$$\frac{g\#2}{for copine} = \lim_{h \to 0} \left[\frac{con(x+h) - conx}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{conx + conh - sin x + sinh}{h} - \frac{conx}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{conx + conh - 1}{h} - \frac{sinx}{h} + \frac{sinh}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{conx + conh - 1}{h} - \frac{sinx}{h} + \frac{sinh}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{conx + conh - 1}{h} - \frac{sinx}{h} + \frac{sinh}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{conx + conh - 1}{h} - \frac{sinx}{h} + \frac{sinh}{h} + \frac{sinh}{h}$$

O under ho

| under h > 0

$$=-\sin X$$
.

(Sin² V)' =
$$\lim_{h \to 0} \left[\frac{\sin^2(v+h) - \sin^2 v}{h} \right]$$

= $\lim_{h \to 0} \left[\frac{\sin(2v+h) \sin h}{h} \right]$

= $\lim_{h \to 0} \left[\frac{\sin(2v+h) \sin h}{h} \right]$

under his

 $\lim_{h \to 0} \frac{\sin(2v+h) \sin h}{h} = \lim_{h \to 0} \frac{2v}{h} = \lim_{h \to 0} \frac{\cos^2 v}{h}$

($\cos^2 v$)' = $\lim_{h \to 0} \left[\frac{\cos^2(v+h) - \cos^2 v}{h} \right]$

 $= \lim_{h \to 0} \left[\frac{-\cos a \sin h / \sin (2v + h)}{h} \right]$ $= \lim_{h \to 0} \left[\frac{-\cos a \sin h / \sin (2v + h)}{h} \right]$

=- 8m 2V.

Mote that $(\sin^2 v)' + (\cos^2 v)' = 0$ Tonstant. Tonstant.

We expert that constant (which is O here)

oo sin' v + con' v = 1.

constant.

and differentiation of constant is always 0.

9#3 Follow class notes and books.

19#4 if $f(x) = x^n + n \in \mathbb{N}$. This imply forom previous the (HW-V 9#5) me lame reamed that the slope of largest line to curve $f(x) = x^h$ is given as that $f(1) = 1^n = 1$.

m=
$$\lim_{X\to 1} \left[\frac{f(x)-1}{x-1}\right] = \lim_{X\to 1} \frac{x^{n-1}}{x-1} = n$$
.

Thup, now we know the alope m= h and point (1,1) from where the tangent line paper, therefore tangent line paper, therefore $y-1=n(x-1)$ ($y-y_0=m(x-x_0)$)

 $y-1=n(x-1)$ ($y-y_0=m(x-x_0)$)

Alope y -coordinate

 y -coordinate

 $\exists y = nx - n+1$

Solution of HW-T/due by 2nd Feb 2024 (1) 9#2 Given $f_I:IR \longrightarrow IR$ (by $f_I(x) = X$ and fc(X) = c where $fc: \mathbb{R} \longrightarrow \mathbb{R}$. (1) claim fi ofc = fc ofs. Boof: LMS fi ofc = fi ofc (x) = fi (fc(x)) $=f_{I}(c)=c.$ RMS $f_c \circ f_I = f_c \circ f_I(x) = f_c \circ f_I(x) = f_c(x)$ companing O and O, we immediately even $fI^{\circ}fc = fc^{\circ}fI$. @ o o (because/since) from previous pont $f_{I} = f_{c} = f_{c$ the depiscel value it simply c', where

CEIR.

3 DIY.

Q#3 is not tough at-all. Infact the first port is directly from our book. Ref. @ page XX problem 7-cc).

Guer#3 we have f: |R-> |R| via $f(x) = ax + \beta$ where a and $\beta \in |R|$. Define the n-th composition of f' with itsey by fn.

(I) DIY

De To find the explicit expression of fn, we need to observe the pattern for n=2,3 and 4. Therefore, we determine f_2 , f_3 and f_4 . as follows:

 $f_2 = f_2(x) = f \circ f(x) = f(f(x)) = f(\alpha x + \beta)$ $=\alpha(\alpha\times t\beta)+\beta=\alpha^2X+\alpha\beta t\beta.$

since $\alpha\beta + \beta = f(\beta)$, thus $f_2(x) = \alpha^2 x + f(\beta)$

$$f_{3} = f_{3}(x) = f(f_{2}(x)) = f(\alpha^{2}x + \alpha\beta + \beta)$$

$$= \alpha (\alpha^{2}x + \alpha\beta + \beta) + \beta$$

$$= \alpha^{2}x + \alpha^{2}\beta + \alpha\beta + \beta^{2}$$

$$= \alpha^{3}x + \beta (\alpha^{3}x + \beta^{2}x + \alpha\beta + \beta^{2}$$

(3) claim fn = fm (=) n=m moof: Assume that for = for \times x61R, $\frac{\alpha^n x}{\beta} + \frac{\beta}{\beta} = \frac{\alpha^n x}{\alpha^n} + \frac{\beta}{\beta} = \frac{\beta}{\alpha^n} = \frac{$ compane like terms. (either) After companing like towns, no have $\alpha^n = \alpha^m$, therefore taking the log' at base a, yields n = m as desired. (=) Assome now that n=m. Then $fn(x) = \alpha^n x + \beta \sum_{i=1}^{n-1} \alpha^i$ $(a_n n=m)$ $= \alpha^m x + \beta \sum_{i=0}^{\infty} \alpha^i$

= fm (X), thus fn = fm.

Thus, combining both directions, we have desired result.

D'upon the observation ne have $f_{n+1}(x) = \alpha^{n+1}x + f_n(\beta)$. Ap, we nced to determine f2024 (X), this means that n+1=2024=)n=2023. Therefore, with $\alpha = 2 \ \ \beta = -3$, me

Homework-U cale

9#2 Reall lim In = 1.

(1) $S_n(\tau) = fin(S_{n-1}(\tau)) = S_{n-1}(fin(\tau))$

Revosion relationship.

PReall him sin (Sn-1(Z))=1

Z-10 Z=1

Same > Same

of $1(z) = S_{n_1}(z)$ (one of the simple ready - to-use answers.)

3) Poriodicity with ox means that 8in(z+2a) = 8in z.

alow apply "Sin" abone in ey (1) ene haune $sin (sin (z+2\pi)) = sin (sin(z))$

Observe that hy definition for n'times @ composition, result in eg@ simply means that $S_2(\tau+2a) = S_2(\tau).$ In similar ways, me can hanne $S_3(\tau + 2\Lambda) = S_3(\tau)$. Thux, in general are have Sn(z+2x) = Sn(z). Crepcat the application of 'Sm' on ey Ontimes and reput will be delivered!). P) Note that "sin" (.) is an odd function. mæning sin(-x) = -sin x - 0

Apply 'sm' to abone, me have $Sin\left(Sin(-X)\right) = Sin(-SinX)$

 $z = S_2(-X)$

$$= \int S_2(-x) = -\sin(\sin x)$$

$$= -S_2(x).$$

Meaning at 2-times composition we have $S_2(-X) = -S_2(X) \equiv ODD$.

alon, repeat the above process up to n-time and hence the desired reput will be delivered; that It

$$\left|S_{n}(-X) = -S_{n}(X)\right|$$

Therefore, Sn(X) in an odd.

9#3-DIY

9#4-DIY; Learn the specific values of all sin and car functions

9#5
$$f(z) = \frac{z^{n-1}}{z^{-1}}$$
, note that for $n=1$ Φ
then $f(z) = 1$.
For $n=2$ $\frac{z^{2}-1}{z^{2}} = \frac{z^{-1}}{z^{-1}} = \frac{z^{-1}}{z^{-1}}$

and
$$\lim_{z\to 1} \frac{z^2-1}{z-1} = \lim_{z\to 1} (z+1)=2$$
.

$$\frac{6\pi n}{1} = \frac{3}{2^{3}-1} = \frac{3}{2^{2}+2+1}$$
 and

$$\lim_{\tau \to 1} \frac{z^{3}-1}{\tau \to 1} = \lim_{\tau \to 1} (z^{3}+\tau \to 1) = 3.$$

Dimitably
$$\frac{Z^4-1}{Z-1} = Z^3+Z^2+Z+1$$

thus $\lim_{Z\to 1} \frac{Z^4-1}{Z-1} = 4$.

thus
$$\lim_{z \to 1} \frac{z^4}{z^{-1}} = 4$$

Honce, in general lim
$$\frac{Z^{n-1}}{Z-1} = n$$

Mon
$$\lim_{z\to 0} \frac{s^2(z)}{z} = \lim_{z\to 0} \frac{\lim_{z\to 0} \frac{\lim_{z\to 0} c}{z}}{z}$$

$$= \lim_{z\to 0} \frac{\lim_{z\to 0} c}{z} \left(\lim_{z\to 0} c c c c\right)$$

$$= 1.0$$

$$9#7 Of(A) = A# and A = 1 = [0,1].$$

hore domain of f[#] = I. They the range of f = I, since $d \in [0,1]$.