Chapitre 2 - Suite Numérique

encyclopédie en ligne des suites connues

1 généralité sur les suites

1.1 qu'est-ce qu'une suite, comment la définir?

vocabulaire et notation

- 1 suite $u=(u_n)_{n\geq 0}$ est 1 liste de nombres qui peut être vu comme 1 fonction $u:\mathbb{N}\longrightarrow\mathbb{R}$
- u (qui est donc 1 fonction) est le nom de la suite
- $n \in \mathbb{N}$ est son <u>indice</u> ou son rang; il permet de déterminer la position de chaque nombre dans la liste
- $u_n \in \mathbb{R}$ est le **terme générique** de la suite

exemple - calcul de termes - calculatrice

• $\underline{\mathbf{ex}} \ \mathbf{1} : (u_n) = (-1)^n \ \text{pour} \ n \in \mathbb{N} \ (\text{suite explicite})$

•
$$\underline{\mathbf{ex}\ 2:}\ (u_n)=(\frac{1}{n-5})\ \mathrm{pour}\ n\geq 6\ (\mathrm{suite\ explicite})$$

• $\underline{\mathbf{ex}\ 3}:(u_n)$ tel que : $u_{n+1}=\sqrt{u_n^2+1}$ et $u_0=1$ (suite implicite)

1.2 représentation d'une suite (u_n) suite définie de façon explicite

suite définie de façon implicite

2 suite arithmétique

2.1 définition et ex

définition

- (u_n) est 1 suite arithmétique si $\forall n \geq 0 : u_{n+1} = u_n + r$ où $r \neq 0$
- r est appelée la raison de la suite (u_n)
- \bullet concrètement, on passe d'un terme à l'autre en ajoutant le nombre r

exemple

- N
- l'ensemble des entiers naturels pairs
- l'ensemble des entiers naturels impairs

•
$$(u_n) = \begin{cases} u_0 = 10 \\ u_{n+1} = u_n + 4, \forall n \in \mathbb{N} \end{cases}$$
 (définition implicite de la suite)

question

- pourquoi la suite 1 5 10 15 20 ... n'est pas une suite arithmétique?
- déduire 1 méthode simple pour prouver qu'1 suite est arithmétique :

2.2 propriété importante

expression explicite et somme de termes consécutifs

• soit
$$(u_n) = \begin{cases} u_0 \\ u_{n+1} = u_n + r, \forall n \in \mathbb{N} \text{ où } r \neq 0 \end{cases}$$

•
$$u_n = u_0 + n \times r, \forall n \in \mathbb{N}$$

•
$$\sum_{k=0}^{n} u_k = u_0 + u_1 + u_2 + \dots + u_n = \frac{u_0 + u_n}{2} \times (n+1)$$

•
$$\sum_{k=p}^{q} u_k = u_p + u_{p+1} + u_{p+1} + \dots + u_q = \frac{premier_terme + dernier_terme}{2} \times Nbre_de_termes$$
(cette formule généralise la formule précédente et reste relativement simple à retenir)

exemple

- calculer la somme des nombres de 1 à 100 : $\sum_{k=1}^{100} k$
- calculer la somme des nombres pairs entre 0 à 100 (et écrire cette somme avec le signe \sum)
- calculer la somme des nombres impairs entre 0 à 100 (et écrire cette somme avec le signe $\sum\)$
- calculer la somme des nombres de 1 à n (et écrire cette somme avec le signe $\sum\)$

=> ce dernier résultat est à connaître par coeur

comme dirait Gauss : la preuve est là - lol!

2.3 rédaction attendue au devoir

monter que (u_n) est arithmétique

monter que (u_n) n'est pas arithmétique

2.4 représentation graphique

$$\underline{\mathbf{ex}\ \mathbf{1}:}\ (u_n) = \left\{ \begin{array}{ll} u_0 &= 10 \\ u_{n+1} &= u_n + 4\,,\,\forall\, n \in \mathbb{N} \end{array} \right. \quad \text{(définition implicite de la suite)}$$

- montrer que (u_n) est arithmétique
- donner l'expression explicite de la suite
- calculer les premiers termes (en utilisant la calculatrice facile ...)
- tracer sa représentation graphique; que constate-t-on; équation du support de la suite?

$$\underline{\textbf{ex 2:}} \text{ même question avec } (u_n) = \left\{ \begin{array}{ll} u_0 &= 5 \\ u_{n+1} &= u_n - 2 \,,\, \forall \, n \in \mathbb{N} \end{array} \right. \quad \text{(définition implicite de la suite)}$$

3 suite géométrique

3.1 définition et ex

définition

- (u_n) est 1 suite géométrique si $\forall n \geq 0 : u_{n+1} = q \times u_n$ où $q \neq 1$
- q est appelée la raison de la suite (u_n)
- \bullet concrètement, on passe d'un terme à l'autre en multipliant le nombre q

exemple

•
$$(2^n)_{n>0}$$

•
$$((-1)^n)_{n\geq 0}$$

•
$$(u_n) = \begin{cases} u_0 = 10 \\ u_{n+1} = 4 \times u_n, \forall n \in \mathbb{N} \end{cases}$$
 (définition implicite de la suite)
• $(v_n) = \begin{cases} v_0 = -2 \\ v_{n+1} = \frac{v_n}{3}, \forall n \in \mathbb{N} \text{ où } q \neq 1 \end{cases}$

