Neural Networks I

Neural networks are universal function approximators that can approximate any continuous that allows you to calculate the gradient of a neural function provided the network has enough neurons (nodes).

- True
- False

Which term most precisely describes the process that process allows you to calculate the output of a neural network assuming you know the model weights?

- Backpropagation
- Bias nodes
- Forward propagation
- Gradient descent
- Hidden units
- Neurons
- Output nodes

Which term most precisely describes the process network model's cost function with respect to the weights?

- Backpropagation
- Bias nodes
- Forward propagation
- Gradient descent
- Hidden units
- Neurons
- Output nodes

Which term most precisely describes the optimization method used to iteratively converge upon the model weights that best minimize the cost function of the neural network?

- Backpropagation
- Bias nodes
- Forward propagation
- Gradient descent
- Hidden units
- Neurons
- Output nodes

What's the hype around neural networks?

Character/handwriting recognition

Language translation

Medical diagnosis

Automated financial trading systems

And some other interesting computer vision applications...

Kyle Bradbury

Neural Networks I

Lecture 18

4

Image-to-image translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint (2017).

Image-to-image translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint (2017).

Image-to-image translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint (2017).

Image Style Transfer

Dumoulin, Vincent, Jonathon Shlens, and Manjunath Kudlur. "A learned representation for artistic style." CoRR, abs/1610.07629 2.4 (2016): 5.

What makes neural networks special?

Neural network learning is representation learning

Previous ML algorithms we discussed required us to manually determine feature transformations

Neural networks **learn** feature transformations

Output (object identity)

3rd hidden layer

2nd hidden layer (corners and

Image from Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y., 2016. Deep learning (Vol. 1, No. 2). Cambridge: MIT press.

Neural Networks I Lecture 18 10 **Kyle Bradbury**

What is a neural network and how does it work?

How do we optimize model weights? (i.e. how do we fit our model to data)

What are the challenges of using neural networks?

Recall our goal in supervised learning

y = f(x, w)Labels Parameter(s) Model Input Data

Perceptron

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

Source: Abu-Mostafa, Learning from Data, Caltech

Multilayer Perceptron

What if we stuck multiple perceptrons together?

Perceptron #1

 x_1 $\hat{f}_1(\mathbf{x}) = sign(\mathbf{w}_1^T \mathbf{x})$

+1

The sharp boundary is due to our sign function

Perceptron #2

 x_1 $\hat{f}_2(\mathbf{x}) = sign(\mathbf{w}_2^T \mathbf{x})$

Source: Abu-Mostafa, Learning from Data, Caltech

Multilayer perceptron:
$$\hat{f}(x) = \begin{cases} +1 & \hat{f}_1(x) \neq \hat{f}_2(x) \\ -1 & \hat{f}_1(x) = \hat{f}_2(x) \end{cases}$$

$$\hat{f}_1(\mathbf{x}) = sign(\mathbf{w}_1^T \mathbf{x})$$

$$\hat{f}_2(\mathbf{x}) = sign(\mathbf{w}_2^T \mathbf{x})$$

Source: Abu-Mostafa, Learning from Data, Caltech

Multilayer Perceptron

The more nodes/neurons, the more flexible is the model

Source: Abu-Mostafa, Learning from Data, Caltech

Universal function approximation

"A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly."

Ian Goodfellow, Deep Learning
Creator of generative adversarial networks

Input nodes / neurons

Simply passes the input value to the next layer

Hidden & output nodes

Calculate the **activations**: linear combinations of weights and the last layer's output

We often choose a

sigmoid activation:

Calculate node output: apply the **activation function** to the activations

Represented as:

Kyle Bradbury Neural Networks I Lecture 18 19

 $f(a_i) = \sigma(a_i) = \frac{1}{1 + e^{-a_i}}$

Simple Neural Network

(a more precise

Forward Propagation

Calculating the output from input

$$a_1 = (0.9)(1.0) + (0.3)(0.5) = 1.05$$

$$a_2 = (0.2)(1.0) + (0.8)(0.5) = 0.6$$

$$z_1 = \sigma(a_1) = \sigma(1.05) = 0.741$$

$$z_2 = \sigma(a_2) = \sigma(0.6) = 0.646$$

Output layer calculations

$$a_y = (0.2)(0.741) + (0.5)(0.646)$$

= 0.471

Hidden layer calculations

$$y = a_y = 0.471$$
 Regression

Alternatively...

$$y = \sigma(a_y) = \sigma(0.471) = 0.616$$
Classification

$$\sigma(a_i) = \frac{1}{1 + e^{-a_i}}$$

Rashid, Make Your Own Neural Network

Forward Propagation

Calculating the output from input

Hidden layer matrix calculations

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$
 The weights INTO node z_1 The weights INTO node z_2

$$\boldsymbol{a} = \boldsymbol{W}\boldsymbol{x} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} w_{11}x_1 + w_{12}x_2 \\ w_{21}x_1 + w_{22}x_2 \end{bmatrix}$$

$$z = \sigma(a) = \begin{bmatrix} \sigma(w_{11}x_1 + w_{12}x_2) \\ \sigma(w_{21}x_1 + w_{22}x_2) \end{bmatrix}$$

Forward Propagation

Example neural network with L=3 layers and the *i*th layer has N_i nodes

Simple steps for forward propagation:

For
$$i = 1$$
 to $L - 1$:

$$\mathbf{z}^{(i)} = \sigma(\mathbf{W}^{(i)}\mathbf{z}^{(i-1)})$$

Where:

$$\mathbf{z}^{(0)} = \mathbf{x}$$
$$\widehat{\mathbf{v}} = \mathbf{z}^{(L)}$$

Prediction error is measured:

$$E_n = \frac{1}{2}(\hat{y}_n - y_n)^2$$

Sudeep Raja, A Derivation of Backpropagation in Matrix Form

Neural networks can be customized

Neural networks can be customized

From binary to multiclass classification

For **binary classification** with a sigmoid activation function, the output is between zero and one, so threshold this value to assign the class

Softmax

Generalization of the logistic function to multiple dimensions

Always sums to 1 (normalizes to be a probability distribution)

From binary to multiclass classification

For **multiclass problems**, we can have multiple outputs and use a softmax function:

$$y_i = g(a_i) = \frac{e^{a_i}}{\sum_{n=1}^{M} e^{a_n}}$$

Choose the largest y value as the predicted class

As with many aspects of neural networks this is on of a number of approaches

Next time...

What is a neural network and how does it work?

How do we optimize model weights? (i.e. how do we fit our model to data)

What are the challenges of using neural networks?