Introdução a Árvore

- Lista lineares: organização linear dos dados, onde sua propriedade básica é a relação sequencial mantida entre seus elementos
 - Um elemento da lista está após o outro
 - Não há relação hierárquica

- Estruturas lineares:
 - Listas
 - Pilhas
 - Filas
 - Listas encadeadas circulares
 - Listas duplamente encadeadas

- Listas não-lineares
 - Estrutura em grafos
 - Estrutura em árvores

 Estrutura em árvore: organização dos dados de forma nãolinear, mantendo um relacionamento hierárquico entre os elementos

- Exemplos de estrutura em árvore
 - Árvore genealógica
 - Organograma de uma empresa

- Motivação/Vantagens:
 - Representatividade no relacionamento entre os dados
 - Favorece a extração de informação de forma eficiente
 - Quem são os filhos de Maria?
 - Onde está o capítulo de estrutura em árvores?
 - Quem é o diretor da seção de financeiro?

Definição

- Uma árvore enraizada é um conjunto finito de elementos denominados nós ou vértices tais que:
 - T = Ø, a árvore é dita vazia, ou
 - $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup ... \cup \{T_n\}, n > 0.$
- A definição de árvore é recursiva
 - r é a raiz da árvore
 - Cada conjunto T₁, T₂, T₃, ..., T_n disjuntos são subárvores de r
- Uma floresta é um conjunto de árvores

- Nós filhos, pais, tios, irmãos e avôs
 - Seja r o nó raiz de uma subárvore T
 - Os nós raízes w₁, w₂, ..., w_j das subárvores de r são chamados filhos de r
 - O nó r é chamado de pai de $w_1, w_2, ..., w_j$
 - Os nós w₁, w₂, ..., w_i são ditos irmãos
 - Se o nó z é filho de w_1 , então w_2 é tio de z e r é avô de z

- Grau de saída: o número de filhos de um nó é chamado de grau desse nó
- Descendente: o grau de uma árvore é o máximo entre os graus de seus nós
- Ancestral: se o nó x pertence à uma subárvore do nó v, então x é descendente de v e v é ancestral

 Nó folha: um nó que não possui descendentes é chamado de nó folha, ou seja, um nó folha é aquele com grau de saída nulo ou zero

 Nó interior: um nó que não é folha é chamado de nó interior, nó interno, ou ainda, nó intermediário

- Caminho: uma sequência de nós distintos w₁, w₂, ..., w_j, tal que existe sempre entre nós consecutivos a relação "é filho de" ou é "pai de", é denominada um caminho na árvore: diz-se que w₁ alcança w_i e que w_i é alcançado por w₁.
- Comprimento do caminho: um caminho de k vértices é obtido pela sequência de k-1 pares; o valor k-1 é o comprimento do caminho

- Nível (ou profundidade) e altura de um nó
 - O nível de um nó é o tamanho do caminho entre a raiz da árvore até esse nó
 - A raiz tem nível 0

- A altura de um nó é o tamanho do maior caminho entre este nó e uma folha descendente desse nó
 - As folhas têm altura 0
 - A altura da raiz equivale a altura da árvore.

• Quem são os descendentes de "Rodrigo"?

Quem são os descendentes de "Rodrigo"? Helena, Daiane e Lara

- Quem são os descendentes de "Rodrigo"? Helena, Daiane e Lara
- Qual o grau dessa árvore?

- Quem são os descendentes de "Rodrigo"? Helena, Daiane e Lara
- Qual o grau dessa árvore? 3

- Quem são os descendentes de "Rodrigo"? Helena, Daiane e Lara
- Qual o grau dessa árvore? 3
- Qual a altura da árvore?

- Quem são os descendentes de "Rodrigo"? Helena, Daiane e Lara
- Qual o grau dessa árvore? 3
- Qual a altura da árvore? 4

Árvores Binárias

- Uma Arvore Binária T é um conjunto finito de elementos, denominados nós ou vértices, tal que:
 - T = Ø, a árvore binária é dita vazia; ou
 - $T = \{r\} \cup \{T_e\} \cup \{T_d\}.$
 - T contém um nó especial r, chamado de raiz, e os demais nós podem ser subdivididos em dois subconjuntos distintos T_e e T_d, os quais também são árvores binárias
 - T_e: subárvore à esquerda de T
 - •T_d: subárvore à direita de T

Tipos de Árvores Binária

- Árvore estritamente binária
 - Todos os nós possuem 0 ou 2 filhos
 - Nós interiores sempre possuem 2 filhos

Tipos de Árvores Binária

- Árvore Binária Completa
 - Se o nó v tem alguma subárvore vazia, então v está no último ou penúltimo nível da árvore

Tipos de Árvores Binária

- Árvore Binária Cheia
 - Se o nó v tem alguma subárvore vazia, então v está no último nível da árvore
 - Obs.: uma árvore binária cheia é uma árvore binária completa e estritamente binária

<u>Árvore Binária Balanceada</u>

- Árvore Binária Balanceada
 - Para cada nó, as alturas de suas duas sub-árvores diferem de, no máximo, 1.

Representação

Representação estática

- Para um vetor indexado a partir da posição 1, se um nó está na posição i, seus filhos diretos estão nas posições
 - 2i : filho da esquerda
 - 2i+1: filho da direita

Representação

Representação dinâmica

```
struct ITEM {
 int valor;
struct NO {
 ITEM item;
 struct NO *fesq;
 struct NO *fdir;
struct ARVORE_BINARIA {
 NO *raiz;
```


Estática x Dinâmica

	Vantagens	Desvantagens
Estática	Fácil implementação	Mau aproveitamento de memória
Dinâmica	Fácil manipulação	Gasto extra de memória para os ponteiros

Operações básicas em Árvores Binárias

- Criar árvore
- Verificar se a árvore está vazia
- Imprimir elementos da árvore
- Determinar a altura da árvore
- Buscar um elemento
- Buscar pai de um elemento
- Inserir elemento à esquerda de outro elemento
- Inserir elemento à direita de outro elemento
- Finalizar árvore

- Percorrer uma árvore binária "visitando" cada nó uma única vez
 - "Visitar" um nó pode ser:
 - Imprimir seu valor armazenado
 - Alterar o valor
 - etc

- Não existe um único percurso para árvores (binárias ou não): diferentes percursos podem ser realizados, dependendo da aplicação.
- 3 percursos básicos: pré-ordem, em-ordem e pós-ordem

- Pré-ordem
 - Visita o nó raiz
 - Percorre a subárvore esquerda
 - Percorre a subárvore direita

Resultado: ABDGCEHIF

- Em-ordem
 - Percorre a subárvore esquerda
 - Visita o nó raiz
 - Percorre a subárvore direita

Resultado: DGBAHEICF

- Pós-ordem
 - Percorre a subárvore esquerda
 - Percorre a subárvore direita
 - Visita o nó raiz

Resultado: GDBHIEFCA