Assignment #6 Nitin Gaonkar

Introduction:

The purpose of this assignment is to build regression models for the home sale price, in this assignment I will be using dummy coding of categorical Variables and then build regression models, In the later part of the assignment I will be working on validation frameworks and validations.

Results:

Below is the output of the proc print:

Date	AA	BAC	BHI	CVX	DD	DOW	DPS	GS	HAL	HES	HON	HUN	JPM	ко	ммм	MPC	PEP	SLB	WFC	хом	VV
03JAN2012	9.23	5.8	51.02	110.37	46.51	29.79	38.34	95.36	34.15	58.4	55.58	9.95	34.98	35.07	83.49	33.41	66.4	70.09	28.43	86	58.18
04JAN2012	9.45	5.81	51.53	110.18	47.02	29.95	38.55	94.74	35.12	59	55.53	9.87	34.95	34.85	84.18	33.76	66.74	69.56	28.56	86.02	58.25
05JAN2012	9.36	6.31	50.82	109.1	46.7	30.14	38.79	94.58	34.56	57.6	55.59	9.82	35.68	34.68	83.8	31.92	66.22	68.07	29.02	85.76	58.44
06JAN2012	9.16	6.18	51.26	108.31	46.04	30.32	38.52	93.42	34.98	56.42	55.18	9.9	35.36	34.46	83.37	31.66	65.39	67.78	28.94	85.12	58.32
09JAN2012	9.42	6.27	51.58	109.49	46.43	30.31	38.52	94.69	35.38	56.9	55.64	9.84	35.3	34.46	83.87	30.96	65.73	68.82	29.3	85.5	58.45
10JAN2012	9.44	6.63	51.95	109.06	47.14	30.98	38.62	98.33	36.33	58.56	56.58	10.2	36.05	34.67	84.3	31.83	65.66	70.75	29.41	85.72	58.99
11JAN2012	9.63	6.87	50.21	107.77	47.3	31.43	38.15	99.76	35.38	57.94	56.46	10.59	36.66	34.03	83.77	32.89	65.01	70.16	29.62	85.08	59.06
12JAN2012	9.93	6.79	48.29	104.97	48.1	32.56	37.96	101.21	34.73	57.01	57.19	11.03	36.85	33.78	84.28	32.64	64.62	69.7	29.61	84.74	59.2
13JAN2012	9.8	6.61	48.02	106.09	48.4	32.02	37.82	98.96	33.94	56.55	56.7	11.21	35.92	33.5	83.6	33.03	64.4	67.99	29.61	84.88	58.95
17JAN2012	9.76	6.48	47.7	106.72	48.54	32.64	37.63	97.68	33.86	57.39	57.16	10.85	34.91	33.68	84.23	33.54	64.65	67.64	29.82	85.69	59.1

Below is the out put for all the returns:

return_AA	return_BAC	response_VV
-		
0.023556	0.001723	0.001202439
-0.009569	0.082555	0.003256494
-0.021599	-0.020817	002055499
0.027989	0.014458	0.002226600
0.002121	0.055828	0.009196250
0.019927	0.035559	0.001185938
0.030677	-0.011713	0.002367666
-0.013178	-0.026867	004231915
-0.004090	-0.019863	0.002541297

S	return_GS	return_HAL	return_HES	return_HON	return_HUN	return_JPM	return_KO	return_MMM	return_MPC	return_PEP	return_SLB	return_WFC	return_XOM	return_VV
2	-0.006523	0.028008	0.010222	-0.000900	-0.008073	-0.000858	-0.006293	0.008230499	0.010421	0.005107	-0.007590	0.004562	0.000232531	0.001202439
6	-0.001690	-0.016074	-0.024015	0.001080	-0.005079	0.020672	-0.004890	004524356	-0.056044	-0.007822	-0.021653	0.015978	003027130	0.003256494
5	-0.012341	0.012080	-0.020699	-0.007403	0.008114	-0.009009	-0.006364	005144475	-0.008179	-0.012613	-0.004269	-0.002761	007490672	002055499
0	0.013503	0.011370	0.008472	0.008302	-0.006079	-0.001698	0.000000	0.005979449	-0.022358	0.005186	0.015227	0.012363	0.004454350	0.002226600
3	0.037721	0.026497	0.028757	0.016753	0.035932	0.021024	0.006076	0.005113884	0.027713	-0.001066	0.027658	0.003747	0.002569795	0.009196250
5	0.014438	-0.026497	-0.010644	-0.002123	0.037522	0.016779	-0.018632	006306917	0.032759	-0.009949	-0.008374	0.007115	007494180	0.001185938
3	0.014430	-0.018543	-0.016181	0.012847	0.040709	0.005169	-0.007374	0.006069641	-0.007630	-0.006017	-0.006578	-0.000338	004004245	0.002367666
5	-0.022482	-0.023010	-0.008101	-0.008605	0.016187	-0.025561	-0.008323	008101069	0.011878	-0.003410	-0.024840	0.000000	0.001650749	004231915
6	-0.013019	-0.002360	0.014745	0.008080	-0.032641	-0.028521	0.005359	0.007507632	0.015323	0.003874	-0.005161	0.007067	0.009497638	0.002541297

