Practice Problems- 5

30 June, 2020

Level 2

Homework Problems

31. The product of a few primes is ten times as much as the sum of the primes. What are these (not necessarily distinct) primes?

32. A 10-digit number is said to be *interesting* if its digits are all distinct and it is a multiple of 11111. How many interesting integers are there?

1. [MOSP 1998]

- (a) Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect square.
- (b) Give an example of 11 consecutive positive integers the sum of whose squares is a perfect square.

- 2. [MOSP 1998] Let S(x) be the sum of the digits of the positive integer x in its decimal representation.
 - (a) Prove that for every positive integer x, $\frac{S(x)}{S(2x)} \le 5$. Can this bound be improved?
 - (b) Prove that $\frac{S(x)}{S(3x)}$ is not bounded.

More Problems ©

33. [Russia 1999] Do there exist 19 distinct positive integers that add up to 1999 and have the same sum of digits?

- 40. Fractions in modular arithmetic.
 - (1) [ARML 2002] Let a be the integer such that

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{23} = \frac{a}{23!}.$$

Compute the remainder when a is divided by 13.

(2) Let p > 3 be a prime, and let m and n be relatively prime integers such that

$$\frac{m}{n} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(p-1)^2}.$$

Prove that m is divisible by p.

(3) [Wolstenholme's Theorem] Let p > 3 be a prime. Prove that

$$p^2 \mid (p-1)! \left(1 + \frac{1}{2} + \dots + \frac{1}{p-1}\right).$$

3. Most positive integers can be expressed as a sum of two or more consecutive positive integers. For example, 24 = 7 + 8 + 9 and 51 = 25 + 26. A positive integer that cannot be expressed as a sum of two or more consecutive positive integers is therefore *interesting*. What are all the interesting integers?

4. Set $S = \{105, 106, \dots, 210\}$. Determine the minimum value of n such that any n-element subset T of S contains at least two non-relatively prime elements.