The 3-Dimensional Matching Problem(3-DM)

Aretha Christina

AUEB - MSc CS - DS&AA

The 3-Dimensional Matching Problem (3-DM)

- ☐ It is a partitioning problem.
 - Partitioning problems: We are searching over ways of dividing a collection of objects into subsets.
- ☐ It is considered as a harder version of the Bipartite Matching Problem.
 - Things get more complicated as we move from ordered pairs to ordered triples.
 - No polynomial algorithm is known for 3-DM.
- It also forms a special case of Set Cover Problem.

The 3-Dimensional Matching Problem (3-DM)

INSTANCE: Disjoint sets B, G, P, each of size a, and a set of ordered triples $T \subseteq B \times G \times P$.

QUESTION (decision version): Does there exist a subset $M \subseteq T$ with |M| = a such that for each pair (b, g, p), (b', g', p') A it holds that $b \neq b'$, $g \neq g'$, $p \neq p'$?

We are searching for a **perfect** three-dimensional matching.

3-DM Is NP-Complete

✓ 3-DM is NP

■ Given a collection of triples M⊆T, we could verify that each element in B u G u P belongs to exactly one of the triples in M, in polynomial time.

✓ 3-DM is NP-Complete

- We prove the NP-completeness of 3-DM by a polynomial time reduction from 3-SAT to 3-DM.
- Strategy of the reduction:
 We must design sets of triples ("gadgets") that model Boolean variables and clauses.

Instance Φ of 3-SAT

- n variables v₁,...,v_n
- m clauses c₁,...,c_m

Instance I of 3-DM

- n variable gadgets
- m clause gadgets
- (n-1)m cleanup gadgets

Note: Initially, we will describe all the elements in I without trying to specify for each one whether it comes from B, G, or P.

$$3-SAT \leq_p 3-DM$$

☐ Gadget associated with variable v_i

- We define A_i = {a_{i,1},...,a_{i,2m} }: core elements of gadget i.
- We define $B_i = \{b_{i,1},...,b_{i,2m}\}$: elements at the tips of gadget i.
- We define $t_{i, j} = (a_{i, j} a_{i, (j+1) \mod 2m}, b_{i, j})$, for each j = 1, ..., 2m.
- We call a t_{i, j} even if j is even and odd if j is odd.
- Elements in A_i are involved only in {t_{i, i}}.
- Perfect matching in gadget i: We must use either all the even triples and leave the odd tips
 free, or all the odd triples and leave the even tips free in gadget i.

Encoding: Using the even triples represents setting $v_i = 0$, and using the odd triples represents setting $v_i = 1$.

- Gadget associated with clause c_i
 - We define $P_j = \{p_{j,1}, p_{j,2}\}$: core elements of gadget j.
 - We involve them in three triples, one for each literal in the clause.
 - The b_{i, i} elements in these triples reflect the three ways whereby the clause can be satisfied.

Suppose I is a literal of c_i.

```
If I = v_i, we define a triple (p_{j,1}, p_{j,2}, b_{i,2j}). (v_i = 1): We cover the odd tips and leave the even tips free. Hence, we select an even tip.) If I = \neg v_i, we define a triple (p_{j,1}, p_{j,2}, b_{i,2j-1}). (v_i = 0): We cover the even tips and leave the odd tips free. Hence, we select an odd tip.)
```

- These are the only three triples that cover P_i. Thus, one of them must be used.
- Elements in P_i can only be matched if some variable gadget leaves the corresponding tip free.

$3\text{-SAT} \leq_p 3\text{-DM}$

$$c_1 = \neg v_1 \lor v_2 \lor \neg v_3$$

- Gadget associated with unmatched tip b_i
 - In the matching defined (n − 1)m tips are left unmatched.
 n·2m (initially) nm (covered by {t_{i, j}}) m (covered by clause gadgets) = (n − 1)m
 - We define Q_i = {q_{i,1}, q_{i,2}}: core elements of gadget i.
 - There is a triple $(q_{i,1}, q_{i,2}, b)$ for every tip b in every variable gadget.
- □ Decomposition of elements of 3-DM instance into three disjoint sets B, G, P
 - B = {a_{i, j} | j is odd} u {p_{j,1}} u {q_{i,1}}
 - G = {a_{i, j} | j is even} u {p_{j,2}} u {q_{i,2}}
 - $P = \{b_{i, j}\}$

Given an instance Φ of 3-SAT, we construct an instance I of 3-DM that has a perfect matching iff Φ is satisfiable.

- \Box If Φ has a satisfying truth assignment then I has a perfect matching.
 - We make the corresponding choices of even/odd {t_{i, i}} for each variable gadget i.
 - We match P_j with b_{i, j} that corresponds to one of its satisfying literals for each clause gadget j.
 - We use the cleanup gadgets to cover the unmatched tips.
 - Thus, I has a perfect matching.
- \Box If I has a perfect matching then Φ has a satisfying truth assignment.
 - For each variable v_i:
 - We set $v_i = 0$, if the even $\{t_{i,j}\}$ have been chosen in the corresponding variable gadget. We set $v_i = 1$, if the odd $\{t_{i,j}\}$ have been chosen in the corresponding variable gadget.
 - Any clause c_i is satisfiable.
 - The core elements in P_i have been covered.
 - At least one of the three variable gadgets corresponding to a literal in c_j chose the correct matching.
 - There is a variable assignment that satisfies c_i.
 - Thus, Φ has a satisfying truth assignment.