



## **Association Rule Mining**

Programming for Data Science

#### Motivation

# Dresden Database Systems Group

#### Scenario

- In a shop, items are bought together and form a shopping cart (transaction)
- A set of transactions forms a dataset

#### Goal

- Analysis of items that are frequently bought together
- Establish association rules that represent these strong relationships
- E. g., if a customer buys flour and eggs, he/she is likely to buy butter, too
- Associations rules are characterized with different measures

#### **Applications**

- Cross Marketing
- Attached Mailing/Add-on Sales
- Design of catalogues and shop layouts
- Customer segmentation







## Terminology



#### Items I

- $I = \{i_1, ..., i_m\}$  is a set of literals
- Each item is uniquely identified by i

#### Transaction T

•  $T = \{i_1, ..., i_k\}$  is a set of items (itemset) that a bought together

#### Dataset D

- $D = \{T_1, ..., T_n\}$  is a set of transactions
- A dataset D stores the transactions of a shop for a certain period of time

#### Association rule

- Association rules are rules that imply a relation between itemsets
- Formally:  $X \to Y$ , where  $X \subseteq I$ ,  $Y \subseteq I$  and  $X \cap Y = \emptyset$

#### Minimal support

Percentage of transactions containing itemset i

#### Classification





- [1] Agrawal, Srikant: Fast algorithms for mining association rules in large databases. VLDB '94.
- [2] Zaki et al.: New Algorithms for Fast Discovery of Association Rules. KDD '97.
- [3] Han: Mining Frequent Patterns Without Candidate Generation. SIGMOD '00.



## Apriori Algorithm



#### Basic idea: Multiple passes over the data

- First pass: Count support of individual items (1-itemset) and determine if they are frequent
- Subsequent passes: e.g. pass k (itemsets with k elements):
  - Frequent itemset of pass (k-1) generates candidate itemsets for pass k
- The support for candidate itemsets is calculated by scanning the database

#### Remarks

- The candidate itemset is a superset of the set of frequent itemsets
- The set of candidate itemsets is smaller than the set of k-element subsets of I
- Correctness of algorithm can be proved

#### Anti-Monotonicity

- If (k-1)-itemset is frequent k-itemset may be also frequent
- If (k-1)—itemset is not frequent k-itemset can never be frequent



## Apriori Algorithm (2)



#### **Notation**

- A candidate k –itemset  $c = (c_1, c_2, ..., c_k)$ 
  - Items are kept in lexicographic order
  - *c.count* is the support of *c*
- $L_k$ : Set of frequent k-itemset
  - Have minimum support
  - Each member consists of two fields: the itemset and the support count *c. count*
- $C_k$ : Set of candidate k itemsets (potentially frequent itemsets)
  - Each member consists of two fields: the itemset and the support count *c.count*



## Apriori Algorithm (3)



```
Apriori (I, D, minsupp)
         L_1 := \{ frequent 1 - itemsets of I \};
         k := 2;
         while L_{k-1} \neq \emptyset do
                   C_k := AprioriGen(L_{k-1});
                   forall transaction T E D do
                            CT := subset (C_k, T) // All candidates of C_k that are in T
                            forall candidate c E CT do c.count++;
                   L_{\nu} := \{c \in C_{\nu} \mid (c.count / |D|) \ge minsup\}; // Prune step
                   k++;
         return \bigcup_{\nu} L_k;
AprioriGen (L_{k-1})
         insert into C<sub>v</sub> // Join step
          select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub>
         from L_{k-1} p, L_{k-1} q
         where (p.item<sub>1</sub> = q.item<sub>1</sub>), ..., (p.item<sub>k-2</sub> = q.item<sub>k-2</sub>), (p.item<sub>k-1</sub> < q.item<sub>k-1</sub>);
         forall itemset c E Ck do
                   forall (k-1)-itemset s of c do
                   if s \notin L_{k-1} then
                            delete c from C,; // Prune step
```

## Apriori Algorithm (4)



#### Example AprioriGen

$$L_3 = \{(1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (1\ 3\ 5), (2\ 3\ 4)\}$$

Join step

$$p \in L_3 = (1 \ 2 \ 3)$$
  
 $q \in L_3 = (1 \ 2 \ 4)$   
 $c \in C_4 = (1 \ 2 \ 3 \ 4)$ 

After Join

$$C_4 = \{(1\ 2\ 3\ 4), (1\ 3\ 4\ 5)\}$$

- Pruning checks if all k-1 subsets of a candidate are in L<sub>k-1</sub>
  - $(1234) \rightarrow (123), (124), (134), (234) \rightarrow ok!$
  - $(1345) \rightarrow (134), (135), (145), (345) \rightarrow \text{prune!}$

$$C_4 = \{(1\ 2\ 3\ 4)\}$$

## Example Apriori Algorithm



| TID | ltems      |
|-----|------------|
| 1   | A, C, D, E |
| 2   | C, D, E    |
| 3   | A, B, C, E |
| 4   | D, E       |
| 5   | A, D       |
| 6   | А          |

