

VO Molecular Modelling WS 2024/25 (Part 2)

Institut für Allgemeine, Anorganische und Theoretische Chemie

Christofer Tautermann
Valentin Egger-Hörschinger
Alesia Yakimchyk

Lecture contents

Overview

Chemoinformatics

- 1) Introduction to chemoinformatics
- 2) Representation of molecules
- 3) Molecular descriptors
- 4) Molecular similarity and diversity
- 5) Machine Learning and computational models
- 6) Chemical spaces
- 7) Virtual screening and library design

Molecular descriptors

Any molecular feature beyond the chemical structure

Molecular descriptors

- 0D/1D/2D/3D/4D descriptors
 - Definition and examples
 - Topological indices
 - Fingerprints
 - Common descriptors
- Data analysis
 - Pincipal component analysis

Descriptors – or how to compare things

Motivation

Property	hedgehog	hare
class	mammal	mammal
legs	4	4
eyes	2	2
diet	omnivorous	herbivores
spiny	yes	no
length of ears	1 cm	30 cm
max speed	19 km/h	64 km/h

similar?

rather not similar

Molecular descriptors

Introduction

- "The molecular descriptor is the final result of a logic and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into a useful number or the result of some standardized experiment" (Handbook of Molecular Descriptors, Wiley-VCH, 2000)
- Basically the structure of a molecule is transformed into a number which is either
 - An experimental measurement (or a calculated approximation thereof),
 e.g., logP, molecular weight, dipole moment, ... or
 - A theoretical descriptor which is derived from either the sum formula, the 2D-representation or the 3D representation of the molecule (or more complex), e.g., fingerprints, surface area, volume, QM-descriptors, ...
- Descriptors are numerical values used to characterize molecules
 (Similar as comparing animals this is usually not done on a genome level, but based on their diet, habitat, physical description, ...)
 - → Molecules are assumed to be quite similar if their descriptors are similar

Molecular descriptors Different dimensionalities

- OD descriptors: plain counts, such as number of carbons, molecular weight, ...
- 1D descriptors: substructure counts, e.g., how many rings are in the structure? heteroatoms? some kinds of fingerprints (MACCS keys), sp³ carbons, ...
- 2D descriptors: graph invariants or graph properties. Dependence on the atom connectivity
- 3D descriptors: dependent on the molecule conformation, e.g. QM descriptors
- 4D descriptors: based on conformational molecular ensemble

Impact of Molecular Descriptors on Computational Models | SpringerLink

Molecular descriptors Different dimensionalities – more examples

Dim		Examples
0D	Atom counts, bond counts, molecular weight, sum of atomic properties	Molecular weight; number of: atoms, hydrogen atoms, carbon atoms, heteroatoms, non hydrogen atoms, bonds, multiple bonds, double bonds,
1D	Counts of atom types Fragment counts	Number of: primary C (sp3), secondary C (sp3), tertiary C (sp3), quaternary C (sp3), secondary C (sp3) in a ring, tertiary C (sp3) in a ring, number of H bond donor atoms, H bond acceptor atoms, Number of rings, 3 membered rings, 4 membered rings, 5 membered rings, 6 membered rings, 7 membered rings, presence of amides (aliphatic/aromatic; primary, secondary, tertiary), amines (aliphatic/aromatic; primary, secondary, tertiary), ammonium, groups, carbamates, hydrazines,
2D	Topological descriptors	Zagreb index, Wiener index, connectivity indices chi, kappa shape indices, molecular walk counts, lipophilicity (log <i>P</i>), topological polar surface area extended connectivity fingerprints (circular fingerprints), ISIDA fragments, state topological parameter, BCUT descriptors, 2D autocorrelation vector,
3D	Geometrical descriptors	Molecular eccentricity, radius of gyration, dipole moment, polar surface area, radial distribution function, 3D autocorrelation vector, HOMO, LUMO
	3D surface properties	Molecular electrostatic potential, hydrophobicity potential, hydrogen bonding potential
	3D grid properties	Comparative molecular field analysis (CoMFA), comparative molecular similarity Indices analysis (CoMSIA)
4D		3D coordinates sampling of conformations

Molecular descriptors Simple 0D/1D descriptors

- Counts
 - hydrogen bond donors and acceptors
 - rotatable bonds
 - ring systems
 - substructure counts
 - formal charge
 - **—** ...
- Other basic properties
 - Molecular weight
 - fraction sp³ atoms
 - **–** ...

quickly computed

Simple 1D/2D descriptors Examples: amino acids

mol	name	a_acc	a_don	a_heavy	a_nCsp3	FCsp3	b_1rotN	FCharge	logP (o/w)
SH O=\\NH ₃ ⁺	Cys	0	0	7	2	0,67	2	0	-0,43
H ₃ N ⁺ ——O	Gly	0	0	5	1	0,50	1	0	-1,00
H ₃ N	Phe	0	0	12	2	0,22	3	0	1,00
H ₃ N ₄	Trp	0	1	15	2	0,18	3	0	1,36
0 ⁻ NH ₃ ⁺	Lys	0	0	10	5	0,83	5	1	-0,47
O- NH ₃ + O-	Asp	0	0	9	2	0,50	3	-1	-1,17

