1 Estimating the long-term health impact of nicotine exposure by dissecting the effects of 2 nicotine versus non-nicotine constituents of tobacco smoke: 3 A multivariable Mendelian randomisation study Khouja, J. N. 1,2*, Sanderson, E. 2,3, Wootton, R.E. 1,2,6, Taylor, A. E. 2,3, Church, B. A. 5, 4 Richmond, R. C.^{2,3} & Munafo, M. R.^{1,2,4} 5 6 ¹ School of Psychological Science, University of Bristol, Bristol, United Kingdom, BS8 1TU 7 ² Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 8 **BS8 2BN** 9 ³ Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK, BS8 10 2BN ⁴ NIHR Bristol Biomedical Research Centre, Bristol, UK, BS8 2BN 11 12 ⁵ School of Psychology and Vision Sciences, University of Leicester, UK, LE1 7HA 13 ⁶ Nic Waals Institute, Lovisenberg diakonale sykehus, Oslo, Norway, 0456 14 *Corresponding author 15 16 Email: jasmine.khouja@bristol.ac.uk 17 18 Short title: Health effects of nicotine versus non-nicotine constituents of tobacco smoke

19 Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

The detrimental health effects of smoking are well-known, but the impact of long-term nicotine use without exposure to the other constituents of tobacco is less clear. Given the increasing long-term use of alternative nicotine delivery systems, such as e-cigarettes, it is increasingly important to understand and separate the effects of long-term nicotine use from the impact of tobacco smoke exposure. Using a multivariable Mendelian randomisation framework, we explored the direct effects of nicotine compared with the non-nicotine constituents of tobacco smoke on health outcomes (lung cancer, chronic obstructive pulmonary disease [COPD], forced expiratory volume in one second [FEV-1], forced vital capacity [FVC], coronary heart disease [CHD], and heart rate [HR]). The results suggest that these smoking-related outcomes are not due to nicotine exposure but are caused by the other components of tobacco smoke; however, there are multiple potential sources of bias, and the results should be triangulated using evidence from a range of methodologies.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Although the detrimental health effects of smoking are well known [1], it is less clear which individual components of cigarette smoke – such as nicotine – drive these effects. In recent years, it has become increasingly important to fill this knowledge gap, given the increase in the popularity of alternative nicotine delivery systems, in particular e-cigarettes [2]. Ecigarettes are often used by smokers to stop smoking and are generally used for longer periods than conventional cessation aids which also contain nicotine (e.g., nicotine patches) [3, 4]. Although *short-term* use of nicotine without the remaining constituents of tobacco smoke is relatively harmless, the *long-term* harms of nicotine use are poorly understood [5]. Given many smokers choose to use e-cigarettes to reduce their risk of poor health outcomes [2], and that e-cigarettes can be used with or without nicotine, smokers and e-cigarette users need causal evidence regarding the possible health outcomes related to long-term nicotine use to make informed decisions regarding their e-cigarette use. Randomised controlled trials (RCT) are often employed to explore causal relationships [6], but an RCT would be unethical and impractical in this scenario - non-smokers would need to be unnecessarily exposed to nicotine for decades to understand the (potentially harmful) long-term effects of nicotine use without confounding from exposure to cigarette smoke. Mendelian randomisation (MR) is an alternative method which can be used in scenarios where RCTs are implausible or unethical. MR uses genetic variants associated with the exposure of interest to serve as instrumental variables to estimate the effect of that exposure on a particular outcome [7, 8]. Nonetheless, they require well powered genomewide association studies (GWAS) to identify such genetic variants. There are currently no available GWAS of e-cigarette use or nicotine exposure without exposure to tobacco.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Furthermore, there are insufficient data available to conduct a well-powered GWAS. Novel methods are therefore required to explore this research question. Multivariable MR (MVMR) is an extension of MR that can be used to explore the direct effect of one exposure on an outcome while accounting for the effect of another (potentially correlated) exposure or exposures [9]. The method is robust to pleiotropic effects of the single nucleotide polymorphisms (SNPs) used as instruments through the other exposures included in the model. As large-scale GWAS have identified SNPs that are associated with smoking heaviness [10] (i.e., the number of cigarettes a person smokes per day) and the nicotine metabolite ratio (i.e., how quickly a person metabolises nicotine – see below) [11] among smokers, we can employ this method to explore the effect of nicotine on selected health outcomes. Rather than exploring the total effect of smoking on a health outcome (which includes the effect of nicotine), this method allows us to separate the direct effect of nicotine versus the other constituents of tobacco smoke. However, direct measurement of nicotine is difficult. Metabolites of nicotine such as cotinine (a direct metabolite) and 3'hydroxycotinine (3HC; a metabolite of cotinine) are often used as objective measures to proxy for nicotine given the short half-life of nicotine itself [12] (Supplementary Figure S1). Cotinine and cotinine plus 3HC are highly specific biomarkers, but both are impacted by metabolism (which can differ between individuals). The nicotine metabolite ratio (NMR), is a measure of how quickly a person metabolises nicotine (3'hydroxycotinine/cotinine) and therefore causally impacts the amount of nicotine in a person's body given a set amount of nicotine exposure [13]. Figure 1 illustrates that a smoker with a higher NMR (Person A) will have less circulating nicotine in their body than a

smoker with a lower NMR (Person B) given the same level of nicotine exposure; however, because smokers with a higher NMR clear nicotine quickly from their system, this often results in them smoking more cigarettes per day (CPD) [14]. In a standard MR model with NMR as an exposure, the result may be ambiguous as it could reflect the effect of higher nicotine exposure resulting from increased smoking heaviness or lower nicotine exposure resulting from faster metabolism. In contrast, when both NMR and CPD are included in an MVMR model (Figure 2), the analysis is analogous to a fixed access experiment in which the amount of smoke exposure / cigarettes smoked is fixed and the effect of nicotine exposure per cigarette smoked can be assessed. Therefore, in an MVMR framework accounting for genetic predisposition to CPD, the results should dissect the direct effect of nicotine levels per cigarette smoked from the direct effect of the other constituents of tobacco smoke, whereby an increase in NMR reflects lower exposure to nicotine (Figure 1).

Figure 1. Illustration of the impact of the nicotine metabolite ratio on circulating nicotine and smoking heaviness.

99

100

102

103

104

105

106

107

108

109

110

111

112

Note: This illustration shows the differences in nicotine exposure between two people who smoke: Person A who has a high nicotine metabolite ratio, and Person B who has a low nicotine metabolite ratio. At timepoint 1 (T1) both Person A and B smoke one cigarette and inhale the same amount of nicotine which can be seen circulating in their body at timepoint 2 (T2). Later, at timepoint 3 (T3), Person A will have less circulating nicotine in their body than Person B (despite having inhaled the same level of nicotine) as more of the nicotine has been metabolised into cotinine. However, because smokers with higher nicotine metabolite ratios clear nicotine more quickly from their system, this often results in them smoking more cigarettes per day. So, at timepoint 4 (T4), Person A smokes another cigarette whereas Person B does not. This results in Person A having more circulating nicotine than Person B over the same time period [14].

