

M2177.003100 Deep Learning

[4: Optimization]

Electrical and Computer Engineering Seoul National University

 $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\$

(last compiled at 12:49:00 on 2019/09/22)

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - ▶ Chapter 8: Optimization for Training Deep Models
- online resources:

 - ▶ Stanford CS231n: CNN for Visual Recognition Link

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

Optimization in deep learning

- most difficult optimization task in DL: training
 - ▶ so important and so expensive ⇒ need specialized techniques
- mainstream: stochastic gradient descent (sgd) and its variants
- more complicated methods:
 - second-order methods

 - memory-efficient techniques emerging
 - convex optimization
 - its importance greatly diminished
- for clarity: this lecture focuses on unregularized supervised case

Derivatives and optimization order

- derivatives
 - ▶ first derivative (= gradient) ⇒ slope
 - ▶ second derivative ⇒ _____

- (Jacobian)
 - (Hessian)

- optimization
 - ▶ first-order algorithms
 - □ use only gradient (e.g. gradient descent)
 - second-order algorithms
 - ▷ also use Hessian matrix (e.g. Newton's method)

Critical points (= stationary points)

- ullet points with zero slope: $abla_x f(x) = 0$
 - derivative gives no info about which direction to move
 - ▶ three types: maxima (— curvature), minima (+ curvature), saddle points
- a saddle point: contains ____ positive and negative curvature

 $f(\mathbf{x}) = x_1^2 - x_2^2$

- along x_1 axis: f curves upward
 - ▶ direction of eigenvec(\boldsymbol{H}) with $\lambda > 0$
 - ▶ local minimum
- along x_2 axis: f curves downward
 - ▶ direction of eigenvec(\boldsymbol{H}) with $\lambda < 0$
 - local maximum

Use of second derivative

- 1. to characterize critical points
- 2. to measure curvature
- 3. to predict performance of an update in -based optimization

- negative curvature
 - ▶ f decreases faster than gradient predicts
- no curvature
 - gradient predicts the decrease correctly
- positive curvature
 - f decreases slower than gradient predicts (eventually increases)

In deep learning

- · our objective function has
 - many local minima + many saddle points surrounded by very flat regions
 - ⇒ makes optimization very difficult (especially in high-dim space)
- ullet we therefore usually settle for finding a very low value of f
 - not necessarily minimal in any formal sense
- recent research (Dauphin, 2014) reports
 - in high dim: _____ are much more common than local minima

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations

Exponentially Weighted Average
Gradient Descent with Momentum
Per-Parameter Adaptive Learning Rate

Additional Topics

Summary

Method of gradient descent

- · derivative: useful for minimizing a function
 - for small ϵ : $f(x \epsilon \cdot \text{sign}[f'(x)]) < f(x)$
- ullet we can thus reduce f(x) by
 - moving x in small steps with opposite sign of derivative
 - = method of gradient descent

$$\underbrace{oldsymbol{x}'}_{\mathsf{new}} = \underbrace{oldsymbol{x}}_{\mathsf{old}} - \underbrace{oldsymbol{\epsilon}}_{\mathsf{learning}}
abla_{x} f(oldsymbol{x})$$

- (a) x < 0: f'(x) < 0
 - \Rightarrow can decrease f by moving rightward
- (b) x = 0: f'(x) = 0
 - ⇒ gd halts here (global min)
- (c) x > 0: f'(x) > 0
 - \Rightarrow can decrease f by moving leftward

Sgd and its variants

- ullet probably the most used optimization algorithms for ML/DL
 - can obtain an unbiased estimate of gradient

by taking average gradient on a minibatch of m examples

Algorithm 1 gradient descent

- 1: initialize θ
- 2: while stopping criterion not met do
- 3: sample m examples: $\mathbb{X}_m = \{(x^{(1)}, y^{(1)}), \dots (x^{(m)}, y^{(m)})\}$
- 4: compute gradient estimate: $\hat{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)}) \qquad \triangleright m$ forward props
- 5: apply update: $\theta \leftarrow \theta \epsilon \hat{g}$ 6: end while

 $\triangleright \epsilon$: learning rate

- three variants (N: total number of examples)
 - m=1: stochastic gradient descent (sgd)
 - ▶ 1 < m < N: ______ sgd (typical m: 64, 128, 256, 512)
 - ightharpoonup m=N: batch gradient descent

