Network Computing courses

Maël Auzias

ENSIBS - UBS

October 2014

Figure: teaching.auzias.net

Network Computing courses

Course details

Evaluation

- ► Short test at the beginning of every lesson (5 min)?
- ► Project
- ► Final exam (1 hour)
- ► All same weighting

Material

► Slides available at teaching.auzias.net (github too)

Course details

Objectives

- ► How do *computers* communicate?
- What are the mechanisms under an HTTP request or a telegram message?
- ► Networks are all around us, better study them!

Network Computing courses

Presentation Outline

Introduction

Physica

Data Link

Network

Transport

Definitions and presentation

▶ Network: an interconnected group or system

Network Computing courses
Introduction

Definitions and presentation

- ▶ Network: an interconnected group or system
- ► Internet: world wide interconnected system of networks RFC791 (September 1981)
- ▶ **IP:** Internet **Protocol** provides the functions necessary to deliver a package of bits from a source to a destination over a network

Definitions and presentation

- ▶ Network: an interconnected group or system
- ► Internet: world wide interconnected system of networks RFC791 (September 1981)

Network Computing courses

Introduction

- ▶ Network: an interconnected group or system
- ► Internet: world wide interconnected system of networks RFC791 (September 1981)
- ▶ **IP:** Internet **Protocol** provides the functions necessary to deliver a package of bits from a source to a destination over a network
- ► (world wide) Web: network consisting of a collection of Internet websites using HTTP

Definitions and presentation

 HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)

Network Computing courses

Introduction

Definitions and presentation

- ► HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)
- ► **TCP:** Transmission Control **Protocol** is intended for use as a highly reliable host-to-host RFC761 (January 1980)

Definitions and presentation

- ► HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)

Network Computing courses

Introduction

- ► HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)
- ► **TCP:** Transmission Control **Protocol** is intended for use as a highly reliable host-to-host RFC761 (January 1980)
- ▶ **UDP:** User Datagram **Protocol** provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism RFC768 (August 1980)

Definitions and presentation

- ► HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)
- ► **TCP:** Transmission Control **Protocol** is intended for use as a highly reliable host-to-host RFC761 (January 1980)
- ▶ **UDP:** User Datagram **Protocol** provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism RFC768 (August 1980)
- ► **RFC:** Request For Comments (Internet Draft (ID), RFC, Internet Standard)

Network Computing courses

Definitions and presentation

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet

Network Computing courses

Introduction

Definitions and presentation

▶ Router: network hardware providing routing services

Network Computing courses

Introduction

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another

Definitions and presentation

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another
- ▶ NIC: Network Interface Card
- ➤ **Switch (hub):** network **hardware** connecting systems using packet switching

Network Computing courses

Definitions and presentation

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another
- ▶ NIC: Network Interface Card
- ➤ **Switch (hub):** network **hardware** connecting systems using packet switching
- ► Packet switching: forward-like method regardless of the content (destination-based)
- ► NAT: Network Address Translation, router modifying IP address into another IP address.

Definitions and presentation

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another
- ▶ NIC: Network Interface Card
- ➤ **Switch (hub):** network **hardware** connecting systems using packet switching
- ► Packet switching: forward-like method regardless of the content (destination-based)

Network Computing courses

Introduction

Definitions and presentation

► Node (network): any entity that can send packets to/receive packets from a network through a NIC

Definitions and presentation

► Node (network): any entity that can send packets to/receive packets from a network through a NIC

▶ Client: computer able to send requests to a server

Network Computing courses

Introduction

Definitions and presentation

- ▶ Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)
- ▶ **Server: computer** able to respond a client's requests

Network Computing courses

Introduction

Definitions and presentation

- ► Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)

Network Computing courses

Introduction

- ► Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)
- ▶ **Server: computer** able to respond a client's requests
- ▶ Response: application message destined for a client (result)

Definitions and presentation

► Node (network): any entity that can send packets to/receive packets from a network through a NIC

▶ Client: computer able to send requests to a server

▶ Request: application message destined for a server (order)

▶ **Server: computer** able to respond a client's requests

▶ **Response:** application message destined for a client (result)

► Fat client: application where most functions are processed by the client itself

Network Computing courses
Introduction

Network classification

► **BAN:** Body Area Network

Network Computing courses
Introduction

Definitions and presentation

- ► Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)
- ▶ **Server: computer** able to respond a client's requests
- ▶ **Response:** application message destined for a client (result)
- ► Fat client: application where most functions are processed by the client itself
- ► Thin client: application where most functions are carried out on a central server

Network Computing courses

Introduction

Network classification

► **BAN:** Body Area Network

► PAN: Personal Area Networks

Network classification

► BAN: Body Area Network

▶ PAN: Personal Area Networks

► (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)

Network Computing courses

Introduction

Network classification

- ► **BAN:** Body Area Network
- ► PAN: Personal Area Networks
- ► (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)
- ▶ MAN: Metropolitan Area Networks, can cover a whole city
- ▶ WAN: Wide Area Networks cover a broad area (Internet)

Network classification

- ► BAN: Body Area Network
- ▶ PAN: Personal Area Networks
- ► (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)
- ▶ MAN: Metropolitan Area Networks, can cover a whole city

Network Computing courses

Introduction

Topologies

Figure: upload.wikimedia.org

Network (Computing	courses
Introdu	uction	

Topologies

► Point-to-point: two entities directly connected to each other (tunnel).

¹Hong Kong protesters use a mesh network to organize (♂) (②) (③) (③)

Network Computing courses

Introduction

Topologies

- ► Point-to-point: two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.

Network Computing courses
Introduction

Topologies

- ► **Point-to-point:** two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.

