R for Photobiology

A handbook

Pedro J. Aphalo, Andreas Albert and Titta Kotilainen

Git: tag 'none', committed with hash 84a688a on 2015-06-16 17:06:31 +0300 by Pedro J. Aphalo
PDF created 18th June 2015
© 2013-2015 by the authors

Contents

Co	nten	ts	i
Li	st of	Tables	iii
Li	st of	Figures	iv
Li	st of	Examples	\mathbf{v}
Pr	eface Ack	nowledgements	vii vii
Li	st of	abbreviations and symbols	ix
Ι	Pre	liminaries	1
1	Intr 1.1	oduction Radiation and molecules	3
2	Rad 2.1 2.2 2.3 2.4	iation physiscs Packages used in this chapter Ultraviolet and visible radiation Solar radiation Radiation within plant canopies	5 5 5 14 19
3	Pho 3.1	tochemistry Task:	21 21
4	Soft 4.1 4.2 4.3	ware Task: Introduction The different pieces	23 23 23 24
5	Pho 5.1 5.2 5.3 5.4	tobiology R packages Expected use and users The design of the user interface The suite The r4photobiology repository	27 27 27 29 30
Rev	rision: 8	4a688a (2015-06-16)	i

CONTENTS

II	Cookbook of calculations	33
III	Catalogue of data sources	35
IV	Data acquisition and modelling	37
6	Further reading about R	39
	6.1 Introductory texts	39
	6.2 Texts on specific aspects	39
	6.3 Advanced texts	39
	6.4 Application-specific texts	39
Bił	pliography	41
A	Build information	67

List of Tables

iii

2.1	Regions of the electromagnetic radiation associated with colours	7
2.2	Physical quantities of light	10
2.3	Photometric quantities of light	11
2.4	Photon quantities of light	13
2.5	Conversion factors of photon and energy quantities at different	
	wavelengths	14
2.6	Distribution of the solar constant in different wavelength intervals .	16
5.1	Packages in the suite	29

List of Figures

2.1	Definition of the solid angles and areas in space	7
2.2	Path of the radiance in a thin layer	9
2.3	Relative spectral intensity of human colour sensation during day	
	(solid line) and night (dashed line), $V(\lambda)$ and $V'(\lambda)$ respectively	12
2.4	Solar position	15
2.5	Extraterrestrial solar spectrum	16
2.6	Sky photos	17
2.7	Diffuse component in solar UV	17
2.8	The solar spectrum through half a day	17
2.9	The solar UV spectrum at noon	18
2.10	The solar UV spectrum through half a day	18
2.11	UV-B and PAR	18
2.12	Seasonal variation in UV-B radiation	18
2.13	Latitudinal variation in UV-B radiation	19
5 1	The elements of the suite	28

List of Examples

Preface

This is just a very early draft of a handbook that will accompany the release of the suite of R packages for photobiology (r4photobiology).

Acknowledgements

We thank Stefano Catola, Paula Salonen, David Israel, Neha Rai, Tendry Randriamanana, Saara Harkikainen, Christian Bianchi-Strømme and ... for very useful comments and suggestions. We specially thank Matt Robson for exercising the packages with huge amounts of spectral data and giving detailed feedback on problems, and in particular for describing needs and proposing new features.

List of abbreviations and symbols

For quantities and units used in photobiology we follow, as much as possible, the recommendations of the Commission Internationale de l'Éclairage as described by (Sliney 2007).

Symbol	Definition
α	(%).
Δe	water vapour pressure difference (Pa).
ϵ	emittance (Wm^{-2}).
λ	wavelength (nm).
θ	solar zenith angle (degrees).
ν	frequency (Hz or s^{-1}).
ρ	(%).
σ	Stefan-Boltzmann constant.
τ	(%).
χ	water vapour content in the air ($g m^{-3}$).
A	(absorbance units).
ANCOVA	analysis of covariance.
ANOVA	analysis of variance.
BSWF	
С	speed of light in a vacuum.
CCD	charge coupled device, a type of light detector.
CDOM	coloured dissolved organic matter.
CFC	chlorofluorocarbons.
c.i.	confidence interval.
CIE	Commission Internationale de l'Éclairage;
	or erythemal action spectrum standardized by CIE.
CTC	closed-top chamber.
DAD	diode array detector, linear light detector based on photodiodes.
DBP	dibutylphthalate.
DC	direct current.
DIBP	diisobutylphthalate.
DNA(N)	UV action spectrum for 'naked' DNA.
DNA(P)	UV action spectrum for DNA in plants.
DOM	dissolved organic matter.
DU	Dobson units.
e	water vapour partial pressure (Pa).
E	(energy) irradiance (Wm^{-2}).
$E(\lambda)$	spectral (energy) irradiance ($W m^{-2} nm^{-1}$).

LIST OF ABBREVIATIONS AND SYMBOLS

 E_0 fluence rate, also called scalar irradiance (W m⁻²).

ESR early stage researcher.

FACE free air carbon-dioxide enhancement. FEL a certain type of 1000 W incandescent lamp.

FLAV UV action spectrum for accumulation of flavonoids.

FWHM full-width half-maximum. GAW Global Atmosphere Watch.

GEN generalized plant action spectrum, also abreviated as GPAS (Caldwell 1971).

GEN(G) mathematical formulation of GEN by (Green et al. 1974).

GEN(T) mathematical formulation of GEN by (Thimijan et al. 1978).

h Planck's constant.

h' Planck's constant per mole of photons.

H exposure, frequently called dose by biologists (kJ m⁻² d⁻¹).

 H^{BE} biologically effective (energy) exposure (kJ m $^{-2}$ d $^{-1}$). $H^{\mathrm{BE}}_{\mathrm{p}}$ biologically effective photon exposure (mol m $^{-2}$ d $^{-1}$). HPS high pressure sodium, a type of discharge lamp.

HSD honestly significant difference.

 $k_{\rm B}$ Boltzmann constant. L radiance (Wsr⁻¹ m⁻²).

LAI leaf area index, the ratio of projected leaf area to the ground area.

LED light emitting diode.

LME linear mixed effects (type of statistical model).

LSD least significant difference.

n number of replicates (number of experimental units per treatment).

N total number of experimental units in an experiment. $N_{\rm A}$ Avogadro constant (also called Avogadro's number). NIST National Institute of Standards and Technology (U.S.A.).

NLME non-linear mixed effects (statistical model).

OTC open-top chamber. PAR , 400–700 nm.

measured as energy or photon irradiance.

PC polycarbonate, a plastic.

PG UV action spectrum for plant growth.

PHIN UV action spectrum for photoinhibition of isolated chloroplasts.

PID (control algorithm).

PMMA polymethylmethacrylate.

PPFD , another name for

PAR photon irradiance (Q_{PAR}).

PTFE polytetrafluoroethylene. PVC polyvinylchloride.

q energy in one photon ('energy of light').

q' energy in one mole of photons.

Q photon irradiance ($mol m^{-2} s^{-1}$ or $\mu mol m^{-2} s^{-1}$).

 $Q(\lambda)$ spectral photon irradiance (mol m⁻² s⁻¹ nm⁻¹ or µmol m⁻² s⁻¹ nm⁻¹).

 r_0 distance from sun to earth.

RAF (nondimensional). RH relative humidity (%).

s energy effectiveness (relative units).

 $s(\lambda)$ spectral energy effectiveness (relative units).

s^p quantum effectiveness (relative units).

 $s^{p}(\lambda)$ spectral quantum effectiveness (relative units).

s.d. standard deviation.

SDK software development kit. s.e. standard error of the mean.

SR spectroradiometer.

t time.

T temperature.
TUV tropospheric UV.

U electric potential difference or voltage (e.g. sensor output in V).

 $\begin{array}{ll} UV & ultraviolet\ radiation\ (\lambda=100\text{-}400\ nm). \\ UV\text{-}A & ultraviolet\text{-}A\ radiation\ (\lambda=315\text{-}400\ nm). \\ UV\text{-}B & ultraviolet\text{-}B\ radiation\ (\lambda=280\text{-}315\ nm). \\ UV\text{-}C & ultraviolet\text{-}C\ radiation\ (\lambda=100\text{-}280\ nm). \end{array}$

UV^{BE} biologically effective UV radiation.

UTC coordinated universal time, replaces GMT in technical use.

VIS radiation visible to the human eye ($\approx 400\text{--}700 \text{ nm}$).

WMO World Meteorological Organization.
VPD water vapour pressure deficit (Pa).

WOUDC World Ozone and Ultraviolet Radiation Data Centre.

Part I

Preliminaries

Introduction

Abstract

In this chapter we explain the physical basis of optics and photochemistry.

1.1 Radiation and molecules

Radiation physiscs

Abstract

In this chapter we explain how to .

2.1 Packages used in this chapter

For executing the examples listed in this chapter you need first to load the following packages from the library:

```
library(photobiology)

## Loading required package: data.table

library(photobiologygg)

## Loading required package: photobiologyWavebands
## Loading required package: proto
## Loading required package: ggplot2
## Loading required package: methods
## Loading required package: scales

library(photobiologyWavebands)
library(photobiologySun)
```

2.2 Ultraviolet and visible radiation

In a physical sense, ultraviolet (UV) and visible (VIS) radiation (i.e. also PAR) are electromagnetic waves and are described by Maxwell's equations. ¹ The wavelength ranges of UV and visible radiation and their usual names are listed in

 $^{^{\}rm l}{\rm These}$ equations are a system of four partial differential equations describing classical electromagnetism.

Table 2.1. The long wavelengths of solar radiation, called infrared (IR) radiation, are also listed. The colour ranges indicated in Table 2.1 are an approximation as different individual human observers will not perceive colours exactly in the same way. We follow the ISO definitions for wavelength boundaries for colours (??). Other finer-grained colour name series are also in use (e.g. Aphalo, Albert, Björn, Ylianttila et al. 2012, Table xx)). The electromagnetic spectrum is continuous with no clear boundaries between one colour and the next, the colours could be thought as artifacts produced by our sensory system, and are meaningful only from the perspective of an *average* human observer. Especially in the IR region the subdivision is somewhat arbitrary and the boundaries used in the literature vary.

Radiation can also be thought of as composed of quantum particles or photons. The energy of a quantum of radiation in a vacuum, q, depends on the wavelength, λ , or frequency², ν ,

$$q = h \cdot \nu = h \cdot \frac{c}{\lambda} \tag{2.1}$$

with the Planck constant $h=6.626\times 10^{-34}\,$ Js and speed of light in vacuum $c=2.998\times 10^8\,$ m s⁻¹. When dealing with numbers of photons, the equation (2.1) can be extended by using Avogadro's number $N_{\rm A}=6.022\times 10^{23}\,$ mol⁻¹. Thus, the energy of one mole of photons, q', is

$$q' = h' \cdot \nu = h' \cdot \frac{c}{\lambda} \tag{2.2}$$

with $h' = h \cdot N_A = 3.990 \times 10^{-10} \text{ Js} \, \text{mol}^{-1}$. Example 1: red light at 600 nm has about 200 kJ mol⁻¹, therefore, 1 µmol photons has 0.2 J. Example 2: UV-B radiation at 300 nm has about 400 kJ mol⁻¹, therefore, 1 µmol photons has 0.4 J. Equations 2.1 and 2.2 are valid for all kinds of electromagnetic waves (see Section ?? for a worked-out calculation example).

One way of understanding the relationship between the distance and positions of source and observer (or sensor) on the amount of radiation received is to use a geometric model. Bellow we describe such a model, in which a point source is located at the centre or origin of an imaginary sphere. As the distance from the origin increases, the surface area of the sphere at this distance increases. The relationship between the distance increase and area increase is, obviously, not linear. In addition, according to the well known cosine law, the amount of radiation received per unit area depends on the angle of incidence. This informal description, will is formally described below.

When a beam or the radiation passing into a space or sphere is analysed, two important parameters are necessary: the distance to the source and the measuring position—i.e. if the receiving surface is perpendicular to the beam or not. The geometry is illustrated in Figure 2.1 with a radiation source at the origin. The radiation is received at distance r by a surface of area dA, tilted by an angle α to the unit sphere's surface element, so called solid angle, $d\Omega$, which is a two-dimensional angle in a space. The relation between dA and $d\Omega$ in spherical coordinates is geometrically explained in Figure 2.1.

²Wavelength and frequency are related to each other by the speed of light, according to $v = c/\lambda$ where c is speed of light in vacuum. Consequently there are two equivalent formulations for equation 2.1.

Table 2.1: Regions of the electromagnetic radiation associated with colours, after (Iqbal 1983) and (Eichler et al. 1993) with alterations.

Colour	Wavelength (nm)	Frequency (THz)	
UV-C	100 - 280	3000 - 1070	
UV-B	280 - 315	1070 - 950	
UV-A	315 - 400	950 - 750	
violet	400 - 455	750 - 660	
blue	455 - 492	660 - 610	
green	492 - 577	610 - 520	
yellow	577 - 597	520 - 502	
orange	597 - 622	502 - 482	
red	622 - 700	482 - 428	
far red	700 - 770	428 - 390	
near IR	770 - 3000	390 - 100	
mid IR	3000 - 50000	100 - 6	
far IR	50000 - 10 ⁶	6 - 0.3	

Figure 2.1: Definition of the solid angle $\mathrm{d}\Omega$ and the geometry of areas in the space (redrawn after Eichler et al. 1993), where the given solid angle $\mathrm{d}\Omega$ remains the same, regardless of distance r, while the exposed area exemplified by $\mathrm{d}A$ will change with distance r from the origin (light source) and the angle α , if the exposed area (or detector) is tilted. The angle denoted by ϕ is the azimuth angle and θ is the zenith angle.

The solid angle is calculated from the zenith angle θ and azimuth angle ϕ , which denote the direction of the radiation beam

$$d\Omega = d\theta \cdot \sin\theta d\phi \tag{2.3}$$

The area of the receiving surface is calculated by a combination of the solid angle of the beam, the distance r from the radiation source and the angle α of the tilt:

$$dA = \frac{r d\theta}{\cos \alpha} \cdot r \sin \theta d\phi \tag{2.4}$$

which can be rearranged to

$$\Rightarrow dA = \frac{r^2}{\cos \alpha} d\Omega \tag{2.5}$$

Thus, the solid angle is given by

$$\Omega = \int_{A} \frac{\mathrm{d}A \cdot \cos \alpha}{r^2} \tag{2.6}$$

The unit of the solid angle is a steradian (sr). The solid angle of an entire sphere is calculated by integration of equation (2.3) over the zenith (θ) and azimuth (ϕ) angles, $0 \le \theta \le \pi(180^\circ)$ and $0 \le \phi \le 2\pi(360^\circ)$, and is 4π sr. For example, the sun or moon seen from the Earth's surface appear to have a diameter of about 0.5° which corresponds to a solid angle element of about 6.8×10^{-5} sr.

When radiation travels through a medium it can be absorbed (the energy 'taken up' by the material's atoms) or scattered (the direction of travel of the radiation randomly altered). Both of these phenomena affect the amount of radiation that reaches the 'other end of the path' where the observer or sensor is located, and their effect depends on the length of the path. Once again, this informal description, is stated formally below.

The processes responsible for the variation of the radiance $L(\lambda, \theta, \phi)$ as the radiation beam travels through any kind of material, are primarily absorption a and scattering b, which are called inherent optical properties, because they depend only on the characteristics of the material itself and are independent of the light field. Radiance is added to the directly transmitted beam, coming from different directions, due to elastic scattering, by which a photon changes direction but not wavelength or energy level. An example of this is Raleigh scattering in very small particles, which causes the scattering of light in a rainbow. A further gain of radiance into the direct path is due to inelastic processes like fluorescence, where a photon is absorbed by the material and reemitted as a photon with a longer wavelength and lower energy level, and Raman scattering. The elastic and inelastic scattered radiance is denoted as L^E and L^{I} , respectively. Internal sources of radiances, L^{S} , like bioluminescence of biological organisms or cells contribute also to the detected radiance. The path of the radiance through a thin horizontal layer with thickness $dz = z_1 - z_0$ is shown schematically in Figure 2.2.

Putting all this together, the radiative transfer equation is

$$\cos\theta \frac{\mathrm{d}L}{\mathrm{d}z} = -(a+b) \cdot L + L^E + L^I + L^S \tag{2.7}$$

Figure 2.2: Path of the radiance and influences of absorbing and scattering particles in a thin homogeneous horizontal layer of air or water. The layer is separated from other layers of different characteristics by boundary lines at height z_0 and z_1 .

The dependencies of L on λ , θ , and ϕ are omitted here for brevity. No exact analytical solution to the radiative transfer equation exists, hence it is necessary either to use numerical models or to make approximations and find an analytical parameterisation. A numerical model is for example the Monte Carlo method. The parameters of the light field can be simulated by modelling the paths of photons. For an infinite number of photons the light field parameters reach their exact values asymptotically. The advantage of the Monte Carlo method is a relatively simple structure of the program, and it simulates nature in a straightforward way, but its disadvantage is the time-consuming computation involved. Details of the Monte Carlo method are explained for example by (Prahl et al. 1989), (Wang et al. 1995)³, or (Mobley 1994).

The other way to solve the radiative transfer equation is through the development of analytical parameterisations by making approximations for all the quantities needed. In this case, the result is not exact, but it has the advantage of fast computing and the analytical equations can be inverted just as fast. This leads to the idealised case of a source-free ($L^S=0$) and non-scattering media, i.e. b=0 and therefore $L^E=L^I=0$. Then, equation 2.7 can be integrated easily and yields

$$L(z_1) = L(z_0) \cdot e^{-\frac{a \cdot (z_1 - z_0)}{\cos \theta}}$$
 (2.8)

The boundary value $L(z_0)$ is presumed known. This result is known as Beer's law (or Lambert's law, Bouguer's law, Beer-Lambert law), denotes any instance of exponential attenuation of light and is exact only for purely absorbing media—i.e. media that do not scatter radiation. It is of direct application in analytical chemistry, as it describes the direct proportionality of absorbance (A) to the concentration of a coloured solute in a transparent solvent.

