dot controls shaple as it 1 J6

Tit comes close to knormal.

- DISTRIBUTION: - Curve like normal clist.

heavier tails (more prop in ext values) let say we have apopulation that is normally distributed with a sample drawn to be too small in size. then we wouldfillow the t-distribution. with N-1 degrees of freedom. T= mean 3x3-popmean 3x3
Stdew 3x3.

the amount of probability mass at tails of t-dist is controlled by parametre v (df).
Date
v-zos it becomes standard normal dist.
(least heavy tail).
Degree of Freedom: (df)
defined how many values are free to vary
after we estimate somthing like mean.
e.q
Sample: $x_1 = Q7$, $x_2 = 5$, $x_3 = 8$.
Sample mean => 6.67.
degrée et freedom => 3-1:- (ance we know two values
the third is determined).
* df: helps to determine shape of t-dist; which is to used for confidence intervals and hypothesis +
testing.
Question: - Why cannot we use Z-dist for smaller
Question: Why cannot we use Z-dist for smaller sample size?
is Z dict accordent that the a labian of the
i) Z-dist assumes that the population std deviation is known.
however in the smaller samples, the pop. std. deviation is not measured from un-biase
estimator vather, the sample leading to
more variable (I from)
hose small cample avontive
variable and less reliable for such estimates.

1	- 2	ч			
	u	ъ.		4	r .
	0	80	Ty	1	20
-	F _1	r_L	#	1	0

Confidence Interval for the mean;

Istal deviation of sample.

t-critical values.

Example: -

sample mean => 0.26+0.03 => 0.29.

std devication of sample => 0.074.

CT = 991/

Now using formula.

1-0-99

0.29 ± (2.898)0-74

for two tails.

 $0.005 \quad 0.005 + 0.99$. $0.005 \cdot 0.995$

=70.29±0.05.

t 0x/ => t0.005 =7-2.898