Chapitre 1 : Suites numériques et récurrence

1 Généralités

On rappelle qu'on note IN l'ensemble de tous les entiers naturels et IR le corps des nombres réels.

Définition 1.1. On appelle *suite numérique* une fonction u d'un intervalle $I \subset \mathbb{N}$ (c'est-à-dire de l'intersection d'un intervalle de \mathbb{R} avec \mathbb{N}) dans \mathbb{R} :

$$u: I \longrightarrow \mathbb{R}$$

 $n \longmapsto u(n).$

En général, on note $u_n = u(n)$ pour tout $n \in I$.

Exemples 1.2.

- 1. Soit $u: \mathbb{N} \to \mathbb{R}$, $u_n = 2n + 3$. Alors $u_0 = u_1 = u_2 = u_2 = u_3 = u_4 = u_4 = u_5 = u_5$
- 2. Soit $u: \mathbb{N} \to \mathbb{R}$, $u_n = 2^n$. Alors $u_0 = u_1 = u_2 = u_3 = u_3 = u_4 = u_4 = u_5$.
- 3. Soit $u: \mathbb{N} \to \mathbb{R}$, $u_n = (-1)^n$. Alors $u_0 = u_1 = u_2 = u_3 = u_3 = u_4 = u_3 = u_4 = u_4 = u_5 = u_5$
- 4. Soit $u: \mathbb{N} \to \mathbb{R}$, $u_n = 2n$. Alors $(u_n)_{n \in \mathbb{N}}$ est la suite des entiers naturels pairs.
- 5. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite des entiers naturels *premiers*. Alors $u_1=2, u_2=3, u_3=5, u_4=7, u_5=$
- 6. Soit $u: \mathbb{N}^* \to \mathbb{R}$, $u_n = \frac{1}{n}$. Alors $u_1 = u_2 = u_3 = u_4 = u$
- 7. Soit u la suite des entiers naturels à au plus deux chiffres. Alors u: $\longrightarrow \mathbb{R}$, avec $u_0 = 0, u_1 = 1, \dots, u_{99} = \dots$

Vocabulaire et notations:

- On appelle u_n le terme général de la suite u. C'est aussi, pour un n fixé, le terme d'indice n de la suite.
- La suite u est généralement renotée sous la forme $(u_n)_{n\in I}$.
- Si $I = \mathbb{N}$ ou $I = \{k, k+1, k+2, \ldots\}$ pour un $k \in \mathbb{N}^*$, alors la suite $(u_n)_{n \in I}$ est dite *infinie*. Sinon, elle est dite *finie*.

Définition 1.3. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction, où $\mathbb{R}_+ = [0, +\infty[$. Alors f définit une suite $(u_n)_{n \in \mathbb{N}}$ en posant $u_n = f(n)$ pour tout $n \in \mathbb{N}$.

Exemples 1.4.

1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto f(x) = -2x + 3$. Alors la suite associée à f a pour terme général $u_n =$ pour tout $n \in \mathbb{N}$. En particulier,

$$u_0 = , u_1 = , u_2 = , u_3 =$$

2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto f(x) = x^2 + 3$. Alors la suite associée à f a pour terme général $u_n =$ pour tout $n \in \mathbb{N}$. En particulier,

$$u_0 = , u_1 = , u_2 = , u_3 =$$

Attention : Plusieurs fonctions peuvent définir la même suite. Par exemple, considérons $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = x et $g \colon \mathbb{R} \to \mathbb{R}$, $g(x) = x \cos(2\pi x)$. Alors, pour tout entier naturel n, $f(n) = \cot g(n) = \cot g(n) = \cot g(n) = 1$ pour tout $n \in \mathbb{N}$. Ainsi, f(n) = g(n) pour tout $n \in \mathbb{N}$. Par suite, f et g définissent la même suite de terme général $u_n = 1$.

2 Représentation graphique d'une suite

On distingue plusieurs représentations graphiques possibles d'une suite numérique.

2.1 Comme fonction de $I \subset \mathbb{N}$ dans \mathbb{R}

Considérons par exemple une suite $(u_n)_{n\in\mathbb{N}}$ avec $u_0=3.5, u_1=2, u_2=5, u_3=-2, u_4=4, u_5=2, u_6=-2.5, u_7=4.5, u_8=0, u_9=3$ et $u_{10}=4$. On représente chaque terme u_n de la suite par un point P_n d'abscisse n et d'ordonnée u_n .

