Decision Making and Reinforcement Learning

Module 3: Markov Decision Processes

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Topics

Markov decision process framework

Rewards, utilities, and discounting

Policies and value functions

Bellman equations

Learning Objectives

Model a sequential decision problem as a MDP

Predict and explain effects of rewards and discounts in MDPs

Define value and policy functions for a MDP

Write the Bellman equations for optimal values and policies

Agent-Environment Interface

- An agent can interact with its environment by performing actions
- The result of the action may change the state of the system
- The agent can receive feedback in the form of rewards

- A Markov decision process (MDP) is a mathematical model for a sequential decision problem with uncertainty
- It can be used to help quantify optimal decision making

- A Markov decision process (MDP) is a mathematical model for a sequential decision problem with uncertainty
- It can be used to help quantify optimal decision making
- Components of a MDP:
- State space S and action space A(S) for each state

- A Markov decision process (MDP) is a mathematical model for a sequential decision problem with uncertainty
- It can be used to help quantify optimal decision making
- Components of a MDP:
- State space S and action space A(S) for each state
- *Transition function* $T: S \times A \times S \rightarrow [0,1]$, where $T(s,a,s') = \Pr(s'|s,a)$

- A Markov decision process (MDP) is a mathematical model for a sequential decision problem with uncertainty
- It can be used to help quantify optimal decision making
- Components of a MDP:
- State space S and action space A(S) for each state
- *Transition function* $T: S \times A \times S \rightarrow [0,1]$, where $T(s,a,s') = \Pr(s'|s,a)$
- Reward function $R: S \times A \times S \rightarrow \mathbb{R}$, written as R(s, a, s')

Uncertainty and the Markov Property

- The transition function captures *uncertainty* and *stochasticity*
- Since $T(s, a, s') = \Pr(s'|s, a)$, we have that $\sum_{s'} T(s, a, s') = 1$

Uncertainty and the Markov Property

- The transition function captures *uncertainty* and *stochasticity*
- Since $T(s, a, s') = \Pr(s'|s, a)$, we have that $\sum_{s'} T(s, a, s') = 1$
- Markov property: Transitions depend on a finitely many previous states
- This extends to decision making, where current actions should not depend on the history of states

Uncertainty and the Markov Property

- The transition function captures *uncertainty* and *stochasticity*
- Since $T(s, a, s') = \Pr(s'|s, a)$, we have that $\sum_{s'} T(s, a, s') = 1$
- Markov property: Transitions depend on a finitely many previous states
- This extends to decision making, where current actions should not depend on the history of states
- The triplet (s, a, s') may be collectively referred to as a transition
- Starting state, action taken, successor state

- States: Grid locations (11 in total)
- Cell (2,2) is a "wall" and is not achievable

- States: Grid locations (11 in total)
- Cell (2,2) is a "wall" and is not achievable
- Actions: North, south, east, west
- Available in most states, except...

- States: Grid locations (11 in total)
- Cell (2,2) is a "wall" and is not achievable
- Actions: North, south, east, west
- Available in most states, except...
- Terminal states (4,2) and (4,3)
- No actions from either state

 Transition function: Agent ends up in the "expected" successor state most of the time

- Transition function: Agent ends up in the "expected" successor state most of the time
- Small probability that the agent ends up in the state to the "side" of the expected successor

- Transition function: Agent ends up in the "expected" successor state most of the time
- Small probability that the agent ends up in the state to the "side" of the expected successor
- If the successor state is outside gridworld limits,
 agent simply remains in original state

- Transition function: Agent ends up in the "expected" successor state most of the time
- Small probability that the agent ends up in the state to the "side" of the expected successor
- If the successor state is outside gridworld limits, agent simply remains in original state
- Reward function: ±1 for entering respective terminal states; living reward received for all other transitions

Checkpoint: Gridworld Example

• Given the problem description, what are each of the following?

