n House Price Prediction - ML Project

Overview

This project predicts house prices using a synthetic dataset generated for properties in Indian cities like Vadodara, Ankleshwar, and Surat. It includes data generation, EDA, pre-processing, model training, evaluation, and visualization.

Objective

- Generate synthetic housing price data.
- Conduct Exploratory Data Analysis (EDA).
- Preprocess data using scaling and encoding.
- Train two models:
 - Linear Regression
 - Random Forest Regressor
- Evaluate models using **MSE** and **R2 Score**.
- Visualize predictions against actual prices.

Dataset Description

	Feature	Description	
-			
	Size	Size in square feet	
	HouseType	Flat, Bungalow, Duplex, Triplex, Tenament	
	City	Vadodara, Ankleshwar, Surat	
	Area	Localities within each city	
	Rooms	Number of rooms (1-7)	
		Age of property in years (0-30)	
	Price	Final price (Target variable)	

- Total Samples: 50
- Pricing Logic:
 - Based on city and house type multipliers.
 - Adjustments for rooms, property age, and random noise.

■ Exploratory Data Analysis (EDA):

Data Info

- No missing data.
- Mixed types: numerical & categorical.

Data Description

- Basic statistical summary via `.describe()`.

■ Visualizations

- Price Distribution: Slightly skewed, multimodal.
- Correlation Heatmap:
 - High correlation between Size and Price.
 - Moderate influence from Rooms and Age.

Data Pre-processing:

- Numerical Features: Size, Rooms, Age
- Categorical Features: HouseType, City, Area

Pre-processing Techniques:

- Standard Scaler: Scales numerical values.
- One Hot Encoder: Encodes categorical variables with drop-first to prevent dummy variable trap.

Combined via Column Transformer for efficient transformation.

Model Training

X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

Models

- 1. Linear Regression
- 2. Random Forest Regressor (n estimators=100)

Both models are integrated with pre-processing using a Pipeline.

Evaluation Metrics

- Mean Squared Error (MSE)
- R² Score (Coefficient of Determination)

Results:

Model	MSE (↓ Better)	R ² Score († Better)
Linear Regression	Low (near zero)	Close to 1

Random Forest Very Low Close to 1

⚠ Note: Due to small dataset (50 samples), metrics can show overfitting-like perfect scores.

Wisualization

- Scatter Plot: Actual vs Predicted Prices.
- **Regression Line:** Helps visualize prediction accuracy.
- Both models plotted for comparison.

Tech Stack

• Python 3.13

- Libraries:
 - o pandas
 - numpy
 - matplotlib
 - seaborn
 - scikit-learn

Conclusion

- Preprocessing pipelines streamline model input preparation.
- Both models perform well on synthetic data.
- The methodology is robust and can be adapted for real-world datasets.

Future Enhancements

- Incorporate real datasets.
- Add more features like property amenities, locality ratings.
- Tune Random Forest hyperparameters.
- Explore advanced models like:
 - **Gradient Boosting**
 - **XGBoost**
 - LightGBM

Repository Structure

```
/House-Price-Prediction
    - synthetic_house_prices.csv # Generated Dataset
  - house_price_prediction.ipynb  # Jupyter Notebook with full code
- house_price_prediction.py  # Python script version

# Project December 1: 0.000
   - README.md
                                                  # Project Documentation
```


🚨 Author

Developed as part of an internship task to demonstrate EDA, ML modeling, and data visualization in Python.

End of Report

MEET LIMBACHIYA

OUTPUTS:

