Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Прямая и двойственная задачи линейного программирования

Взаимосвязь пары двойственных задач

- Двойственная к двойственной ЗЛП есть прямая задача.
- Одновременно достигают оптимальных решений.
- Одно и то же значение задач.
- Зная решение одной задачи из пары двойственных задач, можно найти решение другой задачи.

Теоремы двойственности и равновесия в линейном программировании

$$\begin{cases}
\max L = \max CX \\
AX \le B \\
X \ge 0.
\end{cases} (1)$$

$$\begin{cases}
\min P = \min YB \\
YA \ge C \\
Y \ge 0.
\end{cases} (2)$$

Лемма 1. (Свойство допустимых решений)

Пусть X и Y – произвольные допустимые решения задач (1)

$$CX \leq YB$$

Лемма 2. (Достаточное условие оптимальности)

Пусть X^* и Y^* – произвольные допустимые решения задач (1) и (2), для которых выполнено равенство

$$CX^* = Y^*B$$
.

Тогда X^* и Y^* – оптимальные решения задач ЛП.

Теорема 1. (Двойственности).

• Если обе задачи ЛП (и прямая, и двойственная) имеют допустимые решения, то обе задачи имеют оптимальные решения X^* и Y^* соответственно, причем

$$L^* = P^*, L^* = CX^*, P^* = Y^*B.$$

• Если хотя бы одна из задач ЛП (прямая или двойственная) не имеет допустимого решения, то обе задачи ЛП (и прямая, и двойственная) не имеют оптимальных решений.

Замечание.

Теорема двойственности справедлива для любой пары двойственных задач.

Теорема 3. (Стандартная теорема равновесия)

Для того чтобы пара допустимых решений *X** и *Y** задач (1) и (2) была парой оптимальных решений соответствующих задач, необходимо и достаточно, чтобы

$$\begin{cases} Y^*(B-AX^*)=0, \\ (Y^*A-C)X^*=0. \end{cases}$$

Следствие. (Критерий оптимальности для стандартной задачи ЛП).

Для того чтобы пара допустимых решений

$$X^* = (x_1^*, \dots, x_n^*)$$
 и $Y^* = (y_1^*, \dots, y_m^*)$

задач (1) и (2) была парой оптимальных решений, необходимо и достаточно, чтобы выполнялись соотношения:

1.
$$x_j^* > 0 \Rightarrow a_{1j}y_1^* + \cdots + a_{mj}y_m^* = c_j$$

2.
$$a_{1j}y_1^* + \cdots + a_{mj}y_m^* > c_j \Rightarrow x_j^* = 0$$
,

3.
$$y_i^* > 0 \Rightarrow a_{i1}x_1^* + \cdots + a_{in}x_n^* = b_i$$
,

4.
$$a_{i,1}x_1^* + \cdots + a_{i,n}x_n^* < b_i \Rightarrow y_i^* = 0$$
.

Пример (Лек. 2). Прямая и двойственная задачи

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1,5 & (3) \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$\min C = \min (4y_1 + 10y_2 + 1, 5y_3)$$

$$\begin{cases} y_1 + 5y_2 + y_3 \ge 5 \\ y_1 + 2y_2 \ge 3 \end{cases}$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

Оптимальное решение ПЗ

$$x_{1}^{*}=2/3$$
 $x_{2}^{*}=10/3$
 $L^{*}=40/3$

Оптимальное решение ДЗ

$$y_{1}^{*}=5/3$$
 $y_{3}^{*}=0$ $y_{2}^{*}=2/3$ $C^{*}=40/3$

Пример (Лек. 2)

Первый ресурс:

Второй ресурс:

Третий ресурс:

$$y_1 = \frac{\frac{5}{3}}{1} = \frac{5}{3}$$

$$y_2 = \frac{\frac{5}{3}}{2.5} = \frac{2}{3}$$

$$y_3 = \frac{0}{-\frac{1}{3}} = 0$$

Вывод по второй задаче анализа:

Наиболее выгодно увеличивать запас **ресурса 1** (если имеется возможность увеличения его на единицу).

Запасы ресурса 3 можно сократить на 1/3 при сохранении оптимального решения.

Дополнительное задание 2 (2 балла)

Используя геометрическое решение двойственной задачи и теоремы двойственности и равновесия, решите следующую задачу линейного программирования:

$$F = -4x_1 - 18x_2 - 30x_3 - 5x_4 \rightarrow \max$$

$$\begin{cases} 3x_1 + x_2 - 4x_3 - x_4 \le -3 \\ 2x_1 + 4x_2 + x_3 - x_4 \ge 3 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

CPOK: 29.09.2021

Тема 2. Транспортная задача

Лекция 4

Пример 1. Песчаные карьеры

В районе имеется **два песчаных карьера**, с которых вывозится песок на 5-тонных грузовиках.

