

1

ALAPFOGALMAK I – SZIGETELŐ ALAPÚ INTEGRÁLT ÁRAMKÖRÖK

A szigetelő alapú integrált áramköri hordozókon az elemek összekötésére szolgáló vezetékmintázatot, az ellenállások jelentős részét és egyes további passzív elemeket a szigetelő lemez felületén integrált formában rétegtechnológiával állítjuk elő.

Az alkalmazott **technológia alapján** kétféle hordozót különböztetünk meg: **vastagréteg** és **vékonyréteg IC**.

Ha további alkatrészeket (ún. hibrid elemeket) is beültetünk a szigetelő alapú integrált áramkörbe, akkor az áramkört hibrid IC-nek nevezzük.

३ BME**ETT**

Polimer és többrétegű vastagrétegek

2

ALAPFOGALMAK II - VASTAGRÉTEG

Vastagréteg: 5-70 µm vastagságú réteg, amelyet szitanyomtatással és hőkezeléssel paszta állagú anyagból hoznak létre általában kerámiára (ritkábban üvegre, szilíciumra, passzivált fémfelületre), vagy műanyag hordozóra.

3

2/52

ALAPANYAGOK I

- Vastagréteg paszták: kolloid szuszpenzió típusú anyagok a következő összetevőkkel
 - funkcionális fázis (amely a vastagréteg alaptulajdonságait szabja meg: vezető, ellenállás v. szigetelő réteg),
 - szervetlen és/vagy szerves kötőanyagok,
 - · oldószerek.
- A rétegben visszamaradó kötőanyag típusa szerint megkülönböztetünk:
 - szervetlen (üveg/üveg-kerámia, ill. reaktív kötőanyagú) vastagréteg pasztákat,
 - · szerves (polimer) vastagréteg pasztákat.

ॐ BME**ETT**

Polimer és többrétegű vastagrétegel

SZERVETLEN VASTAGRÉTEG **PASZTÁK**

Alapanyagok (paszták) összetétele:

- · Funkcionális fázis:
 - Vezetőréteghez Ag-Pd, Au, Cu, (W)
 - Ellenállásréteghez: ruténium (RuO₂) , iridium, valamint rénium oxidja
- Kötőanyag:
 - · Alacsony olvadáspontú üveg (SiO2) (olvadáspont csökkentése B, Ba, régebben Pb oxidokkal)
- Oldószer

३ BME**ETT**

Polimer és többrétegű vastagrétegek

5

Térhálós polimer lánc **POLIMER VASTAGRÉTEG PASZTÁK** Alapanyagok (paszták) összetétele: · Funkcionális fázis: Vezetőnél Ag v. Cu · Kontaktus ill. ellenálláspasztánál C · Polimer kötőanyag: Hőre lágyuló (termoplasztik): lineáris láncok · Hőre keményedő (termoset): térhálósodó • UV-re keményedő Oldószer

Lineáris polimer lánc	8	8
% BME ETT	Polimer	és több

5/52

ALAPANYAGOK II

- · Vastagréteg hordozók: vastagréteg áramköröket előre elkészített hordozókon hozzuk létre:
- kerámiák (szervetlen és polimer rétegekhez),
 - alumínium-oxid (alumina) (Al₂O₃)
 - · berilium-oxid (BeO)
 - · alumínium-nitrid (AIN)

- epoxi alapú flexibilis vagy merev (pl. üvegszál erősítésű FR4) hordozók
- · poliimid fólia

INTEGRÁLT ALKATRÉSZEK

- · Vastagréteg integrált alkatrészek: a vastagréteg áramkörökben megvalósítható elemek és passzív alkatrészek a következők:
 - · huzalozási pályák,
 - · huzalkereszteződések és szigetelő rétegek,
 - · kontaktus felületek,
 - · kondenzátorok,
 - · induktivitások,
 - ellenállások (állandó értékű, hőmérsékletfüggő NTC és PTC, feszültségfüggő típusok),

Polimer és többrétegű vastagrétegek

8/52

8

A VASTAGRÉTEG TECHNOLÓGIA LÉPÉSEI I: SZITANYOMTATÁS A szitanyomtatás lépései: 0. a paszta felkenése a szitára, a hordozó elhelyezése és pozicionálása . 1. a nyomtatókés végig 1. görgeti a pasztát a szitán 2. a szita felemelkedése a hordozóról. 3. Pihentetés szobahőmérsékleten, a paszta terülése **३** BME**ETT** Polimer és többrétegű vastagrétegek

10

13

16

17

SZITA- VS. STENCILNYOMTATÁS

Amiben a két technológia megegyezik:

Mind a kettővel valamilyen pasztaállagú anyagot viszünk fel egy felületre, maszkon keresztül.

