Linearna algebra - 7. auditorne vježbe

- 1. Zadan je paralelogram s vrhovima A(-3, -2, 0), B(3, -3, 1), C(5, 0, 2) i D. Odredite kut koji zatvaraju dijagonale tog paralelograma.
- 2. Izračunajte skalarnu projekciju vektora $\mathbf{a} = 3\mathbf{i} 12\mathbf{j} + 4\mathbf{k}$ u smjeru vektora $\mathbf{b} = (\mathbf{i} 2\mathbf{k}) \times (\mathbf{i} + 3\mathbf{j} 4\mathbf{k})$.
- 3. Neka je $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{b} = 8\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$. Nađite vektor \mathbf{c} takav da $\mathbf{c} \perp \mathbf{a}$, $\mathbf{c} \perp \mathbf{b}$, $|\mathbf{c}| = 12$ te takav da zatvara tupi kut s osi Oy. Koliko je oplošje paralelepipeda koji razapinju vektori \mathbf{a} , \mathbf{b} i \mathbf{c} ?
- 4. Neka je $\mathbf{a} = -2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$, $\mathbf{b} = 2\mu\mathbf{i} + \lambda\mathbf{j} + 2\mathbf{k}$ i $\mathbf{c} = 4\mathbf{i} 10\mathbf{j} + \mu\mathbf{k}$. Za koje su vrijednosti parametara $\lambda, \mu \in \mathbb{R}$ vektori \mathbf{a}, \mathbf{b} i \mathbf{c} :
 - (a) kolinearni,
 - (b) komplanarni?
- 5. Zadani su vektori $\mathbf{a} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$ i $\mathbf{c} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$. Odredite jedinični vektor \mathbf{v} koji leži u ravnini razapetoj vektorima \mathbf{b} i \mathbf{c} , a okomit je na vektor \mathbf{a} .
- **6**. Pojednostavnite izraze:
 - (a) $\mathbf{i} \times (\mathbf{j} + \mathbf{k}) \mathbf{j} \times (\mathbf{i} + \mathbf{k}) + \mathbf{k} \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$,
 - (b) $(\mathbf{a} + \mathbf{b} + \mathbf{c}) \times \mathbf{c} + (\mathbf{a} + \mathbf{b} + \mathbf{c}) \times \mathbf{b} + (\mathbf{b} \mathbf{c}) \times \mathbf{a}$,
 - (c) $2\mathbf{i} \cdot (\mathbf{j} \times \mathbf{k}) + 3\mathbf{j} \cdot (\mathbf{i} \times \mathbf{k}) + 4\mathbf{k} \cdot (\mathbf{i} \times \mathbf{j})$.
- 7. Odredite nužne i dovoljne uvjete na parametre $\alpha, \beta \in \mathbb{R}$ tako da vektori $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$ i $\mathbf{c} = \mathbf{i} + \alpha^2 \mathbf{j} + \beta^2 \mathbf{k}$ čine bazu prostora V^3 . Zapišite vektor $\mathbf{d} = 4\mathbf{i} + (\alpha + 1)^2 \mathbf{j} + (\beta + 1)^2 \mathbf{k}$ u toj bazi.