高二物理竞赛教程

学而思物理

2024年12月5日

15	fun!
----	------

	第	;— <u>‡</u>
(0)	Ι	范畴
	II	编排
	III	预备
		1
		2
		3
		4
		5
		6

第	一章	普通物理	里学机	既论	٠	 		 	٠		 		 	٠	 ٠		٠					1
Ι	范畴与	与方法论 .			 	 		 			 		 									1
II	编排与	写客制化 .			 	 		 			 		 									2
III	预备知	知识			 	 		 			 		 									3
	1 7	力学			 	 		 			 		 									3
	2	电磁学			 	 		 			 		 									3
	3 j	近代物理 .			 	 		 			 		 									3
	4	热学			 	 		 			 		 									3
	5)	光学			 	 		 			 		 									3
	6	数学			 	 		 			 		 									3
쎀_	二述(人)	力学																				6
अ	HF.71	刀子																				U
第	二章	运动学	١		 	 		 			 		 									7
		与物质																				7
Ι		亨彻贝··· 忖空观···																				
		吋																				
																						10
		.a 质点模型 世界观																				
TT	_	旦斧 <i>观</i> 内描述																				
II	. —	的描述																				
		则 则体的运动																				
III		列件的运动 系变换																				
111	_	京交换 贡点运动的 ²																				
		则体运动的 ³																				
IV		的体色列的 ⁵ 的牵连																				
1 V		刊年廷··· 祖交系···																				
		6文示··· 妾触系···																				
		_{英概示・・・} 屯滚系・・・																				
	0 5	THEAR.			 	 		 			 		 		 •			•		•	•	11
第	三章	动力学			 	 		 			 		 									20
I		定律																				20
1		上呼···· 上顿第一定往																				20
		上顿第二定律	•																			
		- 欧尔二定 · 	•																			20
		,以水一之, 贡点系																				20
		たがか・・・																				
II		定律																				21
		5点的动量 5点的动量																				21
		点点系的动 ^量																				21
III		最定律																				
		重定件··· 质点的角动:																				22
		_{反然的} 用约束 质点系的角束																				22
IV		定律																				
- •		5点的动能 5点的动能																				
	13	- 1111 H 4 - 24 H L			 •		•			•		•			 -	- 1			•	-		

	2	质点系的动能	. 23
	3	势能与其他能量	. 23
V	动力	力学问题求解	. 24
	1	运动积分	. 24
	2	单坐标变量情况	. 24
	3	多坐标变量情况	. 24
VI	碰撞	· 童	. 25
	1		. 25
	2	若干拓广	. 25
		2.a 斜碰	. 25
		2.b 刚体碰撞	. 25
		2.c 带约束的碰撞	. 25
		2.d 多体碰撞	. 25
	3	* 几个普遍定理	. 25
第	四章	章 静力学	. 28
ī	约束	表	28
1	= y × 1	参東的类型	
	2	广义坐标	
	3	主动力与被动力	
П		- 王切力可吸切力	
11	刀a 1	静力学的公理体系	
	2	力系简化原理	
	4	2.a 若干结论	
		2.b 平面力系简化的最终结果	
		2.c 空间力系简化的最终结果	
TTT	\(\tau\) 46	- 2.6 - 空间刀が間化的取ぐ石木・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
111	十個 1	関門恕氷牌 1 · · · · · · · · · · · · · · · · · ·	
	_		
	2	平衡问题的提法	
	3	午側回题的分类午量力学的解决方案一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	
IV	4	大重刀字的牌伏刀条 · · · · · · · · · · · · · · · · · · ·	
1 V		舞門越水牌 11	
	1	理想约果 · · · · · · · · · · · · · · · · · · ·	
	2 3		
T 7	_	分析力学的解决方案	
V		分析力学基础	
	1	力学的几何化	
	2	拉格朗日方程	
	3	再论冲击问题	
VI		定性问题	
	1	单自由度体系的平衡稳定性	
	2	多自由度体系的平衡稳定性	
	3	动力学稳定性	. 33
	7. ⊋	章 简谐振动	. 36
			. 00

Ι	谐振子	. 36
	1 简谐振动的定义	. 36
	2 简谐振动的运动学性质	. 36
	3 简谐振动的判定	. 36
	4 谐振子模型	. 36
II	简谐振动的拓广	. 37
	1 阻尼振动	
	2 受迫振动	
III		
	1 位形空间中的振动	
	1.a 通过特征方程求解	
	1.b * 通过坐标变换求解	
	1.c * 通过对称性求解	
	2 相空间中的振动	
TX7	* 摄动理论	
1 V		
V	W - 1 (1)	
V	* 可数无穷自由度情况	
	1 格波	. 40
第	第六章 万有引力 · · · · · · · · · · · · · · · · · · ·	43
I		
II	有心力问题	
	1 一般结论	
	2 几个易求解的模型	
III	开普勒问题	
111	1 轨道分类	
	2 动力学量的计算	
	3 摄动	
	4 二体问题	
IV	* 潮汐	
IV	- Ular I	
	• • • • • • • • • • • • • • • • • • • •	
	2 若干应用	. 46
第		49
Ι		49
-	1 刚体的运动	
	2 质量几何	
II		
11	1 整体牛顿定律	
	2 动力学定律	
Ш	2	
111		
	1 惯量张量	
	2 欧拉运动学方程	
	3 欧拉动力学方程	. 51

第	5八章 * 弹性体 	. 54
Ι		54
	1 应变	54
	2 应力	54
ΙΙ	弾性模型	55
	1 弹性棒	55
	2 弹性绳	55
	3 弹性膜	55
	4 弹性体	55
Ш	弾性波	56
	1 分离变量法	56
	2 变量代换法	56
	3 弹性模型的解	56
	4 再论格波	56
第	5九章 流体	. 59
Ι	流体的物理描述	59
	1 连续性方程	59
	2 应变率	59
	3 压强与黏滞	59
ΙΙ	定常流体动力学	60
	1 欧拉方程	60
	2 伯努利方程	60
III	黏滯流体动力学	61
	1 牛顿黏滞定律	61
	2 * 两个常用定律	61
	3 * 纳维-斯托克斯方程	61
IV	* 流体中的波	62
	1 浅水波	62
	2 深水波	62
	3 表面波	
V	* 波的傅里叶分析	63
	1 波的群速度	
	2 波的方向性	
	3 波的展宽	63
第二	二部分,热学	66
第	等十章 热力学第一定律	. 67
I		67
	1 热力学系统的宏观描述	
	2 热力学第零定律与温度	
	3 状态方程	
	4 微观态与宏观态	
II	热力学第一定律	