В этом же районе имеется **три завода железобетонных** конструкций – потребителей песка, которым требуется соответственно 80, 90 и 130 грузовиков песка в день.

Стоимости перевозки песка одним грузовиком от карьеров – поставщиков к заводам – потребителям известны.

Необходимо составить план перевозок, **минимизирующий** суммарные *транспортные* издержки.

Пример 1. Песчаные карьеры

Транспортные издержки c_{ij}

	Завод В1	Завод В2	Завод ВЗ
Карьер А1	4	6	3
Карьер А2	8	4	5

Сетевая модель Т3. Основные понятия

Пусть $N = \{x\}$ – конечное (заданное) множество узлов (|N| = n) и пусть $u: N \times N \to R^1$ – заданная функция, называемая функцией пропускной способности. Тогда говорят, что задана сеть.

Сеть (*N*, *u*) – это конечный граф без циклов и петель, ориентированный в одном общем направлении, с заданной функцией пропускной способности.

Сетевая модель Т3. Основные понятия

Пропускная способность ребра – максимальное количества груза (вещества), которое может быть провезено от x к y: u(x,y).

Если u(x, y) = 0, перевозка от x к y **невозможна**.

В рамках ТЗ предполагается, что пропускная способность принимает **только целочисленные** значения:

$$u: N \times N \rightarrow Z$$

Поток в сети

Потоком в сети (N, u) называется функция f:

$$f: N \times N \to R^1$$

удовлетворяющее свойствам:

$$\forall (x,y) \in N \times N \Longrightarrow$$

- 1. f(x,y) = -f(y,x) (кососимметрия)
- 2. $f(x,y) \leq u(x,y)$ (допустимость)

В рамках ТЗ предполагается, что поток принимает **только целочисленные** значения:

$$f: N \times N \to Z$$

Функции от множества

 $A \subset N$, g – некоторая функция на N

$$g(A) = \sum_{x \in A} g(x)$$

 $A \subset N, B \subset N,$

R(x,y) – некоторая функция на (x,y)

$$R(A,B) = \sum_{x \in A, y \in B} R(x,y)$$

Свойства функций от множества

$$g(A \cup B) = g(A) + g(B), A \cap B = \emptyset$$

$$R(A \cup B, C) = R(A, C) + R(B, C), A \cap B = \emptyset$$

$$R(A,B\cup C)=R(A,B)+R(A,C),B\cap C=\emptyset$$

Свойства потока в сети

- 1. f(x,y) = -f(y,x) (кососимметрия)
- 2. $f(x,y) \le u(x,y)$ (допустимость)

- $1 \to 1'$: $f(A, A) = 0 \quad \forall A \subset N$
- $2 \rightarrow 2'$: $f(A,B) \leq u(A,B) \quad \forall A,B \subset N$

f(A, B) – полный (суммарный) поток из A в B u(A, B) – полная (суммарная) пропускная способность рёбер, начинающихся в A и заканчивающихся в B.

Источники и стоки

Узел $s \in N$ называется источником сети (N, u), если

$$f(s,N)>0.$$

Узел $s' \in N$ называется **стоком сети** (N, u), если f(s', N) < 0.

Будем предполагать, что в сети (N, u) имеется **один источник и один сток**. (Предположение единственности).

Тогда для всех $x \neq s$, $x \neq s'$ выполнено:

$$f(x,N)=0$$

- промежуточные узлы.

Пример 2. Транспортная сеть

Мощность потока. Максимальный поток

Число f(s, N) = f(N, s') > 0 называется мощностью потока.

Поток максимальной мощности называется максимальным потоком в сети.

Пример 2. Транспортная сеть

Сечение сети

Пара множеств $(S, S'), S \subset N, S' \subset N$, называется **сечением сети**, если выполнено:

$$S \cup S' = N$$

$$S \cap S' = \emptyset$$

$$s \in S, s' \in S'$$

Пропускной способностью сечения (S, S') называется u(S, S').

Сечение $(\bar{S}, \bar{S'}), \bar{S} \subset N, \bar{S'} \subset N$ с минимальной пропускной способностью называется минимальным сечением.

Задачи

Прямая задача (о максимальном потоке)

В сети (N, u) построить максимальный поток и найти мощность этого потока.

Двойственная задача (о минимальном сечении)

В сети (N, u) найти минимальное сечение и вычислить его пропускную способность.

Лемма 1 (Свойство потока и сечения)

Пусть f – произвольный поток в (N, u), а (S, S') – произвольное сечение в N. Тогда мощность f не превосходит u(S, S'):

$$f(s,N) \le u(S,S')$$

Лемма 2 (Достаточное условие оптимальности)

Если мощность какого либо потока \bar{f} совпадает с пропускной способностью некоторого сечения $(\bar{S}, \bar{S}'), \bar{S} \subset N, \bar{S}' \subset N$:

$$\bar{f}(s,N) = u(\bar{S},\bar{S}'),$$

то этот поток является максимальным, а данное сечение – минимальным.

