

Exploring Large Integer Multiplication for Cryptography Targeting In-Memory Computing

Florian Krieger, Florian Hirner, Sujoy Sinha Roy Institute of Information Security, TU Graz

Outline

- Motivation & Background
- 2 Algorithmic Exploration
- 3 Large Integer Multiplier Design for IMC
- 4 Results & Comparison

Table of Contents

- Motivation & Background
- 2 Algorithmic Exploration
- 3 Large Integer Multiplier Design for IMC
- 4 Results & Comparison

FHE and ZKP: Promising but Challenging

- FHE and ZKP offer novel opportunities
- But there are limitations:
 - Huge computational overhead (10⁵× or more) [1]
 - Lots of data involved (~ 10GB) [2]

FHE and ZKP: Promising but Challenging

- FHE and ZKP offer novel opportunities
- But there are limitations:
 - Huge computational overhead (10⁵× or more) [1]
 - Lots of data involved (~ 10GB) [2]

FHE and ZKP: Promising but Challenging

- FHE and ZKP offer novel opportunities
- But there are limitations:
 - Huge computational overhead ($10^5 \times$ or more) [1]
 - Lots of data involved (~ 10GB) [2]

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

Can we do better?

RAM

- Substantial data streams
- 100× energy overhead [3]
- Latency bottleneck

Can we do better? In-Memory Computing!

 $\begin{array}{ccc} \text{Logic 0} & \Leftrightarrow & \text{HR} \\ \text{Logic 1} & \Leftrightarrow & \text{LR} \end{array}$

Florian Krieger, Florian Hirner, Sujoy Sinha Roy, ISEC, TU Graz

а	b	c = Nor(a,b)
0 (HR)	0 (HR)	1 (LR)
0 (HR)	1 (LR)	0 (HR)
1 (LR)	0 (HR)	0 (HR)
1 (LR)	1 (LR)	0 (HR)

а	b	c = NOR(a, b)
0 (HR)	0 (HR)	1 (LR)
0 (HR)	1 (LR)	0 (HR)
1 (LR)	0 (HR)	0 (HR)
1 (LR)	1 (LR)	0 (HR)

а	b	c = Nor(a,b)
0 (HR)	0 (HR)	1 (LR)
0 (HR)	1 (LR)	0 (HR)
1 (LR)	0 (HR)	0 (HR)
1 (LR)	1 (LR)	0 (HR)

Ohm's Law:
$$I = V/R$$

а	b	c = Nor(a,b)
0 (HR)	0 (HR)	1 (LR)
0 (HR)	1 (LR)	0 (HR)
1 (LR)	0 (HR)	0 (HR)
1 (LR)	1 (LR)	0 (HR)

Ohm's Law:
$$I = V/R$$

а	b	c = Nor(a,b)
0 (HR)	0 (HR)	1 (LR)
0 (HR)	1 (LR)	0 (HR)
1 (LR)	0 (HR)	0 (HR)
1 (LR)	1 (LR)	0 (HR)

Ohm's Law:
$$I = V/R$$

- High-level arithmetic from low-level logic gates
 - Hundreds of bits per operand
- No FHE/ZKP friendly multiplier presented
 - \rightarrow Typically relying on schoolbook multiplication: $O(n^2)$
- Endurance of cells
- Performance

- High-level arithmetic from low-level logic gates
 - Hundreds of bits per operand
- No FHE/ZKP friendly multiplier presented
 - \rightarrow Typically relying on schoolbook multiplication: $O(n^2)$
- Endurance of cells
- Performance

- High-level arithmetic from low-level logic gates
 - Hundreds of bits per operand
- No FHE/ZKP friendly multiplier presented
 - \rightarrow Typically relying on schoolbook multiplication: $O(n^2)$
- Endurance of cells
- Performance

- High-level arithmetic from low-level logic gates
 - Hundreds of bits per operand
- No FHE/ZKP friendly multiplier presented
 - \rightarrow Typically relying on schoolbook multiplication: $O(n^2)$
- Endurance of cells
- Performance

- High-level arithmetic from low-level logic gates
 - Hundreds of bits per operand
- No FHE/ZKP friendly multiplier presented
 - \rightarrow Typically relying on schoolbook multiplication: $O(n^2)$
- Endurance of cells
- Performance

Goal: Close research gap for large integer multipliers

Contributions:

- Algorithmic exploration
- Large integer multiplier design for IMC
 - Algorithmic optimizations
 - Implementation-specific optimizations

Goal: Close research gap for large integer multipliers

Contributions:

- Algorithmic exploration
- Large integer multiplier design for IMC
 - Algorithmic optimizations
 - Implementation-specific optimizations

Goal: Close research gap for large integer multipliers

Contributions:

- Algorithmic exploration
- Large integer multiplier design for IMC
 - Algorithmic optimizations
 - Implementation-specific optimizations

Table of Contents

- 1 Motivation & Background
- 2 Algorithmic Exploration
- 3 Large Integer Multiplier Design for IMC
- 4 Results & Comparison

