SIEGET® 25 BFP 490

NPN Silicon RF Transistor

Preliminary data

- For high power amplifiers
- Compression point $P_{-1dB} = 26.5$ dBm at 1.8 GHz maxim. available Gain $G_{ma} = 9.5$ dB at 1.8 GHz
- Transition frequency $f_T > 17 \text{ GHz}$
- Gold metalization for high reliability
- SIEGET [®] 25 Line
 Siemens Grounded Emitter Transistor
 25 GHz f_T Line

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Ordering Code	Pin Configuration			Package		
BFP 490	AOs	Q62702-F1721	1 = B	2 = E	3 = C	4 = C	5 = E	SCT-595

Maximum Ratings

Parameter	Symbol	Value	Unit V	
Collector-emitter voltage	$V_{\sf CEO}$	4.5		
Collector-base voltage	V_{CBO}	15		
Emitter-base voltage	V_{EBO}	1.5		
Collector current	I _C	600	mA	
Base current	I _B	60		
Total power dissipation, <i>T</i> _S ≤ 85 °C	P _{tot}	1000	mW	
Junction temperature	T _i	150	°C	
Ambient temperature	T _A	-65+150		
Storage temperature	T _{stq}	-65+150		

Thermal Resistance

Junction - soldering point 1)	R _{thJS}	≤ 65	K/W

¹⁾ TS is measured on the emitter lead at the soldering point mounted on alumina 15 mm x 16,7 mm x 0.7 mm

 $Z_{S}=Z_{Sopt}$, $Z_{L}=Z_{Lopt}$

Parameter	Symbol		Values		Unit
		min.	typ.	max.	
DC characteristics				•	
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$	(, ,				
Collector-base cutoff current	I _{CBO}	-	-	1800	nA
$V_{\rm CB} = 5 \text{ V}, I_{\rm E} = 0$					
Emitter-base cutoff current	/ _{EBO}	-	-	400	μΑ
$V_{\rm EB} = 1.5 \rm V, \ I_{\rm C} = 0$					
DC current gain	h _{FE}	50	90	-	-
$I_{\rm C} = 200 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}$	-				
AC characteristics			•	•	-
Transition frequency	f _T				GHz
$I_{\rm C} = 300 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ f = 0.2 \text{ GHz}$	'	-	17.5	-	
$I_{\rm C} = 300 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ f = 0.5 \text{ GHz}$		13	15	-	
Collector-base capacitance	C _{cb}	-	3.7	4.7	pF
$V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}$					
Collector-emitter capacitance	C _{ce}	-	6.3	-	1
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}$					
Emitter-base capacitance	C _{eb}	-	10.5	-	1
$V_{\rm EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$					
Noise figure	F	-	3.3	-	dB
$I_{\rm C}$ = 100 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
f = 1.8 GHz					
Power gain ²⁾	G _{ma}	-	9	-	dB
$I_{C} = 200 \text{ mA}, \ V_{CE} = 2 \text{ V}, \ Z_{S} = Z_{Sopt}, \ Z_{L} = Z_{Lopt},$					
f = 1.8 GHz					
Insertion power gain	$ S_{21} ^2$	-	8.5	-	
$I_{\rm C}$ = 200 mA, $V_{\rm CE}$ = 2 V, f = 0.5 GHz,					
$Z_{S} = Z_{L} = 50\Omega$					
Third order intersept point	IP ₃	-	35	-	dBn
I_{C} = 300 mA, V_{CE} = 3 V, Z_{S} = Z_{Sopt} , Z_{L} = Z_{Lopt} ,					
f = 1.8 GHz					
1dB Compression point	P _{-1dB}	-	26.5	-	
$I_{\rm C}$ = 300 mA, $V_{\rm CE}$ = 3 V, f = 1.8 GHz,					
7 7 7 7	1				1

