Tipos de Distribuciones de Probabilidad

Se dividen en discretas y continuas:

Tipo	Características	Ejemplo
Discretas	Valores enteros y contables	Número de ventas diarias, cantidad de errores en un proceso.
Continuas	Valores reales dentro de un rango	Alturas de personas, tiempos de espera, temperaturas.

🚺 Distribución Uniforme (discreta o continua)

📌 Cuando cada resultado tiene la misma probabilidad de ocurrir.

Ejemplo:

- Dado justo: P(X=1) = P(X=2) = ... = P(X=6) = 1/6.
- Reloj analógico: La aguja tiene la misma probabilidad de estar en cualquier posición entre 0° y 360°.
- Gráficamente, en la distribución discreta es una línea plana (barras del mismo tamaño).
- ★ ¿Cuándo se usa?

Cuando los resultados son equiprobables, como en juegos de azar o simulaciones.

2 Distribución Binomial (discreta)

★ Cuando hay solo dos resultados posibles (éxito o fracaso) en un experimento repetido varias veces.

Ejemplo:

- Lanzar una moneda 10 veces y contar cuántas veces cae cara.
- Evaluar si un correo es spam o no spam.
- Encuestas: ¿Una persona comprará un producto (sí/no)?

📌 Fórmula:

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Donde:

- n = número de intentos.
- k = número de éxitos.
- p = probabilidad de éxito.

★ ¿Cuándo se usa?

Para modelar sí/no, éxito/fracaso, compra/no compra, defectuoso/no defectuoso, etc.

Distribución de Poisson (discreta)

Cuando se cuenta cuántas veces ocurre un evento en un intervalo de tiempo o espacio.

- **Ejemplo:**
- Número de clientes en una tienda por hora.
- Número de errores en 100 líneas de código.
- Número de llamadas recibidas en un call center por minuto.
- ★ ¿Cuándo se usa?

Cuando los eventos ocurren aleatoriamente a lo largo del tiempo o el espacio.

Distribución Normal (continua)

- 📌 Cuando los datos se distribuyen en forma de campana.
- Ejemplo:
- Alturas de personas.
- · Notas de exámenes.
- Tiempo de vida de un producto.
- **★** Propiedades:
 - Simétrica alrededor de la media.
- El 68% de los valores están dentro de 1 desviación estándar de la media.
- ★ ¿Cuándo se usa?

Es la más común en el mundo real, se usa en estadísticas, finanzas, ciencia de datos, etc..

Código en Python

Este código generará datos simulados para cada distribución y los visualizará con histogramas y curvas de densidad.

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import binom, poisson, norm, uniform
# Configuración de la figura
plt.figure(figsize=(12, 8))
# 11 Distribución Uniforme
plt.subplot(2, 2, 1)
datos_uniforme = np.random.uniform(0, 10, 1000) # Números aleatorios entre 0 y 10
sns.histplot(datos_uniforme, bins=30, kde=True, color="blue")
plt.title("Distribución Uniforme")
# 2 Distribución Binomial
plt.subplot(2, 2, 2)
n, p = 10, 0.5 # 10 intentos, probabilidad de éxito 50%
datos_binomial = binom.rvs(n, p, size=1000)
sns.histplot(datos_binomial, bins=10, kde=False, color="green")
plt.title("Distribución Binomial")
# 3 Distribución de Poisson
plt.subplot(2, 2, 3)
lambda_poisson = 5 # Media esperada de ocurrencias
datos_poisson = poisson.rvs(lambda_poisson, size=1000)
sns.histplot(datos_poisson, bins=15, kde=False, color="red")
plt.title("Distribución de Poisson")
# 4 Distribución Normal
plt.subplot(2, 2, 4)
media, desviacion = 0, 1 # Media = 0, Desviación estándar = 1
datos_normal = np.random.normal(media, desviacion, 1000)
sns.histplot(datos_normal, bins=30, kde=True, color="purple")
plt.title("Distribución Normal")
plt.tight_layout()
plt.show()
```


Explicación del Código

- 1. Generamos datos aleatorios para cada distribución usando numpy y scipy.stats.
- 2. Creamos histogramas con seaborn.histplot() para visualizar la frecuencia de los valores.
- 3. **Usamos KDE (Kernel Density Estimation)** para suavizar la visualización de distribuciones continuas.
- 4. Organizamos las gráficas en una cuadrícula con plt.subplot().

¡¡Qué observarás en los gráficos?

- Uniforme: Valores distribuidos equitativamente en el rango 0-10.
- **Binomial:** Datos agrupados en valores enteros, con una distribución parecida a una campana.
- Poisson: Valores sesgados a la izquierda, con una cola larga a la derecha.
- Normal: Forma clásica de campana, centrada en la media 0.