

多媒體數據分析與據分析

張家瑋 博士

助理教授

國立臺中科技大學資訊工程系

FOUNDATIONS OF NATURAL LANGUAGE PROCESSING 自然語言處理的原理與應用

自然語言處理的主要範疇

- 機器翻譯 (Machine Translation)
- 自然語言理解/語意分析 (Natural Language Understanding / Semantic Analysis)
 - 1. 問答系統 (Question Answering)
 - 2. 萃取式摘要 (Extractive Summarization)
 - 3. 文件分類 (Text Categorization)
- 自然語言生成 (Natural Language Generation)
 - 1. 進階問答系統 (Advanced Question Answering)
 - 2. 抽象式摘要 (Abstractive Summarization)
 - 3. 聊天機器人 (Chatbot)

- 語法分析 (Syntactic Parsing)
 - 1. 中文斷詞 (Chinese word segmentation)
 - 2. 詞性標註 (Part-of-speech Tagging)
 - 3. 實體辨識 (Named Entity Recognition)
 - 4. 詞彙依存 (Typed Dependencies)
 - 5. 文法樹 (Parse Tree)
- 語音辨識 (Speech Recognition)
- 文字轉語音 (Text to Speech)
- 語音轉文字 (Speech to Text)

機器翻譯 MACHINE TRANSLATION

GOOGLE 翻譯

DEEP L

平行語料

Quiero ir a la playa más bonita.

I want the pretty. beach to go to more

We just replace each Spanish word with the matching English word.

to go

to

統計式機器翻譯之原理

I want to go to the beach more pretty.

We just replace each Spanish word with the matching English word.

Quiero ir a la playa más bonita.

深度學習於機器翻譯之原理

9

深度學習於機器翻譯之原理

10

自然語言理解 NATURAL LANGUAGE UNDERSTANDING

VECTOR REPRESENTATION

	w_1	W ₂	W ₃		 	W _{n-1}	W _n	label
D_1	0.11	0.23	0		 	0.57	0	0
D_2	0	0	0		 	0.29	0.7	1
D_3	0	0.81	0.44		 	0	0	0
D_4	0	0.37	0		 	0	0.16	1
D_k		••	••	••	 ••	••	••	1

TF-IDF

• TF: term frequency:

$$ext{tf}_{ ext{i,j}} = rac{n_{i,j}}{\sum_k n_{k,j}}$$

IDF: inverse document frequency:

$$ext{idf}_{ ext{i}} = \log rac{|D|}{|\{j: t_i \in d_j\}|}$$

where:

- |D|: total number of documents in the corpus
- $|\{j:t_i\in d_j\}|$: number of documents where term t_i appears

Then:

 $tfidf_{i,j} = tf_{i,j} \times idf_i$

Document 1

Term	Term Count
this	1
is	1
а	2
sample	1

Document 2

Term	Term Count							
this	1							
is	1							
another	2							
example	3							

The calculation of tf-idf for the term "this" is performed as follows:

$$\mathrm{tf}("\mathsf{this}",d_1) = rac{1}{5} = 0.2 \ \mathrm{tf}("\mathsf{this}",d_2) = rac{1}{7} pprox 0.14$$

$$\operatorname{idf}("\mathsf{this}",D) = \log\!\left(rac{2}{2}
ight) = 0$$

 So tf-idf is zero for the word "this", which implies that the word is not very informative as it appears in all documents.

$$ext{tfidf}(" ext{this}",d_1)=0.2 imes0=0 \ ext{tfidf}(" ext{this}",d_2)=0.14 imes0=0$$

Document 1

Term	Term Count
this	1
is	1
а	2
sample	1

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

A slightly more interesting example arises from the word "example", which occurs three times only in the second document:

$$ext{tf("example"}, d_1) = rac{0}{5} = 0 \ ext{tf("example"}, d_2) = rac{3}{7} pprox 0.429 \ ext{idf("example"}, D) = \logigg(rac{2}{1}igg) = 0.301$$

$$\operatorname{idf}("\mathsf{example}",D) = \log\!\left(rac{2}{1}
ight) = 0.301$$

$$ext{tfidf}("\mathsf{example}",d_1) = ext{tf}("\mathsf{example}",d_1) imes ext{idf}("\mathsf{example}",D) = 0 imes 0.301 = 0$$
 $ext{tfidf}("\mathsf{example}",d_2) = ext{tf}("\mathsf{example}",d_2) imes ext{idf}("\mathsf{example}",D) = 0.429 imes 0.301 imes 0.13$

潛藏語意分析(LSA)

- 奇異值分解
 - Singular Value Decomposition (SVD)

Index Words		Titles										
	T1	T2	ТЗ	T4	T5	Т6	T7	T8	Т9			
book			1	1								
dads						1			1			
dummies		1						1	- 0			
estate							1		1			
guide	1					1						
investing	1	1	1	1	1	1	1	1	1			
market	1		1									
real							1		1			
rich						2			1			
stock	1		1					1				
value				1	1							

book	0.15	-0.27	0.04
dads	0.24	0.38	-0.09
dummies	0.13	-0.17	0.07
estate	0.18	0.19	0.45
guide	0.22	0.09	-0.46
investing	0.74	-0.21	0.21
market	0.18	-0.30	-0.28
real	0.18	0.19	0.45
rich	0.36	0.59	-0.34
stock	0.25	-0.42	-0.28
value	0.12	-0.14	0.23

