Feature-based Bayesian Forecast Model Averaging

Feng Li

feng.li@cufe.edu.cn
http://feng.li/

School of Statistics and Mathematics Central University of Finance and Economics

Authors

Li Li
(Beihang University)

Yanfei Kang (Beihang University)

• Feng Li and Yanfei's research are supported by the National Natural Science Foundation of China.

Forecast combination is **GREAT**!

but ...

- Forecast combinations with pure machine learning approach usually lack of interpretability.
- Thus making them difficult to connect with decision making.
- Sometimes, those proposed methods are not robust against real-world data. Inputs from experts
 are typically required,
- ... and it is tricky.

The Bayesian forecast evaluation tool

• The **joint predictive probability** for *h*-ahead forecast is

$$p_k(y_{(T+1):(T+h)}|y_{1:T}^o, M) = \int \prod_{i \in (T+1):(T+h)} p(y_i|\beta) p(\beta|y_{1:T}^o) d(\beta).$$

which is calculated by averaging the predictive likelihood $\prod_{i \in (T+1):(T+h)} p(y_i|\beta)$ over the posterior $p(\beta|y_{1:T}^o)$.

ullet The one-step-ahead ullet **log predictive score** (LPS) function (Geweke, 2001) of a single prediction model M

$$LS(y_{T+1}|y_{1:T}^{o}, M) = \sum_{t=1}^{T} \log p(y_{t+1}|y_{1:t}^{o}, M).$$

is *the unquestionable model evaluation tool for decision makers* (Geweke, 2001; Geweke and Amisano, 2010).

- The LPS has three main advantages:
 - LPS is based on out-of-sample probability forecasting.
 - LPS is easy to compute based on Monte Carlo simulations;
 - LPS is not sensitive to the choice of the priors compared with the marginal likelihood based criterions (Kass, 1993; Richardson and Green, 1997).

Forecasting combination: A Bayesian setup

- We extend LPS to evaluate **a pool of models** $A = \{A_1, A_2, \dots, A_m\}$ for a collection of target series $Y_S^o = \{y_1^o, y_2^o, \dots, y_s^o\}$ (o for "observed").
- The predictive densities of one single series y_{T+1} are written as

$$p(y_{T+1}|Y_T^o, A) = \sum_{i=1}^m w_i p(y_{T+1}|y_{1:T}^o, A_i),$$

• The log scoring (LS) rule could evaluate combinations of probability densities (Geweke and Amisano, 2011):

$$LS(Y_S^o) = \sum_{s=1}^{S} \log \left[\sum_{i=1}^{m} w_i p\left(y_{T+1}^o | y_{1:T}^o, A_i\right) \right]. \tag{1}$$

- Note that in Geweke and Amisano (2011),
 - LS are constant over time, only related to prediction models.
 - The number of series is limited.
 - An optimization algorithm is used to estimated the optimal weights.

FEBAMA: Feature-based Bayesian Forecast Model Averaging

- We **learn** the relationship between LS and weights based on historical data.
- We use time series features to construct time-varying weights in the forecasting combination by the following softmax function:

$$w_{t,i} = \frac{\exp\{X_t \beta_i\}}{1 + \sum_{i=1}^{n-1} \exp\{X_t \beta_i\}}, i = 1, 2, \dots, n-1$$
(2)

- The observed log score $LS(Y_T^o|X_{T-1},\beta)$ is essentially a log likelihood function of feature-based log-predictive scores.
- A full Bayesian framework, namely feature-based Bayesian forecast model averaging (FEBAMA), is formulated

$$\log p(\beta|X) = LS(\beta, X) + \log p(\beta) + constant$$

where X is the time series feature matrix and LS is the corresponding log likelihood function.

Why FEBAMA?

- It improves the interpretability of forecasting combination by defining a log score with time series features.
- The Bayesian framework assesses both
 - the model uncertainty, and
 - the forecast combination uncertainty.
- Expert's information for forecast combination is easy to elaborate through the prior.
- Other forecast evaluation metrics, such as MASE, is equally well applied in our framework.

Time-varying features

Application to financial data and M3 data

- We illustrate the effectiveness and superiority of our framework through two experiments based on stock market data and M3 competition data.
- The simple averaging (SA) and an improved version of optimal pool (OptPool) (Geweke and Amisano, 2011) are used as benchmark methods in the comparison.
- The original OptPool method only generates one-step predictions. We extend to multiple step predictions, which we label it as "OptPool".

