

- Tentative Specification
- Preliminary Specification
- Approval Specification

MODEL NO.: R300M1

SUFFIX: L01

Customer:**APPROVED BY****SIGNATURE**Name / Title

Note

Please return 1 copy for your confirmation with your signature and comments.

核准時間	部門	審核	角色	投票
2011-03-14 16:09:50	APPL 產品管理處	yuhsiang.chang (張喻翔/514-10922)	Director	Accept

CONTENTS

REVISION HISTORY	-----	3
1. GENERAL DESCRIPTION	-----	4
1.1 OVERVIEW		
1.2 FEATURES		
1.3 APPLICATION		
1.4 GENERAL SPECIFICATION		
1.5 MECHANICAL SPECIFICATION		
2. ABSOLUTE MAXIMUM RATINGS	-----	5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT		
2.2 ELECTRICAL ABSOLUTE RATINGS		
2.2.1 TFT LCD MODULE		
2.2.2 BACKLIGHT UNIT		
3. ELECTRICAL CHARACTERISTICS	-----	6
3.1 TFT LCD MODULE		
3.2 BACKLIGHT UNIT		
3.3 INVERTER ELECTRICAL CHARACTERISTICS		
4. BLOCK DIAGRAM	-----	11
4.1 TFT LCD MODULE		
4.2 BACKLIGHT UNIT		
5. INPUT TERMINAL PIN ASSIGNMENT	-----	12
5.1 TFT LCD MODULE (CN1)		
5.2 TFT LCD MODULE (CN2)		
5.3 LVDS INPUT DATA ORDER		
5.4 DC/DC CONNECTOR SIGNAL		
5.5 INVERTER INPUT SIGNAL		
5.6 COLOR DATA INPUT ASSIGNMENT		
6. INTERFACE TIMING	-----	17
6.1 INPUT SIGNAL TIMING SPECIFICATION		
6.2 POWER ON/OFF SEQUENCE		
7. OPTICAL CHARACTERISTICS	-----	21
7.1 OPTICAL SPECIFICATION		
7.2 IMAGE RETENTION		
8. PACKAGING	-----	24
8.1 PACKING SPECIFICATION		
8.2 PACKING METHOD		
9. DEFINITION OF LABEL	-----	26
10. PRECAUTIONS	-----	27
10.1 ASSEMBLY AND HANDLING PRECAUTION		
10.2 SAFETY PRECAUTION		
11. MECHANICAL CHARACTERISTICS	-----	28
11.1 Front side		
11.2 Rear side		

REVISION HISTORY

Version	Date	Section	Description
Ver 2.0	Jan.3, '11	All	R300M1-L01 Approval Specifications is first issued.
Ver 2.1	Feb.17,'11	2.2.2 3.2 3.3 4.1 5.5.1 5.5.2 6.1	Max lamp current = 5.8mA Note (1)(2) @ I_L = 5.3mA Lamp Input Voltage Typ 920V _{RMS} @ I_L = 5.3 mA Lamp Current Min. 4.8mA, Typ. 5.3mA, Max. 5.8mA Note(5) I_L = 4.8 ~ 5.8 mA Item2 Input current (@Vin=24V) → Typ. 3.4A Item3 Input power → Typ. 81W, Max 98W Item5 VDIM Output current control(MIN) → Min. 3.0V, Max. 3.15V Item8 Output current, VDIM=0V → Min. 4.8mA, Typ. 5.3mA, Max 5.8mA CN8 Inverter CONNECTOR → SM14B-PH-SM6-K-TB(HF) PIN12 Inverter On/Off control (5V: On, 0V:Off) Note (1)Connector Part No.: SM14B-PH-SM6-K-TB (HF) (JST) or equivalent Add Output Connector : CP042CP1MR0-NH (CVILUX) or equivalent Note (2) Figure update

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

R300M1-L01 is a 30.0" TFT Liquid Crystal Display module with Backlight unit and two port 41 pins 2ch-LVDS interface. This module supports 4096 x 2600 DQSXGA screen and can display grayscale driven by 10bit drivers. The LCD module includes built-in inverter for Backlight.