2.04	0	0	T	1	T2	T3	T4	T5	T6	T7	T8	T9
3.91	-	0	* 0.	35	0.22	0.34	0.26	0.22	0.49	0.28	0.29	0.44
0	2.61	0	_	_	_	-0.46	_		-	_	_	_
0	0	2.00				-0.16						

潛藏語意分析(LSA)

- 文件分類/主題探勘
- 語意分析

Index Words				7	itle	les					
	T1	T2	ТЗ	T4	T5	Т6	T7	Т8	Т9		
book			1	1							
dads						1			1		
dummies		1						1			
estate							1		1		
guide	1					1					
investing	1	1	1	1	1	1	1	1	1		
market	1		1								
real							1		1		
rich						2			1		
stock	1		1					1			
value				1	1						

http://zongsoftwarenote.blogspot.com/ 2017/04/word2vec-model-introductionskip-gram.html

One Hot Encoding

```
The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
cat -> [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
jump -> [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
over -> [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
the -> [0. 0. 0. 0. 1. 0. 0. 0.]
dog \rightarrow [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
dog \rightarrow [0. 0. 0. 0. 0. 1. 0. 0. 0.]
ate -> [0. 0. 0. 0. 0. 0. 1. 0. 0.]
my \rightarrow [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
homework -> [0. 0. 0. 0. 0. 0. 0. 0. 1.]
```


- Features: $x = (x_1, x_2)$
- Target: y = +1 or -1
- $h(x) = w_0 + w_1 x_1 + w_2 x_2$

$$h(x) = w_0 + w_1 x_1 + w_2 x_2$$

$$scores = \sum_{i}^{N} w_i x_i + b$$

$$scores = \sum_{i}^{N+1} w_i x_i$$

- 若 $scores \geq 0$, 则 $\hat{y} = 1$
- 若 scores < 0 , 则 $\hat{y} = -1$

[Case 1] y = 1 錯分成 y = -1

[Case 2] y = -1 錯分成 y = 1

[Case 1] y = 1 錯分成 y = -1

[Case 2] y = -1 錯分成 y = 1

$$an lpha = \lim_{\Delta x o 0} an arphi = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Multi-Layer Perceptron (MLP)

梯度消失

PLA

MLP

The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

cat -> [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

jump -> [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

over -> [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

the -> [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

dog -> [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]

The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

ate -> [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]

my -> [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

homework -> [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]

FOUNDATIONS OF COMPUTER VISION

電腦視覺的原理與應用

HOW WE TEACH COMPUTERS TO UNDERSTAND PICTURES

電腦視覺

- 利用攝影機和電腦代替人眼對目標進行識別、跟蹤和測量等機器視覺, 並做圖像處理,用電腦處理為更適合人眼觀察或傳送給儀器檢測的圖像。
- 人工智慧的主要研究問題是:如何讓系統具備「計劃」和「決策能力」, 使之完成特定的動作,如移動機器人通過特定環境。
 - 此問題中,電腦視覺可作為感知器,為決策提供資訊。其中研究方向包括模式識別和機器學習,因此電腦視覺被看作人工智慧的分支。

電腦視覺應用

- 作為一個工程學科,電腦視覺基於相關理論來建立電腦視覺系統。這類系統的組成部分包括:
 - 1. 過程控制(Process Control)(如工業機器人和無人駕駛車)
 - 2. 事件監測(Event Monitoring) (如圖像監測)
 - 3. 資訊組織(Information Organization)(如圖像資料庫和圖像序列的索引建立)
 - 4. 物體與環境建模(如工業檢查,醫學圖像分析和拓撲建模)
 - 5. 交感互動(如人機互動的輸入裝置)

-	0	0	1	0	1	0	0	0	0				
	1	0	0	0	1	0	1	1	0				
To the	0	0	0	0	0	0	0	0	0		Feature map		
	_	_		_			_				2	2	2
	0	0	1	0	1	1	0	1	1		2	3	3
- 39	0	0	0	0	0	0	0	0	0	"	_	_	
											2	2	2
	0	0	1	0	0	1	0	0	1				
	_	_	_	_	-	_	_	-	_	1			
	0	0	0	0	0	0	0	0	0				
	0	1	0	0	1	0	1	1	0				
	0	0	1	0	1	0	0	0	0				

最大池化層的運作

全連接層的運作

$3x^2 + 2y^2$

全連接層的運作

 $3x^2+2y^2$

$$an lpha = \lim_{\Delta x o 0} an arphi = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

HOW COMPUTERS LEARN TO RECOGNIZE OBJECTS INSTANTLY

http://mropengate.blogspot.com/2018/06/yolo-yolov3.html

17

貓狗辨識的結果

[0.14723705 0.98256 [0.04469623 0.99915826] [0.99998796 0.00834211] [0.99993527 0.01661933] [0.99877125 0.05415697] [0.43036035 0.6431105] [0.20522958 0.95668554] [0.8880429 0.28058085] [0.08643436 0.9956601] [0.99908304 0.04826429] [0.9999168 0.01841162] [0.1397599 0.98483086] [0.99558544 0.08876048] [0.43750185 0.6269166] [0.10178897 0.9934009] [0.10858331 0.9922093]

VIDEO TO VIDEO

VIDEO-TO-VIDEO SYNTHESIS

The paper "Video-to-Video Synthesis" and its source code is available here: https://tcwang0509.github.io/vid2vid/https://github.com/NVIDIA/vid2vid

智慧視覺系統機器人

視覺整合信號轉換的體感操控機械手臂

