1. Greeting

Numerical Analysis

Initial-Value Problems for Ordinary Differential Equations

OL Say

ol.say@itc.edu.kh

Institute of Technology of Cambodia

May 9, 2023

2. Outline

- 1 Differential Equations
- 2 Forward Euler Method
- 3 Runge-Kutta Methods
- 4 Multistep Methods
- 5 Systems of Ordinary Differential Equations

OL Say (ITC) Numerical Analysis May 9, 2023 2/49

- 1 In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.
- 2 The term "ordinary" is used in contrast with partial differential equation (PDE) which may be with respect to more than one independent variable.
- Given f, a function of t, y, and derivatives of y. Then an equation of the form

$$y^{(n)} = f(t, y, y', ..., y^{(n-1)}), \text{ where } y = y(t),$$

is called an explicit ODE of order n.

4 More generally, an implicit ODE of order *n* takes the form:

$$f(t, y, y', ..., y^{(n)}) = 0$$
, where $y = y(t)$.

- 5 A number of coupled DEs forms a system of DEs.
- 6 If Y is a vector whose elements are functions;

$$Y(t) = (y_1(t), y_2(t), \dots, y_m(t)),$$

and F is a vector-valued function of Y and its derivatives, then

$$Y^{(n)} = F(t, Y, Y', ..., Y^{(n-1)})$$

is an explicit system of ODEs of order n and dimension m.

In column vector form:

$$\begin{pmatrix} y_1^{(n)} \\ y_2^{(n)} \\ \vdots \\ y_m^{(n)} \end{pmatrix} = \begin{pmatrix} f_1(t,Y,Y',\dots,Y^{(n-1)}) \\ f_2(t,Y,Y',\dots,Y^{(n-1)}) \\ \vdots \\ f_m(t,Y,Y',\dots,Y^{(n-1)}) \end{pmatrix}$$

These are not necessarily linear.

The implicit analogue is:

$$F\left(t,Y,Y',\ldots,Y^{(n-1)}\right)=\mathbf{0}$$

where $\mathbf{0} = (0, 0, ..., 0)$ is the zero vector.

In matrix form

$$\begin{pmatrix} f_1(t,Y,Y',\ldots,Y^{(n)}) \\ f_2(t,Y,Y',\ldots,Y^{(n)}) \\ \vdots \\ f_m(t,Y,Y',\ldots,Y^{(n)}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- Note that an explicit ODE of order m can always be transformed into m explicit ODEs of order 1 by using the notation $u_1 = y$ and $u_{j+1} = y^{(j)}$ for j = 1, ..., m-1, and $U = (u_1, ..., u_m)$.
- 1 In matrix form:

$$U' = F(t, U) \Leftrightarrow \begin{pmatrix} u_1' \\ u_2' \\ \vdots \\ u_m' \end{pmatrix} = \begin{pmatrix} u_2 \\ u_3 \\ \vdots \\ f(t, u_1, u_2, \dots, u_m) \end{pmatrix}$$

- The solution of the equation requires the knowledge of m auxiliary conditions.
- If these conditions are specified at the same value of t, the problem is said to be an initial value problem (IVP).
- The auxiliary conditions, called initial conditions, have the form

$$y_0(a) = \alpha_1, y_1(a) = \alpha_2, \dots, y_{m-1}(a) = \alpha_m$$

- If y_j are specified at different values of t, the problem is called a boundary value problem (BVP).
- for In this chapter, we discus IVP of the following types
 - explicit ODE of order 1,
 - **b** explicit system of ODEs of order 1 and dimension m_{ij}
 - c explicit ODE of order m.

Definition 1 (Lipschitz)

A function f(t,y) is said to satisfy a Lipschitz condition in the variable y on a set $D \subset \mathbb{R}^2$ if a constant L > 0 exists with

$$|f(t,y_1)-f(t,y_2)| \leq L|y_1-y_2|,$$

whenever (t, y_1) and (t, y_2) are in D. The constant L is called a Lipschitz constant for f.

Theorem 2

Suppose that $D = \{(t,y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t,y) is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem

$$y(t) = f(t, y), a \le t \le b, y(a) = \alpha$$

has a unique solution y(t) for $a \le t \le b$.

