

NESLISAH TOROSDAGLI

- I. Sabuncu. Solving sudoku puzzles using hybrid ant colony optimization algorithm. Proceedings of the 1st International Conference on Industrial Networks and Intelligent Systems, 2015.
- K. Schiff. An ant algorithm for the sudoku problem. Journal of Automation, Mobile Robotics and Intelligent Systems JAMRIS, pages 24–27, 2015.

WHAT IS SUDOKU

- Number Placement Game.
- Digits from I-9 can exist just once in:
 - Each column,
 - Each row,
 - Each sub-grid.

8	-	-	-	-	-	-	-	-
-	-	3	6	-	-	-	-	-
1	7	-	ı	9	-	2	- 1	ı
-	5	-	-	-	7	ı	ı	•
-	ı	-	ı	4	5	7	ı	ı
-	ı	-	1	-	ı	ı	3	ı
-	1	1	ı	-	-	1	6	8
-	1	8	5	-	-	-	1	ı
-	9	-	-	-	-	4	-	-

^{*}Telegraph.World's hardest sudoku: Can you crack it? http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html, November 2015.

HISTORY OF SUDOKU

- Sudoku invented by Howard Garns in 1979 and published in Dell Magazines named as "Number Place".
- In 1986, the "Number Place" game is named as "Sudoku"
- It is a Japanese word which means "the digits are limited to one occurrence".
- Became popular in late 2004s by being a regular daily feature in most of the newspapers and magazines all around the world,
- Nowadays there are many international Sudoku competitions.

HOW ANTS FINDS PATH BETWEEN FOOD-NEST? PHEROMONE

WHAT IS ANT COLONY OPTIMIZATION

- Ant Colony Optimization is searching based on food-searching behavior of ants.
- Probabilistic search among alternatives using pheromone accumulation.
- Provide near-optimal solution to Traveling Salesman Problem.

- Simplification Step:
 - Data Structure
 - 9-bit of short is used
 - Bitwise operations are applied to compute candidate values.

8	1, 2, 4, 6	2,4,5, 6,9	ı	-	-	-	-	-
1,2, 4,5,9	1,2,4	3	6	_	-	-	-	-
1,4,5, 6	7	4,5,6	-	9	_	2	-	-
-	5	-	-	-	7	-	-	-
-	1	-	1	4	5	7	1	-
-	1	-	1	-	-	1	3	-
-	-	1	-	-	-	-	6	8
-	•	8	5	-	-	1	1	-
-	9	-	-	-	-	4	-	-

- Ant Colony Step:
 - Randomly select an unassigned cell.
 - Assign cell to the candidate with highest pheromone accumulation.
 - Apply simplification
 - Check for validity Assigning a valid candidate may cause some unassigned cells to have zero candidates.
 - If valid increment pheromone accumulation of initial selection.
 - If not valid decrement pheromone accumulation of initial selection.

8	1, 2, 4, 6	2,4,5, 6,9	-	-	-	-	-	-
1,2, 4,5,9	1,2,4	3	6	1	1	-	1	1
1,4,5, 6	7	4,5,6	1	9	1	2	1	1
-	5	-	-	1	7	1	1	1
-	-	-	-	4	5	7	1	1
-	-	-	1	1	1	-	3	-
-	-	1	-	ı	1	-	6	8
-	-	8	5	-	-	-	1	1
-	9	-	-	-	-	4	-	-

EXPERIMENTAL RESULTS

Puzzle Name	Duration (sec.)			
Puzzle 1	0			
Puzzle 2	0.25			
Puzzle 3	7.45			
Puzzle 4	0.77			
Puzzle 5	0			
Puzzle 6	4.03			
Puzzle 7	1.1			
Puzzle 8	6.8			
Puzzle 9	1.72			
Puzzle 10	0			
Puzzle 11	1092.11			

CONCLUSION

- Basic implementation of Ant Colony Optimization Algorithm solved even very-difficult Sudoku Puzzle.
- Pheromone evaporation can also be added to the system.
- Types of puzzles which algorithm solves faster and which algorithm fails may be classified,
- Algorithm may be improved according to this classification.

QUESTIONS