	1	状态与过程	68
	2	内能	68
	3	功	68
	4	热量	
	_	热力学第一定律・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		* 耗散	
TTT			
III		!气体的过程	
	1	理想气体模型	
	2	四类准静态过程	69
		2.a 等体过程	69
		2.b 等压过程	69
		2.c 等温过程	69
		2.d 绝热过程	69
	3	多方过程类	69
		几个非准静态过程	
		4.a 自由膨胀	
		4.b	
		· / 2, · · · · · · · · · · · · · · · · · ·	
***	stz. H	4.c 节流过程	
IV	常见	.气体模型	
	1	混合理想气体	
	2	范德瓦尔斯气体	70
	3	重力场中的大气	70
	4	再论流体的定常流动	70
		4.a 欧拉方程	70
		4.b 伯努利方程	70
		4.c * 传导形式与守恒形式	70
第	+-		73
T	ATT	*Nett	70
Ι		5过程	
	1	热机与热泵	
	2	热机循环	
		2.a 勒鲁瓦循环	73
		2.b 奥托循环	73
		2.c 迪塞尔循环	73
		2.d 布莱顿循环	73
		2.e 卡诺循环	73
II	理想		74
	1	态函数熵	
		初涉卡诺定理	
TTT	3	局限性	
Ш	热力	/学第二定律	
		熵增原理	75
	1		
	1 2	两种等效表述	75
			75
	2	两种等效表述	75 75

	1	宏观与微观	76
	2	理想气体的熵	76
	3	熵变与热容	76
	4	混合熵产生....................................	76
	5	传热熵产生	
V		力学函数及其特性	
	1	热力学函数	
	2	麦克斯韦关系	
	3		
	0	有「里安に埋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		3.b 物性函数关系	
	4	最小能原理	
	5	化学势	77
第	+-	章 固体与液体性质	80
Ι	固体	晶格论	80
	1	经典晶格论	80
	2	* 量子晶格论	80
II	* 固	体电子论	81
	1		
	2	热电耦合现象	
	3	德鲁特模型	
	4	能带模型与半导体	
Ш	_	体的彻体性质	
111	1	稠密的范氏气体	
	2		
		濒临瓦解的晶格	
	3	液体宏观性质的描述	
IV	液体	的表面性质	
	1	表面与界面的热学性质	
	2	附加压强	
	3	接触角	83
V	* 其	他物态的性质	84
	1	弱关联: 玻色气体	84
	2	强关联: 超流	84
	3	强关联: 超导	84
	4	等离子体	84
	5	白矮星与中子星	84
	6	夸克-胶子-等离子体	
	Ü	2.20 W 2 - 4 M 2.11	0.1
第	+ =	章 相与相变	
Ι	相平		
	1	相平衡与相	87
	2	相平衡条件	87
	3	相稳定条件	87
II	相变		88
	1	一级相变特性	88

	2	气液相变	88
	3	* 溶解与沉积	88
	4	* 顺磁-铁磁相变	88
	5	* 二级相变特性	88
III	* 朗	道相变理论	
	1	序参量与自由能	
	2	对称性自发破缺	
	_	对你任日及败员	00
聳	:- - /	日章 统计物理概述	92
		·	
Ι			
	1	统计模型	
		1.a 样本空间与随机事件	
		1.b 随机变量及其数字特征	
	2	信息熵	
	3	马尔科夫过程	
II	统计	-假设	93
	1	统计方法	93
	2	等概率原理	93
III	麦芽	ː斯韦分布律	94
	1	麦克斯韦速度分布律	94
	2	压强与泻流	
	3	* 输运系数的计算	
IV	表記	[斯韦-玻尔兹曼统计	
1,	1	分布律	
	2	压强与内能的计算	
		功, 热, 熵的微观解释	
	3		
V	^ 其	他物理统计模型	
	1	玻色-爱因斯坦统计	
	2		96
	3	涨落与关联	96
第	三部	分 电磁学	99
第	17	章 静电学	100
I	电花		100
	1	. · · · · · · · · · · · · · · · · · · ·	
	2	库仓定律	
	3	电场	
II	~	·定律与电势	
11		, -1, -1 = , -	
	1	电场通量定律	
	2	电势与电场环量定律	
	3	* 高速运动电荷的电场	
III	静电	1能	
	1	静电势能	102
	2	自能与相互作用能	102

	3	电场能)2
IV	电荷	体系)3
	1	电偶极子)3
	2	电荷密度分布)3
	3	极化强度)3
	4	若干对称电荷分布	
		4.a 球壳与球体	
		4.b 平面与厚层	
		4.c 直线与圆柱	
		4.d * 带电圆环	
		4.e 均匀极化的球	
		4.6 均匀似化的球	ы
笞	1.	· :章 导体与介质 · · · · · · · · · · · · · · · · · · ·	16
Ι	导体	与静电平衡	
	1	绝缘体与导体综述	
	2	静电平衡部分结果	
	3	简单体系)6
		3.a 导体平板)6
		3.b 导体球壳)6
		3.c 导体柱壳)6
II	电像	法)7
	1	半无限大空间的电像法)7
	2	球面内与球面外的电像法)7
		* 静电场边值问题的相关结论	
		3.a 问题的提出	
		3.b 几个引理	
		3.c	
		3.d 唯一性定理	
TIT	由介	质	
111	电刀 1	微观角度理解极化	
	1	像观用及理解 攸化	
	0	1.b 取向极化	
	2	<u> 宏观角度理解极化</u>	
		2.a 电位移	
		2.b 简单体系的静电平衡	
		2.c 介质中的静电平衡	
	3	宏观与微观的联系	
IV	再论	静电能)9
	1	极化能)9
	2	普遍的静电能)9
	3	再论电容模型10)9
第	1-1	:章 稳恒电流	.2
I	稳恒	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	12
*	心。 1	徳鲁特模型	
	2	* 费米气观点	
	4	以 へ	. 4

	3	* 能带论观点
	4	惯性, 阻尼, 回复力
	5	稳恒电流与形成条件
II	电路	
	1	电路元件
	2	基尔霍夫电路定律
III	_	分析基础
111	њи 1	电路的整体性质
	2	
	2	电路求解套路
		2.a 支路电流法
		2.b 节点电势法
		2.c 网孔电流法
IV	电路	分析方法
	1	<u> </u>
	2	戴维南-诺尔顿原理
	3	* 特勒根原理
	4	* <u>互易原理</u>
V	电阻	!等效方法
	1	电阻网络的等效变换
	2	根据对称性简化电路
	3	电流分布法
VI	半与	· · · · · · · · · · · · · · · · · · ·
	1	pn 结
	2	二极管
	3	三极管
	J	
笞	4,	章 静磁场
Ι		[与磁场
	1	磁现象
	2	毕奥-萨伐尔定律
	3	磁场
II	两个	定律与电势
	1	磁场环量定律
	2	矢势与磁场通量定律
III	电流	[体系
	1	磁偶极子
	2	磁化强度
	3	若干对称电荷分布
		3.a 平面与厚层
		3.b 直线与圆柱
		3.c 螺线圈
		3.d * 载流圆环
TT 7		3.e 均匀磁化的球
IV		・ 质与磁能
	1	微观角度理解磁化
		1.a 顺磁性

