Consensus Decoding Approaches to Statistical Machine Translation

12/14/2011

Nan DUAN

Advisor: Ming ZHOU and Mu LI School of Computer Science and Technology Tianjin University

Outline

- Consensus Decoding to SMT
- Collaborative Decoding

- Mixture Model-based MBR Decoding
- Hypothesis Mixture Decoding
- Conclusion

Outline

Consensus Decoding to SMT

Collaborative Decoding

- Mixture Model-based MBR Decoding
- Hypothesis Mixture Decoding

Conclusion

"Statistical" Machine Translation

- MT: translation from one natural language into another natural language, using computer
- **SMT**: an MT paradigm based on *statistical model* and analysis of *bilingual data*

Modeling

Source-Channel Model

$$\hat{e} = argmax_e \{P(e|f)\}\$$

$$= argmax_e \{P(e) \cdot P(f|e)\}\$$

Decoding Algorithm

Language Model Translation Model

Maximum Entropy Model

$$\hat{e} = argmax_{e} \frac{exp[\sum_{m=1}^{M} \lambda_{m} \cdot h_{m}(e,f)]}{\sum_{e'} exp[\sum_{m=1}^{M} \lambda_{m} \cdot h_{m}(e',f)]}$$

$$= argmax_{e} \{\sum_{m=1}^{M} \lambda_{m} \cdot h_{m}(e,f)\}$$
Parameter Optimization Feature Selection

Generic System Overview

Existing Problems

Single SMT model

- 1-best translation is usually not the REAL-BEST one
- better ones exist in the hypothesis space

Multiple SMT models

- different pros and cons
- phrase-based models
 - good at handling local reorderings
 - bad at dealing with long-distance dependencies
- syntax-based models
 - good at handling long-distance dependencies
 - bad at phrase coverage

How to select a better one?

How to combine merits of different SMT models?

Minimum Bayes-Risk Decoding

• Seek the translation with *the least expected loss* under a probability distribution

$$\hat{e} = \underset{e' \in H(f)}{argmin} \sum_{e \in H(f)} L(e, e') P(e|f)$$

$$= \underset{e' \in H(f)}{argmax} \sum_{e \in H(f)} G(e, e') P(e|f)$$
hypothesis gain probability distribution

MBR Decoding on Hypergraph [Kumar et al., 2009]

MBR Decoding on Lattice [Tromble et al., 2008]

Using BLEU as the loss function [Ehling et al., 2007]

MBR Decoding on N-best [Kumar and Byrne, 2004]

Related work

Word-Level System Combination

- Given outputs generated by multiple SMT systems
 - align multiple hypotheses to build a confusion network
 - output the path with the highest score as final translation

I like eating chocolate icecream.

我喜欢巧克力冰激凌。 我喜欢吃巧克力冰激凌。 我爱吃巧克力冰激凌。 我爱巧克力冰激凌。

null penalty

LM score

length penalty

$$\hat{e} = \underset{e \in H(f)}{argmax} \{ \alpha P(e) + \beta N_{null}(e) + \chi log P_{LM}(e) + \sigma N_{words}(e) \}$$

我 爱 吃 巧克力 冰激凌。

我	喜欢	~	巧克力	冰激凌	0
我	喜欢	吃	巧克力	~	0
我	爱	吃	巧克力	冰淇凌	0
我	爱	~	巧克力	冰激凌	0

Consensus Decoding

• Techniques that can *re-rank* or *re-produce* better translations by making use of *consensus statistics* computed between hypotheses

1. system construction

- single system
- multiple systems

2. first-pass decoding

- n-best list
- hypergraph/lattice

3. search space re-construction

- simple union
- more complicated structure

4. second-pass decoding

- re-rank existing translations
- re-produce unseen translations

Outline

Consensus Decoding to SMT

Collaborative Decoding

Mixture Model-based MBR Decoding

Hypothesis Mixture Decoding

Conclusion

Chapter 5, in doctoral dissertation

Collaborative Decoding

ACL, 2009

Motivation

- MBR decoding & system combination
 - take n-best translations as input
 - present *a small portion* of the whole search space
 - some useful partial translations are pruned during decoding

Collaborative Decoding

- Multiple SMT decoders work collaboratively
 - hypothesis scoring/re-ranking in decoding directly
 - explore translations beyond n-best lists of full translations

