Teoria da Probabilidade

Monitor:

- Jeann da Rocha Silva

Descrição:

Solução das Listas de Probabilidade

Data:

11 de agosto de 2025

Lista 1

Parte 1 (Notas de Aula)

Capítulo 1

3.

$$\begin{split} &P(A \cup B \cup C) \\ &= P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C) \\ &= [P(A) + P(B) - P(A \cap B)] + P(C) - P((A \cap C) \cup (B \cap C)) \\ &= [P(A) + P(B) - P(A \cap B)] + P(C) - [P(A \cap C) + P(B \cap C) - P((A \cap C) \cap (B \cap C))] \\ &= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) \end{split}$$

4.

- a) Como $A \cap B \cap C \subset A \cap C$, temos que $P(A \cap B \cap C) \leq P(A \cap C) = 0$. Logo, $P(A \cap B \cap C) = 0$
- b)

$$P(A \cup (B \cap C)) = P(A) + P(B \cap C) - P(A \cap (B \cap C))$$

= $P(A) + P(B \cap C) - P(A \cap B \cap C) = 0.4 + 0.1 - 0 = 0.5$

c) Temos $P(A \cap (B - C)) = P(A \cap B \cap C^{\complement})$. Além disso, temos também que $P(A \cap B \cap C) + P(A \cap B \cap C^{\complement}) = P(A \cap B)$. Logo,

$$P(A \cap (B - C)) = P(A \cap B) - P(A \cap B \cap C) = 0.3 - 0 = 0.3$$

d) Temos $P(A - (B \cup C)) = P(A \cap (B \cup C)^{\complement}) = P(A \cap B^{\complement} \cap C^{\complement})$. Além disso, temos $P(A \cap B^{\complement} \cap C) + P(A \cap B \cap C) = P(A \cap C) = 0 \Rightarrow P(A \cap B^{\complement} \cap C) = 0$. Assim, segue que

$$P(A) = P(A \cap B \cap C) + P(A \cap B^{\complement} \cap C) + P(A \cap B \cap C^{\complement}) + P(A \cap B^{\complement} \cap C^{\complement})$$

Portanto,

$$P(A - (B \cup C)) = P(A) - P(A \cap B \cap C) - P(A \cap B^{\complement} \cap C) - P(A \cap B \cap C^{\complement})$$

= 0.4 - 0 - 0.3 - 0 = 0.1

e) $P(A \cup B \cup C)$ $= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ = 0.4 + 0.5 + 0.3 - 0.3 - 0 - 0.1 + 0 = 0.8

5. Seja A o evento "o aluno ser torcedor do Flamengo", B o evento "o aluno assite novelo" e C o evento "o aluno gosta de praia". Então, como $A \cap B \cap C \subset A, B, C$, temos

$$P(A \cap B \cap C) \leqslant \min\{P(A), P(B), P(C)\} = 0.6$$

Se $A \subset B \cap C$, por exemplo, temos $P(A \cap B \cap C) = P(A) = 0.6$. Agora, temos também que $A, B, C \subset A \cup B \cup C$, donde

$$P(A \cap B \cap C) = P(A) + P(B \cap C) - P(A \cup (B \cap C))$$

$$\geqslant P(A) + P(B \cap C) - 1$$

$$= P(A) + [P(B) + P(C) - P(B \cup C)] - 1$$

$$\geqslant P(A) + [P(B) + P(C) - 1] - 1$$

$$= 0.6 + 0.7 + 0.8 - 1 - 1 = 0.1$$

Se A = S e $B = C^{\complement}$, por exemplo, então $P(A \cup (B \cap C)) = P(B \cup C) = 1$ e vale a igualdade no caso anterior. Logo, concluímos

$$0.1 \leqslant P(A \cap B \cap C) \leqslant 0.6$$

- 8. O espaço amostral é o conjunto S das duplas (i, j), onde i é o resultado do dado verde e j o resultado do dado vermelho. O número de elementos de S é $6 \cdot 6 = 36$. Destes, as duplas (i, j) tais que i + j = 9 é (3, 6), (4, 5), (5, 4), (6, 3). Logo, a probabilidade da soma dos dados dar 9 é $\frac{4}{36} = \frac{1}{9}$. Se os dados forem da mesma cor, duplas da forma (i, j) e (j, i) tornar-se-ão indistinguíveis e, portanto, a probabilidade muda, ou seja, o problema se altera (inclusive, o espaço amostral!)
- 9. Considere que se os times estão em uma ordem $t_1, ..., t_{12}$, então os grupos são $(t_1, t_2), (t_3, t_4), ..., (t_{11}, t_{12})$. O número de ordenações possíveis é 12!. Destas, o Flamengo e o Fluminense ficam no mesmo grupo em $2 \cdot 6 \cdot 10!$ casos. Logo

$$\frac{2 \cdot 6 \cdot 10!}{12!} = \frac{1}{11}$$

10. Temos n! possíveis configurações para essa roda. Além disso, existem n possíveis pares consecutivos nos quais estas duas pessoas podem estar e em cada um destes pares, podemos permutar a ordem destas pessoas de 2! = 2 formas. As n-2 pessoas restantes são permutadas ao longo das n-2 posições restantes de (n-2)! formas. Logo, a probabilidade dessas duas pessoas ficarem juntas é

$$\frac{2n(n-2)!}{n!} = \frac{2}{n-1}$$

11. É análogo ao exercício 8, mas neste caso, teremos apenas n-1 possíveis pares consecutivos. Logo, a probabilidade dessas duas pessoas ficarem juntas é

$$\frac{2(n-1)(n-2)!}{n!} = \frac{2}{n}$$

12.

- a) Por simetria, como não há reposição, para cada par (i,j), sendo i o valor retirado por Telma e j o valor retirado por Laura, há o par simétrico (j,i) e Telma retira um número maior que Laura em exatamente um destes pares. Logo, a probabilidade de que Telma retire um número maior que o de Laura é $\frac{1}{2}$.
- b) Com reposição, temos a possibilidade de pares (i,i). Neste caso, sabemos que o número total de pares será 100^2 . Além disso, o número de pares da forma (i,j), com $i \neq j$ é $100 \cdot 99$ e sabemos que em exatamente metade destes Telma tira um número maior que o de Laura, ou seja, $50 \cdot 99$ pares. Logo, a probabilidade de que Telma retire um número maior que o de Laura é

$$\frac{50 \cdot 99}{100^2} = \frac{99}{200}$$

15. Como cada aluno tem 366 possíveis dias para fazer aniversário, o total de possibilidades de aniversários da turma é 366^n . Se ninguém faz aniversário num mesmo dia, então o número de possibilidades de aniversários se torna $366 \cdot 365 \cdot \dots \cdot (366 - n + 1)$. Logo, a probabilidade de que ao menos dois façam aniversário no mesmo dia é

$$1 - \frac{366 \cdot 365 \cdot \dots \cdot (366 - n + 1)}{366^n}$$

Criando a planilha no EXCEL, obtemos

15	0,223103
16	0,252901
17	0,283604
18	0,315008
19	0,346911
20	0,379119
21	0,411438
22	0,443688
23	0,475695
24	0,507297
25	0,538344
26	0,5687
27	0,598241
28	0,626859
29	0,654461
30	0,680969
31	0,706316
32	0,730455

Como se vê, para n=23, temos uma probabilidade de aproximadamente 50%.

Parte 1 (B & H)

Capítulo 1

21. O número de escolhas possíveis para cada pessoa é 9 (de 2 a 10). Então, sendo P_1, P_2, P_3 as pessoas, o número de triplas (a_1, a_2, a_3) , onde a_i é o andar que a pessoa P_i deseja ir é $9 \cdot 9 \cdot 9 = 9^3$. Destas possíveis triplas, aquelas que correspondem a andares consecutivos são (2, 3, 4), (3, 4, 5), ..., (8, 9, 10) ou quaisquer permutações destas, que ao todo contabilizam $7 \cdot 3!$ triplas. Logo, a probabilidade de que os botões para 3 andares consecutivos sejam pressionados é

$$\frac{7 \cdot 3!}{9^3} = \frac{14}{243}$$

22. Sejam $I_1, ..., I_6$ as idades das crianças. Há 6! possíveis configurações para as idades de cada criança. Destas, em 3! as idades I_1, I_2, I_3 são dos meninos e, em 3! as idades I_4, I_5, I_6 são das meninas. Logo, a probabilidade de que as 3 crianças mais velhas sejam as 3 garotas é

$$\frac{3!3!}{6!} = \frac{1}{20}$$

23. Seja A o evento de que algum distrito tenha mais de 1 ladrão. Então, A^{\complement} é o evento de que cada distrito tenha exatamente um ladrão. O número de formas de distribuir 6 ladrões nos 6 distritos é 6^6 . Destas, o número de formas de que os ladrões estejam em distritos distintos é 6!. Ou seja,

$$P(A) = 1 - P(A^{c}) = 1 - \frac{6!}{6^{6}} = \frac{319}{324}$$

26. Seja A o evento de haver um conflito no horário do estudante. Então, A^{\complement} é o evento de não haver conflitos no horário do estudante, ou seja, os 3 cursos escolhidos estarem dispostos em 3 horários distintos. Há 10^3 possíveis configurações para os horários dos 3 cursos. Destas, apenas $10 \cdot 9 \cdot 8$ formas consideram que os cursos não tem horários iguais. Logo,

$$P(A) = 1 - P(A^{c}) = 1 - \frac{10 \cdot 9 \cdot 8}{10^{3}} = \frac{7}{25}$$

29. Ao todo, há $\binom{N}{m}$ formas de capturar m alces. Destas, o número de maneiras de que extamente k destes m alces tenham sido marcados anteriormente é $\binom{n}{k}\binom{N-n}{m-k}$.

