

Introduction à la robotique Licence 1ère année - 2011/2012

Laëtitia Matignon

GREYC-CNRS Université de Caen, France

Laetitia Matignon

Plan

- Définitions
- 2 Historique
- 3 Les robots

Types de robots Robots Manipulateurs Robots Mobiles Caractéristiques des robots

- 4 Domaines d'étude Quelques challenges en robotique Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Plan

- 1 Définitions
- 2 Historique
- 3 Les robots

Robots Manipulateurs
Robots Mobiles
Caractéristiques des robo

- Domaines d'étude
 Quelques challenges en robotique
 Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Laetitia Matignon

Définitions

Origine des termes

- "Robot" a été utilisé pour la première fois en 1921 par Karel Capek dans sa pièce R.U.R.: Rossums Universal Robots.
- Il provient du tchèque "robota" qui signifie corvée, travail obligatoire.
- Le terme robotique a été employé pour la première fois par Asimov en 1941.

Définitions

Définition d'un automate

Un automate est une machine programmée pour effectuer une tâche précise dans un environnement donné.

Définition d'un robot

Un robot est un automate doté de capteurs et d'effecteurs lui donnant une capacité d'adaptation et de déplacement proche de l'autonomie. Un robot est un **agent physique** réalisant des **tâches** dans l'**environnement** dans lequel il évolue.

Définitions

Boucle de décision

Un robot est capable d'extraire de l'information à partir de son environnement et d'utiliser ses connaissances pour décider comment agir. Un robot est équipé de capteurs et d'effecteurs.

Effecteurs

Les robots sont équipés d'**effecteurs** leur permettant d'agir dans l'environnement :

- roue
- bras
- jambes
- pinces
- •

Robot hexapode

Bras de robot industriel

Robot humanoïde HRP2

Capteurs

Les robots sont équipés de **capteurs** leur permettant de percevoir l'environnement dans lequel ils évoluent :

- proprioceptifs: mesurent l'état du robot lui-même (capteur de position (GPS), capteur de vitesse, capteur de charge de batteries, ...)
- extéroceptifs : renseignent sur l'état de l'environnement (capteur de température, télémètre (RADAR, LIDAR), boussole, détecteur de chaleur/lumière, ...)

Capteurs télémètres télémètres laser ultrason Caméra

Capteurs

Les capteurs peuvent être plus ou moins précis.

- Portée des capteurs
- Précision des mesures
- Perception de bruit

L'espace de perception constitue la partie de l'environnement qu'un robot peut percevoir grâce à ses capteurs.

Effecteurs

Les effecteurs peuvent également être plus ou moins précis.

- Exactitude des déplacements
- Déviations dues à l'environnement
- Evènements externes imprévus

Exemple : BigDog, la "mule" de l'armée américaine (lien vidéo).

Autres composantes

De nombreuses autres composantes peuvent êtres présentes, selon le type de robot considéré :

- périphériques de stockage (stocker des programmes, des informations sur l'environnement, ...),
- interfaces de communication (écran, wifi, ...),
- unité d'alimentation (batterie, panneaux solaire, ...),
- ...

Plan

- Définitions
- 2 Historique
- 3 Les robots

Robots Manipulateurs
Robots Mobiles
Caractéristiques des robots

- 4 Domaines d'étude
 Quelques challenges en robotique
 Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Avant 1950

- XVIII^{ème} siècle : création d'automates. En 1738, Jacques Vaucanson crée un canard articulé en cuivre capable de boire, manger, cancaner et digérer comme un véritable animal.
- 1921 : Karel Capek , RUR (Rossum's Universal Robots).
- 1940 : Isaac Asimov écrit un ensemble de nouvelles sur les robots. Trois lois de la robotique.

1950-1960

- 1948 : Grey Walter invente le premier robot mobile autonome, une tortue se dirigeant vers les sources de lumière qu'elle perçoit.
 Cependant, ce robot n'est pas programmable.
- La mise en place de robots n'a été possible que dans les années 50 avec la création des transistors et circuits intégrés.

