```
In [49]:
            import pandas as pd
            import numpy as np
            from sklearn import preprocessing
            import matplotlib.pyplot as plt
            plt.rc("font", size=14)
            from sklearn.linear_model import LogisticRegression
            from sklearn.model selection import train test split
            import seaborn as sns
            sns.set(style="white")
            sns.set(style="whitegrid", color_codes=True)
In [50]:
            data = pd.read_csv('banking.csv', header=0)
            data = data.dropna()
            print(data.shape)
            print(list(data.columns))
           (41188, 21)
           ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'mon
           th', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', r_rate', 'cons_price_idx', 'cons_conf_idx', 'euribor3m', 'nr_employed', 'y']
In [51]:
           data.head()
Out[51]:
                            job marital
              age
                                                education
                                                            default housing loan
                                                                                    contact month day of w
           0
               44
                      blue-collar married
                                                  basic.4y unknown
                                                                                     cellular
                                                                         yes
                                                                                                aug
           1
               53
                      technician married
                                                 unknown
                                                                                     cellular
                                                                                                nov
                                                                no
                                                                          no
                                                                                no
           2
               28
                   management
                                   single
                                          university.degree
                                                                no
                                                                         ves
                                                                                no
                                                                                     cellular
                                                                                                jun
           3
               39
                        services married
                                               high.school
                                                                                     cellular
                                                                          no
                                                                                nο
                                                                                                apr
                                                                no
               55
                         retired married
                                                  basic.4y
                                                                no
                                                                         yes
                                                                                no
                                                                                     cellular
                                                                                                aug
          5 rows × 21 columns
```

Predict variable (desired target):

y - has the client subscribed a term deposit? (binary: '1','0')

The education column of the dataset has many categories and we need to reduce the categories for a better modelling. The education column has the following categories:

After grouping, this is the columns.

Data exploration


```
count_no_sub = len(data[data['y']==0])
count_sub = len(data[data['y']==1])
pct_of_no_sub = count_no_sub/(count_no_sub+count_sub)
print("percentage of no subscription is", pct_of_no_sub*100)
pct_of_sub = count_sub/(count_no_sub+count_sub)
print("percentage of subscription", pct_of_sub*100)
```

percentage of no subscription is 88.73458288821988 percentage of subscription 11.265417111780131

Our classes are imbalanced, and the ratio of no-subscription to subscription instances is 89:11. Before we go ahead to balance the classes, Let's do some more exploration.

```
In [13]:
           data.groupby('y').mean()
Out[13]:
                          duration campaign
                   age
                                                   pdays previous emp_var_rate cons_price_idx cons_conf_i
           у
             39.911185 220.844807
                                     2.633085 984.113878
                                                         0.132374
                                                                         0.248875
                                                                                       93.603757
                                                                                                    -40.5930
             40.913147 553.191164
                                     2.051724 792.035560
                                                          0.492672
                                                                        -1.233448
                                                                                       93.354386
                                                                                                    -39.7897
```

Observations:

The average age of customers who bought the term deposit is higher than that of the customers who didn't. The pdays (days since the customer was last contacted) is understandably lower for the customers who bought it. The lower the pdays, the better the memory of the last call and hence the better chances of a sale. Surprisingly, campaigns (number of contacts or calls made during the current campaign) are lower for customers who bought the term deposit.

We can calculate categorical means for other categorical variables such as education and marital status to get a more detailed sense of our data.

