

SPECIFICATIONS

CUSTOMER :

PRODUCT : <u>LCD Module</u>

SAMPLE CODE : JBC1602A00-08W

00 **VER**

Customer Approved	Confirmed	Designer

Date	Ver.	Description	Page	Design by
2006/12/12	0	New Sample.	-	

CONTENT

1: SPECIFICATIONS	
1.1 Features	4
1.2 Mechanical Specification	4
1.3 Absolute Maximum Ratings	4
1.4 DC Electrical Characteristic	5
1.5 Bachlight Characteristic	5
2: MODULE STRUCTURE	
2.1 Counter Drawing	
2.1.1 LCM Mechanical Diagram	6
2.1.2 Block Diagram	7
2.2 Interface PIN Description	8
2.3 Timing Characteristic	9
2.4 Instruction Table	10
3: INSPECTION SPECIFICATION	18
4: RELIABILITY TEST	
4.1 Reliability test condution	22
4.2 Quality assurance system	23
5: PRECAUTION RELATING PRODUCT HA	ANDING
5.1 Safety	
5.2 Handing	25
5.3 Storage	25
5.4 Terms of warranty	25

1. SPECIFICATIONS

1.1 **Features**

Item	Standard Value			
Display Type	16 (Character) *2(ROW)			
LCD Type	STN(BLUE),Transmissive/Negative.			
Driver Condition	1/16Duty , 1/5Bias			
Viewing Direction	6 O'clock			
Backlight Type	BLUE			
Interface	8Bits data bus			
Driver IC	SPLC780D,EQUST7066U			

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outline Dimension	80.0(L) * 36.3 (W) * 14.0(H)(Max)	mm
Viewing Area	64.3(L) *16.3(W)	mm
Active Area	57.66(L) * 9.4(W)	mm
Dots Size	0.55(L) * 0.50 (W)	mm
Dots Pitch	0.60(L) * 0.55(W)	mm
Character Size	2.91(L) * 4.35(W)	mm
Character Pitch	3.65(L) * 5.05(W)	mm

1.3 Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit
System Power Supply Voltage	VDD	-	-0.3	5.5	٧
LCD Driver Supply Voltage	VOUT _{IN}	-	VDD-12.0	VDD+0.3	V
Input Voltage	V_{IN}	-	-0.3	VDD + 0.3	V
Operating Temperature	T_OP	-	-20	70	ô
Storage Temperature	T _{ST}	-	-30	80	°C
Storage Humidity	H _D	Ta < 40 °C	20	90	%RH

1.4 DC Electrical Characteristic

 $VDD = 5.0V \pm 0.2V$, GND = 0V , $Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply Voltage	VDD	-	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	-	0.8VDD	-	VDD	V
Input Low Voltage	V _{IL}	-	GND	-	0.3VDD	V
Output High Voltage	V _{OH}	-	0.7VDD	-	VDD	V
Output Low Voltage	V _{OL}	-	GND	-	0.2VDD	V
		VOP -GND (0°C)	4.8	5.0	5.2	
LCD Driver Voltage	V_{OP}	VOP -GND (25°C)	4.6	4.7	4.8	V
		VOP -GND (40°C)	4.4	4.5	4.6	

2. MODULE STRUCTURE

2.1 Counter Drawing

2.1.1 LCM Mechanical Diagram

%

2.1.2 Block Diagram

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	VSS	Ground
2	VDD	Power supply input for driver IC (+5.0V).
3	V0	LCD operation voltage test pin.
4	RS	Data and control register select input H: D0 to D7 are display data. L: D0 to D7 are control data.
5	R/W	Write signal input, active " L
6	E	A start signal for reading or writing data
7	DB0	Data bus bit 0
8	DB1	Data bus bit 1
9	DB2	Data bus bit 2
10	DB3	Data bus bit 3
11	DB4	Data bus bit 4
12	DB5	Data bus bit 5
13	DB6	Data bus bit 6
14	DB7	Data bus bit 7
15	LED_A	BACKLIGHT POSITIVE
16	LED_K	BACKLIGHT NEGATIVE

