Quiz 1

CSL7620: Machine Learning | AY 2024-25 | Sem I

The	respondent's email () was recorded on submission of this form.	
×	Consider the following scenario for Stochastic Gradient Descent (SGD): You are training a linear regression model using SGD on a single data point. The equation for the output is $y=\theta(0)+\theta(1)x$. The learning rate is set to 0.1. Suppose at a certain iteration, the model parameters $\theta(0)$ and $\theta(1)$ are $\theta(0)=2.0$ and $\theta(1)=1.5$, respectively. The current data point you use to update the model is $x=4$, and the true label y is 10. Which of the following are correct statements after one SGD update for the parameters $\theta(0)$ and $\theta(1)$?	*0/1
Corr	New value of $\theta(0)$ and $\theta(1)$ will be 1.8 and 1.3, respectively. New value of $\theta(0)$ and $\theta(1)$ will be 2.2 and 2.3, respectively. New value of $\theta(0)$ and $\theta(1)$ will be 2.2 and 1.7, respectively. New value of $\theta(0)$ and $\theta(1)$ will be 1.8 and 0.7, respectively. The rectanswer New value of $\theta(0)$ and $\theta(1)$ will be 2.2 and 2.3, respectively.	×
~	Using VC-Dimension, we can get an idea about which of the following?	* 1/1
<!--</td--><td>Using VC-Dimension, we can get an idea about which of the following? A model's capacity of classification Probability of some limit of test error of a model The size of the dataset required for training The number of features in the dataset</td><td>* 1/1</td>	Using VC-Dimension, we can get an idea about which of the following? A model's capacity of classification Probability of some limit of test error of a model The size of the dataset required for training The number of features in the dataset	* 1/1
✓○○✓	A model's capacity of classification Probability of some limit of test error of a model The size of the dataset required for training	* 1/1

✓ What is the primary objective of a regressi	on model? * 1/1
To find a curve that best fits the data points	✓
To predict categorical labels	
To reduce the number of features in the dataset	et
O To cluster similar data points together	
✓ Which of the following techniques are used	d for data normalization? * 1/1
Min-Max Scaling	✓
One-Hot Encoding	
Log Transformation	
Z-score Normalization	✓
 ✓ A key characteristic of unsupervised learn ○ Predicting future outcomes ○ Discovering hidden patterns in data ○ None of the others ○ Learning from rewards 	ing is: * 1/1
Which of the following statements is/ are ulearning?	usually true about inductive *1/1
Inductive learning models can be evaluated ba outcomes on new, unseen data.	sed on their ability to predict
Inductive learning can only be applied to super	vised learning scenarios.
Overfitting is a common problem in inductive l training data too well, including noise.	earning when a model learns the 🗸
Inductive learning assumes that the patterns in for unseen data.	n the training data will hold true 🗸

×	Which of the following scenarios usually is indicative of high variance in a model?	*0/1
~	Large differences between training and testing accuracy	✓
	None of the others	
	More inductive bias	
	High VC dimension	
Corr	ect answer	
~	Large differences between training and testing accuracy	
✓	High VC dimension	
~	Which of the following statements correctly describes how reinforcement learning works?	*1/1
	Reinforcement learning does not require interaction with the environment to lear optimal actions.	n
	The agent learns to make decisions by directly performing the optimal actions without feedback.	
~	Reinforcement learning involves controlling an agent through a sequence of good decisions.	✓
✓	The learning process in reinforcement learning is driven by experiences through rewards and penalties from the environment.	✓
×	For a given hypothesis space, if the VC dimension is d, which of the following is/are correct?	*0/1
	None of the others	
✓	The hypothesis space must not consist of only 2D straight lines if d>3 in 2D Euclidean plane	✓
✓	The hypothesis space can perform correct binary classification for any set of d points	×
✓	The hypothesis space cannot shatter any set of d+1 points	✓
Corr	ect answer	
~	The hypothesis space cannot shatter any set of d+1 points	
✓	The hypothesis space must not consist of only 2D straight lines if d>3 in 2D Euclidean plane	

This form was created inside of Indian Institute of Technology Jodhpur. - $\underline{\text{Contact form owner}}$

Quiz 2

CSL7620: Machine Learning | AY 2024-25 | Sem I

The r	respondent's email () was recorded on submission of this form.	
✓	In MLE, we often use the log-likelihood function instead of the likelihood function because	*1/1
•	Taking the logarithm simplifies calculations by turning products into sums.	✓
0	The log-likelihood transforms the data to make it normally distributed.	
0	The log-likelihood avoids overfitting the model.	
0	The log-likelihood is easier to interpret.	
~	Which of the following is a key advantage of DBSCAN over K-means? *	1/1
0	DBSCAN does not require any input from the user	
•	DBSCAN can automatically find the optimal number of clusters	✓
0	DBSCAN is computationally faster than K-means in all cases	
0	DBSCAN always works better than K-means with high-dimensional data	
×	A face recognition system uses a minimum-error classification approach with three classes: Class 1 (known person), Class 2 (unknown person), and Class 3 (mask detection). Given that the misclassification of a known person as an unknown person is a major issue, what among the following will you do to minimize this error while maintaining the overall classification accuracy.	*0/1
•	Assign a higher prior probability value to Class 1.	×
\circ	Increase the likelihood of Class 3 detections.	
0	None of the others	
0	Assign a higher loss to misclassifying Class 1 as Class 2.	
Corr	ect answer	
•	Assign a higher loss to misclassifying Class 1 as Class 2.	

