

Rekurzivní metoda nejmenších čtverců

doc. Ing. Petr Blaha, PhD.

16. prosince 2017

Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Uvod

Úvod

Příklad

Rekurzivní metoda nejmenších čtverců

Rekurzivní identifikace (on-line identifikace). Nový odhad $\theta(k)$ se určí drobnou modifikací předchozího odhadu $\theta(k-1)$

- jsou základní částí adaptivních systémů (řízení, případně filtrace probíhá podle nejnovějšího modelu)
- nejsou uchovávána všechna data jako u off-line metod ale pouze několik zpožděných hodnot
- mohou být modifikovány za účelem sledování časově proměnných parametrů
- mohou být použity k detekci poruch, kdy se parametry systému rychle mění

Motivační příklad

Úvod

Příklad

Rekurzivní metoda nejmenších čtverců Rekurzivní odhad konstanty.

Uvažujme model

$$y(k) = b + e(k)$$

kde e(k) je porucha s rozptylem λ .

Nejlepší odhad $\hat{\theta}=b$ ve smyslu minima čtverců odchylek je aritmetický průměr.

$$\hat{\theta}(k) = \frac{1}{k} \sum_{i=1}^{k} y(i)$$

Zkusme si předchozí vzorec přepsat tak, že odhad $\hat{\theta}(k)$ bude roven předchozímu odhadu $\theta(k-1)$ plus nějaká korekce.

Pokračování motivačního příkladu

Úvod Příklad

Rekurzivní metoda nejmenších čtverců

$$\hat{\theta}(k) = \frac{1}{k} \left[\sum_{i=1}^{k-1} y(i) + y(k) \right] = \frac{1}{k} \left[(k-1)\hat{\theta}(k-1) + y(k) \right] =$$

$$= \hat{\theta}(k-1) + \frac{1}{k} [y(k) - \hat{\theta}(k-1)]$$
(1)

Korekční člen závisí na rozdílu mezi změřenou hodnotou výstupu a jeho nejnovějším známým odhadem.

Korekce mají se zvětšujícím se k menší váhu - s přibývajícím časem k bude mít odhad $\hat{\theta}(k)$ větší váhu.

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

• •

. . .

Motivační příklad Exponenciální zapomínání Exponenciální

Exponenciální zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Rekurzivní metoda nejmenších čtverců

Odvození rekurzivní MNČ

Úvod Příklad

Rekurzivní metoda nejmenších čtverců

Odvození

Motivační příklad

Exponenciální zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Matlab

Odvození

Uvažujme odhad parametrů podle vzorce

$$\hat{\theta}(k) = \left[\sum_{i=1}^{k} \varphi(i)\varphi^{T}(i)\right]^{-1} \left[\sum_{i=1}^{k} \varphi(i)y(i)\right]$$

Označme

$$P(k) = \left[\sum_{i=1}^{k} \varphi(i)\varphi^{T}(i)\right]^{-1}$$

potom jednoduše dostaneme

$$P^{-1}(k) = P^{-1}(k-1) + \varphi(k)\varphi^{T}(k)$$

Pokračování odvození rekurzivní MNČ

Úvod

Příklad

..

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

- -

Motivační příklad

Exponenciální

zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

$$\hat{\theta}(k) = P(k) \left[\sum_{i=1}^{k-1} \varphi(i)y(i) + \varphi(k)y(k) \right] =$$

$$= P(k) \left[P^{-1}(k-1)\hat{\theta}(k-1) + \varphi(k)y(k) \right] =$$

$$= \hat{\theta}(k-1) + P(k)\varphi(k) \left[y(k) - \varphi^{T}(k)\hat{\theta}(k-1) \right]$$

Jiný způsob zápisu

$$K(k) = P(k)\varphi(k)$$

$$\varepsilon(k) = y(k) - \varphi^{T}(k)\hat{\theta}(k-1)$$

$$\hat{\theta}(k) = \hat{\theta}(k-1) + K(k)\varepsilon(k)$$
(2)

Pokračování odvození rekurzivní MNČ

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

. . .

