高等数字集成电路作业-第十七十六七章

Author: 文家宝

1. 基于VerilogHDL进行逻辑电路设计

1. 无符号除法器

设计一个时序逻辑电路,计算32位无符号数除法。对于输入a和b,计算a除以b得到的商q和余数r。例如:

- 输入a=256, b=32, 输出q=8, r=0
- 输入a = 65536, b = 97, 输出q = 675, r = 61
- 输入a = 4294967295, b = 1048576, 输出q = 4095, r = 1048575
- 输入a = 1048576, b = 4294967295, 输出q = 0, r = 1048576

顶层模块名为div_u32,输入输出功能定义:

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	系统异步复位,低电平有效
vld_in	Input	1	输入数据有效指示
х	Output	32	输入被除数
b	Output	32	输入除数
vld_out	Output	1	输出数据有效指示
q	Output	32	输出商

名称 方向 位宽 描述

r Output 32 输出余数

实现思路:

```
always @(posedge clk) begin
    if (rst) begin
        div_doing_o <= 1'b0;</pre>
    end
    /*除法结果输出后需要将div_doing置零*/
    else if (div_qrvalid_o) begin
        div_doing_o <= 1'b0;</pre>
    end
    /*握手成功后,也就是除法器接受输入的数据后需要把div_doing置高*/
    else if(div_datavalid_i) begin
        div_doing_o <= 1'b1;</pre>
    end
end
always @(posedge clk ) begin
    if (rst) begin
        div_quotient_o <= 1'b0;</pre>
        div_remainder_o <= 0;</pre>
        div_qrvalid_o <=0;
    end
    else if (div_ready)begin
        div_quotient_o <= 1'b0;</pre>
        div_remainder_o <= 0;</pre>
        div_qrvalid_o <=0;</pre>
    end
    else if(div_qrvalid_r)begin
        div_quotient_o <= div_quotiento_r;</pre>
        div_remainder_o <= div_remaindero_r;</pre>
        div_grvalid_o <= div_grvalid_r;</pre>
    end
end
genvar div_m_var;
//get valid input data
always @ (posedge clk ) begin
    if (rst) begin
        div_remainder_r [0] \le {2*WIDTH+1{1'b0}};
        div_divisor_r [0] <= {2*WIDTH {1'b0}};
        div_quotient_r [0] \le {WIDTH {1'b0}};
                                            1'b0 ;
        div_data_valid_r[0] <=</pre>
    end else if (div_datavalid_i) begin
```

```
if (|div_divisor_i) begin//if div_divisor_i is not zero
            div_remainder_r [0] <= (div_dividend_i << 1) -
(div_divisor_i<<WIDTH);</pre>
                                     <= div_divisor_i<<WIDTH;
            div_divisor_r [0]
                                     <= { WIDTH {1'b0}};
            div_quotient_r [0]
            div_data_valid_r[0]
                                     <=
                                                   1'b1 ;
        end else begin
            div_remainder_r [0]
                                     <= {2*WIDTH+1{1'b0}};
            div_divisor_r [0]
                                     <= {2*WIDTH {1'b0}};
            div_quotient_r [0]
                                     <= { WIDTH {1'b0}};
            div_data_valid_r[0]
                                     <=
                                                    1'b0 ;
        end
    end else begin
        div_remainder_r [0]
                                <= {2*WIDTH+1{1'b0}};
        div_divisor_r [0]
                                 <= {2*WIDTH {1'b0}};
        div_quotient_r [0]
                                <= { WIDTH {1'b0}};
        div_data_valid_r[0]
                                 <=
                                                1'b0 ;
    end
end
//if n<0, n=n+d; n<<1, n=n-q; \
//else n<<1, n=n-q;
generate
for (div_m_var=1;div_m_var<WIDTH;div_m_var=div_m_var+1) begin:
calculate_cycle
    always @ (posedge clk ) begin
        if (rst) begin
            div_remainder_r[div_m_var] <= {2*WIDTH+1{1'b0}};
            div_divisor_r [div_m_var] \le {2*WIDTH {1'b0}};
            div_quotient_r [div_m_var] <= { WIDTH {1'b0}};</pre>
                                                        1'b0 ;
            div_data_valid_r[div_m_var] <=</pre>
        end else if (div_data_valid_r[div_m_var-1]) begin
            if (div_remainder_r[div_m_var-1][2*WIDTH]) begin//restore
                 div_remainder_r[div_m_var] <= ((div_remainder_r[div_m_var-</pre>
1]+div_divisor_r[div_m_var-1])<<1) - div_divisor_r[div_m_var-1];</pre>
                div_divisor_r [div_m_var] <= div_divisor_r [div_m_var-1];</pre>
                div_quotient_r [div_m_var] <= div_quotient_r [div_m_var-1]</pre>
<<<u>1</u>;
                div_data_valid_r[div_m_var] <= div_data_valid_r[div_m_var-</pre>
1];
            end else begin//not restore
                div_remainder_r[div_m_var] <= (div_remainder_r[div_m_var-1]</pre>
<<1) - div_divisor_r[div_m_var-1];
                div_divisor_r [div_m_var] <= div_divisor_r [div_m_var-1];</pre>
                div_quotient_r [div_m_var] <= (div_quotient_r [div_m_var-1]</pre>
<<1) + 1'b1;
                div_data_valid_r[div_m_var] <= div_data_valid_r[div_m_var-</pre>
1];
            end
        end else begin
            div_remainder_r[div_m_var] <= div_remainder_r[div_m_var-1];</pre>
            div_divisor_r [div_m_var] <= div_divisor_r [div_m_var-1];</pre>
            div_quotient_r [div_m_var] <= div_quotient_r [div_m_var-1];</pre>
            div_data_valid_r[div_m_var] <= div_data_valid_r[div_m_var-1];</pre>
        end
```

```
end
end
endgenerate
always @ (posedge clk ) begin
    if (rst) begin
        div_remaindero_r <= {WIDTH{1'b0}};</pre>
        div_remaindero_r <= {WIDTH{1'b0}};</pre>
        div_qrvalid_r <=
                                   1'b0 ;
    end else if (div_data_valid_r[WIDTH-1]) begin
        if (div_remainder_r[WIDTH-1][2*WIDTH]) begin
             div_remaindero_r <= (div_remainder_r[WIDTH-</pre>
1]+div_divisor_r[WIDTH-1])>>WIDTH;
             div_quotiento_r <= div_quotient_r [WIDTH-1]<<1;</pre>
             div_qrvalid_r <= div_data_valid_r[WIDTH-1];</pre>
        end else begin
             div_remaindero_r <= div_remainder_r[WIDTH-1]>>WIDTH;
             div_quotiento_r <= (div_quotient_r [WIDTH-1]<<1) + 1'b1;</pre>
             div_qrvalid_r <= div_data_valid_r[WIDTH-1];</pre>
        end
    end else begin
             div_qrvalid_r <= div_data_valid_r[WIDTH-1];</pre>
    end
end
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为434Mhz,采用最小面积约束进行综合

