# 日本国特許庁 JAPAN PATENT OFFICE

29.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月 1日

出 願 番 号 Application Number: 特願2003-401585

[ST. 10/C]:

[JP2003-401585]

出 願 人
Applicant(s):

財団法人神奈川科学技術アカデミー

特高Com

2005年 1月13日

特許庁長官 Commissioner, Japan Patent Office 1) [1]



BEST AVAILABLE COPY

1/E

 【書類名】
 特許願

 【整理番号】
 03880N

【あて先】特許庁長官殿【国際特許分類】G01N 30/72

【発明者】

【住所又は居所】 神奈川県川崎市宮前区有馬3-5-5-508 鷺沼南ガーデン

ハウス

【氏名】 柳井 浩之

【発明者】

【住所又は居所】 東京都府中市分梅町5-35-14 エルデ103号

【氏名】 中村 康司

【発明者】

【住所又は居所】 東京都練馬区立野町31-33

【氏名】 宮島 篤

【特許出願人】

【識別番号】 591243103

【氏名又は名称】 財団法人神奈川科学技術アカデミー

【代理人】

【識別番号】 100088546

【弁理士】

【氏名又は名称】 谷川 英次郎 【電話番号】 03-3238-9182

【先の出願に基づく優先権主張】

【出願番号】 特願2003-399331 【出願日】 平成15年11月28日

【手数料の表示】

【予納台帳番号】 053235 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

## 【書類名】特許請求の範囲

#### 【請求項1】

dlk遺伝子の発現を指標とする、試料中の肝癌細胞の検出方法。

#### 【請求項2】

細胞表面上に発現するdlkを測定することを含む請求項1記載の方法。

【請求項3】 細胞表面上に発現するdlkと、抗dlk抗体又はその抗原結合性断片との抗原抗体反応を利 用する請求項2記載の方法。

#### 【請求項4】

前記抗dlk抗体が、モノクローナル抗体である請求項3記載の方法。

FACS又はMACSにより行なう請求項2ないし4のいずれか1項に記載の方法。

## 【請求項6】

dlk遺伝子のmRNAを測定することにより行なう請求項1記載の方法。

【請求項7】 mRNA又はそれに由来するcDNAを核酸増幅法により増幅することを含む請求項6 記載の方法。

#### 【請求項8】

RT-PCRを行なうことを含む請求項7記載の方法。

前記肝癌細胞が、肝細胞癌細胞又は胆管細胞癌細胞である請求項1ないし8のいずれか 1項に記載の方法。

#### 【請求項10】

前記肝癌細胞がヒト肝癌細胞である請求項1ないし9のいずれか1項に記載の方法。

前記肝癌細胞がヒト肝癌細胞であり、前記モノクローナル抗体が抗ヒトdlkモノクロー 【請求項11】 ナル抗体である請求項4記載の方法。

#### 【請求項12】

生体から採取された血液中に存在する、dlkの細胞外領域を測定することを含む肝癌の 検出方法。

血液中に存在するdlkの細胞外領域と、抗dlk抗体又はその抗原結合性断片との抗原抗体 【請求項13】 反応を利用する請求項12記載の方法。

#### 【請求項14】

前記抗dlk抗体が、モノクローナル抗体である請求項13記載の方法。

前記血液がヒト血液であり、前記モノクローナル抗体が抗ヒトdlkモノクローナル抗体 【請求項15】 である請求項14記載の方法。

【請求項16】 dlkの細胞外領域と抗原抗体反応する抗体又はその抗原結合性断片を含む、肝癌診断薬

【請求項17】 前記抗体が抗ヒトdlkモノクローナル抗体である請求項16記載の診断薬。

dlk遺伝子のmRNA又はcDNAとハイブリダイズし、dlk遺伝子のmRNA又はcD 【請求項18】 NAを測定するためのプライマー又はプロープとして利用できる核酸から成る、肝癌検出 用核酸。

#### 【請求項19】

dlk遺伝子のmRNA又はcDNAの一部領域と相補的な塩基配列又は該塩基配列と9 0%以上の同一性を有する塩基配列であって15塩基以上のサイズの領域を含む請求項1 8記載の核酸。

【請求項20】 dlk遺伝子のmRNA又はcDNAの一部領域と相補的な塩基配列であって15塩基以上のサイズの領域を含む請求項19記載の核酸。

## 【書類名】明細書

【発明の名称】肝癌の検出方法及び肝癌診断薬

#### 【技術分野】

[0001]

本発明は、肝癌の検出方法及び肝癌診断薬に関する。

## 【背景技術】

肝細胞癌は世界中の癌腫の中で最も多いものの一つであり、東南アジア、中国、サハラ [0002] 砂漠以南のアフリカでの発症が特に多い。また、日本での発症率・有病率も高い。日本に おける肝癌による死者は年間三万人以上にのぼっており、依然として増加傾向にある。肝 癌のほとんどは肝細胞癌であり、その発生母地は肝炎ウイルス感染に起因する。しかしな がら、ウイルス肝炎から肝硬変、肝細胞癌へと移行する癌化メカニズムは未だ不明である 。それゆえ現在用いられている診断方法(超音波診断、CTによる画像診断、αーフェトプ ロテイン(AFP)などの腫瘍マーカーを用いた血液診断)は、すでに形成された癌組織を対 象にした方法であり、ある程度進行した癌を検出することはできても、非常に初期段階に ある癌細胞、もしくは前癌細胞の存在を検出するには至っていない。また、AFPを腫瘍マ ーカーとする血液診断は、簡便であるが、肝癌に対する特異性は高いとは言えず、肝硬変 、肝炎などでも高い値を示すことが知られている。

一方、Dlk1/Pref-1はEGF様モチーフを持つ膜タンパク質で、その細胞外領域はNotch/De lta/Serrateファミリーと相同性を示す。Dlk1/Pref-lは、GRP(gastrin releasing peptid e)応答性の肺小細胞癌由来細胞株で発現する分子(非特許文献 1 )あるいは前脂肪細胞の 分化を抑制する因子としてクローニングされた(非特許文献 2)。その発現は、胎生期に は複数の組織、臓器に見られるが、出生後はほとんどの組織で発現が見られなくなる(非 特許文献2、3)。また、肺小細胞癌や1型神経線維腫症など、一部の癌組織でも発現が 認められる(非特許文献4、5)。Dlk1/Pref-lの機能については前脂肪細胞の分化抑制以 外に、最近造血への関与も示唆されている(非特許文献6)。しかし、発現パターンなど から未分化細胞における未分化状態維持機構に関与している可能性も示唆されている。我 々は、以前シグナル配列を持った分子、すなわち細胞表面抗原や分泌性タンパク質をコー ドする遺伝子を、選択的に単離するシグナルトラップ法を用いて、マウス胎性14.5日の肝 臓に高発現する遺伝子dlkを同定した。マウス肝臓の発生過程におけるDlkの発現は、胎生 10日以前にすでに見られ、胎生16日付近までは強く発現しているが、出生前後にかけて急 激に減少し、成熟肝臓では発現していなかった。さらに抗Dlkモノクローナル抗体を用い て、胎児肝臓より1ステップで肝幹細胞を高純度精製できることを見い出した(非特許文 献7、特許文献1)。