Molecular descriptors Important 2D descriptors – (c)logP

Hydrophobicity/(c)logP

 logP is the partition coefficient of a molecule between water and a non-polar solvent (usually octanol)

$$logP_{oct/water} = log\left(\frac{[solute]_{octanol}}{[solute]_{water}^{non-ionized}}\right)$$

- Experimentally accessible (companies with > 100k values)
- High importance in drug discovery correlation to
 - solubility of molecules
 - permeability
 - metabolic stability
 - plasma protein binding
 - ... and often affinity to a target and antitarget ...
- Prediction for new compounds: calculated logP = clogP

Molecular descriptors Hydrophobicity – calculating clogP

Calculation of clogP:

- additive schemes fragment or atom based
 - Starting with a measured logP and correct the value for a new substituent
 - substituents assumed to have the same correction value over different series
 not true, but applied quite often anyhow
 - primarily used in congeneric series
- other fragmentation schemes
 - by isolating carbons (i.e., carbons not doubly/triply bound to a heteroatom)
 - logP of fragments measured or estimated

Molecular descriptors Topological indices: Wiener Index

Topological indices are calculated from the 2D graph representation of molecules Depend on the size, shape, branching

Wiener index (oldest topological descriptor, 1947) – also known as "distance of a graph":

$$W = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} D_{ij}$$

where D_{ij} is number of bonds between atom i and atom j

$$W = 3*1 + 2*2 + 1*3 = 10$$
 $W = 3*1 + 3*2 + 0*3 = 9$

$$W = 3*1 + 3*2 + 0*3 = 9$$

applied to boiling point properties of alkanes

compound	Wiener Index
n-hexane	
2-methylpentane	
3-methylpentane	
2,3-dimethylbutane	

Molecular descriptors Topological indices: Branching index

Branching index

based on the degree δ_i of an atom i = number of the adjacent non-H atoms.

Branching index = $\sum_{bonds} \frac{1}{\sqrt{\delta_i \delta_j}}$ for all bonds directly connecting atoms i and j

$$B = \frac{1}{\sqrt{1*2}} + \frac{1}{\sqrt{2*2}} + \frac{1}{\sqrt{1*2}} \approx 1.9$$

Applied to alkanes

boiling points °C	JACS, 1975, 97, 6609
100	2-082-000
_ so	
- 0	A
50	
-100	branching index
1.0 1.5	2.0 2.5 3.0

Figure 1. Boiling points of alkane isomers having from two to seven carbon atoms plotted against the topological branching index. (Experimental data are taken from ref 24.)

compound	Branching Index
n-hexane	
2-methylpentane	
3-methylpentane	
2,3-dimethylbutane	

Molecular descriptors Topological indices: further developments

- Further developments of the branching indices
 - inclusion of valence electrons, lone pairs, bound H-atoms in δ_i
 - summation of paths over different lengths \rightarrow chi indices ($^0\chi$ for summation over atoms, $^1\chi$ over bonds (=branching index), $^2\chi$ over paths of length 2, ...)
- Kappa shape indices
 - compare molecules to "extreme" shapes: count paths of lengths i for ${}^{i}\kappa$ (i=1-3)

$${}^{i}\kappa = 2\frac{{}^{i}P_{max} {}^{i}P_{min}}{({}^{i}P_{molecule})^{2}}$$

$${}^{1}\kappa = \frac{\#atoms(\#atoms-1)^{2}}{(\#bonds)^{2}}$$

Topological indices Example: amino acids

	name	1kappa	2kappa	Wiener Path	chi0	chi1
SH NH ₃ ⁺	Cys	7,00	3,06	46	5,86	3,18
H ₃ N ⁺ O	Gly	5,00	2,25	18	4,28	2,27
H ³ N O-	Phe	10,08	4,89	212	8,97	5,70
H ₂ N ⁺	Trp	11,48	4,89	369	10,84	7,18
0 ⁻ NH ₃ ⁺	Lys	10,00	5,76	143	7,98	4,68
O ⁻ O NH ₃ + O ⁻	Asp	9,00	3,92	96	7,44	4,04

$\chi_0 = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}}$
$\chi_1 = \frac{1}{\sqrt{1*2}} + \frac{1}{\sqrt{2*3}} + \frac{1}{\sqrt{1*3}} + \frac{1}{\sqrt{1*3}}$
W = (1 + 2 + 3 + 3) + (1 + 2 + 2) + (1 + 1) + 2
$^{1}\kappa = \frac{5*4^{2}}{4^{2}}$

2D fingerprints Bitstrings

- See Chapter 2 used and originally developed for *database pre-screening*
 - dictionary based approaches: presence of substructures
 - fingerprints: generate all substructures (up to a certain path-length) and apply hashing procedure
 - → not a priori clear that hashed keys/fingerprints should work as descriptors
- Example: Substructure fingerprints (as implemented by Chemaxon)
 all paths of length up to n atoms annotated (incl. branching and cycles)

hashing procedure applied

2D fingerprints Substructure keys – MACCS keys

• MACCS: Prominent example for structural keys (166 bit-long) in which each bit is associated with a specific structural pattern.

