Neural Episodic Control (NEC)

Pritzel et al. (2017) | https://arxiv.org/abs/1703.01988

David Bayha, Dhruv Dhamani, Geet Saurabh Kunumala, Yingjie Ma

2025-02-05

College of Computing and Informatics University of North Carolina at Charlotte

1. Introduction 1	trol
1.1 Can AI learn as fast as Humans? . 2	3.2 Differentiable Neural Dictionary
1.2 Problem 3	(DND)
1.3 Problem Statement 4	3.3 N-step Updates & Training Loop 14
1.4 Motivation 5	3.4 Experimental Setup 15
2. Background 6	4. Results
2.1 DQN and Reinforcement Learning 7	4.1 Median Human-Normalized Score
2.2 Improvements on DQN 8	17
2.3 Neural Episodic Control 9	
2.4 Differentiable Neural Dictionary 10	
3. Methods 11	
3.1 Overview of Neural Episodic Con-	

1.1 Can AI learn as fast as Humans?

- **Statistic**: In the Atari 2600 set of environments, deep Q-networks required **more than 200 hours** of gameplay in order to achieve scores similar to a human who only played 2 hours. (Bellemare et al., 2013)
- Imagine a human only needing one example shown to learn something, but an AI needs to see that same example millions of times.

DL and Episodic vs. Semantic Memory (1:20-2:40): Watch on YouTube

Introduction Background Methods Results

O O O O

1.2 Problem

• What is the Problem?

Deep Reinforcement Learning (DRL) can exceed human performance, but it requires significantly more interactions to learn, making the process **slow** and **inefficient**.

• What is the Solution?

Neural Episodic Control (NEC) is a technique that allows a learning agent to learn faster by remembering past experiences.

- NEC stores and **recalls past successful actions** instead of learning purely through trial and error.
- Inspired by the hypothesized role of the hippocampus in decision-making.

1.3 Problem Statement

What is the purpose of the paper?

Provides an answer to the question:

Why are Deep Reinforcement-Learning agents so slow at learning?

- Seeks to address three major challenges:
 - 1. **Stochastic Gradient Descent (SGD)** optimization requires using small learning rates large learning rates cause catastrophic interference (forgetting).
 - 2. Environments with a **sparse reward signal** make it difficult for a RL agent to learn its environment there may be very few instances with a non-zero reward.
 - 3. Many DRL agents using value-based RL methods (ie. Q-learning) learn one step at a time, resulting in **slow reward signal propagation** agent may take hundreds of steps before retrieving useful information

1.4 Motivation

- In order for DRL techniques to be applicable to real-world problems it is essential that faster learning occurs
- **Neural Episodic Control** (NEC) dramatically improves the *efficiency* of RL agents by *storing/recalling successful past experiences* and reducing trial-and-error learning
- Some potential real-world applications include:
 - ▶ **Robotics**: Robots require fast learning of their environment
 - **Healthcare**: optimize health care decisions and more efficiently personalize healthcare plans
 - ► **Autonomous vehicles** commonly in high-speed environments

1. Introduction 1	trol 12
1.1 Can AI learn as fast as Humans? . 2	3.2 Differentiable Neural Dictionary
1.2 Problem 3	(DND)
1.3 Problem Statement 4	3.3 N-step Updates & Training Loop 14
1.4 Motivation 5	3.4 Experimental Setup 15
2. Background 6	4. Results
2.1 DQN and Reinforcement Learning 7	4.1 Median Human-Normalized Score
2.2 Improvements on DQN 8	17
2.3 Neural Episodic Control 9	
2.4 Differentiable Neural Dictionary 10	
3. Methods	
3.1 Overview of Neural Episodic Con-	

2.1 DQN and Reinforcement Learning

- Reinforcement Learning is a framework for learning optimal actions through interactions with environment to maximize reward.
- DQN uses Q-learning to learn value function $Q(s_t, a_t)$
- $Q(s_t,a_t)$ takes 2D pixel representation of state st and outputs vector containing value of each action at that state.
- Upon observation, DQN stores (s_t,a_t,r_t,s_t+1) tuple in replay buffer, which is used for training.

2.2 Improvements on DQN

- Double DQN decouples action selection and action evaluation steps to reduce overestimation bias.
- Prioritized Replay further improves on Double DQN by optimizing replay strategy.
- Many papers have suggested that switching to on-policy learning allows agent to learn faster in Atari environments
- AC3 works on policy gradient, which learns a policy and its associated value function.

