

Mapping discrete optimization problems to sparse Ising models

Aidan Roy

Joint work with
Bill Macready (lead), Zhengbing Bian, Jun Cai, Fabian Chudak,
Patrick Hagerty, Robert Israel, Andrew King, Brad Lackey

Current D-Wave hardware specs

Pairwise interactions

— Final Hamiltonian has form $H_P = \Sigma_i h_i \sigma_i^z + \Sigma_{i,j} J_{ij} \sigma_i^z \otimes \sigma_i^z$ with h, J and annealing time programmable

i.e. minimizes Ising model energy $E(s|h,J) = \Sigma_i h_i s_i + \Sigma_{i,j} J_{ij} s_i s_j$, $s_i \in \{-1,1\}$

Connectivity, number of qubits

- 512 qubits, maximum degree 6

Control Errors

- Finite dynamic range $h, J \in [-1,1]$
- Input misspecification up to 4%

Finite Temperature

- Current energy scales are about $\frac{E}{T} \sim 3-4$

Hardware limitations / Software solutions

Mapping Ising models to the hardware

Embedding

- In general D-Wave's hardware is too sparse (degree 6) to represent the interactions of a given Ising model
- One solution: let multiple qubits represent the same variable

- eg) to model an interaction between qubits q_{33} and q_5 :
- Apply strong ferromagnetic couplings to ensure that qubits q_5 , q_{13} , and q_9 all take the same value:

$$J_{5,13}=J_{13,9}=-1$$

• Now the required $q_{33}q_5$ term can be implemented on the blue edge

The minor-embedding problem

- Every variable is represented by a connected subset of qubits (a chain)
 - If variables x and y share an interaction in the Ising model, there must be an edge between their chains
 - Chains must be disjoint
- Embedding problem depends only on graph H of problem variable interactions and graph G of qubit interactions
- This is the *minor-embedding problem:*

H can be represented in G using chains if and only if H is a minor of G.

Embedding is hard in general

- Graph-minors problem is NP-complete
- Best exact algorithm for embedding H in G, k = branchwidth(G):

$$O(2^{(2k+1)\log k} |H|^{2k} 2^{|H|^2} |H|)$$

• For fixed H, determining if G has an H-minor is technically P-time, but algorithm is not known or practical.

But...

- We do not require optimal embedding
- If embedding exists, probably many exist
- Therefore probabilistic algorithms are OK (but not studied!)

Chimera specific structure can be exploited

ullet Complete graph of 4N+1 vertices in C_N

Any QUBO on N variables maps to a hardware graph of size $O(N^2)$ with chains of size O(N)

- Tile structure makes the problem easier
 - Planar-like embeddings may be easier than general embeddings

- Large automorphism group: $|Aut(C_N)| = 8(4!)^{2N}$
 - Implies many possible embeddings if an embedding exists
- Sparsity is conducive to shortest path algorithms

First greedy heuristic for minor-embedding H into G

• Represent each variable x_i of H by a connected subgraph (chain) S_i of G such that if $x_i \sim x_j$ then there is an edge between S_i and S_j

- Add x_1, \dots, x_n to an embedding in order, ensuring that a variable is adjacent to all its earlier neighbours and S_i 's are disjoint
- For each x_i , try to minimize $|S_i|$.
 - Related to minimal Steiner Tree problem, itself NP-hard.
 - However, polynomial approximations exist.

First greedy heuristic for minor-embedding *H* into *G*

To embed variable y of H with neighbours x_1, \dots, x_k represented by chains S_1, \dots, S_k :

- Find shortest path from S_i to every unused qubit in G (Dijkstra's algorithm)
- Represent y by root qubit z with smallest sum of path lengths
- Add paths to chains

A better heuristic for minor-embedding *H* into *G*

Simply greedy vertex addition fails quickly

Eg) If x_1 has degree 7 but is embedded at a qubit of degree 6

 So, allow multiple variables of H to be embedded at the same qubit of G

"bags": \mathbf{B}_{v} = {variables of \mathbf{H} embedded at \mathbf{v} in \mathbf{G} }

- After all variables added, remove and try to re-embed x_1, x_2 , ...
- Repeat until an embedding with bags of size 1 is found or you get stuck.

