Capstone Design 1 Team IKOH

Professor: ILKWON OH
TA: KANGKYU LEE
Group 9: Taeyeon Taehong Vivek Yesung Suhyun
Woo Seok Minwoo Jihye

HEAT VIBRATION TRANSFER CONTROL

PICK-UP

Contents

VISION PROCESSING 5 ROS NOTOR CONTROL

PROBLEM DEFINITION

What Is Our Objective?

Energy Mission (30 Points)

Time Mission (20 Points)

Pick-Up Mission (30 Points) (5)

Our Mission:

Develop an IKOH (efflcient, quicK, errOr-free, Handy) System

HEAT TRANSFER

Which Component Has the Highest Temperature?

1HEAT TRANSFER

IR Camera Image

HEAT

How Can We Reduce the Temperature?

• Why Forced Convection?

Forced Convection is 1000 times better!

HEAT TRANSFER

How Can We Cool Efficiently?

1HEAT
TRANSFER

Many Surfaces to Cool (Battery (6 sides), Converter)

How can we achieve this with minimum # of Fans?

"□" Shaped Rectangular Duct

Components Placed In Order Of Temperature

Minimize Max Temp

Hottest (Near Entrance) to Less Hot (Near Exit)

HEAT TRANSFER

How Can We Cool Efficiently?

1HEAT
TRANSFER

VIBRATION CONTROL

What are the Critical Effects of Vibration?

VIBRATION CONTROL

Inaccurate Camera Ball Detection

Main Causes of Vibration Unsteady
Wheel-Ground
Contact

Ball Collecting Fan

Fan Stops During Ball Detecting Step

Mecanum Wheel

VIBRATION

CONTROL

VIBRATION CONTROL

How Do We Control Vibration?

Step 1: Check for Resonance

Step 2: Add Spring-Damper

0.0001

0.00001

0.000001

PICK-UP SYSTEM

Our Ball Picking System

3 PICK UP SYSTEM

Basket

Backdoor

Non Actuator Mechanism

Cost is important in Engineering!

PICK-UP SYSTEM

Our Ball Releasing Mechanism

Vision Recognition

- Alter HSV values
- Optimize morphological values

- Add green balls

HSV Fitting

⇒ Alter HSV values to fit condition

Morphology

⇒ Dilate image through

morphological process (widen "white" area)

VISION PROCESSING

Detect basket

⇒ Add green ball(basket)

PROCESSING

Actual Recognition

Overall System Mechanism

Ball Picking Algorithm

- 4. Repeat three times, until all three blue balls are collected
- 3. Pick the ball and scan a new blue ball turning CCW 6. If there is no blue ball field, detect the green ball(basket)
- 2. Turn toward and approach to the ball (if there are any red balls on the path, avoid)
- 1. Turn CCW, detect the rightmost ball among the blue ball left there is no blue ball left

XBOX Control

XBOX Control

ROS Automatic Control

Inputs to move in various directions every 2 seconds

Ball Picking Algorithm

MOTOR CONTROL

Motor Specification

MOTOR

MOTOR CONTROL

Wheel Kinematics

$$\begin{bmatrix} v_x \\ v_y \\ \omega_z \end{bmatrix} = \frac{R}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ -\frac{1}{l_1 + l_2} & \frac{1}{l_1 + l_2} & -\frac{1}{l_1 + l_2} & \frac{1}{l_1 + l_2} \end{bmatrix} \cdot \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix}$$
 Inverse matrix

$$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix} = \frac{1}{R} \begin{bmatrix} 1 & 1 & -(l_1 + l_2) \\ 1 & -1 & l_1 + l_2 \\ 1 & -1 & -(l_1 + l_2) \\ 1 & 1 & l_1 + l_2 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ \omega_z \end{bmatrix}$$

4 STRENGTHS of IKOH

- 1. Smart Heating System (Duct)
- 2. Non-Actuator Mechanism
- 3. Compact Soldering
- 4. Precise Image Processing

Additional

