## **Bonding in coordination compounds**

Nobel prize 1913

- Alfred Werner 1893
- VBT
- Crystal Field Theory (CFT)
- Modified CFT, known as Ligand Field Theory
- MOT



## How & Why?



### Valance Bond Theory

#### **Basic Principle**

A covalent bond forms when the orbtials of two atoms overlap and are occupied by a pair of electrons that have the highest probability of being located between the nuclei.



Linus Carl Pauling (1901-1994)

Nobel prizes: 1954, 1962

#### Valance Bond Model

Ligand = Lewis base

Metal = Lewis acid

s, p and d orbitals give hybrid orbitals with specific geometries

Number and type of M-L hybrid orbitals determines geometry of the

complex

Octahedral Complex e.g. [Cr(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>



#### Tetrahedral e.g. [Zn(OH)<sub>4</sub>]<sup>2-</sup>

#### Square Planar e.g. [Ni(CN)<sub>4</sub>]<sup>2-</sup>





#### **Limitations of VB theory**

Cannot account for colour of complexes

May predict magnetism wrongly

Cannot account for spectrochemical series

# Crystal Field Theory



400



500 600

•The relationship between colors and complex metal ions





### **Crystal Field Model**

- > A purely ionic model for transition metal complexes.
- > Ligands are considered as point charge.
- Predicts the pattern of splitting of d-orbitals.
- Used to rationalize spectroscopic and magnetic properties.



## d-orbitals: look attentively along the axis



## **Octahedral Field**



- We assume an octahedral array of negative charges placed around the metal ion (which is positive).
- The ligand and orbitals lie on the same axes as negative charges.
  - Therefore, there is a large, unfavorable interaction between ligand and these orbitals ( $d_{z^2}$  and  $d_{\chi^2-\gamma^2}$ ).
  - These orbitals form the degenerate high energy pair of energy levels.
- The  $d_{xy}$ ,  $d_{yz}$ , and  $d_{xz}$  orbitals bisect the negative charges.
  - Therefore, there is a smaller repulsion between ligand and metal for these orbitals.
  - These orbitals form the degenerate low energy set of energy levels.



## In Octahedral Field





## **Tetrahedral Field**



- We assume an tetrahedral array of negative charges placed around the metal ion (which is positive).
- The ligand and orbitals lie in between the axes of the negative charges.
  - Therefore, there is a large, unfavorable interaction between ligand and these orbitals,  $d_{xy}$ ,  $d_{yz}$ , and  $d_{xz}$ .
  - These orbitals form the degenerate high energy pair of energy levels.
- The orbitals along the axes  $(d_{z^2}$  and  $d_{x^2-v^2}$ )
  - Feels a smaller repulsion between ligand and metal for these orbitals.
  - These orbitals form the degenerate low energy set of energy levels.

### In Tetrahedral Field









#### Magnitude of $\Delta$

#### Oxidation state of the metal ion

 $[Ru(H_2O)_6]^{2+}$ 

19800 cm<sup>-1</sup>

 $[Ru(H_2O)_6]^{3+}$ 

28600 cm<sup>-1</sup>

#### Number of ligands and geometry

$$\Delta_{\rm o} \rangle \Delta_{\rm t}$$

$$\Delta_{\rm t} = 4/9\Delta_{\rm o}$$

#### **Nature of the ligand**

 $\Gamma < Br' < S^{2} < SCN' < C\Gamma < NO_{3}^{-} < N_{3}^{-} < F' < urea < OH' < C_{2}O_{4}^{-2} < O^{2} < H_{2}O < NCS' < py < NH_{3} < en < bpy, phen < NO_{2}^{-} < CH_{3}^{-} < C6H5' < CO' < CO$ 

## Crystal Field Stabilization Energy (CFSE)

- In Octahedral field, configuration is:  $t_{2g}^{x} e_{g}^{y}$
- Net energy of the configuration relative to the average energy of the orbitals is:

$$= (-0.4x + 0.6y)\Delta_{O}$$

$$\Delta_{O} = 10 Dq$$

$$BEYOND d^{3}$$

- In weak field:  $\Delta_O < P$ , =>  $t_{2g}^3 e_g^1$
- In strong field  $\Delta_O > P$ , =>  $t_{2g}^4$
- P paring energy

## Ground-state Electronic Configuration, Magnetic Properties and Colour

d<sup>1</sup>-d<sup>10</sup> High spin and low spin complexes When the 4<sup>th</sup> electron is assigned it will either go into the higher energy  $e_g$  orbital at an energy cost of  $\Delta_o$  or be paired at an energy cost of P, the pairing energy.



