

ThorEMore

Optimizing Adaptive Reinforcement Learning for Stock Trading: Smaller and Faster Models

Team: ThorEMore

Business & Computer Science

Computer Science & Economics

Nathan Juirnarongrit

Business & Computer Engineering

Chindanai Trakantannarong

Computer Science

Problem Statement

Theme and Objectives

Optimizing Adaptive Reinforcement Learning for Stock Trading: Smaller and Faster Models

Excessive Model Size: The current Reinforcement Learning (RL) model is too large, making it inefficient for real-world deployment.

Long Training Time: Training the model **takes too long**, delaying experimentation and making iterative improvements difficult.

Lack of Pretrained Models: No existing pretrained models can be used as a baseline, **requiring training from scratch every time**.

Innovation Overview

Smaller & Faster Al Model

- Traditional Al models for stock trading are **large and slow**, but we've made ours **smaller** and more efficient.
- By **reducing unnecessary parts** of the model, it runs faster while still making smart trading decisions.

Model Download & Accessibility

- Users can download and deploy our optimized RL model, allowing them to integrate it into their own trading strategies.
- The **lightweight** design ensures **compatibility with personal computers** and cloud-based environments, making it accessible to both retail traders and researchers.

Interactive Learning Platform

- We provide a web-based interactive platform where users can play, experiment, and learn how our RL model operates in stock trading.
- Users can **test different trading scenarios**, observe model behavior, and gain insights into financial market dynamics.

ThorEMore

ThorEMore is an **Al-powered adaptive trading system** using **Reinforcement Learning** integrated with **LSTMs** to predict market trends, optimize portfolios, and adapt to changing conditions. This model will focus on NASDAQ 100 market index

Technical Overview

What makes our approach **different**?

Adaptive Learning Models:

Long Short-Term Memory Networks (LSTMs): Recognizes sequential patterns in market data. Reinforcement Learning (RL): Continuously adapts to new market conditions.

Optimization

Layer Optimization: Reduce layer from

76,035 to 65,000

Training Optimization: Adaptive model of

sector can be used with its sector

Architecture Diagram

Training Methodology

1. Features Engineering

Based data from Yahoo Finance

Date, Open, Close, High, Low, Volume

Additional data

- Sector: extract each stock's sector from table 4 in NASDAQ wikipedia (Nasdaq-100 Wikipedia)
- Dollar_vol_1m: average of product of volume and close price in duration of 1 month
- Return_{lag}d: average daily return over lag days (in this project, we use 1 day, 1 week, 1 month, and 2 months)
- Return_{lag}d_{t}lag: average daily return over lag days shift by t days
- Financial factors: Relative Strength Index (RSI), Bollinger Bands, Average True Range (ATR), Moving Average
 Convergence/Divergence (MACD)
- Target_{t}d: forward returns in t days

Training Methodology

2. Model Training Process

Environment Setup

The agent interacts with this environment by making trading decisions (buy, sell, hold)

Experience Replay Buffer

The agent **stores past experiences** (state, action, reward, next state) in a buffer.

This avoids training the model on highly correlated sequences, improving stability.

Neural Networks in DDQN

- Main Q-Network (Q) Selects the best action.
- Target Q-Network (Q') Provides stable target values for updating the Main Q-Network.

Training Methodology

3. Optimization

3.1 Layer Optimization

Before optimization:

After optimization:

3.2 Training Optimization (Train by sector)

Reduced Training Complexity – Training an RL model on an entire market is computationally expensive due to high volatility and diverse patterns. By focusing on a specific sector (e.g., tech, healthcare, finance), the model learns more specialized patterns efficiently.

Faster Convergence – Since sector-based stocks share similar characteristics (e.g., growth trends, risk factors), the RL model trains faster as it doesn't need to generalize across vastly different industries.

Performance - Backtesting & Testing

Buy and Hold

Sharpe Ratio: 0.8046097835557823 Max Drawdown: 60.75877896322654%

Double Moving Average Crossover

Max Drawdown: 0.049178180794625465%

Our Trading Strategy

Competitive Edge & Market Potential

How ThorEMore Compares

Feature	Quant Hedge Funds	Retail Trading Bots	ThorEMore
Cost	High	Medium	Low
Accessibility	Limited	High	High
Model Complexity	High	Medium-High	Low-Medium

Business Applications

Financial AI Research & Development:

- A foundation for building advanced Al-powered trading tools.
- Supports innovation in risk management and portfolio optimization.

Retail Investors & Traders:

- Helps traders analyze trends, predict stock and refine strategies via an interactive website.
- Lightweight model runs efficiently on personal computers.

Stock Market Education & Training:

- Provides a hands-on Al trading experience for students and researchers.
- Downloadable model supports experimentation without high-end computing.

Impact & Scalability

İi

IMPACT

SCALABILITY & GROWTH POTENTIAL

Expanding to Multiple Asset Classes:

- Beyond stocks, can adapt to crypto, forex, and commodities.
- Supports multi-market trading strategies.

API & Platform Integration:

- Deployable as a cloud-based API for hedge funds & fintech apps.
- Can be integrated into robo-advisors & trading platforms.

Automated Wealth Management Solutions:

- Retail & institutional investors can leverage Al-driven decision-making.
- Enables customized trading strategies for different risk profiles.

Faster & More Efficient Trading

- Reduces training time and inference latency, allowing for quicker decision-making in real-time markets.
- Improves scalability by enabling AI trading on personal computers and cloud-based systems.

Innovation in Financial Al

- Provides a lightweight, scalable foundation for future Al trading models.
- Encourages new developments in reinforcement learning for finance, leading to smarter, faster, and more ethical Al trading systems.

Increased Accessibility

- Enables retail traders, researchers, and small firms to leverage Al-powered trading without needing expensive hardware.
- The interactive platform makes Al trading more user-friendly and educational

Future Enhancements

ThorEMore is built to evolve—pushing AI trading beyond traditional markets!

Sentiment Analysis Integration

- Use Natural Language Processing (NLP) to analyze news, social media, and financial reports.
- Improve trade decisions by incorporating market sentiment & macroeconomic events.

High-Frequency Trading (HFT) Optimization

- Enhance real-time execution with low-latency infrastructure.
- Implement smart order routing & execution strategies to reduce slippage.

Multi-Asset Expansion

- Extend strategy to crypto, forex, commodities, and bond markets.
- Adapt risk models to different market structures & liquidity conditions.

Explainable AI (XAI) for Trading Decisions

- Develop transparent Al models to improve interpretability.
- Provide clear justifications for trades, enhancing trust in Al-driven strategies.

References

Micro E-mini Nasdaq-100 Index F (MNQ=F) stock price, news, quote and history - Yahoo Finance. (n.d.). Yahoo Finance. https://sg.finance.yahoo.com/quote/MNQ=F/

Franoisgeorgesjulien. (2023, October 23). *Deep reinforcement learning for trading*. Kaggle.

https://www.kaggle.com/code/franoisgeorgesjulien/deep-reinforcement-learning-for-trading#DRL-Environment-v1

Stefan-Jansen. (n.d.). *GitHub - stefan-jansen/machine-learning-for-trading:* Code for Machine Learning for Algorithmic Trading, 2nd edition.

GitHub. https://github.com/stefan-jansen/machine-learning-for-trading?tab=readme-ov-file

Jiang, Z., Xu, D., & Liang, J. (2017, June 30). A deep reinforcement learning framework for the Financial Portfolio Management problem. arXiv.org. https://arxiv.org/abs/1706.10059

Huang, C. Y. (2018, July 8). Financial Trading as a Game: A deep reinforcement learning approach. arXiv.org. https://arxiv.org/abs/1807.02787