Planche nº 8. Topologie. Corrigé

Exercice nº 1

 $\textbf{Cas de la boule ferm\'e.} \ \mathrm{Soit} \ B = B_f(x_0, r) = \{u \in E / \ \|u - x_0\| \leqslant r\} \ (r \geqslant 0). \ \mathrm{Soient} \ (u, v) \in B^2 \ \mathrm{et} \ \lambda \in [0, 1].$

$$\begin{aligned} \|(\lambda u + (1 - \lambda)v) - x_0\| &= \|\lambda (u - x_0) + (1 - \lambda) (v - x_0)\| \\ &\leq \lambda \|u - x_0\| + (1 - \lambda) \|v - x_0\| \\ &\leq \lambda r + (1 - \lambda)r = r \end{aligned}$$

Ainsi, $\forall (u, v) \in B^2$, $\forall \lambda \in [0, 1]$, $\lambda u + (1 - \lambda)v \in B$ et donc B est convexe.

Cas de la boule ouverte. Soit $B = B_o(x_0, r) = \{u \in E / \|u - x_0\| < r\} \ (r > 0)$. Soient $(u, v) \in B^2$ et $\lambda \in [0, 1]$. Puisque $0 \le \lambda \le 1$ et $0 \le \|u - x_0\| < r$, on en déduit que $\lambda \|u - x_0\| < \lambda r$. D'autre part, $(1 - \lambda)\|v - x_0\| \le (1 - \lambda)r$ et donc

$$\|\lambda u + (1-\lambda)\nu - x_0\| = \|\lambda (u - x_0) + (1-\lambda)(\nu - x_0)\| \leqslant \lambda \|u - x_0\| + (1-\lambda)\|\nu - x_0\| < \lambda r + (1-\lambda)r = r.$$

Toute boule fermée (resp. ouverte) de l'espace vectoriel normé (E, || ||) est un convexe de l'espace vectoriel E.

Exercice nº 2

- 1) Puisque p>0 et q>0, $1=\frac{1}{p}+\frac{1}{q}>\frac{1}{p}$ et donc p>1. De même, q>1. D'autre part, $q=\frac{p}{p-1}$.
- a) 1ère solution. L'inégalité est immédiate quand x=0 ou y=0. Soient x>0 et y>0. La fonction ln est concave sur $]0,+\infty[$ car de dérivée seconde $x\mapsto -\frac{1}{x^2}$ négative sur $]0,+\infty[$. Donc,

$$\ln(xy) = \frac{1}{p}\ln(x^p) + \frac{1}{q}\ln(y^q) \leqslant \ln\left(\frac{x^p}{p} + \frac{y^q}{q}\right)$$

puis par croissance de la fonction exponentielle sur $\mathbb{R},\, xy\leqslant \frac{x^p}{\mathfrak{p}}+\frac{y^q}{\mathfrak{a}}.$

2ème solution. L'inégalité est immédiate quand y = 0. Soit y > 0 fixé.

Pour $x \ge 0$, on pose $f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy$. Puisque p > 1, la fonction f est dérivable sur $[0, +\infty[$ et $\forall x \ge 0, f'(x) = x^{p-1} - y$. f admet donc un minimum en $x_0 = y^{1/(p-1)}$ égal à

$$f\left(y^{1/(p-1)}\right) = \frac{y^{p/(p-1)}}{p} + \frac{y^{p/(p-1)}}{q} - y^{1/(p-1)}y = y^{p/(p-1)}\left(\frac{1}{p} + \frac{1}{q} - 1\right) = 0.$$

Finalement, f est positive sur $[0, +\infty[$ et donc

$$\forall x \geqslant 0, \ \forall y \geqslant 0, \ xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

b) Posons
$$A = \sum_{k=1}^{n} |a_k|^p$$
 et $B = \sum_{k=1}^{n} |b_k|^q$.

Si A (ou B) est nul, tous les a_k (ou tous les b_k) sont nuls et l'inégalité est vraie.

On suppose dorénavant que A > 0 et B > 0. D'après la question a),

$$\sum_{k=1}^{n} \frac{|a_k|}{A^{1/p}} \times \frac{|b_k|}{B^{1/q}} \leqslant \sum_{k=1}^{n} \left(\frac{|a_k|^p}{pA} + \frac{|b_k|^q}{qB} \right) = \frac{1}{pA} \sum_{k=1}^{n} |a_k|^p + \frac{1}{qB} \sum_{k=1}^{n} |b_k|^q = \frac{1}{pA} \times A + \frac{1}{qB} \times B = \frac{1}{p} + \frac{1}{q} = 1,$$

$$\mathrm{et}\;\mathrm{donc}\;\sum_{k=1}^{n}|a_{k}||b_{k}|\leqslant A^{1/p}B^{1/q}=\left(\sum_{k=1}^{n}|a_{k}|^{p}\right)^{1/p}\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)^{1/q}.\;\mathrm{Comme}\left|\sum_{k=1}^{n}a_{k}b_{k}\right|\leqslant\sum_{k=1}^{n}|a_{k}||b_{k}|,\;\mathrm{on\;a\;montr\'e\;que}$$

$$\left|\forall \left((\alpha_k)_{1\leqslant k\leqslant n},(b_k)_{1\leqslant k\leqslant n}\right)\in (\mathbb{R}^n)^2, \ \left|\sum_{k=1}^n \alpha_k b_k\right|\leqslant \left(\sum_{k=1}^n |\alpha_k|^p\right)^{1/p} \left(\sum_{k=1}^n |b_k|^q\right)^{1/q} \text{ (Inégalité de HÖLDER)}.$$

Remarque. Quand p=q=2, on a bien $\frac{1}{p}+\frac{1}{q}=1$ et l'inégalité de HÖLDER s'écrit

$$\sum_{k=1}^n |\alpha_k b_k| \leqslant \left(\sum_{k=1}^n |\alpha_k|^2\right)^{1/2} \left(\sum_{k=1}^n |b_k|^2\right)^{1/2} \text{ (inégalité de Cauchy-Schwarz)}.$$

c) Soit $((a_k)_{1\leqslant k\leqslant n},(b_k)_{1\leqslant k\leqslant n})\in (\mathbb{R}^n)^2$. D'après l'inégalité de HÖLDER, on a

$$\begin{split} \sum_{k=1}^{n} (|a_k| + |b_k|)^p &= \sum_{k=1}^{n} |a_k| (|a_k| + |b_k|)^{p-1} + \sum_{k=1}^{n} |b_k| (|a_k| + |b_k|)^{p-1} \\ &\leqslant \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} (|a_k| + |b_k|)^{(p-1)q} \right)^{1/q} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} (|a_k| + |b_k|)^{(p-1)q} \right)^{1/q} \\ &= \left(\left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \right) \left(\sum_{k=1}^{n} (|a_k| + |b_k|)^p \right)^{1-\frac{1}{p}}. \end{split}$$

Si $\sum_{k=1}^n (|\alpha_k|+|b_k|)^p=0,$ tous les α_k et les b_k sont nuls et l'inégalité est claire.

Sinon $\sum_{k=1}^{n} (|a_k| + |b_k|)^p > 0$ et après multiplication des deux membres de l'inégalité précédente par le réel strictement

$$\operatorname{positif} \left(\sum_{k=1}^{n} (|\alpha_k| + |b_k|)^p \right)^{-1 + \frac{1}{p}}, \, \operatorname{on \, obtient} \, \left(\sum_{k=1}^{n} |\alpha_k + b_k|^p \right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |\alpha$$

$$\boxed{\forall ((\alpha_k)_{1\leqslant k\leqslant n},(b_k)_{1\leqslant k\leqslant n})\in (\mathbb{R}^n)^2, \left(\sum_{k=1}^n |\alpha_k+b_k|^p\right)^{1/p}\leqslant \left(\sum_{k=1}^n |\alpha_k|^p\right)^{1/p} + \left(\sum_{k=1}^n |b_k|^p\right)^{1/p} \text{ (Inégalité de Minkowski)}.}$$

- 2) a) On sait déjà que N_1 est une norme sur \mathbb{R}^n . Soit $\alpha>1$.
 - (1) N_{α} est bien une application de \mathbb{R}^n dans \mathbb{R}^+ .
 - $(2) \ \mathrm{Soit} \ x=(x_k)_{1\leqslant k\leqslant n}\in \mathbb{R}^n. \ N_{\alpha}(x)=0 \Rightarrow \forall k\in [\![1,n]\!], \ |x_k|=0 \Rightarrow x=0.$

(3) Soient
$$\lambda \in \mathbb{R}$$
 et $x = (x_k)_{1 \leqslant k \leqslant n} \in \mathbb{R}^n$. $N_{\alpha}(\lambda x) = \left(\sum_{k=1}^n |\lambda x_k|^{\alpha}\right)^{1/\alpha} = (|\lambda|^{\alpha})^{1/\alpha} N_{\alpha}(x) = |\lambda| N_{\alpha}(x)$.

(4) L'inégalité triangulaire est l'inégalité de Minkowski.

$$\forall \alpha \in [1,+\infty[,\ N_{\alpha} \ \mathrm{est\ une\ norme\ sur}\ \mathbb{R}^{n}.$$

b) Quelques « boules unités » dans \mathbb{R}^2 .

