Chapitre 4

Continuité - Dérivation

Dirichlet Function: The King of Calculus Counter-Examples

4.1 Continuité d'1 fonction

4.1.1 Limite finie en 1 point

 $\begin{array}{ll} \underline{\textit{D\'efinition (rappel)}:} & l \;, a \;, \eta \in \mathbb{R} \; \text{et} \; f : I \mapsto \mathbb{R} \\ \\ f \; \textit{tend vers} \; l \; \textit{en} \; a \; \text{si tout intervalle ouvert} \; I \\ \\ \text{contenant} \; l \; \text{contient aussi toutes les valeurs de} \; f(x) \\ \\ \text{pour} \; x \; \text{assez proche de} \; a \; \underline{\text{cad}} \; \forall x \in]a - \eta, a + \eta[\\ \\ \text{On note alors} : \lim_{x \to a} f(x) = l \\ \\ \end{array}$

Remarque, exemple:

- η lettre grecque se lit "éta"
- la notion de limite nous conduit naturellement vers la notion de continuité
- $\underline{H.P.:}$ dans le supérieur, on écrit plutôt : $f: I \mapsto \mathbb{R}$ où I est un intervalle de \mathbb{R} $f \text{ est continue en a si : } \forall \epsilon > 0 \quad \exists \alpha > 0 \quad \forall a \in I \quad (|x-a| < \epsilon \Rightarrow |f(x) f(a)| < \alpha)$

4.1.2 Continuité en un point

Définition: $l, a \in \mathbb{R} \text{ et } f: I \mapsto \mathbb{R}$

- f est continue en a si $\lim_{x\to a} f(x) = f(a)$
- f continue sur $I \Leftrightarrow f$ continue en tout point de I
- si f n'est pas continue en a, on parle de discontinuité en a

$Remarque,\ exemple:$

• en gros (faux attention), 1 fonction continue est 1 fonction "que l'on peut tracer sans lever le stylo" ou bien "qui reste en 1 seul morçeau"

Fonction f discontinue en 2 $\lim_{x\to 2^+} f(x) = 3 \neq f(2)$

Fonction f continue sur [-1,5;5,5]

- toutes les fonctions polynômes sont continues sur \mathbb{R} (famille de fonctions très utilisées car très régulières : bien plus que continues, elles sont indéfiniment dérivables ...)
- la fonction inverse $f: x \mapsto \frac{1}{x}$ est une fonction continue sur \mathbb{R}^* mais ne l'est pas sur \mathbb{R} si f est continue, il faut donc bien préciser où (sinon problème potentiel ...) dans le cas où on ne dit rien, c'est que l'on parle de \mathbb{R}
- ce qu'il faut bien comprendre : pour 1 valeur a, vous pouvez regarder f à 3 endroits \neq :
 - à gauche <u>cad</u> que vous regardez $\lim_{x\to a^-} f(x)$
 - à droite <u>cad</u> vous regardez $\lim_{x\to x^+} f(x)$
 - pile sur a cad vous regardez f(a)

f est continue en a si ces 3 valeurs existent et sont égales : f continue en $a \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

- $\bullet\,$ il est possible de parler de :
 - \underline{f} continue à gauche : $\lim_{x \to a^{-}} f(x) = f(a)$
 - \underline{f} continue à droite : $\lim_{x \to a^+} f(x) = f(a)$
- $f(x) = \begin{cases} \frac{\sin x}{x} & si \quad x \in \mathbb{R}^* \\ 1 & si \quad x = 0 \end{cases}$ est continue sur \mathbb{R} (vérifier le!!)
- $\bullet\,$ voici la fonction partie entière $x\mapsto E(x)$

elle est continue à droite sur \mathbb{R}

elle est continue à gauche uniquement sur $\mathbb{R}\setminus\mathbb{Z}$

 $T^{ale} S 1$

2017 - 2018

•
$$f(x) = \begin{cases} \sin \frac{1}{x} & si \quad x \in \mathbb{R}^* \\ 0 & si \quad x = 0 \end{cases}$$

f n'est pas continue en 0 : pourquoi?

