Project Title: Predicting Default Risk of Lending Club Loans

Objective:

Our main objective for this project is to implement some of the classification algorithms in order to build models to classify a good or bad loan with help of selected variables.

Dataset:

The dataset includes detailed information for every loan issued by Lending Club for year 2015.

The dataset from Lending Club contains 74 features that will be employed to train our model for prediction. Not all of the fields are intuitively useful for our learning models, such as the loan ID and the month the last payment was received, and thus we removed such fields.

We also removed fields for which greater than 80% of the values were missing.

Number of Features: 74 Number of records: 403697

Questions:

1) Which features contributes the most?

Feature Selection

1) Lasso Regression 2) Principle Component Analysis 3) Recursive Feature Elimination 4) Random Forest for Feature Ranking

Models

1) Random Forest 2) Logistic Regression 3) Support Vector Machine 4) K Nearest Neighbors(KNN)

```
In [49]: import pandas as pd
import numpy as np

In [50]: loans 2015 = pd.read csv('loan2015new.csv', low memory=False)
```

```
In [51]: loans_2015.shape
```

Out[51]: (403697, 74)

```
In [52]: loans 2015.columns
Out[52]: Index(['id', 'member_id', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv',
                 'term', 'int_rate', 'installment', 'grade', 'sub_grade', 'emp_title',
                 'emp_length', 'home_ownership', 'annual_inc', 'verification status'.
                'issue_d', 'pymnt_plan', 'url', 'desc', 'purpose', 'title', 'zip_code',
                'addr state', 'dti', 'deling 2yrs', 'earliest cr line',
                 'inq_last_6mths', 'mths_since_last_delinq', 'mths_since_last_record',
                 'open_acc', 'pub_rec', 'revol_bal', 'revol_util', 'total_acc',
                'initial_list_status', 'out_prncp', 'out_prncp_inv', 'total_pymnt',
                'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int',
                'total_rec_late_fee', 'recoveries', 'collection_recovery_fee',
                 'last_pymnt_d', 'last_pymnt_amnt', 'next_pymnt_d', 'last_credit_pull_d',
                 'collections_12_mths_ex_med', 'mths_since_last_major_derog',
                 'policy_code', 'application_type', 'annual_inc_joint', 'dti_joint',
                 'verification_status_joint', 'acc_now_delinq', 'tot_coll_amt',
                'tot_cur_bal', 'open_acc_6m', 'open_il_6m', 'open_il_12m',
                'open_il_24m', 'mths_since_rcnt_il', 'total_bal_il', 'il_util',
                 'open_rv_12m', 'open_rv_24m', 'max_bal_bc', 'all_util',
                 'total_rev_hi_lim', 'inq_fi', 'total_cu_tl', 'inq_last_12m',
                 'loan status'],
               dtype='object')
In [53]:
         eighty count = len(loans 2015)*4 / 5
         loans 2015 = loans 2015.dropna(thresh=eighty count,axis=1)
In [54]:
         loans 2015.shape
In [55]:
Out[55]: (403697, 53)
In [56]: data dictionary = pd.read csv('LCDataDictionary.csv')
In [57]:
         data dictionary.head()
         data dictionary = data dictionary.rename(columns={'LoanStatNew': 'name', 'Descript'
In [58]: loan df = pd.DataFrame(data=loans 2015)
In [59]:
         loans df dtypes = pd.DataFrame(loan df.dtypes,columns=['dtypes'])
         loans df dtypes = loans df dtypes.reset index()
         loans df dtypes['name'] = loans df dtypes['index']
         loans_df_dtypes = loans_df_dtypes[['name','dtypes']]
         loans df dtypes['first value'] = loan df.loc[0].values
         preview = loans df dtypes.merge(data dictionary, on='name',how='left')
```

In [60]: preview

Out[60]:

	name	dtypes	first value	descript
0	id	int64	68587652	A unique assigned ID for loan list
1	member_id	int64	73477494	A unique assigned ld for borrower meml
2	loan_amnt	int64	25000	The listed amoun the loan applied by
3	funded_amnt	int64	25000	The total amc committed to t loan at th
4	funded_amnt_inv	int64	25000	The total amc committed investors for t
5	term	object	36 months	The numbe payments on loan. Values ar
6	int_rate	float64	5.32	Interest Rate on
7	installment	float64	752.87	The mon payment owec the borrower if t
8	grade	object	Α	LC assigned և gr
9	sub_grade	object	A1	LC assigned և subgr
10	emp_title	object	Director	The job supplied by Borrower when a
11	emp_length	object	1 year	Employment len in years. Poss values a
12	home_ownership	object	MORTGAGE	The hc ownership sta provided by bo
13	annual_inc	float64	150000	The self-repor annual incc provided by t
14	verification_status	object	Not Verified	٨
15	issue_d	object	15-Dec	The month wh
16	pymnt_plan	object	n	Indicates payment plan been put in

