Advanced Database Management Systems

Lecture 19 Security - Chapter 23

Database Security Issues

- Legal and ethical issues
 - Right of access
 - Privacy laws
- Policy issues
 - Government, institutional or corporate policies
- System-related issues
 - Where should security be handled: HW, OS or DBMS
- Multiple security levels
 - Categorization of data and users
 - Example: top secret, secret, confidential, unclassified

Threats to Databases

Loss of integrity

 Data should not be corrupted, through intentional or accidental acts

Loss of availability

 Data should remain accessible to those who have legitimate access rights

Loss of confidentiality

 Data should not be accessible to those who do not have legitimate access rights

Database Countermeasures

Access control

User accounts and passwords identify database users

Inference control

 Statistical or summary data may allow users to infer or deduce information. Such inference must not allow inference of data that user is not authorized to access

Flow control

 Covert channels, which allow data to flow in manners violating security must be blocked

Encryption

- Encryption protects sensitive data during storage and transmission
- Passwords, SSNs, credit card information ...

Database Security Mechanisms

Discretionary security mechanisms

- Privilege grants allow specific users to perform specific operations on specific data
- Initial grants start with DBA
- Grants may be passed on between users

Mandatory security mechanisms

- Enforce multi-level security
- Data and users are classified into security classes
- Typically, user can only see data which has a lower (or same) classification as themselves
- Role-based security is similar

Security and the DBA

- The DBA is the central authority for managing a database system ... thus responsible for overall security
- Security responsibilities
 - granting privileges to users who need to use the system
 - classifying users and data in accordance with the policy of the organization
- System / root / superuser account allows:
 - Account creation access control
 - Privilege granting discretionary
 - Privilege revocation discretionary
 - Security level assignment mandatory

Access Protection and Audits

- Login Session: user logs in with account/password
- DBMS tracks all operations applied by a user throughout each login session.
 - Can be tracked in system log, which records all operations for recovery from a transaction failure or system crash.
 - A log used primarily for security purposes is an audit trail
- A database audit is performed when tampering is suspected
 - Logs are reviewed to try to identify what happened and who did it

Discretionary Access Control

Privileges

 The typical method of enforcing discretionary access control is based on the granting and revoking privileges

Account level privileges:

- DBA specifies the particular privileges that each account holds independently of the relations in the database
- Relation level (table level) privileges:
 - DBA controls privilege to access each individual relation or view in the database.

Account Level Privileges

- CREATE SCHEMA or CREATE TABLE privilege
- CREATE VIEW privilege
- ALTER privilege
- DROP privilege
- MODIFY privilege execute insert, delete, or update
- SELECT privilege
- Privilege names are based on corresponding SQL commands
- Account level privileges are not specified by SQL standard, left to DBMS to define

Relation Level Privileges

- These privileges are specified by SQL standard
- SELECT privilege on R
 - privilege to use the SELECT statement to retrieve tuples from R
- UPDATE, DELETE and INSERT privileges on R:
 - Capability to modify tuples of R
 - Both the INSERT and UPDATE privileges can specify that only certain attributes can be modified
- REFERENCES privilege on R:
 - Capability to reference relation R when specifying integrity constraints
 - Can also be restricted to specific attributes of R

Access Matrix Model

- The Access Matrix Model is a way of keeping track of discretionary privileges
- Rows represents subjects
 - (users, accounts, programs)
- Columns represent objects
 - (relations, records, columns, views, operations)
- Each position M(i,j) represents the types of privileges (read, write, update) that subject i holds on object j

Privilege Control

- Each relation R in a database is assigned an owner account
 - typically, the account used when the relation initially created
- Owner of a relation is given <u>all</u> privileges on that relation.
 - In SQL2, the DBA can assign an owner to a whole schema by creating the schema, using the CREATE SCHEMA command
- Account owner can pass privileges on to other users by granting privileges to their accounts

Specifying Privileges Using Views

- Views are often used for discretionary authorization
 - Example: owner A of a relation R wants to give account B read access to some fields of R A can create view V of R that includes only those attributes and then grant SELECT on V to B
 - Example: owner A of a relation R wants to give account B read access to some rows of R
 A can create view V' by means of a query that selects only those tuples from R that A wants to allow B to access and then grant SELECT on V' to B
 - Creating a view requires SELECT privilege on all relations involved in the view definition.

Revoking Privileges

- Revoking privileges takes them away
 - Sometime it is desirable to grant a privilege to a user temporarily, then revoke it
 - Example: The owner of a relation may want to grant the SELECT privilege to a user for a specific task and then revoke that privilege once the task is completed.

