

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis I	Highway, Suite 1204, Arlington		
1. REPORT DATE 30 MAY 2007		2. REPORT TYPE N/A		3. DATES COVERED -			
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Ground Vehicle Power and Mobility Overview 30 May 07				5b. GRANT NUM	NT NUMBER		
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)	5d. PROJECT NUMBER						
Jennifer Hitchcock		5e. TASK NUMBER					
			5f. WORK UNIT NUMBER				
7. PERFORMING ORGANI USATACOM 6501	00	8. PERFORMING ORGANIZATION REPORT NUMBER 17216					
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S) TACOM TARDEC					
				11. SPONSOR/M NUMBER(S) 17216	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.					
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT SAR	OF PAGES 27	RESPONSIBLE PERSON		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Organizational Thrust Areas

Technology Thrusts:

Prime Power

Engines

Power Trains

Hybrid Electric and Energy Storage

Drive Components (motors, generators)

Power Electronics

Non - Primary Power

APU's, On Board Power Generation)
Fuel Cells

Energy Storage

Power and Thermal Management

System Assessments

Hybrid Electric Vehicle Assessments

Track and Suspension

Lightweight track Elastomer Research Advanced suspension

Capabilities Thrust:

Modeling and Simulation

Testing, Evaluation and Assessment

Propulsion Laboratory - Engine, Transmission, Air Filtration, Thermal and Vehicle testing, evaluation and assessments

Future Power and Energy Laboratory

Power and Energy SIL

Power Management SIL

Track and Suspension Laboratory

Ground Vehicle Power and Mobility FY08 Proposed ATO Collaboration Strategy

Existing ATOs and Programs

New ATO-D Proposed for FY08

Tactical Vehicle Power and Mobility

Advanced Hybrid Electric

Components

ATO TRACK

Advanced Suspension

Militarized Commercial Engines

Primary Power Generation Sources and HEV Components

> **Intelligent Power and Thermal Management Strategies and Controls**

Power and Thermal Management

Potential Applications

APS

C4ISR

Environmental Controls

Propulsion Systems

> Radios Radars

P&TM* Technology

* Power and Thermal Management

Potential **Platforms**

HIPER

Advanced Chemistry Batteries for HEV

Power & Energy SIL

Common M&S System Model

HEV Mission Profile Analysis

Intelligent Power and Thermal Management Strategies and Controls

Non-primary Power Generation and Energy Storage Sources

Li-ion MTO

ATO

FCS

뽀

Advanced Batteries

Silent Watch Load Profile M&S **Non-primary Power System**

Power Dense Quiet Power Generation

Reformation

Prime Power Technology

Problem:

Current high power commercial engines are not compact enough for future manned combat ground platforms. Future ground combat vehicles will require lighter and more efficient engines that occupy less space.

Current state of the art engines require significant development operate on one fuel forward in order to meet future

tactical vehicle power and mobility needs.

Challenges:

Diesel combustion is rate limited due to physical burn time. Restrictive volume and weight constraints for propulsion system Engine thermal management

Lack of combustion optimization strategy for JP-8 military version of an emission compliant commercial engine.

Cylinder/Injector Geometry for Air Utilization

Advanced High Pressure Fuel Injection Systems

Kev Goals:

50% improvement in combat engine power density

30% improvement in combat propulsion system power density

30% improvement in combat engine specific heat rejection

30% reduction in combat engine weight

20% improvement in tactical engine thermal efficiency

20% improvement in tactical engine specific heat rejection

OPOC 2-Stroke

Tactical Vehicle Engine Dev and Optimization

Kev Efforts:

Opposed Piston Opposed Cylinder Engine **High Speed Combustion** Two Stage Controlled Turbocharger/Engine Development Wheeled Vehicle Engine Development and Optimization

Customer:

PM FCS MGV BCT PM HBCT PEO CS/CSS

Hybrid Electric Technology

Problem:

Hybrid electric systems for combat and tactical vehicles do not currently meet mobility requirements within the specified space and weight constraints. The State Of the Art power electronics operate at low temperatures resulting in large cooling system which also requires a significant amount of power from the prime mover. This also results in oversizing the engine/generator for making up the power budget loss to the cooling system

