Amendments to the Claims:

Claims 1-30 are pending in this application. Please cancel claims 5, 23-25 and 29, amend claims 1 and 26, and add new claims 31-44 as provided below.

1 1. (currently amended) A data management appliance, comprising: 2 a random-access storage unit storing a forward journal and a backward 3 journal; and 4 control circuitry adapted to receive commands from a host computer 5 system, the control circuitry combining the commands to obtain a net change, the 6 control circuitry deriving an inverse of the net change based on a starting address and 7 lengths associated with the net change, the inverse of the net change recorded as a 8 snapshot in the backward journal, 9 wherein in response to the control circuitry receiving a write command 10 from the computer system, the control circuitry updates the random-access storage 11 unit to include information associated with the write command and 12 in response to a read command including a logical address and a time 13 value, the control circuitry retrieves, from the random-access storage unit, data 14 representing contents of the logical address at a time represented by the time value. 1 2. (original) The data management appliance of claim 1, wherein the 2 write commands are replicated from write commands issued to a primary storage 3 device. 1 3. (original) The data management appliance of claim 1, wherein the 2 write commands are received from the computer system through a replicating 3 controller. 1 4. (original) The data management appliance of claim 1, wherein the 2 write commands are replicated by the computer system.

1	5. (canceled).						
1	6. (original) The data management appliance of claim 1, wherein the						
2	random-access storage unit stores a mirror-in-the-middle (MIM) containing a copy						
3	of contents of a primary storage device at a fixed point in time.						
1	7. (original) The data management appliance of claim 6, wherein the						
2	random-access storage unit stores at least one snapshot containing changes, that when						
3	made to contents of the mirror-in-the-middle (MIM), would result in a previous						
4	version of the contents of the primary storage device.						
1	8. (original) The data management appliance of claim 7, wherein the						
2	control circuitry stores a mapping object, wherein the mapping object maps logical						
3	addresses into physical addresses on the mirror-in-the-middle (MIM) and contained						
4	in the at least one snapshot.						
1	9. (original) The data management appliance of claim 1, wherein the						
2	control circuitry receives commands from the computer system through a storage						
3	network.						
1	10. (original) The data management appliance of claim 1, wherein						
2	the random-access storage unit includes memory.						
1	11. (original) The data management appliance of claim 1, wherein						
2	the random-access storage unit includes a disk.						
1	12. (original) A data management appliance comprising:						
2	a random-access storage unit; and						
3	control circuitry adapted to receive commands from a computer						
4	system,						

5 wherein in response to the control circuitry receiving a write command 6 from the computer system, the control circuitry updates the random-access storage 7 unit to include information associated with the write command; 8 in response to a mount command including a time value, the control 9 circuitry configures itself to perform future read operations with respect to a fixed 10 time represented by the time value; and 11 in response to a read command including a logical address, the control 12 circuitry retrieves, from the random-access storage unit, data representing contents 13 of the logical address at the fixed time. 1 13. (original) The data management appliance of claim 12, wherein 2 the write commands are replicated from write commands issued to a primary storage 3 device. 1 14. (original) The data management appliance of claim 12, wherein 2 the write commands are received from the computer system through a replicating 3 controller. 1 15. (original) The data management appliance of claim 12, wherein 2 the write commands are replicated by the computer system. 1 16. (original) The data management appliance of claim 12, wherein 2 the random-access storage unit stores a forward journal. 1 17. (original) The data management appliance of claim 12, wherein 2 the random-access storage unit stores a mirror-in-the-middle (MIM) containing a copy 3 of contents of a primary storage device at a fixed point in time. 1 18. (original) The data management appliance of claim 17, wherein 2 the random-access storage unit stores at least one snapshot containing changes, that

3

derive an inverse of the net change.

3 when made to contents of the mirror-in-the-middle (MIM), would result in a previous 4 version of the contents of the primary storage device. 1 19. (original) The data management appliance of claim 18, wherein 2 the control circuitry stores a mapping object, wherein the mapping object maps 3 logical addresses into physical addresses on the mirror-in-the-middle (MIM) and 4 contained in the at least one snapshot. 1 20. (original) The data management appliance of claim 12, wherein 2 the control circuitry receives commands from the computer system through a storage 3 network. 1 21. (original) The data management appliance of claim 12, wherein 2 the random-access storage unit includes memory. 1 22. (original) The data management appliance of claim 12, wherein 2 the random-access storage unit includes a disk. 1 23.-25. (canceled). 1 26. (currently amended) The data management appliance of claim 1 2 23 wherein a mirror-in-the-middle is updated to reflect the net change. 1 27. (previously presented) The data management appliance of claim 2 16, wherein commands stored in the forward journal are combined to obtain a net 3 change. 1 28. (previously presented) The data management appliance of claim 2 27, wherein starting address and lengths associated with the net change are used to