1.2 FEATURES

- This specification applies to the Type 30.0" Monochrome TFT LCD Module Model R300M1-L01. This module includes an inverter card for the backlight.
- The screen format is intended to support DQSXGA 4096(H) x 2600(V) resolution.
- Supported gray scale is 10-bits data per Uni-pixel
- All input signals are LVDS (Low Voltage Differential Signaling) interface.

1.3 APPLICATION

- This module is design for a TFT LCD Medical Monitor style display unit.

1.4 GENERAL SPECIFICATION

Item	Specification	Unit	Note
Active Area	645.12 (H) x 403.2 (V) (30.0" diagonal)	mm	(1)
Bezel Opening Area	649.2 (H) x 413.5 (V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	4096 x 2600	pixel	-
Pixel Pitch	0.158 (H) x 0.158 (V)	mm	-
Pixel Arrangement	Uni-pixel	-	-
Display Colors	10-bits data per uni-pixel	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 40)	-	-

1.5 MECHANICAL SPECIFICATION

Item	Min.	Typ.	Max.	Unit	Note
Module Size	Horizontal(H)	677.5	678.0	mm	(1)
	Vertical(V)	447.5	448.0	mm	
	Depth(D)	48.5	49.0	mm	
Weight			4600		-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Storage Temperature	T_{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T_{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S_{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. ($T_a \leq 40$ °C).
- (b) Wet-bulb temperature should be 39 °C Max. ($T_a > 40$ °C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.

Note (3) 11ms, half sine wave, 1 time for $\pm X, \pm Y, \pm Z$.

Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Power Supply Voltage	V _{CC}	-0.3	+13.2	V	(1)
Logic Input Voltage	V _{LOGIC}	-0.3	4	V	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Lamp Voltage	V _L	-	1331	V _{RMS}	(1), (2), I _L = 5.3mA
Lamp Current	I _L	-	5.8	mA _{RMS}	
Lamp Frequency	F _L	-	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1.1 TFT LCD MODULE

T_a = 25 ± 2 °C

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	V _{CC}	11.4	12.0	12.6	V	(1)
Ripple Voltage	V _{RP}	-	-	100	mV	(1)
Rush Current	I _{RUSH}	-	-	3.8	A	(2)
Power Supply Current	White	-	0.82	1.148	A	(3)a
	Black	-	0.43	0.602	A	(3)b
	Vertical Stripe	-	0.77	1.078	A	(3)c
Power Consumption	P _{LCD}	-	9.84	13.776	W	(4)
Logic input high voltage	V _{IH}	2.64	-	-	V	
Logic input low voltage	V _{IL}	-	-	0.66	V	
LVDS differential input voltage	V _{ID}	100	-	600	mV	
LVDS common input voltage	V _{IC}	-	1.2	-	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at $V_{CC} = 12.0$ V, $T_a = 25 \pm 2$ °C, $f_v = 50$ Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

c. Vertical Stripe Pattern

Active Area

Active Area

Note(4) The power consumption is specified at the pattern with the maximum current.

3.1.2 Vcc Power Dip Condition:

Dip condition: $10.2V \leq V_{cc} \leq 11.1V$, $T_d \leq 20ms$

3.2 BACKLIGHT UNIT

 $T_a = 25 \pm 2 {}^\circ\text{C}$

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Lamp Input Voltage	V_L	-	920	-	V_{RMS}	($I_L = 5.3 \text{ mA}$)
Lamp Current	I_L	4.8	5.3	5.8	mA_{RMS}	(1)
Lamp Turn On Voltage	V_S	---	---	1740(25 °C)	V_{RMS}	(2)
		---	---	2140(0 °C)	V_{RMS}	(2)
Operating Frequency	F_L	37	40	43	KHz	(3)
Lamp Life Time	L_{BL}	50,000	---	---	Hrs	(5)

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) $P_L = I_L \times V_L \times \text{CCFLs}$

Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition $T_a = 25 \pm 2 {}^\circ\text{C}$ and $I_L = 4.8 \sim 5.8 \text{ mA}_{\text{RMS}}$ until one of the following events occurs:

- (a) When the brightness becomes or lowers than 50% of its original value.
- (b) When the effective ignition length becomes or lowers than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)

3.3 Inverter Electrical characteristics

Item	Symbol	Description	Min.	Typ.	Max.	Unit
1	Vin	Input voltage	22.8	24	25.2	V
2	Iin	Input current (@Vin=24V)	---	3.4	---	A
3	Pin	Input power	---	81	98	W
4	BLON	Inverter On/Off control: OFF	0	---	0.8	V
		Inverter On/Off control: ON	2	---	5	V
5	VDIM	Output current control VDIM: 0V, maximum brightness VDIM: 3V, minimum brightness	MAX	---	0	---
			MIN	3.0	---	3.15
6	F _b	Burst Mode Frequency	150	160	170	Hz
7	Freq.	Operating frequency	37	40	43	KHz
8	I _{out}	Output current, VDIM=0V	4.8	5.3	5.8	mA

The following chart is the VDIM vs Dimming Range for your reference.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 CN1 (Master) : Left side (Front View)

Signal Description (CN1)

Pin	Name	Description
1	GND	LVDS Ground
2	RXinE0-	Negative LVDS differential data input. Channel E0 (even)
3	RXinE0+	Positive LVDS differential data input. Channel E0 (even)
4	RXinE1-	Negative LVDS differential data input. Channel E1 (even)
5	RXinE1+	Positive LVDS differential data input. Channel E1 (even)
6	RXinE2-	Negative LVDS differential data input. Channel E2 (even)
7	RXinE2+	Positive LVDS differential data input. Channel E2 (even)
8	GND	LVDS Ground
9	RECLKIN-	Negative LVDS differential clock input. (even)
10	RECLKIN+	Positive LVDS differential clock input. (even)
11	GND	LVDS Ground
12	RXinE3-	Negative LVDS differential data input. Channel E3 (even)
13	RXinE3+	Positive LVDS differential data input. Channel E3 (even)
14	RXinE4-	Negative LVDS differential data input. Channel E4 (even)
15	RXinE4+	Positive LVDS differential data input. Channel E4 (even)
16	GND	LVDS Ground
17	RXinO0-	Negative LVDS differential data input. Channel O0 (odd)
18	RXinO0+	Positive LVDS differential data input. Channel O0 (odd)
19	RXinO1-	Negative LVDS differential data input. Channel O1 (odd)
20	RXinO1+	Positive LVDS differential data input. Channel O1 (odd)
21	RXinO2-	Negative LVDS differential data input. Channel O2 (odd)
22	RXinO2+	Positive LVDS differential data input. Channel O2 (odd)
23	GND	LVDS Ground
24	ROCLKIN-	Negative LVDS differential clock input. (odd)
25	ROCLKIN+	Positive LVDS differential clock input. (odd)
26	GND	LVDS Ground
27	RXinO3-	Negative LVDS differential data input. Channel O3 (odd)
28	RXinO3+	Positive LVDS differential data input. Channel O3 (odd)
29	RXinO4-	Negative LVDS differential data input. Channel O4 (odd)
30	RXinO4+	Positive LVDS differential data input. Channel O4 (odd)
31	GND	LVDS Ground
32	GND	Digital Ground
33	NC	Not connection should keep open.
34	LVDS_SEL	LVDS Input Date Order Selection(0V:VESA, 3.3V:JEITA)
35	NC	Not connection should keep open.
36	NC	Not connection should keep open.
37	NC	Not connection should keep open.
38	NC	Not connection should keep open.
39	NC	Not connection should keep open.
40	NC	Not connection should keep open.
41	NC	Not connection should keep open.

5.2 CN2(Slave) : Right side(Front View)

Signal Description (CN2)

Pin	Name	Description
1	GND	LVDS Ground
2	RXinE0-	Negative LVDS differential data input. Channel E0 (even)
3	RXinE0+	Positive LVDS differential data input. Channel E0 (even)
4	RXinE1-	Negative LVDS differential data input. Channel E1 (even)
5	RXinE1+	Positive LVDS differential data input. Channel E1 (even)
6	RXinE2-	Negative LVDS differential data input. Channel E2 (even)
7	RXinE2+	Positive LVDS differential data input. Channel E2 (even)
8	GND	LVDS Ground
9	RECLKIN-	Negative LVDS differential clock input. (even)
10	RECLKIN+	Positive LVDS differential clock input. (even)
11	GND	LVDS Ground
12	RXinE3-	Negative LVDS differential data input. Channel E3 (even)
13	RXinE3+	Positive LVDS differential data input. Channel E3 (even)
14	RXinE4-	Negative LVDS differential data input. Channel E4 (even)
15	RXinE4+	Positive LVDS differential data input. Channel E4 (even)
16	GND	LVDS Ground
17	RXinO0-	Negative LVDS differential data input. Channel O0 (odd)
18	RXinO0+	Positive LVDS differential data input. Channel O0 (odd)
19	RXinO1-	Negative LVDS differential data input. Channel O1 (odd)
20	RXinO1+	Positive LVDS differential data input. Channel O1 (odd)
21	RXinO2-	Negative LVDS differential data input. Channel O2 (odd)
22	RXinO2+	Positive LVDS differential data input. Channel O2 (odd)
23	GND	LVDS Ground
24	ROCLKIN-	Negative LVDS differential clock input. (odd)
25	ROCLKIN+	Positive LVDS differential clock input. (odd)
26	GND	LVDS Ground
27	RXinO3-	Negative LVDS differential data input. Channel O3 (odd)
28	RXinO3+	Positive LVDS differential data input. Channel O3 (odd)
29	RXinO4-	Negative LVDS differential data input. Channel O4 (odd)
30	RXinO4+	Positive LVDS differential data input. Channel O4 (odd)
31	GND	LVDS Ground
32	GND	Digital Ground
33	NC	Not connection should keep open.
34	LVDS_SEL	LVDS Input Date Order Selection(0V:VESA, 3.3V:JEITA)
35	NC	Not connection should keep open.
36	NC	Not connection should keep open.
37	NC	Not connection should keep open.
38	NC	Not connection should keep open.
39	NC	Not connection should keep open.
40	NC	Not connection should keep open.
41	NC	Not connection should keep open.

Note (1) Connector Part No.: FI-RE41S-HF (JAE) or equivalent.

Note (2) User's connector Part No.: FI-RE41HL (JAE).

Note (3) The first pixel is even.

Note (4) Input signal of even and odd clock should be the same timing.

Note (5) The module uses a 100-ohm resistor between positive and negative data lines of each receiver input

5.3 LVDS Input Data Order

VESA mode: LVDS_SEL=L (0V)

LVDS interface receiver required input data mapping table								
LVDS Channel E0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
	Data order	EB0	EA5	EA4	EA3	EA2	EA1	EA0
LVDS Channel E1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Data order	EC1	EC0	EB5	EB4	EB3	EB2	EB1
LVDS Channel E2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
	Data order	DE	NA	NA	EC5	EC4	EC3	EC2
LVDS Channel E3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
	Data order	NA	EC7	EC6	EB7	EB6	EA7	EA6
LVDS Channel E4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
	Data order	NA	EC9	EC8	EB9	EB8	EA9	EA8
LVDS Channel O0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
	Data order	OB0	OA5	OA4	OA3	OA2	OA1	OA0
LVDS Channel O1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Data order	OC1	OC0	OB5	OB4	OB3	OB2	OB1
LVDS Channel O2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
	Data order	DE	NA	NA	OC5	OC4	OC3	OC2
LVDS Channel O3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
	Data order	NA	OC7	OC6	OB7	OB6	OA7	OA6
LVDS Channel O4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
	Data order	NA	OC9	OC8	OB9	OB8	OA9	OA8

JEITA mode: LVDS_SEL=H (3.3V)

LVDS interface receiver required input data mapping table								
LVDS Channel E0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
	Data order	EB4	EA9	EA8	EA7	EA6	EA5	EA4
LVDS Channel E1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Data order	EC5	EC4	EB9	EB8	EB7	EB6	EB5
LVDS Channel E2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
	Data order	DE	NA	NA	EC9	EC8	EC7	EC6
LVDS Channel E3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
	Data order	NA	EC3	EC2	EB3	EB2	EA3	EA2
LVDS Channel E4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
	Data order	NA	EC1	EC0	EB1	EB0	EA1	EA0
LVDS Channel O0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
	Data order	OB4	OA9	OA8	OA7	OA6	OA5	OA4
LVDS Channel O1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Data order	OC5	OC4	OB9	OB8	OB7	OB6	OB5
LVDS Channel O2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
	Data order	DE	NA	NA	OC9	OC8	OC7	OC6
LVDS Channel O3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
	Data order	NA	OC3	OC2	OB3	OB2	OA3	OA2
LVDS Channel O4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
	Data order	NA	OC1	OC0	OB1	OB0	OA1	OA0

