Variable Selection

Lecture 16

Alexandra Chronopoulou

COLLEGE OF LIBERAL ARTS & SCIENCES

Department of Statistics 101 Illini Hall, MC-374 725 S. Wright St. Champaign, IL 61820-5710

© Alexandra Chronopoulou. Do not distribute without permission of the author.

Variable Selection

- Consider a MLR model $Y \sim 1 + X_1 + X_2 + ... + X_p$ where we have p non-intercept predictors.
- In many applications nowadays, we have a lot of explanatory variables, i.e.,
 p is large and we could even have p >> n, but only a small portion of the
 p variables are believed to be relevant to Y.
- Of interest is to find the following subset of the p predictors:

$$S = \{j : \beta_j \neq 0\}$$

Variable Selection

- In some applications as sales prediction, the key question we need to answer is to identify this set S, e.g., which variables among the p variables are really effective for boosting the sales (Y).
- If our goal is simply to do well on prediction, then should we care about variable selection?

Recall that the LS estimate $\hat{\beta}$ is unbiased, i.e., estimates for irrelevant $\hat{\beta}_j$ (with $j \in S^c$) will eventually go to zero anyway.

To understand this, let's examine the training and the test errors.

Test Error vs. Training Error

- Training data: $(\mathbf{x}_i, y_i)_{i=1}^n$
- Test data: $(\mathbf{x}_i, y_i^*)_{i=1}^n$ is an independent (imaginary) data set collected at the same location \mathbf{x}_i 's (also known as in-sample prediction)
- Assume the data comes from a linear model: $\mathbf{y}_{n\times 1}, \ \mathbf{y}_{n\times 1}^*$ are i.i.d $\sim N_n(\mu, \sigma^2 \mathbf{I}_n)$ and $\mu = \mathbf{X}\beta$
- We can also write:

$$\mathbf{y} = \mathbf{X}\beta + \boldsymbol{\varepsilon}$$
 $\mathbf{y}^* = \mathbf{X}\beta + \boldsymbol{\varepsilon}^*$

with $\varepsilon_{n\times 1}$, $\varepsilon_{n\times 1}^*$ i.i.d $\sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ are independent.

Mean square Testing Error and Mean square Training Error

$$\begin{split} \mathbb{E}(\mathsf{Test}\;\mathsf{Error})^2 &= \mathbb{E}||\mathbf{y}^* - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 \\ &= \mathbb{E}||(\mathbf{y}^* - \mathbf{X}\boldsymbol{\beta}) + (\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\hat{\boldsymbol{\beta}})||^2 \\ &= \mathbb{E}||\mathbf{y}^* - \boldsymbol{\mu}||^2 + \mathbb{E}||\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 \\ &= \mathbb{E}||\boldsymbol{\varepsilon}^*||^2 + Tr(\mathbf{X}Cov(\hat{\boldsymbol{\beta}})\mathbf{X}^\top) \\ &= \boldsymbol{n}.\boldsymbol{\sigma}^2 + \boldsymbol{\sigma}^2Tr\mathbf{H} = \boldsymbol{n}.\boldsymbol{\sigma}^2 + \boldsymbol{p}.\boldsymbol{\sigma}^2 \end{split}$$

$$\begin{split} \mathbb{E}(\mathsf{Train}\;\mathsf{Error})^2 &= \mathbb{E}||\mathbf{y} - \hat{\mathbf{y}}||^2 = \mathbb{E}||(\mathbf{I} - \mathbf{H})\mathbf{y}||^2 \\ &= Tr((\mathbf{I} - \mathbf{H})Cov(\mathbf{y})(\mathbf{I} - \mathbf{H})^\top) \\ &= \boldsymbol{\sigma}^2Tr((\mathbf{I} - \mathbf{H})) = (\boldsymbol{n} - \boldsymbol{p}).\boldsymbol{\sigma}^2 \end{split}$$

Mean square testing error and Mean square training error

From the previous equations we can conclude:

- Testing error increases with p
- Training error decreases with p
- When adding more variables (p large) the testing error increases. If our goal is pure prediction, adding more variables to matrix X is not the best option. We should remove some irrelevant variables.
- The analysis on the previous slide might indicate that the best model (i.e., the one with the smallest expected test error), is the intercept-only model with p=0.
- This of course is not true. The previous analysis is based on the assumption that the mean of \mathbf{y} is in the column space of \mathbf{X} , i.e., there exists some coefficient vector $\boldsymbol{\beta}$ such that $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$. In general, we run a linear regression model using only a subset of the columns of \mathbf{X} . This means there will be an additional Bias term.

Model Index γ

– Index each model (i.e., each subset of the p variables) by a p-dimensional binary vector γ :

$$\gamma = (\gamma_1, \gamma_2, \dots, \gamma_p), \quad \gamma_j = 0/1$$

where $\gamma_j=1$ indicates that X_j is included in the model, and $\gamma_j=0$ otherwise.

- So there are a total of 2^p possible subsets or sub-models. In particular

$$\gamma = (1, 1, \dots, 1)$$

refers to the full model including all p variables (largest dim), and

$$\gamma = (0, 0, \dots, 0)$$

refers to the intercept-only model (smallest dim).

