

Definição 104: Diremos que D é uma derivação de uma fórmula φ a partir de um conjunto de fórmulas Γ quando φ é a conclusão de D e o conjunto das hipóteses não canceladas de D é um subconjunto de Γ .

Diremos que D é uma derivação de uma fórmula φ quando φ é a conclusão de D e todas as hipóteses de D estão canceladas. A uma derivação de φ chamaremos também uma demonstração de φ .

Definição 106: Uma fórmula φ diz-se derivável a partir de um conjunto de fórmulas Γ ou uma consequência sintática de Γ (notação: $\Gamma \vdash \varphi$) quando existe uma derivação de DNP cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é um subconjunto de Γ . Escreveremos $\Gamma \not\vdash \varphi$ para denotar que φ não é derivável a partir de Γ .

Definição 107: Uma fórmula φ diz-se um teorema de DNP (notação: $\vdash \varphi$) quando existe uma demonstração de φ . Escreveremos $\not\vdash \varphi$ para denotar que φ não é teorema de DNP.

Definição 109: Um conjunto de fórmulas Γ diz-se sintaticamente inconsistente quando $\Gamma \vdash \bot$ e diz-se sintaticamente consistente no caso contrário (i.e. quando $\Gamma \not\vdash \bot$, ou seja, quando não existem derivações de \bot a partir de Γ).

Teorema (Correção): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se
$$\Gamma \vdash \varphi$$
, então $\Gamma \models \varphi$.

Observação 115: O Teorema da Correção constitui uma ferramenta para provar a não derivabilidade de fórmulas a partir de conjuntos de fórmulas. De facto, do Teorema da Correção segue que

$$\Gamma \not\models \varphi \Longrightarrow \Gamma \not\models \varphi$$
,

o que significa que, para mostrar que não existem derivações em DNP de uma fórmula φ a partir de um conjunto de fórmulas Γ , basta mostar que φ não é consequência semântica de Γ .

Proposição 117: Γ é sintaticamente consistente sse Γ é semanticamente consistente.

Teorema 118 (Completude): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Teorema 119 (Adequação): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subset \mathcal{F}^{CP}$,

$$\Gamma \vdash \varphi$$
 se e só se $\Gamma \models \varphi$.

Corolário 120: Para todo $\varphi \in \mathcal{F}^{CP}$, φ é um teorema de DNP se e só se φ é uma tautologia.

Exemplo 123: O terno $L_{Arit}=(\{0,s,+,\times\},\{=,<\},\mathcal{N}),$ onde $\mathcal{N}(0)=0,$ $\mathcal{N}(s)=1,$ $\mathcal{N}(+)=2,$ $\mathcal{N}(\times)=2,$ $\mathcal{N}(=)=2$ e $\mathcal{N}(<)=2,$ é um tipo de linguagem. Chamaremos a L_{Arit} o tipo de linguagem para a Aritmética.

Definição 127: O conjunto \mathcal{T}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) para todo $x \in \mathcal{V}, x \in \mathcal{T}_L;$
- b) para toda a constante c de $L, c \in \mathcal{T}_L$;
- c) para todo o símbolo de função f de L, de aridade $n\geq 1,$

$$t_1 \in \mathcal{T}_L$$
e ... e $t_n \in \mathcal{T}_L \implies f(t_1,...,t_n) \in \mathcal{T}_L$, para todo $t_1,...,t_n \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{T}_L chamaremos termos de tipo L ou, abreviadamente, L-termos .

Definição 137: A operação de substituição de uma variável x por um L-termo t in num L-termo t' é notada por t'[t/x] e é definida por recursão estrutural (em t') do seguinte modo:

$$\mathbf{a}) \ y[t/x] = \left\{ \begin{array}{l} t, \ \ se \ \ y = x \\ \\ y, \ \ se \ \ y \neq x \end{array} \right., \ \mathrm{para} \ \mathrm{todo} \ y \in \mathcal{V};$$

- b) c[t/x] = c, para todo $c \in C$;
- c) $f(t_1,...,t_n)[t/x]=f(t_1[t/x],...,t_n[t/x])$, para todo $f\in\mathcal{F}$ de aridade $n\geq 1$ e para todo $t_1,...,t_n\in\mathcal{T}_L$.

Definição 140: Uma palavra sobre o alfabeto induzido por L da forma $R(t_1,...,t_n)$, onde R é um símbolo de relação n-ário e $t_1,...,t_n$ são L-termos, é chamada uma fórmula atómica de tipo L ou, abreviadamente, uma L-fórmula atómica. O conjunto das L-fórmulas atómicas é notado por AtL.

Definição 143: O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) $\varphi \in \mathcal{F}_L$, para todo $\varphi \in At_L$;
- b) $\perp \in \mathcal{F}_L$;
- c) $\varphi \in \mathcal{F}_L \implies (\neg \varphi) \in \mathcal{F}_L$, para todo $\varphi \in (\mathcal{A}_L)^*$;
- d) $\varphi \in \mathcal{F}_L$ e $\psi \in \mathcal{F}_L \implies (\varphi \Box \psi) \in \mathcal{F}_L$, para todo $\Box \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$ e para todo $\varphi, \psi \in (\mathcal{A}_L)^*$;
- e) $\varphi \in \mathcal{F}_L \implies (Qx\,\varphi) \in \mathcal{F}_L$, para todo $Q \in \{\exists, \forall\}$, para todo $x \in \mathcal{V}$ e para todo $\varphi \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{F}_L chamaremos fórmulas de tipo L ou, abreviadamente, L-fórmulas.

Definição 152: Numa L-fórmula φ , uma ocorrência (em subfórmulas atómicas de φ) de uma variável x diz-se livre quando x não está no alcance de nenhuma ocorrência de um quantificador Qx (com $Q \in \{\exists, \forall\}$); caso contrário, essa ocorrência de x diz-se ligada.

Escrevemos $LIV(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências livres em φ e $LIG(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências ligadas em φ .

Definição 158: Uma variável x diz-se substituível (sem captura de variáveis) por um L-termo t numa L-fórmula φ quando para todas as ocorrências livres de x em φ no alcance de algum quantificador $Qy, y \notin VAR(t)$.

Observação 159: Se x é uma variável que não tem ocorrências livres numa L-formula φ ou t é um L-termo onde não ocorrem variáveis, x é substituível por t em φ .

Definição 163: Uma L-fórmula φ diz-se uma L-sentença, ou uma L-fórmula fechada, quando $LIV(\varphi)=\emptyset.$

Exemplo 170: As funções
$$a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$$
 e $a^{ind}: \mathcal{V} \longrightarrow \mathbb{N}_0$ são atribuições $x \mapsto 0$ $x_i \mapsto i$ em E_{Arit} .

Definição 171: O valor de um L-termo t numa L-estrutura $E=(D,\overline{})$ para uma atribuição a em E é notado por $t[a]_E$ ou, simplesmente, por t[a] (quando é claro qual a estrutura que deve ser considerada), e é o elemento de D definido, por recursão estrutural em L-termos, do seguinte modo:

- a) x[a] = a(x), para todo $x \in \mathcal{V}$;
- b) $c[a] = \overline{c}$, para todo $c \in \mathcal{C}$;
- c) $f(t_1,...,t_n)[a] = \overline{f}(t_1[a],...,t_n[a])$ para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todo

Proposição 177: Sejam t_0 e t_1 L-termos e seja a uma atribuição numa L-estrutura. Então, $t_0[t_1/x][a] = t_0[a\left(\frac{x}{t_1[a]}\right)]$.

