A Mathematical Approach to Uncertainty in the Parameters for the Regulation of Factor Xa Formation by the Inhibitor TFPI

Amandeep Kaur

Department of Applied Mathematics University of California, Merced

November 2, 2020

Goals

- make a new scheme diagram
- Compute the error and make histogram of error for various samples.
- Heat Map K3on, K7on. (the other values fix at their optimal)
- Fix $k3_off \in [100, 200]$ and then run the experiment suggested by professor Karin.
- \bullet Add uncertainty $\pm 10\%$ to Karin's parameters and propagate the uncertainty in the model and see what is the best fit.
- Add noise for K_{cat}.
- find the parameters which fit the data properly.

Flowchart

Flowchart

Parameters Used for Experiment I.

	Units	Amandeep (both exp)	Karin	Baugh
K _M	nM	238	238	238
k ₁ ON	$(nMs)^{-1}$	$0.016039 \in [k_2/K_M, 1]$	0.189	None
k ₁ OFF	s-1	0.3173	1	None
k _{cat}	s-1	3.5	3.5	7
$K_{E,P}$	nM	520	520 (LU paper)	NA
k ₃ OFF	$(nMs)^{-1}$	$5.3242 \in [0.01, 10]$	0.3462	NA
k ₃ OFF	s-1	2.7686e + 03	180	NA
k ₄ ON	$(nMs)^{-1}$	0.9×10^{-3}	0.9×10^{-3}	0.9×10^{-3}
k ₄ OFF	s-1	3.6×10^{-4}	3.6×10^{-4}	3.6×10^{-4}
k₅ ^{ON}	$(nMs)^{-1}$	7.34×10^{-3}	7.34 × 10 ⁻³	7.34×10^{-3}
k S OFF	s-1	11×10^{-4}	11×10^{-4}	11×10^{-4}
k ₆ ON	(nMs)-1	k 4 ON k 4 OFF	1	NA
k ₄ ON k ₄ OFF k ₅ ON k ₅ OFF k ₆ ON k ₆ OFF	s ⁻¹	k ₄	10 ⁻³	NA
k ₇ ON	s-1	$301.1686 \in [10, 500]$	1000	NA
k ₂ OFF	s ⁻¹	$0.00068648 \in [10^{-4}, 10^{-3}]$	0.0001	NA
k ₈ ^{ON} k ₈ ^{OFF}	$(nMs)^{-1}$	k ₃ ON k ₃ FF	$k_{\bf 3}^{ON}=0.3462$	NA
k ₈ OFF	s-1	k ₃ ^{OFF}	$k_{3}^{OFF} = 180$	NA

Note: $k_6^{ON} = k_4^{ON}$, $k_6^{OFF} = k_4^{OFF}$, $k_8^{ON} = k_3^{ON}$ and $k_8^{OFF} = k_3^{OFF}$ are assumed to be same because it is the same physical binding.

i	Reaction	$K_i = k_{off}/k_{on}$	Aman	Karin
1	$E + S \rightleftharpoons ES$	K_1	19.7830	5.2910
2	ES → EP	-	-	-
3	$E + P \rightleftharpoons EP$	K_3	520.0030	519.9307
4	$P+I \rightleftharpoons PI$	K_4	0.4	0.4
5	$E + PI \rightleftharpoons PIE$	K ₅	0.1499	0.1499
6	$EP + I \rightleftharpoons EPI$	$K_6 = K_4$	0.4	1e-03
7	EP-I ⇌ PIE	K_7^*	2.2794e-06	1e-07
8	$E + PI \rightleftharpoons EP-I$	$K_8 = K_3$	520	519.9307

(*): does not follow the units for dissociation constant K_d .

