

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Números e operações

Olímpio Rudinin Vissoto Leite

Números naturais

Ligados principalmente à contagem de situações ocorridas na natureza, esses números foram chamados de *naturais* e podem ser reunidos em um conjunto indicado pela letra N:

$$IN = \{0, 1, 2, 3, 4, 5, 6, 7, 8, ...\}$$

Exemplo:

Num certo país, as placas de automóveis são codificadas com três letras e quatro algarismos, como por exemplo:

Nessas condições, quantas placas diferentes podem ser confeccionadas?

Solução:

Na formação das placas, podemos usar as 26 letras do alfabeto e os 10 algarismos do sistema de numeração.

Cada placa deve conter três letras e quatro algarismos, num total de sete caracteres.

Assim, esse problema pode ser solucionado multiplicando entre si as possibilidades associadas a cada caractere da placa:

26 . 26 . 26 . 10 . 10 . 10 . 10 = 175 760 000

Logo, nas condições exigidas, é possível confeccionar 175 760 000 chapas diferentes.

Exercícios

1. Beatriz tem cinco blusas, quatro calças e três tênis. De quantas maneiras diferentes ela pode se vestir?

2. Quantos números naturais de dois algarismos você pode escrever, usando os algarismos 1, 2, 3, 4, e 5?

3. Quantos números naturais de dois algarismos diferentes você pode escrever, usando os algarismos 1, 2, 3, 4, e 5?

4. Quantos números naturais de três algarismos você pode escrever, usando os algarismos 1, 2, 3, 4, e 5?

5. Quantos números naturais de três algarismos diferentes você pode escrever, usando os algarismos 1, 2, 3, 4 e 5?

Números inteiros

Os números negativos, o zero e os números positivos constituem o conjunto dos *números inteiros*, indicado pela letra \mathbb{Z} :

$$\mathbb{Z} = \{..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...\}$$

Como todos os números naturais também são inteiros, dizemos que \mathbb{N} é um subconjunto de \mathbb{Z} . Ou ainda, que \mathbb{N} está contido em \mathbb{Z} . Indicamos $\mathbb{N} \subset \mathbb{Z}$ (\mathbb{N} está contido em \mathbb{Z}). Esse fato é mais bem visualizado na representação em diagrama.

Exercícios

- **6.** Em cada item, a letra representa um número inteiro. Descubra mentalmente esse número:
 - a) a + 3 = 10
 - b) x + 5 = 5
 - c) y + 5 = 3
 - d) d 2 = 4
 - e) b 4 = -2
 - f) f 2 = -4

7. Calcule:

a)
$$30 - (5 - 6) - 13$$

b)
$$(-1-3) + (-4-5)$$

8. À noite, a temperatura em Porto Alegre (RS) chegou a –3°C. Se ao amanhecer ela subiu 5°C, com quantos graus amanheceu a capital gaúcha?

- 9. Em Contabilidade, os créditos são representados por números positivos e os débitos por números negativos. Use números inteiros para representar as seguintes operações contábeis:
 - a) Crédito de R\$10.000,00 mais crédito de R\$20.000,00.

- b) Crédito de R\$10.000,00 mais débito de R\$20.000,00.
- c) Débito de R\$10.000,00 mais crédito de R\$20.000,00.
- d) Débito de R\$10.000,00 mais débito de R\$20.000,00.
- 10. Em cada item, as letras representam números inteiros. Quais são esses números?
 - a) a > 5 7
 - b) b < -4 + 7
 - c) x + 1 > 6
 - d) y + 1 < -6
 - e) $m 5 \ge 0$
 - f) $n + 5 \le 0$

Números racionais

Os números que podem ser escritos como quociente de dois números inteiros formam o conjunto dos *números racionais*, indicado pela letra \mathbb{Q} :

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z}, b \in \mathbb{Z} \in b \neq 0 \right\}$$

Todo número racional $\frac{a}{b}$ possui uma representação decimal, com a vírgula para separar a parte inteira da parte decimal.

Nos números racionais escritos em notação decimal, a parte decimal pode apresentar uma quantidade finita ou infinita de algarismos. Quando a quantidade for infinita, os algarismos repetem-se periodicamente.

Exemplos:

1. Escrever o número racional $\frac{-5}{8}$ usando a notação decimal.

Solução:

Efetuando a divisão de -5 por 8, obtemos -0,625. Assim, $\frac{-5}{8}$ = -0,625 que é um decimal exato.

2. Escrever o número racional $\frac{13}{9}$ usando a notação decimal.

Solução:

A divisão de 13 por 9 não é exata, isto é, nunca termina. No quociente obtido, o algarismo 4 repete-se indefinidamente, caracterizando uma dízima periódica. Assim:

$$\frac{13}{9}$$
 = 1,4444... = 1, $\overline{4}$

Quantos números racionais há entre 0 e 1?

Entre dois números racionais há sempre infinitos números racionais.

Exemplo:

0,1; 0,03; 0,555...; 0,6895; 0,89; 0,545454... e 0,0000001 são alguns dos infinitos números racionais entre 0 e 1.

Observe que todo número inteiro é racional. Por exemplo, $6 = \frac{6}{1}$. Assim, $\mathbb{Z} \subset \mathbb{Q}$. Lembrando que todo natural é inteiro, temos: $\mathbb{I}\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. Veja o diagrama:

Exercícios

11. Observando o diagrama, atribua um valor para *a*, *b* e *c*:

- 12. Escreva os números racionais indicados em cada item na notação decimal:
 - a) cinco décimos.
 - b) cinco décimos negativos.

- c) sete inteiros e três décimos negativos.
- d) nove inteiros e vinte e sete centésimos.
- e) trezentos inteiros e trezentos e doze milésimos negativos.
- **13.** Determine:
 - a) o dobro de -1,5
 - b) a metade de -0,8
 - c) o triplo de -1,2
 - d) a terça parte de -6
- 14. Escreva usando a notação decimal, os seguintes números racionais:
 - a) $\frac{-8}{3}$

- b) $\frac{1}{128}$
- c) $\frac{11}{15}$
- d) 1/99
- **15.** Escreva os números na forma $\frac{a}{b}$, onde **a** e **b** são números inteiros:
 - a) -0.7
 - b) -0,09
 - c) -2,45
 - d) -23,4

Números reais

O conjunto dos números irracionais é tal que:

 $II = \{x / x \in dizima \ não \ periódica\}$

A representação decimal de um número irracional apresenta, sempre depois da vírgula, infinitas casas que não formam período.

Por exemplo: $\sqrt{2} = 1,41421356237309504880...$

 $\pi = 3,14159265358979323846...$

O conjunto que reúne todos os números racionais e irracionais é chamado de *conjunto dos números reais* e é indicado pela letra IR.

Assim, $\mathbb{I}\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{I}\mathbb{R}$. Veja em diagrama:

A reta dos números reais

A reta, na qual os números reais estão representados, é chamada *reta real* ou *eixo real*. Essa reta é muito útil na comparação de dois números reais quaisquer. Vejamos como obtê-la.

Traçamos uma reta, supondo que ela se prolongue indefinidamente, em ambos os sentidos:

A distância entre 0 e 1 é a unidade que permite marcar outros pontos:

A seguir, associamos os números inteiros a esses pontos:

Subdividindo as unidades, poderemos associar à reta outros números racionais e, também, irracionais, de modo que:

- A cada ponto da reta corresponda exatamente um número real;
- A cada número real corresponda exatamente um ponto da reta.

Exercícios

- **16.** Sendo $(1, 4142135...)^2 = 2$, determine um valor aproximado de $\sqrt{2}$:
 - a) com uma casa decimal.
 - b) com duas casas decimais.
 - c) com três casas decimais.
- 17. Sendo $(1, 732050...)^2 = 3$, determine um valor aproximado de $\sqrt{3}$:
 - a) com uma casa decimal depois da vírgula.
 - b) com duas casas decimais depois da vírgula.

18. O *teorema de Pitágoras*, diz o seguinte: "Em todo triângulo retângulo, a medida da hipotenusa ao quadrado é igual à soma dos quadrados das medidas dos catetos (tomados todos na mesma unidade de comprimento)".

Num triângulo retângulo os catetos medem 6cm e 8cm. Use o teorema de Pitágoras para calcular a medida da hipotenusa.

- 19. Verifique se um triângulo retângulo pode ter lados medindo:
 - a) 6cm, 8cm e 9cm.

- b) 6cm, 8cm e 11cm.
- c) 5cm, 12cm e 13cm.

20. Desenhe um triângulo retângulo qualquer. A seguir, meça os lados desse triângulo e comprove a validade do teorema de Pitágoras. Os resultados são aproximados.

Porcentagem

A loja "Tem Tudo" oferece 10% de desconto nas compras à vista.

Os combustíveis aumentaram 15%.

Cada vez mais, frases como essas, fazem parte do nosso dia a dia. O símbolo % tornou-se, assim, um elemento indispensável nos meios de comunicação.

O símbolo % remete a uma fração, cujo denominador é 100.

