

Sampling Neural Networks to Approximate **Hamiltonian Functions**

Master's Thesis Talk

Atamert Rahma

Supervisor: Prof. Dr. Felix Dietrich Advisor: M.Sc. Chinmay Datar

Technical University of Munich

TUM School of Computation, Information and Technology

Chair of Scientific Computing

May 22th, 2024

Outline

- Dynamical Systems
- Sampling Neural Networks
- Random Hamiltonian Neural Networks
- 4 Approximations

"The notion of a dynamical system is the mathematical formalization of the general scientific concept of a deterministic process." [Kuznetsov, 2004].

"The notion of a dynamical system is the mathematical formalization of the general scientific concept of a deterministic process." [Kuznetsov, 2004].

A dynamical system is a triple $(T, \mathcal{X}, \varphi)$, with

- the time T,
- the state space \mathcal{X} ,
- the evolution operator $\varphi: T \times \mathcal{X} \to \mathcal{X}$

"The notion of a dynamical system is the mathematical formalization of the general scientific concept of a deterministic process." [Kuznetsov, 2004].

A dynamical system is a triple $(T, \mathcal{X}, \varphi)$, with

- the time T,
- the state space \mathcal{X} ,
- the evolution operator $\varphi: T \times \mathcal{X} \to \mathcal{X}$, with
 - $\varphi(0, x) = Id(x) = x,$
 - $-\ \varphi(t+s,x)=\varphi(t,\varphi(s,x))=(\varphi^t\circ\varphi^s)(x) \text{ for all } x\in\mathcal{X} \text{ and } t,s\in T.$

"The notion of a dynamical system is the mathematical formalization of the general scientific concept of a deterministic process." [Kuznetsov, 2004].

A dynamical system is a triple $(T, \mathcal{X}, \varphi)$, with

- the time T,
- the state space \mathcal{X} ,
- the evolution operator $\varphi: T \times \mathcal{X} \to \mathcal{X}$, with
 - $\varphi(0, x) = Id(x) = x,$
 - $-\ \varphi(t+s,x)=\varphi(t,\varphi(s,x))=(\varphi^t\circ\varphi^s)(x) \text{ for all } x\in\mathcal{X} \text{ and } t,s\in T.$

For continuous time dynamical systems ($T = \mathbb{R}_0^+$), when discretized, we write φ_h for the flow with a time step h > 0.

Dynamical Systems – Hamiltonian Systems

Hamiltonian Function:

$$\mathcal{H}:\mathcal{X}\rightarrow\mathbb{R}.$$

Dynamical Systems – Hamiltonian Systems

Hamiltonian Function:

$$\mathcal{H}: \mathcal{X} \to \mathbb{R}$$
.

Hamilton's equations [Hamilton, 1834] [Hamilton, 1835]:

$$\dot{q} = \nabla_p \mathcal{H}(q, p), \quad \dot{p} = -\nabla_q \mathcal{H}(q, p)$$

for all $(q, p) \in \mathcal{X}$.

Dynamical Systems – Hamiltonian Systems

Single pendulum system's Hamiltonian: $\mathcal{H}(q,p) = \frac{p^2}{2} + (1-\cos(q))$.

Outline

- Dynamical Systems
- Sampling Neural Networks
- Random Hamiltonian Neural Networks
- 4 Approximations

Sampling Neural Networks

Traditional network training using gradient-descent has challenges like

- slow convergence
- learning rate sensitivity
- local minima

Sampling Neural Networks

Traditional network training using gradient-descent has challenges like

- slow convergence
- learning rate sensitivity
- local minima

- ⇒ Sample hidden layer parameters!
- Data-agnostic, e.g., standard normal distribution
- Data-driven using SWIM algorithm [Bolager et al., 2023]

Sampling Neural Networks - SWIM

Figure 2 SWIM - Sample Where It Matters: at large gradients, taken from [Bolager et al., 2023].

⇒ Each network parameter is determined by two points from the input space.

The supervised SWIM algorithm defines a pair-sampling probability for each data point pair based on the gradient, requiring function value information to sample at large gradients.

Outline

- Dynamical Systems
- Sampling Neural Networks
- Random Hamiltonian Neural Networks
- Approximations

Goal: Given observations $\mathcal{D} = \{q_i, p_i, \dot{q}_i, \dot{p}_i\}_{i=1}^K$, find an approximation

$$\widehat{\mathcal{H}} = \underset{\widehat{\mathcal{H}}}{\operatorname{arg\,min}} \sum_{z \in \mathcal{Z}} \|\widehat{\mathcal{H}}(z) - \mathcal{H}(z)\|^2,$$

where $\mathcal{Z} \subset \mathcal{X}$.

