Inteligência Artificial

Aprendizado supervisionado 2

Avaliação de algoritmos

Avaliação de Algoritmos

- Como já mencionado, o conjunto de dados é usualmente dividido em:
 - Conjunto de treinamento
 - Erro aparente
 - Conjunto de teste
 - Erro verdadeiro (se o conjunto de teste é grande o suficiente)
- * Utilizar toda a base de dados para o treinamento do classificador que será utilizado na prática

Avaliação de Algoritmos

- Como já mencionado, o conjunto de dados é usualmente dividido em:
 - Conjunto de treinamento
 - Erro aparente
 - Conjunto de teste
 - Erro verdadeiro (se o conjunto de teste é grande o suficiente)

Como deve ser

normalização?

realizada a

* Utilizar toda a base de dados para o treinamento do classificador que será utilizado na prática

Holdout

- O conjunto de dados é dividido aleatoriamente em:
 - p% para treinamento
 - □ (1-p)% para teste
- Para tornar os resultados menos dependentes da partição feita, faz-se diversas partições e se dá uma média de desempenho em holdout

Holdout

Validação cruzada

- Validação cruzada k-fold crossvalidation
 - Conjunto de dados é aleatoriamente dividido em k partições exclusivas de tamanho aproximadamente igual
 - Os dados de k-1 partições são usados para treinamento e a partição restante é usada para teste
 - Este processo é repetido k vezes
 - Considerando cada partição para teste
 - Erro é dado pela média nas partições

Validação cruzada

Validação cruzada

Valor de k mais usado: 10

- Variação: estratificada
 - Manter a distribuição de classes em cada partição
 - Exemplo: se conjunto de dados original tem 20% na classe C₁ e 80% na classe C₂, cada partição também deve manter essa proporção

Leave-one-out

- Caso especial de CV em que k = N
 - É computacionalmente caro
 - Usado geralmente para conjuntos de dados pequenos
 - Erro final é a soma dos erros cometidos para cada dado de teste individual

Matriz de confusão

- Oferece uma medida da efetividade do modelo de classificação h
 - Mostra o número de classificações reais contra as classificações preditas, em cada classe
 - Os resultados são sumarizados em uma matriz de duas dimensões
 - Classes verdadeiras x Classes preditas

Matriz de confusão

Class Label	predicted C_1	predicted C_2		predicted C_k
true C_1	$M(C_1,C_1)$	$M(C_1, C_2)$		$M(C_1, C_k)$
true C_2	$M(C_2,C_1)$	$M(C_2,C_2)$		$M(C_2, C_k)$
:	:	:	٠	:
true C_k	$M(C_k, C_1)$	$M(C_k, C_2)$		$M(C_k, C_k)$

$$M(C_i,C_j) = \sum_{\{\forall (x,y)\in T: y=C_i\}} |h(x)=C_j|$$

Matriz de confusão

- Número de predições corretas: diagonal da matriz
 - Outros elementos correspondem números de erros

Média e desvio-padrão

- Seja um dos métodos de amostragem
 - \Box *k*–fold CV, por ser o mais utilizado
- Um indutor A gerará k hipóteses h₁,

$$h_2, ..., h_r$$

- E cada hipótese terá uma taxa de erro, medida em no i-ésimo fold
- A média e desvio-padrão do desempenho de A são então dados por:

$$med(A) = \frac{1}{r} \sum_{i=1}^{r} er(h_i) \qquad dp(A) = \sqrt{\left[\frac{1}{r-1} \sum_{i=1}^{r} \left(er(h_i) - med(A)\right)^2\right]}$$

Média e desvio-padrão

Exemplo:

- Em 10-fold CV, A obteve os erros:
 - (5,5; 11,40; 12,70; 5,20; 5,90; 11,30; 10,90; 11,20; 4,90; 11,00)
 - Temos então:

$$med(A) = \frac{90}{10} = 9$$
 $dp(A) = \sqrt{\frac{1}{9}90,30} = 3,17$

Desvio-padrão

- O desvio-padrão pode ser visto como uma imagem da robustez do algoritmo
 - Se os erros dos preditores produzidos pelo algoritmo A <u>variam muito</u>, o algoritmo <u>não é robusto</u> a mudanças no conjunto de treinamento
 - Pelo desvio-padrão se consegue também comparar inicialmente dois algoritmos com mesma média
 - O de menor desvio-padrão é mais robusto

Referências

Slides de:

- Profa Dra Ana Carolina Lorena
- Prof Dr André C. P. L. F. de Carvalho
- Prof Dr Ricardo Campello
- Prof Dr Marcilio Carlos Pereira de Souto
- Livro: A. P. Braga, A. C. P. L. F. Carvalho, T. B. Ludermir, Redes
 Neurais Artificiais: teoria e aplicações, 2007, Ed LTC
- Cap 7 livro Inteligência Artificial: uma Abordagem de Aprendizado de Máquina

Árvores de Decisão

Árvores de Decisão

- Árvore de Decisão: usa estratégia dividir para conquistar para resolver problema de decisão
 - Problema complexo é dividido em problemas mais simples, aos quais a mesma estratégia é usada
 - Soluções dos subproblemas são então combinadas
 - Na forma de uma árvore

Em problemas de regressão são denominadas **Árvores de Regressão**, mas, dadas suas semelhanças, usaremos o termo Árvore de Decisão de maneira genérica

Árvores de Decisão

- Estrutura da árvore é determinada por processo de aprendizado
 - Ex. caracterizar genes

Árvore de Decisão

Formalmente: grafo direcionado acíclico em que cada nó é:

Nó de divisão:

- Possui dois ou mais sucessores
- Contém teste condicional baseado nos valores de atributos
- Padrão: testes univariados e um atributo
- Ex: Idade > 18, Profissão ∈ {professor, estudante}, $0,3 + 0,2 \mathbf{x}^1 - 0,5 \mathbf{x}^2 \le 0$

Nó folha:

- É rotulado com uma função que considera valores da variável alvo dos exemplos que chegam na folha
- Classificação: moda
- Regressão: média

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Não	Divorciado	4000	Não
Não	Solteiro	8500	Sim
Não	Casado	500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Divorciado	8000	Não

Indução de Árvore de Decisão

- Decisões importantes
 - Como dividir os objetos
 - Método para escolha do atributo de teste
 - Medida para avaliar qualidade de atributo escolhido
 - Quando parar de dividir os objetos

Como dividir os objetos?

- Valores de atributos particionam os objetos
 - Como divisão é feita depende:
 - Do tipo do atributo
 - Do número de divisões suportada pelo algoritmo

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
Não	Casado	7500	Não
Não	Solteiro	9000	Sim

Como dividir os atributos

- Qualitativos: usualmente
 - #ramos = #possíveis valores
- Quantitativos: usualmente
 - Comparação (A < valor)
 - Escolher posição (valor) que gera melhor partição
 - Ponto de referência

Que atributo escolher para divisão?

- Regras de divisão para classificação:
 - Guiada por medida de goodness of split

Que atributo escolher para divisão?

- Regras de divisão para classificação:
 - Guiada por medida de goodness of split
 - Indica quão bem um atributo discrimina as classes
 - Selecionar atributo que maximiza a medida
 - Funciona como heurística que olha um passo para frente

Exemplo

• Qual é o melhor atributo?

- Usada como medida de impureza para medir a aleatoriedade (dificuldade para predizer) do atributo alvo
 - Para caso binário:
 - A entropia é 0 se todos elementos pertencem à mesma classe
 - Pureza máxima
 - A entropia é 1 quanto a coleção contém número igual de exemplos positivos e negativos
 - A cada nó de decisão, o atributo que mais reduz a aleatoriedade do alvo é escolhido para divisão

Ganho de informação

- Ganho de informação mede redução na entropia nas partições obtidas de acordo com os valores do atributo
 - Diferença entre entropia do conjunto de exemplos e a soma ponderada da entropia das partições

AD é guiada a **reduzir entropia** (aleatoriedade/dificuldade de predizer) da variável alvo

 Equação de redução de impureza usando a entropia recebe o nome de ganho de informação

 Sejam p e q o número de objetos de duas classes diferentes em um conjunto de dados D

$$H(D) = -\frac{p}{p+q} \log \left(\frac{p}{p+q}\right) - \frac{q}{p+q} \log \left(\frac{q}{p+q}\right)$$

Probabilidade é computada a partir do conjunto de treinamento D

Entropia pode ser usada em problemas com mais que duas classes (k classes):

$$H(D) = \sum_{i=1}^{k} -p_i \log_2(p_i)$$

Se atributo A com v valores é selecionado, a árvore resultante tem um conteúdo de informação esperado de:

$$H(A,D) = \sum_{i=1}^{\nu} \frac{p_i + q_i}{p + q} H(D_i)$$

p_i e q_i: números de objetos em cada classe na partição D_i

Ganho de informação

Ganho de informação alcançado selecionando A para divisão:

$$IG(A,D)=H(D)-H(A,D)$$

Ganho(A) = redução esperada da entropia devido à "classificação" de acordo com o atributo A

$$IG(A,D) \equiv H(D) - \sum_{v \in Valores(A)} \frac{|D_v|}{|D|} H(D_v)$$

Exemplo: que atributo

Usar o critério de ganho de informação para decidir!

