Introduction to Econometrics 2: Recitation 4

Seung-hun Lee

Columbia University

February 12th, 2020

Topics in Instrumental Variables

Many IVs

- In some instances, we may work with "many" IVs.
- This indicates a situation where the number of IV is large relative to the sample size. This is equivalent to

$$I/n \rightarrow \alpha$$

When α is not zero,

• This could cause the 2SLS estimators to be inconsistent as well.

Framework

• Consider the setup where x_i is endogenous and is a scalar.

$$y_i = x_i'\beta + e_i \iff Y = X\beta + e$$
$$x_i = z_i'\beta + u_i \iff X = Z\Gamma + u \ (z_i \in \mathbb{R}^I)$$

- I assume that z_i is still a valid IV (relevant, exogenous) and that $var\begin{pmatrix} e_i \\ u_i \end{pmatrix} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} = \Sigma$.
- In addition, note that $var(x_i) = var(z_i'\gamma) + var(u_i)$ and assume that

$$\frac{1}{n}\sum_{i=1}^{n}\gamma'z_{i}z_{i}'\gamma\xrightarrow{p}c>0$$

and that variance of x_i and u_i are unchanging with respect to I.

• This implies that the variance of $var(z_i'\gamma)$ is not changing as well and that that R^2 of the reduced form converges to a constant.

Behavior of Some Estimators under Many IV

• OLS: We know that $\hat{\beta}_{OLS}$ can be written as

$$\hat{\beta}_{OLS} - \beta = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i e_i\right)$$

Applying our setup, we can re-write this as

$$\frac{1}{n} \sum_{i=1}^{n} x_i x_i' = \frac{1}{n} \sum_{i=1}^{n} \gamma' z_i z_i' \gamma + \frac{1}{n} \sum_{i=1}^{n} u_i u_i' + \frac{2}{n} \sum_{i=1}^{n} \gamma' z_i u_i'$$

$$\stackrel{P}{\rightarrow} c + 1$$

$$\left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \stackrel{P}{\rightarrow} (c+1)^{-1}$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i e_i \stackrel{P}{\rightarrow} \rho$$

Therefore,

$$\hat{\beta}_{OLS} - \beta \xrightarrow{p} \frac{\rho}{c+1}$$

Behavior of Some Estimators under Many IV

2SLS: The 2SLS estimator can be characterized by

$$\begin{split} \hat{\beta}_{2SLS} - \beta &= (X'P_{Z}X)^{-1}(X'P_{Z}e) \\ &= [(\Gamma'Z' + u')Z(Z'Z)^{-1}Z'(Z\Gamma + u)]^{-1}[(\Gamma'Z' + u')Z(Z'Z)^{-1}Z'e] \\ &= [\frac{\Gamma'Z'Z\Gamma}{n} + \frac{\Gamma'Z'u}{n} + \frac{u'Z\Gamma}{n} + \frac{u'P_{Z}u}{n}]^{-1}[\frac{\Gamma'Z'e}{n} + \frac{u'P_{Z}e}{n}] \end{split}$$

• We need to know what happens to $\frac{u'P_Zu}{n}, \frac{u'P_Ze}{n}$. Note that

$$E\left[\frac{1}{n}u'P_{Z}e\right] = \frac{1}{n}E[tr(u'P_{Z}e)] = \frac{1}{n}E[tr(P_{Z}eu')] = \frac{1}{n}tr[E(P_{Z}eu')]$$
$$= \frac{1}{n}tr[E(P_{Z})\rho] = \frac{1}{n}E[tr(P_{Z})]\rho = \frac{1}{n}\rho$$

and in a similar fashion

$$E\left[\frac{1}{n}u'P_Zu\right]=\frac{l}{n}$$

- Based on the two facts above, I can make use of Markov inequality to show that $\frac{1}{n}u'P_Zu \stackrel{p}{\to} \frac{1}{n}$ and $\frac{1}{n}u'P_Ze \stackrel{p}{\to} \frac{1}{n}\rho$
- With $I/n \rightarrow \alpha$, I can apply Slutsky's theorem to show that

$$\frac{u'P_Zu}{n} \xrightarrow{p} \alpha \rho, \frac{u'P_Ze}{n} \xrightarrow{p} \alpha$$

Therefore,

$$\hat{\beta}_{2SLS} - \beta \xrightarrow{p} \frac{\alpha \rho}{c + \alpha}$$

• If we do not have many IVs, $\alpha=0$ and 2SLS estimator is consistent. Otherwise, inconsistency of the above form occurs.