```
set CLK_SKEW
                         [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                         [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                         [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                         [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                        6
set MAX_TRAN
                        5
set MAX_CAP
                        1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#=======Define Design
Environment===========
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN
                               [current_design]
#set_max_fanout $MAX_FANOUT
                               [current_design]
#set_max_capacitance $MAX_CAP
                               [current_design]
#======= Set Design
Constraints============
#-----Clock and Reset Definition--------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                                [get_ports $RST_NAME]
set_dont_touch_network
                                [get_ports $RST_NAME]
set_false_path -from
                                [get_ports $RST_NAME]
set_ideal_network -no_propagate
                               [get_ports $RST_NAME]
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME
                                                      [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME
                                                      [all_outputs]
-add
set_load 0.2 [all_outputs]
 Point
                                                   Incr
                                                             Path
```

Report : timing

-path full
-delay max
-max_paths 1

Design : top

Version: L-2016.03-SP1

Date : Tue Dec 6 22:35:09 2022

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: ss_1v62_125c Library: ss_1v62_125c

Wire Load Model Mode: top

Startpoint: div_remainder_r_reg_0__91_

(rising edge-triggered flip-flop clocked by clk)

Endpoint: div_remainder_r_reg_1__128_

(rising edge-triggered flip-flop clocked by clk)

Path Group: clk Path Type: max

Point	Incr	Path
-		
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	1.90	1.90
div_remainder_r_reg_091_/CK (DFFTRX1M)	0.00 #	1.90 r
div_remainder_r_reg_091_/Q (DFFTRX1M)	0.57	2.47 f
DP_OP_664_308_2961/I1[91] (top_DP_OP_664_308_2961	_1)	
	0.00	2.47 f
DP_OP_664_308_2961/U1616/Y (NOR2X1M)	0.21	2.68 r
DP_OP_664_308_2961/U1613/Y (OAI21XLM)	0.14	2.82 f
DP_OP_664_308_2961/U1611/Y (A0I21XLM)	0.28	3.10 r
DP_OP_664_308_2961/U1545/Y (OAI21XLM)	0.15	3.25 f
DP_OP_664_308_2961/U1543/Y (A0I21XLM)	0.19	3.44 r
DP_OP_664_308_2961/U1541/Y (OAI21X1M)	0.87	4.31 f
DP_OP_664_308_2961/U1413/Y (A0I21XLM)	0.36	4.67 r
DP_OP_664_308_2961/U1396/Y (XOR2XLM)	0.18	4.85 r
DP_0P_664_308_2961/U924/Y (MX2XLM)	0.26	5.11 r
DP_OP_664_308_2961/U217/Y (NAND2XLM)	0.18	5.29 f
DP_0P_664_308_2961/U195/Y (OAI21XLM)	0.28	5.57 r
DP_0P_664_308_2961/U155/Y (A0I21XLM)	0.19	5.76 f
DP_0P_664_308_2961/U139/Y (OAI21XLM)	0.28	6.04 r
DP_0P_664_308_2961/U123/Y (A0I21XLM)	0.20	6.24 f
DP_0P_664_308_2961/U111/Y (OAI21XLM)	0.22	6.46 r
DP_0P_664_308_2961/U109/Y (A0I21XLM)	0.13	6.59 f
DP_0P_664_308_2961/U103/Y (OAI21XLM)	0.31	6.90 r
DP_0P_664_308_2961/U95/Y (A0I21XLM)	0.23	7.14 f
DP_0P_664_308_2961/U89/Y (OAI21XLM)	0.31	7.45 r
DP_0P_664_308_2961/U2001/Y (A0I21XLM)	0.25	7.70 f
DP_0P_664_308_2961/U75/Y (OAI21X1M)	0.23	7.93 r
DP_0P_664_308_2961/U67/Y (A0I21X1M)	0.20	8.13 f
DP_OP_664_308_2961/U61/Y (OAI21X1M)	0.22	8.35 r

DP_OP_664_308_2961/U53/Y (A0I21X1M) DP_OP_664_308_2961/U47/Y (OAI21X1M) DP_OP_664_308_2961/U39/Y (A0I21X1M) DP_OP_664_308_2961/U33/Y (OAI21X1M) DP_OP_664_308_2961/U25/Y (A0I21X1M) DP_OP_664_308_2961/U19/Y (OAI21X1M)	0.20 0.22 0.20	8.55 f
DP_OP_664_308_2961/U39/Y (A0I21X1M) DP_OP_664_308_2961/U33/Y (OAI21X1M) DP_OP_664_308_2961/U25/Y (A0I21X1M) DP_OP_664_308_2961/U19/Y (OAI21X1M)		
DP_OP_664_308_2961/U33/Y (OAI21X1M) DP_OP_664_308_2961/U25/Y (AOI21X1M) DP_OP_664_308_2961/U19/Y (OAI21X1M)	0.20	8.77 r
DP_OP_664_308_2961/U25/Y (A0I21X1M) DP_OP_664_308_2961/U19/Y (OAI21X1M)	0.20	8.97 f
DP_OP_664_308_2961/U19/Y (OAI21X1M)	0.22	9.19 r
· · · · · · · · · · · · · · · · · · ·	0.20	9.39 f
DD 00 001 000 0001 (111 (11 (11 (11 (11 (1	0.22	9.61 r
DP_OP_664_308_2961/U11/Y (A0I21X1M)	0.20	9.81 f
DP_OP_664_308_2961/U5/Y (OAI21X1M)	0.20	10.00 r
DP_OP_664_308_2961/U3/CO (ADDFX2M)	0.34	10.35 r
