

1 Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Tran-
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2 Einheiten

Potenz	Vorsatz	Potenz Vorsatz	Hz	s^{-1}
10 ¹²	Т	10 ⁻¹ d	N	$kgms^{-2}$
10^{9}	G	10^{-2} c	J	Nm = VAs
10^{6}	М	10 ⁻³ m	W	$VA = Js^{-1}$
10^{3}	k	10^{-6} μ	C	As
10^{2}	h	10 ⁻⁹ n	V	JC^{-1}
10^{1}	da	10 ⁻¹² p	F	CV^{-1}
	ļ.	10^{-15} f	Ω	VA^{-1} VsA^{-1}
		- 1	H	VsA^{-1}

$$Bit \xrightarrow{\cdot 8} Byte \xrightarrow{\cdot 1024} kByte \xrightarrow{\cdot 1024} MByte$$

3 Polyadische Zahlensysteme

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i = d_{p-1}...d_1d_0.d_{-1}...d_n$$

$$Z: \mathsf{Zahl}, \quad r: \mathsf{Basis}, \quad d_i: \mathsf{Ziffer}, \quad p: \#\mathsf{Ziffern} \text{ vorne} \quad n: \#\mathsf{Nachkommastellen}$$

Binäres Zahlensystem:

$$\begin{array}{lll} d_{i2} \in 0,1 & B = \sum\limits_{i=-n}^{p-1} 2^i \cdot d_i & d_{-n} : LSB; & d_{p-1} : MSB \\ & & & \\ \text{Octalsystem:} & & & \\ d_{i8} \in 0,1,2,3,4,5,6,7 & & d_{i16} \in 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F \\ \end{array}$$

Benötigte Bits: N:n Bit. M:m Bit $N+M: \max\{n,m\}+1$ Bit $N \cdot M : n + m$ Bit

3.1 Umrechnung

0.1 0	o.i o.i.i.e.						
	$Z \ge 1$	Z < 1					
$r \rightarrow 10$	$Z_{10} = \sum_{i} r^{i} \cdot d_{i}$ $101_{2} \rightarrow 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$	$Z_{10} = \sum_{i} r^{-i} \cdot d_{-i}$ 0.11 ₂ \to 1 \cdot 0.5 + 1 \cdot 0.25					
	$d_i=Z_{10}\%r^i~(d_i=Z_{10}~{ m mod}~r^i)$ $58/8=7~{ m Rest}~2(LSB)$ $7/8=0~{ m Rest}~7(MSB)$ (Ende wenn 0 erreicht)	$0.4 \cdot 2 = 0.8$ Übertrag $0(MSB)$ $0.8 \cdot 2 = 1.6$ Übertrag 1 (Wiederholen bis 1 oder Periodizität)					
	Auf Ende achten $1r3\%5 \rightarrow 0r1$						

Bsp: Wandle 2 in -2 um

Wertebereich: $-2^{n-1} \le Z \le 2^{n-1} - 1$ 3.2 Zweierkomplement

 $Z \rightarrow -Z$ (Umkehrung gleich) 1. Invertieren aller Bits

 $0010 \Rightarrow 1101$ 2. Addition von 1 1101 + 1 = 11103. Ignoriere Überträge beim MSB \Rightarrow $-2_{10} = 1110_2$

3.3 Gleitkommadarstellung nach IEEE 754

Bitverteilung(single/double):

s(1) $e(8/11)$ $f(23/52)$	

s: Vorzeichen, e: Exponent, f: Mantisse (Nachkommastellen! $2^{-1}2^{-2}...$)

Spezialwerte: $Z=0 \Leftrightarrow e=0$ $Z=+(-)\infty \Leftrightarrow e=255, s=0(1)$

