1.Downloading the Dataset and importing the Libraries

import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

2.load the datset

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
5938	5939	15679668	Yao	850	Spain	Male	38	7
4850	4851	15593094	Goddard	516	France	Male	27	9
1008	1009	15569050	Farrell	444	France	Male	45	6
1951	1952	15589793	Onwuamaeze	604	France	Male	53	8
3399	3400	15633352	Okwukwe	628	France	Female	31	6
4968	4969	15572158	Blackburn	604	Spain	Male	41	3
4740	4741	15618661	Chidubem	535	France	Male	30	6
0000	0004	45004044	MA:II.a.	E76	Carman.,	14010	20	7

univarient

features =['Age', 'CreditScore', 'Balance']
data[features].hist(figsize=(13, 10));

bivarient

import seaborn as sns
sns.boxplot(x = data['EstimatedSalary'], y = data['Gender']);

multivarient

df_1 = pd.DataFrame(data,columns=['CreditScore','EstimatedSalary','Balance'])
corrMatrix = df_1.corr()
sns.heatmap(corrMatrix, annot=True)
plt.show()

sns.relplot(x = "Age",y ="EstimatedSalary",hue="Gender",data=data)

4. Performing descriptive statistics on the dataset.

data[['CreditScore','Balance','EstimatedSalary']].mean()

CreditScore 650.528800 Balance 76485.889288 EstimatedSalary 100090.239881

dtype: float64

data[['CreditScore','Balance','EstimatedSalary']].median()

CreditScore 652.000 Balance 97198.540 EstimatedSalary 100193.915

dtype: float64

data[['CreditScore','Balance','EstimatedSalary']].mode()

CreditScore Balance EstimatedSalary 0 850 0.0 24924.92

data[['CreditScore', 'Balance', 'EstimatedSalary']].quantile()

CreditScore 652.000
Balance 97198.540
EstimatedSalary 100193.915
Name: 0.5, dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].std()

 CreditScore
 96.653299

 Balance
 62397.405202

 EstimatedSalary
 57510.492818

dtype: float64

```
data[['CreditScore', 'Balance', 'EstimatedSalary']].min()
    CreditScore
                        350.00
    Balance
                         0.00
    EstimatedSalary
                         11.58
    dtype: float64
data[['CreditScore', 'Balance', 'EstimatedSalary']].max()
    CreditScore
                          850.00
    Balance
                        250898.09
    EstimatedSalary
                        199992.48
    dtype: float64
data[['CreditScore', 'Balance', 'EstimatedSalary']].skew()
    CreditScore
                       -0.071607
    Balance
                       -0.141109
    EstimatedSalary
                       0.002085
    dtype: float64
data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
                          Non-Null Count Dtype
     #
          Column
     ---
         -----
                           -----
                                          ----
         RowNumber
     0
                          10000 non-null int64
      1
         CustomerId
                          10000 non-null int64
      2
         Surname
                          10000 non-null object
      3
         CreditScore
                          10000 non-null int64
         Geography
                          10000 non-null object
      5
         Gender
                          10000 non-null object
      6
         Age
                          10000 non-null
                                          int64
      7
          Tenure
                          10000 non-null int64
      8
          Balance
                          10000 non-null float64
      9
         NumOfProducts
                          10000 non-null int64
      10 HasCrCard
                          10000 non-null
                                          int64
      11 IsActiveMember
                          10000 non-null int64
      12 EstimatedSalary 10000 non-null float64
      13 Exited
                          10000 non-null int64
    dtypes: float64(2), int64(9), object(3)
    memory usage: 1.1+ MB
data.describe()
```

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
1						•

5. Handling the Missing values.

data.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0
0
0
0

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
250/	2500 75000	1 E620E20±07	E01 000000	33 000000	3 000000	0 000000

6.finding the outliers and replace the outlier

sns.distplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3938dedd10>

sns.boxplot(data['CreditScore'])

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th
    FutureWarning
    <matplotlib.axes._subplots.AxesSubplot at 0x7f390dff3050>

box_scatter(data, 'EstimatedSalary', 'Exited');
plt.tight_layout()
```



```
upper_limit = data['CreditScore'].mean() + 3*data['CreditScore'].std()
lower_limit = data['CreditScore'].mean() - 3*data['CreditScore'].std()
print('upper limit:', upper_limit)
print('lower limit:', lower_limit)
```

upper limit: 940.488696208391 lower limit: 360.568903791609

data.loc[(data['CreditScore'] > upper_limit) | (data['CreditScore'] < lower_limit)]</pre>

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
1405	1406	15612494	Panicucci	359	France	Female	44	6	128
1631	1632	15685372	Azubuike	350	Spain	Male	54	1	152
1838	1839	15758813	Campbell	350	Germany	Male	39	0	109
1962	1963	15692416	Aikenhead	358	Spain	Female	52	8	143
2473	2474	15679249	Chou	351	Germany	Female	57	4	163
8723	8724	15803202	Onyekachi	350	France	Male	51	10	
8762	8763	15765173	Lin	350	France	Female	60	3	
9624	9625	15668309	Maslow	350	France	Female	40	0	111
1									•

```
new_data = data.loc[(data['CreditScore'] <= upper_limit) & (data['CreditScore'] >= lower_limi
print('before removing outliers:', len(data))
print('after removing outliers:',len(new_data))
print('outliers:', len(data)-len(new_data))

before removing outliers: 10000
after removing outliers: 9992
outliers: 8
```

sns.boxplot(new_data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390e305110>


```
new_df = data.copy()
new_df.loc[(new_df['CreditScore']>=upper_limit), 'CreditScore'] = upper_limit
new_df.loc[(new_df['CreditScore']<=lower_limit), 'CreditScore'] = lower_limit</pre>
```

sns.boxplot(new_data['CreditScore'])

sns.boxplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390df2af50>

sns.distplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f390de60810>

7. Checking for Categorical columns and performing encoding.

from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
for i in data:

if data[i].dtype=='object' or data[i].dtype=='category':data[i]=encoder.fit_transform(data[i]

8. Split the data into dependent and independent variables

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
4									•

y=data.iloc[:-1]
y.head()

Χ

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.8
4									>

9. Scaling the independent variables

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	83
2	3	15619304	Onio	502	France	Female	42	8	159
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75
9999	10000	15628319	Walker	792	France	Female	28	4	130
10000 i	rows × 13 colu	umns		_					•

10. Splitting the data into Training and Testing

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

df=pd.read_csv("/content/Churn_Modelling (1).csv")
df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	83
2	3	15619304	Onio	502	France	Female	42	8	159
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75
9999	10000	15628319	Walker	792	France	Female	28	4	130
10000 r	rows × 14 colu	umns							
4									•

```
print(x)
     [[619]
      [608]
      [502]
      . . .
      [709]
      [772]
      [792]]
y=np.array(df['CreditScore']).reshape(-1,1)
y.shape
     (10000, 1)
print(y)
     [[619]
      [608]
      [502]
      [709]
      [772]
      [792]]
print(type(y))
```

<class 'pandas.core.frame.DataFrame'>

Colab paid products - Cancel contracts here

