Table des matières

Ι	Conditions d'optimalité	2
1	Existence d'un minimum	2
2	Conditions nécessaires d'optimalité 2.1 Plusieurs notions de dérivabilité	5 9 10
3	Problèmes convexes et dualité 3.1 Dualité	13 15
Π	Programmation linéaire, algotihme du simplexe	19
1	Introduction	19
2	Solutions de base d'un problème sous forme standard	20

Première partie

Conditions d'optimalité

On considère le problème d'optimisation suivant :

$$\inf_{u \in \mathcal{U}_{ab}} J(u) \ (\mathcal{P}_{\mathcal{U}_{ab}})$$

Ici, $J: \mathbb{R}^d \to \mathbb{R}$ et \mathcal{U}_{ab} est un sous-ensemble non vide de \mathbb{R}^d . J s'appelle la fonction coût. \mathcal{U}_{ab} s'appelle l'ensemble admissible.

1 Existence d'un minimum

♦ Définition:

Soit $J: \mathbb{R}^d \to \mathbb{R}$ et \mathcal{U}_{ad} un sous-ensemble non vide. On dit que $l \in [-\infty, +\infty[$ est l'infimum de J sur \mathcal{U}_{ad} si : 1. $J(u) \geq l \ \forall u \in \mathcal{U}_{ad}$ 2. $\exists (u_n)_n \subset \mathbb{R}^d; \ u_n \in \mathcal{U}_{ad}$ et $J(u_n) \to l$ On note $l = \inf_{u \in \mathcal{U}_{ad}} J(u)$ et les suites vérifiant $(u_n)_n \subset \mathcal{U}_{ad}$ et $J(u_n) \xrightarrow[n \to +\infty]{} \inf_{\mathcal{U}_{ad}} J(u)$ sont appelées suites minimisantes.

Remarque: L'infimum existe toujours. Il est fini si et seulement si J est minorée.

Soit $J: \mathbb{R}^d \to \mathbb{R}$ et \mathcal{U}_{ab} un sous-ensemble non vide. On dit que $l \in \mathbb{R}$ est le minimum de J sur \mathcal{U}_{ad} (si cette valeur existe) si on a : 1. $J(u) \geq l \ \forall u \in \mathcal{U}_{ad}$ 2. $\exists \bar{u} \in \mathcal{U}_{ad}$ tel que $J(\bar{u}) = l$

On dit alors que J atteint son minimum sur \mathcal{U}_{ad} et on note $l = \min_{u \in \mathcal{U}_{ad}} J(u)$

Remarque:

- 1. Le minimum n'existe pas toujours
- 2. Par abus de langage, on appelle aussi minimum le point \bar{u} qui vérifie $J(u) \geq J(\bar{u}) \ \forall u \in \mathcal{U}_{ad}$ (\bar{u} est l'argument du minimum).

On dit que $J: \mathbb{R}^d \to \mathbb{R}$ est coercive si :

$$\lim_{\|u\| \to +\infty} = +\infty$$

Remarque: En dimension finie, toutes les normes sont équivalentes. Il suffit donc de le vérifier pour la norme la plus "facile"

Exemple:

1. Soit A une matrice symétrique de taille d, $b \in \mathbb{R}^d$ et c un réel. On considère l'application :

$$J: \mathbb{R}^d \to \mathbb{R}$$

$$u \mapsto \langle Au, u \rangle + \langle b, u \rangle + c$$

J est coercive si et seulement si A est définie positive.

Si A est symétrique, on a :

$$\lambda_{min} ||u||^2 \le \langle Au, u \rangle \le \lambda_{max} ||u||^2$$

où λ_{min} est la plus petite valeur propre, et λ_{max} est la plus grande valeur propre.

2. Toute fonction minorée par une fonction coercive est coercive.

i Propriété:

On suppose que $J:\mathbb{R}^d\to\mathbb{R}$ prend la forme :

$$\forall u = (u_1, ..., u_d) \in \mathbb{R}^d, J(u) = \sum_i J_i(u_i)$$

avec $J_i: \mathbb{R} \to \mathbb{R}$ coercive et minorée. Alors J est coercive.

Démonstration:

 $\forall i \in \{1,...,d\}, J_i$ est minorée par une constante m_i . On note $m = \max_{i \in \{1,...,d\}} |m_i|$.

Soit M > 0 fixé. $\forall i \in \{1, ..., d\}$, $\exists R_i > 0$; $\forall |u_i| > R_i$, on a $J_i(u_i) > M + md$ (car J_i coercive). Posons $R = \max_{i \in \{1, ..., d\}} R_i$

Soit $u \in \mathbb{R}^d$; $||u||_{\infty} \ge R$.

$$\Rightarrow \exists j \in \{1, ..., d\}; \ |u_j| \ge R \ge R_j$$

On a donc $J_j(u_j) \ge M + md$ Ainsi:

$$J(u) = \sum_{i} J_{i}(u_{i})$$

$$= J_{j}(u_{j}) + \sum_{i \neq j} J_{i}(u_{i})$$

$$\geq M + md + \sum_{j \neq j} m_{i}$$

$$\geq M + \sum_{i \neq j} (m + m_{i})$$

$$\geq M$$

On a montré que :

$$\forall M > 0, \exists R; \forall u; \ \|u\|_{\infty} \ge R \Rightarrow J(u) \ge M$$

ie $\lim_{\|u\|_{\infty}\to\infty} J(u) = +\infty$

Par conséquent, J est coercive.

⇔ Théorème:

Soit $J: \mathbb{R}^d \to \mathbb{R}$ une fonction continue et \mathcal{U}_{ad} un ensemble fermé non vide. On suppose que :

- Soit J est coercive
- Soit \mathcal{U}_{ad} est borné

Alors J atteint son minimum sur \mathcal{U}_{ad} .

I Propriété:

Soit \mathcal{U}_{ad} un ouvert fermé de \mathbb{R}^d et soit $J: \mathbb{R}^d \to \mathbb{R}$ une fonction continue. On suppose qu'il existe $u_0 \in \mathcal{U}_{ad}$ tel que :

$$J(u_0) < J(u) \ \forall u \in \partial \mathcal{U}_{ad}$$

où $\partial \mathcal{U}_{ad}$ est la frontière de \mathcal{U}_{ad} . Alors J atteint son minimum sur \mathcal{U}_{ad} .

Démonstration:

 $\overline{\mathcal{U}_{ad}}$ est un compact et J est continue, donc :

$$\exists \bar{u} \in \overline{\mathcal{U}_{ad}}; \ J(\bar{u}) \leq J(u) \forall u \in \overline{\mathcal{U}_{ad}}$$

Montrons que $\bar{u} \in \mathcal{U}_{ad}$.

Si $\bar{u} \notin \mathcal{U}_{ad}$, alors $\bar{u} \in \partial \mathcal{U}_{ad}$ et par hypothèse, on a $J(\bar{u}) > J(u_0)$ avec $u_0 \in \mathcal{U}_{ad}$. Contradiction. Donc $\bar{u} \in \mathcal{U}_{ad}$ et $J(\bar{u}) \leq J(u) \forall u \in \mathcal{U}_{ad}$.

2 Conditions nécessaires d'optimalité

2.1 Plusieurs notions de dérivabilité

♣ Définition: Dérivées directionnelle

Soit H_1 et H_2 deux espaces de Hilbert et $f: H_1 \to H_2$.

On appelle dérivée directionnelle de f au point $x \in H_1$ dans la direction $d \in H_1$, notée f'(x, d), la limite (si elle existe):

$$f'(x,d) = \lim_{\varepsilon \to 0^+} \frac{f(x + \varepsilon d) - f(x)}{\varepsilon}$$

♣ Définition: Gâteaux-différentiabilité

On dit que f est Gâteaux-différentiable en $x \in H_1$ si f admet des dérivées directionnelles au point x dans toutes les directions et si l'application

$$d \in H_1 \mapsto f'(x,d)$$

est linéaire continue.

On note alors f'(x) cette application :

$$f'(x,d) = f'(x)d \ \forall d \in H_1$$

On dit que f est Gâteaux-différentiable en tout point $x \in H_1$.

♣ Définition:

Soit $f: H \to \mathbb{R}$ une fonction Gâteaux-différentiable en $x \in H$. On note $\nabla f(x)$ (appelé gradient de f au point x) l'unique élément de H tel que

$$f'(x)d = \langle \nabla f(x), d \rangle$$

Définition:

On dit que $f: H_1 \to H_2$ est Fréchet-différentiable en x s'il existe une application linéaire continue de H_1 dans H_2 tel que :

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - Lh}{\|h\|} = 0$$

L'opérateur L est appelé la dérivée de f en a.

1 Propriété:

Soient H_1 et H_2 deux espaces de Hilbert et $f: H_1 \to H_2$. On suppose que f est Fréchet-différentiable en $x \in H_1$ avec une dérivée L. Alors f est Gâteaux-différentiable et L = f'(x).

Démonstration:

Soit $d \neq 0 \in H_1$. $\forall h > 0$:

$$\begin{array}{cccc} \frac{f(x+hd)-f(x)-Lhd}{h\|d\|} & \to & 0 \\ \Rightarrow & \frac{f(x+h)-f(x)}{h}-Ld & \to & 0 \\ \Rightarrow & \frac{f(x+h)-f(x)}{h} & \to & Ld \end{array}$$

f admet une dérivée directionnelle dans la direction d, et on a f'(x,d) = Ld, ie $f'(x,\bullet) = L$ est linéaire continue.

2.2 Quelques rappels d'analyse convexe

♦ Définition:

Soit C un sous ensemble d'un espace vectoriel. On dit que C est convexe si

$$\forall x, y \in C, \forall \alpha \in [0, 1], \alpha x + (1 - \alpha)y \in C$$

♦ Définition:

Soit $f: H \to \mathbb{R}$. On appelle épigraphe de f, noté epi(f), l'ensemble :

$$epi(f) = \{(\alpha, x) \in \mathbb{R} \times H; \alpha \ge f(x)\}\$$

♦ Définition:

Soit $f: H \to \mathbb{R}$. On dit que f est convexe si $\operatorname{epi}(f)$ est convexe.

i Propriété:

 $f: H \to \mathbb{R}$ est convexe si et seulement si $\forall x,y \in H,\, \forall \alpha \in [0,1],$ on a :

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Démonstration:

On suppose que f est convexe. Soient $x, y \in H$ et $\alpha \in [0, 1]$.

On a (f(x), x) et $(f(y), y) \in \operatorname{epi}(f)$. Donc $\alpha(f(x), x) + (1 - \alpha)(f(y), y) \in \operatorname{epi}(f)$.

$$\Rightarrow f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Réciproquement, on suppose $\forall x, y \in H, \forall \alpha \in [0, 1],$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Soient (α, x) et $(\beta, y) \in \text{epi}(f)$ et $\lambda \in [0, 1]$.

$$\alpha \geq f(x)$$
 et $\beta \geq f(y)$

On a $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda \alpha + (1 - \lambda)\beta$

$$\Rightarrow (\lambda \alpha + (1 - \lambda)\beta, \lambda x + (1 - \lambda)y) \in epi(f)$$

Donc epi(f) est convexe.

