SHEET METAL OPERATIONS

- 3t is the cheapest of fastest way of the complete manufacture of a component.

- Sheet metal is considered to be a plate with thickness

less than about 5 mm.

Stress induced		operations.	
1.7	Shearing	Blanking Shearing. Piercing. Trimming. Shaving. Notching. Nibbling.	
2)	Tension	Stretch forming.	
3)	Compression	-Coining. Sizing. Ironing. Hobbing.	
47	Tension + Compression.	Drawing. Spinning. Bending. Forming - 2 mbossing.	

Slitting, Perforating, Lancing, Steel Rule

PTERCING (PUNCHING) and BLANKING

- Both are shearing operations.
- In blanking, the piece being punched out becomes the workpiece and any major material plate should be left on the remaining strip.
- In piercing (punching), the punch-out is the scrop and the remaining strip is the workpiece.
- Both done on some form of mechanical press.

CLEARANCE: The opening must be larger than bunch and known as "clearance".

Process	Punch Size	Die Size	Clearance On
Panching.	Hole size	Hole size+2C	Die.
Blanking.	Hole size - 2c	Hole size	Panch.

clearance (c) = 0.0032 t /T

T= Shear strength of the material N/mm2 (MPa).

t = thickness (mm)

Fotal clearance between punch and die size will be twice. # If the allowance for the material is 0.075 given then c=0.075 y. thickness of the sheet.

St cleanance is 1 1/2 given then.

c = 0.01 x thickness of the sheet.

Punching Force and Blanking Force:

Fmax. = L to I

L= Length of the sheet rectangular = thength * breaks, circle = nd.

Capacity of Press for Punching and Blanking:

Press capacity will be = Fmox. XC
[where C = 1.1 to 1.75]
Soft Hard.

Minimum dia of Piercing:

Panching force & Réststance offered by sheet.

 $\sigma_{c}\left(\frac{T_{1}}{T_{1}}d^{2}\right) = T_{s}\left(\frac{\pi}{\sigma}dt\right)$ $\int_{0}^{\infty} du dt = \frac{4t}{\sigma_{c}}$

(or = Crushing) Stress

Force required with shear on Punch.

Fahear = Frax x penetration.

Shear + penetration

F = Fmax x benetration of bunch as a traction. Shear on the bunch or die (mm)

FILE BLANKING:

Dies are designed that have small clearance and pressure pads that holds the material while it is sheared.

The final result is blanks that have extremely close tolerances.

Bending

Bending is a metal forming process in which a force is applied to a piece of sheet metal, causing it to bend at an angle and form the desired shape.

Shearing

- Shearing is defined as separating material into two parts.
- It utilizes shearing force to cut sheet metal.

Punching or Piercing

The typical punching operation, in which a cylindrical punch pierces a hole into the sheet.

Blanking

- A piece of sheet metal is removed from a larger piece of stock.
- This removed piece is not scrap, it is the useful part.

Trimming

Punching away excess material from the perimeter of a part, such as trimming the flange from a drawn cup.

Parting

Separating a part from the remaining sheet, by punching away the material between parts.

Slitting

Cutting straight lines in the sheet. No scrap material is produced.

Lancing

Creating a partial cut in the sheet, so that no material is removed. The material is left attached to be bent and form a shape, such as a tab, vent, or louver.

Notching

Punching the edge of a sheet, forming a notch in the shape of a portion of the punch.

Perforating

Punching a close arrangement of a large number of holes in a single operation.

Nibbling

Punching a series of small overlapping slits or holes along a path to cut-out a larger contoured shape.

Embossing

- Certain designs are embossed on the sheet metal.
- Punch and die are of the same contour but in opposite direction.

Shaving

Shearing away minimal material from the edges of a feature or part, using a small die clearance. Used to improve accuracy or finish. Tolerances of ± 0.025 mm are possible.

Cutoff

Cutoff - Separating a part from the remaining sheet, without producing any scrap.

The punch will produce a cut line that may be straight, angled, or curved.

Coining

Similar to embossing with the difference that similar or different impressions are obtained on both the sides of the sheet metal.

Dinking

Dinking - A
specialized form of
piercing used for
punching soft metals.
A hollow punch,
called a dinking die,
with beveled,
sharpened edges
presses the sheet into
a block of wood or
soft metal.

Deep Drawing

- Deep drawing is a metal forming process in which sheet metal is stretched into the desired shape.
- A tool pushes downward on the sheet metal, forcing it into a die cavity in the shape of the desired part.

Stretch Forming

Stretch forming is a metal forming process in which a piece of sheet metal is stretched and bent simultaneously over a die in order to form large bent parts.

Roll Forming

Roll forming is a continuous bending operation in which a long strip of sheet metal is passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section profile is obtained.

Roll forming is ideal for producing constant-profile parts with long lengths and in large quantities.

Ironing

 Makes wall thickness of cylindrical cup more uniform

