Chapitre 3

Fonctions intégrables

Dans tout ce chapitre, (X, \mathcal{M}, μ) désigne un espace mesuré. Dans la suite on étudier l'intégrale de Lebesgue sur X par rapport à la mesure μ .

3.1 Intégrale d'une fonction étagée positive.

On note \mathcal{E}_+ l'ensemble des fonctions étagées positives mesurables de (X, \mathcal{M}) dans \mathbb{R}_+ muni de la tribu borélienne.

Définition 3.1.1 Soit $f \in \mathcal{E}_+$, de décomposition canonique $f = \sum_{i=1}^n a_i \cdot \chi_{A_i}$. On pose

$$\int f d\mu = \sum_{i=1}^{n} a_i \cdot \mu(A_i) \tag{3.1}$$

Cette quantité s'appelle intégrale sur X de la fonction f par rapport à la mesure μ .

L'intégrale $\int f d\mu$ est un élément de $[0, +\infty]$. Bien que les a_i soient tous réels elle peut très bien valoir $+\infty$, si pour un $a_i > 0$, le correspondant $\mu(A_i)$ vaut $+\infty$. Rappelons la convention $0 \times (+\infty) := 0$ qui est bien utile ici lorsque $\mu(f^{-1}(\{0\})) = +\infty$.

Exemples 3.1.2 1) Si f est une fonction constante, alors sa décomposition canonique s'écrit $f = a\chi_X$, avec $a \ge 0$. La formule (3.1) nous donne alors

$$\int ad\mu = a.\mu(X).$$

2) Si $f=a\chi_A$ avec a>0, $A\in\mathcal{M}$ et $A\neq X,$ sa décomposition canonique est $f=a\chi_A+0\chi_{A^c}$ d'où

$$\int a.\chi_A d\mu = a.\mu(A) + 0.\mu(A^c) = a.\mu(A).$$

Remarque 3.1.3 Le cas particulier a=1, dans 2) de l'exemple précédent est d'une grande utilité car il permet d'exprimer la mesure d'un ensemble sous la forme d'une intégrale

$$\mu(A) = \int \chi_A d\mu, \text{ pour tout } A \in \mathcal{M}$$
 (3.2)

Le lemme suivant sera utile pour prouver quelques propriétés de l'intégrale sur \mathcal{E}_+ .

Lemme 3.1.4 /5/

L'intégrale d'une fonction étagée positive f ne dépend pas de la décomposition choisie pour f. C'est-à-dire, si $a_1, ..., a_n, b_1, ..., b_m \in [0, +\infty[$ et $A_1, ..., A_n, B_1, ..., B_m \in \mathcal{M}$ avec

$$f = \sum_{i=1}^{n} a_i \cdot \chi_{A_i} = \sum_{j=1}^{m} b_j \cdot \chi_{B_j}.$$

Alors on a

$$\int f d\mu = \sum_{i=1}^{n} a_i . \mu(A_i) = \sum_{j=1}^{m} b_j . \mu(B_j)$$

Proposition 3.1.5 L'intégrale sur \mathcal{E}_+ est homogène, additive et croissante, c'est-à-dire pour tout $f, g \in \mathcal{E}_+$ et $\alpha > 0$,

$$i) \int \alpha f d\mu = \alpha \int f d\mu$$

$$ii)\int (f+g)d\mu = \int fd\mu + \int gd\mu$$

iii) Si
$$f \leq g$$
 alors $\int f d\mu \leq \int g d\mu$.

Démonstration. i) Si $f = \sum_{i=1}^{n} a_i \cdot \chi_{A_i}$ et $\alpha > 0$, alors $\alpha f = \sum_{i=1}^{n} \alpha a_i \cdot \chi_{A_i}$ et l'homogénéité est évidente. Dans ce cas particulier, il convient de remarquer que si $\int f d\mu = +\infty$, on a encore $0 \times \int f d\mu = 0 = \int (0 \times f) d\mu$ grâce à la convention $0 \times (+\infty) = 0$.

ii) Soit $f = \sum_{i=1}^{n} a_i \cdot \chi_{A_i}$ et $g = \sum_{i=1}^{m} b_j \cdot \chi_{B_j}$, alors $f + g = \sum_{i=1}^{n} a_i \cdot \chi_{A_i} + \sum_{i=1}^{m} b_j \cdot \chi_{B_j}$ et donc

$$\int (f+g)d\mu = \sum_{i=1}^{n} a_i \cdot \mu(A_i) + \sum_{j=1}^{m} b_j \cdot \mu(B_j) = \int f d\mu + \int g d\mu$$

iii) Soit $f,g\in\mathcal{E}_+$ avec $f\leq g$ alors $g-f\in\mathcal{E}_+$ et g=f+(g-f). Par ii) on a

$$\int g d\mu = \int f d\mu + \int (g - f) d\mu \ge \int f d\mu,$$

puisque $\int (g-f)d\mu \in [0,+\infty]$.

3.2 Intégrale d'une fonction mesurable positive, convergence monotone et lemme de Fatou.

Nous notons \mathcal{L}^0_+ l'ensemble des fonctions $f: X \longrightarrow [0, +\infty]$ mesurables positives.

Définition 3.2.1 Pour $f \in \mathcal{L}^0_+$ on appelle intégrale sur X de f par rapport 'à μ l'élément de $[0, +\infty]$ noté $\int f d\mu$ et défini par

$$\int f d\mu = \sup \left\{ \int s d\mu : s \in \mathcal{E}_+, \ s \le f \right\}. \tag{3.3}$$

Pour $A \in \mathcal{M}$ on définit aussi

$$\int_{A} f d\mu := \int f \chi_{A} d\mu \tag{3.4}$$

Remarque 3.2.2 Si $f \in \mathcal{E}_+$ les deux définitions de l'intégrale de f par (3.1) et par (3.3) coïncident. En effet, notons $\int_{-\epsilon}^{\epsilon_{tag}} f d\mu$ l'intégrale de f au sens de (3.1) et $\int_{-\epsilon_{tag}}^{\epsilon_{tag}} f d\mu$ celle au sens de (3.3). Pour toute $s \in \mathcal{E}_+$ telle que $s \leq f$, on a l'inégalité $\int_{-\epsilon_{tag}}^{\epsilon_{tag}} s d\mu \leq \int_{-\epsilon_{tag}}^{\epsilon_{tag}} f d\mu$, en vertu du a Proposition 3.1.5. Par conséquent dans (3.3) la borne supérieure est atteinte pour s = f, ce qui implique $\int_{-\epsilon_{tag}}^{\epsilon_{tag}} f d\mu = \int_{-\epsilon_{tag}}^{\epsilon_{tag}} f d\mu$.

Cette intégrale possède la propriété de la croissance.

Proposition 3.2.3 Pour toutes $f, g \in \mathcal{L}^0_+$, si $f \leq g$ alors $\int f d\mu \leq \int g d\mu$.

Démonstration. Par l'inclusion

$$\{s \in \mathcal{E}_+, \ s \le f\} \subset \{s \in \mathcal{E}_+, \ s \le g\}$$

et par (3.3) on trouve $\int f d\mu \leq \int g d\mu$.

Nous donnons maintenant le premier des grands théorèmes d'interversion limite-intégrale (lim $\int = \int \lim$).

