Pumping Lemma CSCI 338

Pumping Lemma

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

1. Suppose language is regular.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

- 1. Suppose language is regular.
- 2. Select p from pumping lemma.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

- 1. Suppose language is regular.
- 2. Select *p* from pumping lemma.
- 3. Carefully select string $\in L$ and $|s| \ge p$.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

- 1. Suppose language is regular.
- 2. Select *p* from pumping lemma.
- 3. Carefully select string $\in L$ and $|s| \ge p$.
- 4. Determine what *y* must consist of.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

- 1. Suppose language is regular.
- 2. Select *p* from pumping lemma.
- 3. Carefully select string $\in L$ and $|s| \ge p$.
- 4. Determine what *y* must consist of.
- 5. Make new string by selecting i.

- 1. $xy^iz \in L$, $\forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

- 1. Suppose language is regular.
- 2. Select *p* from pumping lemma.
- 3. Carefully select string $\in L$ and $|s| \ge p$.
- 4. Determine what *y* must consist of.
- 5. Make new string by selecting i.
- 6. Show new string is not in language.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof: ?

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular.

Then, L must abide by the pumping lemma.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular.

Then, L must abide by the pumping lemma. I.e. There must be some number $p \dots$

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof: Suppose *L* is regular.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \ge p$, ...

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof: Suppose *L* is regular.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz ...

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof: Suppose *L* is regular.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying the three conditions.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- $3. |xy| \leq p.$

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying the three conditions.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Now, we need some appropriate string ($s \in L$ and $|s| \ge p$) that will break condition 1 when we allow multiple y's.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

To break condition 1, we need to learn more about y

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $y = 0^k$ for some k > 0, since ?

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = 000 \dots 0011 \dots 111$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = 0 |00| \dots 00 11 \dots 111$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = 000 |... 0|011 ... 111$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = \overbrace{000 \mid ...00}^{p} \underbrace{11...111}_{z}$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = 000 |..001|1...111$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$s = 000 |... 001|1 ... 111$$

$$|xy| = p + 1 > p$$

<u>Claim</u>: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$,
since $|xy| \le p$

There is no possible way to $s = 000 \mid ... 001 \mid 1... 111$ partition s into xyz where both:

- 1. $|xy| \leq p$
- 2. *y* has 1s in it.

$$|xy| = p + 1 > p$$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $y = 0^k$ for some k > 0, since $|xy| \le p$

Since $|xy| \le p$, y must be in the first p characters of every string. Since the first p characters of this string are all 0, y must contain all 0s.

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

$$\Rightarrow s' \notin L$$
.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

But, the number of zeros = p - k + 2k = p + k > number of ones = p.

$$\Rightarrow s' \notin L$$
.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof: Suppose I is regular Let n he the number from the numering lemma

Consider s = 1

$$y = 0^k$$
 for sor $y = 0^k$ for sor $y = 0^k$ for sor $y = 0^k$ for sor $y = 0$. $y = 0$. $y = 0$. $y = 0$.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, Since $s \in L$ and can be divided into three pieces, s = xyz satisfying:

= xyz.

- $y = 0^k$ for sor $1. xy^i z \in L, \forall i \ge 0.$
- Consider the s 3. $|xy| \le p$.

But, the number of zeros = p - k + 2k = p + k > number of ones = p.

 $\Rightarrow s' \notin L$. But the pumping lemma said this should work for every string in L!

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

But, the number of zeros = p - k + 2k = p + k > number of ones = p.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

But, the number of zeros = p - k + 2k = p + k > number of ones = p.

 \Rightarrow $s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

DFA/NFA Limitations

<u>Claim</u>: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?. 1 – Select s that will work with $s \in L$ and $|s| \ge p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =?. | 1 -Select s that will work with $s \in L$ and $|s| \ge p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\mathbf{?}$ 2 – Find some conditions that y must meet

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?. 1 – Select s that will work with $s \in L$ and $|s| \ge p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\mathbf{2} - \mathbf{Find}$ some conditions that \mathbf{y} must meet

3 - Select an i (number of times to repeat y)Consider the string $s' = xy^2z = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = ? | 1 - \text{Select s that will work with } s \in L \text{ and } |s| \geq p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\mathbf{2}$ 2 – Find some conditions that y must meet

Consider the string $s' = xy^2z = ?$ 4 - Show what s' equals

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?. 1 – Select s that will work with $s \in L$ and $|s| \ge p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\mathbf{?}$ 2 – Find some conditions that y must meet

3 -Select an i (number of times to repeat y)

Consider the string $s' = xy^{?}z = ?$ 4 – Show what s' equals

 $|\mathbf{r}|$ 5 – Show s' is not in L

 \Rightarrow $s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^i 1^j : i > j\}$ is not regular.

Proof: ?

Claim: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^{?}z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^{?}z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^2z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Consider the string $s' = xy^2z = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^{?}z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^2z =$?

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p \in L$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p \in L$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

Proof: Suppose *L* is re

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge |$

$$y = 0^k$$
 for some $k > 0$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$
2. $|y| > 0$
3. $|xy| \le p$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0$.

Consider the string $s' = xy^2z = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^0z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^0z = 0^{p-k+1}1^p$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k1^p$

Consider the string $s' = xy^0z = 0^{p-k+1}1^p$

But, $k > 0 \implies p - k + 1 \le p$. I.e. the number of 0s is not larger than the number of 1s.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

Proof:

E.g. 1101011 is a palindrome 1001 is a palindrome 10100 is not

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^?z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $y = 0^k$ for some k > 0, since $|xy| \le p$

Consider the string $s' = xy^?z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^2z =$?

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p = 0^{2p+k}$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p = 0^{2p+k} = 0^p0^k0^p$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^3z =$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^4z =$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^0z =$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^0z =$

No matter what we set i to, s' will always be a palindrome.

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^0z =$

No matter what we set i to, s' will always be a palindrome.

?

 \Rightarrow $s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Does this mean L is regular?

Consider the string $s' = xy^0z =$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider
$$s = 0^p 0^p$$
.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k0^p$

Consider the string $s' = xy^0z =$

Does this mean L is regular?

NO! It could be, but perhaps we just chose a poor string s.

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^2z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^?z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k10^p$

Consider the string $s' = xy^2z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k10^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}10^p$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k}0^k10^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}10^p$

But, $k > 0 \Rightarrow p + k \neq p$. I.e. More 0s before the 1 than after $\Rightarrow s'$ is not a palindrome $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.