Figure 2. Schematic of the study model

Note: This schematic shows the proposed causal pathways of the study model. Where the causal directions between variables are known (i.e., evidenced in previous research), the direction of the effect is indicated as 'positive' or 'negative'. NMR = Nicotine Metabolite Ratio. G = genetic variants associated with the named exposure.

Using this framework, it is possible to explore the effects of nicotine and the effects of the remaining constituents of tobacco smoke on health outcomes known to be impacted by smoking, and which therefore may be impacted by long-term nicotine use, such as cancer and heart and lung function [15-17]. We employed a two-sample MVMR framework to explore the direct effects of nicotine compared with the non-nicotine constituents of tobacco smoke on health outcomes (lung cancer, chronic obstructive pulmonary disease [COPD], forced expiratory volume in one second [FEV-1], forced vital capacity [FVC], coronary heart disease [CHD] and heart rate [HR]). These outcomes include positive and negative control outcomes to aid causal inference; nicotine use is known to increase heart rate, but is not thought to be carcinogenic, so if the results do not provide evidence of an effect of nicotine on heart rate, and / or if they suggest an effect of nicotine on lung cancer, the results may indicate bias from a violation of the assumptions of MR [18-20]. In supplemental analyses, our secondary aim is to compare the results with analyses using alternative proxies for nicotine exposure (i.e., cotinine and cotinine plus 3HC).

Methods 133

Data Sources

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

To identify relevant instrumental variables to include in the model, we sourced summarylevel genetic data from well-powered, published GWAS. We identified SNPs associated with NMR, cotinine, cotinine plus 3HC and smoking heaviness (measured by CPD) [10, 11, 21]. For the outcomes, we required data to be stratified by smoking status in order to be comparable with the population of the exposure GWAS data. An appropriately stratified GWAS (stratified by smoking status: ever versus never [22]) was only available for one of the outcomes, lung cancer. For the six remaining outcomes, we were not aware of any existing

available GWAS summary-level data that appropriately stratified by smoking status. We therefore used UK Biobank data to conduct GWAS of CHD, COPD, FEV, FVC and HR, stratified by smoking status and restricted to individuals of European ancestry. These analyses were:

1) stratified by whether participants had ever smoked, and further stratified into 2) current smoker, or 3) former smoker, with 4) never smoker as the comparator, and were conducted using the MRC Integrative Epidemiology Unit UK Biobank GWAS pipeline (version 2) [23, 24]. We also conducted stratified GWAS of body mass index (BMI) using UK Biobank data with the intention of including BMI as an outcome. However, these methods and results are not presented here as we identified a potential interpretation issue: the NMR GWAS was

adjusted for BMI, meaning these results would likely be biased [25].

Smoking heaviness

Liu and colleagues [10] report summary-level statistics from a GWAS meta-analysis of smoking heaviness (measured by standard deviation change in CPD categories, equivalent to 2-3 additional cigarettes per day) among 337,334 smokers of European ancestry in the GWAS and Sequencing Consortium of Alcohol and Nicotine (GSCAN). Smokers were defined as having ever or currently smoked and smoking heaviness (at the time of smoking) was binned into five categories or included as pre-defined bins from the original study (see supplementary material in Liu and colleagues, [10]. Analyses were adjusted for age, age-squared, sex, genetic principal components, and smoking status (current versus former). SNPs associated with CPD explained 4% of variance in CPD. SNPs were reported as independent if they explain additional variance in conditional analyses using a partial correlation-based score statistic [26]. The reported data are available at: https://doi.org/10.13020/3b1n-ff32.

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

Nicotine Buchwald and colleagues [11] report summary-level statistics from a GWAS meta-analysis of the standard deviation change in NMR among 5,185 current smokers of European descent with cotinine levels ≥10 ng/ml (indicating recent smoking). NMR is a ratio of 3'hydroxycotinine/cotinine which indicates how quickly a person metabolises and clears nicotine. Analyses were adjusted for population substructure, age, sex, BMI, alcohol use, and birth year. The SNPs associated with NMR explained ~38% of the variance in NMR. SNPs were reported as independent if they explained additional variance in a step-wise conditional regression using genome-wide complex trait analysis [27]. The reported data are available on request from the authors. Information relating to the nicotine measures used in the supplemental analysis (using cotinine and cotinine plus 3HC data as a proxy for nicotine exposure) can be found in the Supplementary Material (Supplemental Note S1). Lung Cancer McKay and colleagues [22] report summary-level statistics from a case-control GWAS metaanalysis of overall lung cancer risk (including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma) among 50,046 individuals of European descent using the International Lung Cancer Consortium (ILCCO). Analyses were adjusted for age, gender, country (if applicable) and significant principal components. We received the data via request to the authors and we additionally received the data stratified by smoking status (ever versus never smoking). Definitions of ever and never smoking differed by cohort included in the meta-GWAS. Details of the definitions can be found in McKay and colleagues' [22] supplementary note.

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

Non-Cancer Smoking-Related Health Outcomes We conducted GWAS of non-cancer health outcomes using data from UK Biobank, a population-based health research resource consisting of approximately 500,000 people, aged between 38 years and 73 years, who were recruited between the years 2006 and 2010 from across the UK [28]. UK Biobank has a particular focus on identifying determinants of human diseases in middle-aged and older individuals who provided a wide range of health information (data available at www.ukbiobank.ac.uk). A full description of the study design, participants, and quality control (QC) methods have been described previously [28, 29]. UK Biobank received ethics approval from the Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382). Written informed consent was obtained from participants prior to their participation in UK Biobank. Approval to use these data was sought from and approved by UK Biobank (project 9142). All studies approved by UK Biobank do not require individual ethical clearance as UK Biobank has approval from the North West Multi-centre Research Ethics Committee as a Research Tissue Bank under which each approved study operates. The full data release contains the cohort of successfully genotyped samples (n=488,377). Further information about genotyping and imputation can be found in the Supplementary Material (Supplemental Note S2). Individuals with mismatched sex were excluded and the analyses were restricted to those of 'European' ancestry using an in-house k-cluster means method. The GWAS were conducted using the linear mixed model (LMM) association method as implemented in BOLT-LMM (v2.3) [30], adjusting for genotype array, age and sex [23]. BOLT-LMM association statistics are on the linear scale, so test statistics (betas and

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Selection of genetic variants

their corresponding standard errors) relating to binary phenotypes were transformed to log odds ratios and their corresponding 95% confidence intervals (95% CI) on the liability scale using a Taylor transformation expansion series [31]. Each outcome was stratified by selfreported participant smoking status (ever [further stratified by current or former] and never), resulting in four GWAS per outcome. Smoking status was categorised as never, previous, and current smoking in UK Biobank (field ID 20116). From this variable, we derived an 'ever smokers' category which was defined as currently or having previously smoked occasionally, most days or daily (i.e., having smoked more than just once or twice). Current smoking was defined as currently smoking occasionally, most days or daily. Former smoking was defined as not currently smoking but having previously smoked occasionally, most days or daily (i.e., more than just once or twice). Those who had tried smoking once or twice or who had never smoked were categorised as never smokers. We identified COPD cases as participants who self-reported a doctor's diagnosis of COPD. Lung function (FEV-1 and FVC, in litres) was measured using a Vitalograph spirometer. CHD diagnosis was determined using linked hospital admission data (ICD codes relating to Ischemic Heart Disease). Further information regarding each health outcome (including UK Biobank field IDs) can be found in the Supplementary Material (Supplemental Note S3). **Statistical Analysis** All analyses were conducted using R version 1.4.1.

