Booklet of Code and Output for STAD29/STA 1007 Final Exam

List of Figures in this document by page:

List of Figures

1	Packages
2	Rat lethargy data (some)
3	Rat lethargy analysis of covariance
4	Repeated measures data
5	Repeated measures MANOVA
6	Crude oil data (random sample)
7	Crude oil MANOVA
8	Crude oil discriminant analysis
9	Crude oil posterior probabilities
10	Loudspeakers data
11	Loudspeakers scree plot
12	Crabs data (sample)
13	Crabs principal components analysis
14	Crabs scree plot
15	Crabs principal component loadings
16	Crabs plot of component scores
17	Hot hand data
18	Hot hand chi-squared test
19	Proportion of second shots made for each player when first shot
	is hit or missed
20	Log-linear analysis part 1
21	Log-linear analysis part 2
22	Log-linear analysis part 3
23	Rat lethargy data scatterplot
24	Repeated measures spaghetti plot
25	Crude oil LD plot
26	Another plot of component scores

```
library(ggbiplot)
library(MASS)
library(tidyverse)
library(car)
library(ggrepel)
library(conflicted)
conflict_prefer("mutate", "dplyr")
conflict_prefer("select", "dplyr")
conflict_prefer("arrange", "dplyr")
conflict_prefer("count", "dplyr")
conflict_prefer("filter", "dplyr")
```

Figure 1: Packages

```
rats %>% sample_n(20)
## # A tibble: 20 x 3
     dose age resttime
##
     <fct> <dbl>
                    <dbl>
          7
##
   1 10
                      72
              7
## 2 0
                      59
## 3 10
             6
                     91
## 4 10
              9
                     102
             16
## 5 0
                      53
## 6 20
                     146
            11
## 7 20
             13
                     175
## 8 0
              8
                     59
## 9 30
              13
                     219
## 10 10
              11
                      87
              7
## 11 20
                     128
## 12 10
              13
                     130
## 13 20
              9
                     126
## 14 30
              5
                     130
## 15 20
              5
                     111
## 16 10
              14
                     122
## 17 0
              12
                      53
## 18 30
              9
                     169
## 19 0
               5
                      39
## 20 30
               6
                     132
```

Figure 2: Rat lethargy data (some)

Figure 3: Rat lethargy analysis of covariance

```
## # A tibble: 27 x 4 \,
      treatment time subject
                                    У
##
      <chr>
                 <chr> <chr>
                                <dbl>
##
   1 A
                 T1
                       S1
                                   10
    2 A
##
                 T1
                       S2
                                   12
    3 A
                 T1
                       S3
##
                                   13
##
   4 A
                 T2
                       S1
                                   16
##
   5 A
                 T2
                       S2
                                   19
   6 A
                 T2
                                   20
##
                       S3
##
   7 A
                 Т3
                       S1
                                   25
##
   8 A
                 ТЗ
                       S2
                                   27
##
  9 A
                 ТЗ
                       S3
                                   28
## 10 B
                 T1
                       S4
                                   12
## 11 B
                 T1
                       S5
                                   11
## 12 B
                 T1
                       S6
                                   10
## 13 B
                 T2
                       S4
                                   18
## 14 B
                 T2
                       S5
                                   20
## 15 B
                 T2
                       S6
                                   22
## 16 B
                 Т3
                       S4
                                   25
## 17 B
                 Т3
                       S5
                                   26
## 18 B
                 Т3
                       S6
                                   27
## 19 C
                       S7
                                   10
                 T1
## 20 C
                 T1
                       S8
                                   12
## 21 C
                 T1
                       S9
                                   13
## 22 C
                 T2
                       S7
                                   22
## 23 C
                                   23
                 T2
                       S8
## 24 C
                 T2
                       S9
                                   22
## 25 C
                 Т3
                        S7
                                   31
## 26 C
                 Т3
                        S8
                                   34
## 27 C
                       S9
                                   33
                 ТЗ
```