2. Below is the correlation between the individual stocks and the market index.

	Pearson Correlation Coefficients, N = 501 Prob > r under H0: Rho=0												
	return_AA	return_BAC	return_BHI	return_CVX	return_DD	return_DOW	return_DPS	return_GS	return_HAL	return_HES	return_HON	return_HUN	return_JPM
response_VV	0.63241 <.0001	0.65019 <.0001	0.57750 <.0001	0.72090 <.0001	0.68952 <.0001	0.62645 <.0001	0.44350 <.0001	0.71216 <.0001	0.59750 <.0001	0.61080 <.0001	0.76838 <.0001	0.58194 <.0001	0.65785 <.0001

return_KO	return_MMM	return_MPC	return_PEP	return_SLB	return_WFC	return_XOM	return_VV
0.59980 <.0001	0.76085 <.0001	0.47312 <.0001	0.50753 <.0001	0.69285 <.0001	0.73357 <.0001	0.72111 <.0001	1.00000 <.0001

3. Below screen shot gives the observations which are converted from wide format to long format.

Obs	correlation	tkr
1	0.63241	AA
2	0.65019	BAC
3	0.57750	вні
4	0.72090	CVX
5	0.68952	DD
6	0.62645	DOW
7	0.44350	DPS
8	0.71216	GS
9	0.59750	HAL
10	0.61080	HES
11	0.76838	HON
12	0.58194	HUN
13	0.65785	JPM
14	0.59980	ко
15	0.76085	MMM
16	0.47312	MPC
17	0.50753	PEP
18	0.69285	SLB
19	0.73357	WFC
20	0.72111	XOM
21	1.00000	VV

Obs	correlation	tkr	sector
1	0.63241	AA	Industrial - Metals
2	0.65019	BAC	Banking
3	0.57750	вні	Oil Field Services
4	0.72090	CVX	Oil Refining
5	0.68952	DD	Industrial - Chemical
6	0.62645	DOW	Industrial - Chemical
7	0.44350	DPS	Soft Drinks
8	0.71216	GS	Banking
9	0.59750	HAL	Oil Field Services
10	0.61080	HES	Oil Refining
11	0.76838	HON	Manufacturing
12	0.58194	HUN	Industrial - Chemical
13	0.65785	JPM	Banking
14	0.59980	ко	Soft Drinks
15	0.76085	MMM	Manufacturing
16	0.47312	MPC	Oil Refining
17	0.50753	PEP	Soft Drinks
18	0.69285	SLB	Oil Field Services
19	1.00000	VV	Market Index
20	0.73357	WFC	Banking
21	0.72111	ХОМ	Oil Refining

5. from the below two plots we can see conclude that we can keep three principle component, as we can see from the eigen value chart we can see that the first three components have value more than one.

Eigenvalues of the Correlation Matrix: Total = 21 Average = 1									
	Eigenvalue	Difference	Proportion	Cumulative					
1	10.5071587	8.9629547	0.5003	0.5003					
2	1.5442040	0.1910305	0.0735	0.5739					
3	1.3531735	0.4050880	0.0644	0.6383					
4	0.9480855	0.1520940	0.0451	0.6835					
5	0.7959915	0.1294957	0.0379	0.7214					
6	0.6664958	0.1080561	0.0317	0.7531					
7	0.5584397	0.0440820	0.0266	0.7797					
8	0.5143577	0.0156109	0.0245	0.8042					
9	0.4987468	0.0316307	0.0237	0.8279					
10	0.4671161	0.0305970	0.0222	0.8502					
11	0.4365191	0.0284333	0.0208	0.8710					
12	0.4080858	0.0569741	0.0194	0.8904					
13	0.3511117	0.0146788	0.0167	0.9071					
14	0.3364328	0.0394074	0.0160	0.9231					
15	0.2970254	0.0196849	0.0141	0.9373					
16	0.2773405	0.0179758	0.0132	0.9505					
17	0.2593647	0.0168429	0.0124	0.9628					
18	0.2425218	0.0206015	0.0115	0.9744					
19	0.2219203	0.0101847	0.0106	0.9850					
20	0.2117355	0.1075627	0.0101	0.9950					
21	0.1041729		0.0050	1.0000					