Remarque. Toute boule unité est symétrique par rapport à O puisque $\forall x \in E, \ N(x) = N(-x)$ et donc

$$\forall x \in E, N(x) \leq 1 \Leftrightarrow N(-x) \leq 1.$$

c) Soient $\alpha \ge 1$ et $x \in E$. On a

$$N_{\infty}(x) \leqslant N_{\alpha}(x) \leqslant n^{1/\alpha} N_{\infty}(x),$$

et le théorème des gendarmes fournit $\lim_{\alpha \to +\infty} N_{\alpha}(x) = N_{\infty}(x)$.

$$\forall x \in E, \ \lim_{\alpha \to +\infty} N_{\alpha}(x) = N_{\infty}(x).$$

d) Soient $\alpha \in]0,1[$ puis $B=\{x\in \mathbb{R}^n/\ N_\alpha(x)\leqslant 1\}.$ Les vecteurs $x=(1,0,0,\ldots,0)$ et $y=(0,1,0,\ldots,0)$ sont des éléments de B. Le milieu du segment [x,y] est $z=\frac{1}{2}(1,1,0,\ldots,0).$

$$N_{\alpha}(z) = \frac{1}{2}(1^{\alpha} + 1^{\alpha})^{1/\alpha} = 2^{\frac{1}{\alpha} - 1} > 1 \text{ car } \frac{1}{\alpha} - 1 > 0$$

et donc $z \notin B$. Ainsi, B n'est pas convexe et donc N_{α} n'est pas une norme d'après l'exercice n° 1.

On peut remarquer que pour n = 1, les N_{α} coïncident toutes avec la valeur absolue.

Exercice nº 3

- ullet Il est connu que N est une norme sur E.
- ullet Montrons que N' est une norme sur E.
 - (1) N' est une application de E dans \mathbb{R}^+ car pour f dans E, f' est continue sur le segment [0,1] et donc f' est intégrable sur le segment [0,1].
 - (2) Soit $f \in E$. Si N'(f) = 0 alors f(0) = 0 et f' = 0 (fonction continue positive d'intégrale nulle). Par suite, f est un polynôme de degré inférieur ou égal à 0 tel que f(0) = 0 et on en déduit que f = 0.

$$(3) \ \forall f \in E, \ \forall \lambda \in \mathbb{R}, \ N'(\lambda f) = |\lambda f(0)| + \int_0^1 |\lambda f'(t)| \ dt = |\lambda| \left(|f(0)| + \int_0^1 |f'(t)| \ dt\right) = |\lambda| N'(f).$$

(4) Soit $(f, g) \in E^2$.

$$N'(f+g) \leqslant |f(0)| + |g(0)| + \int_0^1 |f'(t)| \ dt + \int_0^1 |g'(t)| dt = N'(f) + N'(g).$$

Donc N' est une norme sur E.

 $\bullet \ \text{Montrons que N'' est une norme sur E. On note que $\forall f \in E$, $N''(f) = |f(0)| + N'(f')$ et tout est immédiat.}$

$$N, N'$$
 et N'' sont des normes sur E .

• Soit $f \in E$ et $t \in [0, 1]$. Puisque la fonction f' est continue sur [0, 1]

$$|f(t)| = \left|f(0) + \int_0^t f'(u) \ du \right| \leqslant |f(0)| + \int_0^t |f'(u)| du \leqslant |f(0)| + \int_0^1 |f'(u)| \ du = N'(f),$$

$$\mathrm{et\ donc\ }N(f)=\int_0^1|f(t)|\ dt\leqslant \int_0^1N'(f)\ dt=N'(f).$$

Ensuite en appliquant le résultat précédent à f', on obtient

$$N'(f) = |f(0)| + N(f') \le |f(0)| + N'(f') = N''(f).$$

Finalement

$$\forall f \in E, \ N(f) \leqslant N'(f) \leqslant N''(f).$$

Pour $n \in \mathbb{N}$ et $t \in [0, 1]$, on pose $f_n(t) = t^n$.

$$N(f_n) = \int_0^1 t^n \ dt = \frac{1}{n+1} \ \text{et donc la suite } (f_n)_{n \in \mathbb{N}} \ \text{tend vers 0 dans l'espace vectoriel normé } (E,N).$$

Par contre, pour $n \geqslant 1$, $N'(f_n) = n \int_0^1 t^{n-1} dt = 1$ et la suite $(f_n)_{n \in \mathbb{N}}$ ne tend pas vers 0 dans l'espace vectoriel normé (E,N'). On en déduit que

les normes N et N^\prime ne sont pas des normes équivalentes.

De même en utilisant $f_n(t) = \frac{t^n}{n}$, on montre que les normes N' et N'' ne sont pas équivalentes.

Exercice nº 4

1) Soit $d: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$. On sait que l'application d est continue sur $\mathcal{M}_n(\mathbb{R})$ (muni de n'importe quelle $M \mapsto \det(M)$

norme) et que \mathbb{R}^* est un ouvert de \mathbb{R} en tant que réunion de deux intervalles ouverts.

Par suite, $GL_n(\mathbb{R}) = d^{-1}(\mathbb{R}^*)$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un ouvert par une application continue.

Soit $A \in \mathscr{M}_n(\mathbb{R})$. Le polynôme $\det{(A-XI_n)}$ n'a qu'un nombre fini de racines (éventuellement nul). Donc pour \mathfrak{p} entier naturel supérieur ou égal à un certain entier $\mathfrak{p}_0 \in \mathbb{N}^*$, $\det{\left(A-\frac{1}{\mathfrak{p}}I\right)} \neq 0$. La suite $\left(A-\frac{1}{\mathfrak{p}}I\right)_{\mathfrak{p}\geqslant \mathfrak{p}_0}$ est une suite d'éléments de $GL_n(\mathbb{R})$, convergente, de limite A. Ceci montre que l'adhérence de $GL_n(\mathbb{R})$ est $\mathscr{M}_n(\mathbb{R})$ ou encore $GL_n(\mathbb{R})$ est dense dans $\mathscr{M}_n(\mathbb{R})$.

$$\mathsf{GL}_n(\mathbb{R})$$
 est un ouvert de $\mathscr{M}_n(\mathbb{R})$, dense dans $\mathscr{M}_n(\mathbb{R})$.

2) $\mathcal{M}_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ est fermé en tant que complémentaire d'un ouvert.

Soit $n \ge 2$. Les matrices $A_p = pE_{1,1}$, $p \in \mathbb{N}$, sont non inversibles et la suite $(A_p)_{p \in \mathbb{N}}$ est non bornée. Par suite $\mathscr{M}_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ est non borné et donc non compact.

$$\forall n\geqslant 2,\, \mathscr{M}_n(\mathbb{R})\setminus \mathsf{GL}_n(\mathbb{R}) \text{ est ferm\'e mais non compact}.$$

3) • Montrons que $O_n(\mathbb{R})$ est fermé. Posons $g: \mathcal{M}_n(\mathbb{R}) \to (\mathcal{M}_n(\mathbb{R}))^2$, $h: (\mathcal{M}_n(\mathbb{R}))^2 \to \mathcal{M}_n(\mathbb{R})$ puis $M \mapsto (M, M^T)$ $(M, N) \mapsto MN$ $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(R)$ de sorte que $f = h \circ g$. $M \mapsto MM^T$

 $g \text{ est continue sur } \mathcal{M}_n(\mathbb{R}) \text{ car linéaire sur un espace de dimension finie. h est continue sur } (\mathcal{M}_n(\mathbb{R}))^2 \text{ car bilinéaire sur un espace de dimension finie.}$ espace de dimension finie. On en déduit que $f = h \circ g$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

Enfin $O_n(\mathbb{R}) = f^{-1}(\{I_n\})$ est fermé en tant qu'image réciproque d'un fermé (boule fermée de centre I_n et de rayon 0) par une application continue.

• Montrons que $O_n(\mathbb{R})$ est borné. $\forall A \in O_n(\mathbb{R}), \ \forall (i,j) \in [1,n]^2, \ |a_{i,j}| \leq 1 \ \text{et donc} \ \forall A \in O_n(\mathbb{R}), \ ||A||_{\infty} \leq 1.$

D'après le théorème de Borel-Lebesgue, puisque $O_n(\mathbb{R})$ est un fermé borné de l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$, $O_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.

 $O_n(\mathbb{R})$ n'est pas convexe. En effet, les deux matrices I_n et $-I_n$ sont orthogonales mais le milieu du segment joignant ces deux matrices est 0 qui n'est pas une matrice orthogonale.

$O_n(\mathbb{R})$ est compact mais non convexe.

4) $\mathscr{S}_n(\mathbb{R})$ est un sous espace vectoriel de l'espace de dimension finie $\mathscr{M}_n(\mathbb{R})$ et est donc un fermé de $\mathscr{M}_n(\mathbb{R})$.

$$\mathscr{S}_{n}(\mathbb{R})$$
 est fermé.

5) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et p un élément fixé de [1, n-1] (le résultat est clair si p=0 ou p=n).

A est de rang inférieur ou égal à p si et seulement si tous ses mineurs de format p+1 sont nuls.

Soient I et J deux sous-ensembles donnés de [1, n] de cardinal p + 1 et $A_{I,J}$ la matrice extraite de A de format p + 1 dont les numéros de lignes sont dans I et les numéros de colonnes sont dans J.

