NP-úplnost

Jan Konečný

18. listopadu 2013

Problém splnitelnosti Booleovských formulí

Definice

Jazyk SAT je definován následovně:

$$SAT = \{ [\phi] \mid \phi \text{ je splnitelná formule. } \}$$

SAT jako problém

Problém splnitelnosti Booleovských formulí

Instance: ϕ – Booleovská formule

Otázka: Existuje ohodnocení e s.t. $||\phi|| = 1$?

Věta (Cookova)

$$SAT \in iff P = NP.$$

Redukovatelnost v polynomiálním čase

Definice

Funkce $f: \Sigma^* \to \Sigma^*$ je funkce vyčíslitelná v polynomiálním čase, pokud existuje TS pracující v polynomiálním čase, který pro každé $w \in \Sigma^*$ zastaví a na pásce má zapsáno w.

Definice

Jazyk A je redukovatelný v polynomiláním čase na jazyk B, značeno $A \leq_{\mathrm{P}} B$, pokud existuje redukce v polynomiálním čase; tj. $r: \Sigma^* \to \Sigma^*$, t.ž.

$$w \in A$$
 p.k. $f(w) \in B$.

Věta

Pokud $A \leq_{\mathbf{P}} B$ a $B \in \mathbf{P}$, pak $A \in \mathbf{P}$.

Důkaz na tabuli

3SAT a problém kliky

Definice

$$3SAT = \{ [\phi] \mid \phi \text{ je splnitelná 3-cnf-formule} \}.$$

3SAT

Instance: ϕ – 3-cnf-formule

Otázka: Je ϕ splnitelná

Definice

 $CLIQUE = \{[G, k] \mid G \text{ je graf mající kliku velikosti } k\}.$

CLIQUE

Instance: Graf G, přirozené číslo k

Otázka: Má G kliku velikosti k.

$3SAT \leq_{P} CLIQUE.$

Důkaz na tabuli.

NP-úplnost

Definice

Jazyk B je NP- $\acute{u}pln\acute{y}$, pokud

- B je v NP,
- \bullet B je NP-těžký. Tj. pro každý $A \in {\rm NP}$ platí $A \leq_{\rm P} B.$

Věta

Pokud B je NP-úplný a $B \in P$, pak P = NP.

Důkaz.

Přímo z definice redukovatelnosti v polynomickém čase.

Věta

Pokud B je NP-úplný a $B \leq_{\mathrm{P}} C$ pro $C \in \mathrm{NP}$, pak C je NP-úplný.

Důkaz na TABULI

Cook-Levinova věta

Věta

SAT je NP-úplný.

Důkaz na TABULI

8 / 10

Důsledek

3SAT je NP-úplný.

Důsledek

CLIQUE je NP-úplný.