Rješenje zadatka 3.1 predmeta Strojno učenje

Siniša Biđin

5. siječnja 2013.

(a)

$$h_1(x_1, x_2) = -0.330 - 0.435x_1 - 0.010x_2$$

$$h_2(x_1, x_2) = -0.482 + 0.469x_1 + 0.445x_2$$

$$h_3(x_1, x_2) = -0.188 - 0.034x_1 - 0.435x_2$$

$$h_{12}(x_1, x_2) = -0.192 - 0.444x_1 - 0.081x_2$$

$$h_{23}(x_1, x_2) = -0.500 + 0.500x_1 + 0.500x_2$$

$$h_{13}(x_1, x_2) = -0.325 - 0.434x_1 + 0.389 \cdot 10^{-16}x_2$$

(b) Koristimo K=3 binarnih klasifikatora jedan-naspram-ostali, te zatim klasificiramo primjer ${\bf x}$ u klasu čija je pouzdanost najveća.

$$h(\mathbf{x}) = \underset{C_j}{\operatorname{argmax}} h_j(\mathbf{x})$$

 $h_1(\mathbf{x}) = 0.537; h_2(\mathbf{x}) = 0.692; h_3(\mathbf{x}) = -0.229$

Primjer \mathbf{x} bi stoga bio klasificiran u klasu C_2 , odnosno $h(\mathbf{x})=1$. Ne možemo reći koja je vjerojatnost da primjer pripada toj klasi jer diskriminativni modeli poput linearne regresije granicu među klasama modeliraju izravno, a ne preko zajedničke gustoće vjerojatnosti.

(c) (i) Računamo granicu $h_{12}(\mathbf{x})$ dobivenu linearnom regresijom bez preslikavanja u m-dimenzijski prostor:

(ii) Preslikavamo primjere u prostor značajki Gaussovim baznim funkcijama, gdje vrijedi $\mu=[0\ 0]$ i $\sigma=[2\ 2]$, te računamo granicu između klasa:

(iii) Granica iz (ii) u ulaznom prostoru je kružnica oko ishodišta, takvog polumjera da obuhvaća samo dva primjera klase C_1 i nijedan primjer klase C_2 .