NOM:

Groupe:

DEVOIR SURVEILLE DU MODULE DE STATISTIQUES

Durée: 2h

Pas d	le d	locuments	autorisés ·	- Calcu	latrices	autorisé	es
-------	------	-----------	-------------	---------	----------	----------	----

Prénom:

Le barème est seulement indicatif pour la répartition des points.
Exercice 1 (1+1+2=4 points) On considère que le poids X d'un abricot suit une loi normale d'espérance 50g et d'écart type 15 1) Calculer la probabilité qu'un abricot pèse plus de 60g.
2) Quelle est le poids auquel est supérieur les 10% d'abricot les plus lourds.
3) On vend les abricots par paquet de 10 abricots. Calculer la probabilité qu'un paquet de 10 abricots pèsent moins de 450g.
Exercice 2 (12 fois 0,5 +1+1= 8 points) Les clients arrivent dans une boulangerie selon un processus de Poisson, à raison de 30 clients à l'heure, intensité $\lambda_1 = 30 \ (h^{-1})$. 1) Calculer la probabilité que l'arrivée de deux clients soit espacée de moins de 30s.
Partie A: Avec une personne à la vente, la durée du service d'un client est variable suivant une loi exponentielle de durée moyenne $t_{m1}=1$ $min=\frac{1}{\mu_1}$. Les clients sont dans une file d'attente supposée infinie. 2) Calculer la charge A_1 de cette boulangerie.

3) Sur une heure, de combien de temps en moyenne, dispose le serveur pour mettre en place les produits dans la boulangerie
4) Calculer le temps moyen entre l'arrivé d'un client et sa sortie de la boulangerie.
5) Calculer le temps moyen d'attente d'un client avant qu'il ne commence à être servi.
6) Calculer le nombre moyen de clients en attente ou en train d'être servi.
7) Calculer le nombre moyen de clients en attente.
8) Quelle est la probabilité que 3 clients arrivent pendant un intervalle de 3 minutes.
9) Calculer la probabilité qu'il y ait 1 personne dans la file d'attente
Partie B: 10) Entre 11h30 et 13h30, les clients viennent acheter leur repas à la boulangerie. Ils arrivent alors à raison de 50 clients à l'heure, intensité $\lambda_2 = 50~(h^{-1})$, et la durée de service suit une loi exponentielle de durée moyenne $t_{m2} = 2~min = \frac{1}{\mu_2}$. Pourquoi doit-on embaucher une personne supplémentaire pour cette période.

- 11) L'embauche d'une seconde personne divise par deux la durée du service $t_{m3} = \frac{t_{m2}}{2} = 1 \ min = \frac{1}{\mu_3}$. Calculer alors W_{q2} le temps moyen d'attente d'un client avant qu'il ne commence à être servi.
- 12) Calculer le nombre moyen de client en attente dans la queue.
- 13) Quel serait le flux de client λ_3 , correspondant au même temps d'attente $W_{q3}=W_{q2}$ dans le cas où on aurait gardé **une seule personne au service** pendant le temps de midi. Pour cela, calculer W_3 , à partir de la relation $W_q=W-\frac{1}{\mu}$, puis avec $W=\frac{1}{\mu-\lambda}$ trouver λ_3 .
- 14) Sachant que le cout horaire d'un serveur supplémentaire est de 40€, qu'un client à midi rapporte en moyenne 5 € à la boulangerie, compte tenu de la différence de flux entre les deux cas, calculer le bilan financier de l'emploi de cette personne supplémentaire sur le créneau 11h30-13h30.

Exercice 3 (3 points)

On a étudié la présence de migraine dans une population de 50 hommes et 50 femmes

9 11 th 9 1 th p 1 th			 Γ -	9 6716
	Homme	Femme		
Pas migraine	33	22		
Migraine	17	28		

Au vu des observations, la présence de migraine est-elle indépendante du sexe de la personne ?