Common Emitter S-Parameters

f	S ₁₁		S	21	S ₁₂		S	22			
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG			
$V_{CE} = 2$	$V_{CE} = 2V$, $I_{C} = 150 \text{mA}$										
0.01	0.648	-159.8	75.95	144.1	0.0053	53.8	0.7723	-77.6			
0.1	0.916	-178.5	12.96	94.9	0.0095	25.5	0.8743	-167.1			
0.3	0.921	173.7	4.28	83.7	0.0133	43.6	0.8761	-179.6			
0.5	0.92	168.2	2.52	77.3	0.0188	51.9	0.8777	175.7			
0.9	0.921	159.1	1.36	68.1	0.0295	56.1	0.8825	169.5			
1	0.919	157	1.22	65.7	0.0321	55.7	0.9944	168.2			
1.5	0.928	147.1	0.8	55.6	0.045	52.7	0.8861	162.5			
2	0.926	138.8	0.61	47.1	0.0574	48.1	0.8878	157.7			
3	0.924	122.8	0.43	29.1	0.0811	36.6	0.884	146.7			
$V_{CE} = 2$	2V, I _C = 300)mA	!	!			!				
0.01	0.7274	-172.3	63.82	153.8	0.003	38.4	0.4321	-91.1			
0.1	0.9158	-179.6	14.24	98.6	0.007	34.6	0.8696	-167			
0.3	0.9215	173.1	4.735	85.3	0.0119	53.6	0.8834	-179.5			
0.5	0.9193	167.9	2.788	78.7	0.0179	59.4	0.8879	175.8			
0.9	0.9224	158.9	1.515	69.8	0.0294	60.8	0.892	169.5			
1	0.9201	156.7	1.358	67.5	0.0324	59.8	0.8952	168.1			
1.5	0.9373	147	0.891	57.7	0.0454	55.5	0.8953	162.2			
2	0.9265	138.6	0.672	49.4	0.0581	50.3	0.8968	157.5			
3	0.9204	122.7	0.47	31.7	0.0819	37.9	0.8928	146.5			

For more and detailed S- parameters please contact your local Siemens distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

Transistor Chip Data

IS =	0.451	fA	BF =	114.96	-	NF =	1.1472	-
VAF =	24.665	V	IKF =	0.76939	Α	ISE =	1.1591	pА
NE =	1.9962	-	BR =	21.04	-	NR =	1.3531	-
VAR =	16.035	V	IKR =	0.090033	Α	ISC =	3.7479	Α
NC =	1.339	-	RB =	1.0754	Ω	IRB =	0.17683	mA
RBM =	2.1262	Ω	RE =	0.32476		RC =	0.10737	Ω
CJE =	1.227	fF	VJE =	0.93266	V	MJE =	0.36885	-
TF =	3.9147	ps	XTF =	0.61664	-	VTF =	0.27348	V
ITF =	3.2793	mA	PTF =	0	deg	CJC =	6.12521	fF
VJC =	0.9832	V	MJC =	0.34153	-	XCJC =	0.3	-
TR =	1.115	ns	CJS =	0	F	VJS =	0	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	0	-	FC =	0.75835	-	TNOM	300	K

C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :

IS =	tbd	fA	N =	tbd	-	RS =	tbd	Ω
------	-----	----	-----	-----	---	------	-----	---

All parameters are ready to use, no scalling is necessary

Package Equivalent Circuit:

The SOT-595 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

Extracted on behalf of SIEMENS Small Signal Semiconductors by: Institut für Mobil-und Satellitentechnik (IMST)
© 1996 SIEMENS AG

For examples and ready to use parameters please contact your local Siemens distributor or sales office to obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm

For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of thereverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequenties < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

 This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.

The AC characteristics are verified by random sampling.

Total power dissipation $P_{tot} = f(T_A^*, T_S)$

* Package mounted on epoxy

Permissible Pulse Load $R_{thJS} = f(t_p)$

Transition frequency $f_T = f(I_C)$

f = 200 MHz

 V_{CE} = parameter in V

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$

Power gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$ $V_{\text{CE}} = 2 \text{ V}$, $I_{\text{C}} = 200 \text{ mA}$

Power gain G_{ma} , $G_{\text{ms}} = f(V_{\text{CE}})$

I_C=200mA

f = parameter in GHz

Power gain G_{ma} , $G_{\text{ms}} = f(I_{\text{C}})$

$$V_{CE} = 2V$$

f = parameter in GHz

Collector-base capacitance $C_{CD} = f(V_{CB})$

 $V_{\text{BE}} = 0$, f = 1 MHz

Noise figure $F = f(I_C)$

$$V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}$$

