

Evaluation of Virtual Reality based Mesh Saliency Maps

Abschlussvortrag zur Masterarbeit

Vortragender: Richard Metzler

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Markus Wiedemann Datum des Vortrags: 18.09.2017

Outline

Goal of this work

- Evaluation of differences between automatically computed and through user selections determined important parts of 3D objects
- Gathering data and discussing differences

Background

- Automated complexity reduction of 3D objects for real-time rendering
- Maintain perceived quality and detail as much as possible

Introduction

Terms

- Spatial indexing structures
 - Allow efficient operations on 3D data
 - Quad- and Octrees, R-trees...
- Immersive Virtual Reality environments
 - Virtual scene is **perceived** as real, actual stimuli are overshadowed
- Mesh Saliency
 - Prominence of surface points of objects in 3D space
 - Measure of perceived importance, based on fundamentals of human cognition¹

http://www.digitaleng.news/de/polygonal-mesh-library-for-postprocessing-3d-scan-data/ - visited 07-06-2017

¹ Itti, Laurent, Christof Koch, and Ernst Niebur. "A model of saliency-based visual attention for rapid scene analysis." IEEE Transactions on pattern analysis and machine intelligence 20.11 (1998): 1254-1259.

Related work Mesh Saliency

- Comparison of vertices to their surrounding to determine their perceived importance
 - Critical value: curvature
 - Scalable via radius determining the surrounding
- Relevant for automatic complexity reduction (number of vertices and polygons) in the context of real-time rendering

Chang Ha Lee, Amitabh Varshney, and David W Jacobs. Mesh saliency. In *ACM transactions on graphics (TOG)*, volume 24, pages 659–666. ACM, 2005.

Concept Major tasks

- Implement Selection Application
 - Loading and indexing of 3D data
 - Selection functionality
- Conduct User study to collect data
 - Users select interesting regions via selection application
 - Selections logged and used as "user saliency" values

Difference evaluation

- Use mesh saliency to compute mesh saliency values
- Gather data from user study
- Compare mesh saliency and user saliency values
- Qualify a measure of difference

¹ http://assimp.sourceforge.net/

Implementation High-level tasks

- Spatial index structure as basis
 - Octree, implemented in C++
 - Load and render objects
 - Render selection target
- Selection functionality
 - Select & deselect vertices
 - Visual feedback on where operations take place
 - Visual feedback on what is currently selected
 - Log user selections & provide export function

- Adjust application for usage at V2C
 - Distributed rendering via graphics cluster
 - Ensure synchronized rendering

http://assimp.sourceforge.net/

Implementation Octree

- Load objects via ASSIMP¹
- Spatial indexing of loaded 3D data
- Basis for fast interaction

https://developer.apple.com/documentation/gameplaykit/gkoctree - visited 08-12-17 ¹ http://assimp.sourceforge.net/

Implementation Octree

Vertex selection

- Add vertices to selection & remove them
- Next-neighbor queries and possible follow-up queries
 - Determine target subtree of original query
 - Determine set of vertices to check
 - Determine crossed borders of target subtree (radius: 95% of smallest possible subtree)
 - Update set of vertices to check accordingly

User study

- Users select parts of objects considered "interesting"
- "interesting" as interpreted **subjectively**. Suggested hints:
 - "Parts which are geometrically interesting or important"
 - "Parts which intuitively attract attention"
 - "Parts and regions which are characteristic for the object"

User Study Instructions

Take time to get familiar with the application

5 Minutes maximum for each one of 3 objects, premature

termination by user possible

- Consider symmetry in selection
- Select as precise as desired
- No "correct" or "incorrect" selection
- Clue at beginning of the last minute
- Questionnaire
 - Demographic information
 - Interests and feedback on the application

Results Demography

- 32 participants total, 50/50 male/ female
- 14 users with prior experience with VR; 18 users with none
- No strong impairments of vision
- 29 right-, 3 left-handed

Results Feedback on application

Average value score: Likert-Scale

2 = "strongly agree"

1 = "agree"

0 = "no statement"

-1 = "do not agree"

-2 = "strongly disagree"

Results Model "bunny"

Scale

Results Model "bunny"

Difference overall: **0.23435**

0.0

0.5

1.0

Results Model "cow"

Scale

Results Model "P51"

Mesh Saliency Average User Saliency

Results Discussion

Mesh saliency with mechanical objects

- Normalizing saliency values to the highest one
 - Very few, extremely high values
 - Almost all values are very low

Results Discussion

Measure of difference

- Overall differences between ~0.23 and ~0.38
- Low difference, as expected but
 Many very low values "water" overall result

Observations

- Seemingly zero-values in the middle of highly "popular" regions
- Possible faults in implementation
- Stronger variation in user saliency values
- More clearly distinct patches in user saliency values
- Clearer values for **both** mesh and user saliency values for nonmechanical objects

Future Work

- Develop measure of difference
 - No normalizing of values
 - Multiple figures expressing differences
- Other values for variables
 - Selection radius
 - Object size
 - Time
- More extensive user study
 - More users
 - Other kinds of immersive VR

References

- Chang Ha Lee, Amitabh Varshney, and David W Jacobs. Mesh saliency. In *ACM transactions* on graphics (TOG), volume 24, pages 659–666. ACM, 2005.
- De Ladurantaye, Vincent, Jacques Vanden-Abeele, and Jean Rouat. Models of information processing in the visual cortex. INTECH Open Access Publisher, 2012.
- Pausch, Randy, Dennis Proffitt, and George Williams. "Quantifying immersion in virtual reality." Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997.
- Rodrigo Barni Munaretti. Perceptual guidance in mesh processing and rendering using mesh saliency. 2007.
- Paul Atchley and Arthur F Kramer. Attentional control within 3 -d space.
- Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. *In Computer Vision*, 1995. *Proceedings., Fifth International Conference on*, pages 902–907. IEEE, 1995.
- Garland, Michael, and Paul S. Heckbert. "Surface simplification using quadric error metrics."
 Proceedings of the 24th annual conference on Computer graphics and interactive techniques.
 ACM Press/Addison-Wesley Publishing Co., 1997.
- Taubin, Gabriel. "Estimating the tensor of curvature of a surface from a polyhedral approximation." Computer Vision, 1995. Proceedings., Fifth International Conference on. IEEE, 1995.
- https://github.com/alecjacobson/qslim
- http://assimp.sourceforge.net/
- https://developer.apple.com/documentation/gameplaykit/gkoctree visited 08-12-17
- http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter37.html visited 07-06-17

Results Model "cow"

Results Model "P51"

Difference overall: **0.38002**

Scale

