A Recursive Strategy for Symbolic Execution Expressed in Coq

Alyssa Byrnes

October 8, 2018

Abstract

Symbolic execution allows one to execute a program with symbolic inputs, rather than concrete ones, exploring multiple execution paths simultaneously. This can be a useful tool in debugging a system, for now we can potentially execute all possible inputs of a program to discover bugs and generate exploits. In this work, we examine a previously proposed hardware-oriented recursive symbolic execution algorithm and formally verify that if an error state is reachable, it produces a sequence of inputs that will take the processor from its inital state to that error state.

1 Data Types

- Object of type φ to represent nodes on the symbolic execution tree.
 - get phi(n) returns ϕ , the abstract state.
 - get pc(n) returns π , the path constraint.
 - $-B = \operatorname{sym}_{-}\operatorname{ex}(A)$, or $[A]_{\sim} \Rightarrow_{\mathcal{S}}^{S^*} [B]_{\sim}$, represents symbolic execution of state A for one clock cycle, where A and B are of type φ .
 - $\operatorname{unif}(A)$, or A represents the set of concrete states represented by symbolic state A.
- Object of type \mathcal{E} to represent a symbolic execution tree made of objects of type n.
 - is $leaf(\mathcal{E}, n)$ returns true if n is a leaf in \mathcal{E} .
 - is_root(\mathcal{E} , n) returns true if n is the root in \mathcal{E} .
 - get_root(\mathcal{E}) returns object of type n that is the root of the tree.
- Object of type γ to represent concrete state.
 - $-B = \operatorname{conc}_{-\operatorname{ex}}(A)$, or $A \Rightarrow_{\mathcal{S}}^* B$, represents concrete execution of state A for one clock cycle, where A and B are of type γ .
- ullet Object E to represent set of concrete states.
 - Contains set of initial configuration states \mathcal{T}_{Cfg} .

Shorthand:

- $\bar{s}_{r,m} = \text{get_phi}(\text{get_root}(\mathcal{E}_m))$
- $\pi_{r,m} = \text{get}_pc(\text{get}_root(\mathcal{E}_m))$
- $\bar{s}_{l,m} = \text{get_phi}(n_{l,m})$, where $n_{l,m} \in \mathcal{E}_m$.
- $\pi_{l,m} = \text{get}_\text{pc}(n_{l,m})$, where $n_{l,m} \in \mathcal{E}_m$.

2 Accepted Knowledge

These are the properties outlined in Arusoaie et al.'s paper [?].

Lemma 1 If $\gamma \Rightarrow_{\mathcal{S}} \gamma'$, and $\gamma \in [\![\varphi]\!]$, then there exists φ' such that $\gamma' \in [\![\varphi']\!]$ and $[\![\varphi]\!]_{\sim} \Rightarrow_{\mathcal{S}}^{S} [\![\varphi']\!]_{\sim}$.

Corollary 1 For every concrete execution $\gamma_0 \Rightarrow_{\mathcal{S}} \gamma_1 \Rightarrow_{\mathcal{S}} \dots \gamma_n \Rightarrow_{\mathcal{S}} \dots$, and pattern φ_0 such that $\gamma_0 \in [\![\varphi_0]\!]$, there exists a symbolic execution $[\![\varphi_0]\!]_{\sim} \Rightarrow_{\mathcal{S}}^S [\![\varphi_1]\!]_{\sim} \Rightarrow_{\mathcal{S}}^S \dots [\![\varphi_n]\!]_{\sim} \Rightarrow_{\mathcal{S}}^S \dots$ such that $\gamma_i \in [\![\varphi_i]\!]$ for all $i = 0, 1, \dots$??

Lemma 2 If $\gamma' \in \llbracket \varphi' \rrbracket$ and $\llbracket \varphi \rrbracket_{\sim} \Rightarrow_{\mathcal{S}}^{S} \llbracket \varphi' \rrbracket_{\sim}$ then there exists $\gamma \in \mathcal{T}_{Cfg}$ such that $\gamma \Rightarrow_{\mathcal{S}} \gamma'$ and $\gamma \in \llbracket \varphi \rrbracket$. [?]

