In [71]: import numpy as np
 import pandas as pd
 import os, sys
 import matplotlib.pyplot as plt
 %matplotlib inline
 import seaborn as sns
 from sklearn.preprocessing import MinMaxScaler
 from xgboost import XGBClassifier
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import accuracy_score

In [72]: df=pd.read_csv("parkinsons.data")

<u></u>

Out[73]:

In [73]: df.head()

name MDVP:Fo(Hz) MDVP:Fhi(Hz) MDVP:Flo(Hz) MDVP:Jitter(%) MDVP:Jitter(Abs) MDVP:RAP MDVP:PPQ Jitter:DDP MDVP:Shimmer Shimmer:DDA **0** phon R01 S01 1 119.992 157.302 74.997 0.00784 0.00007 0.00370 0.00554 0.01109 0.04374 0.06545 **1** phon R01 S01 2 122.400 148.650 113.819 0.00968 0.00008 0.00465 0.00696 0.01394 0.06134 0.09403 **2** phon R01 S01 3 116.682 0.00009 0.00544 0.01633 0.05233 0.08270 131.111 111.555 0.01050 0.00781 3 phon R01 S01 4 116.676 137.871 111.366 0.00997 0.00009 0.00502 0.00698 0.01505 0.05492 0.08771 4 phon R01 S01 5 116.014 141.781 110.655 0.01284 0.00011 0.00655 0.00908 0.01966 0.06425 0.10470

5 rows × 24 columns

,

In [75]: # by using describe we caluclating the count, mean, std, min, 25%, 50%, 75%, max...:
 df.describe().transpose()

^

Out[75]:

	count	mean	std	min	25%	50%	75%	max
MDVP:Fo(Hz)	195.0	154.228641	41.390065	88.333000	117.572000	148.790000	182.769000	260.105000
MDVP:Fhi(Hz)	195.0	197.104918	91.491548	102.145000	134.862500	175.829000	224.205500	592.030000
MDVP:Flo(Hz)	195.0	116.324631	43.521413	65.476000	84.291000	104.315000	140.018500	239.170000
MDVP:Jitter(%)	195.0	0.006220	0.004848	0.001680	0.003460	0.004940	0.007365	0.033160
MDVP:Jitter(Abs)	195.0	0.000044	0.000035	0.000007	0.000020	0.000030	0.000060	0.000260
MDVP:RAP	195.0	0.003306	0.002968	0.000680	0.001660	0.002500	0.003835	0.021440
MDVP:PPQ	195.0	0.003446	0.002759	0.000920	0.001860	0.002690	0.003955	0.019580
Jitter:DDP	195.0	0.009920	0.008903	0.002040	0.004985	0.007490	0.011505	0.064330
MDVP:Shimmer	195.0	0.029709	0.018857	0.009540	0.016505	0.022970	0.037885	0.119080
MDVP:Shimmer(dB)	195.0	0.282251	0.194877	0.085000	0.148500	0.221000	0.350000	1.302000
Shimmer:APQ3	195.0	0.015664	0.010153	0.004550	0.008245	0.012790	0.020265	0.056470
Shimmer:APQ5	195.0	0.017878	0.012024	0.005700	0.009580	0.013470	0.022380	0.079400
MDVP:APQ	195.0	0.024081	0.016947	0.007190	0.013080	0.018260	0.029400	0.137780
Shimmer:DDA	195.0	0.046993	0.030459	0.013640	0.024735	0.038360	0.060795	0.169420
NHR	195.0	0.024847	0.040418	0.000650	0.005925	0.011660	0.025640	0.314820
HNR	195.0	21.885974	4.425764	8.441000	19.198000	22.085000	25.075500	33.047000
RPDE	195.0	0.498536	0.103942	0.256570	0.421306	0.495954	0.587562	0.685151
DFA	195.0	0.718099	0.055336	0.574282	0.674758	0.722254	0.761881	0.825288
spread1	195.0	-5.684397	1.090208	-7.964984	-6.450096	-5.720868	-5.046192	-2.434031
spread2	195.0	0.226510	0.083406	0.006274	0.174351	0.218885	0.279234	0.450493
D2	195.0	2.381826	0.382799	1.423287	2.099125	2.361532	2.636456	3.671155
PPE	195.0	0.206552	0.090119	0.044539	0.137451	0.194052	0.252980	0.527367
status	195.0	0.753846	0.431878	0.000000	1.000000	1.000000	1.000000	1.000000

In [76]: df.status.value_counts()

Out[76]: 1 0 147 48

Name: status, dtype: int64

In [77]: # so finally we concluded there are 147 people affected with pd...

In [92]: fig, ax = plt.subplots(1,3,figsize=(16,10))
sns.boxplot(x='spread1',data=df, ax=ax[0],orient='v')
sns.boxplot(x='spread2',data=df, ax=ax[1],orient='v')
sns.boxplot(x='PPE',data=df,ax=ax[2],orient='v')

Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0x1b384663e80>

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x1b38310f1d0>

In [80]: # The measures of vocal fundamental frequency are shown above.
#There is a positive skewness for minimum vocal fundemental frequency
with more high values between 75Hz and 125Hhz. The average vocal
#frequency is almost normally distributed with more values
ranging 115Hz and 130Hz. The high vocal frequency does not have
#any skewness, but some range of values are at the right most tail

1

```
In [81]: #Bi Variate analysis:
sns.distplot( df[df.status == 0]['spread1'], color = 'R')
sns.distplot( df[df.status == 1]['spread1'], color = 'B')
```