2.3 Timing Characteristics

♦AC Characteristics(Vdd=5V±10%,Vss=0V Ta=25°C)

Internal clock operation

Characteristics	- Cumbal		Limit		Unit	Toot Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
OSC Frequency	Fosc ₁	190	270	350	KHz	VDD = 3.0V, Rf = 75KΩ±2%	

External clock operation

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest condition
External Frequency	Fosc ₂	125	250	350	KHz	
Duty Cycle		45	50	55	%	
Rise/Fall Time	tr, tf	-	-	0.2	μS	

Write mode

Characteristics	Sumbal		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.		rest Condition
E Cycle Time	t _C	1000	-	-	ns	Pin E
E Pulse Width	t _{PW}	450	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, RW, E
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, RW, E
Data Setup Time	t _{SP2}	195	-	-	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-	-	ns	Pins: DB0 - DB7

Read mode

Characteristics	Cumbal		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest Condition
E Cycle Time	tc	1000	-	-	ns	Pin E
E Pulse Width	tw	450	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, R/W, E
Data Output Delay Time	t _D	-	-	360	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

Timing Chart

Write mode timing diagram for the MPU

° Read mode timing diagram for the MPU

2.4 Instruction Table

DISPLAY COMMANDS

No.	Instruction	Display	Operation
1	Power on.		Power on reset. No display.
2	Function set RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 X X		Set to 8-bit operation and select 2-line display line and 5 x 8 dot character font.
3	Display on / off control	_	Display on. Cursor appear.
4	Entry mode set 0 0 0 0 0 0 0 1 1 0	-	Increase address by one. It will shift the cursor to the right when writing to the DD RAM / CG RAM. Now the display has no shift.
5	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 1 1	W_	Write " W ". The cursor is incremented by one and shifted to the right.
7	: Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1	: WELCOME_	: Write " E ". The cursor is incremented by one and shifted to the right.
8	Set DD RAM address 0 0 1 1 0 0 0 0 0 0 0	WELCOME	It sets DD RAM's address. The cursor is moved to the beginning position of the 2nd line.
9	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME T_	Write " T ". The cursor is incremented by one and shifted to the right.
10	:	:	:
11	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME TO PART_	Write " T ". The cursor is incremented by one and shifted to the right.

JBC1602A00-08W

No.	Instruction	Display	Operation
12	Entry mode set	WELCOME TO PART_	When writing, it sets mode for the display shift.
13	Write data to CG RAM / DD RAM	ELCOME O PARTY_	Write " Y ". The cursor is incremented by one and shifted to the right.
14	:	:	:
15	Return home 0 0 0 0 0 0 0 0 0 1 0	WELCOME TO PARTY	Both the display and the cursor return to the original position (address 0).

Display Data RAM (DD RAM)

The 80-bit DD RAM is normally used for storing display data.

Those DD RAM not used for display data can be used as general data RAM. Its address is configured in the Address Counter.

The relationships between Display Data RAM Address and LCD's position are depicted as follows.

Timing Generation Circuit

The timing generating circuit is able to generate timing signals to the internal circuits. In order to prevent the internal timing interface, the MPU access timing and the RAM access timing are generated independently.

LCD Driver Circuit

Total of 16 commons and 40 segments signal drivers are valid in the LCD driver circuit. When a program specifies the character fonts and line numbers, the corresponding common signals output drive-waveforms and the others still output unselected waveforms.

Character Generator ROM (CG ROM)

Using 8-bit character code, the character generator ROM generates 5 x 8 dots or 5 x 10 dots character patterns. It also can generate 192's 5 x 8 dots character patterns and 64' s 5 x 10 dots character patterns.

Character Generator RAM (CG RAM)

Users can easily change the character patterns in the character generator RAM through program. It can be written to 5 x 8 dots, 8-character patterns or 5 x 10 dots for 4-character patterns.