Exemplo: que atributo

escalhar?

- Ganho de informação:
 - $D = \{29 +, 35 -\}$
 - $H(D) = -(29/64)*log_2(29/64) (35/64)*log_2(35/64) = 0,994$
 - De acordo com A1:
 - $D_{A11} = \{21 +, 5 -\}$
 - $H(D_{A11}) = -(21/26)*log_2(21/26) (5/26)*log_2(5/26) = 0,706$
 - $D_{A12} = \{8 +, 30 -\}$
 - $H(D_{A12}) = -(8/38) * log_2(8/38) (30/38) * log_2(30/38) = 0,742$
 - IG(A1,D) = 0.994 ((26/64)*0.706 + (38/64)*0.742) = 0.266

Exemplo: que atributo

- Ganho de informação:
 - De acordo com A2:
 - $D_{A21} = \{18 +, 33 -\}$
 - $H(D_{21}) = -(18/51)*log_2(18/51) (33/51)*log_2(33/51) = 0.937$
 - $D_{A22} = \{11 +, 2 -\}$
 - $H(D_{A22}) = -(11/13)*log_2(11/13) (2/13)*log_2(2/13) = 0,619$
 - IG(A2,D) = 0.994 ((51/64)*0.937 + (13/64)*0.619) = 0.121

A1 traz maior ganho de informação, então ele é escolhido

- Conjunto de dados play
 - Decidir quando jogar dadas condições de tempo

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

Entropia da classe para todo o conjunto de exemplos:

$$p(Joga = Sim) = 9/14 = 0,64$$

$$p(Joga = Não) = 5/14 = 0,36$$

$$H(Joga) = -9/14log_{2}(9/14)$$

$$-5/14\log_{2}(5/14) = 0.94$$
 bit

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Chuvoso	75	80	เงสบ	21111

Joga	Ensolarado	Nublado	Chuvoso
Sim	2	4	3
Não	3	0	2

IG para atributos nominais:

Ex. atributo **Tempo**: três partições

1º passo: estimar probabilidades de observar classes dado cada valor

```
p(Joga|Ensolarado) = 2/5
p(\negJoga|Ensolarado) = 3/5
H(Joga|Ensolarado) = -2/5*log<sub>2</sub>(2/5) -3/5*
log<sub>2</sub>(3/5) = 0,971 bit
```

p(Joga|Nublado) = 4/4 $p(\neg Joga|Nublado) = 0/4$ H(Joga|Nublado) = 0,0 bit

p(Joga|Chuvoso) = 3/5 $p(\neg Joga|Chuvoso) = 2/5$ H(Joga|Chuvoso) = 0,971 bit

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Chuvoso	71	91	Sim	Não
Ensolarado	69	70	Não	Sim
Ensolarado	80	90	Sim	Não
Nublado	83	86	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	65	70	Sim	Não
Nublado	64	65	Sim	Sim
Nublado	72	90	Sim	Sim
Ensolarado	75	70	Sim	Sim
Chuvoso	68	80	Não	Sim
Nublado	81	75	Não	Sim
Ensolarado	85	85	Não	Não
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim

IG para atributos nominais:

Ex. atributo **Tempo**: três partições

2º passo: calcular a entropia ponderada para o atributo Tempo

$$H(D,Tempo) = 5/14 * 0,971 + 4/14 * 0 + 5/14 * 0,971 = 0,693 bit$$

3º passo: calcular o ganho de informação em dividir o conjunto de acordo com os valores do atributo Tempo

$$IG(Tempo) = H(D) - H(D,Tempo)$$

= 0,940 - 0,693 = **0,247 bit**

⇒ Conhecendo o valor do atributo Tempo, precisamos de menos bits para codificar o valor do atributo alvo

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

IG para atributos contínuos:

Buscar partição binária dos valores

- Atributo ≤ valor
- Atributo > valor

E aplicar as equações a essas partições

Ex. atributo **Temperatura**

1º passo: definir ponto de corte

- Ordena-se os valores do atributo
- Pega a média de dois valores consecutivos: candidato a ponto de corte
- Avalia mérito (ex. IG) do ponto de corte
- Escolhe ponto que maximiza mérito

No exemplo, 1º ponto de corte = 64,5 e último ponto de corte = 84

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

IG para atributos contínuos:

Ex. atributo **Temperatura**

2º passo: Escolhido ponto de corte, fazer cálculos de IG correspondentes Considerando o ponto 70,5:

Conjunto de dados play

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	64	65	Sim	Sim
Chuvoso	65	70	Sim	Não
Chuvoso	68	80	Não	Sim
Ensolarado	69	70	Não	Sim
Chuvoso	70	96	Não	Sim
Chuvoso	71	91	Sim	Não
Nublado	72	90	Sim	Sim
Ensolarado	72	95	Não	Não
Chuvoso	75	80	Não	Sim
Ensolarado	75	70	Sim	Sim
Ensolarado	80	90	Sim	Não
Nublado	81	75	Não	Sim
Nublado	83	86	Não	Sim
Ensolarado	85	85	Não	Não

IG para atributos contínuos

Ex. atributo **Temperatura**

2º passo: considerando o ponto 70,5:

p(Joga|Temperatura
$$\leq$$
 70,5) = 4/5
p(\neg Joga|Temperatura \leq 70,5) = 1/5

p(Joga|Temperatura > 70,5) = 5/9
p(
$$\neg$$
Joga|Temperatura > 70,5) = 4/9

$$H(Joga|Temperatura \le 70,5) = -4/5log_2(4/5)$$

$$-1/5\log_2(1/5) = 0.721$$
 bit

$$H(Joga|Temperatura > 70,5) = -5/9log_2(5/9)$$

$$-4/9\log_2(4/9) = 0.991$$
 bit

$$E(Temperatura) = 5/14 * 0,721 + 9/14 *$$

$$0.991 = 0.895$$
 bit

$$IG(Temperatura) = 0.940-0.895 = 0.045 bit$$

Divisão de atributos contínuos

- Método pode ser acelerado
 - Considerar apenas pontos entre dois objetos adjacentes com classes diferentes
 - Não Sim ou Sim Não
 - Redução do número de pontos de corte candidatos para o atributo renda?

Emprego	Estado	Renda	Crédito
Sim	Solteiro	9500	Sim
Não	Casado	8000	Não
Não	Solteiro	7000	Não
Sim	Casado	12000	Sim
Não	Divorciado	9000	Sim
Não	Casado	6000	Não
Sim	Divorciado	4000	Sim
Não	Solteiro	8500	Sim
-Não	Casado	7500	Não -
Não	Solteiro	9000	Sim

Divisão de atributos contínuos

- Método pode ser acelerado
 - Considerar apenas pontos entre dois objetos adjacentes com classes diferentes
 - Não Sim ou Sim Não
 - Reduz de de 11 para 2 o número de pontos de corte candidatos no exemplo anterior

Exercício

- Conjunto de dados play
 - Com atributos quantitativos discretizados

Dia	Tempo	Temperatura	Umidade	Vento	Joga
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Média	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Forte	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Média	Alta	Fraco	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Média	Normal	Fraco	Sim
D11	Ensolarado	Média	Normal	Forte	Sim
D12	Nublado	Média	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Média	Alta	Forte	Não

Exercício

• Que atributo deve ser selecionado para ser a raiz da árvore?

Poda

- Poda: troca de nós profundos por folhas
 - Utilizada para lidar com dados com ruído e evitar super-ajustes
 - Estatísticas calculadas em nós mais profundos da árvore têm nível mais baixo de importância
 - Poucos exemplos chegam a esses nós
 - Árvore grande é difícil para compreender

Métodos de poda

Dois grupos principais:

Pré-poda

Param a construção da árvore quando algum critério é satisfeito

Pós-poda

Constroem árvore completa e podam posteriormente

Todos mantêm ponto de equilíbrio entre tamanho da árvore e estimativa de erro

Vantagens ADs

- Flexibilidade
 - Fornecem cobertura exaustiva do espaço de entradas
- Robustez
 - São invariantes a transformações monótonas de variáveis de entrada
 - Ex. usar x, log x, ex produz mesma árvore
- Seleção de atributos embutida
 - Seleciona atributos mais relevantes em sua construção
 - Robustas a atributos irrelevantes e redundantes

Vantagens ADs

Interpretabilidade

- Eficiência
 - Algoritmo guloso top-down, com estratégia dividir-paraconquistar

Desvantagens ADs

- Atributos contínuos
 - Operação de ordenação consome muito tempo
 - Alguns autores recomendam discretização prévia
- Instabilidade
 - Pequenas variações no conjunto de treinamento podem produzir grandes variações na árvore final

Referências

- Slides de:
 - Profa Dra Ana Carolina Lorena, UNIFESP
 - Prof Dr André C. P. L. F. Carvalho, ICMC-USP
 - Prof Dr Marcilio C. P. Souto, UFPE

Livro Inteligência Artificial: uma Abordagem de Aprendizado de Máquina, capítulo 6