

Oct 01, 2024

JGI/LBNL Metabolomics - Standard LC-MS/MS ESI Method - Polar HILIC-Z

DOI

dx.doi.org/10.17504/protocols.io.kxygxydwkl8j/v1

Katherine B. Louie¹, Suzanne Kosina², Thomas Harwood¹, Meghana Faltane¹, Marie Lynde¹, Benjamin P. Bowen^{1,2}, Trent Northen^{1,2}

¹Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States;

²Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States

Katherine B. Louie

Lawrence Berkeley National Laboratory, Joint Genome Institut...

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.kxygxydwkl8j/v1

Protocol Citation: Katherine B. Louie, Suzanne Kosina, Thomas Harwood, Meghana Faltane, Marie Lynde, Benjamin P. Bowen, Trent Northen 2024. JGI/LBNL Metabolomics - Standard LC-MS/MS ESI Method - Polar HILIC-Z. protocols.io

https://dx.doi.org/10.17504/protocols.io.kxygxydwkl8j/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: September 26, 2024

Last Modified: October 01, 2024

Protocol Integer ID: 108480

Keywords: metabolomics, JGI, HILIC, LBNL, Joint Genome Institute, LC-MS, Thermo Orbitrap, Berkeley Lab, Environmental Metabolite

Atlas

Funders Acknowledgement: The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a **DOE Office of Science User** Facility, is supported by the Office of Science of the U.S. Department of Energy Grant ID: Contract No. DE-AC02-05CH11231 The work conducted by **ENIGMA – Ecosystems and Networks Integrated with Genes and Molecular Assemblies** (http://enigma.lbl.gov), a Science Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research and used resources of the National Energy Research Scientific Computing Center, a **Department of Energy Office** of Science User Facility Grant ID: Contract No. DE-AC02-05CH11231

Abstract

This protocol describes the standard LC-MS/MS ESI method developed at Lawrence Berkeley National Laboratory (LBNL) by JGI Metabolomics and EGSB's Northen Lab to analyze polar metabolites (e.g. amino acids, nucleic acids, sugars, organic acids, primary metabolites, etc.) using normal phase chromatography (HILIC-Z) coupled to a Thermo Orbitrap Mass Spectrometer with ESI source. This robust method of detection is easily reproduced and adapted onto similar LC-MS/MS systems to achieve consistent outcomes across mass spectrometry datasets, foster inter-lab and inter-experiment comparability, and enable effective data integration and analysis. Since its inception in 2018, this method has been used to analyze tens of thousands of experimental samples, with many of these datasets publicly available in the MassIVE data repository^{1,2}. This method has also been used to run thousands of compound standards to collect characteristic retention time, *m/z* and fragmentation spectra. This forms the basis of Berkeley Lab's Environmental Metabolite Atlas (EMA), a database used for confident annotation of metabolites and publicly available through GNPS/GNPS2³.

Overview

This protocol describes the standard LC-MS/MS ESI method developed at Lawrence Berkeley National Laboratory (LBNL) by JGI Metabolomics and EGSB's Northen Lab to analyze polar metabolites (e.g. amino acids, nucleic acids, sugars, organic acids, primary metabolites, etc.) using normal phase chromatography (HILIC-Z) coupled to a Thermo Orbitrap Mass Spectrometer with ESI source.

Instrumentation / Equipment

2 Mass Spectrometry Instrumentation

A	В	С	D
Mass Spectrometer	Source / Probe	ESI needle (calibrati on)	ESI needle (running s amples)
Thermo Q Exactive HF Orbitrap (QE-HF)	Thermo Ion Max AP I Source w/ H-ESI II probe	32G Metal Needle Hi gh Flow (OPTON-53 010, Thermo)	32G Metal Needle Hi gh Flow (OPTON-530 10, Thermo)
Thermo Q Exactive Orb itrap (QE)	Thermo Ion Max AP I Source w/ H-ESI II probe	32G Metal Needle Hi gh Flow (OPTON-53 010, Thermo)	32G Metal Needle Hi gh Flow (OPTON-530 10, Thermo)
Thermo Orbitrap Explor is 120 (Exp120)	Thermo OptaMax N G™ API source w/ H -ESI probe	35G Metal Needle Lo w Flow, 50 um ID (O PTON-30139)	32G Metal Needle Hi gh Flow, 100 um ID (OPTON-30694)
Thermo Orbitrap IQ-X T ribrid (IQX)	Thermo OptaMax N G™ API source w/ H -ESI probe	35G Metal Needle Lo w Flow, 50 um ID (O PTON-30139)	32G Metal Needle Hi gh Flow, 100 um ID (OPTON-30694)

Table 1. Mass spectrometer and source.

Note: Other Thermo Orbitrap mass spectrometers may also be used (e.g. IDX, Exploris 240, Astral, etc) with appropriate source, ESI needle and modified acquisition parameters.

