复习

上一节介绍了几个重要级数的收敛性要记住

调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

几何级数 $\sum_{n=1}^{\infty} aq^{n-1}$,当|q|<1时级数收敛,且 $\sum_{n=1}^{\infty} aq^{n-1} = \frac{a}{1-q}$

几何级数 $\sum_{n=1}^{\infty}aq^{n-1}$,当 $|q|\geq 1$ 时级数发散.

级数 $\sum_{n=0}^{\infty} a \frac{8^n}{7^n}$, $\left| \frac{8}{7} \right| > 1$,级数发散.

级数 $\sum_{n=0}^{\infty} a \frac{5^n}{7^n}$, $\left| \frac{5}{7} \right| < 1$, 级数收敛,且 $\sum_{n=0}^{\infty} a \frac{5^n}{7^n} = \frac{a}{1 - \frac{5}{7}} = \frac{7}{2}a$.

第二爷

正项级数及其审敛法

要求:会用比较、比值审敛法判断正项级数的收敛性

定义(正项级数)

若 $u_n \geq 0$,则称 $\sum_{n=1}^{\infty} u_n$ 为正项级数.

定理12.1

正项级数 $\sum_{n=1}^{n} u_n$ 收敛的充分必要条件是其部分和有界. 定理12.2 (比较审敛法)

设 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 是两个正项级数, 有 $u_n \leq v_n$, 则有

(1) 若级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;

大收则小收

(2) 若级数 $\sum_{n=1}^{\infty} u_n$ 发散,则级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

小发则大发

例12.5 判断下列级数的敛散性: (P256)

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
 (2) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$

(1) 分析 首先估计级数收敛还是发散: 答: 收敛

为什么是收敛的?因为 $\frac{1}{n^n}$ 变小很快,估计部分和数列极限存在.

需要找一个比它大且收敛的级数与之比较

解 (1) 当
$$n > 1$$
时, $n^n \geq 2^n$, $\frac{1}{n^n} \leq \frac{1}{2^n}$

而等比级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 是收敛的,根据比较审敛法可知 $\sum_{n=1}^{\infty} \frac{1}{n^n}$ 收敛.

解 (2) :: $\ln n < n$, 即 $\frac{1}{\ln n} > \frac{1}{n}$, 而调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 是发散的,

根据比较审敛法可知 $\sum_{n=1}^{\infty} \frac{1}{\ln n}$ 发散.

例12.5 判断级数收敛性不好做,首先要估计级数的敛散性,

还要找一个与之相应的级数进行比较.

需另找判别方法.

什么方法?

定理12.3 (比较审敛法的极限形式)

定理12.3 (比较审敛法的极限形式)

设两正项级数
$$\sum_{n=1}^{\infty} u_n$$
 , $\sum_{n=1}^{\infty} v_n$ 满足 $\lim_{n\to\infty} \frac{u_n}{v_n} = l$, 则有

(1) 当 $0 < l < \infty$ 时,两个级数同时收敛或发散;

(2) 当
$$l = 0$$
 且 $\sum_{n=1}^{\infty} v_n$ 收敛时, $\sum_{n=1}^{\infty} u_n$ 也收敛;

(3) 当
$$l = \infty$$
 且 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散;

注意: $\lim_{n\to\infty}\frac{u_n}{v_n}=l$, 要判别 $\sum_{n=1}^{\infty}u_n$ 的收敛性,通项 u_n 放在分子处;

已知 $\sum_{n=1}^{\infty} v_n$ 的收敛性, 通项 v_n 放在分母处; 位置不要放错.

比较审敛法的极限形式常用的是第一个结论,两级数收敛性相同.

例12.6 证明 p 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p} (p>0)$,当 p>1时收敛,当 $p\leq 1$ 时发散.

记住这个结论, 由于时间关系, 不证明.

例12.6的结论是比较审敛法的一个基本级数,要求会用它与其他要判别收敛性的级数进行比较.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛; $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 发散; $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 收敛.

常用于比较的级数有:

几何级数 $\sum_{n=1}^{\infty} aq^{n-1}$,当|q|<1时级数收敛,当 $|q| \ge 1$ 时级数发散.

p 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p} (p > 0)$, 当 p > 1 时收敛, 当 $p \le 1$ 时发散.

