인공지능과 신약개발을 위한 파이썬

5주차 머신 러닝의 이해

홍 성 은

sungkenh@gmail.com

목차

- 데이터 분석
- 머신러닝
- 회귀분석
- 분류
- 클러스터링

데이터 분석

- 데이터 분석 프로세스
 - 문제 정의: 해결하려는 문제를 명확히 정의하는 것
 - 전략 수립 : 문제 해결을 위해 어떤 데이터를 어떻게 사용할지를 정함
 - 데이터 수집: 머신러닝에 필요한 데이터를 수집하는 것
 - 모델 구현 : 분류, 회귀, 설명, 추천 등을 위한 머신러닝 모델을 구현
 - 결과 적용: 머신러닝 모델을 실제 상황에 적용하고 성능을 개선하는 것

데이터 분석

- 데이터 수집
 - 전체 과정에서 70~80%의 시간을 소모함
 - 핵심 데이터를 확보했는지 여부
 - 데이터 품질
 - 잘못된 데이터 사용은 잘못된 결과를 도출
 - 수집 가능 여부 (보유 기관의 데이터 정책)
 - 수집 주기 (일회성, 한시간/하루/한달에 한번 등)
 - 비용 (무료 또는 유상, 통신 비용 등)
 - 데이터 포맷 변경, 호환성, 처리 비용
 - 정답 데이터 셋 확보 여부
 - 수집 아이디어...

- 머신러닝은 데이터에서부터 학습하도록 컴퓨터를 프로그래밍하는 과학
- 명시적 프로그래밍 없이 컴퓨터가 학습하는 능력을 갖추게 하는 연구분야
- 딥러닝: 신경망을 기반으로 하는 머신러닝 기술
 - 마치 사람이 많은 정보에 접하면서 학습하듯이 컴퓨터도 데이터를 보고 학습하는 방법
 - 음성인식, 자동차 번호판 인식, 언어 번역, 채팅 대화, 글쓰기, 작곡 등 여러 분야에서 좋은 성과를 냄

• 스팸필터

- 스팸메일과 일반 메일의 샘플을 이용해 스팸 메일 구분법을 학습하는 머신러닝 프로그램
- 시스템이 학습하는데 사용하는 데이터 샘플을 훈련 데이터, 각 훈련 데이터를 훈련 사례(샘플)
- 정확히 분류된 메일의 비율의 성능을 정확도라고 함

• 머신 러닝 작업 흐름

- 머신 러닝이 유용한 문제
 - 음성인식
 - One, Two를 구분하는 프로그램을 작성한다고 했을 경우
 - Two는 높은 피치의 T로 시작하기에 높은 피치의 강도를 측정하는 알고리즘을 하드코딩해서 두개를 구분할 수 있음
 - 소음이 있는 환경에서 수백만 명이 말하는 여러 언어로 된 수천개의 단어를 구분하는 것으로 확장하기 어려움
 - 각 단어를 녹음한 샘플을 사용해 스스로 학습하는 알고리즘을 작성하는 것이 가장 좋은 솔루션

- 머신 러닝 해석
 - 머신 러닝이 학습한 것을 조사할 수 있음
 - 스팸 필터가 충분한 스팸 메일로 훈련되었다면 스팸을 예측하는데 가장 좋은 단어 및 단어의
 조합을 확인할 수 있음
 - 간혹, 예상치 못한 연관성이나 새로운 추세가 발견되기도 해서 해당 문제를 더 잘 이해하도록
 도와 중
 - 머신 러닝 기술을 적용해서 대용량의 데이터를 분석하면 겉으로 보이지 않는 패턴을 발견할
 수 있도록 해주는데 이를 데이터 마이닝이라고 함
- 머신 러닝 응용 분야
 - 제품 이미지를 보고 자동으로 분류하기
 - 자동으로 뉴스 기사를 분류하기
 - 내년도 회사의 수익을 예측하기
 - 음성을 듣고 이해하는 앱을 만들기
 - 구매 이력을 기반으로 고객을 나누기

- 머신 러닝의 유형
 - 사람의 감독하에 훈련하는 것인지(지도, 비지도, 준지도, 강화학습)
 - 실시간으로 점진적인 학습을 하는지 아닌지(온라인 학습과 배치학습)
 - 단순하게 알고 있는 데이터 포인트와 새 데이터 포인트를 비교하는 것인지 훈련 데이터셋의 패턴을 발견하여 예측 모델을 만드는 것인지(사례 기반 학습, 모델 기반 학습)

- 지도학습
 - 지도학습은 정답이 주어지고 정답을 예측하는데 사용
 - 정답은 목적(target) 변수, 레이블이라고도 함
 - 예측은 분류와 회귀로 나누어짐
 - 분류
 - 분류(classification)란 어떤 항목(item)이 어느 그룹에 속하는지를 판별하는 기능을 말함
 - 두 가지 카테고리를 나누는 작업을 이진 분류(binary classification)라고 하고 세 개 이상의 클래스를 나누는 작업을 다중 분류(multiclass classification)라고 함
 - _ 회귀
 - 수치를 예측하는 것을 회귀라고 한다.

- 비지도 학습
 - 비지도 학습이란 정답이 없이 데이터로부터 중요한 의미를 찾아내는 머신 러닝 기법임
 - 군집화: 유사한 항목들을 같은 그룹으로 묶음
 - 차원 축소 및 시각화 : 머신 러닝에 사용할 특성의 수를 줄임
 - 연관 분석
 - 어떤 사건이 다른 사건과 얼마나 자주 동시에 발생하는지 파악
 - 자주 발생하는 패턴 찾기(상품의 연관성, 취향의 연관성 등 분석)
 - 같이 구매한 상품 분석(market basket analysis, 장바구니 분석)
 - 상품의 진열 배치 및 상품 프로모션(쿠폰 발행 등)에 활용

- 준지도 학습
 - 데이터에 레이블을 다는 것이 시간과 비용이 많이 필요하기 때문에 레이블이 없는 샘플이 많고 레이블이 있는 샘플이 적음
 - 정답이 일부만 있는 경우를 준지도 학습이라고 함

- 강화 학습
 - 학습하는 시스템을 에이전트
 - 환경을 관찰해서 행동을 실행하고 그 결과로 **보상, 벌점**부과
 - 시간이 지나며 가장 큰 보상을 얻기 위해 정책이라는 전략을 스스로 학습

① 관찰

② 정책에 따라 행동을 선택

3 행동 실행!

