

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/820,952	04/08/2004	David C. Collins	200400670-I	9712
22879	7590	08/09/2007		
HEWLETT PACKARD COMPANY			EXAMINER	
P O BOX 272400, 3404 E. HARMONY ROAD			SMITH, JEFFREY S	
INTELLECTUAL PROPERTY ADMINISTRATION				
FORT COLLINS, CO 80527-2400			ART UNIT	PAPER NUMBER
			2624	
			MAIL DATE	DELIVERY MODE
			08/09/2007	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/820,952	COLLINS, DAVID C.
	Examiner	Art Unit
	Jeffrey S. Smith	2624

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 08 April 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-30 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-30 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 08 April 2004 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____. |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date <u>4/04, 12/04, 12/05, 1/06</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

Requirement for Information

Applicant and the assignee of this application are required under 37 CFR 1.105 to provide the following information that the examiner has determined is reasonably necessary to the examination of this application.

In response to this requirement, please provide answers to each of the following interrogatories eliciting factual information that is known by the applicant and the assignee of this application:

Are there any applications filed in this or a foreign country that claim the benefit of or priority to this application? If the answer is yes, please list each such application. Also, please disclose each Office action that has been made in each such application.

Is applicant or the assignee aware of any application, patent, or printed publication that is not currently cited in this application that discloses or claims generating first and second sub-frames? If so, please disclose each such application.

Is applicant or the assignee aware of any application, patent, or printed publication that is not currently cited in this application that discloses or claims alternating between displaying a first sub-frame in a first position and a second sub-frame in a second position that is spatially offset from the first position? If so, please disclose each such application.

This information is relevant to patentability. Applicant is reminded that failure to fully reply to this requirement for information will result in a holding of abandonment. This requirement is an attachment of the enclosed Office action. A complete reply to

Art Unit: 2624

the enclosed Office action must include a complete reply to this requirement. The time period for reply to this requirement coincides with the time period for reply to the enclosed Office action.

Specification

The title of the invention is not descriptive given the large number of copending applications that have the same title as the application. A new title is required that is clearly indicative of the invention to which the claims are directed.

The disclosure is objected to because of the following informalities: The applications listed in the cross-reference to related applications may have issued as patents. The specification needs to be amended to include the issued patent numbers in this section of the application.

Appropriate correction is required.

Double Patenting

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. A nonstatutory obviousness-type double patenting rejection is appropriate where the conflicting claims are not identical, but at least one examined application claim is not patentably distinct from the reference claim(s) because the examined application claim is either anticipated by, or would have been obvious over, the reference claim(s). See, e.g., *In re Berg*, 140 F.3d 1428, 46 USPQ2d 1226 (Fed. Cir. 1998); *In re Goodman*, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); *In re Longi*, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); *In re Van Ornum*, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); *In re Vogel*, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and *In re Thorington*, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

Art Unit: 2624

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) or 1.321(d) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent either is shown to be commonly owned with this application, or claims an invention made as a result of activities undertaken within the scope of a joint research agreement.

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

1. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-29 of copending Application No. 10/821130 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because (similar limitations are in bold) claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values; and alternating between displaying the first sub-frame in a first position and

displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify claim 1 of the copending application to include the plurality of error values as taught by the disclosure of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b, and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

2. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-29 of copending Application No. 10/864,125 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving first image data for the image, the first image data associated with a first color space; converting the first image data to second image data associated with a second color space; generating first and second sub-frames using the second image data; and alternating between

Art Unit: 2624

displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in the art at the time of invention to have first and second sub-frames of copending claim 1 comprise a plurality of sub-frame pixel values as taught by copending claim 11, and to have at least a first one of the plurality of sub-frame pixel values calculated using the image data and at least a second one of the plurality of sub-frame pixel values as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

3. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-25 of copending Application No. 10/868,638 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image, the image data comprising a first portion and a second portion; generating a first plurality of sub-frames using the first portion and a first simulation kernel; generating a second plurality of sub-frames using the second portion and the first simulation kernel independently from generating the first plurality of sub-frames; and alternating between displaying a first one of the first plurality of sub-frames in a first position, displaying a second one of the first plurality of sub-frames in a second position spatially offset from the first position, displaying a first one of the second plurality of sub-frames in a third position spatially offset from the first and the second positions, and displaying a second one of the second plurality of sub-frames in a fourth position spatially offset from the first, the second, and the third positions.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and second sub-frames of copending claim 1 to comprise a plurality of sub-frame pixel values as implied by copending claim 3, and to have at least a first one of the plurality of sub-frame pixel values calculated using the image data and at least a second one of the plurality of sub-frame pixel values as implied by copending claim 3 and as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

4. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-29 of copending Application No. 10/868,719 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying images with a display device, the method comprising: receiving first image data associated with a first image; converting a portion of the first image data to zero values; generating a first set of three sub-frames using the first image data; and alternating between displaying the first set of three sub-frames in first, second, and third positions, wherein the second position is spatially offset from the first position, and wherein the third position is spatially offset from the first and the second positions.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and second of the three sub-frames of copending claim 1 to comprise a plurality of sub-frame pixel values and to have at least a first one of the plurality (which is three in this claim) of sub-frame pixel values calculated using the image data and at least a second one of the plurality of sub-frame pixel values as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

5. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-27 of copending Application No. 10/992,926 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is

a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: generating a first sub-frame and a second sub-frame corresponding to image data for the image, wherein generating the first sub-frame includes calculating a first sub-frame pixel value in the first sub-frame using a first sharpening factor associated with a first plurality of gradients from the image data; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and second of the three sub-frames of copending claim 1 to comprise a plurality of sub-frame pixel values and to have at least a first one of the plurality of sub-frame pixel values calculated using the image data and at least a second one of the plurality of sub-frame pixel values as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

6. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-32 of copending Application No. 10/750,591 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device having a set of defective display pixels, the method comprising: receiving image data for the image; generating a first sub-frame and a second sub-frame corresponding to the image data; and selecting a first position and a second position spatially offset from the first position, the first and the second positions selected based on positions of the defective display pixels and characteristics of a human visual system; and alternating between displaying the first sub-frame in the first position and displaying the second sub-frame in the second position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and

as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

7. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims of copending Application No. 10/697,605 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image on a high resolution grid; generating a first sub-frame and a second sub-frame corresponding to the image data, the first and the second sub-frames each generated on a low resolution diamond grid; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is

calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

8. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-42 of copending Application No. 10/696,888 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image on a first type of grid; generating a first sub-frame and a second sub-frame corresponding to the image data, the first and the second sub-frames each generated on a second type of grid that is different than the first type of grid, wherein one of the first type of grid and the second type of grid is a non-rectangular grid; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

9. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-33 of copending Application No. 10/821,135 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image, the image data comprising a first set of pixels; generating first and second sub-frames, wherein the first and the second sub-frames comprise a second set of pixels, wherein each

of the second set of pixels is centered relative to one of the first set of pixels; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

10. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-24 of copending Application No. 10/632,042 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image at a first resolution; generating a first sub-frame and a second sub-frame based on combinations of pixel values from the image data, the first and second sub-frames having a second resolution which matches the display device and each have an area equal to the image data; and controlling an image shifter to allow for alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position on the display device.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as implied by claims 2-24 of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

11. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-20 of copending Application No. 10/672,544 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at

least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying images with a display device, the method comprising: receiving image data for a plurality of image frames; generating at least one sub-frame for each image frame based on the received image data; displaying the sub-frames for each image frame in a first set of the plurality of image frames at a first plurality of spatially offset positions; and displaying the sub-frames for each image frame in a second set of the plurality of image frames at a second plurality of spatially offset positions that is different than the first plurality of spatially offset positions; and sequentially displaying a plurality of colors during the display of each of the sub-frames.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

12. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-30 of copending Application No. 10/768,621 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been

patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating a plurality of sub-frames corresponding to the image data, the sub-frames generated based on a set of spatially offset sub-frame positions, a first function that represents a simulated high resolution image, and a second function that represents a desired high resolution image; and displaying the sub-frames at the set of spatially offset positions.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

13. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-32 of copending Application No. 10/768,215 in view of "Super-

Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating a plurality of multiple-pixel image sub-frames corresponding to the image data; and displaying the sub-frames in a circularly shifted manner at a set of spatially offset positions located on a circle.

