New binary whale optimization algorithm for discrete optimization problems

Engineering Optimization

ISSN: 0305-215X (Print) 1029-0273 (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

New binary whale optimization algorithm for discrete optimization problems

Abdelazim G. Hussien, Aboul Ella Hassanien, Essam H. Houssein, Mohamed Amin & Ahmad Taher Azar

To cite this article: Abdelazim G. Hussien, Aboul Ella Hassanien, Essam H. Houssein, Mohamed Amin & Ahmad Taher Azar (2019): New binary whale optimization algorithm for discrete optimization problems, Engineering Optimization, DOI: <u>10.1080/0305215X.2019.1624740</u>

To link to this article: https://doi.org/10.1080/0305215X.2019.1624740

New binary whale optimization algorithm for discrete optimization problems

Abdelazim G. Hussien [©]^a, Aboul Ella Hassanien [©]^{b,c}, Essam H. Houssein [©]^d, Mohamed Amin^e and Ahmad Taher Azar [©]^{f,g}

^aFaculty of Science, Fayoum University, Faiyum, Egypt; ^bFaculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt; ^cScientific Research Group in Egypt (SRGE) Cairo, Egypt; ^dFaculty of Computers and Information, Minia University, Minya, Egypt; ^eFaculty of Science, Menoufia University, Menoufia, Egypt; ^fCollege of Engineering, Prince Sultan University, Riyadh, Saudi Arabia; ^gFaculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt

ABSTRACT

The whale optimization algorithm (WOA) is an intelligence-based technique that simulates the hunting behaviour of humpback whales in nature. In this article, an adaptation of the original version of the WOA is made for handling binary optimization problems. For this purpose, two transfer functions (S-shaped and V-shaped) are presented to map a continuous search space to a binary one. To illustrate the functionality and performance of the proposed binary whale optimization algorithm (bWOA), its results when applied on twenty-two benchmark functions, three engineering optimization problems and a real-world travelling salesman problem are found. Furthermore, the proposed bWOA is compared with five well-known metaheuristic algorithms. The experimental results show its superiority in comparison with other state-of-the-art metaheuristics in terms of accuracy and speed. Finally, Wilcoxon's rank-sum non-parametric statistical test is carried out at the 5% significance level to judge whether the results of the proposed algorithm differ from those of the other comparison algorithms in a statistically significant way.

ARTICLE HISTORY

Received 21 July 2018 Accepted 15 May 2019

KEYWORDS

Whale optimization algorithm; binary whale optimization algorithm; optimization problems; discrete search space; metaheuristic algorithms

1. Introduction

Several optimization problems dealing with discrete binary search space have been applied in a wide variety of domains such as feature selection (Emary and Zawbaa 2018), dimensionality reduction (Zawbaa *et al.* 2018), chemical activity (Hussien, Hassanien, and Houssein 2017), wind turbine placement (Beşkirli *et al.* 2018), mass transit services, unit commitment (Yuan *et al.* 2014) and resource allocation (Fan, You, and Li 2013). Recently, various metaheuristic algorithms have been proposed to solve complicated computational problems (Hassanien and Emary 2016; Tharwat *et al.* 2017) such as particle swarm optimization (PSO) (Kennedy and Eberhart 1995), genetic algorithms (GAs) (Holland 1975), bat algorithms (BAs) (Yang 2010b), grasshopper optimization algorithms (GOAs) (Saremi, Mirjalili, and Lewis 2017) and the ant lion optimizer (ALO) (Mirjalili 2015). Moreover, the flexibility of these algorithms to deal with different problems compared with conventional optimization techniques makes these algorithms popular among researchers.

Classical mathematical techniques and methods always fail in solving complex optimization problems in a reasonable time. However, metaheuristic algorithms are able to solve \mathcal{NP} -problems

owing to their simplicity, ease of implementation and ability to avoid local optima (Saka, Hasançebi, and Geem 2016). Strictly speaking, metaheuristic optimization algorithms are classified into three groups: physics-based (Geem, Kim, and Loganathan 2001), evolution-based (Gong et al. 2014) and swarm-intelligence-based (Krause et al. 2013).

Most metaheuristic algorithms were designed to handle continuous problems (Mirjalili 2015; Saremi, Mirjalili, and Lewis 2017). For this reason, the need for binary algorithms became an urgent task for their solution. Many research efforts have been made in order to adapt algorithms for solving binary optimization problems. Therefore, various optimization problems with a binary domain such as feature selection (Pal and Maiti 2010) and multi-class support vector machines (Babaoglu, Findik, and Ülker 2010; Lee and Lee 2015) still need more study and are regarded as hot topics. Most metaheuristic algorithms, such as the dragonfly algorithm (Mirjalili 2016), the gravitational search algorithm (GSA) (Rashedi, Nezamabadi-Pour, and Saryazdi 2009), and the magnetic optimization algorithm (MOA) (Tayarani-N and Akbarzadeh-T 2008), have binary versions that enable them to solve binary optimization problems.

In recent years, several binary metaheuristic algorithms have been developed to tackle continuous problems while conserving the concepts of the search process. For instance, Emary, Zawbaa, and Hassanien (2016a, 2016b) have proposed binary ant lion and binary grey wolf optimization for feature selection. To solve optimization problems, various metaheuristic algorithms have been proposed by for instance Obagbuwa and Abidoye (2016), who presented binary cockroach swarm optimization for combinatorial optimization problems. Dahi, Mezioud, and Draa (2016) proposed a binary flower pollination algorithm and Beheshti, Shamsuddin, and Yuhaniz (2013) presented a binary accelerated particle swarm algorithm for solving discrete optimization problems. Also, Mirjalili, Mirjalili, and Yang (2014) proposed a binary bat algorithm (BBA). Further, Holland (1992) proposed a GA that was inspired by natural evolution and has been widely used for solving combinatorial optimization problems (COPs) (Lau et al. 2010).

The whale optimization algorithm (WOA) (Mirjalili and Lewis 2016) has gained huge interest since its appearance in 2016. Jadhav and Gomathi (2018) proposed a hybrid of the grey wolf algorithm and the whale algorithm called the WGC algorithm. Also, Mafarja and Mirjalili (2017) proposed a hybrid whale optimization algorithm with simulated annealing and applied it to feature selection. Wang et al. (2017) proposed a multi-objective version of the WOA and applied it to wind speed forecasting. El Aziz, Ewees, and Hassanien (2017) applied the WOA to multilevel thresholding image segmentation.

