Filtro FIR: Estudo, Projeto e Simulação

Fabrício Simões

IFBA

28 de Novembro de 2011

Filtro FIR : Características

- 2 Projeto de um Filtro FIR
 - Método de Projeto Usando Janelas
 - Janela de Kaiser
 - Projeto de Filtros FIR com Banda de Transição Especificada

Filtro FIR - Características

- Filtro FIR é sempre estável. Os pólos do filtro FIR estão localizados em z=0;
- Filtros FIR são empregados em problemas de filtragem onde exigem resposta de fase linear;
- ③ É possível projetar filtro FIR causal com fase linear se sua resposta ao impulso satisfaz a condição $h(n) = \pm h(N-n)$ para n = 0, 1, 2, ..., N, ou seja, h[n] é simétrico ou antisimétrico
- Omparando ao filtro IIR, a ordem do filtro FIR para atender as especificações desejadas é maior.

Tipos de Filtro FIR - Resposta ao Impulso

Tipos de Filtro FIR

Resposta em Frequência Desejada:

$$H(\omega) = D(\omega)e^{-jM\omega},$$

onde $D(\omega)$ é magnitude e $-M\omega$, a fase. M=N/2 para N par e ímpar

A depender da ordem N do filtro (par ou ímpar) e dos coeficientes b_m (simétrico e anti-simétrico), os filtros FIR podem ser classificados como:

• Filtro Tipo I: N é par e os coeficientes b_m são simétricos.

$$h[n] = h[N - n]$$

Tipos de Filtro FIR - Continuação

• Filtro Tipo II: N é ímpar, o atraso M=N/2 não é inteiro e os coeficientes b_m são simétricos.

$$h[n] = h[N - n]$$

Zeros: z=-1. Qual a influência desse zero na resposta em frequência $H(\omega)$?

 Filtro Tipo III: N é par e os coeficientes b_m são anti-simétricos.

$$h[n] = -h[N-n]$$

zeros: z= \pm 1. Qual a influência desse zero na resposta em frequência $H(\omega)$?

Tipos de Filtro FIR - Continuação

• Filtro Tipo IV: N é impar, M = N/2 não é inteiro e os coeficientes b_m são anti-simétricos.

$$h[n] = -h[N-n]$$

zeros: z=1.

Qual a influência desse zero na resposta em frequência $H(\omega)$?

Projeto de um Filtro FIR : Considerações

São baseados em uma aproximação direta da resposta em frequência desejada

O método mais simples é chamado de window method. Esse método geralmente começa com uma resposta em frequência ideal desejada, $H_d(\omega)$.

Resposta em Frequência Desejada.

Oconsidere as respostas em frequência IDEAIS a seguir:

$$h_{lp}[n] = \frac{\sin(n-M)\omega_c}{\pi(n-M)}$$

$$h_{hp}[n] = \delta(n-M) - rac{\sin(n-M)\omega_c}{\pi(n-M)}$$

 \bullet $h_d[n]$ é a resposta ao impulso de um sistema IIR e não-causal.

Como Obter um Filtro FIR Causal?

• Podemos obter um filtro FIR e causal h[n] de ordem N, usando uma versão truncada da resposta $h_d[n]$

$$h[n] = \begin{cases} h_d[n], & n = 0, 1, \dots, N \\ 0, & n < 0 \text{ e } n > N \end{cases}$$
 (1)

O truncamento pode ser matematicamente escrito por

$$h[n] = h_d[n]w_r[n], (2)$$

em que $w_r[n]$ é uma janela retangular.

Qual o Efeito do Truncamento?

Onsidere a resposta em frequência desejada.

$$H_d(\omega) = \sum_{n = -\infty}^{\infty} h_d[n] e^{-j\omega n}$$
 (3)

 $oldsymbol{2}$ Como $H_d(\omega)$ é uma função periódica e contínua de ω , então

$$\sum_{n=-\infty}^{\infty} h_d[n] e^{-j\omega n}$$

É uma representação em Série de Fourier de $H_d(\omega)$

Fenômeno de Gibbs

Problema de convergência não-uniforme da Série de Fourier.

A Série de *Fourier* não converge uniformemente para funções com descontinuidade.

Figura 1 : Ilustração do Fenômeno de Gibbs (OPPENHEIM, 1998)

Resposta em Frequência do Filtro FIR e Causal

$$H(\omega) = \sum_{n=0}^{N} h_d[n] e^{-j\omega n},$$
 (4)

em que $h[n] = h_d[n]$ para n = 0, 1, 2, ... N.

Figura 2 : Efeito do truncamento sobre a resposta em frequência do filtro

Observando o Efeito do Truncamento a partir da Convolução

$$H(\omega) = \frac{H_d(\omega) \otimes W_r(\omega)}{2\pi}$$

$$|W_r(\omega)| = \frac{\operatorname{sen}(\omega(N+1)/2)}{\operatorname{sen}(\omega/2)}$$
Efeito da largura do lobulo principal

Figura 3 : Efeito do truncamento sobre a resposta em frequência do filtro.

Como Reduzir o Efeito do Truncamento?