4 보상이나 벌점을 받음

5 정책 수정(학습 단계)

최적의 정책을 찾을 때까지 반복

- 온라인 학습
 - 데이터를 순차적으로 한 개 또는 미니배치라 부르는 작은 묶음 단위로 주입하여 시스템을 훈련
 - 매 학습 단계가 빠르고 비용이 적게 들어 데이터가 도착하는대로 바로 학습 가능
 - 연속적으로 데이터를 받고 빠른 변화에 스스로 적응해야 하는 시스템에 적합
 - 아주 큰 데이터를 학습하는 시스템에도 온라인 학습 알고리즘 사용 가능(데이터의 일부를 입력으로 학습하는 것을 반복)
 - 학습률: 변화하는 데이터에 얼마나 빠르게 적응할 것인지
- 배치 학습(오프라인 학습)
 - 시스템이 점진적으로 학습할 수 없음
 - 가용한 데이터를 모두 사용해야 하므로 오프라인으로 수행
 - 시스템을 훈련시키고 제품 시스템에 적용하면 더 이상의 학습은 없음

- 사례 기반 학습
 - 스팸 메일과 유사한 메일을 구분하도록 스팸 필터를 프로그래밍할 수 있음
 - 두 메일 사이의 **유사도를 측정**(공통으로 포함된 단어의 수를 세는 것)
 - 시스템이 훈련 샘플을 기억함으로써 학습하는 방식
- 모델 기반 학습
 - 샘플로부터 일반화시키는 다른 방법은 샘플들의 모델을 만들어 예측에 사용하는 것

• 모델기반 학습 사례

삶의_만족도 =
$$\theta_0 + \theta_1 \times 1$$
인당_GDP
모델 파라미터

• 머신 러닝 알고리즘

항목	머신 러닝 유형	알고리즘
지드하스	분류	kNN, 베이즈, 결정 트리, 랜덤포레스트, 로지스틱회귀, 그라디언트부스팅, 신경망
지도학습 	회귀	선형회귀분석, SVM(서포트 벡터 머신), 신경망
비지도학습	군집화	k-means, DBASCAN, 계층적군집분석(HCA), 이상치 탐지와 특이치 탐지
	시각화와 차원축소	PCA, 시각화(T-sne), 지역적 선형 임베딩(LLE)
	연관 규칙	Aprori, Eclat

- 머신 러닝 동작
 - 머신 러닝은 모델(model)을 사용
 - 스팸 메일을 찾아내는 모델,
 - 누가 게임에서 이길지 예측하는 모델,
 - 내일 날씨를 예측하는 모델
 - 과학에서는 어떤 현상을 설명하는 모델로 수식을 주로 사용
 - 모든 질량을 가진 모든 물체는 서로 끌어당긴다는 만유인력 법칙은 두 물체의 질량에 각각 비례하고, 두 물체의 거리의 자승에 반비례하는 수식으로 표현
 - 머신 러닝, AI 모델은 데이터 기반의 모델을 사용함
- 모델의 가치
 - 와인 품질 = 12.145 + (0.00117x겨울철 강수량)+ (0.064x 재배철 평균기온) (0.00386x 수확기 강수량)

• 선형 회귀(regression) y = wX + b

• 선형 분류(classification) ay + bx > c

- 모델의 특징
 - 머신 러닝에서는 데이터에 기반한 모델을 사용 (학습)
 - 현실 세계의 많은 현상은 수식으로 간단히 모델링하기 어렵고 과학적으로 증명할 수는 없음
- 모델 구조와 파라미터
 - 모델 구조: 모델의 동작을 규정하는 방법
 - 모델 파라미터: 모델이 잘 동작하도록 정한 가중치 등 계수
 - 예: 머리카락 길이
 - 모델의 구조는 프로그래머가 선택
 - 적절한 파라미터를 찾는 것은 머신 러닝 프로그램이 학습하여 찾음

- 손실함수(비용 함수)
 - 모델의 예측 값과 실제 값과의 차이, 즉 오차로부터 손실함수(loss function)을 계산함
 - 이 손실함수를 줄이는 방향으로 모델을 최적화 (학습) 함
 - 회귀분석에서 많이 사용하는 손실함수로는 오차 자승의 합의 평균치(MSE: mean square error)

$$_{\text{- N: Ш치 크기}} \qquad \qquad MSE = \sum_{k=1}^{N} (y - \hat{y})^2$$

- 배치 크기 같은 설정 환경 변수를 하이퍼파라미터라고 함
- 하이퍼파라미터는 사람이 선택하는 변수이며, 기계 학습으로 자동으로 갱신되는 변수는 "파라미터"라고 함

• 오차 손실함수, 최적화, 파라미터

- 분류의 손실 함수
 - 분류에서는 손실함수로 MSE를 사용할 수 없음
 - 대신, 분류에서 정확도(accuracy)를 손실함수로 사용할 수 있음
 - 예를 들어 100명에 대해 남녀 분류를 시도하였으나 96명을 맞추고 4명을 틀렸다면 정확도는 0.96
 - 그러나 정확도를 손실함수로 사용하는데 다음과 같은 문제가 있음
- 카테고리 분포 불균형시 문제
 - 남자가 95명, 여자가 5명이 있는 그룹에서 남자는 1명을 잘 못 분류하고 여자는 3명을 잘 못 분류했다고 하면, 정확도는 여전히 0.96임
 - 손실을 제대로 측정하지 못함
 - 이를 보완하기 위해서 크로스 엔트로피(cross entropy)를 사용함

• 크로스 엔트로피

$$CE = \sum_{i} p_i \log(\frac{1}{p_i})$$

- Pi는 어떤 사건이 일어날 실제 확률이고, Pi'는 예측한 확률이다
- 남녀가 50명씩 같은 경우

$$CE = -0.5 \times \log(\frac{49}{50}) - 0.5 \times \log(\frac{47}{50}) = 0.02687$$

- 남자가 95명 여자가 5명인 경우

$$CE = -0.95 \times \log(\frac{94}{95}) - 0.05 \times \log(\frac{2}{5}) = 0.17609$$

24

- 훈련과 검증
 - 모델이 데이터를 이용하여 학습하는 과정을 훈련 (training)이라고 함
 - 최적화 알고리즘에 의해서 파라미터(가중치 등)를 계속 갱신하여 모델의 예측 값이 실제 값에 수렴하도록 하는 것
 - 검증(validation) : 훈련된 모델이 잘 동작하는지 확인하는 과정
- 모델 동작이 얼마나 우수한지를 검증할 때는 훈련 데이터로 해서는 안되며 훈련에 사용하지 않은, 새로운 검증 데이터(validation data)를 사용해야 함
- 보통 검증 데이터를 따로 제공하지 않으므로 훈련에 사용할 데이터의 일부를 검증용으로 미리 확보해야 함
- 훈련에 사용하지 않고 남겨 두었다가 모델이 제대로 동작하는지 테스트할 때 사용하는 데이터를 hold-out 데이터라고 함

- 훈련과 검증
 - 훈련 데이터 : 모델 파라미터를 훈련하는데 사용
 - 검증 데이터: 과대적합이나 과소적합을 검사하고 최적 모델 구조(하이퍼파라미터 등)를 찾는데 사용
 - 테스트 데이터 : 모델의 성능을 최종적으로 테스트 하는데 사용

• K-fold 교차 검증

- 데이터의 대표성
 - 훈련 데이터가 미래에 나타날 가능성이 있는 모든 데이터의 특징을 반영하도록 구성해야 함
 예: 지리적, 인종적, 나이별, 소득별, 성별 등 균일성 유지
 - 훈련, 검증, 테스트 샘플 데이터가 전체 데이터의 특징을 계속 유지할 수 있어야 함

- 과대적합(over fitting)
 - 모델이 훈련 데이터에 대해서만 잘 동작하도록 훈련되어 새로운 데이터에 대해서는 오히려 잘 동작하지 못하는 것
 - 과대적합된 모델은 훈련 데이터에 대해서는 매우 우수한 성능을 보이지만 일반화가 떨어짐
 - 머신러닝에서는 과대적합을 피해서 일반적으로 잘 동작하게 모델을 만드는 것이 매우 중요함
 - 이를 모델의 일반화(generalization)라고 함

- 과소 적합(under fitting)
 - 모델이 너무 간단하여 성능이 미흡한 경우
 - 과소적합을 피하려면 좀 더 상세한 모델 구조를 사용해야 함
 - 머신러닝에서는 과대적합과 과소적합을 모두 피해야 하며 최적의 예측을 수행하는 모델을
 만드는 것이 중요함

- 모델의 성능
 - 모델의 성능을 평가하는 척도 필요
 - 분류에서는 정확도(accuracy)를 성능 척도로 주로 사용
 - (참고) 분류에서 손실함수로 크로스 엔트로피를 주로 사용
 - 손실함수와 성능 지표의 차이점
 - 손실함수를 정하는 목적은 모델을 훈련시킬 때의 기준으로 삼기 위해서임
 - 모델은 손실함수를 최소화 하는 방향으로 학습
 - 모델의 성능은 이렇게 만든 모델이 궁극적으로 얼마나 잘 동작하는지를 평가하는 척도임

	손실함수	성능 지표	
정 의		성능을 높이는 것이 머신러닝을 사용하는 목적임	
회귀 모델	MSE (오차 자승의 평균)	R2	
분류 모델	크로스 엔트로피	정 확 도 , 정 밀 도 , 재현률, F1점수	

- 회귀 분석
 - 수치형 종속변수와 수치형 독립변수사이의 영향 또는 인과관계를 알 수 있는 분석
 - 학습 데이터 x로 부터 y를 예측하는 함수 f(x)를 찾는 과정으로 x와 y는 모두 연속적인 수치 값
 - 도출된 회귀식에서 직선의 기울기와 상수를 알 수 있는데, 이를 통해 독립변수의 변화에 따른 종속변수의 변화를 알 수 있는 것

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i + \dots + \beta_k X_i + \epsilon_i$$
, $(i = 1, \dots, n)$

- 회귀 문제와 손실함수
 - MAE(Mean absolute Error): 원본 값과 예측 값에 대한 절대 오류의 평균
 - MSE(Mean Squared Error): 원본 값과 예측 값에 대한 오류 제곱의 평균
 - RMSE(Root MSE): MSE의 제곱근
 - R-squared: 원본 값과 예측 값을 비교하여 회귀모델이 얼마나 잘 원본 값을 나타내는지 [0,1]

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

- 단순 회귀 분석
 - 하나의 수치형 설명변수가 하나의 수치형 종속변수에 어떤 인과관계 또는 영향을 미치는지에 대한 분석을 말함
 - 많은 변수는 고려하지 않고 오직 하나의 종속변수(Y)와 하나의 독립변수(X)에 의해서만 시행
 - Ex) 쇼핑몰의 입점 매장 수가 고객의 방문빈도에 어떤 영향을 미치는지를 확인하려 하는 상황에 우리는 단순회귀분석을 사용

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, $(i = 1, \dots, n)$
$$\hat{Y} = b_0 + b_1 X$$

	총매출액	방문빈도	1회평균매출액	쿠폰사용횟수	거래기간
0	12717240	109	116672	4	1093
1	12802210	22	581919	20	1002
2	12815010	27	474630	11	1066
3	13038990	24	543291	5	1069
4	13072260	37	353304	9	1077

- 단순 회귀 분석
 - P쇼핑몰에서 최근 인기있는 S브랜드매장을 입점시킨 결과, 고객들의 전반적인 방문빈도가 늘어났다고 함
 - 늘어난 방문빈도가 실제 총 매출액에 영향을 미치는지 알아보고자

```
model = smf.ols(formula = '총매출액 ~ 방문빈도', data = data) result = model.fit() result.summary() \widehat{Y}_i = 13490000 + 144800 \times '방문빈도'
```

