Herbst 16 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- (a) Gegeben sei ein autonomes Differentialgleichungssystem $\dot{x} = f(x)$ mit einer stetig differenzierbaren Funktion $f: \mathbb{R}^n \to \mathbb{R}^n$, die f(0) = 0 erfüllt.
 - (i) Definieren Sie den Begriff der asymptotischen Stabilität der stationären Lösung 0 des Systems.
 - (ii) Geben Sie ein hinreichendes Kriterium für die asymptotische Stabilität der stationären Lösung 0 an, welches die totale Ableitung Df(0) von f in 0 verwendet.
- (b) Prüfen Sie, ob die stationäre Lösung 0 des Systems

$$\dot{x}_1 = x_1^2 x_2 + \sin x_2$$

$$\dot{x}_2 = 2(1 - e^{x_1}) - 3x_2 + x_1 x_2^2$$

asymptotisch stabil ist.

Lösungsvorschlag:

- (a) (i) Die Nulllösung ist genau dann asymptotisch stabil, wenn sie Lyapunovstabil und attraktiv ist, d. h. wenn zu jedem $\varepsilon > 0$ und $t_0 \in \mathbb{R}$ ein $\delta > 0$ existiert, sodass für alle $x_0 \in \mathbb{R}^n$ mit $||x_0|| < \delta$ die Lösung der Differentialgleichung $\dot{x} = f(x)$ zur Anfangsbedingung $x(t_0) = x_0$ zumindest auf $[t_0, \infty)$ existiert und auf diesem Intervall die Abschätzung $||x(t)|| < \varepsilon$, sowie $\lim_{t \to \infty} x(t) = 0$ erfüllt.
 - (ii) Falls alle komplexen Eigenwerte der Jacobimatrix Df(0) negativen Realteil haben, so ist die Ruhelage 0 asymptotisch stabil.
- (b) Wir betrachten $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(y,z) = (y^2z + \sin z, 2(1-e^y) 3z + yz^2)^{\mathrm{T}}$, dann ist das zu untersuchende System von der Form $\dot{x} = f(x)$ mit einer C^1 -Funktion f, die f(0,0) = (0,0) erfüllt. Wir können also das Linearisierungskriterium benutzen. Die Jacobimatrix von f ist durch $Df(y,z) = \begin{pmatrix} 2yz & y^2 + \cos z \\ -2e^y + z^2 & -3 + 2yz \end{pmatrix}$ gegeben und es gilt $Df(0,0) = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$. Das zugehörige charakteristische Polynom ist von der Form $\lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0$, was genau die Nullstellen $\lambda = -1$ und $\lambda = -2$ besitzt. Jeder Eigenwert der Matrix hat daher negativen Realteil und die Ruhelage 0 ist asymptotisch stabil.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$