FCC TEST REPORT

FOR

Shenzhen Outfone Technology CO., LTD

Professional & Outdoor Support Phone

Model No.: S15
Additional Model No.: S15T, S15C, S15Q, S15L, S12, S19, Defender, RS61D Ultimate, PROCOM Director, ROVER, TITAN T1

Prepared for : Shenzhen Outfone Technology CO., LTD

Address : Room 408, Jianda building, #10 KeYuan Rd. Nanshan District,

Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an

District, Shenzhen, Guangdong, China

Date of receipt of test sample : December 12, 2013

Number of tested samples : 1

Serial number : Prototype

Date of Test : December 12, 2013 – January 15, 2014

Date of Report : January 15, 2014

FCC TEST REPORT FCC CFR 47 PART 15 C (15.225)-2012

Report Reference No.	 LCS131225770TF
tepore recreating 110.	

Date of Issue January 15, 2014

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name: Shenzhen Outfone Technology CO., LTD

Shenzhen, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.225)-2012

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: Professional & Outdoor Support Phone

Trade Mark: RANGERFONE

Model/ Type reference : S15

Ratings: DC 3.7V by battery(2600mAh)

Recharge Voltage: DC 5V/1A

Adapter Parameters: Input AC 100~240V, 50/60Hz 0.15A

Output: DC 5V/1A

Result : Positive

Compiled by:

Supervised by:

Approved by:

Leo Lee/ File administrators

Fox Zhang/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS131225770TF

January 15, 2014
Date of issue

Type / Model.....: S15 EUT.....: Professional & Outdoor Support Phone Applicant.....:: Shenzhen Outfone Technology CO., LTD Shenzhen, China Telephone....:: / Fax....: : / Manufacturer.....: : Shenzhen Outfone Technology CO., LTD Shenzhen, China Telephone.....: : / Fax.....: : / Factory..... Shenzhen Outfone Technology CO., LTD Room 408, Jianda building, #10 KeYuan Rd. Nanshan District, Address....: Shenzhen, China Telephone....: : / Fax.....: : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	5
1.1 Description of Device (EUT)	
1.2 Host System Configuration List and Details	5
1.3 External I/O Cable	
1.4 Description of Test Facility	
1.5 Statement of The Measurement Uncertainty	
1.6 Measurement Uncertainty	
1.7 Description Of Test Modes	
1.8 Summary Of Test Result	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	
3. SYSTEM TEST CONFIGURATION	8
3.1 Justification	8
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	
3.6 Test Setup	
4. RADIATED MEASUREMENT	
4.1 Radiated Emission	
4.2 Field Strength of Fundamental Emissions and Mask Measurement	14
5. BANDWIDTH OF THE OPERATING FREQUENCY	18
5.1 Standard Applicable	18
5.2 Test Equipment	18
5.3 Test Result	18
6. FREQUENCY STABILITY MEASUREMENT	19
6.1 Standard Applicable	19
6.2 Test Equipment	19
6.3 Test Result	19
7. LINE CONDUCTED EMISSIONS	20
7.1 Standard Applicable	20
7.2 Test Equipment	
7.3 Block Diagram of Test Setup	20
7.4 Test Results	20
8. ANTENNA REQUIREMENT	22
8.1 Standard Applicable	
8.2 Antenna Connected Construction	
O MANUEACTUDED/ADDDOVAL HOLDED DECLADATION	

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Professional & Outdoor Support Phone

Model Number : S15

Power Supply : DC 3.7V by battery(2600mAh)

Recharge Voltage: DC 5V/1A

Adapter Parameters: Input AC 100~240V, 50/60Hz 0.15A

Output: DC 5V/1A

EUT Support : GSM/GPRS/EDGE/WCDMA/HSDPA/WIFI/Bluetooth/

Radios Application

GPS(RX)/NFC/Two Way Radio

Operating Frequency : 13.56MHz

Channel Number : 1

Modulation : ASK

Technology

Antenna Gain : Loop Antenna, 0dBi(Max.)

1.2 Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen cyclelong power-tech Co., ltd	Adapter	GAC-03-US		VOC

1.3 External I/O Cable

I/O Port Description	Quantity	Cable	
USB Port	1	1.0m, unshielded	
Earphone Port	1	1.2m, unshielded	

1.4 Description of Test Facility

Site Description

EMC Lab. : Accredited by CNAS, June 04, 2010

The Certificate Registration Number. is L4595.

