

Genomic Prediction Models

Key: How we estimate and Assume Marker Variances.

- **a. Shrinkage Models**: RR BLUP and GBLUP
- b. Dimension Reduction Methods:Partial Least Squares (PLS) andSingular Value Decomposition (SDV)
- c. Bayesian Approach: Variable Selection Models (priors)
- d. Kernel and Machine Learning Methods

Adapted from manuscript Desta and Ortiz, 2014

Ordinary Least squares (OLS)

Simple linear regression:

Parameters (un-observed)

Aim is to estimate α and β parameters by minimize the squared errors

OLS in Relevance to Genomic Predictions

Aim is to minimize residual squares

$$argmin(\varepsilon \epsilon) = argmin(y - X\beta)(y - x\beta)$$

 $\beta = (\acute{X}X)^{-1} \acute{X}Y$

Simple marker regression model

- 1. m>>n, we cannot fit OLS (curse on dimensionality)
 - $\dot{X}X$ is a singular, and determinate of $\dot{X}X$ is 0 so cannot take inverse, $\dot{X}X$ is not invertible
- 2. m>>n, multi-collinearity produces singular matrix
- 3. m>>n, not perfect multi-collinearity, but predictors are highly correlated

OLS estimates are not stable and have high variance

Need alternative strategy

phenotypic values.

Ridge Regression

Provides solution and overcomes problems of OLS

Aim is to minimize residual squares

$$argmin(\varepsilon'\varepsilon) = argmin(y - X\beta)'(y - x\beta)$$

$$\vdots$$

$$\beta = (\acute{X}X + \lambda I)^{-1} \acute{X}Y$$

Add constant, Penalty/Shrinkage Factor

$$E(\hat{\beta}_{ridge}) = (\hat{X}X + \lambda I)^{-1} \hat{X}E(Y)$$

$$E(\hat{\beta}_{ridge}) = \beta - \lambda(\hat{X}X + \lambda I)^{-1}$$

Biased, but with minimum variance adding λ , we take inverse but we have biased estimates

when,
$$\lambda = 0$$
, $E(\beta) = \beta$, i.e, OLS

Ridge-Regression BLUP (RRBLUP)

$$y=\mu+\sum_k x_k \beta_k + \varepsilon$$

estimate eta by adding positive constraint

$$\beta_{ridge} = (X^T X)^{-1} + \lambda I) X^T y$$

$$\beta_k \sim N(0, \sigma_e^2)$$

- Ridge regression induces homogeneous shrinkage and it depends upon allele frequency
- Assumes all markers have same variance with small but non-zero effect.

- We add constant to diagonal, thus it is invertible
- Degree of shrinkage depends upon λ , larger the λ larger is the shrinkage

$$\frac{\beta_{OLS}}{1+\lambda}$$

- We basically shrink OLS estimates towards 0
- λI term reduces collinearity and prevents the matrix X^TX from becoming singular.

Things to Know (RRBLUP)

$$y=\mu+\sum_k z_k \beta_k+\varepsilon$$

$$\beta_{ridge} = (Z^T Z)^{-1} + \lambda I) Z^T y$$

- We add constant to diagonal, thus it is invertible
- Degree of shrinkage depends upon λ , larger the λ larger is the shrinkage

$$\frac{\beta_{OLS}}{1+\lambda} \qquad \lambda = \frac{\sigma_{\beta}^2}{\sigma_{\epsilon}^2}$$

- We basically shrink $oldsymbol{eta}$ (OLS) estimates towards 0
- λI term reduces collinearity and prevents the matrix $\mathbf{X}^T\mathbf{X}$ from becoming singular.

- Ridge regression induces homogeneous shrinkage, same for all markers
- **❖** Assumes all markers have the same variance with small but non-zero effect.
- Shrinkage depends upon allele frequency

$$\widehat{\boldsymbol{\beta}}_{ridge} = \frac{2p_j(1-p_j)_n}{2p_j(1-p_j)_n+\lambda} * \widehat{\boldsymbol{\beta}}_{OLS}$$

❖ Markers with extreme frequency are shrunk more.

