2019~ 2020 学年第二学期高等数学[(2)机电]

期末A卷参考答案及评分标准

一、选择题(本大题共10小题,每小题3分,总计30分)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
D	C	В	В	C	A	D	C	D	D

二、填空题(本大题共5小题,每小题3分,总计15分)

(11)	(12)	(13)		(15)
$C_1 e^x + C_2 e^{-x}$	$\frac{x-1}{1} = \frac{y+3}{-2} = \frac{z-2}{3}$	x+y+z-3=0	$\sqrt{2}\pi$	3

三、解答题(本大题共5小题,每小题11分,总计55分)

16、解: (1) 由于
$$\frac{\partial z}{\partial x} = 2xy^2 - (1+xy)e^{xy}$$
 ; $\frac{\partial z}{\partial y} = 2x^2y - x^2e^{xy}$ (4 分)

于是
$$dz\Big|_{\substack{x=1\\y=0}} = \frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=0}} dx + \frac{\partial z}{\partial y}\Big|_{\substack{x=1\\y=0}} dy = -dx - dy$$
 (2 分)

(2) 由
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial \left(\frac{\partial z}{\partial x}\right)}{\partial y} = 4xy - x(2+xy)e^{xy}$$
 得 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1\\y=0}} = -2$ (5分)

17.
$$\text{MF:} (1) \quad I = \iint_D (x-2y) dx dy = \int_0^1 dx \int_0^2 (x-2y) dy = \int_0^1 (2x-4) dx = -3 \dots (5 \%)$$

(2)
$$I = \iint_D (x - 2y) dx dy = \int_0^2 dx \int_x^2 (x - 2y) dy = \int_0^2 (2x - 4) dx = -4 \dots (6 \%)$$

18、
$$\Re$$
: $\diamondsuit P = x^3 - 2y - z$, $Q = y^3 + z$, $R = 2x + y$,

Ω 是曲面
$$z = \frac{1}{2}(x^2 + y^2)$$
 与平面 $z = 2$ 围成的闭区域,

由高斯公式,

$$I = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = \iiint_{\Omega} \left(3x^2 + 3y^2 \right) dv \qquad (5 \%)$$

$$= \iiint_{\Omega} 3\rho^{3} d\rho d\theta dz = \int_{0}^{2\pi} d\theta \int_{0}^{2} d\rho \int_{\frac{1}{2}\rho^{2}}^{2} 3\rho^{3} dz = 16\pi \qquad (6 \%)$$

19、解: 令
$$u_n = (-1)^n \frac{n^2}{5^n}$$
 ,考察级数 $\sum_{n=1}^{\infty} |u_n|$

曲于
$$\lim_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n\to\infty} \frac{\frac{(n+1)^2}{5^{n+1}}}{\frac{n^2}{5^n}} = \frac{1}{5} < 1$$
 (6分)

故 级数
$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{n^2}{5^n} \right|$$
 收敛。

于是级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{5^n}$ 收敛且绝对收敛。 (5分)

20、解: 先求驻点, 令
$$\begin{cases} f_x(x,y) = 3x^2 - 6x - 9 = 0 \\ f_y(x,y) = 2y - 2 = 0 \end{cases}$$
, 解得
$$\begin{cases} x = -1 \\ y = 1 \end{cases}$$
,
$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$

即驻点为(-1,1), (3,1) (3分)

为了判断这两个驻点是否为极值点,求二阶偏导数

$$\begin{cases} f_{xx}(x,y) = 6x - 6 \\ f_{xy}(x,y) = 0 \\ f_{yy}(x,y) = 2 \end{cases}$$
 (2 $\%$)

在点
$$(-1,1)$$
 处, $A = f_{xx}(-1,1) = -12$, $B = f_{xy}(-1,1) = 0$, $C = f_{yy}(-1,1) = 2$

类似的, 在点(3,1)处,
$$A = f_{xx}(3,1) = 12$$
, $B = f_{xy}(3,1) = 0$, $C = f_{yy}(3,1) = 2$

因为
$$A = 12 > 0$$
, $AC - B^2 = 24 > 0$,

所以 (3,1) 是极小值点,极小值为 f(3,1) = -28 (3 分)