		1.b 抗磁性	123
		1.c 铁磁性	123
	2	<mark>宏观角度理解磁化</mark>	123
		2.a 磁场强度	123
		2.b 磁路定律	123
		2.c 电感	123
	3	磁场能量	123
第	++	章 电磁感应	26
I	磁片	 电	126
	1	上 法拉第电磁感应定律	126
	2	动生电动势	
	3	感生电动势	126
II	电磁	感应与电路	
	1	例: 平行导轨	
	2	发电机与电动机	
	3	* 涡电流 · · · · · · · · · · · · · · · · · · ·	
Ш		与互感	
	1	自感	
	2	互感	
	3	变压器	
	4	再论磁能 ····································	
IV	_	仑标势与矢势	
	1	洛伦兹力与势	
	2	规范	
	3	势的产生	
			0
第		章 麦克斯韦方程组 1	32
I	н 4		190
1		位移电流	
	1 2	四修电流 · · · · · · · · · · · · · · · · · · ·	
II	_	を元列 中刀 性组 波解	
11	电版 1	真空中的电磁波	
	_	具至中的电磁波	
	2 3	バ	
		电磁切的能量与初量···································	
TTT	4 * +		
III		兹波的辐射与吸收	
	1	达朗贝尔方程	
	2	偶极辐射	
	3	相对论性辐射	
TX 7	4	辐射阻尼与散射截面	
ΙV		单位制	
	1		
	2	高斯单位制	
	3	自然单位制	135

第		十一章 交流电路		• •	• •	 	 • •	 	 	 •		•		.00
I	交流	 流电网				 	 	 	 	 	 			138
	1	交流电的产生												
	2	交流电的传输												
		2.a 良导体												
		2.b 波导模型												
		2.c 传输线模型												
		2.d 拟稳条件												
	3	市电规范												
	4	整流, 滤波, 稳压												
II		一												
11		流几件存住												
	1													
	2	电容元件												
TTT	3	电感元件												
III		流电路解法												
	1	复数解法												
	2	相量图解												
	3	功率分析												
IV		见电路												
	1	谐振电路												
	2	* 滤波电路												
	3	* 运算电路				 	 	 	 	 	 	•		141
第	四剖	邓分 光学											1	144
			,											
第.		十二章 光波与光线											. 1	145
		十二章 光波与光线 _。 动光学引论				 	 	 	 	 	 		. 1	l45 145
第.	波 ²	十二章 光波与光线 动光学引论 光波描述的三个层次 .				 	 	 	 	 	 		. 1	l 45 145 145
第.	波 ² 1 2	十二章 光波与光线 动光学引论				 	 	 	 	 	 		. 1	145 145 145 145
第.	波 ²	十二章 光波与光线 动光学引论					 		 		 		. 1	145 145 145 145 145
第.	波 ² 1 2 3 4	十二章 光波与光线 动光学引论							 		 		. 1	145 145 145 145 145
第.	波 ² 1 2 3 4	十二章 光波与光线 动光学引论							 				. 1	145 145 145 145 145 145 146
了 I	波 ² 1 2 3 4	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 145 146
了 I	波 ² 1 2 3 4 界	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146
了 I	波 1 2 3 4 界 1	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146
了 I	波 1 2 3 4 界 1	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146
了 I	波 1 2 3 4 界 1	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146 146
了 I	波 1 2 3 4 界 1	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146 146
第 I	波 ² 1 2 3 4 界 1 2 3 3	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146 146 146
第 I	波 ² 1 2 3 4 界 1 2 3 3	十二章 光波与光线 动光学引论											. 1	145 145 145 145 145 146 146 146 146 146 146
第 I	波 1 2 3 4 界 1 2	十二章 光波与光线 动光学引论												145 145 145 145 145 146 146 146 146 146 147 147
第 I	波 1 2 3 4 界 1 2	十二章 光波与光线 动光学引论												145 145 145 145 145 146 146 146 146 147 147
第 I	波 1 2 3 4 界 1 2 3 光 1 2 3	十二章 光波与光线 动光学引论												145 145 145 145 145 146 146 146 146 147 147 147
第 I	波 1 2 3 4 界 1 2 3 光 1 2 3	十二章 光波与光线 动光学引论												145 145 145 145 145 146 146 146 146 147 147 147 147

	3	* 基尔霍夫衍射积分公式 .	 	 	 	 148
	4	* 费曼路径积分理论	 	 	 	 148
	5	结论	 	 	 	 148
第	-	十三章 光学成像	 	 • • • •	 	 151
Ι	傍车	轴光成像	 	 	 	 151
	1	物与像	 	 	 	 151
	2	球面折射与球面反射	 	 	 	 151
	3	符号法则	 	 	 	 151
	4	薄透镜折射成像	 	 	 	 151
	5	几个抽象	 	 	 	 151
	6	两个成像系统的复合	 	 	 	 151
Ш	理机	想成像系统	 	 	 	 153
	1	作图法	 	 	 	 153
	2	基点基面性质	 	 	 	 153
	3	望远系统	 	 	 	 153
	4	* 理想成像背后的数学理论	 	 	 	 153
Ш	理机	想成像系统	 	 	 	 153
	1	作图法	 	 	 	 153
	2	基点基面性质	 	 	 	 153
	3	望远系统	 	 	 	 153
	4	* 理想成像背后的数学理论	 	 	 	 153
第	; <u> </u>	十四章 光学仪器	 	 	 	 156
I	光月	度学	 	 	 	 156
	1	* 色度学	 	 	 	 156
	2	光度函数	 	 	 	 156
	3	亮度与照度	 	 	 	 156
	4	物与像的光度学联系	 	 	 	 156
II	光颜	阑	 	 	 	 157
	1	孔径光阑与视场光阑	 	 	 	 157
	2	محد المحددات				
III		光瞳与窗	 	 	 	157
111	助社	- <mark>光瞳与</mark> 窗 - · · · · · · · · · · · · · · · · · ·				
111	助社 1		 	 	 	 158
111		视仪器	 	 	 	 158 158
111	1	视仪器	 	 	 	 158 158 158
	1 2 3	视仪器	 	 	 	 158 158 158
	1 2 3	视仪器 人眼与眼睛 光学显微镜 光学望远镜	 	 		158 158 158 158 159
	1 2 3 观信	视仪器 人眼与眼睛 光学显微镜 光学望远镜 像仪器		 		158 158 158 159 159
	1 2 3 观1	视仪器 人眼与眼睛 光学显微镜 光学望远镜 像仪器 数字相机				158 158 158 159 159
IV	1 2 3 双作 1 2 3	视仪器 人眼与眼睛 光学显微镜 光学望远镜 像仪器 数字相机 透视仪 电镜				158 158 158 159 159 159
IV	1 2 3 双作 1 2 3	视仪器 人眼与眼睛 大学显微镜 *** 光学望远镜 *** 像仪器 *** 数字相机 *** 透视仪 ***				158 158 158 159 159 159
IV	1 2 3 双作 1 2 3	视仪器 人眼与眼睛 光学显微镜 光学望远镜 像仪器 数字相机 透视仪 电镜				
IV	1 2 3 双作 1 2 3	视仪器 人眼与眼睛 光学显微镜 光学望远镜 像仪器 数字相机 透视仪 电镜 十五章 光的干涉				

