Other editions: <u>coder32</u>, <u>coder64</u>, <u>coder</u>, <u>geek64</u>, <u>geek</u>

X86 Opcode and Instruction Reference Home

32-bit ModR/M Byte | 32-bit SIB Byte | 16-bit ModR/M Byte

one-byte opcodes index:

```
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE
```

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

two-byte opcodes (0F..) index:

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE
```

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Printing is not enabled. You can order a printed copy in the <u>store</u>, or get <u>access to benefits</u>, which include also printable HTML and PDF files.

General notes:

- 1. *POP CS*
 - a. Intel iAPX 86/88, 186/188 User's manual: "When the opcode 0FH is encountered, the 8086,88 will execute a POP CS; the 80186,188 will execute an illegal instruction exception."
- 2. Branch Prefixes
 - a. Branch hints have effect only on NetBurst microarchitecture: A Detailed Look Inside the Intel NetBurst Micro-Architecture of the Intel Pentium 4 Processor: "Branch hints are interpreted by the translation engine, and are used to assist branch prediction and trace construction hardware. They are only used at trace build time, and have no effect within already-built traces."
 - b. Alternating branch prefix: The microarchitecture of Intel and AMD CPU's, By Agner Fog, Copyright © 1996 2006.
- 3. *90 NOP*

- a. 90 NOP is not really aliased to XCHG eAX, eAX instruction. This is important in 64-bit mode where the implicit zero-extension to RAX does not happen
- 4. *F390 opcode*
 - a. Intel 64 and IA-32 Architecture Software Developer's Manual Volume 2B: Instruction Set Reference, N-Z, PAUSE instruction
- 5. *SAL*
 - a. sandpile.org -- IA-32 architecture -- opcode groups
- 6. D6 and F1 opcodes
 - a. Intel 64 and IA-32 Architecture Software Developer's Manual Volume 3: System Programming Guide, Interrupt and Exception Handling
- 7. SALC
 - a. sandpile.org -- IA-32 architecture -- one byte opcodes
 - b. AMD64 Architecture Programmer's Manual Volume 3, Table One-Bytes Opcodes
- 8. FSTP aliases
 - a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Table A-2. Machine Instruction Decoding Guide: "If the 80287 encounters one of these encodings (D9 /3, mod = 11b, DF /2, mod = 11b, DF /3, mod = 11b) in the instruction stream, it will execute it as follows: FSTP ST(i)"
- 9. *FSTP1*
 - a. Christian Ludloff wrote: "While FSTP (D9 /3, mod < 11b), FSTP8 (DF /2, mod = 11b), and FSTP9 (DF /3, mod = 11b) do signal stack underflow, FSTP1 (D9 /3, mod = 11b) does not."
- 10. FNENI and FNDISI
 - a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Processor Control Instructions: "The 8087 instructions FENI and FDISI perform no function in the 80287. If these opcodes are detected in an 80286/80287 instruction stream, the 80287 will perform no specific operation and no internal states will be affected."

11. FNSETPM

a. INTEL 80387 PROGRAMMER'S REFERENCE MANUAL 1987, 6.1.2 Independent of CPU Addressing Modes: "Unlike the 80287, the 80387 is not sensitive to the addressing and memory management of the CPU. The 80387 operates the same regardless of whether the 80386 CPU is operating in real-address mode, in protected mode, or in virtual 8086 mode."

