

COPIE INTERNE 21/08/2025

Dr SCHUIND SOPHIE HUB - HOPITAL ERASME SERVICE DE NEUROCHIRURGIE

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15

Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : EXAMEN : 25EM00094

Prélevé le 06/01/2025 à 06/01/2025 16:55 Prescripteur : Dr SCHUIND SOPHIE

Reçu le 09/01/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25EH00141 3

Date du prélèvement : 06/01/25

Origine du prélèvement : Erasme

Type de prélèvement : Astrocytome de grade 2

II. Evaluation de l'échantillon

- % de cellules tumorales : 80%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : /

III. Méthodologie (effectué par : NADN, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7
ATRX	NM 00489	1-35 (whole CDS)	28, 29
BRAF	NM_004333	7, 10, 11, 12, 15	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM 001259	2-8 (whole CDS)	
CDKN2A	NM_000077	1-3 (whole CDS)	1
CDKN2B	NM_004936 et NM_078487	1-2 (whole CDS)	
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	15
FGFR2	NM_000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	
H3F3A (=H3.3)	NM_002107	2	
H3F3B	NM 005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM 003531	1	
HRAS	NM_005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM_002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM_002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM_002393	2-11 (whole CDS)	2
MYCN	NM 1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7, 13, 15, 30, 33
NF2	NM_00268	1-16 (whole CDS)	
NRAS	NM 002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	
PIK3R1	NM_181523	2-16 (whole CDS)	11
POLD1	NM_001256849	1-27 (whole CDS)	4, 22
POLE	NM_006231	1-49 (whole CDS)	36
PPM1D	NM_003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM 00314	1-9 (whole CDS)	
PTPN11	NM_02834	1-15 (whole CDS)	
RB1	NM 00321	1-27 (whole CDS)	1, 15, 16, 22
TERT	NM_001193376	Promoteur	Promoteur
TP53	NM_00546	1-11 (whole CDS)	4
TSC1	NM_000368	3-23 (whole CDS)	
TSC2	NM 000548	2-42 (whole CDS)	6, 14, 31, 34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN muté
Variants avec impact clinique avéré				
IDH1	4	p.R132H	2000	44%
Variants avec impact clinique potentiel				
ATRX	12	p.G1350*	1365	43%
Variants avec impact clinique indéterminé				
TP53	5	p.Q136E	1272	81%

Variants de significations biologiques et cliniques indéterminées :

Gène	Exon	Variant	Coverage	% d'ADN muté
POLD1	22	p.A935T	797	52%

b. Statut 1p19q:

Qualité de l'échantillon : optimale

Résultat : pas de perte d'hétérozygotie (LOH) des chromosomes 1p et 19 q.

V. Discussion

Les mutations du codon R132 du gène IDH1 sont fréquentes dans les gliomes diffus de grade 2 et 3. En revanche, elles sont absentes dans les astrocytomes de grade 1. La présence d'une mutation dans le gène IDH1 dans les gliomes est associée à un meilleur pronostic. Weller M, Stupp R, Hegi ME, et al. Neuro Oncol 14 2012; Suppl 4:iv100-8 Sanson M, Marie Y, Paris S, et al. 2009; J Clin Oncol 27:4150-4

Les mutations du gène ATRX sont associées au phénotype astrocytaire. Leur impact clinique est indéterminé.

N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. Cancer Genome Atlas Research Network, Brat DJ et al

Les mutations du gène TP53 sont fréquentes dans les astrocytomes mais rares dans les oligodendrogliomes. Elles sont généralement décrites comme exclusives avec les co-délétions 1p19q. Leur impact clinique est indéterminé.

VI. Conclusion : (NADN le 16/01/2025)

Présence du variant pathogénique R132H du gène IDH1. Présence du variant présumé pathogénique G1350* du gène ATRX. Présence du variant présumé pathogénique Q136E du gène TP53.

A noter la présence d'un variant de signification biologique et clinique indéterminée dans le gène POLD1.

Absence de co-délétion des chromosomes 1p et 19q.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB:

 $\frac{\text{https://www.hubruxelles.be/sites/default/files/2024-03-04_demande\%20analyse\%20anapath\%20cytologie\%20v3.pdf}{\text{https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11\%20Demande\%20de\%20biologie\%20mol\%C3\%A9culaire-IPD\%20v1.doc}$

Dr N D'HAENE