

DESCRIPTIVE STATISTICS

INTRODUCTION

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Descriptive Statistics

Types of Data

Levels of Measurement

DESCRIPTIVE STATISTICS

DESCRIPTIVE STATISTICS

Descriptive statistics is a branch of statistics that summarizes and organizes data to provide meaningful insights. It focuses on presenting raw data in a more understandable form using measures of central tendency, measures of variability, and graphical representations.

POPULATION VS SAMPLE

Population (*N*) refers to the **entire** group of individuals or observations being studied.

<u>Sample (n)</u> refers to <u>subset</u> of the population selected for analysis.

POPULATION VS SAMPLE

Population (*N*) refers to the **entire** group of individuals or observations being studied.

<u>Sample (n)</u> refers to <u>subset</u> of the population selected for analysis.

PARAMETERS VS STATISTICS

Characteristics of a **population** are called **parameters**.

e.g., mean $-\mu$, standard deviation $-\sigma$

Characteristics of a <u>sample</u> are called <u>statistics</u>. e.g., mean $-\bar{x}$, standard deviation -s

TYPES OF DATA

DATA

<u>Data</u> refers to the raw facts, figures, and information collected from various sources that can be analyzed to extract insights, identify patterns, and support decision-making.

Voltage Response

Measurement No.	•	
1	12	2.8
2	5	4.5
3	9.1	6
4	3.3	9
5	24	11.7
6	18.5	14.8
7	15.2	17.3
8		20

TYPES OF DATA

This classification focuses on the <u>nature</u> of the data and how it can be categorized or measured.

CATEGORICAL

<u>Categorical data</u> represents groups or categories.

Examples:

Gender (Male, Female)

Colors (Red, Blue, Green)

Types of Cars (Sedan, SUV, Truck)

NUMERICAL

Numerical data represents quantities or numbers.

DISCRETE

Discrete data are data that can be counted in <u>finite</u> manner.

"You can imagine each member of the dataset."

Examples:

Number of students in a class

Number of correct answers

Count of defective products

CONTINUOUS

Continuous data can vary by infinitely small amounts, making them impossible to count directly. Measuring continuous data requires an instrument (e.g., ruler, thermometer) to obtain precise values.

Examples:

Weight

Temperature

Voltage

EXERCISE

Determine if the given example is **discrete** or **continuous** data.

Grades Money

Area Physical Money

Number of objects Height

Time Distance

Time on the clock

LEVELS OF MEASUREMENT

LEVELS OF MEASUREMENT

This classification focuses on the **properties** of the data and how it can be analyzed mathematically.

QUALITATIVE

Qualitative data refers to non-numerical information that describes characteristics or attributes (e.g., customer feedback). It is subjective in nature, as it is derived from personal perceptions, opinions, and interpretations.

NOMINAL

Nominal data can be categorized without any order or ranking.

Examples:

Gender (Male, Female)

Fours seasons (winter, spring, summer, autumn)

Types of Cars (Sedan, SUV, Truck)

ORDINAL

Ordinal data can be categorized with a meaningful order or ranking.

Examples:

Customer feedback:

Facebook reactions:

QUANTITATIVE

Quantitative data refers to <u>numerical</u> data that can be measured and analyzed statistically (e.g., age, income, temperature).

INTERVAL

Interval data has no true zero, meaning that the value of zero does not indicate the absence of the measured quantity.

Example:

Temperature in Celsius or Fahrenheit -0° C or 0° F does not mean there is no temperature; it is just a reference point.

RATIO

Ratio data has a true zero, meaning that the value of zero represents the complete absence of the measured quantity.

Example:

Weight, if an object has a weight of 0 kg, it means it has no weight.

Temperature in Kelvin -0° K represents absolute zero, where molecular motion stops.

EXERCISE

Determine if the given example is **interval** or **ratio** data.

Height of a building (m)

Time to complete a race (seconds)

Exam scores (out of 100)

Year of historical event (1776, 1945, 2001)

Altitude above sea level (m)

LABORATORY