It would have been obvious to one of ordinary skill in this art at the time of invention to have at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

14. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-30 of copending Application No. 10/947,762 in view of "Super-

Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device having a plurality of defective pixels, the method comprising: selecting an offset between a first sub-frame and a second sub-frame using information associated with the plurality of defective pixels; generating the first sub-frame and the second sub-frame using image data for the image; adjusting a first sub-frame pixel value in the first sub-frame associated with one of the plurality of defective pixels; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position, the second position displaced from the first position by an amount defined by the offset.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values as implied by claim 1 of the copending application, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame depends on the pixel value of a

Art Unit: 2624

second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

15. Claims 1-30 are provisionally rejected on the ground of nonstatutory double patenting over claims 1-26 of copending Application No. 10/996,083 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the copending application recites

A method of displaying an image with a display device having at least one defective display pixel, the method comprising: generating first, second, and third sub-frames using image data for the image, information that identifies the at least one defective display pixel, a first pixel offset associated with the second sub-frame, and a sub-pixel offset associated with the third sub-frame; and alternating between displaying the first sub-frame in a first position, displaying the second sub-frame in a second position spatially offset from the first position according to the first pixel offset, and displaying the third sub-frame in a third position spatially offset from the first position and the second position according to the sub-pixel offset.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is

calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as implied by claim 1 of the copending application and as taught by the figures and specification of the copending application and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

16. Claims 1-30 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-33 of U.S. Patent No. 7,030,894 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the U.S. Patent recites

A method of displaying an image, the method comprising: receiving image data for the image; buffering the image data for the image, including creating a frame of the image; defining a first sub-frame and at least a second sub-frame for the frame of the image from the image data, the second sub-frame being spatially offset from the first sub-frame; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position, wherein defining the second sub-frame further includes defining a third

sub-frame and a fourth sub-frame for the frame of the image from the image data, the fourth sub-frame being spatially offset from the third sub-frame and the third sub-frame and the fourth sub-frame both being spatially offset from the first sub-frame and the second sub-frame, and wherein alternating between displaying the first sub-frame and displaying the second sub-frame further includes alternating between displaying the first sub-frame in the first position, displaying the second sub-frame in the second position, displaying the third sub-frame in a third position spatially offset from the first position and the second position, and displaying the fourth sub-frame in a fourth position spatially offset from the first position, the second position, and the third position.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the U.S. Patent and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

17. Claims 1-30 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-60 of U.S. Patent No. 7,034,811 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated

using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the U.S. Patent recites

A method of displaying an image with a display device including a plurality of display pixels, the method comprising: receiving image data for the image, the image data including individual pixels of the image; buffering the image data and creating a frame of the image, the frame of the image including a plurality of columns and a plurality of rows of the pixels of the image; defining a first sub-frame and at least a second sub-frame for the frame of the image, image data of the second sub-frame being offset from image data of the first sub-frame by an offset distance of at least one pixel; and displaying the first sub-frame with a first plurality of the display pixels and displaying the second sub-frame with a second plurality of the display pixels offset from the first plurality of the display pixels by the offset distance, wherein at least one of the display pixels of the display device is a defective display pixel, and wherein displaying the first sub-frame with the first plurality of the display pixels and displaying the second sub-frame with the second plurality of the display pixels includes diffusing an affect of the defective display pixel over the image.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the U.S. Patent and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

18. Claims 1-30 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-37 of U.S. Patent No. 7,109,981 in view of "Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al.

