Fieldbus Appendix AnyBus-IC DeviceNet

Rev. 1.20

Germany +49-721 - 96472 - 0 Japan +81-45-478-5340 Sweden +46- 35 - 17 29 20 U.S.A +1-773 - 404 - 2271

Table of Contents

Preface	About This Manual	
	How To Use This Manual	P-1
	Important User Information	P-1
	Related Documentation	P-1
	Revision List	P-1
	Conventions Used In This Manual	P-2
	Support	P-2
Chapter 1	About the AnyBus-IC DeviceNet	
	Features	1-1
	Compatible Products	1-1
	Electronic Data Sheet (.EDS) File	1-1
Chapter 2	Connectors, Switches & Indicators	
	Application Connector	2-1
	DeviceNet Connector	2-1
	Switches (Fieldbus Specific Input Register)	
	BCD SwitchBinary Switch	
	Status Indicators (Fieldbus Specific Output Register)	2-3
Chapter 3	Design Considerations	
	Shield and Protective Earth Connection	3-1
Chapter 4	Configuration	
	Fieldbus Settings	4-1
	Customization	4-1
Chapter 5	DeviceNet Object Implementation	
	Identity Object, Class 01h	
	Message Router, Class 02h	5-3
	DeviceNet Object, Class 03h	5-4
	Assembly Object, Class 04h	5-4
	Connection Object, Class 05h	5-5
	Acknowledge Handler Object, Class 2Bh	5-9

Chapter 6	Fieldbus Specific Parameters	
•	FB Status (Parameter #100)	6-2
	FB Password (Parameter #102)	6-3
	FB Node Address Config (Parameter #103)	6-3
	SCC FB Node Address (Parameter #104)	6-4
	FB Actual Node Address (Parameter #105)	6-4
	DeviceNet Baud rate Config (Parameter #106)	6-5
	DeviceNet Baud rate Actual (Parameter #107)	6-5
	DeviceNet Vendor ID (Parameter #108)	6-6
	DeviceNet Product Type (Parameter #109)	6-6
	DeviceNet Product Code (Parameter #110)	6-6
	DeviceNet Product Name (Parameter #111)	6-7
	Connection Status Polled (Parameter #113)	6-7
	Connection Status COS (Parameter #114)	6-8
	Connection Status Bit Strobed (Parameter #115)	6-8
	Connection Status Cyclic (Parameter #116)	6-9
Chapter 7	Application Parameters Creating on Application Parameter	7.2
	Creating an Application Parameter	
	Query - "Application Parameter Object"	
	Response - "Application Parameter Object"	
	Example	7-5
	Acyclic Data & Parameter Data Mapping	7-6
	Query - "CIP Mapping Object"	
	Response - "CIP Mapping Object"	
	Example	7-7
Appendix A	Electrical Characteristics	
	Power Requirements	A-1
	PE Grounding	A-1
Appendix B	Mechanical Specification	

About This Manual

How To Use This Manual

This manual provides an overview of the ABIC-DEV-1. It describes how to configure and operate the module, and provides examples showing how to use its features when communicating over DeviceNet.

This document is intended as a complement to the AnyBus-IC Design Guide. For general information about the AnyBus-IC platform, consult the general AnyBus-IC Design Guide.

The reader of this document is expected to be familiar with hardware and software design as well as to have basic knowledge in the DeviceNet fieldbus, and communication systems in general.

Important User Information

The data and illustrations found in this document are not binding. We, HMS Industrial Networks AB reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be considered as a commitment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the necessary steps have been taken to verify that the application meets all performance and safety requirements including any applicable laws, regulations, codes, and standards.

AnyBus® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their respective holders.

Related Documentation

Document	Author
AnyBus-IC Design Guide	HMS
AnyBus-IC Profibus Fieldbus Appendix	HMS
AnyBus-IC Ethenet/IT Fieldbus Appendix	HMS
AnyBus-IC Ethenet/IP Fieldbus Appendix	HMS

Revision List

Revision	Date	Author	Chapter(s)	Description
1.00	2002-08-30	PeP	All	First version
1.10	2002-11-28	PeP	All	Major update
1.20	2003-07-02	PeP	All	Various minor adjustments
			5	Rewritten
			_	

Conventions Used In This Manual

The following conventions are used throughout this manual:

- Numbered lists provide sequential steps
- Bulleted lists provide information, not procedural steps
- The term 'module' is used when referring to the ABIC-DEV-1.
- The term 'application' is used when referring to the hardware that is connected to the Application connector of the module.
- Hexadecimal values are written in the format NNNNh where NNNN is the hexadecimal value.
- 16/32 bit values are written in big endian Motorola format
- The term 'NV RAM' is used when referring to non-volatile memory.

Support

Europe (Sweden)

E-mail: support@hms-networks.com Phone: +46 (0) 35 - 17 29 20 Fax: +46 (0) 35 - 17 29 09 Online: www.hms-networks.com

HMS America

E-mail: us-support@hms-networks.com

Phone: +1-773-404-2271
Toll Free: 888-8-AnyBus
Fax: +1-773-404-1797

Online: www.hms-networks.com

HMS Germany

E-mail: ge-support@hms-networks.com

Phone: +49-721-96472-0 Fax: +49-721-964-7210 Online: www.hms-networks.com

HMS Japan

E-mail: jp-support@hms-networks.com

Phone: +81-45-478-5340 Fax: +81-45-476-0315

Online: www.hms-networks.com

About the AnyBus-IC DeviceNet

The AnyBus-IC DeviceNet integrates all analog and digital functionality required to communicate on a DeviceNet network, into a single chip.

