Лекція 16. Ізоморфна класифікація скінченних груп.

Дві скінченні ізоморфні групи мають однакові таблиці Келі в такому розумінні: якщо всі елементи a_i в першій таблиці замінити відповідно на $f(a_i)$ (f- ізоморфізм груп), то отримаємо другу таблицю.

Розглянемо тепер довільну групу з двох елементів (ще використовують термін група другого порядку), абстрагуючись від природи її елементів. Вона мусить мати нейтральний елемент e і ще один елемент a, відмінний від нейтрального. Операцію у вказаній групі задаємо таблицею Келі, яка показана в табл. 14.

Табл. 14. Таблиця Келі групи з 2 елементів.

T	e	a
e	e	a
а	а	e

Це єдино можливий варіант таблиці. Дійсно, рівності eTe = e, eTa = aTe = a випливають із визначення нейтрального елемента. Рівність aTa = a неможлива, бо це означало б, що a — нейтральний елемент (а ми знаємо, що коли двосторонній нейтральний елемент існує, то він єдиний). Значить, виконується рівність aTa = e.

Табл. 14 дійсно задає групу (зокрема, операція T є асоціативною), бо розглянуті раніше групи C_2 і S_2 мають таку саму таблицю Келі з точністю до перепозначень. Дійсно, в першому випадку треба замінити e і a відповідно на 1 і -1, а в другому -u на a.

Отже, з точки зору побудови закону композиції всі групи з двох елементів не відрізняються між собою. Це можна виразити ще так. Нехай $(G_1, \bullet) = \{e_1, a_1\}, \ (G_2, *) = \{e_2, a_2\}$ — дві групи. Існує бієктивне відображення $f: G_1 \to G_2$, визначене рівностями $f(e_1) = e_2, \ f(a_1) = a_2$, при якому зберігаються закони композиції. Це означає, що $f(e_1 \bullet a_1) = f(e_1) * f(a_1), \ f(a_1 \bullet a_1) = f(a_1) * f(a_1)$. Справді, $f(e_1 \bullet a_1) = a_2$ та $f(a_1 \bullet a_1) = e_2, \ f(e_1) * f(a_1) = e_2 * a_2 = a_2$ та $f(a_1) * f(a_1) = a_2 * a_2 = e_2$.

Слід зауважити, що друге можливе тут відображення $g: G_1 \to G_2$, визначене рівностями $g(e_1) = a_2$, $g(a_1) = e_2$, не зберігає законів композиції. Це видно з наступного: $g(a_1 \bullet a_1) = a_2$ та $g(a_1) * g(a_1) = e_2 * e_2 = e_2$. Отже, $g(a_1 \bullet a_1) \neq g(a_1) * g(a_1)$.

Таким чином, нами встановлено, що всі групи з двох елементів ізоморфні. Група, яка задана табл. 14, ε циклічною (породженою елементом a), а тому й абелевою.

Розглянемо питання: скільки існує з точністю до ізоморфізму груп з трьох елементів. Покажемо, що з точністю до перепозначень існує лише одна таблиця для групи з трьох елементів $G = \{e, a, b\}$. Очевидно, що перший рядок та перший стовпець таблиці мусять мати вигляд: e, a, b. Як можна заповнити решту порожніх місць? Зауважимо, що незалежно від кількості елементів у групі, в кожному рядку й у кожному стовпці її таблиці Келі повинні бути всі елементи без повторень. Дійсно, коли б виконувались рівності $a_i a_j = a_k$ і $a_s a_j = a_k$, то було б $a_i a_j = a_s a_j$. Звідси за законом правого скорочення маємо $a_i = a_s$ (при $i \neq s$), що дає суперечність.

Чому може дорівнювати a^2 ? Це не може бути e, бо в другому рядку на останньому місці доведеться ставити b. Але b вже ϵ в третьому стовпці. Залишається тільки варіант $a^2 = b$. Тепер легко заповнити всю таблицю. Отриманий результат показано в табл. 15.

