

MEMORANDUM

DATE August 6, 2019 **JOB NO.** 2017-0069

TO Conservation Commission

Town of Arlington 730 Mass Ave. Annex Arlington, MA 02476

FROM Joseph Famely

Direct Phone: (508) 495-6220 jfamely@woodsholegroup.com

Reeds Brook Sediment and Surface Water Assessment

Woods Hole Group was contracted to sample the sediments and surface waters at Reeds Brook, and evaluate the results of chemical analyses in the context of ecological risk. This technical memorandum summarizes the sampling activities, relevant site observations, and the results of comparisons of Site concentrations of metals in sediments and surface waters to relevant screening benchmarks and criteria. This technical memorandum does not constitute a risk assessment, but does provide information that would be relevant to a MCP Stage I Environmental Risk Characterization (ERC).

Woods Hole Group collected Spring (5/30/18) and Fall (12/4/18) surface water samples to characterize metals contamination and seasonal variability in Reeds Brook Site and upstream surface water. Woods Hole Group also collected sediment samples (12/4/18) in Reeds Brook Site and upstream locations to assess metals contamination. During the sediment sampling event, Woods Hole Group made observations of the nature and extent of iron flocculation.

A. Flocculation Summary

As detailed in the "Reeds Brook Fall 2018 Sediment Observations" technical memorandum (dated 12/18/18), iron flocculation and diffuse sediment grain staining are present in some areas of Reeds Brook at the Site, but are not present in any upstream areas. The iron flocculation occurring on Reeds Brook Site sediments appeared to be loose, surficial in nature, and transient. Observed on sediments in the eastern and western reaches of Reeds Brook (but not in the central portion), the floc was predominantly a loose dull orange organic floc that had settled in and among the organic debris and vegetation in the streambed and detention pond. The loose floc was easily disturbed and likely flushes out of Reeds Brook periodically with larger rain events. Additionally, an abundant and diverse biological community was observed inhabiting the Reeds Brook sediments, utilizing the Reeds Brook detention basins, and foraging at the Site. Based on this evidence, Woods Hole Group concluded that the observed iron flocculation at Reeds Brook does not constitute a condition of readily apparent harm.

Figure 1: Presence/Absence of Iron Flocculent in Reeds Brook and Upstream Wetland.

B. Sediment and Surface Water Sampling

Surface water sampling occurred on May 30, 2018 and December 4, 2018; sediment sampling occurred on December 4, 2018. Sample collection and analysis methods are detailed in the Sampling and Analysis Plan (original dated 12/4/17, addendum dated 10/29/18). Surface water samples were collected by hand dipping clean unpreserved sample bottles unless water quality parameters indicated a stratification in the water column (which occurred in the middle of Reeds Brook (MP-RB-SW-08) during the December sampling event. When water was stratified, a second sample was collected from approximately the middle of the lower layer using a Kemmerer sampling device. Sediment samples were collected using a petite ponar or an Ekman on a stick. Surface water samples were analyzed by Alpha Analytical for dissolved metals (RCRA 8 plus copper, iron, manganese, and zinc), and hardness was calculated from dissolved calcium and magnesium. Sediment samples were analyzed by Alpha Analytical for total metals (RCRA 8 plus copper, iron, manganese, and zinc), grain size, and total organic carbon.

Figure 2: Sediment and Surface Water Sampling Locations.

C. Sediment Results

Sediments from Reeds Brook were generally mixtures of silt and sand with total organic carbon ranging from 3% to 10%. Stations RB-03, RB-06, and RB-08 had proportionally more fines, while station RB-05 in the detention basin had coarser material. Sediments from the Upstream Wetland were predominantly sand with some silt and much higher total organic carbon (32%), likely due to decomposing wetland vegetation and leaf litter.

Station RB-08 in the center of Reeds Brook exhibited maximum concentrations for Reeds Brook stations for almost all metals measured. Detected concentrations of metals in Reeds Brook exceeded MADEP Freshwater Sediment Screening Benchmarks for arsenic (RB-08), lead (RB-04, RB-05, RB-06, RB-07, and RB-08), and zinc (RB-07). Due to high moisture content and low percent solids, the sample-specific reporting limits exceeded the screening benchmark for mercury at all Reeds Brook stations. Based on prior sampling in Reeds Brook (Brown & Caldwell, 2017) we do not expect mercury to be an issue for Reeds Brook sediments, however this does present an uncertainty for the present evaluation.

Detected concentrations of metals in the Upstream Wetland exceeded MADEP Freshwater Sediment Screening Benchmarks for copper, lead, mercury, and zinc. Metals concentrations in the Upstream Wetland were generally

consistent with or higher than concentrations in Reeds Brook. Concentrations detected in the Upstream Wetland were higher than Reeds Brook for barium, cadmium, copper, lead, mercury, and zinc.

Table 1. Sediment Analytical Results and Comparison to MADEP Screening Benchmarks.

		MADEP			-		REEDS E	3R(OOK DETENTIO	ON BASINS						UPSTREAM WETLAND
		Screening Benchmark				04-		5-	MP-RB-SED-06		07-	MP-RB-SEI		MP-RB-SED-	-08	
		Delicililark	120418	1	120418		120418	4	120418	120418		07FD-1204	18	120418		02-120418
Analyte	Units	22	Result	_	Result		Result	4	Result	Result		Result		Result	_	Result
Arsenic, Total	mg/kg	33	17.2		11.7	_	20.3 J	\dashv	18.6 J	15.7		25.3	J	41.5		6.28 J
Barium, Total	mg/kg	NA	121		62.2		136 J	4	142 J	78		121	J	228		345 J
Cadmium, Total	mg/kg	5	1.206	-	0.7952		0.9752 J	4	1.131 J	1.237		0.9519	UJ	2.05		3.802 J
Chromium, Total	mg/kg	110	66.7	_	26.2		56.5 J	4	69.2 J	32.5		51.3	J	89.9		23.3 J
Copper, Total	mg/kg	150	72.3		39.9		85.9 J	4	74.5 J	48	J	74.1	J	101		235 J
Iron, Total	mg/kg	NA	60100	J	31000	J	46100 J	4	64200 J	37800	J	57800	J	212000	J	72800 J
Lead, Total	mg/kg	130	111	J	159	J	320 J	Ц	146 J	114	J	163	J	171	J	472 J
Manganese, Total	mg/kg	NA	356	J	378	J	454 J	╛	422 J	392	J	671	J	807	J	186 J
Mercury, Total	mg/kg	0.18	0.26	UJ	0.262	UJ	0.307 U	IJ	0.345 U.	0.289	UJ	0.32	UJ	0.38	UJ	0.681 J
Selenium, Total	mg/kg	NA	7.97	UJ	7.95	UJ	9.39 U	IJ	10.2 U.	8.7	UJ	9.52	UJ	11.2	UJ	19 UJ
Silver, Total	mg/kg	NA	1.99	UJ	1.99	UJ	2.35 U	IJ	2.56 U.	2.18	UJ	2.38	UJ	2.79	UJ	4.75 UJ
Zinc, Total	mg/kg	460	358	J	185	J	305 J		356 J	484	J	264	J	431	J	785 J
% Clay Fine	%	-	8.3		4.3		7.3		8.4	3.3		3.4		17.1		8.3
% Silt Fine	%	-	32.6		11.2		15.6		31.4	9.3		16.1		35.6		5.6
% Fine Sand	%	-	32.8		51.1		23.7		34.2	28.7		32.1		13.4		26.1
% Medium Sand	%	-	20.8		28		22.3	Ī	21.6	38.2		29.4		28.9		42.4
% Coarse Sand	%	-	4.8		4.5		11.9	T	4.1	18.9		12.2		5		14.3
% Fine Gravel	%	-	0.7		0.9		19.2	T	0.3	1.6		6.8		0.1	U	3.3
% Coarse Gravel	%	-	0.1	U	0.1	U	0.1 U	П	0.1 U	0.1	U	0.1	U	0.1	U	0.1 U
% Cobbles	%	-	0.1	U	0.1	U	0.1 U	Л	0.1 U	0.1	U	0.1	U	0.1	U	0.1 U
% Total Fines	%	-	40.9		15.5		22.9	ī	39.8	12.6		19.5		52.7		13.9
% Total Sand	%	-	58.4		83.6		57.9	7	59.9	85.8		73.7		47.3		82.8
% Total Gravel	%	-	0.7		0.9		19.2	7	0.3	1.6		6.8		0.1	U	3.3
Total Organic Carbon (Rep1)	%	-	11.8		3.47		4.27	T	6.26	4.75		3.78		10.3		31.8
Total Organic Carbon (Rep2)		-	11.2		4.24		5.56	7	7.82	4.83		4.29		10.1		31.9
Solids, Total	%	_	24.5		24		20.8	T	18.5	22.1		19.6		16.7		9.97

D. Surface Water Results

Surface Water was collected from Reeds Brook and the Upstream Wetland in the Spring and Fall of 2018. An additional upstream area of Reeds Brook behind Dothan Street was sampled in the Spring only. Cadmium, lead, mercury, selenium, and silver were not detected in any surface water samples at Reeds Brook. Concentrations of dissolved iron, manganese, and zinc were highest at station proximate to (or in) stormwater outfalls (RB-03 and RB-06). Concentrations of other detected dissolved metals were generally consistent across stations and sampling events. Overall, surface water concentrations of dissolved metals were higher during the Spring sampling event than the late fall event. It was noted that the Fall sampling event occurred a few days after a rain event, so it is possible that surface water had been diluted by rain. In the deeper portion of Reeds Brook (RB-08), surface water was stratified and there was a bottom layer of high salinity (and slightly warmer) water exhibiting high metals concentrations. This high salinity layer may indicate a slug of recent stormwater input to Reeds Brook, assuming roads were pre-treated with salt ahead of a potential snow storm.

Iron exceeded the National Recommended Water Quality Criterion in all Reeds Brook samples except the May 2018 samples from RB-01, RB-02, and RB-04. No other exceedances of NRWQC occurred in Reeds Brook. There were also no exceedances of NRWQC in the Dothan Street upstream station at Reeds Brook.

The Upstream Wetland exhibited generally higher concentrations of dissolved metals than Reeds Brook. In fact, the highest concentration of iron measured (31.8 mg/L) was from the Spring sample at UW-01. Iron exceeded the NRWQC in all Upstream Wetland samples. Copper, lead, and zinc also exceeded the NRWQC in both Fall samples from the Upstream Wetland.

 Table 2a.
 Surface Water Analytical Results and Comparison to NRWQC.

		UPSTRE	AΜ	DOTHAN						REEDS	BROOK	DE.	TENTION E	BASINS					
				SW-01- 018			W-01- 18		-	W-01-D-)18			W-01- 18			W-02- 053018			W-02- 18
Analyte	Units	Result	:	CCC	Result			Result		ccc	Result		ccc	Result		CCC	Result		ccc
Hardness	mg/L	84.2			145			150			109			148			98.8		
Arsenic	mg/L	0.0005	U	0.15	0.0005		0.15	0.0005		0.15	0.0005	U	0.15	0.0008		0.15	0.0005	U	0.15
Barium	mg/L	0.0292			0.1016			0.1067			0.069			0.0977			0.0522		
Cadmium	mg/L	0.0005	U	0.00063	0.0005	J	0.0010	0.0005	J	0.0010	0.0005	U	0.00077	0.0005	U	0.0010	0.0005	J	0.0007
Chromium VI	mg/L	0.001	U	0.011	0.001	J	0.011	0.001	כ	0.011	0.0012		0.011	0.001	U	0.011	0.0015		0.011
Copper	mg/L	0.0015		0.0077	0.001	U	0.012	0.001	U	0.013	0.0024		0.0096	0.001	U	0.013	0.0022		0.0089
Iron	mg/L	0.341		1.0	0.285		1.0	0.235		1.0	1.8		1.0	0.184		1.0	1.69		1.0
Lead	mg/L	0.001	U	0.0021	0.001	U	0.0038	0.001	U	0.0039	0.001	U	0.0028	0.001	U	0.0038	0.001	U	0.0025
Manganese	mg/L	0.1036			0.2529			0.2547			0.1872			0.2485			0.1407		
Mercury	mg/L	0.0002	U	0.00077	0.0002	J	0.00077	0.0002	כ	0.00077	0.0002	U	0.00077	0.0002	U	0.00077	0.0002	J	0.00077
Selenium	mg/L	0.005	U	0.0046	0.005	J	0.0046	0.005	U	0.0046	0.005	U	0.0046	0.005	U	0.0046	0.005	J	0.0046
Silver	mg/L	0.0005	U		0.0005	J		0.0005	כ		0.0005	U		0.0005	U		0.0005	U	
Zinc	mg/L	0.0121		0.10	0.01	U	0.16	0.01	J	0.17	0.0172	U	0.13	0.01	U	0.16	0.0173	U	0.12

Table 2b. Surface Water Analytical Results and Comparison to NRWQC (continued).

								REED)S	BROOK DE	TENTION	ΙB	ASINS						
				W-03- 18			W-03- 18			SW-04- 018		-RB-SW-04- 120418				W-05- 18			W-05- 18
Analyte	Units	Result	t	ccc	Result	t	ccc	Result	:	ccc	Result	t	ccc	Result	:	ccc	Result	:	ccc
Hardness	mg/L	191			81.6			144			91			111			88.2		
Arsenic	mg/L	0.0006		0.15	0.0005	U	0.15	0.0006		0.15	0.0005	U	0.15	0.0016		0.15	0.0005	כ	0.15
Barium	mg/L	0.1472			0.0508			0.1026			0.0519			0.0787			0.046		
Cadmium	mg/L	0.0005	U	0.0012	0.0005	U	0.0006	0.0005	כ	0.00090	0.0005	U	0.0007	0.0005	U	0.00080	0.0005	כ	0.0007
Chromium VI	mg/L	0.001	U	0.011	0.0021		0.011	0.001	כ	0.011	0.0017		0.011	0.001	כ	0.011	0.0016		0.011
Copper	mg/L	0.001	U	0.016	0.002		0.0075	0.001	כ	0.012	0.0021		0.0083	0.001	כ	0.010	0.0019		0.0080
Iron	mg/L	7.1		1.0	2		1.0	0.196		1.0	1.85		1.0	2.59		1.0	1.72		1.0
Lead	mg/L	0.001	U	0.0051	0.001	U	0.0020	0.001	כ	0.0037	0.001	U	0.0023	0.001	כ	0.0028	0.001	כ	0.0022
Manganese	mg/L	0.4564			0.0977			0.2583			0.121			0.2408			0.1073		
Mercury	mg/L	0.0002	U	0.00077	0.0002	U	0.00077	0.0002	כ	0.00077	0.0002	U	0.00077	0.0002	ט	0.00077	0.0002	J	0.00077
Selenium	mg/L	0.005	U	0.0046	0.005	U	0.0046	0.005	כ	0.0046	0.005	U	0.0046	0.005	כ	0.0046	0.005	כ	0.0046
Silver	mg/L	0.0005	U		0.0005	U		0.0005	J		0.0005	U		0.0005	U		0.0005	U	
Zinc	mg/L	0.188		0.20	0.0247		0.099	0.01	U	0.16	0.0206	U	0.11	0.01	U	0.13	0.0104	U	0.11

 Table 2c. Surface Water Analytical Results and Comparison to NRWQC (continued).

			REEDS BROOK DETENTION BASINS																
				W-06- 18			W-06- 18			SW-07- 118			V-07FD- 18			W-08- 18			W-08L- 18
Analyte	Units	Result	:	ccc	Result		ccc	Result		ccc	Result	t	ccc	Result	t	ccc	Result	t	ccc
Hardness	mg/L	129			97.2			95.2			95			91.9			132		
Arsenic	mg/L	0.0005	J	0.15	0.0005	U	0.15	0.0005	J	0.15	0.0005	U	0.15	0.0005	U	0.15	0.0005	U	0.15
Barium	mg/L	0.0889			0.0554			0.0548			0.0536			0.0518			0.0844		
Cadmium	mg/L	0.0005	\supset	0.0009	0.0005	כ	0.00070	0.0005	כ	0.0007	0.0005	U	0.0007	0.0005	U	0.0007	0.0005	U	0.0009
Chromium VI	mg/L	0.001	כ	0.011	0.0026		0.011	0.0017		0.011	0.0015		0.011	0.0018		0.011	0.001	U	0.011
Copper	mg/L	0.0011		0.011	0.0021		0.0087	0.002		0.0086	0.0018		0.0086	0.0017		0.0083	0.0011	U	0.011
Iron	mg/L	8.07		1.0	4.63		1.0	2		1.0	1.79		1.0	1.91		1.0	8.98		1.0
Lead	mg/L	0.001	J	0.0033	0.001	U	0.0024	0.001	J	0.0024	0.001	U	0.0024	0.001	U	0.0023	0.001	U	0.0034
Manganese	mg/L	0.1298			0.1044			0.1374			0.1351			0.1174			0.4888		
Mercury	mg/L	0.0002	\supset	0.00077	0.0002	כ	0.00077	0.0002	כ	0.00077	0.0002	U	0.00077	0.0002	U	0.00077	0.0002	U	0.00077
Selenium	mg/L	0.005	U	0.0046	0.005	U	0.0046	0.005	J	0.0046	0.005	U	0.0046	0.005	U	0.0046	0.005	U	0.0046
Silver	mg/L	0.0005	U		0.0005	U		0.0005	J		0.0005	U		0.0005	U		0.0005	U	
Zinc	mg/L	0.0131		0.15	0.0205	U	0.12	0.0182	כ	0.11	0.0185	U	0.11	0.0183	U	0.11	0.0563		0.15

Table 2d. Surface Water Analytical Results and Comparison to NRWQC (continued).

					UPSTREA	М	WETLAND			
				SW-01-)18	_		SW-01- 118	_		SW-02-
Analyte	Units	Result		ccc	Result	t	ccc	Result		CCC
Hardness	mg/L	200			62.4			116		
Arsenic	mg/L	0.0005	כ	0.15	0.0005	U	0.15	0.0009		0.15
Barium	mg/L	0.2876			0.0941			0.1278		
Cadmium	mg/L	0.0005	J	0.0012	0.0005	U	0.00050	0.0006		0.00080
Chromium VI	mg/L	0.001	U	0.011	0.001	U	0.011	0.0014		0.011
Copper	mg/L	0.0014		0.016	0.0074		0.0060	0.0215		0.010
Iron	mg/L	31.8		1.0	1.91		1.0	2.1		1.00
Lead	mg/L	0.001	U	0.0053	0.0018		0.0015	0.0068		0.0030
Manganese	mg/L	0.4908			0.1946			0.4381		
Mercury	mg/L	0.0002	U	0.00077	0.0002	U	0.00077	0.0002	U	0.00077
Selenium	mg/L	0.005	U	0.0046	0.005	U	0.0046	0.005	U	0.0046
Silver	mg/L	0.0005	J		0.0005	U		0.0005	J	
Zinc	mg/L	0.01	U	0.21	0.0948		0.079	0.3141		0.13

Table 3. Water Quality Parameters.

