Concurrent Map Reduce (CMR)

Guillaume Dindart

Gilles MARAIT (Encadrant), Emmanuel AGULLO (Encadrant) Équipe Concace INRIA

2024

Dot product

х1	х2	хз	x ₄		α
----	----	----	----------------	--	---

$$\alpha = x_1 \times y_1$$

$$\alpha + = x_2 \times y_2$$

$$\alpha + = x_3 \times y_3$$

$$\alpha + = x_4 \times y_4$$

Using reduce to optimize?

Sequential Task Flow (STF)

x ₁ x ₂	х3	х4	
-------------------------------	----	----	--

$$\alpha_{1} = x_{1} \times y_{1}$$

$$\alpha_{2} = x_{2} \times y_{2}$$

$$\alpha_{3} = x_{3} \times y_{3}$$

$$\alpha_{4} = x_{4} \times y_{4}$$

$$Reduce(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4})$$

Advantage:

Natural to pipeline

Disadvantage:

Dynamic control flow

Question:

► Similar stencil ?

Map Reduce (MR)

х1	x ₂	хз	X4		α
----	----------------	----	----	--	---

$$\mathsf{Map} = \times \mathsf{and} \; \mathsf{Reduce} = +$$
 $\alpha_1 = \mathsf{Map}(x_1, y_1)$
 $\alpha_2 = \mathsf{Map}(x_2, y_2)$
 $\alpha_3 = \mathsf{Map}(x_3, y_3)$
 $\alpha_4 = \mathsf{Map}(x_4, y_4)$
 $\alpha = \mathsf{Reduce}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$

Advantage:

Static control flow

Question:

► How to make a matrix product with it?

Concurrent Map Reduce (CMR): Matrix product (GEMM)

Datamap: Who has what block Taskmap: Who works on which block

В		
1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

Each coordinate in C correspond in one MapReduce operation.

na ii

Concurrent Map Reduce = multiple simultaneous Map Reduce

How to pipeline multiple CMR?

CMR: Pipeline (D = $(A \times B) \times C$)

Α	1,1	1,2	1,3
	2,1	2,2	2,3
	3,1	3,2	3,3
			•

1,1	1,2	1,3	
2,1	2,2	2,3	
3,1	3,2	3,3	

tmp

1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

Tasks submission

With datamap and taskmap, we generate all the tasks. When a block is calculated, we send it to the other nodes if they need it. Without pipeline

With pipeline

CMR: Pipeline CPU sleeping

Without pipeline

With pipeline

On going

- ► More general CMR:
 - OpenMP backend instead of StarPU
 - TRSM algorithm (Hugo pre-thesis)
- Vectorization of Map and Reduce (presentation by Aurélien)