БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Отчет по лабораторной работе № 1

Выполнила: Шелег Владислава Михайловна

3 курс 9 группа

Преподаватель: Вечерко Е. В.

МИНСК

1. Задачи

- 1. Сгенерировать последовательность случайных величин длины п независимых случайных, имеющих гипергеометрическое распределение вероятностей
- 2. Построить гистограмму
- 3. Вычислить энтропию, построить статистическую оценку энтропии
- 4. Построить график зависимости среднеквадратической ошибки оценивания энтропии от длины последовательности

2. Теория

Дискретная случайная величина ξ имеет гипергеометрическое распределение вероятностей, то есть $\mathcal{L}\{\xi\} = HG(m,n,k)$, если:

$$P\{\xi = \mathbf{i}\} = \frac{C_m^i C_n^{k-i}}{C_{m+n}^k}$$

Энтропия Н некоторого гипергеометрического распределения равна

$$H = -\sum_{i=0}^{\infty} p_i \log_2 p_i = -\frac{\sum_{i=0}^{\infty} C_m^i C_n^{k-i} \log_2 \left(C_m^i C_n^{k-i} \right)}{C_{m+n}^k}$$

Пусть есть некоторая последовательность случайных величин $X = (x_1, ..., x_n)$. Введем относительную частоту события $\{\xi = i\}$

$$\hat{p}_i = \frac{1}{n} \sum_{j=0}^{n} I\{x_j = i\}$$

Из курса ТВиМС известно, что $\hat{p}_i \to p_i$ при $n \to \infty$. Тогда оценку энтропии можно построить по правилу

$$\widehat{H} = -\sum_{i=0}^{\infty} \widehat{p}_i \log_2 \widehat{p}_i$$

Заметим, что $\widehat{H} \to H$ при $n \to \infty$.

Среднеквадратической ошибкой оценивания называется величина

$$v(\widehat{H}) = E_H \{(\widehat{H} - H)^2\} = (\widehat{H} - H)^2$$

3. Результаты

3.1 m = 150, n = 450, k = 150

На рисунке 1 представлена гистограмма сгенерированной последовательности случайных величин длины n = 10000. Энтропия и ее оценка равны H=4.247099 и $\widehat{H}=4.253125$. Рисунок 2 отражает зависимость $\nu(\widehat{H})$ от n.

Histogram of x

Рисунок 1 Гистограмма для $n=10000,\,m=150,\,n=450,\,k=150$

Рисунок 2 График зависимости среднеквадратичной ошибки от длины последовательности

3.2 m = 100, n = 300, k = 50

На рисунке 3 представлена гистограмма сгенерированной последовательности случайных величин длины n = 10000. Энтропия и ее оценка равны H=3.562881 и $\widehat{H}=3.563189$. Рисунок 4 отражает зависимость $\nu(\widehat{H})$ от n.

Histogram of x

Рисунок 3 Гистограмма для n=10000, m=100, n=300, k=50

Рисунок 4 График зависимости среднеквадратичной ошибки от длины последовательности

3.3 m = 500, n = 500, k = 150

На рисунке 5 представлена гистограмма сгенерированной последовательности случайных величин длины n = 10000. Энтропия и ее оценка равны H=4.544481 и $\widehat{H}=4.533195$. Рисунок 6 отражает зависимость $\nu(\widehat{H})$ от n.

Рисунок 5 Гистограмма для n = 10000, m = 500, n = 500, k = 150

Рисунок 6 График зависимости среднеквадратичной ошибки от длины последовательности

3.4 m = 50, n = 40, k = 20

На рисунке 7 представлена гистограмма сгенерированной последовательности случайных величин длины n = 10000. Энтропия и ее оценка равны H=3.025224 и $\widehat{H}=3.019488$. Рисунок 8 отражает зависимость $\nu(\widehat{H})$ от n.

Histogram of x

Рисунок 7 Гистограмма для $n=10000,\,m=50,\,n=40,\,k=20$

Рисунок 8 График зависимости среднеквадратичной ошибки от длины последовательности