♣ Définition:

Soit $f: H \to \mathbb{R}$. On dit que f est strictement convexe si $\forall x, y \in H$, tel que $x \neq y, \forall \alpha \in [0, 1]$, on a :

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

Soit $f: H \to \mathbb{R}$. On dit que f est α -convexe si $\forall x,y \in H, \ \forall \lambda \in [0,1],$ on a :

$$\frac{\alpha}{2}\lambda(1-\lambda)\|x-y\|^2 + f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

I Propriété: Convexité et dérivée première

Soit $f: H \to \mathbb{R}$ différentiable. On a équivalence entre les propositions suivantes :

- 2. $f(y) \ge f(x) + f'(x, y x)$ 3. $(f'(y) f'(x))(y x) \ge 0$

${ m extbf{1}} Propriété: lpha ext{-}convexit\'e et dérivée première$

Soit $f:H\to\mathbb{R}$ différentiable. On a équivalence entre les propositions suivantes :

Démonstration :

 $(1) \rightarrow (2)$

On suppose que f est α -convexe. Par définition, on a, pour $\lambda = \frac{1}{2^k}$:

$$f\left(\left(1 - \frac{1}{2^k}\right)x + \frac{1}{2^k}y\right) \le \left(1 - \frac{1}{2^k}\right)f(x) + \frac{1}{2^k}f(y) - \frac{\alpha}{2^{k+1}}\left(1 - \frac{1}{2^k}\right)\|x - y\|^2$$

On a alors:

$$2^k \left[f\left(\left(1-\frac{1}{2^k}\right)x + \frac{1}{2^k}y\right) - f(x) \right] \leq f(y) - f(x) - \frac{\alpha}{2}\left(1-\frac{1}{2^k}\right)\|x-y\|^2$$

Lorsque $k \to +\infty$:

$$f'(x).(y-x) \le f(y) - f(x) - \frac{\alpha}{2} ||x-y||^2$$

 $(2) \to (3)$

$$f(y) \ge f(x) + f'(x)(y - x) - \frac{\alpha}{2} ||x - y||^2$$

$$f(x) \ge f(y) + f'(y)(x - y) - \frac{\alpha}{2} ||x - y||^2$$

On fait la somme:

$$0 \ge (f'(x) + f'(y)).(x - y) + \alpha ||x - y||^2$$

 $(3) \rightarrow (1)$

Soient $x, y \in H$ et $\lambda \in [0, 1]$. On introduit :

$$\phi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto f(x + t(y - x))$$

 ϕ est dérivable et

$$\phi'(t) = f'(x + t(y - x)).(y - x)$$

Soit t > s.

$$\phi'(t) - \phi'(s) = [f'(x + t(y - x)) - f'(x + s(y - x))].(y - x)$$

$$\geq \frac{1}{t - s} \alpha \|(t - s)(x - y)\|^{2}$$

$$\geq \alpha(t - s) \|x - y\|^{2}$$

On intègre de $t=\lambda$ à t=1 et de s=0 à $s=\lambda$:

$$\begin{array}{cccc} \lambda(\phi(1)-\phi(\lambda))-(1-\lambda)(\phi(\lambda)-\phi(0)) & \geq & \alpha\|y-x\|^2\left[\frac{\lambda}{2}(1-\lambda^2)-\frac{\lambda^2}{2}(1-\lambda)\right] \\ \Leftrightarrow & \lambda\phi(1)+(1-\lambda)\phi(0)-\phi(\lambda) & \geq & \alpha\|x-y\|^2\frac{\lambda}{2}(1-\lambda^2-\lambda+\lambda^2) \\ \Leftrightarrow & \lambda f(y)+(1-\lambda)f(x) & \geq & \frac{\alpha}{2}\|x-y\|^2\lambda(1-\lambda)+f((1-\lambda)x+\lambda y) \end{array}$$

Donc f α -convexe.

2.3 Conditions d'optimalité dans un ouvert

→ Théorème:

Soit $J: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Soit \mathcal{U}_{ad} un ouvert de \mathbb{R}^n . Si J atteint un minimum local en $\bar{u} \in \mathcal{U}_{ad}$, alors

$$\nabla J(\bar{u}) = 0$$

Remarque : Il existe également une condition du second ordre (si J est \mathcal{C}^2) : la matrice Hessienne est positive.

Démonstration:

Soit $d \in \mathbb{R}^n$. Comme \mathcal{U}_{ad} est ouvert et $\bar{u} \in \mathcal{U}_{ad}$, il existe $h_0 > 0$; $\forall h \in]0, h_0]$, $\bar{u} + hd \in \mathcal{U}_{ad}$. Donc $J(\bar{u} + hd) \geq J(\bar{u})$. Or:

$$J(\bar{u}) \leq J(\bar{u} + hd) = J(\bar{u}) + \langle \nabla J(\bar{u}), hd \rangle + o(h)$$

$$\Rightarrow \langle \nabla J(\bar{u}), hd \rangle + o(h) \geq 0$$

$$\Rightarrow \langle \nabla J(\bar{u}), h \rangle + o(1) \geq 0$$

$$\Rightarrow \langle J(\bar{u}), d \rangle \geq 0 \ \forall d \in \mathbb{R}^n \ (h \to 0)$$

En remplaçant d par -d:

$$\langle \nabla J(\bar{u}), d \rangle \le 0 \ \forall d \in \mathbb{R}^n$$

D'où:

$$\langle \nabla J(\bar{u}), d \rangle = 0 \ \forall d \in \mathbb{R}^n$$

$$\Rightarrow \nabla J(\bar{u}) = 0$$

⇔ Théorème:

Soit \mathcal{U}_{ad} un ensemble convexe de \mathbb{R}^n et J une application différentiable de \mathbb{R}^n dans \mathbb{R} . Si \bar{u} est un point de minimum de J sur \mathcal{U}_{ad} , alors :

$$J'(\bar{u})(u - \bar{u}) \ge 0 \ \forall u \in \mathcal{U} \tag{*}$$

Réciproquement, si \bar{u} vérifie (*), et si J convexe, alors \bar{u} est un point de minimum de J.

