# 카카오 1차 면접

Presented by 서석준

### **Table of Contents**

- 1. Introduction.
  - a. Class Activation Mapping.
  - b. Hide-and-Seek.
- 2. Experiment.
  - a. Experiment 1 ~ 3.
  - b. Additional Experiment 1 ~ 5.
- 3. Discussion.
  - a. Visualization.
  - b. Summary.
  - c. Future Work.

## Weakly Supervised Object Detection (Localization)

- Compared to amount of image data, number of well annotated objects is very small.
- Let's only utilize image-level annotation while predicting the position of the objects.



## Hide-and-Seek (HAS)

- Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization.
  - Krishna Kumar Singh and Yong Jae Lee.
    - University of California, Davis.
    - ICCV 2017.
  - o Simple but powerful.
    - According to the paper.

#### Main Idea

- CAM (Class Activation Mapping) based localization showed good performance.
- However, previous method is tend to concentrate on the most discriminative part.
  - Which means that,
  - It can lead to too tight bounding box.
- If we hide some patches of input, a model might learn more generalized parts of object.
- It only manipulates the input image!
  - So can be applied to any model.

### Learning Deep Features for Discriminative Localization

- Learning Deep Features for Discriminative
   Localization
  - Bolei Zhou, Aditya Khosla, Agata
     Lapedriza, Aude Oliva, Antonio Torralba.
    - MIT.
    - CVPR 2016.
  - Previous study of Hide-and-Seek.
  - Introducing CAM.

#### Features

- CAM can be used to object localization.
- How to make bounding box from CAM?
  - Largest connected component of binary segmentation map.
  - For image X and threshold  $\theta$ ,

$$map_{i,j} = \begin{cases} fg & if \ x_{i,j} \ge \theta \max(x) \\ bg & if \ x_{i,j} < \theta \max(x) \end{cases}$$

 Can adapt any CNN based image classification model.

### CAM (Class Activation Mapping)



 $F = \{F_1, ..., F_M\}$ : M feature maps W: last convolution layer c: class, I: image

$$CAM(c,I) = \sum_{i=1}^{M} W(c,i) \cdot F_{i}(I)$$

#### Hide-and-Seek



#### Testing phase





- - Also should be different within a batch
- When hiding, It is important to fill the values with mean value.
  - In terms of normalization!

### Implementation - from scratch

- Let's implement from scratch!
  - There is no available source code :D
  - For previous study, only matlab implementation is available.
  - There exists Tensorflow version but is neither official nor sufficient.
- To make CAM, it is essential to build Alexnet and Googlenet first.
  - Both paper use Alexnet and Googlenet as the classification model.

## Alexnet & Googlenet



- Alexnet
- ReLU, local normalization, weight decay.
- 60M parameters.



- Googlenet
- Introduce inception module.
- 60M parameters.
- 12x less parameters than Alexnet.

22 total layers with weights (including each parallel layer in an Inception module)

## Alexnet & Googlenet + GAP

```
### additional conv laver
with tf.variable_scope('conv_5'):
 x = net.conv relu bn(x,
                       filter_shape=[3,3],
                       num filters=1024,
                       stride=1,
                       padding='SAME',
                       is training=self.is training,
                       regularizer=None)
 self.F = x
 # x: [batch, 14, 14, 1024]
 # summaries.append( tf.summary.histogram('conv 5', x) )
### GAP
# [batch, 14, 14, 512] => [batch, 1024]
with tf.variable scope('gap'):
 \# x = tf.reduce sum(x, axis=[1, 2])
 x = tf.reduce mean(x, axis=[1, 2])
 # x: [batch, 1024]
 # summaries.append( tf.summary.histogram('gap', x) )
### softmax without bias
with tf.variable_scope('softmax'):
 num_feature = x.get_shape().as_list()[-1]
 weights = tf.get_variable("weights",
              shape=[num_feature, self.num_classes],
             initializer=tf.contrib.layers.xavier_initializer(),
              regularizer=None)
 self.logits = tf.matmul(x, weights)
 # logits: [batch, num_classes]
```

- Implemented at <u>src/alexnet\_gap.py</u> and src/googlenet\_gap.py
- According to Hide-and-Seek paper.
  - From base models, detach all layers after specific pooling layers.
  - Attach additional convolution layer followed by GAP and softmax layer.
  - Attach batch normalization layer after all convolution layers.
- Using pre-trained model?
  - Since layer architecture is slight different, it is hard to used pre-trained model.
  - Also, both papers commented that pre-trained did not improve performance.
  - Therefore, all models are trained from scratch.