Табл. 15. Таблиця Келі групи з 3 елементів.

T	e	a	b
e	e	а	b
а	а	b	e
b	b	e	a

Треба ще довести, що бінарна алгебраїчна операція, задана цією таблицею, асоціативна. Це можна зробити обхідним шляхом. Відомо, що існують групи третього порядку (група \mathbb{C}_3 і підгрупа парних підстановок групи S_3) з такою ж таблицею.

Таким чином, з точністю до ізоморфізму існує лише одна група з трьох елементів. Рівності $a^1 = a$, $a^2 = b$, $a^3 = e$ показують, що ця група є циклічною – породженою елементом a. Іншим твірним елементом цієї групи є елемент b. Оскільки група циклічна, то операція в ній комутативна (тобто, група є абелевою).

Дамо відповідь на питання: скільки існує з точністю до ізоморфізму груп з чотирьох елементів.

Спочатку збудуємо таблицю Келі операції для групи з чотирьох елементів за рівностями $a^2 = b$, $a^3 = c$, $a^4 = e$. Ці рівності означають, що група є циклічною

- породженою елементом a, який має порядок 4. Результат заповнення показано в табл.16.

Табл. 16. Таблиця Келі циклічної групи з 4 елементів.

T	e	а	b	С
e	e	а	b	С
а	а	b	С	e
b	b	c	e	a
С	С	e	а	b

Твірним елементом групи є також елемент c, який має порядок 4. Разом з тим, елемент b не є твірним, бо він має порядок 2: $b^2 = e$.

Тепер виникає запитання: чи існують нециклічні групи четвертого порядку? Слід зауважити, що за теоремою Лагранжа всі її елементи, які не співпадають з нейтральним елементом e, повинні мати порядок 2, тобто $a^2 = b^2 = c^2 = e$. У табл. 17 показано, як заповнити (це можна зробити єдиним способом) таблицю Келі для цього випадку.

Табл. 17. Таблиця Келі нециклічної групи з 4 елементів.

T	e	а	b	c
e	e	a	b	С
а	a	e	c	b
b	b	С	e	a
С	c	b	a	e

Легко перевірити, що таку таблицю має підгрупа групи підстановок S_4 множини з чотирьох елементів. Ця підгрупа складається з таких чотирьох

підстановок:
$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
, $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$,

$$c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
. Це так звана група Клейна. Нециклічна група з чотирьох

елементів, яка задана табл. 17, ϵ абелевою, бо ця таблиця симетрична відносно головної діагоналі.

Отже, з точністю до ізоморфізму існує лише дві групи з чотирьох елементів: циклічна група, яка задана табл. 16, і нециклічна група, яка задана табл. 17. Обидві вказані групи ε абелевими.

Зауважимо, що для довільного простого числа p, з точністю до ізоморфізму існує лише одна група з p елементів. Вона є циклічною, а,значить, абелевою. Це випливає з наслідку 2с. Рядки в таблиці Келі такої групи отримуємо, циклічно зсуваючи попередній рядок на одну позицію. Наприклад, для p=7, маємо табл. 18.

Табл. 18. Таблиця Келі групи з 7 елементів.

T	e	a	b	С	d	f	g
e	e	а	b	С	d	f	g
а	а	b	c	d	f	g	e
b	b	c	d	f	g	e	a
c	С	d	f	g	e	a	b
d	d	f	g	e	a	b	С
f	f	g	e	a	b	С	d
g	g	e	а	b	С	d	f

Теорема 6 (Келі). Будь-яка група G ізоморфна деякій підгрупі групи Aut(G) всіх бієктивних відображень множини G в себе.

Наслідок 3. Якщо G — скінченна група з n елементів, то вона ізоморфна деякій підгрупі групи підстановок S_n .

Таким чином, вивчення скінчених груп можна звести до вивчення груп підстановок.