Dep. Variable:	총매출액	R-squared:	0.191
Model:	OLS	Adj. R-squared:	0.184
Method:	Least Squares	F-statistic:	26.64
Date:	Mon, 25 Feb 2019	Prob (F-statistic):	1.06e-06
Time:	15:56:14	Log-Likelihood:	-2015.2
No. Observations:	115	AIC:	4034.
Df Residuals:	113	BIC:	4040.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.349e+07	1.89e+06	7.129	0.000	9.74e+06	1.72e+07
방문빈도	1.448e+05	2.81e+04	5.161	0.000	8.92e+04	2e+05

- 다중 회귀 분석
 - 하나의 수치형 종속변수와 2개이상의 수치형 독립변수 사이의 영향 또는 인과관계를 설명하는 분석을 말함
 - 예를 들어, 아빠의 키, 엄마의 키, 할머니의 키(독립변수)가 자녀의 키(종속변수)에 어떤 관계를 갖는지 확인하려 할 때 우리는 다중회귀분석을 사용함

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_i X_i + \epsilon_i$$

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_i X_i$$

 변수선택법: 다중회귀분석을 할 때는 여러 개의 독립변수를 선택하므로 최적화된 회귀모형을 만들기 위해서는 어떤 변수들을 독립변수에 넣을 것인지를 잘 판단해야 함

	독립변수 선택 방법				
입력	사용하고자하는 독립변수를 모두 입력하는 방식				
전진	모형적합에 가장 큰 영향을 미치는 독립변수를 순서대로 추가하는 방식				
후진	모형적합에 가장 약하게 영향을 미치는 독립변수를 순서대로 제거하는 방식				
단계 선택	전진선택과 후진선택을 결합한 방식이다. 전진선택을 사용하여 독립변수를 추가한 뒤, 다중공선성을 판단하여 후진방식으로 독립변수를 제거하는 방식이다.				

• 다중 회귀 분석

```
model = smf.ols(formula = '방문빈도 ~ 거래기간 + 총매출액 + 쿠폰사용횟수', data = data) result = model.fit() result.summary() \hat{Y}_i = -55.174 + 0.0786 * 거래기간 + 0.000001 * 총매출액
```

OLS Regression Results

Dep. Variable:	방문빈도	R-squared:	0.245
Model:	OLS	Adj. R-squared:	0.225
Method:	Least Squares	F-statistic:	12.02
Date:	Mon, 25 Feb 2019	Prob (F-statistic):	7.14e-07
Time:	15:56:14	Log-Likelihood:	-549.34
No. Observations:	115	AIC:	1107.
Df Residuals:	111	BIC:	1118.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-55.1744	31.260	-1.765	0.080	-117.117	6.768
거래기간	0.0786	0.029	2.665	0.009	0.020	0.137
총매출액	1.215e-06	2.51e-07	4.834	0.000	7.17e-07	1.71e-06
쿠폰사용횟수	0.2959	0.312	0.948	0.345	-0.323	0.915

- 다항 회귀 분석
 - 한 특성과 예측값의 관계가 선형이 아닌 2차, 3차 이상의 관계를 갖는 회귀 방법

- 최적화(경사 하강법)
 - 가장 일반적인 최적화 알고리즘: (Gradient Descent)
 - 손실함수를 계수에 관한 그래프로 그렸을 때 최소값으로 빨리 도달하기 위해서는 현재 위치에서의 기울기(미분 값)에 비례하여 반대방향으로 이동하는 방식
- 경사 하강법 특징
 - 경사 하강법을 적용하려면 특성 변수들을 모두 동일한 방식으로 스케일링해야 한다.
 - 특성 값마다 크기의 편차가 크면 특정 변수에 너무 종속되어 동작할 수 있고 이로 인해 수렴속도가 직선이 되지 않고 오래 걸릴 수가 있다.

- 경사 하강법 종류
 - 배치(Batch) GD
 - 일반적으로 배치 GD방식을 많이 사용하는데, 적절한 크기의 배치단위로 입력 신호를 나누어 경사 하강법을 적용하는 방식임
 - SGD (확률적 경사 하강법)
 - 한 번에 한 샘플씩 랜덤하게 골라서 훈련에 사용하는 방법이다.
 - 즉 샘플을 하나만 보고 계수를 조정함
 - 계산량이 적어 동작속도가 빠르고, 랜덤한 방향으로 학습을 하므로 전역 최소치를 가능성이 높아짐
 - 매 샘플이 너무 랜덤하여 방향성을 잃고 수렴하는데 시간이 오래 걸릴 가능성도 있음

학습률

- 계수를 업데이트 하는 속도를 조정하는 변수
- 학습률이 너무 작으면 수렴하는데 시간이 오래 걸리지만 최저점에 도달했을 때 흔들림 없이 안정적인 값을 얻게 되고,
- 학습률을 너무 크게 정하면 학습하는 속도는 빠르나 자칫하면 최저점으로 수렴하지 못하고 발산하거나 수렴하더라도 흔들리는 오차가 남아있을 수 있음
- 학습 스케줄(learning schedule) 기법
 - 초기에는 학습률을 크게 정하고 (학습률을 빠르게 하고) 오차가 줄어들면 학습률을 줄여서 안정상태(steady state)의 오차를 줄이는 방법

- 로지스틱 회귀
 - 임의의 범위를 갖는 값으로부터 0과 1사이의 값을 예측하거나 이진 분류에 사용하는 알고리즘임
 - 로지스틱 회귀분석은 보통 독립 변수와 종속 변수의 관계를 S형 커브로 매핑함(선형 회귀분석 사용이 불가한 경우)
 - 신용도 판단, 연간 구매량 기준 우수 고객 여부 판단, 평가 지표 기준 합격 여부 판단, 건강
 지표에 따른 건강 여부, 팀의 승리/패배 여부 예측 등 여러 경우에 사용함
- 공부시간과 합격 여부

- 로지스틱 회귀
 - 데이터가 특정 범주에 속할 확률을 예측하는 단계
 - 모든 속성(feature)들의 계수(coefficient)와 절편(intercept)을 0으로 초기화
 - 각 속성들의 값(value)에 계수(coefficient)를 곱해서 log-odds를 구함
 - Log-odds를 sigmoid 함수에 넣어서 [0,1] 범위의 확률을 구함

