

Development of a Framework for Retrieval of Parameters of the Starlink Dish

Final talk for the IDP by

Roberto Castellotti

advised by Leander Seidlitz, Johannes Zirngibl

Saturdav 25th November. 2023

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

Tura Vhrantus

Starlink 101

Figure 1: starlink in a nutshell (ignoring ISL), from [1]

- retrieved ip address blocks from major cloud providers (aws,azure,oracle), as we know their position ¹
- chose 5 geographically sparse targets around the globe (for aws: ap-northeast-2, us-east-1, ap-south-1, sa-east-1, me-south-1)
- tracerouted the targets over several days

¹ the fact we know the position doesn't really mean a traceroute to a certain address is really a traceroute to that geographic area

Figure 2: First 7 hops of traceroutes to 5 AWS datacenters using ICMP

Figure 3: First 7 hops of traceroutes to 5 AWS datacenters using UDP

Figure 4: First 7 hops of traceroutes to 5 AWS datacenters using TCP

Measuring RTT changes when applying stress iperf

Figure 5: measuring RTT changes when applying stress iperf

Visualize Visible Satellites

- from celestrak.org we can download a list of Starlink's satellites TLEs
- A two-line element set (TLE) is a data format encoding a list of orbital elements of an Earthorbiting object for a given point in time, the epoch. Using a suitable prediction formula, the state (position and velocity) at any point in the past or future can be estimated to some accuracy. (from wikipedia.org)

common.calculate_visible_satellites

```
def calculate visible satellites (...):
# ...
satellites = load.tle file(stations url)
observer = Topos(observer_latitude, observer_longitude, observer_elevation)
t = load.timescale().now()
# Calculate satellite positions
positions = [(sat, (sat - observer).at(t)) for sat in satellites]
# Filter visible satellites
visible satellites = []
for sat, position in positions:
    alt. az. distance = position.altaz()
    # Satellite is above the horizon
    if alt.degrees > 0 and distance.km < distance km:
        visible satellites.append((sat, alt, az))
return visible satellites
```

Listing 1: visualizing a single obstruction map

count of visible satellites across time

Figure 6: count of visible satellites across time

Visualizing Patterns in Visible Satellites

Figure 7: Visualizing patterns in visible satellites

the gRPC api

- the dish exposes a gRPC api with server reflection, "runtime construction of requests without having stub information precompiled into the client."
- 55 "methods" are available, most of them don't work, we have 2 categories of errors: Uninmplemented, PermissionDenied and a couple of some other specific errors
- working methods: reboot, get_status, start_dish_self_test, get_history, get_device_info dish_power_save, dish_get_config, get_obstruction_map
- to see all methods: https://gist.github.com/rcastellotti/e20630366dfeaeada6cc2680f562f6ac

 $^{2\\ {\}tt https://github.com/grpc/grpc/blob/master/doc/server-reflection.md}$

Next Actions

- investigate satellite handovers following the method described in [1] (we have a working script)
- try to correlate satellite handovers with sudden drops in bandwidth
- sneak peak: https://youtu.be/PjfMPr20suw

Bibliography

[1] L. Izhikevich, M. Tran, K. Izhikevich, G. Akiwate, and Z. Durumeric. Democratizing leo satellite network measurement, 2023.