DATE

EXPERIMENT-5

SHEET NO.

PART-1

OBJECTIVE! -

To determine Y,7 and ABCD parameters of single and cascaded two Port networks experimentally and verify their interrelation ships.

APPARATUS REQUIRED:-

S.No.	APPARATUS NAME	QUANTITY
1.	Two Port Networks	2 (M,N)
2.	Multimeter	1
3.	124 DC Supply	1
4.	Connecting wires	

DATE			SHEET NO.
CIRCUIT D	NAGRAM 5:-		
+	V ₁	T	12 + V2 _
			T= Tm or T=Tn.
1	Тм	2	T _N 3/
	1	T= Tm.TN	3

DATE

SHEET NO.

THEORY !-

Consider a passive 2-port (4 Terminal) network. The voltages V, V2 and current I, I2 can be related in terms of & parameters & 1 parameters as shown below:

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} \overline{Z}_{11} & \overline{Z}_{12} \\ \overline{Z}_{21} & \overline{Z}_{22} \end{pmatrix} \begin{pmatrix} \overline{I}_1 \\ \overline{I}_2 \end{pmatrix}$$

$$Z_1 = \frac{V_2}{J_1} \Big|_{J_2=0}$$

$$\begin{array}{c|c}
\overline{Z}_{22} = \frac{\sqrt{2}}{\overline{I}_2} \\
\overline{I}_2 \\
\overline{I}_{1=0}
\end{array}$$

$$\begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} Y_1 & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

$$M_0 = \frac{J_1}{V_1} \Big|_{V_2=0}$$

$$\chi_2 = \frac{T_1}{V_2}\Big|_{N=0}$$

$$|Y_{21} = \frac{I_2}{|V_1|}|_{V_2=0}$$

$$Y_{21} = \frac{I_1}{V_2} \bigg|_{V_1 = 0}$$

Voltages & currents of port I can be represented in terms of those of port 2 as follows:

$$\begin{pmatrix} \frac{V_1}{J_1} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_2 \\ -J_2 \end{pmatrix} = T \begin{pmatrix} V_2 \\ -J_2 \end{pmatrix}$$

$$A = \frac{V_1}{V_2} \bigg|_{T_1 = 0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$

$$-D = \frac{I_1}{I_2} \Big|_{V_2 = 0}$$

DATE

SHEET NO.

OBSERVATION TABLE

1-1' = Input 2-2' = Output.

Port	Conditions	Vi (inv)	I, (6 mA)	V2 (inv)	Iz (in ma)
	Olp Open	11.97	0.28	7.39	0
	0/p short	11-98	0.46	0	29
M	I/p Open	7.41	0	11.98	0.28
	Ilp exasshort	0	28	11-95	0.46
	0/p open	11.97	0.33	4.013	O
0/0	O/p short	11-96	0.38	0	12
N	I/p open	3.97	0	11-93	0.33
	Ile short	0	13	11.97	0.37
	old obn	11.97	0.35	1.43	0
MN	O/P short	11.98	0.36	0	4
	Up Open	1.41	0	11-98	0.35
	I/p Short	0	Ч	11-98	0.35

DATE

SHEET NO.

CALCULATIONS :-

	M	N	MM
$Z_{11} = \frac{V_1}{I_1} \Big _{I_2=0}$	42-75KA	36.273 KA	34.2KN
$\overline{I}_{12} = \frac{V_1}{\overline{I}_2} \Big _{\overline{I}_1 = 0}$	26.464KD	12:03 K.A.	4.028KA
Z21 = 1/2 I2=0	26.393Kr	12.16 KA	4.086 KA
$\frac{7}{222} = \frac{V_2}{\overline{J}_2} \Big _{\overline{J}_1=0}$	42:786ks	36.152KA	34.228 K/L
$\forall II = \frac{I_1}{V_1} \Big _{\mathbf{V}_2 = 0}$	3.839 ×10-55	3.178×10-58	3,008 X10-5 S
$\forall 12 = \frac{T_1}{V_2} \Big _{V_1=0}$	2.339 ms	1,086 mS	0.334 ms
121 = 12 V1 V2=0	2.421 ms	1.002 ms	01334 ms
$Y_{2L} = \frac{I_2}{V_2} \Big _{V_1 = 0}$	3,849 x 10-5s	3.091 X10-5S	2,921 ×10-55
$A = \frac{V_1}{V_2} \Big _{T_1=0}$	1,6197	2.983	8.371
$B = -\frac{V_1}{\overline{I}_2} \Big _{V_2=0}$	- 413,103	-996.67	- 2995
$C = \frac{I_1}{V_2} \Big _{I_2=0}$	3,789×10 ⁻⁵	8,223X105	2.448×10-4
$D = -\frac{I_1}{I_2} \Big _{V_2 = 0}$	- 0.0159	- 0.03167	- 0.09

