Bioinformatika 1 Završni ispit - rješenja 14. lipnja 2021.

1. (5 bodova)

Zadana je Burrows-Wheelerova transformacija niza S: BWT(S) = GT\$AAG. Rekonstruirajte originalan niz S iz zadane transformacije korištenjem LF-mapiranja. Postupak je potrebno skicirati. Pretpostavite da je znak \$ abecedno manji od ostalih znakova abecede nad kojima je niz S izgrađen.

Rješenje:

Stupac L = BWT(S); stupac F su leksikografski sortirani znakovi iz stupca L. Niz S se rekonstruira od zadnjeg znaka prema prvome.

$$S = AGTAG$$
\$

F	L
\$	G
Α	/T
A /	\$
G	A
G	A
T	G
	G\$

F	L
\$	G
A	T
A	\$
G	A
G	A
T	G
	AG\$

F	L			
\$	G			
A	T			
A	/\$			
G /	A			
G	A			
T	G			
TAG\$				

F	L	
\$	G	
A	T	
A	\$	
G	A	
G 🔨	Α	
T	* G	
GTAG\$		

F	L	
\$	G	
A	T	
A	\$	
C	A	
G-	À	
T	G	
AGTAGS		

2. (6 bodova)

Izgradite filogenetsko stablo korištenjem metode UPGMA za zadanu ulaznu matricu udaljenosti. Potrebno je u svakom koraku izgradnje skicirati stablo i označiti izračunate udaljenosti između taksona. Matrica udaljenosti:

	A	В	C	D
A	0	4	1	3
В	4	0	6	2
C	1	6	0	5
D	3	2	5	0

Rješenje:

Ne vrijedi nejednakost trokuta za sve kombinacije taksona.

No, filogenetski alat MEGA generira sljedeće stablo (zanemaruju se preduvjeti):

3. (5 bodova)

Izračunajte entropije niza $S: H_0(S)$ i $H_1(S)$ za zadani niz S = CAAAC.

Rješenje:

$$n = 5$$
, $n_c = 2$, $n_G = 3$

$$H_0(S) = -\left(\frac{n_C}{n}\log\frac{n_C}{n} + \frac{n_A}{n}\log\frac{n_A}{n}\right) = -\left(\frac{2}{5}\log\frac{2}{5} + \frac{3}{5}\log\frac{3}{5}\right) = 0.97$$

$$con_1 = C$$
, $S^{con1} = A$

$$con_2 = A$$
, $S^{con_2} = AAC$

$$H_0(S^{con1}) = 0$$

$$H_0(S^{con2}) = -(\frac{1}{3}\log\frac{1}{3} + \frac{2}{3}\log\frac{2}{3}) = 0.918$$

$$H_{I}(S) = \frac{1}{n} \sum_{con \in \Sigma^{1}} |S^{con}| H_{0}(S^{con}) = 0.2 \cdot (|S^{conI}| \cdot H_{0}(S^{conI}) + |S^{con2}| \cdot H_{0}(S^{con2})) = 0.55$$

4. (5 bodova)

Za niz s=GTCTCTACTACTC napraviti očitanja koristeći k-torke duljine **4** (k-torke predstavljaju niz uzastopnih nukleotida, a počinju sa svakim nukleotidom u nizu osim zadnjih k-1, npr. prva je GTCT). Na osnovi očitanja nacrtati pojednostavljeni de Bruijnov graf i pronaći sve Eulerove staze u njemu i na osnovu njih ispisati moguće izlazne nizove.

Rješenje:

Nizovi:

GTCTCTACTACTC
GTCTACTACTCTC

5. (5 bodova)

Za zadana preklapanja nacrtajte zajednički graf preklapanja te isti pojednostavite koristeći OLC pristup. Označite dobivene blokove.

Rješenje:

6. (3 boda)

Skicirajte jedno ukorijenjeno filogenetsko stablo za četiri slijeda S_1 , S_2 , S_3 , S_4 . Prikažite na skiciranom stablu jednu monofiletsku skupinu te objasnite njezino značenje

Odgovor:

Monofiletsku skupinu čine organizmi (ili sljedovi) koji imaju istog pretka.

7. (2 boda)

Definirajte Eulerovu stazu i Hamiltonov put.

Odgovor:

Eulerova staza obilazi sve bridove grafa točno jednom, Hamiltonov put obilazi sve čvorove grafa točno jednom.

8. (2 boda)

Ako imamo N poravnatih nizova, na koji način određujemo konsenzus tih poravnanja?

Odgovor:

Težinskim/odnosno većinskim glasanjem nukleotida na svakoj pojedinoj poziciji u nizovima.

9. (2 boda)

Što je to pokrivenost ili dubina sekvenciranja (engl. coverage) u sastavljanju genoma i kako ga računamo?

Odgovor:

Prekrivanje se definira kao C = N L / G, pri čemu je N broj očitanja, L prosječna duljina svakoga očitanja, a G duljina segmenta.