A better heuristic for minor-embedding *H* into *G*

To embed variable y of H with neighbours x_1, \dots, x_k represented by chains S_1, \dots, S_k :

• Find weighted shortest path from S_i to every qubit z in G:

weight(
$$P$$
) = $\sum_{v \in P} \exp(|\{x_i \neq y : v \in S_i\}|)$

- Represent y by root vertex z^* with smallest sum of path weights
- Add paths to chains

Demo

Summary

- Many ways to map to the hardware
 - Minor-embedding is the cleanest
- Global algorithms are tractable at current scale
 - Each iteration costs $O(|E(H)|^*|V(G)|\log |V(G)|)$
- Number of qubits / chain size matter
 - Embedding algorithms need to account for this

Mapping boolean constraints to Ising models

Constraint Satisfaction Problems

- NP problems have simple verification circuits
- If we encode the verification circuit as an optimization objective we can <u>reverse</u> the flow of information from outputs to inputs
 - E.g. factor by representing multiplication circuits
- To carry this out in hardware we need to represent constraints as penalty functions
 - Focus on sparse constraints

Penalty functions for local constraints

- A local constraint is a list of feasible configurations F
 - For a constriant on K variables, $F \subseteq \{0, 1\}^K$
- Represent F by a penalty Ising model E(x) defined so that

$$E(x) = \begin{cases} \mathbf{0} & \text{if } x \in F \\ \geq g & \text{if } x \notin F \end{cases}$$

where g>0 is a gap

- ullet Large g mitigates the effects of control errors and finite temperature
- May also increase the quantum gap

Ancillary variables

 Typically we will require additional ancillary variables which are minimized over:

$$E(x) = \min_{a} P(x, a)$$

- Introducing more ancilla than necessary can increase g
- Ancillary variables can also accommodate hardware connectivity:
 - Impose hardware connectivity constraints on z = [x,a]

Example: Parity check

$$x_1 + x_2 + x_3 = 0 \mod 2$$
, $x_i \in \{0, 1\}$

- Feasible states: $F = \{000, 011, 101, 110\}$
- "Obvious" representation:

$$P(x,a) = (x_1 + x_2 + x_3 - 2a)^2$$

Energy gap = 1

Better representation:

$$P(x,a) = -a_1 + a_2 - a_3 + x_1(a_1 + a_2 + a_3) + x_2(-a_1 + a_2 + a_3) + x_3(a_1 + a_2 - a_3)$$

Energy gap = 2

Finding penalties: problem formulation

- Let $\theta = c \cup \{h_v\} \cup \{J_{v,v'}\}$ (c constant offset)
- Identify θ by solving:

subject to:
$$P(x, a|\theta) \ge 0$$
 $\forall x \in F, \forall a$ $P(x, a|\theta) \ge g$ $\forall x \notin F, \forall a$ $\exists a \ P(x, a|\theta) \le 0$ $\forall x \in F$

Note: we need to determine the state of the ancillary

$$a_*(x) = \arg\min_a P(x, a) \quad \forall x \in F$$

- This is a hard problem
 - Optimizing for $a_*(x)$ for any given problem defined by heta, and then optimizing over all problems

Observations

• Energy function is linear in θ for fixed $z = [x, \alpha]$:

$$P(x, a|\theta) = c + \sum_{i} h_{i} z_{i} + \sum_{i,j} J_{ij} z_{i} z_{j}$$

• If we knew the ancillae settings $a_*(x)$ then finding θ reduces to linear program:

$$\max_{\boldsymbol{\theta},\boldsymbol{g}} \boldsymbol{g}$$

subject to:
$$P(x, a|\theta) \ge 0$$
 $\forall x \in F, \forall a$

$$P(x, a|\theta) \ge g \quad \forall x \notin F, \forall a$$

$$P(x, a_*(x)|\theta) \leq 0 \quad \forall x \in F$$

$$-1 \le \theta \le 1$$

This LP is solvable at scales of interest

Strategies for finding ancilla values

- MILP approach:
 - solve with additional variables $a_*(x) = \arg\min_a P(x, a|\theta)$: $P(x, a|\theta) \le 100 \parallel a a_*(x) \parallel^2 \quad \forall x \in F, a$
- Probabilistic approach:
 - Replace min over a with a softmin lower bound

$$\min_{a} P(x, a|\theta) \to F(x|\theta) = -\frac{1}{\beta} \ln \sum_{a} exp[-\beta P(x, a|\theta)]$$

- Tends to get stuck in local optima with no energy gap
- SMT solvers (best so far)

