УДК 615.825

DOI 10.5930/1994-4683-2025-4-211-217

Современные подходы к восстановлению нарушенных двигательных функций плечевого сустава у лиц среднего возраста с тендинитом надостной мышцы

Парамонов Алексей Олегович

Национальный государственный университет физической культуры, спорта и здоровья имени П.Ф. Лесгафта, Санкт-Петербург

Аннотация

Цель исследования – оценить эффективность оригинальной методики физической реабилитации, ориентированной на поэтапное восстановление активного отведения плечевого сустава и снижение болевого синдрома у пациентов среднего возраста с тендинитом надостной мышцы.

Методы исследования: анализ зарубежных научных публикаций, педагогический эксперимент, статистический анализ данных. Эксперимент проводился в научно-практическом центре физической реабилитации «Савита» при университете им. П.Ф. Лесгафта.

Результаты исследования и выводы. Выявленные в ходе исследования достоверное улучшение активной гибкости и снижение болевого синдрома свидетельствуют о положительном влиянии на восстановление двигательных функций плечевого сустава у лиц среднего возраста с тендинитом надостной мышцы.

Ключевые слова: физическая реабилитация, двигательные функции, физические упражнения, плечевой сустав, вращательная манжета, тендинит.

Modern approaches to restoring impaired motor functions of the shoulder joint in middle-aged individuals with supraspinatus tendonitis

Paramonov Aleksey Olegovich

Lesgaft National State University of Physical Education, Sport and Health, St. Petersburg Abstract

The purpose of the study is to evaluate the effectiveness of an original rehabilitation method focused on the stepwise restoration of active shoulder abduction and the reduction of pain syndrome in middle-aged patients with supraspinatus tendonitis.

Research methods: analysis of foreign scientific publications, pedagogical experiment, statistical analysis of data. The experiment was conducted at the scientific-practical center for physical rehabilitation "Savita" at Lesgaft National State University of Physical Education, Sport and Health.

Research results and conclusions. The findings of the study indicate a significant improvement in active flexibility and a reduction in pain syndrome, which point to a positive impact on the recovery of motor functions in the shoulder joint of middle-aged individuals with supraspinatus tendonitis.

Keywords: physical rehabilitation, motor functions, physical exercise, shoulder joint, rotator cuff, tendonitis.

ВВЕДЕНИЕ. Надостная мышца (m. supraspinatus) — мышца плечевого пояса, которая начинается на стенках надостной ямки лопатки и прикрепляется к верхней фасетке большого бугорка плечевой кости, срастаясь своим сухожилием с задней поверхностью капсулы плечевого сустава. При сокращении оттягивает капсулу назад, предотвращая механическое ущемление [1].

Надостная мышца является одной из четырех мышц, образующих вращательную манжету плеча. Вместе с сухожилием длинной головки бицепса помогает противостоять гравитационным силам, действующим на сустав в вертикальной плоскости. Стабилизирует весь плечевой комплекс, центрируя головку плечевой кости в суставной впадине лопатки. Иннервируется надлопаточным нервом, верхним стволом плечевого сплетения и сегментами C5-C6 [2].

Надостная мышца играет ключевую роль в стабилизации плечевого сустава, однако её повреждения приводят к серьёзным функциональным нарушениям.

В частности, тендинит надостной мышцы значительно снижает качество жизни и трудоспособность людей среднего возраста [2].

Основная функция надостной мышцы заключается в начальном отведении плечевой кости от 0 до 15 градусов, то есть в отведении верхней конечности в сторону. Она является «первым двигателем» в этом движении и синергистом среднего пучка дельтовидной мышцы, особенно при отведении плечевой кости от 90 до 180 градусов. Также осуществляет наружную ротацию. В исследовании электромиографии (ЭМГ) сгибания 2011 года было обнаружено, что надостная мышца последовательно включается в работу и перед этим движением при нагрузках любой интенсивности [3].

Тендинит надостной мышцы является распространенным заболеванием и причиной нарушения двигательных функций верхней конечности среди лиц среднего и старшего возраста [4, 5].

