Module Interface Specification for Solar Water Heating Systems Incorporating Phase Change Material

Brooks MacLachlan

July 29, 2016

Contents

1	Inti	roduction	3
2	Not	tation	4
3	Mo	dule Decomposition	4
4	MIS	S of Control Module	4
	4.1	Module	4
	4.2	Uses	5
	4.3	Syntax	5
		4.3.1 Exported Access Programs	5
	4.4	Semantics	5
		4.4.1 State Variables	5
		4.4.2 Environment Variables	5
		4.4.3 Access Routine Semantics	5
5	MIS	S of Input Parameters Module	5
	5.1	Module	5
	5.2	Uses	5
	5.3	Syntax	6
		5.3.1 Exported Data Types	6
		5.3.2 Exported Access Programs	6
	5.4	Semantics	6
	0.1	5.4.1 State Variables	6
		5.4.2 Access Routine Semantics	7

6	MIS	S of Input Format Module	7
	6.1	Module	7
	6.2	Uses	7
	6.3	Syntax	7
	6.4	Exported Access Programs	7
	6.5	Semantics	7
		6.5.1 State Variables	7
		6.5.2 Assumptions	7
		6.5.3 Access Routine Semantics	7
7	МТС	of Input Verification Module	8
1	7.1	Module	8
	$7.1 \\ 7.2$	Uses	8
	7.2	Syntax	8
	1.5	7.3.1 Exported Access Programs	8
	7.4	Semantics	8
	1.4		
			8
		1	
		7.4.3 Access Routine Semantics	ć
8	MIS	of Temperature ODEs Module	ç
	8.1	Module	Ć
	8.2	Uses	Ć
	8.3	Syntax	Ć
		8.3.1 Exported Access Programs	Ć
	8.4	Semantics	(
		8.4.1 State Variables	(
		8.4.2 Assumptions	(
			1
9	МТС	S of Energy Module 1	1
J		Module	
	9.2	Uses	
	9.3	Syntax	
	0.0	v	2
	9.4	\sim	2
	J.4		2
			2
		1	13
		3.4.9 Access noutine penianties	. و
10	MIS	S of Output Verification Module 1	3
			[
	10.2	Uses 1	2

10	.3 Syntax	14
	10.3.1 Exported Access Programs	14
10	.4 Semantics	14
	10.4.1 State Variables	14
	10.4.2 Environment Variables	14
	10.4.3 Local Variables	14
	10.4.4 Assumptions	14
	10.4.5 Access Routine Semantics	14
11 N	IS of Plotting Module	15
13	.1 Module	15
13	.2 Uses	15
	.3 Syntax	15
	11.3.1 Exported Access Programs	15
1	.4 Semantics	15
	11.4.1 State Variables	15
	11.4.2 Environment Variables	15
	11.4.3 Access Routine Semantics	15
12 N	IS of Output Module	16
12	.1 Module	16
12	.2 Uses	16
12	.3 Syntax	16
	12.3.1 Exported Access Program	16
12	.4 Semantics	16
	12.4.1 State Variables	16
	12.4.2 Environment Variables	16
	12.4.3 Assumptions	16
	12.4.4 Access Routine Semantics	17
13 A	ppendix	17

1 Introduction

The following document details the Module Interface Specifications for the implemented modules in a program simulation Solar Water Heating System with Phase Change Material. It is intended to ease navigation through the program for design and maintenance purposes. Complementary documents include the System Requirement Specifications and Module Guide.

2 Notation

The following table summarizes the primitive data types used by SWHS. SWHSalso uses some derived data types: arrays ,strings, and structures. Arrays are lists filled with elements of the same data type. Strings are arrays of characters. Structures contain pairs of keys and values, where keys are unique variable names used to identify their corresponding value, and values can be any data type.

Data Type	Notation	Description
character	char	a single symbol or digit
real	\mathbb{R}	any number in $(-\infty, \infty)$

3 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Format Module Input Parameters Module Input Verification Module Output Format Module Output Verification Module Temperature ODEs Module Energy Equations Module Control Module
Software Decision Module	Sequence Data Structure Module ODE Solver Module Plotting Module

Table 1: Module Hierarchy

4 MIS of Control Module

4.1 Module

main

4.2 Uses

parameters (5), load_params (6), verify_params (7), temperature (8), energy (9), verify_output (10), plot (11), output (12)

4.3 Syntax

4.3.1 Exported Access Programs

Name	In	Out	Exceptions
main	string	-	-

4.4 Semantics

4.4.1 State Variables

filename: string
time: array of reals
tempW: array of reals
tempP: array of reals
eW: array of reals
eP: array of reals
eTot: array of reals

4.4.2 Environment Variables

win: 2D array of pixels displayed on the screen

4.4.3 Access Routine Semantics

main(s): transition: Fills the time, tempW, tempP, eW, eP, and eTot lists with the

simulation results. Modifies the screen environment.

exception: none

5 MIS of Input Parameters Module

5.1 Module

parameters

5.2 Uses

N/A

5.3 Syntax

5.3.1 Exported Data Types

parameters := structure

5.3.2 Exported Access Programs

N/A

5.4 Semantics

5.4.1 State Variables

L: real diam: real Vp: real Ap: real rho_p : real Tmelt: real C_ps : real C_pl : real Hf: real Ac: real Tc: real

hp: real Tinit: real tstep: real tfinal: real AbsTol: real RelTol: real ConsTol: real

Vt: real Mw: real tau_-w : real eta: real Mp: real tau_-ps : real tau_-pl : real

 $Epmelt_init$: real Ep_melt3 : real

 Mw_noPCM : real $tau_w_no_PCM$: real

5.4.2 Access Routine Semantics

N/A

6 MIS of Input Format Module

6.1 Module

load_params

6.2 Uses

parameters (5)

6.3 Syntax

6.4 Exported Access Programs

Name	In	Out	Exceptions
load_params	string	parameters	-

6.5 Semantics

6.5.1 State Variables

filename: string params: parameters

6.5.2 Assumptions

The input string corresponds to an existing filename in the current directory. The input file is formatted correctly.

6.5.3 Access Routine Semantics

load_params(s): transition: Fills the parameters structure with the input parameters specified

in the input file, and with other parameters calculated from the

input parameters.

exception: none

7 MIS of Input Verification Module

7.1 Module

 $verify_params$

7.2 Uses

parameters (5)

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions	
verify_valid	parameters	-	badLength, badDiam, bad-	
			PCMVolume, badPCMAnd-	
			TankVol, badPCMArea, bad-	
			PCMDensity, badMeltTemp,	
			badCoilAndInitTemp, badCoil-	
			Temp, badPCMHeatCapSolid,	
			badPCMHeatCapLiquid, bad-	
			HeatFusion, badCoilArea, bad-	
			WaterDensity, badWaterHeat-	
			Cap, badCoilCoeff, badPCMCo-	
			eff, badInitTemp, badFinalTime,	
			${\bf badInitAndMeltTemp}$	
verify_recommended	parameters	-	-	

7.4 Semantics

7.4.1 Environment Variables

win: 2D array of pixels displayed on the screen.

7.4.2 Assumptions

The load_params function has been called on params, so the variables have all been assigned a value.

7.4.3 Access Routine Semantics

verify_valid(params): transition: Modifies win by displaying an error message

when appropriate.

exceptions: Exceptions occur if any of the input parame-

ters lie outside of boundaries determined by physical law. Error messages corresponding to each exception are shown in the Appendix

(13).

verify_recommended(params): transition: Modifies win by displaying warning mes-

sages.

exception: none

8 MIS of Temperature ODEs Module

8.1 Module

temperature

8.2 Uses

parameters (5)

8.3 Syntax

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
temperature1	array of reals, array of reals, array of	real, real	_
	reals, parameters		
temperature2	array of reals, array of reals, array of	real, real,	_
	reals, parameters	real	
temperature3	array of reals, array of reals, array of	real, real	_
	reals, parameters		
event1	array of reals, array of reals, array of	real	_
	reals, parameters		
event2	array of reals, array of reals, array of	real	_
	reals, parameters		

8.4 Semantics

8.4.1 State Variables

time: array of reals tempW: array of reals tempP: array of reals latHeat: array of reals params: parameters

8.4.2 Assumptions

The load_params function has been called on *params*, so the variables have all been assigned a value. The verify_valid function has been called on *params*, so no exceptions occur due to physically impossible values.

8.4.3 Access Routine Semantics

temperature 1(t, Tw, Tp, params): output: Returns values for water and PCM tempera-

ture for the case where PCM has not started

melting.

exception: none

temperature 2(t, Tw, Tp, params): output: Returns values for water and PCM tempera-

ture and latent heat for the case where PCM

is in the process of melting.

exception: none

temperature 3(t, Tw, Tp, params): output: Returns values for water and PCM temper-

ature for the case where PCM has finished

melting.

exception: none

event 1(t, Tw, Tp, params): output: Returns a value that signals the ODE solver

to either continue generating the solution for the next time point, or stop solving the ODE

system at the current time point.

exception: none

event2(t, Tw, Tp, params): output: Returns a value that signals the ODE solver

to either continue generating the solution for the next time point, or stop solving the ODE

system at the current time point.

exception: none

9 MIS of Energy Module

9.1 Module

energy

9.2 Uses

parameters (5)

9.3 Syntax

9.3.1 External Access Programs

Name	In	Out	Exceptions
energy1Wat	array of reals, parameters	array of reals	-
energy1PCM	array of reals, parameters	array of reals	-
energy2Wat	array of reals, parameters	array of reals	_
energy2PCM	array of reals, parameters	array of reals	_
energy3Wat	array of reals, parameters	array of reals	-
energy3PCM	array of reals, parameters	array of reals	-

9.4 Semantics

9.4.1 State Variables

tempW: array of reals tempP: array of reals latHeat: array of reals eW: array of reals eP: array of reals params: parameters

9.4.2 Assumptions

The load_params function has been called on *params*, so all variables have been assigned a value. The verify_params function has been called on *params*, so there are no exceptions due to physically impossible values.

9.4.3 Access Routine Semantics

energy 1 Wat(Tw, params): output: energy 1 Wat outputs an array of reals representing the

energy profile of the water while the PCM has not

started melting.

exception: none

energy 1PCM(Tp, params): output: energy 1PCM outputs an array of reals representing the

energy profile of the PCM while the PCM has not

started melting.

exception: none

energy2Wat(Tw, params): output: energy2Wat outputs an array of reals representing the

energy profile of the water while the PCM is melting.

exception: none

energy2PCM(Qp, params): output: energy2PCM outputs an array of reals representing the

energy profile of the PCM while the PCM is melting.

exception: none

energy3Wat(Tw, params): output: energy3Wat outputs an array of reals representing the

energy profile of the water after the PCM has finished

melting.

exception: none

energy 3PCM(Tp, params): output: energy 3PCM outputs an array of reals representing the

energy profile of the PCM after the PCM has finished

melting.

exception: none

10 MIS of Output Verification Module

10.1 Module

 $verify_output$

10.2 Uses

parameters (5)

10.3 Syntax

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
verify_output	array of reals, array of reals, array of		-
	reals, array of reals, array of reals, pa-		
	rameters		

10.4 Semantics

10.4.1 State Variables

time: array of reals tempW: array of reals tempP: array of reals eW: array of reals eP: array of reals params: parameters

10.4.2 Environment Variables

win: 2D array of pixels displayed on the screen

10.4.3 Local Variables

errorWater: real errorPCM: real

10.4.4 Assumptions

The load_params function has been called on *params*, so every variable in the structure has a value. The verify_valid function has been called on *params*, so there are no exceptions due to physically impossible values. The temperature and energy arrays have been filled by the ODE solver and energy functions, so there is no divide by zero exception.

10.4.5 Access Routine Semantics

verify_output(t, Tw, Tp, Ew, Ep, params): transition: Modifies win with a warning

if errorWater or errorPCM is

greater than ConsTol.

exception: none

11 MIS of Plotting Module

11.1 Module

plot

11.2 Uses

N/A

11.3 Syntax

11.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	array of reals, array of reals, array of reals, array of reals, parameters, string	-	-

11.4 Semantics

11.4.1 State Variables

time: array of reals tempW: array of reals tempP: array of reals eW: array of reals eP: array of reals params: parameters filename: string

11.4.2 Environment Variables

directory: The current directory of files from which the program is run.

11.4.3 Access Routine Semantics

plot(t, Tw, Tp, Ew, Ep, params, filename): transition: Modifies directory by writing to

it a .png file containing the graphs

of the simulation results.

exception: none

12 MIS of Output Module

12.1 Module

output

12.2 Uses

parameters (5)

12.3 Syntax

12.3.1 Exported Access Program

Name	In	Out	Exceptions
output	string, array of reals, array of reals, ar-	-	-
	ray of reals, array of reals, array of re-		
	als, array of reals, parameters		

12.4 Semantics

12.4.1 State Variables

params: parameters time: array of reals tempW: array of reals tempP: array of reals eW: array of reals eP: array of reals eTot: array of reals filename: string

12.4.2 Environment Variables

directory: The current directory of files from which the program is run.

12.4.3 Assumptions

The load_params function was called on params, so all the variables have been assigned a value. The ODE solver and energy functions have filled time, tempW, tempP, eW, and eP with results.

12.4.4 Access Routine Semantics

output(params, t, Tw, Tp, Ew, Ep, filename): transition: Modifies directory by writing to

it a .txt file containing the input parameters, calculated parameters, and results of the sim-

ulation.

exception: none

13 Appendix

Message ID	Error Message
badLength	Error: Tank length must be > 0
badDiam	Error: Tank diameter must be > 0
badPCMVolume	Error: PCM volume must be > 0
${\it badPCMAndTankVol}$	Error: PCM volume must be < tank volume
badPCMArea	Error: PCM area must be > 0
badPCMDensity	Error: rho_p must be > 0
badMeltTemp	Error: Tmelt must be > 0 and $< Tc$
${\bf bad Coil And Init Temp}$	Error: Tc must be > Tinit
badCoilTemp	Error: Tc must be > 0 and < 100
${\bf badPCMHeatCapSolid}$	Error: C_ps must be > 0
${\it badPCMHeatCapLiquid}$	Error: C_pl must be > 0
badHeatFusion	Error: Hf must be > 0
badCoilArea	Error: Ac must be > 0
badWaterDensity	Error: rho_w must be > 0
${\bf badWaterHeatCap}$	Error: C_w must be > 0
badCoilCoeff	Error: hc must be > 0
badPCMCoeff	Error: hp must be > 0
badInitTemp	Error: Tinit must be > 0 and < 100
badFinalTime	Error: tfinal must be > 0
badInitAndMeltTemp	Error: Tinit must be < Tmelt