Being a member of the AnyBus-IC family, it can be used with intelligent as well as non-intelligent applications, using a serial communication interface, and/or using external shift-registers to form digital inputs and outputs.

Features

- DeviceNet Group 2 Slave
- Supports up to 5 Explicit Server Connections opened by the UCMM
- Identity Object Customization

This makes it possible for a configuration tool to identify the module as a vendor specific device instead of a generic AnyBus-IC module.

I/O data

It is possible to configure the in / out data size from the application. The module supports up to 48 bytes in and 48 bytes out data. Supported communication types:

- Polled I/O
- COS/Cyclic I/O
- Bitstrobe I/O

• Application Parameters

Application specific parameters can be created by the application during startup.

Acyclic Data and Parameter Data Mapping

Application Parameters can be accessed from the fieldbus by mapping them to Vendor Specific DeviceNet Objects.

Compatible Products

This product is a member of the AnyBus concept of interchangeable fieldbus modules. Standardization of mechanical, electrical and software interfaces ensures that the different AnyBus-IC models are fully interchangeable with only little or no required software and/or hardware adjustments, depending on the application.

Electronic Data Sheet (.EDS) File

Each device in a DeviceNet network is associated with an EDS-file, containing the necessary information about the device. This file is used by the network configuration utility during network configuration. The latest version of the generic EDS-file for the AnyBus-IC DeviceNet is available at HMS web site, 'www.hms-networks.com'

Note: If the I/O configuration or the information in the Identity Object has been changed, the generic EDS file must be modified.

Connectors, Switches & Indicators

Application Connector

Pin	Signal	Description
1-12	(See AnyBus-IC Design Guide)	-
13	FB1	CAN_H
14	FB2	CAN_L
15	FB3	NC
16	FB4	NC
17	PE	PE
18	SHIELD	SHIELD
19	FB5 ^a	V-
20	FB6 ^a	V+
21-32	(See AnyBus-IC Design Guide)	-

See general AnyBus-IC Design Guide

DeviceNet Connector

Pin	Signal	Connect to
1	V-	FB5
2	CAN_L	FB2
3	SHIELD	SHIELD
4	CAN_H	FB1
5	V+	FB6

a. See Appendix A-1 "Power Requirements" for more information.

Switches (Fieldbus Specific Input Register)

The module supports baudrate and MacID configuration via the Fieldbus Specific Input Register on the SSC interface. It supports two kinds of switches; BCD coded and binary/hex coded.

BCD Switch

This type of switch can only be used to set the MAC ID.

Binary Switch

This type of switch can be used for both MAC ID and Baud rate configuration.

The type of switch used must be specified using parameter #9 ("Switch Coding"), see general AnyBus-IC Design Guide for more information.

On the AnyBus-IC DeviceNet, the default value of this parameter is 01h (Binary switches). However, the default value of this parameter is fieldbus dependant, i.e. there is no guarantee that the same type of switch is used by default on other versions of the AnyBus-IC.

BCD Switch

Two switches are used to specify the MAC ID, one for each decimal digit. If a value outside the valid range (0-63) is specified, the the actual value will be 63.

It is not possible to set the Baud Rate using this type of switch. Instead, the baud rate must be set using parameter #106 ("DeviceNet baudrate config"), see 6-1 "Fieldbus Specific Parameters".

Binary Switch

One 8 pole binary switch is used to specify both MAC ID and Baud rate settings.

Baud Rate

The 2 most significant switches are used for baudrate configuration.

Bit 7 (MSB)	Bit 6	Baud Rate
0	0	125kbps
0	1	250kbps
1	0	500kbps
1	1	(reserved)

MAC ID

The 6 least significant switches are used for MAC ID configuration.

Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	MAC ID
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
	•••	•••	•••			
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Status Indicators (Fieldbus Specific Output Register)

The Fieldbus Specific Output Register on the SSC interface is used as follows:

• Module Status (MS)

Bit	State	Indication
-	(off)	Device not powered
0 (LSB)	Green	Device operational
1	Red	Unrecoverable fault
	Red, flashing	Minor fault recoverable

Network Status (NS)

Bit	State	Indication	
-	(off)	Device not powered / Not online	
2	Green	Link OK, On line, Connected	
	Green, flashing	On line, Not connected	
3 (MSB)	Red	Critical link failure	
	Red, flashing	Connection timeout	

Power up LED Test

During power up, these leds are tested with a series of red-green flashes according to the Device-Net specification (see table below).

Duration	Module Status (MS)	Network Status (NS)
0.25s	Green	(off)
0.25s	Red	(off)
0.25s	(off)	Green
0.25s	(off)	Red

Note: The application can read the state of these leds using parameter #7 ("LED State").

Design Considerations

As the PE/Shield requirements vary between different fieldbus systems, special care has to be taken when designing the carrier board if compatibility with other versions of the AnyBus-IC is desired.

Consult the general AnyBus-IC Design Guide for more information. It is also recommended to study the design examples for the AnyBus-IC Ethernet/IT/IP and the AnyBus-IC Profibus.

Shield and Protective Earth Connection

The module and the fieldbus interface must be properly connected to protective earth for proper EMC behaviour. Although the module features an on board R/C filter circuit according to the DeviceNet standard, it is recommended to use an external circuit according to the figure below.

Configuration

Fieldbus Settings

Mac ID

If bit 4 in parameter #8 ("Configuration Bits", see general AnyBus-IC Design Guide) is set, the MAC ID is read from parameter #103 ("FB Node Address Config").

If not, the MAC ID is read from the Fieldbus Specific Input Register on the SSC interface, see 2-2 "Switches (Fieldbus Specific Input Register)".