Motivační příklad Exponenciální

zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Dále musíme určit P(k). K tomu se používá lema o inverzi matice.

$$[A + BCD]^{-1} = A^{-1} - A^{-1}B[C^{-1} + DA^{-1}B]^{-1}DA^{-1}$$
 (3)

Aplikuje se na vzorec

$$P(k) = [P^{-1}(k-1) + \varphi(k)\varphi^{T}(k)]^{-1}$$

$$\operatorname{kde} A = P^{-1}(k-1), \ B = \varphi(k), \ C = 1 \ \operatorname{a} \ D = \varphi^T(k)$$

$$P(k) = P(k-1) - \frac{P(k-1)\varphi(k)\varphi^{T}(k)P(k-1)}{1 + \varphi^{T}(k)P(k-1)\varphi(k)}$$
 (4)

Všimněme si, že místo inverze matice se řeší skalární dělení (člen ve jmenovateli je skalár).

Pokračování odvození rekurzivní MNČ

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

. . .

Motivační příklad

Exponenciální zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Odvozen

Matlab

Dalšího zjednodušení dosáhneme, když (4) dosadíme do vzorce pro $K(\boldsymbol{k})$

$$K(k) = P(k)\varphi(k) =$$

$$= P(k-1)\varphi(k) - \frac{P(k-1)\varphi(k)\varphi^{T}(k)P(k-1)\varphi(k)}{1+\varphi^{T}(k)P(k-1)\varphi(k)} =$$

$$= \frac{P(k-1)\varphi(k)}{1+\varphi^{T}(k)P(k-1)\varphi(k)}$$

Motivační příklad

Úvod Příklad

Rekurzivní metoda nejmenších čtverců

Odvození

Motivační příklad

Exponenciální zapomínání Exponenciální zapomínání Proměnné zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Pokračujme v úvodním příkladu odhadu konstanty.

Zde $\varphi(k) = 1$. Potom

$$P(k) = (\Phi^T \Phi)^{-1} = \frac{1}{k}$$
 $\Phi^T = (1...1)$ dim $\Phi = (k, 1)$

$$P(k) = P(k-1) - \frac{P^2(k-1)}{1 + P(k-1)} = \frac{P(k-1)}{1 + P(k-1)} = K(k)$$

Výsledný rekurzivní algoritmus popisuje rovnice

$$\hat{\theta}(k) = \hat{\theta}(k-1) + \frac{1}{k}[y(k) - \hat{\theta}(k-1)]$$

Rovnice je stejná jako (1).

RMNČ s exponenciálním zapomínáním

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

...

• •

. . .

Motivační příklad

Exponenciální zapomínání

Exponenciální zapomínání

Proměnné zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Modifikace spočívá ve změně kriteriální funkce

$$J_k(\theta) = \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(i) \tag{5}$$

kde koeficient zapomínání λ se volí v rozsahu (0.95, 0.99). Odhad parametrů lze provést podle rovnice

$$\hat{\theta}(k) = \left[\sum_{i=1}^{k} \lambda^{k-i} \varphi(i) \varphi^{T}(i)\right]^{-1} \left[\sum_{i=1}^{k} \lambda^{k-i} \varphi(i) y(i)\right]$$

$$P^{-1}(k) = \lambda P^{-1}(k-1) + \varphi(k)\varphi^{T}(k)$$

RMNČ s exponenciálním zapomínáním

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

. . .

. . .

Motivační příklad Exponenciální zapomínání

Exponenciální zapomínání

Proměnné zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

$$\sum_{i=1}^{k} \lambda^{k-i} \varphi(i) y(i) = \lambda \sum_{i=1}^{k-1} \lambda^{k-i-1} \varphi(i) y(i) + \varphi(k) y(k)$$

Jinak je odvození podobné jako v případě bez exponenciálního zapomínání $(A = \lambda P^{-1}(k))$. Vede k výsledným vztahům (vztahy (2) zůstávají)

$$K(k) = \frac{P(k-1)\varphi(k)}{\lambda + \varphi^{T}(k)P(k-1)\varphi(k)}$$
(6)

$$P(k) = \frac{1}{\lambda} \left[P(k-1) - \frac{P(k-1)\varphi(k)\varphi^{T}(k)P(k-1)}{\lambda + \varphi^{T}(k)P(k-1)\varphi(k)} \right]$$
(7)

