Содержание

L	Базовые теоретические вопросы	
	1.1	Дать определение единичной, нулевой, верхней треугольной и нижней тре-
		угольной матрицы
	1.2	Дать определение равенства матриц
	1.3	Дать определение суммы матриц и произведения матрицы на число
	1.4	Дать определение операции транспонирования матриц
	1.5	Дать определение операции умножения матриц
	1.6	Дать определение обратной матрицы
	1.7	Дать определение минора. Какие миноры называются окаймляющими для
		данного минора матрицы?
	1.8	Дать определение базисного минора и ранга матрицы
	1.9	Дать определение однородной и неоднородной СЛАУ
	1.10	Дать определение фундаментальной системы решений однородной СЛАУ
	1.11	Записать формулы для нахождения обратной матрицы к произведению двух
		обратимых матриц и для транспонированной матрицы
	1.12	Дать определение присоединённой матрицы и записать формулу для вычис-
		ления обратной матрицы
	1.13	Перечислить элементарные преобразования матриц
	1.14	Записать формулы Крамера для решения системы линейных уравнений с
		обратимой матрицей
	1.15	Перечислить различные формы записи системы линейных алгебраических
		уравнений (СЛАУ). Какая СЛАУ называется совместной?
	1.16	Привести пример, показывающий, что умножение матриц некоммутативно
	1.17	Сформулировать свойства ассоциативности умножения матриц и дистрибу-
		тивности умножения относительно сложения
	1.18	Сформулировать критерий Кронекера — Капелли совместности СЛАУ
		Сформулировать теорему о базисном миноре
	1.20	Сформулировать теорему о свойствах решений однородной СЛАУ
	1.21	Сформулировать теорему о структуре общего решения неоднородной СЛАУ
	1.22	Сформулировать теорему о структуре общего решения однородной СЛАУ
	1.23	Сформулировать теорему об инвариантности ранга при элементарных пре-
		образованиях матрицы
	1.24	Сформулировать критерий существования обратной матрицы
2		ретические вопросы повышенной сложности
	2.1	Доказать теорему о связи решений неоднородной и соответствующей одно-
		родной СЛАУ и теорему о структуре общего решения неоднородной СЛАУ
	2.2	Доказать свойства ассоциативности и дистрибутивности умножения матриц
	2.3	Доказать теорему о базисном миноре
	2.4	Доказать критерий существования обратной матрицы
	2.5	Доказать критерий Кронекера — Капелли совместности СЛАУ
	2.6	Доказать теорему о существовании ФСР однородной СЛАУ
	2.7	Вывести формулы Крамера для решения системы линейных уравнений с
		обратимой матрицей
	2.8	Доказать теорему о структуре общего решения однородной СЛАУ

1 Базовые теоретические вопросы

1.1 Дать определение единичной, нулевой, верхней треугольной и нижней треугольной матрицы

Определение. Единичная матрица — матрица, у которой все элементы на главной диагонали равны единице, а остальные равны нулю.

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Определение. Нулевой матрицей называется матрица, элементы которой равны нулю.

Определение. Верхней треугольной матрицей называется квадратная матрица, у которой под главной диагональю все элементы равны нулю.

$$A = \begin{pmatrix} 2 & 5 & 6 & 11 \\ 0 & 3 & 7 & 10 \\ 0 & 0 & 4 & 9 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

Определение. Нижней треугольной матрицей называется квадратная матрица, у которой над главной диагональю все элементы равны нулю.

1.2 Дать определение равенства матриц

Определение. Две матрицы **равны**, если они имеют одинаковую размерность и их соответствующие элементы равны.

1.3 Дать определение суммы матриц и произведения матрицы на число

Определение. Суммой матриц $A_{m \times n}$ **и** $B_{m \times n}$ называется матрица C, элементы которой являются суммами соответствующих элементов A и B.

$$A_{m \times n} + B_{m \times n} = C_{m \times n}$$
, где $c_{ij} = a_{ij} + b_{ij}$, $i = 1 \dots m$ $j = 1 \dots n$

Замечание. Операция сложения матриц вводится только для матриц <u>одинаковых</u> размеров.

Определение. Произведением матрицы $A_{m \times n}$ на число k = const называется матрица $C_{m \times n}$, элементы которой равны произведению соответствующего элемента матрицы a_{ij} на число k.

$$C = k \cdot A$$
 $c_{ij} = k \cdot a_{ij}$, где $i = 1, \ldots, m$ $j = 1, \ldots, n$

1.4 Дать определение операции транспонирования матриц

Определение. Транспонированной матрицей $(A_{m \times n}^T)$ называется матрица $A_{n \times m},$ элементы которой равны $a_{ij}^T = a_{ji}, \quad i = 1, \dots, m$ $j = 1, \dots, n$

$$A_{2\times 3} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \longrightarrow A_{3\times 2}^T \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

1.5 Дать определение операции умножения матриц

Определение. Произведением матриц $A_{m \times k}$ и $B_{k \times n}$ называется матрица $C_{m \times n}$, которая получается следующим образом:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} = \sum_{l=1}^{k} a_{il} \cdot b_{lj}$$
 $i = 1, \ldots, m$
 $j = 1, \ldots, n$

