Outlook	Temperature	Humidity	Windy	Hours to play
Rainy	Hot	High	False	25
Rainy	Hot	High	True	30
Overcast	Hot	High	False	46
sunny	Mild	High	False	45
sunny	Cool	Normal	False	52
sunny	Cool	Normal	True	23
Overcast	Cool	Normal	True	43
Rainy	Mild	High	False	35
Rainy	Cool	Normal	False	38
sunny	Mild	Normal	False	46
Rainy	Mild	Normal	True	48
Overcast	Mild	High	True	52
Overcast	Hot	Normal	False	44
sunny	Mild	High	True	30

Step1: Calculate SD, count, mean, cv

Step2: Calculate SD and SDR for two attributes

$$S(T,X) = \sum_{c \in X} P(c)S(c)$$

$$\begin{split} \textbf{S}(\text{Hours, Outlook}) &= \textbf{P}(\text{Sunny})^*\textbf{S}(\text{Sunny}) + \textbf{P}(\text{Overcast})^*\textbf{S}(\text{Overcast}) + \textbf{P}(\text{Rainy})^*\textbf{S}(\text{Rainy}) \\ &= (4/14)^*3.49 + (5/14)^*7.78 + (5/14)^*10.87 \\ &= 7.66 \end{split}$$

$$SDR(T, X) = S(T) - S(T, X)$$

$$SDR(Hours, Outlook) = S(Hours) - S(Hours, Outlook)$$

= $9.32 - 7.66 = 1.66$

Step2: The dataset is then split on the different attributes. The standard deviation for each branch is calculated. The resulting standard deviation is subtracted from the standard deviation before the split. The result is the standard deviation reduction.

		Hours Played (StDev)			Hours Played (StDev)
	Overcast	3.49		Cool	10.51
Outlook	Rainy	7.78	Temp.	Hot	8.95
	Sunny	10.87		Mild	7.65
	SDR=1.66	5	6	SDR= 0.4	8
	*	Hours Played (StDev)			Hours Played (StDev)
n and an	High	9.36	and a	False	7.87
Humidity	Normal	8.37	Windy	True	10.59
	SDR=0.28	Ü	0	SDR=0.2	9

Step 3: The attribute with the largest standard deviation reduction is chosen for the decision node.

Step 4a: The dataset is divided based on the values of the selected attribute. This process is run recursively on the non-leaf branches, until all data is processed.

	Outlook	Temp	Humidity	Windy	Hours Played
	Sunny	Mild	High	FALSE	45
≥	Sunny	Cool	Normal	FALSE	52
Sunny	Sunny	Cool	Normal	TRUE	23
S	Sunny	Mild	Normal	FALSE	46
	Sunny	Mild	High	TRUE	30
4		1	To a	100000	1 22
Se	Overcast	Hot	High	FALSE	46
ပို	Overcast	Cool	Normal	TRUE	43
ē	Overcast	Mild	High	TRUE	52
Overcast	Overcast	Hot	Normal	FALSE	44
4	=				
50	Rainy	Hot	High	FALSE	25
>	Rainy	Hot	High	TRUE	30
Rainy	Rainy	Mild	High	FALSE	35
~	Rainy	Cool	Normal	FALSE	38
	Rainy	Mild	Normal	TRUE	48

In practice, we need some termination criteria. For example, when coefficient of deviation (**CV**) for a branch becomes smaller than a certain threshold (e.g., 10%) and/or when too few instances (**n**) remain in the branch (e.g., 3).

Step 4b: "Overcast" subset does not need any further splitting because its CV (8%) is less than the threshold (10%).

The related leaf node gets the average of the "Overcast" subset.

Outlook - Overcast

		Hours Played (StDev)	Hours Played (AVG)	Hours Played (CV)	Count
	Overcast	3.49	46.3	8%	4
Outlook	Rainy	7.78	35.2	22%	5
	Sunny	10.87	39.2	28%	5

Step 4c: However, the "Sunny" branch has an CV (28%) more than the threshold (10%) which needs further splitting. We select "Windy" as the best best node after "Outlook" because it has the largest SDR.

Outlook - Sunny

Temp	Humidity	Windy	Hours Played
Mild	High	FALSE	45
Cool	Normal	FALSE	52
Cool	Normal	TRUE	23
Mild	Normal	FALSE	46
Mild	High	TRUE	30
			S = 10.87
			AVG = 39.2
			CV = 28%

		Hours Played (StDev)	Count
Temp	Cool	14.50	2
	Mild	7.32	3

SDR = 10.87-((2/5)*14.5 + (3/5)*7.32) = 0.678

		Hours Played (StDev)	Count
Humidity	High	7.50	2
	Normal	12.50	3

SDR = 10.87-{(2/5)*7.5 + (3/5)*12.5) = 0.370

		Hours Played (StDev)	Count
Windy	False	3.09	3
	True	3.50	2

SDR = 10.87-((3/5)*3.09 + (2/5)*3.5) 7.62

Because the number of data points for both branches (FALSE and TRUE) is equal or less than 3 we stop further branching and assign the average of each branch to the related leaf node.

Step 4d: Moreover, the "rainy" branch has an CV (22%) which is more than the threshold (10%). This branch needs further splitting. We select "Temp" as the best best node because it has the largest SDR.

Because the number of data points for all three branches (Cool, Hot and Mild) is equal or less than 3 we stop further branching and assign the average of each branch to the related leaf node. When the number of instances is more than one at a *leaf node* we calculate the *average* as the final value for the target.

