Problem 1

Sample point $\langle -1, 1, 27 \rangle$ Distance AB = $\sqrt{(x_{1,1} - x_{1-2})^2 + (x_{2,1} - x_{2,2})^2 + (x_{3,1} - x_{3,2})^2}$

Obs.	1	2	3	4	5	6	; t-point
1	0	1 3.61	3.61	2.83	3.32	2.45	3
2	3.61	1 0	3.74	3	3.16	1.73	3.74
	3.61	3.74	0	1	2.45	2.24	111
				1 0	1-73	1.41	1 1
4	2.83	. 3	T			2.23	7 - 7
5		1 3.16	2.45			!	
6	2.45	1 1.73	2.24	1.41	2.23	, , 0	2.23
1		1	(1	1	1	1

K=1: 4 is the recrest neighbor, so prediction is red

K=3: 3, 4, and 5 are the 3 nearest reighbors, so the votes are [Green, Red, Red] -> overall, prediction is red.

16=5: 1, 3, 4, 5, and 6 are the S nearest neighbors. The votes are [Green, Green, Red, Red, Green] -> Overall result is green.

em E					1	1
	×	4	X: 4:	×2	(9:-5)(x:-x) (x, - x)2
	127	115	14605	16129	-61.174	. 386.909
	121	158	15488	14641	135.196	186.869
X = 107.33	94	128	15035	8836	-131.834	177.689
J = 118.11	126	156	19656	15876	707 406	348.569
	102	101	10302	10404	91.196	28.409
	111	(28	14208	12321	36.296	13.469
	95	115	10925	9025	38.346	152.029
	89	105	9345	7921	240.306	335.989
	(0)	87	8787	10201	196.926	40.069
SUM	966	1063	115348	105354	1252.664	1676.0009
				1		

$$\hat{\beta}_1 = \frac{115348 - (118.11)(966)}{105354 - (107.33)(966)} = \frac{1253.74}{1673.22} = 0.749$$

$$\hat{\beta}_{0} = 118.11 - (0.749)(107.33) = 37.72$$

	×·	y:	9; = 37.72 + 0.749 x	: (4:-9.	2 (4:-5)2
	90	103	105,13	4.5369	88.36
g = 112.4	106	131	117.114	192.821	345.96
	105	85	116.365	983, 763	750.76
	115	99	123.855	617-771	179.56
	113	144	122-357	468,419	998.56
5UM				2267-411	2363.2

$$RSS = 2267.411$$

$$R^2 = 1 - \frac{2267.411}{2363.2} = .0405$$

$$\begin{aligned} &\mathcal{X}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \mathcal{E}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \mathcal{E}_{1}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \left[\mathcal{E}_{1} \right] = 1 \\ &\mathcal{M}_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \mathcal{E}_{2} = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} & \mathcal{E}_{2}^{-1} = \begin{bmatrix} 3/2 & -1 \\ 3/2 & -1 \end{bmatrix} & \left[\mathcal{E}_{3} \right] = 2 \\ &\mathcal{G}_{3}(x) = -\ln(2\pi) - \frac{1}{2} \ln\left|\mathcal{E}_{1}\right| - \frac{1}{2} \left[x_{1} - \mathcal{M}_{11} - y_{2} - \mathcal{M}_{12} \right] \mathcal{E}_{1}^{-1} \begin{bmatrix} x_{1} - \mathcal{M}_{11} \\ x_{2} - \mathcal{M}_{12} \end{bmatrix} \\ &\mathcal{G}_{2}(x) = -\ln(2\pi) - \frac{1}{2} \ln\left|\mathcal{E}_{1}\right| - \frac{1}{2} \left[x_{1} - \mathcal{M}_{21} - x_{2} - \mathcal{M}_{22} \right] \mathcal{E}_{1}^{-1} \begin{bmatrix} x_{1} - \mathcal{M}_{21} \\ x_{2} - \mathcal{M}_{22} \end{bmatrix} \end{aligned}$$

$$\begin{aligned} &\mathcal{G}_{2}(x) = -\ln(2\pi) - \frac{1}{2} \ln\left|\mathcal{E}_{2}\right| - \frac{1}{2} \left[x_{1} - \mathcal{M}_{21} - x_{2} - \mathcal{M}_{22} \right] \mathcal{E}_{1}^{-1} \begin{bmatrix} x_{1} - \mathcal{M}_{21} \\ x_{2} - \mathcal{M}_{22} \end{bmatrix} \end{aligned}$$

$$\begin{aligned} &\mathcal{G}_{2}(x) = -\ln(2\pi) - \frac{1}{2} \left[x_{1} + 1 - x_{2} - 1 \right] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} + 1 \\ x_{2} - 1 \end{bmatrix} = -\frac{1}{2} \ln(2) - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &\mathcal{G}_{2}(x_{1} - 1) \begin{bmatrix} x_{1} - 1 \\ x_{2} \end{bmatrix} \\ &-\frac{1}{2} \ln(1) - \frac{1}{2} \left[x_{1} + 1 - x_{2} - 1 \right] \begin{bmatrix} x_{1} + 1 \\ x_{2} - 1 \end{bmatrix} = -\frac{1}{2} \ln(2) - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &\mathcal{G}_{2}(x_{1} - \frac{3}{2} - x_{2} - 1 - x_{1} - x_{2}) \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] + \left(x_{2} - 1 \right) \right] = -\frac{1}{2} \ln\left(2 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &-\frac{1}{2} \ln\left(2 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] + \left(x_{2} - 1 \right) \right] = -\frac{1}{2} \ln\left(2 - \frac{1}{2} \left[x_{1} - 1 \right] \\ &-\frac{1}{2} \ln\left(2 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - 1 - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1 - \frac{1}{2} \left[x_{1} - x_{2} \right] \\ &-\frac{1}{2} \ln\left(1$$