Definition 3

The initial-value problem (IVP)

$$\frac{dy}{dt} = f(t, y), \ a \le t \le b, \ y(a) = \alpha,$$

is said to be a well-posed problem if:

- 1 A unique solution, y(t), to the problem exists, and
- 2 There exist constants $\varepsilon_0 > 0$ and k > 0 such that for any ε , with $\varepsilon_0 > \varepsilon > 0$, whenever $\delta(t)$ is continuous with $|\delta(t)| < \varepsilon$ for all t in [a,b], and when $|\delta_0| < \varepsilon$, the initial-value problem

$$\frac{dz}{dt} = f(t,z) + \delta(t), \ \alpha \le t \le b, \ z(\alpha) = \alpha + \delta_0,$$

has a unique solution z(t) that satisfies

$$|z(t) - y(t)| < k\varepsilon$$
 for all t in $[a, b]$.

In other words, and IVP is well-posed if it have the properties that:

- a solution exists,
- 2 the solution is unique,
- 3 the solution's behaviour changes continuously with initial conditions

Theorem 4

Suppose $D = \{(t,y) | a \le t \le b \text{ and } -\infty < y < \infty\}$. If f is continuous and satisfies a Lipschitz condition in the variable y on the set D, then the initial-value problem

$$\frac{dy}{dt} = f(t, y), \ a \le t \le b, \ y(a) = \alpha$$

is well-posed.

The object of Euler's method is to obtain approximations to the well-posed IVP

$$y' = f(t,y), \ a \le t \le b, \ y(a) = \alpha.$$

2 On an interval I = [a, b], we defined N + 1 mesh points in I by

$$t_i = a + ih$$
, for each $i = 0, 1, 2 ..., N$.

3 Suppose that y(t), the unique solution to the IVP, has two continuous derivatives on I, so that for each i = 0, 1, ..., N - 1,

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i)$$
, for some $\xi_i \in (t_{i+1}, t_i)$.

4 Euler's method constructs $w_i \approx y(t_i)$, for each i = 1, 2, ..., N, by dropping the remainder.

$$w_0 = \alpha$$
, $w_{i+1} = w_i + hf(t_i, w_i)$, for each $i = 0, 1, ..., N-1$.

OL Say (ITC) Numerical Analysis May 9, 2023 11,

Algorightm: Forward Euler Method

To approximate the solution of the IVP

$$y' = f(t,y), \ a \le t \le b, \ y(a) = \alpha,$$

at (N+1) equally spaced numbers in the interval [a,b]: INPUT endpoints a,b; integer N; initial condition α . OUTPUT approximation w to y at the (N+1) values of t.

- **1** Set h = (b a)/N; t = a; $w = \alpha$; OUTPUT (t, w).
- 2 For i from 1 to N do
 - a Set w = w + hf(t, w); t = a + ih.
 - \bigcirc OUTPUT (t, w).

Example 5

Use an algorithm for Euler's method to approximate the solution to

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$,

at t = 2 with step size h = 0.2. (Exact solution $y(t) = (t + 1)^2 - e^t/2$.)

		I VM *7/////////	VCDWVV AD	
i	t	(1)	y Wy	y-w
0	0.0	0.50000000	0.50000000	0.00000000
1	0.2	0.80000000	0.82929862	0.02929862
2	0.4	1.15200000	1.21408765	0.06208765
3	0.6	1.55040000	1.64894060	0.09854060
4	8.0	1.98848000	2.12722954	0.13874954
5	1.0	2.45817600	2.64085909	0.18268309
6	1.2	2.94981120	3.17994154	0.23013034
7	1.4	3.45177344	3.73240002	0.28062658
8	1.6	3.95012813	4.28348379	0.33335566
9	1.8	4.42815375	4.81517627	0.38702251
10	2.0	4.86578450	5.30547195	0.43968745

OL Say (ITC) Numerical Analysis May 9, 2023

Theorem 6

Suppose f is continuous and satisfies a Lipschitz condition with constant L on $D = \{(t,y)|a \le t \le b \text{ and } -\infty < y < \infty\}$ and that a constant M exists with

$$|y''(t)| \le M$$
, for all $t \in [a, b]$,

where y(t) denotes the unique solution to the initial-value problem

$$y' = f(t, y), a \le t \le b, y(a) = \alpha.$$

Let $w_0, w_1, ..., w_N$ be the approximations generated by Euler's method for some positive integer N. Then, for each i = 0, 1, 2, ..., N,

$$|y(t_i) - w_i| \le \frac{hM}{2L} [e^{L(t_i - a)} - 1].$$

1 Suppose the solution y(t) to the initial-value problem

$$y' = f(t,y), \ a \le t \le b, \ y(a) = \alpha,$$
 in uous derivatives.

has (n + 1) continuous derivatives.

