
T.H. 41	Elevation	Discharge (cfs)	Storage Volume (Acre-feet)
T.H. 41 Existing	Elevation 850.0	Discharge (cfs)	Storage Volume (Acre-feet) 0.02
		(cfs)	(Acre-feet)
Existing	850.0	(cfs) 0.0	(Acre-feet) 0.02
Existing 8' x 8'	850.0 851.0	(cfs) 0.0 25.2	(Acre-feet) 0.02 0.06
Existing 8' x 8'	850.0 851.0 852.0	(cfs) 0.0 25.2 129.2	(Acre-feet) 0.02 0.06 0.16
Existing 8' x 8'	850.0 851.0 852.0 853.0	(cfs) 0.0 25.2 129.2 198.5	(Acre-feet) 0.02 0.06 0.16 0.34
Existing 8' x 8'	850.0 851.0 852.0 853.0 856.0	(cfs) 0.0 25.2 129.2 198.5 459.7	(Acre-feet) 0.02 0.06 0.16 0.34 2.20
Existing 8' x 8'	850.0 851.0 852.0 853.0 856.0 860.0	(cfs) 0.0 25.2 129.2 198.5 459.7 776.2	(Acre-feet) 0.02 0.06 0.16 0.34 2.20 10.6
Existing 8' x 8'	850.0 851.0 852.0 853.0 856.0 860.0	(cfs) 0.0 25.2 129.2 198.5 459.7 776.2 981.9	(Acre-feet) 0.02 0.06 0.16 0.34 2.20 10.6 40.9
Existing 8' x 8'	850.0 851.0 852.0 853.0 856.0 860.0 864.0	(cfs) 0.0 25.2 129.2 198.5 459.7 776.2 981.9 1149.7	(Acre-feet) 0.02 0.06 0.16 0.34 2.20 10.6 40.9 81.0

PLATE J-5

92138

COMM.

프

TRUNK HIGHWAY 41 HYDRAULIC STRUCTURE

CITY OF CHASKA

JULY 1993

L:\92\92138\92138F04.DWG

CITY OF CHASKA

PLATE J-7

TRUNK HIGHWAY 41 HYDRAULIC PROJECT

L:\92\92138\92138W05 JUNE 1993

COMM. 92138

TJH

