Groups Formulary

Raúl Ultralaser

Semigroups and groups

The simplest algebraic structure to recognize is a semigroup, which is defined as a nonempty set S with an associative binary operation.

Definition 1.1. Let (S, \cdot) be a semigroup. If there is an element e, in S such that

$$ex = x = xe$$
 for all $x \in S$,

then e is called the identity of the semigroup (S, \cdot) .

Definition 1.2. Let (S, \cdot) be a semigroup with identity e. Let $a \in S$. If there exist an element b in S such that

$$ab = e = ba$$

then b is called the inverse of a, and a is said to be invertible

Definition 1.3. A nonempty set G with a binary operation \cdot on G is called a group if the following axioms hold:

- (i) $a(bc) = (ab)c \text{ for all } a, b, c \in G.$
- (ii) There exist $e \in G$ such that ea = a for all $a \in G$.
- (iii) For every $a \in G$ there exist $a' \in G$ such that a'a = e

Theorem 1.1. A semigroup G is a group if and only if for all a, b in G, each of the equations ax = b and ya = b has a solution.

Theorem 1.2. A finite semigroup G is a group if and only if the cancelation laws hold for all elements in G; that is,

$$ab = ac \Rightarrow b = c$$
 and $ba = ca \Rightarrow b = c$

for all $a, b, c \in G$

Homomorphism

Definition 1.4. Let G, H be groups. A mapping

$$\phi:G\to H$$

is called a homomorphism if for all $x, y \in G$

$$\phi(xy) = \phi(x)\phi(y)$$

Furthermore, if ϕ is bijective, then ϕ is called an isomorphism of G onto H, and we write $G \simeq H$. If ϕ is just injective, that is, 1-1, then we say that ϕ is an isomorphism (or monomorphism) of G into H. if ϕ is surjective, that is, onto, then ϕ is called an epimorphism, A homomorphism of G into itself is called an endomorphism of G that is both G and onto is called an automorphism of G.

If $\phi: G \to H$ is called an intro homomorphism, then H is called a homomorphic image of G; also, G is said to be homomorphic to H. If $\phi: G \to H$ is a 1-1 homomorphism, then G is said to be embeddable in H, and we write $G \circlearrowleft H$.

Theorem 1.3. Let G and H be groups with identities e and e', respectively, and let $\phi: G \to H$ be a homomorphism. Then

- (i) $\phi(e) = e'$
- (ii) $\phi(x^{-1}) = (\phi(x))^{-1}$ for each $x \in G$.

Definition 1.5. Let G and H be groups, and let ϕ : $G \to H$ be a homomorphism. The kernel of ϕ is defined to be the set

$$Ker\phi = \{x \in G | \phi(x) = e'\}$$

where e' is the identity in H

Theorem 1.4. A homomorphism $\phi: G \to H$ is injective if and only if $Ker\phi = \{e\}$

Subgroups and cosets

Definition 1.6. Let (G, \cdot) be a group and let H be a subset of G. H is called a subgroup of G, written H <G, if H is a group relative to the binary operation in

Theorem 1.5. Let G be a group. A nonempty subset H of G is a subgroup of G if and only if either of the following holds:

- (i) For all $a, b \in H$, $ab \in H$, and $a^{-1} \in H$.
- (ii) For all $ab \in H$, $ab^{-1} \in H$.

Theorem 1.6. Let (G,\cdot) be a group. A nonempty finite subset H of G is a subgroup if and only if $ab \in$ H for all $a.b \in H$

Theorem 1.7. Let $\phi: G \to H$ be a homomorphism of groups. Then $Ker\phi$ is a subgroup of G and $Im\phi$ is a subgroup of H.

Definition 1.7. The center of a group G, written Z(G), is the set of those elements in G that commute with every element in G; that is,

$$Z(G) = \{ a \in G | ax = xa \text{ for all } x \in G \}$$

Theorem 1.8. The center of a group G is a subgroup of G

Theorem 1.9. Let H and K be subgroups of a group (G,\cdot) . Then HK is a subgroup of G if and only if HK = KH.

Theorem 1.10. Let S be a nonempty subset of a group G. Then the subgroup generated by S is the set M of all finite products $x_1, x_2, ..., x_n$ such that, for each $i, x_i \in S \text{ or } x_i^{-1} \in S$

Theorem 1.11. Let G be a group and $a \in G$

- (ii) If o(a) = m then for all integers $i, a^i = a^{r(i)}$, where r(i) is the remainder of i modulo m.
- (iii) [a] is of order m if and only if o(a) = m.

Corolarry 1.1. If G is a finite group, then there exist a positive integer k such that $x^k = e$ for all $x \in G$.

Definition 1.8. Let H be a subgroup of G. Given $a \in G$, the set

$$aH = \{ah | h \in H\}$$

is called the left coset of H determined by a. A subset C of G is called a left coset of H in G if C = aH for some a in G. The set of all left cosets of H in G is written G/H

Definition 1.9. Let H be a subgroup of G. The cardinal number of the set of left (right) cosets of H in G is called the index of H in G and denoted by [G:H].

Theorem 1.12 (Lagrange). Let G be a finite group. Then the order of any subgroup of G divides the order of G.

Corolarry 1.2. Let G be a finite group of order n. Then for every $a \in G$, o(a)|n, and, hence, $a^n = e$.

Consequently, every finite group of prime order is cyclic and, hence, abelian.

Cyclic groups

Theorem 1.13. Every cyclic group is isomorphic to \mathbb{Z} or to $\mathbb{Z}/(n)$ for some $n \in \mathbb{N}$

Permutation groups

Generators and reflations

Normal subgroups

Normal subgroups and quotient groups

(i) If $a^n = e$ for some integer $n \neq 0$, then o(a)|n Isomorphism theorems

Automorphisms

Conjugacy and G-sets

Normal series

Normal series

Solvable groups

Nilpotent groups

Permutation groups

Cyclic decomposition

Alternating group

Simplicity of A_n

Structure theorems of groups

Direct products