Co-decoding Model

- Baseline model
 - original SMT model

$$\Phi_{m}(f,e) = \sum_{i=1}^{N} \lambda_{m,i} \cdot h_{m,i}(f,e)$$

model specified features

- Augmented model
 - consensus-based model

$$\Phi_{m}(f,e) = \sum_{i=1}^{N} \lambda_{m,i} \cdot h_{m,i}(\bar{f},e) \qquad \sum_{k,k\neq m} \Psi_{k}(e,H_{k}(f)) = \sum_{k,k\neq m} \sum_{l} \lambda_{k,l} \cdot h_{k,l}(e,H_{k}(f))$$

n-gram -based features

- Co-decoding model
 - baseline model + augmented models

$$F_{m}(e) = \Phi_{m}(f,e) + \sum_{k,k \neq m} \Psi_{k}(e,H_{k}(f))$$

Co-decoding Feature

$$h_{k,l}(e, H_k(f)) = \sum_{e' \in H_k(f)} P(e' | H_k(f)) G_l(e, e')$$

Posterior Probability

• alpha is the scaling-factor that controls the shape of the probability distribution

$$P(e'|H_k(f)) = \frac{\exp\{\alpha \cdot F_k(e')\}}{\sum_{e'' \in H_k(f)} \exp\{\alpha \cdot F_k(e'')\}}$$

n-gram Measure Functions

n-gram agreement measure

$$G_n^+(e,e') = \sum_{i=1}^{|e|-n+1} \delta(e_i^{i+n-1},e')$$

• n-gram disagreement measure

$$G_n^-(e,e') = \sum_{i=1}^{|e|-n+1} (1 - \delta(e_i^{i+n-1},e'))$$

Experiments

Training

- bilingual data (5.1M sentence pairs)
 - all data available for the NIST 2008 constrained track of C-to-E MT task
- monolingual data
 - Xinhua portion of LDC English Gigaword V3.0

Evaluation

- development data
 - NIST 2003 (919 sentences)
- test data
 - NIST 2005 (1,082 sentences) and NIST 2008 (1,357 sentences)
- Metric
 - case insensitive NIST BLEU

Experiments

Baseline system

- Hiero
 - (Chiang, 2005)
- BTG
 - (Xiong et al., 2006)
- DepHiero
 - (Shen et al., 2008)

Combination system

- more than one SMT model are used in co-decoding, so further combination is straightforward
 - word-level
 - (Rosti et al., 2007)
 - sentence-level
 - (Hildebrand and Vogel, 2008)

Overall Comparison

	NIST 2005	NIST 2008		
	before co-decoding,	before co-decoding/after co-decoding		
Hiero	38.66%/ 40.08%	27.67%/ 29.19%		
BTG	38.06%/ 39.93%	27.25%/ 29.14%		
DepHiero	39.50%/ 40.32%	28.75%/ 29.68%		
	Further Combination			
Word-Level Combination	40.45%/ 40.85%	29.52%/ 30.35%		
Sentence-Level Combination	40.09%/ 40.50%	29.02%/ 29.71%		

Summary

Advantages

- re-rank both partial and full translations
- improve all involved SMT systems

Future work

more systems included

Mixture Model-based MBR Decoding

COLING, 2010

Motivation

MBR decoding improves over max-derivation decoding

$$\hat{e} = \underset{e' \in H(f)}{argmin} \sum_{e \in H(f)} L(e,e')P(e|f)$$

Limitations of MBR decoding

- It can only perform on single SMT system
- It can not adapt to multiple SMT systems

MBR Decoding for Hypergraph [Kumar et al., 2009]

MBR Decoding for Lattice [Tromble et al., 2008]

MBR Decoding for n-best [Kumar and Byrne, 2004]

•••

Log-BLEU [Tromble et al., 2008]

BLEU
[Ehling et al., 2007]

Word Error Rate (WER)
Position-independent WER
[Kumar and Byrne., 2004]

•••

Model distribution is the key point!

Different Search Spaces

Different Loss Functions

In this work, we present Mixture Model-based MBR decoding (MMMBR decoding)

- integrates multiple model distributions for Bayes-risk computation;
- integrates multiple search spaces for hypothesis selection.