3 UHPLC System

A	В	С	D
Module Name	Module Type	Part Numb ers	Alternative Part Numbers
1290 Infinity DAD*	Diode Array Detector	G4212A	G7115A, G7117BR
1200 Infinity Series TC C	Column Compartment	G1316A	G7116B
1290 Infinity Sampler	Autosampler	G4226A	G7167B - Multisampler w/ t hermostat

A	В	С	D
1290 Infinity Thermosta t	Autosampler Thermost at	G1330B	G7167B - Multisampler w/ t hermostat
1290 Infinity Bin Pump	Binary Pump	G4220A	G7120A

Table 2. Agilent 1290 Infinity UHPLC Modules and type.

Note: To use Agilent LC systems in line with Thermo Orbitrap mass spectrometers, communication / compatibility requires either installation of Chromeleon software, or a contact closure board (for QE-HF or QE) or Universal Interface Box (UIB) (for IQX, IDX, and Exploris models), as well as specialized software packages and cables. Information, manuals and installation procedures are available from Agilent and Thermo.

4 **UHPLC Column information**

A	В	
Column name	InfinityLab Poroshell 120 HILIC-Z	
Part # #683775-924		
Manufacturer Agilent		
Column chemistry HILIC-Z, zwitterionic		
Inner Diameter (ID)	2.1 mm	
Length	150 mm	
Particle size	2.7 μm	
Pore size	100 Å	
Max pressure	600 bar	
pH range	2-12	
Max temperature	80 °C @ pH 7; 35 °C @ pH 2-12	

Table 3. UHPLC column information.

5 Chemicals / solvents

A	В
Chemicals / solvents	Product Number
acetonitrile (LC-MS grade)	AX0156, Sigma
water (LC-MS grade)	9831-03, VWR
ammonium acetate (LC-MS grade)	73594, Sigma
acetic acid (glacial, ≥99.7%)	JT9515-3, VWR
methylene-di-phosphonic acid (medro	64255, Sigma

^{*} Optional

A	В
nic acid)	
methanol (LC-MS grade)	MX0486, Sigma

Table 4. Chemicals and solvents. These are used to prepare mobile phase and resuspend extracts. For solvents, other LC-MS grade products can also be used. For chemicals, high purity compounds of analytical grade or listed as suitable for mass spectrometry can be used.

LC-MS/MS Method Parameters

6 LIQUID CHROMATOGRAPHY

A	В
Mobile Phase A	99.8% H2O and 0.2% acetic acid, w/ 5 mM ammonium acetate and 5 μ M methylene-di-phosphonic acid
Mobile Phase B	99.8% 95:5 v/v ACN:H2O and 0.2% acetic acid, w/ 5 mM ammonium acetate

Table 5. Mobile phase composition for HILIC. Sufficient mobile phase for all injections of a sample set are prepared prior to starting a run. To prepare Mobile Phase B, ammonium acetate is first dissolved in water prior to adding acetonitrile and other components (for solubility).

Column

InfinityLab Poroshell 120 HILIC-Z, 2.1 × 150 mm, 2.7 µm, 100 Å (Agilent, #683775-924)

Column Temperature 40 °C

Autosampler Temperature 4 °C

A	В	С	D	E
Time (min)	Flow (mL/mi n)	%A	%В	minutes for segmen t
0	0.45	0	100	
1	0.45	0	100	1
11	0.45	11	89	10
15.75	0.45	30	70	4.75
16.25	0.45	80	20	0.5
18.5	0.45	80	20	2.25

A	В	С	D	E
18.6	0.45	0	100	0.1
21	0.45	0	100	2.4

Table 6. Mobile phase gradients for HILIC. Each segment is a linear gradient to the new mobile phase composition.

Typically, depending on the length of the lines connecting the ESI needle through to the autosampler, the first 0.3-0.8 minutes of the run does not contain signal from the injected sample (void volume). This is then followed by a large peak (solvent front) comprised of metabolites that do not retain on the column. Signals acquired during this time window are typically not used in analysis. Also, signals acquired in the time window following final isocratic elution (here, between 18.5 to 21 minutes during column re-equilibration), are also not used in analysis.

Salty samples: When analyzing samples that still have a lot of salt in the extract, diverting flow to waste for the first 1 minute (void volume containing the most salt) may help keep the ESI needle and source cleaner throughout the run and preserve data quality.

7 MASS SPECTROMETRY

Source settings

A	В	С	D	E
Parameter	QE-HF	QE	Exp120	IQX
Sheath Gas Flow Rate (au)	55	55	50	50
Auxillary Gas Flow Rate (au)	20	20	10	10
Sweep Gas Flow Rate (au)	2	2	1	1
Spray Voltage (V) - POS	3000	3000	3500	3500
Spray Voltage (V) - NEG	3000	3000	2500	2500
Capillary Temperature (°C)	400	400	325	325
Vaporizer Temperature (°C)	N/A	N/A	300	300
S-Lens RF Level (%)	50	50	70	50

Table 7. ESI source settings. These settings are used with these specific Orbitrap models. Other mass spectrometers will need these source settings adjusted to achieve similar results.

au = arbitrary units

MS1 Settings

A	В	С	D	E
Parameter	QE-HF	QE	Exp120	IQX

A	В	С	D	E
Microscans	1	1	1	1
Resolution	60,000	70,000	60,000	60,000
AGC Target	3e6	3e6	Standard (10 0%)	1e5
Maximum IT (ms)	100	100	Auto	118
Scan range (m/z)	70 - 1050	70 - 1050	70 - 1050	70 - 1050
Spectrum data type	Centroid	Centroid	Centroid	Centroid

Table 8. MS1 scan settings. Full MS spectra are collected in both positive and negative ionization modes. These settings are used with these specific Orbitrap models. Other mass spectrometers will need these source settings adjusted to achieve similar results.

Collection time: 21 minutes

MS2 Settings

A	В	С	D	E
Parameter	QE-HF	QE	Exp120	IQX
Microscans	1	1	1	1
Resolution	15,000	17,500	15,000	15,000
AGC Target	1e5	1e5	Standard (10 0%)	5e4
Maximum IT (ms)	50	50	Auto	22
Loop count	2 (or 4)	2 (or 4)	4	N/A
Cycle time	N/A	N/A	N/A	0.8 sec
MSX count	1	1	1	1
TopN	2 (or 4)	2 (or 4)	4	10-15
Exclusion duration (sec)	7 - 10	7 - 10	4	5
Stepped Collision En ergies (eV)	10, 20, 40 (or 2 0, 50, 60)	10, 20, 40 (or 20, 50, 60)	10, 20, 40 (or 2 0, 50, 60)	10, 20, 40 (or 20, 50, 60)

Table 9. MS2 scan settings for collecting fragmentation data. Stepped and then averaged collision energies of 10, 20, 40 eV and/or 20, 50, 60 eV. A full MS1 scan is followed by "N" MS2 scans of the most intense precursor ions (TopN), excluding those precursors already fragmented in the previous time period (exclusion duration).

Source and acquisition settings listed here are the settings used for standard LC-MS/MS runs. Depending on experimental details and goals, these can be adjusted (e.g. instrument resolution, customization of data-dependent MS2, scan range, etc) as needed.

Sample Vial Preparation

8 **Quality Control (QC) Mix**

This is a custom formulation of compounds with annotated m/z, retention time (RT), and MS2 spectra dissolved in 100% MeOH. Compounds are representative of the metabolite classes detected using this LC-MS/MS method, as well as m/z and retention time ranges.

Usage: QC injections are interspersed throughout the LC-MS run to monitor instrument performance (calibration, intensity, retention time, etc.) as well as adjust compound retention times between runs.

A	В	С	D	E	F	G	Н
Compound	Formula	Monois otopic mass	Adduct (POS)	m/z (PO S)	Adduct (NEG)	m/z (NE G)	Expecte d RT
1-methyladenosi ne	C11H15N 504	281.112 4	[M+H]+	282.119 7	[M-H]-	280.105 1	10.78
2,4-dihydroxypte ridine	C6H4N4O 2	164.033 4	[M+H]+	165.040 7	[M-H]-	163.026 1	1.27
2'-deoxyadenosi ne	C10H13N 503	251.101 8	[M+H]+	252.109 1	[M-H]-	250.094 6	2.23
2'-deoxyguanosi ne	C10H13N 504	267.096 8	[M+H]+	268.104 0	[M-H]-	266.089 5	6.87
2-hydroxyphenyl acetic acid	C8H8O3	152.047 3	[M+H]+	153.054 6	[M-H]-	151.040 1	1.62
2-oxovaleric acid	C5H8O3	116.047 3	[M+H]+	117.054 6	[M-H]-	115.040 1	4.45
4-coumaric acid	C9H8O3	164.047 3	[M+H]+	165.054 6	[M-H]-	163.040 1	1.51
4-guanidinobuta noic acid	C5H11N3 O2	145.085 1	[M+H]+	146.092 4	[M-H]-	144.077 9	13.86
4-methoxyphenyl acetic acid	C9H10O3	166.063 0	[M+H]+	167.070 3	[M-H]-	165.055 7	1.07
5-methylcytosine	C5H7N3O	125.058 9	[M+H]+	126.066 2	[M-H]-	124.051 6	4.42
5-oxo-proline	C5H7NO3	129.042 6	[M+H]+	130.049 9	[M-H]-	128.035 3	11.65
ABMBA (2-amin o-3-bromo-5-met hylbenzoic acid)	C8H8BrN O2	228.973 8	[M+H]+	229.981 1	[M-H]-	227.966 6	1.20
abscisic acid	C15H20O 4	264.136 2	[M+H]+	265.143 4	[M-H]-	263.128 9	1.15
acetylcholine	C7NH160 2+	146.117 6	[M]+	146.117 6	[M-2H]-	144.103 0	1.96
adenine	C5H5N5	135.054	[M+H]+	136.061	[M-H]-	134.047	2.56

