6.842 Randomness and Computation

April 26, 2022

Homework 5

Yuchong Pan MIT ID: 911346847

1. Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Let $\varepsilon \in (0, 1/2)$. Then

$$\begin{split} NS_{\varepsilon}(f) &= \underset{x \in \{\pm 1\}^n}{\mathbb{P}} \left[f(x) \neq f\left(N_{\varepsilon}(x)\right) \right] \\ &= \underset{x \in \{\pm 1\}^n}{\mathbb{P}} \left[f(x) f\left(N_{\varepsilon}(x)\right) = -1 \right] \\ &= \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\frac{1}{2} - \frac{1}{2} f(x) f\left(N_{\varepsilon}(x)\right) \right] \\ &= \frac{1}{2} - \frac{1}{2} \underset{N_{\varepsilon}}{\mathbb{E}} \left[f(x) f\left(N_{\varepsilon}(x)\right) \right] \\ &= \frac{1}{2} - \frac{1}{2} \underset{N_{\varepsilon}}{\mathbb{E}} \left[\left(\sum_{S \subset [n]} \hat{f}(S) \chi_{S}(x) \right) \left(\sum_{T \subset [n]} \hat{f}(T) \chi_{T}\left(N_{\varepsilon}(x)\right) \right) \right] \\ &= \frac{1}{2} - \frac{1}{2} \underset{N_{\varepsilon}}{\mathbb{E}} \left[\hat{f}(S) \hat{f}(T) \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\chi_{S}(x) \chi_{T}\left(N_{\varepsilon}(x)\right) \right] \right] \end{split}$$

For all $x \in \{\pm 1\}^n$ and $i \in [n]$, we denote by x_i and $N_{\varepsilon}(x)_i$ the i^{th} coordinates of x and $N_{\varepsilon}(x)$, respectively. For all $S \subset [n]$,

$$\mathbb{E}_{x \in \{\pm 1\}^n} \left[\chi_S(x) \chi_S \left(N_{\varepsilon}(x) \right) \right] = \mathbb{E}_{x \in \{\pm 1\}^n} \left[\left(\prod_{i \in S} x_i \right) \left(\prod_{i \in S} N_{\varepsilon}(x)_i \right) \right] \\
= \mathbb{E}_{x \in \{\pm 1\}^n} \left[\prod_{i \in S} x_i N_{\varepsilon}(x)_i \right] \\
= \prod_{i \in S} \mathbb{E}_{x \in \{\pm 1\}^n} \left[x_i N_{\varepsilon}(x)_i \right] \\
= (\varepsilon \cdot (-1) + (1 - \varepsilon) \cdot 1)^{|S|} \\
= (1 - 2\varepsilon)^{|S|}. \tag{2}$$

Note that (1) is due to the independence of each bit in $N_{\varepsilon}(x)$, and (2) is due to the fact that each bit of x uniformly chosen from $\{\pm 1\}^n$ is uniform in $\{\pm 1\}$. For all $S, T \subset [n]$ with $S \neq T$,

$$\underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\chi_S(x) \chi_T \left(N_{\varepsilon}(x) \right) \right]$$

$$= \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\left(\prod_{i \in S} x_i \right) \left(\prod_{i \in T} N_{\varepsilon}(x)_i \right) \right] \\
= \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\left(\prod_{i \in S \cap T} x_i N_{\varepsilon}(x)_i \right) \left(\prod_{i \in S \setminus T} x_i \right) \left(\prod_{i \in T \setminus S} N_{\varepsilon}(x)_i \right) \right] \\
= \left(\prod_{i \in S \cap T} \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[x_i N_{\varepsilon}(x)_i \right] \right) \left(\prod_{i \in S \setminus T} \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[x_i \right] \right) \left(\prod_{i \in T \setminus S} \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[N_{\varepsilon}(x)_i \right] \right). \tag{3}$$

Note that (3) is again due to the independence of each bit in $N_{\varepsilon}(x)$. For $S, T \subset [n]$ with $S \neq T$, either $S \setminus T \neq \emptyset$ or $T \setminus S \neq \emptyset$. Note that each bit of x uniformly chosen from $\{\pm 1\}^n$ is uniform in $\{\pm 1\}$. Therefore, if $S \setminus T \neq \emptyset$,

$$\prod_{i \in S \backslash T} \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[x_i \right] = \left(\underset{b \in \{\pm 1\}}{\mathbb{E}} [b] \right)^{|S \backslash T|} = 0^{|S \backslash T|} = 0.$$