2 If we expand the solution, y(t), in terms of its n-th Taylor polynomial about t_i and evaluate at t_{i+1} , we obtain

$$y(t_{i+1}) = y(t_i) + hy'(t) + \frac{h^2}{2}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

for some ξ_i in (t_i, t_{i+1}) .

3 Successive differentiation of the solution, y(t), gives

$$y'(t) = f(t, y(t)), y''(t) = f'(t, y(t)), \dots, y^{(k)}(t) = f^{(k-1)}(t, y(t)).$$

- 4 Then $y(t_{i+1}) = y(t_i) + hf(t_i, y_{t_i}) + \frac{h^2}{2}f'(t_i, y(t_i)) + \cdots$ $+\frac{h^n}{n!}f^{(n-1)}(t_i,y(t_i))+\frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i,y(\xi_i))$
- The difference-equation method corresponding to the above equation is obtained by deleting the remainder term involving ξ_i .
- 6 Taylor method of order n

$$w_0 = \alpha,$$

 $w_{i+1} = w_i + hT^{(n)}(t_i, w_i), i = 0, 1, ..., N-1$

$$\begin{aligned} w_0 &= \alpha, \\ w_{i+1} &= w_i + h T^{(n)}(t_i, w_i), \ i = 0, 1, \dots, N-1, \end{aligned}$$
 where $T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \dots + \frac{h^{n-1}}{n!}f^{(n-1)}(t_i, w_i).$

From the definitions, we identify Euler's method as Taylor's method of order one.

Example 7

Apply Taylor's method of order two with n=10 to the initial-value problem $y'=y-t^2+1,\ 0\leq t\leq 2,\ y(0)=0.5.$

1
$$f(t,y) = y - t^2 + 1 \Rightarrow f'(t,y) = y' - 2t = y - t^2 + 1 - 2t$$

2
$$T^{(2)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) = \left(1 + \frac{h}{2}\right)(w_i - t_i^2 + 1) - ht_i$$

3 The second-order method becomes

$$w_0 = 0.5, t_0 = 0$$

For $i = 0, 1, ..., 9$:
 $w_{i+1} = w_i + h\left[\left(1 + \frac{h}{2}\right)(w_i - t_i^2 + 1) - ht_i\right],$
 $t_{i+1} = t_i + h.$

Table: Taylor's method of order 2

i	t	W ⁵	खुक्ष <i>्टि प्र</i>	y-w
0	0.0	0.50000000	0.50000000	0.00000000
1	0.2	0.83000000	0.82929862	0.00070138
2	0.4	1.21580000	1.21408765	0.00171235
3	0.6	1.65207600	1.64894060	0.00313540
4	8.0	2.13233272	2.12722954	0.00510318
5	1.0	2.64864592	2.64085909	0.00778683
6	1.2	3.19134802	3.17994154	0.01140648
7	1.4	3.74864458	3.73240002	0.01624457
8	1.6	4.30614639	4.28348379	0.02266261
9	1.8	4.84629860	4.81517627	0.03112233
10	2.0	5.34768429	5.30547195	0.04221234

- 1 The accuracy of numerical integration can be greatly improved by keeping more terms of the series.
- 2 Thus an n-th order Taylor method would use the truncated Taylor polynomial

$$P_n(t+h) = y(t) + y'(t)h + \frac{1}{2!}y''(t)h^2 + \cdots + \frac{1}{n!}y^{(n)}(t)h^n.$$

3 To arrive at the second-order Runge-Kutta method, we assume an integration formula of the form

$$y(t+h) = y(t) + b_1 f(t,y)h + b_2 f(t+c_2h,y+a_{21}hf(t,y))h,$$
 (*)

and attempt to find the parameters a_1, a_2, b_1 and b_2 by matching above equation to the Taylor polynomial:

$$P_{2}(t+h) = y(t) + y'(t)h + \frac{1}{2!}y''(t)h^{2}$$

$$= y(t) + f(t,y)h + \frac{1}{2}f'(t,y)h^{2}$$

$$= y(t) + f(t,y)h + \frac{1}{2}\left[f_{t}(t,y) + f_{y}(t,y)y'(t)\right]h^{2}$$

$$= y(t) + f(t,y)h + \frac{1}{2}f_{t}(t,y)h^{2} + \frac{1}{2}f(t,y)f_{y}(t,y)h^{2}, \quad (**)$$