Properties of sgd: good ones

• property #1:

computation time per update does not grow with # of training examples

- most important property of sgd/minibatch/online gradient-based optimization
- \Rightarrow allows convergence even when # of training examples becomes large
- property #2 (see textbook):

sgd works better in practice than its theoretical analysis says

some benefits of sgd: obscured in asymptotic analysis

Properties of sgd: bad ones

- sgd may suffer in the following situations:
 - ▶ local minima/saddle points

gradient noise

zero gradient

⇒ gradient descent gets stuck

▶ poor of *H*

(source: wikidocs, cs231n)

Ravine

• Chloe Kim (2018 Olympic Champion, Women's Snowboard Halfpipe)

Poor conditioning of $oldsymbol{H}$

- ullet consider a point x in multiple dimensions:
 - different second derivative for each direction
- ullet condition number of Hessian H at x
 - measures how much the _____ derivatives differ from each other
 - ightharpoonup recall: condition number of a matrix with eigenvalues $\{\lambda\}$:

$$\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$$

- when H has a large condition number ("poorly conditioned")
 - gradient descent performs poorly
 - : in a direction, derivative increases rapidly; in another, it increases slowly
 - gradient descent¹ is unaware of this change in the derivative
 - 2. it is difficult to choose a good step size ϵ

¹it does not know it needs to explore preferentially in the direction where derivative remains negative for longer

example:

- assume: Hessian H has condition number 5
 - most curvature: 5 times more curvature than least (a long canyon)
 - most curvature: direction [1,1]
 - least curvature: direction $[1,-1] \searrow$

- gradient descent (red lines): slow (zig-zag)
- ullet by contrast: methods considering H
 - ▶ can predict: the steepest direction is not promising (large $\lambda > 0$ ⇒ large positive curvature ⇒ bad; see page 8)
- ullet how to handle poor conditioning _____ directly considering H?

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations

Exponentially Weighted Average

Gradient Descent with Momentum Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Exponentially weighted moving average (EWMA)

- given: time series q_1, q_2, \dots
- EWMA defined as:

$$v_t = \begin{cases} g_1 & t = 1\\ \alpha v_{t-1} + (1 - \alpha)g_t & t > 1 \end{cases}$$

- \triangleright v_t : EWMA at time t
- g_t: observation at t
- $m{lpha} \in [0,1]$: degree of weighting decrease (constant ______ factor)

• example: gas price over time

 \blacktriangleright blue dot: gas price g

▶ red curve: EWMA v

$$v_t = \alpha \cdot \underbrace{v_{t-1}}_{\text{previous}} + (1 - \alpha) \cdot \underbrace{g_t}_{\text{current}}$$

Properties of EWMA

• effective weighting decreases exponentially over time:

$$\begin{split} v_t &= \alpha v_{t-1} + (1-\alpha)g_t \\ &= \alpha \left[\alpha v_{t-2} + (1-\alpha)g_{t-1}\right] + (1-\alpha)g_t \\ &\vdots \\ &= \alpha^k v_{t-k} + (1-\alpha)\underbrace{\left[g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \dots + \alpha^{k-1} g_{t-k+1}\right]}_{\text{weight exponentially decreases toward the past}} \end{split}$$

 \Rightarrow thus called "_____ weighted"

• approximation²

$$\begin{split} v_t &= (1-\alpha)g_t + \alpha v_{t-1} \\ &= (1-\alpha)\left[g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \alpha^3 g_{t-3} + \cdots\right] \\ &= \frac{g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \cdots}{1+\alpha+\alpha^2 + \cdots} \quad \Rightarrow \quad \text{weighted average formula} \end{split}$$

▶ in such a formula, denominator = effective number of observations:

$$1 + \alpha + \alpha^2 + \dots = \frac{1}{1 - \alpha}$$

bottom line:

 $v_t pprox$ average over last time points

e.g. $\alpha = 0.9 \Rightarrow$ average over 1/(1-0.9) = 10 points $\alpha = 0.98, 0.5 \Rightarrow$ average over 50, 2 points, respectively

²recall: $\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \cdots$

Effect of smoothing factor α

- higher α (= more weight to past, less weight to present)

 - ightharpoonup shifted further \leftarrow averaging over larger window
 - ⇒ curve adapts more to changes with more latency

Bias correction

- first few iterations: inaccurate average (have not seen enough samples)
 - ightharpoonup instead of v_t , we thus use:

$$\frac{v_t}{1-\alpha^t}$$

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations
Exponentially Weighted Average

Gradient Descent with Momentum

Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Method of momentum

- sgd: very popular but sometimes slow
- method of momentum (Polyak, 1964):
 - designed to accelerate learning, especially in the face of
 - ▶ high curvature
 - small but consistent gradients
 - noisy gradients
 - can be combined to existing sgd variants
- common algorithm
 - accumulates exponentially decaying moving average of past
 - then continues to move in their direction

