My_Project

May 7, 2017

```
In [7]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import MinMaxScaler
        fn = "D:/My Project-Spring 2017/feactures_thresh_2000-tab.txt"
        data = pd.read_table(fn)
        labels = pd.read_csv("D:/My Project-Spring 2017/labels.csv")
        labels= pd.DataFrame(labels)
In [8]: data = pd.DataFrame(data)
        df = pd.DataFrame(labels)
        new_data = []
        i = 0
        k = 0
        my_data_ids = list( map(str, data["ID"]))
        while k < len(labels) and i < len(data):</pre>
            id = str(labels['id'][i])
            if id in my_data_ids:
                indx = my_data_ids.index(id)
                result = list(data.loc[indx][1:])
                new_data = new_data + [[id] + result + [labels['cancer'][i]] ]
                i += 1
                k = k+1
            else:
                k = k+1
In [9]: names = ['id', 'no_images', 'area', 'max', 'HU', 'mu', 'sigma', 'cancer']
        df = pd.DataFrame(new_data, columns = ('id', 'no_images', 'area', 'max', 'H
        len(df)
Out[9]: 631
In [118]: x = ('95-200', '200-300', '300-400', '400-500', '500-525')
          y= pd.DataFrame(df)
          y = y['no_images']
          print (min(y), max(y))
          y = round(y/100) *100
```

```
import collections
counter = collections.Counter(y)
print (counter.values())
plt.bar(range(len(x)), counter.values(), align='center', alpha=0.5)
plt.xticks(range(len(x)), x)

plt.xlabel('The number of images')
plt.ylabel("Frequency")
plt.show()
95 525
dict_values([333, 224, 11, 57, 6])
```


print ("opps for ", i) break

print (ans)

True

In [11]: df

111 [11], 01	-			
Out[11]:	id	no_images	area	max
0	0015ceb851d7251b8f399e39779d1e7d	195	26.225641	0.435897
1	0030a160d58723ff36d73f41b170ec21	265	1.158491	0.150943
2	003f41c78e6acfa92430a057ac0b306e	233	0.000000	0.000000
3	006b96310a37b36cccb2ab48d10b49a3	173	0.00000	0.000000
4	008464bb8521d09a42985dd8add3d0d2	146	16.328767	0.541096
5	0092c13f9e00a3717fdc940641f00015	171	3.608187	0.169591
6	00986bebc45e12038ef0ce3e9962b51a	123	0.000000	0.000000
7	00cba091fa4ad62cc3200a657aeb957e	134	0.000000	0.000000
8	00edff4f51a893d80dae2d42a7f45ad1	135	0.000000	0.000000
9	0121c2845f2b7df060945b072b2515d7	191	121.628272	0.434555
10	013395589c01aa01f8df81d80fb0e2b8	217	0.000000	0.000000
11	01de8323fa065a8963533c4a86f2f6c1	231	13.380952	0.718615
12	01e349d34c06410e1da273add27be25c	159	0.000000	0.000000
13	3 01f1140c8e951e2a921b61c9a7e782c2	241	880.327801	0.705394
14	024efb7a1e67dc820eb61cbdaa090166	175	130.000000	0.617143
15	0257df465d9e4150adef13303433ff1e	186	0.000000	0.000000
16	0268f3a7a17412178cfb039e71799a80	159	0.000000	0.000000
17	7 026be5d5e652b6a7488669d884ebe297	106	0.000000	0.000000
18	3 02801e3bbcc6966cb115a962012c35df	205	0.000000	0.000000
19	028996723faa7840bb57f57e28275e4c	183	0.267760	0.136612
20	0334c8242ce7ee1a6c1263096e4cc535	147	2.748299	0.190476
21	03fb0d0fdb187ee1160f09386b28c3f2	149	0.000000	0.000000
22	2 03ff23e445787886f8b0cb192b3c154d	135	0.000000	0.000000
23	3 043ed6cb6054cc13804a3dca342fa4d0	160	3324.375000	0.562500
24	1 0482c444ac838adc5aa00d1064c976c1	223	65.681614	0.367713
25		147	0.000000	0.000000
26		145	0.000000	0.000000
27		151	0.000000	0.000000
28		161	0.000000	0.000000
29	04e5d435fa01b0958e3274be73312cac	140	184.342857	0.357143
		• • •	• • •	• • •
60		127	0.000000	0.000000
60		172	0.552326	0.552326
60		226	576.495575	0.482301
60		152	0.000000	0.000000
60		248	0.000000	0.000000
60		134	154.559701	0.268657
60	07 6fd3af9174242c1b393fe4ba515e7a26	122	169.540984	0.319672

