## Introduction to Machine Learning

Fall 2025

University of Science and Technology of China

Lecturer: Zhihui Li, Xiaojun Chang

Homework 1
Posted: Sep. 28th, 2025

Due: Oct. 16th, 2025

**Notice**, to get the full credits, please present your solutions step by step.

#### **Exercise 1: Limit and Limit Points**

- 1. Show that  $\{\mathbf{x}_n\}$  in  $\mathbb{R}^n$  converges to  $\mathbf{x} \in \mathbb{R}^n$  if and only if  $\{\mathbf{x}_n\}$  is bounded and has a unique limit point  $\mathbf{x}$ .
- 2. (Limit Points of a Set). Let C be a subset of  $\mathbb{R}^n$ . A point  $\mathbf{x} \in \mathbb{R}^n$  is called a limit point of C if there is a sequence  $\{\mathbf{x}_n\}$  in C such that  $\mathbf{x}_n \to \mathbf{x}$  and  $\mathbf{x}_n \neq \mathbf{x}$  for all positive integers n. If  $\mathbf{x} \in C$  and  $\mathbf{x}$  is not a limit point of C, then  $\mathbf{x}$  is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
  - (a) If  $C = (0,1) \cup \{2\} \subset \mathbb{R}$ , then C' = [0,1] and x = 2 is an isolated point of C.
  - (b) The set C' is closed.

### Solution 1: Limit and Limit Points

#### 1. ①Necessity:

 $\lim_{n\to\infty}x_n=x\Longrightarrow\forall\;\epsilon>0,\;\exists\;N>0,\;\text{s.t. when}\;n\geq N,\;\|x_n-x\|<\epsilon\Longrightarrow\|x_n\|<\|x\|+\epsilon.$  Set

$$M = \max\{\|x_1\|, \|x_2\|, \cdots, \|x_{N-1}\|, \|x\| + \epsilon\}.$$

Clearly,  $||x_n|| \le M$ ,  $\forall n > 0$ , i.e., sequence  $\{x_n\}$  is bounded.

Besides,  $\lim_{n\to\infty} x_n = x \Longrightarrow$  all subsequences  $\{x_{n_k}\}$  also converge to  $x \Longrightarrow$  limit point x is unique.

2Sufficiency:

Suppose, for the sake of contradiction, that  $\lim_{n\to\infty} x_n \neq x$ . Then  $\exists \epsilon_0 > 0$  and a subsequence  $\{x_{n_k}\}$  such that

$$||x_{n_k} - x|| \ge \epsilon_0, \ \forall \ k > 0$$

According to Bolzano-Weierstrass Theorem,  $\{x_{n_k}\}$  is bounded  $\Longrightarrow$  there is a further convergent subsequence  $\{x_{n_{k_j}}\}$  with  $\lim_{j\to\infty}x_{n_{k_j}}=y\in\mathbb{R}^n$ . By the uniqueness of limit points, y=x. Therefore,  $\|x_{n_{k_j}}-x\|\to 0$ , which contradicts  $\|x_{n_k}-x\|\ge \epsilon_0$ ,  $\forall \ k>0$ . Hence our supposition was false and  $x_n\to x$ .

2. (a) For any  $x \in [0,1]$ , take  $x_n = x + \frac{1}{n}$  if x < 1;  $x_n = x - \frac{1}{n}$  if x > 0. Then it is clear that  $x_n \neq x$ ,  $\forall n > 0$  and  $x_n \to x$ . Thus, x is a limit point of C.

If  $x \notin [0,1]$ ,  $dist(x,(0,1)) > 0 \Longrightarrow \exists \epsilon > 0$ , s.t.  $B(x,\epsilon) \setminus \{x\} \cap C = \emptyset \Longrightarrow x$  is not a limit point of C.

Thus C' = [0, 1]. Correspondingly, x = 2 is an isolated point of C.

(b) To prove C' is closed  $\iff$  to prove  $C' = \overline{C'} \iff$  to prove all of the limit points of C' belong to C'

Set x as any limit point of  $C' \Longrightarrow$  there exists a sequence  $\{x_n\} \subset C' \setminus \{x\}$  with  $x_n \to x$ .

For each n, since  $x_n \in C'$ , there exists a sequence  $\{x_{n,m}\} \subset C \setminus \{x_n\}$  with  $x_{n,m} \to x_n$ .

 $\forall \ \epsilon > 0, \ \exists N > 0, \ \text{s.t.}$  when  $n \geq N, \ \|x_n - x\| < \frac{\epsilon}{2}$ . Let m be large enough, then  $\|x_{n,m} - x_n\| < \frac{\epsilon}{2}$ . By triangle inequality,

$$||x_{n,m} - x|| \le ||x_{n,m} - x_n|| + ||x_n - x|| \le \epsilon$$

Therefore,  $x_{n,m} \in C$  implies  $x \in C'$ .

In conclusion, the set C' is closed.

## Exercise 2: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in **finite** dimensional vector space.

1.  $l_p$  norm: The  $l_p$  norm is defined by

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

where  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$  and  $p \ge 1$ .

- (a) Please show that the  $l_p$  norm is a norm.
- (b) Please show that the following equality.

$$\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

The  $l_{\infty}$  norm is defined as above.

- 2. **Operator norms:** Suppose that  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , which can be viewed as a linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ . Please show the following operator norms' equality.
  - (a) Let  $\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$ . Please show that

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(b) Let  $\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$ . Please show that

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

3. (Optional) Dual norm: Let  $\|\cdot\|$  be a norm on  $\mathbb{R}^n$ . The dual norm of  $\|\cdot\|$  is defined by

$$\|\mathbf{x}\|_* = \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\| \le 1} \mathbf{y}^\top \mathbf{x}.$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2.$$

(b) Please show that the dual of the  $l_1$  norm is the  $l_{\infty}$  norm. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_{\infty}.$$

#### Solution 2: Norms

1. (a) ① Positive Definiteness:

$$|x_i| \ge 0 \Longrightarrow \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ge 0$$

where the equality holds if and only if  $x_i = 0$ ,  $\forall 1 \le i \le n \iff \mathbf{x} = \mathbf{0}$ . ② Homogeneity:  $\forall \alpha \in \mathbb{R}$ ,

$$\|\alpha \mathbf{x}\|_p = \left(\sum_{i=1}^n |\alpha x_i|^p\right)^{1/p} = |\alpha| \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = |\alpha| \|\mathbf{x}\|_p$$

③ Triangle Inequality: Let  $q = \frac{p}{p-1}$  to satisfy  $\frac{1}{p} + \frac{1}{q} = 1$ .  $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , according to Hölder inequality,

$$\|\mathbf{x} + \mathbf{y}\|_{p}^{p} = \sum_{i=1}^{n} |x_{i} + y_{i}|^{p}$$

$$\leq \sum_{i=1}^{n} |x_{i}| \cdot |x_{i} + y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}| \cdot |x_{i} + y_{i}|^{p-1}$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{(p-1)q}\right)^{1/q}$$

$$+ \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{1/p} \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{(p-1)q}\right)^{1/q}$$

$$= (\|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}) \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1/q}$$

$$\Longrightarrow \|\mathbf{x} + \mathbf{y}\|_{p} = \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1/p} = \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1-1/q} \leq \|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}$$

(b) It is clear that

$$\|\mathbf{x}\|_{\infty}^p \le \|\mathbf{x}\|_p^p \le n\|\mathbf{x}\|_{\infty}^p \iff \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_p \le n^{1/p}\|\mathbf{x}\|_{\infty}$$

By the Squeeze Theorem,

$$\lim_{p \to \infty} n^{1/p} = 1 \Longrightarrow \lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty}$$

2. When  $\mathbf{A} = \mathbf{0}$ , the conclusion is trivial. Thus, the following discussion is based on  $\mathbf{A} \neq \mathbf{0}$ .

Divide matrix **A** into blocks by columns as  $(a_1, a_2, \dots, a_n)$  and let  $||a_{j_0}||_1 = \max_{1 \leq j \leq n} ||a_j||_1$ .

Then  $\forall \mathbf{x} \in \mathbb{R}^n$  that satisfies  $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = 1$ ,

$$\|\mathbf{A}\mathbf{x}\|_1 = \|\sum_{j=1}^n x_j a_j\|_1 \le \sum_{j=1}^n |x_j| \|a_j\|_1 \le \left(\sum_{i=1}^n |x_i|\right) \max_{1 \le j \le n} \|a_j\|_1 = \|a_{j_0}\|_1$$

Besides,  $\|\mathbf{Ae_{j_0}}\|_1 = \|a_{j_0}\|_1$ . In conclusion,

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1 = \max_{1 \le j \le n} \|a_j\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

**(b)**  $\forall \mathbf{x} \in \mathbb{R}^n \text{ that satisfies } ||\mathbf{x}||_{\infty} = 1,$ 

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| |x_j| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Set 
$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{kj}|$$
. Then let  $\tilde{\mathbf{x}} = (\operatorname{sgn}(a_{k1}), \dots, \operatorname{sgn}(a_{kn}))^T$ .

$$\mathbf{A} \neq \mathbf{0} \Longrightarrow \|\tilde{\mathbf{x}}\|_{\infty} = 1$$
 and it is clear that  $\|\mathbf{A}\tilde{\mathbf{x}}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$ .

