Part 1 Formal Grammars and Relations What is a Formal Grammar?

Defining formal grammars

- We have our alphabet Σ , the elements of which we call terminal symbols (and often use $\{a, b, c, \dots\}$).
- We have a disjoint set of symbols N, the elements of which we call non-terminal symbols (and often use capital letters). $\{S,T,X,V,W\}$
- There is a special start symbol $S \in \Gamma$.
- Σ^* refers to the set of all possible strings that can be made with the alphabet
- $(\Sigma \cup \mathcal{N})^*$ refers to the set of all possible words that can be made
- A grammar then is a finite list of pairs (u, w) with $u, w \in (\Sigma \cup N)^*$ (called production rules, and often written $u \to w$).

A simple grammar example

Let $\Sigma = \{a, b\}, N = \{S, T\}$ and the production rules be

- ullet S oarepsilon
- ullet S o aT
- ullet T o bS

The resulting language is:

$$(ab)^n|n\in\mathbb{N}=\{arepsilon,ab,abab,ababab,\dots\}$$

 ϵ is the empty word

How a formal grammar defines a language

Definition

A grammar G defines a language $L(G) \subseteq \Sigma^*$ by saying that $t \in L(G)$ if we can reach t with the following process:

1. Start with S.

- 2. Write our current word as v_0uv_1 , and pick a rule (u,w). Then replace the current word by v_0wv_1 .
- 3. If the current word is t, stop, else repeat Step 2.

Example

Let $\Sigma = \{a,b\}, N = \{S\}$ and the rules be $S \to \varepsilon, S \to aSa$ and $S \to bSb$.

• This grammar defines the even-length palindroms over $\{a, b\}$.

A "real" grammar

Example

Let $\Sigma = \{\text{the, dog, cat, eats, sleeps}\},\$

 $N = \{S, NOUN, NP, VP, TRANS-VERB, INTRANS-VERB\}$

and the rules be S \rightarrow NP VP, NP \rightarrow the NOUN, NOUN \rightarrow cat, NOUN \rightarrow dog, VP \rightarrow INTRANS-VERB, VP \rightarrow TRANS-VERB NP, TRANS-VERB \rightarrow eats, INTRANS-VERB \rightarrow sleeps, INTRANS-VERB \rightarrow eats.

Task

Find all "words" (ie sentences) belonging to the language of this grammar.

A complicated grammar example

Let $\Sigma = \{a,b,c\}, N = \{S,T,X,Y\}$ and the production rules be

- ullet S o Tabc
- ullet T o arepsilon
- $T \rightarrow TXY$
- ullet XYa
 ightarrow aXY
- ullet Yb o bY
- ullet aXb
 ightarrow aab

ullet bYc o bbcc

This describes the language:

```
\{a^nb^nc^n|n\geq 1\}=\{abc,aabbcc,aaabbbccc,\dots\}
```

Outlook

- Without restrictions on how rules might look like, it can be very time consuming to show that a word belongs to the language,
- and impossible(!!) to show that a word does not.
- We can formalize the derivation process a bit more, by introducing the transitive closure of a relation.

List of topics

Formal Grammar definition

Links

introduction to formal grammars

The Chomsky hierarchy

The hierarchy, overview

From simplest to most complicated:

- 3. Regular languages (having right-linear grammars)
- 2. Context-free languages (having context-free grammars)
 - Context-sensitive languages (having context-sensitive grammars)
 - 2. Computably enumerable languages (having (unrestricted) grammars)
 - -1. Arbitrary languages (not necessarily describable by a grammar at all)

Right-linear grammars

Definition

A grammar is *right-linear*, if all rules are of the form $T \to \varepsilon$ or $T \to aR$ for $T, R \in N$ and $a \in \Sigma$. I.e. the right hand side ends with non-terminal letters. We shall also allow the form $T \to a$ as abbreviation for $T \to aQ, Q \to \varepsilon$ for a fresh non-terminal Q.

