

Jingwen Nan, Ruoxin Shi, Yiqun (Crystal) Xu

Introduction

Industry Background & Problem Statement & Data Profile

Industry Background

Nowadays, with the rapid development of technology and the economy, the video game industry is thriving and prospering. Video game, being a major entertainment approach, is pervasive and reaches all types of social backgrounds and age groups.

3.2 billion

Total number of gamers reached over 3.2 billion.

\$84

US gamers annually spent an average of \$84 on console purchase.

8h 27mins

The average time spent was 8 hours 27 minutes a week.

1084.1 million

eSports scene generated \$1,084.1 million revenue.

Problem Statement

Goal of Analysis

- Predict the final placement for each player/team
- Classify different types of players, summarize their types and patterns, and analyze the final placements
- Analyze different game strategies and their win ratio
- Identify zombie players and cheaters

Business Value

- Game company can adjust the game setting based on the analysis to improve the game balance
- Derive the user portrait/behavior patterns from the data to help design the game and operation activities
- Identify cheaters to form a benign game environment
- Improve user experiences, user engagement and user retention

Data Profile

Our dataset contains 59 columns, 4446966 rows with no missing value.

The target of prediction is **percentile winning placement**, where 1 corresponds to 1st place, and 0 corresponds to last place in the match.

Identifier

- Player ID
- Match ID
- Group ID

Match

- Duration
- Type
- # Participants
- Worst placement

Teams

- #Teammate revive
- # assists

Item

- Weapons Acquired
- #Boosts
- #heals

Kills

- Headshot kills
- Rank based on # kills
- Kill point
- Kill streak
- # Kills
- Road kills
- Team kills
- Longest kills
- # Vehicle Destroyed
- # knocked
- Total damage dealt

Distance

- Ride Distance
- Swim Distance
- Walk Distance

Exploratory Data Analysis

Explore Feature Distribution & Correlation & Clustering

Correlations Exploration

The target variable is highly correlated with these features:

Boosts

0.50

- -0.25

- -0.75

- KillPlace
- WalkDistance
- WeaponAcquired

- 0.75

- 0.50

-0.25

Boosts Variable Exploration

- Number of boosts is in the range of 1 to 11
- Players with 1 boosts are most common while player with 11 boosts are the rarest
- Boosts have a positive impact on percentile winning placement.

WalkDistance Variable Exploration

- The plot drops sharply when walk distance<1000 and the trend is flattened when walk distance>= 1000
- When walk distance<3000, the variable has a great positive impact on percentile winning placement.
- When number of weapons>=3000, the influence is limited.

KillPlace Variable Exploration

- Only few players' ranking based on kills in the dataset are in the range of 90 to 100.
- The influence of variable on response is not direct when killPlace<50.
- When killPlace>50, the variable has a negative effect on percentile winning placement.

WeaponsAcquired variable Exploration

- Most players acquire 2-4 weapons.
- When number of weapons<6, the variable has a great positive impact on percentile winning placement.
- When number of weapons>=6, the variable has the limited effect on percentile winning placement

Match Type Exploration

Match Type Exploration

- Fig1 Based on playing perspective
- Fig2 Based on # of players in team: solo, duo, squad
- Fig3 Matches the number of groups distribution (3 peaks correspond to 3 match types)

Match Duration Exploration

2 peaks exist in the overall distribution: around 1300 secs and 1800 secs.

- Similar peaks exist in the distributions for different team types, meaning that the match duration might not be influenced by team size.
- Possible cause for these peaks is the <u>map size</u>

Player Cluster

Cluster	:				
0	2.032864	253.323024	3251.052267	304.006898	0.012707
1	1.367797	189.597173	2059.703222	3048.744268	0.031434
2	0.477928	78.272302	263.586637	29.958470	0.000972
3	1.151374	156.963793	1671.314409	236.309895	0.006793
4	1.382194	195.810986	2036.421858	6527.038467	0.044403

	swimDistance		heals	boosts	assists	DBNOs	revives	winPlacePerc
Cluster								
0		13.489243	2.989113	2.967558	0.558847	1.261451	0.348829	0.853376
1		7.999683	3.095863	2.334343	0.383871	0.939999	0.288382	0.712025
2		0.601315	0.405545	0.224557	0.106526	0.413604	0.074322	0.253975
3		7.183004	1.747592	1.463233	0.272267	0.752860	0.211265	0.663015
4		8 004267	3 8/1102	2 823281	0.410283	0.979767	0.309779	0.773203

- Cluster 0 High kills, Prefer walking, Mid moving distance, Save and assist most teammates
- Cluster 1 Mid kills, Prefer Driving, Long moving distance, Use most healing and boosting items
- Cluster 2 low kills, Short moving distance,
 Die quickly
- Cluster 3 Mid kills, Prefer walking, Mid moving distance, Use less items, lower damage made comparing to cluster 1
- Cluster 4 Mid kills, Driver, Super long moving distance, Using more healing items

Player Types

Killer

- ☐ The average kills is 0.93
- 99% of people have 7.0 kills or less
- ☐ The most kills ever recorded is 60

Healer

- ☐ Person uses average 1.2 heal items
- ☐ 99% of people use 11.0 or less
- ☐ The most used is 59
- ☐ Average person uses 1 boost items
- 99% of people use 7.0 or less
- ☐ The most used is 18.

