

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-08, 29-01-2018

r and θ are fixed

Cartesian to polar coordinates:

$$\Psi(x, y) \rightarrow \Psi(\varphi)$$

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi} = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

$$E = \frac{m^2 \hbar^2}{2I}$$

Wave functions:

$$\boldsymbol{\Phi}(\boldsymbol{\varphi}) = \frac{1}{\sqrt{2\pi}} e^{\pm im\boldsymbol{\Phi}}$$

Angular momentum: $L_z = m\hbar$

Next we have considered rotation on a sphere (rigid rotor): θ will also change

r is constant, Thus, $\Psi (\theta, \phi)$

Separation of variable:
$$\Psi(\theta, \phi) = \Theta(\theta) \Phi(\phi)$$

Variables, $\theta \& \varphi$ are separated; we have two equations:

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d \omega^2} = -m_l^2$$
 ...Equn. 1

$$\mathbf{\Phi}(\mathbf{\varphi}) = \frac{1}{\sqrt{2\pi}} e^{\pm im\mathbf{\Phi}}$$

$$\frac{\sin\theta}{\Theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \epsilon \sin^2\theta = + m_l^2 \dots \text{Equn. 2}$$

Solution of above equation provides the condition:

$$\epsilon = l(l+1) \Rightarrow E_l = \frac{\hbar^2}{2I} \ l(l+1), with \ l = 0, 1, 2, \dots \dots$$
 $m_l = l, l-1, \dots, -l$

- Angular momentum is represented by a vector of length proportional to its magnitude, $\sqrt{l(l+1)}$ ħ.
- m_l : projection of angular momentum on the Z-axis
- A rotating body may not take up an arbitrary orientation w.r.t. some specified axis (an axis defined by the direction of an externally applied electric or magnetic field)— called space quantization.

Spherical harmonics, $Y_{l,m_l}(\theta,\phi)$.

$$E_l = l(l+1)\frac{\hbar^2}{2I}$$

$$J^2 = l(l+1)\hbar^2$$

$$J = \sqrt{l(l+1)} \, \hbar,$$

 $l = 0, 1, 2, 3,$

$$L_{7} = m_{1}\hbar$$
 $m_{1} = 1, 1-1,...,-1$

$$m_l$$
 m_l Y_{l,m_l}
 M_l M_l

$$\pm 1 \qquad \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\phi}$$

$$0 \qquad \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$$

$$\pm 1 \qquad \mp \left(\frac{15}{8\pi}\right)^{1/2} \cos\theta \sin\theta e^{\pm i\phi}$$

$$\pm 2 \qquad \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta e^{\pm 2i\phi}$$

Case-II: I = 2, $m_I = 2$, 1, 0, -1, -2

Hydrogen atom

- Atom with nuclear charge of Ze and mass m_N .
- A single electron (e⁻) with mass m_e.

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

- Potential energy is Coulomb potential, V(r):
- where, r is the distance of e- from nucleus and ε_0 is the vacuum permittivity.
- Since $m_N \gg m_e$, the nucleus may be considered to be at rest.
- Thus, electron is moving around the nucleus.

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

V(r) is spherically symmetric and depends only on the distance r

Hydrogen atom - Schrödinger equation

The Hamiltonian operator for internal motion of the electron relative to the nucleus:

$$\widehat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r)$$

Laplacian in polar coordinate:

$$\nabla^2 = \frac{\delta^2}{\delta r^2} + \frac{1}{r} \frac{\delta}{\delta r} + \frac{1}{r^2} \Lambda^2$$

where Legendrian,
$$\Lambda^2 = \frac{1}{\sin^2\theta} \frac{\delta^2}{\delta \varphi^2} + \frac{1}{\sin\theta} \frac{\delta}{\delta \theta} \left(\sin\theta \frac{\delta}{\delta \theta} \right)$$

Hydrogen atom - Schrödinger equation

The Hamiltonian operator for internal motion of the electron relative to the nucleus:

$$\widehat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r)$$

Laplacian in polar coordinate:

$$\widehat{H}$$
 = $-\frac{\hbar^2}{2\mu}$ $\nabla^2 + V(r)$ $\frac{l \& m_l}{\delta r^2}$ ordinate: $\nabla^2 = \frac{\delta^2}{\delta r^2} + \frac{1}{r} \frac{\delta}{\delta r} + \frac{1}{r^2} \Lambda^2$

The wave function of hydrogen atom in spherical polar coordinate can be represented as: $\Psi(r,\theta,\varphi)=R(r)Y_{l}^{m_{l}}(\theta,\varphi)$

