

Tartalom

- ➤ Programozási tételek a <u>lényeg</u>
- Sorozatszámítás összegzés…
- Megszámolás
- ➤ <u>Maximum-kiválasztás</u>
- > Keresés
- > Eldöntés
- ➤ Kiválasztás
- Programozás tételek visszatekintés

Programozási tételek (PrT) lényege

Célja:

Bizonyíthatóan helyes sablon, amelyre magasabb szinten lehet építeni a megoldást. (A fejlesztés gyorsabb és biztonságosabb.)

Szerkezete:

- 1. absztrakt feladat specifikáció
- 2. absztrakt algoritmus

Egy fontos előzetes megjegyzés:

A bemenet legalább egy sorozat...

Programozási tételek (PrT) lényege

Felhasználásának menete:

- 1. a konkrét feladat specifikálása
- 2. a specifikációban a PrT-ek megsejtése
- 3. a konkrét feladat és az absztrakt feladat paramétereinek egymáshoz rendelése
- 4. a konkrét algoritmus "generálása" a megsejtett PrT-ek absztrakt algoritmusok alapján, 3. szerint átparaméterezve
- 5. "hatékonyítás" programtranszformációkkal

Programozási tételek

Mi az, hogy programozási tétel? Típusfeladat általános megoldása.

- ➤ Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \gt Sorozat \rightarrow sorozatok
- \triangleright Sorozatok \rightarrow sorozat

1. Összegzés

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére **mennyi**vel nőtt a vagyona!
- 2. Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az **átlag**körének idejét!
- 3. Adjuk meg az N számhoz az N **faktoriális** értékét!
- 4. Ismerjük egy iskola szakköreire járó tanulóit, szakkörönként. Adjuk meg, kik járnak szakkörre!
- 5. Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!

1. Összegzés

Csoportosítsunk:

- Számok összege: "vagyon", "köridők"
- Számok szorzata: "faktoriális"
- Halmazok uniója: "szakkörök"
- Szavak egymásutánja: "szavak"

Mi bennük a közös?

- N "valamiből" kell kiszámolni "kumuláltan" egy "valamit"!
- Pl. Σ vagyon/köridők; Π faktoriális;
 - ∪ szakkörök; & szavak

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!
- Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az átlagkörének idejét!
- Adjuk meg az N számhoz az N faktoriális értékét!
- Ismerjük egy iskola szakköreire járók tanúlóit, szakkörönként. Adjuk meg a szakkörre járó tanulókat!
- Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!

1. Összegzés

H: N, Z vagy R

Specifikáció (összegzés):

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X_{1..N} \in \mathbb{H}^N$$

- > Kimenet: S∈H
- > Előfeltétel: –

$$\text{Ut\'ofelt\'etel: } S = \sum_{i=1}^{N} X_i$$

$$\text{J\'ol ismert a } \sum \text{ defin\'ici\'oja: } \sum_{i=1}^{N} X_i := \begin{cases} 0 & \text{, N} = 0 \\ \left(\sum_{i=1}^{N-1} X_i\right) + X_N & \text{, N} > 0 \end{cases}$$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X_1 \in H^N$$

- > Kimenet: S∈H
- ➤ Előfeltétel: –
- \gt Utófeltétel: S=F(X_{1..N})

 $F: \mathbb{H}^{N} \to \mathbb{H}$

 Σ – N tagú összeg;

 Π – N tényezős szorzat;

∪ – N halmaz uniója;

& – N szöveg konkatenációja ...

H: tetszőleges halmaz; $H^N = \{(h_1,...,h_N) | h_i \in H\}$

 $(X_1,...,X_N)$ sorozat

N "valamiből" kell kiszámolni egy "valamit"! Pl. Σ – bevétel/köridő; Π – faktoriális; ∪ – szakkörös; & – szó

Megjegyzés: $X_{1,0}=()$, az üres sorozat

> Általános probléma:

F: N paraméteres művelet, ahol az N változó. $\sum_{i=1}^{N} X_i := \begin{cases} 0 & ,N=0 \\ \left(\sum_{i=1}^{N-1} X_i\right) + X_N, N>0 \end{cases}$

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \left(\sum_{i=1}^{N-1} X_{i}\right) + X_{N} & , N > 0 \end{cases}$$

> Megoldás:

Visszavezetjük 2-paraméteres műveletre (pl. Σ helyett +) és egy neutrális elemre (+ esetén a 0).

$$F(X_{1..N}) = f(F(X_{1..N-1}), X_N)$$

, ha N>0

$$F()=F_0$$

, egyébként

Tehát:

F:H^{*}→H függény,

 $F_0 \in H$: Neutrális (F_0) konstans

 $H^* = \{(h_1, h_2, ...) \mid h_i \in H\}$ H*: H iterált halmaza

> Neutrális_f(F_0): $f(F_0,x)=x \forall x \in \mathbb{H}$

Specifikáció (az általános):

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X_{1..N} \in \mathbb{H}^N$$

- > Kimenet: S∈H
- ➤ Előfeltétel: –
- \gt Utófeltétel: $S = F(X_{1..N})$
- Definíció:

$$H^* = \{(h_1, h_2, ...) \mid h_i \in H\}$$
 H^* : H iteralt halmaza

$$F: \mathbb{H}^* \to \mathbb{H}$$

$$F(X_{1..N}) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

$$f: \mathbb{H} \times \mathbb{H} \to \mathbb{H}, F_0 \in \mathbb{H}$$

Specifikáció' (tovább általánosítva):

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X_{1..N} \in \mathbb{H}_1^N$$

- \triangleright Kimenet: $S \in \mathbb{H}_2$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: S= $F(X_{1..N})$
- Definíció:

$$H^* = \{(h_1, h_2, ...) | h_i \in H\}$$
 H^* : H iterált halmaza

$$F: \mathbb{H}_{1}^{*} \to \mathbb{H}_{2}$$

$$F(X_{1..N}) := \begin{cases} F_{0} &, N = 0 \\ f(F(X_{1..N-1}), X_{N}) &, N > 0 \end{cases}$$

$$f: \mathbb{H}_{2} \times \mathbb{H}_{1} \to \mathbb{H}_{2}, F_{0} \in \mathbb{H}_{2}$$

Programváltozók deklarálása

Algoritmus:

Specifikáció (az általános): > Bemenet: N∈N, X_{1.N}∈H^N

≻Kimenet: S∈H

> Előfeltétel: –

➤ Utófeltétel: S=F(X_{1...})

Változó

→N:Egész

Konstans

➤ MaxN:Egész(???)

Változó

X:Tömb[1..MaxN:TH]

S:TH

MaxN: a tömb maximális mérete

TH: a H halmaznak megfelelő típus

Tehát megállapodunk abban, hogy a tételek algoritmusához statikusan deklaráljuk a sorozathoz tartozó tömböt.

Algoritmus (általánosan):

$$\begin{split} & \text{Specifik\'aci\'o:} \\ & \Rightarrow \text{Bemenet:} \quad N \in N, \\ & \quad \quad X_{1..N} \in H_1^N \\ & \Rightarrow \text{Kimenet:} \quad S \in H_2 \\ & \Rightarrow \text{El\'ofelt\'etel:} - \\ & \Rightarrow \text{Ut\'ofelt\'etel:} \text{S} = F(X_{1..N}) \\ & \Rightarrow \text{Defin\'aci\'o:} \\ & \quad \quad F: H_1^* \longrightarrow H_2 \\ & \quad \quad F(X_{1..N}) := \begin{cases} F_0 & , N = 0 \\ f(F(X_{1..N-1}), X_N) & , N > 0 \end{cases} \\ & \quad \quad f: H_2 \times H_1 \longrightarrow H_2, F_0 \in H_2 \end{split}$$

$S:=F_0$ i=1..N S:=f(S,X[i])Változó i:Egész

Σ (összegzés) esetén:

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & , N > 0 \end{cases}$$

Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!

