Kloniranje

Kloniranje

- Kloniranje je postopek nespolnega razmnoževanja, pri katerem je novo nastala celica oz. osebek (klon) genetsko identičen izvorni celici oz. osebku.
- Glede na namen razlikujemo:
 - reproduktivno kloniranje, kadar želimo narediti nov živ individuum, ki bo enak tistemu, ki ga kloniramo;
 - terapevtsko kloniranje, kadar se razvoj kloniranega zarodka ustavi že v epruveti in se njegove celice uporabijo za proizvodnjo novih celic, tkiv in organov.
 - S tem postopkom se lahko pridobijo zarodne matične celice, iz katerih je možno izdelovati tkiva in organe brez nevarnosti zavrnitve organizma, saj gre za celice z enakim genskim zapisom. Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica

Razmnoževalno kloniranje in kloniranje za zdravljenje

Šolsko leto 2016/17

postopke zdravljenja

Kloniranje rastlin

- Leta 1958 je britanski biolog Frederick C. Steward dokazal, da ima vsaka rastlinska celica, čeprav diferencirana, sposobnost, da se razvije v celo rastlino, ki vsebuje različna tkiva.
- Diferenciacija celic torej ni nepovraten proces!

Diferencirane celice je mogoče gojiti v epruveti na tak način, da postanejo zopet nediferencirane, da se v njih začnejo izražati geni za celično delitev in za postopno diferenciacijo novo nastalih celic.

Kloniranje živali s presaditvijo jedra

- Prvo uspešno izvedbo kloniranja sesalcev je izpeljal <u>škotski embriolog</u> <u>Ian Wilmut</u> leta 1997, ko se je skotila ovca Dolly.
- Ovca Dolly je imela tri matere:
 - prvo, ki ji je darovala jedro iz celice vimena,
 - drugo, ki ji je darovala jajčno celico (kateri so zamenjali jedro)
 - in tretjo, ki jo je donosila in skotila.
- Dolly je bila klon prve matere, tiste, ki ji je darovala jedro (DNA) in je bila torej njej genetsko enaka.

Kloniranje ovce Dolly

Kloniranje ovce Dolly je potekalo na sledeči način:

- Iz vimena odrasle ovce so odvzeli nekaj celic.
- Te celice so nekaj časa gojili v epruveti, tako da so postale <u>spet</u> nediferencirane, se pravi, da v bistvu niso bile več celice vimena, temveč bolj podobne celicam, kakršne najdemo v zarodku.
- Iz celic v gojišču so osamili eno, ji odvzeli jedro in ga z električnimi impulzi spojili z <u>neoplojeno</u> jajčno celico druge ovce, kateri so pred tem <u>odvzeli</u> jedro.
 - Jajčno celico so uporabili zato, ker vsebuje veliko beljakovin in mRNA, ki so potrebne za razvoj zarodka v prvih nekaj dneh po oploditvi. V začetku razvoja se namreč celice v zarodku podvajajo tako hitro, da ni časa za prepisovanje in prevajanje DNA; celica potrebuje ves čas za podvojevanje DNA.

Kloniranje ovce Dolly

- Jajčno celico <u>s presajenim jedrom</u> so spodbudili, da se je začela razvijati, kot če bi se spojila s semenčico, le da je ta celica vsebovala DNA druge odrasle ovce.
- Nastal je zarodek, ki so ga vsadili v tretjo ovco, ki jo je donosila in skotila.
- Dolly je živela 6 let in je bila prvi kloniran sesalec.
- 14. 2. 2003 so ovco Dolly uspavali, ker je bolehala zaradi artritisa in pljučnega obolenja, ki sta značilni za precej starejše živali.
- To kaže, da so bile njene celice "starejše" od celic njenih vrstnikov.
- Njeno telo je odslej v Museum of Scotland v Edinburghu, Velika Britanija.