Below is the plot of the first two Eigen vectors: I can see a two groups in the below chart. One with the

		F	actor Pa	attern	•		
		Fa	actor1	Fac	ctor2	Fac	tor3
retu	ırn_AA	Ο.	70767	-0.2	0292	0.04	160
retu	irn_BAC	Ο.	69734	-0.2	4415	-0.39	592
retu	ırn_BHI	Ο.	67292	-0.2	0705	0.50	882
retu	irn_CVX	Ο.	78479	0.1	0023	0.20	409
retu	irn_DD	Ο.	74868	0.0	3957	-0.13	376
retu	irn_DOW	Ο.	66587	-0.1	1617	-0.19	890
retu	irn_DPS	Ο.	43475	0.6	4054	0.04	151
retu	ırn_GS	Ο.	77701	-0.2	3805	-0.21	989
retu	Irn_HAL	Ο.	70178	-0.2	0150	0.46	725
retu	ırn_HES	Ο.	70405	-0.1	4941	0.26	417
retu	irn_HON	Ο.	77459	0.0	8484	-0.09	359
retu	irn_HUN	Ο.	61397	-0.1	7155	-0.21	396
retu	ırn_JPM	Ο.	70585	-0.1	2782	-0.39	946
retu	ırn_KO	Ο.	58985	0.5	9007	-0.01	314
retu	Irn_MMM	Ο.	78390	0.16861		-0.00446	
retu	Irn_MPC	Ο.	52907	-0.0	6590	0.00	812
retu	Irn_PEP	Ο.	53024	0.5	9834	0.00	278
retu	ırn_SLB	Ο.	77197	-0.1	8746	0.37	902
retu	irn_WFC	Ο.	75677	-0.0	7034	-0.32	691
return_XOM		0.78579		0.0	8834	0.16749	
retu	ırn_VV	0.93901		0.0	7571	-0.07	446
	Variance	Ex	plained	by E	ach Fa	actor	
	Facto	r1	Fact	tor2 Fac		ctor3	
	10.50715	50	1 5 1 1	204 1.353173			
	10.50713	,,,	1.544	204	1.33	3173	

18	Prin9	Prin10	Prin11	Prin12	Prin13	Prin14	Prin15	Prin16	Prin17	Prin18	Prin19	Prin20	Prin21	response_VV	u	train	train_response
															0.75040	0	
-6	-0.58438	0.98252	0.74412	0.35496	0.32373	-1.07575	0.32008	-0.15545	-0.05598	1.21910	0.73499	-0.46395	-0.11466	0.001202439	0.32091	1	0.001202439
2	0.93577	0.12189	-0.73825	0.45978	0.18552	0.93913	-1.39075	0.96007	0.38546	1.64363	-0.69380	-0.57537	-0.29046	0.003256494	0.17839	1	0.003256494
9	0.11672	0.18478	-0.92199	-0.04698	0.38032	1.05000	0.46500	0.25373	-0.26238	0.42693	0.38827	-0.32458	-0.34535	002055499	0.90603	0	
16	-0.23038	-0.26760	0.13941	0.44528	0.37540	-0.55137	-0.37313	-0.21072	-0.19495	-0.64032	0.18602	-0.23415	0.39092	0.002226600	0.35712	1	0.002226600
7	0.68271	-0.12135	0.67252	0.18293	-1.51022	-0.29235	-0.93674	0.27894	-0.35837	-0.19753	-0.76284	-0.32760	0.17658	0.009196250	0.22111	1	0.009196250
iO	-0.41563	0.22667	0.39715	0.13389	-0.18985	0.14976	-0.50015	0.12501	-0.45620	-0.37512	0.14085	0.53250	-0.25377	0.001185938	0.78644	0	
15	-0.88791	0.06860	0.95892	0.80369	-1.17818	-0.35309	1.10458	-0.29630	-1.46978	-0.60197	-0.18047	1.07616	-0.08271	0.002367666	0.39808	1	0.002367666
i8	0.20820	-0.39350	-0.47433	-1.41112	1.79423	0.09710	-0.20366	-0.64805	0.21376	0.10883	-0.32231	-0.51949	-0.19579	004231915	0.12467	1	004231915
13	-0.54238	0.12804	-0.28981	1.21742	0.24114	-0.82071	0.15515	0.50033	-0.45034	0.32789	-0.03422	-0.54516	-0.11285	0.002541297	0.18769	1	0.002541297

