Prediction of Renewable Power Loss caused by Feed-In Management

Capstone Presentation 26.November 2020 Tjade Appel & Jonas Jaenicke

Using Advanced
Linear Models and
Recurrent Neural
Networks for Time
Series Predictions

Tjade Appel

- B.Eng. in Mechanical Engineering
- M.Sc. in Sustainable Energy Systems
- M. Thesis: Modelling Environmental Conditions for the Design of Offshore Wind Turbines
- 1 year internship experience in the energy industry
- If you want to talk sports, I'm your man! Looking for a challenging position as a Jr. Data Scientist.
 - m GitHub.com/tjade27
 - □ LinkedIn.com/in/Tjade-Appel

Jonas Jaenicke

- B.Eng. in Industrial Engineering
- M.Sc. in Computer Science
- M. Thesis: Modelling of Pumped Hydro Power Energy Storage
- 2 years internship experience in energy industry
- adventures Kitesurfer & Rock Climber
 Let's explore together! Data, Systems,
 Cultures, Models.

in GitHub.com/JonJae

OLinkedIn.com/in/JonasJaenicke

BACKGROUND: energy industry

Volatile Renewable Energy, Definition of Feed-In Management, Demand-Side-Management

EDA: Data Overview, Preprocessing

Feed-In-Management Data, GFS Weather Forecasting Data, Price Data, Consumption Data,

MODELS: comparison of results

Naive models, FB Prophet, LSTMs, Use Case and best model results

FUTURE WORK

Feed-In Management as a Service through integration of APIs, optimization of LSTMs

BACKGROUND DATA ANALYSIS MODEL RESULTS **FUTURE WORK**

Energy fed into the system needs to equal energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatile renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Energy fed into the system needs to equal energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatile renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Conventional Electricity Grid

Renewable Electricity Grid

Energy fed into the system needs to equal energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatile renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

Energy fed into the system needs to equal energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatile renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

DATA ANALYSIS MODEL RESULTS **FUTURE WORK**

1.3 years of data,

10 min timesteps Feed-In Management Data Consumption and Price Data GFS Weather Data Started with 57 features, Engineered Data used 25 features for M<mark>multivariate</mark> predictive models was a superior of the predictive models. $\mathcal{C}_{\mathcal{C}}$

the holder have been been able to the second of the second

German Energy Price, Tennet Consumption

DATA ANALYSIS MODEL RESULTS FUTURE WORK

Simplifications:

- energy to hydrogen conversion rate: 48 kWh/kg
 fuel cell passenger bus 13.3 kg H₂/100 km
 no ramp-up time, no extra logistics

	Lost Power in MWh	Lost Power (forecasted) in MWh	Percentage in %	Potential Mileage of Fuel Cell Bus in km
Prediction 10 minutes ahead	503	495.0	98.4	77343
Prediction 1.5 hours ahead	503	451.9	89.8	70609
Prediction 3 hours ahead	503	322.3	64.1	50359
	n Mgmt ction	DEMAND SIDE MANAGEMENT SCHEDULING		Ele

DATA ANALYSIS MODEL RESULTS **FUTURE WORK**

END. QUESTIONS?

