

SEQUENCE LISTING

<110> Bayer HealthCare AG

<120> Diagnostics and Therapeutics for Diseases Associated with
Puromycin Sensitive Aminopeptidase NPEPPS (NPEPPS)

<130> BHC 04 01 041

<160> 5

<170> PatentIn version 3.2

<210> 1

<211> 4177

<212> DNA

<213> Homo sapiens

<400> 1

tctctccccc	gccccccagg	ctccccgggt	cgctctccta	cggcggtcgc	ccgagctcgg	60
tggatgtggc	tggcagctgc	cgccccctcc	ctcgctcgcc	gcctgctttt	cctcgccct	120
ccgcctcctc	ccctccctct	tctcgcttc	agccgctctt	ctgcgcgcgg	cctccacagc	180
ctgggcctcg	ccgcgatgcc	ggagaagagg	cccttcgagc	ggctgcctgc	cgatgtctcc	240
cccatcaact	acagcccttg	cctcaagccc	gacttgctgg	acttcacctt	cgagggcaag	300
ctggaggccg	ccgcccaggt	gaggcaggcg	actaatcaga	ttgtgatgaa	tttgctgtat	360
attgatatta	ttacagcttc	atatgcacca	gaaggagatg	aagaaaataca	tgctacagga	420
tttaactatac	agaatgaaga	tgaaaaagtc	accttgcctt	tccctagtac	tctgcaaaca	480
ggtagccggaa	ccttaaaagat	agattttgtt	ggagagctga	atgacaaaat	gaaaggtttc	540
tatagaagta	aatatactac	cccttctgga	gaggtgcgct	atgctgctgt	aacacagttt	600
gaggctactg	atgcccgaag	ggctttctt	tgctggatg	agcctgcstat	caaagcaact	660
tttgatatatct	cattgggtgt	tcctaaagac	agagtagctt	tatcaaacat	gaatgttaatt	720
gaccggaaac	cataccctga	tgtgaaaat	ttagtggaaag	tgaagtttgc	ccgcacacct	780
gttatgtcta	catactcggt	ggcattttgtt	gtgggtgaat	atgactttgt	agaaacaagg	840
tcaaaagatg	gtgtgtgtgt	ccgtgtttac	actcctgttg	gcaaagcaga	gcaaggaaaa	900
tttgcgttag	aggttgctgc	taaaaccttg	ccttttata	aggactactt	caatgttct	960
tatcctctac	ctaaaattga	tctcattgct	attgcagact	ttgcagctgg	tgccatggag	1020
aactggggcc	ttgttactta	tagggagact	gcattgctta	ttgatccaaa	aaattcctgt	1080
tcttcatccc	gccagtggtt	tgctctggtt	gtgggacatg	aactcgccca	tcaatggttt	1140
ggaaatcttg	ttactatgga	atggtgact	catcttttgt	taaatgaagg	ttttgcattcc	1200
tggattgaat	atctgtgtgt	agaccactgc	ttcccagagt	atgatatttg	gactcagttt	1260
gtttctgtcg	attacaccccg	tgccccaggag	cttgacgcct	tagataacag	ccatcctatt	1320
gaagtcaagt	tggccatcc	atctgaggtt	gatgagat	ttgatgctat	atcatatagc	1380
aaaggtgcat	ctgtcatccg	aatgtgcatt	gactacattt	gggataagga	ctttaagaaa	1440
ggaatgaaca	tgtatccaac	caagttccaa	caaaaagaaatg	ctggcacaga	ggatctctgg	1500
gaaagttttag	aaaatgttag	tggtaaacct	atagcagctg	tgatgaatac	ctggaccaaa	1560

