Quantum Mechanics: Chapter 4 Problems

Salmanul Faris

April 13, 2021

Problem 4.47

Solve 3D QHO using seperation of variables in Spherical Coordinates (as the potential is spherically symmetrical). Find the recursion formulas and determine the allowed energies.

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi) \tag{1}$$

where

$$Y(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}} e^{im\phi} P_l^m(\cos(\theta))$$
(2)

The Radial Equation is

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

since $V(r) = \frac{m\omega^2 r^2}{2}$,

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[\frac{m\omega^2r^2}{2} + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

define $\xi \equiv \sqrt{\frac{m\omega}{\hbar}}r$ and then $\frac{d^2u}{dr^2}$ becomes $\frac{m\omega}{\hbar}\frac{d^2u}{d\xi^2}$.

$$-\frac{\hbar^2}{2m}\frac{m\omega}{\hbar}\frac{d^2u}{d\xi^2} + \left[\frac{m\omega^2r^2}{2}\frac{\hbar}{m\omega r^2}\xi^2 + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

multiply by $\frac{2}{\hbar\omega}$ on both sides and transpose the effective potential to the right side.

$$\frac{d^2u}{d\xi^2} = \left[\xi^2 + \frac{\hbar}{m\omega}\frac{l(l+1)}{r^2} - \frac{2E}{\hbar\omega}\right]u$$

define $K \equiv \frac{2E}{\hbar\omega}$

$$\frac{d^2u}{d\xi^2} = \left[\xi^2 + \frac{l(l+1)}{\xi^2} - K\right]u\tag{3}$$

To get an approximate solution, For $\xi >> 1$

$$\frac{d^2u}{d\xi^2} \approx \xi^2 u$$

 $\implies u(\xi) \approx Ae^{\frac{-\xi^2}{2}} + Be^{\frac{\xi^2}{2}} \implies u(\xi) \approx Ae^{\frac{-\xi^2}{2}}$ (B=0 otherwise the equation will blow up)

For $\xi << 1$,

$$\frac{d^2u}{d\xi^2} \approx \frac{l(l+1)}{\xi^2}u$$

$$\implies u(\xi) \approx C\xi^{l+1} + D\xi^{-l} \implies u(\xi) \approx C\xi^{l+1} \text{(D=0 otherwise } 1/\xi^l \to \infty)$$

 $\therefore u(\xi) = \xi^{l+1} e^{\frac{-\xi^2}{2}} v(\xi). \text{ hopefully, } v(\xi) \text{ will turn out to be simpler than } u(\xi).$

$$\frac{du}{d\xi} = (\xi^{l+1})'(e^{\frac{-\xi^2}{2}}v(\xi)) + (\xi^{l+1})(e^{\frac{-\xi^2}{2}}v(\xi))'$$

$$= ((l+1)\xi^l)(e^{\frac{-\xi^2}{2}}v(\xi)(\xi)) + (\xi^{l+1})(-\xi e^{\frac{-\xi^2}{2}}v(\xi) + \frac{dv}{d\xi}e^{\frac{-\xi^2}{2}})$$

$$= (l+1)\xi^l e^{\frac{-\xi^2}{2}}v + \xi^{l+1}e^{\frac{-\xi^2}{2}}v' - \xi^{l+2}e^{\frac{-\xi^2}{2}}v$$
(4)

and

$$\frac{d^2u}{d\xi^2} = -2(l+3)\xi^{l+1}e^{\frac{-\xi^2}{2}}v + 2(l+1)\xi^l e^{\frac{-\xi^2}{2}}v' - 2\xi^{l+2}e^{\frac{-\xi^2}{2}}v' + \xi^{l+1}e^{\frac{-\xi^2}{2}}v'' - K\xi^{l+1}e^{\frac{-\xi^2}{2}}v \tag{5}$$

∴ Equation (3) becomes

$$v'' + 2v'\left(\frac{l+1}{\xi} - \xi\right) + (K - 2l - 3)v = 0$$
Let $v(\xi) \equiv \sum_{j=0}^{\infty} a_j \xi^j$ so, $v' = \sum_{j=1}^{\infty} j a_j \xi^{j-1} = \sum_{j=0}^{\infty} j a_j \xi^{j-1}$ and $\sum_{j=2}^{\infty} j (j-1) a_j \xi^{j-2}$

Substitute this to (6) and we get:

$$\sum_{j=2}^{\infty} j(j-1)a_j\xi^{j-2} + 2(l+1)\sum_{j=1}^{\infty} ja_j\xi^{j-2} - \sum_{j=1}^{\infty} ja_j\xi^j + (K-2l-3)\sum_{j=0}^{\infty} a_j\xi^j = 0$$

For the first two sums, make $j \to j + 2$, note that $\sum_{j=1}^{\infty} j a_j \xi^{j-2} = a_1 \xi^{-1} + \sum_{j=0}^{\infty} (j+2) a_{j+2} \xi^{j}$

$$\sum_{j=0}^{\infty} (j+2)(j+1)a_{j+2}\xi^{j} + 2(l+1)\left(a_{1}\xi^{-1} + \sum_{j=0}^{\infty} (j+2)a_{j+2}\xi^{j}\right) - 2\sum_{j=0}^{\infty} ja_{j}\xi^{j} + (K-2l-3)\sum_{j=0}^{\infty} a_{j}\xi^{j} = 0$$

Assuming $a_1 = 0$

$$\sum_{j=0}^{\infty} [(j+2)(j+1)a_{j+2}\xi^j + 2(l+1)(j+2)a_{j+2}\xi^j - 2ja_j\xi^j + (K-2l-3)a_j\xi^j] = 0$$

In order for the series to converge, ξ should have power 0

$$= [(j+2)(j+2l+3)a_{j+2} + (K-2j-2l-3)a_j] = 0$$

$$= (j+2)(j+2l+3)a_{j+2} = (-K+2j+2l+3)a_j$$

$$= a_{j+2} = \frac{(2j+2l+3-K)}{(j+2)(j+2l+3)}a_j$$
(7)

We have assumed $a_1=0$ so we get a sequence a_0,a_2,etc . The sequence must terminate $\exists j_{max}:a_{j_{max}+2}=0$

$$2i_{max} + 2l + 3 - K = 0$$

since $K \equiv \frac{2E}{\hbar\omega}$

$$E = \left(j_{max} + l + \frac{2}{3}\right)\hbar\omega$$

Define $j_{max} + l \equiv n$

$$\therefore E_n = \left(n + \frac{2}{3}\right)\hbar\omega$$