Overview of MMMBR Model

- Generates multiple search spaces
- Integrates multiple search spaces as a combined search space

$$H(f) = \bigcup_{i=1}^{N} H_i(f)$$

• Integrates multiple distributions by mixture modeling

$$P(e/f) = \sum_{i=1}^{N} \lambda_i P_i(e/f)$$
$$\sum_{i=1}^{N} \lambda_i = 1 \quad 0 \le \lambda_i \le 1$$

Rewrites MBR to MMMBR

$$\hat{e} = \underset{e' \in H(f)}{\operatorname{argmax}} \sum_{e \in H(f)} G(e, e') \underbrace{\sum_{i=1}^{N} \lambda_i P_i(e/f)}_{i}$$

Mixture Model

Mathematical Derivation

$$\begin{split} \hat{e} &= \underset{e' \in H}{argmax} \sum_{e \in H} G(e, e') \sum_{i=1}^{N} \lambda_{i} P_{i}(e|f) \\ &= \underset{e' \in H}{argmax} \sum_{e \in H} \{ \sum_{i=1}^{N} \lambda_{i} \sum_{k=1}^{N} \sum_{e \in H_{k}} G(e, e') P_{i}(e|f) \} \\ &= \underset{e' \in H}{argmax} \sum_{e \in H} \{ \sum_{i=1}^{N} \lambda_{i} \sum_{k=1}^{N} \sum_{e \in H_{k}} \{ \theta_{0}/e' / + \sum_{\omega} \theta_{|\omega|} \#_{\omega}(e') \delta_{\omega}(e) \} P_{i}(e|f) \} \\ &= \underset{e' \in H}{argmax} \sum_{e \in H} \{ \sum_{i=1}^{N} \lambda_{i} \sum_{k=1}^{N} \theta_{0}/e' / + \sum_{\omega} \theta_{|\omega|} \#_{\omega}(e') p_{i}(\omega \mid H_{i}) \} & \text{MAP decoding score} \\ &= \underset{e' \in H}{argmax} \theta_{0}/e' / + \sum_{\omega} \theta_{|\omega|} \#_{\omega}(e') \sum_{i} \lambda_{i} p_{i}(\omega \mid H_{i}) + \sum_{k} \theta_{k} \log C_{MAP}(e' \mid f, d_{k}) \end{split}$$

- · decomposing Bayes-risk computation to each local search space
- using log-BLEU (Tromble et al., 2008) as the similarity function
- using Algorithm 4 (Kumar et al., 2009) for n-gram posterior probability computation

Model Training

A two-pass training procedure

$$\begin{split} \hat{e} &= \underset{e' \in H}{argmax} \frac{\theta_0 |e'| + \sum_{\omega} \theta_{|\omega|} \#_{\omega}(e') \sum_{i} \lambda_i p_i(\omega \mid H_i) + \sum_{k} \theta_k \log C_{MAP}(e' \mid f, d_k)}{\log C_{MAP}(e' \mid f, d_k)} \\ &= \underset{e' \in H}{argmax} \sum_{i} \lambda_i \{\theta_0 |e'| + \sum_{\omega} \theta_{|\omega|} \#_{\omega}(e') p_i(\omega \mid H_i) + \sum_{k} \theta_k \log C_{MAP}(e' \mid f, d_k)\} \end{split}$$

Step1: for MBR and MAP

- Fix system weights in mixture model
- Run Mert to tune MBR and MAP parameters

Step2: for Mixture Model

- Fix parameters in MBR and MAP models
- Run Mert to tune system weights

This procedure can be iteratively processed!

Experiments

Training

- bilingual data (5.1M sentence pairs)
 - all data available for the NIST 2008 constrained track of C-to-E MT task
- monolingual data
 - Xinhua portion of LDC English Gigaword V3.0

Evaluation

- development data
 - newswire portion of the NIST 2006 (616 sentences)
- test data
 - NIST 2008 (1,357 sentences)

Metric

case insensitive NIST BLEU

Experiments

- Baseline system
 - Hiero
 - (Chiang, 2005)
 - BTG
 - (Xiong et al., 2006)
- Comparison technique
 - word-level system combination
 - (Li et al., 2009)

Overall Comparison

- MBR based on single system improves, but few ($+0.2\sim+0.6$ BLEU points)
- MMMBR based on multiple systems improves significantly (+1.3~+1.4 BLEU points)
- MMMBR is also comparable to word-level system combination ($+0.3 \sim +0.6$ BLEU points)

Impacts of P(...) and H(...)

