Reading notes

HT

March 30, 2022

Contents

1	Bell	non locality [?2014-bell-nonlocality]	1
2	Self-testing of quantum systems: a review [?2020-self-testing-a-review]		1
	2.1	The self-testing scenario	1
	2.2	Physical assumptions	2
	2.3	Impossibility to infer exactly the references	2
	2.4	Extractability relative to a Bell Inequality	3
3	The device-independent outlook on quantum physics [?scarani2015deviceindependent]		4
	3.1	Formal characterization of local variables	4
	3.2	Bell inequalities as a polytope	4
	3.3	Proof that CHSH correlations are non local	4

1 Bell non locality [?2014-bell-nonlocality]

2 Self-testing of quantum systems: a review [?2020-self-testing-a-

2.1 The self-testing scenario

 $\mathcal{L}(\mathcal{H})$ denotes the set of linear operators acting on Hilbert space \mathcal{H} . We know there exist measurement operators $M_{a|x} \in \mathcal{L}(\mathcal{H})$ acting on Alice's Hilbert space and satisfying

$$M_{a|x} \geq 0; \forall a, x \sum_{a} M_{a|x} = \mathbb{1}_A$$
 (1)

Similarly, there exist measurement operators $N_{b|y} \in \mathcal{L}(\mathcal{H})$ acting on Bob's Hilbert space. The measurement operators are therefore projective:

$$\forall a, a' : M_{a|x} M_{a'|x} = \delta_{a,a'} M_{a|x}
\forall b, b' : N_{b|y} N_{b'|y} = \delta_{b,b'} N_{b|y}$$
(2)

Now, from the Born rule, there must exist some quantum state $\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \geq 0$, and $\operatorname{tr} \rho_{AB} = 1$ such that

$$p(a, b|x, y) = \operatorname{tr}\left[\rho_{AB} M_{a|x} \otimes N_{b|y}\right] \tag{3}$$

In self-testing, one aims to infer the form of the state and the measurement in the trace from knowledge of the correlation p(a, b|x, y) alone, i.e. in device-independent scenario.

Born rule: A key postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. More formally, for a state $|\psi\rangle$ and an F_i POVM element (associated with the measurement outcome i), then the probability of obtaining i when measuring $|\psi\rangle$ is given by

$$p(i) = \langle \psi | F_i | \psi \rangle \tag{4}$$

2.2 Physical assumptions

- 1. The experiment admits a quantum description (state and measurement)
- 2. The laboratories of Alice and Bob are located in separate location in space and there is no communication between the two laboratories.
- 3. The setting x and y are chosen freely and independently of all other systems in the experiment.
- 4. Each round of the experiment is independent of all other rounds a physically equivalent to all others (i.e. there exists a single density matrix and measurement operators that are valid in every round).

2.3 Impossibility to infer exactly the references

- 1. Unitary invariance of the trace: one can reproduce the statistics of any state $|\psi\rangle$ and measurement $\{M_{a|x}\}, \{N_{b|y}\}$ by instead using the rotated state $U \otimes V |\psi\rangle$ and measurement $\{UM_{a|x}U^{\dagger}\}, \{VN_{b|y}V^{\dagger}\},$ where U, V are unitary transformations. Hence, one can never conclude that the state was $|\psi\rangle$ or $U \otimes V |\psi\rangle$.
 - On the other hand, considering real reference states $(|\psi\rangle = |\psi\rangle^*)$, one can only self-test measurements that are invariant under the complex conjugate *, since, assuming a real state $|\psi\rangle$, $p(ab|xy) = \text{tr}[|\psi\rangle\langle\psi|M_{a|x}\otimes N_{b|y}] = \text{tr}[|\psi\rangle\langle\psi|M_{a|x}^*\otimes N_{b|y}^*]$. Thus, any correlation obtained using $\{|\psi\rangle, M_{a|x}, N_{b|y}\}$ can also be obtained using $\{|\psi\rangle, M_{a|x}^*, N_{b|y}^*\}$; but the second is not related to the first one via a local isometry (It's an open problem to list the set of state and measurement transformation that do not affect the probabilities).
- 2. Additional degrees of freedom: a state $|\psi\rangle \otimes |\xi\rangle$ and measurements $\{M_{a|x} \otimes \mathbb{1}_{\xi}\}, \{N_{b|y} \otimes \mathbb{1}_{\xi}\}$ gives the same correlation as $|\psi\rangle$ and $\{M_{a|x}\}, \{N_{b|y}\}$.

