Arm[®] CoreLink[™] GFC-100 Generic Flash Controller

Revision: r0p0

Technical Reference Manual

Arm® CoreLink™ GFC-100 Generic Flash Controller

Technical Reference Manual

Copyright © 2017, 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue	Date	Confidentiality	Change
0000-00	10 October 2017	Confidential	First release for r0p0
0000-01	18 January 2018	Non-Confidential	Second release for r0p0
0000-02	05 October 2018	Non-Confidential	Third release for r0p0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or TM are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright $\ensuremath{\mathbb{C}}$ 2017, 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Contents

Arm® CoreLink™ GFC-100 Generic Flash Controller Technical Reference Manual

	Pref	face	
		About this book	
		Feedback	10
Chapter 1	Intro	oduction	
	1.1	About GFC-100	1-12
	1.2	Compliance	1-13
	1.3	Features	1-14
	1.4	Test features	1-1
	1.5	Product documentation	1-10
	1.6	Product revisions	1-17
Chapter 2	Functional Description		
	2.1	Internal structure	2-19
	2.2	Interfaces	2-20
	2.3	Clocking	2-26
	2.4	Resets	2-27
	2.5	Interrupt sources	2-28
	2.6	Generic Flash Bus arbiter	2-29
Chapter 3	Prog	grammers Model	
	3.1	About this programmers model	3-3

	3.2	Memory maps	3-32
	3.3	Register summary	3-39
	3.4	Register descriptions	3-40
Appendix A	Sign	nal Descriptions	
	A.1	AHB-Lite slave interface signals	Appx-A-55
	A.2	APB slave interface signals	Appx-A-57
	A.3	APB master interface signals	Appx-A-58
	A.4	Generic Flash Bus signals	Appx-A-59
	A.5	Q-Channel interface for clock signals	Appx-A-61
	A.6	Q-Channel interface for power signals	Appx-A-62
	A.7	P-Channel controller interface signals	Appx-A-63
	A.8	System interface signals	Appx-A-64
Appendix B	Revi	isions	
	B.1	Revisions	Appx-B-66

Preface

This preface introduces the Arm^* $CoreLink^{\mathsf{TM}}$ GFC-100 Generic Flash Controller Technical Reference Manual.

It contains the following:

- About this book on page 7.
- Feedback on page 10.

About this book

This book is for the GFC-100 Generic Flash Controller.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.

pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is for system designers, system integrators, and programmers who are designing or programming a *System-on-Chip* (SoC) that uses the GFC-100 Generic Flash Controller.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this for an introduction to the GFC-100 Generic Flash Controller and its features.

Chapter 2 Functional Description

Read this for a description of the GFC-100 Generic Flash Controller functions.

Chapter 3 Programmers Model

Read this for a description of the memory map and registers, and for information about programming the device.

Appendix A Signal Descriptions

Read this for a description of the input and output signals.

Appendix B Revisions

Read this for a description of changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the *Arm*[®] *Glossary* for more information.

Typographic conventions

italic

Introduces special terminology, denotes cross-references, and citations.

bold

Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace

Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

<u>mono</u>space

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace italic

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the *Arm® Glossary*. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This book contains information that is specific to this product. See the following documents for other relevant information.

Arm publications

- Arm® AMBA® APB Protocol Specification (IHI 0024).
- Arm® AMBA® 3 AHB-Lite Protocol Specification v1.0 (IHI 0033).
- AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces (IHI 0068).

See *Infocenter*, for access to Arm documentation.

The following confidential books are only available to licensees or require registration with Arm:

- Arm® CoreLink™ GFC-100 Generic Flash Controller Configuration and Integration Manual (101060).
- Arm® AMBA® Generic Flash Bus Protocol Specification (IHI 0083).

Other publications

• JEDEC, Standard Manufacturer's Identification Code, JEP106.

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title Arm CoreLink GFC-100 Generic Flash Controller Technical Reference Manual.
- The number 101059_0000_02_en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.	
Note	
Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of represented document when used with any other PDF reader.	f the

Chapter 1 **Introduction**

Read this for an introduction to the GFC-100 Generic Flash Controller and its features.

It contains the following sections:

- 1.1 About GFC-100 on page 1-12.
- 1.2 Compliance on page 1-13.
- 1.3 Features on page 1-14.
- 1.4 Test features on page 1-15.
- 1.5 Product documentation on page 1-16.
- 1.6 Product revisions on page 1-17.

1.1 About GFC-100

The GFC-100 Generic Flash Controller comprises the generic part of a Flash controller in a *System-on-Chip* (SoC). GFC-100 enables an embedded Flash macro to be integrated easily into any system.

An eFlash macro enables a Flash controller to access eFlash memory. The eFlash macros produced by different foundries and processes can have different interfaces, timings, signal names, protocols and features that are determined by the foundry processes that produced the eFlash memory.

GFC-100 provides the functions that relate only to services for the system side of the Flash controller. GFC-100 cannot communicate directly with the eFlash macro. Therefore, GFC-100 must be integrated with a process-specific part that connects to, and communicates with, the eFlash macro.

The process-specific part of the Flash controller is part of the Flash subsystem in your SoC. It communicates directly with the eFlash macro through a Flash interface.

Communication between the system and eFlash memory is through a *Generic Flash Bus* (GFB) supplied with GFC-100.

The following figure shows how GFC-100 is used in a Flash controller implementation.

Figure 1-1 GFC-100 in a Flash controller implementation

1.2 Compliance

GFC-100 interfaces are compliant with Arm specifications and protocols.

GFC-100 is compliant with:

- Arm® AMBA® Generic Flash Bus Protocol Specification.
- AMBA 3 AHB-Lite Protocol Specification. See Arm® AMBA® 3 AHB-Lite Protocol Specification
 v1.0
- AMBA 4 APB Protocol Specification. See Arm® AMBA® APB Protocol Specification.
- AMBA Low Power Interface Specification. See AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces.

1.3 Features

GFC-100 provides several interfaces and test features.

Advanced High-performance Bus (AHB-Lite) interface:

- Read access to the main and extended areas of embedded Flash.
- Burst support.
- Low latency.

Advanced Peripheral Bus (APB) slave interface:

- Write and erase access to the main and extended areas of embedded Flash.
- Debug read access to the main and extended areas of embedded Flash.
- Control port for GFC-100 and the eFlash macro.
- Interrupt capability for long running commands.
- · Access to internal and external registers.

APB register master interface:

• Control port for attached process-specific registers.

Q-Channel interface:

- Control port for system power.
- Control port for the system clock.

P-Channel controller interface:

• Control port for power to the attached process-specific part.

Generic Flash Bus (GFB):

- Enables GFC-100 accesses to embedded Flash.
- Simple command-based protocol.
- Synchronous with the AHB clock.
- Simplifies communication between GFC-100 and the attached process-specific part.

1.4 Test features

GFC-100 provides components that comprise a Flash model, that simulates the behavior of the process-specific part and the attached embedded Flash.

The GFC-100 deliverables include an *Out-of-Box* (OoB) execution testbench. You can use the execution testbench to check that the delivered RTL is complete and that it can perform transactions towards the Flash model as expected.

1.5 Product documentation

Documentation that is provided with this product includes a *Technical Reference Manual* (TRM) and a *Configuration and Integration Manual* (CIM), together with architecture and protocol information.

For relevant protocol and architectural information that relates to this product, see *Additional reading* on page 8.

The GFC-100 documentation is as follows:

Technical Reference Manual

The TRM describes the functionality and the effects of functional options on the behavior of GFC-100. It is required at all stages of the design flow. The choices that are made in the design flow can mean that some behaviors that the TRM describes are not relevant. If you are programming GFC-100, contact:

- The implementer to determine:
 - The build configuration of the implementation.
 - What integration, if any, was performed before implementing GFC-100.
- The integrator to determine the signal configuration of the device that you use.

The TRM complements architecture and protocol specifications and relevant external standards. It does not duplicate information from these sources.

