Operations Management I

Inventory Management (3)

Dong-Ho Lee
Department of Industrial Engineering
Hanyang University

® All rights reserved

Dynamic Lot Sizing ◀----- • Basics

- Problem Description
- Mathematical Formulation
- Solution Algorithms

Dynamic Lot Sizing

Overview

- Basic
 - ✓ Dynamic and deterministic demands
 (over the planning horizon with discrete time periods)
 - Relax the assumption of constant-demand rate of static models

- ✓ Decsion
 - Determining production lot size in each period for the objective of minimizing the sum of production, setup, and inventory holding costs over the planning horizon

1	2	 Т
20	50	 30

✓ non constant demand rate

Dynamic Lot Sizing

Problem Description <---- Simplest production planning model e.g., lot sizing in MRP

Decision variable

Number of products to be produced in each period (production quantity in each period)

Objective

Minimizing the sum of production, setup, and inventory holding costs over the planning horizon.

Assumptions

- ✓ Single product type
- ✓ Backlogging is not allowed.

Customer demand is known over a 10-week planning horizon. (time varing demand)

can be removed

if time-invariant

Example

				Plan	ning pe	riods (w	eek)			
	1	<u>2</u>	3	4	5	6	7	* 8	9	10
Demand	20	50	10	50	50	10	20	40	20	30
Production cost	10	10	10	10	10	10	10	10	10	10
Setup cost	100	100	100	100	100	100	100	100	100	100
Holding cost	1	11		1	11		1	1	1-1-	

Cost factors

Dynamic Lot Sizing

Mathematical Formulation

Minimize
$$\sum_{t=1}^{T} (A_t \cdot y_t + c_t \cdot Q_t + h_t \cdot I_t)$$
 $y_t = 1$ if there is a setup in personal subject to
$$I_t = I_{t-1} + Q_t - D_t \quad \text{for all } t \quad \blacktriangleleft ---- \quad \text{Inventory balance constraints}$$
 $Q_t \leq M \cdot y_t \quad \text{for all } t \quad \blacktriangleleft ---- \quad Q_t = 0 \text{ when } y_t = 0$ $y_t \in \{0,1\} \quad \text{for all } t$

 $Q_t \ge 0$ for all t

Parameters

- demand in period t (units)
- setup cost to produce a lot in period t (\$)
- unit production cost, not counting setup or inventory C_t costs (\$/unit)
- holding cost to carry a unit of inventory from period t to h₊ t + 1 (\$/unit•period)
- large number

Decision variables

- Q, lot size in period t
- = 1 if there is a setup in period t, and 0 otherwise y_t

Approaches – Overview

- Heuristics
 - ✓ Lot-for-lot
 - ✓ Fixed order quantity, etc.
- Optimal
 - ✓ Dynamic programming algorithm of Wagner and Whitin (1958)

Dynamic Lot Sizing

Solution Algorithms – Heuristics (1)

Lot-for-lot (LFL)

Produces exactly what is required in each period $(Q_t = D_t)$

◄---- Maximum setup cost, and minimum inventory holding cost

Example ($A_t = 100$, $h_t = 1$ for all t)

				Tim	ne Peri	od (we	ek)				
	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	20	50	10	50	50	10	20	40	20	30	300
I_t	0	0	0	0	0	0	0	0	0	0	0
Setup cost	100	100	100	100	100	100	100	100	100	100	1000
Holding cost	0	0	0	0	0	0	0	0	0	0	0
Total cost	100	100	100	100	100	100	100	100	100	100	1000

 $\sum D_t = \sum Q_t = \text{constant}$

Production cost is the same (and hence needs not be considered)

Dynamic Lot Sizing

Solution Algorithms – Heuristics (2)

- Others
 - ✓ Fixed order period
 - ✓ Part-period balancing, etc.

Fixed order quantity

Produces a fixed amount at each time when a setup is performed (e.g, EOQ, total demand / n, etc.)