Goal: Given observations $\mathcal{D} = \{q_i, p_i, \dot{q}_i, \dot{p}_i\}_{i=1}^K$, find an approximation

$$\widehat{\mathcal{H}} = \operatorname*{arg\,min}_{\widehat{\mathcal{H}}} \sum_{z \in \mathcal{Z}} \|\widehat{\mathcal{H}}(z) - \mathcal{H}(z)\|^{2},$$

where $\mathcal{Z} \subset \mathcal{X}$.

Approximation using nonlinear functions as

$$\widehat{\mathcal{H}}(x) = \sum_{l \in [L]} w_l \sigma_l(x),$$

where, here, σ represents the output of the last hidden layer of the feed-forward neural network for the given input x.

Using sampled networks, we only need to fit the last layer's parameters w:

$$\begin{bmatrix} \sigma_1(x_1) & \sigma_2(x_1) & \cdots & \sigma_L(x_1) \\ \sigma_1(x_2) & \sigma_2(x_2) & \cdots & \sigma_L(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(x_K) & \sigma_2(x_K) & \cdots & \sigma_L(x_K) \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} \mathcal{H}(x_1) \\ \mathcal{H}(x_2) \\ \vdots \\ \mathcal{H}(x_K) \end{bmatrix}$$

Using sampled networks, we only need to fit the last layer's parameters w:

$$\begin{bmatrix} \sigma_1(x_1) & \sigma_2(x_1) & \cdots & \sigma_L(x_1) \\ \sigma_1(x_2) & \sigma_2(x_2) & \cdots & \sigma_L(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(x_K) & \sigma_2(x_K) & \cdots & \sigma_L(x_K) \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} \mathcal{H}(x_1) \\ \mathcal{H}(x_2) \\ \vdots \\ \mathcal{H}(x_K) \end{bmatrix}$$

$$\stackrel{\text{diff.}}{\Longrightarrow} \begin{bmatrix} \nabla \sigma_1(x_1) & \nabla \sigma_2(x_1) & \cdots & \nabla \sigma_L(x_1) \\ \nabla \sigma_1(x_2) & \nabla \sigma_2(x_2) & \cdots & \nabla \sigma_L(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \nabla \sigma_1(x_K) & \nabla \sigma_2(x_K) & \cdots & \nabla \sigma_L(x_K) \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} \nabla \mathcal{H}(x_1) \\ \nabla \mathcal{H}(x_2) \\ \vdots \\ \nabla \mathcal{H}(x_K) \end{bmatrix}$$

Using sampled networks, we only need to fit the last layer's parameters w:

$$\begin{bmatrix} \sigma_1(x_1) & \sigma_2(x_1) & \cdots & \sigma_L(x_1) \\ \sigma_1(x_2) & \sigma_2(x_2) & \cdots & \sigma_L(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(x_K) & \sigma_2(x_K) & \cdots & \sigma_L(x_K) \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} \mathcal{H}(x_1) \\ \mathcal{H}(x_2) \\ \vdots \\ \mathcal{H}(x_K) \end{bmatrix}$$

$$\underbrace{\frac{\text{diff}_{\text{L}}}{\nabla \sigma_{1}(x_{1})} \left[\begin{matrix} \nabla \sigma_{1}(x_{1}) & \nabla \sigma_{2}(x_{1}) & \cdots & \nabla \sigma_{L}(x_{1}) \\ \nabla \sigma_{1}(x_{2}) & \nabla \sigma_{2}(x_{2}) & \cdots & \nabla \sigma_{L}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \nabla \sigma_{1}(x_{K}) & \nabla \sigma_{2}(x_{K}) & \cdots & \nabla \sigma_{L}(x_{K}) \end{matrix} \right]}_{A} \cdot \underbrace{ \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{L} \end{bmatrix}}_{w} = \underbrace{ \begin{bmatrix} \nabla \mathcal{H}(x_{1}) \\ \nabla \mathcal{H}(x_{2}) \\ \vdots \\ \nabla \mathcal{H}(x_{K}) \end{bmatrix}}_{u}$$

We assume we know the function value for a single data point x_0 and write the final linear system with bias (integration constant):

$$\begin{bmatrix} \nabla \sigma_1(x_1) & \nabla \sigma_2(x_1) & \cdots & \nabla \sigma_L(x_1) & 0 \\ \nabla \sigma_1(x_2) & \nabla \sigma_2(x_2) & \cdots & \nabla \sigma_L(x_2) & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ \nabla \sigma_1(x_K) & \nabla \sigma_2(x_K) & \cdots & \nabla \sigma_L(x_K) & 0 \\ \sigma_1(x_0) & \sigma_2(x_0) & \cdots & \sigma_L(x_0) & 1 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \\ b \end{bmatrix} = \begin{bmatrix} \mathcal{J}^{-1}\dot{x}_1 \\ \mathcal{J}^{-1}\dot{x}_2 \\ \vdots \\ \mathcal{J}^{-1}\dot{x}_K \\ \mathcal{H}(x_0) \end{bmatrix},$$

where $\mathcal{J}\cdot\mathcal{H}(x)=\dot{x}$ (Hamilton's equations), where $\mathcal{J}=\begin{bmatrix}0_d&I_d\\-I_d&0_d\end{bmatrix}$ is a $2d\times 2d$ square matrix.

