

九年级 拓展 II (试用本) 上海教育出版社

SHUXUE

课

数学

练习部分

LIANXI BUFEN

学校 ______ 班级 _____ 姓名 ____ 学号

第一章 一元二次方程与二次函数

习题 1.1(1)

1. 设 x_1 、 x_2 是关于 x 的一元二次方程的两个实数根,不解方程,直接填表:

一元二次方程	$x_1 + x_2$	x_1x_2
$(1) x^2 - 2x - 3 = 0$		
$(2) 4x^2 - 3x + \frac{1}{2} = 0$		
$(3) 4x^2 - 7 = 0$		
$(4) 6x^2 + 7x = 0$		
$(5) \ 5x^2 + 1 = 6x$		
$(6) 4x^2 + 12x = 7$		
$(7) x^2 + px + q = 0(p^2 - 4q \ge 0)$		

- **2.** (1) 已知方程 $2x^2 5x 3 = 0$ 的一个根是 $-\frac{1}{2}$,不解方程,求方程的另一个根.
- (2) 已知方程 $x^2 + 2x 1 = 0$ 的一个根是 $-1 + \sqrt{2}$,不解方程,求方程的另一个根.
- **3.** (1) 已知关于 x 的方程 $x^2 + px + 1 = 0$ 的一个根为 $\sqrt{2} 1$,求方程的另一个根及 p 的值.
- (2) 已知关于 x 的方程 $3x^2 + 5x k^2 + 1 = 0$ 有一个根是 1,求方程的另一个根及 k 的值.

4. 已知关于 x 的方程 $(a+1)x^2+3x+a^2+3a=0$ 的一个根为零,求方程的另一个根及 a 的值.

习题 1.1(2)

1. 设 α 、 β 是方程 $2x^2-2x-1=0$ 的两个实数根,利用根与系数的关系求下列各式的值:

(1)
$$\alpha^2 \beta + \alpha \beta^2$$
.

$$(2) \frac{1}{\alpha} + \frac{1}{\beta}.$$

(3)
$$\alpha^2 - \alpha\beta + \beta^2$$
.

(4)
$$(\alpha - \beta)^2$$
.

(5)
$$(\alpha - 3)(\beta - 3)$$
.

(6)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
.

2. 已知 x_1 、 x_2 是关于 x 的方程 $x^2 + 2(m-1)x + 2m^2 - 23 = 0$ 的两个实数根,且 $x_1^2 + x_2^2 = 26$,求 m 的值及方程的两根.

- **3.** 已知关于 x 的方程 $mx^2 (2m-1)x + m 2 = 0 (m > 0)$.
- (1) 求证:这个方程有两个不相等的实数根.
- (2) 如果这个方程的两个实数根是 x_1 、 x_2 ,且 $(x_1-3)(x_2-3)=5m$,求 m 的值.

4. 在 Rt $\triangle ABC$ 中, $\angle C$ =90°,AB=5,已知两条直角边 AC、BC(BC>AC)的长是关于 x 的方程 x^2 — (m+5)x+6m=0的两个实数根,求 m 的值及 AC、BC 的长.

习题 1.1(3)

1. (1) 求作一个一元二次方程,使它的两个根分别是 $\frac{1}{2}$ 和 $-\frac{5}{2}$.

(2) 求作一个一元二次方程,使它的两个根分别是 $3+\sqrt{2}$ 、 $3-\sqrt{2}$.

- 2. 已知两个数的和与两个数的积,求这两个数.

(3) 和等于 $\sqrt{2}$,积等于 $-\frac{1}{4}$.

- 3. 不解方程,作一个一元二次方程,使它的两个根满足如下的要求:
- (1) 分别是方程 $2x^2 4x 1 = 0$ 的两个根的倒数.

(2) 分别是方程 $2x^2+6x-3=0$ 的两个根的平方.

(3) 分别是方程 $6x^2 - x - 1 = 0$ 的两个根的两倍.

(4) 分别比方程 $x^2 + 5x - 7 = 0$ 的两个根大 4.

习题 1.2(1)

- 1. 求下列二次函数的图像与x轴和y轴的公共点的坐标.
- (1) $y = 4x^2 9$.

(2) $y = 2x^2 - 6x$.

(3) $y=x^2+3x-10$.

- (4) $y = 3x^2 2x 1$.
- 2. 求下列二次函数的图像与直线 y=-2 的公共点的坐标.
- (1) $y = x^2 + 5x + 4$.

(2) $y=x^2-3x-12$.

- (3) $y = 3x^2 2x 7$.
- **3.** 已知二次函数 $y=x^2-4x+4$.
- (1) 求这个函数的图像与直线 y=1 的公共点的坐标.
- (2) 求这个函数的图像与 x 轴的公共点的坐标.
- (3) 这个函数图像与直线 y=-1 有公共点吗? 为什么?

- **4.** 已知抛物线 $y = \frac{\sqrt{3}}{3}x^2 + \frac{4\sqrt{3}}{3}x + \sqrt{3}$ 与 x 轴交于 A 、B 两点(点 A 在点 B 右侧),与 y 轴交于点 C.
 - (1) 求点 $A \setminus B \setminus C$ 的坐标.
 - (2) 试一试,判断 $\triangle AOC$ 与 $\triangle BOC$ 是否相似.

习题 1.2(2)

1. 试判断下列抛物线与 x 轴的公共点的情况,如果有公共点,求出公共点的坐标.

(1)
$$y=x^2+6x+8$$
.

(2)
$$y = x^2 + 6x + 9$$
.

(3)
$$y=x^2+6x+10$$
.

(4)
$$y = 5x^2 - 2\sqrt{5}x + 2$$
.

2. 已知关于 x 的二次函数 $y=ax^2+bx+c$ 中,ac<0,判断这个二次函数的图像与 x 轴的公共点个数.

3. (1) 已知关于 x 的二次函数 y = 共点,求 a 的值,并求出公共点的坐标.	+1 的图像与 x 轴有	「且只有一个公

(2) 已知关于x的二次函数 $y=(6-k)x^2-2kx+1$ 的图像与x轴有且只有一个公共点,求k的值,并求出公共点的坐标.

4. 已知关于 x 的二次函数 $y=x^2+(2m-1)x+m^2$ 的图像与 x 轴有两个公共点,求 m 的取值范围.

- **5.** 求当 k 满足什么条件时, 抛物线 $y=(k-1)x^2+(2k-1)x+(k-2)$ 与 x 轴的公共点情况是:
 - (1) 有两个公共点.
 - (2) 只有一个公共点.
 - (3) 没有公共点.

习题 1.2(3)

1. 求证:关于 x 的二次函数 $y=x^2-(k+2)x+k-3$ 的图像与 x 轴总有两个公共点.

2. 求证:抛物线 $y=2x^2-4mx+m^2(m)$ 为常数)与 x 轴一定有公共点.

3. 求证:抛物线 $y = -x^2 + kx - k^2 - 1(k)$ 为常数)在 x 轴下方.

4. 已知关于 x 的二次函数 $y=2x^2+$	(m+2)x+m	的图像与 x	轴交于 A、A	B两点,	且满
$\angle AB=4$. 求 m 的值及点 A 、 B 的坐标.					

5. 已知关于 x 的二次函数 $y=x^2-(m-3)x+m+6$ 的图像与 x 轴交于 A 、B 两点,且 AB=3. 求 m 的值及点 A 、B 的坐标.

习题 1.3(1)

- **1.** 已知关于 x 的二次函数 $y=ax^2+bx+c$ 图像上 A 、B 、C 三点的坐标,求这个函数的解析式.
 - (1) A(0,-1), B(1,-4), C(-1,4).
 - (2) A(1,0), B(-1,6), C(2,3).
 - (3) A(-1,2), B(-2,-3), C(1,0).
 - **2.** 已知二次函数 $y=x^2-2x-8$.
 - (1) 判断点 A(3,-5)、B(-1,5) 是否在这个函数的图像上.
 - (2) 求这个函数的图像与坐标轴的公共点的坐标.
 - (3) 分别指出这个函数图像的开口方向、顶点坐标及函数值的增减变化情况.

- 3. 已知关于 x 的二次函数 $y=ax^2+bx+c$ 的图像与 x 轴交于点 A(-1,0) 和点 B, 对称轴是直线 $x=\frac{3}{2}$.
 - (1) 求点 B 的坐标.
 - (2) 如果这个函数的图像还经过点 C(0,4) (如图),求这个函数的解析式.
 - (3) 指出由(2)所得函数的图像的顶点坐标及函数值的增减变化情况.

习题 1.3(2)

- 1. 已知关于x的二次函数 $y=ax^2+bx+c$ 的图像的顶点P和其上一点A的坐标,求这个二次函数的解析式.
 - (1) P(3,-2),A(1,2).
- (2) P(-1,3), A(0,1).

2. 已知关于 x 的二次函数 $y = ax^2 + bx + c$ 的图像经过点 A(-2,3), 与 y 轴交点的纵坐标为-1, 对称轴是直线 x = -2, 求这个二次函数的解析式.