12. FCOM alias

a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Table A-2. Machine Instruction Decoding Guide: "If the 80287 encounters one of these encodings (DC /2, mod = 11b) in the instruction stream, it will execute it as follows: FCOM ST(i)"

13. FCOMP aliases

a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Table A-2. Machine Instruction Decoding Guide: "If the 80287 encounters one of these encodings (DC /3, mod = 11b, DE /2, mod = 11b) in the instruction stream, it will execute it as follows: FCOMP ST(i)"

14. FXCH aliases

a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Table A-2. Machine Instruction Decoding Guide: "If the 80287 encounters one of these encodings (DD /1, mod = 11b, DF /1, mod = 11b) in the instruction stream, it will execute it as follows: FXCH ST(i)"

15. FFREEP

- a. INTEL 80287 PROGRAMMER'S REFERENCE MANUAL 1987, Table A-2. Machine Instruction Decoding Guide: "If the 80287 encounters one of these encodings (DF /1, mod = 11b) in the instruction stream, it will execute it as follows: FFREE ST(i) and pop stack"
- b. Intel Architecture Optimization Reference Manual PIII, Table C-1

- Pentium II and Pentium III Processors Instruction to Decoder Specification
- c. AMD Athlon Processor x86 Code Optimization Guide, Chapter 9, Use FFREEP Macro to Pop One Register from the FPU Stack
- d. sandpile.org -- IA-32 architecture -- ESC (FP) opcodes

16. *X87 aliases*

a. sandpile.org -- IA-32 architecture -- ESC (FP) opcodes

17. *INT1*, *ICEBP*

- a. sandpile.org -- IA-32 architecture -- one byte opcodes
- b. AMD64 Architecture Programmer's Manual Volume 3, Table One-Bytes Opcodes
- c. Christian Ludloff wrote: "Unlike INT 1 (CDh,01h), INT1 (F1h) doesn't perform the IOPL or DPL check and it can't be redirected via the TSS32.IRB."

18. REP prefixes

a. Flags aren't updated until after the last iteration to make the operation faster

19. *TEST*

- a. sandpile.org -- IA-32 architecture -- opcode groups
- b. Christian Ludloff wrote: "While the latest Intel manuals still omit this defacto standard, the recent x86-64 manuals from AMD document it."
- c. AMD64 Architecture Programmer's Manual Volume 3, Table One-Byte and Two-Byte Opcode ModRM Extensions

20. SMSW r32/64

a. Some processors support reading whole CR0 register, causing a security flaw.

21. LOADALL

- a. sandpile.org -- IA-32 architecture -- two byte opcodes
- b. www.x86.org The LOADALL Instruction

22. 0F0D NOP

- a. Intel 64 and IA-32 Architecture Software Developer's Manual Volume 2B: Instruction Set Reference, N-Z, Two-byte Opcode Map
- b. AMD architecture maps 3DNow! PREFETCH instructions here

23. *Hintable NOP*

- a. See U.S. Patent 5,701,442
- b. sandpile.org -- IA-32 architecture -- opcode groups

24. MOV from/to CRn, DRn, TRn

- a. Christian Ludloff wrote: "For the MOVs from/to CRx/DRx/TRx, mod=00b/01b/10b is aliased to 11b."
- b. AMD64 Architecture Programmer's Manual Volume 3, System Instruction Reference: "This instruction is always treated as a register-to-register instruction, regardless of the encoding of the MOD field in the MODR/M byte."

25. GETSEC Leaf Functions

a. Intel 64 and IA-32 Architecture Software Developer's Manual Volume 2B: Instruction Set Reference, N-Z: "The GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time GETSEC is executed." The following leaf functions are available: CAPABILITIES, ENTERACCS, EXITAC, SENTER, SEXIT, PARAMETERS, SMCTRL, WAKEUP. GETSEC instruction operands are specific to selected leaf function.

26. *SETcc*

a. AMD64 Architecture Programmers Manual Volume 3: General-Purpose and System Instructions: "The reg field in the ModR/M byte is unused."

27. CMPXCHG with memory operand

a. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set Reference, A-M: "This instruction can be used with a LOCK prefix To simplify the interface to the processor's bus, the destination operand receives a write cycle without regard to the result of

- the comparison."
- b. AMD64 Architecture Programmers Manual Volume 3: General-Purpose and System Instructions: "CMPXCHG always does a read-modify-write on the memory operand."

28. 0FB9 UD

- a. Intel 64 and IA-32 Architecture Software Developer's Manual Volume 2B: Instruction Set Reference, N-Z, Two-byte Opcode Map
- b. sandpile.org -- IA-32 architecture -- two byte opcodes

29. CMPXCHG8B, CMPXCHG16B

- a. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set Reference, A-M: "This instruction can be used with a LOCK prefix To simplify the interface to the processor's bus, the destination operand receives a write cycle without regard to the result of the comparison."
