STOKES' THEOREM

- Stokes' Theorem
- Calculating Flux Integrals
- Calculating Line Integrals

STOKES' THEOREM

CURL FORM OF GREEN'S THEOREM

THEOREM

Let $U\subseteq \mathbb{R}^2$ have regular boundary curve C. For any vector field on \mathbb{R}^3 of the form $\overrightarrow{\mathbf{F}}=(P,Q,0)$ we have

$$\iint_{U} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} = \int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds$$

where
$$\overrightarrow{\mathbf{N}}=\overrightarrow{\mathbf{e}}_{3}$$
.

STOKES' THEOREM

THEOREM

Let $S\subseteq \mathbb{R}^3$ be a regular surface with unit normal $\overrightarrow{\mathbf{N}}$ and regular boundary curve $\partial S=C$.

For any vector field $\overrightarrow{\mathbf{F}}$ on \mathbb{R}^3 we have

$$\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} = \int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds$$

$$ullet S = \{x^2 + y^2 + z^2 = 1, z \geq 0\}$$

•
$$C = \{x^2 + y^2 = 1, z = 0\}$$

$$oldsymbol{\stackrel{
ightarrow}{f F}}=(-y,0,x)$$

CALCULATING FLUX INTEGRALS

$$F = (x, 2xy, x + y)$$

hemisphere

$$\{x^2+y^2+(z-1)^2=1, z\geq 1\}$$

• capped cylinder $C \cup D$:

$$lacksquare C = \{x^2 + y^2 = 1, 1 \le z \le 2\}$$

$$D = \{x^2 + y^2 \le 1, z = 2\}$$

ullet boundary S the unit circle in the z=1 plane

THEOREM

The flux of a curl is independent of the surface. It depends only on the boundary curve.

CALCULATING LINE INTEGRALS

Calculate
$$\int_C z dx + x dy + y dz$$

where
$$C$$
 is the triangle with vertices $(0,0,1)$, $(3,0,-2),(0,1,2).$