Anexa A

Proiecte

1. Acoperirea convexă a unui poligon arbitrar.

Input: Un poligon \mathcal{P} din \mathbb{R}^2 .

Output: Acoperirea convexă Conv(P) (determinată în timp liniar).

2. Poziția unui punct față de un poligon convex.

Input: Un poligon convex \mathcal{P} din \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$.

Output: Precizează poziția lui A față de \mathcal{P} (în interior, pe laturi, în exterior), folosind o împărțire convenabilă pe sectoare.

3. Poligon convex şi punct exterior.

Input: Un poligon convex \mathcal{P} din \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$ în exteriorul lui \mathcal{P} .

Output: Vârfurile acoperirii convexe $\text{Conv}(\mathcal{P} \cup \{A\})$ (ca listă ordonată, parcursă în sens trigonometric).

4. Poligoane cu laturi paralele.

Input: Două dreptunghiuri / poligoane convexe \mathcal{P}, \mathcal{Q} din \mathbb{R}^2 , disjuncte, având laturile paralele.

Output: Vârfurile acoperirii convexe $Conv(\mathcal{P} \cup \mathcal{Q})$ (ca listă ordonată, parcursă în sens trigonometric).

5.* Cercuri.

Input: O mulţime de cercuri C_1, \ldots, C_q de rază 1, disjuncte, din planul \mathbb{R}^2 (sunt indicate centrele cercurilor), un punct $A \in \mathbb{R}^2$.

Output: Precizează poziția lui A față de $Conv(C_1 \cup ... \cup C_q)$.

6. Clasificarea vârfurilor unui poligon

Input: Un poligon \mathcal{P} din planul \mathbb{R}^2 .

Output: Precizează pentru fiecare vârf al poligonului natura sa, folosind criteriile de clasificare de la curs (principal sau nu; convex/concav).

7. Poligoane monotone

Input: Un poligon \mathcal{P} din planul \mathbb{R}^2 .

Output: Precizează dacă poligonul este y-monoton; în caz afirmativ listează cele două lanțuri de parcurgere.

8.* Poziția unui punct față de un poligon

Input: Un poligon \mathcal{P} din planul \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$.

Output: Determină o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} . Precizează poziția lui A față de \mathcal{P} (în exterior, pe laturi, în interior). În cazul în care este un punct interior, indică triunghiul din $\mathcal{T}_{\mathcal{P}}$ căruia A îi aparține.

9.** Vizibilitate

Input: Un poligon \mathcal{P} , un punct A în interiorul lui \mathcal{P} .

Output: Determină, folosind o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} , regiunea lui \mathcal{P} care este vizibilă din A.

10. Intersecții de poligoane

Input: Poligoane $\mathcal{P}_1, \mathcal{P}_2 \dim \mathbb{R}^2$.

Output: Precizează natura intersecției dintre $\widetilde{\mathcal{P}}_1$ și $\widetilde{\mathcal{P}}_2$ (unde $\widetilde{\mathcal{P}}_i$ este reuniunea dintre poligonul \mathcal{P}_i și interiorul său, i = 1, 2).

11. Poziția unui punct față de o triangulare

Input: O mulţime \mathcal{M} de puncte care conţine vârfurile unui triunghi \mathcal{T} şi puncte din interiorul lui \mathcal{T} , un punct $A \in \mathbb{R}^2$.

Output: Determină o triangulare $\mathcal{T}_{\mathcal{M}}$ a lui \mathcal{M} . Precizează poziția lui A față de \mathcal{M} (în exterior, pe laturi, în interior). În cazul în care este un punct interior, indică triunghiul din $\mathcal{T}_{\mathcal{M}}$ căruia A îi aparține.

12.* Echivalenţa triangulărilor

Input: O mulţime \mathcal{M} de puncte, două triangulări $\mathcal{T}_{\mathcal{M}}$, $\mathcal{T}'_{\mathcal{M}}$ ale lui \mathcal{M} .

Output: Precizează dacă cele două triangulări sunt echivalente, i.e. pot fi transformate una intr-alta într-un număr finit de paşi, prin aplicarea unor modificări de tip "flip", indicate explicit.