Network Computing courses

Introduction

Topologies

- ▶ **Point-to-point:** two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.

¹Hong Kong protesters use a mesh network to organize (♂) (②) (③) (③)

 $^{^1}$ Hong Kong protesters use a mesh network to organize 4 \rightarrow 4 \rightarrow 4 \rightarrow 5 \rightarrow 5 \rightarrow 6

¹Hong Kong protesters use a mesh network to organize (♠) (♣) (♣) (♣) (♠)

Topologies

- Point-to-point: two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.

¹Hong Kong protesters use a mesh network to organize (₱) (३) (३) (३)

Network Computing courses
Introduction

Topologies

- Point-to-point: two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ▶ **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.
- ▶ Line: bidirectional link between two nodes. Node can only send packet going through its neighbors.
- ▶ **Bus:** all nodes are connected to the same media. Only one can send a packet at a time, which all others then receive.

Topologies

- ► **Point-to-point:** two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.
- ▶ Line: bidirectional link between two nodes. Node can only send packet going through its neighbors.

Network Computing courses

Introduction

Topologies

- ► **Point-to-point:** two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.
- ▶ Line: bidirectional link between two nodes. Node can only send packet going through its neighbors.
- ▶ **Bus:** all nodes are connected to the same media. Only one can send a packet at a time, which all others then receive.
- ▶ Tree: hierarchical topology, such as a binary tree.

¹Hong Kong protesters use a mesh network to organize (♠) (♣) (♣) (♣) (♠)

¹Hong Kong protesters use a mesh network to organize (♂) (章) (章) (章) (章)

Bonus

Figure: Disconnected MANET illustration [?]

Network Computing courses
Introduction

Bonus

Figure: Store-carry-and-forward [?]

Bonus

Figure: Store-carry-and-forward [?]

Network Computing courses

Introduction

Bonus

Figure: Store-carry-and-forward [?]

Bonus

Figure: Store-carry-and-forward [?]

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ ○ ○ ○

Network Computing courses Introduction

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length Info
192.168.0.48			
208.67.222.222	192.168.0.48	DNS	108 Standard query response 0x4797 A 192.30.252.154 A 192.30.252.

Figure: DNS request/response

Network Computing courses Introduction

HTTP request/response example

Enter getbootstrap.com in your browser

Network Computing courses

Introduction

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length Info
192.168.0.48			
208.67.222.222	192.168.0.48	DNS	108 Standard query response 0x4797 A 192.30.252.154 A 192.30.252.15

Figure: DNS request/response

Source	Destination	Protocol Le	ength Info
127.0.0.1			74 36159 > http [SYN] Seq=0 Win=43690 Len=0 MSS=65495 SACK_PERM=1 TSval=12
127.0.0.13	127.0.0.1	TCP	74 http > 36159 [SYN, ACK] Seq=0 Ack=1 Win=43690 Len=0 MSS=65495 SACK_PERM
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=1 Ack=1 Win=43776 Len=0 TSval=122257 TSecr=12225
127.0.0.1	127.0.0.13	HTTP	356 GET /index.html HTTP/1.1
127.0.0.13	127.0.0.1	TCP	66 http > 36159 [ACK] Seq=1 Ack=291 Win=44800 Len=0 TSval=122259 TSecr=122
127.0.0.13	127.0.0.1	HTTP	354 HTTP/1.1 200 OK (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=291 Ack=289 Win=44800 Len=0 TSval=122259 TSecr=1
127.0.0.1	127.0.0.13	HTTP	357 GET /favicon.ico HTTP/1.1
127.0.0.13	127.0.0.1	HTTP	565 HTTP/1.1 404 Not Found (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=582 Ack=788 Win=45952 Len=0 TSval=122269 TSecr=1

Figure: HTTP request/response

How do messages reach their destination?

Figure: acenk90.files.wordpress.com

Network Computing courses

Introduction

Models overview (OSI and TCP/IP)

Figure: OSI model

More like this...

Figure: wikimedia.org

Network Computing courses _Introduction

Nth layer communicate with Nth layer..

.. thanks to 3-th layers

Figure: layers and routing

Network Computing courses

Introduction

Encapsulation

Figure: Encapsulation

One single protocol, one single layer

◆□ ▶ ◆昼 ▶ ◆昼 ▶ ■ りへで

Figure: protocols and layers

Network Computing courses Physical

Presentation Outline

Introduction

Physical

Data Link

Network

Transport

Network Computing courses

L Physical

Aims

► Interface data link layer,

Network Computing courses

L-Physical

Aims

- ► Interface data link layer,
- ► (De)Encode,
- ► Transmit: 1 after 0 (after 0 or 1, after 0... or 1)

Network Computing courses L-Physical

Aims

- ► Interface data link layer,
- ► (De)Encode,

Network Computing courses
- Physical

Hardware medium

► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s

Network Computing courses - Physical

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)

Network Computing courses

L-Physical

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s

Network Computing courses

- Physical

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s

Network Computing courses

Physical

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s
- ► IEEE 802.16 (a.k.a. Wi-Max): <40 Mbit/s

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s
- ► IEEE 802.16 (a.k.a. Wi-Max): <40 Mbit/s
- ► IEEE 1394 (a.k.a. Firewire): <3200 Mbit/s

Network Computing courses

 $\sqsubseteq_{\mathsf{Physical}}$

Hardware medium: IEEE 802.3 (Ethernet)

Figure: RJ45 connector

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s
- ► IEEE 802.16 (a.k.a. Wi-Max): <40 Mbit/s
- ► IEEE 1394 (a.k.a. Firewire): <3200 Mbit/s
- ▶ USB, serial port such as RS-232...