Exercice 4 (4 points)

Le tableau suivant donne le nombre de km de vélo parcourus annuellement par deux groupes d'étudiants, scientifique S et littéraire L. On suppose que le nombre de km de vélo parcourus annuellement suit une loi normale.

	effectif	Moyenne (km)	écart type de l'échantillon (km)
S	13	523	77
L	16	463	105

Peut-on dire qu'il existe une différence significative entre le nombre de km de vélo parcourus annuellement par les deux groupes d'étudiants au risque d'erreur de 5 % ?

Exercice 5 (0.5+2=2.5 points)

On considère une chaine de fabrication de batteries de type AA, de charge nominale 2450mAh. On suppose que la charge suit une loi normale $\mathcal{N}(\mu, \sigma^2)$. On prélève un échantillon de 10 batteries en fin de chaine dont on mesure la charge. Sur les 10 batteries, on a obtenu les résultats suivant: $\bar{x} = 2370 \ mAh$, écart type de l'échantillon $s = 75 \ mAh$

1) Donner une estimation ponctuelle de la moyenne μ et de la variance σ^2 de la charge de l'ensemble de la population des batteries.

2) Peut-on considérer que la moyenne de la charge des batteries produites est significativement différente de la valeur nominale pour un risque $\alpha = 5\%$?

Exercice 6 (1+2=3 points)

On a mesuré le poids en gramme de 5 souris avant et après la prise d'une protéine pendant 15 jours.

souris	1	2	3	4	5
Avant traitement	235	222	200	189	186
Post traitement	314	207	267	254	266
D					

	1°)	Calculer la moyenne et	l'écart-type	de la différence (notée D) sur l'échantillon
--	-----	------------------------	--------------	--------------------	---------	---------------------

2°)	Pensez-vous que	la prise de	e la protéine ai	t une influence	significat	ive sur l	le poids	des souris?
-----	-----------------	-------------	------------------	-----------------	------------	-----------	----------	-------------

Exercice 7 (1+2=3 points)

1) Sur un échantillon de 890 personnes, 443 préfèrent la couleur bleu, 476 aiment la musique des années 80.

Calculer l'intervalle de confiance à 95% de la proportion de personnes préférant la couleur bleue.

2) Existe-il une différence significative entre la proportion de personnes préférant la couleur bleue et la proportion de personnes aimant la musique des années 80.

Bonus (1 points) : calculer la p_value.

D: "Poids Post traitement - Poids Avant traitement".

Formulaire de probabilités

Loi binomiale
$$\mathcal{B}(n;p)$$
: $P(X=k) = C_n^k p^k (1-p)^{n-k}$ pour tout k de 0 à n; $E(X)=n$ p; $V(X)=n$ p(1-p);

Loi géométrique de paramètre
$$p: P(X = k) = p(1-p)^{k-1}; P(X > k) = (1-p)^{k};$$

$$E(X)=1/p$$
; $V(X)=(1-p)/p^2$

Loi Pascal (binomiale négative) de paramètre r et p :
$$P(X = k) = C_{k-1}^{r-1}p^r(1-p)^{k-r}$$
;

$$E(X)=r/p; V(X)=r(1-p)/p^2$$

Loi de Poisson
$$\mathcal{P}(\lambda)$$
: $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$; $E(X) = \lambda$; $V(X) = \lambda$;

Approximation: loi binomiale => loi de Poisson: si n>50 et p \le 0,1 et np <17, on remplace la loi binomiale $\mathcal{B}(n;p)$ par la loi de Poisson $\mathcal{P}(np)$.

Approximation: loi binomiale => loi Normale

si : np(1-p)>9 on remplace la loi binomiale $\mathcal{B}(n,p)$ par la loi $\mathcal{N}(np, n p(1-p))$

Approximation: loi de Poisson => loi Normale:

si λ >18 alors on remplace la loi de Poisson $\mathcal{P}(\lambda)$ par la loi $\mathcal{N}(\lambda,\lambda)$.