 $^{^3} Their\ program$ is available from the website of Oregon Medical Laser Center at http://omlc.ogi.edu/software/mc/

Table 2.2: Physical quantities of light.

Symbol	Unit	Description
$\Phi=rac{\partial q}{\partial t}$	$W = J \; s^{-1}$	Radiant flux: absorbed or emitted energy per time interval
$H = \frac{\partial q}{\partial A}$	J m ⁻²	Exposure: energy towards a surface area. (In plant research this is called usually <i>dose</i> (H), while in Physics <i>dose</i> refers to absorbed radiation.)
$E = \frac{\partial \Phi}{\partial A}$	$ m W~m^{-2}$	Irradiance: flux or radiation towards a surface area, radiant flux density
$I=rac{\partial \Phi}{\partial \Omega}$	${\sf W} \; {\sf sr}^{-1}$	Radiant intensity: emitted radiant flux of a surface area per solid angle
$\epsilon=rac{\partial oldsymbol{\phi}}{\partial A}$	$ m W~m^{-2}$	Emittance: emitted radiant flux per surface area
$L = \frac{\partial^2 \Phi}{\partial \Omega(\partial A \cdot \cos \alpha)} = \frac{\partial I}{\partial A \cdot \cos \alpha}$	W $\mathrm{m}^{-2}~\mathrm{sr}^{-1}$	Radiance: emitted radiant flux per solid angle and surface area depending on the angle between radiant flux and surface perpendicu- lar

Different physical quantities are used to describe the "amount of radiation" and their definitions and abbreviations are listed in Table 2.2. Taking into account Equation 2.6 and assuming a homogenous flux, the important correlation between irradiance E and intensity I is

$$E = \frac{I \cdot \cos \alpha}{r^2} \tag{2.9}$$

The irradiance decreases by the square of the distance to the source and depends on the tilt of the detecting surface area. This is valid only for point sources. For outdoor measurements the sun can be assumed to be a point source. For artificial light sources simple LEDs (light-emitting diodes) without optics on top are also effectively point sources. However, LEDs with optics—and other artificial light sources with optics or reflectors designed to give a more focused dispersal of the light—deviate to various extents from the rule of a decrease of irradiance proportional to the square of the distance from the light source.

Besides the physical quantities used for all electromagnetic radiation, there are also equivalent quantities to describe visible radiation, so called photometric quantities. The human eye as a detector led to these photometric units, and they are commonly used by lamp manufacturers to describe their artificial light sources. See Box ?? on page ?? for a short description of these quantities and units.

Photometric quantities

In contrast to (spectro-)radiometry, where the energy of any electromagnetic radiation is measured in terms of absolute power (Js = W), photometry measures light as perceived by the human eye. Therefore, radiation is weighted by a luminosity function or visual sensitivity function describing the wavelength dependent response of the human eye. Due to the physiology of the eye, having rods and cones as light receptors, different sensitivity functions exist for the day (photopic vision) and night (scotopic vision), $V(\lambda)$ and $V'(\lambda)$, respectively. The maximum response during the day is at $\lambda=555$ nm and during night at $\lambda=507$ nm. Both response functions (normalised to their maximum) are shown in the figure below as established by the Commission Internationale de l'Éclairage (CIE, International Commission on Illumination, Vienna, Austria) in 1924 for photopic vision and 1951 for scotopic vision (Schwiegerling 2004). The data are available from the Colour and Vision Research Laboratory at http://www.cvrl.org. Until now, $V(\lambda)$ is the basis of all photometric measurements.

Corresponding to the physical quantities of radiation summarized in the table 2.2, the equivalent photometric quantities are listed in the table below and have the subscript v. The ratio between the (physiological) luminous flux $\Phi_{\rm v}$ and the (physical) radiant flux Φ is the (photopic) photometric equivalent $K(\lambda) = V(\lambda) \cdot K_m$ with $K_m = 683$ lm W $^{-1}$ (lumen per watt) at 555 nm. The dark-adapted sensitivity of the eye (scotopic vision) has its maximum at 507 nm with 1700 lm W $^{-1}$. The base unit of luminous intensity is candela (cd). One candela is defined as the monochromatic intensity at 555 nm (540 THz) with $I = \frac{1}{683}$ W sr $^{-1}$. The luminous flux of a normal candle is around 12 lm. Assuming a homogeneous emission into all directions, the luminous intensity is about $I_{\rm v} = \frac{12\,{\rm lm}}{470\,{\rm sr}} \approx 1$ cd.

Table 2.3: Photometric quantities of light.

Symbol	Unit	Description
$q_{ m \scriptscriptstyle V}$	lm s	Luminous energy or quantity of light
$egin{aligned} q_{_{\mathrm{V}}} \ \Phi_{_{\mathrm{V}}} &= rac{\partial q_{_{\mathrm{V}}}}{\partial t} \end{aligned}$	lm	Luminous flux: absorbed or emitted luminous energy per time interval
$I_{ m V}=rac{\partial \Phi_{ m V}}{\partial \Omega}$	$cd = Im sr^{-1}$	Luminous intensity: emitted luminous flux of a surface area per solid angle
$E_{\rm V} = \frac{\partial \Phi_{\rm V}}{\partial A}$	$lux = lm m^{-2}$	Illuminance: luminous flux towards a surface area
$\epsilon_{ ext{V}} = rac{\partial oldsymbol{\phi}_{ ext{V}}}{\partial A}$	lux	Luminous emittance: luminous flux per surface area
$H_{ m V}=rac{\partial q_{ m V}}{\partial A}$	lux s	Light exposure: quantity of light towards a surface area
$L_{\rm V} = \frac{\partial^2 \Phi_{\rm V}}{\partial \Omega (\partial A \cdot \cos \alpha)} = \frac{\partial I_{\rm V}}{\partial A \cdot \cos \alpha}$	cd m ⁻²	Luminance: luminous flux per solid angle and surface area depending on the angle between luminous flux and surface perpendicular

Figure 2.3: Relative spectral intensity of human colour sensation during day (solid line) and night (dashed line), $V(\lambda)$ and $V'(\lambda)$ respectively.

Photon or quantum quantities of radiation.

When we are interested in photochemical reactions, the most relevant radiation quantities are those expressed in photons. The reason for this is that, as discussed in section ?? on page ??, molecules are excited by the absorption of certain fixed amounts of energy or quanta. The surplus energy "decays" by non-photochemical processes. When studying photosynthesis, where many photons of different wavelengths are simultaneously important, we normally use photon irradiance to describe amount of PAR. The name photosynthetic photon flux density, or PPFD, is also frequently used when referring to PAR photon irradiance. When dealing with energy balance of an object instead of

2.2. ULTRAVIOLET AND VISIBLE RADIATION

photochemistry, we use (energy) irradiance. In meteorology both UV and visible radiation, are quantified using energy-based quantities. When dealing with UV photochemistry as in responses mediated by UVR8, an UV-B photoreceptor, the use of quantum quantities is preferred. According to the physical energetic quantities in the table 2.2, the equivalent photon related quantities are listed in the table below and have the subscript p.

Table 2.4: Photon quantities of light.

Symbol	Unit	Description
$\Phi_{ m p}$	s^{-1}	Photon flux: number of photons per time interval
$Q = \frac{\partial \Phi_{\mathbf{p}}}{\partial A}$	$\mathrm{m}^{-2}~\mathrm{s}^{-1}$	Photon irradiance: photon flux towards a surface area, photon flux density (sometimes also symbolised by $E_{\rm p}$)
$H_{\rm p} = \int_t Q \mathrm{d}t$	m^{-2}	Photon exposure: number of photons towards a surface area during a time interval, photon fluence

These quantities can be also used based on a 'chemical' amount of moles by dividing the quantities by Avogadro's number $N_A=6.022\times 10^{23}~{\rm mol^{-1}}$. To determine a quantity in terms of photons, an energetic quantity has to be weighted by the number of photons, i.e. divided by the energy of a single photon at each wavelength as defined in equation 2.1. This yields for example

$$\Phi_{\rm p} = \frac{\lambda}{h \, c} \cdot \frac{\partial q}{\partial t}$$
 and $Q(\lambda) = \frac{\lambda}{h \, c} \cdot E(\lambda)$

Photon or quantum quantities of radiation.

When dealing with bands of wavelengths, for example an integrated value like PAR from 400 to 700 nm, it is necessary to repeat these calculations at each wavelength and then integrate over the wavelengths. For example, the PAR photon irradiance or PPFD in moles of photons is obtained by

$$PPFD = \frac{1}{N_{A}} \int_{400 \text{ nm}}^{700 \text{ nm}} \frac{\lambda}{hc} E(\lambda) d\lambda$$

For integrated values of UV-B or UV-A radiation the calculation is done analogously by integrating from 280 to 315 nm or 315 to 400 nm, respectively.

If we have measured (energy) irradiance, and want to convert this value to photon irradiance, the exact conversion will be possible only if we have information about the spectral composition of the measured radiation. Conversion factors at different wavelengths are given in the table below. For PAR, 1 W m $^{-2}$ of "average daylight" is approximately 4.6 $\,\mu mol\,m^{-2}\,s^{-1}$. This is exact only if the radiation is equal from 400 to 700 nm, because the factor is the value at the central wavelength at 550 nm. Further details are discussed in section ?? on page ??.

There are, in principle, two possible approaches to measuring radiation. The first is to observe light from one specific direction or viewing angle, which is the

550

700

	Wm^{-2} to $\;\mu molm^{-2}s^{-1}$	λ (nm)
	2.34	280
UV-B	2.49	298
	2.63	315
UV-A	2.99	358
	3.34	400

4.60

5.85

PAR

Table 2.5: Conversion factors of photon and energy quantities at different wavelengths.

radiance L. The second is to use a detector, which senses radiation from more than one direction and measures the so-called irradiance E of the entire sphere or hemisphere. The correlation between irradiance E and radiance E of the wavelength λ is given by integrating over all directions of incoming photons.

$$E_0(\lambda) = \int_{\Omega} L(\lambda, \Omega) d\Omega \qquad (2.10)$$

$$E(\lambda) = \int_{\Omega} L(\lambda, \Omega) |\cos \alpha| d\Omega$$
 (2.11)

Depending on the shape of a detector (which may be either planar or spherical) the irradiance is called (plane) irradiance E or fluence rate (also called scalar irradiance) E_0 . A planar sensor detects incoming photons depending on the incident angle and a spherical sensor detects all photons equally weighted for all directions. See section ?? on page ?? for a more detailed discussion.

Here we have discussed the properties of light based on energy quantities. In photobiology there are good reasons to quantify radiation based on photons. See Box ?? on page ??, and section ?? on page ??.

2.3 Solar radiation

When dealing with solar radiation, we frequently need to describe the position of the sun. The azimuth angle (ϕ) is measured clockwise from the North on a horizontal plane. The position on the vertical plane is measured either as the zenith angle (θ) downwards from the zenith, or as an elevation angle (h) upwards from the horizon. Consequently $h+\theta=90^\circ=\frac{\pi}{2}$ radians. See Figure 2.4 for a diagram. In contrast to Figure 2.1 and the discussion in section ?? where the point radiation source is located at the origin of the system of coordinates, when describing the position of the sun as in Figure 2.4 the observer is situated at the origin.

Ultraviolet and visible radiation are part of solar radiation, which reaches the Earth's surface in about eight minutes (t = time, $r_0 = \text{distance}$ sun to earth, c = velocity of light in vacuum):

$$t = \frac{r_0}{c} \approx \frac{150 \times 10^9 \text{ m}}{3 \times 10^8 \frac{\text{m}}{\text{s}}} = 500 \text{ s} = 8.3 \text{ min}$$

The basis of all passive measurements is the incoming solar radiation, which can be estimated from the known activity of the sun ('productivity of photons'),

2.3. SOLAR RADIATION

Figure 2.4: Position of the sun in the sky and the different angles used for its description by an observer located at point A. The azimuth angle is ϕ , the elevation angle is h and the zenith angle is θ . These angles are measured on two perpendicular planes, one horizontal and one vertical.

that can be approximated by the emitted spectral radiance (L_s) described by Planck's law of black body radiation at temperature T, measured in degrees Kelvin (K):

$$L_{\rm s}(\lambda,T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{{\rm e}^{(hc/k_{\rm B}T\lambda)} - 1}$$
 (2.12)

with Boltzmann's constant $k_{\rm B}=1.381\times 10^{-23}~{
m JK^{-1}}$. The brightness temperature of the sun can be determined by Wien's displacement law, which gives the peak wavelength of the radiation emitted by a blackbody as a function of its absolute temperature

$$\lambda_{max} \cdot T = 2.898 \times 10^6 \,\text{nm}\,\text{K} \tag{2.13}$$

This means that for a maximum emission of the sun at about 500 nm the temperature of the sun surface is about 5800 K. The spectral irradiance of the sun $E_s(\lambda)$ can be estimated assuming a homogeneous flux and using the correlation of intensity I and radiance L from their definitions in table 2.2. The intensity of the sun $I_s(\lambda)$ is given by the radiance $L_s(\lambda)$ multiplied by the apparent sun surface (a non-tilted disk of radius $r_s = 7 \times 10^5$ km). To calculate the decreased solar irradiance at the moment of reaching the Earth's atmosphere, the distance of the sun to the Earth ($r_0 = 150 \times 10^6$ km) has to be taken into account due to the inverse square law of irradiance of equation (2.9). Thus, the extraterrestrial solar irradiance is

$$E_{\rm s}(\lambda) = L_{\rm s}(\lambda) \cdot \frac{\pi r_{\rm s}^2}{r_0^2} \tag{2.14}$$

Remembering the solid angle of equation (2.6), the right multiplication factor represents the solid angle of the sun's disk as seen from the Earth's surface ($\approx 6.8 \times 10^{-5}$ sr). Figure 2.5 shows the spectrum of the measured extraterrestrial solar radiation (Wehrli, 1985)⁴ and the spectrum calculated by equation 1.14 using Planck's law of equation 1.12 at a black body temperature of 5800 K.

 $^{^4} A vailable\ as\ ASCII\ file\ at\ PMODWRC,\ ftp://ftp.pmodwrc.ch/pub/publications/pmod615.asc$

Integrated over all wavelengths, E_s is about 1361 to 1362 W m⁻² at top of the atmosphere (Kopp and Lean 2011). This value is called the 'solar constant'. In former times, depending on different measurements, E_s varies by a few percent (Iqbal 1983). For example, the irradiance at the top of the atmosphere (the integrated value) changes by $\pm 50~\rm W\,m^{-2}$ (3.7 %) during the year due to distance variation caused by orbit excentricity (Mobley 1994). More accurate measurements during the last 25 years by spaceborne radiometers show a variability of the solar radiation of a few tenth of a percent. A detailed analysis is given by (Fröhlich and Lean 2004). E_s can also be calculated by the Stefan-Boltzmann Law: the total energy emitted from the surface of a black body is proportional to the fourth power of its temperature. For an isotropically emitting source (Lambertian emitter), this means

$$L = \frac{\sigma}{\pi} \cdot T^4 \tag{2.15}$$

with the Stefan-Boltzmann constant $\sigma = 5.6705 \times 10^{-8}$ W m⁻² K⁻⁴. With T = 5800 K equation 2.15 gives the radiance of the solar disc. From this value, we can obtain an approximation of the solar constant, by taking into account the distance from the Earth to the Sun and the apparent size of the solar disc (see equations 2.6 and 2.9).

Figure 2.5: Extraterrestrial solar spectrum after (Wehrli 1985) (green line) and spectrum of a black body at 5800 K (red line), calculated using Planck's law (equation 2.12) and converted to extraterrestrial spectral irradiance with equation 2.14.

The total solar irradiance covers a wide range of wavelengths. Using some of the 'colours' introduced in table 2.1, table 2.6 lists the irradiance and fraction of E_s of different wavelength intervals.

Table 2.6: Distribution of the extraterrestrial solar irradiance $E_{\rm s}$ constant in different wavelength intervals calculated using the data of (Wehrli 1985) shown in Figure 2.5.

Colour	Wavelength (nm)	Irradiance ($\mathrm{W}\mathrm{m}^{-2}$)	Fraction of $E_{\rm s}$ (%)
UV-C	100 - 280	7	0.5
UV-B	280 - 315	17	1.2
UV-A	315 - 400	84	6.1
VIS	400 - 700	531	38.9
near IR	700 - 1 000	309	22.6
mid and far IR	> 1 000	419	30.7
total		1 367	100.0

The extraterrestrial solar spectrum differs from that at ground level due to the absorption of radiation by the atmosphere, because the absorption peaks of water, CO_2 and other components of the atmosphere, cause corresponding valleys to appear in the solar spectrum at ground level. For example, estimates from measurements of the total global irradiance at Helmholtz Zentrum

2.3. SOLAR RADIATION

Figure 2.6: Sky photos in different portions of the light spectrum. They show that in the UV-A band the diffuse component is proportionally larger than it is at longer wavelengths. This can be seen as reduced contrast. Photographs taken by L. Ylianttila at the fortress of Suomenlinna (http://www.suomenlinna.fi/en), Helsinki, Finland.

Figure 2.7: Diffuse component in solar UV. Spectral irradiance of total downwelling radiation (lower panel, solid line), diffuse downwelling radiation (lower panel, long dashes), and ratio of diffuse downwelling to total downwelling spectral irradiance (upper panel, dashed line) are shown. Data from TUV model (version 4.1) for solar zenith angle = $40^{\circ}00'$, cloud-free conditions, 300 Dobson units. Simulations done with the Quick TUV calculator at http://cprm.acd.ucar.edu/Models/TUV/Interactive_TUV/.

Figure 2.8: The solar spectrum through half a day. Simulations of global radiation (direct plus diffuse radiation) spectral irradiance on a horizontal surface at ground level) for a hypothetical 21 May with cloudless sky at Jokioinen (60°49'N, 23°30'E), under normal ozone column conditions. Effect of depletion is so small on the solar spectrum as a whole, that it would not visible in this figure. See (Kotilainen et al. 2011) for details about the simulations.

