

What is a vector?

Goal: describe the *length* and the direction of the movement of the turtle irrespective of its absolute positions.

What is a vector?

Goal: describe the *length* and the direction of the movement of the turtle irrespective of its absolute positions.

This lecture

- Elementary operators
- How do we find the length of a vector?
- How do we find the angle between two vectors?
- Logistic regression

Elementary operators

Notation

Scalars are named using lowercase letters:

Vectors are named using lowercase letters in boldface:

Vectors are indexed using subscript:

$$u_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}_1 = 3$$

• We denote a vector \boldsymbol{v} in a d-dimensional vector space of real numbers as:

$$oldsymbol{v} \in \mathbb{R}^d$$

Vector scaling

Scaling: each vector \boldsymbol{u} can be scaled with a scalar \boldsymbol{a} ,

$$a\mathbf{u} = \begin{bmatrix} au_1 \\ \vdots \\ au_n \end{bmatrix}$$

Scaling changes the *length* of the vector, never the *direction*, except when a=0.

Vector addition

Vector addition: two vectors u, v can be added,

$$\boldsymbol{u} + \boldsymbol{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Properties:

- Commutative: u + v = v + u
- Associative: (u + v) + w = u + (v + w)

Vector subtraction

Vector subtraction: two vectors u, v can be subtracted,

$$\boldsymbol{u} - \boldsymbol{v} = \begin{bmatrix} u_1 - v_1 \\ \vdots \\ u_n - v_n \end{bmatrix}$$

Property: u - v = u + (-v)

In-class assignment

$$u = \begin{bmatrix} 0.5 \\ 1 \\ -2 \end{bmatrix}$$
, $v = \begin{bmatrix} -1 \\ 0.5 \\ 1 \end{bmatrix}$

Calculate:

•
$$2u - v$$

•
$$2u - v$$

• $\frac{1}{2}(u + v)$

$$2u - v = \begin{bmatrix} 2 \cdot 0.5 \\ 2 \cdot 1 \\ 2 \cdot -2 \end{bmatrix} - \begin{bmatrix} -1 \\ 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix} - \begin{bmatrix} -1 \\ 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1.5 \\ -5 \end{bmatrix}$$
$$\frac{1}{2}(u + v) = \frac{1}{2} \begin{bmatrix} 0.5 + -1 \\ 1 + 0.5 \\ -2 + 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -0.5 \\ 1.5 \\ -1 \end{bmatrix} = \begin{bmatrix} -0.25 \\ 0.75 \\ -0.5 \end{bmatrix}$$

How do we find the length of a vector?

How do we find the length of a vector?

Euclidean length

Use the Pythagorean theorem to calculate the vector length:

$$c = \sqrt{a^2 + b^2} = \sqrt{3^2 + 2^2} \approx 3.61$$

Generalization across d dimension for a vector \mathbf{u} :

$$\sqrt{\sum_{i=1}^{d} u_i^2}$$

Manhattan length

Manhattan length: length by 'traveling' along each axis.

$$\sum_{i=1}^{d} |u_i| = 3 + 2 = 5$$

p-norms

The p-norm is a generalization over all such lengths:

$$\|\boldsymbol{u}\|_p = \left(\sum_{i=1}^d |u_i|^p\right)^{\frac{1}{p}}$$

Norm	Common names
$\ u\ _1$	ℓ_1 -norm, Manhattan length
$\ \boldsymbol{u}\ _2$	ℓ_2 -norm, vector length, Euclidean norm
$\ u\ _{\infty}$	Infinity norm, maximum norm

p-norm properties

The p-norm has the following properties:

1. Triangle inequality:

$$||u+v||_p \le ||u||_p + ||v||_p$$

2. Absolutely scalable:

$$||a\boldsymbol{u}||_p = |a|||\boldsymbol{u}||_p$$

3. For all vectors except 0^d :

$$\|u\|_{p} > 0$$

Triangle inequality

$$||u + v||_2 \le ||u||_2 + ||v||_2$$

In-class assignment

$$\|\boldsymbol{u}\|_{p} = \left(\sum_{i=1}^{d} |u_{i}|^{p}\right)^{\frac{1}{p}} \qquad \boldsymbol{v} = \begin{bmatrix} -1\\0.5\\1 \end{bmatrix}$$