Configuration and Integration Manual

The CIM describes:

- The available build configuration options.
- How to configure the RTL with the build configuration options.
- How to integrate GFC-100 into an SoC.
- How to implement GFC-100 into your design.
- The processes to validate the configured design.

The Arm product deliverables include reference scripts and information about using them to implement your design.

The CIM is a confidential book that is only available to licensees.

1.6 Product revisions

This section describes the differences in functionality between product revisions:

r0p0 First release.

Chapter 2 **Functional Description**

Read this for a description of the GFC-100 Generic Flash Controller functions.

It contains the following sections:

- 2.1 Internal structure on page 2-19.
- 2.2 Interfaces on page 2-20.
- 2.3 Clocking on page 2-26.
- 2.4 Resets on page 2-27.
- 2.5 Interrupt sources on page 2-28.
- 2.6 Generic Flash Bus arbiter on page 2-29.

2.1 Internal structure

GFC-100 comprises several submodules.

The following figure shows the internal high-level structure of an example system that integrates GFC-100 with a process-specific part and embedded Flash.

Figure 2-1 GFC-100 internal structure

2.2 Interfaces

GFC-100 has several interfaces that enable it to communicate with the system and the process-specific part.

This section contains the following subsections:

- 2.2.1 AHB-Lite slave interface on page 2-20.
- 2.2.2 APB slave interface on page 2-21.
- 2.2.3 APB master interface on page 2-22.
- 2.2.4 Generic Flash Bus on page 2-22.
- 2.2.5 Q-Channel interface for clock on page 2-23.
- 2.2.6 Q-Channel interface for power on page 2-23.
- 2.2.7 P-Channel controller interface on page 2-24.
- 2.2.8 System interface on page 2-24.

2.2.1 AHB-Lite slave interface

The AHB-Lite slave interface is a read-only port through which the system can make read-only accesses to the embedded Flash. System accesses through the AHB-Lite slave interface are then transferred over the *Generic Flash Bus* (GFB).

Data width

The data width is fixed at 128 bits. Read accesses that are less than 128 bits are ignored and generate an error response. Write accesses of any size are ignored and generate an error response.

The address of the access does not have to be 128-bit aligned, because it is forwarded to the GFB directly without any restriction. The Arm^* $AMBA^*$ Generic Flash Bus Protocol Specification defines that, for wider data widths, the lower address bits are ignored. Therefore, it is implicit that the address is aligned to 128 bits irrespective of what address is sent over the AHB-Lite slave interface. Although the AHB specification defines that the address must be aligned for all bursts, and single bursts, GFC-100 does not generate an error if an access is not aligned.

Address width

The address width is fixed to allow for access to a 4MB memory area. Depending on the attached process-specific part, the lower 2MB memory region can be a main area, and the upper 2MB region can be an extended area.

The address bus is 22 bits wide. The *Most Significant Bit* (MSB) can be used to select between the main and extended areas, depending on the attached process-specific part.

See 3.2.1 AHB-Lite slave interface memory map on page 3-32 for a description of the AHB-Lite slave interface memory map.

Burst transfers

Burst transfers are supported to allow large blocks of data to be read from memory. GFC-100 supports all burst types that are specified in the *Arm** *AMBA** *3 AHB-Lite Protocol Specification v1.0*. Burst transfers ensure that read accesses from the memory have priority above any other commands. Burst transfers are executed at the same speed as commands are executed in the process-specific part.

Locked transfers

The system AHB master can use locked transfers to control the GFC-100 arbitration scheme. Access is granted to the AHB-Lite slave port only, and all APB accesses are blocked until the entire locked transfer finishes. This ensures that accesses through the AHB-Lite slave port have deterministic response times.

Delayed response

The response time through the AHB-Lite slave interface is delayed by asserting the **hready** signal LOW. The following conditions assert **hready**:

- A delayed GFB transfer response, because the embedded Flash is slow to respond.
- The GFB arbiter block selects a different requestor to access the memory.
- A Q-Channel interface is in the Q STOPPED state.
- The GFB has a transfer in progress.

1 &	
Note	
A Flash write or erase operation can require millions of clock cycles that can significantly blo AHB interconnect.	ck the

Error response

The following conditions can generate an error response:

- A write access that the AHB master initiates.
- An access is set to a data width that is not 128 bits.
- A GFB transfer generates an error response.

Related reference

A.1 AHB-Lite slave interface signals on page Appx-A-55

2.2.2 APB slave interface

The APB slave interface enables write and erase access to the main and extended areas of embedded Flash. It also acts as a control port for GFC-100 and the Flash macro.

The APB slave interface programs the internal generic APB registers to enable write, erase, and debug read access to the embedded Flash over the GFB interface.

The APB slave interface allows direct access to an external register interface to configure Flash interface access times. The external register interface might be located in the process-specific part.

Address width

The address width is fixed at 13 bits, to allow for 2 × 4KB address spaces. One 4KB region is for internal registers, and the other 4KB region is for registers in the process-specific part. The MSB, **paddr_s[12]** selects either internal or external accesses.

See 3.2.2 APB slave interface memory map on page 3-33 for a description of the APB slave interface memory map.

Strobe signals

The strobe signals are checked for writes to ensure that all bits are set to 1 to indicate 32-bit word accesses. Otherwise, the write is ignored and has no effect on the registers. The strobe signals are forwarded to the downstream APB master, because the process-specific part might support byte accesses.

Delayed response

Accesses to the internal register bank are serviced without delay. The design of the process-specific register bank determines how much delay can be expected for accesses that target its interface.

Error response

APB accesses to the internal register bank always give an OKAY response. For reserved addresses, the data that is returned is 0. The response behavior to external register accesses depends on the implementation of the attached process-specific register bank. Therefore, any errors that are received on the APB master interface are forwarded through the APB slave interface to the access initiator.

Related reference

A.2 APB slave interface signals on page Appx-A-57

2.2.3 APB master interface

The APB master interface is a control port for any registers that are connected externally that control the behavior of the process-specific part.

Address width

The address width is 12 bits, and allows access to a 4KB address space.

Strobe signals

Strobe signals can access external registers at byte level. Each strobe signal corresponds to a byte within the 32-bit write data.

Delayed response

GFC-100 drives transfers through the APB master interface that are based on the incoming accesses from the APB slave interface. Any standard APB slave devices can be attached to the APB master interface. Therefore, how the slave delays an access is implementation-dependent.

Error response

Error responses that the GFC-100 APB master interface receives are forwarded to the GFC-100 APB slave interface. The conditions that determine when the attached APB slave responds with errors is implementation-dependent.

Related reference

A.3 APB master interface signals on page Appx-A-58

2.2.4 Generic Flash Bus

The Generic Flash Bus enables GFC-100 to access embedded Flash.

Commands are received from the system through the AHB-Lite and APB slave interfaces, and converted internally to transfers over the GFB. A process-specific part that is connected to the GFB is expected to serve as a slave while GFC-100 is the master.

Command bus

GFC-100 supports all commands that are specified in the *Arm*[®] *AMBA*[®] *Generic Flash Bus Protocol Specification*.

Address width

The GFB allows access to a 4MB memory area. The address MSB allows access to an extended region that might be present in the Flash macro. Depending on how the process-specific part handles addresses, the MSB separates the 4MB memory into two halves so that a 2MB main memory and an extended region can be supported. The extended region is assumed to be smaller than 2MB, and therefore, **faddr[21]** is sufficient to access the entire extended region.

Data width

The GFB supports a fixed read data width of 128 bits, that matches the data width of the AHB-Lite slave interface. Write data is sent over a 32-bit **fwdata** bus. A full width data write of 128 bits is sent over the GFB as four separate writes. Bits **faddr[3:2]** select the location of the 32-bit write data within the 128-bit data word in little-endian order.

Delayed response

GFC-100 is the GFB master and drives commands over the GFB. A GFB slave is allowed to delay its response to commands. The process-specific part can take several cycles to respond to READ commands. However, WRITE and ERASE commands can take many more cycles to execute.