München (11.60° E, 48.22° N, 490 m above sea level) on two sunny days (17^{th} April 1996, sun zenith angle of 38° and 27^{th} May 2005, 27°) result in about 5% for wavelengths below 400 nm, about 45% from 400 to 700 nm, and about 50% above 700 nm. In relation to plant research, only the coarse structure of peaks and valleys is relevant, because absorption spectra of pigments *in vivo* have broad peaks and valleys. However, the solar spectrum has a much finer structure, due to emission and absorption lines of elements, which is not observable with the spectroradiometers normally used in plant research.

At the Earth's surface, the incident radiation or has two components, and . Direct radiation is radiation travelling directly from the sun, while diffuse radiation is that scattered by the atmosphere. Diffuse radiation is what gives the blue colour to the sky and white colour to clouds. The relative contribution of direct and diffuse radiation to global radiation varies with wavelength and weather conditions. The contribution of diffuse radiation is larger in the UV region, and in the presence of clouds (Figures 2.6 and 2.7).

Not only total irradiance, but also the wavelength distribution of the solar spectrum changes with the seasons of the year and time of day. The spectral wavelength distribution is also changed by the amount of UV-absorbing ozone in the atmosphere, known as the ozone column. Figure 2.8 shows how spectral irradiance changes throughout one day. When the whole spectrum is plotted using a linear scale the effect of ozone depletion is not visible, however, if we plot only the UV region (Figure 2.9) or use a logarithmic scale (Figure 2.10), the effect becomes clearly visible. In addition, on a log scale, it is clear that the relative effect of ozone depletion on the spectral irradiance at a given wavelength increases with decreasing wavelength.

Figure 2.9: The effect of ozone depletion on the UV spectrum of global (direct plus diffuse) solar radiation at noon. See fig. 2.8 for details.

Figure 2.10: The solar UV spectrum through half a day. The effect of ozone depletion on global (direct plus diffuse) radiation. A logarithmic scale is used for spectral irradiance. See fig. 2.8 for details.

Figure 2.11: UV-B and PAR. Left: Diffuse radiation as percentage of total (direct + diffuse) radiation in the UV-B (solid line) and PAR (dashed line) wavebands for open areas in a humid temperate climate under a clear sky. In cloudy conditions the percentage of diffuse radiation increases. Day of year not specified. Redrawn from (Flint and Caldwell 1998). Right: Seasonal variation in modelled, clear sky, solar-noon, UV-B (solid line) and PAR (dashed line) irradiance above the canopy for Maryland, USA. Irradiance expressed relative to annual maximum of each waveband. Adapted from (Brown et al. 1994).

Seasonal variation in UV-B irradiance has a larger relative amplitude than variation in PAR (Figure 2.11). This causes a seasonal variation in the UV-B: PAR ratio (Figure 2.12). In addition to the regular seasonal variation, there is random variation as a result of changes in clouds (Figure 2.12). Normal seasonal and spatial variation in UV can be sensed by plants, and could play a role in their adaptation to seasons and/or their position in the canopy.

UV-B irradiance increases with elevation in mountains and with decreasing latitude (Figure 2.13) and is particularly high on high mountains in equatorial regions. This has been hypothesized to be a factor in the determination of the tree line⁵ in these mountains (Flenley 1992).

An increase in the UV-B irradiance is caused by depletion of the ozone layer in the stratosphere, mainly as a consequence of the release of chlorofluorocarbons (CFCs), used in cooling devices such as refrigerators and air conditioners, and in some spray cans (see Graedel and Crutzen 1993). The most dramatic manifestation of this has been the seasonal formation of an "ozone hole" over Antarctica. It is controversial whether a true ozone hole has already formed in the Arctic, but strong depletion has occurred in year 2011 (Manney et al. 2011) and atmospheric conditions needed for the formation of a "deep" ozone hole are not very different from those prevalent in recent years. Not so dramatic, but consistent, depletion has also been observed at mid-latitudes in both hemispheres. CFCs and some other halocarbons have been phased out following the Montreal agreement and later updates. However, as CFCs have a

Figure 2.12: Seasonal variation in UV-B radiation at Erlangen, Germany (54° 10' N, 07° 51' E, 280 m asl). (Top) UV-B:PAR energy ratio, calculated from daily exposures, and (bottom) UV-B daily exposure, measured with ELDONET instruments (see Figure 2 in Häder et al. 2007, for details).

 $^{^5\}mathit{Tree}$ line is the highest elevation on a mountain slope at which tree species are naturally able to grow.

2.4. RADIATION WITHIN PLANT CANOPIES

Figure 2.13: Latitudinal variation in UV-B radiation in the Northern hemisphere. UV-B annual exposure, measured with ELDONET instruments (see Häder et al. 2007, for details).

long half life in the atmosphere, of the order of 100 years, their effect on the ozone layer will persist for many years, even after their use has been drastically reduced. Model-based predictions of changes in atmospheric circulation due to global climate change have been used to derive future trends in UV index and ozone column thickness (Hegglin and Shepherd 2009). In addition, increased cloudiness and pollution, could lead to decreased UV and PAR, sometimes called 'global dimming' (e.g. Stanhill and Cohen 2001). It should be noted that, through reflection, broken clouds can locally increase UV irradiance to values above those under clear-sky conditions (S. B. Díaz et al. 1996; Frederick et al. 1993).

2.4 Radiation within plant canopies

The attenuation of visible and UV radiation by canopies is difficult to describe mathematically because it is a complex phenomenon. The spatial distribution of leaves is in most cases not uniform, the display angle of the leaves is not random, and may change with depth in the canopy, and even in some cases with time-of-day. Here we give only a description of the simplest approach, the use of an approximation based on Beer's law as modified by (Monsi and Saeki 1953), reviewed by (Hirose 2005). Beer's law (Equation 2.8) assumes a homogeneous light absorbing medium such as a solution. However, a canopy is heterogenous, with discrete light absorbing objects (the leaves and stems) distributed in a transparent medium (air).

$$I_z = I_0 \cdot e^{-KL_z} \tag{2.16}$$

Equation 2.16 describes the radiation attenuated as a function of leaf area index (L or LAI) at a given canopy depth (z). The equation does not explicitly account for the effects of the statistical spatial distribution of leaves and the effects of changing incidence angle of the radiation. Consequently, the empirical extinction coefficient (K) obtained may vary depending on these factors. K is not only a function of plant species (through leaf optical properties, and how leaves are displayed), but also of time-of-day, and season-of-year—as a consequence of solar zenith angle—and degree of scattering of the incident radiation. As the degree of scattering depends on clouds, and also on wavelength, the extinction coefficient is different for UV and visible radiation. Radiation extinction in canopies has yet to be studied in detail with respect to UV radiation, mainly because of difficulties in the measurement of UV radiation compared to PAR, a spectral region which has been extensively studied.

Ultraviolet radiation is strongly absorbed by plant surfaces, although cuticular waxes and pubescence on leaves can sometimes increase UV reflectance. The diffuse component of UV radiation is larger than that of visible light (Figure 2.11). In sunlit patches in forest gaps the diffuse radiation percentage is lower

than in open areas, because is not attenuated but part of the sky is occluded by the surrounding forest. Attenuation with canopy depth is on average usually more gradual for UV than for PAR. The UV irradiance decreases with depth in tree canopies, but the UV:PAR ratio tends to increase (see Brown et al. 1994). In contrast, (Deckmyn et al. 2001) observed a decrease in UV:PAR ratio in white clover canopies with planophyle leaves. (Allen et al. 1975) modelled the UV-B penetration in plant canopies, under normal and depleted ozone conditions. (Parisi and Wong 1996) measured UV-B doses within model plant canopies using dosimeters. The position of leaves affects UV-B exposure, and it has been observed that heliotropism can moderate exposure and could be a factor contributing to differences in tolerance among crop cultivars (Grant 1998, 1999a,b, 2004).

Detailed accounts of different models describing the interaction of radiation and plant canopies, taking into account the properties of foliage, are given by (Campbell and Norman 1998) and (Monteith and Unsworth 2008).

21

Photochemistry

Abstract

In this chapter we explain how to .

3.1 Task:

Software

Abstract

In this chapter we describe the software we used to run the code examples and typeset this handbook, and how to install it. Which is basically the same we use for everyday data analysis and typesetting.h

4.1 Task:

4.2 Introduction

The software used for typesetting this handbook and developing the r4photobiology suite is free and open source. All of it is available for the most common operating systems (Unix including OS X, Linux and its variants, and Windows). It is also possible to run everything described here on a Linux server running the server version of RStudio, and access the server through a web browser.

For just running the examples in the handbook, you would need only to have R installed. That would be enough as long as you also have a text editor available. This is possible, but does not give a very smooth workflow for data analyses which are beyond the very simple. The next stage is to use a text editor which integrates to some extent with R, but still this is not ideal, specially for writing packages or long scripts. Currently the best option is to use the integrated development environment (IDE) called 'RStudio'. This is an editor, but tightly integrated with R. Its advantages are especially noticeable in the case of errors and 'debugging'. During the development of the packages, we used RStudio exclusively.

The typesetting is done with LaTeX and the source of this handbook was edited using both the shareware editor WinEdt (which excels as a LaTeX editor) and RStudio which is better suited to the debugging of the code examples. We

also used LaTeX for our first handbook (Aphalo, Albert, Björn, Ylianttila et al. 2012).

Combining R with Markdown (Rmarkdown: Rmd files) or LaTeX (Rnw fiels) to produce *literate* scripts is best for reproducible research and our suite of packages is well suited for this approach to data analysis. However, it is not required to go this far to be able to profit from R and our suite for simple analyses, but the set up we will describe here, is what we currently use, and it is by far the best one we have encountered in 18 years of using and teaching how to use R.

We will not give software installation instructions in this handbook, but will keep a web page with up-to-date instructions. In the following sections we briefly describe the different components of a full and comfortable working environment, but there are many alternatives and the only piece that you cannot replace is R itself.

4.3 The different pieces

4.3.1 R

You will not be able to profit from this handbook's 'Cook Book' part, unless you have access to R. R (also called Gnu S) is both the name of a software system, and a dialect of the language S. The language S, although designed with data analysis and statistics in mind, is a computer language that is very powerful in its own way. It allows object oriented programming. Being based on a programming language, and being able to call and being called by programs and subroutine libraries written in several other programming languages, makes R easily extensible.

R has a well defined mechanism for "add-ons" called packages, that are kept in the computer where R is running, in disk folders that conform the library. There is a standard mechanism for installing packages, that works across operating systems (OSs) and computer architectures. There is also a Comprehensive R Archive Network (CRAN) where publicly released versions of packages are kept. Packages can be installed and updated from CRAN and similar repositories directly from within R.

The *engine* behind the production of the pages of this handbook is the R package knitr which allows almost seamless integration of R code and text marked up using ETEX. We have used in addition several other packages, both by using them as building blocks in our packages, and for the production of the examples. The most notable ones are: data.table, lubridate, and ggplot2. Packages devtools and testthat significantly easied the task of package development and coding.

If you are not familiar with R, please, go through the separately available Supplements ??, ??, ??, and ??, and/or learn from some of the books listed in Appendix ??, before delving into our 'Cook Book'.

4.3.2 RStudio

RStudio exists in two versions with identical user interface: a desktop version and a server version. The server version can be used remotely through a web browser. It can be run in the 'cloud', for example, as an AWS instance (Amazon Web Services) quite easily and cheaply, or on one's own server hardware. RStudio is under active development, and constantly improved (visit http://www.rstudio.org/ for an up-to-date description and download and installation instructions.

4.3.3 Version control: Git and Subversion

Version control systems help by keeping track of the history of software development, data analysis, or even manuscript writing. They make it possible for several programmers, data analysts, authors and or editors to work on the same files in parallel and then merge their edits. They also allow easy transfer of whole 'projects' between computers. Git is very popular, and Github and Bitbucket are popular hosts for repositories. Git itself is free software, was designed by Linus Tordvals of Linux fame, and can be also run locally, or as one's own private server, either as an AWS instance or on other hosting service, or on your own hardware.

4.3.4 C++ compiler

Although R is an interpreted language, a few functions in our suite are written in C++ to achieve better performance. On OS X and Windows, the normal practice is to install binary packages, which are ready compiled. In other systems like Linux and Unix it is the normal practice to install source packages that are compiled at the time of installation. With suitable build tools (e.g. RTools for Windows) source packages can be installed and developed in any of the operating systems on which R runs.

4.3.5 LATEX

ETEX is built on top of TEX. TEX code and features were 'frozen' (only bugs are fixed) long ago. There are currently a few 'improved' derivatives: pdfTEX, XETEX, and LuaTeX. Currently the most popular TeX in western countries is pdftex which can directly output PDF files. XETEX can handle text both written from left to right and right to left, even in the same document and additional font forats, and is the most popular TeX engine in China and other Asian countries.

For the typesetting of this handbook we used several LTEX packages, of which those that most affected appearance are memoir, hyperref, booktabs, pgf/tikz and biblatex. The TEX distribution we used is MikTEX.

4.3.6 Markdown

Markdown is a simple markup language, which although offering somehow less flexibility that LaTeX is much easier to learn and which can be easily converted to various different output formats in addition to PDF.

Photobiology R packages

Abstract

In this chapter we describe the suite of R packages for photobiological calculations 'r4photobiology', and explain how to install them.

5.1 Expected use and users

The aim of the suite is to both provide a framework for teaching VIS and UV radiation physics and photobiology through a set of functions and data examples. Furthermore, we expect these functions and data to be useful for active researchers during design of experiments, data analysis and data validation. In particular we hope the large set of example data will make it easy to carry out sanity checks of newly acquired and/or published data.

Given the expected audience of both students and biologists, rather than data analysts, or experienced programmers, we have aimed at designing a consistent and easy to understand paradigm for the analysis of spectral data. The design is based on our own user experience, and on feedback from our students and 'early adopters'.

5.2 The design of the user interface

The design of the 'high level' interface is based on the idea of achieving simplicity of use by hiding the computational difficulties and exposing objects, functions and operators that map directly to physical concepts. Computations and plotting of spectral data centers on two types of objects: *spectra* and *wavebands* (Figure 5.1). Al spectra have in common that all observations are referenced to a wavelength value, there are different types spectral objects, e.g. for light sources and responses to light. Waveband objects include much

Figure 5.1: The elements of the suite.

_spct Spectral objects are containers for different types of spectral data, data which is referenced to wavelength. These data normally originate in measurements or simulation with models.

wavebands Waveband objects are containers of 'instructions' for the quantification of spectral data. In addition to the everyday definition as a range of wavelengths, we include the spectral weighting functions used in the calculation of what are frequently called weighted or effective exposures and doses.

summary functions Different summary functions return different quantities through integration over wavelengths and take as arguments spectra and wavebands.

maths operators and functions Are used to combine and/or transform spectral data, and in some cases to apply weights defined by wavebands.

more than information about a range of wavelengths, they can also include information about a transformation of the spectral data, like a biological spectral weighting function (BSWF). In addition to functions for calculating summary quantities like irradiance from spectral irradiance, the packages define operators for spectra and wavebands. The use of operators simplifies the syntax and makes the interface easier to use.

```
e_irrad(sun.spct * polyester.new.spc, CIE())
```

Is all what is needed to obtain the CIE98-weighted energy irradiance simulating the effect of a polyester filter on the example solar spectrum, which of course, can be substituted by other spectral irradiance and filter data.

When we say that we hide the computational difficulties what we mean, is that in the example above, the data for the two spectra do not need to be available at the same wavelengths values, and the BSWF is defined as a function. Interpolation of the spectral data and calculation of spectral weighting factors takes place automatically and invisibly. All functions and operators function without error with spectra with varying (even arbitrarily and randomly varying) wavelength steps. Integration is always used rather than summation for summarizing the spectral data.

There is a lower layer of functions, used internally, but also exported, which allow improved performance at the expense of more complex scripts and commands. This user interface is not meant for the casual user, but for the user who has to analyse thousands of spectra and uses scripts for this. For such users performance is the main concern rather than easy of use and easy

Table 5.1: Packages in the r4photobiology suite. Packages not yet released are highlighted with a red bullet •, and those at 'beta' stage with a yellow bullet •, those relatively stable with a green bullet •.

Type	Contents
dummy funs + classes	loads other packages of the suite basic functions, class definitions, class methods and example data
functions definitions functions	data import/export functions quantification of radiation extensions to package ggplot2
data data data data data data	spectral data for solar radiation spectral data for lamps spectral data for LEDs transmittance data for filters response data for sensors reflectance data for materials
funs + data	photobiology of plants
functions functions funs + data	Ocean Optics spectrometers UV and VIS irradiance data processing for Maya2000 Pro TUV model interface
	dummy funs + classes functions definitions functions data data data data data data funs + data functions

to remember syntax. Also these functions handle any wavelength mismatch by interpolation before applying operations or functions.

The suite also includes data for the users to try options and ideas, and helper functions for plotting spectra using other R packages available from CRAN, in particular ggplot2. There are some packages, not part of the suite itself, for data acquisition from Ocean Optics spectrometers, and application of special calibration and correction procedures to those data. A future package will provide an interface to the TUV model to allow easy simulation of the solar spectrum.

5.3 The suite

The suite consists in several packages. The main package is photobiology which contains all the generally useful functions, including many used in the other, more specialized, packages (Table 5.1).

Spectral irradiance objects (class source_spct) and spectral response/action objects (class response_spct) can be constructed using energy- or photon-based data, but this does not affect their behaviour. The same flexibility applies to spectral transmittance vs. spectral absorbance for classes filter_spct, reflector_spct and object_spct.

