479	CTCACACTTTTGCTTGAATTTAATACAGAC	AGACACCIGAGACAIGCIGAAAITAITICI	21
420	CCACCACCTTATTCACCTTAAGAGCCAGCG ProProProTyrSerPro	GCTTATGAGAAACTCTCTGCAGAACAGTCA AlaTyrGluLysLeuSerAlaGluGlnSer	60
359 102	AAAGTGTCTCTTCAAGAGAAAAC TGTGAACCTGTGGTTCCCAATGCTCCACCT LysValSerLeuGlnGluLysAsn CysGluProValValProAsnAlaProPro	GACAGCAAAGTGTCTCTTCAAGAGAAAAAC AspSerLysValSerLeuGlnGluLysAsn	0 1 8 4
300	GGCACTCAATGTGCCTTAACAAGA AGATGCCCACAAGAAGGGTTTGATCATCGG GlyThrGlnCysAlaLeuThrArg ArgCysProGlnGluGlyPheAspHisArg	CATGTTGGCACTCAATGTGCCTTAACAAGA HisValGlyThrGlnCysAlaLeuThrArg	63
239	GGATACAGAGCCTTGATGGATAAAAGTCTT GlyTyrArgAlaLeuMetAspLysSerLeu	ATCGGCTGTTGGTATTGTAGAAGACGAAAT IleGlyCysTrpTyrCysArgArgAsn	3 4 4
180	CTGACAGTGATCCTGGGAGTCTTACTGCTC LeuThrVallleLeuGlyValLeuLeuLeu	ACGGCTGAAGAGGCCGCTGGGATCGGCATC ThralaGluGluAlaAlaGlyIleGlyIle	23
119	CCCAAGAAGGGGCACGGCCACTCTTACACC ProLysLysGlyHisGlyHisSerTyrThr	AGAGAAGATGCTCACTTCATCTATGGTTAC ArgGluAspAlaHisPheIleTyrGlyTyr	3
5 2 8	TGTCCTGTGCCCTGACCTACAAGATGCCA MetPro	AGCAGACAGAGGACTCTCATTAAGGAAGG	\leftarrow

. 1≯

480	ATCTAATGTTCTCCTTTGGAATGGTAGG	AAAAATGCAAGCCATCTCTAATAATAAGTC	540
541	AAATTTTAGTAGGTCCGCTAGCA	GTACTAATCATGTGAGGAAATGATGAGAAA	599
009	TATTAAATTGGGAAAACTCCATCAATAAAT	GTTGCAATGCATGATACTATCTGTGCCAGA	099
661	GGTAATGTTAGTAAATCCATGGTGTTATTT	TCTGAGAGACAGAATTCAAGTGGGTATTCT	719
720		TTGGCTAATAACAAACTAGTCAGGTTTTCG	780
781	AACCTTGACCGACATGAACTGTACACAGAA	TIGITCCAGIACTATGGAGTGCTCACAAAG	839
840	GATACTTTTACAGGTTAAGACAAAGGGTTG	ACTGGCCTATTTATCTGATCAAGAACATGT	006
901	CAGCAATGTCTCTTTGTGCTCTAAAATTCT	ATTATACTACAATAATATATTGTAAAGATC	959
096	CTATAGCTCTTTTTTTTGAGATGGAGTTT	CGCTTTTGTTGCCCAGGCTGGAGTGCAATG	1020
1021	GCGCGATCTTGGCTCACCATAACCTCCGCC	TCCCAGGITCAAGCAATTCTCCTGCCTTAG	1079
1080	CCTCCTGAGTAGCTGGGATTACAGGCGTGC	GCCACTATGCCTGACTAATTTTGTAGTTTT	1140
1141	AGTAGAGACGGGGTTTCTCCATGTTGGTCA	GGCTGGTCTCAAACTCCTGACCTCAGGTGA	1199
1200	TCTGCCCGCCTCAGCCTCCCAAAGTGCTGG	AATTACAGGCGTGAGCCACCACGCCTGGCT	1260
1261	GGATCCTATATCTTAGGTAAGACATATAAC	GCAGTCTAATTACATTTCACTTCAAGGCTC	1319
1320	AATGCTATTCTAACTAATGACAAGTATTTT	CTACTAAACCAGAAATTGGTAGAAGGATTT	1380
1381	AAATAAGTAAAAGCTACTATGTACTGCCTT	AGIGCIGAIGCCIGIGIACIGCCIIAAAIG	1439
1440	TACCTATGGCAATTTAGCTCTCTTGGGTTC	CCAAATCCCTCTCACAAGAATGTGCAGAAG	1500
1501	AAATCATAAAGGATCAGAGATTCTGAAAAA	<u> </u>	1559

