תרגילים: סיבוכיות

שאלה 1 הבעיית קליקה מוגדרת באופן הבא:

.kטבעי ומספר וG=(V,E)אמכוון גרף לא

 $rac{1}{2} k$ מכיל קליקה בגודל G

 $CLIQUE = \{\langle G, k \rangle \mid k$ מכיל קליקה בגודל $G\}$.

הבעיית כיסוי בקדקודים מוגדרת:

.kטבעי טבעי ומספר G=(V,E)אמכוון לא גרף קלט: גרף

k מכיל כיסוי בקדקודים G פלט: האם

 $VC = \{ \langle G, k \rangle \mid k$ מכיל כיסוי בקדקודים בגודל $G \}$.

הוכיחו כי קיימת רדוקציה זמן-פולינומיאלית מבעיית CLIQUE לבעיית זמן-פולינומיאלית

$$CLIQUE \leq_p VC$$
.

שאלה 2

G=(V,E) בהינתן גרף לא מכוון

תת-קבוצת קודקודים $S\subseteq V$ היא קבוצת בלתי תלויה אם התנאי הבא מתקיים:

 $.(u_1,u_2) \notin E$ אם $u_1,u_2 \in S$ אם

:תקרא הבא התנאי הבא אם התנאי אקרא תקרא תקרים תקודים תת-קבוצת כ $C\subseteq V$

 $.(u_1,u_2)\in E$ אם $u_1,u_2\in C$ אם

:הבעיית IS מוגדרת

 $IS = \{ \langle G, k \rangle \mid k$ גרף גודל בלתי קבוצה בלתי קבוצה מכוון המכיל המכיל גרף לא

:הבעיית CLIQUE מוגדרת

 $CLIQUE = \{ \langle G, k \rangle \mid k$ גרף גודל קליקה מכוון המכיל קליקה גרף לא מכוון המכיל קליקה גודל

הוכיחו כי

 $IS <_{P} CLIQUE$.

CLIQUE כלומר, הראו כי קיימת רדוקציית התאמה פולינומיאלית מהשפה IS לשפה יש להראות כי הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי.

שאלה 3

בהינתן גרף לא מכוון G=(V,E). קבוצת קדקודים ע $U\subseteq V$ הקוצת קדקודים הם G=(V,E) אם לכל זוג קדקודים בהינתן ברי מתקיים ש- U

$$(u_1,u_2)\notin E$$
.

בהינתן גרף לא מכוון G=(V,E) תקרא כיסוי קדקודים ב- G=(V,E) בהינתן גרף לא מכוון בהינתן גרף לא מתקיים ש- .G=(V,E) מתקיים ש

$$u_1 \in U \quad \lor \quad u_2 \in U .$$

נתבונן בשפות הפורמליות הבאות:

 $IS = \{ \langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes an independent set of size at least } k \}$

 $VC = \{\langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes a vertex cover of size at least } k \}$

$$IS \leq_P VC$$
.

NC לשפה IS לשפה פולינומיאלית התאמה רדוקציית הדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי. יש להראות כי הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי

 $S=\{x_1,x_2,\dots,x_n\}$ בעיית ספרים שלמים (subsetSum): בהינתן קבוצה בעיית ספום התת קבוצה (subsetSum): ביית שלכה להאם קיימת תת קבוצה $Y\subseteq S$ שספום איבריה הוא בדיוק להעית: בעיית ספום התת קבוצה כשפה פורמלית:

SubsetSum =
$$\left\{ \langle S,t \rangle \; \middle| \; t = \sum_{y \in Y} Y$$
 כך ש- $Y \subseteq S$ כך שה וקיימת תת-קבוצה S

 $Y\subseteq S$ בעיית החלוקה (Partition): בהינתן קבוצת מספרים שלמים החלוקה ($S=\{x_1,x_2,\ldots,x_n\}$ בעיית החלוקה בהינתן קבוצת מספרים שלמים כך ש- $\sum_{y\in Y}y=\sum_{y\in S\setminus Y}y$

בעיית החלוקה כשפה פורמלית:

partition =
$$\left\{ S \;\middle|\; \sum_{y \in Y} y = \sum_{y \in S \setminus Y} y$$
 כך ש- $Y \subseteq S$ כך מריימת תת-קבוצה $S \right\}$

הוכיחו כי קיימת רדוקציית התאמה פולינומיאלית מהשפה SubsetSum לשפה סלומר:

SubsetSum \leq_P Partition .

