

Pattern Recognition

Course Logistics

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

About Yen-Yu Lin

- Work Experience
 - > Professor, CS, NCTU, August 2019 ~ present
 - > Associate research fellow, CITI, Academia Sinica, 2015 ~ 2019
 - > Assistant research fellow, CITI, Academia Sinica, 2011 ~ 2015
- Research interests
 - Computer Vision (CV):

 Let computers see, recognize, and interpret the world like humans
 - ➤ Machine Learning (ML):

 Provide a statistical way to learn how human visual system works
 - Goal: Design ML methods to facilitate CV applications

Today's agenda

- Course logistics
- Introduction to pattern recognition

Today's agenda

- Course logistics
- Introduction to pattern recognition

Instructor and teaching assistants

- Instructor: Yen-Yu Lin 林彦宇
 - > Email: lin@cs.nctu.edu.tw
 - Office: EC706 (please email me first)
- Teaching assistants:
 - ▶ Jimmy Yang 楊証琨 Email: d08922002@ntu.edu.tw
 - ➤ Chen-Hsuan Tai 戴晨軒 Email: derekt.cs06@nctu.edu.tw
 - ➤ Cheng-Ju Ho 何政儒 Email: ace52751208@gmail.com
- Office hour
 - 2:00pm ~ 3:00pm on Wednesdays at EC218
 - ➤ Will move from EC218 to EC701 later

Textbook

- Pattern Recognition and Machine Learning
 - Christopher Bishop
 - > Springer-Verlag, Berlin, 2006
 - > Free online at

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

- Deep learning (optional)
 - > I. Goodfellow, Y. Bengio, and A. Courville
 - ➤ MIT Press, 2016
 - Free online at https://www.deeplearningbook.org/

Grading policy (default)

- Four homework assignments: 60% (= 15% x 4)
- For each assignment
 - You are required to implement pattern recognition algorithms and complete some short answer questions
 - > Late policy: 20% off per late day
- Final exam on June 1: 40%

Grading policy in case where final exam is not allowed

- Five homework assignments: 100% (= 20% x 5)
- For each assignment
 - You are required to implement pattern recognition algorithms and complete some short answer questions
 - Late policy: 20% off per late day
- No final exam

Pre-requisite

- Linear algebra, probability, calculus, and programming
- Python
 - We strongly encourage students who are not familiar with Python to complete the following tutorial first
 - http://cs231n.github.io/python-numpy-tutorial/
- One deep learning framework, Pytorch or Keras
 - Pytorch: https://pytorch.org/tutorials/
 - Keras: https://elitedatascience.com/keras-tutorial-deep-learning-in-python

Syllabus

1	2/16	University Anniversary Celebrations: No lecture
2	2/23	Introduction to Pattern Recognition
3	3/2	Linear Model for Regression
4	3/9 HW1	Linear Model for Classification I
5	3/16	Linear Model for Classification II
6	3/23 HW2	Neural Networks
7	3/30	Dimensionality Reduction
8	4/6	Holiday/Cross-university Activities: No lecture
9	4/13	Ensemble Model I
10	4/20 HW3	Ensemble Model II
11	4/27	Kernel Method I
12	5/4 HW4	Kernel Method II
13	5/11	Clustering
14	5/18	Deep Neural Networks (DNN) and Convolutional Neural Networks (CNN)
15	5/25 HW5?	Attention and Transformers
1 6	6/1	Final Exam

10

Homework 1: Linear regression (last year)

Find the value of β0 and β1

Gradient descent

- x-axis and y-axis represent the value of weights
- z-axis represents the loss of the corresponding weights
- Targets: Find the weights that minimize the loss

Gradient descent pseudo code

Algorithm

- 1. Initialize weights randomly $\sim N(0, \sigma^2)$
- Loop until convergence:
 - i. Pick batch of B data points
 - ii. Compute gradient. $\frac{\partial J(\Theta)}{\partial \Theta} =$

$$\frac{1}{B}\sum_{k=1}^{B} \frac{\partial J_k(\Theta)}{\partial \Theta}$$

- iii. Update weights $\theta < \theta \eta \frac{\partial J(\Theta)}{\partial \Theta}$
- Return weights

Homework 2: Fisher's linear discriminant (last year)

- FLD (or LDA) is a "supervised" method and computes the directions representing the axes that maximize the separation between multiple classes.
- FLD seeks the projection w that gives a large distance between the projected data means while giving a small variance within each class

LDA:

maximizing the component axes for class-separation

Eigenvalue problem

Homework 3: Decision tree algorithm (last year)

- How to find the feature for making decisions? What's the value of feature?
- Find the features to separate data that the class at the resulting nodes are as pure as possible

Ensemble method of decision trees: Bagging

 Bagging (Bootstrap aggregating): Fit many large trees to bootstrap-resampled versions of the training data, and classify by majority vote

Another ensemble method: Random Forest

- Bootstraped dataset
- Each tree in the forest may grow with different data and features
- Which features or data to be used is randomly sampled to grow the tree

Homework 4: Support vector machines (last year)

 Support Vector Classifier tries to find the best hyperplane to separate the different classes by maximizing the distance between sample points and the hyperplane

Hyperparameter searching

- Suppose we want to find the best values of two hyperparameters for an RBF kernel SVM namely C and gamma. In RBF kernel, $\gamma = \frac{1}{2\sigma^2}$
- Given many hyperparameter combinations to be considered!

K-fold Cross-validation

 We split the dataset into K parts: one part is used for validation, and the remaining K-1 parts are merged into a training subset. This process repeats K times, with each part used exactly once as the validation data

Classroom and Webex link

- This course is given in EC114
- Once we cannot have physical lectures in the classroom, we use Webex for online lectures. The link is given below:

https://nycu.webex.com/meet/yylincs

How to choose and take this course?

- Please use the course management system
 - Max number: 100 students
- I do not plan to add additional students
 - > The size of EC114
 - If you have some reason why you must take this course, send me an email with the reason
- Be a guest student?
 - > Yes. Send me an email with your student ID. I will add you to the student list on E3

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nctu.edu.tw

URL: https://www.cs.nctu.edu.tw/members/detail/lin