DP_OP_664_308_2961/U1/Y (XOR2XLM)	0.08	10.43 f
DP_0P_664_308_2961/01[128] (top_DP_0P_664_308_29	961_1)	
	0.00	10.43 f
U25278/Y (A022XLM)	0.34	10.77 f
div_remainder_r_reg_1128_/D (DFFQX1M)	0.00	10.77 f
data arrival time		10.77
clock clk (rise edge)	9.50	9.50
clock network delay (ideal)	1.90	11.40
clock uncertainty	-0.47	
div_remainder_r_reg_1128_/CK (DFFQX1M)	0.00	10.92 r
library setup time	-0.16	10.77
data required time	-0.10	10.77
		10:77
<u>-</u>		
data required time		10.77
data arrival time		-10.77
- alook (MET)		
slack (MET)		0 00
,		0.00
Total Dynamic Power = 185.3276 mW (100%)		0.00
		0.00
Total Dynamic Power = 185.3276 mW (100%)		0.00
Total Dynamic Power = 185.3276 mW (100%)		0.00
Fotal Dynamic Power = 185.3276 mW (100%)	Leakage	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW	Leakage	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching	Leakage Power	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power	_	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power	_	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs	_	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000	Power	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs	Power	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs	Power 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000 0.0000 (0.00%)	Power 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 9.0000 (0.00%) memory 0.0000 0.0000 9.0000 (0.00%) black_box 0.0000 0.0000	Power 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000 0.0000 (0.00%) black_box 0.0000 0.0000 0.0000 (0.00%)	Power 0.0000 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000 0.0000 (0.00%) olack_box 0.0000 0.0000 0.0000 (0.00%) clock_network 0.0000 0.0000	Power 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000 0.0000 (0.00%) black_box 0.0000 0.0000 0.0000 (0.00%) clock_network 0.0000 0.0000 0.0000 (0.00%)	Power 0.0000 0.0000 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs	Power 0.0000 0.0000 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs	Power 0.0000 0.0000 0.0000 0.0000 3.0614e+07	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000 0.0000 (0.00%) black_box 0.0000 0.0000 0.0000 (0.00%) clock_network 0.0000 0.0000 0.0000 (0.00%) register 169.2298 1.2697 170.5291 (91.99%) sequential 0.0000 0.0000	Power 0.0000 0.0000 0.0000 0.0000	0.00
Total Dynamic Power = 185.3276 mW (100%) Cell Leakage Power = 61.4446 uW Internal Switching Total Power Group Power Power Power (%) Attrs Total O.0000 (0.00%) The memory O.0000 O.0000 O.0000 (0.00%) Olack_box O.0000 O.0000 O.0000 (0.00%) Clock_network O.0000 O.0000 O.0000 (0.00%) Tegister 169.2298 1.2697 Total Dynamic Power = 185.3276 mW (100%) Total Compand O.00%) Total Dynamic Power = 185.3276 mW (100%) O.0000 (0.00%) Total Dynamic Power = 61.4446 uW O.0000 O.0000 O	Power 0.0000 0.0000 0.0000 0.0000 3.0614e+07 0.0000	0.00

14.8580 (8.01%)

Total 177.0742 mW 8.2523 mW 6.1445e+07 pW

185.3871 mW

1

Report : area Design : top

Version: L-2016.03-SP1

Date : Tue Dec 6 22:35:09 2022

Library(s) Used:

ss_1v62_125c (File: /opt/PDKs/smic_180/SM00LB501-FE-00000-r0p0-00rel0/aci/sc-m/synopsys/ss_1v62_125c.db)

Number of ports: 33545 Number of nets: 142541 Number of cells: 117818 Number of combinational cells: 94867 Number of sequential cells: 22886 Number of macros/black boxes: 0 Number of buf/inv: 20430 Number of references: 126

 Combinational area:
 1066994.505522

 Buf/Inv area:
 134791.863543

 Noncombinational area:
 752007.454430

 Macro/Black Box area:
 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 1819001.959951

Total area: undefined

2. 数据排序

设计一个时序逻辑电路,根据输入128位向量与对应16位有效指示信号进行重排序并输出。128位向量x与对应 16位有效指示信号v的形式如下:

顶层模块名为sort 32 u8,输入输出功能定义:

信号v[i]对应向量x的[i8+7:i8]范围,其中i = 0 ~ 15。信号v[i]为1表示对应8位数据有效,否则无效。 需要将v[i]为1对应的数据移到低位输出,相对顺序保持不变;而v[i]为0对应数据清零移到高位输出。指示信号v也类似处理。例如:

输入∨为16'b01100101111110000 输入×为128'h01_12_23_34_45_56_67_78_89_9A_AB_BC_CD_DE_EF_F0 输出∨为16'b000000011111111

输出x为128'h00_00_00_00_00_00_00_12_23_56_78_89_9A_AB_BC 例子说明:输入v当中有8位为1,对应8位数据从高到低依次为8'h12、8'h23、8'h56、8'h78、8'h89、8'h9A、8'hAB、8'hBC;输出v将8位1移到最低8位,高位均为0,输出x最低64位为64'h12_23_56_78_89_9A_AB_BC,高64位均为0。

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	系统异步复位,低电平有效
v_in	Input	16	输入数据有效指示
x_in	Input	128	输入数据向量
v_out	Output	16	输出数据有效指示
x_out	Output	128	输出数据向量

实现思路一:数据排序

