

# Criptología. Logaritmo discreto

Criptología y Seguridad de los Datos (CSD)

#### ©Damián López







December 20, 2022





### Índice

Criptografía basada en el logaritmo discreto Intercambio de clave Cifrado Firma digital Identificación
Criptoanálisis
Baby-step Giant-step
Pollard-rho
Index-calculus



### Bibliografía

- → Handbook of applied crytography. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. CRC Press. 1996.
- → Understanding Cryptography. *C. Paar and J. Pelzl.* Springer. 2010.
- → A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms *T. ElGamal*. IEEE Transactions on Information Theory, Vol. IT-31, No. 4, July 1985.
- → Digital Signature Standard (DSS). FIPS 186-4 (2013) y FIPS 186-5 (draft).
- → Schnorr Non-interactive Zero-Knowledge Proof. RFC 8235
- → The Secure Shell (SSH) Transport Layer Protocol. RFC 4253
- → Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer. RFC 5656





# Criptografía basada en el logaritmo discreto

Consideremos un entero n, el grupo multiplicativo  $\mathbb{Z}_n^*$ , y un elemento  $\alpha$  de  $\mathbb{Z}_n^*$ .

Dado  $\beta \in \mathbb{Z}_p^*$ , se busca el valor k tal que:

$$\beta = \alpha^k \bmod n,$$

a este valor k se le conoce como LOGARITMO DISCRETO DE  $\beta$  (EN BASE  $\alpha$ ).

etsinf



#### Intercambio de clave

Diffie-Hellman

**Require:** Un valor primo p y un generador  $\alpha$  de  $\mathbb{Z}_p^*$ . // públicos **Require:** Dos interlocutores *Alice* y *Bob* 

// entero secreto

// entero secreto

**Ensure:** Comunicación segura de un valor de  $\mathbb{Z}_p^*$ 

- 1: Método
- 2:  $\langle Alice \rangle$  Genera aleatoriamente  $k_A$
- 3:  $\langle Alice \rightarrow Bob \rangle$  Envia  $S_A = \alpha^{k_A} \mod p$
- 4:  $\langle Bob \rangle$  Genera aleatoriamente  $k_B$
- 5:  $\langle Alice \leftarrow Bob \rangle$  Envia  $S_B = \alpha^{k_B} \mod p$
- 6:  $\langle Alice \rangle$  Calcula  $H = S_B^{k_A} \mod p$
- 7:  $\langle Bob \rangle$  Calcula  $H = S_A^{k_B} \mod p$
- 8: FinMétodo.

### Intercambio de clave

#### **ECDH**

**Require:** Una curva elíptica  $y^2 \equiv x^3 + ax + b \pmod{n}$ 

**Require:** Un punto G de la curva

Require: Dos interlocutores Alice y Bob

**Ensure:** Un punto P de la curva comunicado de forma segura

- 1: Método
- 2:  $\langle Alice \rangle$  Genera aleatoriamente el secreto  $k_A$
- 3:  $\langle Bob \rangle$  Genera aleatoriamente el secreto  $k_B$
- 4:  $\langle Alice \rightarrow Bob \rangle$  Enviar  $S_A = k_A G \mod n$
- 5:  $\langle Alice \leftarrow Bob \rangle$  Enviar  $S_B = k_B G \mod n$
- 6:  $\langle Alice \rangle$  Calcular  $H = k_A S_B \mod n$
- 7:  $\langle Bob \rangle$  Calcular  $H = k_B S_A \mod n$
- 8: FinMétodo.



entero

/ entero

### Cifrado

ElGamal: Generación de la clave

### **Ensure:** Clave ElGamal $\langle K_{pb}, K_{pr} \rangle$

- 1: Método
- 2: Generar un valor primo (grande) p y obtener un generador  $\alpha$  de  $\mathbb{Z}_n^*$
- 3: Generar aleatoriamente un entero  $1 \le a \le p-2$
- 4: Calcular  $\beta = \alpha^a \mod p$
- 5:  $K_{pb} = (p, \alpha, \beta)$
- 6:  $K_{pr} = a$
- 7: **return**  $\langle K_{pb}, K_{pr} \rangle$
- 8: FinMétodo



### Cifrado

ElGamal: Cifrado

- **Require:**  $K_{pb}^{B} = n$ : Componente pública de la clave ElGamal del destinatario
- **Require:** x: Mensaje a cifrar // valor entero módulo p)

**Ensure:** y: **Cifrado** ElGamal del mensaje x

- 1: Método
- 2: Generar aleatoriamente un entero  $1 \le k \le p-2$  {distinto para cada mensaje}
- 3:  $\gamma = \alpha^k \bmod p$
- 4:  $\delta = x \cdot (\beta)^k \mod p$
- 5: **return**  $(\gamma, \delta)$
- 6: FinMétodo



