# Homework 5

Branch Vincent

December 1, 2017

## Problem 1

The MDP is represented in Figure 1.



Figure 1: Markov Decision Process

#### Problem 2

Using value iteration and a discount factor  $\delta = 0.8$ , we arrive at the following optimal policy and values (given a state s).

$$\pi^*(s) = \begin{cases} \text{idle} & s = \text{top or rolling} \\ \text{drive} & s = \text{bottom} \end{cases}$$
$$v^*(s) \approx \begin{cases} 10.64 & s = \text{top} \\ 7.01 & s = \text{rolling} \\ 7.51 & s = \text{bottom} \end{cases}$$

#### Problem 3

Using policy iteration and  $\delta = 0.8$ , we arrive at the following optimal policy and values.

$$\pi^*(s) = \begin{cases} \text{idle} & s = \text{top or rolling} \\ \text{drive} & s = \text{bottom} \end{cases}$$
$$v^*(s) \approx \begin{cases} 10.64 & s = \text{top} \\ 7.01 & s = \text{rolling} \\ 7.51 & s = \text{bottom} \end{cases}$$

#### Problem 4

(i) Let  $\delta = 0.5$ . Then

$$\pi^*(s) = \begin{cases} \text{idle} & \forall s \end{cases}$$

This is because we now more heavily discount the future. Before at s =bottom, the optimal policy was to drive in an attempt to reach the top, where we can collect a higher reward. However, since we now care less about the future, the optimal policy becomes collecting a smaller reward now.

(ii) Let the transition probability for a = drive at s = bottom be

$$T(\text{bottom, drive}) = \begin{cases} 0.1 & s' = \text{top} \\ 0.9 & s' = \text{rolling} \end{cases}.$$

Then

$$\pi^*(s) = \{ idle \ \forall s \}$$

This is because, once at s = bottom, we now are less likely to reach the top again. Thus, it is no longer worth trying to reach the top while collecting no reward. Instead, the optimal policy becomes collecting a smaller (but certain) reward by idling at the bottom.

(iii) Let the reward for a = idle at s = bottom be 3. Then

$$\pi^*(s) = \{ idle \ \forall s \}$$

This is because the marginal benefit of driving to reach the top at s = bottom is now zero, since we collect the same reward for idling at the top and at the bottom. Thus, the optimal policy becomes to always idle.

### **Appendix**

The preceding problems were solved using the attached code.