Pour I et J donnés, l'application $A\mapsto A_{I,J}$ est continue car linéaire de $\mathscr{M}_n(\mathbb{R})$ dans $\mathscr{M}_{p+1}(\mathbb{R})$. Par suite, l'application $f_{I,J} \ : \ A \mapsto \det(A_{I,J}) \text{ est continue sur } \mathscr{M}_n(\mathbb{R}). \text{ L'ensemble des matrices } A \text{ telles que } \det(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que } \det(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que } \det(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que } \det(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que de matrices } A \text{ telles que det}(A_{I,J}) = 0 \text{ est donc un ferm\'e de matrices } A \text{ telles que de matrices } A \text{$ $M_n(\mathbb{R})$ (image réciproque du fermé $\{0\}$ de \mathbb{R} par l'application continue $f_{I,J}$) et l'ensemble des matrices de rang inférieur ou égal à p est un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'intersection de fermés (les $f_{I,I}^{-1}(\{0\})$ où I et J sont des parties de [1,n] à p + 1 éléments).

6) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Posons $Sp(A) = (\lambda_i)_{1 \leq i \leq n}$. On sait que toute matrice est triangulable dans \mathbb{C} et donc il existe $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{T}_n(\mathbb{C})$ avec $\forall i \in [1, n], t_{i,i} = \lambda_i$ telle que $A = PTP^{-1}$.

On munit dorénavant $\mathcal{M}_n(\mathbb{C})$ d'une norme multiplicative notée $\| \ \|$. Puisque toutes les normes sont équivalentes en dimension finie, il existe un réel strictement positif K telle que pour toute matrice M, $||M|| \leq K||M||_{\infty}$.

Soit $\epsilon > 0$. Il existe un n-uplet de réels $(\epsilon_1,...,\epsilon_n)$ tels que $\forall k \in [\![1,n]\!], \ 0 \leqslant \epsilon_k \leqslant \frac{\epsilon}{K\|P\|\|P^{-1}\|}$ et les $\lambda_k + \epsilon_k$ sont deux

à deux distincts. (On prend $\epsilon_1=0$ puis ϵ_2 dans $\left[0,\frac{\epsilon}{K\|P\|\|P^{-1}\|}\right[$ tel que $\lambda_2+\epsilon_2\neq\lambda_1+\epsilon_1$ ce qui est possible puisque

 $\left\lceil 0, \frac{\epsilon}{K\|P\|\|P^{-1}\|} \right\rceil \text{ est infini puis } \epsilon_3 \text{ dans } \left\lceil 0, \frac{\epsilon}{K\|P\|\|P^{-1}\|} \right\rceil \text{ tel que } \lambda_3 + \epsilon_3 \text{ soit différent de } \lambda_1 + \epsilon_1 \text{ et } \lambda_2 + \epsilon_2 \text{ ce qui est } \lambda_3 + \epsilon_3 \text{ soit différent de } \lambda_1 + \epsilon_1 \text{ et } \lambda_2 + \epsilon_2 \text{ ce qui est } \lambda_3 + \epsilon_3 \text{ soit différent de } \lambda_3$ possible puisque $\left|0, \frac{\varepsilon}{K \|P\| \|P^{-1}\|}\right|$ est infini ...)

On pose $D = \operatorname{diag}(\varepsilon_i)_{1 \le i \le n}$ puis T' = T + D et enfin $A' = PT'P^{-1}$. Tout d'abord les valeurs propres de A' sont deux à deux distinctes (ce sont les $\lambda_i + \varepsilon_i$, $1 \le i \le n$) et donc A' est diagonalisable. Ensuite

$$\|A'-A\| = \|PDP^{-1}\| \leqslant \|P\|\|D\|\|P^{-1}\| \leqslant K\|P\|\|P^{-1}\|\|D\|_{\infty} \leqslant \epsilon.$$

En résumé, $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall \varepsilon > 0, \exists A' \in \mathcal{M}_n(\mathbb{C}) / \|A' - A\| \leq \varepsilon$ et A' diagonalisable. On a montré que

l'ensemble des matrices complexes diagonalisables dans \mathbb{C} est dense dans $\mathscr{M}_{n}(\mathbb{C})$.

On ne peut remplacer
$$\mathcal{M}_n(\mathbb{C})$$
 par $\mathcal{M}_n(\mathbb{R})$.
Soient $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $E = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.

$$\chi_{A+E} = \left| \begin{array}{cc} X-\alpha & -c+1 \\ -b-1 & X-d \end{array} \right| = X^2 - (\alpha+d)X + (\alpha d - bc) + (b-c) + 1.$$

Le discriminant de χ_{A+E} est $\Delta = (a+d)^2 - 4(ad-bc) - 4(b-c) - 4$. Supposons de plus que $\|E\|_{\infty} \leqslant \frac{1}{4}$. Alors

$$\Delta = (\alpha + d)^2 - 4(\alpha d - bc) - 4(b - c) - 4 \leqslant \frac{1}{4} + 4\left(\frac{1}{16} + \frac{1}{16}\right) + 4\left(\frac{1}{4} + \frac{1}{4}\right) - 4 = -\frac{5}{4} < 0.$$

Par suite, aucune des matrices A + E avec $\|E\|_{\infty} \leq \frac{1}{4}$ n'a de valeurs propres réelles et donc aucune de ces matrices n'est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$. On a montré que l'ensemble des matrices réelles diagonalisables dans $\mathcal{M}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.

- 7) Notons $\mathcal S$ l'ensemble des matrices stochastiques.
- Vérifions que \mathscr{S} est borné. Soit $A=(\mathfrak{a}_{\mathfrak{i},\mathfrak{j}})_{1\leqslant\mathfrak{i},\mathfrak{j}\leqslant\mathfrak{n}}\in\mathscr{S}.\ \forall (\mathfrak{i},\mathfrak{j})\in[\![1,\mathfrak{n}]\!]^2,\ 0\leqslant\mathfrak{a}_{\mathfrak{i},\mathfrak{j}}\leqslant1$ et donc $\|A\|_{\infty}\leqslant1$. Ainsi, $\forall A\in\mathscr{S},\|A\|_{\infty}\leqslant1$ et donc \mathscr{S} est borné.
- \bullet Vérifions que ${\mathscr S}$ est fermé.

Soit $(i,j) \in [1,n]^2$. L' application $f_{i,j}: A \mapsto a_{i,j}$ est continue sur $\mathcal{M}_n(\mathbb{R})$ à valeurs dans \mathbb{R} car linéaire sur $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie. $[0,+\infty[$ est un fermé de \mathbb{R} car son complémentaire $]-\infty,0[$ est un ouvert de \mathbb{R} . Par suite, $\{A=(a_{k,l})_{1\leqslant k,l\leqslant n}/a_{i,j}\geqslant 0\}=f_{i,j}^{-1}([0,+\infty[)])$ est un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé par une application continue.

Soit $i \in [1, n]$. L'application $g_i : A \mapsto \sum_{j=1}^n \alpha_{i,j}$ est continue sur $\mathcal{M}_n(\mathbb{R})$ à valeurs dans \mathbb{R} car linéaire sur $\mathcal{M}_n(\mathbb{R})$ qui est

de dimension finie. Le singleton {1} est un fermé de \mathbb{R} . Par suite, $\left\{A=(\alpha_{k,l})_{1\leqslant k,l\leqslant n}/\sum_{j=1}^n\alpha_{i,j}=1\right\}=g_i^{-1}(\{1\}) \text{ est un fermé de }\mathbb{R}.$

fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé par une application continue.

$$\mathscr{S} = \left(\bigcap_{i,j} f_{i,j}^{-1}([0,+\infty[)\right) \cap \left(\bigcap_{i} g_{i}^{-1}(\{1\})\right) \text{ est donc un ferm\'e de } \mathscr{M}_{n}(\mathbb{R}) \text{ en tant qu'intersection de ferm\'es de } \mathscr{M}_{n}(\mathbb{R}).$$

En résumé, $\mathscr S$ est un fermé borné de l'espace $\mathscr M_n(\mathbb R)$ qui est de dimension finie et donc $\mathscr S$ est un compact de $\mathscr M_n(\mathbb R)$ d'après le théorème de BOREL-LEBESGUE.

• Vérifions que \mathscr{S} est convexe. Soient $(A,B) \in \mathscr{S}^2$ et $\lambda \in [0,1]$. D'une part, $\forall (i,j) \in [\![1,n]\!]^2$, $(1-\lambda)a_{i,j} + \lambda b_{i,j} \geqslant 0$ et d'autre part, pour $i \in [\![1,n]\!]$

$$\sum_{j=1}^n ((1-\lambda)\alpha_{\mathfrak{i},j} + \lambda b_{\mathfrak{i},j}) = (1-\lambda)\sum_{j=1}^n \alpha_{\mathfrak{i},j} + \lambda \sum_{j=1}^n b_{\mathfrak{i},j} = (1-\lambda) + \lambda = 1,$$

ce qui montre que $(1-\lambda)A + \lambda B \in \mathscr{S}$. On a montré que $\forall (A,B) \in \mathscr{S}^2, \ \forall \lambda \in [0,1], \ (1-\lambda)A + \lambda B \in \mathscr{S}$ et donc \mathscr{S} est convexe.