DATE

.

SHEET NO.

REPORT :-

1. Theoritical relationships between 4,7 and ABCD parameters:-

*
$$A = \frac{V_1}{V_2}\Big|_{I_1=0} = \frac{V_1}{I_1}\Big|_{I_2=0} = \frac{V_1}{I_1}\Big|_{I_2=0} = \frac{V_2}{I_1}\Big|_{I_2=0}$$

Similarly, theoritically we get:
$$-\frac{1}{1} = \frac{1}{1} =$$

For Port M :-

171= 1711 722- 712 721= 1130.637×103

141 = (411 422 - 41242) = 5.66×10-6.

•
$$A = 1.6197$$
 , $\frac{711}{721} = \frac{42.75}{26.393} = 1.6197$
• $B = -413.103$, $-\frac{1}{421} = \frac{-1}{26.393 \times 10^{-3}} = -413.053$
• $C = 3.789 \times 10^{-5}$, $\frac{1}{721} = \frac{-1}{26.393 \times 10^{-3}} = \frac{3.789 \times 10^{-5}}{26.393 \times 10^{-3}} = \frac{3.789 \times 10^{-5}}{20.159} = \frac{3.789 \times 10^$

DATE

0

SHEET NO.

2. On connecting 2 networks Mand N in cascade, transmission matrix of overall network is given as: T=Tm.Tn.

We have,

$$T_{\tilde{M}} \begin{bmatrix} 1.6197 & -413.103 \\ 3.789 \times 10^{5} & -0.0159 \end{bmatrix} \qquad T_{N} = \begin{bmatrix} 2.983 & -946.67 \\ 8.222 \times 10^{5} & -0.03167 \end{bmatrix}$$

$$T_{\bullet} = \begin{bmatrix} 8.371 & -2995 \\ 2.448 \times 10^{4} & -0.09 \end{bmatrix}$$

3. Establish: AD-BC=1

Network	AD-BC
M	1.322
N	1.02-66
WN	1.4927

Values are not so exact due to experimental errors.

Discrepancies / Precautions', -

- Avoid loose connections.
- * Reading should be taken carefully.

 * Avoid series connections of voltmeters & parallel connection amountan

 * Power Supply should be switched off.

 * Make connections acc to the circuit diagram.

DATE

0

EXPERIMENT-5

SHEET NO.

PART - 2

OBJECTIVE: -

To determine the transient response of an RLC network in terms of the parameters of ξ, w, w , and initial conditions in (0-), vc (0-).

APPARATUS REQUIRED !-

S.No.	APPARATUS NAME	QUANTITY	SPECIFICATIONS
1.	DC Voltage Source	2	12 V
	O	1	247
2.	Resistor	1	12
		1	86-12
		2	100KI
3.	Capacitor	1	20 pt
ч.	Inductor	1	2- 41
6.	Relay Switch	1	20 mH

SHEET NO. DATE

REPORT:

Determine initial conditions Vc(0-) and Vc'(0-)

from circuit diagram we want to calculate the equivalent circuit and the initial conditions.

Use KCL and KVL,

We will get the differential equation indicating capacitance

voltage as: - $N_1 = LC \frac{d^2 V_c(4)}{dt^2} + \frac{L}{R} \frac{d}{dt} V_c(4) + V_c(4)$

Applying KKL at mode I and KUL at loop @

tron chant assertion on want to calculate the Explinitest Deferment mount conditions were and often

Applying the at about I and the at rock (2) who course who wit No sur INNER STATE OF THE PARTY

= 1 - 1 - 1 - 0 TH + 88 -0

DATE

SHEET NO.

