# Predicting Factuality of Facebook Posts

Shota Yasunaga, Justin Lauw, Madison Hobbs

- Motivation
- Data Exploration & Insights
- Pre-Processing
- Results
- Conclusion

#### Motivation



- Motivation
- Data Exploration & Insights
- Pre-Processing
- Results
- Conclusion

## Mainstream news is mostly true Dataset is unbalanced



#### Pages We Analyzed

455,739

FACEBOOK PAGE, AND THE NUMBER OF FANS

Mainstream Left Right POLITICO EAGLE POLITICO THE RISING 1.181.083 **OTHER 98%** 623,712 3,238,599 I PAID MORE TAXES THAN DONALD politics CNN **ADDICTING** RIGHT WING **POLITICS** INFO **NEWS** 1,895,831 1,214,717 3,375,544 **NEWS** POLITICS **ABC NEWS** OCCUPY **FREEDOM POLITICS DEMOCRATS** DAILY

4,140,124

1,361,875

#### False Posts are Popular



#### Pages We Analyzed

FACEBOOK PAGE, AND THE NUMBER OF FANS

#### Mainstream



**POLITICO** 1,181,083





Left

THE **OTHER 98%** 3,238,599



623,712



CNN **POLITICS** 





**ADDICTING** INFO 1,214,717



Right

RIGHT WING **NEWS** 3,375,544



**ABC NEWS POLITICS** 455,739



OCCUPY **DEMOCRATS** 4,140,124



FREEDOM DAILY 1,361,875

- Motivation
- Data Exploration & Insights
- Pre-Processing
- Results
- Conclusion

## Data Preprocessing (Feature Selection)



#### Feature Setup



#### Feature Importance (1st order information gain)



Depends on frequency of appearance

Alternative: 200 most common words, but choosing features this way performs better

## Class Weights & Preprocessing



#### **Feature Normalization**



- Motivation
- Data Exploration & Insights
- Pre-Processing
- Results
- Conclusion

## **Experimental Process**



Data Exploration



Linear SVC with bag of words 4 classes 2 classes



Polynomial SVC with meta data 4 classes









### Perceptron (high bias)

|                       | Actually<br>Negative | Actually positive |
|-----------------------|----------------------|-------------------|
| Predicted<br>Negative | TN = 34              | FN = 24           |
| Predicted Positive    | FP = 33              | TP = 285          |

5-fold CV tuned with f1 score

Training f1 score: 0.868

Test f1 score: 0.853

Training accuracy score: 0.867

Test accuracy score: 0.848

#### Perceptron Feature Importance



#### Perceptron Feature Importance



| "Not Mostly Factual Content"                    | "Mostly Factual Content"                            |                       |                                                               |                   |
|-------------------------------------------------|-----------------------------------------------------|-----------------------|---------------------------------------------------------------|-------------------|
| Popularity: 1. num_reactions 7. num_shares      | Popularity: 1. num_likes 3. num_angrys 4. num_loves | (s                    | Linear S'<br>lightly lower b                                  | oias)             |
| News Source: 2. Category_right 5. Category_left | 5. num_hahas 6. num_sads 20. num_wows               | Te                    | aining F1: 0.8 <sup>-1</sup><br>st F1: 0.842<br>aining accura |                   |
| Negative Words:<br>8. war                       | News Source: 2. Category_mainstream                 |                       | st accuracy: (                                                | 0.822             |
| 14. lies<br>15. least                           | Negative Words:<br>18. stop                         |                       | Actually<br>Negative                                          | Actually positive |
| 19. bad<br>25. hell                             | Positive Words: 9. support 15. fact 21. community   | Predicted<br>Negative | TN = 28                                                       | FN = 30           |
| Race-based:<br>13. Black                        |                                                     | Predicted Positive    | FP = 17                                                       | TP = 301          |



#### Random Forest

(high variance)





|                       | Actually<br>Negative | Actually positive |
|-----------------------|----------------------|-------------------|
| Predicted<br>Negative | TN = 28              | FN = 30           |
| Predicted<br>Positive | FP = 17              | TP = 301          |

Training f1 score: 0.998

Test f1 score: 0.868

Best CV f1 score: 0.872

Training accuracy: 0.995

Test accuracy: 0.894

#### 5-fold CV tuned with f1 score

```
bootstrap = True,
min_samples_leaf = 1,
n_estimators = 400,
max_features = 'sqrt',
min_samples_split = 5,
max_depth = 100
```

#### Random Forest Insights ~ Feature Importance





#### Random Forest - Metadata Only

Training f1 score: 0.975

Test f1 score: 0.872

Best CV f1 score: 0.856

Training accuracy: 0.973
Test accuracy: 0.872

|                       | Actually<br>Negative | Actually positive |
|-----------------------|----------------------|-------------------|
| Predicted<br>Negative | TN = 41              | FN = 17           |
| Predicted<br>Positive | FP = 31              | TP = 287          |

#### 5-fold CV tuned with f1 score

```
bootstrap = True,
min_samples_leaf = 1,
n_estimators = 1600,
max_features = 'sqrt',
min_samples_split = 10,
max_depth = None)
```

#### Random Forest - Metadata Only



- Motivation
- Data Exploration & Insights
- Pre-Processing
- Results
- Conclusion

#### Discussion

- High Bias Models > High Variance Models
- Meta-data > Bag of Words
  - Probably because factuality detection based on words is a lot more complicated than what we can do with 2000 examples
- Popularity & Source's
   Political Leaning are Most
   Important Predictors



#### Limitations

**Unbalanced Data** 

No stemming used in bag of words

5-fold CV

Only used some ML models

Small data set (<2000 posts)

Restricted time-frame: seven weekdays (9/19 - 9/23 and 9/26 - 9/27 2016)

Buzzfeed source/labeling factuality and news source category

### Mitigation

Get more examples of far left and far right posts

Use stemming

Multiple trials of 10-fold CV

Try other models

Get more data

Gather posts from wider time range

Label posts ourselves or get unbiased panel

#### **Future Work**

- Perfect a broader model trained on more representative data
  - Equal number of left, right, and mainstream posts
  - Wider time frame or sampled across multiple time frames
- Leverage the full capacity of NLTK
- More exhaustive model search
  - Finer CV grid and mutliple runs of tuning
- Focus on specificity (we don't want to true to be classified as false)
- Predict more than two classes
- Predict percentage of factual content in a news post
- Multilayer Perceptron
- Naive Bayes
- Metadata with KNN

#### Questions?

What train-test split How did Buzzteed the posts? Why not return to poly and rbf SVC? How did you choose those machine Did you use stratified sampling? learning modells over others?

#### **Data Preprocessing**



#### **Experimental Process**



Data Exploration



Linear SVC with bag of words 4 classes 2 classes



Polynomial SVC with meta data 4 classes



Random Forest with both 2 classes



Perceptron with both 2 classes



Linear SVC with both 2 classes