Conformal tilings

A bizarre set of tilings generated by Schwarz reflections

Mohith Raju Nagaraju

Jan 2023

Complex analysis

- A function $f: \Omega_{\mathbb{C}} \to \Omega'_{\mathbb{C}}$ is said to be *conformal* (aka biholomorphic) if both f and f^{-1} are holomorphic
- Conformal means angle-preserving
- ▶ A *Riemann surface* is topological surface with a "complex structure": it is a manifold with charts to subsets of ℂ and conformal transition maps.
- ► The complex structure allows us to define holomorphic maps between surfaces
- ▶ Examples: $\mathbb{C}, \mathbb{D}, \{1 < |z| < 2\}, \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Complex analysis

- A function $f: \Omega_{\mathbb{C}} \to \Omega'_{\mathbb{C}}$ is said to be *conformal* (aka biholomorphic) if both f and f^{-1} are holomorphic
- Conformal means angle-preserving
- ▶ A *Riemann surface* is topological surface with a "complex structure": it is a manifold with charts to subsets of ℂ and conformal transition maps.
- ► The complex structure allows us to define holomorphic maps between surfaces
- ▶ Examples: $\mathbb{C}, \mathbb{D}, \{1 < |z| < 2\}, \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ▶ Rk: Two Riemann surfaces may be topologically the same, but might not be isomorphic to each other. Ex: $\{1 < |z| < 2\}$ and $\{1 < |z| < 3\}$ are not biholomorphic to each other.
- A rich class of examples is obtained by taking the zero set $f^{-1}(0)$ of polynomial functions $f: \mathbb{C}^2 \to \mathbb{C}$. Ex: $X = \{(z, w) : w^2 = z^3 + az + b\}$

Tiling 1 (Pentagonal tiling of \mathbb{C})

Tiling 2 (from antiquity)

Tiling 3 (corresponding \wp_{Λ}^2)

Tiling 4 (Hyperboling tiling of type (2,4,6))

Tiling 5 (Two triangles give a sphere)

- Is it an angle-preserving tiling? Not quite
- ▶ Obs: The internal angles of each polygon are not equal. But the angles around each vertex are equal

- Is it an angle-preserving tiling? Not quite
- ▶ Obs: The internal angles of each polygon are not equal. But the angles around each vertex are equal
- Is there some conformal symmetry? Yes!
- Obs: Each pair of adjacent tiles are invariant under reflection along common edge

- Is it an angle-preserving tiling? Not quite
- ▶ Obs: The internal angles of each polygon are not equal. But the angles around each vertex are equal
- Is there some conformal symmetry? Yes!
- Obs: Each pair of adjacent tiles are invariant under reflection along common edge
- ▶ By reflection we mean Schwarz reflections, i.e. the unique anti-conformal map that fixes the edge pointwise Fx:
 - $ightharpoonup z \mapsto \bar{z} \text{ (fixes } \mathbb{R}\text{)}$
 - $z \mapsto 1/\bar{z}$ (fixes S^1)
- ▶ Defn. $f: X \to Y$ is an anti-conformal map if it is an orientation reversing conformal map Formally, $\frac{\partial f}{\partial z} = 0 = \frac{1}{2} \left(\frac{\partial f}{\partial x} i \frac{\partial f}{\partial y} \right)$

Defn. A conformal tiling of a Riemann surface X is a tiling of X such that for each pair of adjacent tiles τ_1, τ_2 , there is an anti-conformal map $\phi: \tau_1 \to \tau_2$ fixing the common edge pointwise

Defn. A conformal tiling of a Riemann surface X is a tiling of X such that for each pair of adjacent tiles τ_1, τ_2 , there is an anti-conformal map $\phi: \tau_1 \to \tau_2$ fixing the common edge pointwise

Questions:

- Q1 Why is the pentagonal tiling a conformal tiling?
- Q2 How can we come up conformal tilings (of say \mathbb{C})? (It is difficult to write down Schwarz reflections along a arc)
- Q3 What are all the conformal tilings of \mathbb{C} ?

Equilateral surfaces

A collection of equilateral triangles glued together

Equilateral surfaces

A collection of equilateral triangles glued together

What is an Equilateral surface

- Starting with a finite/infinite collection of unit equilateral triangles, glue these triangles together by identifying every edge with exactly one edge of another triangle
- Also ensure that each vertex is identified with only finitely many other vertices
- This gives a topological surface E
- ▶ Can we give E a complex structure, i.e. local charts to subsets of \mathbb{C} ?