- 로지스틱 회귀
 - odds: 사건이 발생할 확률을 발생하지 하지 않을 확률로 나눈 값

$$Odds = \frac{P(event\ occurring)}{P(event\ not\ occurring)}$$

Odds of passing =
$$\frac{0.7}{0.3}$$
 = $2.\overline{33}$ Log odds of passing = $log(2.\overline{33})$ = 0.847
$$z = b_0 + b_1x_1 + \dots + b_nx_n$$

- 로지스틱 회귀
 - 비용 함수(손실 함수): 로지스틱 회귀가 확률을 제대로 예측해주는지, 즉 구해놓은 속성들의 계수(coefficients)와 절편(intercept)이 적절한지 확인하기 위해 손실(Loss)을 고려
 - 모델의 "적합성"을 평가하기 위해 각 데이터 샘플의 손실(모델 예측이 얼마나 잘못되었는지)을 계산한 다음 그것들의 평균화 해야 함

$$-\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(h(z^{(i)})) + (1 - y^{(i)}) log(1 - h(z^{(i)}))]$$

- 다항 로지스틱 회귀(소프트맥스 회귀)
 - 앞에서는 이진 분류, 즉 합격/불합격 등 두 개의 레이블을 가진 경우에 로지스틱 회귀를 사용하는 예를 소개했음
 - 그런데 2개가 아니라 3개 이상의 클래스 중에 하나를 예측해야 하는 경우는 다항 로지스틱 회귀(multinomial logistic regression)를 이용함
 - 소프트맥스 (softmax) 함수를 사용함
 - k: 범주의 수
 - s(x): 샘플 x에 대한 각 범주의 점수를 담고 있는 벡터
 - σ(s(x))k : 이 샘플이 범주 k에 속할 확률

- Argmax
 - 이 연산은 함수를 최대화하는 변수의 값을 반환한다(numpy에도 비슷한 함수가 있는데 array에서 최댓값을 가지는 원소의 index를 반환)

$$\hat{\mathbf{y}} = \underset{k}{\operatorname{argmax}} \ \sigma(\mathbf{s}(\mathbf{x}))_{k} = \underset{k}{\operatorname{argmax}} \ s_{k}(\mathbf{x}) = \underset{k}{\operatorname{argmax}} \ \left((\mathbf{\theta}^{(k)})^{T} \mathbf{x} \right)$$

- 다항 로지스틱 회귀(소프트맥스 회귀)
 - 비용 함수 : 크로스 엔트로피

$$J(\mathbf{\Theta}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(\hat{p}_k^{(i)})$$

• 소프트맥스

- 서포트 벡터 머신(SVM)
 - SVM은 비선형, 선형 분류, 회귀, 이상치 탐색을 하는데 사용할 수 있는 강력한 ML 모델 중하나
 - SVM은 특히 복잡한 문제에 잘 맞으며 작거나 중간 크기의 데이터 셋에 적합
- 선형 SVM(라지 마진 분류)

- 서포트 벡터 머신(SVM)
 - 소프트 마진 분류
 - 모든 샘플이 마진 바깥쪽에 올바르게 분류되어 있는 경우를 **하드마진 분류**
 - 데이터가 선형적으로 구분되어야 제대로 동작
 - _ 이상치에 민감
 - 도로의 폭을 가능한 넓게 유지하는 것과 마진 오류 사이의 적절한 균형을 찾는 소프트 마진 분류

• 비선형 SVM 분류

1.5

1.0

-0.5

 x_1

*X*₂

- 많은 경우의 데이터는 직선으로 분류되지 않음
- $_{-}$ 특징점들을 추가해서 직선으로 분류 가능하게 만들면 됨 $_{\chi_{2}}=\chi_{1}^{2}$

 x_1

 x_1

• 분류 문제

- 새로운 데이터가 어떤 카테고리 집합에 속하는지 판단하는 것
- 주어진 입력이 어떤 클래스(혹은 라벨)에 속하는지 예측하는 것

Binary classification:

x_2 x_2 x_1

Multi-class classification:

- 분류에 사용되는 손실함수
 - BCE(Binary Cross Entropy): 이진 분류기를 훈련 시 사용하는 함수로 손실함수는 예측 값과 실제 값이 같으면 0이 되는 특성을 갖고 있어야 합니다. 예측 값과 실제 값이 모두 1로 같을 때 손실함수 값이 0이 되어야함

$$L = -\frac{1}{N} \sum\nolimits_{i=1}^{N} t_i log(y_i) + (1 - t_i) log(1 - y_i) \qquad \begin{array}{l} \text{if } y_i = 1, t_i = 1, L = 0 \\ \text{if } y_i = 0, t_i = 1, L = \infty \end{array}$$

- 분류에 사용되는 손실함수
 - Categorical Cross Entropy: 분류해야 할 클래스가 3개 이상인 경우, 즉 멀티클래스 분류에 사용(C는 클래스 갯수)
 - 라벨이 [0,0,1,0,0], [1,0,0,0,0], [0,0,0,1,0]과 같이 one-hot 형태로 제공될 때 사용

$$L = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{C} t_{i} \log(y_{ij})$$

- 실제값과 예측값이 모두 [10000] L= 0
- 실제값은 [1 0 0 0 0], 예측값은 [0 1 0 0 0]인 경우 L=∞

$$p_{j} = \frac{e^{x_{j}}}{\displaystyle \sum_{k=1}^{K} e^{x_{k}}}$$

$$= \frac{e^{x_{j}}}{e^{x_{1}} + e^{x_{2}} + \dots + e^{x_{K}}} \quad for \ j = 1, \dots, K$$
...(공식1: softmax 함수)

- K-NN(K-nearest neighbor)
 - 주어진 샘플의 특성 값을 보고 가장 가까운 특성을 가지는 이웃(neighbor)을 k개 선택하고 이들 레이블의 평균치로 이 샘플이 속할 분류를 예측하는 방식
 - kNN은 직관적으로 이해하기 쉬운 분류 알고리즘으로서 추천 시스템에서 많이 사용됨
 - 적절한 추천을 하기 위해서 추천을 요청한 사람의 성향을 특성들로 파악하고 그 사람과 가장 성향이 유사한 k명의 사람들이 좋아하는 품목을 추천하는 방식을 사용
 - kNN알고리즘을 협업 필터링(collaborative filtering)이라고도 부름

