Biostatistics for the Biological and Health Sciences, by Marc M. Triola, M.D. and Mario F. Triola Copyright 2006 Pearson Education, Inc.

Ch. 2: Descriptive Statistics

$$\begin{split} \overline{x} &= \frac{\Sigma x}{n} \quad \text{Mean} \\ \overline{x} &= \frac{\Sigma f \cdot x}{\Sigma f} \quad \text{Mean (frequency table)} \\ s &= \sqrt{\frac{\Sigma (x - \overline{x})^2}{n - 1}} \quad \text{Standard deviation} \\ s &= \sqrt{\frac{n(\Sigma x^2) - (\Sigma x)^2}{n(n - 1)}} \quad \text{Standard deviation (shortcut)} \\ s &= \sqrt{\frac{n[\Sigma (f \cdot x^2)] - [\Sigma (f \cdot x)]^2}{n(n - 1)}} \quad \text{Standard deviation (frequency table)} \end{split}$$

Ch. 3: Probability

variance = s^2

$$P(A \text{ or } B) = P(A) + P(B) \quad \text{if } A, B \text{ are mutually exclusive} \\ P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \\ \quad \text{if } A, B \text{ are not mutually exclusive} \\ P(A \text{ and } B) = P(A) \cdot P(B) \quad \text{if } A, B \text{ are independent} \\ P(A \text{ and } B) = P(A) \cdot P(B|A) \quad \text{if } A, B \text{ are dependent} \\ P(\overline{A}) = 1 - P(A) \quad \text{Rule of complements} \\ P(A|B) = \frac{P(A) \cdot P(B|A)}{[P(A) \cdot P(B|A)] + [P(\overline{A}) \cdot P(B|\overline{A})]} \quad \text{Bayes} \\ P(A|B) = \frac{n!}{(n-r)!} \quad \text{Permutations (no elements alike)} \\ \frac{n!}{n_1! \; n_2! \ldots n_k!} \quad \text{Permutations } (n_1 \text{ alike, } \ldots) \\ \frac{n!}{n_1 \cdot n_r} \quad \text{Combinations}$$

Absolute risk reduction =

$$\left| \frac{a}{a+b} - \frac{c}{c+d} \right|$$
Relative risk: $p_t/p_c = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$

	Disease	No Disease
Treatment	a	ь
Placebo	с	d

Number needed to treat =

absolute risk reduction

Odds ratio =

 $\frac{odds \ for \ treatment \ group}{odds \ for \ control \ group}$

Odds ratio = $\frac{ad}{bc}$

Ch. 4: Probability Distributions

$$\mu = \sum x \cdot P(x) \quad \text{Mean (prob. dist.)}$$

$$\sigma = \sqrt{\left[\sum x^2 \cdot P(x)\right]} - \mu^2 \quad \text{Standard deviation (prob. dist.)}$$

$$P(x) = \frac{n!}{(n-x)!} \cdot p^x \cdot q^{n-x} \quad \text{Binomial probability}$$

$$\mu = n \cdot p \quad \text{Mean (binomial)}$$

$$\sigma^2 = n \cdot p \cdot q \quad \text{Variance (binomial)}$$

$$\sigma = \sqrt{n \cdot p \cdot q} \quad \text{Standard deviation (binomial)}$$

$$P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!} \quad \text{Poisson distribution}$$

$$\text{where } e \approx 2.71828$$

Ch. 5: Normal Distribution

$$z = \frac{x - \overline{x}}{s} \text{ or } \frac{x - \mu}{\sigma} \quad \text{Standard score}$$

$$\mu_{\overline{x}} = \mu \quad \text{Central limit theorem}$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \quad \text{Central limit theorem}$$
(Standard error)

Ch. 6: Confidence Intervals (one population)

$$\hat{p} - E
$$\text{where } E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$\overline{x} - E < \mu < \overline{x} + E \quad \text{Mean}$$

$$\text{where } E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad (\sigma \text{ known })$$

$$\text{or } E = t_{\alpha/2} \frac{s}{\sqrt{n}} \quad (\sigma \text{ unknown})$$

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2} \quad \text{Variance}$$$$