	name	dtypes	first value	descript
17	url	object	https://www.lendingclub.com/browse/loanDetail	URL for the page with lis da
18	purpose	object	credit_card	A category provious by the borrower the
19	title	object	Credit card refinancing	The loan provided by borro
20	zip_code	object	054xx	The first 3 numb of the zip o provided
21	addr_state	object	VT	The state provious by the borrowe the loa
22	dti	float64	9.54	A ratio calcula using the borrow tota
23	delinq_2yrs	int64	0	The number of : days past-(incidences c
24	earliest_cr_line	object	Feb-96	The month borrower's earl reported cr
25	inq_last_6mths	int64	0	The numbe inquiries in pa months (ex
26	open_acc	int64	7	The number of o _l credit lines in borrow
27	pub_rec	int64	0	Numbe derogatory pu recc
28	revol_bal	int64	19339	Total credit revolv
29	revol_util	float64	42.5	Revolving utilization rate the amoul
30	total_acc	int64	18	The total numbe credit lines curre il
31	initial_list_status	object	w	The initial list status of the lo
32	out_prncp	float64	24358	Remair outstanc principal for t amc
33	out_prncp_inv	float64	24358	Remair outstanc principal for por

	name	dtypes	first value	descript
34	total_pymnt	float64	682.67	Payments received to date for the amount fund
35	total_pymnt_inv	float64	682.67	Payments received to date for portion total
36	total_rec_prncp	float64	642.03	Principal received
37	total_rec_int	float64	40.64	Interest received
38	total_rec_late_fee	float64	0	Late fees receitod
39	recoveries	float64	0	post charge gross recov
40	collection_recovery_fee	float64	0	post charge collection
41	last_pymnt_d	object	16-Jan	Last month paym was recei
42	last_pymnt_amnt	float64	701.14	Last total paym amount recei
43	next_pymnt_d	object	16-Feb	Next schedu payment d
44	last_credit_pull_d	object	16-Jan	The most rec month LC pu credit for t
45	collections_12_mths_ex_med	int64	0	Numbe collections in months excluc
46	policy_code	int64	1	publicly availa policy_code=1\nr produc
47	application_type	object	INDIVIDUAL	Indicates whet the loan is individual a
48	acc_now_delinq	int64	0	The numbe accounts on whe the borrower
49	tot_coll_amt	int64	0	Total collect amounts ever ov
50	tot_cur_bal	int64	430856	Total curi balance o accou
51	total_rev_hi_lim	int64	45500	V
52	loan_status	object	Current	Current status of

In [61]: preview[:19]

Out[61]:

	name	dtypes	first value	description
0	id	int64	68587652	A unique LC assigned ID for the loan listing.
1	member_id	int64	73477494	A unique LC assigned Id for the borrower member.
2	loan_amnt	int64	25000	The listed amount of the loan applied for by t
3	funded_amnt	int64	25000	The total amount committed to that loan at tha
4	funded_amnt_inv	int64	25000	The total amount committed by investors for th
5	term	object	36 months	The number of payments on the loan. Values are
6	int_rate	float64	5.32	Interest Rate on the loan
7	installment	float64	752.87	The monthly payment owed by the borrower if th
8	grade	object	Α	LC assigned loan grade
9	sub_grade	object	A1	LC assigned loan subgrade
10	emp_title	object	Director	The job title supplied by the Borrower when ap
11	emp_length	object	1 year	Employment length in years. Possible values ar
12	home_ownership	object	MORTGAGE	The home ownership status provided by the borr
13	annual_inc	float64	150000	The self-reported annual income provided by th
14	verification_status	object	Not Verified	NaN
15	issue_d	object	15-Dec	The month which the loan was funded
16	pymnt_plan	object	n	Indicates if a payment plan has been put in pl
17	url	object	https://www.lendingclub.com/browse/loanDetail	URL for the LC page with listing data.
18	purpose	object	credit_card	A category provided by the borrower for the lo

```
In [62]: drop_list = ['id','member_id','funded_amnt','funded_amnt_inv',
                       'int_rate', 'sub_grade', 'emp_title', 'issue_d', 'url']
         loan_df = loan_df.drop(drop_list,axis=1)
```

In [63]: loan_df.shape

Out[63]: (403697, 44)

In [64]: preview[19:38]

Out[64]:

	name	dtypes	first value	description
19	title	object	Credit card refinancing	The loan title provided by the borrower
20	zip_code	object	054xx	The first 3 numbers of the zip code provided b
21	addr_state	object	VT	The state provided by the borrower in the loan
22	dti	float64	9.54	A ratio calculated using the borrower's total
23	delinq_2yrs	int64	0	The number of 30+ days past-due incidences of
24	earliest_cr_line	object	Feb-96	The month the borrower's earliest reported cre
25	inq_last_6mths	int64	0	The number of inquiries in past 6 months (excl
26	open_acc	int64	7	The number of open credit lines in the borrowe
27	pub_rec	int64	0	Number of derogatory public records
28	revol_bal	int64	19339	Total credit revolving balance
29	revol_util	float64	42.5	Revolving line utilization rate, or the amount
30	total_acc	int64	18	The total number of credit lines currently in
31	initial_list_status	object	w	The initial listing status of the loan. Possib
32	out_prncp	float64	24358	Remaining outstanding principal for total amou
33	out_prncp_inv	float64	24358	Remaining outstanding principal for portion of
34	total_pymnt	float64	682.67	Payments received to date for total amount funded
35	total_pymnt_inv	float64	682.67	Payments received to date for portion of total
36	total_rec_prncp	float64	642.03	Principal received to date
37	total_rec_int	float64	40.64	Interest received to date

