Prof. Igor Lesanovsky Gabriele Perfetto Albert Cabot

Advanced Statistical Physics Problem Class 1 Tübingen 2022

19/04/2022

Please encircle the questions you have solved and are able to present/discuss in class.

1.1 (a) 1.1 (b) 1.1(c) 1.2(a) 1.2(b) 1.	1.1 (a)
---	---------

Problem 1.1 (5 points)

Following the **Transfer matrix method** outlined in the lectures:

(a) Find the matrix S which diagonalizes the transfer matrix T, i.e., find its eigenvalues and eigenvectors, for a 1d Ising model with periodic boundary conditions (the notation is analogous to the one used in the lectures):

$$E = -\epsilon \sum_{i=1}^{N} s_i s_{i+1} - H \sum_{i=1}^{N} s_i.$$
 (1)

At the boundary one has $s_{N+1} = s_1$. (1 point)

Hint: To simplify the calculations, make use of the following substitution: $\cot(2\phi) = e^{2k} \sinh(h)$, where $k = \beta \epsilon$ and $h = \beta H$.

Hint: To simplify the calculations check that the two eigenvectors \vec{v}_1 and \vec{v}_2 of the transfer matrix T can be parametrized in terms of the angle ϕ as follows

$$T\vec{v}_1 = \lambda_1 \vec{v}_1, \quad \vec{v}_1 = \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \end{pmatrix},$$

$$T\vec{v}_2 = \lambda_2 \vec{v}_2, \quad \vec{v}_2 = \begin{pmatrix} -\sin(\phi) \\ \cos(\phi), \end{pmatrix}$$
(2)

with $\lambda_1 > \lambda_2$.

(b) Evaluate the expectation value of a single spin variable $\langle s_i \rangle$ and show that, in the thermodynamic limit, $N \to \infty$, this is equal to

$$\langle s_i \rangle = \cos(2\phi). \tag{3}$$

(2 points)

(c) Evaluate in the thermodynamic limit, $N \to \infty$, the connected two-point correlation function G(r)

$$G(r) = \langle s_1 s_{1+r} \rangle - \langle s_1 \rangle \langle s_{1+r} \rangle, \tag{4}$$

and show that it is equal to

$$G(r) = \sin^2(2\phi)e^{-r/\xi},\tag{5}$$

where ξ is the correlation length. Write the expression of ξ in the case of zero magnetic field H=0. (2 points)

Problem 1.2 (5 points)

In this problem we consider again the 1d Ising model in Eq. (1), but we do not consider periodic boundary conditions.

- (a) Calculate, by making use of the transfer matrix method and of the results of **Problem 1.1**, the partition function Z_f in the case of *free boundary conditions*. Here, the chain has no periodicity at the border. Perform the calculation via the following steps:
 - (i) Calculate the partition function Z_{++} , which refers to the case where the first and the last spin are fixed to 1, namely $s_1 = 1$ and $s_N = 1$.
 - (ii) Calculate the partition function Z_{+-} , which refers to the case where the first and the last spin are fixed $s_1 = 1$ and $s_N = -1$.
 - (iii) Calculate the partition function Z_{-+} , which refers to the case where the first and the last spin are fixed to $s_1 = -1$ and $s_N = 1$.
 - (iv) Calculate the partition function Z_{--} , which refers to the case where the first and the last spin are fixed to -1,

namely $s_1 = -1$ and $s_N = -1$.

(v) What is the relation between Z_f and Z_{++} , Z_{--} , Z_{+-} and Z_{--} ?

Outline briefly the differences of the partition function Z_f with respect to the case of periodic boundary conditions analyzed in **Problem 1.1**. (3 points)

Hint: Note that, compared to the case with periodic boundaries, the transfer matrix here, for the first and the last spin, does not contain any term proportional to s_1s_N .

(b) Calculate the free energy

$$F = -\frac{1}{\beta} \log Z. \tag{6}$$

for all the cases discussed in the previous task, i.e., for $Z = Z_f, Z_{++}, Z_{-+}, Z_{+-}, Z_{--}$. (1 point)

(c) Show that, when $N \to \infty$, the free energies F computed in the previous task are identical to the one obtained in the case of periodic boundary conditions apart from a constant term, which is independent of the system size N and which depends on the particular choice of the boundary conditions. (1 point)