

Provably Secure Networks: Methodology and Toolset for Configuration Management

Cornelius Diekmann, M. Sc.

PhD Thesis Defense

July 27, 2017

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Motivational Quote

"there are no good high-complexity rule sets"
— A. Wool, 2004

Motivational Quote

"there are no good high-complexity rule sets"
— A. Wool, 2004

"firewalls are (still) poorly configured" — A. Wool, 2010

Motivational Quote

"there are no good high-complexity rule sets"
— A. Wool, 2004

"firewalls are (still) poorly configured"
— A. Wool, 2010

. . .

Research Question

How can we help administrators to configure secure networks and verify the security of existing network configurations?

Agenda

- 1. My Contributions & My Thesis
- 2. Selected Topic: Case Study
- 3. State-of-the-Art & Related Work

Inspired by Bishop [S&P vol. 1, 2003] and taught in "Network Security" at TUM.

Security Problems

Inspired by Bishop [S&P vol. 1, 2003] and taught in "Network Security" at TUM.

Security Problems

Unsuitable requirements

Inspired by Bishop [S&P vol. 1, 2003] and taught in "Network Security" at TUM.

Security Problems

- Unsuitable requirements
- Translation error

Inspired by Bishop [S&P vol. 1, 2003] and taught in "Network Security" at TUM.

Security Problems

- Unsuitable requirements
- Translation error
- Bug in the mechanism (not part of this thesis)

Security Requirements Security Policies Security Mechanisms

- · Specifying security requirements
 - Chapters 5, 6

- Security Invariants
 - · Generic part: template
 - Generic proofs, e.g., "prohibiting more does not decrease security"
 - Template library
 - Scenario-specific part: user assigns attributes to hosts
- Policy verification

- Specifying security requirements
 - Chapters 5, 6
- Translating to an enforceable policy
 - Chapters 7, 8, 9

- Visual feedback
- Policy uniquely defined?
- Sound & Complete
- Performance
- · Connection level vs. network level and stateful flows

- Specifying security requirements
 - Chapters 5, 6
- Translating to an enforceable policy
 - Chapters 7, 8, 9
- Deploying to devices
 - Chapter 10

- Discussing assumptions and implementation details
- Central iptables firewall, OpenVPN setup, OpenFlow

- Focus on iptables
 - Chapters 12, 13

- Formal semantics of iptables
 - Arbitrary match conditions
- IPv4 & IPv6
- Verify spoofing protection

- Focus on iptables
 - Chapters 12, 13
- Inferring policy from low-level rules
 - Chapter 14

- Translate to a simplified firewall model
 - Abstract over low-level details by overapproximation
- Infer high-level policy
- If a firewall (probably) accepts a connection

 then the connection is (definitely) shown in our inferred policy

- Demonstrate applicability
 - Chapter 16: Docker
 - · Chapter 17: MeasrDroid
- Summary of scientific results, comparison to state-of-the-art
 - Chapters 18, 19, 20, 21

- Further evaluation
 - Cabin data network
 - MeasrDroid privacy audit
 - Largest collection of public iptables dumps
- Comparison to state-of-the-art

- Demonstrate applicability
 - Chapter 16: Docker ← next
 - Chapter 17: MeasrDroid
- Summary of scientific results, comparison to state-of-the-art
 - Chapters 18, 19, 20, 21

- Further evaluation
 - Cabin data network
 - MeasrDroid privacy audit
 - Largest collection of public iptables dumps
- Comparison to state-of-the-art

- Demonstrate applicability
 - Chapter 16: Docker ← next
 - Chapter 17: MeasrDroid
- Summary of scientific results, comparison to state-of-the-art
 - Chapters 18, 19, 20, 21

- Further evaluation
 - Cabin data network
 - MeasrDroid privacy audit
 - Largest collection of public iptables dumps
- Comparison to state-of-the-art ← This talk later

- Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- 4. Only WebApp may access the DB.

- Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- 4. Only WebApp may access the DB.

