Statistik Zusammenfassung

Nils Weiß - Alexander Strobl

29. Juni 2014

Inhaltsverzeichnis

1	Gru	ındlage	en	2
	1.1	Häufig	keitsverteilungen	2
	1.2	Kumm	nulierte Häufigkeiten	2
		1.2.1	Absolut	2
		1.2.2	Relativ	2
		1.2.3	Empirische Verteilungsfunktion	2
	1.3	Maßza	hlen zur Beschreibung einer Verteilung	3
		1.3.1	Modus	3
		1.3.2	Median - Quantile	3
		1.3.3	Arithmetisches Mittel	3
2	Stre	euung 1	und Konzentration	4
		2.0.4	Spannweite	4
		2.0.5	Quartilsabstand	4
		2.0.6	Varianz	4
		2.0.7	Standardabweichung	4
		2.0.8	Standardisierte Merkmale	4
		2.0.9	Kovarianz	4
		2.0.10	Korrelationskoeffizient	4
		2.0.11	Regressionsgerade	5
3	Wa	hrschei	nlichkeitstheorie	5
4	Dis	krete Z	Zufallsvariablen	6
5	Ste	tige Zu	ıfallsvariablen	7
6	Dis	krete V	Verteilungen	8
7	Ste	tige Ve	erteilungen	9

1 Grundlagen

1.1 Häufigkeitsverteilungen

Eigenschaft	Beschreibung			
Merkmalsträger	Objekt von Interesse bei empirischer Untersuchung			
Gesamtheit	Menge der relevanten Merkmalsträger. Die Anzahl			
	nennt man Umfang der Gesamtheit			
Mikrodaten	Daten, welche ausgewertet werden sollen			
Häufigkeitsverteilung	Ausprägungen der einzelnen Merkmalsträger			

Abbildung 1: Begriffserklärungen: Häufigkeitsverteilung

Merkmalsausprägung	absolute	relative
x_i	Häufigkeiten n_i	Häufigkeiten f_i
1	6	0.3 / 30%
2	7	$0.35 \; / \; 35\%$
3	4	0.2 / 20%
4	2	0.1 / 10 %
5	1	0.05 / 5 %
\sum	20	1 / 100 %

Abbildung 2: Beispiel: Häufigkeitsverteilung von Noten

1.2 Kummulierte Häufigkeiten

1.2.1 Absolut

Summe der "ersten" i absoluten Häufigkeiten

$$N_i = \sum_{j=1}^i n_j$$

1.2.2 Relativ

Summe der "ersten" i relativen Häufigkeiten

$$F_i = \sum_{j=1}^i f_j$$

1.2.3 Empirische Verteilungsfunktion

Summe über alle i, für die $x_i \leq x$ ist

Es werden die relativen Häufigkeiten f_i all jener Ausprägungen summiert, die höchsten gleich \boldsymbol{x} sind

$$F(x) = \sum_{\{i \mid x_i \leqslant x\}} f_i$$

Klasse i x_i	Klassen-	abs.	rel. Häufigkeiten f_i	emp. Verteilungsfunktion
	obergrenze	Häufigkeiten		a. d. Klassenobergrenze
	x_i^o	$\mid n_i \mid$		$F(x_i^0)$
1	29	7	0.01165	1.17 %
2	39	59	0.09817	10.98 %
3	49	127	0.21131	32.11 %
4	54	120	0.19967	52.08 %
5	59	146	0.24293	76.37 %
6	64	112	0.18636	95.01 %
7	73	30	0.04992	100.00 %
\sum		601	1	

Abbildung 3: klassierte Altersverteilung

Maßzahlen zur Beschreibung einer Verteilung 1.3

1.3.1 Modus

(auch: Modalwert, häufigster Wert)

Bezeichnet das Merkmal x_i mit der größten absoluten Häufigkeit n_i bzw. der größten relativen Häufigkeit f_i .

