What Is Claimed Is:

1	1. A method for performing a minimum computation for an interval		
2	operation, comprising:		
3	receiving at least four floating-point numbers, including a first floating-		
4	point number, a second floating-point number, a third floating-point number and a		
5	fourth floating-point number; and		
6	computing a minimum of the at least four floating-point numbers;		
7	wherein if the at least four floating-point numbers include one or two		
8	default NaN (not-a-number) values and the remaining values are not default NaN		
9	values, the default NaN values are ignored in computing the minimum.		
1	2. The method of claim 1,		
2	wherein the minimum is a left endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		
15	interval.		

1	3. The method of claim 1, wherein computing the minimum involve			
2	setting the minimum to a value representing the empty interval, if any of the at			
3	least four floating-point numbers contain the value representing the empty			
4	nterval.			
1	4. The method of claim 3, wherein the value representing the empty			
2	interval is a non-default NaN value.			

- The method of claim 2, wherein computing the minimum involves 5. 1 setting the minimum to negative infinity if the first floating-point number is a 2 default NaN value and the fourth floating-point number is the default NaN value. 3
- The method of claim 2, wherein computing the minimum involves 6. 1 setting the minimum to negative infinity if the second floating-point number is a 2 default NaN value and the third floating-point number is the default NaN value. 3
- The method of claim 1, wherein if none of the at least four 7. 1 floating-point numbers is a default NaN value or a value representing the empty 2 interval, computing the minimum involves selecting the minimum of the at least 3 four floating-point numbers. 4
- The method of claim 2, wherein the operation can include one of a 8. 1 multiplication operation and a division operation. 2
- A method for performing a maximum computation for an interval 9. 1 operation, comprising: 2

3	receiving at least four floating-point numbers, including a first floating-		
4	point number, a second floating-point number, a third floating-point number and a		
5	fourth floating-point number; and		
6	computing a maximum of the at least four floating-point numbers;		
7	wherein if the at least four floating-point numbers include one or two		
8	default NaN (not-a-number) values and the remaining values are not default NaN		
9	values, the default NaN values are ignored in computing the maximum.		
1	10. The method of claim 9,		
2	wherein the maximum is a right endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		
15	interval.		

- least four floating-point numbers contain the value representing the empty interval.
- 1 12. The method of claim 11, wherein the value representing the empty 2 interval is a non-default NaN value.
- 1 13. The method of claim 10, wherein computing the maximum 2 involves setting the maximum to positive infinity if the first floating-point number
- 3 is a default NaN value and the fourth floating-point number is the default NaN
- 4 value.
- 1 14. The method of claim 10, wherein computing the maximum
- 2 involves setting the maximum to positive infinity if the second floating-point
- 3 number is a default NaN value and the third floating-point number is the default
- 4 NaN value.
- 1 15. The method of claim 9, wherein if none of the at least four
- 2 floating-point numbers is a default NaN value or a value representing the empty
- 3 interval, computing the maximum involves selecting the maximum of the at least
- 4 four floating-point numbers.
- 1 16. The method of claim 10, wherein the operation can include one of 2 a multiplication operation and a division operation.
- 1 17. A computer-readable storage medium storing instructions that
- when executed by a computer cause the computer to perform a method for

interval.

3	performing a minimum computation for an interval operation, the method		
4	comprising:		
5	receiving at least four floating-point numbers, including a first floating-		
6	point number, a second floating-point number, a third floating-point number and a		
7	fourth floating-point number; and		
8	computing a minimum of the at least four floating-point numbers;		
9	wherein if the at least four floating-point numbers include one or two		
10	default NaN (not-a-number) values and the remaining values are not default NaN		
11	values, the default NaN values are ignored in computing the minimum.		
1	18. The computer-readable storage medium of claim 17,		
2	wherein the minimum is a left endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		

2

3

- 1 19. The computer-readable storage medium of claim 17, wherein 2 computing the minimum involves setting the minimum to a value representing the 3 empty interval, if any of the at least four floating-point numbers contain the value 4 representing the empty interval.
- 1 20. The computer-readable storage medium of claim 19, wherein the value representing the empty interval is a non-default NaN value.
- 1 21. The computer-readable storage medium of claim 18, wherein 2 computing the minimum involves setting the minimum to negative infinity if the 3 first floating-point number is a default NaN value and the fourth floating-point 4 number is the default NaN value.
 - 22. The computer-readable storage medium of claim 18, wherein computing the minimum involves setting the minimum to negative infinity if the second floating-point number is a default NaN value and the third floating-point number is the default NaN value.
- 1 23. The computer-readable storage medium of claim 17, wherein if 2 none of the at least four floating-point numbers is a default NaN value or a value 3 representing the empty interval, computing the minimum involves selecting the 4 minimum of the at least four floating-point numbers.
- 1 24. The computer-readable storage medium of claim 18, wherein the 2 operation can include one of a multiplication operation and a division operation.

