Calculus I

The Fundamental Theorem of Calculus, Part I

Todor Milev

2019

Outline

- The Fundamental Theorem of Calculus
 - Proof of FTC, part 1

Outline

- The Fundamental Theorem of Calculus
 - Proof of FTC, part 1

The Net Change Theorem

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

• The Fundamental Theorem of Calculus has two parts.

- The Fundamental Theorem of Calculus has two parts.
- Part 2 of the FTC roughly says "integration undoes differentiation."

- The Fundamental Theorem of Calculus has two parts.
- Part 2 of the FTC roughly says "integration undoes differentiation."
- Part 2 of the FTC was already studied as the Evaluation Theorem.
 It allows us to compute integrals by finding antiderivatives, without writing limits of Riemann sums.

- The Fundamental Theorem of Calculus has two parts.
- Part 2 of the FTC roughly says "integration undoes differentiation."
- Part 2 of the FTC was already studied as the Evaluation Theorem.
 It allows us to compute integrals by finding antiderivatives, without writing limits of Riemann sums.
- Part 1 of the FTC roughly says "differentiation undoes integration."

- The Fundamental Theorem of Calculus has two parts.
- Part 2 of the FTC roughly says "integration undoes differentiation."
 Part 2 of the FTC was already studied as the Evaluation Theorem.
- It allows us to compute integrals by finding antiderivatives, without writing limits of Riemann sums.
- Part 1 of the FTC roughly says "differentiation undoes integration."
- Part 1 of the FTC deals with functions of the form

$$g(x) = \int_a^x f(t) dt$$

where f is a continuous function on [a, b] and x varies between a and b.

$$g(x) = \int_a^x f(t) \mathrm{d}t$$

$$g(x) = \int_{a}^{x} f(t) dt$$

g depends only on x.

$$g(x) = \int_a^x f(t) \mathrm{d}t$$

- g depends only on x.
- If x is a fixed number, then $\int_a^x f(t)dt$ is a fixed number.

$$g(x) = \int_{a}^{x} f(t) dt$$

- g depends only on x.
- If x is a fixed number, then $\int_a^x f(t) dt$ is a fixed number.
- If we let x vary, then $\int_a^x f(t) dt$ varies.

$$g(x) = \int_{a}^{x} f(t) dt$$

- g depends only on x.
- If x is a fixed number, then $\int_a^x f(t)dt$ is a fixed number.
- If we let x vary, then $\int_a^x f(t) dt$ varies.
- If f is positive, then g can be interpreted as the area under f from a to x.

If
$$g(x) = \int_1^x (e^t + 2t) dt$$
, find $g'(x)$.

If
$$g(x) = \int_1^x (e^t + 2t) dt$$
, find $g'(x)$.

$$g(x) = \begin{bmatrix} & + & \\ & & \end{bmatrix}_1^x$$

If
$$g(x) = \int_1^x (e^t + 2t) dt$$
, find $g'(x)$.

$$g(x) = \begin{bmatrix} e^t + \end{bmatrix}_1^x$$

If
$$g(x) = \int_1^x (e^t + 2t) dt$$
, find $g'(x)$.
$$g(x) = \begin{bmatrix} e^t + \end{bmatrix}_1^x$$

If
$$g(x) = \int_1^x (e^t + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^t + \frac{t^2}{1}\right]_1^x$$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= + - -

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$
$$= \frac{e^x}{2} + \frac{1}{2}$$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + - -$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + 2x - -$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + 2x - -$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + 2x - 0 - 1$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + 2x - 0 - 1$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^x + x^2 - e - 1)$$

= $e^x + 2x - 0 - 0$

If
$$g(x) = \int_{1}^{x} (e^{t} + 2t) dt$$
, find $g'(x)$.

$$g(x) = \left[e^{t} + t^{2}\right]_{1}^{x}$$

$$= (e^{x} + x^{2}) - (e^{1} + 1^{2})$$

$$= e^{x} + x^{2} - e - 1$$
.

$$g'(x) = \frac{d}{dx}(e^{x} + x^{2} - e - 1)$$

$$= e^{x} + 2x - 0 - 0$$

$$= e^{x} + 2x.$$

Theorem (The Fundamental Theorem of Calculus, Part 1)

If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

Find the derivative of $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

Find the derivative of $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

• $f(t) = \sqrt{1 + t^2}$ is continuous.