Замечание. Матрицы можно перемножить, если количество столбцов первой матрицы равно количеству строк второй матрицы. Тогда результирующая матрица будет иметь количество строк первой матрицы и количество столбцов второй матрицы.

$$C_{4\times5} = A_{4\times\underline{2}} \cdot B_{\underline{2}\times5}$$

3

Пример.

$$C_{2\times 2} = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 2 & -1 \\ 3 & -2 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 \cdot 4 + (-1) \cdot 2 + 2 \cdot 3 & 1 \cdot 5 + (-1)(-1) + 2(-2) \\ 2 \cdot 4 + 3 \cdot 2 + 0 \cdot 3 & 2 \cdot 5 + 3 \cdot (-1) + 0 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ 14 & 17 \end{pmatrix}$$

1.6 Дать определение обратной матрицы

Определение. Обратной матрицей квадратной матрицы $A_{m \times n}$ называется матрица $A_{m \times n}^{-1}$ такая, что

$$A \cdot A^{-1} = A^{-1} \cdot A = E$$

1.7 Дать определение минора. Какие миноры называются окаймляющими для данного минора матрицы?

Определение. Минором k-го порядка матрицы A называется определитель, составленный из пересечения k строк и k столбцов матрицы A с сохранением их порядка.

Определение. Окаймляющим минором для минора M матрицы A называется минор M', который получается из минора M путём добавления одной строки одного столбца. Порядок окаймляющего минора на единицу больше минора M.

$$A = \begin{pmatrix} 4 & 5 & 1 & 3 \\ 3 & 2 & 7 & 5 \\ 1 & -1 & 0 & 7 \end{pmatrix}$$
 $M_2 = \begin{vmatrix} 4 & 5 \\ 3 & 2 \end{vmatrix} \longrightarrow M_3' \begin{vmatrix} 4 & 5 & 1 \\ 3 & 2 & 7 \\ 1 & -1 & 0 \end{vmatrix}$ или $M_3' = \begin{vmatrix} 4 & 5 & 3 \\ 3 & 2 & 5 \\ 1 & -1 & 7 \end{vmatrix}$

1.8 Дать определение базисного минора и ранга матрицы

Определение. Базисным минором матрицы A называется минор, который удовлетворяет следующим условиям:

- 1. Он не равен нулю
- 2. Его порядок равен рангу матрицы A

Определение. Рангом матрицы A называется число, равное наибольшему порядку, отличного от нуля минора матрицы A.

Обозначение: $\operatorname{Rg} A$ или $\operatorname{rg} A$

1.9 Дать определение однородной и неоднородной СЛАУ

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
\end{cases}$$
(1)

где:

 $a_{ij}=const$ — коэффициенты при неизвестных в СЛАУ $i=1,\ldots,m$ $j=1,\ldots,n$ $i=1,\ldots,m$ $j=1,\ldots,n$ $i=1,\ldots,m$ $i=1,\ldots,m$

Определение.

СЛАУ (1), у которой все члены равны нулю, называется **однородной**.

СЛАУ (1), у которой хотя бы один $b_i \neq 0, \ 0 \leq i \leq m$, называется **неоднородной**.

1.10 Дать определение фундаментальной системы решений однородной СЛАУ

Определение. Набор k=n-r линейно-независимых решений однородной СЛАУ называется фундаментальной системой решений однородной СЛАУ, где n – количество неизвестных, а r – ранг матрицы A.

1.11 Записать формулы для нахождения обратной матрицы к произведению двух обратимых матриц и для транспонированной матрицы

Теорема.

Пусть матрицы $A_{n\times n}$ и $B_{n\times n}$ имеют обратные матрицы $A_{n\times n}^{-1}$ и $B_{n\times n}^{-1}$. Тогда обратная матрица к их произведению равна произведению обратных матриц:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Теорема.

Пусть матрица $A_{n\times n}$ имеет обратную матрицу. Тогда:

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

1.12 Дать определение присоединённой матрицы и записать формулу для вычисления обратной матрицы

Определение. Матрица A^* , являющаяся транспонированной матрицей алгебраических дополнений элементов матрицы A, называется **присоединённой матрицей**.

$$A^* = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^T = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$
$$A^{-1} = \frac{1}{\det A} \cdot A^*$$

1.13 Перечислить элементарные преобразования матриц

Элементарные преобразования матриц:

- 1. Перестановка строк (столбцов) матриц
- 2. Умножение элементов строки (столбца) матрицы на число, отличное от нуля
- 3. Прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца), умноженной на одно и то же число

1.14 Записать формулы Крамера для решения системы линейных уравнений с обратимой матрицей

Пусть задана СЛАУ в координатной форме.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Запишем эту СЛАУ в матричном виде, где A имеет размерность $n \times n$ (количество уравнений = количество переменных).

$$A_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad B_{n \times 1} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \qquad \Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$\boxed{x_i = rac{\Delta_i}{\Delta}}, \ i = 1, \ldots, n$$
 — формула Крамера

Определитель Δ_i получается из главного определителя Δ путём замены *i*-го столбца на столбец свободных членов СЛАУ.