Exemplos:

1.
$$15\% = \frac{15}{100} = 0.15$$

2.
$$37\% = \frac{37}{100} = 0.37$$

3.
$$0.5\% = \frac{0.5}{100} = 0.005$$

4.
$$200\% = \frac{200}{100} = 2$$

- 5. Escrever os números dados usando o símbolo %.
 - a) 0,25
 - b) 3
 - c) $\frac{4}{5}$
 - d) $\frac{1}{3}$

Solução:

a)
$$0.25 = \frac{25}{100} = 25\%$$

b)
$$3 = \frac{30}{100} = 300\%$$

c)
$$\frac{4}{5} = 0.8 = 0.80 = \frac{80}{100} = 80\%$$

d)
$$\frac{1}{3}$$
 = 0, 3333... \approx 0, 3333, portanto, $\frac{1}{3}$ \approx 33,33%

Porcentagem de um número

Quanto vale 15% de 200?

Como 15% =
$$\frac{15}{100}$$
 = 0,15, temos:

15% de 200 =
$$\frac{15}{100}$$
 . 200 = 0,15 . 200 = 30

Exemplos:

1. 40% de 700 =
$$\frac{40}{100}$$
 . 700 = 0,40 . 700 = 280

2. 7,5% de 1 000 =
$$\frac{7,5}{100}$$
 . 1 000 = 0,075 . 1 000 = 75

Porcentagem de um número em relação a outro

Que porcentagem 50 é de 200?

Solução:

Determinamos a razão entre 50 e 200 e a escrevemos com o símbolo % $\frac{50}{200} = 0,25 = 25\%$, portanto 50 é 25% de 200.

Fator de aumento

O fator de aumento (F) é dado por F = 1 + i, onde i é a taxa de aumento.

Exemplos:

Valor sem aumento (A)	Taxa de aumento (i)	Fator de aumento (F) F = 1 + i	Valor após o aumento (N) N = F . A
400	15%	F = 1 + 15% F = 1 + 0.15 F = 1.15	N = 1,15 . 400 N = 460
2 000	5%	F = 1 + 5% F = 1 + 0.05 F = 1.05	N = 1,05 . 2 000 N = 2 100

Conhecido o fator de aumento F, a taxa i do aumento percentual é i = F - 1.

Exemplos:

Valor com aumento (N)	Valor sem aumento (A)	Fator de aumento (1 + i)	Taxa de aumento percentual (i)
500	400	$\frac{500}{400}$ = 1,25	i = 1,25 - 1 i = 0,25 i = 25%
2 750	2 000	$\frac{2750}{2000} = 1,375$	i = 1,375 - 1 i = 0,375 i = 37,5%

■ Fator de redução

O fator de redução (F) é dado por F = 1 - i. Onde i é a taxa de redução.

Valor sem redução (A)	Taxa de redução (i)	Fator de redução (F) F = 1 − i	Valor após a redução (N) N = F . A
400	15%	F = 1 - 15% F = 1 - 0.15 F = 0.85	N = 0.85 .400 N = 340
2 000	5%	F = 1 - 5% F = 1 - 0.05 F = 0.95	N = 0,95 . 2 000 N = 1 900

Exercícios

21. Complete o quadro escrevendo o número na notação fracionária, na notação decimal e usando o símbolo %.

Fração	Decimal	Porcentagem
1/2	0,50	50%
3/4	?	?
?	0,20	?
?	?	25%

22.	O Banco Mundial vai emprestar US\$600 milhões a três países subdesenvol-
	vidos. O primeiro país receberá 35%; o segundo 40%; e o terceiro, a quantia
	restante. Quanto caberá a cada país?

- 23. Descubra que porcentagem o número 40 é de:
 - a) 100
 - b) 200
 - c) 400
 - d) 800
- **24.** Dos três mil casos de AIDS ocorridos no Brasil, num certo ano, 600 foram no Rio de Janeiro e 1 800 em São Paulo. Reproduza essa informação usando porcentagem.

25.	Determine os números, sabendo que:	
	a) 10% do número é igual a 60.	
	b) 20% do número é igual a 100.	
	c) 25% do número é igual a 250.	
	d) 8% do número é igual a 140.	
26.	A escola de João Paulo tinha, no ano passado, mil alunos. Este ano está com 1 350 alunos. Responda:	
	a) Qual foi o fator de aumento de um ano para outro?	
	b) De quanto foi o aumento percentual?	
27.	Sabendo que os preços sofreram um aumento de 8%, determine o preço de um bem que antes custava:	
	a) R\$10.000,00	

h)	R\$200	$\cap \cap \cap$	\cap
L)I	ロンといい	ハハハ	. () ()

