Quasi-Convex Programming

Quasi-convex programming is a powerful optimization technique with diverse applications in electronic design automation. It enables solving complex problems by leveraging the properties of quasi-convex functions - a class of functions that generalize the well-known convex functions.

Definitions and Properties

Quasi-Convex Functions

A function is quasi-convex if its sublevel sets are convex. This allows for more flexibility compared to traditional convex optimization.

Key Properties

Quasi-convex functions preserve many desirable properties of convex functions, such as local optimality implying global optimality.

Practical Significance

Quasi-convex formulations enable solving a wide range of non-convex problems in electronic design automation efficiently.

Examples of Quasi-Convex Functions

- \$\sqrt{|y|}\$ is quasi-convex on \$\mathbb{R}\$.
- Product Function

f(x, y) = x y is quasi-concave on $\frac{h}{R}_{++}^2$.

Logarithm

\$\log(y)\$ is quasi-linear on \$\mathbb{R}_{++}\$.

Linear-Fractional Function

 $f(x) = (a^{\mathbb{T}} x + b)/(c^{\mathbb{T}} x + d)$ d)\$ with domain $x \in c^{\mathbb{T}} x + d > 0$ }\$.

Properties of Quasi-Convex Functions

Convex Sublevel Sets

If **f** is quasi-convex, there exists a family of convex functions **φt** such that the **t**-sublevel set of **f** is the **0**-sublevel set of **φt**.

Monotonicity

 ϕt is non-increasing with respect to t for fixed β , meaning the sublevel sets of f are nested.

Fractional Functions

An example of a quasi-convex function is $f(\beta) = p(\beta)/q(\beta)$, where p is convex, q is concave, $p(\beta) \ge 0$, and $q(\beta) > 0$ on the domain of f.

Optimization Problems

່ງ Constraint Formulations 🤔

Quasi-convex constraints can model a variety of non-convex requirements in electronic design.

2 Global Optimality

Quasi-convex optimization can often guarantee global optimality, unlike general non-convex programming.

3 Efficient Algorithms

Specialized algorithms have been developed to solve quasi-convex programs effectively.

Solving Quasi-Convex Programs

2

3

Bisection

Iterative algorithms that leverage the quasi-convexity of the objective function.

Outer Approximation

Constructing a sequence of convex relaxations to solve the original non-convex problem.

Geometric Programming

Transforming certain quasi-convex problems into an equivalent convex formulation.

Applications in EDA

Circuit Design

Quasi-convex optimization can be applied to analog circuit design, device sizing, and other circuit-level problems.

VLSI Design

Power optimization, yield maximization, and other VLSI design challenges can be formulated as quasi-convex programs.

EDA Tools

Quasi-convex programming is being increasingly integrated into modern electronic design automation (EDA) software tools.

Placement and Routing Optimization

_____Component Placement 🤔

Quasi-convex formulations can optimize the positioning of circuit components on a chip or PCB to minimize wiring length and congestion.

2 ____ Wire Routing 🤔

Quasi-convex programming can be used to find optimal routes for interconnections between components, balancing constraints such as shortest path and minimum crosstalk.

Design Convergence

The iterative nature of quasi-convex optimization algorithms can help achieve convergence to high-quality, manufacturable design solutions.

Analog Circuit Design 🤔

Quasi-convex programming can be used to optimally size transistors and other analog components to meet performance targets.

Layout Synthesis

Quasi-convex formulations can guide the physical layout of analog circuits to enhance parameters like matching and parasitics.

Biasing Circuits

Quasi-convex techniques can optimize the design of biasing networks to ensure stable and robust analog circuit operation.

Yield Optimization

Quasi-convex programming can be employed to maximize the manufacturing yield of analog integrated circuits.

Power Optimization in VLSI

Objective	Minimize power consumption
Constraints	Performance, area, and reliability requirements
Quasi-Convex Approach	Model power as a quasi-convex function of design parameters
Benefits	Global optimality, efficient algorithms, scalable solutions

Yield Optimization

Manufacturing Variability

Quasi-convex programming can model the impact of process variations on circuit performance and yield.

Robust Design

Quasi-convex optimization can generate designs that are less sensitive to manufacturing uncertainties, improving overall yield.

Statistical Modeling

Quasi-convex formulations can leverage statistical techniques to optimize for manufacturability and yield targets.

Future Directions

The Emerging Applications

Expanding the use of quasiconvex programming to new domains in electronic design automation, such as RF circuit design and machine learningbased EDA.

2 Algorithmic Advances

Developing more efficient and scalable quasi-convex optimization algorithms to handle the increasing complexity of modern electronic designs.

3 Integration with EDA Tools

Seamlessly integrating quasiconvex programming techniques into mainstream electronic design automation software for broader industry adoption.

