Series of Common Functions at x = 0:

$$e^{z} = 1 + z + \frac{z^{2}}{2} + \frac{z^{3}}{6} + \cdots$$

$$\sin z = z - \frac{z^{3}}{6} + \frac{z^{5}}{120} - \cdots$$

$$\cos z = 1 - \frac{z^{2}}{2} + \frac{z^{4}}{24} - \frac{z^{6}}{720} + \cdots$$

$$\sinh z = z + \frac{z^{3}}{6} + \frac{z^{5}}{120} + \cdots$$

$$\cosh z = 1 + \frac{z^{2}}{2} + \frac{z^{4}}{24} + \cdots$$

$$\cot z = \frac{1}{z} - \frac{z}{3} + O(z^{3})$$

For expansion at x = a, use Taylor's expansion.

Roots of Common Functions

$$\sin z = 0 \to z = n\pi$$

$$\cos z = 0 \to z = n\pi + \frac{1}{2}\pi$$

$$\sinh z = 0 \to z = n\pi i$$

$$\cosh z = 0 \to \left(n\pi + \frac{1}{2}\pi\right)i$$

$$e^z - 1 = 0 \to z = 2n\pi i$$

$$z^n - 1 = 0 \to z = e^{i\theta} \left(\theta = 0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots, \frac{2(n-1)\pi}{n}\right)$$

Determining Poles

- 1. Identify where the poles may be. (Approximations such as $\sin x \sim x$ might help).
- 2. If $f(z) \to \infty$ but $f(z)(z-z_0)^m \to p$ then take least m to be the "order". (Using Mathematica might be useful.)
- 3. Series Expansion

Residue

Either use series expansion or residue formula.

General residue formula for order *m*:

$$Res_a(f) = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (f(z)(z-a)^m)$$

Residue formula for simple pole where $f = \frac{g}{h}$ (h gives simple pole):

$$Res_a(f) = \frac{g(a)}{h'(a)}$$

Residue Theorem

$$\oint_{\gamma} f(z) dz = 2\pi i \left(\sum_{a \in S} Res_a(f) \right)$$

(For positively oriented curve)

General Strategy for Residue Calculus

When given an integral over $[0,2\pi]$, change trigs to exponential: $\cos t = \frac{z+z^{-1}}{2}$, $\sin t = \frac{z-z^{-1}}{2}$, dz = izdt.

When given an integral over \mathbb{R} , change trigs to exponential: $\cos t$, $\sin t \mapsto e^{iz}$

Jordan's Lemma

 $f: \mathbb{H} \to \mathbb{C}_{\infty}$ meromorphic on \mathbb{H} . Suppose $f(z) \to 0$ as $z \to \infty$ in \mathbb{H} . Then, as $R \to \infty$,

$$\oint_{\gamma_{P}} f(z)e^{i\alpha z}\,dz \to 0$$

(For any $\alpha \in \mathbb{R}^+$. γ_R is the circular arc on \mathbb{H} .)

Epsilon Lemma

 $f:U\to\mathbb{C}$ meromorphic with simple pole at $a\in U$. $\gamma_\epsilon\colon [\alpha,\beta]\to\mathbb{C}$ with $\gamma_\epsilon(t)=a+\epsilon e^{it}$. Then:

$$\lim_{\epsilon \to 0} \oint_{\gamma_{\epsilon}} f(z) dz = Res_{a}(f)(\beta - \alpha)i$$

(BE CAREFUL: FOR CLOCKWISE, need the opposite sign)

(Also, when circumventing zero, $\oint_{-R}^{-\epsilon} = \oint_{\epsilon}^{R}$ for even function.)

Strategy for Choosing Contour

If there is a pole at zero, use a half circular contour, but bypassing the zero.

If there is a branch point, take a keyhole contour bypassing the branch cut (but sometimes previous might be easier.)