

FS iterated forcing preserves chain condition

Canonical name FSIteratedForcingPreservesChainCondition

Date of creation 2013-03-22 12:57:14 Last modified on 2013-03-22 12:57:14

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)

Entry type Result
Classification msc 03E35
Classification msc 03E40

Let κ be a regular cardinal and let $\langle \hat{Q}_{\beta} \rangle_{\beta < \alpha}$ be a finite support iterated forcing where for every $\beta < \alpha$, $\Vdash_{P_{\beta}} \hat{Q}_{\beta}$ has the κ chain condition.

By induction:

 P_0 is the empty set.

If P_{α} satisfies the κ chain condition then so does $P_{\alpha+1}$, since $P_{\alpha+1}$ is equivalent to $P_{\alpha} * Q_{\alpha}$ and composition preserves the κ chain condition for regular κ .

Suppose α is a limit ordinal and P_{β} satisfies the κ chain condition for all $\beta < \alpha$. Let $S = \langle p_i \rangle_{i < \kappa}$ be a subset of P_{α} of size κ . The domains of the elements of p_i form κ finite subsets of α , so if $cf(\alpha) > \kappa$ then these are bounded, and by the inductive hypothesis, two of them are compatible.

Otherwise, if $\operatorname{cf}(\alpha) < \kappa$, let $\langle \alpha_j \rangle_{j < \operatorname{cf}(\alpha)}$ be an increasing sequence of ordinals cofinal in α . Then for any $i < \kappa$ there is some $n(i) < \operatorname{cf}(\alpha)$ such that $\operatorname{dom}(p_i) \subseteq \alpha_{n(i)}$. Since κ is regular and this is a partition of κ into fewer than κ pieces, one piece must have size κ , that is, there is some j such that j = n(i) for κ values of i, and so $\{p_i \mid n(i) = j\}$ is a set of conditions of size κ contained in P_{α_j} , and therefore contains compatible members by the induction hypothesis.

Finally, if $\operatorname{cf}(\alpha) = \kappa$, let $C = \langle \alpha_j \rangle_{j < \kappa}$ be a strictly increasing, continuous sequence cofinal in α . Then for every $i < \kappa$ there is some $n(i) < \kappa$ such that $\operatorname{dom}(p_i) \subseteq \alpha_{n(i)}$. When n(i) is a limit ordinal, since C is continuous, there is also (since $\operatorname{dom}(p_i)$ is finite) some f(i) < i such that $\operatorname{dom}(p_i) \cap [\alpha_{f(i)}, \alpha_i) = \emptyset$. Consider the set E of elements i such that i is a limit ordinal and for any j < i, n(j) < i. This is a club, so by Fodor's lemma there is some j such that $\{i \mid f(i) = j\}$ is stationary.

For each p_i such that f(i) = j, consider $p'_i = p_i \upharpoonright j$. There are κ of these, all members of P_j , so two of them must be compatible, and hence those two are also compatible in P.