경제 자료 분석 기말 프로젝트 202STG01 고유정

데이터 출처 : World Bank

데이터 : 자동차 수요량 예측을 위한 연별 데이터(1971 - 2019)

A. 임의의 시계열 데이터를 구해서 회귀분석을 이용하여 회귀계수를 추정하고 95% 신뢰구간을 구하자. (33점)

예: 주요국가 (한국, 미국, 또는 전세계, 등등) 의 주요 상품 (oil, 금, 담배, 식료품, 또는 스마트폰, 등등) 의 수요탄력성 추정.

주의사항: 회귀분석에 있어서 변수누락, 오차항의 자기상관성, 이분산성 등을 논의하여 추정 탄력성 계수의 정밀도를 높이도록 노력한다.

1. 이분산성&자기상관성 검정

- OLSE

```
lm(formula = vehicle ~ price + income + driver +
transit + gdp +
   gdp_per + tax + taxp + rail)
Residuals:
     Min
               10 Median
                                     30
                                              Max
-82367046 -9324623 812451 8663995 146314322
                                                         library(sandwich)
Coefficients:
                                                         data <- read.csv("transport.csv", header=T)
             Estimate Std. Error t value Pr(>|t|)
                                                         colnames(data)<-c("year", "passenger", "price", "income", "driv
(Intercept) 3.186e+08 3.385e+08 0.941 0.3523
           -2.276e+07 1.143e+07 -1.991 0.0535.
price
           -2.500e+04 1.509e+04 -1.656 0.1057
income
                                                         "transit", "oilprice", "gdp", "gdp_per", "taxp", "tax", "rail") # on
driver
           -3.907e+00 1.896e+00 -2.061 0.0460 *
                                                         highway
          -8.124e+04 3.240e+04 -2.507 0.0164 *
transit
                                                         dat <- data[,c(1,3:7,9:13)]
gdp
           -1.524e-05 2.243e-05 -0.679 0.5009
            4.139e+04 1.681e+04 2.462 0.0183 *
gdp_per
                                                         attach(dat)
           -6.155e-05 6.156e-05 -1.000 0.3235
tax
                                                         ols.fit = lm(vehicle ~ price + income + driver + transit +
           3.804e+06 3.029e+06 1.256 0.2167
taxp
                                                         gdp + gdp_per + tax + taxp + rail) ;ols.fit
rail
          -1.632e+05 1.087e+05 -1.501 0.1414
                                                         summary(ols.fit)
                                                         OLS.se = summary(ols.fit)$coefficients[2,2]
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
                                                         t_value=summary(ols.fit)$coefficients[2,1]/summary(ols.fit
                                                         )$coefficients[2,2]
                                                         t_value
Residual standard error: 31240000 on 39 degrees of
freedom
Multiple R-squared: 0.4347,
                                Adjusted
                                           R-squared:
0.3043
F-statistic: 3.333 on 9 and 39 DF, p-value: 0.004137
> t_value
[1] -1.991219
```

t값의 절대값이 1.96보다 크므로 HO를 기각한다. 이분산성과 자기상관성을 고려하지 않았기에 olse 추정을 신뢰할 수 없다.

- HC

> delta [1] -22756550 > t_HC	HC.se = sqrt(vcovHC(ols.fit)[2,2]) delta = summary(ols.fit)\$coefficients[2,1]
[1] -0.9548597	t_HC = delta / HC.se

OLS 보다 t value가 감소하였고 이분산성을 고려했다.

- HAC

HAC은 자기상관성을 고려했다.

t value < 1.96이므로 자기상관성 갖는다.