Station	Date	Time	°C	mmHg	DO %	DO mg/L	SPC-uS/cm	рН	ORP mV	NTU	DEP m
MP-DO-SW-01-053018	5/30/2018	12:02:44 PM	15.4	761.7	56.1	5.6	808	6.8	-7.1	0.6	~0.3
MP-RB-SW-01-053018	5/30/2018	12:51:23 PM	24.6	761.9	76.7	6.36	1619	6.78	-15.9	14.2	~0.3
MP-RB-SW-02-MS/MD-053018	5/30/2018	1:18:22 PM	24.3	761.8	95	7.92	1620	6.75	-6.2	26.7	~0.3
MP-RB-SW-02-MS/MD-053018	5/30/2018	1:18:25 PM	24.3	761.8	95.3	7.94	1619	6.75	-6.2	26	~0.3
MP-RB-SW-02-MS/MD-053018	5/30/2018	1:18:26 PM	24.3	761.8	95.4	7.94	1618	6.75	-6.2	25.9	~0.3
MP-RB-SW-03-053018	5/30/2018	2:12:35 PM	13.4	761.5	13	1.35	1538	6.33	-49.6	24.4	~0.3
MP-RB-SW-03-053018	5/30/2018	2:12:35 PM	13.4	761.5	13	1.35	1537	6.33	-49.5	24.5	~0.3
MP-RB-SW-03-053018	5/30/2018	2:12:35 PM	13.4	761.5	12.9	1.35	1537	6.33	-49.5	24.6	~0.3
MP-RB-SW-04-053018	5/30/2018	2:36:23 PM	24.7	761.3	90.2	7.46	1631	6.79	-10.5	19.6	~0.3
MP-RB-SW-05-053018	5/30/2018	2:51:47 PM	29.3	761.2	31.7	2.42	1088	6.9	5.7	71.4	~0.3
MP-RB-SW-06-053018	5/30/2018	3:09:04 PM	13.5	761.2	64.1	6.66	1183	6.56	-49.1	1.2	~0.3
MP-UW-SW-01-053018	5/30/2018	3:57:28 PM	16.8	760.7	2.5	0.24	1937	6.75	-157.4	141	~0.3
MP-RB-SW-01-120418	12/4/2018	9:08:00 AM	6.49	751.2	60.8	7.45	1136	7.43	58.8	-11.2	0.274
MP-RB-SW-02-120419	12/4/2018	9:19:00 AM	5.32	750.9	78.9	9.97	877	7.46	-310.6	-11.1	0.284
MP-RB-SW-03-120419	12/4/2018	9:35:00 AM	7.7	750.9	84.9	10.1	804	7.22	-230.9	3.2	0.28
MP-RB-SW-04-120419	12/4/2018	10:08:00 AM	5.03	751.1	74.6	9.5	817	6.96	-191.6	-13	0.267
MP-RB-SW-05-120419	12/4/2018	10:18:00 AM	5.03	731.6	79.3	10.09	686	6.94	-213.4	-1.9	0.296
MP-RB-SW-06-120419	12/4/2018	10:30:00 AM	7.41	751.2	101.6	12.18	756	6.93	-189.7	-18	0.294
MP-RB-SW-07-120419	12/4/2018	9:53:00 AM	5.36	750.9	91.9	11.6	819	7.12	-236.7	-13.4	0.261
MP-RB-SW-08-120419	12/4/2018	10:42:00 AM	5.58	751.2	84.8	10.64	823	7.08	-172.3	-14.1	0.473
MP-RB-SW-08L-120419	12/4/2018	10:48:00 AM	9.17	751.3	35.2	3.84	14030	7.08	-223.1	-13.2	1.174
MP-UW-SW-01-120418	12/4/2018	11:49:00 AM	4.15	751.1	47.1	6.13	905	7.29	-368.6	-16.6	0.276
MP-UW-SW-02-120419	12/4/2018	12:03:00 PM	4.7	751.1	35.5	4.55	785	6.87	-345.5	-16.1	0.26

E. Summary of 2018 Fieldwork Investigation

Woods Hole Group sampled surface water and sediments from Reeds Brook detention basins and upstream locations. Analysis of metals in these media at the Site returned NRWQC exceedances for iron, and exceedances of MADEP sediment benchmarks for arsenic, lead, and zinc. Given the patterns on contamination, two potential contributing sources emerged: (1) the stormwater drainage and outfall system, and (2) the upstream wetland. Groundwater results from the landfill side of Reeds Brook and the Upstream Wetland would contribute to a better understanding of these results may help determine whether the original source of contamination in Reeds Brook and the Upstream Wetland is the former landfill or urban stormwater runoff and deteriorating/unmaintained infrastructure. If it is determined that stormwater and stormwater infrastructure is contributing to Reeds Brook contamination, a crucial step in controlling this source will be to implement the relevant Best Management Practices (BMPs) outlined in the Town of Arlington's 2004 Stormwater Management Program.

Attachments:

Spring Surface Water Laboratory Report Late Fall Surface Water and Sediment Laboratory Report

ANALYTICAL REPORT

Lab Number: L1819964

Client: Woods Hole Group

81 Technology Park Drive East Falmouth, MA 02536

ATTN: Joseph Famely Phone: (508) 495-6220

Project Name: MCCLENNEN PARK

Project Number: Not Specified Report Date: 06/12/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Lab Number: L1819964 **Report Date:** 06/12/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1819964-01	MP-DO-SW-01-053018	WATER	ARLINGTON, MA	05/30/18 11:55	05/31/18
L1819964-02	MP-RB-SW-01-053018	WATER	ARLINGTON, MA	05/30/18 12:54	05/31/18
L1819964-03	MP-RB-SW-01-D-053018	WATER	ARLINGTON, MA	05/30/18 12:56	05/31/18
L1819964-04	MP-RB-SW-02-MS/MSD- 053018	WATER	ARLINGTON, MA	05/30/18 13:20	05/31/18
L1819964-05	MP-RB-SW-03-053018	WATER	ARLINGTON, MA	05/30/18 14:15	05/31/18
L1819964-06	MP-RB-SW-04-053018	WATER	ARLINGTON, MA	05/30/18 14:40	05/31/18
L1819964-07	MP-RB-SW-05-053018	WATER	ARLINGTON, MA	05/30/18 14:55	05/31/18
L1819964-08	MP-RB-SW-06-053018	WATER	ARLINGTON, MA	05/30/18 15:15	05/31/18
L1819964-09	MP-UW-SW-01-053018	WATER	ARLINGTON, MA	05/30/18 16:00	05/31/18

Project Name: MCCLENNEN PARK Lab Number: L1819964

Project Number: Not Specified Report Date: 06/12/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MCCLENNEN PARK Lab Number: L1819964

Project Number: Not Specified Report Date: 06/12/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

L1819964

Lab Number:

Project Name: MCCLENNEN PARK

Project Number: Not Specified Report Date: 06/12/18

Case Narrative (continued)

MCP Related Narratives

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/12/18

600 Jewson Kelly Stenstrom

METALS

05/30/18 11:55

Date Collected:

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified 06/12/18

SAMPLE RESULTS

Lab ID: L1819964-01

Client ID: MP-DO-SW-01-053018 Date Received: 05/31/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
als - Mans	sfield Lab									
ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
0.0292		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
0.0015		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
0.341		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
0.1036		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:19	EPA 7470A	97,7470A	EA
ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
0.0121		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:13	EPA 3005A	97,6020A	AM
by SM 23	340B - Man	sfield La	b							
84.2		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 21:26	EPA 3005A	1,6010C	AB
	ND 0.0292 ND ND 0.0015 0.341 ND 0.1036 ND	Als - Mansfield Lab ND 0.0292 ND ND 0.0015 0.341 ND 0.1036 ND ND ND ND ND ND ND ND ND N	Als - Mansfield Lab ND mg/l 0.0292 mg/l ND mg/l 0.0015 mg/l 0.341 mg/l ND mg/l 0.1036 mg/l ND mg/l ND mg/l 0.1036 mg/l ND mg/l	Als - Mansfield Lab ND mg/l 0.0005 0.0292 mg/l 0.0005 ND mg/l 0.0010 0.0015 mg/l 0.0010 0.341 mg/l 0.0010 ND mg/l 0.0002 ND mg/l 0.0005 ND mg/l 0.0005	Als - Mansfield Lab ND mg/l 0.0005 0.0292 mg/l 0.0005 ND mg/l 0.0010 0.0015 mg/l 0.0010 0.341 mg/l 0.050 ND mg/l 0.0010 0.1036 mg/l 0.0010 ND mg/l 0.0010 ND mg/l 0.0005 ND mg/l 0.0010 ND mg/l 0.0010	Result Qualifier Units RL MDL Factor als - Mansfield Lab ND mg/l 0.0005 1 0.0292 mg/l 0.0005 1 ND mg/l 0.0005 1 ND mg/l 0.0010 1 0.0015 mg/l 0.0010 1 ND mg/l 0.0010 1 ND mg/l 0.0010 1 ND mg/l 0.0002 1 ND mg/l 0.0005 1 ND mg/l 0.0100 <td< td=""><td> ND</td><td> ND</td><td> ND</td><td> ND</td></td<>	ND	ND	ND	ND

05/30/18 12:54

Date Collected:

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified 06/12/18

SAMPLE RESULTS

Lab ID: L1819964-02

Client ID: MP-RB-SW-01-053018 Date Received: 05/31/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Meta	als - Man	sfield Lab									
Arsenic, Dissolved	0.0005		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.1016		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Iron, Dissolved	0.285		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.2529		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:21	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:18	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 23	340B - Man	sfield La	ab							
Hardness	145		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 21:31	EPA 3005A	1,6010C	AB

05/30/18 12:56

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

SAMPLE RESULTS

Lab ID: L1819964-03

Client ID: MP-RB-SW-01-D-053018 Date Received: 05/31/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0005		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.1067		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Iron, Dissolved	0.235		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.2547		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:23	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:22	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Mar	ŭ	ab							
Hardness	150	0.02 Mai		0.660	NA	1	06/01/18 16:05	06/11/19 21:25	EDA 200EA	1,6010C	AB
i iaiuliess	130		mg/l	0.000	INA	I	00/01/16 16:05	00/11/10 21:35	LPA SUUSA	1,00100	AD

05/30/18 13:20

Date Collected:

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified 06/12/18

SAMPLE RESULTS

Lab ID: L1819964-04

Client ID: MP-RB-SW-02-MS/MSD-053018 Date Received: 05/31/18 Field Prep: Not Specified

Sample Location: ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0008		mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.0977		mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Iron, Dissolved	0.184		mg/l	0.050		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.2485		mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:14	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	06/04/18 14:44	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Mar	sfield La	ab							
Hardness	148		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 21:07	EPA 3005A	1,6010C	АВ

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

ineu itt

SAMPLE RESULTS

 Lab ID:
 L1819964-05
 Date Collected:
 05/30/18 14:15

 Client ID:
 MP-RB-SW-03-053018
 Date Received:
 05/31/18

Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0006		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.1472		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Iron, Dissolved	7.10		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.4564		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:25	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:26	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1		06/04/18 15:26		97,6020A	AM
Zinc, Dissolved	0.1880		mg/l	0.0100		1		06/04/18 15:26		97,6020A	AM
Dissolved Hardness		340B - Mar				•	22.0., 10.00			•	
Dissolved Hardriess		OTOD - IVIAI	ionolu Le								
Hardness	191		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 21:54	EPA 3005A	1,6010C	AB

05/30/18 14:40

Date Collected:

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified 06/12/18

SAMPLE RESULTS

Lab ID: L1819964-06

Client ID: MP-RB-SW-04-053018 Date Received: 05/31/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0006		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.1026		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Iron, Dissolved	0.196		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.2583		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:27	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:30	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Man	<u> </u>	b							
Hardness	144		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 21:59	EPA 3005A	1,6010C	AB

Date Collected:

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified

06/12/18

05/30/18 14:55

SAMPLE RESULTS

Lab ID: L1819964-07

Client ID: MP-RB-SW-05-053018 Date Received: 05/31/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0016		mg/l	0.0005		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.0787		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:34	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:34	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:34	EPA 3005A	97,6020A	AM
Copper, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:34	EPA 3005A	97,6020A	AM
Iron, Dissolved	2.59		mg/l	0.050		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.2408		mg/l	0.0010		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	6 06/04/18 18:28	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	5 06/04/18 15:34	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Mar	nsfield La	ab							
Hardness	111		mg/l	0.660	NA	1	06/01/18 16:05	5 06/11/18 22:03	EPA 3005A	1,6010C	AB

Project Name: Lab Number: MCCLENNEN PARK L1819964 **Project Number: Report Date:** Not Specified 06/12/18

SAMPLE RESULTS

Lab ID: L1819964-08 Date Collected: 05/30/18 15:15

Client ID: MP-RB-SW-06-053018 Date Received: 05/31/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.0889		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Copper, Dissolved	0.0011		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Iron, Dissolved	8.07		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.1298		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:30	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Zinc, Dissolved	0.0131		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:38	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Man	ŭ	b							
Hardness	129		mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 22:08	EPA 3005A	1,6010C	AB

05/30/18 16:00

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

SAMPLE RESULTS

Lab ID: L1819964-09

Client ID: MP-UW-SW-01-053018 Date Received: 05/31/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Barium, Dissolved	0.2876		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Copper, Dissolved	0.0014		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Iron, Dissolved	31.8		mg/l	0.050		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Lead, Dissolved	ND		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Manganese, Dissolved	0.4908		mg/l	0.0010		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Mercury, Dissolved	ND		mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:36	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.005		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Silver, Dissolved	ND		mg/l	0.0005		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	06/01/18 16:05	06/04/18 15:43	EPA 3005A	97,6020A	AM
Dissolved Hardness	by SM 2	340B - Man		b							
Hardness	200	o .oz man	mg/l	0.660	NA	1	06/01/18 16:05	06/11/19 22:12	EDA 2005A	1,6010C	AB
i iaiuiiess	200		my/i	0.000	INA	ı	00/01/18 16:05	00/11/10 22.13	LFA 3003A	1,00100	AD

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Lab Number:

L1819964

Report Date: 06/12/18

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab	for sample(s):	01-09	Batch:	WG112163	34-1			
Arsenic, Dissolved	ND	mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Barium, Dissolved	ND	mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Cadmium, Dissolved	ND	mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Copper, Dissolved	ND	mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Iron, Dissolved	ND	mg/l	0.050		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Lead, Dissolved	ND	mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Manganese, Dissolved	ND	mg/l	0.0010		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Selenium, Dissolved	ND	mg/l	0.005		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Silver, Dissolved	ND	mg/l	0.0005		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	06/01/18 16:05	06/04/18 14:19	97,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Hardness by	SM 2340B - Mansfield	d Lab for	sample(s): 01-0	9 Batch:	WG1121635-1			
Hardness	ND	mg/l	0.660	NA	1	06/01/18 16:05	06/11/18 20:58	1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab fo	or sample(s):	01-09	Batch:	WG112164	8-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	06/01/18 16:46	06/04/18 18:04	97,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Lab Number: L1819964

Report Date: 06/12/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Associat	ed sample(s): 0	1-09 Bat	tch: WG1121634-2	WG112163	34-3			
Arsenic, Dissolved	106		104		80-120	2		20
Barium, Dissolved	104		102		80-120	2		20
Cadmium, Dissolved	106		102		80-120	4		20
Chromium, Dissolved	107		104		80-120	3		20
Copper, Dissolved	109		106		80-120	3		20
Iron, Dissolved	113		111		80-120	2		20
Lead, Dissolved	116		114		80-120	2		20
Manganese, Dissolved	105		101		80-120	4		20
Selenium, Dissolved	105		101		80-120	4		20
Silver, Dissolved	101		99		80-120	2		20
Zinc, Dissolved	108		105		80-120	3		20
issolved Hardness by SM 2340B - Mansfield La	b Associated s	ample(s):	01-09 Batch: W0	G1121635-2				
Hardness	98		-		80-120	-		
MCP Dissolved Metals - Mansfield Lab Associat	ed sample(s): 0	1-09 Bat	tch: WG1121648-2	2 WG112164	18-3			
Mercury, Dissolved	93		94		80-120	1		20

Matrix Spike Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Lab Number: L1819964

Report Date: 06/12/18

arameter	Native Sample	MS Added	MS Found %	MS 6Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
MCP Dissolved Metals - Mans MS/MSD-053018	field Lab Asso	ciated samp	ole(s): 01-09	QC Batch II	D: WG1121634-	4 QC Sample:	: L1819964-04 C	lient ID:	MP-RB-SW-02-
Arsenic, Dissolved	0.0008	0.12	0.1302	108	-	-	75-125	-	20
Barium, Dissolved	0.0977	2	2.142	102	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.0530	104	-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.2130	106	-	-	75-125	-	20
Copper, Dissolved	ND	0.25	0.2730	109	-	-	75-125	-	20
Iron, Dissolved	0.184	1	1.36	118	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.5912	116	-	-	75-125	-	20
Manganese, Dissolved	0.2485	0.5	0.7770	106	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.121	101	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.0492	98	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.5718	114	-	-	75-125	-	20
issolved Hardness by SM 23 B-SW-02-MS/MSD-053018	40B - Mansfie	ld Lab Asso	ciated sample	e(s): 01-09	QC Batch ID: W	/G1121635-3 (QC Sample: L1819	964-04	Client ID: MP-
Hardness	148	66.2	207	89	-	-	75-125	-	20
1CP Dissolved Metals - Mans 1S/MSD-053018	field Lab Asso	ciated samp	ole(s): 01-09	QC Batch II	D: WG1121648-	4 QC Sample:	: L1819964-04 C	lient ID:	MP-RB-SW-02-
Mercury, Dissolved	ND	0.005	0.0044	89	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Lab Number:

L1819964

Report Date:

06/12/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
MCP Dissolved Metals - Mansfield Lab Associated MS/MSD-053018	sample(s): 01-09 QC B	atch ID: WG1121634-5	QC Sample:	L1819964-04	Client ID: MP-RB-SW-02-
Arsenic, Dissolved	0.0008	0.0007	mg/l	11	20
Barium, Dissolved	0.0977	0.1037	mg/l	6	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	ND	ND	mg/l	NC	20
Iron, Dissolved	0.184	0.194	mg/l	5	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Manganese, Dissolved	0.2485	0.2560	mg/l	3	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Dissolved Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 01	I-09 QC Batch ID: WG1	121635-4 Q	C Sample: L1	1819964-04 Client ID: MP-
Hardness	148	150	mg/l	1	20
MCP Dissolved Metals - Mansfield Lab Associated MS/MSD-053018	sample(s): 01-09 QC B	atch ID: WG1121648-5	QC Sample:	L1819964-04	Client ID: MP-RB-SW-02-

