Data Science - Module 5

Machine Learning Supervised Learning

Andrea Cossu – andrea.cossu@sns.it Scuola Normale Superiore University of Pisa

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

Lab Outline

- Machine / Deep Learning frameworks
- Perceptron from scratch with PyTorch
- Beyond perceptrons with MultiLayer Perceptron
 - Autograd feature of PyTorch
- Metrics (accuracy, F1, ROC curve)
- Tensorboard
- Optional: Quick overview of Keras

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

The AI family

From Artificial Intelligence to Deep Learning

- Good Old Fashioned Artificial Intelligence GOFAI
 - Symbolic approach
 - Knowledge base, expert systems, rule-based decision support systems
 - Symbol grounding problem
 - The problem is analogous to trying to learn Chinese from a Chinese/Chinese dictionary alone
 - [Stevan Harnad, The symbol grounding problem, Physica D: Nonlinear Phenomena, Volume 42, Issues 1–3, June 1990, Pages 335-346]

From Artificial Intelligence to Deep Learning

- Machine Learning (ML) [Tom Mitchell, Machine Learning, McGraw Hill, 1997]
 - A ML model improves over task T with respect to performance measure P based on experience E
 - Experience E is a set of data features
 - ML model extracts patterns from features
 - The model must *generalize* well to unseen experience

From Artificial Intelligence to Deep Learning

- Deep Learning (DL) [Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning,
 MIT Press, 2016]
 - A DL model "understands" the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts.
 - The hierarchy of concepts is deep
 - Features are created hierarchically from raw data
 - The model must *generalize* well to unseen experience

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptror
- How to train neural networks
- How to monitor performances

Supervised Learning ingredients

- Data → a set of patterns: (features, target) = (input, desired output)
- Model (hypothesis) → defines the search space
- Learning algorithm → navigate the search space to find the optimal solution to the...
- ... Task → classification, regression, ...
- Empirical Risk Minimization $\mathbb{E}[\mathcal{L}(target, output)]$
- Learning is supervised due to the target information provided to the model for each input pattern

Ok... What?? Iris example

Let's clarify!

- Data → Iris dataset, a set of features=(sepal length/width, petal length/width), target=flower class
- Model (hypothesis) → you choose this! Suppose logistic regression.
- Learning algorithm → gradient descent
- Task → correctly classify each flower based on its features

Interaction between model and learning algorithm

- The model defines the search (hypothesis) space.
 - INDUCTIVE BIAS: set of assumptions used to guide learning process
- Logistic regression restricts search space to linear relationships between features and target
 - A learning algorithm will be able to search within that search space
- Neural networks are a more expressive model which takes into account nonlinear relationships
 - The same learning algorithm will be able to search within that search space
- VERY DIFFERENT RESULTS!

Search in the hypothesis space

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

Bias Variance tradeoff intuitively

Bias Variance decomposition

- True function: $Y = f(x) + \epsilon$
- Mean Square Error (can be used as loss function in ERM)

$$\mathbb{E}[(Y - \hat{f}(x))^2]$$

- MSE can be decomposed in Bias² + Variance + Irreducible error
 - Bias: $\mathbb{E}[\hat{f}(x) f(x)]$
 - Variance: $\mathbb{E}[(\hat{f}(x) \mathbb{E}[\hat{f}(x)])^2]$
 - Irreducible error: constant term

ERM in light of Bias Variance

Tweak Bias and Variance in a model

- Large bias means restricting the hypothesis space
- Large variance means allowing for greater flexibility
- Reduce variance → increase bias (and viceversa)
- The more expressive a model is, the less the bias, the more the variance
- Linear regression → large bias, small variance
- Neural networks → small bias, large variance

Overfitting vs underfitting

- Current trend is to have large variance model
- Problem:

Possible solutions

- Avoid underfitting? Easy → use a more expressive model
- Avoid overfitting? Difficult!
 - constrain (i.e. regularize) your expressive model (prevent polynomial coefficients > 5)
 - use more data (large datasets require the use of expressive models, if the task is hard)

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

Overfitting the data, a different one

- The objective of supervised learning is to find a model which performs well on *unseen* data (generalization)
- If you *train* a model on a dataset, what can you say about its generalization capabilities?
- Training ≈ fitting
 - What if your dataset is not representative of the true distribution?
 - What if your model becomes overconfident on the dataset?
 - Overfitting! → decrease in performances on held-out test set

Split 1 - Train Test

Fit your model on the training set and test it on the test set

- If performance on test set << performance on training set... Overfitting!
- The performance of your model must be estimated on a separate test set.
- You cannot access, see, smell, hear, touch or even think about test set until
 you selected your final model. Otherwise your final evaluation will not be
 reliable.

