(i) We need to identify the TF and can do so in several steps,

Step 1: There are 2 asymptotes at ±90° so there are 2 more poles than there are zeros.

There must be 2 poles originating at $-5\pm2\dot{g}$ so $(5+5+2\dot{g})(5+5-2\dot{g}) = 5^2+105+(5+2\dot{g})(5-2\dot{g})$ $= 5^2+105+29$

The asymptotes approach p=-2.5 and there must be 4 poles and 2 zeros since there are 4 branches in the root locus plot.

$$\int_{1}^{1} = \frac{(-104p_1+p_2)-(z_1+z_2)}{4-2} = \frac{p_1+p_2-10-(z_1+z_2)}{2} = -2.5$$

Step 2: Only [-1,-4] is part of root lock. This means that there are either 2 poles or 2 zeros at the origin since [-1,0] must be to the left of an even number of ol poles/zeros. There are 2 poles or zeros at -1 and -4 Plugging these into p

if $p_1 = -1$ $p_2 = -4$ then $z_1 = z_2 = 0$ -1 - 4 - 10 - 10 + 0 -15 $z_2 = -2.5$ if $z_1 = -1$ $p_2 = 0$ $z_2 = -4$ $p_1 = 0$ $z_2 = -4$ $p_1 = 0$ $z_2 = -2.5$

Step 3: Point of armal near -2 since OL poles move from origin to intersed real axis here.

i.
$$G_{p}(s) = \frac{(s+1)(s+4)}{s^{2}(s^{2}+los+29)}$$

(ii) This is a Type-2 system, so
$$\{e_{ss}=0\}$$

Alternatively,
 $e_{ss} = \lim_{s \to 0} \frac{s R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{s\left(\frac{1}{s^2}\right)}{1 + \frac{(s+1)(s+4)}{s^2(s^2+10s+29)}}$

$$= \lim_{S \to 0} \frac{\left(\frac{1}{5}\right) s^2 \left(s^2 + 10s + 29\right)}{s^2 \left(s^2 + 10s + 29\right) \left(s + 1\right) \left(s + 4\right)} = \lim_{S \to 0} \frac{s \left(s^2 + 10s + 29\right)}{s^2 \left(s^2 + 10s + 29\right) + \left(s + 1\right) \left(s + 4\right)} = \frac{O}{A} = \boxed{O}$$

(111) The previous question shows that the steady-state error is zero for a ramp. Since there is already a double pole at the origin, adding a third one won't really improve performance.

$$(\lambda V)$$
 $G_c = S+2$ so $G_pG_c = \frac{(S+1)(S+2)(S+4)}{S^2(S^2+10S+29)}$

Rule 4 4 O.L. poles-3 O.L. zeros = 1 asymptote
Rule 5 asymptote is 180°
Rule 6 N/A
Rule 8 [-2,-1] U [-20,-4]
Rule 9 Point of arrival 150°

(v) The advantage is that for large gains, the poles are purely real thus stability is bether and without high-frequency oscillations.

B2 Solutions

$$\dot{\chi} = -\chi + Z - \chi^2 Z - y^2$$
 $\dot{y} = Z$
 $\dot{z} = -4(\chi + 1)^2 - Z + u$

(1) Equilibrium points mean that $\dot{\chi} = \dot{\dot{y}} = \dot{\dot{z}} = 0$ therefore $\dot{\dot{y}} = 0 = Z$ $\dot{\dot{z}} = -4(\chi + 1)^2 - 0 + \omega = 0$

$$Z = -4(x+1) - 0 + (x = 0)$$

$$(x+1)^{2} = 0 \quad [x=-1]$$

$$\lambda^{2} = 0 = -1 + (1-1)^{2}, \quad 0 = 4^{2}$$

$$\dot{x} = 0 = -1 + 0 - (-1)^{2}, 0 - y^{2}$$

$$y^{2} = 1 \quad \boxed{y = \pm 1}$$

(ii) Lineanse around (-1,1,0)

$$\chi = \chi_0 + \xi \chi_1 = -1 + \xi \chi_1$$
 $\chi = \xi \chi_1$
 $\chi = \xi \chi_1$

y is easy as it's already linear

Ey, = Ez, = [j=Z]

let's consider x next

$$\xi \dot{\chi} = -(4+\xi \chi_1) + \xi z_1 - (-1+\xi \chi_1)^2 (\xi z_1) - (4+\xi y_1)^2$$

$$\xi \dot{\chi} = A - \xi \chi_1 + \xi Z_1 - (1 - 2\xi \chi_1 + \xi \chi_1^2)(\xi Z_1) - (A + 2\xi \chi_1 + \xi^2 \chi_1^2)$$

$$\xi \dot{\chi} = -\xi \chi_1 + \xi Z_2 - \xi Z_1 + 2\xi^2 \chi_1^2 + \xi^2 \chi_1^2$$

$$\xi \chi_{1} = -\xi \chi_{1} + \xi \xi_{1} - \xi \xi_{1} + 2\xi \chi_{1} \xi_{1} - \xi_{2} \chi_{1} \xi_{1} - \xi_{3} \chi_{1} \xi_{1} - 2\xi \chi_{1} - \xi_{3} \chi_{1}^{2}$$

$$\therefore \left[\chi_{1} = -\chi_{1} - 2\chi_{1} \right]$$

Z turns out to be easy

$$6\dot{z}_{i}=-4(-1+6x_{i}+1)^{2}-6z_{i}$$

 $6\dot{z}_{i}=-4e^{2}x_{i}^{2}-6z_{i}$ $|\dot{z}_{i}=-z_{i}|$

(REE) This is straightforward

$$\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
-4 - 2 & 0 \\
0 & 0 & 1 \\
2
\end{pmatrix} + \begin{pmatrix}
0 \\
4
\end{pmatrix} u$$
Mote that the A matrix is upper triangular so eigenvalues are diagonal entries and the system is magnally stable.

(IV) Need to finid rank of $S = EB$ AB AB $AB = EB$

$$AB = \begin{pmatrix}
-1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & -1 \\
-1 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 0 - 2 \\
-1 & 1
\end{pmatrix}$$
So $C = \begin{pmatrix}
0 & 0 - 2 \\
0 & 1 & 1 \\
1 - 1 - 1
\end{pmatrix}$

The columns of C are linearly independent so the matrix is full-rank and the system is controllable.

(V) We only need to modify the SCA pole. Assuming $K = EB$ o EB and EB is EB and EB and EB are EB and EB are EB are EB are EB are EB and EB are EB are EB are EB are EB are EB are EB and EB are EB are

(Vi) The system would be overdetermined so no as cholic of K is not unique. B3 Solutions

(i) This is difficult to do w/ great accuracy but the key is the phase plot. We initially begin with -360° and ramp up guickly to -180° at w = 1. There is also a resonance peak here so this indicates a quadratic lay that is unstable

so _____ where $w_n \approx 1$ $s^2 - 2 \int w_1 + w_n^2$ since there is not much damping approximate damping ratio as $s^2 = 0.1$

: TF must contain 1 5-0,25+1

There is an increase in phase from 10° to 10° indicating a zero around w = 40. This is confirmed by the less negative slope of the magnitude plot. There is a decrease in phase from 10° to 40° indicating a pole around w = 400.

The overall TT is approximately

$$G_{p} = \frac{(s+10)}{(s^{2}-0.2s+1)(s+100)}$$

(ii)

The start is -360° at roughly odB

At -270°, amplitude or magnitude reaches the

peak value

At -180°, magnitude

below odB

approaches -135°

Decreases to -20dB at -180°

