MATH 60604A Statistical modelling § 4f - Overdispersed count data

Léo Belzile

HEC Montréal Department of Decision Sciences

Extensions to Poisson to deal with overdispersion

- The Poisson distribution is not very flexible, because it only includes one parameter, which is equal to both the mean and the variance.
- In most cases, this assumption is not valid. In the previous output, the deviance divided by the degrees of freedom was 203.2710/110 = 1.85, suggesting the Poisson model is **not** adequate (*p*-value less than 10^{-5}).
- The underlying reason is that the observed variability in counts is much larger than the mean in this example, a phenomenon termed overdispersion.
- The negative binomial model if often used as replacement for overdispersed count data.

Negative binomial distribution

- The negative binomial distribution is a probability distribution for integer random variables with two parameters.
- We restrict attention the most common parametrization used in modelling. The probability mass function is

$$P(Y = y) = \frac{\Gamma(y + 1/k)}{\Gamma(y + 1)\Gamma(1/k)} \left(\frac{1/k}{1/k + \mu}\right)^{1/k} \left(\frac{\mu}{1/k + \mu}\right)^{y}$$

for y=0,1,2,3,..., where Γ denotes the gamma function. Both parameters are positive, meaning $\mu>0$ and k>0.

• The mean and the variance are

$$E(Y) = \mu$$
, $Var(Y) = \mu + k\mu^2$.

 The variance of the negative binomial distribution is always larger than its mean.

Negative binomial regression

 Negative binomial regression usually assumes that the response variable Y follows a negative binomial distribution and that the link function is the logarithmic function

$$g\{E(Y_i)\} = In\{E(Y_i)\} = \beta_0 + \beta_1 X_{i1} + ... + \beta_p X_{ip}.$$

• Equivalently, we assume that each observation Y_i follows a negative binomial distribution with mean

$$\mathsf{E}(Y_i) = \exp(\beta_0 + \beta_1 \mathsf{X}_{i1} + \dots + \beta_p \mathsf{X}_{ip})$$

- The interpretation of the parameters is the same as for Poisson regression.
- There is a second parameter, k, which is assumed to be the same for every observation and therefore doesn't depend on the predictor variables.

Mathematical aside: The negative binomial model is not a generalized linear model per say because it is part of exponential-dispersion family, but we can use maximum likelihood and the GLM machinery to fit the model.

Negative binomial regression with proc genmod

The only difference from the Poisson model is that we specify dist=negbin.

SAS code to fit a negative binomial model

```
proc genmod data=statmod.intention;
class educ revenue;
model nitem=sex age revenue educ marital
    fixation emotion / dist=negbin link=log lrci;
run;
```

In R, the parametrization of MASS::glm.nb is such that $\theta = 1/k$.

Goodness-of-fit diagnostics for negative binomial

Criteria For Assessing Goodness Of Fit				
Criterion	DF	Value	Value/DF	
Deviance	110	118.2310	1.0748	
Scaled Deviance	110	118.2310	1.0748	
Pearson Chi-Square	110	119.5504	1.0868	
Scaled Pearson X2	110	119.5504	1.0868	
Log Likelihood		14.7494		
Full Log Likelihood		-174.6250		
AIC (smaller is better)		371.2501		
AICC (smaller is better)		373.6945		
BIC (smaller is better)		401.9125		

LR Statistics For Type 3 Analysis				
Source	DF	Chi-Square	Pr > ChiSq	
sex	1	3.80	0.0513	
age	1	2.23	0.1350	
revenue	2	19.68	<.0001	
educ	2	2.11	0.3481	
marital	1	2.61	0.1061	
fixation	1	35.54	<.0001	
emotion	1	12.15	0.0005	

The deviance over degrees of freedom is closer to unity. Only revenue, fixation and emotion are statistically significant.

Parameter estimates for the negative binomial model

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Likelihood Ratio 95%	Confidence Limits	Wald Chi-Square	Pr > ChiSo
Intercept		1	-1.1761	0.9729	-3.1103	0.7640	1.46	0.2267
sex		1	0.5077	0.2550	-0.0029	1.0155	3.96	0.0465
age		1	-0.0415	0.0281	-0.0990	0.0130	2.18	0.1395
revenue	1	1	1.1053	0.3521	0.4124	1.8148	9.86	0.0017
revenue	2	1	-0.1617	0.3535	-0.8660	0.5377	0.21	0.6473
revenue	3	0	0.0000	0.0000	0.0000	0.0000		
educ	1	1	0.3645	0.3441	-0.3263	1.0500	1.12	0.2895
educ	2	1	0.4386	0.3041	-0.1624	1.0494	2.08	0.1492
educ	3	0	0.0000	0.0000	0.0000	0.0000		
marital		1	-0.3873	0.2369	-0.8593	0.0850	2.67	0.102
fixation		1	0.6316	0.1056	0.4338	0.8581	35.81	<.000
emotion		1	0.7570	0.2127	0.3401	1.1902	12.66	0.0004
Dispersion		1	0.5840	0.2119	0.2564	1.1193		

Note: The negative binomial dispersion parameter was estimated by maximum likelihood.

The scale parameter $\hat{k}=0.584$. Note that the likelihood-ratio based 95% confidence interval may lead to different inference than the Wald tests and their p-values; prefer the former as they are more reliable.

Model selection

- The deviance indicates that the negative binomial model is preferable to the Poisson, but this is informal.
- Another to answer this would be to look at information criteria (smaller is better): the negative binomial model is selected by both AIC and BIC.

Model	Poisson	neg. binom.
AIC	392.33	371.25
BIC	420.20	301.91

Negative binomial distribution versus Poisson

- As *k* approaches zero, we recover the Poisson distribution.
- We can actually compare these two models using the likelihood ratio test since they are nested.
- We can test the hypotheses \mathcal{H}_0 : $k=0, \mathcal{H}_1$: $k\neq 0$ using a likelihood ratio test
 - beware! the null distribution is **non-regular** because when $n \to \infty$, there is a 0.5 probability that the deviance will be exactly zero and 0.5 that it follows a χ_1^2 under \mathcal{H}_0 .
- The asymptotic null distribution is

$$2\{\ell_{\mathsf{negbin}}(\widehat{\mu}_{\mathsf{negbin}},\widehat{k}) - \ell_{\mathsf{pois}}(\widehat{\mu}_{\mathsf{pois}})\} \stackrel{\cdot}{\sim} \frac{1}{2}\chi_1^2 + \frac{1}{2}\delta_0;$$

Practical aspect: if we do not observe $\hat{k}=0$, we calculate the p-value as usual using the χ_1^2 distribution and **divide it by two** to get the **correct result**.

Likelihood ratio test (non-regular)

This shows how to to the calculations by hand using the output.

SAS code for likelihood ratio test (non-regular)

```
data pval;
pval=(1-CDF('CHISQ',23.08,1))/2;
run;
proc print data=pval;
run;
```

- The "Full Log Likelihood" give the fitted likelihood of the model, -174.6250 for the negative binomial model and -186.1639 for the Poisson model.
- The difference is 11.5389 and the likelihood ratio statistic is 23.08.
- The probability that a χ_1^2 is larger than 23.08 is 1.55×10^{-7} .
- Since the problem is non-regular, we halve this probability and so our p-value is 7.7×10^{-8} .
- There is overwhelming evidence that the negative binomial model is preferable.