

Jean François VIAN

Département AGroécologie & Environnement (AGE)
ISARA-Lyon – AGRAPOLE –
23, rue Jean Baldassini – 69364 LYON CEDEX O
E-mail : vian@isara.fr
Tel direct : 04.27.85.86.55

Ecologie microbienne des sols - J.F. VIAN - 2014

4

Écologie microbienne des sols

Introduction: Le sol, un milieu vivant

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- I. Décomposition des matières organiques des sols
- II. Ammonification et nitrification
- III. Dénitrification
- IV. Fixation biologique de l'azote
- V. Les bactéries PGPR

Chapitre 2: Microorganismes et fonctionnement des écosystèmes

Chapitre 3: Appréhender le fonctionnement microbien des sols

Ecologie microbienne des sols - J.F. VIAN - 2014

Introduction: Le sol, un milieu vivant

Les microorganismes du sol contribuent à la qualité du sol, de l'air et de l'eau

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

7

Écologie microbienne des sols

Introduction: Le sol, un milieu vivant

Des fonctions clés dans les cycles biogéochimiques: effets positifs

- Transformation des matières organiques (végétaux et animaux) et de la roche mère
- Contrôle des cycles des bioéléments (C, N, S, Fe...)
 - ⇒ nutrition végétale
- Protection des plantes contre certains pathogènes ou parasites
- Symbioses
- · Dépollution des eaux, du sol

Ecologie microbienne des sols - J.F. VIAN - 2014

Introduction: Le sol, un milieu vivant

Des fonctions clés dans les cycles biogéochimiques: effets négatifs

- Maladies
- Pollution des eaux par les nitrates
- Emission de gaz à effet de serre (N₂0, CH₄...)
- →Forte influence sur la nutrition et la productivité végétale d'un agro/écosystème

Ecologie microbienne des sols - J.F. VIAN - 2014

ç

Écologie microbienne des sols

Introduction: Le sol, un milieu vivant

Le sol un milieu vivant et dynamique caractéristique d'un écotone

Interface entre le monde minéral et organique le sol est un véritable écotone

Diversité énorme, immense réservoir de gènes et donc de fonctions à l'origine de tâches aussi importantes que méconnues

Ecologie microbienne des sols - J.F. VIAN - 2014

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- I. Décomposition des matières organiques des sols
 - 1. Cycle du carbone
 - 2. Rôle des microorganismes du sol
 - 3. Conditions environnementales
- II. Ammonification et nitrification
- III. Dénitrification
- IV. Fixation biologique de l'azote
- V. Les bactéries PGPR

Ecologie microbienne des sols - J.F. VIAN - 2014

11

Écologie microbienne des sols: chapitre 1

I. Décomposition des matières organiques des sols: cycle du carbone

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

Urine	0,8
Orme Jus d'écoulement du fumier	1,9 - 3,1
Déchets d'abattoir mélangés	2
Sang	2
Matières fécales humaines	5 - 10
Matières végétales vertes	7
Humus, terre noire	10
Gazon	10
Fientes de volailles	10
Déjections d'animaux domestiques	15
Fumier de ferme après 3 mois de stockage	15
Fanes de légumineuses	15
Luzerne	16 - 20
Fumier frais pauvre en paille	20
Déchets de cuisine	10-25
Compost urbain	34
Aiguilles de pin	30
Fumier de ferme frais avec apport de paille abondant	30
Tourbe noire	30
Feuilles d'arbre (à la chute)	20-60
Déchets vers de plantes Tourbe blonde	20-60
Paille de céréales	50 - 150
Paille d'avoine	50 - 130
Paille de seigle	65
Ecorce	100-150
Paille de blé	150
Papier Papier	150
Sciure de bois décomposée	200
Sciure de bois feuillus (ieunes feuilles) (movenne)	150 - 500

I. Décomposition des matières organiques des sols: conditions environnementales

Les conditions environnementales modifient les vitesses de minéralisation des matières organiques des sols :

- teneur en eau du sol
- aération
- température
- teneurs en N minéral dans le sol
- protection physique des MOS

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- Décomposition des matières organiques des sols
- II. Ammonification et nitrification
 - 1. Cycle de l'azote
 - 2. Ammonification
 - 3. Nitrification
 - a. Les étapes
 - b. Les bactéries nitrifiantes
 - c. Conditions environnementales
- III. Dénitrification
- IV. Fixation biologique de l'azote
- V. Les bactéries PGPR

