

Image gradients and edges

Thursday, Sept 10, 2020 Richang Hong, Hefei University of Technology

COPYRIGHT@Kristen Grauman, UT Austin

Last time

- Various models for image "noise"
- Linear filters and convolution useful for
 - Image smoothing, removing noise
 - Box filter
 - Gaussian filter
 - Impact of scale / width of smoothing filter
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving

Image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.

- · Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Today

Edge detection

- Goal: map image from 2d array of pixels to a set of curves or line segments or contours.
- Why?

Main idea: look for strong gradients, post-process

What causes an edge?

Reflectance change: appearance information, texture

Depth discontinuity: object boundary

Change in surface orientation: shape

Cast shadows

Edges/gradients and invariance

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Source: L. Lazebnik

Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

Which shows changes with respect to x?

(showing filters for correlation)

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

- --- --- --- ----

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Differentiation property of convolution.

Sigma = 50 Kernel $\frac{\partial}{\partial x}h$ Convolution $\left(\frac{\partial}{\partial x}h\right)\star f$

Derivative of Gaussian filters

Derivative of Gaussian filters

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$

derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

• ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Slide credit: Kristen Grauman

Effect of σ on derivatives

 $\sigma = 1$ pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

So, what scale to choose?

It depends what we're looking for.

Slide credit: Kristen Grauman

Mask properties

Smoothing

- Values positive
- Sum to 1 → constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Derivatives

- Opposite signs used to get high response in regions of high contrast
- Sum to $\underline{0}$ \rightarrow no response in constant regions
- High absolute value at points of high contrast

Seam carving: main idea

[Seam Carving for Content-Aware Image Resizing, Shai & Avidan, ACM SIGGRAPH 2007]

Seam carving: main idea

Content-aware resizing

Traditional resizing

[Shai & Avidan, SIGGRAPH 2007]

Real image example

Seam carving: main idea

Content-aware resizing

Intuition:

- Preserve the most "interesting" content
 - → Prefer to remove pixels with low gradient energy
- To reduce or increase size in one dimension, remove irregularly shaped "seams"
 - → Optimal solution via dynamic programming.

Seam carving: main idea

$$Energy(f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Want to remove seams where they won't be very noticeable:
 - Measure "energy" as gradient magnitude
- Choose seam based on minimum total energy path across image, subject to 8-connectedness.

Seam carving: algorithm

$$Energy(f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Let a vertical seam **s** consist of *h* positions that form an 8-connected path.

Let the cost of a seam be: $Cost(\mathbf{s}) = \sum_{i=1}^{n} Energy(f(s_i))$

Optimal seam minimizes this cost: $s^* = \min_{s} Cost(s)$

Compute it efficiently with dynamic programn Graumar Graumar

How to identify the minimum cost seam?

• First, consider a **greedy** approach:

Energy matrix (gradient magnitude)

Seam carving: algorithm

 Compute the cumulative minimum energy for all possible connected seams at each entry (i,j):

$$\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$

Energy matrix (gradient magnitude)

M matrix: cumulative min energy (for vertical seams)

- Then, min value in last row of M indicates end of the minimal connected vertical seam.
- Backtrack up from there, selecting min of 3 above in M.

Example

 $\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Energy matrix (gradient magnitude)

M matrix (for vertical seams)

Example

 $\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Energy matrix (gradient magnitude)

M matrix (for vertical seams)

Real image example

Original Image

Energy Map

Blue = low energy Red = high energy

Real image example

Other notes on seam carving

- Analogous procedure for horizontal seams
- Can also insert seams to increase size of image in either dimension
 - Duplicate optimal seam, averaged with neighbors
- Other energy functions may be plugged in
 - E.g., color-based, interactive,...
- Can use combination of vertical and horizontal seams

Gradients -> edges

Primary edge detection steps:

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

Determine which local maxima from filter output are actually edges vs. noise

Threshold, Thin

Thresholding

- Choose a threshold value t
- Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

Original image

Gradient magnitude image

Thresholding gradient with a lower threshold

Thresholding gradient with a higher threshold

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: edge(image, 'canny');
- >>help edge

original image (Lena)

norm of the gradient

thresholding

How to turn these thick regions of the gradient into curves?

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem:
pixels along
this edge
didn't
survive the
thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Credit: James Hays

Hysteresis thresholding

 Use a high threshold to start edge curves, and a low threshold to continue them.

Source: Steve Seitz

Final Canny Edges

Credit: James Hays

Recap: Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: edge(image, 'canny');
- >>help edge

Learn from humans which combination of features is most indicative of a "good" contour?

Human-marked segment boundaries

[D. Martin et al. PAMI 2004]

Image Boundary Cues Brightness Cue Combination Model Texture

<u>Challenges</u>: texture cue, cue combination <u>Goal</u>: learn the posterior probability of a boundary $P_b(x,y,\theta)$ from <u>local</u> information only

What features are responsible for perceived edges?

Feature profiles (oriented energy, brightness, color, and texture gradients) along the patch's horizontal diameter

[D. Martin et al. PAMI 2004]

Kristen Grauman, UT-Austin

What features are responsible for perceived edges?

Feature profiles
(oriented energy,
brightness, color,
and texture
gradients) along
the patch's
horizontal
diameter

[D. Martin et al. PAMI 2004]

Kristen Grauman, UT-Austin

Contour Detection

UC Berkeley

Source: Jitendra Malik: http://www.cs.berkeley.edu/~malik/malik-talks-ptrs.html

Computer Vision Group

Recall: image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.

- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Filters for features

 Map raw pixels to an intermediate representation that will be used for subsequent processing

 Goal: reduce amount of data, discard redundancy, preserve what's useful

• Filters as **templates**:

Note that filters look like the effects they are intended to find --- "matched filters"

- Use normalized cross-correlation score to find a given pattern (template) in the image.
- Normalization needed to control for relative brightnesses.

Template (mask)

A toy example

Detected template

Template

Detected template

Correlation map

Where's Waldo?

Template

Scene

Where's Waldo?

Template

Detected template

Slide credit: Kristen Grauman

Where's Waldo?

Detected template

Correlation map

Scene

Template

What if the template is not identical to some subimage in the scene?

Template

Detected template

Match can be meaningful, if scale, orientation, and general appearance is right.

How to find at any scale?

Recap: Mask properties

Smoothing

- Values positive
- Sum to 1 → constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Derivatives

- Opposite signs used to get high response in regions of high contrast
- Sum to 0 → no response in constant regions
- High absolute value at points of high contrast

Filters act as templates

- Highest response for regions that "look the most like the filter"
- Dot product as correlation

Summary

- Image gradients
- Seam carving gradients as "energy"
- Gradients → edges and contours
- Template matching
 - Image patch as a filter

Assignments

自己构建一个边缘检测器(以matlab、octave、C++均可)。注释每一步的含义。(可以参考书中习题4.7和4.8,观察与Canny等边缘检测算子实现效果的差异)

• 阅读论文: Seam Carving for Content-Aware Image Resizing, Shai & Avidan, ACM SIGGRAPH 2007。