

Licence 1ère année, 2019-2020, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n°10 : Applications linéaires et matrices — correction —

Exercice 1. Parmi les applications ci-dessous, reconnaître les applications linéaires, les endomorphismes et les formes linéaires. Justifier votre réponse.

- (5) $f : \mathbb{R}[X] \to \mathbb{R}, \ f(P) = \max_{x \in [0,1]} P(x)$ (1) $f: \mathbb{R} \to \mathbb{R}^3$, f(x) = (0, -x, 1)
- (6) $f: \mathbb{R}[X] \to \mathbb{R}[X], f(P) = P(0) + P'(0)X + \frac{1}{2}P''(0)X^2$ $(2) f: \mathbb{R}^3 \to \mathbb{R}, \ f(x, y, z) = -z$
- (3) $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x,y,z) = (x,yz) (7) $f: E \to \mathbb{R}$, $f((u_n)_{n \in \mathbb{N}}) = \lim(u_n)$, avec E e.v. des suites convergentes
- (4) $f : \mathbb{R} \to \mathbb{R}, f(x) = 3x + 1$ (8) $f: A \to \mathbb{R}$, avec A e.v. des suites arithmétiques et $f((u_n))$ = raison de (u_n)
- 1) pas linéaire $(f(0) \neq 0)$
- 2) forme linéaire
- 3) pas linéaire $(f(\lambda \vec{u}) \neq \lambda f(\vec{u}))$
- 4) pas linéaire $(f(0) \neq 0)$
- 5) pas linéaire $(f(X) = 1 \text{ et } f(-X) = 1 \neq -f(X))$
- 6) endomorphisme
- 7) forme linéaire
- 8) forme linéaire

Exercice 2. Soit $f:A\to B$ une application quelconque, et $A_1,A_2\subset A,\,B_1,B_2\subset B.$ Montrer que:

- (4) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ (1) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- (2) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$ avec égalité si f est injective (5) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- (6) $A_1 \subset f^{-1}(f(A))$ avec égalité si f est injective (3) $f(f^{-1}(B_1)) \subset B_1$ avec égalité si f est surjective
- 1) Si $x \in A_1 \cup A_2$, $f(x) \in f(A_1)$ ou $f(x) \in f(A_2)$ donc $f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)$
- Si $y \in f(A_1) \cup f(A_2)$, alors y = f(x) avec $x \in A_1$ ou $x \in A_2$ donc $f(A_1 \cup A_2) \supset f(A_1) \cup f(A_2)$
- 2) Si $x \in A_1 \cap A_2$, alors $x \in A_1$ et $x \in A_2$ donc $f(x) \in f(A_1) \cap f(A_2)$ donc $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$
- Si $y \in f(A_1) \cap f(A_2)$, alors $y = f(x_1) = f(x_2)$ avec $x_1 \in A_1$ et $x_2 \in A_2$, donc si f est injective on en déduit que $x_1 = x_2 \in A_1 \cap A_2$, i.e. $f(A_1 \cap A_2) \supset f(A_1) \cap f(A_2)$
- 3) Si $y \in f(f^{-1}(B_1))$ alors y = f(x) avec $x \in f^{-1}(B_1)$, i.e. $f(x) \in B_1$ donc $y = f(x) \in B_1$: on a donc bien
- Si $y \in B_1$ et f est surjective, alors y = f(x) pour un certain x, et $y = f(x) \in B_1 \Rightarrow x \in f^{-1}(B_1)$, soit $y \in f(f^{-1}(B_1))$: on a donc bien f surjective $\Rightarrow f(f^{-1}(B_1)) \supset B_1$.

Les cas 4) 5) 6) se démontrent de manière similaire.

Exercice 3. Pour toutes les applications linéaires f ci-dessous, donner une base de Ker f et une base de Im f, puis vérifier la cohérence du résultat à l'aide du théorème du rang.

