V500 Käsekuchenmuffins

Katharina Brägelmann Tobias Janßen katharina.braegelmann@tu-dortmund.de tobias2.janssen@tu-dortmund.de

Durchführung: 22. November 2017, Abgabe: 23. November 2017

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Aufbau und Durchführung	4
4	Auswertung4.1 Einregeln der optimalen Verzögerungszeit4.2 Kalibrierung des Multi-Channel-Analysers4.3 Messung der Lebensdauer	6
5	Diskussion	10

1 Zielsetzung

Hier könnte Ihre Werbung stehen.

2 Theorie

Hier könnte Ihre Werbung stehen.

3 Aufbau und Durchführung

Hier könnte Ihre Werbung stehen.

4 Auswertung

4.1 Einregeln der optimalen Verzögerungszeit

Da die Leitungen von den SEV zur Koinzidenzschaltung nicht zwingend gleich schnell sind, wird die Verzögerung zwischen den beiden Seiten optimiert. Die Verzögerungszeit kann in beiden Leitungen separat erhöht werden, indem Kabel mit definierten Verzögerungen zugeschaltet werden. Eine Verzögerung bei der einen Kabelleitung bewirkt eine relative 'Beschleunigung' der anderen Kabelleitung. Die Zählrate N wird in Abhängigkeit verschiedener Verzögerungszeiten $T_{\rm VZ}$ gemessen (Tabelle 1, Abbildung 1).

OD 1 11	1 N.F. 1 .	O	1 17 "	• 1 TZ 1 1
Labelle	1. Messdaten	zur ()ntımıerur	g der Verzogeri	ingszeit der Kabel
T CO CITC	I. IVIODOGGUUCII	Zui Opuilliuu ui.	S GOT VOLDOSOFO	digizati dei itabei

$T_{\rm VZ}/10^{-9}s$	N	$T_{\rm VZ}/10^{-9} s$	N
-32	2	-2	227
-30	8	0	208
-28	15	2	216
-26	55	4	217
-24	75	6	214
-22	141	8	212
-20	168	10	200
-18	185	12	194
-16	198	14	189
-14	196	16	161
-12	180	18	97
-10	214	20	84
-8	189	22	38
-6	189	24	4
-4	197	-	-

Es wird eine Ausgleichsrechnung der Form

$$N = -a \left(T_{\rm VZ} + \Delta T_{\rm VZ} \right)^4 + N_{\rm max}$$

mit Python 3.6.3 vorgenommen. Die Parameter ergeben sich zu

$$\begin{array}{ll} a = & (4,8215 \pm 0,2361) \cdot 10^{32} \, \frac{1}{\mathrm{s}^4} \\ \Delta T_{\mathrm{VZ}} = & (2,0854 \pm 0,2292) \cdot 10^{-9} \, \mathrm{s} \\ N_{\mathrm{max}} = & 208,0012 \pm 3,5037. \end{array}$$

Dabei beschreibt $\Delta T_{\rm VZ}$ die seitliche Verschiebung des Maximums und damit den Wert, der fortan als Verzögerung der Leitung gewählt wird. Damit sind die Signale aus den SEV annähernd gleichzeitig an der Koinzidenzschaltung. $N_{\rm max}$ ist die berechete maximale

Abbildung 1: Optimierung der Verzögerungszeit: Verzögerungszeit $T_{\rm VZ}$ gegen die Zählrate N

Zählrate.

Desweiteren wird die Halbwertsbreite der Zählrate bestimmt. Die Halbwertsbreite ist im Diagramm durch eine Konstante bei $\frac{N_{\rm max}}{2}=104{,}0006$ dargestellt. Die Halbwertsbreite wird als

$$w_{\mathrm{N/2}} = 42.7 \cdot 10^{-9} \, \mathrm{s}$$

genähert.

4.2 Kalibrierung des Multi-Channel-Analysers

Um vom Channel des Multi-Channel-Analysers auf die zugehörige Zeit zwischen den Impulsen schließen zu können, wird der Multi-Channel-Analyser kalibriert. Die Channel werden in Abhängigkeit des zeitlichen Abstands der Signale vom Doppelimpulsgenerator gemessen (Tabelle 2, Abbildung 2).