Figure 4: Repeated measures data

Multivariate analysis (part)

```
##
## Type II Repeated Measures MANOVA Tests: Pillai test statistic
##
     Df test stat approx F num Df den Df Pr(>F)
               1 0.99751 2399.02 1 6 4.857e-09 ***
2 0.70412 7.14 2 6 0.025902 *
## (Intercept)
                                              6 0.025902 * 5 5.437e-08 ***
## treatment
                                        2
               1 0.99876 2010.30
## times
## treatment:times 2 1.34513
                               6.16
                                          4
                                               12 0.006206 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Sphericity tests

```
## Test statistic p-value
## times 0.29964 0.049149
## treatment:times 0.29964 0.049149
```

Adjusted P-values

```
## times 0.5881119 3.114038e-08 0.6461293 7.092455e-09
## treatment:times 0.5881119 8.332373e-03 0.6461293 6.137921e-03
## attr(,"na.action")
## (Intercept) treatment
## 1 2
## attr(,"class")
## [1] "omit"
```

Univariate tests

```
Sum Sq num Df Error SS den Df F value Pr(>F)
##
## (Intercept)
             10840.0 1 27.111 6 2399.0246 4.857e-09 ***
## treatment
                64.5
                        2 27.111
                                      6 7.1393 0.0259021 *
## times
                1301.0
                        2 12.889
                                     12 605.6207 8.913e-13 ***
                        4 12.889
## treatment:times 41.5
                                    12
                                          9.6552 0.0009899 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 5: Repeated measures MANOVA

##	# A	tibble:	20 x 6	3			
##		vanadium			saturated	aromatic	zone
##		<dbl></dbl>	<dbl></dbl>	•	<dbl></dbl>		<chr></chr>
##	1	5	47	0.07	7.06	6.1	SubMuli
##	2	9	27	0.3	3.69	3.3	Upper
##	3	4	12	0.5	5.71	6.32	Upper
##	4	5.6	20	0.5	5.07	6.7	Upper
##	5	6.2	34	0.07	4.84	2.37	Upper
##	6	3.9	43	0.07	6.25	10.4	Wilhelm
##	7	7.3	15	0.05	3.76	6.84	Upper
##	8	7.7	14	0.3	4.65	8.63	Upper
##	9	9.5	17	0.05	3.52	5.71	Upper
##	10	4.2	36	0.5	9.25	4.95	SubMuli
##	11	1.2	12	0	5.54	3.15	SubMuli
##	12	9.5	25	0.5	4.44	5.95	Upper
##	13	7.3	24	0	4.34	2.99	Upper
##	14	3	30	0	5.12	10.8	SubMuli
##	15	3.6	15	0.7	7	4.82	Upper
##	16	9.5	22	0.3	3.98	5.02	Upper
##	17	4.2	35	0.5	5.69	2.22	SubMuli
##	18	8	14	0.3	4.32	7.87	Upper
##	19	6.2	27	0.3	3.97	2.97	Upper
##	20	7.8	26	1	5.02	2.5	Upper

Figure 6: Crude oil data (random sample)

```
response <- with(crude, cbind(vanadium, iron,
                            beryllium, saturated, aromatic))
crude.1 <- lm(response~zone, data=crude)</pre>
summary(Manova(crude.1))
##
## Type II MANOVA Tests:
##
## Sum of squares and products for error:
             vanadium iron beryllium saturated
                                                        aromatic
## vanadium 187.575243 -34.81237 -6.8479884 -21.133755 79.6722871
## iron -34.812372 4221.15811 20.1123090 83.721918 -287.5114258
## beryllium -6.847988
                       20.11231 4.4356653
                                            8.637653
                                                       -0.3915679
## saturated -21.133755
                       83.72192 8.6376526 57.040433
                                                       33.2150163
## aromatic 79.672287 -287.51143 -0.3915679 33.215016 338.0228861
## -----
##
## Term: zone
## Sum of squares and products for the hypothesis:
##
      vanadium iron beryllium saturated aromatic
## vanadium 135.67315 -647.33656 11.4925598 -80.479227 -113.841359
## iron -647.33656 3186.68117 -53.8000232 373.774403 648.788140
                                 0.9844204 -6.924981
## beryllium 11.49256 -53.80002
                                                        -8.529018
## saturated -80.47923 373.77440 -6.9249811 48.803422
                                                        56.524562
## aromatic -113.84136 648.78814 -8.5290178 56.524562 209.294200
##
## Multivariate Tests: zone
##
                  Df test stat approx F num Df den Df
                                                        Pr(>F)
## Pillai
                   2 1.206656 15.20973 10 100 3.6855e-16 ***
                   2 0.115911 18.98484 10 98 < 2.22e-16 ***
2 4.844428 23.25325 10 96 < 2.22e-16 ***
2 4.178414 41.78414 5 50 < 2.22e-16 ***
## Wilks
## Hotelling-Lawley 2 4.844428 23.25325
## Roy
                   2 4.178414 41.78414
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 7: Crude oil MANOVA

