PCC173/BCC463 - Otimização em Redes

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

Programação Linear Inteira

2 Resolvedores de Programação Linear

3 Exemplos de Resolução de Programas Lineares

Aviso

Fonte

Este material é baseado nos livros

► Goldbarg, M. C., & Luna, H. P. L. (2005). Otimização combinatória e programação linear: modelos e algoritmos. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Exemplo

Uma confeitaria produz dois tipos de bolo de sorvete: chocolate e creme.

Cada lote de bolo de possui um lucro associado, demanda mínima, demanda máxima, e tempo de preparo, descritos na tabela abaixo.

Bolo	Lucro	Demanda Mínima	Demanda Máxima	Tempo
Creme	R\$ 1,00	_	40 lotes	3 horas
Chocolate	R\$ 3,00	10 lotes	60 lotes	2 horas

Considerando que há uma exigência mínima de produção de 20 lotes de bolo por dia, e que as máquinas disponibilizam 180 horas para produção, determine um esquema de produção que maximize o lucro com a venda dos bolos.

Exemplo

As variáveis de decisão x_i indicam a quantidade de lotes de bolos do tipo $i \in \{1\text{-creme e } 2\text{-chocolate}\}.$

A função objetivo visa maximizar o lucro com a produção dos bolos.

As restrições são relacionadas à disponibilidade de maquinário, demandas mínimas e máximas por bolos.

As variáveis não podem assumir valores negativos, portanto, adicionamos restrições de não-negatividade.

Porém, há um detalhe adicional: não é possível produzir meio lote de cinco bolos de chocolate, ou 1,012 lote de quatro bolos de creme...

Adicionamos então **restrições de integralidade**, caracterizando assim um **Programa Linear Inteiro** (PLI).

Programação Linear Inteira Pura

Modelo de programação linear, porém, só com variáveis de decisão inteiras.

Programação Linear Inteira Mista

Modelo de programação linear, com variáveis de decisão inteiras e contínuas.

Programação Linear Inteira Binária

Modelo de programação linear, porém, só com variáveis de decisão binárias.

Exemplo 1

$sujeito \ a:$

$$x_1 \le 40 \tag{2}$$

$$x_2 \le 60$$

$$x_2 \ge 10$$

$$0 (5)$$

$$x_1 + x_2 \ge 20$$
$$3x_1 + 2x_2 < 180$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_1, x_2 \in \mathcal{Z}^+$$

Exemplo 1

Representação gráfica da matriz de restrições do exemplo.

Características dos Modelos de PLI

Em inúmeras situações, as variáveis de decisão não poderão assumir valores contínuos.

Por exemplo, quando se referem a pessoas, configurações, objetos físicos, etc, soluções fracionárias perdem o sentido prático.

Poderíamos pensar que este problema não seria tão grave se trabalhássemos com uma formulação contínua e, após a solução final, empregássemos alguma estratégia de arredondamento.

O que pode parecer, ingenuamente, uma solução "razoável", pode ser uma péssima idéia na prática.

Características dos Modelos de PLI

Como é possível observar na representação gráfica da matriz de restrições, os pontos A, B, C, D, E e F do polígono de soluções possuem coordenadas inteiras, o que é um fenômeno raro.

Nesta situação solucionar um problema de programação linear com variáveis contínuas equivale a solucionar um problema de programação inteira.

Ponto	Coordenadas	Função Objetivo	
A	(40,10)	70	
В	(40, 30)	130	
C	(20, 60)	200	
D	(0, 60)	180	
Е	(0, 20)	60	
F	(10, 10)	40	

Características dos Modelos de PLI

Como é possível observar na representação gráfica da matriz de restrições, os pontos A, B, C, D, E e F do polígono de soluções possuem coordenadas inteiras, o que é um fenômeno raro.

Nesta situação solucionar um problema de programação linear com variáveis contínuas equivale a solucionar um problema de programação inteira.

Ponto	Coordenadas	Função Objetivo
A	(40,10)	70
В	(40, 30)	130
C	(20, 60)	200
D	(0, 60)	180
Е	(0, 20)	60
F	(10, 10)	40

Características dos Modelos de PLI

A equivalência entre solucionar um PL com variáveis contínuas e solucionar um PLI não é o caso comum.

O programa a seguir ilustra a necessidade de arredondamento e como isto é um problema grave.

