MODULE: DATA ANALYTICS

ASSIGNMENT 2

TOPIC: DATA EXPLORATION and Visualization

For the given Earthquake Dataset

1. Clean and perform steps of Wrangling.

```
import pandas as pd
df = pd.read_csv('/content/earthquake.csv')
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 23412 entries, 0 to 23411

Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Date	23412 non-null	object
1	Time	23412 non-null	object
2	Latitude	23412 non-null	float64
3	Longitude	23412 non-null	float64
4	Туре	23412 non-null	object
5	Depth	23412 non-null	float64
6	Depth Error	4461 non-null	float64
7	Depth Seismic Stations	7097 non-null	float64
8	Magnitude	23412 non-null	float64
9	Magnitude Type	23409 non-null	object
10	Magnitude Error	327 non-null	float64
11	Magnitude Seismic Stations	2564 non-null	float64
12	Azimuthal Gap	7299 non-null	float64
13	Horizontal Distance	1604 non-null	float64

```
14Horizontal Error1156 non-null float6415Root Mean Square17352 non-null float6416ID23412 non-null object17Source23412 non-null object18Location Source23412 non-null object19Magnitude Source23412 non-null object20Status23412 non-null object
```

dtypes: float64(12), object(9)

memory usage: 3.8+ MB

Since in Columns: Depth Error, Depth Seismic Stations, Magnitude Error, Magnitude Seismic Stations, Azimuthal Gap, Horizontal Distance, and Horizontal Error has mostly the null values. Dropping these columns from dataframe is sensible thing to do.

df1 = df.drop(columns=['Depth Error', 'Depth Seismic Stations', 'Magnitude Error', 'Magnitude Seismic Stations', 'Azimuthal Gap', 'Ho
df1.head(2)

	Date	Time	Latitude	Longitude	Туре	Depth	Magnitude	Magnitude Type	Root Mean Square
0	02/01/1965	13:44:18	19.246	145.616	Earthquake	131.6	6.0	MW	NaN
1	04/01/1965	11:29:49	1.863	127.352	Earthquake	80.0	5.8	MW	NaN

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23412 entries, 0 to 23411
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Date	23412 non-null	object
1	Time	23412 non-null	object
2	Latitude	23412 non-null	float64

```
Longitude
                   23412 non-null float64
4
  Type
                23412 non-null object
               23412 non-null float64
  Depth
  Magnitude
                  23412 non-null float64
7 Magnitude Type
                  23409 non-null object
  Root Mean Square 17352 non-null float64
            23412 non-null object
   ID
9
          23412 non-null object
10 Source
11 Location Source 23412 non-null object
12 Magnitude Source 23412 non-null object
13 Status
                  23412 non-null object
```

dtypes: float64(5), object(9)

memory usage: 2.5+ MB

For columns Magnitude Type, and Root Mean Square has some null values.

Imputation: 'Magnitude Type' has object as dtype so frequent value is better method for imputing for null values. OTOH RMS is continuous and dtype float using mean is better method.

df1[df1['Magnitude Type'].isnull()]

		Date	Time	Latitude	Longitude	Туре	Depth	Magnitude	Magnitude Type	Roc Mea Squar
-	6703	08/24/1983	13:36:00	40.3732	-124.9227	Earthquake	11.93	5.70	NaN	Nε
	7294	11/23/1984	18:08:00	37.4600	-118.5900	Earthquake	9.00	5.82	NaN	Nε
	7919	03/31/1986	11:55:00	37.4788	-121.6858	Earthquake	9.17	5.60	NaN	Na

```
freqMT = df1['Magnitude Type'].value counts().idxmax()
freqMT
```

'MW'

avgrms = df1['Root Mean Square'].sum()/ df1['Root Mean Square'].notnull().sum()
avgrms

1.022783990318119

import numpy as np
df1['Magnitude Type'].replace(np.nan, freqMT, inplace=True)
df1['Root Mean Square'].replace(np.nan, avgrms, inplace=True)
df1.head(10)

	Date	Time	Latitude	Longitude	Туре	Depth	Magnitude	Magnitude Type	Root Mean Square
0	02/01/1965	13:44:18	19.246	145.616	Earthquake	131.6	6.0	MW	1.022784
1	04/01/1965	11:29:49	1.863	127.352	Earthquake	80.0	5.8	MW	1.022784
2	05/01/1965	18:05:58	-20.579	-173.972	Earthquake	20.0	6.2	MW	1.022784
3	08/01/1965	18:49:43	-59.076	-23.557	Earthquake	15.0	5.8	MW	1.022784
4	09/01/1965	13:32:50	11.938	126.427	Earthquake	15.0	5.8	MW	1.022784
5	10/01/1965	13:36:32	-13.405	166.629	Earthquake	35.0	6.7	MW	1.022784
6	12/01/1965	13:32:25	27.357	87.867	Earthquake	20.0	5.9	MW	1.022784
7	01/15/1965	23:17:42	-13.309	166.212	Earthquake	35.0	6.0	MW	1.022784
8	01/16/1965	11:32:37	-56.452	-27.043	Earthquake	95.0	6.0	MW	1.022784
9	01/17/1965	10:43:17	-24.563	178.487	Earthquake	565.0	5.8	MW	1.022784

