Example with n=5

Example with n=5

Example with n=5

5

 d_i = the distance from \widehat{X}_{i-1} to \widehat{X}_i measured along \widehat{Z}_i

 θ_i = the angle between \widehat{X}_{i-1} and \widehat{X}_i measured about \widehat{Z}_i

3

 θ_i

 q_1

-90

 q_3

 q_4

 l_5

	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	q_1
2	-90	0	q_2	-90
3	-90	l_2	0	q_3
4	90	0	0	q_4
5	0	$-l_4$	l_5	0

$$\begin{bmatrix}
i^{-1}T = R_X(\alpha_{i-1}) D_X(a_{i-1}) R_Z(\theta_i) D_Z(d_i) \\
e^{-1} C = \begin{bmatrix}
c\theta_i & -s\theta_i & 0 & a_{i-1} \\
s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\
s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_i \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$${}^{0}_{1}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \, {}^{1}_{2}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{2} \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \, {}^{2}_{3}T = \begin{bmatrix} c_{3} & -s_{1} & 0 & l_{2} \\ 0 & 0 & 1 & 0 \\ -s_{3} & -c_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Summary

- Homogoneous transformation:
 - Describing positions and orientations in space and how to map between them
- Forward kinematics:
 - Where is the robot's ith link or end-effector given the robots configuration
- Denavit-Hartenberg parameters
 - Uniform procedure for defining the robot's kinematics in order to derive forward kinematics

Quiz time – DH params