

- 3.1 结点分析法 Nodal Analysis
- 1.结点分析方程 Nodal Equations
- 2.观察法列写结点分析方程 Nodal Equations by Inspection
- 3.含电源支路的结点分析方程 Nodal Equations with source branch
 - 3.2 网孔分析法 Mesh Analysis
- 1. 网孔分析方程 Mesh Equations
- 2.观察法列写网孔分析方程 Mesh Equations by Inspection
- 3.含电源支路的网孔分析方程 Mesh Equations with source branch

电路分析的一般方法

自标:

- 1. 熟练应用结点分析法。
- 2. 熟练应用网孔分析法。
- 3. 根据电路特点选择最佳分析方法。

- 难点: 1. 含电压源支路电路的结点方程。
 - 2. 含电流源支路电路的网孔方程。

讲授学时: 4

□ 问题的提出

求图示电路中支路电流*i*₁-*i*₆(各支路电压与电流采用关联参考方向)。

可用支路电流法求解电路 (n-1个 KCL方程, b-n+1个KVL方程, 共 b个方程)。

问题:

方程数相对较多(6个方程)

复杂电路难以手工计算

计算机的存储能力与计算能力要求高

 i_2 R_3 73 R_1 i_6

有必要寻找减少列写方程数量的方法。

↓ 问题的提出

目的: 找出求解线性电路的分析方法。

对象: 含独立源、受控源的电阻网络。

应用:主要用于复杂的线性电路的求解。

电路的连接关系——KCL,KVL定律

基础

元件特性——约束关系

3.1 结点分析法 Nodal analysis

- 节点分析法是以各节点的电位作为未知变量来 列写方程(节点方程)。
- 任选一个节点为基准节点(参考节点),且电位恒 取为零。其他节点的电位就是它们与基准节点 之间的电压,称为节点电压。
- 以(n-1)个独立节点的电压为变量列写(n-1)个 独立KCL方程
- 从节点方程求得节点电压以后,再求出各支路 电压和电流。

为什么不用列写KVL方程?

由于电位的单值性,节点电压自动满足KVL方程。

$$(U_{A}-U_{B})+U_{B}-U_{A}=0$$

以节点电压为变量的 KVL自动满足

只需列写以节点电压为变量的KCL方程。

3.1 结点分析法 Nodal analysis

1.结点方程 Nodal equations

$$i_1 = \frac{u_{n1}}{5} - 1$$

$$i_3 = \frac{u_{n1} - u_{n3}}{8} + 2$$

$$i_2 = \frac{u_{n1} - u_{n2} - 3}{3}$$

$$i_4 = \frac{u_{n2} + 2}{4}$$

$$i_5 = \frac{u_{n2} - u_{n3}}{2}$$

$$i_6 = \frac{u_{n3}}{6}$$

$$\left(\frac{u_{n1}}{5} - 1\right) + \left(\frac{u_{n1} - u_{n2} - 3}{3}\right) + \left(\frac{u_{n1} - u_{n3}}{8} + 2\right) = 0$$

$$-\left(\frac{u_{n1} - u_{n2} - 3}{3}\right) + \left(\frac{u_{n2} + 2}{4}\right) + \left(\frac{u_{n2} - u_{n3}}{2}\right) = 0$$

$$-\left(\frac{u_{n1}-u_{n3}}{8}+2\right)-\left(\frac{u_{n2}-u_{n3}}{2}\right)+\left(\frac{u_{n3}}{6}\right)=0$$

3.1 Nodal analysis

1. Nodal equations

$$\left(\frac{1}{5} + \frac{1}{3} + \frac{1}{8}\right)u_{n1} - \frac{1}{3}u_{n2} - \frac{1}{8}u_{n3}$$

$$= 1 + \frac{3}{3} - 2$$

$$-\frac{1}{3}u_{n1} + (\frac{1}{3} + \frac{1}{4} + \frac{1}{2})u_{n2} - \frac{1}{2}u_{n3}$$

$$= -\frac{3}{4} - \frac{2}{4}$$

$$-\frac{1}{8}u_{n1} - \frac{1}{2}u_{n2} + (\frac{1}{8} + \frac{1}{2} + \frac{1}{6})u_{n3}$$