## Alexnet & Googlenet GAP

- Image size issue.
  - Both model is designed to get 227x227 and 224x224 images.
  - However, our image size is 64x64.
  - Upscale image to 227 and 224 respectively.

Will be discussed more.

- Papers are not kind...
  - If there exist conflicts between two papers, follow the setting of HAS paper.
    - # neurons in of alexnet gap layer => 512.
    - $\theta$  (segmentation threshold) => 20% / 30%.
  - Not describing the details of experiment setting.
    - Optimizer?
      - SGD + Momentum (0.9) since Alexnet and Googlenet use that setting.
    - Weight decay of Alexnet?
      - Not mentioned. So applied same value (0.0005) used for original Alexnet.
    - LR is gradually decreased from 0.01 to 0.0001?
      - No details. So use linear interpolation.

## Alexnet & Googlenet GAP + HAS

- Adding HAS to GAP models.
  - Hide random patches at train time while do 10 multi-crop test at test time.
    - Rate of crop is not mentioned. So I naively crop 75% of image since large crop might lose too much information as our image is quite small.
  - Averaging all 10 crops to make the CAM and probability of classes.
- Why using multi-crop?
  - Also not mentioned.
  - Will be discussed more!

## Alexnet & Googlenet GAP + HAS

- 3 Evaluation metrics.
  - Top-1 class accuracy.
    - Classification accuracy of top-1 prediction.
  - GT-known localization accuracy.
    - Fraction of more than 50% IoU (Jaccard coefficient) between predicted bounding box of ground-truth class and ground-truth box of ground-truth class.
    - Most focused on!
  - Top-1 localization accuracy.
    - Top-1 && GT-known localization.

#### Other Issues

- Grayscale Images.
  - 1.8% of images are grayscale. Change them to RGB by duplicating values.
- Image normalization.
  - Not mentioned. However, without it, performance is too bad.
  - Mean normalization without rescaling.
- Approximation for partially hidden patches.

$$\sum_{m \in visible} w_m^T x_m + \sum_{n \in hidden} w_n^T \mu \approx \sum_{i=1}^{k \times k} w_i^T \mu$$

- It works like dilating hiding patches.
- 50% is already hidden but even more dilation?
- Implemented without approximation.

#### Other Issues

- Number of patches reported on the paper is weird.
  - They used 16, 32, 44, 56 number of patches.
  - However, is it possible?

$$S = \sqrt{\frac{W \times H}{N}} = \frac{W}{\sqrt{N}}$$

Concretely, given a training image I of size  $W \times H \times 3$ , we first divide it into a grid with a fixed patch size of  $S \times S \times 3$ . This results in a total of  $(W \times H)/(S \times S)$  patches. We

- S cannot be an integer.
- Therefore, I used 16, 36, 64, mixed number of patches.
- Train epoch.
  - Even though the paper trained for 55 and 40 epochs, I found that the loss keeps decrease so set epochs as 200 and 100.
  - Can be caused by different optimizer.
- Training is quite slow.
  - As I don't have enough machines, most of the experiments were done with Alexnet.

### **Experiment Overview**

- I tried to reproduce as many experiments as possible.
  - a. Basic experiment.
  - b. Dropout.
  - c. GMP.
- Moreover, I tried several more experiments which I thought important but not did in paper.
  - a. Multi-Crop Test.
  - b. Localization Threshold.
  - c. Resizing Image and Network.
  - d. Image Augmentation.
  - e. Deeper Model.

**Basic Experiment** 

- Dataset Tiny ImageNet.
  - Small subset of ImageNet Challenge.
  - 200 classes, 500 train / 50 validation data for each class.
  - 64x64 Image.
- Basic experiment.
  - Comparing performance of Alex/GoogleNet-GAP with Alex/GoogleNet-HAS.
  - Do multi-crop test.
  - Localization threshold 0.2 / 0.3.

