论文写作的易读性原则

案例分析:基于Seq2Seq的对话数据增广

报告人:刘一佳

合作者:侯宇泰、车万翔、刘挺

http://yjliu.net/cv/res/2018-08-19-nlpcc-sws.compressed.pdf

学术报告中的一些设计技巧

报告人:刘一佳

导师:秦兵、车万翔

错误地利用 报告与论文结构的相似性

简介	模型	模型
模型	实验	结论

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - 口"引起听众的兴趣"

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - ☑ "引起听众的兴趣"

听众模型

理想中的听众

- 领域专家
- 已经读过你的论文
- 对于你的工作非常感兴趣

现实中的听众

- 来自其他领域
- 刚刚了解到你的工作
- 这个时段没什么可听的,恰巧发现这屋子网络比较好

类比审稿人模型

审稿

你以为审稿人应该是这样审稿的:

审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:

他不一定是专家,一直忙于其他事。在deadline到来之前一天要完成 n篇。审稿时他往往先看题目、摘要,扫一下introduction(知道你做 什么),然后直接翻到最后找核心实验结果(做得好不好),然后 基本确定录还是不录(也许只用5分钟!)。如果决定录,剩下就是 写些赞美的话,指出些次要的小毛病。如果决定拒,下面的过程就 是细看中间部分找理由拒了。

第一印象定录拒,5分钟内打动审稿人

12

刘洋. 2014. 机器翻译学术论文写作方法与技巧

类比审稿人模型

```
你以为审稿人应该是这样审稿的:
审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:
他不一定是专家,一直忙于其他事,在deadline到来之前一天要完成的第一次是专家,一直忙于其他事,在deadline到来之前一天要完成的第一家和助他往往先看题目、携要,扫一下introduction(知道你做
```

"You have **two minutes** to engage your audience before they start to doze." -- Simon Peyton Jones in *How to give* a great research talk

简介部分:展示最好的部分

Danqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency Parser using Neural Networks,第三页

模型部分:多用例子

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010. Painless Unsupervised Learning with Features, 第28到54页

模型部分:反例

Transition	Current State	Resulting State	Description
Drop	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma _{\mathbf{S}_0},\ \delta,\ \beta,\ A]$	pops out the word that doesn't convey any semantics (e.g., function words and punctuations).
Merge	$[\sigma s_0,\ \delta,\ b_0[b_1 eta,\ A]$	$[\sigma _{\mathbf{S}_0},\ \delta,\ b_0_b_1 eta,\ A]$	concatenates a sequence of words into a span, which can be derived as a named entity (name) or date-entity.
CONFIRM(c)	$[\sigma \mathfrak{s}_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma _{\mathbb{S}_0},\;\delta,\;c _{\mathcal{B}},\;A]$	derives the first element of the buffer (a word or span) into a concept c.
ENTITY(c)	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{\Lambda}]$	$[\sigma[s_0, \delta, c]\beta, A \cup \text{relations}(c)]$	a special form of CONFIRM that derives the first element into an entity and builds the internal entity AMR fragment.
NEW(c)	$\overline{[\sigma \overline{s}_0, \overline{\delta}, \overline{b}_0 \beta, A]}$	$[\sigma[s_0, \delta, c]b_0 \beta, \Lambda]$	generates a new concept c and pushes it to the front of the buffer.
LEFT(r)	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \stackrel{\overline{x}}{\leftarrow} b_0\}]$	links a relation r between the top
RIGHT(r)	$[\sigma s_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma \mathbf{s}_0, \ \delta, \ \mathbf{b}_0 \beta, \ A \cup \{\mathbf{s}_0 \stackrel{\mathbf{r}}{ o} \mathbf{b}_0\}]$	concepts on the stack and the buffer.
CACHE	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, A]$	$[\sigma, s_0 \delta, b_0 \overline{\beta}, A]$	passes the top concept of the stack onto the deque.
SHIFT	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, A]^{-1}$	$[\sigma[s_0]\delta[b_0, [], \beta, A]$	shifts the first concept of the buffer onto the stack along with those on the deque.
REDUCE	$[\sigma s_0, \overline{\delta}, \overline{b_0} \beta, A]$	$[\sigma, \delta, \overline{b_0}]\beta, \overline{A}]$	pops the top concept of the stack.

实验部分:图比表格好

实验部分:图比表格好

刘洋. 2014. 机器翻译学术论文写作方法与技巧

实验部分:图比表格好

用图与例子来描述方法和实验

刘洋. 2014. 机器翻译学术论文写作方法与技巧

结论部分:新的展现形式

Hao Peng, Sam Thomson, and Noah A. Smith. 2018. Backpropagating through Structured Argmax using a SPIGOT,最后一页

设计原则

- 亲密性:相关的元素应该 组织到一起
- 重复:相同的内容达到形式的统一
- 对比:如果两项不完全相同,就应使之截然不同
- 对齐: 使元素之间产生关联, 有关联的都应对齐

根据设计原则做幻灯片

Challenges and Contribution

- The first challenge is deriving an actimal alignment in ambiguous situations
- The second challenge is recalling more semantically metched word-concept pair without harming. The alignment procesion.
- The final challenge which is faced by both the rule-based and unsupervised aligners is turing the alignment with downstream passer learning.
- We proposed an enhanced a igner tuned by transitionbased cracle parser

加入空行提高相关 元素的亲密性

Challenges and Contribution

- The first challenge is deriving an octimal alignment in embigroup situations
- The second challenge is recalling more semantically matched word-correct can without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsubervised aligners is turning the alignment with downstream parser learning.
- We proposed an enhanced aligner funed by transition breast check place.

Challenges and Contribution

Challenges

- deriving on optimal alignment in ambiguous situations.
- Healing not a seman cally matched woods, and quip a twick off harming the alterment processin.
- a is of the alignment with Howeverse in passed for rong.

Contribution

an enhanced aligner tuned by transition, based oracle parser.

相同内容使用相同样式 即提高了**一致性**又形成 了必要的**对比**

避免不对齐

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	(on hand-align)	(on dev.	dataset)	
JAMR.	90.6	91.	.7	
Our	95.2	94.	94.7	
model	Т	ewswire	all	
JAMR po	arser: Word, POS.	NER, DEP)	
+ JAN	IR aligner	71.3	65.9	
+ Our	aligner	73.1	67.6	
CAMR I	xarser: Word, POS	, NER, DE	p	
A 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	IR aligner	68.4	64.6	
+ Our	aligner	68.8	65.1	

Aligner Alignment F1 Oracle's Smatch

model	newswire	ail
Our single parser: Word	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.3
x10	73.3	68.4

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	(on hand-align)) (on dev.	dataset)	
JAMR.	90.6	91.	7	
Our	95.2	94.	94.7	
model		newswire	all	
JAMR po	arser: Word, POS	, NER, DEF	•	
+ JAN	IR aligner	71.3	65.9	
+ Our	aligner	73.1	67.6	
CAMR I	xarser: Word, PO	S, NER, DE	P	
+ JAM	IR aligner	68.4	64.6	
+ Our	aligner	68.8	65.1	

Aligner Alignment F1 Oracle's Smatch

model	newswire	all
Our single parser: Won	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d. POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	3
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"乱"的解法:重新组织内容

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	Son hand-align:	Con dev	dalaset J.
JAMR.	90.5	91	7
Our	95.2	94.	ä
model	orenaero III	newswire	Ils
JAMR p	arser: Word, POS	, NER, DEF	13.
4 JAN	tR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR:	serser, Word, POS	S, NER, DE	P
4 JA5	IR aligner	68.4	64.6
+ Our	aliener	68.8	65.1

Alignar Alignment F1 Oracle's Smatch

model	th/syswite:	911
On engle parsar: Wor	lundy	
+ JAMR algrer	68.6	63.9
+ Our oligier	69.3	64.7
Our single parser: Won	d. POS	
+ IAMIC abgree	68.8	64.5
+ Our aligner	69.8	65.2
Our ensemble: Word or	dy + Our alianer	
63	71.9	67.4
x10	72.5	65.1
Cur ensemble: Word, P.	OS + Our aligner	3507
x3	72.5	67.7
x10	25.3	68.4

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment ET (on bandsalign)	Oracle's Smatch (on des. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

· parser improvements

model	DGN2@fts	211
JAMR parson Word,	POS, NER, DEP	
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR perser. Word,	POS. NER. DEI	
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

视线跳动在论文写作中的作用

刘洋. 2014. 机器翻译学术论文写作方法与技巧

参考文献

- Simon Peyton Jones: How to give a great talk
- 写给大家看的设计书
- 机器翻译学术论文写作方法与技巧
- 知乎专栏: 跟我学个P

总结

祝大家产出优秀的学术工作