Although by default low-level functions expect spectral data on energy units, this is just a default that can be changed by setting the parameter unit.in = "photon". Across all data sets and functions wavelength vectors have name w.length, spectral (energy) irradiance s.e.irrad, photon spectral irradi-

ance $s.q.irrad^1$, absorbance (log₁₀-based) A, transmittance (fraction of one) Tfr, transmittance (%) Tpc, reflectance (fraction of one) Rfr, reflectance (%) Rpc, and absorptance (fraction of one) Afr.

Wavelengths should always be in nm, and when conversion between energy and photon based units takes place no scaling factor is used (an input in $W\,m^{-2}\,nm^{-1}$ yields an output in $mol\,m^{-2}\,s^{-1}\,nm^{-1}$ rather than $\mu mol\,m^{-2}\,s^{-1}\,nm^{-1}$).

The suite is still under active development. Even those packages marked as 'stable' are likely to acquire new functionality. By stability, we mean that we hope to be able to make most changes backwards compatible, in other words, we hope they will not break existing user code.

5.4 The r4photobiology repository

I have created a repository for the packages. This repository follows the CRAN folder structure, so package installation can be done using normal R commands. This means that dependencies are installed automatically and that automatic updates are possible. The build most suitable for the current system and R version is also picked automatically if available. It is normally recommended that you do installs and updates on a clean R session (just after starting R or RStudio). For easy installation and updates of packages, the r4photobiology repository can be added to the list of repositories that R knows about.

Whether you use RStudio or not it is possible to add the r4photobiology repository to the current session as follows, which will give you a menu of additional repositories to activate:

```
setRepositories(
  graphics = getOption("menu.graphics"),
  ind = NULL,
  addURLs = c(r4photobiology = "http://www.r4photobiology.info/R"))
```

If you know the indexes in the menu you can use this code, where '1' and '6' are the entries in the menu in the command above.

```
setRepositories(
  graphics = getOption("menu.graphics"),
  ind = c(1, 6),
  addURLs = c(r4photobiology = "http://www.r4photobiology.info/R"))
```

Be careful not to issue this command more than once per R session, otherwise the list of repositories gets corrupted by having two repositories with the same name.

Easiest is to create a text file and name it '.Rprofile', unless it already exists. The commands above (and any others you would like to run at R start up) should be included, but with the addition that the package names for the functions need to be prepended. So previous example becomes:

¹q derives from 'quantum'.

5.4. THE r4photobiology REPOSITORY

```
utils::setRepositories(
  graphics = getOption("menu.graphics"),
  ind = c(1, 6),
  addURLs = c(r4photobiology = "http://www.r4photobiology.info/R"))
```

The .Rprofile file located in the current folder is sourced at R start up. It is also possible to have such a file affecting all of the user's R sessions, but its location is operating system dependent, it is in most cases what the OS considers the current user's *HOME* directory or folder (e.g. 'My Documents' in recent versions of MS-Windows). If you are using RStudio, after setting up this file, installation and updating of the packages in the suite can take place exactly as for any other package archived at CRAN.

The commands and examples below can be used at the R prompt and in scripts whether RStudio is used or not.

After adding the repository to the session, it will appear in the menu when executing this command:

```
setRepositories()
```

and can be enabled and disabled.

In RStudio, after adding the r4photobiology repository as shown above, the photobiology packages can be installed and uninstalled through the normal RStudio menus and dialogues, and will listed after typing the first few characters of their names. For example when you type 'photob' in the packages field, all the packages with names starting with 'photob' will be listed.

They can be also installed at the R command prompt with the following command:

```
install.packages(c("photobiologyAll", "photobiologygg"))
```

and updated with:

```
update.packages()
```

The added repository will persist only during the current R session. Adding it permanently requires editing the R configuration file, as discussed above. Take into consideration that .Rprofile is read by R itself, and will take effect whether you use RStudio or not. It is possible to have an user-account wide .Rprofile file, and a different one on those folders needing different settings. Many other R options can also be modified by means of commands in the .Rprofile file.

Part II Cookbook of calculations

Part III

Catalogue of data sources

35

Part IV

Data acquisition and modelling

37

Further reading about R

- 6.1 Introductory texts
- 6.2 Texts on specific aspects
- 6.3 Advanced texts
- 6.4 Application-specific texts

Bibliography

- Albert, A. and P. Gege (2006). 'Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties'. In: *Applied Optics* 45, pp. 2331–2343. DOI: 10.1364/AO.45.002331.
- Albert, A. and C. D. Mobley (2003). 'An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters'. In: *Optics Express* 11.22, pp. 2873-2890. URL: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2873.
- Allen, L. H., H. W. Gausman and W. A. Allen (1975). 'Solar Ultraviolet Radiation in Terrestrial Plant Communities'. In: *Journal of Environmental Quality* 4.3, pp. 285–294. DOI: 10.2134/jeq1975.00472425000400030001x (cit. on p. 20).
- Anderson, J., W. Chow and D. Goodchild (1988). 'Thylakoid Membrane Organisation in Sun/Shade Acclimation'. In: *Functional Plant Biology* 15, pp. 11–26. DOI: 10.1071/PP9880011.
- Aphalo, P. J. (2003). 'Do current levels of UV-B radiation affect vegetation? The importance of long-term experiments'. In: *New Phytologist* 160. Invited commentary, pp. 273–276. DOI: 10.1046/j.1469-8137.2003.00905. x.
- Aphalo, P. J., A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist, eds. (2012). *Beyond the Visible: A handbook of best practice in plant UV photobiology.* 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology, pp. xxx + 174. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558.
- Aphalo, P. J., A. Albert, L. O. Björn, L. Ylianttila, F. L. Figueroa and P. Huovinen (2012). 'Introduction'. In: *Beyond the Visible: A handbook of best practice in plant UV photobiology*. Ed. by P. J. Aphalo, A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist. 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. Chap. 1, pp. 1–33. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558 (cit. on pp. 6, 24).
- Aphalo, P. J., A. Albert, A. R. McLeod, A. Heikkilä, I. Gómez, F. López Figueroa, T. M. Robson and Å. Strid (2012). 'Manipulating UV radiation'. In: *Beyond the Visible: A handbook of best practice in plant UV photobiology.* Ed. by P. J. Aphalo, A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist.

- 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. Chap. 2, pp. 35–70. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558.
- Aphalo, P. J., T. M. Robson and H. Högmander (2012). 'Statistical design of UV experiments'. In: *Beyond the Visible: A handbook of best practice in plant UV photobiology*. Ed. by P. J. Aphalo, A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist. 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. Chap. 5, pp. 139–150. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558.
- Aphalo, P. J., R. Tegelberg and R. Julkunen-Tiitto (1999). 'The modulated UV-B irradiation system at the University of Joensuu'. In: *Biotronics* 28, pp. 109–120. URL: http://ci.nii.ac.jp/naid/110006175827/en.
- Arends, G., R. K. A. M. Mallant, E. van Wensveen and J. M. Gouman (1988). *A fog chamber for the study of chemical reactions*. Tech. rep. Report ECN 210. Petten, Netherlands.
- Austin, A. T. and C. L. Ballaré (2010). 'Dual role of lignin in plant litter decomposition in terrestrial ecosystems'. In: *Proceedings of the National Academy of Sciences of the U.S.A* 107, pp. 4618–4622. DOI: 10.1073/pnas.0909396107.
- Bakker, J. C., G. P. A. Bot, H. Challa and N. J. Vand de Braak, eds. (1995). *Greenhouse climate control: An integrated approach*. Wageningen, The Netherlands: Wageningen Academic Publishers. 279 pp. ISBN: 978-90-74134-17-0. DOI: 10.3920/978-90-8686-501-7.
- Ballaré, C. L., M. M. Caldwell, S. D. Flint, S. A. Robinson and J. F. Bornman (2011). 'Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change'. In: *Photochemical and Photobiological Sciences* 10 (2), pp. 226–241. DOI: 10.1039/COPP90035D.
- Barnes, P. W., S. D. Flint, J. R. Slusser, W. Gao and R. J. Ryel (2008). 'Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments'. In: *Physiologia Plantarum* 133, pp. 363–372. DOI: 10.1111/j.1399-3054.2008.01084.x.
- Bazzaz, F. A. and R. W. Carlson (1982). 'Photosynthetic acclimation to variability in the light environment of early and late successional plants'. In: *Oecologia* 54, pp. 313–316. DOI: 10.1007/BF00379999.
- Beckerman, A. P. and O. L. Petchey (2012). *Getting Started with R: An introduction for biologists*. Oxford: OUP Oxford, p. 128. ISBN: 0199601623. URL: http://www.amazon.co.uk/Getting-Started-introduction-biologists-Biology/dp/0199601623.
- Bentham (1997). A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Tech. rep. Reading, U.K.: Bentham Instruments Ltd.
- Bérces, A., A. Fekete, S. Gáspár, P. Gróf, P. Rettberg, G. Horneck and G. Rontó (1999). 'Biological UV dosimeters in the assessment of the biological hazard from environmental radiation'. In: *Journal of Photochemistry and Photobiology, B* 53.1-3, pp. 36-43. DOI: 10.1016/S1011-1344(99)00123-2.

- Berger, D. S. (1976). 'The sunburning ultraviolet meter: design and performance'. In: *Photochemistry and Photobiology* 24, pp. 587-593. DOI: 10.1111/j.1751-1097.1976.tb06877.x.
- Beytes, C., ed. (2003). *Ball Red Book: Greenhouses and equipment*. 17th ed. Batavia, IL, USA: Ball Publishing. 272 pp. ISBN: 1883052343.
- Bickford, E. D. and S. Dunn (1972). *Lighting for plant growth*. Ohio, USA: Kent State University Press. x + 221. ISBN: 0873381165.
- Bilger, W., T. Johnsen and U. Schreiber (2001). 'UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by epidermins of plants'. In: *Journal of Experimental Botany* 52, pp. 2007–2014. DOI: 10.1093/jexbot/52.363.2007.
- Bilger, W., M. Veit, L. Schreiber and U. Schreiber (1997). 'Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence'. In: *Physiologia Plantarum* 101.4, pp. 754–763. DOI: 10.1111/j.1399-3054.1997.tb01060.x.
- Björn, L. O. (1995). 'Estimation of fluence rate from irradiance measurements with a cosine-corrected sensor'. In: *Journal of Photochemistry and Photobiology B Biology* 29, pp. 179–183. DOI: 10.1016/1011–1344(95)07135–O.
- Björn, L. O., ed. (2007). *Photobiology: The Science of Life and Light*. 2nd ed. Springer. 684 pp. ISBN: 0387726543.
- Björn, L. O., A. R. McLeod, P. J. Aphalo, A. Albert, A. V. Lindfors, A. Heikkilä, P. Kolarz, L. Ylianttila, G. Zipoli, P. Grifoni D.and Huovinen et al. (2012). 'Quantifying UV radiation'. In: *Beyond the Visible: A handbook of best practice in plant UV photobiology*. Ed. by P. J. Aphalo, A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist. 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. Chap. 3, pp. 71–117. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558.
- Björn, L. O. and A. H. Teramura (1993). 'Simulation of daylight ultraviolet radiation and effects of ozone depletion'. In: *Environmental UV Photobiology*. Ed. by A. R. Young, L. O. Björn, J. Moan and W. Nultsch. New York: Plenum Press, pp. 41–71. ISBN: 0-306-44443-7.
- Björn, L. O. and T. C. Vogelmann (1996). 'Quantifying light and ultraviolet radiation in plant biology'. In: *Photochemistry and Photobiology* 64, pp. 403-406. DOI: 10.1111/j.1751-1097.1996.tb03084.x.
- Bloom, A. A., J. Lee-Taylor, S. Madronich, D. J. Messenger, P. I. Palmer, D. S. Reay and A. R. McLeod (2010). 'Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage'. In: *New Phytologist* 187.2, pp. 417–425. DOI: 10.1111/j.1469–8137.2010.03259.x.
- Bolker, B. M. (2008). *Ecological Models and Data in R*. 508th ed. Princeton University Press. ISBN: 0691125228.
- Booker, F. L., E. L. Fiscus, R. B. Philbeck, A. S. Heagle, J. E. Miller and W. W. Heck (1992). 'A supplemental ultraviolet-B radiation system for open-top chambers'. In: *Journal of Environmental Quality* 21, pp. 56–61.

- Borcard, D., F. Gillet and P. Legendre (2011). *Numerical Ecology with R.* Springer, p. 312. ISBN: 1441979751. URL: http://www.amazon.com/Numerical-Ecology-R-Use/dp/1441979751.
- Bornman, J. F. and T. C. Vogelmann (1988). 'Penetration by blue and UV radiation measured by fiber optics in spruce and fir needles'. In: *Physiologia Plantarum* 72.4, pp. 699–705. DOI: 10.1111/j.1399–3054.1988.tb06368.x.
- Bowman, W. D. and J. N. Demas (1976). 'Ferrioxalate actinometry Warning on its correct use'. In: *Journal of Physical Chemistry* 80.21, pp. 2434–2435. ISSN: 0022-3654. DOI: 10.1021/j100562a025.
- Braslavsky, S. E. (2007). 'Glossary of terms used in Photochemistry 3(rd) Edition (IUPAC Recommendations 2006)'. In: *Pure and Applied Chemistry* 79.3, pp. 293-465. DOI: 10.1351/pac200779030293.
- Bricaud, A., M. Babin, A. Morel and H. Claustre (1995). 'Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization'. In: *Journal of Geophysical Research* 100.C7, pp. 13321–13332.
- Bricaud, A., A. Morel and L. Prieur (1981). 'Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains'. In: *Limnology and Oceanography* 26.1, pp. 43-53. URL: http://www.jstor.org/stable/2835805.
- Brooms, A. C. (2010). *Data Manipulation with R.* DOI: 10.1080/02664760903075531.
- Brown, M. J., G. G. Parker and N. E. Posner (1994). 'A survey of ultraviolet-B radiation in forests'. In: *Journal of Ecology* 82.4, pp. 843–854. URL: http://www.jstor.org/stable/2261448 (cit. on pp. 18, 20).
- Buiteveld, H., J. H. M. Hakvoort and M. Donze (1994). 'The optical properties of pure water'. In: *Proceedings of SPIE "Ocean Optics XII"*. Vol. 2258. International Society for Optical Engineering, pp. 174–183.
- Caldwell, M. M. (1971). 'Solar UV irradiation and the growth and development of higher plants'. In: *Photophysiology*. Ed. by A. C. Giese. Vol. 6. New York: Academic Press, pp. 131–177. ISBN: 012282606X (cit. on p. x).
- Caldwell, M. M. and S. D. Flint (1994a). 'Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation'. In: *Proceedings of the International Lighting in Controlled Environments Workshop*. Vol. NASA-CP-95-3309, pp. 113–124.
- (1994b). 'Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems'. In: *Climatic Change* 28.4, pp. 375-394. DOI: 10.1007/ BF01104080.
- Caldwell, M. M. and S. D. Flint (2006). 'Use and Evaluation of Biological Spectral UV Weighting Functions for the Ozone Reduction Issue'. In: *Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models*. Ed. by F. Ghetti, G. Checcucci and J. F. Bornman. Vol. 57. NATO Science Series. Proceedings of the NATO Advanced Study Institute on Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models Pisa, Italy June 2001. Dordrecht: Springer, pp. 71–84. ISBN: 978-1-4020-3695-8. DOI: 10.1007/1-4020-3697-3.

- Caldwell, M. M., S. D. Flint and P. S. Searles (1994). 'Spectral balance and UV-B sensitivity of soybean: A field experiment'. In: *Plant, Cell and Environment* 17.3, pp. 267–276. DOI: 10.1111/j.1365-3040.1994.tb00292.x.
- Caldwell, M. M., W. G. Gold, G. Harris and C. W. Ashurst (1983). 'A modulated lamp system for solar UV-B (280-320 nm) supplementation studies in the field'. In: *Photochemistry and Photobiology* 37, pp. 479-485. DOI: 10.1111/j.1751-1097.1983.tb04503.x.
- Caldwell, M. M., A. H. Teramura and M. Tevini (1989). 'The Changing Solar Ultraviolet Climate and the Ecological Consequences for Higher Plants'. In: *Trends in Ecology & Evolution* 4.12, pp. 363–367. DOI: 10.1016/0169–5347(89)90100–6.
- Campbell, G. S. and J. M. Norman (1998). *An Introduction to Environmental Biophysics*. 2nd ed. New York: Springer. 286 pp. ISBN: 0-387-94937-2 (cit. on p. 20).
- Cen, Y.-P. and J. F. Bornman (1993). 'The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus'. In: *Physiologia Plantarum* 87.3, pp. 249–255. DOI: 10.1111/j.1399–3054.1993.tb01727.x.
- Chambers, J. (2009). Software for Data Analysis: Programming with R (Statistics and Computing). Springer, p. 498. ISBN: 0387759352. URL: http://www.amazon.com/Software-Data-Analysis-Programming-Statistics/dp/0387759352.
- Chang, W. (2013). *R Graphics Cookbook*. 1-2. Sebastopol: O'Reilly Media, p. 413. ISBN: 9781449316952. URL: http://medcontent.metapress.com/index/A65RM03P4874243N.pdf.
- Christie, J. M. (2007). 'Phototropin Blue-Light Receptors'. In: *Annual Review of Plant Biology* 58, pp. 21-45. DOI: 10.1146/annurev.arplant.58.032806.103951.
- Christie, J. M., A. S. Arvai, K. J. Baxter, M. Heilmann, A. J. Pratt, A. O'Hara, S. M. Kelly, M. Hothorn, B. O. Smith, K. Hitomi et al. (2012). 'Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges'. In: *Science*. DOI: 10.1126/science.1218091.
- Cochran, W. G. (1957). 'Analysis of covariance its nature and uses'. In: *Biometrics* 13, pp. 261-281. URL: http://www.jstor.org/stable/2527916.
- Cohen, J. (1977). *Statistical Power Analysis for the Behavioral Sciences*. Revised edition. New York: Academic Press. 474 pp.
- Coleman, A., R. Sarkany and S. Walker (2008). 'Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer'. In: *Physics in Medicine and Biology* 53.18, pp. 5239–5255. DOI: 10.1088/0031–9155/53/18/026.
- Coohill, T. P. (1992). 'Action spectroscopy and stratospheric ozone depletion'. In: *UV-B monitoring workshop: a review of the science and status of measuring and monitoring programs*. Science and Policy Associaties, Washington D.C., pp. C89–C112.
- Cooley, N. M., H. M. F. Truscott, M. G. Holmes and T. H. Attridge (2000). 'Outdoor ultraviolet polychromatic action spectra for growth responses of *Bellis perennis* and *Cynosurus cristatus*'. In: *Journal of Photochemistry and Photobiology*