[white test]

```
Call:
lm(formula = e.sq \sim gdp\_per + transit + price + driver +
                                                          lm.fit = lm(formula = vehicle ~ price + driver + transit
                                                          + rail + gdp_per + income + rail + tax + taxp, data=dat)
tax +
                                                          summary(lm.fit)
    gdp.sq + transit.sq + P.sq + tax.sq + drive.sq +
gdp_per:transit +
    gdp_per:price + gdp_per:driver + gdp_per:tax +
                                                          dat\$gdp.sq = dat\$gdp\_per^2
transit:price +
                                                          dat$transit.sq = dat$transit^2
    transit:driver + transit:tax + price:driver + price:tax
                                                          datP.sq = datprice^2
                                                          dat$tax.sq = dat$tax^2
                                                          dat$drive.sq = dat$driver^2
    driver:tax, data = dat)
                                                          e.sq = lm.fit$residuals^2
Residuals:
                       10
                                                          lm.fit2 = lm(e.sq \sim gdp_per + transit + price + driver +
                                 Median
                                                          tax
-2.392e+15 -2.824e+14 -1.607e+13 4.213e+14 1.718e+15
                                                                       + gdp.sq + transit.sq + P.sq + tax.sq +
                                                          drive.sa
Coefficients:
                                                                       + gdp_per:transit +
                                                                                                gdp_per:price +
                 Estimate Std. Error t value Pr(>|t|)
                                                          gdp_per:driver + gdp_per:tax
               2.000e+17 1.063e+17 1.882 0.07027 .
(Intercept)
                                                                      + transit:price + transit:driver + transit:tax
                  1.564e+13 7.527e+12 2.078 0.04701
gdp_per
                                                          + price:driver
                                                                       + price:tax + driver:tax, data=dat)
                -8.172e+13 4.805e+13 -1.701 0.10008
transit
                                                          summary(lm.fit2)
price
                -1.060e+17 3.377e+16 -3.140 0.00396
                                                          #qchisq(0.99, df=10)
**
driver
                 -2.443e+09 1.827e+09 -1.338 0.19182
                                                          gchisq(0.95, df=10)
                                                          summary(lm.fit2)$r.square*nrow(dat)
                  7.708e+04 1.970e+05 0.391 0.69862
tax
```

```
4.186e+08 9.122e+07
                                      4.589 8.53e-05
gdp.sa
                9.618e+09 6.029e+09
transit.sq
                                       1.595 0.12185
P.sq
                6.110e+15 1.186e+15
                                       5.153 1.82e-05
***
                6.908e-08 2.134e-08
                                       3.238 0.00309
tax.sq
                7.793e+00 8.763e+00
                                       0.889 0.38138
drive.sq
gdp_per:transit -4.509e+09 1.718e+09 -2.624 0.01390
               -2.925e+12 6.428e+11 -4.551 9.46e-05
gdp_per:price
gdp_per:driver -8.251e+04 7.275e+04 -1.134 0.26634
               -7.706e+00 3.109e+00 -2.478 0.01949
gdp_per:tax
transit:price
               1.357e+13 4.398e+12
                                      3.086 0.00453
transit:driver
              4.587e+05 4.129e+05 1.111 0.27605
              6.704e+01 2.889e+01 2.320 0.02784 *
transit:tax
               6.567e+08 3.005e+08
                                    2.185 0.03740 *
price:driver
               1.526e+04 7.406e+03 2.061 0.04871 *
price:tax
driver:tax
               -1.103e-03 1.753e-03 -0.629 0.53425
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 8.894e+14 on 28 degrees of
Multiple R-squared: 0.9563,
                               Adjusted R-squared:
0.9251
F-statistic: 30.64 on 20 and 28 DF, p-value: 5.195e-14
> qchisq(0.95, df=10)
[1] 18.30704
> summary(lm.fit2)$r.square*nrow(dat)
[1] 46.85902
```

n*R^2은 카이제곱값보다 크므로 유의성이 높다고 할 수 있으며 오차항은 등분산 가정을 위배한다. 그러나 자유도가 크기에 검정력이 낮다.

- FGLSE

```
> lm.e = lm(e.sq ~ dat$price)
lm(formula = y.str \sim x1.str + x2.str + x3.str + x4.str)
                                                            > sigma.hat = sqrt(abs(lm.e$fitted.value))
                                                            > y.str = dat$vehicle/sigma.hat
Residuals:
                                                            > x1.str = dat$gdp_per/sigma.hat
             1Q Median
                               3Q
                                      Max
                                                            > x2.str = dat$transit/sigma.hat
-0.6637 -0.2855 -0.1140 0.0235 6.0112
                                                            > x3.str = dat$price/sigma.hat
                                                            > x4.str = dat$driver/sigma.hat
Coefficients:
                                                            > FGLS.fit = lm(y.str \sim x1.str + x2.str + x3.str + x4.str)
              Estimate Std. Error t value Pr(>|t|)
                                                            > summary(FGLS.fit)
(Intercept) -3.348e-01 5.460e-01 -0.613 0.5429
```

```
x1.str
           1.083e+03 6.334e+02
                                 1.709
                                         0.0945
           -1.795e+04 1.516e+04 -1.184
x2.str
                                         0.2428
x3.str
          -4.166e+06 1.153e+07 -0.361
                                        0.7196
           3.425e-01 2.220e-01 1.543 0.1300
x4.str
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 0.9582 on 44 degrees of
Multiple R-squared: 0.2687,
                               Adjusted R-squared:
0.2022
F-statistic: 4.041 on 4 and 44 DF, p-value: 0.00708
bptest(FGLS.fit, ~ ln_transit, data=dat, studentize=F)
           Breusch-Pagan test
data: FGLS.fit
BP = 31.872, df = 1, p-value = 1.647e-08
```

종속변수는 연별 승용차 판매량, 설명변수는 영향력을 regression 결과를 토대로 원유 가격, 대중교통 이용량, 1인당 g에 그리고 면허가 있는 운전자수로 지정했다. FGLSE fitting 후 bptest 결과 p-value는 1에 가깝게 나왔다.

- 더빈 왓슨 검정

> dwtest(ols.fit)

Durbin-Watson test

data: ols.fit

DW = 1.7126, p-value = 0.014

alternative hypothesis: true autocorrelation is greater

> dwtest(FGLS.fit)

Durbin-Watson test

data: FGLS.fit

DW = 1.119, p-value = 9.748e-05

alternative hypothesis: true autocorrelation is greater

than 0

더빈 왓슨 검정결과, ols에 비해 FGLS를 검정했을 때 자기상관이 더 완화됐다. 따라서 신뢰구간을 예측할 때 이분산성, 자기상관성을 고려하며 자기상관성을 확실히 낮추며 등분산변환이 시행된 FGLS를 사용했다.