Logo, a probabilidade de que exatamente k dos m alces na nova amostra tenham sido marcados anteriormente é

$$\frac{\binom{n}{k}\binom{N-n}{m-k}}{\binom{N}{m}}$$

31.

- (a) O espaço de possibilidades de retirada das duas primeiras bolas é sempre o mesmo. Nele, a proporção de casos em que a primeira bola é verde é obtida variando as r+g-1 bolas restantes, supondo r com cores vermelhas e g-1 com cores verdes. Analogamente, a proporção de casos em que a segunda bola retirada é verde é obtida variando as r+g-1 bolas restantes (incluindo a primeira), supondo também r vermelhas e g-1 verdes. Logo, a probabilidade de que a primeira bola retirada seja verde é igual a probabilidade de que a segunda bola retirada seja verde.
- (b) O espaço amostral será o conjunto S de duplas (b_1, b_2) , onde b_i é a cor da i-ésima bola retirada. Então, o número de elementos de S é (r+g)(r+g-1). Em particular, se fixarmos a cor b_i como verde, temos r+g-1 possíveis outras bolas para a cor b_j , com $i \neq j$ e a cor de b_i pode ser obtida de g bolas distintas. Assim, sendo P_i a probabilidade da i-ésima bola ser verde, temos

$$P_i = \frac{g(r+g-1)}{(r+g)(r+g-1)} = \frac{g}{r+g}$$

(c) A probabilidade de que as duas bolas sejam da mesma cor é a probabilidade de que sejam ambas vermelhas ou ambas verdes, ou seja, do raciocínio do item anterior, é

$$\frac{g}{r+g} \cdot \frac{g-1}{r+g-1} + \frac{r}{r+g} \cdot \frac{r-1}{r+g-1} = \frac{g(g-1) + r(r-1)}{(r+g)(r+g-1)}$$

A probabilidade de que as duas bolas sejam de cores distintas é a probabilidade da primeira ser vermelha e a segunda verde ou vice-versa, ou seja,

$$\frac{g}{r+g} \cdot \frac{r}{r+g-1} + \frac{r}{r+g} \cdot \frac{g}{r+g-1} = \frac{2rg}{(r+g)(r+g-1)}$$

Igualando estas duas quantidades (vide enunciado), temos

$$\frac{g(g-1) + r(r-1)}{(r+g)(r+g-1)} = \frac{2rg}{(r+g)(r+g-1)} \Rightarrow g(g-1) + r(r-1) = 2rg$$

Analisando os casos (já que $r, g \in \mathbb{Z}_+^*$ e r + g = 16), temos os seguintes possíveis pares para (r, g):

$$(6,10)$$
 ou $(10,6)$

- 32. Primeiro observamos que o baralho tem 52 cartas, das quais escolhemos 5.
 - (a) Para obter um flush, queremos escolher 5 cartas de um mesmo naipe, que é feito de $4\binom{13}{5}$ formas, exceto o royal flush, que pode ser obtido de uma forma em cada naipe, ou seja, a probabilidade é

$$\frac{4\binom{13}{5}-4}{\binom{52}{5}}$$

(b) Para obter duas duplas, queremos escolher 2 tipos de cartas para forma-las e haverá uma carta restante que poderá ser qualquer uma diferente destes dois tipos. A escolha dos 2 tipos é feita de $\binom{13}{2}$ formas e, uma vez escolhidos, podemos formar duas duplas com estes tipos de $\binom{4}{2}\binom{4}{2}$ formas. Por fim, a carta restante pode ser qualquer uma dentre dentre os 11 tipos diferentes dos dois já escolhidos. Logo, a probabilidade é

$$\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\cdot 4\binom{11}{1}}{\binom{52}{5}}$$

35.

(a) A probabilidade de que o primeiro ás apareça antes de qualquer rei, dama ou valete é a mesma que a probabilidade de que o primeiro ás seja a primeira carta entre todos os ás, reis, damas e valetes (16 cartas), ou seja,

$$\frac{4}{16} = \frac{1}{4}$$

(b) Primeiro, escolhemos 1 rei, 1 dama e 1 valete entre os 4 disponíveis de cada, que é feito de 4³ = 64 formas. Essas 3 cartas podem aparecer em qualquer ordem antes do primeiro ás. O número de maneiras de ordenar essas 3 cartas é 3! = 6. O primeiro ás deve ser a quarta carta entre essas 16 cartas, e temos 4 possibilidades. Ao todo, são 16 · 15 · 14 · 13 possibilidades para estas 4 primeiras cartas. Portanto, a probabilidade de que exatamente um rei, exatamente uma dama e exatamente um valete apareçam (em qualquer ordem) antes do primeiro ás é

$$\frac{64 \cdot 6 \cdot 4}{16 \cdot 15 \cdot 14 \cdot 13} = \frac{16}{455}$$

(a) Há n^k maneiras de formar a sequência de valores. Destas, para que a sequência seja crescente consideramos o número de formas de escolher k dos n números e, esta contagem fornece o número de sequências crescentes, já que cada sequência de k números distintos pode ser identificada com sua sequência crescente ordenada. Logo, a probabilidade de que a sequência obtida seja estritamente crescente é

$$\frac{\binom{n}{k}}{n^k}$$

(b) É similar ao item anterior, mas neste caso, as sequências podem repetir valores e, portanto, a probabilidade de que a sequência obtida seja crescente é equivalente ao número de soluções de $x_1 + ... + x_n = k$, onde x_i é o número de termos da sequência com valor i. Tal probabilidade é dada através de uma combinação completa e é da forma

$$\frac{\binom{n+k-1}{k}}{n^k}$$

40. O número de palavras sem repetição de k letras é o número de arranjos de k letras das 26 possíveis, isto é $\frac{26!}{(26-k)!}$. Assim, o número de palavras sem repetição de k letras é $\sum_{k=0}^{26} \frac{26!}{(26-k)!}$. Destes, 26! tem 26 letras. Logo, a probabilidade de que uma palavra sem repetição escolhida aleatoriamente tenha 26 letras é

$$\frac{26!}{\sum\limits_{k=0}^{26} \frac{26!}{(26-k)!}} = \frac{1}{\sum\limits_{k=0}^{26} \frac{1}{(26-k)!}} = \frac{1}{\sum\limits_{k=0}^{26} \frac{1}{k!}} \approx \frac{1}{\sum\limits_{k=0}^{\infty} \frac{1}{k!}} = \frac{1}{e}$$

48. Seja A o evento do jogador não ter cartas de pelo menos um naipe. Seja $B_{\spadesuit}, B_{\diamondsuit}, B_{\heartsuit}, B_{\clubsuit}$ os eventos do jogador não ter cartas do naipe $\spadesuit, \diamondsuit, \heartsuit, \clubsuit$, respectivamente. Então

$$P(A) = P(B_{\spadesuit} \cup B_{\diamondsuit} \cup B_{\heartsuit} \cup B_{\clubsuit})$$

$$= 4P(B_{\spadesuit}) - 6P(B_{\spadesuit} \cap B_{\diamondsuit}) + 4P(B_{\spadesuit} \cap B_{\diamondsuit} \cap B_{\heartsuit}) - P(B_{\spadesuit} \cap B_{\diamondsuit} \cap B_{\heartsuit} \cap B_{\clubsuit})$$

$$= \frac{4 \cdot \binom{39}{13}}{\binom{52}{13}} - 6 \cdot \frac{\binom{26}{13}}{\binom{52}{13}} + 4\frac{\binom{13}{13}}{\binom{52}{13}} - \frac{\binom{0}{13}}{\binom{52}{13}} = \frac{4 \cdot \binom{39}{13} - 6 \cdot \binom{26}{13} + 4\binom{13}{13}}{\binom{52}{13}}$$

52. Alice tem $\binom{30}{7}$ escolhas possíveis para as 7 aulas. Destas, para que ela tenha aula em todos os dias da semana, é necessário que ela tenha uma das seguintes opções

- 4 dias com apenas 1 aula e 1 dia com 3 aulas
- 3 dias com apenas 1 aula e 2 dia com 2 aulas

Para o primeiro caso, há $\binom{5}{4} = 5$ escolhas possíveis para os 4 dias e, em cada dia, ela decide entre uma das 6 aulas disponíveis. Para o dia restante, ela escolherá 3 das 6 aulas disponíveis, que é feito de $\binom{6}{3}$ formas. Para o segundo caso, há $\binom{5}{3} = 10$ escolhas possíveis para os 3 dias e, em cada dia, ela decide entre uma das 6 aulas disponíveis. Para os dois dias restantes, ela escolherá 2 das 6 aulas disponíveis em cada dia, que é feito de $\binom{6}{2}\binom{6}{2}$ formas. Logo, a probabilidade de Alice ter aula em todos os dias da semana é

$$\frac{5 \cdot 6^4 \cdot {\binom{6}{3}} + 10 \cdot 6^3 \cdot {\binom{6}{2}} {\binom{6}{2}}}{{\binom{30}{7}}}$$

56.

