精馏练习解答

第一部分

1、精馏设计时,若 \mathbf{F} 、 x_f 、 x_D 、 x_W 、 \mathbf{V} 均为定值,将进料热状态从饱和液体 进料变为饱和蒸汽进料,设计时所需的理论板数(A)。

A. 增加

- B. 减少
- C. 不变 D. 不确定

解读: F、 x_f 、 x_D 、 x_W 不变, W、D 不变, V=(R+1)D, 所以 R 不变,

冷量不变; q=1 变为 q=0, 加料中增加热量, 塔釜热量减小。根据工程观点, 热 量应该尽可能在塔釜加入,因此,该操作不利精馏,会使理论板数增加。

2、理论板图解时,与 F、 x_f 、 x_D 、 x_W , q、R,操作压力P等参数中 ____无关。

解答: 与 F 无关

3、精馏设计时,**采用相同的塔釜蒸发量**,则冷加料比热加料需要较少理论板数。 (是/非)

解答: 塔釜蒸发量不变, 冷量应该尽可能放在塔顶。

所以,冷加料违背工程观点,理论板数应该增加。

选择:非

违背冷在塔顶、热在塔底的原则时汽液组成图

4、连续精馏过程的进料热状态有_____种。C

A. 3

- B. 4
- C. 5
- D. 6

解答: 共有5种加料状态。

q<0, 过热蒸汽; q=0, 饱和蒸汽;

0<q<1, 汽液两相; q=1.饱和液体; q>1, 冷液

5、某精馏任务原设计的操作线如图。若设计时改用较大的塔釜蒸发量 v',而维 持q、F、D及进出塔组成不变,精馏段操作线L/V:

- A. 变大 B. 变小
- C. 不变 D. 不确定

解答: A

v'=v-(1-q)F=(R+1)D-(1-q)F:: q、F、D 不变, $V' \uparrow$, $:: R \uparrow$, $\frac{R}{R+1} \uparrow$

第二部分

精馏塔**塔顶泡点进料**。已知 $x_f=0.5, x_D=0.8, x_w=0.01, R=3$,,泡点回流, α 为

2.5。求:

①回收率; D

- A. 96.2
- B.97.2
- C. 98.2
- D. 99.2

②操作线方程; B

- A. 只有精馏段
- B.只有提馏段
- C. 精馏段、提馏段都有

③最小回流比。A

- A. 1
- B. 2
- C. 3
- D.4

解答:

①
$$\frac{D}{F} = \frac{x_f - x_w}{x_D - x_w} = 0.62$$
 $\eta = \frac{Dx_D}{Fx_f} = 99.2\%$

②
$$\overline{L} = L + qF = RD + F = 4.613D$$
 (提)

$$\overline{V} = V = (R+1)D = 4D$$

$$W = F - D = 0.613D$$

$$y_{n+1} = \frac{\overline{L}}{V} x_n - \frac{W}{V} x_w = 1.153 x_n - 0.00153$$

(3)
$$y_1 = x_D = 0.8$$
, $x_e = \frac{y_1}{\alpha - (\alpha - 1)y_1} = 0.615$

$$\frac{\overline{L}}{\overline{V}} = \frac{y_1 - x_w}{x_e - x_w} = 1.306 \qquad \qquad \frac{\overline{L}}{\overline{V}} = \frac{R_m + F/D}{R_m + 1} \qquad \qquad \text{ff } \forall R_m = 1$$

$$\frac{\overline{L}}{\overline{V}} = \frac{R_m + F/D}{R_m + 1}$$

所以
$$R_m = 1$$

2、某精馏塔设计时, 若将塔釜原来的间接蒸汽加热改为直接蒸汽加热, 而保持 x_f 、 x_p 、R、q、 x_W 相同,则 D/F <u>变小</u>, η_A <u>变小</u>,提馏段操作线斜率 变大___, 理论板数__变小___。(变大,变小,不变,不确定) 解答: 见图

第三部分

1、操作中的精馏塔, 若维持 F、q、 x_D 、V' 及进料位置不变, 而减小 x_F , 则有

- (1) D 增大, R 减小 (2) D 不变, R 增加;
- (3) D 减小, R 增加
- (4) D 减小, R 不变

解答:

: 精**馏段板数不变**, : 当 $x_F \downarrow$ 时,**为维持** x_D 不变,必须加大回流比,以提高精馏 段塔板的分离能力。

又因 v'=v-(1-q)F=(R+1)D-(1-q)F 不变、q、F 不变, 故随着 R↑, D 势必减小。 选择(3)

2、精馏塔操作时,若增大回流比,而 $F \times x_F \times q$ 、加热的热负荷不变,则塔顶
x _D , 塔底 x _W 。
(1) 变大 (2) 变小 (3) 不变 (4) 不确定
解答:
① $\mathbf{R} \uparrow \mathbf{M} \frac{R}{R+1} \uparrow$,精馏段理论板分离能力提高, $\mathbf{x}_{\mathbf{D}} \uparrow$ 。
② 热负荷不变,v'=v-(1-q)F=(R+1)D-(1-q)F 不变, $V = (R+1)D$ 不变,而 R↑,∴ $D \downarrow$,
W=F-D 则 W↑。
③ 提馏段操作线斜率 $\frac{L'}{V'} = \frac{V'+W}{V'} = 1 + \frac{W}{V'} = 1 + \frac{W}{V+(q-1)F}$ 随 W↑而增大,提馏段理论
板分离能力降低, xw↑。
选(1),(1)
3、连续精馏塔 操作 时,增大 塔釜蒸汽用量 ,而回流量及进料状态(F 、 x_F 、 q)不
变,则 x _D 。
(1) 变大 (2) 变小 (3) 不变 (4) 不确定
解答:
① 由 v'=v-(1-q)F=(R+1)D-(1-q)F 增大, q、F、RD 不变, 可知 D 增大, 故 R 减
小,精馏段操作线斜率 $\frac{R}{R+1}$ \downarrow ,精馏段理论板分离能力降低, \mathbf{x}_{D} \downarrow 。
② 由 V' 增大, $L' = L + qF$ 不变可知,提馏段操作线斜率 $\frac{L'}{W}$ 减小,提馏段理论板分

离能力提高, xw↓。

选(2),(2)

4、某精馏塔在操作时,加料热状态由原来的饱和液体进料改为冷液进料,且保持 F、 x_F 、回流比 R 和提馏段上升蒸汽量 V′ 不变,则此时 x_D _____, x_W _____。

(1)变大 (2) 变小 (3) 不变 (4) 无法确定 解答:

① 由 R、F、V'不变、q>1 且增大,以及 V'=V-(1-q)F=(R+1)D-(1-q)F 可知 $D\downarrow$,故 $W\uparrow$,② 提馏段操作线斜率 $\frac{L'}{V'}=\frac{V'+W}{V'}=1+\frac{W}{V'}$ 增大,提馏段理论板分离能力降低, $x_W\uparrow$ 。

③ x_D 的变化情况,需用排除法判定:由 R 不变,知精馏段操作线斜率也不变。假设 x_D 不变或 x_D 变小,作图可知理论板数均比原工况时的少,故假设不成立(见附图 1、2),因此 x_D 只能变大(见附图 3)。

选择 (1), (1)

5、精馏操作时,若 $F \times x_F \times q \times R$ 均不变,而将塔顶产品量 D 增加,其结果是

- (1) x_D下降, x_W下降; (2) x_D下降, x_W上升;
- (3) x_D下降, x_W不变; (4) x_D不变, x_W下降。

解答:

- ① R 不变,则精馏段操作线斜率不变。
- ② 由 F 不变, D 增加, 可知 W 变小;
- ③ 由 F、q、R 不变,可知 v'=v-(1-q)F=(R+1)D-(1-q)F 随 D 增大而增大,因而, 提馏段操作线斜率 $\frac{L'}{V'} = \frac{V'+W}{V'} = 1 + \frac{W}{V'}$ 将变小,提馏段塔板分离能力提高,故 $\mathbf{x}_{\mathbf{w}}$ 变 小。
- ④ x_D 的变化情况,需用排除法判定:假设 x_D 不变或变大,作图可知,理论板数 均比原工况时的多(见附图 1、2),这与理论板数固定相矛盾。所以,xD只能变 小(见附图3)。