А	В	С	D	E	F	G	Н
		5		8		2	
adenosine C10H13N 504 c3H7N02		267.096 8	[M+H]+	268.104 0	[M-H]-	266.089 5	3.09
		89.0477	[M+H]+	90.0550	[M-H]-	88.0404	13.41
alpha-glucose	C6H12O6	180.063 4	[M+H]+	181.070 7	[M-2H]2-	89.0707	5.06
alpha-ketoglutari c acid	C5H6O5	146.021 5	[M+H]+	147.028 8	[M-H]-	145.014 2	14.51
arginine	C6H14N4 O2	174.111 7	[M+H]+	175.119 0	[M-H]-	173.104 4	16.94
asparagine	C4H8N2O 3	132.053 5	[M+H]+	133.060 8	[M-H]-	131.046 2	14.37
aspartic acid	C4H7NO4	133.037 5	[M+H]+	134.044 8	[M-H]-	132.030 2	16.13
benzoic acid	C7H6O2	122.036 8	[M+H]+	123.044 1	[M-H]-	121.029 5	1.27
betaine	C5H12N0 2+	118.086 3	[M]+	118.086 3	[M-2H]-	116.071 7	7.91
caffeic acid	C9H8O4	180.042 3	[M+H]+	181.049 5	[M-H]-	179.035 0	3.22
caffeine	C8H10N4 02	194.080 4	[M+H]+	195.087 7	[M-H]-	193.073 1	0.88
carnitine	C7H16NO 3+	162.112 5	[M+H]+	162.112 5	[M-H]-	160.097 9	13.29
cis-4-hydroxy-pro line	C5H9NO3	131.058 2	[M+H]+	132.065 5	[M-H]-	130.051 0	13.67
citrulline	C6H13N3 O3	175.095 7	[M+H]+	176.103 0	[M-H]-	174.088 4	15.09
creatine	C4H9N3O 2	131.069 5	[M+H]+	132.076 8	[M-H]-	130.062 2	13.39
cysteic acid	C3H7NO5 S	169.004 5	[M+H]+	170.011 8	[M-H]-	167.997 2	14.54
cytidine	C9H13N3 O5	243.085 5	[M+H]+	244.092 8	[M-H]-	242.078 2	6.93
cytosine	C4H5N3O	111.043 3	[M+H]+	112.050 5	[M-H]-	110.036 0	4.83
deoxycytidine	C9H13N3 O4	227.090 6	[M+H]+	228.097 9	[M-H]-	226.083 3	5.59
deoxyuridine	C9H12N2 O5	228.074 6	[M+H]+	229.081 9	[M-H]-	227.067 3	1.88
ectoine	C6H10N2 02	142.074 2	[M+H]+	143.081 5	[M-H]-	141.067 0	12.50
fumaric acid	C4H4O4	116.011 0	[M+H]+	117.018 2	[M-H]-	115.003 7	16.31
gamma-aminobu	C4H9NO2	103.063	[M+H]+	104.070	[M-H]-	102.056	14.39