(a) Seja A o evento do inspetor testar pelo menos 9 widgets. Então A^{\complement} é o evento do inspetor testar no máximo 8 widgets. Como, das $\binom{12}{3}$ possíveis ordens dos 3 widgets defeituosos, em $\binom{8}{3}$ delas, temos os 3 widgets nos 8 primeiros testes. Ou seja,

$$P(A) = 1 - P(A^{\complement}) = 1 - \frac{\binom{8}{3}}{\binom{12}{3}} = \frac{41}{55}$$

(b) De modo análogo ao item anterior, sendo Bo evento do inspetor testar pelo menos 10 widgets, temos

$$P(B) = 1 - P(B^{\complement}) = 1 - \frac{\binom{9}{3}}{\binom{12}{3}} = \frac{34}{55}$$

- (a) É simplesmente realizar as escolhas dentre $a_1, ..., a_n$ para $x_1, ..., x_n$, que ao todo são n^n .
- (b) Isto é equivalente a resolver $y_1 + ... + y_n = n$, onde y_i é o número de vezes que o valor a_i aparece, e isto é dado por

$$\binom{2n-1}{n}$$

(c) No sentido de (b), uma amostra bootstrap da forma $(a_1,...,a_1)$ tem probabilidade $\frac{1}{n^n}$ de ocorrer, enquanto que uma amostra bootstrap da forma $(a_1,a_2,...,a_2)$ tem probabilidade $\frac{n}{n^n}=\frac{1}{n^{n-1}}$ de ocorrer, já que o termo a_1 pode estar localizado em qualquer uma das n posições. Uma amostra menos provável b_2 possível é claramente aquela com probabilidade $\frac{1}{n^n}$, ou seja, com n repetições de algum dos a_i . Para uma amostra mais provável b_1 , devemos maximizar a função $f(y_1,...,y_n)=\frac{n!}{y_1!...y_n!}$, onde $y_1+...+y_n=n$. Tal máximo é claramente obtido quando $y_1=...=y_n=1$, ou seja, b_1 é aquela onde todos os termos aparecem exatamente uma vez e sua probabilidade é $\frac{n!}{n^n}$. Assim, temos $p_1=\frac{n!}{n^n}$ e $p_2=\frac{1}{n^n}$. Logo,

$$\frac{p_1}{p_2} = \frac{n!/n^n}{1/n^n} = n!$$

Note que há n possibilidades ordenadas para b_2 , ou seja, a probabilidade de obter uma amostra bootstrap não ordenada cuja probabilidade é p_2 é $\frac{n}{n^n}$. Além disso, há n! possibilidades ordenadas para b_1 , ou seja, a probabilidade de obter uma amostra bootstrap não ordenada cuja probabilidade é p_1 é $\frac{n!}{n^n}$. Portanto, a razão destas probabilidades é

$$\frac{n!/n^n}{n/n^n} = (n-1)!$$

59. Caso o primeiro passageiro escolha o assento 1, todos os demais irão, segundo as regras, para os seus assentos corretamente e, portanto, o último passageiro irá para o assento 100. Caso o primeiro passageiro escolha o assento de 100, o último passageiro não poderá ir para o assento 100. Por fim, se o primeiro passageiro escolhe qualquer outro assento, digamos k, então o k-ésimo passageiro será obrigado a escolher aleatoriamente algum assento dentre os restantes, que são 1, k+1, k+2, ..., 100 e isto se reduz a situação inicial, porém com menos passageiros. Indutivamente, obtemos que a probabilidade do último passageiro sentar no assento de número 100 é igual ao caso de dois passageiros e dois assentos, que é $\frac{1}{2}$.

Parte 2 (Notas de Aula)

Capítulo 1

18. Seja A o evento no qual o estudante acerta a questão e S o evento no qual o estudante sabe a questão. Então

$$P(S^{\complement}|A) = \frac{P(A|S^{\complement})P(S^{\complement})}{P(A|S)P(S) + P(A|S^{\complement})P(S^{\complement})} = \frac{\frac{1}{5} \cdot \frac{40}{100}}{1 \cdot \frac{60}{100} + \frac{1}{5} \cdot \frac{40}{100}} = \frac{2}{17}$$

20. Os possíveis desfechos são: KK, CC, KCK, KCC, CKC, CKK. Os dois primeiros tem probabilidade $\frac{1}{4}$ e os demais 4 tem probabilidade $\frac{1}{8}$. Logo,

$$P(A) = \frac{1}{4} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$
$$P(B) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Além disso, $P(A,B) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B)$. Logo, A e B são independentes, mas não são mutuamente excludentes, pois $A \cap B = \{KK\}$.

22. Para ter algum lucro, pelo menos dois lançamentos do dado devem resultar em 5 ou 6. Logo, Para exatamente dois lançamentos, temos $\binom{3}{2} \cdot \frac{4}{6} \cdot \frac{2}{6} \cdot \frac{2}{6} = \frac{2}{9}$ de probabilidade. Para exatamente três lançamentos, temos $\left(\frac{1}{6}\right)^3 = \frac{1}{27}$. Logo,

$$P(A) = \frac{2}{9} + \frac{1}{27} = \frac{7}{27}$$

Para perder \$1 no primeiro lançamento, basta tirar 1,2,3 ou 4 neste. Logo,

$$P(B) = \frac{4}{6} = \frac{2}{3}$$

Para calcular a probabilidade de ter algum lucro no final do jogo, dado que perdeuse \$1 no primeiro lançamento, os próximos 2 lançamentos devem ser 5 ou 6. Logo,

$$P(A|B) = \left(\frac{2}{6}\right)^2 = \frac{1}{9}$$

Por fim, temos que

$$P(A,B) = P(A|B)P(B) = \frac{1}{9} \cdot \frac{2}{3} = \frac{2}{27}$$

Como $P(A, B) = \frac{2}{27} \neq \frac{7}{27} \cdot \frac{2}{3} = P(A) \cdot P(B)$, temos que A e B não são independentes. Além disso, também não são mutuamente excludentes, pois é possível ter lucro positivo (= \$1) e perder \$1 no primeiro lançamento.

27. Seja C_1, C_2, C_3 o evento de escolher a caixa i, onde a numeração das caixas é feita na mesma ordem que foram dadas no enunciado. Além disso, seja A o evento retirar uma bola branca. Logo, para calcular a probabilidade de que a bola restante seja branca, basta calcular a probabilidade de ter escolhido a caixa com duas bolas brancas, ou seja,

$$P(C_1|A) = \frac{P(A|C_1)P(C_1)}{P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + P(A|C_3)P(C_3)}$$
$$= \frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{2}{3}$$

28.

- a) Inicialmente, o candidato tem $\frac{1}{3}$ de probabilidade de ter acertado e $\frac{2}{3}$ de ter errado. Se o candidato trocar de porta, dado que o apresentador abriu uma das portas, ele irá acertar se, e somente se, o carro não estivesse na posição original. Logo, a probabilidade dele ganhar trocando de porta dada essa informação será de $\frac{2}{3}$, que é maior do que se ele continuasse com a porta original. Logo, é mais vantajoso trocar de porta.
- b) i) Se o apresentador abre a porta do bode, significa que ele não tinha disponível a porta do sabão em pó ESPUMOSO (já que se tivesse, teria escolhido essa porta). Então, a porta inicialmente escolhida é a do sabão e, portanto, trocar de porta garante que o candidato ganhe o carro.
 - ii) Se o apresentador abrir a porta do sabão ESPUMOSO, o problema se torna o mesmo.

32.

- a) Sim, pois $P(A, B) = \frac{9}{36} = \frac{3}{6} \cdot \frac{3}{6} = P(A)P(B)$.
- b) Sim, pois $P(A, C) = \frac{9}{36} = \frac{3}{6} \cdot \frac{18}{36} = P(A)P(C)$.
- c) Sim, pois $P(B,C) = \frac{9}{36} = \frac{3}{6} \cdot \frac{18}{36} = P(B)P(C)$.
- d) Não, pois $P(A, B, C) = \frac{9}{36} \neq \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{18}{36} = P(A)P(B)P(C)$.

a)

$$\frac{2}{6} \cdot \frac{2}{6} + \frac{4}{6} \cdot \frac{4}{6} = \frac{5}{9}$$

b) A probabilidade de que o 1º lançamento tenha uma cor igual a do 2º é de $\frac{5}{9}$ (vide item a)). A probabilidade de que o 3º lançamento tenha uma cor igual a desses dois é $\frac{2}{6} \cdot \frac{2}{6} \cdot \frac{2}{6} + \frac{4}{6} \cdot \frac{4}{6} = \frac{1}{3}$. Logo, a probabilidade pedida é igual a

$$\frac{\frac{1}{3}}{\frac{5}{9}} = \frac{3}{5}$$

37.

- a) Como a escolha é ao acaso, basta considerar o valor com a maior probabilidade no gráfico, ou seja, as mulheres com 0 filhos, cuja probabilidade é de $\frac{29}{100}$.
- b) Neste caso, consideramos as mulheres com pelo menos 1 filho. Pelo gráfico, a probabilidade é maior para aquelas com 2 filhos. Para obter a probabilidade, basta normalizar pela probabilidade de ter pelo menos 1 filho, que é $1-\frac{29}{100}=\frac{71}{100}$. Logo, a probabilidade é $\frac{22}{100}=\frac{22}{71}$.
- c) Basta considerar a proporção de filhos únicos sobre a quantidade total de filhos, ou seja,

$$\frac{\frac{16}{100} \cdot 1}{\frac{29}{100} \cdot 0 + \frac{16}{100} \cdot 1 + \frac{22}{100} \cdot 2 + \frac{15}{100} \cdot 3 + \frac{8}{100} \cdot 4 + \frac{4}{100} \cdot 5 + \frac{3}{100} \cdot 6 + \frac{1}{100} \cdot 7 + \frac{1}{100} \cdot 8 + \frac{1}{100} \cdot 9}$$

$$= \frac{16}{199}$$

38.

a)
$$\left(\frac{5}{6}\right)^5 = \frac{5^5}{6^5}$$

b)
$$\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{6^5} = \frac{5}{54}$$

c)
$$\frac{6 \cdot {5 \choose 4} \cdot 5 + 6}{6^5} = \frac{25}{6^4}$$

a) As possibilidades são: BB, MM, BMB, BBM, MBM, MMB. A primeira tem probabilidade $\frac{49}{100}$, a segunda $\frac{9}{100}$, a terceira e a quarta $\frac{81}{1000}$ e a quinta e a sexta $\frac{147}{1000}$. Logo, a probabilidade do Berrando vencer a partida é

$$\frac{49}{100} + \frac{147}{1000} + \frac{147}{1000} = \frac{784}{1000}$$

b) Pelo item a), a probabilidade é

$$\frac{49}{100} + \frac{9}{100} = \frac{58}{100}$$

c) Pelo item a), a probabilidade é

$$\frac{49}{100}$$

d) Pelo item a), a probabilidade é

$$\frac{\frac{49}{100}}{\frac{784}{1000}} = \frac{490}{784}$$

- a) $1 \frac{2}{100} \frac{15}{100} \frac{2}{100} \frac{5}{100} = \frac{76}{100}$
- b) $\frac{10}{100} \cdot \frac{8}{100} = \frac{1}{125}$
- c) Pelo enunciado, do Fluminense, são 2% e do Botafogo 4%.
- $d) \frac{\frac{15}{100} \frac{8}{100} \cdot \frac{10}{100}}{\frac{92}{100}} = \frac{71}{460}$
- e) A probabilidade de ser um torcedor do Fluminense e ter grau superior é $\frac{2}{100} \cdot \frac{8}{100} = \frac{16}{1000}$ (é a probabilidade de ser torcedor do Fluminense dado que tem grau superior vezes a probabilidade de ter grau superior). A probabilidade de torcer pro Fluminense é $\frac{2}{100}$ (vide enunciado) e a probabilidade de ter grau superior é $\frac{8}{100}$ (vide enunciado). Estes dois últimos multiplicados vão resultar no primeiro. Logo, são independentes. Mas, não são mutuamente excludentes. Com efeito, a probabilidade de ser torcedor do Fluminense e ter grau superior é $\frac{16}{1000} > 0$.

