Labyrinth - One Player mode

Generated by Doxygen 1.8.13

Contents

1	Hier	archica	Index	1
	1.1	Class	Hierarchy	1
2	Clas	ss Index	;	3
	2.1	Class	_ist	3
3	File	Index	•	5
	3.1	File Lis	st	5
4	Clas	s Docu	mentation	7
	4.1	handle	Class Reference	7
	4.2	Modell	aby Class Reference	7
		4.2.1	Detailed Description	9
		4.2.2	Constructor & Destructor Documentation	9
			4.2.2.1 ModelLaby()	9
		4.2.3	Member Function Documentation	0
			4.2.3.1 f()	0
			4.2.3.2 g()	0
			4.2.3.3 m()	0
		4.2.4	Member Data Documentation	1
			4.2.4.1 initialState	1
			4.2.4.2 presentState	1
	4.3	Modell	Pacman Class Reference	2
		4.3.1	Detailed Description	3
		4.3.2	Constructor & Destructor Documentation	3

ii CONTENTS

		4.3.2.1 ModelPacman()	13
	4.3.3	Member Function Documentation	14
		4.3.3.1 f()	14
		4.3.3.2 g()	14
		4.3.3.3 m()	15
	4.3.4	Member Data Documentation	15
		4.3.4.1 initialState	15
		4.3.4.2 presentState	15
4.4	Models	SED Class Reference	16
	4.4.1	Detailed Description	17
	4.4.2	Member Function Documentation	17
		4.4.2.1 f()	17
		4.4.2.2 g()	17
		4.4.2.3 m()	18
	4.4.3	Member Data Documentation	18
		4.4.3.1 initialState	18
		4.4.3.2 presentState	18
4.5	Model	Valls Class Reference	19
	4.5.1	Detailed Description	20
	4.5.2	Constructor & Destructor Documentation	20
		4.5.2.1 ModelWalls()	20
	4.5.3	Member Function Documentation	21
		4.5.3.1 f() [1/2]	21
		4.5.3.2 f() [2/2]	21
		4.5.3.3 g()	21
		4.5.3.4 m()	22
	4.5.4	Member Data Documentation	22
		4.5.4.1 i	22
		4.5.4.2 initialState	22
		4.5.4.3 presentState	22

CONTENTS

		4.5.4.4	val	23
4.6	StopCo	ondition Cla	ass Reference	23
	4.6.1	Detailed [Description	24
	4.6.2	Construct	or & Destructor Documentation	24
		4.6.2.1	StopCondition()	24
	4.6.3	Member F	Function Documentation	25
		4.6.3.1	f() [1/2]	25
		4.6.3.2	f() [2/2]	25
		4.6.3.3	g()	26
		4.6.3.4	m()	26
	4.6.4	Member [Data Documentation	27
		4.6.4.1	initialState	27
		4.6.4.2	presentState	27
4.7	Wrapp	er Class Re	eference	27
	4.7.1	Detailed [Description	28
	4.7.2	Construct	or & Destructor Documentation	28
		4.7.2.1	Wrapper()	29
	4.7.3	Member F	Function Documentation	29
		4.7.3.1	get_out()	29
		4.7.3.2	get_stop()	29
		4.7.3.3	init()	30
		4.7.3.4	orderer()	30
		4.7.3.5	updateConnexion()	31
	4.7.4	Member [Data Documentation	31
		4.7.4.1	commandPacman	31
		4.7.4.2	commandWalls	31
		4.7.4.3	in	31
		4.7.4.4	modelLaby	32
		4.7.4.5	out	32
		4.7.4.6	pacmanBit	32
		4.7.4.7	stop	32
		4.7.4.8	stopCondition	32
		4.7.4.9	wallsBit	32
		4.7.4.10	whoPlay	32

iv CONTENTS

5	File	Docum	entation		33
	5.1	Create	PituresAnd	dVideo.m File Reference	33
		5.1.1	Function	Documentation	33
			5.1.1.1	CreatePituresAndVideo()	33
	5.2	Create	PituresAnd	dVideo_textured.m File Reference	33
		5.2.1	Function	Documentation	33
			5.2.1.1	CreatePituresAndVideo_textured()	34
	5.3	figure_	Laby.m Fil	e Reference	34
		5.3.1	Function	Documentation	35
			5.3.1.1	connect_Callback()	35
			5.3.1.2	createUIEscape()	35
			5.3.1.3	createUIPacman()	37
			5.3.1.4	createUIWalls()	37
			5.3.1.5	figure_Laby()	38
			5.3.1.6	figure_Laby_OpeningFcn()	38
			5.3.1.7	figure_Laby_OutputFcn()	38
			5.3.1.8	isOne()	39
			5.3.1.9	resetUIConnection()	39
			5.3.1.10	ui_Callback()	40
			5.3.1.11	updatePresenceDetectorDisplay()	40
			5.3.1.12	updateUI()	41
			5.3.1.13	updateUIActiveCammand()	41
			5.3.1.14	updateUIButton()	41
			5.3.1.15	updateUIEscape()	42
			5.3.1.16	updateUIPlayer()	42
			5.3.1.17	updateUIWalls()	43
			5.3.1.18	updateUIWallsAround()	44
	5.4	main.n	n File Refe	rence	44
	5.5	Modell	Laby.m File	Reference	44
	5.6	Modell	Pacman.m	File Reference	44

