

Departamento de Estadística e I.O.

Escuela Superior de Ingeniería

Estadística y Probabilidad I. Prácticas de Laboratorio.

I.T. Informática de Gestión / I.T. Informática de Sistemas

(Convocatoria Examen Enero 2010) 28/01/10

Nombro	DMI
Nombre	DIVI

Instrucciones: (Puede utilizar para la resolución cualquiera de los programas informáticos que se han utilizado en las clases prácticas de laboratorio: R, Sgplus, Excel/Calc). Explique claramente todos los razonamientos necesarios para la resolución de los ejercicios propuestos. La valoración máxima es de 2 puntos.

- 1. (0.5 Puntos) Carga en Statgraphics el fichero de datos "Senile.sf" del directorio Data y responde a las siguientes cuestiones sobre las variables $\inf(X)$ y $\operatorname{similars}(Y)$:
 - a) (0.1 puntos) Calcule los siguientes parámetros de la variable X.

 \bar{X} = 11.6327

 $M_e = 12$

 $M_o = 13$

 $\sigma = 3.712$

 $Q_3 = 14$

- b) (0.2 puntos) Determine la recta de regresión de Y con respecto a X y el coeficiente de correlación lineal. $r_{Y/X} \equiv Y = -1,82097 + 0,88987 \cdot X$ Coeficiente de Correlación Lineal: r = 0,81
- c) (0.2 puntos) Realice un ajuste parabólico de la variable Y respecto a X, dando la expresión de dicho ajuste y razone si mejora el ajuste anterior. ¿Cuál es la mejor clase funcional para ajustar estos datos? ¿Por qué?

Ajuste Parabólico:	$Y = -3,77144 + 1,27128 \cdot X - 0,0167 \cdot X^2$
Razonamiento:	En el ajuste lineal $R^2 = 0.656$; en el parabólico $R^2 = 0.66$. Mejora levemente.
Expresión mejor clase	De los modelos linealizables, el mejor es Raiz Cuadrada X.
clase funcional	Su grado de bondad $R^2 = 0.661$, es algo mejor que el parabólico.
para estos datos:	Su expresión: $Y = -1,092 + 5,78\sqrt{X}$

2. (0.5 Puntos) Determine para las variables aleatorias siguientes:

 $X \sim N(2,3);$ $Y \sim Exp(\lambda = 3);$ $H \sim Binomial(n = 4, p = 0.3);$ $K \sim Geometrica(p = 0.3)$

a) (0.2 Puntos) Las probabilidades siguientes:

P(X = 3) = 0

P(Y=3)=0

P(H=3) = 0.0756

P(K=3) = 0.1029

b) (0.1 Puntos) Los siguientes parámetros:

Percentil 30 de X = 0.42679

Mediana de Y = 2,07944

Moda de H=1

Decil 2 de K = 0

c) (0.2 Puntos) Represente de forma aproximada la función de distribución de la variable aleatoria H.

3. (0.5 Puntos) Obtenga la poligonal de regresión de Y sobre X y la razón de correlación de Y sobre X para los datos de la siguiente tabla de frecuencias absolutas.

X / Y	12	22	32	42
12	7	3	0	0
22	0	8	2	1
32	1	2	7	9

a) (0.1 puntos) Media y varianza de la variable Y: $\bar{Y} = 27,25$

Var(Y) = 114,9375

- b) (0.2 puntos) Razón de correlación de Y sobre X: $\eta_{Y/X} = 1 \frac{\sum Var(Y_i) \cdot f_i}{Var(Y)} = 1 \frac{50,82}{114,9375} = 0,5578$
- c) (0.2 puntos) Poligonal de regresión de Y sobre X:

X	12	22	32
$\Phi(X)$	15	25,6364	34,6316

- 4. (0.5 Puntos) Carga en R el fichero de datos "volcano" del paquete "datasets" y responde a lo siguiente:
 - a) (0.3 Puntos) Obtenga un ajuste logarítmico para la variable V12 con respecto a V22.
 - b) (0.2 Puntos) Determine la media, desviación típica y mediana de las variables V1 y V2.

Expresión del ajuste:	$V_{12} = 7.46 \cdot V_{22}^{0.566}$	$R^2 = 0.84736$
Media $V1 = 110,586$	Desviación típica $V1 = 6,9022$	Mediana $V1 = 111$
Media $V2 = 111,8276$	Desviación típica $V2 = 7,5655$	Mediana $V2 = 113$