Избранные Главы Линейной Алгебры Факультатив

Вадим Гринберг Юрий Баранов

Содержание

1	Псевдообратная матрица			
	1.1	Свойства	2	
	1.2	Скелетное разложение	2	
	1.3	Решение по методу наименьших квадратов	2	
2	Сингулярное разложение			
	2.1	Суть	3	
	2.2	Алгоритм построения	3	
3	Приближённые решения			
	3.1	Псевдорешение СЛУ	4	
	3.2	Интерполяция	4	
		3.2.1 Определитель Вандермонда	4	
		3.2.2 Интеполяционный многочлен Лагранжа	4	
	3.3	Полиномиальная интерполяция с кратными узлами		
		Многочлен Эрмита	4	
4	Прі	Приближение кривых		
	4.1	Сплайны	5	
	4.2	Кривые Безье	5	
5	Метрическое пространство		6	
	5.1	Метрики, Шары, Сферы	6	
	5.2	Норма	6	
	5.3	Теорема Минковского	6	
6	3 Многочлены Чебышева		7	
7	7 Матричные нормы		8	

Псевдообратная матрица

Свойства

Скелетное разложение

Решение по методу наименьших квадратов

Сингулярное разложение

Суть

Алгоритм построения

Приближённые решения

Псевдорешение СЛУ

Интерполяция

Определитель Вандермонда

Интеполяционный многочлен Лагранжа

Полиномиальная интерполяция с кратными узлами Многочлен Эрмита

Приближение кривых

Сплайны

Кривые Безье

Метрическое пространство

Метрики, Шары, Сферы

Пусть M – некое множество.

Метрика ρ на множестве M — это такая функция $\rho(x,y)\geqslant 0$, что

1.
$$\rho(x, y) = \rho(y, x)$$

2.
$$\rho(x,y) > 0, x \neq y, \rho(x,x) = 0$$

3.
$$\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$$

Примеры:

1. Метрика евклидова пространства $M = \mathbb{R}^n$:

$$\rho(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2. Расстояние Хэмминга: $M = |\mathbb{Z}_2^n| = \{\vec{x} \mid x_i \in \{0, 1\}\}$

$$\rho(x, y) = |i| x_i \neq y_i|$$
 = кол-во единиц в числе $y - x$

Дана карта с расстояниями между городами.

$$M = \{$$
 города $\}$

$$\rho(A,B)=5$$

 $\rho(E, F) = 4$ (минимальное расстояние из возможных)

Шар в метрическом пространстве.

$$B_R(A) = \{x | \rho(A, x) \leq R\}$$
 — **шар** радиуса R с центром в точке A .

$$S_R(A) = \{x | \rho(A, x) = R\}$$
 — сфера радиуса R с центром в точке A .

$$B_5(C) = \{C, B, D, I\}$$
 — все точки, которые туда входят.

$$S_5(C) = \{I\}$$
 — только те точки, которые лежат на окружности.

$$B_{100}(C) = B_{50}(C) = M$$
 — все множество.

Метод наименьших квадратов — приближение функции в смысле следующей метрики

$$M = \{f : X \to \mathbb{R}\}, X = \{x_1, ..., x_n\}$$

$$\rho(f,y) = |\bar{y} - \bar{f}| = \sqrt{\sum_{i=1}^{n} (y(x_i) - f(x_i))^2}$$

Пример 1.

Найти такое метрическое пространство M, что

$$\left\{ egin{array}{l} B_5(x)\subset B_4(y)\ B_5(x)
eq B_4(y) \end{array}
ight.$$
 , где x,y - две точки.

To есть доказать, что существует $c \in B_4(y), c \notin B_5(x)$.

$$\begin{array}{c} \boxed{14_5.\operatorname{png}} \\ \rho(x,y) = \rho(y,x) = 4 \\ \rho(y,c) = \rho(c,y) = 3 \\ \rho(x,c) = \rho(c,x) = 7 \\ B_5(x) = \{x,y\} \\ B_4(y) = \{x,y,c\} \end{array}$$

To ects $B_5(x) \subset B_4(y)$.

