九年级(下)四月检测数学答案及评分标准

一、选择题

1.D; 2.A; 3.A; 4.C; 5.C; 6.D; 7.B; 8.C; 9.B; 10.C.

二、填空题

$$11.\frac{10}{9}$$
; 12.20 ; $13.\frac{2}{3}$; $14.x(x+12) = 864$; $15.\frac{\sqrt{65}}{2}$; $16.y = \frac{x+2}{x+1}(x>0)$.

三、解答题

$$\therefore \angle A = 26.6^{\circ}, \therefore \tan 26.6^{\circ} = 0.50 = \frac{x}{AC}, \therefore AC = 2xm,$$
 3 分在 Rt $\triangle BDC$ 中, $\tan \angle DBC = \frac{DC}{CB},$ 4 分 $\therefore \angle DBC = 37^{\circ}, \therefore \tan 37^{\circ} = 0.75 = \frac{x}{CB}, \therefore BC = \frac{4}{3}xm,$ 6 分 $\therefore AC - BC = 43.7$,即 $2x - \frac{4}{3}x = 43.7$, 8 分解得 $x \approx 65.6$. 答: CD 的高度约为 65.6 米. 9 分 22.(1)证明:连接 OA ,如图,

(第22题)

\therefore $\angle AOC = 2\angle ABC$, $\angle ABC = 22.5^{\circ}$, \therefore $\angle AOC = 45^{\circ}$
∵AO=OB=AD,∴∠AOD=∠ADO=45° 2 分
∴∠OAD=90°.即 OA ⊥AD, ······ 3 分
∵ OA 是圆的半径, ∴ DA 是⊙O 的切线; ··············· 4 分
(2)解: $AE \perp BD$, $AC = \widehat{CC}$
\therefore $\angle EOC = \angle AOC = 45^{\circ}$. \therefore $\angle AOE = 90^{\circ}$, \therefore $AO \perp EF$
$∵$ ⊙ O 的直径为 2, $∴$ $OA = OE = 1$. $∴$ $AE = \sqrt{OA^2 + OE^2} = \sqrt{2}$
\therefore $OB = OA$, \therefore $\angle OBA = \angle OAB = 22.5^{\circ}$. \therefore $\angle AFO = 90^{\circ} - \angle OAB = 67.5^{\circ}$ 8 分
$:OA \perp OE, OA = OE, :: \angle OAE = \angle OEA = 45^{\circ}.$
∴∠EAF=∠OAE+∠OAB=67.5° 9 分
\therefore $\angle EAF = \angle EFA$. \therefore $EF = AE = \sqrt{2}$. 10 分
23.解:(1) ∵OB=2,AB=3,∴点 A 的坐标是(2,3), ···································
把 $A(2,3)$ 代入 $y = \frac{k}{x}$ 得: $3 = \frac{k}{2}$, $\therefore k = 6$;
(2)AN = ME.理由如下
\therefore 点 E 恰好是 DC 的中点, \therefore 点 E 的纵坐标是 $\frac{3}{2}$.
当 $y = \frac{3}{2}$ 时, $\frac{3}{2} = \frac{6}{x}$,解得: $x = 4$,∴点 E 的坐标是(4, $\frac{3}{2}$)
设直线 AE 的解析式是 $y=kx+b(k\neq 0)$.

将
$$A(2,3)$$
, $E\left(4,\frac{3}{2}\right)$ 代人 $y=kx+b$ 得:
$$\begin{cases} 2k+b=3\\ 4k+b=\frac{3}{2} \end{cases}$$
, 解得:
$$\begin{cases} k=-\frac{3}{4}\\ b=\frac{9}{2} \end{cases}$$

∴直线 AE 的解析式是 $y=-\frac{3}{4}x+\frac{9}{2}$. 4 分 延长 DA 交 y 轴于点 F ,如图所示.

则 $AF \perp y$ 轴, AF = 2, 点 F 的坐标是(0,3), OF = 3.

$$\therefore NF = \frac{9}{2} - 3 = \frac{3}{2}, \therefore AN = \sqrt{AF^2 + NF^2} = \sqrt{2^2 + \left(\frac{3}{2}\right)^2} = \frac{5}{2}; \dots 6 \text{ }$$

∴
$$ME = \sqrt{CM^2 + CD^2} = \sqrt{\left(\frac{3}{2}\right)^2 + 2^2} = \frac{5}{2}$$
. 9 分

24.
$$\mathbf{m}$$
:(1): $\angle ACB = 90^{\circ}$, $\therefore AC^2 + BC^2 = AB^2$, $\therefore AC = 3$, $BC = 4$, $\therefore AB = \sqrt{3^2 + 4^2} = 5$ cm

:CD 为 Rt △ ACB 斜边 AB 的中线, $:CD = \frac{1}{2}AB = \frac{5}{2}$;

(2)当 0<t< $\frac{5}{2}$ 时,如图 1,设 PF 交 CD 于点 G, $\therefore PE \bot AC$, $\therefore PE /\!\!\!/ BC$, $\therefore \triangle APE \circ \triangle ABC$,

$$\therefore \frac{AP}{AB} = \frac{PE}{BC}, \frac{t}{5} = \frac{PE}{4}, \therefore PE = \frac{4}{5}t, \dots 3 \text{ }\%$$

$$\therefore \frac{\frac{5}{2} - t}{\frac{5}{2}} = \frac{PG}{3}, \therefore PG = 3 - \frac{6}{5}t, \dots \qquad 6 \,$$