Parte 2 (B & H)

Capítulo 2

1. Seja F o evento "o email contém a frase $dinheiro\ grátis$ " e S o evento "o email é spam". Então

$$P(S|F) = \frac{P(F|S)P(S)}{P(F|S)P(S) + P(F|S^{\complement})P(S^{\complement})} = \frac{\frac{10}{100} \cdot \frac{80}{100}}{\frac{10}{100} \cdot \frac{80}{100} + \frac{1}{100} \cdot \frac{20}{100}} = \frac{40}{41}$$

2. Seja I o evento "os gêmeos da mulher são idênticos" e M o evento "a mulher está grávida de gêmeos meninos". Então

$$P(I|M) = \frac{P(M|I)P(I)}{P(M|I)P(I) + P(M|I^{\complement})P(I^{\complement})} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{2}{3}} = \frac{1}{2}$$

7.

(a) Seja C o evento "a moeda lançada deu cara todas as 7 vezes" e E o evento "a moeda escolhida é dupla-cara". Então, temos que

$$P(C|D) = P(C|E, D)P(E|D) + P(C|E^{c}, D)P(E^{c}|D)$$
$$= 1 \cdot \frac{1}{100} + \frac{1}{2^{7}} \cdot \frac{99}{100} = \frac{227}{12800}$$

Deste modo, segue que

$$P(D|C) = \frac{P(C|D)P(D)}{P(C|D)P(D) + P(C|D^{\complement})P(D^{\complement})} = \frac{\frac{227}{12800} \cdot \frac{1}{2}}{\frac{227}{12800} \cdot \frac{1}{2} + \frac{1}{128} \cdot \frac{1}{2}} = \frac{227}{327}$$

(b) Note que

$$P(E) = P(E|D)P(D) + P(E|D^{c})P(D^{c}) = \frac{1}{100} \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{200}$$

Deste modo, segue que

$$P(E|C) = \frac{P(C|E)P(E)}{P(C|E)P(E) + P(C|E^{\complement})P(E^{\complement})} = \frac{1 \cdot \frac{1}{200}}{1 \cdot \frac{1}{200} + \frac{1}{27} \cdot \frac{199}{200}} = \frac{128}{327}$$

(a) Como A_1 e A_3 são condicionalmente independentes dado A_2 e A_2^{\complement} , temos

$$\begin{split} P(A_3|A_1) &= P(A_3|A_2,A_1)P(A_2|A_1) + P(A_3|A_2^\complement,A_1)P(A_2^\complement|A_1) \\ &= P(A_3|A_2)P(A_2|A_1) + P(A_3|A_2^\complement)P(A_2^\complement|A_1) \\ &= 0.8 \cdot 0.8 + 0.3 \cdot 0.2 = 0.7 \\ P(A_3|A_1^\complement) &= P(A_3|A_2,A_1^\complement)P(A_2|A_1^\complement) + P(A_3|A_2^\complement,A_1^\complement)P(A_2^\complement|A_1^\complement) \\ &= P(A_3|A_2)P(A_2|A_1^\complement) + P(A_3|A_2^\complement)P(A_2^\complement|A_1^\complement) \\ &= 0.8 \cdot 0.3 + 0.3 \cdot 0.7 = 0.45 \end{split}$$

(b) Se $P(A_1) = 0.75$, então

$$P(A_2) = P(A_2|A_1)P(A_1) + P(A_2|A_1^{\complement})P(A_1^{\complement})$$

= 0.8 \cdot 0.75 + 0.3 \cdot 0.25 = 0.675

Logo, temos

$$P(A_3) = P(A_3|A_2)P(A_2) + P(A_3|A_2^{\complement})P(A_2^{\complement})$$

= 0.8 \cdot 0.675 + 0.3 \cdot 0.325 = 0.6375

- (a) Intuitivamente, pensamos ser $P(A|B) > P(A|B^{\complement})$, pois é mais provável que Peter instale um alarme de segurança se souber que sua casa será assaltada.
- (b) Intuitivamente, pensamos ser $P(B|A^{\complement}) > P(B|A)$, pois é mais provável que Peter seja roubado por não possuir um alarme de segurança do que se possuir.

(c) Temos

$$\begin{split} P(A|B) > P(A|B^{\complement}) &\Leftrightarrow \frac{P(A,B)}{P(B)} > \frac{P(A,B^{\complement})}{P(B^{\complement})} \\ &\Leftrightarrow \frac{P(A,B)P(B^{\complement}) - P(A,B^{\complement})P(B)}{P(B)P(B^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B)(1-P(B)) - P(A,B^{\complement})P(B)}{P(B)P(B^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B) - P(B)[P(A,B) + P(A,B^{\complement})]}{P(B)P(B^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B) - P(B)P(A)}{P(B)P(B^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B) - P(A)P(A)}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B) - P(A)P(A^{\complement})}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B) - P(A)[P(A,B) + P(A^{\complement},B)]}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B)(1-P(A)) - P(A^{\complement},B)P(A)}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B)(1-P(A)) - P(A^{\complement},B)P(A)}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B)P(A^{\complement}) - P(A^{\complement},B)P(A)}{P(A)P(A^{\complement})} > 0 \\ &\Leftrightarrow \frac{P(A,B)P(A^{\complement}) - P(A^{\complement},B)P(A)}{P(A)P(A^{\complement})} > 0 \end{split}$$

(d) Observe que se supormos que Peter é condicionado a instalar o alarme, devido ao fato de saber que sua residência vai ser assaltada, com maior probabilidade do que se não fosse, isto significa que Peter tem em mente a alta chance de ser assaltado para ter que comprar alarme. Logo, se sabemos que Peter irá instalar o alarme, há mais chance de que ele seja assaltado do que não ser, pois esta ideia provavelmente o levou a instalar o alarme.

- (a) Dado que pelo menos 2 dos 3 lançamentos foram cara. Temos as 4 possibilidades: HHH, HHT, HTH, THH. Destas, em apenas 1, temos 3 caras. Logo, a probabilidade é de $\frac{1}{4}$.
- (b) Neste caso, o resultado do terceiro bilhete é independente dos outros dois e não estamos interessados na ordem dos lançamentos. Então, a probabilidade é simplesmente $\frac{1}{2}$.

- 22. Note que há 3 possíveis configurações de pares da forma (a, b), onde a é a bola que restou na bolsa e b é a bola que foi retirada. Se considerarmos que a bola verde que foi adicionada V_2 e a que já estava antes é V_1 (verde) ou A_1 (azul), temos os possíveis casos dado que a bola retirada foi verde: A_1V_2, V_1V_2, V_2V_1 . Destes, em apenas 2, temos que a bola restante é verde. Logo, a probabilidade é de $\frac{2}{3}$.
- 23. Sim. Considere por exemplo que nessa região sabe-se que a maioria das pessoas que portam uma arma e uma faca simultaneamente é um ator de cinema que anda com esses itens para entrar no personagem de uma pessoa culpada de um crime e que as pessoas que portam apenas um destes itens tem mais chance de ser um criminoso. Agora, suponha que E_1 é o evento no qual a pessoa culpada foi vista portando uma arma e E_2 o evento no qual a pessoa culpada foi vista portando uma faca. Então, tanto E_1 como E_2 aumentam as chances de que esta pessoa seja culpada, mas $E_1 \cap E_2$ fazem provavelmente com que ela seja um ator de cinema que entrava nas características da verdadeira pessoa que cometeu o roubo e, portanto, tem probabilidade menor de ser culpado.

25.

(a) Sejam A e B os eventos nos quais A e B são culpados, respectivamente. Do enunciado, temos $P(A) = P(B) = \frac{1}{2}$. Seja também I o evento no qual a informação é verdadeira. Então, dado que A é culpado, temos que a informação é verdadeira, donde P(I|A) = 1 e, dado que A não é culpado, a informação é verdadeira desde que A esteja dentro dos 10% da população com o tipo sanguíneo, ou seja, $P(I|A^C) = 10/100$. Portanto, temos

$$\begin{split} P(A|I) &= \frac{P(I|A)P(A)}{P(I|A^C)P(A) + P(I|A)P(A^C)} \\ &= \frac{1 \cdot (1/2)}{1 \cdot (1/2) + (10/100) \cdot (1/2)} = \frac{10}{11} \end{split}$$

(b) Considerando os mesmos eventos do item anterior e também o evento B_+ no qual o suspeito B possui o tipo sanguíneo, vem que $P(A|I) = \frac{10}{11}$ (pelo item anterior) e, consequentemente, $P(A^C|I) = 1 - \frac{10}{11} = \frac{1}{11}$. Além disso, dado que a informação é verdadeira e que A é o culpado, vem que B não pode ser o culpado e, portanto ele tem 10% de probabilidade de ter o tipo sanguíneo. Por fim, dado que a informação é verdadeira e que A não é o culpado, temos que B é o culpado e, portanto, tem o tipo sanguíneo, ou seja,

$$P(B_{+}|A,I) = 1$$
. Logo, temos

$$P(B_{+}|I) = P(B_{+}|A,I)P(A|I) + P(B_{+}|A^{C},I)P(A^{C}|I)$$
$$= \frac{10}{100} \cdot \frac{10}{11} + 1 \cdot \frac{1}{11} = \frac{2}{11}$$

26.