CONTENTS

Index		47
5.15	Wrapper.m File Reference	46
	5.14.1.1 wallsBorder()	46
	5.14.1 Function Documentation	46
5.14	wallsBorder.m File Reference	46
5.13	visupacman2.m File Reference	46
5.12	visupacman.m File Reference	46
5.11	StopCondition.m File Reference	45
	5.10.1 Detailed Description	45
5.10	Simulation.m File Reference	45
	5.9.1.1 setColor()	45
	5.9.1 Function Documentation	45
5.9	setColor.m File Reference	45
5.8	ModelWalls.m File Reference	45
5.7	ModelSED.m File Reference	44

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

handle	
ModelSED	
ModelLaby	
ModelPacman	
ModelWalls	
StopCondition	
Wrapper	

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

handle	7
ModelLaby	
Class which contains the "fmg" structure of the labyrinth for 1 player	7
ModelPacman	
Contain ghost Pacman control	12
ModelSED	
Abstract Class who contain the structure of a "fmg" implementation	16
ModelWalls	
Contain wall movement command	19
StopCondition	
Class used to manage shutdown conditions	23
Wrapper	
Connects all models to the display function	27

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

CreatePituresAndVideo.m	33
CreatePituresAndVideo_textured.m	33
figure_Laby.m	34
main.m	44
ModelLaby.m	44
ModelPacman.m	44
ModelSED.m	44
ModelWalls.m	45
setColor.m	45
Simulation.m	
Script to launch the labyrinth simulation	45
StopCondition.m	45
visupacman.m	46
visupacman2.m	46
wallsBorder.m	46
Wrapper m	46

6 File Index

Chapter 4

Class Documentation

4.1 handle Class Reference

Inheritance diagram for handle:

The documentation for this class was generated from the following file:

• ModelSED.m

4.2 ModelLaby Class Reference

Class which contains the "fmg" structure of the labyrinth for 1 player.

Inheritance diagram for ModelLaby:

Collaboration diagram for ModelLaby:

Public Member Functions

- function ModelLaby (in wallsV_init, in wallsH_init, in pacman_init, in escape_init)

 Class constructor of Instance of ModelLaby Class.
- function f (in obj, in in)

Compute the evolution of the model.

• function m (in obj, in nextState, in init)

Memory method.

• function g (in obj)

Create the outputs in a 1x9 cell-array.

Public Attributes

· Property presentState

Data Structure of the current state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

· Property initialState

Data Structure of the initial state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

4.2.1 Detailed Description

Class which contains the "fmg" structure of the labyrinth for 1 player.

You can change here labyrinth's dynamic : how objects and walls are evolving in the labyrinth, not the command of then.

Input: necessary information for compute the next state of the model

Output: output's action of the model

State: minimal information necessary who evolute

4.2.2 Constructor & Destructor Documentation

4.2.2.1 ModelLaby()

Class constructor of Instance of ModelLaby Class.

Parameters

wallsV_init	Contain a matrix (N, N-1) of Initial Vertical Walls.
wallsH_init	Contain a matrix (N-1, N) of Initial Horizontal Walls.
pacman_init	Contain a vector (x, y) of Initial Position of Pacman.
escape_init	Contain a vector (x, y) of Escape 's Position.

Returns

instance of the ModelLaby class.

4.2.3 Member Function Documentation

4.2.3.1 f()

Compute the evolution of the model.

Parameters

obj	The instance which will evolve.
in	Input needed for the computing.

Returns

Next instance of the ModelLaby class.

Reimplemented from ModelSED.

4.2.3.2 g()

```
function g ( \quad \text{in } obj \; ) \quad \text{[virtual]}
```

Create the outputs in a 1x9 cell-array.

Parameters

obj the concerned instance of the class

Return values

out Constructed output 1x9 cell-array of the model

Reimplemented from ModelSED.

4.2.3.3 m()

```
function m ( in obj,
```

```
in nextState,
in init ) [virtual]
```

Memory method.

Update the state of the command.

Parameters

obj	The selected instance of the class
nextState	The value of the state need to update
init	Boolean condition for initialize or reset the command

Returns

instance of the class updated

Reimplemented from ModelSED.

4.2.4 Member Data Documentation

4.2.4.1 initialState

Property initialState

Data Structure of the initial state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

4.2.4.2 presentState

Property presentState

Data Structure of the current state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

The documentation for this class was generated from the following file:

· ModelLaby.m

4.3 ModelPacman Class Reference

Contain ghost Pacman control.

Inheritance diagram for ModelPacman:

Collaboration diagram for ModelPacman:

Public Member Functions

• function ModelPacman (in initialValue)

Class constructor.