In [10]:	data.gro	upby(' <mark>job</mark>	').mean()							
Out[10]:		a	ge durati	on campai	gn pd	ays previo	ous emp_var_rat	e cons_price_io	dx	
	jo	ob								
	admi	n. 38.1872	96 254.3121	28 2.6234	89 954.3192	229 0.1890	0.01556	3 93.5340	54	
	blue-coll	ar 39.5557	60 264.5423	60 2.5584	61 985.1603	363 0.1225	542 0.24899	5 93.6566	56	
	entreprene	ur 41.7232	14 263.2678	357 2.5357	14 981.267	170 0.1387	736 0.15872	3 93.6053	93.605372	
	housema	id 45.5000	00 250.4547	'17 2.6396	23 960.5792	245 0.1377	736 0.43339	6 93.6765	76	
	manageme	nt 42.3628	59 257.0581	40 2.4760	60 962.6470	059 0.1850	021 -0.01268	8 93.5227	93.522755	
	retire	ed 62.0273	26 273.7122	2.4767	44 897.9360	047 0.3273	326 -0.69831	4 93.43078	93.430786	
	sel employe	39 9493	31 264.1421	53 2.6608	02 976.6213	393 0.1435	561 0.09415	9 93.55998	182	
	servic	es 37.9264	30 258.3980	2.5878	05 979.9740	049 0.1549	951 0.17535	9 93.6346	93.634659	
	stude	nt 25.8948	57 283.6834	29 2.1040	00 840.217	143 0.5245	571 -1.40800	0 93.3316	93.331613	
	technicia	an 38.5076	38 250.2322	2.5773	39 964.408	127 0.1537	789 0.27456	6 93.561471		
	unemploye	ed 39.7337	28 249.4516	577 2.5641	03 935.316	568 0.1992	211 -0.11173	6 93.56378	'81	
	unknow	/n 45.5636	36 239.6757	'58 2.6484	85 938.727	273 0.1545	545 0.35787	9 93.7189	93.718942	
	4								>	
In [14]:	data.gro	upby('mar	ital').mea	n()						
out[14]:		age	duration	campaign	pdays	previous	emp_var_rate	ons_price_idx	cc	
	marital									
	divorced	44.899393	253.790330	2.61340	968.639853	0.168690	0.163985	93.606563		
	married	42.307165	257.438623	2.57281	967.247673	0.155608	0.183625	93.597367		
	single	33.158714	261.524378	2.53380	949.909578	0.211359	-0.167989	93.517300		
	unknown	40.275000	312.725000	3.18750	937.100000	0.275000	-0.221250	93.471250		
	4								•	
In [15]:	<pre>data.groupby('education').mean()</pre>									
Out[15]:			age	duration c	ampaign	pdays	previous emp_v	/ar_rate cons_p	pric	
	0.0	lucation								

	age	duration	campaign	pdays	previous	emp_var_rate	cons_pric
education							
Basic	42.163910	263.043874	2.559498	974.877967	0.141053	0.191329	93.63
high.school	37.998213	260.886810	2.568576	964.358382	0.185917	0.032937	93.58
illiterate	48.500000	276.777778	2.277778	943.833333	0.111111	-0.133333	93.31
professional.course	40.080107	252.533855	2.586115	960.765974	0.163075	0.173012	93.56
university.degree	38.879191	253.223373	2.563527	951.807692	0.192390	-0.028090	93.49
unknown	43.481225	262.390526	2.596187	942.830734	0.226459	0.059099	93.65
4							

Visualizations

The frequency of purchase of the deposit depends a great deal on the job title. Thus, the job title can be a good predictor of the outcome variable.

```
table=pd.crosstab(data.marital,data.y)
table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)
plt.title('Stacked Bar Chart of Marital Status vs Purchase')
plt.xlabel('Marital Status')
plt.ylabel('Proportion of Customers')
```

Out[17]: Text(0,0.5,'Proportion of Customers')

Hard to see, but the marital status does not seem a strong predictor for the outcome variable.

```
table=pd.crosstab(data.education,data.y)
table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)
plt.title('Stacked Bar Chart of Education vs Purchase')
plt.xlabel('Education')
plt.ylabel('Proportion of Customers')
```

Out[18]: Text(0,0.5,'Proportion of Customers')

Education seems a good predictor of the outcome variable.

```
pd.crosstab(data.day_of_week,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Day of Week')
plt.xlabel('Day of Week')
plt.ylabel('Frequency of Purchase')
```

Out[19]: Text(0,0.5, 'Frequency of Purchase')

Day of week may not be a good predictor of the outcome.

```
pd.crosstab(data.month,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Month')
plt.xlabel('Month')
plt.ylabel('Frequency of Purchase')
```

Out[20]: Text(0,0.5,'Frequency of Purchase')

Month might be a good predictor of the outcome variable.

```
In [21]:
    data.age.hist()
    plt.title('Histogram of Age')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
```

Out[21]: Text(0,0.5,'Frequency')

Most customers of the bank in this dataset are in the age range of 30-40.

```
pd.crosstab(data.poutcome,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Poutcome')
plt.xlabel('Poutcome')
plt.ylabel('Frequency of Purchase')
```

Out[22]: Text(0,0.5, 'Frequency of Purchase')

Poutcome seems to be a good predictor of the outcome variable.

