Генерация изображений

Генерация изображений

Задачи генерации:

- генерация изображения (generation)
- условная генерация изображения (conditional generation)
- генерация изображения по текстовому описанию (text-to-image)
- ...

Задача генерации изображений

Распределение данных p(x)

Дано: датасет D $\sim p(x)$

Задача генерации: научиться сэмплить $x \sim p(x)$

Задача условной генерации: научиться сэмплить $x \sim p(x|y)$

Оценка качества генерации

Проблема: нет groundtruth

Используемые метрики:

- Inception score (IS)
- Fréchet Inception distance (FID)
- Precision & Recall
- text-to-image
 - CLIPScore

Что будем оценивать?

[F] качество (fidelity)

low

high

[D] разнообразие (diversity)

low

high

Inception Score

Inception score (IS): <u>paper</u> (чем больше, тем лучше)

Как это можно оценить?

Интуиция:

Возьмем хороший классификатор Inception

- [F] Inception уверенно распознает класс по изображению [D] генерируются все классы

С точки зрения распределений

- [F] р(у|х) имеет низкую энтропию
 [D] р(у) имеет высокую энтропию

формула:
$$IS(G) = \exp\{\mathbb{E}_{x\sim p_G(x)}D_{KL}(p(y|x)||p(y))\}$$

G - порождающая модель

D_{KL} - дивергенция Кульбака-Лейблера ехр - экспонента для удобства восприятия людьми

Inception Score

Особенность IS:

Inception подходит только для естественных изображений. Для другого домена надо взять <domain classifier model> score.

Проблемы IS:

- легко "обмануть": запомнить обучающий [сбалансированный] датасет
- игнорирование настоящих данных: сгенерированные изображения сравниваются не с ними, а с Inception
- проблема с классами:
 - а что если на картинке несколько объектов разных классов?
 - а что если на картинке объект класса не из ImageNet?

Fréchet Inception distance

Fréchet Inception distance (FID): paper (чем меньше, тем лучше)

Что хотим оценить: схожесть распределения признаков настоящих и сгенерированных изображений

Как это можно оценить?

- возьмем хороший классификатор Inception
- сделаем из него feature extractor (отбросив последний полносвязный слой)
- сравним распределения извлеченных признаков у настоящих и сгенерированных изображений
- посчитаем расстояние Fréchet между распределениями

Fréchet Inception distance

Как считается расстояние Fréchet?

Note: для простоты вычислений делается допущение о нормальности

распределений $X \sim \mathcal{N}(\mu_X, \Sigma_X), Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$

Note: параметры распределений берутся из статистик

Формула:

$$|FID = ||\mu_X - \mu_Y||^2 + Tr(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y})|$$

Precision & Recall

Precision & Recall paper

- [F] precision
- [D] recall

Precision & Recall

Даны настоящие и сгенерированные данные: $~X_r \sim P_r, X_g \sim P_g$

Возьмем энкодер из хорошего классификатора

Рассмотрим векторы признаков ϕ_r,ϕ_g

Множества всех векторов Φ_r, Φ_g

$$f(\boldsymbol{\phi}, \boldsymbol{\Phi}) = \begin{cases} 1, & \text{if } \|\boldsymbol{\phi} - \boldsymbol{\phi}'\|_2 \le \|\boldsymbol{\phi}' - \text{NN}_k(\boldsymbol{\phi}', \boldsymbol{\Phi})\|_2 & \text{for at least one } \boldsymbol{\phi}' \in \boldsymbol{\Phi} \\ 0, & \text{otherwise,} \end{cases}$$

$$\operatorname{precision}(\boldsymbol{\Phi}_r, \boldsymbol{\Phi}_g) = \frac{1}{|\boldsymbol{\Phi}_g|} \sum_{\boldsymbol{\phi}_c \in \boldsymbol{\Phi}_g} f(\boldsymbol{\phi}_g, \boldsymbol{\Phi}_r) \quad \operatorname{recall}(\boldsymbol{\Phi}_r, \boldsymbol{\Phi}_g) = \frac{1}{|\boldsymbol{\Phi}_r|} \sum_{\boldsymbol{\phi}_r \in \boldsymbol{\Phi}_r} f(\boldsymbol{\phi}_r, \boldsymbol{\Phi}_g)$$

