東京大学グローバル消費インテリジェンス寄付講座

GCI 2020 Winter 最終課題

2021/02/09

本課題における状況設定(モデル化)

対象とする市場・商品

日本・携帯電話

A社のシェア率

A社:1割(NTTドコモ:4割, au:3割, ソフトバンク:2割)

A社の契約台数

185,228,700台(日本における携帯電話の総契約台数^[1]) × 0.1(A社のシェア率) = 18,522,870台 → **1800万台**とする

[1] 一般社団法人 電気通信事業者協会,"事業者別契約数",https://www.tca.or.jp/database/

A社の契約者数

1人につき1.5台を契約しているとすると:

1800万台 × 2/3 = **1200万人**

A社から頂いたデータ

提供して頂いた10万件のデータ^[2]は、契約者1200万人から**ランダムサンプリング**されたものとする

[2] kaggle, "Telecom customer", https://www.kaggle.com/abhinav89/telecom-customer

はじめに

事業の概要

まず、弊社の機械学習モデルによって、**解約者を予測**します. その後、解約すると予測された顧客に対して、弊社の提案事業をご提供することで、 **解約者数を減少**させ、**解約による損失額を大幅に減少**させます.

事業のご提案までの流れ

1. データ分析

ご提供して頂いた10万件・100種類のデータを分析することで、各データの重要度を確認します

2. 特徵抽出

各データの重要度を参考にしてさらに分析を進め、解約者の特徴を記述するデータを抽出します

3. 仮説構築

抽出した特徴をもとに,解約者に対する仮説を構築します

4. 事業提案

構築した仮説にもとづいて, 事業のご提案をさせていただきます

5. 提案事業の効果検証

ご提案する事業を導入することによって得られる効果を, 定量的に検証します

非解約者と解約者の割合

非解約者: 解約者: 49.6% **50.4**%

ご提供して頂いた10万件のデータを用いて,

非解約者と解約者の人数を調べたところ,

次のような結果が得られました:

非解約者数:50,438人

解約者数: 49,562人

この結果より,

「解約率が約49.6%」

であることがわかりました.

1. データ分析

解約による損失額のお見積もり

ご提供して頂いた10万人の顧客データを分析したところ、

A社様の月平均の損失額*1は、次のように見積もることができます:

損失額 = 解約者に対する請求額の合計

= 2,870,796\$

= 298,103,457円*²

契約者全体(1200万人)に見積もりを拡大すると:

損失額 = 298,103,457円 × 120

≈ 約360億円

以上の見積もり結果より、解約者数を1%減らすことができれば:

解約による約3.6億円の

損失を防ぐ ことができます

*1: 損失額は「解約者に対して請求するはずだった金額」とし、「解約者における rev_Mean(単位:\$) の合計」としています

*2: 1\$ = 103.84円(2021年1月17日 時点)

重要度が高いデータの抽出(1/2)

100種類あるデータに対して、LightGBM^[3]という機械学習モデルを用いて解約者の予測をおこなうことで、 各データの重要度の分析をおこないました(右図).

右図では,上位50種類のデータを表示していますが, これだけでは,「どのデータまで参照するべきか」 という指標がありません.

そこで,次のスライドでは,パレートの法則[4]: 「20%の要素が,全体の80%を生み出している」の成立を仮定して,結果の80%を説明できるであろう,「重要度が上位20%のデータ」を抽出*1しました.

^[3] Microsoft Corporation, "LightGBM", https://lightgbm.readthedocs.io/en/latest/

^[4] 野村総合研究所(NRI), "パレートの法則", https://www.nri.com/jp/knowledge/glossary/lst/ha/pareto_princ

^{*1:100}種類のデータの重要度を正規化した後に、重要度の累積値を計算することによって抽出

重要度が高いデータの抽出(2/2)

2. 特徴抽出

解約者の特徴分析(1/2)

前スライドで抽出した,重要度が高い22種類のデータを対象として, 解約者の特徴を表す手がかりとなるデータの抽出をおこないました.

具体的には,非解約者と解約者ごとに各データの平均値と標準偏差を 計算し,解約者と非解約者で差が顕著であるデータを精査しました.

その結果, 弊社は, 次の3種類のデータに着目しました:

- **1. 端末価格**(重要度: 7位)
- **2. 端末の使用日数**(重要度:1位)
- 3. 端末の月平均使用時間の変化率(重要度: 3位)

次のスライドでは、上記の3種類のデータの分析結果から、 解約者に見られる3つの特徴を抽出します.

2. 特徴抽出

解約者の特徴分析(2/2)

4. 事業提案

解約者に対する仮説・事業のご提案

仮説

解約者は、端末の機種が古い上に端末が劣化してきており、

解約者の特徴1

解約者の特徴2

端末自体に魅力を感じなくなった結果, 使用機会が減少し,

解約者の特徴3

解約に至ってしまっているのではないか.