Calculate:

- $\|\boldsymbol{v}\|_1$
- $||v||_2$

$$\|\boldsymbol{v}\|_1 = |-1| + |0.5| + |1| = 1 + 0.5 + 1 = 2.5$$

 $\|\boldsymbol{v}\|_2 = \sqrt{-1^2 + 0.5^2 + 1^2} = \sqrt{1 + 0.25 + 1} = \sqrt{2.25} = 1.5$

Unit vectors

Definition

 \boldsymbol{u} is a unit vector iff $\|\boldsymbol{u}\|_2 = 1$

Any vector \mathbf{u} , except 0^d , can be scaled to a unit vector $\hat{\mathbf{u}}$:

$$\widehat{m{u}} = rac{m{u}}{\|m{u}\|_2}$$

How do we find the angle between two vectors?

How do we find the angle between two vectors?

Dot product

Definition: dot product

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^d u_i v_i$$

Example

$$\boldsymbol{u} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
$$\boldsymbol{u} \cdot \boldsymbol{v} = (2 \cdot 2) + (0 \cdot -1) + (3 \cdot 1)$$
$$= 7$$

Note: the dot product is also known as the inner product.

Dot product properties

• The dot product is commutative:

$$u \cdot v = v \cdot u$$

• The dot product is distributive over vector addition:

$$u\cdot(v+w)=u\cdot v+u\cdot w$$

• Scalar multiplication:

$$(a\mathbf{u}) \cdot (b\mathbf{v}) = ab(\mathbf{u} \cdot \mathbf{v})$$

Cosine similarity of unit vectors

Definition

$$\cos(\angle(\widehat{\boldsymbol{u}},\widehat{\boldsymbol{v}})) = \widehat{\boldsymbol{u}} \cdot \widehat{\boldsymbol{v}} = \sum_{i=1}^{a} \widehat{u}_i \cdot \widehat{v}_i$$

Cosine similarity of non-unit vectors

A vector u can be normalized to a unit vector with the same direction: $\frac{u}{\|u\|_2}$. Consequently:

$$\cos(\angle(u, v)) = \frac{u}{\|u\|_2} \cdot \frac{v}{\|v\|_2}$$
$$= \frac{u \cdot v}{\|u\|_2 \|v\|_2}$$

In-class assignment

$$\cos(\angle(u,v)) = \frac{u \cdot v}{\|u\|_2 \|v\|_2} \qquad u = \begin{bmatrix} 0.5 \\ 1 \\ -2 \end{bmatrix}, v = \begin{bmatrix} -1 \\ 0.5 \\ 1 \end{bmatrix} \qquad \text{Calculate } \cos(\angle(u,v))$$

$$||\mathbf{u}||_{2} = \sqrt{0.5^{2} + 1^{2} + -2^{2}} = \sqrt{0.25 + 1 + 4} = \sqrt{5.25}$$

$$||\mathbf{v}||_{2} = 1.5$$

$$\cos(\angle(\mathbf{u}, \mathbf{v})) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||_{2} ||\mathbf{v}||_{2}}$$

$$= \frac{0.5 \cdot -1 + 1 \cdot 0.5 + -2 \cdot 1}{1.5 \cdot \sqrt{5.25}}$$

$$= \frac{-2}{1.5 \cdot \sqrt{5.25}}$$

$$\approx -0.58$$

Why does $\frac{u \cdot v}{\|u\|_2 \|v\|_2}$ compute $\cos(\angle(u, v))$?

