Diffusion Models: Theory and Applications

Lecture 2: The Forward Diffusion Process: Learning to Destroy Data Systematically

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

June 9, 2025

Last Time: We Learned Why Diffusion Models Matter ?

Instead of trying to learn complicated mappings in one shot...

What if we learned many simple steps?

- GANs: Fast but unstable training
- ◆ VAEs: Stable but blurry samples
- **P** Diffusion: Stable training + High quality samples

Today's Mission: The Art of Controlled Destruction 🍼

O How do we destroy data systematically?

Why "destroy" first? •

- Learning to reverse destruction
- Each step must be learnable
- Need mathematical guarantees

The Forward Process = Our Demolition Plan

The Genius Insight: Two Processes, One Learnable 🌗

Traditional Approach (GANs/VAEs):

Learn BOTH: Encode $x \rightarrow z$ AND Decode $z \rightarrow x$

Diffusion's Brilliant Twist:

FIX the forward process **LEARN** only the reverse! **O**

- Forward: Simple, mathematical, predetermined noise injection
- Reverse: Complex, learned, neural network-based denoising
- ullet Result: Transform intractable optimization o elegant learning problem! $oldsymbol{\mathscr{X}}$

The Controlled Demolition Metaphor riangle

Think of a building demolition expert...

Random Destruction:

- Unpredictable collapse
- Impossible to reverse
- Chaotic process

✓ Controlled Demolition:

- Precise explosion sequence
- Predictable structure collapse
- Reversible if we know the plan!

Forward Process:

Perfect Image

↓ Controlled noise injection

Slightly noisy 🔀

↓ More controlled noise

Pure static 🖵

The Mathematical Foundation: Markov Chains &

Definitions

- What's a Markov Chain? A sequence where the future depends only on the present state
- Markov Property: q(future|present, past) = q(future|present)

⊗ Non-Markov Example:

- Stock price depends on entire history
- Weather depends on long-term patterns
- Need to track everything!

✓ Markov Example:

- Random walk: next step depends only on current position
- Game state: next move depends only on current board
- Much simpler to analyze!

The Mathematical Foundation: Markov Chains &

Definitions

- What's a Markov Chain? A sequence where the future depends only on the present state
- Markov Property: q(future|present, past) = q(future|present)

For diffusion

$$q(x_t|x_{t-1},x_{t-2},\ldots,x_0)=q(x_t|x_{t-1})$$

This means

To corrupt image at step t, we only need step t-1! No need to remember entire corruption history

The Forward Process: Our Specific Corruption Rule

The forward process q is our predetermined noise injection:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

Breaking this down: Q

- $q(x_t|x_{t-1})$: Forward transition (data \rightarrow noise)
- β_t : Noise schedule (how much noise to add)
- $\sqrt{1-\beta_t}$: Signal preservation factor
- $\beta_t I$: Fresh Gaussian noise variance

Remember

q is FIXED, we'll learn p (reverse process) later! (Markov property makes both tractable)

Why the Markov Property is Our Secret Weapon &

Markov Property: Future depends only on present, not entire past

In our demolition metaphor:

- Next explosion depends only on current building state
- Don't need demolition history
- Each step is memoryless
- Makes reverse engineering tractable!

Mathematically: 🖧

- $p(x_t|x_{t-1},x_{t-2},...,x_0) = p(x_t|x_{t-1})$
- Vastly simplifies analysis
- Enables closed-form solutions
- Each reverse step only needs local info

Without Markov property: Intractable dependencies With Markov property: Elegant mathematical structure!

In-Class Exercise 1: Design Your Noise Schedule

You're the demolition expert! Design β_t values:

Scenario: Convert cat photo \rightarrow static in 4 steps

- $\beta_1 = ?$ (First explosion should be gentle!)
- $\beta_2 = ?$ (Second explosion)
- $\beta_3 = ?$ (Third explosion)
- $\beta_4 = ?$ (Final explosion can be stronger!)

