

Escola de Engenharia/FCI

Linguagem de Programação Algoritmos e Programação I

Aula 4 – A estrutura da decisão/Revisão

Prof. Ubirajara Carnevale de Moraes Profa. Melanie Lerner Grinkraut

Prova 1 (P1): 27/09 – 19h20 – nesta sala

- Individual
- Escrita
- Sem consulta
- Fluxograma e codificação
- Estudar exercícios dados em sala e no LAB

https://cdn1.iconfinder.com/data/icons/customer-feedback-honey-vol-1/64/FILL UP FORM-512.png

- Preencher os campos do Template (Capa, Sumário, Revisão de Literatura e Referências;
- Pesquisar os conceitos (fórmulas) e o histórico relacionado ao tema escolhido.

Capa Inicial

- 1) Relacionar o <u>nome completo</u> dos alunos e seus TIAs;
- 2) Colocar o título, <u>incluindo o tema</u> ao final;
- 3) Posicionar à direita, em um espaço reduzido, a finalidade do relatório;
- 4) Inserir o nome completo do professor (Melanie Lerner Grinkraut);
- 5) Finalizar a capa com o local e data.

NOME COMPLETO DO AUTOR - TIA NOME COMPLETO DO AUTOR - TIA NOME COMPLETO DO AUTOR - TIA NOME COMPLETO DO AUTOR - TIA

RELATÓRIO SOBRE O PROJETO DE LINGUAGEM DE PROGRAMAÇÃO "tema do

Relatório sobre o Projeto desenvolvido na componente curricular Linguagem de Programação e apresentado ao curso de Engenharia NANGARA, da Escola de Engenharia (turma X) da Universidade Prashitariana Markenzia

PROF. XXXXXXXXXXXXXX

São Paulo X° sem/2021

<u>Sumário</u>

- 1) O template já traz os itens que deverão estar presentes no sumário (índice do projeto): Introdução, revisão de literatura, descrição das atividades realizadas, cronograma, resultados, discussão, conclusão, referências;
- Caso haja subdivisão do item 2, a numeração das subdivisões seguirá o modelo indicado no template. Se acontecer em outro item, adotar o mesmo critério;
- 3) Apêndice traz material do próprio autor, enquanto o Anexo traz materiais de terceiros (opcional).

SUMÁRIO

1	INTRODUÇÃO
1.1	SITUAÇÃO-PROBLEMA
1.2	OBJETIVOS
1.3	JUSTIFICATIVA4
2	REVISÃO DA LITERATURA5
2.1	TÍTULO DA SEÇÃO SECUNDÁRIA5
2.1.1	Título da seção terciária
2.1.2	Título da seção terciária
2.1.2.1	Título da seção quaternária
2.1.2.1.3	Título da seção quinária
2.1.2.1.2	Título da seção ovinária
2.1.2.2	Título da seção quaternária
2.2	TÍTULO DA SEÇÃO SECUNDÁRIA
3	DESCRIÇÃO DAS ATIVIDADES REALIZADAS
4	CRONOGRAMA DE ATIVIDADES 8
5	RESULTADOS OBTIDOS9
6	DISCUSSÃO
7	CONCLUSÃO
	REFERÊNCIAS 9
	APËNDICE A – Exemplo de apêndice
	ANEXO A - Exemplo de tabela

Revisão da Literatura

- Pesquise e redija com suas palavras neste item, os fundamentos teóricos, conceituais e históricos referentes ao tema escolhido;
- Para cada livro, revista, site pesquisados, registrar a fonte (referências bibliográficas ou eletrônicas). As fontes serão inseridas no item "Referências" e sempre serão indicadas no seu texto (vide o slide "Como fazer uma referência").

2 REVISÃO DA LITERATURA

Esta seção deve contemplar os fundamentos teóricos, históricos e empíricos (pesquisas correlatas) que sustentarão os resultados encontrados.

<u>Analise</u> pesquisas correlatas à que fará, de modo a evidenciar o estado do conhecimento atual sobre o seu tema de pesquisa.

Apresente e analise os resultados (dados) de referências científicas dos últimos três anos.

Na conclusão, correlacione a pesquisa que fará com as pesquisas analisadas, de maneira a evidenciar a sua contribuição em relação ao estado do conhecimento atual.

2.1 TÍTULO SEÇÃO SECUNDÁRIA

Se for organizar o texto em seções, inclua, pelo menos, duas seções terciárias.

