Elektronische Fahrzeugsysteme

Übungsaufgaben

Prof. Dr. D. Sabbert, Fakultät Fahrzeugtechnik, Wolfsburg

Elektronische Fahrzeugsysteme - Übungsaufgaben

Wolfsburg

Inhalt

- 1. Sicherheit
- 2. Motor
- 3. Fahrwerk

▶ 1. Sicherheit <</p>

S.1 Beschleunigungsmessung mit seismischer Masse

- Eine kleine seismische Masse (1,5 mg) soll in Verbindung mit einer steifen Feder und einem schwachen Dämpfer für eine Beschleunigungsmessung verwendet werden.
- Bei einer Beschleunigung von -20 g soll die Auslenkung weniger als 10 μm betragen.
- → Berechnen Sie den notwendigen Wertebereich der Federkonstanten.

S.2 Differentialkondensator

- Wir betrachten eine der Teilkapazitäten (z.B. C₁) eines luftgefüllten Differentialkondensators im Ruhezustand. Die Teilkapazität soll bei einem Plattenabstand von 0,1 mm den Wert 10 nF zeigen.
 - → Welche Plattenfläche (eine Platte) ist erforderlich, Angabe in cm².
- Im Betrieb wird bei einer Beschleunigung die Mittelelektrode des Kondensators ausgelenkt. Der Plattenabstand von C₁ verringert sich im Betrieb momentan auf 90 % seines Ruhewertes.
 - → Berechnen Sie die aktuellen Werte der beiden Teilkapazitäten C_{1,2} .

S.3 Differentialkondensator als Beschleunigungsmesser

- Wir betrachten einen Differentialkondensator als Beschleunigungssensor mit folgenden Daten: Seismische Masse: 0,1 μg, Federkonstante: 10 N/m, Elektrodenabstand in Ruheposition 2 μm.
- Der Sensor wird in einer Wechselspannungs-Halbbrücke betrieben, Versorgungsspannung: 50 mV.
- Im Betrieb liefert die Brücke den Spannungswert 0,2 mV.
- → Berechnen Sie die Auslenkung der Mittelelektrode des Differentialkondensators und die gemessene Beschleunigung in g.

S.4 Mikromechanischer Beschleunigungssensor

- Der gezeigte Sensor hat folgende Daten:
 - Seismische Masse: 0,1 μg Federkonstante: 50 N/m
 - Überlappende Länge der Elektroden: 200 µm
 - Tiefe der Anordnung: 2 μm
 - Die beiden Teilkapazitäten des Differentialkondensators haben den nominellen Wert: 1,2 · 10⁻¹⁴ F
- 1. Berechnen Sie den Elektrodenabstand in der Ruheposition.
- Die Sensorschaltung werde mit 500mV betrieben. Wie groß ist der von der Sensorschaltung gelieferte Spannungswert bei einer Beschleunigung von - 100 g?

S.5 Reihenschaltung mit R und C

- Eine Reihenschaltung aus einem Widerstand (4 Ω) und einem Kondensator werde mit einer sinusförmigen Wechselspannung der Frequenz 100 kHz und der Amplitude 5 V betrieben.
- 1. Berechnen Sie den Effektivwert der Gesamtspannung.
- 2. Der Phasenwinkel zwischen Strom und Gesamtspannung soll -80° betragen. Wie groß müssen dann die Kapazität und der Blindwiderstand des Kondensators sein?
- 3. Wie groß ist dann der Gesamtstrom (Effektivwert angeben) und die umgesetzte Wirkleistung?
- 4. Bei welchen Frequenzen ergibt sich die theoretisch maximale Wirkleistung, wie groß ist diese?

S.6 Aktivierung einer Zündpille

- Eine Airbag-Zündpille (4 Ω) werde per Wechselspannung gezündet (Amplitude: 14 V). Die zur Zündungsumsetzung notwendige Wärmeenergie betrage 0,01 mJ. Die Zündung soll 4 ms nach Einschalten der Wechselspannung erfolgen. Die in den Zündkreis eingefügte Kapazität betrage 1 nF.
- → Berechnen Sie die notwendige Frequenz der Wechselspannung.

