Computer Vision Single-View Metrology and Camera Properties

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Perspective and 3D Geometry

Camera models and Projective geometry

• What's the mapping between image and world coordiantes?

Projection Matrix and Camera calibration

- What's the projection matrix between scene and image coordinates?
- How to calibrate the projection matrix?

Single view metrology and Camera properties

- How can we measure the size of 3D objects in an image?
- What are the important camera properties?

Photo stitching

 What's the mapping from two images taken without camera translation?

Epipolar Geometry and Stereo Vision

 What's the mapping from two images taken with camera translation?

Structure from motion

How can we recover 3D points from multiple images?

This class

 How can we measure the size of objects in the world from an image?

- What about other camera properties:
 - focal length,
 - field of view,
 - depth of field,
 - aperture,
 - f-number

How can we measure the size of 3D objects from an image?

Perspective cues

Comparing heights

Which is higher – the camera or the man in the parachute?

The cross ratio

- A Projective Invariant
 - Does not change under projective transformations

The cross-ratio of 4 collinear points

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = egin{bmatrix} X_i \ Y_i \ Z_i \ 1 \end{bmatrix}$$

The cross ratio

- A Projective Invariant
 - Does not change under projective transformations

The cross-ratio of 4 collinear points

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = egin{bmatrix} X_i \ Y_i \ Z_i \ 1 \end{bmatrix}$$

Can permute the point ordering

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

scene points represented as

$$\mathbf{P} = \begin{vmatrix} Y \\ Z \\ 1 \end{vmatrix}$$

image points as

$$\mathbf{p} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

$$\frac{\left\|\mathbf{B} - \mathbf{T}\right\| \left\|\infty - \mathbf{R}\right\|}{\left\|\mathbf{B} - \mathbf{R}\right\| \left\|\infty - \mathbf{T}\right\|}$$

scene cross ratio

image points as

 $\mathbf{p} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

$$\frac{\|\mathbf{B} - \mathbf{T}\| \|\infty - \mathbf{R}\|}{\|\mathbf{B} - \mathbf{R}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

scene points represented as

$$\mathbf{P} = \begin{bmatrix} Y \\ Z \\ 1 \end{bmatrix}$$

image points as

$$\mathbf{p} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

$$\frac{\|\mathbf{B} - \mathbf{T}\| \|\infty - \mathbf{R}\|}{\|\mathbf{B} - \mathbf{R}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

image points as $\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

scene points represented as

$$\frac{\|\mathbf{B} - \mathbf{T}\| \|\infty - \mathbf{R}\|}{\|\mathbf{B} - \mathbf{R}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

image points as
$$\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

scene points represented as

$$\frac{\|\mathbf{B} - \mathbf{T}\| \|\infty - \mathbf{R}\|}{\|\mathbf{B} - \mathbf{R}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

$$\frac{\|\mathbf{b} - \mathbf{t}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{b} - \mathbf{r}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

image cross ratio

$$\mathbf{P} = \begin{vmatrix} Y \\ Z \end{vmatrix}$$
 image

image points as
$$\mathbf{p} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b₀ as shown above

What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above

What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b₀ as shown above

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b₀ as shown above

Measuring height

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b₀ as shown above

What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b₀ as shown above

What about focus, aperture, DOF, FOV, etc?

Previous: Pinhole camera

f = focal length

c = center of the camera

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Lenses

A lens focuses parallel rays onto a single focal point

- Focal point at a distance f beyond the plane of the lens
 - *f* is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
- Real cameras use many lenses together (to correct for abnormalities)

Slide source: Seitz

Thin lenses

• Thin lens equation:
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Any object point satisfying this equation is in focus

F-number in Camera

The f-number *N* or f# is given by:

$$N=rac{f}{D}$$

where **f** is the focal length, and **D** is the diameter of the entrance pupil (effective aperture).

F-number in Camera

The f-number *N* or f# is given by:

$$N=rac{f}{D}$$

where **f** is the focal length, and **D** is the diameter of the entrance pupil (effective aperture).

It is also known as the **focal ratio**, **f-ratio**, or **f-stop**.

It is the **reciprocal** of the **relative aperture**.

The f-number is commonly indicated using the format f/N, where N is the f-number.

F-number in Camera

The f-number *N* or f# is given by:

$$N=rac{f}{D}$$

where **f** is the focal length, and **D** is the diameter of the entrance pupil (effective aperture).

It is also known as the **focal ratio**, **f-ratio**, or **f-stop**.

It is the **reciprocal** of the **relative aperture**.

The f-number is commonly indicated using the format f/N, where N is the f-number.

Diagram of decreasing apertures, i.e. increasing f-numbers.

Each aperture has half the lightgathering area of the previous one.

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF

Shrinking the aperture

Why not make the aperture as small as possible?

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects

Shrinking the aperture

FOV depends on focal length and size of the camera retina

$$lpha=2rctanrac{d}{2S_2}$$

FOV depends on focal length and size of the camera retina

$$lpha=2rctanrac{d}{2S_2}$$

To project a sharp image of distant objects:

$$lpha=2rctanrac{d}{2f}$$
 where $f=F$

FOV depends on focal length and size of the camera retina

$$lpha=2rctanrac{d}{2S_2}$$

To project a sharp image of distant objects:

$$lpha=2rctanrac{d}{2f}$$
 where $f=F$

Larger focal length = smaller FOV

85mm

Tripod is must to see

135mm

Ennoun

Field of View / Focal Length

Large FOV, small *f*Camera close to car

Small FOV, large *f*Camera far from the car

Things to remember

- Measure the size of objects in the world from an image?
 - Use perspective cues

- focal length,
- field of view,
- depth of field,
- aperture,
- F-number

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - J. Hays
 - J. Johnson
 - R. Girshick
 - S. Lazebnik
 - K. Grauman
 - Antonio Torralba
 - Rob Fergus
 - Leibe
 - And many more

Next class