Formulaire files d'attente

Loi exponentielle :
$$P(X \le t) = 1 - e^{-\lambda t}$$
 ; $E(X) = \frac{1}{\lambda}$, $V(X) = \frac{1}{\lambda^2}$;

Système M/M/1/∞

Le flux d'entrée vaut λ, celui de sortie vaut μ,

Le temps de service est $t_m=1/\mu$,

C : nombre de clients présent dans le système,

C_Q: le nombre de clients présent dans la queue, 1 client est dans le service,

T : temps passé par un client dans le système,

T_Q: le temps passé par un client dans la queue.

On étudie le régime stationnaire du système (Espérance).

Charge
$$A = \frac{\lambda}{\mu} = \lambda t_m$$
 doit être inférieure à 1

μ		
Probabilité système vide	Notation	1-A
Probabilité d'attente		A
Nombre moyen de clients dans le système	L	$E(C) = \frac{A}{1 - A}$
Nombre moyen de clients en attente	L_q	$E(C_Q) = L - A = \frac{A^2}{1 - A}$
Nombre moyen de clients en service		A
Temps moyen de séjour dans le système	W	$E(T) = \frac{E(C)}{\lambda} = \frac{1}{\mu - \lambda} = \frac{1}{\mu} \left(\frac{1}{1 - A} \right)$
Temps moyen d'attente dans la queue	W_q	$E(T_Q) = W - \frac{1}{\mu} = \frac{1}{\mu} \left(\frac{A}{1 - A} \right)$
Condition d'atteinte de l'équilibre		$A = \frac{\lambda}{\mu} < 1$
Probabilité d'avoir <i>k</i> clients dans le système		$p_k = A^k (1 - A)$

Système M/D/1/∞

La durée des services des clients du système est **constante** de durée t_m . avec $\mu = \frac{1}{t_m}$

Le temps moyen d'attente est : $W_Q = \frac{1}{2\mu} \left(\frac{A}{1-A} \right)$

Le temps moyen dans le service est : $W = W_Q + \frac{1}{\mu} = \frac{1}{2\mu} \frac{2-A}{1-A}$

Nombre moyen de clients en attente est : $L_Q = \frac{A^2}{2(1-A)}$

Nombre moyen de clients dans le système : $L = L_q + A$; relation de little : $L = \lambda W$

Résumé de l'estimation

Notation:

Caractéristique	Echantillon	Population totale
Taille	n	N
Moyenne	$\overline{\mathbf{x}}$	μ
Variance	s^2	σ^2
Ecart-type	S	σ
Proportion	p_{e}	р

I ESTIMATION PONCTUELLE

$$\hat{\mu} = \overline{x} = \frac{\sum x_i}{n} \; ; \qquad \quad \hat{p} = p_e \; ;$$

$$\hat{\sigma}^2 = \frac{n}{n-1} s^2 \text{ avec } s^2 = \frac{\sum (x_i - \overline{x})^2}{n} = \frac{\sum x_i^2}{n} - \overline{x}^2 ; \qquad \hat{\sigma} = \sqrt{\frac{n}{n-1}} s$$

II INTERVALLES DE CONFIANCE

A Moyenne d'une loi X

Hypothèses: X suit une loi Normale ou la taille de l'échantillon est supérieure à 30.

$$I = \left[\overline{x} - t \frac{\sigma}{\sqrt{n}}; \overline{x} + t \frac{\sigma}{\sqrt{n}} \right]$$

Obtention de t:

- si la variance de la population mère est connue, t est obtenu dans la table de la loi Normale $\mathcal{N}(0,1)$ pour 1- $\frac{\alpha}{2}$
- si la variance est inconnue mais estimée par ô, t est obtenu à partir de la loi de Student bilatérale à (n-1) degrés de liberté pour p = (1- α) et l'intervalle I devient :

$$I = \left[\overline{x} - t \frac{\hat{\sigma}}{\sqrt{n}}; \overline{x} + t \frac{\hat{\sigma}}{\sqrt{n}} \right]$$