- HyperGraph MBR
- HyperGraph MBR based on Mixture Model
- HyperGraph MMMBR

$$\hat{e} = \underset{e' \in H_i}{\operatorname{argmax}} \sum_{e \in H_i} G(e, e') P_i(e|f)$$

$$\hat{e} = \underset{e' \in H_i}{\operatorname{argmax}} \sum_{e \in H_i} G(e, e') \sum_{i=1}^{N} \lambda_i P_i(e|f)$$

$$\hat{e} = \underset{e' \in H}{\operatorname{argmax}} \sum_{e \in H} G(e, e') \sum_{i=1}^{N} \lambda_i P_i(e|f)$$

Using mixture model helps!

Enlarging search space helps!

Impacts of System Weight

The performance is stable after the 1st round of two-pass training has been finished.

Summary

Advantages

- significant gains achieved
 - better than MBR decoding
 - comparable to word-level system combination
- large hypothesis spaces explored
- flexible and tunable system weights

Future work

- more systems included
 - syntax-based models

Hypothesis Mixture Decoding

ACL, 2011

Motivation

Various SMT Models

phrase-based, hierarchical phrase-based, syntax-based...

How to combine these

two merits?

System Combination

n-best input

confusion-network decoding

output

MBR Decoding

n-best/hypergraph input

re-ranking

output

Pros

new hypotheses can be generated

Cons

few candidates can be leveraged

Pros

more candidates can be leveraged

Cons

no new hypothesis can be generated

Hypothesis Mixture Decoding

Step-1: independent decoding

Hypothesis Mixture Decoding

Step-2: hypothesis mixture decoding (HMD)

Mixture Hypothesis Space

Consensus Decoding Approaches to Statistical Machine Translation – page: 035/044

Models and Features

$$\hat{e} = \underset{e \in H(f)}{arg \, max} \sum_{i} \lambda_{i} \cdot h_{i}(e, f)$$

- Linear combination of two sets of features
 - consensus-based features
 - n-gram posteriors
 - length posteriors
 - general features
 - LM score
 - word penalty
 - · count of lexicon pair
 - reordering score
 - count of new generated n-grams

Two Decoding Algorithms

HM Decoding Algorithm

```
for each component model M_n do
1:
          output the hypothesis space H_n(f) for the input
2:
      end for
3:
      for l = 1 to / f / -1 do
4:
          for all i, j s.t. j - i = l do
5:
              \mathbf{H}(f_i^{\ j}) = \{nil\}
6:
               Hypothesis Re-Construction
7:
               for each hypothesis e \in \bigcup_{n=1}^{N} H_n(f_i^j) do
8:
                    compute HMD features for \boldsymbol{e}
9:
                    add e to H(f_i^j)
10:
               end for
11:
          end for
12:
      end for
13:
      return \hat{e} \in H(f) with the maximum score
```

(I)BTG-based Hypothesis Re-Construction

```
1: for all k s.t. i \le k < j do
2: for e_1 \in H(f_i^k) and e_2 \in H(f_{k+1}^j) do
3: add e = Comb_{[\bullet]}(e_1, e_2) to H(f_i^j)
4: add e = Comb_{\langle \bullet \rangle}(e_1, e_2) to H(f_i^j)
5: end for
6: end for
```

(II)SCFG-based Hypothesis Re-Construction

```
1: for each rule r \in R that matches f_i^j do
2: for e_1 \in H(r_{\# 1}) and e_2 \in H(r_{\# 2}) do
3: add e = Comb_r(e_1, e_2) to H(f_i^j)
4: end for
5: end for
```

Experiments

Training

- bilingual data (5.1M sentence pairs)
 - all data available for the NIST 2008 constrained track of C-to-E MT task
- monolingual data
 - Xinhua portion of LDC English Gigaword V3.0

Evaluation

- development data
 - NIST 2004 (1,788 sentences)
- test data
 - NIST 2005 (1,082 sentences)
 - newswire portion of NIST 2006 (616 sentences) / NIST 2008 (691 sentences)

Metric

case insensitive NIST BLEU

Experiments

Baseline System

- DHPB: string-to-dependency system
 - (Shen et al., 2008)
- PB: phrase-based system
 - (Xiong et al., 2006)

Comparison Technique

- Comb: word-level system combination
 - (Li et al., 2009)
- CD: collaborative decoding
 - (Li et al., 2009)
- MMMBR: mixture model-based MBR decoding
 - (Duan et al., 2010)

Overall Comparison

		NIST 2004	NIST 2005	NIST 2006	NIST 2008
Baseline	DHPB	39.90%	39.76%	35.00%	30.43%
	PB	38.93%	38.21%	33.59%	29.62%
System Combination	Comb	41.14%	40.70%	36.04%	31.16%
Collaborative Decoding	СД-днрв	40.81%	40.56%	35.73%	30.87%
	CD-PB	40.39%	40.34%	35.20%	30.39%
	$CD ext{-}Comb$	41.27%	41.02%	36.37%	31.54%
MMMBR Decoding	MMMBR	41.19%	40.96%	36.30%	31.43%
HM Decoding	HMD-BTG	41.24%	41.26%	36.76%	31.69%
	HMD-scfg	41.31%	41.19%	36.63%	31.52%
	$HMD ext{-}Comb$	41.74%	41.53%	37.11%	32.06%

Summary

Advantages

- HM decoding combines merits of word-level system combination and MBR decoding
 - large hypothesis spaces
 - capability to produce unseen translations

Future work

- explore richer consensus information
- explore better reordering models for HM decoding

Outline

Consensus Decoding to SMT

Collaborative Decoding

Mixture Model-based MBR Decoding

Hypothesis Mixture Decoding

Conclusion

Conclusion

Consensus decoding helps SMT, by

- re-ranking existing translations
 - MBR decoding
 - mixture model-based MBR decoding
 - model combination
 - collaborative decoding
 - ...
- re-producing new translations
 - word-level system combination
 - hypothesis mixture decoding
 - ...

Future work

- explore richer consensus information
- adapt to other NLP tasks

My Research at MSRA

(since 2006.12-now)

C-E and J-E SMT Projects

- EngKoo
- Bing Translator
- Prototype SMT systems for research

MT Competitions

- NIST 2008 (international)
- CWMT 2008 (domestic)
- CWMT 2009 (domestic)
- IWSLT 2010 (international)
 - joint work with MSR Redmond

Publications

- 10 international conference papers
 - 3 ACL, 2 COLING, 1 EMNLP and etc.

APPENDIX

More contents/details after...

Chapter 4, in doctoral dissertation

Feature Subspace-based System Combination

EMNLP, 2009

Motivation

- Two ways to build multiple SMT systems for system combination
 - using models based on different paradigms
 - · phrase-based
 - hierarchical phrase-based
 - syntax-based
 - ...
 - using models based on different training methods
 - different word-aligners
 - different LMs
 - different word segmentations

• ...

Time-consuming,

sometimes not applicable

Challenging,

even for "old birds"

Is there any light-weight method for system building?

Feature Subspace-based System Combination (1)

- Ensemble Generation using Single SMT System
 - most SMT systems are based on linear models
 - feature space: $\Omega = \{h_m(e,f)/m = 1,...,M\}$ feature subspace: $\Omega' \subset \Omega$ a set of features $\hat{e} = argmax_{e \in H(|f|)} \sum\nolimits_{m=1}^{M} \lambda_m \cdot h_m(e,f)$
 - each feature subspace maps to a new SMT system
 - base-system: using all features
 - *sub-system*: using a sub-set of all features

Principle of Feature Selection

- Not all feature subspaces are helpful
 - too many candidates: $|\Omega'| = 2^{|\Omega|}$
 - poor performances for most of them
- Our Feature Selection Principle
 - for non-LM features
 - remove one feature each time
 - use the remainders for system construction

- lower its n-gram order
- use it with the remainders for system construction

Now's SMT systems CANNOT live without LM!