3. (a) By Cauchy-Schwarz Inequality,

$$\mathbf{y^T}\mathbf{x} \leq \|\mathbf{y}\|_2 \|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_2 \Longrightarrow \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \leq 1} \mathbf{y}^\top \mathbf{x} \leq \|\mathbf{x}\|_2.$$

If  $\mathbf{x} = \mathbf{0}$ , the target equality is trivial; if not, choose  $\mathbf{y_0} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$ , which satisfies  $\|\mathbf{y_0}\|_2 = 1$ . Then  $\mathbf{y_0^T}\mathbf{x} = \frac{\mathbf{x^T}\mathbf{x}}{\|\mathbf{x}\|_2} = \|\mathbf{x}\|_2$ .

In conclusion,  $\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2$ .

(b) For any  $\mathbf{y} = (y_1, \dots, y_n)^T$  with  $||y||_1 \le 1$ ,

$$\mathbf{y}^{\mathbf{T}}\mathbf{x} = \sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} |x_i| |y_i| \le \max_{1 \le i \le n} |x_i| \sum_{i=1}^{n} |y_i| \le \|\mathbf{x}\|_{\infty}$$
$$\implies \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^{\top} \mathbf{x} \le \|\mathbf{x}\|_{\infty}.$$

If  $\mathbf{x} = \mathbf{0}$ , the target equality is trivial; if not, let  $k = \arg\max_{1 \le i \le n} |x_i|$  and choose  $\mathbf{y_0} = \operatorname{sgn}(x_k)\mathbf{e_k}$  so that  $||y_0||_1 = 1$ . Then  $\mathbf{y_0^T}\mathbf{x} = \operatorname{sgn}(\mathbf{x_k})\mathbf{x_k} = ||\mathbf{x}||_{\infty}$ . In conclusion,  $\sup_{\mathbf{y} \in \mathbb{R}^n, ||\mathbf{y}||_1 \le 1} \mathbf{y}^{\mathsf{T}}\mathbf{x} = ||\mathbf{x}||_{\infty}$ .

## Exercise 3: Open and Closed Sets

The norm ball  $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\|_2 < r, \mathbf{x} \in \mathbb{R}^n\}$  is denoted by  $B_r(\mathbf{x})$ .

- 1. Given a set  $C \subset \mathbb{R}^n$ , please show the following are equivalent.
  - (a) The set C is closed; that is  $\mathbf{cl}\ C = C$ .
  - (b) The complement of C is open.
  - (c) If  $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$  for every  $\epsilon > 0$ , then  $\mathbf{x} \in C$ .
- 2. Given  $A \subset \mathbb{R}^n$ , a set  $C \subset A$  is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if  $A \setminus C$  is open in A.

- (a) Let  $B = [0,1] \cup \{2\}$ . Please show that [0,1] is not an open set in  $\mathbb{R}$ , while it is both open and closed in B.
- (b) Please show that a set  $C \subset A$  is open in A if and only if  $C = A \cap U$ , where U is open in  $\mathbb{R}^n$ .

## Solution 3: Open and Closed Sets

1. (a)  $\Longrightarrow$  (b):

Suppose, for the sake of contradiction, that  $C^c$  is not open. Then  $\exists \mathbf{x} \in C$ , s.t.  $\forall \epsilon > 0$ ,  $B_{\epsilon}(\mathbf{x}) \not\subset C^c \Longrightarrow \text{take } \mathbf{x_n} \subset B_{\epsilon}(\mathbf{x}) \setminus C^c \subset C$  for  $\epsilon_n > 0$ . Without generality, set  $\epsilon_1 > \epsilon_2 > \cdots > \epsilon_n \to 0$ , then it is clear that sequence  $\{\mathbf{x_n}\}$  satisfies  $\lim_{n \to \infty} \mathbf{x_n} = \mathbf{x}$ . Therefore,  $\mathbf{x} \in \mathbf{cl} \ C = C$ , which contradicts  $\mathbf{x} \in C^c$ .

 $(b) \Longrightarrow (c)$ :

Suppose, for the sake of contradiction, that  $\exists \mathbf{x} \in C^c$ , s.t.  $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$  for every  $\epsilon > 0$ . Because  $C^c$  is open,  $\exists \delta > 0$ , s.t.  $B_{\delta}(\mathbf{x}) \subset C^c \Longrightarrow B_{\delta}(\mathbf{x}) \subset C \cap C^c = \emptyset$ . So this is a contradiction.

 $(c) \Longrightarrow (a)$ :

Suppose, for the sake of contradiction, that  $\exists$  a sequence  $\{\mathbf{x_n}\} \subset C$ , which satisfies  $\mathbf{x_n} \to \mathbf{x} \in C^c$ , i.e.,  $\forall \epsilon > 0$ ,  $\exists N > 0$ , s.t. when  $n \geq N$ ,  $\|\mathbf{x_n} - \mathbf{x}\| < \epsilon$ . Therefore,  $B_{\epsilon}(\mathbf{x}) \cap C \supset \{x_n\} \neq \emptyset \Longrightarrow \mathbf{x} \in C$ , which contradicts  $\mathbf{x} \in C^c$ .



In summary, these three hypothesis are equivalent.

2. (a)  $\forall \epsilon > 0, -\frac{\epsilon}{2} \notin [0,1] \Longrightarrow B_{\epsilon}(0) = (-\epsilon, \epsilon) \not\subset [0,1] \Longrightarrow [0,1]$  is not an open set in  $\mathbb{R}$ .

If  $\mathbf{x} \in (0,1)$ , take  $\epsilon = \min\{\mathbf{x}, \mathbf{1} - \mathbf{x}\} > 0$ . Then  $B_{\epsilon}(\mathbf{x}) \subset [0,1] \Longrightarrow B_{\epsilon}(\mathbf{x}) \cap B = B_{\epsilon}(\mathbf{x}) \subset [0,1]$ .

If  $\mathbf{x} = 0$ , take  $\epsilon = \frac{1}{2} > 0$ . Then  $B_{\epsilon}(0) = (-\frac{1}{2}, \frac{1}{2}) \Longrightarrow B_{\epsilon}(0) \cap B = [0, \frac{1}{2}] \subset [0, 1]$ . In the same way, if  $\mathbf{x} = 1$ , take  $\epsilon = \frac{1}{2} > 0$ . Then  $B_{\epsilon}(1) = (\frac{1}{2}, \frac{3}{2}) \Longrightarrow B_{\epsilon}(1) \cap B = [\frac{1}{2}, 1] \subset [0, 1]$ .

In conclusion, [0,1] is open in B.

Beside, if  $\mathbf{x} = 2$ , take  $\epsilon = \frac{1}{2} > 0$ . Then  $B_{\epsilon}(2) = (\frac{3}{2}, \frac{5}{2}) \Longrightarrow B_{\epsilon}(2) \cap B = \{\frac{1}{2}\} \subset \{\frac{1}{2}\} \Longrightarrow \{2\} = B \setminus [0, 1] \text{ is open in } B$ .

In summary, [0,1] is both open and closed in B.

(b) ① Necessity:

 $C \subset A$  is open in  $A \Longrightarrow \forall \mathbf{x} \in C, \exists \epsilon_x > 0, \text{ s.t. } B_{\epsilon_x}(\mathbf{x}) \cap A \subset C \Longrightarrow$ 

$$\bigcup_{\mathbf{x} \in C} \left( B_{\epsilon_x}(\mathbf{x}) \cap A \right) = \left( \bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x}) \right) \cap A \subset C.$$

Set  $U = \bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x})$ . Then  $U \cap A \subset C$  and it is clear that U is open in  $\mathbb{R}^n$ .

$$\forall \mathbf{x} \in C, \mathbf{x} \in B_{\epsilon_x}(\mathbf{x}) \text{ and } \mathbf{x} \in C \subset A \Longrightarrow$$

$$\mathbf{x} \in B_{\epsilon_x}(\mathbf{x}) \cap A \subset \bigcup_{\mathbf{x} \in C} (B_{\epsilon_x}(\mathbf{x}) \cap A) = \left(\bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x})\right) \cap A = U \cap A.$$

$$\Longrightarrow C\subset U\cap A.$$

In conclusion,  $C = U \cap A$  and U is open in  $\mathbb{R}^n$ .

2 Sufficiency:

U is open in  $\mathbb{R}^n \Longrightarrow \forall \mathbf{x} \in U \supset C$ ,  $\exists \epsilon_x > 0$ , s.t.  $B_{\epsilon_x}(\mathbf{x}) \subset U \Longrightarrow B_{\epsilon_x}(\mathbf{x}) \cap A \subset U \cap A = C$ . Thus  $C \subset A$  is open in A.

## Exercise 4: Projection

Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and  $\mathbf{x} \in \mathbb{R}^m$ . Define

$$\mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^m} \{ \|\mathbf{x} - \mathbf{z}\|_2 : \mathbf{z} \in \mathcal{C}(\mathbf{A}) \}.$$

We call  $P_{\mathbf{A}}(\mathbf{x})$  the projection of the point  $\mathbf{x}$  onto the column space of  $\mathbf{A}$ .

