

NICCI

Network-Informed Control – Control-Informed network

Meeting in Aachen 2017

Markus Kögel, Rolf Findeisen

Network aware control Evaluating limits of achievable performance (мр group)

Question – controller optimizes communication for performance

▶ determine when/what/where to send for optimal performance

Setup

- dynamics
 - unknown, but bounded uncertainties
 - discrete, time linear dynamics
 - noisy measurements
- network
 - ideal communication no loss/no (significant) delay (or compensated – data sent arrives before next time instant)
 - here: one link to sensors/actuators (extension straightforward)

Core idea: exploit robust output feedback MPC

Challenge: when/what/where to send to optimize control performance

Trade-offs: (example) less latency or more data

Different communication choices possible (given by RRM)

Possible when/where to communicate formulations

- each time instant one communication from sensors or to actuators
- on average 0.75 communications each time instant

actuators with system sensors

network

controller

what to communicate (how much data):

naïve choice: sensors send y_k and controller u_k

actuators use backup $u_k = 0$, $u_k = u_{k-1}$ if nothing new is received

general case: multiple measurements/commands in each packet

- a) piggy back old measurements, e.g. send $y_k \otimes y_{k-1}$ at k
- b) send input sequences, e.g. send $u_k \& u_{k+1}$ at k

Solution approach to optimize communication

- consider fixed communication schedule tube
- simple performance evaluation necessary + avoid influence of tuning

Combination with robust output feedback MPC: basics

Framework

- LTI system with bounded process noise $x_{k+1} = Ax_k + Bu_k + w_k, w_k \in \mathbb{W}$
- constraints on state x_k and input u_k $x_k \in \mathbb{X}, u_k \in \mathbb{U}$
- sensor measurements, bounded noise $y_k = Cx_k + v_k, v_k \in \mathbb{V}$

"economic" performance

$$z_k = Fx_k + Gu_k$$

 $\frac{Z_k}{A}$ real/tightened constraint

Robust output feedback MPC:

tube approach: decompose dynamics into

- 1. nominal system (no noise) + MPC
- 2. error systems + fixed, linear controller

Contribution:

automated "optimal" controller design (for given communication schedule)

- allows to compare different communication schedules
- guarantees on closed loop behavior (constraint satisfaction, robust stability)
- computationally efficient

Control objective:

worst case optimal set-point tracking

• minimize back off from constraints (set \mathbb{Z}) – tune "tube controller"

