

(Chapter-1)
Introduction

Yanmei Zheng

Today

What is artificial intelligence

@ What can AI do?

What is this course?

Sci-Fi Al?

Artificial Intelligence Ex Machina...

What is AI?

- Artificial Intelligence (AI)
 - ■Intelligent behavior in artifacts
 - ■"Design computer programs to make computers smarter"
 - ■"Study of how to make computers do things at which, at the moment, people are better"
- Intelligent behavior
 - ■Perception, reasoning, learning, decision, communicating, acting in complex environments
- Q Long term goals of AI
 - Develop machines that do things as well as humans can or possibly even better
 - Understand intelligent behaviors

Definition

- Artificial intelligence is...
 - The science of getting computers to do the things they can't do yet?
 - Finding fast algorithms for NP-hard problems?
 - Getting computers to do the things they do in the movies?

No generally accepted definition...

Science and engineering

- Al is one of the great intellectual adventures of the 20th and 21st centuries.
 - What is a mind?
 - How can a physical object have a mind?
 - Is a running computer (just) a physical object?
 - Can we build a mind?
 - Can trying to build one teach us what a mind is?

What Is AI?

- © Can machines think?
 - Depend on the definitions of "machine", "think", "can"
- @"Can"
 - ■Can machines think now or someday?
 - ■Might machines be able to think theoretically or actually?

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems
- QLanguage processing technologies
 - Question answering(IBM Watson)
 - Machine translation

"Il est impossible aux journalistes de rentrer dans les régions tibétaines"

Bruno Philip, correspondant du "Monde" en Chine, estime que les journalistes de l'AFP qui ont été expulsés de la province tibétaine du Qinghai "n'étaient pas dans l'illégalité".

Les faits Le dalaï-lama dénonce l''enfer" imposé au Tibet depuis sa fuite, en 1959

Vidéo Anniversaire de la rébellior

"It is impossible for journalists to enter Tibetan areas"

Philip Bruno, correspondent for "World" in China, said that journalists of the AFP who have been deported from the Tibetan province of Qinghai "were not illegal."

Facts The Dalai Lama denounces the "hell" imposed since he fled Tibet in 1959

Video Anniversary of the Tibetan rebellion: China on guard

- Web search
- Text classification, spam filtering, etc...

Object and face recognition

- Scene segmentation
- Image classification

Images from Erik Sudderth (left), wikipedia (right)

Demo1: VISION – lec_1_t2_video.flv

Demo2: VISION - lec_1_obj_rec_0.mpg

3681796691 6757863485 2179712845 4819018894

Reading license plates, zip codes, checks

Face detection

Instance recognition

Instance recognition

Get Google Goggles

Search for 'Google Goggles' in Android Market to get the latest release.

Available on phones that run Android 1.6+. Learn more

Google Goggles in action

Click the icons below to see the different kinds of objects and places you can search for using Google Goggles.

Object/image categorization

Matthew Zeiler, New York University: http://horatio.cs.nyu.edu/index.html

Augmented reality

Soft biometrics

IBM, Feris et al.

Unusual event detection

Pose & tracking

Robotics

- Robotics
 - Part mech. eng.
 - Part Al
 - Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Logic

- - Theorem provers
 - ■NASA fault diagnosis
 - Question answering
- @Methods:
 - Deduction systems
 - Constraint satisfaction
 - Satisfiability solvers (huge advances!)

Game Playing

- © Classic Moment: May, '97: Deep Blue vs. Kasparov
 - First match won against world champion
 - "Intelligent creative" play
 - 200 million board positions per second
 - Humans understood 99.9 of Deep Blue's moves
 - Can do about the same now with a PC cluster
- Open question:
 - How does human cognition deal with the search space explosion of chess?
 - Or: how can humans compete with computers at all??
- 1996: Kasparov Beats Deep Blue
 "I could feel --- I could smell --- a new kind of intelligence across the table."
- ¶ 1997: Deep Blue Beats Kasparov

 "Deep Blue hasn't proven anything."
- Huge game-playing advances recently, e.g. in Go!

Decision Making

Applied AI involves many kinds of automation

■ Scheduling, e.g. airline routing, military 📭

■ Route planning, e.g. Google maps

Medical diagnosis

Web search engines

Spam classifiers

Automated help desks

Fraud detection

Product recommendations

... Lots more!

Ethics, implications

Robust, fully autonomous agents in the real world

What happens when we achieve this goal?

Some Hard Questions...