Coulombic repulsion energy and exchange energy

## Ground-state Electronic Configuration, Magnetic Properties and Colour



 $[Mn(CN)_6]^{3-} = d^4$  **Strong field Complex**total spin is  $2 \times \frac{1}{2} = 1$  **Low Spin Complex** 

 $[Mn(H_2O)_6]^{3+} = d^4$  **Weak Field Complex**the total spin is  $4 \times \frac{1}{2} = 2$  **High Spin Complex** 

## Placing electrons in d orbitals

$$- - d^{5}$$

$$\uparrow \uparrow \uparrow$$

$$\uparrow \uparrow \uparrow$$

$$\uparrow \downarrow \uparrow$$

$$1 \text{ u.e.} 5 \text{ u.e.}$$









What is the CFSE of  $[Fe(CN)_6]^{3-}$ ?

 $C.N. = 6 :: O_h$ 

Fe(III) ::  $d^5$ 

h.s.

I.s.  $CN^- = s.f.l.$ 







CFSE = 5 x - 0.4 
$$\Delta_{oct}$$
 + 2P = - 2.0  $\Delta_{oct}$  + 2P

If the CFSE of  $[Co(H_2O)_6]^{2+}$  is -0.8  $\Delta_{oct}$ , what spin state is it in?

C.N. = 6  $\therefore$  O<sub>h</sub> Co(II)  $\therefore$  d<sup>7</sup> h.s.  $\begin{bmatrix}
OH_2 \\
H_2O & OH_2
\end{bmatrix}$ CFSE =  $(5 \times -0.4 \Delta_{oct})$ +  $(2 \times 0.6 \Delta_{oct})$  +  $2P = -0.8 \Delta_{oct}$ + 2P



CFSE = 
$$(6 \text{ x} - 0.4 \Delta_{\text{oct}})$$
  
+  $(0.6 \Delta_{\text{oct}})$  +  $3P$ = -  $1.8 \Delta_{\text{oct}}$  +  $P$ 

#### Magnetism

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum



Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

- The magnetic moment μ of a complex with total spin quantum number S is:
- $\mu = 2\{S(S+1)\}^{1/2} \mu_B$  ( $\mu_B$  is the Bohr magneton)
- $\mu_B = eh/4\pi m_e = 9.274 \times 10^{-24} J T^{-1}$
- Since each unpaired electron has a spin 1/2,
- S = (1/2)n, where n = no. of unpaired electrons
- $\mu = \{n(n+2)\}^{1/2} \mu_B$
- In d<sup>4</sup>, d<sup>5</sup>, d<sup>6</sup>, and d<sup>7</sup> octahedral complexes, magnetic measurements can very easily predict weak versus strong field.
- Tetrahedral complexes only high spin complexes result, for  $\Delta_t << \Delta_O$ .

## n = no. of unpaired electrons

$$\mu = \{n(n{+}2)\}^{1/2} \; \mu_B$$

| Ion               | n | S   | μ/μΒ       | Experimental |
|-------------------|---|-----|------------|--------------|
|                   |   |     | Calculated |              |
| Ti <sup>3+</sup>  | 1 | 1/2 | 1.73       | 1.7 – 1.8    |
| $\mathbf{V}^{3+}$ | 2 | 1   | 2.83       | 2.7 – 2.9    |
| Cr <sup>3+</sup>  | 3 | 3/2 | 3.87       | 3.8          |
| Mn <sup>3+</sup>  | 4 | 2   | 4.90       | 4.8 – 4.9    |
| Fe <sup>3+</sup>  | 5 | 5/2 | 5.92       | 5.3          |

Similar Calculation can be done for Low-spin Complex



Gouy balance to measure the magnetic susceptibilities

- We can measure the magnetic properties of a sample by hanging a vial of material from a balance so that it sits partly in a magnetic field
  - The sample will be pulled down into the magnet if it contains unpaired electrons (said to be paramagnetic)
  - It will tend to be pushed out of the field if it contains no unpaired electrons (diamagnetic)
  - The amount of material in the vial along with the extent to which the sample is pulled into the magnet allows us to calculate the magnetic susceptibility of the sample
    - Sample with a high magnetic susceptibility is strongly pulled into the magnetic field

