

|    | Study | Hours | Marks |
|----|-------|-------|-------|
| 0  |       | 0.5   | 1.4   |
| 1  |       | 0.9   | 7.6   |
| 2  |       | 1.3   | 6.4   |
| 3  |       | 1.7   | 2.8   |
| 4  |       | 2.1   | 5.9   |
| 5  |       | 2.5   | 61.7  |
| 6  |       | 2.9   | 25.9  |
| 7  |       | 3.3   | 61.1  |
| 8  |       | 3.7   | 69.1  |
| 9  |       | 4.1   | 66.6  |
| 10 |       | 4.5   | 79.5  |
| 11 |       | 4.9   | 61.0  |

|  | Nerchuko |
|--|----------|
|--|----------|

| Study | Hours | Marks |  |
|-------|-------|-------|--|
| 12    | 5.3   | 82.3  |  |
| 13    | 5.7   | 92.9  |  |
| 14    | 6.1   | 93.4  |  |
| 15    | 6.5   | 96.0  |  |
| 16    | 6.9   | 91.7  |  |
| 17    | 7.3   | 98.9  |  |
| 18    | 7.7   | 98.8  |  |
| 19    | 8.1   | 99.7  |  |
| 20    | 8.5   | 100.0 |  |
| 21    | 8.9   | 99.5  |  |
| 22    | 9.3   | 99.6  |  |
| 23    | 9.7   | 99.9  |  |









6 2.9

3.3

### How to select the threshold value?



The Sum of Squares of residual error should be small for the decision node split





























3.3

#### How to select the threshold value?



The Sum of Squares of residual error should be small for the decision node split































































































# **Problem** Overfitting























## How to avoid Overfitting?

- Limit the depth of the tree
  - Limit the number of samples on the leaf

























## Limit the depth of the tree





CC







## Limit the number of samples on the leaf

















## Limit the number of samples on the leaf

|    | Study | Hours | Marks | Study | Hours | Mark |
|----|-------|-------|-------|-------|-------|------|
| 0  |       | 0.5   | 1.4   | 12    | 5.3   | 82.3 |
| 1  |       | 0.9   | 7.6   | 13    | 5.7   | 92.9 |
| 2  |       | 1.3   | 6.4   | 14    | 6.1   | 93.  |
| 3  |       | 1.7   | 2.8   | 15    | 6.5   | 96.  |
|    |       | 2.1   | 5.9   | 16    | 6.9   | 91.  |
| 5  |       | 2.5   | 61.7  | 17    | 7.3   | 98.  |
| 6  |       | 2.9   | 25.9  | 18    | 7.7   | 98.  |
| 7  |       | 3.3   | 61.1  | 19    | 8.1   | 99.  |
| 8  |       | 3.7   | 69.1  | 20    | 8.5   | 100. |
| 9  |       | 4.1   | 66.6  | 21    | 8.9   | 99.  |
| 10 |       | 4.5   | 79.5  | 22    | 9.3   | 99.6 |
| 11 |       | 4.9   | 61.0  | 23    | 9.7   | 99.9 |



















## Regression Trees (Part - 2) in Telugu || Machine Learning in Telugu || Nerchuko