RR BLUP Model

n is # of individuals
P is # of markers

$$\begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{\varepsilon} \end{bmatrix} \sim \begin{bmatrix} N \left(0, \frac{\sigma_{\boldsymbol{a}}^2}{0} & 0 \\ 0 & \sigma_{\boldsymbol{\varepsilon}}^2 \right) \end{bmatrix}$$

Solve mixed model equation (Henderson, 1989)

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda I^{-1} \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$

 $\mathsf{GEBVs}(\widehat{u}) = \mathbf{Z}\widehat{a}$

$$\begin{bmatrix} \widehat{a}_1 \\ \widehat{a}_2 \\ \widehat{a}_3 \\ \widehat{a}_4 \\ \widehat{a}_5 \\ \widehat{a}_6 \end{bmatrix} = \begin{bmatrix} -0.35 \\ -0.25 \\ 1.35 \\ -1.15 \\ 1.45 \\ 0.45 \end{bmatrix}$$

Marker effects (BLUP)

$$GEBV(y_1) = [0 * (-0.35) + [0 * (-0.25)] + \cdots + [2 * (-1.15)]$$

What if LD exists between markers?

RRBLUP or Ordinary least squares (OLS) do not consider:

LD Between Markers and account for the relationship between the genotypes

Better to compute and Integrate the Relationship matrix in the model

Mixed Effect Model

 ε is n x n matrix of residual/error effects with $Var(\varepsilon) = \sigma_e^2 I$, I is identity matrix.

A is a n x m design matrix relating phenotypes to fixed effects.

 β is a vector of fixed effects (may be replication or Block)

Z is a design matrix of random effects.

u is a vector of random effects(may be SNP markers) with variance= $Var(u) \sim \sigma_g^2 G$, where G is genomic or kinship co-variance matrix of m x m dimensions (note m is no. of individuals)

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{\varepsilon} \end{bmatrix} \sim \begin{bmatrix} N \begin{pmatrix} 0, \sigma_{\mathbf{u}}^2 K & 0 \\ 0, 0 & \sigma_{\mathbf{\varepsilon}}^2 R \end{pmatrix} \end{bmatrix}$$

Note: $cov(\mathbf{u}, \varepsilon)=0$

Solving Mixed model Equation

$$\begin{bmatrix} \hat{X}X & \hat{X}Z \\ \hat{Z}X & \hat{Z}Z + \lambda G^{-1} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{u} \end{bmatrix} = \begin{bmatrix} \hat{X} & y \\ \hat{Z}y \end{bmatrix}$$

$$\begin{bmatrix} \hat{B} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \hat{X}X & \hat{X}Z \\ \hat{Z}X & \hat{Z}Z + \lambda G^{-1} \end{bmatrix}.$$

$$\begin{bmatrix} \hat{B} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \hat{X}X & \hat{X}Z \\ \hat{Z}X & \hat{Z}Z + \lambda G^{-1} \end{bmatrix}.$$

$$\begin{bmatrix} \hat{B} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \hat{X}X & \hat{X}Z \\ \hat{Z}X & \hat{Z}Z + \lambda G^{-1} \end{bmatrix}.$$

$$\begin{bmatrix} \hat{A} & y \\ \hat{Z}y \end{bmatrix}$$

We decompose the matrices and get solutions through iterative methods

Genomic BLUP (gBLUP)

$$y = X\beta + Zu + \varepsilon$$

$$\hat{u} = \left[\mathbf{I} + \mathbf{G}^{-1} rac{\sigma_e^2}{\sigma_u^2}
ight] \mathbf{y}$$

GRM to account for mendelian sampling

Equivalence between rrBLUP and gBLUP

For gBLUP the
$$Var(y) = \mathbf{ZGZ}'\sigma_u^2 + \mathbf{I}\sigma_e^2$$

For rrBLUP the
$$Var(y) = XX'\sigma_{\beta}^2 + I\sigma_e^2$$

Genomic BLUP (gBLUP Model)

-0.35

-0.25

-1.15

1.45

0.45

GRM accounts for Mendelian sampling

Solve mixed model equation (Henderson, 1989)

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix} \begin{bmatrix} b \\ g \end{bmatrix} = \begin{bmatrix} \dot{X} & y \\ \dot{Z}y \end{bmatrix}$$

