МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

механико-математический факультет

Практикум на ЭВМ Решение задачи оптимального управления Отчет

Выполнила студентка 4-го курса 422-ой группы кафедры теоретической механики и мехатроники **Резанова Анфиса Сергеевна**

Преподаватель: ассистент кафедры вычислительной математики Самохин Александр Сергеевич

Содержание

1	Постановка задачи	1
2	Формализация задачи	1
3	Система необходимых условий оптимальности	2
4	Анормальный случай	3
5	Краевая задача	3
6	Численное решение краевой задачи методом стрельбы	4
7	Тест решения задачи Коши для гармонического осциллятора	4
8	Аналитическое решение при $\alpha=0$	5
9	Численное решение	6
10	Оценка точности решения задачи Коши	9

1. Постановка задачи

Рассматрим задачу Лагранжа с параметром α :

$$B_0 = \int_0^1 \ddot{x}^2 - \frac{48 \dot{x}}{2 + \cos(\alpha x)} dt \to extr,$$

$$x(1) = \dot{x}(0) = 0, \quad \alpha = \{0.0; 0.1; 1.0; 5.1\},$$
(1.1)

в которой отрезок времени фиксирован, и нет ограничения "меньше или равно."Для данной задачи необходимо:

- формализовать задачу как задачу оптимального управления;
- свести задачу к краевой задачи с помощью принципа максимума Понтрягина;
- численно и аналитически решить полученную краевую задачу, обосновать точность полученных результатов и сравнить полученные экстремали на оптимальность при различных значения параметра $\alpha = \{0; 0.1; 1; 5.1\}.$

2. Формализация задачи

Положим $\ddot{x} = u$ и $\dot{x} = y$. Тогда задача (1.1) примет вид:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, u \in \mathbb{R}, \\ B_1 = x(1) = 0 \\ B_2 = y(0) = 0 \\ \alpha = const \in \{0.0; 0.1; 1.0; 5.1\}, \\ B_0 = \int_0^1 (u^2 - \frac{48y}{2 + \cos \alpha x}) dt \to extr. \end{cases}$$
(2.1)

3. Система необходимых условий оптимальности

Построим функции Лагранжа и Понтрягина:

$$\mathfrak{L}:=\int_0^1 Ldt+l$$
, где $L=\lambda_0(u^2-rac{48y}{2+\coslpha x})+p_x(\dot x-y)+p_y(\dot y-u)$ - Лагранжиан $l=\lambda_1 x(1)+\lambda_2 y(0)$ - терминант $H=p_x y+p_y u-\lambda_0(u^2-rac{48y}{2+\coslpha x})$

Необходимые условия оптимальности:

а) Уравнения Эйлера - Лагранжа

$$\begin{cases} \dot{p_x} = -\frac{\partial H}{\partial x} = -\lambda_0 \frac{48\alpha y \sin \alpha x}{(2 + \cos \alpha x)^2} \\ \dot{p_y} = -\frac{\partial H}{\partial y} = -p_x + \frac{48\lambda_0}{2 + \cos \alpha x} \end{cases}$$
(3.1)

б) Условие оптимальности по управлению

$$\hat{u} = \arg \underset{u \in U}{abs} \max(p_y u - \lambda_0 u^2) = \frac{p_y}{2\lambda_0}, \lambda_0 \neq 0$$
(3.2)

в) Условие трансверсальности

$$p_x(0) = 0, p_x(1) = -\lambda_1$$

 $p_y(0) = \lambda_2, p_y(1) = 0$

- г) Условия стацинарости нет, так как концы $t_0=0$ и $t_1=1$ фиксированы
- д) Условия дополняющей нежесткости нет, так как в задаче нет условия вида "меньше или равно"
 - е) Условие неотрицательности: $\lambda_0 \geq 0$
 - ж) Множители Лагранжа Не Равны Одновременно Нулю (НЕРОН)
- з) Условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя)

4. Анормальный случай

Случай $\lambda_0 = 0$.

Уравнения Эйлера - Лагранжа с условием трансверсальности:

$$\begin{cases} \dot{p_x} = 0\\ \dot{p_y} = -p_x \end{cases} \tag{4.1}$$

$$p_x(0) = 0, p_x(1) = -\lambda_1$$

 $p_y(0) = \lambda_2, p_y(1) = 0$

То есть $p_x = const$ и $\dot{p_y} = -const$. Из краевых условий получаем $p_x = 0$ и $\lambda_1 = 0$, поэтому $p_y = const$. Но чтобы не было противеречия с краевыми условиями придется положить $\lambda_2 = 0$, то есть противоречие с условием НЕРОН. Значит случай $\lambda_0 = 0$ невозможен.