608	6fd582d25eeb2250c2b0996c4216deb9	125	0.000000	0.000000
609	700bdc2723c2ac75a8a8376d9ca170ad	159	0.000000	0.000000
610	70287a7720e0d90249ac7b3978b7ca40	134	0.000000	0.000000
611	7050f8141e92fa42fd9c471a8b2f50ce	172	11.110465	0.622093
612	7051fc0fcf2344a2967d9a1a5478208e	140	16.900000	0.464286
613	713d8136c360ad0f37d6e53b61a7891b	161	0.000000	0.000000
614	71665cc6a7ee85268ca1da69c94bbaeb	234	218.393162	0.431624
615	7180c83eb184d5c9dfcbda228ab91213	141	1.418440	0.085106
616	718f43ecf121c79899caba1e528bd43e	119	0.000000	0.000000
617	71e09cd11d743964f1abf442c34f2c9d	134	0.000000	0.000000
618	721949894f5309ed4975a67419230a3c	245	1.306122	0.436735
619	722429bc9cb25d6f4b7a820c14bf2ab1	116	0.000000	0.000000
620	7239b3a904f39b25c4e303c10a24621a	103	0.000000	0.000000
621	72609c2be68be9d7c9cde3d0127c05ac	162	6.771605	0.185185
622	72a1e35c34052e163f61585ba0c9daf4	156	0.000000	0.000000
623	72b080b50118e9ddb795890eb1f13684	155	0.000000	0.000000
624	72ed4046708e5607eb0a5703905438ee	155	0.000000	0.000000
625	72fd04cf3099b148d9ad361efb988866	219	0.000000	0.000000
626	73280f6a624b3bf7a766c70b31dfc56b	154	0.000000	0.00000
627	733205c5d0bbf19f5c761e0c023bf9a0	131	8.022901	0.114504
628	7367ede966b44c6dce30b83345785671	267	111.067416	0.550562
629	7395f64fba89c2463a1b13c400adf876	259	0.000000	0.000000
630	73b28e2eadad587c9a8ac6c7186dd51b	159	6.836478	0.496855

	HU	mu	sigma	cancer
0	44.682051	0.179501	0.794980	1
1	22.415094	0.111439	0.555196	0
2	20.686695	0.139469	0.746667	0
3	9.404624	0.085476	0.521393	1
4	42.068493	0.063953	0.437583	1
5	33.269006	0.084927	0.524975	0
6	0.000000	0.032570	0.239367	0
7	0.000000	0.131626	0.739179	0
8	0.000000	0.043789	0.387303	1
9	80.774869	0.091854	0.498592	0
10	22.410138	0.295574	1.056444	0
11	44.935065	0.333027	1.226209	0
12	12.446541	0.105530	0.656555	0
13	146.020747	0.322544	1.665774	0
14	511.994286	0.050781	0.407039	0
15	0.000000	0.000084	0.009568	1
16	0.000000	0.194824	0.908341	0
17	15.264151	0.105469	0.675777	0
18	0.000000	0.000034	0.007042	1
19	40.896175	0.068691	0.474446	1
20	49.850340	0.162430	0.871358	0
21	0.000000	0.015884	0.192657	0
22	11.940741	0.106369	0.552477	0

```
25
               11.258503 0.065155 0.431642
                                                   0
         26
                0.000000 0.124817 0.580352
                                                   0
         27
               0.000000 0.066650
                                    0.435453
                                                   1
                                                   0
         28
               20.155280 0.106937 0.660640
         29
              125.528571 0.055313
                                    0.388186
                                                   0
                               . . .
         . .
                     . . .
                                         . . .
                                                 . . .
         601
                0.000000 0.028301 0.248462
                                                   0
         602
               30.383721 0.156784 0.948409
                                                   0
              130.353982 0.219109 1.044102
                                                   1
         603
         604
               10.526316 0.086338
                                    0.463163
                                                   0
               20.391129 0.179844 0.844417
                                                   1
         605
         606
              117.462687 0.149693 0.738610
                                                   0
         607
              100.688525 0.042397 0.301850
                                                   1
                                                   0
         608
               0.000000 0.075123 0.438257
         609
               10.182390 0.143597 0.645223
                                                   0
               12.179104 0.209431 0.928365
                                                   0
         610
               17.331395 0.143047
                                                   0
         611
                                    0.630558
         612
               58.485714 0.000187 0.016686
                                                   0
         613
               19.875776 0.144199 0.736229
                                                   1
         614
              131.217949 0.003273 0.097328
                                                   1
         615
               26.212766 0.078621 0.444034
                                                   0
         616
               0.000000 0.033562 0.245448
                                                   0
         617
               0.000000 0.041878 0.316300
                                                   0
               29.632653 0.198608 0.872928
                                                   1
         618
               0.000000 0.059921 0.395656
         619
                                                   0
         620
              0.000000 0.022118 0.205104
                                                   0
         621
               38.777778 0.108948 0.485989
                                                   0
         622
               0.000000 0.000542 0.028163
                                                   0
         623
               22.922581 0.165226 0.789167
                                                   0
         624
               0.000000 0.054123 0.378494
                                                   0
         625
               29.794521 0.107410 0.555371
                                                   1
                                                   0
         626
               0.000000 0.069721 0.546760
         627
              117.381679 0.068066 0.457826
                                                   1
         628
              138.097378 0.276417
                                   1.400465
                                                   0
         629
                6.397683 0.232712
                                   1.227217
                                                   1
         630
               50.433962 0.202473 0.852514
                                                   0
         [631 rows x 8 columns]
In [19]: print ('Max and Min of area: ', max(df['area']), 'and ', min(df['area']))
         print ('Max and Min of max: ', max(df['max']), 'and ', min(df['max']))
         print ('Max and Min of HU: ', max(df['HU']), 'and ', min(df['HU']))
         print (sum(df['no_images']))
Max and Min of area: 3324.375 and 0.0
Max and Min of max: 0.811428571 and 0.0
```

