Competitive Markets for Personal Data

Simone Galperti Jacopo Perego UCSD Columbia

January 2023

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

Preview of Our Results:

1. In status quo, many inefficiencies lead to mkt failure

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

- 1. In status quo, many inefficiencies lead to mkt failure
- Giving people control over their data does not solve the problem, and in fact can backfire

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

- 1. In status quo, many inefficiencies lead to mkt failure
- Giving people control over their data does not solve the problem, and in fact can backfire

Status quo: Consumers are imperfectly compensated for their data, and have limited control over their use

We study competitive markets for personal data to understand

- What inefficiencies this status quo generates
- What market arrangements could correct them

- 1. In status quo, many inefficiencies lead to mkt failure
- Giving people control over their data does not solve the problem, and in fact can backfire
- 3. Efficiency can be achieved by opening more markets \longrightarrow how practical?

for talk, simplify model a bit

for talk, simplify model a bit

There are ${\it I}$ competing e-commerce platforms

for talk, simplify model a bit

There are ${\it I}$ competing e-commerce **platforms**

There is a third-party ${\bf vendor}$ who is active on platform i and sells a product and sets its price a

for talk, simplify model a bit

There are ${\it I}$ competing e-commerce platforms

There is a third-party ${\bf vendor}$ who is active on platform i and sells a product and sets its price a

There is a continuum of heterogeneous consumers: unit demand and WTP ω

for talk, simplify model a bit

There are I competing e-commerce platforms

There is a third-party ${\bf vendor}$ who is active on platform i and sells a product and sets its price a

There is a continuum of heterogeneous consumers: unit demand and WTP ω

Type- ω consumers are of mass $\bar{q}(\omega) \geq 0$

for talk, simplify model a bit

There are I competing e-commerce platforms

There is a third-party ${\bf vendor}$ who is active on platform i and sells a product and sets its price a

There is a continuum of heterogeneous consumers: unit demand and WTP ω

Type- ω consumers are of mass $\bar{q}(\omega) \geq 0$

When a $\omega\text{-consumer}$ transacts with platform i's vendor, payoffs realize

for talk, simplify model a bit

There are I competing e-commerce platforms

There is a third-party **vendor** who is active on platform i and sells a product and sets its price a

There is a continuum of heterogeneous consumers: unit demand and WTP $\boldsymbol{\omega}$

Type- ω consumers are of mass $\bar{q}(\omega) \geq 0$

When a $\omega\text{-consumer transacts}$ with platform i's vendor, payoffs realize

consumer: $g_i(a,\omega)$ e.g. surplus

vendor: $\pi_i(a,\omega)$ e.g. profit

platform: $u_i(a,\omega)$ e.g. intermediation fee

1. info about this consumer's WTP ω

1. info about this consumer's WTP ω

(e.g., age, gender, edu, etc.)

- 1. info about this consumer's WTP ω (e.g., age, gender, edu, etc.)
- 2. access to this consumer

- 1. info about this consumer's WTP ω (e.g., age, gender, edu, etc.)
- 2. access to this consumer (e.g., email, IP address, etc.)

- 1. info about this consumer's WTP ω
- 2. access to this consumer

- 1. Complete info about this consumer's WTP $\boldsymbol{\omega}$
- 2. access to this consumer

- 1. Complete info about this consumer's WTP ω
- 2. access to this consumer

From 1. Type of a record == Type of a consumer (simplifies notation)

- 1. Complete info about this consumer's WTP $\boldsymbol{\omega}$
- 2. Exclusive access to this consumer

From 1. Type of a record == Type of a consumer (simplifies notation)

- 1. Complete info about this consumer's WTP $\boldsymbol{\omega}$
- 2. Exclusive access to this consumer

From 1. Type of a record == Type of a consumer (simplifies notation)

From 2. Data record is rival good

- 1. Complete info about this consumer's WTP ω
- 2. Exclusive access to this consumer

From 1. Type of a record == Type of a consumer (simplifies notation)

