TD n°2

Valeran MAYTIE

An object A in category \mathcal{C} is called <u>terminal</u> when there exists exactly one morphism $C \to A$ for any object C of \mathcal{C}

- 1. What is a terminal object in an ordered set seen as an ordered category.
- 2. Describe a terminal object of **Set** and **Top** and Graph, the category graph and graph homomorphism.
- 3. Show that if A is terminal and $f: A \to B$ is an isomorphism then B is terminal too.
- 4. Suppose that A and B are terminal object in C show that exists an isomorphism $A \xrightarrow{f} B$ is unique.

<u>Correction</u>:

- 1. A terminal object in an ordered set is the maximum.
- 2. Any singleton in **Set** or in **Top** and the graph for the category graph.
- 3. Let $C \in \mathcal{C}$ and g the unique morphism from C to A. Then $f \circ g$ is a morphism from C to B. Let $h \in Hom(C, B)$, then $f \circ h \in Hom(C, A) = \{g\}$. So we have $h = f \circ g$.

4. Let $f: A \to B$ and $g: B \to A$ (unique). We have $g \circ f: A \to A = Id_A$ (A is terminal) and $f \circ g: B \to B$ (B is terminal). We show that g is the inverse of f so f is an isomorphism and it is unique.