NOVOSENSE 纳芯微电子

NSiP8820/NSiP8821/NSiP8822

Dual-Channel Digital Isolators with Integrated DC to DC Converter

Datasheet (EN) 1.1

Product Overview

The NSiP882x devices are dual-channel digital isolators with integrated isolated DC-DC converter. The isolated DC-DC converter provides up to 500mW output power using on chip transformer. The feedback PWM signal is sent to primary side by a digital isolator based on Novosense capacity isolation technology. The high integrated solution can help to simplify system design and improve reliability. The NSiP882x device is safety certified by UL1577 support 4.5kVrms withstand voltages, while providing high electromagnetic immunity and low emissions. The data rate of the NSiP882x is up to 150Mbps, and the common-mode transient immunity (CMTI) is up to 150kV/us. The NSiP882x devices provide 5V to 5V, 5V to 3.3V, 3.3V to 3.3V conversion mode, the output voltage can be set by SEL pin. The logical level of digital isolators on left side can be set by VDDL pin which can support the application when the supply voltage and I/O voltage level are different.

Key Features

- Up to 4500Vrms Insulation voltage
- Power supply voltage: 3.3V to 5.5V
- 5V to 5V, 5V to 3.3V, support 100mA load current
- 3.3V to 3.3V, support 60mA load current
- Over current and over temperature protection
- Date rate: DC to 150Mbps
- High CMTI: 150kV/us
- Propagation delay: <15ns
- High system level EMC performance:
 Enhanced system level ESD, EFT, Surge immunity
- Operation temperature: -40°C~125°C
- RoHS-compliant packages:

SOW16

Safety Regulatory Approvals

- UL recognition: up to 4500V_{rms} for 1 minute per UL1577
- CQC certification per GB4943.1-2011
- CSA component notice 5A
- DIN VDE V 0884-11:2017-01

Applications

- · Industrial automation system
- Isolated SPI, CAN, RS485
- General-purpose multichannel isolation

Device Information

Part Number	Package	Body Size
NSiP882x-DSWR	SOW16	10.30mm × 7.50mm

Functional Block Diagrams

Figure 1. NSiP882x Block Diagram¹

¹ The isolation channel direction can be either depend on different part number.

INDEX

1. PIN CONFIGURATION AND FUNCTIONS	
2. ABSOLUTE MAXIMUM RATINGS	3
3. RECOMMENDED OPERATING CONDITIONS	4
4. THERMAL CHARACTERISTICS	4
5. SPECIFICATIONS	4
5.1. ISOLATED DC/DC CONVERTER STATIC SPECIFICATIONS 5.2. DIGITAL ISOLATOR ELECTRICAL CHARACTERISTICS 5.3. TYPICAL PERFORMANCE CHARACTERISTICS 5.4. PARAMETER MEASUREMENT INFORMATION	6 9
6. HIGH VOLTAGE FEATURE DESCRIPTION	10
6.1. Insulation And Safety Related Specifications	11
7. FUNCTION DESCRIPTION	12
7.1. OVERVIEW	13
8. APPLICATION NOTE	13
8.1. TYPICAL APPLICATION	
9. PACKAGE INFORMATION	15
10. ORDER INFORMATION	16
11. DOCUMENTATION SUPPORT	16
12. TAPE AND REEL INFORMATION	17
13. REVISION HISTORY	18

1. Pin Configuration And Functions

Figure 1.1 NSiP8820 Package

Figure 1.2 NSiP8821 Package

Figure 1.3 NSiP8822 Package

Table 1.1 NSiP8820/ NSiP8821/ NSiP8822 Pin Configuration and Description

NSiP8820 PIN NO.	NSiP8821 PIN NO.	NSiP8822 PIN NO.	SYMBOL	FUNCTION
1	1	1	VDD	Power Supply for Isolator Side 1
2	2	2	GND1	Ground 1, the ground reference for Isolator Side 1
3	3	14	INA	Logic Input A
13	4	4	ОИТВ	Logic Output B
5	5	5	NC	No Connection
6	6	6	NC	No Connection
7	7	7	VDDL	I/O Power Supply input. Side1 I/O logic level.
8	8	8	GND1	Ground 1, the ground reference for Isolator Side 1
9	9	9	GND2	Ground 2, the ground reference for Isolator Side 2
10	10	10	NC	No Connection
11	11	11	SEL	VISO output voltage select, VISO=5V when SEL short to VISO, VISO=3.3V when SEL short to GND2 or floating.
12	12	12	NC	No Connection
4	13	13	INB	Logic Input B
14	14	3	OUTA	Logic Output A
15	15	15	GND2	Ground 2, the ground reference for Isolator Side 2
16	16	16	VISO	Secondary Supply Voltage Output for External Load.

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power Supply Voltage	VDD	-0.5		6	V	

NSiP8820/NSiP8821/NSiP8822

Maximum Input Voltage	V _{INA} , V _{INB} V _{INC} , V _{IND}	-0.4	VCC1 ² +0.4 ¹	V	
Maximum Output Voltage	V _{OUTA} , V _{OUTB}	-0.4	VCC2 ² +0.4 ¹	٧	
Output current	lo	-15	15	mA	
Maximum Surge Isolation Voltage	V _{IOSM}		5.3	kV	
Operating Temperature	Topr	-40	125	°C	
Storage Temperature	Tstg	-40	150	°C	
Floatus statis disabours	НВМ		±6000	V	
Electrostatic discharge	CDM		±2000	V	

¹VCC1 is input side supply,VCC2 is output side supply For the isolator side1,VDDL is the VCCx.

3. Recommended Operating Conditions

Parameters	Symbol	min	typ	max	unit
Power Supply Voltage	VDD	3		5.5	V
Operating Temperature	Topr	-40		125	C
High Level Input Voltage	VIH	0.7*VCC1 ¹		VCC1 ¹	V
Low Level Input Voltage	VIL	0		0.3*VCC1 ¹	V
Data rate	DR			150	Mbps

¹VCC1 is input side supply,VCC2 is output side supply For the isolator side1,VDDL is the VCCx.

4. Thermal Characteristics

Parameters	Symbol	SOW16	Unit
IC Junction-to-Air Thermal Resistance	θ _{JA}	56.8	°C/W
Junction-to-case (top) thermal resistance	θ _{JC (top)}	15.6	°C/W
Junction-to-board thermal resistance	θ ЈВ	28.5	°C/W

5. Specifications

5.1. Isolated DC/DC Converter Static Specifications

(VDD=4.5V~5.5V, VDDL=1.8V~5.5V,SEL=VISO, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at VDD =VDDL= 5V, Ta = 25° C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Isolated Supply Voltage	VISO	4.75	5	5.25	V	
Line Regulation	V _{ISO(LINE)}			2	mV/V	

NSiP8820/NSiP8821/NSiP8822

Load Regulation	V _{ISO(LOAD)}		0.2	0.5	%	
Output Ripple	V _{ISO(RIP)}		35		mVpp	
Output Noise	V _{ISO(NOISE)}		150		mVpp	
Efficiency at maximum load current	EFF	39	50		%	I _{ISO} =100mA,VDDL=VDD
Output supply current	I _{ISO}	100			mA	
VDD supply current without	I _{VDD_POWER}		10	20	mA	No VISO Load
digital isolator			197	270	mA	I _{ISO} =100mA

(VDD=4.5V 5 .5V, VDDL=1.8V 5 .5V,SEL=0V, Ta=-40 $^{\circ}$ C to 125 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD =VDDL= 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Isolated Supply Voltage	VISO	3.135	3.3	3.465	V	
Line Regulation	V _{ISO(LINE)}			2	mV/V	
Load Regulation	V _{ISO(LOAD)}		0.2	0.5	%	
Output Ripple	V _{ISO(RIP)}		35		mVpp	
Output Noise	V _{ISO(NOISE)}		150		mVpp	
Efficiency at maximum load current	EFF	28	41.5		%	I _{ISO} =100mA,VDDL=VDD
Output supply current	I _{ISO}	100			mA	
VDD supply current	I _{VDD_POWER}		8	20	mA	No VISO Load
without digital isolator			157	230	mA	I _{ISO} =100mA

