

THE UNIVERSITY OF TEXAS AT AUSTIN

CS383C Numerical Analysis

Homework 04

Edited by \LaTeX

Department of Computer Science

STUDENT
Jimmy Lin

xl5224

COURSE COORDINATOR

Robert A. Van De Geijn

UNIQUE NUMBER
53180

RELEASE DATE

Oct. 02 2014

DUE DATE

Oct. 07 2014

TIME SPENT

5 hours

October 6, 2014

Exercises

Exercise 1.	2
Exercise 2.	3
Exercise 3.	4
Exercise 4.	5
Exercise 5.	6

Exercise 1.

Show that, for a consistent matrix norm, $\kappa(A) \geq 1$.

Proof.

$$\kappa(A) = ||A|| \cdot ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| = 1 \tag{1}$$

Note that the above $||\cdot||$ was for arbitrary induced matrix norm.

Lemma 1. For arbitrary matrix A and B, $||AB|| \le ||A|| \cdot ||B||$.

Proof.

$$||AB|| = \sup_{x \neq 0} \frac{||ABx||}{||x||} = \sup_{x \neq 0} \frac{||A(Bx)||}{||x||}$$
(2)

$$\leq \sup_{x \neq 0} \frac{||A|| \cdot ||Bx||}{||x||} \tag{3}$$

$$\leq \sup_{x \neq 0} \frac{||A|| \cdot ||B|| \cdot ||x||}{||x||} \tag{4}$$

$$= ||A|| \cdot ||B|| \tag{5}$$

Hence, it is concluded that $||AB|| \le ||A|| \cdot ||B||$.

Lemma 2. For abitrary norm $||\cdot||$ and identity matrix I, ||I|| = 1.

Proof.

$$||I|| = \sup_{x \neq 0} \frac{||I \cdot x||}{||x||} = \sup_{x \neq 0} \frac{||x||}{||x||} = 1$$
(6)

Exercise 2.

If A has lineraly independent columns, show that $||(A^HA)^{-1}A^H||_2 = \frac{1}{\sigma_{n-1}}$, where σ_{n-1} equals the smallest signlar value of A.

Proof. Let U, Σ and V be singular value decomposition of A, such that $A = U\Sigma V^H$.

$$||(A^{H}A)^{-1}A^{H}||_{2} = ||((U\Sigma V^{H})^{H}U\Sigma V^{H})^{-1}(U\Sigma V^{H})^{H}||_{2}$$
(7)

$$= ||(V\Sigma^H U^H U \Sigma V^H)^{-1} V \Sigma^H U^H||_2 \tag{8}$$

$$= ||(V\Sigma^H \Sigma V^H)^{-1} V \Sigma^H U^H||_2 \tag{9}$$

$$= ||V^{-H} \Sigma^{-1} \Sigma^{-H} V^{-1} V \Sigma^{H} U^{H}||_{2}$$
(10)

$$= ||V^{-H}\Sigma^{-1}\Sigma^{-H}\Sigma^{H}U^{H}||_{2} \tag{11}$$

$$= ||V^{-H}\Sigma^{-1}U^{H}||_{2} \tag{12}$$

$$=||V\Sigma^{-1}U^H||_2\tag{13}$$

$$= ||\Sigma^{-1}||_2 \tag{14}$$

$$=\frac{1}{\sigma_{n-1}}\tag{15}$$

Lemma 3. (Unitary Invariance) For arbitrary unitary matrix U,

$$||UA||_2 = ||AU||_2 = ||A||_2 \tag{16}$$

Lemma 4. For arbitrary diagonal matrix Σ ,

$$||\Sigma^{-1}||_2 = \frac{1}{\sigma_{n-1}} \tag{17}$$

where, σ_{n-1} is the least entry of Σ .

Note that above two lemmas have been proven in exercises of previou notes.

Exercise 3.

Let A have linearly independent columns. Show that $\kappa_2(A^HA) = \kappa_2(A)^2$.

Proof. We achieve the proof by employing SVD over A. Let unitary matrix U, diagonal matrix Σ and unitary matrix V be singular value decomposition of A, such that $A = U\Sigma V^H$. We start from the definition of condition number $\kappa_2(\cdot)$.

$$\kappa_2(A^H A) = ||A^H A||_2 \cdot ||(A^H A)^{-1}||_2 \tag{18}$$

Then we discuss the term $||A^HA||_2$ and $||(A^HA)^{-1}||_2$ respectively.

$$||A^{H}A||_{2} = ||(U\Sigma V^{H})^{H}U\Sigma V^{H}||_{2}$$
(19)

$$=||V\Sigma^H U^H U\Sigma V^H||_2 \tag{20}$$

$$=||V\Sigma^{H}\Sigma V^{H}||_{2} \tag{21}$$

$$=||\Sigma^H \Sigma||_2 \tag{22}$$

$$=\sigma_0^2\tag{23}$$

$$= ||A||_2^2 \tag{24}$$

Note that σ_0 is the largest singular value of matrix A and also the largest entry of Σ .

$$||(A^{H}A)^{-1}||_{2} = ||((U\Sigma V^{H})^{H}U\Sigma V^{H})^{-1}||_{2}$$
(25)

$$= || \left(V \Sigma^H U^H U \Sigma V^H \right)^{-1} ||_2 \tag{26}$$

$$= ||(V\Sigma^H \Sigma V^H)^{-1}||_2 \tag{27}$$

$$= ||V^{-H} \Sigma^{-1} \Sigma^{-H} V^{-1}||_2 \tag{28}$$

$$=||\Sigma^{-1}\Sigma^{-H}||_2\tag{29}$$

$$= ||\Sigma^{-1}\Sigma^{-1}||_2 \tag{30}$$

$$=\frac{1}{\sigma_{n-1}^2}$$
 (31)

$$= ||A^{-1}||_2^2 \tag{32}$$

Now we have

$$||A^H A||_2 = ||A||_2^2 \tag{33}$$

$$||(A^{H}A)^{-1}||_{2} = ||A^{-1}||_{2}^{2}$$
(34)

Then

$$\kappa_2(A^H A) = ||A^H A||_2 \cdot ||(A^H A)^{-1}||_2 \tag{35}$$

$$= ||A||_2^2 \cdot ||A^{-1}||_2^2 \tag{36}$$

$$= (||A||_2 \cdot ||A^{-1}||_2)^2 \tag{37}$$

$$= \kappa_2(A)^2 \tag{38}$$

Hence, it can be concluded that

$$\kappa_2(A^H A) = \kappa_2(A)^2 \tag{39}$$

Exercise 4.

Exercise 5.

Let $U \in \mathbb{C}^{n \times n}$ be unitary. Show that $\kappa_2(U) = 1$.

Proof.

$$\kappa_2(U) = ||U||_2 ||U^{-1}||_2 \tag{40}$$

$$= \sup_{x \neq 0} \frac{||Ux||_2}{||x||_2} \cdot \sup_{y \neq 0} \frac{||U^{-1}y||_2}{||y||_2}$$
(41)

$$= \sup_{x \neq 0} \frac{||x||_2}{||x||_2} \cdot \sup_{y \neq 0} \frac{||y||_2}{||y||_2}$$
(42)

$$=1\cdot 1\tag{43}$$

$$=1 \tag{44}$$

Lemma 5. For arbitrary unitary matrix U, its inverse U^{-1} is still unitary.

©Jimmy Lin(xl5224)