Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 11 - Chapter 14

Started on	Sunday, 16 April 2017, 9:20 AM
State	Finished
Completed on	Sunday, 16 April 2017, 5:42 PM
Time taken	8 hours 21 mins

Grade 100.00 out of 100.00

Question 1

Correct

Mark 20.00 out of 20.00

P14.3_9ed

A resistor R₁ is added in series with the inductor in this circuit.

Given: $R_1 = 75 \Omega$ (Ohm) L = 10 mH (mill H) $R = 127 \Omega$ (Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_i$.

$$H(s) = 12700$$
/ (s + 20200)

b) At what frequency will the magnitude of H(jw) be maximum?

$$\mathbf{w}_{\mathrm{H,max}} = \boxed{\mathbf{0}}$$

rad/sec

c) What is maximum value of the magnitude of H(jw)?

$$H(jw)_{max} = \boxed{.63}$$

d) At what frequency will the magnitude of H(jw) equal its maximum value divided by square root of 2?

$$W_{H,max,sqrt(2)} = \boxed{20200}$$

rad/sec

e) Find w_c (omega_c)

$$W_c = 20200$$

rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

f) Find H(jw = 0) in polar form..

$$H(jw = 0) = Mag \left[.63 \right]$$

g) Find $H(jw = 0.3w_c)$ in polar form.

$$H(jw = 0.3w_c) = Mag$$
 .602
at angle -16.7 \checkmark ° (Degrees)

h) Find $H(jw = w_c)$ in polar form.

$$H(jw = w_c) = Mag$$
 .44

i) Find $H(jw = 3w_c)$ in polar form.

$$H(jw = 3w_c) = Mag$$
 .2

Numeric Answer

a)
$$\frac{{V_0}}{{V_i}} \! = \! \frac{{12,\!700}}{{s\!+\!20,\!200}}$$

- b) $\omega_{H,max} = 0 \text{ rad/sec}$
- c) $H(j\omega)_{max} = 0.6287$
- d) $\omega_{H,max,sqrt(2)}$ = 20,200 rad/sec
- e) $\omega_{c} = 20,200 \text{ rad/sec}$
- f) $H(j\omega = 0) = 0.6287$
- g) $H(j\omega = 0.3\omega_c) = 0.6022$ \checkmark -16.70°
- h) $H(j\omega = \omega_c) = 0.4446$ \checkmark -45°
- i) $H(j_{\omega} = 3\omega_{c}) = 0.1988$ \checkmark -71.57°

Correct

Question 2

Correct

Mark 20.00 out of 20.00

P14.3 6ed

A resistor R_L is connected in parallel with the capacitor in this circuit. The circuit thus becomes a loaded low-pass filter.

Given: $R = 20 \text{ k}\Omega$ (kilo Ohm) C = 4 nF $R_L = 300 \text{ k}\Omega$ (kilo Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_i$.

$$H(s) = \boxed{12500}$$
/ (s + $\boxed{13373.33}$ \checkmark)

b) Find w_c (omega_c)

$$w_c = \begin{bmatrix} 13333.3 \end{bmatrix}$$

rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

c) Find H(j0)

$$H(j0) = 0.94$$

d) Find $H(jw_c)$ i.e. evaluate H(jw) at $w = w_c$

$$H(jw_c) = Mag \boxed{0.66}$$

Angle -45 ✓

e) Find $H(j0.2w_c)$ i.e. evaluate H(jw) at $w = 0.2 \ w_c$

$$H(j0.2w_c) = Mag \boxed{0.92}$$

Angle -11.31 ✓

f) Find $H(j8w_c)$ i.e. evaluate H(jw) at $w = 8w_c$

$$H(j8w_c) = Mag \left[0.116 \right]$$

Numeric Answer

- a) f = 50 Hz
- b) $\omega_c = 13,333.3 \text{ rad/sec}$
- c) H(j0) = 0.9375
- d) $H(j\omega_c) = 0.6629$ \checkmark -45°
- e) H(j0.2 ω_c) = 0.9193 $\,$ $\,$ -11.31 $^{\circ}$ This is an exact answer to the passband region.

f) H(j8 ω_c) = 0.1163 $\,$ <-82.87 $^\circ$ This is an exact answer to the stopband region.