From 2. Data record is rival good

A collection of data records is called a **database**: denoted $q_i \in \mathbb{R}_+^\Omega$

i.e., \emph{i} has exclusive access to consumers whose records belong to $\emph{q}_\emph{i}$

i.e., i has exclusive access to consumers whose records belong to q_i

i.e., i has exclusive access to consumers whose records belong to q_i

$$\begin{split} \max_{x_i:A\times\Omega\to\mathbb{R}_+} & & \sum_{\omega,a} u_i(a,\omega)x_i(a,\omega) \\ \text{such that:} & & \sum_{\omega} \left(\pi_i(a,\omega) - \pi_i(\hat{a},\omega)\right) x_i(a,\omega) \geq 0 \qquad \forall \ a,\hat{a}\in A \\ & & \sum_{a} x_i(a,\omega) = q_i(\omega) \qquad \qquad \forall \ \omega\in\Omega \end{split}$$

i.e., i has exclusive access to consumers whose records belong to q_i

$$\begin{split} \max_{x_i:A\times\Omega\to\mathbb{R}_+} & & \sum_{\omega,a} u_i(a,\omega)x_i(a,\omega) \\ \text{such that:} & & \sum_{\omega} \left(\pi_i(a,\omega) - \pi_i(\hat{a},\omega)\right) x_i(a,\omega) \geq 0 \qquad \forall \ a,\hat{a}\in A \\ & & \sum_{a} x_i(a,\omega) = q_i(\omega) \qquad \qquad \forall \ \omega\in\Omega \end{split}$$

i.e., i has exclusive access to consumers whose records belong to q_i

$$\begin{aligned} & \underbrace{U_i(q_i)}^{\text{platform's}} &= \max_{x_i: A \times \Omega \to \mathbb{R}_+} & \sum_{\omega, a} u_i(a, \omega) x_i(a, \omega) \\ & \text{such that:} & \sum_{\omega} \left(\pi_i(a, \omega) - \pi_i(\hat{a}, \omega) \right) x_i(a, \omega) \geq 0 \qquad \forall \ a, \hat{a} \in A \\ & \sum_{\alpha} x_i(a, \omega) = q_i(\omega) \qquad \qquad \forall \ \omega \in \Omega \end{aligned}$$

i.e., i has exclusive access to consumers whose records belong to q_i

Platform i is an information designer: It sends a signal about each consumers's ω to its vendor to influence his price a

$$\begin{aligned} & \overbrace{U_i(q_i)}^{\text{platform's}} &= \max_{x_i: A \times \Omega \to \mathbb{R}_+} & \sum_{\omega, a} u_i(a, \omega) x_i(a, \omega) \\ & \text{such that:} & \sum_{\omega} \left(\pi_i(a, \omega) - \pi_i(\hat{a}, \omega) \right) x_i(a, \omega) \geq 0 \qquad \forall \ a, \hat{a} \in A \\ & \sum_{\alpha} x_i(a, \omega) = q_i(\omega) \qquad \qquad \forall \ \omega \in \Omega \end{aligned}$$

Denote by $x_{q_i}^*$ a solution (note: it depends on the entire database)

i.e., i has exclusive access to consumers whose records belong to q_i

Platform i is an information designer: It sends a signal about each consumers's ω to its vendor to influence his price a

$$\begin{aligned} & \overbrace{U_i(q_i)}^{\text{platform's}} &= \max_{x_i: A \times \Omega \to \mathbb{R}_+} & \sum_{\omega, a} u_i(a, \omega) x_i(a, \omega) \\ & \text{such that:} & \sum_{\omega} \left(\pi_i(a, \omega) - \pi_i(\hat{a}, \omega) \right) x_i(a, \omega) \geq 0 \qquad \forall \ a, \hat{a} \in A \\ & \sum_{\alpha} x_i(a, \omega) = q_i(\omega) \qquad \qquad \forall \ \omega \in \Omega \end{aligned}$$

Denote by $x_{q_i}^*$ a solution (note: it depends on the entire database)

platforms

 $\widehat{1}$

(2)