A社様への事業のご提案

弊社の機械学習モデルを用いて解約者の予測をおこない,

解約すると予測された顧客に対して, 最新機種端末を,

0円でご提供*1 することで,解約者の人数を減少させます.

*1: ただし, 2ヶ月間は月々の請求額を1.5倍に増額し, その間は解約できないという条件を付けます

解約者の特徴

提案事業の設定(1/2)

提案事業によって期待される効果の反映

提案事業によって得られる効果をデータに反映させるために, 解約すると予測された顧客に対して,以下の仕様で5種類のデータを更新します:

端末の使用日数	0日
毎月の請求額	×1.5 \$
月平均の請求額の変化率	+50%
端末価格	150 \$*1
月平均使用時間の変化率	+70 %*2

以上の効果を反映後に,再度,弊社の機械学習モデルで学習・予測をおこない,何も手を打たない場合の解約者の予測人数と比較します.

*1,*2:次スライドで、この値に設定した根拠をご説明します

提案事業の設定(2/2)

非解約者総数	50,438 人
平均値	107 \$
標準偏差	62 \$
最小値	0 \$
第二四分位数	60 \$
中央値	130 \$
第三四分位数	150 \$
最大値	500 \$

無料提供する最新機種端末の価格を, 非解約者における第三四分位数に設定.

最新機種端末の価格:

150\$

非解約者の月平均使用時間の変化率の分布

非解約者総数	50,438 人
平均値	-5 %
標準偏差	250 %
最小値	-3875 %
第二四分位数	-77 %
中央値	-3 %
第三四分位数	70 %
最大値	4480 %

最新機種端末の無料提供によって 増加するであろう使用時間の変化率を, 非解約者における第三四分位数に設定.

使用時間の増加率:

+70%

5. 提案事業の効果検証

提案事業の導入効果

弊社の提案事業を導入していただくと,**解約率** を約 **40%減少** させることができ,解約による約 **150億円***3 の **損失を防ぐ** ことができます.

*3:3.6億円*4×解約率の減少率(52%-10%)≈約150億円

*4:解約者数を1%減少させることで防ぐことができる,解約による損失額(スライド5を参照)

無料提供の条件の妥当性

最新機種端末を無料提供することによる損失額を Aloss とすると:

 $A_{loss} = 150$ \$(最新機種端末の価格) × 約50,000人(最初の解約者の予測人数)

≈ 8億円

一方,毎月の請求額を1.5倍にすることによる増収額を A_{profit} とし,増額前の毎月の請求額を R_{before} ,増額後の毎月の請求額を R_{after} とすると:

R_{before} = 60\$(非解約者の毎月の請求額の平均値) × 約50,000人(非解約者数) ≈ 3億円

 $R_{\rm after} = 90\$(60\$ \times 1.5) \times 約40,000人*1(解約を防いだ人数) + <math>R_{\rm before}$

≈ 7億円

 $A_{\text{profit}} = R_{\text{after}} - R_{\text{before}} \approx 4$ 億円

以上より、「 $A_{profit} \times 2$ ケ月 $-A_{loss} = 0$ 」となるため、最新機種端末を無料提供することによる損失額は、毎月の請求額の1.5倍増によって、2ケ月で回収可能となります。したがって、「2ヶ月間:請求額1.5倍かつ解約できない」という条件は妥当 *2 だといえます.

*1:本提案の導入効果によって解約率が約40%減少します。最初の解約率が約50%(約5万人)であったため、 導入後の解約率は約10%(約1万人)となります。したがって、本提案の導入によって解約を防いだ人数は、5万人 – 1万人 = 4万人 となります。

*2:最新機種端末の価格・増額倍率・増額期間の設定や、他の新たなオプションの設定次第で、相殺ではなく利益を生み出すことも可能です

まとめ

A社様の現状

解約率:約50% | 解約による損失額:約360億円

解約者の3つの特徴

特徴1: 機種が古い | 特徴2: 端末が劣化している | 特徴3: 使用機会が減少している

弊社が考える仮説

解約者は、端末の機種が古い上に端末が劣化してきており、端末自体に魅力を感じなくなった結果、 使用機会が減少し、解約に至ってしまっているのではないか.

弊社の提案事業

弊社の機械学習モデルを用いて**解約者の予測**をおこない,解約すると予測された顧客に対して, 最新機種端末を0円でご提供*1することで,解約者の人数を減少させる.

*1: ただし, 2ヶ月間は月々の請求額を1.5倍に増額し, その間は解約できないという条件付き

提案事業の導入効果

解約率を約40%減少させることができるため、解約による約150億円の損失を防ぐことができる.