In [66]: loan_df.shape

Out[66]: (403697, 39)

In [67]: preview[38:]

Out[67]:

	name	dtypes	first value	description
38	total_rec_late_fee	float64	0	Late fees received to date
39	recoveries	float64	0	post charge off gross recovery
40	collection_recovery_fee	float64	0	post charge off collection fee
41	last_pymnt_d	object	16-Jan	Last month payment was received
42	last_pymnt_amnt	float64	701.14	Last total payment amount received
43	next_pymnt_d	object	16-Feb	Next scheduled payment date
44	last_credit_pull_d	object	16-Jan	The most recent month LC pulled credit for thi
45	collections_12_mths_ex_med	int64	0	Number of collections in 12 months excluding m
46	policy_code	int64	1	publicly available policy_code=1\nnew products
47	application_type	object	INDIVIDUAL	Indicates whether the loan is an individual ap
48	acc_now_delinq	int64	0	The number of accounts on which the borrower i
49	tot_coll_amt	int64	0	Total collection amounts ever owed
50	tot_cur_bal	int64	430856	Total current balance of all accounts
51	total_rev_hi_lim	int64	45500	NaN
52	loan_status	object	Current	Current status of the loan

In [69]: loan_df.shape

Out[69]: (403697, 33)

In [70]: loan_df["loan_status"].value_counts()

Out[70]: Current 377553 Fully Paid 22984 Charged Off 2773 Default 387

Name: loan_status, dtype: int64

```
In [73]: loan_df = loan_df.loc[:,loan_df.apply(pd.Series.nunique) != 1]
```

```
In [74]: for col in loan df.columns:
             if (len(loan df[col].unique()) < 4):</pre>
                  print(loan_df[col].value_counts())
                  print()
          36 months
                        18102
          60 months
                        7655
         Name: term, dtype: int64
         MORTGAGE
                      12824
         RENT
                      10026
                       2907
         OWN
         Name: home ownership, dtype: int64
         Source Verified
                             10678
         Verified
                              8132
         Not Verified
                              6947
         Name: verification_status, dtype: int64
              13615
         W
         f
              12142
         Name: initial list status, dtype: int64
         Series([], Name: next pymnt d, dtype: int64)
         INDIVIDUAL
                        25756
         JOINT
         Name: application_type, dtype: int64
         0
              25612
         1
                135
                  10
         Name: acc_now_delinq, dtype: int64
         1
              22984
         0
                2773
         Name: loan_status, dtype: int64
In [75]:
         print(loan df.shape[1])
         loan_df = loan_df.drop('application_type', axis=1)
         print("We've been able to reduced the features to => {}".format(loan df.shape[1])
         31
         We've been able to reduced the features to => 30
In [76]: loan df = loan df[(loan df["initial list status"] == "w") |
                                      (loan_df["initial_list_status"] == "f")]
         mapping dictionary = {"initial_list_status":{ "w": 1, "f": 0}}
         loan df = loan df.replace(mapping dictionary)
In [77]: loan df.to csv("filtered loans 2015.csv",index=False)
```

Handle missing values and categorical features before feeding the data into a machine learning algorithm

In [78]: filtered_loans = pd.read_csv('filtered_loans_2015.csv')
 print(filtered_loans.shape)
 filtered_loans.head()

(25757, 30)

Out[78]:

	loan_amnt	term	installment	grade	emp_length	home_ownership	annual_inc	verification_sta
0	19800	36 months	666.00	С	7 years	MORTGAGE	78924.0	Not Ver
1	35000	36 months	1177.27	С	10+ years	RENT	95000.0	Source Ver
2	20000	36 months	672.73	С	6 years	MORTGAGE	56000.0	Not Ver
3	28000	60 months	635.37	С	5 years	MORTGAGE	96000.0	Not Ver
4	23100	60 months	605.35	E	10+ years	MORTGAGE	55000.0	Source Ver

5 rows × 30 columns

```
In [79]: null_counts = filtered_loans.isnull().sum()
print("Number of null values in each column:\n{}".format(null_counts))
```

```
Number of null values in each column:
loan amnt
                                     0
term
                                     0
installment
grade
                                     0
                                     0
emp_length
home ownership
                                     0
annual inc
                                     0
verification_status
                                     0
                                     0
purpose
title
                                     0
addr_state
                                     0
                                     0
dti
                                     0
deling 2yrs
earliest_cr_line
                                     0
                                     0
ing last 6mths
open_acc
                                     0
pub_rec
                                     0
                                     0
revol bal
revol util
                                    13
total acc
                                     0
initial list status
                                     0
last_pymnt_amnt
                                     0
next_pymnt_d
                                25757
last credit pull d
                                     0
                                     0
collections 12 mths ex med
                                     0
acc now deling
tot_coll_amt
                                     0
tot cur bal
                                     0
total_rev_hi_lim
                                     0
                                     0
loan_status
dtype: int64
```

