1

编译原理

作业 5: 编译原理(第7,8章)

中国人民大学 信息学院 崔冠宇 2018202147

一、书中练习题

P217, 1. 给出下面表达式的逆波兰表示(后缀式):

a * (-b + c) not A or not (C or not D)

a + b * (c + d / e) (A and B) or (not C or D)

-a + b * (-c + d) (A or B) and (C or not D and E)

if (x + y) * z = o then $(a + b) \uparrow c$ else $a \uparrow b \uparrow c$

解:设 RPN()表示对某一表达式求后缀表达式。

(1) RPN(a * (-b + c)) \Rightarrow RPN(a) RPN((-b + c)) * \Rightarrow a RPN(-b + c) *

 \Rightarrow a RPN(-b) RPN(c) + * \Rightarrow a b uminus c + *

(其中 uminus 表示相反数这个一元运算,与二元减号区别)

- (2) RPN(not A or not (C or not D)) \Rightarrow RPN(not A) RPN(not (C or not D)) or
- \Rightarrow A not RPN((C or not D)) not or \Rightarrow A not RPN(C or not D) not or
- \Rightarrow A not RPN(C) RPN(not D) or not or \Rightarrow A not C D not or not or
- (3) $RPN(a + b * (c + d / e)) \Rightarrow RPN(a) RPN(b * (c + d / e)) + \Rightarrow a RPN(b) RPN((c + d / e)) * +$
- \Rightarrow a b RPN(c + d / e) * + \Rightarrow a b RPN(c) RPN(d / e) + * + \Rightarrow a b c d e / + * +
- (4) RPN((A and B) or (not C or D)) \Rightarrow RPN((A and B)) RPN((not C or D)) or
- \Rightarrow RPN(A and B) RPN(not C or D) or \Rightarrow A B and RPN(not C) D or or
- \Rightarrow A B and C not D or or
- (5) RPN(-a + b * (-c + d)) \Rightarrow RPN(-a) RPN(b * (-c + d)) + \Rightarrow a uminus RPN(b) RPN((-c + d)) * +
- \Rightarrow a uminus b RPN(-c + d) * + \Rightarrow a uminus b RPN(-c) RPN(d) + * + \Rightarrow a uminus b c uminus d + * +

- (6) RPN((A or B) and (C or not D and E)) \Rightarrow RPN(A or B) RPN(C or not D and E) and
- \Rightarrow A B or RPN(C) RPN(not D and E) or and \Rightarrow A B or C RPN(not D) E and or and
- \Rightarrow A B or C D not E and or and
- (7) RPN(if (x + y) * z = 0 then $(a + b) \uparrow c$ else $a \uparrow b \uparrow c$)
- \Rightarrow RPN((x + y) * z = o) RPN((a + b) \(\gamma\) c) RPN(a \(\gamma\) b \(\gamma\) c) if-then-else
- \Rightarrow RPN((x + y) * z) RPN(o) = RPN((a + b)) RPN(c) \uparrow RPN(a) RPN(b \uparrow c) \uparrow if-then-else
- \Rightarrow RPN((x + y)) RPN(z) * o = RPN(a + b) c \(\cap a\) b c \(\cap \\cap if-then-else)
- \Rightarrow x y + z * o = a b + c \uparrow a b c \uparrow \uparrow if-else-then

P217, 3. 请将表达式 -(a + b) * (c + d) - (a + b+ c) 分别表示成三元式,间接三元式和四元式序列。 **解:** 先画出抽象语法树:

(1) 三元式序列:

序号 / 临时变量	op	argı	arg2
(o)	+	a	b
(1)	uminus	(o)	
(2)	+	С	d
(3)	*	(1)	(2)
(4)	+	a	b
(5)	+	(4)	С
(6)	-	(3)	(5)

(2) 间接三元式序列:

间接代码				
	序号 / 临时变量	op	argı	arg2
(0)	(o)	+	a	b
(1)	(1)	uminus	(o)	
(2)	(2)	+	С	d
(3)	(3)	*	(1)	(2)
(0)	(4)	+	(o)	C
(4)	(5)	_	(3)	(4)
(5)			_ \ <i>J</i> /	\ 1 /

(3) 四元式序列:

序号	op	argı	arg2	result
(o)	+	a	b	T ₁
(1)	uminus	T1		T ₂
(2)	+	С	d	Т3
(3)	*	T ₂	Т3	T ₄
(4)	+	a	Ь	T ₅
(5)	+	T5	С	T6
(6)	-	T ₄	T6	T ₇

P217,7. 用 7.5.1 节的办法,把下面的语句翻译成四元式序列:

while A < C and B < D do

if A = 1 then C := C + 1 else

while $A \le D$ do A := A + 2;

解: 先按照翻译模式转成三地址代码:

```
1 S.begin:
2    if A < C goto E1.true
3    goto S.false
4    E1.true:
5    if B < D goto S.true
6    goto S.false
7 S.true:
8    if A = 1 goto S1.true</pre>
```

```
goto S1.false
      S1.true:
10
          ctemp := C + 1
          C := ctemp
      goto S1.next
      S1.false:
           S2.begin:
               if A <= D goto S2.true</pre>
16
               goto S2.false
17
           S2.true:
18
               atemp := A + 1
               A := atemp
               goto S2.begin
           S2.false:
      S1.next:
      goto S.begin
25 S.false:
```

再翻译成四元式序列:

14. LT	hmt → D.
地址	四元式
100	(j<, A, C, 102)
101	(j, -, -, 115)
102	(j<, B, D, 104)
103	(j, -, -, 115)
104	(j=, A, 1, 106)
105	(j, -, -, 109)
106	(+, C, 1, ctemp)
107	(:=, ctemp, -, C)
108	(j, -, -, 114)
109	(j<=, A, D, 111)
110	(j, -, -, 114)
111	(+, A, 1, atemp)
112	(:=, atemp, -, A)
113	(j, -, -, 109)
114	(j, -, -, 100)
115	()

P236,1 什么是符号表?符号表有哪些重要作用?

解:

(1) 符号表:符号表是记录源程序中各种名字的属性和特征等有关信息的表格。其中每项包含两部分,一部分是名字,另一部分是此名字的有关信息。

(2)作用:

- 1. 收集符号属性: 根据说明语句在符号表建立相应属性信息;
- 2. 语义检查的依据:标识符可能在程序多个地方出现,根据符号表信息检查一致性;
- 3. 目标代码生成阶段地址分配的依据:根据定义的位置,确定变量被分配的区域;根据出现的次序, 决定变量在某个区域的具体位置。

P236,3 符号表的组织方式有哪些? 它的组织取决于哪些因素?

解:

- (1) 组织方式:
 - 1. 简单表格方式: 各项各栏存储长度固定;

2. 间接存储方式:将字符串单独存储,符号表中仅填写指针、下标、长度等位置信息。

(2) 组织因素:

- 如果标识符长度有一定范围限制,不同标识符长度差别不大,则可以用简单方式存储组织;若相反,则用间接方式存储比较好;
- •如果内存充足,不担心内存浪费问题,或是更希望用简单的方式组织,则可以用简单方式存储组织;若相反,则用间接方式存储比较好。