Théorème 3.2.4 (de la convergence monotone ou de Beppo-Levi)

Soit $(f_n)_{n\geq 1}$ une suite croissante dans \mathcal{L}^0_+ et soit $f=\lim_{n\longrightarrow +\infty}f_n=\sup_{n\geq 1}f_n$. Alors

$$\int f d\mu = \lim_{n \to +\infty} \int f_n d\mu = \sup_{n \ge 1} \int f_n d\mu$$

Démonstration. L'appartenance de f à \mathcal{L}^0_+ a déjà été vue (Proposition 2.3.10). Par la proposition précédente (croissance de l'intégrale), la suite $\left(\int f_n d\mu\right)_{n\geq 1}$ est croissante dans $[0,+\infty]$, donc convergente vers $L\in[0,+\infty]$

$$L := \lim_{n \to +\infty} \int f_n d\mu = \sup_{n > 1} \int f_n d\mu$$

Pour tout $n \ge 1$ on a $f_n \le f$ et par la croissance de l'intégrale on obtient $\int f_n d\mu \le \int f d\mu$, puis en prenant le supremum sur $n \ge 1$,

$$L \leq \int f d\mu.$$

Par ailleurs, soit $s \in \mathcal{E}_+$ tel que $s \leq f$ et soit $\alpha \in]0,1[$. On définit

$$A_n = \{ x \in X : f_n(x) \ge \alpha . s(x) \}$$

$$(3.5)$$

Comme $A_n = (f_n - \alpha.s)^{-1}([0, +\infty])$ et la fonction $x \longrightarrow f_n(x) - \alpha.s(x)$ est mesurable alors $A_n \in \mathcal{M}$ pour tout $n \ge 1$. D'autre part, la suite $(A_n)_{n\ge 1}$ est croissante car si $x \in A_n$, alors $\alpha.s(x) \le f_n(x) \le f_{n+1}(x)$ par croissance de $(f_n)_{n\ge 1}$, donc $x \in A_{n+1}$ et aussi on a $X = \bigcup_{n=1}^{+\infty} A_n$. Grâce a la définition de A_n on peut écrire une inégalité entre des fonctions mesurables positives,

$$\alpha.s.\chi_{A_n} \le f_n\chi_{A_n} \le f_n.$$

On en déduit par croissance de l'intégrale et (3.4),

$$\int_{A_n} (\alpha.s) d\mu \le \int_{A_n} f_n d\mu \le \int f_n d\mu \tag{3.6}$$

De plus, si
$$s=\sum_{i=1}^m b_i.\chi_{B_i}$$
, alors $s.\chi_{A_n}=\sum_{i=1}^m b_i.\chi_{(B_i\cap A_n)}$ donc on a

$$\int_{A_n} s d\mu = \sum_{i=1}^m b_i \cdot \mu(B_i \cap A_n). \tag{3.7}$$

Pour tout i = 1, ..., m, la suite $(B_i \cap A_n)_{n \ge 1}$ est croissante et

$$\bigcup_{n=1}^{+\infty} B_i \cap A_n = B_i \cap \left(\bigcup_{n=1}^{+\infty} A_n\right) = B_i \cap X = B_i$$

Dans (3.7), on peut passer à la limite quand n tend vers $+\infty$, en appliquant la continuité croissante de la mesure μ (voir Théorème 1.4.1),

$$\lim_{n \longrightarrow +\infty} \int_{A_n} s d\mu = \sum_{i=1}^m b_i \cdot \left(\lim_{n \longrightarrow +\infty} \mu(B_i \cap A_n) \right) = \sum_{i=1}^m b_i \mu(B_i) = \int s d\mu.$$

Faisant tendre n vers l'infini dans (3.6) on obtient ainsi, pour tout $\alpha \in]0,1[$ et tout $s \in \mathcal{E}_+$ avec $s \leq f$ on a

$$\alpha \int s d\mu \le L. \tag{3.8}$$

Dans (3.8), on prend d'abord le sup sur $\alpha \in]0,1[$, puis le sup sur $\{s \in \mathcal{E}_+,\ s \leq f\}$ et on trouve

$$\int f d\mu \le L.$$

Corollaire 3.2.5 Si $(f_n)_{n\geq 1}$ est décroissante dans \mathcal{L}^0_+ et si $\int f_0 d\mu < \infty$ alors on a

$$\int f d\mu = \lim_{n \to +\infty} \int f_n d\mu,$$

$$où f = \lim_{n \to +\infty} f_n.$$

Démonstration. En appliquant le théorème de Beppo-Levi à la suite $(g_n)_{n\geq 1}$ telle que $g_n=f_0-f_n$.

Corollaire 3.2.6 (homogénéité et additivité de l'intégrale dans \mathcal{L}_{+}^{0})

Pour toutes fonctions $f, g \in \mathcal{L}^0_+$ et toute constante $\alpha \in [0, +\infty[$,

$$i) \int \alpha f d\mu = \alpha \int f d\mu$$

$$ii) \int (f+g)d\mu = \int fd\mu + \int gd\mu$$

Démonstration. i) Est une conséquence immédiate de la Définition 3.2.1 et de la Proposition 3.1.5 i)

ii) Il existent deux suites croissantes $(f_n)_{n\geq 1}$ et $(g_n)_{n\geq 1}$ de \mathcal{E}_+ telles que $f_n \longrightarrow f$ et $g_n \longrightarrow g$ simplement. La suite $(f_n + g_n)_{n\geq 1}$ est croissante dans \mathcal{E}_+ et converge simplement vers f + g. Or, pour tout $n \geq 1$,

$$\int (f_n + g_n)d\mu = \int f_n d\mu + \int g_n d\mu.$$

On obtient donc le résultat en passant à la limite grâce au théorème de Beppo-Levi.

Corollaire 3.2.7 (Interversion série-intégrale dans \mathcal{L}^0_+)

Soit $(f_k)_{k\geq 1}$ une suite de fonctions mesurables positives. La fonction $\sum_{k=1}^{+\infty} f_k$ est aussi dans \mathcal{L}^0_+ et

$$\int \left(\sum_{k=1}^{+\infty} f_k\right) d\mu = \sum_{k=1}^{+\infty} \left(\int f_k d\mu\right) \qquad (L'égalité \ dans \ [0, +\infty])$$
 (3.9)

Démonstration. Posons $S_n = \sum_{k=1}^n f_k$. Les applications $x \longmapsto S_n(x)$ sont dans \mathcal{L}^0_+ comme somme d'un nombre fini des applications dans \mathcal{L}^0_+ . La suite $(S_n)_{n\geq 1}$ converge et croissante (dans $[0,+\infty]$) vers S. Pour tout $n\geq 1$ on a

$$\int S_n d\mu = \sum_{k=0}^n \int f_k d\mu.$$

En prenant la limite quand $n \longrightarrow +\infty$ et en utilisant le théorème de Beppo-Levi, on obtient le résultat. \blacksquare

Corollaire 3.2.8 (Lemme de Fatou)

Si $(f_n)_{n\geq 1}$ est une suite dans \mathcal{L}^0_+ , alors

$$\lim_{n \to +\infty} \inf \int f_n d\mu \ge \int \lim_{n \to +\infty} \inf f_n d\mu.$$
(3.10)

Démonstration. Posons $g := \liminf_{n \to +\infty} f_n$. Par définition de la limite inférieure,

$$g = \sup_{n>1} \inf_{k \ge n} f_k.$$

Les fonctions $g_n := \inf_{k \ge n} f_k$ appartiennent à \mathcal{L}^0_+ (voir Proposition 2.3.10) et la suite $(g_n)_{n \ge 1}$ converge en croissant vers g. Par le théorème de Beppo-Levi, on a donc

$$\int g_n d\mu \longrightarrow \int g d\mu = \int \liminf_{n \longrightarrow +\infty} f_n d\mu \tag{3.11}$$

D'autre part, clairement pour tout $n \geq 1$, on a $g_n \leq f_n$ et donc

$$\int g_n d\mu \le \int f_n d\mu, \text{ pour tout } n \ge 1.$$
 (3.12)

Nous ne savons pas si le second membre de (3.12) a une limite quand n tend vers l'infini, mais par contre sa limite inférieure existe toujours. On peut ainsi passer à la limite
inférieure dans (3.12), ce qui donne par conservation de l'inégalité large,

$$\liminf_{n \to +\infty} \int g_n d\mu \le \liminf_{n \to +\infty} \int f_n d\mu \tag{3.13}$$

Par (3.11), on sait que la limite inférieure du premier membre de (3.13) est en fait une limite et vaut

$$\lim_{n \to +\infty} \inf \int g_n d\mu = \lim_{n \to +\infty} \int g_n d\mu = \int \lim_{n \to +\infty} \inf f_n d\mu,$$

d'ou la conclusion. ■

Lemme 3.2.9 [12]

Soit
$$f \in \mathcal{L}_{+}^{0}$$
 et $A \in \mathcal{M}$ avec $\mu(A) = 0$. Alors $\int_{A} f d\mu = 0$

Proposition 3.2.10 (Quelques propriétés de l'intégrale)

Soit $f: X \longrightarrow [0, +\infty]$ une fonction mesurable positive.

