4.3 Логіка предикатів

4.3.1 Поняття предикату. Квантори

Приклад

"Всі люди смертні (A).

Сократ — людина (B).

Відповідно, Сократ смертний (C)."

Структура висловлювання:

- -суб'єкт (підмет);
- -предикат (властивість суб'єкта).

Одномісним предикатом P(x), визначеним на множині M, називається вираз, який після підстановки в нього замість x об'єкта з області визначення M, перетворюється у висловлювання.

Область визначення предиката називається предметною областю.

Елементи з області визначення називаються предметними константами.

Змінна, від якої залежить предикат, називається предметною змінною.

Приклад. "х більше у"

P(x, y) — двомісний предикат, $x, y \in R$

Приклад. "місто х є столицею країни у"

Q(x, y)

х — множина міст

у — множина країн

Приклад. "p народився у місті q у році r"

R(x, y, z)

р — множина людей

q — множина міст

r — множина років

N-місним предикатом, визначеним на множинах $M_1, ..., M_n$, називається вираз, який перетворюється у висловлювання після заміни кожної предметної змінної на елемент з її області визначення.

Предикат — функція, що відображає множину об'єктів на множину {T, F}.

Над предикатами визначено всі булеві операції, а також дві нові операції — квантори:

∀ — квантор загальності

∃ — квантор існування

Формула $\forall x P(x)$:

"для будь-якого предмету $m \in M$ виконується властивість P(x)" або

"всі x мають властивість P(x)".

Формула $\exists x P(x)$:

"існує принаймні один предмет x, який має властивість P" або

"деякі x мають властивість P".

Нехай $M = \{a_1, ..., a_n\}$ — скінченна область визначення предикату P(x).

Формули з кванторами можуть бути виражені через кон'юнкції та диз'юнкції:

$$\forall x P(x) = P(a_1) \wedge P(a_2) \wedge \ldots \wedge P(a_n),$$

$$\exists x P(x) = P(a_1) \vee P(a_2) \vee \ldots \vee P(a_n).$$

Приклад. "Кожен студент групи вивчав дискретну математику".

⇒ "Про кожного студента групи відомо, що цей студент вивчав дискретну математику"

"Про кожного студента x групи відомо, що x вивчав дискретну математику"

C(x): "x вивчав дискретну математику"

 $\forall x C(x)$

"Для кожної особи x, якщо ця особа x — студент групи, то x вивчав дискретну математику".

S(x): "особа x навчається в групі"

$$\forall x(S(x) \to C(x))$$

Q(x,y): "Студент x вивчає дисципліну y"

 \Rightarrow C(x): Q(x, 'Дискретна математика')

 $\forall x Q(x, 'Дискретна математика')$

 $\forall x(S(x) \rightarrow Q(x, 'Дискретна математика'))$

Приклад. "Сума двох додатних чисел — додатне число".

⇒ "Два довільні додатні числа дають у сумі додатне число".

"Будь-які додатні числа x та y утворюють суму x+y, яка ϵ додатнім числом"

$$\forall x \forall y (((x>0) \land (y>0)) \rightarrow (x+y>0))$$

4.3.2 Терми та формули

У мові логіки предикатів присутні наступні символи:

- пропозиційні зв'язки ¬, ∧, ∨, →, ~;
- •квантори загальності ∀ та існування ∃;
- допоміжні символи: кома ",", та дужки "(", ")";
- предметні змінні $x_1, x_2, ...$;
- предметні константи $a_1, a_2, ...;$
- функціональні символи $f_1, f_2, ...;$
- \bullet предикатні символи $P_1, P_2, ...$

Означення

- (1) Кожна предметна змінна ϵ термом.
- (2) Кожна предметна константа є термом.
- (3) Якщо f функціональний символ та $t_1, ..., t_n$ терми, то $f(t_1, ..., t_n)$ є термом.
 - (4) Інших термів не існує.

Означення

- (1) $P(t_1,...,t_n)$, де P предикатний символи, $t_1,...,t_n$ терми, ϵ атомарною формулою.
- (2) Якщо A та B формули та x предметна змінна, то формулами ϵ : $\neg A$, $A \land B$, $A \lor B$, $A \to B$, $A \sim B$, $\forall xA$, $\exists xA$.
 - (3) Інших формул немає.