- 1. Randomly sample the hidden layer parameters using one of the following.
 - ELM: data-agnostic sampling, using standard normally distributed weights.
 - U-SWIM: data-driven sampling, using SWIM algorithm with uniformly sampled data pairs.
 - A-SWIM: data-driven sampling, using SWIM algorithm with initial function value approximations. $\widehat{\mathcal{H}}_{\mathtt{U-SWIM}}(X)$ with the goal of sampling at large gradients.

- 1. Randomly sample the hidden layer parameters using one of the following.
 - ELM: data-agnostic sampling, using standard normally distributed weights.
 - U-SWIM: data-driven sampling, using SWIM algorithm with uniformly sampled data pairs.
 - A-SWIM: data-driven sampling, using SWIM algorithm with initial function value approximations. $\widehat{\mathcal{H}}_{\mathtt{U-SWIM}}(X)$ with the goal of sampling at large gradients.
- 2. Construct the linear system Aw = u.

- 1. Randomly sample the hidden layer parameters using one of the following.
 - ELM: data-agnostic sampling, using standard normally distributed weights.
 - U-SWIM: data-driven sampling, using SWIM algorithm with uniformly sampled data pairs.
 - A-SWIM: data-driven sampling, using SWIM algorithm with initial function value approximations. $\widehat{\mathcal{H}}_{\mathtt{U-SWIM}}(X)$ with the goal of sampling at large gradients.
- 2. Construct the linear system Aw = u.
- 3. Solve least-squares solution w^* and set the last (linear) layer's weights w.

Outline

- Dynamical Systems
- Sampling Neural Networks
- Random Hamiltonian Neural Networks
- 4 Approximations

Approximations – Single Pendulum with Frequency

Figure 3 Single pendulum Hamiltonian test errors are plotted. All the settings are trained on domain $[-\pi,\pi]\times[-1,1]$ with 1500 network width. Frequency (f) is set to 10 at the left, 15 at the center, and 20 at the right plot.

Approximations – Lotka-Volterra

Figure 4 Lotka-Volterra Hamiltonian test errors and gradient train errors are plotted on the left and right, respectively. The function is (5,5) centered and networks are trained on domain $[0,8]^2$ with train set size 10000.

Approximations – Double Pendulum

$$\mathcal{H}(q,p) = \frac{p_1^2 + 2p_2^2 - 2p_1p_2\cos(q_1 - q_2)}{2(1 + \sin^2(q_1 - q_2))} - 2\cos(q_1) - \cos(q_2)$$

Figure 5 Double pendulum Hamiltonian test errors are plotted on the right. Networks are trained on domain $[-\pi, \pi] \times [-1, 1]$ with train set size 20000.

Approximations – Double Pendulum Integration

Figure 6 The ground truth Hamiltonian and the trained networks are integrated using symplectic Euler. The initial value is (0.15, 0.1, -0.05, 0.1), integrated until t=50 with $\Delta t=10^{-4}$.

Approximations – Hénon-Heiles

$$\mathcal{H}(q,p) = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{2}(q_1^2 + q_2^2) + \alpha(q_1^2q_2 - \frac{1}{3}q_2^3)$$

Figure 7 Hénon-Heiles Hamiltonian test errors are plotted with $\alpha=0$ and $\alpha=1$ on the left and right plots, respectively. Networks are trained on domain $[-1,1]^2$ with train set size 20000.

Approximations – Poincaré Plots

Figure 8 Hénon-Heiles with $\alpha=0.7$ Poincaré plots are plotted. The top row represents the symplectic Euler using the ground truth Hamiltonian, and the bottom row represents the symplectic Euler using A-SWIM approximation. The initial value is $(0,0,\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})$, integrated until t=100 using $\Delta t=10^{-3}$.

Approximations – Poincaré Plots

Figure 9 Double pendulum Poincaré plots are plotted. The top row represents the symplectic Euler using the ground truth Hamiltonian, and the bottom row represents the symplectic Euler using A-SWIM approximation. The initial value is (0.15, 0.1, -0.05, 0.1), integrated until t=50 with $\Delta t=10^{-4}$.

