Partiel

Ici, les compacts seront séparés.

Exercice 1

1. Soit (X, \mathcal{T}) un espace topologique. Rappeler pourquoi l'adhérence vérifie les propriétés suivantes :

$$\overline{\overline{A}} = \overline{A}, \ A \subset \overline{A}, \ \overline{\emptyset} = \emptyset, \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$$

2. Réciproquement, on se donne une application $A \in \mathcal{P}(X) \mapsto \overline{A} \in \mathcal{P}(X)$ vérifiant les quatre propriétés ci-dessus. Montrer qu'elle permet de définir une topologie sur X dont elle est l'adhérence.

Exercice 2

Dans \mathbb{R}^2 , on note \mathcal{C}_r le cercle de centre (r,0) et de rayon r et S^1 le cercle unité de \mathbb{R}^2 . On note 1 l'élément distingué $(1,0) \in S^1$. On définit les ensembles suivants

$$X_1 := \bigcup_{n \geqslant 1} \mathcal{C}_n \subset \mathbb{R}^2, \ X_2 := \bigcup_{n \geqslant 1} \mathcal{C}_{\frac{1}{n}} \subset \mathbb{R}^2, \ X_3 := \bigcup_{n \geqslant 0} \{1\}^n \times S^1 \times \{1\}^{\mathbb{N}} \subset \prod_{n \geqslant 0} S^1,$$

$$X_4 := (S^1 \times \mathbb{N})/\sim \text{ où } \sim \text{ est la relation } \left\{ \begin{array}{l} \forall (x,n) \in S^1 \times \mathbb{N} \ (x,n) \sim (x,n), \\ \forall p,q \in \mathbb{N} \ (1,p) \sim (1,q) \end{array} \right..$$

Les deux premiers sont munis de la topologie induite par celle de \mathbb{R}^2 , X_3 la topologie produit induite par la topologie produit. Pour X_4 , \mathbb{N} est muni de la topologie discrète, $S^1 \times \mathbb{N}$ est également muni de la topologie produit (il s'agit en fait de l'union disjointe de \mathbb{N} copies du cercle), on munit ensuite X_4 de la topologie quotient.

- 1. Les espaces X_1 et X_2 sont-ils compacts?
- 2. Montrer que X_3 est fermé dans le produit $\prod_{n\geqslant 0} S^1$, et en déduire qu'il est compact.
- 3. L'espace X_4 est-il compact?
- 4. Montrer que X_2 et X_3 sont homéomorphes.
- 5. Montrer qu'il existe une bijection continue de X_4 dans X_1 .
- 6. Montrer que la classe d'équivalence de (1,n) dans X_4 , qui est indépendante de n, n'a pas de système dénombrable de voisinages. En déduire que X_1 et X_4 ne sont pas homéomorphes.

Exercice 3

Soit G un groupe muni d'une topologie séparée. On dit que c'est un groupe topologique si les opérations $(x,y) \mapsto xy$ et $x \mapsto x^{-1}$ sont continues. On note e le neutre de G. On note $\mathcal{V}(x)$ l'ensemble des voisinages de x.

- 1. Montrer que si $V \in \mathcal{V}(e)$, il existe $W \in \mathcal{V}(e)$ tel que $W \cdot W \subset V$, montrer également qu'on peut supposer que $W = W^{-1}$.
- 2. Montrer que pour tout voisinage ouvert V de e, on a $\overline{V} \subset V \cdot V$. En déduire que chaque point de G possède un système fondamental de voisinages fermés.
- 3. Montrer que G est régulier : si F est fermé et $x \notin F$, on peut trouver deux ouverts disjoints les contenant respectivement.

Soit maintenant X un groupe abélien muni d'une distance qui le rende compact, et rende les translations continues. On rappelle que les translations sont les applications $\tau_a: x \in X \mapsto x + a \in X$. On suppose qu'il existe un morphisme de groupes bijectif continu $T: (\mathbb{R}, +) \longrightarrow X$.