So summing up,

Inconsistency in Large Scale IVs

If above assumptions hold, together with $E(e_i^2|z_i) < \infty$, $E(u_i^4|z_i) < \infty$. Then

$$\hat{\beta}_{OLS} - \beta \xrightarrow{p} \frac{\rho}{c+1}, \ \hat{\beta}_{2SLS} - \beta \xrightarrow{p} \frac{\alpha \rho}{c+\alpha}$$

 Hansen (2019, pp. 447-448) shows why LIML is immune to this problem.

Framework

- GMM methods utilize the method of moments estimators to identify the values of the parameters of interest
- It can be generalized in the sense that the number of moment conditions can be greater than the number of unknown parameters.
- Let w_i be IID across i=1,...,n, $g_i(w_i,\theta)$ be a $l\times 1$ function of the ith observation, and $\theta\in\mathbb{R}^{k\times 1}$ be the parameter of interest. $(l\geq k)$. Then, the **moment equation model** is characterized by

$$E[g(w_i,\theta)]=0$$

- ullet We say heta is identified if there is a unique heta satisfying $E[g(w_i, heta)]=0$
 - When I = k, then we are in a just-identified case
 - If l > k, then we are in the over-identified case
 - If l < k, we are in an under-identified case

Just-identified case: Method of Moments Estimator

- In this case, we can work with the sample analogue of $g(w_i.\theta)$ straight away.
- Define $\bar{g}_n(\theta)$ as

$$\bar{g}_n(\theta) = \frac{1}{n} \sum_{i=1}^n g_i(\theta)$$

• The **method of moments estimators** $\hat{\theta}_{MM}$ is defined as the parameter value which sets $\bar{g}_n(\theta) = 0$. In other expression:

$$\bar{g}_n(\hat{\theta}_{MM}) = \frac{1}{n} \sum_{i=1}^n g_i(\hat{\theta}_{MM}) = 0$$

• Examples: OLS, MLE (separate slide!)

General case: Generalized Method of Moments Estimator

- If l > k, we may run into a situation where $\hat{\theta}_{MM}$ cannot be found.
- This is because there may be no choice of θ that sets the moment equations to 0.
- ullet We require a different approach. Define $J(\theta)$ as

$$J(\theta) = n\bar{g}_n(\theta)'W\bar{g}_n(\theta)$$

where $W \in \mathbb{R}^{l \times l}$ is a positive definite weight matrix that is given.

• *n* does not really affect our estimation, but it makes the analysis of the asymptotic features much easier

General case: Generalized Method of Moments Estimator

 The generalized method of moments estimator is defined as the minimizer of the GMM criterion above, or

$$\hat{\theta}_{GMM} = \arg\min_{\theta} J_n(\theta)$$

$$\implies \frac{\partial J_n(\theta)}{\partial \theta} = 2n \frac{\partial \bar{g}(\theta)'}{\partial \theta} W \bar{g}(\theta) = 0$$

Why generalized?

Note that when I=k, then method of moments estimator solve $\bar{g}_n(\hat{\theta}_{MM})=0$. Given that $J(\theta)$ is a positive definite matrix, the method of moments estimator in this case also minimizes $J(\theta)$. Thus, method of moments estimator is a special case of GMM estimator.

