

THE INVERSE PROBLEM THE INVERSE BROBTEM

... and the use of Python-Implemented Gradient Descent Techniques.

Tomás Gómez Álvarez-Arenas

OUTLINE

1. The Inverse Problem (IP):

Definition & examples

- 2. IP applications.
- 3. IP main elements.
- 4. IP optimization algorithms.

Gradient Descent algorithms (GDA) for IP.

5. A Python implentation of GDA for IP.

Examples.

Data

KNOWLEDGE

REGRESSION

INVERSE PROBLEM

MACHINE LEARNING

BAYESIAN INFERENCE

STATISTICAL ANALISYS

1. THE INVERSE PROBLEM: [IP] DEFINITION & EXAMPLES

DIRECT PROBLEM.

DIRECT PROBLEM

GIVEN:

Model parameters:

 $h_0 = 55 \text{ m}$ g = 9.81 m/s² Model (law):

 $h(t) = h_0 - 1/2 g t^2$

PREDICT:

h at any t

IP: DEFINITION.

INVERSE PROBLEM

Model parameters:

h₀, g

GIVEN

Model (law):

$$h(t) = h_0 - 1/2 g t^2$$

& h at some t

IP EXAMPLE: GRAVITATIONAL WAVES

DIRECT PROBLEM

Inspiral Merger Ring-down

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5},$$

INVERSE PROBLEM

Parameters of the mass chirp

Hanford, Washington (H1)

LIGO project

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

IP EXAMPLE: ECHOGRAPHIC SIGNALS

DIRECT PROBLEM

INVERSE PROBLEM

Thicknesses (x2)
Densities (x2)
Elastic constant (x2)
Mechanical damping (x2)
Freq. dep. MD (x2)

2. IP APPLICATIONS

- 1. Obtention of model parameters .
- 2. Model confirmation.
- 3. Model selection. Ockham's razor

3. IP MAIN ELEMENTS

INVERSE PROBLEM

IP vs ML (Machine Learning)

MACHINE LEARNING

INVERSE PROBLEM

INVERSE PROBLEM

Well-posed Ill-posed problems

Hadamard principles (Existence, uniqueness, stability)

"One can find the desired result to any degree of specified precision - provided one is prepared to work hard enough *"

 ullet Working hard enough: making enough measurements with enough accuracy and then doing enough computations

4. IP OPTIMIZATION ALGORITHMS

OPTIMIZATION ALGORITHMS (just a few of them...)

NA: Newton algorithms.

GNA: Gauss-Newton algorithm.

BFGS: Broyden–Fletcher–Goldfarb–Shanno algorithm (1970).

NMA: Nelder-Mead algorithm (1965).

PA: Powell's algorithm (1964).

LMA: Levenberg–Marquardt algorithm (1944-1963).

GDA: Gradient Descent algorithms.

PYTHON IMPLEMENTATION OF OPTIMIZATION ALGORITHMS (just a few of them...)

scipy.optimize

http://docs.scipy.org/doc/scipy/reference/optimize.html
Optimization and root finding

http://cxc.cfa.harvard.edu/contrib/sherpa47b/

Levenberg-Marquardt, Nelder-Mead Simplex or Monte Carlo/Differential Evolution.

PyQt-Fit

Sherpa

https://anaconda.org/pypi/pyqt-fit

Regression toolbox and GUI

LMFIT

Non-Linear Least-Square Minimization and Curve-Fitting for Python https://lmfit.github.io/lmfit-py/

High-level interface for scipy.optimize, extends LMA.

PYTHON IMPLEMENTATION OF OPTIMIZATION ALGORITHMS (just a few of them...)

scipy.optimize

http://docs.scipy.org/doc/scipy/reference/optimize.html
Optimization and root finding

The minimize function supports the following methods:

- minimize(method='Nelder-Mead')
- minimize(method='Powell')
- minimize(method='CG')
- minimize(method='BFGS')
- minimize(method='Newton-CG')
- minimize(method='L-BFGS-B')
- minimize(method='TNC')
- minimize(method='COBYLA')
- minimize(method='SLSQP')
- minimize(method='dogleg')
- minimize(method='trust-ncg')

GRADIENT DESCENT ALGORITHMS FOR IPs.

PYTHON IMPLEMENTATION OF GRADIENT DESCENT ALGORITHMS

https://github.com/mattnedrich/GradientDescentExample

http://tillbergmann.com/blog/articles/python-gradient-descent.html

http://scikit-learn.org/stable/modules/sgd.html

http://www.r-bloggers.com/r-and-python-gradient-descent/

KEY ELEMENTS OF GDA FOR IP.

IP:

GDA:

Data set: y_i ; x_i

Initial guess: β_i

Model: $y = f([\beta_i], x)$

Step size (constant / variable)

Error function

Constrains: $C_k(\beta^*) = 0$

Optimization algorithm (GDA)

1. Set initial guess

$$f(\{\beta_i^0, x_i\})$$

 $||y_i - f(\{\beta^0_i, x_i\})||$: $\Delta\{\beta^0_i\}$: error is not minimum

 β_1

Set a discretization step: δ

DATA

 X_i, y_i

Model(f)

$$y^*_i = f(\beta_i \pm \delta, x_i)$$

$$f(\{\beta^0_j \pm \delta, x_i\})$$

$$||y_i - f(\{\beta^0_j \pm \delta, x_i\})||$$
: $\Delta\{\beta^0_i \pm \delta\}$: error

DATA	M ODEL (<i>f</i>)		
X_i , Y_i	$y_i^* = f(\beta_i \pm \delta, x_i)$		

Dimension	Volume
N = 3:	27
N = 4:	81
N = 5:	243
N = 6:	729
N = 7:	2187
N = 8:	6561

$$f(\{\beta_i^0 \pm \delta, x_i\})$$

$$||y_i - f(\{\beta^0_j \pm \delta, x_i\})||$$
: $\Delta\{\beta^0_i \pm \delta\}$: error

Systematic approach:

Search all points in V Take $\{\beta_i\}$ / $\Delta\{\beta_i\}_{min}$

Stochastic approach:

Random search of V Stop searching when:

$$\Delta\{\beta_i\} < \Delta\{\beta_0\}$$

	Systematic	Stochastic
Computational cost:	Cte. 3 ^N	Var. $1 \rightarrow 3^N$
Incremental improve:	Optimum	< Optimum
Avoid local minima:	??	May be
Same solution:	Yes	NO

5. Take a step.

Take a step:
$$2\vec{\delta} = 2(\vec{\beta}' - \vec{\beta}_0)$$

$$\vec{\beta}_0 = \vec{\beta}_0 + 2\vec{\delta}$$

5. A PYTHON IMPLEMENTATION OF GDA FOR IPS.

... a simple code example built from scratch.

Main function:

This function performs the Gradient Descent search by calling Grad ErrorML at each step

```
In [105]: def Walk downGradientML(exp dat, guess 0, params, x, delta, NoStepsOK,
                                  target func, Error Func, MaxSteps = 500, Prec = 0.999, forwardCheck = 1):
              """ This function takes one step in the fitting procedure down the gradient in the error hiperspace.
              exp dat: numpy array, vector with the value of the function at xi
              params: tuple with the position in the list of the guess 0 elements to be used for the fitting
              quess 0: list, list with the initial quess parameters
              x: numpy array, vector with the value of the independent variable (xi)
              delta: float, step size for the GD
              NoStepsOK: int, number of steps that improve the error in the GD before setting the direction of the nest step
                  NoStepsOK = 1 , the stochastic approach is used
                  NoStepsOK = 3 ** len(params) - 1, the conventional GD approach is used
              Prec: float, required minimum improvement in the error (Prec <= 1)
              target Func: function model, user defined,
              Error Func: function, user defined, function that calculates the error exp data and
                 calculated value of the target function for the xi values and the actual value of the function parameters"""
```


Additional functions:

This function seach around the present value of guess parameters, and sets the next step: new guess parameters and error value at this new position

```
In [104]: def Grad ErrorML(exp dat, guess 0, params, x, delta, NoStepsOK, Prec, target func, Error Func):
              """ Computes the local gradient of the error function only for the parameters specified in LayerParam;
              exp dat: numpy array, vector with the value of the function at xi
              params: tuple with the position in the list of the guess 0 elements to be used for the fitting
              quess 0: list, list with the initial quess parameters
              x: numpy array, vector with the value of the independent variable (xi)
              delta: float, step size for the GD
              NoStepsOK: int, number of steps that improve the error in the GD before setting the direction of the nest step
                  NoStepsOK = 1 , the stochastic approach is used
                  NoStepsOK = 3 ** len(params) - 1, the conventional GD approach is used
```

This function allows to deal with a n-parameters problem, where it is not necesary to know n beforehand:

```
In [102]: def trinarize(decimal):
              trinary = ''
              while decimal // 3 != 0:
                  trinary = str(decimal % 3) + trinary
                  decimal = decimal // 3
              return str(decimal) + trinary
```


Finally, we define a fitting object class with some features and functions to More easily handle and display the results

```
In [98]: class Fitting(object):
    """ This defines a Fitting object, contains:
    best fit parameters [0],
    number of steps in GD to best fit [1]
    final error[2],
    path to fit [3],
    exec time of fitting [4]
    initial guess parameters [5]
    Error_log [6]
    delta_log [7]

    It also contains some functions to visualize the results:
    plot_error_log;    plot_delta_log;    plot_path;    plot_pathN;    plot_cloud plot_Bestcloud """
```


6. Examples.

Basic examples
Signals in time domain
Complex high dimensional problems

6. Examples (I)

Basic Examples.

Linear regression Polynomial fitting

Data:

$$y^* = a x + b + noise$$

a,b = (1.0, 10.0)

Model:

$$y = a x + b$$

Stochastic Gradient Descent (SGD) Discretization step (DS): δ = 0.01

Path to fitting... (in the parameters space)

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

 $GG.plot\ pathN((GG2,GG3),(0,1),True,pa,pb)$

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run *GD*Run *scipy.linregress*Run *SGD* 200 times...

Only take Error < Error_min + 5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD Run scipy.linregress Run SGD 200 times...

Only take Error < Error_min + 0.5%

Target value: (1.0, 10.0) Initial guess: (1.5, 5.0)

Run GD Run scipy.linregress Run SGD 200 times...

Only take Error < Error_min + 5%

Target value: (1.0, 10.0) Initial guess: (1.5, 5.0)

Run GD Run scipy.linregress Run SGD 200 times...

Only take Error < Error min + 5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD

Run scipy.linregress

Run SGD 200 times...

Only take Error < Error min + 0.5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD

Run scipy.linregress

Run SGD 200 times...

Only take Error < Error min + 5%

Data:

$$y^* = a x^2 + bx + c + noise$$

Model:

$$y = a x^2 + bx + c$$

Path to fitting... (in the parameters space)

Target value: (1.0, 3.0, 10.0)

Initial guess: (1.7, 2.7, 7.0)

Stochastic Gradient Descent (SGD) δ = 0.005

GG.plot_path2(GG2,(0,1),True,pa,pb)

Target value: (1.0, 3.0 10.0)

Initial guess: (1.7, 2.7, 7.0)

Run GD

Run numpy.polyfit

Run SGD 200 times...

Only take Error < Error_min + 10%

Target value: (1.0, 3.0 10.0)

Initial guess: (1.7, 2.7, 7.0)

Run GD

Run numpy.polyfit

Run SGD 200 times...

Only take Error < Error_min + 0.5%

6. Examples (II)

Signals in the time domain.

Damped oscillator
Linear chirp
Linear-gained chirp
Mass chirp (gravitational waves)

Example 3: Damped oscillator

Data:

 $y^* = (a \sin x + j b \cos x) \exp(-cx) + noise$

Model:

 $y = (a \sin x + j b \cos x) \exp(-cx)$

Stochastic Gradient Descent (SGD) δ = 0.005

Example 3: Damped oscillator

Target value: (2.0, 0.5, 0.1)

Initial guess: (1.5, 0.3, 0.2)

Run GD

Run SGD 50 times...