- $\begin{array}{lll} (1) \ f: \mathbb{R}^2 \to \mathbb{R}^3, \ f(x,y) = (x+y,0,x-y) & (4) \ f: \mathbb{R}_3[X] \to \mathbb{R}_3[X], \ f(P) = X^2 P'' \\ (2) \ f: \mathbb{R}^3 \to \mathbb{R}, \ f(x,y,z) = x+y+z & (5) \ f: \mathbb{R}_3[X] \to \mathbb{R}_3[X], \ f(P) = P-P' \\ (3) \ f: \mathbb{R}^3 \to \mathbb{R}^3, \ f(x,y,z) = (x,x,y) & (6) \ f: \mathbb{R}_3[X] \to \mathbb{R}_3[X], \ f(P) = 2P-XP' \end{array}$
- 1) Ker $f = \{(0,0)\}$, Im f = Vect((1,0,0),(0,0,1)), dim Ker $f + \dim \text{Im } f = 0 + 2 = 2 = \dim \mathbb{R}^2$
- 2) Ker f = Vect((1, -1, 0), (0, 1, -1)), Im $f = \mathbb{R}$, dim Ker $f + \dim \text{Im } f = 2 + 1 = 3 = \dim \mathbb{R}^3$
- 3) Ker f = Vect((0,0,1)), Im f = Vect((1,1,0),(0,0,1)), dim Ker $f + \dim \text{Im } f = 1+2=3=\dim \mathbb{R}^3$
- 4) Ker f = Vect(1, X), Im $f = \text{Vect}(X^2, X^3)$, dim Ker $f + \dim \text{Im } f = 2 + 2 = 4 = \dim \mathbb{R}_3[X]$
- 5) $\operatorname{Ker} f = \{0\}, \operatorname{Im} f = \mathbb{R}_3[X] = \operatorname{Vect}(1, X, X^2, X^3), \operatorname{dim} \operatorname{Ker} f + \operatorname{dim} \operatorname{Im} f = 0 + 4 = 4 = \operatorname{dim} \mathbb{R}_3[X]$
- 6) Ker $f = \text{Vect}(X^2)$, Im $f = \text{Vect}(1, X, X^3)$, dim Ker $f + \dim \text{Im } f = 1 + 3 = 4 = \dim \mathbb{R}_3[X]$

Exercice 4. Pour toutes les applications linéaires f ci-dessous, lesquelles sont des isomorphismes? (on examinera uniquement la dimension de l'espace de départ et d'arrivée de f, puis en cas de besoin Ker f).

- $(1) \ f: \mathbb{R}^3 \to \mathbb{R}^3, \ f(x,y,z) = (x+2y+3z,y-z,y+z) \quad (4) \ f: \mathbb{R}^3 \to \mathbb{R}_2[X], \ f(a,b,c) = aX(X-1) + bX + c(X-1)$
- $(2) f: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (x + y + z, x y + z)$ $(5) f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], f(P) = P P'$ $(6) f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], f(P) = P P'$
- (6) $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], \ f(P) = X^n P(\frac{1}{X})$ (3) $f: \mathbb{R}_3[X] \to \mathbb{R}^3$, f(P) = (P(0), P(1), P(2))
- 1) f est un endomorphisme, il faut donc calculer Ker f. Si $(x, y, z) \in \text{Ker } f$, alors

$$\begin{cases}
 x + 2y + 3z = 0 \\
 y - z = 0 \\
 y + z = 0
\end{cases}$$

et les deux dernières équations impliquent y=z=0, ce qui avec la première équation donne x=y=0. Conclusion : $\operatorname{Ker} f = \{(0,0,0)\}\ \operatorname{donc} f \text{ est injective donc } f \text{ est un isomorphisme.}$

2) dim $\mathbb{R}^3 = 3 \neq 2 = \dim \mathbb{R}^2$ donc f ne peut pas être un isomorphisme

- 3) dim $\mathbb{R}_3[X] = 4 \neq 3 = \dim \mathbb{R}^3$ donc f ne peut pas être un isomorphisme
- 4) dim $\mathbb{R}^3 = 3 = \dim \mathbb{R}_2[X]$ donc on calcule Ker f. Si $P = f(a, b, c) \in \operatorname{Ker} f$, alors P(0) = -c = 0, P(1) = b = 0 et donc $P = aX(X - 1) = 0 \Rightarrow a = 0$ donc Ker $f = \{0\}$ donc f est injective donc bijective (isomorphisme)
- 5) Les dimensions sont égales (endomorphisme) donc on calcule Ker $f = \{0\}$ (cf. exo 3 question 5). On en déduit que f est injective donc bijective (isomorphisme et même automorphisme).
- 6) Pour vérifier que f est bien linéaire, on peut remarquer que

$$f(a_0 + a_1X + \dots + a_{n-1}X^{n-1} + a_nX^n) = a_n + a_{n-1}X + \dots + a_1X^{n-1} + a_0X^n,$$

qui est clairement une bijection de $\mathbb{R}_n[X]$ (permutation des coefficients). On peut aussi voir que les dimensions sont égales (endomorphisme) et que Ker $f = \{0\}$, comme pour la question précédente.

