

🧷 Capacité 1 Modéliser une situation par une suite

Une balle en caoutchouc est lâchée sans vitesse initiale d'une hauteur de 2 mètres au-dessus du sol. Le choc n'étant pas parfaitement élastique, la balle rebondit jusqu'à une hauteur de 1,60 mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\frac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite (h_n) où pour tout entier naturel n, h_n est la hauteur, exprimée en mètres, atteinte par la balle au n-ième rebond. On a alors $h_0 = 2$.

- a. Calculer h₁ et h₂.
 - **b.** Pour tout entier naturel n, exprimer h_{n+1} en fonction de h_n .
 - **c.** En déduire la nature de la suite (h_n) . Préciser ses caractéristiques.
 - **d.** Déterminer le sens de variation de la suite (h_n) .
- Déterminer le nombre minimal N de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à 20 cm. Expliquer la démarche employée.

1) a) ho=2 h=1,6 h2=1,28

X 1/5

b) etc) Pour tout entier m E IN, ona:

hm+1 = 1/2 × hm

Par définition, le suite (hm) est géomètri
- que de rousin 1/5.

d) la suite (hn) est géomètrique de raisie 4 >0 danc elle est monotone.
4 >0 danc elle est monotone
De plus Ro > hr, danc (Rm)ed- décraissante.
2) Pour détermener le plus petit-entier
2) Pour déleuminer le plus petit-entrèr N'tel que hn < 0,2 on utilise:
q
- soit le tubleau de ruleurs de la calculatrice et en trouve que N-11
calculatrico et en trouve que N-11
deg SEQUENCES I■)
deg SEQUENCES III) Sequences Graph Table
Set the interval
5 0.65536

Sequences	Graph	Table	
Set the interval			
5	0.65536		
6	0.524288		
7	0.4194304		
8	0.3355443	1	
9	0.2684355		
10	0.2147484		
11	0.1717987	I.	
12	0.137439		
13	0.1099512		

- soit un algouithme de seuil program me en Prython:

https://workshop.numworks.com/python/frederic-junier/chapitre1_capacite1

Capacité 2 Manipuler des encadrements

Démontrer que pour tout entier naturel n on a :

$$\frac{1}{2} \leqslant \frac{1}{1 + e^{-n}} < 1$$

On manipule des encedrements:
But tout entrèr m > 0: $0 < e^{-m} < 1$

- 1. Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_0 = 99$ et $u_{n+1} = u_n n^2 + 2n + 8$. Étudier le signe de $u_{n+1} - u_n$ et en déduire l'étude des variations de la suite (u_n) .
- **2.** Soit la suite (u_n) définie pour tout entier naturel n par $u_n = \sqrt{n}$.
 - **a.** Démontrer que pour tout entier naturel n, on a $u_{n+1} u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. En déduire le sens de variation de la suite (u_n) .
 - **b.** En déduire que pour tout entier naturel $n \ge 4$, on a $0 \le u_{n+1} u_n \le \frac{1}{2}$.

1) Pour tout entier
$$n \ge 0$$
:

Let $-4 = -n^2 + 2m + 8$

Con étudie le signe du trinôme $-m^2 + 2m + 8$

D'éloud on détermine ses ravines:

 $\Delta = b - 4ac = 2^2 - 4 \times (-1) \times 8 = 36$
 $\Delta > 0$ donc 2 ravines distinctes:

 $x_1 = -b - \sqrt{5} = -2 - 6 - 4$ et $x_2 x_1 = \frac{5}{4}$

donc 2 = -8 -- 2

🚀 Capacité 5 Comparer membre à membre

1. Démontrer que pour tout entier $k \ge 1$, on a $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$.

2. Justifier que pour tout entier $k \geqslant 1$, on a : $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$.

3. À l'aide d'un argument de *somme télescopique*, en déduire que pour tout entier $n \ge 1$, on a :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

4. En déduire que pour tout entier $n \ge 1$, on a $0 < \sum_{k=1}^{n} \frac{1}{(k+1)^2} < 1$.

1) Pour tout entier k > 1, on a;
le plus lets > 0

Si en ajoute membre à membre ces négalités en obtient des simplifiéations en coscade dans le membre de droite: It reste. $\frac{1}{1(1+1)} + \frac{1}{2(2+1)} + \dots + \frac{1}{m(m+1)} = 1 - \frac{1}{m+1}$ somme des membres membres membres de draits (simplification On peut condent avec la symbol de sommetion E: $\frac{1}{k(k+1)} = 1 - \frac{1}{k+1}$

D'une part en a: $\sum_{k=1}^{N} \frac{1}{k(k+1)} \leq 1 - \frac{1}{m+1}$ n D'autre part on a: $\frac{51}{(k+1)^2} \le \frac{1}{k=1} = 1 - 1 - 1 - 1 - 1$ k=1Par transitivité de l'inégalité en en déduil-que: 8=1 (k+1) < 1-1 < 1 8=1 k(k+1) m+1 De plus une somme de nombres parilière et positive, donc; 0< \(\frac{1}{k-1} < 1

Capacité 6 Choisir une méthode adaptée pour étudier le sens de variation d'une suite

- 1. **Méthode 1** : Etudier le signe de $u_{n+1} u_n$
 - **a.** Soit la suite (u_n) définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$, par $u_{n+1} = u_n(1 2u_n)$.
 - Etudier le signe de $u_{n+1} u_n$ pour $n \in \mathbb{N}$.
 - Conclure sur le sens de variation de la suite (u_n) .
 - **b.** Reprendre le même plan d'étude pour étudier le sens de variation de la suite (w_n) définie pour tout entier $n \in \mathbb{N}^*$ par $w_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.
- **2.** Méthode 2 : $Si(u_n)$ à termes strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ et 1

Soit la suite (u_n) définie par $u_0 > 0$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n e^{-n}$. On admet que pour tout entier $n \ge 0$, on a $u_n > 0$.

- Soit un entier $n \ge 0$, démontrer que $\frac{u_{n+1}}{u_n} \le 1$.
- En déduire le sens de variation de la suite (u_n) .
- **3. Méthode 3** : $Si u_n = f(n)$, étudier les variations de f sur $[0; +\infty[$

Soit la suite (u_n) définie pour tout entier $n \ge 0$, par $u_n = \frac{e^n}{e^n + 1}$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^x + 1}$. On a pour tout entier $n \ge 0$, $u_n = f(n)$.

- Justifier que f est dérivable sur \mathbb{R} et déterminer l'expression de f'(x).

 ATTENTION, on peut dériver la fonction f mais pas la suite (u_n) car celle-ci n'est pas définie sur un intervalle!!!
- En déduire le sens de variation de la fonction f sur \mathbb{R} , puis le signe de $u_{n+1} u_n$ pour tout entier $n \ge 0$ et le sens de variation de (u_n) .

1) Methode 1:

a) Pour tout entier n E [M, on a:

 $M_{M+1}-M_{M}=M_{M}(1-2M_{M})-M_{M}=-2n_{M}^{M}$

Bon a win >0 denc unt un <0 La suite (un) et denc décoissant

	b) Pau tout entier n \ 1 j on a:
	·
	W~= 1+ 1/2 ++ 1/m
	donc M - M - 1+ 1 + 1
	wtv s wtv
	- (1+1/2+-+1)
don	Mm42 m= 1+1=+ 1 - (1+1=+-+1)
	+ 1
	mt1
	A
	dans Wm - M+1
	m+x $M+1$
1	our tout entier n > 1 on a donc
	$W_{n+\lambda} - W_n > 6$
Le	
	crowsante, ce arie est logique mus
	rouseure à chaque rare un rouseur terme pasité.
	noveleu termo positi
	, 7

-	2) Soit (un) la suite définir par: Mo=0
	$\mathcal{L}_{\mathcal{L}}}}}}}}}}$
	JUNE ITI, MMIN = MM C
	PLICIXI
	Pour tout m E IN, on a:
	\mathcal{M}
	mty = 6
	$\mathcal{M}_{\mathcal{N}}$
(on n>0 dans of E
	et dans of muss
	/V \/\(\sigma\)
	De plus un > 0 (admis se)
	prouve par
	, ranged
_(Janc OXMM ZMMY CO sol
	clar o < Mm+1 < Mm
	la suite (un) est donc décraissante
	Company of the control of the contro

3) Soit (un) la suite définie paur tout nE [] par: $M^{-\frac{6Mt}{\epsilon_{w}}} - \beta(w)$ avec l'affinie sur $(x) = \frac{e^{x}}{e^{x}}$, , , , 6-1 avec u et v derivulles dont fderivable sur PR Pour tout réel se: $M(x) = e^{x}$ $M(x) = e^{x}$ $N(x) = e^{x}$ $N(x) = e^{x}$ Dapies une formule de cours.

