Géométrie affine et euclidienne

Table des matières

1.	Géométrie affine.	1
	1.1. Espaces affines · · · · · · · · · · · · · · · · · · ·	1
	1.2. Sous-espaces affines.	1

1. Géométrie affine.

1.1. Espaces affines

Définition 1.1. Soit E un espace vectoriel. Un ensemble (non vide) E est un *espace affine* s'il existe une application $\theta: ExE \to E; (A, B) \mapsto \overrightarrow{AB}$ telle que :

- (1) Pour tout $A \in \mathcal{E}$ fixé, l'application $\theta_A : \mathcal{E} \to E; B \mapsto \overrightarrow{AB}$ est bijective.
- (2) Pour tout $A, B, C \in \mathcal{E}$, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles).

Remarques 1.2.

- (1) Les elements de \mathcal{E} sont les points.
- (2) La dimension de \mathcal{E} est celle de E.
- (3) L'espace vectoriel E est appelé la direction de E, on dit aussi que E est dirigé par E. On notera (E, E).

Exemple 1.3. Tout espace vectoriel *E* admet une structure naturelle d'espace affine.

Soit $\theta: ExE \to E; (u, v) \mapsto v - u$. On vérifie les deux conditions de la définition d'un espace affine.

1. Soit $u \in \mathcal{E}$. L'application $\theta_u : \mathcal{E} \to \mathcal{E}; v \mapsto v - u$ est bijective car la réciproque existe : $v \mapsto v + u$ 2. $\overrightarrow{uv} + \overrightarrow{vw} = v - u + w - v = w - u = \overrightarrow{uw}$.

Exercice 1. Soit $f: E \to E'$, $g: E' \to E$ telle que $f \circ g = \mathrm{id}_{E'}$, $g \circ f = \mathrm{id}_E$ alors f et g sont bijectives.

Remarque 1.4. La relation de Chasles donne

- (1) $\overrightarrow{AA} + \overrightarrow{AA} = \overrightarrow{AA}$ donc $\overrightarrow{AA} = 0$
- (2) $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = 0$ donc $\overrightarrow{AB} = -\overrightarrow{AB}$.

Proposition 1.5 (règle du parallélogramme). Soit $A, A', B, B' \in \mathcal{E}$.

$$\overrightarrow{AB} = \overrightarrow{A'B'} \Leftrightarrow \overrightarrow{AA'} = \overrightarrow{BB'}$$

Démonstration.

$$\Rightarrow \overrightarrow{AA'} = \overrightarrow{AB} + \overrightarrow{BA'} = \overrightarrow{AB} + \overrightarrow{BB'} + \overrightarrow{BB'} + \overrightarrow{B'A'} = \overrightarrow{AB} - \overrightarrow{A'B'} + \overrightarrow{BB'} = \overrightarrow{BB'}$$

$$\Leftarrow \overrightarrow{AB} = \overrightarrow{AB'} + \overrightarrow{B'B} = \overrightarrow{AA'} + \overrightarrow{A'B'} + \overrightarrow{B'B} = \overrightarrow{AA'} + \overrightarrow{A'B'} - \overrightarrow{BB'} = \overrightarrow{A'B'}.$$

Définition 1.6. Soit $A, A', B, B' \in \mathcal{E}$. On dit que ABB'A' forme un parallélogramme s'ils vérifient la règle du parallélogramme.

П

Proposition 1.7. Soit $A \in \mathcal{E}$, $u \in E$. Il existe un unique $B \in \mathcal{E}$ tel que $\overrightarrow{AB} = u$.

Démonstration. θ_A est bijective.

Notation 1.8. On pourra noter B = A + u.

1.2. Sous-espaces affines.

Définition 1.9. Soit (\mathcal{E}, E) , $\mathcal{F} \subset \mathcal{E}$. On dit que \mathcal{F} est un sous-espace affine de \mathcal{E} s'il existe $A \in \mathcal{F}$ tel que $\theta_A(\mathcal{F})$ est un sous-espace vectoriel de E.

