IN THE CLAIMS

Please amend claims 4, 6-20, 22, 24, 26-41, 51, 53, 54, 55 and 57, and cancel claims 1-3, 5, 21, 23, 25, 44-50, and 52, and add new claims 68-100 as follows:

- 1.-3. (Cancelled)
- 4. (Currently Amended) The apparatus according to claim 1, further comprising:

A combined battery and device apparatus comprising:

a first structure including:

a first conductive layer;

a battery including a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer; and

an electrical circuit having a major surface adjacent face-to-face to and electrically connected to the battery;

a substrate, the battery having a major surface adjacent face-to-face to the substrate; and

a photovoltaic cell having a major surface adjacent face-to-face to a surface of the substrate beside the battery.

- 5. (Cancelled)
- 6. (Currently Amended) The apparatus according to claim 1

A combined battery and device apparatus comprising:

a first structure including:

a first conductive layer;

conductive layer; and

a battery including a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first

an electrical circuit having a major surface adjacent face-to-face to and electrically connected to the battery, wherein the electrical circuit comprises includes:

> a photovoltaic cell having a major surface adjacent face-to-face to the battery; and

a charging circuit supported on the photovoltaic cell and electrically coupled to charge the battery using current from the photovoltaic cell.

- 7. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, wherein the electrical circuit includes a thin-film capacitor adjacent to the battery.
- 8. (Currently Amended) The apparatus according to claim ± 6 , wherein the electrical circuit includes:

a thin-film capacitor adjacent to the battery; and an integrated circuit mounted on the capacitor and electrically connected to the battery and the capacitor.

9. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, wherein the electrical circuit includes:

an insulating layer adjacent to the battery; and

a plurality of electrical traces adjacent to the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

10. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, the electrical circuit further comprising:

an insulating layer adjacent to the battery;

Page 4

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

a plurality of electrical traces adjacent to the insulating layer; and

an integrated circuit supported on the battery, wherein a first one of the plurality of electrical traces electrically connects the cathode of the battery and the integrated circuit, a second one of the plurality of electrical traces electrically connects the anode of the battery and the integrated circuit.

11. (Currently Amended)

The apparatus according to claim ± 6 , the substrate further

comprising:

an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein the battery is adjacent to the insulating layer, wherein the cathode of the battery electrically connects to the integrated circuit though a first one of plurality of through vias, and the anode of the battery electrically connects to the integrated circuit though a second one of plurality of through vias.

12. (Currently Amended)

The apparatus according to claim $\frac{1}{6}$, the substrate further

comprising:

an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein a cathode-conductor of the battery is adjacent to the insulating layer and electrically connects to the integrated circuit though a first one of plurality of through vias, the cathode layer of the battery is adjacent to the cathode conductor, the electrolyte layer is adjacent to the cathode layer, and the anode is adjacent to the electrolyte layer and electrically connects to the integrated circuit though a second one of plurality of through vias.

13. (Currently Amended)

The apparatus according to claim $\frac{1}{6}$, the substrate further

comprising:

an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein a cathode-conductor of the battery is adjacent to a face of the

Page 5

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

integrated circuit opposite the insulating layer and electrically connects to the integrated circuit though a first one of plurality of through vias, the cathode layer of the battery is adjacent to the cathode conductor, the electrolyte layer is adjacent to the cathode layer, and the anode is adjacent to the electrolyte layer and electrically connects to the integrated circuit though a second one of plurality of through vias.

14. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, the electrical circuit further comprising:

an insulating layer adjacent to the battery that acts as a passivation layer that protects the anode from environmental corrosion; and

a plurality of electrical traces adjacent to the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

15. (Currently Amended) The apparatus according to claim 46, wherein the substrate has a curved shape having a convex face and a concave face, and the battery is located on the concave face.

16. (Currently Amended) The apparatus according to claim 4 6, wherein the substrate comprises a polymer having a melting point substantially below 700 degrees centigrade.

17. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, wherein the substrate comprises a metal foil.

18. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, wherein the substrate comprises a metal foil having an insulative layer between the metal foil and the first conductive layer adjacent to a first surface area of the substrate's major surface area.

19. (Currently Amended) The apparatus according to claim $\frac{1}{6}$, wherein the substrate comprises a ceramic.

