Supplementary Information

Simulation of X-Ray Absorption Spectra with Orthogonality Constrained Density Functional Theory

Wallace D. Derricotte and Francesco A. Evangelista

Contents

1	Optimized cartesian geometry of adenine	2
2	Optimized cartesian geometry of thymine	3
3	Thymine Oxygen K-Edge	4
4	Thymine Nitrogen K-Edge	5
5	Thymine Carbon K-Edge	6
6	Adenine Nitrogen K-Edge	7
7	Adenine Carbon K-Edge	8

1 Optimized cartesian geometry of adenine

С	-1.970585	-1.395137	-0.045467
N	-1.881922	-0.101178	-0.187746
С	-0.530036	0.162042	-0.075212
С	0.194518	-1.008769	0.138884
N	-0.752839	-2.003591	0.155019
Н	-0.575304	-2.985001	0.288894
Н	-2.887084	-1.963704	-0.076026
С	0.220821	1.350420	-0.134877
N	1.548880	1.275830	0.014725
С	2.109044	0.076787	0.214691
N	1.515353	-1.110912	0.290953
Н	3.187892	0.080293	0.328711
N	-0.350021	2.556054	-0.336758
Н	-1.344255	2.632817	-0.451219
Н	0.231906	3.373853	-0.370895

2 Optimized cartesian geometry of thymine

С	-1.246495	0.412642	-0.003573
С	-2.507237	1.217084	-0.011848
Н	-3.117873	1.004161	-0.892346
Н	-2.252332	2.276314	-0.024950
Н	-3.115843	1.025528	0.874939
С	-1.217630	-0.931441	0.012635
N	-0.056489	-1.654192	0.020052
С	1.197028	-1.083944	0.011743
N	1.154191	0.288466	-0.004799
С	0.033038	1.117787	-0.013561
Н	2.050520	0.753906	-0.011435
0	0.171793	2.321663	-0.028248
0	2.217898	-1.730464	0.018397
Н	-2.125375	-1.524102	0.020825
Н	-0.070123	-2.660021	0.032219

3 Thymine Oxygen K-Edge

Table S1 Calculated and experimental thymine oxygen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Ех	periment
ϕ_h	ϕ_{P}	ω_{fi}	f_{rel}	Peak	ω_{fi}
O_2	81.8% π_1^*	531.05	1.000	A	531.4
O_1	64.0% π_2^*	532.08	0.968	В	532.3
O_1	71.2% π_1^*	533.38	0.146	B'	≈ 533.8
O_2	$78.3\% \ \pi_2^*$	533.75	0.162	Б	\sim 333.6
O_1	77.0% D ₁	534.74	0.008		
O_2	65.9% D ₁	534.85	0.042		
O_2	44.1% D ₃	535.28	0.020		
O_1	69.5% D ₃	535.46	0.098		
O_2	60.8% D ₂	535.53	0.085	C	535.7
O_1	76.0% π_3^*	536.12	0.222		
O_2	69.0% π_3^*	536.24	0.104		
O_2	86.3% D ₄	536.34	0.052		
O_1	$76.3\% D_2$	536.60	0.039		
O_2	44.4% D ₆	537.02	0.024		537.1
O_1	83.5% D ₄	537.10	0.047		
O_2	63.7% D ₅	537.21	0.021	D	
O_1	35.6% D ₇	537.45	0.054	D	
O_2	44.0% D ₇	537.67	0.073		
O_1	43.6% D ₅	537.72	0.036		
O ₁	70.7% D ₆	538.49	0.058		

4 Thymine Nitrogen K-Edge

Table S2 Calculated and experimental thymine nitrogen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

OCDFT			Exp	periment	
ϕ_h	ϕ_{p}	ω_{fi}	f_{rel}	Peak	ω_{fi}
N ₄	81.8% π_1^*	401.18	1.000	A	401.7
N_3	64.0% π_2^*	401.76	0.805	Α	401.7
N_4	78.3% π_2^*	402.50	0.087		
N_3	$77.0\% D_1$	403.09	0.863	В	402.7
N_4	65.9% D ₁	403.33	0.765		
N_4	44.1% D ₃	404.17	0.912	C	404.1
N_4	60.8% D ₂	404.94	0.144		
N_3	69.5% D ₃	405.09	0.374		
N_4	86.3% D ₄	405.31	0.864		405.5
N_3	76.0% π_3^*	405.41	0.333	D	403.3
N_4	69.0% π_3^*	405.62	0.183		
N_3	71.2% π_1^*	405.67	0.490		
N_3	76.3% D ₂	405.76	0.177		

5 Thymine Carbon K-Edge

Table S3 Calculated and experimental thymine carbon core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

