§1 ACHAIN4 INTRO 1

(Downloaded from https://cs.stanford.edu/~knuth/programs.html and typeset on September 17, 2017)

1. Intro. This program is a revision of ACHAIN2 (not ACHAIN3), which you should read first. After I found an unpublished preprint by D. Bleichenbacher and A. Flammenkamp (1997) on the web, I realized that several changes would speed that program up significantly.

The main changes here are: (i) Links are maintained so that it's easy to skip past cases with large l[p]. (ii) When an odd number p is inserted into the chain at position j, we make sure that $p \leq \min(b[j-2] + b[j-1], b[j])$. Previously the weaker test $p \leq b[j]$ was used. (iii) Whenever we find a good chain for n, we update the upper bounds for larger numbers, in case this chain implies a better way to compute them than was previously known. (The factor method, used previously, is just a special case of this technique.)

One change I intentionally did *not* make: When trying to make a[s] be equal to p+q for some previous values p and q, Flammenkamp and Bleichenbacher check to see whether appropriate p and q are already present; if so, they accept a[s] and move on. Very plausible. But they don't implement a strong equivalence test with canonical chains, as I do; and I have not been able to verify that their "move on" heuristic is justifiable together with the strong cutoffs in my canonical approach, because of subtle ambiguities that arise in special cases.

```
/* should be less than 2^{24} on a 32-bit machine */
#define nmax 10000000
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
  unsigned char l[nmax + 2];
  int a[128], b[128];
  unsigned int undo[128 * 128];
  int ptr;
                /* this many items of the undo stack are in use */
  struct {
     int lbp, ubp, lbq, ubq, r, ptrp, ptrq;
  } stack[128];
  int tail [128], outdeg [128], outsum [128], limit [128];
  FILE *infile, *outfile;
                          /* a navigation aid discussed below */
  int down[nmax];
  int link[nmax];
                         /* stack links when propagating upper bounds */
  int top;
                /* top element of the stack (or 1 when empty) */
  int main(int argc, char *argv[])
     register int i, j, n, p, q, r, s, ubp, ubq = 0, lbp, lbq, ptrp, ptrq;
     int lb, ub, timer = 0;
     \langle \text{Process the command line 2} \rangle;
     a[0] = b[0] = 1, a[1] = b[1] = 2;
                                            /* an addition chain always begins like this */
     \langle \text{ Initialize the } l \text{ and } down \text{ tables } 5 \rangle;
     for (n = 1; n < nmax; n++) {
        \langle \text{Input the next lower bound}, lb \ 4 \rangle;
        \langle \text{ Backtrack until } l(n) \text{ is known } 8 \rangle;
       if (n \% 1000 \equiv 0) {
          j = clock();
          printf("%d..%d_1)done_1in_1%.5g_1minutes n", n-999, n
               (\mathbf{double})(j - timer)/(60 * CLOCKS_PER_SEC));
          timer = i;
     done: \langle \text{Update the } down \text{ links } 11 \rangle;
        \langle \text{ Output the value of } l(n) \rangle;
  }
```

2 INTRO ACHAIN4 §2

```
2. ⟨Process the command line 2⟩ ≡
    if (argc ≠ 3) {
        fprintf(stderr, "Usage: "%s infile loutfile \n", argv[0]);
        exit(-1);
    }
    infile = fopen(argv[1], "r");
    if (¬infile) {
        fprintf(stderr, "I couldn't copen '%s' for reading! \n", argv[1]);
        exit(-2);
    }
    outfile = fopen(argv[2], "w");
    if (¬outfile) {
        fprintf(stderr, "I couldn't copen '%s' for writing! \n", argv[2]);
        exit(-3);
    }
}
This code is used in section 1.

3. ⟨Output the value of l(n) 3⟩ ≡
        fprintf(outfile, "%c", l[n] + ' ' ');
        fflush(outfile); /* make sure the result is viewable immediately */
This code is used in section 1.
```