Constraints: $0 < \beta_t < 1$ and $\beta_1 < \beta_2 < \beta_3 < \beta_4$

Discuss with your neighbor:

What happens if β_1 is too large? Too small?

Understanding the Demolition Schedule

The noise schedule β_t controls destruction rate:

Signal Preservation: $\sqrt{1-\beta_t}$

- ullet When eta_t small $o \sqrt{1-eta_t} pprox 1$
- Most signal preserved
- Gentle corruption

Noise Injection: $\beta_t I$

- Fresh Gaussian noise
- Independent in each dimension
- Prevents correlated artifacts

Common Schedules: 년

Linear:
$$\beta_1 = 10^{-4}, \beta_T = 0.02$$

- Simple and widely used
- Steady destruction rate

Cosine: Slower early, faster later

- Better balances easy/hard steps
- Often improves quality

Key: Gradual increase ensures each reverse step is learnable! **②**

Noise Schedule Showdown: Linear vs. Cosine

Linear Schedule: www.

$$\bullet \ \beta_t = \beta_1 + \frac{t-1}{T-1} (\beta_T - \beta_1)$$

- Steady destruction rate
- Simple and interpretable
- Standard choice: $\beta_1 = 10^{-4}$, $\beta_T = 0.02$

Pros: Simple, well-tested

Cons: May waste computation on easy

steps

Cosine Schedule:

- Slower corruption early
- Faster corruption later
- Better balances difficulty
- Improves sample quality

Pros: Often higher quality **Cons:** Less intuitive, newer

Key Insight

Schedule choice affects both training efficiency and sample quality!

What Happens When Schedules Go Wrong? 🔔

Common failure modes and their fixes

- **\ldot\)** Too aggressive early (β_1 too large):
 - Signal destroyed too quickly
 - Reverse steps become impossible
 - Fix: Start gentler, $\beta_1 \leq 10^{-4}$

Too conservative throughout:

- Signal never fully destroyed
- x_T still contains structure
- **Fix:** Increase T or final β_T
- Perfect schedule: Gradual increase, fully destroys signal by end

The Reparameterization Challenge 🔔

We have a problem with our forward process...

Our current formulation

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

The issue 🗷

- This requires sampling from a Gaussian distribution
- Sampling operations are not differentiable!
- No gradients = no neural network training
- We need to make randomness "learnable"

The Solution 🎇

 $\textbf{Transform:} \ \ \text{stochastic sampling} \ \rightarrow \ \ \text{deterministic computation}$

Tool: The reparameterization trick!

The Reparameterization Trick: From VAEs to Diffusion 🕰

The general principle (borrowed from VAEs)

Instead of: Sampling $z \sim \mathcal{N}(\mu, \sigma^2)$

Do this: $z = \mu + \sigma \cdot \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$

Why this works **②**

- Same distribution: Both produce $\mathcal{N}(\mu, \sigma^2)$
- Isolated randomness: All randomness is in ϵ
- Differentiable path: $\mu + \sigma \cdot \epsilon$ is just arithmetic!
- Gradient flow: Can backpropagate through this operation

Key insight: Move randomness outside the computation! →

In-Class Exercise 2: Practice the Trick

Quick Check: Apply Reparameterization

Transform this sampling operation:

$$z \sim \mathcal{N}(3x+1,4)$$

Your turn: Write this as $z = \mu + \sigma \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$

Think about it 🕕

- What is μ ?
- What is σ ?
- Why does this preserve the same distribution?

Discuss with your neighbor for 2 minutes!