S.7 Einfaches Modell für einen Fahrzeugcrash

- Die Beschreibung eines Crashs erfolge durch das in der Vorlesung besprochene Modell.
- Ein Fahrzeug der Masse 1,2 t habe vor einem Aufprall auf ein Hindernis die momentane kinetische Energie 80 kJ. Beim Aufprall nutzt das Fahrzeug als Bremsweg 70 % der Knautschzone, deren Gesamtlänge 120 cm beträgt.
- 1. Berechnen Sie die anfängliche Geschwindigkeit des Fahrzeugs in km/h.
- Nach welcher Zeit ist der Crash beendet und welche Beschleunigung erfährt das Fahrzeug beim Aufprall (Angabe in g).
- 3. Für welche Fahrzeuggeschwindigkeit ist die Knautschzone maximal ausgelegt (Angabe in km/h)?

S.8 Beschleunigungsschwelle für die Auslösung des Airbags

- Die Beschreibung eines Crashs erfolge durch das in der Vorlesung besprochene Modell.
- Die Beschleunigungsschwelle von 20 g zum Auslösen von Airbag/Straffer soll bei einem Kleinwagen unter folgender Randbedingung realisiert werden: Die Maximalgeschwindigkeit für eine vollständige Absorption der Aufprallenergie betrage 55 km/h.
- → Wie lang muss die Knautschzone des Fahrzeugs sein?

▶ 2. Motor ◀

M.1 Betriebsdaten eines Otto-Motors

- Ein Fahrzeug mit nicht aufgeladenem Ottomotor (4 Zylinder) bewegt sich mit der Geschwindigkeit 60 km/h bei der Motordrehzahl 3000 1/min und zeigt einen Momentanverbrauch von 5 I/100 km.
- 1. Wie groß ist die durchschnittlich pro Zylinder zugeführte Kraftstoffmasse (in Gramm)?
- 2. Der Motor wird momentan bei dem Luft-Kraftstoff-Verhältnis 1,1 betrieben. Wie groß ist dann die jeweils pro Zylinder zugeführte Luftmasse (in Gramm)?
- 3. Das Brennraumvolumen eines Zylinders betrage 400 cm³. Wie groß ist dann der aktuelle Wert der relativen Kraftstofffüllung?

M.2 Drosselklappenmodul und P-Regler (ohne Regelkreis)

 Ein Drosselklappenmodul kann als I-Glied beschrieben werden. Es setzt bei einer Steuerspannung von 10 V die Winkelgeschwindigkeit 15,70796 1/s um.

- 1. Durch welche Konstante (welcher Wert) wird das Modul beschrieben?
- 2. Bei einer Anfangs-Winkelposition von 5° wird das Modul mit der konstanten Spannung 8 V beaufschlagt. In welcher Position befindet sich das Modul nach 100 ms?
- 3. Das Modul wird jetzt durch einen P-Regler angesteuert. Die Konstante des Reglers betrage 0,95493 V. Welche Steuerspannung wird vom Regler erzeugt, wenn der Istwert 10° und der Sollwert 70° beträgt?

M.3 Zeitverhalten eines kompletten Drosselklappen-Regelkreises

 Ein Drosselklappen-Regelkreis werde durch das in der Vorlesung gezeigte vereinfachte Modell beschrieben.

- Der verwendete P-Regler kann eine Winkeldifferenz von $\pi/2$ in eine Spannung 12 V umsetzen.
- Anforderung: Nach einem Sprung der Führungsgröße vom Anfangswert 0° müssen 75 % des angeforderten Winkels nach der Zeit 40 ms erreicht sein.
- 1. Welcher Wert muss dann für die charakteristische Konstante des Drosselklappenmoduls realisiert werden?
- 2. Nach welcher Zeit ist der Sollwinkel faktisch eingestellt?
- 3. Der Sollwinkel sei $\pi/4$, der Istwinkel sei 0. Wie groß ist die vom Regler gelieferte Spannung nach 28,854 ms ?

M.4 Motor auf Prüfstand im Stationärbetrieb

- Ein Ottomotor mit 6 Zylindern läuft auf einem Motorprüfstand im Stationärbetrieb.
- Die letztendlich dabei ermittelte Luftfüllung betrage 0,5 mg.
- Der vom Luftmassensensor des Prüfstands gemessene mittlere Wert des Massenstroms über die Drosselklappe sei 200 kg/h.