Remove entire column next_pymnt_d column as data is missing for entire filtered loans dataset. Drop the missing rows for revol_util

```
In [80]: filtered_loans = filtered_loans.drop("next_pymnt_d",axis=1)
    filtered_loans = filtered_loans.dropna()

In [81]: filtered_loans.shape
Out[81]: (25744, 29)
```

Convert categorical values to numerical

In [82]: print("Data types and their frequency\n{}".format(filtered_loans.dtypes.value_cou

Data types and their frequency

int64 14
object 10
float64 5
dtype: int64

In [83]: object_columns_df = filtered_loans.select_dtypes(include=['object'])
 print(object_columns_df.iloc[0])

term 36 months grade emp_length 7 years home ownership MORTGAGE verification status Not Verified purpose debt_consolidation title Debt consolidation addr_state MD 5-0ct earliest_cr_line last_credit_pull_d 16-Jan

Name: 0, dtype: object

```
cols = ['home_ownership', 'grade','verification_status', 'emp_length', 'term', 'a
for name in cols:
    print(name,':')
    print(object columns df[name].value counts(),'\n')
home_ownership :
MORTGAGE
            12816
            10022
RENT
OWN
             2906
Name: home_ownership, dtype: int64
grade :
C
     7576
В
     5945
D
     4663
     3314
Α
Ε
     2906
F
     1048
G
      292
Name: grade, dtype: int64
verification status :
Source Verified
                    10671
Verified
                     8128
Not Verified
                     6945
Name: verification_status, dtype: int64
emp_length :
10+ years
             8850
2 years
             2321
< 1 year
             2095
3 years
             1952
1 year
             1694
4 years
             1504
5 years
             1460
8 years
             1311
n/a
             1224
7 years
             1199
6 years
             1092
9 years
             1042
Name: emp length, dtype: int64
term :
 36 months
              18092
60 months
               7652
Name: term, dtype: int64
addr state :
CA
      4153
TΧ
      2068
NY
      1862
FL
      1772
       890
ΙL
NJ
       842
GΑ
       824
```

PΑ

808

```
800
ОН
        795
VA
NC
        763
ΜI
        715
ΑZ
        666
CO
        659
WA
        623
MD
        620
        526
MΑ
MN
        512
NV
        430
IN
        423
МО
        367
OR
        362
ΤN
        362
WI
        347
ΑL
        327
LA
        312
\mathsf{CT}
        289
SC
        272
UT
        247
OK
        223
ΚY
        223
KS
        200
ΗI
        172
AR
        164
        151
NM
MS
        139
RΙ
        119
WV
        119
        105
\mathsf{NH}
DE
         87
MT
         73
DC
         66
WY
         60
         57
ΑK
\mathsf{SD}
          56
VT
         46
NE
          31
ME
           9
ND
           8
```

Name: addr_state, dtype: int64

```
In [85]: for name in ['purpose','title']:
    print("Unique Values in column: {}\n".format(name))
    print(filtered_loans[name].value_counts(),'\n')
```

Unique Values in column: purpose

debt_consolidation	16080
credit_card	4526
home_improvement	1725
other	1442
major_purchase	545
medical	275
small_business	260
car	255
moving	231
house	203
vacation	185
renewable_energy	16
wedding	1
Name: purpose, dtype:	int64

Unique Values in column: title

Debt consolidation	16072
Credit card refinancing	4535
Home improvement	1726
Other	1442
Major purchase	543
Medical expenses	275
Business	259
Car financing	255
Moving and relocation	231
Home buying	204
Vacation	185
Green loan	16
Credit Card/Auto Repair	1
Name: title, dtype: int64	

The purpose and title columns do contain overlapping information, but the purpose column contains fewer discrete values and is cleaner, so we'll keep it and drop title. The addr_state column, however, contains too many unique values, so it's better to drop this

```
In [86]: drop_cols = ['last_credit_pull_d','addr_state','title','earliest_cr_line','purpose
    filtered_loans = filtered_loans.drop(drop_cols,axis=1)
```

Convert Ordinal values to numerical values

In [87]: filtered_loans['grade'] = filtered_loans['grade'].map({'A':7,'B':6,'C':5,'D':4,'E
 filtered_loans["home_ownership"] = filtered_loans["home_ownership"].map({"MORTGAG
 filtered_loans["emp_length"] = filtered_loans["emp_length"].replace({'years':'','
 filtered_loans["emp_length"] = filtered_loans["emp_length"].apply(lambda x:int(x)
 filtered_loans['verification_status'] = filtered_loans['verification_status'].map
 filtered_loans["term"] = filtered_loans["term"].map({" 36 months":0," 60 months":
 print("Current shape of dataset :",filtered_loans.shape)
 filtered_loans.head()

Current shape of dataset : (25744, 24)

Out[87]:

	loan_amnt	term	installment	grade	emp_length	home_ownership	annual_inc	verification_statu
0	19800	0	666.00	5	7	3	78924.0	
1	35000	0	1177.27	5	10	2	95000.0	
2	20000	0	672.73	5	6	3	56000.0	
3	28000	1	635.37	5	5	3	96000.0	
4	23100	1	605.35	3	10	3	55000.0	