The REG Procedure Model: MODEL1 Dependent Variable: train_response

Number of Observations Read	502
Number of Observations Used	338
Number of Observations with Missing Values	164

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	20	0.01790	0.00089510	140.04	<.0001					
Error	317	0.00203	0.00000639							
Corrected Total	337	0.01993								

Root MSE	0.00253	R-Square	0.8983
Dependent Mean	0.00061635	Adj R-Sq	0.8919
Coeff Var	410.18453		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	
Intercept	1	0.00008640	0.00014092	0.61	0.5403	0	
return_AA	1	0.01769	0.01317	1.34	0.1802	2.11490	
return_BAC	1	0.03198	0.01165	2.75	0.0064	3.10927	
return_BHI	1	-0.00111	0.01323	-0.08	0.9333	2.62997	
return_CVX	1	0.04907	0.02536	1.93	0.0539	3.07524	
return_DD	1	0.04674	0.02037	2.29	0.0224	2.51406	
return_DOW	1	0.03642	0.01162	3.14	0.0019	1.88893	
return_DPS	1	0.03670	0.01679	2.19	0.0295	1.54768	
return_GS	1	0.04849	0.01555	3.12	0.0020	3.10450	
return_HAL	1	0.00948	0.01466	0.65	0.5184	3.08758	
return_HES	1	0.00359	0.01092	0.33	0.7425	2.10199	
return_HON	1	0.12213	0.01924	6.35	<.0001	2.73505	
return_HUN	1	0.02712	0.00836	3.24	0.0013	1.79852	
return_JPM	1	0.00902	0.01708	0.53	0.5979	3.36439	
return_KO	1	0.07903	0.02226	3.55	0.0004	1.93633	
return_MMM	1	0.09796	0.02646	3.70	0.0003	2.98277	
return_MPC	1	0.01673	0.00809	2.07	0.0394	1.32999	
return_PEP	1	0.02911	0.02231	1.30	0.1929	1.68825	
return_SLB	1	0.03776	0.01709	2.21	0.0279	3.13690	
return_WFC	1	0.07587	0.01848	4.10	<.0001	2.59492	
return_XOM	1	0.05467	0.02697	2.03	0.0435	2.98393	

From the above ODS outputs we can see that the fit mean is greater than the residual which is good, the SAS curve covers all the point on the histogram, there are few outliers on the cook's D. The QQ plots looks good all the points are on the line and the Square value is 0.8983 which is good.

In our model the VIF value are not high and looks Pretty ok, thus the multicollinearity does not exist.

For training:

MAE calculation run

The MEANS Procedure

Analysis Variable : mae									
N	Mean	Std Dev	Minimum	Maximum					
338	0.0019020	0.0015440	6.5094738E-7	0.0080258					

MSE: 639 E-8

For test:

MAE calculation

The MEANS Procedure

Analysis Variable : mae									
N Mean Std Dev Minimum Maximum									
163	0.0021449	0.0021758	0.000036770	0.0151721					

MSE calculation

The MEANS Procedure

	Analysis Variable : MSE								
N	Maximum								
163	5.7091237E-8	1.6646024E-7	8.294459E-12	1.41222E-6					

