The fp package

Author: Michael Mehlich*

Contributions by: Denis Girou Acknowledgment to: Denis Girou, Miroslav Balda,

Ricardo Sanchez Carmenes

Documentation: Peter Wang (based on the original ReadMe.txt file,

added examples to show syntax)

January 14, 2019

Abstract

Contents

L	Usage:	2
2	Basic functions:	2
3	Known bugs:	7
1	Copying:	7

^{*}Copyright ©1994 – 1999 Michael Mehlich. This package can be redistributed and/or modified under the terms of the LaTeX Project Public License Distributed from CTAN archives at http://www.latex-project.org/lppl.txt either version 1 of the License, or any later version.

1 Usage:

• LATEX 2ε :

\usepackage[<options>]fp
where the following options are known:

[nomessages]: don't print messages about the functions that are just computed.

[debug]: print debug messages (mainly for \FPupn).

• LATEX2.09:

```
include lfp.sty in the document preamble, i.e. \documentstyle[...,lfp,...]...
```

• TEX: \input fp.tex

• MsDos/Windows Users:

It may be necessary to rename some files such that they just have a length of eight characters (plus a three character suffix). The following renaming examples works for emtex:

```
Original name Name for emtex defpattern.sty defpaern.sty fp-addons.sty fp-radom.sty fp-radom.sty
```

2 Basic functions:

- \FPset#1#2: Defines a variable that you can later print.
- \FPprint#1: Prints the value of a variable.

Example:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

• The following commands are very straightforward: binary and unary operations:

```
\FPadd#1#2#3 % #1 := #2+#3
\FPdiv#1#2#3 % #1 := #2/#3
\FPmul#1#2#3 % #1 := #2*#3
\FPsub#1#2#3 % #1 := #2-#3
\FPabs#1#2 % #1 := abs(#2)
```

```
\FPneg#1#2 % #1 := -#2
\FPmin#1#2#3 % #1 = min(#2,#3)
\FPmax#1#2#3 % #1 = max(#2,#3)
```

binary and unary relations:

```
\FPiflt#1#2...\else...\fi % #1 < #2 ?
\FPifeq#1#2...\else...\fi % #1 = #2 ?
\FPifgt#1#2...\else...\fi % #1 > #2 ?
\FPifneg#1 ...\else...\fi % #1 < 0 ?
\FPifpos#1 ...\else...\fi % #1 >= 0 ?
\FPifzero#1...\else...\fi % #1 = 0 ?
\FPifint#1 ...\else...\fi % #1 is integer ?
%repeat last test
\ifFPtest ...\else...\fi % repeat last test
```

Trigonometric functions (Note: only accepts float numbers for the input variables):

```
\FPpi % 3.141592653589793238
\FPsin#1#2 % #1 := sin(#2)
\FPcos#1#2 % #1 := cos(#2)
\FPsincos#1#2#3 % #1 := sin(#3), #2 := cos(#3)
\FPtan#1#2 % #1 := tan(#2)
\FPcot#1#2 % #1 := cot(#2)
\FPtancot#1#2#3 % #1 := tan(#3), #2 := cot(#3)
\FParcsin#1#2 % #1 := arcsin(#2)
\FParccos#1#2 % #1 := arccos(#2)
\FParcsincos#1#2#3 % #1 := arcsin(#3), #2 := arccos(#3)
\FParctan#1#2 % #1 := arctan(#2)
\FParccot#1#2 % #1 := arccot(#2)
\FParctancot#1#2#3 % #1 := arctan(#3), #2 := arccot(#3)
```

Examples:

```
\P \times \{-1\}
FPset\y{2}
\FPadd\xay\x\y
\Pmin\xoy\x\y
x=\x, y=\y\
                              x = -1, y = 2
FPifgt\xy\y $x+y>y$.
                              x + y < y.
\else $x+y<y$.\fi \\ \\
The result $x+y$
\P is an integer.
                              The result x + y is an inte-
\else is not an integer.
                              ger.
\fi\\ \\
                              \min(x, y) = -1.
\min(x,y)=\sum.
```

• Solving equations:

```
\FPlsolve#1#2#3
% #1 := x with #2*x+#3=0
\FPqsolve#1#2#3#4#5
% #1,#2 := x with #3*x^2+#4*x+#5 = 0
\FPcsolve#1#2#3#4#5#6#7
% #1,#2,#3 := x with #4*x^3+#5*x^2+#6*x+#7 = 0
\FPqqsolve#1#2#3#4#5#6#7#8#9
% #1,#2,#3,#4 := x with #5*x^4+#6*x^3+#7*x^2+#8*x+#9 = 0
```

