1 Гомоморфизмы колец, идеалы, факторкольца

Определение 1.1 (Гомоморфизм колец). $h: R \to S$ - гомоморфизм, определённый так: $a \equiv b \Leftrightarrow h(a) = h(b)$

Определение 1.2 (Ядро кольца). $h: R \to S$ - гомоморфизм, тогда ядро кольца $\operatorname{Ker} h = \{a \in R: h(a) = 0\}$

Теорема 1.1. Ядро кольца - подкольцо

Определение 1.3 (Идеал). R - кольцо, $\mathcal{I} \subseteq R$ - идеал (левый, правый, двусторонний), если

- 1. *I* подкольцо
- 2. для любого $x \in R$ $x\mathcal{I} \subseteq \mathcal{I}$ (левый идеал), $\mathcal{I}x \subseteq \mathcal{I}$ (правый идеал)

Пример 1.1 (Пример идеалов).

Теорема 1.2. R - ассоциативное кольцо с единицей или R - тело или R тогда и только тогда когда в R Нет других идеалов, кроме $\{0\}$ и R

Определение 1.4 (Булевое кольцо).

Теорема 1.3. Пусть I - двухсторонний идеал в R, тогда отношение $\equiv: x \equiv y \Leftrightarrow x - y \in I$ является конгруэнтностью

Следствие 1.1. Существует фактор-алгебра $R/_{\equiv}$, такая что ???

Следствие 1.2. $I = \operatorname{Ker} h$, $i \partial e \ h : R \to R/_{\equiv}$

Определение 1.5 (Простой идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - простой идеал, если $ab \in I \Leftrightarrow a \in I$ или $b \in I$

Определение 1.6 (Максимальный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - максимальный идеал, если для любого идеала $J:I\subseteq J, I\neq J$ выполняется J=R

Определение 1.7 (Главный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - главный идеал, если для некоторого $a \in R$ I = aR

Пример 1.2 (??????).

 $oldsymbol{\Pi}$ емма 1.1. Eсли I и J - uдеалы, то I+J тоже uдеал

Теорема 1.4. Пусть R - ассоциативное, коммутативное кольцо с единицей, I - идеал, тогда

- 1. I простой идеал $\Leftrightarrow R/I$ целостное
- 2. I максимальный идеал $\Leftrightarrow R/I$ поле

Доказательство.