- Who is liable if a robot driver has an accident?
- Will machines surpass human intelligence?
- What will we do with superintelligent machines?
- Would such machines have conscious existence? Rights?
- Can human minds exist indefinitely within machines (in principle)?

Textbook

Web: http://aima.cs.berkeley.edu/

Goal of this course

- Q Learn about Artificial Intelligence
 - ■Increase your Al literacy
 - Prepare you for topic courses and/or research

Course overview

- 1. Introduction and Agents (chapters 1,2)
- 2. Search (chapters 3,4,5,6)
- 3. Logic (chapters 7,8,9)
- 4. Uncertainty (chapters 13,14)
- 5. Learning (chapters 18,20)

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent

What is AI?

What is AI?

The science of making machines that:

Think like people

Think rationally

Act like people

Act rationally

Acting humanly: Turing Test

- Turing (1950) "Computing machinery and intelligence":
- © "Can machines think?" → "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Q Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: cognitive modeling

- Requires scientific theories of internal activities of the brain
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)
- © Both approaches (roughly, Cognitive Science and Cognitive Neuroscience), are now distinct from Al

Thinking rationally: "laws of thought"

- Q Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
- Oirect line through mathematics and philosophy to modern AI
- Problems:
 - Not all intelligent behavior is mediated by logical deliberation
 - What is the purpose of thinking? What thoughts should I have?

Acting rationally: rational agent

@ Rational behavior: doing the right thing

 The right thing: that which is expected to maximize goal achievement, given the available information

@ Doesn't necessarily involve thinking – e.g., blinking reflex – but thinking should be in the service of rational action

Rational agents

- Q Abstractly, an agent is a function from percept histories to actions:

$$[f: P^* \rightarrow A]$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Remark: computational limitations make perfect rationality unachievable
 - → design best program for given machine resources

Rational Decisions

We'll use the term rational in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be: Computational Rationality

Maximize Your Expected Utility

Computer and Brain

What About the Brain?

 Brains (human minds) are very good at making rational decisions, but not perfect

Brains aren't as modular as software, so hard to reverse engineer!

"Brains are to intelligence as wings are to flight"

 Lessons learned from the brain: memory and simulation are key to decision making

Some (Simplified) Biology

Very loose inspiration: human neurons

Computer Sci. and Brain Sci.

Information Processing in Digital Computer

Computing based on Logic

CPU and Storage: Separated

Data Processing & Storage: Simple

Intelligent Information Processing: Complicated and Slow

Cognitive capability: Weak

Information Process Mode: Logic – Information – Statistics Information Processing in the Brain

Computing based on Statistics

CPU and Storage: Unified

Data Processing & Storage: Unknown

Intelligent Information Processing: Simple and Fast

Cognitive capability: Strong

Information Process Mode:
Statistics — concepts — logic

Visual Information Processing

'Where': the motion and spatial location

'What': the detailed features, form, and object identity

Progress of brain-like models

Deep learning, 2005, 2009

S. Amari 1967 S. Grossberg

F. Ros

F. Rosenblatt

Hopfield Neural network (1982)

The multilayer perceptron(1972) Fukushima, Neocognitron(1980)

The perceptron algorithm (1957)

McCulloch—Pitts' neuron model
(1943)

Schematic of Rosenblatt's perceptron.

Deep learning

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Intelligent Systems

Al prehistory

Philosophy	Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
Mathematics	Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability
© Economics	Utility, Decision theory
• Neuroscience	Physical substrate for mental activity
Psychology	Phenomena of perception and motor control, experimental techniques
© Computer engineering	Building fast computers
© Control theory	Design systems that maximize an objective function over time
Q Linguistics	Knowledge representation, grammar

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "AI Winter"
- **@** 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2000—: Where are we now?

Abridged history of Al

McCulloch & Pitts: Boolean circuit model of brain
Turing's "Computing Machinery and Intelligence"
Dartmouth meeting: "Artificial Intelligence" adopted
Look, Ma, no hands!
Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
Robinson's complete algorithm for logical reasoning
Al discovers computational complexity Neural network research almost disappears
Early development of knowledge-based systems
Al becomes an industry
Neural networks return and became popular
Al becomes a science
The emergence of intelligent agents

State of the Art

- © Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- Proved a mathematical conjecture (Robbins conjecture) unsolved for decades (1996 by W. McCune)
- No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego)
- Q During the 1991 Gulf War, US forces deployed an Allogistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program
 controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans

Thank you

End of
Chapter 1