$20241110 \ \mathrm{MATH3301} \ \mathrm{NOTE} \ 7[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Gro	oup Action	3			
	1.1	Motivation	3			
	1.2	Homomorphism and Isomorphism	5			
	1.3	More Concepts on Group Action	7			
2	Class Equation					
	2.1	The Counting Formula	9			
	2.2	Class Equation	11			
3	Sylow Theorems					
	3.1	Group with Few Prime Factors	13			
	3.2	Sylow's First Theorem	15			
	3.3	Sylow's Second Theorem	16			
	3.4	Sylow's Third Theorem	18			
4	The Alternating Group A_n					
	4.1	Preliminaries	19			
	4.2	A_2, A_3 Are Simple	22			
	4.3	A_4 Is Not Simple				
	4.4	When $n \geq 5$, A_n Is Simple				

1 Group Action

1.1 Motivation

Given a group G and a set X, we want to study the symmetries on X induced by G. The most general symmetry and the most trivial symmetry are described as follows:

Proposition 1.1. Let X be a set.

The permutation group Perm(X) acts on X in sense that:

- (1) For all $g \in \text{Perm}(X)$ and $x \in X$, there exists a unique $g * x = g(x) \in X$.
- (2) For all $g, g' \in \text{Perm}(X)$ and $x \in X$, (gg') * x = g(g'(x)) = g * (g' * x).
- (3) For all $x \in X$, the identity $e \in Perm(X)$ maps x to x.

Proposition 1.2. Let X be a set.

The trivial group $\{e\}$ acts on X in sense that:

- (1) For all $x \in X$, there exists a unique $e * x = e(x) = x \in X$.
- (2) For all $x \in X$, (ee) * x = x = e * (e * x).
- (3) For all $x \in X$, the identity $e \in \{e\}$ maps x to x.

The most general symmetry is too complicated to study, and the most trivial symmetry is not interesting. We want to do something "intermediate".

Definition 1.3. (Left Action)

Let G be a group, and X be a set.

If * is a map from $G \times X$ to X, such that:

- (1) For all $g, g' \in G$ and $x \in X$, (gg') * x = g * (g' * x).
- (2) For all $x \in X$, the identity $e \in G$ maps x to x.

Then * is a left action of G on X.

Proposition 1.4. Let G be a group, and X be a set.

If G acts on X, then the following map is a homomorphism:

$$\sigma: G \to \operatorname{Perm}(X), g \mapsto \ell_g(x) = g * x$$

Proof. We may divide our proof into two parts.

Part 1: For all $g, g' \in G$:

$$\ell_{gg'}(x) = (gg') * x = g * (g' * x) = \ell_g \ell_{g'}(x)$$

Hence, σ preserves composition.

Part 2: For all $g \in G$:

$$\ell_g^{-1} = \ell_{g^{-1}}$$

Hence, the bijective map $\ell_g \in \text{Perm}(X)$, σ is well-defined.

Combine the two parts above, we've proven that σ is a homomorphism.

Quod. Erat. Demonstrandum.

Remark: Notice that this map σ may not be injective. To solve this problem, we define the kernel of group action and consider the quotient.

Definition 1.5. (Kernel)

Let G be a group, and X be a set.

If * is a left action of G on X, then define the kernel of * as:

$$Ker(*) = \{ g \in G : \forall x \in X, g * x = x \}$$

Proposition 1.6. Let G be a group, and X be a set.

If * is a left action of G on X, then Ker(*) is normal in G.

Proof. We may divide our proof into four parts.

Part 1: $\forall x \in X, e * x = x \implies e \in \text{Ker}(*)$.

Hence, Ker(*) contains the identity e.

Part 2: For all $g, g' \in G$:

$$g, g' \in \text{Ker}(*) \implies \forall x \in X, g * x = x \text{ and } g' * x = x$$

$$\implies \forall x \in X, (gg') * x = g * (g' * x) = x$$

$$\implies gg' \in \text{Ker}(*)$$

Hence, Ker(*) is closed under composition.

Part 3: For all $g \in G$:

$$g \in \operatorname{Ker}(*) \implies \forall x \in X, g * x = x$$

$$\implies \forall x \in X, g^{-1} * x = g^{-1} * (g * x) = (g^{-1}g) * x = x$$

$$\implies g^{-1} \in \operatorname{Ker}(*)$$

Hence, Ker(*) is closed under inverse.

Part 4: For all $g \in G$ and $s \in \text{Ker}(*)$ and $x \in X$:

$$(gsg^{-1})*x = g*(s*(g^{-1}*x)) = g*(g^{-1}*x) = (g*g^{-1})*x = x$$

Hence, $gsg^{-1} \in Ker(*)$, Ker(*) is closed under conjugation.

Combine the four parts above, we've proven that Ker(*) is normal in G.

Quod. Erat. Demonstrandum.

Proposition 1.7. Let G be a group, and X be a set.

If G acts on X, and $\tilde{G} = G/\text{Ker}(*)$, the the following map is an embedding:

$$\tilde{\sigma}: \tilde{G} \to \mathrm{Perm}(X), \tilde{g} \mapsto \ell_{g}(x) = g * x$$

Proof. We may divide our proof into two parts.

Part 1: For all $g, g' \in G$:

$$\tilde{g} = \tilde{g}' \implies \exists s \in \text{Ker}(*), g = g's$$

$$\implies \ell_q(x) = g * x = (g's) * x = g' * (s * x) = g' * x = \ell_{q'}(x)$$

Hence, $\tilde{\sigma}$ is well-defined.

Part 2: For all $g, g' \in G$:

$$\ell_{gg'}(x) = (gg') * x = g * (g' * x) = \ell_g \ell_{g'}(x)$$

Hence, $\tilde{\sigma}$ preserves composition.

Part 3: For all $g \in G$:

$$\ell_g = \ell_e \implies \forall x \in X, g * x = \ell_g(x) = \ell_e(x) = e * x = x$$

 $\implies g \in \text{Ker}(*)$

Hence, $\tilde{\sigma}$ is injective.

Combine the four parts above, we've proven that $\tilde{\sigma}$ is an embedding.

Quod. Erat. Demonstrandum.

1.2 Homomorphism and Isomorphism

Given a group G, it may act on two set X, X' in two ways *, *'.

We would like to investigate those structure-preserving maps, i.e., homomorphisms.

Definition 1.8. (Homomorphism)

Let $*: G \times X \to X, *': G \times X' \to X'$ be two left actions, and $\sigma: X \to X'$ be a function. If $\forall g \in G$ and $x \in X$, $\sigma(g*x) = g*'\sigma(x)$, then σ is a homomorphism.

Definition 1.9. (Isomorphism)

Let $*: G \times X \to X, *': G \times X' \to X'$ be two left actions, and $\sigma: X \to X'$ be a homomorphism. If σ is bijective, then σ is an isomorphism.

Lemma 1.10. Let $*: G \times X \to X$ be a left action.

The identity map $e: X \to X, x \mapsto x$ is an isomorphism.

Proof. We may divide our proof into two parts.

Part 1: The identity function e is bijective.