By the fact that

$$f(x + h, y + k) = f(x, y) + f_x(x, y)h + f_y(x, y)k + R_2(x, y)$$
, we get

$$f(t + c_2h, y + a_{21}hf(t, y))$$

= $f(t, y) + f_t(t, y)c_2h + f_y(t, y)a_{21}hf(t, y) + R_2(t, y)$

5 The equation (*) becomes

$$y(t,y) = y(t,y) + b_1 f(t,y) + b_2 f(t,y) + b_2 c_2 f_t(t,y) h^2 + b_2 a_{21} f(t,y) f_y(t,y) h^2 + R_2(t,y)$$

6 Truncate $R_2(t, y)$ of the last equation and compare it to (**),

$$b_1 + b_2 = 1, b_2 c_2 = \frac{1}{2}$$
, and $b_2 a_{21} = \frac{1}{2}$.

7 These are three non-linear equations for the four unknowns. Using a_{21} as a free parameter, we have

$$b_1 = 1 - \frac{1}{2a_{21}}, b_2 = \frac{1}{2a_{21}}, c_2 = a_{21}.$$

- 8 Some of the popular choices and the names associated with the resulting formulas are as follows:
- **9** Explicit midpoint method: $(b_1, b_2, c_2, a_{21}) = (0, 1, 1/2, 1/2)$

$$w_0 = \alpha, t_0 = a,$$

For $i = 0, 1, ..., N - 1$
 $w_{i+1} = w_i + hf\left(t_i + \frac{1}{2}h, w_i + \frac{1}{2}hf(t_i, w_i)\right), t_{i+1} = t_i + h.$

Or equivalently,

$$k_1 = f(t_i, w_i),$$

 $k_2 = f\left(t_i + \frac{1}{2}h, w_i + \frac{1}{2}hk_1\right),$
 $w_{i+1} = w_i + hk_2, t_{i+1} = t_i + h.$

Modified Euler's/Heun's second-order method: $(b_1, b_2, c_2, a_{21}) = (1/2, 1/2, 1, 1)$

$$w_0 = \alpha, t_0 = a,$$

For $i = 0, 1, ..., N - 1$
 $w_{i+1} = w_i + \frac{1}{2}hf(t_i, w_i) + \frac{1}{2}hf(t_i + h, w_i + hf(t_i, w_i)), t_{i+1} = t_i + h.$

1 Ralston's method: $(b_1, b_2, c_2, a_{21}) = (1/4, 3/4, 2/3, 2/3)$

$$w_0 = \alpha, t_0 = a,$$

For $i = 0, 1, ..., N-1$

$$w_{i+1} = w_i + \frac{1}{4}hf(t_i, w_i) + \frac{3}{4}hf\left(t_i + \frac{2}{3}h, w_i + \frac{2}{3}hf(t_i, w_i)\right), t_{i+1} = t_i + h.$$

- The fourth-order Runge-Kutta method is obtained from the Taylor series along the same lines as the second-order method.
- 2 As the second-order case, there is no unique fourth-order Runge-Kutta formula.
- 3 The most popular version formula is described as the following sequence of operations:

$$w_0 = \alpha, t_0 = a,$$
For $i = 0, 1, ..., N - 1,$

$$k_1 = f(t_i, w_i)$$

$$k_2 = f\left(t_i + \frac{1}{2}h, w_i + \frac{1}{2}hk_1\right)$$

$$k_3 = f\left(t_i + \frac{1}{2}h, w_i + \frac{1}{2}hk_2\right)$$

$$k_4 = f(t_i + h, w_i + hk_3)$$

$$w_{i+1} = w_i + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4), t_{i+1} = t_i + h.$$

Example 8

Apply Runge-Kutta's method of order four with n=10 to the initial-value problem $y'=y-t^2+1,\ 0\le t\le 2,\ y(0)=0.5.$

i	t	/5°9/W	S S Y	y - w
0	0.0	0.50000000	0.50000000	0.00000000
1	0.2	0.82929333	0.82929862	0.00000529
2	0.4	1.21407621	1.21408765	0.00001144
3	0.6	1.64892202	1.64894060	0.00001858
4	0.8	2.12720268	2.12722954	0.00002685
5	1.0	2.64082269	2.64085909	0.00003639
6	1.2	3.17989417	3.17994154	0.00004737
7	1.4	3.73234007	3.73240002	0.00005994
8	1.6	4.28340950	4.28348379	0.00007429
9	1.8	4.81508569	4.81517627	0.00009057
10	2.0	5.30536300	5.30547195	0.00010895

