Mémo Métrologie

L1SPI

Largement inspiré du cours de métrologie S1&2 par B. Lihoreau & C. Ayrault

Avril 2012

1 Définitions

Erreur systématique Sur/sous-estimation systématique de la valeur vraie du mesurande. Liée aux imperfection du dispositif (appareils, etc...) ou procédé de mesure.

Erreur Aléatoire Sur/sous-estimation aléatoire de la valeur vraie du mesurande. Le "décalage" par rapport à la valeur vraie n'est pas nécessairement le même d'un mesure sur l'autre.

Justesse Qualité d'un appareil vis-à-vis des erreurs systématiques

Fidelité Qualité d'un appareil vis-à-vis des erreurs aléatoires

Précision Qualité d'un appareil à la fois juste et fidèle

Mesure Directe Comparaison avec un étalon

Mesure Indirecte Détermination de la valeur du mesurande par mesurage sucessif d'autres grandeurs et calcul

Erreur Absolue

$$\Delta G = |G_{vraie} - G_{mes}|$$

Intervale de confiance (ici)

$$IC = 2\Delta G$$

Erreur Relative

$$E.R. = \frac{G_{vraie} - G_{mes}}{G_{vraie}}$$

Incertitude relative

$$I.R. = \frac{\Delta G}{G_{mes}}$$

2 Sources d'erreurs

Lecture Compter une demi-division sur un appareil analogique et le dernier digit sur du matériel numérique

Limite de précision de l'appareil Voir la classe de l'appareil et plus généréralement, sa documentation complète

Définition Qu'est ce que la "position" d'un capteur? (celui ci étant plus ou moins instrusif), etc...

Dans tous les cas:

- Utiliser le meilleur calibre/dynamique (au plus proche du signal)
- On peut souvent négliger une 2 des sources d'erreurs, faibles devant la troisième

3 Réduction des erreurs (mesures directes)

3.1 Systématique

- Analyse du processus de mesure
- Etalonnage des appareils

3.2 Aléatoire

3.2.1 Outils Statistiques

Répétition des mesures puis moyenne :

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

La dispersion par rapport à \bar{x} est donnée par l'écart type ¹:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

4 Incertitudes avec une lois de comportement (mesures indirectes)

On part du fait que :

- on a $G = f(x_1, x_2, \dots, x_n)$
- on connait les incertitudes absolues Δx_i
- on cherche ΔG

^{1.} On peut reconstruire la formule à partir de la phrase "La racine carrée de la moyenne des écarts à la moyenne au carré"

4.1 Loi de propagation des erreurs maximales

Si on part du fait que $\Delta x_i << x_i$ alors on majore ΔG par :

$$\Delta G = \sum_{i=1}^{n} \left| \frac{\partial G}{\partial x_i} \right| \Delta x_i$$

4.2 Calcul incertitudes-types composées

$$\Delta G = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial G}{\partial x_i}\right)^2 (\Delta x_i)^2}$$

4.3 Règles pour les cas simples

Loi de comportement	Erreurs maximales	Incertitudes-types Composées
$y = x_1 \pm x_2$	$\Delta y = \Delta x_1 + \Delta x_2$	$\Delta y = \sqrt{\left(\left(\Delta x_1\right)^2 + \left(\Delta x_2\right)^2}$
$y = x_1^m x_2^n$	$\frac{\Delta y}{y} = m \frac{\Delta x_1}{x_1} + n \frac{\Delta x_2}{x_2}$	$\frac{\Delta y}{y} = \sqrt{m^2 \left(\frac{\Delta x_1}{x_1}\right)^2 + n^2 \left(\frac{\Delta x_2}{x_2}\right)^2}$