AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application.

Listing of Claims:

CLAIM 1. (Currently Amended) A method for plaque characterization, the method comprising:

obtaining a first set of image data created in response to a first x-ray energy level and including a plurality of first pixel elements, wherein each said first pixel element corresponds to a unique location in an object being scanned and said first set of image data includes hard tissue and soft tissue calcified plaque data;

obtaining a second set of image data created in response to a second x-ray energy level and including a plurality of second pixel elements, wherein each said second pixel element corresponds to one said first pixel element and wherein said second x-ray energy level is higher than said first x-ray energy level and said second set of image data contains said hard tissue calcified plaque data; and

calculating a third set of image data in response to said first set of image data and said second set of image data, wherein said calculating includes subtracting each said second pixel element from said corresponding first pixel element and said third set of image data contains said soft tissue calcified plaque data.

CLAIM 2. (Original) The method of claim 1 wherein each said second pixel element is created in close time proximity to each said corresponding first pixel element.

CLAIM 3. (Original) The method of claim 2 wherein said close time proximity is one millisecond or less.

CLAIM 4. (Original) The method of claim 1 wherein each said second pixel element and each said corresponding first pixel element are created within the same scan in an

interleaving pattern.

CLAIM 5. (Original) The method of claim 1 wherein said object is a patient.

CLAIM 6. (Original) The method of claim 1 wherein said first x-ray energy level is 80 kilovolts.

CLAIM 7. (Original) The method of claim 1 wherein said second x-ray energy level is 140 kilovolts.

CLAIM 8. (Currently Amended) The method of claim 1 wherein said object being scanned was injected with a contrast agent, said first set of image data includes contrast agent flow and soft tissue non-calcified plaque data, said second set of image data contains said contrast agent flow non-calcified plaque data and said third set of image data contains said soft tissue non-calcified plaque data.

CLAIM 9. (Original) The method of claim 1 further comprising displaying said first set of image data, said second set of image data and said third set of image data.

CLAIM 10. (Currently Amended) The method of claim 1 wherein said first set of image data, said second set of image data and said third set of image data were created as non-contrast images, and wherein claim 1 further comprises:

obtaining a fourth set of image data created in response to said first x-ray energy level and including a plurality of fourth pixel elements, wherein each said fourth pixel element corresponds to a said first pixel element, and wherein said fourth set of image data was created as a contrast image and said fourth set of image data includes contrast agent flow and soft tissue non-calcified plaque data;

obtaining a fifth set of image data created in response to said second x-ray energy level and including a plurality of fifth pixel elements, wherein each said fifth pixel element corresponds to a said fourth pixel element, and wherein said fifth set of image data was created as a contrast image and said fifth set of image data contains said contrast

agent flow non-calcified plaque data; and

calculating a sixth set of image data in response to said fourth set of image data and said fifth set of image data, wherein said calculating a sixth set of image data includes subtracting each said fifth pixel element from said corresponding fourth pixel element and said sixth set of image data contains said soft tissue non-calcified plaque data.

CLAIM 11. (Original) The method of claim 10 further comprising displaying said fourth set of image data, said fifth set of image data and said sixth set of image data.

CLAIM 12. (Original) The method of claim 10 further comprising:

calculating a seventh set of image data in response to said first set of image data and said fourth set of image data, wherein said calculating a seventh set of image data includes subtracting each said first pixel element from said corresponding fourth pixel element;

calculating an eighth set of image data in response to said second set of image data and said fifth set of image data, wherein said calculating a seventh set of image data includes subtracting each said second pixel element from a corresponding fifth pixel element; and

calculating a ninth set of image data in response to said third set of image data and said sixth set of image data, wherein said calculating a ninth set of image data includes subtracting each said third pixel element from a corresponding sixth pixel element.

CLAIM 13. (Original) The method of claim 12 further comprising displaying said seventh set of image data, said eighth set of image data and said ninth set of image data.

CLAIM 14. (Original) The method of claim 10 further comprising:

calculating a composite set of image data in response to at least one of said first set of image data, said second set of image data, said third set of image data, said fourth set of image data, said fifth set of image data and said sixth set of image data.

CLAIM 15. (Original) The method of claim 14 further comprising displaying said

composite set of image data.