Soit $f \in \mathcal{L}(E,F)$ et $\mathcal{B} = (\vec{e_i})_{1 \leq i \leq n}$ une base de E. On pose $f(\mathcal{B}) = (f(\vec{e_i}))_{1 \leq i \leq n}$. Montrer que: Exercice 5.

- (1) f injective $\Leftrightarrow f(\mathcal{B})$ libre
- (2) f surjective $\Leftrightarrow f(\mathcal{B})$ génératrice de F
- (3) f bijective $\Leftrightarrow f(\mathcal{B})$ base de F
- $1) \sum_i \alpha_i f(\vec{e_i}) = \vec{0} \Rightarrow f\left(\sum_i \alpha_i \vec{e_i}\right) = \vec{0} \Rightarrow \sum_i \alpha_i \vec{e_i} \in \operatorname{Ker} f \text{ et si } f \text{ est injective, alors } \operatorname{Ker} f = \{\vec{0}\} \text{ donc } \sum_i \alpha_i \vec{e_i} = \vec{0}$

donc tous les α_i sont nuls $((\vec{e_i})$ base de E). Conclusion : f injective $\Rightarrow f(\mathcal{B})$ libre.

Réciproquement, si $f(\mathcal{B})$ est libre, alors si $\vec{x} \in \text{Ker } f$, on peut écrire $\vec{x} = \sum_i \alpha_i \vec{e_i}$ et on a $f(\vec{x}) = \vec{0} = \sum_i \alpha_i f(\vec{e_i})$ ce qui n'est possible que si tous les α_i sont nuls $(f(\vec{e_i}))$ libre) donc $\vec{x} = \vec{0}$, donc finalement Ker $f = \{\vec{0}\}$. Conclusion : $f(\mathcal{B})$ libre $\Rightarrow f$ injective.

2) Si f est surjective, alors tout vecteur $\vec{y} \in F$ s'écrit $\vec{y} = f(\vec{x})$ avec $\vec{x} \in E$, et comme $(\vec{e_i})_{1 \le i \le n}$ est une base de E on peut écrire $\vec{x} = \sum_i \alpha_i \vec{e_i}$, donc $\vec{y} = \sum_i \alpha_i f(\vec{e_i})$, ce qui prouve que $f(\mathcal{B})$ est génératrice de F.

Réciproquement, si $f(\mathcal{B})$ est génératrice de F, alors tout $\vec{y} \in F$ s'écrit sous la forme $\vec{y} = \sum_i \alpha_i f(\vec{e_i})$, c'est-à-dire $\vec{y} = f(\vec{x})$ (avec $\vec{x} = \sum_{i} \alpha_{i} \vec{e_{i}}$), donc f est surjective.

3) Conséquence directe du 1) et du 2)

Exercice 6. Soit $f \in \mathcal{L}(E)$. Montrer que $f \circ f = 0 \Leftrightarrow \operatorname{Im} f \subset \operatorname{Ker} f$.

Supposons $f \circ f = 0$. Si $\vec{y} \in \text{Im } f$, alors $\vec{y} = f(\vec{x})$ pour un certain $\vec{x} \in E$, et donc $f(\vec{y}) = f(f(\vec{x})) = (f \circ f)(\vec{x}) = \vec{0}$ donc $\vec{y} \in \text{Ker } f$. Conclusion : $f \circ f = 0 \Rightarrow \text{Im } f \subset \text{Ker } f$.

Réciproquement, supposons $\operatorname{Im} f \subset \operatorname{Ker} f$. Alors pour tout $\vec{x} \in E$, $f(x) \in \operatorname{Im} f$ donc $f(x) \in \operatorname{Ker} f$ ce qui signifie que $f(f(x)) = \vec{0}$. Conclusion: Im $f \subset \text{Ker } f \Rightarrow f \circ f = 0$.

