

Most agent AI can be boiled down to the following tasks:

• This needs to be specified with parameters

- Managing increasing complexity is the challenge
 - Bigger FSMs
 - Larger FSM states
- All to tell the agent where to go and what animation to play

- This is supposed to be AI
 - Surely it should be deciding for itself!

• F.E.A.R:

- Rather than hard-code this in the FSM
- Decide using a **planner**
 - Goal
 - Oriented
 - Action
 - Planning

- Smarter, easier-to-build Al
 - Actions are decoupled from one another
 - Selected when appropriate to satisfy a goal

- Games using GOAP
- F.E.A.R., Monolith Productions, 2005
 - Jeff Orkin

- Planning
 - Use a model to decide a sequence of actions to achieve a goal

- FSM
 - Procedural

- Planning
 - Declarative

• Problem:

Find the cherries in the maze

Procedural

Always follow left wall

Procedural

- Always follow left wall
- Leave chalk arrows and backtrack when reach a dead-end

Declarative

- Give a problem definition:
 - What is the map?
 - What are the ways you can move?
- Plan a path before moving

- A*
 - Uses a map to plan a sequence of moves to get to a target

- A*
 - Explores neighboring states/positions
 - Priorities which to explore by
 - Cost to reach
 - Heuristic

- Declarative approach:
 - You can solve any problem you can define in the declarative language
 - e.g. any map you can give to A* it can find the shortest path (if it exists)

- Requirements for planning
 - Goal
 - Model
 - States
 - Actions

State

- How do we represent an agent's knowledge about the world?
- Goal: What does the agent want to be true of the state?

• Actions:

What actions can an agent perform?

• Actions:

 Preconditions: What needs to be true of the state to perform an action?

Actions:

- Preconditions: What needs to be true of the state to perform an action?
- Effects: How does an action change the state?

- A* State
 - Position of agent

- A* Goal
 - Agent at target

• A* Actions

- Precondition: The tile is walkable
- Effect: The agent moves to the tile

- Planning as Search
 - What actions can we perform?

- Planning as Search
 - What actions can we perform?
 - What state do they take us to?

- Planning as Search
 - What actions can we perform?
 - What state do they take us to?
 - Construct a tree of action sequences

- Summary
 - Represent agents knowledge as **state**
 - Define (declarative)
 - Goal
 - Actions
 - Preconditions
 - Effects

- GOAP is based on STRIPS
 - STanford Research Institute Problem Solver
 - Goals
 - Desired state of world
 - Actions
 - Preconditions
 - Effects

• State is a set of variables that define the world (model)

State:

- Have sword?
- Have shield?
- Have potion?
- Healthy?
- Enemy alive?

- State tracks knowledge about the world
 - Starting state
 - What facts do we know?

Start:

true

false

true

true

true

- State tracks knowledge about the world
 - Starting state
 - What facts do we know?
 - Action effects
 - What changes?

Reckless attack:

- State tracks knowledge about the world
 - Starting state
 - What facts do we know?
 - Action effects
 - What changes?
 - Goals
 - What do we want to be true?

• Action prerequisites and effects are described in terms of the variables in the state

Prerequisites				Effects		
Attack:	Defend:	Potion:	Attack:	Defend:	Potion:	
🥒 true			/			
——	true		———			
<u></u>		true	<u></u>		false	
😭 true	true		😭 false		true	
true		false	false			

GOAP Planner

Reckless attack

Potion

Defend

GOAP Planner

Potion

- How do we plan? Tree search
 - Initial State: Starting state
 - State-Action mapping:
 from action preconditions
 - Transition Model: from action effects
 - Goal Test: Goal satisfied?
 - Cost function: each action can be assigned a cost

- How do we plan? A*
 - Cost function: action cost
 - Heuristic: distance from goal in # different variables

- Each agent has a GoalSet, e.g.
 - Patrol
 - Kill Enemy
- New goals can easily be added to this set

- Agents have different actions available
 - Attempt to
 accomplish goals
 in very different
 ways

GOAP in F.E.A.R

- Procedural Preconditions
 - Preconditions that you evaluate when you need them, rather than always keeping up to date
- Procedural Effects
 - Let acting system apply changes to world state model

- The world changes around the agents
 - Player actions
 - Other agents
- Plans must be validated / replanned
 - Plans are validated when created
 - Actions are validated before being performed
 - If an action is no longer possible, the agent replans

Cooperation

- Enemies in F.E.A.R. have no knowledge of each others' existence
- Cooperative behavior comes from agents being assigned goals that line up nicely

Squads

- Squad manager periodically assigns units to squads based on proximity
- Squad manager assigns squad behaviors
- Units have goal to follow squad behavior
 - But their own goals, e.g. Dodge might sometimes take priority

- Simple Squad Behaviors
 - Get-to-Cover
 - All squad members get to cover
 - Advance-cover
 - One squad member provides covering fire while others advance to closer cover
 - Orderly-Advance
 - Advance in a line
 - Search
 - Split into pairs who cover each other and search rooms

- Jeff Orkin's Goal-Oriented Action
 Planning (GOAP) page
 http://alumni.media.mit.edu/~jorkin/goap.html
- Jeff Orkin. 2006. 3 States and a Plan. GDC
 - http://alumni.media.mit.edu/~jorkin/g dc2006_orkin_jeff_fear.pdf
- Building the AI of F.E.A.R. with Goal Oriented Action Planning | AI 101 https://youtu.be/PaOLBOuyswl
- Goal-Oriented Action Planning: Ten Years of Al Programming https://youtu.be/gm7K68663rA