(M) = MN - MN

N2 donc: $\int_{-\infty}^{\infty} \frac{e^{x}(e^{x}+1)-e^{x}e^{x}}{(e^{x}+1)^{2}}$

denc ((x) - (ex)2 Pour tout red se, on e² >0 et-(271)>0 den()(x) >0 La fontion fest don strictement Crainsonte sur R. La suite (un) definir pour bout entier n > oper un= (n) est donc craissante ar l'ensem - Redesentiers naturels Her-Inclus dans R.

A Capacité 7 Démontrer qu'une suite est bornée

Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_n = 3n + 2$

 $\overline{n+2}$

 On donne ci-contre la représentation graphique des premiers termes de la suite (u_n) dans un repère orthonormal.

Émettre une conjecture sur un minorant et un majorant possibles de la suite (u_n) .

1) Graphiquement, en peut consecturer que pour tout entier n>0, en a:

1< Un 23

et donc que l'est minarant à un majorant de la suite (un

2) Demontrons alte ansectus en appliquant deux fair la mélhod du signe de la défférence:

Pour bout entier nso:

3 - 4n = 3 - 3n+2 - 3(n+2) - (3n+2)

Gn a don (3 - 4 m > c E> nu sobte 3 est donc un majorant de (un) D'outre part: $y_{1} - 1 = \frac{3m+2}{m+2} - \frac{m+2}{m+2}$ Gm a dong um-1>0 et donc 1 \le um 1 est donc un minorant de (up Remarque: On rent dementier que (un) est voissante et donc mi-noise par son quemier termo ero.

de Capacité 8 Étudier une suite arithmétique

On considère la suite $(u_n)_{n\geqslant 1}$ des entiers impairs successifs :

$$u_1 = 1$$
, $u_2 = 3$, $u_3 = 5$,...

- 1. Justifier que $(u_n)_{n\geqslant 1}$ est une suite arithmétique.
- Soit n un entier naturel positif, exprimer un en fonction de n.
- **3.** Démontrer que pour tout entier $n \ge 1$, on a $\sum_{k=1}^{n} u_k = n^2$.

1) Pour tout entier naturel m, on a'

La suite des entiers impairs successifs est donc orithmètique de reison. 2.

2) D'après une propriété du cours, pour tout entier naturel n, on a:

Um=U,+(m-1)×2=1+2m-2=2m-1

3) D'après une propriété du ours, pour tout entier nobrel n, on a

2 ME = M1 + - .. + M = W X M1 + MW

🥒 Capacité 9 Étudier une suite géométrique

Soit $(u_n)_{n \ge 1}$ la suite arithmétique des entiers impairs définie dans l'exemple 9. On définit la suite $(v_n)_{n\geq 1}$ pour tout entier $n\geq 1$ par $v_n=e^{u_n}$.

- Justifier que la suite (v_n)_{n≥1} est géométrique.
- **2.** Calculer la somme $\sum_{k=1}^{30} v_k$.
- 3. Soit un entier $n \ge 1$, exprimer en fonction de n le produit de termes consécutifs :

$$\prod_{k=1}^n v_k = v_1 \times v_2 \times \ldots \times v_{n-1} \times v_n$$

1) Pour tout entier naturel m>1: = e = e = e x e mite (vn) est donc géomètrique de

27 D'après une propriété du cours-

four tout entier n>1.
\sim
M N = N, x XN = E x x e m
le-1 le-
n uittum EN
1 No = e = e = e = 1 = 1
R=1 1e
on la suite (un) est avitametique de
On la suite (un) est arithmétique de ravoir 2 danc d'après une propriété du cours:
eaus:
~
$Su_0 - m \times m + m - m \times 1 + 2m - 1$
5 Mg = mx Mx + Mm - mx 1+2m-1 b=1 2 2
2 ell = n (déjé dementre)
Elle - n (déjà dementre) b-1 en capacités 8
On en déduit que:
2
71 Ng = e
R=1
-

🥒 Capacité 10 Démontrer avec un raisonnement par récurrence

- 1. Soit la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n par $u_{n+1} = 2u_n 5$.
 - a. Démontrer par récurrence que la suite (u_n) est majorée par 5.
 - b. Démontrer par récurrence que la suite (u_n) est décroissante.

