

BDT305

Lessons Learned and Best Practices for Running Hadoop on AWS

Amandeep Khurana

November 13, 2014 | Las Vegas, NV

About me

- Principal Solutions Architect @ Cloudera
- Engineer @ AWS
- Co-author, HBase in Action

Agenda

- Motivation
- Deployment paradigms
- Storage
- Networking
- Instances
- Security
- High availability, backups, disaster recovery
- Planning your cluster
- Available resources

Why you should care

- Parallel trends
 - Commoditizing infrastructure
 - Commoditizing data
- Worlds converging... but with considerations
 - Cost
 - Flexibility
 - Ease of use
 - Operations
 - Location
 - Performance
 - Security

Intersection

The devil...

Primary consideration – Storage (source of truth)

Amazon S3

- Ad-hoc batch workloads
 - SLA batch workloads

Predominantly transient clusters

HDFS

- Ad-hoc batch workloads
 - SLA batch workloads
- Ad-hoc interactive workloads
 - SLA interactive workloads

Long running clusters

Deployment models

	Transient clusters	Long-running clusters
Primary storage substrate	S3 or remote HDFS	HDFS
Backups	S3	S3 or second HDFS cluster
Workloads	 Batch (MapReduce, Spark) Interactive is an antipattern 	 Batch (MapReduce, Spark) Interactive (HBase, Solr, Impala)
Role of cluster	Compute only	Compute and storage

Storage

Access pattern, performance

Storage considerations

Hadoop paradigm:

Bring compute to storage

Storage choices in AWS

- Instance store
 - Local storage attached to instance
 - Temporary
 - Instance dependent (not configurable)
- Amazon Elastic Block Store (EBS) Block-level storage volume
 - External to instance
 - Lifecycle independent of instance
- Amazon Simple Storage Service (S3) BLOB store
 - External data store
 - Simple API Get, Put, Delete
 - Instance dependent bandwidth

Interacting with S3

- In MapReduce jobs by using s3a URI
- Distcp
 - hadoop distcp <options> hdfs:///foo/bar s3a:///mybucket/foo/
- HBase snapshot export

Interacting with S3 – how it works

- Multiple implementations in the Hadoop project
 - S3 (block based)
 - S3N (file based, using jets3t)
 - S3A (file based, using AWS SDK) ←Latest stuff
- Bandwidth to S3 depends on instance type
 - <200 MB/s per instance on some of the larger ones
- Process

Optimizing S3 interaction

- Tune
- Parallelize
- Writing to S3
 - Multi-part upload for > 5 GB files
 - Pick multiple drives for local staging (HADOOP-10610)
 - Up the task timeouts when writing large files
- Reading from S3
 - Range reads within map tasks via multiple threads
- Large objects are better (less load on metadata lookups)
- Randomize file names (metadata lookups are spread out)

HDFS in AWS

- Ephemeral drives on Amazon EC2 instances
- Persistent for as long as the instances are alive (no pausing)
- Use S3 for backups
- No EBS
 - Over the network
 - Designed for random I/O

Networking

Performance, access, and security

Topologies – Deploy in Virtual Private Cloud (VPC)

Cluster in public subnet

Cluster in private subnet

Performance considerations

- Instance <-> Instance link
 - 10G
 - 10G + SR-IOV (HVM)
 - !10G
- Instance <-> S3 (equal to instance to public internet)
- Placement groups
 - Performance may dip outside of PGs
- Clusters within a single Availability Zone

EC2 instances

Storage, cost, performance, availability, and fault tolerance

Picking the right instance

Transient clusters

- Primary considerations:
 - Bandwidth
 - CPU
 - Memory
- Secondary considerations
 - Availability and fault tolerance
 - Local storage density
- · Typical choices
 - C3 family, M3 family, M1 family
 - Anti pattern to use storage dense

Long running clusters

- Primary considerations
 - Local storage is key
 - CPU
 - Memory
 - Availability and fault tolerance
 - Bandwidth
- Typical choices
 - hs1.8xlarge, cc2.8xlarge, i2.8xlarge

Amazon Machine Image (AMI)

- 2 kinds PV and HVM.
- Pick a dependable base AMI
- Things to look out for
 - Kernel patches
 - Third-party software and library versions
- Increase root volume size

Security

Security considerations

- Amazon Virtual Private Cloud (VPC) options
 - Private subnet
 - All traffic outside of VPC via NAT
 - Public subnet
- Network ACLS at subnet level
- Security groups
- EDH guidelines for Kerberos, Active Directory, and Encryption
- S3 provides server-side encryption

High Availability, Backups, Disaster Recovery

HA, Backups, DR

- High Availability available in the Hadoop stack
 - Run Namenode HA with 5 Journal Nodes
 - Run 5 Zookeepers
 - Run multiple HBase masters
- Backups and disaster recovery (based on RPO/RTO requirements)
 - Hot backup: Active-Active clusters
 - Warm backup: S3
 - Hadoop level snapshots HDFS, HBase
 - Cold backup: Amazon Glacier

Planning your cluster

Capacity, performance, access patterns

- Bad news no simple answer. You have to think through it.
- Good news mistakes are cheap. Learn from ours to make them even cheaper.
- Start with workload type (ad-hoc / SLA, batch / interactive)
- How much % of the day will you use your cluster?
- How much data do you want to store?
- What are the performance requirements?
- How are you ingesting data? What does the workflow look like?

To make life easier

- Just released Cloudera Director!
- AWS Quickstart
- Available resources
 - Reference Architecture (just refreshed)
 - Best practices blog

cloudera

Thank you We are hiring!

Opportunities

- Smarter with topology
- Amazon EBS as storage for HDFS
- Deeper S3 integration
- Amazon Kinesis integration
- Workflow management

Please give us your feedback on this session.

Complete session evaluations and earn re:Invent swag.

BDT305

http://bit.ly/awsevals

Join the conversation on Twitter with #reinvent