Eid (2018) developed a new binary whale optimization algorithm (bWOA) to estimate the parameters of photovoltaic cells solving the feature selection (FS) problem. In Reddy K. et al. (2018), the bWOA has been used for profit-based unit commitment problems in marketing.

In the same context, a binary whale optimization algorithm and an S-shaped binary whale optimization algorithm have been presented by Hussien, Houssein, and Hassanien (2017) and Hussien et *al.* (2019) in order to solve the feature selection problem.

Obviously, the no-free-lunch (NFL) theorem (Wolpert and Macready 1997) makes this field of study highly active, which results in enhancing current approaches and proposing new metaheuristics every year. This theorem has revealed that no one metaheuristic optimization algorithm in particular is best suited for solving all optimization problems. Also, the superior ability of the WOA (Mirjalili and Lewis 2016) to deal with different problems, such as engineering design problems and mathematical optimization problems, makes this algorithm popular compared with conventional as well as metaheuristic algorithms.

The WOA was proposed to solve the continuous search space problem—it cannot deal with binary problems directly. For this reason, a promising way to cope with this issue is regarded as the main motivation for this article, which proposes two binary variants of the WOA, called the bWOA-S and the bWOA-V, for solving discrete optimization problems. In order to achieve this, the two proposed algorithms will force the whales to move in binary search spaces by shifting their positions by zero or one. Therefore, two sigmoid transfer functions are applied to obtain a new position. Eventually, the statistical results prove that the proposed algorithms are very competitive compared with three well-known metaheuristic algorithms, namely the BBA (Mirjalili, Mirjalili, and Yang 2014), the bPSO (Kennedy and Eberhart 1997), the binary grey wolf optimization algorithms bGWO1 and bGWO2 (Emary, Zawbaa, and Hassanien 2016b) and a GA (Holland 1992).

The article is organized as follows: a short overview of the basic whale optimization algorithm is presented in Section 2. Section 3 discusses the proposed binary whale optimization algorithm. Benchmark test functions used in the performance evaluation process are presented in Section 4. Sections 5 and 6 provide experimental results and a discussion. Finally, Section 7 concludes the article and suggests some future work.

2. Whale optimization algorithm

Mirjalili and Lewis (2016) have developed the WOA inspired by the behaviour of whales. Mathematically, in the assumption model of the WOA, the current best candidate solution is the target prey. Other whales try to update their position to reach the best according to Equation (1):

$$D = |CX^*(t) - X(t)| \tag{1}$$

$$X(t+1) = X^*(t) - A \cdot D, \tag{2}$$

where t represents the current iteration, C and A are coefficient vectors, X^* represents the position vector of the best solution, and X is the position vector. A and C values are calculated by the following equations:

$$A = 2 \cdot a \cdot r - a \tag{3}$$

$$C = 2 \cdot r,\tag{4}$$

where a is linearly decreased from two to zero over iterations and $r \in [0, 1]$. The exploitation phase is simulated mathematically as follows.

- (1) **Shrinking encircling:** obtained by decreasing a values according to Equation (4). Remark that a is a random value in [-a, a].
- (2) Spiral updating: calculates the distance between the prey and the whale. Equation (5), calculates the spiral that mimics the spiral movement as follows:

$$X(t+1) = \mathbf{D}^l e^{bl} \cdot \cos(2\pi l) + X^*(t)$$
(5)

where b is fixed and l is a random number in [-1, 1]. To choose either the spiral model or the shrinking encircling mechanism model, a probability of 50% is assumed as follows:

$$X(t+1) = \begin{cases} X^*(t) - A \cdot D & \text{if } p < 0.5\\ D^l \cdot e^{bl} \cdot \cos(2\pi l) + X^*(t) & \text{otherwise,} \end{cases}$$
 (6)

where p is a random number in a uniform distribution. On the other hand, in the exploration phase, $1 \prec A \prec -1$ is used to force the agent to move away from this location. Equations (7) and (8) represent the exploration phase mathematically as follows:

$$D = |C \cdot X_{rand} - X| \tag{7}$$

$$X(t+1) = X_{rand} - A \cdot D. \tag{8}$$

3. Binary whale optimization algorithm

In continuous WOA, each whale changes its position to any point using Equation (2), while in bWOA, to update a position means you switch between either zero or one. Moreover, in the binary version, Equation (2) becomes in this case insufficient to perform the position updating process. So the major point is changing the agent position according to the probability of its distance (Kennedy and Eberhart 1997). To achieve this, a transfer function is required to map the values of the distance to probability values to update the positions. Figure 1 demonstrates the flow chart of the binary WOA version.

S-shaped (sigmoid) and V-shaped (hyperbolic tan) functions are used to squash solutions by Equations (9) or (10), respectively. Then, a threshold is applied in the case of S-shaped functions using Equation (11), while using Equation (12) in the case of V-shaped functions.

Figure 2 illustrates the mathematical curve of S-shaped and V-shaped functions, and Algorithm 1 shows the pseudo-code of the binary versions.

Figure 1. Binary whale optimization algorithm diagram.

$$S(x_i^k(t)) = \frac{1}{1 + e^{-d_i^k}(t)}$$
 (9)

$$V(x_i^k(t)) = |\tanh(x_i^k(t))|, \tag{10}$$

Figure 2. S-shaped and V-shaped transfer functions. (a) V-shaped and (b) S-shaped.

Algorithm 1 Binary whale optimization algorithms (bWOA-S and bWOA-V)

```
1: Input: n Number of whales in the population.
 2: MaxIter Number of iterations for optimization.
 3: Output: Optimal whale position
 4: Initialize a, the population of n whales.
   Find X^* = best search agent threads.
   while stopping criteria not meet to do
       for whale<sup>i</sup> belong to whales do
 7:
           Calculate and Update a; A, C, pandl.
 8:
           if p < 0.5 then
 9:
10:
               if (|A| < 1) then
                   Update position by Equation (2)
11:
12:
               else (|A| > 1)
                   Select a random search agent (X_{rand})
13:
                   Update position by Equation (8)
14:
               end if
15:
           else (p \ge 0.5)
16:
               Update position by Equation (5)
17:
           end if
18:
           Squash solution using Equation (9) or Equation (10)
19:
           Update X(t + 1) from Equation (11) or Equation (12)
20:
21:
       end for
       Calculate the agent fitness
22:
       Update X^* if there is a better solution
23:
       t = t + 1
24:
25: end while
```

where $d_i^k(t)$ is the distance of the particle

$$x_i^k(t+1) = \begin{cases} 0 & \text{if } r \text{ and } < S(x_i^k(t)) \\ 1 & \text{otherwise} \end{cases}$$
 (11)

$$X_i^k(t+1) = \begin{cases} (x_i^k(t))^{-1} & r \text{ and } < V(x_i^k(t)) \\ x_i^k(t) & \text{otherwise,} \end{cases}$$
 (12)

where $x_i^k(t)$ and $x_i^k(t+1)$ illustrate the position of the *i*th particle at specific iterations and dimensions, and $x_i^k(t)^{-1}$ is the complement of $(x_i^k(t))$.

