Заняття 15. Фотоефект. Ефект Комптона.

Аудиторне заняття

- 1. На пластинку падає монохроматичне світло з частотою v. Фотострум припиняється при затримуючій різниці потенціалів U. Визначити роботу виходу електронів з поверхні пластини.
- 2. [1.76] Визначити максимальну швидкість υ_{max} фотоелектронів, що вибиваються з поверхні срібла: а) ультрафіолетовим випромінюванням з довжиною хвилі $\lambda_1 = 0,155$ мкм; б) γ -випромінюванням з довжиною хвилі $\lambda_2 = 1$ пм.
- 3. Червона границя фотоефекту для цинку $\lambda_0 = 310$ нм Визначити максимальну кінетичну енергію $E_{k,max}$ фотоелектронів в електрон-вольтах, якщо на цинк падає світло з довжиною хвилі $\lambda = 200$ нм.
- 4. [1.78] При деякому максимальному значенні затримуючої різниці потенціалів фотострум з поверхні літію, який освітлюється електромагнітним випроміненням з довжиною хвилі λ_0 , припиняється. Змінивши довжину хвилі випромінення в $\gamma = 1,5$ рази, встановили, що для припинення фотоструму необхідно збільшити затримуючу різницю потенціалів в $\eta = 2$ рази. Визначити λ_0 .
- 5. [1.85] В результаті ефекту Комптона фотон при зіткненні був розсіяний на кут θ . Енергія розсіяного фотона ε_2 . Визначити енергію фотона ε_1 до розсіяння.
- 6. [1.84] Визначити максимальну зміну довжини хвилі $(\Delta \lambda)_{max}$ при комптоновському розсіянні світла на вільних електронах і вільних протонах.

Домашнє завдання

- 1. [1.79] На поверхню металу падає монохроматичне світло з довжиною хвилі λ . Червона границя фотоефекту дорівнює λ_0 . Яка частка енергії фотону δ витрачається на надання електронові кінетичної енергії?
- 2. [1.80] Знайти роботу виходу з деякого металу, якщо при почерговому освітленні його поверхні електромагнітним випроміненням з довжинами хвиль $\lambda_1 = 0.35$ мкм і $\lambda_2 = 0.54$ мкм максимальні швидкості фотоелектронів відрізняються в $\eta = 2$ рази.
- 3. [1.87] Фотон з енергією ε_1 , яка дорівнює енергії спокою електрону, розсіявся на вільному електроні на кут $\theta = 120^\circ$. Визначити енергію ε_2 розсіяного фотону та кінетичну енергію E_k електрону віддачі (в одиницях $m_0 c^2$).