1.3.2 Median - Quantile

Median: $x_{0,5} = 50\%$ Quantil

Wichtige Quantile: $x_{0,25}$, $x_{0,75}$

1.3.3 Arithmetisches Mittel

(auch: Mittelwert, Durchschnittswert)

$$\overline{x} = \frac{\text{Summe aller Merkmalswerte}}{\text{Anzahl aller Merkmalswerte}}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_i n_i$$

$$\overline{x} = \sum_{i=1}^{k} x_i f_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{r} \overline{x_i} n_i$$

$$\overline{x} = \sum_{i=1}^{r} \overline{x_i} f_i$$

$$\overline{x} = \sum_{i=1}^{r} \overline{x_i} f_i$$

2 Streuung und Konzentration

2.0.4 Spannweite

(Einfachstes Streuungsmaß, Differenz zwischen größtem und kleinstem auftretenden Merkmalswert)

Spannweite = $max(x_i) - min(x_i)$

2.0.5 Quartilsabstand

(Spannweite der mittleren 50% der Merkmalsträger)

Quartilsabstand = $x_{0,75} - x_{0,25}$

2.0.6 Varianz

(Mittlere quadratische Abweichung vom Mittelwert)

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} n_{i} = \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} f_{i}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} = \frac{1}{n} \sum_{i=1}^{k} x_{i}^{2} n_{i} - \overline{x}^{2} = \sum_{i=1}^{k} x_{i}^{2} f_{i} - \overline{x}^{2}$$

$$s^{2} = \overline{x^{2}} - \overline{x}^{2}$$

Varianz bei Vorliegen von Teilgesamtheiten

$$s^{2} = \frac{1}{n} \sum_{i=1}^{r} s_{i}^{2} n_{i} + \frac{1}{n} \sum_{i=1}^{r} (\overline{x_{i}} - \overline{x})^{2} n_{i}$$

2.0.7 Standardabweichung

$$s = \sqrt{s^2}$$

2.0.8 Standardisierte Merkmale

Ein Merkmal, für dessen Verteilung $\overline{x}=0$ und $s^2=1$ gilt, heißt standardisiert.

2.0.9 Kovarianz

(von X und Y)

$$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \ \overline{y}$$

2.0.10 Korrelationskoeffizient

(nach Bravais-Pearson)

$$\frac{s_{XY}}{s_X s_Y} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Es gilt: $-1\leqslant r\leqslant 1$

r=0: kein linearer Zusammenhang r=1: steigende Gerade r=-1: fallende Gerade

2.0.11 Regressionsgerade

$$\hat{y} = \hat{\alpha} + \hat{\beta} x$$

$$\hat{\beta} = \frac{s_{XY}}{s_X}$$

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

3 Wahrscheinlichkeitstheorie

Eigenschaft	Formel
Wahrscheinlichkeitsraum	Ω
LaPlace-Wahrscheinlichkeit	$P(A) = rac{ ext{Anz. Elem in A}}{ ext{Anz. Elem in }\Omega} = rac{ A }{ \Omega }$
Bedingte Wahrscheinlichkeiten	$P(B A) = \frac{P(A \cap B)}{P(A)}$
Multiplikationssatz	$P(A \cap B) = P(A) * P(B A)$
Additionssatz (bel. Ereignisse)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Additionssatz (ausschließende Ereignisse)	$P(A \cup B) = P(A) + P(B) // (\mathbf{A} \cap \mathbf{B} = \emptyset)$
Abhängigkeit	$P(A \cup B) = P(A) + P(B) - P(A)P(B)$
Unabhängigkeit	$P(A \cap B) = P(A)P(B)$
Totale Wahrscheinlichkeit	$P(B) = \sum_{i=1}^{m} P(B \cap A_i) = P(A_i)P(B A_i)$
Satz von Bayes	$P(A_j B) = \frac{P(B A_j)P(A_j)}{\sum_{i=1}^{m} P(B A_i)P(A_i)}$