Definição 178: O valor lógico de uma L-fórmula φ numa L-estrutura $E=(D,\overline{\ })$ para uma atribuição a em E, é notado por $\varphi[a]_E$ ou, simplesmente, por $\varphi[a]$ (quando é claro qual a estrutura que deve ser considerada) e é o elemento do conjunto dos valores lógicos $\{0,1\}$ definido, por recursão em φ , do seguinte modo:

- a) $\perp [a] = 0;$
- b) $R(t_1,...,t_n)[a]=1$ sse $(t_1[a],...,t_n[a])\in\overline{R},\quad$ para todo o símbolo de relação R de aridade n e para todo $t_1,...,t_n\in\mathcal{T}_L;$
- c) $(\neg \varphi_1)[a] = 1 \varphi_1[a]$, para todo $\varphi_1 \in \mathcal{F}_L$;
- d) $(\varphi_1 \wedge \varphi_2)[a] = min(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- e) $(\varphi_1 \vee \varphi_2)[a] = max(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- f) $(\varphi_1 \to \varphi_2)[a] = 0$ sse $\varphi_1[a] = 1$ e $\varphi_2[a] = 0$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- g) $(\varphi_1 \leftrightarrow \varphi_2)[a] = 1$ sse $\varphi_1[a] = \varphi_2[a]$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- h) $(\exists x \varphi_1)[a] = m \acute{a} x imo \{ \varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D \}$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L;$
- i) $(\forall x \varphi_1)[a] = minimo\{\varphi_1[a\begin{pmatrix} x \\ d \end{pmatrix}]: d \in D\}$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$.

Proposição 179: Para quaisquer L-estrutura E, atribuição a em E, L-fórmula φ e variável x.

- a) $(\exists x\varphi)[a] = 1$ sse existe $d \in dom(E)$ t.q. $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 1$;
- b) $(\exists x \varphi)[a] = 0$ sse para todo $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0;$
- c) $(\forall x\varphi)[a] = 1$ sse para todo $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 1;$
- d) $(\forall x\varphi)[a] = 0$ see existe $d \in dom(E)$, $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0$.

Definição 182: Sejam E uma L-estrutura e a uma atribuição em a. Em E, dizemos que a satisfaz uma L-fórmula φ , escrevendo $E \models \varphi[a]$, quando $\varphi[a]_E = 1$. Escrevemos $E \not\models \varphi[a]$ quando a não satisfaz φ .

Proposição 183: Sejam E uma L-estrutura e a uma atribuição em E. Então:

- a) $E \models \exists x \varphi[a]$ see existe $d \in dom(E)$ t.q. $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$;
- b) $E \models \forall x \varphi[a]$ sse $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- c) $E \not\models \exists x \varphi[a]$ sse $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- d) $E \not\models \forall x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$.

Proposição 184: Seja φ uma L-fórmula e sejam a_1 e a_2 atribuições numa L-estrutura E. Se $a_1(x)=a_2(x)$, para todo $x\in LIV(\varphi)$, então $E\models\varphi[a_1]$ sse $E\models\varphi[a_2]$.

Definição 186: Uma L-fórmula φ é válida numa L-estrutura E (notação: $E \models \varphi$) quando, para toda a atribuição a em E, $E \models \varphi[a]$. Utilizamos a notação $E \not\models \varphi$ quando φ não é válida em E, i.e., quando existe uma atribuição a em E tal que $E \not\models \varphi[a]$.

Proposição 188: Seja E uma L-estrutura. Se φ é uma L-sentença, então $E \models \varphi$ sse para alguma atribuição a em E, $E \models \varphi[a]$.

Definição 189: Uma L-fórmula φ é (universalmente) válida (notação: $\models \varphi$) quando é válida em toda a L-estrutura. Utilizamos a notação $\not\models \varphi$ quando φ não é (universalmente) válida, i.e., quando existe uma L-estrutura E tal que $E \not\models \varphi$.

Observação 190: Uma L-fórmula φ não é universalmente válida quando existe alguma L-estrutura que não valida φ , ou seja, quando existe alguma L-estrutra E e alguma atribuição a em E t.q. $E \not\models \varphi[a]$.

Definição 192: Uma L-fórmula φ é logicamente equivalente a uma L-fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando $\models \varphi \leftrightarrow \psi$, i.e., quando para para toda a L-estrutura E e para toda a atribuição a em E, $E \models \varphi[a]$ sse $E \models \psi[a]$.

Proposição 194: Sejam $x,y\in\mathcal{V}$ e $\varphi,\psi\in\mathcal{F}_L$. As seguintes afirmações são verdadeiras.