2.2 Représentation sur un seul axe

Dans l'exemple précédent,

Notons qu'un point peut représenter plusieurs termes de la suite.

3 Suites définies par récurrence

Définition 3.1. Une suite numérique est définie par récurrence lorsqu'elle est définie par la donnée

- de son premier terme u_0 ou u_1 ,
- de u_{n+1} en fonction de u_n ,

ou bien par la donnée

- de ses premiers termes,
- d'un terme en fonction d'un certain nombre de termes précédents.

Exemples 3.2.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\left\{ \begin{array}{ll} u_0=2\\ u_{n+1}=3u_n+4 \end{array} \right.$. Alors $u_1=$ et $u_3=$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\begin{cases} u_0 = -1 \\ u_{n+1} = 2u_n + \frac{1}{u_n} \end{cases}$. Alors $u_1 = \dots$, $u_2 = \dots$
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite (appelée *suite de Fibonacci*) définie par $\begin{cases} u_0 &= 1\\ u_1 &= 1\\ u_{n+2} &= u_{n+1} + u_n \end{cases}$ Alors $u_2 =$, $u_3 =$, $u_4 =$, $u_5 =$, $u_6 =$, $u_7 =$.

Remarque 3.3. Dans les exemples 1 et 2 ci-dessus, on peut mettre u_{n+1} sous la forme $u_{n+1}=f(u_n)$ pour une certaine fonction f: dans l'exemple 1, si f(x)=3x+4 pour tout $x\in\mathbb{R}$, alors $u_{n+1}=3u_n+4=f(u_n)$ et dans l'exemple 2, si $f(x)=2x+\frac{1}{x}$, alors de même $u_{n+1}=2u_n+\frac{1}{u_n}=f(u_n)$.

De manière plus générale, si $f \colon A \to \mathbb{R}$ est une fonction définie sur une partie $A \subset \mathbb{R}$, alors pour tout $a \in A$, le schéma

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$$

définit une suite par récurrence... à condition que la suite ne quitte jamais le domaine de définition de f!

Exemple 3.4. Soit $f(x) = \frac{x+1}{2x-4}$. Alors f est définie sur x = -1 . Voyons maintenant si le schéma

puisque
$$2x - 4 = 0 \iff$$

$$\begin{cases} u_0 = \frac{13}{5} \\ u_{n+1} = f(u_n) = \frac{u_n + 1}{2u_n - 4} \end{cases}$$

définit bien une suite par récurrence. Remarquons déjà que u_0 est dans le domaine de définition de f. Calculons maintenant $u_1=\frac{u_0+1}{2u_0-4}=\frac{\frac{13}{5}+1}{2\times\frac{13}{5}-4}=\frac{\frac{18}{5}}{\frac{6}{5}}=3$ et $u_2=\frac{u_1+1}{2u_1-4}=\frac{3+1}{2\times 3-4}=\frac{4}{2}=2$. Or f(2) n'est pas défini, par conséquent $u_3=f(u_2)$ ne l'est pas non plus : le schéma ci-dessus ne définit donc pas de suite par récurrence.

Théorème 3.5. Soit $f: A \to \mathbb{R}$ une fonction définie sur une partie $A \subset \mathbb{R}$. Si $f(A) \subset A$, c'est-à-dire $f(x) \in A$ pour tout $x \in A$, alors pour tout $a \in A$, le schéma

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$$

définit une suite par récurrence.

Sens de variation d'une suite

Définition 4.1. Une suite numérique $(u_n)_{n\in I}$ est dite

- *croissante* si et seulement si $u_{n+1} \ge u_n$ pour tout $n \in I$,
- décroissante si et seulement si $u_{n+1} \le u_n$ pour tout $n \in I$,
- constante si et seulement si $u_{n+1} = u_n$ pour tout $n \in I$.

Ainsi, une suite $(u_n)_{n\in I}$ est croissante si et seulement si chaque terme est supérieur ou égal au terme précédent; et elle est décroissante si et seulement si chaque terme est inférieur ou égal au terme précédent.

Exemples 4.2.

