Two models of stochastic games with stage duration

Ivan Novikov

Université Paris-Dauphine, CEREMADE

Table of contents

Zero-sum stochastic games

Stochastic games with stage duration

Zero-sum stochastic games (1)

A zero-sum stochastic game is a 5-tuple (Ω, I, J, g, P) , where:

- Ω is a non-empty set of states;
- I is a non-empty set of actions of player 1;
- J is a non-empty set of actions of player 2;
- $g: I \times J \times \Omega \to \mathbb{R}$ is a payoff function of player 1;
- $P: I \times J \times \Omega \to \Delta(\Omega)$ is a transition probability function.

We assume that I, J, Ω are finite.

 $\Delta(\Omega) :=$ the set of probability measures on Ω .

Zero-sum stochastic games (2)

A stochastic game (Ω, I, J, g, P) proceeds in stages as follows. At each stage n:

- 1. The players observe the current state ω_n ;
- 2. Players choose their mixed actions, $x_n \in \Delta(I)$ and $y_n \in \Delta(J)$;
- 3. Pure actions $i_n \in I$ and $j_n \in J$ are chosen according to $x_n \in \Delta(I)$ and $y_n \in \Delta(J)$;
- 4. Player 1 obtains a payoff $g_n = g(i_n, j_n, \omega_n)$, while player 2 obtains the payoff $-g_n$;
- 5. The new state ω_{n+1} is chosen according to the probability law $P(i_n, j_n, \omega_n)$.

The above description of the game is known to the players.

Strategies and total payoff

- Strategies σ, τ of players consist in choosing at each stage a mixed action;
- The players can take into account the previous actions of players, as well as the current and previous states;
- Let $B=\{b_m\}$ be a non-increasing positive sequence. Total payoff: $E^{\omega}_{\sigma,\tau}\left(\sum_{i=1}^{\infty}b_ig_i\right)$;
- Depends on initial state ω and strategies of the players;
- λ -discounted total payoff: take $b_m = \lambda (1 \lambda)^{m-1}$;
- Payoff in the game with horizon N: take $b_m = 1/N$ if 1 < m < N and $b_m = 0$ if m > N.

Value

• Value $v_B:\Omega\to\mathbb{R}$:

$$v_B(\omega) = \sup_{\sigma} \inf_{\tau} E_{\sigma,\tau}^{\omega} \left(\sum_{i=1}^{\infty} b_i g_i \right)$$
$$= \inf_{\tau} \sup_{\sigma} E_{\sigma,\tau}^{\omega} \left(\sum_{i=1}^{\infty} b_i g_i \right).$$

The value exists in our finite case.

Example of a game (Big match)

- 3 states, 2 actions for each player.
- Value = 1/2. Player 2's optimal strategy is (1/2, 1/2).
- The figure is from the internet.

Table of contents

Zero-sum stochastic games

Stochastic games with stage duration

Continuous-time Markov games (1)

- Finite state space Ω , action spaces I, J of two players;
- Instantaneous payoff function g.
- Infinitesimal generator of the game $q: I \times J \to \{\text{matrices } |\Omega| \times |\Omega| \text{ satisfying property } *\}.$
- Matrix $A=(a_{ij})$ satisfies property *, if $a_{ij} \geq 0$ for all $i \neq j, a_{ii} \leq 0$, and $\sum_{j=1}^{|\Omega|} a_{ij} = 0$ for all i.
- If the state at time t is ω' and the players play (i,j) in the interval [t,t+h], then at the time t+h the state is distributed according to $e^{hq(i,j)}(\omega',\cdot)$.

Continuous-time Markov games (2)

- Players choose their (Markov) strategies $\sigma: \Omega \times [0, \infty) \to \Delta(J), \ \tau: \Omega \times [0, \infty) \to \Delta(J).$
- There are some measurability conditions.
- Initial state is ω_0 .
- λ -discounted payoff: $E_{\sigma,\tau}^{\omega_0} \left(\int_0^\infty \lambda e^{-\lambda t} g(i_t, j_t, \omega_t) dt \right)$.
- The value is defined as before.

Stochastic games with stage duration (discounted case)

- We want to approximate a continuous-time game by stochastic games.
- Consider a family of stochastic games G_h , parametrized by $h \in (0,1]$.
- h represents stage duration.
- Players can play only at times 0, h, 2h, . . .
- State can change only at times $h, 2h, \ldots$
- State space Ω and action spaces I and J of player 1 and player 2 are independent of h.

Stochastic games with stage duration (discounted case 2)

- Payoff function g_h of player 1 and transition probability P_h depend on h.
- First model: $P_h(i,j) = e^{hq(i,j)}$.
- Payoff at *n*-th stage is $\int_{(n-1)h}^{nh} \lambda e^{-\lambda t} g_t dt$.
- Total payoff is $\int_0^\infty \lambda e^{-\lambda t} g_t dt$.
- The value is v_{λ}^{1} _h.
- Second model: $P_h(i,j) = Id + hq(i,j)$.
- Payoff at *n*-th stage is $\lambda h(1 \lambda h)^{n-1}g_n$.
- Total payoff is $\lambda h \sum_{k=1}^{\infty} (1 \lambda h)^{k-1} g_k$.
- The value is $v_{\lambda h}^2$.
- If $h \to 0$ then both $v_{\lambda,h}^1$ and $v_{\lambda,h}^2$ approach the λ -discounted value of the continuous-time game.

Papers about games with stage duration

First model:

- "Limit Value of Dynamic Zero-Sum Games with Vanishing Stage Duration" by Sylvain Sorin (2018);
- "Markov Games with Frequent Actions and Incomplete Information—The Limit Case" by Pierre Cardaliaguet, Catherine Rainer, Dinah Rosenberg, Nicolas Vieille (2016);
- "Continuous-time limit of dynamic games with incomplete information and a more informed player" by Fabien Gensbittel (2016).

Second model:

- "Stochastic games with short-stage duration" by Abraham Neyman (2013);
- "Operator approach to values of stochastic games with varying stage duration" by Sylvain Sorin and Guillaume Vigeral (2016).

Stochastic games with stage duration (general case 1)

- We want to consider more general payoffs.
- Let $k:[0,+\infty)\to\mathbb{R}$ be a nonincreasing continuous positive function with $\int_0^\infty k(t)dt=1$.
- First model: $P_h(i,j) = e^{hq(i,j)}$.
- Payoff at *n*-th stage is $\int_{(n-1)h}^{nh} k(t)g_t dt$.
- Total payoff is $\int_0^\infty k(t)g_tdt$.
- The value is $v_{k,h}^1$.
- The limit $\lim_{h\to 0} v_{k,h}^1$ was studied in "Limit Value of Dynamic Zero-Sum Games with Vanishing Stage Duration" by Sylvain Sorin (2018);

Stochastic games with stage duration (general case 2)

- Second model: $P_h(i,j) = Id + hq(i,j)$.
- Payoff at *n*-th stage is $h \cdot k((n-1)h) \cdot g_n$.
- Total payoff is $\sum_{k=1}^{\infty} hk((n-1)h)g_k = hg(0)g_1 + hg(h)g_2 + \dots$
- The value is $v_{k,h}^2$.
- The limit $\lim_{h\to 0} v_{k,h}^2$ in the discounted case was studied in [1, 2].
- Our goal is to study this limit in the general case.
- [1] "Stochastic games with short-stage duration" by Abraham Neyman (2013);
- [2] "Operator approach to values of stochastic games with varying stage duration" by Sylvain Sorin and Guillaume Vigeral (2016).

The limit (1)

Proposition (S. Sorin, 2018)

The limit $\lim_{h\to 0} v_{k,h}^1$ exists and is a unique viscosity solution of

$$0 = \frac{d}{dt}v(t,\omega) + Val_{I\times J}[k(t)g(i,j,\omega) + \langle q(i,j)(\omega,\cdot),v(t,\cdot)\rangle],$$

where

- $\langle f(\cdot), g(\cdot) \rangle = \sum_{x \in X} f(x)g(x);$
- $Val_{I\times J}(G)$ is a value of the one-shot game G with action spaces I,J.

We want to prove an analogous result for $\lim_{h\to 0} v_{k,h}^2$.

The limit (2)

Proposition (I.N.)

