Devoir à la maison n° 23

À rendre le 16 juin

I. Tout sur la comatrice

On étudie dans ce problème quelques propriétés de la comatrice d'une matrice carrée. Les deux parties sont indépendantes.

Dans tout ce problème, n est un entier naturel supérieur ou égal à deux et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Partie 1 : Comatrice de la comatrice.

Dans cette partie A est une matrice carrée d'ordre n.

- 1) Dans cette question uniquement, on suppose que A est inversible.
 - a) Quel est le rang de com(A)?
 - **b)** Calculer com(com(A)).
- 2) On suppose que $rg(A) \leq n-2$, calculer com(com(A)).
- 3) On suppose maintenant que rg(A) = n 1. Montrer que rg(com(A)) = 1.
- **4)** Montrer, dans le cas général, que com $(com(A)) = (det(A))^{n-2}A$. Remarque: on n'oubliera pas de traiter les cas particuliers pouvant survenir.

Partie 2: Comatrice d'un produit.

Dans cette partie A et B sont deux matrices carrées d'ordre n.

- 5) Dans le cas où A et B sont inversibles, montrer que com (AB) = com(A)com(B).
- 6) Dans cette question, on ne suppose plus que A et B sont inversibles.
 - a) Pour une matrice M carrée d'ordre n, que peut-on dire de la fonction $x \mapsto \det(M x\mathbf{I}_n)$?
 - b) En déduire que l'ensemble des $\lambda \in \mathbb{K}$ tels que $A \lambda I_n$ ou $B \lambda I_n$ n'est pas inversible est fini.
 - c) En déduire que com (AB) = com (A)com (B).
- 7) Montrer que si A et B commutent, alors com (A) et com (B) commutent aussi.
- 8) Montrer que, si A et B sont semblables, alors com(A) et com(B) le sont aussi.

II. La règle de Raab-Duhamel

1) Question préliminaire : soit (u_n) une suite réelle tendant vers 0. Justifier le développement :

$$ln(1+u_n) = u_n + \mathcal{O}(u_n^2).$$

2) Soit (u_n) une suite à termes strictement positifs, telle qu'il existe $a \in \mathbb{R}$ vérifiant

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} \frac{1}{1 + a/n + \mathcal{O}(1/n^2)}$$

On considère la suite (v_n) définie par $v_n = \ln(n^a u_n)$, ainsi que la série de terme général $w_n = v_{n+1} - v_n$.

- a) Donner un développement de w_n à la précision $\mathcal{O}(1/n^2)$.
- b) Quelle est la nature de la série $\sum w_n$?
- c) En déduire la nature de la suite $(v_n)_{n\in\mathbb{N}}$.
- **d)** Montrer alors qu'il existe $\lambda > 0$ tel que $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n^a}$.
- e) Quelle est la nature de la série de terme général u_n ?

Remarque : le résultat ainsi démontré est appelé règle de Raab-Duhamel.

3) Application:

Soit a et b deux réels positifs tels que (b-a) > 1. Soit (u_n) la suite définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, (n+b)u_{n+1} = (n+a)u_n.$

- a) Donner la nature de la série de terme général u_n en appliquant la règle de Raab-Duhamel.
- **b)** Calculer $\sum_{n=0}^{+\infty} u_n$.

— FIN —