Ch. 6: Sample Size Determination

$$n = \frac{[z_{\alpha/2}]^2 \cdot 0.25}{E^2} \quad \text{Proportion}$$

$$n = \frac{[z_{\alpha/2}]^2 \hat{p} \hat{q}}{E^2} \quad \text{Proportion } (\hat{p} \text{ and } \hat{q} \text{ are known})$$

$$n = \left[\frac{z_{\alpha/2}\sigma}{E}\right]^2 \quad \text{Mean}$$

Biostatistics for the Biological and Health Sciences, by Marc M. Triola, M.D. and Mario F. Triola Copyright 2006 Pearson Education, Inc.

Ch. 7: Test Statistics (one population)

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \quad \text{Proportion—one population}$$

$$z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \quad \text{Mean—one population}$$

$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}} \quad \text{Mean—one population}$$

$$\tau = \frac{(n-1)s^2}{\sigma^2} \quad \text{Standard deviation or variance—one population}$$

Ch. 8: Test Statistics (two populations)

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\overline{p}\overline{q}}{n} + \frac{\overline{p}\overline{q}}{n}}}$$
 Two proportions

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{df = smaller of} \\ \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad n_1 - 1, n_2 - 1$$
Two means—independent: σ_1 and σ_2 and σ_3 and

— Two means—independent; σ_1 and σ_2 unknown, and not assumed equal.

$$t = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \quad (df = n_1 + n_2 - 2)$$

$$\text{where } s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

— Two means—independent; σ_1 and σ_2 unknown, but assumed equal.

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 Two means—independent; σ_1, σ_2 known.

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$
 Two means—matched pairs (df = n - 1)

$$F = \frac{s_1^2}{s_2^2}$$
 Standard deviation or variance—
two populations (where $s_1^2 \ge s_2^2$)

Ch. 10: Multinomial and Contingency Tables

$$\chi^{2} = \Sigma \frac{(O - E)^{2}}{E} \quad \begin{array}{l} \text{Multinomial} \\ (\text{df} = k - 1) \end{array}$$

$$\chi^{2} = \Sigma \frac{(O - E)^{2}}{E} \quad \begin{array}{l} \text{Contingency table} \\ [\text{df} = (r - 1)(c - 1)] \end{array}$$

$$\text{where } E = \frac{(\text{row total}) (\text{column total})}{(\text{grand total})}$$

$$\chi^{2} = \frac{(|b - c| - 1)^{2}}{b + c} \quad \text{McNemar's test}$$

Ch. 8: Confidence Intervals (two populations)

$$(\hat{p}_1 - \hat{p}_2) - E < (p_1 - p_2) < (\hat{p}_1 - \hat{p}_2) + E$$
where $E = z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$

$$(\overline{x}_1 - \overline{x}_2) - E < (\mu_1 - \mu_2) < (\overline{x}_1 - \overline{x}_2) + E \quad \text{(Indep.)}$$
where $E = t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \quad \text{(df = smaller of } n_1 - 1, n_2 - 1)$

where
$$D = \frac{n_{\alpha/2}}{n_1} \sqrt{n_1 + n_2} = \frac{n_1 - 1}{n_2 - 1}$$

 $(\sigma_1 \text{ and } \sigma_2 \text{ unknown and not assumed equal})$

$$E = t_{\alpha/2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \quad (\text{df} = n_1 + n_2 - 2)$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

(σ_1 and σ_2 unknown but assumed equal)

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \leftarrow$$

 $(\sigma_1, \sigma_2 \text{ known})^{-}$

$$\overline{d}-E<\mu_d<\overline{d}+E \quad ({
m Matched\ pairs})$$
 where $E=t_{lpha/2}\frac{s_d}{\sqrt{n}} \quad ({
m df}=n-1)$

$$\frac{ad}{bc} \cdot e^{-z_{\alpha/2}\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}} < OR < \frac{ad}{bc} \cdot e^{z_{\alpha/2}\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}}$$

Ch. 9: Linear Correlation/Regression

Correlation
$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2}\sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$$

$$b_1 = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$b_0 = \overline{y} - b_1 \overline{x} \text{ or } b_0 = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$\hat{y} = b_0 + b_1 x \quad \text{Estimated eq. of regression line}$$

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

$$s_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}} \text{ or } \sqrt{\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n - 2}}$$

where
$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$$

Biostatistics for the Biological and Health Sciences, by Marc M. Triola, M.D. and Mario F. Triola Copyright 2006 Pearson Education, Inc.