- *B: Biology* 59.1-3, pp. 64-71. DOI: 10.1016/S1011-1344(00)00141-X.
- Cox, D. R. (1958). *Planning of Experiments*. New York: John Wiley & Sons. 308 pp. Cox, D. R. and N. Reid (2000). *The Theory of the Design of Experiments*. 1st ed. Chapman and Hall/CRC. 314 pp. ISBN: 158488195X.
- Crawley, M. J. (2002). Statistical Computing: An Introduction to Data Analysis using {S}-Plus. Chichester: Wiley, pp. x + 761. ISBN: 0-471-56040-5. URL: http://www.amazon.com/dp/0471560405.
- (2005). Statistics: An Introduction using R. Wiley, p. 342. ISBN: 0470022981.
 URL: http://www.amazon.com/Statistics-An-Introduction-using-R/dp/0470022981%20http://www.amazon.com/dp/0470022981.
- (2007). The R Book. John Wiley and Sons Ltd, p. 950. ISBN: 0470510242. URL: http://www.amazon.co.uk/dp/0470510242%20http://www.amazon.com/The Book Michael J Crawley/dp/0470973927%20http://www.amazon.com/The Book Michael J Crawley/dp/0470510242.
- (2012). The R Book. Wiley, p. 1076. ISBN: 0470973927. URL: http://www.amazon.com/The-Book-Michael-J-Crawley/dp/0470973927.
- Cryer, J. D. and K.-S. Chan (2009). *Time Series Analysis: With Applications in R (Springer Texts in Statistics).* Springer, p. 508. ISBN: 0387759581. URL: http://www.amazon.co.uk/Time-Series-Analysis-Applications-Statistics/dp/0387759581.
- Cullen, J. J. and P. J. Neale (1997). 'Biological weighting functions for describing the effects of ultraviolet radiation on aquatic systems'. In: *The effects of ozone depletion on aquatic ecosystems*. Ed. by D.-P. Häder. Academic Press. Chap. 6, pp. 97–118. ISBN: 0123991730.
- Dalgaard, P. (2002). *Introductory Statistics with R*. Statistics and Computing. New York: Springer, pp. xv + 267. ISBN: 0 387 95475 9.
- Dalgaard, P. (2008). *Introductory Statistics with R.* Springer, p. 380. ISBN: 0387790543.
- D'Antoni, H. L., L. J. Rothschild, C. Schultz, S. Burgess and J. W. Skiles (2007). 'Extreme environments in the forests of Ushuaia, Argentina'. In: *Geophysical Research Letters* 34.22. ISSN: 0094-8276. DOI: 10.1029/2007GL031096.
- D'Antoni, H. L., L. J. Rothschild and J. W. Skiles (2008). 'Reply to comment by Stephan D. Flint et al. on "Extreme environments in the forests of Ushuaia, Argentina"'. In: *Geophysical Research Letters* 35.13. ISSN: 0094-8276. DOI: 10.1029/2008GL033836.
- de la Rosa, T. M., R. Julkunen-Tiitto, T. Lehto and P. J. Aphalo (2001). 'Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates'. In: *New Phytologist* 150, pp. 121–131. DOI: 10.1046/j.1469-8137.2001.00079.x.
- Deckmyn, G., E. Cayenberghs and R. Ceulemans (2001). 'UV-B and PAR in single and mixed canopies grown under different UV-B exclusions in the field'. In: *Plant Ecology* 154, pp. 125–133. DOI: 10.1023/A:1012920716047 (cit. on p. 20).

- Dekker, A. G. (1993). 'Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing'. PhD thesis. Vrije Universiteit Amsterdam.
- DeLucia, E. H., T. A. Day and T. C. Vogelman (1992). 'Ultraviolet-B and visible light penetration into needles of two species of subalpine conifers during foliar development'. In: *Plant, Cell and Environment* 15.8, pp. 921–929. DOI: 10.1111/j.1365-3040.1992.tb01024.x.
- Demas, J. N., W. D. Bowman, E. F. Zalewski and R. A. Velapoldi (1981). 'Determination of the quantum yield of the ferrioxalate actinometer with electrically calibrated radiometers'. In: *Journal of Physical Chemistry* 85.19, pp. 2766–2771. ISSN: 0022-3654. DOI: 10.1021/j150619a015.
- Díaz, S., C. Camilión, J. Escobar, G. Deferrari, S. Roy, K. Lacoste, S. Demers, C. Belzile, G. Ferreyra, S. Gianesella et al. (2006). 'Simulation of ozone depletion using ambient irradiance supplemented with UV lamps.' In: *Photochemistry and Photobiology* 82.4, pp. 857–864. DOI: 10.1562/2005-09-28-RA-700.
- Díaz, S. B., J. E. Frederick, T. Lucas, C. R. Booth and I. Smolskaia (1996). 'Solar ultraviolet irradiance at Tierra del Fuego: Comparison of measurements and calculations over a full annual cycle'. In: *Geophysical Research Letters* 23.4, pp. 355–358. DOI: 10.1029/96GL00253 (cit. on p. 19).
- Diffey, B. L. (1987). 'A comparison of dosimeters used for solar ultraviolet radiometry'. In: *Photochem Photobiol* 46, pp. 55-60. DOI: 10.1111/j. 1751-1097.1987.tb04735.x.
- (1989). *Radiation Measurement in Photobiology*. London: Academic Press. 230 pp. ISBN: 0122158407.
- Dixon, J. M., M. Taniguchi and J. S. Lindsey (2005). 'PhotochemCAD 2: a refined program with accompanying spectral data bases for photochemical calculations'. In: *Photochemistry and Photobiology* 81.1, pp. 212–213. DOI: 10.1111/j.1751-1097.2005.tb01544.x.
- Döhring, T., M. Köfferlein, S. Thiel and H. K. Seidlitz (1996). 'Spectral shaping of artificial UV-B irradiation for vegetation stress research'. In: *Journal of Plant Physiology* 148, pp. 115–119. DOI: 10.1016/S0176–1617(96)80302–6.
- Du, H., R.-. C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey (1998). 'PhotochemCAD: a computer-aided design and research tool in photochemistry'. In: *Photochemistry and Photobiology* 68.2, pp. 141–142. DOI: 10.1111/j.1751–1097.1998.tb02480.x.
- Dunne, R. P. (1999). 'Polysulphone film as an underwater dosimeter for solar ultraviolet-B radiation in tropical latitudes'. In: *Marine Ecology Progress Series* 189, pp. 53–63. DOI: 10.3354/meps189053.
- Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer, p. 248. ISBN: 1461468671. URL: http://www.amazon.co.uk/Seamless-Integration-Rcpp-Dirk-Eddelbuettel/dp/1461468671.
- Eichler, H.-. J., A. Fleischner, J. Kross, M. Krystek, H. Lang, H. Niedrig, H. Rauch, G. Schmahl, H. Schoenebeck, E. Sedlmayr et al. (1993). *Bergmann, Schaefer: Lehrbuch der Experimentalphysik Band 3: Optik.* Ed. by H. Niedrig. Verlag Walter de Gruyter Berlin/New York (cit. on p. 7).

- Einstein, A. (1910). 'Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes'. In: *Annalen der Physik IV. Folge* 33.16, pp. 1275–1298.
- Eisinger, W., T. E. Swartz, R. A. Bogomolni and L. Taiz (2000). 'The ultraviolet action spectrum for stomatal opening in broad bean'. In: *Plant Physiology* 122, pp. 99–105. DOI: http://dx.doi.org/10.1104/pp.122.1.99.
- Everitt, B. and T. Hothorn (2011). An Introduction to Applied Multivariate Analysis with R. Springer, p. 288. ISBN: 1441996494. URL: http://www.amazon.co.uk/Introduction-Applied-Multivariate-Analysis-Use/dp/1441996494.
- Everitt, B. S. and T. Hothorn (2009). A Handbook of Statistical Analyses Using R. 2nd ed. Chapman & Hall, p. 376. ISBN: 1420079336. URL: http://www.amazon.com/Handbook-Statistical-Analyses-Second-Edition/dp/1420079336.
- Faraway, J. J. (2004). *Linear Models with R.* Boca Raton, FL: Chapman & Hall/CRC, p. 240. URL: http://www.maths.bath.ac.uk/~jjf23/LMR/.
- Faraway, J. J. (2006). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC Taylor & Francis Group, p. 345. ISBN: 158488424X.
- Fernández, E., J. M. Figuera and A. Tobar (1979). 'Use of the potassium ferrioxalate actinometer below 254-nm'. In: *Journal of Photochemistry* 11.1, pp. 69–71. ISSN: 0047-2670. DOI: 10.1016/0047-2670(79)85008-X.
- Flenley, J. R. (1992). 'Ultraviolet-B insolation and the altitudinal forest limit'. In: *Nature and dynamics of forest savanna boundaries*. Ed. by P. A. Furley, J. Proctor and J. A. Ratter. London: Chapman & Hall, pp. 273–282 (cit. on p. 18).
- Flint, S. D., C. L. Ballare, M. M. Caldwell and R. L. McKenzie (2008). 'Comment on "Extreme environments in the forests of Ushuaia, Argentina" by Hector D'Antoni et al.' In: *Geophysical Research Letters* 35.13. ISSN: 0094-8276. DOI: 10.1029/2008GL033570.
- Flint, S. D. and M. M. Caldwell (1996). 'Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors'. In: *Journal of Plant Physiology* 148, pp. 107–114. DOI: 10.1016/S0176–1617(96) 80301–4.
- Flint, S. D. and M. M. Caldwell (1998). 'Solar UV-B and visible radiation in tropical forest gaps: measurements partitioning direct and diffuse radiation'. In: *Global Change Biology* 4.8, pp. 863–870. DOI: 10.1046/j.1365–2486.1998.00191.x (cit. on p. 18).
- Flint, S. D. and M. M. Caldwell (2003). 'A biological spectral weighting function for ozone depletion research with higher plants'. In: *Physiologia Plantarum* 117, pp. 137–144. DOI: 10.1034/j.1399–3054.2003.1170117.x.
- Flint, S. D., R. J. Ryel, T. J. Hudelson and M. M. Caldwell (2009). 'Serious complications in experiments in which UV doses are effected by using different lamp heights'. In: *Journal of Photochemistry and Photobiology, B* 97.1, pp. 48–53. DOI: 10.1016/j.jphotobiol.2009.07.010.

- Fox, J. (2002). An {R} and {S-Plus} Companion to Applied Regression. Thousand Oaks, CA, USA: Sage Publications. URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html.
- Fox, J. and H. S. Weisberg (2010). An R Companion to Applied Regression. SAGE Publications, Inc, p. 472. ISBN: 141297514X. URL: http://www.amazon.com/An-R-Companion-Applied-Regression/dp/141297514X.
- Frederick, J. E., P. F. Soulen, S. B. Diaz, I. Smolskaia, C. R. Booth, T. Lucas and D. Neuschuler (1993). 'Solar Ultraviolet Irradiance Observed From Southern Argentina: September 1990 to March 1991'. In: *Journal of Geophysical Research* 98, pp. 8891–8897. DOI: 10.1029/93JD00030 (cit. on p. 19).
- Frigaard, N.-. U., K. L. Larsen and R. P. Cox (1996). 'Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs'. In: *FEMS Microbiology Ecology* 20, pp. 69–77. DOI: 10.1111/j.1574-6941.1996.tb00306.x.
- Fröhlich, C. and J. Lean (2004). 'Solar radiative output and its variability: evidence and mechanisms'. In: *The Astronomy and Astrophysics Review* 12, pp. 273–320. DOI: 10.1007/s00159-004-0024-1 (cit. on p. 16).
- Furness, N. H., P. A. Jolliffe and M. K. Upadhyaya (2005). 'Ultraviolet-B Radiation and Plant Competition: Experimental Approaches and Underlying Mechanisms'. In: *Photochemistry and Photobiology* 81, pp. 1026–1037. DOI: 10.1562/2005-08-18-RA-482.
- Furusawa, Y., L. E. Quintern, H. Holtschmidt, P. Koepke and M. Saito (1998). 'Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVB and UVA-results of a field campaign'. In: *Appl Microbiol Biotechnol* 50, pp. 597–603. DOI: 10.1007/s002530051341.
- Gandrud, C. (2013). Reproducible Research with R and RStudio. Chapman and Hall/CRC, p. 294. ISBN: 1466572841. URL: http://www.amazon.com/Reproducible-Research-RStudio-Chapman-Series/dp/1466572841.
- García-Pichel, F. (1995). 'A scalar irradiance fiber-optic microprobe for the measurement of ultraviolet radiation at high spatial resolution'. In: *Photo-chemistry and Photobiology* 61, pp. 248–254. DOI: 10.1111/j.1751–1097.1995.tb03967.x.
- Gege, P. (1998). 'Characterization of the phytoplankton in Lake Constance for classification by remote sensing'. In: *Archiv für Hydrobiologie, Special issues: Advances in Limnology* 53, pp. 179–193.
- (2004). 'The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra'. In: *Computers and Geosciences* 30, pp. 523-532. DOI: 10.1016/j.cageo.2004.03.005.
- Geiss, O. (2003). Manual for polysulphone dosimeter. Tech. rep. EUR 20981 EN. European Union. URL: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/1227/1/EUR%2020981%20EN.pdf.
- Gentleman, R. (2008). *R Programming for Bioinformatics*. Chapman and Hall/CRC, p. 328. ISBN: 1420063677. URL: http://www.amazon.

- com / Programming Bioinformatics Chapman Computer Analysis/dp/1420063677.
- Ghetti, F., H. Herrmann, D.-. P. Häder and H. K. Seidlitz (1999). 'Spectral dependence of the inhibition of photosynthesis under simulated global radiation in the unicellular green alga *Dunaliella salina*'. In: *Journal of Photochemistry and Photobiology B: Biology* 48, pp. 166–173. DOI: 10.1016/S1011–1344(99)00043–3.
- Goldstein, S. and J. Rabani (2008). 'The ferrioxalate and iodide-iodate actinometers in the UV region'. In: *Journal of Photochemistry and Photobiology A-Chemistry* 193.1, pp. 50-55. ISSN: 1010-6030. DOI: 10.1016/j.jphotochem.2007.06.006.
- Gordon, H. R. and A. Y. Morel (1983). *Remote assessment of ocean color for interpretation of satellite visible imagery: a review*. Ed. by R. T. Barber, C. N. K. Mooers, M. J. Bowman and B. Zeitzschel. Vol. 4. Lecture Notes on Coastal and Estuarine Studies. New York: Springer Verlag.
- Gorton, H. L. (2010). 'Biological action spectra'. In: *Photobiological Sciences Online*. Ed. by K. C. Smith. American Society for Photobiology. URL: http://www.photobiology.info/Gorton.html.
- Götz, M., A. Albert, S. Stich, W. Heller, H. Scherb, A. Krins, C. Langebartels, H. K. Seidlitz and D. Ernst (2010). 'PAR modulation of the UV-dependent levels of flavonoid metabolites in *Arabidopsis thaliana* (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period'. In: *Protoplasma* 243, pp. 95–103. DOI: 10.1007/s00709-009-0064-5.
- Goulas, Y., Z. G. Cerovic, A. Cartelat and I. Moya (2004). 'Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence'. In: *Applied Optics* 43.23, pp. 4488–4496. DOI: 10.1364/AO.43.004488.
- Gould, K. S., T. C. Vogelmann, T. Han and M. J. Clearwater (2002). 'Profiles of photosynthesis within red and green leaves of *Quintinia serrata*'. In: *Physiologia Plantarum* 116.1, pp. 127–133. DOI: 10.1034/j.1399-3054.2002.1160116.x.
- Graedel, T. E. and P. J. Crutzen (1993). *Atmospheric Change: An Earth System Perspective*. New York: WH Freeman. 446 pp. ISBN: board 0-7167-2334-4, paper 0-7167-2332-8 (cit. on p. 18).
- Grant, R. H. (1998). 'Ultraviolet irradiance of inclined planes at the top of plant canopies'. In: *Agricultural and Forest Meteorology* 89, pp. 281–293. DOI: 10.1016/S0168-1923(97)00067-1 (cit. on p. 20).
- (1999a). 'Potential effect of soybean heliotropism on ultraviolet-B irradiance and dose'. In: *Agronomy Journal* 91, pp. 1017-1023. DOI: doi:10.2134/ agronj1999.9161017x (cit. on p. 20).
- (1999b). 'Ultraviolet-B and photosynthetically active radiation environment of inclined leaf surfaces in a maize canopy and implications for modeling'.
 In: Agricultural and Forest Meteorology 95, pp. 187-201. DOI: 10.1016/S0168-1923(99)00023-4 (cit. on p. 20).
- (2004). 'UV Radiation Penetration in Plant Canopies'. In: *Encyclopedia of Plant and Crop Science*, pp. 1261–1264. DOI: 10.1081/E-EPCS-120010624 (cit. on p. 20).