CLIP Score

CLIPScore paper

Проверяет соответствие изображения i текстовому описанию t (с масштабом w):

$$CLIPScore(i, t) = w * max\{0, cos(CLIP(i), CLIP(t)))\}$$

Таксономия генеративных моделей

2 семейства

- 1. Explicit density models
 - оценка плотности
 - сэмплирование
- 2. Implicit density models
 - оценка плотности
 - сэмплирование

Таксономия генеративных моделей

- explicit density models
 - tractable density models
 - autoregressive models
 - flow-based models
 - approximate density models
 - VAEs
 - diffusion models
- implicit density models
 - GANs

GAN

GAN

Генеративно-состязательная сеть (Generative Adversarial Network, GAN) - алгоритм обучения порождающей модели без учителя

- Как сгенерировать x ~ p(x)?
 Идея: z ~ N(0, I) -> generator model -> x ~ p(x)
- Как научить модель model конвертировать z в x с нужным распределением?
 Идея GAN: использовать модель-дискриминатор, распознающую подделки

Архитектура GAN

Обучение GAN

Оптимизация $\min_{G} \max_{D} L(G,D)$

где
$$L(G,D) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim p(z)}[\log(1-D(G(Z)))]$$

Note: На практике обучают G и D поочередно

Пример обучения:

- реальные данные
- генерируемые данные
- разделяющая кривая дискриминатора

Когда использовать GAN?

Плюсы:

- высокое качество
- быстрая генерация

Минусы:

- малое разнообразие генерируемого
- сложно обучать

Проблемы GAN

- Затухание градиента (vanishing gradient)
- Схлопывание мод распределения (mode collapse)
- Проблема стабильности обучения (convergence failure)
- Непонимание глобальной информации

Vanishing Gradient

Причины:

генератор еще плохой

- => дискриминатору легко различать
- => генератор получает нулевую

производную

=> генератор не может обучиться

Решение: лосс получше (напр., Wasserstein Loss)

Mode Collapse

Проблема: сэмплит только из некоторых мод

Решение: WGAN

Convergence Failure

Note: Сходимость не гарантирована

Пример: осциллирование между модами

Непонимание глобальной информации

Проблема: на верхних слоях нет глобальной информации

Решение: ProGAN

Conditional GAN

Авторегрессионные модели

Авторегрессионные модели

Авторегрессионные модели (autoregressive models)

Идея: генерим пиксель за пикселем (при условии предыдущих)

 $p(x_n|x_{n-1},...x_{n-k})$

Проблема: очень долгий инференс

Примеры:

- Pixel RNN
- Pixel CNN
- Autoregressive Flows

Context

Multi-scale context

VAE

Автоэнкодер

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - d(\mathbf{z})||^2 = ||\mathbf{x} - d(e(\mathbf{x}))||^2$$

Проблема автоэнкодера

Проблема: дискретность латентных представлений

VAE

Вариационный автокодировщик (Variational Autoencoder, VAE)

Как обеспечить непрерывность латентных представлений:

- 1. энкодер отображает объект x не в одну точку z, а в некоторое латентное распределение на z
- 2. регуляризация латентных распределений к N(0, 1)

Архитектура VAE

loss =
$$||x - x^{2}||^{2} + KL[N(\mu_{x}, \sigma_{x}), N(0, I)] = ||x - d(z)||^{2} + KL[N(\mu_{x}, \sigma_{x}), N(0, I)]$$

D_{кі} между нормальными

Легко считается по формуле

Одномерное нормальное распределение

$$D_{ ext{KL}}\left(p \parallel q
ight) = \log rac{\sigma_1}{\sigma_0} + rac{\sigma_0^2 + (\mu_0 - \mu_1)^2}{2\sigma_1^2} - rac{1}{2}$$

Многомерное нормальное распределение

$$D_{ ext{KL}}\left(\mathcal{N}_0 \parallel \mathcal{N}_1
ight) = rac{1}{2}\left(ext{tr}ig(\Sigma_1^{-1}\Sigma_0ig) - k + \left(\mu_1 - \mu_0
ight)^\mathsf{T}\Sigma_1^{-1}\left(\mu_1 - \mu_0
ight) + ext{ln}igg(rac{\det\Sigma_1}{\det\Sigma_0}igg)
ight).$$

