Eine Einführung in R: Varianzanalyse

Bernd Klaus, Verena Zuber

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig

13. Januar 2009

I. Varianzanalyse: Theorie

II. Varianzanalyse: Praxis

I. Varianzanalyse: Theorie

Beispiel: "toycar"

Fragestellung: Fahren die drei Autotypen unterschiedlich weit?

Oder wie untersucht man die Nullhypothese: $H_0: \mu_1=\mu_2=\mu_3$?

Varianzanalyse

Daten: Gegeben ist eine metrische (normalverteilte) Zielgröße Y und mindestens ($p \le 1$) Faktorstufen, die jeweils mehrere Gruppen ($k \le 2$) umfassen.

Insgesamt sind $n_1 + ... + n_k = n$ Beobachtungen gegeben

- ho p = 1: Einfaktorielle Varianzanalyse
- ightharpoonup p = 1 und k = 2: t-Test
- ightharpoonup p > 1: Mehrfaktorielle Varianzanalyse

Frage: Unterscheiden sich die Erwartungswert der metrischen Zufallsvariable in den Gruppen?

Oder: Ist die Varianz zwischen den Gruppen größer als in den Gruppen?

Das Modell der einfaktoriellen Varianzanalyse ho=1

- ▶ Spezialfall k = 2: t-Test
- ▶ Das Modell für j = 1, ..., k Gruppen und $i = 1, ..., n_j$ Beobachtungen in Gruppe j:

$$Y_{ji} = \mu_j + \epsilon_{ji}$$

- Voraussetzungen:
 - 1. $\epsilon_{ii} \sim N(0, \sigma)$
 - 2. ϵ_{ji} ist normalverteilt mit Erwartungswert 0
 - 3. identischer Varianz σ^2
- $H_0: \mu_1 = ... = \mu_k$

Streuungszerlegung

ANOVA: ANalysis Of VAriances

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \underbrace{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2}_{SQR} + \underbrace{\sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2}_{SQE}$$

Für die Streuungszerlegung werden folgende Größen berechnet:

- \triangleright SQT: Sum of Squares Total, die Gesamtstreuung (Var(Y))
- ► SQR: Sum of Squares Residuals, Streuung in den Gruppen
- SQE: Sum of Squares Explained, Streuung zwischen den Gruppen

Der F-Test

- ► H_0 : $\mu_1 = ... = \mu_k$
- ► Aus der Streuungszerlegung wird verwendet:

Streuung	df	Mittlerer Quadr. Fehler
zwischen den Gruppen	k-1	SQE/(k-1)
in den Gruppen	n-k	SQR/(n-k)

▶ Die Prüfgröße F berechnet sich aus:

$$F = MQE/MQR = \frac{SQE}{k-1} / \frac{SQR}{n-k}$$

▶ F ist F-verteilt mit (k-1, n-k) Freiheitsgraden

Mehrfaktorielle Varianzanalyse p > 1

- ► Natürlich können mehrere Faktoren und Wechselwirkungen zwischen Faktoren berücksichtigt werden
- Die Formeldarstellung kann dabei sehr leicht sehr kompliziert werden
- Wichtig in der Praxis ist dabei, dass jede der einzelnen Unterkategorien eine ausreichende Stichprobengröße besitzt
- ► Es gibt F-Tests für alle Faktoren und deren Wechselwirkungen

II. Varianzanalyse: Praxis

Beispiel: toycar-Daten

Berechnung des linearen Modells 1m.car:

```
lm.car <- lm(distance \sim car)
```

- R-Befehl zur Varianzanalyse: anova(lm.car)
- ► Output:

Analysis of Variance Table

Response: distance

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
car	2	0.16945	0.084726	1.1575	0.3312
Residuals	24	1.75673	0.073197		

Beispieldaten: "Taste"

Untersuchung von zwei verschiedenen Einflussfaktoren auf den Geschmack eines Nahrungsmittels:

- SCORE: Geschmackspunktzahl
- ► LIQ: Flüssigkeitskomponente: hohe (1) oder niedrige (0) Konzentration
- ▶ SCR: Textur des Nahrungsmittels: rauh (0) oder fein (1))

Beispiel für 2-faktorielle Varianzanalyse: Taste-Daten

▶ Berechnung des linearen Modells taste: taste <- lm(SCORE ~ LIQ * SCR)</p>

► R-Befehl zur Varianzanalyse: anova(taste)

► Output:

Analysis of Variance Table

Response: SCORE

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
LIQ	1	1024.0	1024.0	2.6321	0.1306	
SCR	1	10609.0	10609.0	27.2696	0.0002	***
LIQ:SCR	1	420.2	420.2	1.0802	0.3191	
Residuals	12	4668.5	389.0			

⇒ Nur der Effekt von SCR ist signifikant von 0 verschieden

Beispiel - Schätzung der Effektgrößen / Koeffizienten

- Schätzer der Effektgrößen des Modells taste: summary(taste)
- Output wie im linearen Modell: Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	41.75	9.862	4.233	0.0011
LIQ1	-5.75	13.947	-0.412	0.6874
SCR1	61.75	13.947	4.427	0.0008
LIQ1:SCR1	-20.50	19.724	-1.039	0.3191