caaatggat ttccccat ttatgtggaa gctgaacagg tagaagatga cagattattg	1620
agttgtccc aaaagaagtt ctgtgctggt gggcatatg ttggtaaga ttgtccccag	1680
tggatggtcc ctatcacaat ctctactagt gaagacccta accaggccaa actaaaaatt	1740
ctaatggaca agccagagat gaatgtggtt ttgaaaatg tcaaaccaga ccaatgggtg	1800
aagttaaact taggaacagt tgggtttat cggaccagg acagctctgc catgctggaa	1860
agtttattac caggcattcg tgaccttct ctgccccctg tggatcgact tggattacag	1920
aatgacctct tctccttggc tcgagctgga atcattagca ctgttagaggt tctaaaagtc	1980
atggaggcct ttgtgaatga gcccaattat actgtatgga gcgacctgag ctgtaacctg	2040
gggattctct caactctctt gtcccacaca gacttctatg agggaaatcca ggagtttg	2100
aaagatgtct tttcacctat agggagaga ctgggctggg accccaaacc tggagaaggt	2160
catctcgatg cactcctgag gggcttggtt ctggaaaaac taggaaaagc aggacataag	2220
gcaacgttag aagaagcccg tcgtcggtt aaggaccacg tggaaaggaa acagattctc	2280
tccgctgatc tgaggagtcc tgcctatctg actgttttga agcatggta tggcactact	2340
ttagatatta tgtaaaaact tcataaacaa gcagatatgc aagaagagaa aaaccgaatc	2400
gaaagagtcc ttggcgctac tctttgcct gacctgattc aaaaagtcct cacgtttgca	2460
cttcagaag aggtacgtcc acaggacact gtatcgtaa ttggtggagt agctggaggc	2520
agcaagcatg gtaggaaagc tgcttggaaa ttcataaagg acaactggg agaactttat	2580
aaccgataacc agggaggatt cttaatatcc agactaataa agctatcgt tgagggattt	2640
gcagttgata aaatggctgg agaggttaag gctttctcg agagtccccc agtccttca	2700
gctgagcgta ccatccagca gtgttgtgaa aatattctgc tgaatgctgc ctggctaaag	2760
cgagatgctg agagcatcca ccagtacctc cttcagcgga aggccatccc acccacatg	2820
tgaatcctga ggtccgcca ttggcggttc tgctgctcg ctgcaggat aaggtggagc	2880
taccgaacag ctgattcata tgccaagaat ttggagtctt cttcaaaacc agtgggggtt	2940
ggacaatgaa tgttagttaac tggttctcg tcacactcca gaattaaatt ctattgaaaa	3000
agaaaaatca gcaattcagc aaaaaataa ataaaaaataa aaaatgtaaa tatgatagta	3060
ataaaaataga gcataacgaa actgtgaaac tttctgaagc ctgtcagtg gttaaaagta	3120
ttaaacactc tactgttaat gacagatgtt ctgttttat aacctaccaa aaggaaacta	3180
gaggcttctt ggtgaagagc atttttgtga agtgggttct gcaaggagcc tataaagcca	3240
agggtggtgtt ccatttctgg gaatgggttaa acacaaaagg ctgatagctg gtatcacata	3300
gttggagtcgatcataatt ccaagtggct tttttttttt ttggcacggg gactgatcag	3360
gaagatataat tccatcgataa ctcataatctga accaaggatt gtagtttagt tttcctcctt	3420
gccttccctt ctgtgtgacc gaccccttgg caaaaaaaaa aacaaaaagc aaaaaacaaaa	3480
aacctacccct gttctgtttt tttcctccc tttagttcca ccccaaccc ccattccctg	3540
gtgtccttct tagagatgaa gaaataataa ggaaacatct ttcatacgcca cattaaataa	3600
gagaaactga tatacattat tttttcttt ttaaagatga cttataagaa ccctgaattt	3660
tatataggtg agacaataga aataaaaaaga tcttcagcca ggccttctg aaggaggat	3720
tctgctaaaa atggcttag ttgtctggaa agccagctct tgaacctctt cacaacagta	3780
tcaacactgg ctctcccg ttcattttat gcgtgcgaga agtcagtggt aactgctgca	3840
gggcttaata cattagtggt aactgggtta aaaaacaaag actgtaagcc tttgtgtgcc	3900
actgtttgct tcaacagttat atctactaa taagcctcac ctatataatc caatgagttt	3960
taaatctaaa tctcatccc ttcttctttc cttacctttt tttcttttt ttcttaaaaaa	4020
aatattttgtt gttttaaca gaaattcata ttgggtgtgg cttaacggta ttcatcagaagg	4080
tcatcagatt gtgagactgc ttccctgaaa cattttgtg ctattgttt aaaaaataaa	4140
ttaaaaaaaca gttggcgatcataataaaaatgtt caatgtg	4177

