2004-2005 学年第二学期 《模拟电子技术》试卷 A 卷

- 一、 $(18 \, \beta)$ 放大电路如图所示,设各电容对交流可视为短路。已知 BJT 的 V_{RE} =0.6V, β =50,
- 1. 试估算各静态值 I_B 、I_C和 V_{CE};
- 2. 求晶体管的输入电阻 r_{be};
- 3. 画出小信号等效电路;
- 4. 求电压放大倍数 Av = Vo/Vi、 Avs = Vo/Vs;
- 5. 求该放大电路的输入电阻 R_i 和输出电阻 R_0 。

- 二、 $(17 \, \text{分})$ 电路如图所示,已知 Vcc=12V, $R_L=8 \, \Omega$, v_i 为正弦波。
- 1. 求在 BJT 的饱和压降 V_{CES} 可以忽略不计的条件下,负载上可能得到的最大输出功率 Pomax;
- 2. 每一个管子允许的管耗 Pcm 至少为多少?
- 3. 每个管子的耐压 | V(BR)CEO | 应大于多少?
- 4. 当输出功率越大, BJT 的管耗也越大, 这种说法对吗?
- 5. 指出该电路是属于 OTL 还是 OCL 电路, 属于什么工作方式? 可能产生什么失真?克服这种失真有什么办法, 请画出 v_i v_i v_i v_i v_i v_{cc} v_{cc}

- 三、(15 分) 下图是一个双端输出的差动放大电路。已知 Vcc=10V, $-V_{EE}=-10V$, $R_{c1}=R_{c2}=5.6k\Omega$, $R_L=11.2k\Omega$, $\beta=60$, $V_{BE}=0.6V$ 。
 - 1. 求 Q 点 (I_{B1}、 I_{C1}、 V_{CE1});
 - 2. 若 V_{i1} =0.01V, V_{i2} =-0.01V,求输出电压 vo 值;
 - 3. 求电路的差模输入电阻 R_{id} 、共模输入电阻 R_{ic} 和输出电阻 R_0 。

四、(12分)图示电路中的A1、A2为理想的集成运放。

- 1. 试说明级间反馈元件及引入的反馈类型与极性;
- 2. 求深负反馈条件下的闭环电压增益 $A_{VF} = \frac{V_o}{V_i}$ 。

五、(12分)电路如下图所示,设运放是理想的。

1. A₁、A₂和 A₃分别组成什么电路?

六、(14 分) 电路如图所示,设运放是理想的。已知 R=10k Ω , C=0.01 μ F, R1=5.1k Ω , 1. 为满足振荡条件,试在图中用+、-标出运放 A 的同相端和反相端; 2. 为能起振,Rp 和 R₂ 两个电阻之和应大于何值?3. 此电路的振荡频率 fo=? 4. 试证明稳定振荡时输出电压的峰值为 Vom=3R₁V_Z/(2R₁-R_P)。

七、 $(12\,
ho)$ 用集成运放组成的串联型稳压电路如下图所示,设 A 为理想集成运算放大器。

1. 选择填空:

图中 R2、 R3、 Rw 为______, T 为______, R₁、 Dz 为______, 运 放 A 为

- a. 调整环节; b、比较放大环节; c. 取样环节; d. 基准环节
- 2. 求流过稳压管的电流 I_Z ;
- 3 求输出电压 V₀的调节范围。