Create dummy variables

```
In [68]:
    cat_vars=['job','marital','education','default','housing','loan','contact','month','
    for var in cat_vars:
        cat_list='var'+'_'+var
        cat_list = pd.get_dummies(data[var], prefix=var)
        data1=data.join(cat_list)
        data=data1

cat_vars=['job','marital','education','default','housing','loan','contact','month','data_vars=data.columns.values.tolist()
    to_keep=[i for i in data_vars if i not in cat_vars]
```

```
data_final=data[to_keep]
data_final.columns.values
```

Over-sampling using SMOTE

```
In [78]:
          X = data_final.loc[:, data_final.columns != 'y']
          y = data final.loc[:, data final.columns == 'y']
In [80]:
          from imblearn.over_sampling import SMOTE
          os = SMOTE(random state=0)
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_stat
          columns = X_train.columns
          os_data_X,os_data_y=os.fit_sample(X_train, y_train)
          os_data_X = pd.DataFrame(data=os_data_X,columns=columns )
          os_data_y= pd.DataFrame(data=os_data_y,columns=['y'])
          # we can Check the numbers of our data
          print("length of oversampled data is ",len(os_data_X))
          print("Number of no subscription in oversampled data",len(os_data_y[os_data_y['y']==
          print("Number of subscription",len(os data y[os data y['y']==1]))
          print("Proportion of no subscription data in oversampled data is ",len(os data y[os
          print("Proportion of subscription data in oversampled data is ",len(os_data_y[os_dat
```

C:\Users\SusanLi\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\utils\v alidation.py:578: DataConversionWarning: A column-vector y was passed when a 1d arra y was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
y = column_or_1d(y, warn=True)
length of oversampled data is 51134
Number of no subscription in oversampled data 25567
Number of subscription 25567
Proportion of no subscription data in oversampled data is 0.5
Proportion of subscription data in oversampled data is 0.5
```

Recursive feature elimination

```
data_final_vars=data_final.columns.values.tolist()
y=['y']
X=[i for i in data_final_vars if i not in y]
```

```
In [92]: from sklearn import datasets
          from sklearn.feature_selection import RFE
          from sklearn.linear model import LogisticRegression
          logreg = LogisticRegression()
          rfe = RFE(logreg, 20)
          rfe = rfe.fit(os_data_X, os_data_y.values.ravel())
          print(rfe.support_)
          print(rfe.ranking )
```

```
[False False False False False False True False False True
False True False False False False False False False False
False True False False False True False False True True
False False False False False False True True True True True
 True True True True True False False False False False
 True False True]
[ \ 39 \ \ 38 \ \ 26 \ \ 42 \quad \  9 \ \ 12 \ \ 24 \ \ 36 \quad \  1 \ \ 35 \quad \  8 \quad \  1 \quad \  7 \quad \  1 \quad \  5 \ \ 32 \quad \  2 \quad \  4 \ \ 31 \quad \  3 \quad \  6 \ \ 10 \ \ 23 \ \ 21
 17 1 14 18 15 22 1 20 16 19 1 1 41 28 44 37 33 43 34 1 1 1 1 1
 1 1 1 1 1 29 30 11 27 40 25 1 13 1]
```

The Recursive Feature Elimination (RFE) has helped us select the following features: "previous", "euribor3m", "job_blue-collar", "job_retired", "job_services", "job_student", "default_no", "month_aug", "month_dec", "month_jul", "month_nov", "month_oct", "month_sep", "day_of_week_fri", "day_of_week_wed", "poutcome_failure", "poutcome_nonexistent", "poutcome_success".

```
In [99]:
          cols=['euribor3m', 'job_blue-collar', 'job_housemaid', 'marital_unknown', 'education
                'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec'
                'month_may', 'month_nov', 'month_oct', "poutcome_failure", "poutcome_success"]
          X=os data X[cols]
          y=os_data_y['y']
```

Implementing the model

```
In [100...
```

```
import statsmodels.api as sm
logit_model=sm.Logit(y,X)
result=logit_model.fit()
print(result.summary2())
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.545891

Iterations: 35

Results: Logit ______
 Model:
 Logit
 No. Iterations:
 35.0000

 Dependent Variable:
 y
 Pseudo R-squared:
 0.212

 Date:
 2018-09-10 12:16
 AIC:
 55867.17

 No. Observations:
 51134
 BIC:
 56044.02

 Df Model:
 19
 Log-Likelihood:
 -27914.

 Df Residuals:
 51114
 LL-Null:
 -35443.

 Converged:
 0.0000
 Scale:
 1.0000
 55867.1778 56044.0219 ______ Coef. Std.Err. z P > |z| [0.025 0.975] ______

