Example

n premier $Z/nZ^*, X$

1

 $2 \equiv 2^1$

 $4 \equiv 2^2$

 $8 \equiv 2^3$

 $5 \equiv 2^4$

 $10 \equiv 2^5$

 $9 \equiv 2^6$

 $7 \equiv 2^7$

 $3\equiv 2^8$

 $6 \equiv 2^9$

 $1\equiv 2^{10}$

Groupe cyclique, 10 elements, φ (10) generateurs

$$\forall \mathsf{a} \in \mathbb{Z}/n\mathbb{Z}^*a^{10} \equiv \mathsf{1} \ (\mathsf{mod}\ \mathsf{11})$$

Groupe $\mathbb{Z}/p\mathbb{Z}^*$ quand p est premier

si g est un generateur

$$Z/pZ^* = \{1, g, g^2, g^3, ..., g^{p-2}\}$$

On admet sans demonstration

 $(Z/pZ^*, X)$ est un groupe cyclique

Il a p-1 elements.

Il a φ (p-1) generateurs.

Exemple

$$p = 101$$

 $Z/101Z^*$ a 100 elements

 $\varphi(100) = 40$ generateurs

$$\varphi(100) = \varphi(2^25^2) = \varphi(2^2)\varphi(5^2) = 2*4*5^1 = 40$$

$$\forall a \in \mathbb{Z}/n\mathbb{Z}^*$$
 $a^{p-1} \equiv 1 \pmod{p}$

Zhu Laurent 1

Petit theoreme de Fermat

Pout tout $a \in Z$, p premier,

$$\operatorname{si}\left(a,p\right)=1 \qquad \quad a^{p-1}\equiv 1 (mod p)$$

Soit e premier avec (p-1)

$$\mathsf{a} \in Z/pZ^* \longrightarrow a^e$$

Cette application est inversible

Bezout: \$ d et v tq: de + v(p - 1) = 1

d: image de e modulo (p-1)

$$a^{ed} \equiv a^{ed+v(p-1)}$$

 $\equiv a \pmod{\mathsf{p}}$

Exemple

$$p = 11$$

$$g=2$$

$$p - 1 = 10$$

e premier avec 10

$$e = 3$$

$$d = 7 (3 * 7 = 21)$$

Si m
$$\in \mathbb{Z}/11\mathbb{Z} *$$

$$m \longrightarrow e = m^e = m^3$$

$$e \longrightarrow e^d = m = e^7$$

Exemple

$$m = 5$$

$$e=5^3\equiv 25*5\equiv 3*5\equiv 15\equiv 4$$

$$e \equiv 4$$

$$4^7 \equiv 4 * (4^2)^3 \equiv 4 * 5^3 \equiv 4 * 4 \equiv 16 \equiv 5$$

$$m'=2^u$$

$$c^1 = 2^{3u}$$

$$c^7 = 2^{21u} = 2^u = m'$$

Zhu Laurent 2

Remarque 1

```
p premier
```

 Z/pZ^* a φ (p-1) generateurs

- → "facile a trouver" si je peux factoriser p-1
- \longrightarrow si on connait g
- \longrightarrow etant donne a\$\ trouver n tq $a \equiv g^n$ est difficile

Remarque 2

```
p: premier
```

e: premier avec p-1

d: $ed \equiv 1 \pmod{p-1}$

$$\forall a \in Z/pZ \qquad \quad a^{ed} \equiv a \text{ (mod p)}$$

Remarque 3

 ${\sf Premier}\, toy-algo$

p: premier

e: premier avec p-1

 \hookrightarrow cle de l'algo

 $m \longrightarrow c = m^e$

Remarque 4

Petit theoreme de Fermat

 \longrightarrow test de primalite

Propriete analogue avec n=pq, p et q: premiers

- n = pq
- e est premier avec $\varphi(n) = (p-1)(q-1)$
- d: $ed \equiv 1 \mod \varphi(n)$
- Si $m \in \mathbb{Z}/n\mathbb{Z}$ quelconque

 $\operatorname{si} c \equiv m^e \pmod{\mathfrak{n}}$ alors $c^d \equiv m \pmod{\mathfrak{n}}$

Zhu Laurent 3

RSA (Rivest - Shamir - Adleman)

- On part de:
 - n=pq, p et q premiers
 - e: permier avec $\varphi(n)=(p-1(q-1)$
 - d: inverse de e modulo $\varphi(n)$
- Cle publique: n, e
- Cle privee: d
- m: message a chiffrer

Chiffrement(public) $m \longrightarrow c = m^e$

Dechiffrement(secret) $c \longrightarrow e^d = m$

Signature d'un message M

Fonction de Hashage H -connue-testee- tenir sur $\{0, ..., n-1\}$

 $\mathsf{Alice} \longrightarrow \mathsf{Bob}$

Alice:

- cle publique: n, e
- secrete: d

Alice calcule:

$$m = H(M)$$

 $c \equiv m^d \pmod{\mathsf{n}}$

Alice envoie a Bob: M, e

c est la signature de M

Bob:

- 1) m = H(M)
- 2) c =? m