Columbia University: CU Later Team Reference Document

Kevin Yang, Innokentiy Kaurov, Eric Yuang Shao

May 21th 2024

Contents Suffix Array and LCP array Aho Corasick Trie **Templates** Li-Chao Segment Tree 15 Kevin's template Persistent Segment Tree 15 Kevin's Template Extended Miscellaneous 16 Geometry 16 Measuring Execution Time Strings Setting Fixed D.P. Precision Manacher's algorithm Common Bugs and General Advice Flows $O(N^2M)$, on unit networks $O(N^{1/2}M)$ MCMF - maximize flow, then minimize its cost. $O(mn + Fm \log n)$ Graphs Kuhn's algorithm for bipartite matching . . . Hungarian algorithm for Assignment Problem Dijkstra's Algorithm Eulerian Cycle DFS SCC and 2-SAT Finding Bridges HLD on Edges DFS Centroid Decomposition Math Binary exponentiation Matrix Exponentiation: $O(n^3 \log b)$ Extended Euclidean Algorithm Gaussian Elimination Calculating k-th term of a linear recurrence . 10 MIT's FFT/NTT, Polynomial mod/log/exp 10 **Data Structures** 13 13 Lazy Propagation SegTree

Templates $vi d4v = \{0, 1, 0, -1\};$ T a, b, c; vi $d8x = \{1, 0, -1, 0, 1, 1, -1, -1\};$ TLine() : a(0), b(0), c(0) {} vi d8y = $\{0, 1, 0, -1, 1, -1, 1, -1\}$; TLine(const T& a_, const T& b_, const T& c_) : a(a_), Ken's template mt19937 \rightarrow b(b), c(c) {} → rng(chrono::steady_clock::now().time_since_epoch()4sount(Dine(const TPoint<T>& p1, const TPoint<T>& p2){ #include <bits/stdc++.h> a = p1.y - p2.y;using namespace std; b = p2.x - p1.x;#define all(v) (v).begin(), (v).end()Geometry c = -a * p1.x - b * p1.y;typedef long long 11: typedef long double ld; 53 #define pb push back • Basic stuff template<typename T> #define sz(x) (int)(x).size()T det(const T& a11, const T& a12, const T& a21, const T& #define fi first template<typename T> #define se second struct TPoint{ return a11 * a22 - a12 * a21: #define endl '\n' T x, v; int id: template<tvpename T> static constexpr T eps = static_cast<T>(1e-9); Kevin's template T sq(const T& a){ TPoint(): x(0), y(0), id(-1) {} return a * a; TPoint(const T& x_- , const T& y_-) : $x(x_-)$, $y(y_-)$, // paste Kaurov's Template, minus last line id(-1) {} typedef vector<int> vi; template<typename T> TPoint(const T& x_, const T& y_, const int id_) : typedef vector<ll> vll; T smul(const TPoint<T>& a, const TPoint<T>& b){ \rightarrow x(x₋), y(y₋), id(id₋) {} typedef pair<int, int> pii; return a.x * b.x + a.y * b.y; typedef pair<11, 11> pll; 65 TPoint operator + (const TPoint& rhs) const { 10 const char nl = '\n'; template<typename T> return TPoint(x + rhs.x, y + rhs.y); 11 #define form(i, n) for (int i = 0; i < int(n); i++) T vmul(const TPoint<T>& a, const TPoint<T>& b){ 12 return det(a.x, a.y, b.x, b.y); ll k, n, m, u, v, w, x, y, z; TPoint operator - (const TPoint& rhs) const { 13 string s, t; return TPoint(x - rhs.x, y - rhs.y); 14 template<typename T> 15 bool multiTest = 1; bool parallel(const TLine<T>& 11, const TLine<T>& 12){ TPoint operator * (const T& rhs) const { 16 void solve(int tt){ return abs(vmul(TPoint<T>(l1.a, l1.b), TPoint<T>(l2.a, return TPoint(x * rhs, y * rhs); 17 12.b))) <= TPoint<T>::eps; 18 73 TPoint operator / (const T& rhs) const { 19 int main(){ template<typename T> return TPoint(x / rhs, y / rhs); 20 ios::sync with stdio(0);cin.tie(0);cout.tie(0); bool equivalent(const TLine<T>& 11, const TLine<T>& 12){ 21 cout<<fixed<< setprecision(14);</pre> return parallel(11, 12) && 22 TPoint ort() const { abs(det(11.b, 11.c, 12.b, 12.c)) <= TPoint<T>::eps && return TPoint(-y, x); 23 abs(det(11.a, 11.c, 12.a, 12.c)) <= TPoint<T>::eps; int t = 1;24 if (multiTest) cin >> t; 79 T abs2() const { 25 forn(ii, t) solve(ii); return x * x + y * y; 26 • Intersection 27 T len() const { 28 template<tvpename T> Kevin's Template Extended return sqrtl(abs2()); TPoint<T> intersection(const TLine<T>& 11, const 30 \hookrightarrow TLine<T>& 12){ TPoint unit() const { • to type after the start of the contest return TPoint<T>(return TPoint(x, y) / len(); det(-11.c, 11.b, -12.c, 12.b) / det(11.a, 11.b, typedef pair < double, double > pdd; 33 \rightarrow 12.a. 12.b). const ld PI = acosl(-1); 34 det(11.a, -11.c, 12.a, -12.c) / det(11.a, 11.b, const $11 \mod 7 = 1e9 + 7$; template<typename T> 35 → 12.a, 12.b) const $11 \mod 9 = 998244353$; bool operator< (TPoint<T>& A, TPoint<T>& B){); const 11 INF = 2*1024*1024*1023; return make_pair(A.x, A.y) < make_pair(B.x, B.y);</pre> 37 #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") 38 template<typename T> 7 #include <ext/pb ds/assoc container.hpp> template<typename T> int sign(const T& x){ #include <ext/pb ds/tree policy.hpp> bool operator == (TPoint < T > & A, TPoint < T > & B) { if (abs(x) <= TPoint<T>::eps) return 0; return abs(A.x - B.x) <= TPoint<T>::eps && abs(A.v - 10 using namespace __gnu_pbds; return x > 0? +1 : -1: template<class T> using ordered_set = tree<T, null_type,</pre> B.y) <= TPoint<T>::eps; 12

14

17

19

21

less<T>, rb_tree_tag,

 $vi d4x = \{1, 0, -1, 0\};$

tree_order_statistics_node_update>;