The following diagram shows the SPLC780D character patterns: Correspondence between Character Codes and Character Patterns.

							Highe	r 4-bit (D4	to D7) of C	haracter C	ode (Hexa	decimal)					
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0	CG RAM (1)													## ##		
	1	CG RAM (2)															
	2	CG RAM (3)															
	3	CG RAM (4)															
	4	CG RAM (5)															
al)	5	CG RAM (8)															
(Hexadecimal)	6	CG RAM (7)															
Character Code	7	CG RAM (8)															
(D0 to D3) of Ch	8	CG RAM (1)															
Lower 4-bit (D0	9	CG RAM (2)															
P	А	CG RAM (3)															
	В	CG RAM (4)															
	С	CG RAM (5)															
	D	CG RAM (6)															
	E	CG RAM (7)															
	F	CG RAM (8)															

5 x 8 dot character patterns

					ode ata)				CG RAM Address			I I											
b7	b6	b5		b3			b0	b5		b3		b1	b0		b7	b6			b3	b2	b1	b0	
					//						0	0	0		==	==		1	1	1	1	1	
											0	0	1					0	0	1	0	0	Character
											0	1	0					0	0	1	0	0	Pattern
0	0	0	0	Х	// /0/	0	6	0	0	// ₀ /	0	1	1		- = - X	 -X	==	0	0	1	0	0	Example (1)
,	,	,			//						1	0	0		X		*	0	0	1	0	0	
											1	0	1					0	0	1	0	0	
											1	1	0					0	0	1	0	0	Cursor Position
			_	_	//	//		-4	//	//	1	1	1	-			<u> </u>	0	0	0	0	0	←
											0	0	0					0	1	1	1	0	
											0	0	1					0	0	1	0	0	Character
											0	1	0					0	0	1	0	0	Pattern Example (2)
0	0	0	0	Χ	0	0	//	0	0	//	1	0	0		X	X	X	0	0	1	0	0	
											1	0	1					0	0	1	0	0	
											1	1	0					0	1	1	1	0	
											1	1	1					0	0	0	0	0	
					//	//	//	//	//	//				Lİ									
											_	_		_	_		_			_	_		
\	_									/													

Total of 16 commons and 40 segments signal drivers are valid in the LCD driver circuit. When a program specifies the character fonts and line numbers, the corresponding common signals output drive-waveforms and the others still output unselected waveforms. Users can easily change the character patterns in the character generator RAM through program. It can be written to 5×8 dots, 8-character patterns or 5×10 dots for 4-character patterns.

Cursor/Blink Control Circuit

This circuit generates the cursor or blink in the cursor / blink control circuit. The cursor or the blink appears in the digit at the Display Data RAM Address defined in the Address Counter.

When the Address Counter is (07) 16, the cursor position is shown as belows:

Interfacing to MPU

There are two types of data operations: 4-bit and 8-bit operations. Using 4-bit MPU, the interfacing 4bit data is transferred by 4-busline (DB4 to DB7). Thus, DB0 to DB3 bus lines are not used. Using 4-bit MPU to interface 8-bit data requires two times transferring. First, the higher 4-bit data is transferred by 4-busline (for 8-bit operation, DB7 to DB4). Secondly, the lower 4-bit data is transferred by 4-busline (for 8-bit operation, DB3 to DB0). For 8-bit MPU, the 8-bit data is transferred by 8-buslines (DB0 to DB7).

Supply Voltage for LCD Drive

Different voltages can be supplied to SPLC780D's pins (V5 - 1) for obtaining LCD drive-waveform. The relationships between bias, duty factor and supply voltages are shown as belows:

Duty Factor	1/8, 1/11	1/16
Supply Voltage	1/4	1/5
V1	VDD - 1/4 V _{LCD}	VDD - 1/5 V _{LCD}
V2	VDD - 1/2 V _{LCD}	VDD - 2/5 V _{LCD}
V3	VDD - 1/2 V _{LCD}	VDD - 3/5 V _{LCD}
V4	VDD - 3/4 V _{LCD}	VDD - 4/5 V _{LCD}
V5	VDD – V _{LCD}	VDD - V _{LCD}

Cursor/Blink Control Circuit

This circuit generates the cursor or blink in the cursor / blink control circuit. The cursor or the blink appears in the digit at the Display Data RAM Address defined in the Address Counter.