• function f (in obj, in in)

Compute the evolution of the command.

• function m (in obj, in nextState, in init)

Memory method update the state of the command.

• function g (in obj)

Create the outputs.

Public Attributes

• Property presentState

This is the state of the command in the present moment.

· Property initialState

This is the state of the command in the initialization and when it's reseted.

4.3.1 Detailed Description

Contain ghost Pacman control.

```
You can change here Pacman's command. Input: Possible Pacman's moves [Up Down Left Right] 0 = \text{move not possible}; 1 = \text{move possible} ( Wout{7})

Output: Pacman's moves 1: pacmanLeftBut, ( Wout(3)) 2 : \text{pacmanUpBut}, ( Wout(1)) 3 : \text{pacmanRightBut}, ( Wout(4)) 4 : \text{pacmanDownBut}, ( Wout(2)) ( Win( 4:7) of wrapper )

Input: Walls around Pacman 1 \text{ up} 2 \text{ down} 3 \text{ left} 4 \text{ right} This command do the sequence P(D) > P(B) > P(H) > P(G)
```

4.3.2 Constructor & Destructor Documentation

4.3.2.1 ModelPacman()

Class constructor.

Parameters

initialValue Contain the initial state
--

Returns

instance of the ModelPacman class.

4.3.3 Member Function Documentation

4.3.3.1 f()

```
function f (  \mbox{in $obj$,} \\ \mbox{in $in$ } \mbox{$i$ n$ } \mbox{$j$ } \mbox{[virtual]}
```

Compute the evolution of the command.

Parameters

obj	The instance who evolute
in	Input needed for the compute

Return values

nextState	The future state of the Pacman command
-----------	--

Reimplemented from ModelSED.

4.3.3.2 g()

Create the outputs.

Parameters

obj	the concerned instance of the class

Return values

4	The second color is the second second
out	The output who is the command.

Reimplemented from ModelSED.

4.3.3.3 m()

Memory method update the state of the command.

Parameters

obj	The selected instance of the class
nextState	The value of the state need to update
init	Boolean condition for initialize or reset the command

Returns

instance of the class updated

Reimplemented from ModelSED.

4.3.4 Member Data Documentation

4.3.4.1 initialState

Property initialState

This is the state of the command in the initialization and when it's reseted.

4.3.4.2 presentState

Property presentState

This is the state of the command in the present moment.

The documentation for this class was generated from the following file:

• ModelPacman.m

4.4 ModelSED Class Reference

Abstract Class who contain the structure of a "fmg" implementation.

Inheritance diagram for ModelSED:

Collaboration diagram for ModelSED:

Public Member Functions

• virtual f (in obj, in in)

Compute the evolution of the model.

• virtual m (in obj, in nextState, in init)

Memory method update the state of the command.

• virtual g (in obj)

Create the outputs.

Public Attributes

• Property presentState

This is the state of the command in the present moment.

• Property initialState

This is the state of the command in the initialization and when it's reseted.

4.4.1 Detailed Description

Abstract Class who contain the structure of a "fmg" implementation.

This class is used for give a general definition of Model Class.

Input: necessary information for compute the next state of the model

Output: output's action of the model

State: minimal information necessary who evolute

4.4.2 Member Function Documentation

4.4.2.1 f()

Compute the evolution of the model.

Parameters

obj	The instance who evolute
in	Input needed for the computing

Return values

nextState The future state of the model

Reimplemented in ModelPacman, and ModelLaby.

4.4.2.2 g()

```
virtual g (

in obj ) [virtual]
```

Create the outputs.

Parameters

obj the concerned instance of the class

Return values

out	Constructed output of the model
-----	---------------------------------

Reimplemented in ModelPacman, ModelLaby, StopCondition, and ModelWalls.

4.4.2.3 m()

Memory method update the state of the command.

Parameters

obj	The selected instance of the class
nextState	The value of the state need to update
init	Boolean condition for initialize or reset the command

Returns

instance of the class updated

Reimplemented in ModelPacman, ModelLaby, StopCondition, and ModelWalls.

4.4.3 Member Data Documentation

4.4.3.1 initialState

```
Property initialState
```

This is the state of the command in the initialization and when it's reseted.

4.4.3.2 presentState

```
Property presentState
```

This is the state of the command in the present moment.

The documentation for this class was generated from the following file:

• ModelSED.m

4.5 ModelWalls Class Reference

Contain wall movement command.

Inheritance diagram for ModelWalls:

Collaboration diagram for ModelWalls:

Public Member Functions

• function ModelWalls (in initValue)

Class constructor.

- function f (in obj)
- function m (in obj, in nextState, in init)

Memory method update the state of the command.

• function g (in obj)

Create the outputs.

• virtual f (in obj, in in)

Compute the evolution of the model.

Public Attributes

- Property presentState
- Property initialState
- Property i
- Property val

4.5.1 Detailed Description

Contain wall movement command.

