Department of Computer Science

CS 201 - Data Structures

Final Exam (Fall 2013)

Instructors: Adnan Waheed & Rabia Maqsood

December 12, 2013

Total Marks: 50	Time Allowed: 3 hours

Instructions:

- (1) Understanding the question is part of exam. NO QUERIES WILL BE ENTERTAINED.
- (2) Think very carefully before attempting any of the questions.
- (3) Provide answers in the given space.
- (4) Use back side of the paper if you need more space.
- (5) Use answer sheet for rough work only. No solutions will be checked on answer sheet.
- (6) Write neat & clean.
- (7) Use permanent ink pens only.
- (8) Poor programming approaches will decrease your marks.
- (9) Think about the boundary conditions.

Roll	No	Name:	Section:
KOH	140.	Nanie	Section.

Question No.	1	2	3	4	5	6	7	8	Total
Marks	09	04	04	05	09	10	04	05	50

-	
Question 1:	Marks 06+03 = 09
Consider a class Stack, which has following impl	emented member functions.
void push(int a)	
int pop()	
bool isEmpty()	
bool isFull()	
void reset() // clears the stack.	
Queue ADT. You may not use any other of	(int b) and int dequeue() member functions of a data structure objects (including arrays and lists) may use additional temporary stack objects, if $(03 \times 02 = 06)$
Stack s1;	
public:	
QueueADT ();	
void enqueue (int b);	
int dequeue ();	
};	
SOLUTION:	

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus b. Analyze the running time of the queue operations. $(1.5 \times 02 = 03)$

Question 2:	Marks 04
Is the operation of deletion "commutative" in the search tree leaves the same tree as deleting y example.	sense that deleting x and then y from a binary and then x ? Argue why it is or give a counter

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 3:	Marks 04
Place the given 4 words in an array of size 4 collision, use linear probing.	using the hash function given below. In case of
DataSet = { float, int, char, break }	
int HashFunction(char * word) {	
	returns the length of the word
int val = 0; for (int $i = 0$; i< length; i+=2)	
val = val + AlphabeticalOrder (Wo	ord[i]) * 2;
// AlphabeticalOrder returns the number of the	e letter in the English i.e. A=1, B=2, and so on.
return val % maxsize; } //wh	ere maxsize is the number of words i.e. 4

Note: Show your solution at the back side of this paper. No marks will be given for direct answer.

Question 4:	Marks 05
Professor XYZ hypothesizes that substantial perf chaining scheme so that each list is kept in sort affect the running time for successful searches, u	ted order. How does the professor's modification

a. Algorithm:

National University

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

	Question 5:	Marks $02+07 = 09$
-1	1 Page 10 cm 2 cm 10 cm	

Write the selection sort algorithm and provide code for sorting a doubly linked list using selection sort. Few assumptions are to be considered:

- i. Values are already inserted in the list; do not write code for insertion.
- ii. We have two pointers in doubly linked list: head and tail.
- iii. Values at head and tail node are already sorted (head has minimum value and tail has maximum value). You have to sort the internal nodes only.

Note: You are required to change pointers for swapping operation. Do not swap the values of nodes.

b. Code:	
I .	

Question 6:	Marks $08+02=10$								
You are assigned the task of planning the se	eating arrangement for Annual Prize Distribution								
Ceremony at NUCES, FAST - Faisalabad Camp	ous, given a list of guests, V.								
Suppose you are also given a lookup table T wh	ere $T[u]$ for $u \in V$ is a list of guests that u knows.								
If u knows v , then v knows u . You are require	ed to arrange the seating such that any guest at a								
table knows every other guest sitting at the s	same table either directly or through some other								
guests sitting at the same table. For example, if x knows y , and y knows z , then x , y , z can sit at									
the same table.									
a. Describe an efficient algorithm that, given	V and T, returns the minimum number of tables								
needed to achieve this requirement.									
NOTE: Specify all helper functions which you	may use.								

_	0 f	Со	m p	u t	e r	æ	Εn	n e	r g	in	g :	S c	i e	n c	es	F	a i	s a	l a	ь	a d	- 0	h	i n	i o t	. (C a	m p	u s	_
8	700 EV				2				3		150	-																		
b.	Analy	yze	the	run	ning	g ti	me	of	yo	ur a	algo	orit	thn	n.																

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 7:	Marks 04
Question 11	

Suppose that we have numbers between 1 and 100 in a binary search tree and want to search for the number 55. Four students proposed the following search order (for different random values).

Student 1: 9, 85, 47, 68, 43, 57, 55

Student 2: 10, 75, 64, 43, 60, 57, 55

Student 3: 90, 12, 68, 34, 62, 45, 55

Student 4: 79, 14, 72, 56, 16, 53, 55

Discuss the correctness of all the proposed solutions.

Question 8:	Marks 05
Someone proposed to use circular linked list to implement a queue. Discuss this design choice and argue whether it is a good choice or not.	