Danmarks Tekniske Universitet

Side 1 af 5 sider

Skriftlig eksamen, d. 5. december 2023

Kursusnavn: Matematik 1 (Polyteknisk grundlag) Kursusnr. 01001\01003

Eksamensvarighed: 2 timer

Hjælpemidler: Ingen elektroniske hjælpemidler

"Vægtning": Alle spørgsmål i denne eksamen vægtes ens. Denne del af eksamenen tæller 50% af hele eksamenen.

Yderligere information: Spørgsmålene er stillet først på dansk og dernæst på engelsk. Alle svar skal være motiverede, og mellemregninger skal angives i passende omfang.

The Technical University of Denmark

Page 1 of 5 pages

Written exam, the 5th of December 2023

Course name: Mathematics 1a (Polytechnical foundation) Course no. 01001\01003 Exam duration: 2 hours

Aid: No electronic aid

"Weighting": All questions in this exam are weighted equally. This part of the exam counts for 50% of the whole exam.

Additional information: The questions are posed first in Danish and then in English. All answers have to be motivated and intermediate steps need to be given to a reasonable extent.

Opgave 1

- a) Beregn sandhedstabellen for følgende logiske udsagn: $(P \Rightarrow R) \Leftrightarrow Q$.
- b) Er de logiske udsagn $(P \Rightarrow R) \Leftrightarrow Q \text{ og } (R \Rightarrow P) \Leftrightarrow Q \text{ logisk }$ ækvivalente?

Opgave 2

Skriv følgende komplekse tal på rektangulær form:

- a) $e^{i\pi/2} \cdot (2+i)$.
- b) $(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2})^4$.

Opgave 3

For alle $n \in \mathbb{Z}_{\geq 2}$ defineres

$$s_n = \sum_{k=2}^n \frac{k}{2}.$$

Besvar nu følgende spørgsmål:

- a) Beregn s_2 , s_3 og s_4 .
- b) Vis med induktion efter n at $s_n = \frac{n^2 + n 2}{4}$ for alle $n \in \mathbb{Z}_{\geq 2}$.

Opgave 4

Der gives f
ølgende matrix:

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -2 \\ -3 & 7 \end{array} \right].$$

- a) Afgør om matricen A er invertibel. Hvis ja, beregn A^{-1} .
- b) Lad nu n være et naturligt tal og $\mathbf{B} \in \mathbb{R}^{n \times n}$ en invertibel matrix. Kan 0 være en egenværdi for \mathbf{B} ? Gør rede for dit svar.

Opgave 5

Lad $V = \{a+bZ+cZ^2 \mid a,b,c \in \mathbb{R}\}$ være underrummet af det reelle vektorrum $\mathbb{R}[Z]$ bestående af polynomier af grad højst 2. Der vælges følgende ordnede basis for V:

$$\gamma = (1 + 2Z, 2 + Z - Z^2, Z^2).$$

For en lineær afbildning $L: V \to V$ oplyses følgende afbildningsmatrix:

$$_{\gamma}[L]_{\gamma} = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight].$$

- a) Hvilke af basisvektorerne 1+2Z, $2+Z-Z^2$ og Z^2 er i $\ker(L)$? Er polynomiet $1+2Z+Z^2$ i $\ker(L)$? Gør rede for dit svar.
- b) Find baser for ker(L) og image(L).

Opgave 6

Givet følgende reelle system af differentialligninger:

$$\left[\begin{array}{c} f_1'(t) \\ f_2'(t) \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 5 & -2 \end{array}\right] \cdot \left[\begin{array}{c} f_1(t) \\ f_2(t) \end{array}\right].$$

- a) Er det givne system af differentialligninger homogent eller inhomogent?
- b) Beregn systemets fuldstændige reelle løsning.

EKSAMEN SLUT

Question 1

- a) Determine the truth table of the following logical proposition: $(P \Rightarrow R) \Leftrightarrow Q$.
- b) Are the logical propositions $(P \Rightarrow R) \Leftrightarrow Q$ and $(R \Rightarrow P) \Leftrightarrow Q$ logically equivalent?

Question 2

Write the following complex numbers in rectangular form:

- a) $e^{i\pi/2} \cdot (2+i)$.
- b) $(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2})^4$.

Question 3

For all $n \in \mathbb{Z}_{\geq 2}$ one defines

$$s_n = \sum_{k=2}^n \frac{k}{2}.$$

Now answer the following questions:

- a) Compute s_2 , s_3 and s_4 .
- b) Show using induction on n that $s_n = \frac{n^2 + n 2}{4}$ for all $n \in \mathbb{Z}_{\geq 2}$.

Question 4

The following matrix is given:

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -2 \\ -3 & 7 \end{array} \right].$$

- a) Determine whether or not the matrix A is invertible. If yes, compute A^{-1} .
- b) Let n be a natural number and $\mathbf{B} \in \mathbb{R}^{n \times n}$ an invertible matrix. Can 0 be an eigenvalue of \mathbf{B} ? Motivate your answer.

Question 5

Let $V = \{a + bZ + cZ^2 \mid a, b, c \in \mathbb{R}\}$ be the subspace of the real vector space $\mathbb{R}[Z]$ consisting of polynomials of degree at most 2. The following ordered basis for V is chosen:

$$\gamma = (1 + 2Z, 2 + Z - Z^2, Z^2).$$

For a linear map $L: V \to V$ the following mapping matrix is given:

$$_{\gamma}[L]_{\gamma} = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight].$$

- a) Which of the basis vectors 1 + 2Z, $2 + Z Z^2$ and Z^2 are in $\ker(L)$? Is the polynomial $1 + 2Z + Z^2$ in $\ker(L)$? Motivate your answer.
- b) Find bases for ker(L) and image(L).

Question 6

The following real system of differential equations is given:

$$\left[\begin{array}{c} f_1'(t) \\ f_2'(t) \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 5 & -2 \end{array}\right] \cdot \left[\begin{array}{c} f_1(t) \\ f_2(t) \end{array}\right].$$

- a) Is the given system homogeneous or inhomogeneous?
- b) Determine the general real solution of the system.

END OF THE EXAM