14.4 LINK STATE ROUTING

In link state routing, if each node in the domain has the entire topology of the domain, the node can use Dijkstra's algorithm to build a routing table.

The topics discussed in this section include:

Building Routing Tables

Figure 14.15 Concept of link state routing

Link State Routing

- □ From Figure 14.15
 - Each node uses the same topology to create a routing table
 - But the routing table for each node is unique
 - □ Like a city map

Link State Routing

- □ Assumption of link state routing
 - Although the global topology knowledge is not clear and each node has partial knowledge
 - □ It knows the state (type, condition, cost) of its link
 - However, the while topology can be compiled from the partial knowledge of each node
 - □ See the Figure 14.16

Figure 14.16 Link state knowledge

- □ Each node has a partial knowledge of the network
- □ There is an overlap in the knowledge
- □ The overlap guarantees the creation of a common topology
 - A picture of the whole domain for each node

Building Routing Tables

- □ For sets of actions in link state routing
 - Creation of the states of the links by each node
 - Called the *link state packet* or *LSP*
 - Dissemination of LSPs to every other router, called *flooding*, in an efficient and reliable way
 - *Formation* of a shorten path tree for each node
 - Calculation of a routing table based on the shortest path tree

Creation of Link State Packet (LSP)

- □ Assume a LSP carries
 - The node identity
 - The list of links
 - □ Both are needed to make the topology
 - A sequence number
 - □ Distinguishes new LSPs from old ones
 - Age
 - □ Prevent old LSPs from remaining in the domain for a long time

Creation of Link State Packet (LSP)

- □ LSP are generated on two occasions
 - When there is a *change* in the topology of the domain
 - Quickly inform any node to update its topology
 - On a *periodic* basis
 - □ The period is much longer compared to the distance vector routing
 - □ 60 minutes or 2 hours

Flooding of LSPs

- □ Flooding: the LSP must be disseminated to all other nodes in the domain
 - Not only to its neighbors
- □ Rules
 - The creating node sends a copy of the LSP out of each interface
 - All receiving nodes compare the incoming one with the copy it may already have
 - ☐ If the newly LSP is older than the one it has by checking sequence number
 - Discard the LSP
 - □ Else
 - Discard the old LSP
 - Sends a copy of it out of each interface except the incoming one

Formation of Shortest Path Tree: Dijkstra Algorithm

Figure 14.18 Example of formation of shortest path tree

Topology

1. Set root to A and move A to tentative list

2. Move A to permanent list and add B, C, and D to tentative list

3. Move C to permanent and add E to tentative list

4. Move D to permanent list.

- 5. Move B to permanent list
- 6. Move E to permanent list (tentative list is empty)

Calculation of Routing Table from Shortest Path Tree

□ Example:

Node	Cost	Next Router
A	0	
В	5	
С	2	
D	3	
Е	6	С