- 1. Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- 4. Only WebApp may access the DB.

```
\mathsf{Sink} \; \{\mathsf{Log} \mapsto \mathit{Sink} \,\}
```


- 1. Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- 4. Only WebApp may access the DB.

```
 \begin{aligned} &\mathsf{Sink} \; \{\mathsf{Log} \mapsto \mathit{Sink} \} \\ &\mathsf{SubnetsInGW} \; \{\mathsf{DB} \mapsto \mathit{internal}, \; \mathsf{Log} \mapsto \mathit{internal}, \; \mathsf{WebApp} \mapsto \mathit{internal}, \; \mathsf{WebFrnt} \mapsto \mathit{InboundGateway} \} \end{aligned}
```


- Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- Only WebApp may access the DB.

```
Sink \{Log \mapsto Sink\}
SubnetsInGW \{DB \mapsto internal, Log \mapsto internal, WebApp \mapsto internal, WebFrnt \mapsto InboundGateway\}
Bell LaPadula \{DB \mapsto confidential, Log \mapsto confidential, WebApp \mapsto declassify (trusted)\}
```


- Logging data must not leave the Log server.
- DB, Log and WebApp are internal hosts. WebFrnt must be accessible from outside.
- DB, Log contain confidential information. WebApp is trusted and allowed to declassify.
- 4. Only WebApp may access the DB.

```
Sink \{Log \mapsto Sink\}
SubnetsInGW \{DB \mapsto internal, Log \mapsto internal, WebApp \mapsto internal, WebFrnt \mapsto InboundGateway\}
Bell LaPadula \{DB \mapsto confidential, Log \mapsto confidential, WebApp \mapsto declassify (trusted)\}
Communication Partners \{DB \mapsto Access \ allowed \ by : WebApp\}
```

Translation to Security Policy

Translation to Security Policy

Translation to Security Policy


```
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $DB iface -d $DB ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $Log iface -s $Log ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $DB_iface -d $DB_ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $INET_iface -d $INET_ipv4 -i ACCEPT
-A FORWARD -i $INET iface -s $INET ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $INET iface -s $INET ipv4 -o $INET iface -d $INET ipv4 -i ACCEPT
-I FORWARD -m state --state ESTABLISHED -i $INET_iface -s $INET_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
-I FORWARD -m state --state ESTABLISHED -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $INET_iface -d $INET_ipv4 -i ACCEPT
```

-P FORWARD DROP


```
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
                                                                                                                        INET
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $DB iface -d $DB ipv4 -i ACCEPT
                                                                                                  WebFrnt
-A FORWARD -i $DB iface -s $DB ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $Log iface -s $Log ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
                                                                                                                      WebApp
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $DB_iface -d $DB_ipv4 -i ACCEPT
                                                                                                    Loa
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $INET_iface -d $INET_ipv4 -i ACCEPT
                                                                                                                          DB =
-A FORWARD -i $INET iface -s $INET ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $INET iface -s $INET ipv4 -o $INET iface -d $INET ipv4 -i ACCEPT
-I FORWARD -m state --state ESTABLISHED -i $INET_iface -s $INET_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
```

-I FORWARD -m state --state ESTABLISHED -i \$WebFrnt iface -s \$WebFrnt ipv4 -o \$INET iface -d \$INET ipv4 -i ACCEPT

-P FORWARD DROP


```
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
                                                                                                                   INET
                                                                                             WebFrnt
                                                                                                                 WebApp
                                                                                                Loa
                                                                                                                    DB
```



```
-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $Log_iface -d $Log_ipv4 -j ACCEPT

-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $Log_iface -d $Log_ipv4 -j ACCEPT

-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -j ACCEPT

-A FORWARD -i $DB_iface -s $DB_ipv4 -o $DB_iface -d $DB_ipv4 -j ACCEPT

-A FORWARD -i $DB_iface -s $DB_ipv4 -o $Log_iface -d $Log_ipv4 -j ACCEPT

-A FORWARD -i $Log_iface -s $DB_ipv4 -o $Log_iface -d $Log_ipv4 -j ACCEPT

-A FORWARD -i $Log_iface -s $Log_ipv4 -o $Log_iface -d $Log_ipv4 -j ACCEPT

-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $WebFrnt_iface -d $WebFrnt_ipv4 -j ACCEPT

-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $DB_iface -d $DB_ipv4 -j ACCEPT

-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $Log_iface -d $DB_ipv4 -j ACCEPT

-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $Log_iface -d $NBE_ipv4 -j ACCEPT

-A FORWARD -i $NED_iface -s $WebApp_ipv4 -o $NeDFrnt_iface -d $NED_ipv4 -j ACCEPT

-A FORWARD -i $NED_iface -s $NED_ipv4 -o $NED_iface -d $NED_ipv4 -j ACCEPT

-A FORWARD -i $NED_iface -s $NED_ipv4 -o $NED_iface -d $NED_ipv4 -j ACCEPT

-A FORWARD -i $NED_iface -s $NED_iface -d $NED_iface -d $NED_iface -d $NED_ipv4 -j ACCEPT

-A FORWARD -i $NED_iface -s $NED_iface -d $NED_i
```



```
INET
-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
                                                                                           WebFrnt
                                                                                                                WebApp
                                                                                              Loa
                                                                                                                  DB
```



```
INET
                                                                                               WebFrnt
                                                                                                                    WebApp
                                                                                                  Loa
                                                                                                                       DB
-I FORWARD -m state --state ESTABLISHED -i $INET_iface -s $INET_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
-I FORWARD -m state --state ESTABLISHED -i $WebFrnt iface -s $WebFrnt ipv4 -o $INET iface -d $INET ipv4 -i ACCEPT
```



```
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $WebFrnt iface -s $WebFrnt ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebFrnt_iface -s $WebFrnt_ipv4 -o $WebApp_iface -d $WebApp_ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $DB iface -d $DB ipv4 -i ACCEPT
                                                                                                  WebFrnt
-A FORWARD -i $DB iface -s $DB ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $DB iface -s $DB ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $Log iface -s $Log ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $DB_iface -d $DB_ipv4 -i ACCEPT
                                                                                                     Loa
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $Log iface -d $Log ipv4 -i ACCEPT
-A FORWARD -i $WebApp iface -s $WebApp ipv4 -o $WebApp iface -d $WebApp ipv4 -i ACCEPT
-A FORWARD -i $WebApp_iface -s $WebApp_ipv4 -o $INET_iface -d $INET_ipv4 -i ACCEPT
-A FORWARD -i $INET iface -s $INET ipv4 -o $WebFrnt iface -d $WebFrnt ipv4 -i ACCEPT
-A FORWARD -i $INET iface -s $INET ipv4 -o $INET iface -d $INET ipv4 -i ACCEPT
```

-I FORWARD -m state --state ESTABLISHED -i \$INET_iface -s \$INET_ipv4 -o \$WebApp_iface -d \$WebApp_ipv4 -j ACCEPT
-I FORWARD -m state --state ESTABLISHED -i \$WebFrnt iface -s \$WebFrnt ipv4 -o \$INET iface -d \$INET iface -d \$INET ipv4 -i ACCEPT

Security Mechanism

Security Policy

-P FORWARD DROP

Security Requirements

Copy & Paste without verification into existing Docker rules

Existing, Docker-generated:

```
*filter
: INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:DOCKER - [0:0]
:DOCKER-ISOLATION - [0:0]
:MYNET - [0:0]
-A FORWARD -j DOCKER-ISOLATION
-A FORWARD -i MYNET
-A FORWARD -o dbr -i DOCKER
-A FORWARD -o dbr -m conntrack --ctstate RELATED ESTABLISHED -i ACCEPT
-A FORWARD -i dbr ! -o dbr -i ACCEPT
-A FORWARD -o docker0 -i DOCKER
-A FORWARD -o docker0 -m conntrack --ctstate RELATED.ESTABLISHED -i ACCEPT
-A FORWARD -i docker0 ! -o docker0 -i ACCEPT
-A FORWARD -i docker0 -o docker0 -i ACCEPT
-A FORWARD -i dbr -o dbr -i DROP
-A DOCKER-ISOLATION -i docker0 -o dbr -i DROP
-A DOCKER-ISOLATION -i dbr -o docker0 -i DROP
-A DOCKER-ISOLATION -i RETURN
```

```
-A MYNET -m state --state ESTARI ISHED
         ! -i dbr -o dbr -d 10.0.0.4 -i ACCEPT
-A MYNET -m state --state ESTABLISHED
         -i dbr -s 10.0.0.1 ! -o dbr -j ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.1 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.2 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.4 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.3 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.2 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.4 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.2 -o dbr -d 10.0.0.2 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.1 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.3 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.2 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.4 -i ACCEPT
-A MYNET -i dbr -s 10.0.0.4 ! -o dbr -i ACCEPT
-A MYNET ! -i dbr -o dbr -d 10.0.0.1 -i ACCEPT
-A MYNET -i dbr -i DROP
COMMIT
```