Accredited by FCC, July 14, 2011

The Certificate Registration Number. is 899208.

Accredited by Industry Canada, May. 02, 2011

The Certificate Registration Number. is 9642A-1

1.5 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description Of Test Modes

The EUT was operated in the engineering mode. All X, Y, Z axis had been tested and the worst case was record.

1.8 Summary Of Test Result

Test Items	FCC Rules	IC Rules	Result
Line Conducted Emissions	15.207	RSS-Gen	PASS
Field Strength of Fundamental Emissions	15.225(a)(b)(c)	A2.6	PASS
Radiated Emissions	15.225(d) & 15.209	A2.6	PASS
20dB Bandwidth	2.1049	-	PASS
Frequency Stability	15.225(e)	A2.6	PASS
Antenna Requirement	15.203	-	PASS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4, FCC CFR PART 15C 15.225.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.225 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4

3. SYSTEM TEST CONFIGURATION

3.1 Justification

N/A.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the report.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. RADIATED MEASUREMENT

4.1 Radiated Emission

4.1.1 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
1	Spectrum Analyzer	Agilent	E4407B	MY41440292	2013-06-16	2014/06/15
2	Test Receiver	Rohde & Schwarz	ESCS30	100174	2013-06-18	2014/06/17
3	Loop antenna	R&S	HFH2-Z2	860004/001	2013-06-18	2014/06/17
4	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2013-06-10	2014/06/09
5	Horn-antenna	EMCO	3115	6741	2013-06-10	2014/06/09
6	DC Filter	MPE	23872C	N/A	2013-06-18	2014/06/17

4.1.2 Block Diagram of Test Setup

9KHz ~ 30MHz

4.1.3 Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Part 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector.

According to Part 15.225 (a), the field strength of any emissions which appear outside of 13.553 ~ 13.567MHz band shall not exceed the general radiated emissions limits.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

^{\2\} Above 38.6

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(2400/F(KHz))+40log(300/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

4.1.4 Test Results

PASS.

The test data please refer to following page:

$9KHz \sim 30MHz$

Freq.	Antenna	Reading	Factor	Measured	Limit	Margin	
MHz	Pol.	dBuV	dB	dBuV	dBuV/m	dB	Remark
0.350	Н				65		
1.000	Н				65		
3.57	Н	36.87	11.71	48.58	69.5	-20.92	Peak
10.76	Н	17.13	11.04	28.17	69.5	-41.33	Peak
13.56	Н	56.34	10.86	67.20	124	-56.80	Peak
17.69	Н	14.16	10.54	24.70	69.5	-44.80	Peak
25.11	Н	15.74	9.60	25.34	69.5	-44.16	Peak
28.63	Н	11.95	8.91	20.86	69.5	-48.64	Peak
0.350	V	1			65		
0.860	V	1			65		
3.60	V	37.01	11.69	48.70	69.5	-20.80	Peak
10.75	V	17.68	11.01	28.69	69.5	-40.81	Peak
13.56	V	56.55	10.86	67.41	124	-56.59	Peak
17.71	V	14.79	10.57	25.36	69.5	-44.14	Peak
25.13	V	15.88	9.59	25.47	69.5	-44.03	Peak
28.61	V	12.14	8.93	21.07	69.5	-48.43	Peak

^{*}Note: Factor= Antenna Gain + Cable Loss – Amplifier Gain;

[&]quot;--" means noise floor.

30MHz ~ 1GHz

pol:

24°C/568 Env./Ins: EUT: Professional & Outdoor Sports Phone M/N: 315 Power Rating: AC 120V/60Hz Test Mode: TX Operator: ANDY Memo: NEC

HORIZONTAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHZ	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1.	54.25	19.94	0.46	13.05	33.45	40.00	-6.55	QP
2	170.65	15.17	0.80	9.02	24.99	43.50	-18.51	QP
3	207.51	12.98	0.86	10.81	24.65	43.50	-18.85	QP
4	307.42	20.42	1.05	13.16	34.63	46.00	-11.37	QP
5	410.24	8.23	1.28	15.27	24.78	46.00	-21.22	QP
6	581.93	5.56	1.54	18.11	25.21	46.00	-20.79	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the offficial limit are not reported

24°C/568 Env./Ins: Professional & Outdoor Sports Phone M/N: 815 Power Rating: AC 120V/60Hz Test Mode: тx Operator: ANDY Memo: NFC VERTICAL pol:

