Aula : Inteligência Artificial Probabilidade e distancias

Medidas de Distância

- Entende-se por distância a medida da separação de 2 objetos
 - comprimento do segmento de reta que os liga
- Em reconhecimento de padrões, a distância indica a dissimilaridade ou afastamento entre dois atributos ou vetores de atributos.

Medidas de Distância

 Uma medida de distância também pode ser utilizada para indicar a dissimilaridade ou afastamento entre um vetor de atributos e uma classe (centroide ou elemento mais próximo)

Medidas de Distância

- Ou entre duas classes distintas de padrões
 - (centroide ou elementos mais próximos)

Métrica

- A métrica é uma formalização do conceito de distância.
 - Um espaço onde exista uma métrica definida é chamado de espaço métrico.
- Para uma função ser considerada uma distância, ou métrica, entre dois vetores de atributos, ela deve seguir alguns axiomas (consensos iniciais)

Métrica

- Os axiomas ou propriedades que definem a métrica são 3
 - \Box d(x,y) = d(y,x), simetria
 - \square d(x,y) \geq 0
 - $\square d(x,x) = 0$
- Além dessas 3 propriedades, também valem
 - \Box d(x,y) = 0, se e somente se x = y
 - □ $d(x,y) \le d(x,z) + d(z,y)$, também conhecida como desigualdade do triângulo

Métrica

Desigualdade do triângulo (ou triangular)

Distância de Minkowski de ordem s

- Trata-se de uma métrica para o espaço Euclidiano e que serve de generalização para outras distâncias, como a "city block" (s = 1) e a própria distância Euclidiana (s = 2)
- Dado dois vetores X e Y, a mesma é definida como sendo

$$d(X,Y) = (\sum_{i=1}^{p} |X_i - Y_i|^s)^{\frac{1}{s}} =$$

$$\sqrt[s]{|X_1 - Y_1|^s + |X_2 - Y_2|^s + \dots + |X_p - Y_p|^s}$$

Distância máxima, "city block" ou Manhattan

 Dado dois vetores X e Y, esta métrica é definida como o somatória dos módulos das diferenças, e possui a seguinte fórmula

$$d(X,Y) = (\sum_{i=1}^{p} |X_i - Y_i|^1)^1 =$$

$$|X_1 - Y_1| + |X_2 - Y_2| + \dots + |X_p - Y_p|$$

Trata-se de uma distância que depende da rotação do sistema de coordenadas, mas não depende de sua reflexão em torno de um eixo ou suas translações

Distância máxima, "city block" ou Manhattan

Exemplo: distância "city block" ou Manhattan

$$y = [1 \ 4]$$

$$d(x,y) = |1-5| + |4-2|$$

$$d(x,y) = 4 + 2$$

$$d(x,y) = 6$$

$$x = [5 \ 2]$$

Distância Euclidiana

- □ Trata-se da distância mais comum entre dois pontos
 - Aquela distância medida com uma régua
- Dados dois vetores X e Y, a mesma é definida como sendo

$$d(X,Y) = (\sum_{i=1}^{p} |X_i - Y_i|^2)^{\frac{1}{2}} =$$

$$\sqrt[2]{|X_1-Y_1|^2+|X_2-Y_2|^2+\cdots+|X_p-Y_p|^2}$$

Distância Euclidiana

Exemplo: distância Euclidiana

Distância Euclidiana

- □ Trata-se de uma distância que é invariante a
 - □ rotação do sistema de coordenadas
 - a sua reflexão em torno de um eixo
 - translações