Find the derivative of $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

- $f(t) = \sqrt{1 + t^2}$ is continuous.
- By the FTC, Part 1,

$$g'(x) =$$

Find the derivative of $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

- $f(t) = \sqrt{1 + t^2}$ is continuous.
- By the FTC, Part 1,

$$g'(x) = \sqrt{1 + x^2}$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt} \frac{g'(x)}{\sin(x^{2} + 1) \cos(x^{3} + 2)}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt} \frac{g'(x)}{\sin(x^{2} + 1) \cos(x^{3} + 2)}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt} \frac{g'(x)}{\sin(x^{2} + 1) \cos(x^{3} + 2)}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\frac{1 + x^{2} + 4x^{3}}{1 - x^{4}}$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{g(x)}{\int_{0}^{x} \sin(t^{2} + 1) \cos(t^{3} + 2) dt} \frac{g'(x)}{\sin(x^{2} + 1) \cos(x^{3} + 2)}$$

$$\int_{35}^{x} \frac{1 + r^{2} + 4r^{3}}{1 - r^{4}} dr$$

$$\frac{1 + x^{2} + 4x^{3}}{1 - x^{4}}$$

$$\int_{-1}^{x} \frac{\cos 2\theta + 1}{1 + \sin^{2} \theta} d\theta$$

$$\frac{\cos 2x + 1}{1 + \sin^{2} x}$$

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u =$?

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)$

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (\sec u)$ ()

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (\sec u)$ (?)

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (\sec u) \left(4x^3\right)$

Differentiate
$$y = \int_0^{x^4} \sec t dt$$
.
Let $u = x^4$.
Then $y = \int_0^u \sec t dt$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (\sec u) (4x^3)$
 $= 4x^3 \sec(x^4)$.

Suppose f is continuous on [a, b]. Then

- 2 $\int_a^b f(x) dx = F(b) F(a)$, where F is any antiderivative of f.

We already studied part 2 of the FTC as the Evaluation Theorem.

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Proof.

Let $c \in (A, B)$.

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t) dt$.

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Proof.

Let $c \in (A, B)$. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that h'(u) = f(u).

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.
$$G(x) = \int_{a(x)}^{b(x)} f(t)dt$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.
$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.

$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

$$= \int_{c}^{b(x)} f(t)dt - \int_{c}^{a(x)} f(t)dt$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.

$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

$$= \int_{c}^{b(x)} f(t)dt - \int_{c}^{a(x)} f(t)dt = h(b(x)) - h(a(x)) .$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Proof.

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.

$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

$$= \int_{c}^{b(x)} f(t)dt - \int_{c}^{a(x)} f(t)dt = h(b(x)) - h(a(x))$$
Then

Then

$$G'(x) = (h(b(x)) - h(a(x)))'$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Proof.

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.

$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

$$= \int_{c}^{b(x)} f(t)dt - \int_{c}^{a(x)} f(t)dt = h(b(x)) - h(a(x)) .$$
There exists the state of the content of the state of the

Then using the chain rule we get

$$G'(x) = (h(b(x)) - h(a(x)))' = h'(b(x))b'(x) - h'(a(x))a'(x)$$

Let A, B-numbers, a(x), b(x) -differentiable functions with A < a(x) < B, A < b(x) < B. Let f - continuous on [A, B] and $G(x) = \int_{a(x)}^{b(x)} f(t)dt$. Then G'(x) = f(b(x))b'(x) - f(a(x))a'(x).

