MENSURATION

Rectilinear Figure: A figure made up of straight line segments is called a rectilinear figure.

AREA OF RECTANGLE AND SQUARE

Rectangle:

Area = length \times breadth or A = $\ell \times$ b Perimeter = 2 (length + breadth) or P = $2(\ell + b)$

Square:

Area = $(side)^2$ or A = s^2 Perimeter = 4 × side or P = 4s

AREA OF QUADRILATERALS

Area of a Parallelogram:

Consider parallelogram ABCD.

Let AC be a diagonal

In $\triangle ADC$ and $\triangle CBA$

$$AD = CB$$
, $CD = AB$

AC is common

 \therefore $\triangle ADC \cong \triangle CBA$

.. Area of parallelogram ABCD

= Area of \triangle ADC + Area of \triangle ABC

= $2 \times Area of \triangle ADC$

= $2 \times (\frac{1}{2} CD \times AE)$

(where AE \perp DC))

 $= DC \times AE$

i.e., Area of parallelogram = base \times height

Area of a Rhombus:

Since a rhombus is also a prallelogram, its area is given by

Area of rhombus = base \times height

The area of a rhombus can also be found if the length of the diagonals are given. Let ABCD be a rhombus. We know that its diagonals AC and BD bisect each other at right angles.

Area of rhombus ABCD = area of \triangle ABD + area of \triangle CBD

=
$$\frac{1}{2}$$
 (BD × AO) + $\frac{1}{2}$ (BD × CO)

(since AO \perp BD and CO \perp BD)

 $= \frac{1}{2} BD (AO + CO)$

= $\frac{1}{2}$ BD × AC

i.e., Area of rhombus

= 1/2 × product of diagonals

Area of a Trapezium:

Let ABCD be a trapezium with AB || DC. Draw AE and BF perpendicular to DC.

Then AE = BF = height of trapezium = h

Area of trapezium ABCD = Area of \triangle ADE

+ Area of rectangle ABFE

+ Area of ∆BCF

=
$$\frac{1}{2}$$
 × DE × h + EF × h + $\frac{1}{2}$ FC × h

$$= \frac{1}{2} h (DE + 2EF + FC)$$

=
$$\frac{1}{2}$$
 h (DE + EF + FC + EF)

=
$$\frac{1}{2}$$
 h (DC + AB) (since EF = AB)

i.e., Area of trapezium = $\frac{1}{2}$ ×

(sum of parallel sides)

× (distance between parallel sides)

Area of a Quadrilateral:

Let ABCD be a quadrilateral, and AC be one of its diagonals. Draw perpendiculars BE and DF from B and D respectively to AC.

Area of quadrilateral ABCD

= Area of $\triangle ABC$ + Area of $\triangle ADC$

= $\frac{1}{2}$ AC × BE + $\frac{1}{2}$ AC × DF

 $= \frac{1}{2} AC (BE + DF)$

If AC = d, $BE = h_1$ and $DF = h_2$ then

Area of quadrilateral = $\frac{1}{2}$ d ($h_1 + h_2$)

AREA OF IRREGULAR RECTILINEAR FIGURES

For field ABCDEF, to find its area, we proceeds as follows:

- 1. Select two farthest corners (A and D) such that the line joining them does not intersect any of the sides. Join the corners. The line joining them is called the **base line**. In this case the base line is AD.
- 2. From each corner draw perpendiculars FP, BQ, ER and CS to AD. These are called offsets.
- 3. Measure and record the following lengths: AP and PF, AQ and QB, AR and RE, AS and SC.
- **4.** Record these measurements as shown.

The field has been divided into four right triangles and two trapezia. In the trapezia, the parallel sides are perpendicular to the base line.

The area of the field is the sum of the areas of the triangles and trapezia.

Area of $\triangle APF = \frac{1}{2} \times AP \times FP = \frac{1}{2} \times 30 \times 40 \text{ m}^2 = 600 \text{ m}^2$

Area of $\triangle AQB = \frac{1}{2} \times AQ \times QB = \frac{1}{2} \times 60 \times 30 \text{ m}^2 = 900 \text{ m}^2$

Area of trapezium PREF = $\frac{1}{2}$ × PR (PF + RE) = $\frac{1}{2}$ × 70 × 100 m² = 3500 m²

Area of trapezium BQSC = $\frac{1}{2}$ × QS (BQ + SC) = $\frac{1}{2}$ × 120 × 80 m² = 4800 m²

Area of \triangle SCD = $\frac{1}{2}$ × SD × SC = $\frac{1}{2}$ × 70 × 50 m² = 1750 m²

Area of \triangle ERD = $\frac{1}{2}$ × RD × ER = $\frac{1}{2}$ × 150 × 60 m² = 4500 m²

Total area = (600 + 900 + 3500 + 4800 + 1750 + 4500) m² = 16050 m²

POINTS TO REMEMBER

- **1.** Area of rectangle = length \times breadth
- **2.** Perimeter of rectangle = 2 (length + breadth)
- **3.** Area of parallelogram = base \times height
- **4.** Area of rhombus = $\frac{1}{2}$ × product of diagonals.
- **5.** Area of trapezium = $\frac{1}{2}$ × (sum of parallel sides) × (distance between parallel sides)
- **6.** Area of quadrilateral = $\frac{1}{2} \times d$ (h₁ + h₂) where d is a diagonal and h₁, h₂ are the lengths of perpendiculars from the remaining vertices on the diagonal.

INTRODUCTION

Triangles, quadrilaterals, circles etc. lie in one plane. They have two dimensions only—a length and a breadth. They are called "two dimensional" figures. Solids do not lie in one plane. They have three dimensions—length, breadth and height. They occupy space. Solids are called "three dimensional" figures.