A	В	С	D	E	F	G	Н
tyric acid		3		6		1	
glutamic acid	C5H9NO4	147.053 2	[M+H]+	148.060 4	[M-H]-	146.045 9	15.94
glutamine	C5H10N2 O3	146.069 1	[M+H]+	147.076 4	[M-H]-	145.061 9	14.31
glutaric acid	C5H8O4	132.042 3	[M-H+2N a]+	177.085 8	[M-H]-	131.035 0	12.60
guanosine	C10H13N 505	283.091 7	[M+H]+	284.098 9	[M-H]-	282.084 4	8.57
homoserine	C4H9NO3	119.058 2	[M+H]+	120.065 5	[M-H]-	118.051 0	13.65
hypoxanthine	C5H4N4O	136.038 5	[M+H]+	137.045 8	[M-H]-	135.031 2	3.10
inosine	C10H12N 405	268.080 8	[M+H]+	269.088 0	[M-H]-	267.073 5	5.43
isoleucine	C6H13N0 2	131.094 6	[M+H]+	132.101 9	[M-H]-	130.087 4	9.71
jasmonic acid	C12H180 3	210.125 6	[M+H]+	211.132 9	[M-H]-	209.118 3	1.04
lactic acid	lactic acid C3H6O3 leucine C6H13NO 2 lysine C6H14N2 O2	90.0317	[M+H]+	91.0390	[M-H]-	89.0244	5.06
leucine		131.094 6	[M+H]+	132.101 9	[M-H]-	130.087 4	9.32
lysine		146.105 5	[M+H]+	147.112 8	[M-H]-	145.098 3	17.01
maltose	C12H22O 11	342.116 2	[M+Na]+	365.105 4	[M-H]-	341.108 9	14.07
mannitol	C6H14O6	182.079 0	[M+H]+	183.086 3	[M-H]-	181.071 8	9.53
mannosamine	C6H13N0 5	179.079 4	[M+H]+	180.086 6	[M-H]-	178.072 1	14.52
methionine	C5H11N0 2S	149.051 0	[M+H]+	150.058 3	[M-H]-	148.043 8	10.44
MRFA (Met-Arg- Phe-Ala)	C23H37N 705S	523.257 7	[M+H]+	524.265 0	[M-H]-	522.250 4	13.61
N-acetyl-aspartic acid	C6H9NO5	175.048 1	[M+H]+	176.055 3	[M-H]-	174.040 8	14.82
N-acetyl-glutami c acid	C7H11N0 5	189.063 7	[M+H]+	190.071 0	[M-H]-	188.056 4	15.16
N-acetyl-mannos amine	C8H15N0 6	221.089 9	[M+Na]+	244.079 2	[M-H]-	220.082 7	7.15
N-alpha-acetyl-ly sine	C8H16N2 O3	188.116 1	[M+H]+	189.123 4	[M-H]-	187.108 8	15.13
n-butylamine	C4H11N	73.0891	[M+H]+	74.0964	[M-H]-	72.0819	4.17
nicotinamide	C6H6N2O	122.048 0	[M+H]+	123.055 3	[M-H]-	121.040 7	1.22

A	В	С	D	Е	F	G	Н
nicotinic acid	C6H5NO2	123.032 0	[M+H]+	124.039 3	[M-H]-	122.024 8	5.63
ornithine	C5H12N2 02	132.089 9	[M+H]+	133.097 2	[M-H]-	131.082 6	17.04
phenylacetic aci d	C8H8O2	136.052 4	[M+H]+	137.059 7	[M-H]-	135.045 2	5.88
phenylalanine	C9H11NO 2	165.079 0	[M+H]+	166.086 3	[M-H]-	164.071 7	8.98
pipecolic acid	C6H11NO 2	129.079 0	[M+H]+	130.086 3	[M-H]-	128.071 7	10.97
proline	C5H9NO2	115.063 3	[M+H]+	116.070 6	[M-H]-	114.056 1	10.92
pyridoxine	C8H11NO 3	169.073 9	[M+H]+	170.081 2	[M-H]-	168.066 6	2.16
raffinose	C18H32O 16	504.169 0	[M+H]+	505.176 3	[M-H]-	503.161 8	15.53
rhamnose	C6H12O5	164.068 5	[M+H]+	165.075 7	[M-H]-	163.061 2	2.80
ribose	C5H10O5	150.052 8	[M+H]+	151.060 1	[M-H]-	149.045 5	2.75
salicylic acid	C7H6O3	138.031 7	[M+H]+	139.039 0	[M-H]-	137.024 4	2.20
serine	C3H7NO3	105.042 6	[M+H]+	106.049 9	[M-H]-	104.035 3	14.31
shikimic acid	C7H10O5	174.052 8	[M+H]+	175.060 1	[M-H]-	173.045 5	13.41
succinic acid	C4H6O4	118.026 6	[M+H]+	119.033 9	[M-H]-	117.019 3	9.92
sucrose	C12H22O 11	342.116 2	[M+Na]+	365.105 4	[M-H]-	341.108 9	13.45
syringic acid	C9H10O5	198.052 8	[M+H]+	199.060 1	[M-H]-	197.045 5	1.59
taurine	C2H7NO3 S	125.014 7	[M+H]+	126.021 9	[M-H]-	124.007 4	12.16
threonine	C4H9NO3	119.058 2	[M+H]+	120.065 5	[M-H]-	118.051 0	13.49
thymidine	C10H14N 2O5	242.090 3	[M+H]+	243.097 5	[M-H]-	241.083 0	1.60
thymine	C5H6N2O 2	126.042 9	[M+H]+	127.050 2	[M-H]-	125.035 7	1.26
trans-4-hydroxy- proline	C5H9NO3	131.058 2	[M+H]+	132.065 5	[M-H]-	130.051 0	13.25
trans-cinnamic a cid	C9H8O2	148.052 4	[M+H]+	149.059 7	[M-H]-	147.045 2	1.15
trehalose	C12H22O 11	342.116 2	[M+Na]+	365.105 4	[M-H]-	341.108 9	14.21