FIG. 1B

Peptide concentration (ug/ml)

FIG. 3A

FIG. 3B

GTCGACGGCC	ATTACCAATC	GCGACCGGGA	AGAACACA <u>AT</u>	40
GGATCTGGTG	CTAAAAAGAT	GCCTTCTTCA	TTTGGCTGTG	80
ATAGGTGCTT	TGCTGGCTGT	GGGGGCTACA	AAAGTACCCA	120
GAAACCAGGA	CTGGCTTGGT	GTCTCAAGGC	AACTCAGAAC	160
CAAAGCCTGG	AACAGGCAGC	TGTATCCAGA	GTGGACAGAA	200
GCCCAGAGAC	TTGACTGCTG	GAGAGGTGGT	CAAGTGTCCC	240
TCAAGGTCAG	TAATGATGGG	CCTACACTGA	TTGGTGCAAA	280
TGCCTCCTTC	TCTATTGCCT	TGAACTTCCC	TGGAAGCCAA	320
AAGGTATTGC	CAGATGGGCA	GGTTATCTGG	GTCAACAATA	360
CCATCATCAA	TGGGAGCCAG	GTGTGGGGAG	GACAGCCAGT	400
GTATCCCCAG	GAAACTGACG	ATGCCTGCAT	CTTCCCTGAT	440
GGTGGACCTT	GCCCATCTGG	CTCTTGGTCT	CAGAAGAGAA	480
GCTTTGTTTA	TGTCTGGAAG	ACCTGGGGCC	AATACTGGCA	520
ATTTCTAGGG	GGCCCAGTGT	CTGGGCTGAG	CATTGGGACA	560
GGCAGGGCAA	TGCTGGGCAC	ACACACCATG	GAAGTGACTG	600
TCTACCATCG	CCGGGGATCC	CGGAGCTATG	TGCCTCTTGC	640
TCATTCCAGC	TCAGCCTTCA	CCATTACTGA	CCAGGTGCCT	680
TTCTCCGTGA	GCGTGTCCCA	GTTGCGGGCC	TTGGATGGAG	720
GGAACAAGCA	CTTCCTGAGA	AATCAGCCTC	TGACCTTTGC	760
CCTCCAGCTC	CATGACCCCA	GTGGCTATCT	GGCTGAAGCT	800
GACCTCTCCT	ACACCTGGGA	CTTTGGAGAC	AGTAGTGGAA	840
CCCTGATCTC	TCGGGCACTT	GTGGTCACTC	ATACTTACCT	880
GGAGCCTGGC	CCAGTCACTG	CCCAGGTGGT	CCTGCAGGCT	920
GCCATTCCTC	TCACCTCCTG	TGGCTCCTCC	CCAGTTCCAG	960
GCACCACAGA	TGGGCACAGG	CCAACTGCAG	AGGCCCCTAA	1000
CACCACAGCT	GGCCAAGTGC	CTACTACAGA	AGTTGTGGGT	1040
ACTACACCTG	GTCAGGCGCC	AACTGCAGAG	CCCTCTGGAA	1080
CCACATCTGT	GCAGGTGCCA	ACCACTGAAG	TCATAAGCAC	1120

