ES704 – Instrumentação Básica

01 – Introdução

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Medição;
- 2) Calibração;
- 3) Erros e incertezas;
- Questionário;
- Referências;
- Exercícios.

1.1. Sistema mecatrônico:

 Objetivo: regular a resposta da planta/processo de forma autônoma, fazendo com que a saída seja igual à entrada desejada (setpoint).

1.2. Medição:

- Medição: atribuir valor ou tendência à variável de interesse;
- Variável: quantidade física a ser determinada;
 - Variável dependente/independente: depende ou não de outras variáveis;
 - Variável continua/discreta;
 - Variável controlada: o valor pode ser mantido durante o experimento;
 - Variável externa: variável não-controlada, gera ruído e interferência;
- Parâmetro: grupo funcional de variáveis.

1.3. Sistema geral de medição:

- 1.3. Sistema geral de medição:
 - Sinais: valores transmitidos entre os estágios do sistema;
 - Sensor: converte o fenômeno físico em uma variável medida;
 - Transdutor: converte o sinal do sensor em uma saída mensurável (elétrica, mecânica, óptica);
 - Condicionamento de sinais:
 - Amplificação: ganho de potência no sinal;
 - Filtragem: remoção de ruído;
 - Saída: indica ou armazena a variável medida;
 - Controle: retifica o sistema para minimizar o erro de medição.

1.4. Plano de medição:

 Experimento: ensaio realizado para determinar o valor ou comportamento de uma variável;

Plano de medição:

- 1) Identificar as variáveis e parâmetros controlados e externos do sistema;
- 2) Determinar os métodos e instrumentos (hardware/software) a serem empregados com base nos requisitos e tolerâncias de medição;
- 3) Processar, reduzir e analisar os dados. Se a resposta não for satisfatória, retornar ao passo 1.

2.1. Calibração:

- Calibração: determinar matematicamente a relação entradasaída de um sistema de medição;
- Aplicar excitações de entrada conhecidas, aferidas com um padrão ou instrumento de referência;
 - Variáveis possuem dimensões (comprimento, tempo etc.) e unidades (m, s, etc.);
 - Padrões primários definem o valor exato de uma unidade;
- A calibração deve seguir os procedimentos e especificações vigentes em normas técnicas (ISO, ASTM, IEC, ABNT, DIN, etc.)

2.2. Calibração estática:

- Aplicar uma entrada estática conhecida e medir a resposta do sistema;
- Curva de calibração: relação y = f(x) entre a variável de saída y e a variável de entrada x;
 - Não precisa ser linear!
 - Valores intermediários são interpolados.

2.2. Calibração estática:

 Sensibilidade estática (ganho): relação entre saída e entrada, pode variar com o valor de entrada (regiões de baixa e alta sensibilidade).

$$K = \frac{df(x)}{dx} \bigg|_{x=x_0} \tag{1.1}$$

 Faixa dinâmica de entrada/saída (range): intervalo no qual a curva de calibração é válida. Fora deste intervalo, a resposta é extrapolada.

$$r_i = x_{\text{max}} - x_{\text{min}}$$

$$r_o = y_{\text{max}} - y_{\text{min}}$$
(1.2)

2.2. Calibração estática:

- Resolução: menor incremento que pode ser detectado pelo sistema de medição. Geralmente, é o menor incremento de escala ou dígito significativo indicado pelo sistema;
 - Sistemas dinâmicos apresentam resolução temporal, espacial e espectral;
- Limiar (threshold): valor de entrada mínimo (estímulo) que deve ser aplicado ao sistema para gerar um incremento em sua resposta.

2.2. Calibração estática:

- Método dos quadrados mínimos:
 - Determinação da curva de calibração pela regressão dos dados;
 - Sejam y(n) os pontos experimentais e $y_c(n)$ a função de calibração, deseja-se minimizar a soma dos quadrados das diferenças, $D = \sum [y(n) y_c(n)]^2$;
 - O grau de compatibilidade entre y(n) e $y_c(n)$ é atestado pelo **coeficiente de determinação** R^2 : quanto mais próximo de 1, melhor é o ajuste de curva (\bar{y} é o valor médio de y).

$$R^{2} = 1 - \frac{\sum (y - y_{c})^{2}}{\sum (y - \bar{y})^{2}}$$
 (1.3)

Cuidado com o overfitting!

2.3. Calibração dinâmica:

 Aplicar uma entrada dinâmica conhecida e medir a saída do sistema. A saída sempre segue a forma de onda da entrada;

Resposta ao degrau:

- Constante de tempo: tempo τ necessário para a saída atingir 63,2% do valor final;
- Quanto menor τ, mais rápido o sistema responde ao estímulo de entrada.

2.3. Calibração dinâmica:

- Resposta em frequência: comparar a razão de magnitudes M(ω) e a defasagem φ(ω) entre os sinais senoidais de entrada e de saída;
- Sistemas dinâmicos estáveis tendem a sofrer atenuação e defasagem com o aumento da frequência de entrada.

