Table of contents

1 Summary 1

Spark provides specific actions for RDD containing numerical values (integers or floats).

RDDs of numbers can be created by using the standard methods

- parallelize
- transformations that return and RDD of numbers

The following specific actions are also available on this type of RDDs

- sum()
- mean()
- stdev()
- variance()
- max()
- min()

1 Summary

All the examples reported in the following are applied on inputRDD that is an RDD containing the following double values: [1.5,3.5,2.0]

Action	Purpose	Example	Result
() mns	Return the sum of the values of the input RDD.	inputRDD.sum()	7.0
mean()	Return the mean computed over the values of the	inputRDD.mean()	2.3333
	input RDD.		
stdev()	Return the standard deviation computed over the	inputRDD.stdev()	0.8498
	values of the input RDD.		
<pre>variance()</pre>	Return the variance computed over the values of	inputRDD.variance()	0.7223
	the input RDD.		
max()	Return the maximum value.	inputRDD.max()	3.5
min()	Return the minimum value.	inputRDD.min()	1.5

i Example

- 1. Create an RDD containing the following float values: [1.5,3.5,2.0]
- 2. Print on the standard output the following statistics
 - sum
 - mean
 - standard deviation
 - variance
 - maximum value
 - minimum value

```
# Create an RDD containing a list of float values
inputRDD = sc.parallelize([1.5,3.5,2.0])

# Compute the statistics of interest and print them on
# the standard output
print("sum:", inputRDD.sum())
print("mean:", inputRDD.mean())
print("stdev:", inputRDD.stdev())
print("variance:", inputRDD.variance())
print("wax:", inputRDD.max())
print("min:", inputRDD.min())
```