Taller de Comunicaciones Eléctricas

Introducción Laboratorio 6

Ing. Sergio Arriola-Valverde. M.Sc Ing. Néstor Hernández Hostaller. M.Sc Ing. Alexander Barrantes Muñoz. M.Sc

Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

Contenidos y Cronograma

• Generalidades de enlaces de radio frecuencia

Cronograma del Curso

Semana	Tema	Lugar
1	Introducción Laboratorio 1-Búsqueda Tema Proyecto Final	Virtual
2	Medición Laboratorio 1	Virtual
3	Exposición 1, Informe 1, Quiz 1, Introducción Laboratorio 2, Exposición Teórica	Virtual
4	Medición Laboratorio 2	Virtual
5	Exposición 2, Informe 2, Quiz 2, Introducción Laboratorio 3, Anteproyecto, Exposición Teórica	Virtual
6	Medición Laboratorio 3	Virtual
7	Exposición 3, Informe 3, Quiz 3, Introducción Laboratorio 4, Exposición Teórica	Virtual
8	Medición Laboratorio 4	Virtual
9	Exposición 4, Informe 4, Quiz 4, Introducción Laboratorio 5, Avance 1, Exposición Teórica	Virtual
10	Medición Laboratorio 5	Virtual
11	Exposición 5, Informe 5, Quiz 5, Introducción Laboratorio 6, Exposición Teórica	Virtual
12	Medición Laboratorio 6	Virtual
13	Exposición 6, Informe 6, Quiz 6, Avance 2 ,Exposición Teórica	Virtual
14	Trabajo en proyecto	Virtual
15-16-17	Trabajo en proyecto, Tutorial	Virtual
18	Presentación del proyecto	Virtual

Cronograma del Curso

Semana	Tema	Lugar
11	Exposición 5, Informe 5, Quiz 5, Introducción Laboratorio 6, Exposición Teórica	Virtual

¿Que es una antena?

¿Qué es una antena?

Términos generales una antena usualmente es un elemento metálico que es utilizado para radiar o recibir ondas de radio.

¿Qué tipos de antenas existen?

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas.

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas
- Lens antenas.

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas.

(a) Rectangular

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas
- Lens antenas

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas

- 1) Elementos activo
- 2) Reflectores
- 3) Directores
- 4) Línea de transmisión

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas

Figure 1.7 Typical reflector configurations.

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas.
- Lens antenas.

- Wire antenas.
- Aperture antenas.
- Microstrip.
- Array antenas.
- Reflector antenas
- Lens antenas.

(a) Lens antennas with index of refraction n > 1

(b) Lens antennas with index of refraction n < 1

Figure 1.12 Electric field lines of free-space wave for a $\lambda/2$ antenna at t = 0, T/8, T/4, and 3T/8. (SOURCE: J. D. Kraus and K. R. Carver, *Electromagnetics*, 2nd ed., McGraw-Hill, New York, 1973. Reprinted with permission of J. D. Kraus and John D. Cowan, Jr.)

¿Qué parámetros en cuando a rendimiento existen para analizar una antena?

Patrón de radiación

Es definido como una representación matemática de tipo grafica donde se visualizan las propiedades de radiación de una antena en un espacio coordenado.

Patrón de radiación Isotrópico

Patrón de radiación Omnidireccional

Patrón de radiación Omnidireccional

Patrón de radiación Direccional

Patrón de radiación Direccional

Características de los Lóbulos

Características de los Lóbulos

Regiones

Densidad de potencia de radiación

La deducción de la potencia de radiación es posible demostrar a partir del vector Poynting.

$$W = \mathcal{E} \times \mathcal{H}$$

 $^{\circ}W$ = instantaneous Poynting vector (W/m²)

& = instantaneous electric field intensity (V/m)

 \mathcal{H} = instantaneous magnetic field intensity (A/m)

$$P_{\text{rad}} = P_{\text{av}} = \iint_{S} \mathbf{W}_{\text{rad}} \cdot d\mathbf{s} = \iint_{S} \mathbf{W}_{\text{av}} \cdot \hat{\mathbf{n}} da$$
$$= \frac{1}{2} \iint_{S} \text{Re}(\mathbf{E} \times \mathbf{H}^{*}) \cdot d\mathbf{s}$$

Intensidad de radiación

Es definida como la potencia radiada de una antena por unidad de ángulo sólido.

$$U = r^2 W_{rad}$$

donde

U = intensidad de radiación (W/ unidad de ángulo sólido). W_{rad} = densidad de radiación. r^2 = distancia.

Directividad

Se puede definir con la relación que hay entre la densidad de potencia radiada en una dirección y distancia contra la densidad de potencia que podría radiar en la mismas condiciones un radiador isotrópico.

Ganancia

Se define como la relación que existe entre la densidad de potencia radiada en una dirección en comparación a la densidad de potencia de un radiador isotrópico.

Eficiencia del haz

Es utilizado para cuantificar la calidad de transmisión y recepción de antenas.

BE =
$$\frac{\text{power transmitted (received) within cone angle } \theta_1}{\text{power transmitted (received) by the antenna}}$$
 (dimensionless)

BE =
$$\frac{\int_0^{2\pi} \int_0^{\theta_1} U(\theta, \phi) \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi} U(\theta, \phi) \sin \theta \, d\theta \, d\phi}$$

BW y Polarización

El ancho de banda define el rango de frecuencias en puede operar una antena conservando un buen acople de impedancia y eficiencia.