Exercise 2 Solution: Reparameterization in Action

The Solution ✓

Given: $z \sim \mathcal{N}(3x + 1, 4)$

Reparameterized form:

$$z = (3x + 1) + 2\epsilon$$

where $\epsilon \sim \mathcal{N}(0,1)$

Breaking it down:

- Mean (μ): 3x + 1
- Standard deviation (σ): $\sqrt{4} = 2$
- Variance: $\sigma^2 = 4$

Exercise 2 Solution: Reparameterization in Action

The Solution 🗸

Given: $z \sim \mathcal{N}(3x + 1, 4)$ Reparameterized form:

$$z = (3x + 1) + 2\epsilon$$

where $\epsilon \sim \mathcal{N}(0,1)$

Why this preserves the distribution [©]

- Mean: $\mathbb{E}[z] = \mathbb{E}[(3x+1)+2\epsilon] = (3x+1)+2\cdot 0 = 3x+1$
- Variance: $Var[z] = Var[2\epsilon] = 4Var[\epsilon] = 4 \cdot 1 = 4$
- ullet Same Gaussian family! The randomness is just isolated in ϵ

Key insight: We can now differentiate through $(3x + 1) + 2\epsilon!$

Applying the Trick to Our Diffusion Step 🔑

Our Gaussian transition

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

Identify the components

- Mean: $\mu = \sqrt{1 \beta_t} x_{t-1}$
- Covariance: $\Sigma = \beta_t I$

For multivariate case: $z = \mu + \Sigma^{1/2} \epsilon$

What's $\Sigma^{1/2}$ for $\beta_t I$?

$$\Sigma^{1/2} = (\beta_t I)^{1/2} = \sqrt{\beta_t} I$$

Why?
$$(\sqrt{\beta_t}I)(\sqrt{\beta_t}I) = \beta_tI^2 = \beta_tI \checkmark$$

The Magic Formula Revealed 🎇

Putting it all together

$$x_t = \mu + \Sigma^{1/2} \epsilon_{t-1} \tag{1}$$

$$= \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} I \cdot \epsilon_{t-1}$$
 (2)

$$= \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} \tag{3}$$

where $\epsilon_{t-1} \sim \mathcal{N}(0, I)$

The Revolutionary Formula

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$$

This changes everything!

From stochastic sampling \rightarrow deterministic computation \P

▲ In-Class Exercise 3: Coefficient Analysis

Understanding the Balance

Given: $x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$ Scenario: $\beta_t = 0.01$ (very small noise)

Calculate these coefficients:

- Signal preservation: $\sqrt{1-\beta_t}=?$
- Noise injection: $\sqrt{\beta_t} = ?$
- Which is larger? Why does this make sense?

Quick Poll 🔟

What happens if $\beta_t = 0.5$?

- A) More signal preserved
- B) More noise added
- C) Equal signal and noise

Д

In-Class Exercise 3 Solution: Coefficient Analysis

Solution for $\beta_t = 0.01$ \checkmark

- Signal preservation: $\sqrt{1-\beta_t} = \sqrt{1-0.01} = \sqrt{0.99} \approx 0.995$
- Noise injection: $\sqrt{\beta_t} = \sqrt{0.01} = 0.1$
- Which is larger? Signal coefficient (0.995) >> Noise coefficient (0.1)

Why this makes sense **②**

Small β_t = gentle corruption:

- Nearly all signal preserved (99.5%)
- Very little noise added (10% of unit noise)
- Perfect for early timesteps where we want gradual destruction!

In-Class Exercise 3 Solution: Coefficient Analysis

Solution for $\beta_t = 0.01 \checkmark$

- Signal preservation: $\sqrt{1-\beta_t} = \sqrt{1-0.01} = \sqrt{0.99} \approx 0.995$
- Noise injection: $\sqrt{\beta_t} = \sqrt{0.01} = 0.1$
- Which is larger? Signal coefficient (0.995) >> Noise coefficient (0.1)

Quick Poll Answer: $\beta_t = 0.5$

Signal:
$$\sqrt{1-0.5} = \sqrt{0.5} \approx 0.707$$

Noise: $\sqrt{0.5} \approx 0.707$

Answer: C) Equal signal and noise! This would be a 50-50 balance point

Pattern: As β_t increases, signal \downarrow and noise \uparrow

Why This Transformation Changes Everything 💎

1. Preserves Statistical Properties 💁

- Same mean: $\mathbb{E}[x_t] = \sqrt{1-\beta_t}x_{t-1}$
- Same variance: $Var[x_t] = \beta_t I$
- Identical distribution to original formulation

Why This Transformation Changes Everything 💎

- 2. Enables Gradient Flow 7
 - Randomness isolated in ϵ_{t-1}
 - Deterministic transformation is differentiable
 - Neural networks can train through this operation!

