Propositions

A proposition is a statement that is either true or false.

Newton was born in England this is a true proposition

Fermat was born in Poland this is a false proposition

Please shut the door this is not a proposition

Example

a: Today is Monday b: I go to work today

We can combine two propositions using AND

 $a \wedge b$: Today is Monday and I go to work today

Today is Monday and I go to work today is true if:

Today is Monday is true

and I go to work today is true

Otherwise it is false.

So $a \wedge b$ is true if a is true and b is true, otherwise it is false.

We can set this out in a truth table where 0 means false and 1 means true:

а	b	a∧b
0	0	0
0	1	0
1	0	0
1	1	1

We can combine two propositions using OR

 $a \lor b$: Today is Monday or I go to work today (or both)

Today is Monday or I go to work today is true if:

Today is Monday is true

or I go to work today is true

or both are true

Otherwise it is false.

So $a \lor b$ is true if a is true or b is true (or both), otherwise it is false.

Truth table:

а	b	a∨b
0	0	0
0	1	1
1	0	1
1	1	1

Notes:

In ordinary English we use OR in two different ways.

I will buy you a beer or a lemonade (but not both)

You will get the job if you can sing or dance (or both)

 $a \lor b$ always means a or b or both

Negation

The negation of a is a'

a : Today is Monday

a': Today is not Monday

Truth table:

а	a'
0	1
1	0

Examples

Fill in the truth table for $(a \lor b)'$

а	b	a∨b	$(a \lor b)'$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Fill in the truth table for $a \lor (b \land c)$

а	b	С	$b \wedge c$	$a \lor (b \land c)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

see EXERCISE 1

Look at Exercise 1, questions (3) and (4)

You should have found that the columns for $(a \land b) \lor (a \land c)$ and $a \land (b \lor c)$ are the same.

We say
$$(a \land b) \lor (a \land c) = a \land (b \lor c)$$

See EXERCISE 2

Note:

$$a \wedge 1=1$$
 if $a=1$ and $a \wedge 1=0$ if $a=0$ so $a \wedge 1=a$
 $a \vee 1=1$ if $a=1$ and $a \vee 1=1$ if $a=0$ so $a \vee 1=1$

Similarly:

$$a \wedge 0 = 0$$
 and $a \vee 0 = a$

Use truth tables to prove the following rules: (no need to do them all)

$$\begin{array}{ll} (a')'=a \\ \\ a \wedge a=a \\ \\ a \wedge a'=0 \\ \\ a \wedge b=b \wedge a \\ \\ (a \wedge b) \wedge c=a \wedge (b \wedge c) \end{array} \qquad \begin{array}{ll} a \vee a=a \\ \\ a \vee a'=1 \\ \\ a \vee b=b \vee a \\ \\ (a \vee b) \vee c=a \vee (b \vee c) \end{array}$$

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \qquad \qquad a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$$

$$(a \wedge b)' = a' \vee b'$$
 $(a \vee b)' = a' \wedge b'$
 $a \wedge (a \vee b) = a$ $a \vee (a \wedge b) = a$

It's like a new type of algebra!

EXERCISE 1

1) fill in the truth table:

а	b	b'	a∧b'
0	0		
0	1		
1	0		
1	1		

2) fill in the truth table:

а	b	a'	a'∨b
0	0		
0	1		
1	0		

1	1	

3) fill in the truth table:

а	b	С	$a \wedge b$	a∧c	$(a \wedge b) \vee (a \wedge c)$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

4) fill in the truth table:

а	b	С	$b \lor c$	$a \wedge (b \vee c)$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

EXERCISE 2

Use truth tables to show that:

1)
$$(a \wedge b)' = a' \vee b'$$

2)
$$(a \lor b)' = a' \land b'$$

SOLUTIONS 1

1)

а	b	b'	a∧b′
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	0

2)

а	b	a'	a'∨b
0	0	1	1

0	1	1	1
1	0	0	0
1	1	0	1

3)

а	b	С	$a \wedge b$	a∧c	$(a \wedge b) \vee (a \wedge c)$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

4)

а	b	С	b∨c	$a \wedge (b \vee c)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

SOLUTIONS 2

1)

а	b	a∧b	$(a \wedge b)'$	a'	b'	a'∨b'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0-	1	1
1	1	1	0	0	0	0

2)

а	b	a∨b	(a∨b)'	a'	b'	a'∧b'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0