Deskriptive Statistik

1.1 Begriffe

- Grundgesamtheit Ω
- Element der Grundgesamtheit ω
- diskret (<30) stetig(\ge 30)
- univariant (p=1) mulitvariant (p>1)

1.2 Kenngrößen

- Modalwert: x_{mod}
- Mittelwert: $\bar{\mathbf{x}} = \frac{1}{n} \sum_{n=1}^{n} \mathbf{x}_{n}$
- Median: $x_{0.5}$

1.3 Streuungsmaße

- Spannweite: max x_i min x_i
- Stichprobenvarianz: $s^2 = var(x)$

$$\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2 \right)$$

• Standardabweichung: $s = \sqrt{var(x)}$

1.4 p-Quantile

$$f(x) = \begin{cases} x_{floor(np)+1} & \text{if } n * p \notin \mathbb{N} \\ \frac{1}{2}(x_{np} + x_{np+1}) & \text{if } n * p \in \mathbb{N} \end{cases}$$

1.5 Korrelation

• Empirische Kovarianz: s_{xv}

$$\frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i y_i) - n\bar{\mathbf{x}}\bar{\mathbf{y}} \right)$$

• Empirischer Korrelationskoeffizient: *r*

Wahrscheinlichkeitsrechnung

2.1 Begriffe

- Vereinigung E∪F: E oder F $\bigcup_{i=1}^n E_i$: >1 Ereignis tritt ein
- Schnitt E∩F: E und F $\bigcap_{i=1}^{n} E_i$: >Alle Ereignisse treten ein
- Gegenereignis Ē: nicht E
- Disjunkte Ereignisse E und F: $E \cap F = \emptyset$

2.2 Axiome von Kolmogorov

- $0 \ge P(E) \ge 1$
- $P(\Omega) = 1$
- $P(\bigcap_{i=1}^{\infty} E_i = \sum_{i=1}^{\infty} P(E_i) \text{ falls } E_i \cap E_i = \emptyset$

2.3 Bedingte Wahrscheinlichkeit

$$P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$$

- $P(E \cap F) = P(E|F) * P(F)$
- $P(E \cap F) = P(F|E) * P(E)$

2.4 Formel von Bayes

Hilfreich, wenn man $P(F|E_i)$ kennt, aber nicht $P(E_k|F)$ $P(E_k|F) = \frac{P(F|E_k)*P(E_k)}{\sum\limits_{i=1}^n P(F|E_i)*P(E_i)}$

2.5 Stochastische Unabhängigkeit

- P(E|F) = P(E), oder
- $P(E \cap F) = P(E) * P(F)$

Zufallsvariablen

3.1 Begriffsklärung

EineAbbildungX : $\Omega \to \mathbb{N}$, $\omega \to X(\omega) = x$ Zufallsvariable

- Diskrete ZV: $X(\Omega) = \{x_1, ..., x_n\} (n \in \mathbb{N})$
- Stetige ZV: $X(\Omega) \subseteq \mathbb{N}$

3.2 Stetige Zufallsvariablen

Definition: $P(a < X < B) = \int_{a}^{b} f(x)dx$

Es gilt:

- $f(x) \geq 0$
- $\bullet \int_{-\infty}^{\infty} f(x) dx = 1$
- $F(x) = P(X \ge x) = \int_{-\infty}^{x} f(t)dtundF'(x) = f(x)$

3.3 Erwartungswert

- Für diskrete ZV: $E[x] = \sum_{i=1}^{n} x_i * p(x_i)$
- Für stetige ZV: $E[X] = \int_{-\infty}^{\infty} x * f(x) dx$

3.4 Varianz und Kovarianz

Varianz: $\sigma^2 = Var[X] = E[(X - \mu)^2]$

Falls stetig: $\int_{0}^{\infty} (x - \mu)^{2} * f(x) dx$

Verschiebungssatz: $Var[X] = E[X^2] - (E[X])^2$ Kovarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])]

3.5 Quantile

Kleinster Wert für den gilt: $F(x_p) \ge p$ Berechnung: $x_p = F^{-1}(p)$

Spezielle Verteilungen

4.1 Bernulli Verteilung

- Bei Erfolg 1, bei Misserfolg 0
- Verteilung: $X \sim B_{1,p}$ Erwartungswert: E[X] = p
- Varianz: $\tilde{V}ar[X] = p(1-p)$

