13.1 习题

张志聪

2025年2月11日

13.1.1

• $(a) \implies (c)$

因为 $f(x_0) \in V$ 且 V 是开集,那么存在 r > 0 使得 $B(f(x_0), r) \subseteq V$ 。 因为 f 在 x_0 处是连续的,那么存在 $\delta > 0$,使得只要 $d_X(x_0, x) < \delta$,就有 $d_Y(f(x), f(x_0)) < r$,于是令 $U = B(x_0, \delta)$ 即可满足要求,使得 $f(U) \subseteq B(f(x_0), r) \subseteq V$ 。

• $(c) \Longrightarrow (b)$

对于任意 $\epsilon > 0$,令 $V := B(f(x_0), \epsilon)$,那么 $V \subset Y$ 。由 (c) 可知,存在一个包含 x_0 的开集 $U \subset X$,使得 $f(U) \subseteq V$ 。

因为 U 是开集,所以存在 $B(x_0,r)\subseteq U$,因为序列 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中 依度量 d_X 收敛于 x_0 的序列,于是存在 $N\geq 1$ 使得

$$d_X(x_0, x^{(n)}) < r$$

对所有的 $n \ge N$ 均成立。那么,对所有的 $n \ge N$ 都有

$$x^{(n)} \in B(x_0, r) \subseteq U$$

所以 $f(x^{(n)}) \in V$,即

$$d_Y(f(x^{(n)}), f(x_0)) < \epsilon$$

由 ϵ 的任意性可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 是 Y 中依度量 d_Y 收敛于 $f(x_0)$ 的序列。

• $(b) \implies (a)$

反证法,假设 f 在 x_0 处是不连续的,那么存在 $\epsilon > 0$ 使得对任意的 $\delta > 0, d_X(x, x_0) < \delta$,都有 $d_Y(f(x), f(x_0)) > \epsilon$,令 $\delta = \frac{1}{n}, n \in \mathbb{N}$,利用 选择公理可以得到一个在 X 中依度量 d_X 收敛于 x_0 的序列 $(x^{(n)})_{n=1}^{\infty}$,由 (b) 可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_Y 收敛于 $f(x_0)$,由于对任意 的 n 都有 $d_Y(f(x^{(n)}), f(x_0)) > \epsilon$,所以序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_Y 不可能收敛于 $f(x_0)$,存在矛盾。

13.1.2

由定理 13.1.4 可知 (a) 和 (b) 是等价的。

 \bullet (a) \Longrightarrow (c)

任意 $x_0 \in f^{-1}(V), f(x_0) \in V$,因为 V 是开集,所以存在 r > 0 使得 $B(f(x_0), r) \subseteq V$ 。 f 是连续的,那么存在 $\delta > 0$ 使得只要 $d_X(x_0, x) < \delta$,就有 $d_Y(f(x), f(x_0)) < r$ 。所以对于任意 $x \in B(x_0, \delta)$,都有 $d_Y(f(x), f(x_0)) < r$,所以 $f(B(x_0, \delta)) \subseteq B(f(x_0), r) \subseteq V$,所以 $B(x_0, \delta) \subseteq f^{-1}(V)$ 。

由 x_0 的任意性可知, $f^{-1}(V)$ 就是 X 中的开集。

• $(c) \implies (a)$

设 $x_0 \in X$, 那么对任意 $\epsilon > 0, V := B(f(x_0), \epsilon)$ 是 Y 中的开集, 由 (c) 可知 $U := f^{-1}(V)$ 是 X 中的开集, 所以存在 $\delta > 0$ 使得 $B(x_0, \delta) \subseteq U, f(B(x_0, \delta)) \subseteq V = B(f(x_0), \epsilon)$, 即 $d_X(x_0, x) < \delta$, 就有

$$d_Y(f(x), f(x_0)) < \epsilon$$

所以 f 在 x_0 处是连续的。

由 x_0 的任意性可知, f 是连续的。

• $(c) \Leftrightarrow (d)$

F 是闭集由命题 12.2.15(e) 可知当且仅当 $Y\setminus F$ 是开集,由 (c) 可知 $f^{-1}(Y\setminus F)$ 开集。因为 $X\setminus f^{-1}(F)=\{x\in X:f(x)\not\in F\}=f^{-1}(Y\setminus F)$,所以 $f^{-1}(F)$ 是闭集。