1950-1970 : Robotique industrielle

- 1961 : Premier robot industriel mis en place dans une usine de General Motors : UNIMATE (tubes cathodiques de télévision).
- 1972 : Nissan ouvre la première chaîne de production complètement robotisée
- 1978 : PUMA (Programmable Universal Machine for Assembly) développé par General Motors (toujours utilisé).

1950-1970 : Robotique industrielle

Puma

1960-80: Premiers robots mobiles

- 1960-64: Ouverture des laboratoires d'Intelligence Artificielle au M.I.T., Stanford Research Institute (SRI), Stanford University, University of Edinburgh.
- Fin des années 60 : Mise en place de "Shakey" premier robot mobile intégrant perception, planification et exécution.
- 1970 : Standford Cart
- 1977 : premier robot mobile français HILARE au LAAS (CNRS Toulouse)

1960-80: Premiers robots mobiles

Stanford cart

Hilare

Shakey

1980-1990:

Développement important de l'intelligence artificielle et de la robotique : de nouveaux robots apparaissent constamment.

Sojourner

robocup

aibo

1990-2000 : Essor de la robotique mobile

- 1992 : Mise en place de la compétition annuelle AAAI sur la robotique mobile.
- 1995 : Mise en place de la RoboCup (lien vidéo).
- 1997 : premier robot mobile extraplanétaire sur Mars.
- 1999 : Lancement de Aibo.

Spirit

Curiosity

Depuis 2000: Exploration.

- 2003 : Projet "Mars Exploration Rover" (Spirit & Opportunity).
- 2009 : projet "Mars Science Laboratory" succédant au projet Rover, envoi prévu de Curiosity fin 2011.

Depuis 2000 : Démocratisation des robots.

- 2000 : Lancement d'Asimo
- Diversification des compétitions de robotique.
- Utilisation de drones en situation réelle (Irak...).
- 2006 : le projet Aibo n'est plus assez rentable, fin de la production.
- 2009 : robot Nao utilisé à la RobocupSoccer (lien video)

Plan

- Définitions
- 2 Historique
- 3 Les robots

Types de robots Robots Manipulateurs Robots Mobiles Caractéristiques des robots

- 4 Domaines d'étude Quelques challenges en robotique Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

- Définitions
- 2 Historique
- 3 Les robots

Types de robots Robots Manipulateurs Robots Mobiles

Caractéristiques des robots

- 4 Domaines d'étude Quelques challenges en robotique Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Types de robots

Les deux grandes catégories de robots sont :

- robots manipulateurs : robots ancrés physiquement à leur place de travail et généralement mis en place pour réaliser une tâche précise ou répétitive.
- robots mobiles : robots capables de se déplacer dans un environnement. Ils sont équipés ou non de manipulateurs suivant leur utilisation

Robots manipulateurs

Des robots de complexité variable

- Automates : le robot exécute une même série d'actions indéfiniment, sans aucune perception de son environnement,
- robots réactifs : le robot exécute une action selon l'état actuel de l'environnement dans lequel il évolue (le mapping état/action étant fixé initialement),
- robots cognitifs: le robot analyse son environnement et calcule la meilleure action à effectuer

Robots manipulateurs

Robots manipulateurs

- Robots industriels : chaînes de montage, test qualité, manipulation de produits chimiques,...
- Robots pour l'assistance médicale

Robots manipulateurs

Robots mobiles: robots explorateurs

Robots explorateurs

Ils sont destinés à explorer des environnements où l'homme ne peut pas se rendre :

- exploration d'autres planêtes comme Mars : Sojourner, Spirit
- exploration d'épaves ou de décombres : recherche de victimes aux World Trade Center ou lors de tremblements de terre
- déminage de terrains
- exploration de zones radioactives : entretien de réacteurs, de piscine de stockage, etc...

