Trains

1 second, 256 MB

In a country where everything is ranked. Train tickets also have levels, and as expected, trains between stations have levels.

There are **N** train stations (2 <= **N** <= 3,000). There are **M** direct routes between train stations (1 <= **M** <= 30,000). Route **i**, for 1 <= **i** <= **M**, connects stations A_i with station B_i and only accepts passenger with ticket level at least C_i . All train routes are bidirectional, i.e., you can either go from A_i to B_i or from B_i to A_i .

There are also \mathbf{Q} passengers (1 <= \mathbf{Q} <= 10). Passenger \mathbf{j} has a ticket with level $\mathbf{L_j}$ and wants to travel from station $\mathbf{S_j}$ to station $\mathbf{T_j}$. You want to check if she can actually do so with her ticket.

Consider the following example with N=5 with M=7. The minimum ticket level for each route is shown on the line.

The next table shows Q = 4 passengers with ticket levels and traveling objectives. The table also shows if each passenger can do so with her ticket.

i	Li	Si	Ti	Possible?
1	10	2	1	yes
2	5	4	5	no
3	3	2	5	yes
4	6	3	1	no

Input

The first line of input contains three integers **N M** and **Q**. (2 \leq **N** \leq 3,000; 1 \leq **M** \leq 30,000; 1 \leq 0 \leq 10)

The next **M** lines contains route information. Specifically, for $1 \le i \le M$, line 1+i contains three integers A_i B_i C_i , that describe a route between station A_i and B_i with minimum passenger level C_i . ($1 \le A_i \le N$; $1 \le B_i \le N$; $1 \le C_i \le 100,000$)

The next **Q** lines contain passenger information. For $1 \le j \le Q$, line 1+M+j contains three integers $L_i S_i$ and T_i . $(1 \le L_i \le 100,000; 1 \le S_i \le N; 1 \le T_i \le N)$

Output

The output contains \mathbf{Q} lines, each line answers the question for one passenger. On line j, the output should contain string yes if passenger \mathbf{j} can travel from station \mathbf{A}_i to \mathbf{B}_i using ticket level \mathbf{L}_i and should contain string no otherwise.

Example

Input	Output
5 7 4	yes
1 2 20	no
1 4 1	yes
2 4 7	no
2 3 3	
3 4 9	
5 3 2	
5 4 10	
10 2 1	
5 4 5	
3 2 5	
6 3 1	