Order Statistic Filters

Suppose that X is a real-valued variable for a population and that $X = \{X_1, X_2, ..., X_n\}$ are the observed values of a sample of size n corresponding to this variable.

In statistics, the k^{th} order statistic of a statistical sample is equal to its k^{th} -smallest value (usually denoted as $X_{(k)}$).

Thus

$$X_{(1)} \le X_{(2)} \le ... X_{(n-1)} \le X_{(n)}$$

$$X_{(1)} = \min\{X_1, X_2, ..., X_n\}$$

$$X_{(n)} = \max\{X_1, X_2, ..., X_n\}$$

median =
$$X_{(k)}$$
; $k = \frac{(n+1)}{2}$