Álgebra I. Curso 2012 – 2013

Nombre:_____Grupo:____

Sean $z_1 = -\sqrt{3} - i \text{ y } z_2 = 32 \text{ cis } \frac{4\pi}{3}$.

- a) Calcule $\sqrt[3]{\frac{z_1^5}{z_2}}$.
- b) Encuentre el lugar geométrico de los puntos del plano que satisfacen que $\left|z-z_1\right|<2$.

Sea $p(x) = x^3 - x^2 + 2$ y $q(x) = x^2 + 1$.

- a) Demuestre que 1+i es raíz de p(x).
- b) Descomponga totalmente p(x) en factores lineales de C[x] y R[x].
- c) Descomponga en fracciones simples de R[x] la fracción racional $\frac{q(x)}{p(x)}$.

Álgebra I. Curso 2012 – 2013

Nombre:______Grupo:_____

Sean
$$z_1 = -\sqrt{3} - i \text{ y } z_2 = 32 \text{ cis } \frac{4\pi}{3}$$
.

- c) Calcule $\sqrt[3]{\frac{Z_1^5}{Z_2}}$.
- d) Encuentre el lugar geométrico de los puntos del plano que satisfacen que $|z-z_1| < 2$.

Sea
$$p(x) = x^3 - x^2 + 2$$
 y $q(x) = x^2 + 1$.

- d) Demuestre que 1+i es raíz de p(x).
- e) Descomponga totalmente p(x) en factores lineales de C[x] y R[x].
- f) Descomponga en fracciones simples de R[x] la fracción racional $\frac{q(x)}{p(x)}$.