•
$$(v_n) = \begin{cases} v_0 = -2 \\ v_{n+1} = \frac{v_n}{3}, \forall n \in \mathbb{N} \text{ où } q \neq 1 \end{cases}$$

question

• trouver une méthode simple pour prouver qu'une suite est arithmétique :

propriété (très) importante

- dans la pratique, les suites géométriques sont plus utilisées que les suites arithmétiques
- vous devez donc bien connaître les formules associées et savoir les démontrer facilement

expression explicite et somme de termes consécutifs

• soit
$$(u_n)=\left\{ \begin{array}{ll} u_0 \\ u_{n+1} &=q\times u_n\,,\,\forall\,n\in\mathbb{N} \text{ où }q\neq 1 \end{array} \right.$$

•
$$u_n = u_0 \times q^n, \forall n \in \mathbb{N}$$

•
$$\sum_{k=0}^{n} u_k = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

=> pour savoir si c'est q^n ou q^{n+1} , penser : puissance = Nbre_de_termes

exemple

- calculer, de 2 façons, la somme des puissances de 2 jusqu'à 100 : $\sum_{k=0}^{100} 2^k$
- calculer la somme des puissances de q de 0 à n (et écrire cette somme avec le signe \sum)

=> ce dernier résultat est à connaître par coeur

preuve

• ex d'utilisation (approfondissement) :

- notion de développements limités
 - expliquer comment nous pourrions tracer une approximation la courbe de fonction $f(x) = \frac{1}{1-x}$ au voisinage x=0 en utilisant des polynômes ...
 - cette méthode très fructueuse est utilisée par votre calculatrice pour "casser les fonctions complexes" de type racine, cosinus, sinus, exponentielle ... en un famille de fonction simples et malléables : les polynômes ...
- ordre ou paquet dans une somme
 - alors que l'ordre de sommation ou la réalisation de paquet de nombres dans une somme <u>finie</u> n'a pas d'importance, on peut se demander si c'est toujours le cas pour une somme <u>infinie</u>? (réponse oui); arrive-t-on au même résultat? (réponse : pas forcément); quelle valeur choisir? (réponse : ça dépend du problème posé, et là ça peut devenir très dur ...)
 - ex 1: $\sum_{k=1}^{+\infty} (-1)^k$
 - cette somme infinie qui est : 1-1+1-1 ... DIV réarrangée : (1-1)+(1-1) ... =0
 - ex 2 : la série harmonique $\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}$
 - cette somme infinie qui est : $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4}$... DIV
 - mais réarrangée : $(1+\frac{1}{3}-\frac{1}{2})+(\frac{1}{5}+\frac{1}{7}-\frac{1}{4})$... CV
- \bullet on retiendra que :
 - l'ordre et les paquets ont une importance
 - la notation \sum est claire : on doit additionner les nombres dans l'ordre et un par un

3.3 représentation graphique

- $\underline{\mathbf{ex}\ \mathbf{1}:}\ (u_n) = \left\{ \begin{array}{ll} u_0 &= 3 \\ u_{n+1} &= 4 \times u_n \,,\, \forall\, n \in \mathbb{N} \end{array} \right.$ (définition implicite de la suite)
- donner l'expression explicite de la suite
- calculer les premiers termes (en utilisant la calculatrice facile ...)
- tracer sa représentation graphique; que constate-t-on? équation du support de la suite?

• $\underline{\mathbf{ex}\ \mathbf{2}}$: même question avec $(u_n) = \left\{ \begin{array}{ll} u_0 & = 10 \\ u_{n+1} & = 0.5 \times u_n \,,\, \forall\, n \in \mathbb{N} \end{array} \right.$ (définition implicite de la suite)

4 sens de variation de la suite

4.1 définition et ex

définition - propriété

$$(u_n)$$
 est **croissante** : $u_{n+1} \ge u_n$, $\forall n \ge 0 \iff \boxed{u_{n+1} - u_n \ge 0}$

$$(u_n)$$
 est strictement croissante : $u_{n+1} > u_n$, $\forall n \ge 0 \iff \boxed{u_{n+1} - u_n > 0}$

$$(u_n)$$
 est **décroissante** : $u_{n+1} \le u_n$, $\forall n \ge 0 \iff \boxed{u_{n+1} - u_n \le 0}$

$$(u_n)$$
 est strictement décroissante : $u_{n+1} < u_n$, $\forall n \ge 0 \Longleftrightarrow \boxed{u_{n+1} - u_n < 0}$

 (u_n) est monotone : (u_n) est croissante ou décroissante (attention, pas les deux)

