CS XXX: Introduction to Large Language Models

A model is a function that maps feature vectors to target values.

x_1	x_2	y
6	3300	2050
5	3100	2200

 Lots of problems that we want to solve (regression, classification) frequently center around creating functions that are non-linear

Non-linear Classification

Is there a model class that allows approximating any function (model)?

 A Neural Network (NN) with one hidden layer and a sufficient number of neurons, using a non-linear activation function (like sigmoid, ReLU, or tanh), can approximate any continuous function on a compact domain to any desired degree of accuracy.

Neuron Model

Apply Activation function

$$y = \sigma(\theta_{11}x_1 + \theta_{12}x_2 + \theta_{13}x_3)$$

 χ_2

 χ_3

 $\rightarrow h_{\theta}(x)$

Apply Activation function

$$\boldsymbol{\sigma}(\theta_{11}x_1 + \theta_{12}x_2 + \theta_{13}x_3) = \boldsymbol{\sigma}(\theta_1^{\mathsf{T}} \cdot \mathbf{x}) = \boldsymbol{\sigma}\left(\begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right)$$

Neuron Model

Apply Activation function

e.g.
$$ReLU(\theta_1^T \cdot x) = max(0, \theta_1^T \cdot x)$$

 Perceptron (Neuron) Layer consists of stacked neurons that share the same inputs

 Perceptron (Neuron) Layer consists of stacked neurons that share the same inputs

Perceptron (Neuron) Layer consists of stacked neurons that share the

same inputs

 $\theta_1 = \begin{pmatrix} \theta_{11} \\ \theta_{12} \\ \theta_{13} \end{pmatrix}, \ \theta_2 = \begin{pmatrix} \theta_{21} \\ \theta_{22} \\ \theta_{23} \end{pmatrix}, \ \theta_3 = \begin{pmatrix} \theta_{31} \\ \theta_{32} \\ \theta_{33} \end{pmatrix}, \ \theta_4 = \begin{pmatrix} \theta_{41} \\ \theta_{42} \\ \theta_{43} \end{pmatrix}$

$$y_1 = \boldsymbol{\sigma}(\theta_1^{\mathrm{T}} \cdot \mathbf{x})$$

$$y_2 = \boldsymbol{\sigma}(\theta_2^{\mathsf{T}} \cdot \mathbf{x})$$

$$y_3 = \boldsymbol{\sigma}(\theta_3^{\mathsf{T}} \cdot \mathbf{x})$$

$$y_4 = \boldsymbol{\sigma}(\theta_4^{\mathrm{T}} \cdot \mathbf{x})$$

Use matrices instead

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \boldsymbol{\sigma} \begin{pmatrix} \begin{pmatrix} \theta_1^T \\ \theta_2^T \\ \theta_3^T \\ \theta_4^T \end{pmatrix} \cdot \mathbf{x} \end{pmatrix}$$

 Perceptron (Neuron) Layer consists of stacked neurons that share the same inputs

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \boldsymbol{\sigma} \begin{pmatrix} \begin{pmatrix} \theta_1^T \\ \theta_2^T \\ \theta_3^T \\ \theta_4^T \end{pmatrix} \cdot \mathbf{x} \\ \mathbf{y} & \mathbf{W} \end{pmatrix}$$

Weight Matrix: Matrix of parameters

$$\mathbf{W} = \begin{pmatrix} \theta_1^{\mathsf{T}} \\ \theta_2^{\mathsf{T}} \\ \theta_3^{\mathsf{T}} \\ \theta_4^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \\ \theta_{41} & \theta_{42} & \theta_{43} \end{pmatrix}$$

$$y = \sigma(\mathbf{W}x) = \sigma \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \\ \theta_{41} & \theta_{42} & \theta_{43} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

We can start to cascade these layers to form the full neural network

$$\mathbf{y}^{(1)} = \boldsymbol{\sigma_1}(\mathbf{W_1}\mathbf{x}) = \boldsymbol{\sigma_1} \begin{pmatrix} \theta_{11}^{(1)} & \theta_{12}^{(1)} & \theta_{13}^{(1)} \\ \theta_{21}^{(1)} & \theta_{22}^{(1)} & \theta_{23}^{(1)} \\ \theta_{31}^{(1)} & \theta_{32}^{(1)} & \theta_{33}^{(1)} \\ \theta_{41}^{(1)} & \theta_{42}^{(1)} & \theta_{43}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$y^{(2)} = \sigma_2(W_2 y^{(1)})$$

$$h_{\theta}(x) = y^{(2)}$$

$$= \sigma_2(\mathbf{W}_2 y^{(1)})$$

$$= \sigma_2(\mathbf{W}_2(\sigma_1(\mathbf{W}_1 x)))$$

Adding Layers: Deep Neural Networks

RECALL

• The classic definition of a language model (LM) is **a probability distribution over sequences of tokens**. Suppose we have a **vocabulary** V of a set of tokens. A language model p assigns each sequence of tokens $x_1, ..., x_L \in V$ a probability (a number between 0 and 1):

$$p(x_1, ..., x_L) = p(x_{1:L})$$

A model that computes either of these

 $p(x_{1:L})$ or $p(x_4|x_1,x_2,x_3)$ is called a Language Model (LM)

Enter Neural Networks

Enter Neural Networks

Probability distribution over the vocabulary V

Every token needs to have a unique numeric representation.