When the Address Counter is (07) 16, the cursor position is shown as belows:

The power connections for LCD (1/4 Bias, 1/5 Bias) are shown belows:

The bypass-capacitor improves the LCD display quality.

3.1 Inspection Specification

- ◆Inspection Standard : MIL-STD-105E Table Normal Inspection Single Sampling Level Ⅱ.
- ◆Equipment : Gauge、MIL-STD、Powertip Tester、Sample
- ◆Defect Level: Major Defect AQL 0.4; Minor Defect AQL 1.5.
- ♦ OUT Going Defect Level : Sampling .
- ◆Manner of appearance test :
 - (1). The test be under 40W×2 fluorescent light 'and distance of view must be at 30 cm.
 - (2). The test direction is base on about around 45° of vertical line. (Fig. 1)
 - (3). Definition of area . (Fig. 2)

B area: Outside of viewing area

🔏 area : viewing area

◆ Specification:

NO	Item	Criterion	level
		1.1 The part number is inconsistent with work order of	Major
		Production.	
01	Product condition	1.2 Mixed production types.	Major
		1.3 Assembled in inverse direction.	Major
02	Quantity	2.1 The quantity is inconsistent with work order of production.	Major
03	Outline dimension	3.1 Product dimension and structure must conform to	Major
		Structure diagram.	
		4.1 Missing line character, dot and icon.	Major
		4.2 No function or no display.	Major
04	Electrical Testing	4.3 Output data is error.	Major
		4.4 LCD viewing angle defect.	Major
		4.5 Current consumption exceeds product specifications.	Major
	Black or white	5.1 Round type:	
	dat amatals	5.1.1 display only:	
05	dot scratch	White and black spots on display ≤ 0.25 mm, no more	Minor
	contamination	than Four white or black spots present.	
	Round type	Densely spaced: NO more than two spots or lines within3mm	

JBC1602A00-08W

◆Specification:

NO	Item	Criterion					level
05	Black or white dot x scratch x contamination Round type x y	0.1 0.2 5.1.3 Line typ	nension (diamete $\Phi \le 0.10$ mm 0 mm $\Phi \le 0.20$ 0 mm $\Phi \le 0.20$ 0 Total	0.05mm	A area Accept n dense	sse 3 2 4 otance (Q'ty) B area	Minor
06	Polarizer Bubble	0.20mm< 0.50mm< Φ>1	liameter : Φ) 0.20mm $\Phi \le 0.50$ mm $\Phi \le 1.00$ mm 1.00mm quantity	A	Acceptance(area pt no dense 3 2 0 4	Q'ty) B area Don't count Don't count Don't count Don't count Don't count	Minor
07	The crack of glass	From Back	on the circuit of $\frac{X}{\text{at}}$	X X	e terminal : $ \frac{Y}{Y \le 1/2 D} $ Neglect	$egin{array}{c} Z \ Z \leq t \end{array}$	Minor

》

深圳市兴宇合电子有限公司 www.xyhlcd.com

JBC1602A00-08W

NO	ecification : Item	Criterion	Level
07	The crack of glass X: The length of Crack Y: The width of crack Z: The thickness of crack D: terminal length T: The thickness	Glass Crack: 7.2 General glass crack and corner edge: 7.2.1 X	Minor
	of glass A: The length of glass	7.3 Glass remain:	Minor