Nesse caso, deve ser redigido um texto apresentando o conteúdo relacionado ao título da seção e o que será tratado nas seções terciárias.

As seções terciárias devem ser incluídas no Sumário.

2.1.1 Seção terciária

Observe a seguinte diagramação: recuo do início do parágrafo 1,25 (1 TAB), texto justificado, fonte 12, espaço 1,5 entre as linhas.

2.1.2 Secão terciária

Se for organizar o texto em seções, inclua, pelo menos, duas seções quaternárias.

Nesse caso, deve ser redigido um texto apresentando o conteúdo relacionado ao título da seção e o que será tratado nas seções quaternárias. As seções quaternárias devem ser incluídas no Sumário.

2.1.2.1 Seção quaternária

Se for organizar o texto em seções, inclua, pelo menos, duas seções quinárias.

Assim, para a entrega da Fase 1 do Projeto:

- Capa
- Sumário
- Revisão de Literatura
- Referência (fontes pesquisadas)

<u>Exercícios de Revisão – Estrututura</u> Condicional

 $https://img.freepik.com/vetores-premium/treine-seu-cerebro-cerebro-cartoon-ilustracao-plana-divertido-personagem_92289-800.jpg?w=740.pdf.$

Biblioteca/módulo math

math.função	Significado
atan(x)	Arco tangente, resultado em radianos
cos(x)	Cosseno, x em radianos
е	A constante e (Número de Euler)
exp(x)	e**x ou seja, função <u>e^X</u>
factorial(x)	Fatorial de x de tipo <u>int</u> , resultado <u>int</u>
fabs(x)	Valor absoluto de x , ou seja, x
log(x, base)	Logaritmo de x na base. Sem base, log na base e
log10()	Logaritmo na base 10 (decimal)
log2()	Logaritmo na base 2
pi	O número pi
pow (b,ex)	Potenciação: b=base, ez=expoente ou seja, (bex)
radians(x)	Converte x de graus para radianos degrees (x), o inverso
sin(x)	Seno, x em radianos
sgrt()	Raiz quadrada
tan(x)	Tangente, x em radianos

Biblioteca/módulo math

math.função	Significado	
atan(x)	Arco tangente, resultado em radianos	
cos(x)	Cosseno, x em radianos	
e	A constante e (Número de Euler)	
exp(x)	e**x ou seja, função <u>e^X</u>	
factorial(x)	Fatorial de x de tipo <u>int</u> , resultado <u>int</u>	
fabs(x)	Valor absoluto de x , ou seja, x	
log(x, base)	Logaritmo de x na base. Sem base, log na base e	
log10()	Logaritmo na base 10 (decimal)	
log2()	Logaritmo na base 2	
pi	O número pi	
pow (b,ex)	Potenciação: b=base, ez=expoente ou seja, (b ^{ex})	
radians(x)	Converte x de graus para radianos degrees (x), o inverso	
sin(x)	Seno, x em radianos	
sqrt()	Raiz quadrada	
tan(x)	Tangente, x em radianos	

Comando if sozinho (não tem else...)

Comando if com else

Comando if... elif... else

Lembre-se dos <u>operadores do comando</u> <u>if</u>:

Relacionais

Operador	Comparação
Opez	Igual
==	Diferente
!=	Menor
<	
>	Maior
	Menor Igual
<=	Maior Igual
>=	

Lógicos

and

OR

NOT

Qual comando?

•
$$x < 2$$
 \rightarrow $y = \sqrt{|x|}$

•
$$x = 2$$
 \rightarrow $y = 0$

•
$$x > 2$$
 \rightarrow $y = \log_{10} x$

Para calcular, verificar primeiro a condição de existência da função

Dado um valor de x, elaborar um programa para calcular e exibir o valor da função y abaixo (se existir).

$$y = \frac{x}{x^2 - 4} + \sqrt{\frac{x^3 - 2}{5}} + \frac{1}{x^2}$$

Quais são as restrições?