2D fingerprints Atom pairs fingerprints

• Atom pairs: encode the distance between all pairs of atoms in a molecule Similar: pharmacophore distances along bonds (CATS descriptors)

doi: 10.1002/minf.201200141

2D fingerprints Topological fingerprints

Topological fingerprints:

It identifies and hashes topological paths (e.g. along bonds) in the molecule and then uses them to set bits in a fingerprint of user-specified lengths.

https://doi.org/10.1186/1758-2946-6-29

2D fingerprints Extended connectivity fingerprints

Extended connectivity fingerprints (ECFPs) are an example for circular topological fingerprints and are widely used in pharmaceutical companies (from Scitegic)

- → circular topological fingerprints
- → radius 4-6 atoms (ECFP4-ECFP6)
- → encode substructure patterns to bit string of length 1024 by hashing

Specific example

<u>Extended-Connectivity Fingerprints | Journal of Chemical Information and Modeling (acs.org)</u>

Figure 3. The initial atom identifiers for butyramide, calculated using the Daylight atomic invariants-derived rule. (Note that the hash function may return either positive or negative numbers for the identifiers.)

Choice of Hash Function. We do not describe the particular hash function used in our calculation because any "reasonable" hash function can be used, and the scientific validity of the results is equivalent. What is most important is to have the hash function map arrays of integers randomly and uniformly into the 2³²-size space of all possible integers;

Figure 4. Generation of new identifiers by performing one iteration using butyramide. The initial atom identifiers are shown on the molecule on the left; after the updating process, each atom is given a new identifier, shown on the molecule on the right.

ROGERS AND HAHN

Figure 8. Fingerprints for butyramide with different diameters. Note that higher diameters contain all the fingerprint bits of lower diameters, possibly with new identifiers appended at the end. Also, note that ECFP_4 and ECFP_6 contain the same list. This is because the final iteration did not discover any new identifiers, where "new" is determined by the set of bonds that underlay a particular feature. By the time we have gone to a maximum diameter of four bonds, the entire molecule has been covered, and there is nothing new to discover.

2D fingerprints Structural keys vs. fingerprints without dictionary

- Structure keys (= dictionary based) suffer from a lack of generality, because they highly depend on the predefined fragment dictionary.
- Fingerprints address this lack of generality by eliminating the idea of pre-defined patterns.
- Fingerprints are constructed from the molecule itself by an algorithm that examines the molecule and generates a series of patterns in the form of single atoms and bond sequences up to seven bonds long.
- A fingerprint is a Boolean array, or bitmap, but unlike a structural key there is no assigned meaning to each bit.
- Therefore, fingerprints apply to a wider range of molecular structures and have become the preferred type of molecular descriptors.

→ often in literature there is no clean distinction between "keys" and "fingerprints"

For further reading: <u>Daylight Theory: Fingerprints</u>

Molecular descriptors 3D fingerprints

Based on the generation of 3D conformations (time consuming for large datasets)

- 3D fragment screens: Originally designed for 3D substructure searching
 - → based on distance/angle/dihedral ranges between atom types

Pharmacophore keys:

- 3 (and 4)-point pharmacophores most commonly used
 - enumerate all possible combinations of 3 pharmacophore features with all binned distances.

- Example: Davies 1996
 - 7 feature types and 32 distance ranges
 - ~890.000 feasible different 3-point pharmacophores (for 4-point pharmacophores: 350 mio different geometries)

Molecular descriptors 3D descriptors

- Quantum mechanics descriptors
 - expensive to calculate
 Examples: HOMO, LUMO, dipole moment, partial charges, molecular surface properties, volume, ...

Best interaction potentials for: O- (red), H2O (purple), and hydrophobic probes (green) → GRID algorithm

Molecular descriptors 3D descriptors - Molecular interaction fields

Molecular interaction fields

- put "probes" on each grid point and
- calculate the interaction energy with the molecule

Place the molecules into a rectangular grid

- "probes": water, amide, DRY, charge, carbonyl oxygen, ...
- Display iso-surfaces at certain interaction cutoffs
- Use additional programs (e.g., Volsurf) to turn interaction fields into descriptors

Molecular descriptors Molecular surfaces: (a) van der Waals surface

The van der Waals surface is determined by the atomic van der Waals contact distances.

Spheres with these distances are centered on each atom.

→ 3D conformation dependent

Molecular descriptors Molecular surfaces: (b) Connolly Surface

The Connolly or molecular surface is obtained by rolling a spherical probe over the van der Waals surface – usually the radius of 1.4Å (water) is chosen.

→ The Connolly surface is much smoother than the vdW-surface.

Molecular descriptors Molecular surfaces: (c) Solvent accessible surface

The solvent accessible surface (SAS): The **center** of the solvent sphere defines the SAS, which is a subtle difference to the Connolly surface

Dragon 7 descriptors

Molecular descriptors Availability

- Most basic descriptors included in all molecular modeling suites
 e.g. MOE or Schrödingers Canvas
- Some software companies have focused on descriptor implementation e.g., Kode (Dragon descriptors) provides >5200 different molecular descriptors