	3	目干度1	62
II	分波	ī干涉 1	63
	1 7	6 氏双孔干涉	63
		其他变式	
		.,	
		牧斑干涉	
III	分振	畐干涉	64
	1	<u> </u>	64
	2	5克尔孙干涉仪	64
		->・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
TX 7		‡	
IV			
		区间相干性	
	2	寸间相干性	65
	3	扁振相干性	65
第	二十	六章 光的衍射	68
Ι		5干涉	
	1	├振幅的多光束干涉	68
	2	}波面的多光束干涉	68
	3	〔射线晶体衍射	68
II		论	
11		所射积分公式	
		· · · · · · · · · · · · · · · · · · ·	
		L类菲涅尔衍射	
	3	L类夫琅禾费衍射	69
III	* 傅」	[叶光学	70
	1	韓里叶变换的性质	70
		。	
	3	伦学信息处理	10
松	·—	七章 物理光学	73
त्र			
Ι	光的	性	73
	1 ;	6子	73
	2	相干态与压缩态	73
II		5物质相互作用	
11			
		光与晶体声波	
	2	光与分子振动	74
	3	出与电子跃迁	74
	4	光的非弹性过程	74
III	-	传播与吸收的唯象描述	
111			
		ż射	
	2	色散	75
	3	坟射	75
	4	B收	75
IV		色散理论	
± 1		8伦兹电子论	
	2	散射截面	76

	3		场与位																											
		3.a	等离	子体	情心	兄													 			 							. 1	.76
		3.b	法拉	第效	应														 			 							. 1	.76
第	五部	分	近代	物	狸																								1	79
第		八十	章 木	团对	论																								. 1	80
I	时空	三与运	:动.		<u> </u>														 			 							. 1	.80
	1	相对	论时	空观															 			 							. 1	.80
	2	尺缩	首,钟恒	曼,同	时	相求	寸性												 			 							. 1	.80
	3	洛化	兹变	换 .															 			 							. 1	80
	4	速度	医变换																 			 							. 1	80
	5	转盘	は佯谬																 			 							. 1	.80
II	相互	工作用]																 			 							. 1	.81
	1	动量	与能	量.															 			 							. 1	.81
	2	* 角	动量																 			 							. 1	.81
	3	守恒	種.																 			 							. 1	.81
	4		5场.																											
III	连续																													
	1		连波矢																											
	2		主电流:																											
	3		场变																											
IV	广义		论简																											
	1		見与测:																											
	2		的时																											
	3	施占	西黑	涧.		•		 ٠		• •	٠	• •	٠			•		•	 		 ٠	 • •		•	• •	•			. 1	.8:
第		九	章 量	計了	论																								. 1	86
Ι			一性.			,																								
	1	黑体	辐射																 			 							. 1	.86
	2	光电	1效应																 			 							. 1	.86
	3	康普	序顿效	应.															 			 							. 1	.86
	4	* 引	力与	光 .															 			 							. 1	86
II	粒子	一波动	性.																 			 							. 1	.87
	1	原子	模型																 			 							. 1	.87
	2	电子	的两	个实	验														 			 							. 1	87
	3	物质	〕波.																 			 							. 1	.87
III	* 量	子力	学初	步 .															 			 							. 1	.88
	1	运动]-波函	数.															 			 							. 1	.88
	2		作用·		•																									
	3		动力	-																										
	4	全同	粒子	与福	克	三间] .												 			 							. 1	.88
K		1. zk.		in de	TUI	11/2	1																						. 19	<u>0</u> 1
			尺层			F	1	 •	•		•	•		•	٠		٠	•	 ٠	•	 ٠	 •	•		٠		•	٠	. 1	91
T	基本	こ粉ラ	与相	万作	用						_								 			 							. 1	91

	1	标准模型	 	 		 . 191
	2	相互作用过程	 	 		 . 191
	3	守恒律	 	 		 . 191
	4	* 超越标准模型	 	 		 . 191
II	核物	物理	 	 		 . 192
	1	核模型	 	 		 . 192
	2	核反应	 	 		 . 192
	3	核应用	 	 		 . 192
III	* 原	原子与分子	 	 		 . 193
	1	自旋-轨道相互作用	 	 		 . 193
	2	元素周期律	 	 		 . 193
	3	键合	 	 		 . 193
	4	分子谱	 	 		 . 193
IV	* 介	介观物理	 	 		 . 194
	1	声子模型	 	 		 . 194
	2	电子气	 	 		 . 194
	3	能带论	 	 		 . 194
	4	强关联电子体系	 	 		 . 194
V	宇宙	雪宝	 	 		 . 195
	1	宇宙膨胀的证据	 	 		 . 195
	2	标准模型	 	 		 . 195
	3	暗物质与暗能量	 	 		 . 195

普通物理学概论

I

范畴与方法论

self-contained: 数学知识有一定基础后不需要更多的补充 dependency-requalified:

力学>热学>电磁学>光学>近代物理

picture-oriented:由于数理基础不够而导致的有关物理原理背后的理论基础造成困难的现象,我们企图用"物理图像"帮助读者理解其结果的自然性,这样的章节用星号来标注,读者不应当忽略其重要性,应当在基础足够以后重新阅读相关章节.

读者也许知道, 矢量形式的牛顿力学(Newtonian mechanics) 理论, 和在其后发展出来的分析力学(analytic mechanics) 理论, 可以统称为经典力学(classical mechanics) 理论. 它们将是本书第 I 部分—力学的研究范围¹. 而经典物理学(classical physics) 本书专指在二十世纪之前成熟的物理理论, 它还需要包括经典热力学(classical thermodynamics) 理论, 我们将在本书的第 II 部分—热学介绍; 经典电磁学(classical electrodynamics) 理论, 我们将在本书的第 III 部分—电磁学介绍; 和几何光学(geometric optics) 与波动光学(wave optics) 理论, 我们将在本书的第 IV 部分—光学介绍.

¹分析力学仅做引入与概述.

II 编排与客制化

III 预备知识

1 力学

2 电磁学

3 近代物理

4 热学

5 光学

6 数学

总结

- 01 some
- 02 some

第一部分 力学

运动学

I

时空与物质

物理学,从刚开始成为实验性的科学的伽利略时期开始,到近半个世纪年来理论物理学家对额外维度的探讨,都给予了时空(spacetime)最核心的地位。牛顿的理论,分析力学,经典场论,相对论这些理论最基本的图像都是时空与物质(matter)的分立性。时空是装备了一个能体现出物理物理意义的度量(metric)的 3+1 维对象。数学上有一套严格的说法,把这种连续,光滑的四维对象称为伪黎曼流形(pseudo-Riemannian manifold)。而物质则是在每个时空点处的某种结构。经典理论下,这种结构不外乎用标量(scalar),矢量(vector)或是更高级的张量(tensor)来描述。最后,这些量的变化就体现出了形形色色的运动(motion)。运动学(kinematics)的主要任务就是描写物质的运动,而对于物质运动背后体现出来的定律(law),我们仅做笼统的较浅的讨论,更加深入地看,不同物质运动符合的不同定律往往又需要因为时空的结构或相互作用的内禀属性而具有普遍的对称性(symmetry),对称性是"规律之规律",它对物理理论在何种程度上起到决定作用将是超出本书范围的更高层次的课题,将伴随读者对物理学学习的生涯。

1

时空观

牛顿力学理论体系基于伽利略时空观(Galilean spacetime picture),也就是绝对时空观(absolute spacetime picture).在这里空间是三维的平直空间.设想一个人站在该空间的某个空间点,他的胸前,头顶和右手平举的三个方向就是相互垂直的方向.如果以自己的臂长为标准长度,他能够定义空间中每两个点之间的空间间隔.事实上,这个人能够以一种正确的方式为每个空间点定义一个坐标,那么所有三维空间点的集合与任意两个点之间的距离为:

$$A(x,y,z)\in\mathbb{R}^3\quad;\quad x,y,z\in\mathbb{R}$$

$$A(x_1,y_1,z_1)\;,\;B(x_2,y_2,z_2)\;:\;l^2=\overline{AB}^2=(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2$$

因为空间不同于时间,我们为以上数字赋予特殊的物理含义,也就是加上量纲(dimension). 如果两点坐标为 (0,0,0) 和 (1,1,1),那么 $l=\sqrt{3}$ m,而不是 $l=\sqrt{3}$. 其单位 m 一方面表示了这个物理量的属性,另一方面指定了某个实际物理体系确定下来的固有长度大小. 现行的 (2018 年 1 月 1 日,下文同) 国际单位制对 1m 的定义如下¹:

1m 是光在 $\frac{1}{299792458}$ s 内在真空中行进的距离.