Input: No need

Output: [UPwalls, RIGHTwalls]

State : contain the last move (0 = up; 1 = right)

This command do the sequence walls Right -> walls down

4.5.2 Constructor & Destructor Documentation

4.5.2.1 ModelWalls()

Class constructor.

Parameters

initialValue | Contain the initial state

Returns

instance of the ModelWalls class.

4.5.3 Member Function Documentation

Compute the evolution of the model.

Parameters

obj	The instance who evolute
in	Input needed for the computing

Return values

Reimplemented in ModelPacman, and ModelLaby.

Create the outputs.

Parameters

obj the concerned instance of the class

in obj) [virtual]

Return values

out The output who is the command.

Reimplemented from ModelSED.

4.5.3.4 m()

Memory method update the state of the command.

Parameters

obj	The selected instance of the class
nextState	The value of the state need to update
init	Boolean condition for initialize or reset the command

Returns

instance of the class updated

Reimplemented from ModelSED.

4.5.4 Member Data Documentation

4.5.4.1 i

Property i

4.5.4.2 initialState

Property initialState

4.5.4.3 presentState

Property presentState

4.5.4.4 val

Property val

The documentation for this class was generated from the following file:

• ModelWalls.m

4.6 StopCondition Class Reference

Class used to manage shutdown conditions.

Inheritance diagram for StopCondition:

Collaboration diagram for StopCondition:

Public Member Functions

• function StopCondition (in initCondition)

Class constructor of Instance of StopCondition Class.

• function f (in obj, in noEscape, in pacmanWallsBreak)

Compute the evolution of the model.

• function m (in obj, in nextState, in init)

Memory method.

• function g (in obj)

Create the outputs in a vector with 4 parameters.

virtual f (in obj, in in)

Compute the evolution of the model.

Public Attributes

· Property presentState

Data Structure of the current state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

· Property initialState

Data Structure of the initial state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

4.6.1 Detailed Description

Class used to manage shutdown conditions.

Labyrinth shutdown conditions model.

You can modify the shutdown conditions here. It is developing in the same way as MODELSED, with "FMG" block. (MODELSED's legacy)

Input: walls of Pacman's walls of ghost's escape of Pacman CaughtBreak

Output: 1 Escape

2 Caugnt

3 pacmanWallsBreak

4 ghostWallsBreak

4.6.2 Constructor & Destructor Documentation

4.6.2.1 StopCondition()

Class constructor of Instance of StopCondition Class.

Parameters

initCondition	Structure for the InitialState. It have to contain: 'escape', 'caught', 'pacman' and
	'numberOfPossibleCaught'

Returns

instance of the ModelLaby class.

4.6.3 Member Function Documentation

Compute the evolution of the model.

Parameters

obj	The instance who evolute
in	Input needed for the computing

Return values

nextState The future state of the model

Reimplemented in ModelPacman, and ModelLaby.

Compute the evolution of the model.

Parameters

obj	The instance which will evolve.
in	Input needed for the computing.

Returns

Next instance of the StopCondition class.

4.6.3.3 g()

```
function g ( \mbox{in } obj \; ) \quad \mbox{[virtual]}
```

Create the outputs in a vector with 4 parameters.

Parameters

obj	the concerned instance of the class
-----	-------------------------------------

Return values

out Constructed output vector with 4 parameters of the model. In this case, the output contain only escape information and Pacman block information.

Reimplemented from ModelSED.

4.6.3.4 m()

Memory method.

Update the state of the command.

Parameters

obj	The selected instance of the class
nextState	The value of the state need to update
init	Boolean condition for initialize or reset the command

Returns

instance of the class updated

Reimplemented from ModelSED.

4.6.4 Member Data Documentation

4.6.4.1 initialState

Property initialState

Data Structure of the initial state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

4.6.4.2 presentState

Property presentState

Data Structure of the current state of Labyrinth. It contains "wallsV", "wallsH" (2 matrix for the walls), "escape" and "pacman", a Cartesian position of current position of escape and pacman and 'wallsAroundPacman' A vector indicating the presence of a wall around the Pacman for the 4 directions Up Down Left Right.

The documentation for this class was generated from the following file:

• StopCondition.m

4.7 Wrapper Class Reference

Connects all models to the display function.

Collaboration diagram for Wrapper:

```
Property

| commandWalls | stopCondition | stop | in | pacmanBit | whoPlay | out | wallsBit | modelLaby | commandPacman | ...
```

Public Member Functions

• function Wrapper (in inSize, in outSize, in initLaby, in initWalls, in initPac, in initStop)

Class constructor of Instance of StopCondition Class.

function updateConnexion (in obj, in indBit, in value)

Update the connection bit for connect automatic mode for Pacman and/or the walls.

• function init (in obj)

Allows to completely reset the labyrinth.

function orderer (in obj, in vectIn)

Ordinate the global execution of Models.

function get_stop (in obj)

Return the current State of shutdown condition.

function get_out (in obj)

Return the current State of output cell.

Public Attributes

· Property wallsBit

Boolean connection for the walls.

· Property pacmanBit

Boolean connection for the Pacman.

Property modelLaby

contain the instance of the model of labyrinth.

• Property commandWalls

contain the instance of wall's command.

• Property commandPacman

contain the instance of Pacman's command.

• Property stopCondition

contain the instance shutdown condition.

· Property in

A integer vector who contain the state of input,.

Property out

A cell who contain the state of output,.

Property stop

A cell that contains the output of the stop conditions instance.

Property whoPlay

A increment integer that permit to know which object to play 0 = walls; 1 = Pacman.

4.7.1 Detailed Description

Connects all models to the display function.

Contain the connection between the different elements and contain all the models (walls, labyrinth, Pacman, escape)

4.7.2 Constructor & Destructor Documentation

4.7.2.1 Wrapper()

Class constructor of Instance of StopCondition Class.

Parameters

inSize	Integer containing the size of the state of inputs.
outSize	Integer containing the size of the state of Outputs.
initLaby	Structure containing every fields need to initialize the labyrinth Model.
initWalls	Structure containing every fields need to initialize the Walls Model.
initPac	Structure containing every fields need to initialize the Pacman Model.
initStop	Structure containing every fields need to initialize the Stop Model.

Returns

instance of the Wrapper class.

4.7.3 Member Function Documentation

4.7.3.1 get_out()

```
function get_out (
          in obj )
```

Return the current State of output cell.

Parameters

```
obj The instance of Wrapper.
```

Returns

Output cell.

4.7.3.2 get_stop()

```
function get_stop (
          in obj )
```

30 Class Documentation

Return the current State of shutdown condition.

Parameters

```
obj The instance of Wrapper.
```

Returns

instance of the Stop class.

4.7.3.3 init()

```
function init ( \begin{array}{c} \text{in } obj \end{array})
```

Allows to completely reset the labyrinth.

Parameters

obj The instance of Wrapper.

Returns

instance of the Wrapper class.

4.7.3.4 orderer()

Ordinate the global execution of Models.

Parameters

obj The instance of Wrapper.

Returns

instance of the Wrapper class. In a first case, it checks which models is connected via the interface. If a model is connected, we execute the 'fmg' structure of the model, else, we are waiting that a player push the desired button to move the labyrinth.

Here a little graphic about the scheduling of the call of each model : walls > Laby > pacman > laby Every call of 'laby' implies a call of Stop Condition.

4.7.3.5 updateConnexion()

Update the connection bit for connect automatic mode for Pacman and/or the walls.

Parameters

obj	The instance of Wrapper.	
indBit	Integer pointing the element to be connected: '1' for walls and '3' for Pacman.	
value	Boolean indicating if the element is connected (True) or not.	

Returns

instance of the Wrapper class.

4.7.4 Member Data Documentation

4.7.4.1 commandPacman

Property commandPacman

contain the instance of Pacman's command.

4.7.4.2 commandWalls

Property commandWalls

contain the instance of wall's command.

4.7.4.3 in

Property in

A integer vector who contain the state of input,.

incremented by the callback or some action.

32 Class Documentation

4.7.4.4 modelLaby

Property modelLaby

contain the instance of the model of labyrinth.

4.7.4.5 out

Property out

A cell who contain the state of output,.

incremented by the callback or some action.

4.7.4.6 pacmanBit

Property pacmanBit

Boolean connection for the Pacman.

4.7.4.7 stop

Property stop

A cell that contains the output of the stop conditions instance.

incremented by the callback or some action.

4.7.4.8 stopCondition

Property stopCondition

contain the instance shutdown condition.

4.7.4.9 wallsBit

Property wallsBit

Boolean connection for the walls.

4.7.4.10 whoPlay

Property whoPlay

A increment integer that permit to know which object to play 0 = walls; 1 = Pacman.

The documentation for this class was generated from the following file:

• Wrapper.m

Chapter 5

File Documentation

5.1 CreatePituresAndVideo.m File Reference

Functions

• function CreatePituresAndVideo (in n, in escape_i, in labyState)

5.1.1 Function Documentation

5.1.1.1 CreatePituresAndVideo()

```
function CreatePituresAndVideo (
                in n,
                in escape_i,
                in labyState )
```

5.2 CreatePituresAndVideo_textured.m File Reference

Functions

• function CreatePituresAndVideo_textured (in n, in escape_i, in labyState)

5.2.1 Function Documentation

5.2.1.1 CreatePituresAndVideo_textured()

```
function CreatePituresAndVideo_textured (
          in n,
          in escape_i,
          in labyState )
```

5.3 figure_Laby.m File Reference

Functions

· function figure_Laby (in varargin)

figure_Laby.m

• function figure_Laby_OpeningFcn (in hObject, in eventdata, in handles, in varargin)

initialization function.

• function figure_Laby_OutputFcn (in hObject, in eventdata, in handles)

Automatic generated function by GUI.

function ui_Callback (in hObject, in eventdata, in handles)

Callback for all the action's buttons (see detailed explications).

• function connect Callback (in hObject, in eventdata, in handles)

Callback for all the connection's buttons (see detailed explications).

• function createUIPacman (in handles)

Creation of the graphical object "pacman".

• function createUIWalls (in handles)

Creation of the graphical objects "walls".

function createUIEscape (in handles)

Creation of the graphical objects "escape".

• function updateUI (in handles, in out)

This function update all graphicals element who can change.

function updateUIActiveCammand (in handles)

Update visibility of control panel, connection and step button.

• function updateUIButton (in handles)

Show the needed moving buttons.

• function updateUIPlayer (in handles, in strPlayer, in position)

Update graphical place of a player (only pacman in this case).

function updateUIEscape (in elementToSet, in boolState)

Update graphical static text block about escape status.

function updateUIWallsAround (in handles, in strElement, in wallsAround)

Update graphical elements for walls around pacman.

• function updateUIWalls (in wallsUI, in vertWalls, in horizWalls)

Update graphicals elements for the walls.

• function isOne (in boolCond)

Return the string 'on' if the input is 1 else, return the string 'off'.

function updatePresenceDetectorDisplay (in elementToSet, in boolCondition)

Change the background color of the graphical Element according to the state of the binary condition.

• function resetUlConnection (in handles)

Reset all commands connections to unconnected.

5.3.1 Function Documentation

5.3.1.1 connect_Callback()

Callback for all the connection's buttons (see detailed explications).

in the following image, buttons marked with a red arrow lanch this Callback.

Figure 5.1 button's type of GUI

This callback lanch updateConnexion method of Wrapper class, which modify what command are automatic.

Parameters

hObject	handle to actived button
eventdata	reserved - to be defined in a future version of MATLAB
handles	structure with handles and user data (see GUIDATA)

5.3.1.2 createUIEscape()

Creation of the graphical objects "escape".

The escape is created whit a rectangle and and text box. It's stored into handles in 'escape'.

Parameters

handles structure with handles and user data (see GUIDATA

Returns

h the updated structure with handles and user data (see GUIDATA)

5.3.1.3 createUIPacman()

```
function createUIPacman (  \qquad \qquad \text{in } \textit{handles} \ ) \\
```

Creation of the graphical object "pacman".

The pacman is created by using the patch function and store into the handle in 'pacman'.

Parameters

handles	structure with handles and user data (see GUIDATA)
---------	--

Returns

h the updated structure with handles and user data (see GUIDATA)

5.3.1.4 createUIWalls()

```
function createUIWalls (  \hspace{1cm} \text{in } handles \hspace{1cm} )
```

Creation of the graphical objects "walls".

The walls are created as two line elmenents matrix. They are stored into handles in 'walls'.

The first matrix is for the verticals walls and named 'horizontals' and the second called 'verticals' for the verticals walls.

All possible walls are created and it is by making them visible or invisible that they appear or disappear.

Parameters

handles	structure with handles and user data (see GUIDATA)

Returns

h the updated structure with handles and user data (see GUIDATA)

5.3.1.5 figure_Laby()

figure_Laby.m

Script linked to the graphical interface whitch contain all the graphical functions. This file contain also the instance of Wrapper class. All the handles of graphical elements and instance of class are stored into the "handles" structure. function call when figure_Laby si open. It's initialize the UI.

Parameters

varargin	Several inputs.
----------	-----------------

Returns

varargout Several Outputs.

5.3.1.6 figure_Laby_OpeningFcn()

initialization function.

It's where is initialize the parameters of the labyrinth and all the commands in the section "INITIAL PARAMETERS OF THE LABYRINTH AND THE COMMANDS".

Parameters

hObject	handle to figure
eventdata	reserved - to be defined in a future version of MATLAB
handles	structure with handles and user data (see GUIDATA)
varargin	command line arguments to figure_Laby (see VARARGIN)

5.3.1.7 figure_Laby_OutputFcn()

Automatic generated function by GUI.

Parameters

hObject	handle to figure
eventdata	reserved - to be defined in a future version of MATLAB
handles	structure with handles and user data (see GUIDATA)

Returns

varargout cell array for returning output args (see VARARGOUT);

5.3.1.8 isOne()

Return the string 'on' if the input is 1 else, return the string 'off'.

Parameters

boolCond	integer to convert
----------	--------------------

Returns

strOnOff Returned string. Can be worth "on" or "off".

5.3.1.9 resetUIConnection()

Reset all commands connections to unconnected.

This function reset wrapper's property and graphical element to unconnected state.

Parameters

handles	structure with handles and user data (see GUIDATA)
---------	--

Returns

h the updated structure with handles and user data (see GUIDATA)

5.3.1.10 ui_Callback()

Callback for all the action's buttons (see detailed explications).

in the following image, buttons marked with a black arrow lanch this Callback.

Figure 5.2 button's type of GUI

This callback lanch orderer method of Wrapper class, which allows the simulation to evolve.