#### Result

| Methods          | GT-known Loc Top-1 Loc |             | Top-1 Clas |
|------------------|------------------------|-------------|------------|
| AlexNet-GAP      | 51.07                  | 51.07 21.31 |            |
| AlexNet-HAS-16   | 50.66                  | 20.47       | 38.99      |
| AlexNet-HAS-36   | 50.76                  | 18.70       | 35.36      |
| AlexNet-HAS-64   | 50.80                  | 19.68       | 37.27      |
| AlexNet-HAS-Mix  | 50.92                  | 20.19       | 37.73      |
| GoogleNet-GAP    | 53.28                  | 24.79       | 43.44      |
| GoogleNet-HAS-16 | 52.61                  | 24.00       | 43.14      |

- Complex model showed better performance.
- However, it seems that HAS has no effect on performance.
  - o Why?
  - Two hypotheses.
    - Because of multi-crop test.
    - Because of fixed and naive localization threshold.

# Additional Experiment 1

Multi-crop Test

- Is Multi-crop test essential?
  - Neither justification nor comparison in paper (also no details...).
    - Since I don't know how much fractions are cropped, it is hard to reproduce same result.
  - So, let's remove multi-crop test and compare the performances.
    - Same trained model.
    - Localization threshold 0.2 / 0.3.

### Result

|                  | Wit              | th Multi-Cro | ор            | With             | out Multi-C  | Crop          |
|------------------|------------------|--------------|---------------|------------------|--------------|---------------|
| Methods          | GT-kno<br>wn Loc | Top-1<br>Loc | Top-1<br>Clas | GT-kno<br>wn Loc | Top-1<br>Loc | Top-1<br>Clas |
| AlexNet-GAP      | 51.07            | 21.31        | 39.68         | 52.65            | 23.54        | 39.27         |
| AlexNet-HAS-16   | 50.66            | 20.47        | 38.99         | 51.82            | 24.76        | 42.23         |
| AlexNet-HAS-36   | 50.76            | 18.70        | 35.36         | 51.90            | 24.98        | 42.24         |
| AlexNet-HAS-64   | 50.80            | 19.68        | 37.27         | 52.43            | 26.47        | 44.24         |
| AlexNet-HAS-Mix  | 50.92            | 20.19        | 37.73         | 52.72            | 26.97        | 45.21         |
| GoogleNet-GAP    | 53.28            | 24.79        | 43.44         | 55.47            | 30.22        | 47.63         |
| GoogleNet-HAS-16 | 52.61            | 24.00        | 43.14         | 54.85            | 31.94        | 51.38         |

- It seems that naive multi-crop approach rather decreases performance.
  - Issue of Tiny Imagnet data.
- Therefore, for further experiments, I would exclude multi-crop test.

## Additional Experiment 2

Localization Threshold

- Localization threshold is fixed by authors to 0.2 and 0.3 for Alexnet and GoogleNet respectively.
  - They commented that they chose the values by hand.
    - Even though it is very important factor determining GT-known Loc and Top-1 Loc.
  - However, in our case, dataset is changed which means that the value might be harmful.
    - The authors already tested multiple thresholds for video set!
    - Let's test for various thresholds =  $\{0.2, 0.3, 0.4, 0.5\}$
    - Without multi-crop.