• Area

template<tvpename T>

struct TLine{

```
• prep convex poly
    template<typename T>
    T area(const vector<TPoint<T>>& pts){
                                                                template<typename T>
                                                                T dist pr(const TPoint<T>& P. const TRav<T>& R){
       int n = sz(pts):
                                                                                                                            template<typename T>
                                                            35
                                                                  auto H = projection(P, R.1);
                                                                                                                            void prep convex poly(vector<TPoint<T>>& pts){
      T ans = 0;
                                                            36
      for (int i = 0; i < n; i++){
                                                                                                                              rotate(pts.begin(), min_element(all(pts)), pts.end());
                                                                  return is_on_ray(H, R)? dist_pp(P, H) : dist_pp(P,
        ans += vmul(pts[i], pts[(i + 1) % n]);
                                                                 38
      return abs(ans) / 2;
                                                                template<typename T>
                                                            39
                                                                                                                                • in convex poly:
                                                                T dist_ps(const TPoint<T>& P, const TPoint<T>& A, const
    template<typename T>

→ TPoint<T>& B){
                                                                                                                            // 0 - Outside, 1 - Exclusively Inside, 2 - On the
    T dist_pp(const TPoint<T>& a, const TPoint<T>& b){
                                                                  auto H = projection(P, TLine<T>(A, B));
                                                                                                                            \hookrightarrow Border
      return sqrt(sq(a.x - b.x) + sq(a.y - b.y));
                                                                  if (is_on_seg(H, A, B)) return dist_pp(P, H);
                                                                                                                            template<typename T>
                                                                  else return min(dist_pp(P, A), dist_pp(P, B));
13
                                                            43
                                                                                                                            int in convex poly(TPoint<T>& p, vector<TPoint<T>>&
    template<tvpename T>
                                                                }
                                                            44

   pts){
    TLine<T> perp_line(const TLine<T>& 1, const TPoint<T>&
                                                                                                                              int n = sz(pts):

    acw

                                                                                                                              if (!n) return 0;
      T na = -1.b, nb = 1.a, nc = - na * p.x - nb * p.y;
                                                                                                                              if (n <= 2) return is_on_seg(p, pts[0], pts.back());</pre>
                                                                template<typename T>
      return TLine<T>(na, nb, nc);
                                                                                                                              int 1 = 1, r = n - 1;
                                                                bool acw(const TPoint<T>& A, const TPoint<T>& B){
18
                                                                                                                              while (r - 1 > 1){
                                                                  T mul = vmul(A, B):
                                                                                                                                int mid = (1 + r) / 2:
                                                                  return mul > 0 || abs(mul) <= TPoint<T>::eps;
        • Projection
                                                                                                                                if (acw(pts[mid] - pts[0], p - pts[0])) 1 = mid;
                                                                                                                                else r = mid:
                                                                                                                        11
    template<typename T>
                                                                                                                        12
    TPoint<T> projection(const TPoint<T>& p, const TLine<T>&
                                                                                                                              if (!in_triangle(p, pts[0], pts[1], pts[1 + 1]))
                                                                template<typename T>
                                                                                                                             → return 0:
      return intersection(1, perp line(1, p));
                                                                bool cw(const TPoint<T>& A, const TPoint<T>& B){
                                                                                                                              if (is_on_seg(p, pts[1], pts[1 + 1]) ||
                                                                  T \text{ mul} = \text{vmul}(A, B):
                                                                                                                                is_on_seg(p, pts[0], pts.back()) ||
    template<typename T>
                                                                  return mul < 0 || abs(mul) <= TPoint<T>::eps;
                                                                                                                                is_on_seg(p, pts[0], pts[1])
                                                                                                                        16
    T dist_pl(const TPoint<T>& p, const TLine<T>& 1){
                                                                                                                              ) return 2:
      return dist_pp(p, projection(p, 1));
                                                                                                                              return 1:
                                                                    • Convex Hull
                                                                                                                            }
                                                                                                                        19
    template<typename T>
                                                                template<typename T>
    struct TRay{
10
                                                                                                                                • in simple poly
                                                                vector<TPoint<T>> convex_hull(vector<TPoint<T>> pts){
      TLine<T> 1:
                                                                  sort(all(pts));
      TPoint<T> start, dirvec:
                                                                                                                            // 0 - Outside, 1 - Exclusively Inside, 2 - On the
                                                                  pts.erase(unique(all(pts)), pts.end());
      TRay() : 1(), start(), dirvec() {}
13
                                                                                                                            → Border
                                                                  vector<TPoint<T>> up, down;
      TRay(const TPoint<T>& p1, const TPoint<T>& p2){
                                                                                                                            template<tvpename T>
                                                                  for (auto p : pts){
        1 = TLine < T > (p1, p2);
                                                                                                                            int in_simple_poly(TPoint<T> p, vector<TPoint<T>>& pts){
                                                                    while (sz(up) > 1 \&\& acw(up.end()[-1] -
        start = p1, dirvec = p2 - p1;
16
                                                                                                                              int n = sz(pts);
                                                                 \rightarrow up.end()[-2], p - up.end()[-2])) up.pop back();
      }
17
                                                                                                                              bool res = 0:
                                                                    while (sz(down) > 1 && cw(down.end()[-1] -
18
                                                                                                                              for (int i = 0; i < n; i++){
                                                                 \rightarrow down.end()[-2], p - down.end()[-2]))
    template<typename T>
                                                                                                                                auto a = pts[i], b = pts[(i + 1) \% n];
    bool is_on_line(const TPoint<T>& p, const TLine<T>& 1){

→ down.pop back();
                                                                                                                                if (is_on_seg(p, a, b)) return 2;
                                                                    up.pb(p), down.pb(p);
      return abs(1.a * p.x + 1.b * p.y + 1.c) <=
                                                                                                                                if (((a.v > p.v) - (b.v > p.v)) * vmul(b - p, a - p)
     → TPoint<T>::eps;
                                                            10
                                                                                                                             for (int i = sz(up) - 2; i >= 1; i--) down.pb(up[i]);
                                                            11
                                                                                                                                  res ^= 1;
                                                                  return down:
    template<typename T>
    bool is_on_ray(const TPoint<T>& p, const TRay<T>& r){ 13
                                                                                                                              }
                                                                                                                        12
      if (is_on_line(p, r.l)){
                                                                    • in triangle
                                                                                                                        13
                                                                                                                              return res;
        return sign(smul(r.dirvec, TPoint<T>(p - r.start)))
                                                                template<typename T>
     }
27
                                                                bool in triangle(TPoint<T>& P, TPoint<T>& A, TPoint<T>&
                                                                                                                                • minkowski rotate
      else return false:
28
                                                                 \rightarrow B. TPoint<T>& C){
                                                                  if (is on seg(P, A, B) || is on seg(P, B, C) ||
                                                                                                                            template<typename T>
    template<typename T>

    is_on_seg(P, C, A)) return true;

                                                                                                                            void minkowski_rotate(vector<TPoint<T>>& P){
    bool is_on_seg(const TPoint<T>& P, const TPoint<T>& A,
                                                                  return cw(P - A, B - A) == cw(P - B, C - B) &&
                                                                                                                              int pos = 0:

    const TPoint<T>& B){
                                                                  cw(P - A, B - A) == cw(P - C, A - C);
                                                                                                                              for (int i = 1; i < sz(P); i++){
      return is_on_ray(P, TRay<T>(A, B)) && is_on_ray(P,
                                                                                                                                if (abs(P[i].y - P[pos].y) <= TPoint<T>::eps){
     \hookrightarrow TRay<T>(B, A));
```

```
if (P[i].x < P[pos].x) pos = i;
                                                           21
                                                            22
        else if (P[i].y < P[pos].y) pos = i;</pre>
                                                           23
                                                           24
      rotate(P.begin(), P.begin() + pos, P.end());
10
                                                           27
        • minkowski sum
                                                           28
                                                           29
1 // P and Q are strictly convex, points given in
                                                           30
     template<typename T>
    vector<TPoint<T>> minkowski_sum(vector<TPoint<T>> P,

    vector<TPoint<T>> Q){
      minkowski rotate(P);
      minkowski_rotate(Q);
                                                            36
      P.pb(P[0]);
                                                            37
      Q.pb(Q[0]);
      vector<TPoint<T>> ans;
      int i = 0, j = 0;
      while (i < sz(P) - 1 || j < sz(Q) - 1){
        ans.pb(P[i] + Q[j]);
                                                            1
        T curmul:
12
        if (i == sz(P) - 1) curmul = -1:
        else if (j == sz(Q) - 1) curmul = +1;
        else curmul = vmul(P[i + 1] - P[i], O[i + 1] -
        if (abs(curmul) < TPoint<T>::eps || curmul > 0) i++6
16
        if (abs(curmul) < TPoint<T>::eps || curmul < 0) j++?</pre>
17
      return ans:
19
20
    using Point = TPoint<ll>; using Line = TLine<ll>; using<sup>1</sup>

→ Ray = TRay<11>; const ld PI = acos(-1);

                                                            14
                                                            15
    Strings
                                                            16
                                                            17
    vector<int> prefix_function(string s){
                                                            18
      int n = sz(s):
                                                            19
      vector<int> pi(n);
      for (int i = 1; i < n; i++){
                                                           20
        int k = pi[i - 1];
                                                           21
        while (k > 0 \&\& s[i] != s[k]){
                                                            22
          k = pi[k - 1];
        pi[i] = k + (s[i] == s[k]);
10
11
      return pi;
     vector<int> kmp(string s, string k){
      string st = k + "#" + s;
14
      vector<int> res:
15
      auto pi = prefix function(st);
16
      for (int i = 0; i < sz(st); i++){
        if (pi[i] == sz(k)){
          res.pb(i - 2 * sz(k));
19
```

```
return res;
vector<int> z function(string s){
                                                       10
 int n = sz(s):
 vector<int> z(n);
  int 1 = 0, r = 0;
                                                       13
 for (int i = 1; i < n; i++){
   if (r >= i) z[i] = min(z[i - 1], r - i + 1);
    while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
                                                       16
                                                       17
                                                       18
   if (i + z[i] - 1 > r){
                                                       19
     1 = i, r = i + z[i] - 1:
                                                       20
                                                       21
 return z;
                                                       23
                                                       24
                                                       25
                                                       26
Manacher's algorithm
                                                       29
Finds longest palindromes centered at each index
even[i] = d \longrightarrow [i - d, i + d - 1] is a max-palindrome
odd[i] = d \longrightarrow [i - d, i + d] is a max-palindrome
pair<vector<int>, vector<int>> manacher(string s) {
 vector<char> t{'^', '#'};
                                                       35
  for (char c : s) t.push_back(c), t.push_back('#');
 t.push back('$'):
  int n = t.size(), r = 0, c = 0;
                                                       38
  vector<int> p(n, 0);
  for (int i = 1; i < n - 1; i++) {
   if (i < r + c) p[i] = min(p[2 * c - i], r + c - i);
   while (t[i + p[i] + 1] == t[i - p[i] - 1]) p[i] ++;
   if (i + p[i] > r + c) r = p[i], c = i;
  vector<int> even(sz(s)), odd(sz(s));
  for (int i = 0; i < sz(s); i++){
   even[i] = p[2 * i + 1] / 2, odd[i] = p[2 * i + 2]
 return {even, odd};
                                                       50
Flows
                                                       52
O(N^2M), on unit networks O(N^{1/2}M)
                                                       54
                                                       55
struct FlowEdge {
   int v, u;
                                                       57
   11 cap, flow = 0;
   FlowEdge(int v, int u, ll cap) : v(v), u(u),

    cap(cap) {}
struct Dinic {
```

```
const ll flow inf = 1e18;
   vector<FlowEdge> edges;
   vector<vector<int>> adi:
   int n, m = 0;
   int s, t;
   vector<int> level, ptr;
   queue<int> q;
   Dinic(int n, int s, int t) : n(n), s(s), t(t) {
       adj.resize(n);
      level.resize(n);
      ptr.resize(n);
   void add edge(int v. int u. 11 cap) {
       edges.emplace_back(v, u, cap);
       edges.emplace_back(u, v, 0);
       adi[v].push back(m):
      adj[u].push back(m + 1);
      m += 2;
  bool bfs() {
       while (!q.empty()) {
          int v = q.front();
           q.pop();
           for (int id : adi[v]) {
               if (edges[id].cap - edges[id].flow < 1)</pre>
                   continue:
               if (level[edges[id].u] != -1)
                   continue;
               level[edges[id].u] = level[v] + 1;
               q.push(edges[id].u);
          }
      }
      return level[t] != -1;
  11 dfs(int v. 11 pushed) {
      if (pushed == 0)
          return 0:
       if (v == t)
           return pushed;
      for (int& cid = ptr[v]; cid <</pre>
int id = adj[v][cid];
           int u = edges[id].u:
           if (level[v] + 1 != level[u] ||

    edges[id].cap - edges[id].flow < 1)
</pre>
               continue:
          11 tr = dfs(u, min(pushed, edges[id].cap -

    edges[id].flow));

           if (tr == 0)
               continue:
           edges[id].flow += tr;
           edges[id ^ 1].flow -= tr;
           return tr;
      return 0;
  11 flow() {
```

```
11 f = 0;
                                                              32
             while (true) {
62
                 fill(level.begin(), level.end(), -1);
                                                              33
                 level[s] = 0;
                                                              34
                 q.push(s);
65
                 if (!bfs())
                                                              35
67
                     break:
                                                              36
                 fill(ptr.begin(), ptr.end(), 0);
68
                                                              37
                 while (ll pushed = dfs(s, flow_inf)) {
                     f += pushed;
70
                                                              39
                 }
71
                                                              40
                                                              41
73
             return f:
                                                              42
         }
74
                                                              43
    };
75
     // To recover flow through original edges: iterate over45

→ even indices in edges.

   // To recover minimum cut: DFS from s using ALL of the 47

→ edges in the Dinic.edges vector for which flow < 48
</p>
     \hookrightarrow cap.
                                                              50
    MCMF - maximize flow, then minimize
    its cost. O(mn + Fm \log n).
                                                              55
    #include <ext/pb ds/priority queue.hpp>
                                                              56
     template <typename T, typename C>
                                                              57
     class MCMF {
                                                              58
      public:
                                                              59
        static constexpr T eps = (T) 1e-9;
                                                              60
                                                              61
        struct edge {
                                                              62
         int from;
                                                              63
         int to:
                                                              64
         T c;
10
                                                              65
         Tf:
                                                              66
         C cost:
12
                                                              67
13
                                                              68
14
                                                              69
15
                                                              70
        vector<vector<int>> g;
16
       vector<edge> edges;
17
                                                              71
       vector<C> d;
18
                                                              72
       vector<C> pot;
19
                                                              73
        __gnu_pbds::priority_queue<pair<C, int>> q;
20
                                                              74
       vector<typename decltype(q)::point_iterator> its;
21
       vector<int> pe;
22
                                                              76
        const C INF C = numeric limits<C>::max() / 2;
23
                                                              77
24
        explicit MCMF(int n_) : n(n_{-}), g(n), d(n), pot(n, 0)
25
     \rightarrow its(n), pe(n) {}
26
       int add(int from, int to, T forward_cap, C edge_cost,
27
     \hookrightarrow T backward cap = 0) {
          assert(0 <= from && from < n && 0 <= to && to < n);
          assert(forward_cap >= 0 && backward_cap >= 0);
29
          int id = static_cast<int>(edges.size());
30
          g[from].push_back(id);
```

```
edges.push_back({from, to, forward_cap, 0,
                                                       87

    edge cost});

                                                        88
    g[to].push_back(id + 1);
    edges.push_back({to, from, backward_cap, 0,
                                                        90
→ -edge_cost});
                                                       91
    return id;
                                                        92
  }
                                                        93
                                                        94
  void expath(int st) {
                                                        95
    fill(d.begin(), d.end(), INF_C);
                                                        96
    q.clear();
                                                       97
    fill(its.begin(), its.end(), q.end());
                                                        98
    its[st] = q.push({pot[st], st});
                                                       99
    d[st] = 0:
                                                       100
    while (!q.empty()) {
                                                      101
      int i = q.top().second;
                                                      102
      q.pop();
                                                      103
      its[i] = q.end();
                                                      104
      for (int id : g[i]) {
                                                      105
        const edge &e = edges[id];
                                                      106
        int j = e.to;
                                                      107
        if (e.c - e.f > eps && d[i] + e.cost < d[j]) 168
          d[i] = d[i] + e.cost;
          pe[j] = id;
                                                      110
          if (its[j] == q.end()) {
            its[j] = q.push({pot[j] - d[j], j});
                                                      112
                                                      113
            q.modify(its[j], {pot[j] - d[j], j});
                                                      115
                                                      116
      }
                                                      117
                                                      118
    swap(d, pot);
                                                      119
                                                      120
                                                      121
  pair<T, C> max flow(int st, int fin) {
                                                      122
    T flow = 0:
                                                      123
    C cost = 0;
                                                      124
    bool ok = true;
                                                      125
    for (auto& e : edges) {
                                                      126
      if (e.c - e.f > eps && e.cost + pot[e.from] -
                                                      127
   pot[e.to] < 0) {
                                                      128
        ok = false;
                                                      129
        break;
     }
                                                      130
                                                      131
    if (ok) {
      expath(st);
                                                      133
    } else {
                                                      134
      vector<int> deg(n, 0);
      for (int i = 0; i < n; i++) {
                                                      136
        for (int eid : g[i]) {
                                                      137
          auto& e = edges[eid];
          if (e.c - e.f > eps) {
                                                      130
            deg[e.to] += 1;
                                                      140
                                                      141
       }
                                                      142
```

```
vector<int> que;
      for (int i = 0; i < n; i++) {
        if (deg[i] == 0) {
          que.push_back(i);
      }
      for (int b = 0; b < (int) que.size(); b++) {</pre>
        for (int eid : g[que[b]]) {
          auto& e = edges[eid];
          if (e.c - e.f > eps) {
            deg[e.to] -= 1;
            if (deg[e.to] == 0) {
              que.push_back(e.to);
        }
      }
      fill(pot.begin(), pot.end(), INF_C);
      pot[st] = 0;
      if (static cast<int>(que.size()) == n) {
        for (int v : que) {
          if (pot[v] < INF_C) {</pre>
            for (int eid : g[v]) {
              auto& e = edges[eid];
              if (e.c - e.f > eps) {
                if (pot[v] + e.cost < pot[e.to]) {</pre>
                  pot[e.to] = pot[v] + e.cost;
                  pe[e.to] = eid;
                }
          }
        }
      } else {
        que.assign(1, st);
        vector<bool> in queue(n, false);
        in_queue[st] = true;
        for (int b = 0; b < (int) que.size(); b++) {</pre>
          int i = que[b];
          in_queue[i] = false;
          for (int id : g[i]) {
            const edge &e = edges[id];
            if (e.c - e.f > eps && pot[i] + e.cost <
→ pot[e.to]) {
              pot[e.to] = pot[i] + e.cost;
              pe[e.to] = id;
              if (!in_queue[e.to]) {
                que.push_back(e.to);
                in_queue[e.to] = true;
            }
     }
    while (pot[fin] < INF_C) {</pre>
      T push = numeric limits<T>::max();
```

```
int v = fin;
143
                                                                 22
             while (v != st) {
144
               const edge &e = edges[pe[v]];
               push = min(push, e.c - e.f);
                                                                 25
146
               v = e.from:
147
             v = fin;
                                                                 28
149
             while (v != st) {
150
                                                                 29
               edge &e = edges[pe[v]];
                                                                 30
               e.f += push;
                                                                 31
152
               edge &back = edges[pe[v] ^ 1];
153
                                                                 32
               back.f -= push;
155
               v = e.from:
                                                                 34
156
                                                                 35
             flow += push;
                                                                 36
157
             cost += push * pot[fin]:
                                                                 37
158
             expath(st);
159
160
           return {flow, cost}:
161
162
     };
163
164
     // Examples: MCMF < int, int > q(n); q.add(u, v, c, w, 0);
      \rightarrow q.max flow(s,t).
     // To recover flow through original edges: iterate over

→ even indices in edges.
```