A	В	С	D	E	F	G	Н
tryptophan	C11H12N 202	204.089 9	[M+H]+	205.097 2	[M-H]-	203.082 6	10.16
uracil	C4H4N2O 2	112.027 3	[M+H]+	113.034 6	[M-H]-	111.020 0	1.39
uridine	C9H12N2 O6	244.069 5	[M+H]+	245.076 8	[M-H]-	243.062 3	2.89
urocanic acid	C6H6N2O 2	138.042 9	[M+H]+	139.050 2	[M-H]-	137.035 7	9.35
valine	C5H11NO 2	117.079 0	[M+H]+	118.086 3	[M-H]-	116.071 7	11.12
vanillic acid	C8H8O4	168.042 3	[M+H]+	169.049 5	[M-H]-	167.035 0	1.54
vanillin	C8H8O3	152.047 3	[M+H]+	153.054 6	[M-H]-	151.040 1	0.86
xanthine	C5H4N4O 2	152.033 4	[M+H]+	153.040 7	[M-H]-	151.026 1	2.73
xanthosine	C10H12N 406	284.075 7	[M+H]+	285.083 0	[M-H]-	283.068 4	9.78

Table 10. Representative QC Mix for polar HILIC-Z. For each compound, observed adduct in positive and negative mode are listed as well as the observed retention time using this LC-MS/MS method.

• **Note:** Some compounds are only detected in a single polarity. Most ionize well at a concentration of 25 μM.

9 Blank

100% MeOH only (or other solvent matching the resuspension solvent of experimental samples).

Usage: Blank injections are interspersed between each sample injection to monitor background and minimize carryover (e.g. compounds "caught" in the system from the previous injection and detected in the next injection) between samples.

10 Internal Standard (ISTD) mix

A custom mixture of isotopically labeled (and/or non-biological/synthetic) compounds. These are added (at a specific concentration) to each sample prior to running LC-MS (typically during resuspension).

Usage: (1) Similar to QC mix, injections of ISTD mix only are interspersed throughout the LC-MS run to monitor instrument performance (calibration, intensity, retention time, etc.) as well as adjust compound retention times between runs. (2) Every experimental sample is also resuspended in solvent containing ISTDs. Since these are present in every sample at the same concentration, these can be used to assess individual sample injection properties, including changes in retention time (e.g. due to sample pH, clogging), failed injections, or intensity

variations (e.g. due to matrix effects, source fouling, or other factors). Additionally, since concentrations are known, an approximation of concentration for the same compound found in an experimental sample (not isotopically labeled) can be estimated based on ratio.

А	В	С	D	E	F	G	Н	I	J	K
Compou	Formu la	Conc entra tion	Mon oiso topic mas s	Addu ct (P OS)	m/z (PO S)	Addu ct (N EG)	m/z (NE G)	Expe cted RT	Part numb er	Notes
alanine (U - 13C, 15N)	[13C]3 H7[15 N]02	32.5 µM	93.0 548	[M+ H]+	94.06 20	[M-H] -	92.04 75	13.4 1	767964, Si gma	
arginine (U - 13C, 15N)	[13C]6 H14[1 5N]40 2	11 µ M	184. 119 9	[M+ H]+	185.1 272	[M-H] -	183.1 127	16.9 4	767964, Si gma	
asparagi ne (U - 1 3C, 15N)	[13C]4 H8[15 N]2O3	9.5 μ Μ	138. 061 0	[M+ H]+	139.0 683	[M-H] -	137.0 537	14.3 7	767964, Si gma	
aspartic acid (U - 13C, 15 N)	[13C]4 H7[15 N]04	26 µ M	138. 048 0	[M+ H]+	139.0 552	[M-H] -	137.0 407	16.1 3	767964, Si gma	
cysteine (U - 13C, 15N)	[13C]3 H7[15 N]02S	10 μ Μ	125. 026 8	[M+ H]+	126.0 341	[M-H] -	124.0 196	Not dete cted	767964, Si gma	Not detect ed, oxidize s to cystin e
cystine (U - 13C, 15N)	[13C]6 H12[1 5N]2O 4S2	10 μ Μ	248. 038 0	[M+ H]+	249.0 453	[M-H] -	247.0 308	16.9	N/A	Not added but a bypr oduct of c ysteine (in amino aci d mix)
glutamic acid (U - 13C, 15 N)	[13C]5 H9[15 N]04	21 µ M	153. 067 0	[M+ H]+	154.0 742	[M-H]	152.0 597	15.9 4	767964, Si gma	
glutamin e (U - 13 C, 15N)	[13C]5 H10[1 5N]20 3	10 μ Μ	153. 080 0	[M+ H]+	154.0 873	[M-H] -	152.0 727	14.3 1	767964, Si gma	
glycine (U - 13C, 15N)	[13C]2 H5[15 N]02	24 μ Μ	78.0 358	[M+ H]+	79.04 30	[M-H] -	77.02 85	14.1	767964, Si gma	
histidine (U - 13C, 15N)	[13C]6 H9[15 N]3O2	2.5 μ Μ	164. 080 7	[M+ H]+	165.0 880	[M-H] -	163.0 734	14.8 8	767964, Si gma	
isoleuci ne (U - 1 3C, 15N)	[13C]6 H13[1 5N]02	10.5 μΜ	138. 111 8	[M+ H]+	139.1 191	[M-H] -	137.1 045	9.71	767964, Si gma	