Propagation of Privileges

- When A grants a privilege to B, that privilege can be given with or without the GRANT OPTION.
- If the GRANT OPTION is given, B can also grant that privilege to other accounts.
- If B then grants the privilege to C, also with GRANT OPTION, privileges may propagate to other accounts without the knowledge of the original owner of the relation
- If A later revokes the privilege granted to B, all the privileges that propagated through B, based should be automatically revoked by the system.

- DBA creates four accounts: A1, A2, A3, A4
- A1 should be able to create base relations.
 DBA must issue the following GRANT command:
 GRANT CREATETAB TO A1;
- Same effect can be accomplished by:
 CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

- A1 can now create tables under the schema called EXAMPLE
- A1 creates the two base relations:
 EMPLOYEE and DEPARTMENT
 - A1 is then owner of these two relations and has all relation privileges on each of them
- A1 grants A2 the privilege to insert and delete tuples in both of these relations, but A2 cannot propagate these privileges to others:

```
GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;
```

 A1 allows A3 to retrieve information from either table and also allows A3 to propagate the privilege to other accounts:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

 A3 can grant the SELECT privilege on the EMPLOYEE relation to A4:

GRANT SELECT ON EMPLOYEE TO A4;

A4 can't propagate the SELECT privilege since GRANT OPTION was not given to A4

 A1 decides to revoke the SELECT privilege on the EMPLOYEE relation from A3:

REVOKE SELECT ON EMPLOYEE FROM A3;

 DBMS must now automatically revoke the SELECT privilege on EMPLOYEE from A4

- A1 wants to give back to A3 a limited capability to SELECT from the EMPLOYEE relation with ability to propagate the privilege
 - limited to retrieve only the NAME, BDATE, and ADDRESS attributes and only for the tuples with DNO=5

```
CREATE VIEW A3EMPLOYEE AS
SELECT NAME, BDATE, ADDRESS
FROM EMPLOYEE
WHERE DNO = 5;
```

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

 A1 wants to allow A4 to update only the SALARY attribute of EMPLOYEE:

GRANT UPDATE ON EMPLOYEE (SALARY) TO A4;

- UPDATE or INSERT privilege can specify particular attributes that may be updated or inserted in a relation.
- Other privileges (SELECT, DELETE) are not attribute specific.

tuna owns:

Cities(<u>name</u>, <u>state</u>, population)
States(<u>name</u>, <u>abbreviation</u>, capital, area, population)

tuna: GRANT SELECT, UPDATE ON Cities

TO shark WITH GRANT OPTION;

tuna: GRANT SELECT ON Cities TO minnow;

tuna: GRANT SELECT ON States

TO shark, minnow WITH GRANT OPTION;

shark: GRANT SELECT ON Cities

TO starfish WITH GRANT OPTION;

shark: GRANT UPDATE (area, population) ON Cities

TO starfish;

shark: GRANT UPDATE ON States TO starfish;

(not allowed)

starfish: GRANT SELECT ON Cities TO squid;

Grant Graph

Limits on Privilege Propagation

- Techniques to limit the propagation of privileges have been developed
 - not implemented in most DBMSs and not a part of SQL
 - Limiting horizontal propagation to an integer number i means that an account B given the GRANT OPTION can grant the privilege to at most i other accounts.
 - Limiting vertical propagation is more complicated it limits the depth of the granting of privileges

Mandatory Access Control

Mandatory Access Control

- Discretionary access control techniques (grant/revoke privileges) has been the main security mechanism for relational database systems
 - This is an all-or-nothing method:
 - a user either has or does not have a certain privilege
- Many applications require an additional security policy that classifies data and users based on security classes.
 - This approach of mandatory access control, would typically be combined with the discretionary access control mechanisms

Multilevel Security

- Typical security classes:
 top secret (TS), secret (S),
 confidential (C), unclassified (U)
 TS ≥ S ≥ C ≥ U
- Bell-LaPadula model classifies
 each subject (user, account, program) and
 object (relation, tuple, column, view, operation)
 into one of the security classifications, T, S, C, or U:
 - class(S) → clearance (classification) of a subject S
 class(O) → classification of an object O

Multilevel Security

- Two restrictions are enforced on data access based on the subject/object classifications:
 - Simple security property: A subject S is not allowed read access to an object O unless class(S) ≥ class(O)
 - Keeps subjects from accessing data above their clearance
 - Star property: A subject S is not allowed to write an object O unless class(S) ≤ class(O)
 - Keeps subjects from moving data from a high clearance to a lower clearance

Comparing DAC and MAC

Discretionary Access Control (DAC) policies:

- + high degree of flexibility
- + suitable for a large variety of application domains
- vulnerable to malicious attacks, such as Trojan horses embedded in application programs.