Prerequisites

• The ℓ_2 norm can be defined in terms of the dot product:

$$\|\boldsymbol{u}\|_2 = \sqrt{\sum_{i=1}^d u_i^2} = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$$

Also observe that:

$$||\mathbf{u}||_2^2 = \mathbf{u} \cdot \mathbf{u}$$

Law of cosines

Law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Law of cosines (applied):

$$a = \|\mathbf{u}\|_2$$

$$b = \|\mathbf{v}\|_2$$

$$c = \|\mathbf{u} - \mathbf{v}\|_2$$

Solve for $cos(\angle(u,v))$

	Step
$c^2 = a^2 + b^2 - 2ab\cos\gamma$	
$\ \boldsymbol{u} - \boldsymbol{v}\ _{2}^{2} = \ \boldsymbol{u}\ _{2}^{2} + \ \boldsymbol{v}\ _{2}^{2} - 2\ \boldsymbol{u}\ _{2}\ \boldsymbol{v}\ _{2}\cos(\angle(\boldsymbol{u},\boldsymbol{v}))$	
$(\boldsymbol{u} - \boldsymbol{v}) \cdot (\boldsymbol{u} - \boldsymbol{v}) = \boldsymbol{u} \cdot \boldsymbol{u} + \boldsymbol{v} \cdot \boldsymbol{v} - 2\ \boldsymbol{u}\ _2 \ \boldsymbol{v}\ _2 \cos(\angle(\boldsymbol{u}, \boldsymbol{v}))$	$\ \boldsymbol{u}\ _2^2 = \boldsymbol{u} \cdot \boldsymbol{u}$
$\boldsymbol{u} \cdot \boldsymbol{u} - 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \boldsymbol{v} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{u} + \boldsymbol{v} \cdot \boldsymbol{v} - 2\ \boldsymbol{u}\ _2 \ \boldsymbol{v}\ _2 \cos(\angle(\boldsymbol{u}, \boldsymbol{v}))$	Distributivity over vector addition
$-2(\boldsymbol{u}\cdot\boldsymbol{v}) = -2\ \boldsymbol{u}\ _2\ \boldsymbol{v}\ _2\cos(\angle(\boldsymbol{u},\boldsymbol{v}))$	Eliminate duplicates on both sides
$\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\ \boldsymbol{u}\ _2\ \boldsymbol{v}\ _2}=\cos(\angle(\boldsymbol{u},\boldsymbol{v}))$	Divide both sides by $-2\ \boldsymbol{u}\ _2\ \boldsymbol{v}\ _2$

Textbook definition of cosine similarity

Interpretation of cosine similarity

Cosine similarity	Angle (degrees)	Description
$\cos \angle (u, v) = 1$	0	Same direction
$\cos \angle (\boldsymbol{u}, \boldsymbol{v}) = 0$	90	Orthogonal
$\cos \angle (u, v) = -1$	180	Opposite

Dot product of unnormalized vectors

Question: how should we interpret the dot product of *unnormalized* vectors?

Dot product	Angle (degrees)
$\boldsymbol{u}\cdot\boldsymbol{v}>0$	< 90
$\boldsymbol{u}\cdot\boldsymbol{v}=0$	90
$\boldsymbol{u}\cdot\boldsymbol{v}<0$	> 90

As we will see, the dot product is a very useful similarity function.

How is the dot product computed in hardware?

Naïve Python implementation:

```
def dot(u, v):
   return sum([ui * vi for (ui, vi) in zip(u, v)])
```

This is excessively slow!

Memory hierarchy

Size

Contiguous vs non contiguous memory

Java List<Float>, Python lists:

Java float[], numpy/PyTorch array:

	f32						
--	-----	-----	-----	-----	-----	-----	-----

Example timings

What	Time (ns)	Floats per clock cycle	Speedup compared to boxed (shuffled)
Unboxed	342,079	0.33	11.57
Unboxed (shuffled)	341,971	0.33	11.58
Boxed	1,133,880	0.10	3.49
Boxed (shuffled)	3,958,834	0.03	1.00

- Running times of computing the dot product of two vectors:
 - 500,000 components
 - single-precision floating point numbers
 - Rust + LLVM
 - AMD Ryzen 3700X
- Shuffling makes memory non-contiguous in boxed arrays

