Theorem: A bounded closed set is compact.

Proof: Let M be a bounded closed set. Let's assume that M is an infinite set.

Now, let $\{A_i\}$ be an infinite subcollection of M. Since M is bounded, there exists a closed square S that contains M. According to theorem 29, the square union its interior is compact. Therefore, the set S is also compact.

Since $\{A_i\}$ is an infinite subcollection of M, and $M \subseteq S$, $\{A_i\}$ is also an infinite subcollection of S. Since S is compact, there exists a point $p \in S$ which is a limit point of this subcollection $\{A_i\}$.

We need to show that $p \in M$. Since M is closed, it contains all its limit points. Since p is a limit point of the subcollection of M, p must belong to M.

Thus, we have shown that for every infinite subcollection of M, there exists a point $p \in M$ which is a limit point of this subcollection.

M	is compact.	