	Example (A _t = 100, h	$n_t = 1 \text{ for}$	or all t)					juantity otal dev				
					Tim	e Peri	od (we	eek)	-			
		1	2	3	4	5	6	77	8	9	10	Total
Initial inventory $(I_0) = 0$	D_t	20	50	10	50	50	10	20	40	20	30	300
$I_1 = I_0 + Q_1 - D_1$	Q_t	100	0	0	100	0	0	100	0	0	0	300
=0+100-20=80	I_t	80	30	20	70	20	10	90	50	30	0	0
- 	Setup cost	100	<u>/</u> 0	0	100	0	0	100	0	0	0	300
I = I + O = D	Holding cost	80	30	20	70	20	10	90	50	30	0	400
$I_t = I_{t-1} + Q_t - D_t$	Total cost	180	30	20	170	20	10	190	50	30	0	700
						-						A

Operations Management

 $I_2 = I_1 + Q_2 - D_2 = 80 + 0 - 50 = 30$

1000 when lot-for-lot

Dynamic Lot Sizing

Solution Algorithms – Optimal (1)

Basic property (by Wagner and Whitin (1958)

Under an optimal lot-sizing policy, either the inventory carried to period *t* from a previous period will be zero or the production quantity in period *t* will be zero.

$$I_{t-1} \cdot Q_t = 0$$
 for $t = 1, 2, ..., T$

$$I_{t-1} > 0 \rightarrow Q_t = 0$$

$$Q_t > 0 \rightarrow I_{t-1} = 0$$

We will produce either nothing or exactly enough to satisfy demand in the current period plus some integer number of future periods.

$$Q_t = \begin{cases} 0 \\ D_t \\ D_t + D_{t+1} \\ D_t + D_{t+1} + \dots + D_T \end{cases}$$

Dynamic Lot Sizing

Solution Algorithms – Optimal (2)

- Approaches
 - ✓ Full enumeration

Enumerating all possible combinations of periods in which production occurs

- Number of alternatives: 2^{T-1}
 (exponential growth)

e.g. 6-period problem

✓ Period 1:
$$D_1$$
, $D_1 + D_2$, ..., $D_1 + D_2$, ... + D_6

Period 3: D_3 , $D_3 + D_4$, $D_3 + D_4 + D_5$, $D_3 + D_4 + D_5 + D_6$

Period 2: D_2 , $D_2 + D_3$, $D_2 + D_3 + D_4$, ...

- Dynamic Lot Sizing
 - Solution Algorithms Optimal (3)
 - Wagner and Whitin algorithm
 - ✓ Dynamic programming formulation

last period (prior to period k) having an end inventory of zero (The last production occurs in period j + 1.)

 Z_k minimum cost program for periods 1, 2, ...k, when $I_k = 0$ is required

$$Z_k = \min_{0 \le j < k} \left[Z_j + M_{jk} \right]$$
where $Z_0 = 0$

Selecting the last period having zero ending inventory for k-period subproblem

Dynamic Lot Sizing

Solution Algorithms – Optimal (4)

- Wagner and Whitin algorithm
 - ✓ Calculation of M_{ik}

 ←---- cost incurred in period j + 1 through k

last period (prior to period k) having an end inventory of zero

cost incurred in period j + 1 through k

Inventory holding cost =
$$\sum_{t=i+1}^{k-1} h_t \cdot I_t \quad \blacktriangleleft \cdots \quad I_t = Q_{j+1} - \sum_{r=i+1}^{t} D_r = \sum_{r=t+1}^{k} D_r$$

 $Z_k = \min_{0 \le j < k} \left[Z_j + M_{jk} \right]$

where $Z_0 = 0$

Setup and production costs = $A_{i+1} + c_{i+1} \cdot Q_{i+1} \leftarrow Q_{i+1} = D_{i+1} + D_{i+2} + ... + D_k$

$$\begin{aligned} M_{jk} &= A_{j+1} + c_{j+1} \cdot Q_{j+1} + \sum_{t=j+1}^{k-1} h_t \cdot I_t \\ &= A_{j+1} + c_{j+1} \cdot Q_{j+1} + \sum_{t=j+1}^{k-1} h_t \cdot \left(\sum_{r=t+1}^k D_r\right) \end{aligned}$$

Dynamic Lot Sizing

Solution Algorithms – Optimal (5)

- Wagner and Whitin algorithm
 - ✓ Procedure (forward algorithm)

Step 1. Determine in sequence the values $Z_1, Z_2, ..., Z_T$, where

$$Z_{k} = \min_{0 \le j < k} \left[Z_{j} + M_{jk} \right] \quad \text{(Initially, } Z_{0} = 0\text{)}$$

$$M_{jk} = A_{j+1} + c_{j+1} \cdot Q_{j+1} + \sum_{t=j+1}^{k-1} h_{t} \cdot \left(\sum_{r=t+1}^{k} D_{r} \right)$$

$$Q_{j+1} = D_{j+1} + D_{j+2} + \dots + D_{k}$$

Step 2. Use j_T (from Z_T) to work backward to extract the optimal lot sizes

the last period in which the inventory level is 0 for the t-period subproblem (The last production occurs in period $j_t^* = j_t^* + 1$)

Dynamic Lot Sizing

Solution Algorithms – Optimal (6)

- Wagner and Whitin algorithm
 - ✓ Example

1	4		L L		I
>	I -De	ITIOO	ISHID	mm	ıem.
	PC	,,,,,,,,,,	JUD	prob	ICITI

$$Z_1 = Z_0 + M_{01} = Z_0 + A_1 = 0 + 100 = 100$$
 $Z_0 = 0$

 $j_1^* = j_1 + 1 = 1$ ($j_1 = 0$) The last production occurs in period 1.

2-period subproblem

$$Z_2 = \min \begin{cases} Z_0 + M_{02} = Z_0 + A_1 + h_1 D_2 = 0 + 100 + 1(50) = 150 \\ Z_1 + M_{12} = Z_1 + A_2 = 100 + 100 = 200 \end{cases}$$

$$j_2^* = j_2 + 1 = 1 \ (j_2 = 0)$$

The last production occurs in period 1.

◄--- 70 units (
$$D_1 + D_2 = 20 + 50$$
) in period 1

Production cost is not considered since it is constant over the planning horizon.

 $D_1 + D_2$

Dynamic Lot Sizing

Solution Algorithms – Optimal (7)

- Wagner and Whitin algorithm
 - ✓ Example
 - > 3-period subproblem

		-		Planni	ng pe	riods (week)		
	1	2	3	4	5	6	7	8	9	10
$\overline{D_t}$	20	50	10	50	50	10	20	40	20	30
A_{t}	100	100	100	100	100	100	100	40 100	100	100
h_t	1	1	1	1	1	1	1	1	1	1

Production cost is not considered since it is constant over the planning horizon.

The last production occurs in period 1.

◄--- 80 units
$$(D_1 + D_2 + D_3 = 20 + 50 + 10)$$
 in period 1

3

2

- Dynamic Lot Sizing
 - Solution Algorithms Optimal (8)
 - Wagner and Whitin algorithm
 - ✓ Example
 - > 4-period subproblem

-		-		Planni	ing pe	riods ((week))		
	1	2	3	4	5	6	7	8	9	10
$\overline{D_t}$					50					
A_{t}	100	100	100	100	100	100	100	100	100	100
h_t	1	1	1	1	1	1	1	1	1	1

Production cost is not considered since it is constant over the planning horizon.

$$Z_{4} = \min \begin{cases} Z_{0} + M_{04} = Z_{0} + A_{1} + h_{1}D_{2} + (h_{1} + h_{2})D_{3} + (h_{1} + h_{2} + h_{3})D_{4} \\ = 0 + 100 + 1(50) + (1 + 1)(10) + (1 + 1 + 1)(50) = 320 \end{cases}$$

$$Z_{1} + M_{14} = Z_{1} + A_{2} + h_{2}D_{3} + (h_{2} + h_{3})D_{4} \\ = 100 + 100 + 1(10) + (1 + 1)(50) = 310$$

$$Z_{2} + M_{24} = Z_{2} + A_{3} + h_{3}D_{4} = 150 + 100 + 1(50) = 300$$

$$Z_{3} + M_{34} = Z_{3} + A_{4} = 170 + 100 = 270$$

$$\downarrow D_{1} + D_{2} + D_{3}$$

$$D_{4}$$

$$\downarrow D_{1} + D_{2} + D_{3}$$

$$\downarrow D_{1} + D_{2} + D_{3}$$

$$\downarrow D_{1} + D_{2} + D_{3}$$

$$\downarrow D_{2} + D_{3} + D_{4}$$

The last production occurs in period 4.