Démonstration:

Soit $u \in \mathcal{U}_{ad}$. On a $\forall h \in [0,1]$, $\bar{u} + h(u - \bar{u}) = (1 - h)\bar{u} + hu \in \mathcal{U}_{ad}$ (par convexité de \mathcal{U}_{ad}). Donc

$$J(\bar{u} + h(u - \bar{u})) \ge J(\bar{u})$$

$$\Rightarrow \forall u \in \mathcal{U}_{ad}, \ \forall h \in [0, 1], \ \frac{J(\bar{u} + h(u - \bar{u})) - J(\bar{u})}{h} \ge 0$$

$$\Rightarrow J'(\bar{u})(u - \bar{u}) \ge 0 \ (h \to 0^+)$$

Réciproquement, si J est convexe, et si \bar{u} vérifie (*), alors $\forall u \in \mathcal{U}_{ad}$:

$$0 < J'(\bar{u})(u - \bar{u}) < J(u)_J(\bar{u})$$

car J convexe, d'où:

$$J(u) \ge J(\bar{u}) \ \forall u \in \mathcal{U}_{ad}$$

iRemarque:

On considère le cas où \mathcal{U}_{ad} est un sous-espace affine de \mathbb{R}^n . En particulier, :

$$\mathcal{U}_{ad} = \mathcal{P} + \bar{u}$$

où \mathcal{P} est un espace vectoriel.

La condition (*) se réécrit :

$$J'(u)v \ge 0 \ \forall v \in \mathcal{P}$$

Si $v \in \mathcal{P}$ alors $-v \in \mathcal{P}$, donc : ie $\nabla J(\bar{u}) \in \mathcal{P}^{\perp}$

$$J'(u).v = 0, \ \forall v \in \mathcal{P}$$

En particulier, si \mathcal{P} est défini comme une intersection (finie) d'hyperplan $(a_i \in \mathbb{R}^n)$:

$$\mathcal{P} = \{x, \ \langle a_i, x \rangle = 0 \ \forall i = 1, ..., d\}$$

alors \mathcal{P}^{\perp} est engendré par la famille $(a_i)_{i=1...d}$ La condition d'optimalité s'écrit :

$$\exists (\lambda_i)_{i=1,\dots,d}; \ \nabla J(\bar{u}) + \sum_{i=1}^d \lambda_i a_i = 0$$

Les λ_i sont appelés multiplicateurs de Lagrange.

2.4Théorème de Kuhn et Tucker

On suppose que la contrainte \mathcal{U}_{ad} s'écrit :

$$\mathcal{U}_{ad} = \left\{ u \in \mathbb{R}^n; & g_i(u) \leq 0 \quad \forall i \in I \\ h_j(u) = 0 \quad \forall j \in J \right\}$$

om $I = \{1, ..., l\}$ et $J = \{1, ..., m\}$.

On suppose que les fonctions g_i et h_j sont \mathcal{C}^1 et pour $u \in \mathcal{U}_{ad}$, on note I(u) l'ensemble des contraintes saturées, ie :

$$I(u) = \{i \in I; g_i(u) = 0\}$$

⇒ Théorème:

Si \bar{u} est un point de minimum local de J sur \mathcal{U}_{ad} alors il exsite $p_0 \in \mathbb{R}^+, p \in \mathbb{R}^l, q \in \mathbb{R}^m$, tel que :

$$\left\{ \begin{array}{rcl} \sum_{i \in I} p_i g_i(\bar{u}) & = & 0 & \text{(condition d'exclusion)} \\ (p_0, p, q) & \neq & 0 \\ p_0 \nabla J(\bar{u}) + \sum_{i \in I} p_0 \nabla g_i(\bar{u}) + \sum_{j \in J} q_j \nabla h_j(\bar{u}) & = & 0 & \text{(condition nécessaire)} \end{array} \right.$$

Démonstration:

Soit r > 0 tel que J atteigne un minimum sur $\overline{B(\bar{u},r)}$ en \bar{u} .

$$\min_{u \in \overline{B(\bar{u},r)}} \left\{ J(u) + \|u - \bar{u}\|^2 + \frac{N}{2} \left(\sum_{i \in I} \max(g_i(u), 0)^2 + \sum_{j \in J} \max(h_j(u), 0)^2 \right) \right\}$$

Le minimum est atteint en \bar{u}_N .

Comme J est continue sur $\overline{B(\bar{u},r)}$, elle est bornée. On note $M = ||J||_{L^{\infty}(\overline{B(\bar{u},r)})}$.

Donc:

$$\sum_{i \in I} \max(g_i(u), 0)^2 + \sum_{j \in J} \max(h_j(u), 0)^2 \le \frac{2}{N} \left(J(\bar{u}) - J(\bar{u}_n) - \|\bar{u} - \bar{u}_N\|^2 \right)$$

$$\sum_{i \in I} \max(g_i(\bar{u}_N), 0)^2 + \sum_{i \in J} \max(h_j(\bar{u}_N), 0)^2 \le \frac{2}{N} (2M + r) \tag{*}$$

On a aussi:

$$J(\bar{u}_N) + \|\bar{u} - \bar{u}_N\|^2 \le J(\bar{u}) \tag{**}$$

Comme $\overline{B(\bar{u},r)}$ est compacte, quitte à extraire une sous-suite, on peut supposer que $\bar{u}_N \to u^* \in \overline{B(\bar{u},r)}$. En prenant la limite dans (*) et dans (**).

