IN THE SPECIFICATION

Please replace the paragraph at page 6, bridging lines 4-16 by

--The metallic plate and the resin structure laminated with a photocatalyst-supporting film is prepared firstly by coating a coating solution for an adhesive layer containing a silane coupler as a hardening agent onto a film, for example a polymer resin film, then drying the coating solution, and subsequently coating a coating solution for a photocatalyst layer, then drying the coating solution for a photocatalyst layer to prepare a photocatalyst layer on the polymer resin film via an adhesive layer, and then laminating by heating and pressing the photocatalyst-supporting film onto the surface of the metallic plate or the resin structure. The cross section illustration for the inventive metallic plate and the resin structure laminated with the photocatalyst-supporting film is shown in the Figure.--

Please replace the paragraph at page 7, bridging lines 12-23 by

--The photocatalyst-supporting polymer resin film of the present invention to be used for the lamination onto a metallic plate and a resin structure has a structure wherein an adhesive layer is provided in between the photocatalyst layer and the film, as shown in the Figure. The adhesive layer is prepared by coating and then drying a coating solution for an adhesive layer onto the film, which has a role to firmly adhere a photocatalyst layer onto the film and prevents the deterioration of the activity of the photocatalyst caused by a plasticizer component spreading from the film or the polymer resin laminated with the film and degradation of the film due to photocatalytic effect, and the adhesive layer itself has a characteristic being resistant to the photocatalytic effect.--

Please replace the paragraph at page 11, bridging lines 12-36 by

-- The photocatalyst-supporting polymer resin film according to the present invention to be used for lamination onto a metal plate and a resin substrate has a structure that an adhesive layer is provided on a photocatalyst layer, as shown in the Figure. The photocatalyst layer can be formed by coating a coating solution for photocatalyst layer which, for example, contains 1-10% by weight of metal oxide sol as solid component and 1-10% by weight of titanium dioxide sol as solid component and then drying the solution. The metal oxide sol contained in the coating solution for a photocatalyst layer works not only to fix the titanium dioxide sol and firmly adhere it to an adhesive layer but also to enhance photocatalytic activity owing to its absorption property based on the porous structure of the gel obtained by drying the metal oxide sol. Ratio of the metal oxide sol and the titanium dioxide sol in the coating solution for a photocatalyst layer is preferably in a range of from 25/75 to 95/5. Adhesion to the adhesive layer gets insufficient when the ratio of the metal oxide sol is less than 25%, whereas photocatalytic activity gets insufficient when the ratio is more than 95%. Further, when the specific surface area of the gel that is obtained by drying the metal oxide sol is 100 m²/g or more, the adhesivity get more firm as well as improvement in the photocatalytic activity. For an example of the metal in the metal oxide sol, silicon, aluminium, titanium, zirconium, magnesium, niobium, tantalum and tungsten are preferably given, and mixtures of these metal oxide sol and complex oxide sols prepared by coprecipitation method, etc. can be used as well.--

Please replace the paragraph at page 20, bridging lines 11-15 by --Brief Description of Drawings

The Figure is a model diagram for a cross section of a metal body and a resin structure laminated with the photocatalyst-supporting film according to the present invention.--