Data Leakage in Notebooks: Static Detection and Better Processes

Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner

Carnegie Mellon University

Why ML Models Fail in Production?

ML models

Software systems

High test accuracy

Low production accuracy

When is Test Accuracy not Reliable?

Non-representative test data

African Bush Elephant

North America Wild Horse

Low production accuracy

When is Test Accuracy not Reliable?

Data leakage: leak test data into model development

through repeated evaluation, pre-processing, and dependency

We use static analysis to detect data leakage in ~281k notebooks

~81k GitHub repositories created in Sep. 2021

2 top Kaggle competitions

Principle of Independent Evaluation

Data Leakage #1: through Repeated Evaluation

Models overfit to test data after repeated evaluation

Data Leakage #2: through Preprocessing

Peeking at test data in competitions is common

	Unknown words							
Training data	the	red	dog	cat	eats	food		
 the red dog -> 	1	1	1	0	0	0		
2. cat eats dog ->	0	0	1	1	1	0		
 dog eats food→ 	0	0	1	0	1	1		
 red cat eats → 	0	1	0	1	1	0		
Test data		Diffe	rent	dist	ributi	on 🖊		

Data Leakage #3: through Dependency

Data augmentation could introduce dependency

Train/test dependency

Inflated test accuracy!

Found by our tool in

~6% notebooks

Data Leakage is Prevalent in Practice

~281k notebooks from GitHub and Kaggle

~30% GitHub notebooks have data leakage issues

33% assignments (keyword: 'assignment', 'homework')

20% popular notebooks (>=10 stars)

16% tutorials (keyword: 'this tutorial')

55% competition solutions leak through preprocessing

Leakage Exhibits Non-local Patterns

Leakage happens here

X, v = SMOTE(), fit resample(X raw, v raw)

Lots of code in between

import pandas as pd from sklearn feature selection import SelectPercentile, chi2 from sklearn.model selection import LinearRegression, Ridge X_0, y = load_data() select = SelectPercentile(chi2, percentile=50) select.fit(X 0) X = select.transform(X 0)

X_train, y_train, X_test, y_test = train_test_split(X, y) lr = LinearRegression() lr.fit(X train, v train) lr_score = lr.score(X_test, y_test)

ridge = Ridge() ridge score = ridge.score(X test, v test)

final_model = lr if lr_score > ridge_score else ridge

(DecisionTreeClassifier(), "Decision Tree"), (Perceptron(), "Perceptron")): clf.fit(X_train, y_train) pred = clf.predict(X_test) score = metrics.accuracy_score(y_test, pred) results.append(score, name)

wordsVectorizer = CountVectorizer() fit(text) wordsVector = wordsVectorizer.transform(text) invTransformer = TfidfTransformer().fit(wordsVector) invFreqOfWords = invTransformer.transform(wordsVector)

X = pd.DataFrame(invFreqOfWords.toarray()) train, test, spamLabelTrain, spamLabelTest = train_test_split(X, y, test_size = 0.5) predictAndReport(train, test)

X selected = SelectKBest(k=25).fit_transform(X, y)

X_train, X_test, y_train, y_test = train_test_split(X_selected, y, random_state=42) abc = GradientRoosting(lassifier(random state=1) gbc.fit(X_train, y_train)

v pred = qbc.predict(X test) accuracy_score(y_test, y_pred)

from sklearn, pipeline import make pipeline X_train, X_test, y_train, y_test = train_test_split(X, y, random state=42) pipeline = make_pipeline(SelectKBest(k=25), GradientBoostingClassifier(random state=1)) pipeline.fit(X train, v train)

y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)

Training

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) rf = RandomForestClassifier().fit(X_train, y_train)

Leakage and training are often far apart

Hard for manual detection!

span >20% of the whole notebook in >50% cases

Could we statically detect data leakage?

Statically Detecting Data Leakage

Walkthrough Example

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model selection import LinearRegression, train test split
data = pd.read_csv('data.csv')
                                                  -Load data
X_raw = data.drop('label', axis=1)
y = data['label']
select = SelectPercentile(chi2, percentile=50)
                                                  - Feature selection
select.fit(X_raw)
X = select.transform(X raw)
X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
                                                  - Model training & evaluation
lr.fit(X train, y train)
lr_score = lr.score(X_test, y_test)
```

Test Data is Used for Feature Selection

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model selection import LinearRegression, train test split
data = pd.read csv('data.csv')
X_raw = data.drop('label', axis=1)
y = data['label']
select = SelectPercentile(chi2, percentile=50)
                                                  - Feature selection
select.fit(X_raw)
X = select.transform(X_raw) Preprocessing Leakage
X_train, y_train, X_test, /y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X train, y train)
lr score = lr.score(X test, y test)
```

When is an Operation Leakage-inducing?