## [0004]

【非特許文献 1 】 Laborda, J., et al (1993) J. Biol .Chem. 268(6):3817-20

【非特許文献 2】 Smas, C.M., et al (1993) Cell. 73(4):725-34

【非特許文献3】Floridon, C., et al (2000) Differentiation 66(1):49-59

【非特許文献 4】 Harken, J.C., et al (1999) Tumour Biol. 20(5):256-62

【非特許文献 5 】 Jensen, C.H., et al (1999) Br. J. Dermatol. 140(6):1054-9

【非特許文献 6】 Ohno, N., et al (2001) Stem Cells 19(1):71-9

【非特許文献7】 Tanimizu, N., et al (2003) J. Cell Sci. 116(Pt 9):1775-86

【非特許文献 8】 Onishi, M., et al (1996) Exp. Hematol. 24;324-329

【非特許文献 9】 Sell, S. (1993) Int. J. Dev. Biol. 37:189-201

【非特許文献 1 0 】 Jensen, C.H. et al (1994) Eur. J. Biochem. 225:83-92

【非特許文献 1 1】 Kaneta, M. et al. (2000) J. Immunol. 164:256-264

【特許文献1】国際公開公報70 02/103033

#### 【発明の開示】

【発明が解決しようとする課題】

本発明の目的は、高い特異性をもって肝癌を検出することができる肝癌の検出方法及び そのための診断薬を提供することである。

# 【課題を解決するための手段】

本願発明者らは、鋭意研究の結果、成体の肝癌細胞表面上にdlkが発現していることを 見出し、このdlkを腫瘍マーカーとして肝癌細胞の検出が可能であることを実験的に確認 した。さらに、細胞表面上に発現するdlkの細胞外領域と抗原抗体反応する抗ヒトdlkモノ クローナル抗体の作出に成功した。さらに、この抗ヒトdlkモノクローナル抗体が、血液 中に遊離されるdlkの細胞外であるFA1とも抗原抗体反応することを確認した。

すなわち、本発明は、dlk遺伝子の発現を指標とする、試料中の肝癌細胞の検出方法を 提供する。また、本発明は、生体から採取された血液中に存在する、dlkの細胞外領域を 測定することを含む肝癌の検出方法を提供する。さらに、本発明は、dlkの細胞外領域と 抗原抗体反応する抗体又はその抗原結合性断片を含む、肝癌診断薬を提供する。さらに、 本発明は、dlk遺伝子のmRNA又はcDNAとハイブリダイズし、dlk遺伝子のmRNA 又はcDNAを測定するためのプライマー又はプローブとして利用できる核酸から成る、 肝癌検出用核酸を提供する。

## 【発明の効果】

本願発明により、新規な肝癌マーカーを利用した、肝癌の検出方法が提供された。成体 におけるdlkは、胎盤以外の臓器では検出されず、また、マウス急性肝障害モデルにおい ても検出されないことから、本発明の方法により高い特異性で肝癌を検出することが可能 である。さらに、dlkは、増殖性の高い胎児期の肝細胞や、成体における肝再生時に出現 するオーバル細胞においても発現することから、増殖する肝癌細胞において発現している と考えられるので、初期の肝癌を検出できると考えられる。また、抗dlkモノクローナル 抗体を用いることにより、血液中に遊離した、dlkの細胞外領域であるFA1を検出すること が可能であることから、dlkの細胞外領域を腫瘍マーカーとした血液検査により簡便に肝 癌を検出することが可能である。

# 【発明を実施するための最良の形態】

下記実施例に具体的に記載するように、本願発明者らは、dlkが成体において、高い特 異性をもって肝癌細胞表面上に発現しており、細胞表面上のdlk抗原を腫瘍マーカーとし て用いたり、dlk遺伝子のmRNAを測定することにより、肝癌細胞の検出が可能である ことを見出した。本願発明は、この知見を基礎とするものである。なお、本明細書及び請 求の範囲において、「測定」には、検出、定量及び半定量が包含される。

dlk自体は公知であり、dlkをコードする c DNAはクローニングされており、その塩基 配列及びそれがコードするアミノ酸配列も公知である。例えば、ヒトdlkは、GenBank acc ession番号U15979およびNM\_003836等に示されている。ラットdlkは、GenBank accession 番号AB046763およびD84336等に示されている。ウシのdlkは、GenBank accession番号AB00 9278に示されている。これらのうち、GenBank accession番号U15979に示されるヒトdlkの c DNA配列及びそれがコードするアミノ酸配列をそれぞれ配列表の配列番号1及び2に 示す。また、GenBank accession番号NM\_003836に記載されている通り、dlkcDNAには 、SNPを有する複数のバリアントが知られており、このようなバリアントもdlkに包含され ることは言うまでもない。なお、配列番号2に示すヒトdlkのアミノ酸配列のうち、細胞 外領域は、24aa~304aaの領域である。

dlkは、肝癌細胞表面上に発現しているので、これを腫瘍マーカー抗原として利用する ことにより肝癌細胞を検出することができる。なお、肝癌細胞には、肝細胞癌細胞及び胆 管細胞癌細胞が包含され、下記実施例において具体的に記載されるように、これらのいず れの表面にもdlkが発現していることが確認された。細胞表面上の腫瘍マーカー抗原を測 定する方法自体は周知であり、該腫瘍マーカー抗原と抗原抗体反応する抗体との抗原抗体 反応を利用した種々の方法により行うことができる。用いる抗体としては、高くて均一な 特異性を有するモノクローナル抗体が好ましい。抗マウスdlkモノクローナル抗体は公知 である(非特許文献11)。また、下記実施例に具体的に記載するように、本願発明者ら は、抗ヒトdlkモノクローナル抗体の作出に成功した。すなわち、ヒトdlk c DNAを哺乳 動物細胞用の発現ベクターに組み込み、この組換えベクターを細胞株に導入してdlkを細 胞表面上に発現する細胞株を作出し、これを免疫原として用いて常法であるKohlerとMils teinの方法により抗ヒトdlkモノクローナル抗体を産生するハイブリドーマを樹立するこ とができる。あるいは、上記のように、dlkの細胞が領域のアミノ酸配列及びそれをコー ドする c D N A 配列は公知であるので、dlkの細胞外領域又はその一部分は、遺伝子工学 的手法又はペプチド合成法により容易に調製可能である。調製したdlkの細胞外領域又は その一部分をそのまま、又はキーホールリンペットヘモシアニン(KLH)やウシ血清アルブ ミン(BSA)等の担体に結合させたものを免疫原として用いる常法によっても抗dlkモノクロ ーナル抗体を作出することが可能である。また、抗体のFab断片や、F(ab')2断片のような 、抗原結合性を有する抗体断片を用いることも可能である。