Sure rollage across capacitor does not change instantaneously, So $V_c(0^+) = V_c(0^-) = 6V$.

20 VCCO) = OV .

For Inductor!

Current = in

We have
$$V_1 - Ldi - L_1R_1 = V_C$$

$$\Rightarrow -Ldi^2 - Rdi - dv_1$$

$$dt - dt$$

DATE

SHEET NO.

Since
$$\frac{cdv_c}{dt} = i_1 - v_c$$

$$\Rightarrow -L \frac{di_1}{dt} - R_1 \frac{di_2}{dt} = \frac{1}{c} \left[\frac{i_1 - \frac{1}{R} \left(v_1 - \frac{1}{ct_1} - \frac{1}{ct_1} \right) \right]}{dt} + \left(\frac{1 + R_1}{R} \right) \frac{i_1}{dt}$$

Since, $R_1 = \frac{d^2(i_1 t)}{dt} + \left(\frac{R_1}{R} \right) \frac{di_2}{dt} + \left(\frac{1 + R_1}{R} \right) \frac{i_1}{dt}$

Since, $R_1 = \frac{d^2(i_1 t)}{dt} + \frac{1}{ct_1} \frac{di_2}{dt} + \frac{R_1}{R_1} \frac{di_2}{d$

DATE

SHEET NO.

$$P V_{c(s)} = \frac{6 R L C s^{2} + 6 L R s + V_{I}R}{R L C} \times \frac{1}{s \left(s^{2} + \frac{s}{RC} + \frac{1}{4C}\right)}$$

$$\Rightarrow A=V_1$$
, $B=6-4$, $C=6-\frac{V_1}{RC}$

$$V_{c}(s) = \frac{A}{8} + \frac{Bs+C}{s^{2}+\frac{c}{kc}+\frac{1}{2}} = \frac{A}{8} + \frac{Bs+C}{(s+\frac{1}{2}kc)^{2}+\sqrt{\frac{1}{16}-\frac{1}{4k^{2}c^{2}}}}$$

Substituting A, B, C and Vi=12V.

Vert1= 12 - 6 e - 4/Re [cos (FLC - 4/Recort)] - [3 e - 4/Recort)] - [12 - 4/Recort)]

DATE

SHEET NO.

Steady state solution (at $t \rightarrow \infty$) $V_{CSS}(t) = 12V$.

Transient Solution! - $V_{CS}(t) = -3$ Sin where $V_{CS}(t) = 12V$.

Where $W^2 = \frac{1}{Lc} - \frac{1}{4R^2c^2}$ and $R_1 = 5.86$, $R_2 = \frac{2.93}{Rc\omega} = 1.094$.

i_(max) = 0.14

Finding Parameters! -

$$W_n = \frac{1}{\sqrt{16}} = \frac{1}{\sqrt{20 \times 10^{-3} \times 20 \times 10^{-6}}} = \frac{\sqrt{10^9}}{20} \approx 1580 \text{ rad/s}.$$

$$T = \frac{1}{2Rc} = \frac{10^6}{2x20 \times 859} = 291 \text{ rad/s}.$$

$$k_1 = -6$$
 $k_2 = \frac{-3}{RCW} = 1.12$

-> Complete Solution for i:-

SHEET NO. DATE Comparing (1) with eqn (326), we get: inth= A + e-tare [Blosw+ + G-B2Re Simust] where w= \fic-tierer and Vi -> Vicc $A = V_1 = 0.14A$ $B = 6 + V_1 = 5.86$ $G = \frac{6 + V_1}{RC} = \frac{5.86}{RC}$ RCSo steady state solution lines =0.14A. Transient Solution int(t) = 5-86 etare coscert) + 2-93 Sinlwt) Since wil - I urror Equivalent circuit in transfer domain and determination of imput 2(15) and output 22(5). for inductor Liles function VL VLCO = SICO - ICO) Vie L die for capacitor, - 15 - in in the Transform of Vi(0) 2) 2(0)= 0.138A NOLO)= 6V. Ic = SY19 = V(0)