## Result

|                      |                     | 0.2          |               |                     | 0.3          |                   |                     | 0.4           |                   |                     | 0.5           |                   |                     | Best (GT)     | )                 |
|----------------------|---------------------|--------------|---------------|---------------------|--------------|-------------------|---------------------|---------------|-------------------|---------------------|---------------|-------------------|---------------------|---------------|-------------------|
| Methods              | GT-kn<br>own<br>Loc | Top-1<br>Loc | Top-1<br>Clas | GT-kn<br>own<br>Loc | Top-1<br>Loc | Top-<br>1<br>Clas | GT-kn<br>own<br>Loc | Top-<br>1 Loc | Top-<br>1<br>Clas | GT-k<br>nown<br>Loc | Top-<br>1 Loc | Top-<br>1<br>Clas | GT-k<br>nown<br>Loc | Top-<br>1 Loc | Top-<br>1<br>Clas |
| AlexNet-GAP          | 52.65               | 23.54        | 39.27         | 54.31               | 24.53        | 39.27             | 53.38               | 23.51         | 39.27             | 47.06               | 19.57         | 39.27             | 54.31               | 24.53         | 39.27             |
| AlexNet-HAS-1<br>6   | 51.82               | 24.76        | 42.23         | 53.99               | 26.21        | 42.23             | 54.70               | 26.31         | 42.23             | 51.01               | 23.53         | 42.23             | 54.70               | 26.31         | 42.23             |
| AlexNet-HAS-3        | 51.90               | 24.98        | 42.24         | 54.41               | 26.45        | 42.24             | 54.86               | 26.22         | 42.24             | 50.71               | 23.33         | 42.24             | 54.86               | 26.22         | 42.24             |
| AlexNet-HAS-6<br>4   | 52.43               | 26.47        | 44.24         | 54.42               | 27.80        | 44.24             | 55.22               | 27.74         | 44.24             | 51.32               | 24.47         | 44.24             | 55.22               | 27.74         | 44.24             |
| AlexNet-HAS-<br>Mix  | 52.72               | 26.97        | 45.21         | 55.04               | 28.47        | 45.21             | 54.90               | 27.96         | 45.21             | 50.01               | 24.60         | 45.21             | 55.04               | 28.47         | 45.21             |
| GoogleNet-GA<br>P    | 52.66               | 28.41        | 47.63         | 55.47               | 30.22        | 47.63             | 55.45               | 30.02         | 47.63             | 50.08               | 26.51         | 47.63             | 55.47               | 30.22         | 47.63             |
| GoogleNet-HA<br>S-16 | 52.02               | 30.05        | 51.38         | 54.84               | 31.94        | 51.3<br>8         | 55.75               | 32.24         | 51.38             | 53.65               | 30.16         | 51.38             | 55.75               | 32.24         | 51.38             |

#### Result

|                  | Best (GT)    |           |            |  |  |  |
|------------------|--------------|-----------|------------|--|--|--|
| Methods          | GT-known Loc | Top-1 Loc | Top-1 Clas |  |  |  |
| AlexNet-GAP      | 54.31        | 24.53     | 39.27      |  |  |  |
| AlexNet-HAS-16   | 54.70        | 26.31     | 42.23      |  |  |  |
| AlexNet-HAS-36   | 54.86        | 26.22     | 42.24      |  |  |  |
| AlexNet-HAS-64   | 55.22        | 27.74     | 44.24      |  |  |  |
| AlexNet-HAS-Mix  | 55.04        | 28.47     | 45.21      |  |  |  |
| GoogleNet-GAP    | 55.47        | 30.22     | 47.63      |  |  |  |
| GoogleNet-HAS-16 | 55.75        | 32.24     | 51.38      |  |  |  |

- Best one is selected based on GT-known Loc accuracy.
- With removing multi-crop test and taking the best result among various threshold, HAS shows better performance than GAP model.
- Unlike reported at paper, Top-1 classification accuracy also increases.
- Most of best performances are acquired at threshold of 0.2 and 0.3.

Dropout

| Methods                   | GT-known Loc | Top-1 Loc |  |
|---------------------------|--------------|-----------|--|
| Ours                      | 58.74        | 37.71     |  |
| AlexNet-dropout-trainonly | 42.20        | 07.68     |  |
| AlexNet-dropout-traintest | 53.55        | 31.72     |  |

- Comparing with Dropout.
  - HAS works similar as dropout (more similar if patch size decreases).
    - Whereas HAS drops input while considering local structure.
  - Therefore, they compared HAS with dropped image.
    - However, I think they did not set up the experiment correctly.
      - Too much performance loss if dropping train image only while relatively alleviated even dropping test image.
      - Wierd. May be caused by distributional difference.
    - My hypothesis is that they did not normalize image before dropout.
  - Two experiments for the hypothesis.
    - 1. Input image dropout without mean normalization.
    - 2. Input image dropout with mean normalization.

#### Result

|                   | Best         |           |            |  |  |  |
|-------------------|--------------|-----------|------------|--|--|--|
| Methods           | GT-known Loc | Top-1 Loc | Top-1 Clas |  |  |  |
| AlexNet-GAP       | 54.31        | 24.53     | 39.27      |  |  |  |
| AlexNet-HAS-16    | 54.70        | 26.31     | 42.23      |  |  |  |
| AlexNet-HAS-36    | 54.86        | 26.22     | 42.24      |  |  |  |
| AlexNet-HAS-64    | 55.22        | 27.74     | 44.24      |  |  |  |
| AlexNet-HAS-Mix   | 55.04        | 28.47     | 45.21      |  |  |  |
| Drop-Without-Norm | 50.70        | 0.89      | 1.16       |  |  |  |
| Drop-With-Norm    | 52.85        | 16.15     | 26.90      |  |  |  |

- As expected, they might not normalize image with dropout.
- However, it shows that for input layer, hiding while considering local structure is more powerful than dropout.

## **Experiment Issue**

- Comparing with Dropout.
  - HAS showed better performance than dropout for input layer.
  - Can HAS be used as dropout at hidden layer?
    - Let's hiding first convolutional map.
  - However, the experiments in paper are insufficient and need more details.
    - Most important issue is that we cannot get mean (expectation) value!
      - The most important part of HAS but not mentioned :(
      - Cannot implement without it.
    - Also, to be fully compared with dropout, they should have experimented dropout too.
  - o Possible implementation?
    - 1. Use moving average to approximate mean value.
    - 2. Believe batch normalization would make average to be zero and just apply dropout.

$$W = \{w_1, \dots, w_{k \times k}\}$$

$$X = \{x_1, \dots, x_{k \times k}\}$$

$$\mu = \frac{1}{N_{pixels}} \sum_{j} x_j$$

$$Conv(W, X) = \begin{cases} \sum_{i=1}^{k \times k} w_i^T x_i \\ \sum_{i=1}^{k \times k} w_i^T \mu \\ \sum_{m \in visible} w_m^T x_m + \sum_{n \in hidden} w_n^T \mu \approx \sum_{i=1}^{k \times k} w_i^T \mu \end{cases}$$
nore details.

Global Maximum Pooling (GMP)

- Comparing with GMP (global max pooling).
  - In previous study, GMP showed worse performance than GAP.
  - But with HAS, GMP showed similar or even better performance than GAP.
  - To verify, I tested Alexnet-GMP and Alexnet-GMP with HAS-16.
  - Other setting are all same.



#### Result

|                        | Best         |           |            |  |  |  |
|------------------------|--------------|-----------|------------|--|--|--|
| Methods                | GT-known Loc | Top-1 Loc | Top-1 Clas |  |  |  |
| AlexNet-GAP            | 54.31        | 24.53     | 39.27      |  |  |  |
| AlexNet-HAS-16         | 54.70        | 26.31     | 42.23      |  |  |  |
| AlexNet-GMP            | 50.72        | 23.46     | 42.49      |  |  |  |
| AlexNet-GMP-HAS-<br>16 | 51.07        | 24.25     | 43.28      |  |  |  |

- GMP model shows better classification accuracy than GAP.
- However, in this experience, GMP does not show better localization accuracy even with HAS.

## Additional Experiment 3

Resizing Image & Network



- Input image resizing issue.
  - AlexNet and GoogleNet are originally designed for ImageNet Challenge which means that they assumes the input size is about 224x224.
  - However, our input size is 64x64.
  - Even though I naively resized them as 224 (or 227),
     it seems inefficient to upscale image.
- Two more experiments.
  - 1. Just put image to Alexnet without resizing resulting in 2x2 final convolution map.
  - 2. Adjust network in order to adapt small image.

#### Result

|                               | Best         |           |            |  |  |  |
|-------------------------------|--------------|-----------|------------|--|--|--|
| Methods                       | GT-known Loc | Top-1 Loc | Top-1 Clas |  |  |  |
| AlexNet-GAP                   | 54.31        | 24.53     | 39.27      |  |  |  |
| AlexNet-HAS-16                | 54.70        | 26.31     | 42.23      |  |  |  |
| AlexNet-w/o-Resize            | 48.37        | 14.30     | 26.21      |  |  |  |
| AlexNet-w/o-Resize-<br>HAS-16 | 48.35        | 15.97     | 28.96      |  |  |  |
| AlexNet-Small                 | 53.91        | 23.87     | 38.26      |  |  |  |
| AlexNet-Small-HAS-<br>16      | 55.68        | 26.21     | 40.16      |  |  |  |

- If naive model is used without resizing, it showed very worse performance.
  - Maybe caused by too low resolution of final convolution map.
- Modified small AlexNet showed better
   GT-known Loc, even though total model
   size decreases more than 8%.
  - Can be deeper even with the same number of parameters.

