Partie 1 - Nombres Complexes

Exercice 1

1. Déterminer la partie réelle et la partie imaginaire des nombres complexes suivants :

$$z_1 = \frac{1}{2-i}$$
, $z_2 = \frac{1}{i}$, $z_3 = z_1 z_2$, $z_4 = \frac{z_1}{z_2}$.

2. Déterminer l'écriture exponentielle des nombres complexes suivants :

$$z_6 = 1 + i$$
, $z_7 = \sqrt{3} + i$, $z_8 = \frac{z_6}{z_7}$.

Solution de l'exercice 1

1.
$$z_1 = \frac{1}{2-i} = \frac{2+i}{(2-i)(2+i)} = \frac{2+i}{5} = \frac{2}{5} + i\frac{1}{5}$$
.

En procédant de manière analogue, on obtient

$$z_2 = -i$$
, $z_3 = \frac{1}{5} - i\frac{2}{5}$, $z_4 = -\frac{1}{5} + i\frac{2}{5}$.

2. Pour chercher la forme exponentielle d'un complexe, on commence par calculer son module :

$$|z_6| = \sqrt{2}$$
. Ensuite on factorise ce complexe par son module : $z_6 = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$. Il reste

à identifier un angle θ dont le cosinus vaut $\frac{\sqrt{2}}{2}$ et le sinus vaut $\frac{\sqrt{2}}{2}$. Ici, $\theta = \frac{\pi}{4}$ convient. On a donc $z_6 = \sqrt{2}e^{i\frac{\pi}{4}}$.

En procédant de manière analogue, on obtient $z_7 = 2e^{i\frac{\pi}{6}}$.

Pour l'expression de z_8 , il suffit d'utiliser les expressions trouver ci-dessus :

$$z_8 = \frac{z_6}{z_7} = \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{2e^{i\frac{\pi}{6}}} = \frac{\sqrt{2}}{2}e^{i(\frac{\pi}{4} - \frac{\pi}{6})} = \frac{\sqrt{2}}{2}e^{i\frac{\pi}{12}}.$$

Exercice 2 Déterminer les racines dans $\mathbb C$ des équations suivantes :

1. a)
$$Z^2 + Z + 1 = 0$$
, b) $z^4 + z^2 + 1 = 0$;

2. a)
$$z^4 = -2i$$
, b) $z^3 = -1$, c) $z^n = \frac{1}{\sqrt{2}} + i\frac{\sqrt{2}}{2}$;

3.
$$z^3 - 2z + 1 = 0$$
.

Solution de l'exercice 2

1. a) En utilisant les techniques habituelles de recherche des racines d'un polynôme de degré 2, on obtient les deux solutions suivantes de $Z^2 + Z + 1 = 0$:

$$Z_1 = \frac{-1}{2} + i\frac{\sqrt{3}}{2} = e^{i2\pi/3} \text{ et } Z_2 = \frac{-1}{2} - i\frac{\sqrt{3}}{2} = e^{-i2\pi/3}.$$

b) Pour résoudre $z^4+z^2+1=0$, on pose $Z=z^2$. En utilisant les solutions trouvées précédemment, on doit résoudre $z^2=Z_1$ et $z^2=Z_2$. On aboutit aux quatre solutions suivantes :

$$z_1 = e^{i\pi/3}, z_2 = -e^{i\pi/3}$$
 et $z_3 = e^{-i\pi/3}, z_4 = -e^{-i\pi/3}$.

2. a) On commence par écrire -2i sous forme exponentielle : $-2i = 2e^{i3\pi/2}$. Ensuite, on cherche z sous forme exponentielle également : $z = \rho e^{i\theta}$. L'équation $z^4 = -2i$ s'écrit alors

$$\rho^4 e^{i4\theta} = 2e^{i3\pi/2}.$$

qui conduit à l'équation en module $\rho^4=2$ et l'équation en argument $4\theta=\frac{3\pi}{2}$ [2π]. La seule solution positive de l'equation en module est $\rho=\sqrt{\sqrt{2}}$ et l'équation en argument s'écrit encore $\theta=\frac{3\pi}{8}\left[\frac{2\pi}{4}\right]$. Les 4 solutions de l'équation

$$z^4 = -2i$$

sont donc:

$$\sqrt{\sqrt{2}}e^{i\frac{3\pi}{8}}, \sqrt{\sqrt{2}}e^{i\frac{7\pi}{8}}, \sqrt{\sqrt{2}}e^{i\frac{11\pi}{8}}, \sqrt{\sqrt{2}}e^{i\frac{15\pi}{8}}.$$

b) En procédent comme ci-dessus, comme $-1 = e^{i\pi}$, les solutions de $z^3 = -1$ sont

$$z_k = e^{i\frac{\pi + 2k\pi}{3}}, k \in \{0, 1, 2\}.$$

c) De même, comme $\frac{1}{\sqrt{2}} + i\frac{\sqrt{2}}{2} = e^{i\pi/4}$, les solutions de $z^n = \frac{1}{\sqrt{2}} + i\frac{\sqrt{2}}{2}$ sont

