report.md 2024-04-09

Concepts covered

- Next best view
- Information gain equation
 - Uses Bresenham to find free, obstacle and unknown along ray
- Node distance (euclidean)
- LIDAR map
 - Use Bresenham to find free points along ray
 - Uses robot heading to adjust scan.angle_min

Next-best-view exploration (see report_nbv.py)

ros2 launch my_turtlebot turtlebot_simulation.launch.py slam:=True
ros2 run my_turtlebot map_lidar
ros2 run turtlebot3_teleop teleop_keyboard
ros2 run my_turtlebot explore_nbv

blue: known free cells

gray: unknown cells

report.md 2024-04-09

blue: known free cells

gray: unknown cells

Question:

- when I load the partial map, it is being read as binary with {0,100} instead of trinary. how do I avoid this?
- why does it make more sense when I set the max range to be \$3.5 \div 2\$ m? Is the max range half of that?