Network Computing courses

Physical

Hardware medium: IEEE 802.15.1 (Bluetooth)

Figure: Bluetooth card

L-Physical

Hardware medium: IEEE 802.15.4 (ZigBee)

Figure: ZigBee card

Network Computing courses

Physical

Hardware medium: IEEE 1394 (Firewire)

Figure: Firewire connector

└ Physical

Hardware medium: IEEE 802.16 (Wi-Max)

Figure: Wi-Max antenna

Network Computing courses

— Physical

Encoding

► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s

Network Computing courses

- Physical

Encoding

► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s

► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s

Network Computing courses

- Physical

Encoding

- ► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s
- ► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s
- ► Manchester: voltage transition (rising/falling edge mean 1/0)
- ▶ BMC (Biphase Mark Code): change its state for 1s, stay on the same state for 0s

Network Computing courses

- Physical

Encoding

- ► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s
- ► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s
- ► **Manchester:** voltage transition (rising/falling edge mean 1/0)

Network Computing courses

Physical

Encoding

- ► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s
- ► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s
- ► Manchester: voltage transition (rising/falling edge mean 1/0)
- ▶ BMC (Biphase Mark Code): change its state for 1s, stay on the same state for 0s
- ▶ and so on...

Encoding: Multi-Level Transmit

Figure: Multi-Level Transmit

Network Computing courses

- Physical

Encoding: Manchester

Figure: Manchester

Encoding: Alternate Mark Inversion

Figure: Alternate Mark Inversion

Network Computing courses

Physical

Encoding: Biphase Mark Code

Figure: Biphase Mark Code

Network Computing courses $\sqsubseteq_{\mathsf{Physical}}$

Figure: Amplitude and phase modulation

Network Computing courses └ Physical

Error detection

- ▶ Repetition (hum...)
- ► Parity (XOR)

Network Computing courses └ Physical

Error detection

► Repetition (hum...)

Network Computing courses └ Physical

Error detection

- ► Repetition (hum...)
- ► Parity (XOR)
- Checksum

Error detection

- ▶ Repetition (hum...)
- ► Parity (XOR)
- Checksum
- ▶ CRC (Cyclic redundancy check): with a polynomial divison

Network Computing courses

└ Physical

Error detection

- ▶ Repetition (hum...)
- ► Parity (XOR)
- Checksum
- ▶ CRC (Cyclic redundancy check): with a polynomial divison
- ► Hash
- ▶ and so on...

Error detection

- ► Repetition (hum...)
- ► Parity (XOR)
- Checksum
- ▶ CRC (Cyclic redundancy check): with a polynomial divison
- ► Hash

Network Computing courses

└ Physical

Error correcting

► Repetition (again)

└ Physical

Error correcting

► Repetition (again)

► Hamming

<ロ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ ◆ ○ ○ ○

Network Computing courses

└ Physical

Correction: MDPC

Raw data to send: 0x01 02 03 04

 0x01
 0x02
 0x03

 0x03
 0x04
 0x07

 0x04
 0x06

Figure: Data received with MDPC

Data sent (with MDPC): 0x01 02 03 03 04 07 04 06

Network Computing courses

└ Physical

Error correcting

- ► Repetition (again)
- ► Hamming
- ► MDPC (Multidimensional parity-check code)

Network Computing courses

L Data Link

Presentation Outline

Introductio

Physical

Data Link

Network

Transport

Aims

► Interface network layer,

Network Computing courses

L Data Link

Aims

- ► Interface network layer,
- ▶ Delivery to unique(?) hardware addresses,
- ► Framing,

Aims

- ► Interface network layer,
- ▶ Delivery to unique(?) hardware addresses,

Network Computing courses

LData Link

Aims

- ► Interface network layer,
- ▶ Delivery to unique(?) hardware addresses,
- ► Framing,
- ▶ Data transfer

Layer composition (of its two sublayers)

- 1. Logical Link Control (LLC):
 - ▶ end to end flow control
 - ▶ end to end error control
 - (transmitting/receiving) protocols, over MAC sublayer, multiplexing

Network Computing courses

Data Link

Carrier Sense Multiple Access with Collision Avoidance

Figure: CSMA CA

Layer composition (of its two sublayers)

- 1. Logical Link Control (LLC):
 - end to end flow control
 - ▶ end to end error control
 - (transmitting/receiving) protocols, over MAC sublayer, multiplexing
- 2. Media Access Control (MAC):
 - physical (hardware) addressing
 - ► collision detection and retransmission
 - data packet scheduling (and queuing)
 - QoS
 - VLAN

Network Computing courses

Data Link

Layer 2 Ethernet packet

MAC dest. (6)	MAC src.	(6)	VLAN tag* (4)	Ethertype (2)
Payload (42-1500)	Frame check s	sequence (4)	

Figure: Layer 2 Ethernet packet

optional, Content (size in bytes)

Ethertype 0x	Protocol
0800	IPv4
0806	ARP
0842	Wake-on-LAN
86dd	IPv6

Figure: Data received with MDPC

ARP example

0000	ff	ff	ff	ff	ff	ff	fa	ba	00	ab	ab	af	80	06	00	01
0010	80	00	06	04	00	01	fa	ba	00	ab	ab	af	ac	11	22	37
0020	00	00	00	00	00	00	ac	11	00	f9	00	00	00	00	00	00
0030	00	00	00	00	00	00	00	00	00	00	00	00				

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

Network Computing courses

Data Link

ARP example

```
        0000
        fa
        ba
        00
        ab
        ab
        af
        be
        be
        00
        00
        eb
        08
        06
        00
        01

        0010
        08
        00
        06
        04
        00
        01
        be
        be
        00
        00
        eb
        ab
        ac
        11
        00
        f9

        0020
        fa
        ba
        00
        ab
        ab
        af
        ac
        11
        22
        37
        00
        00
        00
        00
        00

        0030
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
```

