

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

2. Übung zur Vorlesung Theoretische Informatik II

Aufgabe 1 (••): Sei G eine Grammatik in CNF und $w \in L(G)$. Zeigen Sie, dass jede Ableitung für w aus genau 2|w|-1 Ableitungschritten besteht.

Aufgabe 2 (•): Es sei $M = (\{z_0, z_1, z_2, z_3, z_4\}, \{0, 1\}, \{0, 1, X, Y, \square\}, \delta, z_0, \square, \{z_4\})$ eine DTM, deren partielle Übergangsfunktion δ durch folgende Turingtafel definiert ist:

	0	1	X	Y	
z_0	(z_1, X, R)	_	_	(z_3, Y, R)	_
z_1	$(z_1, 0, R)$	(z_2, Y, L)	_	(z_1, Y, R)	_
z_2	$(z_2, 0, L)$	_	(z_0, X, R)	(z_2, Y, L)	_
z_3	_	_	_	(z_3, Y, R)	(z_4,\square,R)
z_4	_	_	_	_	_

- a) Dokumentieren Sie die Konfigurationsübergänge für das Eingabewort x=0011. Gehört x zu der Sprache L(M) ?
- b) Dokumentieren Sie die Konfigurationsübergänge für das Eingabewort x=0010. Gehört x zu der Sprache L(M)?
- c) Geben Sie die von M akzeptierte Sprache L(M) explizit an und beschreiben Sie in Worten die allgemeine Vorgehensweise von M.

Aufgabe 3 (•): Konstruieren Sie eine deterministische Turingmaschine, die bei einem Eingabewort über $\Sigma := \{a,b\}$ alle a's durch b's ersetzt und umgekehrt. (Aus abbaa entsteht so baabb.) Der Schreib-Lese-Kopf soll zum Schluss wieder unter dem ersten Symbol des modifizierten Wortes stehen.

Aufgabe 4 (••): Konstruieren Sie eine deterministische Turingmaschine, die aus einem Eingabewort über $\Sigma := \{a, b\}$ alle a's löscht. (Aus abbaba entsteht so bbb.) Der Schreib-Lese-Kopf soll zum Schluss wieder unter dem ersten Symbol des modifizierten Wortes stehen.

Aufgabe 5 (•): Entwerfen Sie eine DTM M, die die Sprache aller Palindrome (Wörter, die von vorne und hinten gelesen gleich sind) über dem Alphabet $\Sigma = \{a, b\}$ erkennt (also z.B. abbababba oder abba). Geben Sie die Turingtafel an und beschreiben Sie ausführlich deren Funktionsweise.

Aufgabe 6 (••): Betrachten Sie eine TM, deren Band anfangs vollkommen leer ist, abgesehen von genau einem Speicherfeld, in dem das Symbol \star gespeichert ist. Der Schreib-Lese-Kopf befinde sich anfangs auf einem beliebigen Speicherfeld, und z_0 sei der Anfangszustand. Geben Sie eine NTM an, die das Zeichen \star findet und unter dem Zeichen \star stehenbleibt. Beschreiben Sie dann (in Worten) eine Strategie, wie eine DTM diesselbe Aufgabe lösen könnte.