Single Instruction, Multiple Data

Regular CPU multiplication:

SIMD multiplication:

1.0

X

1.0

2.0

-1.0

1.5

-1.0

-2.0

1.0

1.0

-1.5

2

Example

```
let mut sums = _mm_setzero_ps();
while u.len() >= 4 {
    let ux4 = _mm_loadu_ps(&u[0] as *const f32);
    let vx4 = _mm_loadu_ps(&v[0] as *const f32);
    sums = _mm_add_ps(_mm_mul_ps(ux4, vx4), sums);
    u = &u[4..];
   v = &v[4..];
}
sse_add(sums) + dot_unvectorized(u, v)
```

Dot product with SIMD

What	Time (ns)	Float pairs per clock cycle	Speedup compared to scalar
Scalar	339	0.34	1.00
SSE	81	1.44	4.19
AVX	38	3.06	8.92
AVX + FMA	34	3.42	9.97

- Running times of computing the dot product of two vectors:
 - 512 vector components
 - single-precision floating point numbers
 - Rust + LLVM
 - AMD Ryzen 3700X
- AVX + FMA DP is 10x faster than scalar DP for 512-component vectors

Logistic regression

Linear binary classifier

Goal: separate two classes. **Here:** good apples and bad apples.

Input: instances as vectors. Here: color roundness

Classifier: vector **w** pointing towards positive instances. **Here:** good apples

How: given an apple represented as $x^{(i)}$,

$$y(x^{(i)}) = \begin{cases} 1, & \mathbf{w} \cdot x^{(i)} \ge 0 \\ 0, & \mathbf{w} \cdot x^{(i)} < 0 \end{cases}$$

Decision boundary: $w \cdot x = 0$

Alternatively:
$$y(x^{(i)}) = \text{sign}(w \cdot x^{(i)})$$

Linear binary classifier (bias)

Problem: in many classification scenarios a good decision boundary does not cross the origin.

Observe: the larger the dot product (negative or positive), the further an instance is removed from the boundary.

Solution: add a bias term:

- Negative bias: move the boundary towards the positive class.
- Positive bias: move the boundary towards the negative class.

Decision boundary: $w \cdot x + b = 0$

Classifier:
$$y(x^{(i)}) = \text{sign}(w \cdot x^{(i)} + b)$$

Linear binary classifier (bias)

Problem: $y(x^{(i)}) = \text{sign}(w \cdot x^{(i)} + b)$ only predicts a class, unclear how much confidence should be put into the prediction.

Idea: modify the model such that we can get a probability estimation $p(1|x^{(i)})$ from the model.

Desiderata: modify the model such that we can get a probability estimation p(1|x) from the model:

- $p(1|\mathbf{x}^{(i)}) = 0.5$ when $\mathbf{w} \cdot \mathbf{x}^{(i)} + b = 0$
- $p(1|x^{(i)}) > 0.5$ when $w \cdot x^{(i)} + b > 0$
- $p(1|x^{(i)}) < 0.5$ when $w \cdot x^{(i)} + b < 0$

Logistic function

Definition: logistic function

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

 $\sigma(a)$ is a **squashing function**: clips extreme values in (0,1).

Note: lies between two horizontal asymptotes, never reaches 0 or 1.

Fulfills the stated desiderata.

Logistic regression classifier

Definition: logistic regression

$$p(1|\mathbf{x}^{(i)}) = \frac{1}{1 + e^{-a}}$$

$$a = \mathbf{w} \cdot \mathbf{x}^{(i)} + b$$

$$p(0|\mathbf{x}^{(i)}) = 1 - p(1|\mathbf{x}^{(i)})$$

Example

Definition: logistic regression

$$p(1|\mathbf{x}^{i}) = \frac{1}{1 + e^{-a}}$$
$$a = \mathbf{w} \cdot \mathbf{x}^{(i)} + b$$