 Para reduzir o efeito do fenômeno de Gibbs, deve-se usar janelas com truncamento menos abrupto.

Tabela 1 : Janelas : Equações

Tipo de Janela	Equação	
Triangular	$w_2[n] = 1 - \frac{2 n - N/2 }{N}$	
Hamming	$w_3[n] = 0,54 - 0,46\cos(2\pi n/N)$	
Blackman	$w_4[n] = 0,42 - 0,5\cos(2\pi n/N) + 0,08\cos(4\pi n/N)$	

Filtro FIR : Características Projeto de um Filtro FIR Método de Projeto Usando Janelas Janela de Kaiser Projeto

Características Desejadas

- Lóbulo principal estreito: A largura do lóbulo principal afeta a largura da banda de transição;
- Intensidade dos lóbulos laterais: Quanto maior, maior é a intensidade dos *ripples* na bandas de passagem e de rejeição.

Comparação entre as Janelas

Tabela 2 : Janelas : Comparação

Tipo de Janela	Amplitude (dB)	Largura Aproximada	
	(lóbulo lateral)	(lóbulo principal)	
Retangular	-13	$4\pi/(M+1)$	
Triangular	-25	$8\pi/M$	
Hamming	-41	8π/ M	
Blackman	-57	$12\pi/M$	

- Considere o sinal $x(t) = \cos(2\pi 1000t) + \cos(2\pi 1500t)$. Projete um filtro passa-baixa de ordem N=4 para eliminar a frequência de 1,5kHz.
- Considerando a frequência máxima igual a 1500Hz, adotou-se $f_a = 3kHz$ (tempo de amostragem T = 0,33ms).
- As frequências devem ser normalizadas no intervalo $\omega \sim [-\pi, \pi].$

Frequências normalizadas:

- $2\pi 1000 \Longrightarrow 2,09 \text{ rad}$
- $2\pi 1500 \Longrightarrow \pi$ rad
- $\omega_c = 2.61 \text{ rad}$
- Resposta ao impulso do filtro

$$h[n] = h_d[n] = \frac{\text{sen}((n-2)2,61)}{\pi(n-2)}$$
 para $n = 0, 1, 2, \dots, 4$

Equação de Diferenças :

$$y[n] = -0.14(x[n] + x[n-4]) + 0.16(x[n-1]) + x[n-3]) + 0.83x[n-2]$$
 (5)

Filtro FIR : Características Projeto de um Filtro FIR Método de Projeto Usando Janelas Janela de Kaiser Projeto

Usando o Fdatool - Matlab

Usando a Janela de Hamming

Aplicando a janela de Hamming.

$$w_h[n] = 0,54 - 0,46\cos(2\pi n/4)$$

$$h_h[n] = h[n]w_h[n]$$
 para $n = 0, 1, 2, 3, 4$

Equação de Diferenças

$$y(n) = -0.011(x[n] + x[n-4]) + 0.087(x[n-1] (6) + x[n-3]) + 0.83x[n-2]$$

Resposta em Frequência dos Filtros

Figura 4 : Resposta em frequência usando janelas retangular e de *Hammimg*.

Janela de Kaiser

- Diferentemente dos métodos anteriorer, usando a janela kaiser é possível especificar os parâmetros do filtro. Não existe tentativa e erro:
- A equação da janela para n = 0, 1, 2, ..., N é dada por

$$w_5[n] = \frac{J_0(0, 5N\beta\sqrt{(0, 5N)^2 - (n - 0, 5N)^2})}{J_0(0, 5N\beta)}$$

em que β controla a relação entre a largura do lóbulo principal e a intensidade dos lóbulos laterais.

$$\beta = \begin{cases} 0.1102(R_s - 8.7), & 50 < R_s \\ 0.5842(R_s - 21)^{0.4} + 0.07886(R_s - 21), & 21 \le R_s \le 50 \\ 0, & R_s < 21 \end{cases}$$

Equações de Projeto do Filtro Usando Janela de Kaiser

Figura 5 : Equações de Projeto e Gabarito do Filtro Passa-Baixa.

- 1 Exemplo 7.8 Oppenheim. Projeto de um filtro FIR passa-baixa com as especificações a seguir :
 - $\omega_p = 0, 4\pi$;
 - $\omega_s = 0.6\pi$
 - $\delta_s = 0.001$
- 2 Definição dos parâmetros da janela de Kaiser.

$$\Delta_{\omega} = \omega_{s} - \omega_{p} = 0, 2\pi$$

$$R_s = -20 \log(\delta_s) = 60$$

Frequência de corte do filtro passa-baixa ideal.

$$\omega_c = \frac{\omega_p + \omega_s}{2} = 0,5\pi$$

Exemplo de Projeto : Continuação

4 Parâmetros β e N da janela de Kaiser.

$$\beta = 5,653 N = 37$$

5 Determinando h[n].

$$h[n] = \frac{\text{sen}((n-M)0, 5\pi)}{\pi(n-M)} \frac{J_0(0, 5N\beta\sqrt{(0, 5N)^2 - (n-0, 5N)^2})}{J_0(0, 5N\beta)}$$

