

Dept. of Computer Science and Engineering (AI & ML) & Computer Science and Engineering (Cyber Security)

Programme: B E - Computer Science and Engineering (AI&ML) & Computer Science and Engineering (Cyber Security)

Internal Assessment - II

THE HALL ASSESSMENT AT						
TERM : 03-10-2024 to 25-01-2025		25-01-2025	COURSE NAME: AUTOMATA THEORY AND COMPILER DESIGN			
DATE	: 20-01-2025	TIME: 11.00 AM – 12.00 PM	COURSE CODE: CI53/CY53			
MAX MARKS: 30			PORTIONS : L28-L52			

Mobile Phones are banned

Instructions to Condidates	· Answer any TWO full questions	Marks: 15x2=30
instructions to Candidates	Answer and I will full filestions.	Marks, 13x4-30

* L1 - Remember, L2 - Understand, L3- Apply, L4- Analyze, L5-Evaluate, L6-Create

Q. NO	Candidates: Answer any TWO full questions. Marks: 15x2=30 Questions	Blooms Levels (L1 to L6)*	со	Mark
1.a	Construct DFA, which accept all the string over alphabets $\sum \{0,1\}$ where each string contains "00".	L1	CO 1	3M
b	Construct DAG and obtain the three address code and value number method for the given arithmetic expression $\mathbf{a} = \mathbf{a} + \mathbf{a} + \mathbf{a}/\mathbf{b} + \mathbf{a}/\mathbf{b} * (\mathbf{c}*\mathbf{d})$	L2	CO 4	6M
С	Illustrate the Semantic Rules with Controlled Side Effects by generating an SDD for basic array type declarations. Grammar: T→B id C B→int float C→[num] C € Draw the Annotated Parse tree and Dependency Graph for the declaration statement: float a,b,c	L2	CO 5	6M
2.a	Explain the rules for turning an L-attributed SDD to SDT. Convert the SDD given below to SDT.	L1	CO 5	4M
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
b	$\begin{array}{c cccc} D^1 - > \epsilon & D^1 \cdot \text{syn} = D^1 \cdot \text{inh} \\ \hline B - > 0 & B \cdot \text{val} = 0 \\ \hline B - > 1 & B \cdot \text{val} = 1 \\ \hline \hline Convert the given NFA to DFA and Minimize the obtained DFA. \\ \hline \end{array}$	L2	СО	
	Q ₀ o Q ₁ o Q ₃		1	6M
С	Design L- Attributed Definition for converting a Binary value to Decimal. Evaluate using the method 101=1*2²+0*2¹+1*2⁰ Consider the Production: G:- B→N D D→N D ε	L3	CO 5	5M
	N→0 1 Construct the Annotated Parse tree for input string "1101"			
3.a	Translate the given arithmetic expression a[i]=b*c-min (b, b*d) into i. Three Address Code ii. Quadruple		CO 4	5M
b	Explain the task of a code generator with suitable examples.		CO 4	5M
c	Given a translation scheme A->aaB {print(1)} b {print(2);} What will be the final result when the input "aaaabcc" is getting evaluated? Show the translation of the input on the translation scheme given.	L2	CO 3	5M