Formulae to calculate area of some geometrical figures :

S.No.	Name	Figure	Perimeter in units of length	Area in square units
1.	Rectangle	a = length b = breadth	2(a + b)	ab
2.	Square	a a = side	4a	a^2 or $\frac{1}{2}$ (diagonal) ²
3.	Parallelogram	a b a a = side b = side adjacent to a h = distance between the opp. parallel sides	2(a + b)	ah
4.	Rhombus	$\begin{array}{c} a \\ d_1 \\ a \\ a = \text{side of rhombus;} \\ d_1d_2 \text{ are the two} \\ diagonals \end{array}$	4a	$\frac{1}{2} d_1 d_2$
5.	Quadrilateral	A C is one of its diagonals and h ₁ , h ₂ are the altitudes on AC from D, B respectively.	Sum of its four sides	$\frac{1}{2}$ (AC) (h ₁ + h ₂)
6.	Trapezium	a, b, are parallel sides and h is the distance between parallel sides	Sum of its four sides	$\frac{1}{2}$ h (a + b)

S.No.	Name	Figure	Perimeter in units of length	Area in square units
7.	Triangle	a b b b is the base and h is the altitude a, b,c are three sides of Δ .	a + b + c = 2s where s is the semi perimeter.	$\frac{1}{2}b \times h \text{or}$ $\sqrt{s(s-a)(s-b)(s-c)}$
8.	Right triangle	h d d(hypotenuse) $= \sqrt{b^2 + h^2}$	b + h + d	$\frac{1}{2}$ bh
9.	Equilateral triangle	$a = side$ $h = altitude = \frac{\sqrt{3}}{2}a$	3a	(i) $\frac{1}{2}$ ah (ii) $\frac{\sqrt{3}}{4}$ a ²
10.	Isosceles triangle	a a c c = unequal side a = equal side	2a + c	$\frac{c\sqrt{4a^2-c^2}}{4}$
11.	Isosceles right triangle	a d(hypotenuse) = $a\sqrt{2}$, a = Each of equal sides.The angles are 90°, 45°, 45°.	2a + d	$\frac{1}{2}a^2$
12.	Circle	$r = radius of the$ circle $\pi = \frac{22}{7} \text{ or } 3.1416$	2πr	πr ²

S.No.	Name	Figure	Perimeter in units of length	Area in square units
13.	Semicircle	r=radius of the circle	πr + 2r	$\frac{1}{2}\pi r^2$
14.	Ring (shaded region)	R = outer radius r = inner radius		$\pi(R^2 - r^2)$
15.	Sector of a circle	θ° = central angle of the sector, r = radius of the sector ℓ = length of the arc	360	$\frac{\theta}{360} \times \pi r^2$

Volume of some solid figures :

S.No	.Nature of the	Shape of the	Lateral/curved		Total	surface
	Volume solid	Abbreviations solid	Dia	area		used
					J	
1.	Cuboid	h l	2h (l + b)	2(lb+bh + lh)	lbh	l = length b = breadth h = height
2.	Cube	a a	4a ²	6a²	a ³	a=length of edge
3.	Right prism		(perimeter of base) × Height	2(area of one end) + lateral surface area	Area of base × height	

S.No.	Nature of the Volume solid	Shape of the Abbreviations solid	Lateral/curved surface area	area	Total	surface used
4.	Right circular cylinder		2πrh	2πr(r + h)	πr²h	r = radius of base h = height of the cylinder
5.	Right pyramid		$\frac{1}{2}(Perimeter of the base) \times (slant height)$	Area of the base + lateral surface area	$\frac{1}{3}$ (Area of base)× height	
6.	Right circular cone	h r	πrΙ	πr(l + r)	$\frac{1}{3}\pi r^2 h$	h = height r = radius l = slant height
7.	Sphere			4πr²	$\frac{4}{3}\pi r^3$	r = radius
8.	Hemi-sphere	r	2πr²	3πr ²	$\left(\frac{2}{3}\pi r^3\right)$	r = radius
9.	Spherical shell		JIU	$4\pi(R^2-r^2)$	$\frac{4}{3}\pi(R^3-r^3)$	R = outer radius r = inner radius
10.	Volume of Bucket	Rh	$\frac{\pi h}{3}$ $(R^2 + r^2 + Rr)$	R = larger radius r = smaller radius h = height		

SOLVED EXAMPLES

- **Ex.1** A rectangle and a parallelogram have the same area of 72 cm². The breadth of the rectangle is 8 cm. The height of the parallelogram is 9 cm. Find the base of the parallelogram and the length of the rectangle.
- **Sol.** Area of rectangle

$$= \ell \times b = \ell \times 8 = 72$$

$$\ell = 9 \text{ cm}$$

Area of parallelogram = base \times height

= base
$$\times$$
 9 = 72

- \therefore Base = 8 cm
- **Ex.2** The area of a parallelogram is 64 cm². Its sides are 16 cm and 5 cm. Find the two heights of the parallelogram.
- **Sol.** (i) Area = base \times height = 16 \times h₁ = 64
 - $h_1 = 4cm$

- (ii) Area = base \times height = $5 \times h_2 = 64$
- $h_2 = 12.8 \text{ cm}$

- **Ex.3** The diagonals of a rhombus measure 10 cm and 24 cm. Find its area. Also find the measure of its side.
- **Sol.** AC = 10 cm, BD = 24 cm