Page 10/12

https://frederic-junier.org/

Suites et raisonnement par récurrence

SpéMaths

- Quelle propriété pourrait-on démontrer par récurrence pour répondre aux deux questions précédentes?
- **d.** Démontrer par récurrence que pour tout entier naturel n, on a $u_n = 5 2^{n+2}$.
- 2. Soit (v_n) la suite définie par $v_0 = -1$ et pour tout entier naturel n par $v_{n+1} = \sqrt{3v_n + 4}$.
 - **a.** Démontrer que la fonction $f: x \mapsto \sqrt{3x+4}$ est croissante sur $[0; +\infty[$.
 - b. Démontrer par récurrence que pour tout entier n ≥ 1 on a 0 ≤ v_n ≤ v_{n+1} ≤ 4.
- Soit (u_n) une suite réelle telle que pour tout entier n ≥ 0 on ait u_{n+1} = u_n³.
 - **a.** Démontrer que si pour un entier $n \ge 0$, on a $-1 \le u_n \le 1$ alors on a $-1 \le u_{n+1} \le 1$.
 - **b.** Peut-on en déduire que pour tout entier $n \ge 0$ on $a 1 \le u_n \le 1$?

1) a) b) => fait en classe 1) c) Pour repondre our deux questions a) et b)
, on pourait démontrer que pour tout entier
n > 0, le propriété Dn: Mm4 < Um < 5" est vouil

d' four tout entier my o, andéfirmit la proprié Sm: 12 = 5-2n+2

Démontrons pour récurseme que s'on est mail

Initialisation: Mo=1 et-5-20+2=5-4=1 danc un= 5-20+2 danc Jest viaix

Heredite: Hypothèse de récurrence. Soit un entre nyo tel que mest vais. on a done $24n-5=2\times(5-2^{n+2})-5$ done $24n-5=10-5-2^{n+3}$ $domc 2u_m - 5 = 5 - 2m + 3$ donc 24 n 5 = 5 - 2 n + 1 + 2 donc 5 m + est vaix et la propriète est Réviditaire Conclusion: La propriète In est initialibée pour m=0 et elle est hérédétaire, elle est donc mais par récurrence pour tout entreunso 2) a) Boet la fondion définire sur [0; tout par l'(n) = 53x+4 P(x) est de la fourme u (m x+p) avec m=3, p=4 et u:y+>Jy Scriffo; + of alors 3x+4@[4:,+vot et u dérivable sur [h;+vot. D'après le l'hébierne de dérivation il une fandin composée on -> relm ontp) vue en 1ers, la fanction l'est dérivable sur (0; F&C el-pour laut real on E[0; + W], on a: l, (x) = w m (w setb)

aver $u'(y) = \frac{1}{2\sqrt{y}}$ m = 3 et p = 4denc $f'(x) = 3 \times \frac{1}{2\sqrt{3x+4}}$ Pour tout x E (0;+v), on a: 3x 1 >0 2 V3x4h dans promon of strictement craissants sur Ojtol Di Soit (17,7 la suite de finne par: JAWEWM) WELL 1312+1 - B(NW) Dénontrons par récurrence que pour tout enlier n > 1, la propriété du jour son la propriété du jour son l'ést vraire Indialisation No=-1 No= J-3+h = 1

Show of No=-1 No= J-3+h = 1

Una O \le 1 \le 17 \le h done o \le No \le h

Jane So est mare Heredite Soit un entier n > 1 tel que Son est vraie

On a done O & Vm < N m+1 < 4 la fondion fest voisoante sur [v;+v2 denc $\{(0) \leq \{(v_m) \leq \{(v_{m+n}) \leq \{(b)\}$ c'est-à-line Vh < Nm+2 < V3x444 c'est-à-dire 25 Nonts 5 Nonte 2h On OL 2 donc on a. $0 \leq N_{m+1} \leq N_{m+2} \leq 5$ donc Sont 1 est vaix et-la propriéte est Réréditaire Conclusion Son propriété In est initia - Cisée pour m=1 et elle est-Résiditaire danc elle est vraie par récurrence pour tout entier m>1. 3) => en elesse lundi 14/09

Exercice 20 p. 26

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 2u_n - n + 1$.

