Contents

1	intr	oduccion	2
	1.1	hardware	2
	1.2	sofware de red	2
		1.2.1 jerarquia de protocolos	2
		1.2.2 aspectos de diseño para cada capa	2
		1.2.3 tipos de servicios	3
		1.2.4 relacion entre servicios y protocolos	3
	1.3	modelos de referencia	4
		1.3.1 modelo osi	4
		1.3.2 modelo $tcp/ip \dots \dots$	5
		1.3.3 capa de aplicacion	5
		1.3.4 comparacion tcp/ip osi	5
		1.3.5 defectos de osi	5
		1.3.6 defectos de tcp/ip	6
2	_	a fisica	6
	2.1	conceptos	6
	2.2	medios de transmision guiados	6
		2.2.1 medios magneticos	6
		2.2.2 par trenzado	6
		2.2.3 cable coaxial	7
		2.2.4 lineas electricas	7
		2.2.5 fibra optica	7
	2.3	transmision inalambrica	7
		2.3.1 espectro electromagnetico	7
		2.3.2 radiotransmision	8
		2.3.3 transmision por microondas	8
		2.3.4 transmision infrarroja	8
		2.3.5 transision por ondas de luz	8
	2.4	satelites de comunicacion	8
		2.4.1 satelites geoestacionarios	9
		2.4.2 ventajas de los satelites sobre la fibra optica	9
	2.5	modulacion digital y multiplexacion	9
		2.5.1 transmision en banda base	9
		2.5.2 transmision pasa-banda	10
		2.5.3 multiplexacion por division de frecuencia	11
		2.5.4 multiplexacion por division de tiempo	11
		2.5.5 multiplexacion por division de codigo	11
3	000	a do onlogo	.1
J	3.1		. . 11
	0.1		12
			12 12
			ι <i>2</i> [2
		9.1.9 COHULOI UE EHOLES	. 4

		3.1.4 control de flujo	12
	3.2	deteccion y correccion de errores	13
3.3 protocolos de enlace de datos		protocolos de enlace de datos	13
		3.3.1 paquetes sobre sonet	13
		3.3.2 ppp	13
4	sub	capa control acceso al medio	14
	4.1	problema de asignacion de canal	14
		4.1.1 asignacion estatica	14
		4.1.2 supuestos para la asignacion dinamica	14
	4.2	protocolos de acceso multiple	14
		4.2.1 aloha	14
		4.2.2 protocolos de acceso multiple con detección de portadora	15
	4.3	protocolos libres de colisiones	15
		4.3.1 protocolo de mapa de bits	15
		4.3.2 paso de token	15
		4.3.3 conteo descendente binario	16
	4.4	protocolos de contencion limitada	16
		4.4.1 protocolo de recorrido de arbol adaptable	16
	4.5	protocolos de lan inalambrica	16

1 introduccion

1.1 hardware

1.2 sofware de red

1.2.1 jerarquia de protocolos

- organizacion por capas. cada capa tiene una funcion diferenciada e independiente
- intercambio de mensajes segun el protocolo de cada capa
- en realidad los mensajes bajan hasta la capa inferior (medio fisico), donde se realiza la comunicación
- interfaz bien definida para comunicacion entre capas
- arquitectura de red: conjunto de capas y protocolos
- pila de protocolos: lista de protocolos usados por una arquitectura

1.2.2 aspectos de diseño para cada capa

- codigos de detección (y posible corrección) de errores
- enrutamiento: eleccion de una ruta para enviar informacion
- distribucion de protocolos en capas

- mecanismos para embalar, desembalar y transmitir
- escalabilidad
- asignacion eficiente de recursos
- uso del ancho de banda (multiplexado estadistico, fraccion fija)
- control de flujo
- confidencialidad, autenticacion e integridad

1.2.3 tipos de servicios

- 1. orientados a la conexion
 - se establece la conexion, se usa y se libera
 - en la mayoria de los casos se preserva el orden
 - como una linea telefonica
- 2. no orientados a la conexion
 - cada mensaje lleva la dirección de destino completa
 - cada mensaje es enrutado en forma independiente
 - como el sistema postal
- 3. confiables
 - nunca pierden datos
 - acuse de recibo
 - introduccion de sobrecarga y retardos
- 4. no confiables

	confiable	no confiable
conexion	secuencia de mensajes	voz sobre ip
	flujo de bytes	
no conexion	mensajes de texto	mails

1.2.4 relacion entre servicios y protocolos

- un servicio se define como un conjunto de primitivas que una capa proporciona a la que esta encima de ella
- el servicio define el que pero no el como
- protocolo son las reglas de formato y significado de los paquetes o mensajes que se intercambian en la misma capa
- servicio se relaciona con las interfaces entre capas
- protocolo se relaciona con los paquetes que se envian entre distintas maquinas

1.3 modelos de referencia

1.3.1 modelo osi

- 1. capa fisica
 - transmision de bits puros a traves de un canal de transmision
 - busca que lleguen los mismos bits que salieron
 - señales electricas para representar un bit
 - como se establece y se termina una comunicación
- 2. capa de enlace de datos
 - transforma los bits puros en una linea que este libre de errores para la capa de red
 - divide los datos en tramos
 - control de transmision para emisores rapidos y receptores lentos
- 3. capa de red
 - como se encaminan los paquetes del origen al destino
 - las rutas se basan en tablas estaticas o dinamicas
 - manejo de congestion
 - solucionar problemas para conectar reder heterogeneas
- 4. capa de transporte
 - aceptar datos de la capa superior, dividirlos en unidades mas pequeñas, pasar los datos a la capa de red y asegurar que las piezas lleguen al otro extremo
 - es una verdadera capa de extremo a extremo, a diferencia de las mas bajas
- 5. capa de sesion
 - control de dialogo
 - manejo de tokens
 - sincronizacion
- 6. capa de presentacion
 - se enfoca en la sintaxis y la semantica de la informacion transmitida
 - maneja estructuras abstractas para intercambiar datos entre computadoras con diferentes representaciones de datos
- 7. capa de aplicacion
 - protocolos que los usuarios necesitan

1.3.2 modelo tcp/ip

- 1. capa de enlace
 - capa sin conexion que opera a traves de distintas redes
 - describe que enlaces se deben llevar a cabo para cumplir con las necesidades de esta capa

2. capa de interred

- permite que los host inyecten paquetes en cualquier red y que viajen independientemente a su destino
- analogo al sistema de correo
- define un formato de paquete y un protocolo oficial llamado ip y uno complementario llamado icmp
- el ruteo de paquetes es el principal aspecto, y la congestion

3. capa de transporte

- permite que entidades en la misma capa mantengan una conversacion
- tcp, udp

1.3.3 capa de aplicacion

- reemplaza las capas de presentacion, sesion y aplicacion del modelo osi
- telnet, ftp, smtp, dns, http

1.3.4 comparación tcp/ip osi

- osi fue inventado antes que los protocolos, por eso es mas general. pero los diseñadores no sabian que funcionalidades colocar en cada capa
- con tcp/ip paso al reves. los protocolos encajaron perfectamente, pero no era util para describir redes que no fueran tcp/ip
- osi tiene 7 capas, tcp/ip tiene 4

1.3.5 defectos de osi

- mala sicronizacion: para cuando se desarrollaron los protocolos osi, tcp/ip ya se estaba usando lo suficiente como para que los distribuidores no quisieran apoyar otra pila
- mala tecnologia: el modelo es muy complejo. las capas de sesion y presentacion estan casi vacias, las de red y enlace llenas. son dificiles de implementar e ineficientes.
- malas implementaciones: por su complejidad las primeras implementaciones eran lentas y pesadas. despues mejoraron pero la imagen quedo
- malas politicas: osi se asocio con el gobierno estadounidense y tcp/ip con unix

1.3.6 defectos de tcp/ip

- no se diferencian bien los conceptos de servicio, interfaz y protocolo
- el modelo no es para nada general
- la capa de enlace no es una capa sino una interfaz
- no distingue la capa de enlace y la fisica

2 capa fisica

2.1 conceptos

- serie de fourier
- ancho de banda
- banda base, pasa-banda
- teorema de nyquist, teorema de shannon
- relacion señal ruido S/N

2.2 medios de transmision guiados

2.2.1 medios magneticos

- guardar la informacion en una cinta o medio removible y mandarlo fisicamente
- nunca subestime el ancho de banda de una camioneta repleta de cintas que viaje a toda velocidad por la carretera