4. At this point I compute the known lower bound $|\lg n| + \lceil \lg \min(\nu n, 16) \rceil$.

(With a change file, I could make the program set l[n] = lb and **goto** done if the input value is ' $_{\square}$ ' or more. This change would amount to believing that the input file has true values, thereby essentially restarting a computation that was only partly finished. Hmm, wait: Actually I should also use the factor method to update upper bounds, before going to done, if l[n] has changed.)

```
 \begin{array}{l} \langle \text{ Input the next lower bound, } lb \hspace{0.2cm} 4 \rangle \equiv \\ \text{ for } (q=n,i=-1,j=0; \hspace{0.2cm} q; \hspace{0.2cm} q \gg = 1,i++) \hspace{0.2cm} j += q \& 1; \hspace{0.2cm} /* \hspace{0.2cm} \text{now } i = \lfloor \lg n \rfloor \hspace{0.2cm} \text{and } j = \nu n \hspace{0.2cm} */ \\ \text{ if } (j>16) \hspace{0.2cm} j = 16; \\ \text{ for } (j--; \hspace{0.2cm} j; \hspace{0.2cm} j \gg = 1) \hspace{0.2cm} i++; \\ lb = fgetc \hspace{0.2cm} (infile) - \verb"\"\"'; \hspace{0.2cm} /* \hspace{0.2cm} fgetc \hspace{0.2cm} \text{will return a negative value after EOF } */ \\ \text{ if } (lb < i) \hspace{0.2cm} lb = i; \end{array}  This code is used in section 1.
```

§5 ACHAIN4 INTRO 3

5. Initially we want to fill the l table with fairly decent upper bounds. Here I use Theorem 4.6.3F, which includes the binary method as a special case; namely, $l(2^A + xy) \le A + \nu x + \nu y - 1$, when $A \ge \lfloor \lg x \rfloor + \lfloor \lg y \rfloor$. Then I also apply the factor method.

The down table temporarily holds νn values here. But then, as explained later, we want down[n] = n - 1 initially.

```
 \langle \text{ Initialize the } l \text{ and } down \text{ tables 5} \rangle \equiv \\ \mathbf{for } (n=2, down[1]=1; \ n < nmax; \ n++) \ down[n] = down[n \gg 1] + (n \& 1), l[n] = 127; \\ \mathbf{for } (i=1, p=0; \ i*i < nmax; \ i++, p=(i\equiv 1 \ll (p+1) ? \ p+1:p)) \ \{ \ \ /* \ p=\lfloor i \rfloor */ \\ \mathbf{for } (j=i, q=p; \ i*j < nmax; \ j++, q=(j\equiv 1 \ll (q+1) ? \ q+1:q)) \ \{ \ \ \ /* \ q=\lfloor j \rfloor */ \\ \mathbf{for } (r=p+q; \ (1 \ll r)+i*j < nmax; \ r++) \\ \mathbf{if } (l[(1 \ll r)+i*j] \geq r+down[i]+down[j]) \ l[(1 \ll r)+i*j] = r+down[i]+down[j]-1; \\ /* \ Hansen's \ method \ */ \\ \} \\ \} \\ \mathbf{for } (n=1; \ n < nmax; \ n++) \ down[n] = n-1; \\ \langle \text{ Apply the factor method 6} \rangle; \\ \text{This code is used in section 1.}
```

6. Whenever we learn a better upper bound, we might as well broadcast all of its consequences, using the factor method. (The total number of times this happens for a particular number n is at most $\lg n$, and the time to propagate is proportional to nmax/n, so the total time for all these updates is at most $O(\log n)^2$ times nmax.)

A linked stack is used to handle these updates. An element p is on the stack if and only if $link[p] \neq 0$, if and only l[p] has decreased since the last time we checked all of its multiples.

```
#define upbound(p, x)
         if (l[p] > x) {
            l[p] = x;
            if (link[p] \equiv 0) link[p] = top, top = p;
\langle \text{ Apply the factor method } 6 \rangle \equiv
               /* start with empty stack */
  for (i = 4; i < nmax; i++) {
    upbound(i, l[i-2]+1);
    upbound(i, l[i-1]+1);
  for (i = 2; i * i < nmax; i++)
    for (j = i; i * j < nmax; j ++) upbound(i * j, l[i] + l[j]);
  while (top > 1) {
    p = top, top = link[p], link[p] = 0;
    upbound(p+1, l[p]+1);
    upbound(p+2, l[p]+2);
    for (i = 2; i * p < nmax; i++) upbound(i * p, l[i] + l[p]);
```

This code is used in section 5.