Ecologie microbienne des sols - J.F. VIAN - 2014

21

Écologie microbienne des sols: chapitre 1

II. Ammonification et nitrification: cycle de l'azote

Philippe Lemanceau, 2008

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

II. Ammonification et nitrification: cycle de l'azote

Minéralisation / Immobilisation

Organisms consume other organisms and excrete inorganic wastes

Organic nutrients are stored in soil organisms and organic matter

Inorganic nutrients are usable by plants, and are mobile in soil

Organisms take up and retain nutrients as they grow

Image courtesy of USDA-Natural Resources Conservation Service

Ecologie microbienne des sols - J.F. VIAN - 2014

23

isaralyon

II. Ammonification et nitrification: ammonification

Écologie microbienne des sols: chapitre 1

Ammonification: processus de transformation oxydative des formes azotées contenues dans la MO (acides aminés, protéines...) en ammoniac (NH3) ou ammonium (NH4+)

- ⇒ NH4+: source principale d'azote pour les microorganismes et les champignons
 - ⇒ la plupart des plantes l'assimilent mal, elles ont besoin de nitrate qu'elles utilisent par le biais de la réduction assimilative et qui leur est fournit par les bactéries de la nitrification
 - ⇒ sources organiques très diverses
 - ⇒ Microorganismes très variés (*Bacillus, Clostridium, Proteus, Pseudomonas, Streptomyces...*)

Ecologie microbienne des sols - J.F. VIAN - 2014

Ammonification et nitrification: ammonification

Les réactions

- Hydrolyse des polymères (protéases) en polypeptides et amino-acides
- Désaminations aérobie ou non

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

25

Écologie microbienne des sols: chapitre 1

Ammonification et nitrification: nitrification, les étapes

Nitrification: oxydation microbienne des formes réduites de l'azote dans le sol (NH3 et NH4+)

- ⇒ 2 étapes successives: nitritation / nitratation
- ⇒ 2 groupes bactériens impliqués: bactéries nitreuses et bactéries nitriques
- ⇒ bactéries autotrophes et aérobies obligatoires
- ⇒ nitrification hétérotrophe peut être réalisée par les champignons (Aspergillus flavus) et certaines espèces (Arthrobacter bactériennes globiformis, Streptomyces grisens, divers Pseudomonas spp.)

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

Écologie microbienne des sols: chapitre 1 II. Ammonification et nitrification: nitrification, les étapes Nitrification: 2 étapes successives réalisées par des bactéries différentes 1- La nitritation (Bactéries ou Archées bactéries de type Nitroso...) NH₄⁺ + 3/2 O₂ → NO₂⁻ + 2H⁺ + H₂O + 63.8 Kcal 2- La nitratation (Bactérie de type Nitro...) NO₂⁻ + 1½ O₂ → NO₃⁻+ 17.5 Kcal € isaralyon Ecologie microbienne des sols - J.F. VIAN - 2014 27

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- Décomposition des matières organiques des sols
- II. Ammonification et nitrification

III. Dénitrification

- 1. Les pertes d'azote dans le sol
- 2. Mécanismes de la dénitrification
- 3. Conditions environnementales
- 4. Conséquences environnementales et pour la production
- IV. Fixation biologique de l'azote
- V Les hactéries PGPR

Ecologie microbienne des sols - J.F. VIAN - 2014

III. Dénitrification: les pertes d'azote

Les pertes d'azote dans le sol

- Volatilisation de l'ammoniac
- Réduction chimique du nitrate et du nitrite
- Lixiviation du nitrate
- Réduction biologique: Dénitrification
 - ⇒ Réduction biologique des nitrates en gaz azoté: NO, N₂0 et N2
 - ⇒ Grande variété de bactéries hétérotrophes

Ecologie microbienne des sols - J.F. VIAN - 2014

31

Écologie microbienne des sols: chapitre 1

III. Dénitrification: mécanismes

Mécanismes de la dénitrification

Produits gazeux

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

où chaque étape est catalysée par un système enzymatique:

- 1- nitrate réductase dissimilative (Nar),
- 2- nitrite réductase (Nir),
- 3- NO réductase (oxyde nitrique)(Nor)
- 4- N₂0 réductase (oxyde nitreux)(Nos)