Challenges:

There are trade offs between power and torque for rotating machines. It is difficult to produce high power and high torque density from the same motor/generator. Similarly, there is a trade off between power and energy for the energy storage system. The challenge is to increase power and torque densities for traction applications and also to advance the battery systems to increase power and energy from the same source. Compact high frequency and high temperature power electronics are still in development

Key Goals:

10 kW/l and 90 N-m/l for traction motors

120 W-hr/kg and 8kW/kg for safe and reliable Li-lon batteries

Reduce the hybrid electric drive train for combat vehicle by half its current size and weight

Key Efforts:

SIL for FCS and Wheeled vehicles

SIC MOSFET

Defect free Si/C materials

Three DC-DC converters

Integrated Thermal Module

SiC power steering motor drive

High power density traction motor

Hybrid HMMWV fuel economy test

Customer:

PM FCS MGV BCT PM HBCT CS/CSS –FTTS and JLTV

Traction Motor

THE STATE OF THE S

Combat and Wheeled vehicle SIL

SIC MÖSFET

Non-primary Power System Technology

Problem:

Current lead-acid batteries store insufficient energy to meet Warfighter requirements for ground combat vehicle silent watch (main engine off) which range from several hours for JLTV to 24 hours for Abrams. Silent watch missions are interrupted because main engines must be re-started to recharge batteries, causing excessive fuel use, acoustic and thermal signatures.

Challenges:

Traditionally power generation (engine-generators) technologies have low power densities and high acoustic signatures.

Fuel cells are not ready for combat vehicles: Hydrogen fuel is not logistically practical; JP-8 fuel reforming is developmental, and fuel cell power units need maturation for the battlefield.

Current silent watch power requirements create unrealistic targets and need to be validated through M&S.

OPOC APU

Key Goals:

40 W/kg NPS system level specific power 50 W/L NPS system level power density

- Undetectable at 100m in accordance with MIL-STD-1474D
- Run continuously on 3000 ppm sulfur JP-8

Key Efforts:

D.TAR.2008.02 Non-primary Power System ATO

Power Generation Efforts

R.LG.2006.03 JP-8 Reformer for Fuel Cells ATO

Reformer Risk Mitigation Efforts

Fuel Cell Risk Mitigation Efforts

JP-8 DeS Risk Mitigation Efforts

In-house efforts – NPS technology evaluation, Fuel cell evaluation and integration lab

Customers:

PM HBCT, PM SBCT, PM FTS, PM FCS (BCT)

Non-propulsion Load Analysis

Rotary Engine APU

SOFC APU

6

Energy Storage Technology

Problem:

High power Li-Ion battery pack production for FCS combat hybrid electric vehicles is costly

Li-Ion batteries for HEV dash mobility, silent watch, and pulse power for electric weapons and survivability needs to be safer

and more reliable

Challenges:

Understanding the thermal runaway process and its control in all sealed cells

Cell & system design optimization – power vs. energy trade-off

Manufacturing process development and cost control

Thermal Management

Cell & system safety & reliability

Power Conditioning & Integration with DC/DC Conversion

System Control& Cell Management – Battery Management System

Alternative electrochemical improvements

Key Goals:

70% improvement in power density, 30% improvement in energy density

50% improvement in cost, 50% reduction in labor hours (automated manuf. Process)

Key Efforts:

High Power, High Energy Li-Ion Battery MANTECH Program

Li-Ion Phosphate (LFP) Cathode Materials

Large Format Li-Ion Prismatic Cells and Modules with Integrated Liquid Cooling

Integrated Prototype Vehicle using Li-Ion Batteries

Battery Architecture using a Hybrid Energy Module

Thermal Runaway

Research Calorimeter

Module Test Rig

Battery Characterization

Customer:

PM FCS MGV BCT

PM JLTV

PM FTTS

TARDEC Battery Roadmap

TARDEC

TARDEC Battery Roadmap

TARDEC Battery Projects

Programs	FY07 Goals					
	6.2 Combat Vehicle & Automotive Technology Projects					
Experimentation and Ballistic Testing of Li-lon and NiMH Batteries	To identify potential vulnerabilities resulting from ballistic impacts to high power density batteries					
Li-lon Battery Electrochemical Research	Electrolyte research					
6.3 Combat Vehicle & Automotive Advance	d Technology					
Li-lon Battery Pack for Hybrid Electric HMMWV using NCA cells	Integrate a Li-Ion battery pack in a HE-HMMWV for testing and evaluation					
Prismatic Li-Ion Cells with Integrated Liquid Cooling	Develop large format prismatic Li-Ion batteries and implement liquid cooling to manage the heat transfer					
МТО						
Li-lon Battery Manufacturing Technology Objective	Automate the manufacturing process of Li-lon batteries and improve safety and performance					
Congressionals						
HE-HMMWV Battery Pack using LFP cells	Integrate a LFP pack into a HE-HMMWV to assess small format 26650 cells					
Battery Test Rig	Test rig with integrated research calorimeter to allow local testing of battery modules					
3D Advanced Battery Technology	To proof out a design potential and prototype a 3D graphite/lead grid prototype for evaluation and test					
Battery Charging Technology	Develop an intelligent battery charging system for tactical vehicles					

Power Management Technology

Problem:

Current and future force electrical power demands exceed their power generation and energy storage capabilities.

Advanced power generation (fuel cells) and storage systems (Lithium-ion batteries) depend on sophisticated control methodologies for safe operation. Limited fuel availability in the field.

Increasing the number and size of electrical loads on a vehicular platform increases the amount of heat generated

There is no automated way to recover from faults and induced faults (i.e. Sympathetic tripping, chain tripping of loads.)

Today's vehicular electrical architectures contain vehicle-unique electrical components which increase the logistics burden.

Challenges:

Vehicle size and weight limitations constrain power generation and storage capacity.

Ability to accurately monitor and control the power distribution to react to fluctuating loads and sources in real time has not been developed.

Lack of an open architecture for Electrical Power Architecture

Off-board power requirements are not fully defined

Key Goals:

Manage power generation, energy storage, and power control/distribution components in order to maximize efficiency, increase reliability, reduce crew burden, and ensure propulsion and ancillary systems receive their required power based on crew (or robotic) input, mission derived priorities, system health, and/or tactical environment

Extend Power Mgmt Standard (FCS adopted) to include thermal mgmt Develop Adaptive Power Mgmt for robotic platforms

Key Efforts:

Power & Thermal Mgmt ATO; PEO GCS CMPS effort Advanced Interconnects/Cable Systems; Cognitive Power Mgmt Electrical Power Architecture SIL; Lightweight Adaptive Control Network Point of Use/Load Switching/Conversion; Power/Thermal Standard SBIR: Advanced 42-volt Technologies, Vehicle Networking; Virtual SIL, Intelligent Power Control and Prognostics Harness

Customer:

PEO GCS, PM-FCS, PM-JLTV, HEV EA ATO, TWVS ATO, NPS ATO

Software Standard

Flex cable/PCU integration

* Power and Thermal Management

Thermal Management Technology

Problem:

Current cooling systems have insufficient capacities for projected heat rejecting requirements.

Increases in electrical power demand proportionately increase cooling system volume and weight requirements.

Thermal degradation inevitably results in reductions of component life and reliability.

Lack of intelligent control strategies for military ground vehicle thermal management systems.

Debris and contamination cause damage to vehicle powertrain components resulting in increased service requirements.

Challenges:

Insufficient data exists on the efficiency benefits of integrating emerging technologies into ground vehicle power electronics. Available vehicular space claims limit heat rejection infrastructure.

Improvement in capabilities/capacities for filtration (liquid and air) without increasing the system physical size.

Key Goals:

Increase coolant temperature into power electronics from 65C (baseline) to 80C (threshold), 100C (objective). Increase heat flux from 89 W/cm² (baseline) to 350 W/cm² (threshold), 400 W/cm² (objective).

2X improvement in service life for air filtration scavenging blower motor.

3X improvement in dust loading capacity and 5X improvement on water removal capability for fuel filter.

Integrated monitoring system within oil filter for condition based service intervals.