4. Evaluation criteria and benchmark test functions

Twenty-two benchmark unconstrained functions (unimodal, multimodal and composite functions) and three engineering problems are used to evaluate the performance of the proposed bWOA-S and bWOA-V algorithms.

4.1. Evaluation criteria

The proposed algorithm is evaluated using three different statistical measurements as follows.

(1) **Average (Ave)** is the average of a stochastic optimization algorithm applied *N* times as shown in Equation (13):

Ave =
$$\frac{1}{N} \sum_{i=1}^{N} f_*^i$$
, (13)

where f_*^i is the optimal solution that resulted at the *i*th agent of the algorithm.

- (2) **Median (Med)** is the middle value of the ordered data.
- (3) **Standard deviation (Std)** if the standard deviation is too small, then it means that the optimizer converges to the same solution. Otherwise, if it has large values, then it means that it is close to random results, as shown in Equation (14):

$$Std = \sqrt{\left(\frac{1}{N-1}\right)\sum (f_*^i - Mean)^2}.$$
 (14)

4.2. Benchmark test functions

To investigate the performance of the bWOA, twenty-two standard benchmark functions with different characteristics are selected (Mirjalili, Mirjalili, and Yang 2014) in addition to three engineering design problems. Numerical experiments are carried out for twenty-five case studies including seven unimodal functions, nine multimodal functions, six composite functions and three engineering design problems.

Tables 1 and 2 demonstrate the aforementioned functions, where 'Dim' indicates the number of dimensions, 'Range' is the boundary of the function's search space, and f_{\min} is the minimum value obtained from the function.

Moreover, three optimization engineering design problems, namely tension/compression spring design, welded beam design and pressure vessel design, are presented in Table 3.

Table 1. Unimodal and multimodal functions.

Function	Range	Dim	Minimum
$F1 = \sum_{i=1}^{n} x_i^2$	[-100, 100]	30	0
$F2 = \sum_{i=1}^{n} x_i + \prod_{i=1}^{n} x_i $	[-10, 10]	5	0
$F3 = \sum_{i=1}^{n} (\sum_{j=1}^{i} x_j)^2$	[-100, 100]	5	0
$F4 = \max_{i} \{ x_i , 1 \le i \le n \}$	[-100, 100]	5	0
$F5 = \sum_{i=1}^{n-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	[-30, 30]	5	0
$F6 = \sum_{i=1}^{n} ([x_i + 0.5])^2$	[-100, 100]	5	0
$F7 = \sum_{i=1}^{n} ix_i^4 + random[0, 1]$	[-1.28, 1.28]	5	0
$F8 = \sum_{j=1}^{n} -Z_j \sin(\sqrt{ Z_j })$	[-500, 500]	30	-418.98×5
$F9 = \sum_{i=1}^{n} [z_j^2 - 10\cos(2\pi z_j) + 10]$	[-5.12, 5.12]	30	0
$F10 = -20 \exp(-0.2\sqrt{\frac{1}{n}\sum_{j=1}^{n} z_{j}^{2}}) - \exp\left(\frac{1}{n}\sum_{j=1}^{n} \cos(2\pi Z_{j})\right) + 20 + e$	[-32, 32]	30	0
$F11 = \frac{1}{4000} \sum_{j=1}^{n} z_j^2 - \prod_{j=1}^{n} \cos(z_j / \sqrt{j}) + 1$	[-600,600]	30	0
$F12 = \tfrac{\pi}{n} \{ 10 \sin(\pi y_1) + \sum_{j=1}^{n-1} \left(y_i - 1 \right)^2 [1 + 10 \sin^2(\pi y_{j+1})] + (y_n - 1)^2 \}$			
$+\sum_{j=1}^{n}u(x_{j},10,100,4),$	[-50, 50]	30	0
$y_j = 1 + \frac{x_j + 1}{4}, u(x_j, a, k, m) = \begin{cases} k(x_j - a)^m & x_j > a \\ 0 & -a < x_j < a \\ k(-x_j - a)^m & -a > x_j \end{cases}$			
F13 = $0.1\{\sin^2(3\pi z_1) + \sum_{j=1}^n (z_j - 1)^2[1 + \sin^2(3\pi z_j + 1)] + (z_n - 1)^2[1 + \sin^2(2\pi z_n)]\} + \sum_{j=1}^n u(z_j, 5, 100, 4)$	[-50, 50]	30	0
$F14 = -\sum_{i=1}^{n} \sin(x_i) \times (\sin(i \cdot x_i^2/\pi))^{2m}, m = 10$	[-100, 100]	2	-1
F15 = $\left[\exp\left(-\sum_{i=1}^{n} (x_i/\beta)^{2m}\right) - 2\exp\left(-\sum_{i=1}^{n} x_i^2\right)\right] \times \prod_{i=1}^{n} \cos^2 x_i, m = 5$	[-100, 100]	2	0
$F16 = \{ [\sum_{i=1}^{n} \sin^{2}(x_{i})] - \exp(-\sum_{i=1}^{n} x_{i}^{2}) \} \times \exp[-\sum_{i=1}^{n} \sin^{2} \sqrt{ x_{i} }]$	[-5,5]	2	-1.0316

5. Experimental result and discussion

The statistical results are illustrated in Table 4. Thirty independent runs are applied and averaged to depict the results. Three measures are used for investigating the performance of the suggested algorithm: (1) the average (Ave), (2) the standard deviation (Std) and (3) the median (Med).

5.1. Unimodal functions

According to the nature of unimodal functions, each function has one global solution only. Consequently, to examine metaheuristic algorithms in terms of convergence rate, unimodal functions are appropriate. The quantitative results for unimodal test functions are depicted in Table 4. This table reveals that the bWOA outperforms the other three metaheuristic algorithms in terms of the mean, median and standard deviation on all the unimodal test functions.