$ \begin{array}{l} \textbf{IEEE} \rightarrow \textbf{Wert} \ Z \\ Z = (-1)^s \cdot (1+0.f) \cdot 2^{e-127} \\ \end{array} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{l} \textbf{Wert } Z \rightarrow \textbf{IEEE} \ (\text{Bin\"{a}rdarstellung}) \\ s = 0 (\text{positiv}), \ s = 1 (\text{negativ}) \\ Z \rightarrow Z_2 \ (\text{beim Komma teilen}) \\ Z_2 \ \text{n-mal shiften} \rightarrow 1.xxx \dots \\ \text{Exponent } e = n + 127 \rightarrow e_2 \\ \text{Mantisse} \ f_2 = xxx \dots \end{array}$	$\begin{aligned} & Bsp:\ Z = 11.25 \\ & s = 0 \\ & Z = 1011.01_2 \\ & Z = 1.01101_2 \cdot 2^3 \\ & e = 3 + 127 = 130 = 10000010_2 \\ & f = 01101000 \dots_2 \end{aligned}$
$\begin{aligned} & \text{Wert } Z \to \text{IEEE (Formel)} \\ & s = 0 (\text{positiv}), s = 1 (\text{negativ}) \\ & E = \lfloor \log_2 Z \rfloor \\ & e = E + 127 \to e_2 \\ & f = \left(\frac{ Z }{2^E} - 1\right) \cdot 2^{23} \to f_2 \end{aligned}$	$\begin{array}{l} Bsp:\ Z=11.25\\ s=0\\ E=\lfloor\log_2 11.25 \rfloor=\lfloor3,49\ldots\rfloor=3\\ e=3+127=130=10000010_2\\ f=\left(\frac{ 11.25 }{2^3}-1\right)\cdot 2^{23}=3407872=\\ 01101000\ldots_2 \end{array}$

4 Zeichenkodierung

4.1 ASCII

American Standard Code for Information Exchange Fixe Codewortlänge (7 Bit, 128 Zeichen) 0x00 - 0x7F

4.2 UTF-8

Universal Character Set Transformation Format Variable Codewortlänge (1-4 Byte) → Effizient

Schema

- MSB = 0 → 8 Bit (restliche Bit nach ASCII)
- MSB = $1 \rightarrow 16$, 24 oder 32 Bit
 - Byte 1: Die ersten 3, 4, 5 Bit geben die Länge des Codewortes an (110, 1110, 11110)
 - Byte 2-4: Beginnen mit Bitfolge 10

4.3 Zahlensysteme

Base 2	Base 8	Base 16
0000	0 o00	0 x0
0001	0o 01	0x1
0010	0o 02	0 x2
0011	0o 03	0 x3
0100	0o 04	0x4
0101	0o 05	0 x5
0110	0o 06	0 x6
0111	0o 07	0x7
1000	0o 10	0 x8
1001	0 o11	0 x9
1010	0o 12	0xA
1011	0o 13	0xB
1100	0 o14	0xC
1101	0o 15	0xD
1110	0o 16	0xE
1111	0 o17	0xF
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1110 1101 1110	0000 0000 0001 0001 0010 0002 0011 0003 0100 0004 0101 0005 0110 0006 0111 0007 1000 0010 1001 0011 1010 0012 1011 0013 1110 0014 1101 0015 1110 0016

5 Boolsche Algebra

5.1 Boolsche Operatoren (Wahrheitstabelle WT)

			A D out	A B — out	A B — out	Aout	A Do-out	A B O-out
			n	n → → → ×	n	Р	n P	n
			A — & B — Y	A 21 -Y	A =1 =1 -Y	А — & D—Y	A = ≥1 D=Y	A =1 D-Y
	x	у	AND	OR	XOR	NAND	NOR	EQV
			$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$x \oplus y$
-	0	0	0	0	0	1	1	1
_	0	1	0	1	1	1	0	0
	1	0	0	1	1	1	0	0
_	1	1	1	1	0	0	0	1
ŀ	Konfiguration: $f = c_1 + c_2 + c_3 \Rightarrow cov(f) = \{c_1, c_2, c_3\}$ $x \oplus y \equiv x\overline{y} + \overline{x}y$							