Замечание. Если главный определитель равен нулю, то формулу Крамера использовать нельзя.

1.15 Перечислить различные формы записи системы линейных алгебраических уравнений (СЛАУ). Какая СЛАУ называется совместной?

Формы записи СЛАУ:

- 1. Координатная
- 2. Матричная
- 3. Векторная

Определение. СЛАУ, имеющая решение, называется совместной.

1.16 Привести пример, показывающий, что умножение матриц некоммутативно

$$A \cdot B \neq B \cdot A$$

Пример.

$$A = \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$
$$A \cdot B = \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ -1 & 8 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 0 & 7 \end{pmatrix}$$
$$A \cdot B \neq B \cdot A$$

1.17 Сформулировать свойства ассоциативности умножения матриц и дистрибутивности умножения относительно сложения

Свойства:

- 1. $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ ассоциативность умножения матриц
- 2. $(A+B) \cdot C = A \cdot C + B \cdot C$ дистрибутивность умножения матриц относительно сложения
- 1.18 Сформулировать критерий Кронекера Капелли совместности СЛАУ

Теорема.

Для того чтобы СЛАУ была совместной, необходимо и достаточно, чтобы ранг матрицы A был равен рангу расширенной матрицы.

$$A \cdot X = B$$
 $A|B$ $\operatorname{Rg} A = \operatorname{Rg}(A|B)$

1.19 Сформулировать теорему о базисном миноре

Теорема (О базисном миноре).

- \bullet Базисные строки (столбцы) матрицы A, <u>входящие</u> в базисный минор, линейно независимы.
- Любую строку (столбец), не входящую в базисный минор, можно представить в виде линейной комбинации базисных строк (столбцов).

1.20 Сформулировать теорему о свойствах решений однородной СЛАУ

Теорема (О свойствах решений однородных СЛАУ).

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ – решение СЛАУ. Тогда их линейная комбинация тоже является решением СЛАУ.

1.21 Сформулировать теорему о структуре общего решения неоднородной СЛАУ

Теорема (О структуре общего решения неоднородной СЛАУ).

Пусть $X^{(0)}$ — частное решение неоднородной СЛАУ $A \cdot X = B$.

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — некоторая ФСР, соответствующая однородной СЛАУ $A \cdot X = \Theta$. Тогда общее решение неоднородной СЛАУ будет иметь вид:

 $X_{\text{Heor.}} = X^{(0)} + c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$ $c_i \in \mathbb{R}, i = 1, \ldots, k$

1.22 Сформулировать теорему о структуре общего решения однородной СЛАУ

Теорема (О структуре общего решения однородной СЛАУ).

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — это некоторая ФСР однородной СЛАУ $A \cdot X = \Theta$.

Тогда любое решение однородной СЛАУ:

$$X_{\text{однор.}} = c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$
 $c_i = const, i = 1, \ldots, k$

1.23 Сформулировать теорему об инвариантности ранга при элементарных преобразованиях матрицы

Теорема.

Ранг матрицы не меняется при элементарных преобразованиях строк (столбцов) матрицы.

1.24 Сформулировать критерий существования обратной матрицы

Теорема.

Для того чтобы матрица A имела обратную матрицу, необходимо и достаточно, чтобы определитель матрицы A был не равен нулю.

2 Теоретические вопросы повышенной сложности

2.1 Доказать теорему о связи решений неоднородной и соответствующей однородной СЛАУ и теорему о структуре общего решения неоднородной СЛАУ

Теорема (О связи решений неоднородной и соответствующей однородной СЛАУ). Пусть $X^{(0)}$ — это некоторое решение неоднородной СЛАУ $A \cdot X = B$. Произвольный столбец X является решением СЛАУ $A \cdot X = B$ тогда и только тогда, когда его можно представить в виде:

$$X=X^{(0)}+Y$$
, где Y – решение соответствующей однородной СЛАУ $A\cdot Y=\Theta$

Доказательство (Необходимость).

Пусть X – решение СЛАУ $A \cdot X = B$. Обозначим $Y = X - X^{(0)}$. Найдём произведение:

$$A\cdot Y = A(X-X^{(0)}) = \underbrace{A\cdot X}_B - \underbrace{A\cdot X^{(0)}}_B = \Theta \ \Rightarrow \ Y - \ \ \text{решение соответствующей однородной СЛАУ } A\cdot Y = \Theta$$

Доказательство (Достаточность).

Пусть X можно представить в виде $X = X^{(0)} + Y$, где Y — решение соответствующей однородной СЛАУ $A \cdot Y = \Theta$. Тогда найдём произведение:

$$A\cdot X = A(X^{(0)} + Y) = \underbrace{A\cdot X^{(0)}}_{B} + \underbrace{A\cdot Y}_{\Theta} = B + \Theta = B \Rightarrow \ X - \ \underset{\text{СЛАУ}}{\text{решение неоднородной}}$$

Теорема (О структуре общего решения неоднородной СЛАУ).

Пусть $X^{(0)}$ — частное решение неоднородной СЛАУ $A \cdot X = B$.

