PRÁCTICA 9

CIRCUITOS SECUENCIALES I

1. Introducción

En esta práctica vamos a comenzar con la descripción de los circuitos secuenciales.

2. Objetivos

- Aprender a diseñar circuitos secuenciales.
- Practicar el proceso de diseño en FPGAs con la herramienta Vivado de Xilinx.

3. Trabajo previo

Repasar las sentencias VHDL.

Repasar los circuitos aritméticos.

4. Pasos a seguir

Los estudiantes deben describir, sintetizar, similar y comprobar cada circuito en la placa de desarrollo.

5.1. Ejercicios (10 puntos).

5.1.1. Biestable JK síncrono activado por flancos, con entrada de habilitación ("clock_enable") y de puesta en estado inicial ("reset") síncrona (2 puntos).

Realizar todas las tareas anteriores para el siguiente circuito:

Tabla de verdad.

reset	ce	J	K	clk	Qt+1
1	X	X	X	\uparrow	0
0	0	X	X	\uparrow	Qt
0	1	0	0	\uparrow	Qt
0	1	0	1	\uparrow	0
0	1	1	0	\uparrow	1
0	1	1	1	\uparrow	not Qt

Práctica 9 Electrónica Digital. Circuitos secuenciales I.

Para probar el circuito adecuadamente, se debe realizar un banco de pruebas en el que se comprueben al menos los siguientes casos:

- Hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.
- Con la señal de habilitación (ce) a nivel 0 y la señal "reset" a nivel cero, aplicar varios ciclos de reloj para comprobar que la salida se mantiene en su último valor, independientemente del valor del resto de las entradas.
- Con la señal de habilitación (ce) a nivel 1 y la señal "reset" a nivel cero, probar todas las combinaciones de J y K y comprobar que la salida se comporta correctamente respecto a la tabla de verdad.
- Con la señal de habilitación (ce) a nivel 1, hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.
- Recordad que cada combinación de valores de las entradas debe mantenerse estable al menos un ciclo de reloj de período 1 microsegundo.

Asignación de terminales para la prueba en la placa

Señal del circuito	Elemento de la placa Basys 3
clk	clk
reset	BTNC
ce	BTNU
J	SW(1)
K	SW(0)
q	LD(0)

¿Funciona correctamente el biestable JK al probarlo en la placa?.

¿En qué casos funciona mal?. ¿Por qué?.

5.1.2. Registro paralelo de 4 bits síncrono activado por flancos, con entrada de habilitación ("clock_enable") y de puesta en estado inicial ("reset") síncrona (3 puntos).

Realizar todas las tareas anteriores para el siguiente circuito:

Tabla de verdad.

reset	ce	d(3:0)	clk	q(3:0)t+1
1	X	XXXX	\uparrow	0000
0	0	XXXX	↑	q(3:0)t
0	1	d3d2d1d0	\uparrow	d3d2d1d0

Para probar el circuito adecuadamente, se debe realizar un banco de pruebas en el que se comprueben al menos los siguientes casos:

- Hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.
- Con la señal de habilitación (ce) a nivel 0 y la señal "reset" a nivel cero, aplicar varios ciclos de reloj para comprobar que las salidas se mantienen en su último valor independientemente del valor del resto de las entradas.
- Con la señal de habilitación (ce) a nivel 1 y la señal "reset" a nivel cero, probar todas las combinaciones de "d" y comprobar que la salida se comporta correctamente respecto a la tabla de verdad.
- Con la señal de habilitación (ce) a nivel 1, hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.
- Recordad que cada combinación de valores de las entradas debe mantenerse estable al menos un ciclo de reloj de período 1 microsegundo.

Asignación de terminales para la prueba en la placa

Señal del circuito	Elemento de la placa Basys 3
clk	clk
reset	BTNC
ce	BTNU
d(3:0)	SW(3:0)
q(3:0)	LD(3:0)

¿Funciona correctamente el registro al probarlo en la placa?.

¿Por qué?.

5.1.3. Contador binario ascendente de 2 bits síncrono activado por flancos, con entrada de habilitación ("clock_enable"), de puesta en estado inicial ("reset") síncrona y de carga en paralelo ("load"), y salidas de fin de contaje asíncrona ("terminal_count") y síncrona ("clock_enable_output") (3 puntos).