(a) $P(L|M_1) = \frac{P(M_1|L)P(L)}{P(M_1|L)P(L) + P(M_1|L^{\complement})P(L^{\complement})} = \frac{\frac{90}{100} \cdot \frac{10}{100}}{\frac{90}{100} \cdot \frac{10}{100} + \frac{10}{100} \cdot \frac{90}{100}} = \frac{1}{2}$

(b) $P(L|M_{1}, M_{2}) = \frac{P(M_{1}, M_{2}|L)P(L)}{P(M_{1}, M_{2}|L)P(L) + P(M_{1}, M_{2}|L^{\complement})P(L^{\complement})}$ $= \frac{P(M_{1}|L)P(M_{2}|L)P(L)}{P(M_{1}|L)P(M_{2}|L)P(L) + P(M_{1}|L^{\complement})P(M_{2}|L^{\complement})P(L^{\complement})}$ $= \frac{\frac{90}{100} \cdot \frac{90}{100} \cdot \frac{10}{100}}{\frac{90}{100} \cdot \frac{90}{100} \cdot \frac{10}{100} \cdot \frac{10}{100} \cdot \frac{90}{100} \cdot \frac{90}{100}} = \frac{9}{10}$

(c) Isto é sempre verdade. Com efeito, temos

$$\tilde{P}(L|M_2) = \frac{\tilde{P}(L, M_2)}{\tilde{P}(M_2)} = \frac{P(L, M_2|M_1)}{P(M_2|M_1)} = \frac{P(L, M_2|M_1)P(M_1)}{P(M_2|M_1)P(M_1)}
= \frac{P(L, M_1, M_2)}{P(M_1, M_2)} = P(L|M_1, M_2)$$

- (a) Esses eventos nunca serão independentes, pois se sabemos que A é mais velho que B, então ele terá mais probabilidade de ser mais velho que C do que se não tivéssemos essa informação, pois as possíveis ordens de idades de A, B, C são ABC, ACB, BAC, BCA, CAB, CBA (supondo que XYZ representa que X é mais velho que Y, que é mais velho que Z). Nestas, A é mais velho que C em metade dos casos. Mas, esta quantidade diminui, quando pomos também que A é mais velho que B.
- (b) Seja X_{AB} e X_{AC} os evento "A é mais velho que B" e "A é mais velho que C", respectivamente. Então

$$P(X_{AB}|X_{AC}) = \frac{P(X_{AB}, X_{AC})}{P(X_{AC})} \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

- (a) $P(A>B)=\frac{4}{6}$, já que basta que o dado A tenha resultado 4. $P(B>C)=\frac{4}{6}$, já que basta que o dado C tenha resultado 2. $P(C>D)=\frac{2}{6}\cdot\frac{3}{6}+1\cdot\frac{3}{6}=\frac{4}{6}$, já que para o caso de D ter resultado 5, queremos que o dado C tenha resultado 6 e, se D tem resultado 1, o resultado do dado C sempre é maior que o de D. $P(D>A)=1\cdot\frac{3}{6}+\frac{2}{6}\cdot\frac{3}{6}=\frac{4}{6}$, já que o dado D tem certamente resultado maior que o dado A se o resultado de D for 5 e quando for 1, somente quando o resultado de A é O.
- (b) O evento A > B é independente do evento B > C, pois o resultado do dado B é sempre o mesmo e, portanto, saber que A > B não influencia saber que B > C. Entretanto, o evento B > C não é independente do evento C > D, pois saber que B > C implica que o resultado de C foi 2, já que o resultado de B é sempre 3. Mas, se o resultado de C foi 2, então para que C seja maior que D, o resultado de D deve ser 1.

35.

(a) Seja G o evento de ganhar a partida e A_1, A_2, A_3 os eventos do adversário ser iniciante, intermediário e médio, respectivamente. Então

$$P(G) = P(G|A_1)P(A_1) + P(G|A_2)P(A_2) + P(G|A_3)P(A_3)$$
$$= \frac{90}{100} \cdot \frac{1}{3} + \frac{50}{100} \cdot \frac{1}{3} + \frac{30}{100} \cdot \frac{1}{3} = \frac{17}{30}$$

(b) Seja G_1 o evento de ganhar a primeira partida e G_2 o evento de ganhar a segunda. Então

$$\begin{split} &P(G_2|G_1)\\ &=\frac{P(G_1,G_2)}{P(G_2)} = \frac{P(G_1,G_2|A_1)P(A_1) + P(G_1,G_2|A_2)P(A_2) + P(G_1,G_2|A_3)P(A_3)}{P(G_2)}\\ &=\frac{P(G_1|A_1)P(G_2|A_1)P(A_1) + P(G_1|A_2)P(G_2|A_2)P(A_2) + P(G_1|A_3)P(G_2|A_3)P(A_3)}{P(G_2)}\\ &=\frac{\frac{90}{100} \cdot \frac{90}{100} \cdot \frac{1}{3} + \frac{50}{100} \cdot \frac{50}{100} \cdot \frac{1}{3} + \frac{30}{100} \cdot \frac{30}{100} \cdot \frac{1}{3}}{\frac{17}{30}} = \frac{23}{34} \end{split}$$

(c) Se os resultados das partidas são independentes, então a primeira partida não influencia a segunda (e vice-versa) sob nenhuma circunstância. Se os resultados das partidas são condicionalmente independentes ao nível do adversário, então a primeira partida não influencia a segunda (e vice-versa)

desde que sabemos o nível do adversário. Note que a segunda suposição é mais razoável, pois se sabemos o nível do adversário, ambas as partidas estarão sujeitas as mesmas condições e o resultado de uma partida não irá influenciar a outra. Em contrapartida, se desconhecemos o nível do adversário e sabemos, por exemplo, que ele ganhou na primeira partida, então ele tem menos chance de ser iniciante e mais chance de ser mestre e, portanto, mais chance de ganhar a segunda partida.

38.

- (a) Observe que não importa quais 3 portas com cabras Monty Hall escolhe para abrir, já que em todo caso teremos ao final 4 portas e a escolha de querer trocar entre a escolhida e alguma das outras 3. Das 3 portas restantes, temos $\frac{1}{3}$ de probabilidade de ganhar o carro trocando de porta dado que o carro não estava na porta inicialmente escolhida. Se o carro estava na primeira porta escolhida, então a probabilidade de ganhar o carro trocando de porta é 0. Então, a probabilidade de ganhar trocando de porta é $\frac{1}{3} \cdot \frac{6}{7} = \frac{2}{7}$, que é maior que a probabilidade inicial de $\frac{1}{7}$.
- (b) Generalizando o raciocínio anterior, a probabilidade será

$$\frac{1}{n-m-1} \cdot \frac{n-1}{n} + 0 \cdot \frac{1}{n} = \frac{n-1}{n(n-m-1)}$$

que é maior que $\frac{1}{n}$. Então, ainda é mais vantajoso trocar de porta.

39. Seja T o evento no qual a estratégia de trocar de porta tem sucesso, P_i o evento no qual o carro está na porta i e M_i o evento no qual Monty Hall abre a porta i, com i = 1, 2, 3.

(a)

$$P(T) = P(T|P_1)P(P_1) + P(T|P_2)P(P_2) + P(T|P_3)P(P_3)$$

= $0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{2}{3}$

(b) Note que

$$P(M_2) = P(M_2|P_1)P(P_1) + P(M_2|P_2)P(P_2) + P(M_2|P_3)P(P_3)$$

= $p \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{p+1}{3}$

Observe que se Monty escolhe abrir a porta 2, trocar de porta e ganhar o carro significa escolher a porta 3 e o carro estar lá. Assim, temos

$$P(T|M_2) = \frac{P(M_2|T)P(T)}{P(M_2)} = \frac{P(M_2|P_3)P(P_3)}{P(M_2)}$$
$$= \frac{1 \cdot \frac{1}{3}}{\frac{p+1}{3}} = \frac{1}{p+1}$$

(c) Note que

$$P(M_3) = P(M_3|P_1)P(P_1) + P(M_3|P_2)P(P_2) + P(M_3|P_3)P(P_3)$$

= $(1-p) \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} = \frac{2-p}{3}$

Observe que se Monty escolhe abrir a porta 3, trocar de porta e ganhar o carro significa escolher a porta 2 e o carro estar lá. Assim, temos

$$P(T|M_3) = \frac{P(M_3|T)P(T)}{P(M_3)} = \frac{P(M_3|P_2)P(P_2)}{P(M_3)}$$
$$= \frac{1 \cdot \frac{1}{3}}{\frac{2-p}{3}} = \frac{1}{2-p}$$

42.

(a) Temos que $p_0=1$ e $p_k=0$ se k<0. Agora, note que se a soma até um dado momento foi n, então anteriormente a esse lançamento a soma só podia estar em n-6, n-5, n-4, n-3, n-2 ou n-1. Assim, temos que $p_n=\frac{1}{6}p_{n-1}+\frac{1}{6}p_{n-2}+\frac{1}{6}p_{n-3}+\frac{1}{6}p_{n-4}+\frac{1}{6}p_{n-5}+\frac{1}{6}p_{n-6}$.

