Directed Circuits

Graph theory Lab -- Algorithm, flowchart and example

Algorithm

Step 1: Start.

Step 2: Read the value of number of vertices(n) and adjacency matrix.

Step 3: Assign path matrix as 0 and k and as 1.

Step 4: Assign forbidden matrix H as 0.

Step 5: Assign value of i as sum of and 1.

Step 6: Check whether i is greater than n, if yes go to Step 6.1, otherwise go to Step 7.

Step 6.1: Check whether there exists a directed edge from to . If yes, print (P). Else go to Step 6.2.

Step 6.2: Check value of k is 1 or not. If yes, go to step 6.2.1, else go to Step 6.3.

Step 6.2.1: Increment value of by 1.

Step 6.2.2: Assign as.

Step 6.2.3: Check whether value of is greater than n. If yes, go to Step 8,

Algorithm

otherwise, go to Step 4. If value of is equal to n, go to Step 6.

Step 6.3: Clear the list of forbidden vertices from .

Step 6.4: Make the path from to as forbidden.

Step 6.5: Assign as 0 and decrement values of k by 1 and go to Step 5.

Step 7: Check whether there is a directed edge from to i. If yes, go to Step 7.1, Otherwise go to Step 7.3.

Step 7.1: Check whether value 'i' is in the path matrix. If yes, go to Step 7.3, otherwise, Step 7.2.

Step 7.2: Check whether vertex i is forbidden from vertex, if yes go to Step 7.3, otherwise go to Step 7.2.1.

Step 7.2.1: Increment value of k by one.

Step 7.2.2: Assign value of as i and go to Step 5.

Step 7.3: Increment value of i by 1 and go to Step 6.

Step 8: Stop.

Flow chart

Example

Fig. 11-6 Digraph.

Solution

```
P1 P2 P3 P4 P5
         DIRECTED CIRCUITS
*************
P1 P2 P3 P4 P5
2 0 0 0 0
2 4 0 0 0
2 4 3 0 0 DIRECTED CIRCUITS
2 4 5 0 0 DIRECTED CIRCUITS
2 5 0 0 0 DIRECTED CIRCUITS
P1 P2 P3 P4 P5
3 0 0 0 DIRECTED CIRCUITS
P1 P2 P3 P4 P5
4 0 0 0 0
*************
P1 P2 P3 P4 P5
50000
```

THANKYOU!