$$\sum_{i \in I} \max(g_i(u^*), 0)^2 + \sum_{j \in J} \max(h_j(u^*), 0)^2 = 0$$

et

$$J(u^*) + \|\bar{u} - u^*\|^2 \le J(\bar{u})$$

Donc $\forall i, g_i(u^*) \leq 0$ et $\forall j, h_j(u^*) \leq 0$.

$$\Rightarrow u^* \in \mathcal{U}_{ad}$$
$$\Rightarrow u^* = \bar{u}$$

Pour N assez grand, $\bar{u}_N \in B(\bar{u}, r)$. On en déduit donc que :

$$\nabla J(\bar{u}_N) + 2\|\bar{u}_N - \bar{u}\| + N \left(\sum_{i \in I} \max(g_i(\bar{u}_N), 0) \nabla g_i(\bar{u}_N) + \sum_{j \in J} h_j(\bar{u}_N) \nabla h_j(\bar{u}_N) \right) = 0$$
 (*)

On pose

$$\rho_N = \left[1 + N^2 \sum_{i \in I} \max(0, g_i(\bar{u}_N))^2 + N^2 \sum_{j \in J} h_j(\bar{u}_N)^2 \right]^{\frac{1}{2}}$$

On pose:

$$p_0^N = \frac{1}{\rho_N}$$

$$p_i^N = Np_0^N \max(0, g_i(\bar{u}_N))$$

$$q_j^N = Np_0^N h_j(\bar{u}_N)$$

Le vecteur $(p_0^N, p^N, q^N) \in \mathbb{R}^{p+m+1}$ est de norme 1.

Quitte à extraire une sous-suite, on peut supposer que $(p_0^N, p^N, q^N) \rightarrow (p_0, p, q)$ avec $\|(p_0, p, q)\| = 1$.

En utilisant le fait que $\bar{u}_N \to \bar{u}$ et en divisant (*) par ρ_N puis en passant à la limite, on a :

$$p_0 \nabla J(\bar{u}) + \sum_{i \in I} p_i \nabla g_i(\bar{u}) + \sum_{j \in J} q_j \nabla h_j(\bar{u}) = 0$$

Il reste à montrer que :

$$\sum_{i \in I} p_i g_i(\bar{u}) = 0$$

Or, $\forall i, \ p_i g_i(\bar{u}) < 0$. Il faut donc montrer que :

$$p_i g_i(\bar{u}) = 0 \forall i$$

ie:

$$p_i = 0 \forall i \not\in I(\bar{u})$$

Si $i \notin I(\bar{u}) < 0$ alors $g_i(\bar{u}) < 0$. Donc $g_i(\bar{u}_N) < 0$ pour N assez grand. Donc $p_i = 0$ pour N assez grand.

$$\Rightarrow p_i = 0 \ \forall i \notin I(\bar{u})$$

$$\Rightarrow \sum_{i \in I} p_i g_i(\bar{u}) = 0$$

Remarque:

- 1. Le vecteur (p_0,p,q) est appelé le multiplicateur de Lagrange généralisé associé à \bar{u}
- 2. On appelle lagrangien généralisé :

$$L(u, p_0, p, q) = p_0 J(u) + \sum_{i \in I} p_i g_i(u) + \sum_{j \in J} q_j h_j(u)$$

La condition nécessaire d'optimalité se réécrit :

$$\nabla_u L(\bar{u}, p_0, p, q) = 0$$

2.5 Cas des contraintes qualifiées

♣ Définition: Contraintes qualifiées

On dit que les contraintes sont qualifiées en un point \bar{u} de \mathcal{U}_{ad} si les conditions suivantes sont vérifiées :

- 1. $\{\nabla h_1(\bar{u}), ..., \nabla h_n(\bar{u})\}$
- 2. $\exists v \in \mathbb{R}^n \text{ tel que}$:

$$\langle \nabla h_j(\bar{u}), v \rangle = 0 \ \forall j = 1, ..., n$$

 et

$$\langle \nabla g_i(\bar{u}), v \rangle < 0 \ \forall i \in I(\bar{u})$$

⇔ Théorème:

Si \bar{u} est un point de minimum de J sur \mathcal{U}_{ad} et si les contraintes sont qualifiées en \bar{u} , alors $\exists \lambda \in \mathbb{R}^l_+, \, \mu \in \mathbb{R}^n$ tel que :

1.

$$\sum_{i \in I} \lambda_i g_i(\bar{u}) = 0 \text{ (condition d'exclusion)}$$

2.

$$\nabla J(\bar{u}) + \sum_{i \in I} \lambda_i \nabla g_i(\bar{u}) + \sum_{j \in J} \mu_j \nabla h_j(\bar{u}) = 0 \text{ (condition d'optimalité)}$$

Démonstration:

D'après le théorème précédent, il existe $p_0 \in \mathbb{R}_+, \, p \in \mathbb{R}_+^l$ et $q \in \mathbb{R}^m$ tel que :

$$\left\{ \begin{array}{rcl} \sum_{i \in I} p_i g_i(\bar{u}) & = & 0 \\ (p_0, p, q) & \neq & 0 \\ p_0 \nabla J(\bar{u}) + \sum_{i \in I} p_0 \nabla g_i(\bar{u}) + \sum_{j \in J} q_j \nabla h_j(\bar{u}) & = & 0 \end{array} \right.$$

Montrons que $p_0 \neq 0$.

Par l'absurde, on suppose $p_0 = 0$.

