

RF Test Report:

Zinwave ORU 47CFR90

FCC ID: UPO302-1107

SC_TR_178_A

Contents

1		Revisi	on History4	
2		Purpos	se4	
3		Refere	ence Documents4	
4		Test I	nformation5	
	4.	.1	Client and manufacturer 5	
	4.	.2	Test Locations	
	4.	.3	Test sample5	
5		Test C	Configuration6	
	5.	.1	Test sample and Operating mode6	
	5.	.2	Support equipment6	
	5.	.3	Equipment arrangement	
	5.	.4	Permitted Antennas	
	5.	.5	Supported Services8	
6		Summ	nary of Tests performed9	
7		Pass b	pand gain10	
	7.	.1	Test method	
	7.	.2	Results	
8		Transr	mit Power	
9		Intern	nodulation spurious emissions	
	9.	.1	Test method	
	9.	.2	Test results	
1(C	Occup	ied Bandwidth16	
	1(0.1	Test method	
	10	0.2	Test results	
1	1	Spurio	ous Emissions	
	1:	1.1	Multichannel enhancer	
	1:	1.2	Single channel enhancer	
1:	2	Noise	Figure	
1.	3	Test e	quipment	
			Tables	
			quipment under test	
			upport Equipment	
			ummary of tests performed	
		_	ain variance within Land mobile service bands1	
			laximum transmit power within Land mobile service bands	
			lulti-channel transmit power and intermodulation1	
Ta	abl	le 7: To	est Equipment3	1

Figures

Figure 1: Test configuration – single channel	7
Figure 2: Test configuration – dual channel	7
Figure 3: gain variance within service bands	12
Figure 4: Multi-channel transmit power and intermodulation	15

SC_TR_178_B Page 3 of 31

1 Revision History

Revision	Originator	Date	Comment	Signature
Draft 1	C Blackham	08 Dec	1 st release as	
	Director, Sulis Consultants Ltd	2015	draft	
Α	C Blackham	10 Jan	1 st release	
	Director, Sulis Consultants Ltd	2016		
В	C Blackham	07 Feb	Typos and	11 -11
	Director, Sulis Consultants Ltd	2106	section 12 updated	Clubil

2 Purpose

This document details the testing performed on Zinwave Optical Remote Unit, ORU, model number 302-1107 against requirements of FCC 47CFR90.

3 Reference Documents

[1]	47 CFR90	Title 47 Code of Federal Regulations Part 90: Private Land Mobile Radio Services
[2]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[3]	KDB 935210 D05 V01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for Industrial and Non-consumer signal booster, repeater and amplifier devices
[4]	KDB971168 DO1 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.

SC_TR_178_B Page 4 of 31

4 Test Information

4.1 Client and manufacturer

Zinwave Ltd

Harston Mill

Harston

Cambridge

CB22 7GG

UK

4.2 Test Locations

Testing was performed by Charlie Blackham of Sulis Consultants Ltd on 14th September 2015 at Zinwave's offices detailed in section 4.1

4.3 Test sample

The results herein only refer to sample detailed in section 5

SC_TR_178_B Page 5 of 31

5 Test Configuration

5.1 Test sample and Operating mode

The equipment under test (EUT) was:

Manufacturer	Name	Model Number	Serial Number
Zinwave	ORU	302-1107	310400000012

Table 1: Equipment under test

Modifications during test: None

5.2 Support equipment

The following equipment shall be used, configured as shown in Figure 1:

Name	Part Number	Label	Serial Number			
Zinwave UNIhub (Primary Hub)						
Chassis		302-1001	00-17-68-00-09-B7			
RF Service module		SM 1/6	030370002050			
Optical module		OM 1/6	050750002036			
Zinwave UNIhub (Secondary Hub)						
Chassis		302-1001	00-17-68-00-09-67			
Input Optical module		OM 5/6	50750002039			
Optical module		OM 3/6	50750002010			

Table 2: Support Equipment

SC_TR_178_B Page 6 of 31

5.3 Equipment arrangement

Figure 2: Test configuration – dual channel

Notes - additional connections not shown:

- 1. For dual channel measurements, IQ output from SMBV100A Vector Signal Generator connected to IQ input of SMJ100A signal generator
- 2. 10 MHz Ref Clock output of FSV40 Signal Analyser connected to Ref Clock inputs of the two signal generators

5.4 Permitted Antennas

The system is designed for operation with antennas having a maximum gain of 8.0 dBi or 5.85 dBd.

This is the value used for determining EIRP or ERP where required.