Serial Number: 09/816628 Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 6 Dkt: 1327.008US1

20. (Currently Amended)

The apparatus according to claim $\frac{1}{6}$, wherein the substrate

comprises a glass.

21. (Cancelled)

22. (Currently Amended)

The method according to claim 21 24, further comprising:

depositing a photovoltaic cell on the first structure;

attaching an integrated circuit to the first structure the electrical circuit; and

operatively coupling the integrated circuit to charge the battery using current from the

photovoltaic cell.

23. (Cancelled)

24. (Currently Amended)

The method according to claim 21, further comprising

A method for making a combined battery and device apparatus, the method comprising:

providing a substrate having a major surface area;

depositing a first conductive layer on a first surface area of the substrate's major surface

area;

depositing onto the first conductive layer a battery including a cathode layer; an anode

layer, and a electrolyte layer located between and electrically isolating the anode layer from the

cathode layer, wherein the anode or the cathode or both include an intercalation material, the

battery disposed such that either the cathode layer or the anode layer is in electrical contact with

the first conductive layer;

depositing an electrical circuit on the battery;

depositing a photovoltaic cell on a surface of the substrate beside the battery.

25. (Cancelled)

26. (Currently Amended)

The method according to claim 21,

A method for making a combined battery and device apparatus, the method comprising:

providing a substrate having a major surface area;

depositing a first conductive layer on a first surface area of the substrate's major surface area;

depositing onto the first conductive layer a battery including a cathode layer; an anode layer, and a electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer;

<u>depositing an electrical circuit on the battery</u>, wherein depositing the electrical circuit comprises:

depositing a photovoltaic cell on the battery;
supporting a charging circuit on the photovoltaic cell; and
electrically coupling the charging circuit to charge the battery using current from
the photovoltaic cell.

- 27. (Currently Amended) The method according to claim 24 26, further comprising depositing a thin-film capacitor on the battery.
- 28. (Currently Amended) The method according to claim 21 26, wherein depositing the electrical circuit comprises:

depositing a thin-film capacitor on the battery;

mounting an integrated circuit on the capacitor; and

electrically connecting the integrated circuit to the battery and the capacitor.

29. (Currently Amended) The method according to claim 21 26, further comprising: depositing an insulating layer on the battery; and

depositing a plurality of electrical traces on the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

30. (Currently Amended) The method according to claim 21 26, further comprising:

Page 8 Dkt: 1327.008US1

depositing an insulating layer on the battery;

depositing a plurality of electrical traces on the insulating layer;

supporting an integrated circuit on the battery;

electrically connecting a first one of the plurality of electrical traces to the cathode of the battery and the integrated circuit; and

electrically connecting a second one of the plurality of electrical traces to the anode of the battery and the integrated circuit.

31. (Currently Amended) The method according to claim 21 26, wherein the substrate includes an integrated circuit, the method further comprising:

depositing an insulating layer on the integrated circuit, the insulating layer including a plurality of through vias, wherein the battery is adjacent to the insulating layer;

electrically connecting the cathode of the battery to the integrated circuit though a first one of plurality of through vias; and

electrically connecting the anode of the battery to the integrated circuit though a second one of plurality of through vias.

32. (Currently Amended) The method according to claim 21 26, wherein the substrate includes an integrated circuit, the method further comprising:

depositing an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias;

depositing a cathode-conductor of the battery on the insulating layer;

electrically connecting the cathode-conductor of the battery to the integrated circuit though a first one of plurality of through vias;

depositing the cathode layer of the battery on the cathode conductor;

depositing the electrolyte layer on the cathode layer;

depositing the anode on the electrolyte layer; and

electrically connecting the anode to the integrated circuit though a second one of plurality of through vias.

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

33. (Currently Amended) The method according to claim 21 26, wherein the substrate includes an integrated circuit, the method further comprising:

depositing an insulating layer on the integrated circuit, the insulating layer including a plurality of through vias;

depositing a cathode-conductor of the battery on a face of the integrated circuit opposite the insulating layer;

electrically connecting the cathode-conductor of the battery to the integrated circuit though a first one of plurality of through vias;

depositing the cathode layer of the battery on the cathode conductor;

depositing the electrolyte layer on the cathode layer;

depositing the anode on the electrolyte layer; and

electrically connecting the anode to the integrated circuit though a second one of plurality of through vias.

