

Image Captioning - Object Relation Transformer

Simão Herdade, Armin Kappeler, Kofi Boakye, João Soares

Motivation

Goal

Utilize spatial relationships between objects to improve image captioning

Motivation

- The Transformer model has achieved great success in machine translation
- Image captioning can be viewed as translating a collection of object image features into a sentence

Problem

- There is no natural order in a collection of object image features
- Applications: Improve accessibility of image content
 - 285 million people have some type of visual impairment
- Most Yahoo! images lack descriptive alt-text
- Automatic caption generation could greatly improve accessibility

Object Relation Transformer

- Idea We propose a novel encoder-decoder architecture consisting of:
 - Faster R-CNN for object detection and feature extraction
 - Transformer Encoder, with a geometric self-attention layer, acting on the object crop image features
 - Standard Transformer Decoder, to generate sentences

Observations

- Extracting features for the object region proposals, rather than generic grid spatial features, yields better image captions [2]
- Incorporating spatial relationships improves object detection [3]

Hypothesis

- Explicitly encoding spatial relationships between detected objects should enable better image captions
- Ex. 1: "a girl riding a horse" vs. "a girl standing beside a horse" (position)
- Ex. 2: "a woman playing the guitar" vs. "a woman playing the ukulele" (size)

Geometric Attention

Object Relation Transformer Encoder

- The encoder of the object relation transformer uses the feature vectors from the object detector
- Each encoder layer consists of a multi-head self-attention layer followed by a small feed-forward neural network

Transformer Self-Attention

Self-attention first takes a query Q, key K, and value V, where

$$Q = XW_Q, K = XW_K, V = XW_V,$$

X contains all input vectors $x_1 \ldots x_N$ stacked into a matrix.

The appearance-based attention weights are computed as

$$\omega_A = rac{QK^T}{\sqrt{d_k}} \quad (\, d_k = 64 ext{ a scaling factor})$$

Geometric Attention

The geometric attention weights are computed as

$$\omega_G^{mn} = ReLU(Emb(\lambda)W^G)$$

where λ represents a displacement vector for two bounding boxes

$$\lambda(m,n) = \left(\log\left(rac{|x_m-x_n|}{w_m}
ight), \log\left(rac{|y_m-y_n|}{y_m}
ight), \log\left(rac{w_n}{w_m}
ight), \log\left(rac{h_n}{h_m}
ight)
ight)$$

and Emb(·) calculates a high-dimensional embedding following [3]

The final attention weights are given by

$$\omega^{mn} = rac{\omega_G^{mn} \exp(\omega_A^{mn})}{\sum_{l=1}^N \omega_G^{ml} \exp(\omega_A^{ml})}$$

The output of each attention head can be calculated as

$$head(X) = self-attention(Q, K, V) = \Omega V$$

where Ω is the $N_{
m X}N$ matrix whose elements are given by ω^{mn}

Generated Caption: two beach chairs under an umbrella on the beach

Visualization of self-attention in our Object Relation Transformer. Each detected object's transparency is proportional to its attention weight with respect to the chair outlined in red.

Results

Best performing model on the MSCOCO dataset

 Cross-entropy loss training (30 epochs), followed by self-critical reinforcement learning (30 epochs), optimizing for CIDEr-D

Algorithm	CIDEr-D	SPICE	BLEU-1	BLEU-4	METEOR	ROUGE-L
Att2all [20]	114	-	-	34.2	26.7	55.7
Up-Down [2]	120.1	21.4	79.8	36.3	27.7	56.9
Ours	128.3	22.6	80.5	38.6	28.7	58.4

Geometric Attention's ability to count and relate objects

Quantitative comparison (SPICE metric, 30 epochs)

Algorithm	SPICE								
Aigorium	All	Object	Relation	Attribute	Color	Count	Size		
Standard Transformer	21.04	37.83	5.88	11.31	14.88	11.30	5.82		
Ours	21.24	37.92	6.31	11.37	15.49	17.51	6.38		
p-value	0.15	0.64	0.01	0.81	0.35	<0.001	0.34		

Qualitative comparison (relations and count)

Standard: a man on a mo- a couple of bears standing

Ours: a man is working on a motorcycle in a parking lot next to each other on a rock umbrella on the beach

on top of a rock

two brown bears standing two beach chairs under an

two chairs and an umbrella on a beach

on top of a wooden desk

a desk with a laptop and a keyboard

Standard: a large bird is standing in a cage

Ours: two large birds a giraffe with two kids sit-

a little girl sitting on top of

standing in a fenced in area ting on it

a group of young men riding skateboards down a sidewalk boards down a sidewalk

on a bunk bed two young men riding skate- two young children are sitting on the bunk beds

Future Work

- Extend geometric attention to the decoder's cross-attention layers
- Scale to larger datasets (e.g., Google's Conceptual Captions)

References and Acknowledgments

We thank Ruotian Luo for making his image captioning code available [1].

[1] R. Luo. An image captioning codebase in pytorch.

https://github.com/ruotianluo/ImageCaptioning.pytorch, 2017

[2] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In CVPR, 2018.

[3] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei. Relation networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3588-3597, 2018.

