Централизатор

 $Z(\rho) = \{e: \mathcal{M} \twoheadrightarrow \mathcal{M} \mid \rho \circ e = e \circ \rho\}$ - централизатор ρ

Определение множества sub(w)

Для $w \in \Sigma^*$ определим $\mathrm{sub}(w) = \{v \in \Sigma^* \mid w \ \rho \ v\} \setminus \{w\}$

Определение (Содержание слова)

Содержание слова $w \in \Sigma^*$ - это $S(w) = \{a \in \Sigma \mid |w|_a > 0\}$

Предложение (Главная часть билета)

Предположение (о Sub):
$$|w| \ge 3$$
 $Sub(w) = Sub(v) \Rightarrow w = v$

Рис. 1: Иллюстрация к предложению

Почему важно, что $|w| \ge 3$:

• $sub(ab) = \{a, b\} = sub(ba)$, но $ab \neq ba$

Доказательство

Сначала разберём случай, когда |w| = 3

В таком случае можно разделить все слова на 3 группы по размеру содержания:

1. |S(w)| = 1

Тогда $S(w)=\{a\},\, w=a^3,\, \mathrm{sub}(a^3)=\{a^2\}$

- Если $\mathrm{sub}(v) = \{a^2\}$, то $S(v) = \{a\}$ и $|v| = 3 \Rightarrow v = a^3 = w$
- **2.** |S(w)| = 2, **T.e** $S(w) = \{a, b\}$

Пусть $|w|_a = 2$, $|w|_b = 1$, тогда:

$$w = \begin{cases} a^2b \\ aba \\ ba^2 \end{cases} \Rightarrow \operatorname{sub}(w) = \begin{cases} \{a^2, ab\} \\ \{a^2, ab, ba\} \\ \{a^2, ba\} \end{cases}$$

Если $sub(v) \in \{\{a^2, ab\}, \{a^2, ab, ba\}, \{a^2, ba\}\}$, то:

$$S(v) = \{a, b\}, |v|_a = 2, |v|_b = 1 \text{ T.e } v \in \{a^2b, aba, ba^2\}$$

- У всех слов разные подмножества $\mathrm{sub}(v)$, значит $\mathrm{sub}(v)$ однозначно определяет v
- **3.** |S(w)| = 3, **r.e** $S(w) = \{a, b, c\}$

То есть w - анаграмма abc

$$sub(abc) = \{ab, ac, bc\}$$

Без ограничения общности, пусть $\mathrm{sub}(v)=\{xy,xz,yz\},$ тогда $S(v)=\{x,y,z\}$ и |v|=3, т.е v - тоже анаграмма xyz

- $\mathbf{sub}(v)$ задаёт порядок следования:
- \bullet x стоит раньше y и z
- \bullet y стоит раньше z
- $\Rightarrow \operatorname{sub}(v)$ однозначно задаёт слово v

Случай $|w| \ge 4$, |S(w)| > 1

Слово w может начинаться с 2 одинаковых букв или нет.

1. Без ограничения общности $w=a^2w'$

$$sub(w) = \{aw'\} \cup \{a^2x \mid w' \ \rho \ x\}$$

Если $\mathrm{sub}(v) = \{aw'\} \cup \{a^2x \mid w' \ \rho \ x\}$, то $v = a^2w'$:

- \bullet aw' слово с наименьшим числом букв a в начале
- У слов вида $\{a^2x \mid w' \rho x\}$ букв a в начале больше на 1
- По словам вида $\{a^2x\mid w'\ \rho\ x\}$ можно однозначно найти aw', по которому восстанавливается v (добавляем a в начало)
- **2.** Без ограничения общности w = abw', $|\mathbf{sub}(w)| > 2$
 - Если $|\mathrm{sub}(w)| > 2$, то в $\mathrm{sub}(w)$ существует единственное слово, начинающееся на b bw'. Остальные слова начинаются на a
 - По количеству слов, начинающихся на a, определяем первую букву. По слову bw' определяем остальные буквы
 - Если $|\text{sub}(w)| = 2 \Rightarrow \text{sub}(w) = \{bw', aw'\}$, значит $w' = b^{|w|-2}$
 - Если бы была третья буква, её можно было бы вычеркнуть
 - Если бы в w' была a, то можно было бы получить новое слово
 - Если $w'=uav\;(u,v\in\Sigma^k)$, то $abuv\in\mathrm{sub}(w)$ и $abuv\ne auav$, иначе bu=ua, что невозможно при $u,v\in\{a,b\}^*$

Таким образом, sub(w) однозначно задаёт слово v:

$$\mathrm{sub}(w) = \{b^{|w|-1}, ab^{|w|-2}\}\$$