(VDD=3V~3.6V, VDDL=1.8V~5.5V,SEL=VISO, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at VDD =VDDL= 3.3V, Ta = 25° C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Isolated Supply Voltage	VISO	3.2	3.3	3.5	V	
Line Regulation	V _{ISO(LINE)}			2	mV/V	
Load Regulation	V _{ISO(LOAD)}		0.2	2.1	%	
Output Ripple	V _{ISO(RIP)}		40		mVpp	
Output Noise	V _{ISO(NOISE)}		100		mVpp	
Efficiency at maximum load current	EFF	39	48		%	I _{ISO} =60mA,VDDL=VDD
Output supply current	I _{ISO}	60			mA	
	I _{VDD_POWER}		10	20	mA	No VISO Load

VDD supply current without		123	160	mA	I _{ISO} =60mA
digital isolator					

5.2. Digital Isolator Electrical Characteristics

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power on Reset	V_{DDPOR}		2.5	3	V	POR threshold as during power-up
	V _{DDHYS}		0.2		V	POR threshold Hysteresis
High Level Input Voltage	V _{IH}	0.7*VCC1			V	
Low Level Input Voltage	V _{IL}			0.3*VCC1	٧	
High Level Output Voltage	V _{OH}	0.8*VCC2			٧	I _{OH} ≥- 4mA
Low Level Output Voltage	V _{OL}			0.2*VCC2	V	$I_{OL} \leqslant 4mA$
Output Impedance	Rout		50		ohm	
Input Pull high or low Current	I _{pull}		8	15	uA	
Common Mode Transient Immunity	CMTI	100	150		kV/us	
Thermal Shutdown Temperature			165		°C	

¹VCC1 is input side supply,VCC2 is output side supply. For the isolator side1,VDDL is the VCCx.

(VDD=4.5V~5.5V, VDDL=1.8V~5.5V,SEL=VISO, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at VDD =VDDL= 5V, Ta = 25° C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments				
	NSiP8820									
	I _{DD(Q0)}		10.3	20	mA	All Input 0V for NSiP8820W0 or All Input at supply for NSiP8820W1				
	I _{DD(Q1)}		11	30	mA	All Input at supply for NSiP8820W0 or All Input 0V for NSiP8820W1				
	I _{DD(1M)}		11.6	35	mA	All Input with 1Mbps, C _L =15pF				
Supply current	NSiP8821									
	I _{DD(Q0)}		10.3	20	mA	All Input 0V for NSiP8821W0 or All Input at supply for NSiP8821W1				
	I _{DD(Q1)}		12.3	30	mA	All Input at supply for NSiP8821W0 or All Input 0V for NSiP8821W1				
	I _{DD(1M)}		12.7	35	mA	All Input with 1Mbps, C _L =15pF				
	NSiP8822									

	I _{DD(Q0)}		10.3	20	mA	All Input 0V for NSiP8822W0 or All Input at supply for NSiP8822W1
	I _{DD(Q1)}		14.3	30	mA	All Input at supply for NSiP8822W0 or All Input 0V for NSiP8822W1
	I _{DD(1M)}		20	35	mA	All Input with 1Mbps, C _L =15pF
Data Rate	DR	0		150	Mbps	
Minimum Pulse Width	PW			5.0	ns	
Propagation Delay	t _{PLH}	5	9.0	16	ns	
	t _{PHL}	5	9.0	16	ns	
Pulse Width Distortion	PWD			5.0	ns	t _{PHL} -t _{PLH}
Rising Time	t _r			5.0	ns	C _L = 15pF
Falling Time	t _f			5.0	ns	C _L = 15pF
Channel-to-Channel Delay Skew	tSK(c2c)			2.5	ns	
Part-to-Part Delay Skew	tSK(p2p)			5.0	ns	

(VDD=4.5V $^{\circ}$ 5.5V, VDDL=1.8V $^{\circ}$ 5.5V,SEL=0V, Ta=-40 $^{\circ}$ C to 125 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD =VDDL= 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Typ	Max	Unit	Comments
	NSiP8820					
	I _{DD(Q0)}		7.8	20	mA	All Input 0V for NSiP8820W0 or All Input at supply for NSiP8820W1
	I _{DD(Q1)}		8	25	mA	All Input at supply for NSiP8820W0 or All Input 0V for NSiP8820W1
	I _{DD(1M)}		8.78	20	mA	All Input with 1Mbps, C _L =15pF
	NSiP8821					
Supply current	I _{DD(Q0)}		7.8	20	mA	All Input 0V for NSiP8821W0 or All Input at supply for NSiP8821W1
	I _{DD(Q1)}		9.8	25	mA	All Input at supply for NSiP8821W0 or All Input 0V for NSiP8821W1
	I _{DD(1M)}		11.7	30	mA	All Input with 1Mbps, CL=15pF
	NSiP8822					
	I _{DD(Q0)}		7.8	20	mA	All Input 0V for NSiP8822W0 or All Input at supply for NSiP8822W1
	I _{DD(Q1)}		11.8	25	mA	All Input at supply for NSiP8822W0 or All Input 0V for NSiP8822W1