Lab Serial Dilution Analysis
Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: Not Specified

L1819964 06/12/18 Report Date:

Lab Number:

Parameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits	
MCP Dissolved Metals - Mansfield Lab Associated sam MS/MSD-053018	ple(s): 01-09 QC E	Batch ID: WG1121634-6	QC Sample:	L1819964-04	Client ID: I	MP-RB-SW-02-	
Barium, Dissolved	0.0977	0.0996	mg/l	2		10	
Manganese, Dissolved	0.2485	0.2559	mg/l	3		10	

MCCLENNEN PARK Lab Number: L1819964

Project Number: Not Specified Report Date: 06/12/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	ontainer Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1819964-01A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-01X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),HARDS(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)
L1819964-02A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-02X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),HARDS(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)
L1819964-03A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-03X	Plastic 250ml HNO3 preserved Filtrates	A	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),HARDS(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)
L1819964-04A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-04A1	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-04A2	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-

Lab Number: L1819964

Report Date: 06/12/18

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1819964-04X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-CR-6020S-10(180)
L1819964-04X1	Plastic 250ml HNO3 preserved Filtrates	А	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)
L1819964-04X2	Plastic 250ml HNO3 preserved Filtrates	А	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-CR-6020S-10(180)
L1819964-05A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-05X	Plastic 250ml HNO3 preserved Filtrates	А	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-CR-6020S-10(180)
L1819964-06A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-
L1819964-06X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-SE-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-CR-6020S-10(180)
L1819964-07A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-

Lab Number: L1819964

Report Date: 06/12/18

Project Name: MCCLENNEN PARK

Project Number: Not Specified

Container Info	ormation		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1819964-07X	Plastic 250ml HNO3 preserved Filtrates	A	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S- 10(28),MCP-CU-6020S-10(180),MCP-FE- 6020S-10(180),MCP-BA-6020S-10(180),MCP- CD-6020S-10(180),MCP-MN-6020S- 10(180),MCP-SE-6020S- 10(180),HARDS(180),MCP-AS-6020S- 10(180),MCP-AG-6020S-10(180),MCP-ZN- 6020S-10(180),MCP-CR-6020S-10(180)		
L1819964-08A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-		
L1819964-08X	Plastic 250ml HNO3 preserved Filtrates	A	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),HARDS(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)		
L1819964-09A	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		-		
L1819964-09X	Plastic 250ml HNO3 preserved Filtrates	A	NA		2.6	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),HARDS(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180),MCP-AG-6020S-10(180)		

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MCCLENNEN PARKLab Number:L1819964Project Number:Not SpecifiedReport Date:06/12/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Page 1 of 1

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔLPHA	CHAIN O	F CU	JSTO	DY	PAGE_	OF	Date R	ec'd in La	b:	5/3	(/18	-	ALPI	lA Job	#: /	(81940	out
8 Walkup Dr	ive 320 Forbes Blvd	Projec	t Informa	ition		100	Repo	rt Inform	ation - Da				2744349	20000		(0	
Westboro, M Tel: 508-89	IA 01581 Mansfield, MA 02048	Project	Name: M	CCLENA	VEN P	ARK		□ ADEx Z EMAIL					Billing Information Same as Client info PO #: 2017 -0060				
Client Informa	tion	Project I	Location:	ARLING	STON.	MA	Regu	Regulatory Requirements & Project Information Requirements									
Client: W 60 D	S HOLE GROUP	Project :					Z Yes	No MA	MCP Analy	tical Me	thode		DV	no to No	CTRC	DA - I W I I I	thods
Address: 81 T	ECHNOLOGY PARK DR	Project N	Manager: .	JOSEPH	FAME	ELY	∠ Yes	□ No Matr ✓ No GW	ix Spike Ri 1 Standard	equired (s (Info R	on this Steauired	DG? (I	Requir	ed for Mi	CP Inorga	anice) /sea	nok)
E-FA	LMOUTH, MA 02536	+	Quote #:	-			- U Yes	No NPD	ES RGP					120 W	i aigais)	1 01	
	-495-6220	Turn-A	Around Ti	me	180	A BUTE	Other State /Fed Program Criteria										_
Additional PER SUSAN O RCRA	Project Information: CHAPMICK & LIZ PORTA: 8 METALS, PLUS ATE HARDNESS FROM	Cu , Fe	oue:	, Zn		прогожей)	19	METALS: DMCP 13	EPH. DRanges & Tarons	D PCB D PP Targets D Ranges Only	HARM DELLE ONLY DELLE	S CALCULATE	Zan	//		SAMPLE INI Filtration Field Lab to do	FO TAL
ALPHA Lab ID (Lab Use Only)	Sample ID	v()(5)	Colle	ection	Sample	Sampler	Voc. Dazes	TALS: DA	H: DRang	PCB D	F. Down	5/	//	//	//	Preservation ☐ Lab to do	0 T T
	MP-DO-SW-01-053		Date	Time	Matrix	Initials	2 6	12 12	1 2 / 5	10/1	= =		_	//	Sa	ample Commen	ts s
			5/30/18	11:55	SW	86	-	1			V						1
	MP-RB-SW-01-053		5/30/18	112/01-02/01	SW	Q		1			1						1
	MP-RB-SW-01-D-0		5/30/18	12:56	SW	8		i			1						1
34	MP-RB-SW-02-MS/1	40-053	X8 5/30/19	13:20	SW	8F		3			1				Matri	x Spike + D. Chapnick	192
75	MP-RB-SW-03-05	3018	5/35/18	14:15	SW	8		1			1	1			ber 2	.Chapnick	i
706	MP-RB-SW-04-0530		5/30/18	14:40	5W	84		ı			1	+		-	-		-
44	MP-RB-SW-05-053		5/30/18		5W	85		1			/	+		-	+		1
708	MP-RB-SW-06 -0530		5/30/18		SW	8F				+	1	+	Н	-	+		1
709	MP-UW-SW-01-053	0(8			SW	84		1			1						1
Container Type		Container Type Preservative Relinquished By: Date/Time				PA				doff							
O= Other E= Encore D= BOD Bottle Page 28 of 28	G= NaHSO ₁ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K = Zn Acetate O= Other	5 7	5		5/3/19	09:45	May	Receive	AAL		5/31/	P 9	41-	Alpha's See rev	Terms an erse side	mitted are subjected Conditions	ct to

ANALYTICAL REPORT

Lab Number: L1849652

Client: Woods Hole Group

107 Waterhouse Road Bourne, MA 02532

ATTN: Joseph Famely Phone: (508) 495-6220

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Report Date: 12/28/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number: L1849652 **Report Date:** 12/28/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1849652-01	MP-RB-SW-01-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 08:25	12/05/18
L1849652-02	MP-RB-SW-02-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 08:40	12/05/18
L1849652-03	MP-RB-SW-03-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 08:55	12/05/18
L1849652-04	MP-RB-SW-07-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 09:10	12/05/18
L1849652-05	MP-RB-SW-07FD-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 09:12	12/05/18
L1849652-06	MP-RB-SW-04-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 09:25	12/05/18
L1849652-07	MP-RB-SW-05-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 09:35	12/05/18
L1849652-08	MP-RB-SW-06-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 09:50	12/05/18
L1849652-09	MP-RB-UW-01-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 11:05	12/05/18
L1849652-10	MP-RB-UW-02-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 11:20	12/05/18
L1849652-11	MP-RB-SW-08-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 10:13	12/05/18
L1849652-12	MP-RB-SW-08L-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 10:18	12/05/18
L1849652-13	MP-SW-EB-120418	SURFACE WATER	ARLINGTON, MA	12/04/18 11:05	12/05/18
L1849652-14	MP-RB-SED-08-120418	SEDIMENT	ARLINGTON, MA	12/04/18 10:22	12/05/18
L1849652-15	MP-RB-SED-03-120418	SEDIMENT	ARLINGTON, MA	12/04/18 10:30	12/05/18
L1849652-16	MP-RB-SED-07-120418	SEDIMENT	ARLINGTON, MA	12/04/18 12:30	12/05/18
L1849652-17	MP-RB-SED-07FD-120418	SEDIMENT	ARLINGTON, MA	12/04/18 12:50	12/05/18
L1849652-18	MP-RB-SED-04-120418	SEDIMENT	ARLINGTON, MA	12/04/18 13:10	12/05/18
L1849652-19	MP-RB-SED-05-120418	SEDIMENT	ARLINGTON, MA	12/04/18 13:30	12/05/18
L1849652-20	MP-RB-SED-06-120418	SEDIMENT	ARLINGTON, MA	12/04/18 13:50	12/05/18
L1849652-21	MP-UW-SED-02-120418	SEDIMENT	ARLINGTON, MA	12/04/18 14:50	12/05/18

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status										
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES									
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO									
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES									

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 Report Date: 12/28/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

MCP Related Narratives

Total Metals

In reference to question H:

The WG1190565-3 MS recoveries, performed on L1849652-18, are outside the acceptance criteria for iron (2130%) and manganese (144%). Re-analysis of the MS yielded unacceptable recoveries for iron and manganese in the range of >125%. The LCS recoveries were within acceptance criteria for these analytes; therefore, no further action was taken.

The WG1190565-4 Laboratory Duplicate RPD for manganese (44%), performed on L1849652-18, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Total Mercury

In reference to question H:

The WG1188095-4 MS recovery, performed on L1849652-18, is outside the acceptance criteria for mercury (170%). Re-analysis of the MS yielded unacceptable recoveries for mercury in the range of 30-74% or >125%. The LCS recovery was within acceptance criteria for this analyte; therefore, no further action was taken.

Dissolved Metals

In reference to question H:

The WG1190316-3 MS recovery, performed on L1849652-06, is outside the acceptance criteria for iron (130%). Re-analysis of the MS yielded unacceptable recoveries for iron in the range of >125%. The LCS recovery was within acceptance criteria for this analyte; therefore, no further action was taken.

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

Case Narrative (continued)

Non-MCP Related Narratives

Total Organic Carbon

The WG1188863-4 MS recovery for total organic carbon (rep2) (15%) performed on L1849652-18, is outside the 75-125% acceptance criteria, possibly due to sample matrix. The associated SRM recoveries are within criteria indicating the sample batch was in control, and all sample results were accepted.

Grain Size Analysis

The WG1186360-1 Laboratory Duplicate RPDs for % fine gravel (62%), % total gravel (62%) and % silt fine (26%), performed on L1849652-18, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Luxen & Med Susan O' Neil

Title: Technical Director/Representative Date: 12/28/18

METALS

12/04/18 08:25

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

SAMPLE RESULTS

Lab ID: L1849652-01

Client ID: MP-RB-SW-01-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	109		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 20:24	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0690		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0012		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0024		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Iron, Dissolved	1.80		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1872		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:17	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0172		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 16:53	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number:** Report Date: 2017-0069 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-02

Date Collected: 12/04/18 08:40 Client ID: MP-RB-SW-02-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Hardness by S	Total Hardness by SM 2340B - Mansfield Lab											
Hardness	98.8		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 20:42	EPA 3005A	1,6010D	МС	
MCP Dissolved Met	als - Man	sfield Lab										
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Barium, Dissolved	0.0522		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Chromium, Dissolved	0.0015		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Copper, Dissolved	0.0022		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Iron, Dissolved	1.69		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Manganese, Dissolved	0.1407		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:18	EPA 7470A	97,7470A	MG	
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	
Zinc, Dissolved	0.0173		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 16:57	EPA 3005A	97,6020B	AM	

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number:** Report Date: 2017-0069 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-03

Date Collected: 12/04/18 08:55 Client ID: MP-RB-SW-03-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	81.6		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 20:47	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0508		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0021		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0020		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Iron, Dissolved	2.00		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.0977		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:31	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0247		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:01	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number:** 12/28/18

2017-0069

Report Date:

Date Collected:

12/04/18 09:10

SAMPLE RESULTS Lab ID:

L1849652-04

MP-RB-SW-07-120418 Date Received: 12/05/18 Field Prep: Not Specified ARLINGTON, MA

Sample Location:

Sample Depth:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by \$	SM 2340E	3 - Mansfiel	d Lab								
Hardness	95.2		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 20:51	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0548		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0017		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0020		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Iron, Dissolved	2.00		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1374		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:33	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0182		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:05	EPA 3005A	97,6020B	AM

12/04/18 09:12

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

SAMPLE RESULTS

Lab ID: L1849652-05

Client ID: MP-RB-SW-07FD-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Hardness by SM 2340B - Mansfield Lab											
95.0		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 20:56	EPA 3005A	1,6010D	МС	
als - Mans	sfield Lab										
ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
0.0536		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
0.0015		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
0.0018		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
1.79		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
0.1351		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:35	EPA 7470A	97,7470A	MG	
ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
0.0185		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:10	EPA 3005A	97,6020B	AM	
	M 2340B 95.0 als - Mans ND 0.0536 ND 0.0015 0.0018 1.79 ND 0.1351 ND ND ND	M 2340B - Mansfield 95.0 als - Mansfield Lab ND 0.0536 ND 0.0015 0.0018 1.79 ND 0.1351 ND ND	M 2340B - Mansfield Lab 95.0 mg/l als - Mansfield Lab ND mg/l 0.0536 mg/l ND mg/l 0.0015 mg/l 0.0018 mg/l 1.79 mg/l ND mg/l	M 2340B - Mansfield Lab 95.0 mg/l 0.660 als - Mansfield Lab ND mg/l 0.0005 0.0536 mg/l 0.0005 ND mg/l 0.0005 0.0015 mg/l 0.0010 1.79 mg/l 0.065 ND mg/l 0.065 ND mg/l 0.0010 1.79 mg/l 0.065 ND mg/l 0.0010 0.1351 mg/l 0.0010 ND mg/l 0.0002 ND mg/l 0.0005	M 2340B - Mansfield Lab 95.0 mg/l 0.660 NA als - Mansfield Lab ND mg/l 0.0005 0.0005 0.0536 mg/l 0.0005 0.0005 ND mg/l 0.0005 0.0005 0.0015 mg/l 0.0010 0.0010 1.79 mg/l 0.065 0.050 ND mg/l 0.0010 0.0010 1.79 mg/l 0.005 0.0005 ND mg/l 0.0010 0.0010 ND mg/l 0.0010 0.0010 ND mg/l 0.0010 0.0010 ND mg/l 0.0002 0.0002 ND mg/l 0.0005 0.0005	Result Qualifier Units RL MDL Factor M 2340B - Mansfield Lab 95.0 mg/l 0.660 NA 1 als - Mansfield Lab ND mg/l 0.0005 0.0005 1 0.0536 mg/l 0.0005 0.0005 1 ND mg/l 0.0005 0.0005 1 0.0015 mg/l 0.0010 0.0010 1 0.0018 mg/l 0.0010 0.0010 1 ND mg/l 0.005 0.050 1 ND mg/l 0.0010 0.0010 1 ND mg/l 0.0002 0.0002 1 ND mg/l 0.0005 0.005 1 ND mg/l 0.0005 0.0005 1 ND mg/l 0.0005 0.0005 1	Result Qualifier Units RL MDL Factor Prepared M 2340B - Mansfield Lab 95.0 mg/l 0.660 NA 1 12/18/18 19:23 als - Mansfield Lab ND mg/l 0.0005 0.0005 1 12/17/18 18:02 0.0536 mg/l 0.0005 0.0005 1 12/17/18 18:02 ND mg/l 0.0005 0.0005 1 12/17/18 18:02 0.0015 mg/l 0.0010 0.0010 1 12/17/18 18:02 0.0018 mg/l 0.0010 0.0010 1 12/17/18 18:02 ND mg/l 0.005 0.050 1 12/17/18 18:02 ND mg/l 0.0010 0.0010 1 12/17/18 18:02 ND mg/l 0.0002 0.0002 1 12/17/18 18:02 ND mg/l 0.0005 0.0005 1 12/17/18 18:02 ND mg/l 0.0005 0.0005 1 12/17/18 18:02	Result Qualifier Units RL MDL Factor Prepared Analyzed M 2340B - Mansfield Lab 95.0 mg/l 0.660 NA 1 12/18/18 19:23 12/27/18 20:56 als - Mansfield Lab ND mg/l 0.0005 0.0005 1 12/17/18 18:02 12/18/18 17:10 0.0536 mg/l 0.0005 0.0005 1 12/17/18 18:02 12/18/18 17:10 ND mg/l 0.0005 0.0005 1 12/17/18 18:02 12/18/18 17:10 0.0015 mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 0.0018 mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 1.79 mg/l 0.065 0.050 1 12/17/18 18:02 12/18/18 17:10 ND mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 ND mg/l 0.0002 0.0002 1 12/17/18 18:02 12/18/18 17:10 ND mg/l 0.0005 0.0005 1 12/1	ND	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method M 2340B - Mansfield Lab 95.0 mg/l 0.660 NA 1 12/18/18 19:23 12/27/18 20:56 EPA 3005A 1,6010D Als - Mansfield Lab ND mg/l 0.0005 0.0005 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B 0.0536 mg/l 0.0005 0.0005 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B ND mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B 0.0015 mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B 0.0018 mg/l 0.0010 0.0010 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B ND mg/l 0.005 0.050 1 12/17/18 18:02 12/18/18 17:10 EPA 3005A 97,6020B ND mg/l 0.0010	

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number: Report Date:** 2017-0069 12/28/18

SAMPLE RESULTS Lab ID: L1849652-06

Date Collected: 12/04/18 09:25 Client ID: MP-RB-SW-04-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340E	B - Mansfiel	d Lab								
Hardness	91.0		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:00	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0519		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0017		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0021		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Iron, Dissolved	1.85		mg/l	0.050	0.050	1	12/17/18 18:02	12/19/18 13:19	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1210		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:50	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0206		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 16:49	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number: Report Date:** 2017-0069

12/28/18

12/04/18 09:35

SAMPLE RESULTS

Lab ID: L1849652-07

Client ID: MP-RB-SW-05-120418 Sample Location: ARLINGTON, MA

Date Received: 12/05/18 Field Prep: Not Specified

Date Collected:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by SM 2340B - Mansfield Lab											
Hardness	88.2		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:32	EPA 3005A	1,6010D	МС
MCP Dissolved Met	tals - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0460		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0016		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0019		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Iron, Dissolved	1.72		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1073		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:36	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0104		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:14	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Report Date:** 12/28/18

Project Number: 2017-0069

SAMPLE RESULTS

Lab ID: L1849652-08 Date Collected: 12/04/18 09:50 Client ID: MP-RB-SW-06-120418 Date Received: 12/05/18