130

1 The family of explicit Runge-Kutta methods is a generalization of the fourth-order Runge-Kutta method mentioned above. It is given by

```
\begin{split} w_0 &= \alpha, t_0 = a, \\ \text{For } i &= 0, 1, \dots, N-1 : \\ k_1 &= f(t_i, w_i), \\ k_2 &= f(t_i + c_2 h, w_i + (a_{21} k_1) h), \\ k_3 &= f(t_i + c_3 h, w_i + (a_{31} k_1 + a_{32} k_2) h), \\ &\vdots \\ k_m &= f(t_i + c_m h, w_i + (a_{m1} k_1 + a_{m2} k_2 + \dots + a_{m,m-1} k_{m-1}) h), \\ w_{i+1} &= w_i + h(b_i k_1 + b_2 k_2 + \dots + b_m k_m), \ t_{i+1} &= t_i + h. \end{split}
```

- 2 To specify a particular method, one needs to provide the integer m (the number of stages), and the coefficients a_{ij} (for $1 \le j < i \le m$), b_i (for i = 1, 2, ..., m) and c_i (for i = 2, 3, ..., m).
- 3 The matrix (a_{ij}) is called the Runge-Kutta matrix, while the b_i and $c \neq$ are known as the weights and the nodes.
- 4 These data are usually arranged in a mnemonic device, known as a Butcher tableau.

- **1** We list some explicit Runge-Kutta's methods (matrix (a_{ij}) is lower triangle) as the following.
- Forward Euler's method: The Euler method is first order. The lack of stability and accuracy limits its popularity mainly to use as a simple introductory example of a numeric solution method.

3 Generic second-order method:

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\alpha & \alpha & 0 \\
\hline
& 1 - \frac{1}{2\alpha} & \frac{1}{2\alpha}
\end{array}$$

Explicit midpoint method: The (explicit) midpoint method is a second-order method with two stages (see also the implicit midpoint method below):

Heun's method: Heun's method is a second-order method with two stages. It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method.

6 Ralston's method: Ralston's method is a second-order method with two stages and a minimum local error bound:

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
2/3 & 2/3 & 0 \\
\hline
& 1/4 & 3/4
\end{array}$$

Generic third-order method: for $\alpha \neq 0, 2/3, 1$,

8 Kutta's third-order method:

9 Heun's third-order method:

Van der Houwen's/Wray third-order method:

Ralston's third-order method:

Third-order Strong Stability Preserving Runge-Kutta (SSPRK3):

Classic fourth-order method: The "original" Runge-Kutta method.

3/8-rule fourth-order method: This method doesn't have as much notoriety as the "classic" method, but is just as classic because it was proposed in the same paper (Kutta, 1901).

0	0	0	0	0
1/3	1/3	0	0	G 0
2/3	-1/3	10	0	0
\$1B	1 =	1	_ 1	0
Z	1/8	3/8	3/8	1/8

4. Multistep Methods

Definition 9

An *m*-step multistep method for solving the initial-value problem

$$y' = f(t, y), \ a \le t \le b, \ y = \alpha,$$

has a difference equation for finding the approximation w_{i+1} at the mesh point t_{i+1} represented by the following equation, where m is an integer greater than 1:

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$$

$$+ h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i)$$

$$+ \dots + b_0 f(t_{i+1}, w_{i+1-m})],$$

for i = m - 1, m, ..., N - 1, where h = (b - a)/N, the $a_0, a_1, ..., a_{m-1}$ and $b_0, b_1, ..., b_m$ are constants, and the starting values

$$w_0 = \alpha$$
, $w_0 = \alpha_1$, $w_0 = \alpha_2$, ..., $w_{m-1} = \alpha_{m-1}$

are specified.

