

ABAid: Navigation Aid for Blind People Using Acoustic Signal

Zehui Zheng, Weifeng Liu, Rukhsana Ruby, Yongpan Zou, Kaishun Wu Shenzhen University

Normal Case for Visually Impaired People

What Others Are Doing to Help Them

What Have Been Added in Common

What If....

What Has a Smart Phone Intergrated

- Camera
- Speaker
- Microphone
- Inertial Measurement Unit (IMU)

What Has a Smart Phone Intergrated

- Camera
- Speaker
- Microphone
- Inertial Measurement Unit (IMU)

Acoustic Distance Measurement

Cross-correlation

$$Xcorr(f,g)[n] \xrightarrow{def} \sum_{m=0}^{N-1} f[m]g[m+n].$$

Measure propogation delay by:

Xcorr(Recorded Signal, ModulatedEmittedSignal)

How to Design Emitted Signal?

Avoid daily noise, which is mostly lower frequency

=> high frequency

Avoid disturbing user while emitting sound

=> frequency should be greater than 18kHz

Supported by phone (sample rate up to 44.1kHz)

=> frequency should be less than 22kHz

Emitted Signal Frequency should be in [18kHz, 22kHz]

Simulation for Detecting Delays

Xcorr(RecordedSignal, SingleFrequencyEmittedSignal)

Xcorr(RecordedSignal, VariousFrequencyEmittedSignal)

Final Version of Emitted Signal

Frequency: 18kHz – 20kHz

Wavelength: 17cm - 19cm

Period: 0.5s (1ms chirp with 499ms silence)

Measuring Distance

After Distance Measured

Use IMU (Gyroscope) to calculate the angle between the starting point and the shortest-distance-location

Evaluation

- 6 participants
- Android phone, with speaker, microphone and gyroscope (100Hz)
- Scenarios: outdoor glass-wall, indoor TV and indoor stone-wall

(a) Measuring the distance (Left) and orientation (Right) relative to a glass wall in outdoor environment.

(b) Measuring the distance (Left) and orientation (Right) relative to a hanging TV in indoor environment.

(c) Measuring the distance (Left) and orientation (Right) relative to a stone wall in indoor environment.

Evaluation

Average error rate in distance measuring:

3.24%

Outdoor		Scenarios		Overall
User 1	3.46%	Outdoor-glass	3.35%	
User 2	2.90%	Indoor-glass	1.99%	
User 3	2.94%	Indoor-stone	2.27%	3.24%
User 4	3.15%	With noise	4.78%	
User 5	4.94%	Without noise	3.05%	
User 6	2.72%			

Evaluation

Average error in angle measuring:

2.73 degree

Further Application Scenario

