Abstract of CN1125046

The PG6 microbial preparation mainly is comprised of PG6 microbial flora separated and screened from rhizosphere soil of psammophyte which is composed of three bacteria of PG6-1, PG6-3 and PG6-4, in which PG6-1 and PG6-4 are of bacillus and PG6-3 is of escherichia. ADVANTAGE-. Said PG6 preparation is quick in multiplication, strong in viability and adverse surrounding resistance, and can raise the yield of crops of wheat, barley and maize, etc..

[12] 发明专利申请公开说明书

[21]申请号 94105639.2

[51]Int.Cl⁶

A01N 63/00

[43]公开日 1996年6月26日

[22]申请日 94.5.18

[71]申请人 中国科学院新疆生物土填沙漠研究所

地址 830011新疆维吾尔自治区乌鲁木齐市北

京南路 40 号

[72]发明人 关桂兰 杨玉锁 郭沛新 陈 理

王卫平 草 楠 孟頌东 郭朝辉

[74]专利代理机构 中国科学院新疆专利事务所 代理人 张 莉

权利要求书 3 页 说明书 8 页 附图页数 0 页

[54]发明名称 提高小麦、大麦、玉米等农作物产量的 PG₆ 微生物制剂

[57]摘要

本发明涉及提高小麦、大麦、玉米等农作物产量的 PG_6 微生物制剂,其主要是从沙生植物根际土壤中分离筛选出的 PG_6 菌群,由三种菌 PG_{6-1} 、 PG_{6-3} 、 PG_{6-4} 、組成,其中 PG_{6-1} 、 PG_{6-4} 、属于芽孢杆菌(Bacillus), PG_{6-3} 属于埃希氏菌(Escherichia), PG_6 制料繁殖快、生存力强,对逆境有较强的抵抗能力,根据根系、土壤和根际微生物相互作用原理,定向改变根际微生物区系,使其有益根际微生物占优势,改变根际微年物区,有利于作物生长发育,提高农作物产量。

(BJ)第 1456 号

- 2、根据权利要求1所述的提高小麦、大麦、玉米等作物产量的 [[6 微生物制剂,其特征在于: 芽孢杆菌 ([a c i l [a s) 中的 [[6-1] 的生态特征如下:
- 『『6-1菌落形态: 在『P平板上园形、带有环纹, 表面光滑, 边缘整齐, 凸起, 白色不透明,
- 『6-1斜面培养特征: 树状, 白色稍带黄色, 液体培养形成菌膜, 培养时间长混浊;
- 『β₆₋₁个体形态: 细胞为直杆状, 『.5—『.7×1.5—』μ 』, 芽孢椭园形, 中生, 革兰氏阳性, 鞭毛周生, 运动, 原生质染色均匀;
- 『『6--1菌理化特性: 过氧化氢酶反应呈阳性; 氧化酶反应呈阴性; 精氨酸双水解酶反应呈阴性。』。『反应阳性; 』。『培养液生长』、天后』』。』。』,甲基红实验阳性; 水解酪素; 液化明胶, 不水解淀粉, 不还原硝酸盐; 水解蔗糖不形成果聚糖; 不产生可溶性色素, 在碳源利用方面, 可利用甘油、葡萄糖酸盐、蔗糖、甘露醇、阿拉伯糖、葡萄糖、木糖、海藻糖、山梨醇、核糖、柠檬酸盐, 不利用酒石酸盐、丙二酸盐、肌醇、鼠李糖。好氧, 在『』 7.2 —8.5 培养基上生长, 温度最低4 —5 ℃, 在45 —5 0 ℃生长, 耐受最高温度1 1 0 ℃, 1 0 分钟。

3、根据权利要求1所述的提高小麦、大麦、玉米等农作物产量的P6。微生物制剂, 其特征在于: 芽孢杆菌(Bacillus)中的P66-4的生态特征如下:

『 6-4斜面培养特征: 凸起, 白色略带淡黄, 液体培养有菌膜:

『β₆₋₄个体形态: 细胞为粗杆状, 1.2—1.4×2—3.5 μ1, 革 兰氏染色阳性, 有芽孢, 椭园形, 中生。鞭毛周生, 运动, 细 胞质体染色不均匀;

『『6-4菌理化特性: 过氧化氢酶反应呈阳性; 氧化酶反应呈阳性, 『原应阴性; 』』 培养4天》 』 。 甲基红实验阳性; 水解酪素;液化明胶,不水解淀粉,还原硝酸盐;利用葡萄糖和甘露醇产酸,好氧。在碳源利用方面,可利用甘油、葡萄糖酸盐、蔗糖、葡萄糖、木糖、海藻糖、山梨醇、核糖、柠檬酸盐,不利用酒石酸盐、乳糖。好氧,在『』 7.2-8.5 培养基上生长,温度生长范围及耐受范围同》 6-1。