A	В	С	D	Е	F	G	Н	I	J	K
leucine (U - 13C 15N)	[13C]6 H13[1 5N]02	22.5 µM	138. 111 8	[M+ H]+	139.1 191	[M-H] -	137.1 045	9.32	767964, Si gma	
lysine (U - 13C, 15 N)	[13C]6 H14[1 5N]20 2	9.5 μ Μ	154. 119 7	[M+ H]+	155.1 270	[M-H] -	153.1 124	17.0 1	767964, Si gma	
methion ne (U - 1 3C, 15N	5NJO2	4.5 μ Μ	155. 064 9	[M+ H]+	156.0 721	[M-H]	154.0 576	10.4 4	767964, Si gma	
phenyla anine (U - 13C, 15 N)	J [130]9 ⊔11[1	8.5 µ M	175. 106 2	[M+ H]+	176.1 135	[M-H] -	174.0 989	8.98	767964, Si gma	
proline (U - 13C 15N)	[13C]5 H9[15 N]02	9.5 μ Μ	121. 077 1	[M+ H]+	122.0 844	[M-H] -	120.0 699	10.9 2	767964, Si gma	
serine (U - 13C 15N)	[13C]3 H7[15 N]03	14 μ Μ	109. 049 7	[M+ H]+	110.0 570	[M-H] -	108.0 424	14.3 1	767964, Si gma	
threonin e (U - 13 C, 15N)		14 µ M	124. 068 7	[M+ H]+	125.0 760	[M-H] -	123.0 614	13.4 9	767964, Si gma	
tryptoph an (U - 1 3C, 15N	[151]2	10 µ M	217. 120 9	[M+ H]+	218.1 281	[M-H] -	216.1 136	10.1 6	767964, Si gma	
tyrosine (U - 13C 15N)		6.5 µ M	191. 101 1	[M+ H]+	192.1 084	[M-H] -	190.0 938	11.8 6	767964, Si gma	
valine (l - 13C, 15 N)	[13C]5 H11[1 5N]02	14.5 µM	123. 092 8	[M+ H]+	124.1 001	[M-H] -	122.0 855	11.1 2	767964, Si gma	
mannito (U - 13C		10 μ g/m L	188. 099 2	[M+ H]+	189.1 064	[M-H] -	187.0 919	9.53	ALD-030, O micron Bio chemicals	
trehalos e (U - 13 C)		10 u g/m L	354. 156 5	[M+N a]+	377.1 457	[M-H] -	353.1 492	14.4 4	TRE-002, O micron Bio chemicals	
adenine (U - 15 N)	C5H5 [15N]5	4 μ g/m L	140. 039 7	[M+ H]+	141.0 469	[M-H] -	139.0 324	2.56	NLM-6924, Cambridge Isotope La bs	
hypoxar thine (U - 15N)		3 µ g/m L	140. 026 7	[M+ H]+	141.0 339	[M-H] -	139.0 194	3.1	NLM-8500, Cambridge Isotope La bs	
uracil (U - 13C, 15 N)	[13C]4 5 H4O2 [15N]2	2μ g/m L	118. 034 8	[M+ H]+	119.0 420	[M-H] -	117.0 275	1.39	CNLM-391 7, Cambrid	

A	В	С	D	E	F	G	Н	I	J	K
									ge Isotope Labs	
inosine (U - 15 N)	C10H1 2[15N] 4O5	5.5 μ g/m L	272. 068 9	[M+ H]+	273.0 762	[M-H] -	271.0 616	5.43	NLM-4264, Cambridge Isotope La bs	
cytosine (13C2, 1 5N3)	C2[13 C]2H5 [15N]3 O	5μ g/m L	116. 041 1	[M+ H]+	117.0 483	[M-H] -	115.0 338	4.83	492108, Si gma	
guanine (U - 15 N)	C5H5 [15N]5 O	2 µ g/m L	156. 034 6	[M+ H]+	157.0 419	[M-H] -	155.0 273	6.27	NLM-6926, Cambridge Isotope La bs	
thymine (U - 13C, 15N)	[13C]5 H6[15 N]2O2	2.5 µ g/m L	133. 053 8	[M+ H]+	134.0 610	[M-H] -	132.0 465	1.26	CNLM-694 5, Cambrid ge Isotope Labs	
2-amino- 3-bromo -5-methy Ibenzoic acid (AB MBA) (B r-nat)	C8H8 BrNO2	1 μ g/m L	228. 973 8	[M+ H]+	229.9 811	[M-H] -	227.9 666	1.2	631531, Si gma	

Table 11. Representative ISTD Mix used for resuspension. For each compound, observed adduct in positive and negative ion mode are listed as well as the observed retention time using this LC-MS/MS method. Concentrations listed are the typical concentrations used in this protocol.

