ROS2串列埠例程

本文件介紹如何在ROS2下來讀取HI226/HI229/CH100/CH110的數據,並提供了c++語言例程程式碼,通過執行ROS2命令,執行相應的節點,就可以看到列印到終端上的資訊。

測試環境: Ubuntu20.04ROS版本: ROS2 Foxy

• 測試裝置: HI226 HI229 CH100 CH110(USB)

1. 安裝USB-UART驅動

Ubuntu 系統自帶CP210x的驅動,預設不需要安裝串列埠驅動。將除錯版連線到電腦上時,會自動識別裝置。識別成功后,會在dev目錄下出現一個對應的裝置:ttyUSBx

檢查USB-UART裝置是否被Ubantu識別:

- 1. 打開終端,輸入1s /dev,先檢視已經存在的串列埠裝置。
- 2. 檢視是否已經存在 ttyUSBx 這個裝置檔案,便於確認對應的埠號。x表示USB裝置號,由於Ubuntu USB裝置號為從零開始依次累加,所以多個裝置每次開機後設備號是不固定的,需要確定裝置的裝置號。
- 3. 接下來插入USB線·連線除錯板·然後再次執行1s /dev。dev目錄下多了一個裝置,如圖:

```
linux@ubuntu:/dev$ ls
agpgart loop3 sinu tty32 tty63 tty57
autofs loop4 snapshot tty33 tty7 tty58
block loop5 snd tty34 tty8
bsg loop6 sr0 tty35 tty9 ttyUSB0
btrfs-control loop7 stderr tty36 ttyprintk tid
```

ttyUSB0 檔案就是除錯版在ubuntu系統中產生的裝置(後面的數字是不固定的,有可能為 ttyUSB1 或 ttyUSB2)

5. 打開USB裝置的可執行許可權:

```
$ sudo chmod 777 /dev/ttyUSB0
```

2. 編譯serial_imu_ws工作空間

- 1. 打開終端進入/examples/ROS2/serial_imu_ws 目錄
- 2. 執行colcon build命令,編譯成功后出現如下資訊。

```
linux@ubuntu20:~/serial_imu_ws$ colcon build
Starting >>> serial_imu
Finished <<< serial_imu [0.24s]

Summary: 1 package finished [0.35s]
linux@ubuntu20:~/serial_imu_ws$</pre>
```

3. 修改串列埠波特率和裝置號

- 1. 在Ubuntu環境中,支援的波特率為115200,460800,921600。本例程使用的預設波特率是115200,預設打開的串列埠名稱是/dev/ttvUSB0。
- 2. 如果您需要更高的輸出頻率,請修改serial_port.cpp檔案中的宏定義, 改為其他波特率。

```
#define IMU_SERIAL ("/dev/ttyUSB0")
#define BAUD (B115200)
```

注意修改後需要回到serial imu ws目錄下,重新執行colcon build命令

4. 顯示數據

本例程提供了一種檢視數據方式:

```
1、輸出ROS 定義的sensor_msgs::Imu。
```

4.1:輸出ROS標準 Imu.msg

- 1. 在windows系統下進行配置模組,使能四元數輸出。
- 2. 使用Window下 CHCenter上位機進行配置:先把模組連線到PC機上。 然後使用CHCenter工具進行連線對應的com口,點選 工具 ---> 配置模 組,在彈出的新視窗中,點選ATCMD,然後在輸入框中輸入AT指令: AT+SETPTL=0x91,點選發送,接收區最後顯示 ok ,說明配置成功,斷 電重啟模組。執行ros2 launch serial_imu imu_spec_msg.launch.py 命令。執行成功后,就可以看到ROS定義的IMU話題訊息:

```
[listener-2] ---
[listener-2] header:
[listener-2] stamp:
[listener-2] secs:1639099575
[listener-2] nanosecs:538349240
[listener-2] frame_id:base_link
[listener-2] orientation:
[listener-2] x: -0.095125280320644379
[listener-2] y: -0.483648955821990967
[listener-2] z: 0.053129896521568298
```

```
[listener-2] w: 0.868453860282897949
[listener-2] orientation covariance: [ 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0]
[listener-2] angular velocity:
[listener-2] x: -0.000815955184543841
[listener-2] y: -0.001057390143056437
              z: 0.001062464062371403
[listener-2]
[listener-2] angular velocity covariance: [ 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[listener-2] linear acceleration:
[listener-2] x: 8.110355603694916482
              y: -2.125157430768013000
[listener-2]
[listener-2] z: 5.013053989410400924
[listener-2] linear acceleration covariance: [ 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[listener-2] ---
```

