Relatório de Treinamento Modelo YOLOv8

1. Informações do Ambiente

• Framework: Ultralytics YOLOv8 (versão 8.3.73)

• Linguagem: Python 3.13.0

• Plataforma de Hardware: NVIDIA GeForce GTX 970 (4096 MiB VRAM)

• Biblioteca de Deep Learning: PyTorch 2.6.0 com CUDA 11.8

• Modo de Treinamento: detect (Detecção de Objetos)

• Arquivo de configuração: data.yaml

2. Configuração do Treinamento

Parâmetro	Valor	
Modelo Base	yolov8n.pt (YOLOv8 Nano)	
Número de Épocas	5	
Imagens Analisadas	1198	
Tamanho das Imagens	1024x1024	
Tamanho do Lote (Batch Size)	4	
Número de Classes	5	
Número de Workers	2	
Dispositivo	cuda (GPU)	
Método de Precisão	AMP (Automatic Mixed Precision)	

3. Estrutura do Modelo

Número total de camadas: 225Parâmetros treináveis: 3.011.823

Época	Precisão (P)
1/5	0.887
2/5	0.958
3/5	0.977
4/5	0.971
5/5	0.987

4. Validação do Modelo Treinado

Após o treinamento, o modelo foi validado nos dados de teste.

Classe	Imagens	Instâncias	Precisão (P)	Recall (R)
Colete	216	227	0.993	0.982
Botas	200	410	0.980	0.980
Óculos	166	169	0.986	0.929
Luva	193	360	0.974	0.926
Capacete	199	213	1.000	0.975

- Recall: Capacidade de encontrar objetos

★ Observações:

• A alta precisão e recall (>95%) em todas as classes mostram que o modelo está generalizando bem.

5. Treinamento e reconhecimento de Objetos