Ⅰ、根据权利要求Ⅰ所述的提高小麦、大麦、玉米等农作物产量的PG。微生物制剂,其特征在于,埃希氏菌属(Escherichia)
PGG-3的生态特征如下:

『『6-3菌落形态: 在『『平板上园形、光滑湿润,边缘整齐,半透明,无色素。

『『₆₋₃斜面培养特征: 薄膜状, 浅黄褐色, 液体培养混浊, 后有菌膜:

兰氏染色阴性, 无芽孢, 鞭毛周生, 运动, 原生质染色均匀;

『『6-3菌理化特性: 过氧化氢酶反应呈阴性; 氧化酶反应呈阳性; 精氨酸双水解酶反应呈阴性。》。反应阴性; 『培养液生长』天』』。1.2, 甲基红实验阳性; 不水解酪素; 不液化明胶, 不水解淀粉, 能还原硝酸盐, 利用葡萄糖、阿拉伯糖、木糖和甘露醇。产酸、产气。兼性好氧。利用蔗糖可形成果聚糖。在碳源利用方面, 可利用甘油、葡萄糖酸盐、乳糖、葡萄糖、木糖、甘露醇、阿拉伯糖、鼠李糖、山梨醇。不利用酒石酸盐、丙二酸盐、蔗糖、肌醇、海藻糖、核糖和柠檬酸盐。

5、根据权利要求1所述的提高小麦、大麦、玉米等农作物产量的16。微生物制剂,其特征在于,16。菌剂制备方法为:

原菌种培养基配方:(以1000毫升为基数)牛肉膏3—8克,蛋白胨3—8克、琼脂粉15—20克,余量为水,调PH7.2—7.5,培养温度25—30℃,进行活化两次,每次36—48小时,进入三角瓶摇床培养或茄子瓶扩繁,时间为24—36小时,然后接种子罐发酵培养,时间为24—36小时;

液体发酵培养基配方:玉米粉?一4%、豆饼粉0.5-2%、 氯化钙0.1-0.4%、硫酸铵0.1-0.5%、磷酸氢二钠0.1-0.5%, 余量为水,调PH 7.3-7.5,培养温度为28-32℃,时间24-36小时,然后转入大罐培养,时间24-32小时,通气量为1:0.5-0.8,镜检,达到200亿个/毫升,即可放罐。

提高小麦、大麦、玉米等农作物产量的門。徽生物制剂

本发明涉及一种提高小麦等农作物产量的¹¹。微生物制剂及 其制备方法。

根系、根际土壤和根际微生物构成微观生态体系,它们相互依存,相互制约。其中微生物是最活跃部分,也是土壤微生物学工作者重点研究对象。根际微生物对植物作用概括有三种:有益、有害或者无益也无害。除了认识根际微生物对作物、土壤作用及相互关系外,更重要的是应该能动地改变根际微生物区系的组份,使有益微生物占优势,改变根际环境,促进作物生长发育,提高作物产量。

本发明目的在于,研制的提高小麦、大麦、玉米等农作物产量的Pla微物生物制剂是从沙生植物根际土壤中分离筛选出的由三种混合菌Plan、Plan、Plan、Plan、Plan、Plan、Plan、Amaza,其中Plan、Plan、Amaza,属于芽孢杆菌,Plan。Amaza,其中Plan、Amaza,是有效强的抵抗能力,根据根系、土壤和根际微生物相互作用原理,定向改变根际微生物区系,使其有益根际微生物占优势,改善根际微环境,促进农作物生长发育,提高作物产量。

本发明的任务是: 『『。制剂中, 每毫升可含有』』》多亿活菌体,通过拌种, 每粒种子可粘有106—107个菌, 它们随着种子进入土壤, 当种子萌发, 开始生长发育时, 『『。菌群也生长繁殖并聚集于根际, 在根际微生物区系中占优势(已用抗菌素标记法证实)。经过大量的试验证明, 『『。菌中的『『。6—1产较多的赤霉素, 而『『。6—4产生较多的细胞分裂素; 『『。6—3有较强的溶磷作用。

本发明研制的提高小麦、大麦、 玉米等农作物产量的 % 6 微

₽ 6-1 菌落形态: 在 8 平板上 园形、带有环纹,表面光滑,边缘整齐,凸起,白色不透明;

Pl。1斜面培养特征: 树状, 白色稍带黄色, 液体培养形成菌膜, 培养时间长混浊;

『『₆₋₁个体形态: 细胞为直杆状, 『、5 — 『、7 ×1.5 — " μ 』, 芽 孢椭园形, 中生, 革兰氏阳性, 鞭毛周生, 运动, 原生质染色均匀;

