ILSVRC(The ImageNet Large Scale Visual Recognition Challenge)'s History

•••

Deep Learning Reading Group - Session 1 Sepehr Sameni (@Separius)

Background

ML = Data + Prior

What is ML?

- ❖The goal of machine learning is to build computer systems that can adapt and learn from their experience."
- When a computer system improve its performance at a given task overtime, without re-programming, it can be said to have learned something.

Contest

Standard evaluation method(Train/Test)

Supervised vs Unsupervised

PASCAL visual object classes challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Old Recipe

Feature Engineering + SVM/Linear classifier

ANN

Diff with real?

- Diff learning
- Synapse computation
- Feedback
- More!

Universal Function Approximator(sigmoid)

Backpropagation

Also talk about loss functions(mse, cross entropy, triplet)

Convolution

CNN [1]

Structural Bias(bias/variance), Invariant vs Covariant, Pooling, Brain Inspired!

AlexNet(finally! :D) [2]

Hinton, GPU, Pooling; ReLU, Local Response Normalization(lateral inhibition)

AlexNet(continued)

conv(3.7M), FC(58.6M) => over-fitting => flip, crop, color, dropout, weight decay

Model	Top-1	Top-5		
Sparse coding [2]	47.1%	28.2%		
SIFT + FVs [24]	45.7%	25.7%		
CNN	37.5%	17.0%		

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

Dropout [3]

Inception(idea) [4]

1.increase depth

=> over-fitting

Salient parts in the image can have extremely large variation in size. => 2. diff K sizes

1,2 => make it wider instead!

Inception Module

(b) Inception module with dimension reductions

GoogLeNet

Auxiliary loss(0.3), global average pooling

Inception Results

Number of models	Number of Crops	Cost	Top-5 error	compared to base	
1	1	1	10.07%	base	
1	10	10	9.15%	-0.92%	
1	144	144	7.89%	-2.18%	
7	1	7	8.09%	-1.98%	
7	10	70	7.62%	-2.45%	
7	144	1008	6.67%	-3.45%	

7 Models + 144 Crops

ResNet [5]

Problem(prev solutions: Init, Highway[6])

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Residual Connection

Figure 2. Residual learning: a building block.

method	top-1 err.	top-5 err. 8.43 [†]	
VGG [41] (ILSVRC'14)	-		
GoogLeNet [44] (ILSVRC'14)	-	7.89	
VGG [41] (v5)	24.4	7.1	
PReLU-net [13]	21.59	5.71	
BN-inception [16]	21.99	5.81	
ResNet-34 B	21.84	5.71	
ResNet-34 C	21.53	5.60	
ResNet-50	20.74	5.25	
ResNet-101	19.87	4.60	
ResNet-152	19.38	4.49	

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

ResNet variants

Squeeze & Excitation [7,8]

Global view

(like human

ch attention)

	original		re-implementation		SENet			
	top-1	top-5	top-1	top-5	GFLOPs	top-1	top-5	GFLOPs
S_11	етт.	err.	err.	err.	Orlors	err.	err.	GILOIS
ResNet-50 [9]	24.7	7.8	24.80	7.48	3.86	23.29(1.51)	$6.62_{(0.86)}$	3.87
ResNet-101 [9]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [9]	23.0	6.7	22.42	6.34	11.30	21.57 _(0.85)	$5.73_{(0.61)}$	11.32
ResNeXt-50 [43]	22.2	-	22.11	5.90	4.24	21.10(1.01)	$5.49_{(0.41)}$	4.25
ResNeXt-101 [43]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
BN-Inception [14]	25.2	7.82	25.38	7.89	2.03	24.23(1.15)	7.14(0.75)	2.04
Inception-ResNet-v2 [38]	19.9 [†]	4.9†	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

Future Directions

Generalizability is important => weakly supervised methods[9]

Training time is important => 224 seconds[10]

Computational budget is important => mobile net[11]

References

- 1. Gradient-Based Learning Applied to Document Recognition
- 2. ImageNet Classification with Deep Convolutional Neural Networks
- 3. Dropout: A Simple Way to Prevent Neural Networks from Overfitting
- 4. Going Deeper with Convolutions
- 5. Deep Residual Learning for Image Recognition
- 6. Highway Networks
- 7. Squeeze-and-Excitation Networks
- 8. Feature-selective attention enhances color signals in early visual areas of the human brain
- 9. Exploring the Limits of Weakly Supervised Pretraining
- 10. ImageNet/ResNet-50 Training in 224 Seconds
- 11. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications