Olympiades Nationales de Mathématiques 2021

2ème tour

Niveau 7C 14 mars 2021

Durée 3 h

L'épreuve est notée sur 100 points. Elle est composée de 4 exercices indépendants. Toute réponse doit être justifiée et les solutions partielles seront examinées. Calculatrice non autorisée

Exercice 1: (25 points)

Soit n un entier naturel, $n \ge 1$. On pose $\omega = e^{i\frac{2\pi}{n}}$

- 1.a) Déterminer les solutions de l'équation $z^n = 1$.
- b) Calculer le produit des solutions de l'équation précédente.
- 2.a) Soit $p \ge 0$. Calculer la somme $S_1 = \sum_{k=0}^{n-1} \omega^{kp}$.
- b) On pose $S_2 = \sum_{k=0}^{n-1} (1 + \omega^k)^n$. Montrer que $S_2 = 2n$.

Exercice 2: (25 points)

Soit n un entier naturel non nul. On note a_n et b_n les entiers tels que $\left(1+\sqrt{6}\right)^n=a_n+b_n\sqrt{6}$

- 1) Calculer a_6, b_6 et le $p \gcd(a_6, b_6)$.
- 2.a) Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- b) Montrer que, pour tout entier n non nul, 5 ne divise pas $a_n + b_n$.
- c) Montrer que, pour tout entier $n \ge 2$, a_n et b_n sont premiers entre eux.

Exercice 3: (25 points)

Soit ABC un triangle dont tous les angles sont aigus et Γ un cercle dont le centre L est situé sur le segment [BC]. On suppose que le cercle Γ est tangent à (AB) en B' et à (AC) en C'. On suppose aussi que le centre O du cercle circonscrit au triangle ABC est situé sur le petit arc B'C' du cercle Γ . Soit x, y et z les mesures en degré respectivement des angles géométriques \widehat{COB} , $\widehat{C'OB'}$ et \widehat{CAB} ; $x,y,z \in [0,180]$.

- 1.a) Justifier que x < y.
- b) Montrer que $2y z = 180^{\circ}$ puis en déduire que $z < 60^{\circ}$.
- 2) Montrer que le cercle Γ coupe le cercle circonscrit au triangle ABC en deux points.

Exercice 4: (25 points)

- 1) Soit x, y et z des nombres réels strictement positifs. Montrer que :
- a) $x + y \ge 2\sqrt{xy}$.
- b) $\frac{1}{(2x+y+z)^2} \le \frac{1}{4(x+y)(x+z)}$
- 2) Soit a, b et c des nombres réels strictement positifs tels que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c$.

Montrer que: $\frac{1}{(2a+b+c)^2} + \frac{1}{(2b+c+a)^2} + \frac{1}{(2c+a+b)^2} \le \frac{3}{16}.$

Fin.