Intrusion Detection Project

2021.04.05 ~ 05.15

송주환 (Joowhan Song) juansong.77@gmail.com 82-10-6256-7540

Project overview

Objective

네트워크 패킷데이터 분석부터 공격 탐지 모델링까지의 Pipeline 구현

Development

- Source code: https://github.com/juansong/intrusion_detection.git
- Written in Python (Jupyter Notebook)
- Data preprocessing (pandas, Numpy, matplotlib, seaborn)
- Feature selection (scikit-learn)
- Model training (scikit-learn)
- Evaluation (scikit-learn, matplotlib)

Timeline

Data Preprocessing

- Dataset: CICIDS 2017 (2,830,743 x 79)
- Missing value (NaN, Inf, -Inf), duplicate 제거
- BENIGN(정상) 상태로만 측정된 요일 제거
- 필요없는 column 제거
- 데이터 용량 간소화 & 연산속도 증가를 위해 데이터 타입 축소
- SMOTE를 이용한 undersampling (handling imbalanced data)
- StandardScaler()를 이용한 standardization

Raw 데이터의 종속변수(Y) 빈도수 분포

BENIGN	2273097
DoS Hulk	231073
PortScan	158930
DDoS	128027
DoS GoldenEye	10293
FTP-Patator	7938
SSH-Patator	5897
DoS slowloris	5796
DoS Slowhttptest	5499
Bot	1966
Web Attack & Brute Force	1507
Web Attack • XSS	652
Infiltration	36
Web Attack • Sql Injection	21
Heartbleed	11
Name: Label, dtype: int64	

Feature Selection

- SelectKBest로 상위 39개 f-value score 확인

- Correlation Coefficient 비교를 위한 heatmap (16개 제거)

Feature Selection

- 상관계수로 feature 제거 이후, 23개 Feature만을 사용하여 model별 feature importance plot
- 최종으로 **12**개 feature 선별

Model Training

머신러닝 모델 학습 (SVM, Decision Tree, Random Forest, Gradient Boosting, XGBoost)

모델 평가 기준

정상상태(BENIGN)가 아닌 것을 맞다고 판단할 수 있는가?

- 데이터의 특성 고려 (imbalanced data)
- FN(공격을 정상상태로 판단) 여부가 중요
- Precision / Recall(정밀도 / 재현율)이 중요
- Precision-recall tradeoff 발생하므로 f1-score로 모델 평가

	Predicted O	Predicted 1		
Actual O	TN	FP		
Actual 1	FN	TP		

Evaluation

SVM Random Forest XGBoost

Classification			(in and		Classification			(Frank)		Classification			20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0 1 2	0.86 1.00 0.99	0.92 1.00 1.00	0.89 1.00 1.00	60 641 1768	0 1 2	1.00 1.00 1.00	0.98 1.00 1.00	0.99 1.00 1.00	60 641 1768	0 1 2	1.00 1.00 1.00	0.98 1.00 1.00	0.99 1.00 1.00	60 641 1768
3 4	1.00 1.00	0.83 1.00	0.91 1.00	103 2966	3	0.99 1.00	0.99 1.00	0.99 1.00	103 2966	3 4	1.00 1.00	0.99 1.00	1.00 1.00	103 2966
5 6	0.67 0.81	1.00	0.80 0.69	495 58	5 6	0.73 0.97	0.83 0.98	0.78 0.97	495 58	5 6	0.74 0.97	0.81 0.97	0.78 0.97	495 58
7	0.89	0.07	0.13	240	7	0.51	0.36	0.42	240	7	0.51	0.41	0.45	240
accuracy macro avg weighted avg	0.90 0.96	0.80 0.96	0.96 0.80 0.94	6331 6331 6331	accuracy macro avg weighted avg	0.90 0.96	0.89 0.96	0.96 0.89 0.96	6331 6331 6331	accuracy macro avg weighted avg	0,90 0,96	0.89 0.96	0.96 0.90 0.96	6331 6331 6331

Evaluation

Ensemble model (5개의 classifier를 hard vote)

Random Forest Classifier (max_depth = 40)

96% Accuracy 89% f1-score

		ccuracy 0720265		92				
Conf	usi	on matr	ix:					
]]	59	1	0	0	0	0	0	0]
[0	641	0	0	0	0	0	0]
[0	0 17	67	1	0	0	0	0]
[0	1	0	102	0	0	0	0]
[0	0	0	0	2966	0	0	0]
[0	0	0	0	0	414	1	80]
]	0	0	0	0	0	1	57	0]
[0	0	0	0	1	149	3	87]]

	precision	recall	f1-score	support
				W
0	1.00	0.98	0.99	60
1	1.00	1.00	1.00	641
2	1.00	1.00	1.00	1768
3	0.99	0.99	0.99	103
4	1.00	1.00	1.00	2966
5	0.73	0.84	0.78	495
6	0.93	0.98	0.96	58
7	0.52	0.36	0.43	240
accuracy			0.96	6331
macro avg	0.90	0.89	0.89	6331
weighted avg	0.96	0.96	0.96	6331

The End