Características dos Modelos de PLI

$$max \ z = x_1 + 19x_2 \tag{1}$$

 $sujeito \ a:$

$$x_1 + 20x_2 \le 50 \tag{2}$$

$$x_1 + x_2 \le 20 \tag{3}$$

$$x_1 \ge 0 \tag{4}$$

$$x_2 \ge 0 \tag{5}$$

$$x_1, x_2 \in \mathcal{Z}^+ \tag{6}$$

A solução ótima para PL é $x_1^*=18\frac{8}{9},\ x_2^*=1\frac{11}{19}$, e $z^*=48\frac{8}{19}.$

Características dos Modelos de PLI

Aplicando uma estratégia de arredondamento, providenciando uma busca racional em torno do ponto ótimo contínuo, teríamos:

Pontos Examinados (coordenadas)	Função Objetivo
$x_1^* = 19 \ x_2^* = 2$	inviável
$x_1^* = 19 \ x_2^* = 1$	38
$x_1^* = 18 \ x_2^* = 2$	inviável
$x_1^* = 18 \ x_2^* = 1$	37

Contudo, a solução ótima para o PLI é obtida com $x_1^*=10$ e $x_2^*=2$, resultando em $z^*=48$, um erro de 24% no arredondamento.

Com um número maior de variáveis e com esta técnica de arredondamento, teríamos uma derrocada completa no esforço de modelagem e solução.

Obtenção de Soluções Inteiras

Existem vários métodos específicos para obtenção de soluções inteiras exatas de um problema de programação linear:

- Branch-and-Bound;
- Enumeração Implícita;
- Restrições Surrogate;
- Cortes Inteiros (Primais e Duais);
- Cortes Combinatórios;
- Cortes de Interseção;
- Método de Decomposição de Benders;
- Branch-and-Cut;
- Teoria de Grupos;
- ▶ etc.

Obtenção de Soluções Inteiras

Há uma diversidade de ferramentas de modelagem e resolvedores de programação linear.

Em comum eles têm a implementação do método Simplex (Revisado) e do Método de Pontos Interiores (Primal Dual).

- ► IBM ILOG CPLEX;
- GUROBI;
- GNU Linear Programming Kit GLPK;
- COIN-OR CLP;
- LINDO;
- Xpress Optimizer;
- Excel;
- etc.

Resolução de Programas Lineares

Exemplos

Vejamos agora a solução dos exemplos da aula anterior usando a ferramenta *Solver* do Excel.

Exemplo 1 – PL Contínua

Uma metalúrgica deseja maximizar sua receita bruta. A tabela abaixo indica a proporção de cada material na mistura para obtenção de uma tonelada das ligas passíveis de fabricação.

O preço está cotado em Reais, e as restrições de disponibilidade estão expressas em toneladas.

	Liga Especial de	Liga Especial de	Disponibilidade
	Baixa Resistência	Alta Resistência	de Matéria Prima
Cobre	0,5	0,2	16
Zinco	0,25	0,3	11
Chumbo	0,25	0,5	15
Preço de Venda	3.000	5.000	

Exemplo 1 – PL Contínua

$$max \ 3000x_1 + 5000x_2 \tag{1}$$

sujeito a:

$$0,5x_1+0,2x_2 \le 16$$

$$0,25x_1+0,3x_2 \le 11$$

$$0,25x_1+0,5x_2 \le 15$$

$$x_1 \ge 0 \tag{5}$$

$$x_2 \ge 0 \tag{6}$$

(2)

(3)

(4)

Exemplo 2 – PL Contínua

Em uma dieta para redução calórica, é necessário determinar as quantidades de certos alimentos que deverão ser ingeridos diariamente, de maneira que requisitos nutricionais sejam satisfeitos a custo mínimo.

A tabela abaixo expressa os requisitos nutricionais de alguns alimentos em termos de vitaminas A, C e D, controlados por sua quantidade mínima necessária.

	Leite	Carne	Peixe	Salada	Requisito Nutricional
	(Litro)	(kg)	(kg)	(100g)	Mínimo
A	2 mg	2 mg	10 mg	20 mg	11 mg
C	50 mg	20 mg	10 mg	30 mg	70 mg
D	80 mg	70 mg	10 mg	80 mg	250 mg
Custo	2 reais	4 reais	1,50 real	1 real	

Exemplo 2 – PL Contínua

$$min \ 2x_l + 4x_c + 1, 5x_p + x_s \tag{1}$$

sujeito a:

$$2x_l + 2x_c + 10x_p + 20x_s \ge 11\tag{2}$$

$$50x_l + 20x_c + 10x_p + 30x_s \ge 70$$

$$80x_l + 70x_c + 10x_p + 80x_s \ge 250 \tag{4}$$

$$x_l \ge 0, x_c \ge 0, x_p \ge 0, x_s \ge 0$$
 (5)

(3)

Exemplo 3 – PL Contínua

Um sitiante está planejando sua estratégia de plantio para o próximo ano, visando o maior lucro. Ele deseja cultivar trigo, arroz e milho e sabe de antemão qual é a produtividade de sua terra para cada uma das culturas, reportado na tabela abaixo.