Area =
$$\frac{1}{2}$$
 (d₁ × d₂)

$$= \frac{1}{2} \times 10 \times 24 \text{ cm}^2$$

$$= 120 \text{ cm}^2$$

In
$$\triangle ABO$$
, $\angle AOB = 90^{\circ}$,

$$AO = \frac{1}{2} AC = 5 cm$$

$$BO = \frac{1}{2} BD = 12 cm.$$

$$\therefore$$
 AB² = AO² + OB² = 25 + 144

$$= 169 = 13 \times 13$$

- ∴ AB = 13 cm
- \therefore Measure of ℓ side = 13 cm

- **Ex.4** In rhombus ABCD, AB = 7.5 cm, and AC = 12 cm. Find the area of the rhombus.
- **Sol.** In $\triangle ABO$, $\angle AOB = 90^{\circ}$,

$$AO = \frac{1}{2} AC = 6 cm$$

$$AB = 7.5 \text{ cm}$$

$$\therefore$$
 OB² = AB² - OA²

$$= (7.5)^2 - 6^2 = 56.25 - 36 = 20.25$$

$$\therefore$$
 OB = $\sqrt{20.25}$ = 4.5 cm

$$\therefore$$
 BD = 2 × OB = 9 cm

Area of rhombus

=
$$\frac{1}{2}$$
 d₁ × d₂ = $\frac{1}{2}$ × 9 × 12 cm² = 54cm²

- **Ex.5** In the trapezium PQRS, $\angle P = \angle S = 90^{\circ}$, PQ = QR = 13 cm, PS = 12 cm and SR = 18 cm. Find the area of the trapezium.
- **Sol.** The parallel sides are PQ and SR, and the distance between them is PS, since $\angle P = \angle S = 90^{\circ}$

 \therefore Area = $\frac{1}{2}$ × sum of parallel sides

$$= \frac{1}{2} \times (13 + 18) \times 12 \text{ cm}^2$$

- $= 186 \text{ cm}^2$
- **Ex.6** In trapezium ABCD, AB = AD = BC = 13 cm and CD = 23 cm. Find the area of the trapezium.
- **Sol.** From B draw BE | | AD, and BF \perp DC

Since ABED is a parallelogram,

$$DE_{r} = 13 \text{ cm}.$$

$$\therefore$$
 EC = 23 cm - 13 cm = 10 cm

Also
$$BE = 13$$
 cm.

Therefore BEC is an isosceles triangle.

Since $BF \perp EC$, therefore F is the midpoint of EC

$$\therefore$$
 FC = $\frac{1}{2}$ × 10 cm = 5 cm

In the right triangle BFC

$$BF^2 = BC^2 - FC^2 = 13^2 - 5^2 = 144$$

Area of trapezium = $\frac{1}{2}$ sum of parallel sides × height

$$= \frac{1}{2} (13 + 23) \times 12 \text{ cm}^2$$

$$= 216 \text{ cm}^2$$

Note: We can also say : Area of

ABCD = Area of ABED + Area of \triangle BCE can be found by Hero's formula as all its sides are known.

Sol. Area of quadrilateral

$$= \frac{1}{2} d (h_1 + h_2)$$

=
$$\frac{1}{2}$$
 × 15 × (8.2 + 9.1) cm²

$$= \frac{1}{2} \times 15 \times 17.3 \text{ cm}^2$$

$$= 129.75 \text{ cm}^2$$

13 cm

- 23 cm -

cm

13

- **Ex.8** PQRS is a trapezium, in which SR || PQ, and SR is 5 cm longer than PQ. If the area of the trapezium is 186 cm² and the height is 12 cm, find the lengths of the parallel sides.
- **Sol.** Let PQ = x cm; then SR = (x + 5)

$$= \frac{1}{2} \times 12 \times (x + x + 5) \text{ cm}^2$$

$$= 186 \text{ cm}^2$$

$$\therefore$$
 6(2x + 5) = 186

or
$$2x + 5 = 31$$

$$x = 13$$

$$\therefore$$
 PQ = 13 cm,

$$SR = 13 \text{ cm} + 5 \text{ cm} = 18 \text{ cm}$$

- **Ex.9** Show that area of a square $=\frac{1}{2} \times (\text{diagonal})^2$. Find the area of a square whose diagonal = 2.5 cm.
- **Sol.** In right triangle BCD

(diagonal)2

$$= DC^2 + CB^2 = s^2 + s^2 = 2s^2$$

But area of square = s^2

∴
$$(diagonal)^2 = 2 \times area$$

or area =
$$\frac{1}{2}$$
 × (diagonal)²

If diagonal = 2.5 cm

area =
$$\frac{1}{2}$$
 × (2.5)² cm² = $\frac{6.25}{2}$ cm²

$$= 3.125 \text{ cm}^2.$$

- **Ex.10** The area of a square is 42.25 m^2 . Find the side of the square. If tiles measuring $13 \text{ cm} \times 13 \text{ cm}$ area paved on the square area, find how many such tiles are used for paving it.
- **Sol.** The area of the square

$$= 42.25 \text{ m}^2 = 422500 \text{ cm}^2$$

The side of the square =
$$\sqrt{\text{area}}$$
 = $\sqrt{422500}$ cm = 650 cm

The area of 1 tile

$$= 13 \text{ cm} \times 13 \text{ cm} = 169 \text{ cm}^2$$

Number of tiles required

$$= 422500 \div 169 = 2500$$

- **Ex.11** A room is 5 metres long. 4 metres broad and 3 metres high. Find the area of the four walls. Also find the area of the ceiling and the area of the floor. If it costs Re 0.30 to whitewash 1 dm^3 of wall, find the cost of whitewashing the four walls and the ceiling.
- **Sol.** Area of four walls

