OR

(b) Explain Push down automata. How many types of representation of PDA? In how many ways does PDA accept a string? Explain with a suitable example. (CO2)

Roll No.

TMC-303 Language L TMC-30T

M. C. A. (THIRD SEMESTER) MID SEMESTER EXAMINATION, 2022

AUTOMATA THEORY AND COMPILER CONSTRUCTION

Time: 11/2 Hours

Maximum Marks: 50

- Note: (i) Answer all the questions by choosing any *one* of the sub-questions.
- (ii) Each question carries 10 marks.
- 1. (a) Define the term Automaton with an example. Distinguish between DFA and NFA with suitable example. (CO1)

 OR
 - (b) Design a DFA machine for the following languages: (CO1)
- (i) The language $L = \{w \in \Sigma^* \mid w \text{ ends} \}$ with 00}

TMC-303

(000)

Lp.

(i) $L = \{a^{2n}b^{2m+1}|n> = 0, m> -0\}$

5 (a) Explain the use of pomping lemma. Show

. [0 ≤ n ≤ "d "a) = 1 (ta)

360

- (ii) The language $L = \{w \in \Sigma^* \mid w\}$ contains the substring 1010}
- (iii) The language $L = \{w \in \Sigma^* \mid w \text{ is a } \}$ string of 0 and 1 ending with 00}
- 2. (a) Design an NFA machine for the following languages: (CO1)
 - (i) $L = \{a^n : n > 0 \} \cup \{b^n a : n > 1 \}$ with only four states.
 - (ii) $L = (ab U aba)^*$

(b) Construct a DFA equivalent to the following NFA:

3. (a) Explain Moore machine. Construct a Moore machine to determine the residue mod 3 for a binary number. (CO1)

(3)

TMC-303

OR

(b) Construct a Mealy machine which is equivalent to the following Moore machine: (CO2)

Current State	Next State		Output ³
	Input 0	Input 1	Output
q0 (start state)	q1	q2	1
q1	q3	q2	0
q2	q2	q1	1
q3	q0	q3	1

4. (a) Explain Chomsky classification language with a suitable example. (CO2)

OR

(b) Obtain the regular expression for the following languages: (CO2)

(i)
$$L = \{a^{2n} b^{2m+1} | n > 0, m > 0\}$$

(ii)
$$\{a^{2n+1} | n > 0\}$$

(iii)
$$L = \{a^n b^n > n > 0\}$$

Explain the use of pumping lemma. Show that the language $L = \{a^n b^n c^n : n > = 0\}$ is not a context free language. (CO2)