Вспомним определение линейного пространства.

Если на непустом множестве заданы две бинарные операции "+"и "умножение на число числа из поля $F, \forall a, b, c \in V$ то

1.
$$a + (b + c) = (a + b) + c$$

2.
$$\exists 0: a+0=0+a=a$$

3.
$$\exists (-a) : a + (-a) = 0$$

4.
$$a + b = b + a$$

5.
$$1 \cdot x = x$$

6.
$$(\mu\lambda)x = \mu(\lambda x)$$

7.
$$(a+b)\lambda = a\lambda + b\lambda$$

8.
$$(\mu + \lambda)a = \mu a + \lambda a$$

V — **линейное пространство** (векторное пространство), если выполнены 8 предыдущих аксиом и

7

1.
$$\forall \bar{u}, \bar{v}: \bar{u} + \bar{v} \in V$$

2.
$$\forall$$
 числа $\alpha \in \mathbb{R}$, \mathbb{C} $\alpha \bar{u} \in V$ (или $\alpha \in F$ заданное поле, например, $F_2 = \{0,1\}$)

Линейное пространство V — **нормированное**, если на нем задана такая норма $\nu:V\to\mathbb{R}\geqslant 0$, что

1.
$$\nu(\bar{x}) > 0, \ \bar{x} \neq \bar{0}, \ \nu(\bar{0}) = \bar{0}$$

2.
$$\nu(\alpha \bar{x}) = |\alpha| \nu(\bar{x})$$

3.
$$\nu(\bar{x}+\bar{y}) \leq \nu(\bar{x}) + \nu(\bar{y})$$
 для $\forall x,y \in V, \forall \alpha$

Из каждой нормы можно сделать метрику $\rho(\bar{x}, \bar{y}) = \nu(\bar{y} - \bar{x}).$

Примеры норм:

1. Манхэттенская норма (норма таксиста) (Можно ехать разными путями, но не по прямой)

$$\nu_M(\bar{x}) = |x_1| + ... + |x_n|$$
 в \mathbb{R}^n , где $\bar{x} = (x_1, ..., x_n)$

2. Евклидова норма (Для приближения)

$$\nu_E(\bar{x}) = \sqrt{|x_1|^2 + ... + |x_n|^2} \ {\mbox{\bf B}} \ {\mathbb R}^n$$

3. Норма максимума (Уменьшает ошибку по всем координатам)

$$u_{max}(\bar{x}) = max\{|x_1|,...,|x_n|\}$$
 в \mathbb{R}^n

4. Норма Гёльдера

$$\begin{split} \nu_p(\bar{x}) &= \sqrt[p]{|x_1|^p + \ldots + |x_n|^p} \text{ B } \mathbb{R}^n \\ \nu_1(\bar{x}) &= |x_1| + \ldots + |x_n| = \nu_M(\bar{x}) \\ \nu_2(\bar{x}) &= \sqrt{|x_1|^2 + \ldots + |x_n|^2} = \nu_E(\bar{x}) \\ \nu_\infty(\bar{x}) &= \lim_{p \to \infty} \sqrt[p]{\sum_{i=1}^n |x_i|^p} \end{split}$$

Если $|x_i|=max|x_i|$, то $\sqrt[p]{|x_i|^p} o |x_i|$, получим:

$$\nu_{\infty}(\bar{x}) = \max\{|x_1|,...,|x_n|\} = \nu_{\max}(\bar{x})$$

Утверждение. В нормированном пространстве V верно:

1. $\forall \bar{x}, \bar{y} \ B_R(\bar{x})$ равен $B_R(\bar{y})$ (как геометрическая фигура). • Пусть $\bar{v} = \bar{y} - \bar{x}$, тогда

$$B_R(\bar{y}) = \bar{v} + B_R(\bar{x})$$

Ко всем точкам из $B_R(\bar{x})$ прибавим одинаковый вектор \bar{v} .