『『6-1菌理化特性: 过氧化氢酶反应呈阳性; 氧化酶反应呈阴性,精氨酸双水解酶反应呈阴性。』『反应阳性;』』『培养液生长』天后『』』』, 甲基红实验阳性;水解酪素;液化明胶,不水解淀粉,不还原硝酸盐;水解蔗糖不形成果聚糖;不产生可溶性色素,在碳源利用方面,可利用甘油、葡萄糖酸盐、蔗糖、甘露醇、阿拉伯糖、葡萄糖、木糖、海藻糖、山梨醇、核糖、柠檬酸盐,不利用酒石酸盐、丙二酸盐、肌醇、鼠李糖。好氧,在『』〕』?——8.5 培养基上生长,温度最低』—5℃在15—50℃生长,耐受最高温度』』』℃,10分钟。

『『6-4菌落形态』在『『平板形成大园形菌落,较干燥。 边缘不整齐,不透明,无色素;

『 6-4 斜面培养特征: 凸起, 白色略带淡黄, 液体培养有菌膜;

Pf6-4个体形态:细胞为粗杆状,1.2—1.4×2—3.5μ■,革 兰氏染色阳性,有芽孢,椭圆形,中生。鞭毛周生,运动,细胞 质体染然不均匀。

『『6-4菌理化特性: 过氧化氢酶反应呈阳性; 氧化酶反应呈阳性, 『反应阴性; 』『液培养』天『『5』, 甲基红实验阳性; 水解酪素; 液化明胶, 不水解淀粉, 还原硝酸盐; 利用葡萄糖和甘露醇产酸, 好氧。在碳源利用方面, 可利用甘油、葡萄糖酸盐、蔗糖、葡萄糖、木糖、海藻糖、山梨醇、核糖、柠檬酸盐, 不利用酒石酸盐、乳糖。好氧, 在『『7』2一8』、5 培养基上生长, 温度生长范围及耐受范围同『6-1。

埃希氏菌属(Escherichia) Pla-3的生态特征如下:

『『6-3菌落形态: 在『『平板上园形、光滑湿润,边缘整齐, 半透明,无色素,

『『6-3斜面培养特征: 薄膜状, 浅黄褐色, 液体培养混浊, 后有菌膜,

『β₆₋₃个体形态: 细胞为直杆状, 『. 5 — 『. 6 × 1 — 1. 5 μ 1, 革 兰氏染色阴性, 无芽孢, 鞭毛周生, 运动, 原生质染色均匀;

『『6-3菌理化特性: 过氧化氢酶反应呈阳性; 接触酶反应呈阳性; 精氨酸双水解酶反应呈阴性。』『反应阴性;』『培养液生长』天』』』, 甲基紅实验阳性; 不水解酪素; 不液化明胶, 不水解淀粉, 能还原硝酸盐, 利用葡萄糖、阿拉伯糖、木糖和甘露醇。产酸、产气。兼性好氧。利用蔗糖可形成果聚糖。在碳源利用方面, 可利用甘油、葡萄糖酸盐、乳糖、葡萄糖、木糖、甘露

醇、阿拉伯糖、鼠李糖、山梨醇。不利用酒石酸盐、丙二酸盐、 蔗糖、肌醇、海藻糖、核糖和柠檬酸盐。

在制备方法上

原菌种培养基配方:(以1000毫升为基数)牛肉膏3—8克,蛋白胨3—8克、琼脂粉15—20克,余量为水,调PB7.2—7.5,培养温度25—30℃,进行活化两次,每次36—40小时,进入三角瓶摇床培养或茄子瓶扩繁,时间为24—36小时,然后接种子罐发酵培养时间为24—36小时;

液体发酵培养基配方:玉米粉?一4%、豆饼粉0.5—2%、 氯化钙0.1—0.4%、硫酸铵0.1—0.5%、磷酸氢二钠0.1—0.5%, 余量为水,调200元。5%,培养温度为20—32℃,时间24—36小时,然后转人大罐培养,时间24—32小时,通气量为1.0.5—0.8,镜检,达到200亿个/亳升,即可放罐分装和包装,其它操作均按微生物液体发酵要求进行常规灭菌。在后处理中用瓶装或采用轻质碳酸钙吸附,然后烘干,粉碎包装。

试验增产25.3%,大田试验增产17.2%,甜菜可增加糖度1.5—2.0%,对西瓜也有增加含糖作用。此外对油菜、棉花、大豆等农作物也有不同程度的增产作用。

使用方法

拌种: 农作物播种前进行拌种, 小麦等农作物播种量大的品种,以60-80毫升P6。制剂拌一亩地的种子量。 对玉米等拌种量中等的作物,拌种量10-50毫升,对播种量较小的作物如油菜等,拌种量20-30毫升。

