What determines the home-price in Korean Housing Market?

Siwon Ryu, Yeong Mi Jeong

May 16, 2018

Outline

- 1. Motivation and Goal
- 2. Literature review
- 3. Data
- 4. Double selection method(Belloni at al.(2014))
- 5. Preliminary result
- 6. Reference

Motivation and Goal

- Finding factors determining home-price in Korean Housing Market using Machine Learning technique.
 - Factors:
 Dependence on neighborhood, Cross-sectional dependency,
 Policy Change, Construction business fluctuation, Regime change, Natural disaster, Fluctuation on local business,...
- Try various ML techniques and compare each results when finding factors.
 - Support Vector machine, Elastic Lasso, LAR, and so on.

Literature review (1)

- Fan et al.(2011)
 - High-dimensional problem arises easily from VAR models. A p-dimensional time seires with d lags gives $d \cdot p^2$ autoregressive parameters.
 - Let y_t^i be the home-price appreciation(HPA) in county i. Set forecasting model as follows

$$y_{t+s}^i = \sum_{j=1}^p b_{ij} y_t^j + X_t \beta_i + \varepsilon_{t+s}^i, \qquad i = 1, \cdots, p$$

Estimate the model of each city

$$\min_{\{b_{ij},\beta_i\}} \quad \sum_{t=1}^{T-s} \left(y_{t+s}^i - \sum_{j=1}^p b_{ij} y_t^j - X_t \beta_i \right)^2 + \lambda \sum_{j=1}^N w_{ij} p_{\lambda}(|b_{ij}|)$$

where p() is penalty, w_{ij} are weights chosen according to the geographical distances between counties.

- Literature review (2)
 왕세종(2004): Test Geweke, and Granger causality between regions by using VAR model.
 - Pre currency crisis periods

Post currency crisis periods

Literature review (3)

• 박해선(2014) : Test contemporaneous causality by using DAG method.

Data

- Real Apartment-Transaction Data of Ministry of Land, Infrastructure and Transport.
 - The data includes address, area, transaction price, transaction date.
- Home price index Statistics Korea.
- Analysis period : 2006.01 \sim 2017.12
- Macro economic data : GDP, BOK basemoney rate BOK economic statistics system.
- Dummy variables of Policy period, and period of government.

Double selection method(Belloni at al.(2014))

First stage
 In the first step, we select a set of control variables that are useful for predicting the treatment d_i

$$d_i = m(z_i) + v_i \rightarrow \hat{l}_1$$
 : selected control terms

• Second stage In the second step, we select additional variables by selecting control variables that predict y_i

$$y_i = d_i \alpha_0 + g(z_i) + \zeta_i \rightarrow \hat{l}_2$$
: selected control terms

Preliminary result (1)

• First stage

Preliminary result (2)

Preliminary result (3)

Parameter DF Estimate S	Standard Error	Parameter t Value	Estimates Parameter	DF	Estimate	Ctandand	4 1/-1
Parameter DF Estimate S	Error	t Value	Parameter	DF	Ectimate	Canadana	4 M-1
					Estimate	Standard	t Value
	0.74544					Error	
Intercept 1 -4.149055	0.71541	-5.8	log_lm39	1	1.806263	0.221678	8.15
log_lm1 1 0.553774	0.068343	8.1	log_lm45	1	-0.489084	0.114433	-4.27
log_lm3 1 -0.869642	0.17579	-4.95	log_lm48	1	0.558536	0.212499	2.63
log_lm7 1 1.414009	0.289088	4.89	log_lm58	1	-0.537759	0.121984	-4.41
log_lm9 1 -1.193436	0.266656	-4.48	log_lm67	1	0.461882	0.155833	2.96
log_lm10 1 0.605386	0.172898	3.5	log_lm73	1	0.467901	0.131402	3.56
log_lm13 1 -0.718483	0.149074	-4.82	log_lm78	1	1.200275	0.205546	5.84
log_lm15 1 0.333051	0.197573	1.69	log_lm79	1	1.013621	0.20667	4.9
log_lm17 1 1.129545	0.164851	6.85	log_lm81	1	-0.976032	0.162091	-6.02
log_lm20 1 -0.197904	0.135321	-1.46	log_lm82	1	0.288946	0.150045	1.93
log_lm23 1 0.426274	0.114875	3.71	log_lm85	1	-0.531579	0.135944	-3.91
log_lm29 1 -0.532185	0.122584	-4.34	log_lm87	1	0.974148	0.197617	4.93
log_lm31 1 -0.774942	0.151994	-5.1	log_lm91	1	0.474927	0.124896	3.8
log_lm33 1 -1.079304	0.23172	-4.66	log_lm92	1	-1.25638	0.138379	-9.08
log_lm37 1 -0.388103	0.088038	-4.41	log_lm98	1	-0.848266	0.287318	-2.95
log_lm38 1 -0.643703	0.211903	-3.04	log_lm100	1	1.22315	0.248635	4.92

