

COMPUTER VISION · MACHINE LEARNING · CLUSTERING · ADVERSARIAL LEARNING

428, College of Computer and Control Engineering, Nankai University, Tianjin, 300350

□ (+86) 130-4229-0678 | Image | Image

Education

Nankai University Tianjin, China

Master Candidate IN COLLEGE OF COMPUTER AND CONTROL ENGINEERING, CV LAB

Sep. 2016 - PRESENT

- Advisor: Jufeng Yang, Associate Professor, Nankai University
- Mentor: Ming-Ming Cheng, Professor, Nankai University
- Mentor: Ming-Hsuan Yang, Professor, University of California at Merced
- Mentor: **Paul L. Rosin**, Professor, Cardiff University

Ocean University of China

Oinadao, China

Sep. 2012 - Jun. 2016

Bachelor in School of Mathematical Science, Information and Computing Science

· Major classes: Advanced Algebra, Optimization, Numerical Analysis, Object Oriented Programming, etc

Skills_____

Programming Python, C/C++

Tools Matlab, TensorFlow, Caffe, OpenCV, LaTeX, Linux

Publications

Clinical Skin Lesion Diagnosis using Representations Inspired by Dermatologist Criteria

CVPR 2018

Jufeng Yang (Advisor), Xiaoxiao Sun, Jie Liang, Paul L. Rosin

· Recognizing skin disease images using interpretable features, showing superior performance against deep architectures

Automatic Model Selection in Subspace Clustering via Triplet Relationships

AAAI 2018

Jufeng Yang (Advisor), *Jie Liang*, Kai Wang, Yong-Liang Yang, Ming-Ming Cheng

• Automatically estimating the number of clusters and grouping samples with a greedy strategy

Understanding Image Impressiveness Inspired by Instantaneous Human Perceptual Cues

AAAI 2018

Jufeng Yang (Advisor), Yan Sun, *Jie Liang*, Yong-Liang Yang, Ming-Ming Cheng

· Evaluating image property using hybrid deep or hand-craft representations for classification and recommendation

Submitted Papers _____

CONFERENCE

JOURNAL

Sub-GAN: An Unsupervised Generative Model via Subspaces, Coauthors: Jufeng Yang, Hsin-Ying 2018.03

Submitted to ECCV

Lee and Ming-Hsuan Yang

2017.10 **Subspace Clustering via Good Neighbors,** Coauthors: Jufeng Yang and Ming-Hsuan Yang

Submitted to TPAMI

Dynamic Match Kernel with Deep Convolutional Features for Image Retrieval, Coauthors:

Submitted to TIP

Jufeng Yang, Paul L. Rosin and Ming-Hsuan Yang

Experiences _____

Reviewer CVPR 2018

EMERGENCY REVIEWER

• Recommended and nominated for CVPR Distinguished Reviewer Awards by Prof. Ming-Hsuan Yang, who serves as an AC of CVPR

Volunteers Tianjin, China

ORGANIZING AND RECEPTION

Computational Visual Media Conference (CVM 2017); China Conference on Computer Vision (CCCV 2017)

Honors & Awards

SCHOLARSHIP & HONOR

National Motivational Scholarship, first class China 2015 Outstanding Student Honor, Valuable honor in OUC China

AWARDS

2015 China Undergraduate Mathematical Contest in Modeling, First Class Award at the provincial level

China

Projects

1. Sparse Subspace Clustering

CVIah

IDEA & REFERENCE INVESTIGATION & CODING & PAPER WRITING

Jul. 2016 - PRESENT

- Based on the similarity matrix derived by optimizing a **self-representation** problem
- Exploring comprehensive regularization term by computing the trade-off between sparsity and grouping effect
- Getting SOA result on all evaluated datasets, submitting to TPAMI
- Proposing a greedy strategy to simultaneously estimate the number of clusters and grouping, inspired by the **block-diagonal** structure of similarity matrix
- Designing a triplet relationship and two rewards, getting SOA result and saving 30% time consumption, accepted by AAAI 2018
- · Trying to extended it to large-scale unsupervised applications, e.g., millions-scale image clustering, with greedy neighboring strategy

2. Generative Adversarial Networks

IDEA & REFERENCE INVESTIGATION & CODING & PAPER WRITING

Apr. 2017 - PRESENT

- Simultaneously learning the subspaces of ambient space and conducting the adversarial training, to conquer the training instability and mode collapse
- Generator takes eigenvectors of subspaces as constraint, discriminator predicts both realness and subspaces for each sample
- Incorporating a **clusterer** to iteratively update both the clustering assignments and the eigenvectors of subspaces
- Designing a unified optimization function for joint training of the three modules, submitted to CVPR 2018

3. Low-Level Vision Application of Adversarial Training

CV Lab

IDEA & REFERENCE INVESTIGATION & CODING & PAPER WRITING

Dec. 2017 - PRESENT

Apr. 2017 - Dec. 2017

- Utilizing the adversarial training strategy to **optimize** various low-level vision problems, e.g., semantic segmentation, super resolution, style transfer, image deblurring, etc
- Modifying network implementation of various tasks in TensorFlow

4. Clinical Skin Lesion Recognition

CV Lab

CODING & PAPER WRITING

· Designing comprehensive features inspired by human knowledge, i.e., Dermatologist criteria, to improve the recognition

- Based on SD-198 dataset with 3000+ training images of 198 diseases
- Comparing with various basic low-level representations and deep features, achieving SOA result, accepted by CVPR 2018
- A web application for recognizing clinical skin diseases is released for public welfare

5. Deep Content based Image Retrieval

CVIah

REFERENCE INVESTIGATION & CODING & PAPER WRITING

Apr 2017 - Dec 2017

- Designing a semantic-constrained framework with dynamic match kernels, incorporating global similarity from deep CNN features
- · Exploring optimized combination of post-processing modules, e.g., local descriptors aggregation, graph based re-ranking, to enhance the performance. Getting the SOA result and submitting to TIP
- Also show best performance on retrieval tasks with 1 million + image distractors
- Eliminated 99.88% negative matches per query and saved 88% time consumption (0.89s/7.33s) due to the dynamic strategy

6. Image Property Exploration

CVLab

REFERENCE INVESTIGATION & CODING & PAPER WRITING

Apr. 2017 - Oct. 2017

- Measuring image property with quantitative visual features, which includes both low-level and deep semantic representations
- Utilizing feature fusion techniques, e.g., multi-kernel learning, etc, to generate hybrid representation for classification
- Designing an enhanced recommendation system which can **re-rank** the candidates based on the evaluation of impressiveness