5.2. Multimodal benchmark functions

Each multimodal benchmark function has many local minima, so they are appropriate for measuring the ability of the algorithm to avoid local minimum points. The quantitative results in Table 4 show that the bWOA outperforms another algorithm on four of the multimodal benchmark test functions,

Table 2. Composite functions.

No.	Function		Range	Dim	Minimum
F17	$f_1, f_2, f_3, \ldots, f_{10}$	=	[-100, 100]	10	0
	Sphere function[$\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}$]	=			
	$[1, 1, 1, \ldots, 1][\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_{10}]$	=			
	[5/100, 5/100, 5/100, , 5/100]				
F18	$f_1, f_2, f_3, \ldots, f_{10}$	=	[-10, 10]	10	0
	Griewank's function[$\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_{10}$]	=			
	$[1, 1, 1, \ldots, 1][\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_{10}]$	=			
	[5/100, 5/100, 5/100, , 5/100]				
F19	$f_1, f_2, f_3, \ldots, f_{10}$	=	[-100, 100]	10	0
	Griewank's function[$\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}$]	=			
	$[1, 1, 1, \ldots, 1][\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_{10}]$	=			
	[1, 1, 1, , 1]				
F20	$f_1, f_2 = \text{Ackley's function } f_3, f_4$	=	[-100, 100]	10	0
	Rastrigin's function f_5 , f_6	=			
	Weierstrass's function f_7 , f_8	=			
	Griewank's function f_9 , f_{10}	=			
	Sphere function $[\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}]$	=			
	$[1,1,1,\ldots,1][\lambda_1,\lambda_2,\lambda_3,\ldots,\lambda_{10}]$ [5/32,5/32,1,1,5/0.5,5/0.5,5/100,5/100,5/100,5/100]	=			
F21	$f_1, f_2 = \text{Rastrigin's function } f_3, f_4$	=	[-30, 30]	10	0
	Weierstrass's function f_5 , f_6	=			
	Griewank's function f_7, f_8	=			
	Ackley's function f_9 , f_{10} Sphere function[σ_1 , σ_2 , σ_3 , , σ_{10}]	=			
	[1, 1, 1, , 1][λ_1 , λ_2 , λ_3 , , λ_{10}]	=			
	[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]	_			
F22	$f_1, f_2 = \text{Rastrigin's function } f_3, f_4$	=			
	Weierstrass's function f_5 , f_6	=			
	Griewank's function f_7 , f_8 Ackley's function f_9 , f_{10}	=			
	Sphere function $[\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{10}]$	=			
	[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1][$\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_{10}$]	=			
	$0.1 \times 1/5, 0.2 \times 1/5, 0.3 \times 5/0.5, 0.4 \times$	_			
	$5/0.5, 0.5 \times 5/100, 0.6 \times 5/100,$				
	$0.7 \times 5/32, 0.8 \times 5/32, 0.9 \times 5/100, 1 \times 5/100$		[-100, 100]	10	0

i.e. F9, F11, F15 and F16, for all measures. The BBA and the binary particle swarm optimization (BPSO) algorithms have the best results on four (F10, F12, F13 and F14) and one (F8) test functions, respectively. According to Table 4, the proposed algorithm is capable of avoiding local minima.

5.3. Composite benchmark functions

The optimization of composite benchmark test functions is a very challenging task because both exploration and exploitation allow local optima to be avoided. The quantitative results are touted in Table 4 and Figure 3. The results show that the bWOA has the second-best values on F19, F20 and F22.

5.4. Engineering optimization problems

In addition to the previous results, the bWOA is evaluated with three engineering design problems; these problems have different constraints and characters. The quantitative results depicted in Table 5 make a fair and just comparison with the native WOA, various penalty function (Yang 2010a) constraint handling strategies being applied. The parameter settings are shown in Table 6.

Table 3. Engineering optimization problems.

No.	Test problems	Functions
E1	Tension/compression spring (Belegundu and	Minimize: $f(x) = (x_3 + 2)x_2x_1^2$
	Arora 1985)	where $g_1(x) = 1 - (x_2^3 x_3/71, 785 x_1^4) \le 0$,
		$g_2(x) = [4x_2^2 - x_1x_2/12,566(x_2x_1^3 - x_1^4) + (1/5108x_1^2)] - 10 \le 0,$
		$g_3(x) = 1 - (140.45x_1/x_2^2x_3) \le 0,$
		$g_4(x) = (x_2 + x_1)/1.5 - 1 \le 0, \ 0.05 \le x_1 \le 2.00, \ 0.25 \le x_2 \le 1.30, \ 2.00 \le x_3 \le 15.00$
E2	Welded beam (Ray and Liew 2002)	Minimize: $f_1(x) = 1.104,71x_1^2x_2 + 0.048,11x_3x_4(14.0 + x_2)$ where $g_1(x) = \tau - 13,600, \ g_2(x) = \sigma - 30,000, \ g_3(x) = \delta(x) - 0.25,$
		$g_4(x) = x_1 - x_4$, $g_5(x) = 6,000 - p$, $g_6(x) = 0.125 - x_1$,
		$g_7(x) = 1.104,71x_1^2 + 0.048,11x_3x_4(14.0 + x_2),$
		$0.125 \le x_1 \le 5$, $0.1 \le x_2 \le 10$, $0.1 \le x_3 \le 10$, $0.125 \le x_4 \le 5$
		$\tau(x) = \sqrt{(\tau')^2 + 2\tau'\tau''\frac{x_2}{2R} + (\tau'')^2}, \ \tau' = \frac{p}{\sqrt{2x_1x_2}}, \ \tau'' = \frac{MR}{J}, \ M = P(L + \frac{x_2}{2}),$
		$R = \sqrt{\frac{x_2^2}{4} + (\frac{x_1 + x_3}{2})^2}, \ J = 2\sqrt{2x_1x_2}\left[\frac{x_2^2}{4} + (\frac{x_1 + x_3}{2})^2\right], \ \sigma(x) = \frac{6PL}{x_4x_3^2}, \ \tau(x) = \frac{6PL^3}{Ex_3^2x_4},$
		$P_c = \frac{\sqrt[4.013E]{\frac{x_3^2 x_4^6}{36}}}{L^2} (1 - \frac{x_3}{2L} \sqrt{\frac{E}{4G}}), \ L = 14, \ E = 30 \times 10^6, \ G = 12 \times 10^6$
E3	Pressure vessel	Minimize: $f(x) = 0.622,4x_1x_3x_4 + 1.778,1x_2x_3^2 + 3.166,1x_1^2x_4 + 19.84x_1^2x_3$
	(Kramer 1994)	where $g_1(x) = -x_1 + 0.019,3x$, $g_2(x) = -x_2 + 0/009,54x_3 \le 0$,
		$g_3(x) = -\pi x_3^2 x_4 - (4/3)\pi x_3^3 + 1,296,000 \le 0, \ g_4(x) = x_4 - 240 \le 0$
		$0 \le x_i \le 100, \ i = 1, 2, \ 10 \le x_i \le 200, \ i = 3, 4$

Welded beam

Optimization results and the statistical results are given in Table 5. Therefore, this table reveals that the bWOA shows better performance compared with the native WOA.