- K값의 변화
 - k 값을 너무 작게 잡으면 주변 데이터에 너무 예민하게 반응하고 k 값을 너무 크게 잡으면 주변에 너무 많은 데이터의 평균치를 사용하므로 분류가 무뎌짐
 - 극단적으로 k=N (전체 샘플 수)로 잡으면 항상 전체 데이터의 평균치 값을 예측하게 됨
 - 영화 추천에서 k=N으로 한다면 이는 평균적으로 가장 많은 사람들이 본 영화 즉, 종합 베스트셀러를 추천하는 것과 같음
 - k값을 작게 잡으면 노이즈에 민감하나 정확도는 올라가고 k를 크게 잡을수록 노이즈에 강하나 정밀한 예측이 어려움
 - kNN의 단점은 훈련시간이 거의 없는 것에 비해 분류를 처리하는 시간, 즉 알고리즘을 수행하는 시간이 길다는 것임

• 손실함수 그래프로 과적합 판단

• 성능 그래프로 과적합 판단

- 결정 트리
 - 분류 기법 적용에서 가장 많이 사용하는 방법
 - 분류 작업을 수행하기 위해 한번에 한 특성 변수를 해석
 - 결정 트리 모델을 사용하면 동작을 설명하기 수월함
 - 대출 거부 사유
 - 신용도가 낮은 이유
 - 불합격 사유 등
- 결정 트리 특징
 - 선형회귀 모델은 특성들을 대상으로 곱셈과 덧셈과 같은 연산을 하고 그 값을 기준으로 회귀나 분류를 예측했음
 - 결정 트리(decision tree)는 이와 달리 각 특성을 독립적으로 하나씩 검토하여 분류 작업을 수행함
 - 마치 스무고개 하여 예측을 하듯이 동작 한 번에 한 특성을 따져보는 방법임
 - 결정 트리는 주로 분류와 회귀에 모두 사용된다.
 - 분류용 모델은 DecisionTreeClassifier가 있고 회귀분석 모델로는 DecisionTreeRegressor가 제공됨

• 동작 워리

- 결정 트리에서 핵심이 되는 부분은 가장 효과적인 분류를 위해서 먼저 어떤 변수를 가지고 판별을 할지 결정하는 것
- 이 판별은 트리를 내려가면서 계속되어야 하는데 매 단계마다 어떤 변수를 기준으로 분류를 하는 것이 가장 효과적인지를 찾아야 함
- 여기서 그룹을 효과적으로 "잘 나누는 것"의 기준은 그룹을 나눈 후에 생성되는 하위 그룹들에 가능하면 같은 종류의 아이템들이 모이는지를 기준으로 삼음
- 한 그룹에 같은 종류의 아이템이 많이 모일수록 순수(pure)하다고 하는데, 만일 나누어진 하위 그룹이 100% 같은 항목들로만 구성되면, 순도(purity)가 100%라고 함

• 결정트리 예

• 결정트리 예

- 판별 기준
 - 결정 트리는 나누어지는 그룹의 순도가 가장 높아지도록 그룹을 나누어야 함
 - 그룹의 순도를 표현하는 데 지니(Gini) 계수 또는 엔트로피(entrophy)가 주로 사용됨
 - Gini 계수는 다음과 같이 정의함

$$Gini = 1 - \sum_{k=1}^{m} p_k^2$$

판별 기준

좌측 박스: 지니(7:3) =
$$1 - \left[\left(\frac{7}{10} \right)^2 + \left(\frac{3}{10} \right)^2 \right] = 1 - (0.49 + 0.09) = 0.42$$

우측 박스: 지니(5:5) =
$$1 - \left[\left(\frac{5}{10} \right)^2 + \left(\frac{5}{10} \right)^2 \right] = 1 - (0.25 + 0.25) = 0.5$$

종료 조건

- 결정 트리를 계속 만들어 상세하게 분류를 하면 언젠가는 훈련 데이터에 대해서 100% 순도의 분류가 가능함
- 이는 과대 적합된 것이므로 테스트 데이터에 대해서는 성능이 오히려 떨어지게 됨
- 결정 트리 모델은 트리를 만드는 깊이를 제한하지 않으면 과대적합할 위험이 높으므로 주의해야 함
- 한편 트리의 깊이를 적절한 값보다 너무 작게 제한하면 과소적합이 됨

• 하이퍼파라미터

- max_depth: 트리의 최대 깊이 (이보다 깊은 트리를 만들지 않는다)
- max_leaf_nodes: 리프 노드의 최대 수 (리프 노드를 이보다 많이 만들지 않음)
- min_samples_split: 분할하기 위한 최소 샘플수 (이보다 작으면 분할하지 않음)
- min_samples_leaf: 리프 노드에 포함될 최소 샘플수 (이보다 작은 노드는 만들지 않음)
- max_features: 최대 특성수 (분할할 때 이보다 적은 수의 특성만 사용)

• 엔트로피

- 엔트로피(entropy)도 지니와 유사하게 순도를 나타낸데 사용됨
- 한 노드(그룹)에 여러 클래스가 골고루 균일하게 섞여 있을 때는 엔트로피가 가장 높고, 동종의 클래스로 모여 있을수록 엔트로피가 낮음
- 엔트로피의 정의는 아래와 같으며 위와 같은 분류시의 엔트로피를 구하면 아래와 같음

$$Entropy = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

엔트로피
$$(7:3) = -[0.7*log_2(0.7)+0.3*log_2(0.3)] = -[(-0.36)+(-0.52)] = -(-0.88) = 0.88$$
 엔트로피 $(5:5) = -[0.5*log_2(0.5)+0.5*log_2(0.5)] = -[(-0.5)+(-0.5)] = -(-1) = 1$

정보량

- 데이터(이벤트)가 포함하고 있는 정보의 총 기대치, 정보의 가치
- 정보량을 표현하기 위해 해당 사건이 발생할 확률(probability)을 사용
- 사건이 발생 확률이 1이라면 정보가 주는 가치가 없고, 사건 발생 확률이 낮을수록 정보가 주는 가치가 높음
- 정보량은 일어날 확률의 역수에 비례