To есть, $D = C - (\bar{y} - \bar{x}) \in B_R(\bar{x})$.

2. Шары $B_R(\bar{x})$ и $B_{\alpha R}(\bar{x})$, $\alpha > 0$ подобны с коэффициентом подобия α .

$$\nu(xD) = \frac{1}{\alpha}\nu(xC)$$

$$D = x + xD = x + \frac{1}{\alpha}xC$$

$$\rho(D, x) = \nu(xD) = \frac{1}{\alpha}\nu(C - x) = \nu(\frac{1}{\alpha}(C - x))$$

$$\boxed{14_10. \text{png}}$$

$$C \in B_{\alpha R}(x) \Leftrightarrow \nu(C - x) \leqslant \alpha R$$

$$\rho(D, x) = \nu(\frac{C - x}{\alpha}) \leqslant R$$

To есть $D \in B_R(\bar{x})$.

 ν_p — норма только при $p\geqslant 1$ (для невыпуклых — неверно, не выполняется неравенство треугольника).

 $B^p = B_1(\bar{0})$ относительно ν_p .

Пример 2.

Для каких R_1, R_2 возможно $B_{R_1}(x) \subsetneq B_{R_2}(y)$?

Если $R_2 > R_1$ — возможно (даже при x = y).

При $R_1 = 5, R_2 = 4$ — возможно (из предыдущего примера).

Докажем, что при $R_1 > R_2$ это не всегда верно, а именно: при $2R_2 > R_1$ - верно, а при $R_2 \leqslant \frac{R_1}{2}$ — нет.

Рассмотрим случай $2R_2 = R_1$.

Тогда $B_{R_1}(x) = \{x, y, C\}$, $B_{R_2}(y) = \{x, y, C\}$, то есть $B_{R_1}(x) = B_{R_2}(y)$ — множества совпадают, то есть уже не подходит.

Рассмотрим случай, когда R_1 чуть меньше $2R_2$.

Тогда $B_{R_1}(x)=\{x,y\},\,B_{R_2}(y)=\{x,y,C\},\,$ то есть $B_{R_1}(x)\subsetneq B_{R_2}(y)$ верно.

Рассмотрим случай, когда R_1 чуть больше $2R_2$.

Тогда $B_{R_1}(x) = \{x, y, C\}, B_{R_2}(y) = \{x, y, C\},$ то есть, $B_{R_2}(y) \subseteq B_{R_1}(x)$, значит не подходит.

Линейное пространство называется **евклидовым пространством**, если на нем задано скалярное произведение g(x,y):

1.
$$g(x, y) = g(y, x)$$

2.
$$g(x_1 + x_2, y) = g(x_1, y) + g(x_2, y)$$

3.
$$g(\lambda x, y) = \lambda g(x, y)$$

4.
$$g(x,x) \ge 0, g(x,x) = 0 \Leftrightarrow x = 0$$

В евклидовом пространстве есть стандартная норма $||x|| = \sqrt{g(x,x)}$.

 $L_2[0,1]$ — множество функций, квадрат которых интегрируем по Риману.

$$(f,g) = \int_{0}^{1} f(x) \overline{g(x)} \, dx$$
$$\| f \|_{2} = \sqrt{\int_{0}^{1} |f(x)|^{2} \, dx}$$

 $x_n \to x$ сходится по норме $\nu(x)$, если $\forall \varepsilon > 0 \ \exists N(\varepsilon)$, что $\forall n > N(\varepsilon)$ верно $\ \nu(x_n - x) < \varepsilon$.

Пример 3.

Является ли нормой на множестве непрерывно дифференцируемых функций $C^1[a,b]$ следующее выражение:

$$\mu(f) = \max_{a \le x \le b} (|f(x)| + |f'(x)|) ?$$

Да, так как выполняются все свойства нормы.

