# Deep learning arrives



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

#### The thaw of the "AI winter"



### Neural Networks: A decade ago

- Lack of processing power
- Lack of data
- Overfitting
- Vanishing gradients
- Experimentally, training multi-layer perceptrons was not that useful

"Are 1-2 hidden layers the best neural networks can do?"

### Neural Networks: Today

- Lack of processing power
- Lack of data
- Overfitting
- Vanishing gradients
- Experimentally, training multi-layer perceptrons was not that useful

"Are 1-2 hidden layers the best neural networks can do?"

#### Deep Learning arrives

- Easier to train one layer at a time → Layer-by-layer training
- Training multi-layered neural networks became easier
- After, keep training with contrastive divergence

Freeze layer 3

Freeze layer 2

Training layer 1

Input

#### Deep Learning arrives

- Easier to train one layer at a time → Layer-by-layer training
- Training multi-layered neural networks became easier
- After, keep training with contrastive divergence



Input

### Deep Learning arrives

- Easier to train one layer at a time → Layer-by-layer training
- Training multi-layered neural networks became easier
- After, keep training with contrastive divergence



#### Deep Learning Renaissance



### Deep Learning is Big Data Hungry!

- In 2009 the Imagenet dataset was published [Deng et al., 2009]
  - Collected images for all 100K terms in Wordnet (16M images in total)
  - Terms organized hierarchically: "Vehicle" → "Ambulance"
- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
  - 1 million images, 1,000 classes, top-5 and top-1 error measured

CNN based, non-CNN based

| 2012 Teams            | %error | 2013 Teams             | %error | 2014 Teams   | %error |
|-----------------------|--------|------------------------|--------|--------------|--------|
| Supervision (Toronto) | 15.3   | Clarifai (NYU spinoff) | 11.7   | GoogLeNet    | 6.6    |
| ISI (Tokyo)           | 26.1   | NUS (singapore)        | 12.9   | VGG (Oxford) | 7.3    |
| VGG (Oxford)          | 26.9   | Zeiler-Fergus (NYU)    | 13.5   | MSRA         | 8.0    |
| XRCE/INRIA            | 27.0   | A. Howard              | 13.5   | A. Howard    | 8.1    |
| UvA (Amsterdam)       | 29.6   | OverFeat (NYU)         | 14.1   | DeeperVision | 9.5    |
| INRIA/LEAR            | 33.4   | UvA (Amsterdam)        | 14.2   | NUS-BST      | 9.7    |
|                       |        | Adobe                  | 15.2   | TTIC-ECP     | 10.2   |
|                       |        | VGG (Oxford)           | 15.2   | XYZ          | 11.2   |
|                       |        | VGG (Oxford)           | 23.0   | UvA          | 12.1   |

#### ImageNet 2012 winner: AlexNet



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky, Sutskever & Hinton, NIPS 2012

Datasets of everything (captions, question-answering, ...), reinforcement learning, ???



### Deep Learning Golden Era



#### Deep Learning in practice

#### YouTube



Large-scale Video Classification with Convolutional Neural Networks, CVPR

#### Youtube



Microsoft Deep Learning Semantic Image Segmentation

#### Website



#### Youtube



Deep Sensorimotor Learning

#### Youtube



Google DeepMind's Deep Q-learning playing Atari Breakout

| Newspapers          |                                    |                           |                     |  |  |  |  |
|---------------------|------------------------------------|---------------------------|---------------------|--|--|--|--|
| New York            | New York Times Baltimore           |                           | Baltimore Sun       |  |  |  |  |
| San Jose            | San Jose Mercury News   Cincinnati |                           | Cincinnati Enquirer |  |  |  |  |
| NHL Teams           |                                    |                           |                     |  |  |  |  |
| Boston              | Boston Bruins                      | Montreal                  | Montreal Canadiens  |  |  |  |  |
| Phoenix             | Phoenix Coyotes                    | Phoenix Coyotes Nashville |                     |  |  |  |  |
| NBA Teams           |                                    |                           |                     |  |  |  |  |
| Detroit             | Detroit Pistons                    | Toronto                   | Toronto Raptors     |  |  |  |  |
| Oakland             | Golden State Warriors              | Memphis                   | Memphis Grizzlies   |  |  |  |  |
| Airlines            |                                    |                           |                     |  |  |  |  |
| Austria             | Austrian Airlines                  | Spain                     | Spainair            |  |  |  |  |
| Belgium             | Brussels Airlines                  | Greece                    | Aegean Airlines     |  |  |  |  |
| Company executives  |                                    |                           |                     |  |  |  |  |
| Steve Ballmer       | Microsoft                          | Larry Page Google         |                     |  |  |  |  |
| Samuel J. Palmisano | IBM                                | Werner Vogels             | Amazon              |  |  |  |  |

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples). The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy of 72% on this dataset.

## Deep Learning even for the arts



### Why should we be impressed?

- Vision is ultra challenging!
  - For 256x256 resolution  $\rightarrow$  2<sup>524,288</sup> of possible in
  - Large semantic & visual object variations









- Robotics is typically considered in controlled environments
- O Game AI involves extreme number of possible games states ( $10^{10^{48}}$  possible GO games)
- NLP is extremely high dimensional and vague (just for English: 150K words)
- Deep learning seems to casually solve many, many (supervised) problems thought to be extremely hard