## The origin of the color of the transition metal compounds



$$\Delta E = E_2 - E_1 = h\nu$$

Ligands influence  $\Delta_0$ , therefore the colour

#### **Origin of Color**



| Absorbed<br>Color | λ (nm) | Observed<br>Color | λ (nm)<br>560 |
|-------------------|--------|-------------------|---------------|
| Violet            | 400    | Green-yellow      |               |
| Blue              | 450    | Yellow            | 600           |
| Blue-green        | 490    | Red               | 620           |
| Yellow-green      | 570    | Violet            | 410           |
| Yellow            | 580    | Dark blue         | 430           |
| Orange            | 600    | Blue              | 450           |
| Red               | 650    | Green             | 520           |

#### The Beer-Lambert Law

$$A = \log_{10}(Io/I) = \varepsilon c1$$

where ε is the molar extinction coefficient ( in L cm<sup>-1</sup> mole<sup>-1</sup> ), c is concentration in mole L<sup>-1</sup> and l is the path length in cm. A is known as 'Absorbance' and it is dimensionless.

## The colour can change depending on a number of factors e.g.

- 1. Metal charge
- 2. Ligand strength



## The optical absorption spectrum of $[Ti(H_2O)_6]^{3+}$



#### **Assigned transition:**

$$e_g \rightarrow t_{2g}$$
This corresponds to the energy gap
$$\Delta_O = 243 \text{ kJ mol}^{-1}$$

#### Color of $[Ti(H_2O)_6]^{3+}$





Absorption at 520 nm gives the complex its purple color



 $d_x 2 - y 2$ 

A more resolved absorption spectrum of the complex has a shoulder





color

observed color

• Spectrochemical Series: An order of ligand field strength based on experiment:

$$H_2N$$
  $NH_2$ 





Ethylenediamine (en)

2,2'-bipyridine (bipy)

1.10 - penanthroline (phen)



#### Increasing ligand field strength

As  $Cr^{3+}$  goes from being attached to a weak field ligand to a strong field ligand,  $\Delta$  increases and the color of the complex changes from green to yellow.

# Color and CFT

$$[V(H_2O)_6]^{3+}$$
  
V(III) = d<sup>2</sup> ion

$$[V(H_2O)_6]^{2+}$$
  
V(II) = d<sup>3</sup> ion

violet light absorbed complex appears yellow yellow light absorbed complex appears violet







∆ small

# Color and CFT





$$H_3N$$
 $H_3N$ 
 $Cr = NH_3$ 
 $NH_3$ 
 $NH_3$ 

Strong ligands, leading to high  $\Delta_o$ . Absorbs violet and appears yellow.

[Cr(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup>



Relatively weak set of ligands, leading to reduced  $\Delta_o$ . Absorbs yellow and appears magenta.

## **Laporte Rule**

In a molecule or ion possessing center of symmetry, transitions are not allowed between orbitals of same parity. Transitions are only possible between orbitals that differ by  $\Delta l = \pm 1$ ; 'l' is the orbital quantum number.

Examples of forbidden transitions are: s to s, d to d, p to f etc.

Tetrahedral geometry is not affected by this rule as it does not have a center of symmetry.

As a consequence,  $\varepsilon$  for tetrahedral complexes are 100 times more than the  $\varepsilon$  for octahedral complexes.

Even octahedral complexes lose their center of symmetry transiently due to unsymmetrical vibrations. This leads to color in octahedral and square planar complexes

## Spin-forbidden and Spin-allowed Transitions

Any transition for which  $\Delta S^1 \neq 0$  is strongly forbidden; that is, in order to be allowed, a transition must involve no change in spin state.



[Mn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> has a d<sup>5</sup> metal ion and is a high-spin complex. Electronic transitions are not only Laporte-forbidden, but also spin-forbidden. The dilute solutions of Mn<sup>2+</sup> complexes are therefore colorless.

However, certain complexes such as MnO4<sup>-</sup>, CrO4<sup>2-</sup> etc are intensely colored even though they have metal ions without electrons in the d orbitals. The color of these complexes are not from d-d transitions, but from charge-transfer from ligand to metal orbitals.