Preliminary result (4)

• Second stage

Preliminary result (5)

Preliminary result (6)

Parameter Estimates								
Parameter	DF	Estimate	Standard	t Value				
			Error					
Intercept	1	-3.10884	1.102335	-2.82				
log_lm3	1	1.845182	0.491501	3.75				
log_lm7	1	-0.957	0.445988	-2.15				
log_lm36	1	0.563708	0.18215	3.09				
log_lm75	1	-0.77363	0.501398	-1.54				

Preliminary result (7)

• Third stage

Parameter Estimates					Parameter Estimates						
Variable DF	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variable	DF	Parameter Estimate	Standard	t Value	Pr > t
									Error		
Intercept	1	-3.92568	0.8102	-4.85	<.0001	log_lm45	1	-0.50149	0.11693	-4.29	<.000
I1pols21	1	-0.01611	0.00871	-1.85	0.0677	log_lm48	1	0.51551	0.2312	2.23	0.0283
log_lm1	1	0.56194	0.06947	8.09	<.0001	log_lm58	1	-0.56976	0.12549	-4.54	<.000
log_lm3	1	-0.83379	0.22179	-3.76	0.0003	log_lm67	1	0.50916	0.165	3.09	0.0027
log_lm7	1	1.43249	0.30619	4.68	<.0001	log_lm73	1	0.46143	0.13632	3.38	0.0011
log_lm9	1	-1.21129	0.29001	-4.18	<.0001	log_lm78	1	1.19552	0.20585	5.81	<.000
log_lm10	1	0.58143	0.18478	3.15	0.0023	log_lm79	1	1.08692	0.20938	5.19	<.000
log_lm13	1	-0.7071	0.16159	-4.38	<.0001	log_lm81	1	-0.98338	0.16923	-5.81	<.000
log_lm15	1	0.37033	0.19976	1.85	0.0671	log_lm82	1	0.318	0.15991	1.99	0.0499
log_lm17	1	1.1582	0.16999	6.81	<.0001	log_lm85	1	-0.61665	0.14259	-4.32	<.000
log_lm20	1	-0.2428	0.14093	-1.72	0.0884	log_lm87	1	1.02047	0.21704	4.7	<.000
log_lm23	1	0.4085	0.11765	3.47	0.0008	log_lm91	1	0.51866	0.12998	3.99	0.000
log_lm29	1	-0.53046	0.14384	-3.69	0.0004	log_lm92	1	-1.25151	0.14228	-8.8	<.000
log_lm31	1	-0.75008	0.16018	-4.68	<.0001	log_lm98	1	-0.85817	0.29335	-2.93	0.0044
log_lm33	1	-0.97899	0.25738	-3.8	0.0003	log_lm100	1	1.06742	0.27684	3.86	0.0002
log_lm37	1	-0.40976	0.1234	-3.32	0.0013	log_lm36	1	-0.00996	0.10407	-0.1	0.924
log_lm38	1	-0.63789	0.23356	-2.73	0.0076	log_lm75	1	-0.11068	0.1626	-0.68	0.4979
log_lm39	1	1.84215	0.2588	7.12	<.0001						

Reference

- Sparse high-dimensional models in economics, Fan, J., Lv, J., and Qi, L. (2011), *Annual Review of Economics*.
- Dynamic Factor Models, James H. Stock, and Mark W. Watson(2010)
- 주택 가격의 지역간 상관 관계 분석 연구 : 수도권의 아파트 가격을 중심으로, 왕세종, 강민석(2004)
- 주택가격의 지역간 상호의존성에 관한 연구 : 서울지역 아파트 매매가격을 중심으로, 박해선, 김승년(2014)