Protune Negotiation Model

J. L. De Coi, D. Ghita, D. Olmedilla

December 4, 2006

This document aims at formalizing the negotiation between two entities, namely E_1 and E_2 . For the rest of the paper we assume that E_1 is the initial requester while E_2 is the provider, i.e. E_1 is assumed to send a request to E_2 thus starting a negotiation. Notice that during a negotiation both entities E_1 and E_2 may both request or provide information to each other.

Let our Policy language be a rule-based language. Such a rule language is based on normal logic program rules $A \leftarrow L_1, \ldots L_n$ where A is a standard logical atom (called the *head* of the rule) and $L_1, \ldots L_n$ (the *body* of the rule) are literals, i.e. L_i equals either B_i or $\neg B_i$, for some logical atom B_i .

Definition 1 (Policy) A Policy is a set of rules, such that negation is not applied to any predicate occurring in a rule head.

This restriction ensures that policies are *monotonic* in the sense of [?], i.e. as more credentials are released and more actions executed, the set of permissions does not decrease. Moreover, the restriction on negation makes policies *stratified programs*; therefore negation as failure has a clear, PTIME computable semantics that can be equivalently formulated as the perfect model semantics, the well-founded semantics or the stable model semantics [?].

Definition 2 (Negotiation Message) A Negotiation Message is an ordered pair

(p, C)

where

- $p \equiv a \ Policy$
- $C \equiv a \text{ set of credentials}$

We will denote with M the set of all possible Negotiation Messages.

Definition 3 (Message Sequence) A Message Sequence σ is a list of Negotiation Messages

$$\sigma_1, \ldots \sigma_n \mid \sigma_i \in M$$

We will denote with $|\sigma|$ the length of σ and with σ_i the i-th element of the Message Sequence σ .

Definition 4 (Negotiation History) Let E_1 and E_2 be the two entities involved in the negotiation. Let E_1 be the initiator of such a negotiation, i.e. the sender of the first message in the negotiation. A Negotiation History σ for the entity E_j (j = 1, 2) is a Message Sequence

$$\sigma_1, \ldots \sigma_n \mid \sigma_i \in M$$

Moreover let

- $M_{snt}(\sigma) = \{ \sigma_i \mid i = 2k (j \mod 2), 1 \le k \le \lfloor n/2 \rfloor \}$
- $M_{rvd}(\sigma) = \{ \sigma_i \mid i = 2k 1 + (j \mod 2), 1 \le k \le \lfloor n/2 \rfloor \}$

We will refer to a Negotiation History also as a Negotiation State.

Intuitively, messages among parties are sent alternatively, i.e. a message sent by E_j is followed by the reception of a message, which is in turn followed by the sending of a new message and so on. Therefore, $M_{snt}(\sigma)$ (resp. $M_{rvd}(\sigma)$) represents the set of messages sent (resp. received) by E_j .

Notice that according to this definition, the Negotiation History σ is shared by the two entities E_1 and E_2 , but the sets $M_{snt}(\sigma)$ and $M_{rvd}(\sigma)$ are swapped among them. Therefore it holds that

$$M_{snt}(E_1, \sigma) = M_{rvd}(E_2, \sigma)$$

and

$$M_{rvd}(E_1,\sigma) = M_{snt}(E_2,\sigma)$$

In order to ease the notation in the rest of the paper, given a Negotiation History σ , we define the following entities

- $C_{snt}(\sigma) = \bigcup \{C_i \mid \exists p_i \ (p_i, C_i) \in M_{snt}(\sigma)\}\$
- $C_{rvd}(\sigma) = \bigcup \{C_i \mid \exists p_i \ (p_i, C_i) \in M_{rvd}(\sigma)\}$
- $lp_{snt}(\sigma) = p_{i_{max}} \mid i_{max} = max\{i \mid (p_i, c_i) \in M_{snt}(\sigma)\}$
- $lp_{rcv}(\sigma) = p_{i_{max}} \mid i_{max} = max\{i \mid (p_i, c_i) \in M_{rcv}(\sigma)\}$

Intuitively, C_{snt} (resp. C_{rvd}) represents the set of all credentials sent (resp. received) and lp_{snt} (resp. lp_{rvd}) represents the last policy sent (resp. received).

Definition 5 (Negotiation State Machine) A Negotiation State Machine is a tuple

$$(\Sigma, S, s_0, t)$$

such that

- $S \equiv a \ set \ of \ Negotiation \ States$
- $s_0 \equiv the \ empty \ list \ (initial \ state)$

- $\Sigma \equiv a \ set \ of \ Negotiation \ Messages.$
- $t \equiv a \text{ function } S \times \Sigma \to S \text{ such that if } S = (\sigma_1, \dots, \sigma_n) \text{ then } t(S, \sigma) = (\sigma_1, \dots, \sigma_n, \sigma_{n+1}) \text{ (transition function)}$

Intuitively a Negotiation State Machine models how an entity evolves during the negotiation by the exchange of messages. Σ contains both sent and received Negotiation Messages and can therefore be partitioned into two subsets Σ_{snd} and Σ_{rcv} .

Definition 6 (Negotiation Model) A Negotiation Model is a tuple

$$(C, P, p_0, NSM, ff, ns)$$

where

- $C \equiv a \text{ set of credentials}$
- $P \equiv a \text{ set of Policies}$
- $p_0 \equiv a \ Policy \ (local \ Policy)$
- $NSM \equiv a$ Negotiation State Machine (Σ, S, s_0, t)
- $ff \equiv a \text{ function } S \rightarrow P \text{ (Filtering Function)}$
- $ns \equiv an \ ordered \ pair \ (csf, ta) \ where$
 - $-csf \equiv a function S \rightarrow C (Credential Selection Function)$
 - $-ta \equiv a \text{ function } S \rightarrow \{true, false\} \text{ (Termination Algorithm)}$

(Negotiation Strategy)

Each occurrence of S is supposed to refer to the same set of Negotiation States

The intended meaning is as follows

- ullet C represents the set of the credentials local to the Peer
- p_0 represents the Peer's policy protecting the local credentials and allowing access to the local resources
- ullet S represents the set of states in which the Peer can be
- \bullet s_0 represents the initial state, i.e. the state in which the Peer is at the beginning of the negotiation
- ullet f represents the process of filtering the Peer's Policy according to the current state
- ullet csf represents the process of selecting the Peer's credentials to send to the other Peer
- ullet ta represent the Peer's decision about whether going on or terminating the current negotiation