B Fréquence

Hypothèses : les conditions d'approximation de la loi Binomiale par la loi Normale s'appliquent.

$$I = \left[p_{e} - t \sqrt{\frac{p_{e}(1-p_{e})}{n}}; p + t \sqrt{\frac{p_{e}(1-p_{e})}{n}} \right]$$

t est déterminé à l'aide de la table $\mathcal{N}(0,1)$ pour la valeur $1-\frac{\alpha}{2}$.

Résumé sur les tests d'hypothèse

Comparaison d'une moyenne d'échantillon à une valeur donnée

Loi Normale:

- Variance de la population σ^2 connue : $t_{obs} = \frac{\overline{x} a}{\frac{\sigma}{\sqrt{n}}}$ suit une loi $\mathcal{N}(0,1)$
- Variance de la population σ^2 inconnue : $t_{obs} = \frac{\overline{x} a}{\frac{\hat{\sigma}}{\sqrt{n}}}$ suit une loi S(n-1)

Loi quelconque (n>30): $t_{obs} = \frac{\overline{x} - a}{\frac{\hat{\sigma}}{\sqrt{n}}}$ suit une loi $\mathcal{N}(0,1)$

Comparaison d'une fréquence à une valeur donnée $\underline{p_1}$: $t_{obs} = \frac{p_e - p_1}{\sqrt{\frac{p_1(1-p_1)}{n}}}$ suit une loi $\mathcal{N}(0,1)$

Comparaison de deux moyennes

Echantillons indépendants (2 échantillons (n_1, n_2))

• Populations normales de variances connues ou grands échantillons (n>30) :

$$t_{\text{obs}} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}} \text{ suit une loi } \mathcal{N}(0,1)$$

• Populations normales et variances inconnues: petits échantillons (n≤30) :

Test préliminaire d'égalité des variances: $F_{obs} = \frac{\hat{\sigma}_1^2}{\hat{\sigma}_2^2} > 1$ suit une loi de Fischer $F_{n1-1,n2-1}$.

On estime la variance commune : $\hat{\sigma}_{c}^{2} = \frac{(n_{1}-1)\hat{\sigma}_{1}^{2} + (n_{2}-1)\hat{\sigma}_{2}^{2}}{n_{1}+n_{2}-2}$

$$t_{\text{obs}} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\hat{\sigma}_c^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \text{ suit une loi } S(n_1 + n_2 - 2)$$

Echantillons appariés: $t_{obs} = \frac{\overline{d}}{\frac{\hat{\sigma}_d}{\sqrt{n}}}$ suit une loi S(n-1) avec $\hat{\sigma}_d$ écart type estimé des écarts.

Dans chaque cas les valeurs de t_{obs} sont à comparer avec $t_{\text{th\'eo}}$ lu suivant le cas

- dans la table de la loi **Normale** $\mathcal{N}(0,1)$ pour 1- $\frac{\alpha}{2}$
- dans la table de la loi de **Student** bilatérale pour $p = (1 \alpha)$

Test du χ^2 :

- (1) Comparaison de la répartition de 2 populations, k classes
- (2) Test indépendance X₁ à k₁ classes et X₂ à k₂ classes

population observée o_i , population théorique t_i : $\mathbf{\chi}^2 = \sum_i \frac{(o_i - t_i)^2}{t_i}$

 χ^2 suit une loi du χ^2 à (k-1) ddl (1), ou à (k₁-1)(k₂-1) ddl (2)

<u>Table 1</u>: Loi Normale centrée réduite \mathcal{N} (0 ; 1) Détermination de t_p pour p=P(Z≤t_p) connue

