MATH 0450: HOMEWORK 3

TEOH ZHIXIANG

Problem 1. Let $L = \{q \in \mathbb{Q} \mid q^2 < 2\}$. Show that if q > 0 and $q \in L$ then $q' = 2(q+1)/(q+2) \in L$ and q < q'. Deduce that L does not have a maximal element.

Proof.

$$(q')^{2} = \frac{(2(q+1))^{2}}{(q+2)^{2}}$$

$$= \frac{4q^{2} + 8q + 4}{q^{2} + 4q + 4}$$

$$= \frac{q^{2} + 4q + 4 + 3q^{2} + 4q}{q^{2} + 4q + 4}$$

$$= 1 + \frac{3q^{2} + 4q}{q^{2} + 4q + 4}$$

$$= 1 + \frac{(q^{2} + 4q) + 2q^{2}}{(q^{2} + 4q) + 4}$$

$$< 1 + 1$$

$$= 2$$

 $q' = \frac{2(q+1)}{q+2} \in \mathbb{Q}$ if $q \in \mathbb{Q}$, and $(q')^2 < 2$ if $q \in L$ as shown above, so $q' \in L$.

$$q' = \frac{2q + 2}{q + 2}$$

$$= \frac{q(q + 2) + 2 - q^2}{q + 2}$$

$$= q + \frac{2 - q^2}{q + 2}$$

$$> q$$

since $q^2 < 2 \Leftrightarrow 2 - q^2 > 0$ and $q > 0 \Leftrightarrow q + 2 > 0$. So q < q'.

Given any $q \in L$ we can recursively, using the formula for q' above, derive a $q' > q \in L$, and likewise for q'' > q', q''' > q'', and so on. Since for every $q \in L$ we can keep constructing a $q < q' \in L$, this shows there is always a greater element $q' > q \in L$ for every q, and that there is no maximal element in L.

Problem 2. Let $U = \{u \in \mathbb{Q} \mid u^2 \ge 2\}$. Show that if u > 0 and $u \in U$ then $u' = 2(u+1)/(u+2) \in U$ and u > u'. Deduce that U does not have a minimal element.

Date: February 6, 2020.

2

Proof.

$$(u')^{2} = \frac{(2(u+1))^{2}}{(u+2)^{2}}$$

$$= \frac{4u^{2} + 8u + 4}{u^{2} + 4u + 4}$$

$$= \frac{u^{2} + 4u + 4 + 3u^{2} + 4u}{u^{2} + 4u + 4}$$

$$= 1 + \frac{3u^{2} + 4u}{u^{2} + 4u + 4}$$

$$= 1 + \frac{(u^{2} + 4u) + 2u^{2}}{(u^{2} + 4u) + 4}$$

$$\geq 1 + 1$$

$$= 2$$

 $u' = \frac{2(u+1)}{u+2} \in \mathbb{Q}$ if $u \in \mathbb{Q}$, and $(u')^2 \ge 2$ if $u \in U$ as shown above, so $u' \in L$.

$$u' = \frac{2u+2}{u+2}$$

$$= \frac{u(u+2)+2-u^2}{u+2}$$

$$= u + \frac{2-u^2}{u+2}$$

$$< u$$

since $u^2 > 2 \Leftrightarrow 2 - u^2 < 0$ and $u > 0 \Leftrightarrow u + 2 > 0$. So $\frac{2-u^2}{u+2} < 0$, and u > u'.

Given any $u \in U$ we can recursively, using the formula for u' above, derive a $u' < u \in U$, and likewise for u'' < u', u''' < u'', and so on. Since for every $u \in U$ we can keep constructing a $u' < u \in U$, this shows there is always a smaller rational element $u' < u \in U$ for every u, and that there is no minimal element in U.

Problem 3. Let F be an ordered field. Show that for any $n \geq 1$ and $a_1, a_2, \ldots, a_n \in F$ we have

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|.$$

Proof. (By induction). We first define the absolute value operation $|\cdot|$ as follows:

$$|a| = \begin{cases} a & \text{if } a > 0\\ -a & \text{if } a < 0\\ 0 & \text{if } a = 0 \end{cases}$$

Let P(n) be the statement $|a_1+a_2+\cdots+a_n| \leq |a_1|+|a_2|+\cdots+|a_n|$, for $n \geq 1$ and $a_1, a_2, \ldots, a_n \in F$. We prove two base cases: P(1) and P(2). The first base case, P(1), is trivial because $|a_1| = |a_1| \Leftrightarrow |a_1| \leq |a_1|$. We shall prove P(2), also called the triangle inequality, i.e. $|a_1+a_2| \leq |a_1|+|a_2|$. By definition of absolute value operation, $|a_1 + a_2| \ge 0$, and $|a + b| \ge 0$. Note also