2.2.2 par trenzado

- dos cables de cobre aislados
- trenzados porque en paralelo forman una antena
- la señal se transmite como la diferencia de voltaje entre los dos cables
- el ruido afecta a los dos cables por igual, el diferencial se mantiene
- sistema telefonico
- informacion analogica o digital
- el ancho de banda depende del grosor de los cables y la distancia. hasta varios mbps
- ethernet usa cuatro, uno para cada direccion
- hasta cat 6: utp (unshielded twisted pair). cat 7: stp

2.2.3 cable coaxial

• mejor blindaje y mayor ancho de banda que los tp, pero mas caro

2.2.4 lineas electricas

- las compañias las han utilizado para comunicación de baja velocidad
- uso en el hogar para controlar dispositivos
- dificil porque el cableado de las casas no esta hecho para enviar señales a alta frecuencia

2.2.5 fibra optica

- lan, internet y ftth
- un pulso de luz indica 1, la ausencia 0
- cuando la luz pasa de un medio a otro (silice a aire) se refracta. el grado depende de los indices de refraccion de los medios. y para cualquier angulo mayor a un angulo critico la luz rebota completamente en el silice
- fibra multimodal: varios rayos de luz en una fibra
- fibra monomodo: un solo rayo de luz por fibra que es mucho mas angosta
- tres bandas: 0.85 1.3 y 1.55 micras. anchos de banda de 25000 a 30000 ghz. la primera tiene mas atenuacion
- fuentes: led y laser

2.3 transmision inalambrica

2.3.1 espectro electromagnetico

- los electrones se mueven y crean ondas electromagneticas
- las ondas viajan siempre a la velocidad de la luz
- $\lambda f = c$
- espectro directo con salto de frecuencia: transmision dificil de detectar y bloquear. militares, bluetooth, versiones anteriores de 802.11
- espectro directo de secuencia directa: multiples señales comparten ancho de banda. cdma, gps, 802.11b
- uwb

2.3.2 radiotransmision

- las ondas de radio son faciles de generar, recorren largas distancias y penetran edificios
- son omnidireccionales
- las propiedades dependen de la frecuencia. baja frecuencia: cruzan obstaculos pero se reduce la potencia rapidamente. alta frecuencia: viajan en linea recta y rebotan en obstaculos
- ondas de alta frecuencia son absorbidas por la lluvia y otros obstaculos
- como recorren grandes distancia la interferencia es un problema
- estan reguladas por los gobiernos
- vlf, lf y mf siguen la curvatura de la tierra. hf van en linea recta y rebotan en la ionosfera, tambien son absorbidas por la tierra

2.3.3 transmision por microondas

- relacion S/N alta, pero las antenas deben estar alineadas
- microondas no atraviesan bien los edificios
- comunicación telefonica, celulares, television. lo que provoco escasez de espectro

2.3.4 transmision infrarroja

- comunicación de corto alcance
- no atraviesan objetos

2.3.5 tranmision por ondas de luz

- señalizacion optica mediante laser
- gran ancho de banda a bajo costo y seguro. pero muy dificil de apuntar

2.4 satelites de comunicación

- un satelite es un enorme repetidor de microondas con varios transpondedores. transmite en modo tublo doblado
- posicion de los satelites limitadas por el cinturon de van allen

2.4.1 satelites geoestacionarios

- satelites que orbitan a la misma velocidad de la que rota la tierra. parecen inmoviles desde el suelo
- los primeros tenian un solo haz de luz que iluminaba la tierra, lo que se conoce como huella
- actualmente tienen multiples haces que se enfocan en una pequeña area geografica. estos son los haces puntuales
- vsat: terminales muy pequeñas que se utilizan para la transmision de tv
- los vsat no se pueden comunicar entre ellos por su baja potencia. para ello usan de intermediario potentes estaciones en la tierra
- aunque las señales viajen a la velocidad de la luz, dada las distancias tienen mas retardo que las comunicaciones terrestres
- los satelites son medios de difusion por naturaleza

2.4.2 ventajas de los satelites sobre la fibra optica

- cuando se requiere un despliegue rapido, ganan los satelites
- los satelites pueden enviar a cualquier parte del mundo
- un mensaje que envia un satelite lo pueden recibir miles de estaciones al mismo tiempo