${\bf Model\ Index}\ \gamma$

Suppose that $\mu = \mathbf{X}\beta$ where μ is the mean of \mathbf{y} . If we fit the data \mathbf{y} with respect to model γ , i.e., we fit a linear model with a sub-design matrix X_{γ} where X_{γ} contains only columns from \mathbf{X} such that $\gamma_i = 1$.

We can show that the Testing Error and the Training error for model γ are:

$$\mathbb{E}(\mathsf{Test\ Error}) = n\sigma^2 + \rho\sigma^2 + \mathit{Bias}_{\gamma}$$

$$\mathbb{E}(\mathsf{Training\ Error}) = n\sigma^2 - \rho\sigma^2 + \mathit{Bias}_{\gamma}$$

Bigger model (i.e., p large) \rightarrow small Bias, but large variance $(p\sigma^2)$; Smaller model (i.e., p small) \rightarrow large Bias, but small variance $(p\sigma^2)$. So to reduce the test error (i.e., prediction error), the key is to find the best trade-off between Bias and Variance.

Model selection procedures

- Testing-based procedures: Select best model based on statistical tests for model comparison.
- Criterion-based procedures: Select best model based on an information
 criteria (combining model fit and model complexity) for model comparison.

Testing-based procedures

Backward elimination

- Start with all the predictors in the model.
- 1. Remove the predictor with highest p value $> \alpha_0$ (most insignificant).
- 2. Refit the model, and repeat the above process.
- 3. Stop when all p values $\leq \alpha_0$. (α_0 is often set to 15% or 20% which is higher than usual)

Testing-based procedures

Forward elimination

- 1. Start with the intercept-only model.
- 2. For all predictors not in the model, check their p-value if being added to the model. Add the one with the lowest p value $\leq \alpha_0$ (most significant).
- 3. Refit the model, and repeat the above process.
- 4. Stop when no more predictors can be added.

Testing-based procedures

Pros and Cons of Testing-based procedures

- Main advantage: Computation cost is low.
- Due to the "one-at-a-time" nature of adding/dropping variables, this type
 of procedures does not compare all possible models. So it's possible to
 miss the "optimal" model.
- It's not clear how to choose α_0 , the cut-off for *p*-values.

Criterion-based procedures

- 1. Score each model according to an information criteria
- 2. Use a searching algorithm to find the optimal model

Model selection criteria/scores often takes the following form:

Training error + Complexity-penalty

- In the context of linear regression models, complexity of a model increases with the number of predictor variables (i.e., p_{γ}).
- Why we do not use R^2 or RSS?

Model Selection Criteria

AIC/BIC

AIC:
$$-2 \times loglik_{\gamma} + 2p_{\gamma}$$

BIC: $-2 \times loglik_{\gamma} + log(n)p_{\gamma}$

where p_{γ} is the number of predictors included in model γ

For the linear regression model:

$$-2 \times loglik_{\gamma} = n \log \frac{RSS_{\gamma}}{n}$$

The lower the AIC/BIC the better. Note that when n is large, adding an additional predictor costs a lot more in BIC than AIC. So AIC tends to pick a bigger model than BIC.

Model Selection Criteria

Adjusted- R^2 for model γ

$$R_a^2 = 1 - \frac{RSS/(n - p_\gamma - 1)}{TSS/(n - 1)}$$

= $1 - (1 - R^2)(\frac{n - 1}{n - p_\gamma - 1})$
= $1 - \frac{\hat{\sigma}_\gamma^2}{\hat{\sigma}_0^2}$

The higher the R_a^2 the better.

Mallow's C_p

$$C_p = \frac{RSS_{\gamma}}{\hat{\sigma}^2} + 2p_{\gamma} - n$$

where $\hat{\sigma}^2$ is the estimate of the error variance from the full model. Mallow's C_p behaves very similar to AIC.

Searching Algorithms

- Leap and Bounds: return the global optimal solution among all possible models, but only feasible for less than 50 variables.
 - Find the p models with the smallest RSS amongst all models of the same size¹.
 - Then evaluate the score on the p models and report the optimal one.

¹Note that step 1, we do not need to visit every model. For example, suppose we know that RSS(X1,X2) < RSS(X3,X4,X5,X6); then we do not need to visit any size 2 or 3 sub-models of set (X3,X4,X5,X6), which can be leaped over

Searching Algorithms

- Greedy algorithms: fast, but only return a local optimal solution (which might be good enough in practice).
 - Backward: start with the full model and sequentially delete predictors until the score does not improve.
 - Forward: start with the null model and sequentially add predictors until the score does not improve.
 - Stepwise: consider both deleting and adding one predictor at each stage.

Bike Share Counts Data

```
library(leaps)
b=regsubsets(cnt-., data = bikeshares)
rs = summary(b)
rs$which
```

Leap and Bounds method

Use function regsubsets from library **leaps** to evaluate different scores for sub-sets of models up to size p (including the intercept).

Searching methods

Searching methods

Use function *step* from the **stats** library to apply searching algorithms based on the AIC (default) or BIC criteria ($k = \log(n)$). The option direction=both uses the Stepwise searching algorithm. You can also use the options direction=forward and direction=backward.

```
step(full.model, direction="both")
step(full.model, direction="both", k=log(n))
```