4. Multistep Methods

- 1 When $b_m = 0$ the method is called explicit, or open because the equation gives w_{i+1} explicitly in terms of previously determined values.
- When b ≠ 0 the method is called implicit, or close, because w_{i+1} occurs on both sides of the equation, so w_{i+1} is specified only implicitly.
- 3 Some of the explicit multistep methods together with their required starting values and local truncation errors are as follows.
- 4 Adams-Bashforth Two-Step Explicit Method: i = 1, ..., N 1.

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1 \\ w_{i+1} &= w_i + \frac{h}{2} \big[\overline{3f(t_i, w_i)} - f(t_{i-1}, w_{i-1}) \big], \\ \tau_{i+1}(h) &= \frac{5}{12} y'''(\mu_i) h^2, \mu_i \in (t_{i-1}, t_{i+1}). \end{split}$$

6 Adams-Bashforth Three-Step Explicit Method: i = 2, ..., N - 1.

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1, w_2 = \alpha_2 \\ w_{i+1} &= w_i + \frac{h}{12} [23f(t_i, w_i) - 16f(t_{i-1}, w_{i-1}) + 5f(t_{i-2}, w_{i-2})], \\ \tau_{i+1}(h) &= \frac{3}{8} y^{(4)}(\mu_i) h^3, \mu_i \in (t_{i-2}, t_{i+1}). \end{split}$$

6 Adams-Bashforth Four-Step Explicit Method: i = 3, ..., N - 1.

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1, w_2 = \alpha_2, w_3 = \alpha_3 \\ w_{i+1} &= w_i + \frac{h}{24} \big[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) \\ &- 9f(t_{i-3}, w_{i-3}) \big], \\ \tau_{i+1}(h) &= \frac{251}{720} y^{(5)}(\mu_i) h^4, \mu_i \in (t_{i-3}, t_{i+1}). \end{split}$$

OL Say (ITC) Numerical Analysis May 9, 2023 37 / 49

Adams-Bashforth Five-Step Explicit Method: i = 4, ..., N - 1.

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1, w_2 \equiv \alpha_2, w_3 = \alpha_3, w_4 = \alpha_4 \\ w_{i+1} &= w_i + \frac{h}{720} [1901f(t_i, w_i) - 2774f(t_{i-1}, w_{i-1}) \\ &+ 2616f(t_{i-2}, w_{i-2}) - 1274f(t_{i-3}, w_{i-3}) \\ &+ 251f(t_{i-4}, w_{i-4})], \\ \tau_{i+1}(h) &= \frac{95}{288} y^{(6)}(\mu_i) h^5, \mu_i \in (t_{i-4}, t_{i+1}). \end{split}$$

Some of the more common implicit methods are as follows.

OL Say (ITC)

9 Adams-Moulton Two-Step Implicit Method: i = 1, ..., N - 1

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1, \\ w_{i+1} &= w_i + \frac{h}{2} \big[5 f(t_{i+1}, w_{i+1}) + 8 f(t_i, w_w) - f(t_{i-1}, w_{i-1}) \big] \\ \tau_{i+1}(h) &= -\frac{1}{14} y^{(4)}(\mu_i) h^3, \mu_i \in (t_{i-1}, t_{i+1}). \end{split}$$

10 Adams-Moulton Three-Step Implicit Method: i = 2, ..., N - 1

$$w_{0} = \alpha, w_{1} = \alpha_{1}, w_{2} = \alpha_{2},$$

$$w_{i+1} = w_{i} + \frac{h}{24} [9f(t_{i+1}, w_{i+1}) + 19f(t_{i}, w_{w}) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2})]$$

$$\tau_{i+1}(h) = -\frac{19}{720} y^{(5)}(\mu_{i}) h^{4}, \mu_{i} \in (t_{i-2}, t_{i+1}).$$

1 Adams-Moulton Four-Step Implicit Method: i = 3, ..., N - 1

$$\begin{split} w_0 &= \alpha, w_1 = \alpha_1, w_2 = \alpha_2, w_3 = \alpha_3, \\ w_{i+1} &= w_i + \frac{h}{720} [251f(t_{i+1}, w_{i+1}) + 646f(t_i, w_w) - 264f(t_{i-1}, w_{i-1}) \\ &\quad + 106f(t_{i-2}, w_{i-2}) - 19f(t_{i-3}, w_{i-3})] \\ \tau_{i+1}(h) &= -\frac{3}{160} y^{(5)}(\mu_i) h^5, \mu_i \in (t_{i-3}, t_{i+1}). \end{split}$$