Feature Subspace-based System Combination (2)

- Sentence-Level System Combination
 - re-ranking the union of hypotheses generated by all systems

$$H(f) = \bigcup_{i=1}^{N} H_{i}(f)$$

$$\hat{e} = \underset{e \in H(f)}{argmax} \{\lambda_{LM} h_{LM}(e) + \lambda_{l} h_{l}(e) + \psi(e, H(f))\}$$

simply union all hypotheses generated by base-system and sub-systems without bias A weighted combination of n-gram consensus features

• n-gram *agreement* feature:
$$h_n^+(e,H(f)) = \sum_{e' \in H(f)} G_n(e,e')$$

• n-gram *disagreement* feature:
$$h_n^-(e,H(f)) = \sum_{e' \in H(f)} (/e/-n + I - G_n(e,e'))$$

• n-gram consensus:
$$G_n(e,e') = \sum_{i=1}^{|e|-n+1} \delta(e_i^{i+n-1},e')$$

Experiments

Training

- bilingual data (5.1M sentence pairs)
 - all data available for the NIST 2008 constrained track of C-to-E MT task
- monolingual data
 - Xinhua portion of LDC English Gigaword V3.0

Evaluation

- development data
 - NIST 2003 (919 sentences)
- test data
 - NIST 2004 (1,788 sentences) and NIST 2005 (1,082 sentences)
- Metric
 - case insensitive NIST BLEU

Experiments

- Base-System
 - Hiero (Chiang, 2005)
 - BTG (Xiong et al., 2006)
- Sub-Systems
 - removing one of the non-LM features
 - *PEF/PFE*: source-to-target/target-to-source translation probability
 - *PEFLEX*/*PFELEX*: source-to-target/target-to-source lexical weight
 - *PP*: phrase penalty
 - *WP*: word penalty
 - *BLP*: bi-lexicon counting
 - lowering the order of an 5-gram LM
 - LM-4/LM-3/LM-2
 - -(7+3)=10 sub-systems for each base-system

Overall Comparison

		NIST 2004	NIST 2005
Hiero	Base-system	39.07%	38.72%
	Combination (1 base-system+ 10 sub-systems) 20-best for each system	40.43% (+1.36%)	39.79% (+1.07%)
BTG	Base-system	38.84%	38.30%
	Combination (1 base-system+ 10 sub-systems) 20-best for each system	39.92% (+1.08%)	39.49% (+1.19%)
Hiero + BTG	Combination (Hiero + BTG) 220-best for each system	39.98%	39.43%
	Combination (2 base-systems+ 20 sub-systems) 20-best for each system	40.96% (+0.98%)	39.49% (+1.06%)

- X-axis: number of sub-systems
- Y-axis: BLEU score

Impacts of different sizes of n-best lists for system combination

- X-axis: n-best size for each system
- Y-axis: BLEU score

Contributions of Sub-Systems

	NIST 2004	NIST 2005
Hiero	69.71%	69.69%
BTG	59.07%	58.54%

NIST 2004NIST 2005Hiero44.63%46.12%BTG47.54%44.73%

Ratio of unique hypotheses from sub-systems

Ratio of final translations from sub-systems

Oracle Performance		Hiero	BTG
		BLEU/TER	BLEU/TER
NIST 2004	Base-System 220-best	49.68%/0.6411	49.50%/0.6349
	1 Base-System + 10 Sub-Systems 20-best for each system	51.05%/0.6089	50.53%/0.6056
NIST 2005	Base-System 220-best	48.89%/0.5946	48.37%/0.5944
	1 Base-System + 10 Sub-Systems 20-best for each system	50.69%/0.5695	49.81%/0.5684

Consensus Decoding Approaches for Statistical Machine Translation – page: 001/100

Summary

Pros

- simple and effective way for multiple system construction
- useful to all SMT systems based on the linear model

Cons

feature selection principle is simple

Chapter 5, in doctoral dissertation

Collaborative Decoding

ACL, 2009

Decoder coordination: Iterative Decoding

NIST 2005	Hiero	BTG
Baseline	38.66%	38.04%
+agree -disagree	39.36%	39.02%
-agree +disagree	39.12%	38.67%
+agree +disagree	39.68%	39.61%

TER before CD TER after CD	NIST 2005	NIST 2008
Hiero-BTG	0.3190 0.2204	0.4016 0.2686
Hiero-DepHiero	0.3252 0.1840	0.4176 0.2469
BTG-DepHiero	0.3498 0.2171	0.4238 0.2665

