MGPI - Résumé

I. GANTT et PERT

1. PERT

2. GANTT

- Date de début/fin au plus tôt : La tâche démarre dès que possible
- Date de début/fin au plus tard : La tâche démarre le plus tard possible sans modifier la date de fin du projet.
- Marge totale : marge totale dans la branche en déplaçant éventuellement d'autres tâches Date au plus tôt – date au plus tard
- Marge libre: marge libre de contraintes (aucun impact sur autres activités)
 Marge totale min (marges totales activités précédentes)

3. PERT aléatoire

a. Beta de Person

- O: Valeur optimiste
- I: Valeur plus probable
- P: Valeur pessimiste

$$E = \frac{O + 4I + P}{6}$$

b. Loi normale

$$X_i \sim \beta' \quad \Rightarrow \qquad Y = \sum_{i=1}^{n \geq 6} X_i \sim \mathcal{N}(\mu, \sigma) \qquad \boxed{\mu = \sum E_i} \qquad \boxed{\sigma = \frac{\sum P_i - \sum E_i}{3}} \qquad Y_{x\%} = \mu + \sigma \times \phi^{-1}(x)$$

Exemple:

 X_i durées des tâches $\mu = \sum E_i$ durée moyenne du projet $\sum P_i$ durée pessimiste du projet σ variance de la durée $\sum O_i$ durée optimiste du projet

MGPI - Résumé

c. Table de la loi normale

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327

II. Suivi de projet

1. Suivi statique

• Av^t budgétaire : Budget consommé

Av^t observé: Budget consommé pour effectuer les tâches terminées
 Av^t technique: Budget prévu pour effectuer les tâches terminées

Rendement : Av^t observé / Av^t technique

2. Suivi prévisionnel

a. Droite à 45°

La date de fin prévisionnelle tient compte de la dérive et se lit là où l'extrapolation coupe la droite à 45°.

3. Modèle de Putnam

a. Méthode pratique

Un retard de Δt à l'instant t entrainera un <u>retard de $K\Delta t$ à la fin du projet</u>.

b. Méthode analytique

$$K=0,43+rac{0,604}{ au}-rac{0,034}{ au^2}$$
 $au: au$ taux d'avancement du projet

t	K
10%	3
30%	2
50%	1,5
70%	1,2
90%	1

MGPI - Résumé

III. Estimation COCOMO

1. Méthode

a. Estimation du nombre de ligne par tâche [k lignes]

Tâche		Ingé 1			Ingé p				
	Opt	+ prob	Pess		Opt	+ prob	Pess		
<i>X</i> ₁	$KSMI_{11o}$	$KSMI_{11i}$	$KSMI_{11p}$		$KSMI_{1p_o}$	$KSMI_{1p_i}$	$KSMI_{1p_p}$		
:	i i	:	:	:	:	:	÷		
X_n	$KSMI_{n1_o}$	$KSMI_{n1_i}$	$KSMI_{n1_p}$		$KSMI_{np}_{o}$	$KSMI_{np_{i}}$	$KSMI_{np}_{p}$		

b. Estimation du nombre de ligne pour le projet complet [k lignes]

$$KSMI_{ij} \sim \beta' \Rightarrow E_{ij}$$
 $KSMI = \sum KSMI_{ij} \sim \mathcal{N}(\mu, \sigma)$ (cf PERT aléatoire)

$$KSMI_o = \overline{KSMI_{\iota J_o}}$$
 $\overline{KSMI} = \mu$ $KSMI_p = \overline{KSMI_{\iota J_p}}$

c. Estimation de la charge [homme.mois]

Hors validation et specs

$$\boxed{HM = A \times KCSI^B \times F_n} \qquad HM \sim \mathcal{N}\left(\overline{HM}, \frac{\overline{HM} - HM_p}{3}\right) \qquad HM_{x\%} = \cdots \quad \text{(cf PERT aléatoire)}$$

$$HM_o = A \times KSMI_o^B \times F_n \qquad | \qquad \overline{HM} = A \times \overline{KSMI}^B \times F_n \qquad | \qquad HM_p = A \times KSMI_p^B \times F_n \times \overline{F}_n$$

 F_n : coefficient national (1,1 en France)

F: coefficient correcteur de la charge pessimiste $F = 1 + \frac{V-1}{3}$

d. Estimation de la durée [mois]

Hors validation et specs

$$D_{x\%} = C \times HM_{x\%}^D$$

e. Estimation des spécifications

$$HM_{specs} = HM \times K_{HM_{specs}} \qquad D_{specs_{\chi\%}} = D_{\chi\%} \times K_{D_{specs}}$$

f. Répartition de la charge et de la durée

Hors validation

Voir les tableaux de chaque phase en % de HM et D (valeurs hors specs et validation)

g. Estimation de la validation

 HM_{val} et D_{val} à estimer indépendamment.

h. Durée et charge totale

$$HM_{tot} = HM + HM_{specs} + HM_{val} \sim \mathcal{N}$$

$$D_{tot} = D + D_{specs} + D_{val} \sim \mathcal{N}$$

MGPI - Résumé

2. Données

c. et d. Coefficients A, B, C, D

Type de projet	A	В	C	D
Organique (3%, batch, calcul)	2,4	1,05	2,5	0,38
Médian (79%, autres)	3	1,12	2,5	0,35
Imbriqué (18%, embarqué, système)	3,6	1,2	2,5	0,32

d. Coefficient V pour affiner la charge pessimiste

Problème		Problème	V
Expérience du langage		Outils logiciels	1,65
Contraintes de planning		Contraintes de délai	1,66
Taille de la BDD	1,23	Modif des spécifications	1,78
Expérience de la machine cible	1,34	Fiabilité demandée	1,87
Modif de la machine cible	1,49	Nouvelles pratiques de prog.	1,92
Contrainte de stockage	1,56	Complexité du produit	2,36
Expérience de l'application		Capacité de l'équipe	4,18

f. Répartition de la charge (case gauche) et de la durée (case droite)

Type	Phase	> 2 KCMI		> 8 KCMI		> 32 KCMI		> 128 KCMI		> 512 KCMI	
Organ.	Spécifications	6	10	6	11	6	12	6	13		
	Conception globale	16	19	16	19	16	19	16	19		
	Réalisation	68	63	65	59	62	55	59	51		
	Intégration	16	18	19	22	22	26	25	30		
	Spécifications	7	16	7	18	7	20	7	22	7	24
Médian	Conception globale	17	24	17	25	17	26	17	27	17	28
Median	Réalisation	64	56	61	52	58	48	55	44	52	40
	Intégration	19	20	22	23	25	26	28	29	31	32
	Spécifications	8	24	8	26	8	28	8	29	8	32
Imbr.	Conception globale	18	30	18	32	18	34	18	36	18	40
	Réalisation	60	48	57	44	54	40	51	36	48	32
	Intégration	22	22	25	24	28	26	31	28	34	28