1. H-Spaces, H-Groups and H-Cogroups

An H-space or H-group is a space with a product that satisfies some of the laws of a group *but only up to homotopy*. An H-cogroup is a dual notion. The "H" stands for "Hopf" or for "Homotopy".

Definition 1.1 (H-Space, homotopy associativity, homotopy inverse). An *H-space* is a pointed space $X \in \text{Top}_*$ with base point e, together with a map

$$\cdot : X \times X \to X$$

sending $(x,y) \mapsto x \cdot y$ such that $e \cdot e = e$, and the maps $X \to X$ taking $x \mapsto x \cdot e$ and $x \mapsto e \cdot x$ are each homotopic rel $\{e\}$ to the identity.

It is said to be homotopy associative if the maps $X \times X \times X \to X$ taking (x, y, z) to $(x \cdot y) \cdot z$ and to $x \cdot (y \cdot z)$ are homotopic rel $\{(e, e, e)\}$.

It is said to have a homotopy inverse $\hat{-}: X \to X$ if $\hat{e} = e$ and the maps $X \to X$ taking x to $x \cdot \hat{x}$ and to $\hat{x} \cdot x$ are each homotopic rel $\{e\}$ to the constant map to $\{e\}$.

Definition 1.2 (H-group). An *H-group* is a homotopy associative H-space with a given homotopy inverse.

There are two main examples: the first is the class of topological groups, the second is the class of "loop spaces".

Definition 1.3 (Loop space). The loop space on a space X is the space

$$\Omega X = (X, *)^{\left(S^{1}, *\right)}.$$

i.e., X^{S^1} in the pointed category. The product is concatenation of loops, and the homotopy inverse is loop reversal. ΩX is a pointed space with base point being the constant loop at *.

Definition 1.4 (Operations on maps). If $f: X \to Z$ and $g: Y \to W$ are maps, let $f \vee g: X \vee Y \to Z \vee W$ be the induced map on the one-point union.

Let $\nabla \colon Z \vee Z \to Z$ be the codiagonal, i.e., the identity on both factors.

We also define $f \subseteq g \colon X \vee Y \to Z$ as the composition $f \subseteq g = \nabla \circ (f \vee g)$; i.e., the map which is f on X and g on Y.

Definition 1.5 (H-cogroup). An *H*-cogroup is a pointed space Y and a map $\gamma \colon Y \to Y \lor Y$ such that the following three conditions are satisfied:

- (1) The constant map $*: Y \to Y$ to the base point is a homotopy identity; i.e., the compositions $(* \veebar id) \circ \gamma$ and $(id \veebar *) \circ \gamma$ of $Y \xrightarrow{\gamma} Y \vee Y \to Y$ are both homotopic to the identity rel base point.
- (2) It is homotopy associative. That is, the compositions $(\gamma \vee id) \circ \gamma$ and $(id \vee \gamma) \circ \gamma$ of $Y \xrightarrow{\gamma} Y \vee Y \to Y \vee Y \vee Y$ are homotopic to one another rel base point.
- (3) There is a homotopy inverse $i: Y \to Y$. That is, $(id \veebar i) \circ \gamma$ and $(i \veebar id) \circ \gamma$ of $Y \xrightarrow{\gamma} Y \lor Y \to Y$ are both homotopic to the constant map to the base point rel base point.

One important class of examples is the reduced suspensions: the "coproduct" $\gamma \colon SX \to SX \lor SX$ is given by

$$\gamma(t,x) = \begin{cases} (2t,x)_1, & t \le \frac{1}{2} \\ (2t-1,x)_2, & t \ge \frac{1}{2} \end{cases}$$

where the subscripts indicate in which copy of SX in the one-point union the indicated point lies.

The homotopy inverse is just reversal of the t parameter.

Theorem 1.6. In the pointed category:

- (1) If Y is an H-group then [X;Y] is a group with multiplication induced by $(f \cdot g)(x) = f(x) \cdot g(x)$.
- (2) If X is an H-cogroup then [X;Y] is a group with multiplication induced by $f * g = (f \veebar g) \circ \gamma$.
- (3) If X is an H-cogroup and Y is an H-space then the two multiplications above on [X;Y] coincide and are abelian.

