

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE - CTS DEPARTAMENTO DE COMPUTAÇÃO - DEC

PLANO DE ENSINO

SEMESTRE 2020.1

I. IDENTIFI	CAÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	Nº DE HOR SEMA TEÓRICAS		TOTAL DE HORAS-AULA SEMESTRAIS
DEC7123	Organização e Arquitetura de Computadores I	3	1	72

HORÁRIO		MÓDULO
TURMAS TEÓRICAS	TURMAS PRÁTICAS	Presencial
06655 - 3-1010-2 e 5-1010-2	18h/a	54h/a

II. PROFESSOR(ES) MINISTRANTE(S)

Roderval Marcelino

Roderval.marcelino@ufsc.br

Horário de atendimento: Segunda-feira das 13:00 às 17:00 - Unidade Mato Alto - Sala 103

Quarta-feira das 13:00 às 17:00 – Unidade Mato Alto –Sala 103

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
	Esta disciplina não possui pré-requisitos	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação

V. JUSTIFICATIVA

A disciplina de Organização e Arquitetura de Computadores apresentará ao aluno os conceitos básicos e fundamentais sobre o computador, sua principal ferramenta de trabalho, e como funciona do ponto de vista da execução de programas, do hardware e da integração software/hardware. Compreendendo o funcionamento interno dos computadores torna-se mais fácil descobrir as limitações, por exemplo, que podem ser encontradas em uma determinada família de processadores, para a solução de determinado problema computacional. É importante que o aluno saiba escolher a arquitetura computacional mais adequada para cada tipo de necessidade que se apresente em sua vivência acadêmica e profissional.

VI. EMENTA

Aritmética binária: ponto fixo e flutuante. Unidades lógicas e aritméticas. Barramento de dados e de controle. Hierarquia de memória: cache, interna e externa. Memória virtual. Entrada e saída. Relógio. Ciclo de máquina. Ciclo de instrução. Microprogramas. Instruções que implementam operações, desvio do fluxo de controle e transferência de dados. Conjuntos de instruções: CISC x RISC. Pipeline. Controle de acesso aos dispositivos e resolução de conflitos. Interrupções. Polling. Acesso direto à memória. Evolução da arquitetura dos computadores.

VII. OBJETIVOS

Objetivo Geral: Fornecer ao aluno fundamentos básicos de Organização e Arquitetura de Computadores e programação em Linguagem de Máquina.

Objetivos Específicos:

- Identificar os componentes de um sistema de processamento de dados e a interação entre CPU, Memória Principal, Memória Secundária e Dispositivos de Entrada e Saída.
- Conhecer métodos e técnicas de representação de dados.

- Estudar os principais componentes do computador dando ênfase aos conceitos relacionados com CPU, datapath, memórias, periféricos, unidades de entrada/saída, unidade lógico-aritmética e unidade de controle.
- Conhecer as estruturas de interconexão dos diferentes de módulos e componentes do computador e em particular aprofundar o conhecimento das estruturas dos barramentos.
- Familiarizar-se com os diferentes tipos de instruções e modos de endereçamento aprendendo a manejá-los de acordo com os formatos das instruções.
- Aprender a construir programas e subprogramas básicos em linguagem "Assembly".

VIII. CONTEÚDO PROGRAMÁTICO

INTRODUÇÃO [4 ha]

- Apresentação da disciplina
- Conceitos introdutórios

UNIDADE 1 - Bases Numéricas, Sistemas de Numeração e Aritmética Computacional [12 ha]

- Sistemas de Número Posicional
- Conjuntos de Dígitos e Codificações
- Conversão entre Bases Numéricas
- Inteiros com Sinal
- Números de Ponto Fixo
- Números de Ponto Flutuante

UNIDADE 2 – Arquitetura do Conjunto de Instruções [16]

- Instruções e Enderecamento
- Arquitetura de microprocessador 8085
- Programas em Linguagem Assembly

UNIDADE 3 – Caminho de Dados e Controle [16 ha]

- Passos para Execução da Instrução
- Síntese da Unidade de Controle
- Caminho de Dados com Pipeline

UNIDADE 4 - Projeto de Sistemas de Memória [12 ha]

- Conceitos de Memória Principal
- Organização de Memória e Cache
- Memória Virtual
- Conceitos de memória de Massa

UNIDADE 5 - Entrada/Saída e Interfaceamento [12 ha]

- Dispositivos de Entrada/Saída
- Barramentos, Ligações e Interfaces

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- Aulas teóricas: desenvolvidas em sala e com emprego de meios audiovisuais. Todo o material didático estará disponível "a priori" para os alunos no Ambiente Virtuais de Aprendizagem (AVA) da disciplina (HTTP://moodle.ufsc.br) e atualizados de maneira progressiva ao longo do semestre.
- Atividades, trabalhos e listas de exercícios disponíveis no AVA. Em alguns casos se apresenta a solução na web dos exercícios.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando nela reprovado o aluno que não comparecer a mais de 25% das atividades (Frequência Insuficiente - FI).

Serão realizadas duas provas escritas:

- Prova Escrita 1 (P1) baseada nos conteúdos das Unidades 1 e 2.
- Prova Escrita 2 (P2) baseada na Unidade 3, 4 e 5.

A média das Provas (MP) será calculada da seguinte forma:

Os trabalhos, atividades e listas de exercícios, desenvolvidos em classe ou on-line (postados no AVA) compõem uma media denominada MT.

$$MP = \frac{(P1 + P2)}{2}$$

A composição da Média Final do semestre (MF) será efetuada da seguinte forma:

$$MF = (0.7 * MP) + (0.3 * MT)$$

A nota mínima para aprovação na disciplina será **MF>=6,0** (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).