Moreover, if $T \setminus S \neq \emptyset$,

$$\prod_{i \in T \setminus S} \mathbb{E}_{\substack{x \in \{\pm 1\}^n \\ N_{\varepsilon}}} \left[N_{\varepsilon}(x)_i \right] = \left(\frac{1}{2} (\varepsilon(-1) + (1 - \varepsilon) \cdot 1) + \frac{1}{2} (\varepsilon \cdot 1 + (1 - \varepsilon)(-1)) \right)^{|T \setminus S|} = 0^{|T \setminus S|} = 0.$$

Therefore, for all $S, T \subset [n]$ with $S \neq T$,

$$\mathbb{E}_{\substack{x \in \{\pm 1\}^n \\ N_{\varepsilon}}} \left[\chi_S(x) \chi_T \left(N_{\varepsilon}(x) \right) \right] = 0.$$

It follows that

$$NS_{\varepsilon}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S,T \subset [n]} \hat{f}(S)\hat{f}(T) \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[\chi_S(x) \chi_T \left(N_{\varepsilon}(x) \right) \right] = \frac{1}{2} - \frac{1}{2} \sum_{S \subset [n]} \hat{f}(S)^2 (1 - 2\varepsilon)^{|S|}.$$

This completes the proof.

2. (a) Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be monotone. Let $i \in [n]$. WLOG, assume i = 1. Then

$$\hat{f}(\{1\}) = \langle f, \chi_{\{1\}} \rangle
= \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x) \chi_{\{1\}}(x)
= \frac{1}{2^n} \sum_{x = (x_1, \dots, x_n) \in \{\pm 1\}^n} f(x) x_1
= \frac{1}{2^n} \left(\sum_{x = (x_1, \dots, x_n) \in \{\pm 1\}^n} f(x) \cdot 1 + \sum_{x = (x_1, \dots, x_n) \in \{\pm 1\}^n} f(x) \cdot (-1) \right)
= \frac{1}{2^n} \left(\sum_{x' \in \{\pm 1\}^{n-1}} f(1, x') - \sum_{x' \in \{\pm 1\}^{n-1}} f(-1, x') \right)
= \frac{1}{2^n} \sum_{x' \in \{\pm 1\}^{n-1}} \left(f(1, x') - f(-1, x') \right)
= \frac{1}{2^n} \sum_{x' \in \{\pm 1\}^{n-1}} \left(f(1, x') - f(-1, x') \right) .$$

Since f is monotone, then $f(1,x') \ge f(-1,x')$ for all $x' \in \{\pm 1\}^{n-1}$. Hence, for all $x' \in \{\pm 1\}^{n-1}$, if $f(1,x') \ne f(-1,x')$, then f(1,x') = 1 and f(-1,x') = -1, so f(1,x') - f(-1,x') = 1 - (-1) = 2. Therefore,

$$\hat{f}(\{1\}) = \frac{1}{2^n} \sum_{\substack{x' \in \{\pm 1\}^{n-1} \\ f(1,x') \neq f(-1,x')}} 2$$

$$= \frac{1}{2^n} \cdot 2 \left| \left\{ x' \in \{\pm 1\}^{n-1} : f(1,x') \neq f(-1,x') \right\} \right|$$

$$= \frac{1}{2^{n-1}} \left| \left\{ x' \in \{\pm 1\}^{n-1} : f(1,x') \neq f(-1,x') \right\} \right|.$$

On the other hand,

$$\begin{split} &Inf_{1}(f) = \underset{x \in \{\pm 1\}^{n}}{\mathbb{P}} \left[f(x) \neq f\left(x^{\oplus 1}\right) \right] \\ &= \frac{1}{2^{n}} \sum_{x \in \{\pm 1\}^{n}} \mathbb{1} \left[f(x) \neq f\left(x^{\oplus 1}\right) \right] \\ &= \frac{1}{2^{n}} \cdot 2 \sum_{x' \in \{\pm 1\}^{n-1}} \mathbb{1} \left[f\left(1, x'\right) \neq f\left(-1, x'\right) \right] \\ &= \frac{1}{2^{n-1}} \left| \left\{ x' \in \{\pm 1\}^{n-1} : f\left(1, x'\right) \neq f\left(-1, x'\right) \right\} \right| \\ &= \hat{f}(\{1\}). \end{split}$$

This completes the proof.