Aufgabe 1 (4 Punkte). Wir nehmen an, dass $Q \ll P$ auf \mathscr{F} mit Dichte φ und $\mathscr{F}_0 \subseteq \mathscr{F}$. Dann gilt für jedes \mathscr{F} -messbare X, dass

$$E_Q[X|\mathscr{F}_0] = \frac{1}{E_P[\varphi|\mathscr{F}_0]} E_P[X\varphi|\mathscr{F}_0].$$

Das ist Proposition A.16 in [HF16]. $\frac{1}{E_P[\varphi|\mathscr{F}_0]}E_P[X\varphi|\mathscr{F}_0]$ ist als Kombination von \mathscr{F}_0 -messbaren Funktionen \mathscr{F}_0 -messbar. Wir müssen noch zeigen, dass für alle \mathscr{F}_0 -messbaren Y gilt

$$E_Q[YX] = E_Q \left[Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0] \right] . \tag{1}$$

Wir bringen die linke und die rechte Seite auf die gleiche Form und sehen dadurch, dass sie gleich sind. Mit dem Satz von Radon-Nikodym haben wir für die linke Seite

$$E_Q[YX] = E[YX\varphi]$$
.

Mit der Turmeigenschaft können wir auch schreiben, dass

$$= E[E[YX\varphi|\mathscr{F}_0]],$$

und da Y \mathcal{F}_0 -messbar ist, dass

$$= E[YE[X\varphi|\mathscr{F}_0]]. \tag{2}$$

Für die rechte Seite gilt mit dem Satz von Radon-Nikodym

$$E_Q\left[Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]=E\left[\varphi Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]\;.$$

Mit der Turmeigenschaft können wir schreiben

$$= E\left[E\Big[\varphi Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0] \Big| \mathscr{F}_0 \Big] \right] \,.$$

Da $Y,\,\frac{1}{\varphi_0}$ und $E[X\varphi|\mathscr{F}_0]$ $\mathscr{F}_0\text{-messbar}$ sind, erhalten wir

$$= E\left[E[\varphi|\mathscr{F}_0]Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]\,.$$

Mit der Definition von φ_0 kriegen wir dann, dass

$$= E\left[\varphi Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0]\right]. \tag{3}$$

In Gleichung (2) und Gleichung (3) kommt jeweils das Gleiche raus, was Gleichung (1) zeigt.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass die Menge der arbitragefreien Preise nicht leer ist und gegeben ist durch

$$\Pi(H) = \{ E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty \}. \tag{4}$$

Zeigen Sie weiter, dass

$$\pi_{\inf} := \inf \Pi(H) = \inf_{Q \in \mathcal{M}_e} E_Q[H], \quad \pi_{\sup} := \sup \Pi(H) = \sup_{Q \in \mathcal{M}_e} E_Q[H].$$
 (5)

Das ist Theorem 5.29 in [HF16]. Zunächst wollen wir zeigen, dass für jeden Arbitragefreien Preis π^H gilt, dass $\pi^H = E_Q[H] < \infty$ mit $Q \in \mathcal{M}_e$. Wenn π^H ein arbitragefreier Preis ist, so ist der Markt mit dem Prozess $(X^0, X^1, \ldots, X^d, X^{d+1})$ arbitragefrei. Nach dem Fundamentalsatz der Wertpapierbewertung gibt es dann ein $Q \in \mathcal{M}_e$, sodass $X_t^i = E_Q[X_T^i|\mathscr{F}_t]$. Insbesondere gilt dann für i = 0, dass $\pi^H = E_Q[H]$, also ist $\Pi(H) \subset \{E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty\}$.

Sei nun andersherum $\pi^H = E_Q[H]$ für ein $Q \in \mathcal{M}_e$. Wir können dann X durch $X_t^{d+1} := E_Q[H|\mathscr{F}_t]$ erweitern. Für den erweiterten Prozess gilt dann mit $\mathscr{F}_0 = \{\emptyset, \Omega\}$, dass $X_0^{d+1} = \pi^H$. Weiterhin ist $H \geq 0$, sodass $X_t^{d+1} \geq 0$. Schließlich ist H replizierbar, also $H = V_T$ für irgendeinen Wertprozess V_T . Somit ist H \mathscr{F}_T -messbar und $H = E_Q[H|\mathscr{F}_T]$. Der erweiterte Prozess ist also so, wie in Definition 1. Da auch X^{d+1} so, wie wir es definiert haben, ein Q-Martingal ist, ist der um X^{d+1} erweiterte Markt arbitragefrei. Alle Bedingungen von Definition 1 sind also erfüllt und $\pi^H \in \Pi(H)$, sodass auch

 ${E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty} \subset \Pi(H)$. Insgesamt gilt also Gleichung (4).