Cours Ecologie microbienne, Frank Poly

Ecologie microbienne des sols - J.F. VIAN - 2014

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- I. Décomposition des matières organiques des sols
- II. Ammonification et nitrification
- III. Dénitrification
- IV. Fixation biologique de l'azote
 - 1. Introduction
 - 2. La fixation libre et associative (non symbiotique)
 - 3. La fixation symbiotique
 - a. Les symbioses à nodules chez les légumineuses
 - b. Les symbioses actinorhiziennes
 - 4. Conséquences sur la production végétale
- V. Les bactéries PGPR

Ecologie microbienne des sols - J.F. VIAN - 2014

	Caracte		des princip ices d'azot	oales espèce e	S
	Bactérie	Plante	# famille botanique	Efficacité (Kg/Ha/an)	% globale
	Cyanobact.	Azolla, Cycas Gunnera	>6	120	23
	Rhizobium Bradyrhizobium	Légumineuse Parasponia	2	350	60
	Frankia	Myricacées, Betulacées,	8	360	15
-	PGPR (Azospirillum, Pseudomonas,	Graminées, etc	nombreuses	5 à 30	3

IV. Fixation biologique de l'azote: introduction

La fixation de l'azote

Nitrogénase

N₂+ 8e-+ 8H+ 2 NH₃+ H₂

Inerte Assimilable

Consommation de 16 ATP

Cours Ecologie microbienne, Frank Poly

- o Couteux en énergie
- o Lent et peu efficace
- o Réduction de N₂ en NH₃ nécessite la mobilisation de 20 gènes, appelés *Nif* gènes

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

41

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: introduction

Quantités de N₂ fixées en conditions de plein champ

Diazotrophic bacteria and their associations	N ₂ fixed (kg.ha ⁻¹ .year ⁻¹)	
Free-living bacteria (associated with wood decay, straw decomposition)	< 1-10	
		Bottomley & Myrold, 2007, adapted from
Examples of plant-cyanobacterial associations	-	_ ∄
Cryolitic crusts	10-80	, % , %
Azolla	≤ 300	Š
Examples of legume-rhizobial associations	9	rold
Soybean	60-115 g	, 20
Beans	50-100	2,9
Alfalfa	130-250	ada
White clover	200	ptec
Examples of non legume-Frankia associations		1 fro
Alder	50-300	3
Ceanothus	50-60	
Hippophae	10-60	

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: la fixation non symbiotique dite libre (ou associative)

Fixation libre (ou associative) de N₂

- Bactéries libres fixatrices de N₂
 - ⇒ Diazotrophes phototrophes
 - ⇒ Diazotrophes hétérotrophes
- Facteur limitant = demande en C/énergie
 - ⇒ Diazotrophes phototrophes fixent un quantité de N₂ plus importante que les hétérotrophes
 - ⇒ Fixation libre hétérotrophique nécessite des quantités importantes de C labile (rhizosphère, décomposition de MO fraîche…)

Ecologie microbienne des sols - J.F. VIAN - 2014

43

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: la fixation non symbiotique dite libre (ou associative)

Fixation libre (ou associative)

Les bactéries libres fixatrices de N2 dans la rhizosphère des graminées

..........

Dans la rhizosphère

Hors de la rhizosphère

10⁵ à 10⁷ bactéries fixatrices/g de sol 10² à 10⁵ bactéries fixatrices/g de sol

 $(riz 10^6 à 10^8 b./g de sol)$

Sur le riz : gain de 3 à 50 kg N / ha récolté Généralement: gain de 5 à 30 kg N / ha récolté

Cours Ecologie microbienne, Frank Poly

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: la fixation symbiotique

La symbiose mutualiste

Union physique des partenaires: liaison sans partage. Les symbiotes échangent des nutriments ou des facteurs de croissance de manière exclusive sans que ceux-ci n'apparaissent dans le milieu extérieur (interfaces physiques d'échanges)

(Gobat et al., 2003)

- ⇒ coût énergétique de la fixation symbiotique avantageux
- ⇒ protection par rapport aux concentrations en O₂
- ⇒ 2/3 de l'azote total fixé dans la biosphère (120 millions de t/an)
- ⇒ dans les sols, 2 grands types de symbioses
 - ⇒ entre les légumineuses et bactéries de la famille des Rhizobiacées
 - ⇒ plantes souvent ligneuses et bactéries filamenteuses du genre Frankia

