

Universidade Federal de Minas Gerais

Engenharia de Produção Eduardo Romeiro Filho - Professor EPD 073 - Projeto do Produto

Exercício de Avaliação: Dimensionamento do Produto 31 de agosto de 2021

Tema: Abridor de Tampas

Grupo:

Klysman Rezende - 2017108779 Arthur Oliveira Alves - 20170010 Caio Reis Brasil - 2018018943 Daniel Martins Teixeira - 2018019214 Thiago Nunes Coelho Nascimento - 2018019044

Resumo do exercício

Do ponto de vista das atividades de pesquisa de mercado, matriz morfológica e desenvolvimento das diferentes maquetes, foi possível definir as dimensões necessárias para o produto. O objetivo desta atividade é descrever o processo de criação, a modelagem 3D e o design final do protótipo. Tais dimensões foram consistentes com as pesquisas realizadas até o momento. Para a modelagem 3D do dispositivo foi utilizado o software Fusion 360 da Autodesk. Como resultado, o grupo foi capaz de propor dimensões adequadas e interfaces de uso para a fácil compreensão da sua funcionalidade.

1. Introdução

Como forma de melhor apoiar o desenvolvimento do design do produto e o seu dimensionamento, foi utilizado o software Fusion 360, que unifica design, engenharia, eletrônica e manufatura para conectar todo o processo de construção do dispositivo. É uma plataforma de modelagem 3D paramétrica. Com ele é possível projetar o produto desejado seguindo os critérios de estética, forma, dimensão, ajuste e função. Somado a isso, ainda é possível prever a capacidade de fabricação com ferramentas de simulação e design generativo. Como já discutido nas atividades anteriores, o objeto dessa atividade é um dispositivo que permite a abertura de potes com tampa de rosca, exigindo mínimo esforço físico. Após a construção das maquetes, foi possível identificar as interfaces ideais e aquelas a serem descartadas para, então, concluir o resultado final deste trabalho.

2. Interfaces do produto e formas de uso

Descrição das diferentes formas de interação entre usuários e o produto desenvolvido. Investigação das atividades realizadas com o produto, sejam estas prescritas ou não. Avaliação das possíveis diferenças nas formas de interação entre usuários e o produto com base em diferenças de idade, gênero, habilidades requeridas, dimensões corporais etc.

- A. O design e dimensões presentes nesse documento descreve o produto em sua fase final, seguindo as boas práticas da ergonomia e usabilidade.
- B. A posição (orientação) de visualização será identificada pelo seguinte componente presente nas imagens:
- C. As medidas antropométricas referenciadas neste documento estão de acordo com o estudo abrangente das proporções do corpo humano feito pela Administração Nacional de Aeronáutica e Espaço (NASA).

fonte: https://msis.jsc.nasa.gov/sections/section03.htm

Estrutura interna:

- Espaço para encaixe e apoio dos potes.
- Formato circular para melhor adaptação dos potes.
- Os potes serão posicionados na vertical.
- Material de alumínio para maior resistência à aplicação de força ou quedas.

figura 1.1 (visão 3D)

• Ajuste de altura:

- o Possibilidade de ajustar a altura conforme a dimensão vertical dos potes.
- Para facilitar o ajuste, foi proposto um mecanismo de encaixe em alturas predefinidas. (figura 2.2)

figura 2.1 (ajuste de altura)

figura 2.2 (mecanismo de encaixe)

- Braço de alavanca: (em destaque na figura 3.1)
 - Dispositivo responsável por realizar o torque (ou momento) na tampa do pote.
 Consiste na ação de girar ou torcer a tampa em torno do seu eixo de rotação por meio da aplicação de uma força.
 - De maneira simplificada, o torque é uma grandeza vetorial, calculada pelo produto vetorial entre o braço de alavanca e a força (F).
 O torque e o módulo do torque podem ser calculados por meio da seguinte

expressão: $\vec{\tau} = \vec{r} \times \vec{F} \longrightarrow |\tau| = r.F.sen\theta$

figura 3.1(braço de alavanca - visão superior)

 Para esse mecanismo (braço de alavanca) foi proposto uma distância de 100mm ao arco superior. 150mm ao eixo de rotação. Segundo a média do comprimento da mão humana. fonte: https://msis.jsc.nasa.gov/sections/section03.htm Sessão 03.