A két technológia különbözik:

- A stencil egy összefüggő fém lemez, amelyen apertúrákat nyitunk, míg a szita egy fém (műanyag) szálakból szőtt szövet, amelyet a megfelelő helyeken maszkolunk.
- 2. A stencil apertúrák teljesen nyitottak, a szita apertúrák NEM
- 3. A stencil felfekszik a hordozóra, a szita NEM.
- 4. A stencilek fő felhasználási területe a forraszpaszta nyomtatás, míg a szitáké a vastagréteg paszta nyomtatás.
- 5. Az (emulziós) sziták a maszk eltávolítása után újra hasznosíthatók, a stencilek NEM vághatók újra.

& BMEETT

Polimer és többrétegű vastagrétegek

18/52

19

20

22

23

25

28

31

34

A KERÁMIA VASTAGRÉTEGEK FELHASZNÁLÁSI TERÜLETEI 1. Jó hővezetés: nagyáramú és teljesítmény elektronika 2. Jó hőállóság: magas hőmérsékletű alkalmazások 3. Kicsi dielektromos állandó: nagyfrekvenciás alkalmazások 4. Ellenállás érték állíthatóság: speciális alk., pl. aktív szűrők Polimer és többrétegű vastagrétegek 35/52

37

VASTAGRÉTEGEK JELLEMZŐI

Paraméter	Kerámia alapú vastagréteg	Polimer vastagréteg
TK, ppm/°C	±50 ±100	±200 ±500
Szórás, R, %	±20 ±30	±70 ±100
Stabilitás (1000h)	<0,5%(150°C)	<35%(80°C)
Vonalfelbontás	0,20,1mm	0,50,3mm
Előáll. költség	Drága, közepes	Nagyon olcsó
&BME ETT	Polimer és többrétegű vastagréte	agek 38/52

38

A TÖBBRÉTEGŰ KERÁMIÁK TÍPUSAI

- 1. MLC (MultiLayer Ceramic):
 - anyaga kerámia, főként Al₂O₃
 - technológiája a kerámia tokoktól származik
 - hőkezelése magas, kerámia színterelési hőmérsékleten >1500 C°-on
 integrált alkatrészek nem készíthetők

 - más néven: HTCC (High Temperature Cofired Ceramic)
- 2. MLGC (MultiLayer Glass Ceramic):
 - anyaga üveg-kerámia
 - technológiája vastagréteg kompatibilis
 - hőkezelése alacsony, vastagréteg beégetési hőmérsékleten
 - integrált és eltemetett R, L, C elemek készíthetők
 - más néven: LTCC (Low Temperature Cofired Ceramic)

३ BME**ETT**

40

41

43

MULTICHIP MODULOK Elnevezésük alapján multichip moduloknak a több chipet tartalmazó, szerelt áramköröket nevezzük. Pontosabb értelmezés szerint a MCM-ok legfontosabb tulajdonságai: legalább két integrált áramkört tartalmaz, nagy vezetéksűrűségű (HDI = High Density Interconnect) hordozó, hatékony hűtési módszer. A MCM-okat a - rendszerint többrétegű - hordozó szigetelő rétegének készíféséhez alkalmazott technológia alapján csoportosítjuk: MCM-L – MCM-laminated: a laminált multichip modulok hordozója többrétegű, laminált nyomtatott huzalozású lemez, MCM-D – MCM-deposited: a vékonyréteg-technológiai vákuumeljárásokkal felépített (leválasztott) rétegszerkezetű hordozóra szerelt modulok MCM-C – MCM-ceramic: a többrétegű kerámia hordozójú modulok

46

47

MCM-D: VÉKONYRÉTEG TECHNOLÓGIÁVAL KÉSZÜLŐ MCM Az MCM-D mutichip modul típusnál a többrétegű huzalozási pályák között a dielektrikumréteg polimer, vagy a félvezető technikában alkalmazott SiO₂, vagy más szigetelő réteg. A vezetőpályákat a vékonyréteg áramköröknél megismert vákuumtechnikai eljárásokkal készítik. A vezetékmintázatot fotolitográfiai eljárással állítják elő. A "bázis" hordozó anyagválasztéka: • kerámia (Al₂O₃; BeO; AlN), • üveg (pl. boroszilikát), • szilícium, • gyémánt. A dielektrikumréteg anyagválasztéka: • polimid, • parilén, • poli-benzo-ciklobután (BCB), • szilícium-dioxid (szilícium hordozó esetén).

Polimer és többrétegű vastagrétegek

№ BME**ETT**

49

TARTALOMJEGYZÉK Alapfogalmak Vastagréteg alapanyagok paszták hordozók Rétegfelvitel: szitanyomtatás, hőkezelés Szitamaszkok Technológiai szekvenciák Ellenállások értékbeállítása Alkalmazások Többrétegű kerámiák

% BME**ETT**

· Multichip modulok