实验 B16 基于 vLight 的光学仿真基础实验

实验人姓名、学号: 鸭大学子 20200202 合作者姓名、学号: 鸭大学生 20200218 实验时间: 2019 年 10 月 17 日 星期四 上午 室温: 26°C 相对湿度: 59%

【实验目的】

- (1) 学习光学仿真软件 vLight 的基本使用方法
- (2) 仿真夫琅和费衍射和菲涅尔衍射
- (3) 验证半波带理论对处理菲涅尔衍射的有效性
- (4) 仿真圆屏衍射

【仪器用具】

编号	仪器用具名称	数量	主要参数(型号,	测量范围,	测量精度等)
1	实验测控用计算机	1			

【实验原理】

1.vLight 光学系统虚拟仿真实验平台简介

vLight 光学系统虚拟仿真实验平台是由中山大学物理学院,中国科学院软件所和国防科技大学光电科学与工程学院共同研发。

vLight 基于物理原理的数字化仿真方法,通过对光源物理特征、干涉、衍射、偏振等方面进行虚拟仿真实验的研究,从物理、数学层面进行可视化仿真,为光学系统的建模和仿真提供了极大的准确性和灵活性。

vLight 提供 7 大类、72 个成熟的光学模型,涵盖光源、光束传输、器件等多个种类,满足不同教学场景的仿真模拟需要;内置的应用实例库囊括了光学基础教学的大部分内容,包含几何光学、波动光学(衍射)、波动光学(干涉)、光的偏振、信息光学、常用光学仪器等 7 大类共 52 个应用实例。

依托云计算、并行计算等流行技术,为 vLight 虚拟仿真实验构建了稳定、高效的 云服务平台,用户不需要下载任何插件,打开浏览器即可使用。

2. 夫琅禾费单缝衍射

(1) 如果不采用下面的方法 那么这段文字将会直接接到上面的加粗体之后。

(2) 点光源的夫琅禾费衍射

用点光源做夫琅禾费衍射实验时,需要借助两个透镜。

【实验内容及步骤】

1. 模拟夫琅禾费单缝衍射

- (1) 两人合作实验时仿真工程取名样式"姓名+姓名单缝衍射"。
- (2) 按照图 6 连接好光路, 更改相关参数调出衍射条纹, 并且保存数据为 mat 文件。
- (3) 探究问题: 主极大明条纹间距 Δx 和狭缝与光屏间距 Z 是否成线性关系。
- (4) 分别取狭缝与光屏间距 Z 为 90、95、100、105、110、115、120、125, 用鼠标在"图像显示"中选取两个极暗点的坐标,读出此时的主极大条纹间距 Δx 并记录。
- (5) 将导出的 mat 文件在 MATLAB 软件中进行图像绘制。

【数据处理及分析】

1. 模拟夫琅禾费单缝衍射

根据 B10 中的数据,取狭缝宽度 a=0.247mm,所用光波长 632.8nm,狭缝与光屏距离 Z 为 90cm。将获取的 mat 文件在 MATLAB 中作图,源代码附在实验报告最后。

(1) 求有机玻璃的导热系数 λ 和比热容 c

表 1: 有机玻璃实验结果

时间 τ/s	温差热电势 V_t/mV	中心面热电势 V_c/mV	温度差 $\Delta t/^{\circ}$ C	中心面温度 t_c° C	$\Delta V/mV$	$a\tau/R^2$
60	0.051	0.018	1.275	20.45		0.0576
120	0.109	0.023	2.725	20.575	0.005	0.1152
180	0.142	0.036	3.55	20.9	0.013	0.1728
240	0.162	0.053	4.05	21.325	0.017	0.2304
300	0.173	0.073	4.325	21.825	0.02	0.288
360	0.18	0.095	4.5	22.375	0.022	0.3456
420	0.185	0.118	4.625	22.95	0.023	0.4032
480	0.188	0.141	4.7	23.525	0.023	0.4608
540	0.191	0.165	4.775	24.125	0.024	0.5184
600	0.193	0.188	4.825	24.7	0.023	0.576
660	0.195	0.211	4.875	25.275	0.023	0.6336
720	0.196	0.235	4.9	25.875	0.024	0.6912
780	0.197	0.258	4.925	26.45	0.023	0.7488
840	0.198	0.282	4.95	27.05	0.024	0.8064
900	0.199	0.305	4.975	27.625	0.023	0.864
960	0.2	0.329	5	28.225	0.024	0.9216
1020	0.2	0.352	5	28.8	0.023	0.9792
1080	0.201	0.375	5.025	29.375	0.023	1.0368
1140	0.201	0.398	5.025	29.95	0.023	1.0944
1200	0.202	0.42	5.05	30.5	0.022	1.152
1260	0.203	0.443	5.075	31.075	0.023	1.2096
1320	0.203	0.466	5.075	31.65	0.023	1.2672
1380	0.203	0.488	5.075	32.2	0.022	1.3248
1440	0.204	0.51	5.1	32.75	0.022	1.3824
1500	0.204	0.532	5.1	33.3	0.022	1.44