CLAIM 16. (Original) The method of claim 1 further comprising:

locating a vessel of interest in said object, wherein said object was injected with a contrast agent;

tracking a flow of said contrast agent through said vessel; and quantifying plaque in said vessel in response to said third set of image data and to said flow.

CLAIM 17. (Original) The method of claim 16 wherein said tracking is performed in response to said second set of image data.

CLAIM 18. (Original) The method of claim 16 further comprising determining the characteristics of said plaque in response to said third set of image data.

CLAIM 19. (Currently Amended) A method for plaque characterization, the method comprising:

obtaining image data created in response to an<u>first and second</u> x-ray energy levels and an object injected with a contrast agent;

locating a vessel of interest in said object;

tracking a flow of said contrast agent through said vessel;

identifying soft plaque in said vessel in response to said image data and to said flow;

plotting the distribution of said soft plaque; and determining the vulnerability of said soft plaque in response to said distribution.

CLAIM 20. (Currently Amended) A system for plaque characterization, the system comprising:

an imaging system generating a first set of image data and a second set of image data responsive to an object, the generating of the first set of image data in response to a first x-ray energy level and generating of the second set of image data in response to a second x-ray energy level, ;

an object disposed so as to be communicated with said imaging system, wherein:

said imaging system generates a first set of image data and a second set of image data responsive to said object;

said first of set of image data is created in response to a first x-ray energy level and includes a plurality of first pixel elements.

each said first pixel element corresponds to a unique location in said object, said first set of image data includes hard tissue and soft tissue calcified plaque;

said second set of image data is created in response to a second x-ray energy level and includes a plurality of second pixel elements.;

each said second pixel element corresponds to one said first pixel element,; and said second x-ray energy level is higher than said first x-ray energy level and said second set of image data contains said hard tissue calcified plaque; and

a processing device in communication with said imaging system including software to implement the method comprising:

obtaining said first set of image data and;

obtaining said second set of image data from said imaging system; and

calculating a third set of image data in response to said first set of image data and said second set of image data, wherein said calculating includes by subtracting each said second pixel element from said corresponding first pixel element wherein said third set of image data contains said soft tissue calcified plaque data.

CLAIM 21. The system of claim 20 wherein said object is a patient.

CLAIM 22. The system of claim 20 wherein said imaging system is a computed tomography imaging system.

CLAIM 23. (Canceled)

CLAIM 24. (Currently Amended) The system of claim 20 wherein said imaging system

is remotely located from and said processing device are physically located in different geographic locations.

CLAIM 25. (Original) The system of claim 20 wherein said processing device is in communication with said imaging system over a network.

CLAIM 26. (Original) The system of claim 25 wherein said network is the Internet.

CLAIM 27. (Currently Amended) A computer program product for plaque characterization in cardiac applications, the product comprising:

a storage medium readable by a processing circuit and storing instructions for executioning a method for plaque characterization by the processing circuit, forthe method comprising:

obtaining a first set of image data created in response to a first x-ray energy level and including a plurality of first pixel elements, wherein each said first pixel element corresponds to a unique location in an object being scanned and said first set of image data includes hard tissue and soft tissue calcified plaque data;

obtaining a second set of image data created in response to a second x-ray energy level and including a plurality of second pixel elements, wherein each said second pixel element corresponds to one said first pixel element, and wherein said second x-ray energy level is higher than said first x-ray energy level and said second set of image data contains said hard tissue calcified plaque data; and

calculating a third set of image data in response to said first set of image data and said second set of image data, wherein said calculating includes subtracting each said second pixel element from said corresponding first pixel element and said third set of image data contains said soft tissue calcified plaque data.

CLAIM 28. (Original) The computer program product of claim 27 wherein each said pixel element and said corresponding first pixel element are created with the same scan in an interleaving pattern.

CLAIM 29. (Currently Amended) A computer program product for plaque characterization in cardiac applications, the product comprising:

a storage medium readable by a processing circuit and storing instructions for executioning a method for plaque characterization by the processing circuit, forthe method comprising:

obtaining image data created in response to <u>first and second an-x-ray</u> energy levels and an object injected with a contrast agent;

locating a vessel of interest in said object;

tracking a flow of said contrast agent through said vessel;

identifying soft plaque in said vessel in response to said image data and to said flow;

plotting the distribution of said soft plaque; and determining the vulnerability of said soft plaque in response to said distribution.