NSiP8820/NSiP8821/NSiP8822

	I _{DD(1M)}		15.3	30	mA	All Input with 1Mbps, C _L =15pF
Data Rate	DR	0		150	Mbps	
Minimum Pulse Width	PW			5.0	ns	
Propagation Delay	t _{PLH}	5	9.0	16	ns	
	t _{PHL}	5	9.0	16	ns	
Pulse Width Distortion	PWD			5.0	ns	t _{PHL} -t _{PLH}
Rising Time	t _r			5.0	ns	C _L = 15pF
Falling Time	t _f			5.0	ns	C _L = 15pF
Channel-to-Channel Delay Skew	t _{SK(c2c)}			2.5	ns	
Part-to-Part Delay Skew	t _{SK(p2p)}			5.0	ns	

(VDD=3V 3 .6V, VDDL=1.8V 5 .5V,SEL=0V, Ta=-40 $^\circ$ C to 125 $^\circ$ C. Unless otherwise noted, Typical values are at VDD=VDDL= 3.3V, Ta = 25 $^\circ$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
	NSiP8820					
	I _{DD(Q0)}		9	20	mA	All Input 0V for NSiP8820W0 or All Input at supply for NSiP8820W1
	I _{DD(Q1)}		10	25	mA	All Input at supply for NSiP8820W0 or All Input 0V for NSiP8820W1
	I _{DD(1M)}		10	30	mA	All Input with 1Mbps, CL=15pF
	NSiP8821					
Congletowers	I _{DD(Q0)}		9	20	mA	All Input 0V for NSiP8821W0 or All Input at supply for NSiP8821W1
Supply current	I _{DD(Q1)}		11.25	25	mA	All Input at supply for NSiP8821W0 or All Input 0V for NSiP8821W1
	I _{DD(1M)}		10.14	30	mA	All Input with 1Mbps, CL=15pF
	NSiP8822					
	I _{DD(Q0)}		9	20	mA	All Input 0V for NSiP8822W0 or All Input at supply for NSiP8822W1
	I _{DD(Q1)}		13.5	25	mA	All Input at supply for NSiP8822W0 or All Input 0V for NSiP8822W1
	I _{DD(1M)}		16.5	30	mA	All Input with 1Mbps, CL=15pF
Data Rate	DR	0		150	Mbps	
Minimum Pulse Width	PW			5.0	ns	

Propagation Delay	t PLH	5	9.0	16	ns	
	t _{PHL}	5	9.0	16	ns	
Pulse Width Distortion	PWD			5.0	ns	tphl-tplh
Rising Time	t _r			5.0	ns	C _L = 15pF
Falling Time	t _f			5.0	ns	C _L = 15pF
Channel-to-Channel Delay Skew	t _{SK(c2c)}			2.5	ns	
Part-to-Part Delay Skew	t _{SK(p2p)}			5.0	ns	

5.3. Typical Performance Characteristics

Figure 5.1 5V→5V Soft start at no load

Figure 5.3 Output current vs efficiency

Figure 5.2 5V→5V Soft start at full load

Figure 5.4 Power-Supply Undervoltage Threshold vs Temperature

0.7

| 0.6
| 0.6
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
| 0.7
|

Figure 5.5 High-Level Output Voltage vs Output Current

Figure 5.6 Low-Level Output Voltage vs Output Current

5.4. Parameter Measurement Information

Figure 5.7 Switching Characteristics Test Circuit and Waveform

Figure 5.8 Common-Mode Transient Immunity Test Circuit

6. High Voltage Feature Description

6.1. Insulation And Safety Related Specifications

Parameters	Symbol	Value	Unit	Comments
Minimum External Air Gap (Clearance)	L(101)	8.0	mm	Shortest terminal-to-terminal distance through air
Minimum External Tracking (Creepage)	L(102)	8.0	mm	Shortest terminal-to-terminal distance across the package surface
Minimum internal gap	DTI	20	um	Distance through insulation

