Санкт-Петербургский государственный политехнический университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе

Дисциплина: Телекоммуникационные технологии **Тема:** Система верстки Т_ЕX и расширения L^AT_EX (Шаблон для отчётов)

Выполнил студент гр. 33501/3	Д. А. Зобков
Преподаватель	(подпись) Н. В. Богач
	"" 2016 г

Санкт-Петербург 2016 г.

СОДЕРЖАНИЕ

1	Цель работы	3
2	Постановка задачи	3
3	Теоретический раздел	3
4	Ход работы	3
5	Выводы	3
6	Случаи из практики	3
	6.1 Пример картинки	3
	6.2 Листинг с помощью <i>listings</i>	4
	6.3 Картинки с подкартинками	4
	6.4 Длинная подпись	4
	6.5 Русские буквы в формулах	5
	6.6 Отрицание-подчёркивание в мат. режиме	5
	6.7 No line here to end при использовании \\	5
	6.8 Таблица с картинкой	5
	6.9 Таблица с склееными и битыми ячейками	6
	6.10 Графики с TikZ/PGF	6
	6.11 Надписи на стрелках	7
	6.12 Случай с матрицей, где проверялся знак	7
	6.13 Скобочка	8
	6.14 Выравнивание в выражениях	8
	6.15 Графы	8
	6.16 Зачеркивания	9
	6.17 Внешние гиперссылки	9
	6.18 Некоторые символы в русском языке	9
	6.19 Сборка varioref +hyperref +cleveref +autonum	10
	6.20 Очень длинные таблицы	11
	6.21 Обтекаемые рисунки/таблицы	12
	6.22 Создание списка литературы	13
Cı	писок литературы	14
П	[риложение А Ещё один пример листинга	15
$\Pi_{]}$	[риложение Б Новое приложение на новой странице	17
	Б.1 Одна подсекция	17
	Б.2 Ещё одна подсекция	17

1 Цель работы

Какая-то цель

2 Постановка задачи

Какая-то задача

3 Теоретический раздел

Содержит основные соотношения между наблюдаемыми в работе явлениями

4 Ход работы

Что-то нажимаем, всё ломается

5 Выводы

Содержат пояснения моделируемых явлений

6 Случаи из практики

6.1 Пример картинки

Рандомный граф (рис. 6.1). Для насильной привязки к месту использовать опцию **[H]**. [1]

Рис. 6.1. Граф

6.2 Листинг с помощью listings

Пакет *listings* имеет кучу мелких и не очень проблем, из-за которых пропадает желание его использовать.

Описание схемы на языке VHDL приведено в листинге 6.1. См. прил. А на с. 15 для ещё одного примера.

```
entity lab2 is
 port(
    SWO, SW1, SW2, SW3, SW4 : in bit;
    LEDO, LED1, LED2 : out bit;
    LED3, LED4, LED5 : out boolean
    );
 end lab2;
 architecture rtl of lab2 is
    signal TEMP : bit := '0';
10 begin
    LED2 <= '0';
    temp <= SW0 or SW1;
    LED1 <= TEMP and SW2;
    LEDO <= not TEMP;
    LED3 <= not (SW3 > SW4);
    LED4 \le not(SW3 = SW4);
    LED5 <= not(SW3 < SW4);
 end rtl;
```

Листинг 6.1. Описание схемы

6.3 Картинки с подкартинками

Данные о максимальной частоте и минимальных временных задержках представлены на рис. 6.2 (а так же рис. 6.2а и рис. 6.2б). [2]

Рис. 6.2. Описание без оптимизации

6.4 Длинная подпись

Результат моделирования синтезированной схемы представлен на рис. 6.3 на следующей странице.