Robots mobiles: robots explorateurs

Nomad pour l'exploration de l'antarctique

Packbot utilisé à Fukushima

Robots mobiles: robots explorateurs

Rescue Robot - Ground zero

Mini Andross pour le déminage

Robots mobiles : robots de Service

Robots de service

Ils sont destinés à aider l'homme pour certaines tâches :

- robots agricoles
- robots de transport de marchandises : robots docker
- robots ménagers : aspirateur, tondeuse
- guide de musée : cité de l'espace à Toulouse
- aide aux personnes : personnes âgées ou ayant un handicap

Robots mobiles : robots de service

Cycab: voiture autonome

Robot agricole

Robots mobiles : robots de service

Robot tondeuse

Guide musée à la cité de l'espace

Robots mobiles: robots ludiques

Exemples

- Aibo, Qrio, ...
- Mindstorm (lien video)
- ...

Robots humanoïdes

Exemples

- Asimo (lien video)
- HRP (lien video)
- Nao

- Définitions
- 2 Historique
- 3 Les robots

ypes de robots Robots Manipulateurs Robots Mobiles

Caractéristiques des robots

- 4 Domaines d'étude Quelques challenges en robotique Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Tâches

Tâches

- Les robots ont un ensemble de tâches à réaliser.
- Leur exécution consomme du temps et des ressources.
- De plus, des contraintes (temporelles, spatiales, etc.) peuvent leur être associées.

Autonomie des robots

Niveaux d'autonomie

- Robots télé-commandés : aucune autonomie, les commandes sont envoyées au robot par l'utilisateur,
- robots semi-autonomes : l'utilisateur intervient en cas de panne ou de situations non-prévues,
- robots totalement autonomes : l'utilisateur n'intervient jamais.

Environnement

Les agents évoluent généralement dans des environnements :

- dynamiques,
- incertains,
- partiellement observables,
- ...

Environnement

Les robots n'ont qu'une observabilité limite de l'environnement dans lequel ils évoluent :

- vision locale de l'environnement,
- information sur les autres robots,
- erreurs et imprécision sur les capteurs.

Environnement

- Par ailleurs, les environnements peuvent être difficilement accessibles et les erreurs irrémédiables : nécessité d'avoir recours à la simulation avant l'exécution.
- La simulation offre la possibilité d'étudier et de tester les comportements des robots.

Interactions

Définition

Une interaction est une mise en relation dynamique de plusieurs individus (robots et/ou humains).

Certaines tâches impliquent qu'un groupe de robots travaille de concert, on fait alors appel à des méthodes de coordination.

- Escorte de robots (lien video)
- Interaction Homme Robot (HRI) (lien video Jido)

Plan

- Définitions
- 2 Historique
- 3 Les robots

Robots Manipulateurs
Robots Mobiles

Caractéristiques des robots

- 4 Domaines d'étude Quelques challenges en robotique Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

- 1 Définitions
- 2 Historique
- 3 Les robots

Types de robots
Robots Manipulateurs
Robots Mobiles
Caractéristiques des robot

- Domaines d'étude
 Quelques challenges en robotique
 Intelligence Artificialle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Développement de colonies de robots autonomes

- Ensemble de robots (agents) devant agir de manière autonome.
- Ensemble de tâches à réaliser (mission) de façon coopérative.
- Ensemble de **contraintes** sur la réalisation des tâches.

Développement de colonies de robots autonomes

- Prise de décision autonome : quoi faire et quand,
- replanification en cas d'échecs,
- actuellement en robotique exploratoire : 1 seul robot (exemple des robots sur Mars).

Perception de l'environnement

- Analyse d'image : reconnaissance d'expressions faciales, localisation d'obstacles.
- Création d'une carte de l'environnement à partir des informations des différents capteurs.

Cinématique des robots

- Faire courir un robot bipède.
- Permettre à un robot de monter des marches ou de passer des obstacles.

Quelques vidéos...

(lien) Dexter : la marche en déséquilibre.

(lien) HRP2 : montée de marches.

