Problem A. New Home 新家

Time limit: 5 seconds

Memory limit: 1024 megabytes

五福街是一条笔直的道路,这条道路可以看成一个数轴,街上每个建筑物的坐标都可以用一个整数来表示。小明是一位时光旅行者,他知道在这条街上,在过去现在和未来共有n个商店出现。第i个商店可以使用四个整数 x_i,t_i,a_i,b_i 描述,它们分别表示:商店的坐标、商店的类型、商店开业的年份、商店关闭的年份。

小明希望通过时光旅行,选择一个合适的时间,住在五福街上的某个地方。他给出了一份他可能选择的列表,上面包括了 q 个询问,每个询问用二元组(坐标,时间)表示。第 i 对二元组用两个整数 l_i, y_i 描述,分别表示选择的地点 l_i 和年份 y_i 。

现在,他想计算出在这些时间和地点居住的生活质量。他定义居住的不方便指数为:在居住的年份,离居住点最远的商店类型到居住点的距离。类型 t 的商店到居住点的距离定义为:在指定的年份,类型 t 的所有营业的商店中,到居住点距离最近的一家到居住点的距离。我们说编号为 i 的商店在第 y 年在营业当且仅当 $a_i \le y \le b_i$ 。注意,在某些年份中,可能在五福街上并非所有 k 种类型的商店都有至少一家在营业。在这种情况下,不方便指数定义为 -1。

你的任务是帮助小明求出每对(坐标,时间)二元组居住的不方便指数。

Input

第一行包含三个整数 n , k 和 q , 分别表示商店的数量、商店类型的数量和(坐标,时间)二元组的数量。 $(1 \le n, q \le 3 \cdot 10^5, 1 \le k \le n)$ 。

接下来 n 行,每行包含四个整数 x_i , t_i , a_i , 和 b_i 用于描述一家商店,意义如题面所述 $(1 \le x_i, a_i, b_i \le 10^8, 1 \le t_i \le k, a_i \le b_i)$ 。

接下来 q 行,每行包含两个整数 l_i ,和 y_i ,表示一组(坐标,时间)查询 $(1 \le l_i, y_i \le 10^8)$ 。

Output

输出一行,包含q个整数,依次表示对于q组(坐标,时间)询问求出的结果。

Scoring

Subtask 1 (points: 5)

 $n, q \le 400$

Subtask 2 (points: 7)

 $n, q \le 6 \cdot 10^4, k \le 400$

Subtask 3 (points: 10)

 $n, q \leq 3 \cdot 10^5$, 对于所有的商店 $a_i = 1, b_i = 10^8$ 。

Subtask 4 (points: 23)

 $n,q \leq 3 \cdot 10^5$, 对于所有的商店 $a_i = 1$ 。

Subtask 5 (points: 35)

 $n, q \le 6 \cdot 10^4$

Subtask 6 (points: 20)

 $n, q \leq 3 \cdot 10^5$

Examples

input	output
4 2 4	4
3 1 1 10	2
9 2 2 4	-1
7 2 5 7	-1
4 1 8 10	
5 3	
5 6	
5 9	
1 10	
2 1 3	0
1 1 1 4	0
1 1 2 6	-1
1 3	
1 5	
1 7	
1 1 1	9999999
100000000 1 1 1	
1 1	

Note

在第一个样例中,有4家商店,共2种类型,还有4个询问。

- 对于第一个询问: 小明在第 3 年住在坐标为 5 的地方。这一年中,编号为 1 和 2 的商店在营业,到编号为 1 的商店的距离为 2 ,到编号为 2 的商店距离为 4 ,所以最大距离为4。
- 对于第二个询问: 小明在第 6 年住在坐标为 5 的地方。这一年中,编号为 1 和 3 的商店在营业,到编号为 1 的商店的距离为 2 ,到编号为 3 的商店距离为 2 ,所以最大距离为2。
- 对于第三个询问: 小明在第 9 年住在坐标为 5 的地方。这一年中,编号为 1 和 4 的商店在营业, 它们的类型都为 1,没有类型为 2 的商店在营业,所以答案为 −1。
- 同样的情况出现在第四个询问中。

在第二个样例中,有 2 家商店,共 1 种类型,还有三个询问。 两家商店的类型都是 1 。在所有的询问中,小明均住在坐标为 1 的地方。 在前两个询问中,至少有一个商店在营业,所以答案为 0 ,在第三个询问中,两个商店都不在营业,所以答案为 -1 。

在第三个样例中,有1家商店和1个询问,两者之间的距离是99999999。

Problem B. Circle selection 选圆圈

Time limit: 3 seconds

Memory limit: 1024 megabytes

在平面上,有n个圆,记为 c_1, c_2, \ldots, c_n 。我们尝试对这些圆运行这个算法:

- 1. 找到这些圆中半径最大的。如果有多个半径最大的圆,选择编号最小的。记为 c_i 。
- 2. 删除 c_i 及与其有交集的所有圆。两个圆有交集当且仅当平面上存在一个点,这个点同时在这两个圆的圆周上或圆内。(原文直译:如果平面上存在一个点被这两个圆所包含,我们称这两个圆有交集。一个点被一个圆包含,当且仅当它位于圆内或圆周上。)
- 3. 重复上面两个步骤直到所有的圆都被删除。