Sorozatszámítás példa

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$,
 - Jöv_{1..N}∈(be×ki)^N, be,ki=N ◀
- \triangleright Kimenet: $S \in \mathbb{Z}$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: S= $\sum_{i=1}^{N} J \ddot{o} v_{i}.be-J \ddot{o} v_{i}.ki$

Algoritmus:

i=1..N

S:=S+Jöv[i].be-Jöv[i].ki

Megjegyzések:

- 1. A konkrét feladat előfeltétele lehet erősebb, mint a programozási tételé.
- 2. A konkrét feladat utófeltétele lehet gyengébb, mint a programozási tételé (lesz ilyen).
- 3. Az 1-től N-ig indexelt tömb helyett lehet E-től U-ig indexelt tömb.
- 4. Egyetlen tömb elemei helyett lehet a tételben szereplő "i-edik elem" értékét kiszámító kifejezés (több tömbből, több tömbelemből; vagy tömbtől független függvény).

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy **hány** hónapban nőtt a vagyona!
- 2. Adjuk meg egy természetes szám osztói számát!
- 3. Adjuk meg egy ember nevében levő "a" betűk **számá**t!
- 4. Adjunk meg az éves statisztika alapján, hogy **hány** napon fagyott!
- 5. Adjuk meg N születési hónap alapján, hogy közöttük **hány**an születtek télen!

Mi bennük a közös?

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy hány hónapban nőtt a vagyona!
- Adjuk meg egy természetes szám osztói számát!
- Adjuk meg egy ember nevében levő "a" betűk számát!
- Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!
- Adjuk meg N születési hónap alapján, hogy közöttük hányan születtek télen!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X_{1..N} \in \mathbb{H}^N$$

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: Db= $\sum_{i=1}^{N} 1$

 $T(X_i)$

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

H: tetszőleges halmaz

T: tetszőleges tulajdonság-függvény

Megjegyzés:

A T tulajdonság egy logikai függvényként adható meg. X (sőt H) minden elemről megvizsgálható, hogy rendelkezik-e az adott tulajdonsággal vagy sem.

Algoritmus:

Specifikáció:

> Bemenet: N ∈ N,

 $X_{1..N} \in H^N$,

T:H→L

> Kimenet: Db∈N

> Előfeltétel: -

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$

 $T(X_i)$

 $\begin{array}{c|c} Db := 0 \\ & i : Eg \acute{e}sz \\ \hline \\ \hline I = 1..N \\ \hline \\ \hline T(X[i]) \\ \hline Db := Db + 1 \\ \hline \end{array}$

2. Megszámolás példa

Specifikáció: $T(X_i) \rightarrow H\acute{o}_i < 3 \text{ vagy } H\acute{o}_i = 12$

- \triangleright Bemenet: $N \in \mathbb{N}$,
 - $H\acute{o}_{1..N}\in\mathbb{N}^N$,

Téli?:N→L,

Téli?(x):=x < 3 vagy x = 12

- > Kimenet: Db∈N
- ► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H \acute{o}_i \in [1..12]$
- > Utófeltétel: Db = $\sum_{i=1}^{N} 1$

 $H\acute{o}_{i}$ <3 vagy $H\acute{o}_{i}$ =12

Megjegyzés: a konkrét feladat előfeltétele mindig lehet szigorúbb a tétel előfeltételénél!

 Adjuk meg N születési hónap alapján, hogy közöttük hányan születtek télen!

Specifikáció:

> Bemenet: N ∈ N,

 $X_{1..N} \in H^N$, $T:H \rightarrow L$

- > Kimenet: Db∈N
- > Előfeltétel: -
- > Utófeltétel: Db= $\sum_{i=1}^{N} 1$

T(X_i)

2. Megszámolás példa

Algoritmus: $T(X[i]) \rightarrow H\delta[i] < 3 \text{ vagy } H\delta[i] = 12$

Kérdés:

Mi lenne, ha az előfeltétel ($\forall i \ (1 \le i \le N): H\acute{o}_i \in [1..12]$) nem teljesülne?

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt **leg**jobban a vagyona!
- 2. Adjuk meg N ember közül az ábécében **utolsó**t!
- 3. Adjuk meg N ember közül azt, aki a **leg**több ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a **leg**melegebb napot!
- 5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt legjobban a vagyona!
- Adjuk meg N ember közül az ábécében utolsót!
- Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- Adjunk meg az éves statisztika alapján a legmelegebb napot!
- Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

Mi bennük a közös?

N darab "valami" közül kell megadni a legnagyobbat (vagy a legkisebbet).

Fontos:

A "valamik" között értelmezhető egy **rendezési reláció**. Ha **legalább 1** "valamink" van, akkor legnagyobb (legkisebb) is biztosan van közöttük!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X_1 \in H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{\text{Max}} \ge X_i \text{ \'es}$

MaxÉrt=X_{Max}

másképp: $(Max, MaxÉrt) = Max X_i$

N darab "valamire" kell megadni közülük a legnagyobbat (vagy a legkisebbet).

> A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Léteznie kell a ≥:H×H→L rendezési relációnak!

(maximális érték és index)

Algoritmus:

Specifikáció:		
> Bemenet:	$N \in \mathbb{N}$,	
	$X_{1N} \in H^N$	
Kimenet:	Max∈N, MaxÉrt∈H	
> Előfeltétel:	N>0	
> Utófeltétel:	1≤Max≤N és	
	$\forall i (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$	
	Maxért=X _{max}	

Megjegyzés: Ha több maximális érték is van, akkor közülük az elsőt kapjuk meg – a megoldás tudhat többet, mint a specifikáció által elvárt.

Kérdések: Hogyan lesz belőle utolsó maximális? Hogyan lesz belőle (első) minimális?

(maximális elem indexe)

Specifikáció:

> Bemenet: $N \in \mathbb{N}$,

 $X_1 \in H^N$

 \triangleright Kimenet: Max \in N

> Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

másképp: $Max = Max X_i$

N darab "valamire" kell megadni közülük a legnagyobbat (vagy a legkisebbet).

> A cél egy szummával azonos "tömörségű" operátorral kifejezni.

másképp: Max= $\underset{i=1}{\text{MaxInd }} X_i$

Ha csak a maximális elem indexére van szükségünk!

(maximális elem indexe)

Algoritmus:

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

MaxÉrt:=X[1]; Max:=1		
i=2N		
X[i]>Max	Ért 🔊	
MaxÉrt:=X[i]		
Max:=i		

(maximális érték)

Specifikáció:

- ➤ Kimenet: MaxÉrt∈H
- ➤ Utófeltétel: MaxÉrt∈X és

 $\forall i \ (1 \le i \le N): Max \acute{E}rt \ge X_i$

másképp: $Max \acute{E}rt = Max X_{i=1}^{N}$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$,
 - $X \in H^N$
- > Kimenet: Max∈N
- Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

másképp: Max= MaxInd X_i

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

másképp: MaxÉrt= MaxÉrt X_{i.}

Ha csak a maximális elem értékére van szükségünk!

(maximális érték)

Algoritmus:

3. Maximum-kiválasztás példa

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $D_{1..N} \in (h\acute{o} \times nap)^N$, $h\acute{o}$, nap = N

Kimenet: Első∈N

➤ Előfeltétel: N>0 és

 $\forall i (1 \le i \le N): D_i.h\acute{o} \in [1..12] \acute{e}s$

 $D_{i}.nap \in [1..31]$

> Utófeltétel: 1≤Első≤N és

∀i (1≤i≤N): D_{Első}.hó<D_i.hó vagy

D_{Első}.hó=D_i.hó és D_{Első}.nap≤D_i.nap

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N

➤ Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

3. Maximum-kiválasztás példa

Specifikáció (másképp):

- \gt Utófeltétel: Első= $\frac{N}{Max}$ (D_i)
- ➤ Definíció: ≤:(hó×nap)²→L

D≤D':=D.hó<D'.hó vagy

D.hó=D'.hó és D.nap≤D'.nap

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N

> Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

3. Maximum-kiválasztás példa

Algoritmus: $X[i]>X[Max] \rightarrow D[i]<D[Első]$

4. Keresés

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor **nem** nőtt a vagyona!
- 2. **Adjuk meg egy** természetes szám egy 1-től és önmagától különböző osztóját!
- 3. Adjuk meg egy ember nevében egy "a" betű helyét!
- 4. Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
- 5. **Adjuk meg egy** számsorozat olyan elemét, amely nagyobb az előzőnél!