判别下列级数的敛散性

(1)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)^2}$$
 (2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ (3) $\sum_{n=1}^{\infty} \sin \frac{1}{2n}$ (4) $\sum_{n=1}^{\infty} \ln \left[1 + \frac{1}{n^2}\right]$

学会从通项中找与之比较的级数

(1)
$$u_n = \frac{2n+1}{n(n+1)^2}$$
, $\sharp v_n = \frac{1}{n^2}$, $\lim_{n \to \infty} \frac{u_n}{v_n} = 2$,

已知级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,所以原级数也收敛.

(2)
$$u_n = \frac{1}{\sqrt{n(n+1)}}, \quad 2 v_n = \frac{1}{n}, \quad \lim_{n \to \infty} \frac{u_n}{v_n} = 1,$$

已知级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 所以原级数也发散.

$$(3)\sum_{n=1}^{\infty}\sin\frac{1}{2n} \quad \Leftrightarrow v_n = \frac{1}{n}$$

$$n \to \infty$$
, $\sin \frac{1}{n} \sim \frac{1}{n}$

$$\lim_{n\to\infty}\frac{\sin\frac{1}{2n}}{\frac{1}{2n}} = \lim_{n\to\infty}n\cdot\frac{1}{2n} = \frac{1}{2}$$

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \sin \frac{1}{2n}$ 发散.

$$(4)\sum_{n=1}^{\infty}\ln\left[1+\frac{1}{n^{2}}\right] \Leftrightarrow v_{n}=\frac{1}{n^{2}}$$

$$n \to \infty$$
, $\ln(1+\frac{1}{n^2}) \sim \frac{1}{n^2}$

$$\lim_{n\to\infty} \frac{\ln\left[1+\frac{1}{n^2}\right]}{\frac{1}{n^2}} = \lim_{n\to\infty} n^2 \cdot \frac{1}{n^2} = 1$$

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \ln\left[1 + \frac{1}{n^2}\right]$ 收敛.

定理12.4 (比值审敛法)

设
$$\sum u_n$$
 为正项级数,且 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho$,则

- (1) 当 ρ <1 时,级数收敛;
- (2) 当 $\rho > 1$ 时,级数发散;
- (3) 当 $\rho=1$ 时,级数收敛情况不确定.

比值法适用于一般项含有 n!, a" 等形式的级数

比值法的好处在于无须事先对级数的收敛情况有个预判

例12.9 判断下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 (2) $\sum_{n=1}^{\infty} \frac{2^n}{n}$

解 (1) :
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\overline{(n+1)!}}{\frac{1}{n!}} = \lim_{n\to\infty} \frac{1}{n+1} = 0 < 1$$

根据比值审敛法可知 $\sum_{n=1}^{\infty} \frac{1}{n!}$ 收敛.

(2) :
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\frac{2^n}{n+1}}{\frac{2^n}{2^n}} = \lim_{n \to \infty} \frac{2n}{n+1} = 2 > 1$$

根据比值审敛法可知 $\sum_{n=1}^{\infty} \frac{2^n}{n}$ 发散.

两种审敛法的比较

	优点	缺 点
比较审敛法	使用范围广,理论上讲任何级数都可判断	不好掌握, 先要预判级数 的收敛性, 再找一个收敛 性与之相应的级数进行比 较
比值审敛法	自己的通项比,不 需借助其他级数就 能判别,易掌握	当比值为1时,判别法失效,使用有局限性

两种方法都要掌握,应用时看级数通项的特点选 择用哪种审敛法

学会从通项中选择正确的审敛法进行收敛性判定

$$\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$$

$$\sum_{n=1}^{\infty} \frac{n}{1+n^2}$$

$$\sum_{n=1}^{\infty} \frac{n!}{5^n}$$

比较

比较

比值

$$\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$$

$$\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$$

比值

比较

比值 比较

都可用

定理12.5 根值审敛法(Cauchy判别法)

设
$$\sum_{n=1}^{\infty} u_n$$
 为正项级数, $\lim_{n\to\infty} \sqrt[n]{u_n} = l$, 则

- (1)当l<1时,级数收敛
- (2)当l>1时,级数发散
- (3)当1=1时,级数是否收敛不确定

适用于级数的一般项含有n次幂的级数

这个定理只要求了解,不展开讲

例8: 判断级数 $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ 的敛散性:

解:
$$: \lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{2n+1}\right)^n} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} < 1$$

根据根值审敛法可知 $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ 收敛.

作业 P259

- 1. (3), (4)
- 2. (1), (2)
- 4. (2), (4)

预习 12.3节