Tarea 04

David Gómez

VIGILADA MINEDUCACIÓN

${\rm \acute{I}ndice}$

L.	Seco	ción 2.3
	1.1.	Punto 1
		1.1.1. a) $\vDash ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$
		1.1.2. b) $\vDash ((\phi \equiv true) \equiv \phi)$
		1.1.3. f) $\models ((\phi \lor false) \equiv \phi)$
		1.1.4. g) $\models ((\phi \lor \phi) \equiv \phi)$
		1.1.5. \vec{k} $\models (\neg(\phi \land (\neg\phi)))$
		1.1.6. $ \hat{b} = (\hat{\phi} \rightarrow (\hat{\psi} \rightarrow \hat{\phi}))$
		1.1.7. n) $\models ((\phi \rightarrow \psi) \equiv ((\neg \psi) \rightarrow (\neg \phi)))$
	1.2.	Punto 2
		1.2.1. b) $((\neg p) \lor q)$
		1.2.2. d) $(\neg(p \land (\neg q)))$
	1.3.	Punto 3
		Punto 6
		1.4.1. b)
		1.4.2. d)
		1.4.3. f)
		1.4.4. g)
	1.5.	Punto 8
	1.6.	
	1.7	

1. Sección 2.3

1.1. Punto 1

1.1.1. a) $\vDash ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$

- 0. $\mathbf{v}[((\phi \equiv \psi) \equiv (\psi \equiv \phi))] = \mathbf{T}$ Enunciado
- 1. $\mathbf{v}[((\phi \equiv \psi) \equiv (\psi \equiv \phi))] = \mathbf{F}$ suposición (intento por contradicción)
- 2. $\mathbf{v}[(\phi \equiv \psi)] \neq \mathbf{v}[(\psi \equiv \phi)]$
- 3. $|(\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}) \wedge (\mathbf{v}[(\psi \equiv \phi)] = \mathbf{F})$ suposición 1, MT 2.20
- 4. $|(\mathbf{v}[\phi] = \mathbf{v}[\psi]) \wedge (\mathbf{v}[\psi] \neq \mathbf{v}[\phi])$ MT 2.23 (\equiv)
- 5. Contradicción
- 6. $(\mathbf{v}[(\phi \equiv \psi)] = \mathbf{F}) \wedge (\mathbf{v}[(\psi \equiv \phi)] = \mathbf{T})$ suposición 2
- 7. $|(\mathbf{v}[\phi] \neq \mathbf{v}[\psi]) \wedge (\mathbf{v}[\psi] = \mathbf{v}[\phi])$ MT 2.23 (\equiv)
- 8. Contradicción
- 9. \therefore $\vDash ((\phi \equiv \psi) \equiv (\psi \equiv \phi))$

1.1.2. b) $\vDash ((\phi \equiv true) \equiv \phi)$

- 0. $\mathbf{v}[((\phi \equiv true) \equiv \phi)] = \mathsf{T}$ Enunciado
- 1. $\mathbf{v}[((\phi \equiv true) \equiv \phi)] = \mathbf{F}$ suposición (intento por contradicción)
- 2. $\mathbf{v}[(\phi \equiv true)] \neq \mathbf{v}[\phi]$
- 3. $|(\mathbf{v}[(\phi \equiv true)] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})$ suposición 1, MT 2.20
- 4. $|(\mathbf{v}[\phi] = \mathbf{v}[true]) \wedge (\mathbf{v}[\phi]) = \mathbf{F}$ MT 2.23
- 5. $|(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$
- 6. Contradicción
- 7. $|(\mathbf{v}[(\phi \equiv true)] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})$ suposición 2, MT 2.20
- 8. $|(\mathbf{v}[\phi] \neq \mathbf{v}[true]) \wedge (\mathbf{v}[\phi]) = \mathbf{T}$ MT 2.23
- 9. $|(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})|$
- 10. Contradicción
- 11. \therefore $\vDash ((\phi \equiv true) \equiv \phi)$