- 1. Wie groß ist der reale mittlere Wert des Massenstroms über die Einlassventile?
- 2. Berechnen Sie die Motordrehzahl (in 1/min).

M.5 Kennfeld

 Gegeben sei ein Kennfeld für zur Ermittlung der Luftmasse m_L aus der Motordrehzahl n und dem Drosselklappenwinkel α.

- Ermitteln Sie die Stützstellen, die zu den gegebenen Wertepaaren (α, n) gehören:
 - 1. (30°, 6000 1/min)
 - 2. (78°, 5500 1/min)
 - 3. (20°, 2999 1/min)

M.6 Ermittlung der Luftmasse

- Ein Otto-Motorsteuergerät erhält folgende aktuelle Sensordaten zur Ermittlung der Luftmasse:
 - Drosselklappenwinkel: 79°
 - Drehzahl: 3000 1/min
 - Umgebungsdruck: 999 hPa.

- Die Interpretation erfolgt durch ein Kennfeld (ohne Interpolation), dessen Stützstellen bei dem Referenzdruck 1013,25 hPa gemessen wurden.
- 1. Welcher Wert für die Luftfüllung wird vom Steuergerät ermittelt?
- 2. Das Luft-Kraftstoff-Verhältnis soll 1 betragen. Welche Kraftstoffmasse muss dafür hinzugefügt werden?

M.7 Heißfilm-Luftmassensensor (HFM)

- Die Messwiderstände eines HFM werden in einer Gleichspannungs-Messbrücke verschaltet. Diese wird mit der konstanten Spannung 5 V versorgt.
- Die von der Messbrücke gelieferte Spannung wird 100-fach verstärkt. Diese verstärkte Spannung wird an ein Motor-Steuergerät weiter gegeben.
- Das Steuergerät ermittelt den Luftmassenstrom aus der gegebenen Kennlinie.

- Bei einem Luftmassenstrom von 400 kg/h hat der durch den Massenstrom gekühlte Messwiderstand des HFM den Wert 10 mΩ.
- → Berechnen Sie den aktuellen Wert des erwärmten Messwiderstandes.

M.8 PWM-Signal (1)

 Ein Wert wird über das gezeigte PWM-Signal übertragen.

- 1. Wie groß ist die Signalfrequenz?
- 2. Wie groß ist der übertragene Wert?
- 3. Wie groß ist das Tastverhältnis?

M.9 PWM-Signal (2)

- Mit einem PWM-Signal der Frequenz 20 kHz soll bei einer Amplitude von 5 V der Spannungswert 2 V übertragen werden.
- → Zeichnen Sie das u(t)-Diagramm des Signals (mit korrekter Achsenbezeichnung und Skalierung).

M.10 Aufmagnetisieren einer Spule

- Wir betrachten eine Spule mit 200 Wicklungen und einem elektrischen Widerstand von 4 Ω.
- Die Spule wird zum Zeitpunkt t=0 mit einer Spannungsquelle verbunden, letztere liefert die Spannung 14 V.
- Zum Zeitpunkt t = 0,1 ms ist der Spulenstrom auf 63% des Maximalwertes angestiegen.

- 1. Berechnen Sie den maximal möglichen Strom durch die Spule.
- 2. Berechnen Sie die Induktivität der Spule.
- 3. Wie groß ist der Spulenstrom nach 0,3 ms?

M.11 Öffnungsvorgang eines Magnetventils

- Wir betrachten ein geschlossenes Magnetventil. Es gelte:
 - Mechanische Kraft auf Ventilnadel: 20 N
 - Maximaler Hubweg der Ventilnadel: 50 µm
 - Querschnittsfläche des Eisenkreises: 1 mm²
 - Windungszahl der Magnetspule: 100
 - Elektrischer Widerstand der Magnetspule: 1 Ω
 - Versorgungsspannung: 14 V
- Es gelte das in der Vorlesung gezeigte Modell für den Öffnungsvorgang.
- 1. Das Magnetventil werde bei t = 0 eingeschaltet. Der Spulenstrom ist nach 0,8 ms auf 50 % seines Endwertes angestiegen.
 - → Berechnen Sie die Induktivität der Spule und die maximal mögliche magnetische Kraft zur Anhebung der Ventilnadel.
- 2. Wie groß wäre die maximal erzeugbare magnetische Kraft, wenn der Öffnungsvorgang 0,5 ms nach dem Einschalten begänne (bei gleicher Induktivität u. gleichem Widerstand)? Wodurch könnte dieser Wert zustande kommen.