Baud rate

The module supports fieldbus communication at baud rates 125kbit/s, 250kbit/s and 500kbit/s. Automatic baud rate detection is not supported on the fieldbus interface.

If bit 5 in parameter #8 ("Configuration Bits", see general AnyBus-IC Design Guide) is set, the baud rate is read from parameter #106 ("DeviceNet Baud rate Config")

If not, the baud rate is read from the Fieldbus Specific Input Register, see 2-2 "Switches (Fieldbus Specific Input Register)".

Customization

Identity Object

The information in the Identity Object can be changed, i.e it is possible to customize Vendor ID, Device Type, Product Code, and Product Name. This information is protected by a password to prevent unauthorized changes. This password can be obtained by contacting HMS.

	Default Value:	Parameter #
Vendor ID:	005Ah (HMS Networks)	108
Device Type:	000Ch (Communications Adapter)	109
Product Code:	003Dh	110
Product Name:	'AnyBus-IC DEV'	111

Note 1: These settings are read once during startup, i.e. it is required to restart the module in order for any changes to have effect.

Note 2: These settings are stored in non-volatile memory and will not be affected by a reset or a 'Set Defaults'-operation unless the correct password has been entered using parameter #102 ('FB Password').

Application Parameters

Application Parameters are user specific parameters created by the application during startup. See 7-1 "Application Parameters" for more information.

DeviceNet Object Implementation

Mandatory Objects

Object Name	Class	Description
Identity Object	01h	-
Message Router Object	02h	-
DeviceNet Object	03h	-
Assembly Object	04h	-
Connection Object	05h	-
Acknowledge Handler Object	2Bh	-

Vendor Specific Object

It is possible to map objects that are used as a connection between the DeviceNet specific part and the general AnyBus-IC part of the module. For more information, see 7-6 "Acyclic Data & Parameter Data Mapping".

Object Name	Class	Description
Application	-	(mapping dependent)

Identity Object, Class 01h

Services

Class services: Get Attribute Single

Get Attribute Single Instance services:

Reset

Class Attributes

#	Access	Name	Туре	Value	Description
1	Get	Revision	UINT	0001h	Revision 1

Instance Attributes

#	Access	Name	Туре	Value	Description
1	Get	Vendor ID	UINT	Default: 005Ah	HMS Networks ^a
2	Get	Device Type	UINT	Default: 000Ch	Communications Adapter ^a
3	Get	Product Code	UINT	Default: 003Dh	AnyBus-IC DEV ^a
4	Get	Revision	Struct of:		-
			USINT		Major fieldbus version
			USINT		Minor fieldbus version
5	Get	Status	WORD	-	Device status, see table below
6	Get	Serial Number	JDINT Module serial number		Serial number of the module
7	Get	Product Name	SHORT_STRING	AnyBus-IC DEV	Name of product ^a

a. Can be customized, see 4-1 "Customization"

• Status Attribute (#5)

bit(s)	Name
0	Module Owned. A master has allocated the module.
1	(reserved)
2	Configured
3 -7	(reserved)
8	Minor recoverable fault
9	Minor recoverable fault
10	Major recoverable fault
11	Major unrecoverable fault
12 - 15	(reserved)

Reset Service

The Identity Object provides a reset service. There are two different types of reset requests:

Type 0: 'Power Cycling Reset'

The module will by default perform a reset of the entire module. However, if the Interrupt Config (RES) bit (Parameter 12, bit 5) is set, the module will instead issue an interrupt to the application. The application is then responsible for resetting itself and the AnyBus IC.

Type 1: 'Out of box reset'

If the Interrupt Config (DEF) bit (Parameter 12, bit 4) is set, the module will issue an interrupt to the application. The interrupt cause register will show 'Set Default' as cause. The application is then responsible for resetting configuration settings before resetting itself and the module.

If the Interrupt Config (RES) bit (Parameter 12, bit 4) is set, the module will issue an interrupt to the application. The interrupt cause register will show 'Reset' as cause. The application is then responsible for resetting itself and the module.

Message Router, Class 02h

Services

Class services: Get Attribute Single

Instance services:

Class Attributes

#	Access	Name	Туре	Value	Description
1	Get	Revision	UINT	0001h	Revision 1

DeviceNet Object, Class 03h

Services

Class services: Get Attribute Single

Get Attribute Single Instance services:

Allocate Master/Slave Connection Set

Release group 2 Identifier Set

Class Attributes

#	Access	Name	Туре	Value	Description
1	Get	Revision	UINT	0002h	Revision 2

Instance Attributes

#	Access	Name	Туре	Value	Description
1	Get	MAC ID	USINT	N/A	Currently used MacID
2	Get	Baud Rate	USINT	N/A	Currently used baudrate: 1 = 125 kbps 2 = 250 kbps 3 = 500 kbps
5	Get	Allocation Information	Struct o	f:	-
			BYTE	N/A	Allocation choice byte
			USINT	N/A	Master's MAC ID

Assembly Object, Class 04h

The Assembly object uses static assemblies. The assembly instance ID's used are in the vendor specific range.

