Computability and Complexity

Lecture 7, Tuesday August 22, 2023 Ari Feiglin

Proposition 7.1:

If $NP \neq coNP$ then NP is not closed under Cook reductions.

Proof:

We can always define a Cook reduction from S to S^c (given an oracle for S^c , return its negation). So if **NP** were closed under Cook reductions, given a problem S in **NP** we can define a reduction from $S^c \in \mathbf{coNP}$ to S, and then $S^c \in \mathbf{NP}$. This would mean $\mathbf{NP} \subseteq \mathbf{coNP}$ and so $\mathbf{NP} = \mathbf{coNP}$, in contradiction.

Proposition 7.2:

A decision problem S is in **coNP** if and only if there exists a polynomial time algorithm V such that $x \in S$ if and only if for all y with $|y| \le p(|x|)$, V(x,y) = 1.

Proof:

If $S \in \mathbf{coNP}$ then $S^c \in \mathbf{NP}$ so it has a polynomial time verifier V' and a polynomial p which satisfy the conditions for \mathbf{NP} . Let us define V(x,y) = 1 - V'(x,y), and so if $x \in S$ then $x \notin S$ so V'(x,y) = 0 for all y, so V(x,y) = 1. And if $x \notin S$ then $x \in S^c$ so there exists a y with $|y| \le p(|x|)$ such that V'(x,y) = 1 and so V(x,y) = 0.

And if this condition holds, then let us define V'(x,y) = 1 - V(x,y). Then we claim this is a verifier for S^c . If $x \in S^c$ then by the condition there exists a y with $|y| \le p(|x|)$ and V(x,y) = 0 so V'(x,y) = 1 as required. And if $x \notin S^c$ then $x \in S$ so for every y with $|y| \le p(|x|)$, V(x,y) = 1 and so V'(x,y) = 0. If |y| > p(|x|), we can change V' so that it returns zero, and this becomes a polynomial proof system for S^c , so $S^c \in \mathbb{NP}$ meaning $S \in \mathbb{CNP}$.

Definition 7.3:

For $k \geq 0$, we say that a decision problem S is in Σ_k if there exists a polynomial p and a polynomial-time algorithm V such that (let $\mathbb{Q}_{2i} = \forall$ and $\mathbb{Q}_{2i+1} = \exists$)

$$x \in S \iff Q_1|y_1| \le p(|x|) \ Q_2|y_2| \le p(|x|) \ \cdots \ Q_k|y_k| \le p(|x|) (V(x, y_1, \dots, y_k) = 1)$$

The polynomial hierarchy is defined to be

$$\mathbf{PH} = \bigcup_{k=0}^{\infty} \Sigma_k$$

Notice then that $\Sigma_0 = \mathbf{P}$ and $\Sigma_1 = \mathbf{NP}$.

Example 7.4:

Let us define the decision problem

 $\mathsf{MaxClique} = \{(G, k) \mid G \text{ is an undirected graph whose maximum clique size is } k\}$

Let us define an algorithm V which takes input $((G,k), S_1, S_2)$ and it returns one if and only if

- (1) S_1 is a clique of size k, and
- (2) $|S_2| \leq k$ or S_2 is not a clique.

V is a polynomial-time algorithm, and $|S_1|, |S_2| \leq |G|$. Notice that (G, k) is in MaxClique if and only if there exists such an S_1 (which is the maximum clique) such that for every S_2 , $V((G, k), S_1, S_2) = 1$. Therefore MaxClique $\in \Sigma_2$.

Proposition 7.5:

For every $k, \Sigma_k \subseteq \Sigma_{k+1}$.

Proof:

Let $S \in \Sigma_k$, and let V and p be the polynomial-time algorithm and polynomial which satisfy the conditions for S to be in Σ_k . Then let us define $V'(x, y_1, \ldots, y_{k+1}) = V(x, y_2, \ldots, y_{k+1})$, then V' and p satisfy the conditions for S to be in Σ_{k+1} .

Definition 7.6:

We define

$$\Pi_k = \mathsf{co}\Sigma_k = \{S \mid S^c \in \Sigma_k\}$$

Now, let us define $Q_{2i} = \exists$ and $Q_{2i+1} = \forall$, then $S \in \Pi_k$ if and only if

$$x \in S \iff \mathbb{Q}_1|y_1| \le p(|x|)\mathbb{Q}_2|y_2| \le p(|x|) \cdots \mathbb{Q}_k|y_k| \le p(|x|)(V(x,y_1,\ldots,y_k))$$

Example 7.7:

Let us define the following decision problem

 $\mathsf{MinExpression} = \left\{ \varphi \,\middle|\, \begin{array}{c} \varphi \text{ is a minimal boolean formula. In other words, for every equivalent boolean formula} \\ \psi, \text{ the length of } \varphi \text{ is less than (or equal) to the length of } \psi. \end{array} \right\}$

(The length of a boolean formula is defined recursively, but exactly how this is done doesn't really matter here.)