細胞表面上に発現する抗原(本願発明の場合はdlk)に対する抗体又はその抗原結合性 断片を用いた、該抗原を細胞表面上に発現する細胞の測定方法自体は周知であるので、抗 dlk抗体を用いた周知の手法に基づき、試料中の肝癌細胞を測定することができる。測定 方法としては、免疫染色、ELISA等のサンドイッチ法、ラテックス凝集法などの凝集法、 競合法等を挙げることができできる。これらはいずれも周知であり、用いる抗体さえ入手 すれば常法により容易に行うことができる。さらに、本発明の肝癌細胞の検出を効率的に 実施できる好ましい方法として、マグネティックセルソーター(MACS)又はフローサイトメ ーター、とりわけ蛍光活性化セルソーター(FACS)を用いる方法を挙げることができる。MA CSは、細胞表面抗原に対する抗体を不動化した超微粒子磁性ビーズで細胞を標識し、これ を強力磁場にセットしたカラムに通して目的の細胞を分離するシステムであり、回収率が 高く高純度な細胞を得ることができ、大量の細胞も効率的に分離することができ、さらに 、細胞の機能や増殖能を保ったまま分離できるので、検出した肝癌細胞の性質をさらに調 べる場合等に好ましい。また、FACSは、蛍光標識した抗体で細胞を標識し、ノズルから噴 射された細胞流にレーザーを当て、発生する分散光と蛍光を分析して、各1個の細胞を含 む水滴を荷電させ、高電界で分離する装置である。FACSもMACSと同様な理由により、本発 明の方法に好ましい。MACS及びFACSはいずれもこの分野において周知であり、そのための 装置が市販されているので、用いる抗体さえ入手すればこれらの市販品を用いて容易に行 うことができる。

細胞表面上のdlk抗原を検出する方法に供される試料としては、肝癌細胞を含んでいる かもしれない試料であり、通常、肝臓の生検試料である。生検試料は、組織切片(免疫染 色の場合)でもよいし、肝臓組織をコラゲナーゼやトリプシン等のプロテアーゼで処理し て得られる細胞浮遊液であってもよい。

一方、膜タンパク質であるDlkはその細胞外領域が切断され、FA1として知られる可溶性 分子を生成することが明かとなっている(非特許文献10)。そして、下記実施例に記載 したとおり、本願発明者らが作出した抗ヒトdlkモノクローナル抗体は、FA1とも抗原抗体 反応をする。したがって、抗dlk抗体、好ましくは抗dlkモノクローナル抗体を用いて血液 中のFA1を免疫測定することにより、血液試料(血清、血漿、全血等)を用い肝癌の診断 を行なうことが可能である。免疫測定自体は、上記のような常法により容易に行うことが できる。

## [0015]



## [0016]

上記のように、抗dlk抗体、好ましくは抗dlkモノクローナル抗体は、肝癌の検出に用い ることができるので、肝癌診断薬としての用途を有する。

また、細胞中の、dlk mRNAを測定することによっても、dlk遺伝子の発現を調べる [0017] ことができる。細胞中のmRNAの測定は、常法により行うことができる。すなわち、例 えば、下記実施例に記載の通り、ノーザンブロット法により行うこともできるし、逆転写 PCR(RT-PCR)を行い、PCR産物を電気泳動することにより、さらに電気泳動バンドを サザンブロット法にかけることにより行うことができる。あるいは、RT-PCRをリアルタイ ム検出PCR(RTD-PCR)法により行うことにより、鋳型となるcDNA量、ひいてはmR NA量を正確に定量することができる。あるいは、NASBA法等により、mRNAを直接増 幅し、電気泳動さらには電気泳動後のノーザンブロットにより測定することも可能である 。これらの方法自体は、いずれも常法であり、必要な試薬キット及び装置は市販されてい る。また、Dlkの c D N A 配列が公知であるので、これらの方法に必要なプローブやプラ イマーは容易に設計することができるし、下記実施例にも具体的にこれらの例が記載され ている。したがって、DlkタンパクをコードするmRNAの測定は、当業者が容易に行う ことができる。なお、DlkのmRNA(又はmRNAを鋳型として得られたcDNA)の 検出や増幅に用いられるプローブやプライマーは、DlkのmRNA又は c DNAのいずれ かの鎖に相補的な配列を有するものが好ましいが、プローブやプライマーのサイズの10 %以下、好ましくは5%以下の塩基のミスマッチを有するものを用いることも可能である 。このようなミスマッチを有するプライマーを用いることにより、増幅産物に所望の制限 酵素部位を付与することができる。このような制限酵素部位は、増幅産物をベクターへ組 み込む際に便利な場合がある。また、プローブやプライマーのサイズ (DlkのmRNA又 は c D N A とハイブリダイズする領域のサイズ) は、特に限定されないが、常法と同様、 15塩基以上、好ましくは20塩基以上であり、サイズの上限は特にないが、プライマー の場合には、通常、50塩基以下、好ましくは40塩基以下であり、プローブの場合には 全長以下が適当である。なお、測定すべきDlkのmRNA又は c DNAの領域とハイブリ ダイズする上記核酸領域を含み、プライマー又はプローブとして利用可能であれば、核酸 断片の一端に非相補的な配列が付加されていてもよい。このような付加的な配列は、タグ や他の核酸との結合のために利用することが可能な場合がある。本発明は、DlkのmRN A又は c D N A とハイブリダイズする、これらのプローブ及びプライマーのような、肝癌 検出用核酸をも提供する。

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例 に限定されるものではない。

#### 【実施例】

## [0019]

- 材料と方法
- (1) ヒトdlk 全長cDNAの単離と発現ベクターの構築

ヒトDlk(Genbank accession No. U15979)の遺伝子配列情報よりPCRプライマーを設計し た。作成したプライマーの配列は以下の通りである。

