Data Communication

Data Communication is the exchange of information from one entity to the other using a Transmission Medium.

Data Communication

- □ 1883: Samuel Morse & Alfred Veil invent Morse Code Telegraph System
- □ 1876: Alexander Graham Bell invented Telephone
- **□ 1930: Development of ASCII Transmission Code**
- □ 1950: IBM releases its first computer IBM 710
- □ 1960: IBM releases the First Commercial Computer IBM 360

Data Communication Definition (Modified)

Data Communication is the exchange of data (in the form of 0's and 1's) between two devices (computers) via some form of the transmission medium.

Elements of Communication

Elements of Communication

What are the elements?

Five elements/components of data communication

Elements of Communication over Networks

Devices (Sender/Receiver)

These are used to communicate with one another

Medium

This is how the devices are connected together

Messages

Information that travels over the medium

·Rules/Protocols

Governs how messages flow across network

Transmission Mode / Data flow (simplex, half-duplex, and full-duplex)

Figure 1.3 Types of connections: point-to-point and multipoint

a. Point-to-point

b. Multipoint

NETWORKS

A network is a set of devices (often referred to as nodes) connected by communication links. A node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network.

Topics discussed in this section:

Distributed Processing

Physical Structures

Categories of Networks

Interconnection of Networks: Internetwork

Networks supporting the way we learn.

Networks supporting the way we work.

Networks supporting the way we play.

Online Interest Groups

The onboard data network provides a range of services to airline personal seatback video systems.

Instant Messaging

Networks- Purpose???

Communication.

Figure 1.4 Categories of topology

Figure 1.5 A fully connected mesh topology (five devices)

Figure 1.6 A star topology connecting four stations

Figure 1.7 A bus topology connecting three stations

Figure 1.8 A ring topology connecting six stations

Figure 1.9 A hybrid topology: a star backbone with three bus networks

Advantages/disadvantages of Topologies

Topology	Advantages	Disadvantages
Mesh	No traffic problemPrivacy / security	Expensive, lots of wires and portsNew connection costly
Star	Less expensive than meshEasy to add/remove nodes	Single point of failure (HUB)Traffic congestion
Bus	CheapEasy installation	Signal degradation, limiting the number of tapsSingle point of failure
Ring	Easy installationNo collision, stable performance	If one device/connection fails, entire network is disrupted

Topology: Practice problem

Let's consider the network setting for the following university campus with **FOUR** departments.

- Each department has a faculty area and a student area
- Each area can communicate with each other as they are **connected centrally** using a switch
- There are **THREE** devices in each area that are connected using **multipoint** connections only
- Each department has connection with **all other departments**

Based on this, IDENTIFY the topologies used in the university network, DRAW the hybrid structure, and CALCULATE the total number of links used.

Network Elements/Components

- Network Devices
 - Hardware (Devices and Media)
 - Software (Services and Processes)

Devices

Two Types:

- End Devices
- Intermediary Devices

End Devices

- Sits at the edge of a network and interacts directly with users
- Sends, receives, stores data
- Example: PCs, servers, smartphones, IoT devices, printers

Intermediary devices

- Connects end devices to form a network
- Connects multiple networks to form an internetwork
- Manages data as it flows through the network
- Example: Hub, switch, router, firewall, etc

HUB

- Connects multiple end devices within a network, allowing them to communicate with one another
- When a device (like a computer) sends data to the hub, the hub **broadcasts the data** to all devices connected to it
- Every connected device receives the data, but only the intended recipient processes it. All other devices ignore it
- Half-duplex communication
- Simple, inexpensive, easy setup, no intelligence

SWITCH

- Intelligent version of HUB
- Instead of broadcasting data to all connected devices, the switch forwards data only to the intended recipient
- Maintains a MAC address table of the devices connected to each of its port
- Full-duplex communication
- Intelligent forwarding, expensive, requires configuration

ROUTER

- A gateway between networks; connects local networks with the internet
- LAN ports (for local devices) and WAN port (for connecting to the internet)
- Built-in security features
- Supports wireless connectivity
- Complex, expensive, requires configuration

Software

Services

- Software-driven functionalities that enable communication and resource sharing within a network
- Example: file sharing and storage services, web services, email services

Processes

- Standardized rules that define how devices on a network should interact
- Example: authentication (logging in to a wifi network), routing procedures, error detection and connection

Processes and Services

Networks use devices, media and services.