•
$$T((3,3), E, (4,3)) = ?$$

•
$$T((3,2), S, (4,2)) = ?$$

•
$$T((4,1), N, (4,1)) = ?$$

•
$$R((3,3), N, (3,3)) = ?$$

•
$$R((3,3), N, (4,3)) = ?$$

MDPs in Practice

- Agriculture
 - S: Soil condition and precipitation forecast. A: Whether or not to plant a given area.
- Water resources and energy generation
 - S: Water levels and inflow. A: How much water to use to generate power.
- Inspection and maintenance
 - S: System age and probability failure. A: Whether to test / restore / repair a system.
- Inventory
 - S: Inventory levels and commodity prices. A: How much to purchase.
- Finance and investment
 - S: Holding or capital levels. A: How much to invest.
- Many, many more (D. J. White 1993)

Example: Agricultural Disease Management

Peyrard et al., 2007

Utilities

- We can define a utility for any given sequence of states and actions
- A rational agent seeks to maximize its utility

Utilities

- We can define a utility for any given sequence of states and actions
- A rational agent seeks to maximize its utility
- Finite-horizon MDP: Process ends after some finite time T
- Equivalent to entering a terminal state s_T

Utilities

- •. We can define a utility for any given sequence of states and actions
- A rational agent seeks to maximize its utility
- Finite-horizon MDP: Process ends after some finite time T
- Equivalent to entering a terminal state s_T
- One definition of utility of a state-action sequence: Sum all rewards!

$$V([s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T]) = \sum_{t=0}^{T-1} R(s_t, a_t, s_{t+1})$$

Discounted Utilities

Utilities can also account for the timing of when rewards are received

Discounted Utilities

- Utilities can also account for the *timing* of when rewards are received
- Example: Sums of reward sequences $R_1 = (1,1,1)$ and $R_2 = (0,0,3)$ are equal, but R_1 is preferable if rewards *now* are better than rewards *later*

Discounted Utilities

- Utilities can also account for the timing of when rewards are received
- Example: Sums of reward sequences $R_1 = (1,1,1)$ and $R_2 = (0,0,3)$ are equal, but R_1 is preferable if rewards *now* are better than rewards *later*
- Idea: Apply a **discount factor** $0 < \gamma < 1$ to *diminish* future rewards
- We can now compute a utility based on additive discounted rewards

$$V([s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T]) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t, s_{t+1})$$

Example: Additive Discounted Rewards

- Suppose we have an infinite sequence of rewards all equal to 2
- What is the **utility** of this sequence using a discount factor $\gamma = 0.8$?

Example: Additive Discounted Rewards

- Suppose we have an infinite sequence of rewards all equal to 2
- What is the **utility** of this sequence using a discount factor $\gamma = 0.8$?

$$V = \sum_{t=0}^{\infty} \gamma^t R = 0.8^0(2) + 0.8^1(2) + 0.8^2(2) + \cdots$$

Discounting for Infinite-Horizon MDPs

• Additive rewards with no discounting simply use $\gamma=1$

Discounting for Infinite-Horizon MDPs

- Additive rewards with no discounting simply use $\gamma=1$
- If we have infinitely many transitions, we *must* use a discount factor $\gamma < 1$ so that the rewards sum do not become unbounded

Discounting for Infinite-Horizon MDPs

- Additive rewards with no discounting simply use $\gamma=1$
- If we have infinitely many transitions, we *must* use a discount factor $\gamma < 1$ so that the rewards sum do not become unbounded
- The *choice* of γ determines how myopic or forward-looking our agent is
- We can compute an upper bound on the additive reward as follows:

$$V([s_0, a_0, s_1, \dots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \le \frac{R_{\text{max}}}{1 - \gamma}$$

Policies and Value Functions

- Solving a MDP means finding a policy—a mapping from states to actions
- A policy function $\pi: S \to A$ tells the agent what to do in any given state

Policies and Value Functions

- Solving a MDP means finding a policy—a mapping from states to actions
- A policy function $\pi: S \to A$ tells the agent what to do in any given state
- We can quantify policies using value functions
- $V^{\pi}: S \to \mathbb{R}$ is the *expected* utility of following π starting from a given state

$$V^{\pi}(s) = E\left[\sum_{t=0} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right], s_{0} = s$$

Policies and Value Functions

- Solving a MDP means finding a policy—a mapping from states to actions
- A policy function $\pi: S \to A$ tells the agent what to do in any given state
- We can quantify policies using value functions
- $V^{\pi}: S \to \mathbb{R}$ is the *expected* utility of following π starting from a given state

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right], s_{0} = s$$

• We are generally interested in the optimal policy and value functions:

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$
 $V^* = \operatorname{max}_{\pi} V^{\pi}$

Gridworld Policy and Value Functions

Example policy:

Gridworld Policy and Value Functions

Example policy:

Example value function:

 We can visualize all states and actions visited by an agent using a tree called a backup diagram

- We can visualize all states and actions visited by an agent using a tree called a backup diagram
- States are denoted by triangular nodes
- Each edge coming out of state corresponds to a possible action