- 1. Please show that  $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$  is unique for any  $\mathbf{x} \in \mathbb{R}^m$ .
- 2. Let  $\mathbf{v}_i \in \mathbb{R}^n$ ,  $i = 1, \dots, d$  with  $d \leq n$ , which are linearly independent.
  - (a) For any  $\mathbf{w} \in \mathbb{R}^n$ , please find  $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$ , which is the projection of  $\mathbf{w}$  onto the subspace spanned by  $\mathbf{v}_1$ .
  - (b) Please show  $\mathbf{P}_{\mathbf{v}_1}(\cdot)$  is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where  $\alpha, \beta \in \mathbb{R}$  and  $\mathbf{w} \in \mathbb{R}^n$ .

(c) Please find the projection matrix corresponding to the linear map  $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ , i.e., find the matrix  $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$  such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let  $V = (v_1, ..., v_d)$ .
  - i. For any  $\mathbf{w} \in \mathbb{R}^n$ , please find  $\mathbf{P_V}(\mathbf{w})$  and the corresponding projection matrix  $\mathbf{H}$ .
  - ii. Please find **H** if we further assume that  $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \forall i \neq j$ .
- 3. (a) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

What are the coordinates of  $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$  with respect to the column vectors in  $\mathbf{A}$  for any  $\mathbf{x} \in \mathbb{R}^2$ ? Are the coordinates unique?

(b) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

What are the coordinates of  $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$  with respect to the column vectors in  $\mathbf{A}$  for any  $\mathbf{x} \in \mathbb{R}^2$ ? Are the coordinates unique?

4. A matrix **P** is called a projection matrix if **Px** is the projection of **x** onto  $C(\mathbf{P})$  for any **x**.

- (a) Let  $\lambda$  be the eigenvalue of **P**. Show that  $\lambda$  is either 1 or 0. (*Hint: you may want to figure out what the eigenspaces corresponding to*  $\lambda = 1$  *and*  $\lambda = 0$  *are, respectively.*)
- (b) Show that **P** is a projection matrix if and only if  $\mathbf{P}^2 = \mathbf{P}$  and **P** is symmetric.
- 5. Let  $\mathbf{B} \in \mathbb{R}^{m \times s}$  and  $\mathcal{C}(\mathbf{B})$  be its column space. Suppose that  $\mathcal{C}(\mathbf{B})$  is a proper subspace of  $\mathcal{C}(\mathbf{A})$ . Is  $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$  the same as  $\mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$ ? Please show your claim rigorously.

### Solution 4: Projection

## 1. ① Strict Convexity:

Define

$$f(\mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|_{2}^{2} = \|\mathbf{z}\|_{2}^{2} + 2\langle \mathbf{x}, \mathbf{z} \rangle + \|\mathbf{x}\|_{2}^{2}$$

Then  $\nabla^2 f(\mathbf{z}) = 2\mathbf{I_m} > 0 \Longrightarrow f$  is strictly convex.

The column space  $C(\mathbf{A})$  is convex  $\Longrightarrow \forall \mathbf{a}, \mathbf{b} \in C(\mathbf{A}), \forall t \in (0,1), t\mathbf{a} + (1-t)\mathbf{b} \in C(\mathbf{A}).$ 

Suppose  $\mathbf{z_1}, \mathbf{z_2} \in \mathcal{C}(\mathbf{A})$  are both minimizers of f over  $\mathcal{C}(\mathbf{A})$ . Then according to the convexity of f,

$$f(t\mathbf{z_1} + (1-t)\mathbf{z_2}) < tf(\mathbf{z_1}) + (1-t)f(\mathbf{z_2}) = f(\mathbf{z_1}) = f(\mathbf{z_2})$$

contradicting the minimality of  $\mathbf{z_1}$  and  $\mathbf{z_2}$ . Therefore, the minimizer  $\mathbf{P_A}(\mathbf{x})$  is unique.

### 2 Orthogonality:

Suppose  $\mathbf{z_0}$  is a minimizer of f over  $\mathcal{C}(\mathbf{A})$ . For any  $\mathbf{y} \in \mathcal{C}(\mathbf{A})$  and  $t \in \mathbb{R}$ , define

$$\Phi(t) = \|\mathbf{x} - (\mathbf{z_0} + t\mathbf{y})\|_2^2 = \|\mathbf{x} - \mathbf{z_0}\|_2^2 - 2t\langle\mathbf{x} - \mathbf{z_0}, \mathbf{y}\rangle + t^2\|\mathbf{y}\|_2^2$$

Notice that  $\mathbf{z_0} + t\mathbf{y} \in \mathcal{C}(\mathbf{A})$ .

Since  $\mathbf{z_0}$  minimizes f over  $\mathcal{C}(\mathbf{A})$ ,  $\Phi(t)$  achieves its minimum at  $t = 0 \Longrightarrow \Phi'(0) = -2\langle \mathbf{x} - \mathbf{z_0}, \mathbf{y} \rangle = 0 \Longrightarrow \mathbf{x} - \mathbf{z_0} \perp \mathcal{C}(\mathbf{A})$ , i.e.,  $\mathbf{x} - \mathbf{z_0} \in \mathcal{C}(\mathbf{A})^{\perp}$ .

Fruthermore, if  $\mathbf{x} - \mathbf{z_0} \perp \mathcal{C}(\mathbf{A})$ , then for any  $\mathbf{y} \in \mathcal{C}(\mathbf{A})$ ,

$$\|\mathbf{x} - \mathbf{y}\|_{2}^{2} = \|\mathbf{x} - \mathbf{z_{0}} + \mathbf{z_{0}} - \mathbf{y}\|_{2}^{2} = \|\mathbf{x} - \mathbf{z_{0}}\|_{2}^{2} + \|\mathbf{z_{0}} - \mathbf{y}\|_{2}^{2} \ge \|\mathbf{x} - \mathbf{z_{0}}\|_{2}^{2}$$

 $\Longrightarrow \mathbf{z_0}$  is a minimizer of f over  $\mathcal{C}(\mathbf{A})$ .

If  $\mathbf{z_1}$ ,  $\mathbf{z_2}$  both satisfy  $\mathbf{x} - \mathbf{z_i} \perp \mathcal{C}(\mathbf{A})$  (i = 1, 2), then  $\mathbf{z_1} - \mathbf{z_2} \in \mathcal{C}(\mathbf{A})$  and  $\mathbf{z_1} - \mathbf{z_2} = (\mathbf{x} - \mathbf{z_2}) - (\mathbf{x} - \mathbf{z_1}) \perp \mathcal{C}(\mathbf{A}) \Longrightarrow \mathbf{z_1} - \mathbf{z_2} = \mathbf{0} \Longrightarrow \mathbf{z_1} = \mathbf{z_2}$ , i.e. the minimizer  $\mathbf{P_A}(\mathbf{x})$  is unique.

2. (a)

$$\begin{aligned} \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) &= \underset{\alpha \in \mathbb{R}, \mathbf{v}_1 \in \mathbb{R}^n}{\operatorname{argmin}} \ \|\mathbf{w} - \alpha \mathbf{v}_1\|_2 \\ \frac{\mathrm{d}}{\mathrm{d}\alpha} \|\mathbf{w} - \alpha \mathbf{v}_1\|_2^2 &= \frac{\mathrm{d}}{\mathrm{d}\alpha} (\mathbf{w} - \alpha \mathbf{v}_1)^\top (\mathbf{w} - \alpha \mathbf{v}_1) = -2\mathbf{v}_1^\top (\mathbf{w} - \alpha \mathbf{v}_1) = 0 \\ \Longrightarrow \alpha^* &= \frac{\mathbf{v}_1^T \mathbf{w}}{\mathbf{v}_1^T \mathbf{v}_1} \Longrightarrow \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \frac{\mathbf{v}_1^T \mathbf{w}}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 \end{aligned}$$

(b) According to the result in (a),

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \frac{\mathbf{v}_1^{\mathbf{T}}(\alpha \mathbf{u} + \beta \mathbf{w})}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1 = \alpha \frac{\mathbf{v}_1^{\mathbf{T}} \mathbf{u}}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1 + \beta \frac{\mathbf{v}_1^{\mathbf{T}} \mathbf{w}}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1$$
$$= \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$$

(c)

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \frac{\mathbf{v}_1^T\mathbf{w}}{\mathbf{v}_1^T\mathbf{v}_1}\mathbf{v}_1 = \left(\frac{\mathbf{v}_1\mathbf{v}_1^T}{\mathbf{v}_1^T\mathbf{v}_1}\right)\mathbf{w} := \mathbf{H}_1\mathbf{w}$$

(d) i.

$$\mathbf{P}_{\mathbf{V}}(\mathbf{w}) = \mathop{\mathbf{argmin}}_{\mathbf{V}\mathbf{y}} \|\mathbf{w} - \mathbf{V}\mathbf{y}\|_2$$
  