3、另開一個終端視窗,執行`ros2 topic hz /Imu_data`,可以檢視話題發佈的頻率。

```
linux@ubuntu20:~$ ros2 topic hz /Imu_data
average rate: 100.032
    min: 0.008s max: 0.012s std dev: 0.00058s window: 102
average rate: 100.014
    min: 0.008s max: 0.012s std dev: 0.00054s window: 202
average rate: 100.019
    min: 0.007s max: 0.013s std dev: 0.00064s window: 303
^C
linux@ubuntu20:~$
```

5. FAQ

1、有時候主板上需要插好多的usb裝置,爲了方便開發,通常會編寫一個usb埠約束檔案。如果是不同型號的usb裝置,可以通過裝置的id號來區分。如果是同型號的裝置,他們的id號都是一樣的,這個時候就需要更多的細分資訊來區分不同的usb裝置。接下來就操作一下如何區分同型號的usb裝置。

```
linux@ubuntu:~$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root
hub
Bus 002 Device 012: ID 10c4:ea60 Cygnal Integrated
Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light
Bus 002 Device 011: ID 10c4:ea60 Cygnal Integrated
Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light
Bus 002 Device 010: ID 10c4:ea60 Cygnal Integrated
Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light
Bus 002 Device 008: ID 0e0f:0008 VMware, Inc.
Bus 002 Device 003: ID 0e0f:0002 VMware, Inc. Virtual USB
Hub
Bus 002 Device 002: ID 0e0f:0003 VMware, Inc. Virtual Mouse
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root
hub
linux@ubuntu:~$
```

觀察上面的內容,發現有三個usb裝置的id號完全一樣,使用簡單的id號區分行不通了,需要更多的裝置資訊。

linux@ubuntu:~\$ ls /dev					
agpgart	loop3	shm	tty32	tty63	
ttyS7					
autofs	loop4	snapshot	tty33	tty7	
ttyS8					
block	loop5	snd	tty34	tty8	
ttyS9					
bsg	loop6	sr0	tty35	tty9	
ttyUSB0					
btrfs-control	loop7	stderr	tty36		
ttyprintk ttyUSB1					
bus	loop-control	stdin	tty37	ttyS0	
ttyUSB2					
(未全部放出)					

到這一步,dev檔案中產生三個usb裝置檔案,分別是:ttyUSBO,ttyUSB1,ttyUSB2。

現在先看ttyUSBO的詳細資訊:

```
linux@ubuntu:~$ udevadm info --attribute-walk --
name=/dev/ttyUSB0
#通過這個命令可以檢視指定埠的詳細資訊
.....
ATTRS{devpath}=="2.2"
```

```
ATTRS{idProduct}=="ea60"
ATTRS{idVendor}=="10c4"
ATTRS{ltm_capable}=="no"
ATTRS{manufacturer}=="Silicon Labs"
ATTRS{maxchild}=="0"
ATTRS{product}=="CP2104 USB to UART Bridge Controller"
ATTRS{quirks}=="0x0"
ATTRS{removable}=="unknown"
ATTRS{serial}=="01E34546"
.....(資訊太多了,就不全部放出來了,大家可以自己去看看詳細的資訊,這裡只放出本次需要關心的資訊)
```