Services

Class services:

Get Attribute Single Instance services:

Instance Attributes, Instance/Connection Point 64h

#	Access	Name	Туре	Description
3	Get	Data	Array of BYTE	Data produced by the AnyBus IC to the master

Instance Attributes, Instance/Connection Point 96h

#	Access	Name	Туре	Description
3	Get	Data	Array of BYTE	Data consumed by the AnyBus-IC from the master

Connection Object, Class 05h

Services

Class services: Get Attribute Single

Instance services: Get Attribute Single

Set Attribute Single

Class Attributes

#	Access	Name	Туре	Value	Description
1	Get	Revision	UINT	0001h	Revision 1

Instance 1 = Explicit messaging connection (Predefined in DeviceNet object)

Instance 2 = Polled connection / COS / Cyclic consuming connection

Instance 3 = Bit strobe connection

Instance 4 = COS / Cyclic producing connection

Instance 10 - 14 = Explicit connection (UCMM allocated)

Instance 1 & 10...14 (Explicit Messaging Connection) Attributes

#	Access	Name	Туре	Value	Description
1	Get	State	USINT	N/A	0 = Non existent
					1 = Configuring
					2 = Waiting for connection ID
					3 = Established
					4 = Timeout
2	Get	Instance type	USINT	0	Explicit messaging connection
3	Get	Transport Class trigger	BYTE	83h	Server/Transport Class 3
4	Get	Produced Connection ID	UINT	N/A	CAN ID for transmission
5	Get	Consumed Connection ID	UINT	N/A	CAN ID for reception
6	Get	Initial Comm Characteristics	BYTE	N/A	The message group over which the com-
					munication occurs
7	Get	Produced Connection Size	UINT	0100h	256 bytes
8	Get	Consumed Connection Size	UINT	0100h	256 bytes
9	Get/Set	Expected Packet Rate	UINT	09C4h	Timing associated with this connection
					(2500ms)
12	Get/Set	Watchdog timeout action	USINT	1	1 = Auto delete
					3 = Deferred delete
13	Get	Produced Connection path length	UINT	0	Number of bytes in the produced connec-
					tion path attribute
14	Get	Produced Connection Path	EPATH	No value	No connection path
15	Get	Consumed Connection path length	UINT	0	Number of bytes in the consumed connec-
					tion path instance
16	Get	Consumed Connection Path	EPATH	No value	No connection path

Instance 2 (Polled or COS/Cyclic Consuming Connection) Attributes

#	Access	Name	Туре	Value	Description
1	Get	State	USINT	N/A	0 = Non existent 1 = Configuring 2 = Waiting for connection ID 3 = Established 4 = Timeout
2	Get	Instance type	USINT	1	IO Connection
3	Get	Transport Class trigger	BYTE	80h	Server/Transport Class 0 (COS//Cyclic w/o ACK)
				83h	Server/Transport Class 3 (Polled or COS/Cyclic with ACK)
4	Get	Produced Connection ID	UINT	N/A	CAN ID for transmission
5	Get	Consumed Connection ID	UINT	N/A	CAN ID for reception
6	Get	Initial Comm Characteristics	BYTE	01h (Polled or COS/Cyclic with ACK)	Produces over message group 1 Consumes over message group 2
				F1h	Does not produce
				(COS/Cyclic w/o ACK)	Consumes over message group 2
7	Get	Produced Connection Size	UINT	N/A	0 - 48 bytes depending on AnyBus IC input size configuration (Polled)
				0	COS/Cyclic
8	Get	Consumed Connection Size	UINT	N/A	0 - 48 bytes depending on AnyBus- IC output size configuration
9	Get/Set	Expected Packet Rate	UINT	0	Timing associated with this connection
12	Get/Set	Watchdog timeout action	USINT	0	0 = Transition to the timed out state
13	Get	Produced Connection path	UINT	0007h (Polled)	Number of bytes in the produced
		length		0000h (COS/Cyclic)	connection path attribute
14	Get	Produced Connection Path	EPATH	20 04 25 64 00 30 03h	Assembly Object, Instance 100, Attribute 3 is producing the data
				No value (COS/Cyclic)	No producing object
15	Get	Consumed Connection path length	UINT	0007h	Number of bytes in the consumed connection path instance
16	Get	Consumed Connection Path	EPATH	20 04 25 96 00 30 03h	Assembly Object, Instance 150, Attribute 3 is consuming the data.
17	Get	Production Inhibit Time	UINT	0	Minimum time between new data production

Instance 3 (Bit-strobe connection) Attributes

#	Access	Name	Туре	Value	Description
1	Get	State	USINT	N/A	0 = Non existent 1 = Configuring 2 = Waiting for connection ID 3 = Established 4 = Timeout
2	Get	Instance type	USINT	1	IO Connection
3	Get	Transport Class trigger	BYTE	82h	Server/Transport Class 2
4	Get	Produced Connection ID	UINT	N/A	CAN ID for transmission
5	Get	Consumed Connection ID	UINT	N/A	CAN ID for reception
6	Get	Initial Comm Characteristics	BYTE	02h	Produces over message group 1 Consumes over message group 2
7	Get	Produced Connection Size	UINT	N/A	0 - 8 depending on AnyBus IC input size configuration
8	Get	Consumed Connection Size	UINT	8	Consumes 8 bytes. 1 bit used for the AnyBus IC slave.
9	Get/Set	Expected Packet Rate	UINT	0	Timing associated with this connection
12	Get	Watchdog timeout action	USINT	0	0 = Transition to the timed out state
13	Get	Produced Connection path length	UINT	0007h	Number of bytes in the produced connection path attribute
14	Get	Produced Connection Path	EPATH	20 04 25 64 00 30 03h	Assembly Object, Instance 100, Attribute 3 is producing the data
15	Get	Consumed Connection path length	UINT	0007h	Number of bytes in the consumed connection path instance
16	Get	Consumed Connection Path	EPATH	20 04 25 96 00 30 03h	Assembly Object, Instance 150, Attribute 3 is consuming the data
17	Get	Production Inhibit Time	UINT	0	Minimum time between new data production