- 1. La suite des entiers naturels pairs (définie par $u_n=2n$ pour tout $n\in\mathbb{N}$) est croissante. En effet, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2(n+1) = 2n+2 > 2n$, c'est-à-dire que $u_{n+1} > u_n$, en particulier $u_{n+1} \geq u_n$.
- 2. La suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{1}{n}$ est décroissante. En effet, pour tout $n\in\mathbb{N}^*$, puisque $n+1>n, u_{n+1}=\frac{1}{n+1}<\frac{1}{n},$ c'est-à-dire que $u_{n+1}< u_n,$ en particulier $u_{n+1}\leq u_n.$
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=\cos(2\pi n)$ est constante. En effet, pour tout $n\in\mathbb{N}$, $cos(2\pi n) = 1$ c'est-à-dire que $u_n = 1$.
- 4. La suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_n = n^3 12n + 1$ vérifie $u_0 = 1, u_1 = 1 12 + 1 = -10$ et $u_2 = 8 - 24 + 1 = -15$, si bien que $u_0 > u_1 > u_2$; par contre, $u_3 = 27 - 36 + 1 = -8$, $u_4 = 64 - 48 + 1 = 17$ et $u_5 = 125 - 60 + 1 = 66$, si bien que $u_3 < u_4 < u_5$. Par conséquent, la suite $(u_n)_{n\in\mathbb{N}}$ n'est ni croissante ni décroissante. On peut montrer qu'elle est croissante à partir du rang 2.

Théorème 4.3. Une suite $(u_n)_{n\in I}$ est

- (a) croissante si et seulement si $u_{n+1} u_n \ge 0$ pour tout $n \in I$,
- (b) décroissante si et seulement si $u_{n+1} u_n \le 0$ pour tout $n \in I$,
- (c) constante si et seulement si $u_{n+1} u_n = 0$ pour tout $n \in I$.

Exemples 4.4.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=-2n+3$. Alors, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n=$ -2(n+1)+3-(-2n+3)=-2n-2+3+2n-3=-2. Puisque -2<0, on en déduit que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=n^2$. Alors, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n=(n+1)^2-1$ $n^2 = (n+1-n)(n+1+n) = 2n+1$. Or 2n+1 > 0, par conséquent $(u_n)_{n \in \mathbb{N}}$ est croissante.

Définition 4.5. Une suite qui est croissante ou décroissante est dite *monotone*. Une suite qui n'est ni croissante ni décroissante est tout simplement appelée non monotone.

Exemple 4.6. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$ n'est pas monotone : en effet, $u_0=1$, $u_1 = -1$ et $u_2 = 1$, si bien que $u_0 > u_1$ et $u_1 < u_2$. La suite prend alternativement les valeurs -1et 1.

Théorème 4.7. Soit $(u_n)_{n\in I}$ une suite à termes strictement positifs, c'est-à-dire que $u_n>0$ pour tout $n \in I$. Alors $(u_n)_{n \in I}$ est

- (a) croissante si et seulement si $\frac{u_{n+1}}{u_n} \ge 1$ pour tout $n \in I$, (b) décroissante si et seulement si $\frac{u_{n+1}}{u_n} \le 1$ pour tout $n \in I$,
- (c) constante si et seulement si $\frac{u_{n+1}}{u_n} = 1$ pour tout $n \in I$.

Exemples 4.8.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=3^n$. Alors pour tout $n\in\mathbb{N}, u_n>0$ et $\frac{u_{n+1}}{u_n}=\frac{3^{n+1}}{3^n}=\frac{3\times 3^n}{3^n}=3$. Puisque 3>1, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\frac{2^{n+1}}{3^n}$. Alors pour tout $n\in\mathbb{N},\,u_n>0$ et $\frac{u_{n+1}}{u_n}=\frac{2^{n+2}}{3^{n+1}}\times\frac{3^n}{2^{n+1}}=\frac{2}{3}$. Puisque $\frac{2}{3}<1$, la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Théorème 4.9. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction et $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_n = f(n)$ pour tout $n \in \mathbb{N}$.

- (a) Si f est croissante sur \mathbb{R}_+ , alors $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (b) Si f est décroissante sur \mathbb{R}_+ , alors $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Exemples 4.10.