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import LinearRegression, train_test_split
data = pd.read_csv('data.csv')
X_raw = data.drop('label', axis=1)
y = data['label']

select = SelectPercentile(chi2, percentile=50)
select.fit(X_raw)
X = select.transform(X_raw)

X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X_train, y_train)
lr_score = lr.score(X_test, y_test)
```

	col1	col2	
1	3	4	
2	0	1	
3	6	3	col1
4	-3	6	
5	2	1	

Computing across rows could lead to leakage

When is an Operation Leakage-inducing?

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import LinearRegression, train_test_split
data = pd.read_csv('data.csv')
X_raw = data.drop('label', axis=1)
y = data['label']

select = SelectPercentile(chi2, percentile=50)
select.fit(X_raw)
X = select.transform(X_raw)

X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X_train, y_train)
lr_score = lr.score(X_test, y_test)
```

		col1	col2			col1
	1	3	4	\longrightarrow	1	3
	2	0	1	─	2	0
	3	6	3	─	3	6
Ī	4	-3	6	─	4	-3
	5	2	1	 →	5	2

Computing each row independently is safe

When is an Operation Leakage-inducing?

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import LinearRegression, train_test_split
data = pd.read_csv('data.csv')
X_raw = data.drop('label', axis=1)
y = data['label']

select = SelectPercentile(chi2, percentile=50)
select.fit(X_raw)
X = select.transform(X_raw)

X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X_train, y_train)
lr_score = lr.score(X_test, y_test)
```


Computing each row independently is safe

Reduce-like Operations could Lead to Leakage

reduce

map

filter

Detecting Data Leakage with Data-flow

reduce

map/filter

*There are more subtleties in tracking data-flow and determining whether two datasets are related: see our paper for details.

Implementation

Evaluation: Accuracy & Efficiency

93% accuracy from comparing results with 100 manually labeled sample notebooks

3 seconds (avg.) of analysis on a standard desktop with Intel Xeon CPU and 32GB memory

Recall: Data Leakage is Prevalent in Practice

~30% GitHub notebooks have data leakage issues

33% assignments

20% popular notebooks

16% tutorials

55% competition solutions leaks through preprocessing

Could we avoid data leakage in practice?

Data Leakage: Better Processes

Static analysis as warnings in notebooks

```
import pandas as pd
from sklearn.feature selection import SelectPercentile, chi2
from sklearn.model selection import LinearRegression, train test split
data = pd.read csv('data.csv')
X_raw = data.drop('label', axis=1)
v = data['label']
select = SelectPercentile(chi2, percentile=50)
select.fit(X raw) data leakage (preprocessing)
X = select.transform(X raw)
X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X_train, y_train) train
lr score = lr.score(X test, y test) test
```

Data Leakage: Better Processes

Limited access to test label/data

Data Leakage: Better Processes

API Design to prevent leakage

```
X_selected = SelectKBest(k=25).fit_transform(X, y)
X_train, X_test, y_train, y_test = train_test_split(
    X_selected, y, random_state=42)
gbc = GradientBoostingClassifier(random_state=1)
gbc.fit(X_train, y_train)

y_pred = gbc.predict(X_test)
accuracy_score(y_test, y_pred)
```

PIPELINE Imputation Scaling Input Data Feature Engineering PCA

Takeaways

Data Leakage is **prevalent** in practice (in ~30% GitHub notebooks)

Model development

Static analysis and better process designs could help

```
import pandas as pd
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import LinearRegression, train_test_split
data = pd.read_csv('data.csv')
X_raw = data.drop('label', axis=1)
y = data['label']
select = SelectPercentile(chi2, percentile=50)
select.fit(X_raw) data leakage (preprocessing)
X = select.transform(X_raw)

X_train, y_train, X_test, y_test = train_test_split(X, y)
lr = LinearRegression()
lr.fit(X_train, y_train) train
lr_score = lr.score(X_test, y_test) test
```


Bonus: Practical Impact of Data Leakage

Often marginal accuracy differences

Data leakage makes models "learn" from random data

Data leakage leads to flawed experiments and wasted time

```
import numpy as np
   # generate random data
   n_samples, n_features, n_classes = 200, 10000, 2
   rng = np.random.RandomState(42)
   X = rng.standard_normal((n_samples, n_features))
   v = rng.choice(n_classes, n_samples)
   # leak test data through feature selection
   X_selected = SelectKBest(k=25).fit_transform(X, y)
10
   X_train, X_test, y_train, y_test = train_test_split(
       X_selected, y, random_state=42)
12
   gbc = GradientBoostingClassifier(random_state=1)
   gbc.fit(X_train, y_train)
15
   y_pred = gbc.predict(X_test)
   accuracy_score(y_test, y_pred)
   # expected accuracy ~0.5; reported accuracy 0.76
```