בשאלה זו עליכם:

- א) להגדיר במפורש את הרדוקציה.
- ב) להראות שהרדוקציה היא רדוקציית התאמה.
 - ג) להראות שהרדוקציה פולינומיאלית.

תשובות

שאלה VC ע"י פונקצית הרדוקציה, (G',k'), ניצור אוג אין פונקצית פונקצית הרדוקציה עבור אוג אין הקלט של C

$$\langle G, k \rangle \in CLIQUE \implies \langle G', k' \rangle \in VC$$

 $\langle G, k \rangle \in CLIQUE \iff \langle G', k' \rangle \in VC$

הגדרת הרדוקציה

 $:\! ar{G}(V,ar{E})$ נגדיר את להיות הגרף המשלים •

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = |V| - k נגדיר •

נכונות הרדוקציה

⇒ כיוון

 $\langle G, k \rangle \in CLIQUE$ נניח כי

- k מכיל קליקה מכיל מכיל מכיל מכיל $G \Leftarrow$
- $.u_2 \notin C$ או $u_1 \notin C$ ולכן $(u_1,u_2) \notin E$ מתקיים, $ar{G}$ של של $(u_1,u_2) \in ar{E}$ לכל \Leftarrow
 - $.u_2 \in V \backslash C$ או $u_1 \in V \backslash C$, \bar{G} -ב u_1, u_2 הודקודים לכל \Leftarrow
- .k' = |V| k בגודל של בקודקודים יסטוי היא ריסטוי היא $V \backslash C$ הקובצת קודקודים \Leftarrow
 - $.\langle G', k' \rangle \in VC \Leftarrow$

 \Rightarrow כיוון

 $\langle G',k'
angle \in VC$ נניח כי

- .k' = |V| k מכיל כיסוי בקדקודים מכיל כיסוי מכיל $G' \Leftarrow$
- $u_2\in S$ או $u_1\in S$ אז $(u_1,u_2)\in \bar E$ אם u_1,u_2 של u_1,u_2 או $u_1,u_2\in E$ לכל שני קודקודים $u_1,u_2\notin E$ אז $u_1\notin S$ וגם $u_1\notin E$ אז $u_2\notin E$ אז השלילה הלוגית של גרירה זו היא: אם
 - $.(u_1,u_2)\in ar{E}$ אם $u_2\in Vackslash S$ וגם $u_1\in Vackslash S$ אם eq
 - .k = |V| k'בגודל ב- Gהיא קליקה ע\S היא $V \backslash S$ הקבוצת הקבוצת \Leftarrow
 - k מכיל קליקה בגודל $G \Leftarrow$

שאלה 2

פונקצית הרדוקציה:

 $\langle G',k'
angle \in CLIQUE$ אנחנו נגדיר פונקצית הרדוקציה f שבהינתן זוג אנחנו (נגדיר פונקצית הרדוקציה אנחנו f שבהינתן אוג (CLIQUE), כלומר

$$f(\langle G, k \rangle) = \langle G', k' \rangle . \tag{*1}$$

כך שהתנאי הבא מתקיים:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in CLIQUE \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת לפי התנאים הבאים:

$$.G = (V, E)$$
 בהינתן גרף (1

כאשר , $ar{G}=(V,ar{E})$ כאשר המשלים הוא הגרף המשלים

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2)

כדוגמה: בהינתן הגרף G=(V,E) שמכיל קבוצה בלתי תלוייה בגודל k=3. הפונקציית הרדוקציה יוצרת את כדוגמה: $\bar{G}=(V,\bar{E})$ ואת המספר $\bar{G}=(V,\bar{E})$, כמתואר בתרשים למטה:

$$\bar{G} = (V, \bar{E})$$

$$G = (V, E)$$

נכונות הרדוקציה

כעת נוכיח שתנאי (2*) מתקיים.