Nun wollen wir noch zeigen, dass $\Pi(H)$ nicht leer ist. Wähle hierfür wie in Lemma 22 ein $\widetilde{P} \sim P$ so, dass $E_{\widetilde{P}}[H] < \infty$, also zum Beispiel mit

$$\frac{d\widetilde{P}}{dP} = \frac{c}{1+H} \,.$$

Nach Theorem 14 ist der Markt unter \widetilde{P} arbitragefrei und es gibt ein $Q \in \mathcal{M}_e$, sodass $\frac{dQ}{d\widetilde{P}}$ beschränkt ist. Dann ist aber auch $E_Q[H] = E_{\widetilde{P}}\left[\frac{dQ}{d\widetilde{P}}H\right] < \infty$. Somit ist $E_Q[H] \in \{E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty\} = \Pi(H)$.

Nun wollen wir noch Gleichung (5) zeigen. Für $\inf_{Q \in \mathcal{M}_e} E_Q[H]$ gilt, dass $\inf_{Q \in \mathcal{M}_e} E_Q[H] < \infty$, also ist $\inf_{Q \in \mathcal{M}_e} E_Q[H] = \inf \Pi(H) = \pi_{\inf}$. Bei $\sup_{Q\in\mathcal{M}_e}$ kann es sein, dass es ein P^{∞} gibt, sodass $E_{P^{\infty}}[H]=\infty$. Dann wäre $\{E_Q[H] \mid Q \in \mathcal{M}_e\}$ nach oben nicht beschränkt. Damit Gleichung (5) für π_{\sup} gilt, muss also auch $\Pi(H)$ nach oben nicht beschränkt sein. Für jedes c > 0 muss somit ein $\pi \in \Pi(H)$ existierten, sodass $\pi > c$. Wir wollen so ein π konstruieren. Nehme also an, es gibt ein $P^{\infty} \in \mathcal{M}_e$ so, dass $E_{P^{\infty}}[H] = \infty$ und wähle dafür $n \geq 0$ so, dass $E_{P^{\infty}}[H \wedge n] > c$. Sei dann $\widetilde{\pi}=E_{P^{\infty}}[H\wedge n]$ und $X_t^{d+1}=E_{P^{\infty}}[H\wedge n|\mathscr{F}_t]$. Da \wedge messbar ist,
ist, wie zuvor, \boldsymbol{X}_t^{d+1} ein Martingal und somit der erweiterte Markt arbitragefrei. Nach Gleichung (4) ist dann $\{E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \mathcal{M}_e\}$ ∞ } für den erweiterten Markt nicht leer, wir erhalten also ein äquivalentes Martingalmaß Q unter dem der erweiterte Prozess $(X^0, \ldots, X^d, X^{d+1})$ ein Martingal ist, mit $E_Q[H] < \infty$. Insbesondere ist der Prozess (X^0, \dots, X^d) ein Martingal und $E_Q[H] \in \Pi(H)$. Für $\pi = E_Q[H]$ gilt nun schon, dass $\pi>c,$ denn nach Definition unseres erweiterten Prozesses X_t^{d+1} gilt

$$\pi = E_Q[H] \geq E_Q[H \wedge n] = E_Q[X_T^{d+1}] \,.$$

Da X_t^{d+1} ein Q-Martingal ist, erhalten wir

$$=X_0^{d+1}$$
.

wieder nach der Definition von X_t^{d+1} und $\widetilde{\pi}$ ist

 $=\widetilde{\pi}$,

und es galt mit der Wahl von n, dass

> c.

Somit gibt es für jedes c>0 ein $\pi\in\Pi(H)$ mit $\pi>c$ und $\sup\Pi(H)=\sup_{Q\in\mathcal{M}_c}E_Q[H].$

Aufgabe 3 (4 Punkte). Zeigen Sie, ist ein diskontierter claim H replizierbar, dann besteht die Menge $\Pi(H)$ aus einem Element gegeben durch V_0 , wobei V der Value Prozess jeder replizierbaren Strategie ist. Insbesondere ist V ein Martingal unter jedem äquivalenten Martingalmaß.

Nach Aufgabe 2 gilt, dass $\Pi(H) = \{E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty\}$. Da H replizierbar ist, gibt es nach Definition eine Handelsstrategie mit Werteprozess V, sodass $H = V_T$. Da Q ein Martingalmaß ist, gilt nach Satz 11 $(i) \implies (iv)$, dass $E_Q[H] = E_Q[V_T] = V_0$, unabhängig von Q, sodass $\Pi(H)$ tatsächlich nur aus V_0 besteht. Nach Satz 11 $(i) \implies (ii)$ ist V ein Martingal unter jedem äquivalenten Martingalmaß.

Literatur

[HF16] HANS FÖLLMER, Alexander S.: Stochastic Finance: An Introduction in Discrete Time. 4th REV. ed. de Gruyter, 2016 (de Gruyter Textbook). – ISBN 311046344X; 9783110463446