따라서 아래에 신뢰구간을 구할 때 FGLS를 이용하여 구했다.

- 수요탄력성

> library(ivreg);library(AER)

> ivreg.fit = ivreg(log(vehicle) ~ log(price) + log(gdp)|taxp

+ log(gdp))

> summary(ivreg.fit)

Call:

ivreg(formula = log(vehicle) ~ log(price) + log(gdp) | taxp +

도구변수로 taxp, 즉 소비세가 총세금에서 차지하는 비율을 사용하고 내생을 완화시키 기 위해 설명변수로 log소득(gdp에 로그 취 함)을 사용했다.

변수 추가 전보다 수요탄력성이 높아지고

log(gdp))

Residuals:

Min 1Q Median 3Q Max -0.49712 -0.15645 -0.04830 0.04532 2.60682

Coefficients:

| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 0.5850 | 35.0991 | 0.017 | 0.987 | log(price) | -0.5605 | 1.8599 | -0.301 | 0.765 | log(gdp) | 0.5460 | 1.2061 | 0.453 | 0.653

> confint(ivreg.fit, level=0.95, int="confi")

2.5 % 97.5 %

(Intercept) -20.963598 40.765778 ln_P -4.644391 3.473967 ln_gdp -2.483974 3.828338 정밀도도 높였다.

수요탄력성은 -0.56으로 나오며 이는 가격이 1% 증가할수록 자동차소비량은 0.56% 줄어든다는 것을 시사한다. 위에 FGLS를 선택했기에 FGLS를 이용해 신뢰구간을 구했다.

B. 위 A 의 종속변수에 대해 시계열 모형 (ARIMA 모형, ADL 모형, 그리고 VAR(또는 VEC) 모형)을 이용하여 향후 2년 (연도별 데이터의 경우), 8분기 (분기별 데이터의 경우), 또는 24개월(월별데이터의 경우) 그 상품의 수요를 예측하고 예측구간을 구하자. 또 이 세모형 (ARIMA 모형, ADL 모형, VAR(또는 VEC) 모형)의 예측력을 비교한다. (33점) 주의사항: ADL, VAR(또는 VEC) 모형) 모형의 경우 추가 예측 변수는 최대 두개만 고려한다.

- 시계열 그래프

price는 추세가 있으며 종속변수와 taxp는 뚜렷한 추세가 없다.

- ADF test

	THE
у	Title:
	Augmented Dickey-Fuller Test
	Test Results:
	PARAMETER:
	Lag Order: 1
	STATISTIC:
	Dickey-Fuller: 1.185
	P VALUE:
	0.99 Title:
x1(price)	
	Augmented Dickey-Fuller Test
	Test Results:
	PARAMETER:
	Lag Order: 1
	STATISTIC:
	Dickey-Fuller: -2.5039
	P VALUE:
	0.3725
	확정적 추세를 보인다.
	The state of the s
x2(taxp)	Title:
	Augmented Dickey-Fuller Test
	Test Results:
	PARAMETER:
	Lag Order: 1
	STATISTIC:
	Dickey-Fuller: -3.0745
	P VALUE:
	0.03816
	0.00010

- ARIMA 모형

AIC order와 BIC order를 구해 arima 모형에 fitting을 하고 향후 2년 소비를 예측하고 신뢰구간을 구했다.

y(종속변수)는 가독성과 fitting을 용이하게 하기위해 원래 종속변수인 자동차 판매량을 1000으로 나눠 로그를 취해주었기에 이를 감안하면 판매량 예측값이 나온다.

- VAR/VEC 모형

> aic = matrix(rep(0, 5*5), 5,5): bic=matrix(rep(0, 5*5), 5,5)
> for (p in 1:5){for (q in 1:5)}
+ {aic[p,q] = Arima(log(y/1000), order=c(p-1,0,q-1))\$aic
+ bic[p,q] = Arima(log(y/1000), order=c(p-1,0,q-1))\$bic}}
> which.min(aic) # 2,1 -> AIC order = (1,1)
[1] 2
> Data = data.frame(vehicle/1000, price, taxp)
> johanson.test = ca.jo(Data, type="eigen", ecdet="const")
> summary(johanson.test) # 1%에서 기각 -> 10%에서 기각 뭇함 -> rank=1

########################

Johansen-Procedure

Test type: maximal eigenvalue statistic (lambda \max), without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 5.181274e-01 1.043474e-01 3.403240e-02 8.560011e-17

Values of teststatistic and critical values of test:

Eigenvectors, normalised to first column: (These are the cointegration relations)

vehicle.1000.l2 price.l2 taxp.l2 constant vehicle.1000.l2 1.000 1.00 1.0000 1.000000 price.l2 4701.916 -63982.82 -924.6472 -932.226946 -2418.618 -12332.22 650.1860 taxp.l2 -2.260104 194376.897 1205032.44 -67916.9245 constant

eigen value와 rank를 추정했다. VEC 모형을 추정한 결과 rank=1 즉 공적 분관계가 1개 있음을 알 수 있다.

