STRAIN ENERGY

Strain Energy = Stored energy due to deformation

= Work done for deformation (Within Elastic limit/Proportionality limit)

"Strain Energy is capable to doing some work"

Resilience: Strain energy stored within elastic limit.

 $U_R = [A_{\sigma-\epsilon}] * Volume$

 $= (1/2) \sigma \varepsilon * V$

By hook's Law,

 $U_R = (1/2) (\sigma^2 V / E)$

Proof Resilience: Maximum Strain energy stored up to elastic limit.

 $U_{PR} = (1/2) (\sigma^2 V / E)$, here $\sigma = Stress$ at elastic limit **Toughness:** Strain energy stored up to Fracture.

Toughness is maximum amount of shock energy absorbed before

fracture.

Toughness is useful for while designing accidental over loading.

Strain Energy / Volume			
Modulus of Resilience	Modulus of Toughness		
(Strain Energy/Volume) up to elastic limit/ Proportionality limit	(Strain Energy/Volume) till fracture		
[$A_{\sigma-\epsilon}$] up to Proportionality limit	[$A_{\sigma-\epsilon}$] till fracture		

Can we change resilience and toughness? Yes, By Alloying we can change property.

Toughness depends on Strength and ductility.

Eg. Hard Steel (0.6%C), Soft Steel (0.1%C), Structure Steel (0.2%C) (Moderate Toughness)

Young's Modulus remains constant when alloying material.

Strain Energy Stored due to following loading					
Axial Loading	Bending	Torsion	Shear		

Strain Energy Due to Axial Loading:

For Gradually Applied Load, Work Done = Work Stored $(1/2) P \delta L = (1/2) \sigma \epsilon * Volume$ From Young's Modulus, $\sigma = P / A$ $U_G = (1/2) (P^2V / A^2E)$	P-dl (Deflection Chart) 5 0 1 2 3	σ-ε (Resitance Diagram) 5 0 1 2 3
For Suddenly Applied Load, Work Done = Work Stored $P \delta L = (1/2) \sigma \epsilon * Volume$ From Young's Modulus, $\sigma = 2P / A$ $U_S = 4 U_G$	P-dl (Deflection Chart) 2 1 0 1 2 3	σ-ε (Resitance Diagram) 4 2 0 1 2 3

For Impact Load,

Work Done = Work Stored ===> $P(h + \delta L) = (1/2) \sigma \epsilon * Volume$

From Young's Modulus,

$$\sigma = \frac{P}{A} \left[1 + \sqrt{1 + \frac{2AEh}{PL}} \right]$$

 $\sigma = \sigma_G *$ Impact Factor, here $\sigma_G =$ Stress at Gradually Applied

 δL can be found from Young's modulus equation.

 $U = (1/2) (\sigma^2 V / E)$, here σ put from above derivation.

Strain Energy Stored due to following loading (Gradually Applied)				
Axial Loading	Bending (For Long Beam)	Torsion	Shear (For Short Beam)	
$U = \int_0^L \frac{P2}{2EA} dx$	$U = \int_0^L \frac{M2}{2EI} dx,$	$U = \int_0^L \frac{T2}{2GJ} dx,$	$U = \int_0^L \frac{V2}{2GA} dx$	
$U = (1/2) P \delta L$	$U = (1/2) M \theta$	$U = (1/2) T \theta$	$U = (1/2) \tau \phi$	

Castigliano's Theorem:

If an elastic Structure is in equilibrium under the action of different forces (P_i where i = 1, 2, ...)

Theorem 1:

The Partial Derivative of Strain Energy with respect to the **point load** is a deflection of a structure **at the point** of application of load **in the direction** of applied load.

$$\partial U / \partial Pi = \delta i$$

Theorem 2:

The Partial Derivative of Strain Energy with respect to **concentrated bending moment/ point couple** is the slope of a structure **at the point** of application of moment **in the sense** of applied load.

$$\partial U / \partial Mi = \theta i$$

Tip:

1) If no load present at the desired location to find deflection, then add dummy load 'Q' find,

$$\delta_{Q} = \partial U / \partial Q \parallel (Q=0)$$

2) If no moment present at the desired location to find slope, then add dummy moment 'Mo' find,

$$\theta_Q = \partial U / \partial M_Q || (M_Q = 0)$$