```
df1.info()
     <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 23412 entries, 0 to 23411 Data columns (total 14 columns):

		/ .	
#	Column	Non-Null Count	Dtype
0	Date	23412 non-null	object
1	Time	23412 non-null	object
2	Latitude	23412 non-null	float64
3	Longitude	23412 non-null	float64
4	Туре	23412 non-null	object
5	Depth	23412 non-null	float64
6	Magnitude	23412 non-null	float64
7	Magnitude Type	23412 non-null	object
8	Root Mean Square	23412 non-null	float64
9	ID	23412 non-null	object
10	Source	23412 non-null	object
11	Location Source	23412 non-null	object
12	Magnitude Source	23412 non-null	object
13	Status	23412 non-null	object
dtype	es: float64(5), obj	ject(9)	

memory usage: 2.5+ MB

2. Depict the shape w.r.t skewness in magnitude and visualize its correlation with various attributes of data.

```
import matplotlib.pyplot as plt
import scipy.stats as stats
#convert pandas DataFrame object to numpy array and sort
h = np.asarray(df1['Magnitude'])
```

```
h = sorted(h)
```

#use the scipy stats module to fit a normal distirbution with same mean and standard deviation fit = stats.norm.pdf(h, np.mean(h), np.std(h))

```
#plot both series on the histogram
plt.plot(h,fit,'-',linewidth = 2,label="Normal distribution with same mean and var")
plt.hist(h,density=True,bins = 100,label="Actual distribution")
plt.legend()
plt.show()
```



```
import seaborn as sns
cpl = ['Latitude','Longitude','Depth','Magnitude','Root Mean Square']
fig = plt.figure(figsize=(14,12))
# # subplot #1
plt.subplot(221)
plt.title('Latitude vs Magnitude')
sns.lineplot(data = df1,v='Latitude',x='Magnitude',color='g')
# subplot #2
plt.subplot(2,2,2)
plt.title('Longitude vs Magnitude')
sns.lineplot(data = df1,y='Longitude',x='Magnitude',color='blue')
# subplot #3
plt.subplot(223)
plt.title('Depth vs Magnitude')
sns.lineplot(data = df1, y=df1['Depth'],x=df1['Magnitude'],color='r')
# subplot #4
plt.subplot(2,2,4)
plt.title('RMS vs Magnitude')
sns.lineplot(data = df1, y=df1['Root Mean Square'],x=df1['Magnitude'],color='black')
plt.show()
```


3. Explore the correlation statistics.

sns.pairplot(df1, hue='Magnitude')

<seaborn.axisgrid.PairGrid at 0x7f7087502590>

4. At which point of hour the most of the earthquakes and visualize the same using line plot w.r.t hour attribute.

```
df1 = df1.drop(df.index[df['Time'] == '1975-02-23T02:58:41.000Z'])
df1 = df1.drop(df.index[df['Time'] == '1985-04-28T02:53:41.530Z'])
df1 = df1.drop(df.index[df['Time'] == '2011-03-13T02:23:34.520Z'])
df1['Time']=(pd.to datetime(df1['Time'].str.strip(), format='%H:%M:%S'))
df1['Hour']= df1['Time'].dt.hour
hour counts = df1.groupby('Hour').apply(lambda x: x['Hour'].values)
hour counts = pd.DataFrame(hour counts)
df1.groupby('Hour').size()
     Hour
            948
            954
            974
           1029
            975
            996
            998
           1005
     8
            978
     9
            930
     10
           1017
```

```
11
      981
12
      946
13
     1058
14
      981
15
      926
16
      917
17
      998
18
      1029
19
      996
20
      939
21
      945
22
      923
23
      966
dtype: int64
```

13th Hour has most number of EarthQuakes!

```
df1.groupby('Hour').size().plot(kind='bar',color='g')
```


#WRT Depth
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.lineplot(x='Hour',y='Depth',data=df1, color='g')

2/6/22, 12:54 PM

	Date	Time	Latitude	Longitude	Туре	Depth	Magnitude	Magnitude Type	Root Mean Square
0	02/01/1965	1900- 01-01 13:44:18	19.246	145.616	Earthquake	131.6	6.0	MW	1.022784
1	04/01/1965	1900- 01-01 11:29:49	1.863	127.352	Earthquake	80.0	5.8	MW	1.022784

• 5. Visualize the count w.r.t Source, Type and Magnitude Source.

df1.groupby('Source').size().plot(kind='bar',color='b')

<matplotlib.axes._subplots.AxesSubplot at 0x7f7082a00450>

df1.groupby('Type').size().plot(kind='bar',color='g')

<matplotlib.axes._subplots.AxesSubplot at 0x7f7085f99c10>

df1.groupby('Magnitude').size().plot(kind='bar',color='r')

<matplotlib.axes._subplots.AxesSubplot at 0x7f7085bb5310>

