

SEQUENCE LISTING

<110> AquaBio Product Sciences, LLC
Harris, H. William, Jr.
Russell, David R.
Nearing, Jacqueline
Betka, Marlies

<120> Methods for Raising Pre-Adult Anadromous
Fish

<130> 2213.1004-000

<140> US 09/687,477
<141> 2000-10-12

<160> 23

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 594

<212> DNA

<213> Atlantic Salmon

<400> 1
cttggcatta tgctctgtgc tgggggtatt ctgcacagca ttctgtatgg gagttttat 60
caaatttcgc aacacccaa ttgttaaggc cacaacaga gagctatcc acctcctcct 120
gttctcactc atctgtgtt tctccagttc cctcatcttcc attggtaaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcggt gataaattttt gttctctgcac tctcctgcac 240
cctggtaaaa actaacccgag tacttcttagt gttcgaagcc aagatccccca ccagtctcca 300
tcgttaagtgg tggggctaa acttgcagtt cctgttagtg ttccctgttca catttgtca 360
agtgtatgata tgtgtggctt ggctttacaa tgctctcccg gcgagctaca ggaaccatga 420
cattgtatgag ataattttca ttacatgcaa tgagggtct atgatggcgc ttggcttcct 480
aattgggtac acatgcctgc tggcagccat atrctcttc tttgcattta aatcacgaaa 540
actgccagag aactttactg aggctaagtt catcaccttc agcatgctca tctt 594

<210> 2
 <211> 199
 <212> PRT
 <213> Atlantic Salmon

<220>
 <223> Xaa=any amino acid

<400> 2
 Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met
 1 5 10 15
 Gly Val Phe Ile Lys Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
 20 25 30
 Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
 35 40 45
 Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
 50 55 60
 Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
 65 70 75 80
 Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
 85 90 95
 Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
 100 105 110
 Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
 115 120 125
 Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Xaa Asp Glu
 130 135 140
 Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe
 145 150 155 160
 Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Xaa Phe Phe Phe Ala
 165 170 175
 Phe Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile
 180 185 190
 Thr Phe Ser Met Leu Ile Phe
 195

3/18

<210> 3
<211> 594
<212> DNA
<213> Artic Char

<400> 3
cttggcatta tgctctgtgc tggggattt cttgacagca ttctgtatgg gagtgtttat 60
cagatttcgc aacacccaa ttgttaaggc cacaaacaga gagctatctt acctccctct 120
gttctcactc atctgtgtt ttcctcagtc cctcatctt attggtaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca ttcctctgcat 240
cctggtaaaa actaaccgag tacttctagt ttctcgaaagcc aagatccccca ccagtctcca 300
tcgttaagtgg tggggctaa acttgcagg t cctgttggtg ttctgttca catttgtgca 360
agtgtatgata tgtgttgtt ggctttacaa tgctccctccg gcgagctaca ggaaccatga 420
cattgtatgag ataattttca ttacatgca tgagggtctt atgatggcgc tcggcttctt 480
aattgggtac acatgcctgc tggcagccat atgcctctt tttgcattta aatcacgaaa 540
actgccagag aactttaccg aggctaagtt catcaccttc agcatgctca tctt 594

4/18

<210> 4
<211> 199
<212> PRT
<213> Artic Char

<220>
<223> Xaa = Any amino acid

<400> 4

Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met
1 5 10 15
Gly Val Phe Ile Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Xaa Asp Glu
130 135 140
Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe
145 150 155 160
Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Ala
165 170 175
Phe Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile
180 185 190
Thr Phe Ser Met Leu Ile Phe
195

<210> 5
<211> 593
<212> DNA
<213> Trout

<400> 5

ttggcattat gctctgtgct gggggatttc ttgacagtat tcgtgatggg agtgtttatc 60
agatttcgcga acaccccaat tggtaaggcc acaaacagag agctatccctt cctccctcctg 120
ttctcaactta tctgtgttt ctccagctcc ctcatcttca ttggtaacc ccaggactgg 180
acatgccgtc tacgcagcc tgcattcggg ataagttttt ttctctgcattt ctcctgcattc 240
ctggtaaaaa ctaaccgagt acttcttagtg ttcaagccaa agatccccac cagtcctccat 300
cgtaagtgggt gggggctaaa cttgcagttc ctgtgggtgt ttctgttccat atttgtgcaa 360
gtgatgatgt gtgtggctcg gctttacaat gctccctccgg cgagctacag gaaccatgac 420
attgtatgaga tcattttcat tacatgcaat gagggctcta tgatggcgct tggcttccta 480
attgggtaca catgcctgct ggcagccata tgcttcttct ttgcattttaa atcacgaaaa 540
ctggccagaga attttaccga ggctaagttc atcaccttca gcatgctcat ctt 593