 $\widehat{3}$

consumers

platforms vendors

Timing:

1. Each platform acquires q_i in a competitive market for data records

Timing:

- 1. Each platform acquires q_i in a competitive market for data records
- 2. Given database q_i , platform i chooses $x_{q_i}^{\ast}$

Timing:

- 1. Each platform acquires q_i in a competitive market for data records
- 2. Given database q_i , platform i chooses $x_{q_i}^{\ast}$
- 3. Payoffs realize

economy \mathcal{E}_1

a "status-quo" economy

- ► Consumers "expropriated" of their records: no control, imperfect compns
- ▶ Platforms trade records among each other, taking prices as given

- ► Consumers "expropriated" of their records: no control, imperfect compns
- Platforms trade records among each other, taking prices as given

Competitive Equilibrium of Economy \mathcal{E}_1 :

Prices $p^* \in \mathbb{R}^{\Omega}_+$ and a data allocation $q^* \in \mathbb{R}^{\Omega \times I}_+$ are an equilibrium of \mathcal{E}_1 if:

- ► Consumers "expropriated" of their records: no control, imperfect compns
- Platforms trade records among each other, taking prices as given

Competitive Equilibrium of Economy \mathcal{E}_1 :

Prices $p^* \in \mathbb{R}^{\Omega}_+$ and a data allocation $q^* \in \mathbb{R}^{\Omega \times I}_+$ are an equilibrium of \mathcal{E}_1 if:

1. Data allocation is feasible

for all
$$\omega$$
, $\sum_{i \in I} q_i^*(\omega) \leq \bar{q}(\omega)$

- ► Consumers "expropriated" of their records: no control, imperfect compns
- Platforms trade records among each other, taking prices as given

Competitive Equilibrium of Economy \mathcal{E}_1 :

Prices $p^* \in \mathbb{R}^{\Omega}_+$ and a data allocation $q^* \in \mathbb{R}^{\Omega \times I}_+$ are an equilibrium of \mathcal{E}_1 if:

1. Data allocation is feasible

for all
$$\omega$$
, $\sum_{i \in I} q_i^*(\omega) \leq \bar{q}(\omega)$

2. All markets clear

for all
$$\omega$$
, $p^*(\omega) \Big(\bar{q}(\omega) - \sum_i q_i^*(\omega) \Big) = 0$

- ▶ Consumers "expropriated" of their records: no control, imperfect compns
- ▶ Platforms trade records among each other, taking prices as given

Competitive Equilibrium of Economy \mathcal{E}_1 :

Prices $p^* \in \mathbb{R}^{\Omega}_+$ and a data allocation $q^* \in \mathbb{R}^{\Omega \times I}_+$ are an equilibrium of \mathcal{E}_1 if:

1. Data allocation is feasible

for all
$$\omega$$
, $\sum_{i \in I} q_i^*(\omega) \leq \bar{q}(\omega)$

2. All markets clear

for all
$$\omega$$
, $p^*(\omega) \Big(\bar{q}(\omega) - \sum_i q_i^*(\omega) \Big) = 0$

3. Platforms maximize given prices $q_i^* \in \arg\max_{q_i} U_i(q_i) - \sum_{\omega} p^*(\omega) q_i(\omega)$

Observation. Platform's payoff $U_i(q_i)$ depends only on acquired database, not on other platforms' databases

\mathcal{E}_1 – A Status-Quo Economy

Observation. Platform's payoff $U_i(q_i)$ depends only on acquired database, not on other platforms' databases

Some Properties of \mathcal{E}_1 :

- Equilibria maximize sum of platforms' payoffs
- Any platforms-optimal data allocation can be supported in eqm

Observation. Platform's payoff $U_i(q_i)$ depends only on acquired database, not on other platforms' databases

Some Properties of \mathcal{E}_1 :

- Equilibria maximize sum of platforms' payoffs
- Any platforms-optimal data allocation can be supported in eqm

Problems:

Consumers are excluded and platforms do not internalize how their decisions (i.e., q_i^* and $x_{q_i}^*$) affect consumers

Welfare of consumers and platforms is "third best"

economy \mathcal{E}_2

give consumers control?