5 rows × 24 columns

Convert Nominal values to numeric values

```
In [88]: filtered_loans.to_csv("cleaned_loans_2015.csv",index=False)
In [89]: filtered_loans.shape
```

Out[89]: (25744, 24)

```
In [90]: X = filtered_loans.iloc[:,0:22]
y = filtered_loans.iloc[:,-1]
```

In [91]: X.head()

Out[91]:

	loan_amnt	term	installment	grade	emp_length	home_ownership	annual_inc	verification_statu
0	19800	0	666.00	5	7	3	78924.0	_
1	35000	0	1177.27	5	10	2	95000.0	
2	20000	0	672.73	5	6	3	56000.0	
3	28000	1	635.37	5	5	3	96000.0	
4	23100	1	605.35	3	10	3	55000.0	

5 rows × 22 columns

```
In [92]: y.head()
```

Out[92]: 0 1 1 1 2 1 3 1 4 1

Name: loan_status, dtype: int64

```
In [93]: from sklearn import preprocessing,metrics
    from IPython.core.display import HTML

filtered_loans.fillna(filtered_loans.mean(),inplace = True)
HTML(filtered_loans.tail().to_html())
print("Current shape of dataset :",filtered_loans.shape)
```

Current shape of dataset : (25744, 24)

In [166]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.rcParams['figure.figsize'] = (12,8)

fig, axs = plt.subplots(1,2,figsize=(14,7))
sns.countplot(x='loan_status',data=loan_df,ax=axs[0])
axs[0].set_title("Frequency of each Loan Status")
loan_df.loan_status.value_counts().plot(x=None,y=None, kind='pie', ax=axs[1],auto axs[1].set_title("Percentage of each Loan status")
plt.show()

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s

(prop.get_family(), self.defaultFamily[fontext]))

In [94]: scl = preprocessing.StandardScaler() #instance of preprocessing
 fields = filtered_loans.columns.values[:-1]
 data_clean = pd.DataFrame(scl.fit_transform(filtered_loans[fields]), columns = fidata_clean['loan_status'] = filtered_loans['loan_status']
 data_clean['loan_status'].value_counts()

Out[94]: 1.0 22964 0.0 2767

Name: loan_status, dtype: int64

Current shape of dataset : (43944, 24)

Out[95]: (20980, 24)

In [98]: data_clean.corr()

Out[98]:

	loan_amnt	term	installment	grade	emp_length	home_owne
loan_amnt	1.000000	0.455861	0.952071	-0.225756	0.099306	0.12
term	0.455861	1.000000	0.217305	-0.476183	0.064707	0.06
installment	0.952071	0.217305	1.000000	-0.217058	0.084692	0.10
grade	-0.225756	-0.476183	-0.217058	1.000000	0.019103	0.06
emp_length	0.099306	0.064707	0.084692	0.019103	1.000000	0.13
home_ownership	0.129773	0.068420	0.109254	0.063040	0.131661	1.00
annual_inc	0.317929	0.073557	0.306493	0.067256	0.087671	0.11
verification_status	-0.216073	-0.176614	-0.196829	0.144564	-0.015045	0.04
dti	-0.017879	0.063224	-0.015202	-0.183153	0.013582	-0.04
delinq_2yrs	-0.011711	-0.013231	-0.005467	-0.038706	0.017797	0.02
inq_last_6mths	-0.020390	-0.001253	0.011767	-0.215075	-0.001954	-0.00
open_acc	0.175538	0.080293	0.163494	-0.002158	0.035108	0.07
pub_rec	-0.123417	-0.071160	-0.102815	-0.047983	-0.004923	-0.00
revol_bal	0.316639	0.098604	0.304522	0.008651	0.072913	0.10
revol_util	0.117621	0.095156	0.120929	-0.194006	0.052414	0.05
total_acc	0.184690	0.090346	0.163928	0.042440	0.110806	0.12
initial_list_status	0.082138	0.166243	0.011267	0.165295	0.035411	0.05
last_pymnt_amnt	0.725848	0.325575	0.679022	-0.104151	0.101745	0.13
collections_12_mths_ex_med	0.000159	0.003060	0.003543	-0.026857	-0.003952	-0.00
acc_now_delinq	0.024120	0.016880	0.023888	-0.037193	0.005935	-0.01
tot_coll_amt	-0.026682	-0.001487	-0.025481	-0.006535	0.018920	0.00
tot_cur_bal	0.332941	0.126096	0.305926	0.052522	0.108377	0.39
total_rev_hi_lim	0.352104	0.088110	0.327118	0.138139	0.070930	0.10
loan_status	0.010869	-0.010601	0.012866	0.021460	0.006428	-0.00

