

Demographic Factors and College Completion

An Analysis of U.S. Higher Education Institutions

Saúl Martínez

ADTA 5410: Applications and Deployment of Advanced Analytics, Fall 2024

THE DATA SOURCE

Integrated Postsecondary Education Data System

IPEDS is a system of interrelated surveys conducted annually by the US Department of Education's National Center for Education Statistics (NCES).

nces.ed.gov

THE DATA SET

16,065 U.S. Higher Education Institutions

The data set contains the number of students receiving a degree or certificate by level of award and by race/ethnicity, gender and age categories.

The data set covers awards granted between July 1, 2022 and June 30, 2023.

INTRODUCTION

What demographic factors are the strongest predictors of degree completion?

Race/Ethnicity, Gender and Age

LITERATURE REVIEW

A Brief Overview

- Focus: Minority-Serving Institutions
 (MSIs) in Texas (1997-2008)
- Findings: Race strongly predicts enrollment, but not completion
- Strengths: Longitudinal data, robust methodology
- o Limitations: State-specific data, lacks variables like SAT scores

Article 1

Race, Ethnicity, and College Success:

Examining the Continued Significance of

the Minority-Serving Institutions

Flores, S. M., & Park, T. J. (2013).

- Focus: College selectivity and degree completion
- Findings: Tuition predicts graduation more than selectivity
- Strengths: Addresses 'overmatching' and 'undermatching' theories.
- Limitations: Limited exploration of demographics, reliance on SAT scores

Article 2

College Selectivity and Degree

Completion.

Heil, S., Reisel, L., & Attewell, P.

(2014).

- Focus: Black-White gap in bachelor's degree completion
- Findings: Resource disparities drive gaps; paradoxical persistence
- Strengths: Highlights pre-college resource discrepancies
- Limitations: Focuses on traditional 4-year colleges, overlooks other paths

Article 3

The Paradox of Persistence: Explaining the

Black-White Gap in Bachelor's Degree

Completion.

Eller, C. C., & DiPrete, T. A. (2018).

- Focus: State financial aid policies and college completion
- Findings: High-tuition, high-aid models improve outcomes
- Strengths: Highlights state aid's role in educational goals
- Limitations: Omits non-financial factors and non-traditional students

Article 4

Financial Aid's Role in Meeting State College

Completion Goals

Hillman, N. W., & Orians, E. L. (2013).

INTRODUCTION

What demographic factors are the strongest predictors of degree completion?

Race/Ethnicity, Gender and Age

OBJECTIVES

- To quantify the influence of demographic factors (gender, race/ethnicity, age).
- To identify patterns of success across demographic groups
- To develop insights that can Inform evidence-based policies for improving completions rates.

SIGNIFICANCE

- Address educational equity
- Guide resource allocation
- Inform educational policies

THE METHODOLOGY The Variables

Dependent: Degree completions (CSTOTL)

Independent: Gender (CSTOTLW, CSTOTLM) age (Various), race/ethnicity (Various)

THE METHODOLOGY Machine Learning Models

MODELS:

Logistic Regression: Linear Relationships

Decision Trees: Non-linear Relationships

Random Forest: Aggregate predictions from multiple decision trees, reducing overfitting and improving accuracy

Validation: 5-fold cross validation

THE ANALYSIS Logistic Regression

Linear Relationship

Estimate the probability of degree completion based on demographic characteristics

Accuracy: 97%

Key Predictors: CSWHITT (White completions)

and CSTOTLW (Female completions)

THE ANALYSIS Logistic Regression

Classificatior	Report:			
	precision	recall	f1-score	support
0	0.95	0.98	0.97	2365
1	0.98	0.95	0.97	2455
accuracy			0.97	4820
macro avg	0.97	0.97	0.97	4820
weighted avg	0.97	0.97	0.97	4820

THE ANALYSIS Logistic Regression

Coefficient Analysis

THE ANALYSIS Decision Tree

Non-Linear Relationship

To classify students into groups based on the likelihood of degree completion and rank the importance of predictors

Accuracy: 99.25 (pre-tuned) 99.63% (tuned)

Key Predictors: CSTOTLW (Female completions), CSTOTLM (Male), CSWHITT (White)

THE ANALYSIS Decision Tree

Decision	Tree	Classifica	tion Repor	t:	
		precision	recall	f1-score	support
	0	0.99	1.00	0.99	2365
	1	1.00	0.99	0.99	2455
accu	racv			0.99	4820
macro		0.99	0.99	0.99	4820
weighted	avg	0.99	0.99	0.99	4820
Decision	Tree	Accuracy:	0.99253112	03319502	

Top 10 Feature	Importances
CSTOTLW	0.806768
CST0TLM	0.189932
CS18_24	0.001441
UNITID	0.000776
CS25_39	0.000533
CSWHITT	0.000521
CSHISPT	0.000029
CSUNKN	0.000000
Award_Level_11	0.000000
Award_Level_10	0.000000
dtype: float64	

THE ANALYSIS Random Forest

Multiple Decision Trees

To evaluate predictor importance and capture non-linear relationships more robustly than a single decision tree.

Accuracy: 99.38% (consistent across folds)

Key Predictors: CSTOTLW (Female completions), CSWHITT (White completions) and CS25_39 (Age - Non-traditional students)

THE ANALYSIS Random Forest

THE ANALYSIS Model Validation

K-fold Cross-Validation

K-fold cross validation helps to ensure the results are observed in the decision tree and the random forest will generalize well across different subsets of data. A 5-fold cross validation was performed on the decision tree and the random forest.

THE ANALYSIS Model Validation

Decision Tree

```
Decision Tree Cross-Validation Scores (5-fold): [0.9956427 0.99657641 0.99595394 0.99470899 0.5664488 ]
Decision Tree Mean Accuracy: 0.9099
```

Random Forest

Random Forest Cross-Validation Scores (5-fold): [0.98817305 0.99346405 0.99502023 0.98941799 0.96389667] Random Forest Mean Accuracy: 0.9860

CONCLUSION Key Takeaways

Female completions were the strongest predictor.

Non-traditional students (25_39) play a critical role.

Random Forest demonstrated superior accuracy and reliability.

CONCLUSION Recommendations

Provide tailored interventions to support diverse demographics, particularly, non-traditional students.

Future research would be needed to expand on factors missing in this study such as socioeconomic and institutional factors.

These factors would help provide a more comprehensive understanding of college completion rates.