- $\underline{\text{travail}}$ à faire : trouver tous les cas possibles de non continuité d'1 fonction f en 1 point
- <u>H.P.</u>: vous pouvez rencontrer la notation : $f \in C([0,1],\mathbb{R})$ ou $f \in C^0([0,1],\mathbb{R})$ qui veut dire : f est 1 fonction continue de [0,1] sur \mathbb{R}

4.1.3 Continuité des fonctions usuelles

Propriété : (admis - assez intuitif)

- ullet les fonctions polynômes sont continues sur ${\mathbb R}$
- $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^*
- la fonction valeur absolue $x \mapsto |x|$ est continue sur $\mathbb R$
- $x \mapsto \sqrt{x}$ est continue sur \mathbb{R}^+
- $x \mapsto \sin x$ et $x \mapsto \cos x$ sont continues sur \mathbb{R}
- $x \mapsto \tan x$ est continue sur son domaine de définition : $\mathbb{R} \setminus \{k \frac{\pi}{2} | k \in \mathbb{Z}\}$

Remarque, exemple:

- $x \mapsto \frac{1}{x-a}$ est continue sur son domaine de définition : $\mathbb{R}\setminus\{a\} =]-\infty$; $a \in \mathbb{R}$
- $x \mapsto \sqrt{x+a}$ est continue sur son domaine de définition : $[-a; +\infty]$
- <u>H.P.</u>: 1 fraction rationnelle $\frac{P(x)}{Q(x)}$ est continue sauf au niveau de ses pôles <u>cad</u> les racines de Q(x)
- H.P.: prolongement par continuité intéressons nous à la fonction $x \mapsto \frac{\sin x}{x}$ définie sur \mathbb{R}^* on remarque que cette fonction est "presque continue" en 0 car $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} f(x) = 0$ il suffirait qu'elle soit définie en 0 ... ce qui n'est pas encore le cas ... et que sa valeur soit 0 on répare ce "problème" en décidant que f(0) = 0 et f devient continue sur \mathbb{R} cette fois-ci!

HP (approfondissement): lien entre Continuité et Suite

Propriété: (u_n) 1 suite, f 1 fonction; de plus, on suppose que tout est bien définie

- \mathbf{Si} : f est continue
- Alors: $\lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(l)$

Remarque, exemple:

• ex d'utilisation: 1 suite récursive
$$(u_n) = \begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{3u_n + 4} \end{cases}$$

l'étude de (u_n) montre que (u_n) est croissante, majorée par $4 \Rightarrow (u_n)$ CV : l sa limite $\underline{\text{d'une part}}, f(u_n) = \sqrt{3u_n + 4} \Rightarrow \lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} \sqrt{3u_n + 4}$ $\underline{\text{d'autre part}}, f \text{ est continue} \Rightarrow \lim_{n \to +\infty} \sqrt{3u_n + 4} = \sqrt{3 \lim_{n \to +\infty} u_n}$ de ces 2 informations, on obtient l'équation de la limite : $\lim_{n \to +\infty} u_n = l = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(l)$ $\underline{\operatorname{bref}} : f(l) = l \Rightarrow \sqrt{3l+4} = l \Rightarrow l^2 - 3l - 4 = 0 \Rightarrow l = -1 \text{ ou } l = 4 \Rightarrow l = 4 \text{ car } (u_n) \text{ est croissante}$

• 1 point essentiel, dans l'exemple précédent est de bien comprendre que : $\lim_{n \to +\infty} f(u_n) = l \qquad u_{n+1} = f(u_n)$ mais seul la continuité de f apporte l'égalité (par passage à la limite) f(l) = l

4.1.5Continuité et Dérivabilité

Propriété: (admis - assez intuitif)

- Si: f est dérivable en a Alors: f est continue en a
- Attention la réciproque est fausse (ex : $x \mapsto |x|$ en 0)

Remarque, exemple: même principe entre "ensemble de définition" et la "continuité"

• Si : f est continue en a Alors : f est définie en a (réciproque fausse évidement)

4.1.6 Théorème des Valeurs Intermédiaires

Théorème des Valeurs Intermédiaires :

• <u>Si :</u>

 $f: [a,b] \mapsto \mathbb{R}$ f est continue

• Alors:

 $\forall k \text{ entre } f(a) \text{ et } f(b)$, $\exists c \in [a, b] \text{ tq } f(c) = k$

Noter que le c n'est pas forcément unique (dans le cas général)

Remarque, exemple:

- dans le théorème, on n'écrit pas $k \in [f(a); f(b)]$ car on ne sait pas qui est le plus grand (f(a) ou f(b)
- on n'a pas besoin de la continuité de f pour arriver à la même conclusion : trouver 1 ex où f n'est pas continue et tq $\forall k$ entre f(a) et f(b), f(x) = k admet 1 solution sur [a; b]
- par contre, l'hypothèse de continuité est obligatoire si on veut que le résultat soit toujours vrai trouver 1 contre-exemple
- $\underline{Si} f$ est continue sur [a; b] et $f(a) \times f(b) < 0$

<u>Alors</u> l'équation f(x) = 0 admet au moins 1 solution sur [a; b]

On verra des algorithmes de recherche de solution approchée : dichotomie, newton, ...