然後是ttyUSB1的詳細資訊:

```
linux@ubuntu:~$ udevadm info --attribute-walk --
name=/dev/ttyUSB1
#通過這個命令可以檢視指定埠的詳細資訊
.....

ATTRS{devpath}=="2.3"
ATTRS{idProduct}=="ea60"
ATTRS{idVendor}=="10c4"
ATTRS{ltm_capable}=="no"
ATTRS{manufacturer}=="Silicon Labs"
ATTRS{maxchild}=="0"
ATTRS{product}=="CP2102N USB to UART Bridge Controller"
ATTRS{quirks}=="0x0"
ATTRS{removable}=="unknown"
ATTRS{serial}=="9c1d818b48aeeb119d082897637728c5"
.....(資訊太多了·就不全部放出來了·大家可以自己去看看詳細的資訊,這裡只放出本次需要關心的資訊)
```

最後是ttyUSB2的詳細資訊:

```
linux@ubuntu:~$ udevadm info --attribute-walk --
name=/dev/ttyUSB2
#通過這個命令可以檢視指定埠的詳細資訊
.....

ATTRS{devnum}=="27"

ATTRS{devpath}=="2.4"

ATTRS{idProduct}=="ea60"

ATTRS{idVendor}=="10c4"

ATTRS{ltm_capable}=="no"

ATTRS{manufacturer}=="Silicon Labs"

ATTRS{maxchild}=="0"

ATTRS{product}=="CP2104 USB to UART Bridge Controller"
```

```
ATTRS{quirks}=="0x0"
ATTRS{removable}=="unknown"
ATTRS{serial}=="02228956"
.....(資訊太多了·就不全部放出來了·大家可以自己去看看詳細的資訊,這裡只放出本次需要關心的資訊)
```

通過上邊的三個串列埠裝置的資訊,發現ATTRS{serial}=="xxxx"這一項,看起來特別隨意。實際上這個是硬體的id號,也是硬體的唯一id號,通過這個號,給它起一個別名,這樣一來,只要這個硬體id號被識別到,dev下就會出現自定義的埠名稱裝置檔案,實現永久繫結埠號。

```
linux@ubuntu:~$ cd /etc/udev/rule.d/
linux@ubuntu:/etc/udev/rules.d$ ls
70-snap.core.rules 70-ttyusb.rules 99-vmware-scsi-
udev.rules
#這一步是看看都有哪些約束檔案,避免檔名重複
linux@ubuntu:~$ sudo vi defined_serial.rules
#這一步自定義一個串列埠約束檔名稱,後綴為'.rules'
```

然後在這個檔案中輸入如下內容:

```
1 KERNEL=="ttyUSB",ATTRS(serial)=="90:d818b48aeeb119d882897637728c5",ATTRS(idvendor)=="100:4",ATTRS(idvendor)=="ea60",MODE:="0777",SYMLINK+="H1220"
2 KERNEL=="ttyUSB",ATTRS(serial)=="91634546",ATTRS(idvendor)=="100:4",ATTRS(idvendor)="ea60",MODE:="0777",SYMLINK+="BLUETOOCH"
3 ZERNEL== "ttyUSB",ATTRS(serial)=="9228956",ATTRS(idvendor)=="100:4",ATTRS(idvendor)=="ea60",MODE:="0777",SYMLINK+="GH110"
```

格式如下:

```
      ATTRS{idVendor}=="xxx", ATTRS{idProduct}=="xxx",

      MODE:="0777(埠的許可權)",SYMLINK+="(自定義名稱)"
```

把對應的資訊填對,最後儲存並退出檔案,執行:

linux@ubuntu:~\$	service udev reload					
root privileges required						
linux@ubuntu:~\$	service udev restart					
linux@ubuntu:~\$ ls /dev						
agpgart	loop1	sg1	tty32	tty7		
ttyS9						
autofs	loop2	shm	tty33	tty8		
ttyUSB0						
block	loop3	snapshot	tty34	tty9		
ttyUSB1						
BLUETOOCH	loop4	snd	tty35			
ttyprintk ttyUSB2						
CH110	mcelog	tty0	tty40			
ttyS13 vcs1						
HI226	rfkill	tty22	tty54			
ttyS27 vfio						

現在可以看到,自定義的usb埠名稱已經出來了,在操作的時候,直接操作對應的裝置檔案就好了,不用去理會埠的編號是多少了。