R(r): Radial part of the wave function: Requirement that the wave function must be well behaved – leads to the result that functions must be labelled by three quantum numbers, n, l, k, m_l

Hydrogen atom – Angular solution

- The solutions of angular part are Spherical harmonics, $Y_{l,m_l}(\theta,\phi)$ and are specified by the quantum numbers l and m_l .
- Magnitude of angular momentum = $[I(I + 1)]^{1/2}\hbar$ with I = 0,1,2,3...
- Z-component of angular momentum = $m_1 \hbar$; $m_1 = 1, 1-1,...,-1$

Spherical harmonics, $Y_l^{m_l}(\theta, \phi)$

l	m_l	Y_{l,m_l}
0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
1	0	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	±1	$\mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\phi}$

Hydrogen atom – Energy and wave function

The acceptable solutions can be found only for integral values of a quantum number n, and that the allowed energies are

$$E_n = -\mu e^4 Z^2 / 32\pi^2 \epsilon_0^2 \hbar^2 n^2$$

 $n = 1, 2, 3,$

 The general form of the radial part of the hydrogen/hydrogenic atom wave functions are obtained by solving radial part of the Schrödinger equation.

$$\Psi_{n,l,m_l}(r,\theta,\varphi) = R_{n,l}(r) Y_l^{m_l}(\theta,\varphi)$$

Hydrogen atom – Radial solution

$$R_{n,l} \propto r^l (polynomial of degree \{n-l-1\}) e^{-zr/na_0}$$

- First factor determined the behavior at r = 0 (only I = 0 wave functions are non-zero at the origin.
- The second factor determines the number of radial nodes (n-l-1).
- The third ensures that the function goes to zero as $r \rightarrow \infty$

Hydrogen atom – Radial wave function

Orbital	n	l	$R_{n,l}$
1s	1	0	$2\left(\frac{Z}{a_0}\right)^{3/2}e^{-\rho/2}$
2s	2	0	$ \frac{1}{2(2)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{1}{2}\rho\right) e^{-\rho/4} \\ \frac{1}{4(6)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \rho e^{-\rho/4} $
2p	2	1	$\frac{1}{4(6)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \rho e^{-\rho/4}$
3s	3	0	$ \frac{1}{9(3)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6-2\rho+\frac{1}{9}\rho^2\right) e^{-\rho/6} $ $ \frac{1}{27(6)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(4-\frac{1}{3}\rho\right) \rho e^{-\rho/6} $
3p	3	1	$\frac{1}{27(6)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(4 - \frac{1}{3}\rho\right) \rho e^{-\rho/6}$
3d	3	2	$\frac{27(6)^{1/2} {\binom{u_0}{3}}^{3/2}}{81(30)^{1/2} {\left(\frac{Z}{a_0}\right)}^{3/2}} \rho^2 e^{-\rho/6}$

$$\rho = 2Zr/a_0$$

Hydrogen atom – Radial wave function

(b)

0.6

8/(Z/a₀)^{3/2} 8.0

-0.2

5

15

$$R_{3,0}(r) = \frac{1}{9(3)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - 2\rho + \frac{1}{9}\rho^2\right) e^{-\rho/6}$$

$$m = 3$$
 $l = 0$

No. of radial nodes (n-l-1) = 2

$$R_{3,1}(r) = \frac{1}{27(6)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(4 - \frac{1}{3}\rho\right) \rho e^{-\rho/6}$$

$$n = 3$$

$$l = 1$$
 No. of radial nodes (n-l-1) = 1

$$m = 3$$
 $l = 1$ No. of radial nodes $(n-l-1) = 1$

Orbitals

How do we define an orbital?

The wave function of an electron in hydrogen atom or hydrogenic atom is called an atomic orbital – An orbital is one-electron wave functions

$$\Psi_{n,l,m_l}(r,\theta,\varphi) = R_{n,l}(r) Y_l^{m_l}(\theta,\varphi)$$

Atomic orbitals are specified by three quantum numbers: n, l, m_l We can precisely determine:

- Energy,
- Total angular momentum
- Z-component of angular momentum

Quantum numbers for H-atom

Energy – Principal quantum number n

The energy levels are $E_n = -\mu e^4 Z^2 / 32 \pi^2 \epsilon_0^2 \hbar^2 n^2$; n = 1,2,3,...