Parameters

hObject	handle to actived button
eventdata	reserved - to be defined in a future version of MATLAB
handles	structure with handles and user data (see GUIDATA)

5.3.1.11 updatePresenceDetectorDisplay()

Change the background color of the graphical Element according to the state of the binary condition.

This function, with a boolean condition (integer) and a handle to a graphical element update the background color. If the Boolean value is 1, the background color turns blue, otherwise it will be gray.

Parameters

elementToSet	handle to the graphical element.	
boolCondition	input boolean condition store in a integer.	

5.3.1.12 updateUI()

```
function updateUI (  \mbox{in $handles,$} \\ \mbox{in $out$ )}
```

This function update all graphicals element who can change.

With the input called 'out', this function lanch all the functions who update a specific graphical element.

Parameters

handles	Structure with handles and user data (see GUIDATA)	
out	Cell who contain all informations needed from the wrapper for update the graphical interface.	

5.3.1.13 updateUIActiveCammand()

Update visibility of control panel, connection and step button.

This function show or hide the control's panels and the connection's buttons according whit who will move. It also show step button if a command is connected.

Example: if is pacman time to move and command is not connected, this function hide walls and step element and show pacman one's.

Parameters

handles	structure with handles and user data (see GUIDATA)
---------	--

5.3.1.14 updateUIButton()

```
function updateUIButton ( in\ handles )
```

Show the needed moving buttons.

This function show the direction's buttons allows by the output informations of modelLaby and hide the others one.

Parameters

handles	structure with handles and user data (see GUIDATA)
---------	--

5.3.1.15 updateUIEscape()

Update graphical static text block about escape status.

This function, with the output of the wrapper, show 'Yes' in the static text block where is write "Espcaped Pacman: " if the pacman is on the escape case.

In the green box in the following image.

Figure 5.3 graphicals elements

Parameters

elementToSet	handle to the graphical object for escape status.	
boolState	Value of the escape output of wrapper. (1 if pacman is escaped, else 0.)	

5.3.1.16 updateUIPlayer()

```
function updateUIPlayer (
                 in handles,
                 in strPlayer,
                 in position )
```

Update graphical place of a player (only pacman in this case).

This function, with the actual position (present in the handles) and the new one as a input, move object.

The dynamics of movement is defined by this foncion $out(t) = \frac{\frac{om+1}{om*e^{cv*t}+1}-1}{om}$ for $t \in [0,1]$, om=72.89105 and cv=-11.27357.

Figure 5.4 Dynamics of movement

Parameters

strPlayer	String contain the exact name of the object to move. ('pacman')		
position	new position of the object. format : [x y]		
handles structure with handles and user data (see GUIDATA)			

5.3.1.17 updateUIWalls()

Update graphicals elements for the walls.

This function, with the output of the wrapper, update displayed part and hided part of the walls.

Parameters

	wallsUl	handle to the matrixs of graphicals elements for walls.	
	vertWalls	Corresponding part of output of wrapper for verticals walls	
horizWalls Corresponding part of output of wrapper for horizon		Corresponding part of output of wrapper for horizontals walls.	

5.3.1.18 updateUIWallsAround()

Update graphical elements for walls around pacman.

This function, with the output of the wrapper, update color of gray squares that represents walls presence around the pacman.

Parameters

strElement	common part of the name of the handle to the graphical object for walls around pacman.	
wallsAround	Value of the corresponding part of output of wrapper.	
handles structure with handles and user data (see GUIDATA)		

5.4 main.m File Reference

5.5 ModelLaby.m File Reference

Classes

• class ModelLaby

Class which contains the "fmg" structure of the labyrinth for 1 player.

5.6 ModelPacman.m File Reference

Classes

· class ModelPacman

Contain ghost Pacman control.

5.7 ModelSED.m File Reference

Classes

class ModelSED

Abstract Class who contain the structure of a "fmg" implementation.

5.8 ModelWalls.m File Reference

Classes

· class ModelWalls

Contain wall movement command.

5.9 setColor.m File Reference

Functions

• function setColor (in img, in imgRef, in colors, in indice)

5.9.1 Function Documentation

5.9.1.1 setColor()

```
function setColor (
            in img,
            in imgRef,
            in colors,
            in indice )
```

5.10 Simulation.m File Reference

Script to launch the labyrinth simulation.

5.10.1 Detailed Description

Script to launch the labyrinth simulation.

5.11 StopCondition.m File Reference

Classes

class StopCondition

Class used to manage shutdown conditions.

- 5.12 visupacman.m File Reference
- 5.13 visupacman2.m File Reference
- 5.14 wallsBorder.m File Reference

Functions

• function wallsBorder (in walls)

wallsBorder.m

5.14.1 Function Documentation

5.14.1.1 wallsBorder()

```
function wallsBorder (  \qquad \qquad \text{in $walls$ )} \\
```

wallsBorder.m

Function to add the outlines of the labyrinth to a wall matrix. Function.

Parameters

walls Wall's matrix.

Returns

walls Wall's matrix with border.

5.15 Wrapper.m File Reference

Classes

• class Wrapper

Connects all models to the display function.

