Airbnb Case Study

Problem background

Suppose that you are working as a data analyst at Airbnb. For the past few months, Airbnb has seen a major decline in revenue. Now that the restrictions have started lifting and people have started to travel more, Airbnb wants to make sure that it is fully prepared for this change.

The different leaders at Airbnb want to understand some important insights based on various attributes in the dataset so as to increase the revenue

End Objective

To prepare for the next best steps that Airbnb needs to take as a business, you have been asked to analyse a dataset consisting of various Airbnb listings in New York.

Based on this analysis, you need to give two presentations to the following groups.

Presentation - I

- Data Analysis Managers: These people manage the data analysts directly for processes and their technical expertise is basic.
- Lead Data Analyst: The lead data analyst looks after the entire team of data and business analysts and is technically sound.

Presentation - II

- Head of Acquisitions and Operations, NYC: This head looks after all the property
 and host acquisitions and operations. Acquisition of the best properties, price
 negotiation, and negotiating the services the properties offer falls under the
 purview of this role.
- Head of User Experience, NYC: The head of user experience looks after the
 customer preferences and also handles the properties listed on the website and
 the Airbnb app. Basically, the head of user experience tries to optimise the order
 of property listing in certain neighbourhoods and cities in order to get every
 property the optimal amount of traction

Methodology

Data Cleaning & Preparation for visualization and analysis purpose Tool Used - Python

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_revie
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1	
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	
2	3647	THE VILLAGE OF HARLEMNEW YORK I	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1	
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10	
												•
air	bnb.s	shape										

Remove columns not significant in Analysis and check info

```
#remove name and id column as not used for analysis
airbnb.drop(["id","name"],axis=1,inplace=True)
airbnb.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 14 columns):
 #
     Column
                                        Non-Null Count Dtype
 0
    host_id
                                        48895 non-null int64
     host_name
                                        48874 non-null object
     neighbourhood_group
                                        48895 non-null object
 3
     neighbourhood
                                        48895 non-null object
 4
     latitude
                                       48895 non-null float64
     longitude
                                        48895 non-null float64
     room_type
                                       48895 non-null object
     price
                                        48895 non-null
     minimum_nights
                                       48895 non-null int64
     number_of_reviews
                                        48895 non-null
 10 last_review
                                        38843 non-null object
 11 reviews_per_month 38843 non-null float
12 calculated_host_listings_count 48895 non-null int64
                                        38843 non-null float64
                                        48895 non-null int64
 13 availability_365
dtypes: float64(3), int64(6), object(5)
memory usage: 5.2+ MB
```

Check Null values

```
: airbnb.isnull().mean()*100
 host id
                                     0.000000
  host_name
                                     0.042949
  neighbourhood_group
                                     0.000000
  neighbourhood
                                     0.000000
  latitude
                                     0.000000
  longitude
                                     0.000000
  room_type
                                     0.000000
  price
                                     0.000000
  minimum_nights
                                     0.000000
  number_of_reviews
                                     0.000000
  last_review
  reviews per month
                                    20.558339
  calculated_host_listings_count
                                     0.000000
  availability_365
                                     0.000000
  dtype: float64
```

- Host name we found that its missing by chance and need to get information from team ,but for now we kept it as it is
- We found that 'last_review' and 'reviews_per_month' columns are not randomly
 missing; rather, they indicate that these hosted sites or places have not yet received
 any reviews from customers. So imputed the missing values of reviews_per_month
 with a 0.

```
# we understand that reviews_per_month and last_review are null for number_of_reviews are 0.So impute reviews_per_month with 0 airbnb.reviews_per_month.fillna(0,inplace=True)

airbnb.reviews_per_month.isnull().sum()
```

0

Checked the Duplicate rows in our dataset and no duplicate data was found

Identified and review outliers

```
# outlier treatment for price:
Q1 = airbnb.price.quantile(0.10)
Q3 = airbnb.price.quantile(0.90)
IQR = Q3-Q1
airbnb = airbnb[(airbnb.price >= Q1-1.5*IQR) & (airbnb.price <= Q3+ 1.5*IQR)]</pre>
```

Similarly outlier treatment done for other numerical columns like minimum_nights, number_of_reviews, reviews_per_month, calculated_host_listings_count

Data Analysis and Visualizations using Tableau

PPT 1

We have used tableau to visualize the data for the assignment. Below are the detailed steps used for each

visualization.

- Preference on Room type:We identified customer preference on room type provided by listings using a bar
- Preferred Room type with respect to Neighbourhood group: We created a stacked bar chart for understanding the percentage of room type preferred w r to neighbourhood group
- Neighbourhood Vs Price and Minimum nights:we created two bar charts with avg of price and minimum nights plotted against neighbour hood to find most expensive and preferred neighbourhood

- Popular Neighborhoods: We took neighbourhood in columns and sum of reviewsin rows and took neighbourhood groups in colour.
- Location Analysis:Location wise analysis done using map to find location wise information
- Correlation Analysis:Created a correlation matrix using heatmap to find relation amoung numerical variables
- Price Vs review:plot a bubble chart where size determines reviews and color determines price

PPT 2

- Preference on Room type:We identified customer preference on room type provided by listings using a bar
- Customer Booking w r t minimum nights:we use side by side bars to display the distribution of minimum nights(binned) based onthe number of ids booked for each neighbourhood group.
- Neighbourhood vs Availability Vs price:we plot horizontal bar with neighbourhood and availability as axis and include price in size and neighbourhood in color to determine highly available neighbourhood
- Top 10 price range-Top 10 price range found out based on number of reviews using histogram by binning price
- We showed top host and top locations preferred by customers using map