BALLISTA, a 3D ballistic trajectory simulator

User guide (Version 001)

Contents

В	ALLIS	STA, a 3D ballistic trajectory simulator	1
	User	guide (Version 1)	1
1	Int	roduction	3
	1.1	Ballistic projectiles in Volcanic Setting	3
	1.2	About this manual	4
2	Ger	neral Instructions/ Workflow	4
3	Ins	tallation and creating directories	9
	3.1	Install Java Runtime Environment (JRE)	9
	3.2	Make the directory structures	9
4	Dat	a preparation	10
	4.1	Initial Condition file	10
	4.2	Digital Elevation Model (DEM)	10
5	Inp	ut Parameters	12
	5.1	Topography and Map	13
	5.2	Center position of the vent	13
	5.3	Particle Attributes	13
	5.4	Ejection Location	15
	5.5	Ejection Conditions	16
	5.6	Particle Drag Coefficient	17
6	Out	put files, parameters and definitions	18
	6.1	Deposition data	18
	6.2	Trajectory data	19
7	Pos	t-simulation process	19
	7.1	Mapping Deposition Locations on QGIS	19
	7.2	Creating trajectory figure with Matlab/ Ocatve	19

1 Introduction

1.1 Ballistic projectiles in Volcanic Setting

Ballista is a numerical simulation program that models the trajectories and depositions of ballistic projectiles in volcanic settings.

Ballistic projectiles are volcanic pyroclasts which are transported in the air, decoupled from the gas phase at the early stage of transport, and follow independent parabolic trajectories. The diameters of these particles are generally larger than 64 mm and they are often called ballistic blocks or ballistic bombs.

Fig. 1: The 2015 strombolian eruption at the Central Crater of Aso Volcano in Japan. Photo by Yasuo Miyabuchi.

In strombolian eruption, pyroclasts released from the vent are rarely blown by wind and deposit around crater (e.g. Fig. 1). Therefore, these pyroclasts are classified as ballistic projectiles. Ballistic pyroclasts are also released in plinian and subplinian eruptions. Large pyroclasts separate from the eruptive column around jet region which is the lowest part of the volcanic plume in plinian and subplinian erutpions.

Ballista simulates trajectories and deposition positions of these pyroclasts in three dimensions. In order to talk about the physics and how this numerical model works, "pyroclasts" are expressed as "particles" after this.

This program accounts for multiple particles released at the same time and calculate their trajectory in three dimensions. Digital Elevation Model (DEM) is used for considering the topographic effect of deposition position.

The system is developed based on Java technology and it is usable on any operating system. Furthermore, the graphical user interface (GUI) makes it easy to use without remembering complex commands.

1.2 About this manual

We show general instructions of Ballista with images of GUI in *Chapter 2* to have an overview of this software. Then, the details come afterwards. Preparation of the simulation is divided into two works. One is to setup the computer environment such as installation of Java Runtime Environment and place this Ballista program in your computer (*Chapter 3*). Another is to create a DEM file and write the input parameter file (*Chapter 4*). Input parameter definition and explanations are in *Chapter 5*. Users should make an input parameter file of their own problem referring the examples in this chapter. Users obtain two files after the simulation; resdepo.txt and restraje.txt. The former is the file including parameters related to deposition position and conditions of each particles, and the letter is the file of the time dependent trajectory. The operation of post-simulation processes to show the output with the map or the figure is explained in *Chapter 6*. Definitions of output parameters are explained in *Chapter 7*.

2 General Instructions/ Workflow

- i. Install java program and create directories as explained in section 3.
- ii. Prepare an initial condition file, a Digital Elevation Model file and a center position file following the instructions of the section 3 "Data Preparation".
- iii. To start Ballista, double click the file "Ballista_001.jar" (If you hide the extention, it is shown as "ballista_001".) in MyBallista folder.

iv. Click "Open File" button.

v. Choose the initial condition file whose extension is ".txt".

vi. You can see the parameters and their values on the list. Check if all the parameters are correctly set. If not, please exit the **Ballista** and edit your initial condition file again. If parameters and values are correct, please click "calculate" button to start the simulation.

vii. If the simulation finishes without any problem, it shows the pop-up saying "Simulation is successfully finished". Check the path of the result file and close the simulator clicking "OK" button.

viii. You can find the result file in the "result" folder just under the "MyBallista" folder.

3 Installation and creating directories

3.1 Install Java Runtime Environment (JRE)

Ballista is a java based program and thus it is usable on Windows, Linux and Mac.

3.2 Make the directory structures

Open the "MyBallista" folder from where you have saved it on your computer. It includes ballista_001.jar which is the executable file, and three directories "DEM", "INIT" and "results". If these directories do not exist, please create these folders and keep them together.

Fig. 3-1: File and directory structure.