- **28.** O salário de João é reajustado de acordo com a inflação. Sabendo que ele ganhou R\$10.000,00 no mês de janeiro, descubra o salário de fevereiro, considerando que a inflação de janeiro foi de:
 - a) 5%
 - b) 10%
- 29. Uma empresa deseja aumentar a venda de um determinado produto e, para isso, decidiu reduzir o preço desse produto em 10%. Sabendo que o preço do produto antes da redução era de R\$150,00, determine:
 - a) O fator de redução.
 - b) O valor do preço após a redução.
- **30.** Um objeto que custava R\$170,00 no início do semestre teve seu preço reajustado pela taxa semestral de inflação. Determine o preço desse objeto no final do semestre, sabendo que nesse período a taxa de inflação foi de 100%.

31.	Em um certo dia de férias, um hotel de lazer estava 90% ocupado e a diária cobrada foi de R\$100,00. Considerando que o hotel tem 200 quartos, calcule:
	a) Quantos quartos estavam ocupados?

b) Qual foi a receita nesse dia, ou seja, qual foi a quantia que o hotel recebeu pelas diárias?

Após a temporada de férias, o gerente do hotel notou que, para manter um nível aceitável de hóspedes, é necessário cobrar um preço menor pela diária. Ele estabeleceu um desconto de 10% na diária, mas ainda assim a ocupação do hotel diminuiu de 90% para 70% de sua capacidade. Calcule então:

c) Quantos quartos estão ocupados após a temporada de férias?

d) Qual é a receita atual do hotel em um dia?

32. Em uma empresa, foram analisados todos os processos concluídos em um mês. O setor 01 concluiu 25% desses processos, o setor 02 concluiu 60% e o setor 03, 15% do total. Se houve atraso em 10% dos processos dos setores 01 e 02 e em 5% dos processos do setor 03, qual é a porcentagem de processos concluídos com atraso na empresa?

Gabarito

Números e operações

- 1. 5 . 4 . 3 = 60 (60 maneiras diferentes)
- 2. 5.5 = 25 (25 números naturais diferentes)
- **3.** 5 . 4 = 20 (20 números naturais diferentes)
- 4. 5.5.5 = 125 (125 números naturais diferentes)
- 5. 5 . 4 . 3 = 60 (60 números naturais diferentes)
- 6.
- a) a = 7
- b) x = 0
- c) y = -2
- d) d = 6
- e) b = 2
- f) f = -2
- **7.**
- a) 18
- b) -13
- c) -100
- d) 0
- **8.** +2°C

- 9.
- a) crédito de R\$30.000,00
- b) débito de R\$10.000,00
- c) crédito de R\$10.000,00
- d) débito de R\$30.000,00
- 10.
- a) -1, 0, 1, 2, 3, 4, ...
- b) 2, 1, 0, -1, -2, -3, ...
- c) 6, 7, 8, 9, 10, 11, ...
- d) -8, -9, -10, -11, -12, ...
- e) 5, 6, 7, 8, 9, 10, 11, ...
- f) -5, -6, -7, -8, -9, -10, -11, ...
- 11. a = 7 (um número natural qualquer)
 - a) b = -5 (um número inteiro não natural, isto é, um número inteiro negativo)
 - b) c = 3,5 (um número racional não inteiro)
- 12.
- a) 0,5
- b) -0.5
- c) -7,3
- d) 9,27
- e) -300,312
- 13.
- a) $2 \cdot (-1,5) = -3$
- b) $\frac{1}{2}$. (-0.8) = -0.40

- c) 3.(-1,2) = -3,6
- d) $\frac{1}{3}$. (-6) = -2
- 14.
- a) $-2.666... \approx -2.7$
- b) 0,0078125
- c) $0.7333... \cong 0.7$
- d) 0,010101010... ≅ 0,01
- 15.
- a) $-\frac{7}{10}$
- b) $-\frac{9}{100}$
- c) $-\frac{245}{100}$
- d) $-\frac{234}{10}$
- 16.
- a) $\sqrt{2} \approx 1.4$
- b) $\sqrt{2} \approx 1.41$
- c) $\sqrt{2} \cong 1,414$
- 17.
- a) $\sqrt{3} \approx 1.7$
- b) $\sqrt{3} \cong 1,73$
- **18.** 10cm
- 19.
- a) Não, pois $9^2 \neq 6^2 + 8^2$, isto é, $81 \neq 36 + 64$
- b) Não, pois $11^2 \neq 6^2 + 8^2$, isto é, $121 \neq 36 + 64$
- c) Sim, pois $13^2 = 5^2 + 12^2$, isto é, 169 = 25 + 144