Proof.

Let
$$c \in (A, B)$$
. Set $h(u) = \int_{c}^{u} f(t)dt$. FTC part 1 states that $h'(u) = f(u)$.

$$G(x) = \int_{a(x)}^{b(x)} f(t)dt = \int_{c}^{b(x)} f(t)dt + \int_{a(x)}^{c} f(t)dt$$

$$= \int_{c}^{b(x)} f(t)dt - \int_{c}^{a(x)} f(t)dt = h(b(x)) - h(a(x))$$

Then using the chain rule we get

$$G'(x) = (h(b(x)) - h(a(x)))' = h'(b(x))b'(x) - h'(a(x))a'(x) = f(b(x))b'(x) - f(a(x))a'(x)$$
, as desired.

Problems similar to the following often appear on Calculus I exams.

Example

Let
$$G(x) = \int_{\sqrt{x}}^{x^2} \ln t dt$$
, $x > 0$. Find $G'(x)$.

Problems similar to the following often appear on Calculus I exams.

Example

Let
$$G(x) = \int_{\sqrt{x}}^{x^2} \ln t dt$$
, $x > 0$. Find $G'(x)$.

$$G'(x) = (\ln x^2)(x^2)' - (\ln \sqrt{x})(\sqrt{x})'$$

Problems similar to the following often appear on Calculus I exams.

Example

Let
$$G(x) = \int_{\sqrt{x}}^{x^2} \ln t dt$$
, $x > 0$. Find $G'(x)$.

$$G'(x) = (\ln x^2)(x^2)' - (\ln \sqrt{x})(\sqrt{x})' = \left(4x - \frac{1}{4}x^{-\frac{1}{2}}\right) \ln x.$$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let $\varepsilon > 0$. There exists δ such that $|f(t) - f(x)| < \varepsilon$ for all t for which $|x - t| < \delta$.

Let f be a function continuous on [a, b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let $\varepsilon > 0$. There exists δ such that $|f(t) - f(x)| < \varepsilon$ for all t for which $|x - t| < \delta$. Then for all $0 < h < \delta$:

Let f be a function continuous on [a, b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let $\varepsilon > 0$. There exists δ such that $|f(t) - f(x)| < \varepsilon$ for all t for which $|x - t| < \delta$. Then for all $0 < h < \delta$:

Let f be a function continuous on [a, b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let f be a function continuous on [a, b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let f be a function continuous on [a, b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\varepsilon > f(t) - f(x) > -\varepsilon$$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\varepsilon > f(t) - f(x) > -\varepsilon$$
 | integrate $h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) dt > -h\varepsilon$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\varepsilon > f(t) - f(x) > -\varepsilon$$
 | integrate $h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) dt > -h\varepsilon$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\varepsilon > f(t) - f(x) > -\varepsilon$$
 | integrate $h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) dt > -h\varepsilon$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\begin{array}{ll} \varepsilon > & f(t) - f(x) > -\varepsilon \\ h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t > -h\varepsilon \end{array} \quad \begin{array}{l} \text{integrate} \\ \text{divide by } h \\ \varepsilon > \frac{\int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t}{h} > -\varepsilon \end{array}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\begin{array}{ll} \varepsilon > & f(t) - f(x) & > -\varepsilon \\ h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t > -h\varepsilon & \text{divide by } h \\ \varepsilon > & \frac{\int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t}{h} & > -\varepsilon \\ \varepsilon > & \frac{\int_{x}^{x+h} f(t) \mathrm{d}t}{h} - \frac{hf(x)}{h} & > -\varepsilon \end{array}$$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$\begin{array}{ll} \varepsilon > & f(t) - f(x) > -\varepsilon & \text{integrate} \\ h\varepsilon > \int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t > -h\varepsilon & \text{divide by } h \\ \varepsilon > & \frac{\int_{x}^{x+h} (f(t) - f(x)) \mathrm{d}t}{h} > -\varepsilon & \\ \varepsilon > & \frac{\int_{x}^{x+h} f(t) \mathrm{d}t}{h} - \frac{hf(x)}{h} > -\varepsilon & \\ \varepsilon > & \left| \frac{\int_{x}^{x+h} f(t) \mathrm{d}t}{h} - f(x) \right| & \end{array}$$

Let f be a function continuous on [a,b] and let $G(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then G is differentiable and G'(x) = f(x).

