Topic:

Solution of 2nd order Homogeneous LDE with Constant coefficients

Learning Outcomes:

- 1. Formulation of 2^{nd} order homogeneous LDE when roots are given.
- 2. Solution of Initial Value Problems (IVP) and Boundary Value Problems (BVP).

Formulation of LDE of the form: ay'' + by' + cy = 0 when Roots are given:

Let the two given roots be: m_1 and m_2 .

Then required 2nd order homogeneous LDE is:

$$y''$$
 – (sum of roots) y' + (Product of roots) $y = 0$

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

or

$$(D-m_1)(D-m_2)y = 0$$
 where $D \equiv \frac{d}{dx}$

Find a LDE of the form: ay'' + by' + cy = 0 for which the following functions are solutions:

Problem 1. (e^{3x}, e^{-2x})

Solution: Comparing with: (e^{m_1x}, e^{m_2x})

We have: $m_1 = 3$, $m_2 = -2$

Then required 2nd order homogeneous LDE is:

y'' – (sum of roots) y' + (Product of roots)y = 0

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

$$\Rightarrow y'' - (3-2)y' + (3)(-2)y = 0$$

$$\Rightarrow y'' - y' - 6y = 0$$
 Answer.

Problem 2. $(1, e^{-2x})$

Solution: Here
$$(1, e^{-2x}) = (e^{0x}, e^{-2x})$$

Comparing with: (e^{m_1x}, e^{m_2x})

We have:
$$m_1 = 0$$
, $m_2 = -2$

$$y''$$
 – (sum of roots) y' + (Product of roots) $y = 0$

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

$$\Rightarrow y'' - (0-2)y' + (0)(-2)y = 0$$

$$\Rightarrow y'' + 2y' = 0$$
 Answer.

Problem 3. (e^{2x}, xe^{2x})

Solution: Comparing with: (e^{m_1x}, xe^{m_2x})

We have: $m_1 = 2$, $m_2 = 2$

Then required 2nd order homogeneous LDE is:

y'' – (sum of roots) y' + (Product of roots)y = 0

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

$$\Rightarrow y'' - (2+2)y' + (2)(2)y = 0$$

$$\Rightarrow y'' - 4y' + 4y = 0$$
 Answer.

Problem 4. (e^{-3ix}, e^{3ix})

Solution: Comparing with: (e^{m_1x}, e^{m_2x})

We have:
$$m_1 = -3i$$
, $m_2 = 3i$

$$y''$$
 – (sum of roots) y' + (Product of roots) $y = 0$

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

$$\Rightarrow y'' - (-3i + 3i)y' + (-3i)(3i)y = 0$$

$$\Rightarrow y'' + 9y = 0$$
 Answer. $(i^2 = -1)$

Problem 5. $(e^{(5+3i)x}, e^{(5-3i)x})$

Solution: Comparing with: (e^{m_1x}, e^{m_2x})

We have: $m_1 = 5 + 3i$, $m_2 = 5 - 3i$

$$y''$$
 – (sum of roots) y' + (Product of roots) $y = 0$

i.e.
$$y'' - (m_1 + m_2)y' + (m_1m_2)y = 0$$

$$\Rightarrow y'' - [(5+3i) + (5-3i)]y' + (5+3i)(5-3i)y = 0$$

$$\Rightarrow y'' + 10y' + 34y = 0$$
 Answer. $(i^2 = -1)$

Polling Question

If (e^{-3x}, e^{2x}) are the roots, then the corresponding LDE is:

(A)
$$y'' + y' + 6y = 0$$

(B)
$$y'' + y' - 6y = 0$$

(C)
$$y'' - y' - 6y = 0$$

Problem: Solve the Initial value problem: y'' - y = 0, y(0) = 0, y'(0) = 2. **Solution:** The given equation is:

$$y'' - y = 0 \tag{1}$$

Such that: y(0) = 0, y'(0) = 2

S.F.:
$$(D^2 - 1)y = 0$$
 where $D \equiv \frac{d}{dx}$

A.E.:
$$(D^2 - 1) = 0$$
 $\Rightarrow D^2 = 1$ $\Rightarrow D = \pm 1$ (real and unequal roots)

Let
$$m_1 = 1$$
 and $m_2 = -1$

: General Solution of equation (1) is given by:

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

$$\Rightarrow y = c_1 e^{1x} + c_2 e^{-1x}$$

$$\Rightarrow y(x) = c_1 e^x + c_2 e^{-x} \tag{2}$$

$$\Rightarrow y'(x) = c_1 e^x - c_2 e^{-x} \tag{3}$$

Using y(0) = 0 in equation (2), we get:

$$y(0) = c_1 e^0 + c_2 e^{-0} \qquad \Rightarrow 0 = c_1 + c_2 \tag{4}$$

Using y'(0) = 2 in equation (3), we get:

$$y'(0) = c_1 e^0 - c_2 e^{-0} \qquad \Rightarrow 2 = c_1 - c_2 \tag{5}$$

Solving equations (4) and (5), we get: $c_1 = 1$, $c_2 = -1$

Putting these values of c_1 and c_2 in equation (2), we get:

$$y(x) = e^x - e^{-x}$$
 Answer.

Problem: Solve the Boundary value problem: y'' - 4y' + 3y = 0 such that y(0) = 1, y(1) = 0.

Solution: The given equation is:

$$y'' - 4y' + 3y = 0 (1)$$

Such that: y(0) = 1, y(1) = 0

S.F.:
$$(D^2 - 4D + 3)y = 0$$
 where $D \equiv \frac{d}{dx}$

A.E.:
$$(D^2 - 4D + 3) = 0$$
 $\Rightarrow (D - 1)(D - 3) = 0$

 $\Rightarrow D = 1,3$ (real and unequal roots)

Let
$$m_1 = 1$$
 and $m_2 = 3$

: General Solution of equation (1) is given by:

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

$$\Rightarrow y = c_1 e^{1x} + c_2 e^{3x}$$

$$y(x) = c_1 e^{1x} + c_2 e^{3x} (2)$$

Using y(0) = 1, we get:

$$y(0) = c_1 e^0 + c_2 e^0 \qquad \Rightarrow 1 = c_1 + c_2 \tag{3}$$

Using y(1) = 0, we get:

$$y(1) = c_1 e^1 + c_2 e^3$$
 $\Rightarrow 0 = c_1 e^1 + c_2 e^3$ (4)

Solving equations (3) and (4), we get: $c_1 = \frac{e^2}{e^2 - 1}$ and $c_2 = \frac{1}{e^2 - 1}$

Putting these values of c_1 and c_2 in equation (2), we get:

$$y(x) = \frac{e^2}{e^2 - 1}e^x + \frac{1}{e^2 - 1}e^{3x}$$
 Answer.

Polling Question

A Linear differential equation with conditions given as:

$$y(a) = 0$$
 and $y(b) = 1$ (say) is called:

(A)Initial value problem

(B) Boundary value problem