Graphs

Kuhn's algorithm for bipartite matching

```
The graph is split into 2 halves of n1 and n2 vertices.
    Complexity: O(n1 * m). Usually runs much faster. MUCH 1
     ← FASTER!!!
    const int N = 305;
    vector<int> g[N]; // Stores edges from left half to
    bool used[N]; // Stores if vertex from left half is
    int mt[N]; // For every vertex in right half, stores to 9
     \rightarrow which vertex in left half it's matched (-1 if not 10
     \rightarrow matched).
                                                              12
    bool try dfs(int v){
                                                              13
      if (used[v]) return false;
                                                              14
12
      used[v] = 1;
                                                              15
      for (auto u : g[v]){
                                                              16
        if (mt[u] == -1 || try_dfs(mt[u])){
15
                                                              17
          mt[u] = v:
                                                              18
           return true;
                                                              19
17
                                                              20
                                                              ^{21}
      return false:
                                                              22
```

```
int main(){
// .....
 for (int i = 1; i \le n2; i++) mt[i] = -1;
                                                        27
  for (int i = 1; i <= n1; i++) used[i] = 0;
  for (int i = 1; i <= n1; i++){
   if (try dfs(i)){
                                                        30
      for (int j = 1; j <= n1; j++) used[j] = 0;
  vector<pair<int, int>> ans;
 for (int i = 1; i <= n2; i++){
   if (mt[i] != -1) ans.pb({mt[i], i});
// Finding maximal independent set: size = # of nodes -

→ # of edges in matching.

// To construct: launch Kuhn-like DFS from unmatched

→ nodes in the left half.

// Independent set = visited nodes in left half +

→ unvisited in right half.

// Finding minimal vertex cover: complement of maximal
\hookrightarrow independent set.
```

Hungarian algorithm for Assignment Problem

Given a 1-indexed (n×m) matrix A, select a number in each row such that each column has at most
1 number selected, and the sum of the selected numbers is minimized.

```
int INF = 1e9; // constant greater than any number in
\hookrightarrow the matrix
vector<int> u(n+1), v(m+1), p(m+1), way(m+1);
for (int i=1; i<=n; ++i) {
    p[0] = i;
    int j0 = 0;
    vector<int> minv (m+1, INF);
    vector<bool> used (m+1, false);
        used[i0] = true:
        int i0 = p[j0], delta = INF, j1;
        for (int j=1; j<=m; ++j)
            if (!used[j]) {
                int cur = A[i0][j]-u[i0]-v[j];
                if (cur < minv[j])</pre>
                    minv[j] = cur, way[j] = j0;
                if (minv[j] < delta)</pre>
                    delta = minv[j], j1 = j;
            }
        for (int j=0; j<=m; ++j)
            if (used[i])
                u[p[j]] += delta, v[j] -= delta;
                minv[j] -= delta;
```

```
j0 = j1;
} while (p[j0] != 0);
do {
    int j1 = way[j0];
    p[j0] = p[j1];
    j0 = j1;
} while (j0);
}
vector<int> ans (n+1); // ans[i] stores the column
    selected for row i
for (int j=1; j<=m; ++j)
    ans[p[j]] = j;
int cost = -v[0]; // the total cost of the matching</pre>
```

Dijkstra's Algorithm

Eulerian Cycle DFS

```
void dfs(int v){
  while (!g[v].empty()){
    int u = g[v].back();
    g[v].pop_back();
    dfs(u);
    ans.pb(v);
}
```