1. $p_i = 0 \forall i \notin I(\bar{u})$

2.
$$\sum_{i \in I(\bar{u})} p_i \nabla g_i(\bar{u}) + \sum_{j \in J} q_j \nabla h_j(\bar{u}) = 0$$

Soit $v \in \mathbb{R}^n$ tel que $\langle \nabla h_j(\bar{u}), v \rangle = 0 \ \forall j \in J \ \text{et} \ \langle \nabla h_i(\bar{u}), v \rangle < 0 \ \forall i \in I(\bar{u}).$

On a:

$$\begin{array}{ll} 0 & = & \left\langle \displaystyle\sum_{i \in I(\bar{u})} p_i \nabla g_i(\bar{u}) + \displaystyle\sum_{j \in J} q_j \nabla h_j(\bar{u}), v \right\rangle \\ \\ & = & \displaystyle\sum_{i \in I(\bar{u})} \underbrace{p_i}_{\geq 0} \underbrace{\left\langle \nabla g_i(\bar{u}), v \right\rangle}_{<0} + \displaystyle\sum_{j \in J} q_j \left\langle \nabla h_j(\bar{u}), v \right\rangle \\ \\ & \Rightarrow p_i = 0 \ \forall i \in I(\bar{u}) \\ \\ & \Rightarrow p = 0 \end{array}$$

Donc:

$$\sum_{j \in J} q_j \nabla h_j(\bar{u}) = 0$$

Or, $\{\nabla h_1(\bar{u}),...,\nabla h_m(\bar{u})\}$ forment une famille libre, donc on a forcément $\forall j \in J, \ q_j = 0$, ie:

$$q = 0$$

On en déduit donc que

$$(p_0, p, q) = 0$$

ce qui est absurde.

Donc $p_0 \neq 0$.

On pose $\lambda_i = \frac{p_i}{p_0} > 0$ et $\mu_i = \frac{q_i}{p_0}$. On retrouve ainsi les deux égalités.

IRemarque:

- 1. Le résultat reste vrai sans les hypothèses de qualification si les contraintes sont affines (ie, $\forall i, \forall j, g_i$ et h_j sont convexes ou concaves)
- 2. Un peu de vocabulaire :
 - (λ, μ) est le multiplicateur de Lagrange associé à \bar{u}
 - Le lagrangien est défini par :

$$L(u, \lambda, \mu) = J(u) + \sum_{i \in I} \lambda_i g_i(u) + \sum_{i \in I} \mu_i h_j(u)$$

et la condition d'optimalité s'écrit :

$$\nabla_u L(\bar{u}, \lambda, \mu) = 0$$

3 Problèmes convexes et dualité

On considère le problème :

$$\min_{u \in \mathcal{U}_{ad}} J(u)$$

où
$$\mathcal{U}_{ad} = \{ u \in \mathbb{R}^n; \ g_i(u) \le 0 \forall i \in I \}$$

On suppose que les applications $J, g_1, ..., g_l$ sont convexes et de classe \mathcal{C}^1 .

I Propriété:

On suppose qu'il existe $u_0 \in \mathcal{U}_{ad}$ tel que

$$g_i(u_0) < 0 \ \forall i \in I$$

Alors la contrainte est qualifiée (en $\bar{u}, \forall \bar{u} \in \mathcal{U}_{ad}$).

Démonstration:

Soit $u \in \mathcal{U}_{ad}$. On pose $v = u_0 - u$. Soit $j \in I(\bar{u})$. Comme g_i est convexe et de classe \mathcal{C}^1 , on a :

$$\langle \nabla g_i, v \rangle \leq \underbrace{g_i(u_0)}_{<0} - \underbrace{g_i(\bar{u})}_{=0} < 0$$

La contrainte est donc qualifiée en \bar{u} .

⇒ Théorème:

$$L(u,\lambda) = J(u) + \lambda^T g(u)$$

 $L(u,\lambda)=J(u)+\lambda^Tg(u)$ Si \bar{u} est un minimum de J sur \mathcal{U}_{ad} et si les contraintes sont qualifiées en \bar{u} , alors $\exists \lambda \in \mathbb{R}^l_+$ tel que :

$$\left\{ \begin{array}{ll} \nabla_u L(\bar{u},\lambda) & = & 0 \\ \lambda^T g(\bar{u}) = 0 \end{array} \right.$$

⇔ Lemme:

Soit F une application de \mathbb{R}^n dans \mathbb{R} convexe et de classe \mathcal{C}^1 . $u \in \mathbb{R}^n$ est un point de minimum de F sur \mathbb{R}^n si et seulement si $\nabla F(u) = 0$.

Démonstration:

Une première implication a déjà été montrée.

On suppose que $\nabla F(u) = 0$. Comme F est convexe, on a

$$F(v) - F(u) \ge \langle \underbrace{\nabla F(u)}_{=0}, v - u \rangle \forall \ v \in \mathbb{R}^n$$

D'où $F(v) \geq F(u) \ \forall v \in \mathbb{R}^n$, donc u est un minimum de F sur \mathbb{R}^n .

⇔ Théorème:

Soit \bar{u} un point de \mathcal{U}_{ad} tel que les contraintes soient qualifiées en \bar{u} . Alors \bar{u} est un point de minimum de J sur \mathcal{U}_{ad} si et seulement si $\exists \lambda \in \mathbb{R}^l_+$ tel que :

$$\left\{ \begin{array}{ll} \nabla_u L(\bar{u},\lambda) & = & 0 \\ \lambda^T g(\bar{u}) = 0 \end{array} \right.$$

Démonstration:

L'application $u \mapsto L(u, \lambda)$ est une fonction convexe (en tant que sommes de fonctions convexes), donc elle admet un minimum en \bar{u} .

$$\Rightarrow L(u,\lambda) \ge L(\bar{u},\lambda) \ \forall u \in \mathbb{R}^n$$

Or,

$$\begin{array}{lcl} L(\bar{u},\lambda) & = & J(\bar{u}) + \underbrace{\lambda^t g(\bar{u})}_{=0} \\ \\ & = & J(\bar{u}) \end{array}$$

soit $u \in \mathcal{U}_{ad}$. alors:

$$L(u,\lambda) = J(u) + \underbrace{\sum_{i \in I} \underbrace{\lambda_i}_{\geq 0} \underbrace{g_i(u)}_{\leq 0}}_{\leq 0}$$
$$= J(u)$$
$$J(u) \geq L(u,\lambda) \geq L(\bar{u},\lambda) = J(\bar{u})$$

Donc \bar{u} est un minimum de J sur \mathcal{U}_{ad} .