- **DEM**: This directory includes Digital Elevation Model (DEM) files for including topography and a file for the vent location. By default, this directory includes the DEM and vent location of Mt. Ontake in Japan as examples, within the **OntakeDEM** folder. When using Ballista at other volcanoes we suggest creating a new directory within the **DEM** directory that is named after that volcano e.g. **ColimaDEM**. This way, DEM files from different volcanoes can be held in separate directories.
- **INIT**: This directory holds the input parameter files. These input parameter files should have an extension ".txt". Without this file extension, the programme will not recognize it as an input parameter file.
- results: This directory is empty before we run Ballista. The Ballista
 program will create output files automatically under this directory with the
 same name as the input parameter file used. Thus, you can recognise the
 results files of particular input parameters. In this directory, the system
 saves a deposition data file "resdepo.txt" and a trajectory data file
 "restraje.txt".
- ballista_001.jar: This is the program file of Ballista. It starts when you double click this file.

4 Data preparation

4.1 Initial Condition file

Initial condition file should be stored in the "INIT" folder just under "MyBallista" folder. It should be a text file and named as "****.txt" (You can put any name on *****). The name ***** will be a name of the folder which stores simulation result files.

e.g. Initial condition file name: nagaoyama_150ms_N.txt

 \rightarrow Result folder name: nagaoyama_150ms_N

In the initial condition file, "#" mark on the head of the line means the comment line. The value in this line will be ignored. Thus, the parameter explanation is put on this line.

Values of parameter is set after the key of the parameter and a colon ":" mark. e.g.

velocity.norm.avg: 150

In this example, the key of the parameter is "velocity.norm.avg" and the value is "150". Explanation of each parameters are in the section 4 "Input Parameters".

4.2 Digital Elevation Model (DEM)

Topography around the vent is given by a Digital Elevation Model (DEM) file in ESRI Ascii format. Here, we introduce how to prepare a DEM file using a gdal and QGIS systems.

DEM preparation

DEM files are often provided with Geotiff format so we should convert them into Esri grid data (extension: .asc).

There is a way to convert it with QGIS (http://www.qgis.org/) or gdal (http://www.gdal.org). QGIS is free GIS software with GUI, which can be used on Mac/Windows/Linux. Gdal is a command based GIS software working on Linux.

i. With gdal command:

Type the following command to convert your Geotiff file of DEM in the Linux terminal on which the gdal software is installed.

% gdal_translate -of AAIGrid INPUT.tif OUTPUT.asc

INPUT.tif: a name of the input file in Geotiff format.*QUTPUT*.asc: a name of the output file in ASCII format.

ii. With QGIS:

- a) Launch QGIS.
- b) Open your Geotiff file by drag-and-drop or from the menu \rightarrow Layer \rightarrow Add Layers \rightarrow Add Raster Layer
- c) Launch conversion tool from menu \rightarrow Raster \rightarrow Conversion \rightarrow Type Conversion

Fig. 4-1: Display of QGIS for converting the Geotiff file to ASCII file.

d) Select the input layer (Geotiff) and output file name. Output file name should be set by clicking the "Select" button. Choose the "Arc/Info ASCII Grid (*.asc * ASC)" as a file type.

Fig. 4-2: Save the ASCII file into your folder

e) Click "OK" button to start the conversion.

Please read more explanation on the QGIS tutorial website.

5 Input Parameters

Input parameter values can be input in several data types:

- 1) *Int:* The int data type represents an unsigned 32-bit integer.
- 2) **Double:** The double data type is a double-precision 64-bit IEEE 754 floating point. For decimal values, this data type is generally the default choice.
- 3) *String:* Literals of types, String may contain any Unicode (UTF-16) characters. String accepts multiple characters.

Please refer the Java website for further explanation

(http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html).

5.1 Topography and Map

Parameters in Input file	Description
#Topography file directory	This directory includes a Digital Elevation Model (DEM)
directory.name	file for including topography and a file showing vent
	location. DEM files should be provided in ESRI ASCII
	Raster format. The DEM data should have an extension
	".asc" and vent location files should have an extension
	".txt"
	Value Type: String
	Default value: OntakeDEM
	Unit: -

5.2 Center position of the vent

Parameters in Input file	Description
# Center Position of the	"CenterX" is the X coordinate of the center position, and
vent	"CenterY" is the Y coordinate of the center position.
CenterX	These coordinate should be the same as the DEM
CenterY	coordinate.
	Value Type: Double
	Default value:
	CenterX: 0
	CenterY: 0
	Unit: It should be the same as DEM units. e.g.) If your
	DEM is based on the UTM coordinate system, the unit
	is meter. If the DEM is based on the WGS
	(latitude/longitude), the unit is degree

5.3 Particle Attributes

Parameters in Input file	Description
# Number of particles per	Users can select any number of particles to emit from
burst	the vent.
numOfParticle.avg	Value Type: double
	Default value:
	numOfParticle.avg: 100.0
	Unit: -

Parameters in Input file	Description
# Particle density	Particle density is set as a Gaussian distribution with
density.avg	average (density.avg) and standard deviation
density.std	(density.std) values. If you would like to set the single
	value, please input only "density.avg" and put
	"density.std" as 0.
	Value Type: double
	Default value:
	density.avg: 2300
	density.sd: 0.0
	Unit: kg/m ³