Página 2 Taller 02

1.1.3. f) $\vDash ((\phi \lor false) \equiv \phi)$

 $\mathbf{v}[((\phi \lor false) \equiv \phi)] = \mathsf{T}$ 0. Enunciado $\mathbf{v}[((\phi \lor false) \equiv \phi)] = \mathbf{F}$ suposición (intento por contradicción) $\mathbf{v}[(\phi \lor false)] \neq \mathbf{v}[\phi]$ $|(\mathbf{v}[(\phi \lor false)] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{F})|$ suposición 1, MT 2.20 $((\mathbf{v}[\phi] = T) \lor (\mathbf{v}[false] = T)) \land (\mathbf{v}[\phi] = F)$ 4. MT 2.23 $|(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})|$ 5. Contradicción 6. $|(\mathbf{v}[(\phi \lor false)] = \mathbf{F}) \land (\mathbf{v}[\phi] = \mathbf{T})|$ 7. suposición 2, MT 2.20 $((\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[false] = \mathbf{F})) \wedge (\mathbf{v}[\phi] = \mathbf{T})$ 8. MT 2.239. $|(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{T})|$ simplificación (8) 10. Contradicción 11. :. $\vDash ((\phi \lor false) \equiv \phi)$

1.1.4. g) \vDash $((\phi \lor \phi) \equiv \phi)$

0. $\mathbf{v}[((\phi \vee \phi) \equiv \phi)] = \mathtt{T}$ Enunciado $\mathbf{v}[((\phi \lor \phi) \equiv \phi)] = \mathbf{F}$ 1. suposición (intento por contradicción) 2. $\mathbf{v}[(\phi \lor \phi)] \neq \mathbf{v}[\phi]$ MT 2.23 (\equiv) 3. $(\mathbf{v}[(\phi \lor \phi)] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{F})$ suposición 1, MT 2.20 4. $((\mathbf{v}[\phi] = T) \lor (\mathbf{v}[\phi] = T)) \land (\mathbf{v}[\phi] = F)$ MT 2.20 $|((\mathbf{v}[\phi] = T) \wedge (\mathbf{v}[\phi] = T)) \wedge (\mathbf{v}[\phi] = F)|$ 5. suposición 1.1 Contradicción 6. $((\mathbf{v}[\phi] = F) \wedge (\mathbf{v}[\phi] = T)) \wedge (\mathbf{v}[\phi] = F)$ 7. suposición 1.2 Contradicción 8. $((\mathbf{v}[\phi] = F) \land (\mathbf{v}[\phi] = T)) \land (\mathbf{v}[\phi] = F)$ 9. suposición 1.3 10. Contradicción 11. $(\mathbf{v}[(\phi \lor \phi)] = \mathbf{F}) \land (\mathbf{v}[\phi] = \mathbf{T})$ suposición 2, MT 2.20 12. $((\mathbf{v}[\phi] = F) \land (\mathbf{v}[\phi] = F)) \land (\mathbf{v}[\phi] = T)$ MT 2.23Contradicción 13. 14. $\therefore \vdash ((\phi \lor \phi) \equiv \phi)$

Página 3 Taller 02

1.1.5. k) $\vDash (\neg(\phi \land (\neg\phi)))$

```
0. \mathbf{v}[(\neg(\phi \land (\neg\phi)))] = \mathbf{T} Enunciado

1. \mathbf{v}[(\neg(\phi \land (\neg\phi)))] = \mathbf{F} suposición (intento por contradicción)

2. \mathbf{v}[(\phi \land (\neg\phi))] = \mathbf{T} MT 2.23 (\neg)

3. (\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[(\neg\phi)] = \mathbf{T}) MT 2.23 (\land)

4. (\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{F}) MT 2.23 (\neg)

5. Contradicción

6. \therefore \vdash (\neg(\phi \land (\neg\phi)))
```