Функция потерь VAE

$$L_{VAE} = MSE(x,\hat{x}) + D_{KL}(\mathcal{N}(\mu_x,\sigma_x^2)||\mathcal{N}(0,I))$$

• reconstruction loss: $MSE(x, \hat{x})$

ullet KL divergence loss: $D_{KL}(\mathcal{N}(\mu_x,\sigma_x^2)||\mathcal{N}(0,I)) = -rac{1}{2}(1+\log\sigma_x^2-\mu_x^2-\sigma_x^2)$

Reparametrization Trick

<u>Проблема:</u> сэмплирование $z \sim N(\mu, \sigma^2)$ мешает обратному распространению

Note: $N(\mu, \sigma^2) \sim \mu + \sigma * N(0, I)$

Трюк репараметризации

(Reparametrization trick):

Вместо сэмплирования $z \sim N(\mu, \sigma^2)$

Посемплируем заранее $\epsilon \sim N(0, 1)$

и посчитаем детерминированно z = μ + σ * ε

 $|\int_{1}^{1} \frac{\partial f}{\partial \phi_{i}} \psi \times \frac{\partial f}{\partial \phi_{i}} = \frac{\partial L}{\partial \phi_{i}}$ [Kingma, 2013]

: Deterministic node

: Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

VAE

VAE - вероятностная графовая модель вариационный вывод ELBO

Где почитать: <u>link</u>

Когда использовать VAE?

Плюсы:

- высокое разнообразие генерируемого
- быстрая генерация
- легко обучать

Минусы:

• низкое качество (размытость генерации)

VQ-VAE

Решение проблемы размытости - Vector Quantized VAE (VQ-VAE) paper

Идея: генерация из дискретного словаря латентных представлений (codebook)

Реализация:

- зафиксируем словарь векторов латентного пространства е₁...е₂
- маппим $z_e(x)$ на ближайший $e_k = : z_q(x)$ прежде чем декодировать

Как провести градиент через квантизацию: рассчитываем градиент по $\boldsymbol{z}_{\boldsymbol{q}}$, применяем его к $\boldsymbol{z}_{\boldsymbol{e}}$

Как выбрать словарь: обучаем вместе с энкодером (похоже на k-means)

Лосс: sg[.] - stop gradient оператор

$$L_{VQ-VAE} = L_{VAE} + ||sg[z_e(x)] - z_q(x)||^2 + eta ||z_e(x) - sg[z_q(x)]||^2$$

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The output of the encoder z(x) is mapped to the nearest point e_2 . The gradient $\nabla_z L$ (in red) will push the encoder to change its output, which could alter the configuration in the next forward pass.

Диффузия

Диффузия

Диффузия (diffusion)

forward process

backward process

Диффузия: forward process

Выбираем модель зашумления: марковская цепь

$$egin{aligned} x_0
ightarrow x_1
ightarrow \dots
ightarrow x_T \ x_0 \sim q(x_0), \ q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{lpha_t}x_{t-1}, (1-lpha_t)I) \end{aligned}$$

 α_{+} берут < 1, по какому-то расписанию:

- убывающие
- cosine annealing

Обозначение:
$$eta_t := 1 - lpha_t$$

Диффузия: forward process

$$q(x_t|x_0) = ?$$

$$egin{aligned} x_t &= \sqrt{lpha_t} x_{t-1} + \sqrt{1-lpha_t} arepsilon_{t-1} = \ &= \sqrt{lpha_t lpha_{t-1}} x_{t-2} + \sqrt{lpha_t (1-lpha_{t-1})} arepsilon_{t-2} + \sqrt{1-lpha_t} arepsilon_{t-1} = \ &= \sqrt{lpha_t lpha_{t-1}} x_{t-2} + \sqrt{1-lpha_t lpha_{t-1}} arepsilon_{t'-2}' = \end{aligned}$$

$$= \ldots = \sqrt{A_t} x_0 + \sqrt{1 - A_t} arepsilon, \ A_t = \prod_{i=1}^{t} lpha_i$$