(b) Efetuamos os cálculos, de forma recursiva:

$$p_{1} = \frac{1}{6}p_{0} = \frac{1}{6}$$

$$p_{2} = \frac{1}{6}p_{0} + \frac{1}{6}p_{1} = \frac{7}{6}p_{1} = \frac{7}{36}$$

$$p_{3} = \frac{1}{6}p_{0} + \frac{1}{6}p_{1} + \frac{1}{6}p_{2} = \frac{7}{6}p_{2} = \frac{7^{2}}{6^{3}}$$

$$p_{4} = \frac{1}{6}p_{0} + \frac{1}{6}p_{1} + \frac{1}{6}p_{2} + \frac{1}{6}p_{3} = \frac{7}{6}p_{3} = \frac{7^{3}}{6^{4}}$$

$$p_{5} = \frac{1}{6}p_{0} + \frac{1}{6}p_{1} + \frac{1}{6}p_{2} + \frac{1}{6}p_{3} + \frac{1}{6}p_{4} = \frac{7}{6}p_{4} = \frac{7^{4}}{6^{5}}$$

$$p_{6} = \frac{1}{6}p_{0} + \frac{1}{6}p_{1} + \frac{1}{6}p_{2} + \frac{1}{6}p_{3} + \frac{1}{6}p_{4} + \frac{1}{6}p_{5} = \frac{7}{6}p_{5} = \frac{7^{5}}{6^{6}}$$

$$p_{7} = \frac{1}{6}p_{1} + \frac{1}{6}p_{2} + \frac{1}{6}p_{3} + \frac{1}{6}p_{4} + \frac{1}{6}p_{5} = \frac{7}{6}p_{6} - 1 = \frac{7^{6}}{6^{7}} - 1$$

(c) O valor esperado que se obtém em um lançamento é $\frac{1+2+3+4+5+6}{6} = \frac{7}{2}$. Isto significa que a cada lançamento, em média, o valor agregado aumenta em $\frac{7}{2}$. Isto significa, que teremos $\frac{7}{2}$ valores possíveis. Destes, queremos apenas 1, a saber: n. Logo, $\lim_{n\to\infty} p_n$ assimila-se a frequência de passar por n quando n é suficientemente grande e esta é $\frac{1}{7/2} = \frac{2}{7}$.

49.

(a) Isso não é possível. Com efeito

$$P(A) = P(A|C)P(C) + P(A|C^{\complement})P(C^{\complement})$$

$$< P(B|C)P(C) + P(B|C^{\complement})P(C^{\complement}) = P(B)$$

(b) No Paradoxo de Simpson, podemos ter que $P(A|B,C) < P(A|B^{\complement},C)$ e $P(A|B,C^{\complement}) < P(A|B^{\complement},C^{\complement})$, mas havendo possibilidade de $P(A|B) > P(A|B^{\complement})$ e isto decorre do fato de que os pesos $P(C|B), P(C^{\complement}|B), P(C|B^{\complement})$ e $P(C^{\complement}|B^{\complement})$ que aparecem no desenvolvimento podem ser escolhidos de modo que a desigualdade funciona. Para essa questão, entretanto, os pesos P(C) e $P(C^{\complement})$ são os mesmos em ambos os lados da desigualdade.

(a) Seja M o evento evento da mão ter a doença e F_1, F_2 os eventos de cada filho não ter a doença. Então

$$P(F_1, F_2) = P(F_1, F_2|M)P(M) + P(F_1, F_2|M^{\complement})P(M^{\complement})$$

$$= P(F_1|M)P(F_2|M)P(M) + P(F_1, F_2|M^{\complement})P(M^{\complement})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{3}{4}$$

- (b) Se o filho mais velho tem a doença, isto significa que a mãe tem a doença e, portanto, o filho mais novo tem $\frac{1}{2}$ de probabilidade de ter a doença. Se, porém, não tivéssemos a informação do filho mais velho ter a doença, não poderíamos concluir o fato da mãe ter a doença e, neste caso, a probabilidade do filho mais novo ter a doença seria menor, a saber: $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$. Logo, não são independentes.
- (c) Isto é equivalente a calcular $\tilde{P}(M|F_2)$, onde $\tilde{P}(A) = \tilde{P}(A|F_1)$, que é o mesmo que calcular $P(M|F_1, F_2)$. Agora, do item (a), obtivemos que $P(F_1, F_2) = \frac{3}{4}$ e também que $P(F_1, F_2|M) = P(F_1|M)P(F_2|M) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. Assim, temos

$$P(M|F_1, F_2) = \frac{P(F_1, F_2|M)P(M)}{P(F_1, F_2)} = \frac{\frac{1}{4} \cdot \frac{1}{3}}{\frac{3}{4}} = \frac{1}{9}$$

- (a) Não importa se você sortear primeiro, por último ou em qualquer momento intermediário. A probabilidade de ser roubado é sempre $\frac{1}{200}$. Para ver isto, basta observar que há 200! possíveis ordens de retirada. Destas, em 199!, o bilhete sorteado na posição em que você está é "você perde". Outra forma de perceber isto é notar que no primeiro sorteio, há uma probabilidade de $\frac{1}{200}$ do papel ser o que está escrito "você perde". No segundo sorteio, há uma probabilidade de $0 \cdot \frac{1}{200} + \frac{1}{199} \cdot \frac{199}{200} = \frac{1}{200}$ do papel ser o que está escrito "você perde". De modo recursivo, vê-se que a probabilidade se mantém em $\frac{1}{200}$ para todas as posições de sorteio.
- (b) Neste caso, depende da relação entre v e w, pois no primeiro sorteio, há uma probabilidade de $\frac{v}{v+nw}$ do papel ser o que está escrito "você perde". No segundo sorteio, há uma probabilidade de $0 \cdot \frac{v}{v+nw} + \frac{v}{v+(n-1)w} \cdot \frac{nw}{v+nw} = \frac{vnw}{(v+nw)(v+(n-1)w)}$ do papel ser o que está escrito "você perde". Comparando $\frac{v}{v+nw}$ com $\frac{vnw}{(v+nw)(v+(n-1)w)}$, vemos que se v < w, então é mais vantajoso o segundo sorteio do que o primeiro, se v = w, ambas as probabilidades são iguais e, se v > w, então é mais vantajoso o primeiro sorteio do que o segundo.

Assim, pela simetria das probabilidades, temos que se v < w, então é mais vantajoso o último o sorteio do que qualquer outro, se v = w, não importa qual papel sortear e, se v > w, então é mais vantajoso o primeiro sorteio do que qualquer outro.

OBS.: Mais geralmente, para o i-ésimo sorteio, há uma probabilidade de

$$\frac{vn(n-1)...(n-i)w^{i-1}}{(v+nw)(v+(n-1)w)...(v+(n-i+1)w)}$$

Parte 3 (Notas de Aula)

Capítulo 2

2. Temos que X_2 assume valores em 0,1,2 ou 3 e, temos

$$P(X_2 = 0) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} = \frac{1}{6}$$

$$P(X_2 = 1) = {3 \choose 1} \cdot \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} = \frac{1}{2}$$

$$P(X_2 = 2) = {3 \choose 2} \cdot \frac{6}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} = \frac{3}{10}$$

$$P(X_2 = 3) = \frac{4}{10} \cdot \frac{3}{9} \cdot \frac{2}{8} = \frac{1}{30}$$

4. Sendo J_1 e J_2 os jogadores, temos os possíveis desfechos da rodada:

$$J_1J_1, J_2J_2, J_1J_2J_1, J_1J_2J_2, J_2J_2J_1, J_2J_1J_2$$

onde cada um dos dois primeiros tem probabilidade $\frac{1}{4}$ de ocorrer e os demais 4 tem probabilidade $\frac{1}{8}$. Assim, temos

$$P(X_4 = 2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$P(X_4 = 3) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$

5.

a)

$$P(X_5 = 1) = 0.1 + 0.3 = 0.4$$

$$P(X_5 = 2) = 0.2 + 0 = 0.2$$

$$P(X_5 = 3) = 0.3 + 0.1 = 0.4$$

$$P(Y_5 = 0) = 0.1 + 0.2 + 0.3 = 0.6$$

$$P(Y_5 = 1) = 0.3 + 0 + 0.1 = 0.4$$

b)

$$P(X_5 = 1|Y_5 = 1) = \frac{0.3}{0.3 + 0.1} = \frac{3}{4}$$

$$P(X_5 = 2|Y_5 = 1) = 0$$

$$P(X_5 = 3|Y_5 = 1) = \frac{0.1}{0.3 + 0.1} = \frac{1}{4}$$

c)

$$P(Y_5 = 0|X_5 \ge 2) = \frac{P(X_5 \ge 2|Y_5 = 0)P(Y_5 = 0)}{P(X_5 \ge 2)}$$

$$= \frac{[P(X_5 = 2|Y_5 = 0) + P(X_5 = 3|Y_5 = 0)]P(Y_5 = 0)}{P(X_5 = 2) + P(X_2 = 3)}$$

$$= \frac{\left[\frac{0.2}{0.1 + 0.2 + 0.3} + \frac{0.3}{0.1 + 0.2 + 0.3}\right] \cdot 0.6}{0.2 + 0.4} = \frac{5}{6}$$

d) X_5 e Y_5 não são independentes. Com efeito, temos, por exemplo

$$P(X_5 = 1, Y_5 = 0) = 0.1 \neq 0.4 \cdot 0.6 = P(X_5 = 1)P(Y_5 = 0)$$

e) Temos que Z_5 assume valores em 1, 2, 3, 4, 5, 6. Logo,

$$P(Z_5 = 1) = P(X_5 = 1, Y_5 = 1) = 0.3$$

$$P(Z_5 = 2) = P(X_5 = 1, Y_5 = 0) = 0.1$$

$$P(Z_5 = 3) = P(X_5 = 2, Y_5 = 1) = 0$$

$$P(Z_5 = 4) = P(X_5 = 2, Y_5 = 0) = 0.2$$

$$P(Z_5 = 5) = P(X_5 = 3, Y_5 = 1) = 0.1$$

$$P(Z_5 = 6) = P(X_5 = 3, Y_5 = 0) = 0.3$$

7.