Pour tout entier naturel n, on note P(n) : « $u_n \ge n$ ».

- **1.** Montrer que P(0) est vraie.
- **2. a.** Soit p un entier naturel tel que P(p) est vraie.

Écrire l'inégalité qu'on obtient.

- **b.** Écrire la propriété P(p + 1).
- **c.** Montrer qu'on peut en déduire que P(p + 1) est vraie.
- 3. Que peut-on en conclure?
 - 1) P(6): 1.40>0"

 Gr 40=1 danc 110>0 danc P(0) maie
 - 2) a / Soit punentier naturel tel que P(p) et mare

P(p) s'ècult: " Mp>p"

- b) P(p+1) s'éviet "up+1 > p+1"
- c) On a fait l'hupothèse de récurrence que P(p) est viaix c'est-à-dire que:

45 2 JN

for relation de récurrence, ona: 4₈₊₁ = 24p-p+1 le MP>P on rent alors déduire que; 2 Mp - P+1 > 2 P- P+1 c'est-à-dire 2Mp-p+1≥ p+1 C'est-d-dina elp+1 > P+1 On a démontre l'Rérédité de la propriété P: Si P(p) exvrais pour un entre notuel p alors P(p+1) est vrais. 3) En 1) on a-démontre l'initialisation de la propriété P(m) pour n=0. En 2) c) on a démontre l'hérédité de la propriété P(m) Par application de l'avience de récurrence en en déduiet que P(m'est viair pour tout intier n>0.

Enervice 35 p. 28

Capacité 1, p. 13

Soit (u_n) la suite définie par $u_0 = 6$ et pour tout entier naturel n: $u_{n+1} = 2u_n - 5$. Montrer par récurrence que, pour tout entier naturel $n: u_n = 2^n + 5$.

Pour tout entier natureln, on définit la propriété: Pn="1" Mn=2+5"

Démontrons par récursence que la struce pour tout entier nobreel n > 0.

Inethieleschen

Heredele

Hypothebe de récurrence: Soit un entier p > 0 tel que P(p) est praie.

L	Rypothèse de récurrence se traduit par Up=27+5
(in applique la relation de récurrence: rep _{t1} = 2 rep-5
(En substitue l'hypothèse de récurrence
	\circ
	MP+1= 2(2+5)-5= 21+1+5
	(n en déduit- que P(P+1) est vrais
	on a démentre que la propriété est hèré-
	On en déduit que la propriété est hêré- on a démentre que la propriété est hêré- - détaire.
	Conclusion La propriété P(n) est initialisé
	The proposed to the section of the
水	our n= 0 et elle ext-héréditaire dans elle est
	our n= 0 et elle ext-héréditaire dans elle est vieir par récurrence pour tout entier n> 0.

42 Soit (v_n) la suite définie par $v_1 = 2$ et pour tout entier
naturel <i>n</i> non nul : $v_{n+1} = \frac{3}{5}v_n + 2$. Montrer par récurrence
que, pour tout entier naturel non nul, $v_n \le 5$.
Pour tout entiern > 1, on définit la propriété.
(m)= " ~ ~ < 5 "
Initialiation (ma N ₁ =2 et 2 < 5
denc P(1) est vraig
Hereditel
Hypothèse de récurrence: Soit un entier p; 1 tol que P(p) est mais
L'hyvolrèss de récurrence se traduct par
$\sqrt{2} \leq 2$
En applique la relation de récurrence au permise membre pour retrouver $\sqrt{5}_{P+\Lambda}$:
premier mêmbre pour retrouver 15p+1:
10 p < 5
$d_{\text{ext}} = \frac{3}{5} \times 5 + 2$
$den(\frac{3}{5}N_p + 2 \leq 5$
done Np+1 < 5

conclusion la propuièle P (n) est inilialisée pour n=t et elle est héréditoire ; donc elle of vioir par récurrence pour tout entier n > 1.