Ovca Dolly

Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica Šolsko leto 2016/17

(Ne)uspešnost metode za kloniranje živali

- Uspešnost te metode je zelo nizka.
- Škotski znanstveniki so namreč 300 jajčnim celicam zamenjali jedro in spodbudili razvoj zarodka, vendar se je le eden od njih razvil do rojstva ovce Dolly.
- Ian Wilmut opozarja, da je tveganje za razvojne nepravilnosti izredno veliko in da je tudi verjetnost uspešnega rojstva klona prav neznatna.
- V kromosomih kloniranih osebkov namreč nastajajo določene spremembe, ki porušijo normalne vzorce uravnavanja izražanja genov.
- Z isto metodo so klonirali še druge vrste sesalcev: kravo, mulo, opico, miš, svinjo, zajca, mačko in kozo.

Kloniranje živali ima potencialno uporabno vrednost za človeka

- Obstajajo tudi možnosti, da bi organe kloniranih prašičev uporabljali kot presadke za zdravljenje človeka.
- Pri tem se seveda odpirajo etična vprašanja o dopustnosti ali nedopustnosti kloniranja živali za zadovoljevanje človekovih potreb.

Kloniranje človeka?

- Kloniranje človeka ni več znanstvena fantastika, temveč nekaj, kar je morda že bilo uresničeno oziroma naj bi bilo po napovedi nekaterih uresničeno v bližnji prihodnosti.
- Biologi so danes prepričani, da kloniranje človeka še ni izvedljivo.
- <u>Raziskovalci podjetja Advanced Cell Technology</u> iz Massachusettsa v ZDA so javnost obvestili, da so kot <u>prvi na svetu klonirali človeški zarodek</u>.
- Kaj so zares naredili?
- V jajčne celice darovalk so vključili jedro ene od celic, ki obdajajo in prehranjujejo jajčno celico med zorenjem.
- Na 71 jajčnih celic jim je uspelo dobiti 1 klon.
- V celoti so naredili le 3 klone, od katerih sta 2 preživela in se delila do 4 oziroma 6 celic, potem pa se je rast ustavila.

Etični pogledi na kloniranje človeka

- Reproduktivno kloniranje človeka postavlja etična vprašanja o <u>bistvu novih</u> človeških bitij in njihovih <u>sorodstvenih vezi</u>, o <u>vlogi ženske in moškega</u>.
- Pri reproduktivnem kloniranju se namreč rušijo sorodstvena razmerja med osebami:
 - kdo je oče, mati, sin, hči?
- Teoretično bi bilo možno razmnoževanje brez moških.
- Prav tako se popredmeti vloga ženske in novega človeškega bitja, ki je le kopija določene odrasle osebe z določenimi lastnostmi.
- Pri človeškem kloniranju se nam vsiljuje tudi logika industrijske proizvodnje človeških bitij.
 - Tisti, ki bi imel kapital in moč, bi odločal o tem, katere osebe so vredne, da se jih klonira...

Prepoved reproduktivnega kloniranja človeka

- Dne 12. decembra 2001 je <u>Generalna skupščina Združenih narodov</u> oblikovala <u>Mednarodno konvencijo o prepovedi reproduktivnega</u> <u>kloniranja človeških bitij.</u>
- V Veliki Britaniji, Avstraliji in nekaterih državah ZDA je dovoljeno terapevtsko kloniranje človeka.

Terapevtsko kloniranje

- Drug postopek kloniranja je kloniranje za zdravljenje, pri katerem znanstveniki iz zarodka vzamejo posamezne celice.
 - Te celice v zgodnjem zarodku so zarodne matične celice nediferencirane celice, ki se hitro delijo in so se sposobne diferencirati v vse celične tipe (totipotentne).

Vrste matičnih celic

- Totipotentne matične celice se lahko diferencirajo v vse celice organizma, tudi ekstraembrionalne (hranilne, oporne) (zigota, celice morule).
- Pluripotentne matične celice se lahko diferencirajo v skupino različnih tkiv (celice treh kličnih plasti v zarodku, endoderm, mesoderm in ektoderm).
 - Iz celic endoderma se razvijejo pljuča, jetra, prebavila in hormonalne žleze.
 - Iz celic mesoderma se razvijejo žile, mišice, izločala, ogrodje in spolni organi.
 - Iz celic ektoderma se razvijejo krovna tkiva, sluznice, živčevje in čutila.
- Multipotentne matične celice se lahko razvijejo v <u>različne vrste celic, ki pripadajo</u> <u>istemu tkivu</u> (npr. ematopoietske celice v kostnem mozgu ali celice v popkovnični krvi, ki se lahko razvijejo v različne vrste krvnih celic, mezenhimalne celice v kostnem mozgu, ki se lahko razvijejo v različne vrste vezivnega tkiva (kondrocite, osteoblaste, adipocite).
- Unipotentne matične celice se lahko razvijejo v eno samo vrsto celic (npr. hepatociti, celice zarodne plasti povrhnjice, spermatogoniji, oogoniji (prasemenčice in prajajčeca)).