Тендинит характеризуется дегенеративными изменениями сухожилия, вызванными перегрузками и хроническими микротравмами, что ведёт к болезненности и снижению двигательной активности. Несмотря на распространённость, существующие подходы к реабилитации требуют совершенствования в сторону индивидуализации и целенаправленного воздействия.

Термин «тендинит вращательной манжеты», в частности надостной мышцы, представляет собой общее описание утраты прежних свойств сухожилия и субакромиального болевого синдрома (САБС), что обусловлено хронической и/или реактивной перегрузкой, естественными дегенеративными изменениями, а также последствиями старых травм [6]. На уровне тканей это проявляется продолжающейся неуспешной реакцией заживления сухожилия с бессистемной пролиферацией теноцитов, образованием внутриклеточных аномалий в теноцитах, нарушением структуры коллагеновых волокон с последующим увеличением неколлагенизирующего матрикса. Все это приводит к повышенному уровню раздражимости тканей вплоть до боли в покое во время острой стадии [7, 8, 9].

При этом перестройка структуры тканей происходит неравномерно. Долгое время причинами считались механическое трение и ущемление сухожилия акромионом («импиджмент-синдром»), что, в конечном счете, и приводит к разрывам. Но если повреждение вращательной манжеты вызвано механическим раздражением нижней поверхности акромиона и клювовидно-акромиальной связки, то это должно было приводить к износу верхней (бурсальной) поверхности вращательной манжеты, особенно в области сухожилия надостной мышцы. Однако Раупе и другие исследователи установили, что у молодых спортсменов 91% частичных разрывов вращательной манжеты были обнаружены на нижней (суставной) стороне сухожилия надостной мышцы и только 4% – на верхней стороне [10].

Для оценки степени нарушения функции используются специальные тесты. Воспроизведение боли и выявление мышечной слабости во время этих процедур считается диагностическим. Однако многочисленные описательные и систематические обзоры пришли к выводу, что способность этих тестов оценивать и выявлять структуру как источник симптомов не может быть достигнута с той определенностью, которая необходима для принятия значимых решений. Были описаны тесты для индивидуальной оценки четырех мышц вращательной манжеты и связанных с

ними сухожилий. Фундаментальное требование теста – оценить структуру изолированно [11].

Несколько систематических обзоров показали, что физическая реабилитация должна быть выбором первой линии для улучшения функции и активной подвижности плечевого сустава, снижения интенсивности болевого синдрома у людей с тендинитом надостной мышцы. Результаты доказывают, что конкретные индивидуальные упражнения превосходят общие упражнения, и что некоторые виды мануальной терапии могут иметь дополнительный эффект в краткосрочной перспективе [12, 13].

Таким образом, консервативный подход физической реабилитации рекомендуется в качестве начальной модели решения проблемы [14].

ЦЕЛЬ ИССЛЕДОВАНИЯ – апробирование и обоснование экспериментальной методики физической реабилитации, направленной на восстановление функциональных возможностей плечевого сустава.

Гипотеза исследования предполагала, что последовательное применение специальных упражнений, учитывающих индивидуальные особенности и стадии реабилитации, позволит значительно улучшить активную подвижность плечевого сустава и снизить боль у пациентов среднего возраста.

МЕТОДЫ И ОРГАНИЗАЦИЯ ИССЛЕДОВАНИЯ. В исследовании участвовали 10 человек в возрасте 45–59 лет, без сопутствующих заболеваний, с диагностированным тендинитом надостной мышцы. Эксперимент длился 12 недель, включая 12 групповых и 24 индивидуальных занятия.

Методика, разработанная для восстановления двигательных функций плечевого сустава у лиц среднего возраста, состоит из четырех ключевых элементов, схематично отображенных на рисунке 1.

Рисунок 1 – Компоненты методики физической реабилитации

В основе методики лежит принцип этапности в воздействии на нарушенную функцию отведения плечевого сустава, что обеспечивает возможность прогрессивного усложнения задач и оптимизации выбора средств реабилитации. При восстановлении двигательной функции учитываются три последовательные стадии обучения движению, представленные на рисунке 2 [15].

- 1. Когнитивный этап освоение пассивных упражнений и изометрическая тренировка, направленные на снижение боли и улучшение контроля движений.
- 2. Ассоциативный этап постепенное внедрение пассивно-активных и активно-пассивных упражнений с акцентом на коррекцию движений и повышение нагрузки.
- 3. Автономный этап выполнение активных концентрических упражнений, направленных на закрепление двигательных навыков и укрепление мышц вращательной манжеты.

Рисунок 2 – Стадии восстановления двигательной функции

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ. Для математико-статистической обработки результатов исследования использовался пакет прикладных программ «STATGRAPHICS». Применение указанных программных средств позволило осуществить расчет и анализ следующих статистических характеристик и параметров одномерного распределения: верификацию гипотезы о нормальности распределения, вычисление среднего арифметического значения, дисперсии, стандартного отклонения и стандартной ошибки среднего арифметического.

Оценка эффективности разработанной методики включала в себя измерение активного отведения в плечевом суставе методом гониометрии (рис. 3) и оценку интенсивности болевого синдрома с помощью числовой рейтинговой шкалы NPRS (рис. 4), которые проводились до и после внедрения.

Рисунок 3 – Динамика показателей активной гибкости в отведении плечевого сустава, градусы

Рисунок 4 – Динамика показателей шкалы боли NPRS, числовой рейтинг

Перед началом применения экспериментальной методики оценка активного отведения в плечевом суставе выявила следующие особенности: ограниченный диапазон движения ($x \pm Sx = 126, 1 \pm 0,098$ градуса), признаки мышечной слабости, нарушение согласованности движений в плечевом комплексе, а также болевой синдром умеренной и выше интенсивности ($x \pm Sx = 4,3 \pm 0,26$ балла).

После реализации предложенной методики наблюдалось значительное улучшение показателей: восстановление объема активного отведения до $x\pm Sx=178.6\pm0.65$ градуса, нормализация плече-лопаточного ритма, исчезновение мышечной слабости и значительное снижение интенсивности болевого синдрома ($x\pm Sx=0.3\pm0.15$ балла).

По итогам эксперимента диапазон активного отведения увеличился в среднем на 52,4 градуса, а интенсивность боли снизилась в среднем на 4 балла по числовой рейтинговой шкале NPRS. Статистический анализ подтвердил значимость полученных результатов (p < 0.05).

ВЫВОДЫ. Обзор систематических исследований, проведенных зарубежными специалистами, демонстрирует, что не существует единого, универсального комплекса физических упражнений, который бы однозначно обеспечивал благоприятный результат реабилитации при тендините надостной мышцы. Применение физических упражнений и других реабилитационных мероприятий должно быть персонализировано и учитывать стадию тендинопатии, степень воспалительного процесса в тканях, уровень физической подготовки пациента и его возраст.

Анализ результатов педагогического исследования показал, что разработанная методика способствует увеличению показателей гониометрии в среднем на 52,4 градуса, что отражает улучшение активного отведения в плечевом суставе. Наряду с этим, было отмечено уменьшение интенсивности болевого синдрома на 4 балла по шкале NPRS. Эти результаты дают основания утверждать, что предложенная методика физической реабилитации может быть успешно использована для восстановления двигательных функций плечевого сустава у пациентов среднего возраста, страдающих тендинитом надостной мышцы.

Учитывая важную роль надостной мышцы в отведении плеча и стабилизации плечевого сустава, ее повреждения и заболевания способны существенно ограничивать возможности человека в повседневной жизни, работе и спортивной деятельности.

Ученые записки университета имени П.Ф. Лесгафта. 2025. № 4 (242)

Разработанная методика физической реабилитации демонстрирует высокую эффективность в восстановлении двигательных функций плечевого сустава и может быть рекомендована для широкого применения в реабилитационных и лечебно-профилактических учреждениях.