$$= \ell h + bh + \ell h + bh = 2h(\ell+b)$$

$$= 6 \times 9 \text{ m}^2 = 54 \text{ m}^2$$

Area of ceiling = Area of floor = 20 m^2

Since 1
$$m^2 = 100 \text{ dm}^2$$
,

$$\therefore$$
 54 m² = 5400 dm² and

$$20 \text{ m}^2 = 2000 \text{ dm}^2$$

Cost of whitewashing the four walls at the rate of Re 0.30 per dm²

$$= Rs (5400 \times 0.30) = Rs 1620$$

Cost of whitewashing the ceiling at the rate of Re 0.30 per dm²

$$= Rs (2000 \times 0.30) = Rs 600$$

Total cost of white washing

$$= Rs 1620 + Rs 600$$

= Rs 2220

- **Ex.12** The length and breadth of a rectangular field is in the ratio 4 : 3. If the area is 3072 m², find the cost of fencing the field at the rate of Rs 4 per metre.
- **Sol.** Let the length and breadth of the field be 4x and 3x metres respectively. The area of the field

$$= 4x \times 3x = 12x^2 = 3072 \text{ m}^2$$

Hence
$$x^2 = 3072 \div 12 = 256$$

or
$$x = \sqrt{256} = 16$$

Length

$$= 4x = 64 \text{ m}$$
; Breadth $= 3x = 48 \text{ m}$

Length of fencing = Perimeter of the field

$$= 2 (64 + 48) m = 224 m$$

Cost of fencing at Rs 4 per meter

$$= Rs (224 \times 4) = Rs 896$$

- **Ex.13** Find the volume and surface area of a cuboid of $\ell = 10$ cm, b = 8 cm and h = 6 cm.
- **Sol.** $V = \ell \times b \times h = 10 \text{ cm} \times 8 \text{ cm} \times 6 \text{ cm} = 480 \text{ cm}^3$

Surface area = 2 (
$$\ell b + \ell h + bh$$
)

$$= 2(10 \text{ cm} \times 8 \text{ cm} + 10 \text{ cm} \times 6 \text{ cm} + 8 \text{ cm} \times 6 \text{ cm})$$

$$= 2(80 + 60 + 48) \text{ cm}^2 = 376 \text{ cm}^2$$

- **Ex.14** How many matchboxes of size 4 cm \times 3 cm \times 1.5 cm can be packed in a cardbord box of size 30 cm \times 30 cm \times 20 cm ?
- **Sol.** Volume of cardboard box

$$= 30 \text{ cm} \times 30 \text{ cm} \times 20 \text{ cm}$$

$$= 18000 \text{ cm}^3$$

Volume of each matchbox

$$= 4 \text{ cm} \times 3 \text{ cm} \times 1.5 \text{ cm}$$

$$= 18 \text{ cm}^3$$

:. Number of matchboxes that can fit in the cardboard box

$$= 18000 \text{ cm}^3 \div 18 \text{ cm}^3 = 1000$$

- **Ex.15** The dimensions of a cube are doubled. By how many times will its volume and surface area increase ?
- **Sol.** Let the side of the original cube be s

Then side of the new cube = 2s

$$= s \times s \times s$$

$$= s^3$$
 cubic units

Volume of new cube = $2s \times 2s \times 2s$

$$= 8s^3$$
 cubic units

.. Volume increases eight times if the side is doubled.

innade

(ii) Surface area of original cube = $6s^2$

Surface area of new cube

$$= 6(2s)^2 = 24s^2$$

$$= 4(6s^2)$$

.. Surface area increases four times.

- **Ex.16** The outer surface of a cube of edge 5m is painted. if the cost of painting is Re 1 per 100 cm², find the total cost of painting the cube.
- **Sol.** Surface area of cube

$$= 6s^2 = 6 \times 5m \times 5m = 150m^2$$

$$= 150 \times 10000 \text{ cm}^2$$

Cost of painting 100 cm² is Re 1.

.. Cost of painting

$$150 \times 10000 \text{ cm}^2 \text{ is}$$

Rs
$$\frac{1}{100} \times 150 \times 10000 = \text{Rs } 15,000$$

Ex.17 A right circular cylinder has a height of 1 m and a radius of 35 cm. Find its volume, area of curved surface and total area.

Sol.
$$h = 1m, r = 35 cm = 0.35 m$$

$$h = 1m, r = 35 \text{ cm} = 0.35 \text{ m}$$

Volume = $\pi r^2 h = \frac{22}{7} \times 0.35 \times 0.35 \times 1 \text{ m}^3 = 0.385 \text{ m}^3$

Area of curved surface = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 0.35 \times 1 \text{m}^2 = 2.2 \text{ m}^2$$

Total surface area = $2\pi r(h + r)$

=
$$2 \times \frac{22}{7} \times 0.35$$
 (1 + 0.35) m²

$$= \frac{2 \times 22 \times 0.35 \times 1.35}{7} \, \text{m}^2 = 2.97 \, \text{m}^2$$

Ex.18 An open cylindrical tank is of radius 2.8m and height 3.5m. What is the capacity of the tank ?

=
$$\pi r^2 h$$
 = $\frac{22}{7} \times 2.8 \times 2.8 \times 3.5 \text{ m}^3$ = 86.24 m³

Ex.19 A metal pipe 154 cm long, has an outer radius equal to 5.5 cm and an inner radius of 4.5 cm. What is the volume of metal used to make the pipe ?