1.
$$\mu(f) > 0$$

2.
$$\mu(\lambda f) = \lambda \mu(f)$$

3.
$$\mu(f+g) = max(|f+g|+|(f+g)'(x)|)$$
 $\mu(f) + \mu(g) = max(|f|+|g|+|f'|+|g'|)$ А так как $|f+g| \leq |f|+|g|$, то выполняется неравенство треугольника $\mu(f+g) \leq \mu(f) + \mu(g)$.

Пример 4.

Следует ли из сходимости по норме $||f|| = \max_{a \le x \le b} |f(x)|$ сходимость по $\mu(f)$, где

$$\mu(f) = \max_{a \le x \le b} (|f(x)| + |f'(x)|) ?$$

Верно ли обратное?

Докажем, что $f_k(x) \stackrel{\|f\|}{\to} f(x)$ и $f_k(x) \nrightarrow$ по $\mu(f)$.

$$f=x,f'=1$$

$$f_k=\frac{1}{k}sin(xk^2)+x$$

$$|f-f_k|\leqslant\frac{1}{k}|sin(xk^2)|\leqslant\frac{1}{k}\to 0, \text{ то есть, сходится по норме.}$$

$$f_k'=1+k\cdot cos(xk^2)$$

 $\max\{|f(x)-f_k(x)|+|f'(x)-f'_k(x)|\}=\max\{|\frac{1}{k}sin(xk^2)|+|1-1-k\cdot cos(xk^2)|\}\to\infty$, то есть, не сходится по $\mu(f)$.

Обратное утверждение верно. При сходимости по $\mu(f)$ получим, что $|f(x) - f_k(x)| \to 0$, то есть сходится по норме.

Домашнее задание 4

1. $B(x,y) = \{x^2 + axy + 4y^2 \le 1\}$

При каких a на множестве \mathbb{R}^2 существует норма ν такая, что B(x,y) — единичный шар относительно нее?

Найдите в этом случае

$$u \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

2. Будет ли метрикой на \mathbb{R} функция $\rho(x,y) =$

(a)
$$|x^2 - y^2|$$

(b)
$$sin(x-y)$$

(c)
$$|e^x - e^y|$$

- 3. Существует ли убывающая последовательность непустых замкнутых ограниченных множеств с пустым пересечением (в произвольном метрическом пространстве)?
- 4. Доказать, что шар в нормированном пространстве является выпуклым множеством. То есть доказать, что если x,y принадлежат шару, то и весь отрезок [x,y] принадлежит шару.

Лекция 5

Множество замкнутое, если оно включает свою границу.

V — линейное пространство, ν — **норма** на V ($\nu:V \to \mathbb{R} \geqslant 0$) если:

1.
$$\nu(\bar{x}) > 0, \ \bar{x} \neq \bar{0}, \ \nu(\bar{0}) = \bar{0}$$

2.
$$\nu(\alpha \bar{x}) = |\alpha|\nu(\bar{x})$$

3.
$$\nu(\bar x+\bar y)\leq \nu(\bar x)+\nu(\bar y)$$
 для $\forall x,y\in V, \forall \alpha$ $\nu(x)=|x|$

$$\mathbb{R}^2$$
, $\nu(\bar{x})-?$, $\nu(\bar{v})-?$
 $B_1^{\nu}(\bar{0})=B_1^{\nu}$

$$A=\text{луч}\cap S_1,\ S_1-\text{граница}$$

$$\nu(OA)=1$$

$$\nu(v)=\lambda\nu(OA)=\lambda,\ \text{если}\ v=\lambda OA, \lambda=\frac{|v|}{|OA|}$$

Лемма. Пусть ν_1, ν_2 — две нормы на \mathbb{R}^n , тогда существует такое c > 0, что любой шар одной нормы содержится в другом шаре другой нормы.

$$B_R^{\nu_1} \subset B_{cR}^{\nu_2}$$
.

