A Bayesian Method for Disease Cluster Detection

Albert Y. Kim

Middlebury College Middlebury VT

August 2015

Scenario

Lung Cancer Incidence (per 1000) in Pennsylvania

Scenario

Disease counts Y_i are modeled via Poisson $(E_i \times \theta_i)$ where

- $ightharpoonup E_i = expected numbers of disease$
- ▶ θ_i = relative risk of disease. θ_i > 1 suggests high risk.
- ▶ Point estimate $\widehat{\theta}_i$ is the standardized mortality ratio $\frac{y_i}{E_i}$

Geographic Units

We define a set of single zones z by placing circles on the map. Each z is a candidate cluster.

Geographic Units

We define a set of single zones z by placing circles on the map. Each z is a candidate cluster.

We define a set of configurations c: combinations of single zones. Each c is a candidate explanatory model for \vec{y}

Explanatory model for \vec{y}

Based on a particular c, we derive an explanatory model for \vec{y} :

Posterior Probability of a Configuration

The (discrete) parameter of interest is the configuration c with posterior probability:

$$\pi(c|\vec{y}) = \frac{p(\vec{y}|c)\pi(c)}{\sum_{c} p(\vec{y}|c)\pi(c)}$$

Posterior Probability of a Configuration

The (discrete) parameter of interest is the configuration c with posterior probability:

$$\pi(c|\vec{y}) = \frac{p(\vec{y}|c)\pi(c)}{\sum_{c} p(\vec{y}|c)\pi(c)}$$

Problem: Intractable # of configurations.

Posterior Probability of a Configuration

The (discrete) parameter of interest is the configuration c with posterior probability:

$$\pi(c|\vec{y}) = \frac{p(\vec{y}|c)\pi(c)}{\sum_{c} p(\vec{y}|c)\pi(c)}$$

Problem: Intractable # of configurations.

Solution: Use MCMC to estimate $\pi(c|\vec{y})$. Specifically a Metropolis-Hastings algorithm with proposal function Q.

Five Types of Moves in Proposal Function Q