Example:

```
\label{eq:continuous} $$ \FP \le ca{-4} $$ \FP \le cb{2} $$ \FP \le ca\cb $$ The root for $$ \a x+\cb=0$ is $$ $$ x=\cs. $$ x=0.5000000000000000000.
```

• Evaluate expressions:

```
\FPeval#1#2
% #1 := eval(#2) where eval evaluates the expression #2

Example:
\edef\x{11}
\FPeval\resulta\{\x/2\}
\FPeval\resultb\{clip(neg(x)/2)\}

resulta = \resulta .\\

resultb = \resultb .\\\\

resultb = -5.5.
\FPeval\resulta\{round(resulta:3)\}

round(resulta:3) = \resulta.

round(resulta:3) = 5.500.
```

Attentions:

- The #1 variable can be written as either "\resulta" or "{resulta}", but not "\resulta{}" in the above example.
- When referring to variables in the expression #2, one can use " \x " or " \x ", or simply "x" in the above example.
- The unary prefix operation "-" is not known, therefore one should use the function neg() instead.
- All the results from \FPeval are real numbers so rounding may be necessary.

Known operations:

```
abs
                                         neg
        root
                                  \min
                                        max
pow
                 exp
        pi
round
        trunc
                 clip
\sin
                 tan
                          cot
        COS
arcsin
        arccos
                arctan
                          arccot
```

Most of the operations are self-explanatory. A few notes here:

```
returns \#2 to the power of \#1
pow(#1,#2)
                returns the \#1^{th} root of \#2
root(#1,#2)
exp(#1)
                returns e (defined below) to the power of #1
                returns ln(\#1) (base e)
ln(#1)
min(#1,#2)
                returns minimum of \#1 and \#2
                returns e = 2.718281828459045235
рi
                returns \pi = 3.141592653589793238
round(#1:#2)
                round #1 to #2 decimal places
                truncate #1 to #2 decimal places
trunc(#1:#2)
clip(#1)
                remove all the trailing "0"s in #1
sin(#1)
                sin of #1 in rad. Similarly for others
arcsin(#1)
                arcsin of #1
```

• Evaluate upn-expressions:

```
\FPupn#1#2 \% #1 := eval(#2) where eval evaluates the upn-expression #2
```

Known operations:

+, add, -, sub, *, mul, /, div, abs, neg, min, max, round, trunc, clip, e, exp, ln, pow, root, pi, sin, cos, sincos, tan, cot, tancot, arcsin, arccos, arcsincos, arctan, arccot, arctan, cot, pop, swap, copy

where

pop: removes the top element

swap: exchanges the first two elements

copy: copies the top element

Examples:

```
\Gamma = 17.5 - 21 + 2  swap /}
is equivalent to
\result := ((17.5 - (17 + 2.5)) * (2 + 1)) / 2
and evaluates to
Afterwards the macro call
\Pupn\result{\result} -1 * 0.2 + sin 2 round
^^ the "{}" is necessary!
is equivalent to
\r = round_2(sin((\r * -1) + 0.2))
and evaluates to
\def\result{-0.06}
Example 2:
As "result" is an abbreviation of "\result{}" you may
\P \operatorname{Pupn}{\text{result}}{17 \ 2.5 + 17.5 - 2 \ 1 + * 2 \ \text{swap}}
and
```

 $\ \Gamma = 1 * 0.2 + \sin 2 \text{ round}$ instead leading to the same results.

This is even true for other macro names using e.g. "x" for "x" and so on. But be careful with it. We may introduce new constants in further versions overwriting these abbreviations.

3 Known bugs:

• Does not work with multido.sty/multido.tex

Reason:

multido uses the same macro names \FPadd and \FPsub

Recommended Solution:

Patch multido.tex, i.e. apply the following substitutions:

FPadd -> mdo@FPadd

FPsub -> mdo@FPsub

• Incompatibility with french style of babel.

This only affects macros using the colon (:)

Recommended Solution:

Load the fp-package before babel with french style

Other Possible Solution:

Use \catcode`\:=12 after loading babel with french style

• Others:

Currently not known, but, though we do not, we could give a warranty of their existence . . .

4 Copying:

- Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice, the above history with your modifications added, and this permission notice appear in all copies and modified versions.
- The copyright holder disclaim all warranties with regard to this software, including all implied warranties of merchantability and fitness, in no event shall the copyright holder be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.