Tracking Resistance(Comparative Tracking Index)	СТІ	>400	v	DIN EN 60112 (VDE 0303-11); IEC 60112
Material Group		п		

6.2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 INSULATION CHARATERISTICS

Description	Test Condition	Symbol	Value	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150V _{rms}			I to IV	
For Rated Mains Voltage ≤ 300V _{rms}			I to III	
For Rated Mains Voltage ≤ 400V _{rms}			I to III	
Climatic Classification			10/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum repetitive isolation voltage		V _{IORM}	565	Vpeak
Maximum Working Isolation Voltage	AC voltage	V _{IOWM}	400	V_{RMS}
	DC voltage		565	V _{DC}
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.5 = V_{pd(m)},$ 100% production test, $t_{ini} = t_m = 1$ sec, $q_{pd} < 5$ pC	V _{pd (m)}	847	Vpeak
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60$ sec, $t_m = 10$ sec, $q_{pd} < 5$ pC	V _{pd (m)}	678	Vpeak
After Input and /or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	678	Vpeak
Maximum transient isolation voltage	t = 60 sec	V _{IOTM}	5300	Vpeak
Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification); VTEST= 1.2 × VISO, t = 1 s (100%production)	V _{ISO}	4500	V _{RMS}
Maximum Surge Isolation Voltage	Test method per IEC60065,1.2/50us waveform, VTEST=VIOSM×1.3	V _{IOSM}	5384	Vpeak
Isolation resistance	V _{IO} =500V at T _{amb} =T _S	R _{IO}	>109	Ω
	V _{IO} =500V at 100°C≤T _{amb} ≤125°C		>1011	Ω
Isolation capacitance	f = 1MHz	C _{IO}	0.6	pF

Input capacitance		Cı	2	pF
Total Power Dissipation at 25 $^{\circ}\mathrm{C}$		Ps	2201	mW
Safety input, output, or supply current	$\theta_{JA} = 56.8 \text{ °C/W}, V_i = 5.5 \text{ V},$ $T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	Is	400	mA
Case Temperature		Ts	150	$^{\circ}$

Figure 6.1 NSiP882x Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

6.3. Regulatory Information

The NSiP882x are approved by the organizations listed in table.

	CUL	VDE	cqc
UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	DIN VDE V 0884- 11:2017-01 ²	Certified by CQC11- 471543-2012 GB4943.1-2011
Single Protection,4500V _{rms} Isolation voltage	Single Protection, 4500V _{rms} Isolation voltage	Basic Insulation 565Vpeak, V _{IOSM} =5384Vpeak	Basic insulation at 400V _{rms} (565Vpeak)
File (pending)	File (pending)	File (pending)	File (pending)

7. Function Description

7.1. Overview

The NSiP882x devices are dual-channel digital isolators with integrated isolated DC-DC converter. The digital isolators are based on Novosense capacity isolation barrier technique. The isolated DC-DC converter provides up to 500mW output power using on chip transformer. The feedback PWM signal is sent to primary side by a digital isolator based on capacity isolation technology. The NSiP882x device are safety certified by UL1577 support 4.5kVrms insulation withstand voltages, while providing high electromagnetic immunity and low emissions. The data rate of the NSiP882x is up to 150Mbps, and the common-mode transient immunity (CMTI) is up to 150kV/us. The logical level of digital isolators on left side can be set by VDDL pin which can support the application when the supply voltage and I/O voltage level are different.

The high integrated solution can help to simplify system design and improve reliability. The NSiP882x devices are suitable for the limited PCB space applications. The devices are also suitable for wide temperature application which the most the power module can not support.

7.2. Device Functional Modes

The NSiP882x devices provide 5V to 5V, 5V to 3.3V, 3.3V to 3.3V conversion mode, the output voltage can be set by SEL pin. Supply configuration table showed below.

SEL PIN	VDD	VISO
Shorted to VISO	5V	5V
Shorted to GND2 or floating	5V	3.3V
Shorted to GND2 or floating	3.3V	3.3V

The NSiP882x devices provide four channel digital isolators. The digital isolators have default weak pull up or pull down input status when input is floating as shown in below table.