- 정보량 =
$$log\left(\frac{1}{p}\right)$$

- 정보량의 기대치란 어떤 사건이 갖는 가치와 그 사건이 발생할 확률의 곱 이를 엔트로피(entropy)라고 함
- 엔트로피(정보량의 기대: = p log(1/p) = -p log(p)

- 결정트리의 특징
 - 결정 트리는 거의 모든 종류의 분류에서 사용할 수 있는 범용 모델이다. 결정 트리의 가장 큰 장점은 알고리즘의 동작을 쉽게 남에게 설명할 수 있다는 것
 - 훈련데이터가 바뀌면 모델의 구조가 달라지는 단점이 있음
 - 결정 트리의 또 다른 장점은 특성 변수의 스케일링이 필요 없다는 것이다. 트리 모델에서는 변수간의 연산이 없기 때문임
 - 각 노드에서는 한 번에 한 특성을 검토하여 어떤 기준으로 트리를 나누면 순도가 올라가는지만 점검하면 되므로 다른 특성 값과의 관계를 계산할 필요가 없음

• 랜덤 포레스트

- 비교적 간단한 구조의 결정 트리 들을 수십~수백개를 랜덤하게 만들고 각 결정 트리의 동작 결과의 평균치를 구하는 방법
- 이렇게 여러 개의 모델을 만들고 평균을 구하는 방식을 앙상블(ensemble) 방법이라고 하며 하나의 모델만 만드는 것보다 좋은 성능을 보임
- 주어진 훈련 데이터를 모두 한 번에 사용해서 하나의 최상의 트리 모델을 만드는 방식이 아니라, 데이터의 일부 또는 속성의 일부만 랜덤하게 채택하여 결정 트리를 다양하게 만들고 그 결과의 평균치를 취하는 방식임
- 나무(tree)가 많이 모였다는 의미로 숲(forest)라는 용어를 사용했음

• 랜덤 포레스트의 특징

- 샘플도 랜덤하게 선택하고, 속성도 랜덤하게 선택하여 다수의 결정 트리를 만들고 이의 평균을 구하면 단일 결정 트리를 사용하는 것보다 안정적이고 우수한 성능을 냄
- 성능이 우수한 하나의 모델을 사용하는 것보다, 각각의 성능이 최상이 아니지만 다수의 모델을
 사용하고 평균치를 구하는 방식이 더 우수함
- 이를 대중의 지혜, 큰 수의 법칙 등으로 설명하기도 함
- 랜덤 포레스트의 단점은 모델의 동작을 한가지 트리를 선택하여 설명하기가 어렵다는 것
- 또한, 계산량이 많아짐

- 배깅
 - 배깅이란 bootstrap aggregation의 줄임말이며 전체 훈련 데이터에서 "중복을 허용"하여 데이터를 샘플링을 하는 방법
 - 중복을 허용하므로 같은 데이터가 중복되어 선택될 수 있음
 - Bootstrap resampling의 줄임말로 부트스트래핑이라고도 부름
- 배깅과 달리 주어진 원래 데이터에서 중복을 허용하지 않고, 즉, 한 번 샘플링 된 것은 다음 샘플링에서 제외하는 방식은 페이스팅(pasting)이라고 함
 - 배깅을 수행하면 학습에 선택되지 않는 샘플은 평균 37%가 되는데 이 샘플을 oob(out of bag)
 샘플이라고 한다. 이 oob 데이터는 훈련에 사용되지 않았으므로 검증에 사용하기에 좋다
 - 결정 트리 구조에 배깅을 적용한 방식이 랜덤 포레스트 모델임
- 그라디언트 부스팅
 - 앙상블 방법 중에 부스팅 알고리즘이 있음
 - 랜덤 포레스트와 달리, 간단한 결정 트리를 다수 만들어 각각 독립적으로 실행한 후에 이들을 평균하는 것이 아니라, 앞의 모델을 보고 성능을 점차 개선하는 방식으로 동작
 - 부스팅에는 아다부스트와 그라디언트 부스트가 널리 사용됨
 - 아다부스트(adaptive boosting)에서는 앞에서 사용한 세부 모델에서 과소적합했던 샘플, 즉 분류에 실패한 샘플의 가중치를 높여주는 것임
 - 즉, 소외되었던 샘플을 주목하여 학습을 다시 시키는 방식이라고 보면 됨

- 분류 모델의 성능
 - 컨퓨전 매트릭스란 분류의 결과가 잘 맞았는지를 평가하는 채점표와 유사
 - 결과 값이 P(Positive)또는 N(Negative) 둘 중 하나만 가질 수 있는 binary 예측의 경우를 설명하는 일반적인 용어
 - Positive는 찾고자 하는 현상(ex. 암에 걸린 사실, 결함 등)이 나타난 것인지를 구분하는 것일 뿐, 긍정적인 결과를 찾았다는 뜻은 아님

실제 \ 예측	P로 예측	N로 예측
실제로 P	True positive (TP)	False negative (FN)
실제로 N	False positive (FP)	True negative (TN)

- 용어의 의미 예시
 - True positive (TP)
 - 암/결함이라고 예측했는데 실제로 암에 걸린 경우
 - False positive (FP)
 - ∘ 암/결함이라고 예측했는데 실제는 암에 걸리지 않은 경우
 - False negative (FN)
 - 암/결함이 아니라고 예측했는데 실제는 암인 경우
 - True negative (TN)
 - 암/결함이 아니라고 예측했는데 실제로도 암이 아닌 경우

첫 번째 단어: 예측 평가	두 번째 단어: 추정 내용
True: 예측이 맞음	Positive: positive로 예측
False: 예측이 틀림	Negative: negative로 예측

- 평가 지표
 - 정확도(accuracy): 정확하게 예측한 비율을 의미
 - ∘ accuracy = (TP+TN) / 전체 경우의 수(N)

실제 \ 예측	암이라고 예측	암이 아니라고 예측	합계
실제 암환자	6 (TP)	4 (FN)	10
실제로 암환자 아님	2 (FP)	188 (TN)	190
합계	8	192	200