3.1 Nodal analysis

1. Nodal equations

$$\left(\frac{1}{5} + \frac{1}{3} + \frac{1}{8}\right)u_{n1} - \frac{1}{3}u_{n2} - \frac{1}{8}u_{n3}$$

$$= 1 + \frac{3}{3} - 2$$

$$-\frac{1}{3}u_{n1} + (\frac{1}{3} + \frac{1}{4} + \frac{1}{2})u_{n2} - \frac{1}{2}u_{n3}$$

$$= -\frac{3}{2} - \frac{2}{4}$$

$$-\frac{1}{8}u_{n1} - \frac{1}{2}u_{n2} + (\frac{1}{8} + \frac{1}{2} + \frac{1}{6})u_{n3}$$

$$= 2$$

 G_n : conductance matrix

2.快速列写法

$$\left(\frac{1}{5} + \frac{1}{3} + \frac{1}{8}\right)u_{n1} - \frac{1}{3}u_{n2} - \frac{1}{8}u_{n3}$$

$$=1+\frac{3}{3}-2$$

$$-\frac{1}{3}u_{n1} + (\frac{1}{3} + \frac{1}{4} + \frac{1}{2})u_{n2} - \frac{1}{2}u_{n3}$$

$$=-\frac{3}{3}-\frac{2}{4}$$

$$-\frac{1}{8}u_{n1} - \frac{1}{2}u_{n2} + (\frac{1}{8} + \frac{1}{2} + \frac{1}{6})u_{n3}$$

$$= 2$$

$$G_{kk}$$
: Self-conductance ——k结点上各支路电导之和

 G_{ki}^{M} : Mutual-conductance ——k、j结点间支路电导的负值

 i_{snk} : Equivalent nodal current source—流入k结点所有电流源代数和

将上述结论 推广到有*n-*1 个独立节点的 仅含电阻、电 流源的电路

$$G_{11}u_{n1}+G_{12}u_{n2}+...+G_{1n}u_{nn}=i_{Sn1}$$
 $G_{21}u_{n1}+G_{22}u_{n2}+...+G_{2n}u_{nn}=i_{Sn2}$
...
 $G_{n1}u_{n1}+G_{n2}u_{n2}+...+G_{nn}u_{nn}=i_{Snn}$

其中

 G_{ii} —自电导,等于接在节点i上所有支路的电导之和,总为正。

 $G_{ij} = G_{ji}$ — 互电导,等于接在节点i与节点j之间的所支路的电导之和,并冠以负号。

isni — 流入节点i的所有电流源电流的代数和。

* 当电路含受控源时,系数矩阵一般不再为对称阵。

2.快速列写法

Parallel 7-Ω

$$\begin{bmatrix} \frac{1}{3} + \frac{1}{7} + \frac{1}{5} + \frac{1}{8} & -\frac{1}{3} - \frac{1}{7} & -\frac{1}{8} \\ -\frac{1}{3} - \frac{1}{7} & \frac{1}{3} + \frac{1}{7} + \frac{1}{4} + \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{8} & -\frac{1}{2} & \frac{1}{2} + \frac{1}{6} + \frac{1}{8} \end{bmatrix} \begin{bmatrix} u_{n1} \\ u_{n2} \\ u_{n3} \end{bmatrix} = \begin{bmatrix} 1 + \frac{3}{3} - 2 \\ -\frac{3}{3} - \frac{2}{4} \\ u_{n3} \end{bmatrix}$$

2023-10-9 电路理论 12

3. Nodal analysis with source branch

a. With current source branch (电流源支路)

电流源支路 视为电导为 零的诺顿支 路!