这就是我们的三维平直空间(3-dimensional flat space). 注意空间点具有物理实际意义, 它可以脱离坐标系而单独存在. 事实上坐标系的原点可以建立在空间中的任意点处, 朝向也可以是任意方向, 两个空间点之间的距离 1 不会依赖于坐标系的选取, 但两个点的坐标会因坐标系不同而改变. 如果我们选取的坐标系总是下述使得两个相距很近的点之间的微元距离公式成立:

$$\mathrm{d}l^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$$

 $^{^{1}}$ 一方面,它依赖于狭义相对论的正确性,目前极少理论物理工作者会质疑它. 另一方面,应该要先定义下文的 1s,再来定义 1m.

那么建立的坐标系就是一个笛卡尔坐标系(Cartesian coordinate system),即空间直角坐标系(3D orthogonal coordinate system). 但是以空间直角坐标系为基础,我们又经常建立球坐标(spherical coordinate) 和柱坐标(cylindrical coordinate) 系统. 通常取 x 轴为幅轴(azimuth axis),点在 x-y 平面上的投影与原点的连线相对 x 轴转过的角度为 φ ,即幅角(azimuth angle). 而 z 轴为极轴(polar axis),而点与原点连线与极轴的夹角 θ 为极角(polar angle). 天文观测用球坐标就很方便,它是以描述的空间点到原点之间的距离 r,也称矢径(radius),和两个描述角位置的极角幅角来构成三个坐标 (r,θ,φ) 的. 而理论物理里也常用到的柱坐标是以 (ρ,φ,z) 为描述空间点的坐标, ρ 是空间点到 z 轴的距离.

图 第二章.1: 三种坐标

之后经常会说到各种对称性,在本系列教材中我们采取如下说法: 球对称(spherical symmetric) 仅仅代表某个函数 $f(r,\theta,\varphi)$ 与 φ 无关. 而柱对称(cylindrical symmetric) 代表的是 $f(\rho,\varphi,z)$ 与 z 无关. 与 φ 和 θ 都无关的 $f(r,\theta,\varphi)=f(r,\forall\theta,\forall\varphi)$ 被称为各向同性(isotropic). 最后中心对称(centrosymmetric) 是一个很弱的对称性,它仅仅代表函数在中心反演(space inversion) 下的对称性:

$$f(x, y, z) = f(-x, -y, -z)$$

绝对时空观中的时间则是一种完全与空间独立的属性. 任意一个坐标点处都有时间轴,而任意一个时刻都有一个三维空间切片.事实上,我们的时空是一个 3+1 维的结构,合理地选取坐标后,实际上可以把时空结构写成四维坐标:

$$A(x, y, z, t) \in \mathbb{R}^4$$
 ; $x, y, z, t \in \mathbb{R}$

时间是一个新的量纲, 其国际单位制对 1s 的定义为:

1s是 ¹³³Cs 原子基态的两个超精细能级之间跃迁所对应的辐射周期时长的 9192631770 倍.

而对于任意两个时空点, 存在绝对的时间间隔, 也就是可以找到两个事件的绝对时间差:

$$\tau = |t_2 - t_1|$$

但空间距离却具有相对性. 故我们要求在同一时刻的空间切片上定义空间的度量:

$$t_1 = t_2$$
: $l = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

这种时空结构被叫做牛顿-嘉当几何(Newton-Cartan geometry). 在牛顿-嘉当几何中书写的物理规律应当具有时空平移对称性,空间旋转对称性和伽利略变换(Galilean transformation) 的对称性,此后我们将进一步阐述.时空平移是指将原来发生的物理过程随时空坐标进行如下改变:

$$\begin{cases} t & \longrightarrow & t + \Delta t \\ x & \longrightarrow & x + \Delta x \\ y & \longrightarrow & y + \Delta y \\ z & \longrightarrow & z + \Delta z \end{cases}$$

空间旋转对称性的一种简单情况是绕 z 轴旋转 θ 角:

$$\begin{cases} t & \longrightarrow & t \\ x & \longrightarrow & x \cos \theta - y \sin \theta \\ y & \longrightarrow & y \cos \theta + x \sin \theta \\ z & \longrightarrow & z \end{cases}$$

伽利略变换是指不改变过程发生的时间,但是对于不同时刻发生的事件的坐标进行重新标定,从而使得两个坐标系之间恰好只差一个速度为 $v = (v_x, v_v, v_z)$ 的匀速直线运动:

$$\begin{cases} t & \longrightarrow & t \\ x & \longrightarrow & x - v_x t \\ y & \longrightarrow & y - v_y t \\ z & \longrightarrow & z - v_z t \end{cases}$$

不同于绝对时空观中时间与空间成为相互独立的量纲的特点, 狭义相对论改变了对基本物理量的看法. 狭义相对论把时空看成为可以相互转化的不可分割的新的 3+1 维整体. 两个时空点之间无法定义绝对的时间间隔. 在相对论时空观(relativistic spacetime picture) 下, 时间和空间可以用同一把尺子去丈量: 这是由于光速的不变性:

$$c = 299792458$$
m/s

而量出来的长度叫做时空间隔(spacetime interval):

$$ds^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

这赋予时空以截然不同的结构,最关键的一点是,时间顺序的绝对性被取消了,相对论的有限速度因果律在这里取代了经典观点的时序因果律.相对论理论我们将在此后章节展开介绍.

2 物质观

时空是物理过程发生的舞台. 舞台上排演的剧目则是各式各样的物质(matter) 作为演员, 而根据其间的相互作用(interaction) 作为剧本而造就的可观测量(observable) 的变化. 任何物理理论, 描述物质的存在形式, 描述相互作用的形式当然以某些含物理量(physical quantity) 的公式作为数学载体. 但是, 不是所有物理量都一定是可观测量. 可观测量, 即可以测量的物理量, 读者也许会对这个概念感到陌生, 难道还有不可以测量的物理量吗? 当然有, 以下是两个例子:

• 研究交流电问题中, 将交流电流升格为相量 (复数):

$$i = I_0 \cos(\omega t + \varphi) \longrightarrow \widetilde{I} = \frac{I_0}{\sqrt{2}} e^{j(\omega t + \varphi)}$$

则虚部 $Im\tilde{I}$ 由于是人为引入的辅助性量而不是可观测量.