Exercice 7. Soit $f \in \mathcal{L}(E)$ telle que $f \circ f = f$.

- (1) Montrer que pour tout $\vec{x} \in E$, $\vec{x} f(\vec{x}) \in \text{Ker } f$.
- (2) En déduire que Ker $f \oplus \text{Im } f = E$ (on pourra remarquer que $\vec{x} = (\vec{x} f(\vec{x})) + f(\vec{x})$)
- 1) Si $\vec{x} \in E$, alors par linéarité de f on a $f(\vec{x} f(\vec{x})) = f(\vec{x}) f(f(\vec{x})) = (f f \circ f)(\vec{x}) = \vec{0}$ donc $\vec{x} f(\vec{x}) \in \text{Ker } f$.
- 2) Tout vecteur \vec{x} de \vec{E} s'écrit $\vec{x} = (\vec{x} f(\vec{x})) + f(\vec{x})$ avec $\vec{x} f(\vec{x}) \in \text{Ker } f \text{ (question 1) et } f(\vec{x}) \in \text{Im } f \text{ (définition de$ $\operatorname{Im} f$). Ceci prouve que $E = \operatorname{Ker} f + \operatorname{Im} f$.

Par ailleurs, si $\vec{x} \in \text{Ker } f \cap \text{Im } f$, alors on peut écrire $\vec{x} = f(\vec{y})$ ($\vec{x} \in \text{Im } f$) et on a $f(\vec{x}) = 0$ ($\vec{x} \in \text{Ker } f$) donc $f \circ f(\vec{y}) = \vec{0}$ mais comme $f \circ f = f$, ceci implique que $f(\vec{y}) = \vec{0}$ c'est-à-dire $\vec{x} = \vec{0}$. Ceci prouve que Ker $f \cap \text{Im } f = \{\vec{0}\}$. Conclusion : Ker $f \bigoplus \text{Im } f = E$.

Exercice 8. Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. Calculer

$$A = \text{Mat}_{\mathcal{B}}(X^2 + 3X - 1); \text{ et } B = \text{Mat}_{\mathcal{B}}(1, X - 1, (X - 1)^2).$$

On a
$$A = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 9. Pour toutes les applications linéaires $f: E \to F$ ci-dessous, calculer la matrice de f dans les bases canoniques de E et F.

- $\begin{array}{ll} (1) \ f: \mathbb{R}^3 \to \mathbb{R}^3, \ f(x,y,z) = (x+2y+3z,y-z,y+z) & (4) \ f: \mathbb{R}^3 \to \mathbb{R}_2[X], \ f(a,b,c) = aX(X-1) + bX + c(X-1) \\ (2) \ f: \mathbb{R}^3 \to \mathbb{R}^2, \ f(x,y,z) = (x+y+z,x-y+z) & (5) \ f: \mathbb{R}_3[X] \to \mathbb{R}_3[X], \ f(P) = P-P' \\ (3) \ f: \mathbb{R}_3[X] \to \mathbb{R}^3, \ f(P) = (P(0),P(1),P(2)) & (6) \ f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], \ f(P) = X^2P(\frac{1}{X}) \end{array}$

On désigne à chaque fois par \mathcal{B}_E et \mathcal{B}_F les bases canoniques de E et F.

1)
$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.
2) $\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.
3) $\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{pmatrix}$.

2)
$$\operatorname{Mat}_{\mathcal{B}_E,\mathcal{B}_F}(f) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

3)
$$\operatorname{Mat}_{\mathcal{B}_E,\mathcal{B}_F}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{pmatrix}$$
.

4)
$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
.
5) $\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
6) $\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(f) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Exercice 10. On considère l'espace vectoriel $E = \mathbb{R}_3[X]$, muni de sa base canonique $\mathcal{B}_0 = (1, X, X^2, X^3)$, et l'application

$$f: \quad \mathbb{R}_3[X] \quad \to \quad \quad \mathbb{R}_3[X]$$

$$P \quad \mapsto \quad P + (1 - X)P'$$

- (1) Montrer que f est un endomorphisme de E
- (2) Montrer que la famille $\mathcal{B} = (1, 1 X, 1 + X^2, 1 X^3)$ est une base de $\mathbb{R}_3[X]$.
- (3) Calculer les matrices $Mat_{\mathcal{B}_0}(f)$ et $Mat_{\mathcal{B}}(f)$.
- 1) On a $\forall \alpha, \beta \in \mathbb{R}, \forall P, Q \in \mathbb{R}_3[X],$

$$f(\alpha P + \beta Q) = \alpha P + \beta Q + (1 - X)(\alpha P + \beta Q)' = \alpha (P + (1 - X)P') + \beta (Q + (1 - X)Q') = \alpha f(P) + \beta f(Q)$$

donc f est un endomorphisme de E.

