Introduction to Logic

Department of Science and Mathematics

IIIT Guwahati.

August 10, 2020

We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.

• The proposition $q \to p$ is called the **CONVERSE** of $p \to q$.

We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.

- The proposition $q \to p$ is called the **CONVERSE** of $p \to q$.
- The proposition $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$.

We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.

- The proposition $q \to p$ is called the **CONVERSE** of $p \to q$.
- The proposition $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$.
- The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$.

We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.

- The proposition $q \to p$ is called the **CONVERSE** of $p \to q$.
- The proposition $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$.
- The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$.

Find the truth value table for each of the above propositions and compare the truth table with $p \rightarrow q$.

We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.

- The proposition $q \to p$ is called the **CONVERSE** of $p \to q$.
- The proposition $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$.
- The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$.

Find the truth value table for each of the above propositions and compare the truth table with $p \to q$.

p	q	p o q	$\neg q$	$\neg p$	eg q o eg p
Т	Т	Т	F	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	T

When two compound propositions always have the same truth value we call them equivalent, so that a conditional statement and its contrapositive are equivalent.

- Check whether the converse and the inverse of a conditional statement are equivalent.
- Is any of it equivalent to the original conditional statement?

• The home team wins whenever it is raining

- The home team wins whenever it is raining The statement can be rewritten as
- If it is raining, then the home team wins.

- The home team wins whenever it is raining
 The statement can be rewritten as
- If it is raining, then the home team wins.
- Contrapositive: If the home team does not win, then it is not raining.

- The home team wins whenever it is raining
 The statement can be rewritten as
- If it is raining, then the home team wins.
- Contrapositive: If the home team does not win, then it is not raining.
- Converse : If the home team wins, then it is raining.

- The home team wins whenever it is raining The statement can be rewritten as
- If it is raining, then the home team wins.
- Contrapositive: If the home team does not win, then it is not raining.
- Converse: If the home team wins, then it is raining.
- Inverse: If it is not raining, then the home team does not win.
 Only the contrapositive is equivalent to the original statement.

Biconditional

Definition

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition p if and only if (iff) q. The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.

Biconditional

Definition

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition p if and only if (iff) q. The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Biconditional

Definition

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition p if and only if (iff) q. The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

p o q	q o p	$p o q \wedge q o p$
Т	Т	Т
F	Т	F
Т	F	F
T T		Т

Note that $p \leftrightarrow q$ has exactly the same truth value as $(p \rightarrow q) \land (q \rightarrow p)$ and hence equivalent.

Similar expressions for p iff q

• p is necessary and sufficient for q.

Similar expressions for p iff q

p is necessary and sufficient for q.
 (p → q : p is sufficient for q

 $q \rightarrow p$: p is necessary for p)

Similar expressions for p iff q

- p is necessary and sufficient for q.
 (p → q : p is sufficient for q
 q → p : p is necessary for p)
- if p then q, and conversely.
- q iff p.

Let

p :You can take the flight

q : You buy a ticket.

Then $p \leftrightarrow q$ is the statement:

You can take the flight if and only if you buy a ticket.

* Poll

Determine whether these biconditionals are true or false.

a)
$$2 + 2 = 4$$
 if and only if $1 + 1 = 2$.

* Poll

Determine whether these biconditionals are true or false.

- a) 2 + 2 = 4 if and only if 1 + 1 = 2.
- b)1 + 1 = 2 if and only if 2 + 3 = 4.

* Poll

Determine whether these biconditionals are true or false.

- a) 2+2=4 if and only if 1+1=2.
- b)1 + 1 = 2 if and only if 2 + 3 = 4.
- c) 1+1=3 if and only if monkeys can fly.
- d) 0 > 1 if and only if 2 > 1.

Truth tables of Compound Propositions

Exercise:

1. Construct the truth table of the compound proposition $(p \lor \neg q) \to (p \land q)$.

Precedence of Logical Operators : We will generally use parentheses to specify the order in which logical operators in a compound proposition are to be applied. For instance, $(p \lor q) \land (\neg r)$ is the conjunction of $p \lor q$ and $\neg r$.

Order of precedence of Logical Operators is \neg , \wedge , \vee , \rightarrow , \leftrightarrow .

 $\neg p \lor q$ is the conjunction of $\neg p$ and q, namely, $(\neg p) \lor q$, not the negation of the conjunction of p and q, namely $\neg (p \lor q)$.

- 1. Let p and q be the propositions.
- p: It is below freezing.
- q: It is snowing.

- 1. Let p and q be the propositions.
- p: It is below freezing.
- q: It is snowing.

- a) It is below freezing and snowing.
 - b) It is below freezing but not snowing.

- 1. Let p and q be the propositions.
- p: It is below freezing.
- q: It is snowing.

- a) It is below freezing and snowing.
- b) It is below freezing but not snowing.
- c) It is not below freezing and it is not snowing.
- d) It is either snowing or below freezing (or both).

- 1. Let p and q be the propositions.
- p: It is below freezing.
- q: It is snowing.

- a) It is below freezing and snowing.
- b) It is below freezing but not snowing.
- c) It is not below freezing and it is not snowing.
- d) It is either snowing or below freezing (or both).
- e) If it is below freezing, it is also snowing.
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.

- 1. Let p and q be the propositions.
- p: It is below freezing.
- q: It is snowing.

- a) It is below freezing and snowing.
 - b) It is below freezing but not snowing.
- c) It is not below freezing and it is not snowing.
- d) It is either snowing or below freezing (or both).
- e) If it is below freezing, it is also snowing.
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
- g) That it is below freezing is necessary and sufficient for it to be snowing.

- 2. Let p, q, and r be the propositions.
- p :You have the flu.
- q: You miss the final examination.
- r: You pass the course.
- Express each of these propositions as an English sentence.
- (a). $p \rightarrow q$
- (b). $\neg q \leftrightarrow r$
- (c). $q \rightarrow \neg r$
- (d). $(p \rightarrow \neg r) \lor (q \rightarrow \neg r)$
- (e). $(p \wedge q) \vee (\neg q \wedge r)$.

- 3. Write each of these propositions in the form p if and only if q in English.
- a) For you to get an A in this course, it is necessary and sufficient that you learn how to solve discrete mathematics problems.
- b) If you read the newspaper every day, you will be informed, and conversely.
- c) It rains if it is a weekend day, and it is a weekend day if it rains.
- d) You can see the wizard only if the wizard is not in, and the wizard is not in only if you can see him.

- 4. State the converse, contrapositive, and inverse of each of these conditional statements.
- a) If it snows today, I will ski tomorrow.
- b) I come to class whenever there is going to be a quiz.
- c) A positive integer is a prime only if it has no divisors other than 1 and itself.