```
crude.2 <- lda(zone~iron+beryllium+saturated+aromatic, data=crude)</pre>
crude.2
## Call:
## lda(zone ~ iron + beryllium + saturated + aromatic, data = crude)
## Prior probabilities of groups:
              Upper Wilhelm
## SubMuli
## 0.1964286 0.6785714 0.1250000
##
## Group means:
              iron beryllium saturated aromatic
## SubMuli 33.09091 0.1709091 6.560909 5.483636
## Upper 22.25263 0.4321053 4.658158 5.767895
## Wilhelm 43.57143 0.1171429 6.795714 11.540000
## Coefficients of linear discriminants:
##
                  LD1
## iron 0.0611089 0.05039847
## beryllium -2.7160984 1.63910398
## saturated 0.7735772 -0.77701517
## aromatic 0.1025370 0.39908518
##
## Proportion of trace:
## LD1
           LD2
## 0.8246 0.1754
```

Figure 8: Crude oil discriminant analysis

##		r	zone	class	p.SubMuli	p.Upper	p.Wilhelm	
##	1	1	Wilhelm		0.001	0.000	0.999	
##	2	2	Wilhelm	Wilhelm	0.002	0.000	0.998	
##	3	3	Wilhelm	Wilhelm	0.101	0.008	0.891	
##	4		Wilhelm		0.002	0.000	0.998	
##			Wilhelm		0.004	0.000	0.996	
##			Wilhelm		0.034	0.001	0.964	
	7		Wilhelm		0.239	0.281	0.480	
##	8		SubMuli		0.850	0.000	0.150	
##			SubMuli		0.764	0.234	0.002	
			SubMuli		0.684	0.316	0.000	
			SubMuli		0.937	0.063	0.000	
			SubMuli		0.999	0.000	0.001	
			SubMuli	Upper	0.226	0.774	0.000	
			SubMuli		0.948	0.049	0.003	
			SubMuli		0.992	0.008	0.000	
			SubMuli		0.085	0.001	0.914	
##			SubMuli		0.942	0.000	0.058	
##			SubMuli		0.103	0.326	0.571	
	19		Upper	Upper	0.000	1.000	0.000	
	20		Upper	Upper	0.000	1.000	0.000	
	21		Upper	Upper	0.120	0.880	0.000	
	22		Upper	Upper	0.000	1.000	0.000	
	23		Upper	Upper	0.002	0.998	0.000	
	24		Upper	Upper	0.000	1.000	0.000	
	25		Upper	Upper	0.001	0.999	0.000	
	26		Upper	Upper	0.001	0.999	0.000	
	27		Upper	Upper	0.001	1.000	0.000	
	28		Upper	Upper	0.001	0.999	0.000	
	29		Upper	Upper	0.003	0.997	0.000	
	30		Upper	Upper	0.000	1.000	0.000	
	31		Upper	Upper	0.002	0.998	0.000	
	32		Upper	Upper	0.001	0.999	0.000	
	33		Upper	Upper	0.008	0.991	0.001	
	34		Upper	Upper	0.002	0.997	0.000	
	35		Upper	Upper	0.001	0.999	0.000	
	36		Upper	Upper	0.000	1.000	0.000	
	37		Upper	Upper	0.010	0.990	0.000	
	38		Upper	Upper	0.056	0.938	0.006	
	39		Upper	Upper	0.001	0.999	0.000	
	40		Upper	Upper	0.000	1.000	0.000	
	41		Upper	Upper	0.000	1.000	0.000	
	42			SubMuli	0.801	0.186	0.013	
	43		Upper	Upper	0.001	0.998	0.000	
	44		Upper	Upper	0.002	0.998	0.000	
	45		Upper	Upper	0.004	0.996	0.000	
	46		Upper	Upper	0.000	1.000	0.000	
	47		Upper	Upper	0.000	0.983	0.005	
	48		Upper	Upper	0.011	0.982	0.000	
	49		Upper	Upper	0.001	0.999	0.000	
	50		Upper	Upper	0.164	0.836	0.000	
	51			SubMuli	0.531	0.468	0.000	
	52		Upper	Upper	0.057	90.943	0.000	
	53		Upper	Upper	0.006	0.994	0.000	
	54		Upper	Upper	0.082	0.918	0.000	
	55		Upper	Upper	0.000	1.000	0.000	
	56		Upper	Upper	0.003	0.997	0.000	
			obbor	obbor	3.000	0.001	3.000	

Figure 9: Crude oil posterior probabilities

