Problem (1.4)

The problem sotup is just like on Honework 1, The only difference is you have an added assumption:

Thus, following from homework 1 / lecture:

$$P(E_1,...,E_N|AA) = TTP(E_i=0|AA)$$
 $TTP(E_i=1|AA)$

$$= P(E_i=0|AA)^{N_A}P(E_i=1|AA)^{N_B}$$

$$= P(E_i=0|AA)^{N_A}P(E_i=1|AA)^{N_B}$$

Mue NA = # of As we observe, NB = # of Bs

Problem (1.5)

Sare as (a), just a litterest numerator!

P(AA) E,..., EN | AA) P(AA) + P(E,..., EN | AB) P(AB)

 $=\frac{\left(1-e^{\int_{N}^{N}\Phi}e^{N-N_{\alpha}}P(AA)\right)}{\left(\frac{1}{2}\right)^{N}P(AB)+\left(1-e^{\int_{N}^{N}\Phi}e^{N-N_{\alpha}}P(AA)\right)}$

Note (10)
$$P(E_{1},...,E_{N}|AA) = \prod_{i:A} P(E_{i}=0|AA) = \prod_{i:A} P(E_{i}=0|$$

$$P(AA)E_{1,...,E_{N}} = \frac{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N\left(\frac{1}{2}\right)}}{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N\left(\frac{1}{2}\right)} + \left(\frac{1}{2}\right)^{N_{2}}z}$$

$$\frac{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N\frac{1}{2}}+\left(\frac{1}{2}\right)^{N_{A}}e^{N}}{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N}+\left(\frac{1}{2}\right)^{N}}=\frac{1}{2}$$

$$\frac{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N}+\left(\frac{1}{2}\right)^{N}}{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N}}+\frac{\left(\frac{1}{2}\right)^{N}}{\left(\frac{1-e}{e}\right)^{N_{A}}e^{N}}=\frac{1}{2}$$

$$\frac{1}{2^{N}} = \frac{1}{2^{N-1}} = \frac{1}{2^{N-1}} = \frac{1}{2^{N-1}}$$

$$\frac{1}{(\frac{1-e}{e})^{N-1}} e^{N} = \frac{1}{2^{N-1}} = \frac{1}{2^{N-1}}$$

$$\frac{d}{(1-\alpha)e^{N}2^{N}} = \frac{1-e}{e} \frac{(1-e)^{N}4}{1} = \frac{1}{1} \frac{1}{1} \frac{d}{d} \frac{d}{d}$$

Problem (1.d)

Our solution from (Ic) is a function of d, N, and e:

Since N and e are given, me can si-ply plot NA as a function of di

Problem (le)

We veril to account for case BB, which transdess/homework 1:

Note, giver the description, we know NA=0, so,

$$= \frac{(1-e)^{N} P(BB)}{(1-e)^{N} P(BB) + (\frac{1}{2})^{N} P(AB) + e^{N} P(AB)}$$

flip borh sides:

$$\int + \left(\frac{1}{2}\right)^{N} \frac{P(AB)}{P(BB)} + \left(\frac{e}{1-e}\right)^{N} \frac{P(AA)}{P(BB)} = \frac{1}{2}$$

F:x: J e = 0.05, P(AA) = PAB) = 0.4995, P(BB) = 0.00),

Problem 2 Problem (2.a)

Giver the Kners, I can draw the "rowe" graph w/o collapsing.

Bost practice is to "compres" The graph. Let's just use multiedges

Alternatuely:

Problem (2.6) We will use the multipedge version from (a) to be a bit more explicit

Then are a few possibilities. 1.) Then is an error. 2.) your prod. Scrawd up I nearly to give you the sequence 6CGHA.

Lets work under ass. (2). This case is strongth forward as then is one path. Lets number a color the nodes are visit.

Pseudoal:sourt:

$$\frac{0}{2} \wedge \frac{2}{3} = - , so \text{ clerty } f_1.$$

The problem does not state formed/snorse, so we can proted they are in the formed strand only as long as we are explicit about this assumption.

Pables (2.c)

Because re know all reads com from the formed Strand, Alux :> only on possibility.

Pseudoalismurt:

Pabler (2 d)

Then are a few words to deal with this. See disc.

Week 6 for graph alternatives. The easiest (& slowest) is to
take the reverse complent of the read:

Rad: TTTT

Rev. comp: AAAA

The pseudoalismum to the direct observation is in (2c). Below is the PA for the second complement.

Pseudool:smit:

Now, we need to "combine" The information Souther. One way is the union!

We see that this read is ambiguous given the protocol.

Pablem (2e)

Again, a few different ways to do this problem.

The ket here is to realize that the sequences show man portions because of the reverse co-volumentority.

In fact, no 4-ner exists that will allow us to viriguely resolve the real:

ti: AAAA (GCGAAAA

E, r.c. TTT(6(6TT))

t2: TTTT [6(6TTT

to c.c.: AAACGCG AAAA

By talking the reverse complement of both transcripts, we see that every 4-ner of to, is in the reverse co-plement of tz. So, we have shown that there is no position of legth 4 that enables us to uniquely identify the transcript.