 (u_n) est strictement monotone : (u_n) est strict. croissante ou strict. décroissante (pas les deux)

 (u_n) est **constante** : toutes les termes ont la même valeur

 $\underline{\overline{\text{la suite, soit}}} \ \text{toutes ces propriétés concernant la suite peuvent être définies, soit pour tous les termes de } \\ \underline{\overline{\text{la suite, soit}}} \ \text{à partir d'un certain rang qu'il faudra alors préciser}$

propriété spécifique

 (u_n) est à termes strictement positifs :

- (u_n) est strict. croissante $\Longleftrightarrow \frac{u_{n+1}}{u_n} > 1$, $\forall \, n \in \mathbb{N}$ (u_n) est strict. décroissante $\Longleftrightarrow \frac{u_{n+1}}{u_n} < 1$, $\forall \, n \in \mathbb{N}$

 (u_n) est une suite arithmétique :

- (u_n) est (resp. strict.) croissante $\iff r \ge 0$ (resp. r>0)
- (u_n) est (resp. strict.) décroissante $\iff r \le 0$ (resp. r<0)

 (u_n) est une suite géométrique :

- (u_n) est (resp. strict.) croissante $\iff r \ge 1$ (resp. q>1)
- (u_n) est (resp. strict.) décroissante $\iff 0 \le q \le 1$ (resp. 0 < q < 1)

analyse de qq ex

Soit (u) la suite définie pour tout entier $n \ge 1$ par

- **1.** Calculer $\frac{u_{n+1}}{u_n}$
- **2.** Résoudre l'inéquation $\frac{2n}{n+1} > 1$
- **3.** En déduire les variations de la suite (u_n)

Déterminer le sens de variation des suites suivantes. a) (u_p) est une suite géométrique de raison 2 et de premier terme $u_0 = 3$

b) (v_n) est définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.5 \times v_n$

5 limite d'une suite

5.1 définition

- la limite d'une suite (u_n) consiste à analyser le comportement de la suite lorsque $n \longrightarrow +\infty$
- limite finie : (u_n) admet une limite finie $a \in \mathbb{R}$ ce que l'on note $\lim_{n \to +\infty} u_n = a$
- limite infini $+:(u_n)$ tend vers $+\infty$ ce que l'on note $\lim_{n\to+\infty}u_n=+\infty$
- limite infini : (u_n) tend vers $-\infty$ ce que l'on note $\lim_{n\to+\infty}u_n=-\infty$

exemples

Conjecturer, si elle existe, la limite des suites dont certaines valeurs sont données ci-dessous.

a)
$$u_1 = -1$$
, $u_{10} = -20$, $u_{1000} = -4\,000$, $u_{10000} = -5\,000$
b) $v_1 = 3$, $v_{10} = -2$, $v_{100} = 3$, $v_{1000} = -2$, $v_{10000} = 3$
c) $w_1 = -1$, $w_{100} = -1,95$, $w_{1000} = -1,98$, $w_{10000} = -1,99$

Conjecturer la limite des suites ci-dessous. a) la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = n$

b) la suite (v_n) définie pour tout entier $n \ge 1$ par $v_n = \frac{1}{n}$

6 Exploring maths

6.1 sequence exercices

- ex1 : you have a log which is 7 m long; how long does it take to cut the log into pieces 1 m long, assuming that a single cut takes half a minute?
- ex2: how many subset does the set 1, 2, 3, ..., n have?

• ex3: in how many ways can you cover a rectangle of size $2 \times n$ with dominoes of size 1×2 ?

• ex4: suppose you draw n straight lines in the plane, no 2 of which are parallel and no 3 of which meet at a point; these lines subdivide the plane regions; how many regions are there? (use ex1)

- ex5:
 - you can have an explicite answer to the so-called fibonacci sequence (a_n) $a_n = \frac{1}{\sqrt{5}} \times ((\frac{1+\sqrt{5}}{2})^{n+1} (\frac{1-\sqrt{5}}{2})^{n+1})$
 - in 1961, independently, (kasteleyn) and (temperly & fisher) solved the more general problem of tilings for an arbitrary rectangle of size $m \times n : \sqrt{2} \prod_{j=1}^m \prod_{k=1}^n (\cos^2 \frac{j\pi}{m+1} + \cos^2 \frac{k\pi}{n+1})^{\frac{1}{4}}$
 - strange cos, root and fraction appear in the result to give us an interger!
- ex6 : let's have fun on the fibonacci sequence

6.2 python : la mystérieuse suite de syracuse

- télécharger le tp_syracuse
- vidéo : programmer en python la suite
- vidéo approfondissement : limite de cette suite

6.3 exercice recherche

- trouver l'expression de a_n tel que : $(a_n) = \begin{cases} a_1 &= 2 \\ a_2 &= 6 \\ a_{n+1} &= \frac{a_n}{a_{n-1}} , \, \forall \, n \in \mathbb{N} \end{cases}$ (définition implicite de la suite)
- solution