<210> 6

<211> 199

<212> PRT

<213> Trout

<220>

<223> Xaa = Any amino acid

<400> 6

6/18

<210> 7
<211> 594
<212> DNA
<213> Chum Salmon

<400> 7
cttggcatta tgctctgtgc tgggggtatt cttgacagca ttcgtgatgg gagtgtttat 60
cagatttgc aacaccccaa ttgttaaggc cacaacaga gagctatcct acctcctcct 120
gttctcaact atctgtgtt tttccagctc cctcatcttc attggtaaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctcctgcat 240
cctggtcaaa actaaccgag tacttctagt gttcgaagca aagatccccca ccagtctcca 300
tcgttaagtgg tggggctaa acttgcaagg tctgttgggtt ttcctgttca catttgtgca 360
agtgtatgata tgtgttgtct ggctttacaa tgctcctccg gcgagctaca ggaaccatga 420
cattgtatgag atcatttca ttacatgcaa tgagggctct atgatggcgc ttggcttcct 480
aattgggtac acatgcctgc tggcagccat atgcttcttc tttgcattta aatcacgaaa 540
actgccagag aattttacccg aggctaagtt catcaccttc agcatgctca tctt 594

7/18

<210> 8
<211> 197
<212> PRT
<213> Chum Salmon

<400> 8
Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met
1 5 10 15
Gly Val Phe Ile Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Asp Glu Ile
130 135 140
Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu
145 150 155 160
Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe
165 170 175
Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr
180 185 190
Phe Ser Met Leu Ile
195

<210> 9
<211> 594
<212> DNA
<213> Coho Salmon

<400> 9
cttggcatta tgctctgtgc tgggggtatt cttgacagya ttctgtatgg gagtgtttat 60
cagatttcgc aacacccaa ttgttaaggc cacaacaga gagctatcct acctcctcct 120
gttctcaact atctgtgtt tctccagctc cctcatcttc attggtaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctcctgcat 240
cctggtaaaa actaacccgag tacttcttagt gttcgaagca aagatccccca ccagtctcca 300
tctgttaactgg tggggctaa acttgcagg tctgttggtg tccctgttca catttgtgca 360
agtgtatgata tctgtgtgtt ggctttacaa tgctctccg gcgagatcaca ggaaccatga 420
cattgtatgag atcatttca ttacatgcaa tgagggtct atgatggcgc ttgggttcct 480
aattgggtac acatgcctgc tggcagccat atgcttcttc tttgcattta aatcacgaaa 540
actgccagag aattttacmg aggctaagtt catcaccttc agcatgctca tctt 594

<210> 10
<211> 197
<212> PRT
<213> Coho Salmon

<220>
<223> Xaa= Any Amino Acid

<400> 10
Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Xaa Phe Val Met
1 5 10 15
Gly Val Phe Ile Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Asp Glu Ile
130 135 140
Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu
145 150 155 160
Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe
165 170 175
Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr
180 185 190
Phe Ser Met Leu Ile
195

9/18

<210> 11
<211> 594
<212> DNA
<213> King Salmon

<400> 11
cttggcatta tgctctgtgc tgggggtatt ctgcacagca ttgcgtatgg gagtgtttat 60
cagatttcgc aacaccccaa ttgttaaggc cacaaacaga gagctatcct acctccct 120
gttctcacccat atctgctgtt ttcccgagtc cctcatcttc attggtaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctctgcat 240
cctagtcaaa actaaccgag tacttcttagt gttcaagca aagatccccca ccagtctcca 300.
tcgtaagtgg tggggctaa acttgcaagg cctgttggtg ttccctgttca catttgtgca 360
agtatgata tggatggctt ggcttacaa tgctcccttca gcgagctaca ggaatcatga 420
cattatgatgag atcattttca ttacatgcaaa tgagggtctt atgatggcgc ttggcttctt 480
aattgggtac acgtgcctgc tggcagccat atgccttc tttgcattta aatcacgaaa 540
actgccagag aattttaccc aggtcaagtt cattacccat agcatgctca tctt 594