图 1: 激光的菲涅尔衍射实验

图 2: 泡克耳斯盒的调制特性

图 3: 泡克尔斯盒

图 4: 交流电桥平衡条件

图 5: 电容电桥

图 6: 麦克斯威尔-维恩电 桥

公式的插入

1. equation 环境 默认有标号,用于单个公式。

$$\eta' = \eta/[1 + b/(pa)] \tag{1}$$

如果不用标号,只需在 equation 后面加上*,

$$\eta' = \eta/[1 + b/(pa)] \tag{2}$$

这其实相当于直接使用 \[\] 进行公式编辑。

$$e = (1.60217733 \pm 0.00000049) \times 10^{-19}$$
C

2. gather 环境 默认有自动标号,用于多行公式排版,没有对齐功能。

$$f_r = 6\pi a \eta v_q \tag{3}$$

$$m = 4\pi a^3 \rho / 3 \tag{4}$$

如果不用标号,只需在 gather 后面加上*。

$$f_r = 6\pi a \eta v_g$$
$$m = 4\pi a^3 \rho/3$$

3. align 环境和 aligned 次环境

$$a = b + c + d \tag{5}$$

$$x = y + z \tag{6}$$

等价的用法是 equation 环境加上 aligned 次环境,

$$a = b + c + d$$

$$x = y + z$$
(7)

如果不用标号,只需在 align 后面加上*,

$$a = b + c + d$$
$$x = y + z$$

等价的用法是 equation 环境加上 aligned 次环境, 在 equation 后面加上*。

$$a = b + c + d$$

$$x = y + z$$
(8)

4. multiline 环境 可用于单条长公式排版,换行但不对齐,默认有自动标号,不标号只需加上*。

$$x = a + b + c +$$

$$d + e + f + g \quad (9)$$

5. 带有左边大括号的公式

$$\begin{cases} C_1 \cdot \frac{dU_{C_1}}{dt} = \frac{1}{R_1} \cdot (u_{C_2} - u_{C_1}) - f(u_{R_N}) \\ C_2 \cdot \frac{dU_{C_2}}{dt} = i_L - \frac{1}{R_1} \cdot (u_{C_2} - u_{C_1}) \\ L \cdot \frac{di_L}{dt} = -U_{C_2} \end{cases}$$

【思考题】

1. 样品导热系数的大小和温度有什么关系?

答:关系如下:

- (1) 一般固体样品导热系数与温度成线性变化,关系式为 $\lambda = \lambda_0(1 + \alpha t)$ 。 λ_0 是 0°C 时 固体样品的导热系数,也就是说,温度升高,导热系数变大。
- (2) 少数固体和气体液体也遵循温度越高,系数越大,但呈非线性关系。
- 2. 样品导热系数的大小与导热性能有什么关系?

答:导热系数的定义——在稳定传热条件下,单位温度梯度下单位时间内由单位面积传递单位厚度的热量。从以上定义可以看出,导热系数越大,反映了在材料内部传热越快,即材料本身的导热性能越好。

附: MATLAB 中导入 mat 文件数据和绘制彩色强度图像和相对光强分布曲线的完整代码:

```
load('C:\Users\Administrator\Desktop\第1次迭代.mat')
Intensity = Mod.^2;
imagesc(Intensity); axis equal;
[M,~] = size(Intensity);
I_X = Intensity(M/2,:);
X =-M/2:1:M/2-1;
X = X.*ScaleATM;
plot(X,I_X);
```