SHEET NO. DATE R = 1/5C $7 = (R_1 + sL) + (R_1 + sL) = R_1 + sL + \frac{R}{Rcs + l}$ 70= = | RII(RITSL) = RRITERSL

RRISC+ STRLC+RITERI+SL. In transferdomain apply Therenin's theorem to determine current through inductor. Initial conditions are ilo)= 0.1A VCL0725V , L= 20MH VIH = 12 + Lode - Ve/s XR RTH = RIT RII = RIT P ITSRC IL = VTM = 1748 + Lio -VCLO7Re RTM RISHI RIH RISRE

= 12 +2×10-3 - 5×86 ×20×10 6 86×5×10+ 1+ 86 1.586

DATE

SHEET NO.

DISCUSSION!-

- + The resistance Ri-100k is used to create initial conditions for capacitor (400-64). and when relay is used, this resistance comes in parallel R2 = 862 and Reg = 862
- * Relay wil has been used to simultaneously open and dose toms transient response withinitial conditions.
- * Current through conductor remains same fefore and after using relay (steady state value), current value only oscillates for or small duration (~10 ms). then becomes steady state again.
 This current oscillates between voltage across conditates
- * Without relay there is no oxillation in Ve because it has a large resistance in parallel Clookers but after relay typatallel (861). So as R decreases overshoot

PRECAUTIONS! -

- * Time scale of oscilloscope must be chosen wisely for transient * While measuring current by multimeter, it should be connected
- in series mot parallel. We added selected that the steady value for

better als creation. fel connections must be tight.

the state of the s

DATE

SHEET NO D

C. Mn.	EXPERIMENT	PAGE NO.	DATE	Teacher's Signature.
Exp. No.	Active Low Pars Alters	1-11	05/08/16	Q18.1h
2	Verification of Nax Power Theorem and Reciprocity Theorem	12-24	19/08/16	38/0
3	To study Transient 2 freq response of RLC series cht	25-32	02/69/16	23/9/11
Ц	To find frequency response at	33-W7	23/09/16	11x 10.16
5	Negative Impedence Converter Ugratur Oct. Determination of fourier Coefficients and healights	48-59	14/10/16	
6.	of Non-linear elements. Determination of parameters of a two port Network and to measure transient responsed a kec ckt.	60-76	28/10/16	

DATE 05/08/16

EXPERIMENT No. 1

SHEET NO 1

ACTIVE LOW PASS FILTERS

OBJECTIVE !-

To familiarize with 2nd order Sallen Key active Low pass filters and to measure their frequency responses

APPARATUS REQUEED !-

NAME	QUANTITY	SPECIFICATIONS
Bread board	1	
Function Generator	1	- /
Cathode Ray Oscilloscope	1	-
Resistance	3	loka
Resistance	1	27KA
Resistance	1	4.7ks
Capacitor	2	\000pf
Operational amplifier - OPAMP	1	0 PANA- 741

DATE SHEET NO 2

CIRCUIT DIAGRAM

wall's

NEEDS

DATE

SHEET NO 3

For ideal oramp Rin >00 & I >00 V=V

The voltage supply gives the necessary power for amplification.

OP-AMP non-inverting configuration.

$$I_1 = I_2$$

$$\Rightarrow \frac{V_1}{Z_1} = \frac{V_{0UT} - V_1}{Z_2}$$
where $V_s = V_4$

$$\Rightarrow V_{0Ud} = \left(1 + \frac{Z_2}{Z_1}\right) V_1$$

DATE

SHEET NO 4

For the generalized Sallen-Key circuit,

* Ku at Vf:-

$$V_{+}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{XC_{+}}\right) = V_{1}\left(\frac{1}{R_{1}}\right) + V_{p}\left(\frac{1}{R_{2}}\right) + V_{0}\left(\frac{1}{XC_{1}}\right)$$

* KCL at Vo! -

$$V_{P}\left(\frac{1}{R_{2}} + \frac{1}{Xc_{2}}\right) = V_{f}\left(\frac{1}{R_{2}}\right) \Rightarrow V_{f} = V_{P}\left(1 + \frac{R_{2}}{Xc_{2}}\right)$$

Substituting into fait equation!