M.12 Schließvorgang eines Magnetventils

- Wir betrachten dasselbe Magnetventil aus der vorherigen Aufgabe, jetzt im vollständig geöffneten Zustand. Es gelte das entsprechende Modell für den Schließvorgang.
- Der Spulenstrom habe sein Maximum faktisch erreicht.
- Der Zusammenhang zwischen magnetischer Kraft und Quadrat des Spulenstroms wird durch die Proportionalitätskonstante 0,5 N/A² beschrieben.
- Die Masse der beweglichen Teile sei 5g.
- 1. Wie groß ist die Gesamtkraft auf die Magnetnadel?
- 2. Zum Zeitpunkt t=0 werde das Magnetventil abgeschaltet.
 - → Berechnen Sie den Zeitpunkt des Beginns des Schließvorganges.
- 3. Beim Öffnungsvorgang wirkt momentan eine Magnetkraft von 5 N.
 - → Berechnen Sie die momentane Beschleunigung der Ventilnadel.
- 4. Wie groß müsste die oben erwähnte Proportionalitätskonstante sein, damit die magnetische Kraft schon nach 0,5 ms auf den Wert 10 N abgefallen ist (bei gleicher Induktivität u. gleichem Widerstand).

M.13 Eingespritzte Kraftstoffmenge

- Ein Magnetventil werde durch die folgenden Größen beschrieben:
 - Eingespritzte Kraftstoffmasse beim Öffnungsvorgang: 0,5 mg.
 - Gesamte Dauer des Öffnungsvorgangs nach dem Einschaltzeitpunkt: 0,2 ms .
 - Eingespritzte Kraftstoffmasse beim Schließvorgang: 0,2 mg.
 - Proportionalitätskonstante für die eingespritzte Kraftstoffmasse bei geöffnetem Ventil: 10 g/s.
- Es soll die Kraftstoffmasse 7 mg eingespritzt werden.
- → Welche Zeitspanne muss zwischen dem Ein- und Ausschaltzeitpunkt des ansteuernden Transistors realisiert werden?

M.14 2-Punkt-λ-Sonde

 Eine 2-Punkt-Lambda-Sonde wird bei der Temperatur 400 °C betrieben. Sie liefert momentan die Sondenspannung 0,96 V.

→ Berechnen Sie die zugehörige relative Sauerstoffkonzentration im Abgas.

M.15 2-Punkt-λ-Regelung

- Der Kraftstofffluss eines Magnetventils werde durch die Proportionalitätskonstante 10 g/s beschrieben.
- Die Kraftstoffmasse wird fortlaufend durch eine 2-Punkt-Lambda-Regelung korrigiert. Das für Regeldung definierte Zeitinkrement hat den Wert 20 µs.
- Ergänzen Sie die Tabelle hinsichtlich der eingespritzten Kraftstoffmasse und der Aktion der Regelung nach dem Messen des Lambda-Wertes.

Zyklus Nr.	Eingespritzte Kraftstoffmasse / mg	Nach Verbrennung gemessener λ-Wert	Aktion der λ-Regelung nach der Messung
1	2	0,9	
2		0,92	
3		0,97	
4		1,01	
5		1,01	
6		0,98	
7		1,02	
8.		Ende	Ende

M.16 Breitband-λ-Sonde

- Ein Ottomotor mit Benzin-Direkteinspritzung laufe bei konstanter Drehzahl.
- Eine Breitband-Lambda-Sonde misst das Luft-Kraftstoff-Verhältnis.
- Vor jedem
 Verbrennungsvorgang wird die Kraftstoffmasse 0,45 mg und die Luftmasse 10 mg in den Brennraum eingeführt.

