Processamento de Sinais em Tempo Discreto

Prof. Dr. Samuel Lourenço Nogueira

- Aula anterior:
 - Transformada Discreta de Fourier
 - Algoritmo da Transformada Direta (DFT)
 - Traçado Espectral
 - Escala (amplitude e fase)
 - Fases com amplitude mínima ou nula
 - Análise do espectro
 - Componente DC do sinal
 - Espectro de Amplitude vs Espectro de Potência

Conteúdo Programático

- Transformada Discreta Inversa de Fourier
 - Algoritmo da Transformada Inversa (IDFT)
- Análise e Funcionamento
 - Resolução em Frequência
 - Preenchimento com Zeros (Zero padding):
 - O Domínio do tempo
 - O Domínio da frequência

$$X[m] = \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi nm}{N} \right) - j sen \left(\frac{2\pi nm}{N} \right) \right)$$

$$\begin{cases} x[n] = \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi nm}{N} \right) + j sen \left(\frac{2\pi nm}{N} \right) \right) \end{cases}$$

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[m] \left(\cos \left(\frac{2\pi nm}{N} \right) + j sen \left(\frac{2\pi nm}{N} \right) \right)$$

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[m] \left(\cos \left(\frac{2\pi nm}{N} \right) + j sen \left(\frac{2\pi nm}{N} \right) \right)$$
function $X = idft(X)$

$$N = length(X);$$

$$for n = 0:N-1$$

$$soma = 0;$$

$$soma = soma + X(m+1) * \dots$$

$$(cos (2*pi*n*m/N) + 1i*sin(2*pi*n*m/N));$$
end
$$x(n+1) = soma/N;$$
end
$$x(n+1) = soma/N;$$

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[m] \left(\cos \left(\frac{2\pi nm}{N} \right) + j sen \left(\frac{2\pi nm}{N} \right) \right)$$
function X = idft(X)
$$N = length(X);$$
for n = 0:N-1
$$soma = 0;$$

$$for m = 0:N-1$$

$$soma = soma + X(m+1) * ...$$

$$(cos(2*pi*n*m/N) + 1i*sin(2 *pi*n*m/N));$$
end
$$x(n+1) = soma/N;$$
end

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[m] \left(\cos \left(\frac{2\pi nm}{N} \right) + j sen \left(\frac{2\pi nm}{N} \right) \right)$$
function X = idft(X)
$$N = length(X);$$
for n = 0:N-1
$$soma = 0;$$
for m = 0:N-1
$$soma = soma + X(m+1) * ...$$

$$(cos(2*pi*n*m/N) + 1i*sin(2*pi*n*m/N));$$
end
$$x(n+1) = soma/N;$$

end

w /w	O	1	2	3	X[m]
0	23	4+51	- 3	4-5	28/4=(7)
1	23	4;+5;;	3	- 15 + Sij	16/9=4
5	13	4	- 3	-4 +5)	12/4=3
3	23	5-45	3	5 - 4 j	36/4=9

RESOLUÇÃO EM FREQUÊNCIA

A resolução em frequência é a distância/espaçamento entre frequências (Eixo X) no traçado espectral

RESOLUÇÃO EM FREQUÊNCIA

Jc[m]

-Consiste na inserção de zeros no domínio do tempo ou da frequência X [m]

-Promover uma <mark>resolução aparente</mark> mais suave do sinal no tempo ou no espectro após a aplicação da DFT ou IDFT

- Não eleva a precisão da FT

Existem duas formas de Zero Padding:

- Domínio do tempo (mais usual)
- Domínio da frequência (COM (UIDADA)

- 1- obter uma frequência específica que não está presente na resolução atual
- 2 Fazer com que o tamanho do vetor do DFT coincida com outros vetores, para análise.

3 - Fazer com que o espectro de potência aparente mais suave. (melhora aparente mais não real)

Considere a Transformada de Fourier Contínua para $w=2\pi f$ em radianos

$$F(w) = \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$$

Sabe-se que o sinal f(t) é nulo fora do intervalo [a,b], sendo a < b < c, temos:

F(w) =
$$\int_{a}^{b} f(t)e^{-jwt}dt + \int_{b}^{c} f(t)e^{-jwt}dt$$

Portanto, F(W) no intervalo [a, c] é o mesmo que no intervalo [a, b]

>> Topico4Exemplo2.m % PARTY 4: Aumentar As Amostra DE GIELA

Sem Zens Papine.)

Souren 18

ASSIM METHORMAS A
PRESOLUÇÃO DE

ERESOLUÇÃO DE

EPC5 – Transformada Discreta Inversa de Fourier (IDFT)

Referências Bibliográficas

- Utilizados da aula:
- WEEKS, M.; Processamento Digital de Sinais, utilizando Matlab® e Wavelets; 2a.ed., LTC, 2012. Processamento em tempo discreto de sinais. Capítulos: 4 e 6.
- OPPENNHEIM, A.V. SHAFFER, R.W.; Processamento em Tempo Discreto de Sinais, 3a.ed., Pearson, 2013. Capítulos: 8 e 9.
- Cohen, Mike X.; Fundamentals of Time-Frequency Analyses in Matlab/Octave.
 Sinc(x) press. Capítulo 4.