Lecture Notes for Machine Learning in Python

Professor Eric Larson

Dimensionality and Images

Class Logistics and Agenda

- Logistics:
 - Next lab due at the end of the week
 - Next time: no class if we finish everything today
- Agenda
 - Kernel Methods
 - Common Feature Extraction Methods for Images

Last time it was so linear...

E1	E2
0.85	0.85
0.52	-0.52

37.1	-6.7
-6.7	43.9

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

	A7	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

04.Dimension Reduction and Images.ipynb

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Non-linear Dimensionality Reduction

Dimensionality Reduction: non-linear

- Sometimes a linear transform is not enough
- A powerful non-linear transform has seen a resurgence in past decade: kernel PCA

Kernel PCA

- Project to higher dimensional space
- Employ principal components
- Apply transform in higher dimensional space

37.1	-6.7	-3.2
-6.7	43.9	1.45
-3.2	1.45	12.1

	B1	B2	ВЗ
1	66	33.6	0.3
2	54	26.6	0.4
3	69	23.3	-4
4	73	28.1	-5.6
5	61	43.1	0.23
6	62	25.6	-5

Kernel PCA

kernel: defines what the dot product is in higher dimensional space

some kernels have corresponding transformations with **infinite dimensions**!!

- Key insight: don't need to know the actual principle components, just the projections
- Never need eigen vectors or covariance matrix

37.1	-6.7	-3.2
-6.7	43.9	1.45
-3.2	1.45	12.1

	B1	B2	<i>B</i> 3
1	66	33.6	0.3
2	54	26.6	0.4
3	69	23.3	-4
4	73	28.1	-5.6
5	61	43.1	0.23
6	62	25.6	-5

Kernel PCA

Image Processing and Representation

What is image processing

- the art and science of manipulating pixels
 - combining images (blending or compositing)
 - enhancing edges and lines
 - adjusting contrast, color
 - warping, transformation
 - filtering
 - features extraction

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels

used for capture and display

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9	
1	4	2	5	5	9	
1	4	2	8	8	7	
3	4	4 3		9	8	
1	0	2	7	7	9	
1	4	3	9	8	6	
2	4	2	8	7	9	

Numpy Matrix image[rows, cols]

	G[1	4	2	5	6	9
B	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	Г
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

Solution: row concatenation

Row 1	1	4	2	5	6	9	1	4	2	5	5	9	1	4	2	8	8	7	3
Row 2	1	4	2	8	8	7	3	4	3	9	9	8	1	4	2	5	5	9	1

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each feature column corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Demo

Dimension Reduction with Images Images Representation Randomized PCA Kernel PCA

04. Dimension Reduction and Images. ipynb

Features of Images

Image Representation

need a compact representation

hsv

- what we perceive as color (ish)
 - •hue: the color value
 - saturation: the richness of the color relative to brightness
 - value: the gray level intensity

Common operations

images: Jianbo Shi, Upenn

Common operations: DAISY

take normalized histogram at point *u,v*

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \ldots, \mathbf{G}_{H}^{\Sigma}(u,v)
ight]^{ op}$$

$$\tilde{\mathbf{h}}^{\top}$$
 (u_2 u_3)

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE **Transactions**

Common operations: DAISY

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: DAISY

num Bag of Features Image Representation

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: Gabor filter Banks (if time)

common used for texture classification

Demo

More Image Processing

Gradients

DAISY

Gabor Filter Banks

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

For Next Lecture

- Work on your text datasets!
- Next Time: No Class, Project work day
- Next Week: In-Class Assignment One!!!