フォワード側プライマー: 5'-cgcgtccgcaaccagaagccc-3'

リバース側プライマー: 5'-aagcttgatctcctcgtcgccggcc-3'

この時、リバース側プライマーにはHindIIIによる制限酵素消化配列を付加した。これら のプライマーと胎生10週のヒト肝臓より調整した全RNA (TAKARA)から合成したcDNAを鋳型 としてPCR反応を行った。その後、アガロースゲル電気泳動による展開、目的のバンドの 抽出を行い、pCRIIベクター(Invitrogen)にクローニングした(pCRII-hdlk)。クローニン

グしたヒトDlkのcDNAはシークエンスにより確認した。

## [0020]

発現ベクターの構築にあたり、ヒトDlkのC末端にFlagタグを付加するため、まずpbluescr ipt II SK(+)ベクター(STRATAGENE)のHindIII/SalI部位にFlagタグ配列をコードするオリ ゴヌクレオチド(配列:フォワード側5'-agcttgactacaaggacgacgatgacaagtgag-3'、リバ ース側5'-tcgactcacttgtcatcgtcgtccttgtagtca-3') を挿入した(pBS-Flag)。次にpCRII-h dlkからヒトdlk遺伝子を含むEcoRI/HindIII断片を切り出し、pBS-FlagベクターのEcoRI/H indIII部位に挿入した(pBS-hdlk-Flag)。さらにpBS-hdlk-FlagからEcoRI/SalI断片を切り 出し、pcDNA3.1ベクター(Invitrogen)およびpMIGベクター8)のEcoRI/XhoI部位に挿入した (それぞれpcDNA-hdlk-Flag、pMIG-hdlk-Flag)。

ヒトFA1発現ベクターを構築するにあたり、以下のプライマーを設計し、合成した。 フォワード側プライマー:5'-cgcgtccgcaaccagaagccc-3'

リバース側プライマー:5'-ctcgaggtgctccggctgctgcaccggc-3'

この時リバース側プライマーにはXhoIによる制限酵素消化配列を付加した。これらのプラ イマーとヒトdlkのcDNAを鋳型としてPCR反応を行い、得られたヒトFA1 cDNAをpCRIIベク ター(Invitrogen)にクローニングした(pCRII-hFA1)。クローニングしたヒトFA1のcDNAは シークエンスにより確認した。

pCRII-hFA1からヒトFA1 cDNAを含むEcoRI/XhoI断片を切り出し、pcDNA4/Myc-Hisベクタ ー(Invitrogen)のEcoRI/XhoI部位に挿入した(pcDNA4-hFA1)。この発現ベクターにはC末端 側にMycタグ及びHisタグ配列が付加されており、ヒトFA1はMycタグ及びHisタグとの融合 タンパク質として発現する。

#### [0021]

(2) ヒト肝癌由来細胞株 ヒト肝癌由来細胞株は、JHH-6、HLF、JHH-5及びHuh-6であり、いずれも(財)ヒューマ ンサイエンス振興財団より分譲を受けた。

## [0022]

(3) 培養細胞への遺伝子導入

培養細胞への遺伝子導入は、LipofectAMINE-plus試薬(GIBCO BRL)を用い、添付のプロ トコルに従い行った。

#### [0023]

ヒト肝癌由来細胞株からTrizol試薬(ニッポンジーン)を用いてRNAを抽出した。First (4) RT-PCR -strand cDNA synthesis kit(Amersham Pharmacia Biotech)を用いて抽出したRNAからcDN Aを合成した後、PCR法によりヒトDlkの発現を解析した。使用したプライマーは以下の通 りである。

フォワード側プライマー: 5'-agagctcaacaagaaaacc-3' リバース側プライマー: 5'-gcgtatagtaagctctgagg-3' [0024]

# (5) ノーザンプロット解析

胎児組織全RNA(TAKARA)および細胞からTrizol試薬 (ニッポンジーン) を用いて抽出し た全RNA、各10μgをホルムアルデヒド変性ゲルにて電気泳動した。ナイロン膜に転写した 後、DIGラベルしたcDNAプロープを用いてハイブリダイズした。プローブの検出は、CDP-s tarを基質とした化学発光により行った。

## [0025]

# (6) 抗ヒトDlkモノクローナル抗体の作製

ヒトdlk遺伝子を組み込んだ、上記レトロウイルスベクター(pMIG-hdlk-Flag)をパッケ ージング細胞であるBOSC23細胞 (Pear, W.S. et al. (1993) Proc. Natl. Acad. Sci. US A 90, 8392-8396)に導入し、ヒトdlk遺伝子を持つレトロウイルスを産生した。我々が以 前、温度感受性SV40 large T antigenのトランスジェニックマウス (Yanai, N. et al. (1 991) Exp. Cell Res. 197, 50-56) の胎児肝臓から樹立した細胞株7E2-Cに産生したレト

ロウイルスを感染させ、恒常的にヒトDlkを発現する細胞株7E2-C(hdlk)を得た。

さらに、HEK293細胞(入手先:東京大学分子細胞生物学研究所機能形成)に上記発現べ クターpcDNA-hdlk-Flagを導入し、抗生物質G418(geneticin, GIBCO BRL)による選択を行 った後、ヒトDlkを安定して発現している細胞株HEK293(hdlk)を樹立した。

上記2種の細胞株をそれぞれ抗原としてラットを免疫し、常法により抗ヒトDlkモノクロ ーナル抗体を産生するハイブリドーマクローン作製した。これらのクローンを、予め(7 日前) 2,6,10,14-テトラメチルペンタデカン (プリスタン) を投与されたBALB/cヌードマ ウスの腹腔内に3x10<sup>6</sup>個投与し、2週間後の腹水を採取した。さらに、この腹水からカプリ ル酸沈澱、プロテインGカラム精製を行うことで、各ハイブリドーマクローンが産生する 抗ヒトDlkモノクローナル抗体を得た。

## [0028]

ゼラチンでコートした96穴培養プレート(Corning)に上記7E2-C(hdlk)株を7.5x103 細胞 (7) cell ELISA法 /ウェルで播種し、37℃で2日間培養した。氷冷PBSで洗浄後、4%パラホルムアルデヒド 溶液で固定、0.2% TrironX-100 (商品名) 溶液で処理し、cell ELISA用プレートとした。 以後、定法に従いELISA法を行った。