We claim that MinExpression $\in \Pi_2$. We define a verifier $V(\varphi, \psi, \tau)$ where ψ is another boolean formula and τ is a boolean vector. V verifies that either $|\psi| \geq |\varphi|$ (meaning ψ is longer than φ) or $\varphi(\tau) \neq \psi(\tau)$. Now, φ is minimal if and only if for every boolean formula ψ , either ψ is longer than φ or ψ and φ are not equivalent. Thus

$$\varphi \in \mathsf{MinExpression} \iff \forall \psi \exists \tau \big(V(\varphi, \psi, \tau) = 1 \big)$$

Now, we can also require that $|\psi| \le |\varphi|$ as φ is minimal if and only if every smaller boolean formula is not equivalent to it. And we can require that $|\tau| \le |\varphi|$ as we can assume that we are only valuating the variables in φ . So

$$\varphi \in \mathsf{MinExpression} \iff \forall |\psi| \leq |\varphi| \exists |\tau| \leq |\varphi| \big(V(\varphi, \psi, \tau) = 1\big)$$

Notice that

- (1) $\Pi_0 = \mathbf{P}$
- (2) $\Pi_1 = \mathbf{coNP}$
- (3) $\Pi_k \subseteq \Pi_{k+1}$ as if V is a verifier for a problem in Π_k , we can define $V'(x, y_1, \dots, y_{k+1}) = V(x, y_2, \dots, y_k)$, and so V' verifies the problem in Π_{k+1} .
- (4) $\Sigma_k \subseteq \Pi_{k+1}$ as if V is a verifier for a problem in Σ_k , $V'(x, y_1, \ldots, y_{k+1}) = V(x, y_2, \ldots, y_k)$ verifies the problem in Π_{k+1} .
- (5) $\Pi_k \subseteq \Sigma_{k+1}$ as the construction for the two previous points also proves this.

Since $\Sigma_k \subseteq \Pi_{k+1} \subseteq \Sigma_{k+1}$,

$$\mathbf{PH} = igcup_{k=0}^{\infty} \Pi_k$$

Lemma 7.8:

For every $S \in \Sigma_{k+1}$, there exists a polynomial p and a problem $S' \in \Pi_k$ such that

$$S = \{x \mid \text{There exists a } y \text{ such that } |y| \le p(|x|) \text{ and } (x,y) \in S'\}$$

Proof:

Let $S \in \Sigma_{k+1}$, then there exists a polynomial p and a verifier V such that $x \in S$ if and only if

$$Q_1 y_1 \cdots Q y_{k+1} (V(x, y_1, \dots, y_{k+1}) = 1)$$

where $Q_{2i} = \forall$ and $Q_{2i+1} = \exists$ and $|y_i| \leq p(|x|)$ (we can think of restricting our domain). Let us define

$$S' = \{(x,y) \mid |y| \le p(|x|), \, \mathsf{Q}_2 y_2 \cdots \mathsf{Q}_{k+1} y_{k+1} \big(V(x,y,y_2,\ldots,y_{k+1}) = 1 \big) \}$$

It is obvious that $S' \in \Pi_k$, as $V'((x, y_1), y_2, \dots, y_{k+1}) = V(x, y_1, \dots, y_{k+1})$ is its verifier in Π_k . And

$$x \in S \iff \exists y_1 \mathsf{Q}_2 y_2 \cdots \mathsf{Q}_{k+1} y_{k+1} \big(V(x, y_1, \dots, y_{k+1}) = 1 \big) \iff \exists y_1 \big((x, y_1) \in S' \big)$$

as required.

For the sake of not repeating myself, let us define

$$\mathsf{Q}_i = \begin{cases} \forall & i \equiv 0 \pmod{2} \\ \exists & i \equiv 1 \pmod{2} \end{cases}, \qquad \mathsf{Q}_i' = \mathsf{Q}_{i+1} = \begin{cases} \forall & i \equiv 1 \pmod{2} \\ \exists & i \equiv 0 \pmod{2} \end{cases}$$

Lemma 7.9:

For every $k \geq 1$, if $\Pi_k \subseteq \Sigma_k$ then $\Sigma_k = \Sigma_{k+1}$.