O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{(MF + REC)}{2}$$

Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Observações:

Avaliação de recuperação

Não há avaliação de recuperação nas disciplinas de **caráter prático** que envolve atividades de laboratório. (Res.17/CUn/97).

Nova avaliação

Pedidos de segunda avaliação somente para casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, e deverá ser formalizado via requerimento de avaliação à Secretaria Acadêmica do Campus Araranguá dentro do prazo de 3 dias úteis apresentando comprovação. (Ver formulário)

XI. CRONOGRAMA TEÓRICO		
AULA (semana)	DATA	ASSUNTO
1 ^a	04/03/2020 a 07/03/2020	Apresentação da disciplina
2 ^a	09/03/2020 a 14/03/2020	INTRODUÇÃO. UNIDADE 1 - Bases Numéricas, Sistemas de Numeração e Aritmética Computacional.
3ª	16/03/2020 a 21/03/2020	UNIDADE 1 - Bases Numéricas, Sistemas de Numeração e Aritmética Computacional.
4 ^a	23/03/2020 a 28/03/2020	UNIDADE 2 – Arquitetura do Conjunto de Instruções
5 ^a	30/03/2020 a 04/04/2020	UNIDADE 2 – Arquitetura do Conjunto de Instruções
6 ^a	06/04/2020 a 11/04/2020	UNIDADE 2 – Arquitetura do Conjunto de Instruções
7 ^a	13/04/2020 a 18/04/2020	PRIMEIRA AVALIAÇÃO (P1) – Unidades 1 e 2
8 ^a	20/04/2020 a 25/04/2020	UNIDADE 3 – Caminho de Dados e Controle
9 ^a	27/04/2020 a 02/05/2020	UNIDADE 3 – Caminho de Dados e Controle
10 ^a	04/05/2020 a 09/05/2020	UNIDADE 3 – Caminho de Dados e Controle
11 ^a	11/05/2020 a 16/05/2020	UNIDADE 3 – Caminho de Dados e Controle

	12 ^a	18/05/2020 a 23/05/2020	UNIDADE 4 - Projeto de Sistemas de Memória
	13 ^a	25/05/2020 a 30/05/2020	UNIDADE 4 - Projeto de Sistemas de Memória
	14 ^a	01/06/2020 a 06/06/2020	UNIDADE 4 - Projeto de Sistemas de Memória
Ī	15 ^a	08/06/2020 a 13/06/2020	UNIDADE 5 – Entrada/Saída e Interfaceamento
Ī	16ª	15/06/2020 a 20/06/2020	UNIDADE 5 – Entrada/Saída e Interfaceamento
Ī	17 ^a	22/06/2020 a 27/06/2020	SEGUNDA AVALIAÇÃO (P2) – Unidades 3, 4 e 5
Ī	18 ^a	29/06/2020 a 04/07/2020	Prova de recuperação.
ĺ	19 ^a	06/07/2020 a 11/07/2020	Divulgação das Notas

XII. Feriados previstos para o semestre 2020.1:

DATA	
03/04/2020	Aniversário de Araranguá (Sexta-feira)
10/04/2020	Sexta-feira Santa (Sexta-feira)
11/04/2020	Dia não letivo (Sábado)
20/04/2020	Dia não letivo (Segunda-feira)
21/04/2020	Tiradentes (Terça-feira)
01/05/2020	Dia do Trabalhador (Sexta-feira)
02/05/2020	Dia não letivo (Sábado)
04/05/2020	Dia da Padroeira de Araranguá (Segunda-feira)
11/06/2020	Corpus Christi (Quinta-feira)
12/06/2020	Dia não letivo (Sexta-feira)
13/06/2020	Dia não letivo (Sábado)

XIII. BIBLIOGRAFIA BÁSICA

STALLINGS, W. Arquitetura e organização de computadores, 8. ed. São Paulo: Prentice-Hall, 2010.

TANENBAUM, Andrew. Organização estruturada de computadores. 5. ed. Rio de Janeiro: Pearson, 2006.

HENNESSY, J. L.; PATTERSON, D. A. Arquitetura de computadores: uma abordagem quantitativa. Rio de Janeiro: Campus, 2003

XIV. BIBLIOGRAFIA COMPLEMENTAR:

WEBER, R.F. Fundamentos de arquitetura de computadores. 3. ed. Bookman Editora, 2008.

MONTEIRO, M. A. Introdução à organização de computadores. 5. Ed. Rio de Janeiro: LTC, 2007.

MURDOCCA, M.J.; HEURING V.P. Introdução à arquitetura de computadores. Rio de Janeiro: Campus, 2001.

CAPRON, H. L.; JOHNSON, J. A. Introdução à informática. São Paulo: Ed. Pearson, 2004

MALVINO, Albert Paul; BATES, David J. Eletrônica. 7. ed. Porto Alegre: AMGH, 2007. v. ISBN 9788577260225 (v.1).

Os livros acima citados constam na Biblioteca Universitária e Setorial de Araranguá. Algumas bibliografias também podem ser encontradas no acervo da disciplina, via sistema Moodle.

XV. INFRAESTRUTURA E MATERIAS NECESSÁRIOS:

- 1. Espaço físico com mesas, cadeiras e tomadas em quantidades adequadas
- 2. Software de simulação
- 3. Computadores para simulação dos projetos
- Quadro branco e canetas
- 5. Projetor de imagens

Obs.: A indisponibilidade de infraestrutura/materiais listados pode causar prejuízos ao processo pedagógico, inviabilizando tanto as atividades dos docentes como as dos alunos, podendo, ainda, acarretar em cancelamento de aulas em último caso.

	Prof. Roderval Marcelino, Dr.
Aprovado na Reunião do Colegiado do Curso//	
_	Coordenador do Curso