Teoría Computacional Regular Expressions

Javier Said Naranjo Miranda Grupo: 2CM4

17 de octubre de 2016

La expresión regular a trabajar sera la siguiente L(A) = (0+1)*01, a continuación se mostrara el diagrama del autómata no deterministico de la expresión regular.

Figura 1: Diagrama del autómata no determinista

A continuación se mostraran las clausuras $_{\epsilon}$ para hacer la equivalencia entre autómata no determinista y autómata determinista.

 $Clausura_{\epsilon}(q0) = \{q0, q1, q2, q3, q7, q8\}$ $Clausura_{\epsilon}(q4) = \{q4, q6, q7, q8, q1, q2, q3\}$ $Clausura_{\epsilon}(q5) = \{q5, q6, q7, q8, q1, q2, q3\}$ $Clausura_{\epsilon}(q9) = \{q9, q10\}$

Ahora se mostrara la tabla para la construcción de dicha equivalencia entre autómatas.

	0	1
ϕ	ϕ	ϕ
$\rightarrow \{q0, q1, q2, q3, q7, q8\}$	${q4, q6, q7, q8, q1, q2, q3, q9, q10}$	$\{q5, q6, q7, q8, q1, q2, q3\}$
${q4, q6, q7, q8, q1, q2, q3, q9, q10}$	${q4, q6, q7, q8, q1, q2, q3, q9, q10}$	$\{q5, q6, q7, q8, q1, q2, q3, q11\}$
$\{q5, q6, q7, q8, q1, q2, q3\}$	$\{q4, q6, q7, q8, q1, q2, q3, q9, q10\}$	$\{q5, q6, q7, q8, q1, q2, q3\}$
$*{q5, q6, q7, q8, q1, q2, q3, q11}$	${q4, q6, q7, q8, q1, q2, q3, q9, q10}$	$\{q5, q6, q7, q8, q1, q2, q3\}$

Para hacer la equivalencia entre el autómata finito determinista y el no determinista, es necesario hacer la construcción de los subconjuntos del conjunto de estados. A continuación se muestra el etiquetado de cada uno de los subconjuntos.

Subconjunto	Etiqueta
ϕ	A
$\{q0, q1, q2, q3, q7, q8\}$	В
${q4, q6, q7, q8, q1, q2, q3, q9, q10}$	C
$\{q5, q6, q7, q8, q1, q2, q3\}$	D
$\{q5, q6, q7, q8, q1, q2, q3, q11\}$	E

A continuación se muestra la tabla de transiciones del autómata no determinista con el reetiquetado correspondiente. De esta manera obtenemos la equivalencia entre el AFN y el AFD.

	0	1
A	A	A
$\rightarrow B$	C	D
C	C	E
D	C	D
*E	C	D

Se muestra una imagen del diagrama del autómata determinista para la expresión regular.

Figura 2: Diagrama del autómata determinista