

Licence de Mathématiques et Informatique 2019-2020

Analyse 3

TD5

Exercice 1. Soient a < b et f une fonction continue de]a,b[dans \mathbb{R} . On suppose qu'il existe $x_0 \in]a,b[$ tel que $f(x_0) > 0$. Montrer qu'il existe alors un intervalle $I \subset]a,b[$ tel que :

$$\forall x \in I, \quad f(x) > 0.$$

Exercice 2. Soit f une fonction continue sur un intervalle [a, b] à valeurs dans \mathbb{R} . On suppose que $\forall x \in [a, b], f(x) \geq 0$.

- **1.** Montrer que $\int_a^b f(x) dx \ge 0$.
- **2.** On suppose qu'il existe $x_0 \in [a, b]$ pour lequel $f(x_0) > 0$. Montrer alors que $\int_a^b f(x) dx > 0$.
- **3.** Montrer que si $\int_a^b f(x) dx = 0$ alors f(x) = 0 pour tout $x \in [a, b]$. Cette propriété est-elle encore vraie si f n'est plus continue? Si f n'est plus positive?

Exercice 3. Soient f et g deux fonctions continues sur \mathbb{R} telles que f(x) = g(x) pour tout x rationnel. Montrer que f(x) = g(x) pour tout x réel.

Exercice 4. Soit f continue de [0,1] dans [0,1]. Montrer que f admet au moins un point fixe c'est à dire qu'il existe $\alpha \in [0,1]$ tel que $f(\alpha) = \alpha$.

Exercice 5. Soient f et g deux applications de [0,1] dans \mathbb{R} , continues et qui vérifient :

$$(f(0) - g(0))(f(1) - g(1)) \le 0$$

Montrer qu'il existe $x_0 \in [0, 1]$ tel que $f(x_0) = g(x_0)$.

Exercice 6. Montrer que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes.

Exercice 7. Soient $f, g : [a, b] \to \mathbb{R}$ continues telles que

$$\forall x \in [a, b], f(x) < g(x)$$

Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in [a, b], f(x) \leq g(x) - \alpha$$

Exercice 8. Simplifier autant que possible les expressions suivantes :

- 1. $\sin(\arcsin(x))$ pour $x \in [-1, 1]$.
- **2.** $\arcsin(\sin(x))$ pour $x \in \mathbb{R}$.
- **3.** $\sin(\arccos(x))$ pour $x \in [-1, 1]$.
- **4.** $\sin(\arctan(x))$ pour $x \in \mathbb{R}$.

Exercice 9. Les équations suivantes ont elles des solutions? Si oui, les calculer.

- **1.** $\arcsin(x) = \frac{2\pi}{3}$
- **2.** $\arcsin(x) + \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{4}$
- 3. $\arccos(x) + \arctan\left(\frac{1}{2}\right) = \pi$

Exercice 10. Démontrer que :

- **1.** Pour tout $x \in [-1, 1]$, $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.
- **2.** Si x > 0, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
- **3.** Si x < 0, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$.

Exercice 11. Montrer que la fonction $t \mapsto \sin(t^2)$ n'est pas uniformément continue sur \mathbb{R} .

Exercice 12. Soit f la fonction définie par : $f(x) = \sqrt{x-1}, x \ge 1$.

- **1.** Pourquoi f est elle uniformément continue sur [1,2]?
- **2.** Montrer que : $\forall x \ge 2 \quad |f'(x)| \le 1/2$.
- **3.** En déduire que f est lipschitzienne de rapport 1/2 sur $[2, \infty[$.
- **4.** Montrer que f est uniformément continue sur $[1, \infty[$.

Exercice 13. Soit f une fonction périodique et continue sur \mathbb{R} . Montrer que f est bornée et uniformément continue sur \mathbb{R} .

Exercice 14. Soit $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions uniformément continues sur \mathbb{R} . Montrer que $g \circ f$ est uniformément continue sur \mathbb{R} .

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue. Montrer qu'il existe $a, b \in \mathbb{R}$ tels que :

$$\forall x \in \mathbb{R}, |f(x)| \le a + b|x|.$$

Exercice 16. Soit A une partie non vide de \mathbb{R} . Pour x réel, on pose $f(x) = d(x, A) = Inf\{|y-x|, y \in A\}$. Montrer que f est lipschitzienne.