Choose the best

- Select the best model for the current task
- Say, you create 10 different models by training them on the training set
- Which one should you use in your application?
- Test the performances of each of them on the test set and select the best → NEVER DO THAT
- You are overfitting on the test set!
- We need another split.

Split 2 - Train Validation Test

TRAINING SET VALIDATION SET TEST SET

- Train N different models on the training set
- Choose the best based on the performance on the validation set
- Evaluate the best model on the test set to get generalization estimate

Model selection vs model assessment

- Model selection: among N models, choose the best one
- Model assessment: given one model, estimate its performance on unseen data
 - The final model can be retrained on training + validation set
- Pseudocode
 - For each model:
 - Use TRAINSET to train separately N models
 - Measure performance on VALSET
 - Select best model according to performance on VALSET
 - Optional: Retrain best model on TRAINSET + VALSET
 - Test generalization performance of best model on TESTSET

Bonus track: K-fold Cross validation

- Used for model selection → get the test set and throw it far, far away
- Split the dataset into K equally-sized parts (folds)
- Use K-1 folds for training and 1 for validation → repeat K times by changing validation fold
- Compute avg and std performance on the K runs and select the best model, then test it on the held-out test set
- Used for model assessment → use K-1 folds for training, 1 for test
 - Obtain avg and std performance for generalization

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

Linear regression for supervised learning

- A useful form: $\hat{y} = wx + b$
- One-shot solution with pseudoinverse (still, supervised)

$$w = (X^T X)^{-1} X^T y = X^{\dagger} y$$

- or... gradient descent: $w = \operatorname{argmin}_w \mathbb{E}[(wx + b y)^2] = \operatorname{argmin}_w \mathbb{E}[\mathcal{L}(\hat{y}, y)]$
 - Initialize w randomly
 - Compute $\nabla_w \mathcal{L}(\hat{y}, y)$
 - Update $w = w \eta \nabla_w \mathcal{L}(\hat{y}, y)$
 - ... until convergence

From linear regression to Perceptron

- A stepping stone towards modern neural networks
- Classify a set of points in N-dimensional space (N features)
- Binary classification (-1, 1)
- Classify linearly separable points

Perceptron in equations

- Perceptron = Linear Threshold Unit (LTU): $\hat{y} = wx + b$
- Initialize randomly w, b (bias here has nothing to do with inductive bias or bias-variance)
- For each input pattern x_p (epoch):
 - Compute sign(wx_p+b)
 - Update $w_i = w_i + \eta (y_p \hat{y}_p) x_{p,i} \quad orall i \in [1,N]$
- If average error over epoch < threshold → stop
- Convergence is guaranteed if patterns are linearly separable!
- Update rule:
 - If target > output → move towards +
 - If target < output → move towards -

Perceptron as a single neuron (unit)

Bonus track: K Nearest Neighbours (K-NN)

- A very simple form of supervised learning
- No training phase → just collect data
- Predict a novel input
 - look at the closest K points
 - Voting: take the class of the majority (or the average value for regression)
- Distance-based method $d(x_1, x_2) = \sqrt{\sum_{i=1}^{N} (x_{1,i} x_{2,i})^2} = \|x_1 x_2\|$

Voronoi diagram: any point in A is closer to p1 than to any other point outside A

MultiLayer Perceptron (MLP) or feedforward network

• Yes, a neural network, at last!

It is a densely connected network of perceptron-like units, stacked in

layers

MLP components

$$h^{1} = f(W^{1}x + b^{1})$$
$$h^{2} = f(W^{2}h^{1} + b^{2})$$

$$\hat{y} = g(W^3h^2 + b^3)$$

- it is non linear
- MLP separates also points which are not linearly separable
- multiple linear layers = single linear layer → need f nonlinear
- W is a matrix, b is a vector
 - W_{ii} is the weight from unit *i* (layer 0) to unit *j* (layer 1)
 - W_{ii}^2 is the weight from unit *i* (layer 1) to unit *j* (layer 2)
 - 3rd row of W¹ is the vector of weights from unit 3 (layer 0) to all units of layer 1

MLP is a function approximator

- One hidden layer is sufficient to approximate any continuous function
 - However, the number of units grows exponentially → stack more layers!
- What function does MLP approximate? Well...

$$\hat{y} = g(W^3 f(W^2 f(W^1 x + b^1) + b^2) + b^3)$$

 (W, b) are the adaptive parameters (weights) that needs to be tuned on the dataset

Activation functions

• Rectified Linear Unit (ReLU): max(0, x)

