Foundations of Stochastic Analysis

Measure Theory, Probability, and Limit Theorems

Hooman Zare

SUT

August 15, 2025

Infinite Coin Toss Experiment

- Sample space: $\Omega = \{0,1\}^{\mathbb{N}}$ (all infinite binary sequences)
- Interpretation:

$$\omega = (\omega_1, \omega_2, \dots), \quad \omega_i \in \{0, 1\}$$
 $1 = \mathsf{Heads}, \quad 0 = \mathsf{Tails}$

Define two fundamental functions:

$$X_n(\omega) = \omega_n$$
 (Outcome of *n*-th toss)
$$S_n(\omega) = \sum_{k=1}^n \omega_k$$
 (Number of heads in first *n* tosses)
$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad \cdots$$
 toss 1 toss 2 toss 3 toss 4 toss 5

Finite-dimensional Cylinder Sets

Definition

Set $A \subseteq \Omega$ is **finite-dimensional** if $\exists n \in \mathbb{N}$ and $B \subseteq \{0,1\}^n$ such that:

$$A = \{\omega \in \Omega : (\omega_1, \dots, \omega_n) \in B\} = B \times \{0, 1\} \times \{0, 1\} \times \cdots$$

Example

 $A = \{\omega : \omega_1 = 1, \omega_3 = 0\}$ corresponds to:

$$B = \{(1, x, 0) : x \in \{0, 1\}\} \subseteq \{0, 1\}^3$$

Field of Cylinder Sets

 $\mathcal{F}_* = \{A \subseteq \Omega : A \text{ is finite-dimensional} \}$ forms a field (algebra) but not a σ -algebra.

Probability Measure on Cylinder Sets

Define $P:\mathcal{F}_* o [0,1]$:

$$P(A) = \frac{|B|}{2^n}$$
 where A corresponds to $B \subseteq \{0,1\}^n$

Example (Probability of heads on *n*-th toss)

$$A = \{\omega : X_n(\omega) = 1\} \implies B = \{(x_1, \dots, x_n) \in \{0, 1\}^n : x_n = 1\}$$
$$|B| = 2^{n-1} \implies P(A) = \frac{2^{n-1}}{2^n} = \frac{1}{2}$$

$$A = \{\omega : S_n(\omega) = k\} \implies B = \left\{x \in \{0, 1\}^n : \sum_{i=1}^n x_i = k\right\}$$
$$|B| = \binom{n}{k} \implies P(A) = \frac{\binom{n}{k}}{2^n}$$

Hooman Zare (SUT)

Law of Large Numbers - Motivation

Theorem (Strong Law of Large Numbers)

For fair coin tosses:

$$P\left(\left\{\omega: \lim_{n\to\infty} \frac{S_n(\omega)}{n} = \frac{1}{2}\right\}\right) = 1$$

Problem: The set $C = \{\omega : \lim_{n \to \infty} S_n(\omega)/n = 1/2\}$ is not in \mathcal{F}_* (requires infinite-dimensional specification).

Solution: Extend P to $\sigma(\mathcal{F}_*)$ using measure theory.

Measure Theoretic Foundation

Definition (σ -algebra)

A collection $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra if:

- $\mathbf{0} \ \Omega \in \mathcal{F}$
- $\mathbf{Q} A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- $\mathbf{3} \ A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Definition (Probability measure)

A function $P: \mathcal{F} \to [0,1]$ is a **probability measure** if:

- $P(\Omega) = 1$
- ② Countable additivity: For disjoint $\{A_i\}_{i=1}^{\infty}$,

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

Carathéodory Extension Theorem

Theorem (Carathéodory)

Let \mathcal{F}_* be a field and $P:\mathcal{F}_* \to [0,1]$ be:

- Finitely additive
- Countably additive on \mathcal{F}_* : If $\{A_n\} \subset \mathcal{F}_*$ disjoint with $\bigcup_n A_n \in \mathcal{F}_*$, then $P(\bigcup_n A_n) = \sum_n P(A_n)$

Then P extends uniquely to a probability measure on $\sigma(\mathcal{F}_*)$.

Key lemma: For cylinder sets, *P* satisfies:

$$A_n \downarrow \emptyset \implies P(A_n) \rightarrow 0$$

Proof sketch: Use compactness of $\Omega = \{0,1\}^{\mathbb{N}}$ with product topology. Finite-dimensional cylinders are clopen sets. If $A_n \downarrow \emptyset$ but inf $P(A_n) > 0$, compactness gives $\omega \in \cap A_n$, contradiction.

Borel-Cantelli and SLLN Setup

Define the critical set:

$$C = \left\{ \omega : \lim_{n \to \infty} \frac{S_n(\omega)}{n} = \frac{1}{2} \right\}$$

Equivalently:

$$C = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ \omega : \left| \frac{S_n(\omega)}{n} - \frac{1}{2} \right| < \frac{1}{k} \right\}$$

Complement:

$$C^{c} = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{ \omega : \left| \frac{S_{n}(\omega)}{n} - \frac{1}{2} \right| \ge \frac{1}{k} \right\}$$

Chebyshev Inequality and Variance

For fixed k, define:

$$A_k = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{ \omega : \left| \frac{S_n(\omega)}{n} - \frac{1}{2} \right| \ge \frac{1}{k} \right\}$$

By Chebyshev:

$$P\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| \ge \frac{1}{k}\right) \le k^2 \cdot E\left[\left(\frac{S_n}{n} - \frac{1}{2}\right)^2\right]$$

Compute variance:

$$Z_i = X_i - \frac{1}{2}, \quad E[Z_i] = 0, \quad \delta(Z_i) = \frac{1}{4}$$

$$\delta(S_n/n) = \delta\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n \delta(X_i) = \frac{1}{4n}$$

Thus:

$$P\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| \ge \frac{1}{k}\right) \le k^2 \cdot \frac{1}{4n}$$

Completing the Proof

$$P(A_k) = P\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} D_{n,k}\right)$$

$$= \lim_{N \to \infty} P\left(\bigcup_{n=N}^{\infty} D_{n,k}\right)$$

$$\leq \lim_{N \to \infty} \sum_{n=N}^{\infty} P(D_{n,k})$$

$$\leq \lim_{N \to \infty} \sum_{n=N}^{\infty} \frac{k^2}{4n} = 0$$

where
$$D_{n,k} = \left\{ \omega : \left| \frac{S_n(\omega)}{n} - \frac{1}{2} \right| \ge \frac{1}{k} \right\}$$
.

