OBJECTIFS 3

- Savoir réaliser et interpréter des tableaux croisés de données sur deux critères à partir de données brutes : tableaux croisés d'effectifs et de fréquences.
- Déterminer une fréquence conditionnelle, une fréquence marginale.

Tableaux croisés d'effectifs

1. Vocabulaire

EXEMPLE 🔋

Une agence de voyage propose à ses 400 clients trois destinations : Madrid, Berlin et Milan. Tous les clients choisissent une destination et une seule. La moitié d'entre eux choisit Madrid, et 30 % des personnes partent pour Berlin. Une enquête est réalisée à leur retour de voyage. 8 clients partis pour Milan se disent déçus, alors que 80 % des clients ayant fait le voyage pour Berlin sont satisfaits. Par ailleurs, l'enquête a montré que 72 % des personnes étaient satisfaites de leur voyage.

Dans cette situation:

- X désigne le résultat de l'enquête (x_1 sont les clients satisfaits et x_2 les clients déçus) et Y la destination du voyage (y_1 est la destination Madrid, y_2 est Berlin et y_3 est Milan).
- $n_{1,1}$ est le nombre de client satisfaits de leur voyage à Madrid.
- N vaut 400.
- L'effectif marginal de y_1 est le nombre de personnes parties à Madrid, soit 200 clients.

2. Construction et lecture

À RETENIR 99

Méthode

Un **tableau croisé d'effectifs** permet d'étudier une série à deux variables (X;Y). Pour le construire :

- 1. À l'intersection de la ligne i et de la colonne j, le tableau indique le nombre $n_{i;j}$ d'individus présentant simultanément la valeur x_i du caractère X et la valeur y_i du caractère Y.
- **2.** On ajoute ensuite une ligne et une colonne « Total » indiquant le nombre d'individus présentant chacune des valeurs du caractère.
- **3.** À l'intersection de la ligne et de la colonne « Total », on indique l'effectif total, c'est-à-dire le nombre d'individus de la population de référence.

EXERCICE 1

1. À partir de l'exemple précédent, compléter le tableau suivant.

(X;Y)	$y_1 = Madrid$	$y_2 = Berlin$	$y_3 = Milan$	Total
x_1 = Clients satisfaits				
x_2 = Clients déçus				
Total				

2.	a. Que vaut $n_{1;3}$?
	h Donner une interprétation de n dans le contexte de l'exercice

. Donner une inter	rpretation de $n_{1;3}$ dans	le contexte de l'exercice	 •

3.	Quel est l'effectif des	clients ayant fait l	le voyage à Berlin	et étant déçus?	
	(

b.	Donner une interprétation de cet effectif marginal dans le contexte de l'exercice.	• • • • • • • • • • • • • • • • • • • •

◆ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/croisement-deux-variables/#correction-1.

Fréquences marginales et conditionnelles

1. Fréquences

À RETENI	D 44	 11		i	 	 			 	 		 			 	
ARETEN	R 99															

EXEMPLE 🔋

On s'intéresse à la couleur de certains vins des régions Bordeaux et Bourgogne. On a un échantillon de 19 vins avec 10 Bordeaux, dont 7 sont rouges, et 5 Bourgognes blancs. On peut construire le tableau croisé d'effectifs.

(X;Y)	y_1 = Bordeaux	y_2 = Bourgogne	Total
$x_1 = Blanc$	4	5	9
$x_2 = \text{Rouge}$	7	3	10
Total	8	11	19

Et on peut en déduire un tableau croisé de fréquences.

(X;Y)	$y_1 = Bordeaux$	y_2 = Bourgogne	Total
$x_1 = Blanc$	$\frac{4}{19} \approx 0.21$	$\frac{5}{19} \approx 0.26$	$\frac{9}{19} \approx 0.47$
$x_2 = \text{Rouge}$	$\frac{7}{19} \approx 0.37$	$\frac{3}{19} \approx 0,16$	$\frac{10}{19} \approx 0,53$
Total	$\frac{8}{19} = 0,42$	$\frac{11}{19} = 0,58$	1

Par exemple, $f_{2;1}$ correspond à la fréquence de Bordeaux rouges : il y en a 42 %.

2. Fréquences marginales

EXERCICE 2

1. Construire le tableau croisé de fréquences de l'exercice précédent.

2. Quel est le pourcentage de clients satisfaits?

3. Fréquences conditionnelles

À RETENIR 99				

EXEMPLE 🚦

On reprend l'exemple précédent d'étude de vins. Voici le tableau de fréquences conditionnelles de Y par rapport à x_2 = Rouge.

Y = Vin	$y_1 = Bordeaux$	y_2 = Bourgogne	Total
$x_2 = \text{Rouge}$	$\frac{7}{10}$	$\frac{3}{10}$	1

EXERCICE 3

Lors d'une compétition de tennis, on a relevé que sur 126 compétiteurs, 46 sont des femmes. Parmi ces femmes, 21 sont classées. Parmi les compétiteurs hommes, 53 sont classés.

1. Construire un tableau croisé d'effectifs représentant la situation.

- **2.** Donner le tableau des fréquences conditionnelles du classement par rapport aux hommes (arrondir à 0,01 près).

