Project 1 - Hacking the Cipher

Network Security
By Wei-Ti Su & Xin-Yu Wang

Outline

- RSA: introduction
- Chosen ciphertext attack
- PEM format
- The decrypter on the server
- Summary

RSA: introduction

- Public key encryption
 - Key pair: public and private key
 - Public key: open to the public
 - Private key: confidential
 - Messages encrypted with one key can only be decrypted by the other key
- Components of RSA
 - o n the modulus of the keys, created as a product of two large prime numbers, p and q
 - o (n, e) the public key
 - o (n, d) the private key
- Encryption with public key
 - ciphertext = plaintext^e mod n
- Decrytption with private key
 - plaintext = cipthertext^d mod n
 - o cipthtext^d mod n = plaintext^{ed} mod n = plaintext¹ mod n

Chosen ciphertext attack

Components of RSA

- C the ciphertext you want to attack (C = P^e mod n)
- o n the modulus of the keys, created as a product of two large prime numbers, p and q
- o (n, e) the public key
- o (n, d) the private key

Attack steps:

- choose X where X is relatively prime to n
- create Y = C*X^e mod n
- get Z = decrypted Y
- O $Z = Y^d = (C^*X^e)^d = C^{d*}X^{ed} = C^{d*}X = P^{ed*}X = P^*X \mod n$
- find out X⁻¹, the modular inverse of X
- \circ P = Z*X⁻¹ mod n

PEM format

- The public key is in PEM format
- Extract n and e from the public key

```
----BEGIN PUBLIC KEY----
MIGFMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDIh16Sa3YCppifETNml6gKa/Cy
56AT/hxNJMx6zQmQuYvjEIBAbB4EnW346ewy1yRRVDBKVYrJTHbmw2nIHbQGP5QU
8GDbRogM05RCkorSZjB03L8Zhpp1u7hi8/dhPnKbQnrCHrI+S5EAu40K3yw/nh76
KlB0b/G1+py02ESHWwIDAQAB
-----END PUBLIC KEY-----
```

The decryper on the server

- nc 140.113.194.66 8888 (linux command)
- input ciphertext and you'll get the decrypted one back

```
xywang@xywangLAB:~$ nc 140.113.194.66 8888
Give me your encrypted message:
```

Summary

- You are given:
 - pub.pem: the RSA public key
 - flag.enc: the encrypted message
 - decrypter.py: the source code of the decrypter running on the server
- Your goal:
 - to retrieve flag, it should be like FLAG{......}
- You should deliver:
 - flag: the decrypted message
 - report.pdf: a report about how you decrypt flag.enc
 - o any code or script you write
 - Pack all the files into STUDENT_ID.zip
- You should finish this project and upload to e3 platform before the deadline:
 2018/04/03 (Tue) 23:59:59

All kind of plagiarism is strictly forbidden. If you plagiarize, you will fail the course and/or face disciplinary action. Also, do not DoS our server!