Terapevtsko kloniranje z zarodnimi matičnimi celicami

Možni postopki kloniranja za zdravljenje z zarodnimi matičnimi celicami

- Bolniku bi odvzeli nekaj somatskih celic.
- Te celice bi nekaj časa gojili v epruveti, tako da bi postale spet nediferencirane.
- Iz somatske celice bi odvzeli jedro in ga prenesli v jajčno celico ali zarodno matično celico, ki ohranja sposobnost celičnih delitev.
- Tako spremenjeno matično celico bi dali v gojišče in jo namnožili s celično delitvijo.
- Nato bi dodali v gojišče določene sporočilne molekule (aktivatorje), ki vplivajo na izražanje genov, da bi sprožili diferenciacijo v določen celični tip.
- Diferencirane celice, ki bi jih vzgojili, bi bile vse genetsko enake bolnikovim somatskim celicam.
- Ob prenosu kloniranih celic v bolnikovo telo bi bolnik nanje ne reagiral kot na tujke ali na tuje presadke.
- Tako vzgojene celice bi lahko uporabljali za zdravljenje poškodovanih ali obolelih tkiv.

Primeri zdravljenja z zarodnimi matičnimi celicami

- Za zdravljanje sladkorne bolezni bi recimo lahko uporabili s kloniranjem vzgojene <u>celice trebušne slinavke</u>, ki izločajo insulin.
- Za zdravljenje Parkinsonove bolezni bi lahko uporabili klonirane možganske živčne celice.
- Za obnovo srca po srčni kapi bi lahko uporabljali klonirane srčne mišične celice.

Primeri zdravljenja z <u>odraslimi</u> matičnimi celicami

- Matičnih celic pa ne najdemo samo v zgodnjih stopnjah zarodka, temveč tudi v popkovnični krvi in v posteljici.
- Tudi v telesu odraslega človeka so matične celice, ki obnavljajo tkiva v telesu.
 - Matične celice iz kostnega mozga že dolgo uporabljajo za obnavljanje krvnih celic pri levkemiji.
 - Mezenhimalne celice v maščobnem tkivu uporabljajo za obnavljanje drugih vezivnih tkiv (npr. hrustanca).
 - Celice zarodne plasti povrhnjice uporabljajo za sintezo <u>presadkov</u> po opeklinah.

Koža iz odraslih matičnih celic (za presaditev po opeklinah)

Sinteza induciranih pluripotentnih matičnih celic (iPMC)

- Leta 2007 je skupina raziskovalcev pod vodstvom prof. Shinya Yamanaka z Univerze v Kyotu (Japonska) sintetizirala inducirane pluripotentne matične celice (iPMC).
- Za odkritje je prof. Shinya Yamanaka prejel <u>Nobelovo</u> in <u>Wolfovo</u> nagrado za medicino.
- Inducirane pluripotentne matične celice (iPMC) so zelo podobne embrionalnim matičnim celicam (EMC).
- Dobimo jih tako, da v diferencirane celice vključimo 4 gene, ki so značilni za EMC in povzročajo celično de-diferenciacijo.
- iPMC se lahko ponovno diferencirajo v celične tipe, ki so različni od tistih, iz katerih izhajajo.

Genska terapija z iPMC

Mnenja o terapevtskem kloniranju z zarodnimi matičnimi celicami

- Mnenja o terapevtskem kloniranju zarodnih matičnih celic so močno deljena.
- Raziskave na področju kloniranja zarodnih matičnih celic so etično sporne, saj zahtevajo uporabo zgodnjih stopenj <u>človekovih zarodkov</u>.
- Znanstveniki skušajo čedalje bolj razvijati postopke zdravljenja z matičnimi celicami odraslega organizma, pri katerih uporaba zarodkov ni potrebna.