Так как $\lambda_0 \neq 0$, то можем выбрать следующее условие нормировки:

$$\lambda_0 = \frac{1}{2}$$

5. Краевая задача

На основе принципа максимума Понтрягина исходная задача сводится к следующей краевой задаче:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = p_y, \\ \dot{p}_x = -\frac{24\alpha y \sin \alpha x}{(2 + \cos \alpha x)^2} \\ \dot{p}_y = -p_x + \frac{24}{2 + \cos \alpha x} \end{cases}$$

$$p_x(0) = 0, \ x(1) = 0$$

$$y(0) = 0, \ p_y(1) = 0$$

$$\alpha \in \{0; 0.1; 1; 5.1\}$$
(5.1)

6. Численное решение краевой задачи методом стрельбы

Решим поставленную краевую задачу численно методом стрельбы. Не хватает значений x(t) и $p_y(t)$ в момент времени t=0 для решения задачи Коши, выберем их в качестве параметров пристрелки: $\alpha_1=x(0)$, $\alpha_2=p_y(0)$. Выбрав значения $\overrightarrow{\alpha}=\{\alpha_1,\alpha_2\}$ и решив задачу Коши на отрезке [0,1], получим функции функции $x(t)[\alpha_1,\alpha_2],\ y(t)[\alpha_1,\alpha_2],\ p_x(t)[\alpha_1,\alpha_2],\ p_y(t)[\alpha_1,\alpha_2],\ a$ следовательно и их значения в момент времени t=1. Для решения краевой задачи нужно подобрать $\overrightarrow{\alpha}$ так, что

$$x(1) = 0,$$

$$p_y(1) = 0.$$

Вектор-функцией невязок:

$$\overrightarrow{X}(\overrightarrow{\alpha}) = \begin{pmatrix} x(1)[\alpha_1, \alpha_2] \\ p_y(1)[\alpha_1, \alpha_2] \end{pmatrix}$$

Решение краевой задачи свелось к решению системы из двух уравнений с двумя неизвестными. При этом задача Коши решается методом Рунге - Кутты 8 порядка.

7. Тест решения задачи Коши для гармонического осциллятора

Для проверки правильности решения задачи Коши написанной программой, проведём тест для системы

$$\begin{cases} \dot{x} = z, & x(0) = 0, \\ \dot{z} = -x, & z(0) = 1. \end{cases}$$

Т	tol	$ \tilde{x}(T) - x(T) $	$ \tilde{z}(T) - z(T) $	N steps	step
π	10^{8}	1.239588e - 006	3.564569e - 007	7.000000	0.463085
π	10^{10}	2.534765e - 008	1.296486e - 008	9.000000	0.360177
π	10^{12}	5.686261e - 015	2.908784e - 014	38.000000	0.085305
10π	10^{8}	3.039035e - 005	9.591056e - 006	30.000000	1.050531
10π	10^{10}	4.525526e - 007	2.222394e - 007	51.000000	0.617959
10π	10^{12}	4.743601e - 014	2.768896e - 013	366.000000	0.086109
$10^{2}\pi$	10^{8}	3.248034e - 004	1.040824e - 004	265.000000	1.185884
$10^{2}\pi$	10^{10}	4.694852e - 006	2.305026e - 006	471.000000	0.667217
$10^{2}\pi$	10^{12}	8.309473e - 013	2.739142e - 012	3651.000000	0.086075
$10^3\pi$	10^{8}	3.268465e - 003	1.054073e - 003	2613.000000	1.202332
$10^{3}\pi$	10^{10}	4.718234e - 005	2.314840e - 005	4668.000000	0.673028
$10^{3}\pi$	10^{12}	6.927812e - 012	2.736211e - 011	36500.000000	0.086074
$10^4\pi$	10^{8}	3.252741e - 002	1.106083e - 002	26076.000000	1.204787
$10^{4}\pi$	10^{10}	4.721032e - 004	2.314967e - 004	46643.000000	0.673542
$10^{4}\pi$	10^{12}	4.301402e - 010	2.733840e - 010	364990.000000	0.086074
$10^5\pi$	10^{8}	3.005474e - 001	1.607709e - 001	258996.000000	1.212989
$10^{5}\pi$	10^{10}	4.723146e - 003	2.304946e - 003	466492.000000	0.673451
$10^{5}\pi$	10^{12}	1.310974e - 008	2.734140e - 009	3649887.000000	0.086074

Τ	R_x	R_y
π	47.903480	28.494145
10π	66.153205	44.156479
$10^{2}\pi$	68.182882	46.154603
$10^3\pi$	68.273078	46.535503
$10^4\pi$	67.898999	48.779703
$10^5\pi$	62.632715	70.750473