	Name	Value at 0 ps	0 ps 80.0 ns 0 ps	160.0 ns	240.0 ns	320.0 ns	400.0 ns	480.0 ns	560.0 ns	640.0 ns	720.0 ns	800.0 ns	880.0 ns	960.0 ns	1.04 us	1. 12 us	1.2 us	1.28 us
in_	dk	В 0					шш										лип	
<u>is</u> _	pba	B 1																
<u>in</u> _	pbb	B 1																
*	⊳ del	U 0	0 1 2 0	1 2	X 0 X 1	X 2 X 0	X 1 X 2	X 0 X 1	X 2 X 0	1 2	X • X	1 2 0	1 2	X 0 X 1	2 0	1 2	X 0 X 1	2
*	datain	U 15	15	14	13	Х	12	Х		15		X	14	1,3	Т Х	12	X 11	
*	⊳ waddr	U 0	0 X	1	X 2	X	3	X		0		X	1	X 2	X	3	X 4	
***	⊳ led	U 0	0 X 15	X 0	X	15				15			X o X	14 15	13	X 0 X	12 15	X 11

Рис. 6.3. Результат моделирования схемы в редакторе диаграмм (Коэффициент деления частоты = 3)

Другой пример (см. табл. 6.1).

Обратите внимание на расположение \caption{} снизу и при этом принудительное расположение подписи сверху с выравниванием вправо.

Таблица 6.1. Заданная матрица задачи дискретного программирования

∞	27	13	7	45	35
21	∞	14	20	19	12
10	14	∞	6	32	25
7	18	5	∞	38	28
32	16	23	27	∞	23
30	10	24	28	18	∞

6.5 Русские буквы в формулах

Пока только такой вариант (6.1) (можно использовать просто $\text{text}\{\}$).

$$\sum_{\text{Какая-то лажа}}$$
 Какой-то жирнич (6.1)

6.6 Отрицание-подчёркивание в мат. режиме

Просто над <u>под</u> Ещё пример:

$$y = \overline{\overline{x_3}} \overline{x_4} \overline{\overline{x_1}} \overline{x_2} \overline{x_5} \overline{x_2} \overline{\overline{x_1}} \overline{x_4} \overline{x_5} \overline{x_3} \overline{\overline{x_1}} \overline{x_4} \overline{\overline{x_2}} \overline{x_5}$$

6.7 No line here to end при использовании \\

Два способа решения: создать минимальное пространство с помощью $\sim \$ использовать $\$ vspace $\{X \ pt\}$.

6.8 Таблица с картинкой

Пример в табл. 6.2 на следующей странице.

Таблица 6.2. Логические выражения для выходов RS-триггера

Имя	Функциональный преобразователь	Логическое выражение выходов
inst	DATAD COMBOUT DATAA	$\overline{(Q' + \overline{R}) \cdot S} \to Q$
inst1	DATAB COMBOUT	$\overline{\overline{Q''} \cdot R} \to \overline{Q}$

6.9 Таблица с склееными и битыми ячейками

Пример в табл. 6.3. Для склеивания строк требуется пакет *multirow*. [3]

Таблица 6.3. Зависимость энергопотребления от частоты

№	Частота, МГц	Период не	Энергопотребление, мВт			
115	частога, IVII ц	период, не	Полное	Динамическое		
1	1	1000	64.79	0.05		
2	10	100	65.45	0.51		
3	50	20	68.38	2.53		
4	100	10	72.05	5.06		
5	150	6.667	75.71	7.59		

6.10 Графики с TikZ/PGF

Очень сложный метод, надо очень хорошо знать, что делаешь, иначе можно потратить день и не добиться результата. Зато в итоге можно получить качественное векторное изображение. В документации 1200 страниц!!! [4]

Пример на рис. 6.4 на следующей странице.

