# **Text Clustering and Topic Modeling**

Applied Text Mining

Dr. Maryam Movahedifar

4-6 December 2024

University of Bremen, Germany





#### Outline

Introduction to Clustering

**Clustering Methods** 

Hard vs. Soft Clustering

Partitional Clustering

Topic Modeling

**Cluster Validation** 

# Introduction to Clustering

## What is Clustering?

Clustering is the process of grouping similar objects into clusters without prior knowledge of the categories. It helps discover the natural structure in the data.

- Criterion: High intra-cluster similarity, low inter-cluster similarity.
- Applications: Grouping tweets, customer reviews, scientific articles, etc.



# Clustering vs. Classification

- Clustering: Unsupervised learning where clusters are inferred from data without labeled input.
- Classification: Supervised learning that assigns predefined labels to data.





# **Clustering Methods**

## **Clustering Algorithms Overview**

There are various clustering methods categorized by their approach:

- Hard vs. Soft Clustering:
  - Hard Clustering: Each data point belongs to exactly one cluster.
  - **Soft Clustering:** Each data point can belong to multiple clusters with varying probabilities.
- Partitional Clustering: Algorithms like K-means and K-medoids that divide data into non-overlapping clusters.
- Hierarchical Clustering: Builds a tree-like structure (dendrogram) to represent nested clusters.
- Topic Modeling:
  - Unsupervised learning to identify topics in a collection of documents.
  - Algorithms like LDA (Latent Dirichlet Allocation) are commonly used.
  - Each document is represented as a mixture of topics, and each topic is a distribution over words.

# Hard vs. Soft Clustering

## Hard vs. Soft Clustering

- Hard Clustering: Each document belongs to exactly one cluster.
- Soft Clustering: A document can belong to multiple clusters.



# Partitional Clustering

### Partitional Clustering: Overview

Partitional clustering divides n documents into K clusters by optimizing a partitioning criterion.

- Objective: Minimize intra-cluster distance and maximize inter-cluster distance.
- Challenges: Finding the globally optimal partition is intractable for many objective functions.
- Heuristic Methods:
  - K-Means: Assigns each document to the nearest centroid.

## K-Means Algorithm: Mathematical Explanation

• Objective Function: Minimize the sum of squared distances between each point  $\mathbf{x}_i$  and its assigned cluster centroid  $\mu_j$ :

$$J = \sum_{j=1}^K \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|^2$$

- Algorithm Steps:
  - Initialization: Randomly select K centroids  $\mu_1, \mu_2, \dots, \mu_K$ .
  - Assignment Step: Assign each data point  $x_i$  to the nearest centroid:

$$C_j = \{\mathbf{x}_i : \|\mathbf{x}_i - \mu_j\|^2 \le \|\mathbf{x}_i - \mu_k\|^2 \, \forall k\}$$

• **Update Step:** Recalculate the centroids for each cluster:

$$\mu_j = \frac{1}{|C_j|} \sum_{\mathbf{x}_i \in C_i} \mathbf{x}_i$$

Repeat the assignment and update steps until convergence.

# **Example of K-Means**



### **Hierarchical Clustering Overview**

Hierarchical clustering builds a tree-based hierarchical taxonomy (dendrogram) to group data into clusters based on their similarity.

- Dendrogram: A tree structure representing the nested clustering of documents.
- Clustering is obtained by cutting the dendrogram at a chosen level, with each connected component forming a cluster.
- Hierarchical clustering does not require specifying the number of clusters beforehand.

# **Example of Hierarchical Clustering**



### **Types of Hierarchical Clustering**

#### Hierarchical clustering is divided into two main types:

- Top-down Divisive Clustering:
  - Start with all data in one cluster.
  - Repeatedly split the remaining clusters into two smaller clusters.
  - Suited for datasets with clear large-to-small groupings.
- Bottom-up Agglomerative Clustering (HAC):
  - Start with each document in a separate cluster.
  - Iteratively merge the closest pair of clusters until only one cluster remains.
  - Forms a hierarchy visualized as a binary tree (dendrogram).

# Linkage Methods in Agglomerative Clustering

- Single-Link: Uses the smallest distance between any two points in two clusters (nearest neighbor).
- Complete-Link: Uses the largest distance between any two points in two clusters (farthest neighbor).
- Centroid: Merges clusters based on the distance between their centroids (average position).
- Average-Link: Uses the average distance between all pairs of points from two clusters.
- Ward's Linkage: Minimizes the variance within clusters by merging the pair that results in the smallest increase in total variance.

#### What is scikit-learn?

- scikit-learn is a widely-used open-source Python library for machine learning.
- It provides simple and efficient tools for data mining, data analysis, and machine learning.
- Built on top of popular libraries like NumPy, SciPy, and matplotlib.
- Supports various machine learning tasks, including:
  - Supervised Learning: Classification and Regression.
  - Unsupervised Learning: Clustering, Dimensionality Reduction.
  - Model selection and evaluation.
- Well-documented with extensive examples for practical use.