\Leftarrow כיוון

.k בהינתן גרף G=(V,E) ושלם נניח כי $(G,k)\in IS$ נניח כי

- . מכיל קבוצה בלתי תלוייה בגודל מכיל לפחות $G \Leftarrow$
 - k בגודל ע מכיל קבוצה בלתי מלוייה מכיל מכיל $G \Leftarrow$
- G כל שני קדקודים ב- על לא U כל שני קדקודים ב- \Leftarrow
 - $.ar{G}$ שני קדקודים ב- עמחוברים בצלע של \leftarrow

- $ar{G}$ של k הקבוצה U היא קליקה בגודל \leftarrow
- $G'=ar{G}$ של k'=k איל פגודל היא קליקה היא U הקבוצה \Leftarrow
 - $\langle G', k' \rangle \in CLQ \Leftarrow$

\Rightarrow כיוון

.k' בהינתן גרף G' ושלם

$$\langle G', k' \rangle \in CLQ$$
 נניח כי

- ת. מכיל קליקה בגודל k' לפחות. $G' \Leftarrow$
 - .k' מכיל קליקה U' בגודל $G' \Leftarrow$

 $.G'=ar{G}:R$ על פי ההגדרה של הפונקציית הפונקציית

- .k' מכיל קליקה U' בגודל קליקה $\bar{G} \Leftarrow$
- $ar{G}$ כל שני קדקודים ב- U' מחוברים בצלע של \Leftarrow
- G כל שני קדקודים ב- U' לא מחוברים בצלע של המשלים של הגרף U', דהיינו \Leftarrow
 - G של k'=k הקבוצה בלתי תלוייה בגודל U' היא קבוצה \Leftarrow
 - $.\langle G, k \rangle \in IS \Leftarrow$

שאלה 3 עלינו להוכיח כי ∃ רידוקיציית זמן-פולינומיאלית מ- IS ל- VC.

$$IS \leq_P VC$$
.

.IS -ו VC ראשית נגדיר את הבעיות

:VC הגדרת הבעיית

 \overline{k} אומספר שלם חיובי G=(V,E) קלט: גרף לא מכוון

.k בגודל לפחות ב- G בגודל כיסוי קדקודים ב-

 $VC = ig\{ \langle G, k
angle \mid$ מכיל כיסוי קדקודים בגודל $G ig\}$.

:IS הגדרת הבעיית

Aומספר שלם חיובי G=(V,E) קלט: גרף לא מכוון

k מכיל קבוצה בלתי תלוייה מכיל מכיל מכיל מכיל מכיל פלט:

 $IS = ig\{ \langle G, k
angle \mid$ מכיל קבוצה בלתי תלוייה בגודל $G ig\}$.

פונקצית הרדוקציה:

אנחנו נגדיר פונקצית הרדוקציה R שבהינתן זוג IS אנחנו נגדיר פונקצית הרדוקציה א שבהינתן אוג אנחנו נגדיר פונקצית הרדוקציה א

$$R\left(\langle G, k \rangle\right) = \langle G', k' \rangle$$
 . (*1)

:כך ש

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC \ .$$
 (*2)

הפונקציית הרדוקציה במשוואה (1*) מוגדרת כך שהתנאים הבאים מתקיימים:

G=(V,E) נניח שהגרף הוא (1

G=(V,E) אז הגרף G' הוא אותו גרף

$$.k' = |V| - k$$
 (2)

נכונות הרדוקציה

כעת נוכיח שתנאי (2*) מתקיים.