2) Pour tous $\alpha, \beta; \gamma, \delta \in \mathbb{R}$, on a

$$\alpha.1 + \beta.(1 - X) + \gamma.(1 + X^2) + \delta.(1 - X^3) = 0 \quad \Rightarrow \quad \begin{cases} \alpha + \beta + \gamma + \delta = 0 \\ -\beta = 0 \\ \gamma = 0 \\ -\delta = 0 \end{cases} \Rightarrow \quad \alpha = \beta = \gamma = \delta = 0,$$

donc la famille est libre. Comme elle est de cardinal 4 et que $\mathbb{R}_3[X]$ est de dimension 4, on en déduit que c'est une base de $\mathbb{R}_3[X]$.

3) On a
$$f(1) = 1$$
, $f(X) = 1$, $f(X^2) = 2X - X^2$ et $f(X^3) = 3X^2 - 2X^3$ donc $\operatorname{Mat}_{\mathcal{B}_0}(f) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & -2 \end{pmatrix}$.
Par ailleurs, on a $f(1 - X) = 0$, $f(1 + X^2) = 1 + 2X - X^2 = -(1 + X^2) + 2 + 2X = -(1 + X^2) - 2(1 - X) + 4$ et $f(1 - X^3) = 1 - 3X^2 - 2X^3 = 2(1 - X^3) - 3(1 + X^2) + 2$, donc $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 4 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

Exercice 11. On considère les matrices $A = \begin{pmatrix} -1 & 2 & 4 \\ 1 & 5 & 1 \\ 2 & 3 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & -1 & 3 & 0 \\ 1 & 0 & 2 & 4 & 1 \\ 0 & -2 & 3 & 0 & 1 \end{pmatrix}$. Lorsqu'elles ont un sens, calculer les expressions A + B, AB, BA, B + AB, A + AB.

- A+B n'a pas de sens car A (matrice 3×3) et B (matrice 3×5) n'ont pas les mêmes dimensions.
- AB a bien un sens car le nombre de colonnes de A (3) est égal au nombre de lignes de B. AB est donc une matrice 3×5 et on trouve $AB = \begin{pmatrix} 2 & -9 & 17 & 5 & 6 \\ 5 & -1 & 12 & 23 & 6 \\ 3 & -8 & 19 & 18 & 8 \end{pmatrix}$
- BA n'a pas de sens car le nombre de colonnes de B (5) n'est pas égal au nombre de lignes de A (3).
- Pour calculer B+AB, on ajoute B au produit AB déjà calculé (qui est une matrice de même taille que B). On trouve $B+AB=\begin{pmatrix} 2 & -8 & 16 & 8 & 6 \\ 6 & -1 & 14 & 27 & 7 \\ 3 & -10 & 22 & 18 & 9 \end{pmatrix}$
- A + AB n'a pas de sens car A (matrice 3×3) et AB (matrice 3×5) n'ont pas les mêmes dimensions.

Exercice 12. Vrai ou faux?

Soient A et B deux matrices carrées d'ordre n.

- 1) Si A est inversible et $A^{-1} = B$ alors B est inversible et $B^{-1} = A$. Vrai car $A^{-1} = B \Rightarrow AB = I \Rightarrow (B \text{ inversible et } B^{-1} = A)$.
- 2) Si A et B sont inversibles et C = AB alors C est inversible et $C^{-1} = A^{-1}B^{-1}$. Faux en général, on peut bien en conclure que C est inversible mais $C^{-1} = B^{-1}A^{-1}$. En effet

$$(B^{-1}A^{-1})C = B^{-1}A^{-1}AB = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

 $\begin{array}{l} \text{donc } C \text{ est inversible et } C^{-1} = B^{-1}A^{-1}. \\ \text{Un contre-exemple possible est } A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), B = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right), \text{ qui donne } A^{-1} = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right), B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right) \\ \text{et } A^{-1}B^{-1} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right) \text{ alors que } C^{-1} = B^{-1}A^{-1} = \left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array} \right) \neq A^{-1}B^{-1}. \end{array}$

3) Si AB = 0 alors A = 0 ou B = 0.

