WS 2019/20 20. November 2019

Übungsblatt 6

Abgabe der schriftlichen Lösungen bis 4. Dezember 2019

Aufgabe 29 Zeigen Sie:

 $m\"{u}ndlich$

- (a) Das Problem SubgI, für zwei Graphen G und H zu entscheiden, ob G isomorph zu einem Teilgraphen von H ist, ist NP-vollständig.
- (b) Das Problem TAUT, für eine gegebene boolesche Formel F die Allgemeingültigkeit zu entscheiden, ist co-NP-vollständig.
- (c) Das Problem, für einen gegebenen gerichteten Graphen G zu entscheiden, ob er stark zusammenhängend ist, ist NL-vollständig.
- (d) Das Independent Set Problem für bipartite Graphen liegt in P. *Hinweis:* Benutzen Sie den Heiratssatz.
- (e) Das Erfüllbarkeitsproblem für KNF-Formeln F, in denen jede Variable höchstens zweimal vorkommt, liegt in P.
- (f) Das Erfüllbarkeitsproblem für 3-KNF-Formeln, in denen jede Variable höchstens dreimal vorkommt, ist NP-vollständig.
- (g) Das Erfüllbarkeitsproblem für 3-KNF-Formeln, in denen alle Klauseln aus genau drei verschiedenen Literalen bestehen und in denen jede Variable höchstens dreimal vorkommt, liegt in P
- (h) Das Problem 3-COLORING, für einen Graphen G zu entscheiden, ob er 3-färbbar ist, ist NP-vollständig.

Hinweis: Reduzieren Sie NaeSat \leq 3-Coloring.

Aufgabe 30 mündlich

Zeigen Sie, dass das CIRVAL-Problem für Schaltkreise der Tiefe d und Größe s in Platz $\mathcal{O}(d + \log s)$ entscheidbar ist.

Aufgabe 31 10 Punkte

Sei G = (V, E) ein gerichteter Graph. Eine Knotenmenge $D \subseteq V$ heißt **Dominating Set**, falls für jeden Knoten $v \notin D$ ein Knoten $u \in D$ mit $(u, v) \in E$ existiert. Das **Dominating Set Problem (DomSet)** ist wie folgt definiert:

Gegeben: Ein Graph G = (V, E) und eine Zahl k.

Gefragt: Hat G ein Dominating Set D der Größe $||D|| \le k$?

G heißt **Turniergraph**, falls für alle Knoten $u \neq v$ genau eine der beiden Kanten (u, v) und (v, u) vorhanden ist. Zeigen Sie:

- (a) DomSet ist NP-vollständig.(Hinweis: Zeigen Sie VC ≤ DomSet.)
- (b) Ein Turniergraph mit n Knoten hat ein Dominating Set der Größe $\log n$.
- (c) Falls das Dominating Set Problem für Turniergraphen NP-vollständig ist, dann gilt NP \subset DTIME $(n^{\mathcal{O}(\log n)})$.