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — некоторая ФСР, соответствующая однородной СЛАУ $A \cdot X = \Theta$. Тогда общее решение неоднородной СЛАУ будет иметь вид:

$$X_{\text{неод.}} = X^{(0)} + c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$
 $c_i \in \mathbb{R}, \ i = 1, \ldots, k$

Доказательство.

$$X^{(i)}, i = 1, \dots, k$$
 $A \cdot X^{(i)} = \Theta$

$$A \cdot X_{\text{неод.}} = A \cdot \left(X^{(0)} + c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)} \right) =$$

$$= \underbrace{A \cdot X^{(0)}}_{B} + c_1 \cdot \underbrace{AX^{(1)}}_{\Theta} + c_2 \cdot \underbrace{AX^{(2)}}_{\Theta} + \ldots + c_k \cdot \underbrace{AX^{(k)}}_{\Theta} =$$

$$= B + c_1 \Theta + c_2 \Theta + \ldots + c_k \Theta = B$$

«Доказательство аналогично доказательству теоремы о структуре общего решения однородной CЛAY».

2.2 Доказать свойства ассоциативности и дистрибутивности умножения матриц

Ассоциативность умножения матриц:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Доказательство.

Пусть $A_{m\times n}$, $B_{k\times n}$, $C_{n\times k}$

$$(A \cdot B) \cdot C = \sum_{r=1}^{n} [(A \cdot B)]_{ir} [C]_{rj} = \sum_{r=1}^{k} \left(\sum_{s=1}^{s} [A]_{is} \cdot [B]_{sr} \right) \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{n} \sum_{s=1}^{k} [A]_{is} \cdot [B]_{sr} \cdot [C]_{rj} = \sum_{s=1}^{k} [A]_{is} \cdot \sum_{r=1}^{n} [B]_{sr} \cdot [C]_{rj} = \sum_{s=1}^{k} [A]_{is} \cdot \left[(B \cdot C) \right]_{sj} = A \cdot (B \cdot C)$$

Дистрибутивность умножения матриц относительно сложения:

$$(A+B) \cdot C = A \cdot C + B \cdot C$$

Доказательство.

Пусть $A_{m \times k}$, $B_{m \times n}$, $C_{k \times n}$

$$(A+B) \cdot C = \sum_{r=1}^{k} [(A+B)]_{ir} \cdot [C]_{rj} = \sum_{r=1}^{k} ([A]_{ir} + [B]_{ir}) \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{k} ([A]_{ir} \cdot [C]_{rj} + [B]_{ir}[C]_{rj}) = \sum_{r=1}^{k} [A]_{ir} \cdot [C]_{ri} + \sum_{r=1}^{k} [B]_{ir} \cdot [C]_{ri} = A \cdot C + B \cdot C$$

2.3 Доказать теорему о базисном миноре

Теорема (О базисном миноре).

- \bullet Базисные строки (столбцы) матрицы A, <u>входящие</u> в базисный минор, линейно независимы.
- Любую строку (столбец), не входящую в базисный минор, можно представить в виде линейной комбинации базисных строк (столбцов).

Доказательство.

- ullet Пусть ранг матрицы A=r. Предположим, что строки матрицы A линейно зависимы. Тогда одну из них можно выразить как линейную комбинацию остальных базисных строк. Значит, в базисном миноре одна строка будет линейной комбинацией остальных строк и, по свойству определителей, этот минор будет равен нулю, что противоречит определению базисного минора. Следовательно, наше предположение неверно, и базисные строки, входящие в базисный минор, линейно независимы.
- Пусть базисный минор состоит из первых r строк и r столбцов матрицы A. Добавим к этому минору произвольную i-ую строку и j-й столбец. В результате получаем окаймляющий минор:

$$M = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \dots & \dots & \dots & \dots \\ a_{r1} & a_{r2} & \dots & a_{rr} \end{vmatrix} \longrightarrow M' = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2r} & a_{2j} \\ \dots & \dots & \dots & \dots \\ a_{r1} & a_{r2} & \dots & a_{rr} & a_{rj} \\ a_{i1} & a_{i2} & \dots & a_{ir} & a_{ij} \end{vmatrix}$$

Если $j \leq r$, то в миноре M' будет два одинаковых столбца и этот минор будет равен нулю.

Если j > r, то минор M' так же будет равен нулю (Пояснение: Ранг матрицы A равен r, значит, наибольший порядок отличного от нуля минора равен r. Минор M' имеет ранг r+1, значит, он равен нулю).

