Overview	Data Notebooks Discussion Leaderboard Rules Team	My Submissions	Submit Predictions			
1008	Artemness	0.11892	Z Id			
1009	titom555	0.11893	50 2mo			
1010	VaibhavSatam	0.11895	22 1mo			
1011	Vlad Afanasevich	0.11897	6 2mo			
1012	Jessica Zhang	0.11897	12 10d			
1013	sunil02nov	0.11899	6 1mo			
1014	Shaurya Kishore	0.11899	9 now			
Your Best Entry ↑ Your submission scored 0.15435, which is not an improvement of your best score. Keep trying!						
		re. Keep trying!				
		re. Keep trying!	20 2mo			
Your sub	mission scored 0.15435, which is not an improvement of your best sco		20 2mo 2 1mo			
Your subr	mission scored 0.15435, which is not an improvement of your best sco	0.11899				
Your subr	mission scored 0.15435, which is not an improvement of your best sco Zhang Mingfeng zuoyou	0.11899	2 1mo			

MMA 867

Assignment - 2

ABSTRACT

The final position at the time of submission is 1014 which was achieved by using LASSO regression

Shaurya Kishore

Contents

1	Intro	oduction:	2
2	Data	Description and Pre-Processing:	2
	2.1	Missing Value Analysis:	2
	2.2	Data Transformation and Outlier Analysis:	3
	2.3	Feature Engineering:	4
3	Mod	leling:	5
	3.1	LASSO:	5
	3.2	Ridge Regression:	6
4	Con	clusion:	6
_	- I	. ст·	
	lab	le of Figures	
Fi	igure 1:	Correlation	2
Fi	igure 2:	Missing values	3
	_	Outliers in dataset	
Fi	igure 4:	Normality error in SalePrice	4
Fi	igure 5:	Skewness	4
Fi	igure 6:	Dummy variables created	4
Fi	igure 7:	Lasso Regression	5
Fi	igure 8:	Ridge Regression	6

1 Introduction:

Buying a house remains one of the biggest decisions that individuals can make in their lifetime. With the data at hand, the goal is to predict the final price of each house in Ames, lowa, by using every aspect of a residential home. The insights through this model could be used by every person to aid their decision-making process when purchasing a home. The dataset mostly contains categorical variables stores as factors or integers. We will be focusing on advance regression techniques such as LASSO and Ridge to create our model and accurately predict the house prices in lowa.

2 DATA DESCRIPTION AND PRE-PROCESSING:

The training dataset consisted of 1460 observations and 81 features whereas the test dataset consisted of 1459 observations and 80 features. Before proceeding with pre-processing and cleaning of the dataset, basic analysis was performed to understand the relationship between different variables. The correlation between SalePrice and rest of the variables was seen to understand which variable had the most impact on Sales.

> 001			
	Var1	Var2	Freq
1444	SalePrice	SalePrice	1.0000000
1411	OverallQual	SalePrice	0.7909816
1423	GrLivArea	SalePrice	0.7086245
1433	GarageCars	SalePrice	0.6404092
1434	GarageArea	SalePrice	0.6234314
1419	TotalBsmtSF	SalePrice	0.6135806
1420	X1stFlrSF	SalePrice	0.6058522
1426	FullBath	SalePrice	0.5606638
1430	${\tt TotRmsAbvGrd}$	SalePrice	0.5337232
1413	YearBuilt	SalePrice	0.5228973

Figure 1: Correlation

Overall quality had the highest correlation, and this shows that in our model we should be mindful of these variables.

2.1 MISSING VALUE ANALYSIS:

The first step in pre-processing the dataset was to perform a missing value analysis. The percentage of missing data for the variable with NA's is given below:

> as.data.frame(sum.na.percent)

sum.na.nercent

sum.na.percent
0.9952054795
0.9630136986
0.9376712329
0.8075342466
0.4726027397
0.1773972603
0.0554794521
0.0554794521
0.0554794521
0.0554794521
0.0554794521
0.0260273973
0.0260273973
0.0253424658
0.0253424658
0.0253424658
0.0054794521
0.0054794521
0.0006849315

Figure 2: Missing values

The variables which had more than 90% of missing data were removed from the dataset. It was assumed that the remaining features have data missing completely at random and thus multiple imputation was performed to fill the remaining missing values.

```
#imputation with mean
imp <- mice(train, m=1, method="cart")
train_comp <- mice::complete(imp)
as.data.frame(colSums(is.na(train comp)))</pre>
```

Cart method was used for multiple imputation to deal with the categorical variables in our dataset.

2.2 Data Transformation and Outlier Analysis:

In order to make the model efficient, it was important to remove outliers from the features which had the highest correlation with SalePrice.

Figure 3: Outliers in dataset

Two outliers in GrLivArea were found and removed.

Once outliers were removed, the next step was data transformation. It was found that SalePrice is not normally distributed:

Figure 4: Normality error in SalePrice

Log Transformation was used to make SalePrice normal in nature. Also, all the variables which measured years were transformed into factors for ease of plotting and model complexity.

> as.table(ske	wed feats)						
MSSubClass	LotFrontage	LotArea	OverallCond	MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF
1.3747506	1.6595299	12.8158428	0.5700190	2.5935817	1.4247403	4.1440129	0.9187319
TotalBsmtSF	X1stFlrSF	X2ndFlrSF	LowQualFinSF	GrLivArea	BsmtFullBath	BsmtHalfBath	HalfBath
1.1621950	1.4688493	0.8612320	12.0825494	1.2687055	0.6245111	3.9295737	0.6942096
KitchenAbvGr	TotRmsAbvGrd	Fireplaces	WoodDeckSF	OpenPorchSF	EnclosedPorch	X3SsnPorch	ScreenPorch
4.3000437	0.7579772	0.7331177	1.8414861	2.5338111	4.0018339	11.3702193	3.9446658
PoolArea	MiscVal						
16.8896450	21.9359177						

Figure 5: Skewness

The features which had more than 0.5 skewness were also transformed using log transformation to make the data normal.

2.3 FEATURE ENGINEERING:

Since our dataset, consisted of mostly categorical variables, dummy variables were created to make the model more robust and accurate.

```
dmy <- dummyVars( ~ ., data = main_df)
dmy_predict <- data.frame(predict(dmy, newdata = main_df))</pre>
```

Figure 6: Dummy variables created

3 Modeling:

Finally, after prepping the data, we began to develop our predictive model using LASSO and ridge regression.

3.1 LASSO:

LASSO regression was used to predict the prices of the house. All the interactions were taken into consideration while creating the model matrix for LASSO. The LASSO plot can be seen below:

Figure 7: Lasso Regression

A final score of 0.11899 was obtained on Kaggle using LASSO regression

3.2 RIDGE REGRESSION:

Figure 8: Ridge Regression

Using Ridge Regression for the model yielded a score of 0.15435 on Kaggle.

4 CONCLUSION:

It was found that LASSO regression performed better than Ridge regression. Lasso method overcomes the disadvantage of Ridge regression by not only punishing high values of the coefficients β but setting them to zero if they are not relevant. Therefore, we end up with fewer features included in the model than we started with, which is a huge advantage.

5.1 R CODE

```
library(readr)
library(tidyverse)
library(mice)
library(corrplot)
library(caret)
library(glmnet)
train <- read.csv("train.csv", stringsAsFactors=T, header=T)</pre>
test <- read.csv("test.csv", stringsAsFactors=T, header=T)</pre>
test$SalePrice <- NA
main df <- rbind(train, test)</pre>
test$SalePrice <- NULL
str(train)
rapply(train, class = "factor", f = levels, how = "list")
md.pattern(main df)
as.data.frame(colSums(is.na(main_df)))
sum.na <- sort(sapply(train, function(x) { sum(is.na(x))}), decreasing=TRUE)</pre>
sum.na.percent <- sort(sapply(train, function(x) { sum(is.na(x)/dim(train)[1]</pre>
)}), decreasing=TRUE)
as.data.frame(sum.na.percent)
contVar <- names(train)[which(sapply(train, is.numeric))]</pre>
trainCont <- train[, contVar]</pre>
correlations <- cor(trainCont, use = "pairwise.complete.obs")</pre>
corrplot(correlations, method = "square")
# look up top 10 feature correlated to SalePrice
cor <- as.data.frame(as.table(correlations))</pre>
cor <- subset(cor, cor$Var2 == "SalePrice")</pre>
cor <- cor[order(cor$Freq, decreasing = T)[1:10],]</pre>
cor
#train set
train$PoolQC <- NULL</pre>
train$MiscFeature <- NULL
train$Alley <- NULL</pre>
```

```
train$Utilities <- NULL
ggplot(train, aes(x = GrLivArea, y = SalePrice)) + geom_point() + title("Outl
iers")
plot(train$GrLivArea, train$SalePrice)
order(train$GrLivArea,decreasing = T)[1:2]
train <- train[-1299,]
train <- train[-524,]
#imputation with mean
imp <- mice(train, m=1, method="cart")</pre>
train comp <- mice::complete(imp)</pre>
as.data.frame(colSums(is.na(train comp)))
#log transformation of SalePrice in train
hist(train$SalePrice)
train comp$SalePrice <- log(train comp$SalePrice)</pre>
#test Set
test$PoolQC <- NULL</pre>
test$MiscFeature <- NULL
test$Alley <- NULL
test$Utilities <- NULL
#imputation with mean
imp1 <- mice(test, m=1, method="cart")</pre>
test_comp <- mice::complete(imp1)</pre>
as.data.frame(colSums(is.na(test comp)))
test_comp$SalePrice <- NA</pre>
train comp <- train comp %>% mutate(GarageYrBlt= as.factor(GarageYrBlt),YrSol
d=as.factor(YrSold), YearBuilt =as.factor(YearBuilt),
                                      YearRemodAdd = as.factor(YearRemodAdd))
test comp <- test comp %>% mutate(GarageYrBlt= as.factor(GarageYrBlt), YrSold=
as.factor(YrSold), YearBuilt =as.factor(YearBuilt),
                                    YearRemodAdd = as.factor(YearRemodAdd))
main df <- rbind(train comp, test comp)</pre>
as.data.frame(colSums(is.na(main df)))
df <- as.data.frame(main_df[,77])</pre>
main df \leftarrow main df[,-c(77)]
library(e1071)
classes <- lapply(main_df,function(x) class(x))</pre>
numeric_feats <- names(classes[classes=="integer" | classes=="numeric"])</pre>
```

```
factor feats <- names(classes[classes=="factor" | classes=="character"])</pre>
skewed_feats <- sapply(numeric_feats, function(x) skewness(main_df[[x]]))</pre>
skewed feats <- skewed feats[abs(skewed feats) > .50]
as.table(skewed_feats)
hist(main df$KitchenAbvGr)
for (x in names(skewed_feats)) {main_df[[x]] <- log(main_df[[x]]+1)}</pre>
main_df <- cbind(main_df, df = df$`main_df[, 77]`)</pre>
colnames(main_df)[77] <- "SalePrice"</pre>
dmy <- dummyVars( ~ ., data = main df)</pre>
dmy predict <- data.frame(predict(dmy, newdata = main df))</pre>
master df <- dmy predict
master_df_train <- master_df[1:1458,]</pre>
master df test <- master df[1459:2917,]
#LASSO Regression
options(na.action='na.pass')
y<- master_df_train$SalePrice</pre>
X <- model.matrix(SalePrice ~.^2, master df)[,-c(1)]</pre>
X.training<- subset(X,X[,1] < 1461)
X.prediction<- subset(X,X[,1]>=1461)
nlasso.fit<-glmnet(x = X.training, y = y, alpha = 1)</pre>
plot(nlasso.fit, xvar = "lambda")
crossval <- cv.glmnet(x = X.training, y = y, alpha = 1) #create cross-valida</pre>
tion data. By default, the function performs ten-fold cross-validation, thoug
h this can be changed using the argument nfolds.
plot(crossval)
penalty.lasso <- crossval$lambda.min #determine optimal penalty parameter, la
mbda
log(penalty.lasso) #see where it was on the graph
lasso.opt.fit <-glmnet(x = X.training, y = y, alpha = 1, lambda = penalty.las
so) #estimate the model with the optimal penalty
coef <- coef(lasso.opt.fit) #resultant model coefficients</pre>
# predicting the performance on the testing set
predicted.prices.log.i.lasso <- exp(predict(lasso.opt.fit, s = penalty.lasso,</pre>
 newx =X.prediction))
write.csv(predicted.prices.log.i.lasso, file = "Predicted Sale Prices.csv")
#Ridge Regression
```

```
ridge.fit<-glmnet(x = X.training, y = y, alpha = 0)
plot(ridge.fit, xvar = "lambda")

#selecting the best penalty Lambda
crossval1 <- cv.glmnet(x = X.training, y = y, alpha = 0)
plot(crossval1)
penalty.ridge <- crossval1$lambda.min
log(penalty.ridge)
ridge.opt.fit <-glmnet(x = X.training, y = y, alpha = 0, lambda = penalty.rid
ge) #estimate the model with that
coef(ridge.opt.fit)

ridge.testing <- exp(predict(ridge.opt.fit, s = penalty.ridge, newx = X.predic
tion))
write.csv(ridge.testing, file = "Predicted Sale Prices Ridge.csv")</pre>
```