P<0,5	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	р	
0,00	0,000	3,090	2,878	2,748	2,652	2,576	2,512	2,457	2,409	2,366	2,326	0,99
0,00	2,326	2,290	2,257	2,746	2,032 2,197	2,370 2,170	2,312 2,144	2,120	2,409	2,075	2,054	0,98
		-		•	•		•				-	
0,02	2,054	2,034	2,014	1,995	1,977	1,960	1,943	1,927	1,911	1,896	1,881	0,97
0,03	1,881	1,866	1,852	1,838	1,825	1,812	1,799	1,787	1,774	1,762	1,751	0,96
0,04	1,751	1,739	1,728	1,717	1,706	1,695	1,685	1,675	1,665	1,655	1,645	0,95
0,05	1,645	1,635	1,626	1,616	1,607	1,598	1,589	1,580	1,572	1,563	1,555	0,94
0,06	1,555	1,546	1,538	1,530	1,522	1,514	1,506	1,499	1,491	1,483	1,476	0,93
0,07	1,476	1,468	1,461	1,454	1,447	1,440	1,433	1,426	1,419	1,412	1,405	0,92
0,08	1,405	1,398	1,392	1,385	1,379	1,372	1,366	1,359	1,353	1,347	1,341	0,91
0,09	1,341	1,335	1,329	1,323	1,317	1,311	1,305	1,299	1,293	1,287	1,282	0,90
0,10	1,282	1,276	1,270	1,265	1,259	1,254	1,248	1,243	1,237	1,232	1,227	0,89
0,11	1,227	1,221	1,216	1,211	1,206	1,200	1,195	1,190	1,185	1,180	1,175	0,88
0,12	1,175	1,170	1,165	1,160	1,155	1,150	1,146	1,141	1,136	1,131	1,126	0,87
0,13	1,126	1,122	1,117	1,112	1,108	1,103	1,098	1,094	1,089	1,085	1,080	0,86
0,14	1,080	1,076	1,071	1,067	1,063	1,058	1,054	1,049	1,045	1,041	1,036	0,85
0,15	1,036	1,032	1,028	1,024	1,019	1,015	1,011	1,007	1,003	0,999	0,994	0,84
0,16	0,994	0,990	0,986	0,982	0,978	0,974	0,970	0,966	0,962	0,958	0,954	0,83
0,17	0,954	0,950	0,946	0,942	0,938	0,935	0,931	0,927	0,923	0,919	0,915	0,82
0,18	0,915	0,912	0,908	0,904	0,900	0,896	0,893	0,889	0,885	0,882	0,878	0,81
0,19	0,878	0,874	0,871	0,867	0,863	0,860	0,856	0,852	0,849	0,845	0,842	0,80
0,20	0,842	0,838	0,834	0,831	0,827	0,824	0,820	0,817	0,813	0,810	0,806	0,79
0,21	0,806	0,803	0,800	0,796	0,793	0,789	0,786	0,782	0,779	0,776	0,772	0,78
0,22	0,772	0,769	0,765	0,762	0,759	0,755	0,752	0,749	0,745	0,742	0,739	0,77
0,23	0,739	0,736	0,732	0,729	0,726	0,722	0,719	0,716	0,713	0,710	0,706	0,76
0,24	0,706	0,703	0,700	0,697	0,693	0,690	0,687	0,684	0,681	0,678	0,674	0,75
