

本科毕业设计论文

题		集群无人机协同 SLAM
正火	H	

飞行器控制与信息工程				
刘昭宏				
布树辉				
. , , , .				
2022年6月				
	刘昭宏			

アルノオナ学 本科毕业设计论文

摘 要

摘要正文

关键词:无人机集群,协同SLAM

ABSTRACT

摘要正文-英文

Key Words: Flight control model, Quaternion, Three-dimensional visual simulation system, Loop simulation

アルスオナ学 本科毕业设计论文

目录

第一章 绪论 · · · · · · · · · · · · · · · · · ·	4
1.1 研究背景 · · · · · · · · · · · · · · · · · · ·	4
1.2 研究内容及论文结构 · · · · · · · · · · · · · · · · · · ·	· · · 4
第二章 ROS 与 PX4 介绍·····	
2.1 ROS 介绍 · · · · · · · · · · · · · · · · · ·	7
2.1.1 ROS 的消息机制····································	7
2.1.2 gazebo 仿真 · · · · · · · · · · · · · · · · · ·	9
2.2 PX4 AutoPilot · · · · · · · · · · · · · · · · · · ·	10
2.2.1 FailSafe 机制 · · · · · · · · · · · · · · · · · ·	10
2.2.2 EKF 与飞行模式 · · · · · · · · · · · · · · · · · · ·	10
2.2.3 联合 MAVROS 的 Offboard 模式 · · · · · · · · · · · · · · · · · ·	10
第三章 SLAM 系统设计······	11
3.1 SLAM 系统 · · · · · · · · · · · · · · · · · ·	11
3.1.1 SLAM 的分类 · · · · · · · · · · · · · · · · · · ·	11
3.1.2 相机参数及成像原理 · · · · · · · · · · · · · · · · · · ·	11
3.1.3 视觉 SLAM 的基本步骤······	11
3.2 ORB-SLAM2 · · · · · · · · · · · · · · · · · · ·	
3.2.1 ORB 特征点及描述子······	11
3.2.2 ORB-SLAM2 的主要进程 · · · · · · · · · · · · · · · · · · ·	
3.3 CCM-SLAM·····	
3.3.1 CCM-SLAM 的结构 · · · · · · · · · · · · · · · · · · ·	11
3.3.2 Client 与 Server 机制······	
3.4 多机协同及地图融合方案 · · · · · · · · · · · · · · · · · · ·	
3.4.1 算法原理·····	
3.4.2 编程实现·····	
第四章 多无人机 SLAM 仿真 · · · · · · · · · · · · · · · · · ·	12
4.1 gazebo 仿真环境配置······	
4.1.1 场景·····	
4.1.2 launch 文件······	
4.2 单机 SLAM 仿真······	
4.2.1 EKF 设置及启动仿真····································	
4.2.2 视觉定位的坐标变换 · · · · · · · · · · · · · · · · · · ·	
43	

アルノオナ学 本科毕业设计论文

第五章	实验与评估	 	 	 	 13
6.1	总结与展望 全文总结 · · 对未来工作	 	 	 	 14
参考文献	犬·····	 • • • • •	 	 	 15
> V 1/43	············ 十小结 ······				

第一章 绪论

1.1 研究背景

当今阶段,无人机(Unmanned Aerial Vehicle)技术迅速发展,在单架无人机上可以集成更多的系统,意味着对于单机更强大的功能。单架无人机也已经被广泛应用于灾害救援、监控巡查、环保监测、电力巡检、交通监视、农业植保等领域。但是,面对复杂的应用环境和多样化的需求,单架无人机受自身软硬件条件的限制,仍然具有一些局限性;为了弥补单架无人机的局限性,由多架相同或不同型号的无人机组成多无人机系统,即无人机集群,协同定位,共同完成任务;