Sol. Outer volume

=
$$\pi r^2 h$$
 = $\frac{22}{7} \times (5.5)^2 \times 154 \text{ cm}^3$

Inner volume = $\frac{22}{7} \times (4.5)^2 \times 154 \text{ cm}^3$

: Volume of metal = outer volume - inner volume

$$= \frac{22}{7} \times 154 \times (5.5)^2 - \frac{22}{7} \times 154 \times (4.5)^2$$

$$= \frac{22}{7} \times 154 [(5.5)^2 - (4.5)^2]$$

$$= \frac{22}{7} \times 154 (5.5 + 4.5) (5.5 - 4.5)$$

$$= \frac{22}{7} \times 154 \times 10 \times 1 = 4840 \text{ cm}^3$$

- **Ex.20** A cylindrical roller is used to level a rectangular playground. The length of the roller is 3.5 m and its diameter is 2.8 m. if the roller rolls over 200 times to completely cover the playground, find the area of the playground.
- **Sol.** When the roller rolls over the ground once completely, It covers a ground area equal to its curved surface area.

Area of curved surface =
$$2\pi rh$$
 = $2 \times \frac{22}{7} \times 1.4 \times 3.5 \text{ m}^2$
 \therefore Area of ground = $\frac{200 \times 2 \times 22 \times 1.4 \times 3.5}{7} \text{m}^2 = 6160 \text{ m}^2$

- **Ex.21** A cylindrical pipe has an outer diameter of 1.4m and an inner diameter of 1.12m. Its length is 10m. It has to be painted on the outer and inner surfaces as well as on the rims at the top and bottom. If the rate of painting is 0.01 per cm², find the cost of painting the pipe.
- **Sol.** Outer surface area = 2π rh

$$= 2 \times \frac{22}{7} \times 0.7 \times 10 \text{m}^2 = 44 \text{m}^2$$

Inner surface area = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 0.56 \times 10 \text{m}^2 = 35.2 \text{m}^2$$

Area of two rims

$$= 2 \times \frac{22}{7} \times (0.7^2 - 0.56^2) = 1.1088m^2$$

.. Total area to be painted

$$= 44m^2 + 35.2m^2 + 1.1088m^2$$

 $= 80.3088 \text{ m}^2$

Rate of painting = $Re 0.01 per cm^2$

- $= Re 0.01 \times 10000 per m^2$
- = Rs 100 per m²
- \therefore Total cost = Rs 80.3088 \times 100
 - = Rs 8030.88
- **Ex.22** Earth is dug out to a depth of 15 m from a circular plot of land of radius 7 m. The earth is then spread out evenly on an adjacent rectangular plot of dimensions 16 m \times 7 m. Find the height of the earth on the rectangular plot.
- **Sol.** Volume of dug out earth = $\pi r^2 h$

$$=\frac{22}{7} \times 7 \times 7 \times 15$$
m³ = 2310m³

Let the height of the earth on the rectangular plot be h

Then volume of earth on the plot

$$= \ell \times b \times h$$

$$= 16 \times 7 \times h m^3 = 112h m^3$$

Since volume of earth on the plot

- = volume of dug out earth
- ∴ 112 h = 2310

or
$$h = \frac{2310}{112} m = 20.625 m$$

- **Ex.23** A rectangular piece of paper of width 20 cm and length 44 cm is rolled along its width to form a cylinder. What is the volume of the cylinder so formed?
- Sol. The length of the rectangle becomes the circumference of the base of the cylinder.
 - \therefore $2\pi r = 44$, where r is the radius of the cylinder.

$$\therefore r = \frac{44 \times 7}{2 \times 22} = 7 \text{ cm}$$

The width of the rectangle becomes the height of the cylinder.

$$\therefore$$
 Volume = πr^2 h

$$=\frac{22}{7} \times 7 \times 7 \times 20 \text{ cm}^3 = 3080 \text{ cm}^2$$

EXERCISE – 1

Area of basic plane figures

- 1. Find the ratio of the areas of the incircle and circumcircle of a square.
- 2. If the radius of a circle is decreased by 50%, find the percentage decrease in its area.
- 3. The dimensions of a room are $16 \times 14 \times 10$ metres. There are 4 windows of 1.3×1.4 m and 2 doors of $2m \times 1m$. What will be the cost of white washing the walls and painting the doors and window, if the rate of white washing is Rs. 5 per m² and the rate of painting is Rs. 8 per m².
- 4. The area of square ABCD is 16 cm². Find the area of the square joining the mid-points of the sides.
- 5. The base of a parallelogram is thrice its height. If the area is 867 cm², find the base and height of the parallelogram.
- 6. An ant is moving around a few food particles of different shapes scattered on the floor. For which particle would the ant have to take a longer round?

- 7. The diagonal of a quadrilateral is 20 m in length and the perpendiculars to it from the opposite vertices are 8.5 m and 11 m. find the area of the quadrilateral.
- 8. Find the area of shaded region in fig., if ABCD is a square of side 14 cm and APD and BPC are semi-circles.

9. An athetic track 14 m wideconsists of two straight sections 120 m long joining semi-circular ends whose inner radius is 35 m. Calculate the area of the shaded region.

• Area of trapezium and polygon

- 10. The area of the trapezium is 105 cm² and its height is 7 cm. if one of the parallel sides is longer than the other by 6 cm, find the two parallel sides.
- 11. The parallel sides of a trapezium are 20 cm and 10 cm. Its non-parallel sides are both equal, each being 13 cm. find the are of the trapezium.
- 12. In the adjoining figures AB||DC and DA is perpendicular to AB. Further, DC = 7 cm, CB = 10 cm and AB = 13 cm. find the area of the quadrilateral ABCD.
- 13. The parallel sides DC and AB of a trapezium are 12 cm and 36 cm respectively. Its non-parallel sides are each equal to 15 cm. Find the area of the trapezium.
- 14. The cross-section of a canal is a trapezium in shape. If the canal is 10 m wide at the top 6 m wide at the bottom and the area of cross-section is 72 m² determine its depth.

