Project Initialization and Planning Phase

Date	15 JULY 2024
Team ID	739681
Project Title	Car Performance Prediction
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

To explain Car Performance Prediction (CPP) analyzer using machine learning (ML), you can structure it similarly to the project proposal template shown in the image. Here's an outline:

Project Overview				
Objective	Develop a machine learning model to accurately predict car			
	performance metrics, optimizing design and enhancing vehicle			
	efficien	cy.		
Scope	Project Overview: Develop a comprehensive model to predict car			
	performance metrics, optimizing design factors for speed, fuel			
	efficiency, and handling through advanced data analysis and modeling			
	technic	ques.		
Problem Statement				
Description	Developing a model to accurately predict car performance metrics			
	such as speed, fuel efficiency, and handling using data-driven			
_	approaches for enhanced design and optimization.			
Impact	Problem Statement Impact: Accurate car performance prediction			
	enhances vehicle design precision, optimizes fuel efficiency, and			
	informs market competitiveness, driving advancements in			
D	autom	otive engineering and consumer	satisfaction.	
Proposed Solution	T T. '1'	1: 1 : 1 :/1	1 1 1 1	
Approach		machine learning algorithms to	<u> </u>	
	accurate prediction of performance metrics like speed, fuel efficiency, and handling.			
Resource Type	and nan	Description	Specification/Allocation	
Hardware		Description	Specification/Anocation	
Haluwale		High-performance		
Computing Resources		CPUs/GPUs	e.g., 2 x NVIDIA V100 GPUs	
Memory		Sufficient RAM for large	e.g., 32 GB	
TVICINOT y		datasets	c.g., 32 GB	
		Large storage for data,		
Storage		models, and logs.	e.g., 512 SSD	
Software		, ,	<i>U</i> ,	
Frameworks		Python frameworks	e.g., Tenser flow, sklearn,	
		-	keras.	
		Pandas, NumPy, Matplotlib for	e.g., numpy, pandas.	
Libraries		data manipulation and		
		visualization		

	Jupyter Notebooks, IDEs	e.g., Pycharm
Development Environment		
Data		
Data	Source: Vehicle Manufacturers:Telematics and Sensor Data:Public Databases:	

Data collection:	Sources: Manufacturer Specifications: Manufacturer Specifications: Telematics Data: Driver Behavior Data: Environmental Conditions: Historical Maintenance Records:	
Data preprocessing:	Cleaning: Handle missing values, remove outliers	
	Transformation: Normalize/standardize data	
	Feature Engineering: Create new features from raw data	
Model Training:	Algorithms: Linear regression, random forest, gradient boosting, deep learning models	
	Evaluation: Mean Absolute Error (MAE)	
	Root Mean Squared Error (RMSE)	
	R-squared (R^2)	
	Mean Absolute Percentage Error (MAPE)	
	Integration: Real-time data ingestion and prediction	
	Visualization: Scatter Plots. Histograms. Residual Plots	

Resource Requirements

platforms (e.g., Kaggle) Size: Varies depending on the region and time span Format:	
CSV, JSON, realtime API feeds	