5.2 Gesetze der boolschen Algebra

	Boolsche Algebra	Managed
	Ŭ .	Mengenalgebra
	$(0,1;\cdot,+,\overline{x})$	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$
Kommutativ	$x \cdot y = y \cdot x$	$A \cap B = B \cap A$
	x + y = y + x	$A \cup B = B \cup A$
Assoziativ	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$(A \cap B) \cap C = A \cap (B \cap C)$
	x + (y+z) = (x+y) + z	$(A \cup B) \cup C = A \cap (B \cup C)$
Distributiv	$x \cdot (y+z) = x \cdot y + x \cdot z$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$x + (y \cdot z) = (x + y) \cdot (x + z)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Indempotenz	$x \cdot x = x$	$A \cap A = A$
	x + x = x	$A \cup A = A$
Absorption	$x \cdot (x+y) = x$	$A \cap (A \cup B) = A$
	$x + (x \cdot y) = x$	$A \cup (A \cap B) = A$
Neutral	$x \cdot 1 = x$	$A \cap G = A$
	x + 0 = x	$A \cup \emptyset = A$
Dominant	$x \cdot 0 = 0$	$A \cap \emptyset = \emptyset$
	x + 1 = 1	$A \cup G = G$
Komplement	$x \cdot \overline{x} = 0$	$A \cap \overline{A} = \emptyset$
	$x + \overline{x} = 1$	$A \cup \overline{A} = G$
	$\overline{\overline{x}} = x$	$\overline{\overline{A}} = A$
De Morgan	$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
· ·	$\frac{\overline{x} + y}{\overline{x} + y} = \overline{x} \cdot \overline{y}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
	-	1

5.3 Boolesche Funktionen

$$f: \{0,1\}^n \to \{0,1\}$$
 $f(\underline{x}) = f(x_1, x_2, \dots, x_n)$

Einsmenge F von f: $F = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 1\}$ Nullmenge \overline{F} von $f: \overline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 0\}$

Kofaktor bezüglich

- $x_i: f_{x_i} = f|_{x_i=1} = f(x_1, \dots, 1, \dots, x_n)$
- $\bullet \ \overline{x}_i: f_{\overline{x}_i} = f|_{x_i=0} = f(x_1, \dots, 0, \dots, x_n)$

Eigenschaften von $f(\underline{x})$

- tautologisch $\Leftrightarrow f(x) = 1 \quad \forall x \in \{0, 1\}^n$
- kontradiktorisch $\Leftrightarrow f(\mathbf{x}) = 0 \quad \forall \mathbf{x} \in \{0, 1\}^n$
- unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i}$
- abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x}_i}$

5.4 Multiplexer

 $f = x \cdot a + \overline{x} \cdot b$ (2 Eingänge a, b und 1 Steuereingang x) $f = \overline{x}_1 \overline{x}_2 a + \overline{x}_1 x_2 b + x_1 \overline{x}_2 c + x_1 x_2 d$ (Eingänge: a, b, c, d Steuerung: x_1, x_2)

5.5 Wichtige Begriffe

Wichtige Begriffe:	Definition	Bemerkung
Signalvariable	x	$\hat{x} \in \{0, 1\}$
Literal	$l_i = x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
Minterme,0-Kuben	$MOC i m_j = \prod_{i \in I_0} l_i$	$ M0C = 2^n$
d-Kuben	$MC i c_j = \prod_{i\in I_j\subseteq I_0} l_i$	$ MC = 3^n$
Distanz	$\delta(c_i, c_j) = \{l \mid l \in c_i \land \bar{l} \in c_j\} $	$\delta_{ij} = \delta(c_i, c_j)$
Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$

DNF (DNF)	eine Summe von Produkttermen	Terme sind ODER-verknüpft
KNF (KNF)	ein Produkt von Summentermen	Terme sind UND-verknüpft
KDNF (KDNF)	Summe aller Minterme	WT: 1-Zeilen sind Minterme
KKNF (KKNF)	Menge aller Maxterme	WT: 0-Zeilen negiert sind Maxterm
VollSOP (nur 1)	Menge aller Primimplikanten	Bestimmung siehe Quine Methode
		oder Schichtenalgorithmus
MinSOP (min. 1)	Minimale Summe v. Primimplikanten	durch Überdeckungstabelle

FPGA: Field Programmable Gate Array

LUT: Look Up Table

6 Beschreibungsformen

6.1 Disjunktive Normalform/Sum of products (DNF/DNF)

Eins-Zeilen als Implikanten (UND) schreiben und alle Implikanten mit ODER verknüpfen: $Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$

6.2 Konjunktive Normalform/Product of sums (KNF/KNF)

Null-Zeilen negiert als Implikat (ODER) schreiben und alle Implikaten UND verknüpfen $Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{D}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

6.3 Umwandlung in ieweils andere Form

- 1. Doppeltes Negieren der Funktion: $Z = \overline{\overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}}$
- 2. Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{\overline{A} \cdot \overline{B}} \cdot \overline{\overline{C} \cdot D}} = \overline{(A+B) \cdot (C+\overline{D})}$ 3. Ausmultiplizieren: $Z = \overline{(A+B) \cdot (C+\overline{D})} = \overline{A \cdot C + A \cdot \overline{D} + B \cdot C + B \cdot \overline{D}}$

4. Umformung "obere" Negation (DeMorgan):

 $Z = \overline{AC} \cdot \overline{A\overline{D}} \cdot \overline{BC} \cdot \overline{B\overline{D}} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

Analog von KNF (KNF) nach DNF (DNF).