Proof:

Let $S \in \Sigma_{k+1}$, then there exists a problem $S' \in \Pi_k$ such that $x \in S$ if and only if there exists a y such that $(x,y) \in S'$. By the assumption, $S' \in \Sigma_k$ and so there exists a verifier V' and polynomial p' such that

$$(x,y) \in S' \iff \mathbb{Q}_1 y_1 \cdots \mathbb{Q}_k y_k (V'((x,y), y_1, \dots, y_k) = 1)$$

where $|y_i| \le p(|x|)$. Let us define $y^* = yy_1$ (the concatenation of y and y_1). Then $|y^*| = |y| + |y_1| \le p(|x|) + p'(|x|)$.

$$V^*(x, y^*, y_2, \dots, y_k) = V'((x, y), y_1, \dots, y_k)$$

then

$$x \in S \iff \exists y \big((x,y) \in S' \big) \iff \exists y \mathsf{Q}_1 y_1 \cdots \mathsf{Q}_k y_k \big(V'((x,y),y_1,\ldots,y_k) = 1 \big) \\ \iff \exists y^* \mathsf{Q}_2 y_2 \cdots \mathsf{Q}_k \big(V^*(x,y^*,y_2,\ldots,y_k) = 1 \big)$$

Where $|y_i| \le p(|x|) + p'(|x|)$. Since $\exists = \mathbb{Q}_1$, this means that V^* is a verifier for S in Σ_k . Thus $\Sigma_{k+1} \subseteq \Sigma_k$, meaning $\Sigma_k = \Sigma_{k+1}$.

Theorem 7.10:

If there exists a k such that $\Sigma_k = \Sigma_{k+1}$, then $\mathbf{PH} = \Sigma_k$.

Proof:

Since $\Sigma_k = \Sigma_{k+1}$, we have $\Pi_k = \Pi_{k+1}$ (by their definition since $S \in \Pi_k$ if and only if $S^c \in \Sigma_k$ if and only if $S^c \in \Sigma_{k+1}$ if and only if $S \in \Pi_{k+1}$). Then we have $\Pi_{k+1} = \Pi_k \subseteq \Sigma_{k+1}$. So by the previous lemma, we have $\Sigma_k = \Sigma_{k+1} = \Sigma_{k+2}$. Inductively this means that $\Sigma_i = \Sigma_k$ for every $i \geq k$. And so $\Sigma_i \subseteq \Sigma_k$ for every i and thus

$$\mathbf{PH} = \bigcup_{i=0}^{\infty} \Sigma_i = \Sigma_k$$

as required.

```
Corollary 7.11: If P = NP then PH = P.
```

This is because $\mathbf{P} = \Sigma_0$ and $\mathbf{NP} = \Sigma_1$, so this is a specific case of the previous theorem.

7.2 Non-deterministic Algorithms

Definition 7.1:

A non-deterministic algorithm is an algorithm such that at every step it can make multiple choices. We say that a non-deterministic algorithm A decides a decision problem S if

- (1) When $x \in S$, then there exists a run of A where A(x) = 1.
- (2) When $x \in S$, then for every run of A, A(x) = 0.

A's runtime on an input x is the maximum number of steps it can take. We denote this as $t_A(x)$. We say that A runs in polynomial time or is a polynomial-time algorithm if there exists a polynomial p such that $t_A(x) \le p(|x|)$.

Theorem 7.2:

A decision problem S is in **NP** if and only if there exists a non-deterministic polynomial-time algorithm A which decides S.

Proof:

If $S \in \mathbf{NP}$, then there exists a polynomial-time verifier V and its polynomial p. Let us define the non-determinstic algorithm

```
1. function A(x)
        y \leftarrow \varepsilon
2.
        while (|y| \le p(|x|))
3.
4.
            choose
                (1) y \leftarrow y0
5.
                (2) y \leftarrow y1
6.
                (3) break
7.
            endchoose
8.
        end while
9.
10
        return V(x,y)
    end function
11.
```

Lines two to nine are essentially "choose $y \in \{w \in \{0,1\}^* \mid |w| \le p(|x|)\}$ ".

Then A decides S, as if $x \in S$ then it has a witness y whose length is at most p(|x|), and so there exists some run of A which will return true. If $x \notin S$ then no matter what A will return false, so A does indeed decide S. And A runs in polynomial time, as the while loop takes at most p(|x|) time, and V takes polynomial time.