Part 2: For all $g \in G$ and $x \in X$:

$$e(g*x) = g*x = g*e(x)$$

Hence, the identity map e preserves left action.

Combine the two parts above, we've proven that e is an isomorphism.

Quod. Erat. Demonstrandum.

Lemma 1.11. Let $*: G \times X \to X, *': G \times X' \to X'$ be two left actions, and $\sigma: X \to X'$ be a function. If σ is an isomorphism, then σ^{-1} is an isomorphism.

Proof. We may divide our proof into two parts.

Part 1: σ is bijective implies σ^{-1} is bijective.

Part 2: For all $g \in G$ and $x' \in X'$:

$$\sigma^{-1}(g*'x') = \sigma^{-1}(g*'\sigma(\sigma^{-1}(x'))) = \sigma^{-1}(\sigma(g*\sigma^{-1}(x'))) = g*\sigma^{-1}(x')$$

Hence, σ^{-1} preserves left action.

Combine the two parts above, we've proven that σ^{-1} is an isomorphism.

Quod. Erat. Demonstrandum.

Lemma 1.12. Let $*: G \times X \to X, *': G \times X' \to X', *'': G \times X'' \to X''$ be three left actions, and $\sigma: X \to X', \sigma': X' \to X''$ be two functions.

- (1) If σ, σ' are homomorphisms, then $\sigma'\sigma$ is a homomorphism.
- (2) If σ, σ' are isomorphisms, then $\sigma'\sigma$ is an isomorphism.

Proof. For all $g \in G$ and $x \in X$:

$$\sigma'\sigma(g*x) = \sigma'(g*'\sigma(x)) = g*''\sigma'\sigma(x)$$

Hence, $\sigma'\sigma$ preserves left action. We can prove (2) by imposing bijectivity on (1). Quod. Erat. Demonstrandum.

Proposition 1.13. Let $G = D_n$ be the dihedral group of a regular n-gon, and $X = \langle \zeta \rangle$ be the set vertices of a regular n-gon.

(1) For each $\zeta^k \in X$, the following function $*_k$ is a left action of G on X:

$$*_k: G \times X \to X, r^m *_k x = x\zeta^m \text{ and } r^m \sigma *_k x = \overline{x}\zeta^{m+2k}$$

(2) For each $\zeta^k, \zeta^{k'} \in X$, the following function $\phi_{k,k'}$ is an isomorphism.

$$\phi_{k,k'}: X(\text{with } *_k) \to X(\text{with } *_{k'}), x \mapsto x\zeta^{k'-k}$$

Proof. We may divide our proof into four parts.

Part 1: For all $x \in X$:

$$(r^{m}r^{m'}) *_{k} x = r^{m+m'} *_{k} x = x\zeta^{m+m'} = (x\zeta^{m})\zeta^{m'} = r^{m} *_{k} (r^{m'} *_{k} x)$$

$$(r^{m}\sigma r^{m'}) *_{k} x = r^{m-m'}\sigma *_{k} x = \overline{x}\zeta^{m-m'+2k} = \overline{(x\zeta^{m'})}\zeta^{m+2k} = r^{m}\sigma *_{k} (r^{m'} *_{k} x)$$

$$(r^{m}r^{m'}\sigma) *_{k} x = r^{m+m'}\sigma *_{k} x = \overline{x}\zeta^{m+m'+2k} = (\overline{x}\zeta^{m'+2k})\zeta^{m} = r^{m} *_{k} (r^{m'}\sigma *_{k} x)$$

$$(r^{m}\sigma r^{m'}\sigma) *_{k} x = r^{m-m'} *_{k} x = x\zeta^{m-m'} = \overline{(\overline{x}\zeta^{m'+2k})}\zeta^{m+2k} = r^{m}\sigma *_{k} (r^{m'}\sigma *_{k} x)$$

Hence, composition is compatible with $*_k$.

Part 2: For all $x \in X$:

$$e *_k x = r^0 *_k x = x\zeta^0 = x$$

Hence, the identity element $e \in G$ is compatible with *.

Part 3: For all $x \in X$:

$$\phi_{k,k'}(r^m *_k x) = \phi_{k,k'}(x\zeta^m) = x\zeta^{m+k'-k} = r^m *_{k'} (x\zeta^{k'-k}) = r^m *_{k'} \phi_{k,k'}(x)$$

$$\phi_{k,k'}(r^m \sigma *_k x) = \phi_{k,k'}(\overline{x}\zeta^{m+2k}) = \overline{x}\zeta^{m+k+k'} = r^m \sigma *_{k'} (x\zeta^{k'-k}) = r^m \sigma *_{k'} \phi_{k,k'}(x)$$

Hence, $\phi_{k,k'}$ preserves left action.

Part 4: $\phi_{k,k'}$ has an inverse:

$$\phi_{k,k'}^{-1} = \phi_{k',k}$$

Hence, $\phi_{k,k'}$ is bijective.

Quod. Erat. Demonstrandum.

1.3 More Concepts on Group Action

The kernel Ker(*) of a left action $*: G \times X \to X$ reduces the redundancy of an action. We would like to generalize this idea, so we loosen our requirements.

Definition 1.14. (Stabilizer Subgroup)

Let $*: G \times X \to X$ be a left action, and x be an element of X.

Define the x-stabilizer subgroup as:

$$G_x = \{g \in G : g * x = x\}$$

Definition 1.15. (Fixed Point Subset)

Let $*: G \times X \to X$ be a left action, and g be an element of G.

Define the g-fixed point subset as:

$$X_q = \{x \in X : q * x = x\}$$

Proposition 1.16. Let $*: G \times X \to X$ be a left action.

If the following subset of $G \times X$ is finite:

$$Fix = \{(g, x) \in G \times X : g * x = x\}$$

Then the following equality holds:

$$\sum_{x \in X} |G_x| = \sum_{g \in G} |X_g| = |\mathbf{Fix}|$$

Proof. We may divide our proof into two steps.

Step 1: Project **Fix** to X via the map $\pi_X : \mathbf{Fix} \to X, (g, x) \mapsto x$:

$$\sum_{x \in X} |G_x| = \sum_{x \in X} |G_x \times \{x\}| = \sum_{x \in X} |\pi_X^{-1}(\{x\})| = |\mathbf{Fix}|$$

Step 2: Project **Fix** to G via the map $\pi_G : \mathbf{Fix} \to G, (g, x) \mapsto g$:

$$\sum_{g \in G} |X_g| = \sum_{g \in G} |\{g\} \times X_g| = \sum_{g \in G} |\pi_G^{-1}(\{g\})| = |\mathbf{Fix}|$$

Quod. Erat. Demonstrandum.

The above identity is not so interesting, let's introduce a more interesting one.

Proposition 1.17. Let $*: G \times X \to X$ be a left action. $\sim: X \to X, x \sim x'$ if $\exists g \in G, x = g * x'$ is an equivalence relation.

Proof. We may divide our proof into three parts.

Part 1: For all $x \in X$:

$$\exists e \in G, x = e * x \implies x \sim x$$

Hence, \sim is reflexive.

Part 2: For all $x, x' \in X$:

$$x \sim x' \implies \exists g \in G, x = g * x'$$

$$\implies \exists g^{-1} \in G, x' = (g^{-1}g) * x' = g^{-1} * (g * x') = g^{-1} * x$$

$$\implies x' \sim x$$

Hence, \sim is symmetric.

Part 3: For all $x, x', x'' \in X$:

$$x \sim x'$$
 and $x' \sim x'' \implies \exists g, g' \in G, x = g * x' \text{ and } x' = g' * x''$

$$\implies \exists gg' \in G, x = g * x' = g * (g' * x'') = (gg') * x''$$

$$\implies x \sim x''$$

Hence, \sim is transitive.

Combine the three parts together, we've proven that \sim is an equivalence relation.

Quod. Erat. Demonstrandum.

Remark: Note that we cannot mirror this relation to G, because the equation x' = q * x involves only one group element q.

Definition 1.18. (Orbit)

Let $*: G \times X \to X$ be a left action, and x be an element of X.

Define the x-orbit G * x as the equivalence class of x under \sim .

Remark: As a corollary, if X is finite, then:

$$|X| = \sum_{\text{All Distinct Orbits}} |G * x|$$

We may define X_G as the G-fixed point subset, then:

$$|X| = |X_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

2 Class Equation

2.1 The Counting Formula

For certain left action $*: G \times X \to X$, G is a group, which has clear structure, and X is a set, which has no extra structure. We want to associate certain subset of X with certain structure of G, so it becomes easier to study such subset of X.

Proposition 2.1. Let $*: G \times X \to X$ be a left action,

and x be an element of X. The following function ϕ is well-defined and bijective.

$$\phi: G/G_x \to G*x, gG_x \mapsto g*x$$

This suggests:

$$[G:G_x] = |G*x|$$

Proof. For all $g, g' \in G$:

$$gG_x = g'G_x \iff \exists s \in G_x, g = g's$$
$$\iff g * x = (g's) * x = g' * (s * x) = g' * x$$

Hence, the surjective function ϕ is well-defined and injective.

Quod. Erat. Demonstrandum.

Remark: As we generalize kernel Ker(*) to stabilizer G_x , we lose normality. Hence, G/G_x is not a group, so we are not allowed to apply Lagrange theorem further. By choosing different representatives, we get different stabilizer subgroups. What is the relationship between them?

Proposition 2.2. Let $*: G \times X \to X$ be a left action, x be an element of X, and g be an element of G. The following function σ is an isomorphism:

$$\phi: G_x \to G_{g*x}, s \mapsto gsg^{-1}$$

Proof. We may divide our proof into three parts.

Part 1: For all $s \in G$:

$$s \in G_x \implies s * x = x$$

$$\implies (gsg^{-1}) * (g * x) = (gsg^{-1}g) * x = (gs) * x = g * (s * x) = g * s$$

$$\implies gsg^{-1} \in G_{a*s}$$

Hence, σ is well-defined.

Part 2: For all $s, s' \in G_x$:

$$\sigma(ss') = gss'g^{-1} = gsg^{-1}gs'g^{-1} = \sigma(s)\sigma(s')$$

Hence, σ preserves composition.

Part 3: σ has the following inverse:

$$\sigma^{-1}: G_{g*x} \to G_x, s' \mapsto g^{-1}s'g$$

Hence, σ is bijective.

Combine the three parts above, we've proven that σ is an isomorphism.

Quod. Erat. Demonstrandum.

Remark: As a corollary, G_x is normal in G iff $\forall g \in G, G_{g*x} = G_x$.

Proposition 2.3. Consider the following subgroup G of S_6 :

0	e	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
e	e	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
σ_1	σ_1	σ_2	e	$ au_2$	$ au_3$	$ au_1$
σ_2	σ_2	e	σ_1	$ au_3$	$ au_1$	$ au_2$
$ au_1$	$ au_1$	$ au_3$	$ au_2$	e	σ_2	σ_1
$ au_2$	$ au_2$	$ au_1$	$ au_3$	σ_1	e	σ_2
τ_3	$ au_3$	$ au_2$	$ au_1$	σ_2	σ_1	e

Here, the elements $e, \sigma_1, \sigma_2, \tau_1, \tau_2, \tau_3$ are the following permutations:

$$e = e$$

$$\sigma_1 = (1, 3, 5)(2, 6, 4)$$

$$\sigma_2 = (1, 5, 3)(2, 4, 6)$$

$$\tau_1 = (1, 2)(3, 4)(5, 6)$$

$$\tau_2 = (2, 3)(4, 5)(6, 1)$$

$$\tau_3 = (1, 4)(2, 5)(3, 6)$$

- (1) The group G acts on the set $X = \{1, 2, 3, 4, 5, 6\}$ transitively.
- (2) The stabilizer subgroups $G_1 = G_2 = G_3 = G_4 = G_5 = G_6$ are trivial.
- (3) The center of the quotient group $G/\{e\} \cong S_3$ is trivial.

Remark: If $\ell_s: X(\text{with } *) \to X(\text{with } *), x \mapsto s * x \text{ is an isomorphism, then:}$

$$\forall g \in G \text{ and } x \in X, \ell_s(g * x) = g * \ell_s(x)$$

As the kernel Ker(*) is trivial, this is equivalent to saying s is in the center of G. As the center of $G/\{e\}$ is trivial, the element s must be the identity e. That is to say, applying ℓ_s to X, where $s \neq e$, breaks the structure of this action.

2.2 Class Equation

Proposition 2.4. Let G be a finite group, and X be a finite set. If G acts on X, then we have:

$$|X| = |X_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G|/|G_x|$$

Proof.

$$|X| = |X_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

$$= |X_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} [G : G_x]$$

$$= |X_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G|/|G_x|$$

Quod. Erat. Demonstrandum.

Lemma 2.5. Let G be a group, N be a normal subgroup of G.

(1) The following function * is a left action of G on N:

$$*: G \times N \rightarrow N, q * n = qnq^{-1}$$

(2) The G-fixed point subset $N_G = Z_G \cap N$, where Z_G is the center of G.

Proof. We may divide our proof into three parts.

Part 1: For all $g \in G$ and $x \in N$, as N is normal in G, $gxg^{-1} \in N$.

Hence, * is a well-defined function.

Part 2: For all $g, g' \in G$ and $x \in N$:

$$(gg') * x = (gg')x(gg')^{-1} = gg'xg'^{-1}g^{-1} = g*(g'*x)$$

Hence, * is compatible with composition.

Part 3: For all $x \in N$:

$$e * x = exe^{-1} = x$$

Hence, * is compatible with the identity element $e \in G$.

Part 4: For all $x \in N$:

$$x \in N_G \iff \forall g \in G, g * x = gxg^{-1} = x \iff \forall g \in G, gx = xg \iff x \in Z_G \cap N$$

Hence, the G-fixed point subset $N_G = Z_G \cap N$, where Z_G is the center of G.

Quod. Erat. Demonstrandum.

Proposition 2.6. Let G be a finite group. We have:

$$|G| = |Z_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

Proof. Consider the left action described in **Lemma 2.5.** with N = G.

$$|G| = |N_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

$$= |Z_G \cap N| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

$$= |Z_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$
All Distinct Nonsingleton Orbits

Quod. Erat. Demonstrandum.