Следствие. Любые две нормы в \mathbb{R}^n эквивалентны, то есть для $\forall \nu_1, \nu_2 \exists c_1, c_2$, что для $\forall \bar{x}$ верно $c_1\nu_1(x) \leqslant \nu_2(x) \leqslant c_2\nu_1(x)$.

Следствие. Шар $B_1^{\nu_1}$ — ограниченное множество, то есть $B_R^{\nu_1} \subset \{\bar{x} \mid |\bar{x}| \leqslant M\} = B_M^E$ (евклидов шар).

▶ $\nu_2 =$ евклидова длина, M = cR ■

Доказательство леммы.

▶ Пусть

$$\bar{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = x_1 \bar{e}_1 + \dots + x_n \bar{e}_n \in B_1^{\nu_1}(R=1)$$

 $\nu_2(\bar{x}) = \nu_2(x_1\bar{e}_1 + \dots + x_n\bar{e}_n) \leqslant \nu_2(x_1e_1) + \dots + \nu_2(x_ne_n) = |x_1|\nu_2(e_1) + \dots + |x_n|\nu_2(e_n) \leqslant \max_{i=1,\dots,n} \{|x_i|\}.$

Пусть $|\bar{x}|_{\infty} = \max_{i=1,\dots,n} |x_i|$, $M = \max_{i=1,\dots,n} \nu_2(e_i)$, тогда $\nu_2(x) \leqslant |\bar{x}|_{\infty} nM$, то есть $B_R^{\nu_1} \subset B_{cR}^{|\cdot|_{\infty}}$, c = nM. Доказали, что любой единичный шар можно поместить в квадрат со стороной cR.

Если $|x|_{\infty} \leqslant \frac{1}{nM}$, то $\nu_2(x) \leqslant 1, x \in B_1^{\nu_2}$.

Внутри любого единичного шара существует квадрат, то есть существует куб, который содержит его целиком. Осталось доказать, что шар — ограниченное множество. Докажем от противного.

$$B_1^\nu=\{x|\nu(\bar x)\leqslant 1\}$$

Пусть существует $\{x^1, x^2, ...\}$: $\{|x^1|, |x^2|, ...\} \to +\infty$, тогда она существует, если B_1^{ν} неотрицательное множество.

 $m\leqslant \nu_2(B_1^E)\leqslant M$, где $m>0,\ M$ — ограниченное множество, тогда (так как все шары подобны):

$$\left\{ \begin{array}{l} B_m^{\nu_2} \subset B_1^E \subset B_M^{\nu_2} \\ B_R^{\nu_2} \subset B_{R/m}^E \\ B_{R/M}^E \subset B_R^{\nu_2} \end{array} \right.$$

Теорема Минковского. Множество $B \subset \mathbb{R}^n$ является единичным шаром B_1^{ν} относительно какой-либо нормы ν тогда и только тогда, когда B:

- 1. замкнуто
- 2. ограничено $(B \subset B_M^E)$
- 3. содержит окрестность нуля (то есть $B \supset B_m^E$)

- 4. выпукло
- 5. центрально симметрично (если $\bar{x} \in B$, то и $-\bar{x} \in B$)

Пример 1.

$$B = \{x^2 + axy + 4y^2 \le 1\}$$

Существует ли такая норма ν , что B — единичный шар относительно нее $(B=B_1^{\nu})$?

$$\begin{pmatrix} 1 & \frac{a}{2} \\ \frac{a}{2} & 4 \end{pmatrix}$$
$$\Delta_1 = 1 > 0$$
$$\Delta_2 = 4 - \frac{a^2}{4} > 0$$

То есть это эллипс, все 5 свойств из предыдущей теоремы выполняются, значит при |a| < 4B — единичный шар относительно нормы.

$$\Delta_1 = 1 > 0 \Delta_2 = 4 - \frac{a^2}{4} < 0$$

В этом случае множество не будет замкнутым, то есть не выполняются все свойства из предыдущей теоремы, значит в этом случае B не будет единичным шаром относительно нормы. При $\Delta_2 = 0$: $a = \pm 4$ и $x^2 \pm 4xy + 4y^2 \leqslant 1$, $(x \pm 2y)^2 \leqslant 1$. В этом случа получим множество между двумя параллельными прямыми, которое является незамкнутым, то есть в этом случае B тоже не будет единичным шаром относительно нормы. Получили, что $B = B_1^{\nu}$ только при |a| < 4.

