

Molecular Dynamics with C++ Final Report

CHRISTOPH MOSER

 $5203023 \\ christoph.mos.studium@gmail.com$

Figure 1: Gold Cluster Simulation with 147 Atoms

Figure 2: Gold Cluster Simulation with 309 Atoms

Figure 3: Gold Cluster Simulation with 561 Atoms

Figure 4: Gold Cluster Simulation with 923 Atoms

Figure 5: Gold Cluster Simulation with 1415 Atoms

Figure 6: Gold Cluster Simulation with 2057 Atoms

Figure 7: Gold Cluster Simulation with 2869 Atoms

Figure 8: Gold Cluster Simulation with 3871 Atoms

Figure 9: Gold Cluster Simulation with 5083 Atoms

Figure 10: Gold Cluster Simulation with 6525 Atoms

Figure 11: Gold Cluster Simulation with 8217 Atoms

Figure 12: Gold Cluster Simulation with 10179 Atoms

Figure 13: Gold Cluster Simulation

Figure 14: Melting Point, Heat Capacity and Latent Heat vs Clustersize

Contents

List of Figures

1	Gold Cluster Simulation with 147 Atoms
2	Gold Cluster Simulation with 309 Atoms
3	Gold Cluster Simulation with 561 Atoms
4	Gold Cluster Simulation with 923 Atoms
5	Gold Cluster Simulation with 1415 Atoms
6	Gold Cluster Simulation with 2057 Atoms
7	Gold Cluster Simulation with 2869 Atoms
8	Gold Cluster Simulation with 3871 Atoms
9	Gold Cluster Simulation with 5083 Atoms
10	Gold Cluster Simulation with 6525 Atoms
11	Gold Cluster Simulation with 8217 Atoms
12	Gold Cluster Simulation with 10179 Atoms
13	Gold Cluster Simulation
14	Melting Point, Heat Capacity and Latent Heat vs Clustersize

Bibliography

- [1] Fabrizio Cleri and Vittorio Rosato. "Tight-binding potentials for transition metals and alloys". In: *Phys. Rev. B* 48 (1 1993), pp. 22–33. DOI: 10.1103/PhysRevB.48.22. URL: https://link.aps.org/doi/10.1103/PhysRevB.48.22.
- [2] OVITO GmbH. Ovito. 2021. URL: https://www.ovito.org (visited on 08/01/2021).
- [3] Raju P. Gupta. "Lattice relaxation at a metal surface". In: *Phys. Rev. B* 23 (12 1981), pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265. URL: https://link.aps.org/doi/10.1103/PhysRevB.23.6265.
- [4] Google Inc. Google Test, Google's C++ test framework. 2021. URL: https://github.com/google/googletest (visited on 07/28/2021).
- [5] Benoît Jacob and Gaël Guennebaud. *Eigen*. 2020. URL: https://eigen.tuxfamily.org/index.php?title=Main Page (visited on 07/28/2021).
- [6] Christoph Moser. Code Repository. 2021. URL: https://github.com/cmoser8892/MoleDymCode (visited on 08/01/2021).
- [7] Lars Pastewka and Wolfram Nöhring. *Molecular Dynamics Course*. 2021. URL: https://imtek-simulation.github.io/MolecularDynamics/(visited on 07/28/2021).
- [8] JetBrains s.r.o. CLion Eine plattformübergreifende IDE für C und C++. 2021. URL: https://www.jetbrains.com/de-de/clion/ (visited on 08/16/2021).
- [9] Yanting Wang. Mackay Icosahedron Structure Generator. 2021. URL: http://www.pas.rochester.edu/~wangyt/algorithms/ih/ (visited on 08/01/2021).