<210> 2
<211> 919
<212> PRT
<213> Homo sapiens

<400> 2
Met Trp Leu Ala Ala Ala Ala Pro Ser Leu Ala Arg Arg Leu Leu Phe
1 5 10 15
Leu Gly Pro Pro Pro Pro Pro Leu Leu Leu Leu Val Phe Ser Arg Ser
20 25 30
Ser Arg Arg Arg Leu His Ser Leu Gly Leu Ala Ala Met Pro Glu Lys
35 40 45
Arg Pro Phe Glu Arg Leu Pro Ala Asp Val Ser Pro Ile Asn Tyr Ser
50 55 60
Leu Cys Leu Lys Pro Asp Leu Leu Asp Phe Thr Phe Glu Gly Lys Leu
65 70 75 80
Glu Ala Ala Ala Gln Val Arg Gln Ala Thr Asn Gln Ile Val Met Asn
85 90 95
Cys Ala Asp Ile Asp Ile Ile Thr Ala Ser Tyr Ala Pro Glu Gly Asp
100 105 110
Glu Glu Ile His Ala Thr Gly Phe Asn Tyr Gln Asn Glu Asp Glu Lys
115 120 125
Val Thr Leu Ser Phe Pro Ser Thr Leu Gln Thr Gly Thr Gly Thr Leu
130 135 140
Lys Ile Asp Phe Val Gly Glu Leu Asn Asp Lys Met Lys Gly Phe Tyr
145 150 155 160
Arg Ser Lys Tyr Thr Thr Pro Ser Gly Glu Val Arg Tyr Ala Ala Val
165 170 175
Thr Gln Phe Glu Ala Thr Asp Pro Arg Arg Ala Phe Pro Cys Trp Asp
180 185 190
Glu Pro Ala Ile Lys Ala Thr Phe Asp Ile Ser Leu Val Val Pro Lys
195 200 205
Asp Arg Val Ala Leu Ser Asn Met Asn Val Ile Asp Arg Lys Pro Tyr
210 215 220
Pro Asp Asp Glu Asn Leu Val Glu Val Lys Phe Ala Arg Thr Pro Val
225 230 235 240
Met Ser Thr Tyr Leu Val Ala Phe Val Val Gly Glu Tyr Asp Phe Val
245 250 255
Glu Thr Arg Ser Lys Asp Gly Val Cys Val Arg Val Tyr Thr Pro Val
260 265 270
Gly Lys Ala Glu Gln Gly Lys Phe Ala Leu Glu Val Ala Ala Lys Thr
275 280 285
Leu Pro Phe Tyr Lys Asp Tyr Phe Asn Val Pro Tyr Pro Leu Pro Lys
290 295 300