Network Media (Transmission Media)

Provides the pathway for data transmission between devices

Wired Transmission Media

Unshielded Twisted Pair (UTP) Cable

Shielded Twisted Pair (STP) Cable

Coaxial cable

Fiber optic cable

Wireless Transmission Media

- Radio-wave (WiFi, bluetooth, FM radio)
- Satellite (Star-link)

Messages- Data Representation

- Information today comes in different forms such as
 - text, numbers, images, audio, and video.

Type of Data	Standards	
Alphanumeric	ASCII, Unicode	
Image	JPEG, GIF, PCX, TIFF, BMP, etc	
Motion picture	MPEG-2, Quick Time, MPEG-4, etc	
Sound	Sound Blaster, WAV, AU, MP3, etc	
Outline graphics/fonts	PostScript, TrueType, PDF	

Data Representation - Text

Text: Different sets of bit patterns are designed to represent text symbols. Each set is called a code.

ASCII

- American Standard Code for Information Interchange: 7-bit code/char, 1 bit for parity.
- Unicode 16 bit codes to represent a symbol.

Data Representation - Text

Data Representation - Text

ASCII Reference Table

	000	001	010	011	100	101	110	111
0000	NULL	DLE		0	@	P		р
0001	SOH	DC1	!	1	Ā	Q	а	q
0010	STX	DC2	n	2	В	R	ь	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EDT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	31	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*		J	Z	j	Z
1011	VT	ESC	+	;	K	1	k	{
1100	FF	FS	,	<	L	1	1	Î
1101	CR	GS	0	=	\mathbf{M}	1	m	}
1110	SO	RS	64	>	N	^	n	~
1111	SI	US	1	?	0		0	DEI

Data Representation - Image

Images –

- Also represented by bit patterns.
- Mechanism different. Matrix of Pixels used. Each pixel is assigned to a bit pattern.
- Color images uses RGB or YCM methods.

ou	Colo	RGB Value				
		Blue	Green	Red		
ack	blac	0	0	0		
white RGB-value		255	255	255		
low	yello	0	255	255		
nk	Pink	255	130	255		
wn	brow	0	81	146		
ple	purpl	82	95	157		
oor	maro	0	0	140		

Data Representation - Image

Data Representation - Image

Data Representation - Audio

-Audio- Continuous, not discrete. Converted to digital or analog signal.

Rules - Protocols

- A set of predetermined rules that govern communication.
- Defines:
 - What is communicated??
 - How it is communicated??
 - When it is communicated??

Network Types

- PAN
- LAN
- MAN
- WAN

Personal Area Networks (PAN)

- A small network that connects computers, peripherals and other devices for personal use through bluetooth or USB
- Range: Short, typically a few meters

Local Area Networks (LAN)

- Connects computers, peripherals and other devices within a building (e.g. varsity campus, office) or in a limited area
- Range: Typically 50 to 300 meters
- Example: Ethernet, Wireless LANs

Metropolitan Area Network (MAN)

- Covers larger area than LAN, e.g. a city, suburb, or large campus
- Connects multiple LANs within the area to create a larger network
- Example: University network connecting multiple campuses or buildings

Wide Area Network (WAN)

- Spans large geographical areas like countries, continents, or even the entire world
- Connects multiple LANs and MANs separated by geographic distance, to form a global network
- Example: Cellular Networks (GSM etc), corporate WANs (Amazon, Microsoft), Internet

Internet

 The internet is defined as a global mesh of interconnected networks.

Internet

Effectiveness of a system depends upon:

- Delivery
- Accuracy
- Timeliness
- Jitter

