

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-107383

(43)Date of publication of application : 24.04.1998

(51)Int.CI. H01S 3/18
H01L 21/205

(21)Application number : 08-261039 (71)Applicant : SHARP CORP

(22)Date of filing : 01.10.1996 (72)Inventor : MIYAZAKI KEISUKE
KANEIWA SHINJI

(54) SEMICONDUCTOR LASER ELEMENT AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce diffusion of a dopant that affects characteristics and reliability by growing a current block layer that constitutes one of a lamination structure, while applying light at each stripe width that becomes a waveguide.

SOLUTION: A substrate (wafer) 1 is set onto a susceptor 22, the inside of a growth room 20 is heated under hydrogen atmosphere, AsH is allowed to flow, a buffer layer 2 is grown, and a clad layer 3, an active layer 4, and a clad layer 5 are grown successively. Then, an Ar laser 25 is oscillated with 1-2 W output. Then, while a laser beam 30 with a beam diameter of ϕ 1.0mm is scanned by each stripe width of 4.0μm that is to become a waveguide by means of a photo-excited scanning optical system 26, trimethyl gallium and Si2H6 are allowed to flow, thus growing an n-type GaAs block layer. A semiconductor laser can be created by a one-time growth process and heat history at a high temperature can be reduced, thus reducing the diffusion of a dopant that affects characteristics and reliability.

LEGAL STATUS

[Date of request for examination] 14.02.2000

[Date of sending the examiner's decision of rejection] 18.07.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3270815

[Date of registration] 18.01.2002

[Number of appeal against examiner's decision of rejection] 2001-14031

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-107383

(43)公開日 平成10年(1998)4月24日

(51) Int.Cl.
 H 01 S 3/18
 H 01 L 21/205

識別記号

F I
 H 01 S 3/18
 H 01 L 21/205

審査請求 未請求 請求項の数 2 OL (全 6 頁)

(21)出願番号 特願平8-261039
 (22)出願日 平成8年(1996)10月1日

(71)出願人 000005049
 シャープ株式会社
 大阪府大阪市阿倍野区長池町22番22号
 (72)発明者 宮▲岩▼ 啓介
 大阪府大阪市阿倍野区長池町22番22号 シ
 ャープ株式会社内
 (72)発明者 遼岩 進治
 大阪府大阪市阿倍野区長池町22番22号 シ
 ャープ株式会社内
 (74)代理人 弁理士 山本 秀策

(54)【発明の名称】 半導体レーザ素子及びその製造方法

(57)【要約】

【課題】 コストダウンが図れ、しかも電気的特性及び光学的特性の劣化を防止でき、信頼性を向上できる半導体レーザ素子を提供する。

【解決手段】 ビーム径φ1.0mmのレーザビーム30を、導波路となるストライプ幅4.0μm置きに走査させながら、TMGとSi₂H₆を流し、n型GaAsプロック層を0.6μmの厚みに成長させる。

(2)

【特許請求の範囲】

【請求項1】 MOCVD成長法によって作製され、基板上に積層構造体を形成してなる半導体レーザ素子であって、

該積層構造体の一を構成する電流プロック層を、導波路となるストライプ幅置きに光を照射しながら成長させることにより形成した半導体レーザ素子。

【請求項2】 MOCVD装置内に基板を挿入し、該基板上に複数層からなる積層構造体を順次成長させて半導体レーザ素子を作製する半導体レーザ素子の製造方法であって、

導波路となるストライプ幅置きに光を照射しながら該基板に原料ガスを供給し、該光が照射された部分のみを成長させることにより、該積層構造体の一を構成する電流プロック層を形成する工程を包含する半導体レーザ素子の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は半導体レーザ素子及びその製造方法に関し、特に光励起MOCVD（有機金属化合物気相成長法）選択成長方法により作製される半導体レーザ素子及びその製造方法に関する。

