Engineering Portfolio

Christina Alexandrov Stevens Institute of Technology

Monte Flow Simulation

Problem:

Model 2D heat conduction in a square plate while capturing uncertainty on one boundary. The solver needed to stay accurate under noisy inputs and produce statistics (not just one CFD run) for design decisions.

Method:

Custom MATLAB finite-difference (FDM) solver with three stochastic boundary models: Gaussian noise, bimodal switching, and Brownian motion. Ran >1,000 Monte Carlo trials; analyzed frequency content via FFT. Validated the deterministic case against a high-fidelity Abaqus FE model.

Solution:

- Deterministic solution matched Abaqus within < 0.1 °C.
- Monte Carlo runs produced stable temperature distributions and clear frequency signatures, demonstrating robustness to boundary noise.
- Deliverables: solver code, statistical plots (PDF), and method notes for repeatability

Jet Engine Intake Fan

Problem:

Visualize compressible flow through a custom axial intake fan and compare subsonic vs. transonic inflow to identify shock formation, swirl, and wake behavior in an open-rotor configuration.

Method:

Fusion 360 geometry \rightarrow ANSYS Fluent 2025 R1. Steady compressible RANS, k_{-0} SST, single-zone MRF for the rotor. Pressure far-field at 1 atm, T = 300 K with two cases: $M\infty=0.8$ and $M\infty=1.0$. Unstructured mesh with LE/TE refinement and inflation layers targeting y+=30–50; convergence to residuals \leq 1×10⁻⁴ with pressure/mass-flow monitor plateaus.

Solution:

 $M\infty=0.8M$: attached flow across most of the span; thin wakes; clean helical pathlines (swirl).

M∞=1.0: stronger suction-side gradients and localized shocklets near the outer span; thicker wakes and higher loss signature.

Vertical Tail Stabilizer

Problem:

Size and place the vertical tail early in configuration design to balance static/dynamic stability and rudder authority. Needed a fast way to see how geometry and placement affect the main stability derivatives.

Method:

MATLAB tool that sweeps area, aspect ratio, height, taper ratio, and longitudinal position xvx_vxv.

Computes CnB, C_n, andC_n_r and generates sensitivity maps and trend surfaces for quick trade studies.

Solution:

Stability: roll/yaw stability generally increases with tail height and lever arm (CG distance).

Control authority: rudder effectiveness scales with tail volume and is highly sensitive to xvx

Outputs include derivative maps and "what-if" plots that make early sizing decisions transparent.

Thorlabs: Vacuum Feedthrough Jig

Problem:

Describe the problem/objective. Give some details about the requirements/constraints of project, # of team members, budget

Method:

Describe how you went about solving problems. What software/tools used, how you validate your findings

Solution:

Thorlabs: Automatic Screw Feeder Cap

Problem:

Describe the problem/objective. Give some details about the requirements/constraints of project, # of team members, budget

Method:

Describe how you went about solving problems. What software/tools used, how you validate your findings

Solution:

Thorlabs: CCM* Assembly Jig

Problem:

Describe the problem/objective. Give some details about the requirements/constraints of project, # of team members, budget

Method:

Describe how you went about solving problems. What software/tools used, how you validate your findings

Solution:

Thorlabs: CAPSM-1 Jig

Problem:

Describe the problem/objective. Give some details about the requirements/constraints of project, # of team members, budget

Method:

Describe how you went about solving problems. What software/tools used, how you validate your findings

Solution:

Thorlabs: BT-FSSMA Pull Test

Problem:

Describe the problem/objective. Give some details about the requirements/constraints of project, # of team members, budget

Method:

Describe how you went about solving problems. What software/tools used, how you validate your findings

Solution:

