Algorytmy i struktury danych

Lista zadań 4

Zadanie 1

Skorzystaj z metody rekurencji uniwersalnej i podaj dokładne asymptotyczne oszacowania dla następujących rekurencji:

(a)
$$T(n) = 2T(n/4) + \sqrt{n} = \Theta(n^{1/2}logn), n^{1/2} = \Theta(n^{log_4 2})$$

(b)
$$T(n) = 3T(n/4) + n = \Theta(n), n = \Omega(n^{\log_4 3})$$

(c)
$$T(n) = 8T(n/4) + n\sqrt{n} = \Theta(n^{3/2}logn), n^{3/2} = \Theta(n^{log_48})$$

(d)

$$\begin{split} T(n) &= 2T \left(n^{\frac{1}{2}} \right) + 1 \\ m &= \log n, \, U(m) = T \left(e^m \right) = T \left(e^{\log n} \right) = T(n) \\ U(m) &= 2T \left(e^{\log n^{\frac{1}{2}}} \right) + 1 = 2T \left(e^{\frac{1}{2} \log n} \right) + 1 = 2U \left(\frac{m}{2} \right) + 1 \\ 1 &= O \left(m^{\log_2 2 - \epsilon} \right) \, \, \text{dla} \, \, \epsilon \leq 1 \implies U(m) = \Theta(m) \\ T(n) &= U(m) = U(\log n) = \Theta(m) = \Theta(\log n) \end{split}$$

Zadanie 2

Czas działania algorytmu A opisany jest przez rekurencję $T(n) = 7T(n/2) + n^2$. Algorytm konkurencyjny A' ma czas działania $T'(n) = aT'(n/4) + n^2$. Jaka jest największa liczba całkowita a, przy której A' jest asymptotycznie szybszy niż A?

$$n^{2} = O\left(n^{\log_{2}7 - \epsilon}\right) \text{ dla } \epsilon \leq 0.80 \implies T(n) = 7T(n/2) + n^{2} = \Theta\left(n^{\log_{2}7}\right)$$

$$n^{2} = O\left(n^{\log_{4}a - \epsilon}\right) \implies T'(n) = aT'(n/4) + n^{2} = \Theta\left(n^{\log_{4}a}\right)$$

$$n^{\log_{4}a} < n^{\log_{2}7}$$

$$n^{\frac{1}{2}\log_{2}a} < n^{\log_{2}7}$$

$$T'(n) = \begin{cases} \Theta\left(n^2\right) & \text{dla } a \in \langle 1, 15 \rangle \\ \Theta\left(n^2 log n\right) & \text{dla } a = 16 \\ \Theta\left(n^{log_4 a}\right) & \text{dla } a \in \langle 17, 48 \rangle \\ \Theta\left(n^{log_4 49}\right) = \Theta\left(n^{log_2 7}\right) & \text{dla } a = 49 \end{cases}$$