Capítulo 2 | Probabilidade

2.1 Espaço amostral

Definição 2.1

O conjunto de todos os resultados possíveis em um experimento estatístico é chamado de espaço amostral e é representado pelo símbolo *S*.

■ Exemplo 2.1

Considere o experimento de jogo de dados. Se estivermos interessados no número que aparecerá no topo, o espaço amostral será:

$$S_1 = \{1, 2, 3, 4, 5, 6\}.$$

Se estivermos interessados em saber se o número será par ou ímpar, o espaço amostral será simplesmente:

$$S_2 = \{ par, impar \}.$$

Figura 2.1 Diagrama de árvore para o Exemplo 2.2.

Figura 2.2 Diagrama de árvore para o Exemplo 2.3.

2.2 Eventos

Definição 2.2

Um evento é um subconjunto de um espaço amostral.

O *complemento* de um evento A relacionado a S é o subconjunto de todos os elementos de S que não estão em A. Denotamos o complemento de A pelo símbolo A'.

■ Exemplo 2.6

Considere o espaço amostral

S = {livro, catalisador, cigarro, precipitado, engenheiro, rebite}.

Considere $A = \{ \text{catalisador}, \text{ rebite}, \text{ livro}, \text{ cigarro} \}$. Então, o complemento de $A \notin A' = \{ \text{precipitado}, \text{ engenheiro} \}$.

A *intersecção* de dois eventos A e B, denotada pelo símbolo $A \cap B$, é o evento que contém todos os elementos comuns a A e B.

Dois eventos A e B são mutuamente exclusivos, ou disjuntos, se $A \cap B = \phi$, ou seja, se A e B não tiverem elementos em comum.

A união de dois eventos A e B, denotada pelo símbolo $A \cup B$, é o evento que contém todos os elementos que pertencem a A ou B, ou a ambos.

Figura 2.3 Eventos representados por várias regiões.

Figura 2.4 Eventos do espaço amostral S.

Figura 2.5 Diagrama de Venn para os exercícios 2.19 e 2.20.

2.3 Contagem de pontos amostrais

Teorema 2.1

Se uma operação pode ser realizada de n_1 maneiras, e se para cada uma dessa maneiras uma segunda operação pode ser realizada de n_2 maneiras, então as duass operações podem ser realizadas em conjunto de $n_1 n_2$ maneiras.

■ Exemplo 2.13

Quantos pontos amostrais existem no espaço amostral quando um par de dados é jogado uma vez?

Solução: O primeiro dado pode cair de qualquer uma das n_1 = 6 maneiras. Para cada uma dessas seis maneiras, o segundo dado também pode cair de n_2 = 6 maneiras. Então, o par de dados pode cair de

 $n_1 n_2 = (6)(6) = 36$ maneiras possíveis.

Se uma operação pode ser realizada de n_1 maneiras, e se para cada uma delas uma segunda operação pode ser realizada de n_2 maneiras, e se, para cada uma das duas primeiras, uma terceira operação pode ser realizada de n_3 maneiras, e assim por diante, então a seqüência de k operações pode ser realizada de $n_1 n_2 \dots n_k$ maneiras.

■ Exemplo 2.15

Sam vai montar um computador sozinho. Ele tem a opção de pedir *chips* de duas marcas diferentes, o disco rígido de quatro, a memória de três e o grupo de acessórios de cinco lojas locais. De quantas maneiras diferentes Sam pode pedir os equipamentos?

Solução: Já que
$$n_1$$
 = 2, n_2 = 4, n_3 = 3 e n_4 = 5, há $n_1 \times n_2 \times n_3 \times n_4$ = 2 × 4 × 3 × 5 = 120

maneiras diferentes para pedir os equipamentos.

2.4 Probabilidade de um evento

Definição 2.8

A probabilidade de um evento A é a soma das probabilidades de todos os pontos amostrais em A. Por isso,

$$0 \le P(A) \le 1$$
, $P(\phi) = 0$ e $P(S) = 1$.

Além disso, se A_1 , A_2 , A_3 , ... é uma seqüência de eventos mutuamente exclusivos, então

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

■ Exemplo 2.24

Um dado é adulterado de tal modo que um número par tem duas vezes mais chance de ocorrer do que um número ímpar. Se E é o evento no qual um número menor que 4 ocorre numa única jogada do dado, determine P(E).