Tension/compression spring

Table 5 depicts the optimization and statistical results, showing that the bWOA algorithm is superior to the WOA on average.

Pressure vessel

The statistical results and optimization results of utilizing the bWOA and the WOA are presented in Table 5. According to the results in this table, once more, both the bWOA algorithms are superior to the WOA.

5.5. Convergence test

To investigate the performance evaluation of the bWOA compared with the native WOA, overall benchmark test functions with five dimensions, tested to obtain convergence curve. Note that 30 independent runs are performed to obtain the convergence of the bWOA and the WOA. Also, all the

Table 4. Comparison of Ave, Std and Median for the benchmark functions.

No.	Measure	WOA	bWOA-S	bWOA-V	bGWO1	bGWO2	BBA	BPSO	GA
F1	Ave	5.2987e-42	0	0	0	0	1.8518	5.2965	10.0705
	Std	1.180e-41	7.6828e-30	0	0	0	2.4981	2.7657	24.9445
	Med	2.979e-45	0	0	0	0	1.2037	4.6684	2.6534
F2	Ave	4.4849e-36	0	0	0	0	0.0965	0.2292	0.269483
	Std	1.0005e-35	7.772e-35	0	0	1.085e-43	0.0646	0.0938	0.23788
	Med	1.503e-38	0	0	0	0	0.0880	0.2373	0.172363
F3	Ave	5.0255e-29	0	0	0	0	7.8103	22.48915	555.9039
	Std	1.0798e-28	0	0	2.3841e-54		9.7981e-24	14.11401	250.693
	Med	3.4899e-30	0	0	0	0	4.9511	19.09979	545.6876
F4	Ave	6.7340e-18	0	0	0	0	1.1526	2.608854	1.59375
	Std	1.5042e-17	5.034e-36	0	0	0	0.6140	0.838937	1.21348
	Med	7.5e-23	0	0	0	0	1.5588	7.672516	4.671173
F5	Ave	1.4953	0	0	0.2437	0	25.0743	148.0799	369.7545
	Std	0.001	0	0	0	0	28.4430	137.1896	342.8893
	Med	0.278	0	0	0	0	14.9324	96.0937	305.5475
F6	Ave	5.3700e-08	0	0	0.0157	0	2.6993	8.496653	6.984222
	Std	4.5992e-08	0	0	0	0	2.7428	6.140883	7.010388
	Med	0.2764	0	0	0		1.0169	2.496094	1.71875
F7	Ave	0.0024	0	0	0	1.2516e-04	0.0060	0.015542	0.047174
	Std	0.0015	0.0004	0.005	0.011	0.002	0.0044	0.007474	0.043587
- 0	Med	0.0002	0	0	0	0	0.0057	0.014006	0.034778
F8	Ave	-1083.2	-973.3	-1162.2	-985	-444.76	-985.3203		-929.324
	Std	171.002	127.98	98.02	1000.02	0.05	27.5790	14.21898	27.9523
го	Med	-1020.0653	-971.23	-3220.28	-434.23	-789.32	-994.8144		-918.613
F9	Ave	5.20 0	0 0	0 0	0 0	0 0	1.5850	4.977688	2.1896
	Std Med	6.23	0	0	0	0	1.3352 1.2686	1.597929 5.282659	1.883027 1.9901952
E10	Ave	0.23 0	0	0	0	0	1.1560	2.7255	1.399853
1 10	Std	1.9459e-15	0	0	0	0	0.7279	0.4721	1.338105
	Med	4.44e-15	8.88e-17	0	0	0	0.7279	2.7969	2.316849
E11	Ave	3.0198e-15	0.000-17	0	8.8817e-16	0	0.2463	0.3873	0.7067
	Std	1.9459e-15	Ö	Ö	1.4222e-17	0	0.0839	0.1302	0.3223
	Med	0.0074	Ö	Ö	0	1.687e-23	0.2261	0.3862	0.7336
F12	Ave	0.0054	Ö	Ö	Ö	0	0.2708	0.6213	0.191197
	Std	0.0053	Ö	Ö	Ö	Ö	0.3287	0.38857	0.244347
	Med	1.67e-7	0.057	0.0012	0.0030	0.0008	0.1506	0.4924	0.073291
F13	Ave	0.0131	0.0336	0.212	0.621	0.112	0.1297	0.4444	0.193006
	Std	9.1228e-07	0.0076	0.007844	0.4351	0.096	0.0736	0.211701	0.254864
	Med	5.4e-8	0.0023	0.0020	0.214	0.098	0.427624	0.113689	
F14	Ave	-4.7062	0.0057	-0.0023	0	-0.002	-3.642	-3.6416	-3.885
	Std	0.8910	0.0067	0.0052	0.0002	0.06	0.351	0.325	0.718
	Med	-1.83	-2.71	-0.003	-0.0056		-3.608	-3.582	-4.076
F15	Ave	-0.4	-1	-2.654	0	0	-0.5173	-0.055483	-0.474555
	Std	0.5477	0	0.69	39	0.87	0.3841	0.1351484	0.4856118
	Med	-7.307	-0.002	-0.5	-0.8	-0.543	-0.5908	- 4.15 e -109	-0.414068
F16	Ave	-0.2	-1	-1.009	6.25	0.0001	3.198e-04	2.95e-04	0.001575
	Std	0.4472	0.2479	1.333	0.0001	0.0001	2.334e-04	0.000215	0.000818
	Med	5.95 e –13	-1	5.23	2.39	11.03	2.325e-04	0.000269	0.001325
F17	Ave	100.09	1640.57	51.32	93.45	87.52	93.2475	194.8523	193.6682
	Std	122.47	88.023	87.36	77.677	53.987	64.2902	60.03402	121.9127
	Med	100.13	971.32	84.23	52.98	96.23	78.7049	176.0384	170.521
F18	Ave	225.45	199.24	14.7	111.98	78.65	156.6317	146.7613	205.6785
	Std	115.23	113.58	231.245	33.54	9.54	31.8874	29.08005	160.9849
F16	Med	178.98	127.11	19.36	402	109.77	154.5892	140.6424	154.8682
F19	Ave	438.99	324.25	9.02	147.33	89.574	149.6407	445.7764	384.7761
	Std	84.6687	12.36	8.64	89.23	11.47	38.7091	49.3449	118.0311
	Med	417.32	111.98	92.5	172.98	196.3	152.1527	443.3976	448.1912

(continued).

Table 4. Continued.

No.	Measure	WOA	bWOA-S	bWOA-V	bGWO1	bGWO2	BBA	BPSO	GA
F20	Ave	629.23	479.35	800.75	872.32	102 .002	146.9480	479.9867	588.1262
	Std	144.4	214.21	47.65	67.12	77.37	22 .9687	30.19361	102.3373
	Med	678.95	516.89	847.02	637.12	119 .014	147.0495	477.0193	639.9012
F21	Ave	403.91	373 .09	510.57	245.62	514.09	616.1212	172.0816	426.3021
	Std	172.58	53.49	11 .87	24.78	99.23	49.8056	64.2674	183.5344
	Med	429.852	390.879	118 .21	360.25	161.02	163.1106	140.9928	218.0127
F22	Ave	694.60	724.35	92 .65	174.98	564.25	152.8125	691.65	914.5375
	Std	208.020	46.32	87.65	74.78	158.23	33.6342	149.6255	12.32191
	Med	800.025	900253	109 .23	187.05	202.98	145.5394	607.9773	908.362

Figure 3. The convergence rate between bWOA and WOA on some benchmark functions. (concluded). (a) F1. (b) F4. (c) F10. (d) F14. (e) F18 and (f) F21.

convergence curves are averaged. Owing to space limitations and to improve the readability of the article, only six convergence curves, *i.e.* (F1, F4) from unimodal functions, (F10, F14) from multimodal functions and (F18, F21) from composite functions, are shown in Figure 3. This figure reveals that the bWOA outperforms the basic WOA and has faster convergence. Also, the bWOA is able to avoid local minima with a significant convergence rate for multimodal benchmark test functions. As shown by this figure, the bWOA has a faster convergence rate than the WOA and the capability of finding global solutions.

In summary, the statistical results of the 25 benchmark tests show that the proposed bWOA algorithm is very effective in solving constrained and engineering design problems.

Table 5. Optimization results and statistical results of applying the bWOA-S, the bWOA-V and the WOA to Engineering problems.

			Optimization results					l results
	Algorithm	h	I	t	b	Cost	Ave	Std
Welded beam design problem	WOA	0.205396	3.484293	9.037426	0.206276	1.730499	1.7320	0.0226
5 .	bWOA-S	0.21	4	8	0.28125	1.2246	1.727	0.0113
	bWOA-V	0.20	3.47	9.035	0.2011	1.724	1.725	0.004
			Optimization results				Statistical results	
		d	D	N		Cost	Ave	Std
Tension/compression design	WOA	0.051207	0.345215	12.004032		0.0126763	0.0127	0.1003
	bWOA-S	0.05	0.3125	11		0.010281	0.01260	0.0180
	bWOA-V	0.05	0.3429	12.08		0.01265	0.012699	0.001
			Oį	otimization re	esults		Statistica	l results
		T_s	T_h	R	L	Cost	Ave	Std
Pressure vessel	WOA	0.812500	0.4375	42.0982	176.638	6059.7410	6068.05	65.6519
	bWOA-S	1.05	0.781	40.4525	198.002	5890.32	5658.964	29.6521
	bWOA-V	0.7780	0.3831	40.315	200	5880.1642	5891.964	327.007

Table 6. Parameter settings.

Parameter	Value
Number of iterations	500
Number of search agents	20
Number of run repetitions	30
Crossover, mutation	0.9, 0.05

Table 7. Wilcoxon's rank sum test.

	No.	<i>p</i> -value	No.	<i>p</i> -value	No.	<i>p</i> -value
bWOA-S versus WOA	F1	0.000	F9	0.000	F17	0.237
	F2	0.000	F10	0.000	F18	0.216
	F3	0.000	F11	0.000	F19	0.326
	F4	0.000	F12	0.000	F20	0.480
	F5	0.000	F13	0.102	F21	0.932
	F6	0.000	F14	0.000	F22	0.742
	F7	0.000	F15	0.652		
	F8	0.000	F16	0.204		
bWOA-V versus WOA	F1	0.000	F9	0.000	F17	0.365
	F2	0.000	F10	0.000	F18	0.932
	F3	0.000	F11	0.000	F19	0.265
	F4	0.000	F12	0.082	F20	0.265
	F5	0.000	F13	0.000	F21	0.821
	F6	0.000	F14	0.000	F22	0.661
	F7	0.000	F15	0.346		
	F8	0.000	F16	0.000		

5.6. Wilcoxon's rank sum

In order to compare the results of each run, a non-parametric statistical test known as Wilcoxon's rank sum test for independent samples (Wilcoxon 1945) is performed over all functions at the 5% significance level and the *p*-values are reported in Table 7.

The p-values show that, on most functions except F15, F21 and F22 for the bWOA-S, and F22 for the bWOA-V, a great and significant difference is exhibited.

Table 8. Results of the proposed bWOA-S, bWOA-V and WOA over five TSP benchmarks.

Dataset name	Optima	bWOA-S	bWOA-V	WOA
KroA100	21282	21345	21647	21989
KroB100	22140	22406	22308	22842
KroC100	20749	21070	21320	21476
KroD100	21294	21596	22013	22083
KroE100	22068	22771	22439	22970

6. The travelling salesman problem (TSP)

This algorithm can be applied to many real-world problems, such as the water pump switching problem and the optimal scheduling of a multiple dam system (Geem 2005, 2007). In this section, the TSP is used as a real-world application. The TSP is considered to be one of the most common and classical examples of a combinatorial optimization problem, and has been proved to be \mathcal{NP} -hard. The objective in the TSP is to find the salesman's optimal tour to visit all cities once and only once and return to the start city after travelling the shortest possible distance. Here, the symmetrical TSP is used, *i.e.* the distance from city u to city v is the same as from city v to city u (Zurada 1992). Five cities from benchmark designs especially for the TSP are used (Reinelt 1991). The name of the five benchmark datasets and their results are shown in Table 8. The results show that both the bWOA-S and the bWOA-V have better results than the original WOA algorithm in all datasets.