FIG. 4A

3.				• <u>,</u> • •
TGCACCTGTG	CAGATGCCAA	CTGCAGAGAG	CACAGGTATG	1160
ACACCTGAGA	AGGTGCCAGT	TTCAGAGGTC	ATGGGTACCA	1200
CACTGGCAGA	GATGTCAACT	CCAGAGGCTA	CAGGTATGAC	1240
ACCTGCAGAG	GTATCAATTG	TGGTGCTTTC	TGGAACCACA	1280
GCTGCACAGG	TAACAACTAC	AGAGTGGGTG	GAGACCACAG	1320
CTAGAGAGCT	ACCTATCCCT	GAGCCTGAAG	GTCCAGATGC	1360
CAGCTCAATC	ATGTCTACGG	AAAGTATTAC	AGGTTCCCTG	1400
GGCCCCCTGC	TGGATGGTAC	AGCCACCTTA	AGGCTGGTGA	1440
AGAGACAAGT	CCCCTGGAT	TGTGTTCTGT	ATCGATATGG	1480
TTCCTTTTCC	GTCACCCTGG	ACATTGTCCA	GGGTATTGAA	1520
AGTGCCGAGA	TCCTGCAGGC	TGTGCCGTCC	GGTGAGGGGG	1560
ATGCATTTGA	GCTGACTGTG	TCCTGCCAAG	GCGGGCTGCC	1600
CAAGGAAGCC	TGCATGGAGA	TCTCATCGCC	AGGGTGCCAG	1640
CCCCCTGCCC	AGCGGCTGTG	CCAGCCTGTG	CTACCCAGCC	1680
CAGCCTGCCA	GCTGGTTCTG	CACCAGATAC	TGAAGGGTGG	1720
CTCGGGGACA	TACTGCCTCA	ATGTGTCTCT	GGCTGATACC	1760
AACAGCCTGG	CAGTGGTCAG	CACCCAGCTT	ATCATGCCTG	1800
GTCAAGAAGC	AGGCCTTGGG	CAGGTTCCGC	TGATCGTGGG	1840
CATCTTGCTG	GTGTTGATGG	CTGTGGTCCT	TGCATCTCTG	1880
ATATATAGGC	GCAGACTTAT	GAAGCAAGAC	TTCTCCGTAC	1920°
CCCAGTTGCC	ACATAGCAGC	AGTCACTGGC	TGCGTCTACC	1960
CCGCATCTTC	TGCTCTTGTC	CCATTGGTGA	GAACAGCCCC	2000
CTCCTCAGTG	GGCAGCAGGT	CTGAGTACTC	TCATA <u>TGA</u> TG	2040
CTGTGATTTT	CCTGGAGTTG	ACAGAAACAC	CTATATTTCC	2080
CCCAGTCTTC	CCTGGGAGAC	TACTATTAAC	TGAAATAAAT	2120
ACTCAGAGCC	TGAAAAAAA	ТААААААА	АААААААА	2160
АААААААА	AA			2172

FIG. 4B

1	MDLVLKRCLL	HLAVIGALLA	VGATKVPRNQ	DWLGVSRQLR	TKAWNRQLYP
51	EWTEAQRLDC	WRGGQVSLKV	SNDGPTLIGA	NASFSIALNF	PGSQKVLPDG
101	QVIWVNNTII	NGSQVWGGQP	VYPQETDDAC	IFPDGGPCPS	GSWSQKRSFV
151	YVWKTWGQYW	QFLGGPVSGL	SIGTGRAMLG	THTMEVTVYH	RRGSRSYVPL
201	AHSSSAFTIT	DQVPFSVSVS	QLRALDGGNK	HFLRNQPLTF	ALQLHDPSGY
251	LAEADLSYTW	DFGDSSGTLI	SRALVVTHTY	LEPGPVTAQV	VLQAAIPLTS
301	CGSSPVPGTT	DGHRPTAEAP	NTTAGQVPTT	EVVGTTPGQA	PTAEPSGTTS
351				VSEVMGTTLA	
401				LPIPEPEGPD	
451	TGSLGP <u>LLDG</u>	TATLRLVKRQ	VPLDCVLYRY	GSFSVTLDIV	QGIESAEILQ
501				PGCQPPAQRL	
551	QLVLHQILKG	GSGTYCLNVS	LADTNSLAVV	STQLIMPGQE	AGLGQVPLIV
601	GILLVLMAVV	LASLIYRRRL	MKQDFSVPQL	PHSSSHWLRL	PRIFCSCPIG
651	ENSPLISGOO	v			

FIG. 5A

FIG. 5B

Melanoma Probe CDNA25 β-actin Place Construction Probe β-actin Probe β-actin Probe β-actin Probe β-actin Probe β-actin Probe β-actin Probe β-actin

Melanocyte

501 mel NHEM 493 NHEM 526 NHEM 53C FM 902 FM 906 HA 002

cDNA25 β-actin

FIG. 6B

Normal Tissue

S01 mel
Adrenal Gland
Brain
Kidney
Fetal Liver
Liver
Cung
Retina
Spleen
Testis

cDNA25

β-actin

FIG. 6C