Ch. 11: One-Way Analysis of a Variance

$$F = \frac{ns_{\overline{x}}^2}{s_p^2}$$
 k samples each of size n (num. df = k - 1; den. df = k(n - 1))

$$F = \frac{\text{MS(treatment)}}{\text{MS(error)}} \quad \leftarrow df = k - 1 \\ \leftarrow df = N - k$$

$$MS(treatment) = \frac{SS(treatment)}{k-1}$$

$$MS(treatment) = \frac{SS(treatment)}{k-1}$$

$$MS(error) = \frac{SS(error)}{N-k} \qquad MS(total) = \frac{SS(total)}{N-1}$$

SS(treatment) =
$$n_1(\overline{x}_1 - \overline{\overline{x}})^2 + \cdots + n_k(\overline{x}_k - \overline{\overline{x}})^2$$

SS(error) =
$$(n_1 - 1)s_1^2 + \cdots + (n_k - 1)s_k^2$$

$$SS(total) = \sum (x - \overline{x})^2$$

$$SS(total) = SS(treatment) + SS(error)$$

Ch. 11: Two-Way Analysis of Variance

Interaction:
$$F = \frac{MS(interaction)}{MS(error)}$$

Row factor:
$$F = \frac{MS(row factor)}{MS(error)}$$

Column factor:
$$F = \frac{MS(\text{column factor})}{MS(\text{error})}$$

Ch. 12: Nonparametric Tests

$$z = \frac{(x + 0.5) - (n/2)}{\sqrt{n/2}}$$
 Sign test for $n > 25$

$$z = \frac{T - n(n+1)/4}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$
 Wilcoxon signed-ranks (matched pairs and $n > 30$)

$$z = \frac{R - \mu_R}{\sigma_R} = \frac{R - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}}$$
 Wilcoxon rank-sum (two independent samples)

$$H = \frac{12}{N(N+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \ldots + \frac{R_k^2}{n_k} \right) - 3(N+1)$$

Kruskal-Wallis (chi-square df = k - 1)

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
 Rank correlation
 $\left(\text{critical value for } n > 30: \frac{\pm z}{\sqrt{n - 1}} \right)$

TABLE A-6 Critical Values of the Pearson Correlation Coefficient r

n	$\alpha = .05$	$\alpha = .01$
4	.950	.999
5	.878	.959
6	.811	.917
7	.754	.875
8	.707	.834
9	.666	.798
10	.632	.765
11	.602	.735
12	.576	.708
13	.553	.684
14	.532	.661
15	.514	.641
16	.497	.623
17	.482	.606
18	.468	.590
19	.456	.575
20	.444	.561
25	.396	.505
30	.361	.463
35	.335	.430
40	.312	.402
45	.294	.378
50	.279	.361
60	.254	.330
70	.236	.305
80	.220	.286
90	.207	.269
100	.196	.256

NOTE: To test H_0 : $\rho = 0$ against H_1 : $\rho \neq 0$, reject H_0 if the absolute value of r is greater than the critical value in the table.

NEGATIVE z Scores

TABLE A-2	Stan	dard Norm	nal (z) Dis	tribution:	Cumulativ	e Area fror	n the LEFT	-		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.50										
and										
lower	.0001									
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	* .0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0000	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

NOTE: For values of z below -3.49, use 0.0001 for the area.

z score Area

-1.645 0.0500

-2.575 0.0050

^{*}Use these common values that result from interpolation:

0 z

POSITIVE *z* **Scores**

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.535
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.575
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.614
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.687
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	* .9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948		* .9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.999
3.50	.9999									
and										
up										

z score	Area		
1.645	0.9500	←	
2.575	0.9950	←	

Confidence	Critical
Level	Value
0.90	1.645
0.95	1.96
0.99	2.575

TABLE A-3	t Distribution:	Critical t Valu	es		
	0.005	0.01	Area in One Tail 0.025	0.05	0.10
Degrees of Freedom	0.01	0.02	Area in Two Tails 0.05	0.10	0.20
1	63.657	31.821	12.706	6.314	3.078
2	9.925	6.965	4.303	2.920	1.886
3	5.841	4.541	3.182	2.353	1.638
4	4.604	3.747	2.776	2.132	1.533
5	4.032	3.365	2.571	2.015	1.476
6	3.707	3.143	2.447	1.943	1.440
7 8	3.499 3.355	2.998 2.896	2.365 2.306	1.895 1.860	1.415 1.397
9	3.250	2.821	2.262	1.833	1.383
10	3.169	2.764	2.228	1.812	1.372
11	3.106	2.718	2.228	1.796	1.363
12	3.055	2.681	2.179	1.782	1.356
13	3.012	2.650	2.160	1.771	1.350
14	2.977	2.624	2.145	1.761	1.345
15	2.947	2.602	2.131	1.753	1.341
16	2.921	2.583	2.120	1.746	1.337
17	2.898	2.567	2.110	1.740	1.333
18	2.878	2.552	2.101	1.734	1.330
19	2.861	2.539	2.093	1.729	1.328
20	2.845	2.528	2.086	1.725	1.325
21	2.831	2.518	2.080	1.721	1.323
22	2.819	2.508	2.074	1.717	1.321
23	2.807	2.500	2.069	1.714	1.319
24	2.797	2.492	2.064	1.711	1.318
25	2.787	2.485	2.060	1.708	1.316
26 27	2.779 2.771	2.479 2.473	2.056 2.052	1.706	1.315 1.314
28	2.763	2.467	2.032	1.703 1.701	1.313
29	2.756	2.462	2.045	1.699	1.313
30	2.750	2.457	2.043	1.697	1.310
31	2.744	2.453	2.040	1.696	1.309
32	2.738	2.449	2.037	1.694	1.309
34	2.728	2.441	2.032	1.691	1.307
36	2.719	2.434	2.028	1.688	1.306
38	2.712	2.429	2.024	1.686	1.304
40	2.704	2.423	2.021	1.684	1.303
45	2.690	2.412	2.014	1.679	1.301
50	2.678	2.403	2.009	1.676	1.299
55	2.668	2.396	2.004	1.673	1.297
60	2.660	2.390	2.000	1.671	1.296
65	2.654	2.385	1.997	1.669	1.295
70	2.648	2.381	1.994	1.667	1.294
75	2.643	2.377	1.992	1.665	1.293
80 90	2.639	2.374 2.368	1.990	1.664	1.292
100	2.632 2.626	2.368	1.987 1.984	1.662	1.291 1.290
200	2.626	2.364	1.984	1.660 1.653	1.286
300	2.592	2.339	1.968	1.650	1.284
400	2.588	2.336	1.966	1.649	1.284
500	2.586	2.334	1.965	1.648	1.283
750	2.582	2.331	1.963	1.647	1.283
1000	2.581	2.330	1.962	1.646	1.282
2000	2.578	2.328	1.961	1.646	1.282
Large	2.576	2.326	1.960	1.645	1.282

Biostatistics for the Biological and Health Sciences, by Marc M. Triola, M.D. and Mario F. Triola Copyright 2006 Pearson Education, Inc.

TABLE A-4	Chi-S	quare (χ	²) Distrib	oution								
		Area to the Right of the Critical Value										
Degrees of												
Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005		
1	_	_	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879		
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597		
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838		
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086	16.750		
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548		
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278		
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955		
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589		
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188		
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757		
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.299		
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819		
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319		
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801		
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267		
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718		
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156		
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582		
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997		
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401		
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796		
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181		
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559		
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928		
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290		
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	49.645		
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993		
29	13.121	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336		
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672		
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766		
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490		
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952		
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215		
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321		
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299		
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169		

From Donald B. Owen, *Handbook of Statistical Tables*, ©1962 Addison-Wesley Publishing Co., Reading, MA. Reprinted with permission of the publisher.