1	29. (canceled).					
1	30. (previously presented) The data management appliance of claim					
2	27, wherein a mirror-in-the-middle is updated to reflect the net change.					
1	31. (new) A data management appliance comprising:					
2	a random-access storage unit storing a forward journal including a					
3	plurality of write commands and a backward journal; and					
4	control circuitry adapted to receive the plurality of write commands					
5	from a computer system and to combine the plurality of write commands to obtain a					
6	net change, the control circuitry deriving an inverse of the net change based on					
7	starting address and lengths associated with the net change, the control circuit storing					
8	the inverse of the net change as a snapshot in the backward journal;					
9	wherein in response to the control circuitry receiving a write command					
10	from the computer system, the control circuitry updates the random-access storage					
11	unit to include information associated with the write command;					
12	in response to a mount command including a time value, the control					
13	circuitry configures itself to perform future read operations with respect to a fixed					
14	time represented by the time value; and					
15	in response to a read command including a logical address, the control					
16	circuitry retrieves, from the random-access storage unit, data representing contents					
17	of the logical address at the fixed time.					
1	32. (new) A method of replicating data written to a data storage					
2	system, the method comprising:					
3	creating a mirror-in-the middle (MIM) recording an exact copy of the					
4	data storage system at a fixed point in time;					
5	recording a forward journal holding write events received since the					
6	fixed point in time;					

7	receiving a request to access replicated data as the replicated data						
8	existed at a requested time, the requested time more recent than the fixed point in						
9	time; and						
10	constructing a virtual recovery mapping object (VRMO) from the						
11	forward journal based on the requested time, the VRMO translating received logical						
12	addresses representing locations on the data storage system to physical locations of						
13	the replicated data, the VRMO implemented in a random access structure, the VRMO						
14	referencing replicated data as a copy of data written to the data storage system since						
15	the fixed point in time.						
1	33. (new) The method of replicating data as in claim 32 wherein the						
2	random access structure is a binary search tree.						
1	34. (new) The method of replicating data as in claim 32 wherein the						
2	random access structure is a multi-way search tree.						
1	35. (new) The method of replicating data as in claim 32 wherein the						
2	VRMO is indexed with respect to blocks of data contained in the MIM.						
1	36. (new) The method of replicating data as in claim 32 wherein the						
2	VRMO is indexed with respect to logical addresses contained within the forward						
3	journal.						
1	37. (new) The method of replicating data as in claim 34 wherein the						
2	request to access replicated data is a read request.						
1	38. (new) The method of replicating data as in claim 34 wherein the						
2	request to access replicated data is a mount request.						

1

1		39.	(new)	The method of replicating data as in claim 34 further				
2	comprising:							
3		prod	lucing a	plurality of snapshots from forward journal entries, the				
4	plurality of snapshots reflecting changes in the data storage system over time; and							
5		stori	ng the p	plurality of snapshots in a backward journal.				
1		40.	(new)	The method of replicating data as in claim 39 further				
2	comprising:							
3	updating the MIM as each snapshot is produced;							
4		disca	arding f	orward journal entries used to update the MIM; and				
5		upda	iting the	e fixed point in time.				
1		4.1	, ,					
1		41.	(new)	The method of replicating data as in claim 39 further				
2	comprising:							
3			_	kward journal entries based on the VRMO and entries in				
4	the forward jo							
5		prod	ucing a	new snapshot based on the backward journal entries and				
6	the VRMO.							
1		42	(new) 7	The method of replicating data as in claim 32 wherein the				
2	VPMO is one							
		oraț	Jiuranity	of VRMOs, each VRMO based on a different requested				
3	time.							
1		43.	(new)	The data management appliance of claim 1, wherein the				
2	random-access storage unit stores at least one mapping object, each mapping object							
3	mapping logical addresses into physical addresses for a particular point in time.							
1				The data management appliance of claim 12, wherein the				
2	random-access storage unit stores at least one mapping object, each mapping object							
3	mapping logical addresses into physical addresses for a particular point in time.							