Cours MCFSI

. . .

Modélisation, v'erification et validation de modèles Dominique Méry 2 octobre 2024

Exercice 1 (alg-maxtwonumbers)

Soit le contrat suivant annoté qui calcule le maximum de deux entiers naturels x_0 et y_0

```
 \begin{array}{l} \textbf{Variables} : \textbf{X}, \textbf{Y}, \textbf{Z} \\ \textbf{Requires} : x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \\ \textbf{Ensures} : z_f = max(x_0, y_0) \\ \ell_0 : \{x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ \textbf{if } X < Y \ \textbf{then} \\ & \quad \ell_1 : \{x < y \land x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ & \quad Z := Y; \\ & \quad \ell_2 : \{x < y \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \land z = y_0 \} \\ \textbf{else} \\ & \quad \ell_3 : \{x \geq y \land x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ & \quad Z := X; \\ & \quad \ell_4 : \{x \geq y \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \land z = x_0 \} \\ \vdots \\ & \quad \ell_5 : \{z = max(x_0, y_0) \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \end{array}
```

Algorithme 1: maximum de deux nombres non annotée

Question 1.1 Traduire l'automate de cet algorithme sous la forme d'une machine modifiant les variables x, y, z, pc.

Question 1.2 Valider la traduction en simulant quelques

Question 1.3 Ajouter les annotations et les pré et post conditions.

Question 1.4 Vérifier la correction partielle et l'absence d'erreurs à l'exécution.

Exercice 2 Show that each annotation is sound or unsound with respect to the proof obligations:

 $\forall x, y, x', y'. P_{\ell}(x, y) \land cond_{\ell, \ell'}(x, y) \land (x', y') = f_{\ell, \ell'}(x, y) \Rightarrow P_{\ell'}(x', y')$ You will use a context and a machine for expressing these conditions.

$$\begin{array}{l} - \left[\begin{array}{l} \ell_1 : x = 10 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 10 \ \land \ y = x + 2 \cdot 10 \end{array} \right] \\ - \left[\begin{array}{l} \ell_1 : x = 10 \ \land \ y = x + 2 \cdot 10 \\ \end{array} \right] \\ - \left[\begin{array}{l} \ell_1 : x = 1 \ \land \ y = 12 \\ x := 2 \cdot y \\ \ell_2 : x = 1 \ \land \ y = 24 \end{array} \right] \\ - \left[\begin{array}{l} \ell_1 : x = 1 \ \land \ y = 12 \\ x := 2 \cdot y \\ \ell_2 : x = 1 \ \land \ y = 24 \end{array} \right] \\ - \left[\begin{array}{l} \ell_1 : x = 1 \ \land \ y = 13 \\ z := x : x : = y : y : = z : \\ \ell_2 : x = 26 / 2 \ \land \ y = 33 / 3 \end{array} \right] \\ - \left[\begin{array}{l} \ell_1 : x = 1 \ \land \ y = 13 \\ z := x : x : = y : y : = z : \\ \ell_2 : x = 26 / 2 \ \land \ y = 33 / 3 \end{array} \right]$$

```
\begin{array}{l} \textbf{precondition} & : x = x_0 \land x_0 \in \mathbb{N} \\ \textbf{postcondition} & : x = 0 \\ \ell_0 : \{ \ x = x_0 \land x_0 \in \mathbb{N} \} \\ \textbf{while} \ 0 < x \ \textbf{do} \\ & \ell_1 : \{ O < x \le x_0 \land x_0 \in \mathbb{N} \} \\ & x := x - 1; \\ & \ell_2 : \{ 0 \le x \le x_0 \land x_0 \in \mathbb{N} \} \\ & \vdots \\ & \ell_3 : \{ x = 0 \} \end{array}
```

Algorithme 2: Exercice 3

Exercice 3 (alg-simple)

Let the following partially annotated algorithm:

Question 3.1 Translate each transition ℓ, ℓ' into an event modifying the variables according to the statements.

Question 3.2 Define an invariant attaching to each label an assertion satisfied at the control point.

Question 3.3 Verify proof obligations and deduce that the algorithm is partially correct.

Question 3.4 *Prove that the algorithm has no runtime error.*

Exercice 4 (alg-squareroot)

Let the following annotated invariant.

```
\begin{array}{ll} \textbf{precondition} & : x \in \mathbb{N} \\ \textbf{postcondition} & : z^2 \leq x \land x < (z+1)^2 \\ \textbf{local variables} & : y_1, y_2, y_3 \in \mathbb{N} \\ \\ pre & : \{x \in \mathbb{N}\} \\ post & : \{z : z \leq x \land x < (z+1) \cdot (z+1)\} \\ \ell_0 & : \{x \in \mathbb{N} \land z \in \mathbb{Z} \land y1 \in \mathbb{Z} \land y2 \in \mathbb{Z} \land y3 \in \mathbb{Z}\} \\ (y_1, y_2, y_3) & := (0, 1, 1); \\ \ell_1 & : \{y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y1 \cdot y1 \leq x\} \\ \textbf{while} & y_2 \leq x \textbf{ do} \\ & \ell_2 & : \{y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y2 \leq x\} \\ (y_1, y_2, y_3) & := (y_1 + 1, y_2 + y_3 + 2, y_3 + 2); \\ \ell_3 & : \{y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y1 \cdot y1 \leq x\} \\ \vdots \\ \ell_4 & : \{y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y1 \cdot y1 \leq x \land x < y2\} \\ z & := y_1; \\ \ell_5 & : \{y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y1 \cdot y1 \leq x \land x < y2 \land z = y1 \land z \cdot z \leq x \land x < (z+1) \cdot (z+1)\} \end{array}
```

Algorithme 3: squareroot annotée Exercice 4

Question 4.1 Translate each transition ℓ, ℓ' into an event modifying the variables according to the statements.