Mandatory Access Control (MAC) policies:

- + ensure a high degree of protection
- + prevent illegal flow of information
- too rigid applicable in limited environments

In many practical situations, DAC is preferred

better trade-off between security and applicability

Role Based Access Control

Role-Based Access Control

- Role-based access control (RBAC)
 - emerged rapidly in the 1990s
 - suitable for managing and enforcing security in large-scale enterprise-wide systems
- Permissions are associated with roles,
 and users are assigned to appropriate roles
 - avoid overhead of managing each individual's privileges
- Roles are created using CREATE ROLE and DESTROY ROLE commands
 - GRANT and REVOKE commands can then be used to assign and revoke privileges from roles

Role-Based Access Control

- RBAC ensures that only authorized users are given access to certain data or resources
- Many DBMSs support roles
- A role hierarchy is a natural way of organizing roles to reflect the organization's lines of authority and responsibility
- RBAC systems may allow temporal constraints on roles
 - time and duration of role activations
 - timed triggering of a role by an activation of another role

EXAMPLE

CREATE ROLE Bigfish;

GRANT SELECT ANY TABLE TO Bigfish;

GRANT Bigfish
TO Tuna, Flounder;

Tuna and Flounder now have all privileges available to the BigFish role

E-Commerce Access Control

E-Commerce Access Control

- E-Commerce environments (and similar web environments) require elaborate policies
 - beyond traditional DBMS access control
 - e-commerce environment resources include not only data,
 but also knowledge and experience.
 - Access control mechanism should be flexible enough to support a wide spectrum of heterogeneous objects

E-Commerce Access Control

- Role-based models have promise for addressing the key security requirements of Web-based applications
- In contrast, DAC and MAC models lack capabilities needed to support security requirements of emerging enterprise and Web-based applications.

E-Commerce Access Control

- Heterogeneity of subjects requires access control policies based on user characteristics and qualifications.
 - A possible solution is the notion of credentials
 - A credential is a set of properties concerning a user that are relevant for security purposes
 - For example, age, position within an organization
 - XML may play a key role in access control for e-commerce applications

- Statistical databases are used mainly to produce statistics on various populations
- Database may contain confidential data on individuals, which should be protected from unauthorized access
- General users are only permitted to retrieve statistical information on the populations, such as averages, sums, counts, maximums, minimums, and standard deviations
- Statistical database security techniques must prohibit the retrieval of individual data

- Allowed:
 - retrieve the number of individuals in a population
 - retrieve the average income of the population
- Not Allowed:
 - retrieve individual data, such as the income of a specific person
- This can be achieved by prohibiting queries that retrieve attribute values and allowing only queries using statistical aggregate functions

- In some cases it is possible to infer the values of individual tuples from a sequence statistical queries
 - particularly true when the conditions result in a population consisting of a small number of objects

Example:

- Following are allowable queries: SELECT COUNT(*) FROM PERSON WHERE <condition>; SELECT AVG(INCOME) FROM PERSON WHERE <condition>;
- Suppose condition on both queries is Last_degree='Ph.D.' AND Sex='F' AND City='Bellaire' AND State='TX'
- If first query returns 1, then we have an individual's income.
- If we can match the condition to that one actual person,
 we have gained prohibited information about that person

Flow Control

Flow Control

- Flow control regulates the distribution or flow of information among accessible objects
- A flow between object X and object Y occurs when a program reads values from X and writes values into Y
 - Flow controls check that information contained in some objects does not flow explicitly or implicitly into less protected objects
- A flow policy specifies the channels along which information is allowed to move
 - simplest flow policy specifies just two classes of information: confidential (C) and nonconfidential (N)
 - all flows allowed except those from class C to class N.

Covert Channels

- A covert channel allows a transfer of information that violates the security or the policy
 - allows information to pass from a higher classification level to a lower classification level through improper means
- Two broad categories:
 - Storage channels information is conveyed by accessing system information or information otherwise inaccessible to the user
 - Timing channel allow the information to be conveyed by the timing of events or processes
- One way to avoid covert channels:
 - programmers to not actually gain access to sensitive data that a program is supposed to process after the program has been put into operation

Encryption

Encryption

- Encryption is a means of maintaining secure data in an insecure environment.
- Encryption consists of applying an encryption algorithm to data using some pre-specified encryption key.
- The resulting data has to be decrypted using a decryption key to recover the original data.