TVI strictement monotone : unicité du c

 $\frac{Si:}{f:[a,b] \mapsto \mathbb{R}}$ f est continue

 $\frac{Alors:}{\forall k \text{ ontro} \ f($

 $\forall k \text{ entre } f(a) \text{ et } f(b)$, $\exists ! c \in [a, b] \text{ tq } f(c) = k$

f strictement monotone

<u>Méthode de Dichotomie</u>: Résoudre de façon approchée f(x) = 0

- $f(x) = x^3 + x + 1$ admet 1 seule solution sur \mathbb{R} ceci peut être prouver grâce au TVI elle est comprise entre 0 et 1 (voir graphique ci-dessus)
- on peut appliquer l'algorithme de dichotomie pour obtenir 1 valeur de la racine α , à 10^{-p} près
- programmer cet algorithme sur votre calculatrice

```
Variables: A, B, C réels P, N entiers f fonction Entrées et initialisation \begin{vmatrix} \text{Lire } A, B, P \\ 0 \to N \end{vmatrix} Traitement \begin{vmatrix} A+B \\ 2 & \to C \end{vmatrix} si f(A) \times f(C) > 0 (*) alors \begin{vmatrix} C \to A \\ \text{sinon} \\ N+1 \to N \end{vmatrix} fin Sorties: Afficher: A, B, N
```

4.2 Dérivée d'une fonction

4.2.1 Dérivée : de la définition aux formules classiques

Définition: $a, l \in \mathbb{R} \text{ et } f: I \mapsto \mathbb{R}$

- \underline{Si} : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = l$ \underline{Alors} : f est **dérivable** en a
- le nombre dérivé de f en a est f'(a)
- géométriquement, il représente la pente de la courbe de f en (a, f(a)) (cad la pente de la tangente en ce point)
- plus généralement, on note f' ou f'(x) la **dérivée** de f sur un intervalle I

Exemple 1 : calcul de limite (rappel chap fonction)

$$\bullet \lim_{x \to 0} \frac{\sin x}{x}$$

$$\bullet \lim_{x \to 0} \frac{\cos x - 1}{x}$$

$$\bullet \lim_{x \to 0} \frac{\tan x}{x}$$

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x}$$

$$\bullet \lim_{x \to 0} \frac{(1+x)^n - 1}{x}$$

•
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$

Exemple 2 : étude de la continuité et de la dérivabilité d'1 fonction

•
$$f(x) = \begin{cases} x^2 - 2x - 2 & si \quad x \leq 1\\ \frac{x - 4}{x} & si \quad x > 1 \end{cases}$$

 $\bullet\,$ étudier la continuité de f

• étudier la dérivabilité de f

Exemple 3: mais où sont pas les bonnes vieilles formules ... si simples à retenir!

• démontrer que $(x^2)' = 2x$

• démontrer que $(\sin x)' = \cos x$

 \bullet <u>moralité</u> : on garde les "formules" qui fonctionne quasiment tout le temps et on utilise le nombre dérivée pour les cas plus délicats ...

4.2.2 Les formules à connaître

Fonction	\mathscr{D}_f	Dérivée	\mathscr{D}_f'
f(x) = k	\mathbb{R}	f'(x) = 0	\mathbb{R}
f(x) = x	\mathbb{R}	f'(x) = 1	\mathbb{R}
$f(x) = x^n n \in \mathbb{N}^*$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$] - ∞; 0[ou]0; +∞[
$f(x) = \frac{1}{x^n} n \in \mathbb{N}^*$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n+1}}$] - ∞;0[ou]0; +∞[
$f(x) = \sqrt{x}$	[0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$]0;+∞[
$f(x) = \sin x$	\mathbb{R}	$f'(x) = \cos x$	\mathbb{R}
$f(x) = \cos x$	\mathbb{R}	$f'(x) = -\sin x$	\mathbb{R}

Remarque, exemple: pour aller 1 peu plus loin ...

