SPRAWOZDANIE

PAMSI Lab pn 9:15-11:00 Krystian Lema 218453

Serie pomiarów algorytmów dodających dowolną ilość elementów do tablicy:

zwiększanie o 1					
pomiar/n	10	100	1000	100000	1000000
1	0 s	0 s	0,002 s	19,516 s	2790,590 s
2	0 s	0 s	0,002 s	15,394 s	
3	0 s	0 s	0,002 s	15,590 s	
4	0 s	0 s	0,001 s	17,899 s	
5	0 s	0 s	0,001 s	15,395 s	
6	0 s	0 s	0,002 s	17,873 s	
7	0 s	0 s	0,001 s	17,622 s	
8	0 s	0 s	0,001 s	16,907 s	
9	0 s	0 s	0,002 s	17,487 s	
10	0 s	0 s	0,001 s	17,468 s	
średnia	0 s	0 s	0,001 s	17,115 s	2790,590 s

zwiększanie o 100					
pomiar/n	10	100	1000	100000	1000000
1	0 s	0 s	0,001 s	0,210 s	26,291 s
2	0 s	0 s	0 s	0,152 s	26,185 s
3	0 s	0 s	0 s	0,0151 s	26,090 s
4	0 s	0 s	0 s	0,151 s	26,139 s
5	0 s	0 s	0 s	0,150 s	26,299 s
6	0 s	0 s	0 s	0,157 s	26,153 s
7	0 s	0 s	0 s	0,155 s	26,201 s
8	0 s	0 s	0 s	0,154 s	34,457 s
9	0 s	0 s	0 s	0,172 s	30,269 s
10	0 s	0 s	0 s	0,154 s	26,195 s
średnia	0 s	0 s	0 s	0,160 s	27,427 s

zwiększanie dwukrotnie					
pomiar/n	10	100	1000	100000	1000000
1	0 s	0 s	0 s	0,001 s	0,016 s
2	0 s	0 s	0 s	0,002 s	0,016 s
3	0 s	0 s	0 s	0,002 s	0,014 s
4	0 s	0 s	0 s	0,001 s	0,015 s
5	0 s	0 s	0 s	0,001 s	0,015 s
6	0 s	0 s	0 s	0,002 s	0,014 s
7	0 s	0 s	0 s	0,001 s	0,014 s
8	0 s	0 s	0 s	0,001 s	0,014 s
9	0 s	0 s	0 s	0,003 s	0,015 s
10	0 s	0 s	0 s	0,002 s	0,014 s
średnia	0 s	0 s	0 s	0,001 s	0,014 s

zwiększanie o 50%					
pomiar/n	10	100	1000	100000	1000000
1	0 s	0 s	0 s	0,001 s	0,018 s
2	0 s	0 s	0 s	0,001 s	0,019 s
3	0 s	0 s	0 s	0,001 s	0,016 s
4	0 s	0 s	0 s	0,001 s	0,016 s
5	0 s	0 s	0 s	0,001 s	0,016 s
6	0 s	0 s	0 s	0,001 s	0,016 s
7	0 s	0 s	0 s	0,001 s	0,025 s
8	0 s	0 s	0 s	0,001 s	0,017 s
9	0 s	0 s	0 s	0,001 s	0,016 s
10	0 s	0 s	0 s	0,001 s	0,016 s
średnia	0 s	0 s	0 s	0,001 s	0,017 s

Wszystkie pomiary przedstawiono na wykresach poniżej:

Wnioski:

Porównując wszystkie metody zauważyć można, że największy skok czasu następuje przy ilości 10^6 elementów. Jest to jednak względny skok wartości dla każdego z pomiaru, ponieważ wartości czasu przy zwiększaniu o stałą są wielokrotnie większe od wartości przy zwiększaniu dwukrotnym czy półtorakrotnym. Wynika z tego, że powiększanie tablicy o stałą wartość jest mało opłacalne a najbardziej wydajne jest powiększanie rozmiaru dwukrotnie. Przy liczbie elementów powyżej 10^3 widać znaczną (kilkadziesiąt razy) przewagę tego rozwiązania nad powiększaniem o wartość stałą.

Wykonanie serii pomiarów i przedstawienie wyników średnich pozwoliło na uniknięcie pomiarów błędnych spowodowanych najczęściej tym, że komputer w danej chwili wykonywał inne operacje z wyższym priorytetem niż program testowy. Seria 10 pomiarów powinna wystarczyć aby wynik pomiaru był jak najbardziej możliwie zbliżony do wartości rzeczywistej.