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

We selected conditionally independent (at the genome-wide significant level, $p < 5 \times 10^{-8}$) genetic variants identified in the GWAS of NMR and CPD for inclusion in the analysis [10, 11]; 55 SNPs associated with smoking heaviness were identified as conditionally independent [10]; 7 SNPs associated with the NMR were identified as conditionally independent. After removing SNPs which were not available in the outcome GWAS (where no available proxy could be identified), harmonising, and clumping the combined exposure datasets with the outcome dataset, the number of SNPs in each analysis varied. Supplementary Tables S1-S6 detail which SNPs were included and excluded (with reasons) in each analysis, and Supplemental Note S4 gives further details of the proxy search and clumping methods. We tested instrument strength and validity using the two-sample conditional F-statistic for MVMR and Cochran Q statistic [9, 32]. The conditional F-statistic for MVMR indicates instrument strength of each exposure when accounting for the prediction of other exposures in the model (i.e., whether the SNPs jointly predict smoking heaviness after predicting the NMR, and vice versa) [33]. The standard critical values for the F-statistic and Q-statistic can be approximated so F-statistic should be greater than 10 to indicate sufficient instrument strength and Q estimates should be less than the number of SNPs included in the model to indicate no excessive heterogeneity [34, 35]. Univariable Mendelian randomisation For comparison with the MVMR analysis, we considered the total effect of both the NMR and smoking heaviness on each health outcome using MR. We used four complementary

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

MR methods (inverse variance weighted [MR-IVW], MR-Egger, weighted median, weighted mode). Details of the univariable MR analysis methods can be found in Supplemental Note S5. Multivariable Mendelian randomisation We explored the direct effects of both the NMR and smoking heaviness on health outcomes using MVMR. We used summary data from Buchwald and colleagues' [11], GSCAN [10] and ILCCO [22], and UK Biobank GWAS pipeline results. We repeated these analyses using two complementary methods – MVMR-IVW and MVMR-Egger [9, 36]. Given that the GWAS of smoking heaviness was restricted to ever smokers and the GWAS of the NMR was restricted to current smokers, the analyses were restricted to ever and current smokers as the summary statistics are not applicable to never smokers. However, the ILCCO lung cancer data have only been stratified by ever and never smoking status; therefore, analyses restricted to current smokers were not possible when exploring lung cancer incidence. In supplementary analyses, we additionally stratified the analysis by never smokers to explore potential horizontal pleiotropy – effects observed among never smokers could indicate horizontally pleiotropic effects (i.e., the included SNPs influencing the outcome directly, or via another phenotype, but not through the measured exposure), misreporting of smoking status, or residual population stratification. Horizontally pleiotropic genetic variants are not valid instruments in MR analyses and their inclusion would result in a violation of the exclusion restriction assumption (further details on the assumptions of MR can be found in Supplemental Note S6). Pleiotropy robust methods (e.g., MR-Egger) are

robust to horizontal pleiotropy under assumptions of the form that pleiotropy takes. For all

outcomes except lung cancer (where data are unavailable), we also included supplementary results restricted to former smokers to explore whether any health effects found among current smokers may be recoverable (i.e., not present among former smokers who have recovered following smoking cessation).

290 Results

Descriptive Statistics

285

286

287

288

289

291

292

293

294

295

296

297

298

299

300

301

Smoking heaviness data were collected from 337,334 current and former smokers who reported their current or past smoking behaviour respectively (analyses corrected for current versus former status, average bin 3 [SD = 1] equating to 16-25 cigarettes per day) [10]. NMR data were collected from 5,185 current smokers [11]. Case rates and means (with standard deviations) for the outcomes in each of the samples included in the analyses are shown in Table 1.

Table 1. Descriptive statistics for participants included in the genome-wide association studies of lung cancer, coronary heart disease, chronic obstructive pulmonary disease, lung function and heart rate.

	Ever smokers	Current Smokers	Former Smokers	Never Smokers	
	International Lung Cancer Consortium				
N	40,187	N/A	N/A	9,859	
Lung Cancer (case rate)	57%	N/A	N/A	24%	
	UK Biobank				
N	213,341	49,721	163,620	258,056	
Coronary Heart Disease (case rate)	11%	11%	11%	6%	
Chronic Obstructive Pulmonary Disease (case rate)	3%	6%	2%	<1%	

Forced Expiratory Volume (mean litres [SD])	2.82 (0.78)	2.78 (0.83)	2.83 (0.76)	2.88 (0.78)
Forced Vital Capacity (mean litres [SD])	3.78 (0.97)	3.81 (1.02)	3.78 (0.96)	3.78 (0.99)
Heart Rate (mean beats per minute [SD])	69.05 (11.38)	71.27 (11.58)	68.40 (11.23)	68.93 (11.10)

Note: SD = standard deviation

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

Instrument strength and heterogeneity

Where the Cochran's Q statistic was greater than the number of SNPs included in the model, it is advised to focus on pleiotropy robust methods as this indicates heterogeneity and potential pleiotropy. MR-Egger and MVMR-Egger give estimates that are robust to directional horizontal pleiotropy under the assumption that this pleiotropy is uncorrelated with the strength of association between the SNP and the exposure [36]. However, using the MR-Egger and MVMR-Egger methods limits the statistical power of the analysis compared to MVMR-IVW. Therefore, although we present the IVW results in the text, we have explicitly stated where the sensitivity analyses differ substantially (i.e., where the results could lead to different conclusions) and in these cases, additionally compare the Egger results (and weighted mode and weighted median results) in the MR analyses. The F-statistics indicate that the SNPs included in these analyses are strong instruments for assessing the direct effects of smoking heaviness while accounting for the effect of the NMR (Fs = 33.96 and 34.17) and for assessing the direct effects of the NMR while accounting for smoking heaviness (Fs = 30.17 and 49.08).

Binary outcomes

The total and direct effects of the NMR and smoking heaviness on lung cancer, CHD, COPD, and are shown in Figure 3 (ever smokers). These results are also included in Supplementary Tables S7 (lung cancer), S8 (CHD), and S9 (COPD) along with the F-statistics, Q-statistics and Egger intercept and the results among current, never and formers smokers. We have focussed on the results among ever smokers rather than current smokers here as receiving a diagnosis of lung cancer, CHD or COPD may increase the likelihood of someone quitting smoking, so the results are more relevant and interpretable among ever smokers. The results among current smokers can be found in Supplemental Note S7 and Supplementary Figure S2. Additionally, we have included the median and mode weighted MR sensitivity analyses in Supplementary Table S10. Results are presented as odds ratios per standard deviation (SD) increase in the exposure phenotype (i.e., per SD increase in the NMR or cigarettes per day).

Figure 3. Forest plot displaying the effect of nicotine metabolite ratio and smoking heaviness on coronary heart disease (CHD), chronic obstructive pulmonary disease (COPD) and lung cancer incidence: univariable Mendelian randomisation (MR) and multivariable Mendelian randomisation (MVMR) results among ever smokers.

