Građa računala

2. Von Neumannov model računala i SISD arhitektura. Principi kodiranja podataka u računalu.

Preddiplomski izvanredni stručni studij Informacijske tehnologije

Zapis podataka u računalu

- Osnovna namjena računala je pohranjivanje, pretraživanje i izvođenje operacija nad podacima (brojevi, znakovi, signali)
- Zahtjevi brojevnog sustava za zapis brojeva:
 - jednostavno izvršavanje logičkih i aritmetičkih operacija
 - jednostavna realizacija pomoću elektroničkih elemenata
 - dovoljno velik kapacitet i preciznost zapisa
 - moguć zapis signala pomoću brojevnog sustava

Zapis podataka u računalu

 Zbog tehnoloških razloga podaci se u digitalnim računalima pohranjuju u binarnom obliku (0,1)

Bistabil

 Osnovna ćelija za pamćenje, može se nalaziti u jednom ili dva stabilna stanja (0 ili 1), odnosno može zapamtiti jednu binarnu znamenku

Registar

 Skup bistabila, n-bitovni registar može pohraniti nbitovni podatak, odnosno može poprimiti jedno od 2n stanja

Zapis podataka u računalu

BIT

- jedno binarno mjesto se zove bit {0,1}
- iz engleskog binary digit (bit)
- najmanja količina informacije

BYTE

- 8 bitova = 1 byte
- iz engleskog binary term(byte)

RIJEČ

zapisi u računalima riječi dužine 1,2,4,8 bajta, tj. 8,
 16, 32, 64 bita

Brojevni sustavi

- pozicijski brojevni sustavi: vrijednost znamenke u zapisu ovisi o njenom položaju (npr. rimski brojevni sustav nije pozicijski)
- dekadski brojevni sustav: znamenke su iz skupa {0,1,2,3,4,5,6,7,8,9} a baza brojnog sustava je B=10
- Npr.

$$126,73 = 1 \times 10^{2} + 2 \times 10^{1} + 6 \times 10^{0} + 7 \times 10^{-1} + 3 \times 10^{-2}$$

Brojevni sustavi

 broj znamenki brojevnog sustava određuje bazu sustava

$$z = \sum_{j=0}^{N-1} b_j B^j$$

• Znamenke brojnog sustava: $0 \le b_i < B$

Baza brojnog sustava: B

Brojevni sustavi – decimalni brojevi

•
$$z = \sum_{j=-M}^{N-1} b_j B^j$$

• Znamenke brojnog sustava: $0 \le b_i < B$

Baza brojnog sustava: B

Brojevni sustavi

- B=2 {0,1} -binarni brojevni sustav
- B=8 {0,1,2,3,4,5,6,7} **oktalni** brojevni sustav
- B=10 {0,1,2,3,4,5,6,7,8,9} **dekadski** brojevni sustav
- B=16 {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} –
 heksadekadski
 - često se koristi
 - blizak je binarnom sustavu, a zapis bitno kraći

Brojevni sustavi

4 BITNI zapis

DEKADSKI	HEKSADEKADSKI	BINARNO
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111

8 BITNI zapis

• Binarni

 $od 0000 0000_2$ do $1111 1111_2$

Heksadekadski

od 00_{16} do FF_{16}

Dekadski

od 0_{10} do 255_{10}

Binarni brojevni sustav

$$(1011,011)_{2} = 1 \times 2^{3}$$

$$+ 0 \times 2^{2}$$

$$+ 1 \times 2^{1}$$

$$+ 1 \times 2^{0}$$

$$+ 0 \times 2^{-1}$$

$$+ 1 \times 2^{-2}$$

$$+ 1 \times 2^{-3}$$

$$= (8 + 0 + 2 + 1 + 0 + 1/4 + 1/8)_{10}$$
$$= (11,375)_{10}$$

Kapacitet binarnog broja

- Brojevi se pohranjuju u registrima širine n bitova
- Tipične vrijednosti: n= 8 ili 16 ili 32 ili 64 bita
- Najveći cijeli nepredznačni broj (engl. integer) koji se može prikazati n-bitnim binarnim zapisom je 2n–1
- Npr. s n=8 bitova to je: $2^8-1=256-1=255$
- Ukupan broj različitih brojeva koji se mogu prikazati je 2n:
- Primjer:
 - $-2^8 = 256$
 - $-2^{16} = 65.536$
 - $-2^{32} = 4.294.967.296$

