Krull-Schmidt-Remak-Azumaya Theorem

Hikmet Burak Özcan

Dokuz Eylül University hikmetburakozcan@gmail.com

İzmir Mathematics Days 1, Yaşar University

26/06/2018

Overview

- Introduction
- 2 Local Rings
- Proof of KSRA

Introduction

Motivation Examples

- The fundamental theorem of arithmatic states that every positive integer can be written as a unique product of prime numbers up to ordering.
- The fundamental theorem of finite abelian groups states that every finite abelian group G can be expressed (uniquely) as the direct sum of cyclic subgroups of prime-power order.

Question

- It is natural to ask that a decomposition of an arbitray module into indecomposable summands (if exists) is unique up to isomorphism.
- KSRA gives an affirmative answer for this natural question.

Theorem (Krull-Schmidt-Remak-Azumaya)

Let M be a module that is a direct sum of modules with local endomorphism rings. Then, any two direct sum decompositons of M into indecomposable direct summands are isomorphic.

Characterization of Local Rings

Definition

Let R be an arbitrary ring with unity and $A = \{a \in A \mid a \text{ is non invertible}\}$. R is said to be a **local** ring if one of the following equivalent properties is satisfied:

- A is additively closed.
- A is a two sided ideal.
- A is the largest proper right ideal.
- A is the largest proper left ideal.
- **1** In *R* there exists a largest proper right ideal.
- **1** In *R* there exists a largest proper left ideal.
- **o** For every $r \in R$ either r or 1 r is right invertible.
- **3** For every $r \in R$ either r or 1 r is left invertible.
- **9** For every $r \in R$ either r or 1 r is invertible.

Example

The power series ring $K[[x]] = \{\sum_{n=0}^{\infty} a_n x^n \mid a_n \in K\}$ over a field K is local. The non-invertible elements are precisely those with constant term zero and the set of these elements is additively closed.

Example

Localizations of commutative rings at prime ideals are local.

 $R_{(P)}=\{rac{r}{a}\mid r\in R\land a\in R\setminus P\}$ is a ring. The elements of the form $rac{r}{a}$ with $r\in P$ are non-invertible. The set of these elements is additively closed and consequently $R_{(P)}$ is a local ring.

Definition

In a ring R an element $e \in R$ is said to be idempotent if $e^2 = e$.

Proposition

If R is a local ring, then R has only trivial idempotents 0 and 1.

Proposition

The following are equivalent for a ring R:

- R_R is indecomposable.
- RR is indecomposable.
- 3 R has the only trivial idempotents.

Theorem

Let $S = End(M_R)$, then the following are equivalent:

- \bullet M_R is indecomposable.
- \circ S_S is indecomposable.
- § S is indecomposable.
- S has the only trivial idempotents.

Corollary

If $S = End(M_R)$ is a local ring, then M is indecomposable.

Exchange Property

Definition

Given a cardinal \aleph , an R-module M is said to have the \aleph -exchange property if for any R-module G and any two decompositions

$$G=M'\oplus N=\bigoplus_{i\in I}A_i,$$

where $M' \cong M$ and $|I| \leq \aleph$, there are R-submodules B_i of A_i for every $i \in I$ such that

$$G=M'\oplus\left(\bigoplus_{i\in I}B_i\right).$$

We say that M has exchange property if M has \aleph -exchange property for every cardinal \aleph .

Proposition

Let $M = M_1 \oplus M_2$ be a module. M has the exhange property if and only if M_1 and M_2 have the exchange property.

Proposition

If a module M has 2-exchange property, then it has finite exchange property.

Theorem

Let M be an indecomposable right R-module. Then the following properties are equivalent:

- End(M_R) is local.
- M has the finite exchange property.
- M has the exchange property.

Lemma

Let M be a module with the \aleph -exchange property and let $M = \bigoplus_{i \in I} A_i = \bigoplus_{j \in J} B_j$ with I is finite and $|J| \leq \aleph$. If each A_i and B_i are indecomposable, then these two direct sum decompositions of M are isomorphic.

Theorem (Krull-Schmidt-Remak-Azumaya)

Let M be a module that is a direct sum of modules with local endomorphism rings. Then, any two direct sum decompositons of M into indecomposable direct summands are isomorphic.

Idea of the proof:

Let $M = \bigoplus_{i \in I} M_i = \bigoplus_{j \in J} N_j$, where $End(M_i)$ is local and N_j is indecomposable.

Consider an indecomposable module A and define

$$I_A = \{i \in I | M_i \cong A\}$$

and

$$J_A = \{j \in J | N_j \cong A\}.$$

Aim: $|I_A| = |J_A|$.

Case 1: $|I_A| < \infty$

Let $M(I) := \bigoplus_{i \in I} M_i$ and $N(J) := \bigoplus_{j \in J} N_j$. Then,

$$M(I_A) \oplus M(I - I_A) = N(J)$$

and $M(I_A)$ has the exhange property. So,

$$M(I_A) \oplus N(J') = N(J),$$

where $N(J) = N(J') \oplus N(J - J')$ and $M(I_A) \cong N(J - J')$. (Aim: $J - J' = J_A$)

$$M(I_A) \cong N(J-J')$$

Hence,

$$\theta:I_A\longrightarrow (J-J')$$

is a bijection s.t. $M_i \cong N_{\theta(i)}$ which means that $(J - J') \subseteq J_A$.

Conversely, $M(I - I_A)$ does not have a direct summand which is isomorphic to A.

Since $M(I - I_A) \cong N(J')$, $J_A \subseteq (J - J')$. As a resut $J_A = (J - J')$ which implies that $M(I) \cong N(J)$ when $|I_A|$ is finite.

Q.E.D.

Corollary (1)

Any two direct sum decompositions of a semisimple module into simple direct summands are isomorphic.

Corollary (2)

If M_R is an R-module that is a direct sum of artinian modules with simple socle. Then any two direct sum decompositions of M_R into indecomposable summands are isomorphic.

Corollary (3)

Let M_R be an R-module that is a direct sum of noetherian local modules. Then any two direct sum decompositions of M_R into indecomposable summands are isomorphic.

Open Question 1

Does a module with the finite exchange property have the exchange property?

Open Question 2

Suppose that M_R is a right R-module satisfying the assumption of KSRA Theorem and $M = N \oplus N'$.

Does N also satisfy the assumption of KSRA Theorem? In other words, is N a direct sum of modules with local endomorphism rings?

References

Facchini, Alberto, Module theory endomorphism rings and direct sum decompositions in some classes of modules, Birkhäuser, 1998.

F. Kasch, Modules and Rings, Academic Press, 1982.

T.Y. Lam, A First Course in Noncommutative Rings, Springer, 2001.

Thank \bigoplus You