SOMM: INTO THE MODEL

— AI AND DATA SCIENCE FOR WINE PROFESSIONALS

SHENGLI HU. PHD.

SHENGLIHU1224@GMAIL.COM

About the Author

Shengli Hu received her PhD from Cornell University in 2019, and has since been an AI research scientist with Dataminr Inc. in New York City. Her research experience and interests lie in language and vision, in the context of marketing, behavioral economics, and information management, with publications in top conferences and journals in natural language processing, computer vision, and applied statistics including Association of Computational Linguistics (ACL), Empirical Methods in Natural Language Processing (EMNLP), European Conference on Computer Vision (ECCV), Computer Vision and Pattern Recognition (CVPR) and Annals of Applied Statistics (AoAS).

She is also a wine professional with credentials including Certified Sommelier by The Court of Master Sommelier, Certified Specialist of Wine by The Society of Wine Educators, Certified Specialist of Spirits by The Society of Wine Educators, and Level 4 Diploma by Wine Spirits Education Trust. She is an incoming Master of Wine student.

To wine professionals and enthusiasts curions scientists and AI research scientist						

Table of Contents

1	What is a Sommelier?											
	1.1	Theor	y	5								
		1.1.1	Knowledge Graph	5								
		1.1.2	Questions Answering	10								
		1.1.3	Cross-lingual Embedding	17								
	1.2	Deduc	ctive Tasting	23								
		1.2.1	Decision Tree	23								
		1.2.2	Structured Prediction	31								
	1.3	Service	e	39								
		1.3.1	Wine and Food Pairing: Matching Networks	39								
		1.3.2	Recommendation Systems	44								
		1.3.3	Cocktails: Semantic Networks	50								
	1.4	Evalua	ation 5	56								
		1.4.1	Detecting Credibility and Expertise in Text	57								
		1.4.2	Detecting Credibility and Expertise in Speech	61								
		1.4.3	Multimodal Learning	65								
		1.4.4	Multitask Learning	71								
2	Wha	What is Natural Wine?										
	2.1	Terrio	r: Causal Inference with Natural Experiments	80								
	2.2	Terrio	r: Causal Inference with Regression Discontinuity	85								
	2.3	Does N	Natural Wine Taste Different?	92								
		2.3.1	Topic Modeling	93								
		2.3.2	Permutation Tests	00								
		2.3.3	Propensity Score Matching	04								
3	Wine Laws and Regulations											
	3.1	Wine I	Labels	10								
		3.1.1	Optical Character Recognition	11								
		3.1.2	Object Detection	13								
		3.1.3	Image Retrieval	23								
		3.1.4	Style Transfer	30								
	3.2	Wine 7	Tariffs	38								
		3.2.1	Causal Inference with Difference-in-Difference	43								
		3.2.2	Social Voting	49								
4	Have	e You He	eard About The Cheating Scandal?	56								
	4.1	Detect	ting Information Concealment	56								
	4.2	Decep	tion Detection	66								
		4.2.1	Deception Detection in Speech	67								
		4.2.2	Deception Detection in Text	72								

		4.2.3	Deception D	etection in (Other M	Ioda	lities			 	 		177
5	What Makes a Great Wine List?									180			
	5.1	Semanti	ic Parsing for	Wine Lists						 	 		180
	5.2	Automa	tic Wine List	Evaluation						 	 		185
	5.3	Automa	tic Wine List	Generation						 	 		191
19	Re	ferences											198