2 punti

2 punti

2 punti

Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Sia B un insieme non vuoto e sia $L=\{S\}$ un linguaggio del prim'ordine con S simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle B,S\rangle$, l'affermazione: "S è irriflessiva"?
 - $\Box \ \forall x \forall y \left(\neg (R(x,y) \to x = y) \right)$
 - $\Box \ \forall x \neg (R(x, x) = x)$
 - $\Box \exists x \neg R(x,x)$
 - $\blacksquare \ \forall x \neg R(x,x)$
- (b) Sia $L = \{h\}$ un linguaggio del prim'ordine con h simbolo di funzione binario. Quali delle seguenti affermazioni sono formalizzate dalla formula $\forall y \forall z \ (h(y,z) = h(z,y))$ relativamente alla struttura $\langle \mathbb{Q}, \cdot \rangle$?
 - □ "Il prodotto tra numeri razionali è associativo."
 - \Box "Ciascun numero razionale y è divisibile per z."
 - \blacksquare "Non esistono numeri razionali y, z tali che $y \cdot z \neq z \cdot y$."
 - "L'operazione di moltiplicazione tra numeri razionali è commutativa."
- (c) Dati due insiemi D e A, indichiamo con D^A l'insieme delle funzioni da A in D. Sia B un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette.
 - \square B^B è un insieme infinito.
 - \blacksquare \mathbb{N}^B è un insieme infinito numerabile.
 - \square B^B è certamente in biezione con $\mathcal{P}(A)$.
 - \square $B^{\mathbb{N}}$ è necessariamente più che numerabile.
- (d) Siano C, D sottoinsiemi di B e sia $g \colon B \to B$. Stabilire quali delle seguenti affermazioni sono corrette.

 - $\blacksquare \ C \subseteq g^{-1}[g[C]].$
 - \qed Se $g[C]\subseteq g[D]$ allora si deve avere che $C\subseteq D.$
 - $\ \square$ Se $C\supseteq D$ allora certamente accade che $g[C]\subseteq g[D].$

(e) Siano R e S formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- $\blacksquare \neg \neg R \lor (\neg S \to \neg R)$ è una tautologia.
- $\hfill\Box$ Se S è soddisfacibile allora certamente non è una tautologia.
- $\blacksquare \neg (S \leftrightarrow R) \not\equiv \neg (S \to R) \land \neg (R \to S)$
- \blacksquare Se S |= R, allora ¬(S \land ¬R) è una tautologia.
- (f) Siano B, C, D lettere proposizionali e Q una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

В	\mathbf{C}	D	Q
$\overline{\mathbf{V}}$	\mathbf{V}	V	\mathbf{F}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	${f F}$
${f F}$	\mathbf{V}	${f F}$	${f F}$
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{F}

- $\Box \neg C \wedge D \models \neg Q$
- $\blacksquare \neg Q$ non è insoddisfacibile.
- $\Box \ \neg \mathbf{Q}$ è insoddisfacibile.
- \square Q $\models \neg D$
- (g) Sia $g: \mathbb{Z} \to \mathbb{Z}$ definita da $g(y) = \frac{3y+9}{3} y$ per ogni $y \in \mathbb{Z}$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- $\blacksquare \ g(y) = 3 \text{ per ogni } y \in \mathbb{Z}.$
- $\hfill\Box$ g è iniettiva.
- $\square \ g(y) = 5 \text{ per qualche } y \in \mathbb{Z}.$
- \Box g è suriettiva.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{S, g, d\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario S, un simbolo di funzione binario g e un simbolo di costante d. Sia φ la formula

$$(\neg\exists z\,(g(z,z)=y)\to S(g(w,d),y)).$$

Consideriamo la L-struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists z (g(z,z) = y)[y/m,z/k]$ se e solo se m è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[y/1, z/0, w/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[y/2, z/1, w/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[y/5, z/1, w/5]$?
- 6. È vero che $\mathcal{N} \models \forall y \, \varphi[y/0, z/0, w/0]$?
- 7. È vero che $\mathcal{N} \models \forall y \, \varphi[y/0, z/0, w/5]$?
- 8. È vero che $\mathcal{N} \models \exists w \forall y \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall w \forall y \, \boldsymbol{\varphi}$?

Giustificare le proprie risposte.

Soluzione:

- 1. Non è un enunciato. Le occorrenze libere di variabili sono tutte le occorrenze di y, w. Concludiamo che in tutti i punti dell'esercizio è irrilevante controllare l'assegnamento della variabile z.
- 2. Si è vero poiché la formula in questione asserisce che il numero assegnato a y è ottenuto sommando con se stesso un qualche numero naturale z.
- 3. L'interpretazione di φ in \mathcal{N} è: "se y è dispari allora si ha che $w+1 \leq y$ ". Se a w viene assegnato 0 e a y viene assegnato 1, allora si ha che l'interpretazione di φ è vera in \mathcal{N} : infatti, l'implicazione è vera dato che lo è la sua conclusione (che interpretata nella struttura con l'assegnazione data diventa $0+1 \leq 1$).
- 4. L'interpretazione di φ in \mathcal{N} è: "se y è dispari allora si ha che $w+1 \leq y$ ". Se ad y assegniamo 2 la premessa dell'implicazione è falsa e quindi l'implicazione è vera.
- 5. L'interpretazione di φ in \mathcal{N} è: "se y è dispari allora si ha che $w+1 \leq y$ ". Se a y viene assegnato 5 e anche a w viene assegnato 5, la premessa dell'implicazione risulta vera (in quanto 5 è effettivamente dispari), ma la sua conclusione è falsa dato che 5+1=6>5. Quindi l'implicazione è falsa.
- 6. L'interpretazione di φ in \mathcal{N} è: "per ogni numero naturale y, se y è dispari allora $w+1 \leq y$ ". Se a w viene assegnato 0, l'affermazione risulta vera perché qualunque numero naturale dispari è certamente maggiore o uguale di 0+1, ovvero di 1.

- 7. Se invece assegniamo a w il numero 5, allora l'interpretazione della formula diventa "ogni numero dispari è maggiore o uguale a 5+1". Questo è falso perché prendendo y=3 si ha che y è un numero dispari (premessa dell'implicazione vera) ma 3<6 (conclusione dell'implicazione falsa).
- 8. Per quanto visto ai punti precedenti, l'assegnamento che dà a z il valore 0 mostra la verità in \mathcal{N} dell'enunciato $\exists w \forall y \varphi$.
- 9. Per quanto visto ai punti precedenti, se prendiamo y=3 e w=5 si ha che l'implicazione φ risulta falsa: questo mostra la falsità in \mathcal{N} dell'enunciato $\forall w \forall y \varphi$.

Esercizio 3 9 punti

Sia B un insieme non vuoto, siano C,D sottoinsiemi di B e sia $g\colon B\to B$ una funzione. Formalizzare relativamente alla struttura $\langle B,C,D,g\rangle$ mediante il linguaggio $L=\{C,D,g\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. g è suriettiva
- 2. $g \circ g$ è la funzione identica (ovvero manda ciascun elemento di B in se stesso)
- 3. $g^{-1}[C] \subseteq D$
- 4. $g[C] \subseteq D$.

Soluzione: 1. g è suriettiva: $\forall y \exists x (g(x) = y)$

- 2. $g \circ g$ è la funzione identica: $\forall x (g(g(x)) = x)$
- 3. $g^{-1}[C] \subseteq D: \forall x(C(g(x)) \to D(x))$
- 4. $g[C] \subseteq D: \forall x(C(x) \to D(g(x)))$