• Example: One-hot Vector

Vocabulary	
man	<1,0,0,0>
eats	<0,1,0,0>
cheese	<0,0,1,0>
fish	<0,0,0,1>

Represent tokens with low dimensional vectors called embeddings

man =
$$\begin{bmatrix} 0.68 \\ 0.12 \\ 0.84 \end{bmatrix}$$
, eats = $\begin{bmatrix} 0.27 \\ 0.91 \\ 0.43 \end{bmatrix}$

The values of embedding represent properties that are used to represent words.

 Similar words will have embeddings close to each other in dimensional space

Represent tokens with low dimensional vectors called embeddings

man =
$$\begin{bmatrix} 0.68 \\ 0.12 \\ 0.84 \end{bmatrix}$$
, eats = $\begin{bmatrix} 0.27 \\ 0.91 \\ -0.43 \end{bmatrix}$

 These embeddings are composed into some low-dimensional vector representing a complete phrase, or sentence.

Compose
$$\begin{pmatrix} \begin{bmatrix} 0.68 \\ 0.12 \\ 0.84 \end{bmatrix}$$
, $\begin{bmatrix} 0.27 \\ 0.91 \\ -0.43 \end{bmatrix}$ = $\begin{bmatrix} -2.3 \\ 0.9 \\ 5.4 \end{bmatrix}$ represents "man eats"

Finding a distribution over *V*

 Lets say our vocabulary consists of four words:

• "man eats" =
$$\begin{bmatrix} -2.3 \\ 0.9 \\ 5.4 \end{bmatrix}$$

Finding a distribution over *V*

 W contains feature weights for a corresponding word in the vocabulary

$$W = \begin{pmatrix} 1.2 & -0.3 & 0.9 \\ 0.2 & 0.4 & -2.2 \\ 8.9 & -1.9 & 6.5 \\ 4.5 & 2.2 & -0.1 \end{pmatrix} \frac{\text{cheese}}{\text{man}} \frac{\text{man}}{\text{fish}}$$

• "man eats" =
$$\begin{bmatrix} -2.3\\0.9\\5.4 \end{bmatrix}$$

Finding a distribution over *V*

 W contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \begin{pmatrix} 1.2 & -0.3 & 0.9 \\ 0.2 & 0.4 & -2.2 \\ 8.9 & -1.9 & 6.5 \\ 4.5 & 2.2 & -0.1 \end{pmatrix} \frac{\text{cheese}}{\text{man}} \frac{\text{man}}{\text{fish}}$$

• "man eats"(x) =
$$\begin{bmatrix} -2.3 \\ 0.9 \\ 5.4 \end{bmatrix}$$

$$\mathbf{W}x = \begin{pmatrix} 1.8 \\ -1.9 \\ 2.9 \\ -8.9 \end{pmatrix}$$

Finding a distribution over *V*

Apply Softmax function to get probability distribution

$$softmax(x) = \frac{e^x}{\sum_j e^{x_j}}$$

$$\mathbf{W}x = \begin{pmatrix} 1.8 \\ -1.9 \\ 2.9 \\ -8.9 \end{pmatrix}$$

softmax(**W**x) =
$$\frac{\langle e^{1.8}, e^{-1.9}, e^{2.9}, e^{-8.9} \rangle}{e^{1.8} + e^{-1.9} + e^{2.9} + e^{-8.9}}$$

$$softmax(\mathbf{W}x) = < 0.24, 0.006, 0.73, 0.02 >$$

p(man|man eats) p(fish|man eats)*p*(cheese|man eats) man eats. *p*(eats|man eats) Input **Embedding** Hidden Output

Finding a distribution over V

 $softmax(\mathbf{W}x) = < 0.24, 0.006, 0.73, 0.02 >$

"man eats fish"

A problem: Fixed Window

A problem: Fixed Window

Stanford has a new course on large language models. It will be taught by _____

taught by <u>???</u>

- Solution: Attention (Next Lecture)
 - Full-Sequence Access: Attention computes dependencies between all pairs of tokens in the entire input sequence enabling direct modeling of long-range dependencies.