Example model

$$\mathbf{w} = \begin{bmatrix} -4\\3 \end{bmatrix}$$
$$b = 0$$

Instance	Prediction
$x^{(1)} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$a = -4 \cdot 1 + 3 \cdot 3 = 5$ $p(1 x^{(1)}) = \frac{1}{1 + e^{-5}} \approx 0.9933$
$\boldsymbol{x}^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$a = -4 \cdot 1 + 3 \cdot 1 = -1$ $p(1 \mathbf{x}^{(2)}) = \frac{1}{1 + e^{-1}} \approx 0.2689$
$\boldsymbol{x}^{(3)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$a = -4 \cdot 2 + 3 \cdot 1 = -5$ $p(1 x^{(3)}) = \frac{1}{1 + e^{5}} \approx 0.0067$

Reformulation $p(0|x^{(i)})$

	Step
$p(0 \mathbf{x}^{(i)}) = 1 - \sigma(a), a = \mathbf{w} \cdot \mathbf{x}^{(i)} + b$	
$p(0 \mathbf{x}^{(i)}) = 1 - \frac{1}{1 + e^{-a}}$	Expand
$p(0 \mathbf{x}^{(i)}) = \frac{1 + e^{-a}}{1 + e^{-a}} - \frac{1}{1 + e^{-a}}$	Rewrite 1
$p(0 x^{(i)}) = \frac{e^{-a}}{1 + e^{-a}}$	Subtract
$p(0 \mathbf{x}^{(i)}) = \frac{1}{\frac{1}{e^{-a}} + 1}$	Divide enumerator and denominator by e^{-a}
$p(0 \mathbf{x}^{(i)}) = \frac{1}{1 + e^a} = \sigma(-a)$	Apply $x^{-n} = \frac{1}{x^n}$

Note that we are just flipping the sign.

$\sigma(a)$ and $\sigma(-a)$

Why is logistic regression a linear classifier?

$$p(1|\mathbf{x}^{(i)}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)}}$$

	Step
$\frac{1}{1 + e^{-(w \cdot x^{(i)} + b)}} = \frac{1}{2}$	Decision boundary: $p(y x^{(i)}) = \frac{1}{2}$
$1 + e^{-(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)} = 2$	Simplify
$e^{-(\mathbf{w}\cdot\mathbf{x}^{(i)}+b)}=1$	Subtract 1 from both sides
$-(\mathbf{w}\cdot\mathbf{x}^{(i)}+b)=0$	Apply log to both sides
$\mathbf{w} \cdot \mathbf{x}^{(i)} + b = 0$	Multiply both sides by -1

Linear decision boundary

Model likelihood

If the possible classes are $Y = \{0,1\}$, we need to optimize the model parameters such that:

•
$$p(1|\mathbf{x}^{(i)}) = 1$$
 and $p(0|\mathbf{x}^{(i)}) = 0$ iff $y^{(i)} = 1$
• $p(1|\mathbf{x}^{(i)}) = 0$ and $p(0|\mathbf{x}^{(i)}) = 1$ iff $y^{(i)} = 0$

•
$$p(1oldsymbol{x}^{(i)})=0$$
 and $p(0oldsymbol{x}^{(i)})=1$ iff $y^{(i)}=0$

This is done by maximizing the likelihood:

$$L = \prod_{i=1}^{n} p(y^{(i)}|\boldsymbol{x}^{(i)})$$

Example

Instance	Prediction
$x^{(1)} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, y^{(1)} = 1$	$a = -4 \cdot 1 + 3 \cdot 3 = 5$ $p(y^{(1)} x^{(1)}) = \frac{1}{1 + e^{-5}} \approx 0.9933$
$x^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $y^{(2)} = 1$	$a = -4 \cdot 1 + 3 \cdot 1 = -1$ $p(y^{(2)} x^{(2)}) = \frac{1}{1 + e^{-1}} \approx 0.2689$
$x^{(3)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, y^{(3)} = 0$	$a = -4 \cdot 2 + 3 \cdot 1 = -5$ $p(y^{(3)} x^{(3)}) = 1 - \frac{1}{1 + e^{5}} \approx 0.9933$