Error response

Failed transactions can generate a 2-cycle error response from the process-specific part.

Aborting commands

The **fabort** signal can abort commands that the GFB master initiates. The signal is driven from the APB registers. The method that the process-specific part uses to support the abort function depends on its implementation.

_____ Note _____

- Commands from the AHB-Lite slave interface cannot be aborted.
- For more information about GFB transactions, see the *Arm® AMBA® Generic Flash Bus Protocol Specification*.

Related reference

A.4 Generic Flash Bus signals on page Appx-A-59

2.2.5 Q-Channel interface for clock

The Q-Channel interface for clock is a control port for managing the system clock.

GFC-100 can accept or deny a request from the clock controller to turn off all operations that are using the clock.

Activity indication

GFC-100 uses the **qactive_clk** signal to indicate it has an activity that is using the clock. When GFC-100 asserts **qactive_clk**, the clock controller keeps the clock enabled.

Accepting a request

When GFC-100 has no activity, it accepts the quiescence request for the clock, and enters the Q_STOPPED state.

Denying a request

When the clock controller requests the clock to be disabled, if the activity indication is HIGH, GFC-100 denies the request.

Related reference

A.5 Q-Channel interface for clock signals on page Appx-A-61

2.2.6 Q-Channel interface for power

The Q-Channel interface for power is a control port for managing the system power.

GFC-100 can accept or deny a request from the *Power Policy Unit* (PPU) to turn off all operations that are using power.

Activity indication

GFC-100 uses the **qactive_pwr** signal to indicate that it has an activity that is using power. When GFC-100 asserts **qactive_pwr**, the PPU keeps the power enabled.

Accepting a request

When GFC-100 or the embedded Flash is inactive, GFC-100 accepts the quiescence request for power, and enters the Q_STOPPED state. GFC-100 must then drive the process-specific part to a powerdown state before accepting the Q-Channel request.

Denying a request

When the PPU requests power to be disabled, if the activity indication is HIGH, GFC-100 denies the request.

Related reference

A.6 O-Channel interface for power signals on page Appx-A-62

2.2.7 P-Channel controller interface

The P-Channel controller interface is a control port for managing the power of the attached process-specific part.

GFC-100 can request changes to the power state when it accepts a powerdown request from the system-level Power Policy Unit. When GFC-100 leaves reset and is not in quiescent state, it enables power to embedded Flash automatically.

GFC-100 supports two power states, all powerup, and all powerdown.

State encoding

GFC-100 uses a single bit to encode the two Flash macro power states of either all powerdown (0), or all powerup (1).

Activity encoding

The **pactive** signal indicates the required power state of a particular activity. The **pactive** signal is expected to be driven by the process-specific part to force power to remain active, otherwise **pactive** is LOW.

Responding to a request

GFC-100 initiates all activity, and does not expect the process-specific part to assert a request denial. However, GFC-100 can support request denial if it is used by the process-specific part. The time taken by the process-specific part to accept a request depends on its implementation.

Related reference

A.7 P-Channel controller interface signals on page Appx-A-63

2.2.8 System interface

The GFC-100 system interface comprises several system I/O ports that are separate from its interfaces.

Interrupt request

GFC-100 generates an interrupt request that indicates to the system master that an important event in GFC-100 has occurred. The interrupt is active-HIGH. It is cleared by accessing registers in GFC-100, and acknowledging the reason for the interrupt, see 3.4.4 IRO STATUS CLR on page 3-42.

Flash Power Ready

When the P-Channel master sets the embedded Flash power to ON, GFC-100 asserts the **flash_pwr_rdy** signal. This signal is sent to the process-specific part GFB slave so that it can initiate any start-up sequence that requires the embedded Flash to be fully functional.

All the other interfaces operate without any restrictions. The transfers from the AHB-Lite slave interface are forwarded to the GFB, but transfers are blocked when the command ready indication signal **fready** is pulled LOW until the initialization finishes.

Related reference

A.8 System interface signals on page Appx-A-64

2.3 Clocking

GFC-100 has a single clock domain, that is used for clocking all internal registers.

Synchronous interfaces

The GFC-100 AHB-Lite slave, APB, and GFB interfaces are expected to run on the same clock.

Asynchronous interfaces

The GFC-100 Q-Channel and P-Channel interfaces might be clocked asynchronously. Therefore, these interfaces have internal synchronizers.

2.4 Resets

GFC-100 has a single reset input. GFC-100 expects that this reset is synchronized externally.

The reset input signal must be synchronous with the clock. GFC-100 expects the reset to be asserted asynchronously and deasserted synchronously.

2.5 Interrupt sources

The internal generic APB registers in GFC-100 generate an interrupt request that is triggered by several sources.

Command Accept (CMD_ACCEPT_IRQ)

CMD_ACCEPT_IRQ can speed up APB master accesses to the embedded Flash. CMD_ACCEPT_IRQ is set when the CTRL register accepts a write command, asserts the **fready** signal on the GFB interface, and Flash executes the command. In this state, a new command can be written to the CTRL register where it enters a pending state, enabling back-to-back transfers to be executed. This behavior enables the use of the ROW WRITE command on the GFB.

When back-to-back transfers are used and if CMD_ACCEPT_IRQ and CMD_SUCCESS_IRQ or CMD_FAIL_IRQ are both set, both interrupt sources trigger together.

Command Success (CMD SUCCESS IRQ)

The CMD_SUCCESS_IRQ indicates the successful finish of an executed command. It makes the driver aware of the result immediately the command finishes, and prevents new transfers from the APB side being written to the CTRL register.

Command Fail (CMD_FAIL_IRQ)

The CMD_FAIL_IRQ indicates the unsuccessful finish of an executed command. It makes the driver aware of the result immediately the command finishes, and prevents new transfers from the APB side being written to the CTRL register.

Command Reject (CMD_REJECT_IRQ)

The CMD_REJECT_IRQ indicates a programming fault when software tries to modify the content of the CTRL, ADDR, and DATA0 registers either while a command is pending in the CTRL register, or when one or more interrupts are pending. The write is ignored but CMD_REJECT_IRQ indicates the error for debug purposes.

Read Overflow (READ_OVERFLOW_IRQ)

The READ_OVERFLOW_IRQ indicates that the result of a Read command cannot be updated immediately in the IRQ_STATUS register, and the Read enters the finished state. Hardware assumes this state to be an overflow situation because the new data is lost, and the hardware cannot be sure that all previous results were read by software.

Interrupt request signal

The interrupt request signal is described in A.8 System interface signals on page Appx-A-64.

2.6 Generic Flash Bus arbiter

The GFB arbiter selects requests from either the AHB-Lite slave interface, or the APB slave interface, and forwards them to the Generic Flash Bus. A simple grant-request mechanism selects the appropriate port.

Arbitration scheme

The GFB arbiter uses a round-robin arbitration scheme between the AHB-Lite slave and APB slave ports. When the AHB-Lite slave port sends a burst or locked transfer, the AHB-Lite slave port has priority over the APB slave port until the transfer finishes.

The incoming APB and AHB requests cannot be always guaranteed to follow the arbitration scheme, for example, due to the occurrence of LPI requests, or the GFB interface is busy when incoming requests arrive. In these cases, outgoing transfers might occur in a different order to the incoming requests.

Chapter 3 **Programmers Model**

Read this for a description of the memory map and registers, and for information about programming the device.

It contains the following sections:

- 3.1 About this programmers model on page 3-31.
- *3.2 Memory maps* on page 3-32.
- 3.3 Register summary on page 3-39.
- *3.4 Register descriptions* on page 3-40.

3.1 About this programmers model

The following information applies to the GFC-100 registers:

- The base address is not fixed, and can be different for any particular system implementation. The offset of each register from the base address is fixed.
- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in unpredictable behavior.
- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register bits are reset to the reset value specified in the 3.3 Register summary on page 3-39.
- Access type is described as follows:

RW Read and write.