24 rows × 24 columns

```
In [99]:
         import numpy as np
         from sklearn.svm import SVC
         from sklearn.model selection import learning curve
         from sklearn.model selection import ShuffleSplit
         from sklearn import linear model,svm
         from sklearn.metrics import average precision score
         from sklearn.metrics import precision recall curve
         from sklearn.metrics import accuracy score
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model selection import train test split
         def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                                  n jobs=1, train sizes=np.linspace(.1, 1.0, 5)):
             plt.figure()
             plt.title(title)
             if ylim is not None:
                 plt.ylim(*ylim)
             plt.xlabel("Training examples")
             plt.vlabel("Score")
             train sizes, train scores, test scores = learning curve(estimator, X, y, cv=c
             train scores mean = np.mean(train scores, axis=1)
             train scores std = np.std(train scores, axis=1)
             test scores mean = np.mean(test scores, axis=1)
             test scores std = np.std(test scores, axis=1)
             plt.grid()
             plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                              train scores mean + train scores std, alpha=0.1,
                               color="r")
             plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                              test scores mean + test scores std, alpha=0.1, color="g")
             plt.plot(train sizes, train scores mean, 'o-', color="r",
                       label="Training score")
             plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                       label="Cross-validation score")
             plt.legend(loc="best")
             return plt
         X, y = data clean.iloc[:,:-1].values, data clean.iloc[:,-1].values
         title = "Learning Curves (Logistic Regression)"
         # Cross validation with 100 iterations to get smoother mean test and train
         # score curves, each time with 20% data randomly selected as a validation set.
         cv = ShuffleSplit(n splits=100, test size=0.2, random state=0)
         estimator = linear_model.LogisticRegression()
         plot_learning_curve(estimator, title, X, y, ylim=(0.15, 0.90), cv=cv, n_jobs=4)
         plt.show()
```



```
import seaborn as sns
In [100]:
          sns.set('talk', 'whitegrid', 'dark', font_scale=1, font='Ricty',rc={"lines.linewi"
          def plotAUC(truth, pred, lab):
              fpr, tpr, _ = metrics.roc_curve(truth,pred)
              roc_auc = metrics.auc(fpr, tpr)
              1w = 2
              c = (np.random.rand(), np.random.rand())
              plt.plot(fpr, tpr, color= c,lw=lw, label= lab +'(AUC = %0.2f)' % roc_auc)
              plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
              plt.xlim([0.0, 1.0])
              plt.ylim([0.0, 1.0])
              plt.xlabel('False Positive Rate')
              plt.ylabel('True Positive Rate')
              plt.title('ROC curve') #Receiver Operating Characteristic
              plt.legend(loc="lower right")
```

```
In [101]:
          import itertools
          from sklearn.metrics import confusion matrix
          def plot confusion matrix(model, normalize=False): # This function prints and plo
              cm = confusion matrix(y test, model, labels=[0, 1])
              classes=["Will Pay", "Will Default"]
              cmap = plt.cm.Blues
              title = "Confusion Matrix"
              if normalize:
                   cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                   cm = np.around(cm, decimals=3)
              plt.imshow(cm, interpolation='nearest', cmap=cmap)
              plt.title(title)
              plt.colorbar()
              tick marks = np.arange(len(classes))
              plt.xticks(tick marks, classes, rotation=45)
              plt.yticks(tick_marks, classes)
              thresh = cm.max() / 2.
              for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                   plt.text(j, i, cm[i, j],
                           horizontalalignment="center",
                            color="white" if cm[i, j] > thresh else "black")
              plt.tight layout()
              plt.ylabel('True label')
              plt.xlabel('Predicted label')
In [102]: X_train, X_test, y_train, y_test = train_test_split(data_clean.iloc[:,:-1], data_
          bs train, bs test = train test split(data clean, test size = 0.2, random state=42
In [103]:
          #PCA (Principal Component Analysis)
          from sklearn.decomposition import PCA
          pca = PCA(n components=10, whiten=True)
          X train pca = pca.fit transform(X train)
          X_test_pca = pca.transform(X_test)
          explained variance = pca.explained variance ratio
```

print('Expected Variance is '+ str(explained variance))

0.05023233 0.04913359 0.04449675 0.04376371]

Expected Variance is [0.17256429 0.08791379 0.07494317 0.06342185 0.057395

```
http://localhost:8891/notebooks/PROJECT_BAD_LOANS-%2B3-3-2018-Correlation%2BTesting-Copy6.ipynb#
```

0.05214995

```
In [104]: dataViz = data_clean
    sns.set_context(context='notebook')
    fig, ax = plt.subplots(figsize=(10,10))
    corr = dataViz.corr()

# Generate a mask for the upper triangle
    mask = np.zeros_like(corr, dtype=np.bool)
    mask[np.tril_indices_from(mask)] = True

# Generate a custom diverging colormap
    cmap = sns.diverging_palette(220, 10, as_cmap=True)

sns.heatmap(corr, cmap=cmap,linewidths=1, vmin=-1, vmax=1, square=True, cbar=True)
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s
 (prop.get_family(), self.defaultFamily[fontext]))

Out[104]: <matplotlib.axes._subplots.AxesSubplot at 0x2a91df4c518>


