Probabilités de base - TD 1

Exercice 1. De la loi uniforme aux lois discrètes

- 1. Soient X une variable aléatoire de loi uniforme sur [0,1] et $p \in]0,1[$. Quelle est la loi de $\mathbf{1}_{\{X \leq p\}}$?
- 2. Construire à l'aide de X une variable aléatoire Z prenant les valeurs a, b et c avec probabilité p, q et r; p, q, r sont trois réels de [0,1] tels que p+q+r=1.

Exercice 2. Variables aléatoires discrètes

Soit X une variable aléatoire dans \mathbb{Z}^* de loi donnée par

$$\forall k \in \mathbb{Z}^*, \qquad \mathbb{P}(X = k) = 2^{-(|k|+1)}.$$

On définit la variable aléatoire Y en posant

$$Y(\omega) = \begin{cases} X(\omega) & \text{si } X(\omega) \ge 0, \\ -X(\omega) + 1 & \text{si } X(\omega) < 0. \end{cases}$$

Déterminer la loi de Y.

Exercice 3. Calculs classiques

- 1. Calculer la moyenne, la variance ainsi que la fonction génératrice¹ de la variable aléatoire X dans les cas suivants : X suit la loi (a) de Bernoulli de paramètre p; (b) binomiale de paramètres n et p; (c) géométrique de paramètre p; (d) de Poisson de paramètre $\lambda > 0$.
- 2. Même question en remplaçant fonction génératrice par transformée de Laplace et X de loi (a) exponentielle de paramètre $\lambda > 0$; (b) uniforme sur [a, b]; (c) de loi gaussienne $\mathcal{N}(m, \sigma^2)$.

Exercice 4. Fonction caractéristique de la loi normale

Soit X une v.a.r. normale centrée réduite définie sur $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. Calculer, pour tout réel s, $\mathbb{E}\left[e^{sX}\right]$. En déduire que $e^{s|X|}$ est intégrable pour tout $s \in \mathbf{R}$.
- 2. Montrer que $z \longmapsto \mathbb{E}\left[e^{zX}\right]$ est analytique sur ${\bf C}.$
- 3. En déduire que $\varphi_X(t) = \mathbb{E}\left[e^{itX}\right] = e^{-\frac{t^2}{2}}$.
- 4. En déduire la fonction caractéristique de la loi normale $\mathcal{N}(m, \sigma^2)$.

Exercice 5.

Soit X de loi exponentielle de moyenne 1. Déterminer la fonction de répartition de min(X, 1/X).

Exercice 6. Calculs de lois

À quelle condition sur α , la fonction p définie par $p(x) = \alpha x^{\alpha-1}$ si 0 < x < 1, p(x) = 0 sinon est-elle une densité de probabilité? Montrer que la loi de $Y = -\alpha \ln(X)$ ne dépend pas de α .

Fonction génératrice : $s \mapsto \mathbb{E}(s^X)$, transformée de Laplace : $t \mapsto \mathbb{E}(e^{tX})$

Exercice 7. Inégalité de Chernov

1. Soit X une variable aléatoire positive. Établir l'inégalité de Markov :

$$\forall r > 0, \quad \mathbb{P}(X \ge r) \le \frac{\mathbb{E}(X)}{r}.$$

2. Soit Y une v.a.r. Montrer que

$$\forall t \in \mathbb{R}, \qquad \mathbb{P}(X \geq t) \leq \inf_{\lambda \geq 0} e^{-\lambda t} \, \mathbb{E}\left[e^{\lambda X}\right].$$

3. Que raconte cette inégalité si X suit la loi uniforme sur [0,1]? la loi de Cauchy? la loi normale $\mathcal{N}(0,1)$? la loi de Poisson $\mathcal{P}(1)$?

Exercice 8. Inégalité de Jensen

Soit φ une fonction convexe de \mathbb{R} dans \mathbb{R} et X une v.a.r telle que X et $\varphi(X)$ soient intégrables.

1. Soit $x \in \mathbb{R}$. Montrer qu'il existe un réel a(x) tel que, pour tout $y \in \mathbb{R}$,

$$\varphi(y) \ge \varphi(x) + a(x)(y - x).$$

2. En déduire l'inégalité de Jensen :

$$\varphi(\mathbb{E}(X)) \leq \mathbb{E}(\varphi(X)).$$

Exercice 9. Loi d'un couple et lois marginales

Soit Z = (X, Y) un couple aléatoire de densité p donnée par $p(x, y) = ke^{-y}$ si 0 < x < y et p(x, y) = 0 sinon.

- 1. (a) Dessiner le domaine du plan sur lequel p n'est pas nulle. Calculer k.
 - (b) Déterminer les densités marginales de Z.
- 2. Déterminer la loi de T = Y X.

Exercice 10. Loi d'un couple et lois marginales

Soit (U, V) une v.a. dans \mathbf{R}^2 de densité $\mathbf{1}_{]0,1[}(u)\mathbf{1}_{]0,1[}(v)$.

- 1. Déterminer la loi du vecteur (X,Y) où $X=\sqrt{-2\ln U}\cos(2\pi V),\,Y=\sqrt{-2\ln U}\sin(2\pi V).$
- 2. Quelle est la loi de X/Y?
- 3. On note $R = \sqrt{X^2 + Y^2}$. Déterminer la loi de (X/R, R).