

QTM 385 Quantitative Finance

Lecture 16: Bond prices

Instructor: Ruoxuan Xiong Suggested reading: Investments Ch 14

Question from Google form

- How does is the variable value for "A" in the utility equation get determined for an investor. I know it indicates the degree of risk aversion but how is that measured to give a value?
- Answer: Usually through questionnaire. Ask some questions about whether investors are indifferent between two investment opportunities. Use the answers to calculate A

Question from Google from

- What's the intuitive difference between minimum variance and optimal portfolio?
- Answer: "Optimal" is defined as the solution to an optimization problem (with a certain objective function)
 - Minimum variance portfolio is optimal when the objective function is to minimize variance
 - The objective function can also be to maximize Sharpe ratio or maximize the utility score

Bond value

- For simplify, assume there is one interest rate r for discounting cash flows of any maturity
- Bond value = Present value of coupons + Present value of par value
 - For a bond with T periods until maturity

Bond value =
$$\sum_{t=1}^{T} \frac{Coupon}{(1+r)^t} + \frac{Par \ value}{(1+r)^T}$$

$$= Coupon \times \frac{1}{r} \left[1 - \frac{1}{(1+r)^T} \right] + Par \ value \times \frac{1}{(1+r)^T}$$

= $Coupon \times Annuity \ factor(r, T) + Par \ value \times PV \ factor(r, T)$

Example

• 30-year maturity bond with 8% coupon, par value of \$1,000 paying 60 semiannual coupon payments of \$40 each

$$Price = \sum_{t=1}^{60} \frac{40}{(1+r)^t} + \frac{1000}{(1+r)^{60}}$$

- If the interest rate is 8% annually (r = 4%), then Price = \$1000
- If the interest rate is 10% annually (r = 5%), then Price = \$810.71

Solving bond price in excel

• See bond-pricing.xlsx

A	В	С			
1	8% coupon, semi-annual bond				
2	maturing Nov 2045	Formula in column B			
3					
4 Settlement date	11/15/15	=DATE(2018,11,15)			
5 Maturity date	11/15/45	=DATE(2045,11,15)			
6 Annual coupon rate	0.08				
7 Yield to maturity	0.1				
8 Redemption value (% of face value)	100				
9 Coupon payments per year	2				
10					
11	= PRICE(settlement date, maturity date, annual coupon rate, yield to				
12 Flat price (% of par)	81.0707	=PRICE(B4,B5,B6,B7,B8,B9)			

Yield to maturity

- Yield to maturity: Interest rate that makes the present value of a bond's payments equal to its price
- Suppose an 8% coupon, 30-year semiannual bond is selling at \$1,276.76
- \bullet The yield to maturity, denoted by r, is the value that satisfy the equation

$$1276.76 = \sum_{t=1}^{60} \frac{40}{(1+r)^t} + \frac{1000}{(1+r)^{60}}$$

Solving yield to maturity in excel

• See bond-pricing.xlsx

A	В	С	D	E	F	G	Н	
	Semiannual coupons		annual coupons					\Box
Settlement date	1/1/15		1/1/15					
Maturity date	1/1/45		1/1/45					
Annual coupon rate	0.08		0.08					
Flat price (% of par)	127.676		127.676					
Redemption value (% of face value)	100		100					
Coupon payments per year	2		1					
0	= YIELD(settlement date, matur	ity date, annual coupon rate, b	ond price, redemption value as pe	rcent of par	value, numb	er of coupon	payments per	r year)
1 Yield to maturity (decimal)	0.0600	=YIELD(B3,B4,B5,B6,B7,B8)	0.0599					
2								

Solving yield to maturity using bisection method

• Solve r that satisfies f(r) = 0 for $r \ge -1$, where f(r) is defined as

$$f(r) = \sum_{t=1}^{60} \frac{40}{(1+r)^t} + \frac{1000}{(1+r)^{60}} - 1276.76$$

- f(r) is monotonically decreasing in r
- A unique solution exists that satisfies f(r) = 0
- Bonus question for HW 4

Solving yield to maturity using bisection method

- Start with a and b where a < b, f(a) > 0, and f(b) < 0
- Then $f(\xi)$ must be zero for some $\xi \in [a, b]$
- If we evaluate f at the midpoint c = (a + b)/2, either
 - f(c) = 0
 - · We are done
 - f(a)f(c) < 0
 - We continue the process with the new bracket [a, c]
 - f(c)f(b) < 0
 - We continue the process with the new bracket [c, b]
- The bracket is halved in the latter two cases

Yield to call

- Callable bonds allow the issuer to repurchase the bond at a specified call price before the maturity date
- Call protection: an initial time during which the bonds are not callable
- A callable bond with par value \$1,000, an 8% coupon rate, and a 30year to maturity, but callable at 110% of par value after 3 years
- Suppose the bond calls in n periods, the yield to call, denoted by r, is the value that satisfies

Bond value =
$$\sum_{t=1}^{n} \frac{Coupon}{(1+r)^t} + \frac{Call\ price}{(1+r)^n}$$

Solving yield to call in excel

A callable bond with par value \$1,000, an 8% coupon rate, and a 30-year to maturity. This bond currently sells at \$1,150 and is called at 110% of par value after 3 years

A	В		
1	Yield to call		
2			
3 Settlement date	1/1/15		
4 Maturity/Call date	1/1/18		
5 Coupon rate	0.08		
6 Final payment	110		
7 Price	115		
8 Coupon payments per year	2		
9			
10	= YIELD(settlement date, matur		
11 Yield	0.056055224		

Question 1

- Question: For a 10-year, 8% coupon semi-annual bonds with call price \$1,100, the yield to maturity is 7%. For simplicity, assume that bonds are called as soon as the present value of remaining payments exceeds the call price. If the market interest rate suddenly falls to 6%, what will be the capital gain the bond?
- Hint:
 - Step 1: calculate the current value of bond with yield to maturity 7%
 - Step 2: calculate the value of bond when interest rate falls to 6%

Question 2

 Question: A 10-year maturity 9% semi-annual coupon bond is callable in five years at a call price of \$1,050. The bond currently sells at a yield to maturity of 8%. What is the yield to call?

- Hint:
 - Step 1: calculate the current value of bond with yield to maturity 8%
 - · Step 2: suppose the bond is called in five years, calculate the yield to call

Realized compound return

• After an investment period T, we can calculate the realized compound return. Suppose the initial value is V_0 , final value is V_T and realized compound return T is

$$V_0(1+r)^T = V_T$$

$$\Rightarrow r = \left(\frac{V_T}{V_0}\right)^{1/T} - 1$$

• Example: Consider, a 2-year bond selling at par value, paying a 10% coupon once a year and YTM is 10%. The coupon payment is reinvested at rate 10%

A: Reinvestment Rate = 10%

•
$$r = \left(\frac{1210}{1000}\right)^{1/2} - 1 = 10\% = \frac{YTM}{1000}$$

Realized compound return vs YTM

- Coupons may not be reinvested to earn the bond's yield to maturity.
 Then realized compound return does not equal to YTM
- Initial value of the investment is $V_0 = 1000$. Final value of the investment is $V_2 = 1208$. The compound rate of return

•
$$r = \left(\frac{1208}{1000}\right)^{1/2} - 1 = 9.91\%$$

Calculation of realized compound return

• Realized compound return can be calculated either after the horizon or using a forecast of future reinvestment rates