L'ensemble des matrices stochastiques est un compact convexe de $\mathcal{M}_n(\mathbb{R})$.

8) Soient A et B deux matrices réelles diagonalisables. Soient $\gamma_1: [0,1] \to \mathcal{M}_n(\mathbb{R})$ et $t \mapsto (1-t).A + t.0 = (1-t)A$ $\gamma_2: [0,1] \to \mathcal{M}_n(\mathbb{R})$. Soit enfin $\gamma: [0,1] \to \mathcal{M}_n(\mathbb{R})$. $t \mapsto tB$ $t \mapsto \begin{cases} \gamma_1(2t) \text{ si } t \in \left[0,\frac{1}{2}\right] \\ \gamma_2(2t-1) \text{ si } t \in \left[\frac{1}{2},1\right] \end{cases}$

 γ_1 est un chemin continu joignant la matrice A à la matrice nulle et γ_2 est un chemin continu joignant la matrice nulle à la matrice B. Donc γ est un chemin continu joignant la matrice A à la matrice B. De plus, pour tout réel $t \in [0,1]$, la matrice $\gamma_1(t) = (1-t)A$ est diagonalisable (par exemple, si A = P diag $(\lambda_i)_{1 \leq i \leq n}$ P^{-1} alors (1-t)A = P diag $((1-t)\lambda_i)_{1 \leq i \leq n}$ P^{-1}) et de même, pour tout réel $t \in [0,1]$, la matrice $\gamma_2(t) = tB$ est diagonalisable. Finalement γ est un chemin continu joignant les deux matrices A et B diagonalisables dans $\mathcal{M}_n(\mathbb{R})$, contenu dans l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{R})$. On a montré que

l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{R})$ est connexe par arcs.

Exercice nº 5

1ère solution. Montrons qu'entre deux réels distincts, il existe un rationnel.

Soient x et y deux réels tels que x < y. Soient d = y - x puis n un entier naturel non nul tel que $\frac{1}{n}$ < d (par exemple, $n = \left\lfloor \frac{1}{d} \right\rfloor + 1$). Soient enfin k = E(nx) et $r = \frac{k+1}{n}$. r est un rationnel et de plus

$$x=\frac{nx}{n}<\frac{k+1}{n}=r\leqslant \frac{nx+1}{n}=x+\frac{1}{n}< x+d=y.$$

En résumé, $\forall (x,y) \in \mathbb{R}^2$, $(x < y \Rightarrow \exists r \in \mathbb{Q} / x < r < y)$. Ceci montre que \mathbb{Q} est dense dans \mathbb{R} .

2ème solution. On sait que tout réel est limite d'une suite de décimaux et en particulier tout réel est limite d'une suite de rationnels. Donc \mathbb{Q} est dense dans \mathbb{R} .

 \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Exercice nº 6

- 1) Soit A une partie de E. \overline{A} est fermé et donc $\overline{(\overline{A})} = \overline{A}$. \mathring{A} est ouvert et donc $\mathring{A} = \mathring{A}$.
- 2) Soient A et B deux parties de E telles que $A \subset B$. Si $\overline{A} = \emptyset$ (resp. $\overset{\circ}{A} = \emptyset$), alors $\overline{A} \subset \overline{B}$ (resp. $\overset{\circ}{A} \subset \overset{\circ}{B}$). Sinon,
 - $\bullet \text{ Pour tout } x \in E, \ x \in \overline{A} \Rightarrow \forall V \in \mathscr{V}(x), \ V \cap A \neq \varnothing \Rightarrow \forall V \in \mathscr{V}(x), \ V \cap B \neq \varnothing \Rightarrow x \in \overline{B}. \ \mathrm{Donc} \ \overline{A} \subset \overline{B}.$
 - Pour tout $x \in E$, $x \in \mathring{A} \Rightarrow A \in \mathscr{V}(x) \Rightarrow B \in \mathscr{V}(x) \Rightarrow x \in \mathring{B}$. Donc $\mathring{A} \subset \mathring{B}$.
- 3) Soient A et B deux parties de E.

 $\overline{A} \cup \overline{B}$ est une partie fermée de E contenant $A \cup B$. Donc $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ (puisque $\overline{A \cup B}$ est le plus petit fermé de E au sens de l'inclusion contenant $A \cup B$).

 $\text{R\'{e}ciproque}\underline{\text{ment}},\ A \subseteq A \cup B \text{ et } B \subset A \cup B \Rightarrow \overline{A} \subset \overline{A \cup B} \text{ et } \overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}.$ Finalement $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

 $\label{eq:bounds} \mathring{A} \cap \mathring{B} \text{ est un ouvert contenu dans } A \cap B \text{ et donc } \mathring{A} \cap \mathring{B} \subset A \overset{\circ}{\cap} B.$ Réciproquement , $A \cap B \subset A \text{ et } A \cap B \subset B \Rightarrow A \overset{\circ}{\cap} B \subset \mathring{A} \text{ et } A \overset{\circ}{\cap} B \subset \mathring{B} \Rightarrow A \overset{\circ}{\cap} B \subset \mathring{A} \cap \mathring{B}.$ Finalement, $\mathring{A} \overset{\circ}{\cap} B = \mathring{A} \cap \mathring{B}.$

4) $\overline{A} \cap \overline{B}$ est un fermé contenant $A \cap B$ et donc $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

On n'a pas nécessairement l'égalité. Si A = [0, 1[et $B =]1, 2], A \cap B = \emptyset$ puis $\overline{A \cap B} = \emptyset$ mais $\overline{A} \cap \overline{B} = [0, 1] \cap [1, 2] = \{1\} \neq \emptyset$.

 $\overset{\circ}{A} \cup \overset{\circ}{B} \ \mathrm{est} \ \mathrm{un} \ \mathrm{ouvert} \ \mathrm{contenu} \ \mathrm{dans} \ A \cup B \ \mathrm{et} \ \mathrm{donc} \ \overset{\circ}{A} \cup \overset{\circ}{B} \subset A \overset{\circ}{\cup} B.$

On n'a pas nécessairement l'égalité. Si A=[0,1] et $B=[1,2], A\cup B=[0,2]$ puis $A\overset{\circ}{\cup}B=]0,2[$ mais $\overset{\circ}{A}\cup\overset{\circ}{B}=]0,1[\cup]1,2[\neq]0,2[$.

5) Soient A et B deux parties de E. Soit $x \in E$.

$$x \in A \overset{\circ}{\backslash} B \Leftrightarrow A \backslash B \in \mathscr{V}(x) \Leftrightarrow \exists \mathscr{B} \text{ boule ouverte de centre } x \text{ telle que } \mathscr{B} \subset A \backslash B \\ \Leftrightarrow \exists \mathscr{B} \text{ boule ouverte de centre } x \text{ telle que } \mathscr{B} \subset A \text{ et } \mathscr{B} \subset {}^{c}B \Leftrightarrow A \in \mathscr{V}(x) \text{ et }{}^{c}B \in \mathscr{V}(x) \\ \Leftrightarrow x \in \overset{\circ}{A} \text{ et } x \in ({}^{c}\overset{\circ}{B}) \Leftrightarrow x \in \overset{\circ}{A} \text{ et } x \in {}^{c}(\overline{B}) \Leftrightarrow x \in \overset{\circ}{A} \cap {}^{c}(\overline{B}) \Leftrightarrow x \in \overset{\circ}{A} \backslash \overline{B}.$$

Donc $A \stackrel{\circ}{\setminus} B = \stackrel{\circ}{A} \setminus \overline{B}$.

$$\frac{\circ}{\circ} \quad \overline{\circ} \quad \overline{\circ}$$

$$\overset{\circ}{\overline{A}}\subset \overline{\overset{\circ}{\overline{A}}}\Rightarrow \overset{\circ}{\overline{A}}=\overset{\circ}{\overline{A}}\subset \overline{\overset{\circ}{\overline{A}}}. \text{ D'autre part } \overset{\circ}{\overline{A}}\subset \overline{\overline{A}}=\overline{A}\Rightarrow \overline{\overset{\circ}{\overline{A}}}\subset \overline{\overset{\circ}{\overline{A}}}=\overline{\overset{\circ}{\overline{A}}}. \text{ Finalement, } \overset{\circ}{\overline{\overset{\circ}{\overline{A}}}}=\overset{\circ}{\overline{A}}.$$

Exercice nº 7

L'exercice n° 6 montre que l'on ne peut pas faire mieux.

Soit $A = ([0, 1[\cup]1, 2]) \cup \{3\} \cup (\mathbb{Q} \cap [4, 5]).$

- $\tilde{A} =]0, 1[\cup]1, 2[.$
- $\mathring{A} = [0, 2].$
- $\overset{\circ}{A} =]0, 2[.$ $\overline{A} = [0, 2] \cup \{3\} \cup [4, 5]$
- $\overline{A} =]0, 2[\cup]4, 5[.$

$$\bullet \ \overline{\overset{\circ}{A}} = [0,2] \cup [4,5].$$

Les 7 ensembles considérés sont deux à deux distincts.

Exercice nº 8

Soit $f \in E$. Pour $n \in \mathbb{N}^*$, soit g_n l'application définie par $\forall x \in [0,1], \ g_n(x) = f(x) + \frac{1}{n} \left| x - \frac{1}{2} \right|$.

