Parallel Computing

Assignment 1

Matrix Multiplication using OpenMp

Student: Yu Chieh Wang (王宇捷)

ID: 60975057H

- Brief Discussion of the Methods

此專案旨在透過平行計算加速矩陣相乘。 以下,我會以"存取不同型態之間的速度差異"為主題來進行討論。

首先,我們要先了解矩陣以及單一變數存取方式的區別。矩陣是儲存於一組連續的記憶體,並使用索引(index)的方式進行存取,而2D矩陣就需要兩個index 去做存取(以此類推),相較而言,存取時間會比單一變數來得高,而由於不同資料結構及型態,需要不同的存取方式,矩陣又會因維度的不同提升它的複雜度。

而值得注意的是,在加速矩陣相乘的任務中,往往需要使用到3個for loops來完成,其中我們會發現在最內層的for loop,要執行n次存儲至2D矩陣的動作,而又因存取單一變量的速度比2D矩陣來得快,因此,我在最內層的for loop,使AB矩陣相乘的結果相加到一個中介單一變量,計算完後,再儲存至2D矩陣,便能夠降低計算時間。

- Experimental results

The experiments are performed on server(140.122.79.53) with i7-4790 of 3.6GHz. The following table show the average results of 20 experiments, also A, B are square matrices with size 2000x2000.

	Reduce Access Times	Transpose	Result Data type	Result(s)
Sequential			2D	61.3
Parallel			2D	15.5
	~		2D	14.7
	✓	✓	1D	13.9
		✓	2D	8.7
	✓	✓	2D	3.9