不考虑引起运动的力,本章考虑位移关系

从几何学的观点来处理<mark>机器人</mark> 末端位置P与关节变量 L_1 , L_2 , θ_1 和 θ_2 的关系称为运动学(Kinematics)。

正运动学: 给定关节转动角度和位移量, 求末端位置姿态

• 定义末端位置和关节变量:

$$r = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

• 根据几何关系:

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

一般向量形式表达:

$$r = f(\theta)$$

逆运动学: 给定末端位置姿态, 求关节转动角度和位移量

$$\theta_2 = \pi - \alpha$$

$$\theta_1 = \arctan(\frac{y}{x}) - \arctan(\frac{L_2 \sin \theta_2}{L_1 + L_2 \cos \theta_2})$$

式中:
$$\alpha = \arccos \left[\frac{-(x^2+y^2) + L_1^2 + L_2^2}{\frac{2}{\text{ d. R.A. Lie only } 4L_2}} \right]$$

同样,如果用向量表示上述关系式,其一般可表示为:

$$\theta = f^{-1}(r)$$

逆运动学解不唯一, 需要筛选

广义连杆

4个D-H参数

• 连杆长度: 公法线长度

• 连杆扭角:右手,拇指移动方向,四指为正扭角方向

• 连杆偏移量: 旋转平移后, 沿着目标轴再平移

• 关节转角

判定条件:与公法线夹角的是θ,沿着公法线移动的是a 以公法线为轴的是α

旋转+移动+旋转+移动

得到任意两坐标系之间的齐次变换矩阵

 $A_i = Rot(x, \alpha_{i-1}) Trans(a_{i-1}, 0, 0) Rot(z, \theta_i) Trans(0, 0, d_i)$ 展开上式可得:

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -d_{i}s\alpha_{i-1} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & d_{i}c\alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

举例: RRR 类型机械臂

 $\alpha_i = 从轴z_i$ 到轴 z_{i+1} 关于绕轴 x_i 扭角

 $a_i = 从轴 z_i$ 到轴 z_{i+1} 沿轴 x_i 偏移量

 $\theta_i = 从轴x_{i-1}$ 到轴 x_i 关于绕轴 z_i 转角

 d_i = 从轴 x_{i-1} 到轴 x_i 沿轴 z_i 方向的位移

连杆	α_{i-1}	a_{i-1}	d_{i}	$\theta_{_{i}}$
1	0	0	0	θ_1
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

连杆 i	变量 θ;	$\alpha_{i_{\overline{k}} 1}$	a_{i-1}	d_i	变量范围
. 1	θ ₁ (90°)	0°	0	0	-160°~160°
2	θ ₂ (0°)	-90°	0	d_2	−225°~45°
3	θ ₃ (-90°)	0°	a ₂	0	-45°~225°
4	θ ₄ (0°)	-90°	a ₃	d_4	-110°~170°
5	θ _δ (0°)	90°	0	0	-100°~100°
6	θ ₆ (0°)	-90°	0	0	-266°~266°

可得连杆变换通式为: