

Diplomski studij

Informacijska i komunikacijska tehnologija:

Telekomunikacije i informatika Računarstvo:

Programsko inženjerstvo i informacijski sustavi Računarska znanost

Raspodijeljeni sustavi

6.1

Model raspodijeljenog sustava

Ak.god. 2009./2010.

Sadržaj predavanja

- Osnovni model raspodijeljenog sustava
- Model raspodijeljenog izvođenja
- Uzročna ovisnost događaja
- Globalno stanje raspodijeljenog sustava
- Proširenje osnovnog modela (sinkroni i asinkroni model)

Osnovni model raspodijeljenog sustava

- skup autonomnih procesa $p_1, p_2, ..., p_n$
- lacksquare C_{ij} –kanal koji povezuje procese p_i i p_j
- \mathbf{m}_{ij} poruka od p_i za p_j

Svojstva

- Izvođenje procesa i prijenos poruka su asinkroni
- Procesi ne dijele zajednički memorijski prostor
- Pri komunikaciji procesa neminovno se javlja kašnjenje
- Procesi ne koriste jedinstveni globalni sat

Komunikacija procesa

 procesi međusobno komuniciraju razmjenom poruka (message passing) preko komunikacijskog medija (komunikacijske mreže)

- procesi koriste operatore send i receive
- send: pohranjuje poruku u izlazni spremnik i priprema za prijenos preko kanala
- receive: čita poruku iz dolaznog spremnika i prosljeđuje procesu

Model raspodijeljenog izvođenja

- Izvođenje procesa: slijedno izvođenje akcija procesa
- Akcije se modeliraju sljedećim događajima:
 - unutarnji događaj
 - slanje poruke
 - primanje poruke
- Događaj mijenja stanje procesa i komunikacijskog kanala
- Slijed događaja na procesu p_i:

$$e_i^1$$
, e_i^2 , e_i^3 , ..., e_i^x
(e_i^3 se dogodio prije e_i^2)

Primjer raspodijeljenog izvođenja

Uzročna ovisnost događaja (1)

- Uzročna relacija →
 - izražava uzročnu ovisnost između dva događaja tijekom raspodijeljenog izvođenja, uzročnost može biti direktna ili tranzitivna
- $e_i^x \rightarrow e_i^y$
 - događaj e_i^x je izvršen na procesu p_i prije događaja e_i^y te su oni uzročno povezani
- $send(m) \rightarrow_{msg} receive(m)$
 - uzročna ovisnost vezana uz slanje i primanje poruke, da bi poruka bila primljena, mora prethodno nužno biti poslana na kanal
- $\bullet \ e_i^{\ x} \rightarrow e_k^{\ z} \land e_k^{\ z} \rightarrow e_i^{\ y}$
 - primjer tranzitivne uzročnosti događaja izvršenih na 3 različita procesa

Uzročna ovisnost događaja (2)

- ◆ Uzročna relacija →
 - Označava neovisnost dvaju događaja tijekom raspodijeljenog izvođenja
- $e_i \rightarrow e_j$
 - lacktriangle događaj e_i nije ovisan o događaju e_i
- Vrijede sljedeća pravila
 - lacksquare za 2 događaja e_i i e_j , $e_i \not \to e_j \not \to e_j$
 - lacksquare za 2 događaja e_i i e_j , $e_i
 ightarrow e_j
 ightharpoonup e_i$
 - ako za 2 događaja e_i i e_j , vrijedi $e_i \rightarrow e_j$ i $e_j \rightarrow e_i$, onda su e_i i e_j konkurenti događaji i to možemo označiti na sljedeći način $e_i \parallel e_j$

Globalno stanje raspodijeljenog sustava

- Određeno lokanim stanjima procesa i kanala
- Stanje procesa određeno je stanjem lokalne memorije i lokalnim izvođenjem akcija
- Stanje kanala određeno skupom primljenih i poslanih poruka
- Izvođenje akcije mijenja lokano stanje procesa/kanala te istovremeno i globalno stanje raspodijeljenog sustava

Proširenje osnovnog modela (sinkroni i asinkroni)

Sinkroni model

- Pretpostavka
 - Svi procesi raspodijeljenog sustava izvode korake istovremeno
 - pojednostavljenje koje nije realno za raspodijeljene sustave, ali može biti korisno za njihovo modeliranje i razumijevanje

Asinkroni model

- Pretpostavka
 - komponente izvode akcije u proizvoljnom slijedu
 - postoji neodređenost vezana uz slijed događaja
 - realna situacija

Sinkrona komunikacija

- Poznata je gornja vremenska granica za
 - izvođenje prijelaza nekog procesa
 - trajanje prijenosa poruke kanalom
- Pretpostavka
 - procesi imaju potpuno sinkronizirana lokalna vremena

Primjer sinkrone komunikacije

- izvođenje algoritma može se organizirati u koracima
 - pošalji poruke procesima u sustavu
 - primi poruke od drugih procesa u sustavu
 - promijeni stanje

Asinkrona komunikacija

- Ne postoji gornja vremenska granica za
 - izvođenje prijelaza nekog procesa (no trajanje prijelaza je uvijek konačno)
 - trajanje prijenosa poruke kanalom
- Pretpostavka
 - procesi nemaju sinkronizirana lokalna vremena
- Realni slučaj koji ćemo najčešće razmatrati, znatno komplicira model raspodijeljenog sustava

Primjer asinkrone komunikacije

nepouzdani komunikacijski medij, potrebno je modelirati mogućnost gubitka poruke na kanalu