Système linéaire grande dimension

COSTANTIN Perline

ZIAD Zineb

Projet MAM3

Sommaire

- I. Définition
- II. Jacobi dense
- III. Jacobi sparse
- IV. Jacobi Gauss Seidel
 - V. SOR

Définition

- Une matrice carré A de taille n×n et un vecteur b de taille n×1, trouver un vecteur x de taille n × 1 qui satisfait :Ax = b
- Approche directe: Résoudre $x = A^{-1}b$

Jacobi Dense: Méthode

On considère le système linéaire Ax=b tel que A respecte :

$$a_{ii}=5(i+1)$$
 for $i=1,2,...,n$ and $a_{ij}=-1$ for $i\neq j$, et b un vecteur aléatoire

4 méthodes:

(Jacobi_dense_avecinverse) avec la formule : $x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1} \cdot b$

(Jacobi dense boucleFor) formule itérative :
$$x^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

(Jacobi_dense _somme) en calculant avec deux sommes (L et U)

(Jacobi dense _dot) en calculant L et U avec le produit scalaire

Jacobi dense

Comparaison des temps d'itération selon les méthodes Jacobi dense

Temps d'itération pour n=	JD inverse	JD boucle	JD somme	JD dot			
10	0,001059	0,000463	0.511357	0,229021			
100	1,091545	0,981145	0.483927	0.208428			
500	1	1	0,5004633	0,231787			
JD inv et boucle ne marche pasà cause du rayon de cv							
Inv trop lent et trop de place							

Jacobi dense

```
def spectral_radius(A):
# Vérification du rayon spectral
 D = np.zeros_like(A)
 for i in range(n):
   D[i,i] = A[i,i]
 T = np.dot(np.linalg.inv(D), (A-D)) # Calcul de la matrice d'itération T
 rho = max(abs(np.linalg.eigvals(T))) #Calcul du rayon spectral (valeur propre de plus grande norme de T)
 print("Le rayon spectral est égal à", rho)
  return rho
def diagonale_dominante(A):
# Vérifie si la matrice est de diagonale dominante
 n = A.shape[0]
 for i in range(n):
     # Somme des éléments hors-diagonale
     somme_hors_diag = sum(abs(A[i, j]) for j in range(n) if j != i)
     if (abs(A[i, i]) < somme_hors_diag):</pre>
         print("La matrice n'est pas diagonale dominante.")
          return
 print("La matrice est diagonale dominante.")
  return
```

Rayon Spectral

→ Code utilisé: Jacobi dense avec boucle $\rho=\max(|\lambda i|)\rho$, λi les valeurs propres de T. $\rho \ge 1 = > ne$ converge pas.

Pour n=100, on trouve ρ =0.97917067

Pour n=111, on trouve ρ =1.0010234598

Diagonale dominante

Temps(t) en fonction de la taille de la matrice (n)

Rayon spectral (ρ) en fonction du nombre d'itérations

Jacobi Sparse

Une matrice Sparse est une matrice avec une forte proportion de 0

Format de Stockage: CSR, CSC, COO

Jacobi Sparse

```
def generate corrected sparse tridiagonal matrix(n, diagonal value=5, off diagonal value=-1):
   main_diag = np.full(n, diagonal_value) #diagonale principale
   upp_diag= np.full(n-1,off_diagonal_value) #diagonale supérieure
   low diag=np.full(n-1,off diagonal value)#diagonale inférieure
   # Construct sparse matrix
   data=np.concatenate((main_diag, upp_diag,low_diag ))
   rows = np.concatenate((np.arange(n), np.arange(n-1), np.arange(1, n))) # might need to use np.concatenate
   cols = np.concatenate((np.arange(n), np.arange(1,n),np.arange(n-1)))
   As = csr_matrix((data, (rows, cols)), shape=(n, n))
   # Construct dense matrix for reference
                                                                  def jacobi_sparse(A, b, x0, tol=1e-6, max_iter=10000):
   A_dense = np.zeros((n, n))
                                                                       x = x0.copy()
   for i in range(n):
       for j in range(n):
                                                                       D inv=1/A.diagonal()
          if (np.abs(j - i) ==1):
                                                                       LU=A-sparse.diags(A.diagonal()) #-(L+U)
                                                            61
              A_dense[i,j] = off_diagonal_value
                                                                       start time = time.time()
                                                            62
           elif i==j:
              A_dense[i, i] = diagonal_value
                                                                       for i in range(max_iter):
   b = np.random.rand(n)
                                                                            x new=D inv*(b-LU.dot(x))
   return As, A_dense, b
                                                                            error = np.linalg.norm(x_new - x)
                                                                            if error < tol:
                                                            67
                                                                                 break
                                                            68
                                                                            x = x new
                                                                        end time = time.time()
                                                                        time_taken = end_time - start_time
                                                            70
                                                                       return x new, i+1, time taken
                                                            71
```

Jacobi sparse

<u>n</u>	Temps <u>Jacobi dense</u> (sec)	Temps Jacobi_sparse (sec)	
1000	0.0652	0.0002	
2000	0.1117	0.0002	
3000	0.2526	0.0004	
5000	0.4387	0.0004	
10000	1.1053	0.0006	

Gauss-Seidel

Gauss-Seidel: C = D - L or C = D - U

Appliquer au système linéaire : $x = (D - L)^{-1}b + (D - L)^{-1}Ux$

Forme itérative :
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$
 for $i = 1, 2, ..., n$

Gauss Seidel

n	Temps Jacobi_sparse (sec)	Nb itérations	Temps GS	Nb itérations GS
		Jacobi	(sec)	
1000	0.0020	17	0.0272	12
2000	0.0203	18	0.1019	12
3000	0.0298	18	0.1066	12
5000	0.1739	18	0.2350	12

SOR

Ajout d'un paramètre de relaxation ω (0 < ω < 2)

$$C = \frac{1}{\omega}(D - \omega L)$$

Formule itérative

$$s_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$
 $x_i^{(k+1)} = \omega s_i^{(k)} + (1-\omega) x_i^{(k)}$

SOR

Pour $\omega = 0.5$ Pour $\omega = 1.8$

Tests Oméga

```
177
      def best_omega(A, b, x0, x_exact, tol=1e-6, max_iter=10000):
          best w=0
178
          min_iter = max_iter
179
180
          val=np.arange(0.1,1.9,0.1)
          for omega in val:
181
182
               x, iterations, errors, time taken = SOR(A, b, x0, x \text{ exact, tol=tol, max iter=max iter, omega=omega)}
              if (iterations<min_iter):</pre>
183
184
                   min iter=iterations
185
                   best_w=omega
                   best_time=time_taken
186
          print(f"Best omega: {best_w}, Iterations {min_iter}, Temps écoulé:{best_time:.4f} seconds")
187
188
          return best w, min iter, best time
189
```

Tests Oméga (n=20)

matrice avec des 2 sur la diagonale et des -1 sur la sousdiagonale et la sur-diagonale

matrice avec des 5 sur la diagonale et des -1 sur la sousdiagonale et la sur-diagonale

Best omega: 1.1, Iterations 9,

Merci pour votre attention