RO Read only.

WO Write only.

3.2 Memory maps

GFC-100 has several memory maps that are attached to different interfaces.

The memory map locations are:

- AHB-Lite slave interface, 4MB (2MB main memory area, 2MB extended memory area).
- GFB, 4MB (2MB main memory area, 2MB extended memory area).
- APB slave interface, 8KB.
- APB master interface, 4KB.
- Internal registers, 4KB.

This section contains the following subsections:

- 3.2.1 AHB-Lite slave interface memory map on page 3-32.
- 3.2.2 APB slave interface memory map on page 3-33.
- 3.2.3 Accessing Flash from the APB slave port on page 3-34.
- 3.2.4 Preloading transfers on page 3-36.

3.2.1 AHB-Lite slave interface memory map

The AHB-Lite slave interface can access 4MB of memory space where the contents of the 4MB, or smaller, embedded Flash can be read. The embedded Flash can have an extra extended memory range that can be reachable on the upper 2MB of the given 4MB address range.

The size of access is fixed at 0b100. Therefore, all wrapping boundaries must be calculated based on the wrap size and the access size having a total value of 4 for 128-bit accesses. The **hsize[2:0]** signal indicates access size. See *A.1 AHB-Lite slave interface signals* on page Appx-A-55.

The following figure is an example that uses 1MB of large Flash with 4KB page size and two Extension pages. The example shows how the embedded Flash space can be reached through different routes.

Figure 3-1 AHB-Lite slave interface memory map

In the figure:

- * Indicates that access rights depend on the properties of extension pages that the process-specific part handles. GFC-100 supports both read and write, or erase.
- ** Indicates that aliasing might occur if the process-specific part maps the same addresses multiple times within the 2MB address space of the main area, or the 2MB address space of the extended area.

The example memory map has 256 pages in the main memory area. GFC-100 maps 4MB of address space from the system memory to the GFB address range. The first 1MB is mapped to the embedded Flash main area directly, the second 1MB is reserved. The extended memory area has 8KB of space that is mapped to the extended memory area from the third 1MB. The last 1MB is reserved.

3.2.2 APB slave interface memory map

The APB slave interface enables the system-side to access 2×4 KB of register space.

The following figure is an example memory map for the APB slave interface.

Figure 3-2 APB slave interface memory map example

The memory map example shows that GFC-100 and the process-specific part can be considered to be two separate peripherals in the system.

3.2.3 Accessing Flash from the APB slave port

Software must follow a particular flow to access the embedded Flash from the APB slave interface.

The following figure shows how to access the embedded Flash from the APB slave interface.

Figure 3-3 APB slave access to Flash flowchart

The APB slave interface can use either of two modes to trigger a new command.

Method 1 allows software to poll the STATUS register for any active bits, where an active bit indicates that GFC-100 is processing a command.

Method 2 enables CMD_SUCCESS_IRQ and CMD_FAIL_IRQ, and waits for either interrupt to be triggered. This event occurs when a command enters the SUCCESS or FAIL state. To initiate a new transfer, software must write to the ADDR, DATA0, and CTRL registers. The CTRL register must be written last because it triggers access to the embedded Flash. The command then enters the queue until it is executed.

Related reference

3.4.5 IRQ_MASKED_STATUS on page 3-43 3.4.7 STATUS on page 3-45

3.2.4 Preloading transfers

To improve the efficiency of ROW WRITE commands that utilize the Command queue, transfers can be preloaded to the CTRL register by enabling either CMD_ACCEPT_IRQ, CMD_SUCCESS_IRQ, or CMD_FAIL_IRQ, or any combination of them.

When the APB master wants to utilize a ROW WRITE command with improved efficiency, it must send the command for Flash transfers back-to-back, and prevent Flash returning from the high-voltage programming state.

The following figure shows the ROW WRITE timing diagram.

Figure 3-4 ROW WRITE timing diagram

ROW WRITE command sequence

The ROW WRITE command sequence is divided into different phases that are the actions that software requires to support the preloading mechanism.

The A/D setup phase comprises write updates to the contents of the ADDR and DATA0 registers for the upcoming command.

In the write CTRL phase, when ready, software writes the CTRL register and initiates the transfer. The timing diagram shows that the GFB interface is ready to accept the command at t2 immediately, and the command then passes to the GFB.

After t2, hardware clears the CTRL register automatically, and asserts a CMD_ACCEPT_IRQ.

Software is in the Wait IRQ phase until it receives the interrupt. Software then enters the Serve IRQ phase where it must acknowledge the interrupt by clearing the IRQ_STATUS register. When the IRQ_STATUS register clears, the address and data for the next transfer can be set up before writing the next ROW WRITE command to the CTRL register.

To ensure that the preload mechanism works correctly, the write CTRL phase in t5 must finish before t7, when the GFB interface is ready with the next currently executed command, and able to accept new commands. Otherwise, an IDLE command is inserted in the ROW WRITE sequence, and the benefits of the ROW WRITE command are not used. Write commands for the embedded Flash are expected to require thousands of clock cycles, software can use this period to service the CMD_ACCEPT_IRQ and update all necessary registers.

Read considerations

The CMD_ACCEPT_IRQ is intended for ROW WRITE commands. However, all other commands can use this interrupt because the hardware implementation cannot restrict its use.

In situations when the software driver uses CMD_ACCEPT_IRQ for READ commands, the read data of the current READ command might be lost if the resulting interrupts are not processed in time. If this occurs, a READ_OVERFLOW_IRQ indicates this error. Reads through the APB slave interface and the internal generic APB registers are intended for debug purposes only, and therefore the CMD_SUCCESS_IRQ and CMD_FAIL_IRQ can be used for reads. When higher efficiency reads are required, you must execute AHB reads instead.

The following figure shows the ROW WRITE preloading flowchart.

Figure 3-5 ROW WRITE preloading flowchart

3.3 Register summary

The following table shows the registers in offset order from the base memory address.

Table 3-1 Register summary

Offset	Name	Туре	Reset	Width	Description
0x000	IRQ_ENABLE_SET	RW	0x0	32	3.4.1 IRQ_ENABLE_SET on page 3-40
0x004	IRQ_ENABLE_CLR	RW	0x0	32	3.4.2 IRQ_ENABLE_CLR on page 3-41
0x008	IRQ_STATUS_SET	RW	0x0	32	3.4.3 IRQ_STATUS_SET on page 3-41
0x00C	IRQ_STATUS_CLR	RW	0x0	32	3.4.4 IRQ_STATUS_CLR on page 3-42
0x010	IRQ_MASKED_STATUS	RO	0x0	32	3.4.5 IRQ_MASKED_STATUS on page 3-43
0x014	CTRL	RW	0x0	32	3.4.6 CTRL on page 3-44
0x018	STATUS	RO	0x0	32	3.4.7 STATUS on page 3-45
0x01C	ADDR	RW	0x0	32	3.4.8 ADDR on page 3-46
0x020	DATA0	RW	0x0	32	3.4.9 DATA0 on page 3-47
0x024	DATA1	RO	0x0	32	3.4.10 DATA1 on page 3-47
0x028	DATA2	RO	0x0	32	3.4.11 DATA2 on page 3-48
0x02C	DATA3	RO	0x0	32	3.4.12 DATA3 on page 3-48
0xFD0	PIDR4	RO	0x4	32	3.4.13 PIDR4 on page 3-49
0xFE0	PIDR0	RO	0x32	32	3.4.14 PIDR0 on page 3-49
0xFE4	PIDR1	RO	0xB8	32	3.4.15 PIDR1 on page 3-50
0xFE8	PIDR2	RO	0xB	32	3.4.16 PIDR2 on page 3-50
0xFEC	PIDR3	RO	0x0	32	3.4.17 PIDR3 on page 3-51
0xFF0	CIDR0	RO	0xD	32	3.4.18 CIDR0 on page 3-51
0xFF4	CIDR1	RO	0xF0	32	3.4.19 CIDR1 on page 3-52
0xFF8	CIDR2	RO	0x5	32	3.4.20 CIDR2 on page 3-52
0xFFC	CIDR3	RO	0xB1	32	3.4.21 CIDR3 on page 3-53

3.4 Register descriptions

This section describes the GFC-100 registers.

