

图嵌入

- 图嵌入的通用框架
- 复杂图嵌入

图上的特征提取

⇒ 邻接矩阵

$$\mathbf{A} = \left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{array}\right)$$

稀疏

高维度

学习低维的节点表示

节点表示学习1.0:数据降维

- □ 通常具有很高的复杂度
- □ 无法应用到大规模的图上

參 word2vec词嵌入

參 word2vec词嵌入

 $\max P(\{by, the, it, keeps\} | company)$

"You shall know a word by the company it keeps" —J.R. Firth:11

节点表示学习2.0:图嵌入

- □ 通常比较高效
- □ 有较好的可拓展性

\$ 节点嵌入

留的信息

□ 社区信息

□ 节点状态

图嵌入的通用框架

- 图嵌入的通用框架
- 1 简单图嵌入
- 复杂图嵌入

无向

同质

节点和边上没有额外信息

- - 🚺 保留邻域信息
 - 🚺 保留结构角色
 - 保留节点状态
 - 🚺 保留社区结构

保留共现信息的图嵌入: DeepWalk

"虚拟语言"

- □ 词汇: 节点
- □ 句子: 随机游走

随机游走

冬

保留共现信息的图嵌入: DeepWalk

$$f(v_i) = \mathbf{We}_i$$

这样随机生成的途径是图上 的一个随机游走

随机游走在点v(t)根据如下均匀分布选择下一个节点

$$p\left(v^{(t+1)} \mid v^{(t)}\right) = \begin{cases} \frac{1}{d(v^{(t)})}, & \text{if } v^{(t+1)} \in \mathcal{N}\left(v^{(t)}\right) \\ 0, & \text{otherwise} \end{cases}$$

基于随机游走的信息提取器

上下文节点:中心节点一定距离内的点

随机游走 $\mathcal{W} = (v^{(1)}, \dots, v^{(6)})$

- □ 从每个节点出发
- □重复多次

$$\mathcal{R} = \{\mathcal{W}\}$$

$$\mathcal{I} = igcup_{\mathcal{W} \in \mathcal{R}} \mathcal{I}_{\mathcal{W}}$$

中心节点	上下文节点
$v^{(1)}$	$v^{(2)}$, $v^{(3)}$
$v^{(2)}$	$v^{(1)}$, $v^{(3)}$, $v^{(4)}$
$v^{(3)}$	$v^{(1)}$, $v^{(2)}$, $v^{(4)}$, $v^{(5)}$
$v^{(4)}$	$v^{(2)}, v^{(3)}, v^{(5)}, v^{(6)}$
$v^{(5)}$	$v^{(3)}, v^{(4)}, v^{(6)}$
$v^{(6)}$	$v^{(4)}$, $v^{(5)}$

共现信息
$$\mathcal{I}_{\mathcal{W}} = \{(v_{cen}, v_{con})\}$$

$$\mathcal{I} = \bigcup_{\mathcal{W} \in \mathcal{R}} \mathcal{I}_{\mathcal{W}}$$

重构共现信息

利用节点嵌入预 测出上下文节点

$$\prod_{(v_{cen}, v_{con}) \in \mathcal{I}_{\mathcal{W}}} p(v_{con}|v_{cen})$$

中心节点	上下文节点
$v^{(1)}$	$v^{(2)}$, $v^{(3)}$
$v^{(2)}$	$v^{(1)}$, $v^{(3)}$, $v^{(4)}$
$v^{(3)}$	$v^{(1)}, v^{(2)}, v^{(4)}, v^{(5)}$
$v^{(4)}$	$v^{(2)}, v^{(3)}, v^{(5)}, v^{(6)}$
$v^{(5)}$	$v^{(3)}, v^{(4)}, v^{(6)}$
$v^{(6)}$	$v^{(4)}, v^{(5)}$

两个映射函数 $f_{cen}(v_i) = \mathbf{W}_{cen}\mathbf{e}_i$ $f_{con}(v_i) = \mathbf{W}_{con}\mathbf{e}_i$

重构共现信息

利用节点嵌入预 测出上下文节点

$$\frac{\exp\left(f_{\text{con}} (v_{\text{con}})^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}{\sum_{v \in \mathcal{V}} \exp\left(f_{\text{con}} (v)^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}$$

中心节点	上下文节点
$v^{(1)}$	$v^{(2)}$, $v^{(3)}$
$v^{(2)}$	$v^{(1)}$, $v^{(3)}$, $v^{(4)}$
$v^{(3)}$	$v^{(1)}$, $v^{(2)}$, $v^{(4)}$, $v^{(5)}$
$v^{(4)}$	$v^{(2)}, v^{(3)}, v^{(5)}, v^{(6)}$
$v^{(5)}$	$v^{(3)}, v^{(4)}, v^{(6)}$
$v^{(6)}$	$v^{(4)}$, $v^{(5)}$

共现信息
$$\mathcal{I}_{\mathcal{W}} = \{(v_{cen}, v_{con})\}$$

$$\mathcal{I} = \bigcup_{\mathcal{W} \in \mathcal{R}} \mathcal{I}_{\mathcal{W}} \qquad \prod_{\mathcal{W} \in \mathcal{R}} \prod_{(v_{cen}, v_{con}) \in \mathcal{I}_{\mathcal{W}}} \frac{\exp\left(f_{\text{con}} (v_{\text{con}})^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}{\sum_{v \in \mathcal{V}} \exp\left(f_{\text{con}} (v)^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}$$

重构共现信息

利用节点嵌入预 测出上下文节点

$$\prod_{\mathcal{V} \in \mathcal{R}} \prod_{(v_{cen}, v_{con}) \in \mathcal{I}_{\mathcal{W}}} \frac{\exp\left(f_{\text{con}} (v_{\text{con}})^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}{\sum_{v \in \mathcal{V}} \exp\left(f_{\text{con}} (v)^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}$$

⇒ 目标函数

共现信息
$$\mathcal{I} = \bigcup_{\mathcal{W} \in \mathcal{R}} \mathcal{I}_{\mathcal{W}}$$
尽可能预测正确
$$\frac{\exp\left(f_{\text{con}}\left(v_{\text{con}}\right)^{\top} f_{\text{cen}}\left(v_{\text{cen}}\right)\right)}{\mathbb{E}_{v \in \mathcal{V}} \exp\left(f_{\text{con}}\left(v_{\text{con}}\right)^{\top} f_{\text{cen}}\left(v_{\text{cen}}\right)\right)}$$

$$\frac{\exp\left(f_{\text{con}}\left(v_{\text{con}}\right)^{\top} f_{\text{cen}}\left(v_{\text{cen}}\right)\right)}{\mathbb{E}_{v \in \mathcal{V}} \exp\left(f_{\text{con}}\left(v_{\text{con}}\right)^{\top} f_{\text{cen}}\left(v_{\text{cen}}\right)\right)}$$

$$\frac{\mathbb{E}_{v \in \mathcal{V}} \left(v_{\text{cen}}, v_{\text{con}}\right) \in \mathcal{I}_{\mathcal{W}}}{\mathbb{E}_{v \in \mathcal{V}} \exp\left(f_{\text{con}}\left(v_{\text{con}}\right)^{\top} f_{\text{cen}}\left(v_{\text{cen}}\right)\right)}$$

提高可拓展性

$$p(v_3 \mid v_8)$$

$$p\left(\text{left} \mid b_0, v_8\right) = \sigma\left(f_b\left(b_0\right)^{\top} f\left(v_8\right)\right)$$

最大化
$$\frac{\exp\left(f_{\text{con}} (v_{\text{con}})^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}{\sum_{v \in \mathcal{V}} \exp\left(f_{\text{con}} (v)^{\top} f_{\text{cen}} (v_{\text{cen}})\right)}$$
最大化

$$\boxed{\log \sigma \left(f_{\text{con }} \left(v_{\text{con }} \right)^{\top} f_{\text{cen }} \left(v_{\text{cen }} \right) \right)} + \sum_{i=1}^{k} E_{v_n \sim P_n(v)} \left[\log \sigma \left(-f_{\text{con }} \left(v_n \right)^{\top} f_{\text{cen }} \left(v_{\text{cen }} \right) \right) \right]}$$

k个负样本

其他保留共现信息的图嵌入方法

其他保留共现信息的图嵌入方法

邻居节点

随机游走

随机选择一个邻居节点 作为下一个节点

二阶随机游走

选择下一个节点时同时考虑 当前节点和上一节点

$$\alpha_{pq} \left(v^{(t+1)} \mid v^{(t-1)}, v^{(t)} \right) = \begin{cases} \frac{1}{p}, & \operatorname{dis} \left(v^{(t-1)}, v^{(t+1)} \right) = 0\\ 1, & \operatorname{dis} \left(v^{(t-1)}, v^{(t+1)} \right) = 1\\ \frac{1}{q}, & \operatorname{dis} \left(v^{(t-1)}, v^{(t+1)} \right) = 2 \end{cases}$$