a) A probabilidade de que X_7 e Y_7 tenham um mesmo valor k, com k=-2,-1,0,1,2 é a probabilidade de que cada pessoa do casal tenha escolhido este número, ou seja, $\frac{1}{5} \cdot \frac{1}{5} = \frac{1}{25} = 0.04$. Além disso, a probabilidade de que $X_7 = k$ e $Y_7 = j$, com k < j é a probabilidade de que eles tenham escolhido k e j (ou vice-versa), ou seja, $\frac{1}{5} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{5} = \frac{2}{25} = 0.08$. Por fim, a probabilidade de $X_7 = k$ e $Y_j = j$, com k > j é 0, já que $X_7 \leqslant Y_7$.

b)
$$P(X_7 = -2) = 0.04 + 4 \cdot 0.08 = 0.36$$

$$P(X_7 = -1) = 0.04 + 3 \cdot 0.08 = 0.28$$

$$P(X_7 = 0) = 0.04 + 2 \cdot 0.08 = 0.2$$

$$P(X_7 = 1) = 0.04 + 0.08 = 0.12$$

$$P(X_7 = 2) = 0.04$$

c)
$$P(X_7 = -2|Y_7 = 0) = \frac{0.08}{0.08 + 0.08 + 0.04} = \frac{2}{5}$$

$$P(X_7 = -1|Y_7 = 0) = \frac{0.08}{0.08 + 0.08 + 0.04} = \frac{2}{5}$$

$$P(X_7 = 0|Y_7 = 0) = \frac{0.04}{0.08 + 0.08 + 0.04} = \frac{1}{5}$$

$$P(X_7 = 1|Y_7 = 0) = 0$$

$$P(X_7 = 2|Y_7 = 0) = 0$$

d)
$$P(X_7 \le 0 | (Y_7)^2 = 1) = P(X_7 = -2 \cup X_7 = -1 \cup X_7 = 0 | Y_7 = \pm 1)$$

$$= \frac{0.16 + 0.12 + 0.08}{0.4} = \frac{9}{10}$$

e) Z_7 toma valores em 0, 1, 2, 3, 4. Assim, temos

$$P(Z_7 = 0) = 5 \cdot 0.04 = 0.2$$

$$P(Z_7 = 1) = 4 \cdot 0.08 = 0.32$$

$$P(Z_7 = 2) = 3 \cdot 0.08 = 0.24$$

$$P(Z_7 = 3) = 2 \cdot 0.08 = 0.16$$

$$P(Z_7 = 4) = 0.08$$

8.

a) Temos que

$$P(M = k) = P(D_1 = k, D_2 \le k) + P(D_1 \le k, D_2 = k) - P(D_1 = k, D_2 = k)$$

$$= 2\sum_{j=1}^{k} P(D_1 = k, D_2 = j) - P(D_1 = k, D_2 = k)$$

$$= 2\sum_{j=1}^{k} \frac{1}{36} - \frac{1}{36} = \frac{2k-1}{36}$$

b) Temos que

$$P(m = k) = P(D_1 = k, D_2 \ge k) + P(D_1 \ge k, D_2 = k) - P(D_1 = k, D_2 = k)$$

$$= 2\sum_{j=k}^{6} P(D_1 = k, D_2 = j) - P(D_1 = k, D_2 = k)$$

$$= 2\sum_{j=k}^{6} \frac{1}{36} - \frac{1}{36} = \frac{2(6 - k + 1) - 1}{36} = \frac{13 - 2k}{36}$$

c) Se i < j, com $i, j \in \{1, ..., 6\}$, temos

$$P(m=i, M=j) = P(D_1=i, D_2=j) + P(D_1=j, D_2=i) = \frac{1}{36} + \frac{1}{36} = \frac{2}{36}$$

Se i = j = k, com $i, j \in \{1, ..., 6\}$, temos

$$P(m = i, M = j) = P(D_1 = k, D_2 = k) = \frac{1}{36}$$

Um esboço do diagrama de dispersão pode ser feito tanto bidimensional quanto tridimensional e segue abaixo as duas representações

24. Seja L_i o lucro diário esperado de fazer i tortas por dia, com i=0,1,2,3.

Então

$$L_0 = (0.2 + 0.3 + 0.3 + 0.2) \cdot 0 - 0 \cdot 20 = 0$$

$$L_1 = 0.2 \cdot 0 + (0.3 + 0.3 + 0.2) \cdot 50 - 1 \cdot 20 = 20$$

$$L_2 = 0.2 \cdot 0 + 0.3 \cdot 50 + (0.3 + 0.2) \cdot 100 - 2 \cdot 20 = 25$$

$$L_3 = 0.2 \cdot 0 + 0.3 \cdot 50 + 0.3 \cdot 100 + 0.2 \cdot 150 - 3 \cdot 20 = 15$$

Logo, deve-se fazer 2 tortas por dia para maximizar o lucro diário esperado, que será de \$25.

30. Estes jogos não são equivalentes, pois podemos por exemplo tirar 99 números 1's e 1 número 2 no jogo A), obtendo um prêmio de 101 e isto nunca será possível no jogo B).

No jogo A), o prêmio esperado é a soma dos valores esperados de cada resultado do dado, ou seja, $100 \cdot \frac{7}{2} = 350$. A variância, por sua vez, é a soma das variâncias de cada resultado do dado, ou seja, $100 \cdot \frac{35}{12} = \frac{875}{3}$.

No jogo B), o prêmio esperado é 100 vezes o valor esperado do resultado do dado, ou seja, $100 \cdot \frac{7}{2} = 350$. A variância, por sua vez, é 100^2 vezes a variância do resultado do dado, ou seja, $100^2 \cdot \frac{35}{12} = \frac{87500}{3}$.

O jogo A) fornece menos risco, uma vez que a variância é menor do que a do jogo B) e, portanto, o prêmio estaria mais concentrado em torno da média. Por outro lado, a alta variância do jogo B) pode também ser interessante no sentido de que o prêmio fique bem mais afastado da média, mas isto pode vir a ser por valores maiores do que a média. Então, a resposta depende do nível de risco que o jogador tem.

39. Seja L_k o lucro esperado ao retirar k bolas.

a)
$$L_{1} = 1 \cdot \frac{2}{5} + (-1) \cdot \frac{3}{5} = -\frac{1}{5}$$
b)
$$L_{2} = 2 \cdot \frac{\binom{2}{2}\binom{3}{0}}{\binom{5}{2}} + 0 \cdot \frac{\binom{2}{1}\binom{3}{1}}{\binom{5}{2}} + (-2) \cdot \frac{\binom{2}{0}\binom{3}{2}}{\binom{5}{2}} = -\frac{2}{5}$$

$$L_{3} = 1 \cdot \frac{\binom{2}{2}\binom{3}{1}}{\binom{5}{3}} + (-1) \cdot \frac{\binom{2}{1}\binom{3}{2}}{\binom{5}{3}} + (-3) \cdot \frac{\binom{2}{0}\binom{3}{3}}{\binom{5}{3}} = -\frac{3}{5}$$

$$L_{4} = 0 \cdot \frac{\binom{2}{2}\binom{3}{2}}{\binom{5}{4}} + (-2) \cdot \frac{\binom{2}{1}\binom{3}{3}}{\binom{5}{4}} = -\frac{4}{5}$$

$$L_{5} = 2 + (-3) = -1$$

c) Seja L o lucro neste caso. Então, os casos possíveis são:

As probabilidades de cada um destes para essa estratégia são, respectivamente, $\frac{2}{5}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}$. Deste modo, temos

$$L = 1 \cdot \frac{1}{2} + 0 \cdot \frac{2}{10} + (-1) \cdot \frac{3}{10} = \frac{1}{5}$$

58.

a) Devemos ter

$$\sum_{k=1}^{9} P(X = k) = 1 \Leftrightarrow \sum_{k=1}^{9} c \ln \left(\frac{k+1}{k} \right) = 1$$

$$\Leftrightarrow c = \left[\sum_{k=1}^{9} \ln \left(\frac{k+1}{k} \right) \right]^{-1}$$

$$\Leftrightarrow c = \frac{1}{\ln 10}$$

b) Para x > 0, temos

$$F_X(x) = P(X \le x) = \sum_{k=1}^{\lfloor x \rfloor} P(X = k) = \frac{1}{\ln 10} \sum_{k=1}^{\lfloor x \rfloor} \ln \left(\frac{k+1}{k} \right) = \frac{\ln (\lfloor x \rfloor + 1)}{\ln 10}$$

Seja M uma mediana para F_X , então

$$F(M) \ge 0.5 \Leftrightarrow \frac{\ln(\lfloor M \rfloor + 1)}{\ln 10} \ge 0.5 \Leftrightarrow \ln(\lfloor M \rfloor + 1) \ge \ln \sqrt{10}$$
$$\Leftrightarrow \lfloor M \rfloor \ge \sqrt{10} - 1 \approx 2.162 \Rightarrow \lfloor M \rfloor = 3$$

Logo, a mediana é qualquer valor em [3, 4).