Input	VDD1 status	VDDOUT status	Output	Comment
Н	Ready	Ready	Н	Normal operation
L	Ready	Ready	Ł	
floating	Ready	Ready	L(NSiP882xW0) H(NSiP882xW1)	Floating input status

7.3. Emi Considerations

The NSiP882x devices are using on chip transformer, so the power transfer must operate at high frequency allow higher efficiency transfer using the small transformer. This will cause emissions which need to pay attention to PCB layout if the application allow low emission. Please see the application note if needed.

7.4. Output Short And Over Temperature Protection

The NSiP882x devices are protected against output short. When the devices detect the output is short, the device will be in Hiccup mode and the transfer power will be limited. So the temperature of the device will be low, and the device is protected.

The NSiP882x devices are also protected against over temperature. When the devices detect the chip is over 165 $^{\circ}$ C, the device will be shut down until the temperature of the device is below 145 $^{\circ}$ C.

8. Application Note

8.1. Typical Application

The NSiP882x requires a $0.1~\mu F$ and 10uF bypass capacitors between VDD and GND1, VISO and GND2. The capacitor should be placed as close as possible to the package. This is very important for the performance of the device. The figure 8.1 is the basic schematic of NSiP882x and the figure 8.2 is the typical isolated CAN schematic using NSiP8821.

Figure 8.1 Basic schematic of NSiP88xx

Figure 8.2 Isolated CAN schematic using NSiP8821

8.2. Pcb Layout

The recommended PCB layout shown below. The low ESR capacitor C1 should be closed to PIN1 and PIN2, the distance should be less than 1mm. The low ESR capacitor C3 should be closed to PIN15 and PIN16, the distance should be less than 1mm.

Figure 8.3 Recommended PCB Layout — Top Layer

Figure 8.4 Recommended PCB Layout — Bottom Layer

9. Package Information

Figure 9.1 SOW16 Package Shape and Dimension in millimeters

10. Order Information

Part Number	Isolation Rating (kV)	Number of side 1 inputs	Number of side 2 inputs	Max Data Rate (Mbps)	Default intput logic	Temperature	MSL	Package Type	Package Drawing	SPQ
NSIP8820W0	4.5	2	0	150	Low	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR								(300mil)		
NSIP8820W1	4.5	2	0	150	High	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR						_		(300mil)		
NSIP8821W0	4.5	2	0	150	Low	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR								(300mil)		
NSIP8821W1	4.5	1	1	150	High	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR						.5 15 125 2		(300mil)		
NSIP8822W0	4.5	2	0	150	Low	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR								(300mil)		
NSIP8822W1	4.5	1	1	150	High	-40 to 125 ℃	3	SOP16	SOW16	1000
-DSWR						.5 15 125 C		(300mil)		

Part Number Rule:

11. Documentation Support

Part Number	Product Folder	Datasheet	Technical Documents	Isolator selection guide
NSiP882x	Click here	Click here	Click here	Click here

12. Tape And Reel Information

ARBOR HOLE <u>DETAIL A</u> SCALE : 3:1

PRODUCT SPECIFICATION						
TAPE WIDTH	øA ± 2.0	øN ± 2.0	W1	W2 (MAX)	W3	E (MIN)
08MM	330	178	8.4 = 1.5	14.4		5.5
12MM	330	178	12.4 = 2.0	18.4	SHALL ACCOMMODATE	5.5
16MM	330	178	16.4 = 2.0	22.4	TAPE WIDTH	5.5
24MM	330	178	24.4 = 2.0	30.4	NTERFERENCE	5.5
32MM	330	178	32.4 = 2.0	38.4		5.5

SURFACE RESISTIVITY					
LEGEND	SR RANGE	TYPE	COLOUR		
Α	BELOW 1012	ANTISTATIC	ALL TYPES		
В	10 ⁶ TO 10 ¹¹	STATIC DISSIPATIVE	BLACK ONLY		
С	105 & BELOW 105	CONDUCTIVE (GENERIC)	BLACK ONLY		
E	10° TO 10 ¹¹	ANTISTATIC (COATED)	ALL TYPES		

Figure 12.1 Tape and Reel Information of SOW16

13. Revision History

Revision	Description	Date
1.0	Initial version	2021/3/28
1.1	Updating relative figures	2022/5/9