CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: PARAMETER ESTIMATION

CHAPTER: 17

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

PARAMETER ESTIMATION FOR BNS

- Assume the network structure is given
- \circ The data \mathcal{D} consists of fully observed instances of the network variables
 - $\mathcal{D} = \{x[1], x[2], ..., x[n]\}$
- Estimate the network parameters, i.e., learn the CPDs
- Two approaches
 - 1. Maximum likelihood estimation
 - 2. Bayesian estimation

SIMPLEST CASE — ONE VARIABLE

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

- Assume we flip it 100 times and it comes head 30 times
- What is θ ?

THUMBTACK TOSSES

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{x[1], ..., x[n]\}$
- Also assume each toss, x[i], is IID
- We define a hypothesis space Θ
 - Θ is the set of all parameters $\theta \in [0, 1]$
- We formulate an *objective function*
 - The objective function tells us how good a given hypothesis (in this case θ) is

LIKELIHOOD

- What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?
 - $\theta * (1 \theta) * (1 \theta) * \theta * \theta = \theta^3 (1 \theta)^2$

When is $L(\theta:\mathcal{D})$ maximum?

5

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = h, number of tails = t
- Likelihood: $L(\theta:\mathcal{D}) = \theta^h(1-\theta)^t$
- Log-likelihood: $l(\theta:\mathcal{D}) = h \ln \theta + t \ln(1-\theta)$
- \circ Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta;\mathcal{D})$ with respect to θ and set it to zero

MAXIMUM LIKELIHOOD FOR A MULTINOMIAL

- Domain of X is $\{A, B, C\}$
- We see A a times, B b times, and C c times.
- P(X=A) is p, P(X=B) is q, and P(C) = 1 p q
- What are p and q?
- o Proof?

CONSTRAINED OPTIMIZATION

- \circ Assume X can take k values
- $P(X=x_i) = \theta_i$
- \circ Find θ that maximizes the entropy
 - $H(X) = -\sum_{i} \theta_{i} \log_{2} \theta_{i}$
- If we take the partial derive w.r.t. θ_i

•

CONSTRAINED OPTIMIZATION

Find
$$\mathbf{\theta}$$
 maximizing $f(\mathbf{\theta})$ subject to
$$c_1(\mathbf{\theta}) = 0$$
 ...
$$c_m(\mathbf{\theta}) = 0$$

Form the Lagrangian:

$$F(\mathbf{\theta}, \mathbf{\lambda}) = f(\mathbf{\theta}) - \sum_{j=1}^{m} \lambda_{j} c_{j}(\mathbf{\theta})$$

LAGRANGE MULTIPLIERS EXAMPLES

- 1. Maximize x*y st. x+y = 10
- 2. Maximize x+y st. $x^2+y^2 = 1$
- 3. Entropy
- 4. Maximum likelihood estimate for a multinomial

ML FOR BNS

- Simple structure
 - \bullet X \rightarrow Y
- General structure
 - The key is that the parameters for each variable can be optimized independently
 - Examples

BAYESIAN ESTIMATION

- Assume we flip a coin 10 times and we get 4 Heads, 6 Tails
 - What is P(C=H)?
- Assume we flip a thumbtack 10 times and we get 4 Heads,
 6 Tails
 - What is P(T=H)?
- What if we repeat the flips 10M times and we get 4M Heads and 6M Tails?
- Bayesian estimation will let us encode our *prior knowledge*

INDEPENDENCE?

- o Earlier, we assumed the tosses are independent
- This is true if we know θ
- If we don't know θ , then each toss tells us something about θ , thus the next toss

13

BAYESIAN ESTIMATION

• Rather than a single θ , we will instead have a probability distribution, $P(\theta)$, over θ

BAYESIAN ESTIMATION

- We treat the parameter θ as a random variable
- We ascribe a prior probability to θ , $P(\theta)$, encoding our prior knowledge

PARAMETERS

- $P(X[i] = x^1 | \theta_x) = \theta$; $P(X[i] = x^0 | \theta_x) = (1 \theta)$
- $\circ P(\theta_{x})$?
 - A continuous distribution over the interval [0,1]

POSTERIOR AND PREDICTION

- We are interested in
 - The probability of the next instance, given data
 - P(x[M+1] | D)
 - The posterior distribution of θ given data
 - $P(\theta \mid D)$

FACTORIZATION

 $= P(\theta_x)\theta^{M[1]}(1-\theta)^{M[0]}$

POSTERIOR AND P(X[M+1] | D)

Posterior distribution

$$P(\theta_X \mid D) = \frac{P(x[1], ..., x[M] \mid \theta_X) P(\theta_X)}{P(x[1], ..., x[M])}$$

$$P(x[M+1]|D) = \int_{0}^{1} P(x[M+1]|\theta_{X}, x[1], ...x[M]) P(\theta_{X}|x[1], ..., x[M]) d\theta$$

$$= \int_{0}^{1} P(x[M+1]|\theta_{X}) P(\theta_{X}|x[1], ..., x[M]) d\theta$$

$$\theta \text{ or } 1-\theta \text{ (if binary)}$$
Posterior

Think of taking a weighted average

P(X[M+1] | D)

$$P(x[M+1]|x[1],...,x[M]) = \int_{0}^{1} P(x[M+1]|\theta_{X})P(\theta_{X}|x[1],...,x[M])d\theta$$

$$= \int_{0}^{1} P(x[M+1]|\theta_{X}) \frac{P(\theta_{X})P(x[1],...,x[M]|\theta_{X})}{P(x[1],...,x[M])}$$

P(x[1], ..., x[M]) is a constant

$$P(x[M+1]|x[1],...,x[M]) \propto \int_{0}^{1} P(x[M+1]|\theta_{X})P(\theta_{X})P(x[1],...,x[M]|\theta_{X})d\theta$$

UNIFORM PRIOR

- We have a uniform prior over θ_x . That is, $p(\theta_x)=1$
- $P(X[M+1]=x^1 | x[1],...,x[M])$?