Lung Cancer

335 336

337

338

339

340

341

342

343

344

345

346

347

The MR-IVW results indicate strong evidence to suggest that increased NMR and increased smoking heaviness both increase the risk of developing lung cancer among ever smokers (odds ratio [OR] = 1.20, 95% confidence interval [CI] 1.15 to 1.25; OR = 4.00, 95% CI 3.50 to 4.57 respectively). However, the MVMR-IVW results do not provide clear evidence to suggest an effect of NMR on lung cancer risk (OR = 1.01, 95% CI 0.94 to 1.08), and indicate

that only increased smoking heaviness increased lung cancer risk (OR = 2.94, 95% CI 2.38 to 3.62). Although there is considerable evidence of heterogeneity and potential pleiotropy in the smoking heaviness analyses among ever smokers, these results are supported by the MR-Egger results. Furthermore, there is no clear evidence of pleiotropy or bias due to population stratification indicated by the results among never smokers.

Coronary Heart Disease

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

The MR-IVW results provide no clear evidence that NMR affects CHD risk (OR = 1.02, 95% CI 0.99 to 1.04). This is supported by the MR-Egger results, but the weighted median and weighted mode results suggested there may be a weak effect (OR = 1.03, 95% CI 1.01 to 1.05, OR = 1.03, 95% CI 1.01 to 1.05 respectively). The results provide some evidence that increased smoking heaviness increases CHD risk (OR = 1.14, 95% CI 1.01 to 1.29) among ever smokers. The weighted median and weighted mode results support this finding (OR = 1.14, 95% CI 1.02 to 1.29, OR = 1.14, 95% CI 1.02 to 1.27 respectively); however, the MR-Egger analysis does not support this (OR = 0.95, 95% CI 0.79 to 1.14), and there is some evidence of heterogeneity indicated by the Q-statistics and the Egger intercept indicated weak directional pleiotropy which is supported by evidence of a protective effect among never smokers. The MVMR-IVW results provide no clear evidence of an effect of NMR on CHD risk (OR = 1.00, 95% CI 0.98 to 1.03) but some evidence that increased smoking heaviness increases CHD risk (OR = 1.32, 95% CI 1.08 to 1.62). As with the univariable results, the MVMR-Egger analyses do not support this (OR = 0.94, 95% CI 0.68 to 1.28) and there was evidence of heterogeneity and potential directional pleiotropy and some evidence of horizontal pleiotropy or bias due to population stratification in the analysis among never smokers.

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

Chronic Obstructive Pulmonary Disease The MR-IVW results indicate that increased NMR and smoking heaviness increase the risk of developing COPD among ever smokers (OR = 1.16, 95% CI 1.07 to 1.24, OR = 6.57, 95% CI 4.68 to 9.20 respectively). However, the MVMR-IVW results indicate no clear effect of NMR on COPD risk (OR = 1.03, 95% CI 0.95 to 1.12) but suggest that increased smoking heaviness increases COPD risk among ever smokers (OR = 7.24, 95% CI 3.99 to 13.15). These results are supported by the MR sensitivity analyses and MVMR-Egger results and there is no clear evidence of heterogeneity or directional pleiotropy or horizontal pleiotropy or bias due to population stratification among never smokers (where precise null effects were observed). **Continuous outcomes** The total and direct effects of the NMR and smoking heaviness on lung function (FEV-1 and FVC) and heart rate are shown in Figures 4 (ever smokers) and 5 (current smokers). These results are also displayed in Supplementary Tables S11 (FEV-1), S12 (FVC), and S13 (heart rate) along with the F-statistics, Q-statistics and Egger intercept and the results among ever, current, never and formers smokers. Additionally, we have included the median and mode weighted MR sensitivity analyses in Supplementary Table 10. Results are presented as betas per standard deviation (SD) increase in the exposure phenotype (i.e., per SD increase in the NMR or cigarettes per day). As per MR-STROBE guidelines [37], we have reported the results in text on an interpretable scale (i.e., difference in outcome in relevant units e.g., mL). However, to aid comparability across outcomes, we present the results per standard deviation change in the forest plots.

397

398

399 400

401

402 403

Figure 4. Forest plot displaying the effect of nicotine metabolite ratio and smoking heaviness on standard deviations of lung function (FEV-1 and FVC), and heart rate (HR): univariable Mendelian randomisation (MR) and multivariable Mendelian randomisation (MVMR) results among ever smokers.

perpetuity. It is made available under a CC-BY 4.0 International license .

Figure 5. Forest plot displaying the effect of nicotine metabolite ratio and smoking heaviness on standard deviations of lung function (FEV-1 and FVC), and heart rate (HR): univariable Mendelian randomisation (MR) and multivariable Mendelian randomisation (MVMR) results among current smokers.

Forced Expiratory Volume in 1 Second

The results relating to FEV-1 are presented in the text as changes in millilitres (mL) of expiration per standard deviation increase in the exposure. The MR-IVW results indicate that increased NMR and smoking heaviness both decrease FEV-1 among ever smokers (Figure 4, b = -13.35, 95% CI -18.38 to -8.33, b = -185.49, 95% CI -220.39 to -150.60 respectively). However, there is no clear evidence of an effect of NMR on FEV-1 in the

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

MVMR-IVW analysis (b = 3.82, 95% CI -12.63 to 4.98), whereas there is evidence to suggest increased smoking heaviness decreased FEV-1 among ever smokers (b = -176.78, 95% CI -239.15 to -114.41). These results are supported by the MR sensitivity analyses and MVMR-Egger results and there is no evidence of directional pleiotropy in the analyses, but there is evidence of heterogeneity in all analyses except for the NMR MR analyses. However, there is evidence of horizontal pleiotropy or bias due to population stratification in the NMR MR analyses among never smokers. Among current smokers (Figure 5), the MR-IVW results indicate that increased NMR and smoking heaviness decreased FEV-1 (b = -33.33, 95% CI -41.76 to -24.90, b = -374.28, 95% CI -428.21 to -320.35 respectively). However, the MVMR-IVW results indicate a protective effect of nicotine exposure (i.e., lower nicotine exposure, due to higher NMR, lowers lung function) when smoking heaviness is accounted for among current smokers (NMR b = -17.77, 95% CI -29.92 to -5.62). The MVMR-IVW analyses support the MR-IVW results for smoking heaviness (b = -272.36, 95% CI -359.31 to -185.42). These results are supported by the MR sensitivity analyses and MVMR-Egger analyses. There is some evidence of heterogeneity in all analyses except the NMR MR analyses, directional pleiotropy in the MR analysis of smoking heaviness, and horizontal pleiotropy or bias due to population stratification in the NMR MR analyses among never smokers. Forced Vital Capacity The results relating to FVC are presented in the text as changes in mL of capacity per standard deviation increase in the exposure. The MR-IVW results indicate that increased NMR and smoking heaviness decreased FVC among ever smokers (Figure 4, b = -14.34, 95%