6.4 Shannon Entwicklung

$$\begin{array}{l} f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) = (f_{x_i} \oplus f_{\overline{x}_i}) \cdot x_i \oplus f_{\overline{x}_i} \\ \overline{f} = x_i \cdot \overline{f}_{x_i} + \overline{x}_i \cdot \overline{f}_{\overline{x}_i} \end{array}$$

7 Logikminimierung

7.1 Nomenklatur

- \bullet m_i Minterm: UND-Term in dem alle Variablen vorkommen (aus KDNF)
- Mi Maxterm: ODER-Term in dem alle Variablen vorkommen (aus KKNF)
- c_i Implikant: UND-Term in dem freie Variablen vorkommen können
- C_i Implikat: ODER-Term in dem freie Variablen vorkommen können
- pi Primimplikant: UND-Term mit maximal freien Variablen
- P_i Primimplikat: ODER-Term mit maximal freien Variablen

7.2 Karnaugh-Diagramm

00 01 11 10 Zyklische Gray-Codierung: 000 001 011 010 110 111 101 100 01 Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$ X 1 1

Don't Care Werte ausnutzen!

Achtung: Auf eventuelle Unterdefiniertheit überprüfen (Redundante Zeilen) (Kreiert Don't Cares) Immer vollständig mit Nullen und Einsen ausfüllen

7.3 Quine Methode

geg.: DNF/DNF oder Wertetabelle von f(x)ges.: alle Primimplikanten p_i (VolISOP)

Spezielles Resoltutionsgesetz: $x \cdot a + \overline{x} \cdot a = a$

Absorptionsgesetz: $a + a \cdot b = a$

- 1. KDNF/KDNF bestimmen (z.B. $f(x, y, z) = xy = xyz + xy\overline{z}$)
- 2. Alle Minterme in Tabelle eintragen (Index von m ist (binär)Wert des Minterms)
- 3. 1-Kubus; Minterme die sich um eine Negation unterscheiden, zu einem Term verschmolzen (Resolutionsgesetz)
- 4. Der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Minterme müssen zusam-
- 5. Wenn möglich 2-Kubus bilden.
- 6. Wenn keine Kubenbildung mehr möglich → Primimplikanten

Beispiel (Quine Methode):

		0-Kubus	Α	1-Kubus	R	Α	2-Kubus	Α	
	m_1	$\overline{x}_1\overline{x}_2x_3$	\checkmark	\overline{x}_2x_3	$m_1 \& m_5$	p_1			
	m_4	$x_1\overline{x}_2\overline{x}_3$	√	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
	m_5	$x_1\overline{x}_2x_3$	√	$x_1\overline{x}_3$	$m_4 \& m_6$	√			
	m_6	$x_1x_2\overline{x}_3$	√	$x_{1}x_{3}$	$m_5 \& m_7$	√			
	m_7	$x_1x_2x_3$	√	$x_{1}x_{2}$	$m_6 \& m_7$	√			
\Rightarrow	$\Rightarrow f(x_1, x_2, x_3) = p_1 + p_2 = \overline{x}_2 x_3 + x_1$								

7.4 Resolventenmethode

Ziel: alle Primimplikanten

Wende folgende Gesetze an:

Absorptionsgesetz: a + ab = a

allgemeines Resolutionsgesetz: $x\cdot a + \overline{x}\cdot b = x\cdot a + \overline{x}\cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- 2. bilde alle möglichen Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- 3. überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorption) und streiche diese Kuben aus Schicht 0
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen nicht mehr beachtet werden.
- 5. Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden können. ist man fertig. ⇒ alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$x\cdot w + \overline{x}\cdot w + x\cdot y\cdot w\cdot \overline{z} + \overline{x}\cdot y\cdot w\cdot \overline{z} + \overline{y}\cdot w\cdot \overline{z}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

7.5 Überlagerung Bestimmung der MinSOP

Geg: KDNF/KDNF $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: MinSOP (Minimalform)

Alternativ: Mit Überdeckungstabelle bestimmen. Bsp.