1.1.6. l) $\vDash (\phi \to (\psi \to \phi))$

1. $\mathbf{v}[(\phi \to (\psi \to \phi))] = \mathbf{F}$ suposición (i 2. $(\mathbf{v}[\phi] = \mathbf{T}) \land (\mathbf{v}[(\psi \to \phi)] = \mathbf{F})$ 3. $(\mathbf{v}[\phi] = \mathbf{T}) \land ((\mathbf{v}[\psi] = \mathbf{T}) \land ((\mathbf{v}[\phi] = \mathbf{F})))$	intento por contradicción)
3. $(\mathbf{v}[\phi] = T) \wedge ((\mathbf{v}[\psi] = T) \wedge ((\mathbf{v}[\phi] = F)))$	MT 2.23 (\rightarrow)
	MT 2.23 (\rightarrow)
4. Contradicción	
5. $(\phi \to (\psi \to \phi))$	

1.1.7. n) $\vDash ((\phi \rightarrow \psi) \equiv ((\neg \psi) \rightarrow (\neg \phi)))$

0.	$\mathbf{v}[((\phi \to \psi) \equiv ((\neg \psi) \to (\neg \phi)))] = T$	Enunciado
1.	$\mathbf{v}[(\phi \to \psi)] = \mathbf{v}[((\neg \psi) \to (\neg \phi))]$	MT 2.23 (\equiv)
2.	Partiendo de $(\phi \to \psi)$	
3.	$\mathbf{v}[(\phi o \psi)] = \mathbf{F}$	suposición 1
4.	$(\mathbf{v}[\phi] = \mathtt{T}) \wedge (\mathbf{v}[\psi] = \mathtt{F})$	MT 2.23 (\rightarrow)
5.	$(\mathbf{v}[\psi] = \mathtt{F}) \wedge (\mathbf{v}[\phi] = \mathtt{T})$	Conmutativa de \wedge
6.	$(H_{\neg}(\mathbf{v}[\psi]) = T) \wedge (H_{\neg}(\mathbf{v}[\phi]) = F)$	Doble negación (5)
7.	$(\mathbf{v}[(\neg \psi)] = \mathtt{T}) \wedge (\mathbf{v}[(\neg \phi)]) = \mathtt{F}$	Def. 2.18 (\neg)
8.	$\mathbf{v}[((\neg \psi) \to (\neg \phi))] = \mathbf{F}$	MT 2.23 (\rightarrow)
9.	$\mathbf{v}[(\phi o \psi)] = \mathtt{T}$	suposición 2
10.	$(\mathbf{v}[\phi] = F) \lor (\mathbf{v}[\psi] = T)$	MTT 2.23 (\rightarrow)
11.	$(\mathbf{v}[\psi] = \mathtt{T}) \lor (\mathbf{v}[\phi] = \mathtt{F})$	Conmutativa de \vee
12.	$(H_{\neg}(\mathbf{v}[\psi]) = F) \lor (H_{\neg}(\mathbf{v}[\phi]) = T)$	Doble negación (10)
13.	$(\mathbf{v}[(\neg \psi)] = \mathbf{F}) \lor (\mathbf{v}[(\neg \phi)]) = \mathbf{T}$	Def. 2.18 (\neg)
14.	$\mathbf{v}[((\neg \psi) \to (\neg \phi))] = T$	MT 2.23 (\rightarrow)
15	$ \qquad \qquad \vdash ((\phi \to y/) = ((\neg y/) \to (\neg \phi))) $	