Solução: O espaço amostral é $S = \{1, 2, 3, 4, 5, 6\}$. Atribuímos uma probabilidade ω para cada número ímpar e uma probabilidade 2ω para cada número par. Já que a soma das probabilidades deve ser 1, temos $9\omega = 1$ ou $\omega = 1/9$. Portanto, probabilidades de 1/9 e 2/9 são atribuídas para cada número ímpar e par, respectivamente. Assim,

$$E = \{1, 2, 3\}$$
 e $P(E) = \frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$.

Se um experimento pode resultar em qualquer um de N diferentes resultados equiprováveis, e se exatamente n desses resultados correspondem ao evento A, então a probabilidade do evento A é

$$P(A) = \frac{n}{N}.$$

2.5 Regras aditivas

Teorema 2.10

Se A e B são dois eventos, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Figura 2.7 Regra aditiva de probabilidade.

Corolário 2.1

Se A e B são mutuamente exclusivos, então:

$$P(A \cup B) = P(A) + P(B)$$
.

Corolário 2.2

Se A_1, A_2, \dots, A_n são mutuamente exclusivos, então $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$.

Corolário 2.3

Se A_1 , A_2 , ... , A_n é uma partição do espaço amostral S, então

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n) = P(S) = 1.$$

Para três eventos A, B e C,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Se A e A' são eventos complementares, então

$$P(A) + P(A')=1$$

2.6 Probabilidade condicional

A probabilidade de um evento B ocorrer quando sabemos que algum evento A ocorreu é chamada de probabilidade condicional e é denotada por P (B|A). O símbolo P (B|A) normalmente é lido como 'a probabilidade de que B ocorra dado que A ocorre' ou, simplesmente, 'a probabilidade de B dado A'.

A probabilidade condicional de B dado A, denotada por P(B|A), é definida por

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) > 0$.

Tabela 2.1 Categorização de adultos de uma pequena cidade.

	Empregados	Desempregados	Total
Homem	460	40	500
Mulher	140	260	400
Total	600	300	900

Dois eventos A e B são independentes se e somente se

$$P(B|A) = P(B)$$
 ou $P(A|B) = P(A)$,

desde que as probabilidades condicionais existam. Caso contrário, A e B serão dependentes.

2.7 Regras multiplicativas

Teorema 2.13

Se em um experimento ambos os eventos A e B podem ocorrer, então

 $P(A \cap B) = P(A)P(B|A)$, desde que P(A) > 0.

Figura 2.8 Diagrama de árvore para o Exemplo 2.36.

Dois eventos A e B são independentes se e somente se

$$P(A \cap B) = P(A)P(B).$$

Portanto, para obter a probabilidade de que ambos os eventos ocorrerão, simplesmente determinamos o produto de suas probabilidades individuais.

Se, em um experimento, os eventos A_1, A_2, \dots, A_k podem ocorrer, então

$$\begin{split} P(A_1 \cap A_2 \cap \cdots \cap A_k) &= (A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots \\ P(A_k|A_1 \cap A_2 \cap \cdots \cap A_{k-1}). \end{split}$$

Se os eventos A_1, A_2, \dots, A_k são independentes, então $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k)$.

2.8 Regra de Bayes

Teorema 2.16

Se os eventos B_1 , B_2 , ..., B_k constituem uma partição do espaço amostral S, de modo que $P(B_i) \neq 0$ para i = 1, 2, ..., k, então para qualquer evento A de S,

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} P(B_i) P(A|B_i).$$

Figura 2.12 Diagrama de Venn para eventos A, E e E'.

Figura 2.13 Diagrama de árvore para os dados da p. 38, usando a informação adicional da Seção 2.8.

Figura 2.15 Diagrama de árvore para o Exemplo 2.41.

(*Regra de Bayes*) Se os eventos B_1 , B_2 , ..., B_k constituem uma partição do espaço amostral S, de modo que $P(B_i) \neq 0$ para i = 1, 2, ..., k, então, para qualquer evento A em S, tal que $P(A) \neq 0$, temos que

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

para r = 1, 2, ..., k.