Probability and Measure

George Lee Girton College

October 7, 2015

1 Measures

1.1 Definitions

Let E be a set. A σ -algebra \mathcal{E} on E is a collection of subsets of E s.t.

$$\forall n \in \mathbb{N} \ A_n \in \mathcal{E} \implies \bigcup_{\mathbb{N}} A_n \in \mathcal{E},$$
$$A \in \mathcal{E} \implies A^c \in \mathcal{E}$$

Pair (E, \mathcal{E}) a measurable space, \mathcal{E} the collection of measurable sets. $\mu: (E, \mathcal{E}) \to [0, \infty]$ called a measure if for all disjoint $\{A_n\}_{\mathbb{N}} \subset \mathcal{E}$ we have that

$$\mu(\bigcup_{\mathbb{N}} A_n) = \sum_{\mathbb{N}} \mu(A_n).$$

ie, countable additivity. (E, \mathcal{E}, μ) a measure space.

1.2 Discrete measure theory

Given $f: E \to [0, \infty]$ can do measure theory on measurable space $(E, 2^E)$ via $\mu(A) = \sum_A f(a)$.

1.3 Generated σ - algebras

Let $\mathcal{A} \subset 2^E$. Define

$$\sigma(\mathcal{A}) = \bigcap \{ \sigma \ algebras \supseteq \mathcal{A} \}$$

Then (easy to check) $\sigma(A)$ a σ -algebra.

1.4 π -systems and d-systems

Let $\emptyset \in \mathcal{A} \subseteq 2^E$. Have \mathcal{A} a π -system if $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$. We say that $E \in \mathcal{A} \subseteq 2^E$ is a d-system if

$$A, B \in \mathcal{A}, A \subseteq B \implies B \backslash A \in \mathcal{A},$$
$$(A_n)_{\mathbb{N}} \in \mathcal{A}^{\mathbb{N}}, A_1 \subseteq A_2 \subseteq \dots \implies \bigcup_{\mathbb{N}} A_n \in \mathcal{A}$$

Note then that \mathcal{A} both of these $\implies A$ a σ -algebra.

Lemma 1.1. Dynkin's π system lemma: Let A ba a π -system. Then any d-system containing A also contains $\sigma(A)$.

Proof. Let $\mathcal{D} = \bigcap \{d\text{-}systems \supseteq \mathcal{A}\}$. Then \mathcal{D} a d-system. We show \mathcal{D} also a π system and thus a σ -algebra as required. Consider

$$\mathcal{D}' = \{ B \in \mathcal{D} : \forall A \in \mathcal{A} : B \cap A \in \mathcal{D} \} \subseteq \mathcal{D}$$

Then $\mathcal{D} \subseteq \mathcal{D}'$ (\mathcal{A} a d-system). Check \mathcal{D}' a d-system: have $E \in \mathcal{D}'$, and let $B, C \in \mathcal{D}'$, $B \subseteq C$, then given $A \in \mathcal{A}$ we have

$$(C \backslash B) \cap A = (C \cap A) \backslash (B \cap A) \in \mathcal{D} \implies C \backslash B \in \mathcal{D}'$$

Write $B_n \uparrow B$ if $B_1 \subseteq B_2 \subseteq ...$ and $B = \bigcup_{\mathbb{N}} B_n$. Let $(B_n)_{\mathbb{N}} \in \mathcal{D}'^{\mathbb{N}}$ be increasing, then $B_n \cap A \uparrow B \cap A$. Thus $B \cap A \in \mathcal{D} \implies B \in \mathcal{D}' \implies B \in \mathcal{D}' \implies \mathcal{D} = \mathcal{D}'$. Then let

$$\mathcal{D}'' = \{ B \in \mathcal{D} : \forall A \in \mathcal{A} : B \cap A \in \mathcal{D} \} \subseteq \mathcal{D}$$

 $A, A' \in \mathcal{A} \implies A \cup A' \in \mathcal{D}$ and thus $\mathcal{A} \subseteq \mathcal{D}''$. Check \mathcal{D}'' a d-system, like with \mathcal{D}' . Then $\mathcal{D}'' = \mathcal{D} \implies \mathcal{D}$ a π -system.

1.5 Set functions and properties

Let $\emptyset \in \mathcal{A} \subseteq 2^E$. We call any $\mu : \mathcal{A} \to [0, \infty]$ with $\mu(\emptyset) = 0$ a set function. Let μ be such a function.

- $(A, B \in \mathcal{A}, A \subseteq B \implies \mu(A) \le \mu(B)) \implies \mu \text{ increasing.}$
- $(A, B, A \dot{\cup} B \in \mathcal{A} \implies \mu(A \cup B) = \mu(A) + \mu(B)) \implies \mu \ additive.$
- $(A_1, A_2, ..., \dot{\bigcup}_{\mathbb{N}} A_n \in \mathcal{A} \implies \mu(\bigcup_{\mathbb{N}} A_n) = \sum_{\mathbb{N}} \mu(A_n)) \implies \mu \text{ countably additive.}$

1.6 Construction of measures

Let $\mathcal{A} \subseteq 2^E$. Say \mathcal{A} a ring on E if

- $\emptyset \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies B \setminus A, A \cup B \in \mathcal{A}$

Say \mathcal{A} an algebra on E if

- $\bullet \ \emptyset \in \mathcal{A}$
- $\bullet \ A, B \in \mathcal{A} \implies A^c, A \cup B \in \mathcal{A}$

Theorem 1.2. Caratheodory's extention theorem: Let A a ring on E and μ a countably additive set function on A. Then can extend μ uniquely to a measure on $\sigma(A)$.

Proof.