2.5 modulacion digital y multiplexacion

- modulacion digital: proceso de convertir bits en la señal que los representan
- transmision en banda base: la señal ocupa una frecuencia desde 0 hasta un valor maximo que depende de la tasa de señalizacion. comun en cables
- transmision pasa-banda: la señal ocupa una banda de frecuencias alrededor de la frecuencia de la señal portadora. comun en inalambrico y optico
- multiplexacion: a compartir varias señales por un mismo canal

2.5.1 transmision en banda base

- NRZ(non-return-to-zero): voltaje positivo para el 1 y uno nulo para el 0
- el receptor muestrea a intervalos regulares y convierte de nuevo a bits. la señal no se vera igual a la que se envio por el ruido y el canal
- eficiencia del ancho de banda
 - con nrz la señal puede alternar entre positivo y negativo hasta cada 2 bits. necesita un ancho de banda B/2hz pasa tasa de B bps

- una estategia es usar mas de 2 niveles de señalizacion. por ejemplo 4 voltajes para representar 2 bits a la vez como un simbolo
- tasa de bits=tasa de simbolo*bits por simbolo
- requiere una potencia mayor en el receptor para diferenciar los niveles

• recuperacion del reloj

- el receptor debe saber cuando termina un simbolo y empieza otro
- existe un limite en la precision de un reloj para muestrear señales
- se podria enviar una señal del reloj por otra linea separada, pero seria mejor que si hubiera otra linea se usara para enviar datos
- un truco seria usar xor entre las dos lineas para enviarlas en una sola. esta es la codificación manchester y se usaba en ethernet clasico. lo malo es que requiere el doble de ancho de banda
- una estrategia distinta es codificar los datos para que haya suficientes transiciones en la señal. ya que los problemas suceden en largas suceciones de 0 o 1
- nrzi: 1 como una transicion y 0 como no hay transicion. usb usa este metodo. largas sucesiones de 1 no tienen problemas, pero de 0 si
- 4b/5b: se asocian grupos de 4 bits a 5 bits segun una tabla fija, de manera que nunca haya tres 0 seguidos. agrega 25% de sobrecarga. sobran 16 numeros de 5 bits, algunos se usan para control
- para asegurar transiciones se puede hacer xor con una secuencia pseudoaleatoria. el receptor decodifica con la misma secuencia. esta debe ser facil de generar
- pero la aleatorización no garantiza transiciones

• señales balanceadas

- señales que tienen misma cantidad de voltajes positivos como negativos
- ayuda a proveer transiciones para la recuperacion del reloj
- codificacion bipolar: se alterna +1 y -1 voltios para el 1 y 0 voltios para el 0. en redes telefonicas ami
- 8b/10b tambien para codigo balanceado

2.5.2 transmision pasa-banda

- en canales inalambricos no es practico usar rango de frecuencias que empiecen en 0
- $\bullet\,$ se puede tomar una señal en banda base que ocupe de 0 a b hz y desplazarla a otra pasa-banda que ocupe de s a s+b hz
- se puede modular la amplitud (ask), la frecuencia (fsk) o la fase (psk)
- psk puede ser bpsk (binaria) o qpsk (cuadratura)
- se pueden combinar y usar mas niveles, comunmente amplitud y fase

- diagrama de constelacion: forma de visualizar la modulacion combinada ask y psk. qpsk, qam-16, qam-64
- simbolos adyacentes no deben diferir en muchos bits, porque serian mas suceptibles al ruido. para eso se usa codigo gray

2.5.3 multiplexacion por division de frecuencia

- fdm: divide el espectro en bandas. cada usuario tiene posesion exclusiva de la banda
- banda de guarda: exceso de banda que mantiene a los canales separados
- ofdm: el ancho de banda del canal se divide en muchas subportadoras que envian de manera independiente. cada subportadora esta diseñada para ser 0 en el centro de las adyacentes. 802.11

2.5.4 multiplexación por division de tiempo

- tdm: los usuarios toman turnos y usan todo el ancho de banda, se toman los datos y se agregan al flujo agregado
- para que funcione debe haber sincronizacion. se puede agregar tiempo de guarda

