Lower Bound for Sorting COMS10018 - Algorithms

Dr Christian Konrad

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to . . .

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to . . .

Example: Sort an array $A \in \{0,1\}^n$ in time O(n)?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to . . .

Example: Sort an array $A \in \{0,1\}^n$ in time O(n)?

- Count number of 0s n_0
- Write n_0 0s followed by $n n_0$ 1s
- Both operations take time O(n)

Comparison-based Sorting

Comparison-based Sorting

• Order is determined solely by comparing input elements

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \le A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \le A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

• We will prove that every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

- We will prove that every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons
- This implies that $O(n \log n)$ is an optimal runtime for comparison-based sorting

Problem

Problem

• A: array of length n, all elements are different

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A *bijective* function $\pi:[n] \to [n]$ is called a permutation

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A bijective function $\pi:[n] \to [n]$ is called a permutation

$$\pi(1) = 3$$

$$\pi(2) = 2$$

$$\pi(3) = 4$$

$$\pi(4) = 1$$

Problem

- \bullet A: array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A bijective function $\pi:[n] \to [n]$ is called a permutation

$$\pi(1) = 3$$
 $\pi(2) = 2$

$$\pi(3) = 4$$

$$\pi(3) = 4$$

$$\pi(4) = 1$$

• A reordering of [n]

How many permutations are there?

How many permutations are there?

Let Π be the set of all permutations on n elements

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof.

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements.

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements. The second can only be mapped to (n-1) elements.

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements.

The second can only be mapped to (n-1) elements. etc.

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements.

The second can only be mapped to (n-1) elements. etc.

Rephrasing our Task:

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements. The second can only be mapped to (n-1) elements.

Rephrasing our Task: Find permutation $\pi \in \Pi$ such that:

$$A[\pi^{-1}(1)] < A[\pi^{-1}(2)] < \dots < A[\pi^{-1}(n-1)] < A[\pi^{-1}(n)]$$

Example:

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c).

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 gueries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask b < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask b < c. Then, if the answer is no then we are left with cases 2 and 3 and we need an additional query.

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

• Every leaf is a permutation

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree.

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf.

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n! leaves.

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^h \geq n!$$

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^h \ge n!$$
 $h \ge \log(n!)$

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^h \ge n!$$

 $h \ge \log(n!) \ge \log\left(\left(\frac{n}{e}\right)^n\right)$

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^{h} \geq n!$$

 $h \geq \log(n!) \geq \log\left(\left(\frac{n}{e}\right)^{n}\right) = n\log\left(\frac{n}{e}\right)$

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n! leaves. A binary tree of height h has no more than 2^h leaves. Hence:

$$2^h \ge n!$$

 $h \ge \log(n!) \ge \log\left(\left(\frac{n}{e}\right)^n\right) = n\log\left(\frac{n}{e}\right) = \Omega(n\log n)$.

Stirling's approximation: $n! \ge \left(\frac{n}{e}\right)^n$