

Test report

284168-12TRFWL

Date of issue: December 1, 2018

Applicant:

Deltanode Solutions AB

Product:

700 UC

Model:

DMR404

FCC ID: V5FDMR001 IC: 11014A-DMR001

Specification:

FCC Part 27, RSS-131 Issue 3, RSS-130 Issue 1

Lab and test locations

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:	Montréal site:	Toronto site:	Almonte site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Test site registration	Organization	Recognition numbers and location	on	
	FCC	CA2040 (Ottawa); Test Firm Registration Number: 175281		
	ISED	CA2040A-4 (Ottawa)		
Website	www.nemko.com			

Tested by	Kevin Rose, Wireless/EMC Specialist
Reviewed by	Russell Grant, Senior Technical Assessor
Date	December 1, 2018
Signature	Russell I rant

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	I. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Statement of compliance	4
1.4	Exclusions	4
1.5	Test report revision history	4
Section 2	2. Summary of test results	5
2.1	FCC Part 27, RSS-131 Issue 3, RSS-130 Issue 1 test results	5
Section 3	3. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
3.6	EUT setup diagram	7
Section 2	4. Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section	5. Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section 6	6. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section	7. Test equipment	11
7.1	Test equipment list	11
Section 8	B. Testing data	12
8.1	KDB 935210 D05 3.2, Measuring AGC threshold level	12
8.2	RSS-131 5.2.1, KDB 935210 D05 3.3, Out-of-band-rejection	13
8.3	RSS-131 5.2.2, KDB 935210 D05 3.4, Input-versus-output signal comparison	18
8.4	FCC 27.50(b), RSS-131 5.2.3, RSS-130 4.4, KDB 935210 D05 3.5, Mean output power and amplifier/booster gain	21
8.5	FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.2, Out-of-band/out-of-block emissions conducted measurements	24
8.6	FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.3, Spurious emissions conducted measurements	32
8.7	FCC 27.53(c)(f), RSS-130 4.6, KDB 935210 D05 3.6.3, Spurious emissions conducted measurements	34
8.8	FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.8, Spurious emissions radiated measurements	35
Section	9. Setup Photos	37
9.1	Set-up	37
Section 1	IO. Block diagrams of test set-ups	38
10.1	Measuring AGC threshold level, Out-of-band-rejection, Input-versus-output signal comparison, Mean output power and amplifier/booster	gain,
Spurio	ous emissions conducted measurements, Spurious emissions radiated measurements	38
10.2	Out-of-band/out-of-block emissions conducted measurements	38
10.3	Spurious emissions radiated measurements	39
10.4	Spurious emissions radiated measurements (above 1GHz)	40

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Deltanode Solutions AB
Address	Hammarby Fabriksvag 61
City	Stockholm
Province/State	
Postal/Zip code	SE-120 30
Country	Sweden

1.2 Test specifications

FCC Part 27	Miscellaneous Wireless Communications Services
RSS-131 Issue 3	Zone Enhancers
RSS-130 Issue 1	Mobile Broadband Services (MBS), Equipment Operating in the Frequency, Bands 698-756 MHz and 777-787 MHz
935210 D05 Indus Booster Basic Meas v01r02	MEASUREMENTS GUIDANCE FOR INDUSTRIAL AND NON-CONSUMER SIGNAL BOOSTER, REPEATER, AND AMPLIFIER DEVICES

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Exclusions

None

1.5 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 27, RSS-131 Issue 3, RSS-130 Issue 1 test results

Part	Test description	Verdict
KDB 935210 D05 3.2	Measuring AGC threshold level	Reported
RSS-131 5.2.1, KDB 935210 D05 3.3	Out-of-band-rejection	Pass
RSS-131 5.2.2, KDB 935210 D05 3.4	Input-versus-output signal comparison	Pass
FCC 27.50(b), RSS-131 5.2.3, RSS-130 4.4, KDB 935210 D05 3.5	Mean output power and amplifier/booster gain	Pass
FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.2	Out-of-band/out-of-block emissions conducted measurements	Pass
FCC 27.53(c)(f), RSS-130 4.6, KDB 935210 D05 3.6.3	Spurious emissions conducted measurements	Pass
FCC 27.54, RSS-131 5.2.4, RSS-130 4.3, 935210 D05 3.7	Frequency stability measurements	N/A ¹
FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.8	Spurious emissions radiated measurements	Pass

Notes: ¹The signal booster does not alter the input signal in any way.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	November 8, 2018
Nemko sample ID number	13300321

3.2 EUT information

Product name	700 UC
Model	DMR404
Serial number	10189

3.3 Technical information

Operating band	Canada: 746 – 756 / 777 – 787 MHz USA: 746 – 758 / 776 – 788 MHz
Modulation type	LTE 1.4, 3, 5, 10 MHz
Channel Spacing	Standard
Power requirements	110 V _{AC} , ~3 A for entire system tested
Emission designator	1M40D7W, 3M00D7W, 5M00D7W, and 10M0D7W
Gain	80 dB
Antenna information	External Antenna is not provided EUT used a 50 Ω termination.