SCC and 2-SAT

10

```
void scc(vector<vector<int>>& g, int* idx) {
  int n = g.size(), ct = 0;
  int out[n];
  vector<int> ginv[n];
  memset(out, -1, sizeof out);
  memset(idx, -1, n * sizeof(int));
  function<void(int)> dfs = [&](int cur) {
    out[cur] = INT_MAX;
    for(int v : g[cur]) {
        ginv[v].push_back(cur);
    }
}
```

```
if(out[v] == -1) dfs(v);
        }
12
         ct++: out[cur] = ct:
      };
14
       vector<int> order:
15
       for(int i = 0; i < n; i++) {</pre>
         order.push back(i);
17
         if(out[i] == -1) dfs(i);
18
19
       sort(order.begin(), order.end(), [&](int& u, int& v) 1{
20
        return out[u] > out[v]:
21
      });
22
       ct = 0:
23
                                                             14
       stack<int> s:
24
                                                             15
       auto dfs2 = [&](int start) {
                                                             16
25
         s.push(start):
26
                                                             17
         while(!s.empty()) {
27
                                                             18
          int cur = s.top();
                                                             19
          s.pop():
29
                                                             20
          idx[cur] = ct;
30
                                                             21
          for(int v : ginv[cur])
                                                             22
31
             if(idx[v] == -1) s.push(v);
                                                             23
                                                             24
33
      };
34
                                                             25
      for(int v : order) {
                                                             26
35
         if(idx[v] == -1) {
                                                             27
36
           dfs2(v):
37
           ct++;
        }
39
      }
40
41
42
    // 0 => impossible, 1 => possible
    pair<int, vector<int>> sat2(int n, vector<pair<int,int>>&
      vector<int> ans(n);
      vector<vector<int>>> g(2*n + 1);
47
      for(auto [x, y] : clauses) {
        x = x < 0 ? -x + n : x;
48
        y = y < 0 ? -y + n : y;
         int nx = x \le n ? x + n : x - n;
        int ny = y \le n ? y + n : y - n;
                                                             11
         g[nx].push_back(y);
         g[ny].push_back(x);
                                                             12
53
                                                             13
54
                                                             14
       int idx[2*n + 1];
55
                                                             15
       scc(g, idx);
      for(int i = 1: i <= n: i++) {
57
        if(idx[i] == idx[i + n]) return {0, {}};
         ans[i - 1] = idx[i + n] < idx[i]:
60
      return {1, ans};
61
                                                              2
    Finding Bridges
                                                              6
2 Bridges.
```

```
Results are stored in a map "is bridge".
For each connected component, call "dfs(starting vertex.9

→ starting vertex)".

                                                      11
const int N = 2e5 + 10; // Careful with the constant! 12
vector<int> g[N];
                                                       14
int tin[N], fup[N], timer;
                                                       15
map<pair<int, int>, bool> is_bridge;
                                                       16
void dfs(int v, int p){
                                                       17
 tin[v] = ++timer;
                                                       18
 fup[v] = tin[v]:
 for (auto u : g[v]){
   if (!tin[u]){
     dfs(u, v):
      if (fup[u] > tin[v]){
       is_bridge[{u, v}] = is_bridge[{v, u}] = true; 24
      fup[v] = min(fup[v], fup[u]);
                                                       26
    else{
      if (u != p) fup[v] = min(fup[v], tin[u]);
Virtual Tree
                                                       34
// order stores the nodes in the gueried set
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
int m = sz(order):
for (int i = 1; i < m; i++){
   order.pb(lca(order[i], order[i - 1]));
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
order.erase(unique(all(order)), order.end());
vector<int> stk{order[0]}:
for (int i = 1; i < sz(order); i++){
   int v = order[i]:
    while (tout[stk.back()] < tout[v]) stk.pop_back(); 7</pre>
    int u = stk.back();
    vg[u].pb({v, dep[v] - dep[u]});
    stk.pb(v):
HLD on Edges DFS
                                                       13
void dfs1(int v, int p, int d){
  par[v] = p;
                                                       15
 for (auto e : g[v]){
   if (e.fi == p){
      g[v].erase(find(all(g[v]), e));
      break:
```

```
dep[v] = d;
  sz[v] = 1:
  for (auto [u, c] : g[v]){
    dfs1(u, v, d + 1);
    sz[v] += sz[u];
  if (!g[v].empty()) iter_swap(g[v].begin(),

→ max_element(all(g[v]), comp));
void dfs2(int v, int rt, int c){
 pos[v] = sz(a);
  a.pb(c):
  root[v] = rt:
  for (int i = 0; i < sz(g[v]); i++){
   auto [u, c] = g[v][i];
   if (!i) dfs2(u, rt, c);
    else dfs2(u, u, c);
int getans(int u, int v){
  int res = 0;
  for (; root[u] != root[v]; v = par[root[v]]){
    if (dep[root[u]] > dep[root[v]]) swap(u, v);
    res = \max(\text{res, rmq}(0, 0, n - 1, pos[root[v]],

→ pos[v]));
  if (pos[u] > pos[v]) swap(u, v);
  return max(res, rmq(0, 0, n - 1, pos[u] + 1, pos[v]);
Centroid Decomposition
vector<char> res(n), seen(n), sz(n);
function<int(int, int)> get_size = [&](int node, int fa)
  sz[node] = 1;
  for (auto& ne : g[node]) {
    if (ne == fa || seen[ne]) continue;
    sz[node] += get_size(ne, node);
 return sz[node]:
function<int(int, int, int)> find centroid = [&](int

→ node, int fa, int t) {
 for (auto& ne : g[node])
   if (ne != fa && !seen[ne] && sz[ne] > t / 2) return

    find_centroid(ne, node, t);

 return node;
```

function<void(int, char)> solve = [&](int node, char

⇔ sz[node]):

seen[c] = 1, res[c] = cur:

for (auto& ne : g[c]) {

get_size(node, -1); auto c = find_centroid(node, -1,

}

Math

Binary exponentiation

```
1  ll power(ll a, ll b){
2     ll res = 1;
3     for (; b; a = a * a % MOD, b >>= 1){
4        if (b & 1) res = res * a % MOD;
5     }
6     return res;
7  }
10
```

Matrix Exponentiation: $O(n^3 \log b)$

```
const int N = 100, MOD = 1e9 + 7:
    struct matrix{
      11 m[N][N]:
      int n;
      matrix(){
         memset(m, 0, sizeof(m));
      matrix(int n ){
11
        memset(m, 0, sizeof(m));
12
13
      matrix(int n_, ll val){
        n = n :
15
         memset(m, 0, sizeof(m));
16
        for (int i = 0; i < n; i++) m[i][i] = val;</pre>
18
19
      matrix operator* (matrix oth){
        matrix res(n);
21
         for (int i = 0; i < n; i++){
22
           for (int j = 0; j < n; j++){
            for (int k = 0; k < n; k++){
24
              res.m[i][j] = (res.m[i][j] + m[i][k] *

    oth.m[k][i]) % MOD;

          }
27
         return res:
30
31
    matrix power(matrix a, ll b){
      matrix res(a.n. 1):
      for (: b: a = a * a, b >>= 1){
```

Linear Sieve

11

12

14

15

16

17

19

21

22

23

int phi[MAX N]:

• Mobius Function

```
vector<int> prime;
bool is composite[MAX N];
int mu[MAX_N];
void sieve(int n){
  fill(is_composite, is_composite + n, 0);
  for (int i = 2; i < n; i++){
   if (!is composite[i]){
      prime.push_back(i);
      mu[i] = -1; //i is prime
  for (int j = 0; j < prime.size() && i * prime[j] < n;</pre>
    is composite[i * prime[j]] = true;
    if (i % prime[j] == 0){
      mu[i * prime[j]] = 0; //prime[j] divides i
      break:
                                                        15
                                                        16
      mu[i * prime[j]] = -mu[i]; //prime[j] does not
 \rightarrow divide i
                                                        20
 }
                                                       21
    • Euler's Totient Function
                                                       24
vector<int> prime;
bool is composite[MAX N];
                                                       26
```

```
void sieve(int n){
 fill(is composite, is composite + n, 0);
 phi[1] = 1:
 for (int i = 2; i < n; i++){
   if (!is_composite[i]){
     prime.push_back (i);
     phi[i] = i - 1; //i is prime
 for (int j = 0; j < prime.size () && i * prime[j] < n;</pre>
   is_composite[i * prime[j]] = true;
   if (i % prime[j] == 0){
     phi[i * prime[j]] = phi[i] * prime[j]; //prime[j]
\leftrightarrow divides i
     break:
     } else {
     phi[i * prime[j]] = phi[i] * phi[prime[j]];
```

Gaussian Elimination

```
bool is O(Z v) { return v.x == 0; }
Z abs(Z v) { return v: }
bool is 0(double v) { return abs(v) < 1e-9; }</pre>
// 1 => unique solution. 0 => no solution. -1 =>

→ multiple solutions

template <typename T>
int gaussian elimination(vector<vector<T>> &a, int
□ limit) {
  if (a.empty() || a[0].empty()) return -1;
  int h = (int)a.size(), w = (int)a[0].size(), r = 0;
  for (int c = 0; c < limit; c++) {
    for (int i = r; i < h; i++) {
      if (!is O(a[i][c]) \&\& (id == -1 || abs(a[id][c]) <

    abs(a[i][c]))) {

        id = i:
    if (id == -1) continue;
    if (id > r) {
      swap(a[r], a[id]);
      for (int j = c; j < w; j++) a[id][j] = -a[id][j];</pre>
    vector<int> nonzero:
    for (int j = c; j < w; j++) {
      if (!is_0(a[r][j])) nonzero.push_back(j);
    T inv a = 1 / a[r][c];
    for (int i = r + 1; i < h; i++) {
      if (is O(a[i][c])) continue:
```

