Blatt für die Übungen am 14./15. November 2022

Themen: Inzidenzaxiome, Anordnungsaxiome

Aufgabe 4.1. Zeige, daß das Beispiel 4.8 ein Modell der Inzidenzaxiome ist.

Aufgabe 4.2. Es seien A, B zwei verschiedene Punkte in $\mathbb{E} = \mathbb{R}^2$. Wir betrachten die Gerade

$$g := \{A + \lambda \cdot (B - A) \,|\, \lambda \in \mathbb{R}\}.$$

Es sei zudem

$$h = \{Q + \lambda \cdot w \,|\, \lambda \in \mathbb{R}\}$$

noch eine weitere Gerade, welche durch A und B verläuft. Zeige, daß $h \subset g$.

Hinweis: Es muß also gezeigt werden, dass ein beliebiger Punkt $Q + \lambda \cdot w \in h$ auch schon in g liegt.

Aufgabe 4.3. Wir betrachten die rationale Ebene \mathbb{Q}^2 .

- 1. Gib eine geeignete Definition von Geraden in \mathbb{Q}^2 an.
- 2. Zeige, daß damit \mathbb{Q}^2 ein Modell der Inzidenzaxiome is.

Aufgabe 4.4. Sei $\mathbb{E} := \mathbb{R}^2$ die reelle Ebene, und $A \neq B \in \mathbb{E}$. Wie könnte man mit etwas linearer Algebra die Strecke \overline{AB} und den Strahl \overrightarrow{AB} beschreiben?

Aufgabe 4.5. Sei $\mathbb{E} := \mathbb{R}^2$ die reelle Ebene, und $A \neq B \in \mathbb{E}$. Zeige:

- 1. $\overrightarrow{AB} \subset \overrightarrow{AB} \subset g(AB)$.
- 2. $\overline{AB} = \overline{BA}$.
- 3. $\overrightarrow{AB} \cap \overrightarrow{BA} = \overline{AB}$.
- 4. $\overrightarrow{AB} \cup \overrightarrow{BA} = g(AB)$.

Gilt dies für alle Ebenen \mathcal{E} , die die Axiome 4.17, 4.18 und 4.19 erfüllen?

Wir werden die Aufgaben gemeinsam in der Übung lösen. Es ist jedoch hilfreich, wenn Sie sich vorher etwas dazu überlegen.