EE/CSCI 451 Fall 2020

Homework 4

Assigned: September 18, 2020 Due: September 24, 2020, 11:59PM AOE Total Points: 100

1 [10 points]

Explain the following terms:

- 1. Diameter of a network
- 2. Bisection width of a network
- 3. Multistage network
- 4. Rearrangeable network
- 5. Non blocking network
- 6. Congestion in a network
- 7. 3 stage CLOS network
- 8. Butterfly network
- 9. Shuffle-exchange network
- 10. Fat tree

2 [10 points]

Figure 1 shows a 4 input/output CLOS network with control setting for each switch box. What permutation does this network realize?

Permutation:

- $0 \rightarrow$
- $1 \rightarrow$
- $2 \rightarrow$
- $3 \rightarrow$

3 [20 points]

In the class, we discussed an algorithm to perform routing on a Shuffle-Exchange Network which requires 2k routing steps (shuffles and exchanges), where k is the number of bits in the binary representation of source and destination. For a binary number $x_{k-1}x_{k-2}...x_0$, we define suffix as the most significant bits $x_{k-1}x_{k-2}...$ of the number and prefix as the least significant bits $...x_1x_0$ of the number.

Figure 1: 4 input/output CLOS network

Figure 2: Prefix 101 of s is equal to suffix 101 of d

Let l denote the length of the longest prefix of the source (in binary representation) which is a suffix of the destination (again in binary representation). See Figure 2 for example.

- 1. Consider a 16 input and output shuffle-exchange network, a source node s = 1010 and a destination node d = 1001. For this pair of source and destination, find a route which has ≤ 4 links (2(k-l) = 2(4-2) = 4). Write all the intermediate nodes and the operation (Shuffle or Exchange) performed at each step. (5 points)
 - **Hint:** Longest prefix of s which is equal to the suffix of d is 10.
- 2. Modify the algorithm discussed in the lecture so that it runs in at most 2(k-l) steps.

$4 \quad [5 \text{ points}]$

A mesh of trees is a network that imposes a tree interconnection on a grid of processing nodes. A $\sqrt{p} \times \sqrt{p}$ mesh of trees is constructed as follows. Starting with a $\sqrt{p} \times \sqrt{p}$ grid, a complete binary tree is imposed on each row of the grid. Then a complete binary tree is imposed on each column of the grid. Figure 3 illustrates the construction of a 4×4 mesh of trees. Assume that the nodes at intermediate levels are switching nodes. Determine the diameter of a $\sqrt{p} \times \sqrt{p}$ mesh of trees.

5 [25 points]

In the class, we defined an n input and n output CLOS network as a 3-stage network with \sqrt{n} $\sqrt{n} \times \sqrt{n}$ crossbar switches in each stage.

1. Draw the network for n = 16.

Figure 3: The construction of a 4×4 mesh of trees: (a) a 4×4 grid, (b) complete binary trees imposed over individual rows, (c) complete binary trees imposed over each column, and (d) the complete 4×4 mesh of trees.

- 2. We can extend the 3-stage CLOS network as follows: A p input and p output CLOS network can be defined as a 3-stage network where Stage 0 and Stage 2 consist of $\frac{p}{2} \times 2 \times 2$ switches while Stage 1 consists of two $\frac{p}{2} \times \frac{p}{2}$ switches. The definition can be applied recursively to Stage 1 until the network consists only of 2×2 switches. Using the above definition, each $\sqrt{n} \times \sqrt{n}$ crossbar switch of the network in part a can be implemented using only 2×2 switches. Draw a $\sqrt{16} \times \sqrt{16}$ crossbar switch and define the connectivity requirement from Stage 0 to Stage 1.
- 3. In general, derive an expression for the total number of switches and the total delay from an input to an output for an n input and n output CLOS network with \sqrt{n} $\sqrt{n} \times \sqrt{n}$ crossbar switches each of which is implemented using the definition of CLOS network used in Part 2. (Assume the delay of each 2×2 switch is equal to 1 unit)

6 [20 points]

In this problem, we will design a network for $n \times n = 2^k$ nodes. The nodes will be laid out in 2 dimensions with n rows and n columns. Each row is a Shuffle-Exchange network of size $n = 2^{\frac{k}{2}}$. Similarly, each column is a Shuffle-Exchange network of size $n = 2^{\frac{k}{2}}$. To perform routing on this network, we split the k bits into two chunks of $\frac{k}{2}$ bits each. The most significant $\frac{k}{2}$ bits (left chunk) will be used to perform Shuffle-Exchange Routing in vertical direction (across columns) and the least significant $\frac{k}{2}$ bits (right chunk) will be used to perform Shuffle-Exchange Routing in horizontal direction (along a row).

- 1. Fill the connections for k = 4 in the network shown in Figure 4.
- 2. Show the intermediate nodes while routing from source s = 1010 to destination d = 0101 in the network shown in Figure 4.

7 [10 points]

Suppose we want to perform modified matrix transpose of an $n \times n$ matrix using an $n \times n$ 2-D mesh. Matrix(i,j) is initially stored in PE(i,j) of the 2-D mesh. In modified matrix transpose, Matrix(i,j) is to be routed to PE((n-1)-j,i) $(0 \le i,j < n)$. The permutation is performed as follows: Matrix(i,j) is first routed along row i to PE(i,i), then routed along column i to PE((n-1)-j,i). What is the congestion in the network? Specify all nodes where this congestion occurs in performing this permutation.

Figure 4: The network for k=4