

MÉTODOS ESTOCÁSTICOS EN RECURSOS HIDRÁULICOS

Sthochastic Methods in Water Resources

2024 - 15

Ejercicio 02 - Probabilidad y Variables Aleatorias

- 1. La conductividad hidráulica en alguna ubicación no observada se modela con una distribución log-normal. La media de Y = ln K es 2.0 y la varianza es 1.5. ¿Cuál es la media y la varianza de K?
- 2. La conductividad hidráulica para un acuífero tiene una distribución lognormal con media 10 m/d y varianza 200 m²/d². ¿Cuál es la probabilidad de que en una ubicación no observada la conductividad sea mayor que 30 m/d?
- 3. Basado en un análisis geológico, se obtuvieron las siguientes probabilidades de clases de textura que ocurren en un acuífero: Pr[arena]=0.7, Pr[arcilla]=0.2, Pr[turba]=0.1. La siguiente tabla muestra las distribuciones de probabilidad de las clases de conductividad para las tres texturas:

Tabla 1: probabilidades de clases de conductividad (m/d) para tres clases de textura

Textura	Conductividad Hidráulica [m/d]							
	1x10 ⁻³	1x10 ⁻²	1x10 ⁻¹	1x10°	1x10 ¹	2x10 ¹	5x10 ¹	1x10²
Arena	0.0	0.0	0.0	0.1	0.4	0.3	0.1	0.1
Arcilla	0.3	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Turba	0.1	0.3	0.3	0.2	0.1	0.0	0.0	0.0

Calcular la distribución de probabilidad de la conductividad para todo el acuífero.

- 4. Considerar dos variables aleatorias Z₁ y Z₂ con media 10 y 25 y varianzas 300 y 450 respectivamente. El coeficiente de correlación entre ambas variables es igual a 0.7.
 - a. Calcular la covarianza entre Z1 y Z2.
 - b. Calcular el valor esperado de Y = Z1 + Z2.
 - c. Calcular la varianza de Y = Z1 + Z2.

http://sites.google.com/view/agua_unal

5. Suponer que están distribuidas de manera gaussiana bivariada y:

- a. Calcular $Pr[Z_1 < 30]$
- b. Calcular $Pr[Z_2 < 40]$
- c. Calcular la probabilidad $Pr[Z_1 + Z_2 < 50]$
- d. Calcular la probabilidad $Pr[Z_1 < 30 \cap Z_2 < 40]$
- e. Calcular la probabilidad $Pr[Z_1 < 30 \cup Z_2 < 40]$

6. Derive una expresión para:

a.
$$\varphi_{Z_1+Z_2}(s) = \varphi_{Z_1}(s) + \varphi_{Z_2}(s)$$

b.
$$\varphi_Y(s) = \exp(isb) \varphi_Z(as), \text{con } Y = a + bZ$$

c.
$$\varphi_{Y}(s) = \left[\varphi_{Z}(s)\right]^{M}, \text{ si } Y = \sum_{k=1}^{M} Z_{k}$$

d.
$$K_Z(s) = \sum_{n=1}^{\infty} \frac{(is)^n}{n} \kappa_n$$
, si $\kappa_n = \frac{1}{i^n} \frac{\mathrm{d}^k K_Z(s)}{\mathrm{d}s^k}$, evaluado en $s = 0$

http://sites.google.com/view/agua_unal