

MPEG PCC 標準進程

ITRI ICL V200 Yi-Ting Tsai

2020/05/29

Lecturer

• 蔡懿婷 工程師

- 2015年加入工研院
- 曾參與視訊壓縮H.265 硬體設計專案
- 目前專注於VVC與PCC標準制定

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

Point cloud

A set of 3D points

- Not ordered
- Without relations between them
- Each point is defined by
 - Geometry: (X, Y, Z)
 - Attribute: (R, G, B) (Y, U, V), Reflectance, transparency
- Use case
 - Cultural heritage
 - Real-time telepresence, VR
 - Geographic Information · Autonomous Navigation

300,000 ≤Point number ≤ 70,000,000

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

Why need Point Cloud Compression?

Content Category	Test material dataset filename	Frame s	fps	# Pts	Geometry Precision	Attributes
(1) Static Objects and	Facade_00064_vox20 f	1		19,714,629	20 bit	R,G,B
Scenes	Head_00039_vox20 ^f	1		14,025,709	20 bit	R,G,B
	House_without_roof_00057_vox20 f	1		5,001,077	20 bit	R,G,B
	Landscape_00014_vox20 f	1		72,145,549	20 bit	R,G,B
	Palazzo_Carignano_Dense_vox20 f	1		4,203,962	20 bit	R,G,B
	Stanford_Area_4_vox20 f	1		43,399,207	20 bit	R,G,B
	ULB_Unicorn_HiRes_vox20 e	1		63,864,641	20 bit	R,G,B
(2) Dynamic objects	8i VFB-Soldier	300	30	~1,500,000	10bit	R,G,B
	basketball_player_vox11	64	30	~2,900,000	11 bit	R,G,B
	Queen	250	50	~1,000,000	10 bit	R,G,B
	Ford_01_q_1mm ^g	1500	10	~100,000 / fr	18 bit	
	qnxadas-motorway-join h	500		~32,000 / fr	18 bit	I
	citytunnel_q1mm ⁱ	1		19,948,121	21 bit	R,G,B, I
	overpass_q1mm ⁱ	1		5,255,920	20 bit	R,G,B, I
	tollbooth_q1mm ⁱ	1		7,148,516	21 bit	R,G,B, I

Landscape: 72145549*20*3(X,Y,Z)*3(R,G,B) =12986198820(bits) => 1.5 G

Soldier: 1500000*300(frames)*10*3(X,Y,Z)*3(R,G,B) = 40500000000(bits) = > 4.7 G

Ford: 100000*1500(frames)*18*3(X,Y,Z)*1(I) =12986198820(bits) => 965MB

2D 4K image: 4096*3112*8(Prec)*3(R,G,B) = 305922048(bits) => 37MB

Point Cloud Compression

Geometry-based Point cloud compression

Cat 1:Static object

Cat3: Dynamic Acquisition

Video-based Point cloud compression

Cat2: Dynamic object

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

Where and how V-PCC can be used?

- Reduce the storage requirements at the server
- Reduce the traffic exchanged between the client and server

Where and how G-PCC can be used?

- Reduce the storage requirements at the server
- Reduce the traffic exchanged between the client and server

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

Scope of PCC

- Lossy compression: parameter control of the bitrate shall be supported.
- **Lossless compression**: the reconstructed data shall be mathematically identical to the original one.
- Progressive and/or scalable coding: it shall be possible to first decode a coarse point cloud and then refine it.
- View-dependent decoding, spatial random access: it shall be possible to first decode the point-cloud corresponding to a region.
- Temporal random access shall be possible.
- Compression shall support encoding and decoding with low complexity, low latency and/or real-time implementation
- Compression should enable parallel encoding and decoding.

13

MPEG timeline

Participants

ITRI Industrial Technology Research Institute

15

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

V-PCC architecture

V-PCC architecture

V-PCC patch rotation

- In order to achieve the compact patch packing on 2d surface flexible patch orientation is allowed.
- 8 different orientation models are allowed
 - patch rotated by 0, 90, 180 and 270 degrees, and the mirror image of all those patches.

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

G-PCC architecture

ITRI
Industrial Technology
Research Institute

G-PCC octree geometry coding

- Cubical axis-aligned bounding box
- Recursively subdividing bounding box
- 8-bit occupancy code
 - 1-bit value with each sub-cube
 - 1-> sub-cube is occupied(contain point)
 - 0-> sub-cube is unoccupied(empty)
- Direct Coding Mode(DCM)
 - For isolated points, directly coding point coordinates.
 - Depends on information coming from the parent node itself or the neighbours of the parent node

- Introduction of point cloud
- Point Cloud Compression (PCC)
- Applications of PCC
- PCC in MPEG
- V-PCC architecture and algorithm
- G-PCC architecture and algorithm
- Conclusions

Contributions in PCC meeting

Performance evaluation

Original sequence	Original sequence size	Compressed sequence size
Landscape_ooo14_vox20	1.2G	R6:1132329744 bits = 135 MB (compression ratio : 9) R5:913800720 bits = 108 MB R4:536925720 bits = 64 MB R3:310054624 bits = 37 MB R2:21216744 bits = 2.5 MB R1:4127256 bits = 0.5 MB
8i VFB-soldier	4.7G	R5: 352724576 bits = 42 MB (compression ratio : 114) R4: 199401576 bits = 24MB R3: 115656200 bits = 14 MB R2: 69553256 bits = 9 MB R1: 43624688 bits= 6 MB
Ford_o1_q_1mm	965MB	R6: 2478513712 bits = 295 MB (compression ratio : 3) R5: 2009785656 bits = 239MB R4: 1185937496 bits = 141 MB R3: 746576376 bits = 88 MB R2: 189917080 bits = 22.6 MB R1: 78263392 bits = 9.3 MB

Performance evaluation

compressed (lower quality)

Compressed(higher quality)

uncompressed

Future works

- V-PCC Future works
 - Mesh coding
 - Convergence with
 Metadata for Immersive Video

- G-PCC Future works
 - Inter prediction
 - Convergence of attribute coding