通过集群的方式,能最大地发挥无人机的优势,又能避免由于单架无人机执行任务不佳或失败造成的不良后果,提高任务执行效率,扩展新的任务执行方式,从而达到提高系统可靠性,增强任务执行效果的目的。对于无人机的自主导航,能够在进入未知的环境时掌握无人机的位置和姿态是使其成功的关键。尽管 GPS 对于掌握无人机的位置有巨大的帮助,但仍存在普适性有限和准确度不高的问题;在一些特定场景下,比如室内狭小空间,对定位精度要求很高,GPS 定位的局限性就被显露出来。而 SLAM 技术则可以仅通过自身携带的传感器,来完成这一任务,同时达到一定的精度;

SLAM (simultaneous localization and mapping) 技术,即同时定位与建图,已有三十多年的研究; SLAM 最早由 Smith、Self 和 Cheeseman 于 1988 年提出。SLAM 指的是机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置和地图进行自身定位,同时在自身定位的基础上建造增量式地图,实现机器人的自主定位和导航。由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键 [1]。

但是单平台 SLAM 受到传感器性能的限制,存在两点不足:一是测量距离受限,单平台常用的传感器如激光雷达,其最远有效距离为 200 米,不能够满足大场景定位建图的需要,任务效率比较低;二是单平台构建出的三维点云相对稀疏,不能表现出足够的场景信息 [2]。

因此集群无人机协同 SLAM 方案有望解决单机存在的制约问题,主要表现在两个方面:一是多机意味着多传感器,能在大范围场景进行同时定位与建图;二是多机协同 SLAM 可以通过建图覆盖的检测,构建更加稠密和精细的点云地图。

目前单机同时定位与建图已经相对成熟,但是多机 SLAM 由于其控制复杂、数据传输量大、信息处理速度受限、关键数据融合效率低等问题,仍然需要大量的理论研究和实验。

1.2 研究内容及论文结构

本文研究目标旨在实现一套能够在室内高精度环境或 GPS 拒止环境下使用视觉进行多机定位和大范围建图的多无人机协同 SLAM 的方案;其中:

西北ノオ大学 本科毕业设计论文

- 1. 在 SLAM 方面: 掌握一些优秀的开源方案,选择各自优点做出一定的融合。 并且有一套针对地图融合的方法。
- 2. 在仿真方面:在 ROS 的 gazebo 仿真平台中实现一定的集群控制方法,能够 控制多个无人机协同完成同时定位与建图的任务。
- 3. 在真机方面: 实现单机的视觉 SLAM; 在安全的前提下实现双机协同 SLAM, 将仿真环境下的协同 SLAM 算法在真机上完成验证,得到场景地图

本研究内容是多机协作进行定位与建图,多机协同 SLAM 能大大提高任务进行的效率,但由于无人机数量多,协同上存在一定困难;研究内容分为三个模块: SLAM 模块、仿真模块和真机模块。

SLAM 模块的主要内容是实现一套可协作的 SLAM 方案,实现的步骤有:

- 1. 研究传统的视觉 SLAM 的特征点提取、匹配、初始化、后端优化等技术,研究机器人的位姿估计技术;研究并了解 SLAM 技术的整体框架
- 2. 研究 CCM-SLAM 方案, 重点研究其协同的机制和方法, 服务端到子端的信息传递和接口设计等
- 3. 研究 VINS-Fusion 方案中的 VIO 方法,研究如何利用 IMU 与相机数据联合进行更加准确的位姿估计

仿真模块的主要内容是在 ROS 的 gazebo 中研究如何实现多机协同的同时定位与建图,实现的步骤有:

- 1. 首先研究 PX4 和 MAVROS 之间的通信方式, ROS 的话题发布和订阅方式, 研究如何用程序解锁一架无人机、使其进入 Offboard 模式、起飞悬停并降落
- 2. 研究如何用程序发布话题,控制无人机按照航路点飞行
- 3. 研究如何构建多机的仿真环境,如何对多机进行控制,其控制策略的选择,即集中式或分布式的多机编队控制
- 4. 研究如何更改无人机的定位设置, 将其从 GPS 定位改为视觉 SLAM 定位; 并且完成单机的摄像头内容读取
- 5. 研究如何在 gazebo 中载入其他场景,在场景中控制无人机飞行,并且对拍摄到的画面进行建图,完成自身定位
- 研究如何在 gazebo 中完成多机基于视觉的同时定位与建图,并且拼合地图, 用第三方软件显示;研究多机的联合优化与协同方法