- 4. Soit $I_n = [-n; n]$. Montrer qu'il existe p tel que $T(I_p)$ soit d'intérieur non vide.
- 5. Montrer que l'on peut trouver $x_1, \ldots, x_N \in \mathbb{R}$ tels que $T^{-1}(X) = \bigcup_{i=1}^{N} (x_i + I_p)$ et aboutir à une contradiction.
- 6. Donner cependant un exemple de bijection continue de \mathbb{R} sur un espace métrique compact X.

Exercice 4

Soit (X, d) un espace métrique compact. On rappelle que l'on peut munir l'ensemble $\mathcal{K}(X)$ des parties compactes de X d'une distance δ appelée distance de Hausdorff. Celle-ci est définie par

$$\delta(K_1, K_2) = ||d_{K_1} - d_{K_2}||_{\infty}$$

où $d_{K_1}(x) := \inf_{k \in K_1} d(x, k)$ est la fonction distance à K_1 . On rappelle qu'elle est égale à

$$\delta(K_1, K_2) = \inf\{\varepsilon > 0 \text{ t.q. } K_1 \subset V_{\varepsilon}(K_2) \text{ et } K_2 \subset V_{\varepsilon}(K_1)\}$$

où $V_{\varepsilon}(K) = \bigcup_{x \in K} \overline{\mathcal{B}}(x, \varepsilon)$ désigne l'ensemble des points à distance au plus ε de K. On admet que la distance de Hausdorff est bien une distance et que les deux définitions sont bien équivalentes. On utilisera surtout la seconde. On va montrer que K(X) est lui-même compact pour la topologie induite par δ .

- 1. a) Soit $K_n \to K$ une suite convergente, $x_n \in K_n$ un élément pris dans chaque K_n , et x une valeur d'adhérence de (x_n) . Montrer que $x \in K$.
- b) Soit toujours $K_n \to K$ une suite convergente, et soit $x \in K$, montrer que pour tout voisinage V de x, la suite $(K_n \cap V)$ est ultimement non vide. (i.e. non vide à partir d'un certain rang.)

Soit (K_n) une suite de compacts pas nécessairement convergente. On rappelle que la topologie de X est à base dénombrable d'ouverts, et on se donne une base de topologie (U_m) .

- 2. Montrer qu'il existe une sous-suite $(K_{\varphi(n)})$ telle que pour tout m la suite $(K_{\varphi(n)} \cap U_m)_n$ est soit constituée d'ensembles non vides à partir d'un certain rang, soit stationnaire à \emptyset . (on pourra montrer qu'il existe une suite d'extractrices (φ_m) telle que pour tout m la suite $(K_{\varphi_0 \circ \cdots \circ \varphi_m(n)} \cap U_m)_n$ est ultimement vide ou ultimement non vide, puis poser $\varphi(n) = \varphi_0 \circ \cdots \circ \varphi_n(n)$.)
- 3. On pose

$$L:=\{x\in X\ :\ \forall V\in \mathcal{V}(x),\ V\cap K_{\varphi(n)}\neq\emptyset\ \text{à partir d'un certain rang.}\}.$$

Montrer que L est compact.

- 4. On va montrer que la suite $K_{\varphi(n)}$ converge vers L. Soit $\varepsilon > 0$.
- a) Montrer que l'on peut trouver un ensemble fini $M \subset \mathbb{N}$ tel que

$$L \subset \bigcup_{m \in M} U_m \subset V_{\varepsilon}(L) \text{ et } \forall m \in M, \ U_m \cap L \neq \emptyset \text{ et diam } U_m \leqslant \varepsilon.$$

On note $U := \bigcup_{m \in M} U_m$, qui est ouvert.

- b) Montrer qu'il existe $r < \varepsilon$ tel que $V_r(L) \subset U$.
- c) Montrer que l'on peut trouver un ensemble fini $N \subset \mathbb{N}$ tel que

$$X - U \subset \bigcup_{m \in N} U_m \subset X - V_r(L).$$

- d) Montrer qu'à partir d'un certain rang, $K_{\varphi(n)} \cap U_m = \emptyset$ si $m \in N$ et est non vide si $m \in M$.
- e) Conclure que $K_{\varphi(n)} \to L$.