RABIES - Confound Correction: Guía de parámetros

Tabla de parámetros, opciones, propósito y guía de uso

Parámetro	Opciones / default	¿Para qué sirve?	Cómo / cuándo usarlo	Recomendación rápida
nativespace_analysis	True / False (default False)	Ejecuta la corrección en el espacio nativo (EPI). Evita interpolaciones de atlas durante esta etapa.	Útil si tu análisis posterior (p. ej., ROI nativos, MVPA) ocurrirá en nativo o si deseas preservar resolución original.	Déjalo en False si tu pipeline y QC están pensados en commonspace.
image_scaling	{None, global_variance, voxelwise_standardization, grand_mean_scaling (defecto), voxelwise_mean}	Escala la intensidad/varianza para hacer comparables las series entre sujetos/sesiones; también escala la varianza explicada para QC.	Usa grand_mean_scaling para %BOLD global; voxelwise_standardization o voxelwise_mean si necesitas comparaciones voxel-a-voxel.	Empieza con grand_mean_scaling; cambia a voxelwise_* para MVPA/RSA o heterogeneidad marcada.
scale_variance_voxelwise	True / False (defecto False)	Homogeneiza la varianza por voxel cuando no aplicaste un escalado voxelwise; preserva la varianza total 4D.	Aplicar cuando hay distribución de varianza espacial muy desigual (p. ej., sitios distintos) y no usaste voxelwise_* antes.	Compatible con grand_mean_scaling; no produce z-score por voxel.
detrending_order	{linear (defecto), quadratic}	Elimina derivas lentas (lineales o cuadráticas) antes de otros pasos.	Linear para sesiones típicas; quadratic si ves curvaturas de baja frecuencia (sesiones largas, anestesia estable).	Revisa el espectro tras detrend; si persiste curvatura, usa quadratic.
conf_list	[WM_signal, CSF_signal, vascular_signal, global_signal, aCompCor_percent, aCompCor_5, mot_6, mot_24] (lista)	Selecciona los regresores de nuisance para regresión OLS voxel-a-voxel.	Comienza con WM+CSF+mot_6; sube a mot_24 con movimiento moderado/alto. Global/vascular según hipótesis y QC. aCompCor_* si el ruido es heterogéneo.	Si combinas muchos regresores, planifica evaluar sobreajuste con generate_CR_null.
frame_censoring	Dict: FD_censoring={true false}, FD_threshold= <mm>, DVARS_censoring={true false}, minimum_timepoint=<int></int></mm>	Scrubbing por FD y/o DVARS; enmascara picos de movimiento/artefactos antes de otros pasos.	Aplica siempre que haya picos en FD/DVARS. Con FD se enmascaran el frame, 1 atrás y 2 adelante. Ajusta minimum_timepoint si igualas tDOF.	Con datasets sensibles a movimiento, activa FD y DVARS; documenta la máscara ('frame_censoring_mask/').

TR	El TR fija la frecuencia de muestreo. Si no se especifica, se toma el valor del heading. De otra forma, se debe especificar en segundos.	Fija el TR para filtrado y simulación de puntos censurados.	Usa auto si el NIfTI es correcto; de lo contrario, especifica el TR manualmente.	Verifica que TR en cabecera sea el real; errores afectan los cortes de frecuencia.
highpass /lowpass	Frecuencias en Hz (defecto None)	Filtrado temporal (Butterworth 3er orden) tras simular puntos censurados; evita reintroducir confounds.	Clásico en roedor: 0.01–0.1 Hz; si usas highpass≈0.01, recorta bordes con edge_cutoff.	Asegura reaplicar la máscara tras el filtrado (RABIES lo hace automáticamente).
edge_cutoff	Segundos (defecto 0)	Recorta extremos para mitigar artefactos de borde por filtrado (sobre todo con high-pass).	Usa ~30 s al inicio y final con highpass≈0.01 Hz; ajusta a la duración del run.	Si tu run es corto (<6 min), recorte más pequeño para no perder tDOF.
smoothing_filter	Kernel gaussiano (mm), defecto None	Suavizado espacial (nilearn) para mejorar SNR y pequeñas desalineaciones.	0.3–0.8 mm según resolución y pregunta; None si análisis laminar o alta resolución.	Evita sobre-suavizar si harás MVPA o análisis por láminas.
match_number_timepoints	True / False (defecto False)	Iguala el número final de volúmenes entre escaneos tras censura para controlar tDOF.	Activa cuando la censura deja duraciones desiguales entre sujetos y necesitas comparabilidad estricta.	Define un mínimo razonable en `minimum_timepoint` (ligado aframe_censoring).
ica_aroma	Dict típico: apply={true false}, dim=0 (auto), random_seed= <int></int>	Elimina componentes relacionados con movimiento (ICA-AROMA) adaptado a roedor; se aplica antes del filtrado.	Útil con micro-movimientos residuales o cuando solo regresores no bastan.	Si la clasificación elimina señal neuronal, ajusta dim o revisa máscaras/thresholds.
read_datasink	True / False (defecto False)	Lee outputs del preprocesamiento desde carpetas *_datasink/ sin requerir el grafo original.	Útil al migrar proyectos o reanudar desde outputs existentes.	Comprueba rutas coherentes; evita mezclar sesiones/sujetos.
timeseries_interval	"inicio,fin" o all (defecto)	Recorta la serie temporal antes de la corrección (p. ej., descartar dummies, estabilización).	Ej.: 40,all para quitar los 40 primeros volúmenes; útil para igualar ventanas entre sujetos.	Si detectaste "detect_dummy" en preprocessing, alinea ambos criterios.
generate_CR_null	True / False (defecto False)	Genera regresores aleatorios (fase-aleatorizados) para estimar sobreajuste en regresión de confounds.	Actívalo cuando combines muchos regresores o estrategias agresivas.	Revisa `plot_CR_overfit/` y los mapas de varianza explicada corregida.

Argumentos posicionales

Argumento	Descripción	Notas
preprocess_out	Ruta al directorio de salida del preprocesamiento de RABIES (entrada para confound correction).	Debe contener la estructura que espera RABIES para localizar series EPI preprocesadas.
output_dir	Ruta donde se guardarán los resultados de confound correction.	Se crearán subcarpetas tipo confound_correction_datasink/ con outputs específicos.

Outputs clave de confound correction

Carpeta	Contenido	Uso
cleaned_timeseries/	Series temporales (NIfTI) después de aplicar corrección de confounds.	Entrada para análisis de conectividad/estadísticos.
frame_censoring_mask/	CSV con máscara temporal (frames censurados).	Auditar y reproducir decisiones de scrubbing.
aroma_out/	Salidas de ICA-AROMA (MELODIC + clasificación de componentes).	Verificar qué componentes se clasificaron como movimiento.
plot_CR_overfit/	Figuras con varianza explicada por regresores reales vs aleatorios.	Evaluar sobreajuste de la regresión de confounds.

Fuente principal de parámetros y outputs: **RABIES – Confound Correction •** https://rabies.readthedocs.io/en/latest/confound_correction.html

Outputs de confound correction: https://rabies.readthedocs.io/en/latest/outputs.html#confound-correction-outputs

RABIES - confound_correction: Ejemplos prácticos de uso

Ejemplos de uso con notas de cuándo usar cada configuración

Plantilla general (PowerShell, Docker)

```
docker run --rm -it --memory="<MEM_GB>" --memory-swap="<MEM_SWAP_GB>"`
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
-v "<HOST_CONFOUND_DIR>:/data/conf_out"`
ghcr.io/cobralab/rabies:latest`
-p MultiProc --local_threads <N_THREADS>`
confound_correction /data/prepro_out /data/conf_out`
<OPCIONES_DE_CONFOUND_CORRECTION>
```

Ejemplos prácticos

1) Mínimo por defecto

Registros con poco movimiento; primer pase rápido.

```
docker run --rm -it --memory="48g" --memory-swap="60g"`
  -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
  -v "<HOST_CONFOUND_DIR>:/data/conf_out"`
  ghcr.io/cobralab/rabies:latest`
  -p MultiProc --local_threads 6`
  confound_correction /data/prepro_out /data/conf_out
```

2) Scrubbing FD+DVARS + mot_24 + tDOF parejos

Datasets con picos; iguala tDOF con --match_number_timepoints.

```
docker run --rm -it --memory="56g" --memory-swap="64g" \
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" \
-v "<HOST_CONFOUND_DIR>:/data/conf_out" \
ghcr.io/cobralab/rabies:latest \
-p MultiProc --local_threads 8 \
confound_correction /data/prepro_out /data/conf_out \
--conf_list WM_signal CSF_signal mot_24 \
--frame_censoring "FD_censoring=true,FD_threshold=0.05,DVARS_censoring=true,minimum_timepoint=350" \
--match_number_timepoints
```

3) Filtrado 0.01-0.10 Hz + edge_cutoff

Filtrado clásico FC roedor (tras simulación de censurados).

```
docker run --rm -it --memory="48g" --memory-swap="60g" `
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" `
-v "<HOST_CONFOUND_DIR>:/data/conf_out" `
ghcr.io/cobralab/rabies:latest `
-p MultiProc --local_threads 6 `
confound_correction /data/prepro_out /data/conf_out `
--highpass 0.01 --lowpass 0.10 --edge_cutoff 30
```

