Econométrie TP2

> Patrick Waelbroeck

Le modèle linéaire

Test d'hypothès

Econométrie TP2 Le modèle linéaire Python

Patrick Waelbroeck

Telecom Paris

February 6, 2020

broeck Le modèle

linéaire Test On utilise la base de données wage1.raw.

Exercice 1

Définir la variable dépendante y = wage. La matrice de variable explicative inclut une constante et les variables educ, exper, tenure.

La commande np.ones(shape) retourne une matrice de dimension shape. La commande np.column_stack permet de définir une matrice à partir des vecteurs. On peut également définir la matrice X avec pandas ou utiliser la fonction reshape.

```
y=wage
s=np.shape(wage)
const=np.ones(s)
educ=df[1]
exper=df[2]
tenure=df[3]
X=np.column_stack((const, educ, exper, tenure))
```

Le modèle

Test d'hypothès

Exercice 2

Calculer les estimateurs des moindres carrés ordinaires $\hat{\beta} = (X'X)^{-1}X'y$

Plusieurs possibilités :

- utiliser la bibliothèque np.linalg. Solution retenue pour la suite.
- utiliser la bibliothèque statsmodels. Voir plus loin.

La fonction X.T retourne la transposée de X.

```
beta = np.linalg.inv(X.T @ X)@X.T@y
```

On obtient ainsi pour beta:

```
array([-2.87273489, 0.59896507, 0.02233952, 0.16926865])
```

Exercice 3

Calculer la matrice de variance-covariance des estimateurs OLS $Var(\hat{\beta}) = \sigma^2(X'X)^{-1}$. Puis, calculer les écart-types.

On doit d'abord calculer un estimateur de la variance des résidus. Ensuite, calculer les écart-types en utilisant les fonctions np.sqrt() et np.diag().

```
u=y-X@beta
n,k=np.shape(X)
sig2=u.T@u/(n-k)
Var=sig2*np.linalg.inv(X.T @ X)
std=np.sqrt(np.diag(Var))
```

Résultat pour std :

```
array([0.72896429, 0.05128355, 0.01205685, 0.02164461])
```

Le modèle linéaire

d'hypothès

Exercice 4

Faire l'histogramme des erreurs. Supprimer les observations pour lesquelles l'erreur est située à plus de trois écart-types de la moyenne. Refaire l'estimation.

Utiliser les commandes du TP 1 pour sélectionner les observations. Résultat pour $\hat{\beta}$: array([-1.70094791, 0.50063696, 0.01756833, 0.14558487])\

Le modèle linéaire

Test d'hypothès

```
plt.hist(u,'auto')
s=(np.abs(u)<3*np.sqrt(sig2))
u1=u[s]
plt.hist(u1,'auto')
y=y[s]
X=X[s,:]
beta = np.linalg.inv(X.T @ X)@X.T@y</pre>
```

broeck

Exercice 5

Tester l'hypothèse de non significativité de exper, avec une hypothèse alternative des deux côtés à 5%:

 $H_0: \beta_{exper} = 0$

Calculer le seuil critique de rejet ainsi que la p-value.

Les distributions statistiques sont dans la bibliothèque scipy.stats. On a besoin de la distribution de student t.

from scipy.stats import t

On a également besoin de la fonction t.ppf(q,df) qui retourne le percentile d'ordre q avec un degré de liberté df. Les p-valeurs sont données par la fonction t.sf(x,df) qui calcule l'aire à droite de x sous la distribution de la loi de student avec df degrés de libertés

Résultats pour la student et la p-value

- 1.77887789559074
- 0.07585416697773316

On ne rejette pas l'hypothèse H_0 à 5%.

Le modèle linéaire

```
Test
d'hypothèse
```

```
u=y-X@beta
n,k=np.shape(X)
sig2=u.T@u/(n-k)
Var=sig2*np.linalg.inv(X.T @ X)
std=np.sqrt(np.diag(Var))
beta[2]/std[2]
t.sf(beta[2]/std[2],n-k)*2
```

Le modè linéaire

Test d'hypothèse

Exercice 6

Faire le même test en utilisant la bibliothèque statsmodels.

On importe la bibliothèque statsmodels. La commande OLS permet d'obtenir les estimateurs des moindres carrés ordinaires.

import statsmodels.api as sm
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())

Exercice 6

OLS Regression Results

Dep. Variable:	у	R-squared:	0.314					
Model:	OLS	Adj. R-squared:	0.310					
Method:	Least Squares	F-statistic:	78.11					
Date:	Thu, 06 Feb 2020	Prob (F-statistic):	1.33e-41					
Time:	19:51:47	Log-Likelihood:	-1204.4					
No. Observations:	515	AIC:	2417.					
Df Residuals:	511	BIC:	2434.					
Df Model:	3							
C								

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-1.7009	0.604	-2.818	0.005	-2.887	-0.515
x1	0.5006	0.043	11.736	0.000	0.417	0.584
x2	0.0176	0.010	1.779	0.076	-0.002	0.037
x3	0.1456	0.018	8.103	0.000	0.110	0.181
Omnibus:		63.7	796 Durbin	-Watson:		1.832
Prob(Omnil	bus):	0.0	000 Jarque	-Bera (JB):		90.134

Le modèle linéaire

Test d'hypothèse Exercice 7

Refaire l'exercice 5 avec y=log(wage) (avec le même échantillon qu'en 2-5).