- 1. Welcher Pumpstrom ergibt sich in der Sonde?
- 2. Wie groß ist die Spannung an der Messzelle der Sonde?

M.17 Diffusion

 Eine Membran der Dicke 1 mm einer Sonde im Auspuff stellt eine Verbindung zwischen Abgas und Umgebungsluft her.

- Über die Membran existiert durch Diffusion ein Sauerstoffmassenstrom von 252,5 kg/m²s. Der Wert des zugehörigen Diffusionskoeffizienten sei 1 m²/s.
- Die Sauerstoffkonzentration in der Umgebungsluft betrage 0,25284 g/l.
- → Wie groß ist die Sauerstoffkonzentration im Abgas (in g/l)?

M.18 Hochspannungs-Zündanlage

- Wir betrachten eine Hochspannungs-Zündanlage mit folgenden Eigenschaften:
 - Widerstand Primärspule: 3 Ω.
 - Wicklungszahl Primärspule: 50.
 - Ausschaltzeit des Unterbrechers: 100 μs.
 - Bordnetzspannung: 14 V.
- 1. Magnetisierungsvorgang: Der Strom in der Primärspule ist 4 ms nach Einschalten auf 50% seines Maximalwertes angestiegen. Wie groß ist die Induktivität der Spule?
- 2. Die Zündanlage soll in einem Otto-Motor eingesetzt werden, der bei $\lambda = 1$ läuft und bis zu der maximalen Drehzahl 12000 1/min ausgelegt ist. Reicht die Zündenergie in allen Betriebsfällen aus?
- Im Sekundärkreis soll bei maximaler Drehzahl die Zündspannung 22 kV erzeugt werden. Berechnen Sie die notwendige Wicklungszahl der Sekundärspule.

M.19 Klopfsensor

- Wir betrachten einen Klopfsensor mit folgenden Daten:
 - Piezoelektrische Materialkonstante: 2,3 · 10⁻¹² As/N
 - Dielektrizitätskonstante des Piezomaterials: 5
 - Seismische Masse: 50 g
 - Dicke: 1 mm
 - Fläche: 4 cm²
- Der Klopfsensor liefert die Spannung 5 V.
- → Wie groß ist die gemessene Momentanbeschleunigung?

M.20 Klopfregelung

- Ein Otto-Motor laufe bei fester Drehzahl und Luftfüllung.
- Die Klopfregelung werde mit folgenden Parametern betrieben:
 - Winkel-Maximalwert aus Kennfeld: 45°
 - Inkrement: 1°
 - Klopfgrenzwert: 10 Vs
 - Rückstellparameter 1°/Vs
- Im ersten betrachteten Zündungszyklus (n=1) sei der Korrekturwert des Zündwinkels 0°.
- → Ergänzen Sie die Tabelle um die eingestellten Zündwinkel, zeichnen Sie Ein Diagramm für die zeitliche Abhängigkeit des Zündwinkels und des Klopfsignals vom Zyklus n.

Zyklus Nr.	Eingestellter Zündwinkel	Anschließend gemessene Signalenergie in Vs
1	45°	9
2		14
3		11
4		8
5		7
6		0
7		11
8		6
9		10
10		8
11		7
12		ENDE

M.21 Interpolation (1)

 Gegeben sei eine Kennlinie aus mehreren Stützstellen. Siehe Abbildung.

- Zunächst ohne Interpolation (Zuordnungsregeln analog zum Kennfeld):
 - Welcher Wert **z** gehört zum Wert **x** = 13,5 ?
 - Welcher Wert **z** gehört zum Wert **x** = 12,8 ?
 - Welcher Wert **z** gehört zum Wert **x** = 15 ?
- 2. Mit Interpolation: Welcher Wert **z** gehört zum Wert **x** = 15,5 ?

M.22 Interpolation (2)

- Gegeben sei das gezeigte Kennfeld zur Festlegung des Zündwinkels.
- Mit diesem soll für die relative Luftfüllung 0,56 und die Drehzahl 3800 1/min ein Zündwinkel festgelegt werden.

- 1. Welcher Wert wird ohne Nutzung eines Interpolationsverfahrens abgelesen?
- 2. Interpolieren Sie den Wert des Zündwinkels mit Hilfe der linearen Flächeninterpolation.