Parameters in Input file	Description
# Particle diameter	Particle diameter is set as a Gaussian distribution
diameter.avg	with an average (diameter.avg) and a standard
diameter.sd	deviation (diameter.std). We can include a limit on
diameter.min	particle diameter with minimum value (diameter.min)
diameter.max	and maximum value (diameter.max).
	To set the single value, please input only
	"diameter.avg" and put "diameter.std" as 0. If the
	standard deviation is 0, then the simulator
	automatically ignores minimum and maximum
	values.
	Value Type: double
	Default value:
	diameter.avg: 0.5
	diameter.sd: 0.1
	diameter.min: 0.0
	diameter.max: 1.0
	Unit: metre

5.4 Ejection Location

Parameters in Input file	Description
#Displacement of the	Assuming the vent is a circle, the displacement is a
launch point from the vent	distance from the centre of the vent where the particles
centre	exit. Particles therefore do not all exit from a single point
displacement.avg	but from a wider area (see Fig. 1).
displacement.sd	Value Type: double
displacement.max	Default value:
	displacement.avg: 0.0
	displacement.sd: 15.0
	displacement.max: 10.0
	Unit: metre

Fig. 5-1: Displacement of ejection points from the vent centre. $\,$

5.5 Ejection Conditions

Parameters in Input file	Description
#Particle ejection velocity	Particle ejection velocity $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$. The value is
velocity.norm.avg	picked randomly from a Gaussian distribution using an
velocity.norm.sd	average (velocity.norm.avg) and standard deviation
	(velocity.norm.sd).
	Value Type: double
	Default value:
	velocity.norm.avg: 100
	velocity.norm.sd: 0.0
	Unit: m/s

Parameters in Input file	Description
#Ejection angle	Ejection angle is the angle between the axis of ejection
axis.eject.deg	and the vertical. If the ejection angle is 0 then the
	eruption is vertical.
	Value Type: double
	Default value:
	axis.eject.deg: 20.0
	Unit: degree

Parameters in Input file	Description
#Direction bearing	Direction bearing is the bearing from north reflecting the
direct.bearing.deg	ejection direction from the vent (e.g. an eruption directed
	to the NE would have a bearing of 45°).
	Value Type: double
	Default value:
	direct.bearing.deg: 20
	Unit: degree

(b) Direction bearing

Parameters in Input file	Description
#Wind Velocity	Wind velocity is a constant wind velocity during the
wind.x	simulated ballistic transport. This wind is applied
wind.y	everywhere in the simulation sites and the value cannot
	be changed.
	Value type: double
	Default value:
	wind.x: 0.0
	wind.y: 0.0
	Unit: m/s

Particle Drag Coefficient 5.6

Parameters in Input file	Description
#Drag Coefficient	Drag Coefficient is a constant for defining the particle
dragCoefficient.cnst	drag when it travels in the air. For the detail description
	and equation, please refer Tsunematsu et al (2016).
	Value type: double
	Default value:
	dragCoefficient.cnst: 0.8
	Unit: -

6 Output files, parameters and definitions

Ballista saves two files "resdepo.txt" and "restraje.txt" in the **results** directory. They are in a text delimited with tabs format. These files can be opened by Excel or text editors. The **resdepo** file holds all the particle deposition data which can be turned into a spatial distribution map. The **restraje** file holds all the particle trajectory files and can be imported into Matlab/Octave to create trajectory figures.

Figure 6-1. Left: Map created using resdepo file. Right: Image created using restraje file.

6.1 Deposition data

Included in the **resdepo** file:

Column Number	Parameter Name (Header description)	Explanation
1	x	Coordinate of location where the particle
2	у	deposit in <i>meter</i> . It uses the same
3	z	coordinate system as DEM.
4	Distance from the vent	Horizontal Distance calculated by
		Distance = $\sqrt{x^2 + y^2}$ in <i>meter</i> .
5	Particle mass	Mass is calculated by Mass = $\frac{Di^3\pi}{6} \times \rho_p$
		in <i>kg</i> .
6	Particle velocity when	This is the norm of velocity calculated by
	it impacts the surface	$ V = \sqrt{V_x^2 + V_y^2 + V_z^2}$ in <i>m/s</i> .
7	Particle density	Density of the particle. If it is not
		randomly generated, it is as the same as
		the input value in kg/m^3 .
8	Particle diameter	Diameter of the particle. If it is constant,

		it is as the same as the input value
		in meter.
9	Particle id	Particle id is automatically generated by
		Ballista in order to have a reference with
		trajectory data.

6.2 Trajectory data

Included in the **restraje** file:

Column Number	Parameter Name (Header description)	Explanation
1	Time	Time after the event starts in <i>second</i> .
		Particle id is automatically generated
2	Particle id	by Ballista in order to have a reference
		with deposition data.
3	X	Coordinate of location when the particle
4	у	the particle travels in the air or deposit
5	Z	in <i>meter</i> .

7 Post-simulation process

In order to analyse the data, it is necessary to

- 7.1 Mapping Deposition Locations on QGIS
 - This section is under construction!!
- 7.2 Creating trajectory figure with Matlab/ Ocatve

This section is under construction!!