

Mathematics Specialist Units 1,2 Test 4 2018

Section 1 Calculator Free Trigonometry

STUDENT'S NAME

SOLUTIONS

DATE: Thursday 26 July

TIME: 28 minutes

MARKS: 28

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Determine the exact value of cos105°.

$$\cos (60^{\circ} + 45^{\circ})$$
= $\cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ}$
= $\frac{1}{2} \cdot \frac{1}{52} - \frac{53}{2} \cdot \frac{1}{52}$
= $\frac{1-53}{252}$

- 2. (9 marks)
 - (a) For the function $y = 2\sin(x 90^\circ)$
 - (i) sketch the function on the axes below.

- (ii) determine the amplitude and change of phase.
- (b) For the function $y = -3\cos 2x$
 - (i) sketch the function on the axes below.

(ii) determine the amplitude and period.

[2]

[2]

[3]

3. (3 marks)

Prove $\cot \theta (\cos \theta - \sec \theta) = -\sin \theta$

LHS =
$$\frac{\cos\theta}{\sin\theta} \left(\frac{\cos\theta - \frac{1}{\cos\theta}}{\cos\theta} \right)$$

= $\frac{\cos\theta}{\sin\theta} \left(\frac{\cos^2\theta - 1}{\cos\theta} \right)$
= $-\frac{\sin^2\theta}{\sin\theta}$
= $-\sin\theta$
= RHS

4. (9 marks)

(a) Solve
$$2\sin x \cos x = \cos x$$
 $-180^{\circ} \le x \le 180^{\circ}$ [4]
 $2\sin x \cos x - \cos x = 0$
 $\cos x \left(2\sin x - 1\right) = 0$
 $\cos x = 0$ $\sin x = \frac{1}{2}$ $\cos x = 0$
 $x = 90^{\circ}, -90^{\circ}$ $x = 30^{\circ}, 150^{\circ}$

(b)
$$\cos 2x \cos \frac{\pi}{6} - \sin 2x \sin \frac{\pi}{6} = 0.5$$
 $0 \le x \le 2\pi$

$$\cos 2x + \frac{\pi}{6} = \frac{\pi}{3} + \frac{5\pi}{3} + \frac{7\pi}{3} + \frac{1/\pi}{3}$$

$$2x + \frac{\pi}{6} = \frac{\pi}{3}$$

$$2x + \frac{\pi}{6} = \frac{\pi}{3}$$

$$2x = \frac{\pi}{6}$$

$$x = \frac{\pi}{6}$$

$$x = \frac{\pi}{12} + \frac{3\pi}{4} + \frac{13\pi}{12} + \frac{21\pi}{12}$$

5. (5 marks)

Solve $2\cos^2\theta - 7\cos\theta - 4 = 0$ θ radians

$$2\cos\theta + 1 = 0$$

$$cos \theta = -\frac{1}{2}$$

$$\theta = \begin{cases} 2\pi + 2n\pi \\ 4\pi + 2n\pi \end{cases}$$

$$n \in \mathbb{Z}$$

Mathematics Specialist Units 1,2 Test 4 2018

Section 2 Calculator Assumed Trigonometry

STUDENT'S NAME

DATE: Thursday 26 July

TIME: 25 minutes

MARKS: 25

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (2 marks)

Determine the equation of the function shown below.

$$y = 2\cos(3x) + 2$$

7. (7 marks)

Given $\sin \theta = \frac{p}{q}$ where $\frac{\pi}{2} < \theta < \pi$, determine

(a)
$$\tan \theta = \frac{\rho}{\sqrt{g^2 \rho^2}}$$

(b)
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
 [2]
$$= 2 \times \frac{\rho}{2} \times \left(-\frac{\sqrt{2^2 - \rho^2}}{2}\right)$$

$$= -2\rho \sqrt{2^2 - \rho^2}$$

(c)
$$\cos \frac{\theta}{2}$$
 $\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$

$$+ \int \frac{\cos \theta + 1}{2} = \cos \frac{\theta}{2}$$

$$\frac{\theta}{2} = 1 \times 1^{97} OVADRANT : \cos \frac{\theta}{2} = \frac{PosiTiVE}{2}$$

$$= \frac{\sqrt{2^2 - \rho^2} + 1}{2} = \cos \frac{\theta}{2}$$

8. (9 marks)

(a) Express
$$4\cos x - 5\sin x$$
 in the form $R\cos(x+\alpha)$

$$= \int 4I \left(\frac{4}{\int 4I} \cos x - \frac{5}{\int 4I} \sin x \right)$$

$$= \int 4I \left(\cos x \cos x - \sin x \sin x \right)$$

$$= \int 4I \cos \left(x + 5I \cdot 3^{\circ} \right)$$

$$\begin{array}{c}
5 \\
7 \\
4
\end{array}$$

$$\tan \alpha = \frac{5}{4}$$

$$\left[x = 0.90 \quad \int_{41}^{41} \cos(x + 0.90) \right]$$

(b) Determine the maximum value of $4\cos x - 5\sin x$ and the smallest positive value of x when the maximum value occurs.

(c) Solve
$$4\cos x - 5\sin x = \sqrt{20.5}$$
 for $0 \le x \le 2\pi$

$$\int 41 \cos (x + 0.9) = \int 20.5$$

$$\cot (x + 0.9) = \int 20.5$$

$$\cot (x + 0.9) = \int 41$$

$$\cot (x + 0.9) = \int 41$$

$$x + 0.9 = \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}$$

$$x = -0.11, 4.6, 6.2$$

9. (7 marks)

(a) Prove
$$\frac{1-\tan^2 x}{1+\tan^2 x} = \cos 2x$$

$$2HS = \frac{1-\frac{\sin^2 x}{\cos^2 x}}{1+\frac{\sin^2 x}{\cos^2 x}}$$

$$= \frac{\cos^2 x - \sin^2 x}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{\cos 2x}{\cos^2 x}$$

$$= \frac{\cos 2x}{\cos^2 x}$$

(b) Hence, or otherwise, show that if
$$\cos 2\alpha = \tan^2 \beta$$
 then $\cos 2\beta = \tan^2 \alpha$. [4]
$$\cos 2\beta = \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta}$$

$$= \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

$$= \frac{1 - (1 - 2\sin^2 \alpha)}{1 + (2\cos^2 \alpha - 1)}$$

$$= \frac{2\sin^2 \alpha}{2\cos^2 \alpha}$$