Página 4 Taller 02

1.2. Punto 2

1.2.1. b) $((\neg p) \lor q)$

1.2.2. d) $(\neg(p \land (\neg q)))$

```
(\exists \mathbf{v}, \mathbf{w} \mid (\mathbf{v}[(\neg(p \land (\neg q)))] = \mathbf{T}) \land (\mathbf{w}[(\neg(p \land (\neg q)))] = \mathbf{F}))
0.
                                                                                                                                                                Enunciado
1.
            |\mathbf{v}[(\neg(p \land (\neg q)))] = \mathbf{F}
                                                                                                                                                            suposición 1
            \mathbf{v}[(p \wedge (\neg q))] = \mathsf{T}
                                                                                                                                                           Def. 2.18 (\neg)
            |(\mathbf{v}[p] = \mathsf{T}) \wedge (\mathbf{v}[(\neg q)] = \mathsf{T})|
3.
                                                                                                                                                           MT 2.23 (∧)
4.
            |(\mathbf{v}[p] = \mathsf{T}) \wedge (\mathbf{v}[q] = \mathsf{F})|
                                                                                                                                                          Def. 2.18 (\neg)
                      \mathbf{v} = \{ p \mapsto \mathtt{T}, q \mapsto \mathtt{F} \}
5.
            (\exists \mathbf{v} \,|\, \mathbf{v}[(\neg(p \land (\neg q)))] = \mathsf{T})
6.
7.
            |\mathbf{w}[(\neg(p \land (\neg q)))] = \mathsf{T}
                                                                                                                                                            suposición 2
            \mathbf{w}[(p \wedge (\neg q))] = \mathbf{F}
                                                                                                                                                          Def. 2.18 (\neg)
8.
9.
            (\mathbf{w}[p] = F) \lor (\mathbf{w}[(\neg q)] = F)
10.
           |(\mathbf{w}[p] = F) \vee (\mathbf{w}[q] = T)|
                                                                                                                                                          Def. 2.18 (\neg)
11.
                      \mathbf{w} = \{ p \mapsto \mathtt{F}, q \mapsto \mathtt{T} \}
12.
             (\exists \mathbf{w} \mid \mathbf{w}[(\neg(p \land (\neg q)))] = T)
                           (\exists \mathbf{v}, \mathbf{w} \mid (\mathbf{v}[(\neg(p \land (\neg q)))] = \mathbf{T}) \land (\mathbf{w}[(\neg(p \land (\neg q)))] = \mathbf{F}))
13.
         ٠.
```

Página 5 Taller 02

1.3. Punto 3

$$\bullet(\phi \wedge (\neg \phi))$$

$$\bullet((\phi \to \psi) \equiv (\phi \land (\neg \psi)))$$

$$\bullet((\phi \leftarrow \psi) \equiv ((\neg \phi) \land \psi))$$

1.4. Punto 6

1.4.1. b)

Se tiene de entrada que false, al ser una constante, no hace de operador entre 2 proposiciones, por lo que la única opción es:

 $0. \models (false)$

suposición/ enunciado

1. $\mathbf{v}[false] = \mathbf{T}$

Def.(p0)

2. F = T

Def. 2.18 (false) (p1)

3. Contradicción

4. .: No existe dicha proposición mencionada en el enunciado

1.4.2. d)

$$0. \models (\phi \not\equiv \psi)$$

suposición/ enunciado

1. $\mathbf{v}[(\phi \not\equiv \psi)] = \mathbf{T}$

Def.(p0)

2. $\mathbf{v}[(\phi \not\equiv \psi)] = \mathbf{F}$

suposición (intento por contradicción)

3. $\mathbf{v}[\phi] = \mathbf{v}[\psi]$

MT 2.23 ($\not\equiv$) (p2)

4. $|\mathbf{v}[\phi] = \mathbf{T}$

suposición 1, MT 2.19 N 2.20

5. $|\mathbf{v}[\psi] = \mathbf{T}$

p(3, 4)

6.
$$\therefore$$
 $(\exists \mathbf{v} \mid \mathbf{v}[(\phi \not\equiv \psi)] = \mathbf{F})$