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: la fixation symbiotique à nodules

Taxonomie et diversité des bactéries symbiotiques à nodules

4 genres de bactéries, mobiles avec flagelles (Gram -) forment des symbioses avec les légumineuses (phylum des protéobactéries)

- ⇒ Rhizobium (ex. R. leguminosarum, R. fredii, genre Agrobacterium)
- ⇒ Bradyrhizobium (ex. *B. japonicum*)
- ⇒ Mesorhizobium (ex. M. loti, M. ciceri)
- ⇒ Azorhizobium (ex. A. caulinodans) forme des nodules épigés dans les tiges de Sesbania (Fabacées tropicale)

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

51

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: la fixation symbiotique à nodules

Cas particulier chez Sesbania rostrata

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: les symbioses actinorhizienne

Symbioses que les actinomycètes du genre *Frankia* forment avec plusieurs genres de plantes non légumineuses

- ⇒ Gram +, bactéries filamenteuses. Abondants dans les sols et les litières, de nombreux *Frankia* sont producteurs d'antibiotiques
- ⇒ plantes hôtes évoluent dans des écosystèmes différents mais toujours sur des sols pauvres en azote (par ex. arctique)
- ⇒ pénétration de l'hôte soit par les poils absorbants soit entre les cellules de l'épiderme et du cortex racinaire (dépend de la plante hôte)

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

55

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: les symbioses actinorhizienne

Nodule actinomycorhizien

Pièce de 17 mm (Gobat et al., 2003)

Réponse de l'hôte à l'infection, multiplication des cellules corticales pour former un prénodule que va pénétrer ensuite le symbiote

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

		par an et pourcentag ante non fixatrice en		
type d'association	N transferé % et kgha-lan-l	Méthodes	Auteurs	
plantes herbacées		·		
graminée/ luzerne	26-46% 5-20 kg	dilution isotopique	Burity et al (1989)	Cou
maïs/ haricot	< 5%	dilution isotopique marquage foliaire	Giller et al (1991)	Ω S
graminée/ tréfle	50% 60-70 kg	dilution isotopique	Ledgard (1991)	colog
sorgho /soja	20-55% 20-90kg	dilution isotopique	Ofossu et al (1995)	ie mic
avoine/vesce	5 kg 0 kg	dilution isotopique matière org. marquée	Papastylianou and Danse (1991)	crobie
café/desmocium	16%	abondance isotopique naturelle	Snoeck (1995)	inne,
graminée/luzerne	10%	15N2, marquage foliaire dilution isotopique N balance	Ta et al (1969)	Cours Ecologie microbienne, Frank Poly
Plantes ligneuses				νįς
Chêne/aulne cordé	32%	abondance isotopique naturelle	Buresti et al (1990)	
peuplier/aulne glut. (1990)	13%	dilution isotopique	Kurdali et al	
café/ Flemingia	6%	abondance isotopique naturelle	Snoeck (1995)	
/ Leuc. diversifolia	15-22%	11		
/L. leucocephala //Calliandra	0% 0%		"	
/Erythrina	0%	••		

Chapitre 1: Microorganismes et rôles dans les cycles de l'azote et du carbone

- Décomposition des matières organiques des sols
- II. Ammonification et nitrification
- III. Dénitrification
- IV. Fixation biologique de l'azote
 - 1. Introduction
 - 2. La fixation libre et associative (non symbiotique)
 - 3. La fixation symbiotique
 - a. Les symbioses à nodules chez les légumineuses
 - b. Les symbioses actinorhiziennes
 - 4. Conséquences sur la production végétale
- V. Les bactéries PGPR

Ecologie microbienne des sols - J.F. VIAN - 2014

59

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: la fixation libre et associative (non symbiotique)

Les bactéries PGPR:

Plant Growth Promoting Rhizobacteria

Bactéries de la rhizosphère qui exercent un rôle positif sur la croissance des plantes, leur vigueur et leur résistance aux parasites: Rhizobactéries Promotrices de la Croissance Végétale (Gobat *et al.*, 2003)

- ⇒ Modes d'action très variés
- ⇒ Une même population peut cumuler plusieurs propriétés
- ⇒ Les bactéries « libres » fixatrice du N2 font partie de cette catégorie (pas les bactéries symbiotiques)