Chaque fonction g_n est continue sur [0,1] mais non dérivable en $\frac{1}{2}$ ou encore $\forall n \in \mathbb{N}^*, g_n \in E \setminus D$. De plus, $\forall n \in \mathbb{N}^*$ $\|f - g_n\|_{\infty} = \frac{1}{2n}$. On en déduit que la suite $(g_n)_{n\geqslant 1}$ tend vers f dans l'espace vectoriel normé $(E, \|\ \|_{\infty})$.

f est donc limite d'une suite d'éléments de cD et donc est dans l'adhérence de cD . Ceci montre que $\overline{{}^cD} = E$ ou encore ${}^c\begin{pmatrix} \circ \\ D \end{pmatrix} = E$ ou enfin $\overset{\circ}{D} = \varnothing$.

Enfin, puisque $P \subset D$, on a aussi $\overset{\circ}{P} = \varnothing$.

Exercice nº 9

- 1) Soit $x \in E$. { $\|x a\|$, $a \in A$ } est une partie non vide et minorée (par 0) de \mathbb{R} . { $\|x a\|$, $a \in A$ } admet donc une borne inférieure dans \mathbb{R} . On en déduit l'existence de $d_A(x)$.
- 2) a) Soit A une partie fermée et non vide de E. Soit $x \in E$.
- Supposons que $x \in A$. Alors $0 \le f(x) = \inf\{\|x a\|, a \in A\} \le \|x x\| = 0$ et donc $d_A(x) = 0$.
- Supposons que $d_A(x) = 0$. Par définition d'une borne inférieure, $\forall \varepsilon > 0 \ \exists \alpha_{\varepsilon} \in A / \ \|x \alpha_{\varepsilon}\| < \varepsilon$.

Soit V un voisinage de x. V contient une boule ouverte de centre x et de rayon $\varepsilon > 0$ puis d'après ce qui précède, V contient un élément de A. Finalement, $\forall V \in \mathcal{V}(x), V \cap A \neq \emptyset$ et donc $x \in \overline{A} = A$.

Si A est fermée,
$$\forall x \in E$$
, $(d_A(x) = 0 \Leftrightarrow x \in A)$.

b) Posons $d = d_A(x)$. Pour chaque entier naturel n, il existe $a_n \in A$ tel que $d \leqslant \|x - a_n\| \leqslant d + \frac{1}{n+1}$.

 $\text{La suite } (\alpha_n)_{n \in \mathbb{N}} \text{ est born\'ee. En effet, } \forall n \in \mathbb{N}^* \ \|\alpha_n\| \leqslant \|\alpha_n - x\| + \|x\| \leqslant d + \frac{1}{n+1} + \epsilon x \| \leqslant d + \|x\| + 1.$

Puisque E est de dimension finie, d'après le théorème de BOLZANO-WEIERSTRASS, on peut extraire de la suite $(a_n)_{n\geqslant 1}$ une suite $(a_{\varphi(n)})_{n\geqslant 1}$ convergeant vers un certain élément a de E.

Ensuite, puisque A est fermée, on en déduit que $\mathfrak{a} \in A$. Puis, comme

$$\forall n \in \mathbb{N}^*, \ d \leqslant \|x - a_{\phi(n)}\| \leqslant d + \frac{1}{\phi(n) + 1},$$

et puisque $\varphi(n)$ tend vers l'infini quand n tend vers $+\infty$, on obtient quand n tend vers l'infini, $d = \lim_{n \to +\infty} \|x - a_{\varphi(n)}\|$. Maintenant on sait que l'application $y \mapsto \|y\|$ est continue sur l'espace normé $(E, \|\ \|)$ et donc

$$\lim_{n \to +\infty} \left\| x - \alpha_{\phi(n)} \right\| = \left\| x - \lim_{n \to +\infty} \alpha_{\phi(n)} \right\| = \|x - \alpha\|.$$

On a montré qu'il existe $a \in A$ tel que $d_A(x) = ||x - a||$.

3) Soit $x \in E$.

Puisque $A \subset \overline{A}$, $d_{\overline{A}}(x)$ est un minorant de $\{\|x-a\|, a \in A\}$. Comme $d_A(x)$ est le plus grand des minorants de $\{\|x-a\|, a \in A\}$, on a donc $d_{\overline{A}}(x) \leq d_A(x)$.

Soit alors $\varepsilon > 0$. Il existe $y \in \overline{A}$ tel que $\|x - y\| < d(x, \overline{A}) + \frac{\varepsilon}{2}$ et puis il existe $\alpha \in A$ tel que $\||y - \alpha\|| < \frac{\varepsilon}{2}$. On en déduit que

$$d_A(x)\leqslant \|x-\alpha\|\leqslant \|x-y\|+\|y-\alpha\|< d_{\overline{A}}(x)+\frac{\epsilon}{2}+\frac{\epsilon}{2}=d_{\overline{A}}(x)+\epsilon.$$

Ainsi, $\forall \epsilon > 0$, $d_A(x) < d_{\overline{A}}(x) + \epsilon$. Quand ϵ tend vers 0, on obtient $d_A(x) \leqslant d_{\overline{A}}(x)$.

Finalement

$$\forall x \in E, \ d_A(x) = d_{\overline{A}}(x).$$

4) Montrons que l'application d_A est lipschitzienne. Soit $(x,y) \in E^2$. Soit $a \in A$. $d_A(x) \le \|x-a\| \le \|x-y\| + \|y-a\|$. Donc, $\forall a \in A$, $d_A(x) - \|x-y\| \le \|y-a\|$ ou encore $d_A(x) - \|x-y\|$ est un minorant de $\{\|y-a\|, a \in A\}$. Puisque $d_A(y)$ est le plus grand des minorants de $\{\|y-a\|, a \in A\}$, on a donc

En résumé, $\forall (x,y) \in E^2$, $d_A(x) - d_A(y) \leq ||x - y||$.

En échangeant les rôles de x et y, on obtient $\forall (x,y) \in E^2, d_A(y) - d_A(x) \leqslant \|x - y\|$ et finalement

$$\forall (x,y) \in E^2, |d_A(x) - d_A(y)| \le ||x - y||.$$

Ainsi l'application $d_A:(E,\|\ \|)\to(\mathbb{R},|\ |)$ est 1-lipschitzienne et en particulier d_A est continue sur l'espace vectoriel $x\mapsto d_A(x)$

normé (E, || ||).

 $d_A(x) - \|x - y\| \leqslant d_A(y).$

- 5) Soient A et B deux parties fermées et non vides de E telles que $d_A = d_B$. Soit $a \in A$. $d_B(a) = d_A(a) = 0$ (d'après 2)) et donc $a \in B$ (d'après 2)). Ainsi $A \subset B$ puis, par symétrie des rôles, $B \subset A$ et finalement A = B.
- $\begin{aligned} \textbf{6)} \ &(A \text{ n'est pas un sous espace vectoriel de E.}) \\ &\text{Soit } f \in A. \ &1 \leqslant \int_0^1 f(t) \ dt \leqslant \int_0^1 |f(t)| \ dt \leqslant \|f\|_\infty. \ \text{Ainsi}, \ \forall f \in A, \ \|f-0\|_\infty \geqslant 1 \ \text{et donc} \ d_A(0) \geqslant 1. \end{aligned}$

$$\mathrm{Pour}\; n \in \mathbb{N}^* \; \mathrm{et}\; x \in [0,1], \, \mathrm{on}\; \mathrm{pose}\; f_n(x) = \left\{ \begin{array}{l} (n+1)x \; \mathrm{si}\; x \in \left[0,\frac{1}{n}\right] \\ 1 + \frac{1}{n} \; \mathrm{si}\; x \in \left[\frac{1}{n},1\right] \end{array} \right..$$

Pour chaque entier naturel non nul n, la fonction f_n est continue sur [0,1] et

$$\int_0^1 f_n(x) \ dx = \frac{1}{2n} \left(1 + \frac{1}{n} \right) + \left(1 - \frac{1}{n} \right) \left(1 + \frac{1}{n} \right) = 1 + \frac{1}{2n} - \frac{1}{2n^2} \geqslant 1.$$

Donc, la suite $(f_n)_{n\geqslant 1}$ est une suite d'éléments de A. On en déduit que $\forall n\in\mathbb{N}^*,\ d_A(0)\leqslant \|f_n\|_\infty=1+\frac{1}{n}.$ En résumé, $\forall n\in\mathbb{N}^*,\ 1\leqslant d_A(0)\leqslant 1+\frac{1}{n}$ et finalement

$$d_{A}(0) = 1.$$

Remarque. A est fermée mais la distance à A n'est malgré tout pas atteinte. En effet

- Soit $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de A convergeant dans l'espace vectoriel normé $(E, \| \|_{\infty})$ vers un certain élément f de E. La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1] et donc d'une part, $f(0) = \lim_{n\to +\infty} f_n(0) = 0$ et d'autre part $\int_0^1 f(x) \ dx = \int_0^1 \lim_{n\to +\infty} f_n(x) \ dx = \lim_{n\to +\infty} \int_0^1 f_n(x) \ dx \geqslant 1$. Donc $f \in A$ et on a montré que A est fermée.
- Supposons qu'il existe $f \in A$ telle que $\|f\|_{\infty} = 1$. Alors l'encadrement $1 \leqslant \int_0^1 f(x) \ dx \leqslant \|f\|_{\infty} = 1$ fournit $\int_0^1 f(x) \ dx = \|f\|_{\infty} = 1$ puis $\int_0^1 (\|f\|_{\infty} f(x)) \ dx = 0$ et donc $\|f\|_{\infty} f = 0$ (fonction continue positive d'intégrale nulle) ou encore f = 1 ce qui contredit f(0) = 0. On ne peut donc pas trouver $f \in A$ tel que $d_A(0) = d(0, f)$.

Exercice nº 10

1) Soit $x \in E$. Puisque D est dense dans E, il existe une suite $(d_n)_{n \in \mathbb{N}}$ d'éléments de D convergeant vers x et puisque f et g sont continues et coincident sur D et donc en chaque d_n ,

$$f(x)=f\left(\lim_{n\to +\infty}d_n\right)=\lim_{n\to +\infty}f(d_n)=\lim_{n\to +\infty}g(d_n)=g\left(\lim_{n\to +\infty}d_n\right)=g(x).$$

On a montré que f = g.

- 2) Soit $f \in \mathbb{R}^{\mathbb{R}}$. On suppose que $\forall (x,y) \in \mathbb{R}^2$ f(x+y) = f(x) + f(y). Soit a = f(1).
 - x = y = 0 fournit $f(0) = 0 = a \times 0$.
 - Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. $f(nx) = f(x + \ldots + x) = f(x) + \ldots + f(x) = nf(x)$. Ceci reste vrai pour n = 0.
 - En particulier, x = 1 fournit pour tout entier naturel non nul n, f(n) = nf(1) = an puis $x = \frac{1}{n}$ fournit

$$nf\left(\frac{1}{n}\right) = f(1) = a \text{ et donc } f\left(\frac{1}{n}\right) = \frac{a}{n}.$$

- Ensuite, $\forall (p,q) \in (\mathbb{N} \times \mathbb{N}^*)^2$, $f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = a\frac{p}{q}$.
- Soit $x \in \mathbb{R}$. L'égalité f(x) + f(-x) = f(0) = 0 fournit f(-x) = -f(x).
- $\bullet \ \mathrm{En \ particulier}, \, \forall (p,q) \in (\mathbb{N}^*)^2, \, f\left(-\frac{p}{q}\right) = -f\left(\frac{p}{q}\right) = -\alpha\frac{p}{q}.$

En résumé, si f est morphisme du groupe $(\mathbb{R},+)$ dans lui-même, $\forall r \in \mathbb{Q}, f(r) = ar$ où a = f(1).

Si de plus f est continue sur \mathbb{R} , les deux applications $f: x \mapsto f(x)$ et $g: x \mapsto ax$ sont continues sur \mathbb{R} et coïncident sur \mathbb{Q} qui est dense dans \mathbb{R} . D'après le 1), f = g ou encore $\forall x \in \mathbb{R}$, f(x) = ax où a = f(1).

Réciproquement, toute application linéaire $x \mapsto \alpha x$ est en particulier un morphisme du groupe $(\mathbb{R}, +)$ dans lui-même, continu sur \mathbb{R} .

Les morphismes continus du groupe $(\mathbb{R},+)$ dans lui-même sont les applications linéaires $x\mapsto \alpha x,\ \alpha\in\mathbb{R}$.

Exercice nº 11

Soit $\mathfrak{u}=(\mathfrak{u}_{\mathfrak{n}})_{\mathfrak{n}\in\mathbb{N}}$ une suite bornée de l'espace normé $(E,\|\ \|)$ ayant une unique valeur d'adhérence que l'on note ℓ . Montrons que la suite \mathfrak{u} converge vers ℓ .

Supposons par l'absurde que la suite $\mathfrak u$ ne converge pas vers $\ell.$ Donc

$$\exists \varepsilon > 0 / \forall n_0 \in \mathbb{N}, \ \exists n \geqslant n_0 / \|u_n - \ell\| > \varepsilon \quad (*).$$

ε est ainsi dorénavant fixé.

 $\mathrm{En\ appliquant\ }(\ast)\ \mathrm{\grave{a}}\ n_0=0,\ \mathrm{il\ existe\ un\ rang\ }\phi(0)\geqslant n_0=0\ \mathrm{tel\ que\ }\|u_{\phi(0)}-\ell\|\geqslant\epsilon.$

Puis en prenant $n_0 = \phi(0) + 1$, il existe un rang $\phi(1) > \phi(0)$ tel que $\|u_{\phi(1)} - \ell\| \ge \epsilon$... et on construit ainsi par récurrence une suite extraite $(u_{\phi(n)})_{n \in \mathbb{N}}$ telle que $\forall n \in \mathbb{N}, \|u_{\phi(n)} - \ell\| \ge \epsilon$.

Maintenant, la suite $\mathfrak u$ est bornée et il en est de même de la suite $(\mathfrak u_{\varphi(\mathfrak n)})$. Puisque E est de dimension finie, le théorème de BOLZANO-WEIERSTRASS permet d'affirmer qu'il existe une suite $(\mathfrak u_{\psi(\mathfrak n)})_{\mathfrak n\in\mathbb N}$ extraite de $(\mathfrak u_{\varphi(\mathfrak n)})$ et donc de $\mathfrak u$ convergeant vers un certain $\ell'\in E$. ℓ' est donc une valeur d'adhérence de la suite $\mathfrak u$. Mais quand $\mathfrak n$ tend vers $+\infty$ dans l'inégalité $\|\mathfrak u_{\psi(\mathfrak n)}-\ell\|\geqslant \epsilon$, on obtient $\|\ell'-\ell\|\geqslant \epsilon$ et donc $\ell\neq \ell'$. Ceci constitue une contradiction et donc $\mathfrak u$ converge vers ℓ .

Exercice nº 12

 $\mathrm{Pour}\ \alpha\in]0,\pi[,\ \mathrm{posons}\ f(\alpha)=\sup_{n\in\mathbb{Z}}|\sin(n\alpha)|=\sup_{n\in\mathbb{N}}|\sin(n\alpha)|.$

 $\bullet \ \, \text{Tout d'abord} \,\, \forall \alpha \in]0,\pi[,\,\forall n \in \mathbb{N},\, |\sin(n(\pi-\alpha))| = |\sin(n\alpha)| \,\, \text{et donc} \,\, \forall \alpha \in]0,\pi[,\, f(\pi-\alpha) = f(\alpha).$

On en déduit que $\inf_{\alpha \in]0,\pi[} f(\alpha) = \inf_{\alpha \in]0,\frac{\pi}{2}]} f(\alpha).$

- $f\left(\frac{\pi}{3}\right) = \sup\left\{0, \frac{\sqrt{3}}{2}\right\} = \frac{\sqrt{3}}{2}.$
- Ensuite, $\operatorname{si} \alpha \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right], \ f(\alpha) \geqslant \sin(\alpha) \geqslant \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} = f\left(\frac{\pi}{3}\right). \ \operatorname{Par suite}, \ \inf_{\alpha \in \left]0, \frac{\pi}{2}\right]} f(\alpha) = \inf_{\alpha \in \left]0, \frac{\pi}{3}\right]} f(\alpha).$
- $\bullet \text{ Soit alors } \alpha \in \left]0, \frac{\pi}{3}\right] \text{. Montrons qu'il existe un entier naturel non nul } n_0 \text{ tel que } n_0 \alpha \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right] \text{.}$

Il existe un unique entier naturel n_1 tel que $n_1\alpha\leqslant\frac{\pi}{3}<(n_1+1)\alpha$ à savoir $n_1=\left\lfloor\frac{\pi}{3\alpha}\right\rfloor$. Mais alors, $\frac{\pi}{3}<(n_1+1)\alpha=n_1\alpha+\alpha\leqslant\frac{\pi}{3}+\frac{\pi}{3}=\frac{2\pi}{3}$ et l'entier $n_0=n_1+1$ convient. Ceci montre que $f(\alpha)\geqslant\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}=f\left(\frac{\pi}{3}\right)$.

$$\text{Finalement } \forall \alpha \in]0,\pi[\text{, } f(\alpha) \geqslant f\left(\frac{\pi}{3}\right) \text{ et donc } \inf_{\alpha \in]0,\pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\} = \min_{\alpha \in]0,\pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\} = f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.$$

$$\inf_{\alpha \in]0,\pi[} \left\{ \sup_{\mathfrak{n} \in \mathbb{Z}} |\sin(\mathfrak{n}\alpha)| \right\} = \frac{\sqrt{3}}{2}.$$

Exercice nº 13

Soit f une application uniformément continue sur \mathbb{R} . $\exists \alpha > 0 / \forall (x,y) \in \mathbb{R}^2$, $(|x-y| \leqslant \alpha \Rightarrow |f(x)-f(y)| \leqslant 1)$. Soit $x \in \mathbb{R}^+$ (le travail est analogue si $x \in \mathbb{R}^-$).

