

Кафедра ЦТ Институт информационных технологий РТУ МИРЭА

Дисциплина «Проектирование баз данных»

Основы физической модели данных

Физическая модель данных — это модель данных, которая определяет, каким образом представляются данные, и содержит все детали, необходимые СУБД для создания базы данных. В отличии от логической модели данных основными элементами физической модели являются: таблицы (а не сущности), столбцы/поля (а не атрибуты) и связи между таблиц.

Таблицы и столбцы должны обладать наименованием, выраженным уникальным существительным в единственном числе на английском языке. У столбца также должны быть указаны тип данных, обязательность и является ли столбец первичным или внешним ключом.

Числовые типы данных

Тип	Комментарий	Пример
int	Целые числа (от -2^31 до +2^31-1)	
numeric(N, M)	Дробные числа с N знаками из которых M в дробной части	Зарплата, Вес
double	Дробные числа (8 байт)	Цена, Курс обмена валют
smallint	Целые числа (от -2^15 до 2^15-1)	Рейтинг, Возраст
serial	Целые числа с автоматическим увеличением (от - 2^31 до +2^31-1)	ID категории, ID должности
bigserial	Целые числа с автоматическим увеличением (от - 2^63 до 2^63-1)	ID пользователя, ID заказа
bytea	Массив байтов для хранения двоичных данных	Хеш пароля, Хеш логина

Символьные типы данных

Тип	Комментарий	Пример
varchar(N)	Строка переменной длины не более чем N символов	Имя, Телефон, Адрес
text	Текст большого объема	Текст сообщения, Описание товара

Типы данных даты и времени

Тип	Комментарий	Пример
date	Календарная дата (год, месяц, день)	Дата рождения, Дата покупки
time	Время дня	Время отправки сообщения

Основы физической модели данных

Пример таблиц в физической модели данных

В некоторых редакторах (например, в ChartDB) важно строить связь от той таблицы, в которой внешний ключ, к той, на которую он ссылается.

Как было сказано в прошлой практике: на физической модели не может быть связей типа «Многие ко многим». Такой вид связи заменяется на дополнительную связующую таблицу.

Связующая таблица – особая таблица, состоящая из столбцов первичного ключа и внешних ключей на таблицы, которые она связывает. Имя связующей таблицы обычно состоит из имен таблиц, которые она связывает.

Нормализация баз данных

Нормализация баз данных – способ организации данных с целью устранения из базы избыточных функциональных зависимостей между полями таблиц и исключения избыточного дублирования данных

Всего выделяют 7 нормальных форм: первая НФ, вторая НФ, третья НФ, нормальная форма Бойса-Кодда, четвертая НФ, пятая НФ, шестая НФ. Зачастую с базой данных, приведенной к одной из высоких НФ тяжело работать на практике, поэтому обычно нормализацию проводят до третьей НФ.

Стоит учитывать, что нормализация – итерационный процесс, то есть необходимо сначала привести в первую НФ, потом во вторую и т.д.

Первая нормальная форма

Отношение находится в 1НФ, если все его атрибуты являются простыми (атомарными), не должно быть повторений строк в таблице.

Например, есть таблица «Автомобили». Она не находится в 1НФ, так как в одной ячейке содержится список значений, т.е. столбец «Модель» не атомарный

Фирма	Модель
BMW	M5, X5M, M1
Nissan	GT-R

Фирма	Модель
BMW	M5
BMW	X5M
BMW	M1
Nissan	GT-R

Вторая нормальная форма

Отношение находится во 2НФ, если оно находится в 1НФ и каждый не ключевой атрибут неприводимо зависит от Первичного Ключа.

Неприводимость означает, что в составе потенциального ключа отсутствует меньшее подмножество атрибутов, от которого можно также вывести данную функциональную зависимость.

Например, дана следующая таблица

Фирма	<u>Модель</u>	Цена	Скидка
BMW	M5	5500000	5%
BMW	X5M	6000000	5%
BMW	M1	2500000	5%
Nissan	GT-R	5000000	10%

Таблица находится в первой нормальной форме, но не во второй. Цена машины зависит от модели и фирмы. Скидка зависят от фирмы, то есть зависимость от первичного ключа неполная. Исправляется это путем декомпозиции на два отношения

Фирма	Модель	Цена	Скидка
BMW	M5	5500000	5%
BMW	X5M	6000000	5%
BMW	M1	2500000	5%
Nissan	GT-R	5000000	10%

<u>Фирма</u>	<u>Модель</u>	Цена
BMW	M5	5500000
BMW	X5M	6000000
BMW	M1	2500000
Nissan	GT-R	5000000

<u>Фирма</u>	Скидка
BMW	5%
Nissan	10%

(Первичный ключ – комбинация модели и фирмы)

Третья нормальная форма

Отношение находится в ЗНФ, когда находится во 2НФ и каждый не ключевой атрибут нетранзитивно зависит от первичного ключа. Проще говоря, второе правило требует выносить все не ключевые поля, содержимое которых может относиться к нескольким записям таблицы в отдельные таблицы.

Например, дана следующая таблица

<u>Фирма</u>	Магазин	Телефон
BMW	Риал-авто	87-33-98
Audi	Риал-авто	87-33-98
Nissan	Некст-Авто	94-54-12

Таблица находится во 2НФ, но не в 3НФ. В отношении атрибут «Модель» является первичным ключом. Личных телефонов у автомобилей нет, и телефон зависит исключительно от магазина. Таким образом, в отношении существуют следующие функциональные зависимости: Модель \rightarrow Магазин, Магазин \rightarrow Телефон, Модель \rightarrow Телефон.

Зависимость Модель \rightarrow Телефон является транзитивной, следовательно, отношение не находится в $3H\Phi$.

Фирма	Магазин	Телефон
BMW	Риал-авто	87-33-98
Audi	Риал-авто	87-33-98
Nissan	Некст-Авто	94-54-12

<u>Фирма</u>	Магазин
BMW	Риал-авто
Audi	Риал-авто
Nissan	Некст-Авто

<u>Магазин</u>	Телефон
Риал-авто	87-33-98
Некст-Авто	94-54-12

Практическая работа №6. Проектирование физической схемы данных ФО на примере «Аптека»

Постановка задачи: на основе практической работы №5 спроектируйте физическую схему данных в ChartDB и приведите к 3 нормальной форме.

Решение: на основе логической схемы данных необходимо:

- Преобразовать сущности в таблицы
- Определить типы данных полей
- Устранить связи «Многие ко многим»
- Привести отношения к 3 нормальной форме