Now if S is decided by a non-deterministic polynomial-time algorithm A, suppose its runtime is bound by the polynomial p. Let us define the verifier V(x,y) where y is a sequence of choices that A can do, and V runs A where the ith choice is decided by y_i . If $x \in S$ then there exists a run of A which returns one, let y be the sequence of choices done by A, then V(x,y) = 1. And since A(x) runs in p(|x|) time, $|y| \le p(|x|)$ as required. And if $x \notin S$ then no sequence of choices for A will make it return one, so V(x,y) = 0 for all y.

Thus V is a polynomial time verifier and p is its polynomial. Thus $S \in \mathbf{NP}$ as required.

Historically the equivalent definition given via non-deterministic algorithms was the standard definition for \mathbf{NP} . This actually gives the reasoning for the name of \mathbf{NP} , as it actually stands for non-deterministic polynomial.

Definition 7.3:

Let S be a decision problem, then we define \mathbf{P}^S to be the set of all decision problems which can be decided by a deterministic oracle machine for S (a determinitic algorithm with an oracle for S). Thus \mathbf{P}^S is the set of all decision problems where there exists a Cook reduction from them to S. And we similarly define \mathbf{NP}^S to be the set of all

decision problems which can be decided by a non-deterministic oracle machine for S.

Similarly if C is a set of decision problems then we define

$$\mathbf{P}^C = \bigcup_{S \in C} \mathbf{P}^S, \qquad \mathbf{NP}^C = \bigcup_{S \in C} \mathbf{NP}^S$$

Notice that if a decision problem requires oracles for two or more problems in C, it is not necessarily in \mathbf{P}^C or \mathbf{NP}^C .

Example 7.4:

We will show that $\mathsf{MinExpression}^c \in \mathbf{NP^{NP}}$. So we want to find a problem $S \in \mathbf{NP}$ and a non-deterministic polynomial-time oracle machine A^S which decides $\mathsf{MinExpression}^c$. The idea is for A^S , given a boolean formula φ , to choose some boolean formula ψ which is shorter than φ and show that they are equivalent using its oracle for S.

So let us define the decision problem

$$S = \{(\varphi, \psi) \mid \varphi \text{ and } \psi \text{ are equivalent boolean formulas}\}$$

this is not necessarily in NP, but it is in coNP as

$$S^c = \{(\varphi, \psi) \mid \varphi \text{ and } \psi \text{ are non-equivalent boolean formulas}\}$$

as we can define the verifier $V((\varphi, \psi), \tau)$ which returns if $\varphi(\tau) \neq \psi(\tau)$, so $S^c \in \mathbf{NP}$.

So if we have an oracle for S^c , then we can ask if $(\varphi, \psi) \in S^c$ and then return the inverse. Explicitly, we define

- 1. function $A^{S^c}(\varphi)$
- 2. **choose** a boolean formula ψ such that $|\psi| < |\varphi|$
- 3. **return** $\neg ((\varphi, \psi) \in S^c)$
- 4. end function

Then if $\varphi \in \mathsf{MinExpression}^c$, there exists a boolean formula ψ where $|\psi| < |\varphi|$ and then $A^{S^c}(\varphi)$ will return 1 when ψ is chosen. If $\varphi \in \mathsf{MinExpression}$ then for every choice of ψ , if ψ is a shorter boolean formula, φ and ψ are not equivalent and so $(\varphi, \psi) \in S^c$ and so $A^{S^c}(\varphi)$ will always return zero.

So A^{S^c} is a non-deterministic polynomial-time (since the oracle takes polynomial time, and choosing ψ takes polynomial time) algorithm which decides $\mathsf{MinExpression}^c$. Since $S^c \in \mathbf{NP}$, we have that $\mathsf{MinExpression} \in \mathbf{NP^{NP}}$ as required.

Notice that if we have an oracle for S, this essentially gives us an oracle of S^c , as we can just negate its answer. Thus for any decision problem S,

$$\mathbf{P}^S = \mathbf{P}^{S^c}, \quad \mathbf{N}\mathbf{P}^S = \mathbf{N}\mathbf{P}^{S^c}$$

and so for any set of decision problems C,

$$\mathbf{P}^C = \mathbf{P}^{\mathsf{co}C}$$
. $\mathbf{NP}^C = \mathbf{NP}^{\mathsf{co}C}$

Proposition 7.5:

We can equivalently define the polynomial hierarchy by

$$\Sigma_0 = \mathbf{P}$$

$$\Sigma_1 = \mathbf{NP}$$

$$\Sigma_{k+1} = \mathbf{NP}^{\Sigma_k}$$

Notice that

$$\Sigma_1 = \mathbf{NP} = \mathbf{NP}^{\mathbf{P}} = \mathbf{NP}^{\Sigma_0}$$

so the recurrence $\Sigma_{k+1} = \mathbf{NP}^{\Sigma_k}$ is true for all $k \geq 0$.