Рис. 6.4. Зависимость энергопотребления от частоты

6.11 Надписи на стрелках

Использует пакет mathtools. [5]

	x_3	x_2	В			x_5	x_2	В
x_1	-1	-0.3	10.2	преобразуем и	x_1	-0.4	-0.4	6
x_4	-1	-0.7	11.4		x_4	-0.4	-0.8	7.2
x_5	2.5	-0.25	-10.5	делим на 2.5	x_3	0.4	0.1	4.2
f	-1	-2.3	10.2		f	-0.4	-2.4	6

6.12 Случай с матрицей, где проверялся знак

Текущие матрицы
$$P=\begin{bmatrix}0&1\\1&-1\end{bmatrix},\,C^B=\begin{bmatrix}0&1\end{bmatrix}$$
 Допустимость: $X^B=P^{-1}B=\begin{bmatrix}11.4\\10.2\end{bmatrix}>0$ — допустимый

6.13 Скобочка

$$\begin{cases} \max(x_1 - 2x_2), \\ x_1 + 0.3x_2 \le 10.2, \\ -x_1 + 0.4x_2 \le 1.2, \iff \begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

$$\begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

$$\begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

6.14 Выравнивание в выражениях

Выравнивание контролируется символом &.

Условия Куна-Такера:

$$\begin{cases}
\nabla f(X^*) + \sum_{j=1}^{J} u_j \nabla g_j(X^*) = 0, \\
u_j g_j(X^*) = 0, \ j = 1..J, \\
u_j \leq 0, \ j = 1..J;
\end{cases}$$
(6.2)

Подставим в формулу (6.2):

$$\begin{cases}
-62x_1 + 4x_2 + 286 + 7u_1 + 10u_2 - u_3 = 0, \\
-68x_2 + 4x_1 + 388 + 12u_1 + 8u_2 - u_4 = 0, \\
u_1(7x_1 + 12x_2 - 84) = 0, \\
u_2(10x_1 + 8x_2 - 80) = 0, \\
u_3(-x_1) = 0, \\
u_4(-x_2) = 0, \\
u_1 \le 0, \\
u_2 \le 0, \\
u_3 \le 0, \\
u_4 \le 0;
\end{cases}$$

6.15 Графы

Безумно неудобно и не стоит затраченных усилий. Лучше, быстрее и выгоднее воспользоваться yEd или что-нибудь в таком духе и вставить картинку. Есть способ делать удобнее с Lua T_EX , но Lua T_EX до сих пор не имеет официального релиза, поэтому пока не рекомендую.

Наибольший путь 1 - 2 - 4 - 5 - 6 - 7 - 8 с весом 39 представлен на рис. 6.5.

Рис. 6.5. Наибольший путь

6.16 Зачеркивания

Пример:

$$2-6, 6-5, 1-4, 4-3 \Rightarrow 6 -2, 5 -6, 5 -2, 4 -1, 4 -2, 3 -4, 3 -4 -3 = G_{2-6;6-5;1-4;4-3} \cup G_{2-6;6-5;1-4;\overline{4-3}}$$

Нельзя использовать зачёркивания пакета cancel [6] с самого первого слова:

Ещё такие вот [7] иногда есть: варианты

6.17 Внешние гиперссылки

www.fighting.ru ВКонтакте

6.18 Некоторые символы в русском языке

Дефис -

Тире —

Такое тире – не используется.

Тире — это модно.

— Прямая речь «Елочки и "лапки"»

6.19 Сборка varioref +hyperref +cleveref +autonum

Весьма интересный и крайне нестабильный паровоз. Здесь распишу свои мысли по поводу использования этой гармошки.

Лучше всего определять эти пакеты в преамбуле друг за другом и в особом порядке: $varioref \rightarrow hyperref \rightarrow cleveref \rightarrow autonum$. Нарушение этого порядка ведёт к ozpomhoù куче проблем. При этом пакет autonum использует какой-то полумертвый пакет, из-за которого вылетает ошибка, в данном шаблоне это исправлено.

Пакет *varioref* изменяет стиль ссылок, вводя новую команду \vref{}. [8] Соль в том, что пакет определяет, где находится страница, на которую идет ссылка, и если она находится недалеко (следующая), то вместо номера он так и пишет "на следующей странице". Также пакет не отображает страницу, если ссылка ведет на ту же страницу, где она и находится. То есть, данный пакет — это совмещение "\ref{} на с. \pageref{}" с немного расширенным функционалом.

