Leçon 110 : Structure et dualité des groupes abéliens finis. Applications.

Développements :

Thm de structure des groupes abéliens finis. Dualité et bidualité pour un groupe fini abélien

Bibliographie:

Peyré, Ulmer,

Plan

Soit G un groupe fini quelconque

1 Dualité des groupes abéliens finis

Proposition 1 (Ulm p.149). Un sous groupe abélien fini G de $GL_n(\mathbb{C})$ peut être mis simultanément sous forme diagonale, en particulier, toutes les représentations irréductibles de G sont de degré 1.

Cela donne une importance particulière aux représentations de degré 1.

1.1 Caractères linéaires et groupe dual

Définition 2 (Pey p.2). On appelle caractère linéaire de G, un morphisme de groupes $G \to \mathbb{C}^*$.

Remarque 3. L'usage du mot caractère est un abus dans ce contexte, l'abus est légitimé par le fait que le caractère de la représentation est clairement égal à χ .

Définition 4 (Pey p.2). On appelle groupe dual \hat{G} , l'ensemble des caractères linéaires de G.

Proposition 5 (Pey p.2). \hat{G} est un groupe muni de la multiplication sur les valeurs : $\chi_1\chi_2(q) = \chi_1(q)\chi_2(q)$.

On a une réciproque :

Proposition 6 (réécriture de Ulmer p.157). G abélien ssi toutes ses représentations irréductibles sont de degré $\hat{1}$.

Ainsi \hat{G} est l'ensemble des caractères irréductibles. Or les caractères irréductibles forment une bon de l'espace des fonctions centrales.

Proposition 7 (Pey p.2). Si |G| = n, les éléments de \hat{G} sont les morphismes de $G \to \mathbb{U}_n$. En particulier, $\forall g \in G, |\chi(g)| = 1$ et $\chi(g^{-1}) = \chi(g)$.

Remarque 8 (Pey p.2). \hat{G} est donc un groupe fini et commutatif.

1.2 Cas d'un groupe cyclique

Ici G est un groupe cyclique de cardinal n

Proposition 9 (Pey p.4). Eléments de \hat{G} , l'isomorphisme entre G et son dual

Remarque 10 (Pey p.4). Isomorphisme non canonique

Corollaire 11. Dual de $\mathbb{Z}/n\mathbb{Z}$.

1.3 Cas d'un groupe abélien fini quelconque

Ici G est un groupe abélien fini

Proposition 12 (Pey p.6). Prolongement d'un caractère de H à un caractère de G.

Corollaire 13. $|G| = |\hat{G}|$

Définition 14 (Pey p.8). Bidual

 $\textbf{Proposition 15} \ (\text{Pey p.9}). \ \textit{Isomorphisme entre G et son bidual }$

Théorème 16 (Pey p.8). Thm de structure des groupes abéliens

Application 17. les groupes abéliens d'ordre 8.

Corollaire 18 (Pey p.8). Isomorphisme entre G et son dual

Remarque 19 (Pey p.8). Isomorphisme non canonique

2 Algèbre $\mathbb{C}[G]$ et transformée de Fourier discrète

2.1 Structure de $\mathbb{C}[G]$

Définition 20 (Pey p.3). On note $\mathbb{C}[G]$ l'ensemble des fonctions de G dans \mathbb{C} . C'est un ev. sur \mathbb{C} , muni d'un produit scalaire hermitien : FORMULE +norme

Proposition 21 (Pey p.3). Fonction indicatrice, base de $\mathbb{C}[G]$ et dimension

 $Remarque\ 22\ (Pey\ p.3).$ Ecriture d'un élément dans cette base

 $Remarque\ 23.$ Pas facile à utiliser en calcul, on verra une meilleure base au paragraphe suivant.

2.2 Relations d'orthogonalité

Lemme 24 (Pey p.9). Valeur de $\sum_{g \in G} \chi(g)$.

Rajouter le cas d'un groupe cyclique : p.6 prop 1.10

Théorème 25 (Pey p.10). Orthogonalité des caractères

Corollaire 26 (Pey p.10). Base orthonormale de $\mathbb{C}[G]$.

Proposition 27 (Pey p.10). Valeur de $\sum_{\chi \in \hat{G}} \chi(g) \chi(\bar{h})$.

Remarque 28 (Pey p.10). Table de caractères

Application 29 (???). Déterminant de Vandermonde des racines de l'unité

2.3 Transformée de Fourier

Ici G est un groupe abélien fini.

Définition 30 (Pey p.14). Transformée de Fourier

Proposition 31 (Pey p.15). Formule d'inversion

Proposition 32 (Pey p.15). *Isomorphisme d'ev*

Remarque 33. Parallèle avec la transformée de Fourier sur L^2 .

Proposition 34 (Pey p.15). Formule de Plancherel

Remarque 35. Parallèle avec la transformée de Fourier sur L^2 .

Application 36. Multiplication rapide des polynômes

3 Applications sur les corps finis

Soit p un nombre premier et soit $q = p^r$.

3.1 Caractères additifs et multiplicatifs

Définition 37 (Pey p.29). Caractères additifs Caractères multiplicatifs

Remarque 38 (Pey p.29). Les plus simples à déterminer sont les multiplicatifs $//\mathbb{F}_q^*$ est cyclique. On connait donc le groupe dual de \mathbb{F}_q^* .

Définition 39 (Pey p.30). Application trace

Proposition 40 (Pey p.30). c'est une forme k-linéaire non nulle

Définition 41 (Pey p.31). Caractère additif canonique

Proposition 42 (Pey p.31). Les caractères additifs

3.2 Somme de Gauss : lien entre caractères additifs et multiplicatifs

Les sommes de Gauss servent à démontrer la loi de la réciprocité quadratique.

Définition 43 (Pey p.32). Somme de Gauss

Remarque 44 (Pey p.33). Lien avec la transformée de Fourier

Proposition 45 (Pey p.33). Décomposition de χ

4 Alternative au 3 : Applications à la transformée de Fourier discrète et algo FFT

Tout est dans le Peyré