Proof.

for any $\varepsilon > 0$ there exists $\delta > 0$ so that for all $0 < h < \delta$ we have $\left| \frac{\int_x^{x+h} f(t) \mathrm{d}t}{h} - f(x) \right| < \varepsilon$.

Let f be a function continuous on [a, b] and let $G(x) = \int_{a}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 w

$$|h| < \delta$$
 we have

$$\left|\frac{\int_{x}^{x+h}f(t)\mathrm{d}t}{h}-f(x)\right|<\varepsilon$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 we have $\left| \frac{\int_{x}^{x+h} f(t) dt}{h} - f(x) \right| < \varepsilon$

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$
$$= \lim_{h \to 0} \frac{\int_a^{x+h} f(t) dt - \int_a^x f(t) dt}{h}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 we have $\left| \frac{\int_{x}^{x+h} f(t) dt}{h} - f(x) \right| < \varepsilon$

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$
$$= \lim_{h \to 0} \frac{\int_a^{x+h} f(t) dt - \int_a^x f(t) dt}{h}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t) dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 we have $\left| \frac{\int_x^{x+h} f(t) dt}{h} - f(x) \right| < \delta$

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$
$$= \lim_{h \to 0} \frac{\int_a^{x+h} f(t) dt - \int_a^x f(t) dt}{h}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 we have $\left| \frac{\int_{x}^{x+h} f(t) dt}{h} - f(x) \right| < \varepsilon$

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$

$$= \lim_{h \to 0} \frac{\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t)dt}{h}$$

Let f be a function continuous on [a, b] and let $G(x) = \int_{-x}^{x} f(t)dt$ for all $x \in [a, b]$. Then G is differentiable and G'(x) = f(x).

Proof.

$$|h| < \delta$$
 we have $\left| \frac{\int_{x}^{x+h} f(t) dt}{h} - f(x) \right| < \varepsilon$

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h}$$

$$= \lim_{h \to 0} \frac{\int_a^{x+h} f(t) dt - \int_a^x f(t) dt}{h}$$

$$= \lim_{h \to 0} \frac{\int_x^{x+h} f(t) dt}{h} = f(x)$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$
 where $F(x)$ is an antiderivative of $f(x)$.

• This means F' = f, so

$$\int_a^b F'(x) \mathrm{d} x = F(b) - F(a),$$

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F(x) is an antiderivative of f(x).

• This means F' = f, so

$$\int_a^b F'(x) dx = F(b) - F(a),$$

• F'(x) is the rate of change of y = F(x) with respect to x.

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F(x) is an antiderivative of f(x).

• This means F' = f, so

$$\int_a^b F'(x) \mathrm{d} x = F(b) - F(a),$$

- F'(x) is the rate of change of y = F(x) with respect to x.
- F(b) F(a) is the net change in y as x changes from a to b.

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F(x) is an antiderivative of f(x).

• This means F' = f, so

$$\int_a^b F'(x) dx = F(b) - F(a),$$

- F'(x) is the rate of change of y = F(x) with respect to x.
- F(b) F(a) is the net change in y as x changes from a to b.

Theorem (The Net Change Theorem)

The integral of the rate of change is the net change:

$$\int_a^b F'(x) dx = F(b) - F(a).$$

- If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t).
- In this case, the Net Change Theorem says

$$\int_{t_1}^{t_2} v(t) \mathrm{d}t = s(t_2) - s(t_1).$$

- If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t).
- In this case, the Net Change Theorem says

$$\int_{t_1}^{t_2} v(t) \mathrm{d}t = s(t_2) - s(t_1).$$

• This is the displacement, or net change of position.

