Identificação de mutações que impactam na função

Gustavo Campos Osvaldo Fon<u>seca</u>

Base de Dados

 As sequências das proteínas 2YPIA, dTIM e pertencentes a família.

 Os arquivos com informação de estrutura da 2YPIA e das proteínas da família.

Objetivo

- Identificar as mutações que ocorreram na proteína 2YPIA responsáveis pela perda da função.
- É o mesmo problema do TP1, mas...
- Agora temos as informações de estrutura das proteínas.

Solução

- Utilizar os conceitos de contatos usados no TP2, e criar grafos que representam os contatos entre os resíduos da proteína.
- Modelagem:
 - Vértices: cada resíduo é um vértice
 - Arestas: uma aresta modela um contato entre dois resíduos

Implementação

O nosso algoritmo realiza os seguintes passos:

- 1. Trata o arquivo no formato pdb
- 2. Calcula a matriz de distâncias
- 3. Cria uma matriz de contatos
- 4. Gera o arquivo no formato .net, que serve de entrada para o *igraph*

Implementação

- 5. Alinha dTIM e 2YPI usando Biopython
- 6. Encontra as mutações ocorridas
- 7. Busca nos grafos da família as ocorrências dos resíduos mutados em posições conservativas
- 8. Calcula Grau, Closenness e Betweenness dos resíduos encontrados na família
- 9. Reporta as médias encontradas

Análise da Família:

102 mutações originalmente

Reduzidas para 37 após pesquisa na família

Estudo detalhado sobre as mutações encontradas no TP1:

- Criar o grafo para a proteína 2YPIA
- De todas as mutações encontradas no TP1, identificar aquelas que envolvem resíduos que têm maior grau e betweenness.

Tabela 1: Grau

#	Posição Resíduo	Resíduo 2YPIA	Resíduo dTIM	Grau
1	11	F	W	12
2	90	W	Y	11
3	41	С	А	11
4	226	V	I	11
5	125	L	А	11
6	109	I	V	11
7	89	К	D	10
8	62	G	А	10
9	40	I	V	10
10	162	V	I	10

Tabela 2: Betweenness

#	Posição Resíduo	Resíduo 2YPIA	Resíduo dTIM	Betweenness
1	204	L	V	2076
2	90	W	Y	1675
3	66	Α	С	1646
4	62	G	А	1369
5	212	Α	V	1368
6	109	I	V	1271
7	23	I	L	1194
8	41	С	А	1166
9	51	V	R	1160
10	226	V	I	1116

Tabela 3: Closeness

#	Posição Resíduo	Resíduo 2YPIA	Resíduo dTIM	Closeness
1	195	К	N	0.0001084704
2	194	L	V	0.0001119028
3	18	Q	А	0.000115525
4	135	К	Е	0.0001163809
5	191	F	W	0.0001180109
6	71	S	К	0.0001183235
7	196	L	V	0.0001186393
8	197	G	S	0.000118709
9	19	S	E	0.0001204568
10	29	Т	А	0.0001206932

- Mutação referente a troca do triptofano por uma tirosina ((90)W -> Y).
- Mutações com mais contatos e mais centrais:
 - (62) G -> A
 - (41) C -> A
 - (109) I -> V
 - (226) V -> I
- Maior grau: (11) F -> W

Resultados: Mutações

Através da Análise de Família	Através do Aprofundamento do TP1
VAL(163)	CYS(41)
VAL(227)	PHE(11)
TRP(90)	TRP(90)
ILE(83)	VAL(226)
VAL(59)	LEU(125)
ILE(109)	ILE(109)
VAL(154)	LYS(89)
GLY(122)	-
LEU(53)	-
GLY(62)	GLY(62)