Computational Complexity

Exam #2-Take Home Start Date: 31/2/1398 7:00 a.m. Due Date: 3/3/1398 24:00 p.m.

Some Rules.

- 1. Please hand in your worksheet prior to 24:00 p.m. Friday 3 Khordad 1398. Overdue papers are not acceptable at all.
- 2. You are allowed to use the Internet and the textbooks. You are NOT allowed to talk with your classmates about the problems and the solutions.
- 3. Partial answers are appreciated, so write down your thinking even though you may think it is insufficient or imperfect.

Problem 1.

Let G be a graph on the vertex set $V(G) = \{1, 2, ..., n\}$ with e edges. Let m_{ij} be the expected number of steps that a random walk starting from i takes until first visit of j. We proved in the class that for every vertex i, $m_{ii} = 2e/\deg(i)$ and for every $i \neq j$, when G is regular, $m_{ij} = O(n^3)$. Prove that for general graph, we have $m_{ij} = O(n^5)$.

(Hint: Add some loops on vertices to get a regular graph G'. Then, simulate each step of a random walk on G' with a random walk on G.)

Can you prove that $m_{ij} = O(n^4)$?

Problem 2.

Let A be a minimization problem. For every instance x, we have a lot of solutions y. For every solution y we have a cost c(y) and we aim to minimize the cost c(y) over all solutions y. We denote the minimum by OPT(x).

$$OPT(x) = \min_{y \text{ is a solution for } x} c(y).$$

Let A and B be two minimization problems with cost functions c_A and c_B respectively. We say that A is reducible to B (denoted by $A \leq B$) if there is polynomial-time computable functions f and g and two constants $\alpha, \beta > 0$, which satisfy the following properties:

- 1. For any instance x of A, f(x) is an instance of B such that $OPT_B(f(x)) \leq \alpha OPT_A(x)$.
- 2. For any solution y of instance f(x) with cost $c_B(y)$, g(y) is a solution of x with cost $c_A(g(y))$ such that

$$|c_A(g(y)) - OPT_A(x)| \le \beta |c_B(y) - OPT_B(f(x))|.$$

- (a) Prove that if $A \leq B$ and $B \leq C$, then $A \leq C$.
- (b) Prove that if $A \leq B$ and for some constant ρ , B admits a ρ -approximation algorithm, then there is a constant ρ' such that A admits a ρ' -approximation algorithm.

Problem 3.

Here we are going to prove that if $\mathbf{PCP}(o(\log n), 1) = \mathbf{NP}$ then $\mathbf{P} = \mathbf{NP}$. So, PCP Theorem is probably optimal up to constant factors.

- (a) Prove that if $L \in \mathbf{PCP}(r(n), q(n))$, then for every instance x of length n, one may construct a 3-CNF φ_x such that
 - (1) $x \in L$ iff φ_x is satisfiable.
 - (2) $|\varphi_x| \le O(q(n)2^{q(n)}r(n)2^{r(n)}).$
 - (3) φ_x can be computed in time $O(2^{r(n)}2^{q(n)}n^c)$ for some constant c.
- (b) Prove that if $3 \text{SAT} \in \mathbf{PCP}(o(\log n), 1)$, then there is a constant d > 1 and an integer n_0 such that for every 3-CNF φ , one may construct in polynomial-time a 3-CNF ψ_{φ} where
 - (1) φ is satisfiable iff ψ_{φ} is satisfiable.
 - (2) If $|\varphi| \ge n_0$, then $|\psi_{\varphi}| \le d|\varphi|^{1/2}$.
- (c) Applying (b) several times, prove that there is an integer n_0 such that for every 3-CNF φ , one may construct in polynomial-time a 3-CNF ψ_{φ} where
 - (1) φ is satisfiable iff ψ_{φ} is satisfiable.
 - $(2) |\psi_{\varphi}| \le n_0.$
- (d) Prove that if $\mathbf{PCP}(o(\log n), 1) = \mathbf{NP}$, then $\mathbf{P} = \mathbf{NP}$.

Good Luck!