

电路与电子学实验报告

院(系):智能工程学院 **学号:** 20354027 **姓名:** 方桂安

日期: 12.23 **实验名称:** 射极跟随电路

一、实验目的

1. 掌握射极跟随电路的特性及测量方法。

2. 进一步学习放大电路各项参数测量方法。

二、实验原理

射极跟随器的原理图如图 1 所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于 1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

图 1 射极跟随器

射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻 R_i

$$R_i = r_{be} + (1 + \beta) R_E$$

如考虑偏置电阻 R_B和负载 R_L的影响,则

$$R_i = R_B / / [r_{be} + (1 + \beta) (R_E / / R_L)]$$

由上式可知射极跟随器的输入电阻 R_i 比共射极单管放大器的输入电阻 R_i = $R_B // r_{be}$ 要高得多,但由于偏置电阻 R_B 的分流作用,输入电阻难以进一步提高。输入电阻的测试方法同单管放大器,实验线路如图 4.1 所示。

$$R_i = \frac{U_i}{I_i} = \frac{U_i}{U_s - U_i} R$$

即只要测得 $A \times B$ 两点的对地电位即可计算出 R_i 。 $2 \times 输出电阻 R_0$

$$R_{_{0}} = \frac{r_{_{\mathrm{be}}}}{\beta} /\!/ R_{_{E}} \approx \frac{r_{_{\mathrm{be}}}}{\beta}$$

如考虑信号源内阻 Rs,则

$$R_{0} = \frac{r_{be} + (R_{S} // R_{B})}{\beta} // R_{E} \approx \frac{r_{be} + (R_{S} // R_{B})}{\beta}$$

由上式可知射极跟随器的输出电阻 R_0 比共射极单管放大器的输出电阻 $R_0 \approx R_c$ 低得多。三极管的 β 愈高,输出电阻愈小。

输出电阻 R_0 的测试方法亦同单管放大器,即先测出空载输出电压 U_0 ,再测接入负载 R_L 后的输出电压 U_L ,根据

$$U_L = \frac{R_L}{R_0 + R_L} U_0$$

即可求出R。

$$R_0 = \left(\frac{U_0}{U_I} - 1\right) R_L$$

3、电压放大倍数

$$A_{v} = \frac{(1+\beta) (R_{E} /\!\!/ R_{L})}{r_{be} + (1+\beta) (R_{E} /\!\!/ R_{L})} \le 1$$

上式说明射极跟随器的电压放大倍数小于近于 1, 且为正值。这是深度电压负 反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流 和功率放大作用。

4、电压跟随范围

电压跟随范围是指射极跟随器输出电压 u₀跟随输入电压 u_i 作线性变化的区域。当 u_i 超过一定范围时,u₀ 便不能跟随 u_i 作线性变化,即 u₀ 波形产生了失真。为了使输出电压 u₀ 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取 u₀ 的峰峰值,即电压跟随范围;或用交流毫伏表读取 u₀ 的有效值,则电压跟随范围:

$$U_{0P-P} = 2\sqrt{2} U_0$$

三、实验仪器

- 1. TPE-A5 II L 电路分析试验箱 一台
- 2. SDM3065 数字万用表 一只
- 3. SDS5054 数字示波器 一台
- 4. SDG6032X 函数信号发生器 一台

四、预习要求

- 1. 参照教材有关章节内容,熟悉射极跟随电路原理及特点,
- 2. 根据图 4.1 元器件参数, 估算静态工作点。画交直流负载线。

图 4.1 射极跟随电路

五、实验内容与步骤

- 1. 按图 4.1 电路接线。
- 2. 直流工作点的调整。

将电源+12V 接上,调整 R_P 使 U_E =6V。在 B 点加 f=1kHz 正弦波信号,输出端用示波器监视,反复调整 RP 及信号源输出幅度,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用万用表测量晶体管各级对地的电位,即为该放大器静态工作点,将所测数据填入表 4.1。