 euribor3m
 -0.4634
 0.0091 -50.9471 0.0000
 -0.4813
 -0.4456

 job_blue-collar
 -0.1736
 0.0283 -6.1230 0.0000
 -0.2291 -0.1180

 job_housemaid
 -0.3260
 0.0778 -4.1912 0.0000
 -0.4784 -0.1735

 marital_unknown
 0.7454
 0.2253 3.3082 0.0009
 0.3038 1.1870

 education_illiterate
 1.3156 0.4373 3.0084 0.0026
 0.4585 2.1727

 default_no 16.1521 5414.0744 0.0030 0.9976 -10595.2387 10627.5429 default_unknown 15.8945 5414.0744 0.0029 0.9977 -10595.4963 10627.2853 contact_cellular -13.9393 5414.0744 -0.0026 0.9979 -10625.3302 10597.4515

```
contact_telephone -14.0065 5414.0744 -0.0026 0.9979 -10625.3973 10597.3843
month_apr
                             -0.8356 0.0913 -9.1490 0.0000 -1.0145 -0.6566
month_aug
                             -0.6882 0.0929 -7.4053 0.0000
                                                                                 -0.8703 -0.5061
                            month_dec

      -0.4056
      0.0935
      -4.3391
      0.0000
      -0.5889
      -0.2224

      -0.4817
      0.0917
      -5.2550
      0.0000
      -0.6614
      -0.3021

      0.6638
      0.1229
      5.3989
      0.0000
      0.4228
      0.9047

      -1.4752
      0.0874
      -16.8815
      0.0000
      -1.6465
      -1.3039

      -0.8298
      0.0942
      -8.8085
      0.0000
      -1.0144
      -0.6451

month_jul
month_jun
month_mar
month_may
month_nov
                            0.5065 0.1175 4.3111 0.0000
month_oct
                                                                                0.2762
                                                                                                0.7367
poutcome_failure -0.5000 0.0363 -13.7706 0.0000 poutcome_success 1.5788 0.0618 25.5313 0.0000
                                                                                -0.5711 -0.4288
                                                                                                 1.7000
                                                                                 1.4576
_____
```

C:\Users\SusanLi\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\bas
e\model.py:496: ConvergenceWarning: Maximum Likelihood optimization failed to conver
ge. Check mle retvals

The p-values for four variables are very high, therefore, we will remove them.

Optimization terminated successfully.

Current function value: 0.555865

Iterations 7

Results: Logit

```
        Model:
        Logit
        No. Iterations:
        7.0000

        Dependent Variable:
        y
        Pseudo R-squared:
        0.198

        Date:
        2018-09-10 12:38 AIC:
        56879.2425

        No. Observations:
        51134 BIC:
        57020.7178

        Df Model:
        15 Log-Likelihood:
        -28424.

        Df Residuals:
        51118 LL-Null:
        -35443.

        Converged:
        1.0000 Scale:
        1.0000

        Coef. Std.Err.
        z
        P>|z|
        [0.025 0.975]

        Euribor3m
        -0.4488 0.0074 -60.6837 0.0000 -0.4633 -0.4343

        job_blue-collar
        -0.2060 0.0278 -7.4032 0.0000 -0.2605 -0.1515

        job_housemaid
        -0.2784 0.0762 -3.6519 0.0003 -0.4278 -0.1290

        marital_unknown
        0.7619 0.2244 3.3956 0.0007 0.3221 1.2017

        education_illiterate
        1.3080 0.4346 3.0096 0.0026 0.4562 2.1598

        month_apr
        1.2863 0.0380 33.8180 0.0000 1.5218 1.3609

        month_dec
        1.8084 0.1441 12.5483 0.0000 1.5259 2.0908

        month_jul
        1.6747 0.0424 39.5076 0.0000 1.5259 2.0908

        month_mar
        2.8215 0.0908 31.0891 0.0000 1.4773 1.6374

        month_mar
        2.8215 0.0908 31.0891 0.0000 2.66437 2.9994
```

Logistic Regression Model Fitting

[&]quot;Check mle_retvals", ConvergenceWarning)

Accuracy of logistic regression classifier on test set: 0.74

Confusion Matrix

```
In [122...
          from sklearn.metrics import confusion_matrix
          confusion matrix = confusion matrix(y test, y pred)
          print(confusion matrix)
         [[6124 1542]
          [2505 5170]]
In [123...
          from sklearn.metrics import classification report
          print(classification_report(y_test, y_pred))
                       precision
                                    recall f1-score
                                                        support
                                      0.80
                    0
                            0.71
                                                 0.75
                                                           7666
                            0.77
                                      0.67
                                                 0.72
                                                           7675
                                                 0.74
         avg / total
                            0.74
                                      0.74
                                                          15341
```

Interpretation:

Of the entire test set, 74% of the promoted term deposit were the term deposit that the customers liked. Of the entire test set, 74% of the customer's preferred term deposit were promoted.

```
In [124...
          from sklearn.metrics import roc_auc_score
          from sklearn.metrics import roc_curve
          logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test))
          fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1])
          plt.figure()
          plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit roc auc)
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic')
          plt.legend(loc="lower right")
          plt.savefig('Log ROC')
          plt.show()
```