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHZ	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dв	
1	151.25	20.23	0.73	8.31	29.27	43.50	-14.23	OP
2	248.25	3.92	0.97	12.07	16.96	46.00	-29.04	QP
3	287.05	5.91	1.05	12.81	19.77	46.00	-26.23	QP
4	333.61	8.96	1.11	13.87	23.94	46.00	-22.06	QP
5	359.80	8.70	1.18	14.43	24.31	46.00	-21.69	QP
6	643.04	3.55	1.55	18.60	23.70	46.00	-22.30	QP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

4.2 Field Strength of Fundamental Emissions and Mask Measurement

4.2.1 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
1	Spectrum Analyzer	Agilent	E4407B	MY41440292	2013-06-16	2014/06/15
2	Test Receiver	Rohde & Schwarz	ESCS30	100174	2013-06-18	2014/06/17
3	Loop antenna	R&S	HFH2-Z2	860004/001	2013-06-18	2014/06/17
4	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2013-06-10	2014/06/09
5	Horn-antenna	EMCO	3115	6741	2013-06-10	2014/06/09
6	DC Filter	MPE	23872C	N/A	2013-06-18	2014/06/17

4.1.2 Block Diagram of Test Setup

9KHz ~ 30MHz

4.1.3 Field strength of fundamental emissions limit and Mask limit

The field strength of fundamental emissions shall not exceed 15848 microvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies	Field Strength	Field Strength	Field Strength
(MHz)	(microvolts/meter)	$(dB\mu V/m)$ at $10m$	$(dB\mu V/m)$ at 3m
13.553 ~ 13.567MHz	15848 at 30m	103.08 (QP)	124 (QP)

Mask Limit:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
1.705-13.110	69.5	3
13.110-13.410	80.5	3
13.410-13.553	90.5	3
13.553-13.567	124.0	3
13.567-13.710	90.5	3
13.710-14.010	80.5	3
14.010-30.000	69.5	3

4.1.4 Test Results

PASS.

The test data please refer to following page:

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Pol.	Remark	
1	13.56	55.41	10.86	66.27	124	Н	QP	1

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Pol.	Remark	
1	13.56	56.13	10.86	66.99	124	V	QP	1

*Note: Factor= Antenna Gain + Cable Loss - Amplifier Gain

Emission level ($dB\mu V/m$) = 20 log Emission level ($\mu V/m$).

Measured distance is 3m.

All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

5. BANDWIDTH OF THE OPERATING FREQUENCY

5.1 Standard Applicable

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band $(13.553 \sim 13.567 \text{MHz})$.

5.2 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
1	Spectrum Analyzer	Agilent	E4407B	MY41440292	2013-06-16	2014/06/15
2	Test Receiver	Rohde & Schwarz	ESCS30	100174	2013-06-18	2014/06/17
3	DC Filter	MPE	23872C	N/A	2013-06-18	2014/06/17

5.3 Test Result

EUT	Professional & Outdoor Support Phone		
RBW	1KHz		
VBW	3KHz		
SPAN	20KHz		
Carrier Freq. (MHz)	20dBBandwidth (KHz)		
13.56	3.491		

Please refer to the test plot:

6. FREQUENCY STABILITY MEASUREMENT

6.1 Standard Applicable

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
1	Spectrum Analyzer	Agilent	E4407B	MY41440292	2013-06-16	2014/06/15
2	Test Receiver	Rohde & Schwarz	ESCS30	100174	2013-06-18	2014/06/17
3	DC Filter	MPE	23872C	N/A	2013-06-18	2014/06/17
		Temperature &	Temperature			
4	Wuhuan	Humidity	& Humidity	HTP205	2013-06-18	2014-06-17
		Chamber	Chamber			
5	DC power Source	GW	GPC-6030D	C671845	2013-06-18	2014-06-17

6.3 Test Result

Voltage vs. Frequency Stability

Voltage(V)	Measurement Frequency (MHz)
DC 3.3V	13.56051
DC 3.7V	13.56045
DC 4.2V	43.56049
Max. Deviation (MHz)	0.00051
Max. Deviation (ppm)	37.6106

Temperature vs. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)
-20	13.56059
-10	13.56056
0	13.56053
10	13.56057
20	13.56048
30	13.56051
40	13.56049
50	13.56053
Max. Deviation (MHz)	0.00059
Max. Deviation (ppm)	43.5103

