As regras do trabalho estão disponíveis na página do trabalho.

Trabalho: Problemas

DISTRIBUIÇÃO ÓTIMA EM GPUS

Instância Temos n GPUs todas com a mesma quantidade de VRAM $V \in \mathbb{N}$ (em GB), e m partes de uma rede neural (PRN) onde cada parte $j \in [m]$ tem um consumo de VRAM $v_j \in [m]$ (GB), e um tipo $t_j \in T$. Aqui T é um conjunto de possíveis tipos (e.g. blocos ResNet, Transformers, Convoluções, etc.).

Solução Uma alocação $a:[m] \to [n]$ de PRNs a GPUs, de forma a respeitar o limite de VRAM das GPUs.

Objetivo Minimizar a distribuição total de todos os tipos. A distribuição de um tipo é o número de GPUs distintos que possuem pelo menos uma rede do tipo. Em outras palavras, se $t(S) = \{t_j \mid j \in S\}$ for o conjunto de tipos de um conjunto de PRNs $S \subseteq [m]$, o objetivo é minimizar $\sum_{i \in [n]} |t(a^{-1}(i))|$.

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/oc/dog.zip. O formato das instâncias é descrito no arquivo "Readme.md".

Melhores valores conhecidos

Instância	BKV	Instância	BKV
dog01	128	dog06	279
dog02	123	dog07	15
dog03	238	dog08	16
dog04	238	dog09	51
dog05	285	dog 10	118

(BKV: melhor valor conhecido (ingl. best known value).)

O CARROSSEL SEGURO

Instância Um carrossel com n assentos equidistantes (i.e. nos ângulos $i2\pi/n$ para $i \in [0, n)$) e n = 2k crianças com pesos $w_1, w_2, \ldots, w_n \ge 0$.

Solução Uma atribuição um-para-um $a:[n] \to [n]$ de assentos a crianças.

Objetivo Para n' > n seja a(n') = a(n'-n). Para cada $i \in [n]$ define W_i como peso total das crianças nas posições $i, i+1, \ldots, i+k-1$, e seja $W = \max_{i \in [n]} W_i$. Queremos minimizar W. (Nota que isso é uma forma de balancear o carrossel: cada W_i é o peso total de uma metade das crianças, então estamos minimizando a metade de maior peso total.)

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/oc/ocs.zip. O formato das instâncias é descrito no arquivo "Readme.md".

Melhores valores conhecidos

Instância	BKV	Instância	BKV
ocs01	49995	ocs06	443476
ocs02	51150	ocs07	779642
ocs03	193017	ocs08	784200
ocs04	198406	ocs09	1243399
ocs05	433384	ocs10	1232361

(BKV: melhor valor conhecido (ingl. best known value).)