

Date: 02.10. 2018

FIRST SEMESTER 2018-2019

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course Handout

Course No	: CS F 215/ EEE F215 / INSTR F215			
Course Title	rse Title : Digital Design			
Instructor-in-charge	: Dr. Pawan K. Ajmera (pawan.ajmera@pilani.bits-pilani.ac.in)			
Instructors for Lecture	: Dr. Nitin Chaturvedi, Dr. Pawan K. Ajmera.			
Tutorial Instructors	: Dr. Pawan K. Ajmera, Mr. G. Sai Shesha Chalapathi			
	Mr. Ashish Patel, Mr. Tejasvi Alladi			
Practical Instructors	ical Instructors : Tulsi Ram Sharma, Abheek Gupta, Prateek Bindra,			
	Punit Khatri, Teena Gakhar, Ankita Dixit.			

Scope and Objective: The objective of the course is to impart knowledge of the basic tools for the design of digital circuits and to provide methods and procedures suitable for a variety of digital design applications.

Text Books:

T1: M. Moris Mano and Michael D. Ciletti "Digital Design", PHI, 5th Edition, 2013.

T2: G. Raghurama, S. Gurunarayanan, S. Mohan, Karthik, "Laboratory Manual", EDD notes 2007.

Reference Books:

R1: Ronald J. Tocci and Neal S. Widmer, "Digital Systems-Principles and Application", Pearson, 10th Edition, 2007.

R2: Thomas I. Floyd, "Digital Fundamentals," Pearson, 9th Edition, 20

R2: Donald D. Givonne, "Digital Principles and Design" TMH, 2003

Course Plan

Lecture	Main Topic	Contents	Reference				
No.	-						
01	Introduction	Introduction to Digital systems and characteristics	T1:1.1-1.9				
02	Number systems and codes						
03	Logic Gates and Boolean Algebra	Digital Logic Gates, Truth Table, Boolean Algebra, Theorems and Properties, Boolean Functions, Canonical and Std. forms.	T1:2.1-2.8				
04-05	Minimization Techniques	Gate-Level Minimization, The Karnaugh Map Method, Quine-McCluskey Method	T1:3.1-3.8				
06	Simulation and synthesis	Hardware Description Language (Verilog HDL)	T1:3.11				
07-10	Combinational Logic Circuits	Introduction, Analysis and Design Procedure, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, HDL Models of Combinational Circuits.	T1:4.1-4.7 T1:4.12				
11-14	MSI Logic Circuits	Magnitude Comparator, Decoders, Encoders, Multiplexers, HDL Models of Combinational Circuits.					
15-17	Sequential Logic Circuits	Introduction, Storage Elements: Latches and Flip-Flops.	T1:5.1-5.4				
18-22	Registers and Counters	Registers, Shift Registers, Ripple Counters, Synchronous Counters, HDL for Registers and Counters	T1:6.1-6.5				
23-25	Memory and PLD's	Introduction, Random-Access Memory, Memory Decoding, Error Detection and Correction, Read-Only Memory, Programmable Logic Array, Programmable Array Logic					
26-31	Synchronous Sequential circuits	Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Design Procedure, HDL Models of Sequential Circuits	T1:5.5-5.8				
32-36	Design of Digital Systems	Register Transfer Level (RTL) Notation, Algorithmic State Machines (ASMs), HDL description.	T1:8.1-8.8				
37-40	Digital Integrated Circuits	TTL, MOS Logic families and characteristics.	T1:10.1- 10.9				

Evaluation Scheme:

EC No.	Evaluation Component	Duration	Marks	Date and Time	Nature of Component
1	Weekly Quiz	10 Min	45	Continuous	Close Book
2	Laboratory (Attendance + Lab exam)	180 Min	12 + 33	Continuous	Close Book
3	Mid-Semester Exam	90 Min	90	14/10 2:00 - 3:30 PM	Close Book
4	Comprehensive Exam	180 Min	120	14/12 FN	Open/Close Book

Total 300

Practical

S.No.

Name of experiment

- 1. Familiarization of bench equipment
- 2. Boolean functions implementation
- 3. Design of arithmetic circuits (Adder and Subtractors)
- 4. Implementation of BCD adder
- 5. Decoders, multiplexers and de-multiplexers
- 6. Latches and Flip-Flops
- 7. Counter design
- 8. Operation of a 4-bit counter
- 9. Shift registers
- 10. Design of sequence detector
- 11. Comparators and arithmetic logic unit
- 12. Memories and FPGAs

Assignments: There will be simulation based assignments, which will be as take home assignments.

Chamber Consultation Hours: To be announced in the class.

Notices: Notices regarding the course will be displayed only on the EEE (FD II) notice board/NALANDA.

Makeup Policy: Makeup will be granted to *extremely genuine* cases only, *provided the IC has been informed.*

Instructor - in - charge CS F215/ EEE F215 / INSTR F215

