개발자를 위한 Telco Cloud

김병진

sirmd@outlook.com

목차

- Telco Cloud 발전 방향
 - 표준의 발전
 - 기술변화
- Telco Cloud 기술
 - 통신 서비스 인프라 구성(5G)
 - 통신사 서비스
- 개발기회
 - 테스트 환경과 가상화 테스트
 - 통신과 새로운 Public Cloud

Telco Cloud

- Telco Cloud : 텔코 클라우드
 - 기존의 이동통신에서 사용되는 제품 및 플랫폼이 제공해 왔던 이동 통신 기술을 클라우드 기반으로 구현한 것을 의미

(출처: Telecom Tutorial by Vikas Shokeen)

Telco Cloud의 기본 기술

• SDN

- 네트워크 장비의 패킷 전달 기능에서 제어 부분을 물리적으로 분리하는 기술
- 네트워크 장비 내의 제어부(Control Plane)와 전송부(Data Plane)의 분리
- 어 부분을 하나의 컨트롤러로 집중하고 이러한 컨트롤러가 제어 부분이 빠지고 전송 기능만이 남은 여러 장비들을 한번에 컨트롤
- NFV (Network Functions Virtualization)
 - 라우터, 방화벽 및 부하 분산 장치와 같은 고가의 전용 하드웨어 장치를 서버의 가상 머신 상에서 실행되는 소프트웨어 기반 네트워크 어플라이언스로 대체할 수 있도록 해주는 네트워크 접근법
 - 전용 하드웨어 장치에서 네트워크 기능을 분리하여 가상 서버로 이동함으로써 여러 기능을 단일 물리적 서버에 통합. 가상 어플라이언스가 전용 하드웨어 기반 네트워크 어플라이언스를 대체
 - 가상 머신 상에서 네트워크 기능을 구현한 것을 VNF(Virtual Network Function)이라하며, 이를 범용 서버상에 올리는 것이 바로 NFV

• 표준의 발전

<SDN과 NFV 비교>

기능	SDN	NFV
목적	NW의 제어와 데이터 영역분리 제어영역의 중앙 집중화 관리	Appliance 기능들을 가상화하여 일반적인 서버에 재배치
활용 분야	Cloud Orchestration, Networking	Serivice Provider Network
적용 위치	기업본사/지사,캠퍼스, Date Center	Service Provider Network

-자료출처: SPRI (2017)

<SDN과 NFV의 관계>

-자료출처: SPRI (2017)

- 텔코 클라우드의 중요 선택 사항
 - 신뢰성
 - 고가용성
 - 높은 기준의 성능
 - QoS(Quality of Service)
 - 연속성
- 기존 클라우드 VS Telco 클라우드
 - 통신영역에서의 차별

- 기술의 변화 Network Slicing
 - LTE때 까지도 모바일 폰에 최적화된 망 구조를 유지
 - 5G : 스마트 폰, 스마트 TV, 인공지능 스피커, 각종 전자기기 등에도 통신이 필요한 IoT 시대
 - 자율주행 자동차는 빠른 반응 속도를 요구하기 때문에 1ms대의 초저지연 연결이 중요
 - 원격 검침에 따른 데이터 처리 및 전송: 속도보다 수천 수만개의 장치에서 소량의 데이터를 동시에 전송할 수 있는 초대용량 연결
 - 다른 기능을 하나의 망으로 서비스할 수는 없고, 기능별로 물리적인 망을 일일이 깔기에도 앞으로는 역부족

- 기술의 변화 Network Slicing
 - 하나의 물리적인 네트워크 인프라
 - 서비스 형태에 따라 다수의 독립적인 가상 네트워크로 분리
 - 다른 특성을 갖는 다양한 서비스들에 특화된 전용 네트워크를 제공

• 특징

- 각 슬라이스 별로 맞춤 설정이 가능
- 서비스에 따라 특성을 최적화
- 특정 슬라이스에 트래픽이 폭증할 때는 여유가 있는 다른 네트워크 자원을 끌어와 사용