Impedancia de entrada

Es una característica importante en el diseño debido a que dependiendo la carga se deberá hacer un diseño que permita la reducción de reflexiones y mejor eficiencia en términos de potencia.

MMANA-GAL

Es una herramienta de software que introduce el análisis de antenas a partir del método de los momentos (MoM)

Geometría	Vista Cálculo	Diagrama de ca	ampo lejano					
grados)					Frec.	2400	MHz	lambda
conductore	s 8	Paso gra	ados DM1 800	∨ DM2	o v sc	2 × EC	2	Mantener conexi
No.	X1(wl)	Y1(wl)	Z1(wl)	X2(wl)	Y2(wl)	Z2(wl)	R(wl)	Seg.
1	-0.3	0.23625	0.0	-0.3	-0.23625	0.0	0.006404	-1
2	0.0	0.225	0.0	0.0	-0.225	0.0	0.006404	-1
3	0.125	0.2	0.0	0.125	-0.2	0.0	0.006404	-1
4	0.325	0.175	0.0	0.325	-0.175	0.0	0.006404	-1
5	0.525	0.15	0.0	0.525	-0.15	0.0	0.006404	-1
6	0.725	0.125	0.0	0.725	-0.125	0.0	0.006404	-1
7	0.925	0.01	0.0	0.925	-0.01	0.0	0.006404	-1
8	1.125	0.075	0.0	1.125	-0.075	0.0	0.006404	-1
siguiente								

□ +90 da

Figure 12.1. A typical HF radiolink providing teleprinter service. (Courtesy of Radio General Company.)

Pérdidas por Propagación

Free-space loss (FSL)_{dB} =
$$20 \log(4\pi d/\lambda)$$

$$FSL_{dB} = 32.45 + 20 \log D_{km} + 20 \log F_{MHz}$$

Distance:	2 miles	4 miles	6 miles	10 miles	20 miles
2.4 GHz FSL:	110 dB	116 dB	119 dB	124 dB	130 dB
5.8 GHz FSL:	118 dB	124 dB	127 dB	132 dB	138 dB

Pero se deben considerar otros efectos atmosféricos y obstáculos, así como interferencia de otros canales de comunicación.

Pérdidas por Propagación

Pero se deben considerar otros efectos atmosféricos y obstáculos, así como interferencia de otros canales de comunicación.

Zona de Fresnel

Atenuación puede ser introducida por obstáculos de tamaño comparable a la longitud de onda si se ubica en la zona de radiación de la antena.

El radio depende del tipo de antena y frecuencia, a mayor frecuencia menor es la zona de Fresnel.

Desvanecimiento (Fading)

Distorsiones ocasionadas por variaciones en fase, polarización, nivel, etc. de una señal.

En enlaces de radio existe el problema de propagación multicamino (multipath interference)

Características del Receptor, Transmisor y Antenas

Nivel de señal en Rx: nivel detectado en la antena de recepción

Sensitividad de Rx: valor mínimo de señal que es detectable

Ganancia de la Antena: capacidad de la antena de enfocar energía en cierta dirección (es)

Potencia de Tx: potencia que coloca el transmisor en la antena Tx

Potencia radiada efectiva (Effective Isotropic radiated power: EIRP): potencia transmitida por la antena.

Margen de Operación

System operating margin (SOM): diferencia entre el nivel requerido en Rx y el recibido.

SOM = RX signal (dBm) - RX sensitivity (dBm)

Razón señal a ruido (SNR): Diferencia entre la señal recibida y el nivel de

ruido.

Estimación del Enlace

E.g.: línea-vista, LOS, 60% zona de Fresnel libre.

Simulación de enlaces de comunicación.

Simulación de enlaces de comunicación.

Establecimiento de unidades.

Perfil de enlace

Inserción de repetidores

Caracterización Física de Antenas

Caracterización Física de Antenas

Caracterización Física de Antenas

Bibliografía

- [1] Hayt, W. Teoría Electromagnética, Mc Graw-Hill, Octava Edición, 2013.
- [2] Sadiku M. *Elementos de Electromagnetismo*, Alfaomega, Traducción de la tercera edición en inglés, México, 2004.
- [3] Pozar, D.M., Microwave Engineering, 3 Ed. Wiley. 2005
- [4] Caspers, F, Basic Concepts: The Smith Chart, 2010.

Para más información pueden ingresar a: tec-digital ó http://www.ie.tec.ac.cr/sarriola/

Esta presentación se ha basado parcialmente en compilación para semestre anteriores de cursos de Laboratorio de Teoría Electromagnética II y Laboratorio de Comunicaciones Eléctricas por Aníbal Coto-Cortés, Renato Rimolo-Donadio, Sergio Arriola-Valverde y Luis Carlos Rosales.

Referencias

[1] R. L. Freeman, Radio System Design for Telecommunications, IEEE 2007.

[2] Radio Mobile: http://www.ve2dbe.com/rmonline.html

[3] XCTU: https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

TEC Tecnológico de Costa Rica