Scalable In-situ Indexing For ast Trajectory Queries

Qing Zheng, Brad Settlemyer, Chuck Cranor, George Amvrosiadis Garth Gibson, Greg Ganger, Gary Grider, Fan Guo

2018 USRC Annual Symposium

Carnegie Mellon University Los Alamos National Laboratory

LA-UR-18-27284

DeltaFS / VPIC

DeltaFS is awesome but we need an app!

Really want to study 1 trillion particles!

What's VPIC?

Top 4 most used applications at LANL

- Alternates between compute and I/O for every few timesteps
- Each timestep dump consists of the state of all particles

Need fast trajectory query over trillions of particles

- **★ I/O challenges**
 - ☐ Write utilizing all available I/O bandwidth
 - Read fast post-analysis queries

Current state-of-the-art: Indexing during post-processing

Queries run slowly until post-processing done

Fast burst-buffer storage is not going to help post-processing

Limited buffer space cannot always hold all data

Our work is to index data as data is written to storage

Little post-processing is needed

Key Idea

Reuse idle computing resources during simulation I/O for in-situ indexing

Initially, it works like this...

An example of our output

```
# Is /users/qingzhen/jobs/deltafs.51165/deltafs_P16384M_C1024_N32/out/particle L-0001.dat L-0001.idx L-0002.dat L-0002.idx L-0003.dat L-0003.idx L-0004.dat L-0004.idx L-0005.dat L-0005.idx L-0006.dat L-0006.idx L-0007.dat L-0007.idx L-0008.dat L-0009.dat L-0009.idx
```


There are two problems

- 1) Need to read all .idx files to find the trajectory of any particle
- 2) Load imbalance: some .dat larger than others

Patch A

Moving particles around so data from a same particle goes to a same process

Version 2

LANL Trinity Experiments

Up to 4096 compute nodes, 131,072 cores, 2 trillion particles

• CMU PDL / LANL ISTI IRHPIT

The Third USRC Symposium

Page 14

We work hard

	Initial code	Apr17	Jul17	Sep17	Today	
I/O overhead		+64%	+35%	+15%	+10%	
Max #nodes	Garbage	32	32	96	2048	

• CMU PDL / LANL ISTI IRHPIT

The Third USRC Symposium

Especially during

this period

We have a new problem!

Garbage on Awesome Delta performance Knights FS with Haswell Landing nodes nodes!!

Patch B

Separate particle IDs from particle data

Conclusion

- Today's data analysis is sped up through careful post-processing
- In-situ indexing reduces post-processing and improve time-to-insight
- KNL needs more work