Approximations – Limited Data

Given trajectory data $\mathcal{D}=\{q_i,p_i,\varphi_h(q_i,p_i)\}_{i=0}^K$, we use finite differences with error correction.

Approximations – Limited Data

Given trajectory data $\mathcal{D} = \{q_i, p_i, \varphi_h(q_i, p_i)\}_{i=0}^K$, we use finite differences with error correction.

The modified linear system with Symplectic Euler:

$$\begin{bmatrix} \nabla \sigma(\varphi_h(q_1), p_1) & 0 \\ \nabla \sigma(\varphi_h(q_2), p_2) & 0 \\ \vdots & \vdots \\ \nabla \sigma(\varphi_h(q_K), p_K) & 0 \\ \sigma(x_0) & 1 \end{bmatrix} \cdot \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} \mathcal{J}^{-1}(\varphi_h(x_1) - x_1)/h \\ \mathcal{J}^{-1}(\varphi_h(x_2) - x_2)/h \\ \vdots \\ \mathcal{J}^{-1}(\varphi_h(x_K) - x_K)/h \\ \mathcal{H}(x_0) \end{bmatrix}.$$

Approximations – Limited Data

Given trajectory data $\mathcal{D} = \{q_i, p_i, \varphi_h(q_i, p_i)\}_{i=0}^K$, we use finite differences with error correction.

The modified linear system with Symplectic Euler:

$$\begin{bmatrix} \nabla \sigma(\varphi_h(q_1), p_1) & 0 \\ \nabla \sigma(\varphi_h(q_2), p_2) & 0 \\ \vdots & \vdots \\ \nabla \sigma(\varphi_h(q_K), p_K) & 0 \\ \sigma(x_0) & 1 \end{bmatrix} \cdot \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} \mathcal{J}^{-1}(\varphi_h(x_1) - x_1)/h \\ \mathcal{J}^{-1}(\varphi_h(x_2) - x_2)/h \\ \vdots \\ \mathcal{J}^{-1}(\varphi_h(x_K) - x_K)/h \\ \mathcal{H}(x_0) \end{bmatrix}. \qquad \begin{bmatrix} \frac{5}{2} \\ \frac{5}{2} \\ \frac{5}{2} \\ \frac{7}{2} \end{bmatrix}$$

Figure 10 Single pendulum Hamiltonian test errors with and without error correction.

- Introduced Random-HNN for Hamiltonian approximation given limited data.

- Introduced Random-HNN for Hamiltonian approximation given limited data.
- A-SWIM used an initial approximation to match the SWIM's performance with limited data.

- Introduced Random-HNN for Hamiltonian approximation given limited data.
- A-SWIM used an initial approximation to match the SWIM's performance with limited data.
- ELM has better accuracy if the target function is low oscillatory.
- The opposite, SWIM has better accuracy if the gradients of the target function are large.

- Introduced Random-HNN for Hamiltonian approximation given limited data.
- A-SWIM used an initial approximation to match the SWIM's performance with limited data.
- ELM has better accuracy if the target function is low oscillatory.
- The opposite, SWIM has better accuracy if the gradients of the target function are large.
- Error correction can be easily integrated into the linear system.

- Introduced Random-HNN for Hamiltonian approximation given limited data.
- A-SWIM used an initial approximation to match the SWIM's performance with limited data.
- ELM has better accuracy if the target function is low oscillatory.
- The opposite, SWIM has better accuracy if the gradients of the target function are large.
- Error correction can be easily integrated into the linear system.

Potential future work:

- Noisy scenarios can be evaluated.
- Dissipative systems can be studied.

- Introduced Random-HNN for Hamiltonian approximation given limited data.
- A-SWIM used an initial approximation to match the SWIM's performance with limited data.
- ELM has better accuracy if the target function is low oscillatory.
- The opposite, SWIM has better accuracy if the gradients of the target function are large.
- Error correction can be easily integrated into the linear system.

Potential future work:

- Noisy scenarios can be evaluated.
- Dissipative systems can be studied.
- Random-HNN can be configured to approximate the flow map.

Literature

[Kuznetsov, 2004]	Y. A. Kuznetsov. Elements of Applied Bifurcation The-
	ory. 2004.
[Hamilton, 1834]	W. R. Hamilton. "On a General Method in Dynamics."
	In: Philosophical Transactions of the Royal Society 124
	(1834), pp. 247–308.
[Hamilton, 1835]	W. R. Hamilton. "Second Essay on a General Method in
	Dynamics." In: Philosophical Transactions of the Royal
	Society 125 (1835), pp. 95-144.
[Bolager et al., 2023]	E. L. Bolager, I. Burak, C. Datar, Q. Sun, and F. Dietrich.

Sampling weights of deep neural networks. 2023.