 $\mathbf{y} \in \mathbb{R}^d, \mathbf{V} \in \mathbb{R}^{n \times d}$ 

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{y}}\|\mathbf{w} - \mathbf{V}\mathbf{y}\|_2^2 = \frac{\mathrm{d}}{\mathrm{d}\mathbf{y}}(\mathbf{w} - \mathbf{V}\mathbf{y})^\top(\mathbf{w} - \mathbf{V}\mathbf{y}) = -2\mathbf{V}^\top(\mathbf{w} - \mathbf{V}\mathbf{y}) = 0$$

 $\mathbf{v_i}, i = 1, \dots, d$  are linearly independent  $\Longrightarrow \mathbf{V}$  has full column rank  $\Longrightarrow \mathbf{V}^{\top} \mathbf{V}$  is invertible.

$$\implies \mathbf{y}^* = (\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top \mathbf{w} \implies \mathbf{P}_{\mathbf{V}}(\mathbf{w}) = \mathbf{V}(\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top \mathbf{w}$$
$$\implies \mathbf{H} = \mathbf{V}(\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top$$

ii.

$$\mathbf{v_i^T v_j} = 0, \forall i \neq j \Longrightarrow \mathbf{V}^{\top} \mathbf{V} = \begin{bmatrix} \mathbf{v_1^T v_1} & 0 & \cdots & 0 \\ 0 & \mathbf{v_2^T v_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{v_d^T v_d} \end{bmatrix}$$
$$\Longrightarrow (\mathbf{V}^{\top} \mathbf{V})^{-1} = \begin{bmatrix} \frac{1}{\mathbf{v_1^T v_1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\mathbf{v_2^T v_2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\mathbf{v_d^T v_d}} \end{bmatrix}$$
$$\Longrightarrow \mathbf{H} = \sum_{i=1}^{d} \frac{\mathbf{v_i v_i^T}}{\mathbf{v_i^T v_i}}$$

3. (a)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Longrightarrow \mathbf{x} \in \mathcal{C}(\mathbf{A}) = \mathbb{R}^2 \Longrightarrow \mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \mathbf{x} = \mathbf{A} \cdot \mathbf{x}$$

The coordinates of  $P_A(x)$  with respect to the column vectors in A are unique and equal to x itself.

(b) 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Longrightarrow \mathcal{C}(\mathbf{A}) = \{\alpha(1, 1)^T : \alpha \in \mathbb{R}\}$$

$$\mathbf{P_A}(\mathbf{x}) = \underset{\substack{\alpha(1, 1)^T \\ \alpha \in \mathbb{R}}}{\mathbf{argmin}} \|\mathbf{x} - \alpha(1, 1)^T\|_2$$

$$\xrightarrow{\frac{2.(a)}{\alpha}} \mathbf{P_A}(\mathbf{x}) = \frac{(1, 1)\mathbf{x}}{(1, 1)(1, 1)^T} (1, 1)^T = \frac{x_1 + x_2}{2} (1, 1)^T = \mathbf{A} \cdot (c_1, c_2)^T$$

 $\Longrightarrow$  The set of all coordinates of  $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$  with respect to the column vectors in  $\mathbf{A}$  is the affine line:

$$\left\{ (c_1, c_2)^T \in \mathbb{R}^2 : c_1 + 2c_2 = \frac{x_1 + x_2}{2} \right\}$$

Thus the coordinates are not unique.

4. (a) Let  $\lambda$  be an eigenvalue of  $\mathbf{P}$  and  $\mathbf{v}$  be the corresponding eigenvector. Then  $\mathbf{P}\mathbf{v} = \lambda\mathbf{v}$ . Since  $\mathbf{P}$  is a projection matrix,  $\mathbf{P}\mathbf{v}$  is the projection of  $\mathbf{v}$  onto  $\mathcal{C}(\mathbf{P})$   $\implies \mathbf{v} = \mathbf{P}\mathbf{v} + (\mathbf{v} - \mathbf{P}\mathbf{v})$ , where  $\mathbf{P}\mathbf{v} \in \mathcal{C}(\mathbf{P})$  and  $\mathbf{v} - \mathbf{P}\mathbf{v} \in \mathcal{C}(\mathbf{P})^{\perp}$ .

$$\Longrightarrow \|\mathbf{v}\|_2^2 = \|\mathbf{P}\mathbf{v}\|_2^2 + \|\mathbf{v} - \mathbf{P}\mathbf{v}\|_2^2 \xrightarrow{\mathbf{P}\mathbf{v} = \lambda\mathbf{v}} (\lambda^2 - \lambda) \|\mathbf{v}\|_2^2 = 0 \Longrightarrow \lambda \in \{0, 1\}$$

(b) ① Necessity:

 $\forall \mathbf{x} \in \mathbb{R}^m, \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P}).$  We need to prove that  $\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp}.$   $\forall \mathbf{y} \in \mathcal{C}(\mathbf{P}), \exists \mathbf{z} \in \mathbb{R}^m, \text{ s.t. } \mathbf{y} = \mathbf{P}\mathbf{z}.$  Then

$$\langle \mathbf{x} - \mathbf{P} \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x} - \mathbf{P} \mathbf{x}, \mathbf{P} \mathbf{z} \rangle = \langle \mathbf{P}^{\mathbf{T}} (\mathbf{x} - \mathbf{P} \mathbf{x}), \mathbf{z} \rangle$$

$$\xrightarrow{\mathbf{P}^{\mathbf{T}} = \mathbf{P}} \langle \mathbf{P} (\mathbf{x} - \mathbf{P} \mathbf{x}), \mathbf{z} \rangle$$

$$\xrightarrow{\mathbf{P}^{2} = \mathbf{P}} \langle \mathbf{P} \mathbf{x} - \mathbf{P}^{2} \mathbf{x}, \mathbf{z} \rangle = 0$$

 $\Longrightarrow \mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp} \Longrightarrow \mathbf{P}$  is a projection matrix.

2 Sufficiency:

 $\mathbf{P}$  is a projection matrix  $\Longrightarrow \forall \mathbf{x} \in \mathbb{R}^m, \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})$ 

$$\implies \mathbf{P}(\mathbf{P}\mathbf{x}) = \mathbf{argmin}_{\mathbf{z} \in \mathcal{C}(\mathbf{P})} \|\mathbf{P}\mathbf{x} - \mathbf{z}\|_2 = \mathbf{P}\mathbf{x} \implies \mathbf{P}^2 = \mathbf{P}.$$

 $\mathbf{P}$  is a projection matrix  $\Longrightarrow \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^m, \mathbf{x} = \mathbf{P}\mathbf{x} + (\mathbf{x} - \mathbf{P}\mathbf{x}), \text{ where } \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})$  and  $\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp}$ . Since  $\mathbf{P}\mathbf{y} \in \mathcal{C}(\mathbf{P})$ , we have

$$\langle \mathbf{P}\mathbf{x}, \mathbf{y} - \mathbf{P}\mathbf{y} \rangle = 0 \Longrightarrow \langle \mathbf{P}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{P}\mathbf{x}, \mathbf{P}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{P}\mathbf{y} \rangle = \langle \mathbf{P}^{\mathbf{T}}\mathbf{x}, \mathbf{y} \rangle$$

$$\Longrightarrow \mathbf{P}^{\mathbf{T}} = \mathbf{P}.$$

5.  $\forall \mathbf{x} \in \mathbb{R}^m$ ,

 $\mathcal{C}(\mathbf{B})$  is a proper subspace of  $\mathcal{C}(\mathbf{A}) \Longrightarrow \forall \mathbf{z} \in \mathcal{C}(\mathbf{P}), z \in \mathcal{C}(\mathbf{A}) \Longrightarrow \mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z} \in \mathcal{C}(\mathbf{A})$ 

$$\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x}) \in \mathcal{C}(\mathbf{A})^{\perp} \Longrightarrow \|\mathbf{x} - z\|_{2}^{2} = \|(\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}) + (\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x}))\|_{2}^{2}$$
  
=  $\|\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}\|_{2}^{2} + \|\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x})\|_{2}^{2}$ 

$$\Longrightarrow \mathop{\mathrm{argmin}}_{\mathbf{z} \in \mathcal{C}(\mathbf{B})} \|\mathbf{x} - \mathbf{z}\|_2 = \mathop{\mathrm{argmin}}_{\mathbf{z} \in \mathcal{C}(\mathbf{B})} \|\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}\|_2 \Longrightarrow \mathbf{P}_{\mathbf{B}}(\mathbf{x}) = \mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$$

#### Exercise 5: Derivatives with matrices

**Definition 1** (Differentiability). [?] Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be a function,  $\mathbf{x}_0 \in \mathbb{R}^n$  be a point, and let  $L: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. We say that f is differentiable at  $\mathbf{x}_0$  with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by  $f'(\mathbf{x}_0)$ .

- 1. Let  $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$  and  $\mathbf{y} \in \mathbb{R}^m$ . Consider the functions as follows. Please show that they are differentiable and find  $f'(\mathbf{x})$ .
  - (a)  $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$ .
  - (b)  $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$ .
- 2. Consider a differentiable function  $f: \mathbb{R}^n \to \mathbb{R}^m$ . The **Jacobian Matrix with denominator layout** is defined by:

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_1} \\
\frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1(\mathbf{x})}{\partial x_n} & \frac{\partial f_2(\mathbf{x})}{\partial x_n} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n}
\end{bmatrix}.$$

Please show that

$$L(\mathbf{x} - \mathbf{x}_0) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top} (\mathbf{x} - \mathbf{x}_0),$$

where  $L: \mathbb{R}^n \to \mathbb{R}^m$  is the derivative in Definition 1.

