Announcements

Midterm 2: Thurs. 3/217:00-8:30 pm Loom's Lab. 144
Topics: thru. lecture 22 (DRF 14.1)
See email for full policies
Practice problem soln sketches posted
Extra office hour after class today
HW7 will be posted soon (due wed.3/27)

Midterm 2 review

Integral domains & poly. rings Fields = EDs = PIDs = UFDs = int. doms. R UFD => R[x] UFD

Irreducibility criteria (Gauss' Lemma, Test for roots, Reduction mod ideal, Rational root thm., Eisenstein's criterion, Ad-hoc techniques (e.g. plug in x+1))

Field exths

Characteristic & prime subfield Algebraic vs. transcendental Finite vs. Infinite Composite exths Splitting fields Lalg. closures (unique up to isom.)

Determine constructibility (degree must be power of 2)

Compute field extris & degrees e tower law e.g. cyclotomic extris, Q(3/2)/Q, SpQ(x3-2)

Compute field automs. 2 determine if exth is Galois roots of poly must map to each other

Determine whether a poly. is separable check whether acd (f, Df)=1

Computations w/ roots of unity, cyclotomic polys., elts. in field extins, Frobenius map.

Also see Monday's notes p. 1-2 for more on Galois theory

Practice problems (pf. sketches posted on website)

13.4.4) Determine the splitting field and it's degree over Ω for $f(x) = x^6 - y$.

Solin: K = Spaf $f(x) = (x^3-2)(x^3+2)$ irred. by Eig.

boots of x3-5: 315, 23 315, 23 315

[k:
$$\alpha$$
] \leq (qcd x_3-5); = 6
Lyon't $K = 2b \ (x_3-5) = \alpha(4^3) \ (4^3) \ (4^3) = 25$
Lyon't $\alpha \leq (4^3) = 25$

$$[\kappa:\Omega] = [\kappa:\Omega(\mathfrak{V})][\Omega(\mathfrak{V}):\Omega] = 6$$

13.6.10) Let $\phi = Frobp$ on F_p : Prove that ϕ has order n in $Aut(F_p)$.

Pf: Since IFpn is a finite field, ϕ is an autom. $|\phi|=n \iff \phi^n=id$ but $|\phi|=id$ for d < n.

 $\phi(\alpha) = \alpha^p$, so $\phi^n(\alpha) = \alpha^{p^n} = \alpha$, since $|\mathbb{F}_p^n| = p^n - 1$ and so the order of α in \mathbb{F}_p^n must divide $p^n - 1$.

On the other hand, if $\phi^d = id$, then $\phi^d(\alpha) = \alpha \ \forall \alpha \in \mathbb{F}_p^n$ i.e. every elt. of \mathbb{F}_p^n is a root of $x^{pd} - x$. However, $x^{pd} - x$ has deg. p^d and \mathbb{F}_p^n has p^n elts., so we must have $d \ge n$.

14.1.9) Determine the fixed field of the autom. $\phi: t \mapsto t+1$ of k(t). Field

Solh: Can check directly that this gives a unique autom:

$$\frac{q(t)}{q(t)} \longrightarrow \frac{p(t+1)}{q(t+1)}.$$

Let $f(t) = \frac{p}{q} \in k(t)$, where $p,q \in k[t]$, gcd(p,q) = 1, $p,q \in k[t]$.

If
$$f(t) = F_{i \times q}$$
, then $f(t+1) = f(t)$, so
$$\frac{p(t+1)}{q(t+1)} = \frac{p(t)}{q(t)} \longrightarrow p(t+1) q(t) = p(t)q(t+1).$$

If $p(t+1) \neq p(t)$, then neither divides the other since they are both monic and have the same degree. But this contradicts gcd(p,q) = 1, so we must have p(t) = p(t+1) and similarly, g(t) = g(t+1).

We have now reduced to finding the set of $f(t) \in k[t]$ f(t) = f(t).

Consider a root $x \in k$ of f (i.e. f(x) = 0 in k) Since f(t+1) = f(t),

$$0 = t(\pi) = t(\pi+1) = t(\pi+5) = \cdots$$

This is impossible in char O unless f(t) + k. In char p, let \(t) = \(t+1) -- (t+p-1) \(e\) \(\text{Lt}\). We have $\lambda(t+1)=\lambda(t)$, and any poly. in k[t] gen'd by h and elts. of k also has this property, Conversely, let f(+1) = f(+1), f(0) = a. Then g(t):=f(t)-a has g(t+1)=g(t), and g(0)=0, so 0=g(0)=g(1)= -- = g(+1), so \19. By induction on des f = deg g, every f fixed by \$ is given by an expression in terms of & and elts. of k. Conclusion: Fix $\phi = k(\lambda)$ if char k = p, Fix $\phi = k$ adjoin h if char k = 0. to k