$$L = 0.9933 \cdot 0.2689 \cdot 0.9933 = 0.2653$$

Negative log-likelihood

First, remember that most algorithms focus on minimization:

$$NL = -\prod_{i=1}^{n} p(y^{(i)}|x^{(i)})$$

Multiplying a lot of small numbers can lead to underflow:

$$NLL = -\log \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)})$$

 $\log(ab) = \log(a) + \log(b)$:

$$NLL = \sum_{i=1}^{n} -\log p(y^{(i)}|x^{(i)})$$

Derivative of the objective function

- Let's break this up in two steps:
 - Find the derivative of the logistic function.
 - Find the derivative of the full objective function.

Relevant derivative rules

Function	Derivative	Comment
f(x) = c	f'(x)=0	
f(x) = ag(x)	f'(x) = ag'(x)	
$f(x) = x^n$	$f'(x) = nx^{n-1}$	Therefore: $f(x) = x$, $f'(x) = 1$
$f(x) = e^x$	$f'(x) = e^x$	
$f(x) = \log x$	$f'(x) = \frac{1}{x}$	
$h(x) = \frac{f(x)}{g(x)}$	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$	Quotient rule
h(x) = f(g(x))	h'(x) = f'(g(x))g'(x)	Chain rule

Example

	What
$f(x) = \frac{\log(x)}{x^3}$	
$f'(x) = \frac{[\log(x)]'x^3 - \log(x)[x^3]'}{(x^3)^2}$	Quotient rule: $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$
$f'(x) = \frac{\frac{1}{x}x^3 - \log(x) 3x^2}{x^6}$	$[\log(x)]' = \frac{1}{x}, [x^n]' = nx^{n-1}$
$f'(x) = \frac{x^2 - \log(x) 3x^2}{x^6}$	
$f'(x) = \frac{1 - 3\log(x)}{x^4}$	Divide numerator and denominator by x^2 .

Exercise: find the derivative

Function	Derivative	Comment
f(x) = c	f'(x)=0	
f(x) = ag(x)	f'(x) = ag'(x)	
$f(x) = x^n$	$f'(x) = nx^{n-1}$	Therefore: $f(x) = x$, $f'(x) = 1$
$f(x) = e^x$	$f'(x) = e^x$	
$f(x) = \log x$	$f'(x) = \frac{1}{x}$	
$h(x) = \frac{f(x)}{g(x)}$	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$	Quotient rule
h(x) = f(g(x))	h'(x) = f'(g(x))g'(x)	Chain rule

Given $f(x) = \log(e^x + x^2)$, find f'(x)

Example: find the derivative

	What
$f(x) = \log(e^x + x^2)$	
$f'^{(x)} = [\log(e^x + x^2)]'$	
$f'^{(x)} = \log'(e^x + x^2)[e^x + x^2]'$	Chain rule: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
$f'^{(x)} = \frac{1}{e^x + x^2} (e^x + 2x)$	
$f'^{(x)} = \frac{e^x + 2x}{e^x + x^2}$	

Derivative of $\sigma(a)$

	Step
$\sigma(a) = \frac{1}{1 + e^{-a}} = \frac{e^a}{1 + e^a}$	Multiply the numerator and denominator by e^a .
$\sigma'(a) = \left[\frac{e^a}{1 + e^a}\right]'$	
$\sigma'(a) = \frac{[e^a]'(1+e^a) - e^a[1+e^a]'}{(1+e^a)^2}$	Quotient rule: $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$
$\sigma'(a) = \frac{e^a(1 + e^a) - e^a e^a}{(1 + e^a)^2}$	Apply $[e^x]' = e^x$
$\sigma'(a) = \frac{e^a + e^a e^a - e^a e^a}{(1 + e^a)^2}$	Distributive property
$\sigma'(a) = \frac{e^a}{(1+e^a)^2}$	Subtract