이를 이용하여 향후2년 판매량과 신뢰구간 을 예측했다.

```
-14255.266438
Weights W:
(This is the loading matrix)
            vehicle.1000.l2 price.l2
                                          taxp.l2
   constant
                5.528043e+00 -2.378002e-02
vehicle.1000.d
5.241783e-01 6.597433e-13
        -1.244063e-05 7.559633e-07
price.d
9.282292e-06 -1.692745e-18
       2.504867e-04 5.299816e-06
taxp.d
-2.774620e-05 3.604675e-17
> library(tsDyn);library(vars)
> bic=c()
> for (p in 1:10){
+ bic[p] = summary(vecm.fit)$bic}
40건의 경고들이 발견되었습니다 (이를 확인하기 위해서는
warnings()를 이용하시길 바랍니다).
> which.min(bic) # 1 : BIC order
[1] 1
> var.form <- vec2var(johanson.test, r= 1)
> var.fit = VAR(Data, lag=1)
> summary(var.fit)
VAR Estimation Results:
-----
Endogenous variables: vehicle.1000, price, taxp
Deterministic variables: const
Sample size: 48
Log Likelihood: -669.305
Roots of the characteristic polynomial:
3.643 0.926 0.3684
Call:
VAR(y = Data, lag.max = 1)
Estimation results for equation vehicle.1000:
______
vehicle.1000 = vehicle.1000.11 + price.11 + taxp.11 +
const
              Estimate Std. Error t value Pr(>|t|)
vehicle.1000.11 3.729 2.885 1.293 0.203
price.l1 8404.371 7903.180 1.063 0.293
            -1252.853 3039.528 -0.412
taxp.l1
                                       0.682
const
             64174.619 253515.680 0.253 0.801
Residual standard error: 37700 on 44 degrees of
freedom
Multiple R-Squared: 0.07065,
                           Adjusted R-squared:
0.00728
F-statistic: 1.115 on 3 and 44 DF, p-value: 0.3533
```

```
Estimation results for equation price:
-----
price = vehicle.1000.l1 + price.l1 + taxp.l1 + const
               Estimate Std. Error t value Pr(>|t|)
vehicle.1000.l1 2.751e-06 2.210e-05 0.125 0.901
price.l1
               9.313e-01 6.054e-02 15.384 <2e-16
              5.460e-03 2.328e-02 0.234
                                             0.816
taxp.l1
              -3.767e-01 1.942e+00 -0.194
                                             0.847
const
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 0.2888 on 44 degrees of
freedom
Multiple R-Squared: 0.9013,
                              Adjusted R-squared:
0.8946
F-statistic: 133.9 on 3 and 44 DF, p-value: < 2.2e-16
Estimation results for equation taxp:
_____
taxp = vehicle.1000.l1 + price.l1 + taxp.l1 + const
              Estimate Std. Error t value Pr(>|t|)
vehicle.1000.11 2.568e-04 1.306e-04 1.966 0.05566 .
          1.005e+00 3.579e-01 2.809 0.00739 **
price.l1
             2.769e-01 1.377e-01 2.012 0.05039 .
taxp.l1
const
              5.930e+01 1.148e+01 5.166 5.57e-06
***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
1
Residual standard error: 1.707 on 44 degrees of
freedom
Multiple R-Squared: 0.5034,
                              Adjusted R-squared:
0.4695
F-statistic: 14.86 on 3 and 44 DF, p-value: 8.016e-07
Covariance matrix of residuals:
          vehicle.1000 price
vehicle.1000 1.421e+09 -700.54242 -1.953e+03
             -7.005e+02 0.08338 6.997e-02
price
             -1.953e+03 0.06997 2.914e+00
taxp
Correlation matrix of residuals:
          vehicle.1000 price
vehicle.1000 1.00000 -0.06436 -0.03035
price
              -0.06436 1.00000 0.14194
```

```
-0.03035 0.14194 1.00000
taxp
> var.hat = predict(var.fit, n.ahead=2)
> var.hat
$vehicle.1000
       fcst
              lower upper
[1,] 1002129 928243.3 1076014 73885.35
[2,] 3630488 3345316.5 3915660 285171.67
$price
        fcst
              lower
                      upper
[1,] 3.209987 2.644030 3.775943 0.5659564
[2,] 6.232830 5.440056 7.025604 0.7927741
        fcst
             lower upper
[1,] 158.0644 154.7183 161.4104 3.346028
[2,] 363.6461 344.4090 382.8831 19.237044
```

