

Digital Systems I

Instructor: Mohammad Ghamari

Electrical and Computer Engineering Department

Chapter 8

Design of Sequential Circuits

(Finite State Machines)

Problem (in natural language) 1/0 X/Z00 0/1 0/1 0/0 1/1 01 0/0 10 1/0 Design **Analysis** Chapter 8) (Chapter 7) Cir.1 Cir.2 Cir.n

Good News ©

Almost the same steps that we took in the analysis of FSMs, but in reverse order

Synchronous and Asynchronous signals

Synchronous signal may only change with clock edges:

Asynchronous signal may change any time:

Synchronous and asynchronous signals

Synchronous signal is generated by a synchronous circuit with the same clock.

Design Steps

Step 1:

Translate natural language (word description) to state diagram

State machines Behavior

Can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented

- <u>Vending Machines</u>: which give products when the proper combination of coins is deposited
- <u>Elevators</u>: whose sequence of stops is determined by the floors requested by riders
- <u>Traffic Lights</u>, which change sequence when cars are waiting
- <u>Combination Locks</u>, which require the input of a sequence of numbers in the proper order

Cost of a bar of candy = $15 \, \text{\textsterling}$

Input N =
$$\begin{cases} 1 & 5 \notin \\ 0 & 0 \notin \end{cases}$$

Input D =
$$\begin{cases} 1 & 10 & 6 \\ 0 & 0 & 6 \end{cases}$$

Cost of a bar of candy = $15 \, \text{\textsterling}$

Input N =
$$\begin{cases} 1 & 5 \notin \\ 0 & 0 \notin \end{cases}$$

Current State		Input	Next State		Output
Q1	Q0	Money In Q'1 Q'		Q'0	Candy
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	1

Example 1. Develop a state diagram for the alarm control system of a chemical plant such that:

Starting with reset state (P = 0 & T = 0)

- If pressure goes up (P = 1) after temperature goes up (T = 1), alarm goes off while both P & T are high.
- Alarm turns off if P gets normal.
- Alarm turns on if P goes up again, while T is high.
- When T goes back to normal, above sequence repeats.

Timing Diagram

Same inputs (T=1, P=1) generate different outputs (alarm = 1 @ t0 but alarm = 0 @ t1

So we need a sequential circuit (FSM)

If pressure goes up (P = 1) after temperature goes up (T = 1), alarm goes off while both P & T are high.

State Diagram

State Diagram: Output information added

Example 7.

Add memory to a push-button; when button is pushed (P = 1) and then released (P = 0) an OFF light (L = 0) turns ON (L = 1) and remains ON until the button is pushed and released again.

Timing Diagram

- With the first clock edge (after the button is pushed) the controller goes to state **b** (where the light is still off) and remains there until the button is released.
- The next clock edge takes controller to state **c**, where the light turns on.
- Again with the first clock edge (after the button is pushed) the controller goes to state d (where the light is still
 on) and remains there until the button is released.
- The next clock edge takes the controller to state **a**, where the light turns off again.

State Diagram

Finite State Machines (FSM)

Analysis:

Logic circuit

Excitation & output equations

Excitation & output maps

Partial transition tables

Transition table/graph

(State assignment, State graph)

Design:

Natural language

State graph/state table

State minimization

State assignment, transition table

Partial transition tables

Excitation and output maps &

minimization

Excitation and output equations

Logic circuit

Design of Sequential Circuits Steps 2 - 7

Example. Use D-FFs

1) State diagram (graph)

2) State table

3) State minimization

Which one?
a or e

Redundant states will be identified and removed in this state

4) State assignment & transition table

5) Partial transition tables

Q1Q0 00, 0 11, 1 00, 1 01, 0 00, 0 XX, X XX, X

00

Q1ⁿ⁺¹ Q0ⁿ⁺¹, Z

6) Choose FFs

- D-type is the least expensive
- Different types may result in different amounts of hardware to realize combinational circuits
- Different types may be used in the same design

$$Q^{n+1} = D$$

Excitation maps = partial transition tables

$$D1 = X.Q0' + X'.Q1'.Q0$$

$$D0 = X.Q0' + X'.Q0$$

$$Z = Q1'.Q0 + X.Q1'$$

$$Q^{n+1} = D$$

Excitation maps = partial transition tables

$$D1 = (X + Q0) \cdot (X' + Q0') \cdot Q1'$$

$$D0 = (X + Q0).(X' + Q0')$$

$$Z = Q1' \cdot (X + Q0)$$

Finite-State Machines (Re-visited)

Example 9. Use D-FFs to realize the state diagram shown here.

1) State diagram (graph)

1/0 X/Z a 0/1 0/1 0/0 1/1 1/1 1/0

Try to solve this

Example 9. Use D-FFs

1) State diagram (graph)

2) State table

3) State minimization

4) State assignment & transition table

0400	X	0	1	X	0	1
Q1Q0	U			- Q1Q0 `		
00	a	c , 1	a , 0	00	10, 1	00, 0
01	b	a, 1	d, 1	01	00, 1 11, 0	11, 1
11	d	d, 0	c, 1	11	11, 0	10, 1
10	С	c, 1 a, 1 d, 0 b, 0	d , 0	10	01, 0	11, 0
			ⁿ⁺¹ , Z		Q1 ⁿ⁺¹ Q	0 ⁿ⁺¹ , Z

5) Partial transition tables

X	0	1	Q1 Q0	0	1
Q1Q0 00	1	0	00	0	0
01	0	1	01	0	1
11	1	1	11	1	0
1 0	0	1	1 0	1	1
	O	1 n+1		O Or	n+1

6) Choose FFs

- D-type is the least expensive
- Different types may result in different amounts of hardware to realize combinational circuits
- Different types may be used in the same design

7) Excitation & output maps and minimizaion

$$Q^{n+1} = D$$

Excitation maps = partial transition tables

$$D1 = X.Q1 + Q1.Q0 + X.Q0 + X'.Q1'.Q0'$$

$$D0 = X'.Q1 + Q1.Q0' + X.Q1'.Q0$$

7) Excitation & output maps and minimizaion

$$Z = X.Q0 + X'.Q1'$$

Circuit diagram

$$Z = X \cdot Q0 + X' \cdot Q1'$$

Design of synchronous circuits **using JK or T FFs** will not be covered, but you need to know what JK-FFs and T-FFs are and how they work.

Finite-State Machines (Re-visited)

Mealy Machines

Output is a function of state variables and inputs variables

Moore Machines

Output is a function of state variables only.

Mealy Machine (Example)

Moore Machine (Example)

X/Z

Moore Machine (Example)

Mealy Machine (Example)

$$Z = X . Q0 + X' . Q1'$$

Moore Machine (Example)

$$Z = Q1 . Q0 + Q1' . Q0'$$

END