▶ 3. Fahrwerk <</p>

F.1 Schlupfgrößen

- Bei einem geradeaus fahrenden Rad betrage die Geschwindigkeit der Radaufstandsfläche 10 m/s.
- Für die Beiwerte gelten die Diagramme auf der nächsten Seite.
- Wir betrachten das Rad bei drei verschiedenen Radumfangsgeschwindigkeiten:
 - Situation 1: 10 m/s, Situation 2: 15 m/s, Situation 3: 5 m/s
- 1. Um was für Situationen handelt es sich?
- 2. Geben Sie die Werte der zugehörigen Schlupfgrößen an.
- 3. Wie groß sind die zugehörigen Beiwerte?
- 4. Welche Reifenumfangsgeschwindigkeiten müssen realisiert werden, um dann jeweils die maximalen Kräfte in Fahrzeug-Längsrichtung umzusetzen?
- 5. Wir nehmen an, das sich die in 2. berechneten Schlupfgrößen jetzt bei einem gelenkten Rad mit einem Schräglaufwinkel von 6° ergeben.
 - → Wie groß sind dann jeweils die Schlupfgrößen für die betroffenen Raumrichtungen (längs/quuer) in Situation Nr. 2 und 3 ?

F.1a Diagramme zu Aufgabe "Schlupfgrößen"

F.2 Absoluter Bremsschlupf

- Wir betrachten ein Rad bei einem Bremsvorgang.
 Dieser erfolgt bei Geradeausfahrt.
- Die Radaufstandskraft betrage 2500 N.
- Für den Kraftschlussbeiwert gilt das Diagramm auf der nächsten Seite.

- 1. Wie groß ist die maximal erzielbare Bremskraft? Bei welchem Schlupfwert wird diese erreicht? Besteht dabei schon eine akute Blokiergefahr?
- 2. Wie groß ist die Bremskraft im Falle des Blockierens?
- 3. Bei der Radgeschwindigkeit 20 m/s kann momentan eine Bremskraft von 2000 N umgesetzt werden. → Wie groß ist dann die Reifenumfangsgeschwindigkeit (Angabe in m/s u. km/h)?

F.2a Diagramm zur Aufgabe "Absoluter Bremsschlupf"

F.3 Bremsen und Lenken

- Ein Rad eines PKW unterliege einem gleichzeitigem Lenk- und Bremsvorgang.
- Die Radaufstandskraft sei 3000 N.
- Für den Kraftschluss- und Seitenkraftbeiwert gelten die Diagramme auf der nächsten Seite.
- Die momentane Radumfangsgeschwindigkeit betrage 20 m/s. Die Geschwindigkeit der Radaufstandsfläche betrage 100 km/h.
- Die Komponente der Radumfangsgeschwindigkeit in x-Richtung betrage 19,805 m/s.

- 1. Berechnen Sie den Längs-, Quer- und resultierenden Schlupf.
- 2. Wie groß ist die umgesetzte Brems-, Seitenführungsund resultierende Kraft?

F.3a Diagramme zur Aufgabe "Bremsen und Lenken"

F.4 Hall-Sensor

- Für ein ABS soll ein Hall-Sensorelement verwendet werden. Daten:
 - Länge L = 5 mm
 - Tiefe: 6 μm,
 - Elektrischer Widerstand: 0,2 kΩ.
- Die von einem Magneten gelieferte Flussdichte betrage 500 mT.
- Zwischen den Punkten 1 und 2 des Hallelementes wird eine Spannung von 2,5 V angelegt. Dies soll zu einer Hallspannung von 20 mV führen.
- → Wie groß muss dann die ausschlaggebende Materialkonstante des Hallelementes sein?

F.5 ABS-Sensorik

- Der Multipolring eines ABS-Drehzahlsensors (Hall-Prinzip) enthalte 80 Segmente.
- Der Sensor werde zunächst ohne überlagertes HF-Signal betrieben. Er erfüllt dann theoretisch erst ab einer Radumfangsgeschwindigkeit von 510 km/h die messtechnischen ABS-Anforderungen.
 - → Wie groß ist der Radius des Rades?
- Dem Signal des Sensors werde ein HF-Signal überlagert, Auswertung siehe Vorlesung. Bei einer gesamten Radumdrehung entstehen dadurch bei der Radumfangsgeschwindigkeit 120 km/h insgesamt 40000 Zählimpulse.
 - → Wie groß ist die Trägerfrequenz des HF-Signals?

