Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2014/15

Folha 5 - parte 1: Séries de Funções (em geral); Séries de Taylor

- 1. Considere a série de funções $\sum_{n=1}^{\infty} \frac{\cos(nx)}{n\sqrt{n+1}}.$
 - (a) Mostre que a série converge uniformemente em \mathbb{R} .
 - (b) Justifique que a função $S(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n\sqrt{n+1}}$ é contínua em \mathbb{R} .
- 2. Obtenha uma representação em série de potências (de Taylor) para cada uma das seguintes funções, a partir dos desenvolvimentos conhecidos das funções exponencial, seno, cosseno e $\frac{1}{1-x}$. Em cada caso, indique o maior conjunto onde é válida a representação.
 - (a) e^{-x^2} ; (b) $\cosh x$; (c) $\sinh(3x)$; (d) $2\cos^2 x$; (e) $\frac{1}{4+x^2}$.
- 3. Desenvolva a função $f(x) = \frac{1}{x+1}$ em série de potências de x-3, indicando o maior intervalo onde o desenvolvimento é válido.
- 4. Calcule a (função) soma das séries seguintes:
 - (a) $1 x + \frac{x^2}{2!} \frac{x^3}{3!} + \frac{x^4}{4!} \cdots$
 - (b) $1 x^3 + x^6 x^9 + \cdots$
- 5. (a) Determine o desenvolvimento em série de MacLaurin da função $\ln(x+1)$. (Sugestão: desenvolva primeiro a função $\frac{1}{x+1}$ em série de MacLaurin).
 - (b) Calcule a soma da série

$$\frac{x^2}{2} - \frac{x^3}{3 \cdot 2} + \frac{x^4}{4 \cdot 3} - \frac{x^5}{5 \cdot 4} + \cdots$$

6. Calcule a soma das séries indicadas (a soma corresponde a f(a), onde a é um número óbvio e f é dada por uma série de potências. Em geral, a série deverá ser manipulada até se encontrar uma série de potências conhecida):

$$\text{(a)}\ \ \sum_{n=0}^{\infty}\frac{(-1)^n2^{2n}\pi^{2n}}{(2n)!}\,;\quad \text{(b)}\ \ \sum_{n=0}^{\infty}\frac{1}{(2n)!}\,;\quad \text{(c)}\ \ \sum_{n=0}^{\infty}\frac{1}{3^n(n+1)}\,;\quad \text{(d)}\ \ \sum_{n=0}^{\infty}\frac{2n+1}{2^nn!}\,.$$

- 7. (a) Verifique que a série de potências $\sum_{n=1}^{\infty} \frac{nx^n}{2^n}$ tem raio de convergência igual a 2.
 - (b) Seja $f(x) = \sum_{n=1}^{\infty} \frac{n}{2^n} x^n$, -2 < x < 2. Explicite f(x).

(Sugestão: use a representação em série de potências de $\frac{1}{1-x}$).

8. Usando representações adequadas em série de potências, justifique que:

(a)
$$\lim_{x\to 0} \frac{\text{sen } x}{x} = 1$$
; (b) $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

9. Considere a série de funções $\sum_{n=1}^{\infty} \frac{ne^{-nx}}{2^n}$.

Justifique que a função S definida por $S(x) = \sum_{n=1}^{\infty} \frac{ne^{-nx}}{2^n}$ é integrável no intervalo $[0, \ln 2]$ e mostre que $\int_{-\infty}^{\ln 2} S(x) dx = \frac{2}{2}$.

- $[0, \ln 2]$ e mostre que $\int_0^{\ln 2} S(x) dx = \frac{2}{3}$. (2.º teste, junho de 2010).
- 10. Considere a série de potências $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n2^n}$.
 - (a) Determine o maior subconjunto de $\mathbb R$ no qual a série é absolutamente convergente.
 - (b) Calcule f'(4), onde $f(x) = \sum_{n=1}^{\infty} \frac{(x-3)^n}{n2^n}$ (definida no domínio de convergência da série).

(Exame de Recurso, julho de 2011).

- 11. Sabendo que $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ para todo $x \in \mathbb{R}$:
 - (a) obtenha uma representação em série de potências para a função $f(x) = xe^{x^3}$ e indique o maior subconjunto de \mathbb{R} em que esta representação é válida;
 - (b) obtenha uma representação em série numérica do integral $\int_0^1 x e^{x^3} dx$.

(Exame da Época Normal, junho de 2008).

12. Usando a representação em série de MacLaurin da função exponencial, justifique a igualdade

$$\left(e^{x^2}\right)' = 2x \, e^{x^2} \,, \quad x \in \mathbb{R}.$$

(2.º teste, maio de 2011).