Notes

September 8, 2014

exercises

second part of chinese remainder theorem Section 1.3: exercises # 4, 6, 12, 18, 20, 24.

$$20x \equiv 12 \mod 72$$

$$\gcd(20, 12) = 4$$

$$4|12$$

$$ax = b + qn$$

$$20x = 12 + q7220 = 4a_1, 12 = 4b_1, 72 = 4m$$

$$a_1x = b_1 = qm$$

$$a_1x \equiv b_1 \mod m$$

$$5x \equiv 3 \mod 18$$

$$ca_1 \equiv 1 \mod m$$

$$c5 \equiv 1 \mod 18$$

$$55 = 18 * 3 + 1$$

24. claim:remainder of integer when divided by 9. proof:

$$n_0 \equiv r \mod 9$$

$$n_0 = 10^n a_n + 10^{n-1} a_{n-1} + \dots + a_0$$

$$a \equiv b \mod n$$

$$c \equiv d \mod n$$

$$ac \equiv bd \mod n$$

$$a \equiv b \mod n \rightarrow a^k \equiv b^k \mod n$$

$$10 \equiv 1 \mod 9$$

$$10^k \equiv 1 \mod 9$$

$$n_0 \equiv a_n + a_{n-1} + \dots + a_0 \mod 9$$

similar to 25

section 2.1

```
f: S \longrightarrow T and S is domain, T is codomain. f': S' \longrightarrow T' f = f' \Leftrightarrow S = S', T = T' \text{ and } f(x) = f'(x) \forall x \in S The image of f is f(s) = \{f(t) | x \in S\}
```

example

$$f:R\to R$$

$$f(x)=x^2$$

$$\operatorname{Im} f=f(R)=[0,\infty)$$

one to one (injective functions) $f: S \to T$ $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ onto (surjective) $f: S \to T$ f(S) = T one to one correspondences (bijective) satisfy both injective and surjective (one-to-one and onto) inverse function $f: S \to T$ $f^{-1}: T \to S$. $f(f^{-1}(x)) = x \forall x \in T$ and $f^{-1}(f(x)) = x \forall x \in S$. defined iff f is bijective

section 2.2 equivalence relations

S set

an equivalence relation is a subset $R \subseteq S \times S$ with the properties

- 1. for all $x \in S$ we have that $(x, x) \in R$
- 2. $\forall x, y \in S \text{ if } (x, y) \in R \text{ then } (y, x) \in R$
- 3. $\forall x, y, z \in S \text{ if } (x, y) \in R \text{ and } (y, z) \in R \text{ then } (x, z) \in R$

notation

we write $a \sim b$ to indicate that $a, b \in R$

example

$$S = \mathbb{Z}$$
$$n \in \mathbb{Z}$$
$$n > 0$$

we say that $x \sim y$ iff

$$x \equiv y \mod n$$

example

$$S = \mathbb{R}$$

 $x \sim y$ iff $x + y \geq 0$. is this equivalence? no x + x might be negative

example

$$S = [0, \infty)$$

 $x \sim y$ iff $x + y \ge 0$. is this equivalence? yes

note

equality is always equivalence relation, the trivial case

equivalence class

S is a set and is and equivalence relation. let $a \in S$, $[a] = \{x \in S | a \sim x\}$ where [a] is equivalence class of a. S/\sim is the set of all equivalence classes

example

 $S = \mathbb{Z}$ and \sim is the congruence modulo n, then the set \mathbb{Z}/\sim has n elements: $[0], [1], \ldots, [n-1]$

observation

- 1. let \sim be an equivalence relation on the set S. take two elements $a, b \in S$ then $a \sim b \Leftrightarrow [a] = [b]$
- 2. if $a \not\sim b$ then $[a] \cap [b] = \emptyset$
- 3. $S = \bigcup_{a \in S} [a]$ each element of S belongs to exactly one equivalence class. the equivalence classes form a partition of S.

question

if we have a partition of S, can we "naturally" define an equivalence on S? yes, two way relation $x \sim y$ iff x, y belong to the same subset of the partition.

observation

let \sim be an equiv relation on S. then we can define a function $\pi: S \to S/\sim$. $\pi(x)=[x]$. aside (call S/\sim factor set from now on). is this function surjective? S/\sim is the set of all possible equiv classes, so π (the natural projection) is always surjective. it is injective iff every equiv classes has one element (itself) and is therefore the trivial equality relation.