FUNDAÇÃO GETULIO VARGAS ESCOLA DE MATEMÁTICA APLICADA

CRISTHIAN GRUNDMANN

GEODESIC TRACING: VISUALIZAÇÃO DE CURVAS E SUPERFÍCIES ATRAVÉS DE GEODÉSICAS

CRISTHIAN GRUNDMANN

GEODESIC TRACING: VISUALIZAÇÃO DE CURVAS E SUPERFÍCIES ATRAVÉS DE GEODÉSICAS

Trabalho de conclusão de curso apresentada para a Escola de Matemática Aplicada (FGV/EMAp) como requisito para o grau de bacharel em Matemática Aplicada.

Área de estudo: curvas e superfícies.

Orientador: Asla Medeiros e Sá

Rio de Janeiro 2022

Lista de códigos

2.1	Exemplo de objetos	4
2.2	Gramática livre de contexto	6

1 Introdução

Desenhos de superfícies costumam ser feitos a partir de um ponto de vista do espaço ambiente 3D. Esse projeto implementa uma visualização de superfícies que não depende de um espaço ambiente.

A visualização pode ser comparada ao que um ser bidimensional interno à superfície observaria: simula-se raios de luz partindo da posição do ser, e os pontos iluminados são observados. Os raios de luz devem seguir caminhos em 'linha reta', que minimizam distância. Para uma superfície qualquer, esses caminhos são chamados de geodésicos, e são estudados na geometria diferencial. A visualização, chamada de geodesic tracing, obtém uma transformação de uma imagem original sobre a superfície.

A implementação feita nesse projeto é feita em três partes: compilador, método numérico e interface gráfica.

O compilador fornece uma maneira do usuário definir as superfícies e outros objetos. O usuário escreve um texto, seguindo algumas regras gramaticais, que então é processado. A teoria de compiladores é essencial para essa etapa, principalmente a análise léxica e a análise sintática (AHO, 1986). O compilador está descrito no capítulo 2.

O método numérico se refere à simulação dos raios de luz na superfície. Um raio de luz é determinado pela posição e direção inicial, que são as condições iniciais. Um sistema de equações diferenciais ordinárias(equação geodésica (PRESSLEY, 2012)) determina a curva que a luz traça. Uma solução aproximada da equação é calculada pelo método de Runge-Kutta de ordem 4 (BURDEN, 2001). O método está descrito no capítulo 3.

A interface gráfica é simples e é construída usando ImGui (CORNUT, s.d.), uma ferramenta de interface gráfica fácil de usar. A linguagem de programação escolhida para a implementação desse projeto é C++, e para desenhar a interface e os objetos, OpenGL é usado.

2 Compilador

O usuário se comunica com a interface através de um texto, chamado de programa, que contém os objetos de interesse. Por exemplo:

Código 2.1 – Exemplo de objetos

```
#circle and tangents
2
   param r : [/2, 1];
3
   param o : [0, 2pi];
   curve c(t) = r(cost, sint, 0), t : [0, 2pi];
4
   grid k : [0, 2pi, 8];
   define k2 = k + o;
6
7
   point p = ck2;
   vector v = c'k2 @ p;
10 | #function and surface
   #function f(x, y) = x^2+y^2;
11
   \#surface \ s(u,v) = (u,v,f(u,v)), \ u : [-1, 1], \ v : [-1, 1];
```

A linguagem permite comentários no estilo da linguagem Python, usando #.

O programa declara os seguintes objetos:

Objetos	Descrição					
r e o	o parâmetros que podem ser alterados na interface. Seus valores devem es					
	nos intervalos indicados					
С	uma curva parametrizada por t. O domínio da parametrização é o intervalo					
	indicado. A curva depende do parâmetro ${\tt r},$ que foi definido anteriormente.					
k uma grade de 8 pontos igualmente espaçados no intervalo indi						
	grade é tratada como uma constante, assim como um parâmetro. Se um					
	objeto desenhável depende de uma grade, uma instância é desenhada para					
	cada valor da grade. Um objeto pode depender de mais de uma grade.					
k2	uma constante, e não pode ser alterada na interface como os parâmetros.					
	Esse tipo de objeto pode ser usado para deixar o programa mais legível.					
р	o ponto da curva c de parâmetro t = k2. Esse objeto depende indiretamente					
	de k, então é instanciado 8 vezes.					
v	o vetor tangente da curva ${\tt c}$ no ponto ${\tt p}$ e desenhado a partir do mesmo ponto.					
	O vetor também depende indiretamente de k, então é desenhado 8 vezes.					

Os objetos **f** e **s** estão comentados, então não são considerados. Estão presentes apenas para o exemplo ter todos os tipos de objeto.

Os objetos desenháveis são pontos, vetores, curvas e superfícies. Pontos e vetores

podem ser usados como valores em outros objetos. Pontos representam suas posições e vetores seus deslocamentos. Curvas e superfícies podem ser usadas como funções, sem a restrição no domínio.

