OPTIMISATION NUMÉRIQUE

Département de Mathématiques Master Mathématiques

Optimisation Numérique

L'Algorithme du Simplexe

PROGRAMMATION LINÉAIRE I

L'ALGORITHME DU SIMPLEXE

ALGORITHME DU SIMPLEXE

- **1.** Choisir une base réalisable B et poser k = 0.
- 2. A l'étape k on a une base B et la solution de base correspondante $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$. On calcule

$$ar{b} = B^{-1}b, \quad \pi = c_B^{\top}B^{-1}, \quad ar{c}_N = c_N^{\top} - \pi N.$$

3. Si $\bar{c}_N \geq 0$, stop, le minimum est atteint.

SOMMAIRE

- **1** L'ALGORITHME DU SIMPLEXE
- CHANGEMENT DE BASE

Optimisation Numérique

L'Algorithme du Simplexe

PROGRAMMATION LINÉAIRE II

L'ALGORITHME DU SIMPLEXE

Sinon il existe un indice s tel que $\bar{c}_s < 0$. Soit a_s la colonne de Ad'indice s. Calculer $\bar{a}_s := B^{-1} a_s$.

- Si $\bar{a}_s \leq 0$, stop; le minimum égal à $-\infty$.
- Sinon, calculer

$$\hat{x}_s := \frac{\bar{b}_r}{\bar{a}_{rs}} := \min_{1 \leq i \leq m} \Big\{ \frac{\bar{b}_i}{\bar{a}_{is}} \mid \bar{a}_{is} > 0 \Big\}.$$

- **4.** Chercher la variable x_t correspondant à la colonne r de B (l'indice de cette variable est donné par par l'indice de la colonne $Be_r = a_t$ dans A). La variable d'indice s prend la valeur \hat{x}_s et rentre en base et la colonne d'indice t s'annule et sort de la base. On construit ensuite la nouvelle base réalisable en remplaçant la colonne a_t de A par a_s .
- **5.** Faire $k \leftarrow k + 1$ et retourner à 2.

PROGRAMMATION LINÉAIRE III

L'ALGORITHME DU SIMPLEXE

EXEMPLE

$$(\mathcal{L}) \qquad \begin{cases} \min z = -3x_1 + 2x_2 \\ x_1 \leq 4, \\ x_2 \leq 6, \\ x_1 + x_2 \leq 5, \\ x_2 \geq 1, \\ x_1, x_2 \geq 0. \end{cases}$$

◆□▶◆□▶◆□▶◆□▶ □ 夕久

Optimisation Numérique

5/14

L'Algorithme du Simplexe

PROGRAMMATION LINÉAIRE V

L'ALGORITHME DU SIMPLEXE

Soit

$$B_0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad N_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$B_0^{-1} = egin{pmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 1 & -1 \end{pmatrix}.$$

Les variables de base sont x_2 , x_3 , x_4 et x_5 .

$$c_{B_0} = \begin{pmatrix} 2 & 0 & 0 & 0 \end{pmatrix}^{\top}, \quad c_{N_0} = \begin{pmatrix} -3 & 0 \end{pmatrix}^{\top},$$

PROGRAMMATION LINÉAIRE IV

L'ALGORITHME DU SIMPLEXE

La forme standard de (\mathcal{L}) est

$$\begin{cases} \min z = -3x_1 + 2x_2 \\ x_1 + x_3 = 4, \\ x_2 + x_4 = 6, \\ x_1 + x_2 + x_5 = 5, \\ x_2 - x_6 = 1, \\ x_i \ge 0, i = 1, \dots, 6. \end{cases}$$

$$c = \begin{pmatrix} -3 & 2 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}, A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 6 \\ 5 \\ 1 \end{pmatrix}.$$

Optimisation Numérique

6/14

L'Algorithme du Simplexe

PROGRAMMATION LINÉAIRE VI

L'ALGORITHME DU SIMPLEXE

$$ar{b} = B_0^{-1} b = egin{pmatrix} 1 \ 4 \ 5 \ 4 \end{pmatrix}, \quad \pi = c_{B_0}^ op B_0^{-1} = egin{pmatrix} 0 & 0 & 0 & 2 \end{pmatrix},$$

$$\pi N_0 = \begin{pmatrix} 0 & -2 \end{pmatrix}, \quad ar{c}_{N_0} = oldsymbol{c}_{N_0}^{ op} - \pi N_0 = \begin{pmatrix} -3 & 2 \end{pmatrix}.$$

 $\bar{c}_1 = -3 < 0$ et \bar{c}_1 correspond à la variable hors-base x_1 . La colonne a_1 rentre en base.

$$\bar{a}_1 = B_0^{-1} a_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix},$$

PROGRAMMATION LINÉAIRE VII

L'ALGORITHME DU SIMPLEXE

$$\hat{x}_1 := \min_{1 \leq i \leq m} \left\{ \frac{\bar{b}_i}{\bar{a}_{is}} \mid \bar{a}_{is} > 0 \right\} = \frac{\bar{b}_2}{\bar{a}_{21}}, \quad B_0 e_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

La variable x_3 quitte la base. La nouvelle base est alors

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad N = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

et les variables de base sont x_1 , x_2 , x_4 et x_5 .

