Лабораторная работа 5.8.1.

Калинин Даниил, Б01-108

18 сентября 2023 г.

Цель работы: при помощи модели абсолютно чёрного тела (АЧТ) проводятся измерения температуры, исследуется излучение накалённых тел, определяются постоянные Планка и Стефана-Больцмана.

В работе используются: оптический пирометр с исчезающей нитью и термопарой, накалённые тела с различной испускательной способностью.

Теоритическая справка:

Для измерения температуры тел, удалённых от наблюдателя, применяют методы оптических пирометрии, основанные на использовании зависимости испускательной способности исследуемого тела от температуры. Различают три температуры, функционально связанные с истинной термодинамической температурой и излучательной способностью тела: радиационную T_{pad} , цветовую T_{ub} и яркостную T_{spk} .

Радиационная (энергетическая) температура — температура АЧТ, при которой его интегральная испускательная способность одинакова с интегральной испускательной способностью исследуемого тела.

Цветовая температура — температура АЧТ, при которой отношение их спектральных испускательных способностей для двух заданных длин волн одинаково.

Яркостная температура — температура АЧТ, при которой его спектральная испускательная способность равна спектральной испукательной способности исследуемого тела при той же длине волны. Именно эту температуру мы и будем измерять. Для вольфрама функциональная зависимость термодинамической температуры от яркостной представлена на рис. 1.

Рис. 1. $T = f(T_{spr})$ для вольфрама

Закон Киргофа для излучения любого тела:

$$r_{\lambda} = a_{\lambda} r_{\lambda}^{A Y T} \tag{1}$$

Для абсолютно серого тела (АСТ):

$$a_{\lambda} \equiv a = const$$
 (2)

Если бы нить излучала как АЧТ, то баланс потребляемой и излучаемой энергии определялся бы соотношением:

$$W = \sigma S(T^4 - T_0^4) \tag{3}$$

где W — потребляемой нитью электрическая мощность, S — площадь излучаемой поверхности нити, T — температура нити, T_0 — температура окружающей среды, $\sigma = 5.67 \cdot 10^{-12} \ \frac{Bm}{c M^2 \cdot K^4}$ — постоянная Стефана-Больцмана.

Если считать нить серым телом и его излучение ослаблено на ε_T по сравнению с АЧТ, то:

$$W = \varepsilon_T S \sigma T^4 \tag{4}$$

Коэффициент ε_T зависит от температуры следующим образом для вольфрама:

T, K	1700	1800	1900	2000
ε_T	0.209	0.223	0.236	0.249

Таблица 1. $\varepsilon_T(T)$ для вольфрама

При выполнении работы также потребуется вычислить постоянную планка h с помощью постоянной Стефана-Больцмана σ . Приведём необходимую формулу ниже:

$$h = \sqrt[3]{\frac{2\pi^5 k_B^4}{15c^2\sigma}} \tag{5}$$

Экспериментальная установка:

На рис. 2 изображена экспериментальная установка. Она состоит из оптического пирометра 9, модели АЧТ, трёх образцов (18, 19, 20), блока питания (1) и цифровых вольтметров В7-22А и В7-38.

Рис. 2. Схема экспериментальной установки.

На рисунке отмечены следующие части установки:

- 1. Блок питания
- 2. Тумблер включения питания пирометра и образцов
- 3. Тумблер нагрева нити пирометра «Быстро» вверх, «Медленно» вниз
- 4. Кнопка «Нагрев нити»
- 5. Кнопка «Охлаждение нити»
- 6. Тумблер переключения образцов
- 7. Регулятор мощности нагрева образцов
- 8. Окуляр пирометра
- 9. Корпус пирометра
- 10. Объектив пирометра
- 11. Переключение диапазонов: $700-1200~^{\circ}C-$ вниз, $1200-2000~^{\circ}C-$ вверх
- 12. Ручка перемещения красного светофильтра
- 13. Регулировочный винт
- 14. Вольтметр (напряжение на лампе накаливания)
- 15. Амперметр (ток через образцы)
- 16. Вольтметр в цепи термопары
- 17. Модель АЧТ
- 18. Трубка с кольцами из материалов с разной излучательной способностью
- 19. Лампа накаливания
- 20. Неоновая лампочка

Ход работы:

1. Включим модель АЧТ. Далее включим пирометр и измерим температуру. Также укажем ожидаемую температуру (используя постоянную термопары 41 мкВ). Результат занесем в таблицу 2.