Working Through Examples: OLS

• In a data generating process $y_i = x_i'\beta + e_i$, $x_i \in \mathbb{R}^k$ and the moment condition $E(x_ie_i) = 0$, we have k parameters β_k and k equations for each of the k variables. We can rewrite the moment condition as

$$E(x_i(y_i-x_i'\beta))=0$$

And the method of moments estimators imply that we should solve

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}(y_{i}-x_{i}'\beta)=0\iff \hat{\beta}_{OLS}=\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}$$

Working Through Examples: MLE

• If w_i is IID across i = 1, ..., n, then we can write the joint likelihood function as

$$\prod_{i=1}^n f(w_i|\theta)$$

and thus, the log-likelihood function

$$\sum_{i=1}^n \log f(w_i|\theta)$$

When we take partial differentiation w.r.t θ ,

$$\sum_{i=1}^{n} \frac{\partial \log f(w_i|\theta)}{\partial \theta} = 0 \implies \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(w_i|\theta)}{\partial \theta} = 0$$

which is equivalent to $E\left(\frac{\partial \log f(w_i|\theta)}{\partial \theta}\right) = 0$. Practically,

$$E\left(\frac{\partial \log f(w_i|\theta)}{\partial \theta}\right)=0$$
 becomes the moment condition applicable to MLE.

13 / 22

Working Through Examples: IV

• Suppose we have a data generating process $y_i = x_i'\beta + e_i$ with x_i being k dimensions. Suppose we have an l > k dimensional IV with $E(z_i e_i) = 0$ $\bar{g}(\beta)$ in our context would be

$$\frac{1}{n}\sum_{i=1}^{n}(z_{i}y_{i}-z_{i}x_{i}'\beta)=\frac{Z'y}{n}-\frac{Z'X\beta}{n}$$

Then, we can write our $J_n(\beta)$ as

$$n\left(\frac{Z'y}{n} - \frac{Z'X\beta}{n}\right)'W\left(\frac{Z'y}{n} - \frac{Z'X\beta}{n}\right)$$

By solving the minimization problem we can obtain

$$\frac{\partial J_n(\beta)}{\partial \beta} = -\frac{2}{n} (X'ZWZ'y) + \frac{2}{n} (X'ZWZ'X)\beta = 0$$

$$\implies \hat{\beta} = (X'ZWZ'X)^{-1} (X'ZWZ'y)$$

Limiting Distribution of GMM

- Given that $\hat{\beta}_{GMM} = (X'ZWZ'X)^{-1}(X'ZWZ'y)$ for overidentified IV model, we can rewrite this by replacing y with $X\beta + e$
- ullet As a result, the limiting distribution of \hat{eta}_{GMM} is characterized by

$$\sqrt{n}(\hat{\beta}_{GMM} - \beta) = \left(\frac{X'Z}{n}W\frac{Z'X}{n}\right)^{-1}\left(\frac{X'Z}{n}W\frac{Z'e}{\sqrt{n}}\right)$$

Assumptions

Assume that

- 2 $\frac{Z'e}{\sqrt{n}} \xrightarrow{d} N(0,\Omega)$, where $\Omega = E(z_i z_i' e_i^2)$
- (If we are willing to assume W depends on n, thus W_n): $W_n \stackrel{p}{\to} W$, where W is a positive definite weight matrix

Limiting Distribution of GMM

• If the above assumptions are satisfied, the limiting distribution of the GMM estimator can be characterized by

$$\sqrt{n}(\hat{\beta}_{GMM} - \beta) \xrightarrow{d} N(0, (Q'WQ)^{-1}(Q'W\Omega W'Q)(Q'WQ)^{-1})$$

- Even if we suppose that W depends on n somehow, the above theorem still holds, provided that W_n converges in probability to W
- Question: What is the best selection for *W*?

Efficient GMM

- To select an optimal W matrix, it must be that the resulting variance should be the smallest.
- If we let $W=\Omega^{-1}$ and work with $(Q'WQ)^{-1}(Q'W\Omega W'Q)(Q'WQ)^{-1}-(Q'\Omega Q)^{-1}$, we can see that it is positive semidefinite
- When we recalculate the variance, we get that the efficient GMM has a limiting distribution characterized by

$$\sqrt{n}(\hat{\beta}_{GMM} - \beta) \xrightarrow{d} N(0, (Q'WQ)^{-1})$$

Efficient GMM vs 2SLS

Note that this weighting matrix, which can be rewritten as

$$W = \Omega^{-1} = E(z_i z_i e_i^2)^{-1}$$

is not exactly same as the weighting matrix we used for deriving the 2SLS estimator from GMM, which is $\left(\frac{Z'Z}{n}\right)^{-1}$

