

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 19

Дисциплина:	Функциональн	ое и логическое прогр	раммирование
Студент	ИУ7-62Б	(П)	Е.В. Брянская
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель	,		Н.Б.Толпинская
			Ю.В.Строганов
		(Подпись, дата)	(И.О. Фамилия)

Задание

Используя хвостовую рекурсию, разработать эффективную программу (комментируя назначение аргументов), позволяющую:

- 1. Найти длину списка (по верхнему уровню)
- 2. Найти сумму элементов числового списка
- 3. Найти сумму элементов числового списка, стоящих на нечетных позициях исходного списка (нумерация от 0)

Убедиться в правильности результатов.

Для одного из вариантов вопроса и одного из заданий составить таблицу, отражающую конкретный порядок работы системы.

Так как резольвента хранится в виде стека, то состояние резольвенты следует отображать в столбик: вершина — сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и дальнейшие действия — и почему.

```
domains
        lst = integer*.
predicates
        len(lst, integer).
        len(lst, integer, integer).
        sum(lst, integer).
        sum(lst, integer, integer).
        sum odd pos(lst, integer).
        sum odd pos(lst, integer, integer).
clauses
        % list's length
                                                   % T - tail
        len([_|T], Len_temp, Len) :-
                 Temp = Len temp + 1,
                                                   % Len temp - temporary length
                 len(T, Temp, Len),
                                                   % Len - length
                 !.
                                                   % Temp - temporary var
        len([], Len, Len) :- !.
                                                   % Lst - currect list
        len(Lst, Len):-len(Lst, 0, Len), !.
        % sum of elements
        sum([X|T], Sum_temp, Sum) :-
                                                   % X - 1st element
                 Temp = Sum_temp + X,
                                                   % T - tail
                                                   % Sum temp - temporary sum, Sum - sum
                 sum(T, Temp, Sum).
        sum([], Sum, Sum) :- !.
                                                   % Temp - temporary var
        sum(Lst, Sum) :- sum(Lst, 0, Sum), !.
                                                   % Lst - currect list
        % sum of elements in odd positions
        sum odd pos([ , X|T], Sum temp, Sum) :-
                                                                    % X - 2nd element from head = 1st index
                 Temp = Sum\_temp + X,
                                                                    % T - tail
                 sum_odd_pos(T, Temp, Sum).
                                                                    % Sum_temp - temporary sum, Sum - sum
        sum odd pos([ ], Sum, Sum) :- !.
                                                            % Temp - temporary var
        sum_odd_pos([], Sum, Sum) :- !.
                                                                    % Lst - currect list, result
```

```
sum_odd_pos(Lst, Sum) :- sum_odd_pos(Lst, 0, Sum), !.

goal

%len([5], Len).

%sum([-5, 0, 5, -9], Sum).

%sum_odd_pos([-5, 1, 3], Sum).
```

Текст процедуры:

len([_ T], Len_temp, Len) :-	% T - tail
Temp = Len_temp + 1,	% Len_temp - temporary length
len(T, Temp, Len),	% Len - length
!.	% Temp - temporary var
len([], Len, Len) :- !.	% Lst - currect list
len(Lst, Len) :- len(Lst, 0, Len), !.	

Βοπροc: len([5, -2, 0], Len).

Nº	Текущая резольвента - ТР	ТЦ, выбираемые правила: сравниваемые термы,	Дальнейшие действия
		подстановка	
0.	len([5, -2, 0], Len)		
1.	len([5, -2, 0], Len)	len([5, -2, 0], Len) = len([_ T], Len_temp, Len) (1)	Прямой ход, переход к следующему правилу.
		Неудача (разная арность)	
	len([5, -2, 0], Len)	len([5, -2, 0], Len) = len([], Len, Len) (2) Неудача (разная арность)	Прямой ход, переход к следующему правилу.
	len([5, -2, 0], 0, Len_1), !	len([5, -2, 0], Len) = len(Lst_1, Len_1) (3) Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1}	Прямой ход Изменение резольвенты : 1. применение редукции 2. применение подстановки
2.	Temp_2 = 0 + 1, len([-2,0], Temp_2, Len_2), !, !	len([5, -2, 0], 0, Len_1) = len([_ T_2], Len_temp_2, Len_2) (1) Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки

3.	len([-2,0], 1, Len_2), !, !	Теmp_2 = 0 + 1 Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2, Temp_2=1}	Прямой ход Изменение резольвенты : 1. применение редукции 2. применение подстановки
4.	Temp_4 = 1 + 1, len([0], Temp_4, Len_4), !, !,	len([-2,0], 1, Len_2) = len([_ T_4], Len_temp_4, Len_4) (1) Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2, Temp_2=1, T_4=[0], Len_temp_4=1, Len_2=Len_4}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
5.	len([0], 2, Len_4), !, !,	Теmp_4 = 1 + 1 Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2, Temp_2=1, T_4=[0], Len_temp_4=1, Len_2=Len_4, Temp_4=2}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
6.	Temp_6 = 2 + 1, len([], Temp_6, Len_6), !, !, !,	len([0], 2, Len_4) = len([_ T_6], Len_temp_6, Len_6) (1) Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2, Temp_2=1, T_4=[0], Len_temp_4=1, Len_2=Len_4, Temp_4=2, T_6=[], Len_temp_6=2, Len_4=Len_6}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
7.	len([], 3, Len_6), !, !, !, !	Теmp_6 = 2 + 1 Удача Подстановка: {Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0, Len_1=Len_2,	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки

		Temp_2=1,	
		T_4=[0], Len_temp_4=1, Len_2=Len_4, Temp_4=2,	
		T_6=[], Len_temp_6=2, Len_4=Len_6, Temp_6=3}	
8.	len([], 3, Len_6),	len([], 3, Len)	Прямой ход, переход к следующему
	!, !,	= len([_ T], Len_temp, Len)	правилу.
	!,	(1)	
	!	Неудача	
		(пустой список)	
	!,	len([], 3, Len_6)	Прямой ход
	!, !,	= len([], Len_8, Len_8)	Изменение резольвенты: 1. применение редукции
	!,	(2)	2. применение подстановки
	!	Удача	
		Подстановка:	
		{Lst_1=[5, -2, 0], Len=Len_1,	
		T_2=[-2,0], Len_temp_2=0, Len_1=Len_2,	
		Temp_2=1,	
		T_4=[0], Len_temp_4=1, Len_2=Len_4,	
		Temp_4=2, T_6=[], Len_temp_6=2, Len_4=Len_6,	
		Temp_6=3,	
		Len_8=3, Len_6=Len_8}	
9.	!, !	!	Отсечение (системный предикат
	!, !,	Удача	отсечения)
	!		Прямой ход
		Подстановка: без изменений	Изменение резольвенты : 1. применение редукции
			2. применение подстановки
10.	!,	!	Отсечение (системный предикат
	!, !	Удача	отсечения)
			Прямой ход
		Подстановка: без изменений	Изменение резольвенты: 1. применение редукции
			2. применение подстановки
11.	!, !	!	Отсечение (системный предикат отсечения)
		Удача	,
		По потоцения и боз можения	Прямой ход
		Подстановка: без изменений	Изменение резольвенты: 1. применение редукции
			2. применение подстановки
12.	!	!	Отсечение (системный предикат отсечения)
		Удача	Прямой ход
		Подстановка: без изменений	Изменение резольвенты:

			1. применение редукции
			2. применение подстановки
13.	Резольвента пуста	!	Отсечение (системный предикат отсечения)
		Удача	,
			Прямой ход
		Подстановка: без изменений	Изменение резольвенты:
			1. применение редукции
			2. применение подстановки
			Вывод:
			Len = 3
			Откат
		_	(пустая резольвента)
14.	len([], 3, Len_6),	Подстановка:	Откат
	!, !,	{Lst_1=[5, -2, 0], Len=Len_1, T_2=[-2,0], Len_temp_2=0,	(отсечение)
	., !,	Len_1=Len_2,	
	Í	Temp_2=1,	
		T_4=[0], Len_temp_4=1, Len_2=Len_4,	
		Temp_4=2,	
		T_6=[], Len_temp_6=2, Len_4=Len_6,	
		Temp_6=3}	
15.	Temp_6 = 2 + 1,	Подстановка:	Откат
15.	len([], Temp_6, Len_6),	{Lst_1=[5, -2, 0], Len=Len_1,	(унификация с константой)
	!,	T_2=[-2,0], Len_temp_2=0,	
	!,	Len_1=Len_2,	
	!,	Temp_2=1,	
	!	T_4=[0], Len_temp_4=1, Len_2=Len_4, Temp_4=2,	
		T_6=[], Len_temp_6=2, Len_4=Len_6}	
16.	len([0], 2, Len_4),	Подстановка:	Откат
	!,	{Lst_1=[5, -2, 0], Len=Len_1,	(отсечение)
	!, !	T_2=[-2,0], Len_temp_2=0, Len_1=Len_2,	
	•	Temp_2=1,	
		T_4=[0], Len_temp_4=1, Len_2=Len_4,	
		Temp_4=2}	
	Tama 4 4 : 4	Re	0
17.	Temp_4 = 1 + 1, len([0], Temp_4, Len_4),	Подстановка: {Lst_1=[5, -2, 0], Len=Len_1,	Откат (унификация с константой)
	!,	T_2=[-2,0], Len_temp_2=0,	(упификация с константом)
	i,	Len_1=Len_2,	
	1	Temp_2=1,	
		T_4=[0], Len_temp_4=1, Len_2=Len_4}	
10	len([-2,0], 1, Len_2),	Подстановка:	Откат
18.	!,	{Lst_1=[5, -2, 0], Len=Len_1,	(отсечение)
	!	T_2=[-2,0], Len_temp_2=0,	,
		Len_1=Len_2,	
		Temp_2=1}	
	Tomp 2 - 0 + 1	Полетацияма	Orwar
19.	Temp_2 = 0 + 1, len([-2,0], Temp_2, Len_2),	Подстановка: {Lst_1=[5, -2, 0], Len=Len_1,	Откат (унификация с константой)
	!,	T_2=[-2,0], Len_temp_2=0,	(улификации с копстаптои)
	!	Len_1=Len_2}	

20.	len([5, -2, 0], 0, Len_1), !	Подстановка: {Lst_1=[5, -2, 0], Len=Len_1}	Откат (отсечение)
21.	len([5, -2, 0], Len)	Подстановка: {}	Завершение работы

Вопросы

1. <u>Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как можно организовать выход из рекурсии в Prolog?</u>

Рекурсия — это ссылка на описываемый объект в процессе его описания. При хвостовой рекурсии все действия сделаны до момента выхода из неё, вызов единственен. Выход из рекурсии организуется с помощью отсечения.

2. Какое первое состояние резольвенты?

Начальное состояние резольвенты – вопрос.

3. В каких пределах программы переменные уникальны?

Именованные переменные уникальны в пределах предложения. Анонимные переменные уникальны всегда.

4. В какой момент, и каким способом системе удаётся получить доступ к голове списка?

Получить голову можно при унификации списка ([H|T], где Н – голова, Т – хвост).

5. Каково назначение использования алгоритма унификации?

Алгоритм унификации используется для доказательства очередной цели.

6. Каков результат работы алгоритма унификации?

Алгоритм унификации делает вывод о том, унифицируемы два терма или нет, и если да, то строит наиболее общий унификатор.

7. Как формируется новое состояние резольвенты?

Резольвента меняется в два этапа:

- 1. В текущей резольвенте выбирается одна из целей, для неё выполняется редукция
- 2. Затем к резольвенте применяется подстановка, полученная, как наибольший общий унификатор цели и заголовка сопоставимого с ней правила.
- 8. <u>Как применяется подстановка, полученная с помощью алгоритма унификации, как глубоко?</u>

Подстановка - это множество пар вида {Xi = ti}. Применить подстановку, значит, найти все вхождения в резольвенте и результирующей ячейке Xi и заменить на соответствующее значение ti.Применяется на любую вложенность.

9. В каких случаях запускается механизм отката?

Механизм отката запускается в случаях, если резольвента оказалась пустой (то есть, будет воспроизведена попытка найти следующее подходящее знание), либо возникла тупиковая ситуация (просмотрена вся БЗ). В обоих случаях происходит откат к предыдущему состоянию резольвенты.

10. Когда останавливается работа системы? Как это определяется на формальном уровне?

На формальном уровне это определяется тем, что в резольвенте находится исходный вопрос, для которого вся Б3 просмотрена. То есть система завершает работу в случае, когда все возможные ответы рассмотрены.