Field Prep: Not Specified Sample Location: ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340E	B - Mansfiel	ld Lab								
Hardness	97.2		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:37	EPA 3005A	1,6010D	МС
MCP Dissolved Me	tals - Man	nsfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0554		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0026		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0021		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Iron, Dissolved	4.63		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1044		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:38	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0205		ma/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:18	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number:** Report Date: 2017-0069 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-09

Date Collected: 12/04/18 11:05 Client ID: MP-RB-UW-01-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340E	3 - Mansfiel	d Lab								
Hardness	62.4		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:41	EPA 3005A	1,6010D	МС
MCP Dissolved Met	tals - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0941		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Chromium, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0074		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Iron, Dissolved	1.91		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Lead, Dissolved	0.0018		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1946		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:40	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0948		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:22	EPA 3005A	97,6020B	AM

Project Name: Lab Number: MCCLENNEN PARK L1849652

Project Number: Report Date: 2017-0069

12/28/18

SAMPLE RESULTS

Lab ID: L1849652-10

Date Collected: 12/04/18 11:20 Client ID: MP-RB-UW-02-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	B - Mansfiel	d Lab								
Hardness	116		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:46	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	0.0009		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.1278		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	0.0006		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0014		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0215		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Iron, Dissolved	2.10		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Lead, Dissolved	0.0068		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.4381		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:42	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.3141		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:39	EPA 3005A	97,6020B	AM

12/04/18 10:13

Project Name: Lab Number: MCCLENNEN PARK L1849652 **Project Number:** Report Date: 2017-0069

12/28/18

Date Collected:

SAMPLE RESULTS

Lab ID: L1849652-11

Client ID: MP-RB-SW-08-120418 Date Received: 12/05/18 Sample Location: Field Prep: Not Specified ARLINGTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340E	B - Mansfiel	d Lab								
Hardness	91.9		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:51	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0518		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Chromium, Dissolved	0.0018		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0017		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Iron, Dissolved	1.91		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.1174		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:54	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0183		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:43	EPA 3005A	97,6020B	AM

12/04/18 10:18

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

SAMPLE RESULTS

Lab ID: L1849652-12

Client ID: MP-RB-SW-08L-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340E	B - Mansfiel	d Lab								
Hardness	132		mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 21:55	EPA 3005A	1,6010D	МС
MCP Dissolved Met	als - Man	sfield Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Barium, Dissolved	0.0844		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Chromium, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0011		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Iron, Dissolved	8.98		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Manganese, Dissolved	0.4888		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:55	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0563		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:47	EPA 3005A	97,6020B	AM

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

SAMPLE RESULTS

 Lab ID:
 L1849652-13
 Date Collected:
 12/04/18 11:05

 Client ID:
 MP-SW-EB-120418
 Date Received:
 12/05/18

Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MOD Disaskus d Mad	ala Man	afialal ab									
MCP Dissolved Met	ais - ivian	sileid Lab									
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Barium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Chromium, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Copper, Dissolved	0.0011		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Iron, Dissolved	0.071		mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Manganese, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:57	EPA 7470A	97,7470A	MG
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM
Zinc, Dissolved	0.0212		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 17:51	EPA 3005A	97,6020B	AM

Project Name: MCCLENNEN PARK Lab Number: L1849652 **Project Number: Report Date:** 12/28/18

2017-0069

SAMPLE RESULTS

Lab ID: L1849652-14

Date Collected:

12/04/18 10:22

Client ID:

MP-RB-SED-08-120418

Date Received: 12/05/18

Sample Location: ARLINGTON, MA Field Prep:

Not Specified

Sample Depth:

Sediment Matrix:

17% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 41.5 mg/kg 2.79 2.79 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B AM 12/18/18 11:40 12/20/18 15:26 EPA 3050B 228 16.8 10 97,6020B Barium, Total mg/kg 16.8 ΑM 97,6020B Cadmium, Total 2.050 mg/kg 1.117 1.117 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B ΑM Chromium, Total 89.9 mg/kg 11.2 11.2 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B AM 101 11.2 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B Copper, Total mg/kg 11.2 ΑM Iron, Total 212000 1120 1120 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 171 mg/kg 3.35 3.35 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B ΑM 807 10 97,6020B Manganese, Total mg/kg 11.2 11.2 12/18/18 11:40 12/20/18 15:26 EPA 3050B ΑM Mercury, Total ND 0.380 0.380 1 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:42 EPA 7471B EΑ 12/18/18 11:40 12/20/18 15:26 EPA 3050B 97,6020B Selenium, Total ND mg/kg 11.2 11.2 10 AM 12/18/18 11:40 12/20/18 15:26 EPA 3050B ND 2.79 10 97,6020B Silver, Total 2.79 ΑM mg/kg 431 55.8 97,6020B Zinc, Total mg/kg 55.8 10 12/18/18 11:40 12/20/18 15:26 EPA 3050B ΑM

Project Name: Lab Number: MCCLENNEN PARK L1849652

Project Number: Report Date: 2017-0069

12/28/18

12/04/18 10:30

SAMPLE RESULTS

Lab ID: L1849652-15

Client ID: MP-RB-SED-03-120418

Sample Location: ARLINGTON, MA Date Received: 12/05/18 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Sediment

Percent Solids:	25%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Arsenic, Total	17.2		mg/kg	1.99	1.99	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Barium, Total	121		mg/kg	12.0	12.0	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Cadmium, Total	1.206		mg/kg	0.7972	0.7972	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Chromium, Total	66.7		mg/kg	7.97	7.97	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Copper, Total	72.3		mg/kg	7.97	7.97	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Iron, Total	60100		mg/kg	797	797.	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Lead, Total	111		mg/kg	2.39	2.39	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Manganese, Total	356		mg/kg	7.97	7.97	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Mercury, Total	ND		mg/kg	0.260	0.260	1	12/19/18 09:10	12/21/18 18:44	EPA 7471B	97,7471B	EA
Selenium, Total	ND		mg/kg	7.97	7.97	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Silver, Total	ND		mg/kg	1.99	1.99	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM
Zinc, Total	358		mg/kg	39.8	39.8	10	12/18/18 11:40	12/20/18 15:30	EPA 3050B	97,6020B	AM

12/04/18 12:30

Date Collected:

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-16

Client ID: MP-RB-SED-07-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

22% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 15.7 mg/kg 2.18 2.18 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B AM 12/18/18 11:40 12/20/18 15:35 EPA 3050B 78.0 13.0 13.0 10 97,6020B Barium, Total mg/kg ΑM 97,6020B Cadmium, Total 1.237 mg/kg 0.8702 0.8702 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B ΑM Chromium, Total 32.5 mg/kg 8.70 8.70 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B AM 48.0 8.70 8.70 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B Copper, Total mg/kg ΑM Iron, Total 37800 870 870. 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 114 mg/kg 2.61 2.61 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B ΑM 8.70 8.70 10 97,6020B Manganese, Total 392 mg/kg 12/18/18 11:40 12/20/18 15:35 EPA 3050B ΑM 1 Mercury, Total ND 0.289 0.289 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:45 EPA 7471B EΑ 8.70 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B Selenium, Total ND mg/kg 8.70 10 AM ND 2.18 10 12/18/18 11:40 12/20/18 15:35 EPA 3050B 97,6020B Silver, Total 2.18 ΑM mg/kg 484 43.5 10 97,6020B Zinc, Total mg/kg 43.5 12/18/18 11:40 12/20/18 15:35 EPA 3050B ΑM

12/04/18 12:50

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

SAMPLE RESULTS

Lab ID: L1849652-17

Client ID: MP-RB-SED-07FD-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

20% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Units Factor **Prepared** Analyzed Method **Parameter** Result RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 25.3 mg/kg 2.38 2.38 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B AM 121 14.3 14.3 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B Barium, Total mg/kg ΑM 97,6020B Cadmium, Total ND mg/kg 0.9519 0.9519 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B ΑM Chromium, Total 51.3 mg/kg 9.52 9.52 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B AM 74.1 9.52 9.52 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B Copper, Total mg/kg ΑM Iron, Total 57800 952 952. 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 163 mg/kg 2.86 2.86 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B ΑM 671 9.52 10 97,6020B Manganese, Total mg/kg 9.52 12/18/18 11:40 12/20/18 15:44 EPA 3050B ΑM 1 Mercury, Total ND 0.320 0.320 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:51 EPA 7471B EΑ 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B Selenium, Total ND mg/kg 9.52 9.52 10 AM ND 2.38 10 12/18/18 11:40 12/20/18 15:44 EPA 3050B 97,6020B Silver, Total 2.38 ΑM mg/kg 264 47.6 10 97,6020B Zinc, Total mg/kg 47.6 12/18/18 11:40 12/20/18 15:44 EPA 3050B ΑM

12/04/18 13:10

Date Collected:

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-18

Client ID: MP-RB-SED-04-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

24% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 11.7 mg/kg 1.99 1.99 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B AM 12/18/18 11:40 12/20/18 15:08 EPA 3050B 62.2 10 97,6020B Barium, Total mg/kg 11.9 11.9 ΑM 97,6020B Cadmium, Total ND mg/kg 0.7952 0.7952 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B ΑM Chromium, Total 26.2 mg/kg 7.95 7.95 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B AM 39.9 7.95 7.95 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B Copper, Total mg/kg ΑM Iron, Total 31000 795 795. 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 159 mg/kg 2.38 2.38 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B ΑM 378 7.95 10 97,6020B Manganese, Total mg/kg 7.95 12/18/18 11:40 12/20/18 15:08 EPA 3050B ΑM 1 Mercury, Total ND 0.262 0.262 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:34 EPA 7471B EΑ 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B Selenium, Total ND mg/kg 7.95 7.95 10 AM ND 1.99 10 12/18/18 11:40 12/20/18 15:08 EPA 3050B 97,6020B Silver, Total 1.99 ΑM mg/kg 185 39.8 10 97,6020B Zinc, Total mg/kg 39.8 12/18/18 11:40 12/20/18 15:08 EPA 3050B ΑM

12/04/18 13:30

Date Collected:

Project Name: MCCLENNEN PARK Lab Number: L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-19

Client ID: MP-RB-SED-05-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

21% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 20.3 mg/kg 2.35 2.35 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B AM 136 14.1 14.1 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B Barium, Total mg/kg ΑM 97,6020B Cadmium, Total 0.9752 mg/kg 0.9390 0.9390 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B ΑM Chromium, Total 56.5 mg/kg 9.39 9.39 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B AM 85.9 9.39 9.39 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B Copper, Total mg/kg ΑM Iron, Total 46100 939 939. 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 320 mg/kg 2.82 2.82 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B 97,6020B ΑM 10 97,6020B Manganese, Total 454 mg/kg 9.39 9.39 12/18/18 11:40 12/20/18 17:56 EPA 3050B ΑM 1 Mercury, Total ND 0.307 0.307 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:53 EPA 7471B EΑ 97,6020B Selenium, Total ND mg/kg 9.39 9.39 10 12/18/18 11:40 12/20/18 17:56 EPA 3050B AM 12/18/18 11:40 12/20/18 17:56 EPA 3050B ND 2.35 10 97,6020B Silver, Total 2.35 ΑM mg/kg 305 47.0 47.0 10 97,6020B Zinc, Total mg/kg 12/18/18 11:40 12/20/18 17:56 EPA 3050B ΑM

12/04/18 13:50

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

2017-0009

SAMPLE RESULTS

Lab ID: L1849652-20

Client ID: MP-RB-SED-06-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

Percent Solids: 19% Dilution Date Date Prep Analytical Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analy

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analyst
MCP Total Metals -	Mansfield	d Lab									
Arsenic, Total	18.6		mg/kg	2.56	2.56	10	12/18/18 11:40	12/20/18 18:00	EPA 3050B	97,6020B	AM
Barium, Total	142		mg/kg	15.4	15.4	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Cadmium, Total	1.131		mg/kg	1.024	1.024	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Chromium, Total	69.2		mg/kg	10.2	10.2	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Copper, Total	74.5		mg/kg	10.2	10.2	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Iron, Total	64200		mg/kg	1020	1020	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Lead, Total	146		mg/kg	3.07	3.07	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Manganese, Total	422		mg/kg	10.2	10.2	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Mercury, Total	ND		mg/kg	0.345	0.345	1	12/19/18 09:10) 12/21/18 18:55	EPA 7471B	97,7471B	EA
Selenium, Total	ND		mg/kg	10.2	10.2	10	12/18/18 11:40	12/20/18 18:00	EPA 3050B	97,6020B	AM
Silver, Total	ND		mg/kg	2.56	2.56	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM
Zinc, Total	356		mg/kg	51.2	51.2	10	12/18/18 11:40) 12/20/18 18:00	EPA 3050B	97,6020B	AM

12/04/18 14:50

Date Collected:

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

SAMPLE RESULTS

Lab ID: L1849652-21

Client ID: MP-UW-SED-02-120418 Date Received: 12/05/18
Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

10% Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Arsenic, Total 6.28 mg/kg 4.75 4.75 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B AM 12/18/18 11:40 12/20/18 18:05 EPA 3050B 345 28.5 28.5 10 97,6020B Barium, Total mg/kg ΑM 97,6020B Cadmium, Total 3.802 mg/kg 1.900 1.900 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B ΑM Chromium, Total 23.3 mg/kg 19.0 19.0 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B AM 235 19.0 19.0 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B Copper, Total mg/kg ΑM Iron, Total 72800 1900 1900 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B mg/kg ΑM Lead, Total 472 mg/kg 5.70 5.70 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B ΑM 186 19.0 19.0 10 97,6020B Manganese, Total mg/kg 12/18/18 11:40 12/20/18 18:05 EPA 3050B ΑM 1 Mercury, Total 0.681 0.630 0.630 97,7471B mg/kg 12/19/18 09:10 12/21/18 18:56 EPA 7471B EΑ 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B Selenium, Total ND mg/kg 19.0 19.0 10 AM ND 4.75 10 12/18/18 11:40 12/20/18 18:05 EPA 3050B 97,6020B Silver, Total 4.75 ΑM mg/kg 785 95.0 10 97,6020B Zinc, Total mg/kg 95.0 12/18/18 11:40 12/20/18 18:05 EPA 3050B ΑM

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date: 12/28/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
MCP Total Metals - Ma	nsfield Lab for samp	le(s): 14-2	21 Batcl	h: WG1	1188095-1				
Mercury, Total	ND	mg/kg	0.083	0.083	1	12/19/18 09:10	12/21/18 18:29	97,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Meta	ils - Mansfield Lab for s	sample(s):	01-13	Batch:	WG118856	3-1			
Mercury, Dissolved	ND	mg/l	0.0002	0.0002	1	12/12/18 14:51	12/13/18 22:03	97,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Mansfield La	b for s	ample(s):	01-13	Batch:	WG119031	6-1			
Arsenic, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Barium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Chromium, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Copper, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Iron, Dissolved	0.059	J	mg/l	0.065	0.050	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Manganese, Dissolved	ND		mg/l	0.0010	0.0010	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Selenium, Dissolved	ND		mg/l	0.005	0.005	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Silver, Dissolved	ND		mg/l	0.0005	0.0005	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM
Zinc, Dissolved	ND		mg/l	0.0100	0.0100	1	12/17/18 18:02	12/18/18 15:59	97,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date: 12/28/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Ma	nsfield Lab for sampl	e(s): 14-2	21 Batcl	h: WG1	190565-1				
Arsenic, Total	ND	mg/kg	0.625	0.625	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Barium, Total	ND	mg/kg	3.75	3.75	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Cadmium, Total	ND	mg/kg	0.2500	0.2500	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Chromium, Total	ND	mg/kg	2.50	2.50	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Copper, Total	ND	mg/kg	2.50	2.50	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Iron, Total	ND	mg/kg	250	250.	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Lead, Total	ND	mg/kg	0.750	0.750	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Manganese, Total	ND	mg/kg	2.50	2.50	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Selenium, Total	ND	mg/kg	2.50	2.50	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Silver, Total	ND	mg/kg	0.625	0.625	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM
Zinc, Total	ND	mg/kg	12.5	12.5	10	12/18/18 11:40	12/20/18 14:11	97,6020B	AM

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifie	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by S	SM 2340B - Mansfield L	ab for sam	ple(s):	01-12 I	Batch: WG	1190797-1			
Hardness	ND	mg/l	0.660	NA	1	12/18/18 19:23	12/27/18 19:30	1,6010D	MC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date:

12/28/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits		
MCP Total Metals - Mansfield Lab Associated sa	mple(s): 14-21	Batch: WG	G1188095-2 W	G1188095-3	SRM Lot Number	: D102-540				
Mercury, Total	123		130		65-134	6		30		
MCP Dissolved Metals - Mansfield Lab Associated sample(s): 01-13 Batch: WG1188563-2 WG1188563-3										
Mercury, Dissolved	92		98		80-120	6		20		
MCP Dissolved Metals - Mansfield Lab Associate	ed sample(s): 0	1-13 Batch	: WG1190316-6	WG11903	16-7					
Arsenic, Dissolved	100		103		80-120	3		20		
Barium, Dissolved	104		108		80-120	4		20		
Cadmium, Dissolved	100		110		80-120	10		20		
Chromium, Dissolved	101		105		80-120	4		20		
Copper, Dissolved	98		106		80-120	8		20		
Iron, Dissolved	107		117		80-120	9		20		
Lead, Dissolved	97		101		80-120	4		20		
Manganese, Dissolved	100		105		80-120	5		20		
Selenium, Dissolved	102		105		80-120	3		20		
Silver, Dissolved	104		108		80-120	4		20		
Zinc, Dissolved	106		112		80-120	6		20		

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number: L1849652

Report Date: 12/28/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Total Metals - Mansfield Lab Association	ciated sample(s): 14-21	Batch: WG1190565-6	WG1190565-7 SRM Lot Number	er: D102-540	
Arsenic, Total	109	110	83-117	1	30
Barium, Total	109	111	83-118	2	30
Cadmium, Total	112	115	83-118	3	30
Chromium, Total	102	102	83-117	0	30
Copper, Total	108	106	84-116	2	30
Iron, Total	96	98	61-139	2	30
Lead, Total	107	110	82-118	3	30
Manganese, Total	102	102	82-118	0	30
Selenium, Total	111	114	79-121	3	30
Silver, Total	115	115	80-120	0	30
Zinc, Total	105	106	81-118	1	30
otal Hardness by SM 2340B - Mansfield	Lab Associated sample	e(s): 01-12 Batch: WG1	190797-2		
Hardness	106	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number: L1849652

Report Date: 12/28/18

oarameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD Lual Limits
MCP Total Metals - Mansfiel 120418	d Lab Associate	d sample(s)	: 14-21 QC	Batch ID: W	G11880	95-4 QC	Sample: L184	9652-1	8 Client IE): MP-RE	3-SED-04-
Mercury, Total	ND	0.523	0.890	170	Q	-	-		75-125	-	35
MCP Dissolved Metals - Mar MP-RB-SW-04-120418	nsfield Lab Asso	ciated samp	le(s): 01-13	QC Batch II	D: WG1	188563-4 \	WG1188563-5	QC S	ample: L184	19652-06	Client ID:
Mercury, Dissolved	ND	0.005	0.0043	86		0.0039	79		75-125	9	20
MCP Dissolved Metals - Mar MP-RB-SW-04-120418	nsfield Lab Asso	ciated samp	le(s): 01-13	QC Batch II	D: WG1	190316-3 \	WG1190316-4	QC S	ample: L184	19652-06	Client ID:
Arsenic, Dissolved	ND	0.12	0.1211	101		0.1245	104		75-125	3	20
Barium, Dissolved	0.0519	2	2.082	102		2.225	109		75-125	7	20
Cadmium, Dissolved	ND	0.051	0.0559	110		0.0577	113		75-125	3	20
Chromium, Dissolved	0.0017	0.2	0.1980	98		0.2088	104		75-125	5	20
Copper, Dissolved	0.0021	0.25	0.2464	98		0.2686	107		75-125	9	20
Iron, Dissolved	1.85	1	3.15	130	Q	3.01	116		75-125	5	20
Lead, Dissolved	ND	0.51	0.4981	98		0.5217	102		75-125	5	20
Manganese, Dissolved	0.1210	0.5	0.6041	97		0.6329	102		75-125	5	20
Selenium, Dissolved	ND	0.12	0.114	95		0.130	108		75-125	13	20
Silver, Dissolved	ND	0.05	0.0518	104		0.0561	112		75-125	8	20
Zinc, Dissolved	0.0206	0.5	0.5419	104		0.5734	110		75-125	6	20

Matrix Spike Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number: L1849652

Report Date: 12/28/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD MSD %Recovery	Recovery Limits	RPD	RPD Limits
MCP Total Metals - Mansf 120418	field Lab Associate	d sample(s): 14-21 (QC Batch ID: W	G1190565-3	QC Sample: L18496	52-18 Client ID	: MP-RE	3-SED-04-
Arsenic, Total	11.7	39.4	53.3	106	-	-	75-125	-	35
Barium, Total	62.2	656	747	104	-	-	75-125	-	35
Cadmium, Total	ND	16.7	18.18	109		-	75-125	-	35
Chromium, Total	26.2	65.6	97.0	108		-	75-125	-	35
Copper, Total	39.9	82	130	110	-	-	75-125	-	35
Iron, Total	31000	328	38000	2130	Q -	-	75-125	-	35
Lead, Total	159	167	350	114	-	-	75-125	-	35
Manganese, Total	378	164	614	144	Q -	-	75-125	-	35
Selenium, Total	ND	39.4	38.1	97	-	-	75-125	-	35
Silver, Total	ND	98.4	109	111	-	-	75-125	-	35
Zinc, Total	185	164	372	114	-	-	75-125	-	35
Total Hardness by SM 234 SW-01-120418	40B - Mansfield La	b Associate	ed sample(s	s): 01-12 QC I	Batch ID: WG11	90797-3 QC Sam	ple: L1849652-01	Client	ID: MP-RB-
Hardness	109	66.2	178	104	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date:

12/28/18

Parameter			Sample	Duplicate Sa	mple Ur	nits RP	D Qua	al RPD	Limits
ICP Total Metals - Mansfield Lab A 20418	Associated sample(s):	14-21	QC Batch ID	: WG1188095-5	QC Sample:	L1849652-18	Client ID:	MP-RB-SE	D-04-
Mercury, Total		١	ND .	ND	mg	g/kg N	С		35
ICP Total Metals - Mansfield Lab A 20418	Associated sample(s):	14-21	QC Batch ID	: WG1190565-4	QC Sample:	L1849652-18	Client ID:	MP-RB-SE	D-04-
Arsenic, Total		1	1.7	16.4	mg	g/kg 3:	3		35
Barium, Total		62	2.2	88.7	mg	g/kg 3	5		35
Cadmium, Total		N	ID	ND	mg	g/kg N	С		35
Chromium, Total		20	6.2	37.2	mg	g/kg 3	5		35
Copper, Total		39	9.9	49.7	mg	g/kg 2	2		35
Iron, Total		31	000	44300	mg	g/kg 3	5		35
Lead, Total		1	59	188	mg	g/kg 1	7		35
Manganese, Total		3	78	592	mg	g/kg 4	4 Q		35
Selenium, Total		N	ID	ND	mg	g/kg N	С		35
Silver, Total		N	ID	ND	mg	g/kg N	С		35
Zinc, Total		1	85	228	mg	g/kg 2	1		35
otal Hardness by SM 2340B - Mans W-01-120418	sfield Lab Associated	sample	(s): 01-12 (QC Batch ID: WG	1190797-4 (QC Sample: L	1849652-01	Client ID:	MP-RB-
Hardness		1	09	111	m	g/l 2	2		20

Lab Serial Dilution Analysis Batch Quality Control

Lab Number:

L1849652

Batch Quality Control Report Date: 12/28/18

Parameter	Native Sample	Serial Dilution	Units	<u>% D</u>	Qual RPD Limits
MCP Dissolved Metals - Mansfield Lab Associated sam 120418	nple(s): 01-13 QC Ba	atch ID: WG1190316-5	QC Sample: L	1849652-06	Client ID: MP-RB-SW-04-
Iron, Dissolved	1.85	1.98	mg/l	7	20
MCP Total Metals - Mansfield Lab Associated sample(s	s): 14-21 QC Batch	ID: WG1190565-5 Q0	C Sample: L1849	652-18 Clie	nt ID: MP-RB-SED-04-
Iron, Total	31000	31100	mg/kg	0	20
Lead, Total	159	160	mg/kg	1	20
Manganese, Total	378	372	mg/kg	2	20

Project Name:

Project Number:

MCCLENNEN PARK

2017-0069

INORGANICS & MISCELLANEOUS

Date Collected:

L1849652

12/04/18 10:22

Project Name: MCCLENNEN PARK

Lab Number:

Report Date: **Project Number:** 12/28/18 2017-0069

SAMPLE RESULTS

Lab ID: L1849652-14

Client ID: Date Received: 12/05/18 MP-RB-SED-08-120418 Not Specified Sample Location: ARLINGTON, MA Field Prep:

Sample Depth:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	nsfield Lab									
Total Organic Carbon (Rep1)	10.3		%	0.010	0.010	1	-	12/12/18 12:38	1,9060A	SP
Total Organic Carbon (Rep2)	10.1		%	0.010	0.010	1	-	12/12/18 12:38	1,9060A	SP
Grain Size Analysis - Mans	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Sand	5.00		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Medium Sand	28.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Sand	13.4		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Sand	47.3		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Silt Fine	35.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Clay Fine	17.1		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Fines	52.7		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
General Chemistry - Mans	field Lab									
Solids, Total	16.7		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 Lab Number:

L1849652

Report Date: 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-15

Client ID: MP-RB-SED-03-120418 Date Collected: Date Received: 12/04/18 10:30

Sample Location: ARLINGTON, MA

Field Prep:

12/05/18 Not Specified

Sample Depth:

Matrix:

Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	nsfield Lab									
Total Organic Carbon (Rep1)	11.8		%	0.010	0.010	1	-	12/12/18 12:48	1,9060A	SP
Total Organic Carbon (Rep2)	11.2		%	0.010	0.010	1	-	12/12/18 12:48	1,9060A	SP
Grain Size Analysis - Mans	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Fine Gravel	0.700		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Gravel	0.700		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Coarse Sand	4.80		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Medium Sand	20.8		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Fine Sand	32.8		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Sand	58.4		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Silt Fine	32.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Clay Fine	8.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Fines	40.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	field Lab									
Solids, Total	24.5		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

12/04/18 12:30

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 Rep

Lab Number: L1849652 **Report Date:** 12/28/18

Date Collected:

SAMPLE RESULTS

Lab ID: L1849652-16

Client ID: MP-RB-SED-07-120418 Date Received: 12/05/18 Sample Location: ARLINGTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	nsfield Lab									
Total Organic Carbon (Rep1)	4.75		%	0.010	0.010	1	-	12/12/18 12:59	1,9060A	SP
Total Organic Carbon (Rep2)	4.83		%	0.010	0.010	1	-	12/12/18 12:59	1,9060A	SP
Grain Size Analysis - Mans	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Fine Gravel	1.60		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Gravel	1.60		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Coarse Sand	18.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Medium Sand	38.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Fine Sand	28.7		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Total Sand	85.8		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Silt Fine	9.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Clay Fine	3.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
% Total Fines	12.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	field Lab									
Solids, Total	22.1		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

L1849652

12/04/18 12:50 12/05/18

Not Specified

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 Report Da

Report Date: 12/28/18

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1849652-17

Client ID: MP-RB-SED-07FD-120418

Sample Location: ARLINGTON, MA

Sample Depth:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	3.78		%	0.010	0.010	1	-	12/12/18 13:10	1,9060A	SP
Total Organic Carbon (Rep2)	4.29		%	0.010	0.010	1	-	12/12/18 13:10	1,9060A	SP
Grain Size Analysis - Man	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Fine Gravel	6.80		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Gravel	6.80		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Coarse Sand	12.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Medium Sand	29.4		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Fine Sand	32.1		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Sand	73.7		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Silt Fine	16.1		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Clay Fine	3.40		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Fines	19.5		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	sfield Lab									
Solids, Total	19.6		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 Lab Number:

L1849652

Report Date:

12/28/18

SAMPLE RESULTS

Lab ID: L1849652-18

Client ID: MP-RB-SED-04-120418

Field Prep:

12/04/18 13:10

Sample Location: ARLINGTON, MA

Date Received:

Date Collected:

12/05/18 Not Specified

Sample Depth:

Matrix:

Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	nsfield Lab									
Total Organic Carbon (Rep1)	3.47		%	0.010	0.010	1	-	12/12/18 13:20	1,9060A	SP
Total Organic Carbon (Rep2)	4.24		%	0.010	0.010	1	-	12/12/18 13:20	1,9060A	SP
Grain Size Analysis - Mans	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Fine Gravel	0.900		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Gravel	0.900		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Coarse Sand	4.50		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Medium Sand	28.0		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Fine Sand	51.1		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Sand	83.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Silt Fine	11.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Clay Fine	4.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Fines	15.5		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	B GD
General Chemistry - Mans	field Lab									
Solids, Total	24.0		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 Lab Number:

L1849652

Report Date: 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-19

MP-RB-SED-05-120418

Sample Location: ARLINGTON, MA

Date Collected: 12/04/18 13:30 Date Received:

12/05/18

Not Specified Field Prep:

Sample Depth:

Matrix:

Client ID:

Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	4.27		%	0.010	0.010	1	-	12/12/18 14:03	1,9060A	SP
Total Organic Carbon (Rep2)	5.56		%	0.010	0.010	1	-	12/12/18 14:03	1,9060A	SP
Grain Size Analysis - Man	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Gravel	19.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Gravel	19.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Sand	11.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Medium Sand	22.3		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Sand	23.7		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Sand	57.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Silt Fine	15.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Clay Fine	7.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD GD
% Total Fines	22.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	sfield Lab									
Solids, Total	20.8		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date: 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-20

MP-RB-SED-06-120418

Sample Location: ARLINGTON, MA

Date Collected: 12/04/18 13:50

Date Received: 12/05/18

Field Prep: Not Specified

Sample Depth:

Client ID:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	nsfield Lab									
Total Organic Carbon (Rep1)	6.26		%	0.010	0.010	1	-	12/12/18 14:14	1,9060A	SP
Total Organic Carbon (Rep2)	7.82		%	0.010	0.010	1	-	12/12/18 14:14	1,9060A	SP
Grain Size Analysis - Mans	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Gravel	0.300		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Gravel	0.300		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Coarse Sand	4.10		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Medium Sand	21.6		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Fine Sand	34.2		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Sand	59.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Silt Fine	31.4		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Clay Fine	8.40		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	GD
% Total Fines	39.8		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	field Lab									
Solids, Total	18.5		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date: 12/28/18

SAMPLE RESULTS

Lab ID: L1849652-21

Client ID: MP-UW-SED-02-120418

Sample Location: ARLINGTON, MA

Date Collected: 12/04/18 14:50 Date Received: 12/05/18

Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	31.8		%	0.010	0.010	1	-	12/12/18 14:25	1,9060A	SP
Total Organic Carbon (Rep2)	31.9		%	0.010	0.010	1	-	12/12/18 14:25	1,9060A	SP
Grain Size Analysis - Man	sfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Coarse Gravel	ND		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Fine Gravel	3.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Gravel	3.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Coarse Sand	14.3		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Medium Sand	42.4		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Fine Sand	26.1		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Sand	82.8		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Silt Fine	5.60		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Clay Fine	8.30		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
% Total Fines	13.9		%	0.100	NA	1	-	12/06/18 11:12	12,D6913/D7928	3 GD
General Chemistry - Mans	field Lab									
Solids, Total	9.97		%	0.100	0.100	1	-	12/06/18 12:43	121,2540G	GD

L1849652

Project Name: MCCLENNEN PARK

Project Number: 2017-0069 **Report Date:** 12/28/18

nod Blank Analysis

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - M	Mansfield Lab for samp	ole(s): 14-	·21 Bate	ch: WG	1188863-1				
Total Organic Carbon (Rep1)	ND	%	0.010	0.010	1	-	12/12/18 09:23	1,9060A	SP
Total Organic Carbon (Rep2)	ND	%	0.010	0.010	1	-	12/12/18 09:23	1,9060A	SP

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Lab Number:

L1849652

Project Number: 2017-0069

Report Date:

12/28/18

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Organic Carbon - Mansfield Lab As	sociated sample(s): 14-21	Batch: WG118886	3-2				
Total Organic Carbon (Rep1)	103	-		75-125	-		25
Total Organic Carbon (Rep2)	98	-		75-125	-		25

Matrix Spike Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date:

12/28/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD	RPD Qual Limits
Total Organic Carbon - Mansfi 120418	eld Lab Assoc	iated samp	le(s): 14-21	QC Batch ID	: WG11	88863-4	QC Sample: L184	9652-18 Clie	ent ID: M	1P-RB-SED-04-
Total Organic Carbon (Rep1)	3.47	0.807	4.13	82		-	-	75-125	-	25
Total Organic Carbon (Rep2)	4.24	1.08	4.40	15	Q	-	-	75-125	-	25

Lab Duplicate Analysis Batch Quality Control

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number:

L1849652

Report Date: 12/28/18

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	Qual	RPD Limits
Grain Size Analysis - Mansfield Lab Associate 120418	d sample(s): 14-21 QC Batch I	D: WG1186360-1 C	QC Sample: L18	49652-18 C	Client ID: N	MP-RB-SED-04-
Cobbles	ND	ND	%	NC		20
% Coarse Gravel	ND	ND	%	NC		20
% Fine Gravel	0.900	1.70	%	62	Q	20
% Total Gravel	0.900	1.70	%	62	Q	20
% Coarse Sand	4.50	4.60	%	2		20
% Medium Sand	28.0	23.5	%	17		20
% Fine Sand	51.1	51.5	%	1		20
% Total Sand	83.6	79.6	%	5		20
% Silt Fine	11.2	14.5	%	26	Q	20
% Clay Fine	4.30	4.20	%	2		20
% Total Fines	15.5	18.7	%	19		20
General Chemistry - Mansfield Lab Associated 20418	sample(s): 14-21 QC Batch IE): WG1186363-1 Q	C Sample: L184	49652-18 C	lient ID: M	IP-RB-SED-04-
Solids, Total	24.0	25.6	%	6		10
otal Organic Carbon - Mansfield Lab Associa 20418	ted sample(s): 14-21 QC Batch	n ID: WG1188863-3	QC Sample: L	1849652-18	Client ID:	MP-RB-SED-04-
Total Organic Carbon (Rep1)	3.47	3.51	%	1		25
Total Organic Carbon (Rep2)	4.24	4.18	%	1		25

Project Name: MCCLENNEN PARK

Project Number: 2017-0069

Lab Number: L1849652
Report Date: 12/28/18

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Information				Initial	Final Temp				Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1849652-01A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
	L1849652-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
	L1849652-01X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
	L1849652-02A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
	L1849652-02B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
	L1849652-02X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
	L1849652-03A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
	L1849652-03B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
	L1849652-03X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
	L1849652-04A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
	L1849652-04B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info	ormation	Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1849652-04X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-05A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-05B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
L1849652-05X	Plastic 120ml HNO3 preserved Filtrates	А	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S- 10(28),MCP-CU-6020S-10(180),MCP-FE- 6020S-10(180),MCP-BA-6020S-10(180),MCP- CD-6020S-10(180),MCP-MN-6020S- 10(180),MCP-SE-6020S-10(180),MCP-AS- 6020S-10(180),MCP-AG-6020S-10(180),MCP- ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-06A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-06A1	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-06A2	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-06B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
L1849652-06X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Υ	Absent		MCP-PB-6020S-10(180),MCP-7470S- 10(28),MCP-CU-6020S-10(180),MCP-FE- 6020S-10(180),MCP-BA-6020S-10(180),MCP- CD-6020S-10(180),MCP-MN-6020S- 10(180),MCP-SE-6020S-10(180),MCP-AS- 6020S-10(180),MCP-AG-6020S-10(180),MCP- ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-06X1	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S- 10(28),MCP-CU-6020S-10(180),MCP-FE- 6020S-10(180),MCP-BA-6020S-10(180),MCP- CD-6020S-10(180),MCP-MN-6020S- 10(180),MCP-SE-6020S-10(180),MCP-AS- 6020S-10(180),MCP-AG-6020S-10(180),MCP- ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-06X2	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-07A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-07B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info	rmation	Initial	-	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L1849652-07X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-08A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-08B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
L1849652-08X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-09A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-09B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
L1849652-09X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-10A	Plastic 250ml unpreserved	Α	7	7	4.9	Υ	Absent		-
L1849652-10B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.9	Υ	Absent		HARDT(180)
L1849652-10X	Plastic 120ml HNO3 preserved Filtrates	A	NA		4.9	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-11A	Plastic 250ml unpreserved	В	7	7	4.1	Υ	Absent		-
L1849652-11B	Plastic 250ml HNO3 preserved	В	<2	<2	4.1	Υ	Absent		HARDT(180)
L1849652-11X	Plastic 120ml HNO3 preserved Filtrates	В	NA		4.1	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AS-6020S-10(180),MCP-CR-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-12A	Plastic 250ml unpreserved	В	7	7	4.1	Υ	Absent		-

