МОДЕЛИ МНОГОКРИТЕРИАЛЬНЫХ АНАЛИТИЧЕСКИХ ЗАДАЧ

Постановка многокритериальной аналитической задачи:

$$\Gamma = \langle \mathbf{X}, \mathbf{F}(\mathbf{x}), \wp \rangle. \tag{2}$$

Х - множество допустимых решений х;

 ${f F}({f x})$ - векторный критерий эффективности допустимого решения ${f x}$; \wp - бинарное отношение сравнительной эффективности допустимых решений, порожденное векторным критерием ${f F}({f x})$.

Бинарное отношение *(p* является отношением строгого предпочтения.

Особенность многокритериальной аналитической задачи

 $\mathbf{F}(\mathbf{X}) = \bigcup_{\mathbf{x} \in \mathbf{X}} \mathbf{F}(\mathbf{x})$ - множество достижимых векторных оценок.

Принцип оптимальности по Парето

Бинарное отношение строгого предпочтения:

$$\mathbf{x} \otimes \mathbf{y} \Leftrightarrow \mathbf{F}(\mathbf{x}) \leq \mathbf{F}(\mathbf{y}) \Leftrightarrow \begin{cases} f_i(\mathbf{x}) \leq f_i(\mathbf{y}), i = \overline{1, m}, \\ \mathbf{F}(\mathbf{x}) \neq \mathbf{F}(\mathbf{y}). \end{cases}$$
 (3)

$$\mathbf{x} \otimes \mathbf{y} \Leftrightarrow \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y}) \in \mathbf{\Omega} = \mathbf{E}_{\leq}^{m} \setminus \mathbf{0}^{m}$$
 (4)

Принцип оптимальности по Парето

Определение 1. Допустимое решение $\mathbf{x}^* \in \mathbf{X}$ является оптимальным по Парето (недоминируемым по Парето, эффективным, оптимальным относительно конуса доминирования $\mathbf{\Omega}$), если на множестве \mathbf{X} не существует решения $\tilde{\mathbf{x}} \neq \mathbf{x}^*$, удовлетворяющего системе неравенств $f_i(\mathbf{x}) \leq f_i(\mathbf{y}), i = \overline{1, m}$, где хотя бы одно неравенство строгое.

Определение 2. Допустимое решение $\mathbf{x}^* \in \mathbf{X}$ называется оптимальным по Парето, если для любого допустимого решения $\mathbf{x} \in \mathbf{X}$, $\mathbf{x} \neq \mathbf{x}^*$ имеет место

$$\left(\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{x}^*)\right)\not\in\mathbf{\Omega}.$$

Геометрическая интерпретация

множество Парето $\mathbf{F}_{P}(\mathbf{X}) = \cup AB$

Примеры

Пример 1. Множество достижимых векторных оценок F(X) в многокритериальной аналитической задаче имеет вид:

Построить множество Парето-оптимальных решений для следующих случаев.

A.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$
.

B.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

C.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}.$$

D.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

Пример 2. Множество достижимых векторных оценок F(X) в многокритериальной аналитической задаче имеет вид:

Построить множества решений, оптимальных по Парето для следующих случаев.

A.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$
.

B.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}$$
.

C.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$
.

D.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

Пример 3. Множество достижимых векторных оценок F(X) в многокритериальной аналитической задаче имеет вид

Построить множества решений, оптимальных по Парето для следующих случаев.

A.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}.$$

B.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

C.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}.$$

D.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

Пример 4. Множество достижимых векторных оценок F(X) в многокритериальной аналитической задаче имеет вид

Построить множества решений, оптимальных по Парето для следующих случаев.

A.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$
.

B.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}$$
.

C.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}.$$

D.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

Задача оценки эффективности и сравнительного анализа проектов ЦП является дискретной многокритериальной аналитической задачей (ДМАЗ), которая может быть формализована в виде:

$$\Gamma = \langle \hat{\mathbf{X}}, \mathbf{F}(\mathbf{x}), \wp \rangle$$

где $\hat{\mathbf{X}}$ - конечное множество, $\left|\hat{\mathbf{X}}\right| = N$, \wp - бинарное отношение сравнительной эффективности допустимых решений, порожденное векторным критерием $\mathbf{F}(\mathbf{x}) \in \mathbf{E}^m$, задано в виде замкнутого выпуклого конуса доминирования $\mathbf{\Omega} = \mathbf{E}_{\geq}^m$ и формализует требование максимизации компонент векторного критерия F(x). Требуется построить множество паретооптимальных решений $\mathbf{F}_{\mathrm{P}}(\hat{\mathbf{X}})$.