4.2 Binomialverteilung

- Wahrscheinlichkeit: $P(X = k) = \binom{n}{k} * p^k * (1 p)^{n-k}$
- Verteilung: X ~ B_{n,p}
 Erwartungswert: E[X] = np
- Varianz: Var[X] = np(1-p)

4.3 Hypergeometrische Verteilung

- Wahrscheinlichkeit: $P(X = k) = \frac{\binom{M}{k} * \binom{N}{n-k}}{\binom{M+N}{n-k}}$
- Verteilung: $X \sim H_{M,N,n}$
- Erwartungswert: $E[X] = n * \frac{M}{M+N}$ Varianz: $Var[X] = n * \frac{M}{M+N} * (1 \frac{M}{M+N}) * \frac{M+N-n}{M+N-1}$

4.4 Poisson-Verteilung

- Wahrscheinlichkeit: $P(X = k) = \frac{\lambda^k}{k!} * \exp^{\lambda}$
- Verteilung: $X \sim P_{\lambda}$
- Erwartungswert: $E[X] = \lambda$
- Varianz: $Var[X] = \lambda$

4.5 Gleichverteilung • Wahrscheinlichkeit: $P(X = x_k) = \frac{1}{n}$

- Verteilung: $X \sim U_{x_1,...,x_n}$
- Erwartungswert: $E[X] = \frac{1}{n} \sum_{k=1}^{n} x_k = \bar{x}$ • Varianz: $Var[X] = \frac{1}{n} (\sum_{k=1}^{n} x_k)^2 - (\bar{x})^2$

Stetige Gleichverteilung • Dichte: $f(x) = \frac{1}{b-a}$

- Verteilung: $X \sim U_{a,b}$ • Erwartungswert: $E[X] = \frac{a+b}{2}$
- Varianz: $Var[X] = \frac{(b-a)^2}{12}$
- 4.7 Normalverteilung

• Dichte: $f(x) = \frac{1}{\sigma\sqrt{2*\pi}} \exp *(-\frac{1}{2}*(\frac{x-\mu}{\sigma})^2))$

- Verteilung: $X \sim N_{u,\sigma^2}$
- Erwartungswert: $E[X] = \mu$
- Varianz: $Var[X] = \sigma^2$

Exponentialverteilung

- $1 (\exp)^{-\lambda x}$
- Verteilung: $X \sim Exp_{\lambda}$
- Erwartungswert: $E[X] = \frac{1}{\lambda}$
- Varianz: $Var[X] = \frac{1}{12}$

4.9 Chiquadrat-Verteilung

• Anwendung: Summen unabhängiger normalverteilter ZV

• Dichte + Verteilung: $f(x) = \lambda * \exp^{-\lambda x}(x \ge 0); F(x) =$

- Verteilung: $X \sim \chi_n^2$
- Erwartungswert: E[X] = n
- Varianz: Var[X] = 2n

4.10 t-Verteilung

- Anwendung: Schätz und Testverfahren bei unbekannter
 - Verteilung: $Y \sim t_n$
 - Erwartungswert: E[Y] = 0 für n>1• Varianz: $Var[Y] = \frac{n}{n-2}$ für n>2

5.1 General Seien $X_i(i = 1,...,n)$ ZV, gilt für hinreichend großes n

Wichtig: $\frac{\bar{X}-\mu}{\sigma} * \sqrt{n} \sim N_{0.1}$ Fausteregel für Größe von n:

näherungsweise: $\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2}$.

• n > 30, falls unbekannt Verteilung schief ist

Zentraler Grenzwertsatz

- n > 15, falls unbekannte Verteilung annähernd symmetrisch
- $n \le 15$, falls unbekannte Verteilung annähernd normalverteilt

Stichprobenverteilung

• Stichprobenmittel: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• Stichprobenvarianz: $S^2 = \frac{1}{n-1} * (\sum_{i=1}^n X_i^2 - n\bar{X}^2)$