Gradient descent with momentum

- idea: compute EWMA of gradients and use it to update weights
 - works almost always faster than standard gradient descent
- in physics
 - ► momentum = mass · velocity
 - for unit mass: momentum =
 - ightharpoonup smoothing factor α : friction
- sometimes
 - ightharpoonup smoothing factor lpha
 - ⇒ called momentum (misnomer)

Three (equivalent) forms of sgd + momentum

• let $g \triangleq \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

 $(\theta \text{ represents } W \text{ and } b \text{ altogether})$

$$\begin{array}{lll} \boxed{\text{form 1}} & \begin{array}{ll} v \leftarrow \alpha v - \epsilon g \\ \theta \leftarrow \theta + v \end{array} & \Longrightarrow & \theta \leftarrow \theta - \epsilon \left(g + \frac{\alpha}{-\epsilon}v\right) \end{array}$$

$$\begin{array}{ll} \boxed{\text{form 2}} & \begin{array}{ll} v \leftarrow \alpha v + (1-\alpha)g \\ \theta \leftarrow \theta - \epsilon v \end{array} & \Longrightarrow^3 & \theta \leftarrow \theta - \tilde{\epsilon} \left(g + \frac{\alpha}{1-\alpha}v\right) \end{array}$$

$$\begin{array}{ll} \boxed{\text{form 3}} & \begin{array}{ll} v \leftarrow \alpha v + g \\ \theta \leftarrow \theta - \epsilon v \end{array} & \Longrightarrow & \theta \leftarrow \theta - \epsilon \left(g + \alpha v\right) \end{array}$$

ullet bottom line: $oldsymbol{ heta}$ is updated by linear _____ of gradient and velocity

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \epsilon \left(\underbrace{oldsymbol{g}}_{ ext{gradient}} + \operatorname{constant} \cdot \underbrace{v}_{ ext{velocity}} \right)$$

 $^{^{3}\}tilde{\epsilon} \triangleq \epsilon(1-\alpha)$

Nesterov momentum

- difference from standard momentum:
 - lacksquare gradient $g =
 abla_{m{ heta}} J$ is evaluated

standard momentum	Nesterov momentum
g evaluated at current position $ heta$ (red circle)	g evaluated at "lookahead" position $ heta + lpha v$ (green circle)

- rationale: momentum is about to carry us to a new position
 - ightharpoonup make sense to evaluate g at new position instead of "old/stale" position

• Nesterov momentum update rule:

$$v \leftarrow \alpha v - \epsilon \nabla_{\theta} J(\theta + \alpha v)$$
$$\theta \leftarrow \theta + v$$

- Nesterov momentum
 - gradient is evaluated after the current velocity is applied
 - ⇒ interpreted as adding a factor to standard momentum
- advantages
 - stronger theoretical converge guarantees for convex functions
 - consistently works slightly better than standard momentum

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations Exponentially Weighted Average Gradient Descent with Momentum

Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Per-parameter adaptive learning rates

- optimization methods explained so far
 - ightharpoonup set learning rate ϵ globally and equally for all parameters
- methods presented now: AdaGrad, RMSProp, Adam
 - ightharpoonup adaptively tune ϵ for _____ parameter

Motivation

• recall: limitation of gradient descent

- ▶ goal: move horizontally
- problem: huge vertical oscillations
- solution: we want to
 - slow down learning vertically
 - speed up (or at least not slow down) learning horizontally
- how to implement this idea (without relying on ___ explicitly)?

AdaGrad

- individually adapts learning rate of each direction (i.e. each parameter)
 - ▶ steep direction (large $\frac{\partial J}{\partial \theta_i}$): slow down learning
 - lacktriangle gently sloped direction (small $\frac{\partial J}{\partial heta_j}$): speed up learning
- adjusts learning rates per parameter:

$$\epsilon_j = rac{\epsilon}{\sqrt{\sum_{ ext{all previous iterations}}(g_j \cdot g_j)}}$$

- $ightharpoonup \epsilon$: global learning rate
- $ightharpoonup \epsilon_j$: learning rate of dimension j (parameter θ_j)
- $g_j = \frac{\partial J(m{ heta})}{\partial heta_i}$: gradient wrt dimension j
- net effect:
 - ▶ greater progress in more sloped directions

- downside (esp in deep learning)
 - ightharpoonup monotonically decreasing ϵ : too aggressive
 - \Rightarrow stops learning too ____
- TF: AdagradOptimizer
 - but do not use it for neural nets
- Adadelta: an extension of Adagrad
 - restricts the window of accumulated past gradients to some fixed size
 - ⇒ reduces aggressive, monotonically decreasing learning rate