#### Cifrado

#### ElGamal: Descifrado

- **Require:**  $K_{pr}^{B} = a$ : Componente privada de la clave ElGamal del destinatario
- **Require:**  $y = (\gamma, \delta)$ : Criptograma dirigido al destinatario // enteros módulo p)
- **Ensure:** x: **Descifrado** del mensaje cifrado ElGamal
  - 1: Método
  - 2: Calcular  $\gamma^{p-1-a} \bmod p = \gamma^{-a} \bmod p$
  - 3:  $\mathbf{x} = (\gamma^{-\mathbf{a}} \cdot \delta) \bmod \mathbf{p}$
  - 4: return x
  - 5: FinMétodo





### Firma digital

DSA: Generación de la clave

**Require:** Tamaños N y L que determinan la clave.

**Ensure:** Clave firma DSS  $\langle K_{pb}, K_{pr} \rangle$ 

- 1: Método
- 2: Seleccionar q primo tal que  $2^{N-1} < q < 2^N$
- 3: Escoger p primo  $2^{L-1} tal que <math>q$  divide (p-1)
- 4: Seleccionar  $\alpha$  generador del grupo de orden q en  $\mathbb{Z}_p^*$
- 5: Escoger aleatoriamente  $1 \le a \le q-1$
- 6:  $\beta = \alpha^a \mod p$
- 7:  $K_{pb} = (p, q, \alpha, \beta)$
- 8:  $K_{pr} = (a)$
- 9: **return**  $\langle K_{pb}, K_{pr} \rangle$
- 10: FinMétodo



//Clave de verificación

//Clave de firma

### Firma digital

DSA: Proceso de firma

- **Require:**  $K_{pr}^{A} = (a)$ : Clave de firma DSA.
- **Require:** Función resumen h de M bits.
- **Ensure:**  $x_f = (\gamma, \delta)$ : **Firma** DSA del mensaje x.
  - 1: Método
  - 2: Generar aleatoriamente k tal que  $1 \leq h < q$  y  $\mathit{mcd}(k,q) = 1$  // k tiene inverso módulo q
  - 3: Guardar en x' los min(N, M) bits más significativos de h(x).
  - 4:  $\gamma = (\alpha^k \bmod p) \bmod q$
  - 5:  $\delta = k^{-1}(x' + a\gamma) \mod q$
  - 6:  $x_f = (\gamma, \delta)$
  - 7: return  $x_f$
  - 8: FinMétodo



## Firma digital

DSA: Verificación de firma

**Require:** Un número entero positivo compuesto *n* 

**Ensure:** Booleano que determina la validez de la firma

- 1: Método
- 2: if not  $0 < |\gamma|, |\delta| < q$  then
- return False
- 4: end if
- 5: Calcular  $\delta^{-1} \mod q$
- 6:  $u_1 = \delta^{-1} x' \mod q$
- 7:  $u_2 = \delta^{-1} \gamma \mod q$
- 8: **if**  $(\alpha^{u_1}\beta^{u_2} \bmod p) \bmod q = \gamma$  **then** Firma Vericada **else**
- Firma no verificada end if
- 9: FinMétodo





## Identificación

#### Schnorr: Configuración

- 1: Autoridad de confianza Parámetros del sistema
- 2: Selección de enteros primo p y q tal que p-1 es divisible por q // $p \geq 2^{1024}, \ q \geq 2^{512}$
- 3: Selección de  $\beta$  un generador de un grupo de orden q.
- 4: Distribución segura de  $\langle p, q, \beta \rangle$  y cert<sub>T</sub> a los usuarios.
- 5: Elección de un parámetro de confianza t

$$// 2^t < q$$
, (p.e.  $t = 60$ )

- 6: **Usuarios** Parámetros de usuario
- 7: Asignación a cada usuario A de una identidad única  $I_A$
- 8: Elección por A de una clave privada  $0 \le a \le q-1$
- 9: Cálculo de  $v = \beta^{-a} \mod p$ .
- 10: Registro de  $I_A$  y v por la autoridad T, obteniendo  $cert_A = \langle I_A, v, F_T(I_A, v) \rangle$ .



