MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 03	Andrés Montoya	405409
9. Mai 2021		Til Mohr	405959

Aufgabe 1

E-Test

Aufgabe 2

(a) Um die gegebene Folgerungsbeziehung zu beweisen zeigen wir, dass $\{A \lor E \lor D, (D \to B) \land \neg (C \to (D \land B)), \neg (A \lor (E \land C))\}$ unerfüllbar ist.

Dazu konstruieren wir zunächst eine geeignete Klauselmenge K:

$$K = \{ \{ A \lor E \lor D \}, \{ D \to B \}, \{ \neg (C \to (D \land B)) \}, \{ \neg (A \lor (E \land C)) \} \}$$

Dies kann durch mehereres Vereinfach auf folgende Klauselmenge vereinfacht werden:

$$K = \{ \{ A \lor E \lor D \}, \{ \neg D \lor B \}, \{ C \}, \{ \neg D \lor \neg B \}, \{ \neg A \}, \{ \neg E \lor \neg C \} \}$$

Nun wenden wir das Resulutionskalkül an und erhalten:

 $\{\{E \vee D\}, \{\neg D\}, \{\neg E\}\}\$ und durch erneutes anwenden:

 $\{\{D\}, \{\neg D\}\}$ und schliesslich:

 $\{\Box\}$

Somit ist die Folgerungsbeziehung bewiesen.

(b) i=0:
$$\{\{\neg A, B, D\}, \{\neg B, \neg D\}, \{A\}, \{\neg E, D\}, \{C\}, \{C, \neg B\}, \{E\}\}\}$$

i=1: $\{\{B, D\}, \{\neg A, C, D\}, \{\neg B, \neg E\}, \{D\}\}$
i=2: $\{\{D, \neg E\}, \{\neg B\}\}$
i=3: $\{\}$

Da bei der dritten Iteration es keine Veränderung mehr gibt gilt: $PRes^*(K) = PRes_2(K)$. Da $\square \notin PRes^*$ und der Algorithmus vollständig ist, ist K erfüllbar.

Aufgabe 3

(a) z.z. bereinigte Resolutionskalkül ist korrekt, also für K Klauselmenge, C_1 und C_2 aus K und C Resolvente aus C_1 und C_2

Es gibt 2 Fälle:

• C ist nicht tautologisch und es gibt keine Klausel C' in K sodass C' eine Untermenge von C ist:

Dieser Fall ist analog zum normalen Resoltionskalkül und somit gilt, dass $K \cup C$ equivalent zu K ist.

• Andernfalls:

In diesem Fall wird C nicht zur Klauselmenge hinzugefügt und somit gilt trivialerweise, dass K nach dem Resolutionsschritt equivalent zu K vor dem Resolutionsschritt ist

Wenn man durch wiederholtes Anwenden der Resolutionsregel eine Klauselmenge K' erhält, welche die leere Menge enthält, dann ist K unerfüllbar, da K zu K' equivalent ist.

(b) z.z. bereinigtes Resultionskalkül ist vollständig.

Dazu zeigen wir, dass wenn leere Menge in $Res_k(K)$ ist, dann auch leere Menge in $PRes_k(K)$ ist. Da das normale Resolutionskalkül vollständig ist, muss dann auch das bereinigte Resolutionskalkül vollständig sein.

Dazu beweisen wir per Induktion, dass für alle i gilt: Für alle Klauseln $C \in Res_i(K)$ gilt: Entweder ist C tautologisch oder es gibt $C' \in PRes_i(K)$ sodass C' eine Untermenge von C ist. Wenn für alle i diese Aussage gilt, dann gilt offensichtlich auch, dass falls die leere Menge in $Res_k(K)$ ist, die leere Menge auch in $PRes_k(K)$ ist, da die leere Menge nicht tautologisch ist und somit es ein $C' \in PRes_k(K)$ geben muss dass eine Untermenge von der leeren Menge ist. Dies kann nur die leere Menge sein.

Induktionsanfang: (i = 0): $PRes_0(K) = Res_0(K)$ also gilt die Aussage trivialerweise Induktionsschritt $(i \Rightarrow i + 1)$:

Da für alle $C \in Res_i(K)$ gilt, dass diese entweder tautologisch sind oder es ein $C' \in PRes_i(K)$ gibt welches eine Untermenge von C ist müssen wir die Aussage ausschliesslich für alle $C \in Res_{i+1}(K) \setminus Res_i(K)$ prüfen. Für alle diese C gilt:

C ist Resolvente aus $C_1, C_2 \in Res_i(K)$. Also sind jeweils C_1 und C_2 entweder tautologisch oder es exitieren entsprechende $C'_1, C'_2 \in PRes_i(K)$ sodass C'_1 eine Untermenge von C_1 ist und C'_2 eine Untermenge von C_2 ist.

