Digital Integrated Circuits Homework #4

Due 2 hours before the next lecture

Problem 1: Gate Sizing of a Multi-Stage Network

Figure 1

Consider the multi-stage logic shown in Figure 1. The numbers represent relative input gate capacitance. For example, the inverter with "1" has input capacitance of $C_{\rm in}$, the inverter with "21" has input capacitance of $21C_{\rm in}$ because it is 21 times as wide. Output is loaded with 60 $C_{\rm in}$.

- **1A** Find the minimum delay from input to output using logical effort.
- **1B** Find the size of the NAND and NOR gates x and y (NAND has input capacitance xC_{in} and NOR has input capacitance yC_{in}) that minimize the delay from input to output.

Problem 2: CMOS Logic & Logical Effort

(a) Design $F = \overline{A + BC + D}$ in Static CMOS. Draw the schematic and size all the transistors such that the worst-case resistance is equal to that of a unit-sized inverter (W_P:W_N = 2:1).

(draw your initial circuit below)

(revise you circuit as to minimize delay when inputs transition in the following order: A, C, D, B)

Parasitic delay, p =

Parasitic delay, p =

(b) Find the logical effort for all the inputs in your design in part (a)?

$g_A =$	
$g_B =$	
g _C =	
g _D =	

Problem 3: Sizing for Performance and Energy

Assume the inverters are implemented in standard CMOS and have symmetrical VTC. Assume $C_{intrinsic} = C_{gate}$ ($\gamma = 1$). Equivalent resistance and input capacitance of the unit-sized (S = 1) inverter are R and C, respectively. Sizing factor $S \ge 1$. t_{p0} is the parasitic delay of a unit inverter.

a. Pick the best sizing factors S_2 and S_3 to minimize propagation delay from *In* to *Out*. What is the minimum delay (in terms of t_{p0})?

<u>Fig. 3a</u>

$S_2 =$	$S_3 =$
<i>t</i> _p =	

b. Pick the best sizing S_2 and S_3 to minimize energy consumption. You may assume square wave input with period T. What is the total energy taken from V_{DD} (ignore energy for driving the input In) for a full cycle $(0\rightarrow 1, 1\rightarrow 0)$?

$S_2 =$	$S_3 =$
$E_{cycle} =$	

c. For inverters in Fig. 3c, pick the best sizing factors S_2 and S_3 to minimize propagation delay. What is the minimum delay (in terms of t_{p0})?

$$S_2 =$$

$$S_3 =$$

$$t_p =$$