Pour $n \in \mathbb{N}$

$$|x - n\alpha| \leqslant \alpha \Leftrightarrow -\alpha \leqslant x - n\alpha \leqslant \alpha \Leftrightarrow \frac{x}{\alpha} - 1 \leqslant n \leqslant \frac{x}{\alpha} + 1 \Leftarrow n = \left\lfloor \frac{x}{\alpha} \right\rfloor.$$

On pose $n_0 = \left\lfloor \frac{x}{\alpha} \right\rfloor$.

$$\begin{split} |f(x)| &\leqslant |f(x) - f(x - \alpha)| + |f(x - \alpha) - f(x - 2\alpha)| + \ldots + |f(x - (n_0 - 1)\alpha) - f(x - n_0\alpha)| + |f(x - n_0\alpha) - f(0)| + |f(0)| \\ &\leqslant n_0 + 1 + |f(0)| \; (\operatorname{car}|x - n_0\alpha - 0| \leqslant \alpha) \\ &\leqslant \frac{\kappa}{\alpha} + 2 + |f(0)|. \end{split}$$

Ainsi, $\forall x \in \mathbb{R}^+$, $|f(x)| \leqslant \frac{x}{\alpha} + 2 + |f(0)|$. Par symétrie des calculs (ou en appliquant à la fonction $x \mapsto f(-x)$), $\forall x \in \mathbb{R}^-$, $|f(x)| \leqslant \frac{-x}{\alpha} + 2 + |f(0)|$ et donc $\forall x \in \mathbb{R}$, $|f(x)| \leqslant \frac{|x|}{\alpha} + 2 + |f(0)|$.

f uniformément continue sur
$$\mathbb{R} \Rightarrow \exists (a,b) \in \mathbb{R}^2 / \forall x \in \mathbb{R}, |f(x) \leqslant a|x| + b$$
.

Exercice nº 14

 $\mathrm{Posons}\ \mathrm{I}_0 = \left[0, \frac{\pi}{2} \right[\ \mathrm{puis}\ \mathrm{pour}\ n \in \mathbb{N}^*, \ \mathrm{I}_n = \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\ \mathrm{et\ enfin}\ D = \bigcup_{n \in \mathbb{N}} \mathrm{I}_n.$

Pour $x \in D$, posons $f(x) = \tan x - x$. La fonction f est dérivable sur D et pour $x \in D$, $f'(x) = \tan^2 x$. La fonction f est ainsi strictement croissante sur chaque I_n et s'annule donc au plus une fois dans chaque I_n . f(0) = 0 et donc f s'annule exactement une fois dans I_0 en $x_0 = 0$.

Pour $n \in \mathbb{N}^*$, f est continue sur I_n et de plus $f\left(\left(-\frac{\pi}{2} + n\pi\right)^+\right) \times f\left(\left(\frac{\pi}{2} + n\pi\right)^-\right) = -\infty \times +\infty < 0$. D'après le théorème des valeurs intermédiaires, f s'annule au moins une fois dans I_n et donc exactement une fois dans I_n .

L'équation $\tan x = x$ admet donc dans chaque intervalle I_n , $n \in \mathbb{N}$, une et une seule solution notée x_n . De plus, $\forall n \geqslant 1$, $f(n\pi) = -n\pi < 0$ et donc $x_n \in \left[n\pi, \frac{\pi}{2} + n\pi\right[$.

 $\mathrm{Pour}\ n\geqslant 1,\ n\pi< x_n< n\pi+\frac{\pi}{2}\ \mathrm{et}\ \mathrm{donc}\ \lim_{n\to +\infty} x_n=+\infty\ \mathrm{puis}\ x_n\underset{n\to +\infty}{\sim} n\pi\ \mathrm{et}\ \mathrm{m\^{e}me}\ \mathrm{plus}\ \mathrm{pr\'{e}cis\'{e}ment}$

$$x_n = n\pi + O(1).$$

Ensuite, puisque $x_n - n\pi \in \left]0, \frac{\pi}{2}\right[$ et que $x_n = \tan(x_n) = \tan(x_n - n\pi), x_n - n\pi = \arctan(x_n) \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$. Donc

$$x_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} + o(1).$$

Posons $y_n = x_n - n\pi - \frac{\pi}{2}$. Alors d'après ce qui précède, $y_n \in \left] - \frac{\pi}{2}, 0 \right[$ et $y_n = 0$ o(1). De plus, l'égalité $\tan(x_n) = x_n$ fournit $\tan(n\pi + \frac{\pi}{2} + y_n) = n\pi + \frac{\pi}{2} + y_n$ ou encore

$$n\pi + \frac{\pi}{2} + y_n = -\cot(y_n).$$

Puisque $y_n = 0$ o(1), on obtient $n\pi \sim -\frac{1}{y_n}$ ou encore $y_n = -\frac{1}{n\pi} + o\left(\frac{1}{n}\right)$. Donc

$$x_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right).$$

Posons $z_n = y_n + \frac{1}{n\pi} = x_n - n\pi - \frac{\pi}{2} + \frac{1}{n\pi}$. D'après ce qui précède, $\tan\left(-\frac{1}{n\pi} + z_n\right) = -\frac{1}{n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + z_n}$ et aussi

 $z_n \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right)$. On en déduit que

$$z_{n} = \frac{1}{n\pi} - \operatorname{Arctan}\left(\frac{1}{n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + z_{n}}\right) \underset{n \to +\infty}{=} \frac{1}{n\pi} - \operatorname{Arctan}\left(\frac{1}{n\pi} - \frac{1}{2\pi n^{2}} + o\left(\frac{1}{n^{2}}\right)\right) \underset{n \to +\infty}{=} \frac{1}{2\pi n^{2}} + o\left(\frac{1}{n^{2}}\right).$$

Finalement

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2\pi n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice nº 15

 $\textbf{1\`ere solution.} \text{ Soit } z \in \mathbb{C}. \text{ Posons } z = x + iy \text{ où } (x,y) \in \mathbb{R}^2 \text{ et } 1 + \frac{z}{n} = r_n e^{i\theta_n} \text{ où } r_n \geqslant 0 \text{ et } \theta_n \in]-\pi,\pi] \text{ de sorte que } r_n \in \mathbb{R}^2 \text{ et } 1 + \frac{z}{n} = r_n e^{i\theta_n} \text{ où } r_n \geqslant 0 \text{ et } \theta_n \in]-\pi,\pi]$

$$\left(1+\frac{z}{n}\right)^n=r_n^n\,e^{in\theta_n}.$$

Puisque $1+\frac{z}{n}$ tend vers 1 quand n tend vers $+\infty$, pour n assez grand on a $r_n>0$ et $\theta_n\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Mais alors pour n assez grand

$$r_n = \sqrt{\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2} \text{ et } \theta_n = \operatorname{Arctan}\left(\frac{\frac{y}{n}}{1 + \frac{x}{n}}\right).$$

 $\begin{aligned} & \text{Maintenant, } r_n^n = \exp\left(\frac{n}{2}\ln\left(\left(1+\frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2\right)\right) \underset{n \to +\infty}{=} \exp\left(\frac{n}{2}\ln\left(1+\frac{2x}{n} + o\left(\frac{1}{n}\right)\right)\right) \underset{n \to +\infty}{=} \exp(x + o(1)) \text{ et donc } \\ & r_n^n \text{ tend vers } e^x \text{ quand } n \text{ tend vers } +\infty. \end{aligned}$

Ensuite $n\theta_n = n \operatorname{Arctan}\left(\frac{\frac{y}{n}}{1+\frac{x}{n}}\right) = n \operatorname{Arctan}\left(\frac{y}{n} + o\left(\frac{1}{n}\right)\right) = y + o(1)$ et donc $n\theta_n$ tend vers y quand n tend vers $+\infty$.

Finalement, $\left(1+\frac{z}{n}\right)^n = r_n^n e^{in\theta_n}$ tend vers $e^x \times e^{iy} = e^z$.

$$\forall z \in \mathbb{C}, \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n = e^z.$$

2ème solution. Le résultat est connu quand z est réel. Soit $z \in \mathbb{C}$. Soit $n \in \mathbb{N}^*$.

$$\left|\sum_{k=0}^{n} \frac{z^k}{k!} - \left(1 + \frac{z}{n}\right)^n\right| = \left|\sum_{k=0}^{n} \left(\frac{1}{k!} - \frac{\binom{n}{k}}{n^k}\right) z^k\right| \leqslant \sum_{k=0}^{n} \left|\frac{1}{k!} - \frac{\binom{n}{k}}{n^k}\right| |z|^k.$$

$$\mathrm{Maintenant}, \ \forall k \in [\![0,n]\!], \ \frac{1}{k!} - \frac{\binom{n}{k}}{n^k} = \frac{1}{k!} \left(1 - \underbrace{\frac{\underbrace{n \times (n-1) \times \ldots \times (n-k+1)}}_{k}}_{} \right) \geqslant 0. \ \mathrm{Donc},$$

$$\sum_{k=0}^{n} \left| \frac{1}{k!} - \frac{\binom{n}{k}}{n^k} \right| |z|^k = \sum_{k=0}^{n} \left(\frac{1}{k!} - \frac{\binom{n}{k}}{n^k} \right) |z|^k = \sum_{k=0}^{n} \frac{|z|^k}{k!} - \left(1 + \frac{|z|^n}{n} \right)^n \underset{n \to +\infty}{\to} e^{|z|} - e^{|z|} = 0.$$

On en déduit que $\sum_{k=0}^{n} \frac{z^k}{k!} - \left(1 + \frac{z}{n}\right)^n$ tend vers 0 quand n tend vers $+\infty$ et puisque $\sum_{k=0}^{n} \frac{z^k}{k!}$ tend vers e^z quand n tend vers $+\infty$, il en est de même de $\left(1 + \frac{z}{n}\right)^n$.

