Points for High-Dimensional Probability

Xiang Li

Peking University — July 20, 2020

Important lemmas

1. Prove the inequalities for all integers $m \in [1, n]$,

$$\left(\frac{n}{m}\right)^m \le \binom{n}{m} \le \sum_{k=0}^m \binom{n}{k} \le \left(\frac{en}{m}\right)^m$$

- 2. Assume $g \sim N(0, 1)$, then prove that
 - For all t > 0, we have

$$\max\left\{\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-t^2/2}, \frac{1}{2} \left(1 - \sqrt{1 - e^{-t^2}}\right)\right\} \leq \mathbb{P}(g \geq t) \leq \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

- $\mathbb{E}g^2 1_{g>t} = t \cdot \frac{1}{\sqrt{2\pi}} e^{-t^2/2} + \mathbb{P}(g>t) \le (t+\frac{1}{t}) \cdot \frac{1}{\sqrt{2\pi}} e^{-t^2/2};$
- $\|g\|_{L^p} = \sqrt{2} \left(\frac{\Gamma((1+p)/2)}{\Gamma(1/2)} \right)^{1/p} = O(\sqrt{p}) \text{ as } p \to \infty.$
- 3. Here are some numerical inequalities. Prove them.
 - By Taylor expansion, $\cosh(x) \le \exp(x^2/2)$ for all $x \in \mathbb{R}$.
 - By Stirling's approximation, $(p/e)^p \le p! \le p^p$ for $p \in \mathbb{Z}_+$.
 - $|x|^p \le p^p(e^x + e^{-x})$ holds for all $x \in \mathbb{R}$ and p > 0.
 - $\frac{1}{1-x} \le e^{2x}$ holds for all $x \in [0, 1/2]$.
- 4. (Hoeffding's lemma) Let X be a random variable with $\mathbb{E}[X] = 0$ and $a \le X \le b$ with b > a. Then, for any t > 0, the following inequality holds:

$$\mathbb{E}e^{tX} \le e^{\frac{t^2(b-a)^2}{8}}$$

- 5. For all number $z \ge 0$, if $|z-1| \ge \delta$, then $|z^2-1| \ge \max(\delta, \delta^2)$. Conversely, if $|z^2-1| \ge \epsilon^2$, we have $|z-1| \ge \min(\epsilon, \epsilon^2)$. And we have here $\epsilon = \max(\delta, \delta^2)$, $\delta^2 = \min(\epsilon, \epsilon^2)$.
- 6. (Blow-up) Let A be a subset of the sphere $\sqrt{n}S^{n-1}$, $A_t = A + tB_2^n$ and let σ denote the normalized area on that sphere. If $\sigma(A) \ge 1/2$, then, for every $t \ge 0$,

$$\sigma(A_t) \ge 1 - 2exp(-ct^2)$$

7. (MGF of Gaussian chaos). Let $X, X' \sim N(0, I_n)$ be independent and let $A = (a_{ij})$ be an $n \times n$ matrix. Then

$$\mathbb{E}\exp(\lambda X^{T}AX^{'}) \leq \exp(C\lambda^{2}\|A\|_{F}^{2})$$

for all λ satisfying $|\lambda| \leq c||A||$.

8. (Comparison). Consider independent, mean zero, sub-gaussian random vectors $X,X^{'}$ in \mathbb{R}^{n} with $\|X\|_{\Psi_{2}}\leq K$ and $\|X^{'}\|_{\Psi_{2}}\leq K$. Consider also independent random vectors $g,g^{'}\sim N(0,I_{n})$. Let A be an $n\times n$ matrix. Then for all $\lambda\in\mathbb{R}$, we have

$$\mathbb{E}\exp(\lambda X^{T}AX^{'}) \leq \mathbb{E}\exp(CK^{2}\lambda g^{T}Ag^{'})$$

9. (Multivariate Gaussian integration by parts). Let $X \sim N(0, \Sigma)$. Then for any differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ we have

$$\mathbb{E}X f(X) = \Sigma \cdot \mathbb{E}\nabla f(X)$$

Chapter 2

- 1. First, write down the five equivalent properties a sub-gaussian random variable satisfies. Then, write down the five equivalent properties a sub-exponential random variable satisfies.
- 2. Define

$$||X||_{\Psi_2} = \inf\{t > 0 : \mathbb{E}\exp(X^2/t^2) \le 2\}$$

check that $\|\cdot\|_{\Psi_2}$ is indeed a norm on the space of sub-gaussian random variables. Do the same thing for $\|\cdot\|_{\Psi_1}$ on the space of sub-exponential random variables, where

$$||X||_{\Psi_1} = \inf\{t > 0 : \mathbb{E}\exp(|X|/t) \le 2\}$$

3. A random variable X is sub-gaussian if and only if X^2 is sub-exponential, what's more,

$$||X^2||_{\Psi_1} = ||X||_{\Psi_2}^2$$

4. Let X_1, \dots, X_n be independent, mean zero, sub-gaussian random variables. Then $Y = \sum_{i=1}^n X_i$ is also a sub-gaussian random variable, and

$$||Y||_{\Psi_2} \lesssim \sqrt{\sum_{i=1}^n ||X_i||_{\Psi_2}^2}$$

5. Let X_1, \dots, X_n be a sequence of sub-gaussian random variables (which may not necessarily independent), show that

$$\mathbb{E}\max_{i} \frac{|X_{i}|}{\sqrt{1 + log(i)}} \lesssim K$$

where $K = \max_i \|X_i\|_{\Psi_2}$. Then deduce that for every $n \geq 2$, we have

$$\mathbb{E}\max_{i}|X_{i}| \lesssim K\sqrt{\log(n)}$$

further prove that this bound is tight when X_1, \dots, X_n are independent N(0,1).

6. (Hoeffding's inequality, two-sided) Let X_1, \cdot, X_n be independent, mean zero, sub-gaussian random variables, and $a = (a_1, \dots, a_n)$ in \mathbb{R}^n . Then for every $t \geq 0$, we have,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_i X_i\right| \ge t\right) \le 2 \exp\left(-\frac{ct^2}{K^2 \|a\|_2^2}\right)$$

where $K = \max_i ||X_i||_{\Psi_2}$.

- 7. (Chernoff's inequality). Let X_i be independent Bernoulli random variables with parameters p_i . Consider their sum $S_n = \sum_{i=1}^n X_i$ and denote its mean by $\mu = \mathbb{E} Sn$. Then
 - For any $t > \mu$, we have

$$\mathbb{P}\left(S_n \ge t\right) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t$$

• For any $t < \mu$, we have

$$\mathbb{P}\left(S_n \le t\right) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t$$

• For $\delta \in (0,1]$, we have

$$\mathbb{P}\left(|S_n - \mu| \le \delta\mu\right) \le 2e^{-c\mu\delta^2}$$

8. (Bernsteins's inequality) Let X_1, \cdot, X_n be independent, mean zero, sub-exponential random variables, and $a = (a_1, \dots, a_n)$ in \mathbb{R}^n . Then for every $t \ge 0$, we have,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_i X_i\right| \ge t\right) \le 2 \exp\left(-c \min\left(\frac{t^2}{K^2 \|a\|_2^2}, \frac{t}{K \|a\|_{\infty}}\right)\right)$$

where $K = \max_i ||X_i||_{\Psi_1}$.

9. (McDiarmid's inequality). Let X_1, \dots, X_n be independent random variables Let $f : \mathbb{R}^n \mathbb{BR}$ be a measurable function. Assume that the value of f(x) can change by at most $c_i > 0$ under an arbitrary change of a single coordinate of $x - \mathbb{R}^n$, i.e. for any index i and any $x_1, x_2, \dots, x_n, x_i'$, we have

$$|f(x_1, x_2, \cdot, x_{i-1}, x_i, x_{i+1}, \cdots, x_n) - f(x_1, x_2, \cdot, x_{i-1}, x_i, x_{i+1}, \cdots, x_n)| \le c_i$$

Then, for any t > 0, we have

$$\mathbb{P}\left(f(X) - \mathbb{E}f(X) \ge t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

where $X = (X_1, \cdots, X_n)$.

10. (Bennett's inequality) Let X_1, \dots, X_n be independent random variables. Assume that $|X_i - \mathbb{E}X_i| \le K$ a.s for every i. Then for every $i \ge 0$, we have,

$$\mathbb{P}\left(\sum_{i=1} \left(X_i - \mathbb{E}X_i\right) \ge t\right) \le \exp\left(-\frac{\sigma^2}{K^2} h\left(\frac{Kt}{\sigma^2}\right)\right)$$

where $\sigma^2 = \sum_{i=1}^{n} Var(X_i)$ and $h(u) = (1+u) \log(1+u) - u$.

11. What's Orlicz spaces? Does L^p space belong to it?

Chapter 3

- 1. White down the definition of sub-gaussian random vectors, and give three different examples of sub-gaussian random vectors.
- 2. (Concentration of the norm). Let $X=(X_1,\cdots,X_n)\in\mathbb{R}^n$ be a random vector with independent, sub-gaussian coordinates Xi that satisfy $\mathbb{E}X_i^2=1$. Then

$$\left\| \|X\|_2 - \sqrt{n} \right\|_{\Psi_2} \lesssim K^2$$

where $K = \max_i ||X_i||_{\Psi_2}$.