- Simple to implement
- $O(n^2)$ complexity
 - Prohibitive for large n
 - Large area consumption
 - High runtime

- Simple to implement
- \bigcirc $O(n^2)$ complexity
 - Prohibitive for large n
 - Large area consumption
 - High runtime

- Split operands into k chunks
- Evaluate → Multiply → Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: $2k-1 \times 2k-1$
- Hard operations for IMC
 - Integer divisions

- Split operands into k chunks
- Evaluate \rightarrow Multiply \rightarrow Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: $2k-1 \times 2k-1$
- Hard operations for IMC
 - Integer divisions

- Split operands into k chunks
- Evaluate \rightarrow Multiply \rightarrow Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: 2*k*-1×2*k*-1
- Hard operations for IMC
 - Integer divisions

- Split operands into k chunks
- Evaluate \rightarrow Multiply \rightarrow Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: $2k-1 \times 2k-1$
- Hard operations for IMC
 - Integer divisions

- Split operands into k chunks
- Evaluate \rightarrow Multiply \rightarrow Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: $2k-1 \times 2k-1$
- Hard operations for IMC
 - Integer divisions

- Split operands into k chunks
- Evaluate → Multiply → Interpolate
- Good asymptotic complexity
- Concrete efficiency is difficult
 - Vandermonde matrix: 2*k*-1×2*k*-1
- Hard operations for IMC
 - Integer divisions

e.g. *k* = 3:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1/2 & 1/3 & -1 & 1/6 & -2 \\ -1 & 1/2 & 1/2 & 0 & -1 \\ -1/2 & 1/6 & 1/2 & -1/6 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Algorithmic Exploration: Karatsuba Multiplication

- Special case of Toom-Cook: k = 2
- Slightly slower than Toom-Cook
- Lower complexity than schoolbook
- Suitable for IMC
 - Uses additions and multiplications
 - No divisions, no large matrices

- Special case of Toom-Cook: k = 2
- Slightly slower than Toom-Cook
- Lower complexity than schoolbook
- Suitable for IMC
 - Uses additions and multiplications
 - No divisions, no large matrices

- Special case of Toom-Cook: k = 2
- Slightly slower than Toom-Cook
- Lower complexity than schoolbook
- Suitable for IMC
 - Uses additions and multiplications
 - No divisions, no large matrices

- Special case of Toom-Cook: k = 2
- Slightly slower than Toom-Cook
- Lower complexity than schoolbook
- Suitable for IMC
 - Uses additions and multiplications
 - No divisions, no large matrices

- Special case of Toom-Cook: k = 2
- Slightly slower than Toom-Cook
- Lower complexity than schoolbook
- Suitable for IMC
 - Uses additions and multiplications
 - No divisions, no large matrices

Selected Karatsuba

Table of Contents

- 1 Motivation & Background
- 2 Algorithmic Exploration
- 3 Large Integer Multiplier Design for IMC
- 4 Results & Comparison

- Logarithmic depth
- Regular structure
- Good choice for IMC

Table of Contents

- 1 Motivation & Background
- 2 Algorithmic Exploration
- 3 Large Integer Multiplier Design for IMC
- 4 Results & Comparison

Comparison with Related Work

Florian Krieger, Florian Hirner, Sujoy Sinha Roy, ISEC, TU Graz

Comparison with Related Work

ATP, 384-bit Multiplication

Conclusion

- First long integer multiplier for IMC
- Building block for modular arithmetic
- Contributes to IMC deployment of modern cryptography

Conclusion

- First long integer multiplier for IMC
- Building block for modular arithmetic
- Contributes to IMC deployment of modern cryptography

Conclusion

- First long integer multiplier for IMC
- Building block for modular arithmetic
- Contributes to IMC deployment of modern cryptography

References

- [1] N. Samardzic *et al.*, F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption. in MICRO-54, 2021.
- [2] A. Ray et al., Hardcaml MSM: A High-Performance Split CPU-FPGA Multi-Scalar Multiplication Engine. in FPGA'24, 2024.
- [3] X. Zou *et al.*, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. in Sci. China Inf. Sci. 64, 2021.
- [4] S. Kvatinsky *et al.*, MAGIC-Memristor-Aided Logic. in IEEE Transactions on Circuits and Systems II: Express Briefs, 2014.

References

- [5] D. Radakovits *et al.*, A memristive multiplier using semi-serial imply-based adder, IEEE Transactions on Circuits and Systems I, 2020.
- [6] A. Haj-Ali *et al.*, Imaging: In-memory algorithms for image processing, IEEE Transactions on Circuits and Systems I, 2018.
- [7] V. Lakshmi et al., A novel in-memory wallace tree multiplier architecture using majority logic, IEEE Transactions on Circuits and Systems I, 2022.
- [8] O. Leitersdorf *et al.*, Multpim: Fast stateful multiplication for processing-in-memory, IEEE Transactions on Circuits and Systems II, 2022.

Exploring Large Integer Multiplication for Cryptography Targeting In-Memory Computing

Florian Krieger, Florian Hirner, Sujoy Sinha Roy Institute of Information Security, TU Graz