UNIFORM PRIOR

- We have a uniform prior over θ_x . That is, $p(\theta_x)=1$
- $P(X[M+1]=x^1 | x[1],...,x[M])$? That is, $P(X[M+1]=x^1 | D)$?
- For the binary case, $P(X[M+1]=x^1 \mid D) = (t+1) / (t+f+2)$, where t is the number of True cases and f is the number of False cases in D
- This is also called *Laplace smoothing*
- What about the posterior, $P(\theta \mid D)$, if the prior $P(\theta)$ is uniform?

BETA DISTRIBUTION

- $\theta \sim \text{Beta}(\alpha, \beta)$ if $P(\theta) = \gamma \theta^{\alpha 1} (1 \theta)^{\beta 1}$ where γ is a normalizing constant
- Mean: $\alpha/(\alpha+\beta)$
- Mode: $(\alpha-1)/(\alpha+\beta-2)$
- \bullet Note that the mode is closer to the mean when α and β are large
- Read more at
 - https://en.wikipedia.org/wiki/Beta_distribution

BETA DISTRIBUTION

24

 ${
m CS}$ 583 – Probabilistic Graphical Models – Illinois Institute of Technology

BETA DISTRIBUTION

- What is $P(X[M+1]=x^1 \mid D)$ if the prior is Beta (α,β) ?
 - $P(X[M+1]=x^1 \mid D) = (p + \alpha) / (p + n + \alpha + \beta)$
- What is the posterior, $P(\theta \mid D)$, if the prior is Beta (α, β) ?
 - $P(\theta \mid D) = Beta(p + \alpha, n + \beta)$
- \circ α and β work like pseudo-counts for the positive and negative cases respectively
- What values to choose for α and β ?
 - It depends on our belief and the strength of our belief

DIRICHLET PRIORS

• Generalizes the Beta distribution for multinomials

$$\theta \sim Dirichlet(\alpha_1, ..., \alpha_K) \text{ if } P(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

- What is $P(X[M+1]=x^i \mid D)$ if the prior is Dirichlet?
 - $P(X[M+1]=x^i \mid D) = (n_i+\alpha_i) / (\mid D\mid +\alpha)$ where n_i is the number of times the i^{th} case appears in D and $\alpha = \alpha_1 + \alpha_2 + \ldots + \alpha_K$
- What is the posterior, $P(\theta \mid D)$, if the prior is Dirichlet?
 - $P(\theta \mid D) = Dirichlet(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_K + \alpha_K)$

BAYESIAN ESTIMATION

- In MLE for BNs, we optimized each parameter independently
- Can we do the same for Bayesian estimation for BNs?
 - Only if the prior also factorizes wrt the BN
- What about the priors? How do we choose them?
 - 1. Ask the prior for each variable to an expert
 - 2. Use the same prior for all variables
 - This is called the *K2 prior*
 - 3. Imagine a dataset D' of imaginary instances
 - The number of imaginary instances for x is |D'| *P'(x, pa(x))
 - This is called the *BDe prior*
 - What is P'?
 - Could be anything; e.g., a marginally independent distribution

27

BAYESIAN ESTIMATION EXAMPLES

- Try a dataset using
 - MLE
 - Bayesian
 - K2
 - BDe

ICU ALARM NETWORK – FIG 17.C.1

29

MISSING DATA

• Note: the following information is from Chapter 19

MISSING DATA

- 1. Accidental
 - E.g., sensor failure
- 2. Intentional
 - E.g., not all tests are ordered for medical diagnosis
- 3. Hidden variable
 - E.g., cluster assignment; hidden cause

APPROACHES

- 1. Ignore the data points with missing values
 - Not economical (throwing data away), not necessarily accurate (if missing intentionally), and might not be possible (hidden variables)
- 2. Gradient optimization
- 3. Expectation Maximization

EXPECTATION MAXIMIZATION (EM)

- Initialize θ
- Iterate
 - Expectation
 - $M[x, pa(x)] = \sum P(x, pa(x) | observed)$ for each X
 - Maximization
 - $\theta_x = M[x, pa(x)] / M[pa(x)]$ for each X

EM EXAMPLES

- Simple network
 - \bullet $X \to Y$
 - Let's see a few cases:
 - X is missing in a small percentage; sometimes X and sometimes Y is missing; X is a hidden variable
- A more complicated network:
 - A disease (D) variable and three test variables (T_1 , T_2 and T_3)
 - A naïve Bayes structure: D is the parent of T_1 , T_2 and T_3
 - T_1 is the fastest but least accurate test. T_2 requires more time but is more accurate. T_3 requires the most time but also is the most accurate test.
 - The doctors order T_1 for everyone first. Depending on the results, they might order T_2 , and depending on its results, they might order T_3
 - D might be totally hidden or might be observed for only a small subset of the data