ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 2ου ΚΕΦΑΛΑΙΟΥ

Ι. Σε καθεμιά από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής <u>για όλους</u> τους πραγματικούς αριθμούς α, β, γ και δ. Διαφορετικά να κυκλώσετε το γράμμα Ψ.

1.
$$(\alpha = \beta \kappa \alpha \iota \gamma = \delta) \Leftrightarrow \alpha + \gamma = \beta + \delta$$
.

Α Ψ

2. Aν
$$\alpha^2 = \alpha \beta$$
, τότε $\alpha = \beta$.

Α Ψ

3.
$$(\alpha + \beta)^2 = \alpha^2 + \beta^2$$
.

A

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

4. Το άθροισμα
$$\alpha + \beta$$
 δύο άρρητων αριθμών α και β είναι άρρητος αριθμός.

Α Ψ

Α Ψ

6. An
$$\alpha > \beta$$
 kat $\gamma < \delta$, then $\alpha - \gamma > \beta - \delta$.

A

7. Av
$$\alpha^2 > \alpha\beta$$
, τότε $\alpha > \beta$.

Α

8. An
$$\frac{\alpha}{\beta} > 1$$
, then $\alpha > \beta$.

A

9. An
$$\alpha > \beta$$
 kai $\alpha > -\beta$, then $\alpha > 0$.

A

10. An
$$\alpha > \frac{1}{\alpha}$$
, then $\alpha > 1$.

A

11. And
$$\alpha < \beta < 0$$
, then $\alpha^2 > \beta^2$.

A

12. Aν
$$\alpha > -2$$
 και $\beta > -3$, τότε $\alpha \beta > 6$.

A

Ψ

13. An
$$\alpha \le$$
 – 2 kai $\beta \le$ – 3, thte $\alpha \beta \ge 6$.

A

$$14. \ 4\alpha^2-20\alpha\beta+25\beta^2\geq 0.$$

A

15.
$$(\alpha - 1)^2 + (\alpha + 1)^2 > 0$$
.

A

16.
$$(\alpha^2 - 1)^2 + (\alpha + 1)^2 > 0$$
.

A

17.
$$(\alpha + \beta)^2 + (\alpha - \beta)^2 = 0 \Leftrightarrow \alpha = \beta = 0$$
.

A

A

Α

18. An
$$\alpha\cdot\beta\geq 0$$
 , thte $|\alpha+\beta|=|\alpha|+|\beta|.$

19. And
$$\alpha^2 = \beta$$
, then $\alpha = \sqrt{\beta}$.

Ψ

20.
$$\sqrt{\alpha^2} = \alpha$$
.

A

21. As
$$\alpha \ge 0$$
, then $(\sqrt{\alpha})^2 = \alpha$.

A

22. Αν $\alpha \cdot \beta \ge 0$, τότε μπορούμε πάντοτε να γράφουμε $\sqrt{\alpha \cdot \beta} = \sqrt{\alpha} \cdot \sqrt{\beta}$. Α Ψ

23. Aν $\beta \ge 0$, τότε $\sqrt{\alpha^2 \cdot \beta} = \alpha \cdot \sqrt{\beta}$. Ψ Α

24. $\sqrt{\alpha^2 + \beta^2} = \alpha + \beta$. Ψ

25. Αν $\alpha \ge 0$, τότε μπορούμε πάντοτε να γράφουμε $\sqrt[6]{\alpha^3} = \sqrt{\alpha}$. Ψ

26. Μπορούμε πάντοτε να γράφουμε $\sqrt[4]{\alpha^2} = \sqrt{\alpha}$. Ψ

27. $5^{25} > 25^5$. A Ψ

28. $11^{22} > 22^{11}$. Α Ψ

ΙΙ. Να επιλέζετε τη σωστή απάντηση σε καθεμιά από τις παρακάτω περιπτώσεις.

1. Aν 2 < x < 5 τότε η παράσταση |x - 2| + |x - 5| είναι ίση με:

A) 2x - 7**B)** 7 - 2x Γ) -3

2. Αν 10 < x < 20 τότε η τιμή της παράστασης $\frac{|x-10|}{x-10} + \frac{|x-20|}{x-20}$ είναι ίση με:

A) 2 $\mathbf{B}) - 2$ **Γ)** 10

3. Av $\alpha = \sqrt[6]{10}$, $\beta = \sqrt{2}$ και $\gamma = \sqrt[3]{3}$, τότε:

 Γ) $\gamma < \alpha < \beta$ Δ) $\beta < \gamma < \alpha$. **A)** $\alpha < \beta < \gamma$ **B)** $\alpha < \gamma < \beta$

4. Ο αριθμός $\sqrt{9+4\sqrt{5}}$ είναι ίσος με:

B) $3 + 2\sqrt[4]{5}$ Γ) $2 + \sqrt{5}$ Δ) $2 + \sqrt[4]{5}$. **A)** $3 + 2\sqrt{5}$

ΙΙΙ. Στον παρακάτω άξονα τα σημεία Ο, Ι, Α και Β παριστάνουν τους αριθμούς 0, 1, a kai β antistoícos, me $0 < \alpha < 1$ kai $\beta > 1$, enó ta shméia Γ, Δ, E, Z, H kai Θ παριστάνουν τους αριθμούς $\sqrt{\alpha}$, $\sqrt{\beta}$, α^2 , β^2 , α^3 και β^3 , όχι όμως με τη σειρά που αναγράφονται. Να αντιστοιχίσετε τα σημεία Γ, Δ, Ε, Ζ, Η και Θ με τους αριθμούς που παριστάνουν.

Γ	Δ	Е	Z	Н	Θ