Chapter V

Digital Cells Design

- Basic cells design
- Complex cells design

NAND de 3 entradas

NAND de 3 entradas

NAND de 3 entradas

NOR de 2 entradas

Inversor com saída *Tri-State*

Multiplexers de duas entradas

Solução com tri-state buffers

Multiplexers de duas entradas

Solução com função lógica

$$Y = S.A + \overline{S}.B$$

$$Y = \overline{S.A} + \overline{S.B} = \overline{(S.A).(\overline{S}.B)}$$

Multiplexers de duas entradas

Solução analógica

?????

XOR

????

AOI de 4 entradas

AOI de 4 entradas

Chapter V

Digital Cells Design

- Basic cells design
- Complex cells design

"Leitura" de portas CMOS

Projecto de portas CMOS

Projecto Físico de Células Complexas

Objectivo: ordenar as entradas por forma a realizar, se possível, uma única difusão n+ e uma única difusão p+

Minimizar: área Si e capacidades parasitas Nem sempre possível

Projecto Físico de Células Complexas

<u>Uma</u> só difusão n⁺? <u>Uma</u> só difusão p⁺? Uma mesma ordenação de variáveis? Que ordenação de regiões n⁺ ou p⁺?

1. Grafo Lógico

2. Identificação dos caminhos de Euler

Projecto Físico de Células Complexas: Exemplo

Exemplo: $Y = \sim (A.B.C + D)$

A B C

Grafo PD (Pull-Down)

<u>Caminhos de Euler</u>: caminho que passa por todos os nós do grafo, de forma que *cada arco* só é percorrido *uma* vez

Projecto Físico de Células Complexas

2. Caminhos de Euler (cont.)

Regra: pode construir-se uma pista ininterrupta de difusão (n⁺ ou p⁺) se existir um caminho de Euler no correspondente grafo (PD ou PU). A ordem das variáveis é a dos arcos desse caminho. Se existir em *ambos* os grafos (PU e PD) e se a ordem for a mesma, o caminho de Euler diz-se consistente e podem construir-se 2 pistas ininterruptas (n⁺ e p⁺).

Exemplo: $Y = \sim (A.B.C + D)$

Uma solução possível

Grafo PU (Pull-Up)

D A B C

Partida: Y, chegada: V_{DD}

Grafo PD (Pull-Down)

D A B C

Partida: V_{SS}, chegada: V_{SS}

Exemplo: $Y = \sim (A.B.C + D)$

Outra solução possível

Grafo PU (Pull-Up)

A B C D

Partida: V_{DD}, chegada: Y

Grafo PD (Pull-Down)

A B C D

Partida: Y, chegada: Y

Exemplo: $Y = \sim (A.B.C + D)$ (cont.)

Projecto Físico de Células Complexas

Implantação de ligações nas difusões n+ e p+:

Para cada região (p+ ou n+), o percurso no caminho de Euler na rede (de 'pull-up' ou de 'pull-down') desde o nó de partida até ao nó de chegada corresponde às ligações das sucessivas áreas de difusão, da esquerda para a direita no 'layout'.

Análise comparativa de soluções:

Para a mesma área de implantação, pode minimizar-se a capacidade parasita do nó de saída da porta lógica associada às junções n+/subs. e p+/poço N por minimizar o número de vezes que, nos caminhos de Euler consistentes, se visita esse nó de saída (partida, chegada ou trânsito).

Exemplo: $Y = \sim (A.B.C + D)$ (cont.)