Parameterschätzung

- 6.1 Konfidenzintervall
 - Punktschätzer:
 - Stichprobenmittel: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Stichprobenvarianz: $S^2 = \frac{1}{n \cdot 1} \sum_{i=1}^{n} (X_i \bar{X})^2$
 - Intervallschätzer: Konfidenzintervall. das wahren Parameter mit gewisser Wahrscheinlichkeit $(1 - \alpha)$ überdeckt
 - Vorgabe einer großen Sicherheit (95
 - Allgemein: $I = J\bar{X} \phi^{-1}(1 \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}, \bar{X} + \phi^{-1}(1 \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$ Aufgabentypen:
 - Gesucht n: $\sqrt{n} > 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{L}$
 - Gesucht 1 α :1 $\frac{\alpha}{2}$ = $\phi(\frac{L}{2}\frac{\sqrt{n}}{\sigma})$

• Nullhypothese H_0 : Angezweifelte Aussage, die wider-

- sprochen werden kann (z.B. $H_1: \mu \neq \mu_0$) • Gegenhypothese H_1 : Gegenteil von H_0 (z.B. $H_1: \mu \neq \mu_0$

Signifikanzniveau

Hypothesentests

Hypothesenarten

• Ablehnungsbereich C: Werte, die für H_1 sprechen und bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$, dem sog. Signifikanzniveau auftreten. \rightarrow Fehler 1.Art: H_0 wird verworfen, trotz richtig • Annahmebereich: Komplement Č des Ablehnungsbe-

reichs kann nicht abgelehnt werden. → Fehler 2. Art:

 H_0 wird nicht abgelehnt, obwohl sie falsch ist. Klassische Parametertests

Testprobleme: • Zweiseitiger Test:

- $H_0: \mu = \mu_0 \text{ gegen } H_1: \mu \neq \mu_0$
- Einseitige Tests:

 - H_0 : $μ ≥ μ_0$ gegen H_1 : $μ < μ_0$ bzw. $- H_0: \mu \le \mu_0$ gegen $H_1: \mu > \mu_0$

Wird H_0 verworfen, so spricht man von einer signifikanten Schlussfolgerung.

7.4 Gauß-Test

7.4.1 Varianz bekannt

Prüfgröße tg = $\frac{\bar{X}-\mu_0}{}*\sqrt{n}$

H_0	H_1	H_0 ablehnen, falls	p-Wert
$\mu = \mu_0$	$\mu \neq \mu_0$	$ tg > \phi^{-1}(1 - \frac{\alpha}{2})$	$2(1-\phi(tg))$
$\mu \leq \mu_0$	$\mu > \mu_0$	$tg > \phi^{-1}(1-\alpha)$	$1-\phi(tg)$
$\mu \ge \mu_0$	$\mu < \mu_0$	$tg < \phi^{-1}(\alpha)$	$\phi(tg)$

7.4.2 Varianz unbekannt

Prüfgröße tg = $\frac{\bar{X} - \mu_0}{S} * \sqrt{n} t_{n-1}$

H_0	H_1	H_0 ablehnen, falls	p-Wert		
$\mu = \mu_0$	$\mu \neq \mu_0$	$ tg > t_{n-1}^{-1}(1 - \frac{\alpha}{2})$	$2(1-t_{n-1}(tg))$		
$\mu \le \mu_0$	$\mu > \mu_0$	$tg > t_{n-1}^{-1}(1-\alpha)$	$1 - t_{n-1}(tg)$		
$\mu \ge \mu_0$	$\mu < \mu_0$	$tg < t_{n-1}^{-1}(\alpha)$	$t_{n-1}(tg)$		

7.5 **p-Wert**

Wahrscheinlichkeit, bei Zutreffen von H_0 den beobachteten Wert t
g der Prüfgröße oder einen noch stärker von μ_0 abweichenden Wert zu bekommen. Beispiel: p-Wert=0.0114, dann:

- H_0 kann für $\alpha = 5\%$ abgelehnt werden,
- für $\alpha = 1\%$ aber nicht

Testentscheidungen anhand des p-Werts:

- p-Wert < 1%: Sehr hohe Signifikanz
- 1% ≤p-Wert < 5%: Hohe Signifikanz
- $5\% \le p\text{-Wert} \le 10\%$: Signifikanz
- p-Wert > 10%: Keine Signifikanz

8 Fehlerquellen

Quellarten:

- Diskretierungsfehler
- Modellierungsfehler
- Fehler in Eingangsdaten
- Fehler durch Gleitpunktarithmetik

8.1 Maschinengenauigkeit

 ϵ ist die kleinste Zahl x mit $rd(1+x) \neq 1$

Rundungsfehler:

- Absolut: $|rd(x) x| \le |x| * \epsilon$
- Relativer: $\frac{|rd(x)-x|}{x} \le \epsilon$

8.2 Kondition und Stabilität

Numerische Lösung eines Problems:

- x : Exakte Eingangsdaten
- f: Analytische Lösung
- \hat{x} : Fehlerbehaftete Eingangsdaten
- \hat{f} : Numerisches Lösungsverfahren

Gesamtfehler:

$$\rightarrow f(x) - \hat{f}(\hat{x}) = f(x) - f(\hat{x}) + (f(\hat{x}) - \hat{f}(\hat{x}))$$

8.2.1 Kondition

$$cond(x) = |\frac{\text{realiver Fehler im Ergebnis}}{\text{relativer Fehler inden Eingabed aten}}| = |\frac{\frac{f(\hat{x} - f(x))}{f(x)}}{\frac{\overline{X} - x}{x}}|$$
 Schlecht konditioniert, wenn cond >> 1

8.2.2 Fehlerfortpflanzung

- z = f(x)
- $\Delta f = f(\widetilde{x}) f(x) \approx f'(x) \Delta x$
- cond $\approx \left| \frac{f'(x)}{f(x)} x \right|$

9 Interpolation

Im Gegensatz zu Approximation nicht geeignet für verrauschte Daten.

9.1 Polynominterpolation

9.1.1 Klassischer / Vandermonde Ansatz

<u>Ziel</u>: Bestimmung der Koeffizienten $a_0, a_1, ..., a_n$, so dass: $p_n(x_i) = y_i = a_n x_i^n + ... + a_1 x_i + a_0$

In Matrixform:
$$\begin{pmatrix} x_0^n & \dots & x_0^2 & x_0 & 1 \\ x_1^n & \dots & x_1^2 & x_1 & 1 \\ x_2^n & \dots & x_2^2 & x_2 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ x_n^n & \dots & x_n^2 & x_n & 1 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \\ \dots \\ a_0 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \dots \\ y_n \end{pmatrix}$$

 $\underline{Problem}$: Rechenaufwand für Lösung hoch: $\Theta(n^3)$ und für große n schlecht konditioniert

9.1.2 Ansatz nach Lagrange

$$\rightarrow p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$$

Beispiel:
$$\begin{array}{c|cccc} i & 0 & 1 & 2 \\ \hline x_i & -2 & 3 & 1 \\ \hline y_i & -15 & -5 & 3 \\ \end{array}$$

$$\rightarrow p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

- $L_0(x) = \frac{x x_1}{x_0 x_1} * \frac{x x_2}{x_0 x_2} = \frac{x 3}{-2 3} * \frac{x 1}{-2 1} = \frac{1}{15}(x 3)(x 1)$
- $L_1(x) = \frac{x x_0}{x_1 x_0} * \frac{x x_2}{x_1 x_2} = \frac{x + 2}{3 + 2} * \frac{x 1}{3 1} = \frac{1}{10}(x + 2)(x 1)$
- $L_2(x) = \frac{x x_0}{x_2 x_0} * \frac{x x_1}{x_2 x_1} = \frac{x + 2}{1 + 2} * \frac{x 3}{1 3} = -\frac{1}{6}(x + 2)(x 3)$

$$p_2(x) = -15 * L_0(x) + (-5) * L_1(x) + 3 * L_2(x) = -2x^2 + 4x + 1$$

Bemerkungen:

- Vorteil: Keine Neuberechnung, wenn sich nur y-Werte ändern
- Nachteil: Neue Stützpunkte: Funktionen müssen neu berechnet werden
- Rechenaufwand: $\theta((n+1)^2)$

9.1.3 Ansatz nach Newton

 $\rightarrow p_n(x) = c_0 + c_1(x - x_0) + ... + c_n(x - x_0)(x - x_1)...(x - x_{n-1})$ \rightarrow Rechenaufwand reduziert sich: $\Theta(n^2)$ *Beispiel*:

- $x_0, y_0 \text{ mit } x_1, y_1 : \frac{-5 (-15)}{3 (-2)} = 2$
- $x_1, y_1 \text{ mit } x_2, y_2 : \frac{3 (-5)}{1 3} = -4$
- x_0, y_0 bis $x_2, y_2 : \frac{-4-2}{1-(-2)} = -2$

Daraus folgt:

- $c_0 = -15$
- $c_1 = 2$
- $c_2 = -2$

Vorteile:

- Rechenaufwand reduziert sich: $\theta(n^2)$
- Hinzufügen von Stützpunkten ohne großen Aufwand möglich

$$p_2(x) = c_0 + c_1(x - (-2)) + c_2(x + 2)(x - 3) = -15 + 2(x + 2) - 2(x + 2)(x - 3) = -2x^2 + 4x + 1$$

9.1.4 Horner-Schema

Klassisch: $p_n(x) = a_n x^n + ... + a_0$ Horner-Schema: $p_3(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 = ((a_3 x + a_2)x + a_1)x + a_0$

9.2 Interpolationsfehler

Falls f hinreichend glatt ist und p_n das eindeutige Interpolationspolynom vom Grad n, dann gilt für den Interpolationsfehler:

$$f(x) - p_n(x) = \frac{f^{n+1}(\Theta)}{(n+1)!}(x - x_0)...(x - x_n) \text{ mit } \Theta \in [x_0; x_n]$$

9.3 Chebyshev-Punkte

Stützstellen für besser Interpolation. Erhält man durch orthogonale Projektion von gleichverteilten Punkten auf dem Einheitskreis.

Durch die Verwendung wird der Fehler gleichmäßiger verteilt → Konvergenz.

9.4 Spline-Interpolation

= Aus Polynomen zusammengesetzte Funktion. $S(x) = s_0(x) f r x_0 \le x < x_1; S_1(x), f r x_1 \le x < x_2...$ Definition Grad k:

- Jede Funktion $S_i(x)$ ist ein Polynom vom Grad \leq k
- S(x) ist (k-1)-mal stetig differenzierbar

<u>Vorteil</u>: Nach geschickter Umformung der Gleichung: Rechenaufwand $\Theta(n)$

10 Numerische Integration

10.1 Trapezregel

ightarrow Trapeze zwischen Punkte machen zur Hilfe. Für Teilintervalle mit der gleichen Länge: h = $\frac{b-a}{n}$ Formel: $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1}) + \frac{f(x_n)}{2})$

10.2 Simpson-Regel

 \rightarrow Näherung mit kubischen Parabeln. Voraussetzung: Gerade Anzahl an Parabeln. Für 2n Teilintervalle mit gleicher Länge h = $\frac{b-a}{2n}$:

•
$$S_2 = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4))$$

•
$$S_3 = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6))$$

10.3 Fehler der Quadratur

Ordnung einer Integrationsregel: Eine Integrationsregel hat Ordnung p, wenn sie für Polynome vom Grad \leq p-1 exakte Werte liefert.

Beispiele:

- Ordnung Trapezregel T_1 : 2 (Exakt für Polynome von Grad ≤ 1
- Ordnung Newton-Cotes Regeln: mindestens Ordnung k+1

10.3.1 Grenzen der Newton-Cotes-Regeln

- Bei Verwendung vieler äquidistanter Knoten treten die bekannten Probleme von Interpolationspolynomen höheren Grades auf → Gewichte werden negati, also Verfahren instabil
- Die sog. geschlossenen Newton-Cotes-Regeln machen Funktionsauswertungen an den Grenzen des Intervalls erforderlich → Problem mit Singularitäten
- Die Newton-Cotes-Regeln erreichen aufgrund der äquidistanten Knoten nicht die größtmögliche Ordnung

10.4 Gauß-Quadratur

Idee: Wähle die Knoten t_j und Gewichte α_j so, dass man ein Verfahren möglichst großer Ordnung p erhält. Bedingung:

$$\int_{0}^{1} p_{r}(t)dt = \sum_{j=0}^{k} \alpha_{j} p_{r}(t_{j}) \text{ für alle Polynome vom Grad } \leq p-1$$

$$\rightarrow \text{Ordnung p} = 2k+2$$