Azzolini Riccardo 2018-11-13

Metodi alternativi per calcolare il rango e la matrice inversa

1 Teorema degli orlati (o di Kronecker)

Se B è una sottomatrice quadrata $p \times p$ di A, una matrice **orlata** di B è una sottomatrice $(p+1) \times (p+1)$ di A ottenuta aggiungendo a B gli elementi di una riga e di una colonna di A.

Se A ha una sottomatrice quadrata B di ordine p, con det $B \neq 0$, e se tutti gli orlati di B hanno determinante 0, allora rg A = p.

1.1 Esempio

$$A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 4 & 2 & 0 \\ 1 & 1 & 3 & 1 \end{pmatrix}$$

1. rg $A \geq 1$, dato che c'è almeno un elemento diverso da 0, e quindi anche una sottomatrice 1×1 con determinante non nullo. Ad esempio:

$$\det(2) = 2 \neq 0$$

2. Si considera un orlato di (2):

$$\det \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} = 7 \neq 0$$

quindi rg $A \geq 2$.

3. Si considera un orlato di $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$:

$$\det \begin{pmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix} = 10 \neq 0$$

quindi, dato che non ci sono sottomatrici quadrate più grandi, rgA = 3.

2 Calcolo dell'inversa con le operazioni elementari

Data una matrice quadrata invertibile $A \in M_n$, per calcolarne l'inversa A^{-1} :

- 1. Si scrive A seguita da I_n , costruendo così la matrice $(A \mid I_n)$ di dimensioni $n \times 2n$.
- 2. Si applicano le operazioni elementari alla matrice $(A \mid I_n)$ per ottenere nelle prime n colonne la matrice identica, cioè $(I_n \mid B)$.
- 3. La matrice B, ottenuta al passo 2 nelle ultime n colonne, è l'inversa di A.

2.1 Esempio

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1 \quad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -3 & -2 & 1 \end{pmatrix}$$

$$R_2 \to -\frac{1}{3}R_2 \quad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

$$R_1 \to R_1 - 2R_2 \quad \begin{pmatrix} 1 & 0 & -\frac{1}{3} & \frac{2}{3} \\ 0 & 1 & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$