- Green, A. E. S. and J. H. Miller (1975). 'Measures of biologically active radiation in the 280-340 nm region. Impacts of climate change on the environment'. In: CIAP Monograph 5, Part 1. Chap. 2.2.4.
- Green, A. E. S., T. Sawada and E. P. Shettle (1974). 'The middle ultraviolet reaching the ground'. In: *Photochemistry and Photobiology* 19, pp. 251–259. DOI: 10.1111/j.1751-1097.1974.tb06508.x (cit. on p. x).
- Grifoni, D., F. Sabatini, G. Zipoli and M. Viti (2009). 'Action spectra affect variability in the climatology of biologically effective UV radiation (UVBE)'. In: *Poster presentation at the Final Seminar of COST Action 726, 13-14 May 2009, Warsaw, Poland.*
- Grifoni, D., G. Zipoli, M. Viti and F. Sabatini (2008). 'Latitudinal and seasonal distribution of biologically effective UV radiation affecting human health and plant growth'. In: *Proceedings of 18th International Congress of Biometeorology*, 22-26 September 2008, Tokyo, Japan.
- Häder, D.-P., E. W. Helbling, C. E. Williamson and R. C. Worrest (2011). 'Effects of UV radiation on aquatic ecosystems and interactions with climate change'.
 In: *Photochemical and Photobiological Sciences* 10 (2), pp. 242–260. DOI: 10.1039/C0PP90036B.
- Häder, D.-P., M. Lebert, M. Schuster, L. del Ciampo, E. W. Helbling and R. McKenzie (2007). 'ELDONET—a decade of monitoring solar radiation on five continents'. In: *Photochem Photobiol* 83, pp. 1348–1357. DOI: 10.1111/j.1751–1097.2007.00168.x (cit. on pp. 18, 19).
- Hahne, F., W. Huber, R. Gentleman and S. Falcon (2008). *Bioconductor Case Studies (Use R!)* Springer, p. 284. ISBN: 0387772391. URL: http://www.amazon.com/Bioconductor-Case-Studies-Use-R/dp/0387772391.
- Hakvoort, J. H. M. (1994). 'Absorption of light by surface water'. PhD thesis. Delft University of Technology.
- Hannay, J. W. and D. J. Millar (1986). 'Phytotoxicity of phthalate plasticisers. I. Diagnosis and commercial implications'. In: *Journal of Experimental Botany* 37, pp. 883–897. DOI: 10.1093/jxb/37.6.883.
- Hardwick, R. C. and R. A. Cole (1987). 'Plastics that kill plants'. In: *Outlook on Agriculture* 16.13, pp. 100–104.
- Hatchard, C. G. and C. A. Parker (1956). 'A new sensitive chemical actinometer .2. Potassium ferrioxalate as a standard chemical actinometer'. In: *Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences* 235.1203, pp. 518–536. DOI: 10.1098/rspa.1956.0102.
- Hegglin, M. I. and T. G. Shepherd (2009). 'Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux'. In: *Nature Geoscience* advance online publication, pp. 687–691. DOI: 10.1038/ngeo604 (cit. on p. 19).
- Heijde, M. and R. Ulm (2012). 'UV-B photoreceptor-mediated signalling in plants'. In: *Trends in Plant Science*. DOI: 10.1016/j.tplants.2012.01.007.
- Hirose, T. (2005). 'Development of the Monsi-Saeki Theory on Canopy Structure and Function'. In: *Annals of Botany* 95, pp. 483-494. DOI: 10.1093/aob/mci047 (cit. on p. 19).
- Hogewoning, S. W., P. Douwstra, G. Trouwborst, W. van Ieperen and J. Harbinson (2010). 'An artificial solar spectrum substantially alters plant development

- compared with usual climate room irradiance spectra'. In: *Journal of Experimental Botany* 61.5, pp. 1267–1276. DOI: 10.1093/jxb/erq005.
- Holmes, M. G. (1984). 'Light Sources'. In: *Techniques in Photomorphogenesis*. Ed. by H. Smith and M. G. Holmes. Academic press, pp. 43–79. ISBN: 0126529906.
- (1997). 'Action spectra for UV-B effects on plants: monochromatic and polychromatic approaches for analysing plant responses'. In: *Plants and UV-B responses to environmental change*. Ed. by P. J. Lumsden. Cambridge University Press, pp. 31–50. ISBN: 0521572223.
- Holmes, M. G. and D. R. Keiller (2002). 'Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species'. In: *Plant Cell and Environment* 25.1, pp. 85–93. DOI: 10.1046/j.1365–3040.2002.00779.x.
- Horneck, G., P. Rettberg, E. Rabbow, W. Strauch, G. Seckmeyer, R. Facius, G. Reitz, K. Strauch and J. U. Schott (1996). 'Biological dosimetry of solar radiation for different simulated ozone column thicknesses'. In: *Journal of Photochemistry and Photobiology B-biology* 32.3, pp. 189–196. ISSN: 1011-1344. DOI: 10.1016/1011-1344(95)07219-5.
- Hulst, H. C. van de (1981). *Light scattering by small particles*. unabridged and corrected republication of the work originally published in 1957 by John Wiley & Sons Inc. New York. New York: Dover Publications Inc.
- Hunt, J. E. (1997). 'Ultraviolet-B radiation and its effects on New Zealand trees'. Ph.D. Dissertation. Canterbury, New Zealand: Lincoln University, p. 106.
- Hunt, J. E. and D. L. McNeil (1998). 'Nitrogen status affects UV-B sensitivity of cucumber'. In: *Australian Journal of Plant Physiology* 25.1, pp. 79–86. DOI: 10.1071/PP97102.
- Hurlbert, S. H. (1984). 'Pseudoreplication and the design of ecological field experiments'. In: *Ecological Monographs* 54.2, pp. 187–211. DOI: 10.2307/1942661.
- Hyndman, R., A. B. Koehler, J. K. Ord and R. D. Snyder (2008). Forecasting with Exponential Smoothing: The State Space Approach. Springer, p. 362. ISBN: 3540719164. URL: http://www.amazon.co.uk/Forecasting-Exponential Smoothing Approach Statistics / dp / 3540719164.
- Ibdah, M., A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt (2002a). 'Spectral dependence of flavonol and betacyanin accumulation in *Mesembry-anthemum crystallinum* under enhanced ultraviolet radiation'. In: *Plant, Cell and Environment* 25.9, pp. 1145–1154. DOI: doi:10.1046/j.1365-3040.2002.00895.x.
- (2002b). 'Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation'. In: *Plant, Cell and Environment* 25, pp. 1145–1154. DOI: 10.1046/j.1365–3040.2002.00895.x.
- Ihaka, R. and R. Gentleman (1996). 'R: A Language for Data Analysis and Graphics'. In: *J. Comput. Graph. Stat.* 5, pp. 299–314.
- Iqbal, M. (1983). *An introduction to solar radiation*. Academic Press Canada (cit. on pp. 7, 16).
- Jagger, J. (1967). *Introduction to research in ultraviolet photobiology*. Englewood Cliffs, NJ, USA: Prentice-Hall. 164 pp. ISBN: 0134955722.

- Jansen, M. A. K. and J. F. Bornman (2012). 'UV-B radiation: from generic stressor to specific regulator'. In: *Physiologia Plantarum* 145.4, pp. 501–504. ISSN: 1399-3054. DOI: 10.1111/j.1399-3054.2012.01656.x.
- Jenkins, G. I. (2009). 'Signal transduction in responses to UV-B radiation'. In: *Annual Review of Plant Biology* 60, pp. 407-431. DOI: 10.1146/annurev.arplant.59.032607.092953.
- Jones, H. G. (1992). *Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology*. 2nd ed. Cambridge University Press. 456 pp. ISBN: 0521425247.
- Jones, L. W. and B. Kok (1966). 'Photoinhibition of Chloroplast Reactions. II. Multiple Effects'. In: *Plant Physiology* 41, pp. 1044–1049. DOI: 10.1104/pp.41.6.1044.
- Julkunen-Tiitto, R., H. Häggman, P. J. Aphalo, A. Lavola, R. Tegelberg and T. Veteli (2005). 'Growth and defense in deciduous trees and shrubs under UV-B'. In: *Environmental Pollution* 137, pp. 404–414. DOI: 10.1016/j.envpol.2005.01.050.
- Kalbin, G., S. Li, H. Olsman, M. Pettersson, M. Engwall and Å. Strid (2005). 'Effects of UV-B in biological and chemical systems: equipment for wavelength dependence determination'. In: *Journal of Biochemical and Biophysical Methods* 65, pp. 1-12. DOI: 10.1016/j.jbbm.2005.09.001.
- Kalbina, I., S. Li, G. Kalbin, L. Björn and Å. Strid (2008). 'Two separate UV-B radiation wavelength regions control expression of different molecular markers in *Arabidopsis thaliana*'. In: *Functional Plant Biology* 35.3, pp. 222–227. DOI: 10.1071/FP07197.
- Kalle, K. (1966). 'The problem of the gelbstoff in the sea'. In: *Oceanography and Marine Biology Annual Review* 4, pp. 91–104.
- Karabourniotis, G. and J. F. Bornman (1999). 'Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes'. In: *Physiologia Plantarum* 105, pp. 655–661. DOI: 10.1034/j.1399-3054.1999.105409.x.
- Keen, K. J. (2010). *Graphics for Statistics and Data Analysis with R*. Chapman and Hall/CRC, p. 489. ISBN: 1584880872. URL: http://www.amazon.com/Graphics-Statistics-Analysis-Chapman-Statistical/dp/1584880872.
- Keiller, D. R., S. A. H. Mackerness and M. G. Holmes (2003). 'The action of a range of supplementary ultraviolet (UV) wavelengths on photosynthesis in Brassica napus L. in the natural environment: effects on PSII, CO2 assimilation and level of chloroplast proteins'. In: *Photosynthesis Research* 75.2, pp. 139–150. DOI: 10.1023/A:1022812229445.
- Kirk, A. D. and C. Namasivayam (1983). 'Errors in ferrioxalate actinometry'. In: *Analytical Chemistry* 55.14, pp. 2428–2429. ISSN: 0003-2700. DOI: 10.1021/ac00264a053.
- Kirk, J. T. O. (1991). 'Volume scattering function, average cosine, and the underwater light field'. In: *Limnology and Oceanography* 36.3, pp. 455–467. URL: http://www.jstor.org/stable/2837511.
- Kolb, C. A., U. Schreiber, R. Gademann and E. E. Pfündel (2005). 'UV-A screening in plants determined using a new portable fluorimeter'. In: *Photosynthetica* 43.3, pp. 371–377. DOI: 10.1007/s11099-005-0061-7.

- Kopp, G. and J. L. Lean (2011). 'A new, lower value of total solar irradiance: Evidence and climate significance'. In: *Geophys. Res. Lett.* 38.1, pp. L01706-. DOI: 10.1029/2010GL045777 (cit. on p. 16).
- Kotilainen, T., A. Lindfors, R. Tegelberg and P. J. Aphalo (2011). 'How realistically does outdoor UV-B supplementation with lamps reflect ozone depletion: An assessment of enhancement errors'. In: *Photochemistry and Photobiology* 87, pp. 174–183. DOI: 10.1111/j.1751–1097.2010.00843.x (cit. on p. 17).
- Kotilainen, T., R. Tegelberg, R. Julkunen-Tiitto, A. Lindfors and P. J. Aphalo (2008). 'Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics'. In: *Global Change Biology* 14, pp. 1294–1304. DOI: 10.1111/j.1365-2486.2008.01569.x.
- Kotilainen, T., T. Venäläinen, R. Tegelberg, A. Lindfors, R. Julkunen-Tiitto, S. Sutinen, R. B. O'Hara and P. J. Aphalo (2009). 'Assessment of UV Biological Spectral Weighting Functions for Phenolic Metabolites and Growth Responses in Silver Birch Seedlings'. In: *Photochemistry and Photobiology* 85, pp. 1346–1355. DOI: 10.1111/j.1751–1097.2009.00597.x.
- Kowalczuk, P., M. Zabłocka, S. Sagan and K. Kuliński (2010). 'Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea'. In: *Oceanologia* 52.3, pp. 431–471.
- Kreuter, A. and M. Blumthaler (2009). 'Stray light correction for solar measurements using array spectrometers'. In: *Review of Scientific Instruments* 80.9, 096108, p. 096108. DOI: 10.1063/1.3233897.
- Krizek, D. T. and R. M. Mirecki (2004). 'Evidence for phytotoxic effects of cellulose acetate in UV exclusion studies'. In: *Environmental and Experimental Botany* 51, pp. 33–43. DOI: 10.1016/S0098-8472(03)00058-3.
- Kuhn, H., S. Braslavsky and R. Schmidt (2004). 'Chemical actinometry'. In: *Pure and Applied Chemistry* 76.12, pp. 2105–2146. ISSN: 0033-4545. DOI: 10.1351/pac200476122105.
- Kuhn, H. J., S. E. Braslavsky and R. Schmidt (1989). 'Chemical actinometry'. In: *Pure and Applied Chemistry* 61.2, pp. 187–210. ISSN: 0033-4545. DOI: 10.1351/pac198961020187.
- Langhans, R. W. and T. W. Tibbitts, eds. (1997). Plant growth chamber handbook. Vol. SR-99. North Central Regional Research Publication 340. Iowa Agriculture and Home Economics Experiment Station. URL: http: //www.controlledenvironments.org/Growth_Chamber_ Handbook/Plant_Growth_Chamber_Handbook.htm.
- Lee, J. and H. H. Seliger (1964). 'Quantum yield of ferrioxalate actinometer'. In: *Journal of Chemical Physics* 40.2, pp. 519–523. ISSN: 0021-9606. DOI: 10.1063/1.1725147.
- Lee, Z. P., K. L. Carder and R. A. Arnone (2002). 'Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep water'. In: *Applied Optics* 41.27, pp. 5755–5772. DOI: 10. 1364/A0.41.005755.
- Lester, R. A., A. V. Parisi, M. G. Kimlin and J. Sabburg (2003). 'Optical properties of poly(2,6-dimethyl-1,4-phenylene oxide) film and its potential for a long-term solar ultraviolet dosimeter'. In: *Physics in Medicine and Biology* 48.22, pp. 3685–3698. DOI: 10.1088/0031–9155/48/22/005.

- Leszczynski, K. (2002). 'Advances in Traceability of Solar Ultraviolet Radiation Measurements'. PhD thesis. University of Helsinki.
- Long, S. P. and J.-E. Hällgren (1987). 'Measurement of CO_2 assimilation by plants in the field and the laboratory'. In: *Techniques in bioproductivity and photosynthesis*. Ed. by J. Coombes, D. O. Hall, S. P. Long and J. M. O. Scurlock. Oxford: Pergamon Press Ltd.
- Loo, M. V. der and E. de Jonge (2012). Learning RStudio for R Statistical Computing. 1st ed. Birmingham, Mumbai: Packt Publishing, p. 126. ISBN: 9781782160601. URL: http://books.google.com/books?hl=en%5C&lr=%5C&id=EE8M9HCJok4C%5C&oi=fnd%5C&pg=PT9%5C&dq=Learning+RStudio+for+R+Statistical+Computing%5C&ots=lzFw3BLTRO%5C&sig=0uCpbnhXK219UhlirR0vZYFtOqI.
- Maindonald, J. and W. J. Braun (2010). *Data Analysis and Graphics Using R:*An Example-Based Approach. Cambridge University Press, p. 552. ISBN: 0521762936. URL: http://www.amazon.com/Data-Analysis-Graphics-Using-Example-Based/dp/0521762936.
- Manney, G. L., M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux et al. (2011). 'Unprecedented Arctic ozone loss in 2011'. In: *Nature* 478, pp. 469–475. DOI: 10.1038/nature10556 (cit. on p. 18).
- Marijnissen, J. P. A. and W. M. Star (1987). 'Quantitative light dosimetry in vitro and in vivo'. In: *Lasers in Medical Science* 2, pp. 235–242. DOI: 10.1007/BF02594166.
- Maritorena, S., A. Morel and B. Gentili (1994). 'Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo'. In: *Limnology and Oceanography* 39.7, pp. 1689–1703. URL: http://www.jstor.org/stable/2838204.
- Markvart, J., E. Rosenqvist, J. M. Aaslyng and C. .-.-O. Ottosen (2010). 'How is Canopy Photosynthesis and Growth of Chrysanthemums Affected by Diffuse and Direct Light?' In: *European Journal of Horticultural Science* 75.6, pp. 253–258. ISSN: 1611-4426.
- Massonnet, C., D. Vile, J. Fabre, M. A. Hannah, C. Caldana, J. Lisec, G. T. S. Beemster, R. C. Meyer, G. Messerli, J. T. Gronlund et al. (2010). 'Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three *Arabidopsis* accessions cultivated in ten laboratories'. In: *Plant Physiol* 152, pp. 2142–2157. DOI: 10.1104/pp.109.148338.
- Matloff, N. (2011). The Art of R Programming: A Tour of Statistical Software Design. No Starch Press, p. 400. ISBN: 1593273843. URL: http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843.
- McKinlay, A. F. and B. L. Diffey (1987). 'A reference action spectrum for ultraviolet induced erythema in human skin'. In: *CIE Journal* 6, pp. 17–22.
- McLeod, A. R. (1997). 'Outdoor supplementation systems for studies of the effects of increased uv-b radiation'. In: *Plant Ecology* 128, pp. 78–92. DOI: 10.1023/A:1009794427697.
- McLeod, A. R., S. C. Fry, G. J. Loake, D. J. Messenger, D. S. Reay, K. A. Smith and B.-W. Yun (2008). 'Ultraviolet radiation drives methane emissions from

- terrestrial plant pectins'. In: New Phytologist 180, pp. 124-132. DOI: 10 . 1111/j . 1469-8137 . 2008 . 02571 . x.
- Messenger, D. J., A. R. McLeod and S. C. Fry (2009). 'The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin'. In: *Plant Cell and Environment* 32, pp. 1–9. DOI: 10.1111/j.1365–3040.2008.01892.x.
- Millar, D. J. and J. W. Hannay (1986). 'Phytotoxicity of phthalate plasticisers. II. Site and mode of action'. In: *Journal of Experimental Botany* 37, pp. 883–897. DOI: 10.1093/jxb/37.6.898.
- Mobley, C. D. (1994). Light and water radiative transfer in natural waters. San Diego: Academic Press. URL: http://www.curtismobley.com/lightandwater.zip (cit. on pp. 9, 16).
- (2011). 'Fast light calculations for ocean ecosystem and inverse models'. In: *Optics Express* 19.20, pp. 18927–18944. DOI: 10.1364/OE.19.018927.
- Mobley, C. D. and L. K. Sundman (2003). 'Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms'. In: *Limnology and Oceanography, Light in Shallow Waters* 48.1, part 2, pp. 329–336. URL: http://www.jstor.org/stable/3597753.
- Mobley, C. D., H. Zhang and K. J. Voss (2003). 'Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects'. In: *Limnology and Oceanography, Light in Shallow Waters* 48.1, part 2, pp. 337-345. URL: http://www.jstor.org/stable/3597754.
- Möglich, A., X. Yang, R. A. Ayers and K. Moffat (2010). 'Structure and function of plant photoreceptors'. In: *Annu Rev Plant Biol* 61, pp. 21-47. DOI: 10.1146/annurev-arplant-042809-112259.
- Monsi, M. and T. Saeki (1953). 'Über den Lichfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion'. In: *Japanese Journal of Botany* 14, pp. 22–52 (cit. on p. 19).
- Montalti, M., A. Credi, L. Prodi and M. T. Gandolfi (2006). *Handbook of Photochemistry*. 3rd ed. Boca Raton, FL, USA: CRC Press. 664 pp. ISBN: 0824723775.
- Monteith, J. and M. Unsworth (2008). *Principles of Environmental Physics*. 3rd ed. Academic Press. 440 pp. ISBN: 0125051034 (cit. on p. 20).
- Morales, L. O., R. Tegelberg, M. Brosché, M. Keinänen, A. Lindfors and P. J. Aphalo (2010). 'Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves'. In: *Tree Physiol* 30, pp. 923–934. DOI: 10.1093/treephys/tpq051.
- Morel, A. (1974). 'Optical properties of pure water and pure sea water'. In: *Optical Aspects of Oceanography*. Ed. by N. G. Jerlov and E. Steemann Nielsen. London: Academic Press, pp. 1–24. ISBN: 0123849500.
- (1991). 'Light and marine photosynthesis: a spectral model with geochemical and climatological implications'. In: *Progress in Oceanography* 26, pp. 263-306. DOI: 10.1016/0079-6611(91)90004-6.
- Morel, A. and L. Prieur (1976). 'Analyse spectrale de l'absorption par les substances dissoutes (substances jaunes)'. In: *Publ. CNEXO* 10.Sect. 1.1.11, pp. 1-9.