0,25	0,674	0,671	0,668	0,665	0,662	0,659	0,656	0,653	0,650	0,646	0,643	0,74
0,26	0,643	0,640	0,637	0,634	0,631	0,628	0,625	0,622	0,619	0,616	0,613	0,74
0,20	0,613	0,610	0,607	0,604	0,601	0,598	0,595	0,592	0,589	0,586	0,583	0,73
	-			•							-	
0,28	0,583	0,580	0,577	0,574	0,571	0,568	0,565	0,562	0,559	0,556	0,553	0,71
0,29	0,553	0,550	0,548	0,545	0,542	0,539	0,536	0,533	0,530	0,527	0,524	0,70
0,30	0,524	0,522	0,519	0,516	0,513	0,510	0,507	0,504	0,502	0,499	0,496	0,69
0,31	0,496	0,493	0,490	0,487	0,485	0,482	0,479	0,476	0,473	0,470	0,468	0,68
0,32	0,468	0,465	0,462	0,459	0,457	0,454	0,451	0,448	0,445	0,443	0,440	0,67
0,33	0,440	0,437	0,434	0,432	0,429	0,426	0,423	0,421	0,418	0,415	0,412	0,66
0,34	0,412	0,410	0,407	0,404	0,402	0,399	0,396	0,393	0,391	0,388	0,385	0,65
0,35	0,385	0,383	0,380	0,377	0,375	0,372	0,369	0,366	0,364	0,361	0,358	0,64
0,36	0,358	0,356	0,353	0,350	0,348	0,345	0,342	0,340	0,337	0,335	0,332	0,63
0,37	0,332	0,329	0,327	0,324	0,321	0,319	0,316	0,313	0,311	0,308	0,305	0,62
0,38	0,305	0,303	0,300	0,298	0,295	0,292	0,290	0,287	0,285	0,282	0,279	0,61
0,39	0,279	0,277	0,274	0,272	0,269	0,266	0,264	0,261	0,259	0,256	0,253	0,60
0,40	0,253	0,251	0,248	0,246	0,243	0,240	0,238	0,235	0,233	0,230	0,228	0,59
0,41	0,228	0,225	0,222	0,220	0,217	0,215	0,212	0,210	0,207	0,204	0,202	0,58
0,42	0,202	0,199	0,197	0,194	0,192	0,189	0,187	0,184	0,181	0,179	0,176	0,57
0,43	0,176	0,174	0,171	0,169	0,166	0,164	0,161	0,159	0,156	0,154	0,151	0,56
0,44	0,151	0,148	0,146	0,143	0,141	0,138	0,136	0,133	0,131	0,128	0,126	0,55
0,45	0,126	0,123	0,121	0,118	0,116	0,113	0,111	0,108	0,105	0,103	0,100	0,54
0,46	0,100	0,098	0,095	0,093	0,090	0,088	0,085	0,083	0,080	0,078	0,075	0,53
0,47	0,075	0,073	0,070	0,068	0,065	0,063	0,060	0,058	0,055	0,053	0,050	0,52
0,48	0,050	0,048	0,045	0,043	0,040	0,038	0,035	0,033	0,030	0,028	0,025	0,51
0,49	0,025	0,023	0,020	0,018	0,015	0,013	0,010	0,008	0,005	0,003	0,000	0,50
	-	0,009	0,008	0,007	0,006	0,005	0,004	0,003	0,002	0,001	0,000	p≥0,5
		- ,	- /	- /	-,	- ,	- ,	-,	- /	- ,	- ,	r-5,5

