4190.101 **Discrete Mathematics**

Chapter 5 Induction and recursion

Gunhee Kim

Recursive Algorithms

Section 5.4

Section Summary

- Recursive Algorithms
- Proving Recursive Algorithms Correct
- Recursion and Iteration (not yet included in overheads)
- Merge Sort

Recursive Algorithms

- **Definition:** An algorithm is called *recursive* if it solves a problem by reducing it to an instance of the same problem with smaller input.
- For the algorithm to terminate, the instance of the problem must eventually be reduced to some initial case for which the solution is known.

Recursive Factorial Algorithm

- **Example**: Give a recursive algorithm for computing n!, where n is a nonnegative integer.
- Solution: Use the recursive definition of the factorial function.

```
procedure factorial (n: nonnegative integer)

if n = 0 then return 1

else return n \cdot factorial (n - 1)

{output is n!}
```

Recursive Power Algorithm

- **Example**: Give a recursive algorithm for computing a^n , where a is a nonzero real number and n is a nonnegative integer.
- **Solution**: Use the recursive definition of a^n .

```
procedure power (a: nonzero real number,
    n: nonnegative integer)

if n = 0 then return 1

else return a · power (a, n - 1)

{output is a<sup>n</sup>}
```

Recursive GCD Algorithm

- **Example**: Give a recursive algorithm for computing the greatest common divisor of two nonnegative integers *a* and *b* with *a* < *b*.
- **Solution**: Use the reduction $gcd(a,b) = gcd(b \mod a, a)$ and the condition gcd(0,b) = b when b > 0.

```
procedure gcd (a,b: nonnegative integers with a < b)

if a = 0 then return b

else return gcd (b \mod a, a)

{output is gcd(a, b)}
```

Recursive Modular Exponentiation Algorithm

- **Example**: Devise a a recursive algorithm for computing b^n mod m, where b, n, and m are integers with $m \ge 2$, $n \ge 0$, and $1 \le b \le m$.
- Solution: Use the fact that $b^n = b \cdot b^{n-1}$ and that $x \cdot y \mod m = x \cdot (y \mod m) \mod m$
- Note that this algorithm takes O(n) step

```
procedure mpower (b, m, n): integers with b \ge 1, m \ge 2, and n \ge 0)

if n = 0 then

return 1

else

return (b \cdot mpower (b, m, n-1)) mod m

{output is b^n \mod m}
```

Recursive Modular Exponentiation Algorithm

- **Example**: Devise a recursive algorithm for computing b^n mod m, where b, n, and m are integers with $m \ge 2$, $n \ge 0$, and $1 \le b \le m$.
- **Solution**: Use the fact that $b^{2k} = b^{k\cdot 2} = (b^k)^2$.
- What is the complexity? Takes O(log n) step
 - The time complexity of a recursive algorithm depends on the number of recursive calls it makes.

```
procedure mpower (b,m,n): integers with b>0 and m\geq 2,\ n\geq 0)

if n=0 then
	return 1

else if n is even then
	return mpower(b,n/2,m)^2 mod m

else
	return (mpower(b,\lfloor n/2\rfloor,m)^2 mod m\cdot b mod m) mod m

{output is b^n mod m}
```

Recursive Binary Search Algorithm

- Example: Construct a recursive version of a binary search algorithm.
- **Solution**: Assume we have $a_1, a_2, ..., a_n$, an increasing sequence of integers. Initially i is 1 and j is n. We are searching for x.

```
procedure binary search(i, j, x : integers, 1 \le i \le j \le n)

m := \lfloor (i+j)/2 \rfloor

if x = a_m then
	return m

else if (x < a_m \text{ and } i < m) then
	return binary search(i, m-1, x)

else if (x > a_m \text{ and } j > m) then
	return binary search(m+1, j, x)

else return 0

{output is location of x in a_1, a_2, ..., a_n if it appears, otherwise 0}
```