4 INTRO ACHAIN4 §7

7. Later, whenever we've come up with an addition chain $a[0], \ldots, a[lb]$ that beats the known upper bound, we use the factor method again to send out the good news. And we also might as well use an extension of the factor method found in equation (4.3) in the Bleichenbacher/Flammenkamp paper.

At the beginning of this step, top = 1. We've allocated space for l[nmax] and l[nmax + 1] in order to avoid making a special test here.

```
 \begin{array}{l} \langle \, \text{Update the upper bounds based on the chain found } \, 7 \rangle \equiv \\ & \quad \text{for } (j=1; \ j*n < nmax; \ j++) \ upbound(j*n, l[j]+l[n]); \\ & \quad \text{for } (i=0; \ i < lb; \ i++) \\ & \quad \text{for } (j=1; \ j*n+a[i] < nmax; \ j++) \ upbound(j*n+a[i], l[j]+l[n]+1); \\ & \quad \text{while } (top>1) \ \{ \\ & \quad p=top, top=link[p], link[p]=0; \\ & \quad upbound(p+1, l[p]+1); \\ & \quad upbound(p+2, l[p]+2); \\ & \quad \text{for } (i=2; \ i*p < nmax; \ i++) \ upbound(i*p, l[i]+l[p]); \\ \} \end{array}
```

This code is used in section 12.

§8 ACHAIN4 THE INTERESTING PART

The interesting part. Nontrivial changes begin to occur when we get into the guts of the backtracking structure carried over from the previous versions of this program, but the controlling loop at the outer level remains intact.

```
\langle \text{ Backtrack until } l(n) \text{ is known } 8 \rangle \equiv
  ub = l[n], l[n] = lb;
  while (lb < ub) {
     for (i = 0; i \le lb; i++) outdeg[i] = outsum[i] = 0;
     a[lb] = b[lb] = n;
     for (i = 2; i < lb; i++) a[i] = a[i-1] + 1, b[i] = b[i-1] \ll 1;
     for (i = lb - 1; i \ge 2; i --) {
       if ((a[i] \ll 1) < a[i+1]) a[i] = (a[i+1] + 1) \gg 1;
       if (b[i] \ge b[i+1]) b[i] = b[i+1] - 1;
     Try to fix the rest of the chain; goto backtrackdone if it's possible 12);
    l[n] = ++lb;
  backtrackdone:
```

This code is used in section 1.

One of the key operations we need is to increase p to the smallest element p' > p that has l[p'] < s, given that l[p] < s. Since $l[p+1] \le l[p] + 1$, we can do this quickly by first setting $p \leftarrow p + 1$; then, if l[p] = s, we set $p \leftarrow down[p]$, where down[p] is the smallest p' > p that has l[p'] < l[p].

The links down[p] can be prepared as we go, starting them off at ∞ and updating them whenever we learn a new value of l[n].

Instead of using infinite links, however, we can save space by temporarily letting down[p] = p'' in such cases, where p'' is the largest element less than p whose down link is effectively infinite. These temporary links tell us exactly what we need to know during the updating process. And we can distinguish them from "real" down links by pretending that $down[p] = \infty$ whenever $down[p] \le p$.

```
\langle Given that l[p] < s, increase p to the next such element 9 \rangle \equiv
     if (l[p] \equiv s) p = (down[p] > p ? down[p] : nmax);
This code is used in section 14.
10. \langle Given that l[p] \geq s, increase p to the next element with l[p] < s 10\rangle \equiv
     if (down[p] > p) p = down[p];
     else {
       p = nmax; break;
     while (l[p] \ge s);
This code is used in sections 13 and 14.
11. I can't help exclaiming that this little algorithm is quite pretty.
```

```
\langle \text{Update the } down \text{ links } 11 \rangle \equiv
  if (l[n] < l[n-1]) {
     for (p = down[n]; l[p] > l[n]; p = q) q = down[p], down[p] = n;
     down[n] = p;
   }
```

This code is used in section 1.

