SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Projekt iz predmeta Raspoznavanje uzoraka

Uporaba steganografije u revezibilnoj deidentifikaciji

Katarina Matić, Hrvoje Backović, Marin Oršić,

Dino Rakipović, Ivan Relić, Filip Reškov Voditelj: *Slobodan Ribarić*

SADRŽAJ

1. Projektni zadatak		ektni zadatak	1
	1.1.	Opis projektnog zadatka	1
	1.2.	Pregled i opis srodnih rješenja	1
	1.3.	Konceptualno rješenje zadatka	1
2.	Postupak rješavanja zadataka		2
3.	3. Ispitivanje rješenja		3
	3.1.	Ispitna baza	4
	3.2.	Rezultati ispitivanja	4
	3.3.	Analiza rezultata	4
4.	Opis programske implementacije rješenja		5
5.	Zak	liučak	6

1. Projektni zadatak

- 1.1. Opis projektnog zadatka
- 1.2. Pregled i opis srodnih rješenja
- 1.3. Konceptualno rješenje zadatka

2. Postupak rješavanja zadataka

3. Ispitivanje rješenja

Razvijeni sustav za steganografski postupak, kao i svi steganografski algoritmi, ograničen je količinom podataka koja se može upisati u neku sliku. Ova granica prvenstveno je određena veličinom slike, a određuju je i odabir kanala te najznačajniji bit do kojeg se upisuju podaci. Glavna ideja steganografskog algoritma jest upisati podatak u sliku bez velikog utjecaja na konačni izgled. Drugim riječima, izgled konačne slike uvjetovan je količinom podataka koji se u nju upisuju. Potrebno je pronaći dobre parametre steganografskog algoritma koji nude dobara kapacitet skrivenih podataka, a neznatno žrtvuju kvalitetu izvorne slike.

Parametri algoritma koji su podešavani u ispitivanju su:

- Najznačajniji bit do kojeg se slijedno upisuje podatak
- RGB komponente u koje će se upisivati podaci

Algoritam Least Significant Bit(LSB) upisivanje sadržaja započinje s bitovima najnižeg značaja. Razlog tome leži u tome što se izmjenom bita najmanjeg značaja piksel najmanje mijenja. Praktični primjer bio bi kada bismo odlučili mijenjati samo B(blue) komponentu i to samo najniži bit svakog bajta. Za svaki piksel slike(3 komponente, svaka po 1 bajt) dobije se jedan bit prostora za skrivanje podataka. Općenito, količina podataka koja se može upisati(n_{data}), u ovisnosti o broju komponenti za upisivanje $n_{components}$ i broja najnižih bitova svake odabrane komponente za upisivanje n_{bits} te veličini(broju piksela) n_{pixels} slike je:

$$n_{data} = \lfloor \frac{n_{pixels} \cdot n_{components} \cdot n_{bits}}{8} \rfloor$$
 [B] (3.1)

Udio veličine podataka η koje je za dane parametre moguće upisati u sliku u odnosu na ukupnu veličinu slike je:

$$\eta = \frac{n_{data}}{3 \cdot 8 \cdot n_{nixels}} = \frac{n_{components} \cdot n_{bits}}{24}$$
 (3.2)

Povećanjem η vizualna razlika između izvorne slike i slike obrađene steganografskim

algoritmom, u našem slučaju LSB-om, povećava se. U nastavku slijede rezultati ispitivanja odnosa izvorne i obrađene slike u ovisnosti o parametrima $n_{components}$ i n_{bits} .

- 3.1. Ispitna baza
- 3.2. Rezultati ispitivanja
- 3.3. Analiza rezultata

4. Opis programske implementacije rješenja

5. Zaključak