Impact of different consensus features

• Both n-gram agreement features and disagreement features are useful

TER scores between translations

• Outputs become more similar due to the use of consensus information

Co-decoding (CD) vs. Re-ranking(RR)

- X-axis: n-best size for each system
- Y-axis: BLEU score
- test data: NIST 2005

Co-decoding with different iterations

- X-axis: times of iteration
- Y-axis: BLEU score
- test data: NIST 2005

Impact of n-gram consensus measure

- X-axis: the order of n-grams
- Y-axis: BLEU score
- NIST 2005

Impact of scaling factor

- X-axis: value of scaling factor
- Y-axis: BLEU score
- NIST 2003 (Dev) and NIST 2005 (Test)

Mixture Model-based MBR Decoding

COLING, 2010

Limitations of MBR Decoding

- Single system –based
- High correlation between hypotheses
- Relative few improvements achieved

Extending MBR decoding to multiple SMT systems is straight-forward!

MMMBR Decoding Algorithm

```
MMMBR decoding on multiple MT systems
        for each component MT system dk do
1:
2:
            generate the output search space H_k
            compute the n-gram posterior probability set \{p_k(w|H_k)\} for H_k
3:
4:
        end for
        compute the mixture n-gram posterior probability for each n-
5
        gram:
6:
        for each unique n-gram w appeared in U_k H_k do
7:
            for each search space H<sub>i</sub> do
8
                 p(w) += \lambda_i p_i(w/H_i)
9:
            end for
10:
        end for
        for each hyperedge e in UkHk do
11:
12:
          assign p(w) to the edge e for all w contained in e
13:
        end for
        return the best path according to the MMMBR decision rule
14:
```

Impacts of Beam Size

X-axis: beam size Y-axis: BLEU score

MBR Decoding on Single Model

Decision Rule

$$\stackrel{\wedge}{E} = \underset{E \in H}{\operatorname{argmax}} \sum_{E \in H} G(E, E') P(E \mid F)$$

$$= \underset{E' \in H}{\operatorname{argmax}} HGMBR(H, E' \mid P)$$

Loss Function

- $-\mid E^{'}\mid$ is hypothesis length
- $\#_{\omega}(E')$ is the number of times ω occurs in E'
- $-\operatorname{Cost}(E^{'})$ is the model cost of the first-pass decoding
- $-\theta_{i}$ are feature weights

$$\begin{split} \hat{E} &= \underset{E^{'} \in H}{argmax} \sum_{E \in H} \underbrace{\left\{\theta_{0} \mid E^{'} \mid + \sum_{\omega} \theta_{|\omega|} \#_{\omega} \left(E^{'}\right) \delta_{\omega}(E^{'}) + \theta_{m} Cost(E^{'})\right\}} P(E \mid F) \\ &= \underset{E^{'} \in H}{argmax} \theta_{0} \mid E^{'} \mid + \sum_{\omega} \theta_{|\omega|} \#_{\omega} \left(E^{'}\right) p(\omega \mid H) + \theta_{m} Cost(E^{'}) \\ p(\omega \mid H) &= \sum_{E \in H} \delta_{\omega}(E) P(E \mid F) \end{split}$$

Algorithm for HGMBR

Inside-Outside Probability

Inside Probability

- w(h) is the weight of hyperedge h, given by $\exp(\alpha x^{T} \varphi(h))$, α is the scaling factor
- I(u) and O(u) refer to the incoming and outgoing hyperedges of hypernode u

$$I(u) = \sum_{h \in In(u)} w(h) [\prod_{v \in tail(h)} I(v)]$$

Outside Probability

- For the root node of the hypergraph, O(root) = 1
- head(h) is the hypernode which h pointed to

$$O(u) = \sum_{h \in Out(u)} w(h)[O(head(h)) \prod_{v \in tail(h)} I(v)]$$

Posterior Probability

Hyperedge Posterior Probability

- Z(f) = I(root) is the inside probability of the root of the hypergraph

$$p(h \mid H) = \frac{1}{Z(f)} w(h) O(head(h)) \prod_{v \in tail(h)} I(v)$$

n-gram Posterior Probability

 Approximate this quantity by the *sum* of posterior probabilities of edges which contribute the n-gram ω and have the highest edge posterior probability relative to their predecessors on each path

$$p(\omega \mid H) = \sum_{e \in H} 1_{\omega \in e} f^*(e, \omega, H) p(e \mid H)$$