```
*******Stage1*****
generate
    for(i=0;i<16;i=i+1)begin:st1loop
        always @(posedge clk or negedge rst_n) begin
            if(!rst_n)begin
                regfile[i] <= 'b0;</pre>
            end else if(vaild_i)begin
                regfile[i] <= x_in[i*8+7:i*8];
            end else begin
                regfile[i] <= regfile[i];</pre>
            end
        end
    end
endgenerate
always @(posedge clk or negedge rst_n) begin
    if(!rst_n)begin
        v_r1 <= 'b0;
        vaild_r1 <= 'b0;</pre>
    end else if(vaild_i)begin
        v_r1 <= v_in;
```

```
vaild_r1 <= vaild_i;</pre>
        end
    end
    wire [3:0] sum_w;
    wire co;
    wire [15:0] v_w1;
    sum16
          sum16_u0(
.in1(v_r1[0]),.in2(v_r1[1]),.in3(v_r1[2]),.in4(v_r1[3]),.in5(v_r1[4]),
.in6(v_r1[5]),.in7(v_r1[6]),.in8(v_r1[7]),.in9(v_r1[8]),.in10(v_r1[9]),
.in11(v_r1[10]),.in12(v_r1[11]),.in13(v_r1[12]),.in14(v_r1[13]),.in15(v_r1[
14]),
                    .in16(v_r1[15]),.co(co),.sum(sum_w)
                );
    decode16\_5 \ decode16\_5\_u0(.in({co,sum_w}),.out(v_w1));
    wire [15:0]onehot[15:0];
    wire [15:0] temp[15:0];
    assign onehot [0] = v_r1 & (\sim v_r1+1);
                    [0] = v_r1&(\sim onehot[0]);
    assign temp
    generate
        for (i= 1; i<16; i=i+1)begin:st1loop2
            assign onehot [i]=(temp[i-1]) & (\sim(temp[i-1])+1);
            assign temp [i] = temp[i-1]&(\sim onehot[i]);
        end
    endgenerate
    wire [3:0] addr_w [15:0];
    generate
        for(i=0;i<16;i=i+1)begin:onehotdecz
            onehotdec onehotdec_u(.onehot(onehot[i]),.dec(addr_w[i]));
        end
    endgenerate
                ******Stage2****
    reg [3:0] addr_r2 [15:0];
    reg [15:0] v_r2;
    reg vaild_r2;
    generate
        for(i=0;i<16;i=i+1)begin:st2loop
            always @(posedge clk or negedge rst_n) begin
                if(!rst_n)begin
                    addr_r2[i]
                                  <= 'b0;
                end else begin
                    addr_r2[i]  <= addr_w[i];
                end
            end
        end
    endgenerate
    always @(posedge clk ) begin
        if(!rst_n)begin
            v_r2
                           <= 'b0;
            vaild_r2
                           <= 'b0;
        end else begin
```

```
v_r2
                       <= v_w1;
        vaild_r2
                      <= vaild_r1;
   end
end
wire [7:0] data_w [15:0];
generate
    for (i =0 ;i<16 ;i=i+1 ) begin:st2loop2
        assign data_w[i] = v_r2[i] ? regfile[addr_r2[i]] : 'b0;
    end
endgenerate
/************************************/
reg [7:0] datar [15:0];
generate
   for (i=0; i<16; i=i+1) begin:st3loop
        always @(posedge clk or negedge rst_n) begin
            if(!rst_n)begin
                datar[i] <= 'b0;</pre>
            end else begin
                datar[i] <= data_w[i];</pre>
            end
        end
   end
endgenerate
always @(posedge clk ) begin
   if(!rst_n)begin
                       <= 'b0;
       v_out
        datavaild_o
                       <= 'b0;
   end else begin
       v_out
                       <= v_r2;
        datavaild_o <= vaild_r2;</pre>
    end
end
assign x_{out} = {datar[15], datar[14], datar[13], datar[12], datar[11],}
                datar[10], datar[9], datar[8], datar[7], datar[6],
                datar[5], datar[4], datar[3], datar[2], datar[1], datar[0]}
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为,采用最小面积约束进行综合

```
#=======Env
set RST_NAME
                       rst n
set CLK_NAME
                        clk
                        2.5
set CLK_PERIOD_I
set CLK_PERIOD
                        [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                        [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                        [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                       6
set MAX_TRAN
                       5
set MAX_CAP
                       1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment===========
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#======= Set Design
Constraints============
#-----Clock and Reset Definition------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
                               [get_ports $RST_NAME]
set_drive 0
set_dont_touch_network
                               [get_ports $RST_NAME]
set_false_path -from
                               [get_ports $RST_NAME]
                               [get_ports $RST_NAME]
set_ideal_network -no_propagate
```