New, topoS-generated:

- So far
 - Serializing new configurations

- So far
 - Serializing new configurations
- Missing
 - Verify iptables filtering rules
 - Understanding arbitrary iptables filtering rules
 - man iptables-extensions over 200 match options

- Input: iptables-save
- Output:

 $\{10.0.0.0\} \cup \{10.0.0.5..10.255.255.255\}$

ТЩ

- Input: iptables-save
- Output:

 $\{10.0.0.0\} \cup \{10.0.0.5..10.255.255.255\}$

Recall the policy:

Ш

- Input: iptables-save
- Output:

Recall the policy:

 $\{10.0.0.0\} \cup \{10.0.0.5..10.255.255.255\}$

ТШ

- Input: iptables-save
- Output:

Recall the policy:

Changing iptables rules

```
"-A MYNET -1 dbr -s 10.8.0.4.1 -o dbr -j ACCEPT
"-A MYNET -1 dbr -o dbr -d 10.0.0.1 -j ACCEPT
"-A MYNET -1 dbr -s 10.0.0.4.1 -o dbr ! -d 10.0.0.8/8 -j ACCEPT
"-A MYNET -1 dbr -s 10.0.0.4.8 -o dbr -d 10.0.0.1 -j ACCEPT
"-A MYNET -1 dbr -j DROP
```


ТШП

- Input: iptables-save
- Output:

Recall the policy:

Ultimately

Form	al Formal	High-Level	Built-In	Connection	Legacy	Low Level
Seman	tics Verification	Language	Verification	Semantics	Support	Access

- **Formal Semantics**
 - Management language
 - Target security mechanism
 - Type checked by theorem prover

- - Compilation/translation verified: Language → Mechanism
 - Proof machine-checked

- built-in verification
 - Of the specification
 - Feedback
 - Automated

Formal Formal High-Level Built-In Connection Legacy Low Level Semantics Verification Language Verification Semantics Support Access

Stateful Connection Semantics

- conntrack
- Connection level vs. network level
- "I can connect to the Internet, but not the other way round"

Legacy Support

• Read iptables, Cisco, ... and make available to high-level abstraction

Formal Formal High-Level Built-In Connection Legacy Low Level Semantics Verification Language Verification Semantics Support Access

Low Level Access

- Administrator may tune low-level configuration
- Soundness check

Formal	Formal	High-Level	Built-In	Connection	Legacy	Low Level
Semantics	Verification	Language	Verification	Semantics	Support	Access
Semantics	verilication	Language	verilication	Semantics	Support	Access

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×
Flowlog & co	×	×	×	\checkmark	\checkmark	\checkmark	×

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	✓	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×
Flowlog & co	×	×	×	\checkmark	\checkmark	\checkmark	×
Mignis	✓	\checkmark	×	×	\checkmark	×	\checkmark

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×
Flowlog & co	×	×	×	\checkmark	\checkmark	\checkmark	×
Mignis	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×
Flowlog & co	×	×	×	\checkmark	\checkmark	\checkmark	×
Mignis	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark
topoS + fffuu	√	√	√	√	✓	√	√