28

```
T coeff = -a[i][c] * inv a;
           for (int j : nonzero) a[i][j] += coeff * a[r][j];
30
         ++r;
32
33
       for (int row = h - 1; row >= 0; row--) {
        for (int c = 0; c < limit; c++) {
                                                              16
35
          if (!is_0(a[row][c])) {
36
                                                             17
             T inv_a = 1 / a[row][c];
                                                              18
             for (int i = row - 1; i >= 0; i--) {
                                                              19
38
39
               if (is_0(a[i][c])) continue;
                                                             20
               T coeff = -a[i][c] * inv_a;
40
               for (int j = c; j < w; j++) a[i][j] += coeff 22
41

    a[row][j];

42
             break:
                                                             25
43
          }
45
      } // not-free variables: only it on its line
46
      for(int i = r; i < h; i++) if(!is 0(a[i][limit]))</pre>
     → return 0:
       return (r == limit) ? 1 : -1;
49
     template <typename T>
51
     pair<int, vector<T>> solve_linear(vector<vector<T>> a,

    const vector<T> &b. int w) {
      int h = (int)a.size();
      for (int i = 0; i < h; i++) a[i].push_back(b[i]);</pre>
       int sol = gaussian elimination(a, w);
55
      if(!sol) return {0, vector<T>()};
      vector<T> x(w, 0):
57
      for (int i = 0; i < h; i++) {
58
                                                              10
        for (int j = 0; j < w; j++) {
                                                              11
          if (!is_0(a[i][j])) {
                                                              12
             x[i] = a[i][w] / a[i][i];
61
                                                              13
             break:
                                                              14
63
                                                              15
                                                              16
                                                              17
       return {sol, x};
                                                              18
                                                              19
                                                              20
                                                             21
    is prime
                                                             22
                                                              23
        • (Miller–Rabin primality test)
                                                             24
                                                              25
    typedef int128 t i128;
    i128 power(i128 a, i128 b, i128 MOD = 1, i128 res = 1) 2 }
      for (; b; b /= 2, (a *= a) \%= MOD)
                                                             30
         if (b & 1) (res *= a) \%= MOD;
      return res;
                                                             32
                                                             33
    bool is_prime(ll n) {
                                                              35
      if (n < 2) return false:
```

```
static constexpr int A[] = \{2, 3, 5, 7, 11, 13, 17,
 int s = __builtin_ctzll(n - 1);
 11 d = (n - 1) >> s;
  for (auto a : A) {
    if (a == n) return true;
    11 x = (11) power(a, d, n);
    if (x == 1 | | x == n - 1) continue;
    bool ok = false;
    for (int i = 0; i < s - 1; ++i) {
      x = 11((i128)x * x % n); // potential overflow!
      if (x == n - 1) {
        ok = true:
        break:
    if (!ok) return false;
typedef __int128_t i128;
11 pollard rho(ll x) {
 11 s = 0, t = 0, c = rng() \% (x - 1) + 1;
  11 \text{ stp} = 0, \text{ goal} = 1, \text{ val} = 1;
  for (goal = 1; goal *= 2, s = t, val = 1) {
    for (stp = 1; stp <= goal; ++stp) {</pre>
      t = 11(((i128)t * t + c) \% x):
      val = 11((i128)val * abs(t - s) % x);
      if ((stp \% 127) == 0) {
        11 d = gcd(val, x);
        if (d > 1) return d:
      }
    11 d = gcd(val, x);
    if (d > 1) return d;
11 get_max_factor(ll _x) {
 11 max factor = 0;
  function \langle void(11) \rangle fac = \lceil k \rceil (11 x)  {
    if (x \le max factor | | x < 2) return;
    if (is prime(x)) {
      max_factor = max_factor > x ? max_factor : x;
      return;
    while (p >= x) p = pollard_rho(x);
    while ((x \% p) == 0) x /= p;
    fac(x), fac(p);
  };
  fac(x):
  return max_factor;
```

Berlekamp-Massey

- Recovers any *n*-order linear recurrence relation from the first 2*n* terms of the sequence.
- \bullet Input s is the sequence to be analyzed.
- Output c is the shortest sequence $c_1, ..., c_n$, such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}$$
, for all $m \ge n$.

- Be careful since c is returned in 0-based indexation
- Complexity: $O(N^2)$

13

14

 21

27

```
vector<ll> berlekamp_massey(vector<ll> s) {
 int n = sz(s), l = 0, m = 1;
 vector<ll> b(n), c(n);
 11 \ 1dd = b[0] = c[0] = 1;
 for (int i = 0; i < n; i++, m++) {
   ll d = s[i]:
   for (int j = 1; j \le 1; j++) d = (d + c[j] * s[i -

→ il) % MOD:

   if (d == 0) continue:
   vector<11> temp = c;
   11 coef = d * power(ldd, MOD - 2) % MOD;
   for (int j = m; j < n; j++){
     c[j] = (c[j] + MOD - coef * b[j - m]) % MOD;
     if (c[i] < 0) c[i] += MOD;
   if (2 * 1 <= i) {
     1 = i + 1 - 1;
     b = temp;
     1dd = d;
     m = 0;
 }
 c.resize(1 + 1);
 c.erase(c.begin());
 for (11 &x : c)
     x = (MOD - x) \% MOD:
 return c:
```

Calculating k-th term of a linear recurrence

• Given the first n terms $s_0, s_1, ..., s_{n-1}$ and the sequence $c_1, c_2, ..., c_n$ such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}$$
, for all $m \ge n$,

the function calc_kth computes s_k .

• Complexity: $O(n^2 \log k)$

```
vector<ll> poly_mult_mod(vector<ll> p, vector<ll> q,

yector<11>& c){

      vector<11> ans(sz(p) + sz(q) - 1);
      for (int i = 0; i < sz(p); i++){
        for (int j = 0; j < sz(q); j++){
          ans[i + j] = (ans[i + j] + p[i] * q[j]) % MOD;
      }
      int n = sz(ans), m = sz(c);
      for (int i = n - 1; i >= m; i--){
        for (int j = 0; j < m; j++){
          ans[i - 1 - j] = (ans[i - 1 - j] + c[j] * ans[i])

→ % MOD:

        }
                                                           14
      ans.resize(m):
                                                           15
      return ans;
                                                          16
    11 calc kth(vector<ll> s, vector<ll> c, ll k){
      assert(sz(s) >= sz(c)); // size of s can be greater
     if (k < sz(s)) return s[k];
                                                          20
      vector<ll> res{1}:
      for (vector<11> poly = {0, 1}; k; poly =
                                                          22

→ poly_mult_mod(poly, poly, c), k >>= 1){
                                                           23
        if (k & 1) res = poly_mult_mod(res, poly, c);
                                                           24
                                                          25
      11 \text{ ans} = 0:
25
      for (int i = 0; i < min(sz(res), sz(c)); i++) ans =
     \rightarrow (ans + s[i] * res[i]) % MOD;
      return ans:
   }
```

Partition Function

• Returns number of partitions of n in $O(n^{1.5})$

```
NTT
void ntt(vector<ll>& a, int f) {
  int n = int(a.size()):
  vector<ll> w(n);
 vector<int> rev(n):
 for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] / 2),
 \rightarrow | ((i & 1) * (n / 2));
 for (int i = 0; i < n; i++) {
    if (i < rev[i]) swap(a[i], a[rev[i]]):</pre>
 11 wn = power(f ? (MOD + 1) / 3 : 3, (MOD - 1) / n);
  for (int i = 1; i < n; i++) w[i] = w[i-1] * wn %
  for (int mid = 1; mid < n; mid *= 2) {
    for (int i = 0; i < n; i += 2 * mid) {
      for (int j = 0; j < mid; j++) {</pre>
        ll x = a[i + j], y = a[i + j + mid] * w[n / (2_{2})

→ mid) * il % MOD:
        a[i + j] = (x + y) \% MOD, a[i + j + mid] = (x + j)
 \hookrightarrow MOD - v) % MOD;
  if (f) {
                                                         35
    11 iv = power(n, MOD - 2);
    for (auto& x : a) x = x * iv % MOD;
vector<ll> mul(vector<ll> a, vector<ll> b) {
  int n = 1, m = (int)a.size() + (int)b.size() - 1;
  while (n < m) n *= 2;
  a.resize(n), b.resize(n);
  ntt(a, 0), ntt(b, 0); // if squaring, you can save one
  for (int i = 0; i < n; i++) a[i] = a[i] * b[i] % MOD;
 ntt(a, 1):
  a.resize(m):
  return a;
FFT
const ld PI = acosl(-1);
auto mul = [&](const vector<ld>& aa, const vector<ld>& 6
 int n = (int)aa.size(), m = (int)bb.size(), bit = 1; 8
  while ((1 << bit) < n + m - 1) bit++;
  int len = 1 << bit;</pre>
  vector<complex<ld>>> a(len), b(len);
  vector<int> rev(len);
  for (int i = 0; i < n; i++) a[i].real(aa[i]);</pre>
  for (int i = 0; i < m; i++) b[i].real(bb[i]);</pre>
```

```
if (i < rev[i]) swap(p[i], p[rev[i]]);</pre>
   for (int mid = 1; mid < len; mid *= 2) {</pre>
     auto w1 = complex<ld>(cos(PI / mid), (inv ? -1 :
for (int i = 0; i < len; i += mid * 2) {
       auto wk = complex<ld>(1, 0);
       for (int j = 0; j < mid; j++, wk = wk * w1) {
         auto x = p[i + j], y = wk * p[i + j + mid];
         p[i + j] = x + y, p[i + j + mid] = x - y;
   if (inv == 1) {
     for (int i = 0: i < len: i++)

    p[i].real(p[i].real() / len);
 };
 fft(a, 0), fft(b, 0);
 for (int i = 0; i < len; i++) a[i] = a[i] * b[i];
 a.resize(n + m - 1);
 vector < ld > res(n + m - 1);
 for (int i = 0; i < n + m - 1; i++) res[i] =

    a[i].real():
return res;
```

MIT's FFT/NTT, Polynomial mod/log/exp Template

- For integers rounding works if $(|a| + |b|) \max(a, b) < \sim 10^9$, or in theory maybe 10^6
- $\frac{1}{P(x)}$ in $O(n \log n)$, $e^{P(x)}$ in $O(n \log n)$, $\ln(P(x))$ in $O(n \log n)$, $P(x)^k$ in $O(n \log n)$, Evaluates $P(x_1), \dots, P(x_n)$ in $O(n \log^2 n)$, Lagrange Interpolation in $O(n \log^2 n)$

```
// use #define FFT 1 to use FFT instead of NTT (default)
// Examples:
// poly a(n+1); // constructs degree n poly
// a[0].v = 10: // assigns constant term a 0 = 10
// polu b = exp(a):
// poly is vector<num>
// for NTT, num stores just one int named v
// for FFT, num stores two doubles named x (real), y
\hookrightarrow (imag)
#define sz(x) ((int)x.size())
#define rep(i, j, k) for (int i = int(j); i < int(k);
#define trav(a, x) for (auto \&a : x)
#define per(i, a, b) for (int i = (b)-1; i \ge (a); --i)
using ll = long long;
using vi = vector<int>:
```

