1.7.3. Capacitor Aggregations/Configurations

(i) Parallel circuit:

(i=1...N) N capacitors in parallel

(Note: they don't have to be necessarily parallel plate capacitors!)

Can we find an equivalent circuit representation, which describes this configuration by a single capacitance? = total Capacitance Cp

For each
$$C_i: C_i = \frac{Q_i}{u} \Rightarrow Q_i = C_i \cdot U$$

total Qtotal: Qtotal =
$$\sum_{i=1}^{N} Q_i = \sum_{i=1}^{N} C_i \cdot u = u \sum_{i=1}^{N} C_i$$

Qtotal =
$$C_p \cdot U \Rightarrow C_p = \sum_{i=1}^{N} C_i$$
 (1.48)

Qtotal =
$$C_p \cdot u \Rightarrow C_p = \sum_{i=1}^{N} C_i$$
 (1.48)

equivalent Circuit representation: $u \uparrow \rightarrow C_p = \sum_{i=1}^{N} C_i$

(ii) Serial circuit

N capacitors in serial configuration

(Note: they don't have to be necessarily parallel plate capacitors!)

$$Q_1 = Q_2 = Q_3$$
 $Q_3 = Q_4 - \dots = Q_{N+1} = Q_N = Q_1$ are equal $Q_1 = Q_1 = Q_2 = Q_3 = Q_3$

For one capacitor
$$C_i = \frac{Q_i}{U_i} = \frac{Q + otal}{U_i} = 7$$
 $U_i = \frac{1}{C_i}$ $Q + otal$

$$U = \sum_{i=1}^{N} U_i = \sum_{i=1}^{N} \frac{1}{C_i} Q + otal = Q + otal = \frac{N}{i+1} C_i$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = U = C_s$$

$$C_s = \frac{Q + otal}{U} = \frac{Q + otal}{U}$$

$$C_s = \frac{Q + otal}{C}$$

$$C_s = \frac{Q + otal}{U}$$

$$C_s = \frac{Q + otal}{U}$$

$$C_s = \frac{Q + otal}{C}$$

$$C_s = \frac{Q + otal}$$

Plate capacitor is filled with two dielectric layers in arranged side by side in parallel

region	permittivity	area	Surface charge	E-field	D-field	
	Eı	A,	6,	È,	D,	
2	82	A ₂	62	Ē ₂	$\overline{\mathcal{D}}_2$	

Calculate total charge Q and voltage U, and hereof the total capacitance of this arrangement: $C = \frac{Q}{U}$

$$U = \int_{0}^{\infty} E_{z} \cdot e_{z} \cdot e_{z} \cdot dz = E_{z} \cdot d$$

$$Same \quad \text{Voltage in both regions} \Rightarrow U = E_{1}d = E_{2}d \Rightarrow E = d = |E|$$

$$E_{1} = E_{2}$$

$$Since \quad E_{1} \neq E_{2} \Rightarrow |\overline{D}_{1}| \neq |\overline{D}_{2}| \quad \text{since } \overline{D} = \Sigma \overline{E}$$

$$D_{1} \in E_{1} = E_{2}d$$

$$D_{2} = E_{2}E_{2} = E_{2}d$$

$$U = E_{1}d = E_{2}d \Rightarrow E = d = |E|$$

$$E_{1} = E_{2}d \Rightarrow E = d = |E|$$

$$E_{2} = E_{2}d \Rightarrow E = E_{2}d \Rightarrow E = E_{3}d \Rightarrow E = E_{3}$$

(iii) Dielectric layers in series

Plate capacitor is filled with two dielectric materials, which are arranged in series

region	permittivity	area	Surface charge	E-field	D-field
	٤,	A	Stop => Q = Stop · A	Ê	5.
2	Ez	A	6bof => Q = 6bof · A	E ₂	

Calculate total charge Q and voltage U, and hereof the total capacitance of this arrangement: $C_{tot} = \frac{Q}{u}$

· Calculate
$$Q$$
: G top = $f \frac{Q}{A}$

$$G$$
 bottom = $-\frac{Q}{A}$

. We know at Conductor's surface:
$$\vec{D}_1 \cdot \vec{N}_1 = \text{Otop} = \frac{Q}{A}$$
 $\vec{N}_1 = -\vec{N}_2$

$$\vec{D}_2 \cdot \vec{N}_2 = \text{Obst} = -\frac{Q}{A}$$

$$\vec{D}_2 \cdot \vec{N}_1 = \text{Obst} = -\frac{Q}{A}$$

$$\vec{D}_2 \cdot \vec{N}_1 = \text{Obst} = -\frac{Q}{A}$$

$$\vec{D}_2 \cdot \vec{N}_1 = \vec{D}_2 \cdot \vec{N}_1 = \vec{D}_3 \cdot \vec{N}_1 = \vec{D}_4 \cdot \vec{D}_4 \cdot \vec{D}_4 = \vec{D}_4 \cdot \vec{D}_4 = \vec{D}_4 \cdot \vec{D}_4 \cdot \vec{D}_4 \cdot \vec{D}_4 = \vec{D}_4 \cdot \vec{D}_4 \cdot \vec{D}_4 \cdot \vec{D}_4 = \vec{D}_4 \cdot \vec{D}_4 \cdot$$

$$|\overrightarrow{D}_1| = |\overrightarrow{D}_2| \Rightarrow \overrightarrow{D} \text{ is Continuous}$$

$$|\overrightarrow{D}_1| = |\overrightarrow{D}_2| = |\overrightarrow{A}|$$

$$|\overrightarrow{D}_1| = |\overrightarrow{D}_2| = |\overrightarrow{A}|$$

$$|\overrightarrow{D}_1| = |\overrightarrow{D}_2| = |\overrightarrow{A}|$$