Corollary 2 For every feasible symbolic execution $[\varphi_0]_{\sim} \Rightarrow_{\mathcal{S}}^S [\varphi_1]_{\sim} \Rightarrow_{\mathcal{S}}^S \dots [\varphi_n]_{\sim} \Rightarrow_{\mathcal{S}}^S \dots$ there is a concrete execution $\gamma_0 \Rightarrow_{\mathcal{S}} \gamma_1 \Rightarrow_{\mathcal{S}} \dots \gamma_n \Rightarrow_{\mathcal{S}} \dots$ such that $\gamma_i \in \llbracket \varphi_i \rrbracket$ for all $i = 0, 1, \dots$ [?]

Lemma 1 states that all concrete states have corresponding symbolic representations, and Lemma 2 states that if a program symbolically executes to a set of possible concrete assignments, then initial concrete assignments exist so the program can concretely execute to that state.

Corollaries 1 and 2 lift this definition to a consecutive sequence of executions. From here on, a sequence symbolic executions of an unbounded, finite length, $[\varphi_0]_{\sim} \Rightarrow_{\mathcal{S}}^S [\varphi_1]_{\sim} \Rightarrow_{\mathcal{S}}^S \dots [\varphi_n]_{\sim}$ will be denoted by $[\varphi_0]_{\sim} \Rightarrow_{\mathcal{S}}^{S^*} [\varphi_n]_{\sim}$. A sequence of concrete executions of an unbounded, finite length, $\gamma_0 \Rightarrow_{\mathcal{S}} \gamma_1 \Rightarrow_{\mathcal{S}} \dots \gamma_n \Rightarrow_{\mathcal{S}} \text{ will be denoted by } \gamma_0 \Rightarrow_{\mathcal{S}}^* \gamma_n$

3 Circle Operations

These use the notation defined in Arusoaie et al.'s paper [?].

Definition 1 circle_op_1 = the set $\gamma \in \llbracket \varphi \rrbracket \ \forall \ \gamma' \in \llbracket \varphi' \rrbracket$ of a given φ' where $[\varphi]_{\sim} \Rightarrow_{\mathcal{S}}^{S^*} [\varphi']_{\sim}$ such that $\gamma \Rightarrow_{\mathcal{S}}^* \gamma'$ and is_leaf(φ')= true.

Definition 2 $circle_op_\mathcal{Z} = the \ set \ \gamma' \in \llbracket \varphi' \rrbracket \ \forall \ \gamma \in \llbracket \varphi \rrbracket \ of \ a \ given \ \varphi \ where \ [\varphi]_{\sim} \Rightarrow^S_{\mathcal{S}} [\varphi']_{\sim} \ such that \ \gamma \Rightarrow_{\mathcal{S}} \gamma' \ and \ is \ leaf(\varphi') = true.$

circle_op_1 represents all concrete states that will take us down exactly one path in the symbolic execution tree. circle_op_2 represents all concrete output states of a given path in the symbolic execution tree.

4 Properties

For a given E, X = a sequence $\mathcal{E}_0, ..., \mathcal{E}_m$ such that $\forall \mathcal{E}_x, \exists n_{l,x}$ such that the conjunction of the following is true:

- 1. $s_0 \in \text{circle_op_1}(\bar{s}_{r,0}, \pi_{l,0})$
- 2. $E \cap \text{circle op } 2(\bar{s}_{l,m}, \pi_{l,m}) \neq \{\}$
- 3. for $j = \{0, ..., m-1\}$, circle op $2(\bar{s}_{l,j}, \pi_{l,j}) \subseteq \text{circle}$ op $1(\bar{s}_{r,j+1}, \pi_{l,j+1})$
- 4. is $leaf(\mathcal{E}_x, n_{l,x}) = true$.

5 To Do

- Reason about equivalence class, and how the notation transfers to our notation.
- Representing unification in Coq.
- Representing sequences in Coq.
- Representing sufficiency requirement in Coq.
- Representing "equivalence" of concrete states.

6 Notes for Consideration

- \bullet We need to consider uniqueness. This might come naturally from the overall tree structure.
- \bullet Our work assumes SAT-solver correctness.
- Our circle_op returns concrete states, so we just need to be able to compare concrete states.