Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 4

Consigna

Hallar la forma y una base de Jordan para las siguientes matrices:

$$A = \begin{pmatrix} 4 & -6 \\ 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 6 & -2 & 1 \\ 6 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{pmatrix}$$

Resolución (parte a)

Hallemos los valores propios de A:

$$\begin{split} \mathbf{X}_A(\lambda) &= \begin{vmatrix} 4-\lambda & -6\\ 2 & -4-\lambda \end{vmatrix} \\ &= (4-\lambda)(-4-\lambda) + 12 \\ &= \lambda^2 - 16 + 12 \\ &= \lambda^2 - 4 \end{split}$$

De donde sacamos que:

- $\begin{array}{ll} \bullet & \lambda_1 = 2 \\ \bullet & \lambda_2 = -2 \end{array}$

Entonces la forma de Jordan es:

$$J_A = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Para hallar la base tenemos que hallar los subespacios propios:

 S_2

Tenemos que resolver el sistema $(A - 2\mathbb{I})v = 0$:

$$\left(\begin{array}{cc|c} 2 & -6 & 0 \\ 2 & -6 & 0 \end{array}\right)$$

De donde sacamos que:

- x = 3y
- $y \in \mathbb{R}$

Entonces una base de este subespacio podría ser:

$$\{(3,1)\}$$

 S_{-2}

Tenemos que resolver el sistema $(A + 2\mathbb{I})v = 0$:

$$\left(\begin{array}{cc|c} 6 & -6 & 0 \\ 2 & -2 & 0 \end{array}\right)$$

De donde sacamos que:

- x = y
- $y \in \mathbb{R}$

Entonces una base de este subespacio podría ser:

$$\{(1,1)\}$$

Juntando ambas cosas, obtenemos una base de Jordan:

$$\mathcal{B} = \{(3,1), (1,1)\}$$

Resolución (parte b)

Hallemos los valores propios de B:

$$X_B(\lambda) = \begin{vmatrix} -\lambda & 2 \\ -2 & 4 - \lambda \end{vmatrix}$$
$$= (4 - \lambda)(-\lambda) + 4$$
$$= \lambda^2 - 4\lambda + 4$$

Usando Bhaskara:

$$\lambda = \frac{4 \pm \sqrt{16 - 16}}{2}$$

De donde sacamos que $\lambda = 2$ es raíz doble, es decir que ma(2) = 2.

En este caso para hallar la forma de Jordan primero debemos hallar mg(2), calculemos el subespacio propio:

 S_2

Tenemos que resolver el sistema $(B-2\mathbb{I})v=0$:

$$\left(\begin{array}{cc|c} -2 & 2 & 0 \\ -2 & 2 & 0 \end{array}\right)$$

De donde sacamos que:

- x = y
- $y \in \mathbb{R}$

Entonces una base de este subespacio podría ser:

$$\{(1,1)\}$$

Por lo que mg(2) = 1, esto implica que B NO es diagonalizable, la forma de Jordan sería:

$$J_B = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$

Para hallar una base de Jordan, tenemos que elegir un vector v_1 tal que sea LI a $v_2 = (1, 1)$ que obtuvimos del subespacio propio asociado a 2. Para esto, veamos lo que nos dice la forma de Jordan:

$$B(v_1) = 2v_1 + v_2$$

$$(B-2\mathbb{I})v_1 = v_2$$

Podemos plantear ese sistema para obtener quién es v_1 .

$$\left(\begin{array}{cc|c} -2 & 2 & 1 \\ -2 & 2 & 1 \end{array}\right)$$

De donde sacamos que:

- $x = \frac{1-2y}{-2}$ $y \in \mathbb{R}$

De aquí podemos elegir un vector que cumpla con estas condiciones, por ejemplo: $v_1 =$ $(\frac{-1}{2},0).$

Juntando esto con lo hallado en el subespacio propio tenemos que la base de Jordan es la siguiente:

$$\mathcal{B} = \{ \left(\frac{-1}{2}, 0\right), (1, 1) \}$$

Resolución (parte d)

Hallemos los valores propios de D:

$$\begin{split} \mathbf{X}_D(\lambda) &= \begin{vmatrix} 1-\lambda & 0 & 0 \\ 1 & -\lambda & -1 \\ 1 & -1 & -\lambda \end{vmatrix} \\ &= (1-\lambda)(\lambda^2-1) \end{split}$$

De donde sacamos que:

- $\lambda_1 = 1$ con ma(1) = 2
- $\lambda_2 = -1 \text{ con } ma(-1) = 1$

En este caso para hallar la forma de Jordan primero debemos hallar mg(2), calculemos el subespacio propio:

 S_1

Tenemos que resolver el sistema $(D-1\mathbb{I})v=0$:

$$\left(\begin{array}{ccc|c} 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 0 \end{array}\right)$$

De donde sacamos que:

- x = y + z
- $y \in \mathbb{R}$
- $\bullet \quad z \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_1 = \{(\alpha+\beta,\alpha,\beta) \in \mathbb{R}^3 : \alpha,\beta \in \mathbb{R}\}$$

Entonces una base de este subespacio podría ser:

$$\{(1,1,0),(1,0,1)\}$$

Por lo que mg(2) = 2, esto implica que D es diagonalizable, la forma de Jordan sería:

$$J_D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ahora hallemos el subespacio asociado a -1 para obtener otro vector y completar la base de Jordan.

