TD3-Compléments

Exercice 1 (Unicité de l'élément neutre)

Le but de cet exercice est de montrer que, dans un espace vectoriel, l'élément neutre est unique.

Soit E un espace vectoriel dont on note + la loi de composition interne. On rappelle qu'un élément $y \in E$ est un **élément neutre** de E si

$$\forall x \in E$$
, $x + y = y + x = x$.

On suppose par l'absurde qu'il existe deux éléments neutres y_1 et y_2 dans E.

- 1. Montrer que : $y_1 + y_2 = y_2 + y_1 = y_1$.
- 2. Montrer que : $y_2 + y_1 = y_1 + y_2 = y_2$.
- 3. Conclure.

Exercice 2 (**)

Soit E un espace vectoriel et soient F et G deux sous-espaces vectoriels de E. Montrer que $E = F \cap G$ si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 3 (Preuve de la proposition 6)

Soit E un espace vectoriel et soient u_1, \ldots, u_n des éléments de E ($n \in \mathbb{N}^*$). On considère un sous-espace vectoriel E de E contenant E con

- 1. Soit $u \in \text{Vect}(u_1, \ldots, u_n)$.
 - (a) Justifier qu'il existe des réels $\lambda_1, \dots, \lambda_n$ tels que : $u = \lambda_1 u_1 + \dots + \lambda_n u_n$.
 - (b) Pour tout $k \in [1, n]$, soit \mathcal{P}_k la propriété $\langle \sum_{i=1}^k \lambda_i u_i \in H \rangle$. Montrer que pour tout $k \in [1, n]$, \mathcal{P}_k est vraie.
 - (c) En déduire que $u \in H$.
- 2. En déduire que $Vect(u_1, ..., u_n) \subset H$.