Asymptotic analysis of piezoelectric energy harvester

Maoying Zhou

October 25, 2019

1 Summary of the interested equations

Here we are interested in the classical model of a piezoelectric cantilever beam energy harvester, whose model is described using the following set of equations:

$$u'''' - \lambda^2 u = 0, (1)$$

and the accompanying boundary conditions:

$$\begin{cases} u(0) = 0 \\ u'(0) = 0 \end{cases}$$

$$u''(1) + \frac{j\lambda\beta\alpha^2}{j\lambda\beta + 1}u'(1) = 0$$

$$u'''(1) = 0$$
(2)

where λ is the eigenvalues for the problem, u denotes the displace function of the cantilever beam, β is the dimensionless externally connected resistance, and α is the dimensionless piezoelectric coefficient. They can be expressed as follows

$$\lambda = \omega \sqrt{\frac{m_p l_p^4}{B_p}}, \quad \beta = R_l C_p \sqrt{\frac{B_p}{m_p l_p^4}}, \quad \alpha = e_p \sqrt{\frac{l_p}{C_p B_p}}, \tag{3}$$

where ω is angular frequency, m_p is line mass density, l_p is the length of the cantilever beam, B_p is the bending stiffness, C_p is the inherent capacitance of the piezoelectric layer, e_p is the charge accumulation number, R_l is the externally connected resistance. In practical applications, dielectric property of piezoelectric materials indicate that the parameter β is changed from a very small value, which is close to a short-circuit condition to a very large value, which corresponds to an open-circuit condition. Thus we have that $0 \le \beta \le \infty$.

2 Asymptotic analysis when β is small

Here we seek to find the behavior of the above system at a small value of connected resistance, i.e., $\beta \to 0$. In this case, we set β to be the parameter for asymptotic expansion, and

$$\lambda^{(k)} = \lambda_0^{(k)} + \beta \lambda_1^{(k)} + \beta^2 \lambda_2^{(k)} + \cdots$$

$$u^{(k)} = u_0^{(k)} + \beta u_1^{(k)} + \beta^2 u_2^{(k)} + \cdots$$
(4)

where $\lambda^{(k)}$ and $u^{(k)}$ are the kth eigenvalue and eigenfunction respectively of the above mentioned system under perturbation. $\lambda_0^{(k)}$ and $u_0^{(k)}$ are the corresponding eigenvalue and eigenfunction of the unperturbed system at $\beta=0$:

$$u'''' - \lambda_0^2 u = 0, (5)$$

$$\begin{cases} u(0) = 0 \\ u'(0) = 0 \\ u''(1) = 0 \\ u'''(1) = 0 \end{cases}$$
 (6)

Obviously, the unperturbed system is a classical eigenvalue problem with the eigenvalues determined by

$$1 + \cosh(\sqrt{\lambda_0})\cos(\sqrt{\lambda_0}) = 0 \tag{7}$$

whose first several values are

$$\frac{\sqrt{\lambda_0^{(1)}}}{\pi} = 0.59686, \quad \frac{\sqrt{\lambda_0^{(2)}}}{\pi} = 1.49418, \quad \frac{\sqrt{\lambda_0^{(3)}}}{\pi} = 2.50025, \quad \frac{\sqrt{\lambda_0^{(4)}}}{\pi} = 3.49999, \quad \cdots$$
 (8)

Take the asymptotic expansions and substitute them into the previously derived system of equations, we have the following asymptotic expansions to different orders of β : $O(\beta^0)$:

$$\begin{cases}
 u_0'''' - \lambda_0^2 u_0 = 0 \\
 u_0(0) = 0 \\
 u_0'(0) = 0 \\
 u_0''(1) = 0 \\
 u_0'''(1) = 0
\end{cases} \tag{9}$$

 $O(\beta^1)$:

$$\begin{cases}
 u_1'''' - \left(\lambda_0^2 u_1 + 2\lambda_0 u_0 \lambda_1\right) = 0 \\
 u_1(0) = 0 \\
 u_1'(0) = 0 \\
 u_1''(1) + j\alpha^2 \lambda_0 u_0'(1) = 0 \\
 u_1'''(1) = 0
\end{cases} \tag{10}$$