Stimulation et régulation de la croissance racinaire

Amélioration de la nutrition des plantes

Protection des racines contre les parasites

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: la fixation libre et associative (non symbiotique)

Les bactéries PGPR : modes d'action

Stimulation et régulation de la croissance racinaire

- ⇒ Production de phytohormones (AIA, éthylène, NO)
- ⇒ Régulation des concentrations hormonales de la plante (e.g. déamination de l'ACC précurseur de l'éthylène)

Amélioration de la nutrition des plantes

- ⇒ Concentration en éléments minéraux
- ⇒ Solubilisation du phosphate inorganique
- ⇒ Sécrétion de sidérophores
- ⇒ Fixation de N₂
- ⇒ Mucilage favorisant les échanges d'ions et d'eau

Protection des racines contre les parasites

- ⇒ Production de composés inhibiteurs (phénazine, acide cyanhydrique…)
- ⇒ Compétition avec les parasites (e.g. le fer)
- ⇒ Stimulation (induction) des mécanismes de résistance des plantes

D'après Gobat et al., 2003

Ecologie microbienne des sols - J.F. VIAN - 2014

61

Écologie microbienne des sols: chapitre 1

IV. Fixation biologique de l'azote: la fixation libre et associative (non symbiotique)

L'inoculation de semences de maïs par la bactérie du sol *Azospirillum lipoferum* CRT1(B) provoque la prolifération des racines de la céréale

 \mathbf{A}

B

Cours Ecologie microbienne, Frank Poly

- ${\bf A}$ racines de mais non inoculées par A. lipoferum CRT1
- B racines de maïs inoculées

photo René Bally ¹, Colette Jacoud ¹et Patrick Wadoux ²

Ecologie Microbienne UMR-CNRS 5557, Université Claude Bernard Lyon1. 69622 Villeurbanne Cedex.
 Merck-Lipha, Usine de Meyzieu, 10 av. De Lattrer de Tassigny, 69330 Meyzieu

Ecologie microbienne des sols - J.F. VIAN - 2014

IV. Fixation biologique de l'azote: la fixation libre et associative (non symbiotique)

Conséquences agronomiques

- ➤ Meilleure nutrition minérale et hydrique des plantes
 - ⇒ augmentation de la quantité de MS totale
 - ⇒ augmentation de la teneur azoté dans les tiges et les grains
 - ⇒ augmentation du nombre d'épis et de grains/épis
 - ⇒ date de floraison avancée
 - ⇒ meilleure résistance aux stress hydriques
 - ⇒ meilleure résistance aux attaques de pathogènes

Ecologie microbienne des sols - J.F. VIAN - 2014

63

Écologie microbienne des sols

Chapitre 2: Microorganismes et fonctionnement des écosystèmes

- I. Fonctionnement d'un agro-écosystème: rôle des microorganismes du sol et importance de la rhizopshère
- II. Le rôle des champignons du sol
 - 1. Les champignons et la qualité du sol
 - 2. Les mycorhizes
- III. Systèmes de culture et fonctionnement microbien du sol
 - 1. Influence des pratiques culturales sur les microorganismes du sol
 - 2. Les différents bio-agresseurs microbiens du sol
 - 3. Mise en évidence du rôle microbiens dans le contrôle des maladies telluriques

Conclusion

Ecologie microbienne des sols - J.F. VIAN - 2014

Ecologie microbienne des sols: chapitre 2 II. Le rôle des champignons du sol: champignons et qualité du sol Fungi and Soil Quality - Decompose carbon compounds - Improve OM accumulation - Retain nutrients in the soil - Bind soil particles - Food for the rest of the food web - Mycorrhizal fungi - Compete with plant pathogens