1	25. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for		
3	performing a maximum computation for an interval operation, the method		
4	comprising:		
5	receiving at least four floating-point numbers, including a first floating-		
6	point number, a second floating-point number, a third floating-point number and a		
7	fourth floating-point number; and		
8	computing a maximum of the at least four floating-point numbers;		
9	wherein if the at least four floating-point numbers include one or two		
10	default NaN (not-a-number) values and the remaining values are not default NaN		
11			
1	26. The computer-readable storage medium of claim 25,		
2	wherein the maximum is a right endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		
15	interval.		

2

3

4

1

- The computer-readable storage medium of claim 25, wherein computing the maximum involves setting the maximum to a value representing the empty interval, if any of the at least four floating-point numbers contain the value representing the empty interval.
- 1 28. The computer-readable storage medium of claim 27, wherein the value representing the empty interval is a non-default NaN value.
- The computer-readable storage medium of claim 26, wherein computing the maximum involves setting the maximum to positive infinity if the first floating-point number is a default NaN value and the fourth floating-point number is the default NaN value.
 - 30. The computer-readable storage medium of claim 26, wherein computing the maximum involves setting the maximum to positive infinity if the second floating-point number is a default NaN value and the third floating-point number is the default NaN value.
- The computer-readable storage medium of claim 25, wherein if none of the at least four floating-point numbers is a default NaN value or a value representing the empty interval, computing the maximum involves selecting the maximum of the at least four floating-point numbers.
 - 32. The computer-readable storage medium of claim 26, wherein the operation can include one of a multiplication operation and a division operation.

1	An apparatus that performs a minimum computation for an interval		
2	operation, comprising:		
3	an input that is configured to receive at least four floating-point numbers,		
4	including a first floating-point number, a second floating-point number, a third		
5	floating-point number and a fourth floating-point number; and		
6	a computing mechanism that is configured to compute a minimum of the		
7	at least four floating-point numbers;		
8	wherein if the at least four floating-point numbers include one or two		
9	default NaN (not-a-number) values and the remaining values are not default NaN		
10	values, the default NaN values are ignored in computing the minimum.		
1	34. The apparatus of claim 33,		
2	wherein the minimum is a left endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the secon		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the secon		
15	interval.		

1	35.	The apparatus of claim 33, wherein the computing mechanism is
2	configured to	set the minimum to a value representing the empty interval, if any of
3	the at least fo	our floating-point numbers contain the value representing the empty
4	interval.	

- The apparatus of claim 25, wherein the value representing the 36. 1 empty interval is a non-default NaN value. 2
- The apparatus of claim 34, wherein the computing mechanism is 37. 1 configured to set the minimum to negative infinity if the first floating-point 2 number is a default NaN value and the fourth floating-point number is the default 3 4 NaN value.
- The apparatus of claim 34, wherein the computing mechanism is 38. 1 configured to set the minimum to negative infinity if the second floating-point 2 number is a default NaN value and the third floating-point number is the default 3 NaN value. 4
- The apparatus of claim 33, wherein if none of the at least four 39. 1 floating-point numbers is a default NaN value or a value representing the empty 2 interval, the computing mechanism is configured to select the minimum of the at 3 least four floating-point numbers. 4
- The apparatus of claim 34, wherein the operation can include one 40. of a multiplication operation and a division operation. 2

1	41. An apparatus that performs a maximum computation for an		
2	interval operation, comprising:		
3	an input that is configured to receive at least four floating-point numbers,		
4	including a first floating-point number, a second floating-point number, a third		
5	floating-point number and a fourth floating-point number; and		
6	a computing mechanism that is configured to compute a maximum of the		
7	at least four floating-point numbers;		
8	wherein if the at least four floating-point numbers include one or two		
9	default NaN (not-a-number) values and the remaining values are not default NaN		
10	values, the default NaN values are ignored in computing the maximum.		
1	42. The apparatus of claim 41,		
2	wherein the maximum is a right endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the secon		
15	interval.		

- 1 43. The apparatus of claim 41, wherein the computing mechanism is 2 configured to set the maximum to a value representing the empty interval, if any 3 of the at least four floating-point numbers contain the value representing the 4 empty interval.
- 1 44. The apparatus of claim 43, wherein the value representing the 2 empty interval is a non-default NaN value.
- 1 45. The apparatus of claim 42, wherein the computing mechanism is 2 configured to set the maximum to positive infinity if the first floating-point 3 number is a default NaN value and the fourth floating-point number is the default 4 NaN value.
- 1 46. The apparatus of claim 42, wherein the computing mechanism is 2 configured to set the maximum to positive infinity if the second floating-point 3 number is a default NaN value and the third floating-point number is the default 4 NaN value.
- 1 47. The apparatus of claim 41, wherein if none of the at least four 2 floating-point numbers is a default NaN value or a value representing the empty 3 interval, the computing mechanism is configured to select the maximum of the at 4 least four floating-point numbers.
- 1 48. The apparatus of claim 42, wherein the operation can include one 2 of a multiplication operation and a division operation.