- 3. Please follow Definition 1 and give the definition of the differentiability of the functions  $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ .
- 4. Let  $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$ , where  $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$ , and  $\operatorname{tr}(\cdot)$  denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 5. (Optional) Let  $f(\mathbf{X}) = \det(\mathbf{X})$ , where  $\det(\mathbf{X})$  is the determinant of  $\mathbf{X} \in \mathbb{R}^{n \times n}$ . Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find  $f'(\mathbf{X})$ .
- 6. (Optional) Let  $\mathbf{S}_{++}^n$  be the space of all positive definite  $n \times n$  matrices. Please show the function  $f: \mathbf{S}_{++}^n \to \mathbb{R}$  defined by  $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$  is differentiable on  $\mathbf{S}_{++}^n$ . (Hint: Expand the expression  $(\mathbf{X} + t\mathbf{Y})^{-1}$  as a power series.)

#### Solution 5: Derivatives with matrices

1. (a) Let  $L(\mathbf{h}) = \mathbf{a}^{\top} \mathbf{h}$ ,  $\forall \mathbf{h} \in \mathbb{R}^n$ , then L is a linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}$ . For any  $\mathbf{x}_0 \in \mathbb{R}^n$  and  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x} \neq \mathbf{x}_0$ ,

$$\frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = \frac{|\mathbf{a}^\top \mathbf{x} - \mathbf{a}^\top \mathbf{x}_0 - \mathbf{a}^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{0}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0$$

 $\implies f$  is differentiable at  $\mathbf{x}_0$  with derivative L and  $f'(\mathbf{x}) = \mathbf{a}^{\top}$ .

(b) Let  $L(\mathbf{h}) = 2\mathbf{x}_0^{\top}\mathbf{h}$ ,  $\forall \mathbf{h} \in \mathbb{R}^n$ , then L is a linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}$ . For any  $\mathbf{x}_0 \in \mathbb{R}^n$  and  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x} \neq \mathbf{x}_0$ ,

$$\frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = \frac{|\mathbf{x}^\top \mathbf{x} - \mathbf{x}_0^\top \mathbf{x}_0 - 2\mathbf{x}_0^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{|(\mathbf{x} - \mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{\|\mathbf{x} - \mathbf{x}_0\|_2^2}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \|\mathbf{x} - \mathbf{x}_0\|_2$$

 $\implies \lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0 \implies f \text{ is differentiable at } \mathbf{x}_0 \text{ with derivative } L \text{ and } f'(\mathbf{x}) = 2\mathbf{x}^\top.$ 

Key point: Observe the linear term of  $\mathbf{x} - \mathbf{x_0}$  in  $f(\mathbf{x}) - f(\mathbf{x_0})$ .

2. Denote  $\{\mathbf{e_1}, \dots, \mathbf{e_n}\}$  as the standard basis of  $\mathbb{R}^n$ .

For a fixed  $i \in \{1, \dots, n\}$ , we have

$$\lim_{t\to 0} \frac{f(\mathbf{x_0} + t\mathbf{e_i}) - f(\mathbf{x_0})}{t} = \left(\frac{\partial f_1}{\partial x_i}(\mathbf{x_0}), \frac{\partial f_2}{\partial x_i}(\mathbf{x_0}), \cdots, \frac{\partial f_m}{\partial x_i}(\mathbf{x_0})\right)^{\top} = L\mathbf{e_i}$$

which is the *i*-th column of

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_1} \\
\frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1(\mathbf{x})}{\partial x_n} & \frac{\partial f_2(\mathbf{x})}{\partial x_n} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_n}
\end{bmatrix}.$$

For any  $\mathbf{h} = \sum_{i=1}^{n} h_i \mathbf{e_i}$ , we have

$$L\mathbf{h} = L\left(\sum_{i=1}^{n} h_{i}\mathbf{e_{i}}\right) = \sum_{i=1}^{n} h_{i}L\mathbf{e_{i}} = \sum_{i=1}^{n} h_{i}\left[\left(\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x_{0}})\right)^{\top}\right]_{:,i} = \left(\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x_{0}})\right)^{\top}\mathbf{h}$$

Let  $\mathbf{h} = \mathbf{x} - \mathbf{x_0}$ , we conclude

$$L(\mathbf{x} - \mathbf{x}_0) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top} (\mathbf{x} - \mathbf{x}_0).$$

3. Let  $f: \mathbb{R}^{n \times n} \to \mathbb{R}$  be a function,  $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$  be a point, and let  $L: \mathbb{R}^{n \times n} \to \mathbb{R}$  be a linear transformation. We say that f is differentiable at  $\mathbf{X}_0$  with derivative L if we have

$$\lim_{\mathbf{X} \to \mathbf{X}_0; \mathbf{X} \neq \mathbf{X}_0} \frac{|f(\mathbf{X}) - f(\mathbf{X}_0) - L(\mathbf{X} - \mathbf{X}_0)|}{\|\mathbf{X} - \mathbf{X}_0\|_2} = 0.$$

We denote this derivative by  $f'(\mathbf{X}_0)$ .

4.  $\forall \alpha, \beta > 0 \text{ and } \mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times m}$ ,

$$f(\alpha \mathbf{X} + \beta \mathbf{Y}) = \operatorname{tr}\left(\mathbf{A}^{\top} \left(\alpha \mathbf{X} + \beta \mathbf{Y}\right)\right) = \alpha \operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{X}\right) + \beta \operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{Y}\right) = \alpha f(\mathbf{X}) + \beta f(\mathbf{Y})$$

 $\implies f$  is linear  $\implies$  let  $L(\mathbf{H}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{H})$ . It is clear that  $f(\mathbf{X}) - f(\mathbf{X_0}) - L(\mathbf{X} - \mathbf{X_0}) = 0$   $\implies f$  is differentiable and  $f'(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$ .

5.

6.

## Exercise 6: Linear Space

- 1. Let  $P_n[x]$  be the set of all polynomials on  $\mathbb{R}$  with degree at most n. Show that  $P_n[x]$  is a linear space.
- 2. A real symmetric matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  is called *positive definite*, written  $\mathbf{A} \succ \mathbf{0}$ , if for all  $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$ ,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0.$$

Let the set of all positive definite matrices be

$$\mathbb{S}^n_{++} := \Big\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = \mathbf{A}^\top, \ \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0 \text{ for all } \mathbf{x} \neq \mathbf{0} \Big\}.$$

Is  $\mathbb{S}^n_{++}$  a linear subspace of  $\mathbb{R}^{n\times n}$ ? Please show your conclusion in detail.

### Solution 6: Linear Space

1. 
$$\forall p(x) = \sum_{k=0}^{m} a_k x^k, \ q(x) = \sum_{k=0}^{m} b_k x^k, \ r(x) = \sum_{k=0}^{m} c_k x^k, \ a_k, \ b_k, \ c_k \in \mathbb{R}, \ 0 \le k \le n, \ \forall \ \alpha, \beta \in \mathbb{R}$$
:

(a) Closure under addition:

$$p(x) + q(x) = \sum_{k=0}^{m} (a_k + b_k) x^k \in P_n[x]$$

(b) Associativity of addition:

$$(p+q) + r = \sum_{k=0}^{m} [(a_k + b_k) + c_k] x^k = \sum_{k=0}^{m} [a_k + (b_k + c_k)] x^k = p + (q+r)$$

(c) Commutativity of addition:

$$p(x) + q(x) = \sum_{k=0}^{m} (a_k + b_k)x^k = \sum_{k=0}^{m} (b_k + a_k)x^k = q(x) + p(x)$$

(d) Additive identity:

$$0 \in P_n[x] \text{ and } p + 0 = 0 + p$$

(e) Additive Inverse:

$$-p = \sum_{k=0}^{m} (-a_k)x^k \in P_n[x] \text{ and } p + (-p) = 0$$

(f) Closure under scalar multiplication:

$$\alpha p = \sum_{k=0}^{m} (\alpha a_k) x^k \in P_n[x]$$

(g) Distributivity of scalar over vector addition:

$$\alpha(p+q) = \sum_{k=0}^{m} [\alpha(a_k + b_k)]x^k = \sum_{k=0}^{m} (\alpha a_k + \alpha b_k)x^k = \alpha p + \alpha q$$

(h) Distributivity of scalar addition over vector:

$$(\alpha + \beta)p = \sum_{k=0}^{m} [(\alpha + \beta)a_k]x^k = \sum_{k=0}^{m} (\alpha a_k + \alpha b_k)x^k = \alpha p + \beta p$$

(i) Compatibility of scalar multiplication:

$$\alpha(\beta p) = \sum_{k=0}^{m} [\alpha(\beta a_k)] x^k = \sum_{k=0}^{m} [(\alpha \beta) a_k] x^k = (\alpha \beta) p$$

(j) Unit scalar:

$$1 \in P_n[x]$$
 and  $1 \cdot p = p \cdot 1 = p$ 

2. No.

(a) 
$$\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{0} \mathbf{x} = 0 \Longrightarrow \mathbf{0} \notin \mathbb{S}^n_{++}$$

(b) 
$$\forall \alpha < 0, \mathbf{A} \in \mathbb{S}_{++}^{n}, \mathbf{x}^{\top}(\alpha A)\mathbf{x} < 0 \Longrightarrow \alpha \mathbf{A} \notin \mathbb{S}_{++}^{n}$$

#### Exercise 7: Basis and Coordinates

Suppose that  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  is a basis of an *n*-dimensional vector space V.

