SMUO 2024

lista 6: Kilka zaginionych faktów

1. Niech $T=(T_t)_{t\in\mathbb{R}_+}$ będzie półgrupą Fellera na S. Pokaż, że dla każdego $x\in S$ i każdego $t\geq 0$ istnieje miara $\mu_{t,x}$ na S taka, że

$$T_t g(x) = \int g(y) \, \mu_{t,x}(\mathrm{d}y).$$

Wskazówka: Rozważ jednopunktowe uzwarcenie S.

- 2. Wywnioskuj z poprzedniego zadania, że $||T_t|| \leq 1$.
- 3. Niech $T=(T_t)_{t\in\mathbb{R}_+}$ będzie półgrupą Fellera. Pokaż, że dla każdego $t\geq 0$,

$$\inf_{x \in S} T_t f(x) \ge \inf_{x \in S} f(x).$$

4. Niech (\mathbf{P}, \mathbb{F}) będzie procesem Fellera. Rozważmy ograniczoną funkcję mierzalną $\varphi \colon \mathbb{R}_+ \times \Omega \to \mathbb{R}$. Pokaż, że dla \mathbb{F} -czasu zatrzymania τ zachodzi

$$\mathbf{E}_x \left[\varphi(\tau, \theta_\tau) | \mathcal{F}_\tau \right] = \Phi(\tau, X_\tau) \quad \mathbf{P}_x - p.w.$$

gdzie

$$\Phi(t,x) = \int_{\Omega} \varphi(t,\omega) \mathbf{P}_x(\mathrm{d}\omega).$$

- 5. Pokaż, że jeżeli $A: C_0(S) \to C_0(S)$ jest ograniczonym operatorem, to $\mathcal{R}(I \epsilon A) = C_0(S)$ dla dostatecznie małych $\epsilon > 0$.
- 6. Niech $(L, \mathcal{D}(L))$ będzie generatorem infinitezymalnym. Dla $\epsilon > 0$ rozważmy

$$L_{\epsilon} = L(I - \epsilon L)^{-1}, \qquad T_{\epsilon}(t) = \sum_{n=0}^{\infty} \frac{t^n L_{\epsilon}^n}{n!}.$$

Pokaż, że T_{ϵ} jest półgrupą Fellera z generatorem L_{ϵ} .