Résultat pour la statistique de test et la p-value :

- 2.2412779619145424
- 0.025436638860709744

Cette fois, on rejette l'hypothèse H_0 .

Le modèle linéaire

Test d'hypothèse

```
y=np.log(y)
beta = np.linalg.inv(X.T @ X)@X.T@y
u=y-X@beta
n,k=np.shape(X)
sig2=u.T@u/(n-k)
Var=sig2*np.linalg.inv(X.T @ X)
std=np.sqrt(np.diag(Var))
beta[2]/std[2]
t.sf(beta[2]/std[2],n-k)*2
```

Le modèl

Test d'hypothèse

Exercice 8

Tester l'hypothèse :

 $H_0: \beta_{educ} = 0.6$

Résultat pour la statistique de test et la p-value :

-2.329221511737763

0.02023620756802269

Le modèle linéaire

Test d'hypothèse test=(beta[1]-0.6)/std[1] 2*(1-t.sf(test,n-k)) Le modèle

Test d'hypothèse

Exercice 9

Tester l'hypothèse :

$$H_0: \beta_{educ} = \beta_{exper}$$

Ecrire le modèle en fonction du paramètre $\theta=\beta_{educ}-\beta_{exper}.$ Cela revient à faire une régression de y sur une $constante,\ educ,\ educ+exper,\ tenure.$

Le modèl linéaire

Test d'hypothèse

Exercice	9					
		OLS Reg	ression R	esults		
Dep. Variable			y R-sq	uared:		0.314
Model:	•	n		R-squared:		0.310
Method:		Least Squar				78.11
Date:				(F-statistic):		
Time:				Likelihood:		-1204.4
No. Observati	one.		15 AIC:			2417.
Df Residuals:			11 BIC:			2434.
Df Model:		J	3			2404.
Covariance Ty	na.	nonrobu	-			
covariance type. nonrobus						
	coef	std err	t	P> t	[0.025	0.975]
const	-1.7009	0.604	-2.818	0.005	-2.887	-0.515
x1	0.4831	0.041	11.884	0.000	0.403	0.563
x2	0.0176	0.010	1.779	0.076	-0.002	0.037
x3	0.1456	0.018	8.103	0.000	0.110	0.181
Omnibus:		63.7	96 Durb	in-Watson:		1.832
Prob(Omnibus)	:	0.0	00 Jarq	ue-Bera (JB):		90.134
Skew:		0.8	66 Prob	(JB):		2.68e-20
Kurtosis:		4.0	97 Cond	. No.		189.

On rejette l'hypothèse H_0 à 5%.

```
Econométrie
TP2
```

Le modèle linéaire

Test d'hypothèse

```
toteduc=educ+exper
X=np.column_stack((const, educ, toteduc, tenure))
X=X[s,:]
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())
```

Le modèle linéaire

Test d'hypothèse

Exercice 10

Tester l'hypothèse :

$$H_0: \beta_{educ} + \beta_{exper} = 1$$

Réécrire le modèle en fonction de $\theta=1-\beta_{educ}-\beta_{exper}$. Cela revient à redéfinir y'=wage-educ que l'on explique en fonction d'une constante, educ, educ - exper et tenure.

Le modè

Test d'hypothèse

Exercice 10

OLS	Regression	Results
-----	------------	---------

	Dep. Variable:			У	R-squ	iared:		0.368	
	Model:			OLS	Adj.	R-squared:		0.365	
	Method:	L	east Squa	res	F-sta	atistic:		99.36	
	Date:	Thu,	06 Feb 2	2020	Prob	(F-statistic):		1.13e-50	
	Time:		20:57	:15	Log-I	Likelihood:		-1204.4	
	No. Observations:			515	AIC:			2417.	
	Df Residuals:			511	BIC:			2434.	
Df Model: 3				3					
Covariance Type: nonrobus			ust						
		coef	std err		t	P> t	[0.025	0.975]	
	const -1.	.7009	0.604	-2	.818	0.005	-2.887	-0.515	
	x1 -0.	.4818	0.047	-10	.314	0.000	-0.574	-0.390	
	x2 0.	.0176	0.010	1	.779	0.076	-0.002	0.037	

const	-1.7009	0.604	-2.818	0.005	-2.887	-0.515
x1	-0.4818	0.047	-10.314	0.000	-0.574	-0.390
x2	0.0176	0.010	1.779	0.076	-0.002	0.037
x3	0.1456	0.018	8.103	0.000	0.110	0.181
Omnibus:		63.79	6 Durb	in-Watson:		1.832
Prob(Omnibus):		0.00	0 Jarq	ue-Bera (JB):		90.134
Skew:		0.86	6 Prob	(JB):		2.68e-20
Kurtosis:		4.09	7 Cond	. No.		93.1

On rejette l'hypothèse H_0 à 5%.

```
Econométrie
TP2
```

Le modèle linéaire

Test d'hypothèse

```
y=wage-educ
diffeduc=exper-educ
X=np.column_stack((const, educ, diffeduc, tenure))

y=y[s]
X=X[s,:]
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())
```