(b)

$$x' = -3\sin x + y$$
$$y' = 4x + \cos y - 1$$

(c)

$$x' = -3\sin x + y$$
$$y' = 4x + 3\cos y - 3$$

All three systems have an equilibrium solution at (0,0). Which two systems have phase portraits with the same "local picture" near (0,0)? Justify your answer.

- **8.** Let us consider an epidemic model for a city. We make the following additional assumptions about our model.
 - The city has a constant birth rate rate of α persons per day. All new born babies are susceptible to the disease.
 - Infected people either recover or die after a certain number of days. If an individual recovers, he or she is immune.

If we let S(t) be the number of susceptible individuals at time t and I(t) be the number of infected individuals at time t, our assumptions give rise to the following system of differential equations,

$$\begin{split} \frac{dS}{dt} &= -\alpha SI + \beta \\ \frac{dI}{dt} &= -\gamma I + \alpha SI. \end{split}$$

The constant α is determined by the probability of an interaction between a susceptible individual and an infected individual, and γ is the rate at which infected individuals are removed from the population. If

$$\frac{dS}{dt} = -\alpha SI + \beta = 0$$
$$\frac{dI}{dt} = -\gamma I + \alpha SI = 0,$$

then both the susceptible and infected populations do not change. This will occur at

$$S_0 = \frac{\gamma}{\alpha}$$
$$I_0 = \frac{\beta}{\gamma}.$$

We are interested in the behavior of solutions near (S_0, I_0) . If solutions approach this equilbrium point, then the disease will become endemic to the population.

9. Consider the predator-prey system modeled by the following equations,

$$\frac{dx}{dt} = ax - \alpha xy = x(a - \alpha y)$$
$$\frac{dy}{dt} = -by + \beta xy = y(-b + \beta x).$$