Stochastic Gradient Descent (SGD)

 $\delta = 0.005$

GG.plot_path2(GG2,(0,1),True,pa,pb)

Example 3: Damped oscillator

Target value: (2.0, 0.5, 1.0)

Initial guess: (1.5, 0.3, 0.2)

Stochastic Gradient Descent (SGD)

 $\delta = 0.005$

Example 4: Linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

$$f_1 \approx 20\%$$

 $\phi_0 \approx$ 0.4 rad

Stochastic Gradient Descent (SGD) δ = 0.005

Example 4: Gained linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

$$f_1 \approx 20\%$$

$$\phi_{0} \approx$$
 0.4 rad

Stochastic Gradient Descent (SGD) δ = 0.005

Linear chirp

Gained linear chirp

Linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

B/T
$$\approx$$
 20% \rightarrow trapped in loc. min.

$$f_1 \approx 20\%$$

$$\phi_0 \approx$$
 0.4 rad

Gained linear chirp

Transform: FFT

Time domain \rightarrow frequency domain

Original LIGO signals (time domain)

Best fitting signals (time domain)

detector in the 35-350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5},$$

Original LIGO signals (time domain)

Final LIGO signals (time domain)

Frequency domain)

6. Examples (III)

Signals in the frequency domain. Large dimensional problems

Echographic signal: single layer

Echographic signal: layered plate

Example 5: Ultrasonic transmission through a layer of tissue

 $S(t) = f(\beta, t)$

$$S^*(\omega) = f^*(\beta, \omega)$$

 ω : frequency

$$\beta = \{t, \rho, v, \alpha, n\}$$

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq.

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

Example 5:

Ultrasonic transmission through a layer of tissue

FFT

$$S^*(\omega) = f^*(M,L)$$

\omega: frequency

$$\beta = \{t, \rho, v, \alpha, n\}$$

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq.

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

Example 5:

Ultrasonic transmission through a layer of tissue

S(t) = f(M,L)At we add to see Table

M: medium: Zm

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 4 $(V_{search} = 81 pts.)$

Example 5: Ultrasonic transmission through a layer of tissue

FFT

S(t) = f(M,L)

M: medium: Zm

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 4 $(V_{search} = 81 \text{ pts.})$

$$\mathsf{S*}(\omega) = f^*(M,L)$$

 ω : frequency

Example 5: Ultrasonic transmission through a layer of tissue

GG.plot_path2(GG2,(0,1),True,pa,pb)

Example 5: Ultrasonic transmission through a layer of tissue

S(t) = f(M,L)

M: medium: Zm

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

Example 5: Ultrasonic transmission through a layer of tissue

GG.plot_path2(GG2,(0,1),True,pa,pb)

Parameters separation/aggregation:

$$\beta_i$$
, $i = 1...N$; $3^{N}-1$

P subsets of parameters (example P = 2):

$$\beta_{i}^{1}$$
, $i = 1...K$; $3^{K}-1$
 β_{i}^{2} , $i = 1...L$; $3^{L}-1$
 $M = K + L$

Perform SGDA on β^1 + early stop Perform SGDA on β^2 + early stop

Example 6: Ultrasonic transmission through a layered tissue

10 parameters in the model: IG for them all VS = 59049

Simplify the data set (reduction)

Simplify the model (one layer: 5 params)

Apply parameters gathering (3 + 2)

Solve the new IP (- - - -) early stop

Generate IG for whole IP 5 params \rightarrow 10 params

Solve the whole IP

0.6

Frequency (MHz)

0.4

8.0

30

1.0

-90

-100

0.2

Solve the whole IP

Ill-posed problem (infinite solutions)

Adding constrains: (total thickness is know) $10 \rightarrow 9$

IG Further constrains.

Data

KNOWLEDGE

Q&A