Wir unterscheiden 2 Fälle:

- C ist tautologisch, dann gilt die Aussage trivialerweise.
- C ist nicht tautologisch. Dafür kann man ebenfalls 4 Fälle unterscheiden:
 - C_1 ist tautologisch, also C_1 ist Obermenge von $\{X, \bar{X}\}$ und C_2 nicht. Dann kann man entweder über X resolvieren, wodurch das entstehende C eine Obermenge von C_2 ist, dementsprechend gibt es in $PRes_{i+1}(K)$ eine Klausel, nämlich C'_2 die eine Untermenge von C ist, oder man resolviert nicht über X, dann ist C ebenfalls eine tautologische Klausel und die Aussage gilt ebenfalls.
 - $-C_2$ ist tautlogisch und C_1 nicht. Analog zu Fall 1.
 - $-C_1$ und C_2 sind tautologisch. Dann ist C auch eine tautologische Klausel und die Aussage gilt.
 - Sowohl C_1 als auch C_2 sind nicht tautologisch. Dann gibt es in $PRes_i(K)$ Klauseln C'_1 und C'_2 welche beide jeweils Untermengen von C_1 und C_2 sind. Die Resolvente C' aus C'_1 und C'_2 ist eine Untermenge von C, da jedes Literal in C' entweder aus C'_1 oder C'_2 kommt, somit auch auf jeden Fall in C_1 oder C_2 vorhanden sind und folglich auch in C. Da C nicht tautologisch ist, ist es C' auch nicht. Wenn es eine Klausel $C'' \in PRes_i(K)$ gibt sodass

C'' eine Untermenge von C' ist, dann gibt es auch in $PRes_{i+1}(K)$ eine Klausel die eine Untermenge von C ist, nämlich C''. Wenn es so ein C'' nicht gibt, dann wird $C' \in PRes_{i+1}(K)$ sein und somit gibt es ebenfalls eine Klausel die eine Untermenge von C ist.

Somit ist per Induktion bewiesen, dass das bereinigte Resolutionskalkül vollständig ist.

Aufgabe 4

(a) Für Φ endlich ist die Aussage trivial mit $\Phi_0 = \Phi$

Für Φ unendlich:

 Φ abhängig ist nach definition genau dann der Fall wenn ein $\varphi \in \Phi$ existiert sodass gilt: $\Phi \setminus \{\varphi\} \models \varphi$. Wir können nun den Kompaktheitssatz anwenden und erhalten folgende equivalente Aussage: es ex. ein $\varphi \in \Phi$ und eine endl. Teilmenge Φ'_0 von $\Phi \setminus \{\varphi\}$ sodass gilt: $\Phi'_0 \models \varphi$. Nun definieren wir $\Phi_0 = \Phi'_0 \cup \{\varphi\}$ und stellen fest dass $\Phi'_0 \models \varphi$ genau dann gilt wenn Φ_0 abhängig ist. Also ist Φ genau dann abhänig wenn es ein endliches Φ_0 gibt dass ebenfalls abhänig ist.

(b)

Aufgabe 5

Beweis per Kompaktheitssatz:

Sei X_A für $A \in \mathcal{P}(\mathbb{N})$ genau dann 1 wenn $A \in M$.

Damit die Bedingungen aus der Aufgabenstellung erfüllt sind muss für jedes $A \in \mathcal{P}(\mathbb{N})$ gelten, dass nach dem hinzufügen von einem $c \in \mathbb{N}$ und $c \notin A$ gilt: $X_A = \neg X_{A \cup \{c\}}$

Somit ist $\Phi = \{X_A = \neg X_{A \cup \{c\}} \text{ für alle } A \in \mathcal{P}(\mathbb{N}) \text{ und für alle } c \in \mathbb{N} \text{ mit } c \notin A\}$

Sei Φ_0 eine beliebige endliche Untermenge von Φ . z.z.: Φ_0 ist erfüllbar.

Sei $\mathfrak{I}(X_A)$ genau dann 1 wenn |A| ungerade ist. \mathfrak{I} erfüllt dann Φ_0 da $||A| - |A \cup \{c\}|| = 1$ für alle A und für alle $c \in \mathbb{N}$ mit $c \notin A$. Deswegen ist $\mathfrak{I}(X_A) = 1 \oplus \mathfrak{I}(X_{A \cup \{c\}}) = 1$. Somit ist jede Aussagenlogische Formel in Φ_0 trivialerweise erfüllt.

Da jede endliche Teilmenge von Φ erfüllbar ist, ist Φ ebenfalls erfüllbar und somit ist es möglich alle Teilmengen der natürlichen Zahlen in zwei disjunkte Gruppen M und N zu teilen, sodass keine zwei benachbarten Mengen in der selben Gruppe sind.