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

ARP example

```
        0000
        ff
        ff
        ff
        ff
        ff
        ff
        ff
        fa
        ba
        00
        ab
        ab
        af
        08
        06
        00
        01

        0010
        08
        00
        06
        04
        00
        01
        fa
        ba
        00
        ab
        ab
        af
        ac
        11
        22
        37

        0020
        00
        00
        00
        00
        00
        ac
        11
        00
        f9
        00
        00
        00
        00
        00

        0030
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
```

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

Network Computing courses

Data Link

ARP example

```
        0000
        fa
        ba
        00
        ab
        ab
        af
        be
        be
        00
        00
        eb
        08
        06
        00
        01

        0010
        08
        00
        06
        04
        00
        01
        be
        be
        00
        00
        eb
        ac
        11
        00
        f9

        0020
        fa
        ba
        00
        ab
        ab
        af
        ac
        11
        22
        37
        00
        00
        00
        00
        00

        0030
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
```

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

Network Computing courses
Network

Presentation Outline

Introduction

Physical

Data Link

Network

Transport

Network Computing courses

└ Network

Aims

- ► Interface transport layer,
- ► Host addressing,

Aims

► Interface transport layer,

Network Computing courses
Network

Aims

- ► Interface transport layer,
- ► Host addressing,
- ► End-to-end packet transmission (data link? Connectionless? Switch? Router?),

∟ Network

Network Computing courses

Aims

- ► Interface transport layer,
- ► Host addressing,
- ▶ End-to-end packet transmission (data link? Connectionless? Switch? Router?),
- ► Routing, load balancing

Network Computing courses └ Network

IP addressing fundamentals

Concepts

- ► IP addressing fundamentals,
- ► Classfull IP addressing,
- ▶ Subnet and VLSM (Variable length subnet masks),
- ► CIDR (Classless inter-domain routing),
- Routing,
- ► IPv6.

Network Computing courses └ Network

IP addressing fundamentals

Masks

► Separates network and host bits,

Network Computing courses

Network

IP addressing fundamentals

Masks

- ► Separates network and host bits,
- ▶ MSB **always** are ones and then zeros! 255.254.255.0 is not possible,

Network Computing courses

IP addressing fundamentals

Masks

- ► Separates network and host bits,
- ▶ MSB **always** are ones and then zeros! 255.254.255.0 is not possible,
- ▶ Indicates how many bits are used for the network part:
 - ► A 8-bit mask leaves 24 bits for the hosts.
 - ► A 16-bit mask leaves 16 bits for the hosts,
 - ► A 24-bit mask leaves 8 bits for the hosts,
 - ► A N-bit mask leaves 32-N bits for the hosts.
- ► Two different masks (differences seen further):
 - Network mask,
 - Subnet mask.

IP addressing fundamentals

Masks

- ► Separates network and host bits,
- ► MSB **always** are ones and then zeros! 255.254.255.0 is not possible,
- ▶ Indicates how many bits are used for the network part:
 - ► A 8-bit mask leaves 24 bits for the hosts,
 - ► A 16-bit mask leaves 16 bits for the hosts.
 - ► A 24-bit mask leaves 8 bits for the hosts.
 - ► A N-bit mask leaves 32-N bits for the hosts.

Network Computing courses

Network

IP addressing fundamentals

Network Computing courses

Network

IP addressing fundamentals

<ロ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ ◆ ○ ○ ○

Network Computing courses
Network

IP addressing fundamentals

Is that an address?

- Network address,
- ► Hosts,

IP addressing fundamentals

Is that an address?

► Network address,

Network Computing courses

Network

IP addressing fundamentals

Is that an address?

- Network address,
- ► Hosts,
- ► Broadcast address.

IP addressing fundamentals

Is that an address?

- ► Network address.
- Hosts.
- Broadcast address.

Within the same network

► All addresses have the same network bits.

Network Computing courses

└ Network

IP addressing fundamentals

Is that an address?

- ► Network address,
- ► Hosts.
- ► Broadcast address.

Within the same network

- ► All addresses have the same network bits,
- ► Network address has zeros for host bits: x.x.x.0*,
- ► All hosts have different host bits: x.x.x.[0-1]*,

IP addressing fundamentals

Is that an address?

- ► Network address.
- ► Hosts,
- Broadcast address.

Within the same network

- All addresses have the same network bits.
- ► Network address has zeros for host bits: x.x.x.0*,

Network Computing courses

Network

IP addressing fundamentals

Is that an address?

- Network address,
- Hosts,
- ► Broadcast address.

Within the same network

- ► All addresses have the same network bits.
- ► Network address has zeros for host bits: x.x.x.0*,
- ► All hosts have different host bits: x.x.x.[0-1]*,
- ▶ Broadcast address has ones for host bits: x.x.x.1*.