RMSProp (root-mean-square prop)

- modifies AdaGrad to perform better in non-convex setting
 - changes gradient accumulation to EWMA
- use of exponentially decaying average allows RMSprop to
 - discard history from _____ past
 - ⇒ converge rapidly after finding a convex bowl
- comparison (r: accumulation variable)

AdaGrad	RMSprop
$r \leftarrow r + g \odot g$	$m{r} \leftarrow ho m{r} + (1 - ho) m{g} \odot m{g}$
$\Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta+r}}\odot oldsymbol{g}$	$\Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta+r}}\odot oldsymbol{g}$
$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$	$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$

▶ decay rate ρ : hyperparameter (typically 0.9, 0.99, 0.999)

Adam (adaptive moment estimation)

- idea: RMSProp + momentum
 - with correction
- for each iteration:
 - \bigcirc compute gradient g
 - 2 update first moment: $s \leftarrow \rho_1 s + (1 \rho_1) g$
 - 3) update second moment: $m{r} \leftarrow
 ho_2 m{r} + (1ho_2) m{g} \odot m{g} \qquad \leftarrow \text{``RMSProp''}$
 - 4 bias correction:

$$\hat{m{s}} \leftarrow rac{m{s}}{1-
ho_1^t}, \qquad \hat{m{r}} \leftarrow rac{m{r}}{1-
ho_2^t}$$

g update parameter:

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \epsilon rac{\hat{oldsymbol{s}}}{\sqrt{\hat{oldsymbol{r}} + \delta}}$$

← "momentum"

Algorithm 2 Adam optimizer

Require:

- ightharpoonup step size ϵ
- \blacktriangleright exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1)
- ightharpoonup small constant δ used for numerical stabilization
- ightharpoonup initial parameters heta
- 1: initialize 1st and 2nd moment variables $s=\mathbf{0},\ r=\mathbf{0}$
- 2: initialize time step t = 0
- 3: while stopping criterion not met do
- 4: sample a minibatch $\{x^{(1)},\ldots,x^{(m)}\}$ with corresponding targets $y^{(i)}$
- 5: compute gradient: $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$
- 6: $t \leftarrow t + 1$
- 7: update biased first moment estimate: $s \leftarrow \rho_1 s + (1 \rho_1) g$
- 8: update biased second moment estimate: $m{r} \leftarrow
 ho_2 m{r} + (1ho_2) m{g} \odot m{g}$
- 9: correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$
- 10: correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$
- 11: compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r} + \hat{b}}}$ (operations applied element-wise)
- 12: apply update: $\theta \leftarrow \theta + \Delta \theta$
- 13: end while

- recommended values in the paper
 - ▶ learning rate ϵ : needs tuning (suggested default: 0.001)
 - for momentum ρ_1 : 0.9
 - for RMSProp ρ_2 : 0.999
 - for stability δ : 10^{-8}
- Adam: often works better than RMSProp
 - recommended as the default algorithm to use
 - ▶ alternative to Adam worth trying: sgd + Nestrov momentum

Comparison

(source: Radford)

• more information: Link

Outline

Introduction

Gradient-Based Optimization

Additional Topics
Learning Rate Scheduling
Second-Order Optimization

Summary

Learning rate

- hyperparameter for many gradient-based algorithms
 - ▶ sgd, sgd + momentum, AdaGrad, RMSProp, Adam
- need to gradually ______ learning rate over time
 - \Rightarrow now denote ϵ_k : learning rate at iteration k (ϵ_0 : initial)
 - more critical with sgd + momentum (less common with Adam)

(source: cs231n)

How to decay learning rate

• linear decay (until τ , and then constant)

$$\epsilon_k = \left(1 - \frac{k}{\tau}\right)\epsilon_0 + \frac{k}{\tau}\epsilon_\tau$$

step decay

▶ discrete staircase

• exponential decay: e.g. $\epsilon = \epsilon_0 (0.95)^k$

• 1/k or $1/\sqrt{k}$ decay:

• also popular: _____ decay (by trial-and-error or monitoring learning curve)

How to set initial learning rate

ϵ_0	if too large:	if too low:
	violently oscillating learning curvecost function often increases significantly	learning proceeds slowlylearning may stuck with a high cost value

- typically:
 - optimal $\epsilon_0 > \underbrace{\epsilon_{\sim 100}^*}_{\uparrow}$

learning rate that yields best performance after first ____ iterations or so

- advice: monitor the first several iterations and
 - use a learning rate that is
 - ightharpoonup higher than best-performing ϵ at this time
 - but not so high that it causes severe instability