⇒ כיוון

$$A$$
 ושלם $G=(V,E)$ ושלם גרף נניח כי $G,k \in IS$ נניח כי

- מכיל קבוצה בלתי תלוייה U בגודל לפחות. $G \Leftarrow$
 - k מכיל קבוצה בלתי תלוייה מכיל מכיל $G \Leftarrow$
- G -ב כל שני קדקודים ב- U לא מחוברים בצלע ב- \Leftarrow
- .k' = |V| kבגודל ב- ביסוי קדקודים ע' היא $V \backslash U \Leftarrow$
 - k מכיל כיסוי קדקודים בגודל מכיל $G'=ar{G}$ הגרף $G'=ar{G}$
 - $\langle G', k' \rangle \in VC \Leftarrow$

\Rightarrow כיוון

 $.k^{\prime}$ בהינתן גרף G^{\prime} ושלם

 $.\langle G',k'
angle \in VC$ נניח כי

- ת. מכיל כיסוי קדקודים בגודל k' לפחות. $G' \Leftarrow$
 - .k' מכיל כיסוי קדקודים U' מכיל כיסוי מכיל $G' \Leftarrow$
 - k' מכיל כיסוי קדקודים U' בגודל $G \Leftarrow$
- .k = |V| k' בגודל ב- בלתי תלוייה ב- על היא קבוצת היא $V \backslash U'$ ב- כל שני שני כל \Leftarrow
 - k מכיל קבוצה בלתי תלוייה מכיל קבוצה G=G' הגרף \Leftarrow

שאלה 4

אם ליבנה פונקצית הרדוקציה $f:\Sigma^* o \Sigma^*$ שמוגדרת נבנה פונקצית הרדוקציה

$$f(\langle S, t \rangle) = \langle S' \rangle$$

.Partition קלט של ו- SubsetSum כאשר $\langle S' \rangle$ קלט של

$$.s = \sum\limits_{x \in S} x$$
יהי (1

S לקבוצה s-2t לקבוצה איבר על ידי החדשה איבר לקבוצה (2

$$S' = S \cup \{s - 2t\} .$$

ב) \Rightarrow כיוון

 $.\langle S,t
angle \in$ SubsetSum -נניח ש

$$.t = \sum\limits_{y \in Y} y$$
יימת ער-קבוצה $Y \subseteq S$ הבוצה תת-קבוצה \Leftarrow

לכן:

$$\sum_{y \in (Y \cup \{s-2t\})} y = |Y| + s - 2t$$
$$= t + s - 2t$$
$$= s - t.$$

$$\sum_{y \in S' \setminus (Y \cup \{s-2t\})} y = |S'| - (|Y| + s - 2t)$$

$$= |S'| - |Y| - s + 2t$$

$$= |S| + s - 2t - |Y| - s + 2t$$

$$= |S| - |Y|$$

$$= s - t.$$

 \Rightarrow

 $\langle S' \rangle \in ext{Partition}$ נניח ש-

קיים שמתקיים $S_1', S_2' \subseteq S'$ תת-קבוצות התיים \Leftarrow

$$S_1' \cup S_2' = S' \tag{1*}$$

-1

$$\sum_{x \in S_1'} x = \sum_{x \in S_2'} x \ . \tag{2*}$$

 $.S' = S \cup \{s-2t\}$ היחס על ידי לקבוצה S'לקבוצה קשור לקבוצה לכן לכן לכן לקבוצה לקבוצה לקבוצה לקבוצה לקבוצה לקבוצה לקבוצה לידי לקבוצה לקבוצה לקבוצה לקבוצה לקבוצה לידי לקבוצה ל

$$S_1' \cup S_2' = S \cup \{s - 2t\} \tag{3*}$$

להיות אנחנו נגדיר את התת-קבוצה $S_1\subseteq S$ של הקבוצה אנחנו נגדיר את אנחנו ללא הגבלת כלליות אנחנו לא

$$S_1 = S_1' \cup \{s - 2t\}$$
,

ואנחנו נגדיר את התת-קבוצה $S_2 \subseteq S$ של התת-קבוצה את ואנחנו ואנחנו

$$S_2 = S_2'$$
.