```
speakers=read_delim("loudspeaker.txt", " ")
## Rows: 19 Columns: 5
## -- Column specification ----
## Delimiter:
## chr (1): id
## dbl (4): price, accuracy, bass, power
## i Use 'spec()' to retrieve the full column specification for
this data.
## i Specify the column types or set 'show_col_types = FALSE' to
quiet this message.
speakers
## # A tibble: 19 x 5
     id
           price accuracy bass power
##
      <chr> <dbl>
                     <dbl> <dbl> <dbl>
## 1 A
             600
                        91
                               5
                                    38
##
   2 B
              598
                        92
                               4
                                    18
## 3 C
              550
                        90
                               4
                                    36
   4 D
              500
                        90
                                    29
##
                               4
##
   5 E
              630
                        90
                               4
                                    15
##
   6 F
              580
                        87
                               5
                                    5
## 7 G
              460
                        87
                               5
                                  15
## 8 H
              600
                        88
                               4
                                    29
## 9 I
              590
                        88
                               3
                                    15
## 10 J
              599
                        89
                               3
                                    23
## 11 K
                               2
              598
                        85
                                    23
## 12 L
                        84
                               2
              618
                                    12
## 13 M
              600
                        88
                               3
                                    46
## 14 N
                        82
                               3
                                    29
              600
## 15 0
              600
                        85
                               2
                                    36
## 16 P
                               2
              500
                        83
                                    45
## 17 Q
              539
                        80
                               1
                                    23
## 18 R
              569
                        86
                               1
                                    21
## 19 S
              680
                        79
                               2
                                     36
```

Figure 10: Loudspeakers data

Figure 11: Loudspeakers scree plot

