# Problem L Rooted Subtrees

**Problem ID:** rootedsubtrees **CPU Time limit:** 11 seconds **Memory limit:** 1024 MB

**Source:** North America Championship 2020

License: (©) BY-SA

A tree is a connected, acyclic, undirected graph with n nodes and n-1 edges. There is exactly one path between any pair of nodes. A rooted tree is a tree with a particular node selected as the root.

Let T be a tree and  $T_r$  be that tree rooted at node r. The *subtree* of u in  $T_r$  is the set of all nodes v where the path from r to v contains u (including u itself). In this problem, we denote the set of nodes in the subtree of u in the tree rooted at r as  $T_r(u)$ .

You are given q queries. Each query consists of two (not necessarily different) nodes, r and p. A set of nodes S is "obtainable" if and only if it can be expressed as the intersection of a subtree in the tree rooted at r and a subtree in the tree rooted at p. Formally, a set S is "obtainable" if and only if there exist nodes u and v where  $S = T_r(u) \cap T_p(v)$ .

For a given pair of roots, count the number of different non-empty obtainable sets. Two sets are different if and only if there is an element that appears in one, but not the other.

#### Input

The first line contains two space-separated integers n and q ( $1 \le n, q \le 2 \cdot 10^5$ ), where n is the number of nodes in the tree and q is the number of queries to be answered. The nodes are numbered from 1 to n.

Each of the next n-1 lines contains two space-separated integers u and v ( $1 \le u, v \le n, u \ne v$ ), indicating an undirected edge between nodes u and v. It is guaranteed that this set of edges forms a valid tree.

Each of the next q lines contains two space-separated integers r and p ( $1 \le r, p \le n$ ), which are the nodes of the roots for the given query.

#### Output

For each query output a single integer, which is the number of distinct obtainable sets of nodes that can be generated by the above procedure.

#### **Sample Explanation**

The possible rootings of the first tree are



Considering the rootings at 1 and 3, the 8 obtainable sets are:

- 1.  $\{1\}$  by choosing u=1, v=1,
- 2.  $\{1, 2, 4, 5\}$  by choosing u = 1, v = 2,
- 3.  $\{1, 2, 3, 4, 5\}$  by choosing u = 1, v = 3,
- 4.  $\{2, 3, 4, 5\}$  by choosing u = 2, v = 3,
- 5.  $\{2, 4, 5\}$  by choosing u = 2, v = 2,
- 6.  $\{3\}$  by choosing u = 3, v = 3,
- 7.  $\{4, 5\}$  by choosing u = 2, v = 4,
- 8. and  $\{5\}$  by choosing u=5, v=5.

If the rootings are instead at 4 and 5, there are only 6 obtainable sets:

```
1. \{1\} by choosing u=1,v=1, 2. \{1,2,3\} by choosing u=2,v=4, 3. \{1,2,3,4\} by choosing u=4,v=4, 4. \{1,2,3,4,5\} by choosing u=4,v=5, 5. \{3\} by choosing u=3,v=2, 6. and \{5\} by choosing u=5,v=5.
```

For some of these, there are other ways to choose  $\boldsymbol{u}$  and  $\boldsymbol{v}$  to arrive at the same set.

### Sample Input 1

## Sample Output 1