3. ∃	2知关于 x 的	二次函数 y=-	$-2x^2 + bx + c$	的图像的顶。	点为 $M(2,0)$,求这个二次函
数的解析	式.					

4. 已知关于 x 的二次函数 $y=ax^2+bx+c$ 的图像与 x 轴有且只有一个公共点,与 y 轴交于点 P(0,8),图像的对称轴是直线 x=2,求这个二次函数的解析式.

5. 已知关于 x 的二次函数 $y=x^2+2(m-5)x+25$ 的图像的顶点在坐标轴上,求这个二次函数的解析式.

习题 1.3(3)

- **1.** 已知关于 x 的二次函数 $y=ax^2+bx+c$ 的图像与 x 轴交于点 A 、B ,并经过点 C ,求这个二次函数的解析式.
 - (1) 点 $A \setminus B$ 的横坐标分别为 $-4 \setminus 1$,点 C 的坐标为(0,-8).

(2) 点 $A \setminus B$ 的横坐标分别为 $-2 \setminus 3$,点 C 的坐标为(2,2).

(3) 点 A、B的横坐标分别为 1、5,点 C是顶点,纵坐标为一4.

2. 已知关于 x 的二次函数 $y = \frac{1}{2}x^2 + bx + c$ 的图像经过 A(1,0)、B(3,0)两点,求这个二次函数的解析式.

3. 已知关于 x 的二次函数 $y=ax^2+bx+c$ 的图像经过直线 y=-3x+3 与 x 轴、y 轴的交点以及点 A(-3,0),求这个二次函数的解析式.

4. 已知关于 x 的二次函数 $y=ax^2+bx+2$ 的图像在 x 轴上截得的线段长为 3,图像与 x 轴的正半轴交于点 A,与 y 轴的正半轴交于点 B(如图), $\tan \angle OAB=2$. 求这个二次函数 的解析式.

习题 1.3(4)

1. 已知关于 x 的二次函数 $y = ax^2 + bx + c$ 的图像的对称轴是直线 x = 2 ,图像在 x 轴上 截得的线段长为 6 ,与 y 轴交点的纵坐标为 5 ,求这个二次函数的解析式.

2. 已知关于 x 的二次函数 $y = ax^2 + bx + c$ 的图像的顶点坐标是(2,1),图像在 x 轴上 截得的线段长为 2,求这个二次函数的解析式.

3. 已知抛物线 $y=ax^2+bx+c(a,b,c)$ 是常数, $a\neq 0$)的顶点为 P(-2,4),与 x 轴交于 A、B 两点,且 $\triangle PAB$ 的面积为 8,求这条抛物线的表达式.

4. 关于 x 的二次函数 $y=ax^2+bx+c$ 的图像的顶点为 P ,图像与 x 轴交于 A(-1,0)、B(3,0)两点(如图),且 $\triangle PAB$ 为直角三角形. 求这个二次函数的解析式.

1. 如图,一个运动员推铅球,出手点 A 离地面的高度 OA 为 $1\frac{2}{3}$ 米,铅球在点 B 处落地,经过的路线是抛物线. 铅球在运行中的最大高度为 3 米,达到最高点时,铅球与点 O 的水平距离为 4 米(即 OC=4). 利用图示的直角坐标系,求铅球落地点 B 与点 O 之间的距离.

- **2.** 某商场有一批球鞋,每双进价 300 元. 如果以 500 元一双出售,那么一天能卖出 40 双;如果一天中鞋的单价每提高 10 元,那么就少卖出一双.
- (1) 求这一天中出售球鞋的利润 y(元)与提价 x(元)之间的函数解析式,其中 x 是 10 的正整数倍.
 - (2) 提价 x(元) 在什么范围时,出售球鞋的利润 y(元) 随着提价 x(元) 的增加而增加?

- **3.** 如图是立交路上方一座抛物线型拱桥的示意图,桥的跨度 AB=12米,拱高 OM=4米.按规定,汽车通过桥下时,车顶与桥拱之间的距离 CD 不小于 0.5 米.
 - (1) 以 AB 为 x 轴,以 OM 为 y 轴建立平面直角坐标系,求拱桥所

在抛物线的表达式.

(2) 一辆宽 $4 \times 1.5 \times 1.5$

A 组

- 1. 写出下列各方程的两根的和与两根的积.
- (1) $2x^2-2x-3=0$.

(2) $6x^2 + x = 0$.

(3) $4x^2 - 3 = 0$.

(4) $x^2 - 2\sqrt{5}x = 7$.

