BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES À LA GÉOMÉTRIE

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1. Les polygones 2

Date: 18 Jan. 2025 - 22 Jan. 2025.

1

1. Les polygones

La technique ne change pas : nous allons restreindre la recherche à des polygones de plus en plus particuliers. Cette dernière section nous poussera à un peu plus de technicité.

Définition 1. Un « n-gone » désigne un polygone à n côtés avec $n \geq 3$.

Définition 2. Un « n-isogone » désigne un n-gone dont tous les côtés sont de mesure égale.

Fait 1. Si un n-gone \mathcal{P} n'est pas convexe, alors on peut construire un n-gone convexe \mathcal{P}' tel que $\operatorname{Perim}(\mathcal{P}') = \operatorname{Perim}(\mathcal{P})$ et $\operatorname{Aire}(\mathcal{P}') > \operatorname{Aire}(\mathcal{P})$.

Démonstration. Ici, il ne faut pas être expéditif en indiquant que la preuve du fait \ref{align} se généralise sans aucun souci. En effet, avec n>4, nous pouvons avoir plusieurs points de nonconvexité, et les éliminer comme nous l'avons fait pour le quadrilatère n'est pas immédiat : dans la figure suivante, l'élimination des deux points de non convexité G et E de l'heptagone ABCDEFG nous amène à un nouvel heptagone ABCDE'FG' ayant lui aussi deux points de non-convexité F et D! Donc, rien n'empêche, a priori, d'avoir une suite de constructions n'aboutissant jamais à un heptagone convexe de même périmètre que celui de ABCDEFG, et d'aire strictement supérieure à celle de ABCDEFG.

Pire, on peut perdre des côtés lors de la construction comme dans l'exemple suivant où $C,\,D$ et E' sont alignés.

Laissons de côté cette construction pour nous concentrer sur la classique enveloppe convexe 2 du n-gone de départ. Par exemple, l'ennéagone ABCDEFGHI non convexe ci-dessous admet le pentagone ABDEG pour enveloppe convexe : le périmètre diminue et l'aire augmente, ce qui est utile, mais malheureusement le nombre de côtés change.

^{1.} L'auteur est convaincu que le procédé aboutira en un nombre fini d'étapes à un polygone convexe, mais il ne l'a pas démontré pour le moment.

^{2.} C'est le plus petit polygone convexe « contenant » le n-gone considéré, où « petit » est relatif à l'inclusion.

Une idée simple, que nous allons formaliser rigoureusement juste après, consiste à ajouter les sommets manquants suffisamment prêts des côtés de l'enveloppe convexe afin de ne pas trop augmenter le périmètre pour le laisser inférieur, ou égal, à celui du n-gone non convexe initial. Le dessin suivant illustre cette idée.

Considérons donc un n-gone non convexe \mathcal{P} , de périmètre p.

- XXX
- XXX
- XXX
- XXX

Remarque 1.1. Convexe important car sinon on pourrait imagine avoir suite structement croissante sans maximum!

- *XXX*
- XXX
- *XXX*
- XXX

Fait 2. Si un n-gone convexe \mathcal{P} n'est pas un n-isogone, alors on peut construire un n-isogone convexe \mathcal{P}' tel que $\operatorname{Perim}(\mathcal{P}') = \operatorname{Perim}(\mathcal{P})$ et $\operatorname{Aire}(\mathcal{P}') > \operatorname{Aire}(\mathcal{P})$.

Démonstration. Considérons un n-gone convexe \mathcal{P} , de périmètre p, qui n'est pas un n-isogone. \mathcal{P} admet donc un triplet de sommets consécutifs A, B et C tels que $AB \neq AC$ (dans le cas contraire, on obtient de proche en proche un n-isogone). La construction vue dans la preuve du fait ?? permet de conclure sans effort ou presque. En effet, XXX si un sommet mangé, on fait de nouveau mini perturb pas supérieur à la pert de péimètre pour passer à iscoèle avant dilatation axiale

non convexité pas gpenante car géré par le fait 1

- XXX
- XXX
- XXX
- XXX

Remarque 1.2. ce qui suit pas bon car n-on pourrait petre enfermer dans stricte coroissante sansn maxium!

Si un n-gone convexe \mathcal{P} , de périmètre p, n'est pas un n-isogone, alors on peut construire un n-gone convexe \mathcal{P}' tel que $\operatorname{Perim}(\mathcal{P}') = p$ et $\operatorname{Aire}(\mathcal{P}') > \operatorname{Aire}(\mathcal{P})$.

- XXX
- XXX
- XXX
- XXX

Définition 3. Le « degré de régularité » d'un n-gone \mathcal{P} est son nombre maximal d'angles de même mesure. Il sera noté $\operatorname{dreg}(\mathcal{P})$.

Fait 3. Si un n-isogone convexe \mathcal{P} vérifie $\operatorname{dreg}(\mathcal{P}) < n$, alors on peut construire un n-isogone convexe \mathcal{P}' tel que $\operatorname{dreg}(\mathcal{P}') > \operatorname{dreg}(\mathcal{P})$, $\operatorname{Perim}(\mathcal{P}') = \operatorname{Perim}(\mathcal{P})$ et $\operatorname{Aire}(\mathcal{P}') > \operatorname{Aire}(\mathcal{P})$..

Démonstration. XXX

- XXX
- XXX
- XXX
- XXX

Fait 4. Si un n-isogone convexe \mathcal{P} n'est pas régulier, alors on peut construire un n-gone régulier \mathcal{P}' tel que $\operatorname{Perim}(\mathcal{P}') = \operatorname{Perim}(\mathcal{P})$ et $\operatorname{Aire}(\mathcal{P}') > \operatorname{Aire}(\mathcal{P})$.

 $D\acute{e}monstration.$ fait 3 donne de moins en moins d'nagles différentes impliquent arrivé à -n-gone régulier

XXX

- XXX
- XXX
- XXX
- XXX

ROUILLON
OUILLON
UILLON
ILLON
LON
ЭN
V
J
_
T
N
É
G
Δ
١T
J
Т
Ή
í,
3
I
S
1
)
P
Ė
í.
R
T
N
Λ
Ŧ
Ź,
Т
Ŧ
R
T
C
)]
IJ
F
7.5
3
R
Ŧ
₹,
S
7
Γ.
R
1
₹,
T
N
Γ.
E
ς
1
λ
T
4
<i>(</i> -
11
É,
(
).
V
1
É
'n
Γ.
В
?]
ſΤ
₹,

5

Fait 5. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Considérons tous les n-gones de périmètre fixé. Parmi tous ces n-gones, un seul est d'aire maximale, c'est le n-gone régulier.

Démonstration. Tout a déjà été dit, car d'après les faits précédents, un n-gone \mathcal{P} non régulier ne peut pas maximiser son aire à périmètre fixé, et par conséquent seul le n-gone régulier maximise l'aire à périmètre fixé. Chapeau bas, géométrie...