$$u[x_{-}, t_{-}, f_{-}] := f * t - \frac{x - \frac{f}{2} * t^{2}}{1 - t}$$

ln[79]:= Animate[Plot[u[x, i, 0], {x, -5, 5}, PlotRange \rightarrow 20], {i, 0, 1}]

Here, we have the homogeneous Burger's Equation (i.e. Inviscid). Because there are no sources/sinks, each point with an initial velocity (i.e. everything but the origin) accelerates in the same direction until $t_{\rm shock}$.

In[*]:= Animate[Plot[u[x, i, 5], $\{x, -3, 7\}$, PlotRange \rightarrow 20], $\{i, 0, 1\}$]

f = 5. Due to the presence of a source, some points with negative initial velocity end up with positive velocity at some t between 0 and $t_{\rm shock}$. One point (in particular, x=f/2=2.5), which has initially negative velocity ends up with 0 velocity at $t_{\rm shock}$.

$$ln[\cdot]:=$$
 Animate[Plot[u[x, i, -5], {x, -7, 3}, PlotRange \rightarrow 20], {i, 0, 1}] Out[\(\cdot]=

f = -5. The same story as f=5, but because we now have a sink, things are shifted towards negative speeds. Again, we have a point which has initially non-zero velocity which ends up with 0 velocity at the critical point (x=f/2=-2.5).