Question 4.2 Define an invariant attaching to each label an assertion satisfied at the control point.

Question 4.3 Verify proof obligations and deduce that the algorithm is partially correct.

Question 4.4 Prove that the algorithm has no runtime error.

Exercice 5 (alg-maximum)

Soit l'algorithme suivant annoté partiellement :

Question 5.1 Translate each transition ℓ, ℓ' into an event modifying the variables according to the statements.

Question 5.2 Define an invariant attaching to each label an assertion satisfied at the control point.

Question 5.3 *Verify proof obligations and deduce that the algorithm is partially correct.*

Question 5.4 *Prove that the algorithm has no runtime error.*

Exercice 6 ()

Cet exercice comprend plusieurs questions indépendantes. Il s'agit d'écrire un événement Event-B qui modélise une transformation décrite en langue naturelle.

Question 6.1 On suppose que les variables sont x, y, z et que $x, y, z \in \mathbb{Z}$. Ecrire un événement E1 qui modélise la transformation décrite comme suit :

```
/* algorithme de calcul du maximum avec une boucle while de l'exercice ?? */
             \begin{array}{ll} \textbf{precondition} & : \left( \begin{array}{c} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \dots n-1 \to \mathbb{N} \end{array} \right) \\ \end{array} 
             \textbf{postcondition} \ : \left( \begin{array}{l} m \in \mathbb{N} \land \\ m \in ran(f) \land \\ (\forall j \cdot j \in 0 \dots n-1 \Rightarrow f(j) \leq m) \end{array} \right) 
             local variables : i \in \mathbb{Z}
 local variables : i \in \mathbb{Z}
\ell_0 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \dots n-1 \to \mathbb{N} \end{pmatrix} \land i \in \mathbb{Z} \land m \in \mathbb{Z} \right\}
m := f(0);
\ell_1 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \dots n-1 \to \mathbb{N} \end{pmatrix} \land i \in \mathbb{Z} \land m = f(0) \right\}
i := 1;
\ell_2 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \dots n-1 \to \mathbb{N} \end{pmatrix} \land i = 1 \land \begin{pmatrix} m \in \mathbb{N} \land \\ m \in ran(f[0..i-1]) \land \\ (\forall j \cdot j \in 0 \dots i-1 \Rightarrow f(j) \leq m) \end{pmatrix} \right\}
while i < n do
\ell_3 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \dots n-1 \to \mathbb{N} \end{pmatrix} \land i \in 1..n-1 \land \begin{pmatrix} m \in \mathbb{N} \land \\ m \in ran(f[0..i-1]) \land \\ (\forall j \cdot j \in 0 \dots i-1 \Rightarrow f(j) \leq m) \end{pmatrix} \right\}
if f(i) > m then
\ell_3 : \ell_3 :
                                                             \left( \begin{array}{c} \ell_4 : \left\{ \left( \begin{array}{c} n \in \mathbb{N} \wedge \\ n \neq 0 \wedge \\ f \in 0 \dots n-1 \to \mathbb{N} \end{array} \right) \wedge i \in 1 \dots n-1 \wedge \left( \begin{array}{c} m \in \mathbb{N} \wedge \\ m \in ran(f[0..i-1]) \wedge \\ (\forall j \cdot j \in 0 \dots i-1 \Rightarrow f(j) \leq m) \end{array} \right) \wedge \right) \right) 
 \begin{cases} m := f(i); \\ m := f(i); \\ \ell_5 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 ... n-1 \to \mathbb{N} \end{pmatrix} \land i \in 1..n-1 \land \begin{pmatrix} m \in \mathbb{N} \land \\ m \in ran(f[0..i]) \land \\ (\forall j \cdot j \in 0 ... i \Rightarrow f(j) \leq m) \end{pmatrix} \right\} \\ \vdots \\ \ell_6 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 ... n-1 \to \mathbb{N} \end{pmatrix} \land i \in \mathbb{Z} \land \land i \in 1..n-1 \land \begin{pmatrix} m \in \mathbb{N} \land \\ m \in ran(f[0..i]) \land \\ (\forall j \cdot j \in 0 ... i \Rightarrow f(j) \leq m) \end{pmatrix} \right\} \\ i + +; \\ \ell_7 : \left\{ \begin{pmatrix} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 ... n-1 \to \mathbb{N} \end{pmatrix} \land i \in 2..n \land \begin{pmatrix} m \in \mathbb{N} \land \\ m \in ran(f[0..i-1]) \land \\ (\forall j \cdot j \in 0 ... i-1 \Rightarrow f(j) \leq m) \end{pmatrix} \right\} 
      \ell_8: \left\{ \left( \begin{array}{c} n \in \mathbb{N} \land \\ n \neq 0 \land \\ f \in 0 \quad n-1 \to \mathbb{N} \end{array} \right) \land i = n \land \left( \begin{array}{c} m \in \mathbb{N} \land \\ m \in ran(f) \land \\ (\forall i \cdot i \in 0 \dots n-1 \Rightarrow f(j) \le m) \end{array} \right) \right\}
```

Algorithme 4: Algorithme du manimum d'une liste annoté Exercice ??