Пакет *hyperref* в эту сборку затесался из-за проблем совместимости, так что пропускаем. [9]

Пакет *cleveref* изменяет стиль ссылок, вводя новые команды $cref{}$ и $Cref{}$. [10] Пакет определяет тип ссылки, и самостоятельно подписывает ее (например "рис. $ref{}$ " без необходимости писать "рис." самому). Встраивается в *varioref*.

Важно знать одну вещь об этом пакете. В версии, находящейся в CTAN, и, соответственно, в сборке MiKTeX, существует баг, который нарушает основную особенность работы *varioref* — работает только ссылка вида "на следующей странице", и не работают все остальные виды ссылок. На сайте автора пакета есть новая альфа-версия (ее не обновляли уже год), которая чинит баг, и она лежит в папке шаблона, чтобы не возиться с импортом.

Пакет *autonum* меняет работу с формулами. [11] Например, он удаляет окружение \begin{equation*} и делает команду \[\] идентичной окружению \begin{equation}. При этом номера показываются только у тех формул, на которые присутствует ссылка, что немного упрощает работу.

Как использовать? Использовать \vref{} для *почти* всех случаев, где вам нужна ссылка на номер объекта с указанием страницы в сокращенном варианте ("рис.") или \Vref{} для использования в начале предложения ("Рисунок"). При этом *cleveref* встраивается в эту команду и будет подставлять тип ссылки автоматически. Из этого правила есть несколько исключений:

- 1. Вам не нужна ссылка на страницу. Тогда используйте \cref{} и \Cref{}. Тип ссылки подставляется автоматически.
- 2. Вы ссылаетесь на формулу.

Используйте \cref{} и \Cref{} (\vref{}) не справляется), либо обычный \ref{} и/или \pageref{}. Автоматически тип подставляться не будет (т. к. надпись "ф-л." или как-то так мне показалась крайне идиотской, а переопределить со склонениями нормально не получилось). Можно использовать связку \cref{} \vpageref{}, но результат не идеальный.

UPD. В процессе работы над шаблоном команды \vref{} и \Vref{} переопределены, и весь этот пункт стал неактуальным.

3. Вы ссылаетесь на листинг.

Используйте обычный $\{ \}$ и/или $pageref\{ \}$ (проблемы те же, что и в пункте выше).

Если вы хотите более подробно разобраться в работе этой сборки, поглядите документации.

6.20 Очень длинные таблицы

Пример нагло украден с курса "Документы и презентации в IATEX" Д. Федоровых.

Таблица 6.4. Заголовок большой таблицы

RND1	RND2	RND3	RND4
0,576745371	0,435853468	0,36384912	0,299047979
0,064795364	0,028454613	0,751312059	0,693972684
0,263563971	0,367508634	0,075536384	0,337780707
0,957583964	0,431948588	0,938522377	0,464307785
0,815740484	0,123129806	0,883432767	0,760983283
0,445062335	0,157424268	0,883442259	0,300596338
0,187159669	0,728663343	0,637199982	0,765684528
0,41009848	0,457031472	0,142858106	0,602946607
0,43315663	0,26058316	0,611667007	0,400328185
0,824086963	0,27304335	0,244565296	0,219675484
0,109578811	0,278478018	0,242519359	0,414669471
0,62638369	0,737702261	0,696351048	0,256427487
0,69779066	0,019424915	0,657473072	0,783698296
0,14204222	0,817006985	0,669234791	0,728306309
0,38941124	0,807135743	0,702842593	0,382494957
0,203543688	0,969191131	0,822881425	0,212473701
0,815740484	0,123129806	0,883432767	0,760983283
0,445062335	0,157424268	0,883442259	0,300596338
0,187159669	0,728663343	0,637199982	0,765684528
0,41009848	0,457031472	0,142858106	0,602946607
0,43315663	0,26058316	0,611667007	0,400328185
0,824086963	0,27304335	0,244565296	0,219675484