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1849652-12B	Plastic 250ml HNO3 preserved	В	<2	<2	4.1	Υ	Absent		HARDT(180)
L1849652-12X	Plastic 120ml HNO3 preserved Filtrates	В	NA		4.1	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-13A	Plastic 250ml unpreserved	В	7	7	4.1	Υ	Absent		-
L1849652-13X	Plastic 120ml HNO3 preserved Filtrates	В	NA		4.1	Y	Absent		MCP-PB-6020S-10(180),MCP-7470S-10(28),MCP-CU-6020S-10(180),MCP-FE-6020S-10(180),MCP-BA-6020S-10(180),MCP-CD-6020S-10(180),MCP-MN-6020S-10(180),MCP-SE-6020S-10(180),MCP-AS-6020S-10(180),MCP-AG-6020S-10(180),MCP-ZN-6020S-10(180),MCP-CR-6020S-10(180)
L1849652-14A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()
L1849652-14B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AS-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-15A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info	ormation			Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1849652-15B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-HGPREP-S050:2T(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-16A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()
L1849652-16B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-DG-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-17A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()
L1849652-17B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-18A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Υ	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info		Initial		Temp)		Frozen		
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1849652-18B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-GU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-HGPREP-AD(28),A2-PB-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-18B1	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-MN-MCP6020T-10(180),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP47471T-10(28),A2-SE-MCP6020T-10(180),A2-HG-MCP47471T-10(28),A2-PB-MCP6020T-10(180),A2-PREP-AA(28),A2-PB-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-PREP-3050:1T(180)
L1849652-18B2	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-MN-MCP6020T-10(180),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HG-MCP67471T-10(28),A2-PB-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-PREP-3050:1T(180)
L1849652-19A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2-HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2-HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2-HYDRO-CSAND(),A2-HYDRO-SFINE(),A2-HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2-HYDRO-FGRAVEL()
L1849652-19B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-MN-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)

Lab Number: L1849652

Report Date: 12/28/18

Project Name: MCCLENNEN PARK

Container Info	ormation				Temp			Frozen	
Container ID	Container Type	Cooler			Date/Time	Analysis(*)			
L1849652-20A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2-HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2-HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2-HYDRO-CSAND(),A2-HYDRO-SFINE(),A2-HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2-HYDRO-FGRAVEL()
L1849652-20B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AS-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-TOC-9060-2REPS(28),A2-PREP-3050:1T(180)
L1849652-21A	Plastic 8oz unpreserved for Grain Size	В	NA		4.1	Υ	Absent		A2-HYDRO-TFINE(),A2-HYDRO-CFINE(),A2- HYDRO-CGRAVEL(),A2-HYDRO-FSAND(),A2- HYDRO-MSAND(),A2-HYDRO-TGRAVEL(),A2- HYDRO-CSAND(),A2-HYDRO-SFINE(),A2- HYDRO-TSAND(),A2-HYDRO-COBBLES(),A2- HYDRO-FGRAVEL()
L1849652-21B	Glass 250ml/8oz unpreserved	В	NA		4.1	Y	Absent		A2-BA-MCP6020T-10(180),A2-CR-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-AG-MCP6020T-10(180),A2-CD-MCP6020T-10(180),A2-TS(7),A2-ZN-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-FE-MCP6020T-10(180),A2-CU-MCP6020T-10(180),A2-HG-MCP7471T-10(28),A2-SE-MCP6020T-10(180),A2-HGPREP-AA(28),A2-PB-MCP6020T-10(180),A2-PGEPS(28),A2-PREP-3050:1T(180)

Project Name: Lab Number: MCCLENNEN PARK L1849652

Project Number: 2017-0069 **Report Date:** 12/28/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:MCCLENNEN PARKLab Number:L1849652Project Number:2017-0069Report Date:12/28/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Annual Book of ASTM Standards. (American Society for Testing and Materials) ASTM International.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ASTM D6913/D7928 GRAIN SIZE ANALYSIS

GRAIN SIZE DISTRIBUTION TEST DATA

Location: MP-RB-SED-08-120418 **Sample Number:** L1849652-14

Sieve Test Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 8.97

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
8.97	0.00	3	0.00	0.00	100.0
		0.75	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.45	0.00	95.0
		#20	1.50	0.00	78.3
		#40	1.09	0.00	66.1
		#60	0.53	0.00	60.2
		#140	0.50	0.00	54.6
		#200	0.17	0.00	52.7

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 52.7

Weight of hydrometer sample =15.35

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	κ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0045	1.0049	0.0132	4.5	15.1	0.0362	27.0
5.00	22.9	1.0045	1.0049	0.0132	4.5	15.1	0.0229	27.0
15.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0133	24.2
30.00	22.9	1.0035	1.0039	0.0132	3.5	15.4	0.0094	21.5
60.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0067	18.7
240.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0034	16.0
1140.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0015	16.0

Fractional Components

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	5.0	28.9	13.4	47.3	35.6	17.1	52.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0079	0.0408	0.0525	0.0675	0.2449	0.9228	1.1632	1.4834	2.0025

Fineness Modulus 1.28

Alpha Analytical _

Location: MP-RB-SED-03-120418 **Sample Number:** L1849652-15

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 19.41

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
19.41	0.00	3	0.00	0.00	100.0	_
		0.75	0.00	0.00	100.0	
		#4	0.13	0.00	99.3	
		#10	0.93	0.00	94.5	
		#20	2.15	0.00	83.5	
		#40	1.89	0.00	73.7	
		#60	1.56	0.00	65.7	
		#140	3.22	0.00	49.1	
		#200	1.60	0.00	40.9	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 40.9

Weight of hydrometer sample =19.04

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0363	15.1
5.00	22.9	1.0035	1.0039	0.0132	3.5	15.4	0.0231	13.4
15.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0134	10.0
30.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0095	10.0
60.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0068	8.3
240.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0034	8.3
1140.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0015	8.3

Fractional Components

Cobbles	obles Gravel			Sand				Fines		
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.7	0.7	4.8	20.8	32.8	58.4	32.6	8.3	40.9

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0136	0.0345	0.0438	0.0566	0.0731	0.1109	0.1829	0.6652	0.9464	1.3548	2.1005

Fineness Modulus	c _u	С _с
1.14	13.48	1.29

Alpha Analytical ___

Location: MP-RB-SED-07-120418 **Sample Number:** L1849652-16

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 34.91

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
34.91	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	0.56	0.00	98.4	
		#10	6.58	0.00	79.5	
		#20	7.48	0.00	58.1	
		#40	5.86	0.00	41.3	
		#60	3.85	0.00	30.3	
		#140	4.98	0.00	16.0	
		#200	1.21	0.00	12.6	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 12.6

Weight of hydrometer sample =19.7

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0363	4.5
5.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0230	4.5
15.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0134	3.5
30.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0095	3.5
60.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0067	3.5
240.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0034	3.0
1140.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0015	3.0

Fractional Components

Cobbles	oles Gravel			Sand				Fines		
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.6	1.6	18.9	38.2	28.7	85.8	9.3	3.3	12.6

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0396	0.0610	0.0958	0.1421	0.2461	0.4001	0.6133	0.9165	2.0358	2.4782	3.0464	3.8581

Fineness Modulus	c _u	С _с
2.48	15.01	1.08

Alpha Analytical _____

Location: MP-RB-SED-07FD-120418 Sample Number: L1849652-17

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 24.25

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
24.25	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	1.66	0.00	93.2	
		#10	2.94	0.00	81.0	
		#20	3.99	0.00	64.6	
		#40	3.15	0.00	51.6	
		#60	2.52	0.00	41.2	
		#140	3.98	0.00	24.8	
		#200	1.29	0.00	19.5	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 19.5

Weight of hydrometer sample =33.1

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0 Specific gravity of solids = 2.65

Specific gravity of solids = 2.65 Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0060	1.0064	0.0132	6.0	14.7	0.0357	6.0
5.00	22.9	1.0050	1.0054	0.0132	5.0	15.0	0.0228	5.1
15.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0133	4.1
30.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0094	4.1
60.00	22.9	1.0035	1.0039	0.0132	3.5	15.4	0.0067	3.7
240.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0033	3.2
1140.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0015	3.2

Fractional Components

Cobbles	obbles Gravel			Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	6.8	6.8	12.2	29.4	32.1	73.7	16.1	3.4	19.5	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0206	0.0470	0.0599	0.0774	0.1433	0.2358	0.3909	0.6675	1.8875	2.5376	3.6044	5.8092

Fineness Modulus	c _u	С _с
2.20	14.21	0.65

Alpha Analytical _____

Location: MP-RB-SED-04-120418 **Sample Number:** L1849652-18

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 17.12

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
17.12	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	0.16	0.00	99.1	
		#10	0.77	0.00	94.6	
		#20	2.09	0.00	82.4	
		#40	2.70	0.00	66.6	
		#60	2.82	0.00	50.1	
		#140	4.74	0.00	22.4	
		#200	1.18	0.00	15.5	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 15.5

Weight of hydrometer sample =19.91

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0363	5.5
5.00	22.9	1.0035	1.0039	0.0132	3.5	15.4	0.0231	4.9
15.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0134	4.3
30.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0095	4.3
60.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0067	4.3
240.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0033	4.3
1140.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0015	4.3

Fractional Components

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.9	0.9	4.5	28.0	51.1	83.6	11.2	4.3	15.5

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0253	0.0542	0.0728	0.0950	0.1390	0.1872	0.2491	0.3388	0.7525	0.9838	1.3533	2.0979

Fineness Modulus	Cu	C _c
1.54	6.25	1.05

Alpha Analytical _

Location: MP-RB-SED-04-120418 Sample Number: WG1186360-1

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 15.02

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
15.02	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	0.25	0.00	98.3	
		#10	0.69	0.00	93.7	
		#20	1.52	0.00	83.6	
		#40	2.02	0.00	70.2	
		#60	2.38	0.00	54.3	
		#140	4.20	0.00	26.4	
Abbition for the last interest benefit or a last the second of the secon		#200	1.15	0.00	18.7	

Hydrometer Test Data

Hydrometer test uses material passing #200 Percent passing #200 based upon complete sample = 18.7

Weight of hydrometer sample =17.07

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0367	6.0
5.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0233	5.1
15.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0134	5.1
30.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0095	4.2
60.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0068	4.2
240.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0034	4.2
1140.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0015	4.2

Fractional Components

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.7	1.7	4.6	23.5	51.5	79.6	14.5	4.2	18.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0129	0.0492	0.0631	0.0798	0.1211	0.1655	0.2204	0.2974	0.6800	0.9326	1.3702	2.3586

Fineness Modulus	Cu	С _С
1.44	6.05	1.00

Alpha Analytical _____

GRAIN SIZE DISTRIBUTION TEST DATA

Location: MP-RB-SED-05-120418 **Sample Number:** L1849652-19

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 28.94

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
28.94	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	5.57	0.00	80.8	
		#10	3.44	0.00	68.9	
		#20	3.54	0.00	56.6	
		#40	2.89	0.00	46.6	
		#60	2.18	0.00	39.1	
		#140	3.48	0.00	27.1	
		#200	1.22	0.00	22.9	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 22.9

Weight of hydrometer sample =21.97

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0060	1.0064	0.0132	6.0	14.7	0.0357	10.7
5.00	22.9	1.0055	1.0059	0.0132	5.5	14.8	0.0227	9.9
15.00	22.9	1.0045	1.0049	0.0132	4.5	15.1	0.0132	8.2
30.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0094	7.3
60.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0066	7.3
240.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0033	7.3
1140.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0015	7.3

Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	19.2	19.2	11.9	22.3	23.7	57.9	15.6	7.3	22.9

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0241	0.0487	0.0634	0.1335	0.2657	0.5377	1.0707	4.5156	6.2360	8.5348	11.9932

Fineness Modulus	Cu	C _c
2.70	44.37	0.69

Alpha Analytical _____

GRAIN SIZE DISTRIBUTION TEST DATA

Location: MP-RB-SED-06-120418 **Sample Number:** L1849652-20

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 21.51

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
21.51	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	0.06	0.00	99.7	
		#10	0.88	0.00	95.6	
		#20	2.33	0.00	84.8	
		#40	2.32	0.00	74.0	
		#60	1.70	0.00	66.1	
		#140	3.94	0.00	47.8	
		#200	1.71	0.00	39.8	

Hydrometer Test Data

Hydrometer test uses material passing #200 Percent passing #200 based upon complete sample = 39.8

Weight of hydrometer sample =18.3

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0040	1.0044	0.0132	4.0	15.2	0.0363	15.4
5.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0232	11.9
15.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0134	10.1
30.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0095	10.1
60.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0068	8.4
240.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0034	8.4
1140.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0015	8.4

Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.3	0.3	4.1	21.6	34.2	59.9	31.4	8.4	39.8

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0092	0.0357	0.0433	0.0568	0.0754	0.1176	0.1840	0.6274	0.8612	1.2149	1.8666

Fineness Modulus	Cu	С _с
1.10	20.10	1.91

Alpha Analytical _____

GRAIN SIZE DISTRIBUTION TEST DATA

Location: MP-UW-SED-02-120418 **Sample Number:** L1849652-21

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 6.35

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Serial_No:12281813:58
6.35	0.00	3	0.00	0.00	100.0	
		0.75	0.00	0.00	100.0	
		#4	0.21	0.00	96.7	
		#10	0.91	0.00	82.4	
		#20	1.63	0.00	56.7	
		#40	1.06	0.00	40.0	
		#60	0.62	0.00	30.2	
		#140	0.82	0.00	17.3	
		#200	0.22	0.00	13.9	

Hydrometer Test Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 13.9

Weight of hydrometer sample =7.24

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = 0

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.9	1.0030	1.0034	0.0132	3.0	15.5	0.0367	10.4
5.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0233	8.9
15.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0134	8.9
30.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0095	8.9
60.00	22.9	1.0025	1.0029	0.0132	2.5	15.6	0.0067	8.9
240.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0034	7.4
1140.00	22.9	1.0020	1.0024	0.0132	2.0	15.8	0.0015	7.4

Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	3.3	3.3	14.3	42.4	26.1	82.8	5.6	8.3	13.9

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0328	0.0855	0.1305	0.2466	0.4250	0.6629	0.9505	1.8295	2.2298	2.8515	4.0226

Fineness Modulus	Cu	C _C
2.49	28.95	1.95

Alpha Analytical _

Serial_No:12281813:58

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN OF	CUS	STO	DY PA	GE	of <u>3</u>	Date Rec	'd in Lab:	12	105	118	ALPHA	Job#:	1184945	2
A CONTRACTOR OF THE PARTY OF TH		Project	Informa	tion			Report	Informatio	on - Data	Delive	ables	Billing	Informati	ion	A D
8 Walkup Drive Westboro, MA Tel: 508-898-9	320 Forbes Blvd 01581 Mansfield, MA 02048 220 Tel: 508-822-9300	Project Na	ame: Mo	CLENNI	EN PAR	2K	ADEX	,	EMAIL			□ Same	as Client in	fo PO#:	
Client Information				YRLINGTO				tory Requ			1				
Client: WooDS	HOLE GROUP	Project #:	201	7-0069	, , ,		Yes D	No MA MC No Matrix 8	P Analytic Spike Regi	al Metho uired on	ds his SDG?			T RCP Analytical Methonorganics)	ods
Address: 107				JOE FA		1	☐ Yes ☑	No GW1 S	tandards (
Bour	WE, MA 02532	ALPHA C				71	A CONTRACTOR OF THE PARTY OF TH	No NPDES State /Fed					criteria		
Phone: 50% -	540-8080	Turn-A	round Ti	me					27 2	13/	II	77	77	/ / /	
000000000000000000000000000000000000000	roject Information:	Standa Date D		RUSH (only or	onlinned if pre-ap	(proved!)	ANALYSIS	PAH DMCP	EPH: DRanges & Targets C. P. C.P. 15 VPH: DD	D PCB D PEST	D Fingerprint	///		SAMPLE INF	TOTAL
BILL TO T	" = RCRA 8 + Cu SOUN OF ARLINGTON		ACT V	TIA JUSA	IN CHA	100	78260 D.8	METALS: DMCP 13	ORanges & Targ	D PCB DPEST	ARDNESS	///	///	Field Atab to do Preservation Lab to do	# BOTTL
(Lab Use Only)	Sample ID		Col Date	lection Time	Sample Matrix	Sampler Initials	Noc.	MET,	# A # A # A # A # A # A # A # A # A # A	D E	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Sample Comment	s s
49652-61	MP-RB-SW-01-120	418	12/4/18	8:25	SW	8k		. 1			1				2
02	MP-RB-SW-02-1204	118	1	8:40	1	1		U			1				2
03	MP-RB-SW-03-1204	18		8:55				1			1				2
04	MP-RB-5W-07-120	418		9:10				1			1				2
100	MP-RB-SW-07FD-1			9:12				1			1				2
	MP-RB-SW-04 MSMD			9:25				3			1				4
	MP-RB-SW-05-1204			9:35				1			1				2
	MP-RB-5W-06-1204			9:50				1			1				2
09	MP- UW - SW -01-1204			11:05				1							2
10	MP - UW - SW -02-1204	_	1	11:20	4	1		1			1				2
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaMSO ₄	Relinqui	ished By:	F	Pr	eservative	May 1	P A Receive	nd By:			a/Time		oles submitted are subj	ect to
E= Encore D= BOD Bottle Page 80 of 82	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J= NH ₄ Cl K= Zn Acetate O= Other	0	<u> </u>			18 11:00	200	zel	eau		5/18	1752	See reve	Terms and Conditions. erse side. : 01-01 (rev. 12-Mar-2012)	

ALPHA	CHAIN OF	CUS	STO	OY PAG	ge_ 2	OF 3	Date R	ec'd in	Lab:	12	-10	5	18	,	ALI	РНА	Job#:	7	849	652	2
ATTICAL		Project	Informat	ion			Repo	rt Info	rmati	on - Dat	a De	liver	bles	,	Bill	ling l	Informa	tion			
8 Walkup Drive Westboro, MA (Tel: 506-898-9	320 Forbes Blvd 01581 Mansfield, MA 02048 020 Tel: 508-822-9300	Project Na	ame: Mc	CLENNE	N PAP	K	ZAD	Ex	,	EMAIL					□ Sa	ame a	s Client	info	PO #:		
Client Information	n	Project Lo	cation: AP	HINGTO	N, M	A	_			iiremen				t Inf	_						
Client: WOODS				-0069			A Yes	□ No N	MA MO	CP Analyt Spike Re	ical M guired	ethod on th	s is SD	G?					P Analytica anics)	Il Methods	5
		Project Ma	anager:	DE FAM	LELY		☐ Yes.	Z No (3W1 S	Standards											
BOURN	E, MA 62532	ALPHA C	Quote #:					✓ No I er State		Program						c	riteria				
Phone: 508 -	11.15	Turn-A	round Tir	ne				1		27 2	2/3	./_	7	Τ	1	/	II	7			S.
Additional P	tye wherp.com roject Information: "= RCRA 8 + Cu + www of AFLINGTON		me:				J 8260 D.	D ABN D PAU	METALS. DMCP 13 DMC.	EPH. DR. BrockAS ERCRAB+ DRCP 15	D Por	TPH: CO. DPEST SHISPES ON	HARIN - ONLY OFINGE		RKH 8.	//	\$12E	//	SAMPI Filtration Field Zot Lab	d to do vation	TOTAL # BOT
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler Initials	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	METAL	METAL	EPH; D	0 80	TPH: D	HARN	META.	Tol	GRAIL	//	\vdash	Sample Co	VALUE	L E S
49652-11	MP-RB-5W-08-1204	18	12/4/18	10:13	SW	KL		A.	1				1								2
12	MP-RB-SW-08L-12	0418)	10:18	1			1	1				1								2
13	MP-SW-EB-12041	8		11:05	1			1	1												1
14	MP- RB-SED - 08 - 120	2418		10:22	SED	1								1	1	1					2
	MP-RB-5ED-03-1200			10:30	1	8F		1	П		T			Ì	i	i					2
	MP-RB-SED-07-12			12:30		1								1	i	1					2
	MP - RB - SED - 07 FD-1			12:50	\vdash			+	П		+			1	1	i					2
18				13:10							1	\vdash		3	1	1					4
19	MP-RB- SED-05-1204			13:30							1			1	i	1					2
26			1	12:50		1								1	1	1					2
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore	Preservative A= None B= HCI C= HNO ₃ D= H ₃ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₃ S ₂ O ₃		ished By:		Conta	eservative		1	1.1	ed By:				G A Date/		A			submitted a		:t to
Page 81 of 82	I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	١ '			145/13	125	Chr	in	Tel	recon			12/5	118	15	152	See re	verse			