Construction of G matrix

3 steps

- Create a centered Z matrix
- Create the cross product
- Divide it by $\sum_{i=1}^{m} 2p_i(1-p_i)$

$$G = \frac{ZZ^{T}}{\sum_{i=1}^{m} 2p_{i} (1-p_{i})} \sum_{i=1}^{g_{i}} 2p_{i} (1-p_{i})$$

First G matrix, VanRanden (2008)

Difference Between RRBLUP and gBLUP

RR BLUP	gBLUP		
Marker as Predictors (BLUPs)	Predict Additive breeding Values directly		
Markers are directly used	Markers are used to compute covariance matrix (Relationship Matrix)		
Dimension of genetic effects is p x p	Dimension of effects is n x n, computationally easy		
Does not account for the relationships between genotypes. Assuming genotypes are independent	Accounts relationship between genotypes, thus more appropriate for predictions or dissecting G x E (WHY?)		
$var(y) = Z\dot{Z} \sigma_u^2 + I\sigma_e^2$	$var(y) = ZGZ \sigma_u^2 + I\sigma_e^2$		

 $blup(\hat{u}) = (Z\acute{Z} + I\lambda)^{-1}Z(Y - \hat{\mu})$

 $blup(\hat{u}) = (Z\acute{Z} + G^{-1}\lambda)^{-1}Z(Y\acute{-}\hat{\mu})$

Pedigree BLUP (pBLUP Model)

n is # of individuals g is # of breeding values

$$\begin{bmatrix} \boldsymbol{g} \\ \boldsymbol{\varepsilon} \end{bmatrix} \sim MNV \left(0, \begin{matrix} \mathbf{A}\sigma_{\boldsymbol{a}}^2 & 0 \\ 0 & \sigma_{\boldsymbol{\varepsilon}}^2 \end{matrix} \right)$$

Accounts for relationships (Coefficient of co-ancestry , $r=2\theta_{xy}$)

Solve mixed model equation (Henderson, 1989)

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda A^{-1} \end{bmatrix} \begin{bmatrix} b \\ g \end{bmatrix} = \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$

Construction of A matrix

(BLUP of Breeding values)

DESIGNATIO	Female	Male
IR64	IR5657-33-2-1	IR2061-465-1-5-5
IRRI154	IR73012-137-2-2-2	PSBRC10(IR50404-57-2-2-3)
IRRI193	IR68077-82-2-2-3	IR00A117
IR05N412	IR72875-94-3-3-2	IR73707-45-3-2-3
IR05N419	IR72887-34-2-1-3	IR73707-45-3-2-3
IR06N155	IR72158-11-5-2-3_IR73707-45-	IR72875-94-3-3-2
IR09A220	IR72903-121-2-1-2	IR71606-1-1-4-2-3-1-2(NSIC110
IR10A231	IRRI143_IR73718-23-2-1-3	IR00A110
IR10F559	IR80410-B-197-4_IRRI149	NSICRC158
IR10N237	IR01N111_IRRI164	IR72890-81-3-2-2
IR10N271	IR01W106	IR71676-90-2-2
IR11A282	IR04A427	BR29
IR11A303	IR04A427	IR72875-94-3-3-2
IR11A306	IR04A427	IR73006-12-3-3-2
IR11N121	IR05N341_IR64680-81-2-2-1-3	PSBRC10(IR50404-57-2-2-3)
IR11N202	IR05N173	BR29
IR12N135	IR01N149_IR64680-81-2-2-1-3	FEDEARROZ50
IR12F111	IR44004-74-3-2-3-3-3	IR70181-32-PMI1-1-5-1
BRRIDHANS:	BR10(BR51-46-5)_BR23	BR847-76-1-1
BRRIDHANS!	0	0

