Els problemes amb asterisc * es resoldran a classe de problemes

Problema 1.* Donat un punt (x, y) del quadrat $\Omega = (0, 1) \times (0, 1)$, considerem la probabilitat u(x, y) de sortir per primer cop de Ω pel seu costat dret al moure'ns aleatòriament començant des de (x, y).

- (a) Usant separació de variables, calculeu una expressió explícita per la solució u.
- (b) Digueu quant val u(1/2, 1/2). Doneu una demostració rigorosa de la vostra resposta usant només que u és una funció harmònica de la qual coneixem els seus valors concrets de frontera.
- (c) Demostreu que u(3/4, 3/4) > u(1/4, 3/4).

Problema 2.* Sigui $\Omega \subset \mathbb{R}^n$ un obert fitat i Lipschitz.

(a) Donades dues funcions c i f fitades a Ω amb c(x)>0 quasi per tot $x\in\Omega,$ demostreu que si el problema de Neumann

$$\begin{cases}
-\Delta u + c(x)u &= f(x) & \text{a } \Omega \\
\frac{\partial u}{\partial \nu} &= 0 & \text{a } \partial \Omega
\end{cases}$$

admet solució $u \in C^2(\overline{\Omega})$ llavors és única.

(b) Useu l'enunciat de l'apartat anterior per donar una condició sobre la funció $\varphi: \mathbb{R} \to \mathbb{R}$ que garanteixi que si el problema no lineal

$$\begin{cases} -\Delta v = \varphi(v) & \text{a } \Omega \\ \frac{\partial v}{\partial \nu} = 0 & \text{a } \partial \Omega \end{cases}$$

admet solució $v\in C^2(\overline{\Omega})$ llavors és única.