Физические законы, формулы, переменные	Формулы механики
Скорость мгновенная:	$_{\vec{r}}$ $d\vec{r}$
где r - радиус-вектор материальной точки,	$\vec{v} = \frac{d\vec{r}}{dt}$
t - время;	
$\dfrac{d \vec{r}}{dt}$ - производная радиус-вектора материальной точки по времени.	
Модуль вектора скорости:	$v = \frac{ds}{dt}$
где s - расстояние вдоль траектории движения (путь)	dt
Скорость средняя (модуль):	$< v > = \frac{\Delta s}{\Delta t},$
	$\Delta \mathbf{s} = \mathbf{s}_2 - \mathbf{s}_1,$
	$\Delta \mathbf{s} = \mathbf{s}_2 - \mathbf{s}_1$, $\Delta \mathbf{t} = \mathbf{t}_2 - \mathbf{t}_1$.
Ускорение мгновенное:	$\vec{a} = \frac{d\vec{v}}{dt}$
Модуль вектора ускорения при прямолинейном движении:	$a = \frac{dv}{dt}$

Ускорение при криволинейном движении:	\mathbf{v}^2
1) нормальное	$a_n = \frac{v}{R}$
где R - радиус кривизны траектории,	
2) тангенциальное	$\mathbf{a}_{\tau} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{t}}$
3) полное (вектор)	dt
4) (модуль)	3) $\vec{\mathbf{a}} = \vec{\mathbf{a}}_{\mathrm{n}} + \vec{\mathbf{a}}_{\mathrm{\tau}}$
	4) $a = \sqrt{a_n^2 + a_\tau^2}$
Скорость и путь при движении:	v = const, $s = vt$
1) равномерном	
2) равнопеременном	$v = v_0 + at, s = v_0 t + \frac{at^2}{2}$
V ₀ - начальная скорость;	2
а > 0 при равноускоренном движении;	
а < 0 при равнозамедленном движении.	
Угловая скорость:	dφ
где ф - угловое перемещение.	$\omega = \frac{\tau}{dt}$

Угловое ускорение:	$\epsilon = \frac{d\omega}{dt}$
Связь между линейными и угловыми величинами:	$s = \phi R$, $v = \omega R$,
	$a_{\tau} = \varepsilon R, a_{n} = \omega^{2} R.$
Импульс материальной точки:	$\vec{p}=m\vec{v}$
где m - масса материальной точки.	
Основное уравнение динамики поступательного движения (II закон Ньютона): $\vec{F} = \sum_{i=1}^N \vec{F}_i$ где F - результирующая сила	$ec{\mathbf{F}} = rac{dec{\mathbf{p}}}{dt},$ $ec{\mathbf{F}} = \mathbf{m} ec{\mathbf{a}},$
где F - результирующая сила, i=1 <>	
Формулы сил:	P = mg
тяжестиР	
где g - <u>ускорение свободного падения</u>	${ m F}_{_{{ m T}{ m p}}}=\mu{ m N}$
трения Етр	*P
где µ - коэффициент трения,	$\mathbf{F} = -\mathbf{k}\mathbf{A}\mathbf{y}$
N - сила нормального давления,	$\mathbf{F}_{\mathrm{ymp}} = -\mathbf{k}\mathbf{\Delta}\mathbf{x}$
упругости	

где k - коэффициент упругости (жесткости),	
Δх - деформация (изменение длины тела).	
Закон сохранения импульса для замкнутой системы, состоящей из двух тел:	$\mathbf{m}_{1}\vec{\mathbf{v}}_{1} + \mathbf{m}_{2}\vec{\mathbf{v}}_{2} = \mathbf{m}_{1}\vec{\mathbf{u}}_{1} + \mathbf{m}_{2}\vec{\mathbf{u}}_{2}$
где $\vec{\mathbf{v}}_1$ H $\vec{\mathbf{v}}_2$ - скорости тел до взаимодействия;	
$ec{\mathbf{u}}_1$ н $ec{\mathbf{u}}_2$ - скорости тел после взаимодействия.	
Потенциальная энергия тела:	$W_{\pi} = mgh$
1) поднятого над Землей на высоту h	
2) упругодеформированного	1) $W_{\pi} = mgh$ $W_{\pi} = \frac{k(\Delta x)^{2}}{2}$
Кинетическая энергия поступательного движения:	$W_{\kappa} = \frac{mv^2}{2}$
Работа постоянной силы:	$A = F\Delta s \cos \alpha$
где α - угол между направлением силы и направлением перемещения.	
Полная механическая энергия:	$W = W_{\kappa} + W_{\pi}$
Закон сохранения энергии:	$\mathbf{W}_1 = \mathbf{W}_2$
силы консервативны	$A = \Delta W$, $\Delta W = W_2 - W_1$

силы неконсервативны	
где W ₁ - энергия системы тел в начальном состоянии;	
W ₂ - энергия системы тел в конечном состоянии.	
Момент инерции тел массой m относительно оси, проходящей через центр	1) $I_0 = mR^2$
инерции (центр масс):	$\mathbf{r}_0 = \mathbf{r}_0$
1) тонкостенного цилиндра (обруча)	$I_0 = \frac{1}{2} mR^2$
где R - радиус,	2
2) сплошного цилиндра (диска)	. 2
3) шара	$I_0 = \frac{2}{5} mR^2$
4) стержня длиной I, если ось вращения перпендикулярна стержню и проходит	_
через его середину	$\mathbf{I}_0 = \frac{1}{12} \mathbf{m} l^2$
Момент инерции тела относительно произвольной оси (теорема Штейнера):	$I = I_0 + md^2$
${ m I}_{0}$ - момент инерции тела относительно оси, проходящей через центр	
масс, d - расстояние между осями.	
Момент силы(модуль):	$\mathbf{M} = \mathbf{F}l$
где I - плечо силы.	
Основное уравнение динамики вращательного движения: где $\vec{\epsilon}$ - угловое ускорение,	$ec{\mathbf{M}} = \mathbf{I} ec{\mathbf{\epsilon}}$
- J Boo Jonopolino,	

