Name: Key

You must show your work to get full credit.

We need some review on a couple of things. First if a, b, c are constants then any expression just evolving a, b, c is also a constant and thus has zero derivative. For example if

$$y = 3x^2 + 4b^3$$
 then $y = 6x + 0 = 6x$

as $4b^3$ is a constant and thus $(4b^3)' = 0$. Likewise if

$$y = 2ac^3x^4$$
 then $y' = 4(2ac^3)x^3 = 8ac^3x^3$

for the same reason that if

$$y = 7x^4$$
 then $y' = 4(7)x^3 = 28x^3$.

Second, the equation of the tangent line to curve y = f(x) at the point where x = a is

$$y = f(a) + f'(a)(x - a).$$

(Note this is the same as the equation for the linear approximation we know and love from the last couple of weeks.)

As an example: find the tangent line to $y = x^2 - x$ at the point where x = 3. Then a = 3, $f(x) = x^2 - x$ and so f'(x) = 2x - 1. Therefore

$$f(a) = f(3) = 3^2 - 3 = 9 - 3 = 6$$
 and $f'(a) = f'(3) = 2(3) - 1 = 5$.

Thus the equation of the tangent line is

$$y = 6 + 5(x - 3).$$

1. Let a, b, c be constants. Find the following derivatives

(a)
$$y = 5e^x$$
.

$$y' = 5e^{\chi}$$

(b)
$$C = ace^{q} - 9b^{3}$$
.
 $(ace^{q})' = ace^{q}$
 $(9b^{3})' = 0$

$$\frac{dC}{dq} = \underline{\qquad qc e^{qc}}$$

2. What is the tangent line to $y = x^2 - x$ at the point where x = -1?

$$b(x) = x^{2} - x$$
The equation is
$$b(x) = 2x - 1$$

$$a = -1$$

$$b(a) = b(-1) = -1$$

$$b(a) = 2(-1) - 1 = -3$$

$$50 \text{ equation is}$$

$$y = 2 - 3(x + 1)$$

$$= 2 - 3(x + 1)$$

$$= 2 - 3(x + 1)$$

$$= 2 - 3(x - 1)$$