II. Le rôle des champignons du sol: les mycorhizes

isaralyon

Ecologie microbienne des sols - J.F. VIAN - 2014

Type de mycorhizes	Champignons impliqués	Plantes hôtes	Structure fongiques	Structures de l'hôte	Impacts physiologiques
Arbusculaires	Gloméromycètes (200 sp.) microscopiques	Bryophites et plantes vasculaires: 70% des sp.	Arbuscules et vésicules intracellulaires, mycélium et hyphes extraracinaires	Peu de changement, coloration jaune	Accès à l'eau et aux minéraux, résistance maladies
Ectomycorhizes	Basidiomycètes, ascomycètes (milliers d'sp.)	Arbres gymnospermes et angiospermes: 5% des sp.	Manchon, mycélien intercellulaire, pas de pénétration intracellulaire	Hypertrophie corticale, ramifications	Accès aux minéraux, utilisation Norg, résistance aux maladies et nématodes, tolérance pH acides et métaux lourds
Ectendomycorhizes	Deutéromycètes: qques sp.	Pins, rares	Manchon mince, mycélium intercelluliare, pénétration intracellulaire	Hypertrophie corticale, ramifications	ldem
Arbutroïdes	Basidiomycètes: qques sp.	Éricacées, rares	Manchon mince, pénétration intracellulaire	Hypertrophie corticale	ldem
Éricoïdes	Ascomycètes: qques 10 ^{aine} sp.	Éricacées: 5% des sp.	Mycélium intracellulaire	Peu de modifications	Idem
Orchidoïdes	Basidiomycètes et mycéliums peu connus	Orchidées: 10% des sp.	Mycélium intracellulaire	Peu de modifications	Moprphogénèse, nutrition et protection de la plante
Sebacinoïdes	Piriformospora, basidiomycètes: qques sp.	Variées	Mycélium intracellulaire	Peu de modifications	Peu connus

AM fur	nction	Ecosystem service
Root morphology r development of a c ramifying mycelial	complex,	provided Increase plant/soil adherence a soil stability (binding action and improvement of soil structu
Increasing mineral water uptake by pl		Promote plant growth while reducing fertiliser requirement
Buffering effect agastresses	ainst abiotic	Increased plant resistance to drought, salinity, heavy metals pollution and mineral nutrient depletion
Secretion of 'glom	alin' into the soil	Increased soil stability and water retention
Protecting against	root pathogens	Increased plant resistance aga biotic stresses while reducing phytochemical input
Modification of plan and physiology	nt metabolism	Bioregulation of plant developed and increase in plant quality for human health

III. Systèmes de culture et fonctionnement microbien du sol: les différents bio-agresseurs

Bio-agresseurs et système de culture : Les différents types de germes pathogènes

- · Virus:
 - parasites stricts, incapables de se reproduire (se font reproduire par l'organisme parasité)
 - très petite taille (30 à 300 nm)

transmission : par le sol (débris végétaux)

vection par nématodes (court-noué...)

vection par champignons (rhizomanie betterave...)

- · Bactéries :
 - Agrobacterium, Pseudomonas, Xanthomonas, Erwinia...
 - capables d'un développement saprophyte dans le sol
 - spécificité d'hôte : pathovar

Ecologie microbienne des sols - J.F. VIAN - 2014

81

Écologie microbienne des sols

III. Systèmes de culture et fonctionnement microbien du sol: les différents bio-agresseurs

Bio-agresseurs et système de culture : Les différents types de germes pathogènes

- · Champignons:
- Myxomycètes (plasmodes, zoospores)
- Archimycètes (cellules, zoospores) vecteurs de virus
- Oomycètes (mycelium non cloisonné, oospores)
 - ex: Pythium, Phytophthora, Aphanomyces
- Ascomycètes (mycélium cloisonné, conidies, sclérotes, ...)
 - ex: Fusarium, Verticillium, ...
- Basidiomycètes (mycélium cloisonné, spores, sclérotes)

ex: Rhizoctonia

3 types de maladies : Fonte des semis / pourritures rainaires / trachéomycoses

Ecologie microbienne des sols - J.F. VIAN - 2014

Écologie microbienne des sols Conclusion Comprendre le fonctionnement biologique des sols Potentialités microbiennes Maron et al. 2006. Microbio. Ecol. 53:486-493. Fonctionnalités microbiennes ADN ARN Protéine **Diversité** ctivités microbienne **Protéome** Génome **Transcriptome** & Métabolome microbiennes **Fonctions** Relier diversité génétique-activités-fonctions microbiennes ♥ Identifier l'influence de l'environnement sur diversité-activitésfonctions ♦ Comprendre les interactions au sein de la biocénose du sol ♦ Approcher le concept de "soil food web" 85 Ecologie microbienne des sols - J.F. VIAN - 2014 **isara**lyon