- 1 Définitions
- 2 Historique
- 3 Les robots

ypes de robots Robots Manipulateurs Robots Mobiles

4 Domaines d'étude

Quelques challenges en robotique Intelligence Artificielle et Robotique

- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Domaines d'étude

Diversité des domaines

Un grand nombre de disciplines scientifiques sont concernées par la mise en place de robots :

- automatique : calibrage des capteurs, des effecteurs ...,
- électronique : mise en place de composants pour les robots,
- informatique : création de programmes destinés aux robots,
- mathématiques : modèles pour la prise de décision ou/et l'apprentissage, le calcul de trajectoires, la localisation ...,
- sciences cognitives : interactions homme-machine, machine-machine, prise de décision ...,
- physique : cinématique des robots, navigation,

Laetitia Matignon Université de Caen 53 / 61

Intelligence Artificielle

Programmation

L'intelligence Artificielle d'un robot se résume à un ensemble de programmes préalablement écrits avec un ordinateur :

- les programmes s'exécutant sur les robots sont écrits avec un langage de programmation (exemples : C++, Java, ...),
- ils s'exécutent grâce au contrôleur et à la mémoire du robot,
- ils prennent en entrée les informations obtenues par les capteurs et en sortie envoient des ordres aux effecteurs.

Intelligence Artificielle

Types de Programmes

L'intelligence Artificielle d'un robot permet par exemple :

- · analyse d'images,
- · localisation et navigation,
- gestion des interactions : interfaces, communication,
- planification et prise de décision,
- contrôle d'exécution des tâches.

(lien) RobotCup soccer.

Plan

- 1 Définitions
- 2 Historique
- 3 Les robots

Robots Manipulateurs
Robots Mobiles
Caractéristiques des robot

- 4 Domaines d'étude
 Quelques challenges en robotique
 Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Laetitia Matignon Université de Caen 5

Intelligence Artificielle et Unicaen

Recherche

Laboratoire GREYC : Groupe de Recherche en Informatique, Image, Automatique et Instrumentation.

Une équipe de recherche : MAD (Modèle, Agents et Décision).

- Spécialité : Intelligence Artificielle,
- compétences diverses (planification, raisonnement logique et temporel, web services, code mobile, etc...),
- accueil actuellement 21 personnes dont 11 étudiants (doctorants) et 7 permanents,
- possède actuellement 7 robots.

(lien) Interaction Homme-Robot - Exploration/Cartographie Multi-Robot

4D> 4B> 4B> 4B> B 990

Laetitia Matignon Université de Caen 57 / 61

Intelligence Artificielle et Unicaen

Formation

Au département Informatique, le Master recherche AMI (Algorithmes et Modèles de l'Information) propose, entre autres, une spécialité IA :

- accessible aprés une Licence en informatique,
- qui propose une formation en adéquation avec les thèmes de recherche de l'équipe MAD,
- et qui peut déboucher sur la préparation d'un Doctorat (débouchés : enseignant/chercheur, chercheur dans un laboratoire privé, employé d'un département Recherche&Développement, ...).

Laetitia Matignon Université de Caen 58 / 0

Plan

- 1 Définitions
- 2 Historique
- 3 Les robots

Robots Manipulateurs Robots Mobiles Caractéristiques des robots

- 4 Domaines d'étude
 Quelques challenges en robotique
 Intelligence Artificielle et Robotique
- 5 L'Intelligence Artificielle à l'université de Caen
- 6 Conclusion

Laetitia Matignon

Conclusion

- Robotique : un domaine récent,
- grande diversité de robots et des applications,
- diversité des disciplines concernées par la robotique,
- importance de l'informatique,
- encore bien loin de R2D2 et C3PO!

Laetitia Matignon Université de Caen

Définitions Historique Les robots Domaines d'étude Intelligence Artificielle et Unicaen **Conclusion**

Conclusion

Cours disponible à l'adresse suivante : http://lmatigno.perso.info.unicaen.fr/L1robotique Remerciements à Arnaud Canu et Nicolas Coté pour avoir fourni les documents à l'origine de ces transparents.

Laetitia Matignon Université de Caen 61 ,