4. Keresés

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. Adjunk meg egy hónapot, amikor nem nőtt a vagyona!
- Adjuk meg egy természetes szám egy 1-től és önmagától különböző osztóját!
- Adjuk meg egy ember nevében egy a-betű helyét!
- Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
- Adjuk meg egy számsorozat olyan elemét, amely nagyobb az előzőnél!

Mi bennük a közös?

N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy ilyen elem van-e.

4. Keresés

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}, X_{1} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: $Van \in L$, $Ind \in N$, $\acute{E}rt \in H$
- ➤ Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } T(X_{Ind}) \text{ \'es \'Ert} = X_{Ind}$

másképp: (Van,Ind,Ért)= Keres i

 $T(X_i)$

Tehát a feladat "egyik fele" megadja, hogy van-e adott tulajdon-ságú elem, a "másik fele" pedig, hogy melyik az, ill.

a "harmadik" az értékét.

N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy ilyen elem van-e.

> A cél egy szummával azonos "tömörségű" operátorral kifejezni.

4. Keresés

i:Egész

Algoritmus:

```
Specifikáció:
➤ Bemenet: N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \rightarrow \mathbb{L}
➤ Kimenet: Van∈L, Ind∈N, Ért∈H
> Előfeltétel: -
> Utófeltétel: Van=∃i (1≤i≤N): T(X<sub>i</sub>) és
                  Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}
```

		Változó
i:=1		i:Egé
i≤N és ne	em T(X[i])	
i:=i+1		
Van:=i≤N		
$\bigvee_{\mathbf{I}}$ $\bigvee_{\mathbf{Z}}$	an /n	<u> </u>
Ind:=i		
Ért:=X[i]		

Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg.

4. Keresés példa

Specifikáció: $T(X_i) \rightarrow Jegy_i=1$

- \triangleright Bemenet: $N \in \mathbb{N}$, $J_{\text{egy}_1} \in \mathbb{N}^{\mathbb{N}}$
- \triangleright Kimenet: Bukott \in L, TI \in N
- ► Előfeltétel: $\forall i \ (1 \le i \le N)$: $Jegy_i \in [1..5]$
- ➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy;=1 és

Bukott→1≤TI≤N és Jegy_{TI}=1

N

(Bukott,TI)=Keres i

Specifikáció:

azaz

- > Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$
- > Kimenet: Van∈L, Ind∈N, Ért∈H
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Int})

i=1

Jegy_i=1

 Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!

> T: tulajdonságfüggvény

4. Keresés példa

i:Egész

Algoritmus: nem $T(X[i]) \rightarrow Jegy[i] \neq 1$

Specifikáció:

- > Bemenet: N∈N, $X_{1..N}$ ∈H^N, T:H→L
- ➤ Kimenet: Van ∈ L, Ind ∈ N, Ért ∈ H
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

Van→1≤Ind≤N és T(X_{Ind})

i:=1		
i≤N és ne	m T(X[i])	
i:=i+1		
Van:=i≤N		
V:	an /n	
Ind:=i	_	

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $Jegy \in \mathbb{N}^{\mathbb{N}}$
- \gt Kimenet: Bukott \in L, TI \in N
- > Előfeltétel: ∀i (1≤i≤N): Jegy_i∈[1..5]
- > Utófeltétel: Bukott=∃i (1≤i≤N): Jegy;=1 és Bukott $\rightarrow 1 \le TI \le N$ és Jegy_{TI}=1

J S [] /	•	Változó
i:=1		i:Egé
i≤N és J	egy[i]≠1	
i:=i+1		
Bukott:=i≤N		
Bul	kott / _N	
TI:=i		

Feladatok:

- 1. Egy természetes számról **döntsük el**, hogy prímszám-e!
- 2. Egy szóról **mondjuk meg**, hogy egy hónapnak a neve-**e**!
- 3. Egy tanuló év végi osztályzatai alapján **állapítsuk meg**, hogy bukott**-e**!
- 4. Egy szóról **adjuk meg**, hogy van-e benne magánhangzó!
- 5. Egy számsorozatról döntsük el, hogy monoton növekvő-e!
- 6. Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

Feladatok:

- Egy természetes számról döntsük el, hogy prímszám-el
- Egy szóról mondjuk meg, hogy egy hónapnak a neve-e!
- Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!
- Egy szóról adjuk meg, hogy van-e benne magánhangzó!
- Egy számsorozatról döntsük el, hogy monoton növekvő-e!
- Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

Mi bennük a közös?

Döntsük el, hogy N "valami" között van-e adott tulajdonsággal rendelkező elem!

Ez a keresés programozási tétel (kimenetének) szűkítése.

Specifikáció:

> Bemenet: $N \in \mathbb{N}$,

 $X_{1..N} \in \mathbb{H}^N$,

 $T:H \rightarrow L$

> Kimenet: Van∈L

➤ Előfeltétel: –

ightharpoonup Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

másképp: $Van = \exists T(X_i)$

Döntsük el, hogy N "valami" között van-e adott tulajdonsággal rendelkező elem!

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Algoritmus₁:

Specifikáció:

➤ Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

> Kimenet: Van∈L

> Előfeltétel: -

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

i:=1 $i \le N \text{ és nem } T(X[i])$ i:=i+1 $Van:=i \le N$

Algoritmus₂:

i:=0; Van:=Hamis

i<N és nem Van

i:=i+1; Van:=T(X[i])

Változó

i:Egész

Feladatvariáns:

... az összes elem olyan-e ...

Specifikáció (csak a különbség):

➤ Kimenet: MindeL

> Utófeltétel: Mind= Vi(1≤i≤N): T(X_i)

másképp: Mind= $\forall T(X_i)$ i=1

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X_{1..N} \in \mathbb{H}^{\mathbb{N}}$, $T: \mathbb{H} \rightarrow \mathbb{L}$

Nimenet Van∈L

Előfeltétel: –

Utéfeltétel. Van ∃i(1≤i≤N): T(X_i)

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Feladatvariáns:

... az összes elem olyan-e ...

Algoritmus:

Specifikáció:

- > Bemenet: N∈N,
 - $X_{1..N} \in H^N$
- > Kimenet: Mind∈L
- > Előfeltétel: –
- \gt Utófeltétel: Mind= $\forall i(1 \le i \le N)$: $T(X_i)$

```
i:=1
i\le N \text{ \'es } \frac{T(X[i])}{i:=i+1}
i:=i>N
Mind:=i>N
```


 Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!

5. Eldöntés példa

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $J_{\text{egy}_{1..N}} \in \mathbb{N}^{\mathbb{N}}$
- ➤ Kimenet: Bukott∈L
- ► Előfeltétel: $\forall i \ (1 \le i \le N)$: $Jegy_i \in [1..5]$
- ➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy_i=1-

Specifikáció:

- > Bemenet: N∈N, X_{1..N}∈H^N T:H→L
- > Kimenet: Van∈L
- ➤ Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

T: tulajdonságfüggvény

Változó

i:Egész

Algoritmus:

i:=1
i≤N és Jegy[i]≠1
i:=i+1

Bukott:=i≤N

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor nőtt a vagyona!
- 2. **Adjuk meg egy** 1-nél nagyobb természetes szám egytől különböző legkisebb osztóját!
- 3. Adjuk meg egy magyar szó egy magánhangzóját!
- 4. Adjuk meg egy hónapnévről a sorszámát!