8. Regression with eight principle components using train response as a response variables.

		D	epende	nt Variabl	e: trai	n_respoi	ıse			
	Numl	ber c	of Obse	rvations R	Read			502		
	Numl	ber c	of Obse	rvations U	Ised			338		
	Numl	ber c	of Obse	rvations w	/ith M	issing Va	lues	164		
'										
			A	nalysis of	f Varia	ance				
Sourc	e		DF	Sum of Squares		Mean Square	F Va	lue	Pr > F	
Model			8	0.01818		0.00227		7.71	<.0001	
Error			329	0.00175		000531				
	cted To	otal	337	0.01993						
										1
	Root	MSE		0.00	0231	R-Squa	re C	.9123		
	Depe	Dependent		0.00061	1635	Adj R-S	q C	.9101		
	Coeff	Var		373.98	3445					
L										
			Р	arameter	Estim	ates				
Variable	DF	_	aramete Estima		ndard Error		e Pi	r > t	Varian Inflati	
Intercept	1	0.0	0007490	0.000	12615	5.9	4 <.	0001		0
Prin1	1		0.0022	0.000	03881	57.4	7 <.	0001	1.005	63
Prin2	1	0.0	0003452	7 0.000	10245	3.3	7 0.	8000	1.008	16
Prin3	1	-0.0	0006666	0.000	11041	-6.0	4 <.	0001	1.009	38
Prin4	1	0.0	0002927	2 0.000	13047	2.2	4 0.	0255	1.006	32
Prin5	1	-0.0	0001730	0.000	13933	-1.2	4 0.	2152	1.003	00
Prin6	1	0.0	0000181	6 0.000	15367	0.1	2 0.	9060	1.007	43
Prin7	1	-0.0	0001282	0.000	16697	-0.7	7 0.	4431	1.021	04
Prin8	1	-0.0	0005470	0.000	17987	-3.0	4 0.	0025	1.020	30

Below are the ODS output for the model:

From the below ODS outputs we can see that the fit mean is greater than the residual which is good, the SAS curve covers all the point on the histogram, there are few outliers on the cook's D. The QQ plots looks good all the points are on the line and the Square value is 0.9123 which is good.

By observing the VIF values for the model we can say that the Multicollinearity does not exist.

Training set:

Mean square error 531 e-8

MAE calculation

The MEANS Procedure

Analysis Variable : mae								
N Mean Std Dev Minimum Maximum								
338	0.0017738	0.0014252	4.817129E-7	0.0081709				

Test set:

MSE calculation

The MEANS Procedure

	Analysis Variable : MSE								
N Mean Std Dev Minimum Maxir									
163	4.8608955E-8	1.399492E-7	2.566059E-14	1.1710607E-6					

MAE calculation

The MEANS Procedure

	Analysis Variable : mae								
N Mean Std Dev Minimum Maximum									
163	0.0019575	0.0020290	2.0451594E-6	0.0138160					

By comparing both the models Square value and other ODS outputs and by looking at the variance inflation factors, we can say that the model with the principal components is better than the previous model.

Conclusion:

Overall in this assignment I have tried multi regression using Principal Components Analysis as a method of dimension reduction and as a remedial measure for multicollinearity in Ordinary Least Squares regression.

Code: Paste your code in at the end. libname mydata "/scs/wtm926/" access=readonly; proc datasets library=mydata; run; quit; data temp; set mydata.stock_portfolio_data; run; proc sort data=temp; by date; run; quit; data temp; set temp; * Compute the log-returns - log of the ratio of today's price to yesterday's price; * Note that the data needs to be sorted in the correct direction in order for us to compute

the correct return; return_AA = log(AA/lag1(AA));

* Continue to compute the log-returns for all of the stocks; * Name the log-return for VV as the response variable;

 $return_BAC = log(BAC/lag1(BAC));$

```
response_VV = log(VV/lag1(VV));
*proc print data=temp(obs=10);
* run;
*quit;
return_AA = log(AA/lag1(AA));
return_BAC = log(BAC/lag1(BAC));
return_BHI = log(BHI/lag1(BHI));
return_CVX = log(CVX/lag1(CVX));
return_DD = log(DD/lag1(DD));
return_DOW = log(DOW/lag1(DOW));
return_DPS = log(DPS/lag1(DPS));
return_GS = log(GS/lag1(GS));
return_HAL = log(HAL/lag1(HAL));
return_HES = log(HES/lag1(HES));
return_HON = log(HON/lag1(HON));
return_HUN = log(HUN/lag1(HUN));
return_JPM = log(JPM/lag1(JPM));
return_KO = log(KO/lag1(KO));
return_MMM = log(MMM/lag1(MMM));
return\_MPC = log(MPC/lag1(MPC));
return_PEP = log(PEP/lag1(PEP));
return_SLB= log(SLB/lag1(SLB));
return_WFC = log(WFC/lag1(WFC));
return_XOM = log(XOM/lag1(XOM));
return_VV = log(VV/lag1(VV));
run:
proc print data=temp(obs=10);
run;
quit;
```

2.