- Morison, J. I. L. and R. M. Gifford (1984). 'Ethylene contamination of CO2 cylinders. Effects on plant growth in CO2 enrichment studies'. In: *Plant Physiology* 75, pp. 275–277. DOI: 10.1104/pp.75.1.275.
- Murrell, P. (2005a). *R Graphics*. Boca Raton, FL: Chapman & Hall/CRC, p. 301. ISBN: 1-584-88486-X. URL: http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html.
- (2005b). R Graphics (Chapman & Hall/CRC The R Series). Chapman and Hall/CRC, p. 328. ISBN: 158488486X. URL: http://www.amazon.com/ Graphics-Chapman-Hall-CRC-Series/dp/158488486X.
- (2011). R Graphics, Second Edition (Chapman & Hall/CRC The R Series). CRC Press, p. 546. ISBN: 1439831769. URL: http://www.amazon.com/Graphics-Second-Edition-Chapman-Series/dp/1439831769.
- Musil, C. F. (1995). 'Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous and monocotyledonous arid-environment ephemerals'. In: *Plant, Cell and Environment* 18, pp. 844–854. DOI: 10.1111/j.1365-3040.1995.tb00593.x.
- Musil, C. F., L. O. Björn, M. W. J. Scourfield and G. E. Bodeker (2002). 'How substantial are ultraviolet-B supplementation inaccuracies in experimental square-wave delivery systems?' In: *Environmental and Experimental Botany* 47.1, pp. 25–38. DOI: DOI: 10.1016/S0098-8472(01)00108-3.
- Nevas, S., A. Teuber, A. Sperling and M. Lindemann (2012). 'Stability of array spectroradiometers and their suitability for absolute calibrations'. In: *Metrologia* 49, S48–S52. DOI: 10.1088/0026-1394/49/2/S48.
- Newsham, K. K., A. R. McLeod, P. D. Greenslade and B. A. Emmett (1996). 'Appropriate controls in outdoor UV-B supplementation experiments'. In: *Global Change Biology* 2, pp. 319–324. DOI: 10.1111/j.1365-2486. 1996.tb00083.x.
- Newsham, K. K., A. R. McLeod, J. D. Roberts, P. D. Greenslade and B. A. Emmet (1997). 'Direct effects of elevated UV-B radiation on the decomposition of Quercus robur leaf litter'. In: *Oikos* 79, pp. 592-602. URL: http://www.jstor.org/stable/3546903.
- Newsham, K. K., P. Splatt, P. A. Coward, P. D. Greenslade, A. R. McLeod and J. M. Anderson (2001). 'Negligible influence of elevated UV-B radiation on leaf litter quality of *Quercus robur*'. In: *Soil Biology and Biochemistry* 33, pp. 659-665. DOI: 10.1016/S0038-0717(00)00210-8.
- Nobel, P. S. (2009). *Physicochemical and Environmental Plant Physiology*. 4th. Academic Press. 600 pp. ISBN: 0123741432.
- Ohde, T. and H. Siegel (2003). 'Derivation of immersion factors for the hyperspectral TriOS radiance sensor'. In: *Journal of Optics A: Pure and Applied Optics* 5.3, pp. L12–L14. DOI: doi:10.1088/1464–4258/5/3/103.
- Oke, T. R. (1988). *Boundary Layer Climates*. 2nd. Routledge. 464 pp. ISBN: 0415043190.
- Okerblom, P., T. Lahti and H. Smolander (1992). 'Photosynthesis of a Scots Pine Shoot A Comparison of 2 Models of Shoot Photosynthesis in Direct and Diffuse Radiation Fields'. In: *Tree Physiology* 10.2, pp. 111-125. DOI: 10.1093/treephys/10.2.111.

- Parisi, A., P. Schouten and D. J. Turnbull (2010). 'UV dosimeter based on Polyphenylene Oxide for the measurement of UV exposures to plants and humans over extended periods'. In: NIWA 2010 UV Workshop: UV Radiation and its Effects an Update 2010, 7-9 May 2010. Queenstown, New Zealand.
- Parisi, A., D. J. Turnbull, P. Schouten, N. Downs and T. J. (2010). 'Techniques for solar dosimetry in different environments'. In: *UV radiation in global climate change: measurements, modeling and effects on ecosystems.* Ed. by W. Gao, D. L. Schmoldt and J. R. Slusser. Springer / Shingua University Press, pp. 192–204. ISBN: 978-3-642-03312-4.
- Parisi, A. V., V. J. Galea and C. Randall (2003). 'Dosimetric measurement of the visible and UV exposures on field grown soybean plants'. In: *Agricultural and Forest Meteorology* 120, pp. 153–160. DOI: 10.1016/j.agrformet. 2003.08.012.
- Parisi, A. V. and M. G. Kimlin (2004). 'Personal solar UV exposure measurements employing modified polysulphone with an extended dynamic range'. In: *Photochem Photobiol* 79, pp. 411–415. DOI: 10.1111/j.1751–1097. 2004.tb00028.x.
- Parisi, A. V. and J. C. F. Wong (1996). 'Plant canopy shape and the influences on UV exposures to the canopy'. In: *Photochemistry and Photobiology* 63.6, pp. 143–148. DOI: 10.1111/j.1751–1097.1996.tb02434.x (cit. on p. 20).
- Parisi, A. V., J. C. F. Wong and C. Randall (1998). 'Simultaneous assessment of photosynthetically active and ultraviolet solar radiation'. In: *Agricultural and Forest Meteorology* 92, pp. 97–103. DOI: 10.1016/S0168–1923(98) 00094–X.
- Parker, C. A. (1953). 'A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate'. In: *Proc. Roy. Soc. London* 220A.1140, pp. 104–116. DOI: 10.1098/rspa.1953.0175.
- Passioura, J. (2006). 'The perils of pot experiments'. In: *Functional Plant Biology* 33.12, pp. 1075–1079. DOI: 10.1071/FP06223.
- Paul, N. (2001). 'Plant responses to UV-B: time to look beyond stratospheric ozone depletion?' In: *New Phytologist* 150, pp. 5–8. DOI: 10.1046/j.1469-8137.2001.00090.x.
- Paul, N. D., R. J. Jacobson, A. Taylor, J. J. Wargent and J. P. Moore (2005). 'The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions'. In: *Photochem Photobiol* 81.5, pp. 1052–1060. DOI: 10.1562/2004-12-06-RA-392.
- Pegau, W. S. and J. R. V. Zaneveld (1993). 'Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum'. In: *Limnology and Oceanography* 38 (1), pp. 188–192. URL: http://www.jstor.org/stable/2837903.
- Petris, G., S. Petrone and P. Campagnoli (2009). *Dynamic Linear Models with R* (*Use R!*) Springer, p. 268. ISBN: 0387772375. URL: http://www.amazon.co.uk/Dynamic-Linear-Models-Giovanni-Petris/dp/0387772375.

- Petzold, T. (1977). 'Volume scattering functions for selected ocean waters'. In: *Light in the sea*. Ed. by J. Tyler. Dowden, Hutchinson & Ross, Strouddberg, pp. 152–174. ISBN: 0879332654.
- Phoenix, G. K., D. Gwynn-Jones, J. A. Lee and T. V. Callaghan (2003). 'Ecological importance of ambient solar ultraviolet radiation to a sub-arctic heath community'. In: *Plant Ecology* 165, pp. 263–273. DOI: 10.1023/A: 1022276831900.
- Pinheiro, J. C. and D. M. Bates (2000). *Mixed-Effects Models in S and S-Plus*. New York: Springer.
- Pinnel, N. (2007). 'A method for mapping submersed macrophytes in lakes using hyperspectral remote sensing'. PhD thesis. Technische Universität München. URL: http://mediatum2.ub.tum.de/node?id=604557.
- Poorter, H., J. Bühler, D. van Dusschoten, J. Climent and J. A. Postma (2012). 'Pot size matters: a meta-analysis of the effects of rooting volume on plant growth'. In: *Functional Plant Biology*, DOI: 10.1071/FP12049.
- Poorter, H., F. Fiorani, M. Stitt, U. Schurr, A. Finck, Y. Gibon, B. Usadel, R. Munns, O. K. Atkin, F. Tardieu et al. (2012). 'The art of growing plants for experimental purposes: a practical guide for the plant biologist'. In: *Functional Plant Biology*. DOI: 10.1071/FP12028.
- Pozdnyakov, D. and H. Grassl (2003). *Colour of inland and coastal waters a methodology for its interpretation*. Berlin/Heidelberg/New York and-Chichester: Springer Verlag and Praxis Publishing Ltd.
- Prahl, S. A., M. Keijzer, S. L. Jacques and A. J. Welch (1989). 'A Monte Carlo Model of Light Propagation in Tissue'. In: *SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology*. Ed. by G. J. Müller and D. H. Sliney. Vol. IS 5, pp. 102–111 (cit. on p. 9).
- Prieur, L. and S. Sathyendranath (1981). 'An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials'. In: *Limnology and Oceanography* 26.4, pp. 671-689. URL: http://www.jstor.org/stable/2836033.
- Quaite, F. E., B. M. Sutherland and J. C. Sutherland (1992). 'Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion'. In: *Nature* 358, pp. 576–578. DOI: 10.1038/358576a0.
- Quan, X. and E. S. Fry (1995). 'Empirical equation for the index of refraction of seawater'. In: *Applied Optics* 34.18, pp. 3477–3480. DOI: 10.1364/AO. 34.003477.
- Quinn, G. P. and M. J. Keough (2002). *Experimental Design and Data Analysis for Biologists*. Cambridge, U.K.: Cambridge University Press. xvii + 537. ISBN: 0-521-00976-6.
- Quintern, L. E., Y. Furusawa, K. Fukutsu and H. Holtschmidt (1997). 'Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin'. In: *J Photochem Photobiol B* 37, pp. 158–166. DOI: 10.1016/S1011–1344(96)04414–4.
- Quintern, L. E., G. Horneck, U. Eschweiler and H. Bücker (1992). 'A biofilm used as ultraviolet-dosimeter'. In: *Photochemistry and Photobiology* 55, pp. 389-395. DOI: 10.1111/j.1751-1097.1992.tb04252.x.

- Quintern, L. E., M. Puskeppeleit, P. Rainer, S. Weber, S. el Naggar, U. Eschweiler and G. Horneck (1994). 'Continuous dosimetry of the biologically harmful UV-radiation in Antarctica with the biofilm technique'. In: *J Photochem Photobiol B* 22, pp. 59–66. DOI: 10.1016/1011-1344(93)06954-2.
- Ritz, C. and J. C. Streibig (2009). *Nonlinear Regression with R.* Springer, p. 148. ISBN: 0387096159. URL: http://www.amazon.co.uk/Nonlinear-Regression-R-Use/dp/0387096159.
- Rizzini, L., J.-J. Favory, C. Cloix, D. Faggionato, A. O'Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G. I. Jenkins et al. (2011). 'Perception of UV-B by the *Arabidopsis* UVR8 Protein'. In: *Science* 332.6025, pp. 103–106. DOI: 10.1126/science.1200660.
- Robert, C. and G. Casella (2009). *Introducing Monte Carlo Methods with R.* Springer, p. 306. ISBN: 1441915753. URL: http://www.amazon.co.uk/Introducing-Monte-Carlo-Methods-Use/dp/1441915753.
- Robertson, D. F. (1972). 'Solar ultraviolet radiation in relation to human sunburn and skin cancer'. PhD thesis. University of Queensland.
- Robson, T. M., V. A. Pancotto, C. L. Ballaré, O. E. Sala, A. L. Scopel and M. M. Caldwell (2004). 'Reduction of solar UV-B mediates changes in the *Sphagnum capitulum* microenvironment and the peatland microfungal community'. In: *Oecologia* 140, pp. 480-490. DOI: 10.1007/s00442-004-1600-9.
- Rockwell, N. C., Y.-S. Su and J. C. Lagarias (2006). 'Phytochrome structure and signaling mechanisms'. In: *Annu Rev Plant Biol* 57, pp. 837–858. DOI: 10.1146/annurev.arplant.56.032604.144208.
- Roesler, C. S., M. J. Perry and K. L. Carder (1989). 'Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters'. In: *Limnology and Oceanography* 34.8, pp. 1510–1523. URL: http://www.jstor.org/stable/2837036.
- Rosenqvist, E., F. López Figueroa, I. Gómez and P. J. Aphalo (2012). 'Plant growing conditions'. In: *Beyond the Visible: A handbook of best practice in plant UV photobiology.* Ed. by P. J. Aphalo, A. Albert, L. O. Björn, A. R. McLeod, T. M. Robson and E. Rosenqvist. 1st ed. COST Action FA0906 "UV4growth". Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. Chap. 4, pp. 119–138. ISBN: ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). URL: http://hdl.handle.net/10138/37558.
- Rousseaux, M. C., S. D. Flint, P. S. Searles and M. M. Caldwell (2004). 'Plant responses to current solar ultraviolet-B radiation and to supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison'. In: *Photochem Photobiol* 80, pp. 224–230. DOI: 10.1562/2004-03-30-RA-129.
- Rousseaux, M. C., R. Julkunen-Tiitto, P. S. Searles, A. L. Scopel, P. J. Aphalo and C. L. Ballaré (2004). 'Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree *Nothofagus antarctica*'. In: *Oecologia* 138, pp. 505–512. DOI: 10.1007/s00442-003-1471-5.
- Rozema, J., J. Vandestaaij, L. O. Björn and M. Caldwell (1997). 'UV-B as an environmental factor in plant life—Stress and regulation'. In: *Trends in*

- *Ecology & Evolution* 12, pp. 22–28. DOI: 10.1016/S0169-5347(96) 10062-8.
- Ruggaber, A., R. Dlugi and T. Nakajima (1994). 'Modelling radiation quantities and photolysis frequencies in the troposphere'. In: *Journal of Atmospheric Chemistry* 18, pp. 171–210. DOI: 10.1007/BF00696813.
- Rundel, R. D. (1983). 'Action spectra and estimation of biologically effective UV radiation'. In: *Physiologia Plantarum* 58, pp. 360–366. DOI: 10.1111/j.1399-3054.1983.tb04195.x.
- Rupert, C. S. (1974). 'Dosimetric concepts in photobiology'. In: *Photochemistry and Photobiology* 20, pp. 203–212. DOI: 10.1111/j.1751-1097.1974.tb06568.x.
- Saitou, T., Y. Tachikawa, H. Kamada, M. Watanabe and H. Harada (1993). 'Action spectrum for light-induced formation of adventitious shoots in hairy roots of horseradish'. In: *Planta* 189, pp. 590–592. DOI: 10.1007/BF00198224.
- Sampath-Wiley, P. and L. S. Jahnke (2011). 'A new filter that accurately mimics the solar UV-B spectrum using standard UV lamps: the photochemical properties, stabilization and use of the urate anion liquid filter'. In: *Plant Cell Environ* 34, pp. 261–269. DOI: 10.1111/j.1365-3040.2010.02240.x.
- Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. 1st ed. Springer, p. 268. ISBN: 0387759689. URL: http://www.amazon.com/Lattice-Multivariate-Data-Visualization-Use/dp/0387759689.
- Sathyendranath, S., L. Prieur and A. Morel (1989). 'A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters'. In: *International Journal of Remote Sensing* 10.8, pp. 1373–1394. DOI: 10.1080/01431168908903974.
- Schouten, P. W., A. V. Parisi and D. J. Turnbull (2007). 'Evaluation of a high exposure solar UV dosimeter for underwater use'. In: *Photochemistry and Photobiology* 83, pp. 931–937. DOI: 10.1111/j.1751–1097.2007.00085.x.
- (2008). 'Field calibrations of a long-term UV dosimeter for aquatic UV-B exposures'. In: *Journal of Photochemistry and Photobiology, B* 91, pp. 108–116. DOI: 10.1016/j.jphotobiol.2008.02.004.
- (2010). 'Usage of the polyphenylene oxide dosimeter to measure annual solar erythemal exposures'. In: *Photochemistry and Photobiology* 86, pp. 706–710. DOI: 10.1111/j.1751-1097.2010.00720.x.
- Schreiner, M., I. Mewis, S. Huyskens-Keil, M. Jansen, R. Zrenner, J. Winkler, N. O'Brian and A. Krumbein (2012). 'UV-B-induced secondary plant metabolites potential benefits for plant and human health'. In: *Critical Reviews in Plant Sciences* 31 (3), pp. 229–240. DOI: doi:10.1080/07352689.2012.664979. URL: http://www.tandfonline.com/doi/abs/10.1080/07352689.2012.664979.
- Schwander, H., P. Koepke, A. Ruggaber, T. Nakajima, A. Kaifel and A. Oppenrieder (2000). *System for transfer of atmospheric radiation STAR version* 2000.
- Schwiegerling, J. (2004). *Field guide to visual and ophthalmic optics*. SPIE Press, Bellingham, WA (cit. on p. 11).