Network Computing courses
Network

Network

IP addressing fundamentals

Mask /24	255	255	255	0
254 hosts	11111111	11111111	11111111	00000000
Network address	192	168	1	0
Network address	11000000	10101000	0000001	00000000
First host	192	168	1	1
FIRST NOST	11000000	10101000	00000001	0000001
Last host	192	168	1	254
Last 110st	11000000	10101000	00000001	11111110
Broadcast address	192	168	1	255
Droaucast address	11000000	10101000	0000001	11111111

Figure: IP address example 1

Network Computing courses

∟_{Network}

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

$$2^{32-N}-2$$

IP addressing fundamentals

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
First nost	10101100	01000000	00000000	00000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
Droaucast address	10101100	01000000	11111111	11111111

Figure: IP address example 2

Network Computing courses

└ Network

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

ightharpoonup 24-bit mask: $2^{32-24} - 2 = 2^8 - 2 = 254$ hosts

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Network Computing courses └ Network

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

- ▶ 24-bit mask: $2^{32-24} 2 = 2^8 2 = 254$ hosts
- ▶ 16-bit mask: $2^{32-16} 2 = 2^{16} 2 = 65.534$ hosts
- ▶ 8-bit mask: $2^{32-8} 2 = 2^{24} 2 = 16.777.214$ hosts

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

▶ 24-bit mask:
$$2^{32-24} - 2 = 2^8 - 2 = 254$$
 hosts

▶ 16-bit mask:
$$2^{32-16} - 2 = 2^{16} - 2 = 65.534$$
 hosts

Network Computing courses └ Network

IP addressing fundamentals

Public addresses

► Most of IP addresses

IP addressing fundamentals

Public addresses

- Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²

²Internet Assigned Numbers Authority

Network Computing courses

└ Network

IP addressing fundamentals

Public addresses

- ► Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²
- ▶ Usage of not registered public addresses is forbidden.

Private addresses

- ▶ Privates addresses are A, B and C classes (not all, see after)
- ► No registration needed

IP addressing fundamentals

Public addresses

- Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²
- ▶ Usage of not registered public addresses is forbidden.

Private addresses

▶ Privates addresses are A, B and C classes (not all, see after)

²Internet Assigned Numbers Authority

Network Computing courses

Network

IP addressing fundamentals

Public addresses

- ► Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²
- ▶ Usage of not registered public addresses is forbidden.

Private addresses

- ▶ Privates addresses are A, B and C classes (not all, see after)
- ► No registration needed
- ▶ Not routed across the Internet

└ Network

IP addressing fundamentals

Public addresses

- ► Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²
- ▶ Usage of not registered public addresses is forbidden.

Private addresses

- ▶ Privates addresses are A, B and C classes (not all, see after)
- ► No registration needed
- ▶ Not routed across the Internet
- ▶ Proxy, NAT and private addresses solved IPv4 shortage.

Network Computing courses

└ Network

Classful IP Addressing

Class D

► First octet: 224 - 239

Network Computing courses

Network

Classful IP Addressing

Class	А	В	С
First octet	1 - 126	128 - 191	192 - 223
First octet 0b	0*	10*	110*
Network mask	255.0.0.0	255.255.0.0	255.255.255.0
NELWORK IIIaSK	/8	/16	/24
IP addresses range	1.0.0.0	128.0.0.0	192.0.0.0
ii addresses range	126.0.0.0	191.255.0.0	223.255.255.0
Private range	10.0.0.0	176.16.0.0	192.168.0.0
Frivate range	10.255.255.255	176.31.255.255	192.168.255.0
Number of hosts	16.777.214	65.534	254

Figure: Three main classes

Where did 127.0.0.0/8 go ?!

Network Computing courses

Network

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

²Internet Assigned Numbers Authority

Network Computing courses

└ Network

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

► Theses IP addresses are multicast addresses.

Network Computing courses

└ Network

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

► Theses IP addresses are multicast addresses.

Class E

- Everything left
- Experimental class.

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

► Theses IP addresses are multicast addresses.

Class E

Everything left

Network Computing courses

└ Network

Classful IP Addressing

Reserved addresses

▶ 0.0.0.0 used in routing (seen further)

Classful IP Addressing

Reserved addresses

- ▶ 0.0.0.0 used in routing (seen further)
- ► 127.0.0.0/8: loopback addresses (127.0.0.1 127.255.255.254).

Network Computing courses

Classful IP Addressing

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Classful IP Addressing

► Class A (16 m-addresses) and B (65 k-adresses) are too large!

Network Computing courses

Network

Classful IP Addressing

- ▶ Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Means to limit the number of nodes on a network (regardless of the class) and, thus, improve the manageability, are needed. Three means for it:

Subnet,

Network Computing courses

└ Network

Classful IP Addressing

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Means to limit the number of nodes on a network (regardless of the class) and, thus, improve the manageability, are needed. Three means for it:

- Subnet,
- ► VLSM (Variable Length Subnet Mask),

Network Computing courses

└ Network

Subnet and VLSM

► Class A (16 m-addresses) and B (65 k-adresses) are too large!

Network Computing courses

Network

Classful IP Addressing

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Means to limit the number of nodes on a network (regardless of the class) and, thus, improve the manageability, are needed. Three means for it:

- Subnet,
- ► VLSM (Variable Length Subnet Mask),
- ► CIDR (Classless Inter-Domain Routing)

Network Computing courses

Network

Subnet and VLSM

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Subnet and VLSM

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
	10101100	01000000	00000000	0000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
	10101100	01000000	11111111	11111111

Figure: IP address example 2

Network Computing courses

└ Network

Subnet and VLSM

Mask /10	255	192	0	0
4.194.302 hosts	11111111	11000000	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
1 1151 11051	10101100	01000000	00000000	00000001
Last host	172	127	255	254
Last 110st	10101100	01111111	11111111	11111110
Broadcast address	172	127	255	255
	10101100	01111111	11111111	111111111

Figure: IP address example 4

Subnet and VLSM

Mask /12	255	240	0	0
1.048.574 hosts	11111111	11110000	00000000	00000000
Network address	172	64	0	0
ivetwork address	10101100	01000000	00000000	00000000
First host	172	64	0	1
FIRST HOST	10101100	01000000	00000000	0000001
Last host	172	79	255	254
Last 110st	10101100	01001111	11111111	11111110
Broadcast address	172	79	255	255
Divaucast address	10101100	01001111	11111111	11111111