真机模块的主要内容是控制无人机的协同飞行及通信,实现的步骤有:

- 1. 研究无人机通过 MAVROS, MAVLINK 与地面站的通信方法, 尤其是用于 SLAM 的关键数据的传输
- 2. 研究多无人机与地面站之间的、多无人机之间的数据传输

西北ノオ大学 本科毕业设计论文

3. 研究多无人机之间的可变基线控制技术,如何设计一个详细的算法控制基线 距离

基于研究内容的层级关系,本论文的结构主要由四层构成,如图1-1所示。

图 1-1 论文结构

第一章:主要介绍研究背景,进行问题的提出,从而引出本文的研究内容和研究目标;从宏观的角度概括本文的内容,并且对问题做出概述。

第二章: 主要介绍研究中用到的 ROS(Robotics Operating System,机器人操作系统)和 PX4 AutoPilot 飞控软件系统。

第三章:主要介绍 SLAM 的原理和作用,SLAM 系统的基本流程,优秀的开源 SLAM 方案和地图融合的设计。

第四章: 主要介绍仿真实验的情况, 在 ROS 的 gazebo 环境中进行。

第五章: 主要介绍真机实验的情况,并且做出相应的评估。

第六章: 总结研究过程中的创新点和不足之处,提出进一步研究的大致方向,展望未来的研究工作。

第二章 ROS 与 PX4 介绍

2.1 ROS 介绍

本节主要对 ROS 平台进行介绍,包括 ROS 核心的消息机制和研究中要用到的 gazebo 仿真平台。

21 世纪开始,随着人工智能研究的发展,催生出了一批智能机器人的研究项目;ROS 诞生于 2007 年斯坦福大学 AI 实验室 Morgan Quigley 的 STAIR (Standford Artificial Intelligence Robot) 项目,其期望构建一个基于移动机器人 + 机械臂的原型;该项目于 2008 年受到 Willow Garage 公司关注,其决定用商业化手段来推进机器人的发展,使机器人平台能够更快地走进人们的日常生活;Willow Garage 接手该项目后两年,2010 年第一代 ROS 即 ROS1.0 发布;2013 年,OSRF (Open Source Robotics Foundation)接管了 ROS 的维护工作和版本的升级工作,随后至 2018 年间,ROS 的 Indigo、Kinetic 和 Melodic 版本相继发布。

ROS 即 Robotics Operating System,是一个针对机器人的开源、元级操作系统,在某些方面,ROS 更像是一种机器人框架 (robot framework);它提供类似于操作系统的服务,包含底层的驱动程序管理、底层的硬件描述,随后上升到软件程序之间的消息传递、功能包的管理和发布、也提供用于获得、编译、编写和多设备跨计算机运行代码所需的库等。换言之,ROS 是由一套通信机制,开发工具,一系列应用功能和一个庞大的生态系统组成的集合,其目标为提高机器人研发中的软件复用率,不断完善他人的工作,进行更好的开发。

2.1.1 ROS 的消息机制

ROS 提供了一套松耦合分布式通信机制,这种分布式处理框架(又名 Nodes),是以多个节点及节点之间的通信组成的。其中,节点(Node)和节点管理器(ROS Master)是 ROS 的核心概念,若干个节点在节点管理器下构建起来,共同实现特定的功能。

每一个节点是一个独立的执行单元,由可执行文件构成,在程序中需要声明节点的名称;节点的名称必须唯一,否则 ROS 会舍弃掉时间节点靠前的节点;节点执行具体的任务进程,比如单目的 ORB-SLAM2 中,其节点为 Mono, SLAM 的任务仅靠一个节点完成。

节点管理器是节点的控制中心,其作用是辅助节点的查找,帮助节点之间建 立通信连接;还能提供节点的命名和注册等服务,以及提供了能够存储全局变量 的配置的参数服务器。

如图2-1所示,节点在经过节点管理器注册后,可以建立节点之间的通信;常用的节点之间通信方式有两种,为话题(Topic)通信和服务(Service)通信:

1. 话题通信是异步通信机制,数据为单向传输;数据的流向为发布者(Publisher) 到订阅者(Subscriber);完成话题通信需要定义一个话题(Topic)及其消息 (Message)的内容,之后通过发布者(Publisher)发布该话题,并且订阅者

图 2-1 ROS 中的节点及通信

(Subscriber) 订阅该话题的操作,完成数据的传输,消息的数据结构由.msg 文件定义;话题通信可以完成多对多的信息传递。

2. 服务的通信机制则为同步,数据为双向传输;数据的流向为客户端(Client)与服务器(Server)之间的交互;完成服务的通信需要客户端向服务器发送请求,服务器完成任务处理后,向客户端返回应答数据,表示请求和应答的数据结构定义在.srv 文件中;服务通信一般用于逻辑判断,比如询问一项任务是否执行完毕,是一对多的节点处理关系。

发布和订阅话题的方法,发布者和订阅者类似,以发布者为例:先实例化一个发布者对象,定义发布的话题名称、数据类型和队列长度,最后对消息进行定义并发送,简单的逻辑代码如下:

需要注意的是,订阅者则需要声明并定义一个回调函数,在实例化 Subscriber 的对象后,通过 ROS 的 spin() 函数,循环等待回调函数获得话题消息。

客户端-服务器模型下的服务通信,则比话题的发布和订阅复杂;客户端的编程实现中,需要设置阻塞函数,其作用是直到发现对应的服务时才向下进行,否则程序被截止在该位置;如果对应的服务被发现,阻塞函数通过,之后创建客户端并且进行数据的设置,完成服务调用的请求,其代码实现如下:

亚北乙煮大学 本科毕业设计论文

服务器的实现与订阅者类似,需要一个回调函数,如果收到了客户端发来的请求,则会触发回调函数,程序向下进行,否则将循环等待回调函数收到客户端发来的请求。

除此之外, ROS 中还有参数(Parameter)或参数服务器的概念,其作用类似全局共享字典,节点可以进行访问,适合存储一些和系统配置相关的静态非二进制的参数,以供节点读取。

2.1.2 gazebo 仿真

gazebo 是 ROS 自带的仿真软件,其功能有构建具有运动属性的机器人仿真模型,提供了一些针对 CAD 和 soildworks 等 2D、3D 设计软件的接口; gazebo 还具有构建现实世界的各种场景的仿真模型的功能,能够在 gazebo 环境中建立一个与现实十分相似的场景用于算法验证;在传感器的仿真上, gazebo 拥有一个强大的传感器模型库,比如单目相机、双目相机、深度相机等,还可以根据需求自行配置传感器的类型,实现多传感器融合;除此之外,gazebo 还引入了现实世界的物理性质,如重力的影响,使仿真环境更加贴近现实。

gazebo 的仿真环境中,其文件大致可以分为三种类型: model, world, launch 文件; 同时, 这三种文件也代表了不同的分级;

图 2-2 model, world, launch 层级关系

如图2-2所示:

- 1. model (模型)是 gazebo 环境中的元级元素,也就是最底层文件,比如环境中的树木、双目相机、无人机、墙壁、桌子等都是 model 级别的物体。model由 sdf 文件和 config 文件构成; sdf 文件用 HTML或 XML 标签语言描述了该模型的主要内容,包括模型的构建方法、模型中对其他模型的调用以及连接方式、模型的位姿等参数配置;而 config 文件中记录了模型的作者及联系方式、模型的版本、模型的命名和描述等信息。由于模型具有可拼接的属性,因此一个模型可以由若干个模型组成。
- 2. world(世界)文件将模型集成起来,包含模型和物理性质的设置,是 gazebo 环境中的中层文件。该层与 model 层相同,都无法完成代码对模型的直接控制。

西北乙業大學 本科毕业设计论文

3. launch 文件是集成了 model, world 以及其他 launch 文件的 gazebo 中最顶层的文件; launch 文件不同于 model 和 world 文件, 其可以通过代码完成对模型的直接控制; launch 文件在 ROS 中拥有定义, 其以 XML 标签语言书写,可以在 launch 文件中完成嵌套其他 launch 文件、命名重映射、设置参数、启动 ROS 节点等任务;在 ROS 中有与 launch 文件对应的指令 roslaunch,用于启动该 launch 文件。

