Basic Rules in Differentiation

Basic Rules in Differentiation

ullet Power Rule: For any function $f(x)=x^n$, the derivative is:

$$f'(x) = nx^{n-1}$$

- Example: $f(x) = x^3$, then $f'(x) = 3x^2$.
- Sum Rule: The derivative of a sum of functions is the sum of their derivatives:

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

• Example: if $f(x) = x^2 + x^3$, then $f'(x) = 2x + 3x^2$.

Basic Rules in Differentiation

Basic Rules in Differentiation

• Product Rule: If you have two functions multiplied together, the derivative is

$$rac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

Example: If
$$f(x)=x^2$$
 and $g(x)=x^3$, then $\frac{d}{dx}[x^2\cdot x^3]=2x\cdot x^3+x^2\cdot 3x^2=5x^4$

• Chain Rule: For composite functions, the derivative is: $\dfrac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)$

Example: If $f(x)=(2x+1)^3$, let g(x)=2x+1. Then the derivative is $3(2x+1)^2\cdot 2=6(2x+1)^2$.