Definition

A grammar is *left-linear*, if all rules are of the form $T \to \varepsilon$ or $T \to Ra$ for $T, R \in N$ and j. I.e. the right hand side starts with non-terminal letters

Theorem

Right-linear and left-linear grammars describe the same languages.

Context-free grammars

Definition

A grammar is *context-free*, if the left-hand side of every rule is a single non-terminal.

Let $\Sigma = \{a, b, c\}, N = \{S, T, X, Y\}$ and the production rules be

- ullet S o Tabc
- ullet S o SA
- $A \rightarrow bSc$
- ullet A o ba
- ullet T o arepsilon
- $T \rightarrow TXY$
- ullet X o XYab

Context-sensitive grammars

Definition

A grammar is *context-sensitive*, if every rule is of the form $wAu \to wvu$ where $v \neq \varepsilon$; or is $S \to \varepsilon$, and where S never appears on the right-hand side of a rule.

Let
$$\Sigma = \{a,b,c\}$$
 and $N = \{A,B\}$

- ullet S o abc
- ullet S
 ightarrow aAbc
- $Ab \rightarrow bA$

- ullet Ac o Bbcc
- ullet bB o Bb
- ullet aB o aa
- ullet aB
 ightarrow aaA
- $bB o \epsilon$

Definition

A grammar is monotonic, if for all rules $u \to w$ (except potentially $S \to \varepsilon$) it holds that $|u| \le |w|$, ($|\cdot|$ being length) and S never appears on the right-hand side of a rule.

Theorem

A context sensitive grammar is monotonic Every context-sensitve grammar is monotonic, or

or for every monotonic grammar there is an equivalent context-sensitive grammar (link to proof)

Links

Relations and transitive closure

Relations

Definition

A relation between sets X,Y is a subset $R\subseteq X\times Y$. A relation on X is a subset $R\subseteq X\times X$.

Properties of relations

Reflexive if $\forall a \in X(a,a) \in R$ Symmetric if $\forall a,b \in X(a,b) \in R \Rightarrow (b,a) \in R$ Anti-reflexive if $\forall a \in X(a,a) \notin R$ Anti-symmetric if $\forall a,b \in X((a,b) \in R \land (b,a) \in R) \Rightarrow a=b$ Total if $\forall a,b \in X(a,b) \in R \lor (b,a) \in R$ Transitive if $\forall a,b,c \in X((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c) \in R$

Example

Let $R \subseteq \{0,1,2,3\} \times \{0,1,2,3\}$ be defined as $R = \{(0,1),(2,3)\}$. Which properties does R have?

Example

Let $|\subseteq \mathbb{N} \times \mathbb{N}$ be defined as $(n,m) \in |$ iff n divides m. Which properties does | have?

Definitions

A linear order is a anti-symmetric, total and transitive relation.

An equivalence relation is a reflexive, symmetric and transitive relation.

Composition of relations

Definition

Given $R \subseteq X \times Y$ and $Q \subseteq Y \times Z$, let $(Q \circ R) \subseteq X \times Z$ be defined as :

$$(Q\circ R)=(x,z)\in X{ imes}Z|\exists y\in Y(x,y)\in R\land (y,z)\in Q$$

Transitive closure

Definition

Let R be a relation on X. We define $R^1:=R$, and $R^{n+1}:=R^n\circ R$, and then $R^+=\cup_{n\geq 1}R^n$.

The transitive closure is a mathematical operation that extends a binary relation between elements of a set to include all pairs of elements that are related by a path of one or more intermediate elements.

Formally, given a binary relation R on a set S, the transitive closure of R, denoted by R^+ , is defined as the smallest transitive relation that contains R. In other words, R^+ includes all pairs (a,b) such that there exists a sequence of elements $a=x_1,x_2,\ldots,x_n=b$ in S, such that (x_i,x_{i+1}) is in R for all $1\leq i < n$.