Delete {B} because  $\sigma({B}) < minsupp$ 

minsupp  $\sigma$ = 2 (2/6)

 $L_k$ : Set of frequent k- itemset  $C_k$ : Set of candidate k - itemsets

 $C_1$ 

| 1-Itemset | σ |
|-----------|---|
| А         | 4 |
| В         | 1 |
| С         | 3 |
| D         | 4 |
| Е         | 4 |

 $L_1$ 

| 1-Itemset | σ |
|-----------|---|
| А         | 4 |
| С         | 3 |
| D         | 4 |
| Е         | 4 |
|           |   |



## Example Apriori Algorithm (2)

| TID | Items      |
|-----|------------|
| 1   | A, C, D, E |
| 2   | C, D, E    |
| 3   | A, B, C, E |
| 4   | D, E       |
| 5   | A, D       |
| 6   | А          |



| 1-ltemset | σ |
|-----------|---|
| А         | 4 |
| С         | 3 |
| D         | 4 |
| Е         | 4 |



 $C_2$ 

minsupp  $\sigma$ = 2 (2/6)

| 2-Itemset | σ |
|-----------|---|
| {A, C}    | 2 |
| {A, D}    | 2 |
| {A, E}    | 2 |
| {C, D}    | 2 |
| {C, E}    | 3 |
| {D, E}    | 3 |

 $L_2$ 

| 2-Itemset | σ |
|-----------|---|
| {A, C}    | 2 |
| {A, D}    | 2 |
| {A, E}    | 2 |
| {C, D}    | 2 |
| {C, E}    | 3 |
| {D, E}    | 3 |

## Example Apriori Algorithm (3)

| TID | Items      |
|-----|------------|
| 1   | A, C, D, E |
| 2   | C, D, E    |
| 3   | A, B, C, E |
| 4   | D, E       |
| 5   | A, D       |
| 6   | А          |

Delete {A, C, D} because σ({A, C, D}) < minsupp</li>
 Delete {A,D,E} because σ({A, D, E}) < minsupp</li>

### $L_2$

| 2-Itemset | σ |
|-----------|---|
| {A, C}    | 2 |
| {A, D}    | 2 |
| {A, E}    | 2 |
| {C, D}    | 2 |
| {C, E}    | 3 |
| {D, E}    | 3 |

|   | 1 |
|---|---|
| C | 3 |

minsupp  $\sigma$ = 2 (2/6)

| 3-Itemset | σ |
|-----------|---|
| {A, C, D} | 1 |
| {A, C, E} | 2 |
| {A, D, E} | 1 |
| {C, D, E} | 2 |





| σ | 3-Itemset |
|---|-----------|
| 2 | {A, C, E} |
| 2 | {C, D, E} |
| 2 | ,         |

Dresden Database



## Example Apriori Algorithm (4)

| TID | Items      |
|-----|------------|
| 1   | A, C, D, E |
| 2   | C, D, E    |
| 3   | A, B, C, E |
| 4   | D, E       |
| 5   | A, D       |
| 6   | Α          |

| minsupp $\sigma$ = 2 | (2/6) |
|----------------------|-------|
| minconf $c = 4$ (    | 4/6)  |

| 3-Itemset | σ |
|-----------|---|
| {A, C, E} | 2 |
| {C, D, E} | 2 |

 $L_3$ 



4

4-Itemset

σ

 $L_4$ 

4-Itemset

σ

| • | Join | cannot | generate | candidates |
|---|------|--------|----------|------------|
|---|------|--------|----------|------------|

- (A, C, D, E) would be deleted since, e.g., (A, C, D) is not frequent
- No further generation because  $L_4 = C_4 = \emptyset$
- Result:  $L_1 \cup L_2 \cup L_3$



#### Classification





- [1] Agrawal, Srikant: Fast algorithms for mining association rules in large databases. VLDB '94.
- [2] Zaki et al.: New Algorithms for Fast Discovery of Association Rules. KDD '97.
- [3] Han: Mining Frequent Patterns Without Candidate Generation. SIGMOD '00.



## **Eclat Algorithm**



#### **Eclat Algorithm**

- Equivalence CLAss Transformation (ECLAT)
- Vertical data layout

#### **Vertical Layout**

- Each item has a list with transactions (TID list)
- Intersection of TID lists leads to frequent itemsets
- Advantage: Frequency of item can be retrieved from list cardinality
- Disadvantage: TID list may be too large for main memory

#### Equivalence classes

- An equivalence class contains all k-itemsets with the same prefix (lexicographic sorted items)
- Frequent combinations are only possible in equivalence classes
- Advantages: Pruning and Parallelization



## Eclat Algorithm (2)



#### Horizontal layout

| TID | ltems      |
|-----|------------|
| 1   | A, C, D, E |
| 2   | C, D, E    |
| 3   | A, B, C, E |
| 4   | D, E       |
| 5   | A, D       |
| 6   | А          |

