MIP

徐子晏、王亭匀、巫芊瑩、郭子麟、陳沛妤、葉小漓、孔令傑

October 2022

1 MIP

1.1 Parameters and Variables

Sets and Parameters	Definition
n^{I}	Number of stages.
$n^{ m J}$	Number of jobs.
$n_i^{ m M} \ I$	Number of machines in stage $i. i \in I.$
I	Set of stages. $I = \{1, 2,, n^{I}\}.$
J	Set of jobs. $J = \{1, 2,, n^{J}\}.$
M_i	Set of machines in stage i. $M_i = \{1, 2,, n_i^{\mathrm{M}}\}, i \in I$.
Q_{ij}	Queue time limit of job j on stage i. $i \in I \setminus \{1\}, j \in J$.
A_{imj}	Initial production time of job j on machine m of stage i. $i \in I, m \in$
	$M_i, j \in J$.
B_{im}	Production time discount after maintenance of machine m of stage i .
	$i \in I, m \in M_i, B_{im} \in [0, 1].$
U_{im}	Unfinished production time from the previous day of machine m of
	stage $i. i \in I, m \in M_i$.
F_{im}	Maintenance lengths of machine m of stage i . $i \in I, m \in M_i$.
D_j	Due time of job $j. j \in J.$
W_{j}	Tardiness penalties of job $j. j \in J.$
K	A very large positive number.

Table 1: List of sets and parameters and their definitions

Variables	Definition
$\overline{r_{imj}}$	1 if job j is completed on machine m of stage i or 0 otherwise. $i \in$
	$I, m \in M_i, j \in J.$
v_{im}	1 if machine m of stage i will be maintained or 0 otherwise. $i \in$
	$I, m \in M_i$.
$z_{im}^{ m R}$	Completion time of maintenance on machine m of stage i . $i \in I, m \in$
	M_i .
z_{ij}	Completion time of job j on stage $i. i \in I, j \in J.$
p_{imj}	Effective production time of job j on machine m of stage i. $i \in I, m \in$
v	$M_i, j \in J$.
$x_{imj_1j_2}$	1 if job j_1 precedes job j_2 on machine m of stage i or 0 otherwise.
,1,2	$i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2.$

```
\begin{array}{ll} y_{imj}^{\text{Before}} & 1 \text{ if maintenance precedes job } j \text{ on machine } m \text{ of stage } i \text{ or } 0 \text{ otherwise.} \\ & i \in I, m \in M_i, j \in J. \\ y_{imj}^{\text{After}} & 1 \text{ if job } j \text{ precedes maintenance on machine } m \text{ of stage } i \text{ or } 0 \text{ otherwise.} \\ & i \in I, m \in M_i, j \in J. \\ w_{i_1m_1i_2m_2} & 1 \text{ if maintenance timing on machine } m_1 \text{ of stage } i_1 \text{ precedes that on } \\ & machine \ m_2 \text{ of stage } i_2 \text{ or } 0 \text{ otherwise.} \\ & M_{i_2}, (i_1, m_1) \neq (i_2, m_2). \end{array}
```

Table 2: List of variables used and their definitions

1.2 Model

$$\begin{aligned} & \min & \sum_{j \in J} (\max(z_{n_Ij} - D_j, 0)W_j) \\ & \text{s.t.} & z_{ij} - (U_{im} + p_{imj}) \geq -K(1 - r_{imj}) & \forall i \in I, m \in M_i, j \in J \\ & z_{i+1,j} - (z_{ij} + p_{i+1,mj}) \geq -K(1 - r_{i+1,mj}) & \forall i \in I \setminus \{n^1\}, m \in M_i, j \in J \\ & z_{ij_1} + p_{imj_2} - z_{ij_2} \leq K(1 - x_{imj_1j_2}) & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & z_{im}^R \geq U_{im} + F_{im} + K(\sum_{j \in J} y_{imj}^{\text{Before}} - n_J) & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & z_{im}^R \geq U_{im} + F_{im} + K(\sum_{j \in J} y_{imj}^{\text{After}}) & \forall i \in I, m \in M_i, j \in J \\ & z_{im}^R + p_{imj} - z_{ij} \leq K(1 - y_{imj}^{\text{After}}) & \forall i \in I, m \in M_i, j \in J \\ & z_{im}^R + p_{imj} - z_{ij} \leq K(1 - y_{imj}^{\text{Before}}) & \forall i \in I, m \in M_i, j \in J \\ & z_{im}^R + F_{im} - z_{im}^R \leq K(1 - w_{imj_1i_2m_2}) & \forall i_1, i_2 \in I, m_1 \in M_{i_1}, m_2 \in M_{i_2}, (i_1, m_1) \neq (i_2, m_2) \\ & \sum_{i \in I, m \in M_i} r_{imj} \leq r_{imj} + r_{imj_2} - 1 & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & z_{imj_1j_2} + x_{imj_2j_1} \geq r_{imj_1} + r_{imj_2} - 1 & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & 2(y_{imj}^{\text{Before}} + y_{imj}^{\text{After}}) \leq r_{imj} + v_{im} & \forall i \in I, m \in M_i, j \in J \\ & w_{imj} + w_{imj} \geq 0 & \forall i \in I, m \in M_i, j \in J \\ & w_{imj} + w_{imj} \geq 0 & \forall i \in I, m \in M_i, j \in J \\ & w_{imj_1} \geq \{0,1\} & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & w_{i1,mi_1i_2m_2} \in \{0,1\} & \forall i, i_2 \in I, m_1 \in M_i, m_2 \in M_{i2}, (i_1, m_1) \neq (i_2, m_2) \\ & \forall i, i_1, i_2 \in I, m_1 \in M_i, m_2 \in M_{i2}, (i_1, m_1) \neq (i_2, m_2) \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i, j_1, j_2 \in J, j_1 \neq j_2 \\ & \forall i \in I, m \in M_i,$$