1.

CP8.1 Consider the closed-loop transfer function

$$T(s) = \frac{25}{s^2 + s + 25}.$$

Develop an m-file to, obtain the Bode plot and verify that the resonant frequency is 5 rad/s and that the peak magnitude $M_{p\omega}$ is 14 dB.

2.

CP8.4 A unity negative feedback system has the loop transfer function

$$L(s) = G_c(s)G(s) = \frac{150}{s(s+10)}.$$

Determine the closed-loop system bandwidth. Using the bode function obtain the Bode plot and label the plot with the bandwidth.

3.

CP8.9 Design a filter, G(s), with the following frequency response:

- **1.** For $\omega < 1 \text{ rad/s}$, the magnitude $20 \log_{10} |G(j\omega)| < 0 \text{ dB}$
- **2.** For $1 < \omega < 1000 \text{ rad/s}$, the magnitude $20 \log_{10} |G(j\omega)| \ge 0 \text{ dB}$
- **3.** For $\omega > 1000 \, \mathrm{rad/s}$, the magnitude $20 \, \mathrm{log_{10}}$ $|\,G(j\omega)\,| < 0 \, \mathrm{dB}$

Try to maximize the peak magnitude as close to $\omega = 40 \text{ rad/s}$ as possible.