Министерство образования и науки Российской Федерации ФГАОУ ВПО «УрФУ имени Президента России Б.Н. Ельцина» Институт радиоэлектроники и информационных технологий Кафедра информационных технологий

Оценка работы	
Руководитель от УрФУ	

РАЗРАБОТКА ПО ДЛЯ АВТОМАТИЗАЦИИ КОНФИГУРИРОВАНИЯ СЕТЕВОГО ОБОРУДОВАНИЯ CISCO

Отчет по преддипломной практике

Руководители от предприятия Трофимов С.П. Студент Черетаев И.В. Специальность Информатика и вычислительная

техника

Группа РИ-420207

ОГЛАВЛЕНИЕ

BE	ВЕДЕ	НИЕ .		4
1.	Обзо 1.1 1.2 1.3 1.4	Cisco GNS3 Boson	Packet Tracer	6 6 7 8 9
2.	Выбе 2.1 2.2 2.3	Code::	рументальной системы разработки ПО	12 12 12 13
3.	Техн 3.1		е заданиее сведения	14 14
		3.1.2 3.1.3	Краткая характеристика области применения Перечень документов, на основании которых созда-	14
		3.1.4	ется система	14 14
	3.2		чение разработки	14 14 15
	3.3		зания к программному средству	15 15 15
		3.3.3	Требования к информационной и программной совместимости	15
		3.3.4	Требования к исходным кодам и языкам программирования	16
		3.3.5	Специальные требования	16

3.4	3.4 Стадии и этапы разработки		
	3.4.1 Стадии разработки	16	
	3.4.2 Этапы разработки	16	
	3.4.3 Содержание работ по этапам	16	
3.5	Порядок защиты и контроля	17	
3.6	Требования к программной докуменации	17	
	3.6.1 Предварительный состав программной документации	17	
3.7	Источники разработки	17	
ЗАКЛК	ОЧЕНИЕ	19	
Список	использованных источников	19	

ВВЕДЕНИЕ

Во второй половине прошлого века в связи с «рождением» первых вычислительных сетей произошла очередная научно-техническая революция. Появилась возможность начать использование рассредоточенной обработки данных, обширно использовать для автоматизации различных видов деятельности новые технологии. В наши дни даже маленький ребенок имеет представление о компьютерных сетях, и, в то же время, наладка сетевого оборудования является довольно кропотливым делом, которое не терпит небрежного отношения.

В наше время происходит активное применение сетевых решений во многих сферах деятельности. В условиях производства, на различных предприятиях, в офисах компаний, различных фирмах и учреждениях отдельно стоящий, не подключенный к сети компьютер является большой редкостью. Можно смело заявлять, что через какое-то время большая часть компьютеров будет включено в те или иные сети. Если же подобной сети в учреждении нет или она плохо развита, нет сомнений, что ей придется развиваться.

Основным моментом в данном вопросе является технический прогресс, постоянно обеспечивающий нас новыми возможностями, но накладывающим на технических специалистов высокие требования, в частности — необходимость повышенной адаптивности. Несмотря на это, для специалистов наладка сетевого оборудования являет собой одно из основных направлений, где качество безоговорочно удерживает пальму первенства по важности.

Одним из представителей компаний-производителей сетевого оборудования является Cisco Systems. Cisco Systems — компания-производитель сетевого оборудования, основанная в 1984. Сначала компания производила маршрутизаторы, но затем значительно расширила ассортимент своей продукции. В настоящее время она производит коммутаторы, маршрутизаторы, IP-телефоны, программное обеспечение для своего оборудования.

Огромное сообщество сетевых администраторов, ІТ-специалистов, сту-

дентов не всегда хочет привлекать квалифицированных специалистов Cisco для того, чтобы быстро запустить какой-либо проект на оборудовании Cisco. Они обычно нуждается в простом, работающем решении, позволяющее им не посвящать остаток жизни изучению всех тонкостей сетевых технологий, маршрутизации, информационной безопасности, беспроводной связи и т.д.

Соответственно, необходимо решение, которое быстро и легко поможет настроить оборудование Cisco и решить данные проблемы.

1. ОБЗОР СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Рассмотрим несколько приложений, решающих задачу автоматизации конфигурирования сетевого оборудования Cisco.

Сначала несколько слов по терминологии.

Симуляторы — реализуют статичное множество команд, но, только пользователь выходит за рамки возможного, выдают сообщение об ошибке. Классическим примером является Cisco Packet Tracer.

Эмуляторы — дают возможность выполнять команды образов настоящих устройств, порой без заметных урезаний функциональности. Эмулятором, к примеру, является GNS3/Dynamips.

1.1. Cisco Packet Tracer

Начнем обзор с Packet Tracet (см рис. 1) – официального выпускаемого Cisco программного обеспечения. Данный продукт доступен в версиях как для Windows, так и для Linux, бесплатно для учащихся Сетевой Академии Cisco.

Вся настройка осуществляется при помощи логической диаграммы сети, для моделирования доступен большой набор оборудования, выпускаемого Cisco и не только (маршрутизаторвы, коммутаторы, персональные компьютеры и многое другое).

Достоинства Packet Tracet — дружественность и логичность интерфейса. Также, в нем удобно проверять функционирование различных сетевых сервисов, например DHCP или DNS. И одно из самых интересных преимуществ — это возможность перейти в режим симуляции и увидеть все действия с пакетами с использованием замедления времени.

Однако, стоит заметить, что реализованная функциональность устройств ограничена и не предоставляет всех возможностей реального оборудования. Большим минусом является тот факт, что некоторые команды не поддерживает. Почти всё, что не входит в программу изучения ССNA, на нем собрать не получится.

Рисунок 1. Cisco Packet Tracer.

1.2. GNS3

Следующий продукт в обзоре — GNS3, представляющий собой графический интерфейс, написанный на Qt, для эмулятора dynamips (см. рис. 2). Является свободно распространяемым проектом и доступен под следующими операционными системами: Linux, Windows и Mac OS X.

В то же время, большинство его функций, призванных улучшить производитель- ность, работают только под Linux, 64 битная версия так же только для Linux.

Это эмулятор, который работает с оригинальными прошивками IOS. Это означает, что для использования GNS3, вам необходимо иметь в наличии реальные образы.

Так же имеется несколько других недостатков:

- ограниченное число платформ;
- невозможность полноценно использовать коммутаторы Catalyst;
- уменьшение производительности при использовании огромного ко-

Рисунок 2. GNS3.

личества устройств.

1.3. Boson NetSim

Доступен в версии только для Windows, цена колеблется от 179CCNA349 за CCNP.

Выступает в роли набора лабораторных работ, объединенных по темам экзамена. Интерфейс разделен на нескольких разделов: постановка задачи, карта сети, в левой части находится список доступных лабораторных работ (см. рис. 3).

По завершении работы, можно получить результат и узнать все ли было сделано.

Присутствует возможность создания собственных топологий, с некоторыми ограничениями.

Ключевые возможности Boson NetSim:

- поддержка 42 маршрутизаторов, 6 коммутаторов;
- симуляция сетевого трафика при помощи технологии виртуальных пакетов;
- два режима просмотра: telnet или подключение по консоли;

Рисунок 3. Boson NetSim.

• возможность создания собственных лабораторий.

1.4. Cisco IOU

Последний в этом списке это Cisco IOU (Cisco IOS on UNIX) — проприетарное Π O, которое официально не распространяется (см. рис. 4).

Существует мнение, что у Cisco есть возможность отследить и идентифицировать того, кто использует IOU. Известный факт состоит в том, что центр технической поддержки Cisco использует именно данных продукт.

Сначала был доступен только под Solaris, но затем был портирован и на Linux. В комплекте идут две основные части — 12iou и 13iou. Первая часть эмулирует канальный уровень и коммутаторы, вторая же — сетевой уровень и маршрутизаторы.

Настройка проводится путем редактирования конфигурационных файлов, недавно для него стал доступен также графический интерфейс.

Интерфейс довольно интуитивен, и позволяет выполнять почти все действия.

Включение на моделирование топологии, указанной на рис. 5, приводит примерно к 20% загрузке процессора.

Рисунок 4. Cisco IOU.

Рисунок 5. Пример топологии.

Надо сказать, данная топология предназначена для подготовки к сдаче экзамена на Cisco Certified Internetwork Expert.

Возможности IOU на самом деле очень широкие. В тоже время, некоторые проблемы на канальном уровне все же имеются. Для некоторых устройств, например, отсутствует возможность жестко выставить дуплексный режим, но это всё мелочи.

Таблица 1 - Сравнение существующих решений.

Наименование	Cisco Packet Tracer	GNS3	Boson NetSim	Cisco IOU
показателей				
Тип решения	симулятор	эмулятор	симулятор	симулятор
Ценовая поли-	доступен студентам	бесплатен	от 179\$ за CCNA и до	проприетарен
тика	сетевой академии		349\$ за CCNP	
	Cisco			
Версии ОС	Windows, Linux	Linux, Windows и	Windows	Solaris, Linux
		Mac OS X		

Общим недостатком представленных программных продуктов можно назвать излишнюю комплексность решения, вызванную попытками смоделировать полное поведение сетевых технологий, что, в свою очередь, вызывает дальнейшие сложности при освоении.

2. ВЫБОР ИНСТРУМЕНТАЛЬНОЙ СИСТЕМЫ РАЗРАБОТКИ ПО

В ходе прохождения преддипломной практики были рассмотрены несколько инструментальных сред разработки на С/С++. В связи с тем проект некоммерческий, в списке присутствуют только бесплатные программные продукты.

2.1. Code::Blocks

Разработчики Code::Blocks выбрали путь открытой архитектуры, позволив сторонним программистам повышать эффективность программы за счет собственных разработок (плагинов). Об одном из плагинов нужно сказать отдельно - wxSmith, который, по сути, является wxWidgets RAD инструментом, то есть позволяет создавать оконные формы и прочие графические объекты, используя библиотеку wxWidgets (библиотека wxWidgets устанавливается отдельно).

Плюсы Code::Blocks:

- подсветка кода;
- автозавершение кода;
- просмотрщик классов;
- быстрая система сборки (не требуются make-файлы);
- поддержка параллельных сборок.

2.2. Microsoft Visual Studio Express

Эта версия Visual Studio представляет собой набор урезанных средств разработки для языков Visual Basic, С# и С++, и обозначается Microsoft как инструментальная среда разработки начального уровня для тех лиц, кто не занимается профессионально программированием (школьников, студентов, любителей и т.д.).

Графический интерфейс и возможность создать оконные приложения присутствует, но возможность воспользоваться наработками компании в области оптимизации и рефакторинга кода почти отсутствует.

2.3. Qt Creator

Qt Creator является средой разработки для кроссплатформенного фреймворка Qt. Вследствие этого, нужно указать на следующие его возможности:

- интеграция дизайнера форм Qt и справочной системы Qt
- расширяемость (посредством плагинов)
- поддержка дебагеров GDB (графический фронтенд) и CDB
- подсветка кода с поддержкой нескольких языков и разметок

Таблица 2 - Сравнение IDE.

Наименование	Code::Blocks Microsoft Visual		Qt Creator
показателей		Studio Express	
Лицензия	GPL	Freeware	GPL
Кроссплат-	Да	Нет	Да
форменность			
Разработка	Да ¹	Да	Да
GUI			

Исходя из приведенных выше сведений, было принято решение, что приложение будет написано в среде Qt Creator с использованием кроссплатформенного фреймворка Qt на языке C++. Это позволит сократить время на разработку, избежать написания большого количества кода, посредством использования готовых библиотек. Использование библиотеки Qt также поможет создать удобный интерфейс, отличный от стандартного.

¹С использованием плагина wxSmith

3. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

3.1. Общие сведения

- 3.1.1. Полное наименование системы и ее условное обозначение Программное обеспечение для автоматизации конфигурирования сетевого оборудования Cisco. Условное обозначение AKCO[4].
 - 3.1.2. Краткая характеристика области применения

AKCO предназначено для автоматизации конфигурирования сетевого оборудования Cisco путем предоставления пользователю графического интерфейса с последующим получением набора команд, необходимых для внедрения изменений внесенных пользователем.

- 3.1.3. Перечень документов, на основании которых создается система
- 1) Приказ ректора УрФУ № _____ от "___"____ ____г.
 - 3.1.4. Перечень документов, на основании которых устанавливается порядок оформления и предъявления результатов работ
- 1) Методические указания по выполнению выпускной квалификационной работы бакалавра техники и технологий по направлению "Информатика и вычислительная техника"/ сост. А.Б.Николаев. Москва: МАДИ, 2010. 17 с.
- 2) Соколов С.С. Рекомендации по оформлению курсовых, выпускных и дипломных проектов (работ). Электронные методические указания Екатеринбург: Изд. УрФУ, 2010. 38 с.
 - 3.2. Назначение разработки
 - 3.2.1. Функциональное назначение

Функциональным назначением АКСО является предоставлению пользователю удобных инструментов для облегчения конфигурирования сетевого оборудования от компании Cisco Systems, таких как маршрутизаторы и/или коммутаторы.

3.2.2. Эксплуатационное назначение

АКСО предназначено для автоматизации процесса конфигурирования сетевого оборудования с целью получения исходного текста конфигурации либо автоматического применения внесенных с помощью АКСО изменений на сетевом оборудовании.

3.3. Требования к программному средству

3.3.1. Требования к функциям, выполняемым системой

- 1) Наличие основных моделей маршрутизаторов и коммутаторов.
- 2) Наличие редактора, позволяющего добавлять новые модели (в том числе, на основе уже существующих моделей), изменять и удалять существующие. Редактор должен обеспечивать возможность поиска в списке имеющихся моделей. Так же при помощи данного редактора должны производиться операции визуального изменения конфигурации для выбранного модели сетевого оборудования.
- 3) Наличие возможности экпорта/импорта выбранной конфигурации в виде XML-файла, содержащего все необходимые сведения.
- 4) Наличие возможности сохранения выбранной конфигурации в виде текстового файла, содержащего команды конфигурирования
- 5) Наличие справочную подсистему. Справка должна содержать краткую информацию о системе и ее возможностях, описание действий пользователя и получаемых результатов при работе с программным обеспечением.
 - 3.3.2. Требования к надежности функционирования и безопасности

Надёжность системы должна обеспечивать работоспособность в течение всего срока эксплуатации при бесперебойном питании ЭВМ. Программное обеспечение не должно содержать явных логических ошибок и функционировать без сбоев.

3.3.3. Требования к информационной и программной совместимости

AKCO должна иметь возможность функционировать под управлением различных операционных систем (Windows, Linux и т.д.).

3.3.4. Требования к исходным кодам и языкам программирования

Исходные коды программного средства должны быть реализованы на языке C++. В качестве интегрированной среды разработки программы должна быть использована среда Qt Creator.

3.3.5. Специальные требования

Программа должна обеспечивать взаимодействие с пользователем (оператором) посредством графического пользовательского интерфейса.

3.4. Стадии и этапы разработки

3.4.1. Стадии разработки

Разработка должна быть произведена в три стадии[3]:

- 1) Разработка технического задания;
- 2) Рабочее проектирование;
- 3) Внедрение;

3.4.2. Этапы разработки

На стадии рабочего проектирования должны быть выполнены перечисленные ниже этапы работ:

- 1) разработка АКСО;
- 2) разработка программной документации;
- 3) испытания АКСО.

На стадии внедрения должен быть выполнен этап разработки - подготовка АКСО.

