Process for applying phosphate coatings.

Patent number:

EP0141341

Publication date:

1985-05-15

Inventor:

HIGGINS GEORGE L; PARSONS LESLIE

Applicant:

METALLGESELLSCHAFT AG (DE); PARKER STE

CONTINENTALE (FR)

Classification:

- international:

C23C22/12; C23C22/17; C23C22/05; (IPC1-7):

C23C22/12; C23C22/17

- european:

C23C22/12; C23C22/17

Application number: EP19840112536 19841017

Priority number(s): GB19830028636 19831026; GB19830031779 19831129

Also published as:

國 GB2148950 (A)

DE3437925 (A1)

EP0141341 (B1)

Cited documents:

EP0069950 EP0064790

EP0056881

DE3016576 GB2102839

more >>

Report a data error here

Abstract of EP0141341

Zinc or steel surfaces, and in particular galvanised surfaces of external structures such as bridges or gantries, can be protected by application of a composition containing 0.5 to 5 parts zinc, 1 to 20 parts phosphoric acid, 0.01 to 0.5 parts cobalt and/or nickel and an effective amount of an accelerator such as nitroguanidine, sulpho-salicylic acid or sodium nitrobenzenesulphonate.

Data supplied from the esp@cenet database - Worldwide

UK Patent Application GB GB C 2 148 950 A

(51) INT CL4

(43) Application published 5 Jun 1985

- (21) Application No 8424443
- (22) Date of filing 27 Sep 1984
- (30) Priority data (31) 8328636 8331779
- (32) 26 Oct 1983 (33) GB
- (52) Domestic classification C7U 4H3 4H4 4H9 4J 4M1 4Q 4R 7C 7G
 - (56) Documents cited GB A 2102839 GB A 2044805

C23C 22/12

- GB 1542222
- GB 0970366

- (71) Applicant Pyrene Chemical Services Limited (United Kingdom), Ridgeway, Iver, Buckinghamshire SLO 9JJ
- George L Higgins Leslie Parsons
- (74) Agent and/or Address for Service Gill Jennings & Every, 53–64 Chancery Lane, London WC2A 1HN
- (58) Field of search C7U

(54) Phosphating composition and processes

(57) Zinc or steel surfaces, and in particular galvanised surfaces of external structures such as bridges or gantries, can be protected by application of a composition containing 0.5 to 5 parts zinc, 1 to 20 parts phosphoric acid, 0.01 to 0.5 parts cobalt and/or nickel and an effective amount of an accelerator such as nitroguanidine, sulpho-salicylic acid or sodium nitrobenzenesulphonate.

SPECIFICATION

Phosphating compositions and processes

			_
ļ	1	It is well known that freshly galvanised steel surfaces are difficult to paint satisfactorily unless they are given a pretreatment. Pretreatments for relatively small articles are well known but particular difficulties arise when the articles are large structures such as bridges since it is difficult to achieve thorough cleaning of the surfaces before pretreatment and it is difficult and undesirable to apply a thorough rinse after the pretreatment and before painting.	5
1	0	Aqueous phosphate solutions have been used for many years for pretreatment of the hospital surfaces but they do not wet large structures well, especially because of the poor cleaning of those structures. Zinc phosphate solutions have been widely developed for the pretreatment of those structures. Zinc phosphate solutions	10
		that do not require a subsequent finse are known but are generally only subsequent	15
1	5		
		In US Patent Specification 3,346,426 it is described that phospharic acid, glycolic on steel or galvanised surfaces by wiping on a solution containing zinc, phosphoric acid, glycolic acid and sodium 2,4-dinitrobenzenesulphonate. This process does not seem to have been very acid and sodium 2,4-dinitrobenzenesulphonate. The process for the pretreatment of	
			20
2	20	solution of phosphoric acid and copper carbonate in a mixture of solvents.	
			25
2	25		
		A composition according to the invention completed from copalt and nickel and an	
	30		30
•	,,,	working solution. The working solution contains solution are solvent may consist solely of water or may be a composition up to 100 parts by weight. The solvent may consist solely of water or may be a	
		blend of water and organic solvent, typically in an amount of up to 2.5 parts by	
	2 E	14 AAAAA A to A Ede of cohait of nickel of a mixture triefeor, 0.02 to 0.07	35
	33	effective amount of the accelerator, with the balance being water.	
		film that is applied over a dried-on, unrinsed, coating in the coating is generally associated with the	
			40
	40		
		is not a highly ionic compound such as solidin chiefate of soliding problems and preferred accelerators are non-blistering but are not preferred because of stability problems and preferred accelerators are	
		organic compounds. The preferred accelerator is nitroguanidine. This needs to be present in an amount of at least 0.02 parts (0.02% in the working solution) since lower amounts are ineffective. It is usually 0.02 parts (0.02% in the working solution) 1.5 parts and often it is 0.1 to 0.5 parts.	45
	45		
		The state of the s	
			50
	50	parts. If the amount is too low, the adhesion of the subsequently applied paint film may be impaired whilst if it is too high there may be excessive blistering of the paint. Preferred amounts	
		are from 0.5 to 1.2%. The solution is preferably subtantially free of anions other than the phosphate anions and ions. The solution is preferably subtantially free of anions other than the phosphate anions and ions.	
			55
	55		55
	-		
		is acceptable. Preferably the only deliberate additions of cations are the	
		and/or nickel. The compositions may contain a polyhydroxycarboxylic acid, for example, tartaric acid, The compositions may contain a polyhydroxycarboxylic acid, for example, tartaric acid,	
	60	The compositions may contain a polyhydroxycaroxyria and the compositions generally in amounts of up to 1% by weight of the working solution. Generally the compositions	60
	οU		
		subsequently applied paint film. Preferably the amount of zinc is between a unit of zinc is betw	65
	65	If the amount of copair and/or nickel is too low, it was give nog give in give	

