Learning Robust UAV Hovering in Wind-Disturbed Environments

Songhao Huang, Bowen Yang

INTRODUCTION/MOTIVATION

Hovering is essential for UAV applications like delivery and disaster response, where stability in unpredictable conditions is crucial. This <u>challenge</u> involves the complexity of end-to-end learning, adapting to varying winds, and stability across initial conditions. <u>We used a</u> diverse reinforcement learning approach to train an end-to-end policy for UAV hovering under wind disturbances. Compared to traditional methods, our policy achieves robust performance across varying winds and initial conditions.

METHODS

1. Simulation Environment

Python-based We used RotorPy [1], a multirotor simulation with aerodynamic wrenches. The state **observation** includes position, velocity, quaternion, and angular velocity, while the control **action** is defined as four rotor speeds.

We defined the **reward** function as the weighted sum of: current position error, current velocity error, the error of constant in quaternion, survival

METHODS Continued

reward, and goal reaching reward.

2. Architecture

Inspired by [2][3], we utilized an off-policy RL algorithm (TD3) with Actor and Critic networks, each comprising a 3-layer structure with 64 neurons per hidden layer.

3. Training Details

- 3.1 **Guidance**: We randomly initialize all the UAV state within a reasonable range, occasionally starting it in a hover position to enhance training.
- 3.2 **Random noise** is added to observations to robustness policy against wind improve variability.
- 3.3 **Action history** is fed into the policy to accelerate motor response, modeled as a first-order low-pass filter.
- 3.4 **Curriculum learning** adjusts reward weights and guidance probabilities to optimize training progression.

RESULTS

1. Training Time

Our policy was trained on a laptop with a RTX4060 GPU for **40 mins** (~700000 iteration)

2. Simulation Benchmark

We compare the performance with SE3 controller[4]. The following are corresponding position/velocity vs. time plots in one test, with the same adverse random initial github: https://github.com/KANZEZ/rl uav ctrl conditions and constant wind disturbance.

3. More Experiments

The table shows the performance for two controllers testing for **100 times** in each case.

RESULTS Continued

9k of				2:			F4		
Constant wind	Mild			Medium			Fierce		
	Success rate	Reaching time	Control cost	success rate	Reaching time	control cost	success rate	Reaching time	Control
Ours	100 %	2.57 s	222.99	100 %	3.01 s	268.02	57 %	2.99 s	249.66
SE3 ctrl	100 %	3.29 s	307.92	21 %	3.38 s	305.01	2 %	3.9 s	313.34
Sine wind	nd Mild			Medium			Fierce		
	Success	Reaching	Control	success	Reaching	control	success	Reaching	Control
	rate	time	cost	rate	time	cost	rate	time	cost
Ours	100 %	2.59 s	223.37	98 %	2.99 s	256.85	73 %	3.65 s	310.62
SE3 ctrl	100 %	3.25 s	302.49	79 %	3.66 s	341.29	21 %	4.1 s	382
Initial Condition	Ideal			Challenge			Adverse		
	Success rate	Reaching time	Control	success	Reaching time	control	success rate	Reaching time	Control
Ours	100 %	1.67 s	133.58	100 %	2.52 s	199.61	100 %	2.77 s	230.32
SE3 ctrl	100 %	2.16 s	163.19	74 %	3.27 s	297.59	50 %	3.18 s	285.64

4. Flaw and Future works

We also evaluated our policy on a path-tracking task by feeding offset position and velocity into the hover policy. It struggled with high-speed or steep curves. We tried to train a path-tracking policy using the RL framework and proved difficult due to poor convergence and generalization. Future works could involve fine-tuning the hover policy for path tracking or learning a residual policy to compensate for disturbances on a nominal controller's output.

5. Video, Code and References:

References links:

- [1] https://arxiv.org/abs/2306.04485
- [2] https://arxiv.org/pdf/2311.13081
- [3] https://arxiv.org/pdf/1802.09477
- [4] https://ieeexplore.ieee.org/document/5717652

Youtube