Block no.	Block name	Descriptors
1	Constitutional	47
2	Ring descriptors	32
3	Topological indices	75
4	Walk and path counts	46
5	Connectivity indices	37
6	Information indices	50
7	2D matrix-based descriptors	607
8	2D autocorrelations	213
9	Burden eigenvalues	96
10	P-VSA-like descriptors	55
11	ETA indices	23
12	Edge adjacency indices	324
13	Geometrical descriptors	38
14	3D matrix-based descriptors	99
15	3D autocorrelations	80
16	RDF descriptors	210
17	3D-MoRSE descriptors	224
18	WHIM descriptors	114
19	GETAWAY descriptors	273
20	Randic molecular profiles	41
21	Functional groups count	154
22	Atom-centered fragments	115
23	Atom-type E-state indices	172
24	CATS 2D	150
25	2D Atom Pairs	1596
26	3D Atom Pairs	36
27	Charge descriptors	15
28	Molecular properties	20
29	Drug-like indices	28
30	CATS 3D	300

Molecular descriptors Analysis based on descriptors

Dataset properties

- Often overcomplete dataset (more descriptors than molecules)
- Descriptors should be able to discriminate molecules
 e.g., descriptors with zero-variance are useless
- Highly correlated descriptors don't give extra information
- → Remove descriptors which don't explain any variance, or which are heavily correlated

Questions to be asked

- Diversity of a dataset?
- Can the dataset be partitioned in descriptor space?
- Correlation to properties of interest (affinity, potency, ...)?

Data analysis Preparation of datasets

- Descriptors vary orders of magnitude
- Scaling and standardization required
 - → Centering to the mean value and scaling to unit variance
- Check for correlations in descriptors e.g., by calculation of the correlation matrix (entry i,j is the correlation coefficient between descriptors x_i and x_i)

$$r = \frac{\sum_{k=1}^{N} \left[\left(x_{i,k} - \langle x_i \rangle \right) \left(x_{j,k} - \langle x_j \rangle \right) \right]}{\sqrt{\sum_{k=1}^{N} \left(x_{i,k} - \langle x_i \rangle \right)^2 \sum_{k=1}^{N} \left(x_{j,k} - \langle x_j \rangle \right)^2}}$$

Data analysis Principal component analysis

- Multivariate method for the reduction of the dimension of a dataset
- Goal: rotation and scaling of the axes in a way that the maximal variance of the dataset is found on the first axis followed by the second highest variance on the second axis ...
- Mathematically: Singular value decomposition of the data matrix M

$$M = U\Sigma V^*$$

where U is unitary, Σ is diagonal and V* is adjunct to a unitary matrix V

Equivalent alternative: U and Σ can be computed as the eigenvalues and eigenvectors of the covariance matrix of the dataset.

$$\begin{aligned} \mathbf{V}(\mathbf{X}) &= \big(\operatorname{Cov}(X_i, X_j)\big)_{i,j=1,\dots,n} \\ &= \begin{pmatrix} \operatorname{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \operatorname{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \operatorname{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \operatorname{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \operatorname{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \operatorname{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ &\vdots & \vdots & \ddots & \vdots \\ \operatorname{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \operatorname{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \operatorname{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{pmatrix} \\ &= \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) \end{pmatrix} \end{aligned}$$

Data analysis Principal component analysis

- Geometrical explanation of $M = U\Sigma V^*$
 - M transforms the unit data to a rotated ellipsoid
 - U and V rotate the data
 and Σ scales along the axis
- PCA rotates and scales the original coordinate system
- New axes are the linear combinations of the old variables

$$PC_i = \sum_{j=1}^n c_{ij} x_j$$

resulting in a new coordinate system

By Georg-Johann - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11342212

Data analysis Principal component analysis

Practical results

- Reduction of the high dimensional dataset to few (usually 2-6) variables, which explain major parts of the variance in the dataset
- Generation of a set *of linear independent axes*, which can be used as new descriptors Caveat: the interpretation of the new descriptors is difficult (linear combinations of the original descriptors)
- The higher the singular value σ_i , the more variance explained by axis PC_i

Molecular descriptors PCA example

Both, the coefficients of the new axes (loadings) and the new coordinates (scorings) of the data are important results

loadings

volume and accessible surface area

	lipop	hilicity	solvation	polarity	volume	surface
Name	LCE	LCF	FET	POL	VOL	ASA
Ala	0.23	0.31	-0.55	-0.02	82.2	254.2
Arg	-0.79	-1.01	2.00	-2.56	163.0	363.4
Asn	-0.48	-0.60	0.51	-1.24	112.3	303.6
Asp	-0.61	-0.77	1.20	-1.08	103.7	287.9
Cys	0.45	1.54	-1.40	-0.11	99.1	282.9
Gln	-0.11	-0.22	0.29	-1.19	127.5	335.0
Glu	-0.51	-0.64	0.76	-1.43	120.5	311.6
Gly	0.00	0.00	0.00	0.03	65.0	224.9
His	0.15	0.13	-0.25	-1.06	140.6	337.2
Ile	1.2	1.80	-2.10	0.04	131.7	322.6
Leu	1.28	1.70	-2.00	0.12	131.5	324.0
Lys	-0.77	-0.99	0.78	-2.26	144.3	336.6
Met	0.90	1.23	-1.60	-0.33	132.3	336.3
Phe	1.56	1.79	-2.60	-0.05	155.8	366.1
Pro	0.38	0.49	-1.50	-0.31	106.7	288.5
Ser	0.00	-0.04	0.09	-0.40	88.5	266.7
Thr	0.17	0.26	-0.58	-0.53	105.3	283.9
Trp	1.85	2.25	-2.70	-0.31	185.9	401.8
Tyr	0.89	0.96	-1.70	-0.84	162.7	377.8
Val	0.71	1.22	-1.60	-0.13	115.6	295.1

better solvated

more lipophilic

Molecular descriptors PCA example - interpretation

- Correlated descriptors are found closely together in loading plot
 → contribution of the original descriptors to the new axes (i.e., the principal components)
- from the loading plot a qualitative picture of compound properties in the scoring plot can be deduced