3.4 Product description and theory of operation

Output power: 25 dBm DL / UL

Gain: 80 dB DL / UL

3.5 EUT exercise details

The EUT was controlled via a Laptop interface with GUI to configure the system The EUT uses set channels Bandwidths user settable to a maximum of 15 MHz.

3.6 EUT setup diagram

Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Serial no.	Asset no.	Cal./Ver. cycle	Next cal./ver.
3 m EMI test chamber	TDK	SAC-3		FA003012	1 year	Aug. 22/19
Flush mount turntable	SUNAR	FM2022		FA003006	_	NCR
Controller	SUNAR	SC110V	050118-1	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	042418-5	FA003007	_	NCR
AC Power source	Chroma			FA003020	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	101367	FA002969	1 year	Jan. 30/19
Spectrum analyzer	Rohde & Schwarz	FSW43	104437	FA002971	1 year	Mar. 16/19
Horn antenna (1–18 GHz)	ETS-Lindgren	3117	00052793	FA002911	1 year	Aug. 16/19
Preamp (1–18 GHz)	ETS-Lindgren	124334	00224880	FA002956	1 year	Sept 18/19
Bilog antenna (30–2000 MHz)	SUNAR	JB1	A053018-1	FA003009	1 year	Sept. 6/19
Vector Signal Generator	Rohde & Schwarz	SMW200A	101857	FA002970	1 year	Feb. 2/19

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 KDB 935210 D05 3.2, AGC threshold

8.1.1 Definitions and limits

The AGC threshold is the input power at which a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output power.

8.1.2 Test summary

Test date	November 20, 2018	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	39 %

8.1.3 Observations, settings and special notes

Test receiver settings:

Detector mode	RMS (for average), Peak (for peak)
Resolution bandwidth	20 kHz
Integration bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Power Average (for average), Max Hold (for peak)
Measurement time	Auto

Table 8.1 1: AGC Threshold

Modulation	Frequency, MHz	RF input power AVG, dBm
AWGN	751	-54.58
AWGN	782	-60.94

8.1.4 Test data

Figure 8.1-2: AWGN AGC + 1 dB 782 MHz input UL

8.2 RSS-131 5.2.1, KDB 935210 D05 3.3, Out-of-band-rejection

8.2.1 Definitions and limits

RSS-131 5.2.1

The gain-versus-frequency response and the 20 dB bandwidth of the zone enhancer shall be reported. The zone enhancer shall reject amplification of other signals outside the passband of the zone enhancer.

8.2.2 Test summary

Test date	November 20, 2018	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	39 %

8.2.3 Observations, settings and special notes

Frequency range	30 MHz to 10 th harmonic
Detector mode	Peak
Resolution bandwidth sweep	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

Section 8 Testing data

Test name Out-of-band-rejection

Specification RSS-131 5.2.1, KDB 935210 D05 3.3,

8.2.4 Test data

15:20:30 19.11.2018

Figure 8.2-1: Passband Downlink Canada

Specification RSS-131 5.2.1, KDB 935210 D05 3.3,

15:17:38 19.11.2018

Figure 8.2-2: Passband Downlink FCC

17:05:52 20.11.2018

Figure 8.2-3: Passband Uplink Canada

16:46:48 19.11.2018

Figure 8.2-4: Passband Uplink FCC

Input-versus-output signal comparison RSS-131 5.2.2, KDB 935210 D05 3.4

8.3 RSS-131 5.2.2, KDB 935210 D05 3.4, Input-versus-output signal comparison

8.3.1 Definitions and limits

RSS-131 5.2.2

The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.

KDB 935210 D05 3.4

A 26 dB bandwidth measurement shall be performed on the input signal and the output signal; alternatively, the 99% OBW can be measured and used.