Определитель можно вычислить путём разложения по какой-либо строке (столбцу), поэтому найдём определитель M' путём его разложения по j-ому столбцу.

$$a_{1j}A_{ij} + a_{2j}A_{2j} + \dots + a_{rj}A_{rj} + a_{ij}A_{ij} = 0$$

$$j = r + 1, \ i = r + 1$$

$$\Rightarrow a_{1,r+1}A_{1,r+1} + a_{2,r+1}A_{2,r+1} + \dots + a_{r,r+1}A_{r,r+1} + a_{r+1,r+1}A_{r+1,r+1} = 0$$

 $A_{ij}=(-1)^{i+j}M_{ij}$ – алгебраическое дополнение элемента a_{ij} $A_{r+1,r+1}=M$ – базисный минор; т.к. $M\neq 0$, то $A_{r+1,r+1}\neq 0$

$$a_{r+1,r+1} = -\frac{A_{1,r+1}}{A_{r+1,r+1}} a_{1,r+1} - \frac{A_{2,r+1}}{A_{r+1,r+1}} a_{2,r+1} - \dots - \frac{A_{r,r+1}}{A_{r+1,r+1}} a_{r,r+1}$$

Обозначим:
$$\lambda_i = -\frac{A_{i,r+1}}{A_{r+1,r+1}}, \ i=1,\ldots, \ r$$

$$a_{r+1,r+1} = \lambda_1 a_{1,r+1} + \lambda_2 a_{2,r+1} + \dots + \lambda_r a_{r,r+1}$$

Получили, что элементы i-й строке можно представить в виде линейной комбинации соответствующих элементов базисных строк, где $j=1,\ldots,\ r.$

Аналогично доказывается для столбцов.

2.4 Доказать критерий существования обратной матрицы

Теорема.

Для того чтобы матрица A имела обратную матрицу, необходимо и достаточно, чтобы определитель матрицы A был не равен нулю.

Доказательство (Необходимость).

Пусть матрица A имеет обратную матрицу. Тогда по определению $A \cdot A^{-1} = E$.

Значит, $det(A \cdot A^{-1}) = det E = 1$.

По свойству определителей (с учётом предыдущего):

$$\det(A \cdot A^{-1}) = \det A \cdot \det A^{-1} = 1 \implies \det A \neq 0$$

Доказательство (Достаточность).

Пусть определитель матрицы A не равен нулю. Если определитель матрицы разложить по i-ой строке:

$$\sum_{j=1}^{n} a_{ij} A_{ij} = a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in} = \det A$$

$$\sum_{j=1}^{n} a_{ij} A_{kj} = a_{i1} A_{k1} + a_{i2} A_{k2} + \dots + a_{in} A_{kn} = 0$$

Рассмотрим матрицу B: $b_{ij} = \frac{A_{ji}}{\det A}$

 A_{ij} – алгебраическое дополнение элемента a_{ji} матрицы A.

Найдём $C = A \cdot B$:

$$C_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = \sum_{k=1}^{n} a_{ik} \cdot \frac{A_{jk}}{\det A} = \frac{1}{\det A} \sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} \frac{1}{\det A} \cdot \det A = 1 &, \text{ если } i = j \\ \frac{1}{\det A} \cdot 0 = 0 &, \text{ если } i \neq j \end{cases}$$
 $\Rightarrow C = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$ $C_{ij} = 1, \text{ если } i = j$ $C_{ij} = 0, \text{ если } i \neq j$

Аналогично $C' = B \cdot A$

$$C'_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj} = \sum_{k=1}^{n} \frac{A_{ki}}{\det A} \cdot a_{kj} = \frac{1}{\det A} \sum_{k=1}^{n} A_{ki} a_{kj} = \begin{cases} \frac{1}{\det A} \cdot \det A = 1 &, \text{ если } i = j \\ \frac{1}{\det A} \cdot 0 = 0 &, \text{ если } i \neq j \end{cases}$$
 $\Rightarrow C' = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$ $C'_{ij} = 1, \text{ если } i = j \\ C'_{ij} = 0, \text{ если } i \neq j$

Получим $A \cdot B = E$ $B \cdot A = E$ \Rightarrow по определению $B = A^{-1}$

Таким образом, доказали, что если определитель матрицы не равен нулю, то эта матрица имеет обратную.

2.5 Доказать критерий Кронекера — Капелли совместности СЛАУ

Теорема.

Для того чтобы СЛАУ была совместной, необходимо и достаточно, чтобы ранг матрицы A был равен рангу расширенной матрицы.

$$A \cdot X = B$$
 $A|B$ $\operatorname{Rg} A = \operatorname{Rg}(A|B)$

Доказательство (Необходимость).

Пусть СЛАУ $A \cdot X = b$ – совместная и пусть $\operatorname{Rg} A = r$.

Пусть базисный минор состоит из первых r строк и r столбцов матрицы A.

$$M = \begin{vmatrix} a_1 1 & a_1 2 & \dots & a_1 r \\ a_2 1 & a_2 2 & \dots & a_2 r \\ \dots & \dots & \dots & \dots \\ a_r 1 & a_r 2 & \dots & a_r r \end{vmatrix}$$

Если использовать векторную запись СЛАУ, то если СЛАУ имеет решение x_1, x_2, \ldots, x_n , тогда любой столбец матрицы A можно представить в виде:

$$a_1x_1 + a_2x_2 + \ldots + a_rx_r + a_{r+1}x_{r+1} + \ldots + a_nx_n = b$$
 (2)

Согласно теореме *о базисном миноре* ($\mathbf{C.11}$), любой столбец матрицы A, который не входит в базисный минор, можно представить в виде линейной комбинации столбцов базисного минора.

Тогда:

Подставим (2) в (1):

$$a_{1}x_{1} + a_{2}x_{2} + \ldots + a_{r}x_{r} + (\lambda_{1,r+1}a_{1} + \lambda_{2,r+1}a_{2} + \ldots + \lambda_{r,r+1}a_{r})x_{r+1} + \\ + \ldots + (\lambda_{1n}a_{1} + \lambda_{2n}a_{2} + \ldots + \lambda_{rn}a_{n})x_{n} = b$$

$$\underbrace{(x_{1} + \lambda_{1,r+1}x_{r+1} + \ldots + \lambda_{1n}x_{n})}_{\beta_{1}} a_{1} + \underbrace{(x_{2} + \lambda_{2,r+1}x_{r+1} + \ldots + \lambda_{2n}x_{n})}_{\beta_{2}} a_{2} + \ldots + \\ + \underbrace{(x_{r} + \lambda_{r,r+1}x_{r+1} + \ldots + \lambda_{rn}x_{n})}_{\beta_{r}} a_{r} = b$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

В результате столбец свободных членов можно представить в виде линейной комбинации столбцов базисного минора. Отсюда следует, что базисный минор M матрицы A будет и базисным минором расширенной матрицы A|B, так как минор M не равен нулю и любой окаймляющий минор M' будет равен нулю.

- 1. Если в качестве окаймляющего минора будет минор, который входит в столбец матрицы A, то этот минор будет равен нулю по определению базисного минора матрицы A.
- 2. Если в окаймляющем миноре будет столбец свободных членов, то этот минор будет равен нулю по свойству определителей, так как этот столбец b будет линейной комбинацией остальных столбцов определителя.

$$\underbrace{\operatorname{Rg} A}_{r} = \underbrace{\operatorname{Rg}(A|B)}_{r}$$

Доказательство (Достаточность).

Пусть $\operatorname{Rg} A = \operatorname{Rg}(A|B)$ и пусть базисный минор состоит из первых r строк и r столбцов матрицы A.

$$M = \begin{vmatrix} a_1 1 & a_1 2 & \dots & a_1 r \\ a_2 1 & a_2 2 & \dots & a_2 r \\ \dots & \dots & \dots & \dots \\ a_r 1 & a_r 2 & \dots & a_r r \end{vmatrix}$$

Тогда столбец b можно представить в виде линейной комбинации столбцов базисного минора.

$$b=x_1^\circ a_2+x_2^\circ a_2+\ldots+x_r^\circ a_r+0\cdot a_{r+1}+0\cdot a_{r+2}+\ldots+0\cdot a_n$$
 $x_1^\circ,x_2^\circ,\ldots,x_r^\circ$ — коэффициенты линейной комбинации $x_i=const,\quad i=1,\ldots,r$

Добавим к этой линейной комбинации вектора:

$$a_{r+1}, a_{r+2}, \dots, a_n$$
 $x_{r+1}^{\circ} = 0, x_{r+2}^{\circ} = 0, \dots, x_n^{\circ} = 0$
 $x = (x_1, x_2, \dots, x_r, x_{r+1}, x_{r+2}, \dots, x) =$
 $= (x_1, x_2, \dots, x_r, 0, 0, \dots, 0)$

Этот набор переменных составляет решение СЛАУ, то есть СЛАУ является совместной.

2.6 Доказать теорему о существовании ФСР однородной СЛАУ

Теорема (O существовании фундаментальной системы решений однородной CЛАУ). Пусть имеется однородная СЛАУ $A \cdot X = \Theta$ с n неизвестными и $\operatorname{Rg} A = r$. Тогда существует набор k = n - r решений однородной CЛАУ, который образует фундаментальную систему решений.

$$X^{(1)}, X^{(2)}, \dots, X^{(k)}$$

Доказательство.

Пусть базисный минор матрицы A состоит из первых r строк и r столбцов матрицы A. Тогда любая строка матрицы A с номерами $r+1, \ldots, m$ будет линейной комбинацией строк базисного минора по теореме o базисном миноре (**C.11**).

Если решение СЛАУ x_1, x_2, \ldots, x_n удовлетворяет уравнениям СЛАУ, соответствующим строкам базисного минора, то это решение будет удовлетворять и остальным уравнениям СЛАУ (с r+1 до m). Поэтому исключим из системы уравнения с r+1 до m. В результате получим следующую систему уравнений:

Переменные, соответствующие базисным столбцам, называются базисными переменными, а остальные свободными.

В системе (3) базисными переменными являются x_1, x_2, \ldots, x_r , а свободными являются x_{r+1}, \ldots, x_n

В системе (3) оставим в левой части слагаемые, содержащие базисные переменные, а в правой свободные:

Если свободным переменным x_1, x_2, \ldots, x_r придавать различные значения, то в системе (4) главный определитель левой части будет не равен нулю, так как этот определитель равен базисному минору матрицы A и эта система будет иметь единственное решение.