3. (Sub-gaussian distributions with independent coordinates) Let $X=(X_1,\cdots,X_n)\in\mathbb{R}^n$ be a random vector with independent, mean zero, sub-gaussian coordinate X_i . Then X is a sub-gaussian random vector and

$$||X||_{\Psi_2} \lesssim \max_i ||X_i||_{\Psi_2}$$

However, if we remove the condition of independence, find an example of a random vector X with $||X||_{\Psi_2} \gg \max_i ||X_i||_{\Psi_2}$.

4. Let the random vector $X \in \mathbb{R}^n$ is the uniform distribution in the set $\{\sqrt{n}e_i, i=1,\cdots,n\}$, show that

$$||X||_{\Psi_2} \simeq \sqrt{\frac{n}{\log(n)}}$$

5. Let X be an isotropic random vector supported in a finite set $T \subset \mathbb{R}^n$. Show that in order for X to be sub-gaussian with $||X||_{\Psi_2} = O(1)$, the cardinality of the set must be exponentially large in n:

$$|T| > e^{cn}$$

We can see that discrete distributions do not make nice sub-gaussian distributions, unless they are supported on exponentially large sets.

6. Consider a ball of the l_1 norm in \mathbb{R}^n :

$$K := \{ x \in \mathbb{R}^n : ||x||_1 \le r \}$$

• Show that the uniform distribution on K is isotropic for $r \sim n$.

- When $r \sim n$, show that this distribution is not sub-gaussian.
- 7. (Grothendieck's inequality). Consider an $m \times n$ matrix (a_{ij}) of real numbers. Assume that, for any numbers $x_i, y_j \in \{-1, 1\}$, we have

$$|\sum_{i,j} a_{ij} x_i y_j| \le 1$$

Then, for any Hilbert space H and any vectors $u_i, v_j \in H$ satisfying $||u_i|| = ||v_j|| = 1$, we have

$$|\sum_{i,j} a_{ij} \langle u_i, v_j \rangle| \le K$$

where $K \leq 1.783$ is an absolute constant.

Chapter 4

1. Let (T,d) be a metric space. Consider a subset $K \subset T$ and let $\epsilon > 0$, give the definition of the packing number of K denoted as $\mathcal{P}(K,d,\epsilon)$ and the covering number of K denoted as $\mathcal{N}(K,d,\epsilon)$. Then prove

$$\mathcal{P}(K, d, 2\epsilon) \le \mathcal{N}(K, d, \epsilon) \le \mathcal{P}(K, d, \epsilon)$$

2. Let *K* is a subset of \mathbb{R}^n , $\epsilon > 0$, then

$$\frac{|K|}{|\epsilon B_2^n|} \leq \mathcal{N}(K, \epsilon) \leq \mathcal{P}(K, \epsilon) \leq \frac{|K + (\epsilon/2)B_2^n|}{|(\epsilon/2)B_2^n|}$$

where $|\cdot|$ denotes the volume in \mathbb{R}^n , B_2^n denotes the unit Euclidean ball in \mathbb{R}^n , ϵB_2^n is a Euclidean ball with radius ϵ .

3. (Norm of matrices with sub-gaussian entries). Let A be an $m \times n$ random matrix whose entries A_{ij} are independent, mean zero, sub-gaussian random variables. Then, for any t > 0 we have

$$||A|| \lesssim K(\sqrt{m} + \sqrt{n} + t)$$

with probability at least $1 - 2exp(-t^2)$. Here $K = \max_{ij} ||A_{ij}||_{\Psi_2}$.

4. Let A be an $m \times n$ random matrix whose entries A_i are independent, mean zero, sub-gaussian isotropic random vectors. Then, for any t > 0 we have,

$$\sqrt{m} - CK^2(\sqrt{n} + t) \le s_n(A) \le s_1(A) \le \sqrt{m} + CK^2(\sqrt{n} + t)$$

with probability at least $1 - 2exp(-t^2)$. Here $K = \max_i ||A_i||_{\Psi_2}$.