Exercice nº 16

 $\textbf{1)} \text{ Par hypothèse, } \overset{\circ}{F} \neq \varnothing. \text{ Soit } x_0 \in \overset{\circ}{F}. \text{ Il existe } r > 0 \text{ tel que } B_o\left(x_0, r\right) \subset F. \text{ Soit } x \in E. \text{ Soit } y = x_0 + \frac{r}{2 \left\|x - x_0\right\|} \left(x - x_0\right).$

Alors, $\|y-x_0\| = \frac{r}{2\|x-x_0\|} \|x-x_0\| = \frac{r}{2} < r$ et donc $y \in F$. Mais alors, $x = x_0 + \frac{2\|x-x_0\|}{r} (y-x_0) \in F$ car F est un sous-espace vectoriel de E. Tout élément de E est dans F et donc F = E. On note que par contraposition, si F est un sous-espace vectoriel de E tel que $F \neq E$, alors $\mathring{F} = \varnothing$.

2) $0 \in F$ et donc $0 \in \overline{F}$. Soient $(x,y) \in \overline{F}^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. Il existe deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ d'éléments de F, convergentes, de limites respectives x et y. Puisque F est un sous-espace vectoriel de E, pour tout $n \in \mathbb{N}$, $\lambda x_n + \mu y_n \in F$. De plus, la suite $(\lambda x_n + \mu y_n)_{n \in \mathbb{N}} = \lambda (x_n)_{n \in \mathbb{N}} + \mu (y_n)_{n \in \mathbb{N}}$ est convergente de limite $\lambda x + \mu y$. Ainsi, $\lambda x + \mu y$ est limite d'une suite convergente d'éléments de F et donc $\lambda x + \mu y \in \overline{F}$.

On a montré que \overline{F} est un sous-espace vectoriel de E (on rappelle que si E est de dimension finie, F est fermé et donc $\overline{F} = F$).

Exercice nº 17 Soit C un convexe de E.

1) Montrons que \overline{C} est convexe. Si $\overline{C}=\varnothing$, \overline{C} est convexe. Dorénavant, $\overline{C}\neq\varnothing$.

Soient $(x,y) \in \overline{C}^2$ et $\lambda \in [0,1]$. Il existe deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ d'éléments de F , convergentes, de limites respectives x et y. Puisque C est un convexe de E, pour tout $n \in \mathbb{N}$, $(1-\lambda)x_n + \lambda y_n \in C$. De plus, la suite $((1-\lambda)x_n + \lambda y_n)_{n \in \mathbb{N}} = (1-\lambda)(x_n)_{n \in \mathbb{N}} + \lambda (y_n)_{n \in \mathbb{N}}$ est convergente de limite $(1-\lambda)x + \lambda y$.

Ainsi, $(1 - \lambda)x + \lambda y$ est limite d'une suite convergente d'éléments de C et donc $(1 - \lambda)x + \lambda y \in \overline{C}$.

On a montré que \overline{C} est convexe.

- 1) a) Soient $(x,y) \in E^2$ et $(r,r') \in]0,+\infty[^2$. Vérifions que $B_o(x,r)+B_o(y,r')=B_o(x+y,r+r')$.
 - $\bullet \ \mathrm{Soit} \ z \in \mathrm{B}_{\mathrm{o}}(x,r) + \mathrm{B}_{\mathrm{o}}(y,r'). \ \mathrm{Il} \ \mathrm{existe} \ x_1 \in \mathrm{B}_{\mathrm{o}}(x,r) \ \mathrm{et} \ y_1 \in \mathrm{B}_{\mathrm{o}}(y,r') \ \mathrm{tel} \ \mathrm{que} \ z = x_1 + y_1. \ \mathrm{Mais} \ \mathrm{alors},$

$$\|z-(x+y)\| = \|(x_1-x)+(y_1-y)\| \leqslant \|x-x_1\| + \|y-y_1\| < r+r'.$$

Par suite, $z \in B_o(x+y,r+r')$. Ceci montre que $B_o(x,r) + B_o(y,r') \subset B_o(x+y,r+r')$.

 $\begin{aligned} \bullet \ \mathrm{Soit} \ z \in B_o(x+y,r+r'). \ \mathrm{Soient} \ u &= \frac{1}{r+r'}(r(z-y)+r'x) \ \mathrm{et} \ v = z-u = \frac{r'}{r+r'}(r'(z-x)+ry). \ \mathrm{Alors} \ u+v = z \ \mathrm{puis} \\ \|u-x\| &= \frac{r}{r+r'}\|z-(x-y)\| < \frac{r}{r+r'}(r+r') = r \end{aligned}$

et aussi

$$\|v - y\| = \frac{r'}{r + r'} \|z - (x - y)\| < \frac{r'}{r + r'} (r + r') = r',$$

et donc, $u \in B_o(x, r)$ et $v \in B_o(y, r')$ puis $z = u + v \in B_o(x, r) + B_o(y, r')$. Ceci montre que $B_o(x + y, r + r') \subset B_o(x, r) + B_o(y, r')$ et finalement que $B_o(x, r) + B_o(y, r') = B_o(x + y, r + r')$. Soient $x \in E$ et $\lambda \in]0, +\infty[$. Vérifions que $\lambda B_o(x, r) = B_o(\lambda x, \lambda r)$.

• Soit $z \in \lambda B_o(x, r)$. Il existe $x_1 \in B_o(x, r)$ tel que $z = \lambda x_1$. Mais alors, $||z - \lambda x|| = ||\lambda x_1 - \lambda x|| = \lambda ||x_1 - x|| < \lambda r$ (car $\lambda > 0$). Donc, $z \in B_o(\lambda x, \lambda r)$. Ceci montre que $\lambda B_o(x, r) \subset B_o(\lambda x, \lambda r)$.

$$\begin{split} \bullet \ \mathrm{Soit} \ z \in B_o(\lambda x, \lambda r). \ \mathrm{Soit} \ x_1 &= \frac{1}{\lambda} z. \ \|x_1 - x\| = \frac{1}{\lambda} \|z - \lambda x\| < \frac{1}{\lambda} \times \lambda r = r \ \mathrm{et} \ \mathrm{donc} \ x_1 \in B_o(x, r). \ \mathrm{Mais} \ \mathrm{alors}, \\ z &= \lambda x_1 \in \lambda B_o(x, r). \ \mathrm{Ceci} \ \mathrm{montre} \ \mathrm{que} \ B_o(\lambda x, \lambda r) \subset \lambda B_o(x, r) \ \mathrm{et} \ \mathrm{finalement} \ \mathrm{que} \ \lambda B_o(x, r) = B_o(\lambda x, \lambda r). \end{split}$$

b) Montrons que $\overset{\circ}{C}$ est convexe. Si $\overset{\circ}{C}=\varnothing, \overset{\circ}{C}$ est convexe. Dorénavant, $\overset{\circ}{C}\neq\varnothing.$

 $\begin{array}{l} \mathrm{Soient}\;(x,y)\in \overset{\circ}{C}^2\;\mathrm{et}\;\lambda\in]0,1[\;(\mathrm{si}\;\lambda=0\;\mathrm{ou}\;\lambda=1,\,(1-\lambda)x+\lambda y\in \overset{\circ}{C}).\\ \mathrm{Il}\;\mathrm{existe}\;r>0\;\mathrm{tel}\;\mathrm{que}\;B_o\;(x,r)\subset C\;\mathrm{et}\;r'>0\;\mathrm{tel}\;\mathrm{que}\;B_o\;(y,r')\subset C.\;\mathrm{D'après}\;\mathrm{a}), \end{array}$

$$B_{o}((1-\lambda)x + \lambda y, (1-\lambda)r + \lambda r') = B_{o}((1-\lambda)x, (1-\lambda)r) + B_{o}(\lambda y, \lambda r') = (1-\lambda)B_{o}(x, r) + \lambda B_{o}(y, r') \subset C,$$

et donc $(1 - \lambda)x + \lambda y \in \overset{\circ}{C}$. On a montré que $\overset{\circ}{C}$ est convexe.

Exercice nº 18

Chaque K_n , $n \in \mathbb{N}$, est fermé en tant qu'intersection de fermés et donc K est fermé en tant qu'intersection de fermés. De plus, K est borné car contenu dans [0,1]. Ainsi, K est un fermé borné de \mathbb{R} et donc K est un compact de \mathbb{R} d'après le théorème de Borel-Lebesgue.

Vérifions que $\overset{\circ}{K}=\varnothing$. Soit $x\in K$. Vérifions que K ne contient aucune boule ouverte de centre x. Soit r>0. Soit $n_0\in \mathbb{N}$ tel que $\frac{1}{3^{n_0}}<2r$. Puisque la longueur 2r de l'intervalle]x-r,x+r[est strictement supérieure à la longueur $\frac{1}{3^{n_0}}$ de chaque intervalle constituant K_{n_0} , $]x-r,x+r[\cap [0,1]$ n'est pas contenu dans K_{n_0} et donc n'est pas contenu dans K. Ainsi, K ne contient aucune boule ouverte de centre x et donc $x\notin \overset{\circ}{K}$. On a montré que que $\overset{\circ}{K}=\varnothing$.