

```
LDA(\underline{t}) := P(d|\underline{t})
```

Beispiel:

```
P(topic1|diese Vorlesung) = 0.001
P(topic2|diese Vorlesung) = 0.0
P(topic3|diese Vorlesung) = 0.4
P(topic4|diese Vorlesung) = 0.4
P(topic5|diese Vorlesung) = 0.1
```

P(topic1|Abenteuer Roman) = 0.2 P(topic2|Abenteuer Roman) = 0.2 P(topic3|Abenteuer Roman) = 0.0 P(topic4|Abenteuer Roman) = 0.3 P(topic5|Abenteuer Roman) = 0.2

. . .

 $LDA(\underline{t}) := P(d|\underline{t})$

Was "topic1" tatsächlich ist, weis man nicht. Das könnte alles sein!

Beispiel:

P(topic1|diese Vorlesung) = 0.001
P(topic2|diese Vorlesung) = 0.0
P(topic3|diese Vorlesung) = 0.4
P(topic4|diese Vorlesung) = 0.4
P(topic5|diese Vorlesung) = 0.1

$$\mathbf{A} = \begin{bmatrix} 0.001 \\ 0.0 \\ 0.4 \\ 0.4 \\ 0.1 \\ \dots \end{bmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 0.2 \\ 0.2 \\ 0.0 \\ 0.3 \\ 0.2 \\ \dots \end{pmatrix}$$

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

$$egin{aligned} \mathbf{A} \cdot \mathbf{B} &= \|\mathbf{A}\| \, \|\mathbf{B}\| \cos heta \ & \sum_{i=1}^n A_i B_i \ & \cos(heta) &= rac{\|\mathbf{A}\| \|\mathbf{B}\|}{\|\mathbf{A}\| \|\mathbf{B}\|} &= rac{\sum_{i=1}^n A_i B_i}{\|\mathbf{A}\| \|\mathbf{B}\|} \end{aligned}$$

$$\mathbf{A}\cdot\mathbf{B} = \|\mathbf{A}\|\,\|\mathbf{B}\|\cos heta$$

$$=rac{\sum\limits_{i=1}^{n}A_{i}B_{i}}{\sqrt{\sum\limits_{i=1}^{n}A_{i}^{2}}\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}}$$

Cosine Similarity

Cosine Similarity

Cosine Similarity

"Analyzing relationships between a set of documents and the words they contain by producing a set of concepts related to the documents and terms"

US Patent 4,839,853 issued 1988

Repetition

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

Repetition

 φ ("words/n-grams vs. topics")

Latent Dirichlet Allocation

arphi := phi

 ϑ := theta

Repetition

 ϑ ("documents vs. topics")

 φ ("words/n-grams vs. topics")

Latent Dirichlet Allocation

 φ := phi

 ϑ := theta

Be Creative!

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1		lidden 2	
Hidden 1	1	V	0	
Hidden 2	0	J	1	

ĺ	Dokument 1	Doluments.	Dokument 3
Hidden 1	1	0	0
Hidden 2	1		0

Singular Value Decomposition

	Hidden 1	Hid	lden 2
Hidden 1	1		0
Hidden 2	0	J	1

	Dokument 1	Dolument 2	Dokument 3
Hidden 1	1	0 1	0
Hidden 2	1	V	0

Dimension reduction via eigenvalues

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1	Hide	den 2
Hidden 1	1		0
Hidden 2	0	J	1

Dimension reduction via eigenvalues

"The dimensionally reduced space reflects the underlying structure of the documents, i.e. their semantics."

aka all unnecessary information (noise or grammatical constructs) has been removed as they don't contribute to semantics!

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1	Hi	dden 2	
Hidden 1	1		0	
Hidden 2	0	J	1	

en 1	Hid	lden 2		Dokument 1	Dolument 2	Dokument 3
1		0	Hidden 1	1	0	0
0	J	1	Hidden 2	1	V	0

Unäre Matrix

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

m×m

	Hidden 1	Hi	dden 2	
Hidden 1	1		0	
Hidden 2	0		1	

n×n

Adjungierte unitäre Matrix

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1		lidden 2	
Hidden 1	1	V	0	
Hidden 2	0	J	1	

	Dokument 1	Dolument 2	Dokument 3
Hidden 1	1	0 1	0
Hidden 2	1	V	0

$$oxed{Q = rac{q^T U_k}{diag(S_k)}}$$

Remember:

Remember:
$$\operatorname{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1		lidden 2	
Hidden 1	1	V	0	
Hidden 2	0	J	1	

Hi	dden 2		Dokument 1	Dolument 2	Dokument 3
V	0	Hidden 1	1	0	0
	1	Hidden 2	1	V	0

$$Q = rac{q^T U_k}{diag(S_k)}$$

"Latent Vector"of all documents and the document to be classified Distance between the latent vectors reflects the similarity of the documents

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	1 0 1	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1	Hid	dden 2	
Hidden 1	1	V	0	
Hidden 2	0	J	1	

