ECE 417/598: Direct Linear Transform

Vikas Dhiman

March 23, 2022

Examples of Homography

Computing Homography

Find H such that $\underline{\mathbf{u}}' = \lambda H \underline{\mathbf{u}}$ for any point on one image to another image, where $\mathbf{u}', \mathbf{u} \in \mathbb{P}^2$

2D homography

Given a set of points $\underline{\mathbf{u}}_i \in \mathbb{P}^2$ and a corresponding set of points $\underline{\mathbf{u}}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each $\underline{\mathbf{u}}_i$ to $\underline{\mathbf{u}}_i'$. In a practical situation, the points $\underline{\mathbf{u}}_i$ and $\underline{\mathbf{u}}_i'$ are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

$$\frac{ui = \lambda H ui}{P_{caspedtue}} = \frac{\lambda e IR}{\lambda e IR}$$

$$u = K \times \text{ in penspective shall}$$

$$u = \lambda K \times \frac{2}{3} = \frac{4}{12}$$

$$a b c \int \{y\}_{20}^{20} cx + by + c = 0$$

$$\frac{A \times b}{A \times b} = \frac{\lambda e IR}{\lambda e IR}$$

$$\frac{2}{3} = \frac{4}{12}$$

$$y = y + y = 0$$
 $y = y + y = 0$
 $y = =$

x hizi + > hz y + >hzt

$$\begin{bmatrix}
0 & -w_i & g_i \\
w_i & 0 & -\partial_{i} & Hu_i & = 0
\end{bmatrix}$$

$$\begin{bmatrix}
-y_i & \partial_{i} & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-y_i & \partial_{i} & 0
\end{bmatrix}$$

$$\begin{bmatrix}
h_1 & h_2 & h_3
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
u_{i} & h_{2} \\
u_{i} & h_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \qquad Nz \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$

$$M \otimes N = \begin{pmatrix} M_{11} & N & M_{12} & N \\ M_{12} & N & M_{12} & N \end{pmatrix}$$

$$M \otimes N = \begin{pmatrix} M_{11} & N & M_{12} & N \\ M_{21} & N & M_{22} & M_{22} \end{pmatrix} \qquad M_{22} \qquad M_{23} \qquad M_{24} \qquad M_{24}$$

H = 3x3=9 unknows J Brause S DOF from each fount 3 eyrs 2 linearly independent equations 8/2=4 points (pair of points)

Solving for Homography

Solving for Homography

```
Eigen::Matrix3d
findHomography(const std::vector<Eigen::Vector3d>& us,
               const std::vector<Eigen::Vector3d>& ups)
    Eigen::MatrixXd A(8, 9); A.setZero();
    for (int i = 0; i < us.size(); ++i) {
        // [[0^T -W'i Ui^T Vi' Ui^T]]
        // [wi'ui<sup>T</sup> 0<sup>T</sup> -xi ui<sup>T</sup>]]
        A.block(2*i, 3, 1, 3) = -ups[i](2)*us[i].transpose();
        A.block(2*i, 6, 1, 3) = ups[i](1)*us[i].transpose();
        A.block(2*i+1, 0, 1, 3) = ups[i](2)*us[i].transpose();
        A.block(2*i+1, 6, 1, 3) = -ups[i](0)*us[i].transpose();
    auto svd = A.jacobiSvd(Eigen::ComputeFullV);
    Eigen::Matrix3d H;
    Eigen::VectorXd nullspace = svd.matrixV().col(8);
   H.row(0) = nullspace.block(0, 0, 3, 1).transpose();
    H.row(1) = nullspace.block(3, 0, 3, 1).transpose();
   H.row(2) = nullspace.block(6, 0, 3, 1).transpose();
    return H;
```

Apply Homography

return new img;

```
Eigen::MatrixXd
applyHomography(const Eigen::Matrix3d& H,
                const Eigen::MatrixXd& imq) {
    Eigen::MatrixXd new img(img.rows(), img.cols());
    Eigen::Vector3d u;
    Eigen::Vector3d up;
    for (int new row = 0; new row < new img.rows(); ++new row) {</pre>
        for (int new col = 0; new col < new img.cols(); ++new col) {</pre>
            u << new col + 0.5, new row + 0.5, 1;
            /**** Apply homography for each pixel ***/
            up = H * u:
            up /= up(2);
            /**** Apply homography for each pixel ***/
            int row = round(up(1));
            int col = round(up(0));
            if (0 <= row && row < img.rows()
                && 0 <= col && col < img.cols()) {
                new img(new row, new col) = img(row, col);
```