- 1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$, f(x) = ax + b, où $a, b \in \mathbb{R}$ et a < 0. Alors f est décroissante, si bien que la suite $(u_n)_{n \in \mathbb{N}}$ avec $u_n = f(n) = an + b$ est aussi décroissante.
- 2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$, $f(x) = x^2$. Alors f est croissante sur \mathbb{R}_+ , si bien que la suite $(u_n)_{n \in \mathbb{N}}$ avec $u_n = f(n) = n^2$ est aussi croissante.

Attention : La réciproque du théorème 4.9 est fausse ! Considérons par exemple la fonction $f: \mathbb{R}_+ \to \mathbb{R}$, $f(x) = x \cos(2\pi x)$. Alors f n'est ni croissante, ni décroissante sur \mathbb{R}_+ , pourtant la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n = f(n) =$ est, elle, croissante.

5 Suites majorées, minorées et bornées

Définition 5.1. Soit $(u_n)_{n\in I}$ une suite numérique.

- (a) On dit que $(u_n)_{n\in I}$ est *majorée* si et seulement si il existe un nombre réel M tel que, pour tout $n\in I$, $u_n\leq M$. Dans ce cas, le nombre réel M est appelé *majorant* de la suite $(u_n)_{n\in I}$.
- (b) On dit que $(u_n)_{n\in I}$ est *minorée* si et seulement si il existe un nombre réel m tel que, pour tout $n\in I$, $m\leq u_n$. Dans ce cas, le nombre réel m est appelé *minorant* de la suite $(u_n)_{n\in I}$.
- (c) On dit que $(u_n)_{n\in I}$ est bornée si et seulement si $(u_n)_{n\in I}$ est à la fois minorée et majorée.

Il faut remarquer que, si une suite $(u_n)_{n\in I}$ admet un majorant M, alors ce majorant ne dépend pas de n; il en va de même si $(u_n)_{n\in I}$ admet un minorant m.

Exemples 5.2.

- 1. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite de terme général $u_n=\frac{1}{n}$. Puisque $\frac{1}{n}\leq 1$ pour tout $n\geq 1$, la suite $(u_n)_{n\in\mathbb{N}^*}$ est majorée par 1. De plus, $\frac{1}{n}\geq 0$, donc $(u_n)_{n\in\mathbb{N}^*}$ est minorée par 0.
- 2. De façon plus générale, toute suite positive est minorée par 0 et toute suite négative est majorée par 0.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\cos(n)$. Alors $(u_n)_{n\in\mathbb{N}}$ est bornée : en effet, $-1\leq\cos(n)\leq 1$ pour tout $n\in\mathbb{N}$, si bien que $(u_n)_{n\in\mathbb{N}}$ est minorée par -1 et majorée par 1.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\frac{2n+1}{n+3}$. Alors, pour tout $n\in\mathbb{N}$, $u_n=f(n)$, où $f(x)=\frac{2x+1}{x+3}$ pour tout $x\in[0,+\infty[$. On peut montrer (cf. tableau de variations de f cidessous) que la fonction f est croissante, ce qui implique que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Puisque $f(x) \underset{x \to +\infty}{\longrightarrow} 2$, on a $u_n \underset{n \to +\infty}{\longrightarrow} 2$. Mais, $(u_n)_{n \in \mathbb{N}}$ étant croissante, on en déduit que $u_n \leq 2$ pour tout $n \in \mathbb{N}$. Par conséquent, $(u_n)_{n \in \mathbb{N}}$ est majorée par 2. D'autre part, d'après le tableau de variations de f ci-dessus, $\frac{2n+1}{n+3} \geq \frac{1}{3}$ pour tout $n \in \mathbb{N}$, ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est minorée par $\frac{1}{3}$.

5. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=-\sqrt{n}$. Puisque $-\sqrt{n}\leq 0$ pour tout $n\in\mathbb{N}$, la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 0. Par contre, puisque $\sqrt{n}\underset{n\to+\infty}{\longrightarrow}+\infty$, on a $u_n\underset{n\to+\infty}{\longrightarrow}-\infty$, si bien que $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée.

Théorème 5.3. Soit $(u_n)_{n\in I}$ une suite numérique.

- 1. Si $(u_n)_{n\in I}$ converge, alors $(u_n)_{n\in I}$ est bornée.
- 2. (a) Si $(u_n)_{n\in I}$ est croissante et majorée, alors $(u_n)_{n\in I}$ converge.
 - (b) Si $(u_n)_{n\in I}$ est décroissante et minorée, alors $(u_n)_{n\in I}$ converge.

