Lecture 8

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 23, 2021

Sub Spaces

Subspaces

Definition

Let $(V,+,\cdot)$ be a real or complex vector space. A non-empty subset W of a vector space V is called a *subspace* of V if W is a vector space under the addition and scalar multiplication defined on V

Theorem

Let W be a non-empty subset of a vector space. Then W is a subspace if and only if the following conditions are satisfied.

- a) If $x, y \in W$, then $x + y \in W$.
- b) If $\mathbf{x} \in W$ and $\alpha \in \mathbb{F}$, then $\alpha \mathbf{x} \in W$.

Remark

- 1. Let $\mathbf{v} \in W$. Then $0 \cdot \mathbf{v} = \mathbf{0} \in W$.
- 2. If *W* is a subspace of *V*, then *W* is a vector space with same operations as in *V*.

Examples.

- 1. The xy-plane in \mathbb{R}^3 given by $\left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x,y \in \mathbb{R} \right\}$ is a vector space with same standard componentwise operations defined in \mathbb{R}^3 .
- 2. Let $W = \left\{ \begin{bmatrix} a \\ a+1 \end{bmatrix} : a \in \mathbb{R} \right\}$ be subset of vector space \mathbb{R}^2 with standard componentwise addition and scalar multiplication. Check whether W is a subspace of V.
- 3. Let $M_{2\times 2}(\mathbb{R})$ be a vector space of 2×2 matrices with standard matrix addition and scalar multiplication, and let W be a subset of all 2×2 matrices with trace 0. Then W is a subspace of $M_{2\times 2}(\mathbb{R})$.
- 4. Let **A** be a matrix of size $m \times n$. Then set of solutions of $\mathbf{A}\mathbf{x} = \mathbf{O}$ with the operations defined on \mathbb{R}^n is a subspace of \mathbb{R}^n .

Theorem

Let W_1, W_2 be subspaces of a vector space V. Then $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. Let $W_1 \cup W_2$ is a subspace of V. Suppose $W_1 \nsubseteq W_2$. Then there exists $\mathbf{x} \in W_1$ such that $\mathbf{x} \notin W_2$. We claim that $W_2 \subseteq W_1$. Let $\mathbf{y} \in W_2$. Then $\mathbf{x} + \mathbf{y} \in W_1 \cup W_2$. This implies $\mathbf{x} + \mathbf{y} \in W_1$ or $\mathbf{x} + \mathbf{y} \in W_2$. If $\mathbf{x} + \mathbf{y} \in W_2$, then $\mathbf{x} = (\mathbf{x} + \mathbf{y}) + (-1)(\mathbf{y}) \in W_2$, a contradiction, and hence $\mathbf{x} + \mathbf{y} \in W_1$. Therefore, $\mathbf{y} = (\mathbf{x} + \mathbf{y}) + (-1)\mathbf{x} \in W_1$.

Remark

Union of two distinct straight lines passing through origin in \mathbb{R}^3 is not a subspace of \mathbb{R}^3 .

Exercise

The intersection of any two subspaces of a vector space V is always a subspace of V.

Linear Combination

Consider an ordered set $S = \{x_1, x_2, ...\}$ of vectors in a real (complex) vector space V. Then a vector of form

$$\mathbf{y} = (c_1 \cdot \mathbf{x}_{i_1}) + (c_2 \cdot \mathbf{x}_{i_2}) + \cdots + (c_m \cdot \mathbf{x}_{i_m}) \in V,$$

where $c_1, c_2, \ldots, c_m \in \mathbb{F}$, is called a *linear combination* of vectors in *S*.

Example

Let $V=\mathbb{R}^2$ be a real vector space with usual addition and scalar multiplication. Then $\begin{bmatrix} 4 \\ 10 \end{bmatrix}$ is a linear combination of vectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
.

Linear Span of Vectors

Definition

Let V be a vector space and let $S = \{x_1, x_2, \ldots\}$ be a set of vectors in V. Then the *linear span* of S, denoted by span(S), is the set

$$\{c_1\mathbf{x}_{i_1}+\cdots+c_m\mathbf{x}_{i_m}:c_1,\ldots,c_m\in\mathbb{R}\}.$$

Example

Let $V = \mathbb{R}^n$ and $S = \{e_1, \dots, e_n\}$, where e_i denotes the element of \mathbb{R}^n *i*th component is 1 and all other are zero. Then any vector of \mathbb{R}^n can be written as a linear combination of vectors of S.