מכאן מנובע מהמשוואה (*3) ש:

$$S_1 \cup S_2 = S_1' \cup S_2' + \{s - 2t\} = S \cup \{s - 2t\}$$
 \Rightarrow $S_1 \cup S_2 = S$. (4*)

ניתן לרשום משוואה (*2) בצורה הבאה: \Leftarrow

$$\sum_{x \in (S_1 \cup \{s-2t\})} x = \sum_{x \in S_2} x . \tag{5*}$$

ניתן לחלק את הסכום בצד השמאול של המשווה (*5) ולרשום אותה בצורה הבאה:

$$\sum_{x \in S_1} x + s - 2t = \sum_{x \in S_2} x . {(6*)}$$

נוסיף את הסכום $\sum\limits_{x \in S_1} x$ לשני האגפים של משוואה של לאכי ונקבל

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x + s - 2t = \sum_{x \in S_2} x + \sum_{x \in S_1} x . \tag{7*}$$

. $\sum_{x \in (S_1 \cup S_2)} x$ הסכום בצד הימין של משוואה (7*) החכום בצד הימין

$$\sum_{x\in (S_1\cup S_2)} x = \sum_{x\in S} x$$
 לפי המשוואה (*4), $S_2=S$ לפי

S הימין אשר בקבוצה S הוא הסכום של כל האיברים אשר בקבוצה .S הימין של משוואה (*7) הוא אנחנו מסמנים את הסכום הזה כ-S בצורה הבאה: S בצורה הבאה:

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x + s - 2t = s . \tag{8*}$$

אפשר המשוואה: את ימין ולקבל את ימין ולהעביר את המשוואה אפשר לבטל s

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x = 2t , (9*)$$

זאת אומרת

$$2\sum_{x \in S_1} x = 2t \qquad \Rightarrow \qquad \sum_{x \in S_1} x = t \ . \tag{10*}$$

- $\sum_{x \in S_1} x = t$ את התנאי את שמקיימת Sשל של $S_1 \subseteq S$ הנאי קבוצה \Leftarrow
 - $\langle S, t \rangle \in \text{SubsetSum} \Leftarrow$
- $S'=S\cup\{s-2t\}$ כאשר $\langle S'
 angle$ כאשר את מחזירה מחזירה על קלט קלט, f הפונקצית הרדוקציה גי

-s-2t את החיסור את מחשבת ואז שבקבוצה S של כל האיברים של כל החיסור s

S האורך של הקבוצה n=|S| נסמן

אפשר לתאר את f בפסאודו-קוד באופן הבא:

- s=0 שלב 1. הפונקציה f מאתחלת משתנה
- sשל לערך הנוכחי האיבר המחברת שבקבוצה כל האיברים מעל כל האיברים ללואה מעל כל האיברים אינורציה אינורציה
 - s-2t שלב 3. בסוף הפונקציה מחשבת את החיסור
 - $S'=S\cup\{s-2t\}$ שלב 4. הפונקציה מחזירה את הקבוצה החדשה
 - O(1) אוא שלב 1 דורש צעד אחד. לכן הסיבוכיות של דורש צעד אחד. \bullet
 - O(n) אוב 2 דורש א צעדים. לכן הסיבוכיות של שלב 2 הוא \bullet
 - O(1) אוא אחד. שלב 3 דורש צעד אחד. לכן הסיבוכיות של \bullet
 - O(1) אוא 4 שלב 4 שלב הסיבוכיות לכן אחד. לכן אחד. \bullet

בסך הכל הסיבוכיות של הפונקציה f היא

$$O(1) + O(n) + O(1) + O(1) = O(n)$$
.