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. Adjunk meg egy hónapot, amikor nőtt a vagyona!
- Adjuk meg egy természetes szám egytől különböző legkisebb osztóját!
- Adjuk meg egy magyar szó egy magánhangzóját!
- Adjuk meg egy hónapnévről a sorszámát!

Mi bennük a közös?

N "valami" közül kell megadni egy adott tulajdonságút, ha tudjuk, hogy ilyen elem biztosan van.

Ez a keresés programozási tétel olyan változata, amelyben nem kell felkészülnünk arra, hogy a keresett elemet nem találjuk meg.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X_{1..N} \in \mathbb{H}^N$,

 $T:H\rightarrow L$

 \triangleright Kimenet: Ind \in N, Ért \in H

► Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

> Utófeltétel: 1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}

másképp: (Ind, Ért)=Kiválaszt i

i=1

 $T(X_i)$

N "valami" közül kell megadni egy adott tulajdonságút, ha tudjuk, hogy ilyen elem biztosan van.

> A cél egy szummával azonos "tömörségű" operátorral kifejezni.

i:Egész

Algoritmus:

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N}{\in}H^N$

> Kimenet: Ind \in N, Ért \in H

► Előfeltétel: N>0 és $\exists i (1 \le i \le N)$: $T(X_i)$

➤ Utófeltétel: 1≤Ind≤N és T(X_{Ind})

Ért=X_{Ind}

	Változó
i:=1	i:Egé
nem T(X[i])	
i:=i+1	
Ind:=i	
Ért:=X[i]	

Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg – a program tudhat többet annál, mint amit várunk tőle.

Hogy kellene az utolsót megadni?

6. Kiválasztás példa

Specifikáció:

- ▶ Bemenet: Szó∈S
- \triangleright Kimenet: MH \in N
- ➤ Előfeltétel: hossz(Szó)>0 és

∃i (1≤i≤hossz(Szó)):

 $magánhangzóE(Szó_i)$

- ➤ Utófeltétel: 1≤MH≤hossz(Szó) és
 - magánhangzóE(Szó_{MH})
- ▶ Definíció: magánhangzóE:K→L

magánhangzóE(c):=

nagybetű(c) $\in \{'A', ..., '\tilde{U}'\}$

 Adjuk meg egy magyar szó egy magánhangzóját!

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$ $T: H \rightarrow L$

- > Kimenet: Ind∈N
- ► Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$
- > Utófeltétel: 1≤Ind≤N és T(X_{Ind})

T: tulajdonságfüggvény

6. Kiválasztás példa

Algoritmus:

Specifikáció:

- > Bemenet: Szó∈S
- ➤ Kimenet: MH∈N
- > Előfeltétel: hossz(Szó)>0 és
 - ∃i (1≤i≤hossz(Szó)): magánhangzóE(Szó_i)
- > Utófeltétel: 1≤MH≤hossz(Szó) és magánhangzóE(Szó_{MH})

Ind:=1
nem T(X[Ind])

Ind:=Ind+1

 Adjuk meg egy magyar szó egy magánhangzóját!

```
MH:=1

nem magánhangzóE(Szó[MH])

MH:=MH+1
```

Megjegyzés:

a kódoláskor a nagybetűsítő toupper függvénynél ügyelni kell az ékezetes betűkre!

Programozási tételek – visszatekintés

1.	Sorozatszámítás	(összegzés)

szummás feladat

2. <u>Megszámolás</u>

számlálós ciklus

- 3. <u>Maximum-kiválasztás</u>
- 4. <u>Keresés</u>

kvantoros feladat

5. Eldöntés

feltételes ciklus

6. Kiválasztás

Programozási tételek – visszatekintés

1.	Sorozatszámítás (összegzés)	
2.	<u>Megszámolás</u>	N≥0
3.	<u>Maximum-kiválasztás</u>	N>0
4.	<u>Eldöntés</u>	N≥ 0
5.	<u>Kiválasztás</u>	N>0
6.	<u>Keresés</u>	N≥ 0

+1. Madártávlatból újra...