V — евклидово пространство со скалярным произведением, если задана $V \times V \to \mathbb{R}$, то есть, на нем задано скалярное произведение $(\bar{u}, \bar{v}) \in \mathbb{R}$ такое, что для пространств над \mathbb{R} выполнено:

- 1. (u, v) = (v, u)
- 2. (u' + u'', v) = (u', v) + (u'', v)
- 3. $\alpha(u,v) = (\alpha u, v) = (u, \alpha v), \alpha \in \mathbb{R}$
- 4. $(u,u) > 0, u \neq \bar{0}$ $((u,u) = 0 \Leftrightarrow u = 0)$

Обозначение скалярного произведения: $(u, v) = < u, v > = < u \mid v >$.

Длина вектора — это $|v| = \sqrt{(v,v)} \geqslant 0$ (норма).

$$\begin{split} |\alpha v| &= \sqrt{(\alpha v, \alpha v)} = \sqrt{\alpha^2(v,v)} = |\alpha||v| \\ |v| &> 0, \text{ при } v \neq \bar{0} \\ |u+v| &\leqslant |u| + |v| \quad \blacksquare \\ \widehat{\cos(u,v)} &= \frac{(u,v)}{|u||v|}, u,v \neq \bar{0} \end{split}$$

V — эрмитово пространство со скалярным произведением, если задана $V \times V \to \mathbb{C}$, то есть, на нем задано скалярное произведение $(\bar{u}, \bar{v}) \in \mathbb{C}$ такое, что для пространств над \mathbb{C} выполнено:

1.
$$(u,v) = \overline{(v,u)}$$

2.
$$(u' + u'', v) = (u', v) + (u'', v)$$

3.
$$\alpha(u,v) = (\alpha u, v) = (u, \alpha v), \alpha \in \mathbb{C}$$

4.
$$\forall u \ (u, u) \geqslant 0, (u, u) = 0 \Leftrightarrow u = 0$$

Как по норме |w| восстановить скалярное произведение (u,v)?

$$|w|^2=(w,w)=(v-u,v-u)=(v,v)-(u,v)-(v,u)+(u,u)=|v|^2-2(u,v)+|u|^2$$

 То есть, $(u,v)=\frac{1}{2}(|v|^2+|u|^2-|v-u|^2).$

Теорема (тождество параллелограмма). Пусть V — нормированное пространство с нормой |v|. На V существует такое скалярное произведение, что $|v| = \sqrt{(v,v)}$ в том и только том случае, когда в V выполняется тождество параллелограмма:

$$\forall a, b |a+b|^2 + |b-a|^2 = 2(|a|^2 + |b|^2)$$

При c = a + b, d = b - a:

$$c^{2} + d^{2} = 2(a^{2} + b^{2})$$

$$\boxed{15_11.\text{png}}$$

$$lacktriangle$$
 Если для $\forall v \ |v| = \sqrt{< v, v>}$, то $|a+b|^2 + |b-a|^2 = < a+b, a+b> + < b-a, b-a> = < a, a> +2 < a, b> + < b, b> + < b, b> -2 < a, b> + < a, a> = 2(|a|^2 + |b|^2)$

H — **гильбертово пространство**, если на нем задано скалярное произведение и оно является полным (относительно метрики, порожденной скалярным произведением).