	IR64	IRRI154	IRRI193	IR05N412	IR05N419	IR06N155	IR09A220	I
IR64	1.07666	0.13361	0.01675	0.08966	0.03874	0.08966	0.31168	
IRRI154	0.13361	1.03618	0.03124	0.04905	0.05164	0.05101	0.09983	1
IRRI193	0.01675	0.03124	1.00000	0.01019	0.01580	0.01019	0.02137	1
IR05N412	0.08966	0.04905	0.01019	1.00000	0.29292	0.39858	0.04587	1
IR05N419	0.03874	0.05164	0.01580	0.29292	1.00000	0.17475	0.04730	1
IR06N155	0.08966	0.05101	0.01019	0.39858	0.17475	1.00000	0.04587	Ī
IR09A220	0.31168	0.09983	0.02137	0.04587	0.04730	0.04587	1.02126	Ī
IR10A231	0.22386	0.05424	0.01408	0.02707	0.02324	0.02707	0.09506	
IR10F559	0.22908	0.08668	0.02460	0.05484	0.04891	0.05313	0.09350	
IR10N237	0.06116	0.09207	0.02596	0.04761	0.10362	0.04761	0.09354	1
IR10N271	0.03119	0.04701	0.01812	0.01327	0.01976	0.02108	0.03659	П
IR11A282	0.00000	0.00391	0.00000	0.00000	0.00000	0.03125	0.00000	Ι
IR11A303	0.08966	0.04905	0.01019	0.25503	0.03120	0.25503	0.04587	Г

Dimension Reduction methods

 $y=\mu+\sum_k x_k \beta_k + \varepsilon$

- Reason is to avoid inverse
- Suitable when predictors are correlated
- And calculations are tedious

$$x_{k=UDV^T}$$

U= n x m orthogonal matrix
D= n x m diagonal matrix with
singular values
V= n x n orthogonal matrix

$$oldsymbol{eta_{OLS}} = V D^{-1} U^T \mathbf{y}$$

Regress phenotypes directly on eigenvectors or principle components

Bayesian Approaches (Relax the Distribution Assumptions)

Sampling distr.

posterior

$$p(\theta|y) = \frac{p(\theta,y)}{p(y)} = \frac{p(y|\theta)p(\theta)}{p(y)}$$
 prior

y is observed data $y \sim p(\theta|y)$ θ is unknown parameter (random)

Bayesian Models differ with respect to the *Prior*

- > The even distribution of genetic causation is not satisfactory
- > The assumption of common variance does not imply that the effects of all markers
- > RR BLUP over shrinkage of large marker effects
- Large effect and small effect QTLs (natural in breeding populations)

Bayesian Ridge-Regression (BRR)

$$\widehat{\beta} = (XX^T + K^{-1} \frac{\sigma_e^2}{\sigma_\beta^2})^{-1} (yX^T + K^{-1} \frac{\sigma_e^2}{\sigma_\beta^2}) \beta_o$$

$$\lambda = \frac{\sigma_e^2}{\sigma_\beta^2}$$

$$\beta \sim N(0, \sigma_{\beta}^2)$$

$$\sigma_{\beta}^2 \sim \mathcal{X}^{-2}(df, s)$$

If we assume prior mean=0, β =0, then K=1

$$\beta_{ridge} = (X^T X)^{-1} + \lambda I) y X^T$$

Prior for markers is given by Gaussian distribution, which differs from LASSO Scaled inverted chi-square distribution

The only difference in prior information

LASSO (Regularization)

$$\beta_{lasso} = argmin \left[\sum_{j=1}^{m} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{i=1}^{j} \beta_j^2 \right]$$

in LASSO $|\beta_j|$ is absolute value $(L_1 \ Penality)$ however, in Rideg regression value is β_j^2 $(L_2 \ Penality)$

Type equation here. In LASSO, shrinkage is stronger-sets some marker effects equal to 0

Bayesian LASSO

$$\beta_{lasso} = argmin[(y - x\beta)^{T}(y - x\beta) + \lambda |\beta_{j}|]$$

$$= exp\left(-\frac{1}{2\sigma_{e}^{2}}(y - x\beta)^{T}(y - x\beta)\right) exp(\lambda |\beta_{j}I|)$$
Gaussian Sampling Double exponential

In Bayesian Lasso, assumption of marker effects is Double exponential Double exponential shrink more marker effects close to zero

Bayesian Approaches (Relax the Distribution Assumptions)

Bayes A

- Assumes marker-specific variance
- Utilizes an inverse chi-square on marker variances
- Shrinks tiny marker effects (variances) towards zero, and larger values survive.

Bayes B

- Fraction of markers with zero effect
- More realistic prior because we expect that some regions of the genome will carry no QTL

Bayes C

 Assumes t-distribution one with large variance for SNP fraction and other with small variance

Thank You

Questions