Proof:

We will show inductively that $\Sigma_{k+1} = \mathbf{NP}^{\Sigma_k}$. Suppose $S \in \Sigma_{k+1}$, then by a previous lemma there exists a $S' \in \Pi_k$ and a polynomial p such that

$$x \in S \iff \exists y, |y| \le p(|x|)((x, y) \in S')$$

and so $S \in \mathbf{NP}^{S'}$, as we can define a non-deterministic algorithm which guesses y and checks if $(x,y) \in S'$. And therefore

$$S \in \mathbf{NP}^{S'} \subseteq \mathbf{NP}^{\Pi_k} = \mathbf{NP}^{\mathsf{co}\Sigma_k} = \mathbf{NP}^{\Sigma_k}$$

Now suppose $S \in \mathbf{NP}^{\Sigma_k}$, and so there exists a $S' \in \Sigma_k$ and a non-deterministic polynomial-time oracle machine $A^{S'}$ which decides S. We can assume that $A^{S'}$ functions in two parts (by redefining it):

- (1) First $A^{S'}$ functions non-deterministically but without querying the oracle. At every point it wants to query the oracle with the query q_i , instead it guesses an answer a_i and continues with that answer.
- (2) At the end it queries the oracle with every q_i and verifies that the correct answer is a_i . Ie. it verifies that $q_i \in S'$ if and only if $a_i = 1$.

 $A^{S'}$ returns one if and only if it wants to return one in both the first step and the second step (meaning all the answers are correct).

So $x \in S$ if and only if there exists a list of queries \vec{q} and a list of answers \vec{a} such that $A^{S'}$ returns one when running on x and the answer to the query \vec{q}_i is \vec{a}_i , and these are correct answers (as in $\vec{q}_i \in S'$ if and only if $\vec{a}_i = 1$). This is if and only if

$$\exists \vec{q}, \vec{a} \Big(* \land \bigwedge_{i=1}^n \big((q_i \in S' \land a_i = 1) \lor (q_i \notin S' \land a_i = 0) \big) \Big)$$

which is equivalent to

$$\exists q, a \Big(* \wedge \bigwedge_{i=1}^{n} \Big(\Big(\mathbb{Q}_{1} y_{i}^{1} \cdots \mathbb{Q}_{k-1} y_{i}^{k-1} \big(V'(q_{i}, y_{i}^{1}, \dots, y_{i}^{k-1}) = 1 \wedge a_{i} = 1 \big) \Big) \vee \\ \Big(\mathbb{Q}'_{1} z_{i}^{1} \cdots \mathbb{Q}'_{k-1} z_{i}^{k-1} \big(V'(q_{i}, z_{i}^{1}, \dots, z_{i}^{k-1}) = 0 \wedge a_{i} = 0 \big) \Big) \Big) \Big) \Big)$$

Let us denote ** to be the conjunction of $V'(q_i, y_i^1, \dots, y_i^{k-1}) = 1 \land a_i = 1$ and *** to be the conjunction of $V'(q_i, y_i^1, \dots, y_i^{k-1}) = 0 \land a_i = 0$.

This is equivalent to

$$\mathbf{Q}_1y, a\vec{y}^1\mathbf{Q}_2\vec{y}^2, \vec{z}^1\cdots \mathbf{Q}_{k-1}\vec{y}^{k-1}, \vec{z}^{k-2}\mathbf{Q}_k\vec{z}^k (*\wedge ** \wedge ***)$$

So this is an alternating list of quantifiers as well as a polynomial which checks the condition within the parentheses, and so $S \in \Sigma_{k+1}$ as required.

Note then that since $\operatorname{\mathsf{MinExpression}} \in \Pi_2$, $\operatorname{\mathsf{MinExpression}}^c \in \Sigma_2 = \mathbf{NP^{NP}}$. This is a shorter proof than what we did above. Notice then that if there is a Cook reduction S' to $S \in \Sigma_k$ then $S' \in P^{\Sigma_k} \subseteq \mathbf{NP^{\Sigma_k}} = \Sigma_{k+1}$ and so in particular **PH** is closed under Cook reductions.