		OCDFT		Ex	periment
ϕ_h	ϕ_{P}	ω_{fi}	\mathbf{f}_{rel}	Peak	ω_{fi}
C ₈	92.1% π_1^*	284.90	0.372	A	284.9
C_7	95.9% π_1^*	285.98	0.698	В	285.9
C_9	75.4% π_2^*	286.56	0.036		
C_8	97.6% π_2^*	287.33	0.171		
C_6	$81.8\% \ \pi_1^*$	287.68	0.792	C	287.8
C_9	89.9% π_1^*	287.92	0.117		
C_8	48.1% D ₃	288.19	0.006		
C_9	87.7% D ₁	288.46	0.229		
C_8	53.9% D ₁	288.94	0.037		
C_9	$85.1\% D_3$	289.01	0.158		
C_7	94.2% π_2^*	289.06	0.289		
C_5	$64.0\% \ \pi_{2}^{\stackrel{-}{*}}$	289.14	1.000	D	289.4
C_8	$32.5\% D_3^2$	289.17	0.017		
C_7	90.3% D ₁	289.22	0.001		
C_9	63.1% π_3^*	289.26	0.333		
C ₉	$49.5\% D_2$	289.31	0.375		
C_8	67.1% D ₂	289.67	0.082		
C_8	$77.0\% D_4$	289.68	0.105		
C_6	$78.3\% \ \pi_2^*$	289.94	0.135		
C ₉	75.4% D ₄	290.14	0.023		
C_8	33.3% D ₅	290.31	0.119		
C_5	71.2% π_1^*	290.33	0.029		200.7
C_9	$30.5\% D_5^{1}$	290.43	0.047	E	290.7
C_7	$71.6\% D_3$	290.44	0.050		
C_7	41.5% D ₂	290.54	0.041		
C_8	38.1% D ₆	290.80	0.093		
C_9	$24.4\% D_6$	291.12	0.076		
C_8	61.2% D ₇	291.13	0.024		
C ₇	$45.5\% \ \pi_3^*$	291.42	0.018		
C_7	83.1% D ₄	291.44	0.001		
C_9	24.8% D ₅	291.45	0.289		
C_6	65.9% D ₁	291.59	0.036		
C_7	44.3% D ₅	291.83	0.055		

6 Adenine Nitrogen K-Edge

Table S4 Calculated and experimental adenine nitrogen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Ex	Experiment	
ϕ_h	ϕ_p	ω_{fi}	f_{rel}	Peak	ω_{fi}	
$\overline{N_4}$	81.0% π_1^*	399.14	0.851			
N_3	63.7% π_1^*	399.28	0.926	A	399.5	
N_5	92.6% π_2^*	399.42	1.000			
N_5	92.4% π_1^*	399.69	0.002	A'	≈ 400.4	
N_4	98.9% π_2^*	400.39	0.022	А	\sim 400.4	
N_3	81.6% π_2^*	401.21	0.109	B'	401.3	
N_2	82.1% π_1^*	401.43	0.364			
N_3	66.2% π_3^*	401.79	0.145			
N_1	69.3% π_1^*	401.81	0.594			
N_4	77.4% π_3^*	401.95	0.184			
N_5	$56.7\% \ \pi_3^*$	402.10	0.017	В	401.9	
N_5	$34.7\% \ \pi_3^*$	402.15	0.013			
N_2	78.4% D ₃	402.27	0.204			
N_4	$80.2\% D_2$	402.36	0.003			
N_3	$90.2\% D_2$	402.42	0.012			
N_4	83.4% D ₃	402.73	0.038			
N_3	69.0% D ₃	402.80	0.008			
N_5	36.4% D ₃	402.80	0.049			
N_1	74.8% π_2^*	403.08	0.122			
N_5	39.1% D ₅	403.18	0.030	С	403.0	
N_4	48.5% D ₄	403.22	0.033	C	403.0	
N_1	87.2% D ₂	403.25	0.418			
N_3	80.4% D ₄	403.32	0.074			
N_2	57.1% D ₆	403.34	0.918			
N_5	91.1% D ₆	403.38	0.052			
N_2	94.8% π_3^*	404.33	0.038			
N_3	$42.3\% D_8$	404.44	0.023			
N_2	87.1% π_2^*	404.55	0.011			
N_3	$59.8\% D_6$	404.71	0.059			
N_5	29.0% D ₅	404.73	0.031			
N_4	91.9% D ₁₀	404.79	0.253			
N_2	$56.6\% D_2$	404.97	0.115			

7 Adenine Carbon K-Edge

Table S5 Calculated and experimental adenine carbon core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

OCDFT			Ех	periment	
ϕ_h	ϕ_{P}	ω_{fi}	f_{rel}	Peak	ω_{fi}
C ₁₀	92.6% π_2^*	286.32	0.298	A	286.4
C_9	$81.0\% \ \pi_1^*$	286.46	0.936	A	200.4
C_{10}	92.4% π_1^*	286.71	0.260		
C_7	82.1% π_1^*	286.86	0.893	В	286.8
	1				
C_6	69.3% π_1^*	287.27	1.000	C	287.4
C_8	63.7% π_1^*	287.41	0.961		
C_8	81.6% π_2^*	287.86	0.000		
C_{10}	$34.7\% \ \pi_3^{\tilde{*}}$	287.93	0.092	C'	≈ 288.0
C_9	$98.9\% \ \pi_2^*$	288.02	0.026		
C_6	74.8% π_2^*	288.78	0.008		
C_{10}	$56.7\% \ \pi_3^*$	288.89	0.006		
C_7	$78.4\% D_3$	288.91	0.001	D	289.0
C_{10}	36.4% D ₃	289.16	0.038	D	209.0
C_8	$66.2\% \ \pi_3^*$	289.21	0.014		
	3				
C_9	77.4% π_3^*	289.41	0.016		
\mathbf{C}_7	$87.1\% \ \pi_2^*$	289.43	0.042	Е	
C_7	57.1% D ₆	289.66	0.329		
C_{10}	39.1% D ₅	289.82	0.029		
C_9	80.2% D ₂	289.98	0.266		
C_8	$90.2\% D_2$	290.06	0.044	F	
C_9	83.4% D ₃	290.14	0.166		
C_6	87.2% D ₂	290.15	0.035		
C_7	94.8% π_3^*	290.36	0.086		
C_{10}	91.1% D ₆	290.37	0.020		
C_{10}	61.6% D ₇	290.42	0.031		
C_9	48.5% D ₄	290.45	0.014	~	
C_8	69.0% D ₃	290.61	0.010	G	
C_6	77.2% π_3^*	290.66	0.060		
C_7	56.6% D ₂	290.77	0.064		
C_9	$61.7\% D_6$	290.94	0.018		