4) ICA-AROMA + low-pass 0.15 + global_variance + suavizado

Micro-movimientos residuales y/o multi-sitio.

```
docker run --rm -it --memory="64g" --memory-swap="72g"`
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
-v "<HOST_CONFOUND_DIR>:/data/conf_out"`
ghcr.io/cobralab/rabies:latest`
-p MultiProc --local_threads 10`
confound_correction /data/prepro_out /data/conf_out`
--ica_aroma "apply=true,dim=0,random_seed=1"`
--image_scaling global_variance`
--lowpass 0.15 --edge_cutoff 20`
--smoothing_filter 0.6
```

5) Nativo + voxelwise_standardization + 0.01-0.20 Hz

MVPA/RSA en espacio EPI nativo.

```
docker run --rm -it --memory="56g" --memory-swap="64g"`
  -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
  -v "<HOST_CONFOUND_DIR>:/data/conf_out"`
  ghcr.io/cobralab/rabies:latest`
  -p MultiProc --local_threads 8`
  confound_correction /data/prepro_out /data/conf_out`
```

```
--nativespace_analysis`--image_scaling voxelwise_standardization`--highpass 0.01 --lowpass 0.20 --edge_cutoff 30
```

6) Sobreajuste (generate_CR_null)

Muchos regresores: evaluar varianza explicada vs. aleatorios.

```
docker run --rm -it --memory="56g" --memory-swap="64g"`
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
-v "<HOST_CONFOUND_DIR>:/data/conf_out"`
ghcr.io/cobralab/rabies:latest`
-p MultiProc --local_threads 8`
confound_correction /data/prepro_out /data/conf_out`
--conf_list WM_signal CSF_signal global_signal mot_6 aCompCor_percent`
--generate_CR_null`
--highpass 0.01 --lowpass 0.10 --edge_cutoff 30
```

7) Variancia voxelwise + grand_mean_scaling

Iguala varianza por voxel sin forzar unidad; mantiene varianza 4D.

```
docker run --rm -it --memory="48g" --memory-swap="60g"`
  -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
  -v "<HOST_CONFOUND_DIR>:/data/conf_out"`
  ghcr.io/cobralab/rabies:latest`
```

```
-p MultiProc --local_threads 6 `confound_correction /data/prepro_out /data/conf_out `--scale_variance_voxelwise `--image_scaling grand_mean_scaling
```

8) Recorte inicial + detrend cuadrático + TR manual + voxelwise_mean

Runs con derivas curvas y TR incorrecto en NIfTI.

```
docker run --rm -it --memory="48g" --memory-swap="60g"`
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
-v "<HOST_CONFOUND_DIR>:/data/conf_out"`
ghcr.io/cobralab/rabies:latest`
-p MultiProc --local_threads 6`
confound_correction /data/prepro_out /data/conf_out`
--timeseries_interval 40,all`
--detrending_order quadratic`
--TR 0.8`
--image_scaling voxelwise_mean
```

9) Reanudar desde datasinks existentes

${\it Usar -- read_datasink y banda ampliada.}$

```
docker run --rm -it --memory="48g" --memory-swap="60g"`
-v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
```

```
    -v "<HOST_CONFOUND_DIR>:/data/conf_out" `
ghcr.io/cobralab/rabies:latest `
-p MultiProc --local_threads 6 `
confound_correction /data/prepro_out /data/conf_out `
--read_datasink `
--highpass 0.01 --lowpass 0.20 --edge_cutoff 30
```

10) Ejemplo completo donde se corren varios parámetros

Incluye read_datasink, detrend quadratic, confounds combinados, scrubbing, ICA-AROMA, banda 0.01-0.20 Hz, suavizado y nulls.

```
docker run --rm -it --memory="50g" --memory-swap="64g" `
 -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro"`
 -v "<HOST_CONFOUND_DIR>:/data/conf_out" `
 ghcr.io/cobralab/rabies:latest`
 -p MultiProc --local_threads 6 `
 confound_correction /data/prepro_out /data/conf_out`
 --read_datasink`
 --detrending_order quadratic `
 --conf list mot_6 WM_signal CSF_signal aCompCor_5 `
 --frame censoring "FD censoring=true,FD threshold=0.05,DVARS censoring=true,minimum timepoint=150"`
 --ica_aroma "apply=true,dim=0,random_seed=1"`
 --highpass 0.01 --lowpass 0.20 --edge_cutoff 20 `
 --smoothing_filter 0.6`
```

- --image_scaling grand_mean_scaling`
- --generate_CR_null

Fuentes principales (RABIES):

- Confound Correction: https://rabies.readthedocs.io/en/latest/confound-correction.html
- Outputs (confound correction): https://rabies.readthedocs.io/en/latest/outputs.html#confound-correction-outputs
- Running the software (CLI): https://rabies.readthedocs.io/en/latest/running the software.html