Attention au fait que la réciproque de l'affirmation 1 du théorème 5.3 est fausse en général : par exemple, la suite de terme général $(-1)^n$ a beau être bornée, elle n'est pas convergente.

6 Le principe de récurrence

De nombreuses propriétés portent sur les nombres entiers. Par exemple : $\forall n \in \mathbb{N}, 0+1+2+\ldots+n=\frac{n(n+1)}{2}$, ou encore $\forall n \in \mathbb{N}, n^3-n$ est divisible par 3.

Certaines de ces propriétés ne sont pas démontrables directement. On peut alors faire appel au principe de récurrence pour les prouver. Soit à démontrer : "Pour tout entier naturel n, n vérifie la propriété \mathcal{P} ", ce que l'on note aussi : " $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie". Il suffit alors de prouver la proposition suivante :

Proposition 6.1. Supposons que

- (a) l'entier 0 vérifie la propriété \mathcal{P} et
- (b) pour tout entier naturel k, si k vérifie \mathcal{P} , alors k+1 vérifie \mathcal{P} .

Alors pour tout $n \in \mathbb{N}$, n vérifie \mathcal{P} , ce qui peut se réécrire " $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie".

Remarque 6.2. L'hypothèse " $\mathcal{P}(k)$ est vraie" est appelée **hypothèse de récurrence**.

Exemple 6.3. Soit à démontrer la propriété $\mathcal{P}: \forall n \in \mathbb{N}, \ 0+1+2+\ldots+n=\frac{n(n+1)}{2}$. Ainsi, $\mathcal{P}(n)$ est la propriété " $0+1+2+\ldots+n=\frac{n(n+1)}{2}$ ", ce que l'on peut noter A(n)=B(n), où $A(n)=0+1+2+\ldots+n$ et $B(n)=\frac{n(n+1)}{2}$.

- (a) **Est-ce que** $\mathcal{P}(0)$ **est vraie?** On calcule et on trouve A(0) = 0 ainsi que B(0) = 0, en particulier A(0) = B(0). Par conséquent, $\mathcal{P}(0)$ est vraie.
- (b) **Hypothèse de récurrence**: Soit $k \in \mathbb{N}$ un entier tel que $\mathcal{P}(k)$ soit vraie, c'est-à-dire tel que A(k) = B(k). Montrons qu'alors $\mathcal{P}(k+1)$ est vraie, c'est-à-dire que A(k+1) = B(k+1). On part de A(k+1) et on utilise l'hypothèse de récurrence pour transformer l'expression et aboutir à B(k+1):

$$A(k+1) = \underbrace{0+1+2+\ldots+k}_{A(k)} + k+1$$

$$= B(k) + k+1 \qquad \text{d'après l'hypothèse de récurrence}$$

$$= \frac{k(k+1)}{2} + k+1$$

$$= (k+1)\left(\frac{k}{2}+1\right) \qquad \text{avec } \frac{k}{2}+1 = \frac{k+2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

$$= B(k+1).$$

Donc $\mathcal{P}(k+1)$ est vraie.

(c) **Conclusion**: La propriété $\mathcal{P}(0)$ est vraie et, si pour un entier k, $\mathcal{P}(k)$ est vraie, alors $\mathcal{P}(k+1)$ aussi. D'après le principe de récurrence, on en déduit que, quel que soit $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Remarques 6.4.

1. Il est fondamental de démontrer que la propriété est vraie pour n=0 ou pour le premier rang concerné. Par exemple, considérons la propriété $\mathcal{P}(n)$: "n=n+1". Cette propriété est bien sûr fausse, en particulier pour n=0. Pourtant on démontre aisément que, si un entier k vérifie \mathcal{P} , alors k+1 vérifie aussi \mathcal{P} : en effet, si k=k+1, alors k+1=(k+1)+1=k+2, donc k+1 vérifie \mathcal{P} .

2. Certaines propriétés ne sont vérifiées que pour $n\geq 1$, ou $n\geq 2$ etc. Dans ce cas, on commence par démontrer que 1 (ou 2 ou etc.) vérifie $\mathcal P$ au lieu de 0.