RBE 1001 Power Transmission

Big Stuff

- "e" = "Gear-train", aka "speed ratio"
- Defined: (N_{drs}/N_{drn}) (N: number of teeth)
- Equal exactly to: (n_{out}/n_{in}) (n: angular speed)
- Also to: $(T_{in}/T_{out}) * \eta_{sys}$ (η : efficiency)

- e = Product of Drivers / Product of Driven
 - = Speed out / Speed in
 - = (Torque in / Torque out) * Sys efficiency

Transmission Essentials

- Unless you are VERY lucky...you will need 'em
- Transmissions can:
 - 1) Modify speed vs torque
 - 2) Change direction of rotation
 - 3) Physically separate motor from device
- They will ALWAYS
 - 4) Reduce power through losses

Spur Gears

Gear Terminology

Gears, gears, gears!

- Parameters (ANSI)
 - (Diametral) Pitch:
 - P = Number of Teeth / Pitch Diameter
 - Integer number, normally divisible by 4
 - EG: 32, 28, 24, 20, etc
 - Larger the P, the smaller/weaker the teeth
 - Pressure Angle: the actual off-tangent angle force transmission
 - Typically 14.5 or 20 degrees
 - 14.5 degrees weaker, more efficient

Spur Gear Design Details

- Gear sizes
 - Recommend 12T to Infinity! (rack)
 - Smaller ("pinions") are weak from undercutting—esp 14.5 degree PA
 - All gears with same P and PA will fit
- Transmission axle separation
 - An exact, easily computed distance
 - D = (Total number of teeth/P) / 2
 - EG: 16T & 42T, 24 Pitch gears
 - D = ((16 + 42) / 24) / 2 = 1.208 inches
- Can be 95-98% efficient/stage

Other Gear Stuff

Worm Gears

- Antibackdrive (Helix angle dependent, Window--yes; Van Door--no)
- Woefully inefficient: $\eta = .25-.75$
- Very compact
- e = Number leads on worm / Teeth on Worm Gear
 - = 4 / 50 = .08
- DO NOT USE FOR HI-POWER
- Requires VERY secure bearing support

Multiple Thread Screws

Worm Gear with Shallow Helix Angle

Worm Gear with Large Helix Angle

Planetary Gears

Planetary

For fixed my goer;

$$V = \omega_{p} r_{p} = \omega_{c} r_{c} = \omega_{c} (r_{s} + r_{p})$$

$$V = \omega_{s} r_{s} = 2 \omega_{p} r_{p} = 2 \omega_{c} (r_{s} + r_{p}) = \omega_{c} (2r_{p} + r_{c}) + r_{s}$$

$$\omega_{s} r_{s} = \omega_{c} (r_{r} + r_{s}) = \frac{\omega_{c}}{\omega_{s}} = \frac{r_{s}}{r_{s} + r_{r}}$$

Planetary Gear-train

 Most common application for speed reduction, with ring gear fixed:

$$e = N_{SUN} / (N_{SUN} + N_{RING})$$

"Roller" Chain and Sprockets

- Parameters (ANSI)
 - Chain Number:
 - 1st digit = pitch in 1/8 inches
 - 2nd digit = "roller" (0), "lightweight"
 (1), or "bushed" (5)
 - EG: #25: 1/4 inch pitch without rollers, #35: 3/8 inch pitch without rollers
 - Strength (breaking/working):
 - #25 = 875/140 lbs
 - #35 = 2100/480 lbs
 - "Working" implies industrial duty/life expectancy

More Chain Stuff

- Quick links
 - "Master links": connect inner to inner
 - 75% of intrinsic chain strength
 - "Half links": connect inner to outer
 - 65% of intrinsic chain strength

Chain Design Details

Sprocket sizes

- Recommend 12T to 75T
 - Smaller causes vibration & excess wear
 - Larger leads to chain loss
 - Ratios should be kept less than 8:1

Chain Wrap

- 120 degree minimum for any drive or driven sprocket
- Change routing, add idlers if necessary

Design in adjusters for long runs

 Adjustment range should ideally be 2 pitch lengths (to avoid half-links). Actual chain lengths should be in even number of pitches, otherwise an offset link is required.

Chain Design Details

Stock Drive Products Sterling Instrument Setting Ideas Into Motion

QTC METRIC GEARS Supplying North America with Metric Gears

Power Grid Search

Click Here to Clear

Pitch Dia. (P.D.) Inch ▼

Pitch ▼

Bore Size (B) Inch ▼

Face Width (X) Inch ▼

No. Of Teeth ▼

Material -

Overall Width (E) Inch ▼

Hub Dia. (C) Inch ▼

Stock Drive Products/Sterling Instrument > Sprockets > Roller Chain > With Hub (inch)

No search results for your search: undefined

Chain Design Details

 Use the following equation to determine the centerto-center distance between the sprocket axles:

$$\frac{L}{p} = \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 (C/p)}$$

L = chain length

p = chain pitch (center-to-center distance between chain rollers)

C =center distance

 N_I = number of teeth on small sprocket

 N_2 = number of teeth on large sprocket

General Suggestions

- Control top speed of operation by suitable gearing <u>not</u> by reduced voltage
- Avoid powered anti-backdrive
- Chains are efficient; gears are compact

Combiner Transmission

Concept Questions

- 1) What is effect of the two motors on the speed ratio equation?
- 2) What are the components of the system efficiency?
- 3) What if your combiner used two different speed motors?
- 4) What if you use position control for both motors?

Questions?