- The combination of an explicit method to predict and an implicit to improve the prediction is called a predictor-corrector method.
- 2 Consider the following fourth-order method for solving an initial-value problem.
- 3 The first step is to calculate the starting values w_0 , w_1 , w_2 , and w_3 for the four-step explicit Adams-Bashforth method.
- 4 To do this, we use a fourth-order one-step method, the Runge-Kutta method of order four.
- **5** The next step is to calculate an approximation, w_{4p} , to $y(t_4)$ using the explicit Adams-Bashforth method as predictor:

$$wp_4 = w_3 + \tfrac{h}{24} \big[55 f(t_3, w_3) - 59 f(t_2, w_2) + 37 f(t_1, w_1) - 9 f(t_0, w_0) \big]$$

6 This approximation is improved by inserting w_{4p} in the right side of the three-step implicit Adams-Moulton method and using that method as a corrector:

$$w_4 = w_3 + \tfrac{h}{24} [9f(t_4, wp_4) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1)].$$

OL Say (ITC) Numerical Analysis May 9, 2023 41/49

Example 10

Apply the Adams fourth-order predictor-corrector method with h = 0.2 and starting values from the Runge-Kutta fourth order method to the initial-value problem

$$y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5.$$

		10(1/3) ///(2/9// ====	1/2/2/11	
i	ti	W _i	y _i	$ y_i - w_i $
0	0.0	0.50000000	0.50000000	0.00000000
1	0.2	0.82929333	0.82929862	0.00000529
2	0.4	1.21407621	1.21408765	0.00001144
3	0.6	1.64892202	1.64894060	0.00001858
4	8.0	2.12720563	2.12722954	0.00002390
5	1.0	2.64082860	2.64085909	0.00003049
6	1.2	3.17990264	3.17994154	0.00003890
7	1.4	3.73235048	3.73240002	0.00004953
8	1.6	4.28342082	4.28348379	0.00006296
9	1.8	4.81509636	4.81517627	0.00007991
10	2.0	5.30537067	5.30547195	0.00010128

OL Say (ITC) Numerical Analysis May 9, 2023 42 / 49

Theorem 11

Suppose that

 $D = \{(t, u_1, u_2, ..., u_m) \mid a \le t \le b, -\infty < u_j < \infty, j = 1, 2, ..., m\},$ and let $f_j(t, u_1, u_2, ..., u_m)$, for each j = 1, 2, ..., m, be continuous and satisfy a Lipschitz condition on D. The system of first-order differential equations

$$\begin{cases} u'_{1} = f_{1}(t, u_{1}, u_{2}, \dots, u_{m}) \\ u'_{2} = f_{2}(t, u_{1}, u_{2}, \dots, u_{m}) \\ \vdots \\ u'_{m} = f_{m}(t, u_{1}, u_{2}, \dots, u_{m}) \end{cases},$$

subject to the initial conditions

$$u_1(a) = \alpha_1, u_2(a) = \alpha_2, ..., u_m(a) = \alpha_m,$$

has a unique solution $u_1(t), u_2(t), ..., u_m(t)$, for $a \le t \le b$.

- Methods to solve systems of first-order differential equations are generalizations of the methods for a single first-order equation.
- 2 For example, the classical Runge-Kutta method of order four can be generalized as follows.
- 3 Let an integer N > 0 be chosen and set h = (b a)/N.
- 4 Partition [a, b] into N subintervals with the mesh points

$$t_i = a + ih, i = 0, 1, ..., N.$$

- **5** Use the notation w_{ij} , for each i = 0, 1, ..., N and j = 1, 2, ..., m, to 6 For the initial conditions, set denote an approximation to $u_i(t_i)$.

$$W_{0,1} = \alpha_1, W_{0,2} = \alpha_2, ..., W_{0,m} = \alpha_m,$$

- **7** For i = 0, ..., N-1:
 - **a** For j = 1, ..., m: $k_{1,j} = f_i(t_i, w_{i,1}, ..., w_{i,m})$
 - **b** For j = 1, ..., m: $k_{2,j} = f_j \left(t_i + \frac{h}{2}, w_{i,1} + \frac{h}{2} k_{1,1}, ..., w_{i,m} + \frac{h}{2} k_{1,m} \right)$
 - **c** For j = 1, ..., m: $k_{3,j} = f_j \left(t_i + \frac{h}{2}, w_{i,1} + \frac{h}{2} k_{2,1}, ..., w_{i,m} + \frac{h}{2} k_{2,m} \right)$
 - **1** For j = 1, ..., m: $k_{4,j} = f_i(t_i + h, w_{i,1} + hk_{3,1}, ..., w_{i,m} + hk_{3,m})$
 - **e** For j = 1, ..., m: $w_{i+1,j} = w_{i,j} + \frac{h}{6}(k_{1,j} + 2k_{2,j} + 2k_{3,j} + k_{4,j})$.
- 8 We can rewrite the formula in vector form by setting

