class10: halloween candy mini project

Sneha Patel

Background

In this mini-project we will examine 538 Halloween Candy data.

First step is read the data

```
candy <- read.csv("candy-data.csv", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	cicewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

```
nrow(candy)
```

[1] 85

Q1.

85 types of candy in the dataset

```
table(candy$fruity)
```

0 1 47 38

Q2

There are 38 fruity candy types

rownames(candy)

[1]	"100 Grand"	"3 Musketeers"
[3]	"One dime"	"One quarter"
[5]	"Air Heads"	"Almond Joy"
[7]	"Baby Ruth"	"Boston Baked Beans"
[9]	"Candy Corn"	"Caramel Apple Pops"
[11]	"Charleston Chew"	"Chewey Lemonhead Fruit Mix"
[13]	"Chiclets"	"Dots"
[15]	"Dum Dums"	"Fruit Chews"
[17]	"Fun Dip"	"Gobstopper"
[19]	"Haribo Gold Bears"	"Haribo Happy Cola"
[21]	"Haribo Sour Bears"	"Haribo Twin Snakes"
[23]	"HersheyÕs Kisses"	"HersheyÕs Krackel"
[25]	"HersheyÕs Milk Chocolate"	"HersheyÕs Special Dark"
[27]	"Jawbusters"	"Junior Mints"
[29]	"Kit Kat"	"Laffy Taffy"
[31]	"Lemonhead"	"Lifesavers big ring gummies"
[33]	"Peanut butter M&MÕs"	"M&MÕs"
[35]	"Mike & Ike"	"Milk Duds"
[37]	"Milky Way"	"Milky Way Midnight"
[39]	"Milky Way Simply Caramel"	"Mounds"
[41]	"Mr Good Bar"	"Nerds"
[43]	"Nestle Butterfinger"	"Nestle Crunch"
	"Nik L Nip"	"Now & Later"

```
[47] "Payday"
                                    "Peanut M&Ms"
[49] "Pixie Sticks"
                                    "Pop Rocks"
[51] "Red vines"
                                    "ReeseÕs Miniatures"
[53] "ReeseÕs Peanut Butter cup"
                                    "ReeseÕs pieces"
[55] "ReeseÕs stuffed with pieces"
                                    "Ring pop"
[57] "Rolo"
                                    "Root Beer Barrels"
[59] "Runts"
                                    "Sixlets"
[61] "Skittles original"
                                    "Skittles wildberry"
[63] "Nestle Smarties"
                                    "Smarties candy"
[65] "Snickers"
                                    "Snickers Crisper"
[67] "Sour Patch Kids"
                                    "Sour Patch Tricksters"
[69] "Starburst"
                                    "Strawberry bon bons"
[71] "Sugar Babies"
                                    "Sugar Daddy"
[73] "Super Bubble"
                                    "Swedish Fish"
                                    "Tootsie Roll Juniors"
[75] "Tootsie Pop"
[77] "Tootsie Roll Midgies"
                                    "Tootsie Roll Snack Bars"
[79] "Trolli Sour Bites"
                                    "Twix"
[81] "Twizzlers"
                                    "Warheads"
[83] "WelchÕs Fruit Snacks"
                                    "WertherÕs Original Caramel"
[85] "Whoppers"
  candy["HersheyÕs Special Dark", ]$winpercent
[1] 59.23612
  candy["Kit Kat", ]$winpercent
[1] 76.7686
  candy["Tootsie Roll Snack Bars", ]$winpercent
[1] 49.6535
```

My favorite candy is Hershey's Special Dark and the win percent is 59.2%

Kit Kat's win percent is 76.77%

Q5

Tootsie Roll Snack Bars win percent is 49.65%

skimr::skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

winpercent seems to be on a different scale

Q7

The 1s and 0s in the chocolate column represent true or false aka if it is chocolate or not

Q8

hist(candy\$winpercent)

Histogram of candy\$winpercent


```
library(ggplot2)
ggplot(candy) + aes (x = winpercent) + geom_histogram(bins=15, col="black", fill="lightblu")
```


The distribution of winpercent is not symmetrical

```
median(candy$winpercent)
```

[1] 47.82975

Q10

The center of the distribution is below 50%

```
#choc_avg <- mean(candy$winpercent(chocolate==1))
choc_true <- as.logical(candy$chocolate)
choc_all <- candy[choc_true,]$winpercent
choc_avg <- mean(choc_all)

fruity_true <- as.logical(candy$fruity)
fruity_all <-candy[fruity_true,]$winpercent</pre>
```