Figure: IP address example 3

Network Computing courses
Network

Subnet and VLSM

Mask /31	255	255	255	254
0 host	11111111	11111111	11111111	11111110
Network address	172	64	0	254
ivetwork address	10101100	01000000	00000000	1111111 <mark>0</mark>
First host	172	64	0	?
FIRST HOST	10101100	01000000	00000000	1111111?
Last host	172	64	255	?
Last 110st	10101100	01000000	00000000	1111111?
Broadcast address	172	64	255	255
	10101100	01000000	00000000	1111111 <mark>1</mark>

Figure: IP address example 5

└ Network

Subnet and VLSM

Mask /30	255	255	255	252
2 hosts	11111111	11111111	11111111	11111100
Network address	172	64	0	252
ivetwork address	10101100	01000000	00000000	111111100
First host	172	64	0	253
I II'SL IIOSL	10101100	01000000	00000000	111111101
Last host	172	64	255	254
	10101100	01000000	00000000	111111110
Broadcast address	172	64	255	25 5
Divaucast address	10101100	01000000	00000000	1111111111

Figure: IP address example 6

Network Computing courses

└ Network

CIDR

Classless Inter-domain Routing?

Network Computing courses

└ Network

	Netmask	CIDR	hosts	
255.255.255.255	11111111.111111111.111111111.11111111	/32	single address	
255.255.255.254	11111111.111111111.111111111.11111110	/31	Unusable	
255.255.255.252	11111111.111111111.11111111.11111100	/30	2	
255.255.255.248	11111111.111111111.11111111.11111000	/29	6	
255.255.255.240	11111111.111111111.11111111.11110000	/28	14	
255.255.255.224	11111111.111111111.11111111.11100000	/27	30	
255.255.255.192	11111111.111111111.11111111.11000000	/26	62	
255.255.255.128	11111111.11111111.111111111.10000000	/25	126	
255.255.255.0	11111111.11111111.111111111.00000000	/24	254	
255.255.254.0	11111111.111111111.111111110.00000000	/23	510	
255.255.252.0	11111111.11111111.111111100.00000000	/22	1.022	
255.255.248.0	11111111.11111111.11111000.00000000	/21	2.046	
255.255.240.0	11111111.11111111.11110000.00000000	/20	4.094	
255.255.224.0	11111111.11111111.11100000.00000000	/19	8.190	
255.255.192.0	11111111.11111111.11000000.00000000	/18	16.382	
255.255.128.0	11111111.11111111.10000000.00000000	/17	32.766	
255.255.0.0	11111111.111111111.00000000.00000000	/16	65.534	
255.254.0.0	11111111.111111110.00000000.00000000	/15	131.070	
255.252.0.0	11111111.111111100.00000000.00000000	/14	262.142	
255.248.0.0	11111111.11111000.00000000.00000000	/13	524.286	
255.240.0.0	11111111.11110000.00000000.00000000	/12	1.048.574	
255.224.0.0	11111111.11100000.00000000.00000000	/11	2.097.152	
255.192.0.0	11111111.11000000.00000000.00000000	/10	4.194.302	
255.128.0.0	11111111.10000000.00000000.00000000	/9	8.388.606	
255.0.0.0	11111111.00000000.00000000.00000000	/8	16.777.214	
254.0.0.0	11111110.00000000.00000000.00000000	/7	33.554.430	
252.0.0.0	11111100.00000000.00000000.00000000	/6	67.108.862	
248.0.0.0	11111000.00000000.00000000.00000000	/5	134.217.726	
240.0.0.0	11110000.00000000.00000000.00000000	/4	268.435.454	
224.0.0.0	11100000.00000000.00000000.00000000	/3	536.870.910	
192.0.0.0	11000000.00000000.00000000.00000000	/2	1.073.741.822	
128.0.0.0	10000000.00000000.00000000.00000000	/1	2.147.483.646	
0.0.0.0	00000000.00000000.00000000.00000000	/0∢	□ ▶ IP space	

Figure: Subnet mask cheat sheet

Network Computing courses

└ Network

CIDR

Classless Inter-domain Routing?

▶ Wait! What is routing?

Routing Principles

Algorithm processed to decide where to forward a packet

Any router must

- know where any packet should be directed
- ▶ send directly the packets to the packet's destination if the router and the destination are on the same network

Any node

- on any network can communicate directly with all the nodes within the same network
- ► can connect to any node using its gateway
- needs to be aware of its gateway to communicate with nodes on other networks

) Q (~

Network Computing courses

Routing Principles

Route

- Destination
- Gateway
- Masks
- Metric

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
```

Figure: Routing table

Routing Principles

Route

- Destination
- Gateway
- Masks
- Metric

Network Computing courses

Network

Routing Principles

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 eth0
```

Figure: Routing table

0.0.0.0 ?

- ► Default address
- ▶ Default route
- Default gateway

└ Network

Routing Principles

Example

What would the routing table of this router will look like?

Network Computing courses

∟_{Network}

Routing Principles

Static or dynamic?

We will see this later

Routing Principles

Static or dynamic?

Network Computing courses

Network

CIDR

Combine 2+ networks' into one bigger to facilitate routing.

CIDR

Combine 2+ networks' into one bigger to facilitate routing.

Classless Inter-domain Routing?

▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (10.0.0.0/8, S0) can be shorten?

Network Computing courses └ Network

CIDR

Combine 2+ networks' into one bigger to facilitate routing.

Classless Inter-domain Routing?

- ▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (10.0.0.0/8, S0) can be shorten?
- ▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (192.168.8.0/24, E0), (10.0.0.0/8, S0) can be shorten?
- ▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.4.0/24, E0), (192.168.1.0/24, E1), (10.0.0.0/8, S0) can be shorten?