СПИСОК ИСТОЧНИКОВ

- 1. The Healthline Editorial Team. Supraspinatus Muscle Origin, Function & Anatomy / The Healthline Editorial Team // Healthline. 2020. URL: https://www.healthline.com/human-body/supraspinatus-muscle (дата обращения: 22.10.2024).
- 2. Supraspinatus // Physiopedia. URL: https://www.physiopedia.com/Supraspinatus?utm_source=physiopedia&utm_medium=search&utm_campaign=ongoing_internal#cite_note-1 (дата обращения: 26.10.2024).
- 3. A comprehensive analysis of muscle recruitment patterns during shoulder flexion: an electromyographic study / Wattanaprakornkul D., Halaki M., Boettcher C. [et al.]. DOI 10.1002/ca.21123 // Clin Anat. 2011. Vol. 24. issue 5. P. 619–626.
- 4. Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender / C. Milgrom, M. Schaffler, S. Gilbert, M. van Holsbeeck. DOI 10.1302/0301-620X.77B2.7706351 // The Journal of Bone & Joint Surgery British. 1995. Vol. 77-B, No 2. P. 296–298.
- 5. The long-term outcome of rotator cuff tendinitis / M. D. Chard, L. M. Sattelle, B. L. Hazlerman. DOI 10.1093/rheumatology/27.5.385 // Br. J. Rheumatol. 1988. V. 27, No 5. P. 385–389. EDN: IYMQOZ.
- 6. Maffulli N. Overuse tendon conditions: time to change a confusing terminology. DOI 10.1016/S0749-8063(98)70021-0 // Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1998. Vol. 14, Issue 8, November–December. P. 840–843.
- $7.Maffulli\ N.,\ Longo\ U.\ G.,\ Denaro\ V.\ Novel\ Approaches for the Management of Tendinopathy.\ DOI <math display="inline">10.2106/JBJS.I.01744\ /\!/\ J$ Bone Joint Surg Am. 2010. Vol. 92, No 15. P. 2604–2613.
- 8. Marked pathological changes proximal and distal to the site of rupture in acute Achilles tendon ruptures / N. Maffulli, U. G. Longo, G. D. Maffulli [et al.]. DOI 10.1007/s00167-010-1193-2 // Knee Surg Sports Traumatol Arthrosc. 2011. Vol. 19, No 4. P. 680–687.
- 9. Movin and Bonar scores assess the same characteristics of tendon histology / N. Maffulli, U. G. Longo, F. Franceschi, C. Rabitti, V. Denaro. DOI 10.1007/s11999-008-0261-0 // Clin Orthop Relat Res. 2008. Vol. 466, issue 7. P. 1605–1611.
- 10. Arthroscopic treatment of partial rotator cuff tears in young athletes. A preliminary report / L. Z. Payne, D. W. Altchek [et al.]. DOI 10.1177/036354659702500305 // Am J Sports Med. 1997. Vol. 25. P. 299–305.
- 11. Rotator Cuff Tendinopathy: Navigating the Diagnosis-Management Conundrum / J. Lewis, K. McCreesh, J. S. Roy [et al.]. DOI 10.2519/jospt.2015.5941 // Journal Orthop Sports Phys Ther. 2015. Vol. 45. P. 923–937.
- 12. Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs / R. Steuri, M. Sattelmayer, S. Elsig [et al.]. DOI 10.1136/bjsports-2016-096515 // Br J Sports Med. 2017. Vol. 51. P. 1340–1347.
- 13. Effectiveness of physical therapy treatment of clearly defined subacromial pain: a systematic review of randomised controlled trials / M. N. Haik, F. Alburquerque-Sendín, R. F. Moreira [et al.]. DOI 10.1136/bjsports-2015-095771 // Br J Sports Med. 2016. Vol. 50. P. 1124–1134.
- 14. The enigma of rotator cuff tears and the case for uncertainty / C. Littlewood, A. Rangan, D. J. Beard [et al.]. DOI 10.1136/bjsports-2018-099063 // Br J Sports Med. 2018. Vol. 52. P. 1222.
- 15. Adler S. S., Beckers D., Buck M. PNF in practice: an illustrated guide. Berlin: Springer, 2013. 312 p. ISBN 978-3-642-34987-4.

