MATH1115, Calculus Lecture 2

February 19, 2015

Review

We are taking an axiomatic approach to the real numbers:

Assume: \mathbb{R} is a set equipped with certain operations and relations satisfying a collection of axioms. Last time we introduced the algebraic axioms:

There are special elements 1 and 0 such that for all real numbers a, b and c,

- (1). a+b=b+a (commutative axiom for addition)
- (2). (a+b)+c=a+(b+c) (associative axiom for addition)
- (3). a+0=0+a=a (additive identity axiom)
- (4). there is a real number (-a) such that

$$a + (-a) = (-a) + a = 0.$$
 (additive inverse axiom)

- (5). $a \times b = b \times a$ (commutative axiom for multiplication)
- (6). $(a \times b) \times c = a \times (b \times c)$ (associative axiom for multiplication)
- (7). $a \times 1 = 1 \times a = a$, and $0 \neq 1$ (multiplicative identity axiom)
- (8). If $a \neq 0$ then there is a real number a^{-1} such that

$$a \times a^{-1} = a^{-1} \times a = 1$$
 (multiplicative inverse axiom)

(9).
$$a \times (b+c) = a \times b + a \times c$$
 (distributive axiom)

Consequences of the algebraic axioms, continued

Last time we proved the cancellation law: If a + b = a + c then b = c.

Theorem (Theorem 1.2.2 in Hutchinson)

If a, b, c and d are real numbers with $c \neq 0$ and $d \neq 0$, then

(1)
$$ac = bc$$
 implies $a = b$. (Multiplicative version of the cancellation law)

(2)
$$a0 = 0$$
. $a0 + a0 \stackrel{A9}{=} a(0+0) \stackrel{A3}{=} a0$, so $a0 = 0$ by cancellation

(3)
$$-(-a) = a$$
. $(-a) + (-(-a)) \stackrel{A4}{=} 0 \stackrel{A4}{=} (-a) + a$, so $-(-a) \stackrel{cancellation}{=} a$

(4)
$$(c^{-1})^{-1} = c$$
. (Multiplicative version of (3))

(5)
$$(-1)a = (-a)$$
. $(-1)a + a \stackrel{A7}{=} (-1)a + 1a \stackrel{A9}{=} ((-1) + 1)a \stackrel{A4}{=} 0a \stackrel{(2)}{=} 0$

(6)
$$a(-b) = -(ab) = (-a)b$$
. Exercise

(7)
$$(-a) + (-b) = -(a+b)$$
. Exercise

$$(8) (-a)(-b) = ab.$$
 Exercise

(9)
$$\frac{a}{c} \frac{b}{d} = \frac{ab}{cd}$$
. Exercise
(10) $\frac{a}{c} + \frac{b}{d} = \frac{ad+bc}{cd}$. Exercise

Exercise

The axioms (1)-(9) define an algebraic object called a *field*. eg. \mathbb{Q} , \mathbb{Z}_p , $\mathbb{Z} + \sqrt{2\mathbb{Z} \dots}$

Order axioms

The next collection of axioms are about the order relation x < y. These together with the algebraic axioms define an *ordered field*. The order is a relation which is either true or false for any two real numbers a and b, and if true we write a < b.

We assume: For all real numbers a, b and c,

- (10). exactly one of the following holds: a < b or a = b or b < a (Trichotomy axiom)
- (11). If a < b and b < c then a < c (transitivity axiom)
- (12). If a < b then a + c < b + c (addition order axiom)
- (13). If a < b and 0 < c then $a \times c < b \times c$ (multiplication order axiom)

Further definitions:

- If 0 < a we say a is positive, and if 0 < a we say a is negative.
- We say a > b if and only if b < a, and $a \le b$ if a < b or a = b, etc.

Consequences of the order axioms

Example

Show that two real numbers a and b satisfy a - b = b - a if and only if a = b.

Proof: We have to prove both implications. One is easy: If a = b then a - b = a - a = b - a. Conversely, if a - b = b - a, then add b to both sides:

$$(a-b)+b=(b-a)+b.$$

The left-hand side equals a + ((-b) + b) = a + 0 = a, using the definition of subtraction, the associative law of addition, the additive inverse axiom, and the additive identity axiom. The right-hand side equals

$$b + (b + (-a)) = (b + b) + (-a) = (b + b) - a$$

using the commutative and the associative laws for addition. Therefore a=(b-b)-a. Adding a to both sides gives

$$a+a = ((b+b)-a) + a \stackrel{A2}{=} (b+b) + ((-a)+a) \stackrel{A4}{=} (b+b) + 0 \stackrel{A3}{=} b + b.$$

Since we know a = 1.a and b = 1.b by the additive identity law, we can write using the distributive law as

$$(1+1)a = (1+1)b$$
.

so a = b by the multiplicative cancellation law provided $1 + 1 \neq 0$.

Consequences of the order axioms, continued

Proposition

$$1+1 \neq 0$$
.

This cannot be proved using the algebraic axioms (cf. the field \mathbb{Z}_2)

Lemma

0 < 1.