Алгоритм исключения заведомо неоптимальных решений

Шаг 1. Полагаем k = 1.

Шаг 2. Выбираем элемент $\mathbf{x}^k \in \hat{\mathbf{X}}$. Если \mathbf{x}^k имеет статус заведомо неоптимального, то переходим к шагу 4. Иначе переходим к шагу 3.

Шаг 3. Для всех $i = \overline{1, N}$, $i \neq k$ проверяем выполнение условия:

$$\mathbf{F}(\mathbf{x}^i) - \mathbf{F}(\mathbf{x}^k) \in -\mathbf{\Omega}. \tag{1}$$

Все элементы \mathbf{x}^i , для которых выполняется (1), считаем заведомо неоптимальным. Переходим к шагу 4.

Шаг 4. Если k < N, то полагаем k = k + 1 и переходим к шагу 2. Иначе переходим к шагу 5. **Шаг 5**. Просматриваем таблицу значений $T = \left\{ \mathbf{F}\left(\mathbf{x}^k\right), k = \overline{1,N} \right\}$ и удаляем из нее элементы, имеющие статус заведомо неоптимальных. Получаем таблицу T_{Ω} . Полагаем, что множество Ω -оптимальных решений $\mathbf{F}_{\Omega}\left(\hat{\mathbf{X}}\right) = T_{\Omega}$.

Пример 5. Рассмотрим ДМАЗ, где множество допустимых альтернативных решений $\hat{\mathbf{X}}$ является конечным, $|{\bf X}| = N = 10$. Эффективность каждого альтернативного решения $\mathbf{x}^i \in \hat{\mathbf{X}}$ оценивается векторным критерием $\mathbf{F}(\mathbf{x}^i) = \begin{bmatrix} f_1(\mathbf{x}^i), f_2(\mathbf{x}^i) \end{bmatrix}^T = \begin{bmatrix} f_1^i, f_2^i \end{bmatrix}^T$. Множество достижимых векторных оценок $\mathbf{F}(\mathbf{X})$ задано в таблице и представлено графически в виде N = 10 точек критериального пространства. Бинарное отношение сравнительной эффективности допустимых альтернативных решений 😥 является отношением Парето и отражает требование максимизации компонент векторного критерия F(x), т.е. полиэдральный конус доминирования имеет $Ω = \mathbf{E}_{\geq}^m = \left\{ \mathbf{r} \in \mathbf{E}^m \middle| r_i \geq 0, i = \overline{1, m}, \mathbf{r} \neq \mathbf{0} \right\}$. Требуется построить множество Парето-оптимальных решений $\mathbf{F}_{\scriptscriptstyle \mathrm{p}}(\mathbf{X})$.

$\mathcal{N}_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10
f_1^i	7	22	46	32	4	13	19	39	2	38
f_2^i	1	7	30	19	39	47	41	14	40	4

Будем использовать алгоритм исключения заведомо неэффективных решений; используются следующие обозначения статуса элементов: * - элемент $\mathbf{F}(\mathbf{x})$ зафиксирован и относительно него другие векторные оценки проверяются на неэффективность; \mathbf{x} – элемент $\mathbf{F}(\mathbf{x})$ является заведомо неэффективным).

Шаг 1. Полагаем номер итерации i = 1.

Шаг 2. Рассматриваем точку \mathbf{F}^i . Если \mathbf{F}^i имеет статус \times , то переходим к шагу 3 (соответствующий столбец остается пустым). Иначе, присваиваем \mathbf{F}^i статус * и фиксируем. Для всех точек в соответствующем столбце \mathbf{F}^j , $j=\overline{1,N},$ $i\neq j$, которые не имеют статуса \times , проверяем выполнение условия

$$\left(\mathbf{F}^{j} - \mathbf{F}^{i}\right) \in -\mathbf{\Omega}_{\bullet} \tag{2}$$

Включение (2) означает, что точка \mathbf{F}^{j} является заведомо неэффективной, и ей присваиваем статус \times .

Шаг 3.Полагаем i = i + 1. Если $i \leq N$, то переходим к шагу 2. Иначе, переходим к шагу 4.

Шаг 4.Просматриваем весь массив данных F(X). Формируем множество Парето-оптимальных решений в виде

$$\mathbf{F}_{\mathbf{P}}(\mathbf{X}) = \mathbf{F}^*(\mathbf{X}), \tag{3}$$

где $\mathbf{F}^*(\mathbf{X})$ - множество точек, имеющих только статус *.