F.6 ABS-Sensorik: Geschwindigkeiten u. Beschleunigung

- Wir betrachten ein Rad mit dem Radius 32 cm.
- Das ABS-Steuergerät ermittelt mit Hilfe der Sensorik die Werte der Radumfangsgeschwindigkeit und berechnet daraus die Radumfangsbeschleunigung.
- Für die Sensorik gilt:
 - Anzahl der Segmente des Multipolrings: 80
 - Zeitabstand der Messungen: 10 ms
 - Trägerfrequenz des HF-Signals: 500 kHz.
- Das Steuergerät ermittelt zwei aufeinanderfolgende Werte der Radumfangsgeschwindigkeit
 - Der erste lautet 55 km/h.
 - Mit Hilfe des zweiten Wertes wird eine Beschleunigung von -25 m/s² ermittelt.
- → Wie groß ist für beide Geschwindigkeiten die Anzahl der pro Segment eingelesenen HF-Impulse?

F.7 Schätzverfahren für die Referenzgeschwindigkeit

- Wir betrachten das Rad eines Fahrzeugs mit ABS-Sensorik.
- Der Betrag der physikalisch möglichen maximalen Verzögerung des Fahrzeugs sei 10 m/s
- Das ABS misst im Abstand von 10 ms die Radumfangsgeschwindigkeit (siehe Tabelle) und ermittelt daraus die Referenzgeschwindigkeit.
- 1. Ergänzen Sie die Tabelle (siehe nächste Seite).
- 2. Zeichnen Sie ein Diagramm der zeitlichen Abhängigkeit für die Radumfangsgeschwindigkeit, minimal möglichen Geschwindigkeit und Referenzgeschwindigkeit vom Zyklus n.

F.7a Tabelle zur Aufgabe "Schätzverfahren"

Zyklus Nr.	gemessene Radumfangs- Geschwindigkeit in m/s	minimal mögliche Geschwindigkeit in m/s	ermittelte Referenz- geschwindigkeit in m/s
1	30	30	
2	29,95		
3	29,7		
4	29,68		
5	29,68		
6	29,8		
7	29,75		
8	29,5		
9	29,35		
10	29,4		
11	29,39		
12	29,45		

F.8 Schlupfregelung

- Wir betrachten ein Rad. Die Radaufstandskraft betrage 500 N.
- Für den Zusammenhang zwischen Kraftschlussbeiwert und Bremsschlupf gilt gezeigte Diagramm.
- Eine ABS-Schlupfregelung wird über zwei Schlupfschaltschwellen realisiert. Diese gehören zu den beiden umgesetzten Bremskraftwerten 400 N und 500 N.

- 1. Ermitteln Sie die Schwellen. Zeichnen Sie diese im Diagramm ein.
- 2. Wir betrachten einen Bremsvorgang. Ergänzen Sie die Tabelle (siehe nächste Seite) um den jeweiligen Modus des ABS-Systems zur Beeinflussung des Bremsdrucks.

F.8a Tabelle zur Aufgabe "Schlupfregelung"

Zyklus Nr.	ermittelter absoluter Bremsschlupf	ABS-Modus
1	0	
2	0,01	
3	0,03	
4	0,05	
5	0,1	
6	0,2	
7	0,4	
8	0,6	
9	0,7	
10	0,39	
11	0,1	
12	0,2	
13	0,59	

F.9 Antriebsschlupf bei einem ABS/ASR-System

- Bei einem ABS/ASR-System ermittelt das Steuergerät über die Sensorik am linken Vorderrad einen Antriebsschlupfwert von 0,2.
- Das Fahrzeug habe einen Vorderradantrieb und fahre auf griffigem Untergrund mit der Geschwindigkeit 15 m/s geradeaus.
- → Wie groß ist die Radumfangsgeschwindigkeit des linken Vorderrades (in m/s und km/h)?