•
$$(\tan x)' = 1 + \tan^2 x = \frac{1}{\cos^2 x} \operatorname{sur} \mathbb{R} \setminus \{\mathbb{Z} \frac{\pi}{2}\}$$

- $(e^x)' = e^x \operatorname{sur} \mathbb{R}$
- $(\ln x)' = \frac{1}{x} \operatorname{sur} \mathbb{R}^*_+$

Dérivée de la somme	(u+v)'=u'+v'
Dérivée du produit par un scalaire	(ku)' = ku'
Dérivée du produit	(uv)' = u'v + uv'
Dérivée de l'inverse	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
Dérivée du quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
Dérivée de la puissance	$\left(u^{n}\right)' = nu'u^{n-1}$
Dérivée de la racine	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
Dérivée autre	$[f(ax+b)]' = a \times f'(ax+b)$

Remarque, exemple:

- dérivée d'1 fonction composée : $(f \circ g)'(x) = f[g(x)] = f'[g(x)] \times g'(x)$ dérivée "grande - petite" égale "dérivée grande" appliquée à "petite" fois "dérivée petite"
- <u>H.P. dérivée fonction réciproque</u> : $\boxed{(f^{-1})'(y) = \frac{1}{f'[f^{-1}(y)]}}$ là où elle existe ... (preuve : dériver fof^{-1})

4.2.3 Interprétation - Application

Propriété:

- comme vu supra, le nombre dérivée représente la pente de la tangente en 1 point
- équation de la tangente à f en A(a, f(a)): y = f'(a)(x a) + f(a) (si elle existe)
- localement en a, on peut "approximer f" à cette droite : $h \to 0$, $f(a+h) \approx f(a) + hf'(a)$

Remarque, exemple:

- $ex\ 1$: valeur approchée de $\sqrt{4.03}$
 - on pose $f(x) = \sqrt{x}$, a = 4, h = 0.03
 - f(4) = 2 et $f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f'(4) = \frac{1}{4}$
 - donc $\sqrt{4.03} \approx 2 + 0.03 \times \frac{1}{4} = 2.0075$
 - la calculatrice nous donne 2.00786; nous sommes (sans calculatrice) déjà à 10^{-4} près!!
- ex 2 : énergie cinétique relativiste
 - en mécanique relativiste, la masse m de vitesse v est : $m = \frac{m_0}{\sqrt{1-(\frac{v}{c})^2}}$ où c est la vitesse de la lumière et m_0 la masse du corps au repos (à l'arrêt)
 - l'énergie cinétique est alors : $E_c = (m m_0)c^2 = m_0c^2(\frac{1}{\sqrt{1-x}} 1)$ où $x = (\frac{v}{c})^2$ (le vérifier)

• quand x est petit, c'est la mécanique classique avec Newton et sa "pomme"; on voudrait alors retrouver la formule classique : $E_c=\frac{1}{2}m_0c^2$

• on vérifie facilement que : $f(x) = \frac{1}{\sqrt{1-x}} - 1$ est dérivable en 0 et $f'(x) = \frac{1}{2(1-x)\sqrt{1-x}}$

• on peut alors faire l'approximation affine en zéro : $f(x) \approx f(0) + f'(0) \times x = \frac{x}{2}$

• $\Rightarrow E_c \approx m_0 c^2 \times \frac{x}{2} = \approx \frac{1}{2} m_0 c^2 \times (\frac{v}{c})^2 = \frac{1}{2} m_0 v^2$

4.2.4 Signe de la dérivée - Sens de Variation

Propriété: soit $f:I\mapsto\mathbb{R}$ dérivable sur I intervalle de \mathbb{R}

- \underline{Si} f' est nulle \underline{Alors} f est constante
- \underline{Si} f' est strictement positive (sauf en des points isolés) sur I<u>Alors</u> f est strictement croissante sur I
- \underline{Si} f' est strictement négative (sauf en des points isolés) sur I \underline{Alors} f est strictement décroissante sur I
- Étude des variations de $f \Rightarrow$ Étude du signe de f'

Remarque, exemple:

- ex: étudier les variations sur \mathbb{R} de $f(x) = x^3 6x^2 + 1$
- en étudiant le signe de f', on obtient (faites le!!) :

4.2.5 Dérivée et Extremum local

Propriété : soit $f: I \mapsto \mathbb{R}$ dérivable sur I intervalle de \mathbb{R} et $a \in I$

- \underline{Si} f admet un extremum local en a \underline{Alors} f'(a) = 0
- Si f'(a) = 0 en changeant de signe Alors f admet un extremum local en a

Remarque, exemple:

- stratégie : on cherchera donc les extremum local de f parmi les zéros de la dérivée
- <u>attention</u> : chaque zéro de f' n'est pas forcément un extremum de f; donner 1 exemple!!