~	Which of the following is/are characteristics of Gaussian Mixture Models (GMMs)?	* 1/1
~	The mean (μ) and covariance (Σ) are updated iteratively	✓
	The model minimizes the likelihood of the data	
~	Each cluster is modeled as a multivariate Gaussian distribution	✓
	GMMs always use hard clustering to assign points	
×	In the context of Expectation Maximization, which of the following are correct about the E-step?	*0/1
~	It updates the parameters μ and Σ for each Gaussian	×
	It assigns hard labels to the data points	
	It calculates the probability that each data point belongs to each cluster	✓
	It uses Bayes' Theorem to calculate responsibilities (λ)	
Corr	ect answer	
~	It calculates the probability that each data point belongs to each cluster	
✓	It uses Bayes' Theorem to calculate responsibilities (λ)	
×	Which of the following statements is/ are usually true in the context of maximum likelihood estimation (MLE)?	*0/1
~	MLE is a technique to minimize the distance between data points.	×
✓	Likelihood function measures the probability of observing the data given a set of parameters.	✓
	In MLE, we never assume that the observations (data points) are independent	
~	MLE may use gradient descent	✓
Corr	ect answer	
~	Likelihood function measures the probability of observing the data given a set o parameters.	f
~	MLE may use gradient descent	

✓ Which of the following statements are true about K-means clustering.	? * 1/1
K-means minimizes the sum of squared distances between data points and their corresponding cluster centroid.	✓
K-means always converges	
K-means is sensitive to the initial placement of centroids.	✓
No input from user is required in K-means	
Which of the following statements is/ are true about Bayes Decision Rule?	*0/1
lt only works for two-class problems.	
None of the others	
It minimizes the probability of classification error.	
It is used to decide the class with the highest posterior probability.	✓
Correct answer	
It minimizes the probability of classification error.	
It is used to decide the class with the highest posterior probability.	
✓ Which of the following is a key assumption of the Naive Bayes classifier?	*1/1
The prior probabilities are uniform.	
None of the others	
The features are correlated.	
The features are independent given the class label.	~

This form was created inside of Indian Institute of Technology Jodhpur. - Contact form owner

Google Forms

Quiz 3

CSL7620: Machine Learning | AY 2024-25 | Sem I

The r	respondent's email () was recorded on submission of this form.	
✓	In boosting, how does growing a new stump impact previously misclassified samples?	*1/1
	Misclassified samples are given increased weights for growing the next stump.	✓
	Misclassified samples are excluded from training the next stump.	
~	The algorithm uses a weighted entropy/ Gini impurity to grow the stumps after the first stump	✓
✓	Correctly classified samples can be given decreased weights for growing the next stump.	✓
×	Find out the correct statements about Support Vector Machine (SVM).	* 0/1
	Eventually, SVM does not use all the training data points to draw the decision boundary	
~	SVM tries to maximize the margin between the boundaries of different classes	✓
	In SVM objective function, we try to minimize misclassification errors	
	SVM can perform only linear classification	
Corr	ect answer	
~	SVM tries to maximize the margin between the boundaries of different classes	
✓	Eventually, SVM does not use all the training data points to draw the decision boundary	
/	In Linear Discriminant Analysis (LDA), the algorithm focuses on maximizing the separation between classes by:	*1/1
0	Maximizing the variance within each class.	
•	Maximizing the distance between the mean of each class	✓
0	Minimizing the covariance between features.	
0	minimizing the spread within each class.	
0	Minimizing the number of principal components needed for classification.	

Which of the following statements are true regarding the polynometric kernel in SVM?	mial *0/1
A higher degree leads to a simpler decision boundary.	×
The degree parameter controls the flexibility of the decision boundary	~
It is suitable for data with non-linear boundaries	
It projects data into an infinite-dimensional space.	×
Correct answer	
It is suitable for data with non-linear boundaries	
The degree parameter controls the flexibility of the decision boundary	
Which of the following can be used as a stopping criterion for gro Decision Tree?	owing a *1/1
None of the others	
Impurity in child nodes	✓
Tree depth	✓
Number of samples in a node	~
★ Identify the correct statements *	0/1
Eigen values do not play any role in PCA	
Kernels can be useful in the context of PCA	
LDA can not be used if we have more than two classes in a dataset	
PCA and ICA are supervised learning techniques	×
Correct answer	
Kernels can be useful in the context of PCA	
Which of the following statements is true regarding the Random algorithm?	Forest *1/1
Random Forest performs well on small datasets but struggles with large	ge datasets.
We want the trees in random forest to have low similarities among there.	mselves 🗸
Random Forest only uses the most important features for training each	n tree.
Each tree in the Random Forest is trained on the entire dataset.	

✓	Which of the following statements about the RBF kernel in SVM is/are correct?	*1/1
~	The RBF kernel maps the original data into an infinite-dimensional space	✓
	The RBF kernel is only useful for linearly separable data.	
	None of the others	
~	A large gamma in the RBF kernel makes the decision boundary more sensitive to individual data points	✓
×	Which of the following statements are true about Decison Tree? *	0/1
~	Decision Trees are used as an unsupervised learning algorithm.	X
	Decision trees can not be used for regression.	
~	A higher value of the Gini Impurity (G) indicates greater heterogeneity within a node.	✓
✓	Homogeneity of a node generally decreases as we move from parent node to child node.	×
Corr	ect answer	
V	A higher value of the Gini Impurity (G) indicates greater heterogeneity within a node.	
~	When performing Principal Component Analysis (PCA), the principal components are chosen based on:	*1/1
0	The directions that maximize the mean of the projected data on that direction.	
0	The directions that minimizes variance of the projected data on that direction.	
0	None of the others.	
•	The directions that maximizes variance of the projected data on that direction.	✓

 $This form \, was \, created \, inside \, of \, Indian \, Institute \, of \, Technology \, Jodhpur. \, - \, \underline{Contact \, form \, owner}$

Google Forms