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

CI -19.42 to -9.26, b = -129.63, 95% CI -174.27 to -85.00 respectively). However, there is no clear evidence of an effect of NMR on FVC in the MVMR-IVW analysis (b = -6.32, 95% CI -17.41 to 4.77), whereas there is evidence to suggest increased smoking heaviness decreased FVC among ever smokers, after accounting for NMR (b = -149.55, 95% CI -228.07 to -71.03). These results are supported by the MR sensitivity analyses and MVMR-Egger results, although there is less clear evidence of an effect in the MVMR-Egger results for smoking heaviness than in the MR-Egger results. There is some evidence of heterogeneity in all analyses except the NMR MR analyses, but no clear evidence of directional pleiotropy. There is weak evidence to suggest potential horizontal pleiotropy / bias due to population stratification in the NMR MR analyses and the smoking heaviness MR-IVW analysis among never smokers. Among current smokers (Figure 5), the MR-IVW results suggest that increased NMR and smoking heaviness decreased FVC (b = -24.50, 95% CI -34.61 to -14.39, b = -246.13, 95% CI -304.36 to -187.89 respectively). MVMR-IVW results support the evidence for an effect of smoking cessation on FVC but indicate weak evidence of a protective effect of nicotine exposure when smoking heaviness is accounted for (NMR b = -13.50, 95% CI -27.39 to 0.39). The MR median and mode weighted analyses support these findings, and the MR-Egger and MVMR-Egger results are in the same direction but provide weaker support for the NMR results. There is evidence in the MVMR-IVW analysis to suggest that increased smoking heaviness decreases FVC (b -195.31, 95% CI -294.72 to -95.90), which is supported by the MVMR-Egger results. There is some evidence of heterogeneity in all analyses except the NMR MR analyses, but no clear evidence of directional pleiotropy. There is weak evidence

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

to suggest potential horizontal pleiotropy or bias due to population stratification in the NMR MR analyses and the smoking heaviness MR-IVW analysis among never smokers. Heart Rate The results relating to heart rate are presented in the text as changes in beats per minute per standard deviation increase in the exposure. Among ever smokers (Figure 4), the MR-IVW results suggest that increased NMR does not affect heart rate (b = 0.06, 95% CI -0.04 to 0.16), but increased smoking heaviness does increase heart rate (b = 1.61, 95% CI 1.12 to 2.10). The MVMR-IVW results support the results for both NMR and smoking heaviness (b = -0.04, 95% CI -0.16 to 0.09, b = 1.63, 95% CI 0.73 to 2.54 respectively). The MR sensitivity analyses and MVMR-Egger results also support these findings. There is some evidence of heterogeneity in all analyses, but no clear evidence of directional pleiotropy. There is weak evidence to suggest potential horizontal pleiotropy or bias due to population stratification in the MR-IVW NMR, MR-IVW and MR-Egger smoking heaviness analyses among never smokers. Among current smokers (Figure 5), the MR-IVW results indicate no clear effect of NMR on heart rate (b = -0.05, 95% CI -0.20 to 0.09) but indicate that increased smoking heaviness increases heart rate (b = 4.58, 95% CI 3.65 to 5.51). However, the MVMR-IVW results suggest that decreased NMR when accounting for smoking heaviness (i.e., increased nicotine exposure per cigarette) increases heart rate among current smokers (b = -0.30, 95% CI -0.50 to -0.10) and increased smoking heaviness accounting for nicotine exposure increases heart rate (b = 4.22, 95% CI 2.77 to 5.68). The MR sensitivity and MVMR-Egger results support the MR-IVW and MVMR-IVW findings. There is some evidence of

heterogeneity in all analyses except the MR NMR analyses, but no clear evidence of directional pleiotropy. There is weak evidence to suggest potential horizontal pleiotropy / bias due to population stratification in the MR-IVW NMR, MR-IVW and MR-Egger smoking heaviness analyses among never smokers.

Interpreting the NMR MVMR results

In the MVMR results above, we interpret an increase in the direct effect of NMR as a reduction in nicotine exposure per cigarette smoked. Supplementary Table S14 illustrates how the estimated direct effects of NMR found can be flipped to indicate the effect of increased nicotine exposure per cigarette smoked on the outcome.

Sensitivity and supplementary analysis

The results of the sensitivity analyses whereby cotinine and cotinine plus 3HC were used as alternative proxies for nicotine exposure can be found in Supplementary Tables S7-S13. The results are generally in line with the main results with some exceptions. Increased cotinine and cotinine plus 3HC exposure appears to increase risk of lung cancer (to a lesser extent than non-nicotine constituents of tobacco smoke). There is also less evidence to suggest a protective effect of nicotine on COPD among current smokers in the analyses alternatively including cotinine and cotinine plus 3HC and there is less evidence of an effect on FEV-1 and heart rate among current smokers in the analyses including cotinine plus 3HC.

The results among former smokers can be found in Supplementary Tables S7-S13. The findings suggest that there are likely lasting detrimental effects of smoking, but they are unlikely to be attributable to nicotine exposure.

512 Discussion

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

Overall, we found little evidence to suggest a major detrimental effect of nicotine exposure on health when using an MVMR model to distinguish the direct effects of nicotine from the direct effects of non-nicotine components of tobacco smoke (using NMR and CPD as proxies). Our model suggests that, among current smokers, increased nicotine exposure per cigarette smoked increases heart rate but may have protective effects on lung function and COPD. Our findings in relation to smoking heaviness were generally as expected except for CHD, for which there was limited evidence of an effect. In line with previous research [15-17], increased smoking heaviness detrimentally impacted risk of lung cancer, COPD, and CHD, as well as lung function and heart rate. As expected, and in line with evidence from a range of human and animal studies [19], our analysis suggests that exposure to nicotine without the remaining constituents of tobacco smoke increases heart rate (the positive control). In contrast to previous evidence, in which increased smoking heaviness was found to increase risk of CHD, we found limited evidence of an effect of smoking heaviness on CHD among ever smokers. Previous MR studies have also shown minimal evidence of this effect using UK Biobank data [38], which could indicate that the outcome GWAS sample may not be representative of the general population. Indeed, UK Biobank participants are more likely to describe themselves as female, have fewer health issues, live in less socioeconomically deprived areas, and be more highly educated, than the general population and thus the results may suffer from "healthy volunteer" selection bias [39]. Given that CHD may

disproportionately affect men [40] and people with generally poorer health, this may

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

explain the limited findings. Additionally, we may have had limited power to detect this effect given the range of causes of CHD and relatively few cases in UK Biobank. Another unexpected finding was the apparent protective effects of nicotine on lung health (COPD, FEV-1 and FVC) among current smokers. However, this finding may be due to those with a lower NMR (and greater circulating nicotine per cigarette) needing to inhale less smoke and other non-nicotine constituents per cigarette. Measuring smoking heaviness by the number of cigarettes smoked per day will not completely capture the variation in smoking intensity, so there could be a small effect of intensity which is captured in the instrumental variable for NMR because increased NMR may lead to increased inhalation per cigarette. Given the magnitude of effects found for NMR are much smaller than for smoking heaviness, the residual variance in smoking intensity impacting the NMR estimates appears to be limited. Furthermore, if there is a true protective effect it may not be clinically important given the magnitude of the effects found. For example, patients only perceive differences in FEV-1 with changes of 112 mL [41] whereas the MVMR-IVW analyses indicated an increase of only 17.77 mL per SD increase in NMR. In the supplementary analyses, we also saw apparent effects of cotinine and cotinine plus 3HC on lung cancer risk in the MVMR models. Given that nicotine is not thought to be carcinogenic, these findings could indicate pleiotropic pathways are involved for these additional exposures (e.g., via metabolism). This highlights that NMR may be a more appropriate proxy for nicotine exposure in this context; NMR is a measure of nicotine metabolism, therefore by including it in an MVMR model which is robust to pleiotropy via

each exposure in the model, we account for pleiotropic pathways via metabolism.

