Korea - New Zealand Joint Intl. Research

Multimodal Fusion and Illusion:

A Way to Enrich Physical Immersion?

Gerard J. Kim (김정현)
Digital eXPerience Laboratory
Korea University

Motivation

- Immersion / Presence
 - One aspect of UX
 - Physical immersion
 - Feeling like "being there" (spatial)
 - Big VR: Enclosure, Wide FOV, Surround sound, Touch/Haptics, ...
 - ► (Psychological immersion Books, Story, Interaction, ...)

Question: Spatial immersion (presence) possible/enrichable with small VR?

Possible answer: Multimodal interaction

Small FOV Limited device support Usability/Wearability (vs. Immersion) **Mobility**

Cross modal integration / Substitution and Illusion

Multimodal Systems

- Systems that process two or more combined user input/output modes such as speech, pen, touch, gesture, body movement, etc. in a coordinated manner
 - Five senses: Visual, Aural, Haptic, Tactile, Olfactory, ...
 - Just different modes: Mouse, Touch, Voice, Gaze, Gesture, Pen, Brain wave, Foot, ...

Speech & Pointing

Speech & Rich Pen Input

Speech & Manual Gestures

Why Multimodality?

Usual reasons

- Usability Natural / Easy to Learn / Preference
- Flexible Broader Target Users / Complementary
- ► Efficient Fast / Lower error / Robust and Disambiguating / Modality match
- Experiential Realistic / Affective

Get something with something else (and maybe less)

- Cross modal integration, Modality Substitution, Illusion
 - ► Force feedback with vibro-tactile
 - McGurk effect
 - Ventriloquist effect
 - Phantom limb
 - Synesthesia

IEEE VR 2004

Increasing the effective FOV with proprioceptive and tactile feedback (with Ungyeon Yang)

Head Mounted Display

- General <u>egocentric</u> visual interface
 - Immersive and high presence
- Narrow physical field of view (FOV).
 - ► Popular edition: 20°~30°(diagonal)
 - Occulus Rift: Inexpensive and wide FOV (2013)
 - Negative Effects
 - ▶ Unnatural
 - ► Task performance in virtual environment.
 - Decrease Presence
- Geometric FOV
 - S/W controllable parameter

Virtual Research V8 Diagonal 60°

GFOV (Software FOV)

GFOV = PFOV

Enlarged GFOV

But possibly with distorted distance perception

(a)

(b)

FOV and Distance Perception

- Egocentric distance perception
 - Under-estimation in real environment
 - Significant under-estimation in VE
 - Important to sensory feedback match between visual and proprioceptive cue
- Conventional Calibration with HMD
 - 100% mapping to physical FOV
 - Under-estimation condition
- How about increasing GFOV to MAX?
 - ► To see more (wider effective FOV)
 - Constraint: Without loss of distance perception

Suggested Solution: Multimodal Feedback

- Increase GFOV for HMD and
- Compensate degraded depth perception with multimodal interaction (Proprioceptive – Reach out to the object, not just looking at it ...)

Experiment

- Compare distance perception (Matching task)
 - Real vs. virtual under different conditions
- Test condition
 - ► GFOV: 11 levels
 - **▶**100% ~ 200%
 - Matching feedback types
 - ► Visual only
 - ► Tactile only
 - Visual and tactile (multimodal)

Results

- Maximum over-mapping GFOV to 170%
 - ► diagonal FOV 31.2° → diagonal GFOV 53.04°

ACM VRST 2006

Hand-held virtual reality: A feasibility study

(with Jane Hwang)

Objective

- Q: Is "minimum" level of immersion or presence possible with hand-held devices? (is hand-held VR a possibility?)
 - ► Can we overcome the small "display" problem with multimodality and interaction design?
 - ▶ Plus: what about usability and task performance?

What we did

- Vary Interaction style
 - Button based
 - Motion based multimodal interface (proprioceptive / body based)
- Against different displays by size of FOV
 - Mobile
 - Monitor
 - Large monitor
- Measure
 - Presence/immersion and Perceived FOV
 - Usability
 - Performance

Motion based interface: (optical flow)

5 Treatments

Motion-based hand-held VR

Button-based hand-held VR

Mouse/Keyboard interaction in small screen/desktop/large screen

Tasks

Navigating in virtual environment

→ Usability, presence/immersion, enjoyment, and perceived FOV

Locating and selecting objects→ Task performance

Presence/Immersion

Perceived FOV

Measuring perceived FOV

Task Performance

Usability

Summary

- Assessed the feasibility of VR on hand-held devices
 - ► High presence/Immersion possible
 - Widened perceived FOV
 - Usability, enjoyment and task performance

- Interaction style is important
 - Involve the body
 - Multimodal synergy

CHI 2012

Funneling and saltation effects for tactile interaction with virtual objects

(with Jaedong Lee and Youngsun Kim)

Motivation

- Vibro-tactile feedback
 - Inexpensive and effective way to enhance interaction experience
- Limitations of tactile interaction

High mechanical complexity

Costly hardware

Unnatural interaction

Indirect stimulation / Single vibrator:
Difficult to associate detailed
content

Use "Out of the body" Tactile Illusion

- Minimize the number of vibrators
- Provide indirect but richer tactile feedback

Applications

Stereoscopically rendered object

Funneling and Saltation

Funneling (simultaneously)

Information Transmission by Phantom Sensations. *IEEE Transactions on Man-Machine Systems*, (Alles, 1970)

Saltation (Time intervals)

The Cutaneous Rabbit: A Perceptual Illusion. *Science*, (Geldard, 1972)

Out of the Body Illusion

Experiment

Out of the Body on the Virtual

Out of the Body: without Body Extension

Funneling

Out of the Body: without Body Extension

Saltation

Extending to 2D

Used

Stimulation at the middle Location of sensation not controllable

Funneling

Not used

Simultaneous stimulation at 3 corners Location of sensation controlled with relative amplitudes

Saltation

Not used

Timed stimulation at 4 corners Location of sensation controlled with ISI's

Arkanoid

movie

To a larger sized device? (like an i-Pad)

To a larger sized device? (like an i-Pad)

73.9	65.2	56.5	60.8	52.1	82.6	86.9
78.2	91.3	65.2	69.5	78.2	73.9	78.2
86.9	86.3	78.2	86.9	91.3	73.9	91.3
95.6	91.3	56.5	69.5	73.9	95.6	91.3
91.3	73.9	73.9	52.1	73.9	69.5	73.9

More direct application to HCI: Rich Pinch

More direct application to HCl: Rich Pinch

More direct application to HCl: Rich Pinch

Conclusion

► Today's media devices are relatively equipped well (however may not be as good as "Big VR")

- Lots of possibilities to still produce rich experience by:
 - Synergistic effects of multimodal integration/illusion
 - Combined with proper interaction design
 - Look out for negative interaction (interference)!
 - Importance of the story (and empathy)

gjkim@korea.ac.kr

Thank you