

Lower(SL(FA $_{\eta}$)) ⊢ MMt

n

elk

elk

e/n

the

the

with

n

binos

binoculars

dyl

(»=) (every $(\lambda x. \text{return}(x \text{ elk}))(\lambda y. \text{ (»=) smone}(\lambda x. \text{return}(\text{with}(\text{the binos})(\text{saw}y)x))))(\lambda y. \text{return}(\text{if}(\text{return}(x \text{ elk})))))$ $\star R(SR(FA_n)) \vdash MMt // ((Mt/Mt) \backslash MMt)$ λk . (>=) (every (λx . return (x elk)) (λy . (>=) smone (λx . return (with (the binos) (saw y) x)))) (λy . k (if (return y))) (Mt/Mt)/MtLower(SR(\star L(SL(BA)))) \vdash Mt if every $(\lambda x. \text{ return } (x \text{ elk})) (\lambda y. () =) \text{ smone } (\lambda x. \text{ return } (\text{with } (\text{the binos}) (\text{saw } y) x)))$ Me $SL(BA) \vdash Mt //((e \setminus t) \setminus Mt)$ λk . every (λx . return (x elk)) (λy . k (with (the binos) (saw y))) smone $\mathsf{FA} \vdash (e \backslash t) \backslash (e \backslash t)$ **SR(FA)** \vdash M $t/\!\!/((e\backslash t)\backslash\!\!\backslash Mt)$ with (the binos) $\lambda k. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. k (\text{saw } y))$ $FA \vdash e$ $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathsf{M}t /\!\!/ (e \backslash\!\backslash \mathsf{M}t)$ $((e\backslash t)\backslash (e\backslash t))/e$ with the binos saw every $(\lambda x. \text{ return } (x \text{ elk}))$

 $\textbf{FA}_{\eta} \vdash \mathsf{M}t \\ \texttt{if}((\texttt{``='}) \mathsf{smone}(\lambda x. \mathsf{return}(x \mathsf{elk})) (\lambda y. \mathsf{return}(\mathsf{with}(\mathsf{the}\,\mathsf{binos})(\mathsf{saw}\,y)\,x)))) (\mathsf{return}(\mathsf{left}\,\mathsf{d}))$

 $(Mt/(e \backslash Mt))/((t/n) \backslash Mt)$

every

every

saw

someone

$Lower(SL(FA_{\eta})) \vdash Mt$ (»=) ((»=) smone (λx . every (λx . return (x elk)) (λy . return (with (the binos) (saw y) x)))) (λy . if (return y) $\star R(SR(FA_n)) \vdash Mt // ((Mt/Mt) \backslash Mt)$ λk . (>=) ((>=) smone (λx . every (λx . return (x elk)) (λy . return (with (the binos) (saw y) x)))) (λy . k (if (return y))) (Mt/Mt)/MtLower(\star L(SL(SR(BA)))) \vdash Mt if (»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. \text{ return } (\text{with } (\text{the binos}) (\text{saw } y) x)))$ Me $SL(BA) \vdash Mt //((e \setminus t) \setminus Mt)$ λk . every (λx . return (x elk)) (λy . k (with (the binos) (saw y))) smone **SR(FA)** \vdash Mt//($(e \setminus t) \setminus Mt$) $\mathsf{FA} \vdash (e \backslash t) \backslash (e \backslash t)$ with (the binos) $\lambda k. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. k (\text{saw } y))$ $FA \vdash e$ $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathsf{M}t /\!\!/ (e \backslash\!\backslash \mathsf{M}t)$ $((e \backslash t) \backslash (e \backslash t))/e$ with the binos saw every $(\lambda x. \text{ return } (x \text{ elk}))$ $(Mt/(e \backslash Mt))/((t/n) \backslash Mt)$ n e/nnelk the binos every if elk someone every with the binoculars dyl saw Lower(SL(FA $_{\eta}$)) ⊢ MMt(»=) (() smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. \text{ return } (\text{with } (\text{the binos}) (\text{saw } y) x)))) (\lambda y. \text{ return } (\text{if } (\text{return } (x \text{ elk})))))$ $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_{\eta})) \vdash \mathsf{MM}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{MM}t)$ λk . (»=) ((»=) smone (λx . every (λx . return (x elk)) (λy . return (with (the binos) (saw y) x)))) (λy . k (if (return y))) (Mt/Mt)/MtLower(\star L(SL(SR(BA)))) \vdash Mt if (»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. \text{ return } (\text{with } (\text{the binos}) (\text{saw } y) x)))$ Me $SL(BA) \vdash Mt //((e \setminus t) \setminus Mt)$ λk . every (λx . return (x elk)) (λy . k (with (the binos) (saw y))) smone $SR(FA) \vdash Mt / ((e \setminus t) \setminus Mt)$ **FA** \vdash $(e \setminus t) \setminus (e \setminus t)$ with (the binos) λk . every $(\lambda x$. return (x elk)) $(\lambda y$. k (saw y)) $\textbf{Lower(SL(FA))} \vdash \mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)$ $((e \setminus t) \setminus (e \setminus t))/e$ $(e \backslash t)/e$ $FA \vdash e$ saw every $(\lambda x. \text{return}(x \text{ elk}))$ with the binos $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ e/nn n every elk the binos

