Introduction to Doubly Alternating Baxter Permutations

Stuart Paton

January 22, 2013

1 Introduction

A Baxter permutation $\sigma \in S_n$ is a permutation of length n which satisfies the following properties: there are no indicies i < j < k such that $\sigma_{j+1} < \sigma_i < \sigma_k < \sigma_j$ or $\sigma_j < \sigma_k < \sigma_i < \sigma_{j+1}$

For Baxter permutations of length n:

• mirror: $\sigma_i^* = \sigma_{n+1-i}$

• complement: $\sigma_i^c = n + 1 + \sigma_i$

• inverse: $\sigma_i^{-1} = \sigma_j \Leftrightarrow \sigma_j = i$

A permutation is *doubly alternating* if it is alternating $\underline{\mathbf{and}}$ its inverse is alternating.

2 Relation to Catalan numbers

We wish to prove that the number of doubly alternating Baxter permutations of length $2n + \epsilon$ where $\epsilon = 0$ or $\epsilon = 1$ is the Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

The length $2n + \epsilon$ is denoted by $\delta_{2n+\epsilon}$. By considering $\sigma = \emptyset$, where \emptyset denotes the empty permutation, we have $\delta_0 = 1$.