 S_{-1}

Tenemos que resolver el sistema $(D+1\mathbb{I})v=0$:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0
\end{array}\right)$$

De donde sacamos que:

- x = 0
- z = y
- $y \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_{-1} = \{(0, \alpha, \alpha) \in \mathbb{R}^3 : \alpha \in \mathbb{R}\}$$

Entonces una base de este subespacio podría ser:

$$\{(0,1,1)\}$$

Juntando lo hallado con los dos subespacios, podemos dar la siguiente base de Jordan:

$$\mathcal{B} = \{(0,1,1), (1,1,0), (1,0,1)\}$$

Resolución (parte e)

Hallemos los valores propios de E:

$$\begin{split} \mathbf{X}_E(\lambda) &= \begin{vmatrix} 2-\lambda & 1 & -1 \\ 0 & 2-\lambda & -1 \\ -3 & -2 & 3-\lambda \end{vmatrix} \\ &= ((2-\lambda)^2(3-\lambda) + 0 + 3 - (3(2-\lambda) + 2(2-\lambda) + 0)) \\ &= ((2-\lambda)^2(3-\lambda) + 3 - 5(2-\lambda)) \\ &= (2-\lambda)((2-\lambda)(3-\lambda) - 5) + 3 \\ &= (2-\lambda)(\lambda^2 - 5\lambda + 1) + 3 \\ &= -\lambda^3 + 7\lambda^2 - 11\lambda + 5 \end{split}$$

Recordatorio (teorema de raíces racionales)

Si un polinomio tiene raíces racionales, estas son de la forma $\frac{p}{q}$, donde p es un divisor del término independiente y q es un divisor del coeficiente del término de mayor grado.

Continuación

Ahora que conocemos la forma de las raíces, podemos concluir que las raíces del polinomio de tercer grado anterior están incluidas en la lista: $\{\pm 1, \pm 5\}$

Probemos con 1:

$$-(1)^3 + 7 \cdot 1^2 - 11 \cdot 1 + 5 = -1 + 7 - 11 + 5$$
$$= -12 + 12$$
$$= 0$$

Como sabemos que 1 es raíz, podemos factorizar el polinomio con ruffini:

Por lo tanto, puedo expresar el polinomio de tercer grado como:

$$-\lambda^{3} + 7\lambda^{2} - 11\lambda + 5 = (\lambda - 1)(-\lambda^{2} + 6\lambda - 5)$$

Entonces tenemos $\lambda_1=1,$ y ahora usando Bhaskara puedo obtener todas las demás raíces:

$$\lambda = \frac{-6 \pm \sqrt{36 - 20}}{-2} = \frac{-6 \pm 4}{-2}$$

De donde obtenemos:

- $\lambda_1 = 1$
- $\lambda_2 = 5$

Entonces, recapitulando, tenemos:

- $\begin{array}{l} \bullet \ \ \, \lambda_1 = 1 \, \, {\rm con} \, \, ma(1) = 2 \\ \bullet \ \ \, \lambda_2 = 5 \, \, {\rm con} \, \, ma(5) = 1 \\ \end{array}$

En este caso para hallar la forma de Jordan primero debemos hallar mg(1), calculemos el subespacio propio:

 S_1

Tenemos que resolver el sistema $(D-1\mathbb{I})v=0$:

$$\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
-3 & -2 & 2 & 0
\end{array}\right)$$

De donde sacamos que:

- z = y
- x = 0
- $y \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_1 = \{(0,\alpha,\alpha) \in \mathbb{R}^3 : \alpha \in \mathbb{R}\}$$

Entonces una base de este subespacio podría ser:

$$\{(0,1,1)\}$$

Por lo que mg(1) = 2, esto implica que E NO es diagonalizable, la forma de Jordan sería:

$$J_E = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Ahora hallemos el subespacio asociado a 5 para obtener otro vector para la base de Jordan. S_5

Tenemos que resolver el sistema $(E-5\mathbb{I})v=0$:

$$\begin{pmatrix} -3 & 1 & -1 & 0 \\ 0 & -3 & -1 & 0 \\ -3 & -2 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} -3 & 1 & -1 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & -3 & -1 & 0 \end{pmatrix}$$

De donde sacamos que:

- z = -3y $x = \frac{4}{3}y$ $y \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_5 = \{(\frac{4}{3}\alpha, \alpha, -3\alpha) \in \mathbb{R}^3 : \alpha \in \mathbb{R}\}$$

Entonces una base de este subespacio podría ser:

$$\{(4,3,-12)\}$$

Con esto, nuestra base de Jordan se ve algo así:

$$\mathcal{B} = \{(4, 3, -12), v_2, (0, 1, 1)\}$$

Hallemos el vector \boldsymbol{v}_2 en base a lo que sabemos por la forma de Jordan:

$$E(v_2)=v_2+v_3(E-\mathbb{I})v_2=v_3$$

Esto nos plantea el siguiente sistema:

$$\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 1 \\ -3 & -2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

De donde sacamos que:

- z = y 1
- x = -1
- $y \in \mathbb{R}$

Con esto podemos elegir un vector, por ejemplo:

$$v_2 = (-1, 1, 0)$$

Entonces la base quedaría:

$$\mathcal{B} = \{(4, 3, -12), (-1, 1, 0), (0, 1, 1)\}$$

Solo habría que verificar que los vectores son LI, por lo tanto, verifiquemos que el siguiente determinante sea diferente a 0:

$$\begin{vmatrix} 4 & -1 & 0 \\ 3 & 1 & 1 \\ -12 & 0 & 1 \end{vmatrix} = 4 + 0 + 12 - (0 + 0 - 3) = 13$$

Con esto confirmamos que \mathcal{B} es una base, y además es base de Jordan.