

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Criptografia simétrica Geração de números aleatórios

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Objetivos

- Discutir os principais serviços fornecidos por algoritmos criptográficos simétricos
 - Disponibilidade
 - Confidencialidade: cifras
 - Integridade: funções de hash
 - Autenticidade: códigos de autenticação de mensagens
 - Irretratabilidade
- Discutir mecanismo auxiliar: geração de números aleatórios

Confidencialidade: Cifras

Confidencialidade

- Serviço necessário:
 - Prevenção do vazamento de informações

Confidencialidade: Cifras

"Embaralhamento" de dados: cifras

"Seu saldo é _ _ _ "Hlaafd7Y(@&fhF23%7" _ _ * "Seu saldo é R\$10.000,00"

Cifra Simétrica – Definição

- Transformação matemática inversível cujo cálculo depende, no sentido direto (cifração) e no sentido inverso (decifração), de uma mesma informação secreta: a chave K.
 - Se K for descoberta, a confidencialidade é perdida

Cifras: Algoritmos Principais

- DES (Data Encryption Standard):
 - Blocos de 64 bits; Chaves de 56 bits
 - Obsoleto: aposentado em 2004 (chaves muito curtas!)
- RC4 (ArcFour):

- Chave: tamanho variável (múltiplo de 8 bits, até 2048 bits).
- Legado: antigo padrão do SSL/TLS, aposentado em 2015 (RFC 7465)
- 3DES (DES triplo):

- Legado: tripla aplicação do DES, aproveitando implementações existentes → desaconselhado em 2017; aposentado em 2023
- Chaves: 3*56 = 168 bits (mas segurança é de ~112 bits)
- AES (Advanced Encryption Standard):

- Padrão atual (desde 2001): vencedor de concurso público iniciado em 1997 (nome original: Rijndael)
- Blocos de 128 bits; Chaves de 128/192/256 bits.

Exemplo prático: HTTP vs. HTTPS

- HTTP: dados passam em aberto na rede
 - Site de testes: http://testphp.vulnweb.com/login.php

Exemplo prático: HTTP vs. HTTPS

- HTTPS: dados cifrados (túnel SSL/TLS)
 - Login em https://uspdigital.usp.br/

Integridade

- Serviço necessário
 - Capacidade de verificar se informação foi alterada

- Geram um "resumo criptográfico" da entrada
 - Alterações nos dados de entrada são detectadas porque elas alteram o resumo
 - O resumo também é chamado de "hash"
 - O hash tem tamanho fixo, e seu valor depende exclusivamente da mensagem (não envolve o uso de uma chave secreta)

- Requisitos criptográficos fundamentais
- (Resistência a primeira inversão) Dado um resumo R, é inviável encontrar uma mensagem M tal que R = H(M).
- (Resistência a segunda inversão) Dado um resumo R e uma mensagem M_1 tal que R = $H(M_1)$, é inviável encontrar outra mensagem $M_2 \neq M_1$ tal que R = $H(M_2)$.
- (Resistência a colisões) É inviável encontrar duas mensagens M₁ e M₂ tais que H(M₁) = H(M₂).

Custo do ataque: hash de n bits

Funções de Hash: usos

Proteção de senhas em bancos de dados

* Na prática, são usados algoritmos derivados de funções de hash: password hashing schemes (PHS)

† Não confundir com cifração, que é usada quando se deseja que alguém autorizado (i.e., de posse de chave secreta) consiga obter entrada a partir da saída

Funções de Hash: usos

Verificação de downloads

Funções de Hash: usos

Integridade de assinaturas digitais

(são feitas sobre hashes dos dados)

Assinatura de contrato 1...

... é válida para contrato 2!

- Família MD:
 - MD2, MD4 e MD5: hashes de 128 bits
 - Completamente quebrada (Wang et al., 2004)
- Família SHA

- Não recomendado: colisão em 2³⁹ passos x 2⁸⁰ projetado
- SHA-1: hashes de 160 bits
 - Não recomendado: desde 2010, para assinaturas
 - Segurança: colisões em 2⁶⁰ passos x 2⁸⁰ projetado
- SHA-2: Hash de X bits, para X=224, 256, 384 ou 512
 - Paliativo atual: baseados no SHA-1, mas hash grande dificulta ataques
- SHA-3: hashes de 224, 256, 384 e 512 bits
 - Concurso público finalizado em 2012: Keccak

Exemplo prático: Bitcoin

Autenticidade: Códigos de Autenticação de Mensagens (MAC)

Autenticidade

- Serviço necessário:
 - Capacidade do receptor em verificar quem é o emissor da mensagem

Autenticidade: estratégia básica

- Usar <u>resumo criptográfico dependente de chave</u>
 - Apenas origem e destino conhecem a chave e conseguem calcular resumo corretamente
 - Também garante integridade (alteração na mensagem detectada, como no caso das funções de hash)

Códigos de Autenticação

- Message Authentication Code (MAC):
 - Cria resumo que é anexado à mensagem, permitindo detectar alterações (integridade) e garantir a autenticidade do remetente.
- Resumo: "tag (etiqueta) de autenticação"
 - Depende da mensagem e também de uma chave secreta conhecida por remetente e destinatário.