("Jaynes"). This is a provisional double patenting rejection since the conflicting claims have not yet been patented. Although the conflicting claims are not identical, they are not patentably distinct from each other because claim 1 of this application recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating first and second sub-frames, wherein the first and the second sub-frames comprise a plurality of sub-frame pixel values and a plurality of error values, and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position.

Claim 1 of the U.S. Patent recites

A method of displaying an image with a display device, the method comprising: receiving image data for the image; generating a first sub-frame and a second sub-frame corresponding to the image data, the first and the second sub-frames generated based on minimization of an error between the image data and a simulated image; and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position wherein the simulated image is based on upsampling of the first and second sub-frames, thereby generating upsampled sub-frame data.

It would have been obvious to one of ordinary skill in this art at the time of invention to have the first and the second sub-frames comprise a plurality of sub-frame pixel values, and at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values, as taught by the figures and specification of the U.S. Patent and as taught by Jaynes who shows in figure 4 that a sub-frame pixel value of a first sub-frame a depends on the pixel value of a second sub-frame pixel value b and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Claims 25-30 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. Claim 25 fails to state that the instructions are stored on the medium, and that the instructions can be executed by a computer processing system. The claim should be amended to recite "A computer readable medium storing computer-executable instructions, which, when executed by a computer processing system, cause the system to perform a method...comprising:"

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-30 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent Number 7,034,811 issued to Allen in view of Super-Resolution Composition in Multi-Projector Displays" by Jaynes et al. ("Jaynes").

Allen discloses receiving image data for the image (image 12 of figure 1); generating first and second sub-frames (sub-frame generation 36), wherein the first and

Art Unit: 2624

the second sub-frames comprise a plurality of sub-frame pixel values (figure 2C), and wherein at least a first one of the plurality of sub-frame pixel values is calculated using the image data and at least a second one of the plurality of sub-frame pixel values (figure 7E); and alternating between displaying the first sub-frame in a first position and displaying the second sub-frame in a second position spatially offset from the first position (image shifter 38).

Although Allen does not explicitly state that the first one of the plurality of sub-frame pixel values is calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values, Jaynes in figure 4 says that pixel values a_1 and b_1 must be determined so that $k_1=a_1+b_1$ and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to have at least a first one of the plurality of sub-frame pixel values calculated using the image data, at least a second one of the plurality of sub-frame pixel values, and at least one of the plurality of error values because the value of b_1 influences the values of k_1 , k_2 , k_3 , and k_4 , which means that the pixel values for a single sub-frame are not independent as taught by Jaynes in figure 4.

For claim 2, both Allen and Jaynes disclose the image comprises a plurality of image pixels, wherein each of the plurality of sub-frame pixel values corresponds to a sub-frame pixel that is centered with respect to one of the plurality of image pixels.

For claim 3, both Allen and Jaynes disclose generating the first and the second sub-frames using first and second simulation kernels.

For claim 4, both Allen and Jaynes disclose generating the first and the second sub-frames, wherein the first one of the plurality of sub-frame pixel values is calculated using the first simulation kernel in response to an initial value associated with the first one of the plurality of sub-frame pixel values being non-zero, and wherein the first one of the plurality of sub-frame pixel values is calculated using the second simulation kernel in response to the initial value associated with the first one of the plurality of sub-frame pixel values being zero.

For claim 5, both Allen and Jaynes disclose generating the first and the second sub-frames using an error kernel.

For claim 6, both Allen and Jaynes disclose a region of influence associated with the first one of the plurality of sub-frame pixel values comprises a number of pixel values that corresponds to a number of iterations used to generate the first and the second sub-frames.

For claim 7, both Allen and Jaynes disclose generating third and fourth sub-frames, the first, the second, the third, and the fourth sub-frames comprising the plurality of sub-frame pixel values; and alternating between displaying the first sub-frame in the first position and displaying the second sub-frame in the second position spatially offset from the first position, displaying the third sub-frame in a third position spatially offset from the first position and the second position, and displaying the fourth

sub-frame in a fourth position spatially offset from the first position, the second position, and the third position.