Satisfiability Modulo Theory (SMT) solvers

$$\beta_1 \lor \bar{\beta}_2, x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

$$\beta_1 \vee \bar{\beta}_2$$
, p_1 , p_2 , $(p_3 \vee p_4)$

SAT Solver

$$x \ge 0, y = x + 1,$$

 $(y \le 2), y < 1$

New Lemma

Unsatisfiable

$$x \ge 0, y = x + 1, y < 1$$

LP Solver

Using SMT solvers to find penalty functions

 Introduce predicate variables indicating settings of ancillary variables:

$$\boldsymbol{\beta}(x, i)$$
 = true iff $[a_*(x)]_i = 1$

- ullet Check if penalty function can be realized for g=1,2,...
- We have found SMT to be faster than CPLEX MILP, and easier to model in
 - Can incorporate symmetries and low tree-width

Summary

- Methods works well at small scales
 - constraints embeddable in up to 50 qubits often solved in less than an hour
 - SMT solver effective at searching the entire space
- Methods can encapsulate both Ising model and embedding
 - by imposing Chimera structured constraints on ancillary variables
- Better models of the same problem give different classical energy gaps
 - resulting in different hardware performance

Decomposition techniques and real-world problems

Decomposition Techniques

- Used to solve problems that are larger than the hardware
- Split the problem into regions, then communicate between regions to coordinate solutions
- Test application: LDPC decoding
- Test algorithms:
 - Belief propagation
 - Dual decomposition

LDPC Decoding

Classical channel error decoding:

Input: parity check matrix $H \in \{0, 1\}^{m \times n}$, received message $y \in \{0, 1\}^{n \times 1}$

Output: codeword x closest to y

$$\min_{x \in \{0,1\}^{n \times 1}} ||y - x||^2$$
 s.t. $Hx = 0 \pmod{2}$

- LDPC: *H* is *low density parity check*
 - Each check has at most 5 bits
 - Each bit in at most 4 checks
 - Checks generated randomly
 - Can get close to Shannon limit of channel capacity
 - Has an effecitve classical decoding scheme (BP)

LDPC as an Ising model

Write each check as a quadratic boolean function:

$$F_{C}(x_{C}) = (x_{1} + x_{2} + x_{3} - 2a_{1})^{2}$$

$$= \begin{cases} 0, & x_{1} + x_{2} + x_{3} = 0 \pmod{2} \\ > 0, & x_{1} + x_{2} + x_{3} = 1 \pmod{2} \end{cases}$$

• Each variable also has a linear term:

$$F_i(x_i) = (y_i - x_i)^2$$
, y_i received value for bit i

Overall decoding:

$$\min_{x} F(x) = \sum_{i} (x_{i} - y_{i})^{2} + M \sum_{C} F_{C}(x_{C})$$

(for some fixed M)

Region-based solutions

Regions should...

- Be as large as possible while still embeddable in hardware
 - Optimize many variables simultaneously, avoid local optima
- Have overlap of variables between regions as small as possible
 - Minimize communication between regions

Region-based Belief Propagation

- Objective function: $F(x) = \sum_{\alpha} F_{\alpha}(x_{\alpha})$ where α labels the regions which depend on a subset of the variables
- Each message is a belief of a "score" (lower score = better) for value x_i at variable i
- Messages from region to variable nodes:

$$\mu_{\alpha \to i}(x_i) = \min_{x_\alpha \setminus x_i} \left\{ F_\alpha(x_\alpha) + \sum_{j \in N(\alpha) \setminus x_i} \mu_{j \to \alpha}(x_j) \right\}$$

Messages from variable to region nodes:

$$\mu_{i\to\alpha}(x_i) = \sum_{\beta\in N(i)\setminus\alpha} \mu_{\beta\to i}(x_i)$$

Dual decomposition

• To minimize $F(x) = \sum_{\alpha} F_{\alpha}(x_{\alpha})$ (each α labels a region):

$$\min_{x} F(x) = \min_{x, x^{(\alpha)}} \sum_{\alpha} F_{\alpha}(x^{(\alpha)})$$
s.t. $x^{(\alpha)} = x$ for all α

Add Lagrange multipliers:

$$L(\lambda) = \min_{x, x^{(\alpha)}} \sum_{\alpha} F_{\alpha}(x^{(\alpha)}) + \sum_{\alpha} \lambda^{(\alpha)}(x^{(\alpha)} - x)$$

and solve the dual $\max_{\lambda} L(\lambda)$

• Subgradient optimization: solving $\min_{x^{(\alpha)}} F_{\alpha}(x^{(\alpha)})$ in hardware gives descent moves for $L(\lambda)$