Derivative of $\sigma(a)$, continued

	Step
$\sigma'(a) = \frac{e^a}{(1+e^a)^2}$	Continue from the previous step
$\sigma'(a) = \frac{e^a}{1 + e^a} \cdot \frac{1}{1 + e^a}$	
$\sigma'(a) = \frac{1}{1 + e^{-a}} \cdot \frac{1}{1 + e^a}$	Divide the numerator and denominator of the first term by e^{a}
$\sigma'(a) = \sigma(a) \cdot (1 - \sigma(a))$	

$\sigma(a)$ gradient

Derivative of *NLL*

Find the derivative of the objective function:

$$NLL = \sum_{i=1}^{n} -\log p(y^{(i)}|x^{(i)})$$

First we will simplify our problem at bit:

- Find the derivative of $-\log p(y^i = 1|x^{(i)})$
- Pretend that a is a scalar.

We will then later remove these simplifications.

Derivative of $-\log p(1|x^{(i)})$

$-\log p(y^{(i)} = 1 \mathbf{x}^{(i)}) = -\log(\sigma(a))$	
$\left[-\log p(y^{(i)} = 1 \big x^{(i)})\right]' = -[\log(\sigma(a))]'$	
$\left[-\log p(y^{(i)} = 1 \big x^{(i)})\right]' = (\log' \circ \sigma)(a)[\sigma(a)]'$	Chain rule: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
$\left[-\log p(y^{(i)} = 1 x^{(i)})\right]' = -\frac{1}{\sigma(a)}\sigma(a) \cdot (1 - \sigma(a))$	Derivative of log: $[\log(x)]' = \frac{1}{x}$
$[-\log p(y^{(i)} = 1 x^{(i)})]' = -(1 - \sigma(a))$	

Objective function and derivative

$$\frac{\mathrm{d}}{\mathrm{da}}(-\log p(y^{(i)} = 1|\boldsymbol{x}^{(i)}))$$

Partial derivative

We have found the derivative:

$$\left[-\log p(y^{(i)} = 1|x^{(i)})\right]' = -(1 - \sigma(a))$$

However, we want the derivative with respect to a particular weight w_i . This is the so-called **partial derivative**.

Next steps:

- Find the partial derivative the dot product with respect to w_i .
- Combine with the objective derivative that we have found.

Partial derivative (dot product)

Remember: $\mathbf{w} \cdot \mathbf{x} = w_1 x_1 + \cdots w_j x_j + \cdots w_n x_n$

$$[\boldsymbol{w}\cdot\boldsymbol{x}]_{x_j}=x_j$$

Partial derivative $-\log p(y^{(i)} = 1|x^{(i)})$

$\left[-\log p(y^{(i)} = 1 x^{(i)})\right]_{w_j} = -\left[\log \sigma(\mathbf{w} \cdot x^{(i)} + b)\right]_{w_i}$	
$\left[-\log p(y^{(i)} = 1 x^{(i)})\right]_{w_j} = -(1 - \sigma(\mathbf{w} \cdot x^{(i)} + b))x_j^{(i)}$	Chain rule: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$

Partial derivative for both classes

$$\left[-\log p(y^{(i)} = 1|x^{(i)})\right]_{w_j} = -(1 - \sigma(w \cdot x^{(i)} + b))x_j^{(i)}$$

$$\left[-\log p(y^{(i)} = 0 | \boldsymbol{x}^{(i)})\right]_{w_j} = -\left(-\sigma(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + b)\right) x_j^{(i)}$$

Combine:

$$\begin{aligned} \left[-\log p(y^{(i)}|\mathbf{x}^{(i)}) \right]_{w_j} &= -\left(y^{(i)} - \sigma(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \right) x_j^{(i)} \\ &= \left(\sigma(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) - y^{(i)} \right) x_j^{(i)} \end{aligned}$$

Question: what is $\left[-\log p(y^{(i)}|x^{(i)})\right]_{b}$?

The end