Correct

20.00

P14.1 9ed

a) Find the cutoff frequency in hertz.

$$f_c = 2021.26$$

Hz

b) Find $H(j\omega = 0)$ in polar form.

$$H(jw = 0) = Mag \left[1 \right]$$

Now examine the output magnitude and phase as the input frequency varies.

c) Find $H(jw = 0.2\omega_c)$ in polar form..

$$H(jw = 0.2\omega_c) = Mag \left[.98 \right]$$

at angle -11.31 ° (Degrees)

d) Find $H(j\omega = \omega_c)$ in polar form.

$$H(j\omega = \omega_c) = Mag$$
 .71

at angle | -45 ° (Degrees)

e) Find H(j $\omega = 5\omega_c$) in polar form.

$$H(jw = 5\omega_c) = Mag$$
 .196

Now given $v_i(t) = 10 \cos(\omega t) V$. Write the steady-state expression for v_0 for:

f)
$$\omega = 0.2\omega_{c}$$

$$v_0(t) = 9.81$$

$$v_0(2540) + t + -11.31$$

$$v_0(2540) + t + -11.31$$

g)
$$\omega = \omega_c$$

$$\mathbf{v}_0(\mathbf{t}) = \boxed{7.07}$$

h)
$$\omega = 5\omega_c$$

$$v_0(t) = \boxed{1.96}$$

$$\cos(63500) \sqrt{t + -78.69}$$
 °) Volts

a)
$$f_c = 2021.27 \text{ Hz}$$

b)
$$H(j? = 0) = 1 \angle 0^{\circ}$$

- c) $H(j? = 0.2?_c) = 0.981$ \checkmark -11.31°
- d) $H(j? = ?_c) = 0.707$ \checkmark -45°
- e) $H(j? = 5?_c) = 0.196$ \checkmark -78.69°
- f) For $? = 0.2?_c$, $v_0(t) = 9.81 \cos(2,540 t 11.31^\circ)$ Volts
- g) For $? = ?_c$, $v_0(t) = 7.07 \cos(12,700 t 45^\circ)$ Volts
- h) For $? = 5?_c$, $v_0(t) = 1.96 \cos(63,500 t 78.69^\circ)$ Volts

Correct

P14.11_9ed

Given: $R_c = 12.5 \text{ k}\Omega$ (kilo Ohm) C = 5 nF $R = 50 \text{ k}\Omega$ (kilo Ohm)

a) Find the cutoff frequency f_c for this high-pass filter.

$$f_c = 509.3$$

Hz

b) Find the H(jw) for

$$H(jw = w_c) = \boxed{0.57}$$

$$H(jw = 0.2w_c) = 0.16$$

at angle 78.69

$$H(jw = 5w_c) = \begin{bmatrix} 0.78 \end{bmatrix}$$

at angle 11.31

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_i(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282.85$

For
$$\omega = 0.2\omega_c$$
, $v_o(t) = \boxed{78.45}$

For
$$\omega = 5\omega_c$$
, $v_o(t) = 392.25$

- a) $f_c = 509.2958 \text{ Hz}$
- b) Find the $H(j\omega)$ for

$$H(j\omega = \omega_c) = 0.5657$$
 at angle 45°

$$H(j\omega = 0.2\omega_c) = 0.1569$$
 at angle 78.69°

$$H(j\omega = 5\omega_c) = 0.7845$$
 at angle 11.31°

c) If $v_i(t) = 500 \cos(\omega t)$, write the steady-state output voltage $v_o(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282.850 \cos(\omega t + 45^\circ) \text{ mV}$

For
$$\omega = 0.2\omega_c$$
, $v_o(t) = 78.450 \cos(\omega t + 78.69^\circ) \text{ mV}$
For $\omega = 5\omega_c$, $v_o(t) = 392.250 \cos(\omega t + 11.31^\circ) \text{ mV}$

Correct

- a) $f_c = 636.6198 \text{ Hz}$
- b) Find the $H(j\omega)$ for

 $H(j\omega = \omega_c) = 0.7071$ at angle 45°

 $H(j\omega = 0.2\omega_c) = 0.1961$ at angle 78.69°

 $H(j\omega = 5\omega_c) = 0.9806$ at angle 11.31°

c) If $v_{i}(t)$ = 500 cos($\omega t)$, write the steady-state output voltage $v_{_{0}}(t)$ for

For $\omega = \omega_c$, $v_o(t) = 353.550 \cos(\omega t + 45^\circ) \text{ mV}$

For
$$\omega = 0.2\omega_c$$
, $v_o(t) = 98.050 \cos(\omega t + 78.69^\circ) \text{ mV}$
For $\omega = 5\omega_c$, $v_o(t) = 490.30 \cos(\omega t + 11.31^\circ) \text{ mV}$

Correct