Ile Asp Leu Ile Ala Ile Ala Asp Phe Ala Ala Gly Ala Met Glu Asn
305 310 315 320
Trp Gly Leu Val Thr Tyr Arg Glu Thr Ala Leu Leu Ile Asp Pro Lys
325 330 335
Asn Ser Cys Ser Ser Ser Arg Gln Trp Val Ala Leu Val Val Gly His
340 345 350
Glu Leu Ala His Gln Trp Phe Gly Asn Leu Val Thr Met Glu Trp Trp
355 360 365
Thr His Leu Trp Leu Asn Glu Gly Phe Ala Ser Trp Ile Glu Tyr Leu
370 375 380
Cys Val Asp His Cys Phe Pro Glu Tyr Asp Ile Trp Thr Gln Phe Val
385 390 395 400
Ser Ala Asp Tyr Thr Arg Ala Gln Glu Leu Asp Ala Leu Asp Asn Ser
405 410 415
His Pro Ile Glu Val Ser Val Gly His Pro Ser Glu Val Asp Glu Ile
420 425 430
Phe Asp Ala Ile Ser Tyr Ser Lys Gly Ala Ser Val Ile Arg Met Leu
435 440 445
His Asp Tyr Ile Gly Asp Lys Asp Phe Lys Lys Gly Met Asn Met Tyr
450 455 460
Leu Thr Lys Phe Gln Gln Lys Asn Ala Ala Thr Glu Asp Leu Trp Glu
465 470 475 480
Ser Leu Glu Asn Ala Ser Gly Lys Pro Ile Ala Ala Val Met Asn Thr
485 490 495
Trp Thr Lys Gln Met Gly Phe Pro Leu Ile Tyr Val Glu Ala Glu Gln
500 505 510
Val Glu Asp Asp Arg Leu Leu Arg Leu Ser Gln Lys Lys Phe Cys Ala
515 520 525
Gly Gly Ser Tyr Val Gly Glu Asp Cys Pro Gln Trp Met Val Pro Ile
530 535 540
Thr Ile Ser Thr Ser Glu Asp Pro Asn Gln Ala Lys Leu Lys Ile Leu
545 550 555 560
Met Asp Lys Pro Glu Met Asn Val Val Leu Lys Asn Val Lys Pro Asp
565 570 575
Gln Trp Val Lys Leu Asn Leu Gly Thr Val Gly Phe Tyr Arg Thr Gln
580 585 590
Tyr Ser Ser Ala Met Leu Glu Ser Leu Leu Pro Gly Ile Arg Asp Leu
595 600 605
Ser Leu Pro Pro Val Asp Arg Leu Gly Leu Gln Asn Asp Leu Phe Ser
610 615 620
Leu Ala Arg Ala Gly Ile Ile Ser Thr Val Glu Val Leu Lys Val Met
625 630 635 640
Glu Ala Phe Val Asn Glu Pro Asn Tyr Thr Val Trp Ser Asp Leu Ser
645 650 655

Cys Asn Leu Gly Ile Leu Ser Thr Leu Leu Ser His Thr Asp Phe Tyr
 660 665 670
 Glu Glu Ile Gln Glu Phe Val Lys Asp Val Phe Ser Pro Ile Gly Glu
 675 680 685
 Arg Leu Gly Trp Asp Pro Lys Pro Gly Glu Gly His Leu Asp Ala Leu
 690 695 700
 Leu Arg Gly Leu Val Leu Gly Lys Leu Gly Lys Ala Gly His Lys Ala
 705 710 715 720
 Thr Leu Glu Glu Ala Arg Arg Phe Lys Asp His Val Glu Gly Lys
 725 730 735
 Gln Ile Leu Ser Ala Asp Leu Arg Ser Pro Val Tyr Leu Thr Val Leu
 740 745 750
 Lys His Gly Asp Gly Thr Thr Leu Asp Ile Met Leu Lys Leu His Lys
 755 760 765
 Gln Ala Asp Met Gln Glu Glu Lys Asn Arg Ile Glu Arg Val Leu Gly
 770 775 780
 Ala Thr Leu Leu Pro Asp Leu Ile Gln Lys Val Leu Thr Phe Ala Leu
 785 790 795 800
 Ser Glu Glu Val Arg Pro Gln Asp Thr Val Ser Val Ile Gly Gly Val
 805 810 815
 Ala Gly Gly Ser Lys His Gly Arg Lys Ala Ala Trp Lys Phe Ile Lys
 820 825 830
 Asp Asn Trp Glu Glu Leu Tyr Asn Arg Tyr Gln Gly Gly Phe Leu Ile
 835 840 845
 Ser Arg Leu Ile Lys Leu Ser Val Glu Gly Phe Ala Val Asp Lys Met
 850 855 860
 Ala Gly Glu Val Lys Ala Phe Phe Glu Ser His Pro Ala Pro Ser Ala
 865 870 875 880
 Glu Arg Thr Ile Gln Gln Cys Cys Glu Asn Ile Leu Leu Asn Ala Ala
 885 890 895
 Trp Leu Lys Arg Asp Ala Glu Ser Ile His Gln Tyr Leu Leu Gln Arg
 900 905 910
 Lys Ala Ser Pro Pro Thr Val
 915

<210> 3
<211> 18
<212> DNA
<213> artificial sequence

<220>
<223> forward primer

<400> 3
tttctctgcc ccctgtgg

<210> 4
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> reverse primer

<400> 4
agtgcataatg attccagctc gag

23

<210> 5
<211> 33
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 5
cgacttggat tacagaatga cctcttcattcc ttg

33