The method according to claim 21 26, further comprising: 34. (Currently Amended)

depositing an insulating layer on the battery that acts as a passivation layer that protects the anode from environmental corrosion;

depositing a plurality of electrical traces on the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

- 35. (Currently Amended) The method according to claim 21 26, further comprising: forming the substrate into a curved shape having a convex face and a concave face; and locating the battery on the concave face.
- 36. (Currently Amended) The method according to claim 21 26, wherein the substrate comprises a polymer having a melting point substantially below 700 degrees centigrade.
- 37. (Currently Amended) The method according to claim 21 26, wherein the substrate comprises a metal foil.

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 10 Dkt: 1327.008US1

38. (Currently Amended) The method according to claim 21 26, wherein the substrate comprises a metal foil having an insulative layer between the metal foil and the first conductive layer is deposited on a first surface area of the substrate's major surface area.

39. (Currently Amended) The method according to claim 21 26, wherein the substrate comprises a ceramic material.

40. (Currently Amended) The method according to claim 21 26, wherein the substrate comprises a glass material.

41. (Currently Amended) The method according to claim 21 26, wherein the depositing of the battery comprises:

depositing the cathode layer onto the first conductive layer; depositing the electrolyte layer onto the cathode layer; and depositing the anode material onto the electrolyte layer.

- 42. (Original) The method according to claim 41, wherein the depositing of the battery comprises depositing the cathode layer onto the first conductive layer and annealing a surface of the cathode material to a temperature higher than that of the electrical circuit underlying the cathode layer.
- 43. (Original) The method according to claim 41, wherein the depositing of the battery comprises depositing the electrolyte layer onto the first conductive layer and annealing a surface of the electrolyte layer material to a temperature higher than that of the electrical circuit underlying the electrolyte layer.

44.-50. (cancelled)

51. (Currently Amended) The apparatus according to claim 48, further comprising

A combined battery and device apparatus comprising:

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 11 Dkt: 1327.008US1

a first structure including:

a substrate having a major surface area;

a first conductive layer adjacent to a first surface area of the substrate's major surface area;

a battery comprising a cathode layer; an anode layer, and a electrolyte layer located between and electrically isolating the anode layer from the cathode layer, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, wherein the anode or the cathode or both include an intercalation material; and an electrical circuit adjacent to and electrically connected to the battery; and

a photovoltaic cell adjacent <u>face-to-face</u> to a <u>major</u> surface of the substrate beside the battery.

52. (Cancelled)

53. (Currently Amended)

The apparatus according to claim 48,

A combined battery and device apparatus comprising:

a first structure including:

a substrate having a major surface area;

a first conductive layer adjacent to a first surface area of the substrate's major surface area;

a battery comprising a cathode layer; an anode layer, and a electrolyte layer located between and electrically isolating the anode layer from the cathode layer, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, wherein the anode or the cathode or both include an intercalation material; and an electrical circuit adjacent to and electrically connected to the battery; and

an electrical circuit, wherein the electrical circuit comprises:

- a photovoltaic cell adjacent to the battery; and
- a charging circuit supported on the photovoltaic cell and electrically coupled to charge the battery using current from the photovoltaic cell.

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 12 Dkt: 1327.008US1

54. (Currently Amended) The apparatus according to claim 48 <u>53</u>, wherein the electrical circuit includes a thin-film capacitor adjacent to the battery.

55. (Currently Amended) The apparatus according to claim 48 <u>53</u>, wherein the electrical circuit includes:

a thin-film capacitor adjacent to the battery; and

an integrated circuit mounted on the capacitor and electrically connected to the battery and the capacitor.

56. (Original) A combined battery and device apparatus comprising:

a substrate;

first conductive layer adjacent face-to-face to the substrate;

a battery having a plurality of layers including:

a cathode layer;

an anode layer; and

an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer; and

an electrical circuit adjacent face-to-face to the substrate; wherein the electrical circuit has a plurality of layers, and one of the plurality of layers of the electrical circuit and one of the plurality of layers of the battery have substantially identical thicknesses, chemical composition and material characteristics.

