Préparation à l'agrégation externe de Sciences Sociales

Statistique descriptive

2021-2022

Exercice 1 (2014)

1. On représente graphiquement cette distribution en utilisant un histogramme. Pour le construire, il faut trouver la fréquence (f_i) de chaque classe et sa densité $(d_i = f_i/a_i)$:

x_i	n_i	f_i	$d_i = f_i/a_i$
[0; 4[270	0.045	0.01125
[4; 6[330	0.055	0.0275
[6; 8[630	0.105	0.0525
[8; 10[650	0.108	0.054
[10; 12[920	0.153	0.0765
[12; 16[920	0.153	0.038
[16; 20[780	0.13	0.0325
[20; 30[540	0.09	0.009
[30; 40]	450	0.075	0.0075
[40; 50[300	0.05	0.0075
[50; 60[150	0.025	0.0025
[60; 100[60	0.01	0.00025

L'histogramme qu'on obtient est le suivant :

La classe modale est la classe avec la plus grande densité, dans ce cas il s'agit de la classe [10; 12[.

2. Pour calculer la moyenne on utilise la formule :

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{k} n_i c_i,$$

où c_i est le centre de la classe. Alors,

$$\bar{x} = \frac{1}{6000} [2 \times 270 + 5 \times 330 + 7 \times 630 + \dots + 55 \times 150 + 80 \times 60]$$

= 17.55

Pour calculer l'écart type on utilise la formule :

$$\sigma_x = \sqrt{\frac{1}{N} \left(\sum_{i=1}^k n_i c_i^2\right) - \bar{x}^2},$$

où c_i est le centre de la classe. Alors,

$$\sigma_x = \sqrt{\frac{1}{6000}} [2^2 \times 270 + 5^2 \times 330 + 7^2 \times 630 + \dots + 55^2 \times 150 + 80^2 \times 60] - 17.55^2$$
= 13 7

3. Pour tracer la fonction de répartition il faut trouver les fréquences cumulées (F_i) :

x_i	n_i	f_i	F_{i}
[0; 4[270	0.045	0.045
[4; 6[330	0.055	0.1
[6; 8[630	0.105	0.205
[8; 10[650	0.108	0.313
[10; 12[920	0.153	0.466
[12; 16[920	0.153	0.619
[16; 20[780	0.13	0.749
[20; 30[540	0.09	0.839
[30; 40[450	0.075	0.914
[40; 50[300	0.05	0.964
[50; 60[150	0.025	0.989
[60; 100[60	0.01	1

Alors, le graphique de la fonction de répartition est :

Pour trouver la médiane il faut noter qu'elle se trouve dans la classe [12; 16[. On calcule la médiane par interpolation linéaire a l'intérieure de la classe :

$$\frac{Me - 12}{16 - 12} = \frac{0.5 - 0.466}{0.619 - 0.466} \Longrightarrow Me = 12.89.$$

L'intervalle inter décile est l'intervalle $[D_1; D_9]$. La valeur de D_1 est 6. Pour trouver D_9 il faut tout d'abord noter que D_9 se trouve dans la classe [30; 40[. On le calcule par interpolation linéaire a l'intérieure de la classe :

$$\frac{D_9 - 30}{40 - 30} = \frac{0.9 - 0.839}{0.914 - 0.839} \Longrightarrow D_9 = 38.13.$$

Pourtant, l'intervalle inter décile est [6;38.13]. Cela veut dire que le 80% des individus ont fait des dépôts d'un montant d'entre 6 et 38.13 centaines d'euros.

4. Pour construire la courbe de concentration il faut calculer la masse de chaque classe $(n_i c_i)$, la fréquence des masses $(n_i c_i/m_{\text{totale}})$ et les fréquences cumulées des masses (Q_i) :

x_i	n_i	$n_i c_i$	$n_i c_i / m_{ m totale}$	Q_i
[0; 4[270	540	0.005	0.005
[4; 6[330	1650	0.016	0.021
[6; 8[630	4410	0.042	0.063
[8; 10[650	5850	0.056	0.119
[10; 12[920	10120	0.1	0.219
[12; 16[920	12880	0.12	0.339
[16; 20[780	14040	0.13	0.469
[20; 30[540	13500	0.13	0.599
[30; 40[450	15750	0.15	0.749
[40; 50[300	13500	0.13	0.879
[50; 60]	150	8250	0.08	0.96
[60; 100[60	4800	0.05	1

 $m_{\text{totale}} = 105290$

La courbe de Concentration ou courbe de Lorentz est alors :

On va calculer l'indice de concentration de Gini comme :

$$G = \frac{\int_0^1 l(t)dt}{1/2},$$

où l désigne la courbe de Lorentz. En utilisant la méthode des trapèzes, on obtient $\int_0^1 l(t)dt = 0.309$, donc G = 0.618.

Pour trouver la médiale il faut noter qu'elle se trouve dans la classe [20; 30]. On calcule la médiale par interpolation linéaire a l'intérieure de la classe :

$$\frac{Ml-20}{30-20} = \frac{0.5-0.469}{0.599-0.469} \Longrightarrow Ml = 22.38.$$

Le 50% de la masse totale est obtenue à partir des individus qui ont fait des dépôts d'un montant inférieure à 22.38 centaines d'euros.