RND1	RND2	RND3	RND4
0,109578811	0,278478018	0,242519359	0,414669471
0,62638369	0,737702261	0,696351048	0,256427487
0,203543688	0,969191131	0,822881425	0,212473701
0,826623142	0,181291269	0,054701556	0,386442059
0,541365118	0,573617788	0,650112336	0,930417614
0,957583964	0,431948588	0,938522377	0,464307785
0,815740484	0,123129806	0,883432767	0,760983283
0,445062335	0,157424268	0,883442259	0,300596338
0,187159669	0,728663343	0,637199982	0,765684528

6.21 Обтекаемые рисунки/таблицы

Также украдено с курса, упомянутого в разд. 6.20 на предыдущей странице.

Рис. 6.6. Картинка с обтеканием

Прежде, чем анализировать "что делать в сложной ситуации", я думаю "что можно сделать до того, как я попал в сложную ситуацию".

Как сказано ранее, "к поражению приводят множество факторов во время

матча". Даже если вы исправили одну из проблем, иногда вы будете продолжать проигрывать по другим причинам.

Победа — это прекрасно, но даже если вы снова проигрываете, лучше всего сказать себе "Я могу сделать что-то, чего не мог раньше" и ценить свой собственный прогресс. Я думаю, что мышление "Я тренируюсь, но у меня нет ощущения, что я играю лучше" происходит из-за нарушения основной мотивации "веселья", "фана". Так что, вне

Таблица 6.5. Обтекаемая таблица

Год	P_{χ}	Q_{x}	P_{y}	Q_{y}	n
2008		36		32	_
2009	30	30	22	50	25%
2010	36	30	22		20%
2011	33	40	24	45	

зависимости от исхода боя, очень важно позитивно смотреть на свои улучшения в игре.

Если вы устраните причины поражения одну за одной, даже если результат не наступит мгновенно, в будущем ваш винрейт стабилизируется и вы будете более уверены в своих решениях, расширите свои знания и кругозор в игре.

Вне зависимости от того, сколько вы исправите, если вы играете с другими игроками, иметь винрейт 100% невозможно.

6.22 Создание списка литературы

Для этого можно использовать *BiBLaTeX+Biber*.[12]

Создаёт и нумерует ссылки в порядке их упоминания.[13] Стиль по ГОСТу (gost-numeric в данном шаблоне) и его использование можно прочитать в описании стиля.[14]

Список литературы

- 1. Float package [Электронный ресурс]. URL: https://www.ctan.org/pkg/float (дата обр. 22.02.2016).
- 2. Subcaption package [Электронный ресурс]. URL: https://www.ctan.org/pkg/subcaption (дата обр. 22.02.2016).
- 3. Multirow package [Электронный ресурс]. URL: https://www.ctan.org/pkg/multirow (дата обр. 22.02.2016).
- 4. The TikZ & PGF Packages / ed. by T. Tantau. Version 3.0.1a. 2015. URL: http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf (visited on 02/22/2016).
- 5. Mathtools package [Электронный ресурс]. URL: https://www.ctan.org/pkg/mathtools (дата обр. 22.02.2016).
- 6. Cancel package [Электронный ресурс]. URL: https://www.ctan.org/pkg/cancel (дата обр. 22.02.2016).
- 7. Soul package [Электронный ресурс]. URL: https://www.ctan.org/pkg/soul (дата обр. 22.02.2016).
- 8. Varioref package [Электронный ресурс]. URL: https://www.ctan.org/pkg/varioref (дата обр. 23.02.2016).
- 9. Hyperref package [Электронный ресурс]. URL: https://www.ctan.org/pkg/hyperref (дата обр. 23.02.2016).
- 10. Cleveref package [Электронный ресурс]. URL: https://www.ctan.org/pkg/cleveref (дата обр. 23.02.2016).
- 11. Autonum package [Электронный ресурс]. URL: https://www.ctan.org/pkg/autonum (дата обр. 23.02.2016).
- 12. BiBLaTeX package [Электронный ресурс]. URL: http://ctan.org/pkg/biblatex (дата обр. 22.02.2016).
- 13. *Карпов Ю. Г.* Model Checking. Верификация параллельных и распределенных программных систем. СПб. : БХВ Петербург, 2010.-560 с.
- 14. Стиль ГОСТ для BiBLaTeX [Электронный ресурс]. URL: https://www.ctan.org/pkg/biblatex-gost (дата обр. 21.02.2016).

Приложение А Ещё один пример листинга

```
17 % Функция построение графика метода
 function [] = PlotGraph (v)
 % Область построения
_{20}|x 1=2:.1:6;
 x 2=5:.1:9;
 % х 1=4:.1:12; %%%%% Для второй начальной точки
 % x 2=3:.1:9;
 [x 1,x 2]=meshgrid(x 1,x 2);
w = (index(1) *x 1.^2 + index(2) *x 2.^2 + index(3) *x 1.*x 2 + index(4) *x 1
   + index(5)*x 2);
 figure;
 hold on;
 contour(x 1, x 2, w, 30);
30 plot(x, y, '.-k');
 contour(x 1,x 2,w,v);
 xlabel('x1');
 ylabel('x2');
 hold off;
35 end
 % Функция построения графика сравнения кол-ва итераций
 function [] = PlotIterCountGraph ()
 figure;
40 surf (from:1:2*to, from:1:2*to, N);
 xlabel('x1');
 ylabel('x2');
 zlabel ('Кол-во итераций');
 colorbar
 figure;
 contourf(from:1:2*to,from:1:2*to,N)
 xlabel('x1');
 ylabel('x2');
50 C = colorbar;
 c.Label.String = 'Кол-во итераций';
 end
 % Вычисление функции и значение её производной
function [fX, dfX] = derivative(X)
 % Вычисление значения функции от Х
 fX = index(1) * X(1)^2 + index(2) * X(2)^2 + index(3) * X(1) * X(2) +
    index(4) * X(1) + index(5) * X(2);
 % Вычисление частных производных по Х1 и Х2 соответственно
 dfX = [index(1)*2*X(1) + index(3)*X(2) + index(4); index(2)*2*X
    (2) + index(3) * X(1) + index(5)];
60 end
 응응
 % Метод релаксационный
 X=initialX;
```

```
[fX, dfX] = derivative(X);
 i = 1;
 j = 1;
 clear x y;
 x(i) = X(1);
y(i) = X(2);
 v(1,1) = fX;
 K = [dfX(1); 0];
 t=-(dfX'*K)/(K'*H*K);
 fprintf(fileID, 'Релаксационный метод\n\n');
75 fprintf(fileID, 'i x1
                                x2
                                             gradf(X)1 gradf(X)2
    K1
             K2
                         t
                                     fX
                                          ||df(X)|| n';
 fprintf(fileID, '%-4d %-10.4f %-10.4f %-10.4f %-10.4f
    %-10.4f %-10.4f %-10.4f %-10.4f\n',i, X, dfX, K, t, fX, norm(dfX)
    );
 while (norm(dfX) > e)
     X = X+t*K;
     [fX, dfX] = derivative(X);
     i = i+1;
     x(i) = X(1);
     y(i) = X(2);
     v(1,i) = fX;
     K=dfX;
    t=-(dfX'*K)/(K'*H*K);
 fprintf(fileID, '%-4d %-10.4f %-10.4f %-10.4f %-10.4f
    %-10.4f %-10.4f %-10.4f %-10.4f\n',i, X, dfX, K, t, fX, norm(dfX)
    );
 end
 PlotGraph(v);
 legend ('Линии равного уровня', 'Релаксационный метод');
90 fprintf(fileID, '\n\n');
 clear v;
```

Приложение Б Новое приложение на новой странице

Б.1 Одна подсекция

Вот она!

Б.2 Ещё одна подсекция