For claim 8, both Allen and Jaynes disclose the first one of the plurality of sub-frame pixel values is associated with the first sub-frame, and wherein the second one of the plurality of sub-frame pixel values is associated with the third sub-frame.

For claim 9, both Allen and Jaynes disclose the first one of the plurality of sub-frame pixel values is calculated using the image data, the second one of the plurality of sub-frame pixel values, and a third one of the plurality of sub-frame pixel values that is associated with the fourth sub-frame.

For claim 10, both Allen and Jaynes disclose generating the first and the second sub-frames, wherein the first and the second sub-frames comprise the plurality of sub-frame pixel values and the plurality of error values, and wherein at least the first one of the plurality of sub-frame pixel values is calculated using the image data, at least the second one of the plurality of sub-frame pixel values, at least the one of the plurality of error values, and a plurality of sharpening factors.

For claim 11, both Allen and Jaynes disclose generating each of the plurality of error values such that a first number of bits of each of the plurality of error values is equal to a second number of bits of each of the plurality of sub-frame pixel values.

For claim 12, Allen shows, in figure 1, a buffer 22 adapted to receive image data for the image; an image processing unit 24 configured to generate first and second sub-frames comprising a plurality of rows of sub-frame pixel values, calculated using the

image data, at least one sub-frame pixel value from a previous one of the plurality of rows, and at least one error value; and a display device 26 adapted to alternately display the first sub-frame in a first position and the second sub-frame in a second position spatially offset from the first position.

Although Allen does not explicitly state that each of the sub-frame pixel values in each of the plurality of rows is calculated using the image data, at least one sub-frame pixel value from a previous one of the plurality of rows, and at least one error value, Jaynes in figure 4 says that pixel values a_1 and b_1 must be determined so that $k_1=a_1+b_1$ and an unbiased error metric is used to converge the sub-images as discussed in equation 7.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to calculate the value of a sub-frame pixel value in row b using a sub-frame pixel value in row a because the value of a_1 influences the value of k_1 , which means that the pixel values for a single sub-frame are not independent as taught by Jaynes in figure 4.

For claim 13, both Allen and Jaynes disclose the image processing unit is configured to generate the first and the second sub-frames using first and second simulation kernels.

For claims 14-16, Jaynes and Allen do not disclose expressly the specific coefficient values of the simulation kernel.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to replace the coefficients in the simulation kernels of Allen or Jaynes with

those of claims 14-16. Applicant has not disclosed that these specific numbers provide an advantage, are used for a particular purpose or solve a stated problem. One of ordinary skill in the art, furthermore, would have expected Applicant's invention to perform equally well with the kernels used in the prior art or those disclosed by applicant, because both the prior art and the claimed invention perform the same function of creating a superresolution composition from a simulation kernel.

Therefore, it would have been obvious to one of ordinary skill in this art to modify the prior art with the specific coefficients disclosed by applicant to obtain the invention as specified in claims 14-16.

For claim 17, both Allen and Jaynes disclose the image processing unit is configured to generate third and fourth sub-frames comprising the plurality of rows of sub-frame pixel values, wherein each of the sub-frame pixel values in each of the plurality of rows is calculated using the image data, at least one sub-frame pixel value from a previous one of the plurality of rows, and at least one error value.

For claim 18, both Allen and Jaynes disclose the image comprises a plurality of image pixels, wherein each of the sub-frame pixel values corresponds to a sub-frame pixel that is centered with respect to one of the plurality of image pixels.

For claim 19, both Allen and Jaynes disclose the image comprises a first plurality of pixels at a first resolution, and wherein the first and the second sub-frames comprise a second plurality of pixels at a second resolution less than the first resolution.

For claim 20, Allen discloses means for receiving image data corresponding to the image 12; means for generating a plurality of rows of initial values 34 using the image data; means for accessing 24 a row of history values generated using the image data; and means for generating a sub-frame pixel value 36 using the row of history values and the plurality of rows of initial values (see figures 13A-15 which modify the .