```
fruity_avg <- mean(fruity_all)
choc_avg > fruity_avg

[1] TRUE
```

Chocolate candies are ranked higher than fruit candy

```
t.test(choc_all, fruity_all)

Welch Two Sample t-test

data: choc_all and fruity_all
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

Q12

The difference is not statistically significant

```
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag
```

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

candy %>% arrange(winpercent) %>% head(5)

	chocolate	fruity	carar	nel p	peanutyaln	nondy n	ougat	
Nik L Nip	0	1		0	·	0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugarp	ercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans	}	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	;						
Nik L Nip	22.44534	Ļ						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	3						
Jawbusters	28.12744	Ļ						

Q13

The 5 least liked candies are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters

```
candy %>% arrange(winpercent) %>% tail(5)
```

	${\tt chocolate}$	fruity	caramel	. peanutyalr	nondy	nougat
Snickers	1	0	1		1	1
Kit Kat	1	0	C)	0	0
Twix	1	0	1		0	0
ReeseÕs Miniatures	1	0	C)	1	0
ReeseÕs Peanut Butter cup	1	0	C)	1	0
	crispedri	cewafer	hard ba	r pluribus	sugai	rpercent

Snickers		0	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Twix		1	0	1	0	0.546
ReeseÕs Miniatures		0	0	0	0	0.034
ReeseÕs Peanut Butter cup		0	0	0	0	0.720
	pricepercent	winpe	ercent			
Snickers	0.651	76.	67378			
Kit Kat	0.511	76.	76860			
Twix	0.906	81.	64291			
ReeseÕs Miniatures	0.279	81.	86626			
ReeseÕs Peanut Butter cup	0.651	84.	18029			

The top 5 candies are Snickers, Kit Kat, Twix, Reese's Miniatures, and Reese's Peanut Butter cup

```
library(ggplot2)
ggplot(candy) + aes(winpercent, rownames(candy)) + geom_col()
```



```
library(ggplot2)
ggplot(candy) + aes(winpercent, reorder(rownames(candy), winpercent)) + geom_col()
```



```
ggsave("mybarplot.png")
```

Saving 5.5×3.5 in image

Adding color

Let's setup a color vector (that signifies candy type) that we can then use for some future plots. We start by making a vector of all black values (one for each candy). Then we overwrite chocolate (for chocolate candy), brown (for candy bars) and red (for fruity candy) values.

```
my_cols <- rep("pink", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "brown"
my_cols[as.logical(candy$bar)] = "lightblue"
my_cols[as.logical(candy$fruity)] = "orange"</pre>
```

library(ggplot2)

ggplot(candy) + aes(winpercent, reorder(rownames(candy), winpercent)) + geom_col(fill=my_c

Q17

Worst ranked chocolate is sixlets

Q18

Best ranked fruity candy is starburst

Taking a look at pricepercent

What about value for money? What is the best candy for the least money? One way to get at this would be to make a plot of winpercent vs the pricepercent variable. The pricepercent variable records the percentile rank of the candy's price against all the other candies in the dataset. Lower vales are less expensive and high values more expensive.

To this plot we will add text labels so we can more easily identify a given candy. There is a regular geom_label() that comes with ggplot2. However, as there are quite a few candys in our dataset lots of these labels will be overlapping and hard to read. To help with this we can use the geom_text_repel() function from the ggrepel package.

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps


```
#highest winpercent, lowest pricepercent
ord <- order(candy$pricepercent, decreasing = FALSE)
head(candy[ord,c(11,12)], n=5)</pre>
```

pricepercent winpercent

Tootsie Roll Midgies	0.011	45.73675
Pixie Sticks	0.023	37.72234
Dum Dums	0.034	39.46056
Fruit Chews	0.034	43.08892
Strawberry bon bons	0.058	34.57899

Tootsie roll midgies is the biggest bang for your buck

```
#lowest winpercent, highest pricepercent
ord <- order(candy$pricepercent, decreasing = TRUE)
head(candy[ord,c(11,12)], n=5)</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

Q20

Worst expensive candy is Nik L Nip

Exploring the correlation structure

```
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
    corrplot(cij)</pre>
```


Fruit and Chocolate are anti-correlated

Q23

Chocolate and bar/winpercent are the most positively correlated

PCA

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
```

```
PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
plot(pca$x[,1], pca$x[,2], col=my_cols, pch=16)
```


Warning: ggrepel: 60 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

par(mar=c(8,4,2,2))
barplot(pca\$rotation[,1], las=2, ylab="PC1 Contribution")

Fruity, hard, and pluribus have strong PC1 in the positive direction. This makes sense since chocolate isn't hard, and hard candies typically come in individually wrapped bite size pieces