### Identificación

#### Schnorr: Identificación

- 1. Método
- 2: A escoge aleatoriamente un entero  $1 \le r \le q-1$
- 3: A calcula  $x = \beta^r \mod p$
- 4:  $A \rightarrow B$ :  $\langle cert_A, x \rangle$
- 5. B valida el certificado de A
- 6: B selecciona un desafío aleatorio  $1 \le e \le 2^t < q$ .
- 7:  $A \leftarrow B$ :  $\langle e \rangle$  // (challenge) e no utilizado anteriormente
- 8: A comprueba que  $1 \le e \le 2^t$
- 9:  $A \rightarrow B$ :  $\langle y = ae + r \mod q \rangle$
- 10: B calcula  $z = \beta^y v^e \pmod{p}$
- 11: if x = z then Id.correcta else Id.fallida end if
- 12: FinMétodo.





// (witness)

// (response)

## Criptoanálisis: Baby-step Giant-step

Dado p primo, el grupo  $\mathbb{Z}_p^*$  y números  $\alpha, \beta \in \mathbb{Z}_n$ , para obtener k $\beta = \alpha^k \mod p$ , se considera que:

Si 
$$n = \sqrt{p-1}$$
, entonces  $k = qn + r$ , por lo que:

$$\alpha^k \equiv \alpha^{qn+r} \equiv \alpha^{qn} \alpha^r \pmod{p},$$

por lo que, si podemos obtener  $\alpha^{-qn}$ , entonces:

$$\alpha^{k} \alpha^{-qn} \equiv \alpha^{qn} \alpha^{-qn} \alpha^{r} \equiv \alpha^{r} \pmod{p}$$

**/** etsi**nf** 



# Criptoanálisis: Baby-step Giant-step

#### Algoritmo

**Require:** Un valor primo  $\emph{p}$ , un generador  $\alpha$  de  $\mathbb{Z}_{\emph{p}}^*$ 

**Require:** Un valor  $\beta$  de  $\mathbb{Z}_p^*$ 

**Ensure:** k tal que  $\beta \equiv \alpha^{k} \pmod{p}$ 

- 1:  $n = \lceil \sqrt{p} \rceil$
- 2: **for** r = 0 to n 1 **do**
- 3: Almacena en T el par  $\langle r, \alpha^r \mod p \rangle$  indexado por  $\alpha^r \mod p$
- 4: **end for** //El tiempo de acceso a la tabla T debe ser constante
- 5: Calcula  $\alpha^{-n} \bmod p$  y asigna  $\gamma = \beta$
- 6: **for** q = 0 **to** n 1, q + + **do**
- 7: **if** Existe un par  $\langle j, \gamma \rangle$  en la tabla T then k = qn + j end if
- 8:  $\gamma = \gamma \alpha^{-n} \mod p$
- 9: end for







# Criptoanálisis: Baby-step Giant-step

#### Ejemplo

Logaritmo discreto de  $\beta=124$  en base 2 módulo 383:  $n=\lceil\sqrt{383}\rceil=20$ . El primer paso es construir la tabla con los babyestens:

Calculamos  $2^{-20} \mod 383 = 54$ , e iteramos:

 $\langle 8, 256 \rangle$   $\langle 10, 258 \rangle$   $\langle 12, 266 \rangle$   $\langle 14, 298 \rangle$   $\langle 19, 344 \rangle$ 

$$\begin{array}{c|cccc} q & \gamma & T[\gamma] \\ \hline 0 & \gamma = \beta = 124 & \not\exists \ \langle\_, 124 \rangle \\ 1 & \gamma = \gamma \cdot 2^{-20} \bmod 383 = 185 & \not\exists \ \langle\_, 185 \rangle \\ 2 & \gamma = \gamma \cdot 2^{-20} \bmod 383 = 32 & \langle 5, 32 \rangle \end{array}$$

Con lo que  $k = 2 \cdot 20 + 5 = 45$ , en efecto,  $2^{45} \mod 383 = 124$ .



Máster Oficial Universitario en Ciberseguridad v Ciberinteligencia

- → Algoritmo Montecarlo que hace probable encontrar la solución con complejidad temporal de  $\mathcal{O}(\sqrt{p})$ , necesidades muy bajas de memoria.
- $\longrightarrow$  Modifica iterativamente valores  $x_i$ ,  $a_i$  y  $b_i$  que cumplen siempre que:

$$x_i = \alpha^{a_i} \beta^{b_i} \mod p$$





Si se encuentran  $x_i$  y  $x_{2i}$  equivalentes, entonces podemos obtener el logaritmo discreto de  $\beta$ .

etsinf

Para realizar el cálculo es necesario contar con o, el tamaño del grupo generado por  $\alpha$  (el valor tal que  $\alpha^o \mod p = 1$ ).

$$\alpha^{a_i}\beta^{b_i} \equiv \alpha^{a_{2i}}\beta^{b_{2i}} \pmod{p}$$

$$\beta^{b_i}\beta^{-b_{2i}} \equiv \alpha^{a_{2i}}\alpha^{-a_i} \pmod{p}$$

$$\alpha^{t(b_i-b_{2i})} \equiv \alpha^{(a_{2i}-a_i)} \pmod{p}$$

$$t(b_i-b_{2i}) \equiv (a_{2i}-a_i) \pmod{p}$$

donde t es valor que se busca.