- ▶ She decides whether to sell it, and to which platform
- ▶ If record is sold, consumer is paid market price $p^*(\omega)$
- lacktriangleq If not, consumer enjoys some reservation utility (pprox value of privacy)

- ▶ She decides whether to sell it, and to which platform
- ▶ If record is sold, consumer is paid market price $p^*(\omega)$
- lacktriangleq If not, consumer enjoys some reservation utility (pprox value of privacy)

Competitive Equilibrium of Economy \mathcal{E}_2 :

informal

Prices $p^* \in \mathbb{R}^{\Omega}$ and data allocation $q^* \in \mathbb{R}_+^{\Omega \times (I+1)}$ are an equilibrium if:

- ▶ She decides whether to sell it, and to which platform
- ▶ If record is sold, consumer is paid market price $p^*(\omega)$
- lacktriangleq If not, consumer enjoys some reservation utility (pprox value of privacy)

Competitive Equilibrium of Economy \mathcal{E}_2 :

informal

Prices $p^* \in \mathbb{R}^{\Omega}$ and data allocation $q^* \in \mathbb{R}_+^{\Omega \times (I+1)}$ are an equilibrium if:

- 1. Data allocation is feasible
- 2. All markets clear
- 3. All platforms maximize given p^*

- ▶ She decides whether to sell it, and to which platform
- ▶ If record is sold, consumer is paid market price $p^*(\omega)$
- lacktriangleq If not, consumer enjoys some reservation utility (pprox value of privacy)

Competitive Equilibrium of Economy \mathcal{E}_2 :

informal

Prices $p^* \in \mathbb{R}^{\Omega}$ and data allocation $q^* \in \mathbb{R}_+^{\Omega \times (I+1)}$ are an equilibrium if:

- 1. Data allocation is feasible
- 2. All markets clear
- 3. All platforms maximize given p^*
- 4. Consumers maximize given p^* and behavior of other consumers

Observation. Why does a consumer's payoff depend on what $\underline{\text{other}}$ consumers do?

 $lackbox{ } x_{q_i}^*$ depends on entire database q_i : ω' consumers affects ω s payoff

Observation. Why does a consumer's payoff depend on what $\underline{\text{other}}$ consumers do?

 $lackbox{ } x_{q_i}^*$ depends on <code>entire</code> database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

Consumer is compensated for value her record generates $\underline{\text{for platform}}$, not for value it generates for $\underline{\text{other consumers}}$

Observation. Why does a consumer's payoff depend on what <u>other</u> consumers do?

 $lackbox{ } x_{q_i}^*$ depends on entire database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

Consumer is compensated for value her record generates $\underline{\text{for platform}}$, not for value it generates for $\underline{\text{other consumers}}$

- In particular, equilibria can be especially inefficient:

Welfare in \mathcal{E}_2 can be even lower than in \mathcal{E}_1 !

Observation. Why does a consumer's payoff depend on what <u>other</u> consumers do?

 $lackbox{ } x_{q_i}^*$ depends on <code>entire</code> database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

Consumer is compensated for value her record generates $\underline{\text{for platform}}$, not for value it generates for $\underline{\text{other consumers}}$

- In particular, equilibria can be especially inefficient:

Welfare in \mathcal{E}_2 can be even lower than in \mathcal{E}_1 !

- Even in best-case scenario of \mathcal{E}_2 , equilibria are still inefficient

Observation. Why does a consumer's payoff depend on what $\underline{\text{other}}$ consumers do?

 $lackbox{ } x_{q_i}^*$ depends on <code>entire</code> database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

Consumer is compensated for value her record generates $\underline{\text{for platform}}$, not for value it generates for $\underline{\text{other consumers}}$

- In particular, equilibria can be especially inefficient:

Welfare in \mathcal{E}_2 can be even lower than in \mathcal{E}_1 !

- Even in best-case scenario of \mathcal{E}_2 , equilibria are still inefficient second-best

Observation. Why does a consumer's payoff depend on what <u>other</u> consumers do?