${f M}_{\ ext{-}}$ результирующий момент сил.	
Момент импульса:	L = mvr
1) материальной точки относительно неподвижной точки	
где r - плечо импульса,	$_{2)}$ $L = I\omega$
2) твердого тела относительно неподвижной оси вращения	
Закон сохранения момента импульса: где L ₁ - момент импульса системы в начальном состоянии, L ₂ - момент импульса системы в конечном состоянии.	$\overline{ extbf{L}}_1 = \vec{ extbf{L}}_2$
Кинетическая энергия вращательного движения:	$W_{_{\rm K}}=rac{I\omega^2}{2}$
Работа при вращательном движении	$A = M\Delta \phi$
где Δφ - изменение угла поворота.	·
Физические законы, формулы, переменные	Формулы колебания и волны
Уравнение гармонических колебаний:	$x = A\cos(\omega t + \alpha)$ или
где х - смещение (отклонение) колеблющейся величины от положения	$x = A \sin(\omega t + \alpha),$
равновесия;	, , , ,
А - амплитуда;	
ω - круговая (циклическая) частота;	
t - время;	

α - начальная фаза;	
(ωt+α) - фаза.	
Связь между периодом и круговой частотой:	$T=rac{2\pi}{\omega}$
Частота:	$ u = \frac{1}{T} $
Связь круговой частоты с частотой:	$\omega = 2\pi v$
Периоды собственных колебаний	
1) пружинного маятника:	
где k - жесткость пружины;	$\frac{1}{m}$
2) математического маятника:	$T_0 = 2\pi \sqrt{rac{m}{k}}$
где I - длина маятника,	V X
g - ускорение свободного падения;	2) 1
3) колебательного контура:	$T_0 = 2\pi \sqrt{\frac{l}{g}}$
где L - индуктивность контура,	√g
С - емкость конденсатора.	
	$T_0 = 2\pi\sqrt{LC}$

Частота собственных колебаний:	$\omega_0 = rac{2\pi}{T_0}$
Сложение колебаний одинаковой частоты и направления: 1) амплитуда результирующего колебания где A1 и A2 - амплитуды составляющих колебаний, α1 и α2 - начальные фазы составляющих колебаний; 2) начальная фаза результирующего колебания	1) $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos(\alpha_1 - \alpha_2)}$ 2) $\varphi = \arctan \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$
Уравнение затухающих колебаний: e = 2,71 основание натуральных логарифмов.	$x = A_0 e^{-\beta t} \cos(\omega t + \alpha)$
Амплитуда затухающих колебаний: где A0 - амплитуда в начальный момент времени; β - коэффициент затухания; t - время.	$X = A_0 e^{-\beta t} \cos(\omega t + \alpha)$ $A = A_0 e^{-\beta t}$
Коэффициент затухания: колеблющегося тела где r - коэффициент сопротивления среды, m - масса тела; колебательного контура где R - активное сопротивление,	$\beta = \frac{r}{2m}$ $\beta = \frac{R}{2L}$

L - индуктивность контура.	
Частота затухающих колебаний ω:	$\omega = \sqrt{\omega_0^2 - \beta^2}$
Период затухающих колебаний Т:	$T=\frac{2\pi}{\sqrt{\omega_0^2-\beta^2}}$
Логарифмический декремент затухания:	$\chi = \ln \frac{A(t)}{A(t+T)}$
Связь логарифмического декремента χ и коэффициента затухания β:	$\chi = \beta T$
Амплитуда вынужденных колебаний где ω - частота вынужденных колебаний, fo - приведенная амплитуда вынуждающей силы,	$A = \frac{f_o}{\sqrt{(\omega_o^2 - \omega^2) + 4\beta^2 \omega^2}}$
при механических колебаниях:	$f_{\circ} = \frac{F_{\circ}}{m}$
	$\mathbf{f}_{o} = \frac{\mathbf{U}_{m}}{\mathbf{L}}$
Резонансная частота	$\omega_{\rm p} = \sqrt{\omega_{\rm o}^2 - 2\beta^2}$

Резонансная амплитуда	$A_{\rm p} = \frac{f_{\rm o}}{2\beta\sqrt{\omega_{\rm o}^2 - \beta^2}}$
Полная энергия колебаний:	$W = \frac{1}{2} mA^2 \omega^2$
Уравнение плоской волны: где ξ - смещение точек среды с координатой x в момент времени t; k - волновое число:	$\xi = A\cos(\omega t - kx)$ или $\xi = A\sin(\omega t - kx)$,
Длина волны:	$k = \frac{2\pi}{\lambda}$ $\lambda = vT$
где v скорость распространения колебаний в среде, Т - период колебаний.	
Связь разности фаз $\Delta \phi$ колебаний двух точек среды с расстоянием Δx между точками среды:	$\mathbf{\Delta} \boldsymbol{\varphi} = \frac{2\pi}{\lambda} \mathbf{\Delta} \mathbf{x}$