SC_TR_178_B Page 7 of 31

5.5 Supported Services

Frequency Band (MHz)	Service	Modulation	Channel Bandwidth	Emission designator
150 - 174	P25	C4FM (QPSK)	12.5kHz	11K2G1E
150 - 174	FM	FM ±2.5kHz deviation	12.5kHz	11K2F3W
	P25	C4FM (QPSK)	12.5kHz	11K2G1E
406.1 – 454.0	FM	FM ±2.5kHz deviation	12.5kHz	11K2F3W
	FM	FM ±5.0kHz deviation	25kHz	20K0F3W
	P25	C4FM (QPSK)	12.5kHz	11K2G1E
456.0 – 512.0	FM	FM ±2.5kHz deviation	12.5kHz	11K2F3W
	FM	FM ±5.0kHz deviation	25kHz	20K0F3W
698.0 - 824.0 ¹	P25	C4FM (QPSK)	12.5kHz	11K2G1E
698.0 - 824.0	OpenSky	4-level GFSK	12.5kHz	8K10F1E
	P25	C4FM (QPSK)	12.5kHz	11K2G1E
851.0 – 869.0	OpenSky	4-level GFSK	25kHz	8K10F1E
851.0 - 869.0	FM & EDACS	FM ±5.0kHz deviation	25kHz	20K0F3W
	iDEN	16-QAM	25kHz	20K0W7W
935.0 – 940.0	iDEN	16-QAM	25kHz	20K0W7W
	EVDO	QPSK	1.25MHz	1M25F9W
	(QPSK+QAM)	16QAM	1.23101112	1M25W9W
851.0 – 869.0		QPSK		4M20F9W
	FD-LTE	16QAM	5 MHz	4M20W9W
		64QAM		4M20W9W

¹ Operation typically permitted in the 769-775 MHz and 799-805 MHz bands as per 90.531.

SC_TR_178_B Page 8 of 31

6 Summary of Tests performed

This report contains results for the following tests:

Test	47 CFR Part	Section	Result
Passband gain and Determination of f_0	N/A	7	N/A
Transmit Power	90.219(e)(1)	8	Pass
Noise Figure	90.219(e)(2) Not ap		t applicable ²
Intermodulation spurious emission	90.219(e)(3)	9	Pass
Occupied Bandwidth	90.219(e)(4) 90.210(c)	10	Pass
Conducted Spurious Emissions	90.219(e)(3)	11	Pass
Noise ERP	90.219(d)(6)(ii)	12	Pass

Table 3: Summary of tests performed

SC_TR_178_B Page 9 of 31

_

² 935210 D02 Signal Boosters Certification v03section V(j)(5): For the remote unit of a conventional fiber-connected host/remote DAS booster system, it is acceptable to submit compliance information and test data consistent with 90.219(d)(6)(ii) (i.e., ERP of noise ≤ −43 dBm in 10 kHz RBW) for the downlink path only, in place of 90.219(e)(2) noise figure test data (i.e., NF ≤ 9 dB for both UL and DL). Test reports must provide explicit details about instrumentation and procedure used for 90.219(d)(6)(ii) testing.

7 Pass band gain

7.1 Test method

- 1. Connect a signal generator to the input of the Spectrum Analyser.
- 2. Configure a swept CW signal with the following parameters:
 - a. Frequency range = the passband of the service band under investigation.
 - b. Set power so that the received level to be -5dB.
 - c. Dwell time = 50 ms
 - d. Number of points = SPAN/(RBW/2).
- 3. Set the span of the spectrum analyser to the same as the frequency range of the signal generator.
- 4. Set the detector to Peak Max-Hold and wait for the spectrum analyser's spectral display to fill.
- 5. Record trace.
- 6. Connect Signal Generator to RF service module or Primary Hub
- 7. Connect a spectrum analyser to the output of the EUT using appropriate attenuation.
- 8. Set the detector to Peak Max-Hold and wait for the spectrum analyser's spectral display to fill.
- 9. Record trace.
- 10.Calculate and report Gain, which is difference between input and output signal.

7.2 Results

Exact power fed into Hub shown on plot as "input power" and resultant output shown as "output power". Gain calculated as "output power – input power" (as input power is –ve)

Freq range (MHz)	Maximum gain (MHz)
150 - 174	10.96
406.1 - 454	23.91
456 - 470	24.27
698 - 824	25.54
851 - 869	25.44
929 - 940	24.68

Table 4: gain variance within Land mobile service bands

SC_TR_178_B Page 10 of 31

SC_TR_178_B Page 11 of 31

Figure 3: gain variance within service bands

SC_TR_178_B Page 12 of 31

8 Transmit Power

The Maximum transmit power is determined from the maximum output power determined using a CW signal in section 7

Freq range (MHz)	Maximum conducted transmit power (dBm)
150 - 174	5.89
406.1 - 454	18.66
456 - 470	18.92
698 - 824	20.24
851 - 869	19.74
929 - 940	19.19

Table 5: Maximum transmit power within Land mobile service bands

The limit in 90.219(e)(1) is 5W ERP or 37 dBm ERP and the highest ERP obtained from this system is 26.1 dB ERP, or 406 mW ERP.