The limit $\lim_{h\to 0} v_{k,h}^2$ exists and is a unique viscosity solution of

$$0 = \frac{d}{dt}v(t,\omega) + Val_{I\times J}[k(t)g(i,j,\omega) + \langle q(i,j)(\omega,\cdot),v(t,\cdot)\rangle].$$

Sketch of the proof

- An idea: prove that $\|v_{k,h}^1 v_{k,h}^2\|_{\infty} \to 0$ as $h \to 0$.
- $v_{k,h}^1 = ?$ and $v_{k,h}^2 = ?$
- Define for $n \in \mathbb{N}^*$

$$\begin{split} & \psi_n^h \colon \ C(\Omega,\mathbb{R}) \to C(\Omega,\mathbb{R}), \\ & f(\omega) \mapsto \operatorname{Val}_{I \times J}[k((n-1)h)hg(i,j,\omega) + \langle (\mathit{Id} + hq(i,j))(\omega,\cdot) \,, f(\cdot) \rangle]; \\ & \overline{\psi}_n^h \colon \ C(\Omega,\mathbb{R}) \to C(\Omega,\mathbb{R}), \\ & f(\omega) \mapsto \operatorname{Val}_{I \times J}\left[\int_{(n-1)h}^{nh} k(t)g(i,j,\omega)dt + \langle \exp\{hq(i,j)\}(\omega,\cdot) \,, f(\cdot) \rangle \right]. \end{split}$$

- We can prove $v_{k,h}^1 = \prod_{i=1}^{\infty} \overline{\psi}_i^h(0)$, $v_{k,h}^2 = \prod_{i=1}^{\infty} \psi_i^h(0)$, where we denote $\prod_{i=1}^{\infty} S_i(z) := \lim_{i \to \infty} (S_1 \circ S_2 \circ \cdots \circ S_i(z))$.
- Afterwards we make some manipulations with Shapley operators to prove our result.

State-Blind Stochastic Games

- Now players cannot observe the current state.
- Players know the initial probability distribution on the states, and they observe the actions of each other.
- Payoffs are not observed.

The limit (3)

Proposition (S.Sorin, 2018)

The limit $\lim_{h\to 0} v_{k,h}^1$ exists and is a unique viscosity solution of

$$0 = \frac{d}{dt}v(t,p) + Val_{I\times J}[k(t)g(i,j,p) + \langle p*q(i,j), \nabla v(t,p)\rangle],$$

where

- $(p * q(i,j))(\omega) = \sum_{\omega' \in \Omega} p(\omega') \cdot q(i,j,\omega')(\omega);$
- $\langle f(\cdot), g(\cdot) \rangle = \sum_{x \in X} f(x)g(x)$.

We want to prove the same result for $\lim_{h\to 0} v_{k,h}^2$.

The limit (4)

Proposition (I.N.)

The limit $\lim_{h\to 0} v_{k,h}^2$ exists and is a unique viscosity solution of

$$0 = \frac{d}{dt}v(t,p) + Val_{I\times J}[k(t)g(i,j,p) + \langle p*q(i,j), \nabla v(t,p)\rangle].$$

Sketch of the proof

- An idea: prove that $\|v_{k,h}^1 v_{k,h}^2\|_{\infty} \to 0$ as $h \to 0$;
- A problem: it does not work here;
- Thus, we want to follow the proof from [1];
- We consider the family $\{v_{k,h}^2\}_{h\in(0,1]}$. It can be proven that it is equilipschitz-continuous and equibounded;
- Hence by the Arzelà–Ascoli theorem the limit $\lim_{h\to 0} v_{k,h}^2$ has at least one accumulation point;
- Afterwards we write the Shapley equation to prove that each accumulation point is a viscosity solution of the above differential equation;
- It can be proven that this differential equation has a unique solution.
- [1] "Limit Value of Dynamic Zero-Sum Games with Vanishing Stage Duration" by Sylvain Sorin (2018).

Generalization: varying stage duration

- Now we allow different stage durations for different stages;
- $T \in \mathbb{R}_+$, and there is a sequence $\{h_i\}_{i \in \mathbb{N}}$ with $\sum_{i=1}^{\infty} h_i = T$;
- Players act in times $0, h_1, h_1 + h_2, \ldots$;
- We denote $t_1 = 0, t_n = \sum_{i=1}^{n-1} h_n$;
- First model: $P_h(i,j) = e^{h_n q(i,j)}$;
- Payoff at *n*-th stage is $\int_{t_n}^{t_{n+1}} k(t)g_t dt$;
- Second model: $P_h(i,j) = 1 + h_n q(i,j)$;
- Payoff at *n*-th stage is $h_n k(t_n) g_n$;
- The analogues of the above propositions hold in this more general model. We suppose now that sup $h_i \to 0$.

This is all.

Thank you!