- If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t).
- In this case, the Net Change Theorem says

$$\int_{t_1}^{t_2} v(t) \mathrm{d}t = s(t_2) - s(t_1).$$

- This is the displacement, or net change of position.
- If we want to calculate the distance the object travels, we have to consider separately the intervals where $v(t) \ge 0$ (object moves to the right) and $v(t) \le 0$ (object moves to the left).

- If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t).
- In this case, the Net Change Theorem says

$$\int_{t_1}^{t_2} v(t) \mathrm{d}t = s(t_2) - s(t_1).$$

- This is the displacement, or net change of position.
- If we want to calculate the distance the object travels, we have to consider separately the intervals where $v(t) \geq 0$ (object moves to the right) and $v(t) \leq 0$ (object moves to the left).

 displacement = $\int_{\cdot}^{t_2} v(t) dt$

to the left). displacement
$$=\int_{t_1}^{t_2}v(t)\mathrm{d}t$$
 $=A_1-A_2+A_3$ distance $=\int_{t_1}^{t_2}|v(t)|\mathrm{d}t$ $=A_1+A_2+A_3$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

- Find the displacement of the particle during the time period 1 < t < 4.
- Find the distance traveled during this time period.

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4)-s(1)=\int_1^4 v(t)\mathrm{d}t$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_1^4 v(t) dt = \int_1^4 (t^2 - t - 6) dt$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$

= $\begin{bmatrix} & - & - \end{bmatrix}_{1}^{4}$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$
$$= \left[\frac{t^{3}}{3} - - \right]_{1}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$
$$= \left[\frac{t^{3}}{3} - - \right]_{1}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$
$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - \right]_{1}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$
$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - \right]_{1}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$
$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t\right]_{1}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

The displacement is

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$

$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t\right]_{1}^{4}$$

$$= \left(\frac{4^{3}}{3} - \frac{4^{2}}{2} - 6 \cdot 4\right) - \left(\frac{1^{3}}{3} - \frac{1^{2}}{2} - 6 \cdot 1\right)$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

The displacement is

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$

$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t\right]_{1}^{4}$$

$$= \left(\frac{4^{3}}{3} - \frac{4^{2}}{2} - 6 \cdot 4\right) - \left(\frac{1^{3}}{3} - \frac{1^{2}}{2} - 6 \cdot 1\right)$$

$$= -\frac{9}{2}.$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

• Find the displacement of the particle during the time period $1 \le t \le 4$.

The displacement is

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6)dt$$

$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t\right]_{1}^{4}$$

$$= \left(\frac{4^{3}}{3} - \frac{4^{2}}{2} - 6 \cdot 4\right) - \left(\frac{1^{3}}{3} - \frac{1^{2}}{2} - 6 \cdot 1\right)$$

$$= -\frac{9}{3}.$$

Therefore the particle moves 4.5m to the left.

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

$$v(t) = t^2 - t - 6 =$$

A particle moves along a line so that its velocity at time t is

- $v(t) = t^2 t 6$ (measured in meters per second).
- Find the distance traveled during this time period.

$$v(t) = t^2 - t - 6 = (t - 3)(t + 2)$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval and $v(t)\geq 0$ on the interval

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t) = t^2 - t - 6 = (t - 3)(t + 2)$ and so $v(t) \le 0$ on the interval [1,3] and $v(t) \ge 0$ on the interval

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval [1,3] and $v(t)\geq 0$ on the interval

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t) = t^2 - t - 6 = (t - 3)(t + 2)$ and so $v(t) \le 0$ on the interval [1, 3] and $v(t) \ge 0$ on the interval [3, 4].