Há duas constantes pré-definidas: pi e e; e diversas funções pré-definidas: sin, cos, tan, exp, log, sqrt e id. A função id é a identidade é útil apenas no funcionamento interno do sistema.

Parâmetros e grades podem ser multidimensionais: param T : [0, 1], [0, 1];. Assim, o objeto T é uma tupla, e seus elementos podem ser obtidos com T_1 e T_2.

Há 4 operadores unários: + e - são os usuais. A operação *x representa xx, e /x é igual a 1/x. Para números reais, multiplicação com * e por justaposição são equivalentes. Porém, para tuplas, a*b representa o produto vetorial e ab representa o produto escalar. Assim, *x calcula o quadrado do módulo do vetor x.

2.1 Gramática formal

O programa deve seguir uma gramática formal, que especifica a sintaxe das declarações dos objetos e das expressões matemáticas. As expressões matemáticas podem seguir uma notação mais natural que as de várias linguagens de programação. Por exemplo, há multiplicação por justaposição: 3x = 3*x; e a aplicação de funções não exige parênteses: sin-x = sin(-x).

A gramática livre de contexto é definida pelo código 2.2 (AHO, 1986). A sintaxe das expressões matemáticas foi baseada na gramática da linguagem C (UNIVERSITY, s.d.).

Código 2.2 – Gramática livre de contexto

```
PROG
           = DECL PROG | ;
1
2
3
   DECL
           = "param"
                          id ":" INTS ";" ;
4
   DECL
           = "grid"
                          id ":" GRIDS ";" ;
5
   DECL
           = "define"
                          id "=" EXPR ";" ;
   DECL
           = "curve"
                          FDECL "," TINTS ";";
6
   DECL
7
                          FDECL "," TINTS ";" ;
           = "surface"
8
   DECL
           = "function"
                          FDECL ";";
9
   DECL
           = "point"
                          id "=" EXPR ";" ;
                          id "=" EXPR "@" EXPR ";" ;
10
   DECL
           = "vector"
11
   FDECL
           = id "(" IDS ")" "=" EXPR ;
12
   IDS
           = IDS "," id | id ;
13
           = "[" EXPR "," EXPR "]" ;
14
  INT
15
   GRID
           = "[" EXPR "," EXPR "," EXPR "]" ;
16
   TINT
           = id ":" INT | id ":" GRID ;
   INTS
           = INTS "," INT | INT ;
17
           = TINTS "," TINT | TINT ;
18
   TINTS
           = GRIDS "," GRID | GRID ;
19
   GRIDS
20
21
   EXPR
           = ADD ;
22
   ADD
           = ADD "+" JUX | ADD "-" JUX | JUX ;
23
   JUX
           = JUX MULT2 | MULT ;
  MULT
24
           = MULT "*" UNARY | MULT "/" UNARY | UNARY ;
25
   MULT2
           = MULT2 "*" UNARY | MULT2 "/" UNARY | APP
26
   UNARY
              "+" UNARY | "-" UNARY | "*" UNARY | "/" UNARY | APP;
   APP
           = FUNC UNARY | POW ;
27
   FUNC
           = FUNC2 "^" UNARY | FUNC2;
28
29
   FUNC2
           = FUNC2 "_" var | FUNC2 "'" | func ;
30
31
   POW
           = COMP "^" UNARY | COMP ;
32
   COMP
           = COMP "_" num | FACT ;
33
   FACT
           = const | num | var
             "(" TUPLE ")" | "[" TUPLE "]" | "{" TUPLE "}" ;
34
           = ADD "," TUPLE | ADD ;
   TUPLE
35
```

Os termos em maiúsculo(não-terminais) representam variáveis gramaticais. O lado direito de uma igualdade especifica as possíveis formas sentenciais que um não-terminal pode assumir, separadas por uma barra vertical ou em diferentes equações. Por exemplo, MULT possui 3 formas: MULT * UNARY, MULT / UNARY e UNARY. Cada forma tem um significado diferente. Uma forma pode ser vazia, como ocorre para PROG.

Os símbolos entre aspas representam textos literais, e os termos em minúsculo(terminais) representam uma classe de "palavras": Por exemplo, num representa um número e var um nome de uma variável.

O termo PROG representa um programa completo, que é uma sequência de declarações(DECL). O termo EXPR representa uma expressão matemática. Os símbolos abaixo de EXPR definem a sintaxe das operações, suas ordens de precedência e associatividades.

Um programa coeso é formado a partir de PROG. Enquando houver não-terminais, deve-se substituí-los por uma de suas formas.

Para extraír o significado de um programa, o processo contrário deve ser feito. É necessário encontrar uma maneira de se obter o programa a partir de PROG. Para um programa coeso, sempre há uma maneira e essa é única. Algumas transformações nessa gramática a torna LL1, uma propriedade que garante que o parsing pode ser feito de forma fácil e rápida. Além disso, LL1 garante que a gramática não é ambígua. (CALGARY, s.d.)

 ${\bf A}$ tabela 1 descreve as operações e suas ordens de precedência, com base na gramática.

Operações	Aridade	Associatividade	Exemplo	Descrição
() [] {}	Unário		(expr)	Isola a expressão in-
				terna
,	Binário	Esquerda	(a,b,c)	Adiciona uma elemento
				à tupla(dentro de parên-
				teses)
+ -	Binário	Esquerda	a+b	Soma e subtração usu-
				ais
justaposição	Binário	Esquerda	ab	Multiplicação
* /	Binário	Esquerda	a*b	Multiplicação e Divisão
+ - * /	Unário		-x, *v	Positivo, Negativo,
				Quadrado e Recíproco
aplicação	Binário	Esquerda	sin x	Soma e subtração usu-
				ais
^	Binário	Direita	a^b	Potenciação
_	Unário		(1, 2, 3)_2	Elemento da tupla
,	Unário		$\sin'x + f_z(3)$	Derivada Total e Par-
				cial

Tabela 1 – Ordem das operações

3 Curvas e Superfícies

O objetivo primário do projeto é visualizar curvas e superfícies. As curvas são visualizadas apenas em espaço 3D. As superfícies são visualizadas em espaço 3D e em geodesic tracing.

3.1 Curvas

Há duas principais maneiras de se definir uma curva na geometria analítica: por parametrização e por equação. Esse trabalho apenas consideras curvas paramétricas.

Uma curva pode ser parametrizada por um número real. Formalmente, uma parametrização é uma função $\gamma:I\to\mathbb{R}^n,$ onde I é um intervalo real. Nesse trabalho, o intervalo é fechado, e n=3.

As curvas são desenhadas através de vários segmentos. Dada uma partição de I de k pontos, pode-se aproximar a curva pelos segmentos de extremidade $\gamma(t_i)$ e $\gamma(t_{i-1})$ para i < k, onde t_i é o i-ésimo ponto da partição. Nesse trabalho, a partição depende apenas de k e é uniforme.

O vetor tangente pode ser calculado com $\gamma'(t)$.

3.2 Superfícies

Assim como as curvas, apenas superfícies parametrizadas serão consideradas nesse trabalho: $\sigma: I_1 \times I_2 \to \mathbb{R}^3$, onde I_1 e I_2 são intervalos fechados reais.

As superfícies são desenhadas através de vários triângulos, a partir de partições dos intervalos I_1 e I_2 . Juntas, as partições formam uma grade de retângulos, e cada retângulo pode ser dividido em 2 triângulos. Esses são os triângulos desenhados.

Os vetores tangentes nas direções coordenadas são as derivadas parciais $\sigma_u(u, v)$ e $\sigma_v(u, v)$, onde os parâmetros são u e v. Nesse projeto, os parâmetros podem ter nomes quaisquer.

3.2.1 Primeira forma fundamental

Supondo que a superfície seja diferenciável e com vetores tangentes linearmente independentes, a primeira forma fundamental no ponto paramétrico (u, v) é definida como

$$\begin{bmatrix} \sigma_u \cdot \sigma_u & \sigma_u \cdot \sigma_v \\ \sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v \end{bmatrix} = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

onde as funções são todas aplicadas no ponto (u, v).

Os vetores σ_u e σ_v formam uma base do espaço tangente. O produto escalar de dois vetores tangentes $x=x_1\sigma_u+x_2\sigma_v$ e $y=y_1\sigma_u+y_2\sigma_v$ pode ser calculado da seguinte forma:

$$x \cdot y = (x_1 \sigma_u + x_2 \sigma_v) \cdot (y_1 \sigma_u + y_2 \sigma_v)$$
$$x \cdot y = x_1 y_1 E + x_1 y_2 F + x_2 y_1 F + x_2 y_2 G$$

O produto depende apenas dos coeficientes e da primeira forma fundamental. Isso significa que distâncias e ângulos podem ser calculados sem se referir ao espaço ambiente da parametrização, ou seja, de forma intrínseca.

3.2.2 Equação geodésica

3.2.3 Solução Numérica

3.2.4 Geodesic Tracing

Referências

AHO, Alfred V. Compilers: Principles, Techniques, & Tools. [S.l.]: Pearson, 1986. Syntax Analysis.

BURDEN, Richard L. **Numerical Analysis**. [S.l.]: Cengage, 2001. Initial-Value Problems for Ordinary Differential Equations.

CALGARY, University of. The Context Free Grammar Checker. [S.l.: s.n.]. http://smlweb.cpsc.ucalgary.ca/. Acessado em 2022-09-28.

CORNUT, Omar. **ImGui**. [S.l.: s.n.]. https://github.com/ocornut/imgui. Acessado em 2022-10-04.

PRESSLEY, Andrew. **Elementary Differential Geometry**. [S.l.]: Springer, 2012. Geodesics.

UNIVERSITY, Western Michigan. **The syntax of C in Backus-Naur Form**. [S.l.: s.n.]. https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax% 20of%20C%20in%20Backus-Naur%20form.htm. Acessado em 2022-09-28.