

Project 3

Deep Learning

Students: Karina Tiurina, Mateusz Zacharecki

Plan

- 1. Diffusion U-Net
- 2. GAN
- 3. Vanilla Pixel Diffusion

Vanilla Pixel Diffusion

Core Concepts:

- Diffusion Process: Adds noise to an image in a forward process and then reverses this process to generate images.
- Noise Schedule: Controls how noise is added and removed at each step.
- Denoising Network: A neural network trained to remove noise step by step.

Steps:

- Initialization: Start with a noisy image.
- Forward Diffusion: Add noise to an image over several steps.
- Training: Train the network to predict and remove noise.
- Reverse Diffusion: Iteratively denoise the image to generate a clean image.

Failed due to computing power and limited access to GPU.

Diffusion Unet

Loss function during first epoch

Diffusion Unet

Only blurry images regardless of the batch size and image size.

GAN

Batch size: 128

Batch size: 64

Batch size: 32

Batch size: 16

GAN

G: Relu

D: LeakyRelu

Relu-6

ELU

GAN. FID score

Thank you for attention!