```
In [105]: from sklearn.datasets import make classification
          from sklearn.ensemble import ExtraTreesClassifier
          # Build a classification task using 3 informative features
          X, y = make classification(n samples=6767,
                                      n features=19,
                                      n informative=10,
                                      n redundant=0,
                                      n repeated=0,
                                      n_classes=2,
                                      random state=0,
                                      shuffle=False)
          # Build a forest and compute the feature importances
          forest = ExtraTreesClassifier(n estimators=250,
                                         random_state=0)
          forest.fit(X, y)
          importances = forest.feature importances
          std = np.std([tree.feature importances for tree in forest.estimators ],
                        axis=0)
          indices = np.argsort(importances)[::-1]
          # Print the feature ranking
          print("Feature ranking:")
          for f in range(X.shape[1]):
              print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
          # Plot the feature importances of the forest
          plt.figure()
          plt.title("Feature importances")
          plt.bar(range(X.shape[1]), importances[indices],
                 color="r", yerr=std[indices], align="center")
          plt.xticks(range(X.shape[1]), indices)
          plt.xlim([-1, X.shape[1]])
          plt.show()
```

Feature ranking:

```
    feature 4 (0.099906)
    feature 7 (0.098578)
    feature 0 (0.095823)
    feature 6 (0.077986)
    feature 5 (0.066192)
    feature 2 (0.065415)
    feature 3 (0.063437)
```

1. feature 8 (0.134019)

- 9. feature 9 (0.059985) 10. feature 1 (0.044657)
- 11. feature 11 (0.022180)
- 12. feature 10 (0.021810)
- 13. feature 16 (0.021685)
- 14. feature 12 (0.021542)
- 15. feature 17 (0.021533)
- 16. feature 14 (0.021354)

- 17. feature 18 (0.021346)
- 18. feature 13 (0.021307)
- 19. feature 15 (0.021246)

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s

(prop.get_family(), self.defaultFamily[fontext]))


```
In [132]: plt.figure(figsize=(10,5))
    plt.scatter(filtered_loans['annual_inc'], filtered_loans['loan_amnt'])
    plt.title("Plotting Annual Income against Loan Amount")
    plt.ylabel('Loan Amount')
    plt.xlabel('Annual Income')
    plt.show()

data_clean.annual_inc.hist(figsize=(10,5))
    plt.ylabel('Number of Loans')
    plt.xlabel('Annual Income')
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s

Out[132]: Text(0.5,0,'Annual Income')

Lets take a look at the co-efficient of grade a loan. For every additional increase in the grade "G" to "F" or in our case "1" to "2" the chance of the loan being paid off increases by 0.04 and it shows increase in emp_length by factor of 0.012

```
In [150]: from sklearn.model_selection import GridSearchCV
def cross_validation_best_parameters(model, param_grid):
    grid = GridSearchCV(model, param_grid,cv=10, scoring='accuracy')
    X=data_clean.iloc[:,:-1].values
    y=data_clean.iloc[:,-1].values
    grid.fit(X,y)
    mean_scores = [result.mean_validation_score for result in grid.grid_scores_]
    return mean_scores,grid.best_score_,grid.best_estimator_
logreg = linear_model.LogisticRegression(random_state=0)
    c=[0.001, 0.01, 0.1, 1, 10, 100, 1000]
    param_grid = dict(C=c)
    mean_scores,Best_Accuracy, Best_classifier = cross_validation_best_parameters(log print(Best_classifier)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection_search.py:7
61: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.
18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20
 DeprecationWarning)

```
In [149]: clf_LR = linear_model.LogisticRegression(C=0.01)
    clf_LR.fit(X_train,y_train)
    LR_Predict = clf_LR.predict_proba(X_test)[:,1]
    LR_Predict_bin = clf_LR.predict(X_test)
    LR_Accuracy = accuracy_score(y_test,LR_Predict.round())
    print("Logistic regression accuracy is ",LR_Accuracy)
    plt.figure(figsize=(6,6))
    plot_confusion_matrix(LR_Predict_bin, normalize=True)
    plt.show()
```

Logistic regression accuracy is 0.768094534712

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s

(prop.get_family(), self.defaultFamily[fontext]))


```
from sklearn.neighbors import KNeighborsClassifier
In [142]:
          from sklearn.metrics import accuracy_score
          from sklearn.cross validation import cross val score
          myList = list(range(0,5))
          neighbors = list(filter(lambda x: x % 2 != 0, myList))
          # empty list that will hold cv scores
          cv scores = []
          # perform 10-fold cross validation
          for k in neighbors:
              knn = KNeighborsClassifier(n_neighbors=k)
              scores = cross val score(knn, X train, y train, cv=5, scoring='accuracy')
              cv scores.append(scores.mean())
          # changing to misclassification error
          MSE = [1 - x for x in cv_scores]
          # determining best k
          optimal k = neighbors[MSE.index(min(MSE))]
          print('\nThe optimal number of neighbors is %d.' % optimal_k)
          # plot misclassification error vs k
          plt.plot(neighbors, MSE)
          plt.xlabel('Number of Neighbors K')
          plt.ylabel('Misclassification Error')
          plt.show()
```

```
The optimal number of neighbors is 3.

