Guía Detallada del Desafío Final (Módulo 4)

¡Liderazgo Científico - Grand Challenge!

Este reto final es la culminación del curso. Pondrás en práctica todo lo aprendido en los Módulos 1 a 3 para analizar un problema real, usando ciencia de datos y pensamiento sistémico. Trabajarás en equipo con 5-6 personas usando un dataset asignado.

Paso 1: Definir el Problema

- Lee la pregunta general asignada a tu conjunto de datos.
- Reformula esa pregunta según lo que observes y quieras investigar.
- Analiza el contexto: ¿A quién afecta este problema? ¿Por qué es importante abordarlo?
- Escribe una versión refinada de tu pregunta de investigación.

Ejemplo: Pregunta original: ¿Cómo se distribuyen los delitos a nivel nacional? Pregunta refinada: ¿Qué regiones muestran mayor concentración de delitos de violencia familiar y cuáles podrían ser las causas estructurales?

Paso 2: Limpieza y Exploración de Datos

- Revisa tu dataset. ¿Tiene datos faltantes o mal formateados?
- Organiza las variables que usarás: tipos, nombres, unidades.
- Haz análisis descriptivos:
 - Univariado (una variable): frecuencias, promedios, mínimos/máximos.
 - o Bivariado: relaciones entre dos variables (por ejemplo, edad y tipo de delito).
- Identifica posibles patrones o outliers (valores extremos).

Consejo: Usa tablas cruzadas y gráficos simples para descubrir relaciones inesperadas.

Paso 3: Visualizaciones Reveladoras ("Money Plots")

- Genera varias gráficas:
 - Barras, histogramas, mapas, gráficos de líneas, dispersión, etc.
- Selecciona tus mejores 2-3 "money plots": los que comunican con claridad una tendencia clave.
- Refina el diseño:
 - o Títulos descriptivos, ejes legibles, colores relevantes.
 - Evita saturación visual: ¡menos es más!

Ejemplo: Un gráfico de barras que muestra brechas en acceso a educación superior entre zonas rurales y urbanas.

Paso 4: Formular Hipótesis

- Pregunta: ¿Por qué vemos estos patrones en los datos?
- Elabora una o dos hipótesis que expliquen los resultados.
- Considera factores sociales, económicos, institucionales o culturales.

Ejemplo de hipótesis: La desigualdad en acceso a educación superior se debe a menor presencia de docentes calificados en zonas rurales.

Paso 5: Aplicar Pensamiento Sistémico

Modelo Iceberg

- Identifica:
 - Evento observable (los datos).
 - o Patrones o tendencias.
 - o Estructuras que generan esos patrones.
 - Modelos mentales subyacentes.

Diagrama Causal (CLD)

- Relaciona variables clave en tu sistema.
- Usa flechas con signo (+ o −) para indicar relaciones.
- Identifica bucles reforzadores (viciosos o virtuosos) o balanceadores.

Mapa de Actores

- Enumera instituciones, grupos y personas claves involucradas.
- Conecta a los actores según relaciones de poder, colaboración o conflicto.
- Evalúa: ¿Quién puede ayudar o bloquear una solución?

Puntos de Apalancamiento

- Identifica 2 o 3 lugares donde una pequeña intervención podría generar gran impacto.
- Prioriza acciones profundas (estructuras, modelos mentales) sobre síntomas.

Paso 6: Formular Recomendaciones

- Propuestas de acción concretas.
- Justificadas con los datos y el análisis sistémico.
- Considera:
 - ¿Quién debe implementarla?
 - ¿Qué recursos requiere?

o ¿A qué nivel actúa (evento, estructura, modelo mental)?

Ejemplo: Diseñar una política de incentivos para atraer docentes calificados a zonas rurales.

Producto Final: Presentación (10 minutos)

Tu presentación debe cubrir: 1. Problema y pregunta de investigación. 2. Dataset y principales hallazgos. 3. Visualizaciones (money plots). 4. Hipótesis y análisis sistémico. 5. Propuestas justificadas.

Rúbrica de Evaluación (1 a 5 puntos por criterio)

Categoría	Descripción
Definición del problema	Claridad, acotación, relevancia pública
Análisis de datos	Rigor técnico, interpretación correcta, visualizaciones de calidad
Pensamiento sistémico	Aplicación del iceberg, bucles, actores, puntos de apalancamiento
Recomendaciones	Creatividad, viabilidad, conexión con evidencia y sistema
Comunicación y narrativa	Claridad de ideas, estructura, diseño visual, uso de storytelling con datos

Consejos Clave

- Usa el tiempo sabiamente: distribuye el trabajo en el equipo.
- Practiquen su presentación: ¡no improvisen!
- Sean creativos, rigurosos y propositivos.
- Recuerden: están practicando liderazgo científico real.