Addressing and Forwarding

Kameswari Chebrolu

All the figures used as part of the slides are either self created or from the public domain with either 'creative commons' or 'public domain dedication' licensing. The public sites from which some of the figures have been picked include: http://commons.wikimedia.org (Wikipedia, Wikimedia and workbooks); http://www.sxc.hu and http://www.sxc.hu and http://www.sxc.hu and <a href="http://ww

Problem Statement

- Flat Addressing: N hosts needs N entries in the table (MAC addresses)
- Millions of hosts, address lookup in forwarding becomes a bottleneck
- Need a method of reducing entries in the forwarding table for scalability purposes

	MAC	here forw	arding table have to incl	ude all the people in the wo	rld
	$\boldsymbol{\jmath}$				
Vijay, son of Aja	y, grandson of Sa		Air In	dia flight	
Rink', doughter of	Pinti, grandangle	te of Dinky	Air	India flight	
		here w	e just need to include tth	e countries in the world	
	**	\rightarrow	(st of countries		
India Humbai, Por India, Delhi, Dwo	wai, B-4, Vijay		India -	Air India flig	W
India Delhi, Dwa	maka, D-16, Rinki				
	t e		1		
	•		!		
	· ·				
	•				

Solution: Hierarchical Addressing

- Structure to addresses: Address captures location in the network topology
- IP address (32 bits) consists of two parts: network and host
 - Network part identifies the network to which host is connected
 - Host part uniquely identifies each host in the network
- How does this help?

 - An entire network (in some specific direction) could be represented by a single entry at a router

IP Address

- Size of network and host part are not the same
- Organizations obtain set of addresses of a given class
- 2 = 128 • Divided into five classes Class A: 0, network(7), host(24); Mask 8
 - 31615
- Class B: 10, network(14), host(16); Mask 16
- Class C:110, network(21), host(8); Mask 24 - Class D: 1110, bits-28 (Multicast)
- Class E: 1111, bits 28 (Reserved)

IP Address

if u have a packet with desrination addr as private adress.. it will not be routed it will be dropped in public internet

· Private IP addresses:

- A: 10.0.0.0 through 10.255.255.255
- B: 172.16.0.0 through 172.31.0.0

- C: 192.168.0.0 through 192.168.255.0.
- 127.0.0.1 is loopback address.

communicate between processes in a host

Points to Note

- Every datagram contains <u>IP address of destination</u> host
- Network part of IP address uniquely identifies a single physical network
- All nodes that share the same network part are connected to the same physical network
- Every physical network has at least one <u>router</u> that is connected to at least one other physical network.

Forwarding at Host

HOSTA

Route

extended LAN, or swithched network... all are part of the same

• If (NetNum of Dest = my NetNum) then

HOSTB

- deliver packet to destination directly
- use ARP to get MAC address corresponding to dest
 IP address

Else deliver packet to default router

 use ARP to get MAC address corresponding to router IP address

Route des

Linux Usage

giving weights to paths/interfaces.. it forces to use eth0 over eth1

kameswari@aster		mask says how many bits o	orrespond				
Kernel IP routin	ng table	to network portion		weight to	path		
Destination 🧖	Gateway	Genmask	Flags	weight to Metric	Ref	Use	Iface
10.129.0.0	*	255.255.0.0 see 1st	U	1	0	0	eth0/
link-local	*	255.255.0.0 ^{2 bytes}	U	1000	0	0	eth0
default	router.it.iitb.	0.0.0.0	UG	0	0	0	eth0
kameswari@aster		ı	J path act	rive			
kameswari@aster			+going via ga	teway			
kameswari@aster							
Kernel IP routin	ng table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
10 129 0.0	0.0.0.0	255.255.0.0	U	1	0	0	eth0
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0	eth0
0.0.0.0	10.129.250.1	0.0.0.0	UG	0	0	0	eth0
kameswari@aster	ix:~\$						

Windows Usage

	IP∪4 Route Table					
	Active Routes:					
	Network Destination	Netmask	Gateway	Interface	Metric	
	0.0.0.0	0.0.0.0	10.129.250.1	10.129.154.135	40	
	10.129.128.0 سين	255.255.128.0	On-link	10.129.154.135	296	
11,	→ 10.129.154.135 <i>i</i>	255 . 255 . 255 . 255	On-link	10.129.154.135	296	
ن لات	10 . 129 . 255 . 255	255 . 255 . 255 . 255	On-link	10.129.154.135	296	
.,	127.0.0.0	255.0.0.0	On-link	127.0.0.1	306	
	127.0.0.1	255 . 255 . 255 . 255	On-link	127.0.0.1	306	
	<u></u>	255 . 255 . 255 . 255	On-link	127.0.0.1	306	
	224.0.0.0	240.0.0.0	On-link	127.0.0.1	306	
, 6	224.0.0.0	240.0.0.0	On-link	10.129.154.135	296	
	** 255 . 255 . 255 . 255	255 . 255 . 255 . 255	On-link	127.0.0.1	306	
10	255.255.255.255	255 . 255 . 255 . 255	On-link	10.129.154.135	296	
	=======================================		=======================================		======	

Obtained via "route print" command

Forwarding at Router

- If (NetNum of <u>Dest</u> = NetNum of one of my interfaces) then
 - deliver packet to destination over that interface

Else if (NetNum of Dest is in my forwarding table) then

deliver packet to NextHop router

Else deliver packet to default router

Summary

- Top concern: Scalability
- Handled via hierarchical addressing
 - IP address has a network and a host part
 - Significantly reduces entries in forwarding table
- Looked at how forwarding is done at host and router based on the addressing scheme
- Ahead: Address assignment inefficiency