Contents

1	в основном про логические обозначения	1			
2	Насчёт множеств 2.1 обозначения 2.2 операции над множествами 2.3 свойство операций над множествами				
3	Парадокс Рассела (1872-1970)				
4	Аксиоматика теории множеств	атика теории множеств 4			
5	гратце о числах 5				
6	Обозначение некоторых числовых множеств	5			
7	мощность множества	6			
8	функция Использованная, помимо лекций, литература: Зорич В. А. Математический анализ. Часть І. — Изд. 10-е, испр. — М.: МЦНМО,	6			
m ~	Teopuя множеств: Set Theory for the Working Mathematician/ Krzysztof Ciesielski https://peopl.ths.ox.ac.uk/~knight/lectures/b1st.html	e.			
ша	.uns.ux.ac.uk/ knignt/lectures/bist.numi				

1 в основном про логические обозначения

Если обозначение удобны для открытий..., то поразительным образом сокращается работа мысли. Γ . Лейбниц(1646-1716)

Логическая символика

	знак	значение			
	\neg	отрицание			
	\wedge	конъюкция, союз и			
	\vee	дизъюнкция			
	\Longrightarrow	влечёт			
	$A \implies B$	В следует из А, В необходимый признак для А, А достаточный для В			
	\iff	тождественно равно			
	=	равно по определению			
	3	квантор существования			
	\forall	квантор общности			
	:=	со стороны определяемого понятия			
	∃!	единственное существующее			
> начало и конец докозательства $<$					

Приоритет символов:

¬

∪

 $A \iff B$

 $(A \Longrightarrow B) \cap (B \Longrightarrow A)$ при док-ве равносильности:

- 1. $A \implies B$ необходимость В при необходимости А
- 2. $B \implies A$ достаточность В для A

2 Насчёт множеств

С конца XIX— начала XX столетия наиболее универсальным языком математики стал язык теории множеств.

создатель теоретико-множественного языка математики и теории бесконечных множеств Георг Кантор (1845-1918)

Определение 2.1 Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли.

В Картеровской "наивной" теории множеств:

- 1. множество может состоять из любых различимых объектов.
- 2. множество однозначно определяется набором составляющих объектов.
- 3. любое свойство может определять множество объектов.

2.1 обозначения

Способы задания множеств:

- 1. Словесный
- 2. Перечисление эл-тов $\mathbb{A} = \{1, 2, 3\}$
- 3. Через указание характеристического свойства P(x) $\mathbb{A} = \{x | P(x)\}$
- 4. Специальный, он используется для обозначения числовых промежутков и числовых множеств.

Если х — объект, Р — свойство, P(x) — х обладает свойством Р. $\{x|P(x)\}$ множество обладающих свойством х.

Элемент множества — это объект, который принадлежит множество. $a \in \mathbb{A}$ $x \in \mathbb{X}$ - элемент множества

 $x \neg \in \mathbb{X}$ или $x \notin \mathbb{X}$ - не элемент множества

$$\forall x((x \in A) \iff (x \in B))$$
 означает $A = B$

Если любой элемент A является элементом множества B, то пишут $A \subset B$ и говорят что A является подмножеством B.

Отношение включения: $(A \subset B) := \forall x ((x \in A) \implies (x \in B))$

Если $A \subset B$ и $A \neq B$ то включение строгое и A собственное множество В.

Если M — множество, то любое свойство P выделяет в подмножество M те элементы которые обладают этим свойством:

$$\{x \in M | P(x)\}$$

=>

$$M = \{x \in M | x \in M\}$$

если же взять свойство, которому не соответствует ни один элемент из множества

$$\emptyset = \{x \in M | x \neq x\}$$

$$A = B \iff \{x \in A | (x \in A) \iff (x \in B)\}$$

получится пустое множество

2.2 операции над множествами

- 1. объединение множеств A и B: $A \cup B := \{x | (x \in A) \lor (x \in B)\}$ дизъюнктивное объединение A и B: Объединение непересекающихся подможеств $\mathbb{A} \sqcup \mathbb{B}$
- 2. пересечение множеств A и B: $A \cap B := \{x | (x \in A) \land (x \in B)\}$

3. разность множества $A \setminus B := \{x | (x \in A), \land (x \notin B)\}$

Разность между множеством M и содержащимся в нём подмножеством A обычно называют A в M и обозначают через

$$C_M A$$

или

если понятно к какому множеству дополнение.

• Пример. Плавила де Моргана:

$$C_M(A \cup B) = C_M A \cap C_M B$$

$$C_M(A \cap B) = C_M A \cup C_M B$$

докажем первое из равенств

$$(x \in C_M(A \cup B)) \implies (x \notin (A \cup B)) \implies ((x \notin A) \land (x \notin B)) \implies (x \in C_M A) \land (x \in C_M B) \implies (x \in (C_M A \cap C_M B))$$

$$C_M(A \cup B) \subset C_M A \cap C_M B$$

$$(x \in (C_M A \cap C_M B)) \implies ((x \in C_M A) \wedge (x \in C_M B)) \implies ((x \notin A) \wedge (x \notin B)) \implies (x \notin (A \cup B)) \implies (x \in C_M (A \cup B))$$

$$(C_M A \cap C_M B) \subset C_M (A \cup B)$$

4. Прямое (декартово) произведение множеств.

Для любой пары двух множеств можно образовать новое множество

$${A,B} = {B,A}$$

элементами которого являются только они. Множество состоит из двух эл-тов если множ-ва не равны и одного в обратном случае.

Существует так же упорядоченная пара

$$(A,B) = (C,D)$$

где

$$A = C$$

$$B = D$$

$$A \neq B \implies (A, B) \neq (B, A)$$

Пусть, Х и У — произвольные множества.

$$\mathbb{X} \times \mathbb{Y} := \{(x, y) | (x \in \mathbb{X}) \land (y \in \mathbb{Y}) \}$$

для \mathbb{A}_n множеств. $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i\}$ декартово произведение: $\mathbb{A} \times \mathbb{A} = \mathbb{A}^2$ Образованное всеми упорядоченными парами (x, y) первый член которых есть элемент из X, а второй член — элемент из Y, называется прямым или декартовым произведением множеств X и Y.

$$X \neq Y \implies X \times Y \neq Y \times X$$

зам. известная всем система декартовых координат превращает эту плоскость в произведения числовых осей.

2.3 свойство операций над множествами

Свойство	Символьно
Коммутативность	$A \cup B = B \cup A$
	$\mathbb{A} \cap \mathbb{B} = \mathbb{B} \cap \mathbb{A}$
Ассоциативность	$A \cup (B \cup C) = (A \cup B) \cup C$
Дистрибутивность	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Идемпонтность	$A \cup A = A$
	$A \cap A = A$
	$A \cup \varnothing = A$
	$A \cap \varnothing = A$

3 Парадокс Рассела (1872-1970)

 ${\rm K}$ множество всех множеств p(K) - множество не содержит себя в качестве своего элемента

$$K = M|P(M)$$

$$K \in K \implies \neg P(k) \implies K \notin K$$

$$K \notin K \implies P(k) \implies K \in K$$

В современной математике понятие множества вносится аксиоматически.

Множество обладает определённым набором свойств, описание этих свойств составляет всю аксиоматику.

В рамках этих аксиом множество всех множеств не является множеством.

4 Аксиоматика теории множеств

1. Аксиома объёмности. / The axiom of extension

Множества равны тогда и только когда имеют одни и те же элементы. $A = B = \forall x ((x \in \mathbb{A}) \iff (x \in \mathbb{B}))$

2. Аксиома выделения. / Comprehension scheme

Любому множеству A и свойству P отвечает множество B, элементы которого суть те же элементы множества A, которые обладают свойством P. $B = \{x \in \mathbb{A} | P(x)\}$

Из этой аксиомы следует, что разность множеств, в том числе дополнение — множества.

3. Аксиома пустого множества / Empty set axiom

Существует пустое множество $\varnothing = \{x \in X | x \neq x\}$ учитывая 1 аксиому пустое множество единственно.

4. Аксиома объединения. / Axiom of Union

Для каждого семейства $\mathbb M$ существует множество, которое является объединением $\bigcup \mathbb M$, содержащим все элементы из $\mathbb M$

причём(где Х это элемент семейства):

$$x \in \bigcup \mathbb{M} \iff \exists \mathbb{X}((\mathbb{X} \in \mathbb{M}))$$

эта аксиома позволяет определить пересечение семейства множеств как множество:.

$$\bigcap \mathbb{M} := \{ x \in \bigcup \mathbb{M} | \forall \mathbb{X} ((\mathbb{X} \in \mathbb{M}) \implies (x \in \mathbb{X})) \}$$

5. Аксиома пары / Pairing axiom

Для любых множеств X и Y существует множество Z такое, что содержит все и исключительно элементы этих множеств.

если множества равны, то Z состоит из одного элемента, обозначается так: $\{X,Y\}$

Эта аксиома помогает ввести упорядоченную пару: $(X, Y) := \{X\}, \{X, Y\}$

6. Аксиома множества подможеств /Power Set Axiom

Для каждого множества существует множество $\mathcal{P}(\mathbb{X})$ состоящее из элементов всех подмножеств X.