		Minterme				
Primterme	m_1	m_2		m_N	$L(p_i)$	
p_1	√				$L(p_1)$	
p_2	√			√	$L(p_2)$	
p_K		√			$L(p_K)$	
Algorithmus:						

- 1. Suche Spalten mit nur einem Minterm
- 2. Streiche andere Spalten des zugehörigen Primterms.
- 3. Streiche Primterme, dessen Minterme alle gestrichen sind

K: Anzahl der Primterme

N: Anzahl der Minterme

 $L(p_i)$: Kosten/Länge der Primimplikanten

L(z): Länge des Terms z= Summe der Literale in Teiltermen + Anzahl der Teilterme

8 Halbleiter

	Isolator	Metall	undotiert	N-Typ	P-Typ
Ladungsträger	Keine	e ⁻	e^-/e^+	e^-	e ⁺
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

9 MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

9.1 Bauteilparameter

 $\beta = K' \frac{W}{L} \text{ mit } K' =$ Verstärkung: $[\beta] = \frac{A}{V^2}$ Kanallänge $\mu \quad \mu_n \approx 250 \cdot 10^{-4} \frac{m^2}{V_0}, \, \mu_p \approx 100 \cdot 10^{-4} \frac{m^2}{V_0}$ Elektronenbeweglichkeit rel. Dielektrizität des Gateoxyds $\varepsilon_0 = 8.8541878 \cdot 10^{-12} \frac{A \text{ s}}{V}$ Dielektrizitätskonstante Gateoxyddicke $\beta = \frac{\mu_n \varepsilon_{ox} \varepsilon_0}{t_{ox}} \cdot \frac{W}{L} = K' \frac{W}{L} = \frac{\mu_n C_G}{L^2}$ Verstärkung $C_G = \varepsilon_{ox} \varepsilon_0 \frac{WL}{t_{ox}}$ $t_{pHL} \propto \frac{\varepsilon_{CL} t_{ox} L_p}{W_p \mu_p \varepsilon_{ox} (V_{DD} - |V_{th}|)}$ Kapazität Verzögerungszeit t_{pHL} Propagation delay von 90% auf 10% t_{nLH} Propagation delay von 10% auf 90% Verzögerungszeit

- große Kanalweite ⇒ große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{r}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS

 U_{GS} =6V

 U_{GS} =4V

 $U_{GS}=2V$

9.2 Drainstrom

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} & \text{(linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} & \text{(S\"{attigungsber.)}} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} & \text{(linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} & \text{(S\"{a}ttigungsber.)} \end{cases}$$

9.3 pMos und nMos

V S V_{DD}	Transistor	Source liegt immer am	$V_{GS}, V_{DS}, I_{D} \\$	Substrat
V_{GS} V_{DS}	pMos normally on	höheren Potential	< 0	$+(V_{DD})$
V_{GS}	nMos normally off	niedrigeren Potential	> 0	-(GND)
$V_{GS} \setminus S \setminus GND$ Vorsicht: $U_{GS,p} = V_{DD} - U_a$				

9.4 Kondensatoraufgaben

9.4.1 Laden

Kondensator C lädt, solange $I_D>0$ \rightarrow C lädt, solange $u_{gs}-U_{th}\geq u_{ds}\geq 0$

9.4.2 Entladen

Source und Drain werden vertauscht. Auf Gatespannung achten.

9.5 Gatterschwellspannungsaufgaben

Gatterschwellspannung ist der Punkt, wo sich beide Transistoren in Sättigung befinden.

Dann Ströme mittels Knotengleichung ausrechnen.

 V_{DD} Dann Strome milities $I_{Sat,n} = -Isat, p$

 $I_{sat,n} = -Isat, p$ Vorsicht: $U_{GS,p} = V_{DD} - U_a$

10 CMOS - Logik

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \to AND$ und $NOR \to OR$ Allerdings schlechte Pegelgenerierung.

10.1 Gatterdesign

Netzwerk	Pull-Dow n	Pull-U p	
Transistoren nMos		pMos	
AND	Serienschaltung	Parallelschaltung	
OR	Parallelschaltung	Serienschaltung	

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten.
- 2. Möglichkeit: Mit boolesche Algebra die Funktion nur mit NAND und NOR darstellen.