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San s
   (prop.get_family(), self.defaultFamily[fontext]))
```



```
In [143]: from sklearn.neighbors import KNeighborsClassifier
    neigh = KNeighborsClassifier(n_neighbors=3)
    neigh.fit(X_train,y_train)
    LR_Predict_bin1 = neigh.predict(X_test)
    LR_Accuracy = accuracy_score(y_test,LR_Predict_bin1.round())
    print("KNN accuracy is ",LR_Accuracy)
    plt.figure(figsize=(6,6))
    plot_confusion_matrix(LR_Predict_bin1, normalize=True)
    plt.show()
```

KNN accuracy is 0.954948301329

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s
 (prop.get_family(), self.defaultFamily[fontext]))


```
In [147]:
          from sklearn import svm
          clf svm = svm.SVC()
          clf svm.fit(X train,y train)
          #LR Predict1 = clf svm.predict proba(X test)[:,1]
          LR_Predict_bin2 = clf_svm.predict(X_test)
          LR_Accuracy = accuracy_score(y_test, LR_Predict_bin2.round())
          print("SVM accuracy is ",LR_Accuracy)
          LR Predict train = clf svm.predict(X train)
          LR_Accuracy1 = accuracy_score(y_train,LR_Predict_train.round())
          print("SVM training accuracy is ",LR Accuracy1)
          plotAUC(y_test,LR_Predict_bin1,'K-NN')
          plotAUC(y_test,LR_Predict_bin2,'SVM')
          plt.show()
          plt.figure(figsize=(6,6))
          plot confusion matrix(LR Predict bin2, normalize=True)
          plt.show()
```

SVM accuracy is 0.966765140325 SVM training accuracy is 0.990578237576

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s


```
In [151]: from sklearn.grid_search import RandomizedSearchCV
    from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier()
    maxFeatures = range(1,data_clean.shape[1]-1)
    param_dist = dict(max_features=maxFeatures)
    rand = RandomizedSearchCV(rf, param_dist, cv=10, scoring='accuracy', n_iter=len(m_X=data_clean.iloc[:,:-1].values
    y=data_clean.iloc[:,:-1].values
    rand.fit(X,y)
    mean_scores = [result.mean_validation_score for result in rand.grid_scores_]
    #print('Best Accuracy = '+str(rand.best_score_))
    print(rand.best_estimator_)
```

0.84047267356

0.999630519121

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1316: Use
rWarning: findfont: Font family ['Ricty'] not found. Falling back to DejaVu San
s


```
In [140]:
          from sklearn.model selection import cross val score
          import numpy as np
          X=data clean.iloc[:,:-1].values
          y=data clean.iloc[:,-1].values
          clf = RandomForestClassifier()
          print(np.mean(cross_val_score(clf, X_train, y_train, cv=15)))
          param grid = {
                            'n estimators': [5, 10, 15, 20],
                            'max_depth': [2, 5, 6, 7,8,9]
          from sklearn.grid_search import GridSearchCV
          grid clf = GridSearchCV(clf, param grid, cv=15)
          grid clf.fit(X train, y train)
          grid_clf. best_estimator_
          grid clf. best params
          grid_clf.grid_scores_
```

0.906330308745

```
[mean: 0.72178, std: 0.04284, params: {'max depth': 2, 'n estimators': 5},
Out[140]:
           mean: 0.75559, std: 0.02661, params: {'max_depth': 2, 'n_estimators': 10},
           mean: 0.76575, std: 0.02620, params: {'max_depth': 2, 'n_estimators': 15},
           mean: 0.77813, std: 0.02065, params: {'max_depth': 2, 'n_estimators': 20},
           mean: 0.81877, std: 0.02123, params: {'max depth': 5, 'n estimators': 5},
           mean: 0.83244, std: 0.01893, params: {'max depth': 5, 'n estimators': 10},
           mean: 0.84075, std: 0.01509, params: {'max depth': 5,
                                                                 'n estimators': 15},
           mean: 0.84463, std: 0.01556, params: {'max depth': 5, 'n estimators': 20},
           mean: 0.84075, std: 0.01172, params: {'max_depth': 6, 'n_estimators': 5},
           mean: 0.85849, std: 0.01110, params: {'max depth': 6, 'n estimators': 10},
           mean: 0.85960, std: 0.01494, params: {'max depth': 6, 'n estimators': 15},
           mean: 0.86717, std: 0.01290, params: {'max depth': 6, 'n estimators': 20},
           mean: 0.86255, std: 0.01231, params: {'max depth': 7, 'n estimators': 5},
           mean: 0.87087, std: 0.01620, params: {'max_depth': 7, 'n_estimators': 10},
           mean: 0.87604, std: 0.01555, params: {'max depth': 7, 'n estimators': 15},
           mean: 0.88417, std: 0.01753, params: {'max_depth': 7, 'n_estimators': 20},
           mean: 0.87068, std: 0.01499, params: {'max depth': 8, 'n estimators': 5},
           mean: 0.88177, std: 0.01700, params: {'max depth': 8, 'n estimators': 10},
           mean: 0.89174, std: 0.01349, params: {'max_depth': 8, 'n_estimators': 15},
           mean: 0.89248, std: 0.01620, params: {'max depth': 8, 'n estimators': 20},
           mean: 0.87308, std: 0.01432, params: {'max_depth': 9, 'n_estimators': 5},
           mean: 0.89710, std: 0.01639, params: {'max depth': 9, 'n estimators': 10},
           mean: 0.89987, std: 0.01253, params: {'max depth': 9, 'n estimators': 15},
           mean: 0.90227, std: 0.01516, params: {'max depth': 9, 'n estimators': 20}]
```