Learning Algorithms for Regret Minimization

Elaheh Toulabinejad, Mahshid Rahmani Hanzaki

Introduction

Linear Programming

Normal-form Linear Programming

- One of earliest methods
- Convert to normal-form game
- Use Linear Programming (LP)
- Number of strategies exponential to the number of information sets

Sequence-form Linear Programming

- Modern era of solving Imperfect information game
- Introduced sequence-form representation of strategy
- Used LP for extensive-form
- Polynomial as size of game representation

Regret Minimization

Regret Minimization

External Regret Minimization in Extensive-form Games With Imperfect Information

Counterfactual Regret Minimization 2007

Counterfactual Regret

- Break down total regret into smaller parts for each information set.
- Reduce counterfactual regret separately for each set.
- Total regret is bounded by the sum of all counterfactual regrets.
- Lowering immediate counterfactual regret reduces overall regret.
- Finding an approximate Nash equilibrium by minimizing immediate counterfactual regret.

Algorithm

- Uses minimizing regret in self-play to calculate Nash equilibrium
- On each iteration:
 - traverses the entire game tree
 - updates the regrets for every infostate in the game according to policy profile
 - Defines a new policy based on these regrets
- Average of these policies converges to an approximate Nash equilibrium in two player zero-sum games

Abstraction

- Definition: merging information sets
 - In terminology of poker: grouping card sequences
- Goal: reducing the number of information sets for each player to a tractable size

CFR Problem traverse the entire tree on each iteration

Monte Carlo Sampling for Regret Minimization in Extensive Games 2009

Monte Carlo CFR (MCCFR)

- A family of domain independent algorithms
- Same regret updates as CFR on expectation
- Approximate equilibrium using self-play
- Increase in number of iterations
 - Constant-factor increase
- Reduced cost on each iteration
 - Order reduction
- Introduce two methods of Sampling
 - External Sampling
 - Outcome sampling

External Samping vs. Outcome Sampling

External Sampling

Sample chance nodes (choices external to player and player actions

Outcome Sampling

- Single playing of game sampled
- Each sample only contains one outcome

Pruning

 Prune entire subtree if the other player has no probability of reaching

Main Problem with Sampling Methods High variance

Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games Using Baselines 2019

VR-MCCFR

Unconventional Approach

CFR+

- Challenges of CFR in larger games
 - Memory challenge
 - Should store the accumulated regret values for each information set
- Use CFR+ for the computation problem
- CFR generally uses sampling to update on each iteration
- CFR+
 - Exhaustive search
 - Regret-matching+
 - Actions will be chosen immediately after proving useful
- CFR+ is the state-of-the-art for solving large imperfect information games

Double Neural Counterfactual Regret Minimization 2018

CFR Problems

- Only works for discrete state and action spaces using a tabular representation
 - Cannot directly be applied to large games
 - Cannot improve by starting from poor strategy profile
- Need to traverse the entire game tree
 - Cannot handle large games with limited memory

Double Neural CFR

- Proposes a double neural representation for imperfect information games
 - One neural network → cumulative regret
 - The other one → average strategy
- Make neural learning efficient by developing several novel techniques:
 - Robust sampling method
 - Mini-batch Monte Carlo CFR (MCCFR)
 - Monte Carlo CFR Plus (MCCFR+)

Tabular Methods

Double Neural CFR Method

Double Neural CFR: Results

- The algorithm:
 - Converges better than deep reinforcement learning counterparts
 - Matches the performance of tabular based algorithms
 - Has a strong generalization and compression ability

- The sampling method:
 - Lower variance than the outcome sampling
 - More memory efficient than the external sampling

Double Neural CFR: Problems

- May not be theoretically sound
- The authors consider only small games

Deep Counterfactual Regret Minimization 2019

CFR Problems

- Needs abstraction to deal with extremely large games
 - Abstraction algorithms may miss important details of the game as they are usually manual and domain-specific
 - Determining a good abstraction needs knowledge of the equilibrium of the game and we need abstraction to find the equilibrium (chicken-and-egg problem!)

Deep CFR

- Claim to be the first non-tabular variant of CFR
- Approximates the behavior of tabular CFR from partial game tree traversals
- Uses function approximation with deep neural networks to approximate the behavior of tabular CFR on the full, unabstracted game

Deep CFR: Method

- Approximate the behavior of CFR without calculating and accumulating regrets at each infoset
 - Generalizes across similar infosets using function approximation via deep neural networks

Deep CFR: Results

- Converges to an ε -Nash equilibrium in two-player zero-sum game
- Outperforms Neural Fictitious Self Play (NFSP) (the prior leading function approximation algorithm for imperfect-information games
- Competitive with domain-specific tabular abstraction techniques

Conclusion

Conclusion

- By introducing the iterative regret minimization larger games were solved
- Most algorithms use CFR to find Nash equilibrium in extensive-form games
- MCCFR was introduced to reduce the computation time of CFR
- CFR+ used exhaustive search and regret-matching+ to achieve high empirical results in poker games
- Some research use deep learning methods in combination with CFR

Works we haven't covered

- Applications of the algorithms across other games and other multi-agent setting aside poker
- More generalization. Solving games with more than two players
- What are other solution methods aside from Nash equilibrium
- Games with imperfect recall
- Pruning methods

References

- [1] Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold'em poker is solved. *Science*, 347(6218), 145-149.
- [2] Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007). Regret minimization in games with incomplete information. Advances in neural information processing systems, 20.
- [3] Lanctot, M., Waugh, K., Zinkevich, M., & Bowling, M. (2009). Monte Carlo sampling for regret minimization in extensive games. Advances in neural information processing systems, 22.
- [4] Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec, R., & Bowling, M. (2019, July). Variance reduction in monte carlo counterfactual regret minimization (VR-MCCFR) for extensive form games using baselines. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2157-2164).
- [5] Tammelin, O. (2014). Solving large imperfect information games using CFR+. arXiv preprint arXiv:1407.5042.
- [6] Li, H., Hu, K., Ge, Z., Jiang, T., Qi, Y., & Song, L. (2018). Double neural counterfactual regret minimization. arXiv preprint arXiv:1812.10607.

References

[7] Brown, N., Lerer, A., Gross, S., & Sandholm, T. (2019, May). Deep counterfactual regret minimization. In International conference on machine learning (pp. 793-802). PMLR.

[8] Sychrovsky, D., Sustr, M., Davoodi, E., Lanctot, M., & Schmid, M. (2023). Learning not to regret. arXiv preprint arXiv:2303.01074.

Questions