REFERENCES

- 1. (2020), "The Healthline Editorial Team. Supraspinatus Muscle Origin, Function & Anatomy", The Healthline Editorial Team, *Healthline*, URL: https://www.healthline.com/human-body/supraspinatus-muscle.
- 2. "Supraspinatus", *Physiopedia*, URL: https://www.physiopedia.com/Supraspinatus?utm source=physiopedia&utm medium=search&utm_campaign=ongoing_internal#cite_note-1.
- 3. Wattanaprakornkul D., Halaki M., Boettcher C. [et al.] (2011), "A comprehensive analysis of muscle recruitment patterns during shoulder flexion: an electromyographic study", *Clin Anat.*, Vol. 24, issue 5, pp. 619–626, DOI 10.1002/ca.21123.
- 4. Milgrom C., Schaffler M., Gilbert S., Holsbeeck M. van (1995), "Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender", *The Journal of Bone & Joint Surgery British*, Vol. 77-B, No 2, pp. 296–298, DOI 10.1302/0301-620X.77B2.7706351.
- 5. Chard M. D., Sattelle L. M., Hazlerman B. L. (1988), "The long-term outcome of rotator cuff tendinitis", *Br. J. Rheumatol.*, V. 27, No 5, pp. 385–389, DOI 10.1093/rheumatology/27.5.385.

Ученые записки университета имени П.Ф. Лесгафта. 2025. № 4 (242)

- 6. Maffulli N. (1998), "Overuse tendon conditions: time to change a confusing terminology", *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, Vol. 14, Issue 8, November–December, pp. 840–843, DOI 10.1016/S0749-8063(98)70021-0.
- 7. Maffulli N., Longo U. G., Denaro V. (2010), "Novel Approaches for the Management of Tendinopathy", *J Bone Joint Surg Am.*, Vol. 92, No 15, pp. 2604–2613, DOI 10.2106/JBJS.I.01744.
- 8. Maffulli N., Longo U. G., Maffulli G. D. [et al.] (2011), "Marked pathological changes proximal and distal to the site of rupture in acute Achilles tendon ruptures", *Knee Surg Sports Traumatol Arthrosc.*, Vol. 19, No 4, pp. 680–687, DOI 10.1007/s00167-010-1193-2.
- 9. Maffulli N., Longo U. G., Franceschi F., Rabitti C., Denaro V. (2008), "Movin and Bonar scores assess the same characteristics of tendon histology", *Clin Orthop Relat Res.*, Vol. 466, issue 7, pp. 1605–1611, DOI 10.1007/s11999-008-0261-0.
- 10. Payne L. Z., Altchek D. W. [et al.] (1997), "Arthroscopic treatment of partial rotator cuff tears in young athletes. A preliminary report", *Am J Sports Med.*, Vol. 25, pp. 299–305, DOI 10.1177/036354659702500305.
- 11. Lewis J., McCreesh K., Roy J. S. [et al.] (2015), "Rotator Cuff Tendinopathy: Navigating the Diagnosis-Management Conundrum", *Journal Orthop Sports Phys Ther.*, Vol. 45, pp. 923–937, DOI 10.2519/jospt.2015.5941.
- 12. Steuri R., Sattelmayer M., Elsig S. [et al.] (2017), "Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs", *Br J Sports Med.*, Vol. 51, pp. 1340–1347, DOI 10.1136/bjsports-2016-096515.
- 13. Haik M. N., Alburquerque-Sendín F., Moreira R. F. [et al.] (2016), "Effectiveness of physical therapy treatment of clearly defined subacromial pain: a systematic review of randomised controlled trials", *Br J Sports Med.*, Vol. 50, pp. 1124–1134, DOI 10.1136/bjsports-2015-095771.
- 14. Littlewood C., Rangan A., Beard D. J. [et al.] (2018), "The enigma of rotator cuff tears and the case for uncertainty", Br J Sports Med., Vol. 52, pp. 1222, DOI 10.1136/bjsports-2018-099063.
- 15. Adler S. S., Beckers D., Buck M. (2013), "PNF in practice: an illustrated guide", Berlin, Springer, 312 p., ISBN 978-3-642-34987-4.

Информация об авторе:

Парамонов А.О., аспирант кафедры физической реабилитации, ORCID: 0009-0002-7926-0683, SPIN-код 6595-1320.

Поступила в редакцию 18.02.2025. Принята к публикации 03.03.2025.