

Produit scalaire dans l'espace

I.le produit scalaire dans l'espace

1. Approche géométrique du produit scalaire

Définition:

Soient \vec{u} et \vec{v} deux vecteurs de l'espace, et A,B,C trois points tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Il existe au moins un plan P contenant les point A, B et C.

On appelle produit scalaire de \vec{u} et \vec{v} , le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ calculé dans le plan P.

Ainsi:

Si u et v sont non nuls, $\vec{u}.\vec{v} = AB \times AC \times \cos(\widehat{BAC})$;

Si u=0 ou v=0, le produit scalaire de u et v est nul : $\vec{a}.\vec{b}=0$ et $\vec{b}.\vec{v}=0$.

Exemple:

ABCDEFGH est un cube d'arête a.

Soit
$$\vec{u} = \overrightarrow{BF}$$
 et $\vec{v} = \overrightarrow{AH} = \overrightarrow{BG}$.

$$\vec{u}.\vec{v} = \overrightarrow{BF}.\overrightarrow{AH} = \overrightarrow{BF}.\overrightarrow{BG} = BF \times .BG \times .\cos(\widehat{FBG})$$

donc
$$\vec{u}.\vec{v} = a \times , a\sqrt{2} \times , \cos(\frac{\pi}{4}) = a \times , a\sqrt{2} \times , \frac{\sqrt{2}}{2} = a^2$$

Propriété:

Si \vec{u} et \vec{v} sont deux vecteurs non nuls tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors : $\vec{u}.\vec{v} = \overrightarrow{AB}, \overrightarrow{AC} = \overrightarrow{AB}, \overrightarrow{AH} = \overrightarrow{AK}, \overrightarrow{AC}$

où H est le projeté orthogonal de C sur la droite (AB) et K est le projeté orthogonal de B sur la droite (AC) .

Si \vec{a} , \vec{v} et \vec{w} sont trois vecteurs de l'espace et k un nombre réel alors :

- $\vec{u}.(\vec{v}+\vec{w})=\vec{u}.\vec{v}+\vec{u}.\vec{w}$
- นี้.ขึ่=ขึ้.นี้
- $(k\vec{u}).\vec{v} = \vec{u}.(k\vec{v}) = k(\vec{u}.\vec{v})$

2. Caractérisation vectorielle de l'orthogonalité

Définition:

Deux vecteurs non nuls sont orthogonaux si, et seulement s'ils dirigent des droites orthogonales.Le vecteur nul est orthogonal à tous les vecteurs de l'espace.

Propriété:

Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $\vec{u}.\vec{v}=0$.

3. Expression analytique du produit scalaire

Propriété:

Dans un repère orthonormé (O,i,j,k) de l'espace, on considère les vecteurs \vec{u} et \vec{v} de coordonnées respectives (x,y,z) et (x',y',z'), Nous avons $\vec{u}.\vec{v} = xx' + yy' + zz'$.

En particuliers, $\vec{u} \cdot \vec{u} = x^2 + y^2 + z^2$ et $|\vec{u}_{ij}| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2 + z^2}$.

II.Applications du produit scalaire

1. Vecteur normal à un plan

Définition:

Un vecteur $\vec{\pi}$ non nul est dit orthogonal à un plan si ce vecteur est un vecteur directeur d'une droite orthogonale à ce plan.Ce vecteur est alors appelé **vecteur normal** au plan.

Théorème:

Une droite (d) est orthogonale à toute droite d'un plan P si, et seulement si, elle est orthogonale à deux droites sécantes (d_1) et (d_2) de ce plan.

2. Equation cartésienne d'un plan

Propriété:

Soit un vecteur $\vec{\pi}$ non nul et A un point de l'espace.L'unique plan P passant par A et de vecteur normal $\vec{\pi}$ est l'ensemble des points M de l'espace tels que :

$$\overrightarrow{AM} \cdot \overrightarrow{n} = 0$$
.

Propriété:

Dans un repère orthonormé, un plan P de vecteur normal $\vec{h}(a_ib_ic)$ a une équation de la forme ax+by+cz+d=0. Réciproquement, si a,b et c ne sont pas tous les trois nuls, l'ensemble (E) des points M(x,y,z) tels que

ax+by+cz+d=0 est un plan de vecteur normal $\vec{n}(a_ib_ic)$.