- Seckmeyer, G., A. Bais, G. Bernhard, M. Blumthaler, C. R. Booth, P. Disterhoft, P. Eriksen, R. L. McKenzie, M. Miyauchi and C. Roy (2001). *Instruments to Measure Solar Ultraviolet Radiation Part 1: Spectral Instruments.* Tech. rep. WMO/TD-No. 1066, GAW Report No. 125. Geneva: World Meteorological Organization.
- Seckmeyer, G., A. Bais, G. Bernhard, M. Blumthaler, C. R. Booth, K. Lantz, R. L. McKenzie, P. Disterhoft and A. Webb (2005). *Instruments to Measure Solar Ultraviolet Radiation Part 2: Broadband Instruments Measuring Erythemally Weighted Solar Irradiance*. WMO-GAW Report 164. Geneva, Switzerland: World Meteorological Organization (WMO).
- Seckmeyer, G., A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. L. McKenzie, S. Riechelmann, N. Kouremeti et al. (2010). *Instruments to Measure Solar Ultraviolet Radiation Part 4: Array Spectroradiometers*. GAW Report 191. Geneva: Global Atmosphere Watch, World Meteorological Organization. URL: http://www.wmo.int/pages/prog/arep/gaw/documents/GAW191_TD_No_1538_web.pdf.
- Seckmeyer, G., A. Bais, G. Bernhard, M. Blumthaler, B. Johnsen, K. Lantz and R. McKenzie (2010). *Instruments to Measure Solar Ultraviolet Radiation Part 3: Multi-channel filter instruments*. Tech. rep. WMO/TD-No. 1537, GAW Report No. 190. Geneva: World Meteorological Organization.
- Seckmeyer, G. and H.-D. Payer (1993). 'A new sunlight simulator for ecological research on plants'. In: *Journal of Photochemistry and Photobiology B: Biology* 21.2-3, pp. 175-181. DOI: 10.1016/1011-1344(93)80180-H.
- Seliger, H. H. and W. D. McElroy (1965). *Light: Physical and biological action*. New York and London: Academic Press. xi+417. ISBN: 0126358508.
- Setlow, R. B. (1974). 'The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis'. In: *Proceedings of the National Academy of Sciences of the U.S.A.* 71, pp. 3363–3366.
- Shimazaki, K.-I., M. Doi, S. M. Assmann and T. Kinoshita (2007). 'Light Regulation of Stomatal Movement'. In: *Annual Review of Plant Biology* 58, pp. 219–247. DOI: 10.1146/annurev.arplant.57.032905.105434.
- Shropshire, W. (1972). 'Action spectroscopy'. In: *Phytochrome*. Ed. by K. Mitrakos and W. Shropshire. London: Academic Press, pp. 161–181. ISBN: 0125005504.
- Sliney, D. H. (2007). 'Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de L'Eclairage (International Commission on Illumination)'. In: *Photochemistry and Photobiology* 83, pp. 425–432. DOI: 10.1562/2006-11-14-RA-1081 (cit. on p. ix).
- Smith, H. F. (1957). 'Interpretation of adjusted treatment means and regressions in analysis of covariance'. In: *Biometrics* 13, pp. 281–308. URL: http://www.jstor.org/stable/2527917.
- Smith, R. C. and K. S. Baker (1981). 'Optical properties of the clearest natural waters (200-800 nm)'. In: *Applied Optics* 20.2, pp. 177–184. DOI: 10.1364/AO.20.000177.
- Smith, R. C. and J. E. Tyler (1976). 'Transmission of solar radiation into natural waters'. In: Photochemical and Photobiological Reviews 1. Ed. by K. C. Smith, pp. 117–155.

- Smoluchowski, M. (1908). 'Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen'. In: *Annalen der Physik* 25, pp. 205–226.
- Soetaert, K., J. Cash and F. Mazzia. Solving Differential Equations in R. Springer. ISBN: 3642280692. URL: http://www.amazon.com/Solving-Differential-Equations-Karline-Soetaert/dp/3642280692.
- Stanghellini, C. (1987). *Transpiration of greenhouse crops—an aid to climate management*. Wageningen, NL: Intituut voor Mechanisatie, Arbeid en Gebouwen.
- Stanhill, G. and S. Cohen (2001). 'Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences'. In: *Agricultural and Forest Meteorology* 107, pp. 255–278. DOI: 10.1016/S0168–1923(00)00241–0 (cit. on p. 19).
- Stanhill, G. and H. Z. Enoch, eds. (1999). *Greenhouse Ecosystems, Ecosystems of the world.* Vol. 20. Amsterdam, NL: Elsevier. 434 pp. ISBN: 0444882677.
- Stanton, J. (2013). An Introduction to Data Science. Version 3. Syracuse University, p. 196. URL: http://jsresearch.net/wiki/projects/teachdatascience.
- Tattar, P. N. (2013). *R Statistical Application Development by Example Beginner's Guide*. 1st ed. Birmingham, Mumbai: Packt Publishing, p. 345. ISBN: 9781849519441.
- Teetor, P. (2011). *R Cookbook*. 1st ed. Sebastopol: O'Reilly Media, p. 436. ISBN: 9780596809157.
- Tennessen, D. J., E. L. Singsaas and T. D. Sharkey (1994). 'Light-emitting diodes as a light source for photosynthesis research'. In: *Photosynthesis Research* 39, pp. 85–92. DOI: 10.1007/BF00027146.
- Tevini, M. (1993). 'Effects of Enhanced UV-B Radiation on Terrestrial Plants'. In: *UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials*. Ed. by M. Tevini. Boca Raton: Lewis Publishers, pp. 125–153. ISBN: 0-87371-911-5.
- Thiel, S., T. Döhring, M. Köfferlein, A. Kosak, P. Martin and H. K. Seidlitz (1996a). 'A Phytotron for Plant Stress Research: How Far Can Artificial Lighting Compare to Natural Sunlight?' In: *Journal of Plant Physiology* 148.3–4, pp. 456–463. DOI: 10.1016/S0176–1617(96)80279–3.
- Thiel, S., T. Döhring, M. Köfferlein, A. Kosak, P. Martin and H. K. Seidlitz (1996b). 'A phytotron for plant stress research: how far can artificial lighting compare to natural sunlight?' In: *Journal of Plant Physiology* 148, pp. 456–463. DOI: 10.1016/S0176-1617(96)80279-3.
- Thimijan, R. W., H. R. Carns and L. E. Campbell (1978). *Final Report (EPA-IAG-D6-0168): Radiation sources and related environmental control for biological and climatic effects UV research (BACER)*. Tech. rep. Washington, DC: Environmental Protection Agency (cit. on p. x).
- Tukey, J. W. (1991). 'The Philosophy of Multiple Comparisons'. In: *Statistical Science* 6.1, pp. 100–116. DOI: 10.1214/ss/1177011945.

- Turnbull, D. J. and P. W. Schouten (2008). 'Utilising polyphenylene oxide for high exposure solar UVA dosimetry'. In: *Atmospheric Chemistry and Physics* 8.10, pp. 2759–2762. DOI: 10.5194/acp-8-2759-2008.
- Tyler, J. E. (1968). 'The Secchi disc'. In: *Limnology and Oceanography* 13.1, pp. 1-6. URL: http://www.jstor.org/stable/2833820.
- UNEP (2011). *2010 assessment report of the Environmental effects of ozone depletion and its interactions with climate change.* Photochemical and Photobiological Sciences 10(2), 165–320. Also published by UNEP.
- Urban, O., D. Janous, M. Acosta, R. Czerny, I. Markova, M. Navratil, M. Pavelka, R. Pokorny, M. Sprtova, R. Zhang et al. (2007). 'Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation'. In: *Global Change Biology* 13, pp. 157–168. DOI: 10.1111/j.1365-2486.2006.01265.x.
- Urban, O., K. Klem, A. Ac, K. Havránková, P. Holisová, M. Navrátil, M. Zitová, K. Kozlová, R. Pokorný, M. Sprtová et al. (2012). 'Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO_2 uptake within a spruce canopy'. In: *Functional Ecology* 26, pp. 46–55. DOI: 10.1111/j. 1365–2435.2011.01934.x.
- Van den Boogaard, R., J. Harbinson, M. Mensink and J. Ruijsch (2001). 'Effects of quality and daily distribution of irradiance on photosynthetic electron transport and CO2 fixation in tomato'. In: *Proceedings of the 12th International Congress on Photosynthesis, Brisbane, Australia.* Vol. S28-030,
- Veit, M., T. Bilger, T. Muhlbauer, W. Brummet and K. Winter (1996). 'Diurnal changes in flavonoids'. In: *Journal of Plant Physiology* 148.3-4, pp. 478–482. DOI: 10.1016/S0176-1617(96)80282-3.
- Venables, W. N. and B. D. Ripley (1999). *Modern Applied Statistics with {S-PLUS}.* 3rd. Statistics and Computing. New York: Springer, pp. x + 501. ISBN: 0 387 98825 4.
- (2000). S Programming. Statistics and Computing. New York: Springer, pp. x
 + 264. ISBN: 0 387 98966 8.
- Venables, W. N. and B. D. Ripley (2002). *Modern Applied Statistics with {S}.* 4th. New York: Springer. ISBN: 0-387-95457-0. URL: http://www.stats.ox.ac.uk/pub/MASS4/.
- Verzani, J. (2004). *Using R for Introductory Statistics*. Chapman & Hall/CRC, p. 432. ISBN: 1584884509.
- Visser, A. J., M. Tosserams, M. W. Groen, G. W. H. Magendans and J. Rozema (1997). 'The combined effects of CO_2 concentration and solar UV-B radiation on faba bean grown in open-top chambers'. In: *Plant, Cell and Environment* 20.2, pp. 189–199. DOI: 10.1046/j.1365–3040.1997.d01–64.x.
- Vogelmann, T. C. and L. O. Björn (1984). 'Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe'. In: *Physiologia Plantarum* 60, pp. 361–368. DOI: 10.1111/j.1399-3054.1984.tb06076.x.
- Vogelmann, T. C. and J. R. Evans (2002). 'Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence'. In: *Plant Cell and Environment* 25, pp. 1313–1323. DOI: 10.1046/j.1365–3040.2002.00910.x.

- Vogelmann, T. C. and T. Han (2000). 'Measurements of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles'. In: *Plant Cell and Environment* 23, pp. 1303–1311. DOI: 10.1046/j.1365-3040.2000.00649.x.
- Wang, L.-. H., S. L. Jacques and L.-. Q. Zheng (1995). 'MCML Monte Carlo modeling of photon transport in multi-layered tissues'. In: *Computer Methods and Programs in Biomedicine* 47, pp. 131–146. DOI: 10.1016/0169-2607(95)01640-F (cit. on p. 9).
- Wargent, J. J., V. C. Gegas, G. I. Jenkins, J. H. Doonan and N. D. Paul (2009). 'UVR8 in *Arabidopsis thaliana* regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation'. In: *New Phytologist* 183.2, pp. 315–326. DOI: 10.1111/j.1469-8137.2009.02855.x.
- Watanabe, M., M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi and K. Matsumoto (1982). 'Design and Performance of The Okazaki Large Spectrograph for Photobiological Research'. In: *Photochemistry and Photobiology* 36, pp. 491-498. DOI: 10.1111/j.1751-1097.1982.tb04407.x.
- Webb, A., J. Gröbner and M. Blumthaler (2006). *A Practical Guide to Operating Broadband Instruments Measuring Erythemally Weighted Irradiance*. Tech. rep. Produced by the joint efforts of WMO SAG UV, Working Group 4 of COST-726 Action "Long Term Changes and Climatology of UV Radiation over Europe".
- Webb, A. R., H. Slaper, P. Koepke and A. W. Schmalwieser (2011). 'Know your standard: clarifying the CIE erythema action spectrum'. In: *Photochemistry and Photobiology* 87, pp. 483–486. DOI: 10.1111/j.1751-1097.2010.00871.x.
- Wehrli, C. (1985). *Extraterrestrial solar spectrum*. PMOD/WRC Publication 615. Physikalisch-Meteorologisches Observatorium und World Radiation Center Davos Dorf, Switzerland (cit. on p. 16).
- WHO (2002). Global solar UV index: a practical guide. Tech. rep. ISBN 92 4 159007 6. World Health Organization. URL: http://www.unep.org/PDF/Solar_Index_Guide.pdf.
- Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. 2nd Printi. Springer, p. 224. ISBN: 0387981403. URL: http://www.amazon.com/ggplot2-Elegant-Graphics-Data-Analysis/dp/0387981403.
- WMO (2008). *Guide to Meteorological Instruments and Methods of Observation, WMO-No.* 8. Tech. rep. Seventh edition. World Meteorological Organization.
- Wu, D., Q. Hu, Z. Yan, W. Chen, C. Yan, X. Huang, J. Zhang, P. Yang, H. Deng, J. Wang et al. (2012). 'Structural basis of ultraviolet-B perception by UVR8'. In: *Nature* 484, pp. 214–219. DOI: 10.1038/nature10931.
- Wu, M., E. Grahn, L. A. Eriksson and A. Strid (2011). 'Computational evidence for the role of *Arabidopsis thaliana* UVR8 as UV-B photoreceptor and identification of its chromophore amino acids'. In: *Journal of Chemical Information and Modeling* 51, pp. 1287–1295. DOI: 10.1021/ci200017f.
- Xie, Y. (2013). *Dynamic Documents with R and knitr (Chapman & Hall/CRC The R Series)*. Chapman and Hall/CRC, p. 216. ISBN: 1482203537. URL: http:

- //www.amazon.com/Dynamic-Documents-knitr-Chapman-Series/dp/1482203537.
- Xu, C. and J. H. Sullivan (2010). 'Reviewing the Technical Designs for Experiments with Ultraviolet-B Radiation and Impact on Photosynthesis, DNA and Secondary Metabolism'. In: *Journal of Integrative Plant Biology* 52, pp. 377–387. DOI: 10.1111/j.1744-7909.2010.00939.x.
- Ylianttila, L., R. Visuri, L. Huurto and K. Jokela (2005). 'Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements'. In: *Photochemistry and Photobiology* 81, pp. 333–341. DOI: 10.1562/2004-06-02-RA-184.
- Zuur, A., E. N. Ieno and G. M. Smith (2007). Analysing Ecological Data (Statistics for Biology and Health). Springer, p. 672. ISBN: 0387459677. URL: http://www.amazon.com/Analysing-Ecological-Statistics-Biology-Health/dp/0387459677.
- Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev and G. M. Smith (2009). *Mixed Effects Models and Extensions in Ecology with R.* New York: Springer, p. 574. ISBN: 978-0-387-87457-9. URL: http://www.amazon.com/Effects-Extensions-Ecology-Statistics-Biology/dp/0387874577.
- Zuur, A. F., E. N. Ieno and E. Meesters (2009). *A Beginner's Guide to R*. 1st ed. Springer, p. 236. ISBN: 0387938362. URL: http://www.amazon.com/Beginners-Guide-Use-Alain-Zuur/dp/0387938362.

Build information

```
Sys.info()
##
                         sysname
##
                       "Windows"
                         release
##
##
                         "7 x64"
##
                         version
## "build 7601, Service Pack 1"
##
                       nodename
##
                         "MUSTI"
##
                        machine
                        "x86-64"
##
##
                          login
                        "aphalo"
##
##
                           user
                       "aphalo"
##
##
                 effective_user
##
                     "aphalo"
```

```
## R version 3.2.0 (2015-04-16)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.1252
## [2] LC_CTYPE=English_United Kingdom.1252
## [3] LC_MONETARY=English_United Kingdom.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.1252
##
## attached base packages:
##
## attached base packages:
## [1] methods tools stats graphics
```

APPENDIX A. BUILD INFORMATION

```
## [5] grDevices utils datasets base
##
## other attached packages:
## [1] photobiologySun_0.3.2
## [2] photobiologygg_0.3.3
## [3] scales_0.2.5
## [4] ggplot2_1.0.1
## [5] proto_0.3-10
## [6] photobiologyWavebands_0.3.1.9000
## [7] photobiology_0.6.8
## [8] data.table_1.9.4
## [9] stringr_1.0.0
## [10] knitr_1.10.5
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.11.6 magrittr_1.5
## [3] MASS_7.3-40 munsell_0
## [5] colorspace_1.2-6 highr_0.5
                                      munsell_0.4.2
## [5] Colorspace_1.2-6 highr_0.5
## [7] plyr_1.8.3 caTools_1.17.1
## [9] grid_3.2.0 gtable_0.1.2
## [11] digest_0.6.8 reshape2_1.4.1
## [13] formatR_1.2 bitops_1.0-6
## [15] evaluate_0.7 labeling_0.3
## [17] stringi_0.4-1 chron_2.3-45
```