Nuclear and Radiation Physics (PHY2005) Lecture 4

D. Margarone

2021-2022

Recap & Learning Goals

Summary of Lecture 3 (Chap.2)

- Properties of the nuclear force
 - ✓ nucleon-nucleon interaction
 - ✓ spin-orbit interaction
- Exchange force model
 - ✓ virtual meson exchange

$$V(r) = +\infty$$
 $r < R_{core}$ $(R_{core} \sim 0.5 \text{ fm})$
 $V(r) = -V_0$ $R_{core} \le r \le R$
 $V(r) = 0$ $r > R$

$$P = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

n-p scattering experiments (T ~100 MeV)

$$\theta = \frac{V_0}{2T} \ (\theta \le 10^\circ)$$

$$n \pi \rightarrow$$

Learning goals of of Lecture 4 (Chap.3)

- Knowing the terminology and notation of the nuclear Shell model
- Understanding physical reasoning behind the Shell model

3. Nuclear Models 3.1. The Shell model I

Nuclear Shell model

- heavy nuclei (many-body problem) ⊗ → simplified nuclear models ⊗
- nuclear <u>Shell model</u> → valence nucleons experience a potential created by the nucleons themselves
- nucleons are large (size of nucleus) → collisions (?)
- experimental evidence → nuclear shells
- magic numbers \rightarrow filled major shells (Z or N = 2, 8, 20, 28, 50, 82, and 126)
- nucleons orbit as if they were transparent to one another

two-proton/neutron separation energies of a sequence of isotones/isotopes

3. Nuclear Models 3.1. The Shell model II

Nuclear Shell model

Shell model potential → <u>Woods-Saxon potential</u>

$$V(r) = \frac{-V_0}{1 + \exp(\frac{r - R}{a})}$$

3. Nuclear Models 3.1. The Shell model III

Quantum states and magic numbers

- level degeneracy (Pauli principle) \rightarrow 2(2L + 1) $m_L \rightarrow$ (2L + 1); $m_S \rightarrow$ 2
- Nuclear spectroscopic notation → n is not the principal quantum number (!)
- OK only for magic numbers 2, 8, and 20 🕾

- spin-orbit potential → OK for all magic numbers! ☺
- $J = L + S \rightarrow J = L \pm \frac{1}{2}$ (for a single nucleon $s = \frac{1}{2}$)
- ... except for $L = 0 \rightarrow$ only J = 1/2 is allowed
- level degeneracy (spin-orbit) → (2J + 1)

3. Nuclear Models 3.1. The Shell model IV

✓ 1s
$$(L = 0)$$

- L degeneracy (no spin-orbit): 2(2L + 1) = 2
- possible J values (L ± ½): 1/2 → 1s_{1/2}
- J degeneracy (<u>spin-orbit</u>): 2J + 1 = 2
- ✓ 1p(L = 1)
 - L degeneracy (no spin-orbit): 2(2L + 1) = 6
 - possible J values (L $\pm \frac{1}{2}$): 3/2, 1/2 \rightarrow 1p_{3/2}; 1p_{1/2}
 - *J degeneracy* (<u>no spin-orbit</u>): 2*J* + 1 = **4**; **2**
- ✓ 1d (L = 2)
 - L degeneracy (no spin-orbit): 2(2L + 1) = 10
 - possible J values (L $\pm \frac{1}{2}$): 5/2, 3/2 \rightarrow 1d_{5/2}; 1d_{3/2}
 - J degeneracy (<u>spin-orbit</u>): 2J + 1 = 6; 4
- ✓ **1f** (L = 3)
 - L degeneracy (<u>no spin-orbit</u>): 2(2L + 1) = **14**
 - possible J values (L $\pm \frac{1}{2}$): 7/2, 5/2 \rightarrow 1f_{7/2}; 1f_{5/2}
 - J degeneracy (<u>spin-orbit</u>): 2J + 1 = 8; 6

3. Nuclear Models 3.1. The Shell model V

Magnetic Dipole Moments (Shell model)