- **2.** 利用方程的根与系数的关系,检验解方程所得的两根 x_1, x_2 是否正确.
- (1) 解方程 $7x^2+6x-1=0$,得 $x_1=-\frac{1}{7},x_2=1$.

(2) 解方程 $4x^2+12x+5=0$,得 $x_1=-\frac{1}{2}, x_2=-\frac{5}{2}$.

3.	如果关于。	x 的方程 x2-	+(m+2)x	c+2=0 的-	一个根为-	-1,求方程的	另一个根	及 m
的值.								

4. 不解方程,求作一个新的一元二次方程,使它的两个根分别是方程 $2x^2-x-6=0$ 的两根的倒数.

5. 已知关于 x 的二次函数 $y=(a-1)x^2-2x+1$ 的图像与 x 轴只有一个公共点,求 a 的值及图像与 x 轴的公共点的坐标.

- **6.** 已知二次函数 y = f(x) 图像上 $A \setminus B \setminus C$ 三点的坐标, 求这个函数的解析式, 指出图像 的开口方向,并写出它的最高点或最低点的坐标以及函数值的增减变化情况:
 - (1) A(-1,2), B(0,-3), C(1,-6); (2) A(0,1), B(1,2), C(-1,6);

- (3) A(-2,0), B(3,0), C(0,6); (4) A(1,0), B(-2,0), C(0,4).

7. 已知二次函数 y=f(x)的图像的顶点坐标为(-2,4),与 x 轴的一个公共点的坐标 为(-3,0),求这个二次函数的解析式.

8. 已知二次函数 y = f(x) 的图像的对称轴为直线 x = 3,它与 x 轴的两个公共点的距离 等于10,与 y 轴交点的纵坐标为4,求这个二次函数的解析式.

9. 已知二次函数 y = f(x)的图像与 x 轴的两个公共点的距离为 4,且顶点坐标是(-1,-8),求这个二次函数的解析式.

- **10.** 某商场经销某品牌雨伞,每把的成本是 40 元. 据市场分析,按每把 50 元销售,一个月能出售 500 把;销售单价每涨 1 元,月销售量就减少 10 把. 针对这种雨伞的销售情况,解答以下问题:
 - (1) 当销售单价定为每把55元时,估计月销售量和月销售利润分别是多少?
- (2) 如果销售单价提高 x 元,月销售利润为 y(元),试求出 y(元)与 x(元)之间的函数解析式.
- (3) 商场想在月进货成本不超过 10 000 元的情况下,使得月销售利润达到 8 000 元,销售单价应定为多少元?

B 组

- 1. 已知方程 $2x^2+4x+1=0$ 的两根是 $x_1, x_2,$ 利用根与系数的关系,求下列各式的值:
- $(1) (x_1-3)(x_2-3).$

 $(2) \ \frac{x_1}{x_2} + \frac{x_2}{x_1}.$

 $(3) x_1^2 + x_2^2 - x_1 x_2.$

 $(4) (x_1-x_2)^2$.

- 2. 已知抛物线 $y=mx^2+(m-6)x-6$ (常数 $m\neq 0$).
- (1) 求证:无论非零常数 m 为何值时,抛物线与 x 轴总有公共点.
- (2) 当m为何值时, 抛物线与x轴的两个交点的距离等于 2?

3. 如图,已知关于x的二次函数 $y=ax^2+bx+4$ 的图像与x轴交于A、B 两点,其中点 A 在x 轴负半轴上,点 B 在x 轴正半轴上;图像与y 轴正半轴交于点C,且 $\triangle ABC$ 是直角三角形, $\tan \angle CAB = \frac{1}{2}$. 求这个二次函数的解析式.

4. 某跳水运动员进行 10 米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系中始于原点 O 的一段抛物线,图中数据为已知条件. 在跳某个规定动作时,正常情况下,这个运动员在空中的最高处距水面 $10\frac{2}{3}$ 米,入水处距池边的距离为 4 米,同时,运动员在

距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

- (1) 求这段抛物线的表达式.
- (2) 在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的距离为 $3\frac{3}{5}$ 米,问此次跳水是否会失误,为什么?

第二章 直线和圆

习题 2.1(1)

- 1. 关于圆的切线的下列说法中正确的是
- (A) 与圆只有一个公共点的直线是圆的切线;
- (B) 垂直于圆的半径的直线是圆的切线;
- (C) 到圆心的距离等于直径长的直线是圆的切线;
- (D) 经过半径一端且垂直于半径的直线是圆的切线.
- **2.** 已知:如图,在 $\triangle ABC$ 中,AB=AC, $\angle B=30^{\circ}$,D是BC上一点,且AD=DC.以B为圆心,BA为半径作 $\odot B$.

