Indian Institute of Technology Kharagpur Mid-Semester Examination: Autumn 2022

Date of Examination: 27/09/2022 (FN)

Subject. No: AI61003

Department: CoEAI

Duration: 2 Hrs

Subject Name: Linear Algebra for AI and ML

TOTAL MARKS: 40

Specific Chart, graph paper log book etc. required: None

Special Instruction: None

ANSWER ALL THE QUESTIONS

- 1. State whether the following statements are TRUE or FALSE. Justify your answer with a proof or a counter example. No marks will be awarded without justification. [10 marks]
 - $\mathcal{A}(a)$ Whenever a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is such that $\mathbf{A}^2 = 0$, then the matrix \mathbf{A} is a zero matrix.
 - $\sqrt{(b)}$ For $Q \in \mathbb{R}^{n \times n}$ orthogonal and $\mathbf{x} \in \mathbb{R}^n$, $||Qx||_1 = ||x||_1$.
 - (c) If rows of a matrix A are linearly independent, then A is right invertible.
 - (d) For a square matrix, eigenvectors corresponding to distinct eigenvalues are linearly independent.
 - (e) Let det(A) denote the determinant of a square matrix A. If det(A) is close to zero, then A is close to singularity.
- 2. A matrix vector product $\mathbf{A}\mathbf{x}$ takes $2n^2$ flops in general when $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. Device a computationally more efficient algorithm to multiply matrix \mathbf{A} with a vector \mathbf{x} when \mathbf{A} is of the form $\mathbf{A} = \mathbf{I}_n + \mathbf{a}\mathbf{b}^{\top}$ where \mathbf{I}_n is the $n \times n$ identity matrix and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are some given vectors.
- 3. Let $\mathbf{x} \in \mathbb{R}^n$ and let $\mathbf{y} \in \mathbb{R}^n$ be a vector with non-negative entries such that \mathbf{y} is closest to \mathbf{x} . (Note that the closeness is measured using $\|\cdot\|_2$ norm on \mathbb{R}^n .) Determine the expression of \mathbf{y} . Further, show that $\mathbf{y}^{\top}(\mathbf{y} \mathbf{x}) = 0$.
- ✓ 4. Let $\mathbf{x}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^3$ and $\mathbf{x}_2 = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^3$ be two vectors. Does there exist a common left inverse for these two vectors? If yes, compute. If no, justify. (A common left inverse is a matrix which is simultaneously a left inverse for \mathbf{x}_1 and \mathbf{x}_2 .) [3 marks]
- $\sqrt{5}$. For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, define the maximum magnification of \mathbf{A} (denoted as maxmag(\mathbf{A})) and the minimum magnification of \mathbf{A} (denoted as minmag(\mathbf{A})). Further, for an invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, prove that

$$\kappa(\mathbf{A}) = \frac{\text{maxmag}(\mathbf{A})}{\text{minmag}(\mathbf{A})}$$

where $\kappa(\mathbf{A})$ denotes the condition number of \mathbf{A} .

[4 marks]

- **★** 6. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and the columns of \mathbf{A} are linearly independent. Let \widehat{x} denote the least squares solution to the problem $\mathbf{A}\mathbf{x} = \mathbf{b}$. Prove that the least squares solution is unique.

 Discuss when the least squares solution is not unique.

 [4 marks]
 - 7. Suppose vectors $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$ are such that they are approximately linearly related as $\mathbf{y} \approx \mathbf{A}\mathbf{x}$. Here we do not know the matrix \mathbf{A} ; however, we have observed data vectors

$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}, \ \mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(N)}.$$

Formulate this problem as the least squares problem to estimate the matrix **A**. Write down the least squares solution to this problem in terms of pseudo inverse. [6 marks]

P.T.O.

8. For a given invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a given vector $\mathbf{b} \in \mathbb{R}^n$, let $\mathbf{c} = \mathbf{A}\mathbf{b}$. Further, let $\delta \mathbf{b} \in \mathbb{R}^n$ and $\delta \mathbf{c} \in \mathbb{R}^n$ be such that

$$A(b + \delta b) = c + \delta c$$

(a) Prove the following.

[3 marks]

$$\frac{\|\delta \mathbf{c}\|_2}{\|\mathbf{c}\|_2} \leqslant \kappa_2(\mathbf{A}) \ \frac{\|\delta \mathbf{b}\|_2}{\|\mathbf{b}\|_2}$$

where $\kappa_2(\mathbf{A})$ is the condition number of \mathbf{A} .

- (b) Determine the direction of δb such that $c + \delta c$ is possibly farthest from c. [2 marks]
- (c) From the inequality in item (8a), discuss why orthogonal matrices are preferred in numerical linear algebra. [2 marks]

****************** THE END **********