2.5.5 multiplexación por división de codigo

- cdm: forma de comunicacion de espectro diverso. una señal de banda estrecha se dispersa en una mas amplia. cdma
- hace la señal mas tolerante a interferencias y permite que señales compartan la misma banda de frecuencia
- cdma es extraer la señal deseada mientras lo demas se rechaza como ruido
- cada tiempo de bit de divide en m intervalos llamados chips. en general 64 o 128 chips cada bit. a cada estacion se le asigna una secuencia de chip, un codigo de m bits. para transmitir un 1 envia la secuencia de chip, para el 0 la negacion
- todas las secuencias de chip son ortogonales por pares
- si varias estaciones envian al mismo tiempo se suman

3 capa de enlace

3.1 cuestiones de diseño

- funciones: dar a la capa de red una interfaz de servicios bien definida. manejar errores. controlar flujo
- toma los datos que obtiene de la capa de red y los encapsula en tramas

3.1.1 servicios dados a la capa de red

- transferir datos de la maquina de origen a la de destino
- 3 servicios razonables
 - sin conexion ni confirmacion de recepcion: tasa de error baja. trafico en tiempo real. ethernet
 - sin conexion con confirmacion: canales no confiables. 802.11 (wifi)
 - con conexion y confirmacion: cada trama esta enumerada. se garantiza que lleguen solo una vez y en orden. canales largos y no confiables. satelites y red telefonia larga

3.1.2 entramado

- la capa fisica no garantiza que el flujo de bits este libre de errores
- un metodo es dividir el flujo en tramas discretas y agregarles una suma de verificación
- division de tramas
 - conteo de bytes: agrega en el encabezado la cantidad de bytes en la trama. si se altera este valor se pierde la sincronia. rara vez se usa solo
 - bytes bandera con relleno de bytes: cada trama inicia y termina con bytes especiales. si aparece la bandera en los datos se antecede un escape. y si aparece un escape se pone otro escape adelante. simplificación de ppp
 - bits bandera con relleno de bits: igual a bytes pero sin la restriccion de 1 byte=8 bits.
 hdlc. usb. se usan 6 bits en 1 para delimitar. cada vez que se ven 5 bits en 1 se agrega un 0
 - violaciones de codificacion de la capa fisica: si se usa por ejemplo 4b/5b en la capa fisica se pueden usar los codigos no utilizados para el inicio y fin de trama

3.1.3 control de errores

- asegurar la entrega de datos confiable: retroalimentacion al emisor de lo que esta ocurriendo del otro lado. positiva y negativa
- puede desaparecer la trama por completo, o la de retroalimentacion. para eso tambien se usan temporizadores para enviar nuevamente
- ahora puede que se reciba la misma trama dos veces. para eso se usan numeros de secuencia

3.1.4 control de flujo

- que hacer cuando un emisor envia mas tramas de las que el receptor puede aceptar. ejemplo telefono y sitio web
- control de flujo basado en retroalimentacion: el receptor envia cuando puede aceptar mas datos
- control de flujo basado en tasa: el protocolo tiene un mecanismo integrado que limita la tasa de envio

3.2 deteccion y correccion de errores

- estategia: incluir redundancia en los datos.
- codigo de correccion de errores: para que el receptor pueda deducir que datos se quisieron enviar, fec
- codigo de detección de errores: para que sepa que hubo un error pero nada mas y solicite retransmisión
- en fibra optica conviene la detección porque es rapido reenviar. en canales inalambricos es mejor corrección
- los bits de redundancia tambien pueden llegar mal. así que nunca se podran manejar todos los errores
- los errores en rafaga tienen sus ventajas y desventajas

3.3 protocolos de enlace de datos

3.3.1 paquetes sobre sonet

- sonet se utiliza sobre canales de fibra optica de area amplia
- ppp se usa para diferenciar paquetes ocasionales del flujo continuo en el que se transportan

3.3.2 ppp

- ppp orientado a bytes, hdlc a bits
- metodo de entramado sin ambiguedades, tambien maneja detección de errores
- protocolo para activar lineas, probarlas, negociar y desactivarlas. lcp
- mecanismo para negociar opciones de capa de red independientemente del protocolo de red usado
- uso de banderas como delimitación y bytes de escape
- la carga util se mezcla aleatoriamente antes de insertarla en sonet para garantizar mas transiciones que necesita sonet
- configuración enlace ppp
 - muerto
 - establecer (cuando hay conexion en la capa fisica): intercambio de paquetes lep
 - autentificar (si lo anterior fue exitoso): se verifican identidades
 - red: paquetes ncp para configurar la capa de red
 - abrir: intercambio de datos
 - terminar