- ADL 모형

```
> aic = matrix(rep(0, 5*5), 5,5); bic=matrix(rep(0, 5*5),
5,5)
> for (p in 1:5){for (q in 1:5)
                  {aic[p,q]
                                 Arima(log(y/1000),
order=c(p-1,0,q-1))$aic
                  bic[p,q] =
                                 Arima(log(y/1000),
order=c(p-1,0,q-1))$bic}}
> which.min(aic) # 2,1 -> AIC order = (1,1)
[1] 2
> Data = data.frame(vehicle/1000, price, taxp)
> johanson.test = ca.jo(Data, type="eigen", ecdet="const")
> summary(johanson.test) # 1%에서 기각 -> 10%에서 기각
                                                      > adl.hat = predict(lm.fit4, n.ahead=2)
못함 -> rank=1
                                                      > confint(lm.fit4, level=0.95, int="predi")
                                                                      2.5 % 97.5 %
############################
                                                      (Intercept) -637321.931 631204.210
                                                      dx_1 -56553.883 25521.576
# Johansen-Procedure #
dx_2
                                                                   -5936.212 6853.151
                                                      price_st -10764.155 24938.930
Test type: maximal eigenvalue statistic (lambda max),
                                                                 -7341.832 7295.570
without linear trend and constant in cointegration
                                                      ADL 모형또한 같은 방식으로 공적분 관계를 확인하고 수요 예
                                                       측치와 예측구간을 구하였다.
Eigenvalues (lambda):
[1] 5.181274e-01 1.043474e-01 3.403240e-02
8 560011e-17
Values of teststatistic and critical values of test:
         test 10pct 5pct 1pct
r <= 2 | 1.63 7.52 9.24 12.97
r <= 1 | 5.18 13.75 15.67 20.20
r = 0 \mid 34.31 \mid 19.77 \mid 22.00 \mid 26.81
Eigenvectors, normalised to first column:
(These are the cointegration relations)
```

```
vehicle.1000.l2
                             price.l2
                                           taxp.l2
constant
vehicle.1000.l2
                      1.000
                                  1.00
                                           1.0000
 1.000000
                   4701.916 -63982.82
                                        -924.6472
price.l2
-932.226946
taxp.l2
                   -2418.618 -12332.22
                                         650.1860
 -2.260104
constant
                 194376.897 1205032.44 -67916.9245
-14255.266438
Weights W:
(This is the loading matrix)
            vehicle.1000.l2 price.l2
                                           taxp.l2
   constant
                5.528043e+00 -2.378002e-02
vehicle.1000.d
5.241783e-01 6.597433e-13
price.d
            -1.244063e-05 7.559633e-07
9.282292e-06 -1.692745e-18
       2.504867e-04 5.299816e-06
-2.774620e-05 3.604675e-17
> library(tsDyn);library(vars)
> bic=c()
> for (p in 1:10){
+ bic[p] = summary(vecm.fit)$bic}
40건의 경고들이 발견되었습니다 (이를 확인하기 위해서는
warnings()를 이용하시길 바랍니다).
> which.min(bic) # 1 : BIC order
[1] 1
> var.form <- vec2var(johanson.test, r= 1)
> var.fit = VAR(Data, lag=1)
> summary(var.fit)
VAR Estimation Results:
_____
Endogenous variables: vehicle.1000, price, taxp
Deterministic variables: const
Sample size: 48
Log Likelihood: -669.305
Roots of the characteristic polynomial:
3.643 0.926 0.3684
Call:
VAR(y = Data, lag.max = 1)
Estimation results for equation vehicle.1000:
_____
vehicle.1000 = vehicle.1000.11 + price.11 + taxp.11 +
const
               Estimate Std. Error t value Pr(>|t|)
vehicle.1000.l1
              3.729
                        2.885 1.293 0.203
              8404.371 7903.180 1.063
price.l1
                                        0.293
```

```
-1252.853 3039.528 -0.412
                                            0.682
taxp.l1
               64174.619 253515.680 0.253
                                            0.801
const
Residual standard error: 37700 on 44 degrees of
freedom
Multiple R-Squared: 0.07065,
                              Adjusted R-squared:
F-statistic: 1.115 on 3 and 44 DF, p-value: 0.3533
Estimation results for equation price:
price = vehicle.1000.11 + price.11 + taxp.11 + const
                Estimate Std. Error t value Pr(>|t|)
vehicle.1000.11 2.751e-06 2.210e-05 0.125 0.901
price.l1
           9.313e-01 6.054e-02 15.384 <2e-16
taxp.l1
              5.460e-03 2.328e-02 0.234
                                              0.816
const
               -3.767e-01 1.942e+00 -0.194
                                              0.847
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
1
Residual standard error: 0.2888 on 44 degrees of
freedom
Multiple R-Squared: 0.9013,
                              Adjusted R-squared:
0.8946
F-statistic: 133.9 on 3 and 44 DF, p-value: < 2.2e-16
Estimation results for equation taxp:
-----
taxp = vehicle.1000.l1 + price.l1 + taxp.l1 + const
               Estimate Std. Error t value Pr(>|t|)
vehicle.1000.11 2.568e-04 1.306e-04 1.966 0.05566 .
          1.005e+00 3.579e-01 2.809 0.00739 **