- b. AMD64 Architecture Programmers Manual Volume 3: General-Purpose and System Instructions: "The CMPXCHG8B and CMPXCHG16B instructions always do a read-modify-write on the memory operand."
- c. CMPXCHG16B is invalid on early steppings of AMD64 architecture.

30. BSWAP r16

- a. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set Reference, A-M: "When the BSWAP instruction references a 16-bit register, the result is undefined."
- b. AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions: "The result of applying the BSWAP instruction to a 16-bit register is undefined."

31. MASKMOVQ

a. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set Reference, A-M: "This instruction causes a transition from x87 FPU to MMX technology state."

32. Intel VMX

a. Intel VMX is not binary-compatible with AMD SVM

33. Intel SSE4

a. AMD64 architecture does not support SSE4 instructions but PTEST as part of SSE5

Notes for the Ring Level, used in case of f mark:

- 1. rFlags.IOPL
- 2. CR4.TSD[bit 2]
- 3. CR4.PCE[bit 8]

32-bit ModR/M Byte

r8(/r)	AL	CL	DL	BL	AH	СН	DH	ВН
r16(/r)	AX	CX	DX	ВХ	SP	ВР	SI	DI
r32(/r)	EAX	ECX	EDX	EBX	ESP	EBP	ESI	EDI
mm(/r)	MM0	MM1	MM2	ММЗ	MM4	MM5	MM6	MM7
xmm(/r)	0 MMX	XMM1	XMM2	XMM3	XMM4	XMM5	XMM6	XMM7
sreg	ES	CS	SS	DS	FS	GS	res.	res.
eee	CR0	invd	CR2	CR3	CR4	invd	invd	invo
eee	DR0	DR1	DR2	DR3	$DR4^{\frac{1}{2}}$	DR5 ¹	DR6	DR7
(In decimal) /digit (Opcode)	0	1	2	3	4	5	6	7
(In binary) REG =	000	001	010	011	100	101	110	111

Effective Address	Mod	R/M	Valu	e of	ModF	R/M B	yte	(in	Hex)	
[EAX]	00	000	00	08	10	18	20	28	30	38
[ECX]		001	01	09	11	19	21	29	31	39
[EDX]		010	02	0A	12	1A	22	2A	32	3A
[EBX]		011	03	0В	13	1В	23	2В	33	3В
[<u>sib</u>]		100	04	0C	14	1C	24	2C	34	3C
disp32		101	05	0 D	15	1D	25	2 D	35	3D
[ESI]		110	06	ΟE	16	1E	26	2E	36	3E
[EDI]		111	07	ΟF	17	1F	27	2F	37	3F
[EAX]+disp8	01	000	40	48	50	58	60	68	70	78
[ECX]+disp8		001	41	49	51	59	61	69	71	79
[EDX]+disp8		010	42	4 A	52	5A	62	6A	72	7A
[EBX]+disp8		011	43	4B	53	5B	63	6B	73	7в
[<u>sib</u>]+disp8		100	44	4 C	54	5C	64	6C	74	7C
[EBP]+disp8		101	45	4 D	55	5D	65	6D	75	7 D
[ESI]+disp8		110	46	4E	56	5E	66	6E	76	7E
[EDI]+disp8		111	47	4 F	57	5F	67	6F	77	7F
[EAX]+disp32	10	000	80	88	90	98	A0	A8	В0	В8
[ECX]+disp32		001	81	89	91	99	A1	A9	В1	В9
[EDX]+disp32		010	82	8A	92	9A	A2	AA	В2	ВА
[EBX]+disp32		011	83	8B	93	9В	А3	AB	В3	ВВ