10.2 Umwandlung in Nand und Nor

Gatt	ter	Funktion	NAND Form	NOR Form
NO	т	\overline{A}	$\overline{A \cdot A}$	$\overline{A+A}$
AN	D	$A \cdot B$	$\overline{\overline{A\cdot B}\cdot \overline{A\cdot B}}$	$\overline{\overline{A+A}+\overline{B+B}}$
OF	R	A + B	$\overline{A \cdot A} \cdot \overline{B \cdot B}$	$\overline{\overline{A+B}} + \overline{A+B}$
NAN	ND	$\overline{A\cdot B}$	$\overline{A\cdot B}$	$\overline{\overline{A+A}+\overline{B+B}}+\overline{\overline{A+A}+\overline{B+B}}$
NO	R	$\overline{A+B}$	$\overline{\overline{A \cdot A} \cdot \overline{B \cdot B}} \cdot \overline{\overline{A \cdot A} \cdot \overline{B \cdot B}}$	$\overline{A+B}$

10.3 CMOS Verlustleistung

Inverterschaltvorgang $V_A:0 o 1$:

Achtung: Logikpegel sind über die Steigung der $|VTC| \leq 1$ des Inverters definiert. Zusammensetzung I_{short} :

Transistor	$(0, V_{tn})$ $(V_{tn}, V_{DD}/2)$ Um V_{DD}		Um $V_{DD}/2$	$(V_{DD}/2, V_{DD} - V_{tp})$	$(V_{DD} - V_{tp}, V_{DD})$	
n-MOS	Sperrt	Sättigung	Sättigung	Linear	Linear	
p-MOS	Linear	Linear	Sättigung	Sättigung	Sperrt	

 $\begin{array}{ll} \mbox{ Dynamische Verlustleistung } & P_{dyn} = P_{cap} + P_{short} \\ \mbox{ Kapazitive Verluste } & P_{cap} = \alpha_{01} f C_L V_{DD}^2 \end{array}$

Kurzschlussstrom $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$

Schalthäufigkeit $\alpha_{0\rightarrow1} = \frac{\text{Schaltvorgänge(pos. Flanke)}}{\# \text{ Betrachtete Takte}} \text{ (max 0.5)}$

Schalthäufigkeit (periodisch) $\alpha = \frac{f_{\text{switch}}}{f_{\text{clk}}}$ Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

Abhangig von den Signalmanken, mit Schaltrunktionen verknuptt $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{V_{DD}2}{V_{DD}1} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)}$ Verzögerungszeit $t_{rd} \propto \frac{C_L t_{ox} L_p}{T_{ox}}$

Verzögerungszeit $t_{pd} \propto \frac{C_L t_{ox} L_p}{W_p \mu_p \varepsilon (V_{DD} - V_{th})}$

 t_{pd} ist Zeit zwischen crossover 50% von Eingang zu crossover 50% am Ausgang. Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung

Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

Statische Verlustleistung P_{stat} : Sub-Schwellströme, Leckströme, Gate-Ströme Abhängigkeit $V_{DD}\uparrow:P_{stat}\uparrow V_{th}\uparrow:P_{stat}\downarrow$ (aber nicht proportional)

11 Volladdierer (VA)/Ripple-C(u)arry-Adder

Generate $g_n = a_n \cdot b_n$ Propagate $p_n = a_n \oplus b_n$

Summerbit $S_n = c_n \oplus p_n = a_n \oplus b_n \oplus c_n$

 $S_n = \underbrace{a_n \overline{b_n} \overline{c_n} + \overline{a_n} b_n \overline{c_n} + \overline{a_n} \overline{b_n} c_n}_{\text{disc}} + \underbrace{a_n b_n c_n}_{\text{disc}} \text{ (Ungerade Anzahl von Eingängen 1)}$

genau ein Eingang high alle Eingänge high

Carry-out $c_{n+1} = c_n \cdot p_n + g_n$

 $c_{n+1} = \underbrace{a_nb_n\overline{c_n} + a_n\overline{b_n}c_n + \overline{a_n}b_nc_n}_{\text{zwei Eingänge 1}} + \underbrace{a_nb_nc_n}_{\text{drei Eingänge 1}} \text{ (Mindesten zwei Eingänge 1)}$