Instance 4 (COS/Cyclic connection) Attributes

#	Access	Name	Туре	Value	Description
1	Get	State	USINT	N/A	0 = Non existent 1 = Configuring 2 = Waiting for connection ID 3 = Established 4 = Timeout
2	Get	Instance type	USINT	1	IO Connection
3	Get	Transport Class trigger	BYTE	N/A	00h = Cyclic 03h = Cyclic + ACK 10h = COS 13h = COS + ACK
4	Get	Produced Connection ID	UINT	N/A	CAN ID for transmission
5	Get	Consumed Connection ID	UINT	N/A	CAN ID for reception
6	Get	Initial Comm Characteristics	BYTE	0Fh (No ACK)	Produces over message group 1 Does not consume.
				01h (ACK)	Produces over message group 1 Consumes over message group 2
7	Get	Produced Connection Size	UINT	N/A	0 - 48 bytes depending on AnyBus IC input size configuration
8	Get	Consumed Connection Size	UINT	0	Consumes 0 bytes on this connection
9	Get/Set	Expected Packet Rate	UINT	0	Timing associated with this connection
12	Get	Watchdog timeout action	USINT	0	0 = Transition to the timed out state
13	Get	Produced Connection path length	UINT	0007h	Number of bytes in the produced connection path attribute
14	Get	Produced Connection Path	EPATH	20 04 25 64 00 30 03h	Assembly Object, Instance 100, Attribute 3 is producing the data
15	Get	Consumed Connection path	UINT	0007h (No ACK)	Number of bytes in the consumed
		length		0005h (ACK)	connection path instance
16	Get	Consumed Connection Path	EPATH	No value (No ACK)	Empty
			EPATH	20 2B 25 01 00h	Acknowledge Handler Object, Instance 1
17	Get	Production Inhibit Time	UINT	0	Minimum time between new data production

Acknowledge Handler Object, Class 2Bh

Services

Get Attribute Single Class services:

Instance services: Get Attribute Single

Set Attribute Single

Class Attributes

#	Access Name Type		Value	Description	
1	Get	Revision	UINT	0001h	Revision 1

Instance¹ Attributes

#	Access	Name	Туре	Value	Description
1	Get/Set	Acknowledge Timer	UINT	16	Time (in ms) to wait for acknowledge before re-sending
2	Get/Set	Retry Limit	USINT		Number of ACK timeouts before retry limit reached event
3	Get	Producing connection Instance	UINT		Connection instance, which contains the path of the producing I/O application object, which will be notified of Ack Handler events.

^{1.} Instance 1 is created when using an ACK:ed COS/Cyclic connection.

Fieldbus Specific Parameters

To be able to use the full functionality of every fieldbus, the Fieldbus Specific Parameters are used. These parameters are specific to the actual fieldbus used and must be configured accordingly. The table below shows an overview of the parameters, followed by a detailed description of each parameter.

#	R/W	Name	Size	Default value	Modbus Address
100	R	FB Status	2 byte	-	7000h
102	W	FB Password	2 byte	-	7022h
103	R/W	FB Node address Config	1 byte	3Fh	7002h
104	R	SCC FB Node address	1 byte	-	7003h
105	R	FB Actual Node Address	1 byte	-	7004h
106	R/W	DeviceNet baudrate config	1 byte	00h	7005h
107	R	DeviceNet baudrate actual	1 byte	-	7006h
108	R(W)	DeviceNet Vendor ID	2 byte	005Ah	7007h
109	R(W)	DeviceNet Product Type	2 byte	000Ch	7008h
110	R(W)	DeviceNet Product Code	2 byte	003Dh	7009h
111	R(W)	DeviceNet Product Name	32 byte ^a	'AnyBus-IC DEV'	700Ah-7019h
113	R	Connection Status Polled	1 byte	-	701Ch
114	R	Connection Status COS	1 byte	-	701Dh
115	R	Connection Status Bit Strobed	1 byte	-	701Eh
116	R	Connection Status Cyclic	1 byte	-	701Fh
200	RW	Application Parameter 1	b	-	8000h -
201	RW	Application Parameter 2	b	-	b
202	RW	Application Parameter 3	b	-	b
С	RW	Application Parameter 50 ^c	b	-	bc

a. All 32 bytes must be read/written using a single modbus command

b. Parameter dependent.

c. It is possible to register up to 50 Application Parameters with a maximum total size of 1kbyte.

FB Status (Parameter #100)

This parameter holds information about the current bus status.

Parameter Name	'FB Status'
Parameter number	100
Modbus Address	7000h
Default value	N/A
Range	Bit field, see below.
Size	2 bytes
Stored in NV RAM	No
Access	R

Bit layout

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
					PWR	IDLE	BUS								

BUS

- 1: Bus is on line
- 0: Bus is off line

$IDLE^1$

- 1: Bus is in Idle mode
- 0: Bus is not in Idle mode

PWR

- 1: Power is supplied to the bus electronics (24V)
- 0: Power is not supplied to the bus electronics

^{1.} This bit is valid only if the connection consumes data. If not, there is no way to determine if the master is in idle mode or not.

FB Password (Parameter #102)

This parameter is used to unlock the following parameters:

Parameter #108 - DeviceNet Vendor ID Parameter #109 - DeviceNet Product Type Parameter #110 - DeviceNet Product Code Parameter #111 - DeviceNet Product Name

(The password can be obtained by contacting HMS)

Parameter Name	'FB Password'
Parameter number	102
Modbus Address	7022h
Default value	N/A
Range	0000h - FFFFh
Size	2 bytes
Stored in NV RAM	No
Access	W

FB Node Address Config (Parameter #103)

This parameter holds the manually configured DeviceNet node address. Note that in order for this value to be valid, bit 4 in parameter #8 ("Configuration Bits") must be set.

