The American University in Cairo Mathematics and Actuarial Science Linear Algebra October 2, 2018

	ľ	ΛIA	\mathbf{CT}	21 3	2
]	Fall	201	8
			$\mathbf{E}\mathbf{x}$	am	1
Time Li	mit:	75	M_{i}	nute	es

Name:	UID:

- This exam contains 5 pages (including this cover page).
- Answer <u>ALL</u> the problems (total of points is 40).
- Unsupported answers are considered miracles and will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.

Problem	Score	Points
1		12
2		16
3		12
Total		40

Problem 1. (5 pts + 7 pts) Consider the following linear system of equations in x_1, x_2, x_3 .

$$x_1 + 2x_2 - 3x_3 = 1,$$

$$-3x_1 + tx_2 + 9x_3 = -3,$$

$$2x_2 + 7x_3 = -2q.$$

(a) Which number t makes the corresponding coefficient matrix not invertible?

(b) For which values of q, the associated system will have infinitely many solutions?

Problem 2. (6 pts + 7 pts + 3 pts) Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & -3 \\ -3 & 1 & 9 \\ 0 & 2 & 7 \end{array}\right).$$

(a) Find an LU-decomposition for A.

(b) Solve the linear system of equations $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$.

(c) Does A have a unique LU-decomposition? Why?

Problem 3. (4 pts + 4 pts + 4 pts)

(a) Find a 2×2 matrix A that satisfies the equation:

$$\left(\begin{array}{cc} 1 & 0 \\ 5 & -2 \end{array}\right) A \left(\begin{array}{cc} 4 & 1 \\ -2 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right).$$

(b) Suppose that B is an $n \times n$ matrix such that $B^2 - 2B - 5I = O$. Conclude that B is invertible with $B^{-1} = \frac{1}{5}(B-2I)$.

(c) Evaluate $\det (7(-A^5)^{-1}A^T)$ if A is a 4×4 matrix whose $\det(A) = 7$.

Draft: