ОТЧЕТ

Задача распределения узлов между процессорами.

Кузьменко Илья

Последняя дата редактирования: 23.04.2023 Группа 304, МГУ ВМК ВМ ilyexakuzmenko@gmail.com

Научный руководитель: Якобовский Михаил Владимирович

Постановка задачи	2
Программная реализация	3
Введение	
Наименования файлов	
Компиляция	
Вспомогательные функции	
Ход программы. Файл redistribution.cpp	
Результаты выполнения	
Примеры	
Литература	
r J r	

~~~~~~~~~~~ПОСТАНОВКА ЗАДАЧИ~~~~~~~~~~~~~

-> <u>Задача</u>:

Реализовать программу, которая разбивает квадратную матрицу вычислительных узлов размерности mxm между N процессорами так, чтобы трудоемкости на каждом процессоре приблизительно были одинаковыми.

-> Дополнительное условие:

Изначально трудоемкость каждого узла равна 1. Из левого нижнего узла матрицы начинает двигаться круг, внутри которого трудоемкость умножается на 10.

Программа должна эффективно разделить узлы между процессорами.

-> Входные данные:

```
N = 5; // Число процессоров
m = 10; // Количество строк матрицы
n = m; // Количество столбцов матрицы
nnodes = n * m; // Общее количество узлов
ncon = 1; // Количество весов (трудоемкость)

Radius = 4; // Радиус круга, задаваемый количеством узлов (шт).
Speed = 1; //1,4 Количество узлов, которое пройдет центр круга по диагонали за секунду (шт/сек).
Time = 2; // Время, которое двигался круг по диагонали (сек).
```

~~~~~~~~~~~~ПРОГРАММНАЯ РЕАЛИЗАЦИЯ~~~~~~~~~~~~~

1. Введение.

Для реализации решения поставленной задачей была использована дополнительная внешняя библиотека *METIS*.

- METIS (Matrix Elementary Transformation on Irregular Structures) - это пакет программ для разбиения графов на части и решения различных задач, связанных с ними, таких как распределение задач на процессоры в распределенных вычислениях или уменьшение размерности больших графов для более эффективного анализа. METIS основан на алгоритмах разбиения графов на части, которые оптимизируют множество параметров, таких как размер каждой части, количество связей между частями и распределение веса на процессорах.

METIS написан на языке C и доступен как открытое программное обеспечение под лицензией Apache.

2. Наименования файлов.

Полноценная программа написана на 2 языках программирования: *C*++ и *Python*, и состоит из 4 файлов:

- а) *MAIN.cpp* главный файл, который запускает все остальные файлы;
- b) redistributor.cpp файл, который содержит работу с матрицей.
- с) graph.py файл, который строит графики с распределением вычислительных узлов.
- d) *laboriousness.cpp* файл, который рассчитывает трудоемкости для каждого пройессора.

В ходе выполнения программа создает 2 дополнительных файла в текущей директории:

- a) *matrix.csv* файл, содержащий матрицу с разбиением узлов между процессорами, где элемент матрицы номер процессора, который его обрабатывает.
- b) *matrixCirlce.csv* файл, содержащий матрицу с маской круга.

3. Компиляция.

Для того, чтобы протестировать работу программы, необходимо:

- 1) Установить METIS.
- 2) Поместить все файлы в одну директорию.

- 3) Один раз скомпилировать файл redistributor.cpp:
 - \$ q++ redistributor.cpp -lmetis
- 4) Установить в файле graph.py пути к создавшимся в ходе компиляции файлам matrix.csv и matrixCirlce.csv.
- 5) Скомпилировать файл *MAIN.cpp* и запустить получившийся файл:
 - \$ g++ MAIN.cpp
 - \$./a.out

4. Вспомогательные функции.

Файл redistributor.cpp содержит несколько вспомогательных функций:

а) Функция:

```
void getMAINvalues(idx t N1, idx t m1, idx t n1, idx t nnodes1, idx t
ncon1, idx t Radius1, idx t Speed1, idx t Time1) { ... }
```

- функция, связывающая файл redistributor.cpp и MAIN.cpp.
- b) Функция:

```
idx t* movingCircle (idx t R, idx t V, idx t T) { ... }
```

- функция возвращает матрицу трудоемкостей, где внутри круга трудоемкость 10, а вне круга 1. Круг, центр которого располагался в начальный момент времени в НИЖНЕМ ЛЕВОМ узле, двигается по диагонали, стартуя из НИЖНЕГО ЛЕВОГО узла.
 - R Радиус круга, задаваемый количеством узлов,
 - V количество узлов, проходимых центром круга по диагонали за секунду,
 - T количество секунд время, которое двигался круг по диагонали.
- с) Функция:

```
void printAdjncy(idx t* adjncy, idx t* xadj){ ... }
```

- Функция выводит массив, содержащий список всех соседних вершин для каждой вершины графа. Используется для отладки программы.

adjncy - массив, содержащий список всех соседних вершин для каждой вершины графа. *xadj* - массив, содержащий индексы начала каждой строки в массиве *adjncy*.

Файл laboriousness.cpp также содержит несколько вспомогательных функций:

```
а) Функция:
```

```
void readMatrixSize(const string& file, idx_t& numRows, idx_t&
numCols) { ... }
```

- Функция считывает размерность матрицы из файла *file*. Работает с файлами *matrix.csv* и *matrixCirlce.csv*.

```
file - имя файла;

numRows - количество строк матрицы;

numCols - количество столбцов матрицы.
```

b) Функция:

```
void readMatrix(const string& file, idx_t* matrix, idx_t& numRows,
idx t& numCols){ ... }
```

– Функция считывает матрицу из файла file в matrix. Работает с файлами matrix.csv и matrixCirlce.csv.

```
file - имя файла;

matrix - адрес пространства, куда будет записана матрица;

numRows - количество строк матрицы;

numCols - количество столбцов матрицы.
```

5. Ход программы. Файл redistribution.cpp.

Для того, чтобы программа находила необходимое разбиение, было пройдено несколько этапов:

- 1) Выделение памяти.
- 2) Заполнение *xadj* и *adjncy*.
- 3) Вычисление маски трудоемкостей circle.
- 4) Заполнение vwgt.

```
vwgt - массив, содержащий веса для каждого узла.
```

5) Вызов функции METIS_PartGraphRecursive() для разбиения графа на части:
METIS_PartGraphRecursive(&nnodes, &ncon, xadj, adjncy, vwgt, adjwgt,
NULL, &N, NULL, NULL, options, &objval, part);

6) Изменение значения элемента в матрице T.