* We can use ODS TRACE to print out all of the data sets available to ODS for a particular SAS procedure.; * We can also look these data sets up in the SAS User's Guide in the chapter for the selected procedure.;

```
*ods trace on;
ods output PearsonCorr=portfolio correlations; proc corr
data=temp; *var return: with response VV; var return :;
with response VV; run; quit; *ods trace off;
proc print data=portfolio correlations; run; quit;
3.
data wide correlations; set portfolio correlations
(keep=return :); run;
* Note that wide correlations is a 'wide' data set and we
need a 'long' data set; * We can use PROC TRANSPOSE to
convert data from one format to the other;
proc transpose data=wide correlations out=long correlations; run; quit;
data long correlations; set long correlations; tkr =
substr( NAME ,8,3); drop NAME ;
rename COL1=correlation; run;
proc print data=long correlations; run; quit;
4.
* Merge on sector id and make a colored bar plot;
data sector; input tkr $ 1-3 sector $ 4-35; datalines; AA
Industrial - Metals BAC Banking BHI Oil Field Services CVX
Oil Refining DD Industrial - Chemical DOW Industrial -
Chemical DPS Soft Drinks GS Banking HAL Oil Field
Services HES Oil Refining HON Manufacturing HUN Industrial -
Chemical JPM Banking KO Soft Drinks MMM Manufacturing MPC
Oil Refining PEP Soft Drinks SLB Oil Field Services WFC
Banking XOM Oil Refining VV Market Index; run;
```

```
proc print data=sector; run; quit; proc sort data=sector; by tkr; run;
proc sort data=long correlations; by tkr; run;
data long correlations; merge long correlations (in=a) sector
(in=b); by tkr; if (a=1) and (b=1); run;
proc print data=long correlations; run; quit;
* Make Grouped Bar Plot; * p. 48 Statistical Graphics
Procedures By Example; ods graphics on; title 'Correlations
with the Market Index'; proc sgplot data=long correlations; format
correlation 3.2; vbar tkr / response=correlation group=sector
groupdisplay=cluster datalabel; run; quit; ods graphics off;
5.
ods graphics on;
proc princomp data=return data out=pca output
outstat=eigenvectors plots=scree(unpackpanel);
run;
quit;
ods graphics off;
* Notice that PROC PRINCOMP produces a lot of output;
* How many principal components should we keep?;
* Do the principal components have any interpretability?;
* Can we display that interpretability using graphics?;
proc print data=pca output(obs=10); run;
proc print data=eigenvectors(where=( TYPE ='SCORE')); run;
* Display the two plots and the Eigenvalue table from the output;
* Plot the first two eigenvectors;
data pca2;
set eigenvectors(where=( NAME in ('Prin1','Prin2'))); drop TYPE ;
run;
proc print data=pca2; run;
proc transpose data=pca2 out=long pca; run; quit;
proc print data=long pca; run;
data long pca;
set long pca;
format tkr $3.;
tkr = substr(NAME,8,3);
drop NAME;
run;
```

```
proc print data=long pca; run;
* Plot the first two principal components;
ods graphics on;
proc sgplot data=long pca;
scatter x=Prin1 y=Prin2 / datalabel=tkr; run; quit;
ods graphics off;
proc factor data=return data method=prin scree;
var return :;
run;
6.
data cv data;
merge pca_output temp(keep=response_VV); * No BY statement needed here. We are
going to append a column in its current order; * generate a uniform(0,1) random variable
with seed set to 123; u = uniform(123); if (u < 0.70) then train = 1; else train = 0;
if (train=1) then train response=response VV; else train response=.; run;
proc print data=cv data(obs=10); run;
7.
proc reg data=cv data;
model train response= return AA return BAC return BHI return CVX return DD
return DOW return DPS return GS return HAL return HES return HON return HUN
return JPM return KO return MMM return MPC return PEP return SLB
return WFC return XOM/
vif:
output out = new data predicted=yhat;
run;
proc print data=new data (obs=10);
proc reg data=cv data;
model train response= return AA return BAC return BHI return CVX return DD
return DOW return DPS return GS return HAL return HES return HON return HUN
return JPM return KO return MMM return MPC return PEP return SLB
return WFC return XOM/
```

```
vif;
output out =new data predicted=yhat;
run;
data test1;
set new data;
where train=0;
MSE=(1/163) *((yhat-response_vv)* (yhat-response_vv));
run;
proc means data=test1;
var MSE;
title 'MSE calculation';
run;
8.
proc reg data=cv data;
model train response= prin1 prin2 prin3 prin4 prin5 prin6 prin7 prin8 /
output out =new data predicted=yhat;
run;
data test1;
set new data;
where train=0;
MSE=(1/163) *((yhat-response vv)* (yhat-response vv));
run;
proc means data=test1;
var MSE;
title 'MSE calculation';
run;
```