5.4 DC/DC Connector Signal (J1/J2)

Pin No.	Symbol	Description
1-4	GND	Ground for Vcc line
5-8	Vcc	+12.0V Power Supply for Control board

Note (1) Connector Part No.: IL-Z-8PL-SMTYE (JAE) or equivalent

Note (2) User's connector Part No.: IL-Z-8S-S125C3 (JAE)

5.5.1 Inverter Input Signal(CN8)

Pin No.	Symbol	Description
1	Vin	Input voltage
2	Vin	Input voltage
3	Vin	Input voltage
4	Vin	Input voltage
5	Vin	Input voltage
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	GND	Ground
11	VDIM	Brightness control (0~3V)
12	BLON	Inverter On/Off control (5V: On, 0V:Off)
13	NC	No Connection
14	NC	No Connection

Note (1) Connector Part No.: SM14B-PH-SM6-K-TB (HF) (JST) or equivalent

Note (2) User's connector Part No.: PHR-14-BK (JST)

5.5.2 Inverter Output Connector

Output Connector : CP042CP1MR0-NH (CVILUX) or equivalent

Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

5.6 Pixel Format Image

Following figure shows the relationship between the input signals and the LCD pixel format image. Each Even pixel data and the right adjacent Odd pixel unit are sampled at the same time.

Pixel Arrangement

	0	1	2	3	...	4092	4093	4094	4095
1th Line	A	B	C	A	A	B	C
2600th Line	A	B	C	A	A	B	C

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATION

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
LVDS Clock	Frequency	F_{clkin}	48.37	51.17	53.00	MHz	
	Period	T_c	18.97	19.54	20.15	ns	
	Input cycle to cycle jitter	T_{rcl}			360	ps	(1)
	Spread spectrum modulation range	$F_{\text{clkin_mod}}$	-3	-	3	%	(2)
	Spread spectrum modulation frequency	F_{SSM}	-	-	300	KHz	
	High Time	T_{ch}	-	4/7	-	T_c	-
LVDS Data	Low Time	T_{cl}	-	3/7	-	T_c	-
	Setup Time	T_{lvs}	600	-	-	ps	(3)
Vertical Active Display Term	Hold Time	T_{lvh}	600	-	-	ps	
	Frame Rate	Fr	-	50	-	Hz	-
	Total	T_v	2615	2624	2650	T_h	$T_v=T_{vd}+T_{vb}$
	Display	T_{vd}	2600	2600	2600	T_h	-
Horizontal Active Display Term	Blank	T_{vb}	T_v-T_{vd}	24	T_v-T_{vd}	T_h	-
	Total	T_h	370	390	400	T_c	$T_h=T_{hd}+T_{hb}$
	Display	T_{hd}	342	342	342	T_c	-
	Blank	T_{hb}	T_h-T_{hd}	48	T_h-T_{hd}	T_c	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. $T_{cl} = |T_1 - T|$, $T_{cl2} = |T_2 - T|$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the inverter power on and signal power on/off sequence should be as the diagram below.

Specifications:

$$0.5 < t_1 \leq 10 \text{ msec}$$

$$0 < t_2 \leq 50 \text{ msec}$$

$$0 < t_5 \leq 50 \text{ msec}$$

$$t_7 \geq 500 \text{ msec}$$

$$t_3 \geq 450 \text{ msec}$$

$$t_4 \geq 90 \text{ msec}$$

$$5 \leq t_6 \leq 100 \text{ msec}$$

Timing Specifications:

$$TBL \geq 10 \text{ msec}$$

Note(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.

Note(2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.

Note(4) T4 should be measured after the module has been fully discharged between power off and on period.