7. Conclusion and future work

Binary versions of the WOA, namely the bWOA-S and the bWOA-V, have been proposed via transfer functions. They are compared with five well-known metaheuristic algorithms, namely the BPSO, the BBA, the bGWO1, the bGWO2 and a GA, over 22 benchmark functions and three engineering design problems to investigate their evaluation performance. The statistical comparison results revealed that both novel versions give better performance than the comparison algorithms. Furthermore, the results prove that they are worthy of being classed as binary optimization algorithms. Moreover, the convergence curves for the proposed algorithms when compared with the native WOA reveal that the bWOAs have faster convergence rates. The focus of further research will apply the bWOAs to real-life optimization problems with different transfer functions.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Abdelazim G. Hussien http://orcid.org/0000-0001-5394-0678

Aboul Ella Hassanien http://orcid.org/0000-0002-9989-6681

Essam H. Houssein http://orcid.org/0000-0002-8127-7233

Ahmad Taher Azar http://orcid.org/0000-0002-7869-6373

References

Babaoglu, İsmail, Oğuz Findik, and Erkan Ülker. 2010. "A Comparison of Feature Selection Models Utilizing Binary Particle Swarm Optimization and Genetic Algorithm in Determining Coronary Artery Disease Using Support Vector Machine." *Expert Systems with Applications* 37 (4): 3177–3183.

Beheshti, Zahra, Siti Mariyam Shamsuddin, and Siti Sophiayati Yuhaniz. 2013. "Binary Accelerated Particle Swarm Algorithm (BAPSA) for Discrete Optimization Problems." *Journal of Global Optimization* 57 (2): 549–573. doi:10.1007/s10898-012-0006-1.

Belegundu, Ashok D., and Jasbir S. Arora. 1985. "A Study of Mathematical Programming Methods for Structural Optimization. Part I: Theory." *International Journal for Numerical Methods in Engineering* 21 (9): 1583–1599.

- Beşkirli, Mehmet, İsmail Koç, Hüseyin Haklı, and Halife Kodaz. 2018. "A New Optimization Algorithm for Solving Wind Turbine Placement Problem: Binary Artificial Algae Algorithm." Renewable Energy 121: 301-308. doi:10.1016/i.renene.2017.12.087.
- Dahi, Zakaria Abd El Moiz, Chaker Mezioud, and Amer Draa. 2016. "On the Efficiency of the Binary Flower Pollination Algorithm: Application on the Antenna Positioning Problem." Applied Soft Computing 47: 395-414.
- Eid, Heba F. 2018. "Binary Whale Optimisation: An Effective Swarm Algorithm for Feature Selection." International Journal of Metaheuristics 7 (1): 67-79.
- El Aziz, Mohamed Abd, Ahmed A. Ewees, and Aboul Ella Hassanien. 2017. "Whale Optimization Algorithm and Moth-Flame Optimization for Multilevel Thresholding Image Segmentation." Expert Systems with Applications 83:
- Emary, E., and Hossam M. Zawbaa. 2018. "Feature Selection via Lèvy Antlion Optimization." Pattern Analysis and Applications. doi:10.1007/s10044-018-0695-2.
- Emary, Eid, Hossam M. Zawbaa, and Aboul Ella Hassanien. 2016a. "Binary Ant Lion Approaches for Feature Selection." Neurocomputing 213: 54-65.
- Emary, Eid, Hossam M. Zawbaa, and Aboul Ella Hassanien. 2016b. "Binary Grey Wolf Optimization Approaches for Feature Selection." Neurocomputing 172: 371–381.
- Fan, Kun, Weijia You, and Yuanyuan Li. 2013. "An Effective Modified Binary Particle Swarm Optimization (mBPSO) Algorithm for Multi-Objective Resource Allocation Problem (MORAP)." Applied Mathematics and Computation 221: 257-267.
- Geem, Zong Woo. 2005. "Harmony Search in Water Pump Switching Problem." In Proceedings of the First International Conference on Natural Computation (ICNC 2005), 751-760. Cham, Switzerland: Springer Nature.
- Geem, Zong Woo. 2007. "Optimal Scheduling of Multiple Dam System Using Harmony Search Algorithm." In Proceedings of the 9th International Work-Conference on Artificial Neural Networks (IWANN '2007), 316-323. Berlin: Springer. doi:10.1007/978-3-540-73007-1_39.
- Geem, Zong Woo, Joong Hoon Kim, and Gobichettipalayam Vasudevan Loganathan. 2001. "A New Heuristic Optimization Algorithm: Harmony Search." Simulation 76 (2): 60-68.
- Gong, Dunwei, Xinfang Ji, Jing Sun, and Xiaoyan Sun. 2014. "Interactive Evolutionary Algorithms with Decision-Maker's Preferences for Solving Interval Multi-Objective Optimization Problems." Neurocomputing 137: 241-251.
- Hassanien, Aboul Ella, and Eid Emary. 2016. Swarm Intelligence: Principles, Advances, and Applications. Boca Raton, FL: CRC Press.
- Holland, John H. 1975. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of Michigan Press.
- Holland, John H. 1992. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. Reprint Edition. Cambridge, MA: MIT/A Bradford Book.
- Hussien, Abdelazim G., Aboul Ella Hassanien, and Essam H. Houssein. 2017. "Swarming Behaviour of SALPS Algorithm for Predicting Chemical Compound Activities." In Proceedings of the Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). Piscataway, NJ: IEEE. doi:10.1109/INTELCIS.2017.8260072.
- Hussien, Abdelazim G., Aboul Ella Hassanien, Essam H. Houssein, Siddhartha Bhattacharyya, and Mohamed Amin. 2019. "S-Shaped Binary Whale Optimization Algorithm for Feature Selection." In Recent Trends in Signal and Image Processing, 79–87. Singapore: Springer Nature. doi:10.1007/978-981-10-8863-6_9.
- Hussien, Abdelazim G., Essam H. Houssein, and Aboul Ella Hassanien. 2017. "A Binary Whale Optimization Algorithm with Hyperbolic Tangent Fitness Function for Feature Selection." In Proceedings of the Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), 166-172. Piscataway, NJ: IEEE.
- Jadhav, Amolkumar Narayan, and N. Gomathi. 2018. "WGC: Hybridization of Exponential Grey Wolf Optimizer with Whale Optimization for Data Clustering." Alexandria Engineering Journal 57 (3): 1569-1584.
- Kennedy, James, and Russell Eberhart. 1995. "Particle Swarm Optimization." In Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, 1942–1948. Piscataway, NJ: IEEE.
- Kennedy, James, and Russell C. Eberhart. 1997. "A Discrete Binary Version of the Particle Swarm Algorithm." In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics: Computational Cybernetics and Simulation, Vol. 5, 4104-4108. Piscataway, NJ: IEEE.
- Kramer, S. N. 1994. "An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design." Journal of Mechanical Design 116 (2): 405-411. doi:10.1115/1.2919393.
- Krause, Jonas, Jelson Cordeiro, Rafael Stubs Parpinelli, and Heitor Silverio Lopes. 2013. "A Survey of Swarm Algorithms Applied to Discrete Optimization Problems." In Swarm Intelligence and Bio-Inspired Computation, 169-191. Amsterdam: Elsevier.
- Lau, Henry C. W., T. M. Chan, W. T. Tsui, and W. K. Pang. 2010. "Application of Genetic Algorithms to Solve the Multidepot Vehicle Routing Problem." IEEE Transactions on Automation Science and Engineering 7 (2): 383-392.