- 암진단 정확도 = (6 + 188)/200 = 194/200 = 0.97 => 97%
- 오류율 = 1-accuracy = 0.03 => 오진율은 3%
- 리콜(recall): 관심 대상을 얼마나 잘 찾아내는가
 - recall = TP / (TP+FN)
 - 실제 암 환자 발견률 = 6 / (6+4) = 0.6 => 60%
- 정밀도(precision): 예측의 정확도
 - precision = TP / (TP+FP) = 6 / (6+2) = 0.75 = > 75%

• F1_score

- recall과 precision의 두 가지 지표를 동시에 높이는 것은 어려움, F1은 이러한 두 요소를 동시에 반영한 새로운 지표임
- F1은 recall과 precision의 조화 평균을 구한 것
- F1 = 2 x precision x recall / (precision + recall)
- 두 지표의 값이 각각 0.5와 0.7일 때
 - 산술 평균 c=(a+b)/2=(0.5)+(0.7)/2=0.6
 - 조화 평균 c=2ab/(a+b)=0.7/1.2=0.58
- 두 지표의 값이 각각 0.9와 0.3일 때
 - 산술 평균 c=(a+b)/2=(0.9)+(0.3)/2=0.6
 - 조화 평균 c=2ab/(a+b)=0.54/1.2=0.45

조화 평균:
$$\frac{1}{c} = \frac{\left(\frac{1}{a} + \frac{1}{b}\right)}{2}$$

$$c = \frac{2ab}{a+b}$$

• 분류 순서 평가

환자번호	성별	점수	순위	실제 값
7	F	0.98	1	N
125	М	0.96	2	С
4	F	0.95	3	N
199	М	0.86	4	С
2	F	0.84	5	N
200	М	0.82	6	С
176	М	0.81	7	С
73	М	0.80	8	N
82	М	0.79	9	С
3	F	0.77	10	N
123	F	0.76	11	N
		•••		С
43	F	0.48	198	N
93	М	0.42	199	N
120	F	0.40	200	N

- ROC(Receiver Operating Characteristic)
 - 예측 결과를 순서대로 제시한 것이 실제 값과 얼마나 순서에 따라 잘 맞는지는 검증하는 2차원 그래프
 - ROC 커브는 (0,0)점에서 시작하여 한 행씩 진행하면서 정답을 맞추었으면 y축 위로 한 칸 이동,
 정답을 맞추지 못했으면 x축 방향으로 한 칸 이동. 종점은 (1, 1) 지점
 - 그래프의 x 축으로는 예측 오류가 날 때마다 이동하고, y축으로는 정답을 맞출 때마다 이동

- x축은 예측이 틀린 것을 나타내므로 false positive rate, v축은 예측이 맞은 것을 나타내므로 true positive rate를 나타냄

- AUC(Area Under Curve)
 - 예측 알고리즘의 성능을 간단히 수치로 나타내기 위해서 ROC 그래프의 면적을 계산하는 방법을 사용
 - 우수한 알고리즘일수록 초반에 y축 상단 방향으로 이동하므로 ROC 커브의 면적이 넓어짐

- 클러스터링
 - K개의 그룹에 속하는 유사한 샘플을 찾는 과정

- 클러스터링
 - 적정한 군집의 수(k)를 먼저 찾아야 함

- 클러스터링
 - 적정한 군집의 수(k)를 먼저 찾아야 함

- 클러스터링 알고리즘
 - _ 조건
 - 같은 그룹 내의 항목들은 서로 속성이 비슷함 (유사도가 큼)
 - 다른 그룹에 속한 항목과는 속성이 서로 다름 (유사도가 작음)
 - 비정상 패턴 (이상치) 식별에도 사용된다
- K-means 알고리즘
 - 공간상에 임의의 k 개의 임의의 초기 지점을 클러스터 중점으로(cluster center) 정함
 - 클러스터 중점을 중심으로 거리가 가까운 항목을 선택하여 클러스터 공간을 나눔
 - 각 클러스터에 포함된 항목들의 평균 위치를 구해 이를 새로운 클러스터 중점(centroid)으로 변경
 - 새로 설정된 센트로이드를 중심으로 경계를 다시 그림
 - 각 항목들이 소속된 클러스터가 바뀔 수 있음
 - 변경된 항목들을 가지고 클러스터 중심을 다시 계산
 - 더 이상 클러스터의 모양이 바뀌지 않을 때까지 반복 수행함
 - KMeans() 사용

- 클러스터링 알고리즘
 - _ 조건
 - 같은 그룹 내의 항목들은 서로 속성이 비슷함 (유사도가 큼)
 - 다른 그룹에 속한 항목과는 속성이 서로 다름 (유사도가 작음)
 - 비정상 패턴 (이상치) 식별에도 사용됨
- K-means 알고리즘
 - 공간상에 임의의 k 개의 임의의 초기 지점을 클러스터 중점으로(cluster center) 정함
 - 클러스터 중점을 중심으로 거리가 가까운 항목을 선택하여 클러스터 공간을 나눔
 - 각 클러스터에 포함된 항목들의 평균 위치를 구해 이를 새로운 클러스터 중점(centroid)으로 변경
 - 새로 설정된 센트로이드를 중심으로 경계를 다시 그림
 - 각 항목들이 소속된 클러스터가 바뀔 수 있음
 - 변경된 항목들을 가지고 클러스터 중심을 다시 계산
 - 더 이상 클러스터의 모양이 바뀌지 않을 때까지 반복 수행함
 - KMeans() 사용

DBSCAN

- 밀도 기반 클러스터링 알고리즘
- k-means처럼 단순히 거리만을 기준으로 군집화를 하는 것이 아니라 "가까이 있는 샘플들은 같은 군집에 속한다"는 원칙으로 군집을 차례로 넓혀가는 방식임
- 샘플들의 몰려 있는 정도 즉, 밀도가 높은 부분을 중심으로 인접한 샘플들을 포함시켜 나감
- 한 점을 기준점으로 반경 r내에 점이 n개 이상 있으면 하나의 군집으로 인식하는 방식임

차원 축소

- 차원 축소
 - 입력 데이터의 차원의 저주를 피하기 위해 차원을 축소하는 방법

Reduce unnecessary representation axis