Exponential model

Sometimes in least square method, we will use exponential curve to achieve *minimum error* with the given data.

Let the required curve has the form:

$$y = ae^{bx}$$

To use the least square method of a straight line, first we must make a transformation to the required equation, this transformation called *linearization* by taking the inverse of the required equation of the curve as the following:

$$lny = lna + bx$$

This equation can be written as:

$$Y = A + Bx \tag{2.4}$$

With the changes:

$$Y = lny$$
, $A = lna$, $B = b$, $x = x$.

Then we can apply least square equations to equation (2.4) as:

$$\sum Y_i = A(N) + B \sum x_i,$$

$$\sum x_i Y_i = A \sum x_i + B \sum x_i^2.$$

After solving the previous equations and getting the constants (A, B) we make a reverse operation to get (a, b) again, to express the equation $y = ae^{bx}$.

A polynomial of order (2) model

Now, consider any an experiment produces a set of N data points $(x_1, y_1), ..., (x_N, y_N)$, or table as:

x	<i>x</i> ₁	x_2	 x_{N-1}	x_N
y	y_1	y_2	 y_{N-1}	y_N

And we want to find the best curve (second order polynomial)

$$y(x) = a_0 + a_1 x + a_2 x^2,$$

that meets these data by using Least square method. By the same way mention in previous section:

Chapter 2

Curve fitting

Let S_r is called the sum of the square of the errors defined by the following

$$S_r = \sum_{i=1}^N \varepsilon_i^2 = \sum_{i=1}^N [y_i - (a_0 + a_1 x_i + a_2 x_i^2)]^2.$$

To find a_0 , a_1 and a_2 , we minimize S_r with respect to a_0 , a_1 and a_2 :

Let S_r is called the sum of the square of the errors defined by the following

$$S_r = \sum_{i=1}^N \varepsilon_i^2 = \sum_{i=1}^N [y_i - (a_0 + a_1 x_i + a_2 x_i^2)]^2.$$

To find a_0 , a_1 and a_2 , we minimize S_r with respect to a_0 , a_1 and a_2 :

$$1)\frac{\partial Sr}{\partial a_0} = 0 \Rightarrow \sum y_i = a_0(N) + a_1 \sum x_i + a_2 \sum x_i^2,$$

$$2)\frac{\partial Sr}{\partial a_1} = 0 \Rightarrow \sum x_i y_i = a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3,$$

$$3)\frac{\partial Sr}{\partial a_1} = 0 \Rightarrow \sum x_i^2 y_i = a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4,$$

The resulting normal equations are:

$$\sum y_i = a_0(N) + a_1 \sum x_i + a_2 \sum x_i^2,$$

$$\sum x_i y_i = a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3,$$

$$\sum x_i^2 y_i = a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4,$$
(2.3)

By the same way of this method, we can find the used equations for any polynomial of any order greater than one.

+ they don't give the same result because the relative error

Q2:

- 1. Logistic Regression
- 2. Decision Tree
- 3. SVM
- 4. Naive Bayes
- 5. kNN
- 6. K-Means
- 7. Random Forest
- 8. Dimensionality Reduction Algorithms
- 9. Gradient Boosting algorithms
 - 1. GBM
 - 2. XGBoost
 - 3. LightGBM
 - 4. CatBoost