Возьмём k наборов свободных переменных вида:

$$x_{r+1}^{(1)}=1$$
 $x_{r+1}^{(2)}=0$ \cdots $x_{r+1}^{(k)}=0$ $x_{r+2}^{(1)}=0$ $x_{r+2}^{(2)}=1$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=1$ (1) – номер набора $x_{r+j}^{(i)}=1,\ i=j$ $x_{r+j}^{(i)}=0,\ i\neq j$

При каждом наборе свободных переменных получаем решение однородной СЛАУ.

$$x^{(i)} = \begin{pmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_r^{(i)} \\ x_{r+1}^{(i)} \\ \vdots \\ x_n^{(i)} \end{pmatrix}$$
 из СЛАУ (4) $i=1,\ldots,k$

В результате получаем k решений однородной СЛАУ. Покажем, что они являются линейно-независимыми. Пусть линейная комбинация этих решений равна нулю.

$$\lambda_{1} \underbrace{\begin{pmatrix} x_{1}^{(1)} \\ x_{2}^{(1)} \\ \vdots \\ x_{r}^{(1)} \\ x_{r+1}^{(1)} \\ x_{r+2}^{(1)} \\ \vdots \\ x_{n}^{(1)} \end{pmatrix}}_{\mathbf{Y}^{(1)}} + \lambda_{2} \underbrace{\begin{pmatrix} x_{1}^{(2)} \\ x_{2}^{(2)} \\ \vdots \\ x_{r}^{(2)} \\ x_{r+1}^{(2)} \\ x_{r+2}^{(2)} \\ \vdots \\ x_{n}^{(2)} \end{pmatrix}}_{\mathbf{Y}^{(2)}} + \dots + \lambda_{k} \underbrace{\begin{pmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ \vdots \\ x_{r}^{(k)} \\ x_{r+1}^{(k)} \\ x_{r+1}^{(k)} \\ \vdots \\ x_{n}^{(k)} \end{pmatrix}}_{\mathbf{Y}^{(k)}} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{\mathbf{Y}^{(k)}}$$

$$r+1: \quad 1 \cdot \lambda_1 + 0 \cdot \lambda_2 + \ldots + 0 \cdot \lambda_k = 0 \implies \lambda_1 = 0$$

$$r+2: \quad 0 \cdot \lambda_1 + 1 \cdot \lambda_2 + \ldots + 0 \cdot \lambda_k = 0 \implies \lambda_2 = 0$$

$$n: \quad 0 \cdot \lambda_1 + 0 \cdot \lambda_2 + \ldots + 1 \cdot \lambda_k = 0 \implies \lambda_k = 0$$

В результате получили тривиальную, равную нулю, линейную комбинацию решений однородной СЛАУ.

Тогда по определению эти решения являются линейно-независимыми.

Тогда по определению они образуют фундаментальную систему решений СЛАУ.

2.7 Вывести формулы Крамера для решения системы линейных уравнений с обратимой матрицей

Пусть задана СЛАУ в координатной форме. Запишем эту СЛАУ в матричном виде, где A имеет размерность $n \times n$ (количество уравнений = количество переменных).

$$A \cdot X = B$$

$$A_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad B_{n \times 1} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Пусть матрица A невырожденная, $\det A \neq 0$. Тогда обратная матрица будет иметь вид:

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T} = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{21}}{\det A} & \dots & \frac{A_{n1}}{\det A} \\ \frac{A_{12}}{\det A} & \frac{A_{22}}{\det A} & \dots & \frac{A_{n2}}{\det A} \\ \dots & \dots & \dots & \dots \\ \frac{A_{1n}}{\det A} & \frac{A_{2n}}{\det A} & \dots & \frac{A_{nn}}{\det A} \end{pmatrix}$$

Решением уравнения будет $X = A^{-1} \cdot B$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = X = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{21}}{\det A} & \cdots & \frac{A_{n1}}{\det A} \\ \frac{A_{12}}{\det A} & \frac{A_{22}}{\det A} & \cdots & \frac{A_{n2}}{\det A} \\ \vdots \\ \frac{A_{1n}}{\det A} & \frac{A_{2n}}{\det A} & \cdots & \frac{A_{nn}}{\det A} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$x_1 = \frac{A_{11}}{\det A} \cdot b_1 + \frac{A_{21}}{\det A} \cdot b_2 + \ldots + \frac{A_{n1}}{\det A} \cdot b_n = \frac{A_{11}b_1 + A_{21}b_2 + \ldots + A_{n1}b_n}{\det A}$$

Числитель – разложение определителя A_1 по столбцу:

$$\Delta_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix} \qquad \Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$
$$\det A = \Delta \qquad x_{1} = \frac{\Delta 1}{\Delta}$$

Определитель Δ_1 получается из определителя Δ , если заменить первый столбец этого определителя на столбец свободных членов СЛАУ. Определитель Δ_1 называется **главным**.

$$\overline{\left|x_i = rac{\Delta_i}{\Delta}
ight|}, \ i = 1, \dots, n$$
 — формула Крамера

Определитель Δ_i получается из главного определителя путём замены *i*-го столбца на столбец свободных членов СЛАУ.

2.8 Доказать теорему о структуре общего решения однородной СЛАУ

Теорема (О структуре общего решения однородной СЛАУ). Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — это некоторая ФСР однородной СЛАУ $A \cdot X = \Theta$.