- In the $W = E(z_i z_i e_i^2)^{-1}$ setup, we allowed for heteroskedasticity.
- impose conditional homoskedasticity in the sense that $E(e_i^2|z_i) = \sigma^2$, we can rewrite $E(z_i z_i' e_i^2)$ as

$$E(z_i z_i' e_i^2) = E(E(z_i z_i' e_i^2 | z_i)) = E(z_i z_i' E(e_i^2 | z_i))$$

=
$$E(z_i z_i' \sigma^2) = E(z_i z_i') \sigma^2$$

- Thus, $E(z_i z_i' e_i^2)^{-1} = (Z'Z)^{-1} (\sigma^2)^{-1}$
- In this case, $E(z_i z_i' e_i^2)^{-1}$ is effectively $(Z'Z)^{-1}$

Two-step Optimal GMM

- We have no idea what Ω truly is.
- Therefore, we require a consistent estimator, denoted as \widehat{W} , for $W=\Omega^{-1}$

Two-step Optimal GMM

We can compute Optimal Two-step GMM in these steps

- ① Compute a preliminary, but consistent estimator for the true θ . Denote this as $\tilde{\theta}$.
- ② Using $\Omega = E[g(w_i, \theta)g(w_i, \theta)']$, create a sample analogue of this, defined as $\widehat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} g(w_i.\widetilde{\theta})g(w_i.\widetilde{\theta})'$. We can find our $\widehat{\Omega}^{-1}$ here.
- **3** Using this $\widehat{\Omega}^{-1}$, construct an efficient GMM estimator $\widehat{\theta}_{GMM}$

Some Comments: Alternative $\widehat{\Omega}$

- ullet There is another way to come up with a $\widehat{\Omega}^{-1}$ in this context.
- Define $\bar{g}(\theta) = \frac{1}{n} \sum_{i=1}^{n} g(w_i, \tilde{\theta})$.
- ullet Then, an alternative definition of $\widehat{\Omega}$ can be written as

$$\widehat{\Omega}^+ = rac{1}{n} \sum_{i=1}^n (g(w_i, \widetilde{ heta}) - ar{g}(heta)) (g(w_i, \widetilde{ heta}) - ar{g}(heta))'$$

- Both $\widehat{\Omega}$ and $\widehat{\Omega}^+$ converge in probability to $E[g(w_i, \theta)g(w_i, \theta)']$
- However, if $E[g(w_i, \theta)] \neq 0$, we view $\widehat{\Omega}^+$ as a robust estimator. $\widehat{\Omega}$ is inconsistent in case where $E[g(w_i, \widetilde{\theta})] = 0$ is not guaranteed.
- \bullet Therefore, for tests, such as overidentification tests, it is much more desirable to use $\widehat{\Omega}^+$

Some Comments: Alternative $\widehat{\Omega}$

- Since we know how to find the optimal \widehat{W} , we can estimate the asymptotic variance of the GMM estimators
- This can be done by replacing matrices in the original variance with their sample counterparts. In general, we can estimate by

$$\widehat{V}_{GMM} = \left(\widehat{Q}'\widehat{W}\widehat{Q}\right)^{-1} \left(\widehat{Q}'\widehat{W}\widehat{\Omega}\widehat{W}\widehat{Q}\right) \left(\widehat{Q}'\widehat{W}\widehat{Q}\right)^{-1}$$

where $\widehat{Q} = \frac{1}{n} \sum_{i=1}^{n} z_i x_i' = \frac{Z'X}{n}$, \widehat{W} is expressed by either $\widehat{\Omega}$ or $\widehat{\Omega}^+$.

ullet The residuals used in this estimation is defined as $\hat{e}_i = y_i - x_i' \hat{eta}_{GMM}$

Continually-updated GMM

- One alternative to the two-step GMM estimator is contructed by letting weight matrix be an explicit function θ .
- The criterion function is now

$$J(\theta) = n\bar{g}_n(\theta)' \left(\frac{1}{n}\sum_{i=1}^n g(w_i,\theta)g(w_i,\theta)'\right)^{-1}\bar{g}_n(\theta)$$

- \bullet The $\hat{\theta}$ that minimizes this function is the continuously-updated GMM estimator
- However, this setup is nonlinear, implying that acquiring this estimator requires numerical methods.