1.4.3. f)

$$0. \models (\phi \land \psi)$$

suposición/ enunciado

1. $\mathbf{v}[(\phi \wedge \psi)] = \mathbf{T}$

Def.(p0)

2. $\mathbf{v}[(\phi \wedge \psi)] = \mathbf{F}$

suposición (intento por contradicción)

3. $(\mathbf{v}[\phi] = \mathbf{F}) \lor (\mathbf{v}[\psi] = \mathbf{F})$

MT 2.23 (p2)

4. $|\mathbf{v}[\phi] = \mathbf{F}$

suposición 1, MT 2.19 N 2.20

5. $\mathbf{v}[(\phi \wedge \psi)] = \mathbf{F}$

MT 2.23, p4

6. \therefore $(\exists \mathbf{v} \,|\, \mathbf{v}[(\phi \land \psi)] = F)$

Página 6 Taller 02

1.4.4. g)

 $0. \models (\phi \rightarrow \psi)$

suposición/ enunciado

1. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$

Def.(p0)

2. $\mathbf{v}[(\phi \to \psi)] = \mathbf{F}$

suposición (intento por contradicción)

3. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\psi] = \mathbf{F})$ 4. $\therefore (\exists \mathbf{v} | \mathbf{v}[(\phi \to \psi)] = \mathbf{F})$

1.5. Punto 8

1.6. a)

0. Si $\models (\phi \rightarrow \psi)$ y $\models (\psi \rightarrow \tau)$, entonces $\models (\phi \rightarrow \tau)$ Enunciado

1. $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \to \tau)] = \mathbf{T})) \implies (\mathbf{v}[(\phi \to \tau)] = \mathbf{T})$

Def. (p0)

2. $(\exists \mathbf{v} \mid \mathbf{v}[(\phi \to \tau)] = \mathbf{F})$

suposición , MT 2.19 N 2.20 (\rightarrow) (p1)

3. $(\mathbf{v}[\phi] = \mathbf{T}) \wedge (\mathbf{v}[\tau] = \mathbf{F})$

MT 2.23 (\rightarrow) (p2)

4. se tiene que $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi \to \tau)] = \mathbf{T}))$

5. $\mathbf{v}[\phi] = \mathbf{T}$

Caso $(true \rightarrow \xi)$ (p4, p3)

6. $\mathbf{v}[\tau] = \mathbf{T}$

Caso $(true \rightarrow \xi)$ (p4, p5)

7. Contradicción

(p6, p3)

Si $\models (\phi \rightarrow \psi)$ y $\models (\psi \rightarrow \tau)$, entonces $\models (\phi \rightarrow \tau)$

Enunciado

1.7. b)

0. Si $\models (\phi \rightarrow \psi)$ y $\models (\phi)$, entonces $\models (\psi)$

Enunciado

1. $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{T})) \implies (\mathbf{v}[\psi] = \mathbf{T})$

Def.(p0)

2. $(\exists \mathbf{v} \,|\, \mathbf{v}[\psi] = \mathbf{F})$

suposición, MT 2.19 N 2.20

- 3. Se tiene que $((\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \land (\mathbf{v}[\phi] = \mathbf{T}))$
- 4. $((\mathbf{v}[\phi] = \mathbf{F}) \lor (\mathbf{v}[\psi] = \mathbf{T})) \land (\mathbf{v}[\phi] = \mathbf{T})$

MT 2.23 (\rightarrow) (p3)

- 5. Nótese que por un lado (mediante \vee) ($\mathbf{v}[\phi] = \mathbf{F}$) y por otro ($\mathbf{v}[\phi] = \mathbf{T}$)
- 6. $\mathbf{v}[\psi] = \mathbf{T}$

Caso ($false \lor \xi$)

7. Contradicción

(p6, p2)

Si $\vDash (\phi \to \psi)$ y $\vDash (\phi)$, entonces $\vDash (\psi)$

Enunciado

Página 7 Taller 02