15. If the area of a trapezium is 28 cm² and one of the its parallel sides is 6 cm, find the other parallel side if its altitude is 4 cm.

16. Find the area of the hexagon shown in fig., if MP = 9 cm, MD = 7 cm, MC = 6 cm, MB = 4 cm, MA = 2 cm, AN = 3 cm, OC = 5 cm, DO = 2 cm and BR = 4 cm.

17. Top surface of a raised platform is in the shape of a regular octagon as shown in fig., find the area of the octagonal surface?

• Surface area of cube and cuboid

18. Three cubes of edge 5 cm are put side by side and fused together as shown. The block is to be painted on all sides. Find the total surface area of the block and the cost of painting at Rs 25 per cm².

- 19. 20 cubical tin boxes each with edge 12 cm are to be made. Find the cost of the tin sheet required at the rate of Rs 130 per m².
- 20. A roll of paper 35 cm by 22 cm was cut and 25 cubes with edge 2 cm were made from it. Find the area of the paper left.
- 21. A cuboid has a length of 17.6 cm and breadth of 12.8 cm. If its volume is 2365.44 cm³, find the height.
- 22. Eight cuboidal metal boxes with dimensions $60 \text{ cm} \times 45 \text{ cm} \times 30 \text{ cm}$ are to be painted. If the rate of painting is Rs 200 per m2, find the total cost of painting.
- 23. The dimensions of a tin box are $12 \text{ cm} \times 10.5 \text{ cm} \times 8 \text{ cm}$. If 20 such boxes are to be made, find the area of the tin sheet required in m^2 .
- 24. A cuboidal water tank can hold 60,000 litres of water. If the length and breadth of the tank are 10 m and 4 m, find its height.
- 25. The four walls of a room-6 m long, 3 m broad and 3.5 m high are to be painted. If the rate of painting is Rs 650 per m², find the total cost of painting.
- 26. The four walls and bottom surface of a swimming pool are to be painted. Find the total cost of painting at the rate of Rs 450 per m^2 , if the dimensions of the pool are length = 10 m, breadth = 4 m and depth = 2 m.
- 27. If each edge of a cube is increased by 50%, find the percentage increase in its surface area.
- 28. A cuboidal oil tin is 30 cm by 40 cm by 50 cm. Find the cost of the tin required for making 20 such tins if the cost of tin sheet is Rs. 20 per square metre.
- 29. Find the volume of a cube whose surface area is 54 cm².

30. The dimensions of a cuboid are in the ratio 5:3:1 and its total surface area is 414 m². Find the dimensions.

- 31. A classroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows, etc.)
- 32. Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.
- 33. A cuboid has total surface area of 50 m² and lateral surface area is 30 m². Find the area of its base.

Volume of cube and cuboid:

- 34. Find the volume and surface area of a cuboid 16 m long, 14 m broad and 7 m high.
- 35. Find the length of the longest pole that can be placed in a room 12 m long, 8 m broad and 9 m high.
- 36. The volume of a wall, 5 times as high as it is borad and 8 times as long as it is high, is 12.8 cu. metres. Find the breadth of the wall.
- 37. Find the number of bricks, each measuring $24 \text{ cm} \times 12 \text{ cm} \times 8 \text{ cm}$, required to construct a wall 24 m long, 8 m high and 60 cm thick, if 10% of the wall is filled with mortar?
- 38. The diagonal of a cube is 6cm. Find its volume and surface area.
- 39. The surface area of a cube is 1734 sq. cm. Find its volume.
- 40. A rectangular block 6 cm by 12 cm by 15 cm is cut up into an exact number of equal cubes. Find the least possible number of cubes.
- 41. Two cubes have their volumes in the ratio 1:27. Find the ratio of their surface areas.
- 42. A cubical box with edge 18 cm is filled with smaller cubes of edge 3 cm. How many small cubes are there in the box?
- 43. An iron cube with edge 15 cm was melted and recast into 125 smaller cubes of equal edge. Find the edge length of the smaller cube.
- 44. Four cubes with edge 6 cm and three cubes with edge 8 cm were filled with a liquid. Find the total volume of the liquid in litres.
- 45. A cuboid has a volume of 4805 cm³ and its breadth and height are equal to 15.5 cm. Find the length.
- 46. A carton is 1.8 m long, 80 cm wide and 60 cm high. How many bars of dimension 6 cm \times 4.5 cm \times 40 mm can be placed in the carton.
- 47. A metal cuboidal block with dimension 2 m \times 1.5 m \times 22.5 cm is melted and made into 200 cubes. What is the length of edge of each cube?
- 48. A cuboidal vessel is 10 cm long and 8 cm wide. How high must it be made to hold 480 cubic centimetres of a liquid?
- 49. A match box measures 4 cm by 2.5 cm by 1.5 cm. What will be the volume of a packet containing 12 such match boxes? How many such packets can be placed in a cardboard box whose size is 60 cm × 30 cm × 24 cm?
- 50. A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold 300 cm³ of a liquid?
- 51. What will happen to the volume of a cuboid if its:
 - (i) Halved (ii) trebled?
- 52. Three cuboids of dimensions 5 cm \times 6 cm \times 7 cm, 4 cm \times 7 cm \times 8 cm and 2 cm \times 3 cm \times 13 cm are melted and a cube is made. Find the side of cube.
- 53. How many wooden cuboical blocks of side 25 cm can be cut from a log of wood of size 3 m by 75 cm by 50 cm, assuming that there is no wastage?
- 54. A rectangular water reservoir contains 42000 litres of water. Find the depth of the water in the reservoir if its base measures 6 m by 3.5 m.