Формула, на яку розповсюджується дія квантора, називається областю дії квантора.

Змінна, за якою "навішується" квантор та яка попадає в його область дії, називається зв'язаною змінною.

Змінна, яка лежить за межами області дії квантора, називається вільною змінною.

Формула, що не містить вільних змінних, називається **замкненою**.

Приклад

$$\forall x (P(x) \to \exists y \ Q(x,y))$$

Приклад. Нехай Q(x,z): "x народився у році z", де x належить множині людей, а z — множині років.

 $\forall x \exists z \ Q(x,z)$: "Кожна людина народилася в якомусь році"

 $\exists z \forall x \ Q(x,z)$: "Існує такий рік, в якому народились люди"

Терм $y \in \textbf{вільним для змінної} \ x \ в формулі \ A(x),$ якщо жодне вільне входження x в A(x) не знаходиться в області дії жодного квантора по z, де z — змінна, яка входить в терм y.

Приклади

Терм $y \in вільним для змінної <math>x$ в формулі P(x), але той самий терм y не ε вільним для змінної x в формулі $\forall y P(x)$.

4.3.3 Інтерпретації формул логіки предикатів

Інтерпретацією називається система I, яка складається з непорожньої множини D, називається областю інтерпретації, а також відповідності, яка ставить кожному n-місному предикату P_i деяке відношення на області D^n , кожній предметній константі a_i — деякий елемент з області D, кожній функціональній літері f_i — деяку n-місну операцію з області D (тобто функцію $D^n \rightarrow D$).

Коли задана область інтерпретації всі предметні змінні пробігають всі значення з області D, а логічні зв'язки мають звичайний логічний зміст.

Приклад. Нехай $\forall x(P(x) \rightarrow Q(x))$.

Приклади інтерпретацій:

Область	Інтерпретація	Висловлювання
інтерпретації Д		$\forall x (P(x) \rightarrow Q(x))$
Множина	<i>P</i> (<i>x</i>): <i>x</i> — риба,	Усі риби
живих істот	Q(x): x мешкає у	мешкають у
	воді	воді
Множина	P(x): x — людина,	Усі люди
живих істот	Q(x): x смертний	смертні
Множина	P(x): x ділиться на 6,	Всі числа, які
цілих чисел	Q(x): x ділиться на 3	діляться на 6,
		діляться на 3

Приклад. $\exists x \exists y P(f(x,y), t)$.

Предикат P(v, u) — двомісний, змінні x, y — зв'язані, t — вільна змінна.

Інтерпретація:

область інтерпретації D — множина дійсних чисел R, t = 1, $f(x,y) = x^2 + y^2$, предикат P(u, t): u = t. $\Rightarrow \exists x \exists y (x^2 + y^2 = 1)$.

Якщо $f(x,y) = x^2 + y^2$, $t = r^2$, то $\exists x \exists y (x^2 + y^2 = r^2)$.

Інтерпретація називається **моделлю** для даної множини формул Г, якщо кожна формула з Г істинна в даній інтерпретації.

Формула називається виконуваною, якщо існує хоча б одна інтерпретація, на якій формула істинна.

Формула називається загальнозначущою, якщо вона істинна на будь-якій інтерпретації для будь-яких значень змінних.

Формула, яка є хибною на будь-якій інтерпретації при будь-яких значеннях змінних, називається **протиріччям**.

Загальнозначущі формули позначаються як і тавтології, тобто $\vdash A$.

Приклад. Область інтерпретації: $D = \{a, b\}$.

Побудуємо таблицю істинності формул:

$$E_1 = \exists x P(x)$$
, $E_2 = \forall x P(x)$.