- 7) Вывод маски circle в файл matrixCircle.csv.
- 8) Вывод матрицы T в файл matrix.csv.
- 9) Очистка памяти.

~~~~~~РЕЗУЛЬТАТЫ ВЫПОЛНЕНИЯ~~~~~~~~

Для наглядности разбиения был добавлен файл graph.py. Результаты его работы будут прикреплены ниже.

Для демонстрации работы программы будем рассматривать входные значения и результат работы программы.

Введем обозначения:

- N число процессоров;
- m размерность квадратной матрицы узлов;
- R радиус круга, задаваемый количеством узлов (считая центр, то есть при R=1 в маске круга должна быть только 1 ячейка центр) (um);
- V скорость количество узлов, которые прошел центр круга по диагонали за 1 секунду ($\mathit{um/cek}$)
 - T время, которое двигался круг по диагонали ($ce\kappa$).
 - k Коэффициент трудоемкости при передачи информации от одного процессора κ другому

Примеры:

Для всех следующих случаев рассмотрим k = 0.5.

NumProc - номер процессора

laborsGeneral – основная трудоемкость узла, задается положением круга; *laborsTrans* – количество ребер графа одного процессора для вычисления трудоемкости узла, вызванной передачей информации другому процессору;

laborsMain - итоговая трудоемкость на процессоре;

Average labor intensity – среднее значение трудоемкости на процессоре;

deviation – отклонение итоговой трудоемкости от средней;

Max deviation - максимальное отклонение среди всех процессоров.

1. Bood:
$$N = 3$$
, $m = 5$, $R = 1$, $V = 0$, $T = 1$:

Вывод:

Маска круга:

0 0 0 0 0

0 0 0 0 0

 $0 \ 0 \ 0 \ 0 \ 0$

0 0 0 0 0

2 0 0 0 0

Матрица распределения:

[[3, 3, 3, 3, 3],

[3, 3, 3, 3, 3],

[2, 2, 2, 3, 3],

[2, 2, 2, 2, 2],

[1, 2, 2, 2, 2]]

Average labor intensity: 11.3333

Max deviation: 4.66667

NumProc: 1 laborsGeneral: 10 laborsTrans: 2 k: 0.5 laborsMain: 11 deviation: -0.333333 NumProc: 2 laborsGeneral: 12 laborsTrans: 8 k: 0.5 laborsMain: 16 deviation: 4.66667 NumProc: 3 laborsGeneral: 12 laborsTrans: 6 k: 0.5 laborsMain: 15 deviation: 3.66667

2. <u>Bood</u>: N = 3, m = 5, R = 1, V = 2, T = 1:

Вывод:

Маска круга:

Matrix

Матрица распределения:

Average labor intensity: 11.3333

Max deviation: 3.66667

NumProc: 1 laborsGeneral: 10 laborsTrans: 4 k: 0.5 laborsMain: 12 deviation: 0.666667 NumProc: 2 laborsGeneral: 12 laborsTrans: 6 k: 0.5 laborsMain: 15 deviation: 3.66667 NumProc: 3 laborsGeneral: 12 laborsTrans: 6 k: 0.5 laborsMain: 15 deviation: 3.66667

3. <u>Beod</u>: N = 3, m = 10, R = 3, V = 5, T = 1:

Вывод:

Маска круга:

Matrix

Circle Matrix

Матрица распределения:

[[3, 3, 3, 3, 3, 3, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1]]

Average labor intensity: 108.333

Max deviation: 8.16666

NumProc: 1 laborsGeneral: 108 laborsTrans: 11 k: 0.5 laborsMain: 113.5 deviation: 5.16666 NumProc: 2 laborsGeneral: 106 laborsTrans: 12 k: 0.5 laborsMain: 112 deviation: 3.66666 NumProc: 3 laborsGeneral: 111 laborsTrans: 11 k: 0.5 laborsMain: 116.5 deviation: 8.16666

4. <u>Beod</u>: N = 3, m = 10, R = 5, V = 5, T = 1:

Вывод:

Маска круга:

0	0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	2	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	0
0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0

Матрица распределения:

[[3, 3, 3, 1, 1, 1, 1, 1, 1, 1],

[3, 3, 3, 1, 1, 1, 1, 1, 1, 1],

[3, 3, 3, 1, 1, 1, 1, 1, 1, 1],

[3, 3, 3, 3, 1, 1, 1, 1, 1, 1],

[3, 3, 3, 3, 2, 2, 2, 2, 2, 2],

[3, 3, 3, 3, 2, 2, 2, 2, 2],

[3, 3, 3, 3, 2, 2, 2, 2, 2],

[3, 3, 3, 3, 3, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 2, 2, 2, 2, 2],

[3, 3, 3, 3, 3, 2, 2, 2, 2, 2]]

Average labor intensity: 240.333

Max deviation: 8.16667

NumProc: 1 laborsGeneral: 243 laborsTrans: 11 k: 0.5 laborsMain: 248.5 deviation: 8.16667

NumProc: 2 laborsGeneral: 238 laborsTrans: 13 k: 0.5 laborsMain: 244.5 deviation: 4.16667

NumProc: 3 laborsGeneral: 240 laborsTrans: 12 k: 0.5 laborsMain: 246 deviation: 5.66667

5. <u>Beod</u>: N = 5, m = 10, R = 5, V = 5, T = 1:

Вывод:

Маска круга:

Матрица распределения:

[[3, 3, 3, 3, 1, 1, 1, 2, 2, 2],
[3, 3, 3, 3, 1, 1, 1, 2, 2, 2],
[3, 3, 3, 3, 1, 1, 1, 2, 2, 2],
[3, 3, 3, 3, 1, 1, 1, 2, 2, 2],
[3, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2],
[3, 4, 4, 4, 4, 5, 5, 2, 2, 2],
[4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5],

Average labor intensity: 144.2

Max deviation: 13.3

NumProc: 1 laborsGeneral: 140 laborsTrans: 13 k: 0.5 laborsMain: 146.5 deviation: 2.3

NumProc: 2 laborsGeneral: 153 laborsTrans: 9 k: 0.5 laborsMain: 157.5 deviation: 13.3

NumProc: 3 laborsGeneral: 139 laborsTrans: 12 k: 0.5 laborsMain: 145 deviation: 0.800003

NumProc: 4 laborsGeneral: 141 laborsTrans: 11 k: 0.5 laborsMain: 146.5 deviation: 2.3

NumProc: 5 laborsGeneral: 148 laborsTrans: 11 k: 0.5 laborsMain: 153.5 deviation: 9.3

6. <u>Bood</u>: N = 7, m = 100, R = 20, V = 40, T = 1:

Average labor intensity: 3029.29

Max deviation: 65.7144

NumProc: 1	laborsGeneral: 3029	laborsTrans: 107	k: 0.5	laborsMain: 3082.5 deviation: 53.2144
NumProc: 2	laborsGeneral: 3030	laborsTrans: 90	k: 0.5	laborsMain: 3075 deviation: 45.7144
NumProc: 3	laborsGeneral: 3028	laborsTrans: 111	k: 0.5	laborsMain: 3083.5 deviation: 54.2144
NumProc: 4	laborsGeneral: 3029	laborsTrans: 132	k: 0.5	laborsMain: 3095 deviation: 65.7144
NumProc: 5	laborsGeneral: 3030	laborsTrans: 122	k: 0.5	laborsMain: 3091 deviation: 61.7144
NumProc: 6	laborsGeneral: 3029	laborsTrans: 92	k: 0.5	laborsMain: 3075 deviation: 45.7144
NumProc: 7	laborsGeneral: 3030	laborsTrans: 126	k: 0.5	laborsMain: 3093 deviation: 63.7144

7. <u>**B600**</u>: N = 10, m = 100, R = 40, V = 40, T = 1:

Average labor intensity: 5511.7

Max deviation: 62.2998

NumProc: 1	laborsGeneral: 5514	laborsTrans: 64	k: 0.5	laborsMain: 5546	deviation: 34.2998
NumProc: 2	laborsGeneral: 5506	laborsTrans: 92	k: 0.5	laborsMain: 5552	deviation: 40.2998
NumProc: 3	laborsGeneral: 5514	laborsTrans: 82	k: 0.5	laborsMain: 5555	deviation: 43.2998
NumProc: 4	laborsGeneral: 5512	laborsTrans: 108	k: 0.5	laborsMain: 5566	deviation: 54.2998
NumProc: 5	laborsGeneral: 5510	laborsTrans: 128	k: 0.5	laborsMain: 5574	deviation: 62.2998
NumProc: 6	laborsGeneral: 5507	laborsTrans: 95	k: 0.5	laborsMain: 5554.5	deviation: 42.7998
NumProc: 7	laborsGeneral: 5517	laborsTrans: 109	k: 0.5	laborsMain: 5571.	5 deviation: 59.7998
NumProc: 8	laborsGeneral: 5510	laborsTrans: 108	k: 0.5	laborsMain: 5564	deviation: 52.2998
NumProc: 9	laborsGeneral: 5513	laborsTrans: 121	k: 0.5	laborsMain: 5573.	5 deviation: 61.7998