求证:AD 是 $\odot B$ 的切线.

3. 已知:如图,AB是两个同心圆中大圆的弦,C是AB的中点,小圆经过点C. 求证:AB是小圆的切线.

4. 已知:如图,在 Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle A=30^{\circ}$,D是AC的中点, $\odot C$ 经过点D. 求证:AB是 $\odot C$ 的切线.

习题 2.1(2)

1. 下列命题中,假命题是

()

- (A) 圆的切线垂直于圆的半径;
- (B) 圆的切线垂直于过切点的直径;
- (C) 经过圆心且垂直于切线的直线必经过切点;
- (D) 经过切点且垂直于切线的直线必经过圆心.
- **2.** 已知直角坐标平面内,半径为 3 的 \odot A 与 x 轴相切于点 P(4,0),求圆心 A 到原点的距离.

3. 如图,已知直线 AB 与 $\odot O$ 相切于点 C, DE 是 $\odot O$ 的直径, $EF \perp AB$, 垂足为点 F, DC 的延长线与 EF 的延长线交于点 G, $\angle G$ =56°. 求 $\angle E$ 的度数.

4. 已知:如图,O 是等腰三角形 ABC 的底边 BC 的中点, $\odot O$ 与腰 AB 相切于点 D. 求证:AC 是 $\odot O$ 的切线.

1. 如图,已知 \odot *O* 是 \triangle *ABC* 的内切圆,切点分别是点 D、E、F,已知 AE=4,CD=5, BE=7. 求 \triangle ABC 各边的长.

2. 已知:P 是 \odot O 外一点,PA、PB 是 \odot O 的切线,A、B 为切点,OP 交 \odot O 于点 C,联结 AC、BC 并延长,分别交 PB、PA 于 E 、D 两点.

求证:(1) $\angle PAC = \angle PBC$. (2) AE = BD.

3. 已知 $\bigcirc O_1$ 与 $\bigcirc O_2$ 的半径长分别为 2 厘米和 3 厘米,且 $\bigcirc O_1$ 与 $\bigcirc O_2$ 外切,求点 O_1 到 $\bigcirc O_2$ 的切线长.

习题 2.1(4)

- 1. 填空题:
- (1) 在 Rt $\triangle ABC$ 中, $\angle C$ =90°,I 是 $\triangle ABC$ 的内心,如果 AC=3,BC=4,那么 IC 的长等于
- (2)已知一个三角形的周长为 40 厘米,其内切圆的半径长为 2 厘米,那么这个三角形的面积是_____平方厘米.
 - **2.** 已知:如图,⊙O是四边形 ABCD 的内切圆.

求证:AB+CD=AD+BC.

3. 已知:如图,P 是 $\odot O$ 外一点,PA、PB 为 $\odot O$ 的切线,A、B 为切点,BC 是 $\odot O$ 的直径.

求证:AC//PO.

- **4.** 已知:如图,在 $\triangle ABC$ 中,AB=AC,O是边 BC上的一点, $\bigcirc O$ 与 AB、AC 都相切,切点分别为点 D、E.
 - (1) 求证:BO=CO.
 - (2) 如果 AB=5, BC=8, 那么 \odot O 的半径长是多少?

- 1. 已知 $\odot O_1$ 、 $\odot O_2$ 的半径长分别为 1 cm 和 3 cm,根据下列条件,指出两圆的公切线的 条数:
 - (1) $O_1O_2 = 5$ cm. (2) $O_1O_2 = 4$ cm.
- (3) $O_1O_2 = 3$ cm.

- (4) $O_1 O_2 = 2$ cm. (5) $O_1 O_2 = 1$ cm.

2. 已知 $\odot O_1$ 与 $\odot O_2$ 的两条内公切线相交于点 $P, \odot O_1$ 与 $\odot O_2$ 的半径长的比为 2:3, 圆心距 O_1O_2 为 10 cm,求线段 O_1P 与 O_2P 的长.

3. 已知两圆的半径长分别为3和8,圆心距为13,求两圆的外公切线的长.

4.	已知两圆的半径长分别为3和5,圆心距为10,求两圆的内公切线的长.

5. 已知 P 是半径长为 8 的 $\odot O$ 内的一点,且 OP=5,以 P 为圆心的 $\odot P$ 与 $\odot O$ 只有一条公切线,求 $\odot P$ 的半径长.

习题 2.1(6)

- **1.** 已知 $\odot O_1$ 与 $\odot O_2$ 外切,AB 是外公切线, $A \subset B$ 为切点,AB=12 厘米, $\odot O_1$ 的半径长为 4 厘米. 求:
 - (1) ⊙O₂ 的半径长.
 - (2) 外公切线与连心线所夹的锐角的正切值.

