





# **Prescriptive Analytics**

Belegarbeiten

## Themenüberblick



### I. Multiple Knapsack Problem

- Erweitertes Knapsack Problem mit Beachtung von nicht genutzten Ressourcen
- Zielfunktion: Gewinn (Maximierung)

#### II. Quadratic Assignment Problem

- Standortplanung von Anlagen
- Zielfunktion: Gesamttransportleistung (Minimierung)

### III. Capacitated Profitable Tour Problem

- Profitable Tour Problem mit begrenzter Kapazität
- Zielfunktion: Profit der besuchten Knoten (Maximierung)

### IV. Traveling Salesman Problem with precedence constraints

- TSP mit festgelegter Reihenfolgebeziehung
- Zielfunktion: Gefahrene Distanz zum Besuchen aller Knoten (Minimierung)





# Zielstellung und Bearbeitungsmodus



### Zielstellung

- Die KursteilnehmerInnen erhalten je eines der dargestellten Planungsprobleme.
- Ziel ist die Lösung des Planungsproblems mit der beschriebenen Heuristik innerhalb einer definierten Rechenzeit. Diese kann innerhalb der Arbeitsgruppen abgestimmt werden.
- Die Bearbeitungsdauer beträgt sechs Wochen. Ausgabetermin: 23.05.2022 Abgabetermin: 04.07.2022
- Am Ende erfolgt eine Kurzpräsentation (10 Minuten) der Ergebnisse. (Präsentationstermine: 11./12.07.2022)

### **Bearbeitung**

- Die Bearbeitung erfolgt in Visual Studio Code unter Verwendung der Programmiersprache Python.
- Zur Bearbeitung werden zu jedem Problem Datensets bereitgestellt. Nach Abgabe erfolgt einer Überprüfung der Lösungsqualität mit einem Validation Data Set.
- Zur Lösung der Aufgabenstellung sind Klassenstruktur, Lösungsalgorithmus und die notwendige Solverarchitektur zu entwickeln.
- Neben der Programmierung ist der Lösungsweg in einem Jupyter Notebook nachvollziehbar zu dokumentieren.





## **Hinweise zur Dokumentation**



### **Dokumentation**

- Während die eigentliche Entwicklungsarbeit in normalen Python-Programmen/ Dateien stattfindet, sollte die Dokumentation über ein Jupyter Notebook erfolgen.
- Im Programm-Code sollten kurze Hinweise und Kommentare stehen.
- Zur Veranschaulichung können im Juypter Notebook Code-Zellen verwendet werden, welche auf entwickelten Programmcode zurückgehen/verweisen.
- Die Dokumentation sollte die folgenden Punkte enthalten:
  - Beschreibung des Planungsproblems & Inputdaten
  - Klassenstruktur und Erläuterung zur Architektur des Programms
  - Beschreibungen zur Codierung und Bewertung von Lösungen
  - Erzeugung von Startlösungen und Vorgehensweise des Näherungsverfahrens
  - Hinweise und Erläuterungen zu verwendeten Parametereinstellungen
  - Auswertung der Ergebnisse & Einschätzung der Lösungsgüte
- Referenzieren Sie von Ihnen verwendete Literatur in Ihrem Jupyter Notebook





## Worauf achten wir



- Ihr Solver beinhaltet alle notwendigen Elemente des geforderten Lösungsverfahren: problemspezifische konstruktive Bausteine, sowie verfahrensspezifische Intensivierungs- und Diversifikationsmechanismen.
- Ihr Solver läuft fehlerfrei durch und erzeugt zulässige Ergebnisse für das Planungsproblem.
- Sie haben sinnvolle Klassenstrukturen und Solverarchitektur in Anlehnung an das Seminar erstellt.
- Ergebnisse sollten durch die Verwendung eines Zufallszahlengenerators reproduzierbar sein.





## **Iterated Local Search**



### **Beschreibung**

- Iterative Lokale Suche mit Akzeptanzkriterium
  - Intensivierung: Local Search
  - Diversifikation:
     Akzeptanzkriterium und Perturbation: Stören einer Lösung,
     z.B. durch einen zufälligen (verschlechternden) Tausch
  - Unterschied zu Iterated Greedy: kein *Zerstören* der Lösung und darauffolgendes Zusammensetzen mit konstruktiven (problemspezifischen) Regeln
- Mögliche Variationen:
  - Mehrere Nachbarschaften f
    ür Lokale Suche → VND
  - Verschiedene Perturbationsmechanismen: mehrere oder problemspezifische Perturbationen
  - Periodischer Neustart von bester gefundener Lösung
  - ...

### **Ablauf**

#### **Grundlegender Ablauf von Iterated Local Search**

1: **Input**: start solution s<sub>0</sub>

2: Initialize:  $s = s_0$ 

3: while abort criterion is not reached do

4: s' = Perturb(s) // not in first iteration

5: s'' = LocalSearch(s')

6: **if** acceptance criterion is satisfied **then** 

7: s = s''

8: **end if** 

9: end while







## Variable Neighborhood Search



### **Beschreibung**

- Systematischer Wechsel zwischen verschiedenen Nachbarschaften
  - Intensivierung: Local Search mit ausgewählter Nachbarschaft oder auch VND
  - Diversifikation:
     Shaking: Zufälliger, auch verschlechternder Tausch in der aktuellen Nachbarschaft
- Mögliche Variationen:
  - Dynamische Auswahl der Nachbarschaft, z.B. Anhand von gesammelten Statistiken während des Lösungsverlaufs
  - Verschiedene Perturbationsmechanismen: mehrere oder problemspezifische Perturbationen
  - Periodischer Neustart von bester gefundener Lösung
  - ...

