

Solve multiband Eliashberg equations

	Outline —							
This software provides three programs:								
1.	ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 4) on a cut-off imaginary axis and optionally continues the results to the real axis via Padé approximants.							
	A material is defined by nothing but an ELIASHBERG spectral function or, as fallback an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings COULOMB pseudo-potentials and, if desired, the band densities of BLOCH states, otherwise assumed to be constant.							
2.	critical finds the critical point via the bisection method varying a parameter of choice Superconductivity is defined by the kernel of the linearized gap equation (Eq. 5) having an eigenvalue greater than or equal to unity.							
	tc finds the critical temperature for each band separately via the bisection method. Superconductivity is defined by the order parameter exceeding a certain threshold. Usually it is preferable to use critical.							
	Installation							
The makefile is designed for the GNU or Intel Fortran compiler:								
	<pre>\$ make FC=gfortran FFLAGS=-03</pre>							
	I/O							
	1/0							

• Parameters are defined on the command line:

```
\ \langle program \rangle \langle key 1 \rangle = \langle value 1 \rangle \langle key 2 \rangle = \langle value 2 \rangle \dots
```

The available keys and default values are listed in Table 1.

- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains one or more double precision floating point numbers, for ebmb the format defined in Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

 $\langle \text{replace} \rangle$ decides whether an existing $\langle \text{file} \rangle$ is used or overwritten.

Given a band structure, its discretized domain and n-1 filters, an input file with the density of states resolved for n subdomains is generated like this:

Let $\hbar=k_{\rm B}=1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n=(2n+1)\pi T$ and $\nu_n=2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = i\omega_{n}[1 - Z_{i}(n)]1 + \underbrace{Z_{i}(n)\,\Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)}\boldsymbol{\sigma}_{1} + \chi_{i}(n)\boldsymbol{\sigma}_{3},$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = -T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis by means of PADÉ approximants.³ The electron-phonon coupling matrices and the rescaled COULOMB pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{\uparrow}{\underset{\text{Einstein}}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}}, \\
U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(\omega_{N_{C}}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(\omega_{N_{C}})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}} \tag{2}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$ and $\mu_{ij}^* = \mu_{ij}^*(\omega_E)$ per definition. Alternatively, if the density of states $n_i(\varepsilon)$ per spin as a function of energy ε is given,

$$\frac{1}{\mu_{ij}^{*}(\omega_{N_{\mathbb{C}}})} = \frac{1}{\mu_{ij}} + \frac{1}{\pi} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \begin{cases} \frac{1}{\varepsilon - \mu_{0}} & \text{for } \varepsilon \neq \mu_{0}, \\ \frac{1}{\omega_{N_{\mathbb{C}}}} & \text{otherwise,} \end{cases}$$
(3)

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, whose number n_0 , n (including a factor of 2 for the spin) is usually conserved:

$$\sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{2n_{i}(\varepsilon)}{e^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n \approx \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[1 - 4T \sum_{n=0}^{N-1} \frac{\varepsilon - \mu + \chi_{i}(n)}{\Theta_{i}(\varepsilon, n)} - \frac{2}{\pi} \arctan \frac{\varepsilon - \mu}{\omega_{N}} \right].$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(4)

¹Y. Nambu, Phys. Rev. **117**, 648 (1960)

²G. M. ELIASHBERG, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. **29**, 179 (1977)

At the critical temperature, $\Delta_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} \left[\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m) \right].$$
(5)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^N(n)$ in the kernel $K_{ij}(n,m)$. For a given scalar $\alpha^2 F(\omega)$, an effective phonon frequency can be calculated in different ways. We follow ALLEN and DYNES,⁴ who define the logarithmic average frequency

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right]$$

and the second-moment average frequency

$$\overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty d\omega \, \alpha^2 F(\omega) \, \omega}.$$

and choose $\overline{\omega}_2$ for $\omega_{\rm E}$ in Eqs. 2 and 3 for rescaling μ^* .

—— Acknowledgment ———

Parts of the program are inspired by the $\mathsf{EPW}\ \mathsf{code}^5$ and work of Malte Rösner.

—— Contact —

Any feedback may be directed to jan.berges@uni-bremen.de.

