

Podstawy kodowania mowy i obrazu

Michał Hoeft

- Kodowanie danych multimedialnych
 - Zapisanie w postaci cyfrowej danych multimedialnych pozwalające na ich późniejsze odtworzenie; przesłanie; archiwizację itp.

- Ile zajmują dane multimedialne?
 - Standard telewizyjny (PAL 704x576; 12 bitów/piksel; 25 klatek/s)

HD Bandwidth & Applications

Ile zajmują dane multimedialne?

Youtube HD 6-8Mbps Netflix HD 15Mbps

HD Bandwidth & Applications

Ile zajmują dane multimedialne?

Youtube HD 6-8Mbps Netflix HD 15Mbps

- Kompresja danych multimedialnych
 - Zmniejszenie ilości zasobów niezbędnych do przechowywania i przesyłania danych multimedialnych
 - Zwiększenie ilości zasobów niezbędnych do przetwarzania (odtwarzania) danych multimedialnych
- Kompresja stratna albo bezstratna

Kompresja

- W procesie kompresji wykorzystujemy:
 - Występowanie nadmiarowości informacji
 - Zmiana sposobu reprezentacji (opisu) informacji
 - Ograniczenia perceptualne
 - Wzroku
 - Słuchu
- Metoda kompresji powinna być dostosowana do przetwarzanej informacji

Ilość informacji

 Ilość informacji zawarta w wiadomości/zdarzeniu występującym z prawdopodobieństwem p

$$I = log_2\left(\frac{1}{p}\right)[bit]$$

 Entropia – średnia ilość informacji w zbiorze wiadomości

$$E = \sum_{i} p_{i} I_{i}$$

Ćwiczenie

 Jak zakodować symbole A, B, C i D jeżeli wiemy, że pojawiają się one odpowiednio z częstością 80%, 10%, 5% i 5%?

Konwersja danych

- Etapy konwersji:
- 1. Przetwornik A/D
- 2. Układ próbkujący
- 3. Kwantyzer
- 4. Koder

Próbkowanie

 Jak często próbkować sygnał aby odzwierciedlić jego charakterystykę?

Próbkowanie

 Jak często próbkować sygnał aby odzwierciedlić jego charakterystykę?

Twierdzenie o próbkowaniu

Jeśli sygnał ciągły nie posiada składowych widma o częstotliwości równej lub większej niż B, to może on zostać wiernie odtworzony z ciągu jego próbek tworzących sygnał dyskretny, o ile próbki te zostały pobrane w odstępach czasowych nie większych niż 1/(2B).

Przebieg czasowy i widmo sygnału

Często stosowane częstotliwości próbkowania

Częstotliwość	Zastosowanie
8.000	Telefonia
16.000	Telefonia szerokopasmowa
44.100	CD-Audio
96.000	DVD-Audio

Kwantyzacja

 Nieodwracalne odwzorowanie wartości próbki sygnału analogowego na wartość z ograniczonego zbioru wartości dyskretnych zmniejszające dokładność pomiaru wprowadzając szum kwantyzacji (błąd kwantyzacji)

Kwantyzacja

- Równomierna
 - Wszystkie przedziały jednakowe
 - Dobra dla sygnałów o jednorodnym prawdopodobieństwie wartości
- Nierównomierna
 - Przedziały o różnym rozmiarze
 - Dostosowanie do charakterystyki sygnału
 - Większa gęstość odwzorowanych wartości w obszarach większej zmienności sygnału

Kwantyzacja

DEMO

Granice percepcji

- Częstotliwość
 - 16 Hz 20 kHz
- Natężenie
 - -0 140 dB

Natężenie dźwięku [dB]	Okoliczności
130	Startujący odrzutowiec
100	Roboty uliczne (młot pneumatyczny)
80	Pociąg
40	Rozmowa
20	Biblioteka

Krzywe izofoniczne

Koder/Dekoder

- Zapisanie/Odczytanie ciągu wartości próbek w postaci sygnału
- Implementacja algorytmu kodowania/kompresji

Kodowanie mowy

- Kodek G.711 PCM
 - Zastosowano kodowanie 14 bitowych próbek z kwantyzera równomiernego na 8 bitach logarytmicznie:
 - 1 bit znak (s)
 - 3 bity wykładnik (e)
 - 4 bity mantysa (m)

```
ALaw y = (-1)^s \cdot (16 \cdot \min\{e, 1\} + m + 0.5) \cdot 2^{\max\{e, 1\}}
```

- Zakres mowy do ok. 4000 Hz, częstotliwość próbkowania ?
- Strumień danych 64 kb/s

Kodek G.711

uLaw (USA, Japonia)

$$F(x) = \operatorname{sgn}(x) \frac{\ln(1 + \mu|x|)}{\ln(1 + \mu)} - 1 \le x \le 1$$

ALaw (Europa, rozmowy międzynarodowe)

$$F(x) = \operatorname{sgn}(x) \begin{cases} \frac{A|x|}{1 + \log(A)}, & |x| < \frac{1}{A} \\ \frac{1 + \log A|x|}{1 + \log(A)}, & \frac{1}{A} \le |x| \le 1, \end{cases}$$

ALaw vs uLaw

- uLaw
 - Zapewnia większą dynamikę przenoszonego sygnału

Kosztem większych zniekształceń dla sygnałów

o małej amplitudzie

Kodeki PCM

Kodeki PCM

Opóźnienie kompresji

Na przykładzie urządzeń Cisco

Compression Method	Bit Rate (kbps)	MOS Score	Compression Delay (ms)
G.711 PCM	64	4.1	0.75
G.726 ADPCM	32	3.85	1
G.728 LD-CELP	16	3.61	3 to 5
G.729 CS-ACELP	8	3.92	10
G.729 x 2 Encodings	8	3.27	10
G.729 x 3 Encodings	8	2.68	10
G.729a CS-ACELP	8	3.7	10
G.723.1 MP-MLQ	6.3	3.9	30
G.723.1 ACELP	5.3	3.65	30

Kodowanie dźwięku

- Odmienne wymagania niż w przypadku kodowania mowy
 - Inna dynamika
 - Inny zakres częstotliwości
- Większe możliwości stosowania maskowania perceptualnego
 - W dziedzinie czasu
 - W dziedzinie częstotliwości
 - Przykład MP3

Maskowanie w dziedzinie czasu

Maskowanie w dziedzinie częstotliwości

Kodowanie obrazu

- Obraz nieruchomy JPEG:
 - Wykorzystanie modelu barw YCrCb
 - Zmniejszenie rozdzielczości składowych chrominalnych – ludzie oko jest mniej wrażliwe na niedokładności odwzorowania koloru niż jasności
 - 4:4:4 nie zastosowano redukcji
 - 4:2:2 redukcja zastosowana tylko w poziomie
 - 4:2:0 redukcja zastosowana w poziomie i pionie
 - Cały obraz podzielony na obszary 8x8 pikseli
 - Dyskretna transformata kosinusowa (DCT)

Kodowanie obrazu

- Obraz ruchomy standard MPEG:
 - Bazuje na kodowaniu JPEG (wariant 4:2:0)
 - Wykorzystując fakt, że zwracamy większą uwagę na poruszające się elementy obrazu wprowadzono 3 rodzaje ramek:
 - I frame
 - P frame
 - B frame

Ramki MPEG

Korzyści z zastosowania kompresji

DZIĘKUJĘ ZA UWAGĘ