Predictive capabilities of statistical learning methods for lung nodule malignancy classification using diagnostic image features

Matthew C. Hancock, Jerry F. Magnan

Dept. of Mathematics, Florida State University

SPIE Medical Imaging Symposium 2017

A Modular Approach to Computer-Aided Diagnosis (CAD)

Region of interest

Segmentation

Features

Diagnosis

A Modular Approach to Computer-Aided Diagnosis (CAD)

The LIDC Dataset

Feature	Numerical	Interpretation
Volume	7869.4	_
Diameter	32.2	_
Subtlety	5	Obvious
Internal Structure	1	Soft Tissue
Calcification	6	Absent
Sphericity	3	Ovoid
Margin	3	Medium
Lobulation	3	Medium Lobulation
Spiculation	4	Medium-High Spiculation
Texture	5	Solid Texture
Malignancy	5	High Malignancy

Data for Approximating "Features → Diagnosis" Map

Feature	Numerical	$(X^{(i)}Y^{(i)})$ $i = 1,, N = 2817$
Volume Diameter Subtlety Internal Structure Calcification Sphericity Margin Lobulation Spiculation Texture Malignancy	7869.4 32.2 5 1 6 3 3 3 4 5	1 if malignancy > 3 0 if malignancy < 3

Questions Addressed

Accurate models for classification

Upper bounds on classification accuracy

Important features for accurate classification

Process to Determine Model Capabilities

Degenerate Groups and Maximum Accuracy

Example "degenerate group" of distinct annotations

Behavior of Ideal Classifier on Test Data

- 1. Classifies all non-degenerate examples correctly
- 2. Decides majority class for degenerate groups with members only in testing set
- 3. Decision restricted by training data for degenerate groups with members in training and test

Each randomly chosen test dataset has corresponding upper bound on accuracy due to degeneracy

Results

(Scale on Left)

(Scale on Right)

More Results

	Accuracy $\left(t = \frac{1}{2}\right)$	TPR $\left(t = \frac{1}{2}\right)$	AUC
Linear classifier,	$83.23 \ (\pm 1.252)\%$	$0.8013 \ (\pm 0.0216)$	$0.9164 (\pm 0.0087)$
diameter and volume fea-			
tures excluded			
Linear classifier,	$84.64 (\pm 1.184)\%$	$0.7906 \ (\pm 0.0218)$	$0.9302 \ (\pm 0.0079)$
diameter and volume fea-			
tures included			
Nonlinear classifier,	$85.74 (\pm 1.141)\%$	$0.8430 \ (\pm 0.0239)$	$0.9322 \ (\pm 0.0123)$
diameter and volume fea-			
tures excluded			
Nonlinear classifier,	$88.08 \ (\pm 1.109)\%$	$0.8461 \ (\pm 0.0218)$	$0.9492 \ (\pm 0.0070)$
diameter and volume fea-			
tures included			

Process to Determine Feature Importance

Brute force search: For each possible feature subset*, repeat first experimental process with this subset $(X^{(i)}Y^{(i)})_{i=1,...,N=2817}$ random split Repeat 1,000x **≈**25% ≈75% *(excluding volume and diameter features) Fit model parameters Evaluate models (Logistic Regression and Random Forest) www.math.fsu.edu

Results from Feature Importance Search

More Results from Feature Importance Search

	Single-Feature Accuracy	Percent Feature Significance	Geometric Mean	RF Feature-Importance
Best	(77.12%) Spiculation	(100.00%) Subtlety	(87.12%) Spiculation	(0.2173) Subtlety
	(75.56%) Lobulation	(99.21%) Calcification	(86.24%) Lobulation	(0.2147) Spiculation
	(70.90%) Margin	(98.43%) Spiculation	(82.04%) Subtlety	(0.1818) Lobulation
	(67.30%) Subtlety	(98.43%) Lobulation	(75.72%) Calcification	(0.1737) Calcification
	(63.01%) Texture	(83.46%) Texture	(75.46%) Margin	(0.1116) Margin
	(61.27%) Sphericity	(80.31%) Margin	(72.52%) Texture	(0.0529) Sphericity
	(59.26%) Internal Structure	, 1	(66.26%) Sphericity	(0.0437) Texture
Worst	(57.79%) Calcification	(62.20%) Internal Structure	(60.71%) Internal Structure	(0.0044) Internalstructure

Conclusions and Next Steps

 Last component of modular CAD approach is feasible (average AUC = 0.9492)

- Certain features more important for accurate algorithmic diagnosis (spiculation, lobulation, subtlety, calcification)
- Future work: 1. Robust lung nodule segmentation
 - 2. Medical image feature quantification