c) Segundo a Lei de Benford, a proporção de municípios entre 5000 e 6000 habitantes é dada pela probabilidade do primeiro dígito ser 5, ou seja,

$$\frac{\ln\left(\frac{6}{5}\right)}{\ln 10}$$

Como 1309 municípios tem entre 5000 e 10000 habitantes, devemos considerar a probabilidade acima restrita aos casos em que o primeiro dígito é 5, 6, 7, 8 ou 9, ou seja,

$$\frac{\frac{\ln\left(\frac{6}{5}\right)}{\ln 10}}{\frac{1}{\ln 10} \sum_{k=5}^{9} \ln\left(\frac{k+1}{k}\right)} = \frac{\ln\left(\frac{6}{5}\right)}{\ln\left(\frac{10}{5}\right)} = \frac{\ln\left(\frac{6}{5}\right)}{\ln 2} = \log_2\left(\frac{6}{5}\right)$$

Daí, temos uma estimativa de $\log_2\left(\frac{6}{5}\right) \cdot 1309$ municípios que tem entre 5000 e 6000 habitantes. A hipótese adicional é que a distribuição de Benford se mantém válida mesmo dentro do intervalo específico de 5000 a 10000 habitantes, ou seja, que as proporções dos primeiros dígitos nessa subfaixa seguem a mesma lei observada em dados naturais.

a)
$$P(X = 0|XY = 0) = \frac{P(XY = 0|X = 0)P(X = 0)}{P(XY = 0)}$$

$$= \frac{P(XY = 0|X = 0)P(X = 0)}{P(XY = 0|X = 0)P(X = 0) + P(XY = 0|X \neq 0)P(X \neq 0)}$$

$$= \frac{1 \cdot \frac{2}{5}}{1 \cdot \frac{2}{5} + \frac{2}{4} \cdot \frac{3}{5}} = \frac{4}{7}$$

b)
$$P(X = 0, Y = 0) = P(X = 2, Y = 2) = \frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20}$$

$$P(X = 0, Y = 1) = P(X = 2, Y = 1) = \frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20}$$

$$P(X = 0, Y = 2) = P(X = 2, Y = 0) = \frac{2}{5} \cdot \frac{2}{4} = \frac{4}{20}$$

$$P(X = 1, Y = 0) = P(X = 1, Y = 2) = \frac{1}{5} \cdot \frac{2}{4} = \frac{2}{20}$$

$$P(X = 1, Y = 1) = 0$$

c)
$$P(Y = 0) = P(Y = 0, X = 0) + P(Y = 0, X = 1) + P(Y = 0, X = 2) = \frac{8}{20}$$

$$P(Y = 1) = P(Y = 1, X = 0) + P(Y = 1, X = 1) + P(Y = 1, X = 2) = \frac{4}{20}$$

$$P(Y = 2) = P(Y = 2, X = 0) + P(Y = 2, X = 1) + P(Y = 2, X = 2) = \frac{8}{20}$$

d) Z = XY pode tomar valores apenas em 0,2 ou 4. Assim,

$$P(Z=0) = P(X=0) + P(Y=0) - P(X=0,Y=0) = \frac{2}{5} + \frac{8}{20} - \frac{2}{20} = \frac{14}{20}$$

$$P(Z=2) = P(X=2,Y=1) + P(X=1,Y=2) = \frac{2}{20} + \frac{2}{20} = \frac{4}{20}$$

$$P(Z=4) = P(X=2,Y=2) = \frac{2}{20}$$

Parte 3 (B & H)

Capítulo 3

13. Basta notar que

$$P(X = a) = \sum_{z} P(X = a | Z = z) P(Z = z)$$
$$= \sum_{z} P(Y = a | Z = z) P(Z = z) = P(Y = a)$$

41. Não é verdade, considere por exemplo X e Y independentes e Z=X. Então, Y e Z são claramente independentes, mas Z e X são claramentes dependentes.

42. Temos que $P(X = k) = \frac{1}{7}$, para todo k = 1, ..., 7. Então, se k > 1, vem que $P(Y = k) = P(X = k - 1) = \frac{1}{7}$ e $P(X = 1) = P(X = 7) = \frac{1}{7}$. Logo, Y tem a mesma distribuição que X. É fácil ver que X < Y para exatamente 6 dos 7 valores possíveis para X (a saber: 1, 2, 3, 4, 5, 6). Logo, $P(X < Y) = \frac{6}{7}$.

Capítulo 4

13. É possível. Por exemplo, seja X uma variável que é 10100 com probabilidade 0.01 e 0 com probabilidade 0.99 (então, EX=101) e Y uma variável que é 1 com probabilidade 1 (então, EY=1). Então,

$$EX = 101 > 100 = 100EY$$

Além disso, temos que

$$P(Y > X) = P(X = 0) = 0.99$$

30. Seja X_i uma variável indicadora que é 1 se a *i*-ésima caixa está vazia e 0 caso contrário. Assim, $X = \sum_{i=1}^{n} X_i$ é o número total de caixas vazias. A probabilidade de uma certa caixa estar vazia é $\left(1 - \frac{1}{n}\right)^k$. Logo, $EX_i = \left(1 - \frac{1}{n}\right)^k$ e, consequentemente,

$$EX = \sum_{i=1}^{n} EX_i = \sum_{i=1}^{n} \left(1 - \frac{1}{n}\right)^k = n\left(1 - \frac{1}{n}\right)^k$$

32. I_{12} e I_{34} são claramente independentes, pois não há qualquer relação entre os aniversários de 1 e 2 que afetem o de 3 e 4. Além disso, I_{12} e I_{13} também são

independentes. Com efeito, saber que 1 e 2 têm aniversário no mesmo dia, não influencia que 3 tenha ou não aniversário no mesmo dia que 1. Por fim, de forma geral, temos que as I_{ij} são independentes aos pares, mas não são independentes, pois se sabemos por exemplo que $I_{12} = I_{13} = 1$, então $I_{23} = 1$.

40. Se temos 100 cadaços, temos 200 pontas. A cada etapa, fazemos um laço com duas pontas e, portanto, removemos duas pontas a cada etapa. Logo, tudo estará em laços após 100 etapas. Agora, seja X_i uma variável indicadora que é 1 se a i-ésima etapa gerou um laço e 0 caso contrário. Assim, $X = \sum_{i=1}^{100} X_i$ é o número de laços após tudo estar em laços. A probabilidade de que a i-ésima etapa forme um laço é de que das 202-2i pontas dessa etapa (consideramos que uma sequência de cadaços amarrados é um único cadaço), duas de um mesmo cadaço se juntem num laço. Isto ocorre com probabilidade $\frac{101-i}{\binom{202-2i}{2}} = \frac{1}{202-2i-1}$. Logo, $EX_i = \frac{1}{202-2i-1}$. Portanto, temos

$$EX = \sum_{i=1}^{100} EX_i = \sum_{i=1}^{100} \frac{1}{202 - 2i - 1}$$

41. Sendo $I(A_j)$ a indicadora do evento A_j ocorrer. Temos que $I(A_1 \cap ... \cap A_n) = 1$ se todos os A_j 's ocorrem e é = 0 se algum dos A_j 's não ocorre. Agora, se todos os eventos A_j ocorrem, então $\sum_{j=1}^n I(A_j) = n$ e, se algum dos eventos A_j não ocorre, então $\sum_{j=1}^n I(A_j) \leqslant n-1$. Então, uma simples verificação dos casos em que $I(A_1 \cap ... \cap A_n)$ é igual a 0 ou 1 e $\sum_{j=1}^n I(A_j)$ é igual a n ou $\leqslant n-1$, nos mostra que

$$I(A_1 \cap ... \cap A_n) \ge \sum_{j=1}^n I(A_j) - n + 1$$

Tomando a esperança de ambos os lados, temos

$$P(A_1 \cap \dots \cap A_n) \geqslant \sum_{j=1}^n P(A_j) - n + 1$$

45. Seja I_j a variável indicadora de escolha do preço de valor \$j. Então, como escolhemos k dos n preços, a probabilidade do preço \$j ter sido escolhido é de $\frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}$. Logo, $EI_j = \frac{k}{n}$ e, portanto, o valor esperado do total de preços que

foram pegos é

$$E\left[\sum_{j=1}^{n} a_{j} I_{j}\right] = \sum_{j=1}^{n} a_{j} E I_{j} = \sum_{j=1}^{n} a_{j} \frac{k}{n} = \frac{k}{n} \sum_{j=1}^{n} a_{j} = \frac{k}{n} (1 + \dots + n)$$
$$= \frac{k}{n} \cdot \frac{n(n+1)}{2} = \frac{k(n+1)}{2}$$

53. Observe que o evento [X>n] significa que nenhum dos primeiros n candidatos é melhor que C_1 . Como todas as ordens dos candidatos são igualmente prováveis, a probabilidade de C_1 ser o melhor dentre os n primeiros candidatos é $\frac{1}{n}$. Portanto, $P(X>n)=\frac{1}{n}$. Assim, temos

$$EX = \sum_{n=1}^{\infty} P(X > n) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Parte 4 (Notas de Aula)

Capítulo 2

17. Como $\operatorname{Var}(X) = EX^2 - (EX)^2$, temos $EX^2 = \operatorname{Var}(X) + (EX)^2 = 7 + 5^2 = 32$. Logo

$$E(X^2 + 2X + 5) = EX^2 + 2EX + 5 = 32 + 2 \cdot 5 + 5 = 47$$

 $Var(2X + 5) = 4Var(X) = 4 \cdot 7 = 28$

- 19.
 - a)
 - b)
 - c)
- 21.
 - a)
 - b)
- 27.
- 30.
- 33.
- 53.

Parte 4 (B & H)

Capítulo 7

39.

(a) Temos

$$Cov(X + Y, X - Y) = Cov(X, X) - Cov(X, Y) + Cov(Y, X) - Cov(Y, Y) = 0$$

(b) X+Y e X-Y não podem ser independentes, pois se sabemos que X+Y=12, por exemplo, então X=Y=6 e, portanto, X-Y=0. Assim, temos que P(X-Y=0|X+Y=12)=1. Mas, $X-Y=0 \Leftrightarrow X=Y$, ou seja, $P(X-Y=0)=\frac{1}{6}$.

41.