

Nombres réels approchés

Algo & Prog avec R

A. Malapert, B. Martin, M. Pelleau, et J.-P. Roy 15 octobre 2020

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

Nombres réels approchés

Ou nombres réels inexacts. On parle de nombres flottants (float).

Calcul entier et réel en précision finie

Ils n'ont qu'un nombre limité de chiffres avant et après la "virgule" (le point décimal).

Donc aucun nombre irrationnel!

Approximation de π

```
pi
[1] 3.141593
> sprintf('%.17f',pi)
[1] "3.14159265358979312"
> typeof(pi)
[1] "double"
```

Approximation de $\sqrt{2}$

```
> sqrt(2)
[1] 1.414214
> sprintf('%.17f', sqrt(2) ** 2)
[1] "2.0000000000000044"
> sqrt(2) ** 2 == 2
[1] FALSE
```

```
Mais,
```

```
\pi = 3.14159265358979323...
```

Nombres rationnels

Les nombres rationnels peuvent être représentés sous la forme d'une fraction, par exemple $\frac{1}{10}$.

- ▶ Le nombre $\frac{1}{10} = (0.1)_{10}$, par exemple, est simple dans le système décimal.
- Mais, il possède une infinité de chiffres après la virgule dans le système binaire!

Lorsque R affiche une valeur approchée, ce n'est qu'une approximation de la véritable valeur interne de la machine :

```
> 0.1 # quelle est la valeur de 0.1 ?
[1] 0.1 # ceci est une illusion !
```

La fonction print ou printf permet de voir (en décimal) la véritable représentation en machine de $0.1~\rm qui~n'est~pas~0.1~mais$:

```
> print(0.1,digits=17)
[1] 0.1000000000000001
```

Représentation des nombres réels

- Les ressources d'un ordinateur étant limitées, on représente seulement un sous-ensemble des réels de cardinal fini.
- ► Ces éléments sont appelés nombres à virgule flottante.
- Leurs propriétés sont différentes de celles des réels.

Problèmes et limitations

- Les nombres et les calculs sont nécessairement arrondis.
- ▶ Il y a des erreurs d'arrondi et de précision.
- On ne peut plus faire les opérations de façon transparente.
- L'ordre des opérations peut changer les résultats.

Le zéro n'est plus unique!

```
> 10^20 + 1 == 10^20

[1] TRUE

> 10^20 + 2 == 10^20

[1] TRUE
```

En math, il existe un unique nombre y tel que x + y = x, le zéro!

Égalité entre nombres flottants

Le calcul sur des nombres approchés étant par définition INEXACT, on évitera sous peine de surprises désagréables de questionner l'ÉGALITÉ en présence de nombres approchés!

```
> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 0.7

[1] TRUE
> 0.1 * 7 == 0.7

[1] FALSE
> 0.1 + 0.1 + 0.1 == 0.3

[1] FALSE
> 0.1 * 3 == 0.3

[1] FALSE
```

Le domaine du calcul approché est TRÈS difficile, et prévoir à l'avance le nombre exact de décimales correctes lors d'un résultat de calcul reste réservé aux spécialistes d'analyse Numérique (brrr) . . .

Alors que faire? Remplacer l'égalité par une précision h

```
a == b # BAD !
```

```
abs(a - b) < h # GOOD !
```

Autres problèmes avec les nombres flottants

Une boucle infinie?

```
x <- 1
while( x > 0 ) {
  print(x)
  x <- x / 2
}</pre>
```

Est-ce que cette boucle s'arrête? En math? En info?

Annulation catastrophique $x^2 - y^2$

```
> y <- 2**50

> x <- y + 1

> z1 <- x**2 - y**2 # appliquer directement la formule

> z2 <- (x - y)*(x + y) # appliquer une identité remarquable

> z2 - z1 # Est-ce que les résultats sont identiques ?

[1] 1
```

Exemple : approximation de \sqrt{r}

Par la méthode des tangentes de Newton (1669).

Soit à calculer la racine carrée approchée d'un nombre réel r > 0, par exemple $\sqrt{2}$, sans utiliser sqrt!

Newton

Si a est une approximation de \sqrt{r} alors :

$$b=\frac{1}{2}(a+\frac{r}{a})$$

est une approximation encore meilleure! Pourquoi? Cf TD.

Nous allons développer cet algorithme en répondant à trois questions :

ITÉRATION Comment améliorer l'approximation courante?

TERMINAISON Mon approximation courante a est-elle assez bonne?

INITIALISATION Comment initialiser la première approximation?

Algorithme d'approximation de \sqrt{r}

ITÉRATION

Pour améliorer l'approximation, il suffit d'appliquer la formule de Newton, qui fait approcher a de \sqrt{r} :

```
a = 0.5 * (a + r / a)
```

TERMINAISON

Mon approximation courante a est-elle assez bonne? Elle est assez bonne lorsque a est très proche de \sqrt{r} . Notons h la variable dénotant la précision, par exemple $h=2^{-20}$.

```
abs(a*a - r) < h
```

INITIALISATION

Comment initialiser l'approximation ? En fait, les maths sous-jacentes à la technique de Newton montrent que n'importe quel réel a>0 convient :

```
a = 1
```

Programme d'approximation de \sqrt{r}

```
Racine <- function(r, h = 2**(-10)) {
    a <- 1
    while( abs(a*a -r) >= h) {
        print(a)
        a <- 0.5 * (a + r/a)
    }
    return(a)
}</pre>
```

```
> approx <- Racine(r = 2, h = 10**(-10))
[1] 1
[1] 1.5
[1] 1.416667
[1] 1.414216
> print(approx, digit = 15)
[1] 1.41421356237469
> print(sqrt(2), digit = 15)
[1] 1.4142135623731
```

Observation

La méthode de Newton converge rapidement vers le résultat.

Mais d'où vient la formule de Newton $b = \frac{1}{2}(a + \frac{r}{a})$?

D'un simple calcul de tangentes (cf TD ou wikipedia) . . .

Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R

Répartition de flottants 6 bits sur la droite réelle