Computational fluid Dynamics (CFD) model

Analogous flow network model

Temperature distributions

Key Efforts:

Power and Thermal Management Technologies ATO-[R]

Advanced Inverter Cooling Demonstration

Army Research Laboratory's (ARL) work on:

SiC, high-temperature components

Low-Loss, Nanocrystalline Magnetic Materials

Ceramic, Micro-Channel Heat Exchanger Development

Self Contained Two-Phase Thermal Management System SBIR

Customers:

PM HBCT PM SBCT PM JLTV PM FCS PM LTV

- Advanced Cooling Technologies, Shock Tolerant Capillary Two-Phase Loops SBIR
- Thermal Design/Signature Management Tools SBIR
- Liquid & Air Filtration efforts, multiple phase I & II SBIRS
 - Dynamic Air Engineering Scavenging Fan Blower Motor.
 - Real Time Engine Oil Monitoring.
 - Cross Flow Membrane Fuel Filter.
 - Dynamic Air Engineering, High Temperature Cooling Fans.
- •Oak Ridge National Laboratory's (ORNL) work on:
 - Graphite Foam
 - CFD Modeling
 - Neutron Imaging
 - Rotating Heat Exchanger

HEVEA PROGRAM

Problem:

No holistic approach to define, evaluate, and substantiate TWV mobility requirements and specifications.

No standard Hybrid Electric Vehicle Test Methodology for TWV.

TWV duty cycles not well defined/understood; enhancing difficulty in assessing advantages and disadvantages of hybrid propulsion systems.

Challenges:

Accepted industry practices (SAE) for testing are not developed to be replicated in traditional military settings.

No industry standard advancing propulsion systems, specifications including requirements.

Key Goals:

Data and analyses to support PEO CS/CSS information requirements for JLTV MS B

M&S capability to provide a tool to predict hybrid electric drive cycle performance and fuel economy. – VPSET

HEV test methodology/Test Operating Procedure (TOP) using accepted industry practices and DOE processes. – Draft TOP validation testing ongoing.

Key Efforts: GVSL Execution of Experiments/Support - DCS

Electrical Power Architecture SIL Upgrade/Support and Thermal Management M&S vehicle propulsion systems analysis and tool Vehicle Testing

Customer:

PM JCSS, PM JLTV

Track Technology

Problem:

Future combat vehicles desire lightweight track with no degradation in robustness or field supportability.

Current lightweight track durability threshold at 25 ton GVW vehicles.

Current lightweight track prone to AP mine blast damage.

Elastomer components are track system life limiter of legacy track fleet.

Challenges:

Light weight track systems challenged with higher stresses / less mass which limits durability / AP mine survivability. Natural rubber elastomers rapidly degrade under high stress / high temperature conditions

Key Goals:

40% reduction in weight50% improvement in elastomer durability

Key Efforts:

Segmented Band Track - ATO-D

Hybrid Steel Track – ATO-D

Elastomer Research Program – ATO-D

Segmented Steel Track – Congressional Add

Component Maturation Program – CMP Risk Reduction Funding

PM FCS MGV BCT PM HBCT

Suspension Technology

Problem:

Army Tactical and Combat vehicles require superior performance for battlefield dominance.

Up-Armoring of existing vehicle fleet challenging stock suspension components.

Developmental suspension systems maturation oversold.

Suspension components more complex with adaptive control.

Suspension components must be extremely robust, passive default required.

To save volume, suspension components placed outside armor protection and vulnerable to damage.

50% improvement in ride quality

50% improvement in vehicle stability

Key Efforts:

MR Suspension on Stryker – Maturation & Test, Wheeled Vehicle Power and Mobility – Proposed ATO-D

MR Suspension on Stryker - Proof of Principal Demonstration, SBIR Phase II Effort

Modular Suspension Development - Advanced Lightweight Track ATO-D

Compressible MR Fluid Development - Congressional Add

MR Suspension for Tracked Vehicle - SBIR Phase I Effort

Customers:

PM Stryker PM FCS MGV

Modeling and Simulation Efforts

Problem:

Science and Technology programs, as well as Technology Insertion into fielded systems, requires accurate component and system level modeling and simulation efforts to support decision making.

