

# Investigating Diagonalizable Matrices Modulo m

## Dylan Stover

Advisor: Dr. Brian Sittinger

California State University, Channel Islands

#### 1. Introduction

In most introductory courses to Linear Algebra, one works with matrices over a field (usually  $\mathbb{R}$  or  $\mathbb{C}$ ), and a major topic from an introductory course concerns diagonalizing a matrix. It is well-known that in this context, this diagonalization, when it exists, is unique up to the order of the diagonal elements. Instead of working over a field, we investigate whether this fact is still true if we work over the ring  $\mathbb{Z}_m$ , especially in the case where m is not a prime number.

#### 2. Definitions and Notation

- Let  $\mathbb{Z}_m = \{0, 1, ..., m-1\}$  denote the ring of integers modulo m.
- Let  $M_n(\mathbb{Z}_m)$  denote the set of  $n \times n$  matrices whose entries are in  $\mathbb{Z}_m$ .
- Let  $GL_n(\mathbb{Z}_m)$  denote the set of invertible matrices in  $M_n(\mathbb{Z}_m)$ .
- A is **similar** to B if  $A=PBP^{-1}$  where  $B\in M_n(\mathbb{Z}_m)$  and  $P\in GL_n(\mathbb{Z}_m)$ .
- A is diagonalizable (over  $\mathbb{Z}_m$ ) if A is similar to a diagonal matrix  $D \in M_n(\mathbb{Z}_m)$ .

• For notational shorthand to the diagonal matrix 
$$D=egin{pmatrix} d_1&0&0&...&0\\0&d_2&0&...&0\\0&0&d_3&...&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&d_4 \end{pmatrix}$$
 , we can express this

compactly as  $D = diag(d_1, d_2, ..., d_n)$ .

#### 3. Unique Diagonalization modulo $p^k$

We start by examining the case when  $m=p^k$  where p is a prime number and  $k\in\mathbb{N}$ . Since  $\mathbb{Z}_p$  is a field, classic results from Linear Algebra readily imply that if  $A\in\mathbb{Z}_p$  is diagonalizable over  $\mathbb{Z}_p$ , then it is unique up to ordering of its diagonal entries. The following theorem extends this result to  $\mathbb{Z}_{p^k}$ .

**Theorem 3.1.** Any diagonalizable matrix over  $\mathbb{Z}_{p^k}$  is unique up to ordering of its diagonal entries.

*Proof.* Suppose that  $D, D' \in M_n(\mathbb{Z}_{p^k})$  are diagonal matrices such that  $D' = PDP^{-1}$  for some  $P \in GL_n(\mathbb{Z}_{p^k})$ . Writing  $D = \operatorname{diag}(d_1, \ldots, d_n)$ ,  $D' = \operatorname{diag}(d'_1, \ldots, d'_n)$ , and  $P = (p_{ij})$ , we see that  $D' = PDP^{-1}$  rewritten as PD = D'P yields  $p_{ij}d_i = p_{ij}d'_i$  for all i, j.

Since  $P \in GL_n(\mathbb{Z}_{p^k})$ , we know that  $\det P \in \mathbb{Z}_{p^k}^*$ , and thus  $\det P \not\equiv 0 \bmod p$ . However, since  $\det P = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_i p_{i,\sigma(i)}$ , and the set of non-units in  $\mathbb{Z}_{p^k}$  (which is precisely the subset of elements congruent to  $0 \bmod p$ ) is additively closed, there exists  $\sigma \in S_n$  such that  $\prod_i p_{i,\sigma(i)} \in \mathbb{Z}_{p^k}^*$  and thus  $p_{i,\sigma(i)} \in \mathbb{Z}_{p^k}^*$  for all i.

Then for this choice of  $\sigma$ , it follows that  $p_{i,\sigma(i)}d_i = p_{i,\sigma(i)}d'_{\sigma(i)}$  for each i, and since  $p_{i,\sigma(i)} \in \mathbb{Z}_{p^k}^*$ , we deduce that  $d_i = d'_{\sigma(i)}$  for each i. In other words,  $\sigma$  is a permutation of the diagonal entries of D and D', giving us the desired result.

#### 4. Diagonalization modulo *m*

The next natural question is whether a diagonalization of a matrix  $A \in M_m(\mathbb{Z}_m)$  (if it exists) is unique if m has more than two prime divisors. This is not the case.

**Example:** Consider  ${2 \ 3 \choose 4 \ 3} \in M_2(\mathbb{Z}_6)$ , which has two distinct diagonalizations

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix}^{-1}.$$

An observation that leads to unraveling this surprise is the following. Noting that  $6 = 2 \cdot 3$ , reducing the two diagonal matrices occurring modulo 6 to the smaller moduli 2 and 3 yields

| Diagonal matrix mod 6 | Reduction mod 2                               | Reduction mod 3 |
|-----------------------|-----------------------------------------------|-----------------|
| (2 0)                 | $\langle 0 \ 0 \rangle$                       | (2 0)           |
| $\left(0\ 3\right)$   | $\left(\begin{array}{c} 0 \end{array}\right)$ | (0 0)           |
| $\sqrt{50}$           | $\langle 1 \ 0 \rangle$                       | (2 0)           |
| (00)                  | (00)                                          | (00)            |

By Theorem 3.1, we should expect for the diagonal matrices modulo 2 and 3 to be essentially the same, up to the ordering of the diagonal entries. However, the two diagonalizations have arisen precisely because we used a different diagonal ordering on one of the two reductions.

#### 5. Enumerating Diagonalizable Matrices Modulo m, special case

Noting that we can always consider the reductions of a matrix modulo m to any one of its prime power divisors, one is lead to the following theorem. For technical reasons, we assume that the diagonalization over  $\mathbb{Z}_m$  has distinct diagonal entries.

**Theorem 5.1.** Let  $m = \prod_{j=1}^r p_j^{k_j}$ , where  $p_1, \ldots, p_r$  are distinct primes. Suppose that  $A \in M_n(\mathbb{Z}_m)$  is similar to a diagonal matrix D with distinct diagonal entries. If  $D \mod p^k$  has  $t_p$  distinct diagonal entries having respective multiplicities  $m_1^{(p)}, \ldots, m_{t_p}^{(p)}$  for each  $p \mid m$  where  $p^k \mid m$ , then A has

$$\frac{1}{n!} \cdot \prod_{p \mid m} \frac{n!}{m_1^{(p)}! \cdot \ldots \cdot m_{t_n}^{(p)}!}$$

distinct diagonalizations, up to ordering of diagonal entries, in its similarity class.

*Proof.* Given a diagonal matrix  $D \in M_n(\mathbb{Z}_m)$ , we know that for each  $p \mid m$  where  $p^k \mid \mid m$ ,  $D \mod p^k$  is unique up to its order of diagonal entries by Theorem 3.1. If we apply the Chinese Remainder Theorem (CRT) to  $D \mod p_1^{k_1}, \ldots, D \mod p_r^{k_r}$  entrywise, we retrieve D. However, if we rearrange the entries in each of matrices, but not in the same manner, applying the CRT yields a different diagonal matrix in  $M_n(\mathbb{Z}_m)$ . Since there are  $\prod_{p\mid m} \frac{n!}{m_1^{(p)}! \cdot \ldots \cdot m_{t_n}^{(p)}!}$  ways to perform such

a rearrangement, and there are n! ways to arrange the entries of the resulting matrix in  $M_n(\mathbb{Z}_m)$ , the result immediately follows.

#### 6. Another Example

To illustrate Theorem 5.1, we consider the following matrix  $A \in \mathbb{Z}_{360}$ :

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 12 & 0 & 0 \\ 0 & 0 & 313 & 0 \\ 0 & 0 & 0 & 84 \end{pmatrix}$$

Since 360 has prime factorization  $2^3 \cdot 3^2 \cdot 5$ , we consider the reductions of A modulo 5, 8, and 9. These are given in the table below.

| Reduction mod 5                          | Reduction mod 8                                              | Reduction mod 9                               |
|------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|
| /1000                                    | /1000                                                        | /1000                                         |
| 0 2 0 0                                  | $\left(\begin{array}{cccc} 0 & 4 & 0 & 0 \end{array}\right)$ | 0 3 0 0                                       |
| 0030                                     | 0010                                                         | 0070                                          |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\setminus 0 0 0 4$                                          | $\begin{pmatrix} 0 & 0 & 0 & 3 \end{pmatrix}$ |

Next, we count the number of arrangements of the diagonal entries to A occurring in each of the reductions. For A modulo 5, the diagonal entries can be arranged in 4! ways, for A modulo 8, the diagonal entries can be arranged in  $\frac{4!}{2! \, 2!}$  ways (since it has two diagonal entries both occurring twice),

and for A modulo 9, the diagonal entries can be arranged in  $\frac{4!}{2!}$  ways. Keeping in mind that A has 4! arrangements of its diagonal entries, we conclude that there are

$$\frac{1}{4!} \cdot \left( 4! \cdot \frac{4!}{2! \, 2!} \cdot \frac{4!}{2!} \right) = 72$$

distinct diagonal matrices belonging in the same similarity class over  $\mathbb{Z}_{360}$ .

#### 7. Future Directions

- If a square matrix is diagonalizable over  $\mathbb{Z}_m$  where m has at least two distinct prime factors and the diagonal matrix has *repeated* diagonal entries, then how many diagonalizations does it have?
- The proof to Theorem 3.1 can readily be adapted to show that any diagonalizable matrix over any commutative *local* ring R (a ring with a unique maximal ideal) is unique up to ordering of its diagonal entries. How much further can we generalize this theorem?
- Working modulo m, assume that a square matrix  $A \in M_n(\mathbb{Z}_m)$  admits a "Jordan Canonical Form", that is, A is similar to a block diagonal matrix whose diagonal blocks are either diagonal matrices or have the form of a Jordan matrix

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Under what conditions is this Jordan Canonical Form unique?

### References

- [1] Brown, Matrices Over Commutative Rings. Marcel Dekker, Inc., New York (1993).
- [2] Falvey, Hah, Sheppard, Sittinger, Vicente, Enumerating Diagonalizable Matrices Over  $\mathbb{Z}_{p^k}$ . Involve Vol. 13 (2020), No.2, 323-344.