- 1. Show that  $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$  is also a basis of V for nonzero scalars  $\lambda_1, \lambda_2, \dots, \lambda_n$ .
- 2. Let  $V = \mathbb{R}^n$ ,  $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \in \mathbb{R}^{n \times n}$  and  $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \in \mathbb{R}^{n \times n}$ .  $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$ , where  $\mathbf{P} \in \mathbb{R}^{n \times n}$  and  $\mathbf{b}_i \in \mathbb{R}^n$ , for any  $i \in \{1, \dots, n\}$ . Show that  $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$  is also a basis of V for any invertible matrix  $\mathbf{P}$ .
- 3. Suppose that the coordinate of a vector  $\mathbf{v}$  under the basis  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  is  $\mathbf{x} = (x_1, x_2, \dots x_n)$ .
  - (a) What is the coordinate of **v** under  $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ ?
  - (b) What are the coordinates of  $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$  under  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  and  $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ ? Note that  $\lambda_i \neq 0$  for any  $i \in \{1, \dots, n\}$ .
- 4. Suppose  $\mathbf{a}=(1,0)$ ,  $\mathbf{b}=(0,1)$  and  $\mathbf{c}=(-1,0)$  are three unit vectors in two-dimensional space.  $\mathbf{v}=(x,y)$  is a vector in two-dimensional space.
  - (a) Please find the coordinate of  $\mathbf{v}$  under basis  $\{\mathbf{c},\mathbf{b}\}$ ? Is the coordinate unique?
  - (b) Please find all the possible combination coefficients of **v** under vectors **a**, **b** and **c**, i.e.,  $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c}$ .
  - (c) (**Bonus**) Each set of combination coefficients (x', y', z') in (b) forms a vector in  $\mathbb{R}^3$ . Please find the combination coefficients with minimum  $\ell_1$ -norm.

#### Solution 7: Basis and Coordinates

1. Suppose  $\sum_{i=1}^{n} c_i(\lambda_i \mathbf{a_i}) = \sum_{i=1}^{n} (c_i \lambda_i) \mathbf{a_i} = 0$ . Because  $\{\mathbf{a_i}\}_{i=1}^{n}$  is linear independent, we must have  $c_i \lambda_i = 0 \xrightarrow{\lambda_i \neq 0} c_i = 0$  for all i, i.e.,  $\{\lambda_i \mathbf{a_i}\}$  is linear independent.

 $\forall \mathbf{v} \in \mathbf{V}, \{\mathbf{a_i}\}\$ is a basis  $\Longrightarrow$  there exists unique scalars  $\{\alpha_i\}$  such that

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{a_i} = \sum_{i=1}^{n} \left( \frac{\alpha_i}{\lambda_i} \right) (\lambda_i \alpha_i).$$

Thus  $\mathbf{v}$  is a linear combination fo the vectors in  $\{\lambda_i \mathbf{a_i}\}$ .

In conclusion,  $\{\lambda_i \mathbf{a_i}\}$  is also a basis of an *n*-dimensional vector space V.

2. ①  $|\mathbf{B}| = |\mathbf{AP}| = |\mathbf{A}| \cdot |\mathbf{P}| \neq 0 \Longrightarrow \mathbf{B}$  is invertible  $\Longrightarrow$  the columns  $\mathbf{b_i}$ ,  $1 \leq i \leq n$  are linearly independent. Being n independent vectors in  $\mathbb{R}^n$ , they span  $\mathbb{R}^n$ , i.e.,  $\{\mathbf{b_i}\}$ ,  $1 \leq i \leq n$  is also a basis of V for any invertible matrix  $\mathbf{P}$ .

②  $\forall \mathbf{x} \in \mathbb{R}^n$ , there exists a unique  $\mathbf{c} \in \mathbb{R}^n$  with  $\mathbf{x} = \mathbf{A}\mathbf{c} \xrightarrow{\mathbf{P} \text{ is invertible}} \mathbf{x} = \mathbf{A}\mathbf{c} = \mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{c} = \mathbf{B}\left(\mathbf{P}^{-1}\mathbf{c}\right) \Longrightarrow \{\mathbf{b_i}\}, \ 1 \leq i \leq n \text{ is also a basis of } V \text{ for any invertible matrix } \mathbf{P}.$ 

3. (a) Set  $\mathbf{y} = (y_1, y_2, \dots, y_n)$  as the coordinate of  $\mathbf{v}$  under  $\{\lambda_i \mathbf{a_i}\}, 1 \leq i \leq n$ .

$$\mathbf{v} = \sum_{i=1}^{n} y_i(\lambda_i \mathbf{a_i}) = \sum_{i=1}^{n} x_i \mathbf{a_i} \Longrightarrow y_i = \frac{x_i}{\lambda_i}$$

Therefore, the coordinate of **v** under  $\{\lambda_i \mathbf{a_i}\}$ ,  $1 \leq i \leq n$  is  $\mathbf{y} = \left(\frac{x_1}{\lambda_1}, \frac{x_2}{\lambda_2}, \cdots, \frac{x_n}{\lambda_n}\right)$ .

- (b) It is clear that  $\mathbf{x} = (1, 1, \dots, 1)^{\top}$  and  $\mathbf{y} = \left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}\right)$ .
- 4. (a) It is clear that the coordinate of **v** under basis  $\{\mathbf{c}, \mathbf{b}\}$  is (-x, y). And the coordinate is unique because  $\{\mathbf{c}, \mathbf{b}\}$  is a basis of  $\mathbb{R}^2$ .
  - (b)  $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c} = (x' z', y') = (x, y) \Longrightarrow (x', y', z') = (x + t, y, t), \forall t \in \mathbb{R}.$

$$\min \|(x', y', z')\|_1 = \min |x'| + |y'| + |z'| = \min |x'| + |z'| = \min |x + t| + |t|$$

$$\begin{cases} |x + t| + |t| \ge |x + t - t| = |x| \\ |x + t| + |t| = |x| \text{ when } t \in [-x, 0] \text{ and } x \ge 0 \text{ or } t \in [0, -x] \text{ and } x < 0 \end{cases}$$

In conclusion,  $\min \|(x', y', z')\|_1 = |x| + |y|$ .

### Exercise 8: Rank of matrices

Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times p}$ .

- 1. Please show that
  - (a)  $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{\top});$
  - (b)  $\mathbf{rank}(\mathbf{AB}) \leq \mathbf{rank}(\mathbf{A});$  (please give an example when the equality holds)
- 2. The *column space* of  $\mathbf{A}$  is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The  $null\ space\ of\ \mathbf{A}$  is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that

- (a)  $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A}));$
- (b)  $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$
- 3. Given that

$$rank(AB) = rank(B) - dim(C(B) \cap N(A)).$$
 (1)

Please show the results in 1.(b) by Eq. (1).

### Solution 8: Rank of matrices

1. (a) The column rank of a matrix equals its row rank  $\Longrightarrow \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$ . For  $\mathbf{x} \in \mathbb{R}^n$ ,

$$\begin{cases} (\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0}) \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) \supset \mathcal{N}(\mathbf{A}) \\ (\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \|\mathbf{A}\mathbf{x}\|_{2}^{2} = \mathbf{x}^{\mathbf{T}}\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{A}\mathbf{x} = \mathbf{0}) \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) \subset \mathcal{N}(\mathbf{A}) \\ \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = \mathcal{N}(\mathbf{A}) \\ \Longrightarrow \mathbf{rank}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = n - \dim \mathbf{A}^{\mathbf{T}}\mathbf{A} = n - \dim \mathbf{A} = \mathbf{rank}(\mathbf{A}) \end{cases}$$

In the same way,  $rank(AA^T) = rank(A)$ .

In conclusion,  $rank(\mathbf{A}) = rank(\mathbf{A}^{\top}) = rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{\top})$ .

(b)  $\operatorname{Im}(\mathbf{AB}) = \mathbf{A}(\operatorname{Im}(\mathbf{B})) \subset \operatorname{Im}(\mathbf{A}) \Longrightarrow \operatorname{rank}(\mathbf{AB}) = \dim(\operatorname{Im}(\mathbf{AB})) \leq \dim(\operatorname{Im}(\mathbf{A})) = \operatorname{rank}(\mathbf{A}).$ E.g.:

Let  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $\mathbf{B} = I_n$ . Then  $\mathbf{AB} = \mathbf{A} \Longrightarrow \mathbf{rank}(\mathbf{AB}) = \mathbf{rank}(\mathbf{A})$ .