 $lackbox{ } x_{q_i}^*$ depends on <code>entire</code> database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

below second-best

Consumer is compensated for value her record generates <u>for platform</u>, not for value it generates for other consumers

- In particular, equilibria can be especially inefficient:

Welfare in \mathcal{E}_2 can be even lower than in \mathcal{E}_1 !

- Even in best-case scenario of \mathcal{E}_2 , equilibria are still inefficient second-best

Observation. Why does a consumer's payoff depend on what other consumers do?

 $\triangleright x_{a}^*$ depends on entire database q_i : ω' consumers affects ω s payoff

Properties of \mathcal{E}_2 :

- In general, equilibria are inefficient

below second-best

Consumer is compensated for value her record generates for platform, not for value it generates for other consumers

— In particular, equilibria can be especially inefficient:

below third-best

Welfare in \mathcal{E}_2 can be even lower than in \mathcal{E}_1 !

- Even in best-case scenario of \mathcal{E}_2 , equilibria are still inefficient second-best

economy \mathcal{E}_3

trading how data is used

Once i acquires q_i , it can use it as it wants. How data is <u>used</u> is not contractible in \mathcal{E}_2 (akin to moral hazard)

Once i acquires q_i , it can use it as it wants. How data is <u>used</u> is not contractible in \mathcal{E}_2 (akin to moral hazard)

We further enrich the economy:

► Consumer can sell her record for a specific use

$$x_i(a,\omega) \ge 0$$

Once i acquires q_i , it can use it as it wants. How data is <u>used</u> is not contractible in \mathcal{E}_2 (akin to moral hazard)

We further enrich the economy:

- Consumer can sell her record for a specific use
- $x_i(a,\omega) \ge 0$

► A richer price system is needed:

 $p_i(a,\omega)$ – platform & use specific prices for each record

Once i acquires q_i , it can use it as it wants. How data is <u>used</u> is not contractible in \mathcal{E}_2 (akin to moral hazard)

We further enrich the economy:

Consumer can sell her record for a specific use

 $x_i(a,\omega) \ge 0$

► A richer price system is needed:

 $p_i(a,\omega)$ – platform & use specific prices for each record

Competitive Equilibrium of Economy \mathcal{E}_3 :

See paper

Follows Arrow (1969), Laffont (1976)

Observation: Since consumer trades directly how her record is used:

- She does not care how platform uses other records
- "Moral hazard" is no longer an issue

Observation: Since consumer trades directly how her record is used:

- $-\,$ She does not care how platform uses $\underline{\text{other}}$ records
- "Moral hazard" is no longer an issue

Properties of \mathcal{E}_3

Equilibria are first-best efficient

Observation: Since consumer trades directly how her record is used:

- She does not care how platform uses other records
- "Moral hazard" is no longer an issue

Properties of \mathcal{E}_3

- Equilibria are first-best efficient
- $-\,$ Every first-best allocation can be supported as an equilibrium

Observation: Since consumer trades directly how her record is used:

- She does not care how platform uses other records
- "Moral hazard" is no longer an issue

Properties of \mathcal{E}_3

- Equilibria are first-best efficient
- Every first-best allocation can be supported as an equilibrium

Problems with \mathcal{E}_3 ?

Its realism

Observation: Since consumer trades directly how her record is used:

- She does not care how platform uses other records
- "Moral hazard" is no longer an issue

Properties of \mathcal{E}_3

- Equilibria are first-best efficient
- Every first-best allocation can be supported as an equilibrium

Problems with \mathcal{E}_3 ?

Its realism \leadsto Open Questions: how to (partially) decentralize in practice?

Summary

A framework to study competitive markets for personal data:

- \mathcal{E}_1 . In status quo, multiple sources of inefficiencies jointly lead to mkt failure
- \mathcal{E}_2 . Giving people control over their data does not correct all inefficiencies and, in fact, can backfire
- \mathcal{E}_3 . Efficiency achieved by opening many more markets \longrightarrow how practical?