【0002】

【従来の技術】 図5は、GaAsを電流プロック層とした、内部ストライプ埋め込み型の半導体レーザ素子の一従来例を示す。この半導体レーザ素子は、以下の工程を経て作製される。

【0003】 GaAs基板101をMOCVD装置のサセプタにセットし、GaAs基板101上に、n型GaAsバッファー層102、n型AlGaAsクラッド層103、ノンドープAlGaAs活性層104、p型AlGaAsクラッド層105及びn型GaAsプロック層106をこの順に成長させる。

【0004】 次に、上記各層が形成されたGaAs基板101、即ちウェハーをMOCVD装置から取り出し、ストライプ状のフォトレジストを用いて、n型GaAsプロック層106をエッチングした後、フォトレジストを除去する。

【0005】 次に、ウェハーを再度MOCVD装置のサセプタにセットし、p型AlGaAsクラッド層107及びp型GaAsキャップ層8を埋め込むように成長させる。なお、この再成長は液相エピタキシャル成長やMBE成長でも可能である。統いて、p、n両面に金属電極、即ちp側電極109、n側電極110を付け、これをレーザチップとしてパッケージングする。

【0006】 図6は、GaAsを電流プロック層とした、リッジストライプ外埋め込み型の半導体レーザ素子の一従来例を示す。この半導体レーザ素子は、以下の工程を経て作製される。

【0007】 GaAs基板201をMOCVD装置のサ

セプタにセットし、GaAs基板201基板上に、n型GaAsバッファー層202、n型AlGaAsクラッド層203、ノンドープAlGaAs活性層204、p型AlGaAsクラッド層（1）205、p型AlGaAsクラッド層（2）206及びp型GaAsキャップ層（1）207をこの順に成長させる。

【0008】 次に、ウェハーをMOCVD装置から取り出し、ストライプ状の絶縁膜を用いて、p型AlGaAsクラッド層（2）をリッジ状に残すようにエッチングする。

【0009】 次に、ウェハーを再度MOCVD装置のサセプタにセットし、n型GaAsプロック層208を選択成長した後、ウェハーを取り出して絶縁膜を除去し、再々度MOCVD装置にてp型GaAsキャップ層

（2）209を成長させる。なお、この2度の再成長は液相エピタキシャル成長やMBE成長でも可能である。統いて、p、n両面に金属電極210、211を付け、これをレーザチップとしてパッケージングする。

【0010】 ここで、半導体レーザ素子の特性、即ち電気的特性及び光学的特性や信頼性（発光パターンの信頼性）の改善を考えた場合、前述の2種類のn型GaAsプロック層106、208を、クラッド層よりAl混晶比の高いAlGaAsで構成し、リアルガイド構造とすることが一般的であるが、この場合のストライプ形成プロセスは、上記のものとほぼ同様である。

【0011】

【発明が解決しようとする課題】 ところで、図5に示す半導体レーザ素子の製造方法は、MOCVD成長後、ストライプ形成プロセスを経て、再成長を一度行っている。

【0012】 また、図6に示す半導体レーザ素子の製造方法は、MOCVD成長後、ストライプ形成プロセスを経て、二度の再成長を行っている。

【0013】 ここで、ストライプ形成のプロセスは、多数の工程より構成されており、厳密な作業が多く複雑といえる。このため、半導体レーザ素子の製造効率を向上する上でのネックになっていた。

【0014】 また、複数回の成長は、高温状態での熱的履歴が多く、特性や信頼性に影響を及ぼすドーパントの拡散を増大させる。例えば、ドーパントが拡散すると、再成長界面の高抵抗による電気的特性の悪化、即ち順方向電圧が高くなるため、動作電圧が高くなったり、閾値電流が増大する、といったような電気的特性の悪化を生じる。また、ストライプ幅が変形し、光学的特性が悪化する。それ故、半導体レーザ素子の信頼性が損なわれる。