- **2.** 已知半径长为 4 的两个等圆,它们的内公切线互相垂直,那么两圆的圆心距为 .
- **3.** 已知:如图, $\bigcirc O_1$ 与 $\bigcirc O_2$ 外离, O_1O_2 分别交 $\bigcirc O_1$ 、 $\bigcirc O_2$ 于点 A_1 和点 A_2 ,BC 是 $\bigcirc O_1$ 与 $\bigcirc O_2$ 的外公切线,B、C 为切点.

求证: $A_1B \perp A_2C$.

4. 已知 $\odot O_1$ 与 $\odot O_2$ 的直径长分别为 4 和 2,它们有两条公切线互相垂直,试画出可能的图形,并求出圆心距的长.

习题 2.2(1)

1. 如图,已知 $A \ C \ D$ 是圆周上的四点,那么图中有多少对相等的角?请写出其中的三对.

2. 如图,已知 AB 是 $\odot O$ 的直径,C、D 是 $\odot O$ 上的两点,且 $\angle BDC = 25^{\circ}$,求 $\angle AOC$ 的度数.

3. 已知 $\odot O$ 的半径长为 5, $\odot O$ 的弦 AB=6, 弦 AC=8, 那么 BC 是否是 $\odot O$ 的直径? 为什么?

4. 若圆的一条弦把圆分成 1:3 两段弧,则劣弧所对的圆心角、圆周角分别为多少度?

习题 2.2(2)

1. 已知:如图,AB 是 $\odot O$ 的直径,半径 $OC \perp AB$,M 是 OC 的中点, $\odot O$ 的弦 EF 过点 M 且与 AB 平行.

求证: $\angle CBE = 2\angle ABE$.

2. 如图,已知 A、B、C、D 是圆上四点, $\widehat{AB} = \widehat{BC} = \widehat{CD}$,弦 AC 与 BD 相交于点 E, $\angle AED = 140^{\circ}$,求 $\angle ACD$ 的度数.

3. 如图,已知 \odot O 的弦 AB = AC, $\angle ABC$ 的平分线 BD 交 \odot O 于点 D,AD 与 BC 的延长线相交于点 E, $\angle BAC = 50^{\circ}$,求 $\angle E$ 的度数.

4. 已知:如图, $\triangle ABC$ 内接于 $\odot O$,高 AD与高 BE 相交于点 H,AD 的延长线与 $\odot O$ 相交于点 G.

求证:HD=DG.

习题 2.2(3)

1. 如图,已知 AB 是 $\odot O$ 的直径,C 是 $\odot O$ 上一点,过点 C 作 $\odot O$ 的切线,交 AB 的延长 线于点 D, $\angle ABC=70^\circ$,求 $\angle D$ 的度数.

2. 如图,已知 A、B 是 \odot O 上的两点,AC 是 \odot O 的切线, $\angle BAC = \frac{1}{3} \angle AOB + 11^{\circ}$,求 $\angle OAB$ 的度数.

3. 如图,已知 AB 是 $\odot O$ 的直径,C 是 $\odot O$ 上一点,CD 是 $\odot O$ 的切线, $AD \perp CD$,点 D 为垂足,AD=4,CD=3. 求 AB 的长.

4. 如图,已知 $\triangle ABC$ 内接于一圆, $\angle A=57^\circ$, $\angle B=66^\circ$,过点 A、B、C 作该圆的外切三角形 A'B'C',求 $\triangle A'B'C'$ 的三内角的大小.

习题 2.2(4)

1. 已知:如图, $\triangle ABC$ 是 $\odot O$ 的内接三角形, $\angle ACB$ 的平分线交 $\odot O$ 于点 D,过 D 作 $\odot O$ 的切线 l.

求证:AB//l.

2. 已知:如图,以 Rt $\triangle ABC$ 的一条直角边 AC 为直径的 $\bigcirc O$ 交斜边 BC 于点 D,过 D 作 圆的切线,交 AB 于点 E.

求证:EA = EB.

3. 已知:如图,AB 是 $\odot O$ 的直径,直线 l 与 $\odot O$ 相切于点 C, $AD \perp l$, $BE \perp l$,点 D、E 为垂足.

求证:AC平分∠BAD;BC平分∠ABE.

4. 已知:如图,四边形 ABCD 内接于 $\odot O$, N 是边 DC 的延长线上一点,过点 C 作 $\odot O$ 的切线 MC,且 MC 平分 $\angle NCB$.

求证:AC平分∠BAD.