 - **a** $Y = (y_1, \dots, y_m)$ **b** $F(t, Y) = (f_1(t, Y), \dots, f_m(t, Y))$
 - $W_i = (w_{i,1}, \cdots, w_{i,m})$
 - **d** $K_1 = (k_{1,1}, \cdots, k_{1,m})$

- $K_3 = (k_{3,1}, \cdots, k_{3,m})$
- $\mathbf{0} \ K_4 = (k_{4,1}, \cdots, k_{4,m})$
- 9 Then the recurrence can be rewritten as $W_0 = (\alpha_1, ..., \alpha_m)$.
- 10 For i = 0, ..., N-1:

 - a $K_1 = F(t_i, W_i)$ b $K_2 = F(t_i + \frac{h}{2}, W_i + \frac{h}{2}K_1)$ c $K_3 = F(t_i + \frac{h}{2}, W_i + \frac{h}{2}K_2)$

 - d $K_4 = F(t_i + h, W_i + hK_3)$ e $W_{i+1} = W_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$.

Example 12

Apply Runge-Kutta's method of order four with h = 0.1 to the system of initial-value problems

$$\begin{cases} u_1'(t) = -4u_1(t) + 3u_2(t) + 6, \ u_1(0) = 0, \\ u_2'(t) = -2.4u_1(t) + 1.6u_2(t) + 3.6, \ u_2(0) = 0 \end{cases}$$

to determine the value of the functions at t = 0.5. Compute the exact error provided that the exact solution to this system is

$$\begin{cases} u_1(t) = -3.375e^{-2t} + 1.875e^{-0.4t} + 1.5, \\ u_2(t) = -2.25e^{-2t} + 2.25e^{-0.4t}. \end{cases}$$

i	t	W ₁	W ₂	<i>u</i> ₁	u ₂	E ₁	E ₂
0	0.0	0.00000	0.00000	0.00000			0.00000
1	0.1	0.53826	0.31963	0.53826	0.31963	0.00001	0.00001
2	0.2	0.96850	0.56878	0.96851	0.56879	0.00001	0.00001
3	0.3	1.31072	0.76073	1.31074	0.76074	0.00002	0.00001
4	0.4	1.58127	0.90632	1.58128	0.90633	0.00002	0.00001
5	0.5	1.79351	1.01440	1.79353	1.01442	0.00002	0.00001

Example 13

Transform the the second-order initial-value problem

$$y'' - 2y' + 2y = e^{2t} \sin t$$
, $y(0) = -0.4$, $y'(0) = -0.6$, for $0 \le t \le 1$

into a system of first order initial-value problems, and use the Runge-Kutta method with h = 0.1 to approximate the solution.

- 1 Let $u_1(t) = y(t)$ and $u_2(t) = y'(t)$.
- This transforms the second-order equation into the system

$$\begin{cases} u'_1(t) = u_2(t) \\ u'_2(t) = e^{2t} \sin t - 2u_1(t) + 2u_2(t) \end{cases}$$

with initial conditions $u_1(0) = -0.4, u_2(0) = -0.6$.

3 $F(t, U(t)) = F(t, (u_1(t), u_2(t))) = (u_2(t), e^{2t} \sin t - 2u_1(t) + 2u_2(t)).$

i	t	$u_1 = y$	$u_2 = y'$
0	0.0	-0.40000000	-0.60000000
1	0.1	-0.46173334	-0.63163124
2	0.2	-0.52555988	-0.64014895
3	0.3	-0.58860144	-0.61366381
4	0.4	-0.64661231	-0.53658203
5	0.5	-0.69356666	-0.38873810
6	0.6	-0.72115190	-0.14438087
7	0.7	-0.71815295	0.22899702
8	0.8	-0.66971133	0.77199180
9	0.9	-0.55644290	1.53478148
10	1.0	-0.35339886	2.57876634