Why This Transformation Changes Everything 💎

- 3. Computational Efficiency 💎
 - Simple arithmetic instead of sampling algorithms
 - Vectorizes perfectly on GPUs
 - Predictable memory access patterns

The Elegant Variance Evolution 🗠

How does variance change as we add noise?

If x_{t-1} has variance σ_{t-1}^2 , then:

Variance calculation

$$Var[x_t] = Var[\sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}]$$
(4)

$$= (1 - \beta_t) \operatorname{Var}[x_{t-1}] + \beta_t \operatorname{Var}[\epsilon_{t-1}]$$
(5)

$$= (1 - \beta_t)\sigma_{t-1}^2 + \beta_t \tag{6}$$

The beautiful insight @

- Keep fraction $(1 \beta_t)$ of previous variance
- Add β_t units of fresh noise variance
- Controlled, predictable variance evolution!

Perfect balance: Preserve structure while adding chaos 44

In-Class Exercise 4: Variance Tracking

Trace the Variance

Starting point: x_0 has variance $\sigma_0^2 = 1.0$

Given: $\beta_1 = 0.1$ and $\beta_2 = 0.2$

Calculate step by step:

Using: $Var[x_t] = (1 - \beta_t)\sigma_t^2 + \beta_t$

Step 1: $Var[x_1] = ?$ **Step 2:** $Var[x_2] = ?$

Discussion Question ?

Pattern check: Is variance increasing or decreasing?

What would happen if we kept going to x_{100} ?

Exercise 4 Solution: Variance Tracking

Step-by-Step Calculations ✔

Formula: $Var[x_t] = (1 - \beta_t)\sigma_{t-1}^2 + \beta_t$

Step 1: $Var[x_1] = (1 - 0.1) \times 1.0 + 0.1 = 0.9 + 0.1 = 1.0$

Step 2: $Var[x_2] = (1 - 0.2) \times 1.0 + 0.2 = 0.8 + 0.2 = 1.0$

The Surprising Result!

Variance stays constant at 1.0!

- We lose $(1 \beta_t)$ of previous variance
- But we add β_t units of fresh noise variance
- Perfect balance: $(1 \beta_t) \times 1 + \beta_t = 1$

Discussion Answers @

Pattern: Variance stays constant (neither increasing nor decreasing!)

At x_{100} : Still variance = 1.0!

Why this is brilliant: Prevents variance explosion or collapse Stable training: Neural network always sees same variance scale

Key insight: Diffusion preserves variance by design!

Watching the Image Dissolve: Step-by-Step

Let's trace a cat photo through corruption

Original Image (x_0): Perfect, structured cat photo

First Corruption (x_1)

$$x_1 = \sqrt{1 - \beta_1} x_0 + \sqrt{\beta_1} \epsilon_0$$

Barely perceptible grain, every detail still visible 🗱

Second Corruption (x_2)

$$x_2 = \sqrt{1 - \beta_2} x_1 + \sqrt{\beta_2} \epsilon_1$$

Cat still recognizable, but quality degraded o

The pattern: Each step mixes previous state with fresh noise!

In- Exercise 4: Expand the Recursion

Let's build x_2 together!

Start with: $x_2 = \sqrt{1 - \beta_2}x_1 + \sqrt{\beta_2}\epsilon_1$ We know: $x_1 = \sqrt{1 - \beta_1}x_0 + \sqrt{\beta_1}\epsilon_0$

Your mission: Substitute and expand!

Step 1: Replace x_1 in the x_2 equation

Step 2: Distribute $\sqrt{1-\beta_2}$ **Step 3:** Identify the pattern

What do you notice?

