Shift-and-add Multiplication Algorithm

Let's assume that A is multiplicand, B is multiplier, and C is the result (A*B). When the inputs are n bit long, it requires 2n bits to store the result.

Step 1:

- If the inputs are signed numbers, make A and B to 2n bit long by extending the sign bit.
- Clear result variable C.

Step 2:

- Is LSB (least significant bit) of B is 1? (B[0] == 1?)
 - o If yes, add A to C.
- Shift A to left by 1 bit
- Shift B to right by 1 bit

Step 3:

• Repeat step 2 for n number of times.

Step 4:

- Is B negative number? (is LSB of B is 1?)
 - o If yes, subtract A from the result.

Step 5:

• The final result will be in C.

Examples:

1. Let's multiply two 4-bit signed numbers, 2 and 3. The result should be 2*3 = 6.

```
4-bit numbers: 8-bit numbers:  (2)_{10} = (0010)_2 \qquad \qquad A = 0000 \ 0010 \ (binary)   (3)_{10} = (0011)_2 \qquad \qquad B = 0000 \ 0011 \ (binary)   (6)_{10} = (0110)_2 \qquad \qquad C \ should \ be \ 0000 \ 0110 \ (binary)
```

Traditional Multiplication:

	0010 x 0011
	0010
	0010
	0000
	0000
Result:	0000110

Shift-and-add Method:

Counter	Description	A[15:0]	B[15:0]	C[15:0] (result)
		0000 0010	0000 0011	0000 0000
	B[0] is 1; C = C+A			0000 0010
1	Shift A to left	0000 0100		
	Shift B to right		0000 0001	
	B[0] is 1; C = C+A			0000 0110
2	Shift A to left	0000 1000		
	Shift B to right		0000 0000	
3	B[0] is 0			0000 0110
	Shift A to left	0001 0000		
	Shift B to right		0000 0000	
4	B[0] is 0			0000 0110
	Shift A to left	0010 0000		
	Shift B to right		0000 0000	
	B[0] is 0 (it is a positive			0000 0110
	number. No need to			(Final result)
	subtract A			

2. Let's multiply two 4-bit signed numbers, -2 and 3. The result should be -2*3 = -6.

4-bit numbers: 8-bit numbers: $(2)_{10} = (0010)_2 \rightarrow 2$'s complement is 1110 A = 1111 1110 (binary) $(3)_{10} = (0011)_2$ B = 0000 0011 (binary) $(6)_{10} = (0110)_2 \rightarrow 2$'s complement is 1010

C should be 1111 1010 (binary)

Traditional Multiplication:

1111 1110 x 0000 0011 (sign extension) 1110 x 0011 11111110 1110 11111110 1110 00000000 0000 00000000 0000 Result: 1011111010 ← correct (8 bits from Result: 0101010 ← wrong the right)

Shift-and-add Method:

Counter	Description	A[15:0]	B[15:0]	C[15:0] (result)
		1111 1110	0000 0011	0000 0000
1	B[0] is 1; C = C+A			1111 1110

	Shift A to left	1111 1100		
	Shift B to right		0000 0001	
	B[0] is 1; C = C+A			1111 1010
2	Shift A to left	1111 1000		
	Shift B to right		0000 0000	
3	B[0] is 0			1111 1010
	Shift A to left	1111 0000		
	Shift B to right		0000 0000	
4	B[0] is 0			1111 1010
	Shift A to left	1110 0000		
	Shift B to right		0000 0000	
	B[0] is 0 (it is a positive			1111 1010
	number. No need to			(Final result)
	subtract A			

3. Let's multiply two 4-bit signed numbers, 2 and -3. The result should be 2*-3 = -6.

4-bit numbers: 8-bit numbers:

 $(2)_{10} = (0010)_2$ A = 0010 (binary) $(3)_{10} = (0011)_2 \rightarrow 2$'s complement is 1101 B = 1101 (binary)

 $(6)_{10} = (0110)_2 \rightarrow 2$'s complement is 1010 C should be 1111 1010 (binary)

Traditional Multiplication:

0	010 x 1101	0000	0010 x 1111 1101	(sign extension)
	0010		0000010	
	0000		00000000	
	0010		00000010	
	0100		0000010	
			0000010	
Result:	0101010 ← wrong		00000010	
		(00000010	
		00	0000010	
		Result:	00 11111010 ← co	orrect (8 bits from

Shift-and-add Method:

Counter	Description	A[15:0]	B[15:0]	C[15:0] (result)
		0000 0010	1111 1101	0000 0000
1	B[0] is 1; C = C+A			0000 0010
1	Shift A to left	0000 0100		

the right)

	Shift B to right		0111 1110	
	B[0] is 0;			0000 0010
2	Shift A to left	0000 1000		
	Shift B to right		0011 1111	
3	B[0] is 1; C=C+A			0000 1010
	Shift A to left	0001 0000		
	Shift B to right		0001 1111	
4	B[0] is 1; C=C+A			0001 1010
	Shift A to left	0010 0000		
	Shift B to right		0000 1111	
	B[0] is 1 (it is a negative			1111 1010
	number. C = C-A			(Final result)
	C = C+2's complement of A			

4. Let's multiply two 4-bit signed numbers, 2 and -3. The result should be -2*-3 = 6.

4-bit numbers: 8-bit numbers (2)₁₀ = $(0010)_2 \rightarrow 2$'s complement is 1101 A = 1110 (binary) (3)₁₀ = $(0011)_2 \rightarrow 2$'s complement is 1101 B = 1101 (binary)

 $(6)_{10} = (0110)_2$ C should be 0000 0110 (binary)

Traditional Multiplication:

1	.110 x 1101	1111 1110 x 1111 1101	(sign extension)
	1110	11111110	
	0000	0000000	
	1110	11111110	
	1110	11111110	
		11111110	
Result:	10110110 ← wrong	11111110	
		11111110	
		11111110	
			orrect (8 bits from

the right)

....

Shift-and-add Method:

Counter	Description	A[15:0]	B[15:0]	C[15:0] (result)
		1111 1110	1111 1101	0000 0000
	B[0] is 1; C = C+A			1111 1110
1	Shift A to left	1111 1100		
	Shift B to right		0111 1110	

	B[0] is 0;			1111 1110
2	Shift A to left	1111 1000		
	Shift B to right		0011 1111	
3	B[0] is 1; C=C+A			1111 0110
	Shift A to left	1111 0000		
	Shift B to right		0001 1111	
4	B[0] is 1; C=C+A			1110 0110
	Shift A to left	1110 0000		
	Shift B to right		0000 1111	
	B[0] is 1 (it is a negative			0000 0110
	number. C = C-A			(Final result)
	C = C+2's complement of A			