Autenticidade: Algoritmos

- Baseados em cifras de bloco:
 - CMAC (NIST SP 800-38B).
 - Pró: tamanho de código (reusam cifras de bloco).
- Baseados em funções de hash:
 - **HMAC** (FIPS 198).
 - Pró: desempenho (funções de hash puras).
- Combinados com cifras
 - AEAD: Authenticated Encryption with Associated
 Data (confidencialidade de parte dos dados)
 - Exemplos tradicionais: GCM, CCM, EAX
 - Concurso finalizado em 2018 (Caesar):
 - (http://competitions.cr.yp.to/caesar-submissions.html)
 - Ascon (mais leve), AEGIS-128 & OCB (alto desempenho),
 Deoxys-II (defesa em profundidade: e.g., não requer nonces)

Exemplo prático: TLS

- Dado confidencial (C) e autenticado (T)
 - AD: dados associados (enviados às claras, autenticados)
 - Serviços: confidencialidade, integridade e autenticidade (cifra simétrica e algoritmo de MAC internos a AEAD)

Geração de chaves: números aleatórios

Estudo de caso: Netscape

- Netscape 1.x (1995).
- Dois estudantes de Berkeley descrevem como quebrar a segurança do navegador, recuperando chaves usadas em sessões seguras (HTTPS) em 25 s.
- Chaves pequenas?
 - Não, chaves de 128 bits (tamanho atual !!!)
- Pergunta: como isso é possível?

Análise de (in)segurança

- Baixa aleatoriedade das chaves de sessão!
 - Chaves geradas a partir do relógio do sistema (precisão de μs), sem acúmulo entre ativações
 - Conhecendo minuto da criação da sessão HTTPS: menos de 60 milhões de chaves possíveis
 - Segurança de cerca de 2²⁶, não 2¹²⁸
- Geração de chaves segura: fontes de entropia

- Ex. (físicas): relógio, ruído térmico
- Ex. (comportamentais): estatísticas de rede, pastas temporárias (Firefox 3.5), posição do mouse (VeraCrypt)
- Soluções de sistema: "SecureRandom" (Java),
 "/dev/random" (Unix)

Geradores pseudo-aleatórios

- Evitam necessidade de capturar entropia "bruta" repetidamente
 - Na prática: ganhos de desempenho
- Basicamente:

- Coleta-se entropia bruta (de várias fontes!) para criar/atualizar semente de tamanho adequado.
 - Semente deve ser mantida secreta
- Usa-se algoritmo determinístico para gerar uma sequência "indistinguível" de bits aleatórios.
- Algoritmos padrão: NIST-SP800-90A-Rev 1
 - Revisão removeu Dual_EC_DRBG (backdoor da NSA)

Entropia: exemplo prático

 Veracrypt: acúmulo de entropia fornecida pelo usuário (movimento do mouse)

Entropia: contra-exemplos

- Baixa entropia é recorrente na literatura... ⊗
 - Debian OpenSSL (2008): chaves dependentes apenas de process-id e arquitetura de hardware
 - Urna eletrônica brasileira (2012): recuperação da ordem dos votos registrados na urna (RDV)
 - Chaves RSA geradas por dispositivos de rede (2012): repetição de números aleatórios (fator primo compartilhado), permitindo recuperação da chave privada.
 - Problema observado também em estudos em 2013 (smart cards), 2015 (servidores HTTPS) e 2017 (chaves Tor)
 - "Brain-wallet" (2015+): chaves privadas geradas a partir de senhas, facilitando roubo de criptomoedas

⁻ E. Lacey, 2019. "A 'Blockchain Bandit' Is Guessing Private Keys and Scoring Millions". Wired, Apr 2019. URL: https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/

⁻ D. Aranha, M. Karam, A. Miranda, F. Scarel. (In)segurança do voto eletrônico no Brasil / Vulnerabilidades no software da urna eletrônica brasileira. In: Cadernos Adenauer 1/2014: Justiça Eleitoral, 117-133, 2014. URL: https://sites.google.com/site/dfaranha/pubs/aranha-karam-miranda-scarel-12-pt

⁻ N. Heninger, 2017. Random number generation done wrong. Crypto Experts -- wr0ng 2017. URL: https://cryptoexperts.com/wr0ng2017/slides-wrong/Wr0ng 2017 Nadia Heninger.pdf

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Criptografia simétrica Geração de números aleatórios

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Referências

- W. Stallings, L. Brown "Computer Security Principles and Practice 2nd/3rd/4th edition". Prentice-Hall, ISBN: 0-13-277506-9. 2011/2015/2018.
 - Em português: W. Stallings, L. Brown. "Segurança de Computadores -Princípios e Práticas" (2ª Ed), Elsevier, 2014
- W. Stallings: "Cryptography and Network Security" (6th/7th Ed.), Prentice-Hall 2013/2016.
 - Em português: W. Stallings: "Criptografia e Segurança de Redes" (6ª Ed.),
 Pearson-Prentice-Hall (2014).
- S. Wykes. Criptografia Essencial: A Jornada do Criptógrafo, 1a ed. Elsevier, 2016.
- A. Narayanan, J. Bonneau, E. Felten. "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction". Princeton University Press, 2016. ISBN: 0691171696. Available: https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1

