4. PRAKTIKA: *Grafoak*

Grafo baten erpinak lotzen dituzten arkuak definitzeko honako notazio hau erabiliko dugu: (P, Q): $P \rightarrow Q$. Arku guztiak zerrenda baten definituko dira.

Praktika honetan erabiliko ditugun Mathematica-ko funtzioak Combinatorica paketean daude eta bertan sartu beharko da:

Needs["Combinatorica`"]

GraphPlot[grafo, aukerak] Esandako grafoa adieraziko du azaldutako aukerekin. Aukeren artean honako hauek ditugu:

VertexLabeling→True Erpinak etiketatzen ditu.

DirectedEdges→True Grafoa zuzendua da.

RegularQ[g] True agertuko da g grafoa erregularra bada.

DeleteEdges[g, zerrenda] Zerrendan adierazitako g-ren arkuak ezabatzen ditu.

DeleteVertex[g, v] g grafoaren v erpina ezabatuko du.

DeleteVertices[g, zerrenda] Zerrendako g-ren erpinak ezabatuko ditu.

TreeQ[g] True agertuko da g grafoa zuhaitza bada

EulerianQ[g] True agertuko da g grafoa euleriarra bada.

RegularGraph[q, n] n erpineko q-erregularra den grafo bat lortuko du.

ExactRandomGraph[n, e] n erpineko eta e arku dituen zorizko grafo etiketatu bat lortuko da.

EulerianCycle[g] Existitzen bada, g grafoaren zirkuitu euleriarra aurkituko du.

Degrees[g] g grafoaren erpin bakoitzaren gradua lortuko du. Zuzendua den kasuan irteera graduak lortuko ditu.

FromAdjacencyMatrix[matrizea, baldintzak] grafo baten auzokidetasun matrizea definituko du. Pisuen bidez definitzerakoan **EdgeWeight** baldintza jarri beharko dugu pisuak onartzeko. Grafoa zuzendua den kasuan **Type→Directed** baldintza jarri beharko da.

MinimumSpanningTree[grafoa] Grafoaren zuhaitz estaltzaile minimala aurkituko du.

2. PRAKTIKA:

Logika matematikoa

1. Tautologiak, kontraesanak eta baliokidetasunak

TautologyQ[adierazpena, {a₁, a₂, ...}] a_1 , a_2 , ... aldagaietan emandako adierazpena tautologia bat bada ikusten du.

Equivalent $[e_1,e_2]$ $e_1 \Leftrightarrow e_2$ $(e_1 = e_2)$ baliokidetasun logikoa adieraziko du.

LogicalExpand[adierazpena] adierazpen logikoa garatu eta sinplifikatu egingo du.

Implies[p,q] $p \rightarrow q$ inplikazio logikoa adieraziko du.

Simplify[adierazpena] Emandako adierazpena ahal den gehien sinplifikatuko du.

! adierazpena Not (¬) funtzio logikoa adieraziko du.

3. PRAKTIKA:

Multzoak, aplikazioak, zatigarritasuna eta konbinatoria

1. Multzoak

Union[zerrenda1, zerrenda2, ...] zerrenda1, zerrenda2, ... adierazpenetan agertzen diren elementu desberdin guztiak agertuko dira.

Intersection[zerrenda1, zerrenda2, ...] zerrenda1, zerrenda2, ... adierazpenetan agertzen diren elementu komunak agertuko dira.

Complement[zerrenda1, zerrenda2] zerrenda2-n ez dauden zerrenda1-eko elementuak agertuko dira.

Subsets[zerrenda] zerrenda-ko azpimultzo posibleak agertuko dira.

Length[zerrenda] zerrenda-ko elementuen kopurua agertuko da.

2. Funtzioak

Parametrorik ez badago

Solve[sistema,{ezezagunak}] Sistemaren soluzioa lortuko du, existitzen bada.

NSolve[sistema, {ezezagunak}] Sistemaren soluzio hurbildua lortuko du, existitzen bada.

Parametroak badaude:

Reduce[sistema, {ezezagunak}] Sistemaren ebazpenerako parametroen arabera aukera guztiak aztertuko ditu.

If[baldintza, t, f] t erantzuna emango du baldintza egiaztatzen bada eta **f** emango du baldintza egiaztatzen ez bada.

3. Zatigarritasuna

GCD[$\mathbf{n_1}$, $\mathbf{n_2}$, ...] $\mathbf{n_1}$, $\mathbf{n_2}$, ... balioen z.k.h. kalkulatuko du.

LCM[$\mathbf{n_1}$, $\mathbf{n_2}$, ...] $\mathbf{n_1}$, $\mathbf{n_2}$, ... balioen m.k.t. kalkulatuko du

PrimeQ[adierazpena] True agertuko da adierazpena zenbaki lehena bada eta False konposatua bada.

CoprimeQ[n_1, n_2] True agertuko da n_1 eta n_2 elkar lehenak badira eta False aurkako kasuan.

NextPrime[n] n zenbakiaren hurbilen dagoen zenbaki lehena adieraziko du (n baino handiagoa).

FactorInteger[n] n zenbakiaren faktore lehenen zerrenda kalkulatu du, bakoitza bere berretzailearekin.

Divisors[n] n zenbakiaren zatitzaileen zerrenda kalkulatuko du.

4. Konbinatoria

Binomial[n, m] $\binom{n}{m}$ zenbaki binomikoa kalkulatuko du.