Proposition 2.7. Let G be a finite group with odd order, and N be a normal subgroup of G with order 5. N is contained in the center Z_G of G.

Proof. We may prove this fact step by step.

- (1) Consider the left action described in Lemma 2.5..
- (2) Assume to the contrary that N has at least one nonsingleton orbit $G * \xi$.
- (3) As $|G * \xi| = |G|/|G_{\xi}| \ge 3$, the following class equation implies $|Z_G \cap N| = 2$:

$$|N| = |Z_G \cap N| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

- (4) However, the order of G, which is odd, is not divisible by the order of $Z_G \cap N$, which is even, contradicting to Lagrange's theorem.
- (5) Hence, our assumption is false, and we get the following degenerate equation:

$$|N| = |Z_G \cap N|$$

(6) The equation above suggests that N is contained in the center Z_G of G. Quod. Erat. Demonstrandum.

3 Sylow Theorems

3.1 Group with Few Prime Factors

The first interesting group with few prime factors is p-group.

Definition 3.1. (p-group)

Let G be a group, $p \ge 2$ be a prime number, and $n \ge 1$ be an integer. If the order of G is $|G| = p^n$, then G is a p-group.

Proposition 3.2. If G is a p-group, then the center Z_G of G is nontrivial.

Proof. Consider the class equation:

$$|G| = |Z_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

Note that |G*x| is a nontrivial factor of $|G|=p^n$, so $|Z_G|$ must be a multiple of p. Note that $e \in Z_G$, so $|Z_G| \ge p$, $|Z_G|$ is nontrivial. Quod. Erat. Demonstrandum.

Remark: S_3 is not a p-group, and S_3 has a trivial center. D_4 is a 2-group, and D_4 has a nontrivial center $\{e, r^2\}$.

Proposition 3.3. Let G be a group, and $p \geq 2$ be a prime number. If the order of G is p^2 , then $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. We wish to prove that G is Abelian, then the result follows from the classification theorem for finite Abelian groups. Assume to the contrary that G is nonAbelian. There exists an element $g \in G$, such that the centralizer subgroup $C_{\langle g \rangle}$ is proper in G. This centralizer subgroup $C_{\langle g \rangle}$ contains the center Z_G , so $|C_{\langle g \rangle}| \geq |Z_G| \geq p$. This centralizer subgroup $C_{\langle g \rangle}$ contains one more element g than Z_G , so $|C_{\langle g \rangle}| > p$. Hence, the index $[G:C_{\langle g \rangle}]=1$, and we get a contradiction where $g \in Z_G$ and $g \notin Z_G$. To conclude, we've proven that G is Abelian. Quod. Erat. Demonstrandum. \Box

Remark: As $|D_4| = 2^3$ and D_4 is nonAbelian, the assumption $|G| = p^2$ is necessary.

Proposition 3.4. Let G be a group, and $p, q \ge 2$ be two prime numbers. If the order of G is pq, and there exist normal subgroups P, Q of G with |P| = p and |Q| = q, then G is Abelian.

Proof. WLOG, assume that $p \neq q$.

Note that $P \cap Q$ must be trivial, so |HK| = |H||K| = pq = |G|.

Assume that the cyclic groups P, Q have generators x, y respectively.

As P is normal in G, for some $0 \le n < p$, $yxy^{-1} = x^{n+1}$.

As Q is normal in G, for some $0 \le m < q$, $xyx^{-1} = y^{m+1}$.

As $x^n y^m = yxy^{-1}x^{-1}xyx^{-1}y^{-1} = e$, both x^n and y^m lie in $P \cap Q$, so xy = yx.

Quod. Erat. Demonstrandum.

Remark: Consider a group G of order 6.

If G is Abelian, then $G \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$.

If G is nonAbelian, then we cannot simultaneously find two normal subgroups P, Q of G, such that |P| = 2 and |Q| = 3. For $G = S_3$, P fails to exist.

3.2 Sylow's First Theorem

Definition 3.5. (p-Sylow Subgroup)

Let G be a group, $p \ge 2$ be a prime number,

and $n \ge 0, m \ge 1$ be two integers.

If the order of G is $|G| = p^n m$ and $p \nmid m$,

then every subgroup H of G with order $|H| = p^n$,

if exists, is a p-Sylow subgroup of G.

Remark: In D_4 , $\{e\}$, $\{e, \sigma\}$, $\{e, r^2\}$, $\{e, r, r^2, r^3\}$, $\{e, r^2, \sigma, r^2\sigma\}$, D_4 are 2-subgroups of D_4 , and D_4 is a 2-Sylow subgroup of D_4 .

In S_4 , any embedding of D_4 is a 2-Sylow subgroup of S_4 , where $|D_4| = 2^3 ||4! = |S_n|$. In S_4 , any embedding of \mathbb{Z}_3 is a 3-Sylow subgroup of S_4 , where $|\mathbb{Z}_3| = 3^1 ||4! = |S_n|$.

Lemma 3.6. Let $p \geq 2$ be a prime number.

The following relation \prec_p on \mathbb{N} is a total order:

- (1) If $\max\{n \ge 0 : p^n | l\} > \max\{n \ge 0 : p^n | l'\}$, then $l \not\prec_p l'$.
- (2) If $\max\{n \ge 0 : p^n | l\} < \max\{n \ge 0 : p^n | l'\}$, then $l \prec_p l'$.
- (3) If $\max\{n \ge 0 : p^n | l\} = \max\{n \ge 0 : p^n | l'\}$ and $l \ge l'$, then $l \not\prec_p l'$.
- (4) If $\max\{n \ge 0 : p^n | l\} = \max\{n \ge 0 : p^n | l'\}$ and l < l', then $l \prec_p l'$.

Remark: This total order on \mathbb{N} is different from the usual order on \mathbb{N} because $11 \prec_2 2$. Our proof to Sylow's first theorem is organized according to \prec_p .

Theorem 3.7. (Sylow's First Theorem[2])

Let G be a group, and $p \ge 2$ be a prime number. G has a p-Sylow subgroup.

Proof. We may divide our proof into three parts.

Part 1: The theorem holds trivially when $|G| \prec_p p$.

Part 2: The theorem holds trivially when |G| is a power of p.

Part 3: For all $n \geq 1$, we wish to prove the following implication:

[The theorem holds for all $|G| \prec_p p^n$] \Longrightarrow [The theorem holds for all $|G| \prec_p p^{n+1}$]

As the theorem is true when $|G| \leq_p p^n$, it suffices to consider the case $p^n \prec_p |G| \prec_p p^{n+1}$.

Case 3.1: If p^n divides some $|G_x|$, where G_x is a proper stabilizer subgroup of G, then:

- (1) Replace G by G_x and repeat the algorithm, until no such G_x is found.
- (2) If |G| is reduced to p^n , then go to **Part 2.**.
- (3) If |G| is not reduced to p^n , then go to Case 3.2..

Case 3.2: If p^n divides no $|G_x|$, where G_x is a proper stabilizer subgroup of G, then:

(1) |G| and each |G*x| are multiples of p.