Similar compounds are found closely together in scoring plot
 → scorings= coefficients in the new coordinate system

Summary

- Molecular descriptors
 - calculated properties of molecules of different complexity
 - based on 1D, 2D, 3D structure of molecule
 - several thousand different descriptors available
 - fingerprints are often used due to increased generality and practical reasons
- Analysis
 - scaling and standardization
 - correlated descriptors
 - principal component analysis to
 - analyze dataset see trends and clusters
 - reduce dimensionality of descriptor space

Molecular similarity and diversity

How do you compare molecular structures?

Molecular similarity and diversity

- Fingerprint based similarity
- Similarity indices
- 3D-similarities (non-fingerprint based)

Why similarity?

Motivation

- Pharmacophore searches and substructure searches rely on exact matches
- Biological activity can be achieved by exchanges of small groups
 similarity of molecules is more relevant than exact matches
- Example AT₁ receptor inhibitors for blood pressure lowering
 → compounds are similar and show potency in similar range

Why similarity?

- "Similar property principle" or "Neighborhood behavior"
 - structurally similar molecules tend to have similar properties
 (Johnson and Maggiora 1990 or Patterson et al. 1996)
 - Can be expanded to "chemogenomics":
 Binding sites, which are phylogenetically related should accommodate similar ligands, and known ligands for a certain target are valid starting points for identifying ligands that bind to closely related targets.
- Advantages of similarity considerations
 - No substructure or pharmacophore to be defined
 - → only an active compound is required as starting point
 - User can determine number of hits by adjusting the similarity score
 - Similarity depends on the descriptors
 - → different descriptors yield other similarities
 - Similarity relations needed to identify diverse subsets of molecules

Molecular similarity Quantification of chemical similarity

Methods to search for similar molecules

- Substructure Searching
 - Result: Match/Mismatch → size of hitlist can't be influenced
- Pharmacophore Searching
 - Result: Match/Mismatch → size of hitlist can't be influenced
- Similarity Searching in Chemical Databases
 - Result: Rank by Similarity → size of hitlist user determined

Usual approach to calculate similarity

- Molecules are represented by a set of the same numerical descriptors or fingerprints
- The distance D in the descriptor space is calculated
- Similarity S = 1 D (if D is normalized)

Molecular similarity Descriptors useful for similarity comparisons

Molecular similarity Fingerprint similarities

- Oldest (mid 1980s) and most common approach
- Based on fingerprint vectors of same length
- Similarity of 2 fingerprint vectors assessed on the presence/absence of identical bits
- Most common: Tanimoto similarity $S_{AB} = \frac{c}{a+b-c}$ where
 - a ... number of bits set to "1" in A,
 - b ... number of bits set to "1" in B, and
 - c ... number of common "1"s in A and B:

$$S_{AB} = \frac{5}{8+6-5} = 0.56$$

Molecular similarity Fingerprint similarities – various indices

•	Frequently used
	measures for
	distance or
	similarity:

Name	Formula for continuous variables	Formula for binary (dichotomous) variables
Tanimoto (Jaccard) coefficient)	$S_{AB} = \frac{\sum_{i=1}^{N} x_{iA} x_{iB}}{\sum_{i=1}^{N} (x_{iA})^{2} + \sum_{i=1}^{N} (x_{iB})^{2} - \sum_{i=1}^{N} x_{iA} x_{iB}}$ Range: -0.333 to +1	$S_{AB} = \frac{c}{a+b-c}$ Range: 0 to 1
Dice coefficient (Hodgkin index)	$S_{AB} = \frac{2\sum_{i=1}^{N} x_{iA} x_{iB}}{\sum_{i=1}^{N} (x_{iA})^2 + \sum_{i=1}^{N} (x_{iB})^2}$ Range: -1 to +1	$S_{AB} = \frac{2c}{a+b}$ Range: 0 to 1
Cosine similarity (Carbó index)	$S_{AB} = \frac{\sum_{i=1}^{N} x_{iA} x_{iB}}{\left[\sum_{i=1}^{N} (x_{iA})^2 \sum_{i=1}^{N} (x_{iB})^2\right]^{1/2}}$ Range: -1 to +1	$S_{AB} = \frac{c}{\sqrt{ab}}$ Range: 0 to 1

Asymmetric index: (Tversky index)

$$S_{\text{Tversky}} = \frac{c}{\alpha (a - c) + \beta (b - c) + c}$$

Euclidean distance	$D_{AB} = \left[\sum_{i=1}^{N} (x_{iA} - x_{iB})^2\right]^{1/2}$ Range: 0 to ∞	$D_{AB} = \sqrt{a+b-2c}$ Range: 0 to N
Hamming	$D_{AB} = \sum_{i=1}^{N} x_{iA} - x_{iB} $	$D_{AB} = a + b - 2c$
(Manhattan	Range: 0 to ∞	Range: 0 to N
or City-block)		
distance		

Soergel distance
$$D_{AB} = \frac{\sum_{i=1}^{N} |x_{iA} - x_{iB}|}{\sum_{i=1}^{N} \max(x_{iA}, x_{iB})}$$
 $D_{AB} = \frac{a+b-2c}{a+b-c}$ Range: 0 to 1

Molecular similarity Fingerprint similarities – discussion of indices

Some of the coefficients (Hamming, Euclidian, Soergel) obey conditions of a metric d.
 1-S_{Tanimoto} on binary fingerprints as well.