Теорема (о максимальном потоке и минимальном сечении)

В произвольной сети (N,u) существует максимальный поток $\bar{f}: N \times N \to Z$ и минимальное сечение $(\bar{S}, \bar{S'}), \bar{S} \subset N, \bar{S'} \subset N$, при этом мощность максимального потока совпадает с пропускной способностью минимального сечения, т.е.

$$\overline{f}(s,N) = u(\overline{S},\overline{S'}).$$

Понятие пути, ненасыщенного потоком

• Пусть $f: N \times N \to Z$, – поток в сети (N, u). Будем говорить, что ребро (x, y) не насыщено потоком f, если

$$f(x,y) < u(x,y).$$

• Путём P(s,s') из источника в сток будем называть последовательность рёбер вида: $P(s,s') = \{(s,x_1),(x_1,x_2),...,(x_n,s')\}.$

• Будем говорить, что **путь не насыщен относительно потока**, если каждое ребро не насыщено относительно этого потока.

Пример 2. Транспортная сеть

Теорема (о максимальном потоке и минимальном сечении)

В произвольной сети (N,u) существует максимальный поток $\bar{f}: N \times N \to Z$ и минимальное сечение $(\bar{S}, \bar{S'}), \bar{S} \subset N, \bar{S'} \subset N$, при этом мощность максимального потока совпадает с пропускной способностью минимального сечения, т.е.

$$\overline{f}(s,N) = u(\overline{S},\overline{S'}).$$

Доказательство

Пусть \bar{f} – максимальный поток. Докажем, что существует минимальное сечение (\bar{S}, \bar{S}') , $\bar{f}(s, N) = u(\bar{S}, \bar{S}')$.

 \bar{S} – множество узлов в сети, которые можно достичь из s по ненасыщенному относительно потока \bar{f} пути.

Возможны два случая:

- 1. $s' \notin \bar{S}$
- 2. $s' \in \bar{S}$

Случай 1: $s' \notin \bar{S}$

$$\implies s' \in N \setminus \bar{S} = \bar{S}'$$

 \Rightarrow (\bar{S}, \bar{S}') – сечение.

Покажем, что это сечение – минимальное, т.е. $\bar{f}(s,N)=u(\bar{S},\bar{S}').$

От противного: пусть $\bar{f}(s,N) < u(\bar{S},\bar{S}')$.

Случай 2: $s' \in \bar{S}$

 \Longrightarrow существует ненасыщенный путь $\bar{P}(s,s')$ относительно потока \bar{f} .

Найдём
$$\boldsymbol{\delta} = \min_{(x,y) \in \overline{P}} \left[u(x,y) - \overline{f}(x,y) \right] > 0.$$

Строим новый поток по правилу:

$$f_{1} = \begin{cases} \overline{f}(x, y) + \delta, (x, y) \in \overline{P} \\ \overline{f}(x, y) - \delta, (y, x) \in \overline{P} \\ \overline{f}(x, y), (x, y) \notin \overline{P}, (y, x) \notin \overline{P} \end{cases}$$

Алгоритм построения максимального потока и минимального сечения (алгоритм Форда – Фалкерсона)

- 1. Построить произвольный поток (можно нулевой): f_0 в сети (N, u).
- 2. Построить множество достижимости S_0 множество вершин, которые могут быть достигнуты из s по пути, ненасыщенныму потоком f_0 .

Алгоритм построения максимального потока и минимального сечения

- 3. Если $s' \notin S_0$, то поток f_0 максимален, и сечение (S_0, S_0') , $S_0' = N \setminus S_0$, минимальное сечение в сети.
- 4. Если $s' \in S_0$, то от s к s' имеется ненасыщенный путь, на который можно наложить дополнительный поток δ_0 , получив новый поток :

$$f_1 = f_0 + \delta_0$$

большей мощности, который строят по правилу:

Алгоритм построения максимального потока и минимального сечения

- а) Находим ненасыщенный путь $P_0(s,s')$ относительно потока f_0 .
- b) Вычисляем величину

$$\delta_0 = \min_{(x,y)\in P_0} [u(x,y) - f_0(x,y)] > 0.$$

с) Вычисляем новый поток по правилу:

$$f_{1} = \begin{cases} f_{0}(x, y) + \delta_{0}, (x, y) \in P_{0} \\ f_{0}(x, y) - \delta_{0}, (y, x) \in P_{0} \\ f_{0}(x, y), (x, y) \notin P_{0}, (y, x) \notin P_{0} \end{cases}$$

5. Переходим к п. 1 алгоритма, но с потоком f_1

Дополнительное задание 3

Написать программу, реализующую алгоритм Форда – Фалкерсона так, как он представлен в доказательстве теоремы.

СРОК: конец семестра (24.12.2021)