#### Vertical layout





## Eclat Algorithm (3)





## **Association Rule Mining**



#### (2) Frequent Itemsets

# Combinations A (7) A ∧ B (3) A ∧ B ∧ C (1) B (5) A ∧ C (3) C (3) B ∧ C (2)

#### (3) Association rules

Rule A 
$$\wedge$$
 B  $\rightarrow$  C

#### Problem

• Find association rules with minimum confidence among frequent itemsets

#### Procedure

• Given itemsets X, Y with  $X \subset Y$ , then

$$c\big((X\backslash Y)\to Y\big)>minconf\Rightarrow c\big((X\backslash Y')\to Y'\big)>minconf\ \forall (Y'\subseteq Y)$$

- No further database scans needed
- For association rules one should start with a small Y' and exclude Y with  $Y' \subset Y$  if the following holds

$$c((X\backslash Y') \to Y') < minconf$$

Reason: Support of subset of Y' cannot be smaller than support of Y'



#### Task



#### Step 0

- You will get two tsv files from us. Rows are transactions with purchased items. Load it in your language/environment.
- Use the smaller file (items.tsv, minsupp of 70%) for development and the larger file (retail.tsv, minsupp of 10%) for evaluation.

#### Step 1

- Implement the Apriori algorithm\*.
- Using your implementation, extract frequent item sets from the given datasets.

#### Step 2

- Implement the ECLAT algorithm\*.
- Using your implementation, extract frequent item sets from the given datasets.

#### Step 3

Compare the run times of both algorithms on both files.



## Package suggestions



#### R

- (data.table)
- microbenchmark

#### python3

- numpy
- pandas
- Itertools
- timeit
- (os)



## Items

| 1  | 5-Minute-Noodles   |
|----|--------------------|
| 2  | Pineapple          |
| 3  | Applesauce         |
| 4  | Asia-Snack         |
| 5  | Cup                |
| 6  | Beer               |
| 7  | College pad        |
| 8  | Canned tomatoes    |
| 9  | Peas               |
| 10 | Peas & Carrots     |
|    | Lint roller        |
| 12 | Putty              |
| 13 | Mushroom-Spaghetti |
| 14 | Salt sticks        |
| 15 | Mustard            |
| 16 | Spaghetti          |
| 17 | Cream              |
| 18 | Deodorant          |
| 19 | Disinfection       |
| 20 | Showergel          |
| 21 | Shot               |
| 22 | Gummi bears        |
| 23 | Hair tie           |
|    | Hazelnut waffle    |
| 25 | Glue stick         |
| 26 | Cap bomb           |
| 27 | Air nozzle         |
|    |                    |

| 28 | Sticky note     |
|----|-----------------|
| 29 | Maoam           |
| 30 | Milk bar        |
| 31 | Mouth wash      |
| 32 | Shaver          |
| 33 | Small bowl      |
| 34 | Chocolate bar   |
| 35 | Pen             |
| 36 | Tomato paste    |
| 37 | Coaster         |
| 38 | Toothpaste      |
| 39 | Envelopes       |
| 40 | Deco balls      |
| 41 | Scented candles |
| 42 | Napkins         |
| 43 | Cereal          |
| 44 | Cactus          |
| 45 | Bend lights     |
| 46 | Booklet         |
| 47 | OREO cookies    |
| 48 | Light bag       |
| 49 | Puzzle          |
| 50 | Novels          |
| 51 | Cards           |
| 52 | Detergent       |
| 53 | Tissues         |





## Solution items.tsv (70%)



# Frequent Item sets length 1

- Beer (6)
- Shot (21)
- Gummi bears (22)
- Hazelnut waffle (24)
- Milk bar (30)
- Chocolate bar (34)
- Coaster (37)
- Scented candles (41)

#### Frequent Item sets of length 2

- Shot, Beer (21,6)
- Gummi bears, Beer (22,6)
- Hazelnut waffle, Beer (24,6)
- Milk bar, Beer (30,6)
- Chocolate bar, Beer (34,6)
- Coaster, Beer (37,6)
- Scented candles, Beer (41,6)
- Shot, Chocolate bar (21,34)
- Gummi bears, Chocolate bar (22,34)
- Milk bar, Chocolate bar (30,34)
- Gummi bears, Milk bar (22,30)
- Gummi bears, Hazelnut waffle (22,24)

#### Frequent Item sets of length 3

- Shot, Chocolate bar, Beer (21,34,6)
- Gummi bears, Chocolate bar, Beer (22,34,6)
- Gummi bears, Milk bar, Beer (22,30,6)
- Gummi bears, Hazelnut waffle, Beer (22,24,6)
- Gummi bears, Chocolate bar, Beer (30,34,6)



## **Exercise Appointment**



#### We compare and discuss the results

- Tuesday, 10.12.2019,
- Consultation: 05.12.2019,
- Please prepare your solutions! Send us your code!

#### If you have questions, please mail us:

<u>claudio.hartmann@tu-dresden.de</u> Orga + Code <u>lucas.woltmann@tu-dresden.de</u> Tasks + Python lars.kegel@tu-dresden.de Tasks + R