3. Nodal analysis with source branch

b. With voltage source branch (电压源支路)

方法1: 电压源支路视为电导 为零的诺顿支路

方法2:不列写电位已知的 结点的方程 2个方程

$$u_{n2} = -2$$

3. Nodal analysis with source branch

b. With voltage source branch (电压源支路)

$$\begin{bmatrix} u_{n1} \\ u_{n2} \\ u_{n3} \end{bmatrix} = \begin{bmatrix} 1 + \frac{3}{3} - 2 \\ -\frac{3}{3} - i_{4} \\ 2 \end{bmatrix}$$

$$u_{n2} = -2$$

3. Nodal analysis with source branches

b. With voltage source branch (电压源支路)

方法1:电压源支路视为电导 为零的诺顿支路

4个方程

方法2: 列写广义结点方程

$$\frac{\left(\frac{1}{5} + \frac{1}{8}\right)u_{n1} + \left(\frac{1}{4} + \frac{1}{2}\right)u_{n2} - \left(\frac{1}{8} + \frac{1}{2}\right)u_{n3}}{1 + \left(\frac{1}{4} + \frac{1}{2}\right)u_{n3}}$$

3个方程

$$u_{n1} - u_{n2} = 3$$

讨论 ——目标1: 结点分析法应用

例1: Obtain the nodal equations.

$$\begin{cases} (3+2+4)U_{n1} - (2+4)U_{n2} = 1-6-16 \\ -(2+4)U_{n1} + (2+4+1)U_{n2} = 16+4U \end{cases}$$

$$U = U_{n1} - U_{n2} + 4$$

讨论 ——目标1: 结点分析法应用

例2: Obtain the nodal equations.

$$\left(\frac{1}{2} + \frac{1}{4} + 0\right)u_{n1} - \frac{1}{2}u_{n2} - \frac{1}{4}u_{n3} = 2 - \frac{8i_1}{4}$$

$$-\frac{1}{4}u_{n1} - \frac{1}{4}u_{n2} + (\frac{1}{4} + \frac{1}{4} + \frac{1}{2})u_{n3} = \frac{8i_1}{4}$$

$$u_{\rm n2} = 4$$
 $i_1 = \frac{1}{2}u_{\rm n3}$

讨论 ——目标1: 结点分析法应用

例3: Obtain the nodal equations.

$$\left(\frac{1}{2} + \frac{1}{4} + 0\right)u_{n1} - \frac{1}{2}u_{n2} - 0u_{n3} = 2 - \frac{8i_1}{4}$$

$$-(\frac{1}{2}+0)u_{n1} + (\frac{1}{4}+\frac{1}{2})u_{n2} + (0+\frac{1}{2})u_{n3} = -2$$

$$u_{\rm n2} - u_{\rm n3} = 4$$
 $i_1 = -\frac{1}{2}u_{\rm n3}$

3.2 网孔分析法Mesh analysis

基本思想:以假想的网孔电流为未知量列写网孔的KVL方程。若网孔电流已求得,则各支路电流可用网孔电流线性组合表示。

选图示的两个独立网孔, 设 网孔电流分别为 i_n 、 i_2 。

支路电流可由网孔电流表出

$$I_1 = i_{11}$$
 $I_2 = i_{12} - i_{11}$ $I_3 = i_{12}$

网孔电流是在独立网孔中闭合的,对每个相关节点均流进一次,流出一次,所以KCL自动满足。若以网孔电流为未知量列方程来求解电路,只需对独立网孔列写KVL方程。

3.4 网孔分析法Mesh analysis i3

1. Mesh currents

$$i_1 = -i_{m1}$$
 $i_2 = i_{m1} - i_{m3}$

$$i_3 = i_{m3}$$
 $i_4 = i_{m1} - i_{m2}$

$$i_5 = i_{m2} - i_{m3}$$
 $i_6 = i_{m2}$

Results of applying KCL

2. Mesh equations

$$[5(i_{m1}-1)+[3(i_{m1}-i_{m3})+3]+[4(i_{m1}-i_{m2})-2]=0$$

$$[4(i_{m2}-i_{m1})+2]+2(i_{m2}-i_{m3})+6i_{m2}=0$$

$$8(i_{m3}-2)+2(i_{m3}-i_{m2})+[3(i_{m3}-i_{m1})-3]=0$$

$$\begin{cases} R_{11}i_{m1} + R_{12}i_{m2} + R_{13}i_{m3} = u_{sm1} \\ R_{21}i_{m1} + R_{22}i_{m2} + R_{23}i_{m3} = u_{sm2} \\ R_{31}i_{m1} + R_{32}i_{m2} + R_{33}i_{m3} = u_{sm3} \end{cases}$$

R_{kk}: 自电阻 Self-resistance

 8Ω

 R_{kj} : 互电阻 Mutual-resistance

u_{smk}: 网孔电压源 Mesh voltage source

2023-10-9

电路理论

 5Ω

21

 6Ω

 R_{kk} : k网孔内各支路电 阻之和(总为正)

 R_{ki} : k、j网孔公共支路 电阻之和(当网孔 电流方向相同时取 正号:否则为负号

 u_{smk} : k网孔内各电压源 代数和(与网孔 绕向反为正)

$$(5+3+4)i_{m1} - 4i_{m2} - 3i_{m3} = 5 \times 1 - 3 + 2$$

$$-4i_{m1} + (4+2+6)i_{m2} - 2i_{m3} = -2$$

$$-3i_{m1} - 2i_{m2} + (8+2+3)i_{m3} = 2 \times 8 + 3$$

2023-10-9

推广到有 / 个网孔 仅含电阻、独立电 压源的电路

$$R_{11}i_{11}+R_{12}i_{12}+...+R_{11}i_{11}=u_{S11}$$

$$R_{21}i_{11}+R_{22}i_{12}+\cdots+R_{21}i_{11}=u_{S12}$$

$$R_{11}i_{11}+R_{12}i_{12}+...+R_{11}i_{11}=u_{S11}$$

其中

 R_{kk} : 第k个网孔的自电阻(为正),k=1, 2, …, 1

 R_{jk} : 第j个网孔 $\begin{cases} + \cdot & \text{ in } C_{jk} \\ - : 流过互阻的两个网孔电流方向相反 \\ 0 : 无关 \end{cases}$

 $\mathbf{u}_{S/k}$: 第k个网孔中所有电压源电压升的代数和。

4. Mesh analysis with source branches

a. With voltage source branch

$$(5+3)$$
 $i_{m1} - 0i_{m2} - 3i_{m3} = 5 \times 1 - 3 + 2$

$$0i_{m1} + (2+6) i_{m2} - 2i_{m3} = -2$$

$$-3i_{m1}-2i_{m2}+(8+2+3)i_{m3}=2\times8+3$$

电压源支路——视为电阻为零的戴维南支路

4. Mesh analysis with source branches

b. With current source branch

•电流源支路——视为电阻为零的 戴维南支路

$$(5+3)$$
 $i_{m1} - 0i_{m2} - 3i_{m3} = 5 \times 1 - 3 - u_4$

$$0i_{m1} + (2+6) i_{m2} - 2i_{m3} = u_4$$

$$-3i_{m1} - 2i_{m2} + (8+2+3)i_{m3} = 2 \times 8 + 3$$

$$i_{\rm m1} - i_{\rm m2} = 4$$
 (4个方程)

$$(5+3)$$
 $i_{m1} + (2+6)i_{m2} - (3+2)i_{m3} = 5 \times 1 - 3$

$$-3i_{m1} - 2i_{m2} + (8+2+3)i_{m3} = 2 \times 8 + 3$$

$$i_{\text{m1}} - i_{\text{m2}} = 4$$

 6Ω

 8Ω

 5Ω

讨论 ——目标2:网孔分析法应用

例4: Obtain the mesh equations.

$$I_{\rm m1} = 2$$

$$-0I_{m1} + (0+4+2)I_{m2} - 4I_{m3} = 4$$

$$-2I_{m1} - 4I_{m2} + (4+4+2)I_{m3} = 8I_1$$

$$I_{\rm 1}=I_{\rm m2}$$

讨论 ——目标2: 网孔分析法应用

例4: Obtain the mesh equations.