【0015】 このように、上記従来の半導体レーザ素子では、製造効率の向上が図れないため製品のコストアップを招来し、また、信頼性が低下するという問題点があつた。

(3)

【0016】本発明はこのような現状に鑑みてなされたものであり、コストダウンが図れ、しかも電気的特性及び光学的特性の劣化を防止でき、信頼性を向上できる半導体レーザ素子及びその製造方法を提供することを目的とする。

【0017】

【課題を解決するための手段】本発明の半導体レーザ素子は、MOCVD成長法によって作製され、基板上に積層構造体を形成してなる半導体レーザ素子であって、該積層構造体の一を構成する電流ブロック層を、導波路となるストライプ幅置きに光を照射しながら成長させることにより形成してなり、そのことにより上記目的が達成される。

【0018】また、本発明の半導体レーザ素子の製造方法は、MOCVD装置内に基板を挿入し、該基板上に複数層からなる積層構造体を順次成長させて半導体レーザ素子を作製する半導体レーザ素子の製造方法であって、導波路となるストライプ幅置きに光を照射しながら該基板に原料ガスを供給し、該光が照射された部分のみを成長させることにより、該積層構造体の一を構成する電流ブロック層を形成する工程を包含しており、そのことにより上記目的が達成される。

【0019】以下に、作用を説明する。

【0020】上記の方法によれば、電流ブロック層のエッチング工程が不要になるので、ウエハーを一旦MOCVD装置から取り出して、再度成長装置内に挿入する必要がない。このため、半導体レーザ素子の製造に要する時間を大幅に短縮できる。

【0021】加えて、1回の成長工程で半導体レーザ素子を作製でき、複数回の成長を行う必要がないので、高温状態での熱的履歴を少なくできる。このため、特性や信頼性に影響を及ぼすドーパントの拡散を低減できる。それ故、成長界面を低抵抗化でき、順方向電圧を低減できる。この結果、動作電圧の低減及び閾値電流の低減が図れるので、電気的特性を向上できる。

【0022】加えて、ストライプ幅の変形を防止できるので、光学的特性が悪化することがない。

【0023】以上の理由により、信頼性の高い半導体レーザ素子を実現できる。

【0024】

【発明の実施の形態】以下に本発明の実施の形態を図面に基づき説明する。

【0025】(実施形態1) 図1は本発明半導体レーザ素子の実施形態1を示す。この半導体レーザ素子は、n型GaAs基板1上に、n型GaAsバッファ層2、n型Al_xGa_{1-x}As (x=0.5) クラッド層3、ノンドープAl_xGa_{1-x}As (x=0.14) 活性層4、p型Al_xGa_{1-x}As (x=0.5) クラッド層5、n型GaAsブロック層6、p型Al_xGa_{1-x}As (x=0.5) クラッド層7及びp型GaAsキャップ層8を

この順に成長させ、p, n両面に金属電極9, 10を付けた構成になっている。

【0026】(実施形態2) 図2は本発明半導体レーザ素子の実施形態2を示す。この半導体レーザ素子は、クラッド層よりA1混晶比の高いAlGaAsを電流ブロック層6'とした点のみが実施形態1の半導体レーザ素子とは異なっている。従って、対応する部分に同一の符号を付し、具体的な説明については省略する。

【0027】本実施形態2の半導体レーザ素子において、n型AlGaAsブロック層6'のA1混晶比を70%程度にするリアルガイド構造では、レーザチップの特性を大きく向上させることができる利点がある。

【0028】次に、図3及び図4に基づき本発明半導体レーザ素子の製造工程について説明する。まず、図3に基づき、本発明の実施に使用するMOCVD成長装置の構成について説明する。

【0029】このMOCVD成長装置は、MOCVD成長室(以下では成長室と称する)20の上方に光源としてのArレーザ25及び光励起走査用光学系26を配設して構成されている。

【0030】以下に各部の構造を説明する。成長室20の上部には、n型GaAs基板1が載置されるサセプタ22が設けられている。その下方には、加熱用のヒータ21が配置されている。ここで、サセプタ22の材質は、C(カーボン)、若しくはMo(モリブデン)からなる。サセプタ22の上方には、成長の原料となる原料ガスのガス供給通路27が設けられている。ガス供給通路27は、ステンレス、若しくは石英ガラスからなる上下のシールド壁24, 24間に形成されており、原料ガスは図の左側より右側へ流れる。

【0031】加えて、ガス供給通路27の上部には、n型GaAs基板1に対して成長に妨げのない程度の水素を流すための析出防止用水素吹き出し部27'が設けられている。

【0032】n型GaAs基板1の直上にあたる位置には、光励起走査用光学系26が配設されており、その側方(右側方)に光励起用の光源としてのArレーザ(波長514.5nm)25が配設されている。光励起走査用光学系26は、反射ミラー26a等を備えて構成されており、Arレーザ25からのレーザ光を任意のスポット径の平行光(レーザビーム)30にし、その下方のn型GaAs基板1に照射する。ここで、光励起走査用光学系26は、例えば反射ミラー26aを矢印A方向に水平移動させる水平方向移動手段(図示せず)を備えている。従って、レーザビーム30は矢印A方向に走査されることになる。

【0033】なお、成長室20を構成するシールド壁24, 24が石英ガラスの場合は、石英ガラスは光透過性を有するので、外部よりレーザビーム30を走査することができるが、シールド壁24, 24がステンレス等の

(4)

5

ように透過性のない材質である場合は、その部分に窓として石英ガラス等を用いればよい。

【0034】また、光励起を用いない、即ちレーザビーム30の照射をストップした高温成長の際には、前述の窓付近が高温になり、熱分解された原料ガスが結晶化し析出するおそれがあるが、この場合は析出防止用水素吹き出し部27'から成長に妨げのない程度の水素が供給されるため、このような不具合は生じない。

【0035】次に、半導体レーザ素子の製造工程について説明する。まず、サセブタ22上にn型GaAs基板

(以下ではウエハーと称する)1をセットする。そして、成長室20内を水素雰囲気下で30~100 Torrのある値で排気しそれを維持する。統いて、ヒーター21で、ウエハー1を加熱し、300°C付近でAsの蒸発防止にAsH₃を流す。

【0036】そして、ウエハー1の温度が700~750°Cになると、その上に、n型GaAsバッファ層2を0.5 μmの厚みに成長させる。

【0037】以下、n型Al_xGa_{1-x}As (x=0.5) クラッド層3を1.0 μmの厚み、ノンドープAl_xGa_{1-x}As (x=0.14) 活性層4を0.08 μmの厚み、p型Al_xGa_{1-x}As (x=0.5) クラッド層5を0.35 μmの厚みに順次成長させる。

【0038】ここで、原料ガスとして、例えばTMG (トリメチルガリウム)、TMA (トリメチルアルミニウム) を用い、n型にSi₂H₆、p型にDEZnを用いる。

【0039】次に、AsH₃以外の原料ガスの供給を断った後、ウエハー1の温度を350°Cに降温し、Arレーザ25を1~2Wの出力で発振させる。そして、光励起走査用光学系26によりビーム径の1.0 mmのレーザビーム30を、図4に示すように、導波路となるストライプ幅4.0 μm置きに走査させながら、TMGとSi₂H₆を流し、n型GaAsブロック層6を0.6 μmの厚みに成長させる。

【0040】この場合、ウエハ温度350°CでGaAsの成長は起こらず、レーザ照射された部分のみの成長が可能である。また、発振波長λ=514.5 nmのArレーザの場合、正常な成長を得るために最小照射密度は、約40 W/cm²であるため、欠け等のない正常なn型GaAsブロック層6を積層できる。

