Logistic Regression

Quiz, 5 questions

1	
point	

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):

	Our estimate for $P(y = 1 x; \theta)$ is 0.6
--	--

Our estimate for $P(y = 0|x; \theta)$ is 0.6.

Our estimate for $P(y = 0|x; \theta)$ is 0.4.

Our estimate for $P(y = 1|x; \theta)$ is 0.4.

1 point

2.

Logistic Regression + $\theta_1x_1 + \theta_2x_2$).

Quiz, 5 questions

\boldsymbol{x}_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

L	J(heta) will be a convex function, so gradient descent should converge to
	the global minimum.

3. Logistic Regression, the gradient is given by Quiz, 5 questions $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

- $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) y^{(i)}) x^{(i)}$ (simultaneously update for all
- $\theta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1+arrho^{- heta T_X(i)}} y^{(i)}
 ight) \! x_j^{(i)}$ (simultaneously update for
- $\theta := \theta \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x y^{(i)}) x^{(i)}.$
- $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) y^{(i)}) x_j^{(i)}$ (simultaneously update for all

point

Which of the following statements are true? Check all that apply.

- The sigmoid function $g(z) = \frac{1}{1+e^{-z}}$ is never greater than one (> 1).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- The cost function $J(\theta)$ for logistic regression trained with $m \ge 1$ examples is always greater than or equal to zero.

5.

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=-1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

I, George Wolberg, understand that submitting work that isn't my own may
result in permanent failure of this course or deactivation of my Coursera
account. Learn more about Coursera's Honor Code

Submit Quiz