1.
$$d(x,y) \geq 0$$

2.
$$d(x,y) = 0 \Leftrightarrow x = y$$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x,z) \leq d(x,y) + d(y,z)$$

Advantage of a metric: a metric space enables relations of distances

- The coefficients are monotonic with each other (not the asymmetric ones)
 - → they produce the same similarity ranking

Molecular similarity Fingerprint similarities – discussion of indices

- Other features:
 - Tanimoto, Dice, Cosine directly dependent on number of bits in common
 smaller molecules often get smaller similarities
 - Hamming and Euclidian distances regard the common absence of features as similar
- Comparison of molecules of different sizes:
 - asymmetric indices appropriate for comparison of molecules of different size
- Dependence on fingerprints larger than the dependence on similarity index (ADMET & DMPK 5(2) (2017) 85-125)

Molecular similarity Fingerprint similarities – comparison of indices

Г	O NH	, 	FF	F F	NH NH		FF	F F	NH NH		FF	F F
F	0,72	Tve	ersky (0.1/2	2.0)	0,84		Tanimoto		0,91		Dice	
FF	0,40	0,80			0,20	0,29			0,33	0,45		
F F	0,11	0,38	0,53		0,03	0,08	0,24		0,06	0,15	0,39	
$F \xrightarrow{F} F$ CH_3	0,11	0,43	0,76	0,96	0,03	0,07	0,24	0,73	0,05	0,13	0,39	0,84

→ Comparison small/large molecules requires asymmetric index

Molecular similarity Maximum common substructures

- Fingerprint based indices are global measures
 - Bit-strings describe the whole molecule and similarity is based on the comparison of two whole molecules
- Alternative: Look for a mapping between molecules
 - Maximum common substructure (MCS)
 - Similarity can be calculated based on matching bonds/overall bonds.
 - MCS determination NP-complete and thus, time consuming
 → for a larger set of molecules prescreening techniques have to be applied
 - Extreme case: Substructure search

$$H_2N$$
 OH B MCS_{AB}

Molecular similarity 3D similarity

Why another similarity method?

- 2D searches tend to find common substructures
- Pharmacophore searches find "exact matches" and don't return similarity values
- → shape and spatial feature location neglected in 2D

Figure 5-5. Similarities to morphine calculated using Daylight fingerprints and the Tanimoto coefficient.

3D overlay methadone/morphine (shape Tanimoto 0.72)

Molecular similarity 3D similarity

- Conformational properties of molecules required for 3D similarity calculation
- Hypothesis that molecules bind the target in the same way and should occupy the same volume and interact similarly
- Different approaches for 3D similarity
 - Alignment independent:
 - → compare similarity between ensembles (3D fingerprints, pharmacophore keys)
 - Alignment dependent
 - → similarity dependent on an alignment step
 - Common procedure
 - → define one molecule as rigid (e.g., bioactive conformation critical step) and compare to ensemble of conformations of query
 - → pre-calculation of conformational ensemble of structures
 - → shape and pharmacophore-feature overlay

Molecular similarity 3D similarity – alignment methods

Overlay of features rather than atoms:

- Carbó proposed alignment by the electron density (1980)
- More common to overlay the interaction maps of molecules (e.g., from 3D grids, electrostatics)
 - grid overlays very time consuming
 - overlay of extreme values (maxima, minima, defined field points)

Molecular similarity 3D similarity - ROCS

Example: 3D overlay procedure by OpenEye

- ROCS (Rapid Overlay of Chemical Structures) is a fast shape comparison application, based on the idea that molecules have similar shape if their volumes overlay well, and any volume mismatch is a measure of dissimilarity
- Volume is Gaussian based rather than hard spheres → overlap quickly computed
- Inputs
 - rigid query molecule
 - database of conformations
- Output: Shape+pharmacophore similarity
- Computation intensive part: generation of the conformations

Molecular similarity Evaluation of similarity measures

Comparison of similarity measures

- There is obviously no *a priori* better or worse similarity method
 - → the quality depends on the task the index is used for
- Comparison is often done based on the usefulness for identification of compounds of similar properties:
 - Identification of new hits on a drug target (=,,virtual screening", VS)
 - Identification of few bioactive compounds in a huge database (of mostly inactive compounds)
 - Only a small fraction of the database can be experimentally screened, thus the "enrichment" of hits in the tested set is crucial
 - Datasets with few actives and many random molecules are available as "standard" test cases to ensure fair comparison – e.g., the DUD datasets for docking (http://dud.docking.org/)
 - → VS will be treated in more detail later

Molecular similarity Virtual screening (VS)

Virtual screening (continued)