[<u>sib</u>]+disp32		100	84	8C	94	9C	A4	AC	В4	ВС
[EBP]+disp32		101	85	8D	95	9D	A5	AD	В5	BD
[ESI]+disp32		110	86	8E	96	9E	A6	AE	В6	BE
[EDI]+disp32		111	87	8F	97	9F	A7	AF	В7	BF
AL/AX/EAX/ST0/MM0/XMM0	11	000	С0	С8	D0	D8	ΕO	E8	FO	F8
CL/CX/ECX/ST1/MM1/XMM1		001	C1	С9	D1	D9	E1	E9	F1	F9
DL/DX/EDX/ST2/MM2/XMM2		010	C2	CA	D2	DA	E2	EΑ	F2	FA
BL/BX/EBX/ST3/MM3/XMM3		011	С3	СВ	D3	DB	E3	EB	F3	FB
AH/SP/ESP/ST4/MM4/XMM4		100	C4	CC	D4	DC	E4	EC	F4	FC
CH/BP/EBP/ST5/MM5/XMM5		101	С5	CD	D5	DD	E5	ED	F5	FD
DH/SI/ESI/ST6/MM6/XMM6		110	С6	CE	D6	DE	E6	EE	F6	FE
BH/DI/EDI/ST7/MM7/XMM7		111	С7	CF	D7	DF	E7	EF	F7	FF

32-bit SIB Byte

r32	EAX	ECX	EDX	EBX	ESP	$\rightarrow \frac{1}{}$	ESI	EDI		
(In decimal) Base =			0	1	2	3	4	5	6	7
(In binary) Base =			000	001	010	011	100	101	110	111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal								mal)		
[EAX]	00	000	00	01	02	03	04	05	06	07
[ECX]		001	08	09	0A	0B	0C	0 D	ΟE	ΟF
[EDX]		010	10	11	12	13	14	15	16	17

[EBX]		011	18	19	1A	1B	1C	1D	1E	1F
none		100	20	21	22	23	24	25	26	27
[EBP]		101	28	29	2A	2B	2C	2D	2E	2F
[ESI]		110	30	31	32	33	34	35	36	37
[EDI]		111	38	39	3A	3B	3C	3D	3E	3F
[EAX*2]	01	000	40	41	42	43	44	45	46	47
[ECX*2]		001	48	49	4 A	4B	4 C	4 D	4E	4 F
[EDX*2]		010	50	51	52	53	54	55	56	57
[EBX*2]		011	58	59	5A	5B	5C	5D	5E	5F
none		100	60	61	62	63	64	65	66	67
[EBP*2]		101	68	69	6A	6B	6C	6D	6E	6F
[ESI*2]		110	70	71	72	73	74	75	76	77
[EDI*2]		111	78	79	7A	7в	7C	7 D	7E	7F
[EAX*4]	10	000	80	81	82	83	84	85	86	87
[ECX*4]		001	88	89	8A	8B	8C	8D	8E	8F
[EDX*4]		010	90	91	92	93	94	95	96	97
[EBX*4]		011	98	99	9A	9B	9C	9D	9E	9F
none		100	Α0	A1	A2	А3	A4	A5	A6	A7
[EBP*4]		101	A8	Α9	AA	AB	AC	AD	AE	AF
[ESI*4]		110	В0	В1	В2	В3	В4	В5	В6	В7
[EDI*4]		111	В8	В9	ВА	BB	ВС	BD	BE	BF
[EAX*8]	11	000	С0	C1	C2	С3	C4	C5	С6	С7
[ECX*8]		001	С8	С9	CA	СВ	CC	CD	CE	CF
[EDX*8]		010	D0	D1	D2	D3	D4	D5	D6	D7
[EBX*8]		011	D8	D9	DA	DB	DC	DD	DE	DF
none		100	ΕO	E1	E2	E3	E4	E5	Ε6	E7
[EBP*8]		101	E8	E9	EΑ	EB	EC	ED	EE	EF
[ESI*8]		110	FO	F1	F2	F3	F4	F5	F6	F7
[EDI*8]		111	F8	F9	FA	FB	FC	FD	FE	FF

SIB Note 1

	Mod bits	base					
	00	disp32					
	01	EBP+disp8					
-	10	EBP+disp32					

16-bit ModR/M Byte

r8(/r)	AL	CL	DL	BL	AH	СН	DH	ВН
r16(/r)	AX	CX	DX	ВХ	SP	ВР	SI	DI
r32(/r)	EAX	ECX	EDX	EBX	ESP	EBP	ESI	EDI
mm(/r)	MM0	MM1	MM2	MM3	MM4	MM5	MM6	MM7
xmm(/r)	OMMX	XMM1	XMM2	XMM3	XMM4	XMM5	XMM6	XMM7
sreg	ES	CS	SS	DS	FS	GS	res.	res.