⁴P. B. ALLEN and R. C. DYNES, Phys. Rev. B **12**, 905 (1975)

⁵See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

				>				cical alle
key	default	unit	symbo	description	ebril	, ^x c	`زنک	L'yaria.
file	none	_	_	output file	+	+	+	_
form	F16.12	_	_	number edit descriptor	+	+	+	_
tell	true	_	-	use standard output?	+	+	+	_
Т	10	K	T	temperature	+	+	+	+
omegaE	0.02	eV	ω_{E}	EINSTEIN frequency	+	+	+	+
cutoff	15	ω_{E}	ω_N	overall cutoff frequency	+	+	+	_
cutoffC	ω_N	ω_{E}	$\omega_{N_{\mathbb{C}}}$	Coulomb cutoff frequency	+	+	+	_
lambda, lamda	1	1	λ_{ij}	electron-phonon coupling	+	+	+	+
muStar, mu*	0	1	μ_{ij}^*	rescaled Соисомв potential	+	+	+	+
muC	0	1	μ_{ij}	unscaled Соисомв parameter	+	+	+	+
bands	1	1	_	number of bands	+	+	+	_
dos, DOS	none	_	_	file with density of states	+	+	+	_
a2f, a2F	none	_	_	file with Eliashberg function	+	+	+	_
n	_	1	n_0	initial occupancy number	+	+	+	_
mu	0	eV	μ_0	initial chemical potential	+	+	+	_
conserve	true	_	_	conserve particle number?	+	+	+	_
chi	true	_	-	consider energy shift?	+	+	+	_
limit	250000	1	_	maximum number of iterations	+	+	+	_
epsilon	10^{-13}	a.u.	_	negligible float difference	+	+	+	_
error	10^{-5}	a.u.	_	bisection error	_	+	+	_
zero	10^{-10}	eV	_	negligible gap at $T_{ m c}$ (threshold)	_	+	_	_
rate	10^{-1}	1	_	growth rate for bound search	_	+	+	_
lower	0	eV	_	minimum real-axis frequency	+	_	_	_
upper	_	eV	_	maximum real-axis frequency	+	_	_	_
clip	15	ω_{E}	_	maximum real-axis frequency	+	_	_	_
eta, 0+	0	eV	_	infinitesimal energy 0+	+	_	_	_
resolution	0	1	_	resolution of real-axis solution	+	_	_	_
measurable	false	_	_	find measurable gap?	+	_	_	_
unscale	true	_	_	estimate missing muC from mu*?	+	+	+	_
rescale	true	_	-	use μ_{ij}^* rescaled for cutoff?	+	+	+	_
imitate	false	-	_	use $Z_i(n)$ biased by cutoff?	_	-	+	_
divdos	true	_	_	divide by $n_i(\mu_0)$ in Eqs. 1, 3?	+	+	+	_
stable	false	_	_	calculate $n_i(\omega)$ differently?	+	_	_	_
normal	false	-	_	enforce normal state?	+	_	_	_
power	true	_	_	power method for single band?	_	_	+	_

Table 1: Input parameters.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements of which are separated by commas. It is impossible to vary more than one element at once.
- dos has lines ε/eV n_1/eV^{-1} n_2/eV^{-1} ... with ε ascending but not necessarily equidistant.
- a2F has lines ω/eV $\alpha^2 F_{1,1}$ $\alpha^2 F_{2,1}$... with ω ascending but not necessarily equidistant.

 $\begin{array}{c} \text{\langle CHARACTERS key} \rangle : \langle n_1 \times \ldots \times n_r \text{ NUMBERS value} \rangle \\ \text{associate key with value} \end{array}$

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS

REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

imaginary-axis results							
iomega	Matsubara frequency (without i)	ω_n					
Delta	gap	$\Delta_i(n)$					
Z	renormalization	$Z_i(n)$					
chi	energy shift	$\chi_i(n)$					
phiC	constant Coulomb contribution	$\phi_{\mathrm{C}_{i}}$					
status	status (steps till convergence or —	1) –					
occupancy i							
states	integral of density of states	$\sum_{i} \int d\varepsilon n_{i}(\varepsilon)$					
n0	initial) assumancu number	n_0					
n	final } occupancy number	n					
mu0	initial } chemical potential	μ_0					
mu	final fremittat potentiat	μ					
effective par	a2F given						
lambda	electron-phonon coupling	λ_{ij}					
omegaE	Einstein frequency	ω_{E}					
omegaLog	logarithmic average frequency	ω_{log}					
omega2nd	second-moment average frequency	$\overline{\omega}_2$					
real-axis re	${\sf resolution} > 0$						
omega	frequency	ω					
Re[Delta]	real } gap	$arDelta_i(\omega)$					
<pre>Im[Delta]</pre>	imaginary ∫ ^{yap}	$\Delta_l(\omega)$					
Re[Z]	real renormalization	$Z_i(\omega)$					
<pre>Im[Z]</pre>	imaginary Tellorinatization	$Z_l(\omega)$					
Re[chi]	real energy shift	$\chi_i(\omega)$					
<pre>Im[chi]</pre>	illaginary)	$\chi_i(\omega)$					
DOS	quasiparticle density of states	$n_i(\omega)$					
measurable		measurable=true					
Delta0	measurable gap	$\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$					
status0	status of measurable gap	_					

Table 3: Keys used in binary output.