- 1 简单图嵌入
 - (保留邻域信息
 - (保留结构角色
 - 保留节点状态
 - 🚺 保留社区结构

保留结构角色信息的图嵌入: struc2vec

衡量角色结构相似性

度相似

邻居的度相似

高阶邻居的度相似

 $dist(d_u, d_v)$

 $dist(S_u^1, S_v^1)$

 $dist(S_u^k, S_v^k)$

 $g_k(u,v)$

 S_u^1 : 节点u的k阶邻居的度的序列

 S_{i}^{1} : 节点u的邻居的度的序列

根据度的大小排序

根据度的大小排序

◆ 全连接图的构造

距离

零阶 $g_0(u,v)$

一阶 $g_1(u,v)$

:

k阶 $g_k(u,v)$

利用各阶的距离构造各自的全连接图

边的权重

$$w_0(u,v) = \exp(-g_0(u,v))$$

$$w_1(u,v) = \exp(-g_1(u,v))$$

$$w_k(u,v) = \exp(-g_k(u,v))$$

- 某阶内游走
- 相邻的阶之间游走

- - (保留邻域信息
 - 保留结构角色
 - 🚺 保留节点状态
 - 🚺 保留社区结构

节点的中心性用来衡量 节点在图上的重要程度

信息提取器

\$ 重构器

重构节点状态信息

利用节点嵌入预测 节点排序

预测节点 $v_{(i)}$ 排在节点 $v_{(j)}$ 之前的概率

 $p_{\text{global}} =$

$$p\left(v_{(i)}, v_{(j)}\right) = \sigma\left(\boldsymbol{w}^{\top}\left(f(v_{(i)}) - f(v_{(j)})\right)\right)$$

$$(v_{(1)},\ldots,v_{(N)})$$

重构节点状态信息

$$p_{\text{global}} = \prod_{1 \leqslant i < j \leqslant N} p\left(v_{(i)}, v_{(j)}\right)$$

尽可能预测正确

实际中我们通常最小化它的对数的相反数

- - 保留邻域信息
 - 🚺 保留结构角色
 - 保留节点状态
 - 🚺 保留社区结构

Image credit

- □ 社区内连接紧密
- □ 跨社区的连接不紧密

基于模块度的社区发现

模块度

$$Q = \frac{1}{2 \cdot \text{vol}(\mathcal{G})} \sum_{ij} \left(\mathbf{A}_{i,j} - \frac{d(v_i) d(v_j)}{\text{vol}(\mathcal{G})} \right) h_i h_i$$

拥有两个社区的图

$$Q = rac{1}{2 \cdot \mathrm{vol}(\mathcal{G})} m{h}^ op m{B} m{h}$$

 $d(v_i)$ 节点的度

 $vol(\mathcal{G})$ 所有节点的度的总和

 h_i 节点所属社区的指示函数,取值0或1

 $h_i = 1$ 或者 -1 表示节点 v_i 属于哪个社区

最大化模块度来进行社区发现

拓展到多个社区的情况

在图中有两个 社区的情况下

 $h_i = 1$ 或者 -1 表示节点 v_i 属于哪个社区

h包含所有节点社区信息的向量

在图中有多于 两个社区的情 况下

H表示社区的分配矩阵

H的每一行都是one-hot向量,表示了相应节点的社区归属

每个节点只属于一个社区

s.t.
$$\operatorname{tr}\left(\boldsymbol{H}^{\top}\boldsymbol{H}\right) = N$$

保留社区结构的图嵌入

连接矩阵 (边的信息)

邻域重合度信息

$$oldsymbol{A} oldsymbol{S}_{i,j} = rac{oldsymbol{A}_i oldsymbol{A}_j^ op}{\|oldsymbol{A}_i\| \|oldsymbol{A}_j\|}$$

$$P = A + \eta \cdot S$$

重构器和目标函数

两个映射函数(和DeepWalk一样)

$$f_{cen}(v_i) = \mathbf{W}_{cen} \mathbf{e}_i$$

$$f_{con}(v_i) = \mathbf{W}_{con} \mathbf{e}_i$$

节点嵌入

- 图嵌入的通用框架
- 1 简单图嵌入
- 复杂图嵌入

- 复杂图嵌入
 - 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

- 复杂图嵌入
 - □ 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

 \mathcal{V}, \mathcal{E}

包含不同种类的节点和边

$$\phi_n: \mathcal{V} \to \mathcal{T}_n$$

$$\phi_e: \mathcal{V} \to \mathcal{T}_e$$

 $\mathcal{T}_n = \{\text{author}, \text{paper}, \text{conference}\}\$

 $\mathcal{T}_e = \{\text{authored}, \text{cite}, \text{published_at}\}$

Meta-path模式

基于Meta-path的随机游走

异质图嵌入: metapath2vec

- 复杂图嵌入
 - 🚺 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

⇒ 二分图

 \mathcal{V}, \mathcal{E}

- □ *v*可以被分为两个不相交的子集
- □ 每一子集内的任意点之间没有边相连接

\$ 信息提取器

- □ 如果 V_1 中的两个节点共享至少一个邻居,则这两个节点在生成子图中相连
- □ 新边的权重是两条原图中的边的乘积(如果共享多个邻居,则需要在这些邻居上求和)