$$|a|^2 = |a| \cdot |a|$$
consider 3 cases:
$$a > 0 : |a|^2 = a \cdot a$$

$$= a^2$$

$$a < 0 : |a|^2 = -a \cdot -a$$

$$= a^2 \text{ (by property of ordered field } -a \cdot -b = a \cdot b\text{)}$$

$$a = 0 : |a|^2 = 0 \cdot 0$$

$$= a^2$$

Therefore

$$|a_{1} + a_{2}| \leq |a_{1}| + |a_{2}|$$

$$\Leftrightarrow (a_{1} + a_{2})^{2} \leq (|a_{1}| + |a_{2}|)^{2}$$

$$\Leftrightarrow a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2} \leq |a_{1}|^{2} + |a_{2}|^{2} + 2|a_{1}||a_{2}|$$

$$= a_{1}^{2} + a_{2}^{2} + 2|a_{1}||a_{2}|$$

$$\Leftrightarrow 2a_{1}a_{2} \leq 2|a_{1}||a_{2}|$$

$$\Leftrightarrow a_{1}a_{2} \leq |a_{1}||a_{2}|$$

Note $|a_1||a_2| = |a_1a_2|$: consider cases for different values of a_1, a_2 . If $a_1, a_2 > 0$ or $a_1, a_2 < 0$, statement valid. $(a_1 \text{ or } a_2 = 0) \Rightarrow |0| = |0|$ valid. If only either a_1 or $a_2 < 0$: assume $a_2 < 0$, $|a_1||a_2| = a_1(-a_2) = |-a_1a_2| > 0$, similarly for $a_1 < 0$. Therefore $a_1a_2 \le |a_1||a_2|$ true, and P(2) valid.

Next we assume P(n) true for some $n \in \mathbb{N}$. Then

 $\Rightarrow |a|^2 = a^2$

$$|\underbrace{a_{1} + a_{2} + \dots + a_{n}}_{:= A} + a_{n+1}| \le |\underbrace{a_{1} + a_{2} + \dots + a_{n}}_{:= A}| + |a_{n+1}|$$

$$\Leftrightarrow |A + a_{n+1}| \le |A| + |a_{n+1}|$$

By P(2), the above inequality in A is true. In a similar manner to the above, P(n + 1) can be proven in a recursive manner:

$$|A| + |a_{n+1}| = |a_1 + a_2 + \dots + a_{n-1} + a_n| + |a_{n+1}|$$

$$\leq |\underbrace{a_1 + a_2 + \dots + a_{n-1}}_{A_2} + a_n| + |a_{n+1}|$$

$$\leq |A_2| + |a_n| + |a_{n+1}|$$

$$\leq \dots$$

each time using result from P(2). Therefore P(n+1) true, and so by Principle of Mathematical Induction P(n) true for all $n \in \mathbb{N}$.

Problem 4. Let A and B be two sets with n and, respectively, m elements. Let $f: A \to B$ a function. Show that

- (1) If f injective then $n \leq m$;
- (2) If f surjective then $n \geq m$;
- (3) If f bijective then n = m.

- Proof. (1) (Contraposition). f is said to be injective or 1-1 if for every two elements $a,b \in A$, $(f(a) = f(b)) \Rightarrow (a = b)$. Assume negation of $n \leq m$ is true, i.e. n > m. If f is injective, then every two elements $a_1, a_2 \in A$ must have different images $b_1, b_2 \in B$ under f, if $f(a_1) = b_1$ and $f(a_2) = b_2$. Pigeonhole principle states that if n > m containers are put into m containers then at least one container must contain more than one item. So because the cardinality of the domain |A| = n is greater than the cardinality of the codomain |B| = m, as assumed, by pigeonhole principle, there is no way to map n > m elements in domain A to m elements in domain A without at least one element in domain A having more than one preimage from domain A. So A is shown to not be injective, and by proof of contraposition we have that A injective A inje
 - (2) (Contraposition). f is said to be surjective or onto if every element $b \in B$ has a preimage $a \in A$. Assume n < m. The function f is defined as the relation between sets A and B that associates every element in domain A to exactly one element in the codomain B. Hence, similarly by pigeonhole principle, we see that there is no way to map n < m elements in domain A to m elements in domain B without at least one element in domain A mapping to two elements in codomain B, which defies the definition of a function. Thus f cannot be surjective, and by proof of contraposition we have that f surjective $\Rightarrow n \geq m$.
 - (3) Let $p \Rightarrow (r \lor s)$ be the statement in part (1) and $q \Rightarrow (r \lor t)$ be the statement in part (2), where p, q, r, t, s represent the statements "f injective", "f surjective", "n = m", "n < m" and "n > m" respectively. Hence we can introduce a third proposition $\neg((n < m) \land (n > m)) \equiv \neg(s \land t) \equiv \neg s \lor \neg t$.