57. (Currently Amended) The apparatus according to claim 56, wherein two or more of the plurality of layers of the electrically powered device electrical circuit have a composition substantially identical to and a thickness substantially identical to two or more respective layers of the plurality of layers of the battery.

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

58. (Original) The apparatus according to claim 56, wherein the anode includes a lithium-intercalation material.

Page 13

Dkt: 1327.008US1

- 59. (Original) The apparatus according to claim 56, wherein the cathode includes a lithium-intercalation material.
- The apparatus according to claim 56, wherein the solid-state electrolyte 60. (Original) layer includes a LiPON material.
- The apparatus according to claim 56, wherein the anode includes a 61. (Original) lithium-intercalation material, the cathode includes a lithium-intercalation material, and the solid-state electrolyte layer includes a LiPON material.
- 62. (Original) A method for making a combined battery and electrically powered device, the method comprising:

providing a substrate having a major surface area;

depositing a plurality of layers of the battery on a first surface area of the substrate's major surface area, wherein the plurality of layers of the battery include a cathode layer; an anode layer, and a solid-state electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material or a metal or both; and

depositing a plurality of layers of the electrically powered device on a first surface area of the substrate's major surface area, wherein one of the plurality of layers of the electrically powered device has a composition substantially identical to and is deposited substantially simultaneously with one of the plurality of layers of the battery.

63. (Original) The method according to claim 62, wherein two or more of the plurality of layers of the electrically powered device have a composition substantially identical to and are deposited substantially simultaneously with two or more respective layers of the plurality of layers of the battery.

- 64. (Original) The method according to claim 62, wherein the anode includes a lithium-intercalation material.
- 65. (Original) The method according to claim 62, wherein the cathode includes a lithium-intercalation material.
- 66. (Original) The method according to claim 62, wherein the solid-state electrolyte layer includes a LiPON material.
- 67. (Original) The method according to claim 62, wherein the anode includes a lithium-intercalation material, the cathode includes a lithium-intercalation material, and the solid-state electrolyte layer includes a LiPON material.
- 68. (New) The apparatus according to claim 4, wherein the electrical circuit includes a thin-film capacitor adjacent to the battery.
- 69. (New) The apparatus according to claim 4, wherein the electrical circuit includes:
 a thin-film capacitor adjacent to the battery; and
 an integrated circuit mounted on the capacitor and electrically connected to the battery
 and the capacitor.
- 70. (New) The apparatus according to claim 4, wherein the electrical circuit includes: an insulating layer adjacent to the battery; and a plurality of electrical traces adjacent to the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.
- 71. (New) The apparatus according to claim 4, the electrical circuit further comprising:

an insulating layer adjacent to the battery;

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 15 Dkt: 1327.008US1

a plurality of electrical traces adjacent to the insulating layer; and

an integrated circuit supported on the battery, wherein a first one of the plurality of electrical traces electrically connects the cathode of the battery and the integrated circuit, a second one of the plurality of electrical traces electrically connects the anode of the battery and the integrated circuit.

72. (New) The apparatus according to claim 4, the substrate further comprising: an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein the battery is adjacent to the insulating layer, wherein the cathode of the battery electrically connects to the integrated circuit though a first one of plurality of through vias, and the anode of the battery electrically connects to the integrated circuit though a second one of plurality of through vias.

73. (New) The apparatus according to claim 4, the substrate further comprising: an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein a cathode-conductor of the battery is adjacent to the insulating layer and electrically connects to the integrated circuit though a first one of plurality of through vias, the cathode layer of the battery is adjacent to the cathode conductor, the electrolyte layer is adjacent to the cathode layer, and the anode is adjacent to the electrolyte layer and electrically connects to the integrated circuit though a second one of plurality of through vias.

74. (New) The apparatus according to claim 4, the substrate further comprising: an integrated circuit; and

an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias, wherein a cathode-conductor of the battery is adjacent to a face of the integrated circuit opposite the insulating layer and electrically connects to the integrated circuit though a first one of plurality of through vias, the cathode layer of the battery is adjacent to the cathode conductor, the electrolyte layer is adjacent to the cathode layer, and the anode is

adjacent to the electrolyte layer and electrically connects to the integrated circuit though a second one of plurality of through vias.