Thus $P(A_k) = 0$ for all k, so:

$$P(C^{c}) = P\left(\bigcup_{k=0}^{\infty} A_{k}\right) < \sum_{k=0}^{\infty} P(A_{k}) = 0$$
Foundations of Stochastic Analysis

August 15, 2025

Foundations of Stochastic Analysis

Hooman Zare (SUT)

Random Vectors and Measurability

Definition

Let (Ω, \mathcal{F}, P) probability space, (Ω', \mathcal{F}') measurable space. A function:

$$X:\Omega\to\Omega'$$

is a **random vector** if X is \mathcal{F}/\mathcal{F}' -measurable:

$$\forall A \in \mathcal{F}', \quad X^{-1}(A) \in \mathcal{F}$$

Generated σ -algebra

The σ -algebra generated by X:

$$\sigma(X) = \{X^{-1}(A) : A \in \mathcal{F}'\}$$

is the smallest σ -algebra making X measurable.

Distribution of Random Vectors

Definition

The **distribution** (or law) of X is the measure P_X on (Ω', \mathcal{F}') :

$$P_X(A) = P(X^{-1}(A)) = P(X \in A), \quad \forall A \in \mathcal{F}'$$

Example (Binomial distribution)

For S_n in coin tosses:

$$P_{S_n}(\{k\}) = P(S_n = k) = \binom{n}{k} \frac{1}{2^n}, \quad k = 0, 1, \dots, n$$

Example (Dyadic representation)

 $X: ([0,1), \mathcal{B}, m) \to (\{0,1\}^{\mathbb{N}}, \sigma(\mathcal{F}_*))$ with:

$$x = \sum_{i=1}^{\infty} \frac{X_i(x)}{2^i}, \quad X_i(x) = i$$
-th binary digit

Foundations of Stochastic Analysis

Distribution Functions

Definition

For random variable $X : \Omega \to \mathbb{R}$, the **cumulative distribution function** (CDF) is:

$$F_X(x) = P(X \le x) = P(\{\omega : X(\omega) \le x\})$$

Theorem (Properties of CDF)

Any CDF satisfies:

- **1** Monotonicity: $x < y \implies F_X(x) \le F_X(y)$
- **3** Right-continuity: $\lim_{y\downarrow x} F_X(y) = F_X(x)$

Conversely, any such function is a CDF for some random variable.

Examples of Distributions

Example (Uniform distribution on [0,1)

]

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Measure is Lebesgue measure on [0,1].

Example (Standard normal distribution)

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

Theorem (Uniqueness of distribution)

If $F_X = F_Y$, then X and Y have the same distribution.

Measure Extension Techniques

Theorem (Dynkin's π - λ Theorem)

Let $\mathcal P$ be a π -system (closed under intersection) and $\mathcal L$ be a λ -system:

- $\mathbf{0}$ $\Omega \in \mathcal{L}$

If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Application: To show two measures agree on $\sigma(\mathcal{P})$, verify:

- **1** They agree on a π -system ${\mathcal P}$
- 2 The collection where they agree is a λ -system

Completing Measure Spaces

Definition

A measure space $(\Omega, \mathcal{F}, \mu)$ is **complete** if:

$$N \in \mathcal{F}, \mu(N) = 0, \quad A \subseteq N \implies A \in \mathcal{F}$$

Theorem (Completion)

Any measure space can be completed:

$$\overline{\mathcal{F}} = \{ A \subseteq \Omega : \exists B, C \in \mathcal{F} \text{ with } B \subseteq A \subseteq C, \mu(C \setminus B) = 0 \}$$

with
$$\overline{\mu}(A) = \mu(B) = \mu(C)$$
.

Example

Lebesgue σ -algebra is the completion of Borel σ -algebra under Lebesgue measure.

Coin Toss vs. Lebesgue Measure

Deep connection:

$$egin{aligned} (\{0,1\}^{\mathbb{N}}, \sigma(\mathcal{F}_*), P_{\mathsf{coin}}) &\cong ([0,1], \mathcal{B}, m) \ & \omega \mapsto \mathsf{x} = \sum_{i=1}^{\infty} rac{\omega_i}{2^i} \end{aligned}$$

Consequences:

- SLLN for coin tosses \iff SLLN for Lebesgue-almost every $x \in [0,1]$
- Binomial distribution → Normal distribution via CLT

Advanced Topics Preview

Further developments:

- Martingales: Fair game processes $E[X_{n+1}|\mathcal{F}_n] = X_n$
- **Stochastic integration:** Itô calculus for dW_t (Brownian motion)
- Ergodic theory: $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k \omega) = \int f d\mu$
- Malliavin calculus: Differentiation in Wiener space

Fundamental sequence

Coin toss \rightarrow Random walk \rightarrow Brownian motion \rightarrow Stochastic calculus

Foundations of Stochastic Analysis

-

Measure Theory \rightarrow Probability \rightarrow Limit Theorems \rightarrow Advanced Theory