

PROGRAMMIERUNG

ÜBUNG 12: HOARE-KALKÜL

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 06. Juli 2022

INHALT

- 1. Funktionale Programmierung
 - 1.1 Einführung in Haskell: Listen
 - 1.2 Algebraische Datentypen
 - 1.3 Funktionen höherer Ordnung
 - 1.4 Typpolymorphie & Unifikation
 - 1.5 Beweis von Programmeigenschaften
 - 1.6 λ-Kalkül
- 2. Logikprogrammierung
- 3. Implementierung einer imperativen Programmiersprache
 - 3.1 Implementierung von C₀
 - 3.2 Implementierung von C₁
- 4. Verifikation von Programmeigenschaften
- 5. H_0 ein einfacher Kern von Haskell

Hoare-Kalkül

HOARE-KALKÜL

- ► Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*} **A** {*Q*}
 - → P und Q sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▷ P heißt Vorbedingung, Q heißt Nachbedingung
 - ▷ Beschreibung der Veränderung von Zusicherungen
 - ▶ Bedeutung: Wenn die Variablenwerte vor Ausführung von A die Zusicherung P erfüllen und A terminiert, dann erfüllen die Variablen nach Ausführung von A die Zusicherung Q
- Aufstellen eines Beweisbaumes mit zur Verfügung stehenden Regeln

HOARE-KALKÜL — REGELN

- ► Zuweisungsaxiom
- ► Sequenzregel
- ▶ CompRegel
- ► Iterationsregel
- ► (erste und zweite) Alternativregel
- ► Konsequenzregeln
 - stärkere Vorbedingung

SCHLEIFENINVARIANTE

Für die Iterationsregel benötigen wir die Schleifeninvariante SI. In den meisten unserer Fälle ist diese von der Form $SI = A \wedge B$, wobei

- ► A den Zusammenhang zwischen Zählvariable und Akkumulationsvariablen beschreibt. Führe dazu einige Iterationen der Schleife durch und leite daraus einen Zusammenhang her.
- ▶ *B* die abgeschwächte Schleifenbedingung ist. Dabei nehmen wir die letztmögliche Variablenbelegung, für die die Schleifenbedingung π noch wahr ist und führen den Schleifenrumpf noch einmal darauf aus (→ π').

$$\leadsto B = \pi \cup \pi'$$

Aufgabe 1

AUFGABE 1 – TEIL (A)

Verfikationsformel:

$$\underbrace{\left\{ \begin{array}{l} (k \geq 0) \land (u \geq k) \\ \land (j = k) \land (s = 0) \end{array} \right\}}_{\text{Vorbedingung}} \text{ while (j < u) } \left\{ \text{ j=j+1; s=j+s;; } \right\} \underbrace{\left\{ s = \frac{u^2 + u - k^2 - k}{2} \right\}}_{\text{Nachbedingung}}$$

Schleifeninvariante: $SI = A \wedge B$

$$SI - A \wedge B$$

#	j	S
0	k	0
1	k+1	(k+1)
2	k + 2	(k+2)+(k+1)
:	:	:
N	k + N	$(k+N)+\cdots+(k+1)$

Als Gleichungssystem:

$$j = k + N
s = \sum_{i=k+1}^{k+N} i$$

$$\Rightarrow A = (s = \sum_{i=k+1}^{j} i)$$

AUFGABE 1 - TEIL (A)

$$\overline{SI = A \wedge B}$$
 und wir wissen schon $A = (s = \sum_{i=k+1}^{j} i)$

abgeschwächte Schleifenbedingung:

- ▶ Schleifenbedingung: $\pi = (j < u)$
- ► Schleifenbedingung letztmalig wahr für j = u 1
- ► Wert nach nochmaligem Schleifendurchlauf: $\pi' = (i = u)$
- $lackbox{ } B=\pi\cup\pi'=ig({ t j}\le{ t u}ig)$ (symbolische Schreibweise)

$$\implies SI = A \land B = (s = \sum_{i=k+1}^{j} i) \land (j \leq u)$$

AUFGABE 1 - TEIL (B)

Sei
$$SI = A \wedge B = \left(s = \sum_{i=k+1}^{j} i\right) \wedge (j \leq u)$$
 und $\pi = (j < u)$.

AUFGABE 1 - TEIL (B)

Verfikationsformel:

$$\left\{ \begin{array}{l} (k \geq 0) \wedge (u \geq k) \\ \wedge (j = k) \wedge (s = 0) \end{array} \right\} \text{ while (j < u) } \left\{ \text{ j=j+1; s=j+s;; } \right\} \left\{ s = \frac{u^2 + u - k^2 - k}{2} \right\}$$

Sei
$$SI = A \wedge B = \left(s = \sum_{i=k+1}^{j} i\right) \wedge (j \leq u)$$
 und $\pi = (j < u)$.

$$A = D = SI \wedge \pi = SI \wedge (j < u)$$

$$B = j = j + 1; \quad s = j + s$$

$$C = F = H = SI$$

$$E = \{j = j + 1; \quad s = j + s\}$$

$$G = (k \ge 0) \wedge (u \ge k) \wedge (j = k) \wedge (s = 0)$$

$$I = J = SI \wedge \neg \pi = SI \wedge \neg (j < u)$$

$$K = \text{schwächere Nachbedingung (SN)}$$

AUFGABE 2

Zeigen Sie die Gültigkeit der Verifikationsformel

$$\begin{split} \Big\{ (z = (x - x1) \cdot y) \ \wedge \ (x1 \ge 0) \ \wedge \ (x1 > 0) \Big\} \\ x1 &= x1 \ - \ 1; \\ \Big\{ (z + y = (x - x1) \cdot y) \ \wedge \ (x1 \ge 0) \Big\}. \end{split}$$

AUFGABE 2

wobei (beachte: x1 ist Ganzzahl)

$$(z = (x - x1) \cdot y) \wedge (x1 \ge 0) \wedge (x1 > 0)$$

$$\Rightarrow (z + y = (x - x1) \cdot y + y) \wedge (x1 \ge 0) \wedge (x1 > 0)$$

$$\Rightarrow (z + y = (x - x1 + 1) \cdot y) \wedge (x1 \ge 0) \wedge (x1 > 0)$$

$$\Rightarrow (z + y = (x - (x1 - 1)) \cdot y) \wedge (x1 \ge 0) \wedge (x1 > 0)$$

$$\Rightarrow (z + y = (x - (x1 - 1)) \cdot y) \wedge (x1 \ge 0) \wedge (x1 - 1 \ge 0)$$

Aufgabe 3

AUFGABE 3 - TEIL (A)

AUFGABE 3 – TEIL (A)

$$A = \text{true } \land \ (y < 0)$$
 $G = E$
 $B = \text{true } \land \neg \ (y < 0)$ $H = (-x + 1 \ge 0)$
 $C = A$ $I = H$
 $D = A$ $J = (y \ge 0)$
 $E = (-(3 \cdot y) + 1 \ge 0)$ $K = \text{stärkere Vorbedingung}$
 $F = E$ $L = \text{Sequenzregel}$

AUFGABE 3 - TEIL (B)

zu zeigen: true
$$\land (y < 0) \Rightarrow (-3 \cdot y + 1 \ge 0)$$

true $\land (y < 0) \Rightarrow y < 0$
 $\Rightarrow -3 \cdot y > 0$
 $\Rightarrow -3 \cdot y + 1 > 1$
 $\Rightarrow -3 \cdot y + 1 \ge 0$