$$z_k = e^{i\frac{(1+8k)\pi}{4n}}, k \in \{0, 1, 2, ..., n-1\}.$$

3. On doit commencer par chercher une solution évidente r (traditionnellement on cherche parmi 0, 1, 2, -1, -2) de $z^3 - 2z + 1 = 0$, puis on factorise par le polynôme z - r. Ici, on a $z^3 - 2z + 1 = (z-1)(z^2+z-1)$. Il ne reste plus qu'à chercher les racines du polynôme de degré $2: z^2+z-1$. Finalement, les solutions de $z^3 - 2z + 1 = 0$ sont

$$z_1 = 1, z_2 = \frac{-1 + \sqrt{5}}{2}$$
 et $z_3 = \frac{-1 - \sqrt{5}}{2}$.

Partie 2 – Polynômes et fractions rationnelles

Exercice 3 Effectuer la division de A(x) par B(x) dans les cas suivants :

- 1. $A(x) = x^4 x^3 + 3x^2 + 1$, $B(x) = x^2 + 3x + 1$;
- 2. $A(x) = 6x^5 7x^4 + 1$, $B(x) = x^2 2x + 1$.

Solution de l'exercice 3

- 1. $A(x) = B(x)(x^2 4x + 14) + (-38x 13);$
- 2. $A(x) = B(x)(6x^3 + 5x^2 + 4x + 3) + (2x 2);$

Exercice 4 Décomposer en éléments simples dans \mathbb{R} les fractions rationnelles suivantes :

$$F_1(x) = \frac{6}{x(x-1)(x+2)}, F_3(x) = \frac{x^3+1}{x(x^2+1)}, F_5(x) = \frac{x^4+1}{x^2+x+1},$$

$$F_2(x) = \frac{x^2+3}{x^2-1}, F_4(x) = \frac{3}{x^3-1}, F_5(x) = \frac{x^4+1}{x^2+x+1},$$

Solution de l'exercice 4

$$F_{1}(x) = \frac{-3}{x} + \frac{2}{(x-1)} + \frac{1}{(x+2)},$$

$$F_{3}(x) = 1 + \frac{1}{x} + \frac{-x-1}{(x^{2}+1)},$$

$$F_{4}(x) = \frac{1}{x-1} + \frac{-x-2}{x^{2}+x+1},$$

$$F_{5}(x) = x^{2} - x + \frac{x+1}{x^{2}+x+1}.$$

Pour vous entrainer ...

Exercice 5 Déterminer l'écriture exponentielle des nombres complexes suivants :

$$z_9 = 1 - i\sqrt{3}, \quad z_{10} = i.$$

Solution de l'exercice 5

$$z_9 = e^{i\pi/2} \text{ et } z_{10} = \frac{\sqrt{2}}{2} e^{i\pi/12}.$$

Exercice 6 Déterminer les racines dans \mathbb{C} des équations suivantes :

1.
$$z^4 = -1$$
, $z^3 = -27i$;

2.
$$z^2 - z + 1 = 0$$
.

Solution de l'exercice 6

1. Les solutions de $z^4 = -1$ sont

$$e^{i\frac{\pi}{4}}, \quad e^{i\frac{3\pi}{4}}, \quad e^{i\frac{5\pi}{4}}, \quad e^{i\frac{7\pi}{4}},$$

et celles de $z^3 = -27i$ sont

$$3e^{i\frac{\pi}{2}}, \quad 3e^{i\frac{7\pi}{6}}, \quad 3e^{i\frac{11\pi}{6}}.$$

2. Les deux solutions de $z^2-z+1=0$ sont $e^{i\frac{\pi}{3}}$ et $e^{-i\frac{\pi}{3}}$.

Exercice 7 Effectuer la division de $A(x) = x^5 + 2x^3 - 3x - 2$ par $B(x) = x^3 + x + 1$.

Solution de l'exercice 7

$$A(x) = B(x)(x^2 + 1) + (-x^2 - 4x - 3).$$

Exercice 8 Décomposer en éléments simples dans $\mathbb R$ les fractions rationnelles suivantes :

$$F_6(x) = \frac{1}{(x-2)(x^2+1)}, \quad F_7(x) = \frac{2x-1}{x^4-1}, \quad F_8(x) = \frac{2x^5+5x^4+33x^3+54x^2+162x+81}{x^2(x^2+9)^2}.$$

Solution de l'exercice 8

Tous calculs faits, on obtient

$$F_6(x) = \frac{1}{5} \left(\frac{1}{x-2} - \frac{x+2}{x^2+1} \right),$$

$$F_7(x) = \frac{1}{3(x-1)} + \frac{3}{4(x+1)} - \frac{1}{2} \left(\frac{2x-1}{x^2+1} \right),$$

$$F_8(x) = \frac{1}{x^2} + \frac{2}{x} - \frac{3x}{(x^2+9)^2} + 4\frac{4}{x^2+9}.$$