Linear algebra III Square matrices as quadratic functions

Topics we'll cover

- 1 Square matrices as quadratic functions
- 2 Special cases of square matrices: symmetric and diagonal
- Oeterminant
- 4 Inverse

A special case

Recall: For vector $x \in \mathbb{R}^d$, we have $x^T x = ||x||^2$.

What about $x^T M x$, for arbitrary $d \times d$ matrix M?

What is
$$x^T M x$$
 for $M = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$?

Quadratic functions

Let M be any $d \times d$ (square) matrix.

For $x \in \mathbb{R}^d$, the mapping $x \mapsto x^T M x$ is a **quadratic function** from \mathbb{R}^d to \mathbb{R} :

$$x^T M x = \sum_{i,j=1}^d M_{ij} x_i x_j.$$

What is the quadratic function associated with $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$?

Write the quadratic function $f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2$ using matrices and vectors.

Special cases of square matrices

• Symmetric: $M = M^T$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \\ 3 & 4 & 6 \end{pmatrix}$$

• **Diagonal**: $M = \operatorname{diag}(m_1, m_2, \dots, m_d)$

$$diag(1,4,7) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

Determinant of a square matrix

Determinant of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is |A| = ad - bc.

Example: $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$

Inverse of a square matrix

The **inverse** of a $d \times d$ matrix A is a $d \times d$ matrix B for which $AB = BA = I_d$. Notation: A^{-1} .

Example: if
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix}$$
 then $A^{-1} = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 1/4 \end{pmatrix}$. Check!

Inverse of a square matrix, cont'd

The **inverse** of a $d \times d$ matrix A is a $d \times d$ matrix B for which $AB = BA = I_d$. Notation: A^{-1} .

- Not all square matrices have an inverse
- Square matrix A is invertible if and only if $|A| \neq 0$
- What is the inverse of $A = diag(a_1, ..., a_d)$?