 $O(\beta^2)$:

$$\begin{cases}
 u_2'''' - \left(\lambda_0^2 u_2 + 2\lambda_0 u_1 \lambda_1 + \lambda_1^2 u_0 + 2\lambda_0 u_0 \lambda_2\right) = 0 \\
 u_2(0) = 0 \\
 u_2'(0) = 0 \\
 u_2''(1) + \alpha^2 \lambda_0 u_0'(1) + j\alpha^2 \left[\lambda_0 u_1'(1) + \lambda_1 u_0'(1)\right] = 0 \\
 u_2'''(1) = 0
\end{cases} \tag{11}$$

3 Asymptotic analysis when β is large

Here we seek to find the behavior of the above system at a large value of connected resistance, i.e., $\beta \to \infty$. In this case, we set $\frac{1}{\beta}$ to be the parameter for asymptotic expansion and

$$\lambda^{(k)} = \tilde{\lambda}_0^{(k)} + \left(\frac{1}{\beta}\right) \tilde{\lambda}_1^{(k)} + \left(\frac{1}{\beta}\right)^2 \tilde{\lambda}_2^{(k)} + \cdots$$

$$u^{(k)} = \tilde{u}_0^{(k)} + \left(\frac{1}{\beta}\right) \tilde{u}_1^{(k)} + \left(\frac{1}{\beta}\right)^2 \tilde{u}_2^{(k)} + \cdots$$
(12)

where $\tilde{\lambda}^{(k)}$ and $\tilde{u}^{(k)}$ are the kth eigenvalue and eigenfunction respectively of the above mentioned system under perturbation. $\tilde{\lambda}_0^{(k)}$ and $\tilde{u}_0^{(k)}$ are the corresponding eigenvalue and eigenfunction of the unperturbed system at $\beta = \infty$: $O(\frac{1}{30})$:

$$\begin{cases}
\tilde{u}_0'''' - \lambda_0^2 \tilde{u}_0 = 0 \\
\tilde{u}_0(0) = 0 \\
\tilde{u}_0'(0) = 0 \\
\tilde{u}_0''(1) + \alpha^2 \tilde{u}_0'(1) = 0 \\
\tilde{u}_0'''(1) = 0
\end{cases} \tag{13}$$

$$O(\frac{1}{\beta^1})$$
:

$$\begin{cases}
\tilde{u}_{1}^{""} - \left(\tilde{\lambda}_{0}^{2}u_{1} + 2\tilde{\lambda}_{0}\tilde{u}_{0}\tilde{\lambda}_{1}\right) = 0 \\
\tilde{u}_{1}(0) = 0 \\
\tilde{u}_{1}^{\prime}(0) = 0 \\
\tilde{u}_{1}^{"}(1) + \alpha^{2}\tilde{u}_{1}^{\prime}(1) + \frac{j\alpha^{2}}{\tilde{\lambda}_{0}}\tilde{u}_{0}^{\prime}(1) = 0 \\
\tilde{u}_{1}^{"'}(1) = 0
\end{cases}$$
(14)

 $O(\frac{1}{\beta^2})$:

$$\begin{cases}
\tilde{u}_{2}^{""} - \left(\tilde{\lambda}_{0}^{2}\tilde{u}_{2} + 2\tilde{\lambda}_{0}\tilde{u}_{1}\tilde{\lambda}_{1} + \tilde{\lambda}_{1}^{2}\tilde{u}_{0} + 2\tilde{\lambda}_{0}\tilde{u}_{0}\tilde{\lambda}_{2}\right) = 0 \\
\tilde{u}_{2}(0) = 0 \\
\tilde{u}_{2}^{\prime}(0) = 0
\end{cases}$$

$$\tilde{u}_{2}^{\prime}(1) + \left[\alpha^{2}\tilde{u}_{2}^{\prime}(1) - \frac{\alpha^{2}}{\tilde{\lambda}_{0}^{2}}\tilde{u}_{0}^{\prime}(1)\right] + j\left[\frac{\alpha^{2}}{\tilde{\lambda}_{0}}\tilde{u}_{1}^{\prime}(1) - \frac{\alpha^{2}\tilde{\lambda}_{1}}{\tilde{\lambda}_{0}^{2}}\tilde{u}_{0}^{\prime}(1)\right] = 0$$

$$\tilde{u}_{2}^{"}(1) = 0$$

$$\tilde{u}_{2}^{"}(1) = 0$$