What is an Equilateral surface

- Starting with a finite/infinite collection of unit equilateral triangles, glue these triangles together by identifying every edge with exactly one edge of another triangle
- Also ensure that each vertex is identified with only finitely many other vertices
- This gives a topological surface E
- ▶ Can we give E a complex structure, i.e. local charts to subsets of \mathbb{C} ?
- \blacktriangleright The interiors of the unit equilateral triangles can be given the complex structure of Δ
- ► Claim: We can add compatible charts at edges and vertices to make *E* into a Riemann surface
- ► E with the above complex structure is called an *equilateral* surface

Complex structure of E at edges and vertices

Alternative definition of conformal tiling

Defn. A conformal tiling of a Riemann surface X is a pair (E, f) such that $f: X \to E$ is conformal

Example:

Alternative definition of conformal tiling

Defn. A conformal tiling of a Riemann surface X is a pair (E, f) such that $f: X \to E$ is conformal

Example: $\mathbb{C} \quad \xrightarrow{f} \quad \Longrightarrow \quad$

- Recall Q2: How can we come up conformal tilings?
- One way is to just put together an equilateral surface by glueing triangles in a certain pattern and then finding a Riemann surface which is conformal to it
- ► Eg:

Constructing conformal tilings

► The topology of E guides us to get hold of a Riemann surface X conformal to E

The Uniformization theorem

Any simply connected Riemann surface is isomorphic/conformal to either $\hat{\mathbb{C}}$ or \mathbb{D} or \mathbb{C} .

► The uniformization theorem furnishes the required conformal map

Drawback: The map is an abstract and not constructive :(

Constructing conformal tilings

► The topology of E guides us to get hold of a Riemann surface X conformal to E

The Uniformization theorem

Any simply connected Riemann surface is isomorphic/conformal to either $\hat{\mathbb{C}}$ or \mathbb{D} or \mathbb{C} .

- ► The uniformization theorem furnishes the required conformal map
 - Drawback: The map is an abstract and not constructive :(
- ▶ Given an equilateral surface E which is homeomorphic to the plane, the uniformization theorem tells us E is conformal to $\mathbb D$ or $\mathbb C$
- ▶ Determining between \mathbb{C} or \mathbb{D} is called the *type problem*

Pentagonal tiling of $\mathbb C$

- ► Recall Q3: Why is figure 1 a conformal tilings of pentagons?
- Ans: We shall construct an equilateral surface made up of pentagons and homeomorphic to the plane. Then we will show it has to conformal to $\mathbb C$ and not $\mathbb D$

Pentagonal tiling of $\mathbb C$

- ► Recall Q3: Why is figure 1 a conformal tilings of pentagons?
- Ans: We shall construct an equilateral surface made up of pentagons and homeomorphic to the plane. Then we will show it has to conformal to $\mathbb C$ and not $\mathbb D$

Construction of the equilateral surface

- lacktriangle Start with a regular pentagon and call it K_0
- ▶ Reflect K_0 along all its edges to get a flower-like structure with 5 petals
- ightharpoonup Glue adjacent petals and form K_1
- View K₁ as a pentagon and reflect along "edges" to get a big flower-like structure with 5 big petals
- ▶ Glue adjacent petals and form K_2
- Repeat the process ad infinitum

Construction of the equilateral surface for pentagonal tiling

Construction of the equilateral surface for pentagonal tiling

Why is this a pentagonal tiling of \mathbb{C} ?

Why is E conformal to \mathbb{C} ?

- Quick ans: E has a special symmetry called "subdivisional self-similarity" or "zoom-in self-similarity"
- ▶ Key observation: There is no $f \in Aut(\mathbb{D})$ such that f(0) = 0 and f is "shrinking"
- ▶ We say f is "shrinking" if there is a compact set S such that $f(S) \subsetneq S$

Why is this a pentagonal tiling of \mathbb{C} ?

Why is E conformal to \mathbb{C} ?

- Quick ans: E has a special symmetry called "subdivisional self-similarity" or "zoom-in self-similarity"
- ▶ Key observation: There is no $f \in Aut(\mathbb{D})$ such that f(0) = 0 and f is "shrinking"
- ▶ We say f is "shrinking" if there is a compact set S such that $f(S) \subsetneq S$
- Next observe that there is a conformal map $g: E \to E$ such that g fixes a point and is "shrinking"
- ▶ This rules out the possibility that E is conformal to \mathbb{D}

Subdivisional self-similarity of E

The pentagonal tiling with colors to highlight "zoom-in self-similarity"

Subdivisional self-similarity of E

 \blacktriangleright Start by defining a conformal map from \mathcal{K}_1 to \mathcal{K}_0 fixing the center of \mathcal{K}_0

Subdivisional self-similarity of E

- Extend the above to a conformal map from K_2 to K_1 fixing the center of K_0
- ► Continue this process to get a conformal from E to that fixes the center of K_0 and is "shrinking"

Summary so far

- We first defined conformal tiling using Schwarz reflections
- We gave another definition using equilateral tilings which enabled us to construct more examples of conformal tilings
- \blacktriangleright We constructed the pentagonal tiling and showed that it conformally tiles $\mathbb C$

Pause and ponder

- How did I get a picture of the pentagonal tiling?
 Ans: Convert to circle packing pattern + use circle packing algorithm
- ► Can we classify all the conformal tilings of the complex plane? What combinatorics give tiling of C?