ALPHA	СНА	IN OF CU	STO	OY P	AGE_3	of <u>3</u>	Date	Rec'	d in La	b:	12	2/0	3-1	10	18	AL	PHA	Job #	#: 1	184	9652	_
8 Walkup Drive	320 Forbes Blvd	Project	Informati	ion			Rep	ort I	nform	atio	n - Da	ita D	eliver	able	s		-00	nform		馬上		
Westboro, MA Tel: 508-898-9			lame: MC	CLEN	VEN PA	*RK	M	DEx		Z	EMAI	L				u s	ame a	s Clien	t info	PO #:		
Client Information	on	Project L	ocation: A	PLINGT	TON N	A	_	-	_			_		_	ct Ir	_			uirem			
Client: WOODS	HOLE GROUP		2017				ZYe ZYe	s 🗆 N	No MA	MCF trix Sp	Analy pike R	rtical equir	Methor ed on t	ds his S	DG?	(Re	☐ Yes quired	No for MC	P Inor	CP Analy ganics)	tical Method:	s
Address: 107	WATERHOUSE	RD Project N	Manager: 5	OE FA	NELY		□ Ye	s Z N		/1 Sta	andard								Targets			
	E, MA 0253		Quote #:			4			tate /F			n					c	riteria_				
Phone: 50% -		Construction of the Constr	Around Tin	ne				-/	7		15	2/	٨/,	\mathcal{J}	1	7	/	II		TI		
Additional F	ely C whgrp. Project Informati -" = RCRA 8	on: Date 1	Oue:			****	ANALYSI	SVOC. D 45. D 524.	METALS: DMC. DPAH	S. D. Box D. MCP 14	EPH. CRanges & T. RCRA8+ Co.	Ranges & C. Ranges	TPH. C. DPEST Ranges Only	TO Count Only DEL	mgerprint	IN Size		//	//	Filtr	MPLE INFO ation ield ab to do servation ab to do	L # BOT
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Colle	ection	Sample Matrix	Sampler	, VOC.	SVOC.	METALS	METALS	EPH: D	NPH: D	TPH:	100	600	3/2	/ ,	//	-		Comments	T L E S
49652-21	MP-UW-SEC	0-02-120418	12/4/19	14:50	SED	85		4		١		1		1	1			-	-			2
Container Type P= Plastic	Preservative A= None	* ^ .			Cont	ainer Type			(5		1		6	P							
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pr	eservative			H	1				A	A							
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	E= N ₂ 3O ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH,Cl K= Zn Acetate O= Other	Reling	uished By:		12/5/1	(e/Time	100	il un		dk Ue			17	12/5	1/18	/Tim	270	Alph: See	a's Terr reverse	ms and C	d are subject conditions.	at to

Data Validation Report

Client/Company: The Town of Arlington, MA & Woods Hole Group (WHG)

Site/Project Name: McClennen Park Detention Basins / Reeds Brook Assessment

Fall 2018 Sampling

Laboratory: Alpha Analytical Laboratory, Westborough, MA

SDGs/Lab Project #: L1849652

Date(s) of Collection: December 4, 2018

Number and type

Samples & analyses: 12 surface water (SW) samples plus 1 Field Equipment Blank for

project-specific list of 12 Dissolved (lab-filtered) Metals

8 sediment (Sed) samples for project-specific list of 12 Total Metals

Senior Data Reviewers: Susan D. Chapnick, M.S., New Environmental Horizons, Inc.

Date Completed: March 26, 2019

An EPA Stage 2B data validation (DV) review (USEPA-540-R-08-005, Jan 2009) was performed for a project-specific list of 12 Metals analyzed by USEPA SW846 Methods 6020B, 7470A, & 7471B using MassDEP Compendium of Analytical Method (CAM) protocols. DV review was based on the CAM, the USEPA National Functional Guidelines for data review, the USEPA SW846 Method criteria, and professional judgment.

The Massachusetts Contingency Plan (MCP) required Certification Form was present in the data package and the required questions A through F were answered in the affirmative. Therefore, the data meet the "presumptive certainty" status under the MCP for LSP decisions. The "No" answer to question H has to do with matrix QC results, which were documented in the lab narrative, as required, and reviewed during data validation.

Data Validation Summary

During this DV review of 12 Dissolved Metals in Surface Water and 12 Total Metals in Sediments, nine SW results were negated (U) due to equipment blank actions and Sed results were estimated (J or UJ) due to matrix QC issues. Table 1 presents the samples and analytical parameters validated and Table 2 summarizes the DV actions taken. NEH generated a validated electronic data deliverable (EDD) based on the EDD file received from Alpha Analytical. All results were considered acceptable compared to MassDEP CAM protocols, and usable for project decisions based on USEPA DV guidance and method criteria, with the understanding of the potential uncertainty (bias) in the qualified results, including heterogeneity for manganese and zinc in sediment.

Table 1. Samples and Analytical Parameters Validated

Sample ID	Lab ID	Sampling Date	Matrix	Analytical Parameters ¹	Sample Type
MP-RB-SW-01-120418	L1849652-01	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-02-120418	L1849652-02	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-03-120418	L1849652-03	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-07-120418	L1849652-04	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-07FD- 120418	L1849652-05	12/4/2018	SW	12 Diss. Metals	Field Duplicate of MP-RB-SW-07
MP-RB-SW-04-120418	L1849652-06	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-05-120418	L1849652-07	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-06-120418	L1849652-08	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-UW-01-120418	L1849652-09	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-UW-02-120418	L1849652-10	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-08-120418	L1849652-11	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-RB-SW-08L-120418	L1849652-12	12/4/2018	SW	12 Diss. Metals	Field Sample
MP-SW-EB-120418	L1849652-13	12/4/2018	Water	12 Diss. Metals	Equipment Blank
MP-RB-SED-08-120418	L1849652-14	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-RB-SED-03-120418	L1849652-15	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-RB-SED-07-120418	L1849652-16	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-RB-SED-07FD- 120418	L1849652-17	12/4/2018	Sed	12 Tot. Metals	Field Duplicate of MP-RB-SED-07

2

NEH, Inc.

Table 1. Samples and Analytical Parameters Validated - continued

Sample ID	Lab ID	Sampling Date	Matrix	Analytical Parameters ¹	Sample Type
MP-RB-SED-04-120418	L1849652-18	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-RB-SED-05-120418	L1849652-19	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-RB-SED-06-120418	L1849652-20	12/4/2018	Sed	12 Tot. Metals	Field Sample
MP-UW-SED-02-120418	L1849652-21	12/4/2018	Sed	12 Tot. Metals	Field Sample

¹ Field samples were also analyzed for other parameters that were not validated. These included Hardness in SW and TOC, % Solids, and Grain Size Distribution in Sed.

Analytical Methods:

ICP-MS Metals: USEPA SW846 Method 6020B, using MCP CAM IIID protocols for project-specific list of arsenic, barium, cadmium, chromium, copper, lead, iron, manganese, selenium, silver, and zinc

CVAA Mercury: USEPA SW846 Method 7470A for SW and 7471B for Sed, using MCP CAM IIIB protocols

Dissolved (Filtered) Metals: SW collected unpreserved, Lab-Filtered 0.45 μ m pore size, Lab-preserved pH<2 with nitric acid

Total Metals: Sed maintained at 4±2°C

The following QC elements, as applicable to the analytical Metals methods, were reviewed:

- Data package completeness and reporting protocols
- MCP Certification Form
- Sample receipt, holding times, and preservation criteria
- Calibration criteria (instrument tuning, initial and continuing calibration verifications)
- Method blank and field equipment blank results
- Laboratory Control Sample (LCS), LCS Duplicate, and/or Standard Reference Material recoveries
- Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Recoveries
- LCS/LCSD, MS/MSD, sample/Lab Duplicate, and sample/Field Duplicate (FD) Relative Percent Differences (RPDs)
- Sample result reporting (including reporting limits and units)
- Other method-specific QC if applicable and reported (e.g., serial dilution analysis for Metals)
- Deficiencies or protocol deviations as noted in the Laboratory Narrative Note that for the EPA Stage 2B DV review, raw data are not evaluated and calibration criteria are assumed to be CAM-compliant unless otherwise noted in the lab narrative.

3

NEH, Inc.

This DV Report consists of three parts: 1) the DV Summary Report; 2) the DV Checklist attached that documents all of the QC reviewed and the issues that required action or affected the data certainty in terms of accuracy, precision, representativeness, and sensitivity; and 3) the validated EDD. As only the Metals data were validated, data users should note that the EDD also presents additional unvalidated data for Hardness, TOC, % Solids, and Grain Size Distribution.

Table 2. Summary of Data Validation Actions

Field Sample ID	Analyte	DV Qualifier	Bias	DV Comment
MP-RB-SW-08L-120418	Copper, Dissolved	U		Negated due to EB Action
MP-RB-SW-01-120418 MP-RB-SW-02-120418 MP-RB-SW-07-120418 MP-RB-SW-07D-120418 MP-RB-SW-04-120418 MP-RB-SW-05-120418 MP-RB-SW-06-120418 MP-RB-SW-08-120418	Zinc, Dissolved	U		Negated due to EB Action
MP-RB-SED-07-120418 MP-RB-SED-07D-120418	Manganese, Total Zinc, Total	J	I	FD imprecision + % Solids < 30%
MP-RB-SED-04-120418	Manganese, Total	J	I	High MS recovery + Lab Duplicate imprecision + %Solids < 30%
All remaining Sediment results	All 12 Total Metals	J or UJ	ı	% Solids < 30%

<u>Qualifiers</u>: U = Analyte is usable as a non-detect result at the "Reporting_Limit" field value in EDD; UJ = Non-detect result is usable as an estimated RL; J = Result is usable as an estimated value (see DV Comment field for reason & bias); R = Result is rejected and is unusable for project decisions.

4

Bias: L = Low; H = High; I = Indeterminate

Abbreviations used in Table 2:

EB = field Equipment Blank

FD = Field Duplicate

MS = Matrix Spike

Lab Data Pkg: L1849652

Matrix: SW & Sediment

Date Sampled: 12/4/18 No. Samples: 12SW; 8Sed; 1EB

Method of Analysis: ICP-MS Metals by EPA SW846 Method 6020B; Mercury by 7470A / 7471B

Data Validation Summary Table - EPA Stage 2B Metals

QC Met Criteria?	Holding Time & Preserve	Calibration ICV / CCV %R	Calibration other: ICS / ICSAB Tune / IS %R	Lab Blanks	Field Blanks	LCS / LCSD %R / RPD	· ·	Matrix QC LR / MSD RPD	Matrix QC Serial Dilution %D	Field Duplicate RPD	% Solids	Sensitivity Sample- Specific QLs	MCP Cert. Form
Yes		Assumed	Assumed	٧		٧			٧			٧	٧
No		narrated as CAM	acceptable unless narrated as CAM deviation		9 results negated (U) due to EB action			Estimate (J) 1 result; Bias: I		Bias: I	Estimate (J/UJ) all Sed results: Bias: I		

See definitions of Data Validation Qualifiers at the end of this DV Checklist.

Data Package Completeness:

- 1. Were all required forms (results, summary QC, COC), as required to validate the data in accordance with the MassDEP MCP CAM requirements and EPA DV guidance present in the data package? Yes. An MCP CAM-compliant data deliverable was provided for review.
- 2. Were all result forms for all samples listed on the chain-of-custody present in data package? Yes.
- MassDEP Analytical Protocol Certification Form: The MCP required Certification Form was present in the data package and the required questions A through F were answered in the affirmative. Therefore, the data meet the "presumptive certainty" status under the MCP for LSP decisions. The "No" answer to question H has to do with matrix QC results (which were documented in the lab narrative, as required, and reviewed in this data validation and some of which affect the certainty of the results reported, as documented).

An EPA Stage 2B data validation review was performed for a project-specific list of 12 Metals by EPA SW846 Method 6020B, 7470A, & 7471B, using result forms, Quality Control forms, and review of laboratory narrative associated with this data package, which involved evaluation of the following: agreement of analyses conducted with COC requests; Holding times and sample preservation; Laboratory blanks (method, filter, and instrument blanks), Field blank results compared to field sample results; Field duplicate results; Quantitation limits and sample results; LCS/LCSD (or equivalent) results; MS/MSD results; Laboratory duplicate results; tabulated instrument QC, and evaluation of laboratory qualifiers applied to the dataset. Raw data are not reviewed during the EPA Stage 2B DV; therefore, instrument calibrations and instrumentspecific QC are assumed to be acceptable unless otherwise noted in the laboratory narrative. The laboratory narrative was also reviewed to determine whether additional issues were found that were not reported in the QC evaluated.

Lab Data Pkg: L1849652

Data Validation QA/QC Review Documentation EPA Stage 2B

12 surface water (SW) samples (includes 1 field duplicate) plus one equipment blank (EB) and 8 sediment (Sed) samples (includes 1 field duplicate) were collected for the McClennen Park Detention Basin / Reeds Brook environmental sampling, December 4, 2018. SW & Sed samples were collected and analyzed for project-specific list of 12 Metals: arsenic, barium, cadmium, chromium, copper, lead, iron, manganese, mercury, selenium, silver, and zinc. SW were analyzed for Dissolved Metals (lab-filtered; 0.45). um) and Seds were analyzed for Total Metals.

Analyzed by EPA SW846 Method 6020B using MassDEP MCP CAM IIID (ICP-MS) protocols for all Metals except Mercury by EPA SW846 Method 7470A for SW and 7471B for Sed using MCP CAM IIIB (CVAA) protocols.

Samples reviewed are tabulated in the associated validated EDD.

Sample Receipt & Preservation: All samples received at lab on 12/5/19, 1 day after field samples collected. Cooler received within 4 ± 2°C. All samples were received intact. Aqueous samples received unpreserved; lab-filtered and then preserved to pH <2 with HNO₃ and held for 24h prior to digestion/analysis (separate communication with lab project manager, Liz Porta, Alpha). No chemical preservation required for soil samples for Metals analysis. No issues noted on the Chain-of-Custody or lab's Sample Receipt Checklist. Acceptable receipt and preservation.

• Holding Times:

Analysis:

ICP-MS Metals by 6020B: 12/18/18. - 12/20/18 Acceptable HT.

Mercury in SW by 7470A: 12/13/18. Acceptable HT. Mercury in Sed by 7471B: 12/21/18. Acceptable HT.

• Lab Blanks: Contamination observed in Lab method blanks were evaluated. It was assumed that instrument blanks (ICBs & CCBs) were acceptable unless otherwise narrated as a deviation of the CAM. Only the highest associated lab blank result per batch per metal used to take blank actions.

Blank Actions for ICP-MS Method 6020B: 2 Lab Method Blanks (MB) were associated with the samples in this SDG: WG1190316-1 for SW and WG1190565-1 for Sed. The MBs were non-detect for all ICP-MS Metals except for iron in the SW MB. Iron was detected at a level < RL at 0.059 J mg/L. No blank actions were required for iron "J" results < RL associated with the SW samples as all sample results were detected > RL for iron. No Lab Blank Actions were required.

Blank Actions for CVAA Methods 7470A/7471B: 2 Lab Method Blanks (MB) were associated with the samples in this SDG: WG1188563-1 for SW and for WG1188095-1 for Sed. The MBs were non-detect for mercury by CVAA methods. No Lab Blank Actions were required.

- Field Equipment blanks: Field Equipment Blank (EB) sample MP-SW-EB-120418 was collected associated with the SW samples. All dissolved Metals were nondetect except for copper, iron, and zinc. Blank actions taken to negate 9 results due to detection in associated EB are listed on the attached Blank Action Worksheet.
- LCS/LCSD: Laboratory Control Sample (LCS) and LCS Duplicate (LCSD) were analyzed for SW and Sed. The lab used a matrix-matched solid Standard Reference Material (SRM) Lot # D102-540 as the LCS/LCSD associated with the Sed samples and used vendor control-limits for QC acceptance.

Recoveries and RPDs were acceptable based on CAM (see end of DV Checklist for acceptance criteria). These results are an indication of acceptable accuracy and precision for the lab performance of Metals by Methods 6020B, 7470A, and 7471B using MCP CAM protocols.

