Lecture Notes from Differential Geometry (Michaelmas 2021)

Isaac Martin Last compiled March 9, 2022

2

Contents

1 Galois Cohomology

§ Lecture 1

Recorded: 2022-03-09 Notes: 2022-03-09

Corollary 0.1. If $E[n] \subseteq K(K)$ then $\mu_n \subseteq K$, where μ_n is the set of *n*th roots of unity in \overline{K} .

Proof: If e_n is nondegenerate then there exist $S, T \in E[n]$ such that $e_n(S, T)$ is a primitive n^{th} root of unit, say ζ_n . Then $\sigma(\zeta_n) = e_n(\sigma S, \sigma T) = e_n(S, T) = \zeta_n$ for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$. The first equality follows from Galois equivalence and the second since $S, T \in E(K)$. Therefore $\zeta_n \in K$.

Example 0.2. There exists no E/\mathbb{Q} such that $E(\mathbb{Q})_{tors} \cong (\mathbb{Z}/3\mathbb{Z})^2$.

Remark 0.3. In fact, the Weil pairing is alternating, i.e. $e_n(T,T) = 1$ for all $T \in E[n]$. In particular, expanding $e_n(S+T,S+T)$ show $e_n(S,T) = e_n(T,S)^{-1}$.

1 Galois Cohomology

Throughout this section, G is a group and A is a G-module, i.e. and abelian group with an action of G via group homomorphisms. That is, we have a map $G \to \operatorname{Aut}(A)$ where $\operatorname{Aut}(A)$ is the group of abelian group homomorphisms of A, and $g \cdot a = g(a)$. To say that A is a G-module is equivalent to saying that A is a $\mathbb{Z}[G]$ -module.

Definition 1.1. We set

$$H^0(G,A) = A^G = \{ a \in A \mid \sigma(a) = a, \forall \sigma \in G \}.$$

We further set

$$C^{1}(G,A) = \{ \text{maps } G \longrightarrow A \}$$
 "cochains"
$$Z^{1}(G,A) = \{ (a_{\sigma})_{\sigma \in G} \mid a_{\sigma\tau} = \sigma(a_{\tau}) + a_{\sigma} \}$$
 "cocycles"
$$B^{1}(G,A) = \{ (\sigma b - b)_{\sigma \in G} \mid b \in A \}$$
 "coboundariers"

and we have inclusions $B^1(G,A) \subseteq Z^1(G,A) \subseteq C^1(G,A)$. We define $H^1(G,A) = Z^1(G,A)/B^1(G,A)$.

Remark 1.2. If G acts trivially on A, then $H^1(G,A) = \text{Hom}(G,A)$.

Theorem 1.3. A short exact sequence of G-modules

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

gives rise to a long exact sequence of abelian groups

$$0 \longrightarrow A^G \xrightarrow{\phi} B^G \xrightarrow{\psi} C^G \xrightarrow{\delta} H^1(G,A) \xrightarrow{\phi} H^1(G,B) \xrightarrow{\psi} H^1(G,C) \longrightarrow \dots$$

where we stop before $H^2(G,A)$ because we have yet to define it. The map δ arises from the snake lemma.

Definition 1.4. Let $c \in C^G$. Then there exists a $b \in B$ such that $\psi(b) = c$. Then

$$\psi(\sigma b - b) = \sigma(c) - c = 0$$

for all $\sigma \in G$. This means $\sigma b - b = \phi(a_{\sigma})$ for some $a_{\sigma} \in A$. One checks that $(a_{\sigma})_{\sigma \in G} \in Z^{1}(G,A)$. We define $\delta(c) = \text{chars of } (a_{\sigma})_{\sigma \in G} \text{ in } H^{1}(G,A)$.

Theorem 1.5. Let A be a G-module $H \subseteq G$ a normal subgroup. Then there is an inflation-restriction exact sequence

$$0 \longrightarrow H^{1}(G/H, A^{H}) \xrightarrow{\inf} H^{1}(G, A) \xrightarrow{\operatorname{res}} H^{1}(H, A)$$

Proof: Omitted. □

Let K be a perfect field. $\operatorname{Gal}(\overline{K}/K)$ is then a topological group with basis of open subgroups. The sets $\operatorname{Gal}(\overline{K}/L)$ for $[L:K] < \infty$.