#I/O Cons	straint	
set_input_delay -max \$INPUT_DELAY_MAX \$ALL_INPUT_EX_CLK	-clock \$CLK_NAME	
set_input_delay -min \$INPUT_DELAY_MIN \$ALL_INPUT_EX_CLK -add	-clock \$CLK_NAME	
set_output_delay -max \$OUTPUT_DELAY_MAX	-clock \$CLK NAME [al	l outputs1
set_output_delay -min \$OUTPUT_DELAY_MIN -add	_	
set_load 0.2 [all_outputs] ************************************		
Report : timing		
-path full		
-delay max		
-max_paths 1		
Design : top		
Version: L-2016.03-SP1		
Date : Tue Dec 6 23:07:16 2022		

Operating Conditions: ss_1v62_125c Lib Wire Load Model Mode: top	rary: ss_1v62_125c	
Startpoint: v_r1_reg_1_		
(rising edge-triggered flip	n-flon clocked by clk)	
Endpoint: addr_r2_reg_141_	o respectively	
(rising edge-triggered flip-	flop clocked by clk)	
Path Group: clk	,	
Path Type: max		
Point	Incr	Path
	11101	
- clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	1.90	1.90
v_r1_reg_1_/CK (DFFRHQX8M)	0.00	1.90 r
v_r1_reg_1_/Q (DFFRHQX8M)	0.30	2.20 r
U407/Y (CLKINVX8M)	0.09	2.29 f
add_x_1/A[1] (top_DW01_inc_17)	0.00	2.29 f
add_x_1/U124/Y (XOR2X4M)	0.18	2.47 f
add_x_1/SUM[1] (top_DW01_inc_17)	0.00	2.47 f
U602/Y (NAND2X3M)	0.09	2.56 r
U568/Y (INVX3M)	0.07	2.63 f
U404/Y (NOR2X6M)	0.13	2.76 r
U403/Y (INVX8M)	0.06	2.82 f
add_x_2/A[1] (top_DW01_inc_19)	0.00	2.82 f
add_x_2/U91/Y (NAND2X8M)	0.09	2.91 r
add_x_2/U90/Y (INVX8M)	0.06	2.97 f
add_x_2/U114/Y (NAND2X12M)	0.07	
add_x_2/U108/Y (INVX4M)		
1.1	0.05	3.09 f
add_x_2/U110/Y (NAND2X4M) add_x_2/U117/Y (XNOR2X8M)	0.05 0.07 0.13	

add_x_2/SUM[5] (top_DW01_inc_19)	0.00	3.29 r
U393/Y (INVX4M)	0.06	3.35 f
U390/Y (NOR2X6M)	0.13	3.48 r
U387/Y (INVX4M)	0.07	3.55 f
U386/Y (NAND2X8M)	0.09	3.64 r
add_x_3/A[5] (top_DW01_inc_21)	0.00	3.64 r
add_x_3/U103/Y (NAND2X8M)	0.09	3.73 f
add_x_3/U84/Y (CLKINVX6M)	0.07	3.80 r
add_x_3/U83/Y (NAND3X6M)	0.12	3.93 f
add_x_3/U99/Y (INVX3M)	0.08	4.00 r
add_x_3/U77/Y (AND2X4M)	0.17	4.17 r
add_x_3/U29/Y (XNOR2X8M)	0.12	4.29 r
add_x_3/SUM[9] (top_DW01_inc_21)	0.00	4.29 r
U368/Y (NAND2X4M)	0.10	4.39 f
U366/Y (NAND2X4M)	0.10	4.49 r
add_x_4/A[9] (top_DW01_inc_23)	0.00	4.49 r
add_x_4/U74/Y (NAND2X5M)	0.10	4.59 f
add_x_4/U73/Y (NOR2X8M)	0.11	4.70 r
add_x_4/U68/Y (INVX2M)	0.08	4.78 f
add_x_4/U67/Y (CLKINVX4M)	0.10	4.88 r
add_x_4/U65/Y (AND2X2M)	0.18	5.05 r
add_x_4/U62/Y (XNOR2X2M)	0.13	5.19 r
add_x_4/SUM[11] (top_DW01_inc_23)	0.00	5.19 r
U355/Y (NAND2X2M)	0.14	5.32 f
U508/Y (NAND2X4M)	0.11	5.44 r
U764/CO (ADDHX4M)	0.18	5.62 r
U346/Y (NAND2X3M)	0.10	5.72 f
U501/Y (XNOR2X4M)	0.15	5.86 f
U497/Y (CLKAND2X6M)	0.20	6.07 f
I_147/Y (INVX4M)	0.06	6.13 r
U336/Y (NAND2X3M)	0.09	6.22 f
U780/CO (ADDHX4M)	0.19	6.41 f
U733/S (ADDHX4M)	0.17	6.58 f
C2718/Y (AND2X6M)	0.20	6.78 f
I_178/Y (CLKINVX6M)	0.05	6.83 r
U475/Y (NAND2X4M)	0.09	6.92 f
U703/CO (ADDHX4M)	0.17	7.09 f
U787/Y (XOR2X4M)	0.17	7.26 f
U664/Y (NAND2X4M)	0.09	7.35 r
C2797/Y (AND2X8M)	0.17	7.52 r
U316/Y (INVX6M)	0.06	7.57 f
U759/Y (XOR2X8M)	0.16	7.73 f
U682/Y (NAND2X4M)	0.07	7.80 r
U611/Y (AND2X4M)	0.20	8.00 r
I_257/Y (CLKINVX6M)	0.07	8.07 f
U658/Y (XNOR2X8M)	0.14	8.22 f
U614/Y (INVX8M)	0.06	8.28 r
U304/Y (NAND2X4M)	0.07	8.34 f
C2925/Y (AND2X6M)	0.17	8.51 f
U452/Y (INVX2M)	0.08	8.59 r
U785/Y (XOR2X4M)	0.13	8.72 r
C2973/Y (AND2X6M)	0.19	8.91 r
I_305/Y (CLKINVX4M)	0.06	8.98 f
U705/Y (NAND2X4M)	0.07	9.05 r