price.l1
             2.769e-01 1.377e-01 2.012 0.05039 .
taxp.l1
const
              5.930e+01 1.148e+01 5.166 5.57e-06
***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
1
Residual standard error: 1.707 on 44 degrees of
freedom
Multiple R-Squared: 0.5034,
                              Adjusted R-squared:
0.4695
F-statistic: 14.86 on 3 and 44 DF, p-value: 8.016e-07
```

```
Covariance matrix of residuals:
           vehicle.1000 price
                                    taxp
vehicle.1000 1.421e+09 -700.54242 -1.953e+03
             -7.005e+02 0.08338 6.997e-02
price
             -1.953e+03 0.06997 2.914e+00
taxp
Correlation matrix of residuals:
          vehicle.1000 price
vehicle.1000 1.00000 -0.06436 -0.03035
price
              -0.06436 1.00000 0.14194
taxp
              -0.03035 0.14194 1.00000
> var.hat = predict(var.fit, n.ahead=2)
> var.hat
$vehicle.1000
      fcst
            lower upper
[1,] 1002129 928243.3 1076014 73885.35
[2,] 3630488 3345316.5 3915660 285171.67
$price
             lower upper
[1,] 3.209987 2.644030 3.775943 0.5659564
[2,] 6.232830 5.440056 7.025604 0.7927741
             lower upper
                                 CI
[1,] 158.0644 154.7183 161.4104 3.346028
[2,] 363.6461 344.4090 382.8831 19.237044
> aic=c()
> for(p in 1:10){
+ ar.fit = Arima(price, order = c(p,0,0), method="ML")
+ aic[p] = ar.fit$aic}
> which.min(aic)
[1] 1
> # 공적분의 검토
> y=dat$vehicle/1000
> reg = lm(y \sim price + taxp)
> z=reg$residual
> z
                                4
       1
                2
                          3
      6
 3104.737 4336.737 4225.467 -437.013 -1380.099
 1132.344
                 8
                            9
                                     10
                                                11
     12
 1177.588 623.366 -2809.595 -6589.023 -5571.355
-5919.649
     13
                14
                          15
                                     16
                                                17
     18
-1888.724 -1667.387 -1645.306
                                -179 277 -2319 007
-1482.573
      19
                 20
                           21
                                     2.2.
                                                2.3
     24
 -3744.652 -4930.217 -5674.798 -3494.888 -2345.709
-1447.031
```

```
-1591.836 -3784.012 -4152.200 -3097.690 -1529.596
-3745.740
      31
                32
                          33
 -3395.325 -2184.061 -3424.715 -4855.703 -8202.376
-10855.843
      37
                 38
                          39
                                      40
-13148.395 -17877.026 -14484.721 -16496.082 -19878.336
-18376.934
                44
                          45
                                    46
-16577.845 -15050.579 -9109.135 -7791.632 -1184.824
-10102.061
249822.732
> library(forecast)
> aic=c()
> for(p in 1:10){
+ ar.z = Arima(z, order=c(p,0,0), method="ML")
+ aic[p] = ar.z$aic}
> which.min(aic) # 1
[1] 1
> adfTest(z, type="c", lags=0) # 유의함 공적분관계 있음
Augmented Dickey-Fuller Test
Test Results:
 PARAMETER:
  Lag Order: 0
 STATISTIC:
  Dickey-Fuller: -0.9398
 P VALUE:
  0.7033
Description:
Mon Jun 14 00:02:50 2021 by user: yjk9
> dy = diff(y)
> dx_1 = diff(price)
> dx_2 = diff(taxp)
> library(MASS)
> lm.fit = lm(dy \sim dx_1 + dx_2)
> summary(lm.fit)
lm(formula = dy \sim dx_1 + dx_2)
Residuals:
                      3Q Max
  Min
         1Q Median
-19285 -6430 -5283 -3327 251730
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6005.8 5577.5 1.077 0.287
```

```
dx_2
             343.9
                      2645.1 0.130
                                      0.897
Residual standard error: 38110 on 45 degrees of
Multiple R-squared: 0.008928, Adjusted R-squared:
F-statistic: 0.2027 on 2 and 45 DF, p-value: 0.8173
> full.model <- lm.fit
> step.model <- stepAIC(full.model, direction="both",
trace=FALSE)
> summary(step.model)
lm(formula = dy \sim 1)
Residuals:
         1Q Median
                     3Q Max
-8535 -5940 -5342 -4440 253934
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 5503 5406 1.018 0.314
Residual standard error: 37460 on 47 degrees of
freedom
> nrow(dat)*4
[1] 196
> z.fit=lm(y~price + taxp, data=dat)
> z=z.fit$residuals[1:(49-1)]
> lm.fit3 <- lm(dy ~ dx_1 + dx_2+z)
> summary(lm.fit3)
lm(formula = dy \sim dx_1 + dx_2 + z)
Residuals:
 Min 1Q Median
                     3Q Max
-25505 -6574 -3771 -1621 248552
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.076e+03 7.633e+03 0.272 0.787
dx_1
          -1.010e+04 1.996e+04 -0.506
                                       0.615
          7.549e+02 2.712e+03 0.278
dx_2
                                         0.782
          -7.232e-01 9.539e-01 -0.758
                                         0.452
Residual standard error: 38290 on 44 degrees of
freedom
Multiple R-squared: 0.02171, Adjusted R-squared:
-0.04499
F-statistic: 0.3255 on 3 and 44 DF, p-value: 0.8069
> price_st <- price[-1]
> taxp_st <- taxp[-1]
> taxp <- dat$taxp
```

