组合交换代数讲义

丁相钰

2025年5月30日

§1 Rings and ideals → Krull dimension

定义 1.1. $(R, +, \cdot)$ 满足如下三个条件被称为一个环: (R, +) 是一个交换群; (R, \cdot) 是一个含幺半群; R 满足分配律。

定义 1.2. 非零元素 $a \in R$ 被称为零化子如果存在非零元素 b 使得 ab = 0

定义 1.3. 非零元素 $u \in R$ 被称为单位元如果存在非零元素 v 使得 uv = 1

定义 1.4. 环 R 的子集 F 是有吸收性的,如果对于 $\forall U \subset R$,有 $U \cdot F \subset F$ 。

定义 1.5. 环 R 的子集 S 是有乘性的,如果 $1 \in S$,对于 $\forall x, y \in S$,那么 $xy \in S$ 。

定义 1.6. 环 R 的子集 I 被称作理想,如果 I 是一个加性子群并且具有吸收性 $(IR \subset I)$ 。

定义 1.7. p 是环 R 的一个素理想,如果 $xy \in \mathfrak{p}$,那么有 $x \in \mathfrak{p}$ 或者 $y \in \mathfrak{p}$ 。 等价于 $R - \mathfrak{p}$ 是可乘的。

定义 1.8. R 是一个整环,那么如下条件等价:R 没有零因子; <0> 是素理想; $R\setminus<0>$ 可乘。

定义 1.9. R 是一个域, 那么如下条件等价: R 的非零元素都是单位元; <0> 是唯一素理想; R 无真理想。

命题 1.10. 对于 $\phi: R \to R'$, $T \subset R'$, $S := \phi^{-1}(T)$,如果 T 是可乘的或者是素理想,那么 $\phi^{-1}(T)$ 分别也是可乘的或者是素理想,反之如果这个映射是满的也成立。

证明. 令 $S = \phi^{-1}(T)$,因 T 可乘, $\phi(1) = 1$,那么 $1 \in S$ 。对于 $x, y \in S$,因 $\phi(xy) = \phi(x)\phi(y) \in T$,那么 $xy \in S$,所以 S 可乘。反之如果 ϕ 是满射,那么 $x' = \phi(x)$,对任意的 $x \in S \square x' \in T$ 。从而 $\phi(1) = 1$, $\phi(x)\phi(y) = \phi(xy) \in S$,得证。

设 $\mathfrak{p} \subset R$ 是素理想, $\phi(\mathfrak{p}) = \mathfrak{p}' \subset R'$ 。由定义1.7和上述讨论可知, $R - \mathfrak{p}$ 可乘当且仅当 $R' - \mathfrak{p}'$ 可乘,第二部分得证。

3

命题 1.11. p 是素理想当且仅当 R/p 是整环。

证明. 考虑映射 $\phi: R \to R/\mathfrak{p}$. 由性质1.10可知, \mathfrak{p} 是素理想当且仅当 R/\mathfrak{p} 是素理想, 而 $< 0 > \subset R/\mathfrak{p}$,由定义1.8可得证。

定义 1.12. $m \subseteq R$ 是 R 的极大理想,如果没有真理想 $m \subseteq \mathfrak{a}$.

命题 1.13. 环 R 是一个域当且仅当 < 0 > 是一个极大理想。 $\mathfrak{m} \subset R$ 是一个极大理想当且仅当 R/\mathfrak{m} 是一个域。

证明. 设 $\mathfrak{m} \subset R$ 是 R 的一个理想, $1 \in \mathfrak{m}$,因 R 有逆元且 \mathfrak{m} 有吸收性,那 么 m = R。

考虑映射 $\phi: \mathfrak{m} \to R/\mathfrak{m}$, $\phi(\mathfrak{m}) = 0$ 。 \mathfrak{m} 是一个极大的理想当且仅当 < 0 > 在 R/\mathfrak{a} 中是一个极大的理想,由上述讨论可知, R/\mathfrak{m} 是一个域。 \square

定义 1.14. 给定一个环 R, 它的 $Krull\ dimension\ dim(R)$ 是严格递增素理想 链长度的最大值

$$dim(R) := sup\{r, 有一个素理想链 \mathfrak{p}_0 \subseteq \cdots \subseteq \mathfrak{p}_r\}.$$

例 1.15. $R = \mathbb{Z}$, $<0>\subsetneq \mathfrak{p}$, 故 dim(R) = 1; $R = \mathbb{K}$, 只有一个素理想 <0>,故 dim(R) = 0; $R = \mathbb{Z}[x_1, \ldots, x_n]$, dim(R) = n(暂不给出解释)。