Optimization of k_1^{on} , k_3^{on} , k_7^{on} , and k_7^{off}

 $Error = 0.23807 \\ k_1^{on} = 0.016039 \; [0.014706,1] \; and \; k_3^{on} = 5.3242 \; [0.01,10] \\ k_7^{on} = 301.1686 \; [10,500] \; and \; k_7^{off} = 0.00068648 \; [0.0001,0.001]$

LHS with $\pm 10\%$ Uncertainty: Enzyme Varing Experiment

Product Concentration(Xa) vs time(t) for n = 100 and 10 and 90 percentile $0.014435 \le k_1 on \le 0.017643 \text{ and } 4.7918 \le k_3 on \le 5.8566$ $271.0517 \le k_2 on \le 331.2855 \text{ and } 0.00061783 \le k_3 on \le 0.00075513$

LHS with $\pm 10\%$ Uncertainty for Pre-incubation Experiment

P = 0 nmTime(s) P = 0.25nm Time(s) P = 0.5nm Time(s) P = 1nm Xa (nM) Time(s)

LHS with $\pm 10\%$ Uncertainty for Both Experiment

Product Concentration(Xa) vs time(t) with Preincubation for n = 100 and 10 and 90 percentile $0.014435 \leq k_1 \text{ on } \le 0.017643 \text{ and } 4.7918 \leq k_3 \text{ on } \le 5.8566$ $271.0517 \leq k_1 \text{ on } \le 331.2855 \text{ and } 0.00061783 \leq k_2 \text{ on } \le 0.00075513$

Histogram of Error computed for each sample with N=500 samples

Heat map for $k_3 on$ vs $k_7 on$

Fix $k_3 off \in [100, 200]$ instead of $k_3 on$

LHS sampling $\pm 10\%$

Fix $k_3 off \in [100, 500]$ instead of $k_3 on$

Parameters Used for Experiment I.

	Units	Amandeep	Karin	Baugh
K _M	nM	238	238	238
k ₁ ON	$(nMs)^{-1}$	$0.81013 \in [k_2/K_M, 1]$	0.189	None
k ₁ OFF	s-1	189.31	1	None
K _{cat}	s-1	3.5	3.5	7
KEP	nM	520	520 (LU paper)	NA
k ₃ OFF	$(nMs)^{-1}$	0.70274	0.3462	NA
k ₃ OFF	s-1	365.43 ∈ [100, 500]	180	NA
k ₄ ON	$(nMs)^{-1}$	0.9×10^{-3}	0.9×10^{-3}	0.9×10^{-3}
k ^{OFF}	s-1	3.6 × 10 ⁻⁴	3.6×10^{-4}	3.6×10^{-4}
$k_{\bf 5}^{ON}$	$(nMs)^{-1}$	7.34×10^{-3}	7.34×10^{-3}	7.34×10^{-3}
kON kOFF kON kOFF kON kOFF kON kOFF kON kOFF kON	s-1	11×10^{-4}	11×10^{-4}	11×10^{-4}
k ₆ ON	(nMs)-1	k <u>4</u> k <u>4</u>	1	NA
k _{6} OFF	s ⁻¹	k 4 OFF	10 ⁻³	NA
k <mark>Ö</mark> N	s-1	841.24 ∈ [100, 1000]	1000	NA
k ^{OFF}	s-1	$0.001398 \in [5*10^{-4}, 5*10^{-3}]$	0.0001	NA
k ₈ ON k ₈ OFF	$(nMs)^{-1}$	k ₃ ^{ON} k ₃ ^{OFF}	$k_{\bf 3}^{ON}=0.3462$	NA
k ₈ OFF	s-1	k ₃ OFF	$k_{3}^{OFF} = 180$	NA

Note: $k_6^{ON} = k_4^{ON}$, $k_6^{OFF} = k_4^{OFF}$, $k_8^{ON} = k_3^{ON}$ and $k_8^{OFF} = k_3^{OFF}$ are assumed to be same because it is the same physical binding.

LHS with $\pm 10\%$ Uncertainty for Both Experiment using Karin's parameters

Optimization of all the Karin's parameters using $\pm 10\%$ range

Optimized parameter values for Karin parameters

parameter	optimized value
- K _M	238
k ₁ on	0.017289
k ₁ off	0.90572
K _{cat}	3.85
K _{E,P}	520
k₃on	0.33973
k ₃ off	176.66
k40n	0.00081002
k4 off	0.00039542
k₅on	0.0066125
k₅off	0.0012099
k ₆ on	0.90001
k ₆ off	0.0010003
k₁on	928.72
k ₇ off	0.00010954
k ₈ on	0.33973
k ₈ off	176.66

Changing k_{cat} to 7

$k_{cat} = 7$

value
238
0.49227
110.16
7
520
0.96109
499.77
0.0009
0.00036
0.00734
0.0011
0.0009
0.00036
513.66
0.00077161
0.96109
499.77