Тогда любое решение однородной СЛАУ:

$$X_{\text{однор.}} = c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$
 $c_i = const, \ i = 1, \ldots, k$

Доказательство.

Пусть СЛАУ:

Пусть
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — решение (1) и матрица A имеет ранг r (Rg $A = r$).

Тогда, если X является решением системы (1), то он является решением первых r уравнений, соответствующих базисным строкам матрицы A.

(Пусть базисный минор состоит из первых r строк и n столбцов матрицы A, тогда столбец X является и решением уравнений с r+1 до m, которые являются линейной комбинацией первых r уравнений этой системы, и поэтому эти уравнения можно исключить.)

Так как базисный минор включает первые r столбцов матрицы A, то базисными переменными будут переменные, соответствующие этим столбцам.

Зависимые переменные: x_1, x_2, \ldots, x_r

Свободные переменные: $x_{r+1}, x_{r+2}, \dots, x_n$

После исключения из системы (1) уравнений с r+1 до m получаем следующую систему уравнений:

Преобразуем систему (2) так, чтобы в левой части остались слагаемые, содержащие только базисные переменные, а в правой – свободные.

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1r}x_r = -a_{1,r+1}x_{r+1} - \ldots - a_{1n}x_n \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2r}x_r = -a_{2,r+1}x_{r+1} - \ldots - a_{2n}x_n \\
 \vdots \\
 a_{r1}x_1 + a_{r2}x_2 + \ldots + a_{rr}x_r = -a_{r,r+1}x_{r+1} - \ldots - a_{rn}x_n
\end{cases}$$
(3)

Задавая различные значения свободных переменных, мы получаем систему (3), которая будет иметь единственное решение, так как главный определитель этой системы

будет равен главному минору, который не равен нулю. ($\Delta = M \neq 0$) Решаем систему и получаем следующее решение:

$$\begin{cases} x_{1} = \lambda_{1,r+1}x_{r+1} + \lambda_{1,r+2}x_{r+2} + \dots + \lambda_{1n}x_{n} \\ x_{2} = \lambda_{2,r+1}x_{r+1} + \lambda_{2,r+2}x_{r+2} + \dots + \lambda_{2n}x_{n} \\ \dots \\ x_{r} = \lambda_{r,r+1}x_{r+1} + \lambda_{r,r+2}x_{r+2} + \dots + \lambda_{rn}x_{n} \end{cases}$$
(4)

Если столбцы $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ образуют Φ CP, то они удовлетворяют решению (4).

$$X^{(i)} = egin{pmatrix} X_1^{(i)} \\ X_2^{(i)} \\ \vdots \\ X_r^{(i)} \\ X_{r+1}^{(i)} \\ \vdots \\ X_n^{(i)} \end{pmatrix}$$
 i – номер столбца, входящего в ФСР.

Составим матрицу, в которой первый столбец — это столбец X, являющийся решением СЛАУ:

$$B = \begin{pmatrix} x_1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(k)} \\ x_2 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(k)} \\ \dots & \dots & \dots & \dots & \dots \\ x_r & x_r^{(1)} & x_r^{(2)} & \dots & x_r^{(k)} \\ x_{r+1} & x_{r+1}^{(1)} & x_{r+1}^{(2)} & \dots & x_{r+1}^{(k)} \\ \dots & \dots & \dots & \dots & \dots \\ x_n & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(k)} \\ X & X^{(1)} & X^{(2)} & \dots & X^{(k)} \end{pmatrix}$$

Вычтем из элементов первой строки линейную комбинацию соответствующих элементов строк с r+1 до n с коэффициентами $\lambda_{1,r+1}, \lambda_{1,r+2}, \ldots, \lambda_{1n}$:

Получили, что элементы первой строки равны нулю.

Аналогично вычитаем из элементов второй строки соответствующие элементы строк с r+1 до n с коэффициентами $\lambda_{2,r+1}, \lambda_{2,r+2}, \ldots, \lambda_{2n}$.

Используя (5) получаем, что все элементы второй строки тоже равны нулю. Далее продолжаем вычитать из элементов r-ой строки соответствующие элементы строк с r+1 до n с коэффициентами $\lambda_{r,r+1}, \lambda_{r,r+2}, \ldots, \lambda_{rn}$.

В результате получаем, что в преобразованной матрице первые r строк будут нулевыми.

$$B \sim \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \\ x_{r+1} & x_{r+1}^{(1)} & x_{r+1}^{(2)} & \dots & x_{r+1}^{(k)} \\ \dots & \dots & \dots & \dots & \dots \\ x_n & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(k)} \\ X & X^{(1)} & X^{(2)} & \dots & X^{(k)} \end{pmatrix}$$

Поскольку элементарные преобразования не меняют ранг матрицы, то получаем, что $\operatorname{Rg} B = k$, где k = n - r. По условию столбцы $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$ образуют ФСР, следовательно, являются линейно независимыми. Значит, первый столбец матрицы B можно представить в виде линейной комбинации столбцов $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$. Получили:

$$X = c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$