2.4 Extractability relative to a Bell Inequality

The extractability Ξ is defined as the maximum fidelity of $\Lambda_A \otimes \Lambda_B[\rho]$ and $|\psi'\rangle$ over all CPTP (Completely positive and trace preserving) maps:

$$\Xi(\rho \to |\psi'\rangle) = \max_{\Lambda_A, \Lambda_B} F(\Lambda_A \otimes \Lambda_B, |\psi'\rangle) \tag{5}$$

where $\rho \to |\psi'\rangle$ defines a kind of mapping of the test state ρ to the target state $|\psi'\rangle$. The maximum is taken over all quantum channels (why are the $\Lambda_{A,B}$ called *quantum channels*?). This implies that Ξ return the $\Lambda_{A,B}$ such that the fidelity to the reference state is maximal.

In order to test the entanglement characteristics of ρ , $|\psi'\rangle$ is assumed to be a state which achieves the maximal quantum violation. Hence, when the maximal quantum violation is observed in a self-testing scenario, the shared unknown state (ρ) can be mapped to $|\psi'\rangle$, and the resulting extractability is 1.

To get the optimal (robustness-wise) self-testing statement, one can minimize the possible extractability (over all states) when a violation of at least β is observed on a Bell inequality B. This quantity can be captured by the function \mathcal{Q} defined as

$$Q_{\psi,\mathcal{B}_{\tau}} = \min_{\rho \in S_{\mathcal{B}}(\beta)} \quad \Xi(\rho \to |\psi'\rangle) \tag{6}$$

where $S_{\mathcal{B}}(\beta)$ is the set of states ρ which violate Bell inequality \mathcal{B} as defined in [?2018-experimentally-robust-swith value at least β . One needs to note that the optimal CPTP map generally depends on the observed violation.

3 The device-independent outlook on quantum physics [?scarani20:

3.1 Formal characterization of local variables

The local variable paradigm is related to the idea of pre-established agreement between the two parties, i.e. the output of each run is fully determined by a variable λ :

$$\mathbb{P}(a, b|x, y, \lambda) = \mathbb{P}(a|x, \lambda)\mathbb{P}(b|y, \lambda) \tag{7}$$

In other words, one can write the probability of having (a, b) given the two inputs (x, y) as:

$$\mathbb{P}(a, b|x, y) = \int d\lambda \mathbb{P}(a|x, \lambda) \mathbb{P}(b|y, \lambda)$$
(8)

This pre-established agreement is called *shared randomness*.

No-signalling condition: The fact that the statistics of a (b) should nod depend on y(x), that is, the following conditions hold for all a, b, x, y, λ :

$$\mathbb{P}(a|x,y,\lambda) = \mathbb{P}(a|x,\lambda) \qquad \mathbb{P}(b|x,y,\lambda) = \mathbb{P}(b|y,\lambda) \tag{9}$$

From the above conditions one can deduce the no-signalling constraints:

$$\forall x, x' \in \mathcal{Y} : \sum_{b} \mathbb{P}(a, b | x, y) = \sum_{b} \mathbb{P}(a, b | x, y') = \mathbb{P}(a | x)$$

$$\forall x, x' \in \mathcal{X} : \sum_{a} \mathbb{P}(a, b | x, y) = \sum_{a} \mathbb{P}(a, b | x', y) = \mathbb{P}(b | y)$$
(10)

3.2 Bell inequalities as a polytope

The set \mathcal{L} of all families of probability distributions that can be obtained with LV is convex. In other words, if $\mathcal{P}_1 \in \mathcal{L}$ and $\mathcal{P}_2 \in \mathcal{L}$, then $\forall \alpha \in [0,1] : \alpha \mathcal{P}_1 + (1-\alpha)\mathcal{P}_2 \in \mathcal{L}$. Furthermore, each deterministic local point is an extremal point of \mathcal{L} .

A polytope \mathcal{L} in \mathbb{R}^d is delimited by finitely many (d-1)-dimensional hyperplanes called facets (of the polytope).

Minimal d such that $\mathcal{L} \in \mathbb{R}^d$