Dualność dla programowania liniowego:

Problem prymalny	Problem dualny
$\max \qquad f = \mathbf{c}\mathbf{x}$	$\min \qquad g = \mathbf{by}$
s.t.: $X = {\mathbf{A}\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0}$	s.t.: $Y = {\mathbf{A}^T \mathbf{y} \ge \mathbf{c}, \mathbf{y} \ge 0}$
Funkcja celu (max cx)	Wektor ograniczeń ${f c}$
Wektor ograniczeń \mathbf{b}	Funkcja celu (min by)
A — macierz ograniczeń	\mathbf{A}^T — macierz ograniczeń
Nieograniczony	Sprzeczny
Sprzeczny	Nieograniczny lub sprzeczny

Słaba dualność: $\forall_{\mathbf{x} \in X} \, \forall_{\mathbf{y} \in Y} \, \mathbf{cx} \leq \mathbf{by}$

Silna dualność (zasada dualności): $f^{\text{opt}} = g^{\text{opt}}$

Ograniczenia (dla problemu prymalnego, który nie jest ani sprzeczny ani nieograniczony):

Dualność oparta na relaksacji Lagrange'a:

Problem prymalny: max $z = F(\mathbf{x}), h_i(\mathbf{x}) = 0, i = 1, \dots, k, g_j(\mathbf{x}) \ge 0, j = 1, \dots, m, \mathbf{x} \in X$ (X może też być zadane za pomocą równości i nierówności).

Funkcja Lagrange'a: $L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\lambda}) = F(\mathbf{x}) + \sum_{i} \mu_{i} h_{i}(\mathbf{x}) + \sum_{j} \lambda_{j} g_{j}(\mathbf{x})$

Dualizowane ograniczenia: równościowe $h_i(\mathbf{x}) = 0, i = 1, \dots, k$ oraz nierównościowe $g_i(\mathbf{x}) \geq 0, j = 1, \dots, m$

Zmienne dualne (określone tak, żeby zdefiniować poprawną relaksację): $\mu_i \in \mathbb{R}, \lambda_j \in \mathbb{R}, \lambda_j \geq 0$

Relaksacja Lagrange'a: $\max L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\lambda}), \mathbf{x} \in X, \boldsymbol{\mu} \in \mathbb{R}^k, \boldsymbol{\lambda} \in \mathbb{R}^m_+$

Funkcja dualna: $W(\boldsymbol{\mu}, \boldsymbol{\lambda}) = \max_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\lambda})$

Dziedzina fukcji dualnej: $\text{Dom}(W) = \{(\boldsymbol{\mu}, \boldsymbol{\lambda}) | \boldsymbol{\mu} \in \mathbb{R}^k, \boldsymbol{\lambda} \in \mathbb{R}^m_+, W(\boldsymbol{\mu}, \boldsymbol{\lambda}) < \infty\}$

Problem dualny (dualizacja relaksacji Lagrange'a): $\min W(\mu, \lambda), (\mu, \lambda) \in \text{Dom}(W)$

Ograniczenia:

Dla problemu wypukłego:

- X: zbiór wypukły,
- h_i : funkcje liniowe,
- g_i : funkcje wypukłe na X,
- min F(F): funkcja wypukła na X) lub max F(-F): funkcja wypukła na X).

właściwości:

- zerowy odstęp dualności,
- zachodzi twierdzenie o odstępach komplementarnych,
- istnieje punkt siodłowy: $W(\lambda^{\text{opt}}) = L(\mathbf{x}^{\text{opt}}; \lambda^{\text{opt}}).$