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Although this is the first study to use MVMR to explore the impact of long-term nicotine inhalation in humans and it may provide an early indication of the health impact of inhaling nicotine via e-cigarettes, the study is not without limitations. In addition to potential issues with "healthy volunteer" selection bias, the study is limited by the potential presence of horizontal pleiotropy in some analyses (as indicated by effects seen in the analyses restricted to non-smokers and the Egger analyses), which violates an assumption of the method. The effect estimates among never smokers cannot be meaningfully interpreted as we know that never smokers (or at least those who accurately self-report never smoking) do not smoke any cigarettes per day despite being predisposed to heavier smoking, but evidence of an effect in never smokers (along with a high Cochran's Q statistic) is indicative of horizontal pleiotropy. Despite this, no effects were observed in the relationship between NMR and the health outcomes in the MVMR analyses restricted to never smokers. Additionally, while the MR-Egger test of directional pleiotropy indicated directional pleiotropic effects in the relationship between smoking heaviness and health outcomes, there was no clear evidence of directional horizontal pleiotropic effects in the relationship between NMR and health outcomes among ever and current smokers. Therefore, these sensitivity analyses suggest our interpretation of the direct effects of nicotine on the selected health outcomes should not be impacted by directional horizontal pleiotropy or population stratification. Further limitations of the study relate to the adjustment and inclusion criteria of the GWAS used for analysis. The first issue pertains to differences between the exposure GWAS inclusion criteria: the GWAS of NMR was restricted to current smokers whereas the GWAS

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

of smoking heaviness was restricted to ever regular smokers. However, smoking heaviness was assessed as current or past smoking heaviness (i.e., the measure is representative of the behaviour of current smokers despite being a retrospective measure, therefore we are assuming that the two populations are similar). If this assumption in incorrect, we may have introduced bias into our findings. Second, in contrast to the GWAS of smoking behaviour and the health outcomes, the NMR GWAS was adjusted for BMI. Adjusting for BMI in one exposure variable meant that we could not clearly assess the effect of nicotine on BMI, however it also may impact our interpretation of results where the outcomes are associated with BMI (i.e., where BMI is a plausible co-variate of the exposure and outcome phenotypes) [25]. As lung and heart health could be impacted by BMI [42, 43], some of the effect sizes observed may be biased towards the null. Although there are approaches available to correct for this bias [44], it is not feasible to implement this correction with the limited number of SNPs included in this analysis. Therefore, we must interpret these findings with caution. Third, we did not use data from an updated CPD GWAS with a larger sample size and more diverse sample that was released in 2022 [45] after analysis was complete for this study. The study team agreed that it would be detrimental to use the new data release restricted to European ancestry. The number of SNPs found to be associated with smoking heaviness was three times greater in the 2022 data release compared to the 2019 data release, which would cause a problematic imbalance/mismatch between the number of SNPs used to instrument smoking heaviness versus NMR, and potentially lead to weak instrument bias [33]. Furthermore, we were unable to use data from the multiancestry GWAS of smoking heaviness [45] as the NMR GWAS did not conduct similar analyses and was restricted to those of European descent and an assumption of MVMR is that all data included in an MVMR model are from the same underlying population [9].

Future work could focus on the inclusion of multiple ancestries if appropriate NMR GWAS

become available to explore whether the findings generalise to non-European ancestries. This work highlights the limited impact that long-term nicotine exposure via inhalation (e.g., via smoking or potentially vaping) is likely to have on heart and lung health. Given that it will not be possible to explore the long-term effects of vaping for some years yet, and the impact of long-term nicotine use is usually confounded by smoking, this is an important addition to our knowledge with respect to the harms of vaping. However, there are many more potential health outcomes (e.g., the effects on cancer progression, mental health, sleep, perinatal outcomes etc.) which should be explored in future research. Additionally, the effect of vaping nicotine could be impacted by nicotine absorption potentially occurring by a different route to smoking (e.g., via oral mucosa absorption rather than lungs), or by the difference in vehicle-delivery (i.e., via liquid droplets of propylene glycol and glycerol rather than particulates) [46]. Furthermore, these findings cannot inform our understanding of non-nicotine e-cigarette vapour constituent exposure; further research is therefore needed to understand the health impact of long-term exposure to propylene glycol, vegetable glycerine and common e-liquid flavourings. Nevertheless, the findings support the safe long-term use of traditional pharmaceutical nicotine replacement therapies such as nicotine patches.

Conclusions

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

In conclusion, the present findings indicate that long-term nicotine use (via inhalation) when accounting for exposure to non-nicotine constituents of tobacco smoke may increase heart rate but does not increase risk of COPD or CHD and does not appear to adversely impact

632

633

634

635

636

637

638

lung function. We found that, aside from effects on heart rate (which were expected given our knowledge of effects of short-term nicotine use), there was no evidence to suggest that long-term nicotine exposure is responsible for the detrimental effects of smoking on the outcomes that were included in this analysis. Although further research is necessary to explore other health outcomes and triangulate these findings, our results support existing evidence which suggests nicotine use is not a major risk factor in the development of smoking-related disease.

Acknowledgements

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

Social Care.

We would like to thank Rachel Tyndale and her team for their support in interpreting the MVMR results relating to NMR and provision of summary statistics. We would also like to thank the GSCAN and ILCCO teams (including James McKay) for the provision of summary statistics. Quality Control filtering of the UK Biobank data was conducted by R. Mitchell, G. Hemani, T. Dudding, L. Corbin, S. Harrison, L. Paternoster as described in the published protocol (doi: 10.5523/bris.1ovaau5sxunp2cv8rcy88688v). The MRC IEU UK Biobank GWAS pipeline was developed by B. Elsworth, R. Mitchell, C. Raistrick, L. Paternoster, G. Hemani, T. Gaunt (doi: 10.5523/bris.pnoat8cxo0u52p6ynfaekeigi). **Funding** JNK, RCR, MRM, ES, and AET are all members of the Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MC UU 00032/01, MC UU 00032/04, MC UU 00032/07). REW is funded by the Norwegian South-Eastern Regional Health Authority (2020024). This work was supported by Cancer Research UK (grant number C18281/A29019). This work is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at University Hospitals Bristol NHS Foundation

Trust and the University of Bristol. The views expressed in this publication are those of the

authors and not necessarily those of the NHS, the NIHR or the Department of Health and

perpetuity.

It is made available under a CC-BY 4.0 International license .

