

Tarea 2

 $7~{\rm de~septiembre~de~2019}$ $2^{\rm o}~{\rm semestre~2019}$ - Profesores G. Diéguez - F. Suárez

Rafael Fernández - 17639123

Respuestas

Pregunta 1

a)

Ya que sabemos que $\{\neg, \lor\}$ es funcionalmente completo, demostraremos con inducción estructural que para cada formula construida con $\{\neg, \lor\}$, existe otra fórmula equivalente con $\{\sim, \rightarrow\}$.

CB: $\varphi = p$, se cumple trivialmente.

HI: Si α , β se pueden contruir con $\{\neg,\lor\}$, entonces existen α' y β' escritas con $\{\sim,\to\}$ tal que $\alpha' \equiv \alpha$ y $\beta' \equiv \beta$.

TI: Paso inductivo

•
$$\omega \equiv \neg \alpha \equiv \alpha' \equiv \alpha \rightarrow \sim \alpha \equiv \omega'$$

$$\bullet \ \omega \equiv \alpha \vee \beta \equiv \alpha' \vee \beta' \equiv \neg \alpha \to \beta \equiv (\alpha \to \sim \alpha) \to \beta$$

b)

Demostraremos que $\{+, \to\}$ no es FC por contradicción. Para esto se demostrará que para cada fórumla lógica $\varphi \in L(P)$ formada con $\{+, \to\}$ se cumple que $\varphi(p) \equiv p$ o $\varphi(p) \equiv \top$

CB: $\varphi = p$, se cumple trivialmente.

HI: Si $\varphi_1, \varphi_2 \in L(P)$ escritos solo con $\{+, \to\}$, entonces $\varphi_1 \equiv \alpha$ y $\varphi_2 \equiv \alpha$, con $\alpha \in \{p, \top\}$

TI: Paso inductivo

- $\bullet \ +\varphi_1 \equiv \top$ por definición
- \bullet Para el conector \to lo demostraremos caso por caso.

φ_1	φ_2	$\varphi_1 \to \varphi_2$
p	p	Т
p	Т	T
T	p	p
T	T	Т

Como se puede ver, es imposible obtener la negación $\varphi(p) \equiv \neg p$, por lo que el conjunto $\{+, \to\}$ no puede ser funcionalmente completo.

Pregunta 2

a)

Demostraremos por resolución con $\Sigma = \{\exists x(A(x)) \lor \exists y(B(y)), \forall x(A(x) \to B(x)), \neg(\exists y(B(y)))\} \equiv \Box$

- $(1) \ \forall y(\neg B(y))$
- $(2) \neg A(a) \lor B(a)$
- $(3) \neg B(a)$
- $(4) \neg A(a)$
- (5) $A(a) \vee B(a)$
- (6) A(a)
- (7)

b)

- (1) $A(a) \wedge \neg C(b)$
- (2) $A(b) \wedge \neg C(c)$
- $(3) \neg A(b) \lor B(b)$
- $(4) \ \neg B(b) \lor C(b)$
- $(5) \ \neg B(b)$
- $(6) \neg A(b)$
- (7)