## $d^0$ and $d^{10}$ ions have no d-d transitions

$$Zn^{2+}$$
  $d^{10}$  ion white  $TiF_4$   $d^0$  ion white  $TiCl_4$   $d^0$  ion white  $TiBr_4$   $d^0$  ion orange  $Til_4$   $d^0$  ion dark brown

$$[MnO_4]^-Mn(VII)$$
 do ion purple

$$[Cr_2O_7]^ Cr(VI)$$
 d<sup>0</sup> ion bright orange

$$[Cu(MeCN)_4]^+$$
  $Cu(I)$   $d^{10}$  ion colourless

$$[Cu(phen)_2]^+$$
  $Cu(I)$   $d^{10}$  ion  $dark$  orange

#### **Limitations of CFT**

Considers Ligand as Point charge/dipole only
Does not take into account of the overlap of ligand and
metal orbitals

## Consequence

e.g. Fails to explain why CO is stronger ligand than CN<sup>-</sup> in complexes having metal in low oxidation state

# **Metals in Low Oxidation States**

- In low oxidation states, the electron density on the metal ion is very high.
- To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.

# Stabilizing Low Oxidation State: CO Can Do the Job



# Stabilizing Low Oxidation State: CO Can Do the Job





Ni(CO)<sub>4</sub>], [Fe(CO)<sub>5</sub>], [Cr(CO)<sub>6</sub>], [Mn<sub>2</sub>(CO)<sub>10</sub>], [Co<sub>2</sub>(CO)<sub>8</sub>], Na<sub>2</sub>[Fe(CO)<sub>4</sub>], Na[Mn(CO)<sub>5</sub>]



σ orbital serves as a very weak donor to a metal atom



### **Distortions in Octahedral Geometry**



Regular Octahedron: Complexes with regular octahedral geometry are expected to form, when all of the ligands are of the same kind



**Distorted Octahedron:** Complexes with distorted octahedral geometry are expected to form, when the ligands are of different kinds

#### **Distortions in Octahedral Geometry**

If the ground electronic configuration of a non-linear complex is orbitally degenerate, the complex will distort so as to remove the degeneracy and achieve a lower energy. This is called the **Jahn-Teller Effect** 





Ni<sup>2+</sup>: Only one way of filling the orbitals; not degenerate and no Jahn-Teller Distortion





Cu<sup>2+</sup>: Two ways of filling the e<sub>g</sub> orbitals; there is degeneracy and Jahn-Teller Distortion is observed

#### Jahn-Teller Distortion in Cu(II) Complexes



## Jahn-Teller Distortion in d<sup>9</sup> Complexes



 $\Delta o \gg \delta 1 > \delta 2$ .

## Jahn-Teller Distortion in d<sup>1</sup> Complexes



# $d^{1}$ Vs $d^{9}$



Distortions are more pronounced if the degeneracy occurs in an  $e_{\rm g}$  orbital

# **Distortions in Low-Spin Complexes**



# Distortions in High-Spin Complexes





# Crystal field splitting of linear complexes

- > Ligands approach along the z axis
- ... Orbitals containing z component go higher in energy and others get stabilized.



# Crystal field splitting of TBP complexes

Ligands approach along the z axis and in between the axis in the XY plane

... Orbital along z go higher in energy, orbitals in the XY plane have intermediate energy and orbitals in XZ and YZ plane experience lowest repulsion and hence

gets stabilized



# To summarize

| Spherical | Trigonal<br>Bipyramidal                  | Linear         | Square<br>Planar       | Tetrahedral         | Octahedral      |
|-----------|------------------------------------------|----------------|------------------------|---------------------|-----------------|
|           | z <sup>2</sup>                           | z <sup>2</sup> | $x^{2}-y^{2}$          |                     | $z^2$ $x^2-y^2$ |
|           | $\overline{xy}$ $\overline{x^2}$ - $y^2$ | xz yz          | xy<br>_ z <sup>2</sup> | xy xz yz $\Delta_t$ | $\Delta_{o}$    |
|           | xz yz                                    | $xy$ $x^2-y^2$ | xz yz                  | $z^2$ $x^2-y^2$     | ↓<br>xy xz yz   |