5. (Covariance estimation). Let X be a sub-gaussian random vector in \mathbb{R}^n . More precisely, assume that there exists $K \geq 1$ such that $\|\langle X, x \rangle\|_{\Psi_2} \leq K \|\langle X, x \rangle\|_{L^2}$ for any x in \mathbb{R} . Then, for every positive integer m, we have

$$\mathbb{E} \|\Sigma_m - \Sigma\| \lesssim K^2 \left(\sqrt{\frac{n}{m}} + \frac{n}{m} \right) \|\Sigma\|$$

Chapter 5

- 1. (Concentration of Lipschitz functions) Consider a Lipschitz function $f: \mathcal{X} \to \mathbb{R}$ and a random vector $X \in \mathcal{X}$, prove following results:
 - If $\mathcal{X} = \sqrt{n}S^{n-1}$ and $X \sim Unif(\sqrt{n}S^{n-1})$, then $||f(X) \mathbb{E}f(X)||_{\Psi_2} \lesssim ||f||_{Lip}$;
 - If $\mathcal{X} = S^{n-1}$ and $X \sim Unif(S^{n-1})$, then $||f(X) \mathbb{E}f(X)||_{\Psi_2} \lesssim ||f||_{Lip}/\sqrt{n}$;
 - If $\mathcal{X} = [0,1]^n$ and $X \sim Unif([0,1]^n)$, then $||f(X) \mathbb{E}f(X)||_{\Psi_2} \lesssim ||f||_{Lip}$;
 - If $\mathcal{X} = \sqrt{n}B_2^n$ and $X \sim Unif(\sqrt{n}B_2^n)$, then $||f(X) \mathbb{E}f(X)||_{\Psi_2} \lesssim ||f||_{Lip}$;
 - If $\mathcal{X} = \mathbb{R}^n$ and $X \sim N(0, I_n)$, then $||f(X) \mathbb{E}f(X)||_{\Psi_2} \lesssim ||f||_{Lip}$.

- 2. State and prove Johnson-Lindenstrauss Lemma.
- 3. (Matrix Bernstein's inequality) Let X_1, \dots, X_n be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \le K$ almost surely for all i. Then, for every $t \ge 0$, we have,

$$\mathbb{P}\left(\left\|\sum_{i=1} X_i\right\| \ge t\right) \le 2n \cdot \exp\left(-\frac{t^2/2}{\sigma^2 + Kt/3}\right)$$

Here $\sigma^2 = \left\| \sum_{i=1}^n \mathbb{E} X_i^2 \right\|$ is the norm of the matrix variance of the sum.

- 4. (Matrix Bernstein's inequality: expectation). Let X_1, \cdots, X_n be independent, mean zero, $n \times n$ symmetric random matrices, such that $\|X_i\| \leq K$ almost surely for all i. Deduce from Bernstein's inequality that
 - With probability at least 1 2exp(-u), we have

$$\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\| \lesssim \sigma\sqrt{\log(n) + u} + K(\log(n) + u)$$

· Check that

$$\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\| \lesssim \sigma \sqrt{\log(n)} + K \log(n)$$

where $\sigma^2 = \left\| \sum_{i=1}^n \mathbb{E} X_i^2 \right\|$ is the norm of the matrix variance of the sum.

5. Let A be an $m \times n$ random matrix whose rows A_i are independent, isotropic random vectors in \mathbb{R}^n . Assume that for some K > 0, $||A_i||_2 \le K\sqrt{n}$ almost surely for every i. Prove that for any t > 1 we have,

$$\sqrt{m} - Kt\sqrt{nlog(n)} \le s_n(A) \le s_1(A) \le \sqrt{m} + Kt\sqrt{nlog(n)}$$

with probability at least $1-2n^{-ct^2}$. (Hint: use Matrix Bernstein's inequality.)

6. (Matrix Hoeffding's inequality). Let $\epsilon_1, \dots, \epsilon_n$ be independent symmetric Bernoulli random variables and let A_1, \dots, A_n be symmetric $n \times n$ matrices (deterministic). Prove that, for any $t \ge 0$, we have

$$\mathbb{P}\left(\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\| \geq t\right) \leq 2n \cdot \exp(-t^{2}/2\sigma^{2})$$

where $\sigma^2 = \left\|\sum_{i=1}^n A_i^2\right\|$. (Hint: use $\mathbb{E}\exp(\lambda \epsilon_i A_i) \leq \exp(\lambda^2 A_i^2/2)$.)

7. (General covariance estimation). Let X be a random vector in \mathbb{R}^n . Assume that for some $K \geq 1$, $\|X\|_2 \leq K(\mathbb{E}\|X\|_2^2)^{1/2}$ almost surely. Then, for every positive integer m, we have

$$\mathbb{E} \|\Sigma_m - \Sigma\| \lesssim \left(\sqrt{\frac{K^2 n log(n)}{m}} + \frac{K^2 n log(n)}{m}\right) \|\Sigma\|$$

Chapter 6

1. (Decoupling in normed space) Let $(u_{ij})_{i,j=1}^n$ be fixed vectors in some normed space. Let X_1, \dots, X_n be independent, mean zero random variables. Show that, for every convex function F, one has

$$\mathbb{E}F\left(\left\|\sum_{i,j,i\neq j}X_{i}X_{j}u_{i,j}\right\|\right) \leq \mathbb{E}F\left(4\left\|\sum_{i,j}X_{i}X_{j}^{'}u_{i,j}\right\|\right)$$

where $\left(X_{i}^{'}\right)$ is an independent copy of X_{i} .

