23 Problems: Diagonalizing Symmetric Matrices

- 1. (On Reality of Eigenvalues)
 - (a) Suppose z = x + iy where $x, y \in \mathbb{R}, i = \sqrt{-1}$, and $\overline{z} = x iy$. Compute $z\overline{z}$ and $\overline{z}z$ in terms of x and y. What kind of numbers are $z\overline{z}$ and $\overline{z}z$? (The complex number \overline{z} is called the *complex conjugate* of z).
 - (b) Suppose that $\lambda = x + iy$ is a complex number with $x, y \in \mathbb{R}$, and that $\lambda = \overline{\lambda}$. Does this determine the value of x or y? What kind of number must λ be?
 - (c) Let $x = \begin{pmatrix} z^1 \\ \vdots \\ z^n \end{pmatrix} \in \mathbb{C}^n$. Let $x^{\dagger} = (\overline{z^1} \cdots \overline{z^n}) \in \mathbb{C}^n$ (a $1 \times n$ complex matrix or a row vector). Compute $x^{\dagger}x$.

Using the result of part 1a, what can you say about the number $x^{\dagger}x$? (E.g., is it real, imaginary, positive, negative, etc.)

(d) Suppose $M = M^T$ is an $n \times n$ symmetric matrix with real entries. Let λ be an eigenvalue of M with eigenvector x, so $Mx = \lambda x$. Compute:

$$\frac{x^{\dagger}Mx}{x^{\dagger}x}$$

- (e) Suppose Λ is a 1×1 matrix. What is Λ^T ?
- (f) What is the size of the matrix $x^{\dagger}Mx$?
- (g) For any matrix (or vector) N, we can compute \overline{N} by applying complex conjugation to each entry of N. Compute $\overline{(x^{\dagger})^T}$. Then compute $\overline{(x^{\dagger}Mx)^T}$. Note that for matrices $\overline{AB+C}=\overline{AB}+\overline{C}$.
- (h) Show that $\lambda = \overline{\lambda}$. Using the result of a previous part of this problem, what does this say about λ ?

Problem 1 hint

2. Let $x_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, where $a^2 + b^2 + c^2 = 1$. Find vectors x_2 and x_3 such that $\{x_1, x_2, x_3\}$ is an orthonormal basis for \mathbb{R}^3 .

3. (Dimensions of Eigenspaces)

(a) Let
$$A=\begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix}$$
 . Find all eigenvalues of A .

- (b) Find a basis for each eigenspace of A. What is the sum of the dimensions of the eigenspaces of A?
- (c) Based on your answer to the previous part, guess a formula for the sum of the dimensions of the eigenspaces of a real $n \times n$ symmetric matrix. Explain why your formula must work for any real $n \times n$ symmetric matrix.

24 Problems: Kernel, Range, Nullity, Rank

- 1. Let $L: V \to W$ be a linear transformation. Show that $\ker L = \{0_V\}$ if and only if L is one-to-one:
 - (a) First, suppose that $\ker L = \{0_V\}$. Show that L is one-to-one. Think about methods of proof-does a proof by contradiction, a proof by induction, or a direct proof seem most appropriate?
 - (b) Now, suppose that L is one-to-one. Show that $\ker L = \{0_V\}$. That is, show that 0_V is in $\ker L$, and then show that there are no other vectors in $\ker L$.

Hint for 1