- 기술의 변화 Network Slicing 특징
 - 네트워크 슬라이스를 통한 각 네트워크는 가상화를 통해 망 자원을 지원
 - 특정 슬라이스가 오류가 발생하더라도 다른 슬라이스에는 영향을 주지 않음
 - 소프트웨어적으로 처리 : 물리적 네트워크를 별도로 구축할 필요가 없음
 - 서비스가 종료되더라도 기존처럼 망을 폐기하거나 재설계해야 하는 번거로움 또한 발생하지 않음
 - 5에서 실제 적용 여부 : 202X년도
- 우리나라 통신사?
 - 망 중립성 원칙 : 법

네트워크 슬라이싱 - 참조

〈출처: 한양대학교 정보시스템학과 웹진〉

네트워크 슬라이싱

- 컨텐츠 사업자의 에로사항
 - 통신사들이 네트워크 슬라이싱 기술을 통해 트래픽 조율 권한을 가져가는 것
 - 자사의 서비스에만 네트워크 역량을 몰아줄 수 있기 때문
 - AROLL VR:
 - 고화질 대용량 영상 전송이 수반
 - 기형적으로 높은 우리나라의 망 비용을 안고 사업에 뛰어들 수 있는 국내 IT 기업은 찾아보기 어려움
 - 통신사 계열의 기업 : 네트워크 슬라이싱을 통해 본인들만 이점을 취하겠다는 것 아니냐는 업계의 비판
 - 통신사가 망 비용을 내부화하는 우월적 지위로 컨텐츠 사업에 진출하게 되면 공정한 경쟁이 되지 않기 때문에 통신사들의 네트워크 슬라이싱은 공공의 관점에서 다루어야 한다는 문제제기

텔코 클라우드의 기술

텔코 클라우드 기술 구성

- NFVI(Network Function Virtualization Infrastructure)
 - 가상화를 위한 하드웨어 리소스
 - YNF를 호스팅하는 물리적 컴퓨팅 및 스토리지, 네트워킹 구성 요소를 가상화 레이어를
 - Docker와 같은 컨테이너 관리 시스템 또는 하이퍼바이저
- VIM(Virtualized Infrastructure Manager)
 - VNF에 대한 리소스를 할당 및 제어하며 NFVI를 관리하는 관리자
 - 오픈스택(OpenStack) 또는 VMWare의 서비스가 대표적임
- VNF(Virtualized Network Function)
 - 텔코 클라우드 인프라(NFVI + VIM)의 가상화를 기반으로 네트워크 서비스를 제공하는 애플리케이션
- MANO(Management and orchestration)
 - VNF의 관리 및 오케스트레이션

텔코 클라우드 기술 구성

〈출처: 주니퍼 네트웍스 코리아〉

vEPC (virtualized Evolved Packet Core)

<출처: SKT>

- vEPC (virtualized Evolved Packet Core)
 - 액세스(Access)망 : 무선망
 - 코어(Core)망 : 유선망
- RAN: Radio Access Network
 - 이동 통신망은 단말에 이동 환경을 제공하는 무선 접속망
- CN: Core Network
 - 단말 데이터를 처리하고 다른 망과의 상호 연결 등을 제공하는 핵심망

- E-UTRAN(Evolved Universal Terrestrial Radio Access Network)
 - LTE부터는 액세스망
- EPC(Evolved Packet Core)
 - 코어망
- EPS(Evolved Packet System)
 - E-UTRAN + EPC
 - 네트워크 구성요소
 - 이동성 관리 엔티티(Mobility Management Entity, MME)
 - 서빙 게이트웨이(Serving GateWay, S-GW)
 - 패킷 데이터 망 게이트웨이(PDN GateWay, P-GW)

- EPS(Evolved Packet System)
 - MME는 제어 평면(Control Plane)을 처리
 - S-GW와 P-GW는 사용자 평면(User Plane)을 처리
 - E-UTRAN과 패킷 데이터 망을 연결하며 사용자의 음성 및 데이터 패킷 처리, 전송, 이동성 관리 기능 등을 제공