- Given n hits in a database of N molecules (n ~ 1000, N~1000000)
- Rank database by similarity to known potent hit
- Probability to draw a bioactive hit randomly = n/N
 Expectation value of hits when drawing m molecules = m*n/N
- VS aims to increase the number of hits in the m molecules above random
- Success of VS is usually measured by its enrichment = hitrate/random hitrate

Several annotated datasets published which are used for VS evaluation

Molecular diversity

From similarity to diversity

- Similarity measures are introduced
 - Application have been so far: similarity searches
- Why would diversity analysis be important?
 - Missing starting point for similarity searches
 - Coverage of chemical space with few compounds
 - → selection for biological testing
 - → useful if assays have a low throughput (or are expensive)
 - A diverse subset is assumed to have diverse properties
 - → reduce redundancy in a set
 - Important for synthesis planning
 - → diverse library members to cover a large feature space

Molecular diversity Chemical spaces

How many molecules are out there?

- Generally possible molecules
- Molecules described by virtual procedures
- Molecules described virtually with synthesis procedure
- Molecules covered by patent claims
- Molecules synthetized

Which compounds are relevant?

- Purchase (vendors like emolecules, Sigma Aldrich, ...)
- Synthesis feasible (lit, pat, ...)
- (virtual compounds which can serve as templates for similarity searches)

https://doi.org/10.1016/j.ddtec.2013.01.004

Molecular diversity Approaches to select diverse compounds

- Brute force enumeration:
 - Select a subset of n compounds from a library of N molecules: $\binom{N}{n} = \frac{N!}{n!(N-n)!}$
 - → Too high number, procedure not possible for relevant cases (n>10, N>100)
- Approximate selection methods
 - Optimization methods
 - Cluster analysis
 - Hierarchical clustering methods:
 - Agglomerative clustering
 - Non-hierarchical clustering methods:
 - Centroid based (k-means)
 - Density based (DBSCAN)
 - Dissimilarity-based approaches
 - Cell based approaches

Molecular diversity Optimization methods

- Optimization procedure requires a "diversity function" with the following properties:
 - Addition of redundant molecule → no increase in diversity
 - Addition of non-redundant molecule → increase in diversity
 - If a molecule is moved away from others → increase
 - Bounded (function values can't get infinite)
 - Favoring space filling behavior rather than selecting only outliers
- Typical functions for adding a new member i to a set of m molecules
 - MaxSum: $\sum_{j=1}^{m} D_{i,j}$... sum of distance to all members of set
 - MaxMin: $\min_{j=1...m}(D_{i,j})$... closest distance to any member of the set

where $D_{i,j}$ is the distance between molecule i and j.

Molecular diversity Optimization methods

- General procedure has to be a global optimization procedure like Monte Carlo procedures or genetic algorithms
- Example: Simulated Annealing (a Monte Carlo procedure)
 - Select initial subset of n (out of N) molecules often random selection
 - Modify the subset and evaluate diversity function
 - if diversity increased: accept modified set
 - if diversity did not increase: accept modified set with following probability: $\exp\left(-\Delta E/k_BT\right)$ where ΔE corresponds to the change in diversity, k_B is a scaling factor and T is called temperature (eventually resembling a Boltzmann factor)
 - Lower temperature T and iterate
 - \rightarrow Simulated annealing results highly dependent on the parameter k_B and the temperature schedule
 - → can overcome local minima

Molecular diversity Cluster analysis

- Cluster?
 - Objects in a cluster are similar
 - Objects from other clusters are dissimilar
- Choosing representative set
 - small number of representatives (often n=1)
 from each cluster
- Several approaches
 - Connectivity-based clustering (hierarchical clustering)
 - Centroid-based clustering
 - Distribution-based clustering
 - Density-based clustering
- General procedure
 - Calculate descriptors
 - Determine similarity/distance between molecules
 - Group compounds to clusters
 - Select cluster reps

Molecular diversity Hierarchical clustering

- Objects are connected into clusters based on their distance
- Compounds relations are visualized by a dendrogram
- Example: Agglomerative Clustering
 - start from the bottom (single compounds)
 - identify pair of closest clusters and merge to new cluster
 - iterate until all cpds belong to one cluster

Level of hierarchy corresponds to number of clusters: How to select?

- Visually
- Variance Ratio Criterion variances within/between clusters
- Kelley criterion
 balances spread at a particular
 level with the number of clusters

Molecular diversity Hierarchical clustering – distance measures

Cluster distance measures

single linkage: distance of **closest** elements

complete linkage:

distance of most distant elements

average linkage:

average of pairwise distances

centroids:

distance between the means

→ Distance measures influence the clustering outcome:

BMC Bioinformatics 2013, 14:351

Molecular diversity Non-hierarchical clustering

No hierarchical relationship between clusters

- Nearest neighbor method (1973)
 - Determine matrix of pairwise distances of all compounds
 - Cluster based on amount of common neighbors
 - → often leads to large clusters and many singletons (modified versions available)
- k-means clustering: The number of clusters k has to be pre-defined
 - Select k "seeds" = starting molecules (e.g. random)
 - Assign all remaining compounds to the closest seed
 - Calculate the centroid of the clusters and reassign all compounds to the nearest centroid
 - Iterate
 - → Non deterministic (check for stability by clustering with different seeds)

Molecular diversity k-means clustering - example

Example for the convergence of k-means clustering

Molecular diversity Density based clustering

Clusters are defined as areas of higher density than the remainder of the data set DBSCAN popular algorithm (density-based spatial clustering of applications with noise)

- an object is defined as "core" if at least **minPts** points are within distance ε
- objects are "directly reachable" from core points if the distance $< \varepsilon$
- 2 objects are "density connected" if there is a chain of core objects connecting them

→ a core point forms a cluster with all objects that are density connected to it.

By Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17085332

Comparison of clustering algorithms

- k-means also includes outliers and separates obvious clusters
- DBSCAN clustering much more flexible with cluster-shapes, but many unclustered elements
- → all algorithms need parameters which have to be adjusted accordingly

Molecular diversity Dissimilarity based selection methods

What's the difference to clustering?

- Clustering methods first group elements into a cluster and then a subset is chosen
- Dissimilarity-based compound selection (DBCS) attempt to identify a diverse set of compounds directly

General steps of DBCS

- Select the first compound (e.g. random or centroid)
- Calculate the dissimilarity to the rest
- Choose most dissimilar compound (e.g. MaxMin or MaxSum scores)
- Iterate until sufficient compounds collected

→ Results strongly depend on initial compound and how "dissimilarity" is calculated

Molecular diversity Sphere exclusion algorithm

Steps of Sphere exclusion:

- Define a threshold dissimilarity parameter t
- Select first compound (e.g. random, mean) and move into subset
- Remove all objects with a dissimilarity < t to selected molecule
- Select new compound and iterate (e.g. choose as closest or as most distant object)
- → usually DBCS results more diverse than sphere exclusion results (but sphere exclusion gives subsets which represents the data)

M. Drosou, Proceedings of the VLDB Endowment 6(1)

Molecular diversity Cell based methods

Difference to clustering and DBCS methods:

- Cell based methods require a pre-defined binned descriptor space e.g.: clogP binned in 4 bins: $(-\infty, 2]$, (2,3], (3,4], $(4,\infty)$
- Low number of dimensions possible (3-5, PCA)

https://doi.org/10.1016/j.bmcl.2016.10.069

Molecular diversity Cell based methods

Key features of cell based approaches

- No pairwise distance calculation required
- Chemical space defined independently of molecules
- Density of molecules per cell easily computed
 - under-represented chemical spaces identified by empty bins
 (some combinations often not feasible like clogP个 with H-donor count个)
 - comparison of different subsets trivial through density comparison per bin
- Drawback is the low dimensionality (number of cells = $\prod_{i=1}^{dim} bins_i$)
 - PCA helps to reduce dimensions → use first 3-4 PCs (makes the method again dependent on the dataset)
- Diverse compound sets straightforwardly generated e.g. select one representative from each cell

Molecular diversity Cell based methods – BCUT descriptors

BCUTs are descriptors to generate a low dimensional space

- BCUT descriptors are based on matrix representations of molecules connection tables
 - off-diagonals related to b_{ij} represent the bond order between atoms i and j (BCUT) or the graph distance between atoms i and j (GCUT)
 - diagonal elements p_i correspond to atomic properties $\sqrt{\sqrt{p}}$ like the partial atomic charge of atom i or the atoms contribution to logP (BCUT_SLOGP) or other atomic properties
 - the descriptors themselves are the *eigenvalues* of the matrices above
 → highest/lowest or other distinctly defined eigenvalues

BCUTs depend on atom properties and connectivity in molecules ...

Molecular diversity BCUT descriptors

			BCUT_		BCUT_
	name	PEOE_	PEOE_	PEOE_	PEOE_
		0	1	2	3
SH O=\NH ₃ +	Cys	-2,503	-0,548	0,501	2,530
H ₃ N ⁺ O	Gly	-2,379	-0,544	0,345	2,370
H ₃ N	Phe	-2,525	-0,584	0,592	2,548
H,N°	Trp	-2,516	-0,562	0,599	2,552
0-NH ₃ +	Lys	-2,654	-0,544	0,345	2,662
O- NH ₃ + O-	Asp	-2,513	-0,560	0,420	2,541

BCUT_PEOE's are calculated from the eigenvalues of a modified adjacency matrix. Each ij entry of the adjacency matrix takes the value $1/\text{sqrt}(b_{ij})$ where b_{ij} is the formal bond order between bonded atoms i and j. The diagonal takes the value of the PEOE partial charges. The resulting eigenvalues are sorted and the smallest, 1/3-ile, 2/3-ile and largest eigenvalues are reported.

Molecular similarity and diversity Summary

- Similarity of molecules is calculated based on features (descriptors)
 Can be 2D or 3D based conformation/overlays have to be considered
- The definition of similarity is not unique several similarity measures exist Depending on the task the appropriate sim. measure is selected
- Similarity is often used for virtual screening
 The assumption is that similar molecules bind the target in a similar way
- Dissimilarity is used to identify diverse subsets of compound collection
 This can be achieved by
 - clustering
 - dissimilarity based compound selections
 - global optimization of dissimilarity
 - cell based methods
- The subset is often dependent on the starting points as well as the definition of distance and/or bins
 - → similarity and diversity often a very subjective property