Spatial Selection using healpy

Notebook

Healpix

Healpix: Hierarchical Equal Area isoLatitude Pixelization of a sphere

- Pixels distributed constant latitude
- 12 base pixels Npixels = 12 nside²
- Areas of all pixels are equal:

Resolution = 41523 / Npixels (deg²)

Visualize

Create a map: 1-D array

len(map) = Npixels

support masked array

```
fill_value=hp.UNSEEN
np.ma.masked_array(map, mask)

hp.mollview(map, fig, coord...)
hp.gnomview(map, ...)
hp.cartview(map, ...)
hp.orthview(map, ...)
hp.azeqview(map, ...)
```


Query polygon

define vertices

ra =
$$[0, 60, 30, 330, 300]$$

dec = $[0, -15, -45, -45, -15]$

convert to 3D xyz coordinates

xyz = radec2xyz(ra, dec)

get pixels inside

ipix_poly = hp.query_polygon(NSIDE, xyz)

create a masked map

mask = np.isin(pixes, ipix poly)

Query disc

define disk center

```
vec = radec2xyz(ra=270, dec=0)
radius = np.deg2rad(20)
```

get pixels inside

ipix_disc = hp.query_disc(NSIDE, vec, radius)

create a masked map

mask = np.isin(pixes, ipix disc)

Query ring

define two disks

```
vec = radec2xyz(ra=90, dec=0)
radius1 = np.deg2rad(6)
radius2 = np.deg2rad(20)
disc1 = hp.query_disc(NSIDE, vec, radius1)
disc2 = hp.query_disc(NSIDE, center,
radius2)
```


get pixels inside ring

```
ipix_ring = np.setdiff1d(disc2, disc1)
```

create a masked map

```
mask = np.isin(pixes, ipix ring)
```

Galactic avoidance region

define the shape of galactic plane

```
peakDeg = 15.
taperDeg = 90.
constWidth = .5
```

get pixels inside

ipix_galaxy = get_avoidance_pixel(peakDeg..

create a masked map

mask = np.isin(pixes, ipix galaxy)

Irregular shape

Select pixels by Interactive tools

Bokeh, plotly, ... Link

get pixld

 $ipix_lsst = [1067, 1066, 1130, 1194, .$

create a mask

mask = np.isin(pixes, ipix_lsst)

Summary

Steps: Define the shape \rightarrow get pixels inside \rightarrow create a masked map

```
Query polygon: hp.query_poly(nside, vec, ...)
```

Query disc: hp.query_disc(nside, vec,...)

Galactic avoidance region: defined by size or by star density

Irregular shape: use interactive tools

Link to Notebook (https://git.io/JJ6Ng)