Optimisation Numérique

Changement de Base

PROGRAMMATION LINÉAIRE I

CHANGEMENT DE BASE

Deux bases consécutives construites par l'algorithme du simplexe sont adjacentes. C'est à dire qu'elles ne diffèrent que par une seule colonne. Si l' on dispose d'une base initiale B_0 et de son inverse B_0^{-1} , on peut calculer l'inverse de la base suivante B à partir de B_0^{-1} . Supposons que B est obtenue en remplaçant la colonne a_r par la colonne a_s . Soit $\bar{a}_s = B_0^{-1} a_s$. On a

$$a_s = B_0 \bar{a}_s = \bar{a}_{1s} b_1 + \bar{a}_{2s} b_2 + \ldots + \bar{a}_{rs} b_r + \ldots + \bar{a}_{ms} b_m$$

où b_1, b_2, \dots, b_m désignent les colonnes de B. On posera $b_r = a_r$.

PROGRAMMATION LINÉAIRE VIII

L'ALGORITHME DU SIMPLEXE

$$c_B = \begin{pmatrix} -3 & 2 & 0 & 0 \end{pmatrix}^{\top} \text{ et } c_N = \begin{pmatrix} 0 & 0 \end{pmatrix}^{\top}.$$
 $B^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & -1 \end{pmatrix}, \quad \bar{b} = B^{-1}b = \begin{pmatrix} 4 \\ 1 \\ 5 \\ 0 \end{pmatrix}$
 $\pi = c_B^{\top}B^{-1} = \begin{pmatrix} -3 & 0 & 0 & -2 \end{pmatrix}, \quad \pi N = \begin{pmatrix} -3 & -2 \end{pmatrix}$

On a $\bar{c}_N > 0$ et donc B est une base réalisable optimale ; et $x^* = (4 \ 1)$. La valeur minimale du problème est $z^* = z(x^*) = -10$.

 $\bar{c}_N = c_N^\top - \pi N = (0 \quad 0) - (-3 \quad -2) = (3 \quad 2).$

Changement de Base

PROGRAMMATION LINÉAIRE II

CHANGEMENT DE BASE

On aura donc

$$b_r = \frac{1}{\overline{a}_{rs}}a_s - \frac{\overline{a}_{1s}}{\overline{a}_{rs}}b_1 - \frac{\overline{a}_{2s}}{\overline{a}_{rs}}b_2 - \ldots - \frac{\overline{a}_{ms}}{\overline{a}_{rs}}b_m.$$

Soit $\alpha \in \mathbb{R}^m$. Alors $B_0 \alpha = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_r b_r + \ldots + \alpha_m b_m$. En remplaçant b_r par son expression et en arrangeant les termes on obtient

$$B_0 \alpha = (\alpha_1 - \alpha_r \frac{\bar{a}_{1s}}{\bar{a}_{rs}}) b_1 + (\alpha_2 - \alpha_r \frac{\bar{a}_{2s}}{\bar{a}_{rs}}) b_2 + \dots + \\ + (\alpha_{r-1} - \alpha_r) \frac{\bar{a}_{r-1s}}{\bar{a}_{rs}} b_{r-1} + \frac{\alpha_r}{\bar{a}_{rs}} a_s + \\ + (\alpha_{r+1} - \alpha_r \frac{\bar{a}_{r+1s}}{\bar{a}_{rs}}) b_{r+1} + \dots + (\alpha_m - \alpha_r \frac{\bar{a}_{ms}}{\bar{a}_{rs}}) b_m.$$

Changement de Base

PROGRAMMATION LINÉAIRE III

CHANGEMENT DE BASE

$$\begin{pmatrix} \alpha_{1} - \alpha_{r} \frac{\bar{a}_{1s}}{\bar{a}_{rs}} \\ \alpha_{2} - \alpha_{r} \frac{\bar{a}_{2s}}{\bar{a}_{rs}} \\ \vdots \\ \frac{\alpha_{r}}{\bar{a}_{rs}} \\ \alpha_{r+1} - \alpha_{r} \frac{\bar{a}_{r+1s}}{\bar{a}_{rs}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & -\frac{\bar{a}_{1s}}{\bar{a}_{rs}} & 0 & \dots & 0 \\ 0 & 1 & \dots & -\frac{\bar{a}_{2s}}{\bar{a}_{rs}} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{\bar{a}_{rs}} & 0 & \dots & 0 \\ 0 & 0 & \dots & -\frac{\bar{a}_{r+1s}}{\bar{a}_{rs}} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{r} \\ \alpha_{r+1} - \alpha_{r} \frac{\bar{a}_{ms}}{\bar{a}_{rs}} \end{pmatrix} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{r} \\ \alpha_{r+1} \\ \vdots \\ \alpha_{m} \end{pmatrix}$$

Optimisation Numérique 13 /

Changement de Base

PROGRAMMATION LINÉAIRE IV

CHANGEMENT DE BASE

Donc $B_0\alpha = BE\alpha$, où

$$E = \begin{pmatrix} 1 & 0 & \dots & -\frac{\bar{a}_{1s}}{\bar{a}_{rs}} & 0 & \dots & 0 \\ 0 & 1 & \dots & -\frac{\bar{a}_{2s}}{\bar{a}_{rs}} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{\bar{a}_{rs}} & 0 & \dots & 0 \\ 0 & 0 & \dots & -\frac{\bar{a}_{r+1s}}{\bar{a}_{rs}} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -\frac{\bar{a}_{ms}}{\bar{a}_{rs}} & \dots & \dots & 1 \end{pmatrix}$$

D'où $B_0 = BE$ et $B^{-1} = EB_0^{-1}$. La matrice E est la matrice de changement de base.

()

Optimisation Numérique