someone

saw

every

elk

with

the

binoculars

Lower(SL(FA $_{\eta}$)) \vdash MMt

(»=) (every $(\lambda x. \text{ return}(x \text{ elk}))(\lambda y. \text{ (»=) smone}(\lambda x. \text{ return}(\text{with}(\text{the binos})(\text{saw}y)x))))(\lambda y. \text{ return}(\text{if}(\text{return}y)))$ $\star R(SR(FA_n)) \vdash MMt // ((Mt/Mt) \backslash MMt)$ λk . (>=) (every (λx . return (x elk)) (λy . (>=) smone (λx . return (with (the binos) (saw y) x)))) (λy . k (if (return y))) (Mt/Mt)/MtLower(\star L(SR(SL(BA)))) \vdash Mt if every $(\lambda x. \text{ return } (x \text{ elk})) (\lambda y. () =) \text{ smone } (\lambda x. \text{ return } (\text{with } (\text{the binos}) (\text{saw } y) x)))$ Me $SL(BA) \vdash Mt //((e \setminus t) \setminus Mt)$ λk . every (λx . return (x elk)) (λy . k (with (the binos) (saw y))) smone **SR(FA)** \vdash Mt//($(e \setminus t) \setminus Mt$) **FA** \vdash $(e \setminus t) \setminus (e \setminus t)$ with (the binos) $\lambda k. \text{ every } (\lambda x. \text{ return } (x \text{ elk})) (\lambda y. k (\text{saw } y))$ $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathsf{M}t /\!\!/ (e \backslash\!\backslash \mathsf{M}t)$ $((e \backslash t) \backslash (e \backslash t))/e$ **FA** ⊢ *e* with the binos saw every $(\lambda x. \text{ return } (x \text{ elk}))$ (Mt/(e Mt))/((t/n)Mt)n e/nn

saw

someone

if

 $\textbf{FA}_{\eta} \vdash \textbf{M}t \\ \text{if (every } (\lambda x. \, \text{return} \, (x \, (\text{with (the binos) elk)})) \, (\lambda y. \, (\text{w=) smone} \, (\lambda x. \, \text{return} \, (\text{saw} \, y \, x)))) \, (\text{return} \, (\text{left d})) \\ }$

every

every

elk

elk

the

the

with

binos

binoculars

$\mathbf{Lower}(\mathbf{SL}(\mathbf{FA}_{\eta})) \vdash \mathsf{M}t$

with

with

elk

the binos

binos

binoculars

the

the

(»=) (every $(\lambda x. \text{ return}(x \text{ (with (the binos) elk))})(\lambda y. \text{ (»=) smone } (\lambda x. \text{ return (saw } y. x))))(\lambda y. \text{ if (return (saw } y. x))))$ $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_{\eta})) \vdash \mathsf{M}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{M}t)$ λk . (>=) (every (λx . return (x (with (the binos) elk))) (λy . (>=) smone (λx . return (saw y x)))) (λy . k (if (return y))) (Mt/Mt)/Mt $\mathbf{Lower}(\mathbf{SR}(\star\mathbf{L}(\mathbf{SL}(\mathbf{BA})))) \vdash \mathbf{M}t$ if $\texttt{every}\left(\lambda x.\,\texttt{return}\left(x\,(\texttt{with}\,(\texttt{the}\,\texttt{binos})\,\texttt{elk})\right)\right)(\lambda y.\,(\texttt{``='})\,\texttt{smone}\,(\lambda x.\,\texttt{return}\,(\texttt{saw}\,y\,x)))$ **SR(FA)** \vdash Mt//((e\t)\\Mt) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y. k \text{ (saw } y))$ smone $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathbf{M}t /\!\!/ (e \backslash\!\!\backslash \mathbf{M}t)$ every $(\lambda x. \text{return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ $BA \vdash n$ every with (the binos) elk **FA** \vdash $n \setminus n$ with (the binos) $(n \backslash n)/e$ $FA \vdash e$