Hypothesis Mixture Decoding

ACL, 2011

Consensus-based Features

n-gram posteriors based on existing hypothesis space

$$h_{\mathbf{H}_n(f)}(e, f) = \sum_{\omega \in e} \#_{\omega}(e) p(\omega \mid \mathbf{H}_n(f))$$

n-gram posteriors based on stemmed hypothesis space

$$h_{\mathbf{H}_n^S(f)}(e^S, f) = \sum_{\omega \in e^S} \#_{\omega}(e^S) p(\omega \mid \mathbf{H}_n^S(f))$$

n-gram posteriors based on mixture hypothesis space

$$h_{\mathbf{H}(f)}(e,f) = \sum_{\omega \in e} \#_{\omega}(e) p(\omega \mid \mathbf{H}(f))$$

length posterior based on mixture hypothesis space

$$h_I(e, f) = \sum_{e' \in H(f), |e'| = |e| = I} p(e' | f)$$

General Features

- LM score + word penalty
- count of lexicon pairs
- reorder features for (BTG/SCFG)-HMD respectively

$$\begin{split} h_{[\bullet]}(e,f) &= \sum_{r \in D(e)} \delta_r([\bullet]) \\ h_{SCFG-Rule}(e,f) &= \sum_{r \in D(e)} \delta_r(R) \\ h_{\langle \bullet \rangle}(e,f) &= \sum_{r \in D(e)} \delta_r(\langle \bullet \rangle) \\ \end{split}$$

count of new generated n-grams

$$h_{New}(e, f) = \sum_{\omega \in e} \#_{\omega}(e) \overline{\delta}_{\omega}(\bigcup_{n=1}^{N} H_{n}(f))$$

Background

On-line SMT Engines

- Microsoft
 - http://dict.bing.com.cn

Google

- Google
 - http://translate.google.com
- Yahoo!
 - http://babelfish.yahoo.com/
- Baidu
 - http://fanyi.baidu.com/

State-of-the-Art SMT Models

Phrase-based Model

 $X_1 X_2 \mid \mid X_2 X_1$ 飞行员 $\mid \mid$ astronauts $X_1 X_2 \mid \mid X_1 X_2$ 法国 和 俄罗斯 $\mid \mid$ France and Russia 来自 $\mid \mid$ coming from

State-of-the-Art SMT Models

Hierarchical Phrase-based Model

State-of-the-Art SMT Models

Syntax-based Model


```
法国和俄罗斯||| NP{NNP{France}}
CC{and} NP{NNP{Russia}} ||| NP
来自 X<sub>1</sub> ||| VBG{coming} IN{from} NP:X<sub>1</sub>
||| VP
飞行员||| NNS{astronauts} ||| NP
X<sub>1</sub> 的 X<sub>2</sub> ||| NP:X<sub>2</sub> VP:X<sub>1</sub> ||| NP
```

n-best List & Hypergraph

n-best list

a cat on the mat

the mat a cat

a cat of the mat

the mat 's a cat

垫子 上

的 猫

Hypergraph

垫子

的

猫

IBM Model-4

How to Learn the Phrase Translation Table?

Collect all phrase pairs that are consistent with the word alignment

Consistent with Word Alignment

Phrase alignment must contain all alignment points for all the words in both phrases!

(宇航员, astronauts) (来自, coming from) (法国, France) (和, and) (俄罗斯, Russia)

(宇航员, astronauts) (来自, coming from) (法国, France) (和, and) (俄罗斯, Russia) (的 宇航员, astronauts) ...

(宇航员, astronauts) (来自, coming from) (法国, France) (和, and) (俄罗斯, Russia) (的 宇航员, astronauts) ...

(来自 法国, coming from France) (来自 法国 和, coming from France and) (来自 法国 和 俄罗斯, coming from France and Russia) ...

(宇航员, astronauts) (来自, coming from) (法国, France) (和, and) (俄罗斯, Russia) (的 宇航员, astronauts) ...

(来自 法国, coming from France) (来自 法国 和, coming from France and)

(来自 法国 和 俄罗斯, coming from France and Russia) ...

(和 俄罗斯, and Russia) (法国 和 俄罗斯, France and Russia)

(法国和俄罗斯的, France and Russia) ...