3.3 Register summary on page 3-39 provides cross references to individual registers.

3.4.1 IRQ_ENABLE_SET

Interrupt enable set register for enabling generation of interrupts for different sources.

The IRQ ENABLE SET register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x000

Type Read-write

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-6 IRQ ENABLE SET register bit assignments

The following list shows the register bit assignments.

[4] READ OVERFLOW IRQ EN SET

Enables READ_OVERFLOW_IRQ bit to generate interrupts on the interrupt line. Write to 1 sets the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[3] CMD_REJECT_IRQ_EN_SET

Enables CMD_REJECT_IRQ bit to generate interrupts on the interrupt line. Write to 1 sets the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[2] CMD FAIL IRQ EN SET

Enables CMD_FAIL_IRQ bit to generate interrupts on the interrupt line. Write to 1 sets the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[1] CMD_SUCCESS_IRQ_EN_SET

Enables CMD_SUCCESS_IRQ bit to generate interrupts on the interrupt line. Write to 1 sets the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[0] CMD ACCEPT IRQ EN SET

Enables CMD_ACCEPT_IRQ bit to generate interrupts on the interrupt line. Write to 1 sets the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

3.4.2 IRQ_ENABLE_CLR

Interrupt enable clear register for disabling generation of interrupts for different sources.

The IRQ ENABLE CLR register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x004

Type Read-write

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-7 IRQ ENABLE CLR register bit assignments

The following list shows the register bit assignments.

[4] READ OVERFLOW IRQ EN CLR

Disables READ_OVERFLOW_IRQ bit. Write to 1 clears the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[3] CMD REJECT IRQ EN CLR

Disables CMD_REJECT_IRQ bit. Write to 1 clears the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[2] CMD_FAIL_IRQ_EN_CLR

Disables CMD_FAIL_IRQ bit. Write to 1 clears the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[1] CMD SUCCESS IRQ EN CLR

Disables CMD_SUCCESS_IRQ bit. Write to 1 clears the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

[0] CMD ACCEPT IRQ EN CLR

Disables CMD_ACCEPT_IRQ bit. Write to 1 clears the interrupt enable. Write to 0 has no effect. Reading this bit shows the current status of the enable bit.

3.4.3 IRQ_STATUS_SET

Interrupt status set register for activating different interrupt sources.

The IRQ STATUS SET register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x008

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

Figure 3-8 IRQ_STATUS_SET register bit assignments

The following list shows the register bit assignments.

[4] READ OVERFLOW IRQ STS SET

Sets the status of the READ_OVERFLOW_IRQ bit. Write to 1 sets the interrupt. Write to 0 has no effect. Can be used to force the set status of this interrupt bit for debug purposes. Reading this bit shows the current status of the interrupt bit regardless of the interrupt enable setting.

[3] CMD REJECT IRQ STS SET

Sets the status of the CMD_REJECT_IRQ bit. Write to 1 sets the interrupt. Write to 0 has no effect. Can be used to force the set status of this interrupt bit for debug purposes. Reading this bit shows the current status of the interrupt bit regardless of the interrupt enable setting.

[2] CMD FAIL IRQ STS SET

Sets the status of the CMD_FAIL_IRQ bit. Write to 1 sets the interrupt. Write to 0 has no effect. Can be used to force the set status of this interrupt bit for debug purposes. Reading this bit shows the current status of the interrupt bit regardless of the interrupt enable setting.

[1] CMD_SUCCESS_IRQ_STS_SET

Sets the status of the CMD_SUCCESS_IRQ bit. Write to 1 sets the interrupt. Write to 0 has no effect. Can be used to force the set status of this interrupt bit for debug purposes. Reading this bit shows the current status of the interrupt bit regardless of the interrupt enable setting.

— Note — Write to 1 also sets STATUS.CMD_SUCCESS.

[0] CMD_ACCEPT_IRQ_STS_SET

Sets the status of the CMD_ACCEPT_IRQ bit. Write to 1 sets the interrupt. Write to 0 has no effect. Can be used to force the set status of this interrupt bit for debug purposes. Reading this bit shows the current status of the interrupt bit regardless of the interrupt enable setting.

3.4.4 IRQ_STATUS_CLR

Interrupt status clear register for acknowledging different interrupt sources.

The IRQ STATUS CLR register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x00C

Type Read-write

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-9 IRQ_STATUS_CLR register bit assignments

The following list shows the register bit assignments.

[4] READ OVERFLOW IRQ STS CLR

Clears the status of the READ_OVERFLOW_IRQ bit. Write to 1 clears the interrupt. Write to 0 has no effect. Reading this bit shows the current status of the interrupt bit.

[3] CMD REJECT IRO STS CLR

Clears the status of the CMD_REJECT_IRQ bit. Write to 1 clears the interrupt. Write to 0 has no effect. Reading this bit shows the current status of the interrupt bit.

[2] CMD FAIL IRQ STS CLR

Clears the status of the CMD_FAIL_IRQ bit. Write to 1 clears the interrupt. Write to 0 has no effect. Reading this bit shows the current status of the interrupt bit.

[1] CMD_SUCCESS_IRQ_STS_CLR

Clears the status of the CMD_SUCCESS_IRQ bit. Write to 1 clears the interrupt. Write to 0 has no effect. Reading this bit shows the current status of the interrupt bit.

[0] CMD ACCEPT IRQ STS CLR

Clears the status of the CMD_ACCEPT_IRQ bit. Write to 1 clears the interrupt. Write to 0 has no effect. Reading this bit shows the current status of the interrupt bit.

3.4.5 IRQ MASKED STATUS

Interrupt status register that shows if each interrupt is pending and is the cause of the interrupt line being asserted.

The IRQ MASKED STATUS register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x010

Type Read-only

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-10 IRQ_MASKED_STATUS register bit assignments

The following list shows the register bit assignments.

[4] READ OVERFLOW IRQ

When this bit reads 1, it means that READ_OVERFLOW_IRQ is the cause of the interrupt line being asserted.

[3] CMD REJECT IRQ

When this bit reads 1, it means that CMD_REJECT_IRQ is the cause of the interrupt line being asserted.

[2] CMD_FAIL_IRQ

When this bit reads 1, it means that CMD_FAIL_IRQ is the cause of the interrupt line being asserted.

[1] CMD_SUCCESS IRQ

When this bit reads 1, it means that CMD_SUCCESS_IRQ is the cause of the interrupt line being asserted.

[0] CMD ACCEPT IRQ

When this bit reads 1, it means that CMD_ACCEPT_IRQ is the cause of the interrupt line being asserted.

3.4.6 CTRL

Control register for initiating Flash accesses.

The CTRL register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x014

Type Read-write

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-11 CTRL register bit assignments

[4] ABORT

Abort currently ongoing command that is initiated towards the embedded Flash from the APB interface. When ABORT is written, the CMD field is ignored. ABORT is effective only when STATUS.CMD_ACCEPT is set. Reading back ABORT field shows the status of the GFB interface **fabort** signal.

[2:0] CMD

Initiate a command to the embedded Flash for the address that is stored in the ADDR register and with the data that are stored in DATA0 register. For WRITE and ROW WRITE commands, software must ensure that the state of the addressed word is cleared. The commands are:

0b001: READ 0b010: WRITE 0b011: ROW WRITE 0b100: ERASE

Øb111: MASS ERASEØb000: ReservedØb101: ReservedØb110: Reserved

Writing reserved commands has no effect. Reading back the CMD value shows the currently pending CMD. When the CMD is accepted, the CMD field is cleared to 0b000.

3.4.7 STATUS

Status register for showing the state of the embedded Flash accesses.