## [0029]

ヒト正常組織、肝癌組織のパラフィン切片(Bio Chain, Hepatocellular carcinoma; ca (8) 免疫組織染色法 talog No.: T2235149-4, lot No.: A607070, Cholangiocellular carcinoma; catalog No.: T2235149-2, lot No.: A603549)は、脱パラフィン処理後、10mMクエン酸ナトリウム溶液中 で10分間加熱処理し、抗ヒトDlkモノクローナル抗体を用いた染色に使用した。DAB(3,3'-ジアミノベンチジン)を基質とて発色反応を行った後、対比染色としてヘマトキシリンに よる核染色を行った。これらの操作はより具体的には次のようにして行なった。4%パラ ホルムアルデヒドによる固定及びパラフィン包埋された切片を、脱パラフィン処理後、10 mMクエン酸ナトリウム溶液中で10分間加熱処理した。次にメタノールに終濃度 0.3%と なるように過酸化水素水を加えた溶液によって、室温で20分間処理し内因性のペルオキ シダーゼ活性を除いた。PBSで室温5分間の洗いを2回行い、ブロックエース試薬(大 日本製薬株式会社)を用いて30分間ブロッキングを行い、組織中の非特異的結合部位を ふさぐ操作を行った。次に1/10に希釈したブロックエース試薬により希釈した抗ヒト dlkモノクローナル抗体clone 1C1 (終濃度 $0.25 \mu \, g/ml$ ) を室温で 1 時間反応させ、PBSで5分の洗いを3回行い、続いて1/10に希釈したブロックエース試薬によって100 倍に希釈したビオチン化抗ラットIgG抗体を室温で1時間反応させた。PBSによる5分 間の洗いを3回行った後、ABCキットの試薬を説明書通りに混ぜてABCコンプレックスを作 り、これを室温で30分反応させた。PBSで5分間3回の洗いの後、ペルオキシダーゼ 基質(0.02%DAB、0.03%過酸化水素水、50mM Tris-HCl pH 7.5)によって発 ー 色を行った。発色を確認した後、水で10分間洗い、マイヤーへマトキシリン溶液(和光 ) によって核を染色し、その後アルコールで脱水し、キシレンで透徹して、エンテランニ ュー(メルク・ジャパン株式会社)で封入した。

## [0030]

細胞はトリプシン処理によって培養皿より剥がし、細胞懸濁液(細胞密度5x10<sup>6</sup> cells/m (9) FACS解析 1) を調製した。抗ヒトDlkモノクローナル抗体0.5µgと細胞懸濁液100µLを4℃、30分 間反応させた。PBSで洗浄後、ビオチン化抗ラットIgG(Vector) (0.5μg) と反応 (4℃、3 0分) させ、再びPBSで洗浄した。ストレプトアビジン-FITC(Pharmingen)またはストレプ トアビジン-PE(Pharmingen) (0.5μg) と反応(4℃、30分)させた後、FACSCalibur(BECTON DICKINSON) にて解析した。

## [0031]

(10) 抗ヒトdlkモノクローナル抗体によるヒトFA1の検出 ヒトFA1発現ベクターを7E2-C細胞に導入し、3日後の培養上清を検出試料とした。検出に は、捕獲抗体としてclone 31C4、検出抗体としてビオチン化したclone 4C4を用いたサン ドイッチELISA法を用いた。検出抗体のビオチン化はECL™ Protein Biotinylation Modul e(Amersham Bioscience)を用いて行った。

#### [0032]

#### 2. 結果

## (1) ヒト正常肝臓におけるヒトDlkの発現

本願発明者らは、以前、マウスにおいてDlkが胎生肝細胞に高発現しており、成体肝細胞には発現が見られないこと、抗マウスDlkモノクローナル抗体とMACS(Magnetic beads cell sorting)を組み合わせて用いることで、胎児肝臓から肝細胞のみを高純度で回収することができることを見い出している(非特許文献 7、特許文献 1)。そこで、まずヒトにおいても同様な発現パターンを示すのか検討した。ヒト胎児肝臓全RNAサンプル(TAKARA)を用いてノーザンブロット解析を行った結果、妊娠6週目から12週目の胎児肝臓においてヒトDlkの発現が認められた(図1A)。また妊娠12週目における各臓器でのヒトDlkの発現を調べた結果、肝臓以外に腎臓、骨格筋でも発現していた(図1B)。これに対し成体組織での発現は、以前の報告にあるように、胎盤以外では検出できなかった(図1C)(非特許文献 1)。しかしながら最近の報告では、FA1が下垂体(Larsen, J.B. et al. (1996) Lancet. 347, 191)、副腎(Jensen, C.H. et al. (1993) Hum. Reprod. 8, 635-641)などにも発現していることが明らかにされている。このことから、ヒトでもマウスと同様に、肝臓でのDlkの発現は胎児で見られるものの、成体肝臓では発現していないことがわかった。

#### [0033]

## (2) 抗ヒトDlkモノクローナル抗体

上記の結果を更に確認するため、本願発明者らはまず、抗ヒトDlkモノクローナル抗体 (ラットIgG) を作製した。抗原として2種類のヒトDlk発現細胞を樹立し、これを抗原としてラットを免疫した。ハイブリドーマを定法に従い調整し、その後、抗原として用いた 7E2-C(hdlk)株を用いたFACS解析、およびcell ELISA法により陽性クローンを選択した。 さらにクローニングを行い、3種類(clone 1C1、4C4、31C4)の安定したクローンを確立した。 最終的に確立したクローンの培養上清を用いてFACS解析を行った結果、確かにこれらの培養上清中にヒトDlkと特異的に反応するモノクローナル抗体が産生されていることが確認された。

#### [0034]

これらのクローンを、予め(7日前)2,6,10,14-テトラメチルペンタデカン(プリスタン)を投与されたBALB/cヌードマウスの腹腔内に3x10<sup>6</sup> 個投与し、2週間後の腹水を採取した。さらに、この腹水からカプリル酸沈澱、プロテインGカラム精製を行うことで、各ハイブリドーマクローンが産生する抗ヒトDlkモノクローナル抗体を得た。得られた精製モノクローナル抗体は、対応する各培養上清とFACS解析において同等の活性を示した。

#### [0035]

得られた抗ヒトDlkモノクローナル抗体clone 1Clを用いて、ヒト胎児組織の免疫組織染色を行った。ノーザンプロットの結果に一致して、肝臓、腎臓、骨格筋で染色像が見られた。また、胎盤組織でも同様に染色を行った結果、絨毛の合胞体性栄養細胞において強い染色が見られた。