10/18

<210> 12
<211> 197
<212> PRT
<213> King Salmon

<400> 12
Leu Ala Leu Cys Ser Val L^eu Gly Val Phe Leu Thr Ala Phe Val Met
1 5 10 15
Gly Val Phe Ile Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Asp Glu Ile
130 135 140
Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu
145 150 155 160
Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe
165 170 175
Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr
180 185 190
Phe Ser Met Leu Ile
195

<210> 13
<211> 594
<212> DNA
<213> Pink Salmon

<400> 13
cttggcatta tgctctgtgc tgggggtatt cttgacagct ttctgtatgg gagtgtttat 60
cagatttcgc aacacccaa ttgttaagc cacaacaga gagctatcct acctcctcct 120
gttctcaact atctgtgtt ttccagctc cctcatcttc attggtaac cccaggactg 180
gacatgccgt ctaccccagc ctgcattcgg gataagttt gttctctgca tctctgtcat 240
cctggtaaaa actaacccgag tacttctagt gtctgaagca aagatcccc caagtttcca 300
tcgttaagtgg tggggctaa acttgcaggc cctgttggtg ttctgttca catttgtca 360
agtatgtata tgtgtggctt ggctttacaa tgctccctcg gcgagctaca ggaaccatga 420
cattgtatgag atcatttca ttacatgcaa tgagggtctt atgatggcgc ttggcttcct 480
aattgggtac acatgcctgc tggcagccat atgccttc tttgcattta aatcacgaaa 540
actgccagag aattttactg aggctaaggc catcaccttc agcatgctca tctt 594

11/18

<210> 14
<211> 197
<212> PRT
<213> Pink Salmon

<400> 14
Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met
1 5 10 15
Gly Val Phe Ile Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Asp Glu Ile
130 135 140
Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu
145 150 155 160
Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Ala Phe
165 170 175
Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr
180 185 190
Phe Ser Met Leu Ile
195

12/18

<210> 15
<211> 594
<212> DNA
<213> Sockeye Salmon

<400> 15
cttggcatta tgctctgtgc tgggggtatt cttgacagca ttcgtgatgg gagtgtttat 60
cagatttcgc aacaccccaa ttgttaaggc cacaaacaga gaactatcct acctcctcct 120
gttctcactt atctgctgtt tttccagctc cctcatcttc attggtaaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctcctgcatt 240
cctagtcaaa actaaccgag tacttcttagt gttcgaagca aagatccccca ccagtctcca 300
tcgttaagtgg tggggctaa acttgcagtt cctgttggtg ttccctgttca catttgtgca 360
agtgtatgata tgtgtggctc ggcttacaa tgctcctcca gegagctaca ggaatcatga 420
cattgtatgag ataattttca ttacatgcaaa tgagggctct atgatggcgy ttggcttcct 480
aattgggtac acgtgcctgc tggcagccat atgcttcttc tttgcattta aatcacgaaa 540
actgccagag aattttacag aggctaagtt catcaccttc agcatgctca tctt 594

13/18

<210> 16

<211> 197

<212>. PRT

<213> Sockeye Salmon:

<220>

<223> Xaa=Any Amino Acid

<400> 16

<210> 17

<211> 4134

<212> DNA

<213> Dogfish Shark

<400> 17

aattccgttg ctgtcggttc agtccaagtc tcctccagtgc aaaaatgaga aatgggtggc 60
 gccattacag gaacatgcac tacatctgtt ttaatgaaat attgtcaattt atctgaagg 120
 tattaaaatgt ttctcgaaag gatggctca cgagaaatca attctgcacg ttttcccatt 180
 gtcattgttat gaaataactga ccaaaggat gtaacaaaat ggaacaaggc tgaggaccac 240
 gttcacccctt tcttggagca tacatcaac cctgaaggag atggaagact tgaggaggaa 300
 atggggattt atcttccagg agttctgtt taaagcgatc cctcaccatt acaaagataa 360
 gcagaaatcc tccaggcatc ctctgttaaac gggctggcgt agtgtggctt ggtcaaggaa 420
 cagagacagg gctgcacaat ggctcagttt cactgccaac tcttatttctt gggatttaca 480
 ctccctacagt cgtacaatgtt ctcagggtat ggtccaaacc aaagggccca gaagaaagga 540
 gacatcatac tgggaggtctt cttccaaata cacttggag tagccgcca ggatcaggac 600
 ttaaaatcgaa gaccggagge gacaaaatgtt attcggtaca attttcggagg cttccatgg 660
 ctccaggcgatc tgatattcgc aattgaagag attaacaaca gtatgactt cctgcccatt 720
 atcacccctgg gatatcgat atttgacacg tgtaacaccg tgcctcaaggc gctagaggca 780
 acactcagct ttgtggccca gaacaaaatc gactcgctga acttagatga gttctgttaac 840
 tgctctgacc atatccccatc cacaatagca gtggcgggg caaccgggtc aggaatctcc 900
 acggctgtgg ccaatctattt gggatttattt tacattccac aggtcagta tgccctcctcg 960
 agcaggctgc tcagcaacaa gaatgagataa aaggccttcc tgaggaccat ccccaatgt 1020
 gagcaacagg ccacggccat ggccgagatc atcgacact tccagtggaa ctgggtggaa 1080
 accctggcagcc cgacatgtca ctatggccgc ccaggcattt gcaagttccg ggaggaggcc 1140
 gttaagaggg acatctgtat tgacttcaagt gagatgatct tctcgtacta caccgagaag 1200
 cagttggagt tcatcgccga cgtcatccat aactcctcg ccaagggtcat cgtgtcttc 1260
 tccaaatggcc ccgacacctggaa gcccgtcatc caggagatag ttccggagaaa catcaccat 1320
 cggatctggc tggccagcga ggcttggcc agtcttcgc tcattgccaa gccagagatc 1380
 ttccacgtgg tcggcggcac catcggttgc gctctcagggg cggggcgtat cccagggttc 1440
 aacaagtcc tgaaggaggt ccaccccccaggc aggtcctcg acaatgggtt tgtaaggag 1500
 ttctgggagg agacccctcaa ctgtctacttc accgagaaga ccctgacgca gctgaagaat 1560
 tccaagggtgc cctcgacccgg accggcggtt caaggggacg gctccaaggc ggggaaactcc 1620
 agacggacacg ccctacgcca cccctgcactt ggggaggaga acatcaccatc cgtggagacc 1680
 ccctacctgg attatacaca cctgaggatc tcctacaatg tatactgtggc cgtctactcc 1740
 attgtctcag ccctgcaaga catccactt tgcaccaaccgg gcacgggcat ttttgcac 1800
 ggtatcttgcatcattaa aaaagtttag gcttggcagg ttctcaacca tctgtgtcat 1860
 ctgaagttt ccaacacggat ggttggaggatc ttgtactttt acgtatcagg tgacttcaag 1920
 gggaaactaca ccattatcaa ctggcaggtt tccgcaggatc atgaatcggtt gttttccat 1980
 gaggtgggca actacaacgc ctacgctaag cccagtgacc gactcaacat caacaaaaag 2040
 aaaaatccctt ggagtggctt ctccaaatgtt gttcccttctt ccaactgcacg tcgagactgt 2100
 gtgcggggca ccaggaaggatc gatcatcgatc ggggagccca cctgctgtt tgaatgcac 2160
 gcatgtgcac agggagatgtt cagtgtatc aacgtatgcac gtcgtgtac aaagtggcccg 2220
 aatgatttttctt ggttcaatgtt gaaaccacacg tcgtgtcatc ccaaggagat cggatcactg 2280
 tcgtggacccg aggcccttcgg gatcgctctg accatcttcg ccgtactggg catccgtatc 2340
 acctcttcgtt tcgtgggggtt ctcatcaatc ttcatcaacat cttccatcttgc acaggccacc 2400
 aaccggggatc tgccttacatc gtcgttccatc gtcgttccatc gtcgttccatc cagtcgttc 2460
 atcttcatcg gcgagcccg ggacttggacc tgcgttccatc gccaacccggc ttttggcatc 2520
 agtttcgtcc tgcgttccatc ctgcgttccatc gtcgttccatc accgggtgtt gtcgttccatc 2580
 gagggccaaatc tcccccacccat ctcgttccatc aatggggatc gcttcaacat cggatcactc 2640
 ctggtcttc tgcgttccatc ggttccatc gtcgttccatc tcgttccatc ttcgttccatc cttccatc 2700
 cttccatc gtcgttccatc ctcgttccatc gtcgttccatc ttcgttccatc ctcgttccatc ctcgttccatc 2760
 gagggccatcc tgcgttccatc ggttccatc atcggttccatc ctcgttccatc ctcgttccatc ctcgttccatc 2820
 tgcttccatc tgcgttccatc gtcgttccatc gtcgttccatc ctcgttccatc ctcgttccatc ctcgttccatc 2880
 atcacccatca gcatgttcatc ttcgttccatc gtcgttccatc ctcgttccatc ctcgttccatc ctcgttccatc 2940
 agcacccatca gcaagtttgcgtt gtcggccgtt gaggatgtt ccatccgttccatc ctcgttccatc ctcgttccatc 3000
 gggctgttccatc gtcgttccatc ctcgttccatc gtcgttccatc ctcgttccatc ctcgttccatc ctcgttccatc 3060
 aacaccatcg aggaggatcgatc ctgcgttccatc gtcgttccatc ctcgttccatc ctcgttccatc ctcgttccatc 3120
 gccaccctcc ggcgcagccgc cgcgttccatc aagcggttccatc gtcgttccatc ctcgttccatc ctcgttccatc 3180

atctcctcgccgcacacctgcccggggccatggagatgcagcgctgc 3240
agcacgcagaaggtcagttcggcagccgcaccgtcacccttgtcgctcagcttcgaggag 3300
acaggccgatacgcaccctcagccgcacggccgcagca ggaactcggcggatggccgc 3360
agcggcgacgacctgcacatc tagacaccacgaccaggccgcgcctcagaaatgcgagccc 3420
cagccgcaca acgatgcggcatacaaggcgcgccgacca agggcaccctagagtcgccc 3480
ggcggcagcaaggagccccccacaactatggagaaacctaattcaactcctccatcaac 3540
cccaagaaca tcctccacggcagcaccgtc gacaactgacatcaactcctaacccgtggc 3600
tgcccaacctctccctctc cggcacttgcgtttgtc aagattgcagcatctgcagt 3660
tccttttatacctgtatttc tgacttgatattactagtgtcgatgga atatcacaac 3720
ataatgagttgcacaatttagtgagcagagttgtgtcaaa gtatctgaac tatctgaagt 3780
atctgaactatcttattctctcgaattgtatcacaaacatttgaagtatttttagtgaca 3840
ttatgttctaacattgtcaa gataattgttacaacatataaggtaaccacctgaaggcagt 3900
gactgagattgcactgtgatgacagaactgtttataacatttattcattaaaacctgg 3960
ttgcaacaggaatataatgactgtaacaaa aaaattgttattatcttaaaatgcaaat 4020
tgtaatcaga tggtaattac ttctgtacattaaatgcata tttttgtata 4080
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaa aaaaaagcgccccgacagcaacgg 4134

16/18

<210> 18
<211> 199
<212> PRT
<213> Dogfish Shark

<400> 18
Leu Thr Ile Phe Ala Val Leu Gly Ile Leu Ile Thr Ser Phe Val Leu
1 5 10 15
Gly Val Phe Ile Lys Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Arg Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Val Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Cys Ile Leu Val Gln Ile Val Thr Cys Ile Ile Trp Leu
115 120 125
Tyr Thr Ala Pro Pro Ser Ser Tyr Arg Asn His Glu Leu Glu Asp Glu
130 135 140
Val Ile Phe Ile Thr Cys Asp Glu Gly Ser Leu Met Ala Leu Gly Phe
145 150 155 160
Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Ala
165 170 175
Phe Lys Ser Arg Lys Leu Pro Glu Asn Phe Asn Glu Ala Lys Phe Ile
180 185 190
Thr Phe Ser Met Leu Ile Phe
195

17/18

<210> 19
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> 23-mer peptide

<400> 19
Ala Asp Asp Asp Tyr Gly Arg Pro Gly Ile Glu Lys Phe Arg Glu Glu
1 5 10 15
Ala Glu Glu Arg Asp Ile Cys
20

<210> 20
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> peptide

<400> 20
Asp Asp Tyr Gly Arg Pro Gly Ile Glu Lys Phe Arg Glu Ala Glu
1 5 10 15
Glu Arg Asp Ile Cys Ile
20

<210> 21
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> peptide

<400> 21
Ala Arg Ser Arg Asn Ser Ala Asp Gly Arg Ser Gly Asp Asp Leu Pro
1 5 10 15
Cys

18/18

<210> 22
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> primer

<223> K=T OR G
Y=C OR T
R=A OR G

<400> 22
tgtcgtggac ggagccctty ggratcgc

28

<210> 23
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<223> K=T OR G
Y=C OR T
R=A OR G

<400> 23
ggckggratg aargakatcc aracratgaa g

31