- 2. (a) By definition,  $\operatorname{rank}(\mathbf{A})$  is the maximal number of linearly independent columns of  $\mathbf{A}$  and the dimension of the span of a finite set of vectors equals the maximal size of a linearly independent subset of that set. Therefore,  $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A}))$ .
  - (b) Let  $\{\mathbf{v_1}, \dots, \mathbf{v_k}\}$  be a basis of  $\mathcal{N}(\mathbf{A})$ , where  $k = \dim(\mathcal{N}(\mathbf{A}))$ . We can extend this basis to a basis of  $\mathbb{R}^n$ , i.e., there exist vectors  $\{\mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$  such that  $\{\mathbf{v_1}, \dots, \mathbf{v_k}, \mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$  is a basis of  $\mathbb{R}^n$ .

We claim that  $\{Aw_1, \cdots, Aw_{n-k}\}$  is a basis of C(A).

Spanning:  $\forall \mathbf{y} \in \mathcal{C}(\mathbf{A})$ , there exists  $\mathbf{x} \in \mathbb{R}^n$  such that  $\mathbf{y} = \mathbf{A}\mathbf{x}$ .

Since  $\{\mathbf{v_1}, \dots, \mathbf{v_k}, \mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$  is a basis of  $\mathbb{R}^n$ , there exist scalars  $\{\alpha_i\}_{i=1}^k$  and  $\{\beta_j\}_{j=1}^{n-k}$  such that

$$\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{v_i} + \sum_{j=1}^{n-k} \beta_j \mathbf{w_j}$$

$$\implies \mathbf{y} = \mathbf{A}\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{A} \mathbf{v_i} + \sum_{j=1}^{n-k} \beta_j \mathbf{A} \mathbf{w_j} = \sum_{j=1}^{n-k} \beta_j \mathbf{A} \mathbf{w_j}$$

 $\Longrightarrow y \ {\rm is \ a \ linear \ combination \ of \ } \{Aw_1, \cdots, Aw_{n-k}\}.$ 

Linear independence: Suppose  $\sum_{j=1}^{n-k} \gamma_j \mathbf{A} \mathbf{w_j} = \mathbf{0}$ . Then  $\mathbf{A}(\sum_{j=1}^{n-k} \gamma_j \mathbf{w_j}) = \mathbf{0}$ 

 $\sum_{j=1}^{n-k} \gamma_j \mathbf{w_j} \in \mathcal{N}(\mathbf{A}). \text{ Since } \{\mathbf{v_1}, \cdots, \mathbf{v_k}, \mathbf{w_1}, \cdots, \mathbf{w_{n-k}}\} \text{ is a basis of } \mathbb{R}^n, \text{ the vectors } \{\mathbf{w_1}, \cdots, \mathbf{w_{n-k}}\} \text{ are linearly independent and none of them can be expressed as a linear combination of } \{\mathbf{v_1}, \cdots, \mathbf{v_k}\}. \text{ Therefore, } \sum_{j=1}^{n-k} \gamma_j \mathbf{w_j} = \mathbf{0} \Longrightarrow \gamma_j = 0 \text{ for all } j.$ 

In conclusion, 
$$\{\mathbf{A}\mathbf{w_1}, \cdots, \mathbf{A}\mathbf{w_{n-k}}\}\$$
is a basis of  $\mathcal{C}(\mathbf{A}) \Longrightarrow \dim(\mathcal{C}(\mathbf{A})) = n-k = n-\dim(\mathcal{N}(\mathbf{A})) \Longrightarrow \mathbf{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$ 

3.

$$\begin{aligned} \mathbf{rank}(\mathbf{AB}) & \xrightarrow{1.(a)} \mathbf{rank}(\mathbf{B^TA^T}) & \xrightarrow{1.(b)} \mathbf{rank}(\mathbf{A^T}) - \dim(\mathcal{C}(\mathbf{A^T}) \cap \mathcal{N}(\mathbf{B^T})) \\ & \leq \mathbf{rank}(\mathbf{A^T}) & \xrightarrow{1.(a)} \mathbf{rank}(\mathbf{A}) \end{aligned}$$

## Exercise 9: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix  $\mathbf{A} \in S^n$  are denoted by  $\lambda_{\max}(\mathbf{A})$  and  $\lambda_{\min}(\mathbf{A})$ , respectively. Please show that

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

- 2. (**Optional**) Suppose  $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{m \times n}$  with maximum singular value  $\max \sigma_{\max}(\mathbf{B})$ .
  - (a) Let  $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$ . Please show that

$$\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.$$

(b) Please show that

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

## Solution 9: Properties of Eigenvalues and Singular Values

1. Define Rayleigh quotient:

$$R(x) = \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$$

Note that  $R(\alpha \mathbf{x}) = R(\mathbf{x})$  for any nonzero scalar  $\alpha$ . Hence

$$\sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} R(x) = \max_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^\top \mathbf{A} \mathbf{x}, \qquad \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} R(x) = \min_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^\top \mathbf{A} \mathbf{x}$$

Because  $\mathbf{x} \mapsto \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$  is continuous and the unit sphere is compact, both extrema are attained.

By the spectral theorem, there exists an orthogonal matrix  $\mathbf{Q}$  and a diagonal matrix  $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$  with real eigenvalues  $\lambda_i$  such that  $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$ .

Without generality, order the eigenvalues so that  $\lambda_{\min} = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n = \lambda_{\max}$ . For any  $\mathbf{x} \in \mathbb{R}^n$ ,

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} \mathbf{x} := \mathbf{y}^{\top} \mathbf{\Lambda} \mathbf{y} = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}, \qquad \mathbf{x}^{\top} \mathbf{x} = (\mathbf{Q} \mathbf{y})^{\top} (\mathbf{Q} \mathbf{y}) = \mathbf{y}^{\top} \mathbf{y}$$

$$\Longrightarrow R(x) = \frac{\sum\limits_{i=1}^{n} \lambda_i y_i^2}{\sum\limits_{i=1}^{n} y_i^2} \in [\lambda_{\min}, \lambda_{\max}]$$

Let  $\mathbf{v}_{\text{max}}$  be a unit eigenvector of **A** associated with  $\lambda_{\text{max}}$ , then

$$R(\mathbf{v}_{\text{max}}) = \frac{\mathbf{v}_{\text{max}}^{\top} \mathbf{A} \mathbf{v}_{\text{max}}}{\mathbf{v}_{\text{max}}^{\top} \mathbf{v}_{\text{max}}} = \lambda_{\text{max}}.$$

Similarly, let  $\mathbf{v}_{\min}$  be a unit eigenvector associated with  $\lambda_{\min}$ , then  $R(\mathbf{v}_{\min}) = \lambda_{\min}$ . In conclusion,

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

2. (a) 
$$\|\mathbf{B}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{B}\mathbf{x}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} [(\mathbf{B}\mathbf{x})^\top \mathbf{B}\mathbf{x}]^{\frac{1}{2}} = \max_{\|\mathbf{x}\|_2 = 1} [\mathbf{x}^\top (\mathbf{B}^T \mathbf{B})\mathbf{x}]^{\frac{1}{2}}$$

Notice that  ${\bf B^TB}$  is symmetric and positive semi-definite. Without generality, let its eigenvalues be

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0.$$

and let their corresponding orthogonal normalized eigenvectors be  $\mathbf{v_1}, \dots, \mathbf{v_n} \in \mathbb{R}^n$ . Then for any  $\mathbf{x} \in \mathbb{R}^n$  with  $\|\mathbf{x}\|_2 = 1$ , there exist scalars  $\alpha_1, \dots, \alpha_n$  such that

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{v_i}, \qquad \sum_{i=1}^{n} \alpha_i^2 = 1$$

$$\Longrightarrow \mathbf{x}^{\top}(\mathbf{B}^{\mathbf{T}}\mathbf{B})\mathbf{x} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \leq \lambda_{1} \sum_{i=1}^{n} \alpha_{i}^{2} = \lambda_{1}$$

Besides, let  $\mathbf{x} = \mathbf{v_1}$ , then  $\mathbf{x}^{\top}(\mathbf{B^TB})\mathbf{x} = \lambda_1$ . In conclusion,  $\|\mathbf{B}\|_2 = \sqrt{\lambda_1} = \sigma_{\max}(\mathbf{B})$ .