U639/Y (XOR2X4M)	0.14	9.19 r
C3037/Y (CLKAND2X12M)	0.24	9.43 r
U671/Y (NOR2X12M)	0.06	9.49 f
U706/Y (NAND2X8M)	0.07	9.56 r
·		
U653/Y (NAND2X8M)	0.08	9.65 f
U641/Y (XNOR2X8M)	0.15	9.80 f
U640/Y (NAND2X8M)	0.08	9.88 r
U437/Y (NAND2X6M)	0.08	9.96 f
U430/Y (INVX8M)	0.10	10.06 r
U278/Y (CLKNAND2X12M)	0.11	10.17 f
U689/Y (NAND2X8M)	0.09	10.26 r
U731/Y (XOR2X8M)	0.12	10.38 r
U276/Y (NOR2X4M)	0.08	10.46 f
<pre>onehotdecz_14onehotdec_u/onehot[15] (onehotdec_2)</pre>	0.00	10.46 f
onehotdecz_14onehotdec_u/U8/Y (INVX2M)	0.07	10.53 r
onehotdecz_14onehotdec_u/U6/Y (NAND2X2M)	0.10	10.63 f
onehotdecz_14onehotdec_u/U3/Y (NAND2X2M)	0.10	10.03 r
onehotdecz_14onehotdec_u/dec[1] (onehotdec_2)	0.00	10.72 r
addr_r2_reg_141_/D (DFFRHQX2M)	0.00	10.72 r
data arrival time		10.72
clock clk (rise edge)	9.50	9.50
clock network delay (ideal)	1.90	11.40
clock uncertainty	-0.47	10.92
•	0.00	10.92 r
		10.92 1
addr_r2_reg_141_/CK (DFFRHQX2M)		10 70
addr_r2_reg_141_7CK (DFFRHQX2M) library setup time data required time	-0.20	10.73 10.73
library setup time data required time data required time		10.73
library setup time data required time		10.73
library setup time data required time data required time		10.73
library setup time data required time data required time		10.73
library setup time data required time data required time data arrival time		10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET)		10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%)		10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total Power Group Power Power Power (%) Attrs	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%)	-0.20	10.73 10.73 -10.72
library setup time data required time data required time data arrival time slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total Power Group Power Power Power (%) Attrs io_pad 0.0000 0.0000 0.0000 (0.00%) memory 0.0000 0.0000	-0.20 Leakage Power 0.0000	10.73 10.73 -10.72
library setup time data required time data required time data arrival time	-0.20 Leakage Power 0.0000 0.0000	10.73 10.73 -10.72
library setup time data required time data required time data arrival time	-0.20 Leakage Power 0.0000	10.73 10.73 -10.72
library setup time data required time data required time data arrival time - slack (MET) Total Dynamic Power = 3.4598 mW (100%) Cell Leakage Power = 2.3131 uW Internal Switching Total Power Group Power Power Power (%) Attrs	-0.20 Leakage Power 0.0000 0.0000 0.0000	10.73 10.73 -10.72
library setup time data required time data required time data arrival time	-0.20 Leakage Power 0.0000 0.0000	10.73 10.73 -10.72