# Comparison of Clustering Algorithms in scikit-learn



# **Topic Modeling**

# **Topic Modeling in Machine Learning**



Figure 2: Overview of Machine Learning: Supervised vs. Unsupervised Learning

## Topic Modeling and LDA

Topic modeling discovers latent topics in a collection of documents. Latent Dirichlet Allocation (LDA) is one of the most common methods.

- Documents have a probability distribution over topics.
- Topics have a probability distribution over words.

This diagram illustrates the probabilistic generative process of LDA:

- Topic 1: Words like "money," "bank," and "loan."
- Topic 2: Words like "river,"
   "stream." and "bank."



#### **LDA: Process Overview**

This slide provides an overview of how LDA clusters words and documents by topics.



# Posterior Inference and New Data Integration

#### **Posterior Inference:**

- Identify topics describing a collection of documents.
- Estimate the probability of each topic for a document using the posterior distribution.

#### **New Data Integration:**

- For new documents, determine their fit within the existing topic structure.
- Use pre-trained model parameters to compute the document's topic distribution.

Example: "I enjoy eating broccoli while watching football."

- Topic 1 (Food): Keywords like "broccoli," "banana" Topic 2 (Sports): Keywords like "football," "tennis"
- LDA assigns probabilities: 70% Topic 1 (Food) 30% Topic 2 (Sports)

### **Iterative Word Reassignment in LDA**

#### **Key Steps:**

- Each word w in a document is initially assigned a random topic.
- For each word w in each document d, update the topic assignment based on:
  - p(topic t|document d): Proportion of words in d currently assigned to topic t.
  - p(word w|topic t): Proportion of assignments to t across all documents for word w.

### Convergence and Steady State in LDA

- LDA iterates the reassignment process until a steady state is reached.
- Steady State: Topic assignments stabilize, resulting in consistent topic distributions.
- Estimations:
  - **Topic Mixtures:** Proportion of each document's words assigned to each topic.
  - Topic-Word Distributions: Frequency of each word within each topic across the corpus.

### **LDA: Identifying Structure in Text**



Figure 3: Overview of Identifying Structure in Text

### Variations of Latent Dirichlet Allocation (LDA)

LDA has evolved into several variations to address different modeling needs:

- Hierarchical LDA (hLDA): Automatically discovers hierarchical relationships among topics, forming a tree-like structure.
- Supervised LDA (sLDA): Integrates class labels during training to learn topics aligned with specific categories or outcomes.
- Hybrid LDA: Combines LDA with additional information extraction, merging topic modeling with other analyses.
- LDA & BERT: Explores the integration of LDA with deep learning models like BERT.

# **Cluster Validation**

#### **Cluster Evaluation**

- Internal Validation: Measures coherence within clusters using metrics like Davies-Bouldin Index.
- External Validation: Compares clusters to known labels using metrics like Rand Index.

### Clustering Performance Evaluation in scikit-learn

scikit-learn provides various metrics for clustering evaluation:

- Rand Index: Measures the similarity between the clustering result and a ground truth classification.
- Mutual Information Scores: Captures the amount of shared information between clusters and the ground truth.
- Homogeneity, Completeness, and V-measure: Evaluate how well clusters contain only
  members of a single class (homogeneity) and how well all members of a given class are
  assigned to the same cluster (completeness).
- Fowlkes-Mallows Score: Measures the similarity between true clusters and predicted clusters by evaluating the pairwise precision and recall.
- **Silhouette Coefficient:** Measures how similar an object is to its own cluster compared to other clusters.

# **Clustering Evaluation Metrics (Continued)**

Additional metrics for clustering evaluation in scikit-learn:

- Calinski-Harabasz Index: Measures the ratio of the sum of between-clusters dispersion to within-cluster dispersion.
- Davies-Bouldin Index: Evaluates the average similarity ratio between each cluster and the cluster that is most similar to it.
- Contingency Matrix: A matrix that shows the overlap between the true labels and the predicted clusters.
- Pair Confusion Matrix: Measures pairwise similarity, detailing true positives, false positives, true negatives, and false negatives in clustering assignments.

## **Summary of Text Clustering and Evaluation**

#### Key takeaways for text clustering:

- Clustering is an unsupervised learning method where clusters are inferred from data without human input.
- The outcome of clustering can be influenced by:
  - Number of clusters.
  - Similarity measure used (e.g., cosine similarity, Euclidean distance).
  - Representation of documents (e.g., TF-IDF, embeddings).
- Evaluation is crucial to ensure meaningful clustering results.

# Programming

Practical 4