1) (Inégalité de Tchebychev). Pour tout nombre réel a > 0 on a

$$\mu\left(\left\{x \in X : f(x) \ge a\right\}\right) \le \frac{1}{a} \int f d\mu \tag{3.14}$$

- 2) $\int f d\mu = 0$ si et seulement si f = 0 presque partout.
- 3) Si $\int f d\mu < \infty$ alors $f < \infty$ presque partout.
- 4) Si $f, g \in \mathcal{L}^0_+$ telles que f = g presque partout. Alors $\int f d\mu = \int g d\mu$.

Démonstration. 1) Considérons l'ensemble

$$A = \{x \in X : f(x) \ge a\} = f^{-1}([a, +\infty]) \in \mathcal{M}.$$

On remarque que la fonction étagée $a.\chi_A$ vérifie l'inégalité $\varphi=a.\chi_A\leq f$, en effet, si $x\in A$ on a $f(x)\geq a=\varphi(x)$ et si $x\notin A$ on a $\varphi(x)=0\leq f(x)$. Il résulte que

$$a.\mu(A) = \int \varphi d\mu \le \int f d\mu.$$

2) Si f = 0 presque partout, alors $\mu(A) = 0$ avec $A = \{x \in X : f(x) \neq 0\}$ (donc f(x) = 0 pour tout $x \in A^c$). Par l'additivité de l'intégrale et le Lemme 3.2.9, on peut écrire

$$\begin{split} \int f d\mu &= \int f \chi_X d\mu = \int f (\chi_A + \chi_{A^c}) d\mu = \int f \chi_A d\mu + \int f \chi_{A^c} d\mu \\ &= \int_A f d\mu + \int_{A^c} f d\mu = 0 + \int_{A^c} 0 d\mu = 0. \end{split}$$

Inversement, supposons que $\int f d\mu = 0$. Pour tout $n \ge 1$ on pose

$$A_n = \left\{ x \in X : f(x) \ge \frac{1}{n} \right\}.$$

Alors $A_n \in \mathcal{M}$ pour tout $n \geq 1$ car $A_n = f^{-1}(\left[\frac{1}{n}, +\infty\right])$, la suite $(A_n)_{n\geq 1}$ est croissante et on a

$$\bigcup_{n=1}^{+\infty} A_n = \{ x \in X : f(x) > 0 \} = \{ x \in X : f(x) \neq 0 \}.$$

Par ailleurs, par 1), pour tout $n \ge 1$ on a

$$\mu(A_n) \le n \int f d\mu = 0.$$

Ainsi, par la continuité croissante (voir Théorème 1.4.1), on en déduit que

$$\mu\left(\left\{x \in X : f(x) \neq 0\right\}\right) = \lim_{n \to +\infty} \mu(A_n) = 0,$$

d'où le résultat.

3) Pour tout $n \ge 1$,

$$\left\{x\in X:f(x)=+\infty\right\}\subset \left\{x\in X:f(x)\geq n\right\}.$$

Si l'intégrale de f est finie, on applique l'inégalité de Tchebychev avec $a=n\geq 1$ pour obtenir

$$\mu\left\{x\in X:f(x)=+\infty\right\}\leq \mu\left\{x\in X:f(x)\geq n\right\}\leq \frac{1}{n}\int fd\mu\longrightarrow 0.$$

Donc $\mu \{x \in X : f(x) = +\infty\} = 0.$

4) Soit $A = \{x \in X : f(x) \neq g(x)\}$. On a $\mu(A) = 0$. II en résulte que

$$f\chi_A = 0$$
 presque partout et $g\chi_A = 0$ presque partout.

Comme $f\chi_{A^c}=g\chi_{A^c},$ on obtient en appliquant le Lemme 3.2.9,

$$\int f d\mu = \int f \chi_X d\mu = \int f(\chi_A + \chi_{A^c}) d\mu = \int f \chi_A d\mu + \int f \chi_{A^c} d\mu$$
$$= \int f \chi_{A^c} d\mu = \int g \chi_{A^c} d\mu = \int g \chi_A d\mu + \int g \chi_{A^c} d\mu$$
$$= \int g(\chi_A + \chi_{A^c}) d\mu = \int g d\mu.$$

3.3 Application : Mesures à densité par rapport à une autre mesure

A partir d'une mesure et d'une fonction mesurable positive, on peut définir une autre mesure de la manière suivante.

Théorème 3.3.1 Soient (X, \mathcal{M}, μ) un espace mesuré et $f: X \longrightarrow [0, +\infty]$ une fonction numérique mesurable positive. Définissons la fonction d'ensembles $\nu: \mathcal{M} \longrightarrow [0, +\infty]$ par

$$\nu(A) := \int_{A} f d\mu, \ A \in \mathcal{M}$$
 (3.15)

Alors, ν est une mesure sur (X, \mathcal{M}) . On dit qu'elle est de densité f par rapport à μ .

Démonstration. Calculons $\nu(\phi)$ en appliquant la définition de ν ,

$$\nu(\phi) = \int_{\phi} f d\mu = \int f \chi_{\phi} d\mu = \int 0 d\mu = 0.$$

Soit $(A_n)_{n\geq 1}$ une suite dans \mathcal{M} , à termes deux à deux disjoints et A sa réunion. D'après Proposition 1.1.6 on a

$$\chi_A = \sum_{n=1}^{+\infty} \chi_{A_n}.$$

Par le Corollaire 3.2.7 on obtient

$$\nu\left(\bigcup_{n=1}^{+\infty} A_n\right) = \int f\chi_A d\mu = \int \left(\sum_{n=1}^{+\infty} f\chi_{A_n}\right) d\mu$$
$$= \sum_{n=1}^{+\infty} \int f\chi_{A_n} d\mu = \sum_{n=1}^{+\infty} \nu(A_n).$$

Exercice corrigé 3.3.2 (Intégration par rapport à la mesure de comptage et de Dirac)

- 1) Considérons $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage μ et la fonction mesurable $f: \mathbb{N} \longrightarrow [0, +\infty]$. Calculer l'intégrale $\int f d\mu$.
- 2) Considérons l'espace mesurable $(X, \mathcal{P}(X))$ muni de la mesure de Dirac δ_a en point $a \in X$ et la fonction mesurable $f: X \longrightarrow [0, +\infty]$. Calculer l'intégrale $\int f d\delta_a$.

Démonstration. 1) Puisque $\mathbb{N} = \bigcup_{n=0}^{+\infty} \{n\}$, si ν est la mesure de densité f par rapport à μ , on a

$$\int f d\mu = \nu \left(\bigcup_{n=0}^{+\infty} \{n\} \right) = \sum_{n=0}^{+\infty} \int_{\{n\}} f d\mu = \sum_{n=0}^{+\infty} f(n).$$

2) Puisque $\delta_a(\{a\}) = 1$ et $\delta_a(\{a\}^c) = 0$, on a

$$\int f d\delta_a = \int_{\{a\} \cup \{a\}^c} f d\delta_a = \int_{\{a\}} f d\delta_a + \int_{\{a\}^c} f d\delta_a = f(a) \int_{\{a\}} d\delta_a + 0 = f(a).$$

Car $\delta_a(\{a\}^c) = 0$ implique que $\int_{\{a\}^c} f d\delta_a = 0$.

Proposition 3.3.3 (L'intégration par rapport à une mesure à densité)

Soit ν la mesure de densité f par rapport à μ sur l'espace mesurable (X, \mathcal{M}) . Alors pour tout $g \in \mathcal{L}^0_+$ on a

$$\int gd\nu = \int fgd\mu \tag{3.16}$$

Démonstration. On commence par vérifier (3.16) pour les fonctions indicatrices $g = \chi_A$ avec $A \in \mathcal{M}$. En effet, par (3.2) et (3.4) on a

$$\int \chi_A d\nu = \nu(A) = \int_A f d\mu = \int f \chi_A d\mu.$$

Soit maintenant $g \in \mathcal{E}_+$ une fonction étagée positive mesurable de décomposition

$$g = \sum_{i=1}^{n} a_i.\chi_{A_i}$$

En utilisant successivement la définition de $\nu(A_i)$ on en déduit

$$\int g d\nu = \sum_{i=1}^{n} a_i \nu(A_i) = \sum_{i=1}^{n} a_i \int \chi_{A_i} f d\mu = \int \sum_{i=1}^{n} a_i \chi_{A_i} f d\mu = \int f g d\mu$$

Soit $g \in \mathcal{L}^0_+$ quelconque. Par la Proposition 2.3.11, il existe une suite $(g_n)_n$ croissante dans \mathcal{E}_+ , convergeant vers g. Le produit fg_n est mesurable positif. La suite $(fg_n)_n$ est croissante car f est positive et $(g_n)_n$ est croissante et aussi $(fg_n)_n$ convergeant vers fg.

L'application du théorème de Beppo-Levi relativement à ν pour $(g_n)_n$ et à μ pour la suite $(fg_n)_n$ nous donne

$$\lim_{n \to +\infty} \int g_n d\nu = \int g d\nu \quad \text{et} \quad \lim_{n \to +\infty} \int f g_n d\mu = \int f g d\mu. \tag{3.17}$$

Comme $g_n \in \mathcal{E}_+$, elle vérifie (3.16)

$$\int g_n d\nu = \int f g_n d\mu, \text{ pour tout } n \in \mathbb{N}.$$
 (3.18)

Les convergences (3.17) permettent de passer à la limite dans (3.18) pour conclure que g vérifie (3.16). \blacksquare

Proposition 3.3.4 [17]

Soient (X, \mathcal{M}, μ) un espace mesuré et $f, g \in \mathcal{L}^0_+$ deux fonctions mesurables positives. Si ν est la mesure de densité f par rapport à μ , alors toute autre densité g de ν est égale à f μ -presque partout dans le cas ou ν est finie. Autrement dit, si

$$\int_A f d\mu = \int_A g d\mu$$
, pour tout $A \in \mathcal{M}$ et $\int f d\mu < +\infty$.

Alors, $f = g \mu$ -presque partout.

Exercice corrigé 3.3.5 Soit la suite des fonctions $f_n: (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \lambda) \longrightarrow \mathbb{R}_+$ définie par

$$f_n(x) = \chi_{[0,n[}(x)\frac{1}{E(x)!},$$

où E(x) désigne la partie entière de $x \in \mathbb{R}$.

- 1) Donner la limite simple de la suite $(f_n)_n$.
- 2) Calculer $\int \frac{1}{E(x)!} d\lambda(x)$.

Démonstration. 1) Puisque la suite $([0, n])_{n\geq 1}$ est croissante et $\bigcup_{n=1}^{+\infty} [0, n] = \mathbb{R}_+$, par (1.2) on a

$$\lim_{n \to +\infty} \chi_{[0,n[}(x) = \chi_{\bigcup_{n=1}^{+\infty} [0,n[}(x) = \chi_{\mathbb{R}_{+}}(x) = 1, \text{ pour tout } x \in \mathbb{R}_{+}.$$

Et donc

$$\lim_{n \to +\infty} f_n(x) = \frac{1}{E(x)!}$$

pour tout $x \in \mathbb{R}_+$.

2) La suite $(f_n(x))_{n\geq 1}$ est croissante pour tout $x\in\mathbb{R}_+$. Les fonctions positives $x\mapsto f_n(x)$ sont décroissant alors mesurables. D'après le théorème de Beppo-Levi on a

$$\int \frac{1}{E(x)!} d\lambda(x) = \int \lim_{n \to +\infty} f_n(x) d\lambda(x) = \lim_{n \to +\infty} \int f_n(x) d\lambda(x)$$

D'autre part,

$$\int f_n(x)d\lambda(x) = \int_{[0,n[} \frac{1}{E(x)!} d\lambda(x) = \int_{\substack{n=1\\k=0}}^{n-1} \frac{1}{E(x)!} d\lambda(x) = \sum_{k=0}^{n-1} \int_{[k,k+1[} \frac{1}{E(x)!} d\lambda(x) = \sum_{k=0}^{n-1} \int_{[k,k+1[} \frac{1}{E(x)!} d\lambda(x) = \sum_{k=0}^{n-1} \frac{1}{k!} d\lambda(x) = \sum_{k=0}^{n-1} \frac{1}{k!} \lambda([k,k+1[)] = \sum_{k=0}^{n-1} \frac{1}{k!}.$$

D'où

$$\int \frac{1}{E(x)!} d\lambda(x) = \lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} = e.$$

3.4 Intégrale d'une fonction mesurable

Soit $f:(X,\mathcal{M},\mu) \longrightarrow \mathbb{R}$ $(f \in \mathcal{L}^0)$ une fonction numérique mesurable et soient f_+ et f_- les parties positive et négative de f. Puisque $f = f_+ - f_-$ et $|f| = f_+ + f_-$ on a f est mesurable si et seulement si f_+ et f_- sont mesurables.

Définition 3.4.1 On dit que f est intégrable par rapport à μ si

$$\int |f| \, d\mu < \infty.$$

Dans ce cas, on pose

$$\int f d\mu = \int f_{+} d\mu - \int f_{-} d\mu \tag{3.19}$$

On notera $\mathcal{L}^1(\mu)$ l'espace des fonctions $f:(X,\mathcal{M},\mu)\longrightarrow \mathbb{R}$ intégrables.

Remarque 3.4.2 Si $\int |f| d\mu < \infty$, alors comme $f_+ \leq |f|$ et $f_- \leq |f|$, on a aussi

$$\int f_+ d\mu < \infty$$
 et $\int f_- d\mu < \infty$

et la définition précédente fait sens.

Donnons un premier exemple de fonction intégrable.

Exercice corrigé 3.4.3 Soit $f:(X,\mathcal{M},\mu)\longrightarrow \mathbb{R}$ une fonction mesurable. On suppose qu'il existe une partie mesurable $A\in \mathcal{M}$ telle que

- i) $\mu(A) < \infty$ et f(x) = 0 pour tout $x \notin A$
- ii) Il existe un réel C > 0 tel que $|f(x)| \le C$ pour tout $x \in A$. Montrer que $f \in \mathcal{L}^1(\mu)$.

Démonstration. De i) et ii) on déduit que

$$|f| \le C\chi_A$$

D'où

$$\int |f| \, d\mu \le \int C\chi_A d\mu = C\mu(A) < \infty$$

Comme f est mesurable, on en déduit que $f \in \mathcal{L}^1(\mu)$.

Proposition 3.4.4 Soit $f:(X,\mathcal{M},\mu)\longrightarrow \overline{\mathbb{R}}$ une fonction numérique intégrable. Alors, l'ensemble

$$A = \{x \in X : |f(x)| = +\infty\}$$

est négligeable.

En d'autres termes toute fonction intégrable $f:(X,\mathcal{M},\mu)\longrightarrow \overline{\mathbb{R}}$ est égale presque partout à une fonction intégrable $\widetilde{f}:(X,\mathcal{M},\mu)\longrightarrow \mathbb{R}$.

Démonstration. Soit $f \in \mathcal{L}^1(\mu)$. Pour tout $n \geq 1$ posons

$$A_n = \{x \in X : |f(x)| \ge n\} = |f|^{-1} ([n, +\infty]) \in \mathcal{M}$$

Donc on a

$$A = \bigcap_{n=1}^{\infty} A_n$$
 et $A_{n+1} \subset A_n$, pour tout $n \ge 1$

Et aussi la relation $\chi_{A_1} \leq |f|$ implique que

$$\mu(A_1) = \int \chi_A d\mu \le \int |f| d\mu < +\infty.$$

Donc par la contonuité décroissante (Théorème 1.4.1) on obtient

$$\mu(A) = \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to +\infty} \mu(A_n).$$

D'après l'inégalité de Tchebychev (3.14) pour tout $n \geq 1$ on a

$$\mu(A_n) = \mu(\lbrace x \in X : |f(x)| \ge n\rbrace) \le \frac{1}{n} \int |f| \, d\mu = \frac{C}{n} \longrightarrow 0$$

On en déduit que

$$\mu(A) = \lim_{n \to +\infty} \mu(A_n) = 0.$$

Théorème 3.4.5 Soit $f \in \mathcal{L}^1(\mu)$. Alors $|f| \in \mathcal{L}^1(\mu)$ et on a

$$\left| \int f d\mu \right| \le \int |f| \, d\mu. \tag{3.20}$$

Démonstration. Si $f \in \mathcal{L}^1(\mu)$, il résulte immédiatement de la Proposition 2.3.6 et la Définition 3.4.1 que $|f| \in \mathcal{L}^1(\mu)$. Par ailleurs, on a

$$\left| \int f d\mu \right| = \left| \int f_+ d\mu - \int f_- d\mu \right| \le \int f_+ d\mu + \int f_- d\mu = \int (f_+ + f_-) d\mu,$$

et comme $|f|=f_++f_-,$ le théorème est démontré. \blacksquare

Proposition 3.4.6 (Quelques propriétés)

Pour tout $f \in \mathcal{L}^1(\mu)$, on pose

$$||f||_1 = \int |f| \, d\mu.$$

- 1) Si $f \in \mathcal{L}^1(\mu)$ avec $||f||_1 = 0$ alors f = 0 presque partout.
- 2) Si $f, g \in \mathcal{L}^1(\mu)$, alors $f + g \in \mathcal{L}^1(\mu)$ et $\alpha f \in \mathcal{L}^1(\mu)$ pour tout $\alpha \in \mathbb{R}$. Et aussi l'application $f \longmapsto \int f d\mu$ est une forme linéaire sur $\mathcal{L}^1(\mu)$. De plus,

$$||f + g||_1 \le ||f||_1 + ||g||_1$$
 et $||\alpha f||_1 = \alpha ||f||_1$

- 3) Si $f, g \in \mathcal{L}^1(\mu)$ et $f \leq g$, alors $\int f d\mu \leq \int g d\mu$
- 4) Si $f, g \in \mathcal{L}^1(\mu)$ et f = g presque partout, alors $\int f d\mu = \int g d\mu$.

Démonstration. 1) Pour tout $n \ge 1$, posons

$$A_n = \left\{ x \in X : |f(x)| \ge \frac{1}{n} \right\} = |f|^{-1} \left(\left[\frac{1}{n}, +\infty \right] \right) \in \mathcal{M}$$

La suite $(A_n)_{n\geq 1}$ est croissante avec

$$\bigcup_{n=1}^{\infty} A_n = A = \{ x \in X : f(x) \neq 0 \}$$

La continuité croissante de la mesure μ (Théorème 1.4.1) donne

$$\mu(A) = \lim_{n \to +\infty} \mu(A_n).$$

D'après l'inégalité de Tchebychev, pour tout $n \ge 1$ on a

$$\mu(A_n) \le n \|f\|_1 = 0$$

Il s'ensuit que $\mu(A_n) = 0$ pour tout $n \ge 1$ et par conséquent

$$\mu(A) = \lim_{n \to +\infty} \mu(A_n) = 0.$$

Ceci prouve que f est nulle presque partout.

2) f+g est mesurable et $|f+g| \leq |f| + |g|$ donc on a

$$\int |f+g| \, d\mu \le \int |f| \, d\mu + \int |g| \, d\mu < \infty.$$

Ce qui implique que $f + g \in \mathcal{L}^1(\mu)$ et $||f + g||_1 \le ||f||_1 + ||g||_1$.

En outre,

$$(f+g)_{+} - (f+g)_{-} = f+g = f_{+} - f_{-} + g_{+} - g_{-}$$

Donc

$$(f+g)_{+} + f_{-} + g_{-} = f_{+} + g_{+} + (f+g)_{-}$$

Ainsi,

$$\int (f+g)_{+} d\mu + \int f_{-} d\mu + \int g_{-} d\mu = \int f_{+} d\mu + \int g_{+} d\mu + \int (f+g)_{-} d\mu$$

Ce sont des intégrales finies donc

$$\int (f+g) \, d\mu = \int (f+g)_{+} \, d\mu - \int (f+g)_{-} \, d\mu
= \int f_{+} d\mu + \int g_{+} d\mu - \int f_{-} d\mu - \int g_{-} d\mu
= \left(\int f_{+} d\mu - \int f_{-} d\mu \right) + \left(g_{+} d\mu - \int g_{-} d\mu \right)
= \int f d\mu + \int g d\mu$$

D'autre part, si $f \in \mathcal{L}^1(\mu)$ et $\alpha \in \mathbb{R}$, alors αf est mesurable et

$$\int |\alpha f| \, d\mu = |\alpha| \int |f| \, d\mu < \infty$$

et donc $\alpha f \in \mathcal{L}^1(\mu)$ et $\|\alpha f\|_1 = \alpha \|f\|_1$.

Si $\alpha \geq 0$,

$$\int \alpha f d\mu = \int (\alpha f)_{+} d\mu - \int (\alpha f)_{-} d\mu$$

$$= \alpha \int f_{+} d\mu - \alpha \int f_{-} d\mu$$

$$= \alpha \int f d\mu$$

Si $\alpha \leq 0$,

$$\int \alpha f d\mu = \int (\alpha f)_{+} d\mu - \int (\alpha f)_{-} d\mu$$

$$= (-\alpha) \int f_{-} d\mu - (-\alpha) \int f_{+} d\mu$$

$$= \alpha \int f d\mu$$

- 3) Comme pour les fonctions mesurables positives (Proposition 3.2.3).
- 4) Si f = g presque partout, alors $f_+ = g_+$ presque par tout et $f_- = g_-$ presque partout, d'où

$$\int f_+ d\mu = \int g_+ d\mu$$
 et $\int f_- d\mu = \int g_- d\mu$

en vertu du Proposition 3.2.10. Il s'ensuit que $\int f d\mu = \int g d\mu$.

3.5 L'espace $L^1(\mu)$ des fonctions intégrables.

Soit (X, \mathcal{M}, μ) un espace mesuré. Considérons sur $\mathcal{L}^1(\mu)$ la relation d'équivalence \mathcal{R} définie par

$$f\mathcal{R}g \iff f = g$$
 presque partout.

On note $L^1(\mu)$ le quotient de $\mathcal{L}^1(\mu)$ par cette relation d'équivalence. Un élément de $L^1(\mu)$ est donc une classe d'équivalence de fonctions dans $\mathcal{L}^1(\mu)$; la classe de $f \in \mathcal{L}^1(\mu)$ sera notée $\dot{f} \in L^1(\mu)$

$$L^{1}(\mu) = \mathcal{L}^{1}(\mu) \backslash \mathcal{R} = \left\{ \dot{f} : f \in \mathcal{L}^{1}(\mu) \right\}.$$

D'après la Proposition 3.4.4, toute élément de $L^1(\mu)$ est de la forme \dot{f} où $f \in \mathcal{L}^1(\mu)$ est une fonction numérique finie partout, c'est à dire telle que $f(x) \in \mathbb{R}$ pour tout $x \in X$. On vérifie immédiatement que $L^1(\mu)$ est un espace vectoriel sur \mathbb{R} muni de lois usuelles de classes d'équivalence.

On sait ((4) dans Proposition 3.4.6) que si $f, g \in \mathcal{L}^1(\mu)$ avec $\dot{f} = \dot{g}$, alors $\int f d\mu = \int g d\mu$. On peut donc définir l'intégrale de $\dot{f} \in L^1(\mu)$ en posant

$$\int \dot{f} d\mu = \int f d\mu$$
 et $\left\| \dot{f} \right\|_{1} = \int |f| d\mu$

Proposition 3.5.1 Soit (X, \mathcal{M}, μ) un espace mesuré. Alors

- (i) L'application $\dot{f} \longmapsto ||f||_1$ est une norme sur $L^1(\mu)$.
- (ii) L'application $\Psi: \dot{f} \longmapsto \int f d\mu$ est une forme linéaire continue sur $L^1(\mu)$ de norme ≤ 1 .

Démonstration. (i) On sait (Proposition 3.4.6) que l'application $f \mapsto ||f||_1$ est une semi norme sur $\mathcal{L}^1(\mu)$, alors $\dot{f} \mapsto ||f||_1$ est une semi norme sur $L^1(\mu)$. Maintenant, si $||\dot{f}||_1 = 0$, donc f = 0 presque partout et donc $\dot{f} = \dot{0}$.

(ii) Pour tout $f \in \mathcal{L}^1(\mu)$ on a

$$\left|\Psi(\dot{f})\right| = \left|\int f d\mu\right| \le \int \left|f\right| d\mu = \left\|\dot{f}\right\|_{1}$$

Ce qui prouve que l'application linéaire Ψ est continue de norme ≤ 1 .

Remarque 3.5.2 Dans la pratique, on commet l'abus de langage qui consiste à notés par la même lettre la fonction $f \in \mathcal{L}^1(\mu)$ et sa classe $\dot{f} \in L^1(\mu)$. L'intérêt est que les éléments de $\mathcal{L}^1(\mu)$ sont des fonctions (non des classes d'équivalence), mais l'intérêt de $L^1(\mu)$ est d'être' un espace vectoriel normé.

Théorème 3.5.3 /3/

Soit (X, \mathcal{M}, μ) un espace mesuré. Alors

- (i) $L^1(\mu)$ est un espace de Banach pour la norme $\|\cdot\|_1$.
- (ii) Les (classes de) fonctions étagées (simples) mesurables forment un sous espace vectoriel de $L^1(\mu)$ qui est dense dans $L^1(\mu)$ pour la norme $\|\cdot\|_1$.

Corollaire 3.5.4 /3/

Soit (X, \mathcal{M}, μ) un espace mesuré. Si $(\dot{f}_n)_{n\geq 1}$ une suite de $L^1(\mu)$ qui converge vers $\dot{f} \in L^1(\mu)$ pour la norme $\|\cdot\|_1$. Alors, il existe une sous suite $(f_{n_k})_{k\geq 1}$ qui converge presque partout vers f.

3.6 Théorème de convergence dominée dans $L^1(\mu)$.

Théorème 3.6.1 Soit (X, \mathcal{M}, μ) un espace mesuré. Soit $(f_n)_n$ une suite de fonctions numériques mesurables. On suppose que

- 1) $f_n \longrightarrow f$ presque partout
- 2) Il existe une fonction fixe $g: X \longrightarrow [a, +\infty[$ intégrable telle que

$$|f_n| \le g \text{ presque partout}$$
 (3.21)

Alors, f est intégrable et $||f_n - f||_1 \longrightarrow 0$ quand $n \longrightarrow +\infty$.

En particulier, on a

$$\lim_{n \to +\infty} \int f_n d\mu = \int \lim_{n \to +\infty} f_n d\mu = \int f d\mu \tag{3.22}$$

Démonstration. Tout d'abord, comme les fonctions $x \mapsto f_n(x)$ sont mesurables et $(f_n)_n$ convergent presque par tout vers f, la fonction f est mesurable. Par (3.21) en on déduit que $|f(x)| \leq g(x)$ pour tout presque $x \in X$. Comme $g \in \mathcal{L}^1(\mu)$, on a

$$\int |f| \, d\mu \le \int g d\mu < \infty,$$

et par conséquent f est intégrable.

Montrons que $||f_n - f||_1 \longrightarrow 0$ quand $n \longrightarrow +\infty$. A cet effet, posons pour tout $k \ge 1$

$$F_k = \sup_{i,j \ge k} |f_i - f_j|$$

On définit ainsi une fonction mesurable positive, qui est intégrable car

$$|f_i - f_j| \le |f_i| + |f_j| \le 2g$$
, pour tout i, j

D'où $F_k \leq 2g$. Comme $g \in \mathcal{L}^1(\mu)$, alors $F_k \in \mathcal{L}^1(\mu)$ pour tout $k \geq 1$. La suite $(F_k)_k$ est une suite décroissante des fonctions positives intégrables qui converge vers 0 presque partout. En effet, puisque $f_i - f_j \longrightarrow 0$ presque par tout quand $i, j \to +\infty$ on a $F_k \longrightarrow 0$ presque partout. D'après le théorème de Beppo-Levi, $\int F_k d\mu \longrightarrow 0$ quand $k \longrightarrow +\infty$.

De la relation

$$\int |f_i - f_j| d\mu \le \int F_k d\mu \longrightarrow 0, \text{ quand } k \longrightarrow +\infty,$$

on déduit que la suite $(F_k)_{k\geq 1}$ est de Cauchy dans $L^1(\mu)$, donc converge vers une fonction $g\in L^1(\mu)$. D'après le Corollaire 3.5.4, il existe une sous suite $(F_{k_\ell})_\ell$ qui converge presque

partout vers g et comme $f_k \longrightarrow f$ presque partout, on en déduit que f = g presque partout. Mais alors, $||f_n - f||_1 = ||f_n - g||_1 \longrightarrow 0$ quand $n \longrightarrow +\infty$. Pour le cas particulier, on a

$$\left| \int f_n d\mu - \int f d\mu \right| \le \int |f_n - f| d\mu = \|f_n - f\|_1 \longrightarrow 0, \text{ quand } n \longrightarrow +\infty.$$

Ce qui achève la démonstration du théorème de convergence dominée de Lebesgue.

Corollaire 3.6.2 Soit (X, \mathcal{M}, μ) un espace mesuré. Soit $(\varphi_n)_n$ une suite de fonctions numériques intégrables. On suppose que la série de fonctions $\sum_{k=1}^{\infty} \varphi_k$ converge presque partout et que les fonctions $\left|\sum_{k=1}^{n} \varphi_k\right|$ sont majorées par une fonction intégrable indépendante de n. Alors, $\sum_{k=1}^{\infty} \varphi_k$ est intégrable et on a

$$\int \left(\sum_{k=1}^{\infty} \varphi_k\right) d\mu = \sum_{k=1}^{\infty} \int \varphi_k d\mu \tag{3.23}$$

Démonstration. Il suffit d'appliquer le théorème de convergence dominée à la suite de fonctions intégrables

$$f_n = \sum_{k=1}^n \varphi_k$$

qui converge presque partout vers $\sum_{k=1}^{\infty} \varphi_k$ et qui sont majorées en module par une fonction intégrable fixe. \blacksquare

3.7 Comparaison de l'intégrale de Lebesgue avec l'intégrale de Riemann.

Proposition 3.7.1 [11]Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction. Les conditions suivantes sont équivalentes

- (i) f est Riemann intégrable sur [a, b].
- (ii) f est bornée sur [a,b] et l'ensemble de ses points de discontinuité est négligeable pour la mesure de Lebesque λ .

Théorème 3.7.2 [11]

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction Riemann intégrable sur [a,b]. Alors f est Lebesgue intégrable sur [a,b] et son intégrale de Lebesgue coïncide avec son intégrale de Riemann

$$\int_{[a,b]} f d\lambda = \int_a^b f(x) dx \tag{3.24}$$

Intégrales généralisées

Soit $I = (\alpha, \beta)$ un intervalle non compact de \mathbb{R} (soit I n'est pas borné, soit I est borné et non fermé). Soit $f: I \longrightarrow \mathbb{R}$ une fonction et supposons que la restriction de f à tout intervalle compact [a, b] de I est Riemann intégrable.

Définition 3.7.3 Lorsque la limite

$$\lim_{a \to a, b \le \beta} \int_{a}^{b} f(x) dx$$

existe, on dit que l'intégrale $\int_I f(x)dx$ est convergente et on pose

$$\int_{I} f(x)dx = \lim_{a \to a, b \le \beta} \int_{a}^{b} f(x)dx$$

Dans le cas contraire, on dit que l'intégrale $\int_I f(x)dx$ est divergente.

Si $\int_I |f(x)| dx$ est convergente, on dit que l'intégrale $\int_I f(x) dx$ est absolument convergente.

Le théorème suivant fait la lien entre convergence absolue de l'intégrale $\int_I f(x)dx$ et Lebesgue intégrabilité de f sur I.

Théorème 3.7.4 Soit I un intervalle non compact de \mathbb{R} . Pour toute fonction $f:I\longrightarrow\mathbb{R}$ dont la restriction à tout intervalle compact $[a,b]\subset I$ est Riemann intégrable, les conditions suivantes sont équivalentes

- (i) f est Lebesgue intégrable sur I.
- (ii) L'intégrale $\int_I |f(x)| dx$ est convergente.

Lorsque l'une de ces conditions est réalisée, on a

$$\int_{I} f d\lambda = \int_{I} f(x) dx \tag{3.25}$$

Démonstration. (i) \Longrightarrow (ii). Si f est Lebesgue intégrable sur I, alors |f| est aussi Lebesgue intégrable sur I et pour tout intervalle [a,b] inclus dans I

$$\int_{a}^{b} |f(x)| dx = \int_{[a,b]} |f| d\lambda \le \int_{I} |f| d\lambda < +\infty,$$

d'où il résulte que $\int_I |f(x)| dx < \infty$.

(ii) \Longrightarrow (i). Posons $I = (\alpha, \beta)$ et choisisons des suites $(a_n)_n$ et $(b_n)_n$ de points de I tels que $(a_n)_n$ est décroissante et $a_n \longrightarrow \alpha$

 $(b_n)_n$ est croissante et $b_n \longrightarrow \beta$

 $a_n \leq b_n$ pour tout $n \geq 1$.

Posons $f_n = f\chi_{[a_n,b_n]}$. Comme f est Riemann intégrable sur $[a_n,b_n]$, elle est Lebesgue intégrable sur $[a_n,b_n]$ et f_n Lebesgue intégrable sur I. Les fonctions $|f_n|$ forment une suite croissante de fonctions Lebesgue intégrables sur I qui converge simplement vers |f|. En outre,

$$\int_{I} |f_{n}| \, d\lambda = \int_{[a_{n}, b_{n}]} |f| \, d\lambda = \int_{a_{n}}^{b_{n}} |f(x)| \, dx \le \int_{I} |f(x)| \, dx < +\infty,$$

et le théorème de Beppo-Levi prouve que |f| est intégrable au sens de Lebesgue sur I. Comme on a

$$|f_n| \le |f|$$
, pour tout $n \ge 1$,

le théorème de convergence dominée de Lebesgue (Théorème 3.6.1) implique que f est Lebesgue intégrable sur I et que

$$\int_{I} f d\lambda = \lim_{n \to +\infty} \int_{I} f_{n} d\lambda = \lim_{n \to +\infty} \int_{a_{n}}^{b_{n}} f(x) dx = \int_{I} f(x) dx.$$

Exemple 3.7.5 La fonction $x \longrightarrow \frac{1}{x^{\alpha}}$ est Lebesgue intégrable sur $[a, +\infty[$ (où a > 0) si et seulement si $\alpha > 1$.

Démonstration. En effet, la relation

$$\int_{a}^{n} \frac{dx}{x^{\alpha}} = \varphi_{n}(t) = \begin{cases} \frac{1}{1-\alpha} \left(\frac{1}{n^{\alpha-1}} - \frac{1}{a^{\alpha-1}} \right) & \text{si } \alpha \neq 1\\ \ln n - \ln a & \text{si } \alpha = 1 \end{cases}$$

montre que $\int_a^{+\infty} \frac{dx}{x^{\alpha}}$ est convergente si et seulement si $\alpha > 1$.

Il s'ensuit que la fonction $x \longrightarrow \frac{1}{x^{\alpha}}$ est Lebesgue intégrable sur $[a, +\infty[$ si et seulement si $\alpha > 1$. Dans ce cas on a

$$\int_{[a,+\infty[} \frac{1}{x^{\alpha}} d\lambda(x) = \frac{1}{(\alpha - 1)a^{\alpha - 1}}$$

Exercice corrigé 3.7.6 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application continue et bornée sur \mathbb{R} . Après avoir montré son existence, calculer

$$\lim_{n \longrightarrow +\infty} \int_{0}^{+\infty} e^{-nx} f(x) dx \tag{3.26}$$

Démonstration. Les fonctions $x \mapsto f_n(x) = e^{-nx} f(x)$ sont continues sur $[0, +\infty[$ donc mesurables. L'application f est bornée donc il existe M > 0 telle que

$$|e^{-nx}f(x)| \le M.e^{-nx}$$
, pour tout $x \in \mathbb{R}$ et tout $n \ge 1$.

Puisque $\int_0^{+\infty} e^{-nx} < \infty$, alors $\int_0^{+\infty} |e^{-nx}f(x)dx| < \infty$ et donc la limite (3.26) existe et par le Théorème 3.7.4 on a

$$\int_0^{+\infty} e^{-nx} f(x) dx = \int_{[0,+\infty[} f_n d\lambda$$

La suite $(f_n)_n$ est convergente vers f=0. Pour tout $x\in\mathbb{R}$ et tout $n\geq 1$ on a

$$\left| e^{-nx} f(x) dx \right| \le M.e^{-x} = g(x),$$

et

$$\int_{[0,+\infty[} g d\lambda = \int_0^{+\infty} g(x) dx < \infty.$$

Donc par le théorème de convergence dominée il suit que

$$\lim_{n \to +\infty} \int_0^{+\infty} e^{-nx} f(x) dx = \lim_{n \to +\infty} \int_{[0,+\infty[} f_n d\lambda = \int_{[0,+\infty[} f d\lambda = 0] dx = 0] dx$$

3.8 Continuité et dérivabilité sous le signe \int

Soit (X, \mathcal{M}, μ) un espace mesuré, f une fonction de $X \times \mathbb{R}$ dans \mathbb{R} . On désigne par f_t , f_x les applications partielles

$$x \longmapsto f_t(x) = f(x,t)$$
 et $t \longmapsto f_x(t) = f(x,t)$.

Nous supposerons dans tout ce paragraphe que, pour tout $t \in \mathbb{R}$, la fonction f_t est intégrable

$$f_t \in L^1(\mu)$$
, pour tout $t \in \mathbb{R}$. (3.27)

On définit alors une fonction $F: \mathbb{R} \longrightarrow \mathbb{R}$ en posant

$$F(t) = \int f_t(x)d\mu(x) = \int f(x,t)d\mu(x)$$
(3.28)

Dans ce qui suit, nous nous intéresserons à la continuité et dérivabilité de la fonction F.

Théorème 3.8.1 (Continuité sous \int)

Soit (X, \mathcal{M}, μ) un espace mesuré, et $f: X \times \mathbb{R} \longrightarrow \mathbb{R}$ une fonction vérifiant l'hypothèse (3.27) et $t_0 \in \mathbb{R}$; on suppose de plus que

- (i) Pour presque partout $x \in X$, la fonction f_x est continue de la variable t au point $t_0 \in \mathbb{R}$.
- (ii) Il existe $\varepsilon > 0$, et $g \in L^1(\mu)$ tels que

$$|f(x,t)| \le g(x)$$
, pour tout $t \in]t_0 - \varepsilon, t_0 + \varepsilon[$.

Alors, la fonction $F: \mathbb{R} \longrightarrow \mathbb{R}$ définie par (3.28), est continue en t_0 .

Démonstration. Il suffit de montrer que $F(t_n) \longrightarrow F(t_0)$ pour toute suite $(t_n)_n$ de $]t_0 - \varepsilon, t_0 + \varepsilon[$ qui converge vers t_0 . Posons

$$f_n(x) = f(x, t_n).$$

Pour presque partout $x \in X$, la fonction f_x est continue au point t_0 et donc

$$f_n(x) = f(x, t_n) = f_x(t_n) \longrightarrow f_x(t_0) = f(x, t_0),$$

quand $n \longrightarrow +\infty$. Par ailleurs,

$$|f_n(x)| = |f(x, t_n)| \le g(x)$$

D'après le théorème de convergence dominée de Lebesgue (Théorème 3.6.1), on a

$$F(t_n) = \int f_n(x)d\mu(x) \longrightarrow \int f(x,t_0)d\mu(x) = F(t_0)$$

quand $n \longrightarrow +\infty$, d'où le théorème. \blacksquare

Théorème 3.8.2 (Dérivation sous le signe ∫)

Soit (X, \mathcal{M}, μ) un espace mesuré, et $f: X \times \mathbb{R} \longrightarrow \mathbb{R}$ une fonction vérifiant l'hypothèse

- (3.27) et $t_0 \in \mathbb{R}$; on suppose de plus qu'il existe $\varepsilon > 0$, $A \in \mathcal{M}$ et $g \in L^1(\mu)$ tels que
- (i) L'application $t \mapsto f(x,t)$ est dérivable pour tout $t \in]t_0 \varepsilon, t_0 + \varepsilon[$ et pour tout $x \in A^c$.
- (ii) Pour tout $t \in]t_0 \varepsilon, t_0 + \varepsilon[$ et pour tout $x \in A^c$ on a

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g(x).$$

Alors, la fonction $F: \mathbb{R} \longrightarrow \mathbb{R}$ définie par (3.28), est dérivable en t_0 et

$$F'(t_0) = \int \frac{\partial f}{\partial t}(x, t_0) d\mu(x).$$

Démonstration. Soit $(t_n)_n$ une suite de $]t_0 - \varepsilon, t_0 + \varepsilon[$ telle que $t_n \longrightarrow t_0$ lorsque et $t_n \neq t_0$ pour tout $n \geq 1$. Soit f_n définie par

$$f_n(x) = \frac{f(x, t_n) - f(x, t_0)}{t_n - t_0}.$$

La suite $(f_n)_n$ est dans $L^1(\mu)$ et converge presque partout vers la fonction $x \longmapsto \frac{\partial f}{\partial t}(x, t_0)$ car l'application $t \longmapsto \frac{\partial f}{\partial t}(x, t)$ est continue pour tout $x \in A^c$. Par ailleurs, d'après le théorème d'accroissements finis, si $x \in A^c$ et $n \ge 1$, il existe $\theta_{x,n} \in]0,1[$ tel que

$$f_n(x) = \frac{\partial f}{\partial t} (x, \theta_{x,n} t_0 + (1 - \theta_{x,n}) t_n)$$

et donc

$$|f_n(x)| \le g(x)$$
, pour tout $x \in A^c$ et $n \ge 1$.

D'après le théorème de convergence dominée (Théorème 3.6.1) (appliquée sur la suite $(f_n)_n$), la fonction $x \longrightarrow \frac{\partial f}{\partial t}(x,t)$ (qui est définie presque partout $x \in X$) est dans $L^1(\mu)$ et on a

$$\lim_{n \to +\infty} \int f_n(x) d\mu(x) = \int \frac{\partial f}{\partial t}(x, t_0) d\mu(x)$$

Ceci etant vrai pour toute suite $(t_n)_n$ dans $]t_0 - \varepsilon, t_0 + \varepsilon[$ telle que $t_n \longrightarrow t_0$ lorsque et $t_n \neq t_0$ pour tout $n \geq 1$, on en déduit bien que F est dérivable en t_0 et

$$F'(t_0) = \int \frac{\partial f}{\partial t}(x, t_0) d\mu(x).$$

3.9 Application au calcule de $\int_0^{+\infty} e^{-t^2} dt$.

D'après le Théorème 3.7.4, la fonction $t\mapsto e^{-t^2}$ est intégrable au sens de Lebesgue sur $[0,+\infty[$. Posons

$$I = \int_0^{+\infty} e^{-t^2} dt$$

et proposons nous de calculer la valeur de I. A cet effet, considérons la fonction f définie pour $x \geq 0$ par

$$f(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1 + t^2} dt$$

comme on a

$$\left| \frac{e^{-xt^2}}{1+t^2} \right| \le \frac{1}{1+t^2}, \text{ pour tout } x, t \ge 0$$

et que la fonction $t \mapsto \frac{1}{1+t^2}$ est Lebesgue intégrable sur $[0, +\infty[$, la fonction f est bien définie, et elle est continue en vertu du Théorème 3.8.1. Notons que l'on a

$$f(0) = \int_0^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}.$$

En outre, puisque $\frac{e^{-xt^2}}{1+t^2} \longrightarrow 0$ quand $x \longrightarrow +\infty$ pour tout t > 0, il résulte du théorème de convergence dominnée (Théorème 3.6.1) que $\lim_{x \longrightarrow +\infty} f(x) = 0$. Pour x > 0 on a

$$\frac{\partial}{\partial x}(\frac{e^{-xt^2}}{1+t^2}) = \frac{-t^2e^{-xt^2}}{1+t^2}.$$

En outre, pour $x \ge a > 0$, on a

$$\left| \frac{\partial}{\partial x} \left(\frac{e^{-xt^2}}{1+t^2} \right) \right| = t^2 \frac{e^{-xt^2}}{1+t^2} \le e^{-at^2}$$

et, comme la comme fonction $t \mapsto e^{-at^2}$ est intégrable sur $[0, +\infty[$, il résulte du théorème de dérivation sous signe d'intégration que f est dérivable sur tout intervalle $]a, +\infty[$ avec a > 0, donc est dérivable sur $]0, +\infty[$, de dérivée

$$f'(x)) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt$$

On a donc

$$f(x) - f'(x) = \int_0^{+\infty} e^{-xt^2} dt$$
, pour $x > 0$.

Posons $u = \sqrt{x}t$ dans la dernière, on obtient

$$\int_{0}^{+\infty} e^{-xt^{2}} dt = \frac{1}{\sqrt{x}} \int_{0}^{+\infty} e^{-u^{2}} du = \frac{I}{\sqrt{x}}.$$

La fonction f est donc sulution de l'équation différentielle

$$f - f' = \frac{I}{\sqrt{x}} \tag{3.29}$$

Alors,

$$f(x) = e^x \left(C - 2I \int_0^{\sqrt{x}} e^{-t^2} dt \right), \text{ pour } x > 0,$$

et cette formule reste vraie par continuité pour x=0. Puisque $f(0)=\frac{\pi}{2}$, on a $C=\frac{\pi}{2}$ et donc au total

$$f(x) = e^x \left(\frac{\pi}{2} - 2I \int_0^{\sqrt{x}} e^{-t^2} dt\right)$$

Puisque $f(x) \longrightarrow 0$ quand $x \longrightarrow +\infty$, on a nécessairement

$$\frac{\pi}{2} - 2I \int_0^{+\infty} e^{-t^2} dt = 0,$$

sait
$$\frac{\pi}{2} - 2I^2 = 0$$
, d'où l'on tire

$$I = \frac{\sqrt{\pi}}{2}.$$