8.3.2 Test summary

Test date	November 20, 2018	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	39 %

8.3.3 Observations, settings and special notes

Receiver settings were:

Frequency range	250% of OBW
Detector mode	Peak
Resolution bandwidth	1 % to 5 % of the anticipated OBW
Video bandwidth	>RBW
Trace mode	Max Hold

8.3.4 Test data

Figure 8.3-1: AGC-0.5 dB 751 MHz input 99% BW DL

Figure 8.3-3: AGC +3 dB 751 MHz input 99% BW DL

Figure 8.3-2: AGC-0.5 dB 751 MHz output 99% BW DL

Figure 8.3-4: AGC +3 dB 751 MHz output 99% BW DL

Figure 8.3-5: AGC-0.5 dB MHz input 99% BW UL

Figure 8.3-6: AGC-0.5 dB MHz output 99% BW UL

Figure 8.3-7: AGC +3 dB MHz input 99% BW UL

Figure 8.3-8: AGC +3 dB MHz output 99% BW UL

8.4 FCC 27.50(b), RSS-131 5.2.3, RSS-130 4.4, KDB 935210 D05 3.5, Mean output power and amplifier/booster gain

8.4.1 Definitions and limits

FCC 27.50(b)

(2)(4) High Density, 1000 W ERP or 1000 W/MHz ERP with an emission bandwidth greater than 1 MHz

(3)(5) Low Density, 2000 W ERP or 2000 W/MHz ERP with an emission bandwidth greater than 1 MHz

RSS-131 5.2.3 The zone enhancer gain shall not exceed the nominal gain by more than 1.0 dB. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point

RSS-130 4.4, refer to SRSP-518. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

8.4.2 Test summary

Test date	November 20, 2018	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	39 %

8.4.3 Observations, settings and special notes

The 99% occupied bandwidth was used.

Spectrum analyzer settings:

Detector mode	RMS (for average), Peak (for peak)
Resolution bandwidth	100 kHz
Integration bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Power Average (for average), Max Hold (for peak)
Measurement time	Auto

Table 0-1: Output power results

Frequency, MHz	RF output power Peak, dBm
751 AWGN DL	23.66
Gain = 79.24dB	PAR = 6.74 dB
782 AWGN UL	23.67
Gain = 85.61dB	PAR = 6.90 dB

Figure 0-1: AWGN AGC -0.5 dB 751 MHz Input DL

Figure 0-2: AWGN AGC -0.5 dB 751 MHz Output DL

Figure 0-3: AWGN AGC + 3 dB 751 MHz Output DL

Figure 0-4: AWGN AGC -0.5 dB 751 MHz PAR DL

08:44:52 29.11.2018

8.4.4 Test data

Figure 0-5: AWGN AGC -0.5 dB 782 MHz Input UL

Figure 0-7: AWGN AGC + 3 dB 782 MHz Output UL

Figure 0-8: AWGN AGC -0.5 dB 782 MHz PAR UL

Figure o-6: AWGN AGC -0.5 dB 782 MHz Output UL

Test name

Out-of-band/out-of-block emissions conducted measurements

Specification FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.2

8.5 FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.2, Out-of-band/out-of-block emissions conducted measurements

8.5.1 Definitions and limits

FCC 27.53(c) / RSS-130 4.6

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

8.5.2 Test summary

Test date	November 8, 2018	Temperature	22 °C
Test engineer	Kevin Rose	Air pressure	1001 mbar
Verdict	Pass	Relative humidity	32 %

8.5.3 Observations, settings and special notes

Test receiver settings:

Detector mode	RMS
Resolution bandwidth	3 kHz
Integration bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Power Average (100 sweeps)
Measurement time	Auto

8.5.4 Test data

Figure 8.5-1: AWGN 748.5 and 753.5 MHz AGC - 0.5 dB Out-of-block DL Canada

Figure 8.5-3: AWGN 750.5 and 755.5 MHz AGC - 0.5 dB Out-of-block DL FCC

Figure 8.5-2: AWGN 748.5 and 753.5 MHz AGC + 3 dB Out-of-block DL Canada

Figure 8.5-4: AWGN 750.5 and 755.5 MHz AGC + 3 dB Out-of-block DL FCC

MultiView * Out-of-block
Raf Level 30.56 db Officet 40.56 db * RBW 1001bb

Strong John Str

Figure 8.5-5: AWGN 753.5 MHz AGC - 0.5 dB Out-of-block DL Canada

Figure 8.5-6: AWGN 753.5 MHz AGC + 3 dB Out-of-block DL Canada

Figure 8.5-7: AWGN 755.5 MHz AGC - 0.5 dB Out-of-block DL FCC

Figure 8.5-8: AWGN 755.5 MHz AGC + 3 dB Out-of-block DL FCC

Figure 8.5-9: AWGN 748.5 and 753.5 MHz AGC - 0.5 dB Out-of-block DL Canada / FCC

Figure 8.5-10: AWGN 748.5 and 753.5 MHz AGC + 3 dB Out-of-block DL Canada / FCC

Figure 8.5-11: AWGN 748.5 MHz AGC - 0.5 dB Out-of-block DL

Figure 8.5-12: AWGN 748.5 MHz AGC + 3 dB Out-of-block DL

Figure 8.5-13: AWGN 779.5 and 784.5 MHz AGC - 0.5 dB Out-of-block UL Canada

Figure 8.5-14: AWGN 779.5 and 784.5 MHz AGC + 3 dB Out-of-block UL Canada

Figure 8.5-15: AWGN 779.5 and 784.5 MHz AGC - 0.5 dB Out-of-block UL

Figure 8.5-16: AWGN 779.5 and 784.5 MHz AGC + 3 dB Out-of-block UL

Figure 8.5-17: AWGN 780.5 and 785.5 MHz AGC - 0.5 dB Out-of-block UL FCC

Figure 8.5-18: AWGN 780.5 and 785.5 MHz AGC + 3 dB Out-of-block UL FCC

Figure 8.5-19: AWGN 778.5 and 783.5 MHz AGC - 0.5 dB Out-of-block UL

Figure 8.5-20: AWGN 778.5 and 783.5 MHz AGC + 3 dB Out-of-block UL FCC

Figure 8.5-21: AWGN 784.5 MHz AGC - 0.5 dB Out-of-block UL Canada

Figure 8.5-23: AWGN 779.5 MHz AGC - 0.5 dB Out-of-block UL Canada

Figure 8.5-22: AWGN 784.5 MHz AGC + 3 dB Out-of-block UL Canada

Figure 8.5-24: AWGN 779.5 MHz AGC + 3 dB Out-of-block UL Canada

Figure 8.5-25: AWGN 785.5 MHz AGC - 0.5 dB Out-of-block UL FCC

Figure 8.5-27: AWGN 778.5 MHz AGC - 0.5 dB Out-of-block UL FCC

Figure 8.5-26: AWGN 785.5 MHz AGC + 3 dB Out-of-block UL FCC

Figure 8.5-28: AWGN 778.5 MHz AGC + 3 dB Out-of-block UL FCC

Section 8

Testing data

Test name Specification Spurious emissions conducted measurements FCC 27.53(c)(f), RSS-130 4.6, KDB 935210 D05 3.6.3

8.6 FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.6.3, Spurious emissions conducted measurements

FCC 27.53(c) / RSS-130 4.6

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

8.6.1 Test summary

Test date	November 8, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	42 %

8.6.2 Observations, settings and special notes

Frequency range	30 MHz to 10 th harmonic
Detector mode	Peak
Resolution bandwidth sweep	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

8.6.3 Test data

Figure 8.6-1: 748.5 MHz Spurious conducted emission DL

Figure 8.6-3: 779.5 MHz Spurious conducted emission UL

Figure 8.6-2: 753.5 MHz Spurious conducted emission DL

Figure 8.6-4: 784.5 MHz Spurious conducted emission UL

8.7 FCC 27.53(c)(f), RSS-130 4.6, KDB 935210 D05 3.6.3, Spurious emissions conducted measurements

FCC 27.53(c) / RSS-130 4.6

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

FCC 27.53(f), RSS-130 4.6

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

8.7.1 Test summary

Figure 8.7-1: 753.5 MHz conducted emission UL

Figure 8.7-2: 753.5 MHz conducted emission UL

Figure 8.7-3: 784.5 MHz conducted emission UL

Figure 8.7-4: 784.5 MHz conducted emission UL

8.8 FCC 27.53(c), RSS-130 4.6, KDB 935210 D05 3.8, Spurious emissions radiated measurements

8.8.1 Definitions and limits

FCC 27.53(c) / RSS-130 4.6

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations:
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

8.8.2 Test summary

Test date	June 27, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1000 mbar
Verdict	Pass	Relative humidity	42 %

8.8.3 Observations, settings and special notes

Worst case examples are provided. No emissions within 20 dB of the limit were detected.

Receiver settings were:

Frequency range	30 MHz to 10 th harmonic
Detector mode	Peak
Resolution bandwidth	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)
Video bandwidth	>RBW
Trace mode	Max Hold

8.8.4

Figure 8.8-1: 30 MHz to 1 GHz UL

Figure 8.8-3: 30 MHz to 1 GHz DL

Figure 8.8-4: 1 GHz to 8 GHz DL

Section 9. Setup Photos

9.1 Set-up

Figure 9.1-1: Radiated setup photo

Figure 9.1-2: Conducted setup photo

Section 10. Block diagrams of test set-ups

10.1 Measuring AGC threshold level, Out-of-band-rejection, Input-versus-output signal comparison, Mean output power and amplifier/booster gain, Spurious emissions conducted measurements, Spurious emissions radiated measurements

10.2 Out-of-band/out-of-block emissions conducted measurements

10.3 Spurious emissions radiated measurements

10.4 Spurious emissions radiated measurements (above 1GHz)