eee			CR0	invd	CR2	CR3	CR4	invd	invd	invo
eee			DR0	DR1	DR2	DR3	DR4 ¹	DR5 ¹	DR6	DR7
(In decimal) /digit (O	рсо	de)	0	1	2	3	4	5	6	7
(In binary) REG =	_		000	001	010	011	100	101	110	111
Effective Address	Mod	R/M	Valu	e of	ModF	R/M B	yte	(in E	Hex)	
[BX+SI]	00	000	00	08	10	18	20	28	30	38
[BX+DI]		001	01	09	11	19	21	29	31	39
[BP+SI]		010	02	0A	12	1A	22	2A	32	3A
[BP+DI]		011	03	0В	13	1B	23	2В	33	3В
[SI]		100	04	0C	14	1C	24	2C	34	3C
[DI]		101	05	0 D	15	1D	25	2D	35	3D
disp16		110	06	ΟE	16	1E	26	2E	36	3E
[BX]		111	07	ΟF	17	1F	27	2F	37	3F
[BX+SI]+disp8	01	000	40	48	50	58	60	68	70	78
[BX+DI]+disp8		001	41	49	51	59	61	69	71	79
[BP+SI]+disp8		010	42	4 A	52	5A	62	6A	72	7A
[BP+DI]+disp8		011	43	4B	53	5B	63	6В	73	7в
[SI]+disp8		100	44	4 C	54	5C	64	6C	74	7C
[DI]+disp8		101	45	4 D	55	5D	65	6D	75	7 D
[BP]+disp8		110	46	4E	56	5E	66	6E	76	7E
[BX]+disp8		111	47	4 F	57	5F	67	6F	77	7F
[BX+SI]+disp16	10	000	80	88	90	98	A0	A8	В0	В8
[BX+DI]+disp16		001	81	89	91	99	A1	A9	В1	В9
[BP+SI]+disp16		010	82	8A	92	9A	A2	AA	В2	ВА
[BP+DI]+disp16		011	83	8B	93	9В	А3	AB	В3	BB
[SI]+disp16		100	84	8C	94	9C	A4	AC	В4	ВС
[DI]+disp16		101	85	8 D	95	9D	A5	AD	В5	BD
[BP]+disp16		110	86	8E	96	9E	A6	AE	В6	BE
[BX]+disp16		111	87	8F	97	9F	Α7	AF	в7	BF
AL/AX/EAX/ST0/MM0/XMM0	11	000	С0	С8	D0	D8	ΕO	E8	FO	F8
CL/CX/ECX/ST1/MM1/XMM1		001	C1	С9	D1	D9	E1	E9	F1	F9
DL/DX/EDX/ST2/MM2/XMM2		010	C2	CA	D2	DA	E2	EΑ	F2	FA
BL/BX/EBX/ST3/MM3/XMM3		011	С3	СВ	D3	DB	E3	EB	F3	FB
AH/SP/ESP/ST4/MM4/XMM4		100	C4	CC	D4	DC	E4	EC	F4	FC
CH/BP/EBP/ST5/MM5/XMM5		101	C5	CD	D5	DD	E5	ED	F5	FD
DH/SI/ESI/ST6/MM6/XMM6		110	С6	CE	D6	DE	E6	EE	F6	FE
BH/DI/EDI/ST7/MM7/XMM7		111	С7	CF	D7	DF	E7	EF	F7	FF

ModR/M Note 1: Debug Registers DR4 and DR5

References to debug registers DR4 and DR5 cause an undefined opcode (#UD) exception to be generated when CR4.DE[bit 3] (Debugging Extensions) set; when clear, processor aliases references to registers DR4 and DR5 to DR6 and DR7 for compatibility with software written to run on earlier IA-32 processors.

