1. 由 (m,n)=1 可知 $\exists s,t\in\mathbb{Z}$ 使得 ms+nt=1. 由于 $\mathbb{Z}_m\otimes\mathbb{Z}_n$ 由 $1\otimes 1$ 生成,我们只用证明 $1\otimes 1=0$ 即可. 事实上, $(ms)(1\otimes 1)=(ms)\otimes 1=0\otimes 1=0$, $(nt)(1\otimes 1)=1\otimes (nt)=1\otimes 0=0$ 但是 $(ms+nt)(1\otimes 1)=1\otimes 1=0$,故 $\mathbb{Z}_m\otimes\mathbb{Z}_n=0$

2. 取 $f = id_a, g$ 为典范同态,那么 $a \xrightarrow{f} A \xrightarrow{g} A/a \to 0$ 是正合的. 与 M 做张量积得到正合列 $a \otimes M \xrightarrow{\tilde{f}} A \otimes M \xrightarrow{\tilde{g}} (A/a) \otimes M \to 0$. 定义同态 $h: a \otimes M \to a(A \otimes M)$ 为 $h(a \otimes m) = a(e \otimes m) = a \otimes m$, 显然为单射,再由 $a(A \otimes M) = \left\{\sum_{i=1}^n a_i(A_i \otimes m_i)\right\} = \left\{\sum_{i=1}^n a_i' \otimes m_i\right\}$,故 h 又为满射,从而是一个同构. 故有 $a \otimes M \cong a(A \otimes M) \cong aM$. 再由 $ker\tilde{g} = Im\tilde{f} = a \otimes M \cong aM$, $A \otimes M \cong M$, 得到 $(A/a) \otimes M \cong (A \otimes M)/(a \otimes M) \cong M \otimes aM$.

3. 设 m 为 A 的极大理想,则 k=A/m 为域,设 $M_k=k\otimes_A M\cong M/mM,N_k=k\otimes_A N\cong N/mN$.由 $M\otimes_A N=0\Rightarrow M\otimes_A N\otimes_A k=M\otimes_A (N\otimes_A k)=M\otimes_A N_k=0$.利用习题 2.15 我们有 $M_k\otimes_k N_k=(M\otimes_A k)\otimes_k N_k\cong M\otimes_A (k\otimes_k N_k)\cong M\otimes_A N_k=0$,注意到 M_k,N_k 为域上向量空间.故我们有 $M_k=0$,或 $N_k=0$.当 $M_k=0$ 时由 Nakayama引理导出的命题 2.8,取 $0\in M$,它在 M_k 中的像为 0 且生成 M_k ,故 0 生成 M,则 M=0.证毕.

4. 我们先证明: 对于任意的 A 模 N 有 A 模同构

$$\varphi_N: \left(\bigoplus_{i\in I} M_i\right) \otimes_A N \to \sum_{i\in I} (M_i \otimes_A N)$$
$$(x_i) \otimes y \to (x_i \otimes y)$$

其中 $x_i \in M_i, (x_i) \in \bigoplus_{i \in I} M_i, y \in N$. 事实上, $(x_i) \times y \to (x_i \times y)$ 定义了 $\bigoplus_{i \in I} M_i \times N$ 到 $\bigoplus_{i \in I} (M_i \otimes_A N)$ 的一个双线性映射. 由张量积定义可知 φ_N 是一个良定义的 A 模同态, 反之令 l_i 为 M_i 到 $\bigoplus_{i \in I} M_i$ 的典范嵌入, 则

 $l_i \otimes id_N$ 给出由 $M_i \otimes_A N$ 到 $(\bigoplus_{i \in I} M_i) \otimes_A N$ 的模同态. 故存在模同态

$$\psi_N : \bigoplus_{i \in I} (M_i \otimes_A N) \to \left(\bigoplus_{i \in I} M_i\right) \otimes_A N$$
$$(x_i \otimes y) \to (x_i) \otimes y$$