3.4.3. Содержание работ по этапам

На этапе разработки АКСО должна быть выполнена работа по программированию (кодированию) и отладке программного обеспечения (АКСО).

На этапе разработки программной документации должна быть выполнена разработка программных документов в соответствии с требованием п. 3.6.1 настоящего технического задания.

На этапе испытаний АКСО должны быть выполнены перечисленные ниже виды работ:

- 1) проверка выполнения заданных функций АКСО;
- 2) выявления и устранения недостатков в АКСО и программной документации;
- 3) корректировка АКСО и программной документации по результатам тестирований.

На этапе подготовки AKCO должна быть выполнена работа по подготовке программного средства и программной документации для эксплуатации.

3.5. Порядок защиты и контроля

Защита осуществляется перед Государственной аттестационной комиссией (ГАК), утвержденной приказом ректора.

3.6. Требования к программной докуменации

3.6.1. Предварительный состав программной документации

Предварительный состав программной документации должен включать в себя[5]:

- 1) техническое задание;
- 2) текст программы;
- 3) описание программы;
- 4) пояснительную записку[1, 2];
- 5) руководство пользователя.
 - 3.7. Источники разработки
- 1) ГОСТ 19.201-78. Техническое задание, требования к содержанию и оформлению.
- 2) ГОСТ Р ИСО/МЭК 9294-93 Информационная технология. Руководство по управлению документированием программного обеспечения.
- 3) ISO/IEC 12207:2008 (ГОСТ Р) Системная и программная инженерия. Процессы жизненного цикла программных средств.
- 4) ISO/IEC 9126:1991 (ГОСТ Р) Информационные технологии. Оценка программного продукта. Характеристики качества и порядок их применения.

ЗАКЛЮЧЕНИЕ

Актуальность темы дипломной работы определяется быстрым ростом количества компаний, имеющих сложную информационную структуру. Наряду с этим возникает необходимость настройки огромного количества активного сетевого оборудования. Все эти факторы приводят к тому, что администраторам информационной инфраструктуры компании приходится тратить много времени на порой рутинные работы.

Цель дипломной работы состоит в разработке системы для автоматизированного создания конфигурационных файлов оборудования.

Поставленная цель обусловила следующие задачи дипломной работы:

- определить сущности проектируемой системы и архитектуру их взаимодействия;
- реализовать систему в виде кроссплатформенного приложения с графическим интерфейсом;
- провести тестированием в лабораторной среде.

Объектом исследования выступает сетевое оборудование Cisco Systems.

Предметом исследования в дипломной работе являются современные средства коммуникации и их интеграция в методы управления информационной инфраструктурой для повышения таких аспектов информационной безопасности предприятия, как целостность и доступность.

Теоретическая значимость дипломного исследования состоит в развитии и совершенствовании методологии управления оборудованием информационной инфраструктуры предприятия.

Практическая значимость работы определяется тем, что ее результаты позволяют повысить степень эффективности управления информационной инфраструктурой предприятия и снизить связанные с этим операционные расходы при использовании разработанной системы, направленной на повышение уровня таких аспектов администрирование, как быстрота и легкость обслуживания.

Новизна дипломной работы заключается в разработке и реализации кроссплатформенной модели автоматизации конфигурирования оборудования.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] С.С. Соколов. Рекомендации по оформлению курсовых, выпускных и дипломных проектов (работ). УрФУ, Екатеринбург, 2010.
- [2] А.Б. Николаев. Методические указания по выполнению выпускной квалификационной работы бакалавра техники и технологий по направлению «Информатика и вычислительная техника». МАДИ, Москва, 2010.
- [3] ISO/IEC 12207:2008 (ГОСТ Р). Системная и программная инженерия. Процессы жизненного цикла программных средств.
- [4] ГОСТ 19.201-78. Техническое задание, требования к содержанию и оформлению.
- [5] ГОСТ Р ИСО/МЭК 9294-93. Информационная технология. Руководство по управлению документированием программного обеспечения.