Programowanie Obiektowe

Laboratorium 6 – (5 kwietnia 2023)

mgr inż. Damian Mroziński

Zadanie dodatkowe Poniższe zadania ułożył mgr inż. Paweł Majewski.

Zadanie 6.1 (+5% pkt.)

Zadanie polega na implementacji klasyfikatora knn (k-nearest neighbors) oraz sprawdzeniu jego działania dla przykładowych zbiorów danych. W tym celu zdefiniuj klasę **KNeighborsClassifier**, która będzie zawierała metody:

metoda	argumenty	odpowiedzialności
fit(X_train, Y_train)	tablica X_train o rozmiarze n x k, zawierająca	zdefiniowanie referen-
	n-próbek treningowych (kolejne rzędy tablicy)	cyjnej przestrzeni cech
	oraz k-cech (kolejne kolumny tablicy), tablica	etykietowanych próbek,
	Y_train o rozmiarze n, zawierająca n-etykiet dla	w celu wykorzystania
	każdej próbki treningowej np. 0 oraz 1 dla kla-	jej podczas predykcji
	syfikacji binarnej	
$\operatorname{predict}(X_{-}\operatorname{test})$	tablica X_test o rozmiarze m x k, zawierająca	predykcja etykiet dla
	m-próbek testowych oraz k-cech	danych testowych
		zawartych w tablicy
		X_test
calculate_accuracy(tablica X_test zawierająca próbki testowe (opis	obliczenie dokładności
X_{test}, Y_{test}	podobny jak dla metody predict()) oraz tablica	modelu jako stosunek
	Y_test zawierają etykiety dla danych testowych	właściwych predykcji
		do wszystkich predykcji

Tabela 1: Metody w klasie KNeighborsClassifier.

W konstruktorze klasy **KNeighborsClassifier** należy uwzględnić parametry:

- n_neighbors liczba sąsiadów brana pod uwagę podczas predykcji,
- metric rodzaj metryki użytej do obliczania odległości między próbkami np. euclidean, manhattan.

Predykcja dla modelu kn
n polega na znalezieniu k-najbliższych sąsiadów w przestrzeni cech (zdefiniowanej na podstawie danych treningowych) dla każdej próbki testowej, z użyciem odpowiedniej metryki, określającej dystans pomiędzy próbkami. Na podstawie etykiet k-najbliższych sąsiadów określana jest klasa dla próbki testowej, która ta klasa najczęściej występuje wśród rozważanych sąsiadów.

Dla wczytywania danych do tablic zdefiniuj dodatkowo klasę **DataReader**, która będzie odpowiedzialna za wczytywanie danych treningowych i testowych do tablic. Użyj tablic dynamicznych przy wczytywaniu danych.

W celu weryfikacji poprawnej implementacji przetestuj działanie modelu knn dla dwóch przykładowych zbiorów danych (iris oraz $breast_cancer$). Wczytaj dane treningowe i testowe znajdujące się w plikach *.txt. Sprawdź działanie modelu knn dla następujących parametrów modelu $n_neighbors \in \{3, 5, 7, 9, 11\}$ oraz $metric \in \{'euclidean', 'manhattan'\}$. Oblicz dokładność modelu dla każdego zbioru danych i określonych parametrów modelu. Zapisz wyniki do pliku *.txt. Napisz testy jednostkowe dla metod z klasy **KNeighborsClassifier**, definiując syntetyczne zbiory danych (np. próbki posiadające 2 cechy należące do dwóch separowalnych klas).

Opis zbiorów danych:

- 1. iris 4 cechy, 3 klasy, etykieta w kolumnie species
- 2. cancer 30 cech, 2 klasy, etykieta w kolumnie diagnosis (pomiń kolumnę zawierającą id pacjentów).

Dodatkowe informacje możesz odnaleźć na stronach:

- https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm,
- https://en.wikipedia.org/wiki/Taxicab_geometry,
- https://en.wikipedia.org/wiki/Iris_flower_data_set,
- https://www.kaggle.com/uciml/breast-cancer-wisconsin-data