Now we set up a proof by cases with our three propositional statements, considering the two cases: when $\neg s$ and when $\neg t$. The following is a First Order Logic (FOL) proof in fitch format:

1	$\begin{vmatrix} p \Rightarrow (r \lor t) \\ q \Rightarrow (r \lor s) \end{vmatrix}$				
2	$q \Rightarrow (r \lor s)$		16		
3	$\neg s \lor \neg t$		17	$p \land q$	
4			18	q	∧E, 17
5	$p \wedge q$		19	$r \lor s$	\Rightarrow E, 2, 18
6		$\wedge E$, 5	20	$ \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm}r$	
7	$r \lor t$	\Rightarrow E, 1, 6	21	r	R, 20
8	$ \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm}r$		22		
9	r	R, 8	23	$\neg s$	R, 22
10			24		$\neg E, 22, 23$
11	-t	R, 10	25	ig ig r	$\perp E, 24$
12		$\neg E, 10, 11$	26		$\vee E, 16, 20-21, 22-25$
13	ig ig r	$\perp E, 12$	27	$(p \land q) \Rightarrow r$	⇒I, 17–26
14	$ \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} r$	$\vee E, 7, 8-9, 10-13$	28	$(p \land q) \Rightarrow r$	$\vee E, 3, 4-15, 16-27$
15	$(p \land q) \Rightarrow r$	\Rightarrow I, 5–14			

And from this we can see that statement (3): f bijective $\Rightarrow n = m$ follows from statements (2) and (3).

Problem 5. The set S is said to be infinite if there exists a proper subset $A \subseteq S$ and an injective function $S \to A$. Show that the sets \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are infinite.

Proof. The set A is defined to be a proper subset of S, $A \subset S$, if it satisfies $\{A \subseteq S \mid A \neq S\}$. We first prove $\mathbb N$ is infinite. We define the set $A_1 \subset \mathbb N$ as follows:

$$A = \{ n \in \mathbb{N} \mid 2n \}.$$

Note that A_1 is a proper subset of S because every element $a \in A_1$ also belongs to \mathbb{N} , but there is at least one element in \mathbb{N} (in fact all odd natural numbers) that is not in A_1 . With these sets defined, we have the function $f: A_1 \to \mathbb{N}$, i.e. f(2n) = n, for all $n \in \mathbb{N}$. To prove f is injective, we pick any two arbitrary elements $f(n_1) = f(n_2) \in \mathbb{N}$ and show that it must be the case that $n_1 = n_2 \in A_1$. $f(n_1) = f(n_2) \Leftrightarrow \frac{n_1}{\cancel{p}} = \frac{n_2}{\cancel{p}} \Leftrightarrow n_1 = n_2$. Therefore f injective, and we have proven \mathbb{N} infinite.

We now prove \mathbb{Z} is infinite. We define the set $A_2 \subset \mathbb{Z}$ as the set \mathbb{N} . Note that \mathbb{N} is a proper subset of S because $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup (-\mathbb{N})$; so every element $n \in \mathbb{N}$ also belongs to \mathbb{Z} , but there is at least one element in \mathbb{Z} (in fact all non-positive integers) that is not in \mathbb{N} . Consider the function

FIGURE 1. Mapping from \mathbb{Q} to \mathbb{N} . Each point on the spiral represents an element $(a,b) \in \mathbb{Q}$ that is mapped to a natural number $n \in \mathbb{N}$.

 $f: \mathbb{Z} \to \mathbb{N}$ defined by:

$$f(n) = \begin{cases} 2n+1 & \text{if } n \ge 0\\ -2n & \text{if } n < 0 \end{cases}$$

for all $n \in \mathbb{N}$. Pick any two arbitrary $f(n_1) = f(n_2) \in \mathbb{N}$. If $f(n_1) = f(n_2)$ is odd, then $n_1 = n_2$ and is the nonnegative integer preimage that maps to the odd natural number $2n_1 + 1 = 2n_2 + 1 \Leftrightarrow n_1 = n_2$, else if $f(n_1) = f(n_2)$ is even then $n_1 = n_2$ and is negative. Therefore f is injective, and \mathbb{Z} is infinite.

We now prove $\mathbb Q$ is infinite. We define the set $A_3 \subset \mathbb Q$ as the set of natural numbers $\mathbb N$. Note that $\mathbb N$ is a proper subset of $\mathbb Q$ because every element in $\mathbb N$ is an element of $\mathbb Q$ (in particular all elements with denominator 1) but there is at least one $q \in \mathbb Q$ (eg. $\frac{2}{3}$) that is not in $\mathbb N$. Consider the function $f:\mathbb Q \to \mathbb N$ defined as the mapping from elements $(a,b) = \frac{a}{b} \in \mathbb Q$ where $\gcd(a,b) = 1$, for all $a,b \in \mathbb Z$. In Figure 1, imagine there are two coordinate axes pointing in the upwards and rightwards direction, corresponding to a and b respectively, i.e. the point $(1,0) = \frac{1}{0}$ is represented by the point 1 as shown, even though the value might not necessarily be valid (which in this case it is not because the denominator is 0). But Figure 1 nonetheless proves that there exists an injection from $\mathbb Q$ to $\mathbb N$, because every simplest rational number (a,b) can be mapped to a natural number, and each natural number has only one rational number preimage. Therefore Q is infinite.