Compositionality and Generalization in Emergent Languages

Rahma Chaabouni, Eugene Kharitonov, Diane Bouchacourt, Emmanuel Dupoux, Marco Baroni

Introduction

- Compositionality in human languages
 - Efficient strategy where we need to only encode finite set of words & systematic rules to encode infinite meanings.
 - Enables generalization to novel meanings.
- Compositionality in emergent languages
 - To develop communicating neural network agents, we need to enable them to communicate with compositional languages.
 - Neural network agents are general-purpose learners that we can intervene on to assess what affects the degree of compositionality of their languages. This makes the study of emergent communication important for **language evolution**.

Replication process -- understanding the game

- Sender network receives one input i and chooses a sequence of symbols from its vocabulary $V = \{s1, s2..., s_{cvoc}\}$ of size c_{voc} to construct a message m of fixed length c_{len} .
- Receiver network consumes m and outputs \hat{i} .
- Agents are successful if $\hat{i} = i$ (i.e., Receiver reconstructs Sender's input).

Replication process -- understanding the game

- Each input consists of i_{att} attributes, each with i_{val} possible values.
- Messages are of a fixed length c_{len} . At each position j, a symbol s_j is sampled from Sender's vocabulary of size c_{voc} .

Input:

Example of an input i with i_{att} =2. It encodes the second value of the first attribute and the first value of the second attribute.

Message: S1 S2 ····· Sc_{len}

$$V = \{s_1, s_2 ..., s_{c_{voc}}\}$$

Replication process -- understanding agent architecture

- Both agents are implemented as single-layer GRU cells.
 - hidden states of size 500
- Loss: the average cross-entropy between output distributions and Sender's input.

Replication process -- Generalization in emergent languages

- Generalization emerges "naturally" if the input space is large.
 - Input size $|I| = i_{nal}^{i_{att}}$
 - Channel capacity $|C| = c_{voc}^{c_{len}}$
- Sender: |C| >= |I|
- Parameters:
 - --n values=xx --n attributes=xx -vocab size=10 --max len=6 -batch size=5120 --data scaler=60 -n epochs=3000 --sender hidden=500 --receiver hidden=500 -sender entropy coeff=0.5 -sender cell="gru" -receiver cell="gru" --lr=0.001 -receiver emb=30 --sender emb=5 -random seed=9

c_{voc}	5							10	50				100			
(i_{val},i_{att}) Clen	2	3	4	$\{6,8\}$	2	3	4	{6,8}	2	3	4	{6,8}	2	3	4	{6,8}
(4,4)			X	X		X	X	X	X			X	X			X
(5,2)	X	\mathbf{X}	X	X	X	X	X	X	\mathbf{X}			X	X			X
(5,3)		X	X	X		X	X	X	\mathbf{X}			X	X			X
(5,4)			X	X		X	X	X	\mathbf{X}			X	X			X
(10,2)		-	X	X	X	X	X	X	\mathbf{X}			X	X			X
(10,3)				X		-	X	X	\mathbf{X}	\mathbf{X}	X	X	X			X
(10,4)				$\{-, X\}$			-	X		\mathbf{X}	X	X	-	X	\mathbf{X}	X
(16,2)			-	X		X	X	X	\mathbf{X}			X	X			X
(25,2)			-	X		-	X	X	\mathbf{X}			X	X			X
(50,2)				X			-	X	-	\mathbf{X}	\mathbf{X}	X	X	X	\mathbf{X}	X
(100,2)				$\{-, X\}$			-	X		X	X	X	-	X	X	X

Table 3: Grid search. 'X' indicates tested settings with at least one successful run. '-' indicates tested settings without any successful run. Finally, blank cells correspond to settings that were not explored for the reasons indicated in the text.

Replication process -- Generalization in emergent languages

See replication codes & files: https://github.com/yuqing0304/compositionality_replicate

Test accuracy:

```
{'00025(2,5)': {'acc_mean': 0.0, 'acc_sem': 0.0},
'00100(2,10)': {'acc_mean': 0.0125, 'acc_sem': 0.011858541225631423},
'00125(3,5)': {'acc_mean': 0.23333334028720856, 'acc_sem': 0.05868939128794347},
'00256(2,16)': {'acc_mean': 0.527272741496563, 'acc_sem': 0.05269591837361792},
'00256(4,4)': {'acc_mean': 0.5625, 'acc_sem': 0.04050462936504913},
'00625(2,25)': {'acc_mean': 0.8052631676197052, 'acc_sem': 0.015779727972030193},
'00625(4,5)': {'acc_mean': 0.8479999780654908, 'acc_sem': 0.013623509400751192},
'01000(3,10)': {'acc_mean': 0.92777778506279, 'acc_sem': 0.010356306263776276},
'02500(2,50)': {'acc_mean': 0.941666716337204, 'acc_sem': 0.018680427008010262},
'10000(2,100)': {'acc_mean': 0.9543877124786377, 'acc_sem': 0.013494911879231615},
'10000(4,10)': {'acc_mean': 0.9865853190422058, 'acc_sem': 0.004432800984419676}}
acc_mean: mean accuracy (10 different initializations per setting).
acc_sem: standard error of the mean.
```

Replication process -- Generalization in emergent languages

Emergent languages are able to almost perfectly generalize to unseen combinations as long as input size |I| is sufficiently large.

My reflection:

- The code for the EGG framework is heavily encapsulated, so it takes time for me to understand its functioning.
- The hyperparameters used in the paper are needed in order to replicate the same results. It may take a long time to try different hyperparameters (I have tried replicating the experiment mentioned in *Anti-efficient encoding in emergent communication* first. But I haven't replicated the results yet after trying many parameters.)
- I think these experiments are innovative and insightful and I love to play these games, though it takes time for me to be skilled.