Index

cor	mmandPacman	figu	re_Laby_OutputFcn
	Wrapper, 31		figure_Laby.m, 38
cor	mmandWalls		
	Wrapper, 31	g	M 1 11 1 40
cor	nnect_Callback		ModelLaby, 10
figure_Laby.m, 35			ModelPacman, 14
Cre	eatePituresAndVideo		ModelSED, 17
	CreatePituresAndVideo.m, 33		ModelWalls, 21
Cre	eatePituresAndVideo.m, 33		StopCondition, 26
	CreatePituresAndVideo, 33	get_	_out
Cre	eatePituresAndVideo_textured		Wrapper, 29
	CreatePituresAndVideo_textured.m, 33	get_	_stop
Cre	eatePituresAndVideo_textured.m, 33		Wrapper, 29
	CreatePituresAndVideo_textured, 33		
cre	ateUlEscape	han	dle, 7
	figure_Laby.m, 35		
cre	ateUIPacman	i	
	figure_Laby.m, 37		ModelWalls, 22
cre	ateUIWalls	in	
0.0	figure_Laby.m, 37		Wrapper, 31
	ngaro_Laby.m, or	init	
f			Wrapper, 30
-	ModelLaby, 10	initia	alState
	ModelPacman, 14		ModelLaby, 11
	ModelSED, 17		ModelPacman, 15
	ModelWalls, 21		ModelSED, 18
	StopCondition, 25		ModelWalls, 22
fia	ure_Laby		
ngu		ia O	StopCondition, 27
£:	figure_Laby.m, 37	isOı	
iigt	ure_Laby.m, 34		figure_Laby.m, 39
	connect_Callback, 35		
	createUIEscape, 35	m	Madallahi 40
	createUIPacman, 37		ModelLaby, 10
	createUIWalls, 37		ModelPacman, 14
	figure_Laby, 37		ModelSED, 18
	figure_Laby_OpeningFcn, 38		ModelWalls, 22
	figure_Laby_OutputFcn, 38		StopCondition, 26
	isOne, 39		n.m, 44
	resetUIConnection, 39	Mod	delLaby, 7
	ui_Callback, 39		f, 10
	updatePresenceDetectorDisplay, 40		g, 10
	updateUIActiveCammand, 41		initialState, 11
	updateUIButton, 41		m, 10
	updateUIEscape, 42		ModelLaby, 9
	updateUIPlayer, 42		presentState, 11
	updateUIWalls, 43	mod	delLaby
updateUIWallsAround, 43			Wrapper, 31
	updateUI, 41	Mod	delLaby.m, 44
fiaı	ure_Laby_OpeningFcn		delPacman, 12
9.	figure_Laby.m, 38		f, 14
			,

48 INDEX

g, 14	figure_Laby.m, 39
initialState, 15	updateConnexion
m, 14	Wrapper, 31
ModelPacman, 13	updatePresenceDetectorDisplay
presentState, 15	figure Laby.m, 40
ModelPacman.m, 44	updateUIActiveCammand
•	•
ModelSED.m, 44	figure_Laby.m, 41
ModelSED, 16	updateUIButton
f, 17	figure_Laby.m, 41
g, 17	updateUIEscape
initialState, 18	figure_Laby.m, 42
m, 18	updateUIPlayer
presentState, 18	figure_Laby.m, 42
ModelWalls, 19	updateUIWalls
f, 21	figure_Laby.m, 43
g, 21	updateUIWallsAround
i, 22	figure_Laby.m, 43
initialState, 22	updateUI
m, 22	figure_Laby.m, 41
ModelWalls, 20	
presentState, 22	val
val, 22	ModelWalls, 22
	visupacman.m, 46
ModelWalls.m, 45	visupacman2.m, 46
orderer	visupacinariz.iii, 40
	wallsBit
Wrapper, 30	
out	Wrapper, 32
Wrapper, 32	wallsBorder
	wallsBorder.m, 46
pacmanBit	wallsBorder.m, 46
Wrapper, 32	wallsBorder, 46
presentState	whoPlay
ModelLaby, 11	•
ModelPacman, 15	Wrapper, 32
•	Wrapper, 27
ModelSED, 18	commandPacman, 31
ModelWalls, 22	commandWalls, 31
StopCondition, 27	get_out, 29
1110	get_stop, 29
resetUIConnection	in, <mark>31</mark>
figure_Laby.m, 39	init, 30
	modelLaby, 31
setColor	_
setColor.m, 45	orderer, 30
setColor.m, 45	out, 32
setColor, 45	pacmanBit, 32
Simulation.m, 45	stop, <mark>32</mark>
stop	stopCondition, 32
	updateConnexion, 31
Wrapper, 32	wallsBit, 32
StopCondition, 23	whoPlay, 32
f, 25	
g, 26	Wrapper, 28
initialState, 27	Wrapper.m, 46
m, 26	
presentState, 27	
•	
StopCondition, 24	
stopCondition	
Wrapper, 32	
•	
Wrapper, 32	