Proving Recursive Algorithms Correct

- Both mathematical and strong induction are useful techniques to show that recursive algorithms always produce the correct output.
- **Example**: Prove that the algorithm for computing the powers of real numbers is correct.
- **Solution**: Use mathematical induction on the exponent *n*.
 - BASIS STEP: $a^0 = 1$ for every nonzero real number a, and power(a,0) = 1.
 - INDUCTIVE STEP: The inductive hypothesis is that $power(a,k) = a^k$, for all $a \ne 0$. Assuming the inductive hypothesis, the algorithm correctly computes a^{k+1} , since

$$power(a, k + 1) = a \cdot power(a, k) = a \cdot a^k = a^{k+1}$$
.


```
procedure power(a: nonzero real number, n: nonnegative integer) if n = 0 then return 1 else return a \cdot power(a, n - 1) {output is a^n}
```

Merge Sort

- Merge Sort works by iteratively splitting a list (with an even number of elements) into two sublists of equal length until each sublist has one element.
- Each sublist is represented by a balanced binary tree.
- At each step a pair of sublists is successively merged into a list with the elements in increasing order. The process ends when all the sublists have been merged.
- The succession of merged lists is represented by a binary tree.

Merge Sort

• **Example**: Use merge sort to put the list 8,2,4,6,9,7,10, 1, 5, 3

into increasing order.

• Solution:

Recursive Merge Sort

- **Example**: Construct a recursive merge sort algorithm.
- **Solution**: Begin with the list of *n* elements *L*.

```
procedure mergesort (L = a_1, a_2,...,a_n)

if n > 1 then

m := \lfloor n/2 \rfloor

L_1 := a_1, a_2,...,a_m

L_2 := a_{m+1}, a_{m+2},...,a_n

L := merge(mergesort(L_1), mergesort(L_2))
{L is now sorted into elements in increasing order}
```

Recursive Merge Sort

Subroutine merge, which merges two sorted lists.

```
procedure merge(L_1, L_2 : sorted lists)
L := empty list
while L_1 and L_2 are both nonempty
  remove smaller of first elements of L_1 and L_2 from its list;
  put at the right end of L
  if this removal makes one list empty
  then remove all elements from the other list and append them to L
  return L {L is the merged list with the elements in increasing order}
```

• Complexity of Merge: Two sorted lists with m elements and n elements can be merged into a sorted list using no more than m + n - 1 comparisons.

Merging Two Lists

• Example: Merge the two lists 2,3,5,6 and 1,4.

• Solution:

TABLE 1 Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.			
First List	Second List	Merged List	Comparison
2356	1 4		1 < 2
2356	4	1	2 < 4
3 5 6	4	1 2	3 < 4
5 6	4	1 2 3	4 < 5
5 6		1 2 3 4	
		123456	

Complexity of Merge Sort

- Complexity of Merge Sort: The number of comparisons needed to merge a list with n elements is $O(n \log n)$.
- For simplicity, assume that n is a power of 2, say 2^m .
- At the end of the splitting process, we have a binary tree with m levels, and 2^m lists with one element at level m.
- The merging process begins at level m with the pairs of 2^m lists with one element combined into 2^{m-1} lists of two elements. Each merger takes one comparison.
- The procedure continues, at each level (k = m, m-1, ..., 3, 2, 1) 2^k lists with 2^{m-k} elements are merged into 2^{k-1} lists, with 2^{m-k+1} elements at level k-1.
 - We know (by the complexity of the merge subroutine) that each merger takes at most $2^{m-k} + 2^{m-k} 1 = 2^{m-k+1} 1$ comparisons.

Complexity of Merge Sort

 Summing over the number of comparisons at each level, shows that

$$\sum_{k=1}^{m} 2^{k-1} (2^{m-k+1} - 1) = \sum_{k=1}^{m} 2^m - \sum_{k=1}^{m} 2^{k-1} = m2^m - (2^m - 1) = n \log n - n + 1,$$

because $m = \log n$ and $n = 2^m$.

- (The expression $\sum_{k=1}^{m} 2^{k-1}$ in the formula above is evaluated as $2^m 1$ using the formula for the sum of the terms of a geometric progression, from Section 2.4.)
- In Chapter 11, we'll see that the fastest comparison-based sorting algorithms have $O(n \log n)$ time complexity. So, merge sort achieves the best possible big-O estimate of time complexity.