• 研究静电学问题中, 由于不一定选取无穷远为电势的零点, 故实际上一个静电学体系在某点产生的电势为:

$$\varphi = \int \frac{\mathrm{d}Q}{4\pi\varepsilon_0 r} + C$$

所以同一个体系可能具有不同的 φ , 即用 φ 去描述物理体系时存在冗余. 从而电势的绝对大小不是可观测量, 两个点电势的差值才是可观测量.

• ...

对于一个物理理论来说,基本定律中的物理量不一定是可观测量,此时应当给出利用物理量计算可观测量的额外公式. 所幸在本书的大部分篇幅中,各类物理量都是可以进行测量的. 故仅在遇到不可观测量时例外强调.

物理量可以分为两类:第一类是时空坐标 r, t, 它是物质运动在时空上的外化.第二个类描述物质内禀的属性.它取决于所引入的物质种类,还取决于我们所关心问题的层次.一般用标量(scalar),矢量(vector),乃至张量(tensor),旋量(spinor) 这样的数学工具来描述它.举例,电磁场物质在经典物理中用电场磁场来描述,但在量子力学(quantum mechanics, QM) 中这不够了,需要用矢势和标势来描述才是完整的.在更深的量子场论(quantum field theory, QFT) 中甚至这也是不够的.还需要量子化为光子才合适.又比如,电子参与的物理

现象,最简单的电子模型是质点模型,其内禀的属性是质量,动量与能量.然而与电磁场的经典相互作用强度告诉我们还有一项内禀属性叫做电荷量.近代人们惊奇地发现原来电子还固有磁矩,与之相应的电子具有内禀的自旋.最后狄拉克等人发展出量子电动力学(quantum electrodynamics, QED),统一地用一个四分量的旋量波函数就能完整地描述所有发现的电子内禀属性.

我们来看一些典型的关于物质的理论模型:

2.a 质点模型

不得不承认质点是牛顿力学的根基,一切可观的结论的出发点.质点所对应的事件集合为时空中的一条世界线(world line).每一个时间仅仅有可能只有一个事件发生.实际上质点的运动用运动学方程(kinematic equation)来描述:

$$\mathbf{r} = \mathbf{r}(t) = (x(t), y(t), z(t))$$

而质量(mass) 是质点必要的内禀属性. 它将作为参数出现在下一节介绍的动力学方程中. 它反应物质受到同样大小的相互作用运动状态改变的难易程度. 国际单位制从 1889 年至 2018 年末对 1kg 的定义如下:

1kg 是保存在法国巴黎布勒特伊宫的国际计量局实验室的约 47 立方厘米立式铂铱合金小圆柱的质量. 当然, 出于实用考虑, 也是很多它的官方复制体的质量.

这个定义今已经有一百多年了,历史远长于其他六个国际基本单位.但目前这一古老的定义方式已经被废除,新的定义²为:

 $1 \log$ 被这样定义: 取普朗克常数的固定数值在单位 $\log \cdot m^2 \cdot s^{-1}$ 下为 $6.62607015 \times 10^{-34}$.

长度,时间和质量为三大力学量纲,量纲是物理量的属性,物理量的表示方法为数值加单位,每个量纲有自己独特的一套单位,不同单位间差一个纯数的倍率.在物理量的加减时量纲必须相同而且结果保持量纲不变.但不同量纲物理量可以进行乘除而生成新的量纲.除了简单的加减乘除的以上规则以外,其他特殊函数必须只能作用在无量纲的纯数上.这叫做量纲法则(dimensional rules).

sfajk

点评

务必要注意量纲法则

sajfkol

启示

务必要注意

sajfkol

定义

一些定义

sajfkol

性质

一些性质

 $^{^2}$ 一方面,它依赖于狭义相对论和量子力学的正确性,目前极少理论物理工作者会质疑它.另一方面,应该要先定义上文的 1s 和 1m,再来定义 1kg.

sajfkol

宁珊	一些性质
火 ノ土	

sajfkol

例子一些性质

sajfkol

{	证明	•
	一此性质	

证明:

一些性质

证明:

一些性质

证明:

一些性质

证明:

一些性质

1 回顾

1 1

- 1
- 2
- 3

2 2

3 4

- 2 回顾
- 1 1
- 1
- 3 世界观

- 2
- 3
- $\overline{2}$ 2
- $3 \mid 4$

- 01 safjkl
- 02 safjkl
- 03 safjkl
- 04 safjkl

- 01 safjkl
- 02 safjkl
- 03 safjkl
- 04 safjkl

- II 运动的描述
- 1 质点的运动
- 2 刚体的运动

III 参考系变换

- 1 质点运动的变换
- 2 刚体运动的变换

IV 运动的牵连

- 1 相交系
- 2 接触系
- 3 纯滚系

总结

- 05 some
- 06 some

动力学

章节概述引入

I 牛顿定律

1 牛顿第一定律

2 牛顿第二定律

3 牛顿第三定律

4 质点系

5 非惯性系

- II 动量定律
- 1 质点的动量
- 2 质点系的动量

III 角动量定律

- 1 质点的角动量
- 2 质点系的角动量

- IV 能量定律
- 1 质点的动能
- 2 质点系的动能
- 3 势能与其他能量

- V 动力学问题求解
- 国 运动积分
- 2 单坐标变量情况
- 3 多坐标变量情况

VI 碰撞

1 二质点弹性正碰

2 若干拓广

2.a 斜碰

2.b 刚体碰撞

2.c 带约束的碰撞

2.d 多体碰撞

3 * 几个普遍定理

- 01 some
- 02 some

静力学

章节概述引入

I 约束

1 约束的类型

2 广义坐标

3 主动力与被动力

II 力系的简化

1 静力学的公理体系

2 力系简化原理

2.a 若干结论

2.b 平面力系简化的最终结果

2.c 空间力系简化的最终结果

III 平衡问题求解 I

- 1 平衡条件与平衡判据
- 2 平衡问题的提法
- 3 平衡问题的分类
- 4 矢量力学的解决方案

- IV 平衡问题求解 II
- 1 理想约束
- 2 再论保守力
- 3 分析力学的解决方案

- V * 分析力学基础
- 1 力学的几何化
- 2 拉格朗日方程
- 3 再论冲击问题

- VI 稳定性问题
- 1 单自由度体系的平衡稳定性
- 2 多自由度体系的平衡稳定性
- 3 动力学稳定性

- 01 some
- 02 some

简谐振动

章节概述引入

I 谐振子

1 简谐振动的定义

2 简谐振动的运动学性质

3 简谐振动的判定

4 谐振子模型

- II 简谐振动的拓广
- 1 阻尼振动
- 2 受迫振动

III 简单的多自由度小振动

- 1 位形空间中的振动
- 1.a 通过特征方程求解
- 1.b * 通过坐标变换求解
- 1.c * 通过对称性求解
- 2 相空间中的振动

- IV * 摄动理论
- 1 线性情况
- 2 非线性情况

V * 可数无穷自由度情况

01 some

02 some

万有引力

章节概述引入

I 万有引力定律

- II 有心力问题
- 一般结论
- 2 几个易求解的模型

III 开普勒问题

- 1 轨道分类
- 2 动力学量的计算
- 3 摄动
- 4 二体问题

- IV * 潮汐
- 1 引潮力
- 2 若干应用

01 some

02 some

刚体

章节概述引入

刚体的物理描述

刚体的运动

质量几何

- II 刚体的平面平行运动
- 1 整体牛顿定律
- 2 动力学定律

- III * 刚体的空间运动
- 1 惯量张量
- 2 欧拉运动学方程
- 3 欧拉动力学方程

- 01 some
- 02 some

* 弹性体

章节概述引入

I 弹性体的物理描述

1 应变

- II 弹性模型
- 1 弹性棒
- 2 弹性绳
- 3 弹性膜
- 4 弹性体

III 弹性波

- 1 分离变量法
- 2 变量代换法
- 3 弹性模型的解
- 4 再论格波

01 some

02 some

流体

章节概述引入

I 流体的物理描述

直续性方程

2 应变率

3 压强与黏滞

- II 定常流体动力学
- 1 欧拉方程
- 2 伯努利方程

III 黏滞流体动力学

- 1 牛顿黏滞定律
- 2 * 两个常用定律
- 3 * 纳维-斯托克斯方程

- IV * 流体中的波
- 1 浅水波
- 2 深水波
- 3 表面波

- V * 波的傅里叶分析
- 1 波的群速度
- 2 波的方向性
- 3 波的展宽

- 01 some
- 02 some

第二部分

热学

热力学第一定律

章节概述引入

- I 热力学系统的状态
- 1 热力学系统的宏观描述
- 2 热力学第零定律与温度
- 3 状态方程
- 4 微观态与宏观态

II 热力学第一定律

- 1 状态与过程
- 2 内能
- 3 功
- 4 热量
- 5 热力学第一定律
- * 耗散

III 理想气体的过程

- 1 理想气体模型
- 2 四类准静态过程
- 2.a 等体过程
- 2.b 等压过程
- 2.c 等温过程
- 2.d 绝热过程
- 3 多方过程类
- 4 几个非准静态过程
- 4.a 自由膨胀
- 4.b 外界等压膨胀
- 4.c 节流过程

IV 常见气体模型

- 1 混合理想气体
- 2 范德瓦尔斯气体
- 3 重力场中的大气
- 4 再论流体的定常流动
- 4.a 欧拉方程
- 4.b 伯努利方程
- 4.c * 传导形式与守恒形式

01 some

02 some

热力学第二定律

章节概述引入

I 循环过程

1 热机与热泵

2 热机循环

2.a 勒鲁瓦循环

2.b 奥托循环

2.c 迪塞尔循环

2.d 布莱顿循环

2.e 卡诺循环

II 理想气体的熵

- 1 态函数熵
- 2 初涉卡诺定理
- 3 局限性

III 热力学第二定律

- 1 熵增原理
- 2 两种等效表述
- 3 再论卡诺定理
- 4 克劳修斯不等式

IV 熵的计算

- 2 宏观与微观
- 2 理想气体的熵
- 3 熵变与热容
- 4 混合熵产生
- 5 传热熵产生

- V * 热力学函数及其特性
- 1 热力学函数
- 2 麦克斯韦关系
- 3 若干重要定理
- 3.a 能态定理
- 3.b 物性函数关系
- 4 最小能原理
- 5 化学势

- 01 some
- 02 some

固体与液体性质

章节概述引入

固体晶格论

2 经典晶格论

2 * 量子晶格论

- II * 固体电子论
- 1 线性输运现象
- 2 热电耦合现象
- 3 德鲁特模型
- 4 能带模型与半导体

- III *液体的彻体性质
- 1 稠密的范氏气体
- 2 濒临瓦解的晶格
- 3 液体宏观性质的描述

IV 液体的表面性质

- 1 表面与界面的热学性质
- 2 附加压强
- 3 接触角

V * 其他物态的性质

- 3 弱关联: 玻色气体
- 2 强关联: 超流
- 3 强关联: 超导
- 等离子体
- 5 白矮星与中子星
- 6 夸克-胶子-等离子体

01 some

02 some

相与相变

章节概述引入

I 相平衡

1 相平衡与相

2 相平衡条件

3 相稳定条件

- II 相变
- 1 一级相变特性
- 2 气液相变
- * 溶解与沉积
- * 顺磁-铁磁相变
- * 二级相变特性

- III * 朗道相变理论
- 1 序参量与自由能
- 2 对称性自发破缺

- 01 some
- 02 some

统计物理概述

章节概述引入

- 概率统计, 信息论与随机过程
- 1 统计模型
- 1.a 样本空间与随机事件
- 1.b 随机变量及其数字特征
- 2 信息熵
- 3 马尔科夫过程

- II 统计假设
- 1 统计方法
- 9 等概率原理

III 麦克斯韦分布律

- 1 麦克斯韦速度分布律
- 2 压强与泻流
- 3 * 输运系数的计算

- IV 麦克斯韦-玻尔兹曼统计
- 1 分布律
- 2 压强与内能的计算
- 3 功, 热, 熵的微观解释

- V * 其他物理统计模型
- 1 玻色-爱因斯坦统计
- 2 费米-狄拉克统计
- 3 涨落与关联

01 some

02 some

第三部分

电磁学

静电学

章节概述引入

I 电荷与电场

1 电荷

2 库仑定律

3 电场

- II 两个定律与电势
- 1 电场通量定律
- 2 电势与电场环量定律
- 3 * 高速运动电荷的电场

- III 静电能
- 1 静电势能
- 2 自能与相互作用能
- 3 电场能

IV 电荷体系

- 1 电偶极子
- 2 电荷密度分布
- 3 极化强度
- 4 若干对称电荷分布
- 4.a 球壳与球体
- 4.b 平面与厚层
- 4.c 直线与圆柱
- 4.d * 带电圆环
- 4.e 均匀极化的球

- 01 some
- 02 some

导体与介质

章节概述引入

- I 导体与静电平衡
- 1 绝缘体与导体综述
- 2 静电平衡部分结果
- 3 简单体系
- 3.a 导体平板
- 3.b 导体球壳
- 3.c 导体柱壳

II 电像法

- 1 半无限大空间的电像法
- 2 球面内与球面外的电像法
- * 静电场边值问题的相关结论
- 3.a 问题的提出
- 3.b 几个引理
- 3.c 叠加原理
- 3.d 唯一性定理

III 电介质

- 1 微观角度理解极化
- 1.a 位移极化
- 1.b 取向极化
- 2 宏观角度理解极化
- 2.a 电位移
- 2.b 简单体系的静电平衡
- 2.c 介质中的静电平衡
- 3 宏观与微观的联系

IV 再论静电能

1 极化能

2 普遍的静电能

3 再论电容模型

- 01 some
- 02 some

稳恒电流

章节概述引入

- 1 稳恒电流描述与形成
- 1 德鲁特模型
- * 费米气观点
- * 能带论观点
- 性,阻尼,回复力
- 5 稳恒电流与形成条件

- II 电路与电路方程
- 1 电路元件
- 2 基尔霍夫电路定律

III 电路分析基础

1 电路的整体性质

2 电路求解套路

2.a 支路电流法

2.b 节点电势法

2.c 网孔电流法

IV 电路分析方法

- 1 叠加原理
- 2 戴维南-诺尔顿原理
- * 特勒根原理
- * 互易原理

V 电阻等效方法

- 1 电阻网络的等效变换
- 2 根据对称性简化电路
- 3 电流分布法

VI 半导体器件

- 1 pn 结
- 2 二极管
- 三极管

- 01 some
- 02 some

静磁场

章节概述引入

1 电流与磁场

1 磁现象

2 毕奥-萨伐尔定律

3 磁场

- II 两个定律与电势
- 1 磁场环量定律
- 2 矢势与磁场通量定律

III 电流体系

0 磁偶极子

2 磁化强度

3 若干对称电荷分布

3.a 平面与厚层

3.b 直线与圆柱

3.c 螺线圈

3.d * 载流圆环

3.e 均匀磁化的球

IV 磁介质与磁能

- 1 微观角度理解磁化
- 1.a 顺磁性
- 1.b 抗磁性
- 1.c 铁磁性
- 2 宏观角度理解磁化
- 2.a 磁场强度
- 2.b 磁路定律
- 2.c 电感
- 3 磁场能量

- 01 some
- 02 some

第十九章

电磁感应

章节概述引入

I

磁生电

 $\sqrt{1}$

法拉第电磁感应定律

2

动生电动势

3

感生电动势

- II 电磁感应与电路
- 1 例: 平行导轨
- 2 发电机与电动机
- * 涡电流

III 自感与互感

1 自感

2 互感

3 变压器

4 再论磁能

- IV * 再论标势与矢势
- 1 洛伦兹力与势
- 2 规范
- 多的产生

- 01 some
- 02 some

麦克斯韦方程组

章节概述引入

电生磁

1 位移电流

2 麦克斯韦方程组

- II 电磁波解
- 1 真空中的电磁波
- 2 介质中的电磁波
- 3 电磁场的能量与动量
- 4 电磁波在界面上的反射与折射

- III * 电磁波的辐射与吸收
- 1 达朗贝尔方程
- 2 偶极辐射
- 3 相对论性辐射
- 4 辐射阻尼与散射截面

IV 电磁单位制

- 1 国际单位制
- 2 高斯单位制
- 3 自然单位制

- 01 some
- 02 some

交流电路

章节概述引入

I 交流电网

2 交流电的产生

2 交流电的传输

2.a 良导体

2.b 波导模型

2.c 传输线模型

2.d 拟稳条件

3 市电规范

整流, 滤波, 稳压

- II 交流元件特性
- 1 电阻元件
- 2 电容元件
- 3 电感元件

III 交流电路解法

1 复数解法

2 相量图解

3 功率分析

IV 常见电路

- 1 谐振电路
- * 滤波电路
- 3 * 运算电路

- 01 some
- 02 some

第四部分

光学

光波与光线

章节概述引入

- I 波动光学引论
- 1 光波描述的三个层次
- 2 光波的叠加
- 3 光波的偏振
- * 光波的传播子

II 界面光学

1 斯涅耳公式

2 菲涅尔公式

2.a 半波损失

2.b 布儒斯特角

2.c 全内反射

3 * 全反射与隐失波

III 光线方程

- 1 光线模型
- 2 光线方程
- * 光力类比

IV 从费马到费曼

- 3 费马原理
- 2 惠更斯-菲涅尔原理
- 3 * 基尔霍夫衍射积分公式
- * 费曼路径积分理论
- 5 结论

01 some

02 some

第二十三章

光学成像

章节概述引入

I 傍轴光成像

1 物与像

2 球面折射与球面反射

3 符号法则

4 薄透镜折射成像

5 几个抽象

6 两个成像系统的复合

- II 理想成像系统
- 1 作图法
- 2 基点基面性质
- 3 望远系统
- 4 * 理想成像背后的数学理论

III 理想成像系统

- 1 作图法
- 2 基点基面性质
- 3 望远系统
- 4 * 理想成像背后的数学理论

- 01 some
- 02 some

光学仪器

章节概述引入

I 光度学

* 色度学

2 光度函数

3 亮度与照度

4 物与像的光度学联系

- II 光阑
- 1 孔径光阑与视场光阑
- 2 光瞳与窗

III 助视仪器

1 人眼与眼睛

2 光学显微镜

3 光学望远镜

IV 观像仪器

2 数字相机

2 透视仪

3 电镜

- 01 some
- 02 some

光的干涉

章节概述引入

工 干涉引论

1 波前函数

2 傍轴近似与远场近似

3 相干度

- II 分波面干涉
- 1 杨氏双孔干涉
- 2 其他变式
- 3 散斑干涉

- III 分振幅干涉
- 1 薄膜干涉
- 2 迈克尔孙干涉仪
- 3 其他变式

IV 相干性

- 2 空间相干性
- 2 时间相干性
- 3 偏振相干性

- 01 some
- 02 some

光的衍射

章节概述引入

1 多光束干涉

1 分振幅的多光束干涉

2 分波面的多光束干涉

3 X 射线晶体衍射

- II 衍射引论
- 1 衍射积分公式
- 2 几类菲涅尔衍射
- 3 几类夫琅禾费衍射

- III * 傅里叶光学
- 1 傅里叶变换的性质
- 2 波前分析
- 3 光学信息处理

01 some

02 some

物理光学

章节概述引入

I 光的本性

1 光子

2 * 相干态与压缩态

- II * 光与物质相互作用
- 1 光与晶体声波
- 2 光与分子振动
- 3 光与电子跃迁
- 4 光的非弹性过程
- 多数光

III 发射,传播与吸收的唯象描述

- 1 发射
- 2 色散
- 3 散射
- 4 吸收

IV 经典色散理论

- 1 洛伦兹电子论
- * 散射截面
- * 磁场与色散
- 3.a 等离子体情况
- 3.b 法拉第效应

01 some

02 some

第五部分 近代物理

相对论

章节概述引入

- I 时空与运动
- 1 相对论时空观
- 2 尺缩, 钟慢, 同时相对性
- 3 洛伦兹变换
- 4 速度变换
- 5 转盘佯谬

II 相互作用

- 1 动量与能量
- * 角动量
- 3 守恒律
- 1 力与场

III 连续体

1 四维波矢变换

2 四维电流变换

3 电磁场变换

IV 广义相对论简介

- 1 度规与测地线
- 空 弯曲的时空
- 3 施瓦西黑洞

- 01 some
- 02 some

量子论

章节概述引入

I 光的量子性

1 黑体辐射

2 光电效应

3 康普顿效应

* 引力与光

- II 粒子波动性
- 1 原子模型
- 2 电子的两个实验
- 3 物质波

- III * 量子力学初步
- 1 运动-波函数
- 2 相互作用-算符
- 3 波的动力学
- 4 全同粒子与福克空间

01 some

02 some

尺度物理学

章节概述引入

- I 基本粒子与相互作用
- 1 标准模型
- 2 相互作用过程
- 3 守恒律
- * 超越标准模型

II 核物理

- 1 核模型
- 2 核反应
- 3 核应用

- III * 原子与分子
- 1 自旋-轨道相互作用
- 2 元素周期律
- 3 键合
- 4 分子谱

- IV * 介观物理
- 1 声子模型
- 2 电子气
- 3 能带论
- 4 强关联电子体系

- V 宇宙学
- 1 宇宙膨胀的证据
- 2 标准模型
- 3 暗物质与暗能量

- 01 some
- 02 some