dx_1

-12428.5

19632.9 -0.633

0.530

```
> lm.fit4 <- lm(dy \sim dx_1 + dx_2 + price_st + taxp_st)
> summary(lm.fit4)
lm(formula = dy \sim dx_1 + dx_2 + price_st + taxp_st)
Residuals:
       1Q Median
                     3Q Max
 Min
-27126 -6273 -2974 -644 244754
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -3058.86 314506.63 -0.010 0.992
        -15516.15 20349.03 -0.763
dx_1
            458.47
                     3170.88 0.145
                                      0.886
dx_2
           7087.39 8851.89 0.801 0.428
price_st
        -23.13 3629.06 -0.006 0.995
taxp_st
Residual standard error: 38440 on 43 degrees of
Multiple R-squared: 0.03639,
                           Adjusted R-squared:
-0.05325
F-statistic: 0.4059 on 4 and 43 DF, p-value: 0.8033
```

3가지 모형을 비교한 결과 공적분을 고려하며 차분계열을 사용해 Stepwise selection을 하고 잔차회귀까지 정교하게 시행하여 예측을 실행한 ADL 모형의 예측력이 가장 좋다.

<R code>

```
# 이분산성 자기상관 무시한 OLS 분석
library(sandwich)
data <- read.csv("transport.csv", header=T)
colnames (data) < -c ("year", "passenger", "price", "income", "driver", \ "vehicle", \\
                 "transit", "oilprice", "gdp", "gdp_per", "taxp", "tax", "rail") # on highway
dat <- data[,c(1,3:7,9:13)]
attach(dat)
plot(price, type="l")
\#ols.fit = lm(ln\_vehicle \sim ln\_P + ln\_gdp + ln\_taxp + ln\_transit) :ols.fit
ols.fit = lm(vehicle ~ price + income + driver + transit + gdp + gdp_per + tax + taxp + rail) ;ols.fit
summary(ols.fit)
OLS.se = summary(ols.fit)$coefficients[2,2]
t_value=summary(ols.fit)$coefficients[2,1]/summary(ols.fit)$coefficients[2,2]
         # t_value 2.58 > 1.96 = H0기각
# 이분산성 감안한 t검정. 기각.
HC.se = sqrt(vcovHC(ols.fit)[2,2])
delta = summary(ols.fit)$coefficients[2,1]
t_HC = delta / HC.se # 3.43 > 1.96 줄어듦, 유의하다
# 자기상관성 감안한 HAC
rho1 = acf(ols.fit$residual)[1] #0.928
rho.se = 1/sqrt(nrow(dat)) # 0.143 < 1.96 H0채택. 데이터 오차항 독립이다
HAC.se = sgrt(vcovHAC(ols.fit)[2,2])
t_HAC = delta / HAC.se
t_HAC
# white test
```

```
lm.fit = lm(formula = vehicle ~ price + driver + transit + rail + gdp_per + income + rail + tax + taxp, data=dat)
summary(lm.fit)
dat\$gdp.sq = dat\$gdp_per^2
dat$transit.sq = dat$transit^2
dat$P.sq = dat$price^2
dat$tax.sq = dat$tax^2
dat$drive.sq = dat$driver^2
e.sq = lm.fit$residuals^2
lm.fit2 = lm(e.sq \sim gdp_per + transit + price + driver + tax
            + gdp.sq + transit.sq + P.sq + tax.sq + drive.sq
            + gdp_per:transit + gdp_per:price + gdp_per:driver + gdp_per:tax
            + transit:price + transit:driver + transit:tax + price:driver
            + price:tax + driver:tax, data=dat)
summary(lm.fit2)
#qchisq(0.99, df=10)
gchisg(0.95, df=10)
summary(lm.fit2)$r.square*nrow(dat) # 33.4523 > chi(10) 등분산가설 기각. 오차항이 등분산 아니다.
# FGLS 추정
lm.e = lm(e.sq ~ dat$price)
sigma.hat = sqrt(abs(lm.e$fitted.value))
v.str = dat$vehicle/sigma.hat
x1.str = dat\$gdp_per/sigma.hat
x2.str = dat$transit/sigma.hat
x3.str = dat$price/sigma.hat
x4.str = dat$driver/sigma.hat
FGLS.fit = lm(y.str \sim x1.str + x2.str + x3.str + x4.str)
summary(FGLS.fit)
library(fUnitRoots):library(lmtest)
bptest(FGLS.fit, ~ ln_transit, data=dat, studentize=F) # 이분산성 없다
# 오차항 자기상관 검정, 더빈왓슨 검정
dwtest(ols.fit) # 양의 자기상관
dwtest(FGLS.fit) # 자기상관 조금 완화됐음
#income/vehicle/price, gdp/vehicle/price, gdpper/vehicle/price
y = vehicle
# Ivreg
library(ivreg); library(AER)
ivreg.fit = ivreg(log(vehicle) ~ log(price) + log(gdp)|taxp + log(gdp))
ivreg.fit # 가격 탄력성 계수 -0.38 가격 1% 오르면 차 소비량 0.38% 내림
summary(ivreg.fit)
# FGLS 선택 -> ols는 유의성 과장되고, 등분산 변환
confint(ivreg.fit, level=0.95, int="confi") # 신뢰구간
plot(vehicle/1000, type="l")
plot(price, type="l")
plot(taxp, type="l")
# adf 검정
acf(y, main="SACF")
pacf(y, main="SPACF")
adfTest(y/1000, type="c", lag=1)
adfTest(price, type="ct", lag=1)
```