<u>^</u>

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x1b383bb8940>

In [82]: # Spread1 is normally distributed between person who have PD and who is normal. # People who have spread1 between - 8.5 and -7.5 are more and they are normal. # People whose spread1 is between -6.5 and -5 are having PD

```
In [93]: fig, ax = plt.subplots(1,2,figsize=(16,8))
sns.boxplot(x='status',y='NHR',data=df,ax=ax[0])
sns.boxplot(x='status',y='HNR',data=df,ax=ax[1])
```


In [84]: # People who have PD(status equal to one) have higher levels of Noise to Harmonic ratio. # Also, looking into the HNR ratio people who have PD have lower levels in the same.

```
In [85]: # Correlation comparision with heat map
           corr = df.corr()
           sns.set context("notebook", font scale=1.0, rc={"lines.linewidth":
           3.5})
           plt.figure(figsize=(18,7))
           # create a mask so we only see the correlation values once
           mask = np.zeros like(corr)
           mask[np.triu_indices_from(mask, 1)] = True
           a = sns.heatmap(corr, mask=mask, annot=True, fmt='.2f')
           rotx = a.set_xticklabels(a.get_xticklabels(), rotation=90)
           roty = a.set_yticklabels(a.get_yticklabels(), rotation=30)
                          0.40 1.00
                         0.60 0.08 1.00
                                                                                                                                       - 0.8
                         -0.12 0.10 -0.14 1.00
                         -0.38 -0.03 -0.28 0.94 1.00
                         -0.08 0.10 -0.10 0.99 0.92 1.00
                         -0.11 0.09 -0.10 0.97 0.90 0.96 1.00
                         -0.08 0.10 -0.10 0.99 0.92 1.00 0.96 1.00
                                                                                                                                        - 0.4
                         -0.10 0.00 -0.14 0.77 0.70 0.76 0.80 0.76 1.00
                         -0.07 0.04 -0.12 0.80 0.72 0.79 0.84 0.79 0.99 1.00
                         -0.09 -0.00 -0.15 0.75 0.70 0.74 0.76 0.74 0.99 0.96 1.00
                         -0.07 -0.01 -0.10 0.73 0.65 0.71 0.79 0.71 0.98 0.97 0.96 1.00
                         -0.08 0.00 -0.11 0.76 0.65 0.74 0.80 0.74 0.95 0.96 0.90 0.95 1.00
                                                                                                                                        - 0.0
                         -0.09 -0.00 -0.15 0.75 0.70 0.74 0.76 0.74 0.99 0.96 1.00 0.96 0.90 1.00
                         -0.02 0.16 -0.11 0.91 0.83 0.92 0.84 0.92 0.72 0.74 0.72 0.66 0.69 0.72 1.00
                         0.06 -0.02 0.21 -0.73 -0.66 -0.72 -0.73 -0.72 -0.84 -0.83 -0.83 -0.81 -0.80 -0.83 -0.71 1.00
                         -0.38 -0.11 -0.40 0.36 0.44 0.34 0.33 0.34 0.45 0.41 0.44 0.40 0.45 0.44 0.37 -0.60 1.00
                         -0.45 -0.34 -0.05 0.10 0.18 0.06 0.20 0.06 0.16 0.17 0.15 0.21 0.16 0.15 -0.13 -0.01 -0.11 1.00
                                                                                                                                        -0.4
                         -0.41 -0.08 -0.39 0.69 0.74 0.65 0.72 0.65 0.65 0.65 0.61 0.65 0.67 0.61 0.54 -0.67 0.59 0.20 1.00
                         -0.25 -0.00 -0.24 0.39 0.39 0.32 0.41 0.32 0.45 0.45 0.40 0.46 0.50 0.40 0.32 -0.43 0.48 0.17 0.65 1.00
                         -0.37 -0.07 -0.34 0.72 0.75 0.67 0.77 0.67 0.69 0.70 0.65 0.70 0.72 0.65
                                                                                           -0.69 0.55 0.27 0.96 0.64 0.48 1.00
                         -0.38 -0.17 -0.38 0.28 0.34 0.27 0.29 0.27 0.37 0.35 0.35 0.35 0.36 0.35 0.19 -0.36 0.31 0.23 0.56 0.45 0.34 0.53
                                                MDVP:RAP
                                                         Jitter:DDP
                                                                                                     DFA
                                                                                                                   D2
                                       MDVP:Jitter(%)
                                                                      Shimmer:APQ3
                                                                               MDVP:APQ
                                                                                    Shimmer:DDA
                                                                  MDVP:Shimmer(dB)
                                                             MDVP:Shimme
In [86]: # MDVP:Jitter(%) has a very high correlation with MDVP:Jitter(Abs),MDVP:RAP,MDVP:PPQ,Jitter:DDP
           # MDVP:Shimmer has a very correlation with
           # MDVP:Shimmer(dB),Shimmer:APQ3,Shimmer:APQ5,MDVP:APQ,Shimmer:DDA this may be because they are related to each other.
           #This may be because multi-dimensinal voice programs analysis is closely related with these variables
           #The target variable status has a weak positive corelation with spread1
```

In [87]: # Initialize a MinMaxScaler and scale the features to between -1 and 1 to normalize them.

The MinMaxScaler transforms features by scaling them to a given range. # The fit_transform() method fits to the data and then transforms it.

We don't need to scale the labels.

