

Kactus2 Training instructions

Esko Pekkarinen esko.pekkarinen@tut.fi 29th October 2018

Objectives

- Get familiar with Kactus2 tool
- Create different IP-XACT top-level elements:
 - Component from Verilog source
 - Structural Design for a component
 - Bus/Abstraction definition for communication
- Generate
 - Documentation for IPs
 - Structural HDL from IP-XACT design

Component creation

- Create new component wb_master_cpu_slave for coreto-Wishbone communication
 - Import source files in: tut.fi/communication.bridge/wb_master_cpu_slave/1.0
- Fill in component details:
 - Bus interfaces:
 - Wishbone master interface
 - Wishbone clk/reset system interface
 - Core slave interface (tut.fi:interface:peripheral_control:1.0)
 - Add transparent bridge from core to wishbone bus interfaces

Bus/Abstraction Definition

- Create new bus definition for Serial Peripheral Interface (SPI) communication
 - Kactus2 creates an empty abstraction definition automatically
- Define master and slave modes for 4 wire signals:
 - Slave clock, SCKL
 - Data line, MISO
 - Data line, MOSI
 - Chip-select, CS
- Use the created definitions and create port maps in
 - component wb_slave_spi_master, spi_master bus interface
 - component tut.fi:cpu.structure:cpu_example:1.0, spi_master bus interface

Design creation

- Open HW design for tut.fi:cpu.structure:cpu_example:1.0
- Instantiate components core_example, wb_master_cpu_slave and the following peripherals:
 - 2x wb_external_mem
 - sum_buffer
 - wb_slave_spi_master
- Connect the instances
 - Why peripheral_access cannot be connected to one_to_many_master?

HW design for tut.fi:cpu.structure:cpu_example:1.0

Generation

- Open the top-level HW design (tut.fi:cpu.structure:cpu_example:1.0)
- Select to generate documentation
- Check the generated file(s)
 - Which component(s) and/or design(s) are included in the documentation?
- Select to generate Verilog, or to generate VHDL
- Now open component tut.fi:cpu.logic:alu:1.0 and select Verilog or VHDL generation again
 - What is the difference between the two generation runs (Design vs. Component)?