			1 06620±0E	
register 3.1617 (91.32%)		0.2389	4.00030-03	
sequential	0.0000	0.0000	0.0000	
0.0000 (0.00%)				
combinational	0.1816	0.1170	1.8264e+06	
0.3004 (8.68%)				
Total	3.1039 mW	0.3559 mW	2.3131e+06 pW	
3.4621 mW				
1				
*****	******	*****		
Report : area				
Design : top				
Version: L-2016.03-	SP1			
Date : Tue Dec 6		22		
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * *		
Library(s) Used:				
, ,	ilo: /ont/DDM	/c/cmic 190/SM00	N PE01 FE 00000 ron0	
ss_1v62_125c (F	·		DLB501-FE-00000-r0p0-	
, ,	·		DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr	·)LB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr	·	2_125c.db)	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells:	nopsys/ss_1v62	2_125c.db) 803)LB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati	nopsys/ss_1v62	2_125c.db) 803 4232 3676 3280	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati	nopsys/ss_1v62 .onal cells: .l cells:	2_125c.db) 803 4232 3676 3280 373)LB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl	nopsys/ss_1v62 .onal cells: .l cells:	2_125c.db) 803 4232 3676 3280 373 0	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv:	opsys/ss_1v62 onal cells: il cells: ack boxes:	2_125c.db) 803 4232 3676 3280 373 0 431	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl	opsys/ss_1v62 onal cells: il cells: ack boxes:	2_125c.db) 803 4232 3676 3280 373 0	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv:	onal cells: cells: ack boxes:	2_125c.db) 803 4232 3676 3280 373 0 431	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference	onal cells: cells: ack boxes:	2_125c.db) 803 4232 3676 3280 373 0 431 97	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference	onal cells: cells: ack boxes:	2_125c.db) 803 4232 3676 3280 373 0 431 97	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference Combinational area: Buf/Inv area:	conal cells: cack boxes: es:	2_125c.db) 803 4232 3676 3280 373 0 431 97 45326.488932 3336.703949	DLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference Combinational area: Buf/Inv area: Noncombinational ar	conal cells: al cells: ack boxes: es:	2_125c.db) 803 4232 3676 3280 373 0 431 97 45326.488932 3336.703949 17737.216377 0.0000000	PLB501-FE-00000-r0p0-	
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference Combinational area: Buf/Inv area: Noncombinational ar Macro/Black Box are Net Interconnect ar	conal cells: al cells: ack boxes: es:	2_125c.db) 803 4232 3676 3280 373 0 431 97 45326.488932 3336.703949 17737.216377 0.000000 efined (No wire		
ss_1v62_125c (F 00rel0/aci/sc-m/syr Number of ports: Number of nets: Number of cells: Number of combinati Number of sequentia Number of macros/bl Number of buf/inv: Number of reference Combinational area: Buf/Inv area: Noncombinational ar	conal cells: al cells: ack boxes: es:	2_125c.db) 803 4232 3676 3280 373 0 431 97 45326.488932 3336.703949 17737.216377 0.0000000		

3. APB定时控制器

设计一个基于APB从接口的定时控制器,具有如下基本功能:

• 多达8个可编程定时器

• 定时器宽度可设:8至32位

• 支持两种运行模式:自由运行和自定义运行

- 支持定时器的独立计时
- 每个中断可配置极性:低电平(下降沿),高电平(上升沿)
- 单个或组合中断输出标志的可配置选项

使用流程:

- 初始化(通过寄存器初始化定时器,N在1~8范围内)
- 1. 通过向定时器使能位写"0"来禁用定时器,即timer_en输出信号被置为低电平
- 2. 通过向定时器模式位写"0"或"1"来确定定时器模式(自由运行和自定义运行)
- 3. 通过向定时器中断屏蔽位写"0"或"1"设置中断屏蔽或不屏蔽
- 将定时器计数器值加载到寄存器中(N在1~8范围内)
- 通过给寄存器使能位写"1"来启动定时器

APB接口数据大小固定为32-bit,APB接口地址范围为0x000 – 0xFFC。通过APB接口实现基本的数据读写操作。

顶层模块名为timer_apb,输入输出功能定义:

模块输入输出功能定义:

```
名称 方向 位宽 描述 pclk I 1 系统时钟 presetn I 1 系统异步复位,低电平有效 penable I 1 使能 psel I 1 从设备选择有效 paddr I 32 读写地址 pwrite I 1 写有效 pwdata I 32 写数据 prdata 0 32 读数据 timer_irq 0 8 定时器中断输出
```

实现思路

```
`define TimerOValue 32'h3
`define TimerOCounter 32'h4
`define Timer1Ctrl 32'h5
`define Timer1Value 32'h6
`define Timer1Counter 32'h7
`define Timer2Ctrl 32'h8
`define Timer2Value 32'h9
`define Timer2Counter 32'ha
    assign pready = 1'b1;
    always @(posedge pclk or negedge presetn) begin
        if (!presetn)begin
            prdata <= 'b0;
        end else if (!pwrite)begin
            case(paddr)
                `TimerOCtrl: prdata <= timerOstatus;
                `TimerOValue: prdata <= timerO_value;</pre>
                `TimerOCounter: prdata <= timerOcount;</pre>
                `Timer1Ctrl: prdata <= timer1status;
                `Timer1Value: prdata <= timer1_value;</pre>
                `Timer1Counter: prdata <= timer1count;
                `Timer2Ctrl: prdata <= timer2status;
                `Timer2Value: prdata <= timer2_value;
                `Timer2Counter: prdata <= timer2count;</pre>
                default:
                           prdata <= 'b0;
            endcase
        end
    end
                           *********TIMER1*****
  * * * * * * * * * * * /
assign timer_irq[0] = timer0status[1] ? (timer_irqr0 ?
(~timerOstatus[3]):timerOstatus[3] )
                                     : (timer_irqr0 ?
(timerOstatus[3]):~timerOstatus[3] );//取反
    always @(posedge pclk or negedge presetn) begin
        if(!presetn)begin
            timer@count <= 'b0;
        end else if (timerOstatus[0]&&timerOstatus[2])begin
            if (timerOcount ==timerO_value)begin
                timer@count <= 'b0;
            end else begin
                timer0count <= timer0count + 32'b1;</pre>
            end
        end else if(timer0status[0]&&!timer0status[2])begin
            timer0count <= timer0count + 32'b1;</pre>
        end else if(pwrite&&(paddr == `TimerOCtrl||paddr
==`TimerOValue))begin
            timer@count <= 'b0;
        end
    end
```

```
always @(posedge pclk or negedge presetn) begin
        if(!presetn)begin
            timer0status <= 'b0;
             timer0_value <= 'b0;
             timer_irqr0 <= 'b0;
        end else if(psel&&penable&&pwrite)begin
            timer_irqr0 <= 'b0;</pre>
             if (paddr == `TimerOCtrl)begin
                 timerOstatus <= pwdata;
            end else if(paddr == `Timer0Value)begin
                 timer0_value <= pwdata;</pre>
            end else begin
                 timerOstatus <= timerOstatus;</pre>
                 timer0_value <= timer0_value;</pre>
             end
        end else begin
            if (timerOstatus[2]&&timerOcount ==timerO_value)begin
                 timerOstatus[0] <= 'b0;</pre>
                 timer_irqr0 <= 'b1;</pre>
             end else if(!timerOstatus[2]&&timerOcount ==2**
(timerOstatus[8:4]+5'd8))begin
                 timerOstatus[0] <= 'b1;</pre>
                 timer_irqr0 <= 'b1;</pre>
             end else begin
                 timerOstatus[0] <= timerOstatus[0];</pre>
                 timer_irqr0 <= 'b0;</pre>
             end
        end
    end
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为200Mhz,采用最小面积约束进行综合