Vo (R1R2 XG + R1R2 XG + R1R2 XG + R2 R4 + R2 R4)

* KCL at Vn: -

$$V_{n}\left(\frac{1}{R_{i}}+\frac{1}{R_{F}}\right) = V_{0}\left(\frac{1}{R_{F}}\right) \Rightarrow V_{n} = V_{0}\left(\frac{R_{i}}{P_{i}+R_{F}}\right)$$

Gair block deagram !-

and taking Ve=Vp-Vn, the generalized Sallen Key filter commit can be represented in gain block.

DATE

SHEET NO 5

From the given block diagram,

Solving for the generalised transfer function

$$\frac{\sqrt{0}}{\sqrt{1}} = \left(\frac{c}{b}\right) \left[\frac{1}{1+\frac{1}{a_b}} - \frac{a}{b}\right]$$

Assuming a(f)b is very large over the frequency of operation, $a(f)b \approx 0$, the ideal transfer function from gain block analysis becomes $\frac{V_0}{V_1} = \left(\frac{C}{b}\right)\left[\frac{1+d}{1-d/b}\right]$

By letting 1/6 ex, c= NI and d=Nz, where N, Nz and D are the numerators & denominator of the expression we derived in ex()

$$\frac{V_0}{V_1} = \left[\frac{K}{N_1} - \frac{KN_2}{N_1} \right]$$

DATE

SHEET NO 6

Substituting the values,

$$\frac{V_0}{V_1} = \frac{R_1 R_2}{X_{C_1} X_{C_2}} + \frac{R_1}{X_{C_2}} + \frac{R_1}{X_{C_1}} + \frac{R_1 C_1 + C_2}{C} + 1$$

The standard freq. domain equation for a 2nd order low-pars

filter to

Hep:

- (f) 2+ if +1

where for is the Corner frequency (breakpoint between pass band 2 stop band) and a is the quality factor.

i) f << fc 7 Hep = K -> signal multiplied by gain factor k.

ii) f=fc => Mep = -jk Q -> signals are phase shifted 90° and enhanced by Q-factor.

iii) $4>7 \text{ fc} \Rightarrow |4 \text{ to} = -k \left(\frac{4c}{4}\right)^2 \Rightarrow \text{ Signals are phase shifted by } 180° and attenuated by $9.0 of frequency.}$

By probling $R_1=R_2=R$ and $X_{L_1}=X_{L_2}=\frac{1}{Sc}$, we get $\frac{V_0}{V_1}=\frac{1}{S^2C^2R^2+ScR(3-K)+1}$ where $K=\frac{1+R_2}{R_1}$

Comparing in = -(5/2)2+ if x+1

we get fo = 1 and Q = 1 3-K.

	f= 159KHz	Vallydin 24		the one
		Timefolius 01 ms.		THE STATE OF THE S
				INDIAN
	1	The second	TE .	
	/	1 1 113		BSERVATI
	1	200 - 25 - 1 (1)		Imput val
inguish and			0	FREQUENC
	1 1 1 1			0:1
				0.7
	thoughout) practice	is the corner for	3116	0.3
	my officery sail or	stop bound) and a"	A bout	0.5
				1
	I SHOW HERE		.351	
	7=154KHz	Vallation = 1v	122	1.59
La K	7=154kHz	Veltifolis = 1V	122	1.59 3 6
	3=154kHz	- Nimilam a zoles	44 144	1.59 3 6 8
	J=154kHz	- Nimilam a zoles	122	1.59 3 6 8 10
	J=154kHz	- Nimilam a zoles	44 144	1.59 3 6 8
	J=154kHz	- Nimilam a zoles	44 144	1.59 3 6 8 10 16.9 25 30
	1=15-4kHz	- Nimilam a zoles	44 144	1.59 3 6 8 10 16.9 25 30 31.8
		The state of the s	4-4	1.59 3 6 8 10 15.9 25 30 31.8
		The state of the s	Acct Acct Acct Acct Acct Acct Acct Acct	1.59 3 6 8 10 15.9 25 30 31.8 50 80
		The state of the s	4-4	1.59 3 6 8 10 16.9 25 30 31.8 50 80 100
		The state of the s	Acct Acct Acct Acct Acct Acct Acct Acct	1.59 3 6 8 10 15.9 25 30 31.8 50 80 100
		The state of the s	Act	1.59 3 6 8 10 16.9 25 30 31.8 50 80 100

