Long distance coupling between two SRRs

Yutong Zhao

2018 Oct 29th

RLC model

$$\begin{split} Z_{\rm SSR} &= -i\frac{L}{\omega}(\omega^2 - \omega_c^2 + i2\beta\omega_c\omega) \\ &\approx -i2L(\omega - \omega_c + i\beta\omega_c), \end{split}$$

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1/Z_{SRR} & 1 \end{pmatrix}$$

$$\Delta \Phi = \beta \Delta l$$

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1/Z_{SRR} & 1 \end{pmatrix} \qquad M_2 = \begin{pmatrix} \cos(kl) & i \cdot Z_0 \sin(kl) \\ i \cdot Z_0^{-1} \sin(kl) & \cos(kl) \end{pmatrix}$$

$$M = M_1 M_2 M_3 = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$SRR-2 = SRR-1$$

$$M_3 = M_1$$

RLC model (2)

$$M = M_1 M_2 M_3 = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$S_{21} = \frac{2}{A + BZ_0^{-1} + CZ_0 + D}$$

$$\begin{split} S_{21} = & \frac{8L^2(\omega - \omega_c + i\beta\omega_c)^2}{[8L^2(\omega - \omega_c + i\beta\omega_c)^2 + i4LZ_0(\omega - \omega_c + i\beta\omega_c)]\cos(kl) +} ... \\ & \frac{1}{-[8L^2(\omega - \omega_c + i\beta\omega_c)^2 + 4LZ_0(\omega - \omega_c + i\beta\omega_c) + iZ_0^2]\sin(kl)}, \end{split}$$

The kl can be tuned by using a phase shifter. Therefore, we have $\Phi = kl$ Case 1: $kl = \pi$

Case 2: $kl = \frac{\pi}{2}$

Transmissions

For single SRR

$$S_{21} = 1 - \frac{i\Delta\omega_{\text{ext}}}{\omega - \omega_c + i(\Delta\omega_{\text{int}} + \Delta\omega_{\text{ext}})}$$

if
$$l = \lambda/2$$

$$S_{21} = 1 - \frac{2i\Delta\omega_e}{\omega_c - \omega + i(\Delta\omega_i + 2\Delta\omega_e)}$$

if
$$l = \lambda/4$$

$$S_{21} = i(1 - \frac{2i\Delta\omega_e}{(\omega - \omega_c + i\beta\omega_c + i\Delta\omega_e) - \frac{\Delta\omega_e^2}{\omega - \omega_c + i\beta\omega_c + i\Delta\omega_e}}$$

Experiments

	$\omega_c(GHz)$	$\Delta\omega_i$ (MHz)	$\Delta \omega_e (\text{MHz})$
SSR-1	5.001	17.7	11.8
SSR-2	5.012	18.4	13.6
SSR-1+2	5.008	18.5	26.4