Note(5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS**7.1 OPTICAL SPECIFICATION**

The relative measurement methods of optical characteristics are shown in 7.1. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Typ.	Max.	Unit	Note	
Color Chromaticity	White	Wx	$\theta_x = 0^\circ, \theta_y = 0^\circ$ CS-1000	Typ - 0.03	0.294	Typ + 0.03	cd/m ²	(1), (5)	
		Wy		0.309					
Center Luminance of White		L _C	1000	1250	-		(4), (5)		
Contrast Ratio		CR	800	-	-	-		(2), (5)	
Response Time		T _R	$\theta_x = 0^\circ, \theta_y = 0^\circ$ USB2000	-	20	25	ms	(3)	
		T _F		-	15	20	ms		
White Variation		δW	$\theta_x = 0^\circ, \theta_y = 0^\circ$ USB2000	-	1.25	1.4	-	(5), (6)	
Viewing Angle	Horizontal	θ_x^+	CR ≥ 10 USB2000	80	85	-	Deg.	(1), (5)	
		θ_x^-		80	85	-			
	Vertical	θ_y^+		80	85	-			
		θ_y^-		80	85	-			

Note (1) Definition of Viewing Angle (θ_x, θ_y):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = L_{1023} / L_0$$

L1023: Luminance of gray level 1023

L0: Luminance of gray level 0

$$CR = CR(x)$$

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R , T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point

$$L_C = L(x)$$

$L(x)$ is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 81 points

$$\delta W = \frac{L_{\text{bright}}}{L_{\text{dark}}}$$

Where:

L_{bright} : the Luminance of the point that is brighter than the other point to be compared

L_{dark} : the Luminance of the point that is darker than the other point to be compared

Measuring points are shown in the following Figure.

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 4 LCD modules / 1 Box
- (2) Box dimensions: 775(L) X 320(W) X 550(H) mm
- (3) Weight: approximately 21.19Kg (4 modules per box)

8.2 PACKING METHOD

- (1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
Vibration	ISTA STANDARD Random, Frequency Range: 1 – 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	Non Operation
Dropping Test	1 Angle, 3 Edge, 6 Face, 45.7cm	Non Operation

Figure. 8-1 Packing

For ocean shipping**Figure. 8-2 Packing****For air transport****Figure. 8-3 Packing**

9. DEFINITION OF LABELS

9.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: R300M1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) Serial ID: XXXXXXXYMDLNNNN

Serial

Product Line

Year, Month, Date

CMO Internal Use

CMO Internal Use

Revision

CMO Internal Use

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
X	CMO internal use	-
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4... Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3, ...
NNNN	Serial number	Manufacturing sequence of product

10. PRECAUTIONS**10.1 ASSEMBLY AND HANDLING PRECAUTIONS**

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

NOTES:
 UNSPECIFIED TOLERANCE: $\pm 0.5\text{mm}$.
 2^{**}, MARKS THE DESIGN CRITICAL DIMENSION.
 3^{***}, MARKS THE PROCESS CRITICAL DIMENSION.
 4, USER HOLE ROTATIONAL TORQUE MAX. IS $5\text{kgrf}\cdot\text{cm}$.

Work	Description	Date	Changed By	Approved By	ECN No.	Remark
1	2	3				

Work	Description	Date	Changed By	Approved By	ECN No.	Remark
1	2	3				

NOTES:
 1. UNSPECIFIED TOLERANCE: $\pm 0.5\text{mm}$.
 2.* MARKS THE DESIGN CRITICAL DIMENSION.
 3. (P) MARKS THE PROCESS CRITICAL DIMENSION.
 4. USER HOLE ROTATIONAL TORQUE MAX. IS 5kgf-c
 mm.

91	92	93	94	95	96	97	98																								
GEOGRAPHICAL INFORMATION																															
<table border="1"> <tr> <td>91</td> <td>92</td> <td>93</td> <td>94</td> <td>95</td> <td>96</td> <td>97</td> <td>98</td> </tr> <tr> <td>State</td> <td>District</td> <td>Taluk</td> <td>Village</td> <td>Gram Panchayat</td> <td>Block</td> <td>Block</td> <td>Block</td> </tr> <tr> <td>State</td> <td>District</td> <td>Taluk</td> <td>Village</td> <td>Gram Panchayat</td> <td>Block</td> <td>Block</td> <td>Block</td> </tr> </table>								91	92	93	94	95	96	97	98	State	District	Taluk	Village	Gram Panchayat	Block	Block	Block	State	District	Taluk	Village	Gram Panchayat	Block	Block	Block
91	92	93	94	95	96	97	98																								
State	District	Taluk	Village	Gram Panchayat	Block	Block	Block																								
State	District	Taluk	Village	Gram Panchayat	Block	Block	Block																								