3.1 Dualité

♣ Définition: Point selle

On dit que $(u, \lambda) \in \mathcal{U}_{ad} \times \mathbb{R}^l_+$ est un point selle de J sur $\mathcal{U}_{ad} \times \mathbb{R}^l_+$ si :

$$\forall \mu \in \mathbb{R}^l_+, \ \forall v \in \mathcal{U}_{ad}, \ L(u,\mu) \le L(u,\lambda) \le L(v,\lambda)$$

i Propriété:

Soit U un ouvert contenant \mathcal{U}_{ad} et (u, λ) un point selle de J sur $U \times \mathbb{R}^l_+$. Alors $u \in \mathcal{U}_{ad}$ et :

$$\begin{cases} \nabla_u L(u,\lambda) &= 0\\ \lambda^t g(u) = 0 \end{cases}$$

Démonstration:

Comme (u, λ) est un point selle, on a

$$\forall \mu \in \mathbb{R}^l_+, \ \forall v \in U, \ L(u,\mu) \le L(u,\lambda) \le L(v,\lambda)$$

ie:

$$J(u) + \mu^t g(u) \leq J(u) + \lambda^t g(u) \leq J(v) + \lambda^t g(v)$$

$$(1) : \mu^T g(u) \le \lambda^T g(u), \ \forall \mu \in \mathbb{R}^l_+$$

Si on prend $\mu=\frac{1}{2}\lambda$ et $\mu=2\lambda$, on voit bien que $\lambda^tg(u)=0$. Ainsi, $\mu^tg(u)\leq 0 \ \forall \mu\in\mathbb{R}^l_+$.

Prenons

$$\mu = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

. Ainsi, $g_i(u) \leq 0 \ \forall i \in I$.

$$\Rightarrow u \in \mathcal{U}_{ad}$$

(2): u est un point de minimum de :

$$u \mapsto J(u) + \lambda^t g(u) = L(u, \lambda)$$

sur U. Donc:

$$\nabla_u L5u, \lambda) = 0$$

\Rightarrow Lemme:

Soit L une fonction de deux variables u et λ .

$$\inf_{u} \sup_{\lambda} L(u, \lambda) \ge \sup_{\lambda} \inf_{u} L(u, \lambda)$$

Démonstration:

$$\forall u, \sup_{\lambda} L(u, \lambda) \ge \sup_{\lambda} \inf_{u} L(u, \lambda)$$

Ceci étant vrai pour tout u, c'est également vrai pour celui qui minimise le terme de gauche.

$$\Rightarrow \inf_{u} \sup_{\lambda} L(u,\lambda) \geq \sup_{\lambda} \inf_{u} L(u,\lambda)$$

⇔ Théorème:

On suppose que la contrainte est qualifiée et que $(\mathcal{P}_{\mathcal{U}_{ad}})$ admet une solution.

$$\min_{u \in \mathcal{U}_{ad}} J(u) = \sup_{\lambda \in \mathbb{R}^n} \inf_{u \in \mathbb{R}^n} L(u, \lambda) = \inf_{u \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^n} L(u, \lambda)$$

De plus, le problème $\sup_{\lambda \in \mathbb{R}^n} \inf_{u \in \mathbb{R}^n} L(u, \lambda)$ admet une solution λ^* et $\inf_{u \in \mathbb{R}^n} \sup_{u \in \mathbb{R}^n} L(u, \lambda)$ admet une solution u^* qui est solution de $(\mathcal{P}_{\mathcal{U}_{ad}})$

♦ Définition:

On note

$$d(\lambda) = \inf_{u \in \mathbb{R}^n}$$

Le problème

$$\sup_{\lambda \in \mathbb{R}^n} d(\lambda)$$

est le problème dual.

Démonstration:

Comme les contraintes sont qualifiées et que le problème admet au moins une solution u^* , on a :

$$\left\{ \begin{array}{ccc} \nabla J(u^*) + \sum_{i \in I} \lambda_i^* \nabla g_i(u^*) & = & 0 \\ \sum_{i \in I} \lambda_i^* g_i(u^*) & = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccc} \nabla_u L(u^*, \lambda^*) & = & 0 \\ \lambda^{*^t} g(u^*) & = & 0 \end{array} \right.$$

Comme $J, g_1, ..., g_l$ sonr convexes et $\lambda_i^* \geq 0$, on a $u \mapsto L(u, \lambda^*)$ convexe. Donc u^* est un point de maximum de $u \mapsto L(u, \lambda^*)$.

$$\sup_{\lambda \in \mathbb{R}^{l}_{+}} \inf_{u \in \mathbb{R}^{n}} L(u, \lambda) \ge \inf_{u \in \mathbb{R}^{n}} L(u, \lambda^{*}) = L(u^{*}, \lambda^{*})$$

De plus,

$$L(u^*, \lambda^*) = J(u^*) + \underbrace{\sum_{i \in I} \lambda_i^* g_i(u^*)}_{=0}$$

$$= J(u^*)$$

$$\Rightarrow L(u^*, \lambda^*) = \min_{u \in \mathcal{U}_{ad}} J(u) \le \sup_{\lambda \in \mathbb{R}_+^l} \inf_{u \in \mathbb{R}^n} L(u, \lambda)$$

Montrons à présent que :

$$\sup_{\lambda \in \mathbb{R}^{l}_{\perp}} L(u, \lambda) = \begin{cases} J(u) & \text{si} \quad u \in \mathcal{U}_{ad} \\ +\infty & \text{sinon} \end{cases}$$