adfTest(taxp, type="c", lag=1)

```
# ARIMA 모형으로 향후 2년 검토 추세 있음
log.y = log(vehicle); n=length(log.y); d.log.y=log.y[2:n]-log.y[1:(n-1)]
plot(d.log.y, type="l") #로그계열 차분
library(forecast)
aic1 = matrix(rep(0, 5*5), 5.5); bic1=matrix(rep(0, 5*5), 5.5)
for (p in 1:5){for (q in 1:5)
 \{aic1[p,q] = Arima(d.log.y, order=c(p-1,0,q-1))\}aic
  bic1[p,q] = Arima(d.log.y, order=c(p-1,0,q-1))$bic}
min(aic1) # 1,1 -> AIC order = (0,0)
min(bic1) # 1,1 BIC oder = (0,0) AR(0)
arima.fit = Arima(log.y, order=c(1,1,1))
arima.fit=Arima(log.y, order=c(1,1,1))
arima.hat=forecast(arima.fit, h=2)
confint(arima.fit, level=0.95, int = "predi")
arima.hat
library(mvtnorm):library(urca)
Data = data.frame(vehicle/1000, price, taxp)
johanson.test = ca.jo(Data, type="eigen", ecdet="const")
summary(johanson.test) # rank =1
library(tsDyn)
vecm.fit=VECM(Data, lag=0, r=1, estim="ML", include = "none")
summary(yecm.fit)
beta = matrix(c(1, 1515.934, -169.138), nrow=1)
alpha = matrix(c(3.1224, 2.4e-06, 7.1e-05))
pi = alpha%*%beta
aic = matrix(rep(0, 5*5), 5,5); bic=matrix(rep(0, 5*5), 5,5)
for (p in 1:5){for (q in 1:5)
   \{aic[p,q] = Arima(log(y/1000), order=c(p-1,0,q-1))$aic
   bic[p,q] = Arima(log(y/1000), order=c(p-1,0,q-1))$bic}
which.min(aic) # 2,1 -> AIC order = (1,1)
Data = data.frame(vehicle/1000, price, taxp)
johanson.test = ca.jo(Data, type="eigen", ecdet="const")
summary(johanson.test) # 1%에서 기각 -> 10%에서 기각못함 -> rank=1
library(tsDyn);library(vars)
bic=c()
for (p in 1:10){
 bic[p] = summary(vecm.fit)$bic}
which.min(bic) # 1 : BIC order
var.form <- vec2var(johanson.test, r= 1)
var.fit = VAR(Data, lag=1)
summary(var.fit)
var.hat = predict(var.fit, n.ahead=2)
var hat
# ADL
# adf 검정
library(fUnitRoots)
aic=c()
for(p in 1:10){
   ar.fit = Arima(price, order = c(p,0,0), method="ML")
   aic[p] = ar.fit$aic}
which.min(aic)
plot(dat\$taxp,\ type="l")
adfTest(dat$vehicle, type="c")
adfTest(dat$price, type="ct")
adfTest(dat\$taxp,\ type="c")
```

공적분의 검토

```
y=dat$vehicle/1000
attach(dat)
reg = lm(y ~ price + taxp)
z=reg$residual
library(forecast)
aic=c()
for(p in 1:10){
  ar.z = Arima(z, order=c(p,0,0), method="ML")
  aic[p] = ar.z$aic}
which.min(aic) # 1
adfTest(z, type="c", lags=0) # 유의함 공적분관계 있음
dy = diff(y)
dx_1 = diff(price)
dx_2 = diff(taxp)
library(MASS)
lm.fit = lm(dy \sim dx_1 + dx_2)
summary(lm.fit)
full.model <- lm.fit
step.model <- stepAIC(full.model, direction="both", trace=FALSE)
summary(step.model)
nrow(dat)*4
z.fit=lm(y\sim price + taxp, data=dat)
z=z.fit$residuals[1:(49-1)]
lm.fit3 \leftarrow lm(dy \sim dx_1 + dx_2+z)
summary(lm.fit3)
price_st <- price[-1]
taxp_st \leftarrow taxp[-1]
taxp <- dat$taxp
lm.fit4 \leftarrow lm(dy \sim dx_1 + dx_2 + price_st + taxp_st)
summary(lm.fit4)
adl.hat = predict(lm.fit4, n.ahead=2)
confint(lm.fit4, level=0.95, int="predi")
```