JBC1602A00-08W

♦Sp	ecification:		
NO	Item	Criterion	Level
07	The crack of glass X: The length of Crack Y: The width of crack Z: The thickness of crack D: terminal length T: The thickness of glass A: The length of glass	7.4 Corner crack and medial crack: SP SP (NG) X Y SP (NG) X X Y X Y X Y X Y X Y Y	Minor
08	Backlight elements	8.1 Backlight can't work normally. 8.2 Backlight doesn't light or color is wrong.	Major Major
		8.3 Illumination source flickers when lit.	Major
		9.1 pin type must match type in specification sheet	Major
	General	9.2 No short circuits in components on PCB or FPC	Major
09	appearance	9.3Product packaging must the same as specified on packaging specification sheet.	Major
		9.4 The folding and peeled off in polarizer are not acceptable	Major
		9.5 The PCB or FPC between B/L assembled distance (PCB or FPC) is ≤1.5mm	Major

4. RELIABILITY TEST

4.1 Reliability Test Condition

4.1	Kenability Test Condition	1							
NO.	TEST ITEM	TEST CONDITION							
1	High Temperature Storage Test	Keep in 80 $\pm 2^{\circ}$ C 96 hrs							
		Surrounding temperature, then storage at normal condition 4hrs							
2	Low Temperature Storage Test	Keep in -30 $\pm 2^{\circ}$ C 96 hrs							
		Surrounding temperature, then storage at normal condition 4hrs							
		Keep in +60°C/90%RH duration for 96 hrs							
		Surrounding temperature, then storage at normal condition 4hrs							
		(Excluding the polarizer)Or							
3	High Humidity Storage	Keep in +40 ℃/90% RH duration for 96 hrs							
		Surrounding temperature, then storage at normal condition 4hrs							
		1. Sine wave 10∼55HZ frequency (1 min)							
4	Vibration Test	2. The amplitude of vibration :1.5 mm							
		3. Each direction (XYZ) duration for 2 Hrs							
		Air Discharge: Contact Discharge:							
		Apply 6 KV with 5 times Apply 250V with	h 5						
		Discharge foreach polarity +/- times							
			each						
		polarity +/-							
_	ECD Took	1. Temperature ambinace:15°C ~35°C							
5	ESD Test	2. Humidity relative: 30% ~60%							
		3. Energy Storage Capacitance(Cs+Cd):150pF±10%							
		4. Discharge Resistance(Rd):330 $\Omega \pm 10\%$							
		5. Discharge, mode of operation:							
		Single Discharge (time between successive discharges at least 1 s)							
		(Tolerance If the output voltage indication: $\pm 5\%$)							
	1	$-20^{\circ}\text{C} \rightarrow 25^{\circ}\text{C} \rightarrow 70^{\circ}\text{C} \rightarrow 25^{\circ}\text{C}$							
		(30mins) (5mins) (30mins) (5mins)							
6	Temperature Cycling Test	(Solims) (Simis) (Simis)							
		Surrounding temperature, then storage at normal condition 4hrs							
		1. Sine wave 10~55HZ frequency (1 min)							
7	Vibration Test (Packaged)	2. The amplitude of vibration :1.5 mm							
		3. Each direction (XYZ) duration for 2 Hrs							
		Packing Weight (Kg) Drop Height (cm)							
		0 ~ 45.4 122							
		45.4 ~ 90.8							
_		90.8 ~ 454							
8	Drop Test (Packaged)	Over 454 46							
		Drop direction: **3 comer /1 edges /6 sides etch 1time	es						

4.2QUALITY ASSURANCE SYSTEM

Quality Assurance Flow Chart

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully, do not touch , push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.
- 5.2.8 To control temperature and time of soldering is $280 \pm 10^{\circ}$ C and 3-5 sec.
- 5.2.9 To avoid liquid (include organic solvent) stained on LCM

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is 25°C ± 5°C and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

5.4 TERMS OF WARRANTY

- 5.4.1 Applicable warrant period
 - The period is within thirteen months since the date of shipping out under normal using and storage conditions.
- 5.4.2 Unaccepted responsibility

This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.