实验十: 触发器(一)

- 一、实验目的
- 1. 掌握 74LS109 (JS 触发器)的引脚排列和功能
- 2. 掌握异步和同步时序电路的设计方法,使用 74LS109 设计异步和 同步的四进制加法计数器

二、 实验原理

741s109引脚图及功能

741s109功能表

Inputs					Outputs	
PR	CLR	CLK	J	$\overline{\mathbf{K}}$	Q	Q
L	Н	Χ	X	X	Н	L
H	L	×	X	X	L	H
L	L	X	X	X	H*	H*
H	Н	1	L	L	L	Н
Н	н	1	Н	L	TOGGLE	
H	Н	1	L	Н	Q0	Q0
H	Н	1	Н	H	Н	L
Н	Н	L	X	X	Q0	Q0

三、 实验仪器

实验箱、74LS109 芯片 (JK 触发器)、导线若干

四、实验内容

- 1. 认真领悟 41 页"时序电路的设计与测试"
- 2. 分别改变 CD 和 SD, 观察 Q 的状态
- 3. 对 74LS109 的功能的静态测试
- 4. 使用 JK 触发器设计一个异步四进制加法计数器
- 5. 使用 JK 触发器设计一个同步四进制加法计数器

五、 实验结果

- 1. 74LS109 静态测试
- 2. 实现异步四进制加法计数器

具体方法:将两个JK 触发器的JK 都调成10,然后将第二个JK 触发器的CLK 输入接在第一个JK 触发器的输出Q上,第一个JK 触发器的CLK 接在单脉冲按钮处,两个触发器的Q/作为显示输出,便能实现四进制加法计数器

六、 实验收获

- 1. 掌握了 74LS109 (JK 触发器) 的使用方法
- 2. 学着尝试设计同步或者异步的时序电路