Module 12 Understanding Virtual Private Networks www.acit.in

Agenda

- What Are VPNs?
- VPN Technologies
- Access, Intranet, and Extranet VPNs

12-2

VPN Examples

What Are VPNs?

- Virtual Private Networks (VPNs) extend the classic WAN
- VPNs leverage the classic WAN infrastructure, including Cisco's family of VPN-enabled routers and policy management tools
- VPNs provide connectivity on a shared infrastructure with the same policies and "performance" as a private network with lower total cost of ownership

Virtual Private Networks

Why Build a VPN?

- Company information secured
- Lower costs
 - Connectivity costs
 - Capital costs
 - Management and support costs
- Wider connectivity options
- Speed of deployment

What's Driving VPN Offerings?

Reduced Networking Costs

Mobile Users

Telecommuters

Organizational Changes

Mergers/ Acquisitions

Extranets

Intranets

Increased Network Flexibility

Who Buys VPNs?

Organizations wishing to:

- Implement more costeffective WAN solutions
- Connect multiple remote sites
- Deploy intranets
- Connect to suppliers, business partners, and customers
- Get back to their core business, and leave the WAN to the experts
- Lower operational and capital equipment costs

Businesses with:

- Multiple branch office locations
- Telecommuters
- Remote workers
- Contractors and consultants

Networked Applications

Traditional applications

- E-mail
- Database
- File transfer

New applications

- Videoconferencing
- Distance learning
- Advanced publishing
- Voice

Example of a VPN

 Private networking service over a public network infrastructure

VPN Technologies

VPN Technology Building Blocks

Security

- Tunnels and encryption
- Packet authentication
- Firewalls and intrusion detection
- User authentication

Tunneling: L2F/L2TP

Tunneling: Generic Route Encapsulation (GRE)

 Mesh of virtual pointto-point interfaces

 Encapsulates multiprotocol packets in IP tunnels

Application-level QoS

 Value-added platform (new services)

 Encryption-optional tunneling

 Standard architecture for service providers with IP infrastructures

What Is IPSec?

- Network-layer encryption and authentication
- Open standards for ensuring secure private communications over any IP network, including the Internet
- Provides a necessary component of a standards-based, flexible solution for deploying a network-wide security policy
- Data protected with network encryption, digital certification, and device authentication
- Scales from small to very large networks

What is Internet Key Exchange (IKE)?

- Automatically negotiates policy to protect communication
- Authenticated Diffie-Hellman key exchange
- Negotiates (possibly multiple) security associations for IPSec

3DES, MD5, and RSA Signatures, OR IDEA, SHA, and DSS Signatures, OR Blowfish, SHA, and RSA Encryption

IDEA, SHA, and DSS Signatures

IKE Policy Tunnel

IPSec VPN Client Operation

L2TP and IPSec Are Complementary

- IPSec creates the remote tunnel
- L2TP provides tunnel end-point authentication
- IPSec maintains encryption
- L2TP provides tunnels for non-IP traffic
- AAA services and dynamic address like DHCP

Encryption:DES and 3DES

- Widely adopted standard
- Encrypts plain text, which becomes cyphertext
- DES performs 16 rounds
- Triple DES (3DES)
 - The 56-bit DES algorithm runs three times
 - 112-bit triple DES includes two keys
 - 168-bit triple DES includes three keys
- Accomplished on a VPN client, server, router, or firewall

Firewalls

- All traffic from inside to outside and vice versa must pass through the firewall
- Only authorized traffic, as defined by the local security policy, is allowed in or out
- The firewall itself is immune to penetration

User Authentication

- Centralized security database (AAA services)
- High availability
- Same policy across many access points
- Per-user access control
- Single network login
- Support for: TACACS+, RADIUS (IETF), Kerberos, one-time password

VPNs and Quality of Service

Access, Intranet, and Extranet VPNs

Three Types of VPNs

T :	Type	Application	Alternative To	Benefits
Time	Remote access VPN	Mobile users Remote connectivity	Dedicated dial	Ubiquitous access, lower cost
	Intranet VPN	Site-to-site Internal connectivity	Leased line	Extend connectivity, lower cost
	Extranet VPN	Business-to-business External connectivity	Fax Mail EDI	Facilitates e-commerce

Access VPNs

Access VPN Operation Overview

Access VPN Basic Components

Client-Initiated Access VPN

- Encrypted tunnel from the remote client to the corporate network
- Independent of access technology
- Standards compliant
 - IPSec encapsulated tunnel
 - IKE key management

Client-Initiated VPNs

• Pros:

- Use same hardware for dedicated access
- Dedicated encryption hardware in firewall for performance

• Cons:

- Management of IPSec PC client
- Security must be initiated by user

NAS-Initiated Access VPN

NAS-Initiated VPNs

• Pros:

- No PC client software to manage
- Premium services
- VPN and Internet access at the NAS
- More scalable and manageable
- Cons:
 - Users can connect only to certain POPs

The Intranet VPN

The Extranet VPN

Intranet and Extranet VPNs

- Multiple users, multiple sites, and potentially multiple companies or multiple communities of interest
- Dedicated connections
- Flexible architecture options
 - IP tunnels with IPSec or GRE
 - Managed router service with Frame Relay or ATM virtual circuits
 - Tag Switching/MPLS

Comparing the Types

Type	Access VPN	Intranet	Extranet
NAS-Initiated	X	X	X
Client- Initiated	X	X	X
Router- Initiated		X	X

VPN Examples

Health Care Company Intranet Deployment

Challenge—Low-cost means for connecting remote sites with primary hospital

Branch Office or Telecommuters

Challenge—Cost-effective means for connecting branch offices and telecommuters to the corporate network

- IPSec encrypts traffic from remote sites to the enterprise using any application
- IPSec may be combined with other tunnel protocols, e.g., GRE
- Telecommuters can gain secure, transparent access to the corporate network

Traditional Dialup Versus Access VPN

Traditional Dialup		Access VPN	
Number of users	20	Number of users	20
Remote access server	\$3,000	Access router, T1/E1, DSU/CSU, firewall	\$4,600
One-time installation fee: 10 phone lines	\$1,000	VPN client software (\$50/user)	\$1,000
		T1/E1 installation	\$5,000
Monthly long-distance charges per minute	\$0.10	Central site T1/E1 Intranet access	\$2,500
Avg. use per day, per user (min)	90	Monthly ISP access (\$20/user)	\$400

Traditional Dialup Versus Access VPN

Traditional Dial	l-Up	Access VPN	
Number of users	20	Number of users	20
Remote access server	\$3,000	Access router, T1/E1, DSU/CSU, firewall	\$4,600
One-time installation fee-10 phone lines	\$1,000	VPN client software (\$50/user)	\$1,000
		T1/E1 installation	\$5,000
One-time capital cost	\$4,000	One-time capital cost	\$10,600
Monthly long distance charges per minute	\$0.10	Central site T1/E1 Intranet access	\$2,500
Avg. use per day per user (min)	90	Monthly ISP access (\$20/user)	\$400
Recurring cost	\$5,400	Recurring cost	\$2,900

VPN Payback

Summary

- VPNs reduce costs
- VPNs improve connectivity
- VPNs maintain security
- VPNs offer flexibility
- VPNs are reliable