Набор $\{\varphi_0,\varphi_1,...,\varphi_n,...\}^{-e}$ называется **ортогональной системой**, если $(\varphi_i,\varphi_j)=\delta^i_j=\left\{egin{array}{l} 1,i=j\\ 0,i\neq j \end{array}\right.$

Формально хотим представить $f = \sum_{n=0}^{\infty} c_n \varphi_n$.

$$(f, \varphi_j) = c_j(\varphi_j, \varphi_j)$$
$$(\varphi_j, \varphi_j) = 1$$
$$c_j = \frac{(f, \varphi_j)}{\| \varphi_j \|^2} = (f, \varphi_j)$$

 c_i — коэффициенты Фурье по ортогональной системе.

Теорема. Если φ_i — ортогональная система, тогда следующие условия эквивалентны:

- 1. система $\{\varphi_j\}$ является базисом, то есть $f=\sum_{n=0}^{\infty}c_n\varphi_n$
- 2. выполнение равенства Парсеваля $\parallel f \parallel^2 = \sum_{n=0}^{\infty} c_k^2$

3. система является полной, то есть $\exists y \neq 0 : (\varphi_j, y) = 0$

Хотим приблизить f и минимизировать $\| f - \sum_{k=0}^{n} \alpha_k \varphi_k \| \to min$.

$$(f - \sum_{k=0}^{n} \alpha_k \varphi_k, f - \sum_{k=0}^{n} \alpha_k \varphi_k) = (\text{так как система ортогональна}) = (f, f) - 2 \sum_{k=0}^{n} \alpha_k (f, \varphi_k) + \sum_{k=0}^{n} \alpha_k^2 (\varphi_k, \varphi_k) = (c_k = (f, \varphi_k), (\varphi_k, \varphi_k) = 1) = \parallel f \parallel^2 + \sum_{k=0}^{n} (\alpha_k - c_k)^2 - \sum_{k=0}^{n} c_k^2$$
 Выбором α хотим минимизировать, минимальная норма будет там, где совпадают $\alpha_k = c_k$.

 $a = \{1, x, x^2, ..., x^n\}$ — пространство \mathbb{R}_{n+1} многочленов степени $\leqslant n$ на [-1, 1], где скалярное произведение $\int_{1}^{1} f(x)g(x) dx$. Применим к a процесс Грама-Шмидта, получим b.

$$a \to b = \{ P_0(x) = 1 \}$$

Многочлены Лежандра:

$$P_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} ((x^2 - 1)^k)^{(k)}, k = 1,..,n$$

k=0:
$$P_0(x) = 1$$

k=1:
$$P_1(x) = \frac{1}{2}(x^2 - 1)' = x$$

k=2:
$$P_2(x) = \frac{1}{8}((x^2 - 1)^2)'' = \frac{1}{8}(4x(x^2 - 1)') = \frac{3x^2 - 1}{2}$$

k=3:
$$P_3(x) = \frac{1}{48}((x^2 - 1)^3)''' = \frac{1}{2}(5x^3 - 3x)$$

$$||P_1(x)|| = \sqrt{\int_{-1}^{1} x \cdot x \, dx} = \sqrt{\frac{2}{3}}$$

Домашнее задание 5

- 1. (a) Проверить ортогональность $P_2(x)$ и $P_3(x)$ относительно < f, g> = $= \int_{1}^{1} f(x)g(x) dx.$
 - (b) Найти $||P_n(x)||$.
- 2. Найти $\alpha_0, \alpha_1, \alpha_2$ на [-1,1]: $\parallel f \sum\limits_{k=0}^2 \alpha_k P_k(x) \parallel \rightarrow min, \ d_j = \frac{(f, \varphi_j)}{\parallel \varphi_s \parallel^2} = (f, \varphi_j),$ где $P_k(x) = (f, \varphi_j)$ $\frac{1}{2^k L!} \frac{d^k}{dx^k} ((x^2-1)^k)^{(k)}, \ k=1,\cdots,n$ — многочлены Лежандра.
 - (a) $f_1(x) = xe^{-x}$
 - (b) $f_2(x) = x^3$
- 3. Выразить скалярное произведение через длину вектора в эрмитовом пространстве.

Норма

Теорема Минковского

Многочлены Чебышева

Матричные нормы