4 subcapa control acceso al medio

- los enlaces de red pueden ser punto a punto o difusion
- subcapa mac es la parte inferior de la de enlace de datos

4.1 problema de asignación de canal

• asignar un solo canal de difusion entre varios usuarios competidores

4.1.1 asignacion estatica

- dividir la capacidad mediante el uso de multiplexacion. cuando hay una pequeña cantidad de usuarios constantes
- si varia el numero de emisores y ese numero es grande se vuelve ineficiente
- lo mismo sucede con otras formas estaticas de dividir un canal

4.1.2 supuestos para la asignacion dinamica

- trafico independiente: las estaciones son independientes
- canal unico: hay un solo canal para todas las comunicaciones
- colisiones observables: todas las estaciones pueden detectar colisiones. que seran enviadas luego
- tiempo continuo o ranurado: se puede considerar de las dos maneras
- detección de portadora o sin detección: si hay detección las estaciones pueden saber si el canal esta en uso, sino mandan y despues determinan si tuvo exito

4.2 protocolos de acceso multiple

4.2.1 aloha

- aloha puro
 - despues de enviar su trama a la computadora central, esta difunde la trama a todas las estaciones. asi el emisor sabe si llego su trama
 - si la trama fue destruida espera un tiempo aleatorio y manda de nuevo
 - cada vez que dos tramas intenten ocupar el canal al mismo tiempo habra colision, por mas que sea un solapamiento pequeño

• aloha ranurado

- como el metodo puro pero el tiempo se divide en ranuras discretas
- sincronizacion por medio de una estacion que emita una señal al comienzo de cada intervalo

4.2.2 protocolos de acceso multiple con detección de portadora

- csma persistente-1
 - la estacion escucha el canal para ver si alguien esta enviando, sino envia. si ocurre una colision espera y manda de nuevo
 - el retardo de propagacion tiene un efecto importante en las colisiones. esta posibilidad depende del numero de tramas que quepan, o producto de ancho de banda-retardo
 - en lan como el retardo es pequeño, no habra muchas colisiones
- csma no persistente
 - a diferencia del persistente-1 si el canal esta en uso espera un tiempo y repite el proceso.
 no se queda escuchando constantemente
 - mejor uso del canal pero mayor retardo
- csma persistente-p
 - para canales ranurados
 - si el canal esta inactivo, envia con probabilidad p y espera a la siguiente ranura con probabilidad 1-p
- csma con detección de colisiones (csma/cd)
 - base de la clasica ethernet
 - el hardware escucha a la vez que envia. si la señal que recibe es distinta a la que envia, esta ocurriendo una colision
 - periodos alternantes de contencion y transmision con periodos de inactividad que ocurriran cuando todas las estaciones esten en reposo

4.3 protocolos libres de colisiones

4.3.1 protocolo de mapa de bits

- cada periodo de contencion consiste en n ranuras
- las estaciones envian 1 si tienen tramas para enviar en ese periodo pero solo en su ranura correspondiente
- luego cuando ya hay conocimiento de quien va a mandar mandan las tramas en orden
- protocolos de revervacion

4.3.2 paso de token

- pasa un pequeño mensaje llamado token de una estacion a otra en un orden determinado. token ring
- solo puede enviar la que tenga el token
- cuando la estacion que envio recibe su misma trama la elimina para terminar el ciclo
- no hace falta que sea un anillo. token bus

4.3.3 conteo descendente binario

- anteriores no escalan a redes con miles de estaciones
- las estaciones que quieren usar el canal envian su direccion binaria y hacen or de todo lo que reciben
- tan pronto como una estacion ve que una posicion de bit de orden alto, cuya direccion es 0, ha sido sobreescrita por un 1, se da por vencida

4.4 protocolos de contencion limitada

- en condicion de carga ligera es preferible contencion
- al reves para libres de colision
- protocolos de contencion limitada combinan los dos anteriores

4.4.1 protocolo de recorrido de arbol adaptable

- en la ranura 0 todas las estaciones intentan adquirir el canal. si una lo logra bien y sino se dividen en dos grupos y se va formando un arbol de decision
- a mayor carga la busqueda debe iniciar mas abajo en el arbol

4.5 protocolos de lan inalambrica