- We can visualize all states and actions visited by an agent using a tree called a backup diagram
- States are denoted by triangular nodes
- Each edge coming out of state corresponds to a possible action
- Edges point to circular nodes, which represent "decisions" taken by the environment to account for stochasticity

- We can visualize all states and actions visited by an agent using a tree called a backup diagram
- States are denoted by triangular nodes
- Each edge coming out of state corresponds to a possible action
- Edges point to circular nodes, which represent "decisions" taken by the environment to account for stochasticity
- Upon action resolution, the agent proceeds to a new successor state and receives the associated reward

Recursive Definition

• Recall the definition of a value function V^{π} :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

Recursive Definition

• Recall the definition of a value function V^{π} :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

- We have a fixed action at each state due to π
- The *expected* value entails summing over values of successors

Recursive Definition

• Recall the definition of a value function V^{π} :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

- We have a fixed action at each state due to π
- The expected value entails summing over values of successors
- We can write a recursive definition of the value function:

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Def of expected value: sum(probability × individual value)

Checkpoint: Recursive Value Function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- How does the equation above simplify given the following?
- Only one successor state s' to state s:

• Discount factor is $\gamma = 0$:

Policy Evaluation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

This equation gives a way of solving for the value function given a fixed policy

Policy Evaluation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- This equation gives a way of solving for the value function given a fixed policy
- Assume that we know all transition probabilities, rewards received, as well as discount factor

Policy Evaluation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- This equation gives a way of solving for the value function given a fixed policy
- Assume that we know all transition probabilities, rewards received, as well as discount factor
- Result: A set of |S| linear equations in the |S| unknowns $V^{\pi}(s)$
- Linear solvers can solve them in $O(|S|^3)$ time

- Consider a mini-gridworld with states A, B, C
- No terminal states!
- From each state, we can take action L or R

- Consider a mini-gridworld with states A, B, C
- No terminal states!

- From each state, we can take action L or R
- Reward function: R(s, a, A) = 3, R(s, a, B) = -2, R(s, a, C) = 1

- Consider a mini-gridworld with states A, B, C
- No terminal states!

- From each state, we can take action L or R
- Reward function: R(s, a, A) = 3, R(s, a, B) = -2, R(s, a, C) = 1
- Transition function: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2; s' = s if outside grid boundaries

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Suppose we are given the policy $\pi(s) = L \ \forall s$
- Suppose we use the discount factor $\gamma = 0.5$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Suppose we are given the policy $\pi(s) = L \ \forall s$
- Suppose we use the discount factor $\gamma = 0.5$
- We can form a system of three equations, one for each state:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Suppose we are given the policy $\pi(s) = L \ \forall s$
- Suppose we use the discount factor $\gamma = 0.5$
- We can form a system of three equations, one for each state:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(B) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Suppose we are given the policy $\pi(s) = L \ \forall s$
- Suppose we use the discount factor $\gamma = 0.5$
- We can form a system of three equations, one for each state:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(B) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi} = \begin{pmatrix} 4.04 \\ 4.25 \\ .333 \end{pmatrix}$$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Now suppose we have a different policy $\pi' = R \ \forall s$
- What does the system of linear equations look like?

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Now suppose we have a different policy $\pi' = R \ \forall s$
- What does the system of linear equations look like?

$$V^{\pi}(A) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(3 + 0.5V^{\pi}(A))$$

$$V^{\pi}(B) = 0.8(1 + 0.5V^{\pi}(C)) + 0.2(3 + 0.5V^{\pi}(A))$$

$$V^{\pi}(C) = 0.8(1 + 0.5V^{\pi}(C)) + 0.2(-2 + 0.5V^{\pi}(B))$$

 Generally, we want to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

 Generally, we want to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

 Generally, we want to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 Generally, we want to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

$$\pi^{*}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Bellman optimality equations

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- The Bellman optimality equations are nonlinear
- We cannot solve a system of linear equations to find an optimal policy

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- The Bellman optimality equations are nonlinear
- We cannot solve a system of linear equations to find an optimal policy
- Assuming we can solve for V^* , it is feasible to find π^* using a brute force search over all actions at each state and taking the argmax

Summary

- Sequential decision problems can be modeled as MDPs
 - Key components: States, actions, transitions, rewards
 - Derived concepts: Utilities, policies, value functions

- Discounting can apply diminishing weights to future rewards and allow utilities of infinite sequences to converge
- Policies and value functions describe what an agent can do
- The Bellman optimality equations are recursive and nonlinear