习题 2.3(1)

1. 已知 \odot O的弦 AB和CD相交于点 P,PA=1,PB=6,CD=5,求 PC:PD的值.

2. 如图,已知 $\odot O_1$ 的半径 O_1A 是 $\odot O_2$ 的直径,P 是 O_1A 上一点,过点 P 作 O_1A 的垂线,分别交 $\odot O_1$ 和 $\odot O_2$ 于 E、F 和 C、D 四点,AP=1, $PO_1=4$. 求线段 CE 的长.

3. 如图,已知 PAB 和 PCD 是⊙O 的割线,PA=CD=1,AB=2,求线段 PC 的长.

4. 如图,已知 \odot O 的直径 AB=5,弦 $CD \perp AB$, H 为垂足, $E \not\in CD$ 延长线上一点,且 ED=DH=2, BE 交 \odot O 于点 F. 求线段 EF 的长.

习题 2.3(2)

1. 如图,已知 $\odot O_1$ 与 $\odot O_2$ 相交于 A、B 两点,BC 切 $\odot O_2$ 于点 B,交 $\odot O_1$ 于点 C,过点 A 的直线分别交 $\odot O_1$ 、 $\odot O_2$ 于 D、E 两点,交 BC 于点 F,DF=4,FA=3,AE=5. 求线段 BC 的长.

2. 如图,已知 \odot O与 \odot O'相交于A、B 两点,点 P 在 BA 的延长线上, \odot O 的割线 PCD 交 \odot O于点 C、D, PE 与 \odot O'相切于点 E, PC=4, CD=8, 求线段 PE 的长.

3. 如图,已知 $\odot O_1$ 与 $\odot O_2$ 相交于 C、D 两点,AB 为外公切线,A、B 为切点,CD 的延长 线与 AB 相交于点 M,AB=12,CD=9,求线段 MD 的长.

4. 如图,已知两个同心圆,大圆的弦 AB 切小圆于点 T,大圆的弦 AC 交小圆于 D、E 两点, $AB=2\sqrt{3}$, $AD=\frac{3}{2}$,求弦 AC 的长.

习题 2.4(1)

1. 已知圆内接四边形 ABCD 中, $\angle A: \angle C=2:3$, $\angle B: \angle D=1:3$,求 $\angle A: \angle B$ 的值.

2. 如图,已知 AB 是半圆 O 的直径,C、D 是半圆上的两点,且 AD=CD, $\angle B=50^\circ$,求 $\angle A$ 、 $\angle C$ 、 $\angle D$ 的度数.

3. 已知:如图, $\odot O_1$ 与 $\odot O_2$ 相交于 A、B 两点,过点 A 的直线分别交 $\odot O_1$ 、 $\odot O_2$ 于点 C、D,过点 B 的直线分别交 $\odot O_1$ 、 $\odot O_2$ 于点 E、F.

求证:CE//DF.

4. 已知:如图,四边形 ABCD 内接于 $\odot O$,AC 平分 $\angle BAD$,AB 与 DC 的延长线交于点 E,AC=CE.

求证:AD=BE.

习题 2.4(2)

1. 如图,锐角 $\triangle ABC$ 的三条高AD、BE、CF 相交于点H. 试问在A、B、C、D、E、F、H 这七个点中共有多少组四点共圆,请写出其中的三组.

2. 已知:如图,在 $\triangle ABC$ 中,D、E分别是边 AB、AC 的中点,AB 的垂线过点 D 交 AC 于点 F,AC 的垂线过点 E 交 AB 于点 G.

求证:(1) $D \setminus G \setminus F \setminus E$ 四点共圆.

(2) B、C、F、G 四点共圆.

3. 求证:圆内接平行四边形是矩形.

复习题

A 组

1. 如图,已知 $\triangle ABC$ 中,AB=AC,以 AB 为直径的 $\bigcirc O$ 与 BC 相交于点 D, $DE \bot AC$, 垂足为点 E.

求证:DE 是 $\odot O$ 的切线.

2. 如图,已知 DB 是半圆 O 的直径,A 是 BD 延长线上一点,AC 切半圆于点 E, $BC \perp AC$ 于点 C,交半圆 O 于点 F,AC = 12,BC = 9. 求线段 AD 的长.

3. 如图,已知 \odot O 是 $\triangle ABC$ 的内切圆,点 D、E、F 分别为边 AB、BC、CA 上的切点, $\angle A: \angle B: \angle C=2:3:4$,求 $\angle DEF: \angle EFD$ 的值.

4. 如图,已知 $\odot O$ 与 $\odot O'$ 外切,这两圆的两条外公切线的夹角为直角,求 $\odot O$ 与 $\odot O'$ 半径的比值.