F	$\frac{p}{t_p}$. ,	. ,	- ,	. ,	. ,	3,3528	. /	. ,	3,7190
	n	0.9991	0.9992	0.9993	0.9994	0.9995	0.9996	0.9997	0.9998	0.9999

Loi de Student bilatérale à υ degrés de liberté, détermination de t_p pour p=P($|St| \le t_p$) connue

Risque bilatéral α	80%	60%	40%	20%	10%	5%	2%	1%	0,5%	0,1%
Probabilité p=1-α	0,2	0,4	0,6	0,8	0,9	0,95	0,98	0,99	0,995	0,999
v =1	0,325	0,727	1,376	3,078	6,314	12,706	31,821	63,656	318,289	636,578
v =2	0,289	0,617	1,061	1,886	2,920	4,303	6,965	9,925	22,328	31,600
v =3	0,277	0,584	0,978	1,638	2,353	3,182	4,541	5,841	10,214	12,924
v =4	0,271	0,569	0,941	1,533	2,132	2,776	3,747	4,604	7,173	8,610
v =5	0,267	0,559	0,920	1,476	2,015	2,571	3,365	4,032	5,894	6,869
v =6	0,265	0,553	0,906	1,440	1,943	2,447	3,143	3,707	5,208	5,959
v =7	0,263	0,549	0,896	1,415	1,895	2,365	2,998	3,499	4,785	5,408
v =8	0,262	0,546	0,889	1,397	1,860	2,306	2,896	3,355	4,501	5,041
v =9	0,261	0,543	0,883	1,383	1,833	2,262	2,821	3,250	4,297	4,781
v =10	0,260	0,542	0,879	1,372	1,812	2,228	2,764	3,169	4,144	4,587
v =11	0,260	0,540	0,876	1,363	1,796	2,201	2,718	3,106	4,025	4,437
v =12	0,259	0,539	0,873	1,356	1,782	2,179	2,681	3,055	3,930	4,318
v =13	0,259	0,538	0,870	1,350	1,771	2,160	2,650	3,012	3,852	4,221
v =14	0,258	0,537	0,868	1,345	1,761	2,145	2,624	2,977	3,787	4,140
v =15	0,258	0,536	0,866	1,341	1,753	2,131	2,602	2,947	3,733	4,073
v =16	0,258	0,535	0,865	1,337	1,746	2,120	2,583	2,921	3,686	4,015
v =17	0,257	0,534	0,863	1,333	1,740	2,110	2,567	2,898	3,646	3,965
v =18	0,257	0,534	0,862	1,330	1,734	2,101	2,552	2,878	3,610	3,922
v =19	0,257	0,533	0,861	1,328	1,729	2,093	2,539	2,861	3,579	3,883
v =20	0,257	0,533	0,860	1,325	1,725	2,086	2,528	2,845	3,552	3,850
v =21	0,257	0,532	0,859	1,323	1,721	2,080	2,518	2,831	3,527	3,819
v =22	0,256	0,532	0,858	1,321	1,717	2,074	2,508	2,819	3,505	3,792
v =23	0,256	0,532	0,858	1,319	1,714	2,069	2,500	2,807	3,485	3,768
v =24	0,256	0,531	0,857	1,318	1,711	2,064	2,492	2,797	3,467	3,745
v =25	0,256	0,531	0,856	1,316	1,708	2,060	2,485	2,787	3,450	3,725
v =26	0,256	0,531	0,856	1,315	1,706	2,056	2,479	2,779	3,435	3,707
v =27	0,256	0,531	0,855	1,314	1,703	2,052	2,473	2,771	3,421	3,689
v =28	0,256	0,530	0,855	1,313	1,701	2,048	2,467	2,763	3,408	3,674
v =29	0,256	0,530	0,854	1,311	1,699	2,045	2,462	2,756	3,396	3,660
v =30	0,256	0,530	0,854	1,310	1,697	2,042	2,457	2,750	3,385	3,646
v =∞	0,253	0,524	0,842	1,282	1,645	1,960	2,326	2,576	3,090	3,291

Loi du χ^2 à υ degrés de liberté, détermination de X^2 pour p= P(X \le X^2) connue