ĺ	Dokument 1	Dolerment 2	Dokument 3
Hidden 1	1	0	0
Hidden 2	1	V	0

Input "Query" (i.e. a single document)

$$Q = rac{q^T U_k}{diag(S_k)}$$

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1		idden 2	
Hidden 1	1	V	0	
Hidden 2	0		1	

	Dokument 1	Dolument 2	Dokument 3
Hidden 1	1	0	0
Hidden 2	1		0

Input "Query" (i.e. a single document)

Dimension-reduced word to "topics" matrix

$$Q = rac{q^T U_k}{diag(S_k)}$$

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1	lidden 2	
Hidden 1	1	0	
Hidden 2	0	1	

	Dokument 1	Dolerment 2	Dokument 3
Hidden 1	1	0	0
Hidden 2	1	TV	0

Input "Query" (i.e. a single document)

Dimensionsreduziert Wort zu "topics" Matrix

$$Q = rac{q^T U_k}{diag(S_k)}$$

	Dokument 1	Dokument 2	Dokument 3
Auto	1	0	0
Boot	1	0	0
Kuh	0	1	1
Esel	0	A 1	0
Tomate	0	0	1
Zwiebel	0	0	1
Traktor	1	0	1
Giraffe	0	1	0
Schwein	0	1	1
Motor	1	0	0

	Hidden 1	Hidden 2
Auto	1	0
Boot	1	0
Kuh	0	1
Esel	1 0	1
Tomate	0	0
Zwiebel		0
Traktor	1	0
Giraffe	0	1
Schwein	0	1
Motor	1	0

	Hidden 1	Hidden 1 Hidden 2		
Hidden 1	1	V	0	
Hidden 2	0	J	1	

ĺ	Dokument 1	Dolerment 2	Dokument 3
Hidden 1	1	0	0
Hidden 2	1	V	0

Properties

- Robust to synonyms
- Sensitive to polysemy := One word, multiple meanings, which can lead to misunderstandings and fallacies (slightly better/worse depending on the characteristic)
- Computational heavy: $O(n^2 \cdot k^3)$
 - n := Number of documents + number of features
 - k := Dimension of space
 - ⇒Lanczos process
- Non-iterative, i.e. recalculating for each document
- "K" is unknown, i.e. you have to optimize manually...

Transfer Knowledge

"Learn the most your can out of data."


```
LDA(\underline{t}) := P(d|\underline{t})
```

"Estimate LDA Model"

Compute $P(d|\underline{t})$ for the corpus


```
D(\underline{t}) = \operatorname{argmax}_{d=\{...\}} P(d|LDA(\underline{t}))
= \operatorname{argmax}_{d=\{...\}} P(LDA(\underline{t})|d)P(d)
"Estimate Classifier"
```


Inference:

Compute LDA-Features

Inference:

- Compute LDA-Features
- Classification

Transfer Knowledge

Motivation:

Transfer Knowledge

Transfer Knowledge

Encoder in Transfer Knowledge

Encoder-Decoder Architecture

Encoding or Embedding

Decoding (Classification or Regression)

Applications

- Efficient word search
- Efficient text pre-processing
- Sprachmodellierung
- Spell checker
- Grapheme-to-Phoneme
- Spam/no-spam detection
- Sprachenerkennung
- Dokumentenerkennung
- Topic detection (unobserved)
- Sentiment Detection

• ...

?

Capitalization
Punctuation mark
Special character
Noise
Abbreviations
(Headings)
Satzsegmentierung
Wortsegmentierung
(Tokenization)
Lemma/Coat of arms

Capitalization
Punctuation mark
Special character
Noise
Abbreviations
(Headings)
Satzsegmentierung
Wortsegmentierung
(Tokenization)
Lemma/Coat of arms

Fuzzy String Match
(Levenshtein distance and WHO)
Soundex
Final State Transducer
Grammars (Formal Languages)
Decision Tree
Morphology
Max-Match Segmentation
Porter's algorithm
Stop Words

Capitalization
Punctuation mark
Special character
Noise
Abbreviations
(Headings)
Satzsegmentierung
Wortsegmentierung
(Tokenization)
Lemma/Coat of arms

Fuzzy String Match
(Levenshtein distance and WHO)
Soundex
Final State Transducer
Grammars (Formal Languages)
Decision Tree
Morphology
Max-Match Segmentation
Porter's algorithm
Stop Words

Overview: Linguistics Regelbasierte Textgenerierung Translation (G2P)

Overview:

- Kneser-Ney smoothing
- Klassenbasierte Sprachmodelle
- Language Model Adaptation
- N-gram generalization

Spam/no-Spam Language Identification Documents Classification

Ich spreche Deutsch

나는 한국어를한다

Spam/no-Spam Language Identification Documents Classification

Introduction Evaluation Naive Bayes

KNN

Distances:

Mean Square Error Cosine Similarity

Ich spreche Deutsch

나는 한국어를한다

Regression

Regression

Regression