If $G = \operatorname{Gal}(\overline{K}/K)$ then we modify the definition of $H^1(G,A)$ by insisting

- 1. The stabilizer of each $a \in A$ is an open subgroup of G.
- 2. All cochains $G \rightarrow A$ are continuous where A is given by the discrete topology.

Then

$$H^1(\operatorname{Gal}(\overline{K}/K),A) = \varinjlim_{L,\ L/K \text{finite Galois}} H^1(\operatorname{Gal}(L/K),A^{\operatorname{Gal}(\overline{K}/L)}).$$

The direct limit is with respect to inflation maps (what are inflation maps?).

Theorem 1.6 (Hilbert's Theorem 90). Let L/K be a finite Galois extension. Then $H^1(Gal(L/K), L^*) = 0$.

Proof: Let $G = \operatorname{Gal}(L/K)$. Let $(a_{\sigma})_{\sigma \in G} \in Z^1(G, L^*)$. Distinct automorphisms are linearly independent, hence there exists some $y \in L$ such that

$$\underbrace{\sum_{\tau \in G} a_{\tau}^{-1} \tau(y)}_{r} \neq 0.$$

For $\sigma \in G$,

$$\sigma(x) = \sum_{\tau \in G} \sigma(a_\tau)^{-1} \sigma \tau(y) = a_\sigma \sum_{\tau \in G} a_\sigma^{-1} \sigma \tau(y) = a_\sigma \cdot x.$$

Therefore $a_{\sigma} = \sigma(x)/x \implies (a_{\sigma})_{\sigma \in G} \in B^1(G, L^*)$. Hence $H^1(G, L^*)$.

Corollary 1.7. $H^1(\text{Gal}(\overline{K}/K), \overline{K}^*) = 0$.

Application: Assume char $K \not | n$. There is an exact sequence of $Gal(\overline{K}/K)$ -modules

$$0 \longrightarrow \mu_n \longrightarrow \overline{K}^* \xrightarrow[x \longmapsto x^n]{} \overline{K}^* \longrightarrow 0.$$

Have a long exact sequence

$$K^* \xrightarrow[x \mapsto x^n]{} K^* \longrightarrow H^1(Gal(\overline{K}/K), \mu_n) \longrightarrow H^1(Gal(\overline{K}/K), \overline{K}^*),$$

but $H^1(\operatorname{Gal}(\overline{K}/K), \overline{K}^*) = 0$ by Theorem (1.6). Therefore $H^1(\operatorname{Gal}(\overline{K}/K), \mu_n) \cong K^*/(K^*)^n$. If $\mu_n \subseteq K$ then $\operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), \mu_n) \cong K^*/(K^*)^n$.

If L/K is a finite Galois extension then $\operatorname{Gal}(\overline{K}/K) \stackrel{\pi}{\longrightarrow} \operatorname{Gal}(L/K)$ and hence

$$\operatorname{Hom}(\operatorname{Gal}(L,K),\mu_n) \hookrightarrow \operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(\overline{K}/K),\mu_n) \cong K^*/(K^*)^n,$$

where the above map is given by $\chi \mapsto \chi \circ \pi$. The image is a finite subgroup $\Delta \subseteq K^*/(K^*)^n$. If Gal(L/K) is abelian of exponent dividing n then

$$[L:K] = |\operatorname{Gal}(L/K)| = |\operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n)| = |\Delta|.$$

Compare to Theorem 11.2 from lectures Fix numbering.

Notation: We'll write $H^1(K, -) = H^1(\text{Gal}(\overline{K}/K), -)$ to avoid writing Gal and \overline{K} every time.

Lemma 1.8. Let $[K:\mathbb{Q}_p]<\infty$. Then

$$\ker(H^1(K,\mu_n) \longrightarrow H^1(K^{nr},\mu_n)) \subseteq \{x \in K^*/(K^*) \mid v(x) \equiv 0 \pmod{n}\}.$$

remember that K^{nr} is the maximal unramified extension of K.

Proof: By Theorem (1.6), identify H^1