75. (New) The apparatus according to claim 4, the electrical circuit further comprising:

an insulating layer adjacent to the battery that acts as a passivation layer that protects the anode from environmental corrosion; and

a plurality of electrical traces adjacent to the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

76. (New) The apparatus according to claim 4, wherein the substrate has a curved shape having a convex face and a concave face, and the battery is located on the concave face.

77. (New) The apparatus according to claim 4, wherein the substrate comprises a polymer having a melting point substantially below 700 degrees centigrade.

78. (New) The apparatus according to claim 4, wherein the substrate comprises a metal foil.

79. (New) The apparatus according to claim 4, wherein the substrate comprises a metal foil having an insulative layer between the metal foil and the first conductive layer adjacent to a first surface area of the substrate's major surface area.

80. (New) The apparatus according to claim 4, wherein the substrate comprises a ceramic.

81. (New) The apparatus according to claim 4, wherein the substrate comprises a glass.

Page 17 Dkt: 1327.008US1

- 82. (New) The method according to claim 24, further comprising depositing a thin-film capacitor on the battery.
- 83. (New) The method according to claim 24, wherein depositing the electrical circuit comprises:

depositing a thin-film capacitor on the battery;
mounting an integrated circuit on the capacitor; and
electrically connecting the integrated circuit to the battery and the capacitor.

84. (New) The method according to claim 24, further comprising:

depositing an insulating layer on the battery; and

depositing a plurality of electrical traces on the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

85. (New) The method according to claim 24, further comprising:

depositing an insulating layer on the battery;

depositing a plurality of electrical traces on the insulating layer;

supporting an integrated circuit on the battery;

electrically connecting a first one of the plurality of electrical traces to the cathode of the battery and the integrated circuit; and

electrically connecting a second one of the plurality of electrical traces to the anode of the battery and the integrated circuit.

86. (New) The method according to claim 24, wherein the substrate includes an integrated circuit, the method further comprising:

depositing an insulating layer on the integrated circuit, the insulating layer including a plurality of through vias, wherein the battery is adjacent to the insulating layer;

electrically connecting the cathode of the battery to the integrated circuit though a first one of plurality of through vias; and

electrically connecting the anode of the battery to the integrated circuit though a second one of plurality of through vias.

The method according to claim 24, wherein the substrate includes an 87. (New) integrated circuit, the method further comprising:

depositing an insulating layer adjacent to the integrated circuit, the insulating layer including a plurality of through vias;

depositing a cathode-conductor of the battery on the insulating layer;

electrically connecting the cathode-conductor of the battery to the integrated circuit though a first one of plurality of through vias;

depositing the cathode layer of the battery on the cathode conductor;

depositing the electrolyte layer on the cathode layer;

depositing the anode on the electrolyte layer; and

electrically connecting the anode to the integrated circuit though a second one of plurality of through vias.

88. (New) The method according to claim 24, wherein the substrate includes an integrated circuit, the method further comprising:

depositing an insulating layer on the integrated circuit, the insulating layer including a plurality of through vias;

depositing a cathode-conductor of the battery on a face of the integrated circuit opposite the insulating layer;

electrically connecting the cathode-conductor of the battery to the integrated circuit though a first one of plurality of through vias;

depositing the cathode layer of the battery on the cathode conductor;

depositing the electrolyte layer on the cathode layer;

depositing the anode on the electrolyte layer; and

electrically connecting the anode to the integrated circuit though a second one of plurality of through vias.

89. (New) The method according to claim 24, further comprising:

depositing an insulating layer on the battery that acts as a passivation layer that protects the anode from environmental corrosion;

depositing a plurality of electrical traces on the insulating layer, wherein at least one of the plurality of electrical traces contacts an electrode of the battery through the insulating layer.

- 90. (New) The method according to claim 24, further comprising: forming the substrate into a curved shape having a convex face and a concave face; and locating the battery on the concave face.
- The method according to claim 24, wherein the substrate comprises a 91. (New) polymer having a melting point substantially below 700 degrees centigrade.
- 92. (New) The method according to claim 24, wherein the substrate comprises a metal foil.
- 93. (New) The method according to claim 24, wherein the substrate comprises a metal foil having an insulative layer between the metal foil and the first conductive layer is deposited on a first surface area of the substrate's major surface area.
- 94. (New) The method according to claim 24, wherein the substrate comprises a ceramic material.
- 95. (New) The method according to claim 24, wherein the substrate comprises a glass material.
- The method according to claim 24, wherein the depositing of the battery 96. (New) comprises:

depositing the cathode layer onto the first conductive layer; depositing the electrolyte layer onto the cathode layer; and

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 20 Dkt: 1327.008US1

depositing the anode material onto the electrolyte layer.

