Name:
Teacher/Class:

SYDNEY TECHNICAL HIGH SCHOOL

HSC ASSESSMENT TASK 1

DECEMBER 2005

MATHEMATICS

Time Allowed: 70 minutes

Instructions:

- Start each question on a new page.
- You may write on the front and back of each sheet of paper. Ask for more paper if required.
- Indicated marks are a guide only and may be changed slightly if necessary.
- Marks may not be awarded for careless or badly arranged work.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Question 7	Question 8	Total
/7	/7	/7	/7	/8	/8	/8	/9	/61
,,	,,	,,	,,	70	73	70	,,	701

QUESTION 1:

Marks

Differentiate:

i)
$$2x^3 + x + 4$$

1

ii)
$$(5x^2-3)^4$$

2

$$iii) \qquad \frac{3x}{2x+5}$$

2

iv)
$$(x-3)(x^3+5x-6)$$

2

QUESTION 2: (Start new page)

A. Show that the point (2, -8) lies on the curve
$$y = 3x^3 - 8x^2$$

1

i) Hence find the equation of the tangent at this point

3

B. Find the equation of the locus of the point
$$P(x, y)$$

if
$$PA = PB$$
 where A is the point (-2, 1) and B is (4, -3)

3

QUESTION 3: (Start new page)

Marks

1

3

A.

- i) By which test is \triangle ABC |||| \triangle DBE? (DO NOT PROVE)
- ii) Hence or otherwise find the value of x and y by giving a reason and showing all working 3
- **B.** i) Another way of writing $\sqrt{2x-4}$ is $(2x-4)^a$. Find a
 - ii) Hence differentiate $x^2 \sqrt{2x-4}$

QUESTION 4: (Start a new page)

- A. Let the roots of $x^2 + 3x 5 = 0$ be α and β . Without solving the equation, find the values of:
 - i) $\alpha + \beta$

ii) $\alpha \beta$

iii) $\frac{1}{\alpha} + \frac{1}{\beta}$

- iv) $\alpha^2 + \beta^2$
- **B.** By making a suitable substitution, solve $3^{2x}-10.3^{x}+9=0$

QUESTION 5: (Start a new page)

Marks

A. A parabola has an equation $y = x^2 - 6x - 7$

i) Sketch this parabola showing its vertex and the x and y intercepts

4

ii) Hence or otherwise solve $x^2 - 6x - 7 > 0$

1

iii) What is the minimum value of this parabola?

1

B. This diagram could be the graph of:

1

$$(A) \quad y = x^2 + 4$$

(B)
$$y = x^2 - 2x$$

(C)
$$y = x^2 + 4x$$

(D)
$$y = (x-2)^2$$

(E)
$$y = (x+2)^2$$

C. Sketch a negative definite quadratic function.

1

QUESTION 6: (Start a new page)

Marks

A. Find the equation of the locus of the point P(x, y) which moves so that it is always a distance of 3 units from the point (2,-1).

2

В.

ABCD is a square

$$ED = FD$$

i) Prove that triangles BAE and BCF are congruent.

3

ii) Given \angle BFC = 55°, find \angle EBF giving reasons

3

QUESTION 7: (Start a new page)

- A. The vertex of a parabola is (1,4) and its directrix is x = -3
 - i) Sketch the parabola

1

ii) Find the focal length "a" of this parabola and hence give the coordinates of the focus.

2

iii) Find the equation of this parabola

2

B. Find the values of a, b and c if $2x^2 + 3x - 5 = a(x+1)^2 + b(x+1) + c$

3

QUI	ESTIC	ON 8: (Start a new page)	Marks
A.		the range of values of k for which the roots of $(k+2)x + (k+5) = 0$ are real	4
В.	i)	A normal to the curve $y=3x^2-5x+2$ has a gradient of -1 Find the coordinates of the point of intersection between the normal and the curve.	3
	ii)	Hence find where this normal cuts the y axis.	2

Teacher's Name: Bcin BFC = 55 Question $\sqrt{(x-2)^2+(y--)^2}=3$ > FBC=35 (ando Aci) 👌 ... Question $(x-2)^{2}+(y+1)^{2}=9$ LEBF = 90-2×35 $2x^2 + 3x - 5$ a =2 = 20° (CI; 4) ⁻⁻ $\equiv a(x+1)^2 + b(x+1) + C$ = 9x2+2ax+9+ bx+b+C = ax2 + (2a + b)x + (a+b+c sum of a + (5,4) Student's Name/No: 0+b+C=-5 B.ci, BA = BC 1 A = 1 C AE = FC 1+C=-5 (iii) Standard form: (i) 0 = 4 units tocus is $(y-1)^2 = 4g(x-h)$ (1) each error or tor congruent triangles) (subtracted from equal sides (5,4)(1) Savare

$M = -1 \qquad (10)$ $y - 0 = -1(x - 1) \qquad (10)$ $x = 0$	B $y = 3x^3 - 5x + 2$ $= \frac{1}{2} = 6x - 5 $	Teacher's Name: Student's Name/N°: 0 yestion 8 A $x^3 - (k+2)x + (k+5) = 0$ Real roots if $\Delta > 0$ $(e^2 + (k+2)^3 - 4, 1, (k+5) > 0$ $(k^2 + 4k + 4 - 4k - 20 > 0$ $(k^2 - 16 > 0$ $(k^2 - 16 > 0$ $(k - 4)(k + 4) > 0$ $(k - 4)(k + 4) > 0$
	tien O	(f)

Teacher's Name: <u>3</u> (ii) 3.5 = 4.2+2.8 ci) Laviangulas Question Question $y = 3x^3 - 8x^2$ satisfy w H $(x-3)(3x^2+5)+x^3+5x-6$ $4x^3 - 9x^2 + 10x - 21$ $x^{2}+5x-9x^{2}-15+x^{3}+5x-6$ Solutions Assessment (i) 4(5x2-3)3 × 10x (1) (ii) da (2x+5 14 +1=xx18x+16+xx+64+9 (1) 5 =0 Student's Name/Nº: Task Θ 2005 Mathematics theorem $= \frac{(2x+5)^3-3x(2)}{(2x+5)^3}$ Collesponding sides make the same rate 8 = 4(x-2)2x+5intercopts OR

-7(0)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$0 = x^{2} - 6x - 7$ $0 = (x + 1)(x - 7)$ $0 = (x + 1)(x - 7)$	Question 5 A. i.y = $x^3 - 6x - 7$ $(0^7 - 7)$ y intercept	$3^{x} = 0 0 3^{x} = 9 $ (1) $x = 0 0 3^{x} = 9 $ (1)	Let $v=3^{2}$ (v-1)(v-9)=0	B. 3 ^{2x} 10, 3 ^x 9 = 0	Question 4 A. (i) $\alpha + \beta = -\frac{b}{a}$ (ii) $\alpha \beta = -\frac{b}{a}$	$\frac{1}{1} \cdot Q = \frac{1}{2}$	' . i"
	B Ansvec D	ciii) Minimum Value	(i) $x^2 - 6x - 7 > 0$ x < -1 $x > 7$				$\frac{c}{c} = \frac{c}{c} = \frac{c}$	$= x^{2}, \frac{1}{5}(2x-4)^{-3}, 2+2$ $= \frac{x^{2}}{52x-4} + 2x\sqrt{2x-4}$	Name/