The STATUS register characteristics are:

Usage constraintsThere are no usage constraints.ConfigurationsThere is only one configuration.AttributesOffset 0x018

Type Read-only
Reset 0x0
Width 32

The following figure shows the bit assignments.

Figure 3-12 STATUS register bit assignments

[5] ARBITRATION LOCKED

When this bit reads 1, it means that the other interface keeps the arbitration in locked state and no APB commands are serviced until the locked state is removed. Software can use this bit to detect why the APB request is being held up.

[4] CMD FINISH

When this bit reads 1, it means that the previously accepted command is finished but the result cannot be updated in the STATUS register because the interrupt bits are still set. When the result interrupt bits are cleared, the status can be updated and this bit is automatically cleared.

[3] CMD FAIL

When this bit reads 1, it means that the previously accepted command has finished with a failure. Either this bit or the CMD_SUCCESS bit is set for the finished command. Updated when CMD_SUCCESS_IRQ or CMD_FAIL_IRQ is set. Valid until the CMD_SUCCESS_IRQ or CMD_FAIL_IRQ bit is cleared.

[2] CMD SUCCESS

When this bit reads 1, it means that the previously accepted command has finished successfully. Either this bit or the CMD_FAIL bit is set for the finished command. Updated when CMD_SUCCESS_IRQ or CMD_FAIL_IRQ is set. Valid until the CMD_SUCCESS_IRQ or CMD_FAIL_IRQ bit is cleared.

[1] CMD ACCEPT

Selecting CMD_PENDING to be executed towards the embedded Flash sets this bit to 1 and means that the command is being forwarded to the embedded Flash. Set to 1 when the CMD_PENDING bit is cleared. Cleared when the command has finished and the CMD_SUCCESS_IRQ or CMD_FAIL_IRQ status bits are cleared for the previous transfer. If the status results of the previous command are not cleared, the command might still be finished for the embedded Flash, but the results cannot update until the previous results are cleared. If an already pending command is accepted when the current command has finished, this bit stays asserted.

[0] CMD PENDING

When the CTRL register is written, the command goes into the arbitration queue and waits to be arbitrated towards the embedded Flash. This bit is set when the command is initiated, but still pending in the queue, and is cleared when the embedded Flash arbitrates and accepts the command. This bit is also set when ABORT is written to the CTRL register, and is cleared when the aborted command has finished.

3.4.8 ADDR

Address register for the embedded Flash access.

The ADDR register characteristics are:

Usage constraints The value that is written to the ADDR field must be either:

• 32-bit aligned for write accesses.

• 128-bit aligned for read accesses.

Configurations There is only one configuration.

Attributes Offset 0x01C

Type Read/write

Reset 0x0

Width 32

The following figure shows the bit assignments.

Figure 3-13 ADDR register bit assignments

The following list shows the register bit assignments.

[21:0] ADDR

The 22-bit wide byte address for the current Flash access, allows 2MB address range for the main area and 2MB address range for the extended area.

The ADDR[21] bit selects between memory ranges:

- 0: Main area.
- 1: Extended area.

When selecting the extended area for MASS ERASE command, both main and extended areas are cleared. Otherwise, only the main area is cleared. The contents of the extended area remain unchanged after the MASS ERASE finishes.

3.4.9 DATA0

Data register for the embedded Flash access containing read and write data bits[31:0].

The DATA0 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x020

Type Read-write

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-14 DATA0 register bit assignments

The following list shows the register bit assignments.

[31:0] DATA0

Data register for the embedded Flash access has read and write data bits[31:0].

3.4.10 DATA1

Data register for the embedded Flash access containing read data bits[63:32].

The DATA1 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x024

Type Read-only
Reset 0x0
Width 32

The following figure shows the bit assignments.

Figure 3-15 DATA1 register bit assignments

The following list shows the register bit assignments.

[31:0] DATA1

Data register for the embedded Flash access has read data bits[63:32].

3.4.11 DATA2

Data register for the embedded Flash access containing read data bits[95:64].

The DATA2 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x028

Type Read-only

 Reset
 0x0

 Width
 32

The following figure shows the bit assignments.

Figure 3-16 DATA2 register bit assignments

The following list shows the register bit assignments.

[31:0] DATA2

Data register for the embedded Flash access has read data bits[95:64].

3.4.12 DATA3

Data register for the embedded Flash access containing read data bits[127:96].

The DATA3 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0x02C

Type Read-only

Reset 0x0 Width 32

The following figure shows the bit assignments.

Figure 3-17 DATA3 register bit assignments

The following list shows the register bit assignments.

[31:0] DATA3

Data register for the embedded Flash access has read data bits[127:96].

3.4.13 PIDR4

Peripheral identification register byte[4]. Returns byte[4] of the peripheral ID. The PIDR4 register is part of the set of peripheral identification registers.

The PIDR4 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFD0

Type Read-only

Reset 0x4 Width 32

The following figure shows the bit assignments.

Figure 3-18 PIDR4 register bit assignments

The following list shows the register bit assignments.

[7:4] SIZE Indicates that the GFC-100 registers occupy a single 4KB page.

[3:0] DES_2 Indicates how many Continuation Codes (0x7F) an Arm device requires. For

identifying an Arm device or product, the Standard Manufacturer's Identification

Code specifies a requirement of four Continuation Codes.

3.4.14 PIDR0

Peripheral identification register byte[0]. Returns byte[0] of the peripheral ID. The PIDR0 register is part of the set of peripheral identification registers.

The PIDR0 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFE0

Type Read-only Reset 0x32
Width 32

The following figure shows the bit assignments.

Figure 3-19 PIDR0 register bit assignments

[7:0] PART_0 Part number, bits[7:0], for the GFC-100. See also PIDR1.PART_1. The GFC-100 part number is 832.

3.4.15 PIDR1

Peripheral identification register byte[1]. Returns byte[1] of the peripheral ID. The PIDR1 register is part of the set of peripheral identification registers.

The PIDR1 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFE4

Type Read-only
Reset 0xB8
Width 32

The following figure shows the bit assignments.

Figure 3-20 PIDR1 register bit assignments

The following list shows the register bit assignments.

[7:4] DES_0 JEDEC JEP106 ID code [3:0]. See also PIDR2.DES_1 and the Standard

Manufacturer's Identification Code.

[3:0] PART_1 Part number, bits[11:8], for the GFC-100. See also PIDR0.PART_0. The GFC-100

part number is 832.

3.4.16 PIDR2

Peripheral identification register 2. Returns byte[2] of the peripheral ID. The PIDR2 register is part of the set of peripheral identification registers.

The PIDR2 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFE8

Type Read-only
Reset 0x0B
Width 32

The following figure shows the bit assignments.

Figure 3-21 PIDR2 register bit assignments

[7:4] **REVISION** Revision identifier for the GFC-100:

• 0x0 = r0p0.

[3] **JEDEC** Indicates the use of a JEDEC-assigned ID value.

[2:0] DES_1 JEDEC JEP106 ID code [6:4]. See also PIDR1.DES_0[3:0] and the Standard

Manufacturer's Identification Code.

3.4.17 PIDR3

Peripheral identification register 3. Returns byte[3] of the peripheral ID. The PIDR3 register is part of the set of peripheral identification registers.

The PIDR3 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFEC

Type Read-only Reset 0x00 Width 32

The following figure shows the bit assignments.

Figure 3-22 PIDR3 register bit assignments

The following list shows the register bit assignments.

[7:4] **REVAND** A nonzero value indicates that Arm has approved the application of a

post-manufacture metal layer fix to the GFC-100 silicon.

[3:0] CMOD Customer modified.

3.4.18 CIDR0

Component identification register 0. Returns byte[0] of the component ID. The CIDR0 register is part of the set of component identification registers.

The CIDR0 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFF0

Type Read-only
Reset 0x0D
Width 32

The following figure shows the bit assignments.

