What is claimed is:

- 1. A process for producing a propylene-ethylene block copolymer in which propylene is copolymerized with ethylene using a catalyst system comprising a metallocene catalyst (1) preparing high crystalline polypropylene, a metallocene catalyst (2) preparing low crystalline polypropylene, a porous carrier (3), aluminoxane (4) or a compound (4) which can form an ionic complex by reacting with the metallocene catalysts described above and, if necessary, an organic aluminum compound (5).
- 2. The process for producing a propylene-ethylene block copolymer as described in claim 1, wherein propylene is polymerized in a first step, and propylene and ethylene are random-copolymerized in a second step.
- 3. The process for producing the propylene-ethylene block copolymer as described in claim 2, wherein the propylene-ethylene block copolymer satisfies the following requirement of:
- (1) a triad chain fraction f_{EEE} of [EEE] ≤ 0.1 (mole %),
- (2) $R1 \cdot R2 \ge 0.5$,
- (3) its intrinsic viscosity $[\eta] \ge 1.0$ dl/g, and

- (4) an intrinsic viscosity $[\eta]$ of a xylene-soluble fraction ≥ 1.0 dl/g.
- 4. The process for producing the propylene-ethylene block copolymer as described in claim 1 or 2, wherein the metallocene catalyst preparing high crystalline polypropylene is a monocross-linked metallocene catalyst, and the metallocene catalyst preparing low crystalline polypropylene is a dicross-linked metallocene catalyst.
- 5. The process for producing the propylene-ethylene block copolymer as described in claim 4, wherein the monocross-linked metallocene catalyst is a transition metal compound represented by general formula (I):

$$R^{1}$$
 E^{1}
 R^{4}
 R^{5}
 R^{2}
 R^{2}

wherein E^1 represents a bonding group which crosslinks two conjugate five-membered ring ligands; R^1 and R^2 each represent a hydrocarbon group, a halogen

atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group or a boron-containing hydrocarbon group; R3 to R⁶ each represent hydrogen, a hydrocarbon group, a halogen atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group or a boron-containing hydrocarbon group; M1 represents a transition metal of the IV to VI group in the periodic table; X^1 and Y^1 each represent a covalent bonding ligand; and X1 and Y1 may be combined with each other to form a ring structure; and the dicross-linked metallocene catalyst is a transition metal compound represented by general formula (II) or general formula (III):

$$R^9$$
 E^2
 R^{10}
 R^8
 X^2
 Y^2

$$R^{13}$$
 R^{14}
 R^{12}
 R^{19}
 R^{18}
 R^{19}
 R

wherein E² and E³ represent a bonding group which cross-links two conjugate five-membered ring ligands; R⁹ to R¹⁸ each represent hydrogen, a hydrocarbon group, a halogen atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group or a boron-containing hydrocarbon group; R⁷, R⁸, R¹⁹ and R²⁰ each represent a hydrocarbon group, a halogen atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group, a nitrogen-containing hydrocarbon group or a boron-containing hydrocarbon group; M² represents a transition metal of the IV to VI group in the periodic table; X² and Y² each represent a

covalent bonding ligand; and X^1 and Y^1 may be combined with each other to form a ring structure.

- 6. The process for producing the propylene-ethylene block copolymer as described in claim 4, wherein the monocross-linked metallocene catalyst is dimethylsilylenebis(2-methylbenzoindenyl)zirconium dichloride or dimethylsilylenebis(2-methyl-4-phenylindenyl)zirconium dichloride, and the dicross-linked metallocene catalyst is (1,2'-dimethylsilylene)-bis(3-trimethylsilylene)(2,1'-dimethylsilylene)-bis(3-trimethylsilylmethylindenyl)zirconium dichloride or (1,2'-dimethylsilylene)(2,1'-dimethylsilylene)-bis(3-n-butylindenyl)zirconium dichloride.
- 7. A propylene-ethylene block copolymer produced by the process as described in claim 1 or 2.
- 8. The propylene-ethylene block copolymer as described in claim 7, wherein an elastic modulus E is less than 330 (MPa), and an internal haze H is less than 55 (%).