The energy depends only on the quantum number n, and not on l or m_l . The energy expression also coincides with the Bohr model result. Here the reduced mass $\mu = mm_N/(m+m_N) \approx m$

- Orbital angular momentum or Azimuthal quantum number I. Orbital angular momentum = $[I(I+1)]^{1/2}\hbar$, I = 0,1,2,...,n-1 for given n
- Magnetic quantum number m₁
- Any one spatial component (say z), of the orbital angular momentum m_iħ

Principle quantum number, n: Energy levels

• The energy levels are

$$E_n = -\mu e^4 Z^2 / 32 \pi^2 \epsilon_0^2 \hbar^2 n^2$$

$$n = 1,2,3,....$$

$$E_n = - hcRZ^2/n^2$$

$$hcR = \mu e^4/32\pi^2 \epsilon_0^2 \hbar^2$$

$$\mu = mm_N/(m+m_N)$$

Constant R is numerically same as Rydberg contant, R_H when m_N is set equal to the mass of proton.

Principle quantum number, n: Energy levels

$$\Delta E = -hcR/n_2^2 - (-hcR/n_1^2)$$
$$= h v$$

 $V = R[(1/n_1^2) - (1/n_2^2)]$

Hydrogen atom spectra

Hydrogen atom wave function

$$\Psi_{n,l,m_l}(r,\theta,\varphi) = N R_{n,l}(r) \Theta_{l,m_l}(\theta) \Phi_{m_l}(\varphi)$$

n = 1, 2, 3,

$$l = n - 1, n - 2,, 0$$

 $m_l = l, l - 1, l - 2,, - l$

$$\Phi_{m_l} = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$$

$$\Psi(\theta,\phi) = N'\Theta_{l,m_l}(\theta) \Phi_{m_l}(\varphi) \equiv Y_l^{m_l}(\theta,\phi)$$

 $R_{n,l} \propto r^l \, (polynomial \, of \, degree \, \{n-l-1\}) \, e^{-zr/na_0}$

Shells, subshells, and orbitals

What values can the quantum numbers take?

- n = 1, 2, 3, {Given n shell}
- l = 0, 1, 2,..., n-1 (For given n, there are n possible values of l). {Given n and l subshell}

$$I = 0 \quad 1 \quad 2 \quad 3$$

$$s \quad p \quad d \quad f$$

• $m_l = -l$, -l + 1,..., l - 1, l (For given l, there are 2l + 1 possible values of m_l).

How many orbitals for a given n? n²

novate achieve

lead

Electronic structure of hydrogenic atom

Hydrogen like atomic wave function

Try to construct the $\psi_{2,1,0}$ wave function for hydrogen atom like system:

$$\Psi_{n,l,m_l}(r,\theta,\varphi) = N R_{n,l}(r) \Theta_{l,m_l}(\theta) \Phi_{m_l}(\varphi)$$

$$\Theta_{1,0}(\theta) \; \Phi_0 \; (\phi) = \; Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta \; \begin{array}{l} \text{Energy??} \\ \text{Angular momentum??} \\ \text{Z-component of angular momentum??} \end{array}$$

$$R_{2,1}(r) = \frac{1}{\sqrt{24}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$$
 No. of radial nodes??

$$\Psi_{2,1,0}(r,\theta,\varphi) = \frac{1}{\sqrt{32\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0} \cos\theta$$

Ground state of hydrogenic atom

Ground State: n = 1, l = 0, $m_l = 0 \rightarrow 1s$ orbital

- $\Psi_{100} = (4\pi)^{-1/2} (4/a_0^3)^{1/2} e^{-r/a_0} = (1/\pi a_0^3)^{1/2} e^{-r/a_0}$ (independent of θ and ϕ , true for all s states since $Y_0^0 = (4\pi)^{-1/2}$).
- All s orbitals are spherically symmetrical zero angular momentum
- Probability density depends only on r
- Maximum at r = 0, the nucleus.
- Decays exponentially with distance r
- No nodes
- Above function is normalized

Hydrogen atom – Supporting information

Schröndinger Equation in terms of angular part of wave function

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi (\theta, \phi) = E \Psi(\theta, \phi)$$

$$\Rightarrow -\frac{\hbar^2}{2m} \frac{1}{r^2} [\Lambda^2 \Psi (\theta, \phi)] = E \Psi(\theta, \phi),$$

We can rearrange the above equation:

$$\Rightarrow \Lambda^{2} \Psi(\theta, \phi) = -\frac{2mr^{2}E}{\hbar^{2}} \Psi(\theta, \phi) = -\frac{2IE}{\hbar^{2}} \Psi(\theta, \phi)$$
$$\Lambda^{2} \Psi(\theta, \phi) = -l(l+1) \Psi(\theta, \phi), \quad \Psi(\theta, \phi) \equiv Y_{l}^{m_{l}}(\theta, \phi)$$

Angular part of the wave function is spherical harmonics