Proměnné exponenciální zapomínání

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

- - -

•••

Motivační příklad Exponenciální zapomínání Exponenciální zapomínání

Proměnné zapomínání

Počáteční hodnoty Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Pokud $\lambda \neq 1$, RMNČ nekonverguje. Na druhou stranu $\lambda < 1$ zlepšuje sledování časově proměnných parametrů. Proto se konstanta λ nahrazuje $\lambda(k)$.

$$\lambda(k) = \lambda_0 \lambda(k-1) + (1-\lambda_0)$$

Typické počáteční hodnoty jsou $\lambda_0=0.99$ a $\lambda(0)=0.95$

Použitím předchozího vztahu se zlepšuje chování RMNČ v přechodových dějích.

Jedná se opět o rekurzivní výpočet.

Nastavení počátečních hodnot

Úvod Příklad

Rekurzivní metoda nejmenších čtverců

Odvození

Motivační příklad

Exponenciální zapomínání

Exponenciální

zapomínání Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Rekurzivní algoritmus vyžaduje počáteční nastavení $\hat{\theta}(0)$ a P(0).

Pokud o parametrech nevíme nic, volíme $\hat{\theta}(0) = 0$ a $P(0) = \rho I$, kde ρ je velké číslo (10⁵).

Pokud známe apriorní odhad parametrů, použijeme jej, případně pokud máme informaci o přesnosti tohoto odhadu, můžeme nastavit matici P(0) ($\lambda^2 P(k)$ je kovarianční matice $\theta(k)$

Pro malé $P^{-1}(0)$ (P(0) velké) se rekurzivní odhad blíží odhadu získanému off-line.

Praktická implementace RMNČ

Úvod Příklad

..

Rekurzivní metoda nejmenších čtverců

Odvození

...

...

..

Motivační příklad
Exponenciální
zapomínání
Exponenciální
zapomínání
Proměnné
zapomínání
Počáteční hodnoty

Implementace

Typy filtrů Refil

U-D filtr

Odvození

Odvození

Matlab

V některých případech může dojít k tomu, že se matice P(k) stane indefinitní, ikdyž by teoreticky měla být positivně definitní. Potom může získaný odhad parametrů divergovat. Tomuto problému se dá předejít pomocí **odmocninových** filtrů

Místo toho, aby se obnovovala matice P(k), tak se obnovuje její odmocnina. Vychází se z některého rozkladu matice P(k). To zajišťuje, že matice P(k) stále zůstává positivně definitní.

Typy odmocninových filtrů

Úvod Příklad

Rekurzivní metoda nejmenších čtverců

Odvození

• • •

. . .

. . .

Motivační příklad Exponenciální zapomínání Exponenciální zapomínání

Proměnné zapomínání Počáteční hodnoty Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

1. Refil

$$P(k) = S(k)S^{T}(k) \tag{8}$$

kde S(k) je trojúhelníková matice (Choleskyho odmocnina)

2. U-D regresní filtr

$$P(k) = U(k)D(k)U^{T}(k)$$
(9)

kde U(k) je dolní trojúhelníková matice s jedničkami na hlavní diagonále a D(k) je diagonální matice

Refil

Úvod Příklad

...

Rekurzivní metoda nejmenších čtverců

Odvození

• • •

. . .

. . .

Motivační příklad Exponenciální zapomínání

Exponenciální zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Obnova matice S(k) probíhá v následujících krocích

$$f(k) = S^{T}(k-1)\varphi(k)$$

$$\beta(k) = 1 + f^{T}(k)f(k)$$

$$\alpha(k) = 1/[\beta(k) + \sqrt{\beta(k)}]$$

$$L(k) = S(k-1)f(k)$$

$$S(k) = S(k-1) - \alpha(k)L(k)f^{T}(k)$$

$$K(k) = L(k)/\beta(k)$$

 ${\sf V}$ praxi se K(k) nepočítá, řeší se přímo

$$\hat{\theta}(k) = \hat{\theta}(k-1) + L(k)[\varepsilon(k)/\beta(k)]$$

Místo n dělení stačí jedno.