(2) The following class equation suggests $|Z_G|$ is a multiple of p:

$$|G| = |Z_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G * x|$$

$$= |Z_G| + \sum_{\text{All Distinct Nonsingleton Orbits}} |G|/|G_x|$$

- (3) As Z_G is an Abelian group with a prime divisor p, Cauchy's theorem for Abelian group suggests the existence of an element $\xi \in Z_G$ of order p.
- (4) Now the quotient group $G/\langle \xi \rangle$ is well-defined and $|G/\langle \xi \rangle| = |G|/p \prec_p p^n$.
- (5) The inductive hypothesis suggests the existence of a p-Sylow subgroup \tilde{P} of $G/\langle \xi \rangle$.
- (6) Consider the preimage P of \tilde{P} under the natural projection map $\pi: G \to \tilde{G} = G/\langle \xi \rangle, x \mapsto \tilde{x}$. As $|P| = |\tilde{P}||\mathrm{Ker}(\pi)| = p^{n-1}p = p^n$, P is a p-Sylow subgroup of G.

Combine the two parts above, we've proven Sylow's first theorem.

Quod. Erat. Demonstrandum.

Remark: Cauchy's theorem follows as an easy corollary of Sylow's first theorem.

Theorem 3.8. (Cauchy's Theorem[2])

Let G be a group, and $p \ge 2$ be a prime number.

If p divides the order |G| of G, then G has an element ξ of order p.

Proof. Take a p-Sylow subgroup P of G.

As p divides the order |G| of G, P contains a nontrivial element ξ .

Assume that $Ord(\xi) = p^r$, where r is a positive integer.

Now $\text{Ord}(\xi^{p^{r-1}}) = \text{Ord}(\xi)/p^{r-1} = p^r/p^{r-1} = p$, and we are done.

Quod. Erat. Demonstrandum.

3.3 Sylow's Second Theorem

Lemma 3.9. Let $*: G \times X \to X$ be a left action, and $p \geq 2$ be a prime number. If G is a p-group, and p doesn't divide the cardinality |X| of X, then the G-fixed point subset X_G is nonempty.

Proof. Consider the orbit decomposition formula:

$$|X| = |X_G| + \sum_{\text{All Distinct Nonsingleton Orbit}} |G * x|$$

$$= |X_G| + \sum_{\text{All Distinct Nonsingleton Orbit}} |G|/|G_x|$$

As each $|G*x| = |G|/|G_x|$ is a multiple of $p, p \nmid |X|$ implies $p \nmid |X_G|$, so X_G is nonempty. Quod. Erat. Demonstrandum.

Remark: The existence of a G-fixed point helps to prove Sylow's second theorem.

Lemma 3.10. Let G be a group, and H,Q be two subgroups of G.

If H is contained in the normalizer subgroup of Q,

then Q is normal in HQ and $H \cap Q$ is normal in H.

Proof. We check the key properties one by one.

- (1) Q is assumed to be a subgroup of G, so Q is a group.
- (2) H is assumed to be a subgroup of G, so H is a group.
- (3) H, Q are two subgroups of G, so $H \cap Q$ is a subgroup of $G, H \cap Q$ is a group.
- (4) H is contained in the normalizer subgroup of Q, so HQ is a group.
- (5) $Q \leq HQ$, and for all $hq \in HQ$, hqQ = hQq = Qhq, so Q is normal in HQ.
- (6) $H \cap Q \leq H$, and for all $h \in H$, $h(H \cap Q) = hH \cap hQ = Hh \cap Qh = (H \cap Q)h$, so $H \cap Q$ is normal in H. Quod. Erat. Demonstrandum.

Remark: In this situation, it is allowed to apply the second isomorphism theorem:

$$H/(H \cap Q) \cong (HQ)/Q$$

Theorem 3.11. (Sylow's Second Theorem[3])

Let G be a group, and $p \geq 2$ be a prime number.

Every p-subgroup is contained in a p-Sylow subgroup.

Proof. Let P be a p-Sylow subgroup of G found by Sylow's first theorem.

For all p-subgroup H of G, we wish to find a conjugate of P, such that $H \leq P$.

Step 1: We construct a special conjugate Q of P.

(1) Consider the set **P** of all p-Sylow subgroups of G.

Any subgroup of G acts on \mathbf{P} by conjugation.

(2) Consider the P-stabilizer subgroup G_P of G.

As $P \leq G_P \leq G$, the number $[G:G_P] = |G*P|$ is not divisible by p.

(3) Consider the orbit G * P of P under conjugation.

G acts on G * P implies the subgroup H of G acts on G * P.

(4) As H is a p-group, and p doesn't divide the cardinality |G*P| of G*P,

Lemma 3.9. suggests the G-fixed point subset $(G * P)_H$ is nonempty.

(5) Take a conjugate $Q = gPg^{-1} \in (G * P)_H$,

H is contained in the normalizer subgroup of Q.

Step 2: We prove that H is contained in this conjugate Q of P.

(1) As H,Q are subgroups of G, and H is contained in the normalizer subgroup of Q,

Lemma 3.10. suggests that we are allowed to apply the second isomorphism theorem.

$$H/(H \cap Q) \cong (HQ)/Q$$

- (2) The above isomorphism implies $|HQ| = |Q||H/(H \cap Q)|$.
- (3) As H is a p-group, its quotient $H/(H \cap Q)$ is also a p-group.
- (4) As both Q and $H/(H \cap Q)$ are p-groups, HQ is also a p-group.

(5) As Q is a p-Sylow subgroup of G, the order $|HQ| \ge |Q|$ of the p-group $HQ \supseteq Q$ cannot exceed |Q|, so |HQ| = |Q|, which implies HQ = Q and $H \subseteq Q$. Quod. Erat. Demonstrandum.

Remark: Since new p-Sylow subgroups are constructed by conjugation, G acts transitively on the set of all p-Sylow subgroups by conjugation.

Proposition 3.12. Let G be a group, and $p \ge 2$ be a prime number. If the p-Sylow subgroup P of G is unique, then P is normal in G.

Proof. Consider the set **P** of all *p*-Sylow subgroups of G. Sylow's second theorem suggests that $\mathbf{P} = G * P$ is a single orbit, and the orbit is a singleton suggests P is normal in G. Quod. Erat. Demonstrandum.

Proposition 3.13. Let G be a group, and $p \ge 2$ be a prime number. If p divides the order |G| of G and G is simple and G is not a p-group, then |G| divides $r_p!$, where r_p is the number of p-Sylow subgroups of G.

Proof. We may prove this fact step by step.

- (1) Consider the left action $*: G \times \mathbf{P} \to \mathbf{P}, g * P = gPg^{-1}$.
- (2) As G is simple, $Ker(*) = \{e\}$ or Ker(*) = G.
- (3) To further prove that $Ker(*) = \{e\}$, fix a p-Sylow subgroup P of G.
- (4) As p divides |G| and G is not a p-group, P is a nontrivial proper subgroup of G.
- (5) As G is simple, the nontrivial proper subgroup P of G is not normal in G.
- (6) **Proposition 3.12.** suggests that some $g * P = gPg^{-1} \neq P$.
- (7) Hence, Ker(*) misses at least one element g of G, Ker(*) must be $\{e\}$.
- (8) **Proposition 1.7.** suggests that $G \cong G/\mathrm{Ker}(*)$ is embedded in $\mathrm{Perm}(\mathbf{P}) \cong S_{r_p}$.