- For the Sigma amino acid mix (#767964, Sigma), the final concentration varies for each compound between lots, but is usually very similar between lots. Average concentration is ~15 µM for all compounds across the Sigma amino acid mix.
- For stable isotope labeling studies with 13C, typically only the 13C-15N amino acid mixture and ABMBA (synthetic and contains bromine - isobaric) are used as internal standards. Similar adjustments are made for other types of stable isotope labeling experiments based on type of labeling and overall experimental design.

11 **Experimental Sample Vial**

Samples typically consist of metabolite extracts (or a compound standard at a specified concentration) resuspended in solvent, usually 100% MeOH, and containing a mixture of isotopically labeled internal standards (see example ISTD mix above).

Usage: To profile metabolites in a sample and/or annotate the retention time, ionization characteristics (m/z for an adduct) and fragmentation spectra of a compound.

LC System Preparation

To prepare the LC, column compartment (40 °C) and autosampler temperatures (4 °C) are set and monitored until stable. The LC binary pump is typically prepared by purging 100% mobile phase A, 50/0 mobile phase A/B, then 100% B, each for 7 minutes at a flow rate of 5 mL/min. A flow rate of 0.45 mL/min of 100% B is maintained while the UHPLC system is checked for leaks or clogs. Backpressure is monitored until stable at ~130 bar. The HILIC column is equilibrated by performing 3-10 injections using the method gradients provided in Table 6.

Mass Spectrometer Preparation

Prior to data acquisition, the mass spectrometer is calibrated using standard calibration procedures available in the Thermo XCalibur operating software. ESI needle position is optimized relative to the source to achieve stable and acceptable ion intensity levels.

Calibration procedure for QE and QE-HF. Here, calibration is performed in positive mode with Pierce™ LTQ Velos ESI Positive Ion Calibration Solution (#88323, Thermo Scientific) and negative mode with Pierce™ Negative Ion Calibration Solution (#88324, Thermo Scientific) using direct injection from a syringe pump. Standard calibration is then followed by a custom low mass calibration procedure to ensure compounds near 100 *m/z* are also well-calibrated.

Calibration procedure for Exp120 and IQX. Here, calibration is performed in both positive and negative ionization mode with Pierce™ FlexMix Calibration Solution (#A39239, Thermo Scientific) using direct injection from a syringe pump and insertion of the low-flow ESI needle into the source housing. Custom low mass calibration procedures are not necessary using these systems. The system can be re-calibrated periodically during data acquisition using an automated point calibration (EasyIC) with the internal calibrant compound fluoroanthene. Prior to starting an LC-MS/MS run for data collection, the low-flow needle is replaced by the high-flow needle.

Note: For the IQX, an auto-calibration option can be performed using the Auto-ready Ion Source. This uses a less concentrated calibration mix (Pierce™ FlexMix Calibration Solution for Auto-Ready Mass Spectrometers, #A51739, Thermo Scientific) and eliminates the need to switch between low- and high-flow ESI needles.

LC-MS/MS Data Collection

In a typical LC-MS/MS run, an injection volume of 2-3 μL for each sample is used. Each sample is run in positive and negative ionization mode, with an injection blank of 100% methanol interspersed between each sample, replaced by an ISTD mix interspersed every 3 samples and a QC mix every 9-15 samples. Sample injection order is randomized between groups of replicate 1, then replicate 2, etc. Prior to starting a full experimental run, at least 4 injection blanks and several QC and ISTD injections are performed to ensure column and system

equilibration and to verify that data is being acquired as expected. ISTD mix compounds are regularly monitored throughout LC-MS runs to assess drops in intensity, retention time shifts or increases in m/z ppm error, and performing the appropriate cleaning, re-calibration, maintenance or other troubleshooting as needed.

Protocol references

- 1 https://massive.ucsd.edu/
- 2 Eric W. Deutsch, Attila Csordas, Zhi Sun, Andrew Jarnuczak, Yasset Perez-Riverol, Tobias Ternent, David S. Campbell, Manuel Bernal-Llinares, Shujiro Okuda, Shin Kawano, Robert L. Moritz, Jeremy J. Carver, Mingxun Wang, Yasushi Ishihama, Nuno Bandeira, Henning Hermjakob, Juan Antonio Vizcaíno, The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition, Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D1100-D1106, https://doi.org/10.1093/nar/gkw936
- 3 Wang, M., Carver, J., Phelan, V. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34, 828-837 (2016). https://doi.org/10.1038/nbt.3597