Arithmetic for Computers

[Adapted from Computer Organization and Design, Patterson & Hennessy, courtesy for Mary Jane Irwin]

Number Representations

□ 32-bit signed numbers (2's complement):

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \
```

- Converting <32-bit values into 32-bit values</p>
 - copy the most significant bit (the sign bit) into the "empty" bits

□ sign extend versus zero extend (1b vs. 1bu)

Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operations of the ISA

```
add, addi, addw, addiw sub, subw mul, mulw, div, divw
```

and, andi, or, ori, xor, xori m'(operation)
beg, bne, blt, bltu, bge, bgeu, sll, slli

zero ovf

ALU

64

result

With special handling for

- □ sign extend add, sub, mul, div
- □ zero extend andi, ori, xori
- overflow detection add, addi, sub

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 64-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can *never* occur

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

RISC-V signals overflow with an exception (aka interrupt)

 an unscheduled procedure call where the EPC
 contains the address of the instruction that caused the exception

But What about Performance?

Critical path of n-bit ripple-carry adder is n*CP

Design trick – throw hardware at it (Carry Lookahead)

Multiply

Binary multiplication is just a bunch of right shifts and adds

Add and Right Shift Multiplier Hardware

RISC-V Multiplication

- Four multiply instructions:
 - mul: multiply
 - Gives the lower 64 bits of the product
 - mulh: multiply high
 - Gives the upper 64 bits of the product, assuming the operands are signed
 - mulhu: multiply high unsigned
 - Gives the upper 64 bits of the product, assuming the operands are unsigned
 - mulhsu: multiply high signed/unsigned
 - Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
 - Use mulh result to check for 64-bit overflow

MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product

- Low-order word of the product is left in processor register 10 and the high-order word is left in register hi
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are usually done by fast, dedicated hardware and are much more complex (and slower) than adders

Fast Multiplication Hardware

□ Can build a faster multiplier by using a parallel tree of adders with one 64-bit adder for each bit of the multiplier at the base

Division

□ Division is just a *bunch* of quotient digit guesses and left shifts and subtracts

dividend = quotient x divisor + remainder

Left Shift and Subtract Division Hardware

RISC-V Division Instructions

- Four instructions:
 - □ div, rem: signed divide, remainder (modulo operation)
 - divu, remu: unsigned divide, remainder (modulo operation)
- Overflow and division-by-zero don't produce errors
 - Just return defined results
 - Faster for the common case of no error

Representing Big (and Small) Numbers

■ What if we want to encode the approx. age of the earth? 4,600,000,000 or 4.6 x 109

There is no way we can encode either of the above in a 32-bit integer.

- □ Floating point representation (-1)^{sign} x F x 2^E
 - Still have to fit everything in 32 bits (single precision)

	s E	(exponent)	F (fraction)
1	bit	8 bits	23 bits

- ☐ The base (2, *not* 10) is hardwired in the design of the FPALU
- More bits in the fraction (F) or the exponent (E) is a trade-off between precision (accuracy of the number) and range (size of the number)

Exception Events in Floating Point

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

- One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two words

s E (exponent)		F (fraction)		
1 bit	11 bits	20 bits		
F (fraction continued)				
32 bits				

IEEE 754 FP Standard

- Most (all?) computers these days conform to the IEEE 754 floating point standard (-1)^{sign} x (1+F) x 2^{E-bias}
 - Formats for both single and double precision
 - □ F is stored in normalized format where the msb in F is 1 (so there is no need to store it!) called the hidden bit
 - □ To simplify sorting FP numbers, E comes before F in the word and E is represented in excess (biased) notation where the bias is -127 (-1023 for double precision) so the most negative is 00000001 = 2¹⁻¹²⁷ = 2⁻¹²⁶ and the most positive is 11111110 = 2²⁵⁴⁻¹²⁷ = 2⁺¹²⁷
- Examples (in normalized format)

 - □ Largest+: 0 11111110 1.111111111111111111111111 = 2-2⁻²³ x 2²⁵⁴⁻¹²⁷

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for the results of invalid operations such as 0/0
 - True zero is the bit string all zero

Single Precision		Double Precision		Object
E (8)	F (23)	E (11)	F (52)	Represented
0000 0000	0	0000 0000	0	true zero (0)
0000 0000	nonzero	0000 0000	nonzero	± denormalized number
1-254	anything	1-2046	anything	± floating point number
255	0	2047	-0	± infinity
255	nonzero	2047	nonzero	not a number (NaN)

Support for Accurate Arithmetic

- □ IEEE 754 FP rounding modes
 - □ Always round up (toward +∞)
 - □ Always round down (toward -∞)
 - Truncate
 - Round to nearest even (when the Guard || Round || Sticky are 100) always creates a 0 in the least significant (kept) bit of F
- Rounding (except for truncation) requires the hardware to include extra F bits during calculations
 - Guard bit used to provide one F bit when shifting left to normalize a result (e.g., when normalizing F after division or subtraction)
 - Round bit used to improve rounding accuracy
 - Sticky bit used to support Round to nearest even; is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning F during addition/subtraction)

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- □ Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Addition Example

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
- □ Step 2: Add significands 1.0000 + (-0.111) = 1.0000 – 0.111 = 0.001
- Step 3: Normalize the sum, checking for exponent over/underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
- □ Step 4: The sum is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 127 = E3
 also determine the sign of the product (which depends on the
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- □ Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift
 F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) − 127 = (-1 -2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- □ Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - fsw, fsd

FP Instructions in RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.se.g., fadds.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.de.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - □ feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beg, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond

Concluding Remarks

- □ ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow