

3D Point Cloud processing and analysis Course_01 Introduction

Massinissa Aouragh:

Faculty of Informatics, Department of Artificial Intelligence Robert Bosch Kft m2j7au@inf.elte.hu

LiDAR (light detection and ranging)

- Active sensor
- Uses EM waves in the optical and infrared wavelengths
- Shorter wavelengths compared to radar
- Better angular resolution than radar but won't see through fog or clouds

2023. 10. 07.

LiDAR types

- **Mechanical scanning**: Set of lasers and detectors rotating mechanically at a frequency from 10 to 30 Hz.
- **Solid state LiDAR**: No mechanical rotating, different way to cover the entire scene:
 - MEMS (Micro-electromechanical system): moving mirrors
 - OPA (Optical phased array): Deliver light pauses to different directions.
 Direction is performed by adjusting the phase of the light

LiDAR types

Flash LiDAR:

- Operates like a flashing camera
- Illuminates the scene by expending a laser beam
- Generates the point cloud in one flash

LiDAR types

The electromagnetic spectrum, highlighting the visible and infrared regions. Illustration: Richard W. Hughes

LiDAR terminology

- Pulse rate: The rate at which the LiDAR is pulsing (KHz)
- Scan frequency: the speed of the scanner's oscillation
- Scan angle or field of view: distance to scan from one end to the other
- Return number: the number of returns coming from a single laser pulse.
- **Intensity Data:** The strength of the of the recorded returned signal. Show the reflectiveness of the object

3D Point Clouds

- Set of points in three-dimensional space
- Represent the surface of the scanned object
- Additional to XYZ point cloud can embed RGB and surface normal
- Unlike 2D images 3D point clouds are unorganized with no order
- Commonly acquired with LiDAR (light detection and ranging)

2023. 10. 07.

Point Cloud processing

Registration:

3D alignment finding a spatial transformation that optimally aligns two-point clouds. Spatial transformation can be further divided:

- Rigid body transformation: distance preserving between any two points (rotation and translation)
- Non-rigid transformation: introducing different forms of deformations (scaling, perspective, affine)

Classification

 The goal is to categorize an object represented by a set of 3D points into one of the predefined classes. The general pipeline is to extract global feature vectors.

• Features can be hand crafted or learned from data like in an

end-end deep networks learning

Semantic segmentation

• Class label is assigned to each point in a point cloud

More accurate point-level understanding of the objects

Can be achieved with clustering-based methods or learning

based methods

Odometry

- The process of determining the position and orientation of an object as it traverses its environment
- To keep track of the position and orientation sensor like GPS, inertial measurement unit (IMU) can be used

Datasets

- ModelNet40:
 - Compilation of around 12308 Computer-aided Design (CAD) models of common objects
 - Includes 40 object classes (Table, Chairs, Airplanes ...)
 - Data is organized in vertices and faces for mesh construction

S3DIS (Stanford 3D Indoor Segmentation)

- A subset of the Stanford 2D-3D-Semantics dataset
- Contains point cloud scanned from 6 indoor areas with 271 rooms
- The point clouds are annotated with 13 categories (floor, wall, door ...)
- The data includes XYZ, RGB

ShapeNet

- Similar to ModelNet40:
 - Compilation of around 57448 Computer-aided Design (CAD) models of common objects
 - Includes 55 object classes (Table, Chairs, Airplanes ...)
 - Data is organized in 3D meshes in obj files

KITTI

 Developed for autonomous driving purposes

Contains RGB images, depth maps and point clouds

Data taken in the streets of Germany

 The point cloud is captured using a Velodyne LiDAR.

KITTI sensor setup

- One Inertial Navigation System
- One Lidar Velodyne HDL-64E
- Two Grayscale cameras
- Two Color cameras
- The laser scanner spins at 10 frames per second, capturing approximately 100k points per cycle.
- The vertical resolution of the laser scanner is 64.
- The camera images are cropped to a size of 1382 x 512 pixels.

KITTI sensor setup

2023. 10. 07.