Player Types

Walker

- ☐ The average person walks is 1055m
- 99% of people walked less than 4138m
- ☐ The longest walking distance is 17300
- 2% players walked 0 meters, who might be killed moving

Driver

- ☐ The average person drives 423.9m
- 99% of people drive6133m or less
- ☐ The longest driving distance is 48390m.

Swimmer

- ☐ The average person swims for 4.1m
- □ 99% of people swim 116m or less
- The longest swimming distance is 5286m.

Feature Engineering

Remove Outliers & Create new features

Remove Outliers

Kills: --> possible CHEATERS

- Kills_without_moving: calculate the total distance for each player (adding up the walkDistance, swimDistance and rideDistance), remove the records with '0' total distance and > 1 kills.
- O Kills: remove records with kills greater than 35
- O Longest_kills: remove records with longest killing distance > 1000

Travelling:

Remove records anomalous with walking, swimming and riding distance as well as the total distance separately.

• Weapons:

Remove records with anomalous total number of weapons acquired. (For example, a player is highly possibly a cheater if acquiring more than 40 weapons in one single game.)

Heals:

Remove records with anomalous total number of healing items used. (For example, a player is highly possibly a cheater if using more than 40 healing items in one single game.)

Create New Features

- Standardize the match type into 4 main categories: Solo, Duo, Squad, Other
- Combine the number of healing and boosting items. -> health_items
- Calculate the headshot ratio
- -> headhshot_perc
- Add the elements that indicate teamwork(assists & revives) -> **team_work**
- calculates the average length of a kill streak
- -> killStreak len
- Calculate the total hits (DBNOs + kills + teamKills)
- -> totalHits

Data Preprocessing

- Use function defined in <u>https://www.kaggle.com/gemartin/load-data-reduce-memory-usage</u> to reduce data memory.
- Select the numerical columns and categorical columns.
 - Perform standard scaling on numerical columns
 - Perform OneHotEncoder on categorical columns
- Train-test split the data (80-20)

Methodology

Models & Model Selection & Deployment

Models

Linear Regression

The baseline model

XGBoost

A useful way to explore features importance

LightGBM

A Great algorithm to deal with large amount of data with less memory

Neural Network

A Series of algorithms endeavors to recognize underlying relationships in a set of data

Neural Network

Model 1

Sequential 3-layer

Test loss: 0.0064

Test MAE: 0.0570

Model 2

Sequential 4-layer

Test loss: 0.0064

Test MAE: 0.0573

Features Importance result from XGBoost

- Test MAE: 0.08662
- Train RMSE: 0.11866
- Test RMSE: 0.11896

- Train MAE: 0.07489
- Test MAE: 0.07492
- Train RMSE: 0.10764
- Test RMSE: 0.10767

Neural Network

- Test loss: 0.0064
- Train loss: 0.0063
- Test MAE: 0.0570
- Train MAE: 0.0568

Light gbm

- Train MAE: 0.05944
- Test MAE: 0.05958
- Train RMSE: 0.08263
- Test RMSE: 0.082874

Conclusion

Findings & Conclusion & Next Steps

Findings & Conclusion

- The match type (team size) does not have great correlation to the match duration. A more important factor might be the map size, which is not mentioned in our data.
- The ranking of # of enemies killed, the total traveling distance and the number of
 weapons acquired are the features of top importance to the target variable winPlacePerc
- There are many cheaters and robot players in the records (unreasonable kills, travelling distance, etc)
- Currently, based on the MAE errors, we found that the <u>neural network</u> model has the best performance. In the future, after trying different hyperparameters and fine-tuning XGBoost and LightGBM, we might get better results.

Lessons Learned & Recommendations

Lessons Learned

- Learned how to reduce the size of memory while keeping the data in same, which help us when dealing with such a huge dataset.
- Eliminate the outlier before fitting models. In our dataset, there are a lot of robot players and cheaters. How to identify and eliminate them are important for making unbiased prediction.

Next Steps

- Fine tune Xgboost and LightGBM
- Try neural network with more layers and other structures
- Deployment plan for big data platforms
- Add more team data and focus on team performance

THANKS!