X	$P_1(\cdot)$	$P_2(\cdot)$	$P_3(\cdot)$	$P_4(\cdot)$
a	F	F	T	T
b	F	T	F	T

$P(\cdot)$	$\exists x P(x)$	$\forall x P(x)$
P_1	F	F
P_2	T	F
P_3	T	F
P_4	T	T

Побудуємо таблиці істинності на області інтерпретації з двох елементів $D = \{a, b\}$ для наступних формул:

$$E_1 = \forall y P(y) \to \exists x Q(x),$$

$$E_2 = \forall y (P(y) \to \exists x Q(x)),$$

$$E_3 = \forall y \exists x (P(y) \to Q(x)).$$

Обчислення формул на інтерпретації P_2 , Q_1 :

$$E_1 = \forall y P_2(y) \rightarrow \exists x Q_1(x) = F \rightarrow F = T;$$

$$E_2 = \forall y (P_2(y) \to \exists x Q_1(x)) = \forall \begin{pmatrix} P_2(a) \to F \\ P_2(b) \to F \end{pmatrix} =$$

$$= \forall \begin{pmatrix} F \rightarrow F = T \\ T \rightarrow F = F \end{pmatrix} = F;$$

$$E_{3} = \forall y \exists x (P_{2}(y) \to Q_{1}(x)) = \forall y \begin{pmatrix} \exists x (P_{2}(a) \to Q_{1}(x)) \\ \exists x (P_{2}(b) \to Q_{1}(x)) \end{pmatrix} =$$

$$= \forall \begin{pmatrix} \exists x \begin{pmatrix} P_{2}(a) \to Q_{1}(a) \\ P_{2}(a) \to Q_{1}(b) \end{pmatrix} \\ \exists x \begin{pmatrix} P_{2}(b) \to Q_{1}(a) \\ P_{2}(b) \to Q_{1}(b) \end{pmatrix} = \forall y \begin{pmatrix} \exists x \begin{pmatrix} F \to F = T \\ F \to F = T \end{pmatrix} = T \\ \exists x \begin{pmatrix} T \to F = F \\ T \to F = F \end{pmatrix} = F.$$

Аналогічно можна знайти значення для цих формул для решти 15 інтерпретацій та дізнатись, які з формул є виконуваними.

4.3.4 Властивості формул логіки предикатів

Теорема 1. В логіці предикатів справедливі наступні рівносильності, які містять квантори:

1.
$$\forall x P(x) \sim \exists x P(x)$$

2.
$$\exists x P(x) \sim \forall x \overline{P(x)}$$

3.
$$\forall x P(x) \sim \exists x P(x)$$
;

4.
$$\exists x P(x) \sim \forall x \overline{P(x)}$$
;

5.
$$\forall x (P(x) \land S) \sim \forall x P(x) \land S$$
;

6.
$$\forall x (S \land P(x)) \sim S \land \forall x P(x);$$

7.
$$\forall x (P(x) \lor S) \sim \forall x P(x) \lor S$$
;

8.
$$\forall x (S \lor P(x)) \sim S \lor \forall x P(x)$$
;

9.
$$\exists x (P(x) \land S) \sim \exists x P(x) \land S$$
;

10.
$$\exists x (S \land P(x)) \sim S \land \exists x P(x);$$

11.
$$\exists x (P(x) \lor S) \sim \exists x P(x) \lor S$$
;

12.
$$\exists x (S \lor P(x)) \sim S \lor \exists x P(x);$$

13.
$$\forall x (P(x) \rightarrow S) \sim \exists x P(x) \rightarrow S$$
;

14.
$$\forall x (S \rightarrow P(x)) \sim S \rightarrow \forall x P(x);$$

15.
$$\exists x (P(x) \rightarrow S) \sim \forall x P(x) \rightarrow S$$
;

16.
$$\exists x (S \rightarrow P(x)) \sim S \rightarrow \exists x P(x);$$

17.
$$\forall x S \sim S$$
;

18.
$$\exists x S \sim S$$
;

19.
$$\forall x (P(x) \land Q(x)) \sim \forall x P(x) \land \forall x Q(x)$$

20.
$$\exists x (P(x) \lor Q(x)) \sim \exists x P(x) \lor \exists x Q(x)$$

21.
$$\exists x (P(x) \land Q(x)) \rightarrow (\exists x P(x) \land \exists x Q(x))$$

22.
$$(\forall x P(x) \lor \forall x Q(x)) \rightarrow \forall x (P(x) \lor Q(x))$$

23.
$$\forall x P(x) \sim \forall y P(y)$$
;

24.
$$\exists x P(x) \sim \exists y P(y)$$
;

25.
$$\forall x \forall y R(x,y) \sim \forall y \forall x R(x,y)$$

26.
$$\exists x \exists y R(x,y) \sim \exists y \exists x R(x,y)$$

27.
$$\exists y \forall x R(x,y) \rightarrow \forall x \exists y R(x,y)$$

Теорема 2. Якщо замінити зв'язану змінну довільної формули A іншою змінною, що не входить у цю формулу, у кванторі й усюди в області його дії, дістанемо формулу, рівносильну A.

Приклад 1. На області інтерпретацій $D\{a,b\}$ побудувати таблицю істинності для предиката:

$$E = \exists x \forall y (P(x) \land Q(y)) \rightarrow R.$$

<u>Розв'язання</u>. Таблиці істинності для предикатів на області інтерпретацій $D\{a,b\}$:

x	$P_1(\cdot)$	$P_2(\cdot)$	$P_3(\cdot)$	$P_4(\cdot)$
a	F	F	T	T
\boldsymbol{b}	F	T	F	T

$P(\cdot)$	$\exists x P(x)$	$\forall x P(x)$
P_1	F	F
P_2	T	F
P_3	T	F
P_4	T	T

Спрощуємо предикат і заповнюємо таблиці:

(R=T)

P	P_1	P_1	P_1	P_1	P_2	P_2	P_2	P_2	P_3	P_3	P_3	P_3	P_4	P_4	P_4	P_4
Q	Q_1	Q_2	Q_3	Q_4												
R	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T

(R=F)

P	P_1	P_1	P_1	P_1	P_2	P_2	P_2	P_2	P_3	P_3	P_3	P_3	P_4	P_4	P_4	P_4
Q	Q_1	Q_2	Q_3	Q_4												
R	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F

$$E = \exists x \forall y (P(x) \land Q(y)) \rightarrow R = (\exists x P(x) \land \forall y Q(y)) \rightarrow R$$

P	F	F	F	F	T	T	T	T	T	T	T	T	T	T	T	T
Q	F	F	F	T	F	F	F	T	F	F	F	T	F	F	F	T
R	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
Ε	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T

P	F	F	F	F	T	T	T	T	T	T	T	T	T	T	T	T
Q	F	F	F	T	F	F	F	T	F	F	F	T	F	F	F	T
R	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Ε	T	T	T	T	T	T	T	F	T	T	T	F	T	T	T	F

Приклад 2. На області інтерпретацій $D\{a,b\}$ побудувати таблицю істинності для предиката:

$$E = \forall x \exists y (P(x) \lor Q(y)) \land R.$$

Розв'язання.

$$E = \forall x \exists y (P(x) \lor Q(y)) \land R = (\forall x P(x) \lor \exists y Q(y)) \land R$$

$$E = (\forall x P(x) \lor \exists y Q(y)) \land R$$

Таблиці істинності:

P	F	F	F	F	F	F	F	F	F	F	F	F	T	T	T	T
Q	F	T	T	T	F	T	T	T	F	T	T	T	F	T	T	T
R	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
E	F	T	T	T	F	T	T	T	F	T	T	T	T	T	T	T

P	F	F	F	F	F	F	F	F	F	F	F	F	T	T	T	T
Q	F	T	T	T	F	T	T	T	F	T	T	T	F	T	T	T
R	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
E	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F

Приклад 3. На області інтерпретацій $D\{a,b\}$ побудувати таблицю істинності для предиката:

$$E = \forall x \exists y (P(x) \rightarrow Q(y)) \lor R.$$

Розв'язання. Теорема 1:

13.
$$\forall x (P(x) \rightarrow S) \sim \exists x P(x) \rightarrow S$$

16.
$$\exists x (S \rightarrow P(x)) \sim S \rightarrow \exists x P(x)$$

$$E = \forall x \exists y (P(x) \to Q(y)) \lor R = (\exists x P(x) \to \exists y Q(y)) \lor R$$

$$E = (\exists x P(x) \to \exists y Q(y)) \lor R$$

Таблиці істинності:

P	F	F	F	F	T	T	T	T	T	T	T	T	T	T	T	T
Q	F	T	T	T	F	T	T	T	F	T	T	T	F	T	T	T
R	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
E	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T

P	F	F	F	F	T	T	T	T	T	T	T	T	T	T	T	T
Q	F	T	T	T	F	T	T	T	F	T	T	T	F	T	T	T
R	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Ε	T	T	T	T	F	T	T	T	F	T	T	T	F	T	T	T