SC_TR_178_B Page 13 of 31

9 Intermodulation spurious emissions

9.1 Test method

- Two signal generators were connected to the RF service input of the hub via a 2:1 splitter.
- For each band under consideration two generator frequencies f_1 and f_2 were set such that their 3^{rd} order intermodulation products, f_3 and f_4 were also within the band under consideration.
- The input levels of the two input signals were raised until either the AGC threshold was reached or the total channel power was 3dB above that specified.
- The level of the highest CW tone was noted for
- The level of the highest intermodulation product was noted for comparison against the -13 dBm limit.

9.2 Test results

Freq range (MHz)	Highest tone, P _{o1} (dBm)	Highest intermodulation product (dBm)	Limit (dBm)	Result
150 - 174	4.07	< -50.0	-13.0	Pass
406.1 – 454	19.28	-34.8	-13.0	Pass
456 - 512	20.32	-30.96	-13.0	Pass
698 - 824	20.08	-18.95	-13.0	Pass
851 - 869	20.84	-15.21	-13.0	Pass
929 – 935	20.27	-21.49	-13.0	Pass
935 - 940	20.26	-21.88	-13.0	Pass

Table 6: Multi-channel transmit power and intermodulation

SC_TR_178_B Page 14 of 31

Figure 4: Multi-channel transmit power and intermodulation

SC_TR_178_B Page 15 of 31

10 Occupied Bandwidth

10.1 Test method

For a single channel amplifier, the 99% emission bandwidth shall be measured under the conditions described in section 4.3.2 and the spectrum analyser plots submitted in the test report.

Set the resolution bandwidth of the spectrum analyser from 1% to 3% of the 99% emission bandwidth and set the video bandwidth to 3 times the resolution bandwidth. Record both the amplifier input and set the video bandwidth to 3 times the resolution bandwidth. Record both the amplifier input and output signals.

The plot was also compared against the mask in 90.210(c).

SC_TR_178_B Page 16 of 31

10.2 Test results

SC_TR_178_B Page 17 of 31

SC_TR_178_B Page 18 of 31

SC_TR_178_B Page 19 of 31

SC_TR_178_B Page 20 of 31

11 Spurious Emissions

11.1 Multichannel enhancer

Measurement performed using RMS detector and sweep averaging method as for Transmit Power.

SC_TR_178_B Page 21 of 31

SC_TR_178_B Page 22 of 31

SC_TR_178_B Page 23 of 31

11.2 Single channel enhancer

The level of Harmonic emissions from transmit frequencies at bottom, middle and top channels for each band were investigated.

The plots below show worst case emissions levels for each band.

Measurement performed using RMS detector and sweep averaging method as for Transmit Power.

There were no emissions within 10 dB of the limit.

SC_TR_178_B Page 24 of 31

SC_TR_178_B Page 25 of 31

SC_TR_178_B Page 26 of 31

SC_TR_178_B Page 27 of 31

SC_TR_178_B Page 28 of 31

SC_TR_178_B Page 29 of 31

12 Noise Figure

The equipment was connected as shown in Figure 1, but the input to the hub was terminated with 50 ohm load.

The noise was measured using an RMS detector and 100 sweep averaging and the analyser set to measure 32000 sweep points.

Two plots were made of the noise from the system:

- Capture of the whole passband at once (80 kHz steps)
- Capture of the 400-512 MHz UHF radio bands (3.5 kHz steps)

The following are noted:

- A maximum noise figure of -43 dBm ERP corresponds to a maximum antenna port noise figure of -48.85 dBm (-43.0 - 8.0 dBi + 2.15³)
- The maximum noise figure for the system was over 7 dB below this.
- The system is typically used to provide both cellular and non-cellular services.
- Further discussion of noise mitigation is included in operation exhibit "noise discussion".

SC_TR_178_B Page 30 of 31

³ 8 dBi exceeds the maximum antenna gain in any band of operation and the 2.15 dB is to convert EIRP to ERP

13 Test equipment

Description	Manufacturer	Model	Serial Number	Calibration	
Signal Analyser	Rohde & Schwarz	FSV 40	Livingston Hire asset X479651	Code: 161467 Due 19 May 16	
Signal Generator	Rohde & Schwarz	SMBV100A	Microlease asset 45440	Ref: 45440 Due 19 Nov 15	
Cable	Utiflex	BUA01G	FA210A0009M30309	ABEX UK. Ref: green bua01g Due 08 Oct 17	
Signal Generator	Rohde & Schwarz	SMJ100A	100156		
Signal Generator	Rohde & Schwarz	SM300	100320		
Attenuator	Mini-circuits	VAT 10	3 0433		
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120274		
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120295	Verified as part of system test	
2-way splitter (input)	Mini-circuits	ZN2PD2-63- S+	UU21401232		
Low pass filter DC-600 MHz	Mini-circuits	SLP-600+	R8636400710		
Low pass filter DC-1000 MHz	Mini-circuits	15542	UU14401231		

Table 7: Test Equipment

Measurement uncertainty for test equipment

Analyser ±0.5 dB

SC_TR_178_B Page 31 of 31