- Shell model → not exact agreement with measured magnetic dipole moments ⁽³⁾
- expectation value of magnetic moment operator of odd-A nucleon (state with max z-projection of L):

$$g_L = +1 \text{ (proton)}$$

 $g_L = 0 \text{ (neutron)}$
 $g_S = +5.6 \text{ (proton)}$
 $g_L = -3.8 \text{ (neutron)}$

$$\mu = \frac{\mu_N(g_L L_z + g_S S_z)}{\hbar}$$

- even-A nuclei (paired) $\rightarrow <\mu>=0$
- odd-A nuclei (unpaired) $\rightarrow \langle \mu \rangle \neq 0$
- theoretical vs. experimental data of odd-A nuclei
- exp. data are smaller in magnitude 🖰
- wrong assumption on g_s (μ -nucleon = μ -nucleus)
- meson cloud of bounded nucleon ≠ meson cloud of free nucleon
- the shell-model theory oversimplifies μ calculation!

experimental vs. calculated values of the magnetic moments of odd-A nuclei

3. Nuclear Models 3.1. The Shell model VI

Electric Quadrupole Moments (Shell model)

- electric quadrupole moment $\rightarrow 3z^2 r^2$ operator
- expectation value of electric quadrupole operator of odd-A nuclei (state with max z-projection of L, i.e. $m_J = J$)
- <u>single-particle electric quadrupole moment of an odd proton</u> (state *J*):

$$\langle r^2 \rangle = 3/5 \ R^2 = 3/5 \ R_0^2 A^{2/3}$$

$$\langle Q_{sp} \rangle = -\frac{2J-1}{2(J+1)} \langle r^2 \rangle$$

electric quadrupole moment (subshell with more than a single-particle):
 n: number of nucleons in the subshell
 (1 ≤ n ≤ 2J)

$$\langle Q \rangle = \langle Q_{sp} \rangle \left[1 - 2 \frac{n-1}{2J-1} \right]$$

- n = 2J (subshell lacking only one nucleon) $\rightarrow Q = -Q_{sp}$ (<u>"hole" states</u>)
- Experiments → electric quadrupole moment of an odd-n nucleus ≠ 0 !!! ⊗
- Shell model fails to predict Q of heavy nuclei ⊗
- the shell-model theory oversimplifies μ calculation!

3. Nuclear Models

Example 3.1

Fill the given quantum states with protons and neutrons for the two isotopes ¹⁵O and ¹⁷O, according to the

Nuclear Shell model rules for the level degeneracy in each state.

3. Nuclear Models Example 3.2

Fill the given quantum states with protons and neutrons for the two nuclei ¹⁵N and ¹⁷F, and specify their nuclear

l 1s_{1/2} protons neutrons protons neutrons

3. Nuclear Models

 $\langle r^2 \rangle = 3/5 R_0^2 A^{2/3}$

 $\langle Q \rangle = \langle Q_{sp} \rangle \left| 1 - 2 \frac{n-1}{2J-1} \right|$

Example 3.3

Calculate the theoretical electric quadrupole moments of the nuclei ¹⁵O, ¹⁷O, ¹⁵N, and ¹⁷F, according to the Nuclear Shell model assumptions.

Nuclear Shell model assumptions.

15

Protons in complete sub-shells
$$\rightarrow \angle Q > = 0$$

$$\langle Q_{sp} \rangle = -\frac{2J-1}{2(J+1)} \langle r^2 \rangle$$

$$\langle Q_{sp} \rangle = -\frac{2J-1}{2(J+1)} \langle r^2 \rangle$$

15 1 proton in 182 ->
$$(Q_{SP}) = -\frac{2\frac{1}{2}-1}{2(2+1)}(2^2) = 0$$
 $(L=0!)$

17 1 proton in 1 d_5 -> $(Q_{SP}) = -\frac{2\frac{5}{2}-1}{2(2+1)}(2^2) = 0$ $(L=0!)$