- 80 units $(D_1 + D_2 + D_3 = 20 + 50 + 10)$ in period 1
 - 50 units in period 4

Dynamic Lot Sizing

Solution Algorithms – Optimal (9)

- Wagner and Whitin algorithm
 - ✓ Example
 - > 5-period subproblem
 - Cheaper to produce for demand of period 5 in period 3 than in period 4?

solution of the 4-period subproblem

80 units in period 1 50 units in period 4

No because $j_4^* = 4$

- Therefore, it is unnecessary to consider producing in periods 1, 2, and 3 for the demand in period 5. We need to consider only periods 4 and 5.
 - ---> Planning horizon theorem

Planning horizon theorem

If $j_t^* = t'$, then the last period in which production occurs in an optimal t + 1 period policy must be in the set t', t' + 1, ..., t + 1,

Dynamic Lot Sizing

Solution Algorithms – Optimal (10)

- Wagner and Whitin algorithm
 - ✓ Example
 - > 5-period subproblem

				Planni	ng pe	riods ((week))		
	1	2	3	4	5	6	7	8	9	10
$\overline{D_t}$	20	50	10	50	50	10	20	40	20	30
A_{t}	100	100	100	100	100	100	20 100	100	100	100
h_t	1	1	1	1	1	1	1	1	1	1

Production cost is not considered since it is constant over the planning horizon.

$$Z_{5} = \min \begin{cases} Z_{0} + M_{05} \\ Z_{1} + M_{15} \\ Z_{2} + M_{25} \\ Z_{3} + M_{35} = Z_{3} + A_{4} + h_{4}D_{5} = 170 + 100 + 1(50) = 320 \\ Z_{4} + M_{45} = Z_{4} + A_{5} = 270 + 100 = 370 \end{cases}$$

$$j_5^* = j_5 + 1 = 4 \ (j_5 = 3)$$

The last production occurs in period 4.

- 80 units $(D_1 + D_2 + D_3 = 20 + 50 + 10)$ in period 1
 - 100 units $(D_4 + D_5 = 50 + 50)$ in period 4

Dynamic Lot Sizing

Solution Algorithms – Optimal (11)

Wagner and Whitin algorithm

✓ Example 2-period subproblem

				Planni	ng pe	riods (week)		
	1	2	3	4	5	6	7	8	9	10
D _t	20	50	10	50	50	10	20	40	20	30
A_{t}	20 100	100	100	100	100	100	100	100	100	100
h_t	1	1	1	1	1	1	1	1	1	1

Production cost is not considered since it is constant over the planning horizon.

Last period with	;	_ ;		Р	lanning	horizor	n t			
production	1	2	3	4	5	6	7	8	9	10
1	100	150	170	320						
2		200	210	310						
3			250	300						
4		-		270	320	340	400	560		
5					370	380	420	540		
6	-					420	440	520		
7							440	480	520	610
8								500	520	580
9									580	610
10										620
Z_t^*	100	150	170	270	320	340	400	480	520	580
j_t^*	1	1	1	4	4	4	4	7	7 or 8	8

1-period subproblem

Optimal objective value = 580

- ✓ Lot-for-lot = 1000
- √ Fixed order quantity = 700

Dynamic Lot Sizing

Solution Algorithms – Optimal (12)

- Wagner and Whitin algorithm
 - ✓ Example
 - Interpreting the solution

Minimum total cost $Z_{10}^* = 580$ -----

		Planning horizon t											
	1	2	3	4	5	6	7	8	9	10			
Z_t^*	100	150	170	270	320	340	400	480	520	580 ⁻			
j_t^*	1	1	1	4	4	4	4	7	7 or 8	8			

Optimal lot sizes

$$j_{10}^* = 8$$
 ----- $Q_8 = D_8 + D_9 + D_{10} = 40 + 20 + 30 = 90$
 $j_7^* = 4$ ---- $Q_4 = D_4 + D_5 + D_6 + D_7 = 50 + 50 + 10 + 20 = 130$
 $j_3^* = 1$ ---- $Q_1 = D_1 + D_2 + D_3 = 20 + 50 + 10 = 80$