Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 5 по дисциплине "Основы теории автоматического управления"

Вариант 12

Выполнил:

Чебыкин И. Б.

Группа: Р3401

Выполнение

Математическая модель исследуемой динамической системы и соответствующая ей схема моделирования

$$I. \quad y_{cs} = (1+4t)e^{-4t}$$

Рисунок 1 Схема моделирования динамической системы 1

2.
$$y_{ce} = e^{-1.7t} \sin(14t + 1.44)$$

$$\dot{y}_{cs} = 14 e^{-1.7t} \cos(14t + 1.44) - 1.7 e^{-1.7t} \sin(14t + 1.44)$$

Рисунок 2 Схема моделирования динамической системы 2

$3. \quad y_{cs} = \cos(14t)$

Рисунок 3 Схема моделирования динамической системы 3

4.
$$y_{cs} = 0.05 e^{1.7t} \sin(14t+1.7)$$

 $\dot{y}_{cs} = e^{1.7t} (0.085 \sin(14t+1.7) + 0.7 \cos(14t+1.7))$

Рисунок 4 Схема моделирования динамической системы 4

5.
$$y_{cs} = (0.05 - 0.2t)e^{4t}$$

Рисунок 5 Схема моделирования динамической системы 5

6.
$$y_{cs} = -0.04 e^{-1.3t} + 0.04 e^{1.3t}$$

Рисунок 6 Схема моделирования динамической системы 6

Результаты расчетов

No	Корни		Параметры системы		Начальные условия		Свободная составляющая $y_{cs}(t)$
	λ_1	λ_2	a_0	a_1	<i>y</i> (0)	$\dot{y}(0)$, , , , , , , , , , , , , , , , , , , ,
1	-4	-4	4	5	1	0	$(1+4t)e^{-4t}$
2	-1.7+j14	-1.7-j14	199	3.4	1	0	$e^{-1.7t}\sin(14t+1.44)$
3	j14	-j14	196	0	1	0	$\sin(14t + \pi/2) = \cos(14t)$
4	1.7+j14	1.7-j14	199	-3.4	0.05	0	$0.05e^{1.7t}\sin(14t+1.7)$
5	4	4	-20	1	0.05	0	$(0.05-0.2t)e^{4t}$
6	-1.3	1.3	-1.69	0	0	0.1	$-0.04e^{-1.3t}+0.04e^{1.3t}$

Результаты вычислительных экспериментов

Моделирование свободного движения системы

1.

Рисунок 7 График свободного движения системы 1

Рисунок 8 График свободного движения системы 2

Рисунок 9 График свободного движения системы 3

Рисунок 10 График свободного движения системы 4

Рисунок 11 График свободного движения системы 5

Рисунок 12 График свободного движения системы 6

Фазовые траектории автономной системы

1.

Рисунок 13 График фазовой траектория для набора значений 2

Рисунок 14 График фазовой траектория для набора значений 3

Рисунок 15 График фазовой траектория для набора значений 4

Моделирование вынужденного движения системы

1.
$$y_0 = -1, g(t) = 1.5$$

Рисунок 16 График вынужденного движения системы 1

2.
$$y_0 = 0, g(t) = 0.4t$$

Рисунок 17 График вынужденного движения системы 2

3. $y_0=1, g(t)=\cos(2t)$

Рисунок 18 График вынужденного движения системы 3

Вывод

Выполнив данную лабораторную работу я произвел исследование динамических свойств линейных систем второго порядка.