In other words, R^+ contains all the pairs of elements in A that can be related to each other by a finite sequence of steps using R. For example, if R represents the parent-child relationship in a family tree, then the transitive closure R^+ would include all the pairs of elements that are related as grandparents-grandchildren, great-grandparents-grandchildren, and so on.

Intuitively, we can think of the transitive closure as the "closure" of the relation R under the transitive property. That is, if R relates a to b, and b to c, then R^+ includes the pair (a,c) as well. In other words, the transitive closure adds all the pairs of elements that are related through a sequence of intermediate steps in R.

Theorem

The relation R^+ is the smallest transitive relation extending R, and we thus call it the transitive closure of R.

Example

Let $S = \{(n, n+1) | n \in \mathbb{N}\}$. Then $S^+ = <$.

The derivation relation

Definition

Consider a grammar G specified by terminals Σ , non-terminals $\mathcal N$, start symbol S and set rules R. The one-step derivation relation on $(\Sigma \cup \mathcal N)^*$ is defined as:

$$\hookrightarrow:=\{(ext{uvw}, ext{uv/w})|u,v,w,v\prime\in(arSigma\cup\mathcal{N})^* \quad (v,v\prime)\in R\}$$

Explanation

In the context of formal languages and automata theory, the one-step derivation relation is a binary relation between strings, denoted by the symbol \hookrightarrow . It represents the ability of a formal grammar to generate a string by replacing a single nonterminal symbol with a string of terminal and/or nonterminal symbols.

More formally, given a context-free grammar $G=(V,\Sigma,R,S)$, where V is a set of nonterminal symbols, Σ is a set of terminal symbols, R is a set of production rules, and S is the start symbol, the one-step derivation relation is defined as follows:

For any strings α, β , and $\gamma \in (V \cup \Sigma)*$ and any nonterminal symbol $A \in V, \alpha A \beta \to \alpha \gamma \beta$ if and only if there exists a production rule $A \to \gamma \in R$.

This means that if the nonterminal symbol A appears in the middle of a string $\alpha A\beta$, it can be replaced with the string γ to obtain a new string $\alpha\gamma\beta$. This new string can then be used as input to the one-step derivation relation again, possibly leading to further string expansions.

The one-step derivation relation is an important concept in the theory of formal languages, since it provides a way to formally define the notion of a context-free grammar generating a language. By repeatedly applying the one-step derivation relation, it is possible to generate all the strings in the language generated by a context-free grammar.

Definition

The derivation relation

$$\Longrightarrow := \hookrightarrow^+$$

is defined as the transitive closure of the one-step derivation relation.

Infix notation

We typically use infix notation for the (one-step) derivation relation, i.e. we write $u\hookrightarrow w$ for $(u,w)\in\hookrightarrow$ and $u,\hookrightarrow w$ for $(u,w)\in,\hookrightarrow$. (Just as we write n|m for n divides m, and x=y rather than $(x,y)\in=,etc.$).

The language defined by a grammar

Definition

The language defined by a grammar G is:

$$L(G):=\{w\in \varSigma^*|S\hookrightarrow\!\!\!\!> w\}$$

A grammar is a formal system that specifies a language in terms of its rules for generating strings in that language. A grammar consists of a set of nonterminal symbols, a set of terminal symbols, a start symbol, and a set of production rules.

The language defined by a grammar G is the set of all strings that can be generated by the grammar. This is denoted by L(G) and is defined as follows:

$$L(G) := \{w \in \Sigma^* \mid S \hookrightarrow\!\!\!\!> w\}$$

where Σ is the set of terminal symbols, S is the start symbol, and the relation \hookrightarrow denotes a sequence of productions that can be used to generate a string from the start symbol. In other words, L(G) consists of all strings that can be derived from the start symbol S by applying a sequence of production rules.

To summarize, the definition of L(G) in automata theory specifies the language generated by a grammar G, which is the set of all strings that can be derived from the start symbol S by applying a sequence of production rules.