Question 42

Let $M \subseteq \mathbf{R}^N$ be a smooth *n*-manifold (with or without boundary!).

- (a) Show that if n < N, then M is a Lebesgue null set.
- (b) Show that if n = N and M is closed and its boundary is nonempty, then ∂M coincides with the usual topological boundary (as defined on Handout #2).
- (c) Show that if M is compact and its boundary is nonempty, then M is Jordan measurable.

Proof.

(a):

We begin by proving a lemma:

Lemma: A countable union of sets with Jordan measure 0 is a Lebesgue null set.

Let $E = \bigcup_{i>0} E_i$, where $\mu(E_i) = 0$.

(b):

Let p be a point in the topological boundary of M. We will show that $p \in \partial M$. Suppose for contradiction that p is in M° , meaning it is contained in a chart (U, φ) that is diffeomorphic to an open set \hat{U} in \mathbb{R}^{N} . Note that φ is a diffeomorphism with domain \hat{U} and codomain U. Then it must be true that $\varphi(\hat{U}) = U$ is an open subset of \mathbb{R}^{N} . But this is a contradiction, as that would imply that the boundary point p is in the interior of M. Therefore $p \in \partial M$. Next, let $p \in \partial M$ and again suppose for contradiction that p is not in the topological boundary of M. Then it must be true that p is in the topological interior of M. Recall that $p \in \partial M$ implies that it is contained in a chart (U, φ) that is diffeomorphic to $\overline{\mathbb{H}^{n}}$ and $p \in \mathrm{bd}(\mathbb{H}^{n})$. Since p is in the topological interior of M, we can find an open ball $B(p, r) \subseteq M$ which is also open in \mathbb{R}^{N} . Then $\varphi^{-1}(B(p, r))$ should also be open in \mathbb{R}^{N} . But this implies that for small enough δ , $\varphi(p) - (0, ..., \delta) \in \overline{\mathbb{H}^{N}}$, which cannot happen.

(c):

First, we prove that a compact Lebesgue null set E has Jordan measure 0. It suffices to show that the upper measure $\mu^*(E) = 0$.

Let $\varepsilon > 0$. By definition, we can find a countable union of boxes $B = \bigcup_{i=1}^{\infty} B_i$ such that $E \subseteq B$ and $vol(B) < \varepsilon$. But since E is compact, it can be covered by finitely many boxes B_{n_i} , $0 < i \le N$. Thus

$$\operatorname{vol}\left(\bigcup_{i=1}^{N} B_{n_i}\right) = \sum_{i=1}^{N} \operatorname{vol}(B_{n_i}) \le \operatorname{vol}(B) < \varepsilon.$$

Since ε was chosen arbitrarily, we can conclude that $\mu^*(E) = 0$, and E has Jordan measure 0.

Now, suppose that M is compact and its boundary is nonempty. If $\dim M < N$, M is a Lebesgue null set and has Jordan measure 0, and therefore measurable. Otherwise, if $\dim M = N$, since the boundary of M is non-empty, the topological boundary of M is actually a smooth manifold of dimension (N-1), and therefore a Lebesgue null set. As well, the topological boundary of M is compact, so it is Jordan measure 0, which implies that M is Jordan measurable.

 \Box