8. Аналитическое решение при $\alpha=0$

Положим в краевой задаче α равное 0. Тогда система примет вид

$$\begin{cases} \dot{x} = y, \\ \dot{y} = p_y, \\ \dot{p}_x = 0, \\ \dot{p}_y = -p_x + 8 \end{cases}$$

$$p_x(0) = 0, \ x(1) = 0$$

$$y(0) = 0, \ p_y(1) = 0$$
(8.1)

Отсюда $p_x=0,\ p_y=8t-8,\ y=4t^2-8t$ и $x=\frac{4}{3}t^3-4t^2+\frac{8}{3}$. Параметры пристрелки аналитически получились $x(0)=\frac{8}{3}$ и $p_y(0)=-8$.

9. Численное решение

Возьмем значения параметров пристрелки равными $x(0)=p_y(0)=-1$. Переключения управления не было ни при одном из этих значениях параметра α , в результате работы метода Ньютона получем:

α	y(0)	$p_x(0)$	B_0
0	2.666667e + 000	-8.000000e + 000	-2.133333e + 001
0.1	2.656083e + 000	8.09774	-2.150560e + 001
1	-4.491674e + 000	1.347502e + 001	-7.896706e + 001
5.1	-4.004424e + 000	1.201327e + 001	-6.002084e + 001

Рис. 1: $\alpha = 0$, x(t)

Рис. 3: $\alpha = 0, p_x(t)$

Рис. 2: $\alpha = 0, y(t)$

Рис. 4: $\alpha = 0, p_y(t)$

Рис. 5: $\alpha=0.1,\,x(t)$

Рис. 6: $\alpha = 0.1, y(t)$

Рис. 7: $\alpha = 0.1, p_x(t)$

Рис. 8: $\alpha = 0.1, p_y(t)$

Рис. 9: $\alpha = 1, x(t)$

Рис. 10: $\alpha = 1, y(t)$

Рис. 11: $\alpha = 1, p_x(t)$

Рис. 12: $\alpha = 1, \, p_y(t)$

Рис. 13: $\alpha = 5.1$, x(t)

Рис. 14: $\alpha = 5.1, y(t)$

Рис. 15: $\alpha = 5.1, p_x(t)$

Рис. 16: $\alpha = 5.1, \, p_y(t)$

10. Оценка точности решения задачи Коши

Матрица Якоби нашей системы при $\alpha = 0$:

$$J = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$$

Для определения скорости распространения ошибки в оценках глобальной погрешности определяется логарифмическая норма матрицы $\mu(J)$ – максимальное собственное значение матрицы $\frac{J+J^T}{2}$. В нашем случае получаем:

$$\frac{J+J^T}{2} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & 0 & 0 & -\frac{1}{2}\\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

Характеристическое уравнение:

$$\lambda^4 - \frac{3}{4}\lambda^2 + \frac{1}{16} = 0$$
$$\lambda_{1,2} = \frac{\sqrt{5}}{4} \pm \frac{1}{4}, \ \lambda_{3,4} = -\frac{\sqrt{5}}{4} \pm \frac{1}{4}$$

 \Rightarrow Ј+Ј T $_{\overline{2}},~\mu(J)=\frac{\sqrt{5}}{4}+\frac{1}{4}$ - максимальное собственное значение матрицы . Оценка глобальной погрешности δ_{K} вычисляется по формуле $\delta_{K}(t_{i+1})=r_{i}+\delta_{K}(t_{i})e^{L_{i}},$ где r_{i} - главный член в оценке локальной погрешности, вычисляемый на каждом шаге решения задачи Коши, а $L_{i}=\int_{t_{i}}^{t_{i+1}}\mu(J)ds=(\frac{\sqrt{5}}{4}+\frac{1}{4})(t_{i+1}-t_{i}).$

α	tol	$\delta_K(1)$
0	10^{-8}	1.228392e - 010
0	10^{-10}	1.283244e - 010
0	10^{-12}	1.354076e - 010

Список литературы

- [1] *Хайрер Э., Нёрсетт С., Ваннер Г.* Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. М.: Мир, 1990.
- [2] *К. Г. Григорьев., И. С. Григорьев., М. П. Заплетин.* Практикум по численным методам в задачах оптимального управления. Дополнение І. М., Издательство ЦПИ при механико-математическом факультете МГУ, 2007.
- [3] *И. С. Григорьев*. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления. // М., Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005 С. 28–33.
- [4] Александров В. В., Бахвалов Н. С., Григорьев К. Г. и др. Практикум по численным методам в задачах оптимального управления. М.: Издво Московского гос. ун-та, 1988.