NumProc: 10	laborsGeneral: 5514	laborsTrans: 115	s k: 0.5	laborsMain: 557	1.5 deviation: 59.7998

8. <u>Beod</u>: N = 20, m = 1000, R = 300, V = 600, T = 1:

Average labor intensity: 177205

Max deviation: 574.344

NumProc: 1	laborsGeneral: 177200	laborsTrans: 650	k: 0.5	laborsMain: 177525	deviation: 320.344
NumProc: 2	laborsGeneral: 177210	laborsTrans: 778	k: 0.5	laborsMain: 177599	deviation: 394.344
NumProc: 3	laborsGeneral: 177204	laborsTrans: 764	k: 0.5	laborsMain: 177586	deviation: 381.344
NumProc: 4	laborsGeneral: 177204	laborsTrans: 618	k: 0.5	laborsMain: 177513	deviation: 308.344
NumProc: 5	laborsGeneral: 177204	laborsTrans: 753	k: 0.5	laborsMain: 177580	deviation: 375.844
NumProc: 6	laborsGeneral: 177210	laborsTrans: 754	k: 0.5	laborsMain: 177587	deviation: 382.344
NumProc: 7	laborsGeneral: 177200	laborsTrans: 668	k: 0.5	laborsMain: 177534	deviation: 329.344
NumProc: 8	laborsGeneral: 177204	laborsTrans: 640	k: 0.5	laborsMain: 177524	deviation: 319.344
NumProc: 9	laborsGeneral: 177204	laborsTrans: 1116	k: 0.5	laborsMain: 177762	deviation: 557.344
NumProc: 10	laborsGeneral: 177206	laborsTrans: 1124	k: 0.5	laborsMain: 177768	deviation: 563.344
NumProc: 11	laborsGeneral: 177200	laborsTrans: 706	k: 0.5	laborsMain: 177553	deviation: 348.344
NumProc: 12	laborsGeneral: 177210	laborsTrans: 684	k: 0.5	laborsMain: 177552	deviation: 347.344
NumProc: 13	laborsGeneral: 177204	laborsTrans: 764	k: 0.5	laborsMain: 177586	deviation: 381.344
NumProc: 14	laborsGeneral: 177204	laborsTrans: 1075	k: 0.5	laborsMain: 177742	deviation: 536.844
NumProc: 15	laborsGeneral: 177205	laborsTrans: 1135	k: 0.5	laborsMain: 177772	deviation: 567.844
NumProc: 16	laborsGeneral: 177200	laborsTrans: 692	k: 0.5	laborsMain: 177546	deviation: 341.344
NumProc: 17	laborsGeneral: 177210	laborsTrans: 680	k: 0.5	laborsMain: 177550	deviation: 345.344
NumProc: 18	laborsGeneral: 177204	laborsTrans: 1150	k: 0.5	laborsMain: 177779	deviation: 574.344
NumProc: 19	laborsGeneral: 177205	laborsTrans: 757	k: 0.5	laborsMain: 177584	deviation: 378.844
NumProc: 20	laborsGeneral: 177205	laborsTrans: 888	k: 0.5	laborsMain: 177649	deviation: 444.344

9. <u>Bood</u>: N = 20, m = 1000, R = 300, <u>V = 0</u>, T = 1:

Average labor intensity: 81936

Max deviation: 835.953

NumProc: 1	laborsGeneral: 81940	laborsTrans: 461	k: 0.5	laborsMain: 82170.5 deviation: 234.453
NumProc: 2	laborsGeneral: 81930	laborsTrans: 350	k: 0.5	laborsMain: 82105 deviation: 168.953
NumProc: 3	laborsGeneral: 81940	laborsTrans: 259	k: 0.5	laborsMain: 82069.5 deviation: 133.453
NumProc: 4	laborsGeneral: 81940	laborsTrans: 342	k: 0.5	laborsMain: 82111 deviation: 174.953
NumProc: 5	laborsGeneral: 81930	laborsTrans: 444	k: 0.5	laborsMain: 82152 deviation: 215.953
NumProc: 6	laborsGeneral: 81935	laborsTrans: 540	k: 0.5	laborsMain: 82205 deviation: 268.953
NumProc: 7	laborsGeneral: 81936	laborsTrans: 906	k: 0.5	laborsMain: 82389 deviation: 452.953
NumProc: 8	laborsGeneral: 81940	laborsTrans: 371	k: 0.5	laborsMain: 82125.5 deviation: 189.453
NumProc: 9	laborsGeneral: 81934	laborsTrans: 1275	k: 0.5	laborsMain: 82571.5 deviation: 635.453