 ${\it Tabelle~1: Begriffserkl\"{a}rungen: Wahrscheinlichkeitstheorie}$

4 Diskrete Zufallsvariablen

Eigenschaft	Formel	Beschreibung			
Verteilungsfunktion	$F_x(x) = P(X \le x)$	definiert die Wahrscheinlichkeit der Zufallsvariable X, dass X höchstens den Wert x annimmt			
Unabhängigkeit	$P(X_1 = x_1, X_2 = x_2)$ $= P(X_1 = x_1) * P(X_2 = x_2)$	gilt ebenfalls für andere Operationen wie z.B. \leq			
Erwartungswert	$E(X) = \mu_x = \mu$ $= \sum_{i=1}^{k} x_i p_i = \sum_{i=1}^{k} x_i * P(X = x_i)$	Ist der Mittelwert von X			
	t-1 $t-1$	Weitere Rechenregeln:			
	$E(Y) = E(g(X)) = \sum_{i} g(x_i)p_i$	Wenn $g(x)$ eine reelle Funktion und $Y = g(X)$			
	E(X + Y) = E(X) + E(Y)				
	$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$				
Varianz	$Var(X) = E((X - \mu_x)^2)$				
	$Var(X) = E((X - \mu_x)^2)$ $= \sum_{i=1}^{k} (x_i - \mu_x)^2 * p_i$				
	$= E(X^2) - E(X)^2$				

Tabelle 2: Begriffserklärungen: Diskrete Zufallsvariablen

5 Stetige Zufallsvariablen

Eigenschaft	Formel	Beschreibung
	$F_x(x) = \int_{-\infty}^x f(t)dt$	Verteilungsfunktion, $f(t) = Dichtefunktion$
Definition	P(X=x)=0	Wahrscheinlichkeit für einen Wert gleich x ist immer 0
	$P(x_1 \le X \le x_2) = F_x(x_2) - F_x(x_1)$	$F_x^{'}(x)=f_x(x)$ Die Dichtefunktion ist die Ableitung der Verteilungsfunktion
Erwartungswert μ_x	$E(X) = \int_{-\infty}^{+\infty} x * f(x) dx$	Die Dichtefunktion $f(x)$ wird nie verändert! $E(\frac{1}{X}) = \int \frac{1}{X} * f(x) dx$
	$E(Y) = E(g(X)) = \int_{a}^{b} g(x) * f(x) dx$	g(x) ist eine reelle Funktion
Rechenregeln	E(aX + b) = a * E(X) + b	lineare Transformation
	E(X+Y) = E(X) + E(Y)	
Modus	$F_x(x_p) = p$	Die Wahrscheinlickeit, dass X höchstens den Wert x_p annimmt, ist mind. $p/100\%$
Varianz	$Var(X) = \int_{-\infty}^{+\infty} (x - \mu_x)^2 * f(x) dx$	Standardabweichung ist $\sqrt{Var(X)}$
Rechenregeln	vgl. Diskrete Zufallsvariablen	