 ${\cal E}$: 边的信息

ν₁生成的子图

1/1中节点共现信息

Deepwalk

*ν*2生成的子图

1/2中节点共现信息

Deepwalk

边的信息的重构器和目标函数

- 复杂图嵌入
 - 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

同一对节点之间可以同时存在多种不同的关系

⇒ 映射函数

通用映射

维度特定映射

 $f_{blue}(v_i)$

 $f(v_i)$

 $f_{red}(v_i)$

 $f_{green}(v_i)$

节点在某一 维度的特定 表示

$$\mathbf{u}_i^{blue}$$
 =

共享的信息
$$f(v_i)$$
 .

捕捉各个维度

特有的信息 $f_{blue}(v_i)$

捕捉各个维度

\$ 信息提取器

维度内随机游走

每个维度的共现信息

 \mathcal{I}_{blue}

 \mathcal{I}_{red}

 \mathcal{I}_{green}

毎个维度的共现信息 \mathcal{I}_{blue} $\{\mathbf{u}_i^{blue}\}_{i\in\mathcal{V}}$ \mathcal{I}_{red} $\{\mathbf{u}_i^{red}\}_{i\in\mathcal{V}}$ \mathcal{I}_{green} $\{\mathbf{u}_i^{green}\}_{i\in\mathcal{V}}$

每一维度内的重建过程以及目标函数与deepwalk一致

- 复杂图嵌入
 - 🚺 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

 \mathcal{V}, \mathcal{E}

- \Box ε 可以被分为两个不相交的子集
- □ 这两个子集分别包含正边和负边

\$ 信息提取器

重构器与目标函数

尽量使得它大于0

- 复杂图嵌入
 - 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 1 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

 \mathcal{V}, \mathcal{E}

- □ ε为超边的集合
- 超边可以描述超越两两之间的关系的 更高维度的关系

 $A_{i,j}$:节点 v_i 和 v_j 在所有超边中共现的次数

 A_i : A的第i行,表示节点 v_i 和其他所有节点的共现情况

重构器与目标函数: 超边中的共现信息

映射函数

$$f(v_i) = MLP(A_i)$$

A : 节点在超边中的共现信息

尽可能接近

利用节点嵌入重 构共现信息

 A_i : A的第i行,表示节点 v_i 和其他所有节点的共现情况

$$\widehat{A}_i = MLP(f(v_i))$$

$$\sum_{v_i \in \mathcal{V}} \|oldsymbol{A}_i - \hat{oldsymbol{A}}_i\|_2^2$$

可以被考虑为自编码器

重构器与目标函数: 超边

实际中我们通常最小化它的对数的相反数

- 复杂图嵌入
 - 异质图嵌入
 - 二分图嵌入
 - 多维图嵌入
 - 〇 符号图嵌入
 - 超图嵌入
 - 动态图嵌入

$$\mathcal{V}, \mathcal{E}$$

节点和边有对应的时间信息

$$\phi_n: \mathcal{V} \to \mathcal{T}$$

$$\phi_e: \mathcal{V} \to \mathcal{T}$$

T表示时间的集合

时序随机游走

- □ 只能按时间顺序进行随机游走
- □ 下一条边的发生时间要在上一条边的发生时间之后

候选的下一节点 当前节点

 $p\left(v^{(k+1)} \mid v^{(k)}\right) = \begin{cases} pre\left(\overline{v^{(k+1)}}\right), & \text{ 如果边}\left(v^{(k)}, v^{(k+1)}\right) \text{ \not \pm $a}\left(v^{(k-1)}, v^{(k)}\right)$ 之后 \\ 0, & \text{ 如果边}\left(v^{(k)}, v^{(k+1)}\right) \text{ \not \pm $a}\left(v^{(k-1)}, v^{(k)}\right)$ 之前 \end{cases}$

会以较高的概率选择离当前时间具 有较小间隔的节点

- 图嵌入的通用框架
- 复杂图嵌入

感谢聆听 Thanks for Listening