6 THE INTERESTING PART ACHAIN4 §12

```
We maintain a stack of subproblems, and a stack for undoing, as in ACHAIN2 and its predecessors.
\langle Try to fix the rest of the chain; goto backtrackdone if it's possible 12 \rangle \equiv
  ptr = 0;
                /* clear the undo stack */
  for (r = s = lb; s > 2; s --) {
     if (outdeg[s] \equiv 1) limit[s] = a[s] - tail[outsum[s]]; else limit[s] = a[s] - 1;
          /* the max feasible p */
     \mathbf{if} \ (\mathit{limit}[s] > b[s-1]) \ \mathit{limit}[s] = b[s-1];
     \langle Set p to its smallest feasible value, and q = a[s] - p 13\rangle;
     while (p \leq limit[s]) {
        \langle Find bounds (lbp, ubp) and (lbq, ubq) on where p and q can be inserted; but go to failpq if they
            can't both be accommodated 17);
        ptrp = ptr;
        for (; ubp \ge lbp; ubp --) {
          \langle \text{ Put } p \text{ into the chain at location } ubp; \text{ goto } failp \text{ if there's a problem } 19 \rangle;
          if (p \equiv q) goto happiness;
          if (ubq \ge ubp) ubq = ubp - 1;
          ptrq = ptr;
          for (; ubq \ge lbq; ubq --) {
             \langle \text{Put } q \text{ into the chain at location } ubq; \text{ goto } failq \text{ if there's a problem } 21 \rangle;
          happiness: (Put local variables on the stack and update outdegrees 15);
                                 /* now a[s] is covered; try to cover a[s-1] */
             goto onward;
          backup: s++;
            if (s > lb) goto impossible;
             ⟨ Restore local variables from the stack and downdate outdegrees 16⟩;
            if (p \equiv q) goto failp;
          failq: while (ptr > ptrq) \langle Undo a change 18\rangle;
                /* end loop on ubq */
       failp: while (ptr > ptrp) (Undo a change 18);
              /* end loop on ubp */
     failpq: \langle Advance p to the next smallest feasible value, and set q = a[s] - p 14\rangle;
         /* end loop on p */
     goto backup;
  onward: continue;
         /* end loop on s */
  \langle \text{Update the upper bounds based on the chain found } 7 \rangle;
  goto backtrackdone;
impossible:
This code is used in section 8.
```

```
13. At this point we have a[k] = b[k] for all r \le k \le lb.
\langle Set p to its smallest feasible value, and q=a[s]-p 13\rangle \equiv
  if (a[s] \& 1) \{
                    /* necessarily p \neq q */
  unequal: if (outdeg[s-1] \equiv 0) q = a[s]/3; else q = a[s] \gg 1;
    if (q > b[s-2]) q = b[s-2];
    p = a[s] - q;
    if (l[p] \ge s) {
       (Given that l[p] \geq s, increase p to the next element with l[p] < s 10);
  } else {
    p = q = a[s] \gg 1;
    if (l[p] \ge s) goto unequal;
                                      /* a rare case like l[191] = l[382] */
  if (p > limit[s]) goto backup;
  for (; r > 2 \land a[r-1] \equiv b[r-1]; r--);
  if (p > b[r-1]) { /* now r < s, since p \le b[s-1] */
    while (p > a[r]) r \leftrightarrow +;   /* this step keeps r < s, since a[s-1] = b[s-1] */
    p = a[r], q = a[s] - p;
  } else if (q  b[r-2]) {
    if (a[r] \le a[s] - b[r-2]) p = a[r], q = b[s] - p;
    else q = b[r-2], p = a[s] - q;
  }
```

