Lecture 14

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

October 8, 2021

Subspaces of \mathbb{R}^n

Some subspaces of \mathbb{R}^n

Let $\mathbf{A} = [a_{ij}]$ be $m \times n$ matrix, R_1, \dots, R_m be rows of \mathbf{A} and C_1, \dots, C_n be columns of \mathbf{A} . Then a subspace of \mathbb{R}^n spanned by the rows of \mathbf{A} , i.e., $\mathrm{span}(R_1, \dots, R_m)$ is called the *row space* of \mathbf{A} which is denoted as $\mathcal{R}(\mathbf{A})$, and the subspaPank and Nullityce of \mathbb{R}^m spanned by columns of \mathbf{A} , i.e., $\mathrm{span}(C_1, \dots, C_n)$ is called the *column space* of \mathbf{A} which is denoted as $\mathcal{C}(\mathbf{A})$. The solution space of the homogeneous system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ is called the *null space* of \mathbf{A} which is denoted as $\mathcal{N}(\mathbf{A})$.

Example

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \end{bmatrix}$$
 . Then

- Row space of A, $\mathcal{R}(A) = \text{span}\{(1,3,4), (2,6,8)\}.$
- The column space of \mathbf{A} , $\mathcal{C}(\mathbf{A}) = \mathrm{span}\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}3\\6\end{bmatrix},\begin{bmatrix}4\\8\end{bmatrix}\right\}$.
- The null space of A is the set of all solution of Ax = 0.

Theorem

Elementary row operations do not change the null space of a matrix, i.e., for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$, if \mathbf{A} and \mathbf{B} are row equivalent, then $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{B})$. https://math.stackexchange.com/questions/108041/linear-algebra-preserving-the-null-space e

Theorem

Elementary row operations do not change the row space of a matrix, i.e., for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$, if \mathbf{A} and \mathbf{B} are row equivalent, then $\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{B})$.

Note that C(A) need not be equal to C(B).

Operations defined on vectorspace Closed under addition and multiplication by scaler

Example

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$.

- $\bullet \ \mathcal{R}(\bm{A}) = \mathrm{span}\{(1,3,4),(2,6,8)\} = \mathrm{span}\{(1,3,4)\} = \mathcal{R}(\bm{B}).$
- $\mathcal{N}(\mathbf{A}) = \text{span}\{(x_1, x_2, x_3) : x_1 + 3x_2 + 4x_3 = 0 = 2x_1 + 6x_2 + 8x_3\} = \text{span}\{(x_1, x_2, x_3) : x_1 + 3x_2 + 4x_3 = 0 = 0x_1 + 0x_2 + 0x_3\} = \mathcal{N}(\mathbf{B}).$

•
$$C(\mathbf{A}) = \operatorname{span}\left\{\begin{bmatrix}1\\2\end{bmatrix}, \begin{bmatrix}3\\6\end{bmatrix}, \begin{bmatrix}4\\8\end{bmatrix}\right\}$$

•
$$C(\mathbf{B}) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

Theorem

Let \mathbf{A} be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^n$. Then $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in \mathcal{C}(\mathbf{A})$.

Theorem

Let **A** be an $m \times n$ matrix. Then $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a non-trivial solution if and only if columns of **A** are linearly dependent.

Theorem

Thm3.

Let **A** and **B** be row equivalent matrices. Then a given set of column vectors in **A** is linear dependent if and only if the corresponding columns of **B** are linear dependent.

Proof. Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be a subset of linear dependent columns of \mathbf{A} . Then there exist scalars not all zero such that

$$c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r=\mathbf{0}. \tag{1}$$

After applying certain row operations columns $\mathbf{v}_1, \dots, \mathbf{v}_r$ changes to $\mathbf{v}_1', \dots, \mathbf{v}_r'$. These column vectors satisfies the relation

$$c_1 \mathbf{v}_1' + \dots + c_r \mathbf{v}_r' = \mathbf{0} \tag{2}$$

with same coefficients. Thus $\mathbf{v}_1', \dots, \mathbf{v}_r'$ are also linearly dependent.

Theorem

Let A and B be row equivalent matrices. Then a given set of column vectors of A forms a basis for $\mathcal{C}(A)$ if and only if the corresponding column vectors of B forms a basis of $\mathcal{C}(B)$.