Allen does not explicitly disclose accessing a row of history values and error values generated using the image data and generating a sub-frame pixel value using the row of history values and the plurality of rows of initial values, but Jaynes discloses means for accessing a row of history values and error values generated using the image data (the outermost boundary pixels form a row of pixel values that can no longer be adjusted); and means for generating a sub-frame pixel value using the row of history values and the plurality of rows of initial values (the remaining component image pixels, p, are then visited in random order in each image and are corrected by reducing an error function. Starting from the periphery, pixels are iteratively adjusted according to the algorithm in all component images that can influence the value of a high-resolution target).

It would have been obvious to one of ordinary skill in the art at the time of the invention to determine a final sub-frame pixel value using initial values, error values and history values as taught by Jaynes to reduce global error.

For claim 21, both Allen and Jaynes disclose the row of history values and error values and the plurality of rows of initial values comprise a plurality of columns, wherein

a number of the plurality of columns corresponds to a number of iterations associated with generating the sub-frame pixel value.

For claim 22, both Allen and Jaynes disclose a number of values in the row of history values and error values and each of the plurality of rows of initial values corresponds to a number of iterations associated with generating the sub-frame pixel value.

For claim 23, both Allen and Jaynes disclose the means for generating the sub-frame pixel value includes means for generating the sub-frame pixel value using the row of history values and error values, the plurality of rows of initial values, a first simulation kernel, a second simulation kernel, and an error kernel.

For claim 24, both Allen and Jaynes disclose means for generating the sub-frame pixel value includes means for generating the sub-frame pixel value using the row of history values and error values, the plurality of rows of initial values, and a simulation kernel.

For claim 25, Allen discloses receiving image data corresponding to the image 12; generating a first plurality of initial values associated with a first pixel which corresponds to a first one of the plurality of sub-frames using the image data 34; generating a first sub-frame pixel value 36 using the image data and the first plurality of initial values, wherein the first sub-frame pixel value comprises a first history value; generating a first error value using the image data and the first plurality of initial values,

generating a second plurality of initial values associated with a second pixel which corresponds to a second one of the plurality of sub-frames using the image data 34.

Allen does not explicitly disclose that the first sub-frame pixel value is a first history value, and generating a second sub-frame pixel value using the image data, the second plurality of initial values, the first error value; and the first history value. Jaynes discloses an iterative algorithm that determines initial values, revises the initial values, and calculates final values using initial values and revised values.

It would have been obvious to one of ordinary skill in the art at the time of the invention to calculate a second sub-frame pixel value using the image data, the second plurality of initial values, an error value and a history value in order to reduce global error as taught by Jaynes.

For claim 26, both Allen and Jaynes disclose generating a third plurality of initial values associated with a third pixel which corresponds to a third sub-frame using the image data; generating a third sub-frame pixel value using the image data and the third plurality of initial values, wherein the third sub-frame pixel value comprises a second history value; generating a second error value using the image data and the third plurality of initial values; and generating the second sub-frame pixel value using the image data, the second plurality of initial values, the first history value, the second history value, the first error value, and the second error value.

For claim 27, both Allen and Jaynes disclose generating a fourth plurality of initial values associated with a fourth pixel which corresponds to a fourth sub-frame using the

image data; and generating a fourth sub-frame pixel value using the image data, the fourth plurality of initial values, the first history value, and the first error value.

For claim 28, both Allen and Jaynes disclose the first history value, the second history value, the first error value, and the second error value comprise a first row of a sub-frame image.

For claim 29, both Allen and Jaynes disclose the first sub-frame pixel value and the third sub-frame value comprise a first row of a sub-frame image, and wherein the second sub-frame pixel value and the fourth sub-frame value comprise a second row of the sub-frame image.

For claim 30, both Allen and Jaynes disclose the first, the second, the third, and the fourth pixels are centered with respect to a corresponding image pixel in the image.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jeffrey S. Smith whose telephone number is 571 270-1235. The examiner can normally be reached on M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jingge Wu can be reached on 571 272-7429. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2624

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

JSS
August 3, 2007

JINGOE WU
SUPERVISORY PATENT EXAMINER