Unit 0. Units and Basic Maths

Y12

Table of contents

1 Standard Units and Basic Maths			
	1.1	Review of symbols	1
	1.2	Base units	1
	1.3	Maths Revision	3

1 Standard Units and Basic Maths

1.1 Review of symbols

Symbol	Meaning
\approx	Approximately equal
\neq	Not equal, different
\sum_{i}	Sum of a series of numbers
$\overline{\Pi}$	Product of a series of numbers
Ĵ	Integral operation
$\overset{\circ}{\Delta}$	Augment, difference in an interval
\propto	Proportional
d or ∂	Derivative
∞	Infinity
x	Modulus of x
\vec{x}	Vector x

1.2 Base units

How many units do you think you really need in Physics? 10? 20? 100?... Guess

Base units: decided by scientific community, they are the minimum quantity needed to describe all other magnitudes.

SI units: the internationally decided units for each base unit, revised periodically to increase precision, ease of use, etc:

BASIC QUANTITY	UNIT NAME	UNIT SYMBOL
mass	kilogram	kg
time	second	S
length	metre	m
electric current	ampere	Α
temperature	kelvin	K
amount of substance	mole	mol
light intensity	candela	cd

Figure 1: Basic units

- kg (prototype)

- kg (prototype) s (9 · $10^9 \Delta C_{groundlevel}$) m (distance light in $\frac{1}{3} \cdot 10^8 s$) A (current for $2 \cdot 10^{-7} \frac{N}{m}$ 1m apart) K (273.16⁻¹ $waters^{s-l-g}$) mol (atoms 0.012kg, ^{12}C) cd ($10^{-3} \frac{W}{rad^2}$, intensity of a $5 \cdot 10^{14} Hz$ light).

Derived units: the rest, p.e.:

- $\frac{m}{s}$ or $m \cdot s^{-1}$ N, Newton
- J, Jules
- W, Watts
- Hz, Hertzs
- C, Coulombs
- \bullet V, Volts
- Ω , Ohms

DERIVED QUANTITY	UNIT NAME	UNIT SYMBOL	BASE UNITS EQUIVALENT
force	newton	N	kg m s ⁻²
energy (work)	joule	J	kg m² s-2
power	watt	W	kg m² s ⁻³
frequency	hertz	Hz	S ⁻¹
charge	coulomb	С	As
voltage	volt	V	kg m ² s ⁻³ A ⁻¹
resistance	ohm	Ω	kg m ² s ⁻³ A ⁻²

Figure 2: Derived units

Units can be added *power prefixes*. You must know nano up to giga.

Careful with time above seconds! (not x10)

FACTOR	NAME	SYMBOL	FACTOR	NAME	SYMBOL
10 ¹	deca-	da	10-1	deci-	d
10 ²	hecto-	h	10-2	centi-	С
10 ³	kilo-	k	10-3	milli-	m
106	mega-	М	10-6	micro-	μ
109	giga-	G	10-9	nano-	n
1012	tera-	Т	10 ⁻¹²	pico-	р
1015	peta-	Р	10-15	femto-	f
1018	exa-	Е	10-18	atto-	a
10 ²¹	zetta-	Z	10-21	zepto-	Z
1024	yotta-	Υ	10-24	yocto-	У

Figure 3: Decimal system

1.3 Maths Revision

You should know already...

- $360^{\circ} = 2\pi \text{ rad} \rightarrow 30^{\circ} = 2\pi \cdot \frac{30}{360} \text{ rad}$
- Vectors: (2,3) means 2 in the x direction, 3 in the y direction.
- Trigonometry: SOH CAH TOA

Figure 4: SOH CAH TOA

• Graphs:

Gradient: slope of a graph $m = \frac{\Delta y}{\Delta x}$

- Line equation: y = ax + b, where b is the gradient or slope.
- Solve unknown formulas: P.e. solve u:

a.
$$v^2 = u^2 + 2as \rightarrow v^2 - 2as = u^2 \rightarrow \sqrt{v^2 - 2as} = u$$
 done!

- Combine formulas into new ones: P.e. combine these three to calculate F without having to use a or s.

 - a. $F = ma; a = \frac{v^2 u^2}{2s}; s = \frac{d}{t}$ then b. $F = \frac{m(v^2 u^2)}{2s}$ then c. $F = \frac{m(v^2 u^2)}{2\frac{d}{t}} = F = \frac{mt(v^2 u^2)}{2d}$.
- Geometry:
 - a. Area circle = πr^2

 - b. Area square = $base \cdot height$ c. Area triangle = $\frac{base \cdot height}{2}$ d. Volume sphere = $\frac{4}{3}\pi r^3$