

Design Process engineering

Sophie Dupuy-Chessa

Engineering methods

Engineering methods

Process engineering lectures

Goals:

- Reuse and adaptation of development process
 - => Users in the processes

- Approach:
 - Process models
 - How to compare process models?
 - -Practice with a tool

OCTOBER 2014 MOSIG /SIGAL S. Dupuy-Chessa

5

Software Life Cycles

- 3 normalized Life cycle models
 - ➤ Waterfall
 - ➤ Spiral
 - > Iterative or incremental
- · Other well-known life cycle models
 - > V-model
 - > semi-iterative models
 - ▶...

OCTOBER 2014 MOSIG /SIGAL

What is a process?

« A process is a set of activities that are interrelated or that interact with one another. » (ISO 9001:2000)

- => it is not a procedure.
 - A process answers to the questions: What to do? For which added value?
 - A procedure answer to the questions: How to do? When? Who?
- => it is not a life cycle model
 - a life cycle model is a framework of processes and activities concerned with the life cycle that may be organized into stages, which also acts as a common reference for communication and understanding

Activity: set of cohesive tasks of a process

OCTOBER 2014 MOSIG /SIGAL

Software Life Cycles

- Waterfall
- Spiral
- · Iterative or incremental
- V-model
- · semi-iterative model
- ...
 - → 2 families
 - Linear cycles
 - · Based on the Waterfall model
 - Temporal breaking down of the project
 - · TOP-DOWN
 - Iterative cycles
 - generally based on prototyping
 - · Structural breaking down of the project
 - BOTTOM-UP

OCTOBER 2014 MOSIG /SIGAL

Exercise

Open the http://design-methods.net website

Read the description of the waterfall model in the « Methods » tab

What do you learn about the waterfall model?

Semi-Iterative cycles Semi-Iterative model (RAD, FDD, ...) Requirement Structural **TOP-DOWN** decomposition analysis Identification of **Specifications** autonomous subprojects **BOTTOM-UP** Preliminary (increments) Detailled design Detailled design Detailled design Programming Programming Programming Tests Tests Tests Acceptance tests Acceptance tests Acceptance tests

MOSIG /SIGAL

Iterative cycles Foundations

SIGMA

Based on the DEMING wheel

- PDCA method (Plan Do Check Act)
- Continuous improvement in quality

Exercise

MOSIG /SIGAL

Open the http://design-methods.net website

Read the description of the spiral model in the « Methods » tab

What do you learn about the spiral model?

Iterative cycles Spiral model

- Principle: realize successive version of the system
 - While refining requirements
 - All requirements are identified, but they are not stable.
 - -By producing a robust version for a set of requirements
 - -By working in parallel on different versions (several teams)
- Advantages
 - A first operational version is available.
 - The system is built by increments.
 - Use feedbacks to refine requirements
- Drawback
 - -Risks from Requirements not stable

Adapted to complex and uncertain projects

MOSIG /SIGAL

Iterative cycles

Iterative and incremental model

- It can be NOT an iterated V-cycle
 - Short iteration
 - => iteration on a product (doc, test, code ...)
 - Feasibility <> Specifications
 - Acceptance of a new requirement
 - Elaboration <> Design
 - Imagine the solution
 - Construction <> Prototype Development
 - Transition <> test
 - Deliver to the customer

Iterative cycles

Iterative and incremental model

- Principle: realize successive version of the system
 - While refining requirements
 - Not All requirements are identified, but they are stable.
 - -By producing a viable version for a set of data
 - -By working in parallel on different versions (several teams)
- Advantages
 - A first operational version is available.
 - The system is built by increments => flexibility
- Drawbacks
 - -Risks from Misunderstood Requirements
 - -Evolution of requirements

Adapted to complex projects

MOSIG /SIGAL

Iterative cycles

Classical agile cycle

Working Code Ready

for Deployment

Sprint Review Meeting

Retrospective on the Sprint

· Demo features to all

SCRUM cycle

ProductBacklog

· Client prioritized product

SprintBacklog · Features assigned to Sprint

· Estimated by team Team Commitment

Backlog tasks

Sprint Planning Meeting Daily Scrum Meetings

- · Review Product Backlog
- Commit
- · Estimate Sprint Backlog

· Done since last meeting

- Plan fortoday
- Roadblocks/Accelerators?

Adjustments

Time-boxed "Sprint" Cycles

Time-boxed

Test/Develop

MOSIG /SIGAL

Exercise

Open the http://design-methods.net website

Read the description of SCRUM in the « Methods » tab

What do you learn about SCRUM?

OCTOBER 2014 MOSIG /SIGAL

...

lterative cycles

Agile Manifesto - Principles

- Our highest priority is to satisfy the customer through early and continuous delivery
 of valuable software.
- 2. Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
- Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
- 4. Business people and developers must work together daily throughout the project.
- Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
- The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- 7. Working software is the primary measure of progress.
- 8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
- 9. Continuous attention to technical excellence and good design enhances agility.
- 10. Simplicity--the art of maximizing the amount of work not done--is essential.
- The best architectures, requirements, and designs emerge from self-organizing teams.
- 12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly. http://agilemanifesto.org/

OCTOBER 2014 MOSIG /SIGAL S. Dupuy-Chessa

Iterative cycle Agile Manifesto

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

► Iterative incremental and collaborative approach

http://agilemanifesto.org/

OCTOBER 2014 MOSIG /SIGAL . Dupuy-Chessa

22

Iterative cycles Agile cycle

- Principle: realize successive version of the system
 - While refining requirements
 - All requirements are identified, but they are not stable.
 - -Short cycle (21 days)
- Advantages
 - Customers' satisfaction
 - Better visibility of project progress

Changing requirements for projects with user facing

- Drawbacks
 - No documentation (maintenance, change in a team ...)
 - Difficulty for standardisation

ER 2014

S. Dupuy-Chessa

24

Projects resolution

	2002	2004	2006	2008	2010
Successful	34%	29%	35%	32%	37%
Challenged	51%	53%	46%	44%	42%
Failed	15%	18%	19%	24%	21%

http://versionone.com/assets/img/files/CHAOSManifesto2012.pdf

Chronology

Project factors of success

	FACTORS OF SUCCESS	POINTS	
	Executive Management Support	19	
	User Involvement	18	
	Clear Business Objectives	15	
	Emotional Maturity	12	
	Optimization	11	
	Agile Process	9	
	Project Management Expertise	6	
	Skilled Resources	5	
	Execution	4	
	Tools and Infrastructure	1	

http://versionone.com/assets/img/files/CHAOSManifesto2012.pdf

OCTOBER 2014 MOSIG /SIGAL

S. Dupuy-Chessa

OCTOBER 2014 MOSIG /SIGAL S. Dupuy-Chessa

2

Toward method engineering

- Cycles are just one aspect of a method.
- Development Methods are numerous (1000 methods identified in 2001).
 - How to choose one?
- They never used as they are.
 - Need for flexibility (Method spectrum from Harmsen, Brinkkemper and Oei)

OCTOBER 2014 S. Dupuy-Chessa
MOSIG /SIGAL