- 2.3. Calibração dinâmica:
 - Banda de transmissão: faixa de frequências na qual o ganho é praticamente unitário e a defasagem é mínima, geralmente

 3 < M(ω) ≤ 3 dB;
 - Banda de filtragem: faixa de frequências na qual o sinal é severamente atenuado e defasado, geralmente $M(\omega) \le -3$ dB;
 - Largura de banda (bandwidth): faixa de frequências no qual o ganho é até 3 dB abaixo do valor de ganho máximo do instrumento: G – 3 dB = 0.707G.

• Obs: $P[dB] = 10 \log_{10} P$.

3.1. Erros de medição:

 Erro: diferença entre os valores medido y e real y' de uma variável:

$$e = |y - y'| \tag{1.4}$$

- Erros aleatórios: causam espalhamento dos dados em relação em torno do valor real → afetam a precisão do sistema;
- Erros sistemáticos: geram tendências que defletem o valor medido em relação ao valor real → afetam a exatidão (accuracy).

■ 3.1. Erros de medição:

3.2. Erros experimentais:

- Histerese: diferença na resposta do sistema excitado por entradas crescentes (upscale) e decrescentes (downscale);
- Linearidade: diferença da resposta em relação à curva de calibração linear;
- Sensibilidade: diferença no valor do ganho do sistema;
- Retorno ao zero: diferença na resposta do sistema para uma entrada nula.

3.2. Erros experimentais:

3.2. Erros experimentais:

- Repetibilidade: capacidade do sistema em retornar o mesmo valor quando excitado com as mesmas condições de entrada;
- Reprodutibilidade: capacidade do sistema em retornar o mesmo valor em duplicatas, com diferenças no operador ou no aparato experimental;
- Teste sequencial: excitação do sistema em ordem crescente ou decrescente;
- Teste aleatório: excitação com ordem aleatória, converte efeitos sistemáticos em aleatórios;
- Teste concomitante: medição de uma mesma variável utilizando técnicas diferentes para fins de comparação.

3.3. Incertezas:

- Incertezas: intervalo que representa os valores possíveis para uma variável medida;
 - Erros são escalares, incertezas são intervalos;
 - As incertezas podem ser relacionadas a erros sistemáticos ou aleatórios.

Questionário

Questionário:

- 1) Qual é a importância do sistema de medição em um sistema mecatrônico?
- 2) Defina os estágios de um sistema de medição;
- 3) Explique a metodologia e os objetivos da calibração dinâmica e estática. A excitação é sempre unitária?
- 4) Por que é preferível que um sistema de medição possua resposta linear?
- 5) Qual é a diferença entre erro e incerteza? Precisão e exatidão? Reprodutibilidade e repetibilidade? Sensibilidade e resolução?

Referências

Referências:

- C.H.B. Cruz et al., Guia para Física Experimental, Unicamp, 1997.
- R.S. Figliola, D.E. Beasley, Theory and Design for Mechanical Measurements, Wiley, 2011.
- A.S. Morris, Measurement & Instrumentation Principles, Butterworth Heinemann, 2001.
- J.G. Webster, H. Eren (Ed.) Measurement, Instrumentation, and Sensors Handbook, CRC Press, 2014.

- Ex. 1.1) Um sacarímetro é utilizado para medir a concentração de açúcar em uma amostra. O instrumento é constituído por um sensor de índice de refração interrogado através de um microcontrolador. O resultado da medição é apresentado em um LCD. Os dados de calibração estática do instrumento são apresentados no próximo slide.
 - a) Identifique os estágios do sistema geral de medição;
 - b) Identifique as variáveis independentes, dependentes e externas;
 - c) Trace a curva de calibração do instrumento. Determine a sensibilidade, faixa de operação, e a resolução.

■ Ex. 1.1) (continuação) Ensaio de calibração estática.

Concentração (wt%)	Índice de refração
0	1,3330
10	1,3478
20	1,3639
30	1,3812
40	1,3999
50	1,4201
60	1,4419
70	1,4654
80	1,4906

- Ex. 1.1.a) Estágios do sistema de medição
 - Sensor: refratômetro, mede a intensidade da luz refletida;
 - Transdutor: fotodetector, converte intensidade luminosa em corrente elétrica;
 - Condicionamento de sinais: microcontrolador, composto por conversor AD, filtros digitais, e processamento de sinais;
 - Saída: display de cristal líquido;
 - Controle: não especificado, mas pode ser um módulo de compensação de temperatura, por exemplo.

- Ex. 1.1.b) Identificação de variáveis
 - Variáveis dependentes: índice de refração;
 - Variáveis independentes: concentração de açúcar, temperatura, comprimento de onda;
 - Variáveis externas: temperatura ambiente, alimentação elétrica do circuito.

- Ex. 1.1.c) Caracterização do sistema
 - Sensibilidade:

$$\frac{dn}{dc} = 1.96 \times 10^{-3} \text{ 1/wt}\%$$

Faixa dinâmica (in):

$$0 \le C \le 80\%$$

- Faixa dinâmica (out): $1.3330 \le n \le 1.4906$;
- Resolução: menor dígito significativo indicado pelo LCD.