- a) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$
- $\mathbf{b}) \ \neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$
- c) $\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$
- d) $\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$
- e) $\forall x(\varphi \land \psi) \Leftrightarrow \forall x\varphi \land \forall x\psi$ f) $\exists x(\varphi \lor \psi) \Leftrightarrow \exists x\varphi \lor \exists x\psi$
- \mathbf{g}) $\models (\forall x\varphi \lor \forall x\psi) \to \forall x(\varphi \lor \psi)$, mas não necessariamente $\models \forall x(\varphi \lor \psi) \to (\forall x\varphi \lor \forall x\psi)$
- h) $\models \exists x(\varphi \land \psi) \rightarrow (\exists x\varphi \land \exists x\psi)$, mas não necessariamente $\models (\exists x\varphi \land \exists x\psi) \rightarrow \exists x(\varphi \land \psi)$
- i) $\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$
- $\mathbf{j}) \; \exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$
- k) |= $\exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$, mas não necessariamente |= $\forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$
- l) $Qx\varphi \Leftrightarrow \varphi$ se $x\not\in LIV(\varphi),$ para todo $Q\in\{\exists,\forall\}$
- m) $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é substituível por y em φ , para todo $Q \in \{\exists, \forall\}$

Definição 195: Chamaremos instanciação (de variáveis proposicionais com Lfórmulas) a uma função do tipo $\mathcal{V}^{CP} \longrightarrow \mathcal{F}_L$. Cada instanciação i determina uma função do tipo $\mathcal{F}^{CP} \longrightarrow \mathcal{F}_L$ que satisfaz as seguintes condições.

- a) $i(\perp) = \perp$;
- b) $i(\neg \varphi) = \neg i(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- c) $i(\varphi \Box \psi) = i(\varphi) \Box i(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Definição 196: Uma L-fórmula ψ é uma instância de uma fórmula φ do Cálculo Proposicional quando existe alguma instanciação i tal que $i(\varphi) = \psi$.

Teorema 198 (Teorema da Instanciação): Se φ é uma tautologia do Cálculo Proposicional, então toda a instância de φ é universalmente válida. Observação 200: Como seria de esperar, nem todas as fórmulas universalmente válidas são instâncias de tautologias. Por exemplo, vimos no Exemplo 191 que a fórmula $\forall x_0(x_0=x_1 \lor \neg(x_0=x_1))$ é universalmente válida e esta fórmula não é instância de qualquer tautologia (esta fórmula é apenas instância de variáveis proposicionais, que não são tautologias).

Definição 201: Sejam E uma L-estrutura, a uma atribuição em E e Γ um conjunto de L-fórmulas. Dizemos que o par (E,a) realiza Γ ou que (E,a) satisfaz Γ quando para todo $\varphi \in \Gamma$, $E \models \varphi[a]$. Diremos que (E,a) é uma realização de Γ quando (E,a) realiza Γ .

Definição 203: Um conjunto Γ de L-fórmulas diz-se realizável ou satisfazível ou semanticamente consistente quando existe alguma realização de Γ . Caso contrário, Γ diz-se irrealizável ou insatisfazível ou semanticamente inconsistente.

Definição 205: Sejam E uma L-estrutura e Γ um conjunto de L-fórmulas. Dizemos que E é um modelo de Γ , escrevendo $E \models \Gamma$, quando para toda a atribuição a em E, (E,a) realiza Γ . Caso contrário, diremos que E $n\tilde{a}o$ é modelo de Γ , escrevendo $E \not\models \Gamma$.

Proposição 207: Sejam Γ um conjunto de L-sentenças, E uma L-estrutura . Então, E é um modelo de Γ sse para alguma atribuição a em E, (E,a) realiza Γ .

Definição 208: Uma L-fórmula φ diz-se uma consequência semântica de um conjunto de L-fórmulas Γ (notação: $\Gamma \models \varphi$) quando para toda a L-estrutura E e para toda a atribuição a em E, se (E,a) realiza Γ , então $E \models \varphi[a]$.