الإشتقاق

x_0 العدد المشتق في (1

- $\lim_{x \to x_0} \frac{f\left(x\right) f\left(x_0\right)}{x x_0} = l$: نقول إن الدالة f قابلة للإشتقاق في x_0 إذا وجد عدد حقيقي t بحيث
 - $l=f'(x_0)$: العدد l يسمى العدد المشتق للدالة f في a_0 و نكتب •

2) التأويل الهندسي للعدد المشتق

f دالة قابلة للإشتقاق في x_0 ، و C_f المنحنى الممثل للدالة f

: معادلة المماس لمنحنى (C_f) في النقطة التي أفصولها x_0 هي .

$$y = f'(x_0).(x - x_0) + f(x_0)$$

الدالة المشتقة – اشتقاق بعض الدوال الإعتيادية

- . I نقول إن دالة f قابلة للإشتقاق على مجال مفتوح I ، إذا كانت قابلة للإشتقاق في كل نقطة من المجال f
- f ' الدالة المعرفة على I بما يلي : X الدالة المشتقة للدالة X الدالة المشتقة للدالة X الدالة المعرفة على المجال X الدالة المعرفة على X الدالة الدالة المعرفة على X الدالة المعرفة على X الدالة المعرفة على X الدالة الدالة الدالة الدالة المعرفة على X الدالة الدا

بعض الدوال المشتقة لبعض الدوال الإعتيادية

المجال	f'(x)	f(x)
\mathbb{R}	0	k
\mathbb{R}	a	ax
\mathbb{R}	a	ax $ax + b$
\mathbb{R}	2x	x^2
\mathbb{R}	$ \begin{array}{c} 2x \\ nx^{n-1} \end{array} $	$x^n (n \in \mathbb{N}^*)$

]-∞,0[أو]0,+∞[_1	1
	$\sqrt{x^2}$	\overline{x}

4) عمليات على الدوال المشتقة

الشرط	f '	f	
	<i>u</i> '+ <i>v</i> '	u+v	الجمع
	k u '	k .u	k الضرب في عدد حقيقي
	u'v + uv'	u v	الجداء
I لا تنعدم في u	<u>-u'</u>	<u>1</u>	المقلوب
	и	и	
I لا تتعدم في v	$\frac{u'v - uv'}{2}$	<u>u</u>	الخارج
	v^2	ν	
	2u '.u	u^2	المربع
	$nu'u^{n-1}$	$u^n (n \in \mathbb{N}^*)$	الأس

5) مطاريف دالة قابلة للإشتقاق على مجال

رتابة دالة و إشارة مشتقتها:

I يكن I مجالا من $\mathbb R$ و f قابلة للإشتقاق على

- I ثابتة على f (x) = 0 \Leftrightarrow اكل x من f
- I تزایدیهٔ علی f نزایدیهٔ علی f \Leftrightarrow f لکل f من f
- I تناقصية على f (x) $\leq 0 \Leftrightarrow I$ لكل f من f
- و إذا كانت f قابلة للإشتقاق على مجال مفتوح I ، و تقبل مطرافا ف f (f) و النقطة f النقطة f (f) وإن :
- إذا كانت $f'(x_0)=0$ و كانت $f'(x_0)=0$ بذا كانت f تقبل مطرافا في f فإن f نقبل مطرافا في و

التأويل الهندسي:

$$M_{0}ig(x_{0},\!f\left(x_{0}
ight)ig)$$
 عند النقطة و ميل مماس المنحنى المنحنى (C_{f}) عند النقطة $f'(x_{0})$

الماس يكون موازيا لمحور الأفاصيل
$$f'(x_0)=0$$
 إذا كان $f'(x_0)=0$