CONVERSION FACTORS FOR CHEMICAL KINETICS

Equivalent second order rate constants

A	cm³ mol-1 s-1	dm³ mol-1 s-1	m ³ mol ⁻¹ s ⁻¹	cm³ molecule-1 s-1	(mm Hg)-1	atm ⁻¹ s ⁻¹	ppm ⁻¹ min ⁻¹	m² kN-1 s-1
l cm ³ mol ⁻¹ s ⁻¹ =	1	10-3	10-4	1.66 × 10 ⁻²⁴	1.604 × 10 ⁻⁵ T ⁻¹	1.219 × 10 ⁻² T ⁻¹	2.453 × 10-°	1.203 × 10 ⁻⁴ T ⁻¹
l dm3 mol-1 s-1 ==	103	1	10-3	1.66 × 10 ⁻²¹	1.604 × 10 ⁻² T ⁻¹	12.19 <i>T</i> -1	2.453 × 10 ⁻⁶	1.203 × 10 ⁻¹ T ⁻¹
l m ³ mol ⁻¹ s ⁻¹ =	104	103	1	1.66 × 10 ⁻¹⁸	16.04 T-1	1.219 × 104 T-1	2.453 × 10 ⁻³	120.3 T-1
1 cm³ molecule ⁻¹ s ⁻¹ =	6.023 × 10 ²³	6.023 × 10 ²⁶	6.023 × 10 ¹⁷	1	9.658 × 10 ¹⁶ T ⁻¹	7.34 × 10 ²¹ T ⁻¹	1.478 × 10 ¹⁵	7.244 × 1019 T-1
l (mm Hg) ⁻¹ s ⁻¹ =	6.236 × 10* T	62.36 T	6.236 × 10 ⁻² T	1.035 × 10 ⁻¹⁹ T	1	760	4.56 × 10 ⁻²	7.500
l atm-1 s-4	82.06 T	8.206 × 10 ⁻² T	8.206 × 10 -5 T	1.362 × 10-22 T	1.316 × 10-3	1	6×10-5	9.869 × 10 ⁻³
1 ppm ⁻¹ min ⁻¹ = at 298 K, 1 atm total pressure	4.077 × 10 ⁸	4.077 × 10 ⁵	407.7	6.76 × 10 ⁻¹⁴	21.93	1.667 × 104	1	164.5
1 m² kN-1 s-1 =	8314 T	8.314 T	8.314 × 10 ⁻³ T	1.38 × 10 ⁻²⁰ T	0.1333	101.325	6.079 × 10 ⁻³	1

To convert a rate constant from one set of units A to a new set B find the conversion factor for the row A under column B and multiply the old value by it, e.g. to convert cm³ molecule⁻¹ s⁻¹ to m³ mol⁻¹ s⁻¹ multiply by 6.023×10^{17} .

Table adapted from High Temperature Reaction Rate Data No. 5, The University, Leeds (1970).

Equivalent third order rate constants

A	cm ⁶ mol ⁻² s ⁻¹	dm ⁶ mol ⁻² s ⁻¹	m ⁶ mol ⁻² s ⁻¹	cm ⁶ molecule -2 s -1	(mm Hg)-2 s-1	atm -2 g-1	ppm-2 min-1	m4 kN-2 s-1
l cm ⁶ mol ⁻² s ⁻¹ =	1	10-4	10-12	2.76×10-48	2.57 × 10 ⁻¹⁰ T ⁻²	1.48 × 10 ⁻⁴ T ⁻²	1.003 × 10 ⁻¹⁹	1.447 ×10 ⁻⁸ T ⁻²
1 dm ⁶ mol ⁻² s ⁻¹ =	106	1	10-4	2.76×10-42	2.57 × 10 ⁻⁴ T ⁻²	148 T-2	1.003 × 10 ⁻¹³	1.447 × 10 ⁻² T ⁻²
1 m ⁶ mol ⁻² s ⁻¹ =	1012	10⁴	1	2.76×10-36	257 T-1	1.48 × 10 ⁶ T ⁻²	1.003 × 10-7	1.447 × 104 T-2
1 cm4molecule -2 s -1 ==	3.628 × 10 ⁴⁷	3.628 × 10 ⁴¹	3.628 × 10 ³⁵	1	9.328 × 10 ³⁷ T ⁻²	5.388 × 10 ⁴³ T ⁻²	3.64 × 10 ²⁶	5.248 × 10 ³⁹ T ⁻²
1 (mm Hg) ⁻² s ⁻¹ =	3.89 × 10° T²	3.89 × 10 ³ T ²	3.89 × 10 ⁻³ T ²	1.07 × 10 ⁻³⁸ T ²	1	5.776 × 10 ^s	3.46 × 10-5	56.25
l atm ⁻² s ⁻¹ =	6.733 × 10 ³ T ²	6.733 × 10 ⁻³ T ²	6.733 × 10 ⁻⁹ T ²	1.86 × 10-44 T ²	1.73 × 10-4	1	6×10-11	9.74 × 10 ⁻⁵
1 ppm ⁻² min ⁻¹ = at 298 K, 1 atm total pressure	9.97 × 1018	9.97 × 10 ¹²	9.97 ×10 ^a	2.75 × 10 ⁻²⁹	2.89 × 10 ⁴	1.667 × 101°	1	1.623 × 10 ⁴
1 m 1 kN -2 s -1 =	6.91 × 10 ⁷ T ²	6.91 T²	69.1 × 10 ⁻³ T ²	1.904 × 10 ⁻⁴⁰ T ²	0.0178	1.027 × 104	6.16 × 10-7	1

From J. Phys. Chem. Ref. Data, 9, 470, 1980, by permission of the authors and the copyright owner, the American Institute of Physics.