	Formal Semantics	Formal Verification	High-Level Language	Built-In Verification	Connection Semantics	Legacy Support	Low Level Access
NetCore	√	√	×	√	×	×	×
NetKAT family	\checkmark	\checkmark	×	\checkmark	×	×	×
VALID	\checkmark	×	\checkmark	×	×	×	×
Zhao et al.	×	×	\checkmark	×	×	×	×
Flowlog & co	×	×	×	\checkmark	\checkmark	\checkmark	×
Mignis	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark
topoS + fffuu	√	_ <	√	√	√	√	√

Conclusion

- First, fully machine-verified tools for bridging the above gaps in both directions
- Evaluated on
 - Cabin data network
 - Android Measurement System
 - Largest collection of public iptables dumps
- Published in
 - AFP (x6), FM, FORTE (x2), IFIP NETWORKING, CNSM, CNSM Workshop, ESSS

Backup

Backup Slides

Publications (AFP)

- J. Michaelis and C. Diekmann. LOFT Verified Migration of Linux Firewalls to SDN. Archive of Formal Proofs, Oct. 2016. Formal proof development
- C. Diekmann and L. Hupel. Iptables Semantics. Archive of Formal Proofs, Sept. 2016. Formal proof development
- J. Michaelis and C. Diekmann. Routing. Archive of Formal Proofs, Aug. 2016. Formal proof development
- C. Diekmann, J. Michaelis, and M. Haslbeck. Simple Firewall. Archive of Formal Proofs, Aug. 2016. Formal proof development
- C. Diekmann, J. Michaelis, and L. Hupel. IP Addresses. Archive of Formal Proofs, June 2016. Formal proof development
- · C. Diekmann. Network Security Policy Verification. Archive of Formal Proofs, July 2016. Formal proof development

Publications

- M. von Maltitz, C. Diekmann, and G. Carle. Privacy Assessment using Static Taint Analysis (Tool Paper). In Formal Techniques for Distributed Objects, Components, and Systems: 37th IFIP WG 6.1 International Conference (FORTE), Neuchâtel, Switzerland, June 2017
- M. von Maltitz, C. Diekmann, and G. Carle. Taint Analysis for System-Wide Privacy Audits: A Framework and Real-World Case Studies. 1st Workshop for Formal Methods on Privacy, Nov. 2016. workshop without proceedings
- C. Diekmann, A. Korsten, and G. Carle. Demonstrating topoS: Theorem-prover-based synthesis of secure network configurations. In 11th International Conference on Network and Service Management (CNSM), pages 366–371, Barcelona, Spain, Nov. 2015
- C. Diekmann, S.-A. Posselt, H. Niedermayer, H. Kinkelin, O. Hanka, and G. Carle. Verifying Security Policies using Host Attributes. In Formal Techniques for Distributed Objects, Components, and Systems: 34th IFIP WG 6.1 International Conference (FORTE), pages 133–148, Berlin, Germany, June 2014.
 Springer Berlin Heidelberg
- C. Diekmann, L. Hupel, and G. Carle. Directed Security Policies: A Stateful Network Implementation. In Engineering Safety and Security Systems (ESSS), volume 150 of Electronic Proceedings in Theoretical Computer Science, pages 20–34, Singapore, May 2014. Open Publishing Association
- C. Diekmann, J. Michaelis, M. Haslbeck, and G. Carle. Verified iptables Firewall Analysis. In IFIP Networking 2016, Vienna, Austria, May 2016
- C. Diekmann, L. Schwaighofer, and G. Carle. Certifying Spoofing-Protection of Firewalls. In 11th International Conference on Network and Service Management (CNSM), pages 168–172, Barcelona, Spain, Nov. 2015
- C. Diekmann, L. Hupel, and G. Carle. Semantics-Preserving Simplification of Real-World Firewall Rule Sets. In Formal Methods, June 2015

Central Theorem of fffuu

Assumes

- Unfolded rs for Γ
- p is NEW
- $\Gamma, \gamma, p \vdash \langle rs, ? \rangle \Rightarrow \bigcirc$
- Let (V, E) = matrix (iifce p, oifce p, prot p, sport p, dport p) (simplify rs)

Shows

```
\exists srepr drepr srange drange. (srepr, drepr) \in set E \land (map_of V) srepr = Some srange \land (src p) \in srange \land (map_of V) drepr = Some drange \land (dst p) \in drange
```

Reads: If the firewall accepts a packet, we can look up source and destination IP in the graph.