(9) Lagrange's theorem implies that |G| divides $|S_{r_p}| = r_p!$.

Quod. Erat. Demonstrandum.

3.4 Sylow's Third Theorem

Theorem 3.14. (Sylow's Third Theorem[3])

Let G be a group, and $p \geq 2$ be a prime number. The number r_p of p-Sylow subgroups of G divides the order |G| of G, and $r_p \equiv 1 \pmod{p}$.

Proof. We may divide our proof into two parts.

Part 1: We prove that r_p divides the order |G| of G.

Consider the set **P** of all *p*-Sylow subgroups of *G*. Sylow's second theorem suggests that $\mathbf{P} = G * P$ is a single orbit, so $r_p = |G * P| = |G|/|G_P|$ divides the order |G| of *G*.

Part 2: We prove that $r_p \equiv 1 \pmod{p}$.

Fix $H \in \mathbf{P}$. The group H acts on \mathbf{P} by conjugation.

Consider the orbit decomposition formula:

$$\begin{split} |\mathbf{P}| &= |\mathbf{P}_H| + \sum_{\text{All Distinct Nonsingleton Orbits}} |H*P| \\ &= |\mathbf{P}_H| + \sum_{\text{All Distinct Nonsingleton Orbits}} |H|/|H_P| \end{split}$$

For all nonsingleton orbit H * P, $|H * P| = |H|/|H_P|$ is a multiple of p, so it suffices to prove $\mathbf{P}_H = \{H\}$. As $H \in \mathbf{P}_H$, we proceed to prove $\mathbf{P}_H \subseteq \{H\}$. For all $Q \in \mathbf{P}_H$, H is contained in the normalizer of P.

Quote Lemma 3.10. again, and we get the following isomorphism:

$$H/(H \cap P) \cong (HP)/P$$

For the same reason in the proof of Sylow's second theorem,

 $|H/(H \cap P)|$ must be trivial, so H is a subgroup of P.

As $H \leq P$ and |H| = |P|, H = P, and we are done.

Quod. Erat. Demonstrandum.

Remark: If we write |G| in the form $p^n m$, where $p \nmid m$, then $r_p | m$.

Proposition 3.15. Let G be a group, and $p, q \ge 2$ be two prime numbers. If |G| = pq and $p \nmid q - 1$ and $q \nmid p - 1$, then G is Abelian.

Proof. We may divide our proof into three steps.

Step 1: As $r_p|q$ and $p|r_p-1$ and $p\nmid q-1$, it must be true that $r_p=1$.

Proposition 3.12. suggests that the unique p-Sylow subgroup P of G is normal in G.

Step 2: As $r_q|p$ and $q|r_q-1$ and $q\nmid p-1$, it must be true that $r_q=1$.

Proposition 3.12. suggests that the unique q-Sylow subgroup Q of G is normal in G.

Step 3: As |G| = pq and |P| = p and |Q| = q and P, Q are normal in G,

Proposition 3.4. suggests that G is Abelian. Quod. Erat. Demonstrandum. \Box

Remark: It follows that a group of order 143 = 11 * 13 must be cyclic. This is almost impossible to prove by brute force!

4 The Alternating Group A_n

4.1 Preliminaries

Proposition 4.1. Let X, X' be two sets, and $f: X \to X'$ be a bijection. $c_f: \operatorname{Perm}(X) \to \operatorname{Perm}(X'), \sigma \mapsto f\sigma f^{-1}$ is an isomorphism.

Proof. We may divide our proof into three parts.

Part 1: For all $\sigma: X \to X$:

$$\sigma \in \operatorname{Perm}(X) \implies \sigma$$
 is bijective $\implies f\sigma f^{-1}$ is bijective $\implies f\sigma f^{-1} \in \operatorname{Perm}(X')$

Hence, c_f is well-defined.

Part 2: Note that c_f has the following inverse:

$$c_f^{-1}: \operatorname{Perm}(X') \to \operatorname{Perm}(X), \sigma' \mapsto f^{-1}\sigma' f$$

Hence, c_f is bijective.

Part 3: For all $\sigma_1, \sigma_2 \in \text{Perm}(X)$:

$$c_f(\sigma_1\sigma_2) = f\sigma_1\sigma_2f^{-1} = f\sigma_1f^{-1}f\sigma_2f^{-1} = c_f(\sigma_1)c_f(\sigma_2)$$

Hence, c_f preserves composition.

To conclude, c_f is an isomorphism. Quod. Erat. Demonstrandum.

Remark: Hence, we can define symmetric group with a given cardinality.

Definition 4.2. (The Symmetric Group S_n)

Let n be a positive integer. Choose a set X with cardinality n.

Define the symmetric group S_n as the permutation group Perm(X).

Definition 4.3. (Cycle and Transposition)

Let σ be an element of Perm(X).

If there exists $k \geq 1$ distinct elements $x_1, x_2, \dots, x_{k-1}, x_k$ of X, such that:

$$\sigma(x) = \begin{cases} x_{l+1} & \text{if} \quad x \text{ is equal to some } x_l \quad \text{and} \quad 1 \le l < k; \\ x_1 & \text{if} \quad x \text{ is equal to some } x_l \quad \text{and} \quad l = k; \\ x & \text{if} \quad x \text{ is equal to no } x_l; \end{cases}$$

Then, $\sigma = (x_1, x_2, \cdots, x_{k-1}, x_k)$ is a k-cycle.

Especially, if k = 2, then (x_1, x_2) is a transposition.

Definition 4.4. (Disjoint Permutation)

Let σ_1, σ_2 be two elements of Perm(X).

If for all $x_1, x_2 \in X$, $\sigma_1(x_1) = x_1$ or $\sigma_2(x_2) = x_2$, then σ_1 and σ_2 are disjoint.

Lemma 4.5. Let σ be an element of the symmetric group S_n . σ is a cycle or a finite product of pairwisely disjoint cycles.

Proof. We prove this theorem by the strong form of mathematical induction.

Step 1: When n = 1, $\sigma = e$ is a 1-cycle, the statement holds.

Step 2: For all $m \in \mathbb{N}$, when $n = 1, 2, \dots, m$, assume that the statement holds.

Step 3: When n = m + 1, there are two cases to consider.

Case 3.1: If σ is a cycle, then we are done.

Case 3.2: If σ is not a cycle, then:

- (1) Fix an arbitrary $\xi \in X$.
- (2) For some $1 \leq l < m+1$, the orbit $\langle \sigma \rangle * \xi = \{\xi, \sigma(\xi), \sigma^2(\xi), \cdots, \sigma^{l-1}(\xi)\}$.
- (3) If $\sigma|_{(\langle \sigma \rangle * \xi)^c}$ is a cycle σ_1 in S_{m+1-l} ,

then $\sigma = \sigma_1(\xi, \sigma(\xi), \dots, \sigma^{l-1}(\xi))$ is a product of cycles in S_{m+1} .

