

Picasso-225 VO

Arbitration/TLP re-ordering/SR-IOV

Picasso-225 VO list

CONTENTS

- Arbitration
- TLP re-order
- SR-IOV

Arbitration

PCle Arbitration

- Strict Priority
 - 基于固定的优先级,例如 VC0=最低, VC7=最高
- Round Robin
 - 所有VC具有相同优先级
- Weighted RR
 - 加权的RR

PCIe Switch Arbitration

• 对于 Switch 而言,端口仲裁就 是指映射到同一 VC 的 Ingress Ports 的流量在 Egress Port 进 行仲裁排序。

- 依据协议:第一步根据 TLP header 选择 出端口;第二步根据出端口 TC/VC 映射 决定目标 VC。
- 端口仲裁:不同入端口的激励路由到出端口的相同 VC 中,在转发前必须仲裁。
- VC仲裁: 出端口的不同 VCs 间的仲裁。

- 入端口 TC/VC 映射,根据信息将激励路由到对应的出端口,如果映射的 VC 不存在则视为错误;
- 到了出端口上,进行 TC/VC 映射;
- 相同 VC 进行端口仲裁;
- 对仲裁后的不同 VCs 进行仲 裁,最终发出。

PLDA Switch VIP 使用 Round Robin 轮询仲裁,所 有Ports具有相同的优先级。

VO - DPs to UP

- 1. wait enumeration done
- 2. find memory address space
- 3. EP1 & EP2 send multiple Transactions to UP
- 4. All Transactions should passed
- 5. Check requests' order

VO - UP to DP

- 1. wait enumeration done
- 2. find memory address space
- 3. EP1 & UP send multiple Transactions to EP2
- 4. All Transactions should passed
- **5.** Check requests' order

TLP re-ordering

PCIe TLP ordering

在严格实施**强序规则**会发生事务阻塞,影响效率。

		报告的请求	非报告的请求		完成	
行能越过列 (列 1)		存储器写或 消息请求 (列 2)	读请求 (列 3)	I/O 或配置 写请求 (列 4)	读完成 (列 5)	I/O 或配置 写完成 (列 6)
报告请求	存储器写或消息请求 (行 A)	a)No b)Y/N	No	No	No	No
非报告请求	读请求 (行 B)	No	No	No	No	No
	I/O或配置写请求 (行 C)	No	No	No	No	No
完成	读完成 (行 D)	a)No b)Y/N	No	No	No	No
	1/O或配置写完成 (行 E)	No	No	No	No	No

PCIe TLP ordering

在同一时刻相同 Traffic Class (TC) 需要遵循保序规则。

为了防止deadlock, 需要 reordering机制, 当 Non-Posted TLP 被阻塞住时, bypass Posted TLP 或 Completion TLP。

Table 8-1: Simplified Ordering Rules Table

Row pass Column? (Col 1)		Posted	Non-Poste	Confection	
		(Col 2)	Read Request (Col 3)	NPR with Data (Col 4)	(Col 5)
Posted Request (Row A)		a) No b) Y/N	Yes	Yes	a) Y/N b) Yes
on-Posted Request	Read Request (Row B)	a) No b) Y/N	Y/N	Y/N	Y/N
Non-Posted Request	NPR with Data (Row C)	a) No b) Y/N	Y/N	Y/N	Y/N
Completion (Row D)		a) No b) Y/N	Yes	Yes	a) Y/N b) No

PCIe TLP ordering

Picasso-225 structure

Transaction Layer 管理 TLPs,在 TLPs 传输到 DLL 层之前,检查流量 控制信元。

在接收方向, TL 层收到 TLPs 后, 在 Receive Buffer 中计算信元。

Picasso-225 structure -- Port Receive Interface

NP Buffer 可以暂时存储 Non-Posted TLPs, 从而继续接收 Posted 和 Completions TLPs, 不被 Non-Posted TLPs 阻塞,避免锁死。

Picasso-225 structure

re-ordering 功能只存在 Rx 方向, Tx 方向无此功能。

Switch TLP re-ordering

应用收到一笔 Non-Posted TLP, 然后等待一个时钟周期,拉高 tl_rx_masknp0 信号,来标明目 前不再接收 NP,然后 Core 发 出 Completion TLP。

Switch TLP re-ordering

May all Blocked??

VO – Posted bypass

- 1. wait enumeration done
- 2. limit Posted/Non-Posted Credit and let DUT consume accredit
- 3. Block Non-Posted TLP
- 4. send Posted TLP
- 5. check 4. should passed
- 6. Update flow credit
- **7.** Check blocked TLP normally completed

VO – Completion bypass

- 1. wait enumeration done
- 2. limit Posted/Non-Posted Credit and let DUT consume accredit
- 3. Block Non-Posted TLP
- 4. send Completion TLP
- 5. check 4. should passed
- 6. Update flow credit
- **7.** Check blocked TLP normally completed