2. (Hanson-Wright inequality) Let $X=(X_1,\cdots,X_n)\in\mathbb{R}^n$ be a random vector with independent, mean zero, sub-gaussian coordinates. Let A be an $n\times n$ matrix. Then, for every $t\geq 0$, we have

$$\mathbb{P}\left(|\boldsymbol{X}^\mathsf{T} \boldsymbol{A} \boldsymbol{X} - \mathbb{E} \boldsymbol{X}^\mathsf{T} \boldsymbol{A} \boldsymbol{X}| \geq t\right) \leq 2 \exp\left(-\min\left(\frac{t^2}{K^4 \|\boldsymbol{A}\|_F^2}, \frac{t}{K^2 \|\boldsymbol{A}\|}\right)\right)$$

where $K = \max_i ||X_i||_{\Psi_2}$.

3. (Symmetrization) Let X_1, \dots, X_n be independent, mean zero random vectors in a normed space and ϵ_i are independent symmetric Bernoulli. Then

$$\frac{1}{2}\mathbb{E}\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\| \leq \mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\| \leq 2\mathbb{E}\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|$$

4. Let A be an $m \times n$ random matrix whose entries are independent, mean zero random variables. Show that

$$\mathbb{E}||A|| \lesssim \sqrt{\log(m+n)} \left(\mathbb{E} \max_{i} ||A_{i}||_{2} + \mathbb{E} \max_{j} ||A^{j}||_{2} \right)$$

where A_i and A^j denote the rows and columns of A, respectively.

5. (Contraction principle) Let x_1, \dots, x_n be (deterministic) vectors in some normed space, ϵ_i are independent symmetric Bernoulli, and let $a = (a_1, \dots, a_n) \in \mathbb{R}^n$. Then

$$\mathbb{E}\left\|\sum_{i=1}^{n} a_{i} \epsilon_{i} x_{i}\right\| \leq \|a\|_{\infty} \mathbb{E}\left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|$$

6. (Symmetrization with gaussian) Let X_1, \dots, X_n be independent, mean zero random vectors in a normed space. Let $g_1, \dots, g_n \sim N(0,1)$ be independent Gaussian random variables, which are also independent of X_i . Then

$$\frac{c}{\sqrt{\log(n)}} \mathbb{E} \left\| \sum_{i=1}^{n} g_i X_i \right\| \le \mathbb{E} \left\| \sum_{i=1}^{n} X_i \right\| \le 3 \mathbb{E} \left\| \sum_{i=1}^{n} g_i X_i \right\|$$

Further prove the factor $\sqrt{\log(n)}$ in the lower bound is optimal.

7. (Rademecher complexity) Let G be a family of functions mapping from Z to [a,b] and $S=(z_1,\cdots,z_m)$ a fixed sample of size m with elements in Z. Then, the empirical Rademacher complexity of G with respect to the sample S is defined as:

$$\widehat{\mathcal{R}}_S(G) = \mathbb{E}_{\sigma} \left[\frac{1}{m} \sup_{g \in G} \sum_{i=1}^m \sigma_i g(z_i) \right]$$

where σ_i are independent symmetric Bernoulli. Let D denote the distribution according to which samples are drawn. Now for any sample $S=(z_1,\cdots,z_m)$ and any $g\in G$, we denote by $\widehat{\mathbb{E}}_S[g]$ the empirical average of g over S i.e. $\widehat{\mathbb{E}}_S[g]=\frac{1}{m}\sum_{i=1}^n g(z_i)$. Define the function Φ over S as $\Phi(S)=\sup_{g\in G}\mathbb{E}[g]-\widehat{\mathbb{E}}_S[g]$, prove that

$$\mathbb{E}_{S \sim D^m} [\Phi(S)] \le 2 \mathbb{E}_{S \sim D^m} \widehat{\mathcal{R}}_S(G)$$

(Hint: apply decoupling and symmetrization to upper bound $\mathbb{E}_{S \sim D^m}[\Phi(S)]$.)

