CS417 Programming Assignment #5

- Due: Wednesday, October 21st.
- Late penalty: Thu: -5%, Fri -10%, Sat/Sun/Mon -20%, Tue -50%, Wed -100%

Goals

For this assignment, you must create two modules (download these files which have starting code):

- complex.py, which defines the class Complex, representing a complex number.
- julia.py, which draws the Julia set.

Your tasks

1. Python includes a module cmath which handles complex arithmetic. In this assignment, you will make your own version.

In case you haven't seen complex numbers before, I am posting a brief primer. It's available with the assignment files.

Here are the methods of the Complex class:

Method	Description	Done?
init	Constructor. Initializes the real and imaginary parts of the complex number.	Yes
plus	Add self + other, and return the resulting sum, a new Complex instance.	Yes
minus	Subtract self - other, and return the resulting difference, a new Complex instance.	NO
times	Multiply self x other, and return the resulting product, a new Complex instance.	NO
over	Divide self / other, and return the resulting quotient, a new Complex instance.	NO
conjugate	Return the conjugate of self, a new Complex instance.	NO

magnitude	Return the magnitude of self, a float.	NO
real	Return the real part of self, a float.	Yes
imag	Return the imaginary part of self, a float.	NO
equals	Return True if both parts of self are equal to those of other, False otherwise.	NO
str	Return a string representation of self.	NO

The $__{str}$ method should be such that this code outputs 2.0 + 3.0i:

```
z = Complex(2, 3)
print (z)
```

2. Implement the module julia.py, which lets a user explore the Julia set visually.

A Julia set depends on a complex constant c. The Julia set consists of all the points x y that obey the convergence condition.

To explore the Julia set, we try a grid of values x y and see if the convergence condition applies.

Convergence condition:

- Initially, set the complex number z to be (x + yi).
- Then, evaluate the following assignment repeatedly:
- $\bullet \quad z = z^2 + c.$
- Equivalently, we can use the Complex class to do this:
- z = z.times(z).plus(c)
- After repeating this action many times, two things may happen:
 - \circ z grows very large; the process did not converge, or
 - \circ z stays small; the process is converging.

If the process converges, the point x y is in the Julia set. If it doesn't, the point is not in the set.

In practical terms, we can run

$$\circ$$
 z = z² + c

repeatedly, until one these things happen:

- \circ z.magnitude() > 2 (so the point $(x \ y)$ is not in the set), or
- 100 iterations have been run (the point is *probably* in the set)

Starting Code

The starting code implements the following functions:

Function	Description	Completed?
main	Gets the constant c from the command line, if the user entered it. Then calls <code>show_set</code> to display a rectangular window into the Julia set, and lets the user move the window. Code is provided to move the window to the right. You must complete this function, to move the window left, up, down, zoom in and zoom out.	NO
show_set	Displays a rectangular region of the Julia set.	Yes
julia_converges	Returns True if the point x y belongs to the Julia set, and False otherwise.	NO

Turning in Your Work

When you finish, go to mycourses.unh.edu, find CS417, find assignment 5, and click the "Submit" button. Then upload complex.py and julia.py.