Machine Learning 1 - Cheat Sheet

Multivariate Calculus

Index notation

•
$$[\mathbf{A}\mathbf{v}]_i = \sum_p \mathbf{A}_{ip} \mathbf{v}_p$$

•
$$\mathbf{v}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \sum_{p} \sum_{q} \mathbf{v}_{p}\mathbf{A}_{pq}\mathbf{x}_{q}$$

•
$$\mathbf{v}^{\mathrm{T}}\mathbf{x} = \sum_{p} \mathbf{v}_{p}\mathbf{x}_{p}$$

Multivariate derivatives

$$\bullet \ \frac{\partial}{\partial \mathbf{w}} \mathbf{w}^{\mathrm{T}} \mathbf{v} = \mathbf{v}^{\mathrm{T}}$$

$$\bullet \ \frac{\partial}{\partial \mathbf{w}} \mathbf{w}^{\mathrm{T}} \mathbf{A} \mathbf{w} = \mathbf{w}^{\mathrm{T}} (\mathbf{A} + \mathbf{A}^{\mathrm{T}})$$

$$\bullet \ \frac{\partial}{\partial \mathbf{w}} \mathbf{A} \mathbf{w} = \mathbf{A}$$

Useful functions

- Kronecker delta: $\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$
- Indicator function: $\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

Conventions

- Vectors are columns $(\mathbf{x} \in \mathbb{R}^{n \times 1})$
- If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, then $\frac{df}{d\mathbf{x}} \in \mathbb{R}^{m \times n}$

Constrained optimization

Equality constraint

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) = 0$

• Lagrangian: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda q(\mathbf{x})$.

Inequality constraint

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \ge 0$

- Lagrangian: $L(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu g(\mathbf{x})$.
- Solve $\max_{\mathbf{x}} \min_{\mu} L(\mathbf{x}, \mu)$ subject to KKT cond.:

$$g(\mathbf{x}) \ge 0, \quad \mu \ge 0, \quad \mu g(\mathbf{x}) = 0.$$

Probability & Statistics

Probability

- Sum rule: $P(X) = \sum_{Y} P(X, Y)$ (disc.)
- Product rule: $P(X,Y) = P(X \mid Y)P(Y)$

Moments

- $\mathbb{E}[f(X)] = \int_x f(x)p(x)dx$ (cont.)
- $\operatorname{Var}[X] = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- $\operatorname{Cov}[X, Y] = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$ = $\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Distributions will be provided if needed.

Regression

Linear Regression with Basis Functions

- Model: $t = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \beta^{-1})$
- Least sq. sol.: $\hat{\mathbf{w}} = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$
- Reg. least sq. sol.: $\hat{\mathbf{w}} = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$

where

• Design matrix: $\mathbf{\Phi} = (\boldsymbol{\phi}(\mathbf{x}_1), \boldsymbol{\phi}(\mathbf{x}_2), \ldots)^{\mathrm{T}}$

Unsupervised methods

PCA

- Eigen-decomposition: $\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$.
- Projection: $\mathbf{z} = \mathbf{U}_M^{\top}(\mathbf{x} \bar{\mathbf{x}}).$
- Whitened projection: $\mathbf{z} = \mathbf{\Lambda}_M^{-1/2} \mathbf{U}_M^{\top} (\mathbf{x} \bar{\mathbf{x}}).$

Probabilistic PCA

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

Mixture of experts

$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x} \mid z_k = 1) p(z_k = 1)$$

• Responsibility: $\gamma(z_k) := p(z_k = 1 \mid \mathbf{x})$

Classification

Logistic Regression

- Sigmoid function: $\sigma(z) = \frac{1}{1+e^{-z}}$
- Softmax function: $\varsigma(\mathbf{z})_i = \frac{\exp z_i}{\sum_{j=1}^n \exp z_j}$

Cross-entropy loss

$$E = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \log(\hat{y}_{nk})$$

Soft margin classifier

$$\underset{\mathbf{w},b,\xi_n}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

subject to $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$, $\forall n \in \{1, ..., N\}$, $\xi_n \ge 0$, $\forall n \in \{1, ..., N\}$.

Kernel methods

Kernels

- **K** $(K_{nm} = k(\mathbf{x}_n, \mathbf{x}_n))$ must be symmetric positive semi definite for k to be a valid kernel.
- Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$c k_1(\mathbf{x}, \mathbf{x}'), \quad f(\mathbf{x}) k_1(\mathbf{x}, \mathbf{x}') f(\mathbf{x}'), \quad q(k_1(\mathbf{x}, \mathbf{x}')),$$

$$\exp(k_1(\mathbf{x}, \mathbf{x}')), \quad k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}'), \quad k_1(\mathbf{x}, \mathbf{x}') k_2(\mathbf{x}, \mathbf{x}')$$

$$k_3(\phi(\mathbf{x}), \phi(\mathbf{x}')), \quad \mathbf{x}^{\top} A \mathbf{x}', \quad k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b),$$

$$k_a(\mathbf{x}_a, \mathbf{x}'_a) k_b(\mathbf{x}_b, \mathbf{x}'_b).$$

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x}): \mathbf{x} \to \mathbb{R}^M$, $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , and A is symmetric positive semidefinite. For $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, k_a and k_b are valid kernel functions over their respective spaces.

Gaussian processes

$$f(\cdot) \sim GP(m(\cdot), k(\cdot, \cdot))$$