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval [1,3] and $v(t)\geq 0$ on the interval [3,4].

$$\int_{1}^{4} |v(t)| \mathrm{d}t$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t) = t^2 - t - 6 = (t - 3)(t + 2)$ and so $v(t) \le 0$ on the interval [1, 3] and $v(t) \ge 0$ on the interval [3, 4].

$$\int_{1}^{4} |v(t)| dt = \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval [1,3] and $v(t)\geq 0$ on the interval [3,4].

$$\int_{1}^{4} |v(t)| dt = \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt$$
$$= \int_{1}^{3} (-t^{2} + t + 6) dt + \int_{3}^{4} (t^{2} - t - 6) dt$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval [1,3] and $v(t)\geq 0$ on the interval [3,4].

$$\int_{1}^{4} |v(t)| dt = \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt$$

$$= \int_{1}^{3} (-t^{2} + t + 6) dt + \int_{3}^{4} (t^{2} - t - 6) dt$$

$$= \left[-\frac{t^{3}}{3} + \frac{t^{2}}{2} + 6t \right]_{1}^{3} + \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{3}^{4}$$

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

Find the distance traveled during this time period.

 $v(t)=t^2-t-6=(t-3)(t+2)$ and so $v(t)\leq 0$ on the interval [1,3] and $v(t)\geq 0$ on the interval [3,4].

$$\int_{1}^{4} |v(t)| dt = \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt$$

$$= \int_{1}^{3} (-t^{2} + t + 6) dt + \int_{3}^{4} (t^{2} - t - 6) dt$$

$$= \left[-\frac{t^{3}}{3} + \frac{t^{2}}{2} + 6t \right]_{1}^{3} + \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{3}^{4}$$

$$= \frac{61}{6} \approx 10.17 \text{m}$$

 Suppose a particle is moving in a straight line, with position function s(t).

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) =

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) =

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of acceleration.

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of acceleration.
- If we know the acceleration and the initial values s(0) and v(0) for position and velocity, then we can find s(t) by antidifferentiating twice.

Example

Example

$$v'(t) = a(t)$$

Example

$$v'(t) = a(t) = -32$$

Example

$$v'(t) = a(t) = -32$$

 $v(t) =$

Example

$$v'(t) = a(t) = -32$$

 $v(t) = -32t$

Example

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$

$$v(0) = 48$$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$
 $v(0) = 48$ $v(t) = -32t + C$ $-32 \cdot 0 + C = 48$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

$$s'(t) = -32t + 48$$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

$$s'(t) = -32t + 48$$
$$s(t) =$$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

$$s'(t) = -32t + 48$$

 $s(t) = -16t^2 + 48t$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

$$s'(t) = -32t + 48$$

 $s(t) = -16t^2 + 48t + D$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

To find C, use the fact that v(0) = 48.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$egin{aligned}
u(0) &= 48 \\
-32 \cdot 0 + C &= 48 \\
C &= 48
\end{aligned}$$

$$s'(t) = -32t + 48$$

$$s(t) = -16t^2 + 48t + D$$

$$s(0) = 432$$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

To find C, use the fact that v(0) = 48.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$v(0) = 48$$
 $-32 \cdot 0 + C = 48$
 $C = 48$

$$s'(t) = -32t + 48$$

 $s(t) = -16t^2 + 48t + D$

$$s(0) = 432$$
$$-16 \cdot 0^2 + 48 \cdot 0 + D = 432$$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

$$v'(t) = a(t) = -32$$

 $v(t) = -32t + C$
 $= -32t + 48$

$$egin{aligned}
u(0) &= 48 \\
-32 \cdot 0 + C &= 48 \\
C &= 48
\end{aligned}$$

$$s'(t) = -32t + 48$$

$$s(t) = -16t^{2} + 48t + D$$

$$= -16t^{2} + 48t + 432$$

To find *D*, use the fact that
$$s(0) = 432$$
.
$$s(0) = 432$$
$$-16 \cdot 0^2 + 48 \cdot 0 + D = 432$$
$$D = 432$$