someone

saw

every

 $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA}_{\eta})) \vdash \mathsf{MM}t$ (»=) (every (λx . return (x (with (the binos) elk))) (λy . (»=) smone (λx . return (saw y x)))) (λy . return (if (re $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_\eta)) \vdash \mathsf{MM}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{MM}t)$ λk . (>=) (every (λx . return (x (with (the binos) elk))) (λy . (>=) smone (λx . return (saw y x)))) (λy . k (if (return y))) (Mt/Mt)/Mt $\mathbf{Lower}(\mathbf{SR}(\star\mathbf{L}(\mathbf{SL}(\mathbf{BA})))) \vdash \mathbf{M}t$ if $\texttt{every}\left(\lambda x.\,\texttt{return}\left(x\,(\texttt{with}\,(\texttt{the}\,\texttt{binos})\,\texttt{elk})\right)\right)(\lambda y.\,(\texttt{``='})\,\texttt{smone}\,(\lambda x.\,\texttt{return}\,(\texttt{saw}\,y\,x)))$ **SR(FA)** \vdash Mt//((e\t)\\Mt) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y. k \text{ (saw } y))$ smone $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathbf{M}t /\!\!/ (e \backslash\!\!\backslash \mathbf{M}t)$ every $(\lambda x. \text{return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ $BA \vdash n$ every with (the binos) elk **FA** \vdash $n \setminus n$ n with (the binos) $(n \backslash n)/e$ $FA \vdash e$ with the binos the binos

saw

every

elk

with

the

binoculars

someone

 $\mathbf{FA}_{\eta} \vdash \mathsf{M}t$ $if((=) smone(\lambda x. every(\lambda x. return(x (with(the binos) elk)))(\lambda y. return(sawyx))))(return(left d))$ $FA \vdash Mt/Mt$ $BA \vdash t$ $if((=) smone(\lambda x. every(\lambda x. return(x(with(the binos)elk)))(\lambda y. return(sawyx))))$ ${\tt left}\, {\tt d}$ (Mt/Mt)/Mt $Lower(\star L(SL(SR(BA)))) \vdash Mt$ if (»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ (with (the binos) elk))}) (\lambda y. \text{ return } (\text{saw } y. x)))$ le: d **SR(FA)** \vdash Mt//($(e \setminus t) \setminus Mt$) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y$. k (saw y))smone $(e \backslash t)/e$ **Lower(SL(FA))** $\vdash Mt /\!\!/ (e \backslash\!\!\backslash Mt)$ every $(\lambda x. \text{ return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M} t /\!\!/ (e \backslash\!\!\backslash \mathsf{M} t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M} t)$ $BA \vdash n$ every with (the binos) elk $FA \vdash n \backslash n$ $\verb|with|(\verb|the| binos|)$ $(n \backslash n)/e$ $FA \vdash e$ with the binos the binos

saw

every

elk

with

the

binoculars

dylan

someone

$\textbf{Lower}(\textbf{SL}(\textbf{FA}_{\eta})) \vdash \textbf{M}t$

the

the

elk

with

binos

binoculars

(»=) ((»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ (with (the binos) elk))}))(\lambda y. \text{ return } (\text{saw } y. x))))(\lambda y. \text{ if (return (x (with (the binos) elk)))}))$ $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_{\eta})) \vdash \mathsf{M}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{M}t)$ λk . (>=) ((>=) smone (λx . every (λx . return (x (with (the binos) elk))) (λy . return (saw y x)))) (λy . k (if (return y))) (Mt/Mt)/Mt $Lower(\star L(SL(SR(BA)))) \vdash Mt$ if (»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ (with (the binos) elk))}) (\lambda y. \text{ return } (\text{saw } y. x)))$ **SR(FA)** \vdash Mt//((e\t)\\Mt) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y. k \text{ (saw } y))$ smone $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathbf{M}t /\!\!/ (e \backslash\!\!\backslash \mathbf{M}t)$ every $(\lambda x. \text{return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ $BA \vdash n$ every with (the binos) elk **FA** \vdash $n \setminus n$ with (the binos) $(n \backslash n)/e$ $FA \vdash e$ with the binos