The M&S community, and decision makers, need to be attentive to the correct level of fidelity and robustness required in models to identify the effects of emerging technologies on system performance.

Challenges:

Access to OEM and supplier data for model development is often difficult to obtain.

Access to performance data to use for model validation is often non-existent or costly to obtain.

Expected vehicle system usage is often unclear, making merits of future technology difficult to evaluate.

Complexities of current and future vehicle systems require multidisciplinary knowledge to support system level M&S.

Key Goals:

Develop and maintain a database of valid system level models of current fleet to support "what-if" studies within short timeframes. Develop in-house expertise and processes to advance M&S capabilities pertaining to mobility and power system analyses.

Key Efforts:

SBIRs:

Cybernet - Vehicle/Virtual System Integration Laboratory (VSIL) for testing vehicle design prior to committing to a hardware prototype. Acquisition tradeoff studies.

PCKA - software infrastructure enabling distributed system level M&S, implementing compatibility between different simulation tools as well as protecting vendor proprietary data.

Programs:

HEVEA – Drive cycle development for fuel economy evaluation, on-board data acquisition for TWV usage histories.

P&E HSIL – M&S support for SIL operation, control system development and test management, power system modeling.

In House:

Duty Cycle Experiments – Driver-in-the-Loop, ride motion simulators

Database development – Stryker, HMMWV (M1113, M1114, XM1124), MTV (2.5-ton, 5.0-ton, Hybrid [BAE], CVT), FTTS UV, I Abrams, Bradley,

Customer:

S&T Programs, PEO, ONR

Mobility Facilities

Mobility Facilities

- Propulsion Test Laboratory
- Power and Energy System Integration Laboratory (SIL)
- Track and Suspension Laboratory
- Power Management System Integration Laboratory (SIL)

Propulsion Test Laboratory

10 Test Cells which include

- 6 "engine" test cells used for performance, endurance, transmission or drive train testing
- 3 vehicle test cells designed for steady-state tests to 44000 ft-lbs per side as well as transient tests and a Power & Inertia Simulator (PAISI)
- Most contain portable dynamometers with absorption capability of 100-3000 horsepower

Test Cell #9 can simulate desert heat, wind and solar conditions at full load

- Ambient temperature control to 160°F
- Wind speeds up to 20mph in eight possible directions
- Two 2500 Hp dynamometers

Test Cell #10 can test batteries, power electronics and motors to 6000rpm

Air Flow Lab has air cleaner and radiator testing capability

Power and Energy SIL

MILESTONES (FY) Collaborate with enabling tech P&E Tech Base	Schedule:									
i al recir base	MILESTONES (FY)	04	05	06	07					
CHPS Baseline Facility Expanded P&E SIL Capability - Building Expansion - HERMIT Integration - HERMIT Dev & Validation The property of the pr	Collaborate with enabling tech development CHPS Baseline Facility Expanded P&E SIL Capability - Building Expansion - HERMIT Integration	2800 k	5 Fa	cility Ava	rilable 5 Yol 3m ³					
2 100 kg				2	100 kg					

Purpose:

 Integrate and evaluate power and energy technologies and subsystems from advanced tech base programs in a user-like lab environment

Product:

Compact integrated system that will provide efficient spin-out power and energy generation and management, including pulse power. Enables "Form, Fit, and Function" testing of power and energy technologies.

Payoff:

- Comprehensive power distribution and control capability in a real vehicle environment.
- Compact lightweight power and energy system with enhanced deployability through reduced volume and weight.
- Lowers technical risk for both technology developer and vehicle integrator.

