11.6

a. The scatterplot is below.

- b. $\hat{y} = -9.7 + 2.06x$
- c. The predicted equation does appear to fit the data well.
- d. $\hat{y} = -9.7 + 2.06(77) = 148.92$
- > plot(y~x, data=ex11.6)
- > 1m(y~x, data=ex11.6)

11.18 The original data and the log base 10 of recovery are given here:

Data Display

	Time	Recovery	log10
Cloud	(minutes)	(%)	Recovery
1	0	70.6	1.84880
2	5	52.0	1.71600
3	10	33.4	1.52375
4	15	22.0	1.34242
5	20	18.3	1.26245
6	25	15.1	1.17898
7	30	13.0	1.11394
8	35	10.0	1.00000
9	40	9.1	0.95904
10	45	8.3	0.91908
11	50	7.9	0.89763
12	55	7.7	0.88649
13	60	7.7	0.88649

a. A scatterplot of the data is given here:

b. A scatterplot of the data using $log_{10}(y)$ is given here:

11.19 Minitab output is given here:

Regression Analysis: log10 Recovery versus Time (minutes)

```
The regression equation is
    log10 Recovery = 1.67 - 0.0159 Time (minutes)
    Predictor
                               SE Coef
                                           T
                        Coef
    Constant
                     1.67243
                              0.05837 28.65 0.000
    Time (minutes) -0.015914 0.001651 -9.64 0.000
    S = 0.111354 R-Sq = 89.4% R-Sq(adj) = 88.5%
    Analysis of Variance
    Source
                    DF
                           SS
                                   MS
                                           F
                    1 1.1523 1.1523 92.93 0.000
    Regression
    Residual Error 11 0.1364 0.0124
                   12 1.2887
 a. \hat{v} = 1.67 - 0.0159x
b. s_r = 0.1114
 c. SE(\hat{\beta}_0) = 0.05837 SE(\hat{\beta}_1) = 0.001651
> plot(Recover ~ Time, data=ex11.18)
> plot(log10(Recover) ~ Time, data=ex11.18)
> mdl <- lm(log10(Recover) ~ Time, data=ex11.18)</pre>
> summary(mdl)
```

11.23

- a. $\hat{\sigma}_{\varepsilon}^{2} = (2.10171)^{2} = 4.42 \ (= MS(\text{Residual Error}))$
- b. $SE(\hat{\beta}_1) = 0.3462$
- c. $-1.8673 \pm 2.101(0.3462) \Rightarrow (-2.595, -1.140)$
- d. $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$. From the computer output, t = -5.39 and p-value < 0.0001 < 0.05. Thus, we reject H_0 and conclude there is significant evidence that there is a linear relationship between the amount of time needed to run a 10-km race and the time to exhaustion on a treadmill.
- > summary(lm(TenK ~ Treadmill, data=ex11.22))

11.31

a.
$$\hat{y}_{n+1} \pm t_{0.025,11} s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(30 - \overline{x})^2}{S_{xx}}} \Rightarrow$$

$$1.195 \pm 2.201(0.1114) \sqrt{1 + \frac{1}{13} + \frac{(30 - 30)^2}{4550}} \Rightarrow 1.195 \pm 0.254 \Rightarrow (0.941, 1.449)$$

- b. The prediction interval in part (a) is wider than the confidence interval for the mean in Exercise 11.33.
- c. 95% confidence interval for the mean: We are 95% confident that the mean log biological recovery percentage at 30 minutes will be between 1.127 and 1.263. (Or, we are 95% confident that the mean biological recovery percentage at 30 minutes will be between 13.4% and 18.3%.)

95% prediction interval: We are 95% confident that the log biological recovery percentage for a single sample at 30 minutes will be between 0.941 and 1.449. (Or, we are 95% confident that the biological recovery percentage for a single sample at 30 minutes will be between 8.7% and 28.1%.)