(4) If $\sigma|_{(\langle \sigma \rangle * \xi)^c}$ is a product of pairwisely disjoint cycles $\sigma_1 \cdots \sigma_k$ in S_{m+1-l} ,

then $\sigma = \sigma_1 \cdots \sigma_k(\xi, \sigma(\xi), \cdots, \sigma^{l-1}(\xi))$ is a product of cycles in S_{m+1} .

(5) As $\langle \sigma \rangle * \xi$ and $(\langle \sigma \rangle * \xi)^c$ are disjoint,

 $\sigma_1, \dots, \sigma_k, (\xi, \sigma(\xi), \dots, \sigma^{l-1}(\xi))$ are pairwisely disjoint.

Hence, we've proven the statement. Quod. Erat. Demonstrandum.

Remark: Actually this representation is unique under arrangement, because the orbit $\langle \sigma \rangle * x$ of each $x \in X$ is unique.

Lemma 4.6. When $n \geq 2$, each $\sigma \in S_n$ is a finite product of 2-cycles.

Proof. Assume that all distinct elements of X are x_1, x_2, \dots, x_n .

Case 1: If $\sigma = e$, then $e = (x_1, x_2)(x_1, x_2)$ is a finite product of 2-cycles.

Case 2: If $\sigma \neq e$, then find the smallest $1 \leq k \leq n$ such that $\sigma(x_k) \neq x_k$.

Consider the product $(x_k, \sigma(x_k))\sigma$.

Situation 2.1: If $(x_k, \sigma(x_k))\sigma = e$, then $\sigma = (x_k, \sigma(x_k))$ is a 2-cycle.

Situation 2.2: If $(x_k, \sigma(x_k))\sigma \neq e$, then define $\tau = (x_k, \sigma(x_k))\sigma$ and repeat.

This process eventually ends because there are finitely many elements to permute.

Hence, $\sigma = (x_k, \sigma(x_k))\tau$ is a finite product of 2-cycles.

Quod. Erat. Demonstrandum.

Lemma 4.7. Let N be a normal subgroup of Perm(X).

If N contains a transposition, then N contains all transpositions.

Proof. Assume that N contains a transposition (ξ_1, ξ_2) .

Now for all transposition (x_1, x_2) :

Case 1: (x_1, x_2) and (ξ_1, ξ_2) have 2 common entries.

In this case, $(x_1, x_2) = (\xi_1, \xi_2) \in N$.

Case 2: (x_1, x_2) and (ξ_1, ξ_2) have 1 common entry.

In this case, WLOG, assume that $x_1 = \xi_1$ and $x_2 \neq \xi_2$,

so
$$(x_1, x_2) = (x_2, \xi_2)(\xi_1, \xi_2)(x_2, \xi_2)^{-1} \in N$$
.

Case 3: (x_1, x_2) and (ξ_1, ξ_2) have 0 common entry.

In this case, $(x_1, x_2) = [(x_1, \xi_1)(x_2, \xi_2)](\xi_1, \xi_2)[(x_1, \xi_1)(x_2, \xi_2)]^{-1} \in \mathbb{N}$.

Hence, N contains all transpositions. Quod. Erat. Demonstrandum.

Proposition 4.8. In the symmetric group S_n , a unique maximal proper normal subgroup A_n exists.

Proof. We may divide our proof into two parts.

Part 1: In this part, we prove the existence of A_n .

Define $\operatorname{Spec}(S_n)$ as the set of all proper normal subgroups of S_n .

We wish to find a maximal element A_n of $Spec(S_n)$.

Assume to the contrary that such element fails to exist.

There exists a sequence of normal subgroups $(H_m)_{m\in\mathbb{N}}$ of S_n , such that:

$$\forall m \in \mathbb{N}, H_m \subset H_{m+1}$$

But S_n is finite, it cannot have an infinite strictly increasing sequence. Hence, there exists $A_n \in \operatorname{Spec}(S_n)$, such that for all $H \in \operatorname{Spec}(S_n)$:

$$A_n \subseteq H \implies A_n = H$$

Part 2: In this part, we prove the uniqueness of A_n .

For all transposition (x_1, x_2) , as A_n is maximal,

the smallest normal subgroup of S_n containing $A_n \cup \{(x_1, x_2)\}$ is S_n .

Hence, $S_n = A_n \sqcup (x_1, x_2)A_n$.

For all transpositions $(x_1, x_2), (x'_1, x'_2)$:

$$(x_1, x_2)A_n = (x'_1, x'_2)A_n = A_n^c \implies (x_1, x_2)(x'_1, x'_2) \in A_n$$

This implies:

- (1) All even product of transpositions is contained in A_n .
- (2) All odd product of transpositions is contained in A_n^c .

As the two types of products partition S_n , A_n is unique.

Quod. Erat. Demonstrandum.

Definition 4.9. (The Alternating Group A_n)

When $n \geq 2$, define A_n as the unique maximal proper normal subgroup of S_n .

4.2 A_2, A_3 Are Simple

Proposition 4.10. A_2, A_3 are simple.

Proof. Note that $A_2 = \langle e \rangle$ is trivial and $A_3 \cong \mathbb{Z}_3$ is prime, so both of them are simple. Quod. Erat. Demonstrandum.

4.3 A_4 Is Not Simple

Proposition 4.11. A_4 is not simple.

Proof. For simplicity, take $X = \{1, 2, 3, 4\}$. Consider the following subset K_4 of A_4 :

$$K_4 = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$$

Step 1: We show that K_4 is a group.

0	e	(1,2)(3,4)	(1,3)(2,4)	(1,4)(2,3)
e	e	(1,2)(3,4)	(1,3)(2,4)	(1,4)(2,3)
(1,2)(3,4)	(1,2)(3,4)	e	(1,4)(2,3)	(1,3)(2,4)
(1,3)(2,4)	(1,3)(2,4)	(1,4)(2,3)	e	(1,2)(3,4)
(1,4)(2,3)	(1,4)(2,3)	(1,3)(2,4)	(1,2)(3,4)	e

Step 2: By direct computation, we can show that K_4 is normal in S_4 , so in A_4 .

σ	σK_4	$K_4\sigma$		
e	$ \begin{cases} e & (1,2)(3,4) \\ (1,3)(2,4) & (1,4)(2,3) \end{cases} $	$ \begin{cases} e & (1,2)(3,4) \\ (1,3)(2,4) & (1,4)(2,3) \end{cases} $		
(1, 2)	$ \begin{cases} (1,2) & (3,4) \\ (1,3,2,4) & (1,4,2,3) \end{cases} $	$ \begin{cases} (1,2) & (3,4) \\ (1,4,2,3) & (1,3,2,4) \end{cases} $		
(1,3)	$ \begin{cases} (1,3) & (1,2,3,4) \\ (2,4) & (1,4,3,2) \end{cases} $	$ \begin{cases} (1,3) & (1,4,3,2) \\ (2,4) & (1,2,3,4) \end{cases} $		
(1,4)	$ \begin{cases} (1,4) & (1,2,4,3) \\ (1,3,4,2) & (2,3) \end{cases} $	$ \begin{cases} (1,4) & (1,3,4,2) \\ (1,2,4,3) & (2,3) \end{cases} $		
(1, 2, 3)	$ \begin{cases} (1,2,3) & (1,3,4) \\ (2,4,3) & (1,4,2) \end{cases} $	$ \begin{cases} (1,2,3) & (2,4,3) \\ (1,4,2) & (1,3,4) \end{cases} $		
(1, 3, 2)	$ \begin{cases} (1,3,2) & (2,3,4) \\ (1,2,4) & (1,4,3) \end{cases} $	$ \begin{cases} (1,3,2) & (1,4,3) \\ (2,3,4) & (1,2,4) \end{cases} $		

As A_4 has a nontrivial proper normal subgroup K_4 , A_4 is not simple. Quod. Erat. Demonstrandum.