El algoritmo original clasifica los valores  $x_i$  en tres bloques de tamaño similar, aplicando una operación distinta para obtener el valor  $x_{i+1}$ :

$$x_{i+1} = \begin{cases} \beta x_i \bmod p & \text{si } x_i \in S_1 \\ x_i^2 \bmod p & \text{si } x_i \in S_2 \\ \alpha x_i \bmod p & \text{si } x_i \in S_3 \end{cases}$$

La modificación de los  $x_i$  implica modificar los valores asociados  $a_i$  y  $b_i$ para mantener la igualdad  $x_i = \alpha^{a_i} \beta^{b_i} \mod p$ :

etsinf



Habitualmente:

$$x_{i+1} = \begin{cases} \beta x_i \bmod p & \text{si } x_i \bmod 3 = 1 \\ x_i^2 \bmod p & \text{si } x_i \bmod 3 = 0 \\ \alpha x_i \bmod p & \text{si } x_i \bmod 3 = 2 \end{cases}$$

$$a_{i+1} // b_{i+1} = \begin{cases} a_i // b_i + 1 \mod p - 1 & \text{si } x_i \mod 3 = 1 \\ 2a_i \mod p - 1 // 2b_i \mod p - 1 & \text{si } x_i \mod 3 = 0 \\ a_i + 1 \mod p - 1 // b_i & \text{si } x_i \mod 3 = 2 \end{cases}$$

Denotando con  $f(x_i, a_i, b_i)$  la función que obtiene, de acuerdo con la clasificación particular de  $x_i$ , los valores  $x_{i+1}$ ,  $a_{i+1}$  y  $b_{i+1}$  (o bien  $f(x_i, a_i, b_i, p, o)$  para un valor modular p y orden de  $\alpha$  igual a o).



#### Algoritmo

**Require:** Un entero p, un generador  $\alpha$  de un subgrupo de  $\mathbb{Z}_p^*$  de orden o y un valor  $\beta$  de  $<\alpha>$ 

- **Ensure:** k tal que  $\beta \equiv \alpha^k \pmod{p}$ 
  - 1: a = b = aa = bb = 0; i = x = xx = 1
- 2: while i < p do
- x = f(x, a, b, p, o)3:
- xx = f(xx, aa, bb, p, o); xx = f(xx, aa, bb, p, o)4:
- 5: if x == xx then
- if  $mcd(b-bb, o) \neq 1$  then return False end if 6:
- return  $(aa a)(b bb)^{-1} \mod o$ 7:
- end if 8:
- 9: end while
- 10: return False





#### Ejemplo

Buscamos el logaritmo discreto de  $\beta=804$  en base  $\alpha=9$  módulo  $\mathbf{p}=853$ .

Tenemos en cuenta que | < 9 > | = 71.

Clasificamos los valores de acuerdo con la regla:

$$\begin{cases} x_i \in S_1 & \text{si } x_i \bmod 3 = 1, \\ x_i \in S_2 & \text{si } x_i \bmod 3 = 0, \\ x_i \in S_3 & \text{si } x_i \bmod 3 = 2, \end{cases}$$



#### Ejemplo

Las iteraciones se resumen en la tabla:

| i | Xi  | $a_i$ | $b_i$ | $x_{2i}$ | $a_{2i}$ | $b_{2i}$ |                                       |
|---|-----|-------|-------|----------|----------|----------|---------------------------------------|
| 0 | 1   | 0     | 0     | 1        | 0        | 0        |                                       |
| 1 | 804 | 0     | 1     | 695      | 0        | 2        | $x_i = \alpha^{a_i} \beta^{b_i} \mod$ |
| 2 | 695 | 0     | 2     | 850      | 2        | 2        | $x_i = \alpha^{a_i} \beta^{b_i} \mod$ |
| 3 | 284 | 1     | 2     | 284      | 4        | 6        |                                       |

Para obtener t a partir de  $t(2-6) \equiv (4-1) \pmod{71}$ necesitamos:

$$(2-6)^{-1} \mod 71 = (2-6+71)^{-1} \mod 71 = (67)^{-1} \mod 71 = 53.$$

Así,  $t = (4-1)67^{-1} = (4-1) \cdot 53 \mod 71 = 17$ . En efecto.  $9^{17} \mod 853 = 804$ .