Note: This information is stored in non-volatile memory.

Parameter Name	'Cfg FB Address'
Parameter number	103
Modbus Address	7002h
Default value	3Fh
Range	00h - 3Fh
Size	1 byte
Stored in NV RAM	Yes
Access	R/W

SCC FB Node Address (Parameter #104)

This parameter holds the auto configured fieldbus node address from the SSC interface. Note that in order for this value to be valid, bit 5 in parameter #8 ("Configuration Bits") must be set.

If the SCC node address is larger than allowed by the fieldbus, the value will be forced to 63.

Parameter Name	'SCC FB Address'
Parameter number	104
Modbus Address	7003h
Default value	N/A
Range	00h - FFh
Size	1 byte
Stored in NV RAM	No
Access	R

FB Actual Node Address (Parameter #105)

This parameter holds the actual fieldbus node address.

Parameter Name	'Act FB Address'
Parameter number	105
Modbus Address	7004h
Default value	N/A
Range	00h - 3Fh
Size	1 byte
Stored in NV RAM	No
Access	R

DeviceNet Baud rate Config (Parameter #106)

This parameter is used to change the DeviceNet baud rate. Note that in order for this value to be valid, bit 5 in parameter #8 ("Configuration Bits") must be set.

Note: This information is stored in non-volatile memory.

Parameter Name	'Cfg DEV Baudrate'
Parameter number	106
Modbus Address	7005h
Default value	N/A
Range	00h - 02h
Size	1 byte
Stored in NV RAM	Yes
Access	R/W

Value

00h:125kbps 01h:250kbps 02h:500kbps

DeviceNet Baud rate Actual (Parameter #107)

This parameter holds the actual DeviceNet baud rate setting.

Parameter Name	'Act DEV Baudrate'
Parameter number	107
Modbus Address	7006h
Default value	N/A
Range	00h - 02h
Size	1 byte
Stored in NV RAM	No
Access	R

Value

00h:125kbps 01h:250kbps 02h:500kbps

DeviceNet Vendor ID (Parameter #108)

This parameter is used to change the Vendor ID. Before the application can gain access (including a 'set default') to this parameter, the module has to be unlocked using parameter #102 ("FB Password").

Note: If this parameter is altered, the EDS file must be modified accordingly.

Parameter Name	'Act DEV Vendor ID'
Parameter number	108
Modbus Address	7007h
Default value	005Ah (HMS Industrial Networks AB)
Range	0000h - FFFFh
Size	2 bytes
Stored in NV RAM	Yes
Access	R(W)

DeviceNet Product Type (Parameter #109)

This parameter is used to change the Product Type. Before the application can gain access (including a 'set default') to this parameter, the module has to be unlocked using parameter #102 ("FB Password").

Note: If this parameter is altered, the EDS file must be modified accordingly.

Parameter Name	'DeviceNet Product Type'			
Parameter number	109			
Modbus Address	7008h			
Default value	000Ch (Communication Adapter)			
Range	0000h - FFFFh			
Size	2 bytes			
Stored in NV RAM	Yes			
Access	R(W)			

DeviceNet Product Code (Parameter #110)

This parameter is used to change the Product Code. Before the application can gain access (including a 'set default') to this parameter, the module has to be unlocked using parameter #102 ("FB Password").

Note: If this parameter is altered, the EDS file must be modified accordingly.

Parameter Name	'DeviceNet Product Code'			
Parameter number	110			
Modbus Address	7009h			
Default value	003Dh			
Range	0000h - FFFFh			
Size	2 bytes			
Stored in NV RAM	Yes			
Access	R(W)			

DeviceNet Product Name (Parameter #111)

This parameter is used to change the Product Name. Before the application can gain access (including a 'set default') to this parameter, the module has to be unlocked using parameter #102 ("FB Password").

Note: If this parameter is altered, the EDS file must be modified accordingly.

Parameter Name	'DeviceNet Product Name'
Parameter number	111
Modbus Address	700Ah - 7019h
Default value	'AnyBus-IC Dev'
Range	-
Size	32 bytes ^a
Stored in NV RAM	Yes
Access	R(W)

a. All 32 bytes must be read/written with one modbus command.

Connection Status Polled (Parameter #113)

This parameter returns the connection status for polled I/O connections.

Parameter Name	'Conn Status Polled'
Parameter number	113
Modbus Address	701Ch
Default value	N/A
Range	00h - FFh
Size	1 byte
Stored in NV RAM	No
Access	R

Value

00h:Connection non existant

01h:Connection configuring

03h:Connection established

04h:Connection timed out

Connection Status COS (Parameter #114)

This parameter returns the connection status for change-of-state connections.

Parameter Name	'Conn Status COS'
Parameter number	114
Modbus Address	701Dh
Default value	N/A
Range	00h - FFh
Size	1 byte
Stored in NV RAM	No
Access	R

Value

00h:Connection non existant

01h:Connection configuring

03h:Connection established

04h:Connection timed out

Connection Status Bit Strobed (Parameter #115)

This parameter returns the connection status for bitstrobed connections.

Parameter Name	'Conn Status Bit Strobed'
Parameter number	115
Modbus Address	701E
Default value	N/A
Range	00h - FFh
Size	1 byte
Stored in NV RAM	No
Access	R

Value

00h:Connection non existant

01h:Connection configuring

03h:Connection established

04h:Connection timed out

Connection Status Cyclic (Parameter #116)

This parameter returns the connection status for cyclic connections.