Chapter 7

1. (Sudakov-Fernique's inequality) Let $(X_t)_{t\in T}$ and $(Y_t)_{t\in T}$ be two mean zero Gaussian processes. Assume that for all $t,s\in T$, we have

$$\mathbb{E}(X_t - X_s)^2 \le \mathbb{E}(Y_t - Y_s)^2$$

Then

$$\mathbb{E}\sup_{t\in T}X_t \le \mathbb{E}\sup_{t\in T}Y_t$$

2. (Gordon's inequality) Let $(X_{ut})_{u \in U, t \in T}$ and $Y = (Y_{ut})_{u \in U, t \in T}$ be two mean zero Gaussian processes indexed by pairs of points (u, t) in a product set $U \times T$. Assume that we have

$$\mathbb{E}X_{ut}^2 = \mathbb{E}Y_{ut}^2 \ \forall u, \ t$$

$$\mathbb{E}(X_{ut} - X_{us})^2 \le \mathbb{E}(Y_{ut} - Y_{us})^2 \ \forall u, \ t, \ s$$

$$\mathbb{E}(X_{ut} - X_{vs})^2 \ge \mathbb{E}(Y_{ut} - Y_{vs})^2 \ \forall u \ne v, \forall t, \ s$$

Then for every $\tau \geq 0$ we have

$$\mathbb{P}\left(\inf_{u \in U} \sup_{t \in T} X_{ut} \ge \tau\right) \le \mathbb{P}\left(\inf_{u \in U} \sup_{t \in T} Y_{ut} \ge \tau\right)$$

Consequently,

$$\mathbb{E} \inf_{u \in U} \sup_{t \in T} X_{ut} \le \mathbb{E} \inf_{u \in U} \sup_{t \in T} Y_{ut}$$

3. Let A be an $m \times n$ matrix with independent N(0,1) entries. Then

$$\sqrt{m} - \sqrt{n} \le \mathbb{E}s_n(A) \le \mathbb{E}s_1(A) \le \sqrt{m} + \sqrt{n}$$

(Hint: use results in previous two problems.)

4. (Sudakov's minoration inequality) Let $(X_t)_{t\in T}$ be a mean zero Gaussian process. Then, for any $\epsilon \geq 0$, we have

$$\epsilon \sqrt{\log \mathcal{N}(T, d, \epsilon)} \lesssim \mathbb{E} \sup_{t \in T} X_t$$

- 5. Given a set $T \in \mathbb{R}^n$, give the definition of $diam(T), rad(T), w(T), w_s(T), h(T), d(T)$ and $\gamma(T)$, and then prove the following inequalities:
 - $\frac{1}{\sqrt{2\pi}}diam(T) \le w(T) \le \frac{\sqrt{n}}{2}diam(T)$;
 - $(\sqrt{n}-C)w_s(T) \le w(T) \le (\sqrt{n}+C)w_s(T);$
 - $\gamma(T-T) = 2w(T);$
 - $\frac{1}{3}[w(T) + ||y||_2] \le \gamma(T) \le 2[w(T) + ||y||_2]$ for arbitrary point $y \in T$;
 - $w(T-T) \le h(T-T) \le w(T-T) + Cdiam(T) \lesssim w(T-T);$
 - d(T) < dim(T).
- 6. Prove the following propositions:
 - $w(B_{\infty}^n) = \sqrt{\frac{2}{\pi}}n$;
 - $w(B_1^n) \approx \sqrt{\log(n)}$;
 - $w(S^{n-1}) = w(B_2^n) \approx \sqrt{n}$;
 - Let p>1, check that $w(B_p^n) \lesssim \sqrt{q} n^{1/q}$, where q is the conjugate exponent for p, satisfying 1/p+1/q=1;
 - Let T be a finite set of points in \mathbb{R}^n . Check that $w(T) \preceq \sqrt{\log(|T|)} \cdot diam(T)$;
 - All results above can be extended to $w_s(\cdot)$. State them.
- 7. (Massrt's lemma) Let $A \subset \mathbb{R}^n$ be a finite set and $\sigma_1, \dots, \sigma_n$ be independent symmetric Bernoulli, prove that
 - Use the techniques this chapter introduced to prove that

$$\mathbb{E}_{\sigma}\left[\frac{1}{m} \sup_{g \in G} \sum_{i=1}^{m} \sigma_{i} x_{i}\right] \leq C \frac{\sqrt{\log|A|} \cdot rad(A)}{n}$$

• Further prove that $C \leq \sqrt{2}$ (Hint: you may use other techniques like Hoeffding's lemma to prove the above result again).