Die lineare Regression hat die Form

$$\Delta t = b \cdot C + \Delta t_0$$

Tabelle 2: Messdaten zu Kalibrierung des Multi-Channel-Analysers

Channel	Δ t /10 ^{-9}s	Channel	Δ t $/10^{-9}s$
24	1407	247	1680
46	1561	270	1555
69	1400	292	1608
91	1294	315	1384
113	1298	337	1952
136	1034	359	1880
158	1502	382	2008
180	1336	404	2088
203	1700	427	2024
225	1644	445	3384

Abbildung 2: Kalibrierung des Multi-Channel-Analysers: Zeitlicher Abstand des Doppelimpulses Δ t gegen den zugehörigen Channel

und ergibt die folgenden Parameter:

$$b = (2,2341 \pm 0,0013) \cdot 10^{-11} \frac{\text{s}}{\text{Channel}}$$

$$\Delta t_0 = (-3,0805 \pm 0,3453) \cdot 10^{-11} \text{ s}.$$

Mit diesen b und Δt_0 wird im folgenden aus dem Channel die jeweilige Lebensdauer berechnet.

4.3 Messung der Lebensdauer

Die Messdaten zur Lebensdauern der Myonen sind in Abbildung 3 aufgetragen. Die

Abbildung 3: Häufigkeit der Myonenzerfälle in Abhängigkeit ihrer Lebensdauer

Ausgleichsrechnung der Form

$$N = N_0 \exp\left(-\lambda t\right) + U_{0,\exp}$$

bringt die Parameter

$$\begin{split} N_0 = & 51,\!8101 \pm 0,\!9677 \\ \lambda = & (0,\!528\,20 \pm 0,\!018\,64) \cdot 10^9\,\frac{1}{\mathrm{s}} \\ U_{0,\mathrm{exp}} = & 0,\!7406 \pm 0,\!3145. \end{split}$$

Aus dem Parameter λ wird die Lebensdauer τ bestimmt:

$$\tau_{\rm exp} = \frac{1}{\lambda} = 1{,}8932 \cdot 10^{-9} \, {\rm s}.$$

Der Parameter $U_{0,exp}$ entspricht der gemessenen Untergrundrate. Die Untergrundrate wird auch auf anderem Weg berechnet. Hier werden weitere Größen der Messung benötigt:

$T_{ m G} =$	Gesamte Messzeit
$T_{ m S} =$	Suchzeit
$N_{ m Start} =$	Zählrate Start
$N_{ m Stop} =$	Zählrate Stop

Hierzu wird berechnet, wie viele Myonen $N_{\rm S}$ pro Suchzeit $T_{\rm S}$ in die Apparatur kommen:

$$N_{\rm S} = T_{\rm S} \frac{N_{\rm Start} \pm \sqrt{N_{\rm Start}}}{T_{\rm G}}. \label{eq:NS}$$

Mit dieser Zählrate wird die Wahrscheinlichkeit P berechnet, dass sich genau ein Myon in der Apparatur befindet.

$$P(1) = N_{\rm S} \exp\left(-N_{\rm S}\right)$$

Die Untergrundrate berechnet sich dann durch

$$U_{0, \rm theo} = P(1) \frac{N_{\rm Start} \pm \sqrt{N_{\rm Start}}}{\#Channel}$$

5 Diskussion

Relative Abweichung

$$f = \frac{x_{\rm exp} - x_{\rm theo}}{x_{\rm theo}}$$

Lebensdauer

$$\tau_{\rm exp} = 1,8932 \cdot 10^{-9} \, \mathrm{s}$$

$$\tau_{\rm theo} = \, \mathrm{s}$$

$$f_{\tau} = \, \%$$

FEHLT FEHLT FEHLT

Untergrundrate

$$U_{0,\mathrm{exp}} = 0,7406 \pm 0,3145$$

$$U_{0,\mathrm{theo}} = f_{\mathrm{U}} = \%$$

FEHLT FEHLT FEHLT