Faux en général. Contre-exemple : si $A=B=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, alors $AB=A^2=0$.

4)
$$(A+B)^2 = A^2 + B^2 + 2AB$$
.

Faux en général (sauf si AB = BA). Contre-exemple : si $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, alors $(A+B)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ alors que $A^2 + 2AB + B^2 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.

5)
$$AB + BA = 0$$
 ssi $(A + B)^2 = A^2 + B^2$.
Vrai car $(A + B)^2 - (A^2 + B^2) = AB + BA$.

6) Si A + B = AB, alors I - A est inversible.

Vrai car si A + B = AB, alors $(I - A)(I - B) = I^2 - A - B + AB = I - A - B + A + B = I$, donc I - A est inversible et $(I - A)^{-1} = I - B$.

Exercice 13.

Soient les matrices
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 et $A = I - J = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

1) Calculer les puissances successives de J.

2) Que peut-on dire de $I-J^4$? En déduire que A est inversible et calculer son inverse.

 $I - J^4 = I, \text{ or } I - J^4 = (I - J)(I + J + J^2 + J^3) \text{ (on v\'erifie en d\'eveloppant), donc } A = I - J \text{ est inversible et } A^{-1} = I + J + J^2 + J^3 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$

Exercice 14.

- 1) Montrer que le produit de deux matrices diagonales de dimension $n \times n$ est une matrice diagonale. Soit $A = (a_{ij})_{1 \leqslant i,j \leqslant n}$ et $B = (b_{ij})_{1 \leqslant i,j \leqslant n}$ deux matrices diagonales, alors C = AB est une matrice $n \times n$ de terme général $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{ii}b_{ij}$ car A est diagonale. Si $i \neq j$, $b_{ij} = 0$ donc $c_{ij} = 0$, ce qui prouve que C est diagonale, avec $c_{ii} = a_{ii}b_{ii}$.
 - 2) Soit D la matrice diagonale suivante :

$$D = \begin{pmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & a_3 & 0 \\ 0 & 0 & 0 & a_4 \end{pmatrix} .$$

Déterminer l'expression de D^p pour tout $p \in \mathbb{N}^*$.

D'après la question 1, D^2 est diagonale, et le *i*-ème terme de la diagonale vaut a_i^2 . Par récurrence immédiate, on établit sans difficulté que que

$$\forall p \in \mathbb{N}^*, \quad D^p = \begin{pmatrix} a_1^p & 0 & 0 & 0 \\ 0 & a_2^p & 0 & 0 \\ 0 & 0 & a_3^p & 0 \\ 0 & 0 & 0 & a_4^p \end{pmatrix}.$$

Exercice 15.

Inverser les matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 0 & -1 \\ 2 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 1 & -1 \\ 0 & 2 & 3 \\ -2 & 1 & 3 \end{pmatrix} .$$

On applique la méthode du pivot de Gauss vue en cours :

$$\begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$L_2 \leadsto L_2 - L_1 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & -5 & -1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$L_3 \leadsto L_3 - 2L_1 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & -5 & -1 & 1 & 0 \\ 0 & -3 & -7 & -2 & 0 & 1 \end{pmatrix}$$

$$L_3 \leadsto L_3 - \frac{3}{2}L_2 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & -5 & -1 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}$$

$$L_3 \leadsto 2L_3 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & -5 & -1 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}$$

$$L_2 \leadsto L_2 + 5L_3 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & -5 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & -3 & 2 \end{pmatrix}$$

$$L_2 \leadsto L_2 + 5L_3 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -2 & 0 & -6 & -14 & 10 \\ 0 & 0 & 1 & -1 & -3 & 2 \end{pmatrix}$$

$$L_2 \leadsto -\frac{1}{2}L_2 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & 7 & -5 \\ 0 & 0 & 1 & -1 & -3 & 2 \end{pmatrix}$$

$$L_1 \leadsto L_1 - 4L_3 \qquad \begin{pmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & 7 & -5 \\ 0 & 0 & 1 & -1 & -3 & 2 \end{pmatrix}$$

$$L_1 \leadsto L_1 - 2L_2 \qquad \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 2 \\ 0 & 1 & 0 & 3 & 7 & -5 \\ 0 & 0 & 1 & -1 & -3 & 2 \end{pmatrix}$$

donc
$$A^{-1} = \begin{pmatrix} -1 & -2 & 2\\ 3 & 7 & -5\\ -1 & -3 & 2 \end{pmatrix}$$
.