Region-based algorithms

- Both Belief Propagation and Dual Decomposition are general algorithms
 - can be applied to any QUBO problem
- We have tried other algorithms, but BP and DD were the most effective for LDPC decoding
 - Correct choice of region-based algorithm is very problem specific
 - Both algorithms have their weaknesses
- Both BP and DD re-use regions embedded in the hardware
 - No need to re-embed at each iteration

LDPC problems studied

- LDPC instances: 100, 200, 400, 600, 800 and 1000 bits, randomly generated checks
 - # of checks = 70% of # of bits
 - variables in 2-4 checks,
 - checks have 3-5 variables
- Pick a random code word x, and flip 8%, 10%, 12%, 14% of its bits
- Make sure:
 - code word x is the unique solution to decoding problem
 - Standard decoding algorithm fails after 1000 iterations
- Then generate 4-25 regions (20 checks each) and embed each region
 - 150 200 variables per region
 - 300 350 qubits after embedding
 - 30 50 boundary variables in each region

Results: LDPC decoding

Problem			Belief propagation				Dual decomposition		
Bits	Regions	Error rate	Solved?	Iterations	Minimizations		Solved?	Iterations	Minimizations
100	4	8%	✓	2	296		✓	4	16
		10%	✓	4	452		✓	4	16
		12%	✓	4	561		✓	11	52
200	7	8%	✓	17	6419		✓	13	105
		10%	✓	7	1975		✓	41	385
		12%	✓	6	1891		\checkmark	81	777
400	14	8%	\checkmark	6	3057		\checkmark	55	1050
		10%	✓	12	8047		✓	4	56
		12%	✓	8	5724		✓	170	3304
600	21	8%	✓	7	5386		✓	61	1743
		10%	✓	9	8663		✓	56	1596
		12%	✓	9	9200		×	200	5838
800	28	8%	✓	6	7417		✓	133	5124
		10%	✓	11	7915		✓	115	4452
		12%	✓	13	13070		×	200	7784
1000	35	8%	✓	10	10272		✓	139	6685
		10%	✓	9	12935		×	200	9730
		12%	✓	29	18410		×	200	9730
100		14%	✓	19	2413				
200			✓	8	2105				
400			×	20	13421	Ц			
600			×	4	4914	Ш			
800			×	8	10002				
1000			×	15	61493				

References

- Z. Bian, F. Chudak, P. Hagerty, R. Israel, B. Lackey, W. G. Macready and A. Roy. "Discrete optimization using Quantum Annealing on sparse Ising models", to be submitted to "Frontiers in Physics", 2014.
- J. Cai, W. G. Macready, A. Roy. "A practical heuristic for graph minors", 2014. arxiv.org/1406.2741.

V6 vs. V7

Vesuvius 7 online in Burnaby since January:

- New coupler design to boost maximum coupling strength
- Removed several key crosstalks to improve h ICE
- New coupler design reduces J ICE from DAC round-off
- Added passivation layer to the top of fabrication stack to reduce 1/f noise
- 481 qubits (low yield typical for new version)

V6 vs. V7 performance on chains: 2in4-SAT tests

- 2in4-SAT: exactly 2 out of 4 literals in every clause are satisfied
- Tested at critical clause/variable ratio of 0.7 (phase transition from satisfiable to not satisfiable)
- Tested problems: 50 instances of each size with 10-40 variables,
 embedding with maximum chain length 4-16
- Problems embedded on the intersection of working graphs, chain strength 3.5, majority vote post-processing
- 20 gauge transforms, 1000 samples each

V6 vs. V7 performance on chains

2-in-4-SAT: exactly 2 out of 4 literals are true in every clause.

Scaling performance is dominated by ICE, not annealing gap

V6 vs. V7 performance on chains

Without gauge transformations, performance difference is even more pronounced

Analysis of run time

- For $H \to G$: each iteration takes $O(|E(Q)| * |V(G)| \log |V(G)|)$
- Algorithm terminates after $\leq |E(Q)| * |V(G)|$ iterations

- Measured number of iterations/success rate empirically
- "Easy" problem: embed K_N in C_8 for N = 1...33
 - provably largest embeddable complete graph
- "Hard" problem: embed $N \times N$ grid graph in C_8 for N = 1...16
 - again provably largest possible
- Random problem 2: random cubic graphs up to 40 variables
- Ran each problem 100 times (algorithm has several sources of randomness)

Embedding performance