Comparison between different methods

	SA	OptPool	FEBAMA	FEBAMA+VS
Whether weights are optimized	-	√	√	√
Whether weights are time-verying	-	-	✓	\checkmark
Whether including features into weights	-	-	✓	\checkmark
Whether features can be penalized/selected	-	-	-	\checkmark

The candidate models and features for stock data

The features are

11 C		
Features	Description	Values
F_1 : entropy	spectral entropy	(0, 1)
F ₂ : arch_acf	ARCH ACF statistic (sum of squares of the first 12 autocorrelations of x^2)	(0, ∞)
F_3 : garch_acf	GARCH ACF statistic (sum of squares of the first 12 autocorrelations of r^2)	(0, ∞)
F_4 : arch_r2	ARCH R^2 statistic (R^2 value of an AR model applied to x^2)	[0, 1]
F_5 : garch_r2	GARCH R^2 statistic (R^2 value of an AR model applied to r^2)	[0, 1]
F ₆ : unitroot_kpss	test statistic based on KPSS test	(0, ∞)

• We consider the following forecasting models:

Component	A ₁ : GARCH	A ₂ : EGARCH	A ₃ : SV
	-1.3395	-1.2850	-1.2911
Combinations	SA	OptPool	FEBAMA
C12	-1.3122	-1.2850	-1.2818
C13	-1.3153	-1.2911	-1.2868
C23	-1.2881	-1.2821	-1.2770
C123	-1.3052	-1.2812	-1.2740
Total	-1.3052	-1.2849	-1.2799

The candidate models and features for the M3 data

• We consider the following forecasting models:

Models	Description	Setting
A_1 : ets	automated exponential smoothing algorithm (Hyndman et al., 2002)	model = "AAN"
A_2 : naive A_3 : rw_drift	naïve random walk with drift	drift = TRUE
A_4 : auto.arima	automated ARIMA algorithm (Hyndman and Khandakar, 2008)	

The features are

Features	Description	Values
F ₁ : x_acf1	first ACF value of the original series	(-1, 1)
F_2 : diff1_acf1	first ACF value of the differenced series	(-1, 1)
F_3 : entropy	spectral entropy	(0, 1)
F_4 : alpha	the smoothing parameter for the level in $ETS(A,A,N)$	[0,1]
F ₅ : beta	the smoothing parameter for the trend in $ETS(A,A,N)$	[0,1]
F ₆ : unitroot_kpss	test statistic based on KPSS test	$(0,\infty)$

Forecast performance based on M3 Monthly data

	LS (density forecasts)			MASE (point forecasts)				
Component	A_1	A_2	A ₃	A_4	A_1	A_2	A_3	A_4
	-4.368	-4.435	-3.698	-5.126	2.514	2.599	2.233	2.192
Combinations	SA	$OptPool^{'}$	FEBAMA	FEBAMA+VS	SA	$OptPool^{'}$	FEBAMA	FEBAMA+VS
C12	-4.349	-4.372	-4.359	-4.352	2.520	2.513	2.521	2.514
C13	-3.397	-3.283	-3.258	-3.155	2.238	2.207	2.223	2.193
C14	-3.524	-3.565	-3.353	-3.320	2.228	2.218	2.189	2.179
C23	-3.480	-3.280	-3.286	-3.189	2.322	2.257	2.286	2.253
C24	-3.510	-3.527	-3.333	-3.328	2.234	2.208	2.195	2.187
C34	-3.406	-3.842	-3.756	-3.611	2.074	2.135	2.139	2.112
C123	-3.669	-3.273	-3.287	-3.202	2.325	2.208	2.238	2.212
C124	-3.754	-3.517	-3.399	-3.288	2.307	2.217	2.208	2.173
C134	-3.158	-3.423	-3.293	-3.162	2.135	2.172	2.162	2.124
C234	-3.178	-3.401	-3.265	-3.146	2.147	2.158	2.151	2.119
C1234	-3.399	-3.480	-3.258	-3.157	2.209	2.172	2.165	2.129
Total	-3.529	-3.542	-3.441	-3.355	2.249	2.224	2.225	2.120

Future work

- FEBAMA with machine learning features in e.g. Li et al. (2020)
- FEBAMA at scale with stochastic Markov chain Monte Carlo methods

References

- Geweke, J. (2001), "Bayesian econometrics and forecasting," Journal of Econometrics, 100, 11-15.
- Geweke, J. and Amisano, G. (2010), "Comparing and evaluating Bayesian predictive distributions of asset returns," *International Journal of Forecasting*, 26, 216–230.
- (2011), "Optimal Prediction Pools," Journal of Econometrics, 164, 130–141.
- Hyndman, R. J. and Khandakar, Y. (2008), "Automatic time series forecasting: the forecast package for R," *Journal of Statistical Software*, 26, 1–22.
- Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, S. (2002), "A state space framework for automatic forecasting using exponential smoothing methods," *International Journal of Forecasting*, 18, 439–454.
- Kass, R. (1993), "Bayes factors in practice," Journal of the Royal Statistical Society. Series D (The Statistician), 42, 551–560.
- Li, X., Kang, Y., and Li, F. (2020), "Forecasting with time series imaging," *Expert Systems with Applications*, 160, 113680.
- Richardson, S. and Green, P. (1997), "On Bayesian analysis of mixtures with an unknown number of components (with discussion)," 59, 731–792.

Thank you!

My Web: https://feng.li
My Lab: https://kllab.org

