

Algèbre Relationnelle Ou comment interroger une base de données ?

Partie 4 : Produit cartésien et jointure

Plan du document

Produit cartésien

But

Ensemble de tous les tuples obtenus par concaténation de chaque tuple de R avec chaque tuple de S

Contraintes

- Binaire
- Schéma du résultat:

-
$$R(a_1, a_2, ..., a_n), S(b_1, b_2, ..., b_p)$$

- T \leftarrow R X S, T(a₁, a₂,, a_n, b₁, b₂, ..., b_p)
- Card $(R \times S) = Card(R) * Card(S)$

Notation

- Notation textuelle : $T \leftarrow R \times S$
- Notation graphique:

Produit cartésien (2)

Étudiant	num	nom	adresse	age
	1	Bélaïd	Maisel	20
	2	Millot	CROUS	20
	3	Silber	Maisel	21

UV	code	nbH	coord
	IO	45	Conan
	BD	21	Lecocq

Étudiant X UV	num	nom	adresse	age	code	nbH	coord
	1	Bélaïd	Maisel	20	IO	45	Conan
	2	Millot	CROUS	20	IO	45	Conan
	3	Silber	Maisel	21	IO	45	Conan
	1	Bélaïd	Maisel	20	BD	21	Lecocq
	2	Millot	CROUS	20	BD	21	Lecocq
	3	Silber	Maisel	21	BD	21	Lecocq

Jointure

But

• Permet d'établir le lien **sémantique** entre les relations

Contraintes

- Binaire
- Schéma du résultat :
 - $R(a_1, a_2, ..., a_n), S(b_1, b_2, ..., b_p)$
 - $T \leftarrow R \mid S \mid T(a_1, a_2,, a_n, b_1, b_2, ..., b_p)$

Notation

- Notation textuelle : $T \leftarrow R \times S$ condition
- Notation graphique:

1^{er} exemple de jointure

Étudiant	<u>num</u>	nom	adresse	age
	1	D/1-21	N / - ' 1	20
	1	Bélaïd	Maisel	20
	2	Millot	CROUS	20
	3	Silber	Maisel	21

Étudiant num=Chambre.numÉtudiant

Chambre	<u>no</u>	prix	numÉtudiant
	10	200	3
	21	150	2

Étudiant M	<u>num</u>	nom	adresse	age	<u>no</u>	prix	numÉtudiant
Chambre							
	2	Millot	CROUS	20	21	150	2
	3	Silber	Maisel	21	10	200	3

- 1 tuple de Chambre → 1 tuple de résultat
- 1 tuple de Étudiant \rightarrow 0 ou 1 tuple de résultat
 - On a perdu Bélaïd!

2^{ème} exemple de jointure

Inscrit	numÉtudiant	<u>codeUV</u>	note
	2	BD	10
	1	BD	20
	2	IO	17
	3	IO	18

Inscrit.numÉtudiant=Étudiant.num

Étudiant	<u>num</u>	nom	adresse	age
	1	Bélaïd	Maisel	20
	2	Millot	CROUS	20
	3	Silber	Maisel	21

Inscrit Etudiant numEtudiant=num	<u>num</u>	nom	adresse	age	<u>numÉtudiant</u>	codeUV	note
	1	Bélaïd	Maisel	20	1	BD	20
	2	Millot	CROUS	20	2	IO	17
	2	Millot	CROUS	20	2	BD	10
	3	Silber	Maisel	21	3	IO	18

- 1 tuple de Inscrit → 1 tuple de résultat
- 1 tuple de Étudiant \rightarrow 0 à n tuples de résultat

On a dupliqué Millot!

■ Pas de produit cartésien!

■ Jointure :

- Re lier les informations dispersées dans plusieurs relations
 - Suivre les clés étrangères
- Opérateur essentiel
- Attention opérateur coûteux!