Так можно ввести прямое произведение множеств. $\mathbb{X} \times \mathbb{Y} := \{ p \in \mathcal{P}(\mathcal{P}(\mathbb{X}) \cup \mathcal{P}(\mathbb{Y})) | p = (x, y) \land (x \in \mathbb{X}) \land (x \in \mathbb{Y}) \}$

7. Аксиома бесконечности / Infinity axiom

Введём понятие последователя $\mathbb{X}^+ = \mathbb{X} \cup \{\mathbb{X}\}$ (добавляет к множеству одноэлементное множество \mathbb{X}).

Назовём множество индуктивным, если оно содержит пустое множество и последователь каждого своего элемента.

Аксиома утверждает, что индуктивные множества существуют.

Аксиома позволяет определить модель множества \mathbb{N}_0 натуральных чисел, как пересечение индуктивных множеств, т. е. наименьшее индуктивное множество. Соответственно его элементами являются: $\varnothing, \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}, \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\}, ...,$ Так же являющееся моделью множества натуральных чисел.

в общем, можно сформулировать эту аксиому так: $\exists x (\varnothing \in \mathbb{X} \land \forall y (y \in \mathbb{X} \to y \cup \{y\} \in \mathbb{X}))$

8. Аксиома подстановки / Replacement Axiom

Есть множество \mathbb{X} , множества $(\mathbb{N}_i)_{i=1}^n$, существует закон, который ассоциирует для $\forall x \in X$ и для каждой последовательности множеств $(\mathbb{N}_i)_{i=1}^n$ уникальное множество $\Phi(x,\mathbb{N},...\mathbb{N}_n)$:

$$\{y|\forall x\in\mathbb{X}y=\Phi(x,\mathbb{N}_1,...,\mathbb{N}_n)\}$$
 взято отсюда

9. Аксиома выбора / Axiom of Choice

Для каждого семейства непустых попарно непересекающихся множеств существует множество \mathbb{C} такое, что какого бы не было множество \mathbb{X} данного семейства, множество $\mathbb{X} \cap \mathbb{C}$ состоит из одного элемента.

5 вкратце о числах

```
 \begin{array}{l} <2025\text{-}09\text{-}03 \ Wed>x\in\mathbb{X} \ \mathbb{A}\subset\mathbb{X} \\ C_mA=\{x\in M|x\notin M\} \ A=B\iff A\subset B\wedge B\subset A \\ \mathbb{N}=\{1,2,3,\ldots\} \ \mathbb{Z}=\{0,\pm 1,\pm 2,\ldots\} \ \mathbb{Q}=\{\frac{p}{q}|p\in\mathbb{Z}\wedge q\in\mathbb{N}\} \end{array}
```

Любое рац число может быть записанно в виде конечной дроби, либо периодической дроби. $\sqrt{2} \notin \mathbb{O}$

геометрическая интерпретация множества действительных чисел. введение таких точек на прамой L взаимоодназначное соответствие между точками и множеством R. Направление задаваемое лучом с вершиной в точке ноль и содержащим 1 является положительным.

 $\forall x \in \phi \exists ! x \in \mathbb{R}$ х длина отрезка икс х - Длина положительная ОХ, если икс лежит правее 0. х - длина отрезка ОХ отрицательная, если X правее.

Такую прямую для которой установлено взаимооднозначное соответствие с R, называют числовой (координат осью) При рассмотрении числовых множеств (подможеств R действительных) принято использовать геом-кий язык.

6 Обозначение некоторых числовых множеств

```
a \in \mathbb{R}, b \in \mathbb{R}, a < b
```

ограниченные числовые промежутки.: $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$ отрезок $(a,b) = \{x \in \mathbb{R} | a < x < b\}$ интервал $(a,b] = \{x \in \mathbb{R} | a < x \le b\}$ полуинтервал $[a,b) = \{x \in \mathbb{R} | a \le x < b\}$ полуинтервал неограниченные числовые промежутки:

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\} \ (-\infty; a] = \{x \in \mathbb{R} | x \le a\} \ (a, +\infty) = \{x \in \mathbb{R} | x > a\} \ [a, +\infty) = \{x \in \mathbb{R} | x \ge a\} \ (-\infty, +\infty) = \mathbb{R}$$

зам. $(a,b) = \{x \in \mathbb{R} | a < x < b| \} \{a,b\}$ - множество из a, bи

Расширенная числовая прямая, или проективно рассширенная: $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ Аффинно расширенная бесконечность: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$

7 мощность множества

Пусть A и B - два конечных множества. $A = \{a, b, c, d, ...\}$ $A = \{\alpha, \beta, \gamma, \delta, ...\}$ Одинаково или нет количество элементов в этих множествах можно решить не считая их элементы, а устанавливая соответствия. Для этого способа сравнения хар-но то, что для каждого эле-та одного множества указывается один и только один эл-т другого мн-ва.

Определение: Пусть X и У - два множества. Правило ϕ которое каждому эл-ту x из множества X ставит в соответствие один и только один эл-т y из множества У причём, каждый эл-т y из У оказывается соотнесённый только одному x из множества X, называется взаимно однозначным соответствием между множествами X и Y.

Замечание, взаимно однозначное соответствие носит название биективное отображение. Биекция.

Если между множествами \mathbb{A} и \mathbb{B} (не обязательно конечными) можно установить взаимно однозначное соответствия, то такие мно-ва называются экви-ми или равно мощными. $A \sim B$ отношение равномощности разбивает соотножение на классы эквивалентных множ-в Множества одного класса эквивалентности имеют одинаковое количество элементов(равномощных)

Опред. Класс которому принадлежит мно-во X, называется мощностью множества X или кардинальным числом(кардиналом) множества X и обозначается Card \mathbb{X} . если $\mathbb{X} \sim \mathbb{Y}$ то пишут $\operatorname{Card} \mathbb{X} = \operatorname{Card} \mathbb{Y}$

Зам. Если берём $X \in Y$ то CardX < CardY

такой способ определения мощности можно использовать и для ин-ти множеств

пр-р
$$\mathbb{N} = \{1, 2, ...\}$$
 $M = \{2n | n \in \mathbb{N}\}$ $M \in \mathbb{N}$ Card $\mathbb{M} = \text{Card}\mathbb{N}$

Опред. Все ин-ти мно-ва для которых может быть установлено взаим-одн соответвие с множеством натуральных чисел называются счётными.

Зам. Все эл-ты счётных множеств могут быть занумерованы в ин-ти последовательность

Для ин-ти мно-в возможна ситуация когда одно является подмно-вом другого, при этом оба равно мощные.

 $\mathbb{N} = \alpha$

(0,1) - не счётное > допустим оно счётное, если это так, то мы можем их занумеровать но так не получится, потому что можно сделать наискосок новые индексы. <

 $\operatorname{Card}(a,b)=c=\operatorname{Card}\mathbb{R}=c$ $x\to \frac{x}{1-|x|}$ f устанавливае взаи-одн соответствие между $(0,\,1)$ и R

8 функция

Пусть \mathbb{X} , \mathbb{Y} - два числовых множеств. $\mathbb{X} \in \mathbb{R}$, $\mathbb{Y} \in \mathbb{R}$

Опр. Говорят, что есть функция f, определённая на множестве X со значениями в множестве Y, если определён закон(правило, зависимость), по которому каждому элементу из множества X ставится единственный элемент из Y.

 $f:\mathbb{X} \to \mathbb{Y}, \mathbb{X} \to^f \mathbb{Y}$ \mathbb{X} - область определения функции f $x \in \mathbb{X}$ x - независимая переменная, аргумент функции.

множество всех значений, будем называть множеством значений или областью значений функции.

$$f(a) = \{y \in \mathbb{Y} | \exists x ((x \in A) \land y = f(x))\}$$
 у - зависимая переменная $y = f(x)$

если
$$B \subset E(f)$$
 и $f(A) = B$ то $f^{-1}(B) = A$ - прообраз множества B

Допустим, есть отображение $f: \mathbb{A} \to \mathbb{B}$ оно

- 1. сюръективно, или сюръектиция, если f(X) = Y т.е. у каждого элемента y есть прообраз в множестве X.
- 2. инъективно, или инъекция, если $x_1 \neq x_2 \ x_1, x_2 \in \mathbb{Y}$ тогда $f(x_1) \neq f(x_2)$
- 3. и биективна, если соблюдается 1 и 2.

Замечание. Для того, чтобы аналитическое выражение $f(x)=x^2$ являлось биективным, надо его ограничить.

Замечание. Если отображение $f: \mathbb{X} \to \mathbb{Y}$ биективно, то возникает отображение $f^{-1}: \mathbb{Y} \to \mathbb{X}$ каждому элементу y из множества \mathbb{Y} ставится в соответствие элемент x из множества \mathbb{X} для которого выполняется f(x) = y. Называют обратным отображением для f.

Замечание. Свойство двух отображений быть обратными является взаимным.