易见 φ_N 与 ψ_N 互逆, 故 φ 是模同构. 其次容易验证上述同构 φ_N 是自然的. 对于任意的 A 模的单同态 $\alpha: N \to T$, 显然 $id_{M_i} \otimes \alpha: M_i \otimes_A N \to M_i \otimes_A T$ 都是单射 $(\forall i \in I)$ 当且仅当

$$\alpha^* : \bigoplus_{i \in I} (M_i \otimes_A N) \to \bigoplus_{i \in I} (M_i \otimes_A T)$$

是单射. 由同构 φ 的自然性 α^* 是单射当且仅当

$$id \otimes \alpha : \left(\bigoplus_{i \in I} M_i\right) \otimes_A N \to \left(\bigoplus_{i \in I} M_i\right) \otimes_A T$$

是单射, 故 $\bigoplus_{i\in I} M_i$ 是平坦的 A 模当且仅当所有的 $M_i(i\in I)$ 是平坦的 A 模.

7. 将正合列 $0 \to p \xrightarrow{f} A \xrightarrow{g} A/a \to 0$ 与 A[x] 做张量积, 由习题 5 知 A[x] 是平坦的, 故得到正合列 $0 \to p \otimes A[x] \xrightarrow{f \otimes 1} A \otimes A[x] \xrightarrow{g \otimes 1} (A/p) \otimes A[x] \to 0$, 利用习题 6, 有 $p \otimes A[x] \cong p[x]$, $(A/p) \otimes A[x] \cong (A/p)[x]$. 则上述正合列可以写成 $0 \to p[x] \xrightarrow{\tilde{f}} A[x] \xrightarrow{\tilde{g}} (A/p)[x] \to 0$. 注意到 (A/p)[x] 为整环上的多项式环亦为整环, 故 $A[x])/p[x] \cong (A/p)[x]$ 也为整环, 那么 p[x] 为素理想.

8.u 诱导的同态 $M/aM \to N/aN$ 为 $m + aM \to u(m) + aN$. 由于这是一个满同态, 故 N/aN 每个陪集至少有一个代表元素包含在 $Im\ u$ 中. 所以 $Im\ u + aN = N$ 注意到 $Im\ u$ 为有限生成模 N 的一个子模,a 为包含在大根中的极大理想, 利用系理 2.7 得到 $N = Im\ u$, 故 u 为满同态.

11. 必要性: 设 m 为 A 中的一个极大理想并设 $\varphi: A^m \to A^n$ 是一个同构. 那

 Δ $1 \otimes \varphi : (A/m) \otimes A^m \to (A/m) \otimes A^n$ 利用习题 2, 得到 $(A/m)^m \to (A/m)^n$ 上的一个同构, 注意到这是域上向量空间的同构, 故 m=n. 充分性显然. 若 m < n 取 $A^m \xrightarrow{\varphi} A^n \xrightarrow{\psi} A^m$, 其中 ψ 为投影, 则 ψ 为满射, 那么 $\psi \circ \varphi$ 也是满射, 则 $\psi \circ \varphi$ 为单射, 则为同构, 但 ψ 显然不可逆, 故矛盾, 所以 $m \geq n$. 12. 设 e_1, \cdots, e_n 为 A^n 的一组基. 由于 $M/\ker \varphi \cong A^m$, 取 e_i 的一组原像 $\overline{u}_i (1 \leq i \leq n)$, 再从陪集中任取一个代表元还记为 u_i . 记 $\{u_1, \cdots u_n\}$ 生成的模为 N. 我们证明 $M = N \oplus \ker \varphi$ 即可得到原命题. 首先由 N 的构造方法可知 $N \cap \ker \varphi$, 且任一 $m \in M$ 都有 $\overline{m} = m + \ker \varphi = u_{i(m)} + \ker \varphi$ 故 $M = N + \ker \varphi$