- Unfolding may fail (it is successful if the kernel accepts it and it has no 'strange' actions)
- We can ignore interfaces if we have spoofing protection

Abstraction Layers

C. Diekmann — Provably Secure Networks: Methodology and Toolset for Configuration Management

C. Diekmann — Provably Secure Networks: Methodology and Toolset for Configuration Management

[1] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F. L. Luccio.

Mignis: A Semantic Based Tool for Firewall Configuration.

In 27th Computer Security Foundations Symposium, CSF, pages 351-365. IEEE, July 2014.

[2] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi.

Network Configuration in A Box: Towards End-to-End Verification of Network Reachability and Security.

In International Conference on Network Protocols (ICNP), pages 123–132. IEEE, Oct. 2009.

[3] Y. Bartal, A. Mayer, K. Nissim, and A. Wool.

Firmato: A Novel Firewall Management Toolkit.

In Symposium on Security and Privacy, pages 17-31, IEEE, May 1999.

[4] S. Bleikertz and T. Groß.

A Virtualization Assurance Language for Isolation and Deployment.

In International Symposium on Policies for Distributed Systems and Networks (POLICY), pages 33-40. IEEE, June 2011.

[5] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe.

Design and Implementation of a Routing Control Platform.

In 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI), NSDI'05, pages 15–28, Boston, MA, May 2005. USENIX Association.

[6] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège.

A Formal Approach to Specify and Deploy a Network Security Policy.

In Formal Aspects of Security and Trust (FAST), pages 203-218. Springer US, Aug. 2004.

[7] C. Diekmann.

Network Security Policy Verification.

Archive of Formal Proofs, July 2016.

Formal proof development.

[8] C. Diekmann and L. Hupel.

Iptables Semantics.

Archive of Formal Proofs, Sept. 2016.

Formal proof development.

[9] C. Diekmann, L. Hupel, and G. Carle.

Directed Security Policies: A Stateful Network Implementation.

In Engineering Safety and Security Systems (ESSS), volume 150 of Electronic Proceedings in Theoretical Computer Science, pages 20–34, Singapore, May 2014. Open Publishing Association.

[10] C. Diekmann, L. Hupel, and G. Carle.

Semantics-Preserving Simplification of Real-World Firewall Rule Sets.

In Formal Methods, June 2015.

[11] C. Diekmann, A. Korsten, and G. Carle.

Demonstrating topoS: Theorem-prover-based synthesis of secure network configurations.

In 11th International Conference on Network and Service Management (CNSM), pages 366–371, Barcelona, Spain, Nov. 2015.

[12] C. Diekmann, J. Michaelis, and M. Haslbeck.

Simple Firewall.

Archive of Formal Proofs, Aug. 2016.

Formal proof development.

[13] C. Diekmann, J. Michaelis, M. Haslbeck, and G. Carle.

Verified iptables Firewall Analysis.

In IFIP Networking 2016, Vienna, Austria, May 2016.

[14] C. Diekmann, J. Michaelis, and L. Hupel.

IP Addresses.

Archive of Formal Proofs, June 2016. Formal proof development.

[15] C. Diekmann, S.-A. Posselt, H. Niedermayer, H. Kinkelin, O. Hanka, and G. Carle.

Verifying Security Policies using Host Attributes.

In Formal Techniques for Distributed Objects, Components, and Systems: 34th IFIP WG 6.1 International Conference (FORTE), pages 133–148, Berlin, Germany, June 2014. Springer Berlin Heidelberg.

[16] C. Diekmann, L. Schwaighofer, and G. Carle.

Certifying Spoofing-Protection of Firewalls.

In 11th International Conference on Network and Service Management (CNSM), pages 168–172, Barcelona, Spain, Nov. 2015.

[17] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.

Practical Declarative Network Management.

In 1st ACM workshop on Research on enterprise networking, WREN'09, pages 1-10. ACM, Aug. 2009.

[18] N. Kang, Z. Liu, J. Rexford, and D. Walker.