Date: 3/26/19

Page 2 of 6 New Environmental Horizons, Inc. Data Reviewer: Susan D. Chapnick, MS

- MS/MSD Recoveries: Matrix Spike (MS) and MS Duplicate (MSD) recoveries were evaluated for the matrix QC performed on site samples MP-RB-SW-04-120418 and MP-RB-SED-04-120418, for SW and Sed, respectively. All recoveries met CAM acceptance criteria, except as follows: iron showed high MS recovery (>125%) but acceptable MSD recovery for SW and high MS recovery in Sed; manganese showed high MS recovery in Sed. No action taken for iron in SW since the MSD recovery and the RPD between the MS & MSD were acceptable. No action taken for iron in Sed since the sample concentration was > 4x the spike level for iron and thus not applicable (the spike was "swamped-out"). DV Action taken for Manganese. These matrix QC results indicate acceptable accuracy for all Metals in SW and Sed except Manganese in Sed sample MP-RB-SED-04-120418. → ACTION: Estimate (J) Manganese result in sample MP-RB-SED-04-120418 due to High MS recovery. Professional judgment used to take DV Action only on the sample used for the matrix QC due to potential heterogeneity in Sediments. The estimated result has an indeterminate bias due to additional exceedance of Lab Duplicate precision (see below), which indicates sediment sample heterogeneity at this location.
- <u>Lab Duplicate (Replicate) and MS/MSD RPDs:</u> MS/MSD precision was evaluated for SW on sample MP-RB-SW-04-120418 and Lab Duplicate precision was evaluated on sample MP-RB-SED-04-120418. All met CAM RPD acceptance criteria except for Manganese (RPD >35%). These matrix QC results indicate acceptable precision for all Metals in SW and Sed except Manganese in Sed sample MP-RB-SED-04-120418. → ACTION: Estimate (I) Manganese result in sample MP-RB-SED-04-120418 due to Lab Duplicate imprecision. Professional judgment used to take DV Action only on the sample used for the matrix QC due to potential heterogeneity in Sediments. The estimated result has an indeterminate bias.
- <u>Serial Dilution</u>: Performed on site samples MP-RB-SW-04-120418 and MP-RB-SED-04-120418, for SW and Sed, respectively. All results that were > 50xMDL met % Difference criteria for SW and Sed. No action required.
- <u>Sensitivity</u>: All Metals QLs (RLs) for non-detected (reported as "ND" on the result forms in the lab data package and qualified as "U" in the EDD) results were reported on a sample-specific basis in units of mg/L for SW and mg/Kg dry-weight for Sed. All Metals QLs for non-detected results are considered acceptable compared to the CAM requirements, which are to meet the Method 1 standards unless otherwise indicated. The lab reported the RL = MDL for these data. No lab "J" data (< RL) were reported for field samples.
- <u>Lab Narrative</u>: Included all issues that required explanation from the MassDEP Analytical Protocol Certification Form and all issues previously reviewed in this validation. No action required.
- <u>% Solids</u>: All Sed samples had % Solids < 30%. Data users should consider that these results may have some uncertainty due to the difficulty in obtaining a representative sample for analysis of very wet sediments. EPA New England Environmental Data Review Supplement, April 2013, requires estimating (J/UJ) data from samples with < 30% solids. → ACTION: Estimate (J/UJ) all Sed results due to % solids <30%. Estimated results have an indeterminate bias.

Field Duplicate Samples: Field Duplicate (FD) samples included in this SDG for Metals were: MP-RB-SW-07-120418 / MP-RB-SW-07FD-120418 for SW and MP-RB-SED-07-120418 for Sed. FD precision was acceptable for all Metals in the SW FD samples but exceeded FD precision criteria set as RPD 50% (professional judgment and EPA guidance) for Manganese and Zinc in Sed. These FD results indicate acceptable precision and representativeness of the SW sample to the location for Metals analyzed but imprecision and heterogeneity for Manganese and Zinc in Sediment. See the following tables for calculations of relative percent difference (RPDs) and FD DV Actions.

Date: 3/26/19

Data Reviewer: Susan D. Chapnick, MS Page 3 of 6 New Environmental Horizons, Inc.

Lab Data Pkg: L1849652

Field Duplicate Precision Calculations - Surface Water

Analyte	Sample: MP-RB-SW-01 (mg/L)		FD: MP-RB-SW-07 (mg/L)	7FD-120418	Precision RPD %	Action	Comment
Arsenic	0.0005	U	0.0005	U	NC	none	
Barium	0.0548		0.0536		2	none	
Cadmium	0.0005	U	0.0005	U	NC	none	
Chromium	0.0017		0.0015		13	none	
Copper	0.002		0.0018		11	none	
Iron	2		1.79		11	none	
Lead	0.001	U	0.001	U	NC	none	
Manganese	0.1374		0.1351		2	none	
Mercury	0.0002	U	0.0002	U	NC	none	
Selenium	0.005	U	0.005	U	NC	none	
Silver	0.0005	U	0.0005	U	NC	none	
Zinc	0.0182	U	0.0185	U	NC	none	
Hardness	95.2		95		0	none	

Field Duplicate Precision Calculations - Sediment

Analyte	Sample: MP-RB-SED-0 (mg/Kg dry w		FD: MP-RB-SED-0 (mg/Kg dry w		Precision RPD %	Action	Comment
Arsenic	15.7		25.3		47	none	
Barium	78		121		43	none	
Cadmium	1.237		0.9519	U	NC	none	
Chromium	32.5		51.3		45	none	
Copper	48		74.1		43	none	
Iron	37800		57800		42	none	
Lead	114		163		35	none	
Manganese	392		671		52	J both	FD imprecision; evidence of sediment heterogeneity
Mercury	0.289	U	0.32	U	NC	none	
Selenium	8.7	U	9.52	U	NC	none	
Silver	2.18	U	2.38	U	NC	none	
Zinc	484		264		59	J both	FD imprecision; evidence of sediment heterogeneity
% Solids	22.1		19.6		12	none	

NA = Not Analyzed; NC = Not calculated

Summary of QC Actions - based on MassDEP MCP CAM, EPA DV Guidance, & professional judgment:

QC Measure	Criteria	DV Actions
Preservation Holding Time (HT)	method criteria	HT: Analysis ICP metals by 6020: HT is 180d; Mercury by 7470 or 7471 HT is 28d from sample collection. Actions: exceedance of 1xHT: J/UJ. Exceedance of 2xHT use professional judgment (consider if > 2x HT exceedance, may reject, R, non-detects). Temperature: outside control limits of 4 ± 2 °C: use professional judgment. Preservation: Aqueous Total: pH > 2: use professional judgment to qualify results.
Blanks:	Non-detect < QL	Lab Prep / Method Blank, instrument blanks (ICB/CCB): detected results ≥ QL and < Blank Level, negate "U" in sample at level found; detected results < QL and < Blank Level negate "U" at level of QL; Negative drift for any associated blank (-RL): use professional judgment. Field Blanks: non-matrix-matched FB: example: aqueous FB with soil/sed samples: use professional judgment to qualify associated results as "J+" biased high.
MS/MSD:	75-125%	%R < 75%: J / UJ; %R > 125%: J detects; %R < 30%: J detects / R non-detects. Exception: sample conc. > 4x spike level: no action (spike-added is "swamped out"). Also consider Post-digestion spike recovery for actions. Professional judgment allowed for determining whether actions affect all samples in batch or only the sample used for MS/MSD.
LCS/LCSD:	80-120% Aq	%R<80%: J / UJ. %R > 120%: J detects. %Rec < 50%, use professional judgment. Use vendor control limits for Solid SRM used for LCS. Aq RPD > 20% or So RPD > 30% J / UJ. Actions affect all samples in batch.
MD/MSD: or Lab Replicates	RPD ≤ 20% Aq ≤ 35% So	Aq RPD > 20% / Solid RPD > 35% [EPA RPD]: apply only to results > 5xQL: Action: J/UJ affected results. Aq Results < 5xQL / Solid Results < 5xQL: difference > ± QL for Aq or 2xQL for Solid. Action: J/UJ affected results.
Field Duplicate (FD):		Aq RPD > 30% / Solid RPD > 50% for results > 5xQL: Action: J/UJ paired results.
ICV/CCV:	90-110% except mercury: 80-120%	Results < 5xQL: use professional judgment (consider difference > ±2xQL). Action: J/UJ FD paired results only. Recoveries < 90%: J / UJ except mercury, %R ,80% J / UJ (lab limits); recoveries > 110%: J detects except mercury, %R >120% J detects; if severe exceedance <75%: R non-detects & J: detects; > 160%: R detects.
CRI or Low- Level PQL standard:	70-130% prof. judgment	Not required but if performed, use professional judgment to qualify data (no EPA National Functional criteria). Consider: Results < 2xCRI: <70% (or <50% Sb, Pb, Tl): J / UJ; > 130% (or >150% Sb, Pb, Tl): J detects.

Lab Data Pkg: L1849652

Summary of QC Actions - continued

QC Measure	Criteria	DV Actions						
ICSA/AB:	80-120% method	Recoveries > 120% or < 80%: J / UJ unless extremely low for ICSAB at <50%: R non-detects / J detects. Potential false positives and false negatives: use professional judgment to evaluate (see lab IECs for ICP instrument) and in consideration of sample-specific interferent concentrations.						
Serial Dil.:	< 15%D	Results > 50xMDL: % Difference > 15%: J/UJ. Use professional judgment on whether it is a suppression or enhancement to qualify associated results. EPA National Functional Guidelines allow for %D 15% criterion for solids.						
Tune:	6020 method	Tune not performed properly: use professional judgment. Resolution of mass calibration > $\pm 0.1 \mu$ or % RSD > 5%: UJ non-detects / J detects Tune criteria for Method 6020 only (ICP-MS).						
Internal Standard (IS):	>60% method	IS recovery < 60% [EPA criteria]: J detects / UJ non-detects. IS criteria for Method 6020 only (ICP-MS).						
Sensitivity:		MCP Method 1 Standards - Applicable standards for surface water and sediment Achieved QLs / RLs for non-detects must be < applicable Method 1 Standards or risk-based levels of concern for SW and Sediment.						
% Solids		% Solids < 30%: J / UJ all results with indeterminate bias (EPA New England guidance) based on difficulty in obtaining a representative aliquot of the sample for analysis.						
References:		*USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA, OLEM 9355.0-135, USEPA-540-R-2017-001, January 2017. *USEPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, OSWER No. 9200.1-85, EPA 540-R-08-005, January 13, 2009. *USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, Revision 1, December 1996 and updates, including methods: 6020B – Inductively Coupled Plasma Mass Spectrometry. *MassDEP WSC-CAM-IVA: Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data in Support of Response Actions Conducted Under the Massachusetts Contingency Plan (MCP), Revision No. 1, July 2010. *MassDEP WSC-CAM-IIID: Quality Control Requirements and Performance Standards for the Analysis of Trace Metals by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in Support of Response Actions under the Massachusetts Contingency Plan (MCP), Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup, Revision No. 1, July 2010. *MassDEP WSC-CAM-IIIB: Quality Control Requirements and Performance Standards for the Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA) Spectrometry in Support of Response Actions under the Massachusetts Contingency Plan (MCP), Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup, Revision No. 1, July 2010. *MassDEP Policy #WSC-07-350: Representativeness and Data Usability Guidance, 2007						

Qualifiers: U = analyte is non-detect at the sample-specific Quantitation Limit (usable); UJ = non-detect is usable as an estimated value; J = result is usable as an estimated value; J = result is usable as an estimated value; J = result is usable as an estimated value; H = result is usable as an estimated value with a potential low bias; R = result is rejected due to severe QC exceedance and unusable for project objectives. Bias: L = Low; H = High; I = Indeterminate. QC Limits based on MCP CAM and EPA method QC acceptance criteria, EPA DV guidance, and professional judgment, as listed above.

Sample_Comp_Name		Analyte_Name	Result	Result_Qual Units_of_M	Reporting_L Dilu	ution_FacDV Action	DV Qual	Comments
MP-SW-EB-120418	L1849652-13	Copper, Dissolved	0.0011	mg/l	0.001	1		
MP-RB-SW-01-120418	L1849652-01	Copper, Dissolved	0.0024	mg/l	0.001	1 No Action		
MP-RB-SW-02-120418	L1849652-02	Copper, Dissolved	0.0022	mg/l	0.001	1 No Action		
MP-RB-SW-03-120418	L1849652-03	Copper, Dissolved	0.002	mg/l	0.001	1 No Action		
MP-RB-SW-04-120418	L1849652-06	Copper, Dissolved	0.0021	mg/l	0.001	1 No Action		
MP-RB-SW-05-120418	L1849652-07	Copper, Dissolved	0.0019	mg/l	0.001	1 No Action		
MP-RB-SW-06-120418	L1849652-08	Copper, Dissolved	0.0021	mg/l	0.001	1 No Action		
MP-RB-SW-07-120418	L1849652-04	Copper, Dissolved	0.002	mg/l	0.001	1 No Action		
MP-RB-SW-07FD-120418	L1849652-05	Copper, Dissolved	0.0018	mg/l	0.001	1 No Action		
MP-RB-SW-08-120418	L1849652-11	Copper, Dissolved	0.0017	mg/l	0.001	1 No Action		
MP-RB-SW-08L-120418	L1849652-12	Copper, Dissolved	0.0011	mg/l	0.001	1 Negate	U	Negated due to EB action
MP-RB-UW-01-120418	L1849652-09	Copper, Dissolved	0.0074	mg/l	0.001	1 No Action		
MP-RB-UW-02-120418	L1849652-10	Copper, Dissolved	0.0215	mg/l	0.001	1 No Action		
MP-SW-EB-120418	L1849652-13	Iron, Dissolved	0.071	mg/l	0.065	1		
MP-RB-SW-01-120418	L1849652-01	Iron, Dissolved	1.8	mg/l	0.065	1 No Action		
MP-RB-SW-02-120418	L1849652-02	Iron, Dissolved	1.69	mg/l	0.065	1 No Action		
MP-RB-SW-03-120418	L1849652-03	Iron, Dissolved	2	mg/l	0.065	1 No Action		
MP-RB-SW-04-120418	L1849652-06	Iron, Dissolved	1.85	mg/l	0.05	1 No Action		
MP-RB-SW-05-120418	L1849652-07	Iron, Dissolved	1.72	mg/l	0.065	1 No Action		
MP-RB-SW-06-120418	L1849652-08	Iron, Dissolved	4.63	mg/l	0.065	1 No Action		
MP-RB-SW-07-120418	L1849652-04	Iron, Dissolved	2	mg/l	0.065	1 No Action		
MP-RB-SW-07FD-120418	L1849652-05	Iron, Dissolved	1.79	mg/l	0.065	1 No Action		
MP-RB-SW-08-120418	L1849652-11	Iron, Dissolved	1.91	mg/l	0.065	1 No Action		
MP-RB-SW-08L-120418	L1849652-12	Iron, Dissolved	8.98	mg/l	0.065	1 No Action		
MP-RB-UW-01-120418	L1849652-09	Iron, Dissolved	1.91	mg/l	0.065	1 No Action		
MP-RB-UW-02-120418	L1849652-10	Iron, Dissolved	2.1	mg/l	0.065	1 No Action		
MP-SW-EB-120418	L1849652-13	Zinc, Dissolved	0.0212	mg/l	0.01	1		
MP-RB-SW-01-120418	L1849652-01	Zinc, Dissolved	0.0172	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-02-120418	L1849652-02	Zinc, Dissolved	0.0173	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-03-120418	L1849652-03	Zinc, Dissolved	0.0247	mg/l	0.01	1 No Action		
MP-RB-SW-04-120418	L1849652-06	Zinc, Dissolved	0.0206	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-05-120418	L1849652-07	Zinc, Dissolved	0.0104	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-06-120418	L1849652-08	Zinc, Dissolved	0.0205	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-07-120418	L1849652-04	Zinc, Dissolved	0.0182	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-07FD-120418	L1849652-05	Zinc, Dissolved	0.0185	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-08-120418	L1849652-11	Zinc, Dissolved	0.0183	mg/l	0.01	1 Negate	U	Negated due to EB action
MP-RB-SW-08L-120418	L1849652-12	Zinc, Dissolved	0.0563	mg/l	0.01	1 No Action		
MP-RB-UW-01-120418	L1849652-09	Zinc, Dissolved	0.0948	mg/l	0.01	1 No Action		
MP-RB-UW-02-120418	L1849652-10	Zinc, Dissolved	0.3141	mg/l	0.01	1 No Action		

MEMORANDUM

DATE December 18, 2018

TO Arlington Conservation Commission

FROM Joseph Famely

Direct Phone: (508) 495-6220 jfamely@woodsholegroup.com

Reeds Brook Fall 2018 Sediment Observations

The following map and photographs document Woods Hole Group's observations made in Reeds Brook at McClennen Park on December 4, 2018.

We observerved two types of possible iron impacts on the substrate of Reeds Brook:

- 1. Loose organic floc of a dull orange tinge that has accumulated on the leaf litter and among the bases of emergent wetland vegetation. This material is easily disturbed and likely gets flushed out of the higher flow areas, especially during storm events.
- 2. Orange floc/staining on a portion of the sediment particles. This condition is only at the sediment surface in a very localized area, and affects a very small proportion of the sediment particles in place (i.e. its occurence is diffuse).

Based on these conditions and on observations of biological activity (songbirds, mallards, buffleheads, heron, sunfish, and benthic invertebrates such as water boatmen, larval dragonflies, and larval hellgrammites) throughout Reeds Brook, we <u>do not</u> believe the floc constitutes a condition of readily apparent harm.

Areas with no observed floc (MP3A, MP3B, MP4A, MP4B, MP4C, MP5A, MP5B, MP5C):

Areas with dull orange organic floc settled on surface of vegetation but highly susceptible to mobilization (MP1A, MP2A, MP6A, MP5B, MP5C):

Areas with dispersed (<5% coverage) orange floc on sediment surface (MP6B, MP7B):

McClennen Park / Reeds Brook Water Quality - Dec 2018 Arlington, MA

SampleID	Date Time	Temp	SpCond	Salinity	Depth	рН	рН	Orp	Turbidity	ODO	ODO	Baro	Battery
	M/D/Y HH:MM:SS	°C	uS	ppt	meters		mV	mV	NTU	% sat	mg/L	mmHg	volts
RB01	12/4/2018 9:08	6.49	1136	0.57	0.274	7.43	-30.2	58.8	-11.2	60.8	7.45	751.2	12.4
RB02	12/4/2018 9:19	5.32	877	0.43	0.284	7.46	-31.2	-310.6	-11.1	78.9	9.97	750.9	12.4
RB03	12/4/2018 9:35	7.7	804	0.4	0.28	7.22	-21.7	-230.9	3.2	84.9	10.1	750.9	12.3
RB04	12/4/2018 10:08	5.03	817	0.4	0.267	6.96	-11.2	-191.6	-13	74.6	9.5	751.1	12.3
RB05	12/4/2018 10:18	5.03	686	0.33	0.296	6.94	-10.1	-213.4	-1.9	79.3	10.09	731.6	12.4
RB06	12/4/2018 10:30	7.41	756	0.37	0.294	6.93	-9.8	-189.7	-18	101.6	12.18	751.2	12.3
RB07	12/4/2018 9:53	5.36	819	0.4	0.261	7.12	-17.7	-236.7	-13.4	91.9	11.6	750.9	12.3
RB08	12/4/2018 10:42	5.58	823	0.4	0.473	7.08	-16	-172.3	-14.1	84.8	10.64	751.2	12.3
RB08_L	12/4/2018 10:48	9.17	14030	8.12	1.174	7.08	-15.7	-223.1	-13.2	35.2	3.84	751.3	12.3
UW01	12/4/2018 11:49	4.15	905	0.44	0.276	7.29	-24.2	-368.6	-16.6	47.1	6.13	751.1	12.3
UW02	12/4/2018 12:03	4.7	785	0.38	0.26	6.87	-7.6	-345.5	-16.1	35.5	4.55	751.1	12.3