Zapis binarnih brojeva

- Kilobajt **kB** = $1024 \text{ B} = 2^8 \cong 10^3$
- Megabajt $MB = 1024 \text{ kB} = 2^{20} \cong 10^6 = 1.048.576 \text{ B}$
- Gigabajt **GB** = 1024 MB = $2^{30} \cong 10^9$
- TetrabajtTB = $1024 \text{ GB} = 2^{40} \cong 10^{12}$
- Peta, Eksa ...

Prevođenje zapisa brojeva iz dekadskog u binarni zapis

Binarni broj tvore ostaci dijeljenja s 2, odozdo prema gore

```
57:2 = 28 1 1 1 0 0 1
28:2 = 14
14:2=7
7:2=3
3:2=1
1:2=0
Kraj
```

Prevođenje zapisa brojeva iz decimalnog dekadskog u binarni zapis

 Binarni broj tvore prve znamenke rezultata množenja s 2, od vrha prema dolje

```
0,375 X 2 = 0,75
                           (0,375)_{10} = (0,011)_2
0,75 \times 2 = 1,5
0.5 \times 2 = 1.0
 0 \times 2 = 0
 Kraj
```

Prevođenje zapisa brojeva iz dekadskog u heksadekadski zapis

 Heksadekadski broj tvore ostaci dijeljenja s 16, odozdo prema gore

Prevođenje zapisa brojeva iz dekadskog u heksadekadski zapis

- Neki dekadski brojevi ne mogu se točno prevesti u binarni zapis⇒greška zaokruživanja!
- npr. $(0,1)_{10} = (0,00011001100110....)_2$
- točnost zapisa ovisi o broju bitova s kojima se zapisuju brojevi u računalu

Zbrajanje binarnih brojeva

- potrebna je tablica zbrajanja
- za binarni brojni sustav:

$$0+0=0$$
 i prijenos 0

$$0+1=1$$
 i prijenos 0

$$1+1=0$$
 i prijenos 1

Zbrajanje binarnih brojeva

 Primjer zbrajanja binarnih brojeva 001001 i 011011

- negativne binarne brojeve zapisujemo pomoću njihovog dvojnog komplementa
- dvojni komplement se računa kao zbroj jediničnog komplementa i 1
- jedinični komplement se računa zamjenom vrijednosti za 0 i 1 u zadanom registru za apsolutnu vrijednost zadanog negativnog binarnog broja

- npr. za dekadski broj 5 koji je zapisan u 4bitnom registru: (5)₁₀ = (0101)₂
- jedinični komlement (JK) = (1010)2
- dvojni komplement (DK) = JK + (0001)₂

DK =
$$1010 + 0001 = 1011$$

(-5)₁₀ = $(1011)_2$ => Prikaz negativnog dekadskob
broja -5 zapisanog u 4-bitnom registru!

 npr. u registru s 3 bita prikazuje se slijedeći raspon pozitivnih i negativnih brojeva

Dekadski broj	Binarni broj	
О	000	
1	001	
2	010	
3	011	
-4	100	
-4 -3	101	
-2	110	
-1	111	

- Primjer: Prikažite broj -12 u registru s 8 bita
- Broj 12 predstavljen u 8-bitnom registru glasi: 0 0 0 0 1 1 0 0
- Zamjenimo 0 i 1 (JK) i dobivamo:
 1 1 1 1 0 0 1 1
- Na kraju dodamo 1 (DK) i dobivamo :
 11110011
- Izračunata vrijednost predstavlja -12, zapisan u metodi dvojnog komplementa

- Za registar veličine n bita, vrijedi:
- raspon brojeva kada se prikazuju cijeli brojevi s predznakom:

$$-2^{n-1},...,-1,0,1,...,2^{n-1}-1$$

 raspon brojeva kada se prikazuju samo pozitivni cijeli brojevi:

$$0, ..., 2^n - 1$$

- Zadatak: Odredite najveći i najmanji pozitivni cijeli broj koji se može smjestiti u registar sa 4, 8 i 16 bita.
- Općenito, za registar za n bita, najveći pozitivni cijeli broj koji se može pohraniti je: 2^n -1
- Za registar sa 4 bita: 2⁴-1 = 15
- Za registar sa 8 bita: 2⁸-1= 255
- Za registar sa 16 bita: 2¹⁶-1= 65 535

- Zadatak: Odredite najveći i najmanji cijeli broj s predznakom koji se može smjestiti u registar sa 4, 8 i 16 bita, pod pretpostavkom da za prikaz negativnog broja koristite metodu dvojnog komplementa.
- Općenito, za registar s n bita u kojem je prvi bit predznak, važe slijedeći izrazi:
- najmanji negativni broj koji se može prikazati : -2^{n-1}
- najveći pozitivni broj koji se može prikazati: $2^{n-1}-1$

- najmanji negativni broj koji se može prikazati s predznakom:
 - za n=4 = -8
 - za n=8 = -128
 - -za n=16=-32768
- najveći pozitivni broj koji se može prikazati u registru s predznakom:
 - -za n=4=7
 - -za n=8 = 127
 - -za n=16=32767

- U prikazu brojeva je moguće koristiti eksponencijalni oblik, npr. dekadski broj 123,456 = 0,123456 * 10³
- decimalni broj R u dekadskom sustavu se općenito može zapisati kao:

$$R = M * 10^{E}$$

- mantisa broja M = 0,123456
- eksponent E = 3

 IEEE (Institute of Electrical and Electronics Engineers) standard 754 za prikaz realnih brojeva u standarnoj točnosti:

- P predznak (P=1 negativan, P=0 pozitivan)
- Karakteristika: binarni eksponent + 127 (da se izbjegne prikaz negativnog eksponenta)
- Mantisa je normalizirana (samo jedan bit ispred binarne točke)

- Primjer: Prikazati dekadski broj 5.75 u IEEE 754 standardu za prikaz realnih brojeva u standarnoj točnosti
- $5.75_{10} = 101.11_2 * 2^0 = 1.0111_2 * 2^2$
- Kako se normalizacijom svakog binarnog broja (osim nule) postiže oblik 1.xxxxx, vodeća jedinica ne pohranjuje se u računalu i naziva se skrivenim bitom. Time se štedi jedan bit što povećava točnost.

- Predznak = 0 (pozitivan broj)
- Binarni eksponent = 2
- $K = 2 + 127 = 129 = (1000\ 0001)_{2}$
- Mantisa (cijela): 1.0111
- Mantisa (bez skrivenog bita): 0111
- Rezultat:

4 0 B 8 0 0 0 0

(hekasadekadski)

Raspon i točnost realnih brojeva

- Za slučaj realnog broja standardne točnosti karakteristika (8 bita) se može nalaziti u intervalu [0,255]
- K = 0 rezervirana je za prikaz nule
- K = 255 rezervirana je za prikaz beskonačno velikog broja
- Kako je BE = K 127, BE se može kretati u intervalu: [-126,127].
- Najmanji pozitivni broj različit od nule koji se može prikazati je:

```
1.0_{2} * 2^{-126} \approx 1.175494350822*10^{-38}
```

• a najveći je:

Model von Neumannova računala

• Ideja:

- zajedničko pohranjivanje podataka i programa u memoriji računala
- sljedeći korak programa ovisi o prijašnjem
- John von Neumann
- -(28/12/1903. 08/02/1957.)

 predložena arhitektura za EDVAC(Electronic Discrete Variable Automatic Computer) 1945. postaje poznata pod imenom von Neumanova arhitektura računala

Model von Neumannova računala

- Ulazno/izlazni tok
- Upravljački signal →

Model von Neumannova računala

- računalo se sastoji od četiri osnovne funkcijske jedinice:
 - aritmetičko-logičke
 - upravljačke
 - memorijske
 - ulazno-izlazne jedinice
- funkcijske jedinice računala povezane su tokom podataka, instrukcijskim tokom i tokom upravljačkih signala
- većinu upravljačkih signala generira upravljačka jedinica na temelju tumačenja instrukcije

Ulazna jedinica

- služi za unos podataka iz vanjskog svijeta u memoriju računala: tipkovnica,miš,mikrofon,kamera
- na prethodnoj slici modela von Neumannova računala je vidljivo kako nema direktnog toka podataka između ulazne jedinice i memorije – tzv. "usko grlo von Neumannova modela"
- današnja računala ostvaruju direktan pristup ulazne jedinice memoriji računala – tzv. DMA prijenos ((engl. DMA - Direct Memory Access)
- prijenosom podataka na tom putu upravlja poseban DMA upravljački sklop pa je omogućen istodobni prijenos podataka i obrada u aritmetičko- logičkoj jedinici.

Izlazna jedinica

- služi za prikaz obrađenih podataka:
 - monitor
 - pisač
 - ploter
 - zvučnik ...

Memorija

- svaki podatak u memoriji ima svoju jednoznačnu adresu
- u memoriju se pohrajuju podaci i programi
- postupci pisanja i čitanja preko dva registra:
 - MAR (engl. Memory Address Register)
 - MDR (engl. Memory Data Register)

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 7, Figure 07-05

Memorija - čitanje

- zapisuje se adresa podatka koji se čita u registar MAR
- generiraju se upravljački signali na liniji za čitanje, koji omogućavaju da se sadržaj memorijske lokacije zapisane u MAR prenese u registar MDR
- nakon operacije čitanja podatak se nalazi u MDR
- vrši se prijenos podatka iz registra MDR u ciljni registar

Memorija - pisanje

- zapisuje se adresa na koju želimo pohraniti podatak u MAR
- podatak se prenosi u registar MDR
- generiraju se upravljački signali, koji vrše prijenos podataka iz MDR u memoriju na adresu zapisanu u registru MAR
- nakon operacije pisanja podatak se nalazi u memoriji

- tijekom izvođenja programa možemo govoriti o toku podataka (DS) i instrukcijskom toku (IS) koji se uspostavljaju između funkcijskih jedinica stroja
- tipovi arhitekture prema Flynnovoj klasifikaciji mogu se predočiti u dvodimenzionalnom prostoru koji je određen brojem tokova podataka i brojem instrukcijskih tokova

- SISD (engl. Single Instruction Stream Single Data Stream) računalo s jednostrukim instrukcijskim tokom i jednostrukim tokom podataka
- arhitektura SISD predstavlja arhitekturu sekvencijalnog računala temeljenog na von Neumannovom modelu

- SIMD (engl. Single Instruction Stream Multiple Data Stream) - računalo s jednostrukim instrukcijskim tokom i višestrukim tokom podataka
- u ovu se kategoriju svrstavaju paralelna računala (nazivaju se i matrična računala) koja se obično sastoje od velikog broja procesora ili procesnih elemenata koji istodobno izvršavaju istu instrukciju na različitim podacima

- MIMD (engl. Multiple Instruction Stream Multiple Data Stream) - računalo s višestrukim instrukcijskim tokom i višestrukim tokom podataka
- multiprocesorski sustavi, odnosno paralelni računarski sustavi s dva i više procesora približno jednakih performansi, pri čemu svaki od njih ima pristup zajedničkoj memorijskoj jedinici i svi dijele ulaznoizlazne jedinice, a pritom djeluju pod jednim operacijskim sustavom

