Menton-Rhepson Method
To improve the Convergence, need to start including
derivetive data
let x* be the rat: f(x*)=0.
let be a point near.
Taylor Series about X1:
(x) <u>~</u>
Create an iteration by finding x such that
-0 -> X2=
Ø \$ (x,)
1 1 X

Iteration is then XC+1 =

Look at convergence:

Let x* be the true rout, xn the estimate at iteration n+1.

Assume (Hat /x*-xn)=8<</

Define avors as 6V= 4 6V+1=

Criven en, how much smaller is ent?

It can be shown that

O = \$(x*) =

for some

Such that

 $\frac{3}{2_{11}(3)}(x_{\star}-x^{\prime})_{3}=$

Newton - Phapson: Xn+1 =

=> f(x)=

Then
0 =
O c
Δ
○ =
e _{n+1} =
Or Paul & Consumance
© Pn+1 Convergence.
6 ⁴¹ ~
6 ^{utr} ~ 6 ^{utr} ~ It 6 ^u ~
If en ~ ents ~ ents ~ State the iteration has converged if
6 ^{utr} ~ 6 ^{utr} ~ It 6 ^u ~
If en ~ ents ~ ents ~ State the iteration has converged if
If en ~ ents ~ ents ~ State the iteration has converged if
If en ~ ents ~ ents ~ State the iteration has converged if
If en ~ ents ~ ents ~ State the iteration has converged if
If en ~ ents ~ ents ~ State the iteration has converged if
If en ~ ents ~ ents ~ State the iteration has converged if

Issue,! (1) 6 => New to check for divergence? 2 (3)