- Suporte de mão: (em destaque na figura 4.1)
 - Função de apoio ao realizar a aplicação de força no braço de alavanca.
 - o Estrutura responsável pelo encaixe dos módulos superior e inferior.
 - Ajuste das alturas.

figura 4.1(suporte de mão - visão lateral)

3. Método utilizado

Descreva de forma sucinta como o grupo desenvolveu o trabalho, incluindo forma de organização, tempo utilizado etc.

- Inicialmente, duas reuniões de 2h foram realizadas para escolhermos as melhores características viáveis das maquetes construídas.
- Foi estabelecido que todos os membros desenhassem, utilizando ou não softwares
 3D, a idealização final do protótipo. Essa atividade consumiu de 3 a 5 horas.
- Definida as características e as dimensões em um terceiro encontro, foi realizada a construção do modelo no software Fusion 360. Para aprender a utilizar a ferramenta de maneira correta, foram gastos cerca de 8h em um curso gratuito disponível no Youtube.

Link: https://youtube.com/playlist?list=PL7pUgW5TnMiJubxqvEpwQ9SdMZcMKuEw8

 Para a modelagem 3D do modelo presente nesse documento, foram gastos cerca de 5 horas.

4. Resultados e discussão

Descrevam como as características do produto foram definidas em função do uso e listem as principais dimensões utilizadas e os critérios para decisão. Para isso pode ser utilizada uma tabela, como no exemplo abaixo, a definição de alguns elementos de uma sala:

Item de projeto	Função	Critério utilizado	Dimensão adotada	Justificativa
Diâmetro interno (superior e inferior)	Encaixe dos potes	Média do diâmetro de potes, de variados tipos de produtos.	90mm.	Para garantir o encaixe de vários potes.
Altura do dispositivo	Para encaixe e acoplamento de diferentes alturas de potes	Será possível ajustar a altura conforme o item da figura 2.1	90 mm (+-12mn pelo ajuste).	Para se adequar às diferentes alturas de potes, foi proposto um sistema de ajuste simples.
Braço de alavanca	Responsável por realizar o torque na tampa.	Será possível ajustar o raio conforme o tamanho da tampa do pote. figura 3.1	40mm mínimo e 80mm de diâmetro máximo no encaixe.	Visando o ajuste para diferentes diâmetros de tampas, será utilizado um braço de alavanca que se encaixa na forma.
Apoio de mão	Para estabilizar o dispositivo ao abrir um pote	Segundo as dimensões médias da mão humana.	90 mm (+-12mn pelo ajuste).	Para evitar que o dispositivo se desloque ao aplicar a força no braço de alavanca.

• Análise e visualização da seção transversal do dispositivo no eixo Y.

figura 5.1 (sketch 3D - corte transversal lateral)

figura 5.2 (sketch 3D - corte transversal superior)

figura 5.3 (sketch braço de alavanca) 207mm para o comprimento total do braço de alavanca

 Sketches paramétricos ou desenho técnico das interfaces apresentadas. Visa estabelecer as especificações do projeto:

figura 6.1 (sketch base circular) 100mm no total e 90mm interno (diâmetros)

figura 7.1 (suporte base e braço de apoio) 28mm de largura

figura 7.2 (suporte base e braço de apoio) 25mm na diagonal - afastamento do apoio de mão a base

figura 8.1 (sketch vertical base superior) 10mm de largura da haste de apoio

figura 9.1 (sketch vertical furos de encaixe) 8mm para o diâmetro do furo.

5. Conclusão

Tendo em vista todas as análises sobre o produto até o momento, essa atividade proporcionou um aprofundamento técnico sobre a viabilidade e características inovadoras presentes no dispositivo. Durante todo o processo foi considerado a ergonomia do equipamento e sua usabilidade prática. Ao materializar os conceitos discutidos neste documento foi possível identificar a real complexidade ao criar um objeto para a função de abrir potes. Embora seja interessante o fato do usuário poder ajustar a altura e diâmetro para o perfeito encaixe da tampa, foi necessário estabelecer limites a esses ajustes. Além disso, será preciso um entendimento a respeito do material utilizado, uma vez que o dispositivo estará sujeito a sobrecarga de forças.

Croqui - Valores em Milímetros

Referências

Volume I, Seção 3 - ANTROPOMETRIA E BIOMECÂNICA < https://msis.jsc.nasa.gov/sections/section03.htm >

Anexo:

Croqui - Valores em Milímetros

• Gif animado da modelagem 3D no Fusion 360

