

<u>Help</u>

sandipan_dey ~

Discussion <u>Course</u> **Progress** <u>Dates</u> <u>Calendar</u> <u>Notes</u>

☆ Course / Unit 4: Matrices and Linearization / Recitation 13: Matrices

(1)

Next >

2. Rotations □ Bookmark this page

< Previous</pre>

Recitation due Sep 15, 2021 20:30 IST

Practice

Rotate a Vector

1/1 point (graded)

Recall:The rotation matrix
$$R_{ heta} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}$$
 .

Find a two-dimensional vector v such that the angle between v and the vector $igg(rac{1}{2}igg)$ is 30° . There is more than one possible answer.

(Enter a vector using notation such as [a,b].)

? INPUT HELP

Solution:

We have
$$v=R_{rac{\pi}{6}}\left(rac{1}{2}
ight)=\left(rac{\sqrt{3}/2-1}{\sqrt{3}+1/2}
ight)$$
 .

It would also be correct to answer $R_{rac{-\pi}{6}}v=\left(rac{\sqrt{3}/2+1}{\sqrt{3}-1/2}
ight)$, or any scalar multiple of these.

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

Rotate twice

1/1 point (graded)

Let
$$M_1=R_{rac{\pi}{3}}$$
 and $M_2=R_{rac{\pi}{6}}$. Find the matrix product M_1M_2 .

(Enter a matrix using notation such as [[a,b],[c,d]].)

? INPUT HELP

Solution:

$$M_1 M_2 = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
 . This is $R_{rac{\pi}{2}}$.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Rotating Complementary Angles

1/1 point (graded)

Suppose θ and ϕ are complementary angles, that is, two angles such that $\theta+\phi=\frac{\pi}{2}$. Compute the product $R_{\theta}R_{\phi}$. Your answer should not involve θ or ϕ .

(Enter a matrix using notation such as [[a,b],[c,d]].)

$$R_{ heta}R_{\phi}= oxed{[[0,-1],[1,0]]}$$
 $ightharpoonup$ Answer: $[[0,-1],[1,0]]$

? INPUT HELP

Solution:

The product
$$R_{ heta}R_{\phi}=R_{ heta+\phi}=R_{rac{\pi}{2}}=egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
 .

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Power of rotation

1/1 point (graded)

Let $M=R_{rac{\pi}{4}}$. What is the smallest value of k>0 such that $M^k=I$?

Solution:

The product $R_{\theta}R_{\phi}=R_{\theta+\phi}$. It takes 8 rotations by $\pi/4$ to come back to the start. Therefore k=8, or any integer multiple of 8.

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

2. Rotations

Hide Discussion

Topic: Unit 4: Matrices and Linearization / 2. Rotations

Add a Post

Previous

Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