A Janela de Kaiser e o RESTO

Tabela 3: Obtendo outras janelas usando a de Kaiser

Tipo de Janela	$R_s = -20log(\delta_s)(dB)$	β	Δ_{ω}
Retangular	-21	0	1,81 π/M
Triangular	-25	1,33	2,37 π/M
Hamming	-53	4,86	6,27 π/M
Blackman	-74	7,04	9,19 π/M

Exemplo 7.9 - Oppenheim. Resposta em frequência do filtro passa-alta ideal

$$H(j\omega) = \left\{ egin{array}{ll} 0, & |\omega| < \omega_c \\ e^{-j\omega N/2}, \omega_c < |\omega| \leq \pi \end{array}
ight.$$

Resposta ao impulso de um filtro passa-alta ideal

$$h_{hp}[n] = \frac{\operatorname{sen}(\pi(n-M/2))}{\pi(n-M/2)} - \frac{\operatorname{sen}(\omega_c(n-M/2))}{\pi(n-M/2)}$$

Gabarito de Projeto do Fitro Passa-Alta

Figura 6 : Equações de Projeto e Gabarito do Filtro Passa-Baixa.

Continuação

Especificações do Filtro:

$$|H(j\omega)| \leq \delta_2 \text{ para } |\omega| \leq \omega_s$$

$$1-\delta_{s}\leq |H(\omega)|\leq 1+\delta_{s},$$

em que
$$\delta_s = 0,021$$

Parâmetros da Janela :

$$R_s = -20 \log \delta_s = 33,56$$

$$N = \frac{33,56-8}{2,2850,15\pi} = 23,73 \cong 24$$

Continuação

• Como $21 \geq R_s \leq 50$, então

$$\beta = 0,5842(33,56-21)^{0,4}+0,07886(33,56-21)=2,5980 \cong 2,6$$

Resposta ao impulso do filtro

$$h[n] = h_{hp}[n] \frac{J_0(0, 5N\beta\sqrt{(0, 5N)^2 - (n - 0, 5N)^2})}{J_0(0, 5N\beta)},$$

para
$$\omega_c = \frac{\omega_p + \omega_s}{2}$$

Porque o Filtro FIR tem Fase Linear?

• Note que as janelas são simétricas em torno de n = N/2, ou seja,

$$w[n] = \begin{cases} w[N-n], \ 0 \le n \le N \\ 0, \ cc \end{cases}$$

2 Como a janela é simétrica, a sua transformada de Fourier pode ser representada por

$$W(j\omega) = W_e(j\omega)e^{-j\omega N/2},$$

em que $W_e(j\omega)$ é a transformada de Fourier de uma janela de duração N e simétrica em torno de n=0

Porque o Filtro FIR tem Fase Linear?

• A resposta ao impulso desejada $h_d[n]$ pode ser simétrica ou antisimétrica, portanto

$$H_d(\omega) =$$
 $H_d(\omega) =$

Resposta em frequência do filtro obtido

$$H(\omega) = \frac{W(j\omega) \otimes H_d(j\omega)}{2\pi}$$

$$H(j\omega) = rac{\int_{-\pi}^{\pi} H_{e}(j\theta) e^{-j\theta N/2} W_{e}(j(\omega-\theta)) e^{-j(\omega-\theta)N/2} d\theta}{2\pi}$$

Porque o Filtro tem Fase Linear?

Resposta em frequência do filtro

$$H(j\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_e(j\theta) W_e(j(\omega-\theta)) d\theta$$
 Fase Linear $e^{-j(\omega N/2)}$

2 Reescrevendo

$$H(j\omega) = D(j\omega)e^{-j\omega N/2}$$

① Usando $h_d[n]$ simétrico (tipos I e II) ou anti-simétrico (tipos III e IV) e janelas simétricas é possível obter um filtro FIR com fase linear.

Eliminação do fenômeno de Gibbs. Considere a resposta en frequência

$$H(j\omega) = D(j\omega)e^{-jN/2\omega}$$

em que $D(i\omega)$ é dado por

$$D(j\omega) = \begin{cases} 1, & 0 \le \omega \le \omega_p \\ \frac{(\omega_s - \omega_p)}{\omega_s - \omega_p}, & \omega_p < \omega < \omega_s \\ 0, & \omega_s \le \omega \le \pi \end{cases}$$

Determinação de h[n]

Resposta em frequência desejada com banda de transição

Resposta ao Impulso Desejada;

$$h_d[n] = 2\pi \left(\frac{{
m sen}\omega_c n}{\pi n}\right) \left(\frac{{
m sen}0.5\Delta n}{\Delta \pi n}\right),$$

• A resposta $h_d[n]$ é IIR e não-causal.

Uma janela retangular trunca a resposta $h_d[n]$ para obter um filtro FIR e Causal. Para ilustrar o método, considere o exemplo abaixo:

Figura 8: Resposta desejada.

1 Considere uma resposta emn frequência desejada com $\omega_p = 1$ e $\omega_{s} = 1.5$.

Resposta em Frequência: Resultado.