97. (New) The method according to claim 96, wherein the depositing of the battery comprises depositing the cathode layer onto the first conductive layer and annealing a surface of the cathode material to a temperature higher than that of the electrical circuit underlying the cathode layer.

98. (New) The method according to claim 97, wherein the depositing of the battery comprises depositing the electrolyte layer onto the first conductive layer and annealing a surface of the electrolyte layer material to a temperature higher than that of the electrical circuit underlying the electrolyte layer.

99. (New) The apparatus according to claim 51, wherein the electrical circuit includes a thin-film capacitor adjacent to the battery.

100. (New) The apparatus according to claim 51, wherein the electrical circuit includes:

a thin-film capacitor adjacent to the battery; and

an integrated circuit mounted on the capacitor and electrically connected to the battery and the capacitor.

101. (New) The apparatus according to claim 56, wherein the electrical circuit includes a thin-film capacitor adjacent to the battery.

102. (New) The apparatus according to claim 56, wherein the electrical circuit includes:

a thin-film capacitor adjacent to the battery; and

an integrated circuit mounted on the capacitor and electrically connected to the battery and the capacitor.

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 21 Dkt: 1327.008US1

103. (New) The apparatus according to claim 56, wherein the electrical circuit comprises a photovoltaic cell, and wherein one of the layers of the photovoltaic cell and one of the plurality of layers of the battery have substantially identical thicknesses, chemical composition and material characteristics.

104. (New) The apparatus according to claim 56, wherein the electrical circuit comprises a photovoltaic cell, and wherein two or more of the layers of the photovoltaic cell have substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.

105. (New) The apparatus according to claim 56, wherein the electrical circuit comprises a passive electrical component, and wherein one or more of the layers of the passive electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective one or more of the plurality of layers of the battery.

106. (New) The apparatus according to claim 56, wherein the electrical circuit comprises a passive electrical component, and wherein two or more of the layers of the passive electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.

107. (New) The apparatus according to claim 56, wherein the electrical circuit comprises an active electrical component, and wherein one or more of the layers of the active electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective one or more of the plurality of layers of the battery.

108. (New) The apparatus according to claim 56, wherein the electrical circuit comprises an active electrical component, and wherein two or more of the layers of the active electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.

Serial Number: 09/816628

Filing Date: March 23, 2001

Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 22 Dkt: 1327.008US1

109. (New) The method according to claim 62, wherein the electrically powered device comprises a passive electrical component, and wherein one or more of the layers of the passive electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective one or more of the plurality of layers of the battery.

- 110. (New) The method according to claim 62, wherein the electrically powered device comprises a passive electrical component, and wherein two or more of the layers of the passive electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.
- 111. (New) The method according to claim 62, wherein the electrically powered device comprises an active electrical component, and wherein one or more of the layers of the active electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective one or more of the plurality of layers of the battery.
- 112. (New) The method according to claim 62, wherein the electrically powered device comprises an active electrical component, and wherein two or more of the layers of the active electrical component have substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.
- 113. (New) The method according to claim 62, wherein the electrically powered device comprises a photovoltaic cell, and wherein one or more of the layers of the photovoltaic cell have substantially identical thicknesses, chemical composition and material characteristics to a respective one or more of the plurality of layers of the battery.
- 114. (New) The method according to claim 62, wherein the electrically powered device comprises a photovoltaic cell, and wherein two or more of the layers of the photovoltaic cellhave substantially identical thicknesses, chemical composition and material characteristics to a respective two or more of the plurality of layers of the battery.

Serial Number: 09/816628

Filing Date: March 23, 2001
Title: METHOD AND APPARATUS FOR INTEGRATED BATTERY DEVICES

Page 23 Dkt: 1327.008US1

115. (New) The method according to claim 62, wherein the electrically powered device comprises a thin-film capacitor adjacent to the battery.