Parameter Name	'Conn Status Cyclic'
Parameter number	116
Modbus Address	701Fh
Default value	N/A
Range	00h - FFh
Size	1 byte
Stored in NV RAM	No
Access	R

Value

00h:Connection non existant

01h:Connection configuring

03h:Connection established

04h:Connection timed out

Application Parameters

Introduction

An Application Parameter is a user specific AnyBus-IC parameter created by the application during startup. Just like other parameters, Application Parameters can be accessed by the application via the SCI interface using Modbus messages, or by the user via the MIF interface.

For each Application Parameter it is possible to specify a number of properties, such as datatype, range, name etc. This enables the application to utilize the MIF user interface for internal functions.

Application Parameters can also be accessed from the fieldbus, by mapping them to a DeviceNet Object using the CIP Mapping Object Class, see 7-6 "Acyclic Data & Parameter Data Mapping".

HMS Object Software

This functions described in this chapter uses the HMS Object Software (HOS) to create and map application specific parameters. The HOS provides access to parameters and AnyBus-IC functions in an object oriented way using the Modbus Object Messaging protocol (Consult the AnyBus-IC Design Guide for more information).

Two HOS Objects are described in this chapter:

- Application Parameter Object, Class 85h
 This class is used to create Application Parameters.
- CIP Mapping Object, Class A5h

This class is used to map HOS Objects (In this case an Application Parameter) to DeviceNet Objects, enabling remote access to Application Parameters from the fieldbus.

Creating an Application Parameter

Query - "Application Parameter Object"

To create a new Application Parameter, send the following message using Modbus Object Messaging. (Consult the AnyBus-IC Design Guide for more information about the Object Message Sub Field)

Object Message Sub Field.

Fragment byte count	Fragment protocol	Class ID	Instance ID	Service Code	Attribute	Data Field
(size)	02h	0085h	0000h	0005h	0000h	(See below)
Parameter Size (WORD)				Parameter Info (Size varies)		Word (Optional) /ORD)

Parameter Size

This value depends on the type of data specified in the Descriptor (see below).

Data Type	Valid Parameter Size values
UINT, INT, BITSTRING	1, 2, 4
FLOAT	4
STRING	1 - 32 (String length including NULL termination)
BYTE_ARRAY	N/A

Descriptor¹

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
(reserved)	(reserved)	(reserved)	(reserved)	(reserved)	Data Format bit 1	Data Format bit 0	Data Type bit 3	Data Type bit 2	Data Tvne bit 1	Data Type bit 0	(reserved)	(reserved)	(reserved)	Write	Read
Write	Value	Me	aning				_		Read	Value	Mea	ning			
0	Write access not allowed					0		Rea	d acces	s not al	llowed				
1		Wri	te acce	ss allow	<i>i</i> ed		_		1		Rea	d acces	s allow	ed	
							_								
Data	Туре	Me	aning				_		Data I	ormat	Mea	ning			
0 (000	00)	UIN	IT						0 (00)		Dec.				
1 (000)1)	INT					_		1 (01)		Hex				
2 (001	10)	BIT	STRING	G			_		2 (10)		Bin				
3 (001	l1)	ST	RING				_		3 (11)		Dott	ed deci	mal		
4 (010	00)	FLO	TAC				_				1				
5 (010)1)	BY	TE ARR	RAY			_								

^{1.} Note that the upper 16 bits of the Descriptor is reserved and should always be set to 0000h.

Parameter Info

The size and contents of this field depends on the Data Type specified in the Descriptor block.

• Data types UINT, INT, BITSTRING & FLOAT

Min Value	Max Value	Init Value	Name ^a	Unit ^a
(size varies)	(size varies)	(size varies)	(String, 16 bytes)	(String, 16 bytes)

Field	Type / Size	Description
Min Value	Specified in 'Parameter Size'	Minimum allowed parameter value
Max Value	Specified in 'Parameter Size'	Maximal allowed parameter value
Init Value	Specified in 'Parameter Size'	Initial parameter value
Name	String (16 byte, null terminated)	Name of parameter, e.g "Speed" ^a
Unit	String (16 byte, null terminated)	Unit, e.g "RPM" ^a

a. These fields are optional. (However, if used, both fields must be present)

Data type STRING

Init Value	Name ^a	Unit ^a
(STRING, 16 bytes)	(STRING, 16 bytes)	(STRING, 16 bytes)

Field	Type / Size	Description
Init Value	Specified in 'Parameter Size'	Initial value
Name	String (16 byte, null terminated)	Name of parameter ^a
Unit	String (16 byte, null terminated)	Unit ^a

a. These fields are optional. (However, if used, both fields must be present)

Data type BYTE_ARRAY

Min Value	Max Value	Init Value	Name ^a	Unit ^a
(BYTE)	(BYTE)	(BYTE)	(String, 16 bytes)	(String, 16 bytes)

Field	Type / Size	Description
Min Value	Byte	Min. allowed value of each element in the array
Max Value	Byte	Max. allowed value of each element in the array
Init Value	Byte	Initial value of all elements in the array
Name	String (16 byte, null terminated)	Name of parameter ^a
Unit	String (16 byte, null terminated)	Unit ^a

a. These fields are optional. (However, if used, both fields must be present)

Extension Word (Optional)

This word is optional and specifies whether the response message should contain the Modbus address of the created Application Parameter or not.