$$\begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ -2 & 1 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$L_3 \leadsto L_3 + \frac{1}{2}L_1 \qquad \begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix}$$

$$L_3 \leadsto L_3 - \frac{3}{4}L_2 \qquad \begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{2} & -\frac{3}{4} & 1 \end{pmatrix}$$

$$L_3 \leadsto 4L_3 \qquad \begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{2} & -\frac{3}{4} & 1 \end{pmatrix}$$

$$L_2 \leadsto L_2 - 3L_3 \qquad \begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

$$L_1 \leadsto L_1 + L_3 \qquad \begin{pmatrix} 4 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -6 & 10 & -12 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

$$L_2 \leadsto \frac{1}{2}L_2 \qquad \begin{pmatrix} 4 & 1 & 0 & 3 & -3 & 4 \\ 0 & 2 & 0 & -6 & 10 & -12 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

$$L_1 \leadsto L_1 - L_2 \qquad \begin{pmatrix} 4 & 1 & 0 & 3 & -3 & 4 \\ 0 & 1 & 0 & -3 & 5 & -6 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

$$L_1 \leadsto L_1 - L_2 \qquad \begin{pmatrix} 4 & 0 & 0 & 6 & -8 & 10 \\ 0 & 1 & 0 & -3 & 5 & -6 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

$$L_1 \leadsto \frac{1}{4}L_1 \qquad \begin{pmatrix} 1 & 0 & 0 & \frac{3}{2} & -2 & \frac{5}{2} \\ 0 & 1 & 0 & -3 & 5 & -6 \\ 0 & 0 & 1 & 2 & -3 & 4 \end{pmatrix}$$

donc
$$B^{-1} = \begin{pmatrix} \frac{3}{2} & -2 & \frac{5}{2} \\ -3 & 5 & -6 \\ 2 & -3 & 4 \end{pmatrix}$$
.

Exercice 16. Pour chacun des systèmes linéaires suivants, répondre aux questions ci-dessous.

$$(S_1) \begin{cases} -4x & -4y & -z & =-15 \\ -2x & -y & -z & =-14 \\ 3x & +2y & +z & =15 \end{cases} (S_2) \begin{cases} -2x - 2y - 3z & =2 \\ 4y + 3z & =5 \\ -1 - y - x & =1 \end{cases}$$

(1) Mettre le système sous forme matricielle

$$(S_1): AX = B \text{ avec } A = \begin{pmatrix} -4 & -4 & -1 \\ -2 & -1 & -1 \\ 3 & 2 & 1 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} -15 \\ -14 \\ 15 \end{pmatrix}.$$

$$(S_2): AX = B \text{ avec } A = \begin{pmatrix} -2 & -2 & -3 \\ 0 & 4 & 3 \\ -1 & -1 & 0 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 \\ 5 \\ 2 \end{pmatrix}.$$

(2) Résoudre le système à l'aide de la méthode du pivot de Gauss vue en cours. Pour (S_1) :

$$\begin{pmatrix} -4 & -4 & -1 & | & -15 \\ -2 & -1 & -1 & | & -14 \\ 3 & 2 & 1 & | & 15 \end{pmatrix}$$

$$L_2 \rightsquigarrow L_2 - \frac{1}{2}L_1 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & -\frac{1}{2} & | & -\frac{13}{2} \\ 3 & 2 & 1 & | & 15 \end{pmatrix}$$

$$L_3 \rightsquigarrow L_3 + \frac{3}{4}L_1 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & -\frac{1}{2} & | & -\frac{13}{2} \\ 0 & -1 & \frac{1}{4} & | & \frac{15}{4} \end{pmatrix}$$

$$L_3 \rightsquigarrow L_3 + L_2 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & -\frac{1}{2} & | & -\frac{13}{2} \\ 0 & 0 & -\frac{1}{4} & | & -1\frac{11}{4} \end{pmatrix}$$

$$L_3 \rightsquigarrow -4L_3 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & -\frac{1}{2} & | & -\frac{13}{2} \\ 0 & 0 & 1 & | & 11 \end{pmatrix}$$

$$L_2 \rightsquigarrow L_2 + \frac{1}{2}L_3 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 11 \end{pmatrix}$$

$$L_1 \rightsquigarrow L_1 + L_3 \qquad \begin{pmatrix} -4 & -4 & -1 & | & -15 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 11 \end{pmatrix}$$

$$L_1 \rightsquigarrow L_1 + 4L_2 \qquad \begin{pmatrix} -4 & -4 & 0 & | & -4 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 11 \end{pmatrix}$$

$$L_1 \rightsquigarrow -\frac{1}{4}L_1 \qquad \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 11 \end{pmatrix}$$

donc l'unique solution de (S_1) est (x, y, z) = (2, -1, 11).

Pour (S_2) :

$$\begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 4 & 3 & 5 \\
-1 & -1 & 0 & 2
\end{pmatrix}$$

$$L_3 \leadsto L_3 - \frac{1}{2}L_2 \qquad \begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 4 & 3 & 5 \\
0 & 0 & \frac{3}{2} & 1
\end{pmatrix}$$

$$L_3 \leadsto \frac{2}{3}L_3 \qquad \begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 4 & 3 & 5 \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

$$L_2 \leadsto L_2 - 3L_3 \qquad \begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 4 & 0 & 3 \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

$$L_2 \leadsto \frac{1}{4}L_2 \qquad \begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 4 & 0 & 3 \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

$$L_1 \leadsto L_1 + 3L_3 \qquad \begin{pmatrix}
-2 & -2 & -3 & 2 \\
0 & 1 & 0 & \frac{3}{4} \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

$$L_1 \leadsto L_1 + 2L_2 \qquad \begin{pmatrix}
-2 & -2 & 0 & 4 \\
0 & 1 & 0 & \frac{3}{4} \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

$$L_1 \leadsto -\frac{1}{2}L_1 \qquad \begin{pmatrix}
1 & 0 & 0 & -\frac{11}{4} \\
0 & 1 & 0 & \frac{3}{4} \\
0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

donc l'unique solution de (S_2) est $(x, y, z) = (-\frac{11}{4}, \frac{3}{4}, \frac{2}{3})$.

Exercice 17. Pour $n \ge 2$, on note J_n la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1, et on pose $A = J_n - I_n$, où I_n est la matrice identité d'ordre n.

- (1) Calculer J_n^2 en fonction de J_n .
- (2) En déduire une expression de $(A+I_n)^2$ en donction de A et de I_n .
- (3) En déduire que A est inversible et que $A^{-1} = \frac{1}{n-1}A + \frac{2-n}{n-1}I_n$.
- 1) Chaque coefficient de J_n^2 est obtenu en sommant n fois le produit 1×1 , donc vaut n. On a donc $J_n^2 = nJ_n$. Autre rédaction possible : en notant $c_{ij} = 1$ le coefficient d'indice (i,j) de J_n , on peut écrire que le coefficient (i,j) de

$$J_n^2$$
 est donné par $\sum_{k=1}^n c_{ik}c_{kj} = \sum_{k=1}^n 1 = n$.

- 2) On obtient, d'après la question 1, $(A + I_n)^2 = J_n^2 = nJ_n = n(A + I_n)$. 3) Comme $(A + I_n)^2 = A^2 + AI_n + I_nA + I_n^2 = A^2 + 2A + I_n$, d'après la question 2, on peut écrire

$$A^{2} + 2A + I_{n} = nA + nI_{n} \qquad \Rightarrow \qquad A^{2} = (n-2)A + (n-1)I_{n}$$
$$\Rightarrow \qquad A(A - (n-2)I_{n}) = (n-1)I_{n}$$
$$\Rightarrow \qquad A\left(\frac{1}{n-1}A - \frac{n-2}{n-1}I_{n}\right) = I_{n},$$

donc A est inversible et $A^{-1} = \frac{1}{n-1}A + \frac{2-n}{n-1}I_n$.