- Algoritmo que considera una base de primos S que permita la representación de la mayoría de elementos del grupo como producto de elementos en S
- Obtención de una serie de ecuaciones lineales que permitan obtener eficientemente los logaritmos discretos de los valores en la base.
- ullet Búsqueda de un entero p tal que  $\beta \cdot \alpha^p \mod n$  sea factorizable en S.

etsinf



Algoritmo

**Require:** Un grupo finito cíclico  $(G, \cdot \text{mod } n)$ ; un generador  $\alpha$  de un subgrupo de orden m;

Require:  $\vec{\beta}$ 

**Ensure:** t tal que  $\alpha^t \mod n = \beta$ 

1: Selecionar una base  $S = \{p_1, p_2, \dots, p_k\}$ 



#### Algoritmo

- 2: while no se disponga de suficientes relaciones lineales do
- 3: Generar aleatoriamente r y calcular  $\alpha^r \mod n$
- 4: Descomponer  $\alpha^r \mod n$  como:

$$\alpha^r = \prod_{i=1}^k p_i^{e_i}, \quad e_i \ge 0$$

- 5: **if** es posible ( $\alpha^r$  es *S*-smooth) **then**
- 6: Aplicar logaritmos para obtener una relación lineal:

$$r = \sum_{i=1}^{k} e_i \log_{\alpha} p_i \mod m, \quad e_i \ge 0$$

- 7: end if
- 8: end while
- 9: Resolver el sistema para obtener los logaritmos de los elementos en *S*





#### Algoritmo

- 10: while no se haya encontrado solución do
- 11: Generar aleatoriamente *r*
- 12: **if**  $\beta \cdot \alpha^r \mod n$  es *S*-smooth **then**
- 13: Obtener:  $\beta \alpha^r = \prod_{i=1}^k p_i^{d_i} \mod n, \quad d_i \geq 0$
- 14: Obtener:  $\log_{\alpha} \beta + r = \sum_{i=1}^{n} d_i \log p_i \mod m, \quad d_i \geq 0$  y
  - despejar  $t = \log_{\alpha} \beta$
- 15: **return** *t*
- 16: end if
- 17: end while



#### Ejemplo

Sea n = 1109, y  $\alpha = 19$  donde  $m = | < \alpha > | = 277$ .

Buscamos el logaritmo discreto de  $\beta=274$ . Consideraremos la base:

$$S = \{2, 3, 5, 7, 11, 13\}.$$

Primero generamos enteros r aleatorios que conduzcan a valores  $\alpha^r \mod n$  que puedan descomponerse en S (valores S- smooth):

$$\alpha^{83} \equiv 2^5 \cdot 7 \pmod{1109}$$
 $\alpha^{235} \equiv 3^4 \cdot 13 \pmod{1109}$ 
 $\alpha^{324} \equiv 3^2 \cdot 7^2 \pmod{1109}$ 
 $\alpha^{497} \equiv 2^2 \cdot 7^2 \pmod{1109}$ 

etsinf



#### Eiemplo

que, aplicando logaritmos, dan lugar a relaciones lineales módulo el orden del grupo:

$$83 \equiv 5 \log_{\alpha} 2 \cdot \log_{\alpha} 7 \pmod{277}$$

$$235 \equiv 4 \log_{\alpha} 3 \cdot \log_{\alpha} 13 \pmod{277}$$

$$324 \equiv 2 \log_{\alpha} 3 \cdot 2 \log_{\alpha} 7 \pmod{277}$$

$$497 \equiv 2 \log_{\alpha} 2 \cdot 2 \log_{\alpha} 7 \pmod{277}$$

$$\dots$$

Resolviendo el sistema de ecuaciones:

$$log_{\alpha}2 = 201$$
  $log_{\alpha}7 = 186$   $log_{\alpha}3 = 253$   $log_{\alpha}11 = 90$   $log_{\alpha}5 = 7$   $log_{\alpha}13 = 54$ 



Ejemplo

Iteramos para buscar un valor t tal que  $\beta \alpha^t \mod n$  sea S-smooth... por ejemplo  $\beta \alpha^{17} = 2^8 \mod 1109$ .

A partir de este punto:

$$\log_{\alpha} \beta + 17 = 8 \log_{\alpha} 2 \mod 277$$
  
 $\log_{\alpha} \beta = 8 \log_{\alpha} 2 - 17 \mod 277 = 206$ 

etsinf

En efecto,  $\alpha^{206} \mod 1109 = 274$ .