NumProc: 10	laborsGeneral: 81935	laborsTrans: 566	k: 0.5	laborsMain: 82218 deviation: 281.953
NumProc: 11	laborsGeneral: 81936	laborsTrans: 777	k: 0.5	laborsMain: 82324.5 deviation: 388.453
NumProc: 12	laborsGeneral: 81936	laborsTrans: 1218	k: 0.5	laborsMain: 82545 deviation: 608.953
NumProc: 13	laborsGeneral: 81936	laborsTrans: 1672	k: 0.5	laborsMain: 82772 deviation: 835.953
NumProc: 14	laborsGeneral: 81936	laborsTrans: 1465	k: 0.5	laborsMain: 82668.5 deviation: 732.453
NumProc: 15	laborsGeneral: 81936	laborsTrans: 1063	k: 0.5	laborsMain: 82467.5 deviation: 531.453
NumProc: 16	laborsGeneral: 81936	laborsTrans: 704	k: 0.5	laborsMain: 82288 deviation: 351.953
NumProc: 17	laborsGeneral: 81936	laborsTrans: 1263	k: 0.5	laborsMain: 82567.5 deviation: 631.453
NumProc: 18	laborsGeneral: 81936	laborsTrans: 1584	k: 0.5	laborsMain: 82728 deviation: 791.953
NumProc: 19	laborsGeneral: 81936	laborsTrans: 1165	k: 0.5	laborsMain: 82518.5 deviation: 582.453
NumProc: 20	laborsGeneral: 81937	laborsTrans: 975	k: 0.5	laborsMain: 82424.5 deviation: 488.453

10. <u>B600</u>: N = 50, m = 1000, R = 300, V = 400, T = 1:

Average labor intensity: 70881.9

Max deviation: 591.141

NumProc: 1	laborsGeneral: 70881	laborsTrans: 555	k: 0.5	laborsMain: 71158.5	deviation: 276.641
NumProc: 2	laborsGeneral: 70882	laborsTrans: 650	k: 0.5	laborsMain: 71207	deviation: 325.141
NumProc: 3	laborsGeneral: 70882	laborsTrans: 788	k: 0.5	laborsMain: 71276	deviation: 394.141
NumProc: 4	laborsGeneral: 70880	laborsTrans: 410	k: 0.5	laborsMain: 71085	deviation: 203.141
NumProc: 5	laborsGeneral: 70880	laborsTrans: 398	k: 0.5	laborsMain: 71079	deviation: 197.141
NumProc: 6	laborsGeneral: 70886	laborsTrans: 456	k: 0.5	laborsMain: 71114	deviation: 232.141
NumProc: 7	laborsGeneral: 70880	laborsTrans: 410	k: 0.5	laborsMain: 71085	deviation: 203.141
NumProc: 8	laborsGeneral: 70880	laborsTrans: 406	k: 0.5	laborsMain: 71083	deviation: 201.141
NumProc: 9	laborsGeneral: 70890	laborsTrans: 402	k: 0.5	laborsMain: 71091	deviation: 209.141
NumProc: 10	laborsGeneral: 70880	laborsTrans: 426	k: 0.5	laborsMain: 71093	deviation: 211.141
NumProc: 11	laborsGeneral: 70880	laborsTrans: 414	k: 0.5	laborsMain: 71087	deviation: 205.141
NumProc: 12	laborsGeneral: 70880	laborsTrans: 558	k: 0.5	laborsMain: 71159	deviation: 277.141
NumProc: 13	laborsGeneral: 70880	laborsTrans: 442	k: 0.5	laborsMain: 71101	deviation: 219.141
NumProc: 14	laborsGeneral: 70880	laborsTrans: 458	k: 0.5	laborsMain: 71109	deviation: 227.141
NumProc: 15	laborsGeneral: 70880	laborsTrans: 434	k: 0.5	laborsMain: 71097	deviation: 215.141
NumProc: 16	laborsGeneral: 70880	laborsTrans: 438	k: 0.5	laborsMain: 71099	deviation: 217.141
NumProc: 17	laborsGeneral: 70880	laborsTrans: 484	k: 0.5	laborsMain: 71122	deviation: 240.141
NumProc: 18	laborsGeneral: 70890	laborsTrans: 416	k: 0.5	laborsMain: 71098	deviation: 216.141
NumProc: 19	laborsGeneral: 70882	laborsTrans: 440	k: 0.5	laborsMain: 71102	deviation: 220.141
NumProc: 20	laborsGeneral: 70882	laborsTrans: 970	k: 0.5	laborsMain: 71367	deviation: 485.141
NumProc: 21	laborsGeneral: 70882	laborsTrans: 546	k: 0.5	laborsMain: 71155	deviation: 273.141
NumProc: 22	laborsGeneral: 70882	laborsTrans: 484	k: 0.5	laborsMain: 71124	deviation: 242.141
NumProc: 23	laborsGeneral: 70882	laborsTrans: 596	k: 0.5	laborsMain: 71180	deviation: 298.141
NumProc: 24	laborsGeneral: 70882	laborsTrans: 718	k: 0.5	laborsMain: 71241	deviation: 359.141
NumProc: 25	laborsGeneral: 70883	laborsTrans: 989	k: 0.5	laborsMain: 71377.	5 deviation: 495.641
NumProc: 26	laborsGeneral: 70880	laborsTrans: 414	k: 0.5	laborsMain: 71087	deviation: 205.141

NumProc: 27	laborsGeneral: 70886	laborsTrans: 524	k: 0.5	laborsMain: 71148	deviation: 266.141
NumProc: 28	laborsGeneral: 70880	laborsTrans: 422	k: 0.5	laborsMain: 71091	deviation: 209.141
NumProc: 29	laborsGeneral: 70880	laborsTrans: 460	k: 0.5	laborsMain: 71110	deviation: 228.141
NumProc: 30	laborsGeneral: 70883	laborsTrans: 486	k: 0.5	laborsMain: 71126	deviation: 244.141
NumProc: 31	laborsGeneral: 70883	laborsTrans: 616	k: 0.5	laborsMain: 71191	deviation: 309.141
NumProc: 32	laborsGeneral: 70880	laborsTrans: 412	k: 0.5	laborsMain: 71086	deviation: 204.141
NumProc: 33	laborsGeneral: 70880	laborsTrans: 468	k: 0.5	laborsMain: 71114	deviation: 232.141
NumProc: 34	laborsGeneral: 70890	laborsTrans: 434	k: 0.5	laborsMain: 71107	deviation: 225.141
NumProc: 35	laborsGeneral: 70880	laborsTrans: 452	k: 0.5	laborsMain: 71106	deviation: 224.141
NumProc: 36	laborsGeneral: 70880	laborsTrans: 394	k: 0.5	laborsMain: 71077	deviation: 195.141
NumProc: 37	laborsGeneral: 70880	laborsTrans: 396	k: 0.5	laborsMain: 71078	deviation: 196.141
NumProc: 38	laborsGeneral: 70887	laborsTrans: 532	k: 0.5	laborsMain: 71153	deviation: 271.141
NumProc: 39	laborsGeneral: 70880	laborsTrans: 462	k: 0.5	laborsMain: 71111	deviation: 229.141
NumProc: 40	laborsGeneral: 70880	laborsTrans: 458	k: 0.5	laborsMain: 71109	deviation: 227.141
NumProc: 41	laborsGeneral: 70880	laborsTrans: 538	k: 0.5	laborsMain: 71149	deviation: 267.141
NumProc: 42	laborsGeneral: 70880	laborsTrans: 454	k: 0.5	laborsMain: 71107	deviation: 225.141
NumProc: 43	laborsGeneral: 70884	laborsTrans: 440	k: 0.5	laborsMain: 71104	deviation: 222.141
NumProc: 44	laborsGeneral: 70882	laborsTrans: 1182	k: 0.5	laborsMain: 71473	deviation: 591.141
NumProc: 45	laborsGeneral: 70882	laborsTrans: 1118	k: 0.5	laborsMain: 71441	deviation: 559.141
NumProc: 46	laborsGeneral: 70882	laborsTrans: 675	k: 0.5	laborsMain: 71219.5	deviation: 337.641
NumProc: 47	laborsGeneral: 70882	laborsTrans: 978	k: 0.5	laborsMain: 71371	deviation: 489.141
NumProc: 48	laborsGeneral: 70882	laborsTrans: 426	k: 0.5	laborsMain: 71095	deviation: 213.141
NumProc: 49	laborsGeneral: 70882	laborsTrans: 1059	k: 0.5	laborsMain: 71411.	5 deviation: 529.641
NumProc: 50	laborsGeneral: 70882	laborsTrans: 662	k: 0.5	laborsMain: 71213	deviation: 331.141

СПИСОК ЛИТЕРАТУРЫ

- 1. *Якобовский М.В.* Параллельные вычисления: рациональная декомпозиция сеточных графов
- 2. *Корнилина М.А.*, *Якобовский М.В.* Оценка накладных расходов при выполнении расчётов на локально измельчаемых сетках // Препринты ИПМ им. М.В.Келдыша. 2022. № 102. 36 с.
- 3. *George Karypis* METIS: A Software Package for Partitioning UnstructuredGraphs, Partitioning Meshes, and ComputingFill-Reducing Orderings of Sparse Matrices // URL: https://usermanual.wiki/Pdf/manual.588322308/html#pf1a