【0041】本実施形態では、レーザビーム30のビームスポット径とArレーザ25の波長を上記の値に設定したが、より短波長レーザを用いてビームスポット径を小さく絞ることで、照射密度等の条件を最適化し、作製しようとするレーザチップのサイズを縮小できる。

【0042】n型GaAsブロック層6の成長が終わると、TMGとSi₂H₆の供給を停止し、AsH₃供給状態で再度温度を700~750°Cの、ある決まった温度に昇温し、p型Al_xGa_{1-x}As (x=0.5) クラッド

層7を1.0 μmの厚みに成長させ、続いてp型GaAsキャップ層8を2.0 μmの厚みに成長させる。

【0043】その後、ウエハーのp, n両面に金属電極9, 10を付け、チップ分割することにより、図1に示す素子構造のレーザチップを作製できる。

【0044】ここで、Arレーザ25の走査速度については、GaAs 1分子の成長に、最小照射密度で最小照射時間が1.5 ms程度必要であることから、3 cm × 3 cmの矩形ウエハ上を、秒速1 mで走査を繰り返した。

【0045】なお、本実施形態では、1本のレーザビーム30で走査しているが、複数のレーザビームで走査することも可能である。この場合は、より一層製造効率を向上できる利点がある。

【0046】また、Arレーザ25をより高出力にすることで走査を高速化することも可能である。この場合も、より一層製造効率を向上できる利点がある。

【0047】なお、上記の製造工程では、図1の半導体レーザ素子を製造する場合を例にとって説明したが、図2に示す半導体レーザ素子も同様の工程を経て作製することができる。

【0048】即ち、上記の方法と同様に、成長温度やArレーザ25の照射出力を最適化することで、光励起を利用した導波路部の選択成長が可能である。

【0049】

【発明の効果】以上の本発明によれば、電流ブロック層のエッチング工程が不要になるので、ウエハーを一旦MOCVD装置から取り出して、再度成長装置内に挿入する必要がない。このため、半導体レーザ素子の製造に要する時間を大幅に短縮でき、その製造効率を大幅に向上できる。従って、製造コストを格段に低減できる利点がある。

【0050】加えて、1回の成長工程で半導体レーザ素子を作製でき、複数回の成長を行う必要がないので、高温状態での熱的履歴を少なくできる。このため、特性や信頼性に影響を及ぼすドーパントの拡散を低減できる。それ故、成長界面を低抵抗化でき、順方向電圧を低減できる。この結果、動作電圧の低減及び閾値電流の低減が図れるので、電気的特性を向上できる。加えて、ストライプ幅の変形を防止できるので、光学的特性が悪化することがない。以上の理由により、信頼性の高い半導体レーザ素子を実現できる。

【図面の簡単な説明】

【図1】本発明の実施形態1を示す、半導体レーザ素子の模式的断面図。

【図2】本発明の実施形態2を示す、半導体レーザ素子の模式的断面図。

【図3】本発明方法の実施に使用するMOCVD成長装置の一部を示す部分断面図。

【図4】本発明方法による電流ブロック層の成長工程を

(5)

示す斜視図。

【図5】内部ストライプ埋め込み型の半導体レーザ素子の従来例を示す模式的断面図。

【図6】リッジストライプ外埋め込み型の半導体レーザ素子の従来例を示す模式的断面図。

【符号の説明】

1 n型GaAs基板
2 n型GaAsバッファー層
3 n型AlGaAsクラッド層
4 ノンドープAlGaAs活性層
5 p型AlGaAsクラッド層
6 n型GaAsブロック層

7 p型AlGaAsクラッド層
8 p型GaAsキャップ層
20 MOCVD成長室
21 ヒーター
22 サセプタ
24 成長室壁部
25 Arレーザ
26 光励起走査用光学系
10 27 析出防止用水素吹き出し部
30 レーザビーム

【図1】

【図2】

【図3】

【図4】

【図5】

(6)

【図6】

