Source-Free Series RLC Circuit - i(t)

Properties of Series RLC Network - i(t)

- Behavior captured by <u>damping</u>
 - Gradual loss of the initial stored energy
 - α determines the rate of damping

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$i(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

- $\alpha = \omega_0$, critically damped $i(t) = (A_1t + A_2)e^{-\alpha t}$
- $\alpha < \omega_0$, underdamped $i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

• Find i(t) in the circuit below. Assume the circuit has reached steady state at $t=0^-$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 Find i(t) in the circuit below. Assume the circuit has reached steady state at $t = 0^-$.

$$\alpha = \frac{1}{2L} = 9 \qquad \omega_0 = \frac{1}{\sqrt{LC}} = 10$$

$$s_{1,2} = -\alpha \mp \sqrt{\alpha^2 - \omega_0^2} = -9 \mp j4.359$$

Source-Free Parallel RLC Network

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Source-Free Parallel RLC Network - v(t)

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

• The characteristic equation is:

$$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$$

From this, we can find the roots of the characteristic equation to be:

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

Again, there are three scenarios to consider.

Three Damping Cases - v(t)

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

- For the overdamped case, the roots are real and negative, $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
- For critically damped, the roots are real and equal

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

For the underdamped case, the roots are complex

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Three Damping Cases -i(t)

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

• For the overdamped case, the roots are real and negative,

$$i(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

For critically damped, the roots are real and equal

$$i(t) = (A_1t + A_2)e^{-\alpha t}$$

In the underdamped case, the roots are complex

$$i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Series vs. Parallel (Source-Free RLC Circuit)

• Series
$$\alpha = \frac{R}{2L}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

• Parallel
$$\alpha = \frac{1}{2RC}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Practice

• Find v(t) for t > 0

Outline

- Natural Response Series/Parallel RLC circuit Source-free
- Step Response of a Series/Parallel RLC Circuit
 With Independent Source
- General 2nd-order circuits

Step Response of a Series RLC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display t = 0 C = v

The solution

$$v(t) = v_t(t) + v_{ss}(t)$$

The complete solutions for the three conditions of damping are:

$$v(t) = V_S + (A_1 e^{S_1 t} + A_2 e^{S_2 t})$$
 (Overdamped)

$$v(t) = V_s + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)

$$v(t) = V_s + (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

- Find v(t) and i(t) for t > 0. Consider three cases:
 - $R = 5\Omega$
 - $R = 4\Omega$
 - $R = 1\Omega$

When $R = 5\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 4V$$
 $i(0) = 4A = C\frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 16$
$$\alpha = \frac{R}{2L} = 2.5, \ \omega_0 = \frac{1}{\sqrt{LC}} = 2, \ s_{1,2} = -1, -4 \text{ Overdamped.}$$

$$v(t) = v_S + (A_1e^{-t} + A_2e^{-4t})$$

When $R = 4\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 4.8V$$
, $i(0) = 4.8A = C\frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 19.2$
 $\alpha = \frac{R}{2L} = 2$, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -2$ Critically damped
$$v(t) = v_s + (A_1 + A_2t)e^{-2t}$$

When $R = 1\Omega$,

- For t < 0, switch closed, capacitor open, inductor shorted.
- For t > 0, switch open, a series RLC network

•
$$v(0) = 12V$$
, $i(0) = 12A = C \frac{dv(0)}{dt}$, $\frac{dv(0)}{dt} = 48$
 $\alpha = \frac{R}{2L} = 0.5$, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -0.5 \pm j1.936$ Underdamped
 $v(t) = v_s + (B_1 \cos 1.936t + B_2 \sin 1.936t)e^{-0.5t}$

Step Response of a Parallel RLC Circuit

$$\frac{v}{R} + i + C \frac{dv}{dt} = I_{S}$$

$$\& v = L \frac{di}{dt}$$

So we get

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_s}{LC}$$

Step Response of a Parallel RLC Circuit

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

 The total response is a combination of steady state responses and transient response:

$$i(t) = I_S + (A_1 e^{S_1 t} + A_2 e^{S_2 t})$$
 (Overdamped)
$$i(t) = I_S + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)
$$i(t) = I_S + (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

Here the variables $A_1/A_2 B_1/B_2$ are obtained from the initial conditions, i(0) and di(0)/dt.

• Find i(t) and $i_R(t)$ for t > 0.

General Second-Order Circuits

An example