# Additional Experiment 4

Image Augmentation

## Experiment





CoarseSaltAndPepper (p=0.2)



size\_percent=0.05 size\_percent=0.02

- HAS can be considered as image augmentation.
  - Already similar methods were exists.
  - Main difference is that HAS fill patches with mean value!
  - Multiple experiments

| Methods      | Flip | Rotate | Translate | Erase | Hide |
|--------------|------|--------|-----------|-------|------|
| AUG-1        | 0    | 0      | 0         |       |      |
| AUG-2        | 0    | 0      | 0         | 0     |      |
| AUG-1-HAS-16 | 0    | 0      | 0         |       | 0    |
| AUG-2-HAS-16 | 0    | 0      | 0         | 0     | 0    |

#### Result

|                          | Best         |           |            |  |
|--------------------------|--------------|-----------|------------|--|
| Methods                  | GT-known Loc | Top-1 Loc | Top-1 Clas |  |
| AlexNet-GAP              | 54.31        | 24.53     | 39.27      |  |
| AlexNet-HAS-16           | 54.70        | 26.31     | 42.23      |  |
| AlexNet-AUG-1            | 56.65        | 29.84     | 46.59      |  |
| AlexNet-AUG-2            | 56.62        | 31.06     | 48.09      |  |
| AlexNet-AUG-1-HA<br>S-16 | 56.92        | 29.50     | 46.01      |  |
| AlexNet-AUG-2-HA<br>S-16 | 56.70        | 29.87     | 45.98      |  |

- It seems that augmentation boost the performance, both classification and localization, a lot.
- Adding HAS marginally increases localization while decreasing classification.
  - Comparing AUG-2 with AUG-1-HAS-16 shows that HAS can be improved if it is applied in stochastic way.
  - Since HAS deterministically always hides some patches.

# Additional Experiment 5

Deeper Model

## Experiment





- The deeper the better.
  - With residual connection, compression, etc.
  - Any network can be a candidates.
  - But, run out of time...
- One simple example.
  - Let's test with shallow version of SqueezeNet.
  - Main feature of it is a fire module.
    - Good compression method.

## **Experiment**



|        | # Params  | Cumulate  | Cumulate (%) |  |
|--------|-----------|-----------|--------------|--|
| conv1  | 2,688     | 2,688     | 0.09%        |  |
| fire2  | 11,920    | 14,608    | 0.50%        |  |
| fire3  | 35,040    | 49,648    | 1.70%        |  |
| fire4  | 47,392    | 97,040    | 3.32%        |  |
| fire5  | 89,456    | 186,496   | 6.37%        |  |
| fire6  | 92,528    | 279,024   | 9.54%        |  |
| fire7  | 184,896   | 463,920   | 15.85%       |  |
| conv8  | 2,359,808 | 2,823,728 | 96.50%       |  |
| linear | 102,400   | 2,926,128 | 100.00%      |  |

- Exclude some layers of SqueezeNet.
- Do not resize input image. Rather using small window size.
- Total model size is less than 40% of AlexNet.
- Training time is between AlexNet and GoogleNet.

### Result

|                  | Best (GT)    |           |            |  |
|------------------|--------------|-----------|------------|--|
| Methods          | GT-known Loc | Top-1 Loc | Top-1 Clas |  |
| AlexNet-GAP      | 54.31        | 24.53     | 39.27      |  |
| AlexNet-HAS-16   | 54.70        | 26.31     | 42.23      |  |
| AlexNet-HAS-36   | 54.86        | 26.22     | 42.24      |  |
| AlexNet-HAS-64   | 55.22        | 27.74     | 44.24      |  |
| AlexNet-HAS-Mix  | 55.04        | 28.47     | 45.21      |  |
| GoogleNet-GAP    | 55.47        | 30.22     | 47.63      |  |
| GoogleNet-HAS-16 | 55.75        | 32.24     | 51.38      |  |
| CusNet-GAP       | 53.35        | 23.29     | 37.89      |  |
| CusNet-HAS-16    | 55.06        | 28.74     | 45.80      |  |
| CusNet-HAS-36    | 55.41        | 29.68     | 47.80      |  |
| CusNet-HAS-64    | 54.95        | 29.18     | 47.01      |  |
| CusNet-HAS-Mix   | 55.68        | 31.20     | 49.70      |  |

- Even with smaller number of parameters, using fire module showed similar or better performance.
- If using deeper and complexer model like modern InceptionNet or Resnet, all metrics might show better scores.
- Replacing last convolution layer can reduce more parameters.

# Discussion

### Visualization



### Visualization



## Result Table

|                  | Best         |           |            |                           | Best         |           |            |
|------------------|--------------|-----------|------------|---------------------------|--------------|-----------|------------|
| Methods          | GT-known Loc | Top-1 Loc | Top-1 Clas | Methods                   | GT-known Loc | Top-1 Loc | Top-1 Clas |
| AlexNet-GAP      | 54.31        | 24.53     | 39.27      | Drop-Without-Norm         | 50.70        | 0.89      | 1.16       |
| AlexNet-HAS-16   | 54.70        | 26.31     | 42.23      | Drop-With-Norm            | 52.85        | 16.15     | 26.90      |
| AlexNet-HAS-36   | 54.86        | 26.22     | 42.24      | AlexNet-GMP               | 50.72        | 23.46     | 42.49      |
| AlexNet-HAS-64   | 55.22        | 27.74     | 44.24      | AlexNet-GMP-HAS-16        | 51.07        | 24.25     | 43.28      |
| AlexNet-HAS-Mix  | 55.04        | 28.47     | 45.21      | AlexNet-w/o-Resize        | 48.37        | 14.30     | 26.21      |
| GoogleNet-GAP    | 55.47        | 30.22     | 47.63      | AlexNet-w/o-Resize-HAS-16 | 48.35        | 15.97     | 28.96      |
| GoogleNet-HAS-16 | 55.75        | 32.24     | 51.38      | AlexNet-Small             | 53.91        | 23.87     | 38.26      |
| CusNet-GAP       | 53.35        | 23.29     | 37.89      | AlexNet-Small-HAS-16      | 55.68        | 26.21     | 40.16      |
| CusNet-HAS-16    | 55.06        | 28.74     | 45.80      | AlexNet-AUG-1             | 56.65        | 29.84     | 46.59      |
| CusNet-HAS-36    | 55.41        | 29.68     | 47.80      | AlexNet-AUG-2             | 56.62        | 31.06     | 48.09      |
| CusNet-HAS-64    | 54.95        | 29.18     | 47.01      | AlexNet-AUG-1-HAS-16      | 56.92        | 29.50     | 46.01      |
| CusNet-HAS-Mix   | 55.68        | 31.20     | 49.70      | AlexNet-AUG-2-HAS-16      | 56.70        | 29.87     | 45.98      |

### Discussion

- HAS generally increases localization performance.
- In my case, classification accuracy also increases.
- Using good classification model makes localization more powerful.
- By the way, among all experiment, GT-known localization score does not vary a lot.
  - May be problem of dataset.
  - Bounding boxes are usually too big since images of Tiny Imagenet is cropped.
- Low accuracy of dataset may also derived from dataset issue.
  - Where Tiny ImageNet comes from?
  - Stanford cs231 course.
  - Reports of that course said that accuracy of around 40% is normal case.
  - o Train: 456,567 -> 100,000
  - Valid: 20,121 -> 10,000

### Discussion

- HAS works but augmentation also works (even better).
  - Less impressive than before I tried augmentation.
- Future works?
  - Ensemble test.
  - Stochastic HAS.
  - Replace last convolution layer of CAM with compressed version.
  - Multiscale CAM.
    - Current CAM is hard to detect relatively small object.
    - Multiscale setup might be helpful.

# Thank you.