- MISD (engl. Multiple Instruction Stream Single Data Stream) računalo s jednostrukim instrukcijskim tokom i višestrukim tokom podataka.
- Teorijski strogo gledano, računala ovog tipa arhitekture ne mogu se fizički realizirati jer je nemoguće ostvariti da se istodobno više različitih instrukcija izvršava na istim podacima
- Dogovorno u ovu kategoriju uvrštavamo protočna (engl. pipeline) računala i računarske sustave koji se temelje na sistoličkim poljima

Shematski prikaz arhitekture tipa SISD

Shematski prikaz arhitekture tipa SISD

- jedan instrukcijski tok (IS) i jedan tok podataka (DS) izviru iz memorijske jedinice (MU)
- instrukcije se dovode do upravljačke jedinice (CU) gdje se dekodiraju
- dekodirani instrukcijski tok i tok podataka
 "susreću" se u jedinici za obradu PU u kojoj se tok
 podataka preoblikuje
- preoblikovani podaci se ponovo dovode u memorijsku jedinicu koja predstavlja izvori ponor toka podataka

Binarni kôdovi – BCD kôd

- BCD kôd za prikaz jedne znamenke koristi 4 bita, pri čemu se znamenka zapisuje kao binarni ekvivalent njene vrijednosti
- Pretvorimo znamenke iz dekadskih u binarne vrijednosti u grupama po 4 bita, npr. za dekadski broj 3720:

3	7	2	0		
0011	0111	0010	0000		

Sigurnosni kodovi za kontrolu pariteta

- U prijenosu signala se u praksi uvijek događaju pogreške, najčešće uzrokovane smetnjama na prijenosnim sustavima
- Da bi se signali zaštitili, a time i informacija koju prenosimo, koristimo se kodovima koji omogućuju detekciju greške
- Redudanciju (zalihost) koda definiramo izrazom:
 - R = broj zaštitnih bitova / ukupan broj bitova

Sigurnosni kôdovi za kontrolu pariteta

- Podatak se smješta u 8 bita, a 9-ti bit je bit za otkrivanje i korekciju greške.
- Neparan paritet: prilikom zapisa podatka u registar, bit pariteta se koristi tako da se postavlja na 1 ako je broj jedinica u bloku podatka neparan
- Paran paritet: kontrolni bit se postavlja na 1 ako je broj jedinica u registru podatka paran

$$R = 1/9 = 0.111$$

Hammingov kôd

 Hamming je prvi izveo linearne kodove (n,k) koji korigiranju pojedinačnu pogrešku, pri čemu je:

n = ukupan broj bitova u kodnoj riječi

k = broj bitova informacije

m = n-k = broj kontrolnih bitova

• Vrijedi pravilo da mora postojati odnos:

 $2m \ge k + m + 1$

 Kontrolni bitovi se postavljaju na pozicijama koje su potencije broja 2

Hammingov kôd

- **Primjer:** Koliko je bitova potrebno za prijenos 12 bita informacije Hammingovim kodom?
- Ako sa C označimo kontrolne, a sa P podatkovne:

potrebno je poslati ukupno 17 bitova da bismo prenijeli 12 bitova informacije, upotrebom Hammingova koda.

EXCESS-3 kôd

- Kao i BCD kod za kodiranje jedne dekadske znamenke koristi 4 bita, pri čemu se znamenka zapisuje kao binarni ekvivalent njene vrijednosti uvećane za 3
- Primjer: dekadski broj 3720 u Excess-3 kodu

3	7	2	O		
0110	1010	0101	0011		

Bikvinarni kôd

 Za kodiranje dekadskih znamenki se primjenuje slijedeća tablica :

broj	bikvinarni kod
	5043210
0	0100001
1	0100010
2	0100100
3	0101000
4	0110000
5	1000001
6	1000010
7	1000100
8	1001000
9	1010000

ASCII kôd

- zapis svih slova i znakova pomoću binarnih brojeva
- za kodiranje znakova ASCII kôd koristi 7 bitova
- Unicode–zapis sa 16 bitova –65000 različitih znakova-uveden 1991.

Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph
010 0000	040	32	20		100 0000	100	64	40	@	110 0000	140	96	60	•
010 0001	041	33	21	!	100 0001	101	65	41	Α	110 0001	141	97	61	а
010 0010	042	34	22	"	100 0010	102	66	42	В	110 0010	142	98	62	b
010 0011	043	35	23	#	100 0011	103	67	43	С	110 0011	143	99	63	С
010 0100	044	36	24	\$	100 0100	104	68	44	D	110 0100	144	100	64	d
010 0101	045	37	25	%	100 0101	105	69	45	Е	110 0101	145	101	65	е
010 0110	046	38	26	&	100 0110	106	70	46	F	110 0110	146	102	66	f
010 0111	047	39	27		100 0111	107	71	47	G	110 0111	147	103	67	g
010 1000	050	40	28	(100 1000	110	72	48	Н	110 1000	150	104	68	h
010 1001	051	41	29)	100 1001	111	73	49	- 1	110 1001	151	105	69	i
010 1010	052	42	2A	*	100 1010	112	74	4A	J	110 1010	152	106	6A	j
010 1011	053	43	2B	+	100 1011	113	75	4B	K	110 1011	153	107	6B	k
010 1100	054	44	2C	,	100 1100	114	76	4C	L	110 1100	154	108	6C	Т
010 1101	055	45	2D	-	100 1101	115	77	4D	М	110 1101	155	109	6D	m
010 1110	056	46	2E	-	100 1110	116	78	4E	N	110 1110	156	110	6E	n
010 1111	057	47	2F	1	100 1111	117	79	4F	0	110 1111	157	111	6F	0
011 0000	060	48	30	0	101 0000	120	80	50	Р	111 0000	160	112	70	р
011 0001	061	49	31	1	101 0001	121	81	51	Q	111 0001	161	113	71	q
011 0010	062	50	32	2	101 0010	122	82	52	R	111 0010	162	114	72	r
011 0011	063	51	33	3	101 0011	123	83	53	S	111 0011	163	115	73	s
011 0100	064	52	34	4	101 0100	124	84	54	Т	111 0100	164	116	74	t
011 0101	065	53	35	5	101 0101	125	85	55	U	111 0101	165	117	75	u
011 0110	066	54	36	6	101 0110	126	86	56	V	111 0110	166	118	76	٧
011 0111	067	55	37	7	101 0111	127	87	57	W	111 0111	167	119	77	w
011 1000	070	56	38	8	101 1000	130	88	58	Х	111 1000	170	120	78	х
011 1001	071	57	39	9	101 1001	131	89	59	Υ	111 1001	171	121	79	у
011 1010	072	58	ЗА	:	101 1010	132	90	5A	Z	111 1010	172	122	7A	z
011 1011	073	59	3B	;	101 1011	133	91	5B	[111 1011	173	123	7B	{
011 1100	074	60	3C	<	101 1100	134	92	5C	١	111 1100	174	124	7C	I
011 1101	075	61	3D	=	101 1101	135	93	5D]	111 1101	175	125	7D	}
011 1110	076	62	3E	>	101 1110	136	94	5E	۸	111 1110	176	126	7E	~
011 1111	077	63	3F	?	101 1111	137	95	5F						

ASCII kôd

Najvažnije ASCII vrijednosti:

```
    - znak NULL ('\0')
    - praznina (' ')
    - znamenke '0'-'9'
    - velika slova 'A' do 'Z'
    - mala slova 'a' do 'z'
```