Lucas Sawade

Graduate Student in Geophysics

✓ lsawade@princeton.edu

lsawade.github.io lsawade

Education

Now – 2018 Ph.D. in Geophysics, Princeton University

Thesis: Earthquake point sources in a heterogeneous Earth.

Supervisor: Jeroen Tromp

2018 - 2016 M.Sc. in Geophysics, University of Bergen

Thesis: Global Common Conversion Point Stacking and its Applications.

Supervisor: Stéphane Rondenay

2016 – **2013** B.Sc. in Geophysics, University of Bergen

Skills

Software Developed and contributed to software for simulating, processing, and visualizing seismic data using HPC resources; Paraview; Implemented Machine and Deep Learning for the detection of reflectors in seismic images

(PyTorch).

Hardware Setup and deployment of floating seismometers (MERMAIDs)

Languages German (native), English (fluent), Norwegian (fluent)

Publications

2022 L. Sawade, S. Beller, W. Lei, and J. Tromp. Global Centroid Moment Tensor Solutions in a Heterogeneous Earth: The CMT3D Catalogue. Geophys. J. Int., 231(3):1727–1738, 07 2022. PDF Supplement

2016 S. Rondenay, K. Spieker, L. Sawade, F. Halpaap, and M. Farestveit. GLIMER: A New Global Database of Teleseismic Receiver Functions for Imaging Earth Structure. Seismological Research Letters, 88(1):39-48, 11 2016. PDF Supplement

2016 Y. Luo, M. D. Long, P. Karabinos, Y. D. Kuiper, S. Rondenay, J. C. Aragon, L. Sawade, and P. Makus. High-resolution ps receiver function imaging of the crust and mantle lithosphere beneath southern new england and tectonic implications. Journal of Geophysical Research: Solid Earth, 126(7):e2021JB022170, 2021. PDF

Teaching Assistantships

Princeton: Freshman Research Seminar – Frederik J. Simons & Adam Maloof.

Introduction to the scientific method with data collection, basic data analysis, and scientific writing using Matlab, and Latex.

Computational Geophysics – Jeroen Tromp.

Implementation of various numerical methods to solve PDEs.

Global Geophysics – Frederik J. Simons.

Introduction to physics relevant for the Earth: Gravity, elasticity, etc.

Natural Disasters - Allan M. Rubin.

Introduction to Geosciences for non-geoscience majors.

Bergen: Introduction to Geophysics – Henk Keers & Stéphane Rondenay.

 $An \ introduction \ to \ most \ physics \ relevant \ for \ Geosciences: \ Gravity, \ elasticity, \ magnetism, \ electrical \ methods, \ and \ more$

Physics of the Solid Earth – Henk Keers & Stéphane Rondenay.

Matlab skills, a deeper understanding of earthquake seismology, wave propagation, gravity, magnetics and plate tectonics.

Seismic Reflection Data: Acquisition and Processing – Rolf Mjelde & Stéphane Rondenay. Introduction to acquisition design and signal processing of reflection seismic data using Matlab

Computational Seismology – Henk Keers & Stéphane Rondenay.

Implementation of various numerical methods to solve ray theoretical and wave propagation problems.

Calculus 101 – Gunnar Fløystad.

Introduction to single and multivariable calculus as a basis for other subjects, such as chemistry, biology, etc.

Awards

2020 Department of Geosciences Graduate Student Teaching Award, Princeton University

2019 SAGE/GAGE - Meeting Scholarly Travel Grant

Funded Proposals

2024 – **2022** National Science Foundation Award #2218859

Collaborative Research: Incorporating SPECFEM3D numerical seismograms in the Global CMT Project.

2023 – 2021 INCITE 2021 – Award for compute time at Oak Ridge National Laboratory's supercomputer SUMMIT. Co-author.

Other Positions

Now – 2019 Princeton Institute for Computational Science and Engineering (PICSciE)
High-Performance Computing support staff (Twice-weekly, 1 hour help sessions)

2013 – 2012 Youth Worker for Stavanger Kommune, Norway.

Event organization focused on music.