Θέμα Α

- 1. [Μονάδες 15] Απόδειξη από το βιβλίο.
- 2. [Movάδες 10] Σ , Σ , Λ , Λ , Σ

Θέμα Β

- 1. [Μονάδες 10] Συγκρίνουμε τα τρίγωνα ${\rm BA}\Delta$ και ${\rm BE}\Delta$ (ορθογώνια με υποτείνουσα και οξεία γωνία).
- 2. [Μονάδες 15] Συγκρίνουμε τα τρίγωνα ΔAZ και $\Delta E\Gamma$ (Γ-Π-Γ) \Longrightarrow $AZ=E\Gamma$. Από πριν BA=BE, άρα $BZ=B\Gamma$.

Θέμα Γ

- 1. [Μονάδες 8] Αφού $\rm M\Delta$ μεσοκάθετος, $\rm \Delta B = \Delta \Gamma$. Έτσι το τρίγωνο $\rm B\Delta \Gamma$ είναι ισοσκελές με $\rm \hat{\Gamma} = M B \Delta = 30^\circ$. Η γωνία $\rm B$ είναι $\rm 60^\circ$ άρα διχοτομείται.
- 2. [Monádec 9] Sunkrína ta trínana $BA\Delta$ kai $BM\Delta$ (Orbonánia me upoteínousa kai oxeña). Etsi $A\Delta=\Delta M$. Allá $\Delta M=\frac{\Delta \Gamma}{2}$ as pleurá orbonaníou apénanti apó 30° . Etsi $\Delta \Gamma=2A\Delta \implies \Delta M=\frac{A\Gamma}{3}$.
- 3. [Μονάδες 8] Οι διαγώνιοι διχοτομούνται κάθετα.

B M M

Θέμα Δ

- 1. **[Μονάδες 5]** $M\Gamma = B\Gamma$ άρα $MB\Gamma$ ισοσκελές.
- 2. [Mονάδες 6] (Γ-Π-Γ με $M_1=M_2, \Delta M=M\Gamma, \Delta=\Gamma$).
- 3. [Μονάδες 5] Από πριν ${\bf E}_1={\bf Z}$ και αφού ${\bf E}=90^\circ$ θα ισχύει $E_2+Z=90^\circ \implies {\bf B}=90.$
- 4. [Μονάδες 6] Στο τρίγωνο BEZ, η BM είναι διάμεσος που αντιστοιχεί στην υποτείνουσα άρα BM = MZ.
- 5. [Μονάδες 3] Παραλληλόγραμμο με μία ορθή.
- 6. **[Μονάδες 5]** Α μέσο ΔΕ και Μ μέσο ΕΖ. Το ΑΜ είναι ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών.