2.3 Neural Episodic Control.

- NEC rapidly latches onto successful strategies as soon as they are experienced, instead of waiting many steps.
- The Agent has 3 components:
 - 1. Convoluted Neural Network Processes pixel images.
 - 2. Set of memory modes One per action.
 - 3. Final Network Convert action memories into Q(s, a) values.
- For each action, NEC has a memory module with key-value pairs called differentiable neural dictionary (DND)

IntroductionBackgroundMethods○○○○○○○○○○○○○○○

2.4 Differentiable Neural Dictionary

- DND has 2 operations, lookup and write
- The output of lookup is a weighted sum of values in memory, whose weights are given by normalized kernels between lookup key and corresponding key in memory.
- After DND is queried, new key-value pair is written into memory. Writes are appendonly.

1.2 Problem3(DND)1.3 Problem Statement43.3 N-step Updates & Training Loop1.4 Motivation53.4 Experimental Setup2. Background64. Results2.1 DQN and Reinforcement Learning4.1 Median Human-Normalized Score2.2 Improvements on DQN82.3 Neural Episodic Control92.4 Differentiable Neural Dictionary103. Methods11	1. Introduction 1	trol 12
1.3 Problem Statement	1.1 Can AI learn as fast as Humans? . 2	3.2 Differentiable Neural Dictionary
1.4 Motivation	1.2 Problem 3	(DND)
2. Background	1.3 Problem Statement 4	3.3 N-step Updates & Training Loop 14
2.1 DQN and Reinforcement Learning 7 2.2 Improvements on DQN	1.4 Motivation 5	3.4 Experimental Setup 15
2.2 Improvements on DQN	2. Background 6	4. Results 16
2.3 Neural Episodic Control	2.1 DQN and Reinforcement Learning 7	4.1 Median Human-Normalized Score
2.4 Differentiable Neural Dictionary 10 3. Methods	2.2 Improvements on DQN 8	17
3. Methods 11	2.3 Neural Episodic Control 9	
	2.4 Differentiable Neural Dictionary 10	
3.1 Overview of Neural Episodic Con-	3. Methods 11	
1	3.1 Overview of Neural Episodic Con-	

3.1 Overview of Neural Episodic Control

- Three Main Components:
 - 1. CNN Embedding Network for state representation
 - 2. **Memory Module (DND)**: one per action
 - 3. Final Network to combine memory outputs into Q(s, a)
- Key Idea: Store (key, value) pairs in a large external memory
 - ► **Keys** = slow-changing embeddings from CNN
 - ► **Values** = fast-updated action-value estimates
- Motivation: "Episodic memory" allows rapid assimilation of new experiences

3.2 Differentiable Neural Dictionary (DND)

- Differentiable Neural Dictionary = Key-Value Store
 - Lookup: find nearest keys to current embedding h
 - Weighted Sum: output value is a kernel-weighted average of stored values
- Memory Growth: append-only writes; update existing entries if the key already exists
- Efficient Retrieval: approximate nearest neighbor search (e.g., kd-trees) allows large-scale memory

• N-step Q-learning for faster reward propagation:

$$Q^{N}(s_{t}, a_{t}) = \sum_{j=0}^{N-1} \gamma^{j} r_{t+j} + \gamma^{N} \max_{a'} Q(s_{t+N}, a')$$

• Memory Update:

$$Q_i \leftarrow Q_i + \alpha (Q^N - Q_i)$$

• **Replay Buffer**: small buffer to train the CNN embedding; slow gradient updates to refine representation.

3.4 Experimental Setup

- 57 **Atari 2600** games (Arcade Learning Environment)
- Training from 1M to 40M frams of gameplay

$$Human-Normalized\ Score\ (HNS) = \frac{score_{agent} - score_{random}}{score_{human} - score_{random}}$$

- Recorded performance at specific checkpoints: 1M, 2M, 4M, 10M, 20M, and 40M
 frames
- Compared with: DQN, Double DQN, Prioritized Replay, A3C, MFEC
- NEC uses same CNN architecture as DQN for fair comparison

1. Introduction 1	trol
1.1 Can AI learn as fast as Humans? . 2	3.2 Differentiable Neural Dictionary
1.2 Problem 3	(DND)
1.3 Problem Statement 4	3.3 N-step Updates & Training Loop 14
1.4 Motivation 5	3.4 Experimental Setup 15
2. Background 6	4. Results 16
2.1 DQN and Reinforcement Learning 7	4.1 Median Human-Normalized Score
2.2 Improvements on DQN 8	17
2.3 Neural Episodic Control 9	
2.4 Differentiable Neural Dictionary 10	
3. Methods	
3.1 Overview of Neural Episodic Con-	

4.1 Median Human-Normalized Score

• NEC uses same CNN architecture as DQN for fair comparison