#### [0036]

# (3) ヒト肝癌由来細胞株におけるヒトDlkの発現

ヒトDlkの発現は、マウスでの結果と同様、胎児の未熟な肝細胞では見られるが、成体の肝細胞では発現が認められない。本願発明者らは、ヒト肝癌におけるヒトDlkの発現の可能性を検討した。まず4種類のヒト肝癌由来細胞株(JHH-6、HLF、JHH-5、Huh-6)について、FACS解析、免疫染色およびRT-PCR法によって検討した。抗ヒトDlkモノクローナル抗体clone 4C4を用いてFACS解析を行った結果、未分化型の細胞株(JHH-6、HLF)ではシフトは認められなかったが、分化型の細胞株(JHH-5、Huh-6)ではヒトDlkの発現を示すシフト



#### [0037]

次にRT-PCR法による解析を行った。それぞれの細胞株から抽出した全RNAからcDNAを合成し、これを鋳型としてPCR反応を行った。その結果、FACS解析、免疫染色の結果と同様に、分化型の細胞株ではヒトDlkの発現が見られた。しかしながらRT-PCR法では、FACS解析、免疫染色では発現の見られなかった未分化型の細胞株でも、弱いながらヒトDlkの発現が認められた(図2C)。未分化型の細胞株における結果の相違は、ヒトDlkの検出感度の差であると考えられる。

#### [0038]

## (4) ヒト肝癌組織におけるヒトDlkの発現

ヒト肝癌由来細胞株におけるヒトDlkの発現解析の結果は、ヒトDlkが肝癌組織においても発現している可能性を示唆している。そこでヒト肝癌組織でのヒトDlkの発現を、抗ヒトDlkモノクローナル抗体clone 1Clを用いて免疫組織染色法により検討した。その結果、肝細胞癌および胆管細胞癌の組織において癌部で強く染色されることが明かとなった(図3)。この時、癌部に隣接する正常組織では全く染色されなかった。このことはDlkが胎生肝細胞のみならず、成体肝細胞の癌化によっても発現することを示しており、肝癌における腫瘍マーカーになりうることが示唆された。

#### [0039]

なお、図2B、図3及び図4の原図はカラー写真であり、添付の図面(白黒グレースケール)では結果は明瞭ではないかもしれないが、原図では、上記結果が明瞭に示されている。

#### [0040]

## (5) 抗ヒトdlkモノクローナル抗体によるヒトFA1の検出

Dlkは、その細胞外領域が切断され、FA1として知られる可溶性分子を産生することが明かとなっている。我々が作出した抗ヒトDlkモノクローナル抗体は、Dlkの細胞外領域を認識することから、この抗体を用いてヒトFA1を認識、検出できる可能性が考えられた。そこで、7E2-C細胞にヒトFA1を一過性に発現させた培養上清を用いてELISA法により検討した。その結果、確かにコントロールベクターを導入した培養上清ではシグナルが検出されないが、ヒトFA1を含む培養上清ではシグナルが検出されることが確認された(図4)。以上のことから我々の作出した抗ヒトDlkモノクローナル抗体は、ヒトFA1を検出できることが明かとなった。

#### 【図面の簡単な説明】

#### [0041]

【図1】ヒト胎児および成体組織におけるDlkの遺伝子発現を示すノーザンプロットの結果を示す写真であり、(A)妊娠6週目から12週目の胎児肝臓におけるDlkの遺伝子発現、(C)成体組織におけるDlkの遺伝子発現、(C)成体組織におけるDlkの遺伝子発現を示す。

【図2】ヒト肝癌由来細胞株におけるDlkの発現解析の結果を示す図であり、(A) FA CS解析 (B) 免疫蛍光染色 (C) RT-PCR解析の結果を示す図である。

【図3】ヒト肝癌組織におけるDlkの発現を示す写真であり、(A)肝細胞癌組織 (E )胆管細胞癌組織についての結果を示す。

【図4】抗ヒトDlkモノクローナル抗体を用いたヒトFA1の検出を示す図であり、ELIS A法により検出、確認した結果を示す。

# 【配列表】

# SEQUENCE LISTING

| •                                |                                                                                                                                            |                    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| <110>                            | KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY                                                                                                 | -ti- 00            |
| <120><br>ncer                    | Method for detecting of hepatic cancer and diagnostic drug for he                                                                          | epatic ca          |
| <130>                            | 03880N                                                                                                                                     |                    |
| <160>                            | 6                                                                                                                                          |                    |
| <170>                            | PatentIn version 3.1                                                                                                                       |                    |
| <212>                            | 1<br>1553<br>DNA<br>Homo sapiens                                                                                                           |                    |
| <220><br><221><br><222:<br><223: | > CDS<br>> (174)(1322)                                                                                                                     |                    |
| <400                             | > 1 haaggag gtggagagcg caccgcagcc cggtgcagcc cggtgcagcc ctggctttcc                                                                         | 60                 |
| coto                             | egctgcg gcccgtgccc cctttcgcgt ccgcaaccag aagcccagtg cggcgccagg                                                                             | 120                |
|                                  | cggaccc gcgcccgcac cgctcccggg accgcgaccc cggccgccca gag atg Met 1                                                                          | 176                |
| acc<br>Thr                       | gcg acc gaa gcc ctc ctg cgc gtc ctc ttg ctc ctg ctg                                                                                        | 224                |
| ggc<br>Gly                       | c cac agc acc tat ggg gct gaa tgc ttc ccg gcc tgc aac ccc caa<br>y His Ser Thr Tyr Gly Ala Glu Cys Phe Pro Ala Cys Asn Pro Gln<br>20 25 30 | 272                |
| aa <sup>-</sup><br>As:           | t gga ttc tgc gag gat gac aat gtt tgc agg tgc cag cct ggc tgg<br>n Gly Phe Cys Glu Asp Asp Asn Val Cys Arg Cys Gln Pro Gly Trp<br>35 40    | 320                |
| ca<br>G1<br>50                   | ng ggt ccc ctt tgt gac cag tgc gtg acc tct ccc ggc tgc ctt cac<br>nn Gly Pro Leu Cys Asp Gln Cys Val Thr Ser Pro Gly Cys Leu His           | 368                |
| gg                               | ga ctc tgt gga gaa ccc ggg cag tgc att tgc acc gac ggc tgg gac<br>出証特2004-3                                                                | 416<br>1 2 2 1 7 9 |

