Homework 1 – STAT 642

Due Thursday, January 21 (in class);

You can also turn it in to our TA during his office hour on January 22.

- 1. Let $\Omega=(0,1]$ and suppose $\mathcal F$ consists of all finite unions of disjoint intervals of the form $(a,a'], 0 \le a \le a' \le 1$. Show that $\mathcal F$ is an algebra. Show that $\mathcal F$ is NOT a σ -algebra.
- 2. Let Ω be a non-empty set and let \mathcal{L} be a class of subsets of Ω . If \mathcal{L} is a λ -class and also a π -class, show that \mathcal{L} is a σ -algebra.

[Hint: To verify \mathcal{L} is a σ -algebra, the obstacle is to show that, if sets $A_1, A_2, \ldots \in \mathcal{L}$ (where the A_i 's may not be disjoint), then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{L}$. Starting from $A_1, A_2, \ldots \in \mathcal{L}$, construct disjoint $B_1, B_2 \ldots, \in \mathcal{L}$ where $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$.]

- 3. Problem 2.1 Athreya & Lahiri text
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a real-valued function on a measurable space $(\Omega, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - (a) Using a set $A \subset \mathbb{R}$, define an indicator function $f(x) = \mathbb{I}_A(x) \equiv \mathbb{I}(x \in A)$, $x \in \mathbb{R}$. Show f is a Borel measurable function (i.e., $\langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle$ -measurable) if and only if A is Borel measurable (i.e., $A \in \mathcal{B}(\mathbb{R})$).
 - (b) Show that if f is increasing $(f(y) \le f(x))$ if $y \le x$ then f is Borel measurable.
- 5. On a measure space $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, where m denotes the Lebesgue measure, define a sequence $f_n : \mathbb{R} \to \mathbb{R}$ of nonnegative measurable functions by

$$f_n(x) = \begin{cases} 1/n & \text{if } x \in [n, 2n] \\ 0 & \text{otherwise.} \end{cases}$$
 $x \in \mathbb{R}$.

Find $\lim_{n\to\infty} f_n(x) = f(x)$, for each $x \in \mathbb{R}$, and show that

$$\lim_{n \to \infty} \int f_n(x) dx \neq \int f(x) dx.$$

This implies that changing the order of integration and limits is generally not valid, unless other conditions are in place (e.g., MCT, DCT).

6. On a measure space $(\Omega, \mathcal{F}, \mu)$, suppose $f : \mathbb{R} \to \mathbb{R}$ is a Borel measurable and μ -integrable function. Show that, given $\epsilon > 0$, there is a simple function ψ on \mathbb{R} such that

$$\int |f - \psi| d\mu < \epsilon$$

[Consider f^+ and f^- separately; you should have also seen (somewhere) that if h is a nonnegative measurable function, there exist nonnegative simple functions ϕ_n where $\phi_n(\omega) \uparrow h(\omega)$ for each point $\omega \in \Omega$.]

7. Let P and Q denote two probability measures defined on measurable space $(\Omega, \mathcal{F}, \mu)$. Show that

1

$$\sup_{A \in \mathcal{F}} |P(A) - Q(A)| = \frac{1}{2} \int |p - q| d\mu$$

where p and q denote densities for measures P and Q, respectively, with respect to some dominating measure μ , e.g., $P(A) = \int_A p d\mu$ for $A \in \mathcal{F}$. (The form of μ isn't important but $\mu = P + Q$ is one example of a dominating measure for both P and Q.)

[Hint: For f=p-q, write $f=f^+-f^-$ where $|f|=f^++f^-$; all functions here are μ -integrable because p,q are. Use that, for any $A\in\mathcal{F},$ $|P(A)-Q(A)|=|\int_A f d\mu|\leq \max\{\int_A f^+d\mu,\int_A f^-\}\leq \max\{\int_A f^+d\mu,\int_A f^-\}$ along with $\int_A f^-d\mu=\int_A f d\mu=0$ (why?) and $\{\omega\in\Omega:f^+(\omega)>0\}$ is a measurable set.]

8. Suppose X_n , $n \geq 0$, are random variables on a psp $(\Omega, \mathcal{F}, \mu)$ (i.e, measurable $X_n : \Omega \to \mathbb{R}$) such that $X_n \to X_0$ a.s.(P). For any integer $m \geq 1$, an expected value in our notation is

$$E(X_n^m) = \int X_n^m dP = \int [X_n(\omega)]^m dP(\omega).$$

If $\sup_{n>1} E(X_n^2) < \infty$ show that $E(X_n) \to E(X_0)$.

[Hint: It's a short proof upon using uniform integrability.]