auto fft = [&](vector<complex<ld>>& p, int inv) {

for (int i = 0; i < len; i++) rev[i] = (rev[i >> 1] >> 3

16

for (int i = 0: i < len: i++)

```
namespace fft {
                                                                vi rev({0, 1});
                                                                                                                                fill(fa.begin(), fa.begin() + 2 * n, 0);
                                                                                                                      126
    #if FFT
                                                                vn rt(2, num(1)), fa, fb;
                                                                                                                                copy(a.begin(), a.begin() + min(n, sz(a)),
                                                                                                                      127
    // FFT
                                                                inline void init(int n) {

    fa.begin()):
    using dbl = double;
                                                                 if (n <= sz(rt)) return;</pre>
                                                                                                                                fft(b, 2 * n);
                                                            74
                                                                                                                      128
                                                                                                                                fft(fa, 2 * n);
    struct num {
                                                                  rev.resize(n):
21
                                                                  rep(i, 0, n) rev[i] = (rev[i >> 1] | ((i & 1) * n)) 180
                                                                                                                                num d = inv(num(2 * n));
      dbl x, y;
      num(dbl x = 0, dbl y = 0): x(x), y(y) {}
                                                                 rep(i, 0, 2 * n) b[i] = b[i] * (2 - fa[i] * b[i]) *
23
                                                                  rt.reserve(n):
                                                                                                                             d:
24
                                                            77
                                                                                                                                reverse(b.begin() + 1, b.end());
    inline num operator+(num a, num b) {
                                                                  for (int k = sz(rt); k < n; k *= 2) {
      return num(a.x + b.x, a.y + b.y);
                                                                    rt.resize(2 * k);
                                                                                                                                fft(b, 2 * n);
                                                            79
                                                                                                                      133
26
    }
                                                                #i.f FFT
                                                                                                                                b.resize(n):
27
                                                            80
                                                                                                                      134
    inline num operator-(num a, num b) {
                                                                    double a = M PI / k:
                                                                                                                      135
                                                            81
      return num(a.x - b.x, a.y - b.y);
                                                                    num z(cos(a), sin(a)): // FFT
                                                                                                                              b.resize(a.size()):
29
                                                            82
                                                                                                                      136
    }
                                                                #else
                                                                                                                              return b:
30
                                                            83
    inline num operator*(num a, num b) {
                                                                    num z = pow(num(g), (mod - 1) / (2 * k)); // NTT 138
      return num(a.x * b.x - a.v * b.v. a.x * b.v + a.v * 85
                                                                                                                            #if FFT
     \rightarrow b.x):
                                                                    rep(i, k / 2, k) rt[2 * i] = rt[i],
                                                                                                                            // Double multiply (num = complex)
                                                                                            rt[2 * i + 1] = rt[i] * z_{141}
                                                                                                                            using vd = vector<double>;
33
    inline num conj(num a) { return num(a.x. -a.v); }
                                                                                                                            vd multiply(const vd& a. const vd& b) {
                                                            88
    inline num inv(num a) {
                                                                                                                              int s = sz(a) + sz(b) - 1;
                                                            89
                                                                inline void fft(vector<num>& a. int n) {
      dbl n = (a.x * a.x + a.y * a.y);
                                                            90
                                                                                                                              if (s <= 0) return {}:
      return num(a.x / n, -a.y / n);
                                                                                                                              int L = s > 1 ? 32 - __builtin_clz(s - 1) : 0, n = 1
                                                                  init(n):
                                                                  int s = __builtin_ctz(sz(rev) / n);
                                                                  rep(i, 0, n) if (i < rev[i] >> s) swap(a[i], a[rev[i]46
                                                                                                                              if (sz(fa) < n) fa.resize(n);</pre>
39
                                                            93
                                                                 if (sz(fb) < n) fb.resize(n);</pre>
    #else
                                                                  for (int k = 1; k < n; k *= 2)
                                                                                                                              fill(fa.begin(), fa.begin() + n, 0);
                                                           94
                                                                                                                      148
    const int mod = 998244353. g = 3:
                                                                    for (int i = 0; i < n; i += 2 * k) rep(i, 0, k) { 149
                                                                                                                              rep(i, 0, sz(a)) fa[i].x = a[i]:
    // For p < 2^30 there is also (5 << 25, 3), (7 << 26, 96
                                                                        num t = rt[j + k] * a[i + j + k];
                                                                                                                              rep(i, 0, sz(b)) fa[i].y = b[i];
                                                                        a[i + j + k] = a[i + j] - t;
                                                                                                                              fft(fa. n):
   // (479 << 21, 3) and (483 << 21, 5). Last two are >
                                                                        a[i + j] = a[i + j] + t;
                                                                                                                              trav(x, fa) x = x * x;

→ 10^9.

                                                                                                                              rep(i, 0, n) fb[i] = fa[(n - i) & (n - 1)] -
    struct num {

    coni(fa[i]):

                                                           100
      int v;
                                                                // Complex/NTT
                                                                                                                              fft(fb, n);
46
                                                           101
      num(11 v_{-} = 0): v(int(v_{-} \% mod)) {
                                                                vn multiply(vn a, vn b) {
                                                           102
                                                                                                                              vd r(s):
      if (v < 0) v += mod:
                                                                int s = sz(a) + sz(b) - 1;
                                                                                                                              rep(i, 0, s) r[i] = fb[i].v / (4 * n):
                                                           103
                                                                 if (s <= 0) return {};
                                                           104
                                                                                                                              return r;
      explicit operator int() const { return v; }
                                                                  int L = s > 1 ? 32 - _builtin_clz(s - 1) : 0, n = 1_{158}
                                                                                                                            // Integer multiply mod m (num = complex)
51
    inline num operator+(num a, num b) { return num(a.v + 106
                                                                  a.resize(n), b.resize(n);
                                                                                                                            vi multiply mod(const vi& a, const vi& b, int m) {
     \rightarrow b.v): }
                                                                  fft(a, n):
                                                                                                                      161
                                                                                                                              int s = sz(a) + sz(b) - 1:
    inline num operator-(num a, num b) {
                                                                                                                              if (s <= 0) return {};
                                                                  fft(b, n);
      return num(a.v + mod - b.v):
                                                                  num d = inv(num(n));
                                                                                                                              int L = s > 1 ? 32 - _builtin_clz(s - 1) : 0, n = 1
                                                           109
                                                                                                                      163
                                                                  rep(i, 0, n) a[i] = a[i] * b[i] * d:
55
                                                           110
    inline num operator*(num a, num b) {
                                                                  reverse(a.begin() + 1, a.end());
                                                                                                                              if (sz(fa) < n) fa.resize(n);</pre>
                                                           111
      return num(111 * a.v * b.v):
                                                                  fft(a, n):
                                                                                                                              if (sz(fb) < n) fb.resize(n);</pre>
57
                                                           112
                                                                                                                      165
                                                                  a.resize(s):
                                                                                                                              rep(i. 0. sz(a)) fa[i] =
                                                           113
                                                                                                                      166
    inline num pow(num a. int b) {
                                                                  return a:
                                                                                                                                num(a[i] & ((1 << 15) - 1), a[i] >> 15);
                                                           114
      num r = 1:
                                                                                                                              fill(fa.begin() + sz(a), fa.begin() + n, 0);
                                                           115
60
                                                                                                                      168
                                                                                                                              rep(i, 0, sz(b)) fb[i] =
                                                                // Complex/NTT power-series inverse
61
                                                           116
        if (b \& 1) r = r * a;
                                                                // Doubles b as b[:n] = (2 - a[:n] * b[:n/2]) * b[:n/2]_{70}
                                                                                                                                num(b[i] & ((1 << 15) - 1), b[i] >> 15):
                                                           117
                                                                vn inverse(const vn& a) {
                                                                                                                              fill(fb.begin() + sz(b), fb.begin() + n, 0);
        a = a * a;
                                                           118
63
                                                                  if (a.empty()) return {};
      } while (b >>= 1);
                                                                                                                              fft(fa, n);
                                                           119
                                                                                                                      172
64
                                                                  vn b({inv(a[0])});
                                                                                                                              fft(fb, n);
      return r:
                                                           120
                                                                  b.reserve(2 * a.size());
                                                                                                                              double r0 = 0.5 / n; // 1/2n
                                                           121
                                                                                                                      174
66
    inline num inv(num a) { return pow(a, mod - 2); }