Optimizing the "One Big Switch" Abstraction in Software-defined Networks.

In 9th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT, pages 13–24. ACM, Dec. 2013.

[19] P. Kazemian, G. Varghese, and N. McKeown.

Header Space Analysis: Static Checking for Networks.

In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI), NSDI'12, pages 113-126, San Jose, CA, Apr. 2012. USENIX Association.

[20] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey.

VeriFlow: Verifying Network-Wide Invariants in Real Time.

In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI), NSDI'13, pages 15–27, Lombard, IL, Apr. 2013. USENIX Association.

[21] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark.

Kinetic: Verifiable Dynamic Network Control.

In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI), NSDI'15, pages 59–72, Oakland, CA, May 2015. USENIX Association.

[22] N. P. Lopes, N. Bjørner, P. Godefroid, and G. Varghese.

Network Verification in the Light of Program Verification.

Technical report, Sept. 2013.

[23] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. Debugging the Data Plane with Anteater.

In ACM SIGCOMM, pages 290-301, Toronto, Ontario, Canada, Aug. 2011.

[24] R. Marmorstein and P. Kearns.

Firewall Analysis with Policy-based Host Classification.

In 20th USENIX Large Installation System Administration Conference (LISA), volume 6, Washington, D.C., Dec. 2006. USENIX Association.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner.

OpenFlow: Enabling Innovation in Campus Networks.

ACM SIGCOMM Computer Communication Review, 38(2):69-74, Apr. 2008.

[26] J. Michaelis and C. Diekmann.

LOFT - Verified Migration of Linux Firewalls to SDN.

Archive of Formal Proofs, Oct. 2016.

Formal proof development.

[27] J. Michaelis and C. Diekmann.

Routing.

Archive of Formal Proofs, Aug. 2016. Formal proof development.

[28] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.

Composing Software Defined Networks.

In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI), NSDI'13, pages 1–13, Lombard, IL, Apr. 2013. USENIX Association.

[29] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu.

A Security Enforcement Kernel for OpenFlow Networks.

In First Workshop on Hot Topics in Software Defined Networks, HotSDN '12, pages 121-126, Helsinki, Finland, Aug. 2012. ACM.

[30] S. Smolka, S. A. Eliopoulos, N. Foster, and A. Guha.

A Fast Compiler for NetKAT.

In International Conference on Functional Programming (ICFP), pages 328-341. ACM, Sept. 2015.

[31] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster.

Merlin: A Language for Provisioning Network Resources.

CoRR, abs/1407.1199, 2014.

[32] D. C. Verma.

Simplifying Network Administration Using Policy-Based Management.

IEEE Network, 16(2):20-26, Mar. 2002.

[33] M. von Maltitz, C. Diekmann, and G. Carle.

Taint Analysis for System-Wide Privacy Audits: A Framework and Real-World Case Studies.

1st Workshop for Formal Methods on Privacy, Nov. 2016. workshop without proceedings.

[34] M. von Maltitz, C. Diekmann, and G. Carle.

Privacy Assessment using Static Taint Analysis (Tool Paper).

In Formal Techniques for Distributed Objects, Components, and Systems: 37th IFIP WG 6.1 International Conference (FORTE), Neuchâtel, Switzerland, June 2017.

[35] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. G. Greenberg, G. Hjálmtýsson, and J. Rexford.

On Static Reachability Analysis of IP Networks.

In 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), volume 3, pages 2170–2183. IEEE, Mar. 2005.

[36] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra.

FIREMAN: A Toolkit for FIREwall Modeling and ANalysis.

In IEEE Symposium on Security and Privacy, pages 199-213, May 2006.

[37] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Rielv, and C. Pitcher.

Specifications of a High-level Conflict-free Firewall Policy Language for Multi-domain Networks.

In 12th ACM symposium on Access control models and technologies, SACMAT'07, pages 185-194. ACM, June 2007.

[38] H. Zhao, J. Lobo, A. Roy, and S. M. Bellovin.

Policy Refinement of Network Services for MANETs.

In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), Dublin, Ireland, May 2011.