5. 已知:如图, $\odot O_1$ 与 $\odot O_2$ 相交于A、B两点,过点A的直线分别交 $\odot O_1$ 、 $\odot O_2$ 于C、D两点,G为线段AD上的一点,BG及其延长线分别交 $\odot O_1$ 、 $\odot O_2$ 于点E、F.

求证:DF//CE.

6. 已知:如图,PA、PB 分别与 $\odot O$ 相切于点 A 、B,AC 是 $\odot O$ 的直径. 求证: $\angle APB=2\angle BAC$.

7. 已知:两圆内切于点 P,大圆的弦 AB 与小圆相切于点 C. 求证: $\angle APC = \angle BPC$.

8. 已知:如图,在 $\triangle ABC$ 中,AB=AC, $\bigcirc O$ 与 $\triangle ABC$ 的三边均相交,交点分别为 D、E、F、G、H、I,AD=AI.

求证:(1) DE=IH; (2) BF=CG.

9. 已知:如图, $\triangle ABC$ 的高 AD、BE 相交于点 H,点 G 在 AD 的延长线上,DG=HD. 求证:A、B、G、C 四点共圆.

1. 如图,已知等边三角形 ABC 的边长为 1, $\triangle ABC$ 内的三个等圆 $\odot O_1$ 、 $\odot O_2$ 、 $\odot O_3$ 两两外切,且每个圆分别与 $\triangle ABC$ 的某两边相切,求圆的半径长.

2. 如图,已知矩形 ABCD 中,AB=6,AD=4,E 是 CD 上的一点, $\odot O$ 是矩形内一圆,且 $\odot O$ 与 AB、AD、CD、BE 都相切. 求线段 CE 的长.

3. 已知:如图,梯形 ABCD 中, $AD/\!\!/BC$,以 AD 为弦的圆分别与 AB、CD 相交于点 F、E.

求证:B,C,E,F四点共圆.

4. 已知:如图,正方形 ABCD 的边 BC 是 $\odot O$ 的直径,P 是边 CD 上的一点,且 PD = 3PC.

求证:AP 是 $\odot O$ 的切线.

5. 已知:如图,两个同心圆中,大圆、小圆的半径长分别为 R 和 r, A、 B 是大圆上的两点, AMN、 BPQ 是小圆的割线.

求证: $AM \cdot AN = BP \cdot BQ = R^2 - r^2$.

明AE = DE.)

6. 已知:点 A 是 \odot O_1 与 \odot O_2 的一个交点,P 是线段 O_1O_2 的中点,AC 切 \odot O_2 于点 A,交 \odot O_1 于点 C,D 是 AC 的中点.

求证:PA=PD.

(提示:分别联结 O_1D 、 O_2A ,作 $PE \perp AD$,垂足为点 E.证

说明

本册教材根据上海市中小学(幼儿园)课程改革委员会制定的课程 方案和《上海市中小学数学课程标准(试行稿)》编写,供九年义务教育 九年级试用.

本教材由上海师范大学主持编写,经上海市中小学教材审查委员会 审查准予试用.

本册教材的编写人员有:

主编: 邱万作 分册主编: 叶锦义

特约撰稿人: (按姓氏笔画为序)邵世开 陆海兵 陈慧珍 顾跃平 2019年教材修订组成员:叶锦义 邵世开 沈 洁

陆海兵 徐晓燕 顾跃平

欢迎广大师生来电来函指出教材的差错和不足,提出宝贵意见.出版社电话: 021-64319241.

本册教材图片提供信息:

图虫网(封面一幅图)

插图绘制:黄国荣、顾云明、张惠卿、刘铁彬等.

声明 按照《中华人民共和国著作权法》第二十五条有关规定,我们已尽量寻找著作权人支付报酬. 著作权人如有关于支付报酬事宜可及时与出版社联系.

责任编辑 缴 麟

九年义务教育课本

数学练习部分

九年级 拓展 Ⅱ (试用本)

上海市中小学(幼儿园)课程改革委员会

上海世纪出版股份有限公司 上 海 教 育 出 版 社出版

(上海市闵行区号景路159弄C座 邮政编码:201101)

上海 点 考 多 底 发行 上海中华印刷有限公司印刷

开本 890×1240 1/16 印张 3 2019年7月第1版 2024年7月第6次印刷

ISBN 978-7-5444-9341-3/G·7702

定价:2.70元

价格依据文件:沪价费〔2017〕15号

此书如有印、装质量问题,请向本社调换 上海教育出版社电话: 021-64373213