SR-IOV

Picasso-225 VO - SR-IOV

SR-IOV

Figure 9-3 Generic Platform Configuration with SR-IOV and IOV Enablers

为了在不增加硬件开销的情况下,执行多个系统 (SI),可以使用虚拟中介 (VI),VI为每个SI提供 虚拟系统。

然而当I/0数量增多时,每个I/0出站入站都需要VI处理,增大软件平台资源消耗。

SR-I0V技术可以减少这个 资源消耗。

Picasso-225 VO – SR-IOV

SR-IOV

SR-PCIM:软件控制管理。

Physical Function (PF): PF具有完整PCIe功能, PCIe Function支持SR-IOV能力扩展,可以被SR-PCIM、VI、SI访问。

Virtual Function (VF): 具有轻量PCle功能,可以直接被Sl访问;一个VF可以被不同Sl串行共享;VF可以从PF转移到另一个PF上;与PF关联的所有VF必须与PF具有相同设备类型。

Translation Agent: PCIe地址转换为相关平台物理地址。

ATPT: 地址转换保护表。

ATC: Address Translation Cache, 地址转换缓存。

ACS: Access Control Services, 控制TLP是否应该正确路由、阻塞、重定向。在支持SR-IOV的系统中, ACS可以阻止设备分配给VI或SI。

inspur 浪潮

• SR-IOV 配置

- NumVFs控制可见VFs数量, VFs可被PCIe发现。
- NumVFs只有VF enable清零后才能改变。
- 设置完VF enable, PF关联的VFs可以在PCIe组织内被访问; 当VF enable清零, VFs禁用并且在PCIe组织中不可见,访问这些VFs将返回UR。
- 配置VF enable后,设备接收 Type 0 类型的Configuration Request目标为捕获总线数内的使能VF,必须正常处理请求;
- 当设备接收 Type 1 类型的Configuration Request目标在捕获总线号之外的使能 VF, 必须正常处理请求;
- 当设备接收 Type 1 类型的Configuration Request目标在捕获总线号内,必须按照 UR 处理。
- SR-IOV设备从 Type 0 配置类型的写配置请求中捕获总线号,不从任何 Type 1 类型的写配置请求中捕获总线号。

Picasso-225 VO - SR-IOV

- Switch 处理总线号与基本 PCIe 流程一致。Switch 向下一级总线号到最后一级总线号范围内所有设备发送配置请求。Type 1 类型的请求访问下一级总线将被转换成 Type 0 类型,而 Type 1 类型请求访问在下一级总线号与最后一级总线号之间的总线时,将作为类型1请求转发到设备。
- ACS 功能中,具有 SR-IOV 功能的单功能设备需要处理为多功能设备;
- 必须支持 ACS P2P Request 重定向;
- 必须支持 ACS P2P Completion 重定向;
- Picasso-225 支持 ACS P2P 出口控制, 阻塞Function请求。

Picasso-225 VO – SR-IOV

Switch SR-IOV ARI

Function Number只有3位, 最多标识8个function。

拥有 ARI (Alternative Routing-ID Interpretation) 功能的设备可以扩展 function 到256个。

225支持 ARI ID 的转发。

Figure 2-20 Request Header Format for Configuration Transactions

ARI capability is implemented in all upstream port functions; its fields are set to fixed values according to the Core configuration and can **not** be configured by users.

31:24	23:16	15:8	7:0	Byte Offset
ARI Extended Capability Header				
ARI Contro	ol Register	ARI Capability Register		12Ch

Table 92: ARI Extended Capability Structure

Picasso-225 VO – SR-IOV

Switch SR-IOV ARI

Bits	Field	Additional Description	
15:0	PCI Express Extended Capability ID	Always 000Eh.	RO
19:16	Capability Version	Hardwired to 1h.	RO
31:20	Next Capability Offset	Depends on which capabilities are implemented.	RO

Table 93: ARI Extended Capability Header

Bits	Field	Additional Description	Attr.
0	MFVC Function Groups Capability (M)	Hardwired to 0.	RO
1	ACS Function Groups Capability (A)	Hardwired to 0.	RO
15:8	Next Function Number	Indicates ID of next physical function; otherwise 0.	RO

Table 94: ARI Capability/Control Register

Picasso-225 VO - SR-IOV

Switch SR-IOV ARI

Common Decoder Signals

ari_forwarding_	in	G_NB_PORT_OUT+1	ARI Forwarding Enable: Value of ARI Forwarding Enable bit in the Device
en			Control 2 register of each Switch port.

Device Control 2 Register

Bits	Field	Additional Description	Attr.
5	ARI Forwarding Enable	This bit is RO when k_pexconf[37]=0, RW when k_pexconf[37]=1.	RO/RW

VO – SR-IOV enable Switch access

- 1.wait enumeration done, VIP enables all virtual functions
- 2.check VF configuration
- 3.send CFG and MEM TLP for VF.
- VF must response them
- 4.check TLP response
- 5.clear VF enable
- **6.**send CFG and MEM TLP for VF, must response UR
- 7.set VF enable
- 8.send CFG and MEM TLP for VF, must response them

VO – SR-IOV VFNum Switch response

- 1.wait enumeration done
- 2.send TLP when VF enable is 0
- 3.check TLP response must as UR
- 4.config NumVFs
- 5. Sending TLPs to VF while the VF
- Enable bit is still 0, the VF must
- respond any requests as UR
- 6. Enable VF Enable and VF MSE
- 7.send TLPs to active VF
- 8.check should response them
- 9.send TLP to inactive VF
- 10.check should response UR

谢谢大家!