```
##
      sp sex index
                      FL
                           RW
                              CL
                                      CW
                                           BD
       В
           М
                  1
                     8.1
                          6.7 16.1 19.0
                                          7.0
##
                     9.8
                          8.0 20.3 23.0
  2
       В
           М
                  5
                                          8.2
## 3
           М
                 12 12.3 11.0 26.8 31.5 11.4
## 4
       В
           M
                26 15.2 12.1 32.3 36.7 13.6
## 5
       В
           M
                 32 16.2 13.3 36.0 41.7 15.4
## 6
                37 16.9 13.2 37.3 42.7 15.6
       В
           M
## 7
       В
           M
                45 19.3 13.5 41.6 47.4 17.8
## 8
       В
           F
                52
                     9.0
                          8.5 19.3 22.7
                                          7.7
## 9
       В
           F
                     9.1
                          8.2 19.2 22.2
                                          7.7
                          9.5 22.5 26.3
## 10
       В
           F
                60 10.8
## 11
       В
           F
                63 11.5 11.0 24.7 29.2 10.1
## 12
       В
           F
                79 13.9 13.0 30.0 34.9 13.1
## 13
       В
           F
                88 15.3 14.2 32.6 38.3 13.8
## 14
       В
           F
                94 15.8 15.0 34.5 40.3 15.3
## 15
       В
           F
                95 16.2 15.2 34.5 40.1 13.9
## 16
       В
           F
                99 17.5 16.7 38.6 44.5 17.0
## 17
       0
                102 10.2
                          8.2 20.2 22.2
           M
                          9.4 23.2 26.0 10.8
##
  18
       0
           M
                105
                   12.5
## 19
       0
           M
                127 17.4 12.8 36.1 39.5 16.2
## 20
       0
           М
                133 18.2 13.7 38.8 42.7 17.2
## 21
       0
           M
                134 18.4 13.4 37.9 42.2 17.7
## 22
       0
           M
                135 18.6 13.4 37.8 41.9 17.3
## 23
                141 20.1 13.7 40.6 44.5 18.0
       0
           М
## 24
       0
           М
                145 21.6 15.4 45.7 49.7 20.6
## 25
                146 21.6 14.8 43.4 48.2 20.1
       0
           М
## 26
       0
                147 21.9 15.7 45.4 51.0 21.1
           М
## 27
       0
                150 23.1 15.7 47.6 52.8 21.6
           М
## 28
       0
                152 11.4 9.2 21.7 24.1
           F
## 29
                153 12.5 10.0 24.1 27.0 10.9
       0
           F
## 30
       0
           F
                155 12.9 11.2 25.8 29.1 11.9
## 31
       0
           F
                158 14.3 12.2 28.1 31.8 12.5
## 32
       0
           F
                169 16.7 14.3 32.3 37.0 14.7
## 33
       0
           F
                174 17.6 14.0 34.0 38.6 15.5
## 34
       0
           F
                180 18.5 14.6 37.0 42.0 16.6
## 35
       0
           F
                182 18.8 15.2 35.8 40.5 16.6
## 36
       0
                183 18.9 16.7 36.3 41.7 15.3
           F
## 37
       0
           F
                187 19.9 16.6 39.4 43.9 17.9
## 38
       0
           F
                192 20.5 17.5 40.0 45.5 19.2
## 39
       0
           F
                199 22.5 17.2 43.0 48.7 19.8
                200 23.1 20.2 46.2 52.5 21.1
## 40
       0
           F
```

Figure 12: Crabs data (sample)

Figure 13: Crabs principal components analysis

Figure 14: Crabs scree plot

```
crabs.1$loadings
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## FL 0.452 0.138 0.531 0.697
## RW 0.428 -0.898
## CL 0.453 0.268 -0.310
                               -0.792
## CW 0.451 0.181 -0.653
                                0.575
## BD 0.451 0.264 0.443 -0.707 0.176
##
##
                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
                         1.0
## SS loadings
                   1.0
                                1.0
                                      1.0
                                             1.0
## Proportion Var
                   0.2
                          0.2
                                0.2
                                       0.2
                                             0.2
## Cumulative Var 0.2 0.4 0.6
                                    0.8 1.0
```

Figure 15: Crabs principal component loadings

Figure 16: Crabs plot of component scores

```
hothand=read_csv("hothand.csv")
hothand %>% print(n=Inf)
## # A tibble: 36 x 4
     Player
                      first_shot second_shot frequency
##
##
      <chr>>
                      <chr>
                                 <chr>
                                                 <dbl>
   1 Larry Bird
                                                    251
##
                      hit
                                 hit
## 2 Larry Bird
                      hit
                                                     34
                                 miss
##
  3 Larry Bird
                      miss
                                 hit
                                                     48
  4 Larry Bird
                                                     5
                      miss
                                 miss
## 5 Cedric Maxwell
                      hit
                                 hit
                                                   245
##
   6 Cedric Maxwell
                      hit
                                 miss
                                                    57
## 7 Cedric Maxwell
                      miss
                                 hit
                                                    97
## 8 Cedric Maxwell
                     miss
                                 miss
                                                    31
## 9 Robert Parish
                                                   164
                      hit
                                 hit
## 10 Robert Parish
                      hit
                                 miss
                                                    49
## 11 Robert Parish
                     miss
                                 hit
                                                    76
## 12 Robert Parish
                      miss
                                 miss
                                                     29
## 13 Tiny Archibald
                     hit
                                                    203
                                 hit
## 14 Tiny Archibald
                                                     42
                      hit
                                 miss
## 15 Tiny Archibald
                                                     62
                      miss
                                 hit
## 16 Tiny Archibald
                                                    14
                      miss
                                 miss
## 17 Chris Ford
                      hit
                                 hit
                                                     36
## 18 Chris Ford
                      hit
                                 miss
                                                     15
## 19 Chris Ford
                      miss
                                                    17
                                 hit
## 20 Chris Ford
                      miss
                                                     5
                                 miss
## 21 Kevin McHale
                                                     93
                      hit
                                 hit
## 22 Kevin McHale
                      hit
                                 miss
                                                     35
## 23 Kevin McHale
                      miss
                                 hit
                                                     29
## 24 Kevin McHale
                                                     20
                      miss
                                 miss
## 25 ML Carr
                      hit
                                 hit
                                                     39
## 26 ML Carr
                      hit
                                 miss
                                                     18
## 27 ML Carr
                     miss
                                 hit
                                                     21
## 28 ML Carr
                      miss
                                 miss
                                                     5
## 29 Rick Robey
                      hit
                                 hit
                                                     54
## 30 Rick Robey
                                                     37
                      hit
                                 miss
## 31 Rick Robey
                                                     49
                      miss
                                 hit
## 32 Rick Robey
                      miss
                                 miss
                                                     31
## 33 Gerald Henderson hit
                                 hit
                                                     77
## 34 Gerald Henderson hit
                                 miss
                                                     24
## 35 Gerald Henderson miss
                                                     29
                                 hit
## 36 Gerald Henderson miss
                                 miss
```

Figure 17: Hot hand data

The columns of the output from the first two of these code chunks refer to the second shot: whether it is hit or missed.