- 코어망에서 3G와 LTE가 다른 점
 - 3G
 - 서킷 핵심망(Circuit Core Network)에서 음성 서비스를 처리하고 패킷 핵심망(Packet Core Network)에서 데이터 서비스를 처리
 - 4G LTE
 - EPC는 패킷 핵심망만으로 구성된다는 점

vEPC

- EPC의 가상화
- 교환기 영역의 가상화를 의미
- 코어망 가상화는 시장의 요구사항을 가장 빠르게 수용할 수 있는 효과적인 기술
- 단 몇 일 또는 몇 시간이면 설치
- 신규 장비를 추가하지 않고 서버 할당만으로 용량을 증설
- 신규 네트워크 서비스를 적용하는데 있어서도 수 개월이 소요되는 기존 네트워크와 비교해 가상화 네트워크에서는 몇 시간이면 신규 서비스 도입
- 교환기는 고객들의 음성 서비스 이용과 직결되는 만큼 다른 IT 시스템의 가상화보다 높은 안정성이 확보되어야 하기 때문에 가상화가 쉽지 않은 영역
- SKT
 - 상화 기술 도입을 위한 인프라 및 역량 확보를 위해 지난 2014년 9월 보라매 사옥에 'IPC(ICT Product Center, 네트워크 가상화 센터)'를 오픈해 현재 vEPC와 오케스트레이터 등을 운용

- vIMS(virtualized IP Multimedia Subsystem)
 - 튜브, 넷플릭스, 훌루와 같은 OTT(Over The Top Service) 기업 등장
 - 전화 통화나 문자 메시지, TV, VOD와 같은 기존 서비스를 대체
 - 이동 통신 서비스 공급자들의 수익은 지속적으로 위협을 받고 있는 상황
 - 고품질 서비스를 유지하면서도 대체 수익원 및 비용 절감 방안을 모색함에 따라 IP 멀티미디어 서비스 제공
 - 아키텍처 프레임워크인 IMS에 관심
 - 음성, 오디오, 비디오 등 멀티미디어 서비스 제공 플랫폼인 IMS의 가상화
 - vIMS는 새로운 서비스의 출시 시간을 단축하고 운영 비용을 낮출 수 있게 함
 - 기존 CSP(Content Service Provider) 및 새로운 OTT 서비스 공급자들에게 맞선 중요한 경쟁 우위를 제공

- vRAN(virtualized Radio Access Network)
 - 기지국에 가상화 기술을 적용
 - 기지국 별로 이루어지던 처리 기능을 중앙집중국에 있는 범용 네트워크 장비에서 통합 처리하여 효율성을 극대화하는 기술
 - 현 상황
 - 기지국 형태는 각 제조 업체가 통신 기능별로 설비를 만들고 이 설비에 맞춰 네트워크 기능을 구성
 - 외부 업체의 네트워크 기능을 적용시키기 쉽지 않음
 - vRAN 적용
 - 컴퓨터에 소프트웨어를 설치하듯 범용 네트워크 장비에 다양한 네트워크 기능들을 소프트웨어 업그레이드만으로 설치 및 제거가 가능
 - SK텔레콤은 지난 2013년 2월 세계 최초로 vRAN을 시연
 - 2014년에는 데이터 센터와 IT 컴퓨터 분야에서 사용되던 가상화 기술을 인텔 제온 프로세서 기반 서버로 구성된 기지국에 적용해 고속의 데이터를 끊김 없이 실시간으로 송수신

진행단계와기회

진행단계

현재로서는 가상화가 진행되고 있는 EPC와 RAN

효율적으로 지원하기 위한 PCRF(Policy and Charging Ru le Function, 멀티미디어 네트워크상에서 대역폭 및 과금에 필요한 정책 기능)나 IMS 제품군

5G 시대를 준비하는 서비스 코어 및 게이트웨이 제품 군

수고하셨습니다.

문의 사항: sirmd@outlook.com