Polinomios

Lornar the Breton

Contents

Definición de Grupo Definición de Grupo Abeliano	1 1
Definición de Anillo Anillo con unidad	1 1
Anillo conmutativo	
Definición de Dominio Entero	2
Definición de Campo	2
Observación	2
Definición de Polinomio	2
Nota	2
Polinomio Cero	2
Conjunto de todos los polinomios	2
Igualdad de polinomios	3
Ejemplo	3
Definición del Grado de un polinomio	3
Definición de mónico	3

Definición de Grupo

Un **grupo** G es un **conjunto** dotado de una **operación binaria** entre sus elementos, digamos *, tal que si $a, b \in G \implies a * b \in G$ y satisface:

1) Asociatividad

$$(a*b)*c = a*(b*c)$$

2) Existencia del Neutro

$$\forall a \in G$$
,

$$a * e = a$$

$$e * a = a$$

3) Existencia del Inverso

$$\forall a \in G \exists a^{-1} \in G :$$

$$a * a^{-1} = e$$

$$a^{-1} * a = e$$

Definición de Grupo Abeliano

Un un **grupo** G se le llama **Abeliano** si cumple con:

$$\forall a, b \in G$$

$$a * b = b * a$$

Definición de Anillo

Sea A un **conjunto** con **dos operaciones binarias**, +, *. Decimos que A es un **anillo** \iff

- 1) (A, +) es un grupo abeliano
- 2) $(a * b) * c = a * (b * c) \forall a, b, c \in A$
- 3) $a*(b+c) = a*b + a*c \land (b+c)*a = a*b + a*c$

Anillo con unidad

$$\exists 1 \in A : \forall a \in A$$

$$a*1 = a$$

$$1 * a = a$$

Anillo conmutativo

$$\forall a \in A$$
$$a * b = b * a$$

Definición de Dominio Entero

Si A es un anillo, decimos que A es un dominio entero \iff

$$a * b = 0 \iff a = 0 \lor b = 0$$

Definición de Campo

Sea K un **conjunto** con + y *. K es un **campo** \iff

- 1) (K, +, *) es anillo conmutativo con unidad
- 2) (K, 0, +, *) es un **grupo**

Observación

Si K es un campo $\implies K$ es dominio entero Z_n es un campo, con + y * (mod n) $\iff n$ es primo

Definición de Polinomio

Sea A un anillo conmutativo con unidad. Un polinomio con coeficientes en A es una expresión del tipo

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

donde $a_i \in A$ y $n \in \mathbb{N}_0$.

Nota

$$\mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

Polinomio Cero

Si $a_j = 0 \forall j$, el **polinomio**

$$0x^n + 0x^{n-1} + \dots + 0x + 0$$

se llama el **polinomio cero**. Se denota por 0.

Conjunto de todos los polinomios

El conjunto de todos los polinomios se denota como A[x].

Igualdad de polinomios

Dos polinomios son iguales \iff sus coeficientes correspondientes son iguales.

Ejemplo

En $\mathbb{Z}_{[4]}$

$$x^5 + 3 = x^2 + 2 = x^5 + 3x^2 + 4x - 2$$

pues en $\mathbb{Z}_{[4]}$, 0 = 4 y 2 = -2.

Definición del Grado de un polinomio

Sea $f \in A_{[x]}$ tal que:

$$f = a_n x^n + a_{n-1} x^{n-a} + \dots + a_1 x + a_0$$

Decimos que f tiene **grado** m si

$$\forall k > m$$

$$a_k = 0 \land a_m \neq 0$$

En otras palabras, m es el **coeficiente máximo**.

El **grado** de f se denota como

$$gr(f) = m$$

Definición de mónico

Sea $f \in A_{[x]}$. Si gr(f) = n y $a_n = 1$, entonces f es **mónico**.