### **Ablauf**

#### **Grundlegender Ablauf von Variable Neighborhood Search**

1: **Input**: default neighborhood  $k_0$ , start solution  $s_0$ 

2: **Initialize**:  $k = k_0$ ,  $s = s_0$ 

3: while abort criterion is not reached do

4: s' = Shaking(s, k) // not in first iteration

5: s = LocalSearch(s', k)

6: k = NeighborhoodChange(k)

7: end while

Vgl. Gendreau, M., & Potvin, J. Y. (Eds.). (2019). Handbook of metaheuristics (Vol. 3, p. 57). New York: Springer





# **Simulated Annealing**



### **Beschreibung**

- Analogie zu physikalischen Prinzipien beim Ausglühen von kristallinen Substanzen:
  - Nach dem Erhitzen folgt die Abkühlung des Werkstoffs und die Ausbildung von Gitterstrukturen
  - Robustheit bzw. Stabilität hängt von der Ausgangstemperatur und der Abkühlungsrate ab
- Die Metaheuristik simuliert diesen Abkühlungsprozess, wobei eine Lösung des Planungsproblems den Zustand des Werkstoffes repräsentiert
- Der Zielfunktionswert stellt dabei den energetischen Zustand des Werkstoffes dar
- Cooling Schedule (Initialtemperatur, Gleichgewichtszustand, Abkühlungsfunktion, Stoppkriterium)

### **Ablauf**

#### **Grundlegender Ablauf des Simulated Annealing**

```
1: Input: Cooling Schedule, start solution s<sub>0</sub>
```

2: **Initialize**: 
$$s = s_0$$
,  $i = 0$ ,  $T_0 = T_{max}$ 

3: while 
$$T_i > T_{min}$$
 do

6: 
$$\Delta E = ZF(s') - ZF(s)$$

7: **if** 
$$\Delta E \leq 0$$
 **then**

8: 
$$s = s'$$

10: Set 
$$s = s'$$
 with probability  $P(\Delta E, T_i) = e^{\frac{-\Delta E}{T_i}}$ 

11: **end if** 

12: end while

13: 
$$i = i + 1, T_i = g(T)$$

14: end while

Vgl. Gendreau, M., & Potvin, J. Y. (Eds.). (2019). Handbook of metaheuristics (Vol. 3, p. 1). New York: Springer





## **Tabu Search**



### **Beschreibung**

- Zulassen von verschlechternden Tauschen um lokalen Optima zu entkommen
- Verbieten von zuletzt besuchten Lösungen ("Cycling")
  - Kurzzeitgedächtnis Tabu-Liste
  - Länge Tabu-Liste steuert Diversifizierung und Intensivierung
- Aspirationskriterium um Tabu-Liste zu umgehen
- Weitere Gedächtnisformen
  - Mittelfristig: Speicherung schlechter/ guter Strukturen
  - Langzeit: Neustart von sehr guten Lösungen

### **Ablauf**

#### **Grundlegender Ablauf des Tabu Search**

1: **Input**: start solution s<sub>0</sub>

2: **Initialize**: Tabuliste  $T^L = \emptyset$ ,  $s = s_0$ 

3: while abort criterion is not reached do

4: Suche beste Lösung s' in Nachbarschaft von s, die

(i) *nicht tabu* ist oder

(ii) ein Aspirationskriterium erfüllt

 $5: \qquad s = s'$ 

5: Update T<sup>L</sup>

6: end while

Vgl. Gendreau, M., & Potvin, J. Y. (Eds.). (2019). Handbook of metaheuristics (Vol. 3, p. 37). New York: Springer





## **Feedback**

Wo sehen Sie Verbesserungspotential?

Was hat Ihnen gefallen?

Würden Sie die Veranstaltung weiterempfehlen?







# **Themenzuweisung**



| Nr. | Thema                      | Heuristik | Zuweisung |
|-----|----------------------------|-----------|-----------|
| 1   | QAP                        | VNS       | 4694274   |
| 2   | Minimale Transportleistung | TS        | 5012185   |
| 3   |                            | SA        | 4873373   |
| 4   | Dr. Janis Neufeld          | ILS       | 4904196   |
| 5   | MKP                        | VNS       | 4795742   |
| 6   | Maximaler Gewinn           | TS        | 4685025   |
| 7   |                            | SA        | 4805234   |
| 8   | Benedikt Zipfel            | ILS       | 4802768   |
| 9   | CPTP                       | VNS       | 4629203   |
| 10  | Maximaler Profit           | TS        | 4874889   |
| 11  |                            | SA        | 4694185   |
| 12  | Florian Linß               | ILS       | 4997523   |
| 13  | TSP-PC                     | VNS       | 4712326   |
| 14  | Minimale Distanz           | TS        | 4886335   |
| 15  |                            | SA        | 4803099   |
| 16  | Lisa Wesselink             | ILS       | 4623033   |