网孔分析法:

$$\begin{cases}
i_{m1} - i_{m2} = 4 \\
(5+3) \quad i_{m1} + (2+6)i_{m2} - (3+2)i_{m3} = 5 \times 1 - 3 \\
i_{m3} = 2
\end{cases}$$

讨论 ——目标3: 合理选择分析法

例5: Calculate the power of each source (include the VCCS).

网孔分析法:

$$i_{\rm m1} - i_{\rm m2} = 0.5u$$

$$i_{\rm m3} = 2$$

$$i_{m4} = -1$$

$$(4+2) i_{m1} + (4+2)i_{m2} - (2+4)i_{m3} - 2i_{m4} = 8$$

$$-2i_{m1} - 4i_{m2} + (2+4+6)i_{m3} - 0i_{m4} = -u$$

$$-2i_{m1} - 4i_{m2} + (2+4+6)i_{m3} - 0i_{m4} = -u$$

$$p_{8V} = 8i_{m1}$$
 $p_{2A} = -ui_{m3} = -\left[2(i_{m1} - i_{m3}) + 4(i_{m2} - i_{m3})\right]i_{m3}$

$$p_{0.5u} = -0.5u \left[4 \left(i_{\text{m2}} - i_{\text{m3}} \right) + 2 \left(i_{\text{m2}} - i_{\text{m4}} \right) \right] \qquad p_{1\text{A}} = 1 \times 2 \left(i_{\text{m2}} - i_{\text{m4}} \right)$$

2023-10-9

讨论 ——目标3: 合理选择分析法

例6: Find the power supplies by each independent source.

 $U_{n3} = 69$ 4V

Nodal analysis:

$$\begin{cases} (\frac{1}{2} + \frac{1}{2})U_{n1} - \frac{1}{2}U_{n2} - 0 \cdot U_{n3} = -3U = -3U_{n1} \\ I = -\frac{U_{n2} - 4}{1} = -\frac{6 - 2I - 4}{1} \\ I = 2 \qquad U_{n2} = 2 \qquad U_{n1} = \frac{1}{4} \end{cases} \qquad P_{6V} = 6 \times (\frac{U_{n1}}{2})$$

$$P_{6V} = 6 \times (\frac{U_{n1}}{2})$$

$$P_{4V} = 4 \times I$$

$$P_{1A} = 1 \times U_{n2}$$

$$P_{6V} = 6 \times (\frac{U_{n1}}{2} - 1 - I)$$

$$P_{4V} = 4 \times I$$

$$P_{1A} = 1 \times U_{n2}$$

讨论 ——目标3: 合理选择分析法

例7: Find the current I_1 and the power supplies by the

Mesh analysis:

$$\begin{cases} (3+5)I_{m2} + 1 \times I_{m3} - 5I_{m1} = 50 - 4 & I_1 = 3.5 \\ I_{m3} - I_{m2} = 3I_1 & I_{m2} = 4.5 \\ I_{m2} - I_{m1} = I_1 & I_{m3} = 15 \end{cases}$$

 $P_{1A} = 1 \times (2 \times 1 - 5I_1 + 50)$ $P_{50V} = 50I_1$ $P_{4V} = -4I_{m3}$

节点法、网孔法的比较

(1) 方程数的比较

节点法: n-1

网孔法: b-n+1

选取方程数较少的方法

- (2) 对于非平面电路,网孔法不适用,选独立节点较容易。
- (3) 网孔法、节点法易于编程。目前用计算机分析网络(电网络,集成电路设计等)采用节点法较多。

作业

• 3.3节: 3-7, 3-11, 3-14

• 3.4节: 3-28, 3-30

• 综合: 3-38, 3-40