Conformal triangulations certain meromorphic fns

Branched cover = covering map except a discrete set (critical values)

Defn.

 $f: X \to Y$ is a branched covering if

- ▶ *f* is holomorphic
- ▶ for every $p \in Y$, there is a small neighbourhood U such that
 - $f^{-1}(U) = \sqcup_{\alpha} V_{\alpha}$ where each V_{α} is a connected component
 - $f: V_{\alpha} \to U$ is $z \mapsto z^k$ in suitable coordinates

Examples:

- 1. $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ given by $z \mapsto z^2$
- 2. $f: \mathbb{C} \to \mathbb{C}$ given by $z \mapsto z^2(1-z)^3$

Conformal triangulations certain meromorphic fns

Branched cover = covering map except a discrete set (critical values)

Defn.

A branched cover $f: X \to \hat{\mathbb{C}}$ is a *Belyi function* if f has at most three critical values on the sphere

Prop. Given a Riemann surface X, we have

$$\left\{ \begin{array}{c} \mathsf{Belyi} \; \mathsf{functions} \\ \mathsf{on} \; X \end{array} \right\} \;\; \longleftrightarrow \;\; \left\{ \begin{array}{c} \mathsf{Conformal} \\ \mathsf{triangulations} \; \mathsf{of} \; X \end{array} \right\}$$

Examples:

- 1. $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ given by $z \mapsto z^2$
- 2. $f: \mathbb{C} \to \hat{\mathbb{C}}$ given by $f(z) = \wp_{\Lambda}(z)^2$ where Λ is such that \wp_{Λ} has $0, 1, -1, \infty$ as critical values

Conformal triangulations cortain meromorphic fns

Conformal triangulation → Belyi function

- ightharpoonup First recall the conformal traingulation of $\hat{\mathbb{C}}$ consisting of two triangles
- Start with a particular triangle and map it to one of the triangles of $\hat{\mathbb{C}}$ using a conformal map
- Pick an adjacent triangle and extend the above map to this triangle via Schwarz reflections
- Continue extending using Schwarz reflections

Conformal triangulations cortain meromorphic fns

Belyi function --> Conformal triangulation

- ▶ Given $f: X \to \hat{\mathbb{C}}$, we "lift/pullback" the triangulation of $\hat{\mathbb{C}}$ to get a triangulation X
- ▶ The vertices of the triangulation will be $f^{-1}\{0,1,\infty\}$
- The edges of the triangulation will be $f^{-1}([0,1]), f^{-1}([1,\infty]), f^{-1}([\infty,0])$
- Claim 1: This gives a triangular tilling of X
- ► This triangular tiling will be a conformal tiling because we can get hold of a Schwarz reflection along each edge

Which Riemann surfaces have conformal tilings?

Lemma: There is a compact Riemann surface which does not admit a conformal tiling

Proof by pigeonhole principle

- 1. Fact: There are uncountably many distinct compact Riemann surfaces
- 2. There are only countably many compact equilateral surfaces
 - Any compact eq. surface has finitely many triangles
 - ▶ For a fixed $n \in \mathbb{N}$, there are finitely many eq. surfaces having n triangles
 - (E is determined by combinatorics of how Δ are glued together)

Which Riemann surfaces have conformal tilings?

Belyi's theorem: Let X be a **compact** Riemman surface, then

X admits a conformal tiling

X admits a Belyi function

 \exists polynomials p_1, \ldots, p_{n-1} such that

$$X \simeq \{[z_0 : \cdots : z_n] : p_1(\vec{z}) = \cdots = p_{n-1}(\vec{z}) = 0\} \subseteq \mathbb{C}P^n$$

and the coefficients of p_i are algebraic numbers

Which Riemann surfaces have conformal tilings?

Theorem [Bishop & Rempe, 21]: Every non-compact Riemann surface admits a conformal tiling

References

- [BR21] Christopher J Bishop and Lasse Rempe. "Non-compact Riemann surfaces are equilaterally triangulable". In: arXiv preprint arXiv:2103.16702 (2021).
- [BS97] Philip Bowers and Kenneth Stephenson. "A "regular" pentagonal tiling of the plane". In: Conformal Geometry and Dynamics of the American Mathematical Society 1.5 (1997), pp. 58–86.
- [JW18] G.A. Jones and J. Wolfart. *Dessins d'Enfants on Riemann Surfaces*. Springer International Publishing, 2018.