Proof. We first show that $f \cdot g$ is well defined on $[X;Y] \times [X;Y] \to [X;Y]$. Suppose $f \simeq f'$ and $g \simeq g'$. Then we must show that $f(x) \cdot g(x) \simeq f'(x) \cdot g'(x)$. By assumption, id $\simeq \widehat{f(x)} \cdot f'$ and id $\simeq g'(x) \cdot \widehat{g(x)}$, so

$$f'(x) \cdot g'(x) \simeq \left(f(x) \cdot \widehat{f(x)} \right) \cdot \left((f'(x) \cdot g'(x)) \cdot \left(\widehat{g(x)} \cdot g(x) \right) \right)$$

$$\simeq f(x) \cdot \left(\widehat{f(x)} \cdot f'(x) \right) \cdot \left(g'(x) \cdot \widehat{g(x)} \right) \cdot g(x)$$

$$\simeq f(x) \cdot g(x).$$

Now we check the group axioms. Associativity follows from homotopy associativity of Y. The constant map to the basepoint of Y is an identity, let us denote it by e, since $(f \cdot e)(x) = f(x) \cdot e(x) \simeq f(x) \simeq e(x) \cdot f(x) = (e \cdot f)(x) \operatorname{rel} \{e(x) = *\} \operatorname{since} Y$ is an H-space. So there exists a map $H \colon Y \times I \to Y$ such that $H(f(x), 0) = f(x) \cdot *$ ad H(f(x), 1) = f(x). Define $G \colon X \times I \to Y$ by G(x, t) = H(f(x), t). This defines a homotopy of $f \cdot e$ with f. One can do the same for $e \cdot f \simeq f$. Lastly, given $f \in [X;Y]$, define $\widehat{f} \colon X \to Y$ by $\widehat{f}(x) = \widehat{f(x)}$. This is continuous as the composition $\widehat{-} \circ f \colon X \to Y$. Now, for each $x \in X$, $(f \cdot \widehat{f})(x) = f(x) \cdot \widehat{f(x)} \simeq e \operatorname{rel} e$, so there exists $H \colon Y \times I \to Y$ such that $H(f(x) \cdot \widehat{f}(x), 0) = f(x) \cdot \widehat{f(x)}$ and $H(f(x) \cdot \widehat{f(x)}, 1) = e$. Then again defining $G(x, t) = H(f(x) \cdot \widehat{f(x)}, t)$ defines a homotopy from $f \cdot \widehat{f}$ to e relative *. Etc.

For (2), associativity is shown as follows: $(f*g)*h = [((f \veebar g) \circ \gamma) \veebar h] \circ \gamma$ which is the composition

$$X \xrightarrow{\gamma} X \vee X \xrightarrow{\gamma \vee \mathrm{id}} (X \vee X) \vee X \xrightarrow{(f \succeq g) \succeq h} Y.$$

The first composition $(\gamma \vee \mathrm{id}) \circ \gamma$ is homotopic to $(\mathrm{id} \vee \gamma) \circ \gamma$ by condition (2) of an H-cogroup, and the maps $(f \vee g) \vee h$ and $f \vee (g \vee h)$ are equal, which provides the homotopy from (f * g) * h to f * (g * h). The other parts are similar.

For (3), we need the following lemma:

Lemma 1.7. If X is an H-cogroup and Y an H-space, then for $f,g,h,k\colon X\to Y$, we have

$$(f \cdot g) * (h \cdot k) = (f * h) \cdot (g * k).$$

Proof. Suppose $x \in X$ is an arbitary point and that $\gamma(x) = (w, *) \in X \vee X$ (recall that we can view $X \vee X$ as $X \times \{*\} \cup \{*\} \times X$), so this amounts to (w, *) just representing a point in one copy of X and (*, w') would then represent a point in the other copy.

Now

$$(f \cdot g) * (h \cdot k) (x) = ((f \cdot g) \veebar (h \cdot k)) (w, *) = (f \cdot g) (w) = f(w) \cdot g(w)$$

and

$$(f * h) \cdot (g * k) (x) = (f * h)(x) \cdot (g * k)(x) = f(w) \cdot g(w).$$

The case $\gamma(x) = (*, w')$ is similar.

Returning to part (3), note first that for both product, the identity id is given by the constant map to the base point by condition (1) for an H-cogroup. Operating in [X;Y], we have

$$(\alpha \cdot \beta) * (\gamma \cdot \delta) = (\alpha * \gamma) \cdot (\beta * \delta).$$

Thus

$$\alpha * \beta = (id \cdot \alpha) * (\beta \cdot id) = (id * \beta) \cdot (\alpha * id) = \beta \cdot \alpha,$$

and

$$\alpha * \beta = (\alpha \cdot id) * (id \cdot \beta) = (\alpha * id) \cdot (id * \beta) = \alpha \cdot \beta.$$

Therefore $\alpha \cdot \beta = \beta \cdot \alpha = \alpha * \beta$.