Value	Description
0000h	-
0001h	Request Modbus Address
Other values	(Reserved for future use)

Response - "Application Parameter Object"

The AnyBus-IC module will respond with the following message. (Consult the AnyBus-IC Design Guide for more information about the Object Message Sub Field)

Object Message Sub Field

Fragment byte count	Fragment protocol	Class ID	Instance ID	Service Code	Error Code	Data Field
(size)	02h	0085h	0000h	0006h	0000h	(See below)
	S Instance WORD)	F	Parameter Numbe (WORD)	er	Modbus Ad (WORI	

a. This field is only present if the Extension Word of the query is set to 0001h

HOS Instance

If the Error Code is 0 (Success), this field contains the HOS Instance of the created Application Parameter.

Parameter Number

If the Error Code is 0 (Success), this field contains the parameter number of the created Application Parameter.

Modbus Address

If the Error Code is 0 (Success), this field contains the Modbus Address of the created Application Pa-

Note: This field is only present if the Extension Word of the query is set to 0001h.

Example

The example below creates an Application Parameter with the following properties:

- Parameter Name "Speed", unit "rpm"
- Type 16 bit unsigned INT, range 0 65535, initial parameter value 32768.
- R/W access

	Qu	ery	
	01h	5Bh	1
	35h	02h	
Class	00	85h	Application Parameter Class
Instance	00	00h	
Service Code	00	05h	Create
Attribute	00	00h	
Parameter Size	00	02h	Parameter Size = 2 bytes
Descriptor MSB	00	00h	
Descriptor LSB	00	03h	UINT, DEC, R/W
Min value	00	00h	Minimum allowed value: 0
Max value	FF	FFh	Maximum allowed value: 65535
Init value	80	00h	Initial value: 8000h
Name	53h ('S')	70h ('p')	"Speed"
	65h ('e')	65h ('e')	
	64h ('d')	00h	
	-	•	
	-	-	
	-	-	
	-	•	
	-	-	
Unit	72h ('r')	70h ('p')	"rpm"
	6Dh ('m')	00h	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
Extension Word	00	01h	Request Modbus Address
	CI	RC	

Response

	01h	5Bh	
	0Fh	02h	
Class	0085h		Application Parameter Object Class
Instance	000	00h	
Service Code	000	06h	Create Response
Error Code	000	00h	Success
HOS Instance	000	01h	HOS Instance 1
Parameter no.	000	C8h	Parameter no. = 200
Modbus Address	8000h		Modbus Address = 8000h
	CI	RC	

Acyclic Data & Parameter Data Mapping

Acyclic data on the AnyBus-IC DeviceNet module is sent using Application Parameters mapped to Vendor Specific DeviceNet Objects.

The mapping procedure consists of two steps:

Creating the Application Parameter (See 7-2 "Creating an Application Parameter")

Mapping the created Application Parameter to a DeviceNet Object

This is done by creating a new instance in the AnyBus-IC CIP Mapping Object Class (A5h). This class is used to map a vendor specific DeviceNet Object Attribute onto an AnyBus-IC Object Attribute.

Query - "CIP Mapping Object"

(Consult the AnyBus-IC Design Guide for more information about the Object Message Sub Field)

Object Message Sub Field

Fragment byte count	Fragment protocol		i ID	Inst	ance ID	Sei	rvice Code	Data Field
(size)	02h	!A00	5h	0	000h		0005h	(See below)
CIP Class (WORD)	CIP Instance (WORD)	CIP Attribute (WORD)		Class (RD)	HOS Insta (WORD		HOS Attribute (WORD)	Attribute Size (WORD)

CIP Class

CIP Class to map

CIP Instance

CIP Instance to map

CIP Attribute

CIP Attribute to map

Attribute Size

Size of attribute. This value should match the Parameter Size value in the Application Parameter request.

HOS Class

HOS Class to map. (In this case 85h "Application Parameter Object Class")

HOS Instance

HOS Instance to map (In this case, use the HOS Instance value returned from the Application Parameter Object request when the Application Parameter was created.)

HOS Attribute

HOS Attribute to map In this case, the 0001h (=Parameter Value)

Response - "CIP Mapping Object"

The response contains no additional data. (Consult the AnyBus-IC Design Guide for more information about the Object Message Sub Field)

Object Message Sub Field

Fragment byte count	Fragment protocol	Class ID	Instance ID	Service Code	Error Code
(8 bits)	02h	00A5h	0000h	0006h	(16 bits)

Example

This example will map the Application Parameter created earlier in this chapter to DeviceNet Class 144, Instance 1, Attribute 1.

	Qu	ery	_
	01h	5Bh	
	17h	02h	
Class	00	45h	CIP Mapping Object
Instance	00	00h	
Service Code	00	05h	Create
Attribute	00	00h	
CIP Class	00	90h	CIP Class 144
CIP Instance	00	01h	CIP Instance 1
CIP Attribute	00	01h	CIP attribute 1
HOS Class	00	85h	Application Parameter Object Class
HOS Instance	00	01h	HOS Instance 1
HOS Attribute	0001h		0001h = Parameter value
Attribute Size	00	02h	Size = Word
	CI	RC	

	01h	5Bh	
	09h	02h	
Class	00	A5h	CIP Mapping Object
Instance	0000h		
Service Code	0006h		Create Response
Error Code	0000h		Success
	CI	RC	

Electrical Characteristics

Power Requirements

Module Electronics

The module electronics requires 5V DC. For more information regarding power requirements, consult the AnyBus-IC Design Guide.

Bus Interface

The fieldbus interface requires 24V DC bus power according to the DeviceNet specification.

Power Consumption

Interface	Max.	Тур.
Module Electronics, 5V	250mA	-
Bus Interface, 24V	70mA	30mA

PE Grounding

Pin 17 in the Application connector must be connected to PE for proper EMC behaviour. For more information, see 3-1 "Shield and Protective Earth Connection".

Mechanical Specification

(Consult the general AnyBus-IC Design Guide for more information)