4.4 When $n \geq 5$, A_n Is Simple

Lemma 4.12. When $n \geq 5$, A_n contains all 3-cycles.

Proof. It suffices to notice the following transposition decomposition:

$$(x_1, x_2, x_3) = (x_1, x_3)(x_1, x_2)$$

Quod. Erat. Demonstrandum.

Lemma 4.13. When $n \geq 5$, each $\sigma \in A_n$ is a finite product of 3-cycles.

Proof. It suffices to notice the following three 2-cycle decompositions:

$$(x_1, x_2)(x_3, x_4) = (x_1, x_3, x_2)(x_1, x_3, x_4)$$
$$(x_1, x_2)(x_1, x_3) = (x_1, x_3, x_2)$$
$$(x_1, x_2)(x_1, x_2) = (x_1, x_2, x_3)(x_1, x_2, x_3)$$

Quod. Erat. Demonstrandum.

Remark: Three cycles can be viewed as "fundamental building blocks" of A_n .

Lemma 4.14. Let N be a normal subgroup of A_n , where $n \geq 5$. If N contains a 3-cycle, then N contains all 3-cycles.

Proof. Assume that N contains a 3-cycle (ξ_1, ξ_2, ξ_3) .

Now for all 3-cycle (x_1, x_2, x_3) :

Case 1: (x_1, x_2, x_3) and (ξ_1, ξ_2, ξ_3) have 3 common entries.

In this case, $(x_1, x_2, x_3) = (\xi_1, \xi_2, \xi_3) \in N$.

Case 2: (x_1, x_2, x_3) and (ξ_1, ξ_2, ξ_3) have 2 common entries.

In this case, WLOG, assume that $x_1 = \xi_1$ and $x_2 = \xi_2$ and $x_3 \neq \xi_3$,

so choose distinct $x_4, x_5 \in \{x_1, x_2, x_3\}^c$, and define $\sigma = (x_4, x_5)(x_3, \xi_3) \in A_n$,

and we have $(x_1, x_2, x_3) = \sigma(\xi_1, \xi_2, \xi_3)\sigma^{-1} \in N$.

Case 3: (x_1, x_2, x_3) and (ξ_1, ξ_2, ξ_3) have 1 common entry.

In this case, WLOG, assume that $x_1 = \xi_1$ and x_2, x_3, ξ_2, ξ_3 are pairwisely distinct,

so define $\sigma = (x_2, \xi_2)(x_3, \xi_3) \in A_n$, and $(x_1, x_2, x_3) = \sigma(\xi_1, \xi_2, \xi_3)\sigma^{-1} \in N$.

Case 4: (x_1, x_2, x_3) and (ξ_1, ξ_2, ξ_3) have 0 common entry.

In this case, choose distinct $x_4, x_5 \in \{x_1, x_2, x_3\}^c$,

and define $\sigma = (x_1, \xi_1)(x_2, \xi_2)(x_3, \xi_3)(x_4, x_5) \in A_n$,

so $(x_1, x_2, x_3) = \sigma(\xi_1, \xi_2, \xi_3)\sigma^{-1} \in N$.

Hence, A_n contains all 3-cycles. Quod. Erat. Demonstrandum.

Remark: For N to be nontrivial and proper, it cannot contain any 3-cycle.

Lemma 4.15. Let N be a normal subgroup of A_n , where $n \geq 5$. If N contains an element in the form $\sigma = \mu(x_1, x_2, x_3, \dots, x_s)$, where $s \geq 4$ and $\mu, (x_1, x_2, x_3, \dots, x_s)$ are disjoint, then N contains a 3-cycle $\sigma^{-1}(x_1, x_2, x_3)\sigma(x_1, x_2, x_3)^{-1} = (x_1, x_3, x_s)$.

Remark: For N to be nontrivial and proper, the disjoint cycle decomposition of any $\sigma \in N$ cannot contain any s-cycle with $s \geq 4$.

Lemma 4.16. Let N be a normal subgroup of A_n , where $n \geq 5$. If N contains an element in the form $\sigma = \mu(x_1, x_2, x_3)(x_4, x_5, x_6)$, where $\mu, (x_1, x_2, x_3), (x_4, x_5, x_6)$ are pairwisely disjoint, then N contains a 5-cycle $\sigma^{-1}(x_1, x_2, x_4)\sigma(x_1, x_2, x_4)^{-1} = (x_1, x_4, x_2, x_6, x_3)$.

Remark: For N to be nontrivial and proper, the disjoint cycle decomposition of any $\sigma \in N$ can contain at most one 3-cycle.

Lemma 4.17. Let N be a normal subgroup of A_n , where $n \geq 5$. If N contains an element in the form $\sigma = \mu(x_1, x_2)(x_3, x_4)$, where $r \geq 4$ and $\mu, (x_1, x_2), (x_3, x_4)$ are pairwisely disjoint, then: (1) $\alpha = \sigma^{-1}(x_1, x_2, x_3)\sigma(x_1, x_2, x_3)^{-1} = (x_1, x_3)(x_2, x_4) \in N$. (2) Take $x_5 \in \{x_1, x_2, x_3, x_4\}^c$. $\beta = (x_1, x_3, x_5) = \beta^{-1}\alpha\beta\alpha \in N$.

Remark: For N to be nontrivial and proper, the disjoint cycle decomposition of any $\sigma \in N$ can contain at most one 2-cycle.

Proposition 4.18. When $n \geq 5$, A_n is simple.

Proof. Assume to the contrary that A_n has a nontrivial proper normal subgroup N. There exists a nontrivial element $\sigma \in N$. Previous discussion suggests that the disjoint cycle decomposition of this $\sigma \in N$ must be one of the followings:

Case 1: If $\sigma = (x_1, x_2)$, then $\sigma \notin A_n$, a contradiction.

Case 2: If $\sigma = (x_1, x_2)(x_3, x_4, x_5)$, then $\sigma \notin A_n$, a contradiction.

Hence, our assumption is false, and we've proven that A_n is simple.

Quod. Erat. Demonstrandum.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] J. Lu and Y. Lau, "Lecture notes: Algebra i," 2024, hKU, Fall 2024.
- [3] 学弱猹, "抽象代数 | 笔记整理 (5) ——群阶数, 西罗定理," November 2017. [Online]. Available: https://zhuanlan.zhihu.com/p/30845557?utm_psn= 1839794425024360448