References References

- 1. Das SK. Harmful health effects of cigarette smoking. Mol Cell Biochem. 2003;253(1-
- 2):159-65. Epub 2003/11/19. doi: 10.1023/a:1026024829294. PubMed PMID: 14619966.
- Action on Smoking and Health. Use of e-cigarettes (vapes) among adults in Great
- Britain. 2022. Available from: https://ash.org.uk/uploads/Use-of-e-cigarettes-vapes-among-
- adults-in-Great-Britain-2022.pdf?v=1661865959.
- 3. Jackson SE, Hill E, Shahab L, Beard E, Michie S, Brown J. Prevalence and correlates of
- long-term e-cigarette and nicotine replacement therapy use: a prospective study in England.
- 667 BMJ Open. 2019;9(10):e029252. Epub 2019/10/13. doi: 10.1136/bmjopen-2019-029252.
- PubMed PMID: 31604784; PubMed Central PMCID: PMCPMC6797372.
- 669 4. Shahab L, Dobbie F, Hiscock R, McNeill A, Bauld L. Prevalence and Impact of Long-
- 670 term Use of Nicotine Replacement Therapy in UK Stop-Smoking Services: Findings From the
- 671 ELONS Study. Nicotine Tob Res. 2017;20(1):81-8. Epub 2016/09/25. doi:
- 672 10.1093/ntr/ntw258. PubMed PMID: 27664995; PubMed Central PMCID: PMCPMC5896546.
- 5. Lee PN, Fariss MW. A systematic review of possible serious adverse health effects of
- orine replacement therapy. Arch Toxicol. 2017;91(4):1565-94. Epub 2016/10/05. doi:
- 675 10.1007/s00204-016-1856-y. PubMed PMID: 27699443; PubMed Central PMCID:
- 676 PMCPMC5364244.
- 677 6. Gvozdenović E, Malvisi L, Cinconze E, Vansteelandt S, Nakanwagi P, Aris E, et al.
- 678 Causal inference concepts applied to three observational studies in the context of vaccine
- development: from theory to practice. BMC Medical Research Methodology. 2021;21(1):35.
- 680 doi: 10.1186/s12874-021-01220-1.
- 7. Richmond RC, Davey Smith G. Mendelian Randomization: Concepts and Scope. Cold
- 682 Spring Harb Perspect Med. 2022;12(1). Epub 2021/08/25. doi:
- 10.1101/cshperspect.a040501. PubMed PMID: 34426474; PubMed Central PMCID:
- 684 PMCPMC8725623.
- 8. Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al.
- Mendelian randomization. Nature Reviews Methods Primers. 2022;2(1):6. doi:
- 687 10.1038/s43586-021-00092-5.
- 688 9. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of
- 689 multivariable Mendelian randomization in the single-sample and two-sample summary data
- 690 settings. Int J Epidemiol. 2019;48(3):713-27. Epub 2018/12/12. doi: 10.1093/ije/dyy262.
- PubMed PMID: 30535378; PubMed Central PMCID: PMCPMC6734942.
- 692 10. Liu MZ, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to
- 693 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol
- 694 use. Nat Genet. 2019;51(2):237-+. doi: 10.1038/s41588-018-0307-5. PubMed PMID:
- 695 WOS:000457314300010.
- 696 11. Buchwald J, Chenoweth MJ, Palviainen T, Zhu G, Benner C, Gordon S, et al. Genome-
- 697 wide association meta-analysis of nicotine metabolism and cigarette consumption measures
- in smokers of European descent. Mol Psychiatry. 2020. Epub 2020/03/12. doi:
- 699 10.1038/s41380-020-0702-z. PubMed PMID: 32157176; PubMed Central PMCID:
- 700 PMCPMC7483250.
- 701 12. Benowitz NL, Hukkanen J, Jacob P, 3rd. Nicotine chemistry, metabolism, kinetics and
- 702 biomarkers. Handb Exp Pharmacol. 2009;(192):29-60. Epub 2009/02/03. doi: 10.1007/978-
- 703 3-540-69248-5_2. PubMed PMID: 19184645; PubMed Central PMCID: PMCPMC2953858.

- 704 13. Dempsey D, Tutka P, Jacob III P, Allen F, Schoedel K, Tyndale RF, et al. Nicotine
- 705 metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clinical
- 706 Pharmacology & Therapeutics. 2004;76(1):64-72. doi:
- 707 https://doi.org/10.1016/j.clpt.2004.02.011.
- 708 Carroll DM, Murphy SE, Benowitz NL, Strasser AA, Kotlyar M, Hecht SS, et al. 14.
- 709 Relationships between the Nicotine Metabolite Ratio and a Panel of Exposure and Effect
- 710 Biomarkers: Findings from Two Studies of U.S. Commercial Cigarette Smokers. Cancer
- 711 Epidemiol Biomarkers Prev. 2020;29(4):871-9. Epub 2020/02/14. doi: 10.1158/1055-
- 712 9965.Epi-19-0644. PubMed PMID: 32051195; PubMed Central PMCID: PMCPMC7437528.
- 713 15. West R. Tobacco smoking: Health impact, prevalence, correlates and interventions.
- 714 Psychol Health. 2017;32(8):1018-36. Epub 2017/05/30. doi:
- 715 10.1080/08870446.2017.1325890. PubMed PMID: 28553727; PubMed Central PMCID:
- 716 PMCPMC5490618.
- 717 16. Jayes L, Haslam PL, Gratziou CG, Powell P, Britton J, Vardavas C, et al. SmokeHaz:
- 718 Systematic Reviews and Meta-analyses of the Effects of Smoking on Respiratory Health.
- 719 Chest. 2016;150(1):164-79. Epub 2016/04/23. doi: 10.1016/j.chest.2016.03.060. PubMed
- 720 PMID: 27102185.
- 721 17. Khan A, Shabbir K, Ansari JK, Zia N. Comparison of forced expiratory volume in one
- second (FEV1) among asymptomatic smokers and non-smokers. J Pak Med Assoc. 722
- 723 2010;60(3):209-13. Epub 2010/03/17. PubMed PMID: 20225780.
- Hammerton G, Munafò MR. Causal inference with observational data: the need for 724
- 725 triangulation of evidence. Psychological Medicine. 2021;51(4):563-78. Epub 2021/03/08.
- 726 doi: 10.1017/S0033291720005127.
- 727 Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for
- 728 electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515-23. Epub 2016/04/16. doi:
- 729 10.1016/j.tcm.2016.03.001. PubMed PMID: 27079891; PubMed Central PMCID:
- 730 PMCPMC4958544.
- 731 20. Royal College of Physicians. Nicotine without smoke: Tobacco harm reduction. .
- 732 2016.
- 733 21. Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R, et al. Genome-Wide Meta-
- Analysis of Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2. Sci Rep. 734
- 735 2016;6:20092. Epub 2016/02/03. doi: 10.1038/srep20092. PubMed PMID: 26833182;
- 736 PubMed Central PMCID: PMCPMC4735517.
- 737 McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale 22.
- 738 association analysis identifies new lung cancer susceptibility loci and heterogeneity in
- 739 genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126-32. Epub
- 740 2017/06/12. doi: 10.1038/ng.3892. PubMed PMID: 28604730.
- 741 Elsworth B, Mitchell, R., Raistrick, C., Paternoster, L., Hemani, G., Gaunt T. MRC IEU
- 742 UK Biobank GWAS pipeline, version 2, 18/01/2019. databris. 2019. doi:
- 743 10.5523/bris.pnoat8cxo0u52p6ynfaekeigi.
- 744 Mitchell R, Hemani G, Dudding T, Corbin L, Harrison S, Paternoster L. UK Biobank
- 745 Genetic Data: MRC-IEU Quality Control, version 2 - Datasets - data.bris. databris. 2018. doi:
- 746 doi:10.5523/bris.1ovaau5sxunp2cv8rcy88688v.
- 747 Hartwig FP, Tilling K, Davey Smith G, Lawlor DA, Borges MC. Bias in two-sample
- 748 Mendelian randomization when using heritable covariable-adjusted summary associations.
- 749 International Journal of Epidemiology. 2021;50(5):1639-50. doi: 10.1093/ije/dyaa266.