• Hyperbolic tangent (tanh):
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• Sigmoid (logistic):
$$\frac{1}{1 + e^{-x}}$$

• Softmax:
$$\frac{e^{x_i}}{\sum_k e^{x_k}} \quad \forall i$$

Loss functions

• Mean Squared Error (regression): $\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$

• Cross Entropy (classification): $-\frac{1}{N}\sum_{i=1}^{N}y_{i}\log\hat{y}_{i}$

Bonus: L2 regularization

- MLP are very prone to overfitting, since they can approximate any continuous function
- If you don't have enough data you will overfit
- L2 regularization prevents weights from taking large values
- Modified loss function
 - $w = \operatorname{argmin}_{w} \mathcal{L}(\hat{y}, y) + \lambda ||w||^{2}$
 - Cfr. Tykhonov regularization, ridge regression
- If weights explode, total loss goes up.

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

Training a neural network: SGD

- Similar to what happens for linear regression
- Compute gradients of the loss with respect to all parameters
- Update each parameter in the direction of negative gradient (component-wise)
 - More complicated optimization techniques exist (and work better).
- Problem: how to compute gradient?

Solution: backpropagation

- A strict derivation allows to compute the gradient for each parameter in a MLP.
- We will see how this is done automatically with ML frameworks in Python
- Idea
 - Start from last (output) layer
 - Compute the derivative there (it's easy!)
 - Use the derivative computed at the output layer to get the derivative at the lower layer
 - Use that derivative to compute the derivative at the lower layer
 - And so on down to the first layer. Propagate information backwards!

Lecture outline

- Machine Learning in a nutshell
- Supervised learning framework
- Bias Variance tradeoff
- Model selection vs. model assessment
- Supervised models
 - Linear regression (heating up)
 - Perceptron
 - Multi-Layer Perceptron
- How to train neural networks
- How to monitor performances

How to monitor overfitting?

• Plot performance on training and validation set

https://mc.ai/training-on-detectron 2-with-a-validation-set-and-plot-loss-on-it-to-avoid-over fitting/set-and-plot-loss-on-it-to-avoid-over fitting-set-and-plot-loss-on-it-to-avoid-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over fitting-set-and-plot-loss-over

Accuracy

• When to monitor: usually, at the end of each epoch compute average on train and on validation set

- Accuracy (for classification): percentage of correctly classified patterns
- There is no equivalent for regression, the MSE is usually a good measure

Confusion matrix

- True Positive → # correctly classified as 1
- True Negative → # correctly classified as 0
- False Positive → # misclassified as 1 (it was 0)
- False Negative → # misclassified as 0 (it was 1)

True target → Predicted ↓	1	0
1	5 (TP)	2 (FP)
0	3 (FN)	3 (TN)

Accuracy in terms of TP, TN, FP, FN?

F1 score (a single number!)

• Precision
$$\frac{TP}{TP+FP}$$
 % detected positives among all detected positives

$$\begin{array}{ccc} \bullet & {\rm Recall} & & TP \\ {\rm Sensitivity} & & TP + FN \end{array} \qquad {\rm \% \ detected \ positive \ among \ all \ real \ positives}$$

• F1 Score: harmonic mean of P and R =
$$2\frac{PR}{P+R}$$
 = $\frac{TP}{TP+0.5(FP+FN)}$

• Specificity
$$\frac{TN}{TN+FP}$$
 % detected negatives among all real negatives

Precision Recall curve

- What is P and R if I vary the threshold which tells apart 0s from 1s?
 - Standard threshold: 0.5
- Area Under the Curve (AUC)
 - the larger, the better
 - equals accuracy
- Random = horizontal line at % positive labels
- Used for class-imbalanced problems
 - e.g. Information retrieval, credit-card fraud
 - Focus on positive class (look at numerator of P and R)

ROC Curve

- AUC → same meaning as in P-R curve
- TPR = Recall / Sensitivity

$$TPR = \frac{TP}{TP + FN}$$
$$FPR = \frac{FP}{FP + TN}$$

- Not useful when dataset has many more negative samples (use P-R)
- Use ROC when dataset is balanced

Hidden bonus: Support Vector Machine

- Classifier (SVR for regression)
- Often a strong baseline against which compare performances
- Requires less data than neural networks
- It is a linear classifier in the vanilla version
 - Can be made non linear with kernels (functions projecting data into a higher dimensional feature space)
- Matematically involved to describe
- Uses only a limited number of support vectors (i.e. data points)
 which lie near the decision boundary to discriminate new patterns
- Effective also when #dimensions > #patterns (due to the support vectors)