Lee, Youngjoo, and Jeongjin Lee. 2015. "Binary Tree Optimization Using Genetic Algorithm for Multiclass Support Vector Machine." Expert Systems with Applications 42 (8): 3843–3851.

Mafarja, Majdi M., and Seyedali Mirjalili. 2017. "Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection." Neurocomputing 260: 302–312.

Mirjalili, Seyedali. 2015. "The Ant Lion Optimizer." Advances in Engineering Software 83: 80–98.

Mirjalili, Seyedali. 2016. "Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems." Neural Computing & Applications 27 (4): 1053-1073. doi:10.1007/s00521-015-1920-1.

Mirjalili, Seyedali, and Andrew Lewis. 2016. "The Whale Optimization Algorithm." Advances in Engineering Software

Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Xin-She Yang. 2014. "Binary Bat Algorithm." Neural Computing and Applications 25 (3-4): 663-681.

Obagbuwa, Ibidun Christiana, and Ademola Philips Abidoye. 2016. "Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem." Algorithms 9 (3): 59. doi:10.3390/a9030059.

Pal, Avishek, and J. Maiti. 2010. "Development of a Hybrid Methodology for Dimensionality Reduction in Mahalanobis-Taguchi System Using Mahalanobis Distance and Binary Particle Swarm Optimization." Expert Systems with Applications 37 (2): 1286-1293.

Rashedi, Esmat, Hossein Nezamabadi-Pour, and Saeid Saryazdi. 2009. "GSA: A Gravitational Search Algorithm." Information Sciences 179 (13): 2232-2248.

Ray, Tapabrata, and K. M. Liew. 2002. "A Swarm Metaphor for Multiobjective Design Optimization." Engineering Optimization 34 (2): 141-153.

Reddy K., Srikanth, Lokesh Panwar, B. K. Panigrahi, and Rajesh Kumar. 2018. "Binary Whale Optimization Algorithm: A New Metaheuristic Approach for Profit-Based Unit Commitment Problems in Competitive Electricity Markets." Engineering Optimization 51 (3): 369-389. doi:10.1080/0305215X.2018.1463527.

Reinelt, Gerhard. 1991. "TSPLIB—A Traveling Salesman Problem Library." INFORMS Journal on Computing 3 (4): 376-384.

Saka, Mehmet Polat, O. Hasançebi, and Zong Woo Geem. 2016. "Metaheuristics in Structural Optimization and Discussions on Harmony Search Algorithm." Swarm and Evolutionary Computation 28: 88-97.

Saremi, Shahrzad, Seyedali Mirjalili, and Andrew Lewis. 2017. "Grasshopper Optimisation Algorithm: Theory and Application." Advances in Engineering Software 105: 30-47.

Tayarani-N, Mohammad-H, and M. R. Akbarzadeh-T. 2008. "Magnetic Optimization Algorithms a New Synthesis." In Proceedings of the IEEE World Congress on Evolutionary Computation (CEC 2008)—Computational Intelligence, 2659-2664. Piscataway, NJ: IEEE. doi:10.1109/CEC.2008.4631155.

Tharwat, Alaa, Essam H. Houssein, Mohammed M. Ahmed, Aboul Ella Hassanien, and Thomas Gabel. 2017. "MOGOA Algorithm for Constrained and Unconstrained Multi-Objective Optimization Problems." Applied Intelligence 48 (8): 2268-2283. doi:10.1007/s10489-017-1074-1.

Wang, Jianzhou, Pei Du, Tong Niu, and Wendong Yang. 2017. "A Novel Hybrid System Based on a New Proposed Algorithm—Multi-Objective Whale Optimization Algorithm for Wind Speed Forecasting." Applied Energy 208: 344-360. doi:10.1016/j.apenergy.2017.10.031.

Wilcoxon, Frank. 1945. "Individual Comparisons by Ranking Methods." Biometrics Bulletin 1 (6): 80-83.

Wolpert, David H., and William G. Macready. 1997. "No Free Lunch Theorems for Optimization." IEEE Transactions on Evolutionary Computation 1 (1): 67-82.

Yang, Xin-She. 2010a. Nature-Inspired Metaheuristic Algorithms. Frome, UK: Luniver Press.

Yang, Xin-She. 2010b. "A New Metaheuristic Bat-Inspired Algorithm." Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65-74. Berlin: Springer-Verlag. doi:10.1007/978-3-642-12538-6_6.

Yuan, Xiaohui, Bin Ji, Shuangquan Zhang, Hao Tian, and Yanhong Hou. 2014. "A New Approach for Unit Commitment Problem via Binary Gravitational Search Algorithm." Applied Soft Computing 22: 249-260. doi:10.1016/j.asoc.2014.05.029.

Zawbaa, Hossam M., Eid Emary, Crina Grosan, and Vaclav Snasel. 2018. "Large-Dimensionality Small-Instance Set Feature Selection: A Hybrid Bio-Inspired Heuristic Approach." Swarm and Evolutionary Computation 42: 29-42. Zurada, Jacek M. 1992. Introduction to Artificial Neural Systems. Vol. 8. St Paul, MN: West Publishing.