GB 2 148 9	50A 2
------------	-------

	corrosion resistance while if it is too high it may cause the formation of a galvanic corrosion cell with the base metal, and as a result may enhance corrosion. The total amount of cobalt and nickel is generally from 0.05 to 0.4% by weight. Although either metal can be used alone, blends are preferred, generally containing about equal amounts of each.	5
5	If the amount of phosphoric acid is too low there will be reduced reaction with the metal substrate and decreased adhesion of the phosphated film, and of subsequently applied paint film, and there may be decreased solution stability. If the amount of phosphoric acid is too high there may be excessive attack of the metal surface. Preferably the amount of phosphoric acid is	3
10	surface is not entirely clean. Amounts of surfactant of up to 0.5% significantly improve the wettability of the solution on the metal surface without interferring with the phosphating reaction and amounts above 0.5% generally give no further improvement. Often the amount is from 0.05 to 0.3% by weight	10
15	Organic solvent is not essential but may facilitate application and wetting properties. Generally the amount is the minimum that gives the desired improvement and is generally below 20% since higher amounts normally give no improvement in application properties and may reduce the stability of the solution to such an extent that the amount of phosphoric acid has to be increased in order to maintain solution stability, this incurring the risk of excessive acid attack on	15
	the surface that is being treated. The surfactant, if present, is preferably a non-ionic surfactant since cationic and amphoteric surfactants may absorb onto the metal surface and inhibit film formation. The solvent, if present, must be non-toxic to the person applying the composition and must approprie the formation of a stable solution. The presence of highly hydrophilic solvents such as	20
25	methanol is generally undesirable as they tend to cause precipitation of zinc phosphate from the solution. The solvents are therefore preferably moderately polar and many heterocyclic solvents are suitable provided they are not toxic. The preferred solvent is N-methyl-2-pyrrolidone. Aqueous working solutions free of surfactant and solvent may be difficult to apply and so generally the composition contains either surfactant or solvent or, preferably, both solvent and	25
30	surfactant. A process according to the invention comprises applying the working solution onto a zinc or iron surface and allowing it to dry onto the surface. The surface is usually the galvanised surface of an external steel structure such as a bridge or gaptry. Application may be by wiping or,	30
35	preferably, by brushing onto the surface. The surface is preferably substantially free of dirt and grease but it is unnecessary to have cleaned it as thoroughly as is required in conventional zinc phosphate processes. Application is generally at ambient temperature and, since the structure is generally an external structure, in practice this means that application is generally at temperatures of from 3 to 30°C. After the coating has dried a paint coating is normally applied in conventional manner.	35
40		40
45	Zn 3.0% H ₃ PO ₄ 12.0% Sodium nitro benzene sulphonate 1.0% Surfactant 0.1% N-methyl-2-pyrrolidone 5.0%	45
50	Co 0.15% Ni 0.15% Water to 100.00%	50
55	Galvanised panels were treated with this solution at ambient temperature, allowed to dry and overpainted with a chlorinated rubber paint. The panels were subjected to ASTM B117 salt spray and good corrosion protection and paint adhesion were observed. Various comparative solutions were prepared and used in the same manner. One solution had the same formulation except the nitro benzene sulphonate was omitted. Another solution had the same formulation except the cobalt and nickel were omitted. Another solution had the same	55
60	formulation except that glycolic acid was added as in US Patent 3,346,426. In other solutions the cobalt and nickel were omitted and were replaced with other transition metals. All these solutions gave inferior results compared to the exemplified solution.	60
65	Example 2 The process of Example 1 was repeated using nitroguanadine instead of sodium nitro benzene sulphonate. The amount could be, for instance 0.1%. Although blistering of the paint was not a	65

major problem in Example 1, this was eliminated in Example 2.

CLAIMS

1. A composition useful in the formation of protective coatings on zinc or iron surfaces and 5 5 comprising 0.5 to 5 parts zinc, 1 to 20 parts phosphoric acid, 0.01 to 0.5 parts of an additive selected from cobalt and nickel, and an effective amount of a non-blistering accelerator, all the parts being by weight. 2. A composition according to claim 1 in which the accelerator is selected from nitroguanidine, sulpho-salicylic acid or a salt thereof and dissolved aromatic nitro compounds. 3. A composition according to claim 2 containing 0.02 to 1.5 parts nitroguanidine. 10 4. A composition according to claim 2 containing 0.2 to 1.5 parts sodium nitrobenzenesulphonate or the free acid thereof. 5. A composition according to any preceding claim substantially free of other anions or cations. 15 6. A composition according to any preceding claim containing up to 1 part by weight polyhydroxycarboxylic acid.

7. A composition according to any preceding claim containing surfactant and/or up to 20 parts by weight organic solvent.
8. A composition according to any preceding claim comprising 1 to 4 parts zinc, 0.05 to 20 0.4 parts cobalt and/or nickel, 4 to 15 parts phosphoric acid, 0.05 to 0.3 parts surfactant and 20

0 to 20 parts solvent.

9. A composition according to any preceding claim including N-methyl-2-pyrrolidone as solvent.

10. A composition according to any preceding claim in the form of a working solution
25 diluted with water to make 100 parts by weight.
11. A composition according to claim 1 substantially as herein described with reference to

11. A composition according to claim 1 substantially as herein described with reference to either of the examples.

12. A process of forming a protective coating on a zinc or iron surface comprising applying a solution according to claim 10 to the surface and allowing it to dry on the surface.

30 13. A process according to claim 12 in which the surface is the galvanised surface of an external steel structure.

Printed In the United Kingdom for Her Majesty's Stationery Office, Dd 9818935, 1985, 4235.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.