当 c_i 被删除时,若循环中第1步选择的圆是 c_j ,我们说 c_i 被 c_j 删除。对于每个圆,求出它是被哪一个圆删除的。

Input

第一行包含一个整数 n ,表示开始时平面上圆的数量 $(1 \le n \le 3 \cdot 10^5)$ 。

接下来 n 行,每行包含三个整数 x_i, y_i, r_i 依次描述圆 c_i 圆心的x坐标、y坐标和它的半径 $(-10^9 \le x_i, y_i \le 10^9, 1 \le r_i \le 10^9)$ 。

Output

输出一行,包含 n 个整数 $a_1,a_2,...a_n$,其中 a_i 表示圆 c_i 是被圆 c_{a_i} 删除的。

Scoring

Subtask 1 (points: 7)

 $n \le 5000$

Subtask 2 (points: 12)

 $n \leq 3 \cdot 10^5$, 对于所有的圆 $y_i = 0$

Subtask 3 (points: 15)

 $n \leq 3 \cdot 10^5$,每个圆最多和一个其他圆有交集。

Subtask 4 (points: 23)

 $n \leq 3 \cdot 10^5$, 所有的圆半径相同。

Subtask 5 (points: 30)

 $n \leq 10^5$

Subtask 6 (points: 13)

 $n \leq 3 \cdot 10^5$

Example

input	output
11	7 2 7 4 5 6 7 7 4 7 6
9 9 2	
13 2 1	
11 8 2	
3 3 2	
3 12 1	
12 14 1	
9 8 5	
2 8 2	
5 2 1	
14 4 2	
14 14 1	

Note

题目描述中的图片对应了样例一中的情形。

Problem C. Duathlon 铁人两项

Time limit: 1 second

Memory limit: 1024 megabytes

比特镇的路网由m条双向道路连接的n个交叉路口组成。

最近,比特镇获得了一场铁人两项锦标赛的主办权。这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程。

比赛的路线要按照如下方法规划:

- 1、先选择三个两两互不相同的路口 s, c 和 f, 分别作为比赛的起点、切换点(运动员在长跑到达这个点后,骑自行车前往终点)、终点。
- 2、选择一条从 s 出发,经过 c 最终到达 f 的路径。考虑到安全因素,选择的路径经过同一个点至多一次。

在规划路径之前,镇长想请你帮忙计算,总共有多少种不同的选取 s, c 和 f 的方案,使得在第 2 步中至少能设计出一条满足要求的路径。

Input

第一行包含两个整数 n 和 m ,分别表示交叉路口和双向道路的数量。

接下来 m 行, 每行两个整数 v_i , u_i 。表示存在一条双向道路连接交叉路口 v_i , u_i ($1 \le v_i, u_i \le n$, $v_i \ne u_i$)。

保证任意两个交叉路口之间、至多被一条双向道路直接连接。

Output

输出一行,包括一个整数,表示能满足要求的不同的选取 s, c 和 f 的方案数。

Scoring

Subtask 1 (points: 5)

 $n \le 10, m \le 100$

Subtask 2 (points: 11)

 $n \le 50, m \le 100$

Subtask 3 (points: 8)

 $n \le 100\,000$,每个交叉路口至多作为两条双向道路的端点。

Subtask 4 (points: 10)

 $n \le 1000$,在路网中不存在环。

存在环是指存在一个长度为 k $(k\geq 3)$ 的交叉路口序列 $v_1,v_2,\ldots v_k$,序列中的路口编号两两不同,且对于 i 从 1 到 k-1 ,有一条双向道路直接连接路口 v_i 和 v_{i+1} ,且有一条双向道路直接连接路口 v_k 和 v_1 。

Subtask 5 (points: 13)

 $n \leq 100000$,在路网中不存在环。

Subtask 6 (points: 15)

 $n \leq 1000$,对于每个交叉路口,至多被一个环包含。

APIO 2018 Russia, Innopolis, May, 12-14, 2018

Subtask 7 (points: 20)

 $n \le 100000$,对于每个交叉路口,至多被一个环包含。

Subtask 8 (points: 8)

 $n \le 1\,000, \, m \le 2\,000$

Subtask 9 (points: 10)

 $n \le 100\,000, \, m \le 200\,000$

Examples

input	output
4 3	8
1 2	
2 3	
3 4	
4 4	14
1 2	
2 3	
3 4	
4 2	

Note

在第一个样例中,有以下 8 种不同的选择 (s,c,f) 的方案: (1,2,3), (1,2,4), (1,3,4), (2,3,4), (3,2,1), (4,2,1), (4,3,1), (4,3,2)。

在第二个样例中,有以下 14 种不同的选择 (s,c,f) 的方案: (1,2,3), (1,2,4), (1,3,4), (1,4,3), (2,3,4), (2,4,3), (3,2,1), (3,2,4), (3,4,1), (3,4,2), (4,2,1), (4,2,3), (4,3,1), (4,3,2).