CUBESORT ...

Introduction and History of Cubesort Algorithm

Cubesort is a parallel sorting algorithm which sort items using processor shuffle-exchange. It builds a self-balancing multi-dimensional array from the keys to be sorted. It's a comparison based sorting algorithm.

Cubesort is invented by Cypher, Robert, Sanz and Jorge L.C in 1992 and published in Journal of Algorithms (Volume 13, Issue 2, June 1992)

Running Time and Space Complexity

Cubesort best case running time : O(n)

Cubesort average case running time : O(n log n)

Cubesort worst case running time : O(n log(n))

Space Complexity: O(n)

Pseudo-code

```
cubesort(arr,n)
i = 0
for i to n-1
        for j = i+1 to arr.length
                 a = pow(arr[i], 3)
                 b = pow(arr[j], 3)
                 if a > b
                 temp = arr[i]
                 arr[i] = arr[j]
                 arr[j] = temp
```

Simulation of Cubesort

Before sorting Array is

After cubing 4 and -2, a>b condition is true. the value will swap. J value will increase

j = 2

After cubing -2 and 0, a>b condition is false. Value will not swap. J value will increase.

After cubing -2 and 5, a>b condition is false. Value will not swap. J value will increase.

After cubing -2 and -9, a>b condition is True. Value will swap. J value will increase.

After cubing -9 and 3, a>b condition is False. Value will not swap. J value will end. Increase value of i

i = 1

-9

After cubing 4 and 0, a>b condition is True. Value will swap. J value will increase.

j = 3

After cubing 0 and 5, a>b condition is False. Value will not swap. J value will increase.

j = 4

After cubing 0 and -2, a>b condition is True. Value will swap. J value will increase.

-9

j = 5

After cubing -2 and 3, a>b condition is False. Value will not swap. J loop will end. Increase value of i

i = 2

After cubing 4 and 5 , a>b condition is False. Value will not swap. J value will increase

-2

-9

j = 4

After cubing 4 and 0, a>b condition is True. Value will swap. J value will increase

After cubing 0 and 3, a>b condition is False. Value will not swap. J loop will end. Increase value of i.

j = 5

3

4

-2

-9

j = 4

After cubing 5 and 4, a>b condition is True. Value will swap. J value will increase

i = 3

j = 5

After cubing 4 and 3, a>b condition is True. Value will swap. J loop will end. Increase value of i.

After cubing 5 and 4, a>b condition is True. Value will swap. J loop will end. Increase value of i.

4

$$i = 5$$

j = i+1=5+1=6 invalid

i=5, j value is 6, j=6 is invalid. So i and j loop will be stop and remain array is the sorted array.

Attributes of Cubesort Algorithm

Stability: Cubesort is stable which means that the relative position of equal valued elements in the input and sorted array remains the same.

Out of place: Cubesort is an out of place algorithm because it requires O(n) extra space for sorting.

Adaptivity: Cubesort is adaptive which means that it can change behavior in running time based on available information.

Online or Offline: Cubesort is online which means it can input data while it is running.

Pros and Cons of Cubesort

Pros: Cube sort gives an additional speed advantage when sorting cubes compared to tree-based sorts. Also, cubesort is well-suited as an online or external sort. Insertions to the end are very fast memory operations.

Cons: If the data set is small, the memory overhead of cube sort becomes high.

Practical Uses of Cubesort

Cubesort can be used to sort N data items on-

- Hypercube
- Shuffle-exchange
- Cube-connected cycles computer

Best uses of Cubesort

Cubesort rapidly converts a 1-dimensional array than any other sorting algorithm

Presentation By

Farhan Zaman Ha-Mim

ID: 2022157

Md. Zahidul Islam

ID: 2022504

The End