Exercise 1. A topological space is called *irreducible* if it cannot be written as a nontrivial reunion of two closed subsets. An *irreducible component* of a topological space is a maximal irreducible subset (unless otherwise stated, subsets of a topological space are endowed with the induced topology). A topological space is called *noetherian* if every decreasing sequence of closed subsets is stationary.

- (i) Show that an irreducible component is closed.
- (ii) Show that a topological space is the reunion of its irreducible components.
- (iii) Show that a noetherian topological space has only a finite number of irreducible components.
- **Exercise 2.** (i) Let $f: Y \to X$ be a continuous map between topological spaces, and \mathcal{F} a sheaf of sets on X. Show that $(f^{-1}\mathcal{F})_y = \mathcal{F}_{f(y)}$ for any $y \in Y$.
 - (ii) Let now $j: U \to X$ be an open immersion. Give a simple description of the functor j^{-1} . For any sheaf of sets \mathcal{G} on U, we define a sheaf of sets $j_!\mathcal{G}$ on X as the sheafification of the presheaf $j_!\mathcal{G}$ defined by

$$V \mapsto \widetilde{j}_{!}\mathcal{G}(V) = \left\{ \begin{array}{cc} \emptyset & \text{if } V \not\subset U \\ \mathcal{G}(V) & \text{if } V \subset U. \end{array} \right.$$

Show that j^{-1} is right adjoint to $j_!$.

Exercise 3. Let $f: Y \to X$ be a continuous map between topological spaces, and \mathcal{F} a sheaf of sets on X. Show that the square

$$(f^{-1}\mathcal{F})_{et} \longrightarrow \mathcal{F}_{et}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow X$$

is cartesian in the category of topological spaces (the definition is recalled below).

(We say that a commutative square

$$P \xrightarrow{p_A} A$$

$$\downarrow a$$

$$B \xrightarrow{b} X$$

in a category is *cartesian*, and that P is the fiber product fiber product $A \times_X B$ if for any commutative square

$$Q \xrightarrow{q_A} A$$

$$q_B \downarrow \qquad \qquad \downarrow a$$

$$B \xrightarrow{b} X$$

there is a unique morphism $f: Q \to P$ such that $p_A \circ f = q_A$ and $p_B \circ f = q_B$. If the triple (P, p_A, p_B) exists, it is unique up to a unique isomorphism.)