- 20. Resposta pessoal.
- **21.** $\frac{3}{4} = 0.75 = 75\%$; $0.20 = \frac{20}{100} = 20\%$; $25\% = \frac{25}{100} = 0.25$
- 22. 1.º país: 35% de 600 000 000 = 0,35 . 600 000 000 = 210 000 000 2.º país: 40% de 600 000 000 = 0,40 . 600 000 000 = 240 000 000 3.º país:
 - * 1.a solução: 100% 35% 40% = 25%, logo: 25% de 600 000 000 = 0,25 . 600 000 000 = 150 000 000
 - ** 2.ª solução: 600 000 000 -210 000 000 - 240 000 000 = 150 000 000
- 23.
- a) $\frac{40}{100} = 40\%$
- b) $\frac{40}{200} = 0.20 = 20\%$
- c) $\frac{40}{400} = 0.10 = 10\%$
- d) $\frac{40}{800} = 0.05 = 5\%$
- 24. Como $\frac{600}{3000}$ = 0,20 = 20% e $\frac{1800}{3000}$ = 0,60 = 60% então : "Dos casos ocorridos de AIDS no Brasil, num certo ano, 20% foram no Rio de Janeiro e 60% foram em São Paulo".
- 25.
- a) $10\% \text{ de } x = 60, \text{ então } 0,10 \cdot x = 60 \cdot \text{Logo}, x = \frac{60}{0.10} = 600$
- b) 20 % de x = 100, então 0,20 . x = 100. Logo, x = $\frac{100}{0.20}$ = 500

c) 25% de x = 250, então

$$0.25 \cdot x = 250 \cdot \text{Logo}, x = \frac{250}{0.25} = 1000$$

d) 8% de x = 140, então

$$0.08 \cdot x = 140. \text{ Logo}, x = \frac{140}{0.08} = 1750$$

26.

a) $1000 \cdot F = 1350$, onde F = 1,35

b)
$$F = 1.35 = 1 + i \text{ onde}$$
: $i = 0.35 = 35\%$

27. Fator de aumento: F = 1 + i = 1 + 8%= 1 + 0,08 = 1,08.

Assim, temos:

- a) 10 000 . 1,08 = 10 800. Portanto, R\$10.800,00;
- b) 20 0000 . 1,08 = 216 000. Portanto, R\$216.000,00.
- **28.** Fator de aumento (ou de correção) = 1 + i , isto é, F = 1 + i . Assim:
 - c) F = 1 + 5% = 1 + 0,05 = 1,05. Logo: 10 000 . 1,05 = 10 500. Portanto, R\$10.500,00;
 - d) F = 1 + 10% = 1 + 0,10 = 1,10. Logo: 10 000 . 1,10 = 11 000. Portanto, R\$11.000,00.

29.

a) F = 1 - i

F = 1 - 10%

F = 1 - 0.1

F = 0.90

b) $N = F \cdot A$

N = 0.90.150

N = 135

Portanto, o preço após a redução é de R\$135,00.

30. Fator de correção: F = 1 + 100% = 1 + 1 = 2 . Logo: 170 . 2 = 340, isto é: o preço no final do semestre foi de R\$340,00.

31.

 a) O hotel está com 90% de ocupação e sua capacidade total é de 200 quartos. Então:

N → número de quartos ocupados

N = 0.90.200

N = 180

Portanto, 180 estão ocupados.

b) $R \rightarrow receita$

 $P \rightarrow preço$

R = N . P

R = 180.100

R = 18000

Portanto, a receita nesse dia foi de R\$18.000,00.

c) $N \rightarrow número de quartos ocupados$

 $R \rightarrow receita$

N = 0.70.200

N = 140

d) $P \rightarrow \text{novo preço}$

 $R \rightarrow receita$

P = 0.90.100

P = 90

R = 90.140

R = 12600

A nova receita foi de R\$12.600,00.

32.

Setor $01 \rightarrow 25\%$ do total de processos Setor $02 \rightarrow 60\%$ do total de processos

Setor $03 \rightarrow 15\%$ do total de processos	
Atrasos:	
Setor 01 \rightarrow 10% de 25% \rightarrow 0,10 . 25% = 2,5%	
Setor $02 \rightarrow 10\%$ de $60\% \rightarrow 0,10$. 60%	
= 6%	
Setor $03 \rightarrow 5\%$ de $15\% \rightarrow 0.05$. 15% = 0.75%	
Percentual total de atrasos: $2,5\% + 6\% + 0,75\% = 9,25\%$	
2,370 1 370 1 37,370 – 3,2370	