This code is used in section 12.

```
14. \langle Advance p to the next smallest feasible value, and set q = a[s] - p 14\rangle \equiv
  if (p \equiv q) {
    if (outdeg[s-1] \equiv 0) q = (a[s]/3) + 1;
                                                    /* will be decreased momentarily */
    if (q > b[s-2]) q = b[s-2]; else q--;
    p = a[s] - q;
    if (l[p] \geq s) {
       \langle Given that l[p] \geq s, increase p to the next element with l[p] < s 10\rangle;
       q = a[s] - p;
  } else {
     \langle Given that l[p] < s, increase p to the next such element 9 \rangle;
     q = a[s] - p;
  if (q > 2) {
    if (a[s-1] \equiv b[s-1]) { /* maybe p has to be present already */
     doublecheck: while (p < a[r] \land a[r-1] \equiv b[r-1]) \ r--;
       if (p > b[r-1]) {
         while (p > a[r]) r \leftrightarrow ;
         p = a[r], q = a[s] - p;
                                     /* possibly r = s now */
       } else if (q > b[r-2]) {
         if (a[r] \le a[s] - b[r-2]) p = a[r], q = b[s] - p;
         else q = b[r-2], p = a[s] - q;
     if (ubq \ge s) ubq = s - 1;
     while (q \ge a[ubq + 1]) ubq ++;
     while (q < a[ubq]) ubq ---;
    if (q > b[ubq]) {
       q = b[ubq], p = a[s] - q;
       if (a[s-1] \equiv b[s-1]) goto doublecheck;
  }
This code is used in section 12.
15. \langle \text{Put local variables on the stack and update outdegrees } 15 \rangle \equiv
  tail[s] = q, stack[s].r = r;
  outdeg[ubp] ++, outsum[ubp] += s;
  outdeg[ubq] ++, outsum[ubq] += s;
  stack[s].lbp = lbp, stack[s].ubp = ubp;
  stack[s].lbq = lbq, stack[s].ubq = ubq;
  stack[s].ptrp = ptrp, stack[s].ptrq = ptrq;
This code is used in section 12.
16. (Restore local variables from the stack and downdate outdegrees 16) \equiv
  ptrq = stack[s].ptrq, ptrp = stack[s].ptrp;
  lbq = stack[s].lbq, ubq = stack[s].ubq;
  lbp = stack[s].lbp, ubp = stack[s].ubp;
  outdeg[ubq]--, outsum[ubq]-=s;
  outdeg[ubp]--, outsum[ubp]-=s;
  q = tail[s], p = a[s] - q, r = stack[s].r;
This code is used in section 12.
```

 $\S17$ ACHAIN4 THE INTERESTING PART \S

17. After the test in this step is passed, we'll have ubp > ubq and lbp > lbq.

```
\langle Find bounds (lbp, ubp) and (lbq, ubq) on where p and q can be inserted; but go to failpq if they can't both
       be accommodated 17 \equiv
  if (l[p] > s) goto failpq;
  lbp = l[p];
  while (b[lbp] < p) lbp ++;
  if ((p \& 1) \land p > b[lbp - 2] + b[lbp - 1]) {
    if (++lbp \ge s) goto failpq;
  if (a[lbp] > p) goto failpq;
  for (ubp = lbp; a[ubp + 1] \le p; ubp ++);
  if (ubp \equiv s-1) lbp = ubp;
  if (p \equiv q) lbq = lbp, ubq = ubp;
  else {
     lbq = l[q];
    if (lbq \ge ubp) goto failpq;
     while (b[lbq] < q) lbq ++;
    if (a[lbq] < b[lbq]) {
       if ((q \& 1) \land q > b[lbq - 2] + b[lbq - 1]) lbq ++;
       if (lbq \geq ubp) goto failpq;
       if (a\lceil lbq \rceil > q) goto failpq;
       if (lbp \leq lbq) lbp = lbq + 1;
       while ((q \ll (lbp - lbq)) < p)
         if (++lbp > ubp) goto failpq;
     for (ubq = lbq; \ a[ubq + 1] \le q \land (q \ll (ubp - ubq - 1)) \ge p; \ ubq ++);
This code is used in section 12.
18. The undoing mechanism is very simple: When changing a[j], we put (j \ll 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1 \ll 31) + (j \ll 24) + x.
#define newa(j, y) undo[ptr++] = (j \ll 24) + a[j], a[j] = y
#define newb(j,y) undo[ptr++] = (1 \ll 31) + (j \ll 24) + b[j], b[j] = y
\langle Undo a change 18\rangle \equiv
```

This code is used in section 12.

i = undo[--ptr];

if (i > 0) $a[i \gg 24] = i \& \# ffffff;$

else $b[(i \& #3fffffff) \gg 24] = i \& #fffffff;$

§19

10

```
At this point we know that a[ubp] \le p \le b[ubp].
19.
\langle \text{Put } p \text{ into the chain at location } ubp; \text{ goto } failp \text{ if there's a problem } 19 \rangle \equiv
  if (a[ubp] \neq p) {
     newa(ubp, p);
     for (j = ubp - 1; (a[j] \ll 1) < a[j+1]; j--) {
        i = (a[j+1]+1) \gg 1;
       if (i > b[j]) goto failp;
        newa(j, i);
      {\bf for} \ (j=ubp+1; \ a[j] \le a[j-1]; \ j +\!\!\!+\!\!\!+) \ \{
        i = a[j-1] + 1;
       if (i > b[j]) goto failp;
        newa(j, i);
  if (b[ubp] \neq p) {
     newb(ubp, p);
     for (j = ubp - 1; b[j] \ge b[j+1]; j--) {
        i = b[j+1] - 1;
       if (i < a[j]) goto failp;
        newb(j, i);
     for (j = ubp + 1; b[j] > b[j-1] \ll 1; j++) {
       i = b[j-1] \ll 1;
       if (i < a[j]) goto failp;
        newb(j, i);
   \langle Make forced moves if p has a special form 20 \rangle;
This code is used in section 12.
```

20. If, say, we've just set a[8] = b[8] = 132, special considerations apply, because the only addition chains of length 8 for 132 are

```
1, 2, 4, 8, 16, 32, 64, 128, 132;
1, 2, 4, 8, 16, 32, 64, 68, 132;
1, 2, 4, 8, 16, 32, 64, 66, 132;
1, 2, 4, 8, 16, 32, 34, 66, 132;
1, 2, 4, 8, 16, 32, 33, 66, 132;
1, 2, 4, 8, 16, 17, 33, 66, 132.
```

The values of a[4] and b[4] must therefore be 16; and then, of course, we also must have a[3] = b[3] = 8, etc. Similar reasoning applies whenever we set $a[j] = b[j] = 2^j + 2^k$ for $k \le j - 4$.

Such cases may seem extremely special. But my hunch is that they are important, because efficient chains need such values. When we try to prove that no efficient chain exists, we want to show that such values can't be present. Numbers with small l[p] are harder to rule out, so it should be helpful to penalize them.

```
 \langle \text{ Make forced moves if } p \text{ has a special form } 20 \rangle \equiv i = p - (1 \ll (ubp - 1)); \\ \text{if } (i \wedge ((i \& (i - 1)) \equiv 0) \wedge (i \ll 4) < p) \ \{ \\ \text{for } (j = ubp - 2; \ (i \& 1) \equiv 0; \ i \gg = 1, j - -) \ ; \\ \text{if } (b[j] < (1 \ll j)) \ \text{goto } \textit{failp}; \\ \text{for } (\ ; \ a[j] < (1 \ll j); \ j - -) \ \textit{newa}(j, 1 \ll j); \\ \}
```

This code is used in section 19.

ACHAIN4 §21

21. At this point we had better not assume that $a[ubq] \le q \le b[ubq]$, because p has just been inserted. That insertion can mess up the bounds that we looked at when lbq and ubq were computed.

```
\langle \text{Put } q \text{ into the chain at location } ubq; \text{ goto } failq \text{ if there's a problem } 21 \rangle \equiv
  if (a[ubq] \neq q) {
     if (a[ubq] > q) goto failq;
     newa(ubq,q);
     for (j = ubq - 1; (a[j] \ll 1) < a[j+1]; j--) {
       i = (a[j+1]+1) \gg 1;
       if (i > b[j]) goto failq;
       newa(j,i);
     for (j = ubq + 1; \ a[j] \le a[j-1]; \ j ++) \ 
       i = a[j-1] + 1;
       if (i > b[j]) goto failq;
       newa(j,i);
     }
  if (b[ubq] \neq q) {
     if (b[ubq] < q) goto failq;
     newb(ubq,q);
     for (j = ubq - 1; b[j] \ge b[j + 1]; j --) {
       i = b[j+1] - 1;
       if (i < a[j]) goto failq;
       newb(j, i);
     for (j = ubq + 1; b[j] > b[j-1] \ll 1; j++) {
       i = b[j-1] \ll 1;
       if (i < a[j]) goto failq;
       newb(j,i);
     }
  \langle Make forced moves if q has a special form 22 \rangle;
This code is used in section 12.
22. \langle Make forced moves if q has a special form 22 \rangle \equiv
  i = q - (1 \ll (ubq - 1));
  if (i \wedge ((i \& (i-1)) \equiv 0) \wedge (i \ll 4) < q) {
     for (j = ubq - 2; (i \& 1) \equiv 0; i \gg 1, j-1);
     if (b[j] < (1 \ll j)) goto failq;
     for (; a[j] < (1 \ll j); j--) newa(j, 1 \ll j);
This code is used in section 21.
```