0

0

23

24

214.906250 0.000000 0.000000

161.937220 0.133541 0.735602


```
In [450]: df2 = pd.DataFrame(df)
    df2 = df2[(df2.area>=0) & (df2.area<=.03)]
    df2 = df2[(df2.HU>=.02) & (df2.HU<=15)]
    g0 = df2[df2['cancer'] == 0]
    g1 = df2[df2['cancer'] == 1]
    plt.plot(g1['area'], g1['HU'], 'rp')
    plt.plot(g0['area'], g0['HU'], 'g>')
```

```
plt.show()

print ("The length is %d" %len(df2))

16

14

12

10

8

6
```

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

The length is 113

The length is 113


```
In [351]: ndfn = pd.DataFrame(ndf)
    ndfn=ndfn[(ndfn['max']<=60) & (ndfn.area<=.1)]
    n1 = ndfn[ndfn['cancer'] == 1]
    n0 = ndfn[ndfn['cancer'] == 0]

N1, = plt.plot(n1['max'], n1['area'], 'ro', label='Cancer')
    N0, = plt.plot(n0['max'], n0['area'], 'bp', label='Not Cancer')
    plt.legend(handles=[N0, N1])
    plt.xlim(-5, max(ndfn['max']))
    plt.ylim(-.009, max(ndfn['area']))
    plt.xlabel("ave_max")
    plt.ylabel("avg_area")</pre>
```



```
In [359]: from sklearn.neighbors import KNeighborsClassifier
          X = ndf[['area', 'max', 'HU', 'mu', 'sigma']]
          Y = ndf['cancer']
          X \text{ trainig} = X.loc[1:400]
          Y_training = Y.loc[1:400]
          X_{test} = X.loc[401:600]
          Y_{test} = Y.loc[401:600]
          accuracy_list = []
          for k in range (1, 25):
              neigh = KNeighborsClassifier(n_neighbors=k)
              neigh.fit(X, Y)
              KNeighborsClassifier(...)
              predicted = pd.DataFrame(neigh.predict(X_test))
              accuracy_list = accuracy_list + [neigh.score(X_test, Y_test)]
In [360]: plt.plot(range(1,25), accuracy_list)
          plt.xlabel("$k = $ the number of neighbors")
          plt.ylabel("Accuracy Score")
          plt.show()
```

```
0.95

0.90

0.85

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70
```

```
In [313]: predicted = pd.DataFrame(neigh.predict(X_test))
    miss_num = 0
        print(neigh.score(X_test, Y_test))

0.74

In [296]: from sklearn.metrics import accuracy_score
        predicted = pd.DataFrame(neigh.predict(X_test))
        accuracy = accuracy_score(Y_test, predicted)
        error_rate = 1 - accuracy

In [297]: error_rate

Out[297]: 0.0150000000000000013

In [305]:
Out[305]: [1, 3, 5, 7, 9]

In []:
```