Question Number	Scheme	Marks
9	Grad $AB = \frac{6-4}{1-(-4)} = \frac{2}{5}$	M1
	Grad $AC = \frac{-1-4}{-2-(-4)} = -\frac{5}{2}$	A1
	$\left \frac{2}{5} \times \left(-\frac{5}{2} \right) \right = -1 \therefore AB \text{ is perpendicular to } AC.$	M1A1cso (4)
(b)	See notes for 2 alt methods $\frac{y+1}{6+1} = \frac{x+2}{1+2}$ $7x-3y+11=0$	M1A1 A1 (3)
(c)	Grad $l = -\frac{5}{2}$ (= grad AC)	
	$Midpoint AB = \left(-\frac{3}{2}, 5\right)$	B1B1
	Eqn. $l: y-5 = -\frac{5}{2}\left(x+\frac{3}{2}\right) \left(y=\frac{-5}{2}x+\frac{5}{4}\right)$	M1A1 (4)
(d)	(E is midpoint of BC) E is $\left(-\frac{1}{2}, \frac{5}{2}\right)$ or decimal equivalents	B1, B1 (2)
(e)	AE perp to BC	M1
	$EC = \sqrt{(1.5^2 + 3.5^2)} = \sqrt{14.5}$ $AE = \sqrt{(3.5^2 + 1.5^2)} = \sqrt{14.5}$	M1 A1
	Area $\triangle AEC = \frac{1}{2}AE \times EC = \frac{1}{2} \times 14.5 = 7.25$ oe	A1 (4) [17]
ALT 1	Area $\triangle AEC = \frac{1}{2}$ Area $\triangle ABC$	M1
	$AB = \sqrt{(5^2 + 2^2)} = \sqrt{29}$	M1
	$AC = \sqrt{2^2 + 5^2} = \sqrt{29}$	A1
	Area $\triangle AEC = \frac{1}{2} \times \frac{1}{2} \times AB \times AC = \frac{29}{4}$ oe $\left(7\frac{1}{4} \text{ or } 7.25\right)$	A1

Question Number	Scheme	Marks	
ALT 2:	Use "determinant" method with coordinates of A, E, C		
	"Area $\triangle AEC$ " = $\frac{1}{2}\begin{vmatrix} -4 & -\frac{1}{2} & -2 & -4 \\ 4 & \frac{5}{2} & -1 & 4 \end{vmatrix}$	M1A1 (first M first A)	
M1	$ = \frac{1}{2} \left(-4 \times \frac{5}{2} + -\frac{1}{2} \times -1 + -2 \times 4 - \left(-4 \times -1 + -2 \times \frac{5}{2} + -\frac{1}{2} \times 4 \right) \right) $ $ = -\frac{29}{4} $	M1	
	T	(second M)	
A1	Area $\triangle AEC = \frac{29}{4}$	A1	
(a) M1	Attempt gradient of either line. May find equation of either line and extract gradient from it.		
A1	Correct gradient of both lines		
M1	Attempt product of their gradients or state "negative reciprocals", provided the gradients are negative reciprocals, even if they are not correct. (no need for product)		
A1cso	Product = −1 or "negative reciprocals" and a conclusion (eg : perpendicular, shown, # or similar)		
ALT 1	Find lengths of <i>AB</i> , <i>AC</i> and <i>BC</i> and use Pythagoras		
M1	Attempt lengths of 2 of these lines		
A1	Correct lengths of all 3 lines $(\sqrt{29}, \sqrt{29}, \sqrt{58})$		
M1	Use Pythagoras (sum of squares of the two shorter sides = square of longest)		
A1cso	Everything correct and a conclusion given (as above)		
ALT 2	Find an equation of the perpendicular to AB through C . Find the intersection of this line with AB and show it is A .		
M1	Attempt the gradient of AB		
A1	Correct equation of the perpendicular through $C\left(y+1=-\frac{5}{2}(x+2)\right)$ oe		
M1 A1	Attempt an equation for AB and solve with their previous line Correct intersection (-4, 4) and a conclusion.		
(b) M1	Use any <i>complete</i> method for the equation of <i>BC</i> . (Use of $y = mx + c$ required to find a numerical value for c .)	iires an attempt	
A1	Correct numbers in their choice of method		
A1	Correct equation in the required form. All terms to be on one side of the = the other. Can be an integer multiple of the one shown.	sign with 0 on	

Question Number	Scheme	Marks	
(c) B1 B1 M1 A1 (d) B1 B1	Either coordinate of the midpoint of AB Second coordinate of midpoint Any <i>complete</i> method for the equation of the perpendicular bisector. Must include the gradient as the negative reciprocal of their gradient of AB or their gradient of AC . If (a) done by Pythagoras an appropriate gradient must be found for this M mark. Correct equation of the perpendicular bisector, any equivalent form. Must have $y =$ Either coordinate of E ; fraction or decimal Second coordinate of E ; fraction or decimal		
(e) M1 M1 A1 A1	For the statement shown. Give by implication if the following work implies No explanation needed. Attempting the length of <i>EC</i> or <i>AE</i> Both lengths correct. Obtain the correct area of the triangle. (7.3 scores A0)	es use of this.	
ALT 1: M1 M1 A1 A1	For the statement shown. Give by implication if the following work implies use of this. No explanation needed. Attempting the length of <i>AB</i> or <i>AC</i> Both lengths correct. Award marks if work seen in (a) and used here. Obtain the correct area of the triangle. (7.3 scores A0)		
ALT 2: M1	By "determinant" method. Area $\triangle AEC = \left(\frac{1}{2}\right) \begin{vmatrix} -4 & -\frac{1}{2} & -2 & -4 \\ 4 & \frac{5}{2} & -1 & 4 \end{vmatrix}$ Coords of A, C and their coord with first pair repeated at the expoints in any order.	$ds ext{ of } E ext{ needed}$ $ds ext{nd}$.	
A1	Correct numbers in the "determinant" (with or without the $\frac{1}{2}$ present)		
M1	Include the $\frac{1}{2}$ and attempt to multiply out their determinant.		
A1	Correct area, must be positive.		
NB	Enter marks in e-PEN order (M1M1A1A1) not in marking order (M1A1M1A1)		