probabilité	0,001	0,005	0,01	0,025	0,05	0,1	0,5	0,9	0,95	0,975	0,99	0,995	0,999	0,9995
v =1				0,001	0,004	0,02	0,45	2,71	3,84	5,02	6,63	7,88	10,83	12,12
v =2	0,00	0,01	0,02	0,05	0,10	0,21	1,39	4,61	5,99	7,38	9,21	10,60	13,82	15,20
v =3	0,02	0,07	0,11	0,22	0,35	0,58	2,37	6,25	7,81	9,35	11,34	12,84	16,27	17,73
υ =4	0,09	0,21	0,30	0,48	0,71	1,06	3,36	7,78	9,49	11,14	13,28	14,86	18,47	20,00
v =5	0,21	0,41	0,55	0,83	1,15	1,61	4,35	9,24	11,07	12,83	15,09	16,75	20,51	22,11
v =6	0,38	0,68	0,87	1,24	1,64	2,20	5,35	10,64	12,59	14,45	16,81	18,55	22,46	24,10
υ =7	0,60	0,99	1,24	1,69	2,17	2,83	6,35	12,02	14,07	16,01	18,48	20,28	24,32	26,02
v =8	0,86	1,34	1,65	2,18	2,73	3,49	7,34	13,36	15,51	17,53	20,09	21,95	26,12	27,87
v =9	1,15	1,73	2,09	2,70	3,33	4,17	8,34	14,68	16,92	19,02	21,67	23,59	27,88	29,67
v =10	1,48	2,16	2,56	3,25	3,94	4,87	9,34	15,99	18,31	20,48	23,21	25,19	29,59	31,42
υ =11	1,83	2,60	3,05	3,82	4,57	5,58	10,34	17,28	19,68	21,92	24,73	26,76	31,26	33,14
υ =12	2,21	3,07	3,57	4,40	5,23	6,30	11,34	18,55	21,03	23,34	26,22	28,30	32,91	34,82
v =13	2,62	3,57	4,11	5,01	5,89	7,04	12,34	19,81	22,36	24,74	27,69	29,82	34,53	36,48
v =14	3,04	4,07	4,66	5,63	6,57	7,79	13,34	21,06	23,68	26,12	29,14	31,32	36,12	38,11
v =15	3,48	4,60	5,23	6,26	7,26	8,55	14,34	22,31	25,00	27,49	30,58	32,80	37,70	39,72
v =16	3,94	5,14	5,81	6,91	7,96	9,31	15,34	23,54	26,30	28,85	32,00	34,27	39,25	41,31
v =17	4,42	5,70	6,41	7,56	8,67	10,09	16,34	24,77	27,59	30,19	33,41	35,72	40,79	42,88
v =18	4,90	6,26	7,01	8,23	9,39	10,86	17,34	25,99	28,87	31,53	34,81	37,16	42,31	44,43
v =19	5,41	6,84	7,63	8,91	10,12	11,65	18,34	27,20	30,14	32,85	36,19	38,58	43,82	45,97
v =20	5,92	7,43	8,26	9,59	10,85	12,44	19,34	28,41	31,41	34,17	37,57	40,00	45,31	47,50
v =21	6,45	8,03	8,90	10,28	11,59	13,24	20,34	29,62	32,67	35,48	38,93	41,40	46,80	49,01
υ =22	6,98	8,64	9,54	10,98	12,34	14,04	21,34	30,81	33,92	36,78	40,29	42,80	48,27	50,51
v =23	7,53	9,26	10,20	11,69	13,09	14,85	22,34	32,01	35,17	38,08	41,64	44,18	49,73	52,00
v =24	8,08	9,89	10,86	12,40	13,85	15,66	23,34	33,20	36,42	39,36	42,98	45,56	51,18	53,48
v =25	8,65	10,52	11,52	13,12	14,61	16,47	24,34	34,38	37,65	40,65	44,31	46,93	52,62	54,95
v =26	9,22	11,16	12,20	13,84	15,38	17,29	25,34	35,56	38,89	41,92	45,64	48,29	54,05	56,41
υ =27	9,80	11,81	12,88	14,57	16,15	18,11	26,34	36,74	40,11	43,19	46,96	49,65	55,48	57,86
v =28	10,39	12,46	13,56	15,31	16,93	18,94	27,34	37,92	41,34	44,46	48,28	50,99	56,89	59,30
v =29	10,99	13,12	14,26	16,05	17,71	19,77	28,34	39,09	42,56	45,72	49,59	52,34	58,30	60,73
v =30	11,59	13,79	14,95	16,79	18,49	20,60	29,34	40,26	43,77	46,98	50,89	53,67	59,70	62,16