PH 301 ENGINEERING OPTICS

Lecture_Interferometers_16

What happens as light moves through scope?

What happens as light moves through the scope?

Microscope light is white light, i.e. it's made up of lots of different wavelengths; Each wavelength of light corresponds to a different color

What happens as light moves through scope?

1) Light passes through the lower polarizer

Only the component of light vibrating in E-W direction can pass through lower polarizer – light intensity decreases

2) Insert the upper polarizer

Now what happens? What reaches your eye?

Why would anyone design a microscope that prevents light from reaching your eye?

3) Now insert a thin section of a rock

How does this work?

Interference & Polarization

Imaging a normal sample

Imaging a birefringent sample

- ➢ Bifrefringent sample splits light into ← & o- rays, which see different refractive indices
- Phase retardation of one ray with respect to other gives rise to elliptically polarized light, which is transmitted by the polarizer

Imaging a birefringent sample

Add a compensator (wave plate) for better contrast

Polarization Interferometer

Polarizing Microscope

Orthoscope: An instrument used to examine the eye that eliminates corneal refraction by means of a layer of water.

Conoscope:

A polarizing microscope for giving interference fringes & for determining principal axis of a crystal.

Dual-Polarizing Interferometer

Dual-polarization interferometry (DPI) probes molecular layers adsorbed to the surface of a waveguide using evanescent wave of a laser beam.

It is used to measure conformational change in proteins, or other biomolecules, as they function.

DPI focuses laser light into two waveguides. One of these functions as "sensing" waveguide having an exposed surface while second one functions to maintain a reference beam.

DPI technique rotates polarization of laser, to alternately excite two polarization modes of waveguides. Measurement of interferogram for both polarizations allows both r.i. & thickness of adsorbed layer to be calculated.

Polarization can be switched rapidly, allowing real-time measurements of chemical reactions taking place on a chip surface in a flow-through system.

It is quantitative & real-time (10 Hz) with a dimensional resolution of 0.01 nm.

- Good for
 - Seeing ordered structures in the cell:
 - Spindles
 - Other cytoskeletal structures
 - Membranes
 - Collagen
- No staining required!

PBS-TGI

Encryption using FRT & digital holography

BE: beam expander, BSs: beam splitters, SLM: spatial light modulator,

RPM: random phase mask, CCD: charge-coupled device, L: lens

Fourier domain encoding

Original image

Encrypted hologram

Encrypted image

Key hologram

Retrieval with correct keys

Fractional Fourier domain encoding

Original image

Key hologram

Encrypted hologram

Retrieval with correct keys

Encrypted image

Retrieval with wrong fractional order

Fully phase encryption

Fourier domain encoding

Fresnel domain encoding

Flexible optical encryption with multiple users & multiple security levels

Contd...

Multiplexed encrypted image - User 1 Decrypted image - User 2

Decrypted image - User n

Decryption with one of the wrong keys – Any User

Experimental Set-up

Snapshots

Optical Recording & Reconstruction

Optical Recording & Reconstruction

Reference Hologram

Reconstructed Reference

Target Hologram

Reconstructed Target

Matching Holograms

Auto-correlation

Cross-correlation

Normalized CC obtained when reference hologram is matched with target hologram using conventional JFRTC