Figure 3-23 CIDR0 register bit assignments

[7:0] **PRMBL 0** Preamble 0.

3.4.19 CIDR1

Component identification register 1. Returns byte[1] of the component ID. The CIDR1 register is part of the set of component identification registers.

The CIDR1 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFF4

Type Read-only
Reset 0xF0
Width 32

The following figure shows the bit assignments.

Figure 3-24 CIDR1 register bit assignments

The following list shows the register bit assignments.

[7:4] CLASS Component class. [3:0] PRMBL_1 Preamble 1.

3.4.20 CIDR2

Component identification register 2. Returns byte[2] of the component ID. The CIDR2 register is part of the set of component identification registers.

The CIDR2 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFF8

Type Read-only
Reset 0x05
Width 32

The following figure shows the bit assignments.

Figure 3-25 CIDR2 register bit assignments

The following list shows the register bit assignments.

[7:0] **PRMBL 2** Preamble 2.

3.4.21 CIDR3

Component identification register 3. Returns byte[3] of the component ID. The CIDR3 register is part of the set of component identification registers.

The CIDR3 register characteristics are:

Usage constraints There are no usage constraints.

Configurations There is only one configuration.

Attributes Offset 0xFFC

Type Read-only
Reset 0xB1
Width 32

The following figure shows the bit assignments.

Figure 3-26 CIDR3 register bit assignments

The following list shows the register bit assignments.

[7:0] PRMBL_3 Preamble 3.

Appendix A **Signal Descriptions**

Read this for a description of the input and output signals.

It contains the following sections:

- A.1 AHB-Lite slave interface signals on page Appx-A-55.
- A.2 APB slave interface signals on page Appx-A-57.
- A.3 APB master interface signals on page Appx-A-58.
- A.4 Generic Flash Bus signals on page Appx-A-59.
- A.5 Q-Channel interface for clock signals on page Appx-A-61.
- A.6 Q-Channel interface for power signals on page Appx-A-62.
- A.7 P-Channel controller interface signals on page Appx-A-63.
- A.8 System interface signals on page Appx-A-64.

A.1 AHB-Lite slave interface signals

The AHB-Lite slave interface processes several input and output AHB-Lite signals.

The following table shows the signals that are used by the AHB-Lite slave interface.

Table A-1 AHB-Lite slave interface signals

Signal name	Direction	Source or destination	Description	
hsel	Input	Decoder	Slave select signal.	
			Indicates that the current transfer is intended for the Flash controller.	
haddr[21:0]	Input	AHB master	Address bus.	
			22 bits wide. Allows a 4MB address space to be split into a 2MB main and a 2MB extended memory area. MSB haddr[21] specifies the selection between the two areas:	
			0 = Main area.	
			1 = Extended area.	
htrans[1:0]	Input	AHB master	Indicates the current transfer type:	
			0b00 = IDLE.	
			0b01 = BUSY.	
			0b10 = NONSEQUENTIAL.	
			0b11 = SEQUENTIAL.	
hwrite	Input	AHB master	Read-only.	
			Only reads are allowed. Can be tied LOW externally.	
			Writes generate an error.	
hsize[2:0]	Input	AHB master	Indicates the size of access:	
			0b000 = Byte.	
			0b001 = Halfword.	
			0b010 = Word.	
			0b011 = Doubleword.	
			0b100 = 4-word line.	
			0b101 = 8-word line.	
			0b110 = 512-bit width.	
			0b111 = 1024-bit width.	
			Only 0b100 is allowed. Other access sizes generate an error.	

Table A-1 AHB-Lite slave interface signals (continued)

Signal name	Direction	Source or destination	Description	
hburst[2:0]	Input	AHB master	Indicates if the transfer is part of the burst: 0b000 = Single. 0b001 = Incr. 0b010 = Wrap4. 0b011 = Incr4. 0b100 = Wrap8. 0b101 = Incr8. 0b110 = Wrap16.	
hmastlock	Input	AHB master	Indicates that the transaction on the bus must be atomic. Used for blocking arbitration over the GFB.	
hready	Input	Multiplexer or AHB master	To extend a transfer, drive this signal LOW.	
hreadyout	Output	Multiplexer or AHB master	B When HIGH, indicates that a bus transfer has completed. To extend a transfer, drive this signal LOW. Isolation and reset value = 0b1.	
hresp	Output	Multiplexer or AHB master	Transfer response status: 0b0 = OKAY. 0b1 = ERROR. Isolation and reset value = 0b0.	
hrdata[127:0]	Output	Multiplexer or AHB master		

_____ Note _____

AHB-Lite signals that are not shown in the table are not used in GFC-100.

Related reference

2.2.1 AHB-Lite slave interface on page 2-20

A.2 APB slave interface signals

The APB slave interface processes several input and output APB signals.

The following table shows the signals that are used by the APB slave interface.

Table A-2 APB slave interface signals

Signal name	Direction	Source or destination ^a	Description	
psel_s	Input	APB bridge	Slave select signal.	
			Indicates that the current transfer is intended for the Flash controller.	
penable_s	Input	APB bridge	Strobe to time all accesses.	
			Indicates the start of the second cycle of an APB transfer.	
paddr_s[12:0]	Input	APB bridge	Address bus. paddr_s[12] selects either the internal or an external register bank:	
			0 = Internal registers.	
			1 = External registers.	
pstrb_s[3:0]	Input	APB bridge	Write strobe port. Each bit refers to a byte in the pwdata_s signal:	
			[3] pwdata_s[31:24].	
			[2] pwdata_s[23:16].	
			[1] pwdata_s[15:8].	
			[0] pwdata_s[7:0].	
pwrite_s	Input	APB bridge	APB transfer direction. Write only.	
pwdata_s[31:0]	Input	APB bridge	32-bit write data bus.	
prdata_s[31:0]	Output	APB bridge	32-bit read data bus.	
			Isolation and reset value = 0×00 .	
pready_s	Output	APB bridge	Driven LOW when extra wait states are required to complete access to the external registers.	
			Isolation and reset value = 0b0.	
pslverr_s	Output	APB bridge	Driven HIGH when an error response is received from an access to the external registers.	
			Isolation and reset value = 0b0.	

Note

APB signals that are not shown in the table are not used in GFC-100.

Related reference

2.2.2 APB slave interface on page 2-21

a The APB bridge is not supplied with GFC-100.

A.3 APB master interface signals

The APB master interface processes several input and output APB signals.

The following table shows the signals that are used by the APB master interface.

Table A-3 APB master interface signals

Signal name	Direction	Source or destination	Description
psel_m	Output	Process-specific part	Slave select signal. Indicates that the current transfer is intended for the Flash controller.
penable_m	Output	Process-specific part	Strobe to time all accesses. Indicates the start of the second cycle of an APB transfer.
paddr_m[11:0]	Output	Process-specific part	Address bus.
pstrb_m[3:0]	Output	Process-specific part	Write strobe port. Each bit refers to a byte in the pwdata_m signal:
			[3] pwdata_m[31:24].
			[2] pwdata_m[23:16].
			[1] pwdata_m[15:8].
			[0] pwdata_m[7:0].
pwrite_m	Output	Process-specific part	APB transfer direction. Write only.
pwdata_m[31:0]	Output	Process-specific part	32-bit write data bus.
prdata_m[31:0]	Input	Process-specific part	32-bit read data bus.
pready_m	Input	Process-specific part	Driven LOW when extra wait states are required to complete access to the external registers.
pslverr_m	Input	Process-specific part	Driven HIGH when an error response is received from an access to the external registers.

_____ Note _____

APB signals that are not shown in the table are not used in GFC-100.

Related reference

2.2.3 APB master interface on page 2-22

A.4 Generic Flash Bus signals

The GFB interface processes several input and output signals.

The following table shows the GFB signals.