- Ex. 1.2) O LVDT é utilizado para medir deslocamentos lineares, de forma que a tensão de saída varia com o deslocamento de entrada. No ensaio de calibração, a posição é controlada por um micrômetro, enquanto que a tensão de saída é registrada com um multímetro. Adicionalmente, o dispositivo é alimentado por uma fonte de tensão.
 - a) Identifique os estágios do sistema geral de medição;
 - b) Identifique as variáveis independentes, dependentes e externas;
 - c) Descreva os ensaios de calibração estática e dinâmica para este dispositivo.

■ Ex. 1.2) O LVDT é um transformador linear com núcleo móvel. A tensão de saída varia com a posição do núcleo que acopla o primário ao secundário do transformador.

- Ex. 1.2.a) Estágios do sistema geral de medição:
 - Sensor: núcleo do LVDT, converte posição em variação de relutância magnética;
 - Transdutor: transformador, converte tensão do primário ao secundário, modulada pela posição do núcleo;
 - DAQ: multímetro, condiciona e reduz a tensão medida no secundário;
 - Saída: multímetro, mostra os valores de tensão no display;
 - Controle: não se aplica, mas, na prática, a malha é fechada pelo operador...

- Ex. 1.2.b) Identificação das variáveis:
 - Dependentes: tensão no secundário (depende da tensão no primário e da posição do núcleo);
 - **Independentes:** tensão de alimentação do primário, posição do núcleo (controladas pelo operador);
 - Externas: temperatura, umidade, ruído de alimentação, ruído eletromagnético, etc.

- Ex. 1.3) No ensaio de calibração estática de um sensor de força, o dispositivo é excitado por uma célula de carga, resultando em uma tensão de saída. Foram registrados 22 pontos experimentais.
 - a) Obtenha a curva de calibração e determine a faixa de operação;
 - b) Determine a sensibilidade e a resolução do sensor;
 - c) Calcule o erro de histerese.

■ Ex. 1.3) Calibração estática.

n	F (N)	V (mV)	n	F (N)	V (mV)
1	0	0	12	50	1,365
2	5	0,348	13	45	1,372
3	10	0,514	14	40	1,139
4	15	0,702	15	35	0,993
5	20	0,815	16	30	0,731
6	25	1,148	17	25	0,668
7	30	1,302	18	20	0,478
8	35	1,300	19	15	0,516
9	40	1,240	20	10	0,385
10	45	1,414	21	5	0,424
11	50	1,365	22	0	0,458

- Ex. 1.3.a) Curva de calibração:
 - Fitting linear.
 Note que o valor de R² é reativamente baixo;
 - Faixa dinâmica de entrada:

$$r_i = 50 - 0 = 50 \text{ N};$$

Faixa dinâmica de saída:

$$r_0 = 1.5 - 0 = 1.5 \text{ V}.$$


```
[f,g] = fit(x,y,'poly1');
xf = [0:1:50]';
yf = feval(f,xf);
```

- Ex. 1.3.b) Caracterização:
 - Sensibilidade: K = 0.024 V/N;
 - Resolução: considerando que um multímetro possui resolução $\Delta V = 0.01$ mV, $\Delta F = \frac{\Delta V}{K} = 4.17 \times 10^{-4}$ N.

Ex. 1.3.b) Erros de linearidade e histerese:

Erro médio absoluto de linearidade: 0,13 V

Erro médio absoluto de histerese: 0,24 V

- Ex. 1.4) A tabela abaixo apresenta os resultados para o ensaio de calibração de um multímetro.
 - a) Determine as faixas dinâmicas do instrumento;
 - b) Calcule a sensibilidade estática;
 - c) Avalie os erros de linearidade e histerese.

Table 1.6 Voltmeter Calibration Data

Increasing Input [mV]		Decreasing Input [mV]		
X	Y	X	Y	
0.0	0.1	5.0	5.0	
1.0	1.1	4.0	4.2	
2.0	2.1	3.0	3.2	
3.0	3.0	2.0	2.2	
4.0	4.1	1.0	1.2	
5.0	5.0	0.0	0.2	

- **Ex. 1.4.a,b)** Faixa dinâmica e sensibilidade estática
 - Faixa dinâmica:

•
$$r_i = 5 \text{ V};$$

•
$$r_o = 5 \text{ V};$$

- Sensibilidade:
 - $K = \frac{dy}{dx} = 0.98 \text{ V/V}$

Ex. 1.4.c) Erros de histerese e linearidade:

- Ex. 1.5) A figura abaixo apresenta a resposta dinâmica de um sensor a um degrau de 20 V.
 - a) Determine a constante de tempo do sistema;
 - b) Estime a largura de banda do sistema.

- **Ex. 1.5.a)** Constante de tempo:
 - $y(\tau) = 0.632 \times 20 = 12.64 \text{ V};$
 - $\tau = 0.6 0.4 = 0.2 \text{ s};$

- Ex. 1.5.b) Resposta em frequência:
 - Supondo sistema de primeira ordem, a função de transferência é dada por $G(s) = \frac{1}{\tau s+1} = \frac{1}{0.2s+1}$;
 - Do diagrama de Bode, a largura de banda (faixa de frequências acima de -3 dB) é de 5 rad/s (~0.8 Hz).