Proposition 1.10. Si $\mathcal{F} \subset \mathcal{E}$ est un sous espace affine dirigé par F alors

$$\forall B \in \mathcal{F}, \theta_B(\mathcal{F}) = F.$$

Démonstration. Il existe $A \in \mathcal{F}$ tel que $\theta_A(\mathcal{F}) = F$. On veut montrer que $\theta_A(\mathcal{F}) = \theta_B(\mathcal{F})$.

- (1) Soit $u \in \theta_A(\mathcal{F})$. On montre que $u \in \theta_B(\mathcal{F})$. Comme θ_B est bijective, on peut trouver $N \in \mathcal{E}$ tel que $\overrightarrow{BN} = u$. Or $\overrightarrow{AN} \overrightarrow{AB} = \overrightarrow{BN} \in \theta_A(\mathcal{F})$. Ainsi, $N \in \mathcal{F}$ et $u = \overrightarrow{BN} \in \theta_B(\mathcal{F})$
- (2) On montre $\theta_B(\mathcal{F}) \subset \theta_A(\mathcal{F})$. Soit $u \in \theta_B(\mathcal{F})$ alors $u = \overrightarrow{BM}$ avec $M \in \mathcal{F}$. Par la relation de Chasles, $u = \overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM} \in \theta_A(\mathcal{F})$ donc $u \in \theta_A(\mathcal{F})$.

Proposition 1.11. Soit $A \in \mathcal{E}$ et $F \subset E$ un sous-espace vectoriel. Il existe un unique sous-espace affine $\mathcal{F} \subset \mathcal{E}$ qui passe par A et dirigé par F.

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \mathcal{F} = \{A + u \mid u \in F\} = \Big\{ M \in \mathcal{E} \mid \overrightarrow{AM} \in F \Big\}. \ \text{Soit} \ B \in \mathcal{F}, \\ \text{on pose} \ \theta_B : \mathcal{F} \to F; M \mapsto \overrightarrow{BM}. \end{array}$

- (1) Puisque $B \in \mathcal{F}$, B = A + u, $u \in F$ d'où $\theta_B := M \mapsto A + \overrightarrow{AM} + u$ admet une reciproque donnée par $\theta_A^{-1} : F \to \mathcal{F}; u \mapsto u A$ donc est bijective.
- (2) Soit $u, v, w \in \mathcal{F}$, alors $u, v, w \in \mathcal{E}$ or puisque \mathcal{E} est un sous-espace affine, u, v, w verifient la relation de chasles. Ainsi, F est bien un sous-espace affine de direction F.
- (3) De plus, $A + 0 = A \in \mathcal{F}$ donc \mathcal{F} passe par A.

Proposition 1.12. Soit $f: E \to F$ une application linéaire entre deux espaces vectoriels. Si $v \in f(E)$ alors f^{-1} est un sous-espace affine de E dirigé par $\ker(f) = f^{-1}(0) = \{u \in E \mid f(u) = 0\}$.

Démonstration. Soit $u \in f^{-1}(v)$. On montre que $w \in f^{-1}(v) \Leftrightarrow \theta(u,w) \in \ker f$. En effet, $w \in f^{-1}(v) \Leftrightarrow f(w) = v \Leftrightarrow f(w = f(u))$

$$\Leftrightarrow f(w - u) = 0$$

$$\Leftrightarrow w - u \in \ker(f) \Leftrightarrow \theta(u, w) \in \ker(f)$$

Remarque 1.13.

- (1) Un sous espace affine de dimension 0 est constitué d'un seul point.
- (2) Un sous-espace affine de dimension 1 est une droite.
- (3) un sous-espace affune de dimension 2 est un plan

Exemple 1.14. Dans \mathbb{R}^n , les solutions d'une équation $\sum_{i=1}^n a_i x_i = b$ forment un sous-espace affine de \mathbb{R}^n dirigé par l'espace vectoriel $\{\sum a_i x_i = 0\}: f: \mathbb{R}^n \to \mathbb{R}$