治根: 移栽的农作物和蔬菜可用沾根的方法使菌剂进入根区。 喷施: 对于某些经济作物如棉花、瓜类等在生长期以每亩地 1 □ □ −15 □ 毫升菌剂稀释进行喷施。

实施例

(1) 首先制备門。微生物制剂

原菌种培养。(以容量! 『』『毫升为基数》用牛肉膏』克、蛋白胨5克,琼脂粉18克,余量为水,充分搅拌混均,『』调7.2—7.5,培养温度25℃,进行活化两次,每次为36—48小时,进入三角瓶或茄子瓶扩繁,然后接种子罐发酵培养;时间为24小时,其中液体发酵培养基为玉米粉21、豆饼粉21、氯化钙』。41、硫酸铵』。31、磷酸氢二钠』、21、余量为水,充分搅拌混均,调187.3—7.5、培养温度28℃,时间24小时,然后转人大罐培养,时间24小时,通气量为1.8.5—8.8,镜检,达到208个亿/毫升,放罐(在操作中均按微生物液体发酵要求进行常规灭菌)。 在后处理中采用瓶装或采用轻质碳酸钙吸附、烘干、粉碎包装。

(2) 使用方法。

以6亩冬小麦大田拌种试验,对照1亩为基数,称取每亩20公

斤小麦种子,用『G。菌剂》[毫升拌种,拌均匀,立即播种, 收获时测其结果,每亩地增加有效稳数68万个,千粒重增加1.11克,每亩地增加1.25公斤,增产率是39.2%。

实施例2:

(1) 首先制备門。微生物制剂

原菌种培养:(以容量1000毫升为基数)用牛肉膏5克、蛋白胨8克,琼脂粉15克,余量为水,充分搅拌混均, βμ调7.2—7.5,培养温度25℃,进行活化两次,每次为36—18小时,进入三角瓶或茄子瓶摇床扩禁,然后接种子罐发酵培养;时间为24小时,其中液体发酵培养基为玉米粉3%、豆饼粉0.5%、氯化钙0.25%、硫酸铵0.1%、磷酸氢二钠0.4%,余量为水,充分搅拌混均,调β17.3—7.5,培养温度30℃,时间36小时,然后转入大罐培养,时间24小时,通气量为1,0.5—0.8,镜检,达到240个亿/毫升,放罐(在操作中均按微生物液体发酵要求进行常规灭菌)。在后处理中采用瓶装或采用轻质碳酸钙吸附、烘干、粉碎包装。

(2) 使用方法:

以20亩大麦大田试验,对照7亩为基数, 称取每亩15公斤大麦种子,用7。菌剂70毫升拌种,拌均匀,立即播种,收获时测其结果,每亩地增加有效稳数28万个,千粒重增加1.51克,每亩地增加53公斤,增产率是17.4%。

实施例3:

(1) 首先制备門。微生物制剂

原菌种培养:(以容量1000毫升为基数)用牛肉膏6克、蛋白胨3克,琼脂粉20克,余量为水,充分搅拌混均, № 调7.2—7.5,培养温度30°C,进行活化两次,每次为36—48小时,进入三角瓶

或茄子瓶摇床扩紧,然后接种子罐发酵培养;时间为24小时,其中液体发酵培养基为玉米粉4%、豆饼粉1%、氯化钙0.1%、硫酸铵0.5%、磷酸氢二钠0.4%,余量为水,充分搅拌混均,调0%1.3—7.5,培养温度30°C,时间36小时,然后转入大罐培养,时间24小时,通气量为1,0.5—0.8,镜检,达到282个亿/毫升,放罐(在操作中均按微生物液体发酵要求进行常规灭菌)。 在后处理中采用瓶装或采用轻质碳酸钙吸附、烘干、粉碎包装。

(2) 使用方法:

以10亩地玉米大田试验,对照5亩称取每亩80公斤玉米种子,用 906菌剂600毫升拌种,拌均匀,立即播种,收获时测其结果,每亩地增产17.2%

本发明研制的提高小麦、大麦、 玉米等农作物产量的 (%) 微生物制剂大田试验增产效果见附表:(接下页)

PG。微生物制剂大田试验塘产效果表

试验面积及	处理	海娄(个)	德重(克)	粒重(克)	千粒劑) # - #	鱼斯专
独华米		(1/1000亩)	(1/1000亩)		(克)	(千克)	(千克)
r	对照	(1) (1)	. da . da	327	16.39	327	
。 東 ・	PG 拌种	13 15 80	568	452	46.50	452	125
	1 漫路	辦	被驱养	极显著			
	医	342	466	3 5 2	45.34	352	
+ 33 + EII	多种的	460	718	513	49.36	513	5
茶 火	强聚1	華	极显著	极显著			
-	对照	364	326	302	51.84	302	
2大田東	化林9 4	392	392	3 \$ \$	53, 35	355	5 2
	1 過验	辨	极显著	极显著			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.