Syrian Arab Republic
Ministry of higher education
Tishreen University
Mechanical & Electronical
Engineering faculty

DLRA Deep Learning for a Robotic Arm

Final project
Mechatronics Engineering
July 2017

Contents

- Project statement.
- Application and motivations.
- Why deep learning?
- Algorithm discussion.
- Algorithm implementation.
- Simulation experiment.
- Real world experiment.
- · Results.
- Development.

Project statement

 Apply and asses algorithm that give a robotic arm the ability to learn how to achieve a mission inside its work space.

Applications and motivations

- Robot arms became an essential tool in industrial process.
- Deep robotic learning is an ongoing research topic.
- Robot arms can learn industrial mission like reaching an object, pick and place, welding, etc...

Why deep learning?

Standard Robotic Control

Deep Robotic Control

11/7/2017

Tishreen University

Reinforcement learning

A branch of machine learning

The objective is to maximize the expected reward

Reinforcement learning

Markov Decision Process

Reinforcement vs Supervised learning

The objective of the learning is to maximize

$$\sum_{i} \log(p(y_i|x_i))$$

$$\sum_{i} E[r(a_{t}, s_{t})]$$

Supervised learning

Reinforcement learning

Algorithm discussion

DDPG Deep Deterministic Policy Gradients

Lillicrap'16

Deep Q learning + Actor-critic = DDPG

Policy gradients

Policy gradients

$$\nabla_{\theta} J = \sum_{i} \left(\sum_{t} \nabla_{\theta} \pi(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t} r(s_{t}^{i}, a_{t}^{i}) \right)$$

Gradient vector of policy:

gives the direction in the parameters space to increase the probability of x

Score (reward) Function:

by multiplying with score samples with higher score will have higher expectation

Deep Q learning

Mnih'13

approximate Q(s,a) using a deep neural network Q(s,a) is the reward function

Actor Critic

Actor implements deterministic policy function $a=\mu(s)$

Evaluate actions using a critic network Q(s,a)

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process $\mathcal N$ for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Algorithm implementation

Python

The code contains 2 parts:

- Algorithm structure (shared for all missions).
- · Environment (depends on mission).

Model-free algorithm

11/7/2017

Simulation Environment

Simulation Environment

- V-REP + Python remoteAPI + OpenCV.
- State:

Joint angles + coordinates

- · Reward:
 - -1*square of distances
 - + when done

Real world experiment

- 2 Cameras + 3 DOF robot arm only
- Because of USB bandwidth limitation

Real world experiment

At the beginning of training:

Real world experiment

After 1 hour:

Results

Simulation environment:

- 5 hours of training -4000 episode
- Success rate 1800/4000 ≈ 45 %

Results

Simulation environment:

- Evaluation for 50 episodes Max steps 50.
- Success rate 33/50 ≈ 66 %

Results

Real world environment:

- 1 hour in simulation \approx 2.5 in real world
- Success rate 175/715 ≈ 25 %

Tishreen University

Development

New mission (Flexibility of DDPG algorithm):

- Follow a black line with zoom constraints
- Simulate welding process