(b) By Cauchy-Schwarz inequality,

$$\mathbf{x}^{\top}\mathbf{B}\mathbf{y} \leq \|\mathbf{x}\|_2 \|\mathbf{B}\mathbf{y}\|_2 \leq \|\mathbf{x}\|_2 \|\mathbf{B}\|_2 \|\mathbf{y}\|_2 = \|\mathbf{x}\|_2 \sigma_{\max}(\mathbf{B}) \|\mathbf{y}\|_2$$

Let  $\mathbf{x} = \mathbf{u_1}$  and  $\mathbf{y} = \mathbf{v_1}$ , where  $\mathbf{u_1}$  and  $\mathbf{v_1}$  are the left and right singular vectors of  $\mathbf{B}$  associated with  $\sigma_{\max}(\mathbf{B})$ . Then

$$\mathbf{x}^{\top}\mathbf{B}\mathbf{y} = \mathbf{u_1}^{\top}\mathbf{B}\mathbf{v_1} = \sigma_{\max}(\mathbf{B}) = \|\mathbf{u_1}\|_2\sigma_{\max}(\mathbf{B})\|\mathbf{v_1}\|_2$$

In conclusion,

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

## Exercise 10: Matrix SVD Decomposition and Pseudoinverse

1. For any real matrix  $\mathbf{A} \in \mathbb{R}^{n \times m}$ , the **Moore-Penrose generalized inverse** (or pseudoinverse) of  $\mathbf{A}$ , denoted by  $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$ , is a matrix that satisfies the following four conditions:

(a)  $\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$  (Consistency condition)

(b)  $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$  (Reflexivity condition)

(c)  $(\mathbf{A}\mathbf{A}^+)^{\top} = \mathbf{A}\mathbf{A}^+$  (Symmetry condition 1)

 $(d) (\mathbf{A}^{+}\mathbf{A})^{\top} = \mathbf{A}^{+}\mathbf{A}$  (Symmetry condition 2)

Suppose that the matrix **A** can be decomposed via Singular Value Decomposition (SVD) as  $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ , Please show that  $\mathbf{A}^{+} = \mathbf{V} \mathbf{\Sigma}^{+} \mathbf{U}^{\top}$ , where  $\mathbf{\Sigma}^{+} \in \mathbb{R}^{m \times n}$  is defined by:

$$\Sigma_{ij}^{+} = \begin{cases} \frac{1}{\Sigma_{ii}} & \text{if } i = j \text{ and } \Sigma_{ii} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

- 2. (Optional) Please show that  $\mathbf{A}^+$  is unique for any matrix  $\mathbf{A} \in \mathbb{R}^{n \times m}$ .
- 3. Consider the linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  where  $\mathbf{A} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{x} \in \mathbb{R}^m$ , and  $\mathbf{b} \in \mathbb{R}^n$ . Please show that if the system has no solution (i.e.,  $\mathbf{b}$  is not in the column space of  $\mathbf{A}$ ), the least squares solution to the system

$$\arg\min_{\mathbf{x}\in\mathbb{R}^m} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

is given by  $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$ , where  $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$  is the Moore-Penrose generalized inverse of matrix  $\mathbf{A}$  defined above.

(**Hint**: For any orthogonal matrix  $\mathbf{U} \in \mathbb{R}^{n \times n}$  and vector  $\mathbf{x} \in \mathbb{R}^n$ , then  $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ )

### Solution 10: Matrix SVD Decomposition and Pseudoinverse

1. (a) 
$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{+}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{+}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{A}$$

(b)

$$\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = \mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^\top\mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{V}\boldsymbol{\Sigma}^+\boldsymbol{\Sigma}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{A}^+$$

(c) 
$$(\mathbf{A}\mathbf{A}^+)^\top = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^\top\mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top)^\top = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{A}\mathbf{A}^+$$

(d) 
$$(\mathbf{A}^{+}\mathbf{A})^{\top} = (\mathbf{V}\boldsymbol{\Sigma}^{+}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top} = \mathbf{V}\boldsymbol{\Sigma}^{+}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{A}^{+}\mathbf{A}$$

2. Assume that there exist two pseudoinverses  $\mathbf{B}$  and  $\mathbf{C}$  of  $\mathbf{A}$ . Set  $\mathbf{X} = \mathbf{B} - \mathbf{C}$ . Given that  $\mathbf{B}$  and  $\mathbf{C}$  satisfy the four Moore-Penrose conditions:

$$\mathbf{A}\mathbf{B}\mathbf{A} = \mathbf{A}, \qquad \mathbf{B}\mathbf{A}\mathbf{B} = \mathbf{B}, \qquad (\mathbf{A}\mathbf{B})^{\top} = \mathbf{A}\mathbf{B}, \qquad (\mathbf{B}\mathbf{A})^{\top} = \mathbf{B}\mathbf{A}$$

$$\mathbf{A}\mathbf{C}\mathbf{A} = \mathbf{A}, \qquad \mathbf{C}\mathbf{A}\mathbf{C} = \mathbf{C}, \qquad (\mathbf{A}\mathbf{C})^{\top} = \mathbf{A}\mathbf{C}, \qquad (\mathbf{C}\mathbf{A})^{\top} = \mathbf{C}\mathbf{A}$$

Then

$$\begin{aligned} \mathbf{A}\mathbf{X}\mathbf{A} &= \mathbf{A}\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{C}\mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{0} \\ \mathbf{A}\mathbf{X} &= \mathbf{A}\mathbf{B} - \mathbf{A}\mathbf{C} = (\mathbf{A}\mathbf{B})^\top - (\mathbf{A}\mathbf{C})^\top = (\mathbf{A}\mathbf{B} - \mathbf{A}\mathbf{C})^\top = (\mathbf{A}\mathbf{X})^\top \\ \mathbf{X}\mathbf{A} &= \mathbf{B}\mathbf{A} - \mathbf{C}\mathbf{A} = (\mathbf{B}\mathbf{A})^\top - (\mathbf{C}\mathbf{A})^\top = (\mathbf{B}\mathbf{A} - \mathbf{C}\mathbf{A})^\top = (\mathbf{X}\mathbf{A})^\top \\ \Longrightarrow \begin{cases} \|\mathbf{A}\mathbf{X}\|_2^2 = \operatorname{tr}\left((\mathbf{A}\mathbf{X})^\top \mathbf{A}\mathbf{X}\right) = \operatorname{tr}\left(\mathbf{A}\mathbf{X}\mathbf{A}\mathbf{X}\right) = \operatorname{tr}\left((\mathbf{A}\mathbf{X}\mathbf{A})\mathbf{X}\right) = \operatorname{tr}\left(\mathbf{0}\mathbf{X}\right) = 0 \\ \|\mathbf{X}\mathbf{A}\|_2^2 = \operatorname{tr}\left((\mathbf{X}\mathbf{A})^\top \mathbf{X}\mathbf{A}\right) = \operatorname{tr}\left(\mathbf{X}\mathbf{A}\mathbf{X}\mathbf{A}\right) = \operatorname{tr}\left(\mathbf{X}(\mathbf{A}\mathbf{X}\mathbf{A})\right) = \operatorname{tr}\left(\mathbf{X}\mathbf{0}\right) = 0 \\ \Longrightarrow \begin{cases} \mathbf{A}\mathbf{X} = \mathbf{0} \\ \mathbf{X}\mathbf{A} = \mathbf{0} \end{cases} \end{aligned}$$

$$\Rightarrow X = B - C = BAB - CAC$$

$$= BAB - CAB + CAB - CAC$$

$$= (B - C)AB + CA(B - C)$$

$$= XAB + CAX = 0B + C0 = 0$$

$$\Rightarrow B = C$$

In conclusion, the pseudoinverse  $A^+$  is unique.

3. Let  $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$  be the SVD of  $\mathbf{A}$ , where  $\mathbf{U} \in \mathbb{R}^{n \times n}$  and  $\mathbf{V} \in \mathbb{R}^{m \times m}$  are orthogonal matrices, and  $\mathbf{\Sigma} \in \mathbb{R}^{n \times m}$  is a diagonal matrix with singular values  $\sigma_1, \sigma_2, \ldots, \sigma_r$  on the diagonal (where  $r = \text{rank}(\mathbf{A})$ ).

Then

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \|\mathbf{U}^\top (\mathbf{A}\mathbf{x} - \mathbf{b})\|_2^2 = \|\mathbf{\Sigma}\mathbf{V}^\top \mathbf{x} - \mathbf{U}^\top \mathbf{b}\|_2^2$$

Let  $\mathbf{y} = \mathbf{V}^{\top} \mathbf{x}$  and  $\mathbf{c} = \mathbf{U}^{\top} \mathbf{b}$ . Then the problem reduces to

$$\min_{\mathbf{y} \in \mathbb{R}^m} \|\mathbf{\Sigma} \mathbf{y} - \mathbf{c}\|_2^2 = \min_{\mathbf{y} \in \mathbb{R}^m} \sum_{i=1}^r (\sigma_i y_i - c_i)^2 + \sum_{i=r+1}^n c_i^2$$

Note that the second term  $\sum_{i=r+1}^{n} c_i^2$  is constant with respect to **y**. Therefore, we only need to minimize the first term, which is minimized when  $y_i = \frac{c_i}{\sigma_i}$  for i = 1, 2, ..., r and  $y_i$  can be any value for i = r + 1, r + 2, ..., m.

Hence, the set of least squares minimizers is

$$\mathbf{x} = \mathbf{V}\mathbf{y}, \quad \mathbf{y} = (\frac{c_1}{\sigma_1}, \frac{c_2}{\sigma_2}, \dots, \frac{c_r}{\sigma_r}, y_{r+1}, \dots, y_m)^\top, y_{r+1}, \dots, y_m \in \mathbb{R}$$

Let  $y_i = 0$ ,  $i = r + 1, r + 2, \dots, m$ . Then the least-norm solution is

$$\mathbf{x} = \mathbf{V}(\frac{c_1}{\sigma_1}, \frac{c_2}{\sigma_2}, \dots, \frac{c_r}{\sigma_r}, 0, \dots, 0)^\top = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{b} = \mathbf{A}^+ \mathbf{b}$$