2.2 PX4 AutoPilot

PX4 是一款专业级开源飞控,也可以称之为自动驾驶仪;因其应用的平台不局限于飞行器,在竞速和物流应用的地面车辆和潜水艇等载具上也可以用其进行控制。PX4 由来自学术界和业界的顶级开发商开发,并且配套有活跃的全球论坛社区,其 software 的源码在 github 上保持着 issue 和 pull request 的更新,是应用十分广泛的一款飞控软件。需要注意,PX4 Software 和 Pixhawk4 并不是同一概念,前者为飞控软件,而后者为飞控硬件。PX4 软件的内部包含了针对不同机型(包括多旋翼、固定翼和 VTOL 垂直起降固定翼等)的控制律设计,还包含了强大的飞行模式设计和安全设计。PX4 还可以作为核心应用在更广阔的平台,比如使用了 QGroundControl 地面站、Pixhawk 硬件、基于计算机、相机等的使用 MAVLink 协议的 MAVSDK 融合等。

2.2.1 FailSafe 机制

FailSafe 机制,即安全生效机制,其含义为: 当错误发生时,对飞机进行保护或恢复到安全的状态,避免错误可能导致的不良后果。PX4 的 FailSafe 系统是可编辑的,意味着开发者可以根据自身的需求设置对 FailSafe 的触发,以保证在安全的情况下实验或完成任务。FailSafe 系统被触发后,一般有自动着陆、保持位置或返回特定的航路点几种反馈措施。

安全生效机制监控的主要情况有:

- 1. 低电量;该情况在仿真中影响较小,但在真机实验中,低电量可能意味着无 法安全返航,因此必须由安全生效机制介入;
- 2. 远程控制信号丢失;

2.2.2 EKF 与飞行模式

2.2.3 联合 MAVROS 的 Offboard 模式

西州ノオ大学 本科毕业设计论文

第三章 SLAM 系统设计

- 3.1 SLAM 系统
- 3.1.1 SLAM 的分类
- 3.1.2 相机参数及成像原理
- 3.1.3 视觉 SLAM 的基本步骤
- 3.2 ORB-SLAM2
- 3.2.1 ORB 特征点及描述子
- 3.2.2 ORB-SLAM2 的主要进程
- 3.3 CCM-SLAM
- 3.3.1 CCM-SLAM 的结构
- 3.3.2 Client 与 Server 机制
- 3.4 多机协同及地图融合方案
- 3.4.1 算法原理
- 3.4.2 编程实现

第四章 多无人机 SLAM 仿真

- 4.1 gazebo 仿真环境配置
- 4.1.1 场景
- 4.1.2 launch 文件
- 4.2 单机 SLAM 仿真
- 4.2.1 EKF 设置及启动仿真
- 4.2.2 视觉定位的坐标变换
- 4.3 **多机** SLAM **仿真**

第五章 实验与评估

アルノオナ学 本科毕业设计论文

第六章 总结与展望

- 6.1 全文总结
- 6.2 对未来工作的展望

西ルスオ大学 本科毕业设计论文

参考文献

- [1] 于琰平. 基于 FlightGear 的四旋翼无人机三维可视仿真系统研究 [J]. 天津大学, 2010.
- [2] 刘鹏. 基于 FlightGear 的无人直升机飞行仿真技术研究 [J]. 南京航空航天大学, 2011
- [3] 李海泉. 小型无人机飞行力学建模及虚拟训练平台的建立 [J]. 南京航空航天大学, 2011.

西州ノオ大学 本科毕业设计论文

致 谢

另外要感谢 Curt Olson 等飞行爱好者们,是他们创造了 FlightGear 这个功能强大的开源的飞行模拟软件;感谢为 Linux 贡献代码的程序员们,这个自由免费的平台为我完成毕设提供了不少便利;感谢清华大学王磊博士,他创作的 LaTeX 模板使我的论文的排版得以顺利完成。

毕业设计小结