

Nivelul Fizic

04.03.2009

rotocoale de comunicatie – Curs 2

Universitatea Politehnica București - Facultatea de Automatica si Calculatoare

Caracteristici

- · Se referă la conexiunile fizice din rețea
- Descrie caracteristicile **mecanice**, **electrice**, **funcționale** și **procedurale** ale conexiunii, în particular:
 - tipul conectorului
 - numărul de pini
 - funcția fiecărui pin
 - plaja de semnale electrice acceptate
 - tipul cablului
 - viteza de transmisie
 - metoda de codificare

04.03.2009

Exemple de standarde WAN si LAN

Exemple WAN

CCITT X.21 Interfața digitală DTE-DCE EIA RS 232C DTE-DCE interfața analogică (CCITT V.24)

Exemple LAN

10Base5 Cablu coaxial gros10Base2 Cablu coaxial subţire10Base-T Pereche fire torsadate

WAN = Wide Area Network

LAN = Local Area Network

CCITT = Comité Consultatif International Téléphonique et Télégraphique

DTE = Data Terminal Equipment

DCE = Data circuit-terminating equipment

EIA = Electronic Industries Alliance

04.03.2009

FOLITEHMEN

RS232

Generalitati

- Dezvoltat de Electronics Industry Association (EIA)
- RS = Recommended Standard
- Introdus in 1962
- Mai multe revizii RS232C este a treia
- RS232 este identic cu standardele
 - CCITT V.24/V.28
 - X.20bis/X.21bis
 - ISO IS2110.
- Caracteristici mecanice
 - conector 25 pini
 - conector 9 pini

04.03.2009

rotocoale de comunicație – Curs 2

Jniversitatea Politehnica București - Facultatea de Automatica și Calculatoare

RS232

Caracteristici electrice

rata semnal : 20000 bpslungime cablu : 50 feets

capacitate totală linie : sub 2500 pF.

nivele tensiune

semnal		C	ontrol 	data			
output	+15V			0 - space			
			0 - OFF	1 - mark			
input	+15V		1 - ON				
		-3V -15V	0 - OFF	1 - mark			

04.03.2009

Ca	Caracteristici functionale RS232					
				1816		
pin	to	symbol	name			
2	DCE	TD	Transmitted Data			
3	DTE	RD	Received Data			
4	DCE	RTS	Request To Send			
5	DTE	CTS	Clear To Send			
6	DTE	DSR	Data Set Ready			
20	DCE	DTR	Data Terminal Ready			
8	DTE	DCD	Data Carrier Detected			
23		RS	Data rate Selector			
15	DTE	TC	Transmitter Clock			
17	DTE	RC	Receiver Clock			
24	DCE	TC	Transmitter Clock 1			
22	DTE	RI	Ring Indicator			
1		GROUND	protective ground			
7		GND	common return			
12	DTE		secondary DCD			
13	DTE		secondary CTS			
14	DCE		secondary TD			
16	DTE		secondary RD			
19	DCE		secondary RTS			
21			Signal Quality Detector			
9,	10, 11, 18, 25		unused			

Sonet

04.03.2009

Protocoale de comunicație – Curs 2

Universitatea Politehnica București - Facultatea de Automatica si Calculatoare

PLA TEHALITY

Circuite de comunicare digitală punct-la-punct

Digital audio: utilizat prima dată la Chicago în 1962; convertor AD; exemplu - digitizare

04.03.2009

Reguli

Banda vocală - 4000 Hz
Teorema eşantionare Nyquist
eşantioane la 8000 ori pe secundă (la 125 µsec)
Domeniu valori digitale - 0..255
Schema eşantionare - PCM - Pulse Code Modulation
(standard pentru digital audio)

Circuitele digitale închiriate formează baza WAN-uri

voce și date folosesc tehnologii diferite

voce - tehnologie sincronă

date - tehnologie asincronă

adaptare - DSU / CSU (Data Service Unit / Channel Service Unit)

04.03.2009

rotocoale de comunicație – Curs 2

Universitatea Politehnica București - Facultatea de Automatica și Calculatoare

Standarde pentru circuite digitale

Nume	Rata Biţi (Mbps)	Circuite Vocale	Localizare
	0.064	1	
T1	1.544	24	America de Nord
T2	6.312	96	America de Nord
Т3	44.736	672	America de Nord
E1	2.048	30	Europa
E2	8.448	120	Europa
E3	34.368	480	Europa

Rata biţi <=> număr de circuite vocale

04.03.2009

Circuite de capacitate mai redusă

fractional T1 (frecvent 56 Kbps) TDM (Time Division Multiplexing)

Circuite de capacitate intermediară

inverse mux

Circuite de capacitate ridicată - standarde

STS - Synchronous Transport Signal

OC - Optical Carrier

SONET - Synchronous Optical NETwork (American)

SDH - Synchronous Digital Hierarchy (CCITT)

04.03.2009

ISDN bit pipe suportă mai multe canale multiplexate TDM

A 4 KHz canal analog telefonic

B 64 kbps canal digital PCM voce si date

C 8 or 16 kbps canal digital

D 16 kbps canal digital de semnalizare out-of-band E 64 kbps canal digital pentru semnalizare ISDN

H 384-, 1536-, or 1920-kbps canal digital

Combinatii standard

basic rate 2B + 1D

primary rate 23B + 1D (US şi Japonia) sau

30B + 1D (Europa)

Hibrid 1A + 1C

Probleme cu Narrowband ISDN (N-ISDN)

viteză scazută cost ridicat

04.03.2009

Protocoale de comunicație – Curs

Universitatea Politehnica București - Facultatea de Automatica și Calculatoare

3) Tehnologii DSL

Asymmetric Digital Subscriber Line

Tehnologie de buclă locală (cablu torsadat) optimizat pentru utilizari tipice high rate downstream (max 6.144 Mbps)

low rate upstream (max 64 Kbps)

Nu cere schimbări în cablarea existentă

Nu întrerupe bucla locală

04.03.2009

ADSL este adaptiv

Foloseşte Discrete Multi Tone modulation (DMT) care combină FDM cu inverse mux

banda împărțită în 256 subcanale

0 voce

1-4 nefolosite

2 control

rest date

viteze variabile dependente de condiții pe linie downstream - 32 Kbps la 6.4 Mbps upstream - 32 Kbps la 640 Kbps

04.03.2009

Alte Tehnologii DSL

SDSL - Symmetric Digital Subscriber Line

HDSL - High-rate Digital Subscriber Line

1.544 Mbps in ambele sensuri

VDSL - Very-high rate Digital Subscriber Line 52 Mbps

04.03.2009

Protocoale de comunicație – Curs :

Universitatea Politehnica București - Facultatea de Automatica si Calculatoare

Tehnologie Cablu

Cablul coaxial favorizează viteza mare

Foloseşte FDM pe mai multe canale de televiziune simultan

Are bandă neutilizată

Cere modemuri speciale

Combinație cu TDM pentru creștere număr utilizatori

Comunicație upstream folosește linie telefonică separată

Facilități de TV interactiv