- How many ϵ terms appear?
- What's the coefficient of x_0 ?
- Predict: What would x_3 look like?

Let's expand x_2 to see the full pattern

$$x_2 = \sqrt{1 - \beta_2} x_1 + \sqrt{\beta_2} \epsilon_1 \tag{7}$$

$$= \sqrt{1 - \beta_2} \left(\sqrt{1 - \beta_1} x_0 + \sqrt{\beta_1} \epsilon_0 \right) + \sqrt{\beta_2} \epsilon_1 \tag{8}$$

$$= \sqrt{(1-\beta_2)(1-\beta_1)}x_0 + \sqrt{(1-\beta_2)\beta_1}\epsilon_0 + \sqrt{\beta_2}\epsilon_1$$
 (9)

The emerging pattern

- x_t = weighted combination of original image + accumulated noise
- Original image coefficient shrinks over time
- Multiple independent noise terms accumulate
- Each ϵ_i contributes differently based on when it was added

This recursive structure sets up our next breakthrough...

Cleaning Up Our Notation 🔑

Let's introduce cleaner notation for what comes next:

$$\alpha_t = 1 - \beta_t$$
 (signal preservation factor) (10)

$$\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$$
 (cumulative signal preservation) (11)

Why this notation helps

- α_t is more intuitive than writing $1 \beta_t$ everywhere
- $\bar{\alpha}_t$ directly tells us: "How much original signal remains?"
- Makes the forward jump formula much cleaner
- Standard notation used in all diffusion papers

Key insight: $\bar{\alpha}_t$ decreases from 1 to 0 as t increases!

Instead of 1000 sequential steps...

Can we jump directly to any timestep? 7

The Mathematical Breakthrough: Forward Jumps!

Can we jump directly to any timestep? 7

The answer: YES! Thanks to GAUSSIAN ARITHMETIC MAGIC!

Instead of 1000 sequential steps...

Can we jump directly to any timestep? 7

The cornerstone insight: Multiple independent Gaussian noise terms combine beautifully:

$$\sqrt{a}\epsilon_1 + \sqrt{b}\epsilon_2 \sim \mathcal{N}(0, (a+b)I)$$

This simple property is THE foundation of DDPM practicality!

Without it: Diffusion models would be computationally impossible =

The Forward Jump Formula: Pure Mathematical Beauty 🎇

The magical forward jump formula

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

where $\epsilon \sim \mathcal{N}(0, I)$

This means

From ANY clean image x_0 , we can instantly compute the noisy version at ANY timestep t! \odot

No need to simulate the entire chain!

Let's analyze the forward jump formula:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

Understanding the coefficients:

- At t=0: $\bar{\alpha}_0=1$, so $x_0=1\cdot x_0+0\cdot \epsilon$
- As $t \to \infty$: $\bar{\alpha}_t \to 0$, so $x_t \to 0 \cdot x_0 + 1 \cdot \epsilon = \epsilon$

Signal-to-Noise Ratio:

$$\mathsf{SNR}_t = rac{ar{lpha}_t}{1 - ar{lpha}_t}$$

Quick question: What happens to SNR as training progresses? lacktriangle

In-Class Exercise 5 Solutions & Deep Insights 9

Let's work through the SNR analysis

Signal-to-Noise Ratio: $SNR_t = \frac{\bar{\alpha}_t}{1-\bar{\alpha}_t}$

What this tells us:

- High SNR (early timesteps): Easy to denoise, lots of signal
- Low SNR (late timesteps): Hard to denoise, mostly noise
- SNR decreases monotonically: $SNR_0 = \infty \rightarrow SNR_T \approx 0$

Training implications:

- Early steps: Network learns fine details
- Late steps: Network learns global structure
- Balanced training across difficulty levels

Key insight: SNR naturally curriculum learns easy \rightarrow hard!

