3283W Functions Cheat Sheet

The setup is as follows: $f: A \to B$, with the inclusions $C \subseteq A$, $D \subseteq B$.

Definition (Injective). The function f is *injective* if

for all
$$x, x' \in A$$
, $f(x) = f(x') \implies x = x'$

Equivalently,

for all
$$x, x' \in A$$
, $x \neq x' \implies f(x) \neq f(x')$,

which is the contrapositive.

Definition (Surjective). The function f is surjective if

for all $y \in B$, there exists $x \in A$ such that f(x) = y.

Equivalently,

$$f(A) = B$$
.

Definition (Image). An element $y \in B$ in the codomain is in the *image* of a set C if f(x) = y for some $x \in C$. In other words,

$$y \in f(C) \iff \text{there exists } x \in C \text{ s.t. } f(x) = y.$$

Definition (Preimage). An element $x \in A$ in the domain is in the *preimage* of a set D if $f(x) \in D$. In other words,

$$x \in f^{-1}(D) \iff f(x) \in D.$$

Exercise (Injectivity and composition). Let $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is injective, then f is injective.

Exercise (Surjectivity and composition). Let $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is surjective, then g is surjective.

Exercise (Injections, surjections in finite sets). Let A, B be finite sets and $f: A \to B$. Show that if |A| = |B|, then f injective iff f bijective iff f surjective. (Count elements.)

Remark (Final note). It is true that

$$x \in C \implies f(x) \in f(C).$$

However, $f(x) \in f(C)$ does not imply $x \in C$. If you assume that f is injective, then

$$f(x) \in f(C) \implies x \in C.$$

¹Note: The contrapositive says that f failing to be injective implies $g \circ f$ fails to be injective. You should try to prove the statement (i) directly and (ii) by proving the contrapositive. Lastly, draw a (simple) picture of sets A, B, C and maps f and g showing what is happening, for the proof via contrapositive.

²See last footnote.