CIDR

Combine 2+ networks' into one bigger to facilitate routing.

Classless Inter-domain Routing?

- ▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (10.0.0.0/8, S0) can be shorten?
- ▶ Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (192.168.8.0/24, E0), (10.0.0.0/8, S0) can be shorten?

Network Computing courses └ Network

Routing Protocol

▶ RIP: Routing Information Protocol

Routing Protocol

▶ RIP: Routing Information Protocol

► OSPF: Open Shortest Path First

Network Computing courses

Routing Protocol

RIP v1

► Classful routing

Routing Protocol

▶ RIP: Routing Information Protocol

► OSPF: Open Shortest Path First

▶ EIGRP: Enhanced Interior Gateway Routing Protocol

Network Computing courses

Network

Routing Protocol

RIP v1

- ► Classful routing
- ▶ Periodic updates (30 sec) ..

Routing Protocol

RIP v1

- ► Classful routing
- ▶ Periodic updates (30 sec) ..
- ► ..by broadcasting (!)

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९

Network Computing courses

Routing Protocol

RIP v1

- Classful routing
- ▶ Periodic updates (30 sec) ..
- ► ..by broadcasting (!)
- ▶ Metric is hop-count (max = 15, infinite = 16)
- ► Timer (180 sec) to tag route as invalid (metric = 16)

Routing Protocol

RIP v1

- Classful routing
- ▶ Periodic updates (30 sec) ..
- ▶ ..by broadcasting (!)
- ▶ Metric is hop-count (max = 15, infinite = 16)

4□ > 4個 > 4 = > 4 = > = 900

Network Computing courses

Network

Routing Protocol

RIP v1

- Classful routing
- ▶ Periodic updates (30 sec) ..
- ▶ ..by broadcasting (!)
- lacktriangle Metric is hop-count (max = 15, infinite = 16)
- ▶ Timer (180 sec) to tag route as invalid (metric = 16)
- ▶ no subnet, no VLSM, no CIDR, no router authentication

Routing Protocol

RIP v2

► Classless routing

Network Computing courses

└ Network

Routing Protocol

RIP v2

Network Computing courses

∟_{Network}

- ► Classless routing
- ► Multicast (224.0.0.9)
- ► VLSM support

Routing Protocol

RIP v2

- ► Classless routing
- ► Multicast (224.0.0.9)

Routing Protocol

RIP v2

- ► Classless routing
- ► Multicast (224.0.0.9)
- ▶ VLSM support
- ► Route summarization

Network Computing courses

∟ Network

Routing Protocol

RIP v2

- ► Classless routing
- ► Multicast (224.0.0.9)
- VLSM support
- ► Route summarization
- "Authentication" (MD5)

Network Computing courses

└ Network

Routing Protocol

1. Router getting online broadcasts Request message

Routing Protocol

RIP v2

- ► Classless routing
- ► Multicast (224.0.0.9)
- ► VLSM support
- ► Route summarization
- ► "Authentication" (MD5)

RIPng is the next RIP version for support of IPv6

Network Computing courses └ Network

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table

³not always all the routing table

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table
- 3. When Update timers (from other routers) expire routing table³ is sent again

³not always all the routing table

Network Computing courses

└ Network

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table
- 3. When Update timers (from other routers) expire routing table³ is sent again
- 4. When Invalid timer expires, the metric of the route is set to 16 (unreachable)
- 5. When Flush timer expires, the 16-metric routes are removed from the routing table

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table
- 3. When Update timers (from other routers) expire routing table³ is sent again
- 4. When Invalid timer expires, the metric of the route is set to 16 (unreachable)

³not always all the routing table

Network Computing courses

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table
- 3. When Update timers (from other routers) expire routing table³ is sent again
- 4. When Invalid timer expires, the metric of the route is set to 16 (unreachable)
- 5. When Flush timer expires, the 16-metric routes are removed from the routing table
- 6. When a new router (or new metric) is sent, a Hold-down timer is started to stabilize the network.

³not always all the routing table

³not always all the routing table

Routing Protocol

OSPF

Classless

Network Computing courses

└ Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6

←□ → ←□ → ← □ → ← □ → へへ ○

Network Computing courses
Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR

Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network

<ロ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ ◆ ○ ○ ○

Network Computing courses

└ Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra
- ► Metric = f(hop-count, bandwidth, link reliability)

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra

Network Computing courses

└ Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra
- ► Metric = f(hop-count, bandwidth, link reliability)
- ► Subdivided into area (a 32-bit number)

Network

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra
- ► Metric = f(hop-count, bandwidth, link reliability)
- ► Subdivided into area (a 32-bit number)
- Multicast

Network Computing courses

└ Network

Routing Protocol

EIGRP

► Enhanced IGRP (to support classless routing)

Network Computing courses

Network

Routing Protocol

OSPF

- Classless
- ► IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra
- ► Metric = f(hop-count, bandwidth, link reliability)
- ► Subdivided into area (a 32-bit number)
- Multicast
- ► Authentication support (update only from trusted routers)

Network Computing courses

Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6

Network Computing courses

└ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ► IPv4 and IPv6
- VSLM

Network Computing courses

└ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ► IPv4 and IPv6
- VSLM
- ► CIDR

Network Computing courses

└ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra

└ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra
- ► Metric = f(bandwidth, load, delay, reliability)

Network Computing courses

└ Network

IPv6 - Aims

► Support billions of hosts (even with inefficient IP addressing)

Network Computing courses
Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ► IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra
- ► Metric = f(bandwidth, load, delay, reliability)
- ► Authentication support