Homework Problem 1: Deriving the Forward Jump

Your Mission: Prove the Forward Jump Formula

We've seen that diffusion can "jump" directly to any timestep. Your job is to derive this mathematically for the first few steps.

Given Information:

- Single step: $x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 \alpha_t} \epsilon_{t-1}$ where $\epsilon_{t-1} \sim \mathcal{N}(0, I)$
- Recall: $\alpha_t = 1 \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$
- Gaussian Magic: If $\epsilon_0, \epsilon_1 \sim \mathcal{N}(0, I)$ are independent, then $\sqrt{a\epsilon_0} + \sqrt{b\epsilon_1} = \sqrt{a+b\epsilon}$ where $\epsilon \sim \mathcal{N}(0, I)$

A Homework Problem 1: Deriving the Forward Jump (continued)

Part A: Two-Step Derivation (3 points)

Step 1: Write out x_1 and x_2 using the single-step formula

Step 2: Substitute x_1 into the expression for x_2

Step 3: Use Gaussian magic to combine the noise terms

Step 4: Show that $x_2 = \sqrt{\bar{\alpha}_2}x_0 + \sqrt{1-\bar{\alpha}_2}\epsilon$

Part B: General Case (2 points)

Prove by induction: $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon$ for any t

Part C: Understanding the Magic (3 points)

Explain in your own words:

- **1** Why can we combine $\sqrt{a}\epsilon_0 + \sqrt{b}\epsilon_1$ into $\sqrt{a+b}\epsilon$?
- What does this property tell us about Gaussian distributions?
- Why is this crucial for making diffusion models computationally practical?

Part D: Computational Advantage (2 points)

Compare the computational complexity:

- Without forward jump: To get x_{1000} from x_0
- With forward jump: To get x_{1000} from x_0

Explain why this difference matters for training diffusion models.

Why Forward Jumps Change Everything! 👚

The Nightmare vs. The Dream or vs. >>

WITHOUT Gaussian Closure:

- Ω Track ALL noise terms $\epsilon_0, \epsilon_1, \ldots, \epsilon_{t-1}$
- Ω Memory explodes: O(t) per forward step
- \bullet For T=1000: Need $1000\times$ more memory!
- Ω Computing x_t needs O(t) operations
- Ω Training becomes $O(T^2)$ complexity
- Sequential dependencies kill parallelization
- RESULT: Completely impractical!

WITH Gaussian Closure:

- \nearrow ALL noise collapses to $\sqrt{1-\bar{\alpha}_t}\epsilon$
- \mathcal{Z} Constant O(1) memory per sample
- \sim Constant O(1) computation time
- Perfect parallelization across timesteps!
- Random timestep sampling
- Scales to ANY number of steps
- RESULT: Practical magic!

The Complete Picture: From Order to Chaos 😉

Forward jump reveals the beautiful structure:

- At t=0: $\bar{\alpha}_0=1$, so x_0 is pure signal \blacksquare
- As t increases: $\bar{\alpha}_t$ decreases, signal fades, noise grows lacktriangle
- At t = T: $\bar{\alpha}_T \approx 0$, so $x_T \approx \epsilon$ is pure noise \Box

This transformation is:

- **V** Deterministic: Every data point follows same path
- **✓ Universal:** All complex data → same noise distribution
- **Mathematically tractable:** Closed-form expressions
- ◆ Gradual: Each step involves small perturbation

The reverse process must learn to walk backwards along this path!

Training Data Generation: The Complete Algorithm 4/>

Here's exactly how we create unlimited training data:

Input: Clean image x_0 , total timesteps T

Output: Training triple (x_t, t, ϵ)

- 1. Sample timestep: $t \sim \mathsf{Uniform}\{1, 2, \dots, T\}$
- 2. Sample noise: $\epsilon \sim \mathcal{N}(0, I)$
- 3. Compute: $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon$
- 4. Return: (x_t, t, ϵ) as training sample

Why this works brilliantly: *

- Every image gives us T different training samples!
- Random sampling ensures balanced difficulty
- No sequential dependencies = perfect parallelization
- ullet Ground truth ϵ is always available

A Homework Problem 2: Implementing Diffusion Training

Your Mission: Build the Training Pipeline

You're tasked with implementing the core training data generation for a diffusion model. This problem tests your understanding of the forward process and training methodology.