Note: в пределе стандартное нормальное

Хотим: обратить шаги диффузии

Проблема: $q(x_{t-1}|x_t)$ не посчитать, т.к. зависит от $q(x_0)$

Решение: будем аппроксимировать $\,p_{ heta}(x_0) \sim q(x_0)\,$

Хотим: найти
$$p_{ heta}(x_0) \sim q(x_0)$$
 Для этого решаем задачу оптимизации: $D_{KL}(q(x_0)||p_{ heta}(x_0)) op \min$ Похоже на VAE приходим к: $\mathbb{E}_q L_{VLB} op \min$ где $L_{\text{VLB}} = L_T + L_{T-1} + \cdots + L_0$ $L_T = D_{\text{KL}}(q(\mathbf{x}_T|\mathbf{x}_0) \parallel p_{ heta}(\mathbf{x}_T))$ $L_t = D_{\text{KL}}(q(\mathbf{x}_t|\mathbf{x}_{t+1},\mathbf{x}_0) \parallel p_{ heta}(\mathbf{x}_t|\mathbf{x}_{t+1})), \ 1 \leq t \leq T-1$ $L_0 = -\log p_{ heta}(\mathbf{x}_0|\mathbf{x}_1)$

Рассмотрим

$$L_t = D_{\mathrm{KL}}(q(\mathbf{x}_t|\mathbf{x}_{t+1},\mathbf{x}_0) \parallel p_{ heta}(\mathbf{x}_t|\mathbf{x}_{t+1})), \ 1 \leq t \leq T-1$$

Можно найти

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; ilde{m{\mu}}(\mathbf{x}_t,\mathbf{x}_0), ilde{eta}_t\mathbf{I})$$
 $ilde{eta}_t = rac{1-A_{t-1}}{1-A_t}\cdoteta_t$ $\mu(x_t,x_0) = rac{1}{\sqrt{lpha_t}}(x_t-rac{eta_t}{\sqrt{1-A_t}}arepsilon_t),$ где $x_t = \sqrt{A_t}x_0 + \sqrt{1-A_t}arepsilon_t$

Будем искать
$$p_{ heta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{ heta}(x_t, t), eta_t I)$$

Лучше предсказывать не матожидание, а шум:

$$\mu_{ heta}(x_t,t) = rac{1}{\sqrt{lpha_t}}(x_t - rac{1-lpha_t}{\sqrt{1-A_t}}arepsilon_{ heta}(x_t,t))$$

Соответственно поменяем L₊:

$$egin{aligned} L_t^{ ext{simple}} &= \mathbb{E}_{t \sim [1,T],\mathbf{x}_0,oldsymbol{arepsilon}_t} \left[\|oldsymbol{arepsilon}_t - oldsymbol{arepsilon}_ heta(\mathbf{x}_t,t)\|^2
ight] \ &= \mathbb{E}_{t \sim [1,T],\mathbf{x}_0,oldsymbol{arepsilon}_t} \left[\|oldsymbol{arepsilon}_t - oldsymbol{arepsilon}_ heta(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}_t,t)\|^2
ight] \end{aligned}$$

Диффузия: алгоритм

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}

Условная генерация

Добавляем везде |у

Когда использовать диффузию?

Плюсы:

- высокое разнообразие генерируемого
- высокое качество
- легко обучать

Минусы:

• медленная генерация

Text-2-Image

Name	Year	Authors	Method	Link
DALL-E	2021	OpenAl	autoregressive	link
GLIDE	2021	OpenAl	diffusion	link
LDM	2021	Runway ML	diffusion	link
DALL-E 2	2022	OpenAl	diffusion	link
Stable Diffusion	2022	Runway ML	diffusion	link
Imagen	2022	Google	diffusion	link
Parti	2022	Google	autoregressive	link
Muse	2023	Google	transformers	link
StyleGAN-T	2023	NVIDIA	GAN	link
DALL-E 3	2023	OpenAl	diffusion	link

DALL-E

Обучающий датасет: пары image+text

Авторегрессионная модель:

- GPT-3 кодирует текстовые токены
- dVAE-энкодер сжимает изображение в токены
- трансформер-декодер авторегрессионно генерит по ним токены нового изображения
- dVAE-декодер преобразует токены в изображение

Дополнительно: выбирать лучшую генерацию используя CLIP

DALL-E

Достижения:

креативное

текст

СТИЛИ

LDM

Прорывная идея:

- использовать VAE на низком уровне (сжатие, генерация деталей)
- а диффузию только для генерации латентных представлений (семантики)

GLIDE

- диффузия
- Unet + глобальный аттеншн
- CLIP кодирует текст
- усиление влияния текста на генерацию
 - CLIP guidance
 - classifier-free guidance

"a hedgehog using a calculator"

"a corgi wearing a red bowtie and a purple party hat"

"robots meditating in a vipassana retreat"

"a fall landscape with a small cottage next to a lake"

"a surrealist dream-like oil painting by salvador dalí of a cat playing checkers"

"a professional photo of a sunset behind the grand

"a high-quality oil painting of a psychedelic hamster

"an illustration of albert einstein wearing a superhero costume"

"a red cube on top of a blue cube"

"a stained glass window of a panda eating bamboo"

"a pixel art corgi pizza"

"a fog rolling into new york"

Classifier Guided Diffusion

- ullet обучить классификатор $f_\phi(y|\mathbf{x}_t,t)$
- сдвигать шаги генерации в сторону моды классификатора

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $f_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \, \nabla_{x_t} \log f_{\phi}(y|x_t), \Sigma) end for return x_0
```

Classifier-Free Guidance

- обучить условную диффузию
- обучить безусловную диффузию
- при сэмплинге сдвигать сильнее по вектору разности

source: https://www.youtube.com/watch?v=344w5h24-h8

Stable Diffusion

Та же LDM, но обученная на улучшенном датасете: LAION-Aesthetics - подмножество особо красивых картинок из LAION-5B

DALL-E 2

Похоже на GLIDE

- CLIP: text-промпт -> text-эмбеддинг у
- text-эмбеддинг y -> image эмбеддинг z
 - а. авторегрессионно
 - b. диффузия

равно хороши

- диффузия: image эмбеддинг z
 - -> изображение *x*

Imagen

- Похоже на GLIDE, но улучшили текстовые промпты:
 - GLIDE обучал свой текстовый энкодер
 - Imagen взял предобученную LLM T5-XXL
 (ее заморозили чтобы избежать оверфиттинга на тексты из обучающего датасета и сохранить генерализацию)
- super-resolution diffusion

Imagen

Предложили бенчмарк из 200 промптов для тестирования разных аспектов **Drawbench**:

- подсчет объектов
- редкие слова
- длинные промпты
- креативные промпты
- ...

Parti

- авторегрессионная модель из 2022
- похожа на dall-е (v1)
- image токенизация ViT-VQGAN

2023 - не только диффузии

StyleGAN-Т: большой сложный GAN

Muse: трансформер

StyleGAN-T

GANы все еще актуальны

Muse

Архитектура:

- T5-XXL: text -> text-токены
- VQ-GAN:
 - o image -> image-токены
 - сгенеренные токены -> image
- трансформер: text-токены & image-токены -> сгенеренные токены

Обучение:

- часть входных image-токенов заменяется на [MASK]
- цель обучения восстановить замаскированные токены

Инференс: все входные image-токены заменяются на [MASK]

DALL-E 3

Проблема: плохо генерируем по детализированным описаниям

Причина: датасеты из пар image + caption, caption - короткие тексты - т.е. нет подходящих обучающих данных

Решение: сгенерируем синтетические детализированные описания картинок и на этом обучим генеративную модель (для этого потьюнили image captioning модель делать такие длинные описания - это проще, чем обучать генерацию картинок)

Note: из NLP есть подозрения, что у обучения на синтетике тоже есть потолок

Дополнительные материалы

Вводный курс по GANaм от deeplearning.ai на coursera

VAE как вероятностная графовая модель <u>link</u>

Материалы по диффузии github

Посты Lilian Weng GAN VAE диффузия потоки

Спасибо за внимание!