```
d %>% select(-first_shot) %>%
    chisq.test()

##

## Pearson's Chi-squared test with Yates' continuity correction
##

## data: .

## X-squared = 4.739, df = 1, p-value = 0.02949
```

Figure 18: Hot hand chi-squared test

```
hothand %>% group_by(Player, first_shot) %>%
    count(second_shot, wt=frequency) %>%
   mutate(proportion=n/sum(n)) %>% filter(second_shot=="hit") %>%
   select(-n) %>% select(-second_shot) %>%
   pivot_wider(names_from = first_shot, values_from = proportion)
## # A tibble: 9 x 3
## # Groups: Player [9]
    Player
##
                     hit miss
##
    <chr>>
                     <dbl> <dbl>
## 1 Cedric Maxwell 0.811 0.758
## 2 Chris Ford 0.706 0.773
## 3 Gerald Henderson 0.762 0.784
## 4 Kevin McHale 0.727 0.592
## 5 Larry Bird
                   0.881 0.906
## 6 ML Carr
                   0.684 0.808
## 7 Rick Robey
                   0.593 0.612
## 8 Robert Parish
                    0.770 0.724
## 9 Tiny Archibald 0.829 0.816
```

Figure 19: Proportion of second shots made for each player when first shot is hit or missed

Figure 20: Log-linear analysis part 1

```
hothand.2=update(hothand.1, .~.-Player:first_shot:second_shot)
drop1(hothand.2, test="Chisq")
## Single term deletions
##
## Model:
## frequency ~ Player + first_shot + second_shot + Player:first_shot +
      Player:second_shot + first_shot:second_shot
                         Df Deviance
                                     AIC
##
                                            LRT Pr(>Chi)
## <none>
                              6.650 257.96
## Player:first_shot
                        8 66.587 301.90 59.937 4.795e-10 ***
## Player:second_shot
                        8 71.056 306.37 64.405 6.326e-11 ***
                              7.521 256.83 0.870
## first_shot:second_shot 1
                                                     0.3508
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 21: Log-linear analysis part 2

```
hothand.3=update(hothand.2, .~.-first_shot:second_shot)
drop1(hothand.3, test="Chisq")
## Single term deletions
##
## Model:
## frequency ~ Player + first_shot + second_shot + Player:first_shot +
##
      Player:second_shot
##
                    Df Deviance
                                 AIC
                                          LRT Pr(>Chi)
                          7.521 256.83
## <none>
## Player:first_shot 8 71.490 304.81 63.970 7.712e-11 ***
## Player:second_shot 8 75.959 309.27 68.438 1.005e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 22: Log-linear analysis part 3

```
ggplot(rats, aes(x=age, y=resttime, colour=dose)) +
    geom_point() + geom_smooth(method="lm", se=F)
## 'geom_smooth()' using formula 'y ~ x'
```


Figure 23: Rat lethargy data scatterplot

Figure 24: Repeated measures spaghetti plot

Figure 25: Crude oil LD plot

Figure 26: Another plot of component scores