Se debe utilizar el operador "+" en VHDL para la función de contaje.

Realizar todas las tareas anteriores para el siguiente circuito:

Tabla de verdad.

reset	load	ce	din(1:0)	clk	q(1:0)t+1		ctr_2_bits
1	X	X	XX	\uparrow	00	din(1 <u>:0)</u>	q(1:0)
0	1	X	d1d0	\uparrow	d1d0	ce	_
0	0	0	XX	\uparrow	q(1:0)t	<u>clk</u>	ceo
0	0	1	XX	\uparrow	estado_anterior + 1	lo <u>ad</u> re <u>set</u>	tc_

Además:

- "tc" vale 1 si q1q0 = "11".
- "ceo" vale 1 si q1q0 = "11" y ce='1'.

Para probar el circuito adecuadamente, se debe realizar un banco de pruebas en el que se comprueben al menos los siguientes casos:

- Hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.
- Con la señal de habilitación (ce) a nivel 0, la señal "reset" a nivel cero y la señal "load" a nivel cero, aplicar varios ciclos de reloj para comprobar que las salidas se mantienen en su último valor independientemente del valor del resto de las entradas.
- Con la señal de habilitación (ce) a nivel 0 y la señal "reset" a nivel cero, haced una carga en paralelo del valor "10" mediante la activación de la señal "load" a nivel uno.
- Con la señal de habilitación (ce) a nivel 1 y las señales "reset" y "load" a nivel cero, aplicar 20 ciclos de reloj y comprobar que las salidas se comportan correctamente respecto a la tabla de verdad.
- Con la señal de habilitación (ce) a nivel 1, hacer una puesta en estado inicial, activando la señal "reset" a nivel uno durante al menos un período de reloj y poniendo el resto de las entradas en nivel cero.

Práctica 9 Electrónica Digital. Circuitos secuenciales I.

• Recordad que cada combinación de valores de las entradas debe mantenerse estable al menos un ciclo de reloj de período 1 microsegundo.

Asignación de terminales para la prueba en la placa

Señal del circuito	Elemento de la placa Basys 3
clk	clk
reset	BTNC
ce	BTNU
din(1:0)	SW(1:0)
load	SW(15)
tc	LD(15)
ceo	LD(14)
q(1:0)	LD(1:0)

¿Por qué funciona mal el contador al probarlo en la placa?

5.1.4.- Prueba del circuito detector de flancos (1 punto).

Probar el funcionamiento del contador en la placa "Coolrunner 2 starter kit", con la misma asignación de terminales que en el apartado anterior, pero intercalando entre el pulsador PMODBTN(0) y la entrada "ce" del contador, el circuito detector de flancos (detector_flancos.vhd) suministrado por el profesor, de acuerdo con el siguiente esquema.

¿Funciona ahora correctamente el contador en la placa?

5.1.5.- Prueba del circuito antirrebotes (1 punto).

Probar el funcionamiento del contador en la placa "Coolrunner 2 starter kit", con la misma asignación de terminales que en el apartado anterior, pero intercalando entre el pulsador PMODBTN(0) y el circuito detector de flancos (detector_flancos.vhd) un circuito antirrebotes formado por un biestable D y dos divisores de reloj suministrados por el profesor, de acuerdo con el siguiente esquema.

¿Funciona ahora correctamente el contador en la placa?

6. Resultados.

- En el laboratorio, el día de las prácticas, se debe enseñar al profesor la simulación temporal de cada uno de los circuitos, una vez implementados sin errores, con el informe de implementación ("fitting") abierto.
- Asimismo, se deberá enseñar el funcionamiento en la placa de desarrollo de cada uno de los circuitos en los que se pida esta tarea.
- Antes de la fecha límite de cada práctica, deberán subirse al apartado correspondiente a la práctica, de la carpeta "Ejercicios" de FaiTIC, la siguiente documentación.

- Proyectos ISE comprimidos correspondientes a cada uno de los circuitos diseñados. El nombre de los archivos debe ser el siguiente:
 - practica_9_ejercicio_1.zip
 - practica_9_ejercicio_2.zip
 - practica_9_ejercicio_3.zip
 - practica_9_ejercicio_4.zip
 - practica_9_ejercicio_5.zip