```
***************
```

Operating Conditions: ss_1v62_125c Library: ss_1v62_125c

Wire Load Model Mode: top

Startpoint: paddr[31] (input port clocked by pclk)

Endpoint: timer1count_reg_31_

(rising edge-triggered flip-flop clocked by pclk)

Path Group: pclk Path Type: max

Path Type. max			
Point	Incr	Path	
clock pclk (rise edge) clock network delay (ideal) input external delay paddr[31] (in) U610/Y (INVX4M) U608/Y (NAND2X4M) C2034/Y (OR2X4M) C2035/Y (OR2X4M) C2035/Y (OR2X4M) C2036/Y (OR2X4M) C2037/Y (OR2X4M) C2038/Y (OR2X4M) C2039/Y (OR2X4M) C2040/Y (OR2X4M) C2040/Y (OR2X8M) C2041/Y (OR2X12M) C2042/Y (OR2X12M) C2043/Y (OR2X12M) C2043/Y (OR2X4M) U606/Y (OR3X4M) U607/Y (NAND2BX4M) U607/Y (NAND2BX4M) U604/Y (INVXLM) U605/Y (AND2X1M) U675/Y (AND2X1M) U678/Y (AND2X1M) U678/Y (AND2X1M)	0.00 1.90 3.80 0.00 0.05 0.07 0.17 0.17 0.17 0.17 0.18 0.18 0.16 0.16 0.16 0.16 0.16 0.17 0.22 0.14 0.09 0.11 0.07 0.07 0.07	0.00 1.90 5.70 5.70 5.75 6.14 6.31 6.48 6.31 6.48 6.64 6.99 7.16 7.32 7.48 7.48 7.48 7.48 8.02 8.16 8.25 8.35 8.42 8.49 8.66 8.84 8.92	f
U638/Y (CLKINVX2M) U603/Y (NAND2X2M) U602/Y (OR2X2M)	0.07 0.09 0.21	8.99 i 9.08 f 9.29 f	f f
C2164/Y (OR2X2M) U633/Y (NOR2X4M) U629/Y (OR2X1M) C2456/Y (AND2X2M)	0.22 0.13 0.16 0.17	9.51 1 9.64 1 9.80 1 9.96 1	r r
,			

C2477/Y (AND2X	(4M)	0.18	10.15 r	
U618/Y (OR3X4M	1)	0.33	10.48 r	
U662/Y (MX2XLM	1)	0.18	10.66 r	
timer1count_re	g_31_D (DFFRQ	(X1M) 0.00	10.66 r	
data arrival t	ime		10.66	
clock pclk (ri	.se edge)	9.50	9.50	
clock network	• ,	1.90	11.40	
clock uncertai	,	-0.47	10.92	
	g_31_/CK (DFFR	QX1M) 0.00	10.92 r	
library setup		-0.25	10.67	
data required	time		10.67	
data required			10.67	
data arrival t			-10.66	
slack (MET)			0.01	
	Internal	Switching	Leakage	
otal	D	D	B	
ower Group		Power	Power	
ower (%) Attrs			
.o_pad		0.0000	0.0000	
.0000 (0.00	,			
emory	0.0000	0.0000	0.0000	
0.0000 (0.00				
lack_box		0.0000	0.0000	
0.0000 (0.00	•			
lock_network		0.0000	0.0000	
0.0000 (0.00	9%)			
egister		0.0000	2.4301e+05	
5475 (99.07				
equential		0.0000	0.0000	
0.0000 (0.00	•			
		5.7969e-03	6.2410e+05	
4547e-02 (0.93%)			
otal	1.5553 mW	5.7969e-03 mW	8.6/11e+05 pW	
5620 mW				
*****	*****	****		
Report : area				
esign : timerap	b			
/ersion: L-2016.	03-SP1			
ate : Sat Dec	: 10 21:30:30 2	022		
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	*****		

Library(s) Used:

ss_1v62_125c (File: /opt/PDKs/smic_180/SM00LB501-FE-00000-r0p0-00rel0/aci/sc-m/synopsys/ss_1v62_125c.db)

Number of ports: 238 Number of nets: 1416 Number of cells: 1161 Number of combinational cells: 932 Number of sequential cells: 227 Number of macros/black boxes: 0 Number of buf/inv: 72 Number of references: 62

Combinational area: 14411.487785
Buf/Inv area: 478.553593
Noncombinational area: 10418.419472
Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 24829.907257

Total area: undefined

1