Table A-4 Generic Flash Bus signals

Signal name	Direction	Source or destination	Description	
faddr[21:0]	Output	Process-specific part	Address bus.	
			Address width is fixed at 22 bits to allow accesses to a 4MB embedded Flash that can be divided into a 2MB main memory and extended memory.	
			faddr[21] selects between main and extended regions:	
			0 = Main area.	
			1 = Extended area.	
			faddr[3:2] selects the location of the 32-bit write data within the 128-bit interface:	
			0b00 = [31:0].	
			0b01 = [63:32].	
			0b10 = [95:64].	
			0b11 = [127:96].	
			faddr[1:0] is not used because the minimum data width is 32 bits.	
fcmd[2:0]	Output	Process-specific part	Command bus:	
			0b000 = IDLE.	
			0b001 = READ.	
			0b010 = WRITE.	
			0b011 = ROW WRITE.	
			0b100 = ERASE.	
			0b101 = Reserved.	
			0b110 = Reserved.	
			0b111 = MASS ERASE.	
fabort	Output	Process-specific part	Abort indication.	
			When HIGH, the master requests to abort the command that is running.	
fwdata[31:0]	Output	Process-specific part	32-bit write data bus.	
frdata[127:0]	Input	Process-specific part	128-bit read data bus.	
			1	

Table A-4 Generic Flash Bus signals (continued)

Signal name	Direction	Source or destination	Description
fready	Input	Process-specific part	Command ready indication. Driven LOW if the process-specific part requires wait states to complete the access. Driven HIGH when the process-specific part is ready with the previous access and is able to accept a new command.
fresp	Input	Process-specific part	Flash error indication for the previously accepted command. Driven HIGH for two cycles when an error is indicated for the command that is running.

Note ———
 11016

- GFB signals that are not shown in the table are not used in GFC-100.
- The GFC-100 and the GFB slave logic inside the process-specific part are expected to be in the same power domain. Therefore, the GFB does not require isolation values.

Related reference

2.2.4 Generic Flash Bus on page 2-22

A.5 Q-Channel interface for clock signals

The Q-Channel interface for clock processes all Q-Channel clock control signals.

The following table shows the signals that are used by the Q-Channel interface for clock.

Table A-5 Q-Channel interface for clock signals

Signal name	Direction	Source or destination	Description
qreqn_clk	Input	Clock controller	Quiescence request. Active-LOW. Synchronized with double-flop synchronizer.
qacceptn_clk	Output	Clock controller	Accept quiescence request. Active-LOW. Isolation and reset value = 0b0.
qdeny_clk	Output	Clock controller	Deny quiescence request. Active-HIGH. Isolation and reset value = 0b0.
qactive_clk	Output	Clock controller	Activity indication. Active-HIGH.

Driving signals

The system clock controller might be in a different clock or power domain to GFC-100. Therefore, the Q-Channel interface for clock is considered to be fully asynchronous. This means that a double-flop synchronizer captures the input signal. Registers drive all output signals.

Related reference

2.2.5 Q-Channel interface for clock on page 2-23

A.6 Q-Channel interface for power signals

The Q-Channel interface for power processes all Q-Channel power control signals.

The following table shows the signals that are used by the Q-Channel interface for power.

Table A-6 Q-Channel interface for power signals

Signal name	Direction	Source or destination	Description
qreqn_pwr	Input	Power Policy Unit (PPU).	Quiescence request. Active-LOW.
			Synchronized with double-flop synchronizer.
qacceptn_pwr	Output	PPU	Accept quiescence request. Active-LOW. Isolation and reset value = 0b0.
qdeny_pwr	Output	PPU	Deny quiescence request. Active-HIGH. Isolation and reset value = 0b0.
qactive_pwr	Output	PPU	Activity indication. Active-HIGH.

Driving signals

The system PPU might be in a different clock or power domain to GFC-100. Therefore, the Q-Channel interface for power is considered to be fully asynchronous. This means that a double-flop synchronizer captures the input signal. Registers drive all output signals.

Related reference

2.2.6 Q-Channel interface for power on page 2-23

A.7 P-Channel controller interface signals

The P-Channel controller interface processes all P-Channel signals.

The following table shows the signals that are used by the P-Channel controller interface.

Table A-7 P-Channel controller interface signals

Signal name	Direction	Source or destination	Description
preq	Output	Process-specific part	Power state change request. Active-HIGH.
pstate	Output	Process-specific part	Requested power state value: 0 = All powerdown (default). 1 = All powerup.
paccept	Input	Process-specific part	Accept indication. Active-HIGH. Synchronized with double-flop synchronizer.
pdeny	Input	Process-specific part	Deny indication. Active-HIGH. Synchronized with double-flop synchronizer.
pactive	Input	Process-specific part	Activity indication for each power state. Active-HIGH. Synchronized with double-flop synchronizer.

Driving signals

GFC-100 drives all output signals from registers, and double-flop synchronizers capture all input signals. This enables the P-Channel device and GFC-100 to be fully synchronous. It also enables the P-Channel device to be placed in a different power domain, if necessary.

Related reference

2.2.7 P-Channel controller interface on page 2-24

A.8 System interface signals

The system interface processes several input and output signals.

The following table shows the system interface signals.

Table A-8 System interface signals

Signal name	Direction	Source or destination	Description
clk	Input	Clock generator	Core clock for all GFC-100 interfaces.
resetn	Input	System controller	Active-LOW reset. Assert asynchronously, release synchronously with clk.
irq	Output	Interrupt controller	Interrupt request. Active-HIGH.
flash_pwr_rdy	Output	Process-specific part	Indicates that power to the Flash macro is stable. Active-HIGH. The process-specific part monitors this signal for a rising edge after reset. Transactions towards the Flash macro are not initiated before the rising edge occurs. Additional transitions are ignored.

Related reference

2.2.8 System interface on page 2-24

Appendix B **Revisions**

Read this for a description of changes between released issues of this book.

It contains the following section:

• B.1 Revisions on page Appx-B-66.

B.1 Revisions

This appendix describes changes between released issues of this book.

Table B-1 Issue 0000-00

Change	Location	Affects
First release	-	-

Table B-2 Differences between issue 0000-00 and issue 0000-01

Change	Location	Affects
Updated content.	1.1 About GFC-100 on page 1-12.	All revisions.
Moved start and end points of flash_pwr_rdy signal.	Figure 2-1 GFC-100 internal structure on page 2-19.	
Clarified description of data width.	2.2.1 AHB-Lite slave interface on page 2-20.	
Updated the <i>Error response</i> description.	2.2.2 APB slave interface on page 2-21.	
Updated the Address width description.	2.2.4 Generic Flash Bus on page 2-22.	
Updated content.	2.3 Clocking on page 2-26.	
Updated content.	2.4 Resets on page 2-27.	
Updated descriptions for the Command Success and Command Fail interrupts.	2.5 Interrupt sources on page 2-28.	
Updated the Arbitration scheme description.	2.6 Generic Flash Bus arbiter on page 2-29.	
Added notes to the CMD_FAIL_IRQ_STS_SET and CMD_SUCCESS_IRQ_STS_SET bit descriptions.	3.4.3 IRQ_STATUS_SET on page 3-41.	
Updated the faddr[21:0] description.	Table A-4 Generic Flash Bus signals on page Appx-A-59.	

Table B-3 Differences between issue 0000-01 and issue 0000-02

Change	Location	Affects
Changed the product name from 'Vultan' to 'GFC-100'.	Throughout the document.	All revisions.
Added some usage constraints.	3.4.8 ADDR on page 3-46.	All revisions.
Updated the register bit descriptions.	 3.4.14 PIDR0 on page 3-49. 3.4.15 PIDR1 on page 3-50. 3.4.16 PIDR2 on page 3-50. 3.4.17 PIDR3 on page 3-51. 3.4.13 PIDR4 on page 3-49. 	All revisions.
Deleted an erroneous table footnote.	 Table A-2 APB slave interface signals on page Appx-A-57. Table A-5 Q-Channel interface for clock signals on page Appx-A-61. Table A-6 Q-Channel interface for power signals on page Appx-A-62. 	All revisions.