Laufzeiten

$$t_{sn} = \begin{cases} t_{cn} + t_{xor} & t_{cn} > t_{xor} \\ 2t_{xor} & sonst \end{cases}$$

$$t_{cn+1} = \begin{cases} t_{and} + t_{or} & a_n = b_n = 1 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n = 0 \\ t_{cn} + t_{ond} + t_{or} & a_n \neq b_n \end{cases} \qquad (p_n = 1)$$

11.1 Multibit Addierer / Subtrahierer

Subtraktion entspricht Addition mit negiertem Subtrahenden

Zweierkomplement zur Bildung des negativen Subtrahenden

ightarrow Invertieren aller Bits des Subtrahenden und Addition von 1

 $XOR: X \oplus 0 = X, X \oplus 1 = \overline{X}$

12 Sequentielle Logik

Logik mit Gedächtnis (Speicher)

12.1 Begriffe/Bedingungen

t_{Setup}	Stabilitätszeit vor der aktiven Taktflanke
t_{hold}	Stabilitätszeit nach der aktiven Taktflanke
t_{c2q}	Eingang wird spätestens nach t_{c2q} am Ausgang verfügbar
Min. Taktperiode	$t_{clk} \ge t_{1,c2q} + t_{logic,max} + t_{2,setup}$
lax. Taktfrequenz	$f_{max} = \left[\frac{1}{t_{clk}}\right]$ (Nicht aufrunden)
loldzeitbedingung	$t_{hold} \leq t_{c2q} + t_{logic,min} \rightarrow Dummy \; Gatter \; einbauen$
Durchsatz	$\frac{1Sample}{t_{clk}, pipe} = f$
Latenz	t_u_ #Pinelinestufen (das zwischen den FFs)

12.2 Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

- Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades
- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

12.3 Parallel Processing

$$\mathsf{Durchsatz} = \frac{\#\mathsf{Modul}}{{}^t clk. Modul} = f \qquad \qquad \mathsf{Latenz} = t_{clk}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

13 Speicherelemente

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung V_{DD} wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne ${\cal V}_{DD}$ erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0\rightarrow 1}$ geschrieben.

Dynamisch Ohne Refreshzyklen gehen auch bei angelegter V_{DD} Daten verloren - Bsp: DRAM Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann.

Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten.

Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

$${\sf Speicherkapazit\"{a}t} = {\sf Wortbreite} \cdot 2^{{\sf Adressbreite}}$$

13.1 Speicherzelle/Register

Ring aus zwei Invertern. Logikpegel kann nur mit öffnen des Inverter-Rings gesetzt werden.

13.2 Latch

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter.

Α	Active Low Logik:			
S	₹ =	$0 \Rightarrow$	$Q = 1$, $\overline{R} = 0 \Rightarrow Q = 0$	
	\overline{R}	\overline{S}	Q	
	1	1	Q	
	0	1	0	
	1	0	1	
	0	0	$Q = \overline{Q}$	

Enable-Latch: ändert Speicherzustand auf D nur wenn e=1. Level-Controlled \Leftrightarrow Latch

13.3 Flip-Flop

Besteht aus zwei enable-Latches

Flip-Flop: Ändert Zustand bei steigender/(fallender) Taktflanke.

14 Automaten

DFA 6-Tupel $\{I, O, S, R, f, g\}$

I	Eingabealphabet Ausgabealphabet
O	Ausgabealphabet
S	Menge von Zuständen
$R \subseteq S$	Menge der Anfangszustände
$: S \times I \to S$	Übergangsrelation
g	Ausgaberelation
Moore Aut	tomat Mealy Automat

Moore Automat

Q

Zustandsnummerierung immer einfügen.

Moore	
Ouput hängt nur vom Zustand ab	Output
Kein direkter kombinatorischer Pfad Eingang⇒Ausgang	Gene
s' = f(s, i), o = g(s)	
g:S o O	

Mealy hängt von Zustand und Eingabe ab erell weniger Zustände als Moore. s' = f(s, i), o = g(s, i) $g: S \times I \rightarrow O$

14.1 Wahrheitstabelle einer FSM

i	$S = S_0S_n$	o	$S' = S_1' S_n'$
0	00	00,00	$S'_{0,00}$
:	:	:	:
		:	:
1	11	01.11	$S'_{1 \ 1 \ 1}$

Moore: o ist f(S), nächster Zustand S' = f(i, S)Mealy: o ist f(i, S), nächster Zustand S' = f(i, S)