		表 4.1	
$U_E(V)$	$U_B(V)$	$U_C(V)$	$I_E = \frac{U_E}{R_e} (\text{mA})$

3. 测量电压放大倍数 A_u 和输出电阻 R_o

在 B 点加入 f=1kHz 幅度 3V 正弦波信号,记录输出波形。接入负载 $R_L=1k$,记录此时波形并与无负载时比较,分析原因。调整输入信号幅度(此时偏置电位器 R_p 不能再旋动)使输出无失真,用示波器观察,在带载输出最大不失真情况下测 U_i 、 U_o 和 U_L 值,将所测数据填入表 4. 2 中。

表 4.2

			~		
R_L	$U_i(V)$	$U_o(mV)$	$U_L(mV)$	$A_u = \frac{U_o}{U_i}$	R_o

接入负载 R_L =2k2、100 Ω ,重复以上步骤,并讨论不同负载时对波形失真产生影响不同的原因。使用以上数据计算输出电阻 R_o

$$R_o = igg(rac{U_o}{U_L} - 1igg)R_L$$

4.测量放大电路输入电阻 R_i (采用换算法)

在 A 点加入 f=1KHz 的正弦波信号,用示波器观察输出波形,分别测 A、B 点对地电位 U_s 、 U_i 。

$$ext{R}_{ ext{i}} = rac{U_i}{U_s - U_i} \cdot R = rac{R}{rac{U_s}{U_i} - 1}$$

将测量数据填入表 4.3。

表 4.3
$$U_s(V)$$
 $U_i(V)$ $R_i = \frac{R}{U_s/U_i - 1}$

5. 测射极跟随电路的跟随特性并测量输出电压峰峰值 U_{OP-P} 接入负载 R_L =2k2,在 B 点加入 f=1kHz 的正弦波信号,逐点增大输入信号幅度 U_i ,用示波器监视输出端,在波形不失真时,测对应的 U_L 值,计算出 A_u ,并用示波器测量输出电压的峰峰值 U_{OP-P} ,与电压表(读)测的对应输出电压有效值比较。将所测数据填入表 4. 4。

$\overline{U_i}$	-		
U_L			
$ m U_{oP-P}$			
A_u			

六、实验结果描述与分析

1. 按图 4.1 电路接线,并检测三极管是否损坏。

2. 直流工作点的调整。

将所测数据填入表 4.1, 计算得到:

$$I_E = \frac{U_E}{R_e} = \frac{7.74}{1900} = 3.29739 mA$$

耒	1	1

<i>3</i>		· //	
$U_E(V)$	$U_B(V)$	$U_{C}(V)$	$I_E = \frac{U_E}{R_e} (\text{mA})$
6.26504	6.94856	12.16197	3.29739

3. 测量电压放大倍数 A_u 和输出电阻 R_o

将所测数据填入表 4.2 中。

表 4.2

R_L	$U_i(V)$	$U_o(mV)$	$U_L(mV)$	$A_u = \frac{U_o}{U_i}$	R_o
1k	4.933	4.833	4.4	0.979728	98.40909091
2k2	7.133	7	6.8	0.981354	64.70588235
100	1.467	1.4	0.5867	0.954329	138.6228055

使用以上数据计算输出电阻 R_o 。

$$R_o = igg(rac{U_o}{U_L} - 1igg)R_L$$

4. 测量放大电路输入电阻 R_i (采用换算法)由公式计算

$$\mathrm{R_i} = rac{U_i}{U_s - U_i} \cdot R = rac{R}{rac{U_s}{U_i} - 1}$$

将测量数据填入表 4.3。

5. 测射极跟随电路的跟随特性并测量输出电压峰峰值U_{0P-P} 将所测数据填入表 4. 4。

_	/	71

U_i	5.133	5.733	6.533	6.867
U_L	5	5.667	6.4	6.667
$\mathrm{U_{oP-P}}$	5.267	5.867	6.6	7
A_u	0.974089227	0.988487703	0.979641818	0.970875

七、实验结论

- 1、射极跟随器理论上放大倍数是1,实际上是非常接近1而非完全等于1;
- 2、三极管存在非线性, 当电流变化时, 三极管的放大倍数 β 也会有微小变化;
- 3、各个电阻都有误差,造成静态工作点、输入输出电阻等与预期有偏差;
- 4、电源存在波动,并不是绝对稳定;
- 5、三极管存在输入电容,引脚也有结电容,因而会对放大器的频率响应造成影响;
- 6、射极跟随器输入电阻高,输出电阻低。