Network Computing courses

└ Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size

Network Computing courses

IPv6 - Aims

► Support billions of hosts (even with inefficient IP addressing)

- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster

Network Computing courses

└ Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ► Better real-time QoS

Network Computing courses

Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security

Network Computing courses

Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ► Better real-time QoS
- ▶ Better multicast diffusion (scope)

└ Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ► Better real-time QoS
- ▶ Better multicast diffusion (scope)
- ▶ Being able to move, without changing IP address

Network Computing courses

└ Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ► Better real-time QoS
- ▶ Better multicast diffusion (scope)
- ▶ Being able to move, without changing IP address
- ► Make the protocol able to evolve
- ▶ Make the protocol able to coexist with newer version

Network Computing courses

Network

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ► Better real-time QoS
- ▶ Better multicast diffusion (scope)
- ▶ Being able to move, without changing IP address
- ► Make the protocol able to evolve

Network Computing courses

Network

IPv4 vs IPv6

not compatible

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$

Network Computing courses

Network

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ▶ IP options: some required options are now optionals (faster to process)

Network Computing courses

Network

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)

Network Computing courses

Network

IPv4 vs IPv6

- not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ▶ IP options: some required options are now optionals (faster to process)
- ► Notation:
 - ▶ 8000:0000:0000:0000:0123:4567:89AB:CDEF

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ► IP options: some required options are now optionals (faster to process)
- ► Notation:
 - ▶ 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - ▶ 8000::0123:4567:89AB:CDEF

Network Computing courses

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ▶ IP options: some required options are now optionals (faster to process)
- Notation:
 - ▶ 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - ▶ 8000::0123:4567:89AB:CDEF
 - **:**192.168.2.3
- Unicast address format:

bits	48 (or more)	16 (or fewer)	64
field	routing prefix	subnet id	interface identifier

Figure: Unicast IPv6 address format

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ► Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ▶ IP options: some required options are now optionals (faster to process)
- ► Notation:
 - ► 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - ▶ 8000::0123:4567:89AB:CDEF
 - **:**:192.168.2.3

Network Computing courses

Network

IPv6 adoption

Figure: IPv6 adoption (among Google users)⁴

Belgium: 28%, USA and Germany: 11%

Network Computing courses — Transport

Presentation Outline

Introduction

Physical

Data Link

Network

Transport

Network Computing courses

Transport

Aims

- ► Interface session layer,
- ▶ Reliability end-to-end communication,

Aims

► Interface session layer,

Network Computing courses

└─ Transport

Aims

- ► Interface session layer,
- ▶ Reliability end-to-end communication,
- ► Order and reassemble received packets,

Transport

Aims

- ► Interface session layer,
- ▶ Reliability end-to-end communication,
- ► Order and reassemble received packets,
- ► Flow control,

Network Computing courses

Transport

Aims

- ► Interface session layer,
- ▶ Reliability end-to-end communication,
- ► Order and reassemble received packets,
- ► Flow control,
- ► Congestion avoidance,
- Multiplexing

Network Computing courses

└─ Transport

Aims

- ► Interface session layer,
- ▶ Reliability end-to-end communication,
- ▶ Order and reassemble received packets,
- ► Flow control,
- ► Congestion avoidance,

Network Computing courses

└─ Transport

Application identification

Socket address

▶ Node identification is made by IP address,

Network Computing courses

Transport

Application identification

Socket address

- ▶ Node identification is made by IP address,
- ▶ Application identification is made by node identification..

Network Computing courses

└─ Transport

Application identification

Socket address

- ▶ Node identification is made by IP address,
- ▶ Application identification is made by node identification..
- ▶ .. and a port. Number between 0 and 65535. (1-1024: root privilege)
 - ▶ ip.ad.dr.ess:port

Application identification

Socket address

- ▶ Node identification is made by IP address,
- ▶ Application identification is made by node identification..
- ▶ .. and a port. Number between 0 and 65535. (1-1024: root privilege)

Network Computing courses — Transport

Port	Protocol
21	FTP
22	SSH
23	Telnet
25	SMTP
465	SMTPS
80	HTTP
443	HTTPS
3128 - 8080	Web Proxy
9418	git

Figure: Default port for well known protocol

TCP header

Figure: nmap.org: TCP header

Network Computing courses

Transport

Socket Primitives (TCP)

Order	Primitive	Meaning
1	SOCKET	Creates a new communication endpoint
2	BIND	Links local IP address to the socket
3	LISTEN	Signs up for incoming connections
4	ACCEPT	Blocking call till a connection attempt occurs
-	CONNECT	Tries to connect to another communication endpoint
-	SEND	Sends data through the established connection
-	RECEIVE	Receives data through the established connection
last	CLOSE	Releases the connection

Figure: TCP primitives

A socket does not have an IP address until it is bound, just an allocation in the transport entity. A server must listen before any client is able to connect.

UDP header

Figure: nmap.org: UDP header

Network Computing courses

Transport

What are theses?

- ▶ Frame: Physical layer representation
- ▶ Datagram: UDP⁵ or IP packet (IP datagram, UDP datagram)
- ▶ **Segment**: TCP data unit
- ▶ PDU: Protocol Data Unit, generic term.
- ► Fragment: Any data unit fragmented

⁵User **Datagram** Protocol

Hope you liked it and learnt about networking!

Figure: teaching.auzias.net

Take a look:

- ▶ "Computer Networks" by A Tanenbaum, Andrew S., G ISBN 013162959X
- http://nmap.org/book/toc.html
- http://blog.nodenexus.com/2014/11/28/a-shark-on-thenetwork/
- ▶ and many many other resources on the Internet freely available⁶. If you can read it, knowledge is reachable!⁷

⁶An Introduction to Computer Networks

⁷such as this example of Wireshark using