— Si $u \in \mathcal{U}_{ad}$,

$$J(u) = L(u, 0) \leq \sup_{\lambda \in \mathbb{R}^{l}_{+}} L(u, \lambda)$$

$$\leq J(u) + \sup_{\lambda \in \mathbb{R}^{l}_{+}} \sum_{i \in I} \underbrace{\lambda_{i}}_{\geq 0} \underbrace{g_{i}(u)}_{\leq 0}$$

$$\leq J(u)$$

$$\Rightarrow \sup_{\lambda \in \mathbb{R}^{l}_{+}} L(u, \lambda) = J(u)$$

— Si $u \notin \mathcal{U}_{ad}$, $\exists i$ tel que $g_i(u) > 0$. On pose

$$\lambda_j^k = \begin{cases} k & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

$$\sup_{\lambda \in \mathbb{R}_+^l} L(u, \lambda) \geq \sup_{k \in \mathbb{N}} L(u, \lambda^k)$$

$$\geq \sup_{k \in \mathbb{N}} \{J(u) + kg_i(u)\}$$

$$\geq J(u) + \underbrace{g_i(u)}_{\geq 0} \sup_{k \in \mathbb{N}} \{k\}$$

$$\Rightarrow \sup_{\lambda \in \mathbb{R}_+^l} L(u, \lambda) = +\infty$$

On en déduit que :

$$\inf_{u \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^l_+} L(u, \lambda) = \inf_{u \in \mathcal{U}_{ad}} J(u)$$

$$= L(u^*, \lambda^*)$$

$$\leq \sup_{\lambda \in \mathbb{R}^l_+} \inf_{u \in \mathbb{R}^n} L(u, \lambda)$$

Avec le lemme précédent, on en déduit que :

$$\sup_{\lambda \in \mathbb{R}^n} \inf_{u \in \mathbb{R}^n} L(u,\lambda) = \inf_{u \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^n} L(u,\lambda)$$

Deuxième partie

Programmation linéaire, algotihme du simplexe

1 Introduction

Un problème d'optimisation linéaire est un problème d'optimisation dans lequel le coût et les contraintes sont linéaires (ou plutôt affines).

Il s'agit de trouver les solutions $x \in \mathbb{R}^n$ du problème :

$$\begin{cases} \inf_{x \in \mathbb{R}^n} & \langle c, x \rangle \\ \text{s. c.} & Ax = b \\ & x \ge 0 \end{cases}$$
 (P_L)

où A est une matrice de raille $m \times n$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

 $x \ge 0$ signifie que toutes les composantes de x sont positives.

Ce problème est dit sous forme standard.

Remarque : On a l'impression que P_L est un cas particulier du problème (sous forme canonique) :

$$\begin{cases} \inf_{x \in \mathbb{R}^n} & \langle c, x \rangle \\ \text{s. c.} & A'x = b' \\ & Ax \ge b \end{cases}$$
 (1)

Mais un problème sous forme canonique peut toujours se ramener à un problème sous forme standard. En effet, la contrainte A'x = b' est équivalent à $A'x \ge b'$ et $-A'x \ge -b'$. Donc 1 est équivalent à :

$$\inf_{x \in \mathbb{R}^n, \ Ax \ge b} \langle c, x \rangle \tag{2}$$

On introduit des variables d'écart $\lambda \in \mathbb{R}_+^n$ tel que $Ax = b + \lambda$. Donc 2 se ramène à :

$$\begin{cases} \inf_{x \in \mathbb{R}^n, \ \lambda \in \mathbb{R}^n_+} & \langle c, x \rangle \\ \text{s. c.} & Ax - \lambda = b \\ b > 0 \end{cases}$$

On décompose x sous la forme :

$$x = x^{+} - x^{-}$$

où $x^{+} = \max(0, x) \ge 0$ et $x^{-} = -\min(0, x) \ge 0$

2 revient donc à résoudre :

$$\begin{cases} \inf_{x^+ \in \mathbb{R}^n, x^- \in \mathbb{R}^n, \lambda \in \mathbb{R}^n} & \langle c, x \rangle \\ \text{s. c.} & Ax - \lambda = b \\ b > 0 \end{cases}$$

qui est bien sous forme standard (mais avec plus de variables)

Remarque : On peut supposer sans perte de généralité que toutes les lignes de A sont linéairement indépendantes. Si ce n'est pas le cas, soit certaines constraintes sont redondantes, soit les contraintes sont incompatibles, ie $rg(A) = m \le n$

♦ Définition.

L'ensemble

$$X_{ad} = \{ x \in \mathbb{R}^n, \ Ax = b, \ x \ge 0 \}$$

est appelé l'ensemble des solutions réalisables (ou admissibles).

On appelle sommet (ou point extremal) de X_{ad} un point $x \in X_{ad}$ tel qu'il n'existe pas $\alpha \in]0,1[$ et $y,z \in X_{ad},$ $y \neq z$ tel que $x = \alpha y + (1-\alpha)z$.

2 Solutions de base d'un problème sous forme standard

On note
$$A_1 = \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{m,1} \end{pmatrix}$$
, ..., $A_n = \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{m,n} \end{pmatrix}$.

Comme rg(A) = m, on peut toujours trouver m colonnes de A linéairement indépendantes. On note

$$\Gamma = \{\gamma: \{1,...,m\} \rightarrow \{1,...,n\}, \text{ strictement croissante}\}$$

On définit :

$$A_{\gamma} = (A_{\gamma(1)} \cdots A_{\gamma(m)})$$

et:

$$\mathcal{B} = \{ \gamma \in \Gamma, \ rg(A_{\gamma}) = m \}$$