WirelessLab (WiSe 2016/2017)

Tutorial 2: Tools of the Trade - Statistics

Theresa Enghardt Mirko Palmer Apoorv Shukla

Contact & Discussions via ISIS: Course ID 8501

http://www.inet.tu-berlin.de/menue/teaching0/ws201617/wl 1617/

Outline

- Organization
- Today's homework
- Performance Analysis
 - Visualizing performance data
 - Summarizing performance data
 - Confidence intervals and assumptions
 - Moving average

Organization: Groups

- Any changes in the groups?
- Anyone still needs a group partner?
 - → Group work mandatory from assignment 3!
- □ Problems?
 - First, try to solve it within the group.
 - If necessary, talk to other students.
 - If this fails, talk to us.

Organization: Schedule

- □ Registration on QISPOS:

 By next **Tuesday, November 8**th, 10pm
- ☐ Oral exams:

 Next week **Wednesday/Thursday, Nov. 9**th **and 10**th
- When do you have time? (As a group)
 Please fill out the poll by Monday, November 7th
 - → Your time slot for oral exam and debriefingsSchedule of oral exams: On Monday.

Homework 2: Performance Analysis

☐ Basic concepts of performance analysis and statistics

- Due by: Wednesday, November 9th at 11.55 p.m (23:55).
- Not graded, but contents part of oral exam
- Early hand-ins possible (to get early feedback)

"There's lies, damn lies, and statistics"

Performance analysis

- "How good is my throughput?"
- "Has execution time improved?"
- "Which system performs better?"
- Throughput and execution time are performance metrics.
 - Measure and/or compute it to get data.
 - Analyze the data using statistics.
 - Draw conclusions.

Performance Data

Has the performance of the system improved?

Histogram

Empirical Cumulative Distribution Function (ECDF)

Summarizing Performance Data

- "How much has performance improved?"
- Quantify:
 - Central value
 - Dispersion (Variability)

Median and p%-quantiles

Median: value that falls in the middle of a distribution

If n is odd, the median is
$$x_{(n+1)}$$
, otherwise $\frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)})$

Example: median for -3,-2,-2,1,2

- p%-quantile: p% of the observation below and (100-p)% above
 - Example: 75%-quantile

Mean and standard deviation

Mean

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Ex: mean for -3,-2,-2,1,2

$$= -0.8;$$

Standard deviation

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - m)^2$$
 or $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - m)^2$

- How much does the data differ from the mean?
- Ex: s is 1.94

Which metric to use?

- Mean? Median? Quantiles?
 - Mean contains "more" of the data
 - Problem: Sensitive to outliers
- Example: -3,-2,-2,1,2
 - Median is -2, mean is -0.8
 - Now we measure a "40" (by mistake?)
 - Median is now -0.5, Mean is now 6

Median and mean

Let's look at the first example again...

Boxplots of median and mean

Confidence Interval (CI)

Quantifies *uncertainty* of an estimation...

(Based on our measured sample, where do we estimate the "true" median/mean of the system's execution time?)

Confidence Interval (CI)

→ Could the "true" difference be zero? (= No improvement)

Computing Confidence Intervals

 We assume that the data comes from an iid stochastic model

Independent Identically Distributed

- We treat data like samples of random variables
 - with the same stochastical distribution
 - where previous samples do not influence next sample

Independence assumption

How do I know if this is true?

- In controlled experiment:
 Avoid unintended influence of factors
 (Draw factors randomly with replacement)
- In measurement on a running system:
 Randomize the measurements

Confidence Interval for Median

 Based on binomial distribution shown in table on the right

 Order the data and take two values as indexed by j and k

p = probability / confidence level

n	j	k	p
$n \leq 5$: no confidence interval possible.			
6	1	6	0.969
7	1	7	0.984
8	1	7	0.961
9	2	8	0.961
10	2	9	0.979
11	2	10	0.988
12	3	10	0.961
13	3	11	0.978
14	3	11	0.965
15	4	12	0.965
16	4	12	0.951
17	5	13	0.951
18	5	14	0.969
19	5	15	0.981
20	6	15	0.959
21	6	16	0.973
22	6	16	0.965
23	7	17	0.965
24	7	17	0.957
25	8	18	0.957
26	8	19	0.971
27	8	20	0.981
28	9	20	0.964
29	9	21	0.976
30	10	21	0.957
31	10	22	0.971
32	10	22	0.965
2.2	11	22	0.075

Confidence Intervals for mean

- Calculate based on standard deviation:
 e.g: 1.96×s/√n for 95% CI
- Assumptions:
 - iid
 - Large number of samples
 - Common distribution has finite variance (e.g. normal distribution)

CI for mean, assumptions

- When is the distribution "right"?
 - n>30
 - If central limit theorem holds (in practice: *n* is large and distribution is not "wild")
 - Close to normal, or not heavy tailed
 - -n<30
 - Data must come from an iid + normal distribution

Normal distribution assumption

- Normal Qqplot
 - X-axis: standard normal quantiles
 - Y-axis: Ordered statistic of sample

- If data comes from a normal distribution, qqplot is close to a straight line (except for end points)
 - Visual inspection is often enough

QQPlots

Time series data

- Time dependencies → data is not iid!
- But: Observe how performance changes over time

Moving average

- Get a "smoother" plot of the trend
- Simple Moving Average (SMA) with n = 8 (window size 8):

$$SMA = rac{p_M + p_{M-1} + \dots + p_{M-(n-1)}}{n} \ = rac{1}{n} \sum_{i=0}^{n-1} p_{M-i}$$

Factors

- So far: "Old" and "New" performance data
- In practice
 - e.g. different server
 - e.g. different times of day
- These influence factors
 - System load
 - Network traffic from others (cross traffic)
 - Network configuration (e.g. socket buffer size)
 - → Is the performance change really due to the factor I wanted?

Reading material

- "Performance Evaluation of Computer and Communication Systems"
 by Jean-Yves Le Boudec.
- https://infoscience.epfl.ch/record/146812/files/perf
 PublisherVersion 1.pdf