New Power and Energy Lab

Design/Build request RFP being developed

Improved/Introduced Laboratories:

- Power and Energy Laboratory
 - •New Capability for hydrogen/JP-8 fuel cell reformation testing
 - •Improved alternator and starter testing capability by 20% over current capabilities
 - New Capability to test hydraulic systems
 - •New Capability for air conditioning component testing
 - •New Capability for capacitor DC life testing
 - •New Capability Pulse formed Network system integration and testing
 - •Improved capability to test large motors and power electronics by 2x current capability
- · Airflow and Thermal laboratory
 - •Improved air flow capability by 3x current capability
 - •Improved thermal capabilities by 3x current capability
- •Multipurpose Room
 - •New Capability: Multi Wheeled vehicle testing with environmental capability from -60°F to 160°F
 - •New Capability: Hybrid Electric Vehicle System Evaluation

Push for "GREEN"

- TARDEC is guiding the design to maximize energy conservation and use of alternative energies, materials, and other aspects of building design
- Goal is to attain Leadership in Energy and Environmental Design (LEED) gold/platinum certifications

Back up

Organizational Overview

Applicable S&T programs to Robotic Vehicles

Mobility Power & Energy Thrust Areas

Power Systems

Engine
Fuel Cells
Air, Thermal and Power Management
Power Trains
Non – Primary Power Systems

(APU's, On Board Power Generation)

Platform Mobility

Hybrid Electric Drive Components
Power Electronics
Energy Storage
Lightweight track
Elastomer Research
Advanced suspension
Modeling and Simulation

Testing, Evaluation and Assessment

Propulsion Lab, Air and Cooling Lab (Future Power and Energy Lab) Vehicle Testing and Experiments

Key Platforms

PM FCS

Robotic

PEO-GCS

PEO-CS/CSS

Key Power & Energy Technologies for Robotics

PEM, SOFC Fuel Cells
System and Component Thermal Management
Power monitoring, improved diagnostics,
fault management,
automatic/semi automatic load control,
Auxiliary Power to include
small IC engine, small generators

Drive Motors/Generators Converters/Inverters Advanced Batteries (Li-ion,Ni-mh) Capacitors

Band Track Hybrid Steel Track MR Suspension Semi Active Suspension

Mobility M&S Laboratory and vehicle Evaluation and testing

Requirements - Functional Decomposition

Hybrid Components

Requirements - Functional Decomposition

Current Power and Energy Programs

Primary Power

S&T Programs – FY07

High Performance Engine (HIPER)

Hybrid Electric (HE) for Future Combat Systems (FCS)

Advanced Lightweight Track

Automotive Research Center

Ceramic Metal Matrix Composites

Segmented Steel Track

Lightweight Roadwheels

Advanced drivetrains for enhanced mobility

PEM Fuel Cells for Medium Duty Vehicles

Next Generation Non-Tactical Vehicle Power

Hydraulic Hybrid Research (HAMMER)

Low Temperature Vehicle Research

Compressible Magneto Rheological Fluids

Non-Primary Power

JP8 Reformation

Development of Logistical Fuel Processor

Defense Transportation Energy Research

Plasma JP-8 Reformer

Solid Oxide Fuel Cell Materials

Fuel Cell Ground Support Equipment

Rotary APU

Energy Storage

Experimentation and Ballistic Testing of Li-ion and Ni-Mh Batteries

Li-ion Battery Pack for Hybrid Electric -HMMWV

Prismatic Li-ion Cells with Integrated Liquid Cooling

Li-ion Battery Manufacturing Technology Objective

Li-ion Battery Electrochemical Research

Pulse Power Components

HMMWV Battery Pack

Battery Test Rig

3-D Advanced Battery Technology

Battery Charging Technology

Solid Hydrogen Storage

Military Fuel Research Program

Advanced Microgrid Liquid Fueler

Transportable Syntheic Fuel Manufacturing Modules

Fire Resistant Fuels

6.1 / 6.2 / 6.3

Congressional

Current Power and Energy Programs

Power Management

Thermal Management

System Assessments

6.1 / 6.2 / 6.3 Congressional

S&T Programs – FY07

Cognitive Power Thermal Management Algorithms

Electrical Power Architecture (EPA) SIL

Foam Heat Exchanger

Integrated Heat Sink Micro-Channel

Use of Graphite Foam as a Cold Plate for Heavy Hybrid Propulsion Systems

Advanced Inverter Cooling Demonstration

Advanced Thermal Management Controls

Power and Energy System Integration Labs (SIL)

Hybrid Electric Vehicle Evaluation & Assessment (HEV EA)

21st Century Base

HMMWV Hybrid Technology Conversion Kits

Maturation and User Evaluation of Hybrid Electric XM1124 HMMWV's