saw

every

someone

$\mathbf{Lower}(\mathbf{SL}(\mathbf{FA}_{\eta})) \vdash \mathsf{MM}t$

elk

with

the

binoculars

(»=) ((»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ (with (the binos) elk))}) (\lambda y. \text{ return (saw } y. x)))) (\lambda y. \text{ return (if (return (saw y. x)))}))$ $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_\eta)) \vdash \mathsf{MM}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{MM}t)$ λk . (>=) ((>=) smone (λx . every (λx . return (x (with (the binos) elk))) (λy . return (saw y x)))) (λy . k (if (return y))) (Mt/Mt)/Mt $\mathbf{Lower(\star L(SL(SR(BA))))} \vdash \mathsf{M}t$ if (»=) smone $(\lambda x. \text{ every } (\lambda x. \text{ return } (x \text{ (with (the binos) elk))}) (\lambda y. \text{ return } (\text{saw } y. x)))$ **SR(FA)** \vdash Mt//((e\t)\\Mt) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y$. k (saw y))smone $(e \backslash t)/e$ **Lower(SL(FA))** $\vdash Mt/\!\!/(e \backslash Mt)$ every $(\lambda x. \text{return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ $BA \vdash n$ every with (the binos) elk **FA** \vdash $n \setminus n$ with (the binos) $(n \backslash n)/e$ $FA \vdash e$ with the binos the binos

saw

every

someone

$\textbf{Lower(SL(FA}_{\eta}\textbf{))} \vdash \mathsf{M}t$

(»=) (every $(\lambda x. \text{ return}(x \text{ (with (the binos) elk))})(\lambda y. \text{ (»=) smone } (\lambda x. \text{ return (saw } y. x))))(\lambda y. \text{ if (return (saw } y. x))))$

$\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_{\eta})) \vdash \mathsf{M}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{M}t)$

 λk . (>=) (every (λx . return (x (with (the binos) elk))) (λy . (>=) smone (λx . return (saw y x)))) (λy . k (if (return y)))

$\mathbf{Lower}(\mathbf{SL}(\mathbf{FA}_{\eta})) \vdash \mathsf{MM}t$

(»=) (every (λx . return (x (with (the binos) elk))) (λy . (»=) smone (λx . return (saw y x)))) (λy . return (if (re $\star \mathsf{R}(\mathsf{SR}(\mathsf{FA}_\eta)) \vdash \mathsf{MM}t /\!\!/ ((\mathsf{M}t/\mathsf{M}t) \backslash\!\!\backslash \mathsf{MM}t)$ λk . (>=) (every (λx . return (x (with (the binos) elk))) (λy . (>=) smone (λx . return (saw y x)))) (λy . k (if (return y))) (Mt/Mt)/Mt $\mathbf{Lower(\star L(SR(SL(BA))))} \vdash \mathsf{M}t$ if $\texttt{every}\left(\lambda x.\,\texttt{return}\left(x\,(\texttt{with}\,(\texttt{the}\,\texttt{binos})\,\texttt{elk})\right)\right)(\lambda y.\,(\texttt{``='})\,\texttt{smone}\,(\lambda x.\,\texttt{return}\,(\texttt{saw}\,y\,x)))$ **SR(FA)** \vdash Mt//((e\t)\\Mt) Me λk . every $(\lambda x$. return $(x \text{ (with (the binos) elk))}) (\lambda y. k \text{ (saw } y))$ smone $(e \backslash t)/e$ $\mathbf{Lower}(\mathbf{SL}(\mathbf{FA})) \vdash \mathbf{M}t /\!\!/ (e \backslash\!\!\backslash \mathbf{M}t)$ every $(\lambda x. \text{return}(x (\text{with}(\text{the binos}) \text{elk})))$ saw $(\mathsf{M}t /\!\!/ (e \backslash\!\!\backslash \mathsf{M}t)) /\!\!/ ((t/n) \backslash\!\!\backslash \mathsf{M}t)$ $BA \vdash n$ every with (the binos) elk **FA** \vdash $n \setminus n$ n with (the binos) $(n \backslash n)/e$ $FA \vdash e$ with the binos the binos

saw

every

elk

with

the

binoculars

someone