Tabelle 3: Begriffserklärungen: Stetige Zufallsvariablen

6 Diskrete Verteilungen

diskrete Verteilungen

Verteilungsname	Wahrscheinlichkeitsgewicht/	Erwartungs	Varianz	Anwendung
	Zähldichte	-wert $E(X)$	Var(X)	
Bernoulli-Verteilung	P(X=1) = p,	p	$p \cdot (1-p)$	X = 1 = Erfolg, X = 0 = Misserfolge
Parameter 0	P(X=0) = 1 - p			z.B. beim einmaligen Werfen eines Würfels eine 6
				geworfen (=Erfolg), hier $p = \frac{1}{6}$.
Binomialverteilung	$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$	$n \cdot p$	$n \cdot p \cdot (1-p)$	X = Anzahl der Erfolge bei n identischen Bernoulli-
Parameter 0	für $k \in \{0, 1, 2, 3, \dots, n\}$			Experimenten
				z.B. $X = \text{Anzahl geworfener 6en beim n-maligen}$
				Wurf eines fairen Würfels (hier $p = \frac{1}{6}$).
				z.B. $X =$ Anzahl gezogener roter Kugeln, beim Zie-
				hen mit Zurücklegen von n Kugeln aus einer Urne
				M roten und $N-M$ sonstigen Kugeln, wobei $p=\frac{M}{N}$
Diskrete Gleichverteilung	$P(X=k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	z.B. ein Wurf mit einem Würfel beschreibt X die
auf $\{1, 2, 3, \dots, n\}$	für $k \in \{1, 2, 3, \dots, n\}$ $P(X = k) = (1 - p)^{k-1} \cdot p$			geworfene Augenzahl, hier $n = 6$.
Geometrische Verteilung	$P(X=k) = (1-p)^{k-1} \cdot p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	X beschreibt die Wartezeit auf den ersten Er-
Parameter 0	für $k \in \{1, 2, 3, \ldots\}$	•	1	folg, beim fortgesetzten Ausführen eines Bernoulli-
				Experimentes
				z.B. beim Würfeln warten auf die erste 6, d.h. $X=k$
				bedeutet die erste 6 wurde im k-ten Wurf geworfen.
Hypergeometrische Vert.	$P(X=k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{k}} \text{ für } k \in$	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \frac{N-n}{N-1}$	X = Anzahl gezogener roter Kugeln, beim Ziehen
N Anzahl Kugeln in der Urne	$\{\max(0, n-(N-M)), \dots, \min(n, M)\}\$	IV.	N (N / N-1	ohne Zurücklegen von n Kugeln aus einer Urne M
M Anzahl roter Kugeln	$\lim_{n \to \infty} (0, n (2\sqrt{2N})), \dots, \lim_{n \to \infty} (n, N)$			roten und $N-M$ sonstigen Kugeln
n Anzahl zu ziehende Kugeln				
k Anzahl roter Kugeln unter				
den gezogenen Kugeln				
Poisson-Verteilung	$P(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$	λ	λ	Anzahl Ereignisse in einem vorgegebenen Zeitinter-
Parameter $\lambda > 0$	für $k \in \{0, 1, 2, 3, \ldots\}$			vall z.B. Anzahl radioaktiver Zerfälle, Anzahl Blitz-
				schläge auf einer gegebenen Fläche,

7 Stetige Verteilungen

stetige Verteilungen

Verteilungsname	Dichte	Verteilungsfunktion	Median	E[X]	Var(X)	Anwendung
stetige Gleichverteilung auf $[a, b]$	$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a, b] \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } x \in [a,b] \\ 1 & \text{für } x > b \end{cases}$	<u>a+b</u>	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	stetiges Analogon zur diskreten Gleichverteilung z.B. jede reelle Zahl aus dem Intervall $[a,b]$ wird mit gleicher Wahrscheinlichkeit gewählt.
Exponential verteilung Parameter $\alpha > 0$	$f(x) = \begin{cases} \alpha \cdot e^{-\alpha \cdot x} & \text{für } x \ge 0 \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 - e^{-\alpha \cdot x} & \text{für } x \ge 0 \end{cases}$	$\frac{\ln(2)}{\alpha}$	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$	stetiges Analogon zur geometrischen Verteilung Warten auf das erste/nächste Eintreffen eines Ereignisses z.B. Warten auf den Ausfall einer Glühbirne
$\begin{array}{c} \textbf{Normal verteilung} \\ \textbf{Parameter} \ \mu \ \in \ \mathbb{R} \ \text{und} \\ \sigma > 0 \end{array}$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp(-\frac{(x-\mu)^2}{2 \cdot \sigma^2})$	F(x) kann nicht als Funktion hingeschrieben werden, vgl. Tabelle	μ	μ	σ^2	Wenn auf etwas viele verschiedene zufällige Einflussfaktoren einwirken, ist das Ergebnis in etwa normalverteilt, z.B. die Körpergröße von Männern (Ernährung, Veranlagung,) Wird auch zur Approximation von Binomial- und Poissonverteilungen verwendet