- 750 26. Jiang Y, Chen S, McGuire D, Chen F, Liu M, Iacono WG, et al. Proper conditional
- 751 analysis in the presence of missing data: Application to large scale meta-analysis of tobacco
- 752 use phenotypes. PLOS Genetics. 2018;14(7):e1007452. doi: 10.1371/journal.pgen.1007452.
- 753 27. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex
- 754 trait analysis. Am J Hum Genet. 2011;88(1):76-82. Epub 2010/12/17. doi:
- 755 10.1016/j.ajhg.2010.11.011. PubMed PMID: 21167468.
- 756 Allen NE, Sudlow C, Peakman T, Collins R, Biobank UK. UK biobank data: come and 28.
- 757 get it. Sci Transl Med. 2014;6(224):224ed4. Epub 2014/02/21. doi:
- 758 10.1126/scitranslmed.3008601. PubMed PMID: 24553384.
- 759 Mitchell R, Hemani G, Dudding T, Corbin L, Harrison S, Paternoster L. UK Biobank 29.
- Genetic Data: MRC-IEU Quality Control, version 2. 2019. doi: 760
- 761 https://doi.org/10.5523/bris.1ovaau5sxunp2cv8rcy88688v.
- Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, et al. 762
- 763 Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat
- 764 Genet. 2015;47(3):284-90. Epub 2015/02/03. doi: 10.1038/ng.3190. PubMed PMID:
- 765 25642633; PubMed Central PMCID: PMCPMC4342297.
- 766 Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for
- 767 biobank-scale datasets. Nat Genet. 2018;50(7):906-8. doi: 10.1038/s41588-018-0144-6.
- PubMed PMID: WOS:000437224400002. 768
- 769 Sanderson E, Spiller W, Bowden J. Testing and correcting for weak and pleiotropic 32.
- instruments in two-sample multivariable Mendelian randomization. Stat Med. 770
- 771 2021;40(25):5434-52. Epub 2021/08/03. doi: 10.1002/sim.9133. PubMed PMID: 34338327;
- 772 PubMed Central PMCID: PMCPMC9479726.
- 773 Sanderson E, Spiller W, Bowden J. Testing and Correcting for Weak and Pleiotropic
- 774 Instruments in Two-Sample Multivariable Mendelian Randomisation. bioRxiv.
- 775 2020:2020.04.02.021980. doi: 10.1101/2020.04.02.021980.
- 776 Bowden J, Del Greco M F, Minelli C, Zhao Q, Lawlor DA, Sheehan NA, et al. Improving
- 777 the accuracy of two-sample summary-data Mendelian randomization: moving beyond the
- 778 NOME assumption. International Journal of Epidemiology. 2018;48(3):728-42. doi:
- 779 10.1093/ije/dyy258.
- 780 Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian 35.
- 781 randomization: Using genes as instruments for making causal inferences in epidemiology.
- 782 Statistics in Medicine. 2008;27(8):1133-63. doi: https://doi.org/10.1002/sim.3034.
- 783 Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable 36.
- 784 Mendelian randomization to correct for both measured and unmeasured pleiotropy.
- 785 Statistics in Medicine. 2017;36(29):4705-18. doi: 10.1002/sim.7492.
- 786 37. Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele
- 787 TJ, et al. Strengthening the reporting of observational studies in epidemiology using
- 788 mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ.
- 789 2021;375:n2233. doi: 10.1136/bmj.n2233.
- 790 King C, Mulugeta A, Nabi F, Walton R, Zhou A, Hyppönen E. Mendelian
- 791 randomization case-control PheWAS in UK Biobank shows evidence of causality for smoking
- 792 intensity in 28 distinct clinical conditions. EClinicalMedicine. 2020;26:100488. Epub
- 793 2020/10/23. doi: 10.1016/j.eclinm.2020.100488. PubMed PMID: 33089118; PubMed Central
- 794 PMCID: PMCPMC7564324.
- 795 Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison
- 796 of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With

- 797 Those of the General Population. American Journal of Epidemiology. 2017;186(9):1026-34.
- 798 doi: 10.1093/aje/kwx246.
- 799 Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and
- 800 stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ
- 801 Global Health. 2017;2(2):e000298. doi: 10.1136/bmjgh-2017-000298.
- 802 Donohue JF. Minimal Clinically Important Differences in COPD Lung Function. COPD:
- 803 Journal of Chronic Obstructive Pulmonary Disease. 2005;2(1):111-24. doi: 10.1081/COPD-
- 804 200053377.

- 805 42. Hypponen E, Mulugeta A, Zhou A, Santhanakrishnan VK. A data-driven approach for
- studying the role of body mass in multiple diseases: a phenome-wide registry-based case-806
- 807 control study in the UK Biobank. Lancet Digit Health. 2019;1(3):e116-e26. Epub 2019/07/01.
- 808 doi: 10.1016/S2589-7500(19)30028-7. PubMed PMID: 33323262.
- 809 Peralta GP, Marcon A, Carsin A-E, Abramson MJ, Accordini S, Amaral AF, et al. Body
- 810 mass index and weight change are associated with adult lung function trajectories: the
- 811 prospective ECRHS study. Thorax. 2020;75(4):313-20. doi: 10.1136/thoraxjnl-2019-213880.
- 812 44. Gilbody J, Borges MC, Smith GD, Sanderson E. Multivariable MR can mitigate bias in
- 813 two-sample MR using covariable-adjusted summary associations. medRxiv.
- 814 2022:2022.07.19.22277803. doi: 10.1101/2022.07.19.22277803.
- 815 45. Saunders GRB, Wang X, Chen F, Jang S-K, Liu M, Wang C, et al. Genetic diversity fuels
- gene discovery for tobacco and alcohol use. Nature. 2022;612(7941):720-4. doi: 816
- 817 10.1038/s41586-022-05477-4.
- 818 46. Farsalinos KE, Spyrou A, Tsimopoulou K, Stefopoulos C, Romagna G, Voudris V.
- 819 Nicotine absorption from electronic cigarette use: comparison between first and new-
- 820 generation devices. Sci Rep. 2014;4:4133. Epub 2014/02/27. doi: 10.1038/srep04133.
- 821 PubMed PMID: 24569565; PubMed Central PMCID: PMCPMC3935206.