Dado um valor de x, elaborar um programa para calcular e exibir o valor da função y abaixo (se existir).

$$y = \frac{x}{x^2 - 4} + \sqrt{\frac{x^3 - 2}{5}} + \frac{1}{x^2}$$

Outra versão:

Dado um valor de x, elaborar um programa para calcular e exibir o valor da função y abaixo (se existir).

$$y = \frac{x}{x^2 - 4} + \sqrt{\frac{x^3 - 2}{5}} + \frac{1}{x^2}$$

Outra versão:

if x!=0 and x!=-2 and x!=2: #Pode calcular !!

$$y = \frac{x^2 + 4}{x} + \ln(x-1) + \sqrt{x+3}$$

Quais são as restrições?

$$y = x^2 + 4 + \ln(x-1) + x+3$$

1. Denominador

Quais são as restrições?

$$y = x^2 + 4 + \ln(x-1) + \sqrt{x+3}$$

- 1. Denominador
- 2. Logaritmo

https://www.significados.com.br/foto/image.png

https://blog.professorferretto.com.br/wp-content/uploads/2018/07/T1-definicao-de-um-logaritmo.png

Quais são as restrições?

$$y = \frac{x^2 + 4}{x} + \ln(x-1) + \sqrt{x+3}$$

- 1. Denominador
- 2. Logaritmo
- 3. Raiz

Radiciação

$$\sqrt{-1} \not\exists em \mathbb{R}$$

$$y = \frac{x^2 + 4}{x} + \ln(x-1) + \sqrt{x+3}$$

$$y = x^2 + 4 + \ln(x-1) + \sqrt{x+3}$$

$$y = x^2 + 4 + \ln(x-1) + \sqrt{x+3}$$

Treinando com if...elif...else

Elaborar um programa para calcular a **média aritmética de três notas**. Após calcular, exibir o resultado.

A situação do aluno será exibida da seguinte forma:

- Se média>= 7 = aluno "Aprovado";
- Se média entre 5 e 7 (5<=M<7) => aluno "Exame";
- Se média entre 3 e 5 (3<=M<5) => aluno "Recuperação";
- Se média menor do que 3 (m<3) => aluno "Reprovado".

Lembre-se de usar if com elif e else !!!

Verifique com atenção as condições

$$\bullet \ x < 0 \qquad \to \qquad y = 5x^2 + 3x - 1$$

•
$$x = 0$$
 \rightarrow $y = 0$

• x > 0 \rightarrow não existe função definida

•
$$x < -10$$
 $\rightarrow y = \ln|x| + 3$

•
$$-10 \le x \le 10 \rightarrow y = x^5$$

•
$$x > 10$$
 $\rightarrow y = \sqrt{x-9}$

Sua vez de treinar a codificação...

https://www.dheka.com.br/site/wp-content/uploads/2019/09/ProcessThinking-Inovacao.jpg

Exercícios para treinar

COONDEMANAS DE UM PONTO (X,Y) NO PLANS UNTESTANO, EUBORAN UM PROGRAMA PARA VERIFICAN EN QUAL QUANTANTE O PONTO ESTA LOCALIZADO OU SE ESTA NA ORIGEM. SADE-SE

Para calcular, verificar primeiro a condição de existência da função

5.25 Dado os valores de x e y, elaborar um programa C++ para calcular e exibir o valor da função z abaixo (se a mesma existir).

$$z = \frac{1}{2 - x} + \sqrt{|x|} - \log_{10}(y - 5)$$

Quais são as restrições?

Verifique com atenção as condições

5.24 Dado um valor qualquer x, elaborar um programa C++ para calcular e exibir o valor da função y, de acordo com os intervalos a seguir.

$$\bullet \ x < -1 \qquad \to \quad y = x^2 + 1$$

•
$$x = -1$$
 \rightarrow $y = 0$

−1 < x < 1 → não existe função definida

•
$$x = 1$$
 $\rightarrow y = 0$

•
$$x > 1$$
 $\rightarrow y = x^2 + 1$

Utilizar apenas duas estruturas condicionais na resolução deste exercício.

Verifique com atenção as condições

5.23 Dado um valor qualquer x, elaborar um programa C++ para calcular e exibir o valor da função y, de acordo com os intervalos a seguir.

•
$$x < -2$$
 \rightarrow $y = \sqrt{|x+1|}$

•
$$x = -2$$
 — não existe função definida

•
$$-2 < x < 2$$
 \rightarrow $y = 0$

•
$$x > 2$$
 $\rightarrow y = \sqrt{|1-x|}$

Utilizar apenas três estruturas condicionais na resolução deste exercício.

Universidade Presbiteriana Mackenzie Escola de Engenharia/FCI

Um ótimo feriado e fim de semana!!!