	Produtividade	Lucro por	
	em kg por m^2	kg de produção	
Trigo	0,2	10,8 centavos	
Arroz	0,3	4,2 centavos	
Milho	0,4	2,03 centavos	

Por falta de um local de armazenamento próprio, a produção máxima está limitada a 60 toneladas. A área cultivável do sítio é de $200.000m^2$.

Por fim, para atender as demandas do próprio sítio, é imperativo que se plante $400m^2$ de trigo, $800m^2$ de arroz e $10.000m^2$ de milho.

Exemplo 3 – PL Contínua

$$max \ 2, 6x_t + 1, 26x_a + 0, 812x_m \tag{1}$$

sujeito a:

$$x_t \ge 400 \tag{2}$$

$$x_a \ge 800$$

$$x_m \ge 10.000$$

$$x_t + x_a + x_m \le 200.000 \tag{5}$$

$$0, 2x_t + 0, 3x_a + 0, 4x_m \le 60.000$$

$$x_a > 0, x_t > 0, x_m > 0$$
 (7)

$$x_a \ge 0, x_t \ge 0, x_m \ge 0 \tag{7}$$

(3)

(4)

(6)

Exemplo 1 – PL Inteira com Possibilidade de Aproximação Contínua

Uma fábrica de móveis de madeira possui em seu portfólio escrivaninhas, mesas, armários e prateleiras. A composição de cada móvel é descrita na tabela abaixo, que também apresenta o valor de revenda e a disponibilidade de cada material.

	Consumo por unidade de produto (m^2)				Estoque (m^2)
	Escrivaninha	Mesa	Armário	Prateleira	
Tábua	1	1	1	4	250
Prancha	0	1	1	2	600
Painel	3	2	4	0	500
Valor de Revenda	100	80	120	20	

O problema consiste em maximizar a receita com a venda de móveis.

Exemplo 1 – PL Inteira com Possibilidade de Aproximação Contínua

$$max \ 100x_1 + 80x_2 + 120x_3 + 20x_4 \tag{1}$$

sujeito a:

$$x_1 + x_2 + x_3 + 4x_4 \le 250 \tag{2}$$

$$x_2 + x_3 + 2x_4 \le 600 \tag{3}$$

$$3x_1 + 2x_2 + 4x_3 \le 250 \tag{4}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \tag{5}$$

Exemplo 2 – PL Inteira com Possibilidade de Aproximação Contínua

Um atleta pratica natação e ciclismo. Com um orçamento mensal de 70 reais, o atleta pode dedicar, no máximo, 18 horas mensais e 80.000 calorias à prática de esportes:

- A natação custa em média 3 reais por sessão de 2 horas, e queima 1.500 calorias;
- O ciclismo custa 2 reais por sessão de 2 horas e queima 1.000 calorias.

Considerando que o atleta gosta igualmente de ambos esportes, o problema consiste em programar seu treinamento de maneira a otimizar o número de sessões.

Exemplo 2 – PL Inteira com Possibilidade de Aproximação Contínua

$$max x_1 + x_2 \tag{1}$$

sujeito a:

$$3x_1 + 2x_2 \le 70 \tag{2}$$

$$1.500x_1 + 1.000x_2 \le 80.000 \tag{3}$$

$$2x_1 + 2x_2 \le 18 \tag{4}$$

$$x_1 \ge 0, x_2 \ge 0 \tag{5}$$

Exemplo 1 – PL Inteira sem Aproximação Contínua

Um hospital trabalha com atendimento variável em demanda 24 horas por dia, segundo a tabela abaixo.

Turno	Horário	Número Mínimo de Enfermeiros
1	08:00-12:00	50
2	12:00-16:00	60
3	16:00-20:00	50
4	20:00-00:00	40
5	00:00-04:00	30
6	04:00-08:00	20

A jornada de trabalho de um enfermeiro dura 8 horas consecutivas, exceto no turno 5, cuja jornada é de apenas 4 horas. A remuneração para o turno 4 possui uma gratificação de 50%. O problema consiste em minimizar o gasto com a mão de obra.

Exemplo 1 – PL Inteira sem Aproximação Contínua

$$min \ x_1 + x_2 + 1,5x_3 + 2x_5 + x_6 \tag{1}$$

sujeito a:

$$x_6 + x_1 \ge 50 \tag{2}$$

$$x_1 + x_2 \ge 60$$

$$x_2 + x_3 \ge 50$$

$$x_3 \ge 40$$

$$x_5 \ge 30$$

$$x_6 \ge 20$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathcal{Z}^+$$

(3)

(4)

(5) (6)

(7)

(8)

Dúvidas?