 $\S23$ ACHAIN4 INDEX 13

23. Index.

a: <u>1</u>. $argc: \underline{1}, \underline{2}.$ $argv: \underline{1}, \underline{2}.$ b: $\underline{1}$. backtrackdone: 8, 12.backup: 12, 13. Bleichenbacher, Daniel: 1, 7. clock: 1. CLOCKS_PER_SEC: 1. done: $\underline{1}$, $\underline{4}$. $doublecheck: \underline{14}.$ down: 1, 5, 9, 10, 11.exit: 2.failp: $\underline{12}$, 19, 20. $failpq: \underline{12}, \underline{17}.$ failq: $\underline{12}$, $\underline{21}$, $\underline{22}$. fflush: 3. fgetc: 4.Flammenkamp, Achim: 1, 7. fopen: 2.fprintf: 2, 3.Hansen, Walter: 5. happiness: $\underline{12}$. $i: \underline{1}$. $impossible: \underline{12}.$ infile: $\underline{1}$, $\underline{2}$, $\underline{4}$. j: $\underline{1}$. *l*: <u>1</u>. lb: 1, 4, 7, 8, 12, 13. $lbp: \ \underline{1}, \ 12, \ 15, \ 16, \ 17.$ lbq: 1, 12, 15, 16, 17, 21. $limit: \underline{1}, 12, 13.$ $link: \underline{1}, 6, 7.$ main: 1.newa: 18, 19, 20, 21, 22. $newb: \underline{18}, 19, 21.$ $nmax: \underline{1}, 5, 6, 7, 9, 10.$ onward: $\underline{12}$. $outdeg \colon \ \ \underline{1}, \ 8, \ 12, \ 13, \ 14, \ 15, \ 16.$ outfile: $\underline{1}$, $\underline{2}$, $\underline{3}$. outsum: $\underline{1}$, 8, 12, 15, 16. *p*: <u>1</u>. printf: 1. $ptr: \underline{1}, 12, 18.$ ptrp: 1, 12, 15, 16.ptrq: 1, 12, 15, 16.q: $\underline{1}$. $r: \underline{1}$. $s: \underline{1}.$ stack: 1, 15, 16.

14 NAMES OF THE SECTIONS ACHAIN4

```
\langle Advance p to the next smallest feasible value, and set q = a[s] - p 14\rangle Used in section 12.
\langle \text{ Apply the factor method } 6 \rangle Used in section 5.
\langle \text{ Backtrack until } l(n) \text{ is known } 8 \rangle Used in section 1.
\langle Find bounds (lbp, ubp) and (lbq, ubq) on where p and q can be inserted; but go to failpq if they can't both
     be accommodated 17 Vsed in section 12.
(Given that l[p] < s, increase p to the next such element 9) Used in section 14.
 Given that l[p] \ge s, increase p to the next element with l[p] < s \mid 10 Used in sections 13 and 14.
\langle \text{ Initialize the } l \text{ and } down \text{ tables } 5 \rangle Used in section 1.
\langle \text{ Input the next lower bound, } lb \mid 4 \rangle Used in section 1.
\langle Make forced moves if p has a special form 20\rangle
                                                           Used in section 19.
\langle Make forced moves if q has a special form 22\rangle
                                                           Used in section 21.
 Output the value of l(n) 3 \ Used in section 1.
\langle \text{Process the command line 2} \rangle Used in section 1.
(Put local variables on the stack and update outdegrees 15) Used in section 12.
\langle \text{Put } p \text{ into the chain at location } ubp; \textbf{goto } failp \text{ if there's a problem 19} \rangle Used in section 12.
(Put q into the chain at location ubq; goto failq if there's a problem 21) Used in section 12.
(Restore local variables from the stack and downdate outdegrees 16) Used in section 12.
(Set p to its smallest feasible value, and q = a[s] - p 13) Used in section 12.
Try to fix the rest of the chain; goto backtrackdone if it's possible 12 Used in section 8.
 Undo a change 18 Used in section 12.
 Update the upper bounds based on the chain found 7 Used in section 12.
\langle \text{Update the } down \text{ links } 11 \rangle Used in section 1.
```

ACHAIN4

	Section	Page
Intro	1	1
The interesting part	8	Ę
Index	23	15