| Gly Leu Cy                    | ys Gly                    | Glu Pro<br>70               | Gly Gln                     | Cys :                   | Ile C<br>75           | ys Th                   | r Asp                   | Gly 3                | ſrp <i>P</i><br>30 | Asp               |     |
|-------------------------------|---------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------|-------------------------|-------------------------|----------------------|--------------------|-------------------|-----|
| ggg gag c<br>Gly Glu L        | tc tgt<br>eu Cys<br>85    | gat aga<br>Asp Arg          | gat gtt<br>Asp Val          | cgg (Arg )              | gcc t<br>Ala C        | gc to<br>Cys Se         | c tcg<br>r Ser          | gcc (<br>Ala 1<br>95 | ccc (<br>Pro (     | tgt<br>Cys        | 464 |
| gcc aac a<br>Ala Asn A<br>1   | ac ggg<br>sn Gly<br>00    | acc tgc<br>Thr Cys          | gtg ago<br>Val Ser<br>105   | Leu                     | gac g<br>Asp (        | ggt gg<br>Gly Gl        | gc ctc<br>y Leu<br>110  | tat .<br>Tyr         | gaa<br>Glu (       | tgc<br>Cys        | 512 |
| tcc tgt g<br>Ser Cys A<br>115 | cc ccc<br>la Pro          | ggg tac<br>Gly Tyr          | tcg gga<br>Ser Gly<br>120   | aag<br>Lys              | gac 1<br>Asp (        | tgc ca<br>Cys Gl<br>12  | ln Lys                  | aag<br>Lys           | gac<br>Asp         | ggg<br>Gly        | 560 |
| ccc tgt g<br>Pro Cys V<br>130 | gtg atc<br>Val Ile        | aac ggc<br>Asn Gly<br>135   | Ser Pro                     | tgc<br>Cys              | Gln l                 | cac gg<br>His Gl<br>140 | ga ggc<br>ly Gly        | acc<br>Thr           | tgc<br>Cys         | gtg<br>Val<br>145 | 608 |
| gat gat g<br>Asp Asp (        | gag ggc<br>Glu Gly        | cgg gcc<br>Arg Ala          | tcc ca<br>Ser Hi            | t gcc<br>s Ala          | tcc<br>Ser<br>155     | tgc c<br>Cys L          | tg tgo<br>eu Cys        | ccc<br>Pro           | cct<br>Pro<br>160  | ggc<br>Gly        | 656 |
| ttc tca g<br>Phe Ser (        | ggc aat<br>Gly Asn<br>165 | Phe Cy                      | c gag at<br>s Glu Il        | c gtg<br>e Val<br>170   | gcc<br>Ala            | aac a<br>Asn S          | gc tgo<br>er Cys        | acc<br>Thr           | Pro                | aac<br>Asn        | 704 |
| cca tgc ;<br>Pro Cys          | gag aac<br>Glu Asr<br>180 | gac gg<br>Asp Gl            | c gtc tg<br>y Val Cy<br>18  | s Thr                   | gac<br>Asp            | att g<br>Ile G          | gg gg<br>Gly Gly<br>190 | y Asp                | ttc<br>Phe         | cgc<br>Arg        | 752 |
| tgc cgg<br>Cys Arg<br>195     | tgc cca<br>Cys Pro        | a gcc gg<br>o Ala Gl        | c ttc at<br>y Phe Il<br>200 | c gac<br>e Asp          | aag<br>Lys            | Thr (                   | gc ago<br>Cys Se<br>205 | c cgc<br>r Arg       | ccg<br>Pro         | gtg<br>Val        | 800 |
| acc aac<br>Thr Asn<br>210     | tgc gcc<br>Cys Al:        | c agc ag<br>a Ser Se<br>21  | r Pro Cy                    | gc cag<br>ys Gln        | g aac<br>n Asn        | ggg g<br>Gly (<br>220   | ggc ac<br>Gly Th        | c tgc<br>r Cys       | ctg<br>Leu         | cag<br>Gln<br>225 | 848 |
| cac acc<br>His Thr            | cag gt<br>Gln Va          | g agc ta<br>1 Ser Ty<br>230 | uc gag tg<br>vr Glu Cy      | gt ctg<br>ys Lei        | g tgc<br>1 Cys<br>235 | Lys I                   | ccc ga<br>Pro Gl        | g tto<br>u Phe       | aca<br>Thr<br>240  | Gry               | 896 |
| ctc acc<br>Leu Thr            | tgt gt<br>Cys Va<br>24    | l Lys Ly                    | ag cgc go<br>vs Arg A       | cg ctg<br>la Lei<br>250 | ı Ser                 | ccc                     | cag ca<br>Gln Gl        | ng gto<br>n Val      | lini               | c cgt<br>r Arg    | 944 |
| ctg ccc<br>Leu Pro            | agc gg<br>Ser Gl<br>260   | gc tat gg<br>y Tyr G        | gg ctg g<br>ly Leu A<br>2   | cc tac<br>la Ty:<br>65  | c cgc<br>r Arg        | ctg<br>Leu              | Thr Pi                  | 70 GI                | y va.              | g cac<br>l His    | 992 |

| gag ctg ccg gtg cag cag ccg gag cac cgc atc ctg aag gtg tcc atg<br>Glu Leu Pro Val Gln Gln Pro Glu His Arg Ile Leu Lys Val Ser Met<br>275 280 285     | 1040 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aaa gag ctc aac aag aaa acc cct ctc ctc acc gag ggc cag gcc atc<br>Lys Glu Leu Asn Lys Lys Thr Pro Leu Leu Thr Glu Gly Gln Ala Ile<br>290 295 300 305 | 1088 |
| tgc ttc acc atc ctg ggc gtg ctc acc agc ctg gtg gtg ctg ggc act<br>Cys Phe Thr Ile Leu Gly Val Leu Thr Ser Leu Val Val Leu Gly Thr<br>310 320         | 1136 |
| gtg ggt atc gtc ttc ctc aac aag tgc gag acc tgg gtg tcc aac ctg<br>Val Gly Ile Val Phe Leu Asn Lys Cys Glu Thr Trp Val Ser Asn Leu<br>325 330 335     | 1184 |
| cgc tac aac cac atg ctg cgg aag aag aac ctg ctg ctt cag tac aac<br>Arg Tyr Asn His Met Leu Arg Lys Lys Asn Leu Leu Gln Tyr Asn<br>340 345 350         | 1232 |
| agc ggg gag gac ctg gcc gtc aac atc atc ttc ccc gag aag atc gac<br>Ser Gly Glu Asp Leu Ala Val Asn Ile Ile Phe Pro Glu Lys Ile Asp<br>355 360 365     | 1280 |
| atg acc acc ttc agc aag gag gcc ggc gac gag gag atc taa<br>Met Thr Thr Phe Ser Lys Glu Ala Gly Asp Glu Glu Ile<br>370 375 380                         | 1322 |
| gcagcgttcc cacagccccc tctagattct tggagttccg cagagcttac tatacgcggt                                                                                     | 1382 |
| ctgtcctaat ctttgtggtg ttcgctatct cttgtgtcaa atctggtgaa cgctacgctt                                                                                     | 1442 |
| acatatattg tetttgtget getgtgtgae aaacgeaatg caaaaacaat cetettete                                                                                      | 1502 |
| tctcttaatg catgatacag aataataata agaatttcat ctttaaatga g                                                                                              | 1553 |
| <210> 2<br><211> 382                                                                                                                                  |      |

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Ala Thr Glu Ala Leu Leu Arg Val Leu Leu Leu Leu Leu Ala 1 5 10 15

Phe Gly His Ser Thr Tyr Gly Ala Glu Cys Phe Pro Ala Cys Asn Pro

30

Gln Asn Gly Phe Cys Glu Asp Asp Asn Val Cys Arg Cys Gln Pro Gly 35

Trp Gln Gly Pro Leu Cys Asp Gln Cys Val Thr Ser Pro Gly Cys Leu 50 60

His Gly Leu Cys Gly Glu Pro Gly Gln Cys Ile Cys Thr Asp Gly Trp 65 75 80

Asp Gly Glu Leu Cys Asp Arg Asp Val Arg Ala Cys Ser Ser Ala Pro 85 90 95

Cys Ala Asn Asn Gly Thr Cys Val Ser Leu Asp Gly Gly Leu Tyr Glu 100 105 110

Cys Ser Cys Ala Pro Gly Tyr Ser Gly Lys Asp Cys Gln Lys Lys Asp 115 120 125

Gly Pro Cys Val Ile Asn Gly Ser Pro Cys Gln His Gly Gly Thr Cys 130 135 140

Val Asp Asp Glu Gly Arg Ala Ser His Ala Ser Cys Leu Cys Pro Pro 145 150 150 160

Gly Phe Ser Gly Asn Phe Cys Glu Ile Val Ala Asn Ser Cys Thr Pro 165 170 175

Asn Pro Cys Glu Asn Asp Gly Val Cys Thr Asp Ile Gly Gly Asp Phe 180 185 190

Arg Cys Arg Cys Pro Ala Gly Phe Ile Asp Lys Thr Cys Ser Arg Pro 195 200

Val Thr Asn Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Thr Cys Leu 210 215 220 Gln His Thr Gln Val Ser Tyr Glu Cys Leu Cys Lys Pro Glu Phe Thr 235 230 225

Gly Leu Thr Cys Val Lys Lys Arg Ala Leu Ser Pro Gln Gln Val Thr 250 245

Arg Leu Pro Ser Gly Tyr Gly Leu Ala Tyr Arg Leu Thr Pro Gly Val 265 260

His Glu Leu Pro Val Gln Gln Pro Glu His Arg Ile Leu Lys Val Ser 285 280 275

Met Lys Glu Leu Asn Lys Lys Thr Pro Leu Leu Thr Glu Gly Gln Ala 300 295 290

Ile Cys Phe Thr Ile Leu Gly Val Leu Thr Ser Leu Val Val Leu Gly 315 310 305

Thr Val Gly Ile Val Phe Leu Asn Lys Cys Glu Thr Trp Val Ser Asn 330 325

Leu Arg Tyr Asn His Met Leu Arg Lys Lys Asn Leu Leu Gln Tyr 345 340

Asn Ser Gly Glu Asp Leu Ala Val Asn Ile Ile Phe Pro Glu Lys Ile 360 355

Asp Met Thr Thr Phe Ser Lys Glu Ala Gly Asp Glu Glu Ile 380 375 370

3 <210>

<211> 21

<212> DNA

Homo sapiens <213>

<220>

<221>

synthetic oligoDNA primer used for amplification of human dlk cDN <223> A

| <400> 3 cgcgtccgca accagaagcc c                                                                                                | 1     |
|--------------------------------------------------------------------------------------------------------------------------------|-------|
| <210> 4 <211> 25 <212> DNA <213> Homo sapiens                                                                                  |       |
| <pre>&lt;220&gt; &lt;221&gt; misc_feature &lt;223&gt; synthetic oligoDNA primer used for amplification of human dlk cl A</pre> | DN    |
| <400> 4 aagcttgatc tcctcgtcgc cggcc                                                                                            | 25    |
| <210> 5 <211> 19 <212> DNA <213> Homo sapiens                                                                                  |       |
| <220> <221> misc_feature <223> synthetic oligoDNA primer used for amplification of human dlk A                                 | cDN   |
| <400> 5<br>agagctcaac aagaaaacc                                                                                                | 19    |
| <210> 6<br><211> 20<br><212> DNA<br><213> Homo sapiens                                                                         |       |
| <pre>&lt;220&gt; &lt;221&gt; misc_feature &lt;223&gt; synthetic oligoDNA primer used for amplification of human dl</pre>       | k cDN |

<400> 6

gcgtatagta agctctgagg

20





<u>@</u>





<u>O</u>





【図3】





#### 【書類名】要約書

【要約】

高い特異性をもって肝癌を検出することができる肝癌の検出方法及びそのた 【課題】 めの診断薬を提供すること。

【解決手段】 dlk遺伝子の発現を指標として、試料中の肝癌細胞を検出方法する。

【効果】 新規な肝癌マーカーを利用した、肝癌の検出方法が提供された。成体における dlkは、胎盤以外の臓器では検出されず、また、マウス急性肝障害モデルにおいても検出 されないことから、本発明の方法により高い特異性で肝癌を検出することが可能である。 さらに、dlkは、増殖性の高い胎児期の肝細胞や、成体における肝再生時に出現するオー バル細胞においても発現することから、増殖する肝癌細胞において発現していると考えら れるので、初期の肝癌を検出できると考えられる。

【選択図】 なし

ページ: 1/E

# 認定・付加情報

特許出願の番号

特願2003-401585

受付番号

50301977500

書類名

特許願

担当官

小松 清

1905

作成日

平成16年 1月29日

<認定情報・付加情報>

【提出日】

平成15年12月 1日

特願2003-401585

出願人履歴情報

識別番号

[591243103]

1. 変更年月日

1993年 5月17日

[変更理由]

住所変更

住 所 氏 名 神奈川県川崎市高津区坂戸3丁目2番1号

財団法人神奈川科学技術アカデミー

# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017499

International filing date: 25 November 2004 (25.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-401585

Filing date: 01 December 2003 (01.12.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| BLACK BORDERS                                                           |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                   |
| OTHER:                                                                  |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.