7. LINE CONDUCTED EMISSIONS

7.1 Standard Applicable

According to §15.207 (a) or RSS-GEN: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Engayon av Danga (MIII)	Limits (dBμV)				
Frequency Range(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

7.2 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	EMC Receiver	R&S	ESCS30	100174	2013-06-18	2014-06-17
2	L.I.S.N	MESS Tec	NNB-2/16Z	99079	2013-06-18	2014-06-17
3	50ΩCoaxial Switch	R&S	MP59B	M20531	2013-06-18	2014-06-17
4	Pulse Limiter	Anritsu	ESH3-Z2	100006	2013-06-18	2014-06-17
5	Voltage Probe	Rohde & Schwarz	TK9416	N/A	2013-06-18	2014-06-17

7.3 Block Diagram of Test Setup

7.4 Test Results

PASS.

The test data please refer to following page.

Env. Ins: EUT: M/N:

24*/56% 24*/56%
Professional & Outdoor Support Phone \$15
AC 120V/60Hz
TX
NPC
LINE

Power Rating: Test Mode: Operator: Memo: Pol:

	Freq	Reading	LisnFac	CabLos	Measured	Limit	Over	Remark
	MHs	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.37314	36.52	9.62	0.04	46.18	58.43	-12.25	QP
23	0.37315	33.19	9.62	0.04	42.85	48.43	-5.58	Average
-3	0.49673	36.22	9.62	0.04	45.00	56.05	-10.17	QP
4	0.49674	33.19	9.62	0.04	42.85	46.05	-3.20	Average
5	1.92836	37.27	9.64	0.05	46.96	56.00	-9.04	QP
6	1.92866	32.72	9.64	0.05	42.41	46.00	-3.59	Average
7	4.92572	39.93	9.65	0.06	49.64	56.00	-6.36	QP
	4.92672	33.33	9.65	0.06	43.04	46.00	-2.96	Average
9	5.65323	39.37	9.66	0.06	49.09	60.00	-10.91	OP
10	5.65363	30.69	9.66	0.06	40.41	50.00	-9.59	Average
112	88.00321	36.13	9.71	0.14	45.98	60.00	-14.02	QP.
122	88.00361	26.41	9.71	0.14	36.26	50.00	-13.74	Average

Remarks: 1. Measured = Reading + Lish Factor +Cable Loss.
2. The emission levels that are 20dB below the official limit are not reported.

M/N: Power Rating: Test Mode: Operator: Memo: Pol:

24*/56* Professional & Outdoor Support Phone

AC 120V/60Hz TX ANDY NFC NEUTRAL

	Freq	Reading	LishFac	CabLos	Measured	Limit	Over	Remark
	MHs	dBuV	dB	dB	dBuV	dBuV	dB	
1.	0.18639	38.41	9.62	0.02	48.05	64.20	-16.15	QP
2	0.18640	31.34	9.62	0.02	40.98	54.20	-13.22	Average
3	0.37314	35.54	9.61	0.04	45.19	50.43	-13.24	OP
4	0.37315	31.49	9.61	0.04	41.14	48.43	-7.29	Average
5	0.62383	34.16	9.63	0.04	43.83	56.00	-12.17	QP
6	0.62384	28.58	9.63	0.04	38.25	46.00	-7.75	Average
7	1.92836	37.48	9.63	0.05	47.16	56.00	-8.84	QP
8	1.92866	31.50	9.63	0.05	41.26	46.00	-4.74	Average
9	4.92572	40.24	9.66	0.06	49.96	56.00	-6.04	OP
10	4.92672	31.39	9.66	0.06	41.11	46.00	-4.89	Average
112	88.45188	36.76	9.64	0.14	46.74	60.00	-13.26	QP.
122	8.45288	26.56	9.84	0.14	36.54	50.00	-13.46	Average

Remarks: 1. Measured = Reading + Lish Factor +Cable Loss.
2. The emission levels that are 20dB below the official limit are not reported.

8. ANTENNA REQUIREMENT

8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.2 Antenna Connected Construction

This EUT uses an loop antenna which is permanently attached on the cap(refer to EUT interior photographs).

.

9. MANUFACTURER/ APPROVAL HOLDER DECLARATION

The following identical model(s):

	()		
S15T	S15C	S15Q	S15L
S12	S19	Defender	RS61D Ultimate
PROCOM Director	ROVER	TITAN T1	

Belong to the tested device:

Product description: Professional & Outdoor Support Phone

Model name : S15

Remark: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.