反向证明类似。

13.1.3

• (a)

对任意 ϵ , 由于 g 在 $f(x_0)$ 处是连续的,那么存在 $\delta > 0$ 使得只要 $d_Y(f(x), f(x_0)) < \delta$,就有 $d_Z(g(f(x)), g(f(x_0))) < \epsilon$ 。

同理,由于 f,在 $x_0 \in X$ 处是连续的,那么存在 $\delta' > 0$ 使得只要 $d_X(x,x_0) < \delta'$,就有 $d_Y(f(x),f(x_0)) < \delta$ 。

综上,只要 $d_X(x,x_0)<\delta'$,就有 $d_Z(g(f(x)),g(f(x_0)))<\epsilon$ 。所以 $g\circ f:X\to Z$ 在 x_0 处是连续的。

• (b) 与 (a) 证明类似, 略。

13.1.4

• (a)

$$f(x) = \begin{cases} -1, x < 0 \\ 1, x \ge 0 \end{cases}, g(x) = x^2$$

于是

$$g \circ f(x) = 1$$

• (b)

$$g(x) = \begin{cases} -1, x < 0 \\ 1, x \ge 0 \end{cases}, f(x) = x^2$$

于是

$$g \circ f(x) = 1$$

• (c)

$$f(x) = \begin{cases} -1, x < 0 \\ 1, x \ge 0 \end{cases}, g(x) = \begin{cases} x^2, |x| \ge 1 \\ 0, |x| < 1 \end{cases}$$

于是

$$g \circ f(x) = 1$$

13.1.5

任意 $x_0 \in E, \epsilon > 0$,只要 $d|_{E \times E}(x, x_0) < \epsilon$,就有

$$d_X(\iota_{E\to X}(x), \iota_{E\to X}(x_0)) = d_X(x, x_0) = d|_{E\times E}(x, x_0) < \epsilon$$

注意,利用了 $E \in X$ 的子集且 $x, x_0 \in E$ 。

由 x_0 的任意性可知, $\iota_{E\to X}$ 是连续的。

13.1.6

(1) $f|_{E}$ 也在 x_{0} 处连续。

设 $(x_{(n)})_{n=1}^{\infty}$ 是 E 中依度量 d_X 收敛于 x_0 的序列,因为 E 是 X 的子集,又 f 在 x_0 处是连续的,由定理 13.1.4(b) 可知序列 $(f(x_{(n)}))_{n=1}^{\infty}$ 在 x_0 依度量 d_Y 收敛于 $f(x_0)$,f(E(x)) = f(x) 所以 $f(x_0)$ 是 也在 x_0 处连续。

(2) 逆命题。

不成立; 定义

$$f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$$

E := [0,1], 于是 x = 0 时 $f|_E$ 是连续的, f 不是连续的。

(3) f 是连续的,那么 $f|_E$ 就是连续的。

证明与(1)同理,证明略。

13.1.7

(1) 对任意的 $x_0 \in X$, f 在 x_0 处是连续的,当且仅当 g 在 x_0 处是连续的。

 $\bullet \Rightarrow$

由 f 在 x_0 处连续可知,对任意 $\epsilon > 0$,存在 $\delta > 0$ 使得只要 $d_X(x,x_0) < \delta$,就有 $d_Y(f(x),f(x_0)) < \epsilon$ 。又因为对所有的 $x \in X$ 都有 g(x) = f(x),所以 $d_Y(g(x),g(x_0)) < \epsilon$,所以 g 在 x_0 处是连续的。

• =

证明类似,略

(2) f 是连续的,当且仅当 g 是连续的。可以由(1)直接推出。