Given Setup:

- Dataset of clean images $\{x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N)}\}$
- Total timesteps T = 1000
- Forward jump formula: $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha}_t} \epsilon$
- Linear noise schedule: $\beta_1 = 0.0001, \beta_T = 0.02$

Part A: Algorithm Implementation (4 points)

Write pseudocode for the training data generation function:

- Input: Clean image x_0 , precomputed $\bar{\alpha}_t$ values
- Output: Training triple (x_t, t, ϵ)
- Include: All random sampling steps and computations

Part B: Design Decisions (3 points each)

Answer these key questions with justifications:

- lacktriangle Why sample timestep t randomly instead of sequentially during training?
- What is the neural network learning to predict, and why this choice?
- 4 How does this training approach differ from VAE training?

Part C: Computational Analysis (4 points)

Memory and Speed Analysis:

- How many training samples can you generate from one image x_0 ?
- Compare memory usage: sequential sampling vs. forward jump approach
- Why is this approach "embarrassingly parallel"?

Part D: Implementation Details (3 points)

Practical Considerations:

- $oldsymbol{1}$ How would you precompute and store the $ar{lpha}_t$ values?
- 2 What happens if $\bar{\alpha}_t$ becomes very small due to numerical precision?
- 3 Suggest one improvement to make the training more robust

Part E: Mini-Experiment (3 points)

Thought Experiment: Suppose you train two models:

- Model A: Always samples t from early timesteps (1-100)
- Model B: Uses uniform random sampling over all timesteps (1-1000)

Predict which model will perform better and explain why.

The Profound Implications: Why This Works So Well ©

Computational Revolution:

Training Efficiency:

- Random timestep sampling
- Single forward pass per step
- Perfect parallelization
- No sequential dependencies

■ Memory Efficiency:

- No intermediate storage
- Generate x_t on-demand
- Scales to any T

A Mathematical Tractability:

- Analytical forward distributions
- Exact KL divergences
- Provable convergence
- Clean theoretical analysis

✓ Implementation Simplicity:

- ullet Complex sequential o simple parallel
- Hardware-friendly operations
- Predictable memory patterns

Without this property, diffusion models would be impossible!

The Artist's Perspective: Understanding the Setup 🗸

Returning to our artist metaphor...

We now understand **exactly** how the masterpiece was destroyed:

- At timestep t, exactly $\sqrt{\bar{\alpha}_t}$ of original painting remains lacksquare
- ullet Mixed with exactly $\sqrt{1-ar{lpha}_t}$ amount of random static lacktriangle
- The destruction follows a precise mathematical schedule
- Every image, no matter how complex, ends up as pure noise ::

The artist's job: Learn to remove static step by step!

Forward jump ensures unlimited training data:

Sample any corruption level instantly from any image!

Summary: The Forward Process Mastery \equiv

What we've learned today

- **O** Key Innovation: Fix forward, learn reverse
- A Mathematical Foundation: Markov chain with Gaussian transitions
- F Reparameterization: Makes randomness differentiable
- **7** Forward Jumps: $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon$
- \P Computational Revolution: $O(T^2) \rightarrow O(T)$ training

The stage is set 🤕

- Forward process: Systematic, predictable destruction ✓
- Training data: Unlimited noisy samples at any corruption level ✓
- Next challenge: Learn the reverse process!

From chaos, we will learn to create order...

Next Session Preview:

Mathematical Foundations

Now that you've seen HOW diffusion destroys data... How do we LEARN to reverse this process?

We'll master the mathematical foundations:

- Why direct likelihood optimization fails •
- Variational inference and tractable lower bounds
- The universal tools for ALL generative models •
- Setting up the framework for learning!

