

Ciencia de Datos y BigData

Análisis y Visualización de Datos - Estadísticos y Estadísticas

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Teoría para aplicar

Muestreo aleatorio

Cuando recogemos los datos muchas veces es imposible relevar la característica de interés de todo el grupo o universo, se examina una pequeña parte, llamada muestra.

La muestra debe ser representativa de la población

Muestra aleatoria

Al medir una característica en una muestra, se consideran los datos $x_1, x_2,..., x_n$, como realizaciones de $X_1, X_2,..., X_n$ muestra aleatoria (m.a.)

Notar la diferencia entre minúscula y mayúscula

Muestra aleatoria

Una sucesión de v.a. X_1 , X_2 ,..., X_n se dice **muestra aleatoria (m.a.)** si son v. a.

independientes e idénticamente distribuidas (i.i.d.). "Clones" de una misma X

Todas las medidas antes mencionadas para una muestra de datos podemos

pensarlas a partir de una muestra aleatoria, también serán variable aleatorias,

llamadas estadísticos. Como por ejemplo el estadístico Media Muestral:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Algunas propiedades teóricas: Muestra aleatoria

• Si X_1 , X_2 ,..., X_n m.a. (v.a.i.i.d.) tal que $X_i \sim N(\mu, \sigma^2)$, entonces:

-
$$X_1 + X_2 + ... + X_n \sim N(n\mu, n\sigma^2)$$

- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- $N(\mu, \sigma^2/n)$

• Si Z_1 , Z_2 ,..., Z_n m.a. tal que $Z_i \sim N(0,1)$, entonces:

$$V = \sum_{i=1} Z_i^2 \sim \chi_n^2$$

LFGN: Ley Fuerte de los Grandes Números

• Dada. X_1 , ... X_n m.a. c/u con media μ ("clones" de la misma variable con distribución cualquiera pero con esperanza $E(X_1) = \mu$, media poblacional)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu \qquad P(|\overline{X} - \mu| \le \epsilon) \xrightarrow[n \to \infty]{} 1$$

• Sea X_1 , ... X_n m.a. c/u con media μ y varianza σ^2 . ("clones" de la misma variable <u>con distribución cualquiera</u> pero con media μ y varianza σ^2)

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\mathfrak{D}}{\to} Z \sim N(0, 1))$$

$$\overline{X} \approx N(\mu, \sigma^2/n)$$

- La densidad de la v.a. media muestral parece acampanada p/ n grande, aprox. normal, cualquiera sea la distribución en la población;
- La densidad de la media muestral crece en altura y decrece en dispersión si n crece.
- La media de la distribución del promedio muestral es igual a la media de la población
- La varianza de la distribución de la media muestral es menor que la varianza de la población;

$$X_i \sim \text{Uniforme}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 $X_i \sim \text{exponencial}$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Demo con Notebook

CIED2 Estadísticos.ipynb

Estadística Inferencial

Inferencia Estadística

Métodos utilizados para tomar decisiones o para obtener conclusiones sobre una población (usa modelos y parámetros generalmente).

Estos métodos utilizan la información contenida en una muestra de la población.

Permiten **inferir** el comportamiento de la población con un riesgo medible en términos de **probabilidad de error**.

Inferencia Estadística

Si nos ubicamos dentro de la estadística paramétrica:

Se considera una característica de interés de la **población** (Ω). Se supone que la característica está modelada por una **variable aleatoria X** con distribución "conocida" y paramétrica $f_{\theta}(x)=f(x,\theta)$. (ej $\theta=(\mu,\sigma^2)$ en Normal)

Se considera una muestra aleatoria (m.a.) X_1 , ... X_n , con la misma distribución (paramétrica) que X.

Inferencia Estadística

Incluye dos grandes áreas:

- estimación de parámetros (p/estadística paramétrica)
- pruebas de hipótesis