Результаты работы алгоритма исключения заведомо неоптимальных решений представлены в таблице

No	f_1^i	f_2^i	Номер итерации і									
			1	2	3	4	5	6	7	8	9	10
1	7	1	*	×								
2	22	7		*	×							
3	46	30			*							
4	32	19			×							
5	4	39					*	×				
6	13	47						*				
7	19	41							*			
8	39	14			×							
9	2	40						×				
10	38	4			×							

В данном примере $\mathbf{F}_{p}(\mathbf{X}) = \{\mathbf{F}^{3}, \mathbf{F}^{6}, \mathbf{F}^{7}\}$ (в таблице отмечены зеленым цветом).

Алгоритм многокритериального ранжирования на основе индекса эффективности

Рассмотрим ДМАЗ из примера 5.

Алгоритм состоит из следующих шагов.

Шаг 1.Полагаем i = 1.

Шаг 2. Вычисляем параметр b_i - число точек, для которых выполняется условие

$$\left(\mathbf{F}^{j} - \mathbf{F}^{i}\right) \in \mathbf{\Omega}, \ j = \overline{1, N}, \ i \neq j,$$
 (4)

Шаг 3. Вычисляем значение индекса эффективности в виде:

$$\Phi_{i} = \frac{1}{1 + \frac{b_{i}}{N - 1}}.$$
 (5)

Шаг 4. Если i < N, то полагаем i = i + 1 и переходим к шагу 2. Иначе, переходим к шагу 5.

Шаг 5.Из точек множества $\mathbf{F} \Big(\hat{\mathbf{X}} \Big)$ формируем множество $\mathbf{F}_{_{\mathrm{P}}} \Big(\hat{\mathbf{X}} \Big)$ парето-оптимальных решений по правилу:

$$\mathbf{F}_{\mathbf{P}}(\hat{\mathbf{X}}) = \left\{ \mathbf{F}^{i}(\mathbf{X}) \in \mathbf{F}(\mathbf{X}) \middle| \Phi_{i} = 1 \right\}.$$
 (6)

Результаты работы алгоритма отображены в таблице: $\mathbf{F}_{\mathbf{P}}\left(\mathbf{X}\right) = \left\{\mathbf{F}^{3}, \mathbf{F}^{6}, \mathbf{F}^{7}\right\}$. В столбце b_{i} в скобках указаны номера элементов \mathbf{F}^{j} , для которых выполняется условие (4).

Свойства индекса эффективности:

- 1) $\Phi_{imax} = 1$ для всех $\mathbf{F}^i \in \mathbf{F}_{\mathbf{P}}(\mathbf{X})$;
- 2) $\Phi_{imin} = 1/2$;
- 3) $1/2 \leq \Phi_i < 1$, если $\mathbf{F}^i \notin \mathbf{F}_{\mathbf{P}}(\mathbf{X})$.

No	f_1^i	f_2^i	b_{i}	$\Phi_{_i}$	K_{l}
1	7	1	7 (2,3,4,6,7,8,10)	0.56	K_3
2	22	7	3(3, 4, 8)	0.75	K_3
3	46	30	0	1	K_1
4	32	19	1(3)	0.9	K_2
5	4	39	2(6, 7)	0.82	K_2
6	13	47	0	1	K_1
7	19	41	0	1	K_1
8	39	14	1(3)	0.9	K_2
9	2	40	2(6, 7)	0.82	K_2
10	38	4	2(3, 8)	0.82	K_2

Задача многокритериальной кластеризации по индексу эффективности

В задаче кластеризации будем предполагать, что множество допустимых альтернативных решений $\hat{\mathbf{X}}$ требуется разбить на три кластера K_1 , K_2 , K_3 , по значению индекса эффективности.

Зададим центры кластеров на интервале[0.5; 1]:

$$C_1=1$$
, $C_2=0.85$, $C_2=0.75$.

Для каждого альтернативного решения $\mathbf{x}^i \in \hat{\mathbf{X}}$ (соответственно $\mathbf{F}^i \in \mathbf{F}(\hat{\mathbf{X}})$) определяем кластер K_n в соответствии со следующим алгоритмом.

Шаг 1. В пространстве признаков вычисляем расстояния от \mathbf{x}^i до центров кластеров

$$r_{ij} = |\Phi_i - C_j|, j = \overline{1, 3}.$$

Шаг 2. Вычисляем минимальное расстояние

$$k_i = min\left\{r_{ij}, j = \overline{1, 3}\right\}$$

Шаг 3. Определяем номер кластера n, которому принадлежит \mathbf{x}^i

$$n = \left\{ j \in \{1, 2, 3\} \middle| k_i = r_{ij} \right\}$$

Результаты кластеризации представлены в таблице и отображены на рисунке (зеленым - K_1 , желтым - K_2 , красным - K_3).