Chapter 8

We define a random process $(X_t)_{t \in T}$ on a metric space (T, d) with sub-gaussian increments if there exist some constant K and for all $t, s \in T$, it satisfies

$$||X_t - X_s|| \le Kd(t,s)$$

1. (Dudley's integral inequality). Let $(X_t)_{t \in T}$ be a mean zero random process on a metric space (T, d) with sub-gaussian increments, then

$$\mathbb{E} \sup_{t \in T} X_t \lesssim \int_0^{diam(T)} \sqrt{\log \mathcal{N}(T, d, \epsilon)} d\epsilon$$

Here $diam(T) = \sup_{x,y \in T} d(x,y)$.

2. (Two-sided Sudakov's inequality). Let $T \subset \mathbb{R}^n$ and set

$$s(T) := \sup_{\epsilon > 0} \epsilon \sqrt{\log \mathcal{N}(T, \epsilon)}$$

Then

$$s(T) \lesssim w(T) \lesssim \log(n) \cdot s(T)$$

3. (Dudley's integral inequality: tail bound). Let $(X_t)_{t\in T}$ be a random process on a metric space (T,d) with sub-gaussian increments. Then for every $u\geq 0$, the event

$$\sup_{t,s\in T} |X_t - X_s| \lesssim K \left[\int_0^\infty \sqrt{\mathcal{N}(T,d,\epsilon)} d\epsilon + u \cdot diam(T) \right]$$

holds with probability at least $1 - 2\exp(-u^2)$.

- 4. (VC dimension) Give the definition of the VC dimension of a class of subsets of Ω without mentioning any function. Then show that
 - For the class of all intervals on a line, the VC dimension is 2;
 - For the class of all rectangles on the plane (may not be axis-aligned), the VC dimension is 7;
 - For the class of all polygons with k vertices on the plane, the VC dimension is 2k + 1;
 - For the class of half-spaces in \mathbb{R}^n , the VC dimension is n+1.
- 5. (Pajor's Lemma) Let $\mathcal F$ be a class of Boolean functions on a finite set Ω . Then

$$|\mathcal{F}| \leq |\{\Lambda \subset \Omega : \Lambda \text{ is shattered by } \mathcal{F}\}|$$

6. (Sauer-Shelah Lemma) Let \mathcal{F} be a class of Boolean functions on a finite set Ω . Set $d = vc(\mathcal{F})$, then

$$|\mathcal{F}| \le \sum_{k=1}^{d} \binom{n}{k} \le \left(\frac{en}{d}\right)^d$$

7. (Covering numbers via VC dimension). $\mathcal F$ be a class of Boolean functions on a probability space (Ω,Σ,μ) . Define a metric on $\mathcal F$ as

$$d(f,g) = \|f - g\|_{L^{2}(\mu)} = \left(\int_{\Omega} |f - g|^{2} d\mu\right)^{1/2} \text{ for any } f, g \in \mathcal{F}$$

Then for every $\epsilon \in (0,1)$, we have

$$\mathcal{N}\left(\mathcal{F}, L^2(\mu), \epsilon\right) \le \left(\frac{2}{\epsilon}\right)^{Cd}$$

where $d = vc(\mathcal{F})$.

8. (Empirical processes via VC dimension). Let $\mathcal F$ be a class of Boolean functions on a probability space (Ω,Σ,μ) with finite VC dimension $vc(\mathcal F)\geq 1$. Let X,X_1,X_2,\cdots,X_n be independent random points in Ω distributed according to the law μ . Then

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X)\right| \lesssim \sqrt{\frac{vc(\mathcal{F})}{n}}$$

9. (VC-dimension generalization bounds) Let H be a family of functions taking values in $\{-1, +1\}$ with VC-dimension d. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H$:

$$R(h) \le \widehat{R}(h) + \sqrt{\frac{2dlog(\frac{em}{d})}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

where $R(h)=\mathbb{E}_{(x,y)\sim D}[1_{h(x)\neq y}]$ and $\widehat{R}(h)=\frac{1}{m}\sum_{i=1}^m 1_{h(x_i)\neq y_i}$. (Hint: use previous conclusion, Sauer-Shelah Lemma and McDiarmid's inequality.)

10. Give the definition of Talagrand's γ_2 functional, and prove

$$\gamma_2(T,d) \lesssim \int_0^\infty \sqrt{\log \mathcal{N}(T,d,\epsilon)} d\epsilon$$

11. (Talagrand's comparison inequality) Let $(X_t)_{t \in T}$ be a mean zero random process on a set T and $let(Y_t)_{t \in T}$ be a Gaussian process. Assume that for all $t, s \in T$, we have

$$||X_t - X_s||_{\Psi_2} \le K||Y_t - Y_s||_2$$

Then

$$\mathbb{E} \sup_{t \in T} X_t \lesssim K \mathbb{E} \sup_{t \in T} Y_t$$

12. Let $(X_x)_{x\in T}$ be a mean zero random process on a subset $T\subset \mathbb{R}^n$. Assume that for all $x,y\in T$, we have

$$||X_x - X_y||_{\Psi_2} \le K||x - y||_2$$

Prove

- $\mathbb{E}\sup_{x\in T}X_x \preceq Kw(T)$;
- $\mathbb{E}\sup_{x\in T}|X_x| \lesssim K\gamma(T)$;
- For every $u \ge 0$, we have the event

$$\sup_{x \in T} |X_x| \lesssim K(w(T) + u \cdot rad(T))$$

holds with probability at least $1 - 2exp(-u^2)$;

- For p > 1, $(\mathbb{E} \sup_{x \in T} |X_x|^p)^{1/p} \lesssim \sqrt{p} K \gamma(T)$.
- 13. (Sub-gaussian Chevet's inequality). Let A be $\operatorname{an} m \times n$ random matrix whose entries A_{ij} are independent, mean zero, sub-gaussian random variables. Let $T \subset \mathbb{R}^n$ and $S \subset \mathbb{R}^m$ be arbitrary bounded sets and $K = \max_{i,j} \|A_{ij}\|_{\Psi_2}$. Then

$$\mathbb{E} \sup_{x \in T, y \in S} \langle Ax, y \rangle \le CK \left[w(T) rad(S) + w(S) rad(T) \right]$$

If suppose the entries of A are N(0,1), then CK=1.

Chapter 9, 11

1. (Matrix deviation inequality). Let A be an $m \times n$ matrix whose rows A_i are independent, isotropic and sub-gaussian random vectors in \mathbb{R}^n . Then for any subset $T \subset \mathbb{R}^n$, we have

$$\mathbb{E} \sup_{x \in T} |||Ax||_2 - \sqrt{m}||x||_2| \lesssim K^2 \gamma(T)$$

Here $\gamma(T)$ is the Gaussian complexity and $K = \max_i \|A_i\|_{\Psi_2}$.

2. (General matrix deviation inequality). Let A be an $m \times n$ Gaussian random matrix with i.i.d. N(0,1) entries. Let $f: \mathbb{R}^m$ \mathbb{R} be a positive-homogeneous and subadditive function, and let $b \in \mathbb{R}$ be such that $f(x) \leq b \|x\|_2$ for all $x \in \mathbb{R}^n$. Then for any subset $T \subset \mathbb{R}^n$, we have

$$\mathbb{E}\sup_{x\in T}|f(Ax) - \mathbb{E}f(Ax)| \lesssim b\gamma(T)$$

- 3. State and prove M^* bound and Escape theorem.
- 4. (Dvoretzky-Milman's theorem for Grassmanian) Let P be a random projection onto a random m-dimensional subspace in \mathbb{R}^n . $T \subset \mathbb{R}^n$ be a bounded set, and let $\epsilon \in (0,1)$.
 - Suppose $m \lesssim \epsilon^2 d(T)/n$, where d(T) is the stable dimension of T. Then with probability at least 0.99, we have

$$(1 - \epsilon)B \subset conv(PT) \subset (1 + \epsilon)B$$

where B is a Euclidean ball with radius $w_s(T)$. Then $diam(PT) \approx w_s(T)$ when $m \preceq d(T)$.

• With probability $1 - 2e^{-m}$, we have

$$diam(PT) \lesssim \left[w_s(T) + \sqrt{\frac{m}{n}} diam(T) \right]$$

Thus if $m \succsim d(T)$, $diam(PT) \approx \sqrt{\frac{m}{n}} diam(T)$.

• A random projection of a set T in \mathbb{R}^n onto an m-dimensional subspace approximately preserves the geometry of T if $m \succsim d(T)$. For smaller m, the projected set PT becomes approximately a round ball of diameter $\sim w_s(T)$, and its size does not shrink with m.

Chapter 10

- 1. What's RIP condition? Explain its intuition.
- 2. Suppose the rows A_i of A are independent, isotropic and sub-gaussian random vectors, and let $K:=\max_i \|A_i\|_{\Psi_2}$. Then the following happens with probability at least 1-2 $exp(-cm/K^4)$. Assume an unknown signal $x\in\mathbb{R}^n$ is s-sparse and the number of measurements m satisfies

$$m \succeq K^4 s \log(n)$$

Then a solution \hat{x} of the following program is exact, i.e. $\hat{x} = x$.

$$\min ||x||_1 \ s.t. \ y = Ax$$