Matrix Data Structures

Shusen Wang

Stevens Institute of Technology

- Dense matrix: most of the elements are non-zero.
- Dense matrix can be stored in a fixed-size array.

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Array:									
--------	--	--	--	--	--	--	--	--	--

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}					

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}			

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}		
	14						52			

Row-Major Order

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}
++	12	13	41				J 2		T T	72	43

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$\overline{a_{11}}$	a_{21}	a_{31}	a_{41}				

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{21}	a_{31}	a_{41}	a_{12}	a_{22}	a_{32}	a_{42}		
			1 -	12		52	1 2		

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{21}	a_{31}	a_{41}	a_{12}	a_{22}	a_{32}	a_{42}	a_{13}	a_{23}	a_{33}	a_{43}
++	41			12		J 2	12			33	13

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}	
	12		41				J 2		1.1	1 4	15	l

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Traversing a row is fast.

$ a_{11} $	a_{12}	$ a_{13} $	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}	
						_	-					ı

Traversing a row is fast.

y: $ a_{11} a_{12} a_{13} a_{21} a_{22} a_{23} a_{31} a_{32} a_{33} a_{41} a_{42} a_{43}$	y:	a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}
---	----	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Traversing a column is slow.

$ a_1 $	a_{12}	$ a_{13} $	$ a_{21} $	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	$ a_{43} $

Sparse Matrix Data Structures

Sparse Matrices

Example of sparse matrix

- Sparse matrix: A matrix in which most elements are zeros.
- Question: How to store a sparse matrix?
- Bad solution: As a dense matrix.
- Good solution: Storing only the nonzero elements and their indices.

Sparse Matrices

- Compressed Sparse Row (CSR).
- Compressed Sparse Column (CSC).
- There are different schemes. This lecture introduces only one representation.

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

70 9.2 2	70	2	7.1	40	30	5.5	10
----------	----	---	-----	----	----	-----	----

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Traversing a row is fast.

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Traversing a column is slow.

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

10	5.5	2	30	40	9.2	70	7.1	26
								1

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	2	30	40	9.2	70	7.1	26
Row Index:	1	1	3	2	2	4	3	2	4
Col Index:	1	2	2	3	4	4	5	6	6

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	2	30	40	9.2	70	7.1	26
Row Index:	1	1	3	2	2	4	3	2	4
Col Index:	1	2	2	3	4	4	5	6	6

Memory Cost

- 8 Bytes for a double-precision floating-point number (a value).
- 4 Bytes for a long integer (an index).

Memory Cost

- 8 Bytes for a double-precision floating-point number (a value).
- 4 Bytes for a long integer (an index).
- Memory cost (Bytes) of CSR or CSC:

$$(8+4+4)\cdot nnz(\mathbf{A}) = 16\cdot nnz(\mathbf{A}).$$

• Memory cost (Bytes) of an $m \times n$ dense matrix:

• If over 50% elements are zeros, then CSR and CSC save memory.

Questions

From CSR to dense matrix

Value:

29

Row Index:

Col Index:

Matrix L1 Norm

 Value:
 3
 2
 1
 7
 4
 3
 5
 1
 2

 Row Index:
 1
 1
 2
 2
 2
 3
 3
 4
 4

 Col Index:
 1
 2
 3
 4
 6
 2
 5
 4
 6

- The 4×6 matrix **A** is stored as CSR matrix (in the above).
- Question: What is the ℓ_1 -norm of **A**?
- Hint: The matrix ℓ_1 -norm is $\left||\mathbf{A}|\right|_1 = \sum_{i=1}^4 \sum_{j=1}^6 \left|a_{ij}\right|$.

Thank You!

Solution

From CSR to dense matrix

Value:

9 8.2 29 2 3.1 5 2 1.5 7 10

Row Index:

1 1 1 2 2 3 4 4 4

Col Index:

2 4 5 6 1 2 2 3 4 6

Convert the CSR matrix to dense matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & 9 & 0 & 8.2 & 29 & 2 \\ 3.1 & 5 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.5 & 7 & 0 & 10 \end{bmatrix}$$