(10)

U-D filtr

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

...

Motivační příklad

Exponenciální zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Nevýhodou filtru Refil je požadavek na výpočet odmocniny.U-D filtr odstraňuje tuto nevýhodu. Je navíc úspornější z hlediska počtu matematických operací. Při odvození se vyjde z rovnice $[ABC]^{-1}=C^{-1}B^{-1}A^{-1}$ a z lemy o inverzi matice

$$P(k) = U(k)D(k)U^{T}(k)$$

$$P^{-1}(k-1) = U^{T^{-1}}(k-1)D^{-1}(k-1)U^{-1}(k-1)$$

$$P^{-1}(k) = \lambda P^{-1}(k-1) + \varphi(k)\varphi^{T}(k)$$

$$U(k)D(k)U^{T}(k) = [\lambda U^{T^{-1}}(k-1)D^{-1}(k-1)U^{-1}(k-1) + \varphi(k)\varphi^{T}(k)]^{-1}$$

$$h = U^{T}(k-1)\varphi(k)$$

$$U(k)D(k)U^{T}(k) = U(k-1)[\lambda D^{-1}(k-1) + hh^{T}]^{-1}U^{T}(k-1)$$

U-D filtr - odvození

Úvod

Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

...

• •

. . .

Motivační příklad

Exponenciální

zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození Matlab Na inverzi hranaté závorky použijeme lemu o inverzi matice

$$[\lambda D^{-1}(k-1) + hh^T]^{-1} = \frac{1}{\lambda} \left[D(k-1) - \frac{D(k-1)hh^T D(k-1)}{\lambda + h^T D(k-1)h} \right]$$

a dostaneme

$$U(k)D(k)U^{T}(k) =$$

$$= U(k-1)\frac{1}{\lambda} \left[D(k-1) - \frac{D(k-1)hh^{T}D(k-1)}{\lambda + h^{T}D(k-1)h} \right] U^{T}(k-1)$$

Součin dvou dolních trojúhelníkových matic s jedničkami na hlavní diagonále je opět trojúhelníková matice s jedničkami na hlavní diagonále.

U-D filtr - odvození

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

. . .

. . .

. . .

Motivační příklad

Exponenciální zapomínání

Exponenciální

zapomínání

Proměnné

zapomínání

Počáteční hodnoty

Implementace

Typy filtrů

Refil

U-D filtr

Odvození

Odvození

Matlab

Pokud se nám podaří vyjádřit matici ${\cal H}$

$$\frac{1}{\lambda} \left[D(k-1) - \frac{D(k-1)hh^T D(k-1)}{\lambda + h^T D(k-1)h} \right] = HDH^T$$

můžeme napsat rovnici pro aktualizaci matice U(k) následovně

$$U(k) = U(k-1)H$$

Neprovádíme aktualizaci matice P(k) ale matici U(k)

Rekurzivní metody v prostředí Matlab

Úvod Příklad

. . .

Rekurzivní metoda nejmenších čtverců

Odvození

...

...

. . .

...
Motivační příklad
Exponenciální
zapomínání
Exponenciální
zapomínání
Proměnné
zapomínání
Počáteční hodnoty
Implementace
Typy filtrů
Refil

U-D filtr

Odvození

Odvození

Matlab

Identifikační toolbox obsahuje následující funkce: rarmax, rarx, rbj, rpem, rplr, roe

Základní syntaxe je následující

[thm, yh] = rfcn(z, nn, adm, adg) kde z = [y u] je matice se dvěma sloupci, z nichž první je vektor výstupů soustavy a druhý je vektor vstupů soustavy, nn specifikuje rozměry vektorů parametrů v příslušném modelu v abecedním pořadí a zbývající dva parametry adm, adg souvisí s volbou speciální metody. Pro algoritmus s exponenciálním zapomínáním se volí adm = 'ff'; adg = lam; kde lam je koeficient zapomínání λ

