CD40182BMS

December 1992

CMOS Look-Ahead Carry Generator

Features

- High Voltage Type (20V Rating)
- Generates High-Speed Carry Across Four Adders or Adder Groups
- High-Speed Operation
 - tPHL, tPLH =100 ns (typ) at VDD = 10V
- · Cascadable for Fast Carries Over N Bits
- Designed for Use with CD40181BMS ALU
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

The CD40182BMS is a high-speed look-ahead carry generator capable of anticipating a carry across four binary adders or groups of adders. The CD40182BMS is cascadable to perform full look-ahead across n-bit adders. Carry, propagate-carry, and generate-carry functions are provided as enumerated in the terminal designation below.

The CD40182BMS, when used in conjuction with the CD40181BMS arithmetic logic unit (ALU), provides full high-speed look-ahead carry capability for up to n-bit words. Each CD40182BMS generates the look-ahead (anticipated carry) across a group of four ALU's. In addition, other CD40182BMS's may be employed to anticipate the carry across sections of four look-ahead blocks up to n-bits. Carry inputs and outputs of the CD40181BMS are active-high logic, and carry-generate (G) and carry-propagate (P) outputs are active-low. Therefore the inputs and outputs of the CD40182BMS are compatible.

The CD40182BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4V
Frit Seal DIP H1E
Ceramic Flatpack H6P

The CD40182BMS is similar to industry type MC14582.

Applications

- · High-Speed Parallel Arithmetric Units
- Multi-Level Look-Ahead Carry Generation for Long Word Lengths

CD40182BMS TOP VIEW

Pinout

G1 1 16 VDD P1 2 15 P2 G0 3 14 G2 P0 4 Cn G3 5 12 Cn + x P3 6 11 Cn + y 10 G P 7 vss 8 9 Cn + z

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	θ_{ic}
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PI	D) at +125°C	;
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Ty	pe D, F, K) .	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package 7	Type D, F, K)	Derate
Linear	ity at 12mW	OC to 200mW
Device Dissipation per Output Transistor		100mW
For T _A = Full Package Temperature Rai	nge (All Pacl	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

						LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	GROUP A SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20V	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	٧
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	٧
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	٧
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V, VOL < 1.5V		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTES 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
P, G In to P, G Out and Carry Outs	TPLH1		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	480	ns
Cn to Carry Outs	TPLH2		10, 11	+125°C, -55°C	-	648	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	i	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	200	ns
P, G In to P, G Out and Carry Outs	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	240	ns
Cn to Carry Outs	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	180	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K., Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	7, 9 - 12	1 - 6, 8, 13 - 15	16			
Static Burn-In 2 (Note 1)	7, 9 - 12	8	1 - 6, 13 - 16			
Dynamic Burn- In (Note 1)	-	8	16	7, 9 - 12	1 - 6, 14, 15	13
Irradiation (Note 2)	7, 9 - 12	8	1 - 6, 13 - 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K $\pm\,5\%,$ VDD = 18V $\pm\,0.5V$
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

TABLE 9. TERMINAL DESIGNATIONS

DESIGNATION	TERM.	FUNCTION
G0, G1, G2, G3	3, 1, 14, 5	Active-Low Carry-Generate Inputs
P0, P1, P2, P3	4, 2, 15, 6	Active-Low Carry-Propagate Inputs
Cn	13	Active-High Carry Input
Cn + x, Cn + y, Cn + z	12, 11, 9	Active-High Carry Outputs

TABLE 9. TERMINAL DESIGNATIONS (Continued)

DESIGNATION	TERM.	FUNCTION
ĪG	10	Active-Low Group Carry-Generate Output
P	7	Active-Low Group Carry-Propagate Output

Logic Diagram

FIGURE 1. CD40182BMS LOGIC DIAGRAM

CD40182BMS LOGIC EQUATIONS

 $Cn + x = G0 + P0 \cdot Cn$

 $Cn + y = G1 + P1 \cdot G0 + P1 \cdot P0 \cdot Cn$

 $Cn + z = G2 + P2 \cdot G1 + P2 \cdot P1 \cdot G0 + P2 \cdot P1 \cdot P0 \cdot Cn$

 $\overline{G} = \overline{G3 + P3 \bullet G2 + P3 \bullet P2 \bullet G1 + P3 \bullet P2 \bullet P1 \bullet G0}$

 $\overline{P} = \overline{P3 \bullet P2 \bullet P1 \bullet P0}$

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MIMIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (321) 724-7000 FAX: (321) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE (P, G IN TO P, G OUT AND CARRY-OUTS)

FIGURE 8. TYPICAL POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

FIGURE 9. 16-BIT TWO-LEVEL LOOK-AHEAD ALU

CD40182BMS

FIGURE 10. 64-BIT FULL CARRY LOOK-AHEAD ALU IN 3 LEVELS

FIGURE 11. COMBINED TWO-LEVEL LOOK-AHEAD AND RIPPLE-CARRY ALU

Chip Dimensions and Pad Layout

The photographs and dimensions of each CMOS chip represent a chip when it is part of the wafer. When the wafer is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of -3 mils to

Dimension in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3}$ inch).

+16 mils applicable to the nominal dimensions shown.

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL. **PASSIVATION:** 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN DIE THICKNESS: 0.0198 inches - 0.0218 inches