Machine learning Homework- Soft-Margin SVM and Kernels

Abinav Ravi Venkatakrishnan - 03694216 and Abhijeet Parida - 03679676 December 8, 2018

Problem 1:

No it will not be the correct label. The training sample depends on the distance from the hyperplane decision boundary ξ . If $\xi < 1$ for the training sample it gets classified correctly else it gets mis-classified.

Problem 2:

The cost function for soft-margin SVM is

$$minf_0(\mathbf{w}, b, \xi) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^N \xi_i$$
(1)

C is a penalizing factor on ξ .

case 1: when C = 0 there is no restriction on ξ values.

case 2: when C $_i$ 0 it encourages higher values of ξ and hence encouraging mis-classification.

Problem 3:

Problem 4:

Problem 5:

- 1. from $g(\alpha)$ we know that $\alpha Q \alpha^T$ is equivalent to $-\sum_{i=1}^N \sum_{j=1}^N y_i y_j \alpha_i \alpha_j \mathbf{x}_i \mathbf{x}_j$. By rearranging the scalars we get, $-\sum_{i=1}^N \sum_{j=1}^N \alpha_i y_i y_j \mathbf{x}_i \mathbf{x}_j \alpha_j$. Therefore $Q = (-yy^T (hadamard)XX^T)$
- 2. We know that $Q = -p^T p$ and also we know that $p^T p$ is positive semi definite due to its symmetric nature. So $a^t(p^T p)a \ge 0$ but we negative sign also. Therefore, Q is negative semi definite.
- 3. The negative semi definiteness allows the concave optimisation to be a maximisation problem.