 $\therefore PF \perp BC, \therefore PF //AC, \therefore \triangle BPF \circ \triangle BAC.$

$$\therefore \frac{BP}{BA} = \frac{DF}{AC}, \frac{5-t}{5} = \frac{PF}{3},$$

$$\therefore PF = 3 - \frac{3}{5}t, \therefore EC = PF = 3 - \frac{3}{5}t, \dots 8 \text{ }$$

$$:PG/\!\!/BC,::\triangle DPG \circ \triangle DBC,::\frac{PG}{BC} = \frac{DP}{DB},$$
 9 分

$$\therefore \frac{PG}{4} = \frac{t - \frac{5}{2}}{\frac{5}{2}}, \therefore PG = \frac{8}{5}t - 4, \qquad 10 \, \text{fb}$$

综上所述,
$$S = \begin{cases} -\frac{12}{25}t^2 + \frac{6}{5}t, 0 < t < \frac{5}{2}, \\ -\frac{12}{25}t^2 + \frac{18}{5}t - 6, \frac{5}{2} < t < 5. \end{cases}$$

$$25.(1) \because \angle BDF = \angle CDE, \therefore \angle BDE + \angle EDF = \angle CDF + \angle EDF. \therefore \angle BDF = \angle CDF, \because \angle ACB$$

(2)结论
$$AE + DE = \sqrt{2}CE$$
.

证明:过 C 作 $CM \perp CE$ 交 ED 延长线于 M,如图 1.

$$\therefore$$
 $\angle ACB = \angle ECM = 90^{\circ}$, \therefore $\angle ACE = \angle DCM$, $AC = AD$, $\angle BDE = \angle A = \angle CDM$. \therefore $\triangle CAE$

(3)解:过
$$C$$
作 $CH \perp AB$ 于 H ,过 F 作 $FM \perp AC$ 于 M , $FN \perp BC$ 于 N ,如图 2 , $: CF$ 平分

 $\angle ACB$, $\therefore FM = FN$.

$$\therefore \frac{S_{\triangle ACF}}{S_{\triangle BCF}} = \frac{\frac{1}{2}AC \cdot FM}{\frac{1}{2}BC \cdot FN} = \frac{\frac{1}{2}AF \cdot CH}{\frac{1}{2}BF \cdot CH}, \therefore \frac{AC}{BC} = \frac{AF}{BF} = \frac{1}{2}, \therefore BC = 2AC. \qquad 7 \text{ }\%$$

$$\therefore DE /\!\!/ CH, \therefore \triangle BDE \circlearrowleft \triangle BCH, \therefore \frac{BD}{BC} = \frac{BE}{BH} = k, \therefore BE = kBH, HE = BH - BE = (1-k)$$

$$\therefore \triangle CHB \hookrightarrow \triangle ACB, \therefore \frac{CH}{BH} = \frac{AC}{BC} = \frac{1}{2}, \therefore BH = 2CH.$$

在 Rt
$$\triangle CHE$$
 中, $CE^2 = CH^2 + HE^2 = CH^2 + [2(1-k)CH]^2$

$$\therefore \frac{CE}{AB} = \frac{2}{5} \sqrt{4k^2 - 8k + 5}$$
. 11 分

②当
$$m=3$$
 时, $y = \begin{cases} -x^2 + \frac{1}{2}x + 3, x \leq 3, \\ x^2 - 4x + 3, x > 3. \end{cases}$

当 2
$$\leqslant$$
 x \leqslant 3 时, $y=-x^2+\frac{1}{2}x+3=-(x-\frac{1}{4})^2+\frac{49}{16}$,当 $x>\frac{1}{4}$ 时, y 时随 x 的增大而减小,∴

当
$$3 < x \le 4$$
 时, $y = x^2 - 4x + 3 = (x - 2)^2 - 1$,当 $x > 2$ 时, y 随 x 的增大而增大,∴无最小值.

∴当 2
$$\leq x \leq 4$$
 时,该函数的最小值为 $-\frac{9}{2}$.

(2) 当点
$$P$$
 在 x 轴上方时,如图 1 , \therefore $\angle OPQ = 45^{\circ}$, $\therefore PQ = OQ$, $\therefore m > \frac{1}{4}$, $\therefore -m^2 + \frac{1}{2}m + m = 0$

当点 P 在 x 轴下方时,如图 2, \therefore $\angle OPQ = 45^{\circ}$, PQ = OQ, $m > \frac{1}{4}$, $\therefore m^2 - \frac{3}{2}m = m$, $\therefore m = \frac{5}{2}$;

综上,当 $\angle OPQ = 45^{\circ}$ 时,m的值为 $\frac{1}{2}$ 或 $\frac{5}{2}$.

(3)在 $y = x^2 - (m+1)x + m$ 中,当 x = m 时,y = 0,当 x = 1 时,y = 0,又:当 x > m 时, $y = x^2 - (m+1)x + m$,∴图象 G 与 x 轴的交点为 A(1,0). 6分 当 m < -1 时,如图 3,过 C 作 $CD \perp y$ 轴于 D,:B(0,m),∴ OB = -m,:点 C 在直线 x = m 上,∴ CD = -m,∴ OB = CD, 7分 又: $\angle CBD = \angle OAB$, $\angle CDB = \angle BOA$,∴ $\triangle CDB \cong \triangle BOA$ (AAS),∴ BD = OA = 1,∴ OD = CQ = -m - 1,

:
$$y_P = -m^2 + \frac{3}{2}m = -m(m - \frac{3}{2}) < 0$$
: $PQ = m^2 - \frac{3}{2}m$.

当 $-1 \le m < 0$ 时,如图 4,过 C 作 $CD \perp y$ 轴于 D,同理 $\triangle CDB \cong \triangle BOA$, $\therefore BD = OA = 1$.

$$:OB = -m, :CQ = OD = 1 + m, \dots 10$$
 分

综上所述,当 PQ=2CQ 时,m 的值为 $-\frac{1}{2}$.