Proof: The axioms give $1 \neq 0$, so by trichotomy either 0 < 1 or 1 < 0. Suppose the latter holds. We claim that 0 < -1: By the addition order axiom we have 1 + (-1) < 0 + (-1) = -1, so 0 < -1. Therefore by the multiplication order axiom we have

$$1(-1) < 0(-1)$$
.

So -1 < 0 (using the multiplicative identity axiom on the left and result a.0 = 0 on the right). This contradicts the trichotomy axiom: We cannot have both -1 < 0 and 0 < -1. Therefore we must have 0 < 1, as claimed.

Now we can prove the proposition: Since 0 < 1, adding 1 to both sides gives 1 < 1+1 (addition order axiom). But then 0 < 1 < 1+1, so 0 < 1+1 (transitivity axiom). By trichotomy we conclude that $1+1 \neq 0$.

Further consequences of order

Theorem (Theorem 1.2.3 in Hutchinson)

If a, b and c are real numbers, then

(1)
$$a < b$$
 and $c < 0$ implies $ac > bc$ (we know $0 < (-c)$)

(2)
$$0 < 1$$
 and $-1 < 0$ (we just proved this)

(3)
$$a > 0$$
 implies $a^{-1} > 0$ (consequence of (2) and trichotomy)

(4)
$$0 < a < b \text{ implies } 0 < b^{-1} < a^{-1}$$
 (multiply by $a^{-1}b^{-1} > 0$)

(5)
$$|a+b| \le |a| + |b|$$
 (triangle inequality) (check various cases)

(6)
$$||a| - |b|| \le |a - b|$$
 (consequence of the triangle inequality)

Here we make the definition |a| = a if $0 \le a$, and |a| = -a if a < 0.

The algebraic and order axioms are still not enough to characterise the real numbers: All of the axioms so far are also satisfied by the rational numbers \mathbb{Q} . The final axiom which distinguishes \mathbb{R} and \mathbb{Q} is called the *completeness axiom*, which captures the idea that the real numbers form a *continuum* without any 'holes'.

Notation and definitions

Some definitions and notation:

- We use curly brackets to denote a set, for example $\mathbb{N} = \{1, 2, 3, \dots\}$.
- The notation $a \in X$ means that a is an element of the set X (we also say 'a is in X').
- If a is not in the set X we can write $a \notin X$.
- We might also write $X = \{x \in Y : P(x)\}$ or $\{x \in Y \mid P(x)\}$ to denote 'the set of elements x of the set Y which also satisfy the property P(x)'. For example $\mathbb{R}_+ = \{x \in \mathbb{R} : 0 < x\}$ is the positive reals.
- The *union* $X \cup Y$ of two sets X and Y is defined by $\{x : x \in X \text{ or } x \in Y\}$. The *intersection* $X \cap Y$ is the set $\{x : x \in X \text{ and } x \in Y\}$.
- We say X is a subset of Y, and write $X \subset Y$, if every element of X is also an element of Y:

$$X \subset Y \iff a \in X \implies a \in Y$$
.

Here \iff is the equivalence symbol, read 'iff and only if' or 'is equivalent to', and \implies is the implication symbol, read 'implies'.

Note: The notation $X \subset Y$ does not mean that X is a proper subset of Y — if you need to convey this you could use the symbol $X \subseteq Y$.

Upper bounds and least upper bounds

Now we make some useful definitions:

Definition

Let $A \subset \mathbb{R}$. We say that a real number a is an *upper bound* for A if $x \in A \implies x \le a$.

For example:

- If $X = [0,1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$, then the numbers $1,2,\ldots$ are all upper bounds for X.
- If $X = \emptyset$ is the empty set, then every real number is an upper bound for X.
- The subsets \mathbb{R} , \mathbb{N} , \mathbb{Z} do not have upper bounds.

We say that a subset X of \mathbb{R} is *bounded above* if there exists an upper bound for X.

Definition

Let $A \subset \mathbb{R}$. A number a is a least upper bound for A if

- (i) a is an upper bound for A, and
- (ii) If b is any upper bound for A, then $a \le b$.

The completeness axiom

Now we are in a position to state the completeness axiom:

Axiom 14: Every non-empty subset X of \mathbb{R} which is bounded above has a least upper bound.

To see the meaning of this, consider the following example:

$$X = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

X is non-empty: $1 \in X$.

X is bounded above:

Lemma

If 0 < x < y then $x^2 < y^2$ (the function $x \to x^2$ is an increasing function on positive numbers).

Proof: Since 0 < x and x < y we have $x^2 < xy$. Since 0 < y (transitivity) and x < y we have $xy < y^2$. Since $x^2 < xy$ and $xy < y^2$ we have $x^2 < y^2$ (transitivity).

Since $2^2 > 2$, we conclude that 2 is an upper bound for X: If any $x \in X$ satisfies x > 2 then we would have $x^2 > 2^2 > 2$, which is impossible since $x \in X \implies x^2 < 2$. So X is bounded above.