                                                                  while (sz(b) < sz(a)) {
                                                                                                                              rep(i, 0, n / 2 + 1) {
67
                                                                                                                      175
                                                                   int n = 2 * sz(b):
                                                                                                                                int j = (n - i) & (n - 1);
                                                                                                                                num g0 = (fb[i] + conj(fb[j])) * r0;
    #endif
                                                           124
                                                                    b.resize(2 * n, 0);
                                                                                                                      177
69
                                                                    if (sz(fa) < 2 * n) fa.resize(2 * n);
    using vn = vector<num>;
                                                           125
```

```
num g1 = (fb[i] - conj(fb[i])) * r0;
                                                               233
          swap(g1.x, g1.v);
                                                               234
179
          g1.v *= -1:
                                                               235
          if (j != i) {
                                                               236
181
            swap(fa[j], fa[i]);
                                                               237
182
            fb[j] = fa[j] * g1;
                                                               238
            fa[i] = fa[i] * g0;
                                                               239
184
185
                                                               240
          fb[i] = fa[i] * conj(g1);
186
                                                               241
          fa[i] = fa[i] * conj(g0);
                                                               242
187
188
                                                               243
       fft(fa, n);
189
                                                               244
190
       fft(fb, n):
                                                               245
       vi r(s):
191
                                                               246
       rep(i, 0, s) r[i] =
192
        int((11(fa[i].x + 0.5) + (11(fa[i].v + 0.5) \% m < 248)
193
      (11(fb[i].x + 0.5) \% m << 15) +
                                                               250
194
                (11(fb[i].v + 0.5) \% m << 30)) \%
195
            m);
                                                               252
196
       return r:
                                                               253
197
198
     #endif
199
     } // namespace fft
200
                                                               255
     // For multiply mod, use num = modnum, poly =

    uector<num>

                                                               257
     using fft::num:
                                                               258
202
     using poly = fft::vn;
                                                               259
     using fft::multiply:
                                                               260
204
     using fft::inverse;
205
                                                               261
                                                               262
     polv& operator+=(polv& a, const polv& b) {
                                                               263
207
       if (sz(a) < sz(b)) a.resize(b.size());
                                                               264
208
       rep(i, 0, sz(b)) a[i] = a[i] + b[i]:
                                                               265
209
       return a:
                                                               266
210
211
     poly operator+(const poly& a, const poly& b) {
                                                               268
212
       poly r = a;
213
                                                               269
       r += b;
                                                               270
214
       return r:
                                                               271
215
                                                               272
216
     poly& operator = (poly& a, const poly& b) {
217
                                                               273
       if (sz(a) < sz(b)) a.resize(b.size());</pre>
                                                               274
        rep(i, 0, sz(b)) a[i] = a[i] - b[i];
                                                               275
219
       return a:
220
                                                               276
                                                               277
221
     poly operator-(const poly& a, const poly& b) {
                                                               278
       polv r = a:
223
                                                               279
       r -= b;
224
                                                               280
       return r:
225
                                                               282
226
     poly operator*(const poly& a, const poly& b) {
                                                               283
227
       return multiply(a, b);
                                                               284
                                                               285
229
     poly& operator *= (poly& a, const poly& b) { return a = 286
230
231
     poly& operator*=(poly& a, const num& b) { // Optional 289
```

```
trav(x, a) x = x * b;
                                                       200
  return a;
                                                       291
                                                       292
poly operator*(const poly& a, const num& b) {
                                                       203
 poly r = a;
                                                       294
 r *= b:
                                                       295
  return r:
                                                       296
                                                       297
// Polynomial floor division; no leading 0's please
poly operator/(poly a, poly b) {
                                                       299
  if (sz(a) < sz(b)) return \{\}:
                                                       300
  int s = sz(a) - sz(b) + 1;
                                                       301
  reverse(a.begin(), a.end()):
                                                       302
  reverse(b.begin(), b.end());
                                                       303
  a.resize(s):
                                                       304
  b.resize(s):
  a = a * inverse(move(b));
                                                       306
  a.resize(s):
 reverse(a.begin(), a.end()):
 return a:
                                                       300
poly& operator/=(poly& a, const poly& b) { return a = 3a1
poly& operator%=(poly& a, const poly& b) {
                                                       313
 if (sz(a) \ge sz(b)) {
    polv c = (a / b) * b:
                                                       315
    a.resize(sz(b) - 1):
    rep(i, 0, sz(a)) a[i] = a[i] - c[i];
                                                       318
 return a:
                                                       319
polv operator%(const polv& a, const polv& b) {
                                                       321
 polv r = a;
                                                       322
 r %= b:
                                                       323
  return r:
                                                       324
// Log/exp/pow
                                                       326
poly deriv(const poly& a) {
 if (a.empty()) return {};
                                                       328
  polv b(sz(a) - 1):
                                                       329
  rep(i, 1, sz(a)) b[i - 1] = a[i] * i;
  return b:
                                                       331
                                                       332
poly integ(const poly& a) {
                                                       333
 poly b(sz(a) + 1);
                                                       334
 b[1] = 1: // mod p
                                                       335
  rep(i, 2, sz(b)) b[i] =
   b[fft::mod % i] * (-fft::mod / i): // mod p
  rep(i, 1, sz(b)) b[i] = a[i - 1] * b[i]; // mod p 337
  //rep(i.1.sz(b)) b\lceil i\rceil = a\lceil i-1\rceil * inv(num(i)) : // else 338
  return b:
                                                       330
                                                       340
poly log(const poly& a) { // MUST have a[0] == 1
 poly b = integ(deriv(a) * inverse(a));
                                                       342
  b.resize(a.size());
                                                       343
  return b:
                                                       345
poly exp(const poly& a) { // MUST have a[0] == 0
```

```
poly b(1, num(1));
  if (a.empty()) return b;
  while (sz(b) < sz(a)) {
   int n = min(sz(b) * 2, sz(a));
   b.resize(n):
   poly v = poly(a.begin(), a.begin() + n) - log(b);
   v[0] = v[0] + num(1);
   b *= v:
   b.resize(n);
 return b:
polv pow(const polv& a. int m) { // m >= 0
 polv b(a.size()):
  if (!m) {
   b[0] = 1:
   return b;
  int p = 0:
  while (p < sz(a) \&\& a[p].v == 0) ++p;
  if (111 * m * p >= sz(a)) return b;
  num mu = pow(a[p], m), di = inv(a[p]);
  poly c(sz(a) - m * p);
 rep(i, 0, sz(c)) c[i] = a[i + p] * di;
  c = log(c);
  trav(v, c) v = v * m:
  c = exp(c):
  rep(i, 0, sz(c)) b[i + m * p] = c[i] * mu;
 return b:
// Multipoint evaluation/interpolation
vector<num> eval(const poly& a, const vector<num>& x) {
 int n = sz(x):
 if (!n) return {}:
  vector<poly> up(2 * n);
  rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
  per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
 vector<poly> down(2 * n);
  down[1] = a \% up[1];
  rep(i, 2, 2 * n) down[i] = down[i / 2] % up[i];
  vector<num> y(n);
 rep(i, 0, n) y[i] = down[i + n][0];
 return v;
polv interp(const vector<num>& x. const vector<num>& v)
int n = sz(x);
  assert(n):
  vector<poly> up(n * 2);
  rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
  per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
 vector<num> a = eval(deriv(up[1]), x);
  vector<poly> down(2 * n);
  rep(i, 0, n) down[i + n] = poly({y[i] * inv(a[i])});
  per(i, 1, n) down[i] =
```

```
down[i * 2] * up[i * 2 + 1] + down[i * 2 + 1] * up[i * 2]

→ * 2];

       return down[1]:
348
                                                             30
                                                             31
                                                              32
    Data Structures
                                                              33
                                                              34
                                                              35
     Fenwick Tree
                                                              36
    11 sum(int r) {
         11 ret = 0:
         for (; r \ge 0; r = (r \& r + 1) - 1) ret += bit[r]; _{40}
         return ret:
                                                              42
     void add(int idx, ll delta) {
         for (; idx < n; idx |= idx + 1) bit[idx] += delta; 44
                                                              47
     Lazy Propagation SegTree
                                                              49
    // Clear: clear() or build()
                                                              50
     const int N = 2e5 + 10: // Change the constant!
     template<typename T>
                                                              52
     struct LazvSegTree{
                                                              53
       T t[4 * N];
       T lazv[4 * N];
                                                             55
       int n:
       // Change these functions, default return, and lazy
      \hookrightarrow mark.
       T default_return = 0, lazy_mark =

→ numeric_limits<T>::min();

       // Lazy mark is how the algorithm will identify that

→ no propagation is needed.

       function\langle T(T, T) \rangle f = \lceil k \rceil (T a, T b) 
         return a + b;
      // f_on_seg calculates the function f, knowing the

    → lazy value on segment,

       // segment's size and the previous value.
       // The default is segment modification for RSQ. For
      return cur_seg_val + seg_size * lazy_val;
                                                              68
      // For RMQ. Modification: return lazy val;

    □ Increments: return cur seq val + lazy val;

      function<T(T, int, T)> f_on_seg = [&] (T cur_seg_val,

    int seg size, T lazy val){
         return seg_size * lazy_val;
22
       // upd lazy updates the value to be propagated to
      \hookrightarrow child segments.
       // Default: modification. For increments change to:
              lazy[v] = (lazy[v] == lazy mark? val : lazy[v]_{-}^{10}
       function < void(int, T) > upd_lazy = [&] (int v, T val) {
         lazv[v] = val:
```

```
80
 // Tip: for "get element on single index" queries, usa

→ max() on seament: no overflows.

                                                       83
 LazySegTree(int n_) : n(n_) {
                                                       84
   clear(n);
                                                       85
                                                       86
 void build(int v, int tl, int tr, vector<T>& a){
   if (t1 == tr) {
                                                       89
     t[v] = a[t1]:
                                                       90
     return;
                                                       91
                                                       92
   int tm = (tl + tr) / 2:
                                                       93
   // left child: [tl, tm]
   // right child: [tm + 1, tr]
   build(2 * v + 1, tl, tm, a);
   build(2 * v + 2, tm + 1, tr, a);
                                                       97
   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
 LazySegTree(vector<T>& a){
   build(a);
 void push(int v, int tl, int tr){
                                                     103
   if (lazv[v] == lazv mark) return:
                                                     104
   int tm = (tl + tr) / 2;
   t[2 * v + 1] = f_{on_seg}(t[2 * v + 1], tm - tl + 1,106)
→ lazy[v]);
   t[2 * v + 2] = f_on_seg(t[2 * v + 2], tr - tm,
   upd lazy(2 * v + 1, lazy[v]), upd lazy(2 * v + 2,
→ lazv[v]):
   lazv[v] = lazv mark:
 void modify(int v, int tl, int tr, int l, int r, T

  val){
   if (1 > r) return:
   if (tl == 1 && tr == r){
     t[v] = f_{on_seg}(t[v], tr - tl + 1, val);
     upd_lazy(v, val);
     return;
   push(v, tl, tr);
   int tm = (tl + tr) / 2:
   modify(2 * v + 1, tl, tm, l, min(r, tm), val);
   modify(2 * v + 2, tm + 1, tr, max(1, tm + 1), r,
                                                       11

    val):

                                                       12
   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
                                                       15
 T query(int v, int tl, int tr, int l, int r) {
   if (1 > r) return default_return;
   if (t1 == 1 && tr == r) return t[v];
                                                       18
   push(v, tl, tr);
   int tm = (tl + tr) / 2;
```

```
return f(
      query(2 * v + 1, tl, tm, l, min(r, tm)),
      querv(2 * v + 2, tm + 1, tr, max(1, tm + 1), r)
    );
  }
  void modify(int 1, int r, T val){
    modify(0, 0, n - 1, 1, r, val);
  T query(int 1, int r){
    return query(0, 0, n - 1, 1, r);
  T get(int pos){
    return query(pos, pos);
  // Change clear() function to t.clear() if using

    unordered map for SegTree!!!

  void clear(int n_){
    for (int i = 0; i < 4 * n; i++) t[i] = 0, lazy[i] =
 → lazv mark:
  void build(vector<T>& a){
    n = sz(a):
    clear(n):
    build(0, 0, n - 1, a);
};
Sparse Table
const int N = 2e5 + 10, LOG = 20; // Change the
template<typename T>
struct SparseTable{
int lg[N]:
T st[N][LOG];
int n:
// Change this function
function\langle T(T, T) \rangle f = [\&] (T a, T b){
 return min(a, b);
```

for (int i = 2; $i \le n$; i++) lg[i] = lg[i / 2] + 1;

void build(vector<T>& a){

for (int k = 0; k < LOG; k++){

for (int i = 0; i < n; i++){

if (!k) st[i][k] = a[i];

n = sz(a):

lg[1] = 0;

```
(1 << (k - 1)))[k - 1];
    }
23
24
   T query(int 1, int r){
     int sz = r - 1 + 1;
     return f(st[1][lg[sz]], st[r - (1 << lg[sz]) +
    };
   Suffix Array and LCP array
      • (uses SparseTable above)
   struct SuffixArray{
     vector<int> p, c, h;
     SparseTable<int> st;
     using 1-based indexation!
```

43

44

45

46

47

49

51

52

55

```
56
                                                               57
                                                               58
       In the end, array c gives the position of each suffix
                                                               63
                                                               64
       SuffixArray() {}
10
                                                               66
       SuffixArray(string s){
11
                                                               67
         buildArray(s);
12
                                                               68
         buildLCP(s);
13
                                                               69
         buildSparse():
14
                                                               70
15
                                                               71
16
                                                               72
       void buildArray(string s){
17
                                                               73
         int n = sz(s) + 1;
                                                               74
         p.resize(n), c.resize(n);
19
                                                               75
         for (int i = 0; i < n; i++) p[i] = i;
20
         sort(all(p), [&] (int a, int b){return s[a] <</pre>
     \leftrightarrow s[b];});
         c[p[0]] = 0;
22
         for (int i = 1; i < n; i++){
           c[p[i]] = c[p[i-1]] + (s[p[i]] != s[p[i-1]]);
24
25
         vector<int> p2(n), c2(n);
26
         // w is half-length of each string.
27
         for (int w = 1; w < n; w <<= 1){
           for (int i = 0; i < n; i++){
             p2[i] = (p[i] - w + n) \% n;
31
           vector<int> cnt(n);
           for (auto i : c) cnt[i]++;
33
           for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1]; 1
34
           for (int i = n - 1; i >= 0; i--){
             p[--cnt[c[p2[i]]]] = p2[i];
37
           c2[p[0]] = 0:
38
           for (int i = 1; i < n; i++){
```

```
c2[p[i]] = c2[p[i - 1]] +
        (c[p[i]] != c[p[i-1]] ||
        c[(p[i] + w) \% n] != c[(p[i - 1] + w) \% n]);
      c.swap(c2);
   p.erase(p.begin());
                                                       13
  void buildLCP(string s){
                                                       16
    // The algorithm assumes that suffix array is
                                                       17

→ already built on the same string.

                                                       18
   int n = sz(s):
   h.resize(n - 1):
                                                       20
    int k = 0:
    for (int i = 0: i < n: i++){
      if (c[i] == n){
       k = 0;
        continue:
      int j = p[c[i]];
      while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j 2*]
     h[c[i] - 1] = k:
      if (k) k--;
    Then an RMQ Sparse Table can be built on array h
    to calculate LCP of 2 non-consecutive suffixes.
 }
  void buildSparse(){
   st.build(h):
  // l and r must be in O-BASED INDEXATION
  int lcp(int 1, int r){
                                                       43
   1 = c[1] - 1, r = c[r] - 1;
   if (1 > r) swap(1, r);
   return st.query(1, r - 1);
};
Aho Corasick Trie
   • For each node in the trie, the suffix link points to
      the longest proper suffix of the represented string.
      The terminal-link tree has square-root height (can
      be constructed by DFS).
const int S = 26;
// Function converting char to int.
```

```
// To add terminal links, use DFS
    struct Node{
      vector<int> nxt;
      int link:
      bool terminal;
      Node() {
        nxt.assign(S, -1), link = 0, terminal = 0;
    vector<Node> trie(1):
    // add_string returns the terminal vertex.
    int add string(string& s){
      int v = 0;
      for (auto c : s){
       int cur = ctoi(c):
        if (trie[v].nxt[cur] == -1){
          trie[v].nxt[cur] = sz(trie);
          trie.emplace_back();
        v = trie[v].nxt[cur]:
      trie[v].terminal = 1:
      return v:
    Suffix links are compressed.
    This means that:
     If vertex v has a child by letter x, then:
        trie[v].nxt[x] points to that child.
      If vertex v doesn't have such child, then:
        trie[v].nxt[x] points to the suffix link of that
        if we would actually have it.
    void add_links(){
      queue<int> q;
      q.push(0);
      while (!q.empty()){
        auto v = q.front();
        int u = trie[v].link;
        for (int i = 0: i < S: i++){
          int& ch = trie[v].nxt[i]:
          if (ch == -1){
            ch = v? trie[u].nxt[i] : 0:
          }
          else{
            trie[ch].link = v? trie[u].nxt[i] : 0;
            q.push(ch);
62
     }
```

int ctoi(char c){

return c - 'a':

```
24
                                                               25
64
    bool is terminal(int v){
                                                               26
       return trie[v].terminal;
67
    int get link(int v){
                                                               28
       return trie[v].link;
70
                                                               29
71
                                                               30
72
    int go(int v, char c){
       return trie[v].nxt[ctoi(c)];
75
```

Convex Hull Trick

- Allows to insert a linear function to the hull in (1) and get the minimum/maximum value of the stored function at a point in O(log n).
- \bullet NOTE: The lines must be added in the order ∂f decreasing/increasing gradients. CAREFULLY CHECK THE SETUP BEFORE USING!
- IMPORTANT: THE DEFAULT VERSION SURELY WORKS. IF MODIFIED VERSIONS DON'T WORK, TRY TRANSFORMING THEM TO THE DEFAULT ONE BY CHANGING SIGNS.

```
12
    struct line{
                                                          13
      11 k, b;
                                                          14
      11 f(11 x){
                                                          15
        return k * x + b;
                                                          16
      };
                                                          17
    };
                                                          18
                                                          19
    vector<line> hull:
                                                          20
                                                          21
    void add line(line nl){
      if (!hull.empty() && hull.back().k == nl.k){
                                                          22
        nl.b = min(nl.b, hull.back().b); // Default:
                                                          23

→ minimum. For maximum change "min" to "max".

                                                          24
        hull.pop_back();
14
                                                          25
      while (sz(hull) > 1){
        auto& 11 = hull.end()[-2], 12 = hull.back();
        if ((nl.b - l1.b) * (l2.k - nl.k) >= (nl.b - l2.b) 2*
17
     \hookrightarrow decreasing gradient k. For increasing k change the 30

⇒ sian to <=.
</p>
        else break;
      hull.pb(nl);
                                                          31
21
                                                          32
                                                          33
    11 get(11 x){
```

```
int l = 0, r = sz(hull);
 while (r - 1 > 1){
  int mid = (1 + r) / 2:
  if (hull[mid - 1].f(x) >= hull[mid].f(x)) 1 = mid; 38
→ // Default: minimum. For maximum change the sign to39
   else r = mid;
                                                      41
                                                      42
return hull[1].f(x);
```

Li-Chao Segment Tree

- allows to add linear functions in any order and query minimum/maximum value of those at a point, all in O(log n). • Clear: clear()
- const 11 INF = 1e18; // Change the constant! struct LiChaoTree{ struct line{ 11 k. b: line(){ k = b = 0; line(ll k_, ll b_){ $k = k_{,} b = b_{;}$ }: 11 f(11 x){ return k * x + b; }; 57 }; bool minimum, on_points; vector<11> pts; 61 vector<line> t: 62 void clear(){ for (auto & 1 : t) 1.k = 0, 1.b = minimum? INF :→ -INF; LiChaoTree(int n_, bool min_){ // This is a default \rightarrow constructor for numbers in range [0, n - 1]. n = n , minimum = min , on points = false; t.resize(4 * n);clear(): }; LiChaoTree(vector<ll> pts_, bool min_){ // This → pass. The points may be in any order and contain \hookrightarrow duplicates. pts = pts_, minimum = min_; sort(all(pts)): pts.erase(unique(all(pts)), pts.end());

```
n = sz(pts);
   t.resize(4 * n);
   clear():
 };
 void add_line(int v, int l, int r, line nl){
   // Adding on segment [l, r)
   int m = (1 + r) / 2;
   11 lval = on_points? pts[1] : 1, mval = on_points?
⇔ pts[m] : m:
   if ((minimum \&\& nl.f(mval) < t[v].f(mval)) | |
\leftrightarrow (!minimum && nl.f(mval) > t[v].f(mval))) swap(t[v],
   if (r - 1 == 1) return:
   if ((minimum && nl.f(lval) < t[v].f(lval)) ||
\leftrightarrow (!minimum && nl.f(lval) > t[v].f(lval))) add line(2
\leftrightarrow * v + 1, 1, m, n1);
   else add line(2 * v + 2, m, r, nl);
 11 get(int v, int 1, int r, int x){
   int m = (1 + r) / 2;
   if (r - l == 1) return t[v].f(on points? pts[x] :
\rightarrow x):
   else{
     if (minimum) return min(t[v].f(on_points? pts[x] :
\Rightarrow x), x < m? get(2 * v + 1, 1, m, x) : get(2 * v + 2,
\leftrightarrow m, r, x));
      else return max(t[v].f(on points? pts[x] : x), x <
\rightarrow m? get(2 * v + 1, 1, m, x) : get(2 * v + 2, m, r,
\rightarrow x));
   }
 }
 void add line(ll k, ll b){
   add line(0, 0, n, line(k, b));
 11 get(11 x){
   return get(0, 0, n, on_points? lower_bound(all(pts),

    x) - pts.begin() : x);
}; // Always pass the actual value of x, even if LCT

    is on points.
```

Persistent Segment Tree

• for RSQ

6

48

49

```
struct Node {
   ll val:
   Node *1, *r;
   Node(ll x) : val(x), l(nullptr), r(nullptr) {}
   Node(Node *11. Node *rr) {
       1 = 11. r = rr:
```

on points = true:

```
val = 0;
             if (1) val += 1->val;
             if (r) val += r->val:
         Node(Node *cp) : val(cp->val), l(cp->l), r(cp->r) {}
     const int N = 2e5 + 20;
    ll a[N];
     Node *roots[N];
    int n, cnt = 1;
     Node *build(int l = 1, int r = n) {
         if (1 == r) return new Node(a[1]);
20
         int mid = (1 + r) / 2:
         return new Node(build(1, mid), build(mid + 1, r));
21
22
    Node *update(Node *node, int val, int pos, int 1 = 1,
     \rightarrow int r = n) {
         if (1 == r) return new Node(val);
         int mid = (1 + r) / 2:
         if (pos > mid)
             return new Node(node->1, update(node->r, val,
     \rightarrow pos, mid + 1, r));
         else return new Node(update(node->1, val, pos, 1,
        mid), node->r);
    11 query(Node *node, int a, int b, int l = 1, int r = n)
         if (1 > b || r < a) return 0;
         if (1 >= a \&\& r <= b) return node->val:
         int mid = (1 + r) / 2;
         return query(node->1, a, b, 1, mid) + query(node->r,
     \rightarrow a, b, mid + 1, r);
```

Miscellaneous

Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
```

Measuring Execution Time

Setting Fixed D.P. Precision

```
cout << setprecision(d) << fixed;
// Each number is rounded to d digits after the decimal
    point, and truncated.</pre>
```

Common Bugs and General Advice

- Check overflow, array bounds
- Check variable overloading
- Check special cases (n=1?)
- Do something instead of nothing, stay organized
- Write stuff down!
- Don't get stuck on one approach!