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Learning Rate Scheduling

Second-Order Optimization

Summary

Idea behind Newton's method

- consider a second-order Talyor series approximation
 - **b** to function f(x) around the current point $x^{(0)}$:

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^{\top} g + \frac{1}{2} (x - x^{(0)})^{\top} H(x - x^{(0)})$$

- $\Rightarrow g \triangleq \nabla_x f(x^{(0)})$: gradient of f at $x^{(0)}$
- $ightharpoonup oldsymbol{H} riangleq oldsymbol{H}(f)(oldsymbol{x}^{(0)}):$ Hessian of f at $oldsymbol{x}^{(0)}$
- solving for the critical point of f gives Newton's update rule:

$$x^* = x^{(0)} - H^{-1}g$$

pros: (in theory) no hyperparemter

(*i.e.* learning rate)

- cons:
- (H has $O(n^2)$ elements and takes $O(n^3)$ for inverting)
- * Levenberg-Marquardt algorithm
 - switches between Newton's and gradient descent

Comparison (1D)

- Newton's method: second-order
 - zero-finding

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}$$

minimization/maximization

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

- gradient descent: first-order
 - minimization/maximization

$$x_{t+1} = x_t - \epsilon f'(x_t)$$

Comparison (2D)

- Newton's method for optimization
 - ▶ idea: get a _____-order approximation and minimize it
 - ⇒ faster than gradient descent

Quasi-Newton methods

- ullet idea: avoid directly inverting H
 - lacktriangle approximate $oldsymbol{H}^{-1}$ with matrix $oldsymbol{M}_t$
 - $ightharpoonup M_t$: iteratively refined by low-rank updates
 - lackbox determine direction of descent by $oldsymbol{
 ho}_t = oldsymbol{M}_t oldsymbol{g}_t$ and update:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \epsilon \boldsymbol{\rho}_t$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
 - most popular quasi-Newton method
 - still requires $O(n^2)$ memory to store $m{H}^{-1}$
- ullet L-BFGS (limited memory BFGS): does not form/store full $oldsymbol{H}^{-1}$
 - usually works very well in full batch/deterministic mode
 - ▶ but performs poorly in _____/stochastic setting (research topic)

Practical advice on choosing optimizer in DL

- Adam
 - ▶ a good default choice in many cases
- sgd + momentum + learning rate decay
 - ▶ often outperforms Adam
 - but requires more
- L-BEGS
 - try it if you can afford to do full batch updates
 - but should disable all sources of noise

(source: cs231n)

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

Summary

- · optimization in deep learning
 - mostly sgd and its variants
- gradient estimate

$$\hat{g} = \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$$

• stochastic gradient descent (sgd)

$$\theta \leftarrow \theta - \epsilon_k \hat{g}$$

• method of momentum ($\alpha \in [0,1)$)

$$v \leftarrow \alpha v - \epsilon \hat{g}$$

 $\theta \leftarrow \theta + v$

• Nesterov momentum (corrected momentum)

$$v \leftarrow \alpha v - \epsilon \nabla_{\theta} \left[\frac{1}{m} \sum_{i=1}^{m} L\left(f(x^{(i)}; \theta + \alpha v), y^{(i)} \right) \right]$$
$$\theta \leftarrow \theta + v$$

• AdaGrad (r: for gradient accumulation)

$$egin{aligned} r \leftarrow r + \hat{g} \odot \hat{g} \ & \Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta + r}} \odot \hat{g} \ & oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta} \end{aligned}$$

RMSProp (gradient accumulation by EWMA)

$$\begin{split} r &\leftarrow \rho r + (1 - \rho) \hat{g} \odot \hat{g} \\ \Delta \theta &\leftarrow -\frac{\epsilon}{\sqrt{\delta + r}} \odot \hat{g} \\ \theta &\leftarrow \theta + \Delta \theta \end{split}$$

Adam (a reasonable default choice)

$$\begin{split} s &\leftarrow \rho_1 s + (1-\rho_1) \hat{g} & \text{(momentum)} \\ r &\leftarrow \rho_2 r + (1-\rho_2) \hat{g} \odot \hat{g} & \text{(RMSProp)} \\ \hat{s} &\leftarrow \frac{s}{1-\rho_1^t}, \quad \hat{r} \leftarrow \frac{r}{1-\rho_2^t} & \text{(bias correction)} \\ \theta &\leftarrow \theta - \epsilon \frac{\hat{s}}{\sqrt{s-1-\hat{s}}} \end{split}$$