{Learn, Create, Innovate};

Intelligent Robotics Implementation

Introduction

What is a robot?

- Can you describe in your own words what is a robot?
- How would you differentiate a robot from another machine?
- What is autonomy?
- Any system can be a robot? Yes/No? Why?
- Is a robot a dynamical system?
- How can we differentiate between a DC motor controlled and a robot?

What is a dynamical system?

- A dynamical system is any system, manmade, physical or biological, that changes in time.
- In other words, particle or ensemble of particles whose state varies over time and is described using differential equations.
- What are the necessary characteristics for a system to be called a "robot"?

What is a dynamical system?

- Is a pendulum a robot?
- Is a dynamical system
- Described by an ODE

$$\dot{x} = f(x)$$

- Changes over time
- Can have an inputs
- The outputs can be measured

Then...What is a robot?

Characteristics

- A Robot is a dynamical system
- Guided by a computer program (an algorithm, or an agent)
- Performs some specific tasks.
- This is also known as a Control System.

$$\dot{\mathbf{x}}(\mathsf{t}) = f(\mathbf{x}(\mathsf{t}), \mathbf{u}(\mathsf{t}))$$

$$\mathbf{y}(\mathsf{t}) = g(\mathbf{x}(\mathsf{t}))$$

$$\mathbf{u}(\mathsf{t}) = h(\mathbf{x}(\mathsf{t}))$$

Robotic System

Then... What is a robot?

- Using the previous definition, it can be said that there exists many robots in the real world.
- Some robots may evoke human form, but most robots are task-performing machines, made with an emphasis on functionality, rather than aesthetics.
- One example would be a home heating/cooling system.

Then... What is a robot?

- There are many classifications for robotic systems.
- Based on the environment and performance, the robots can be classified into industrial robots and mobile robots.
- An example of an industrial robot and a mobile robot can be seen in the side figure.
- This course will be focused on mobile robotics.

Industrial robotic arm for welding © KUKA Inc.

Mobile robot: Curiosity Mars Rover 2012 © NASA/JPL

Mobile robots

- Mobile robots can traverse anywhere in the environment without being bolted to a reference point in the environment.
- Ground mobile robots are categorized based on their *locomotion* mechanism into:
 - Legged robots
 - Wheeled robots
- This course will be focused on wheeled mobile robots

Legged Robot © AIBO Sony Corp.

Wheeled Robot © NASA/JPL.

Wheeled mobile robots

- There exists many types of wheeled robotic platforms
 - Differential-Drive robots
 - Omnidirectional robots
 - Ackermann-steering robots
 - and many others...
- In this course we will focus on differential drive robots, also known as "differential wheeled robots".

Holonomic Robot Acroname ©.

Differential-drive Puzzlebot ©.

Autonomy in robotics

 Fundamental question: How much information and support must be provided by human to ensure that the robot is able to achieve its goals?

 The level of autonomy of a robot depends on the amount of information the robot requires from a human to perform its tasks.

Levels of Autonomy	
Human Operated : Human operator makes all the decisions.	Remote Control
Human Delegated: Robot can perform several functions independent of human control when delegated. Human Supervised: The system can perform wide variety of activities when given top level permission or direction by a human.	Semi- Autonomous
Fully Autonomous: The system receives goals form humans, translating them into tasks to be perfored without human interaction.	Autonomous System

Autonomy in robotics

- Some examples of tele-robotics are
 - Cranes.
 - Drones.
 - Robotic exoskeletons.
 - some robotic arms, etc.
- In the case of semi-autonomous systems, we can have
 - Some mobile robots,
 - Industrial robotic arms, etc.

Kraft TeleRobotics, Inco.

Autonomy in robotics

- Autonomous systems enable companies to further optimise the manufacturing and development processes of their products.
- This can result in less waste, better energy efficiency and improved quality.
- Certain plants, such as nuclear plants, require robots for handling dangerous materials/chemicals, and processes.
- Autonomous systems, improve the safety of the work environment and help reduce risks.

Autonomous system in an unknown environment

- Autonomous systems in unknown environments, require different methods to interact with their environment.
- From sensors to read information from the environment, to actuators to interact with it.
- The other methods help the autonomous system to retrieve information from the environment (Perception).
- Localize the robot in the space whilst mapping an unknown environment.
- Once the robot knows its positions; it can plan the trajectory to follow to achieve its objective.
- Estimate the required inputs to the actuators based on the dynamical behavior of the system.

Manchester Robotics

Examples of mobile autonomous systems

Examples of mobile autonomous systems

Hierarchy in autonomy

Manchester Robotics