DATE SHEET NO 7

OBSERVATION TABLE

Input Veltage = 3.0 V (P-P)

Original (RI = 4.7KA)

5.No.	FREQUENCY (in KHZ)	OUTPUT VOLTAGE (inV)	20 log (Vout Vin)
,	0.1	4.6	3.713
1	0:2	4.6	3.713
2 3		4.6	3.713
	0.3	4.6	3.713
4	0.5	4.6	3.713
5		4.6	3.713
6	1.59		3.713
٦	3	4.6	3.522
8	6	4.5	3.327
9	8	4.1	2.713
10	10		-0.294
[1	15.9	2.9	-6.315
12	25	1.45	-9.542
13	30	1	-10.451
14	31.8	0.9	-18.416
15	50	0.36	-26.021
16	80	0.15	
17	100	0.096	-29.897
	120	0.068	-32.892
18		0.04	-37.501
19	159	0.024	-41.938
20	200	01027	

Will NEE

DATE

SHEET NO &

OBSERVATION TABLE

Input Voltage = 3.0V (p.p)

Modified CK+ (N'=10KA)

S.No.	FREQUENCY (MKHZ)	OUTPUT VOLTAGE (inv)	20 log (Vouthin)
1	0.1	(p-p) 3.7	1.822
2	0.2	3.7	1.822
3	0.5	3.7	1.822
4	1.59	3.7	1.822
5	3.5	3.6	1.584
6	5	3.5	1.339
	7	3.3	0.828
7 8	8	3.2	0.560
9	U	3.0	0
	12	2.6	-1.243
10	15.9	1.9	-3.967
12	17	1.7	-4.933
	20	1.4	-6.620
13	25	1.0	-9.542
15	31.8 KH2	0.68	-12.892
	50 KH2	0.28	-20.600
16		0.16	-25.460
17	70K42	0.056	-34.578
18	120KH2	0.032	-39.439
19 20	159kHz 200KHz	0.021	-43.098
			dwip

DATE

SHEET NO4

RESULT !-

Calculated value of to = 1

R=10K-2=1042

C=1000pf

: fo = 1 Hz

=15915-5H2

For normal circuit! -

to = 15. 9kHz (calculated value)

to = 195 kHz (from graph)

.. devication / error= g-yx+12.

For modified circuit:

to = 15,9kHz (calculated value)
to = 15 kHz (from graph)
: devation (Europe = 4.9kHz.

DATE

SHEET NO 10

DISCUSSION:

Q1. Derive the expression for transfer function.

Ans. Transfer function: - Vo(s) - K

1+ (3-1) RC3+ R2(252)

This expression has already been durined in theory.

Q2. Identify the type of filter in the modified ckt. Comment on its Performance compared to Rruterworth filter. Ans. When we change the 4.7Kr hesistance with a loka

resistance, the of factor changes from 0.71 to 0.58, which is characteristic of a kessel filter.

3 Butterworth -> Bessel Frequency

FREQUENCY RESPONSE

DATE	SHEET NO \
Buttorworth filter	Bessel filter.
i) O-factor = 0.71	i) 9-factor= 0.58
(ii) It is critically damped.	(ii) It is over damped.
(iii) It has maximum pass band flatness, but it overshoots	and no overshoot with pulse input.
(iv) Moderate trate of attenuation above for	(iv) show rate of attenuation above fc.
Q3. If you interchange R1, R2 v filter characteristics would go tus. If the resistance capacitor to interchange X cand R in obtained expression. Hence, the transfer function for	m get?

B. NEEDS