$T_{mep_{\mathcal{M}}}$	$T_{sp\kappa}$	U, мв.	Отличие, %	направление
962	963	36.82	0.1	вверх
968	973	39.03	0.5	вниз
969	989	39.09	2.0	вверх
973	997	39.14	2.4	вниз
974	1008	39.16	3.4	вверх
977	1010	39.27	3.3	вниз
978	993	39.31	1.5	вверх
979	1007	39.38	2.8	вниз
970	1004	39.04	3.4	вверх
965	1001	38.76	3.6	вниз

Таблица 2. Измерения на АЧТ

Из таблицы видно, что температуры отличаются в пределах 5%, т.е. пирометр настроен верно.

2. Проверим закон Стефана-Больцмана. Для этого измерим напряжение и силу тока через лампочу с нитью накаливания прощадью $S=0.36~cm^2$, изменяя её яркостную температуру от 900 до 1900 °C. Результаты представлены в таблице 3.

$T_{sp\kappa}$, °C	U, B.	I, A.
900	1.48	0.449
1000	1.86	0.495
1100	2.35	0.550
1200	2.94	0.611
1300	3.11	0.628
1400	3.78	0.692
1500	5.01	0.800
1600	5.87	0.869
1700	7.61	0.998
1800	7.82	1.011
1900	8.12	1.031

Таблица 3. Результаты измерения температуры лампы

3. Теперь определим с помощью этих данных выделяемую на лампе мощность и термодинамическую температуру (с помощью графика 1). Результат занесем в таблицу 4.

$T_{sp\kappa}$, °C	$T_{mep_{\mathcal{M}}}, K$	W, Bt.
900	1213	0.66
1000	1319	0.92
1100	1425	1.29
1200	1531	1.80
1300	1637	1.95
1400	1743	2.62
1500	1849	4.01
1600	1955	5.10
1700	2061	7.59
1800	2167	7.91
1900	2273	8.37

Таблица 4. Результаты измерения температуры лампы

4. Построим графики W=f(T) (рис. 3) и $\ln W=f(\ln T)=\ln(\varepsilon_T\sigma S)+n\ln T$ (рис. 4).

Рис. 3. График W=f(T)

Рис. 4. График $\ln W = f(\ln T)$

5. Из графика с помощью МНК получаем:

$$n = 4.49 \pm 0.12$$

 $\ln(\varepsilon_T \sigma S) = -32.43 \pm 0.01$

Стоит отметить, что график строился только по для точек, у которых T>1700~K. Это сделано из-за того, что при меньших температурах существует зависимость S(T), которую невозможно учесть. Начиная же с таких температур нить накаляется полностью, т. е. $S=0.36~cm^2=const.$ Но при этом необходимо учесть, что ε_T тоже зависит от температуры. Для этого была использована таблица 1.

Теоретическое значение n=4 (4). То етсь, полученное экспериментальное значение с хорошей точностью сходится с теоретическим.

6. Для каждого значения T > 1700~K найдём постоянную Стефана-Больцмана и постоянную Планка по формулам (4) и (5). Результаты представлены в таблицах 5 и 6.

T K,	1743	1849	1955	2061	2167	2273
$\sigma, \frac{Bm}{c_M^2 \cdot K^4}$	$3.70 \cdot 10^{-12}$	$4.18 \cdot 10^{-12}$	$3.99 \cdot 10^{-12}$	$4.53 \cdot 10^{-12}$	$3.65 \cdot 10^{-12}$	$3.03 \cdot 10^{-12}$

Таблица 5. $\sigma(T)$

TK,	1743	1849	1955	2061	2167	2273
h , Дэ t с \cdot c	$7.64 \cdot 10^{-34}$	$7.33 \cdot 10^{-34}$	$7.45 \cdot 10^{-34}$	$7.14 \cdot 10^{-34}$	$7.67 \cdot 10^{-34}$	$8.17 \cdot 10^{-34}$

Таблица 6. h(T)

Заключение:

В ходе лабораторной работы при помощи модели абсолютно чёрного тела были проведены измерения температуры, определены постоянные Планка и Стефана-Больцмана. Некоторые из результатов совпали с теоретическими, некоторые — нет. Последне может быть связано с неверно указанной эффективной площадью проволоки.