55. How many bricks of size $22 \text{ cm} \times 10 \text{ cm} \times 7 \text{ cm}$ are required to construct a wall 33 m long, 3.5 m high and 40 cm thick, if cement and sand used in the construction occupy $\frac{1}{10}$ th part of the wall?

- 56. If the rainfall on a certain day was 5 cm, how many litres of water fell on 1 hectare field on that day?
- 57. How much clay is dug out in digging a well measuring 3 m by 2 m by 5 m?
- 58. The capacity of a certain cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its height and length are 10 m and 2.5 m respectively.
- 59. How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?

• Surface area of right circular cylinder

- 60. Find the height of a cylinder whose radius is 7 cm and the total surface area is 968 cm²?
- 61. The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. Find the ratio between the height and radius of the cylinder.
- 62. A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 91 cm and length is 1.25 m.
- 63. An iron pipe 20 cm long has exterior diameter equal to 25 cm. If the thickness of the pipe is 1 cm, find the whole surface of the pipe.
- 64. A rectangular sheet of paper, $44 \text{ cm} \times 20 \text{ cm}$, is rolled along its length to form a cylinder. Find the total surface area of the cylinder thus generated.
- 65. The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. Calculate the ratio of their curved surface areas.
- 66. The height of a right circular cylinder is 10.5 cm. If three times the sum of the areas of its two circular faces is twice the area of the curved surface area. Find the radius of its base.

Volume of cylinder:

- 67. The area of the base of a right circular cylinder is 154 cm² and its height is 15 cm. Find the volume of the cylinder.
- 68. The radii of two right circular cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 4. Calculate the ratio of their curved surface areas and also the ratio of their volumes.
- 69. If the radius of the base of a right circular cylinder is halved, keeping the height same, what is the ratio of the volume of the reduced cylinder to that of the original.
- 70. The volume of a cylinder is $448 \,\pi$ cm³ and height 7 cm. Find its lateral surface area and total surface area.
- 71. A well with 10 m inside diameter is dug 14 m deep. Earth taken out of it is spread all around to a width of 5 m to form an embankment. Find the height of embankment.
- 72. The circumference of the base of a cylinder is 88 cm and its height is 15 cm. find the volume of the cylinder.
- 73. The diameter of the base of a right circular cylinder is 42 cm and its height is 10 cm. find the volume of the cylinder
- 74. A rectangular strip 25 cm \times 7 cm is rotated about the longer side. Find the volume the solid, thus generated.
- 75. The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. Calculate the ratio of their volumes.
- 76. The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. Find the volume of the cylinder, if its total surface area is 616 cm².

EXERCISE - 2

- 1. Water flows into a tank 200 m \times 150 m through a rectangular pipe 1.5 m \times 1.25 m \cong kmph. In what time (in minutes) will the water rise by 2 metres?
- 2. The dimensions of an open box are 50 cm, 40 cm and 23 cm. Its thickness is $6\sqrt{3}$ cm. If 1 cubic cm of metal used in the box weighs 0.5 gms, find the weight of the box.
- 3. A cube of edge 15 cm is immersed completely in a rectangular vessel containing water. If the dimensions of the base of vessel are $20 \text{ cm} \times 15 \text{ cm}$, find the rise in water level.
- 4. Three solid cubes of sides 1 cm, 6 cm and 8 cm are melted to form a new cube. Find the surface area of the cube so formed.
- 5. How many iron rods, each of length 7 m and diameter 2 cm can be made out of 0.88 cubic metre of iron?
- 6. The radii of two cylinders are in the ratio 3 : 5 and their heights are in the ratio of 2 : 3. Find the ratio of their curved surface areas.
- 7. If 1 cubic cm of cast iron weighs 21 gms, then find the weight of a cast iron pipe of length 1 metre with a bore of 3 cm and in which thickness of the metal is 1 cm.
- 8. A cubical tank with edge 2 m is filled with water. How many buckets of capacity 10 litre can be filled from the tank?
- 9. Four cubic blocks with edge 4 cm were kept two on top of two and fused together into a block as shown. Find the total surface area of the block and the cost of painting it at Rs 32 per cm².

1			7
	1	2	
	3	4	

- 10. A bag is filled with tin cubic boxes, each with edge 3.2 cm. If there are 50 cubic boxes and the weight of 1 cm³ of tin is 8 g, find the weight in the bag.
- 11. From a cubic tank filled with water, 144 buckets of capacity 12 litres could be filled. Find the length of edge of the tank.
- 12. 25 cubical blocks of wood were painted on all sides. If the total cost of painting at the rate of Rs 8 per cm² was Rs 30,000, find the length of edge of a block. (All blocks are of equal size,)
- 13. The area of the base of a cuboid is 44 cm^2 . Find the height, if the volume is 378.4 cm^3 . [Hint: Area of base = $1 \times \text{b.}$]
- 14. A wooden beam cuboidal in shape is 4 m long and 50 cm wide. If it contains 0.5 m³ of wood, what is its thickness?
- 15. Ten iron bars with dimensions $0.2 \text{ m} \times 10 \text{ cm} \times 60 \text{ cm}$ are placed in a truck. Find the total weight of the bars if 1 cm^3 of iron weighs 8 g.
- 16. How many buckets of capacity 15 litres can be filled from a water tank 4 m long, 2 m broad and 1.2 m high?
- 17. A trench 5 m long and 2 m wide is dug 1.5 m deep. The soil from this is spread evenly on a patch of ground 15 m long and 1.25 m broad. What is the height of the soil spread over the patch?
- 18. A garden is in the form of a rhombus whose side is 30 metres and the corresponding altitude is 16 m. find the cost of leveling the garden at the rate of Rs. 2 per m².
- 19. The area of a rhombus is equal to the area of a triangle whose base and the corresponding altitude are 24.8 cm and 16.5 cm respectively. If one of the diagonals of the rhombus is 22 cm, find the length of the other diagonal.

20. The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg. Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm.

- 21. The volume of a cuboidal box is 48 cm³. If its height and length are 3cm and 4 cm respectively, find its breadth
- 22. An 8 m long cuboidal beam of wood when sliced produces four thousand 1 cm cubes and there is no wastage of wood in this process. If one edge of the beam is 0.5 m, find the third edge.
- 23. A solid rectangular piece of iron measures 6 m by 6 cm by 2 cm. Find the weight of this piece, if 1 cm³ of iron weighs 8 gm.
- 24. A beam 5 m long and 40 cm wide contains 0.6 cubic metre of wood. How thick is the beam?
- 25. The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are 4.5 m, 3 m and 350 cm, respectively. Find the cost of plastering at the rate of Rs. 8 per square metre.
- 26. The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size 3 m \times 1.5 m and 10 windows each of the size 1.5 m \times 1 m. If the cost of white –washing the walls of the hall at the rate of Rs. 1.20 per m² is Rs. 2385.60, find the breadth of the hall.
- 27. The dimensions of a cinema hall are 100 m, 50 m and 18 m and 18 m. How many persons can sit in the hall, if each person requires 150 m³ of air?
- 28. The dimensions of a rectangular box are in the ratio of 2:3:4 and the difference between the cost of covering it with sheet of paper at the rates of Rs. 8 and Rs. 9.50 per m² is Rs. 1248. Find the dimensions of the box. 8 m, 12 m, 16 m
- 29. A field is 150 m long and 100 m wide. A plot (outside the field) 50 m long and 30 m wide is dug to a depth of 8 m and the earth taken out from the plot is spread evenly in the field. By how much is the level of field raised?
- 30. The cost of preparing the walls of a room 12 m long at the rate of Rs. 1.35 per square metre is Rs. 340.20 and the cost of matting the floor at 85 paise per square metre is Rs. 91.80. find the height of the room.
- 31. If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that

$$\frac{1}{V} = \frac{2}{S} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

- 32. The lateral surface area of a hollow cylinder is 4224 cm². It is cut along its height and formed a rectangular sheet of width 32 cm. Find the perimeter of rectangular sheet.
- 33. A company packages its milk powder in cylindrical containers whose base has a diameter of 16.8 cm and height 20.5 cm. Company places a label around the curved surface of the container. If the label is placed 1.5 cm from the top and the bottom, what is the surface area of the label?
- 34. A cylindrical vessel, without lid, has to be tin-coated on its both sides. If the radius of the base is 70 cm and its height is 1.4 cm, calculate the cost of tin-coating at the rate of Rs. 3.50 per 1000 cm²
- 35. Find the number of coins, 1.5 cm in diameter and 0.2 cm thick, to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm.
- 36. The volume of a metallic cylindrical pipe is 748 cm³. Its length is 14 cm and its external radius is 9 cm. find its thickness.
- 37. The rain water that falls on a roof of area 6160 m² is collected in a cylindrical tank of diameter 14 m and height 10 m and thus the tank is completely filled. Find the height of rain water on the roof.
- 38. A solid cylinder has total surface area of 462 square cm. Its curved surface area is one –third of its total surface area. Find the volume of the cylinder.
- 39. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled into it. The diameter of the pencil is 7 mm, the diameter of the graphite is 1 mm and the length of the pencil is 10 cm. Calculate the weight of the whole pencil, if the specific gravity of the wood is 0.7 gm/cm³ and that of the graphite is 2.1 gm/cm³.

- 40. The curved surface area of a cylindrical pillar is 264 m² and its volume is 924 m³. Find the diameter and the height of the pillar.
- 41. How many cubic metres of earth must be dug-out to sink a well 21 m deep and 6 m diameter?
- 42. A hollow garden roller, 63 cm wide with a girth of 440 cm, is made of 4 cm thick iron find the volume of the iron.
- 43. A rectangular sheet of paper 30 cm × 18 cm can be transformed into the curved surface of a right circular cylinder in two ways i.e., either by rolling the paper along its length or by rolling it along its breadth. Find the ratio of the volumes of the two cylinders thus formed.
- 44. The diagonal of a cube is $6\sqrt{3}$ cm. Find its volume and surface area.
- 45. A hollow garden roller of 42 cm diameter and length 147 cm is made of cast iron 2 cm thick. Find the volume of iron used in the roller.
- 46. The radii of two cylinders are in the ratio 3:5 and their heights are in the ratio of 2:3. Find the ratio of their curved surface areas.
- 47. True or false
 - (i) The surface area of a cuboid formed by joining face to face 3 cubes of side x is 3 times the surface area of a cube of side x.
 - (ii) Two cuboids with equal volumes will always have equal surface areas.
 - (iii) Two cylinders with equal volume will always have equal surface areas
 - (iv) The surface area of a cube formed by cutting a cuboid of dimensions $2 \times 1 \times 1$ in 2 equal parts is 2 sq. units.
 - (v) The area of a trapezium become 4 times if its height gets doubled.
- 48. Match following figures with their areas:
 - (i) Equilateral Δ of side a

(a) $\frac{3a^2}{4}$

(ii) Right angled triangle with sides a, $\sqrt{3}$ a, 2a

(b) $\frac{3a^2}{\sqrt{2}}$

(iii) Square with diagonal = $\frac{\sqrt{3a}}{\sqrt{2}}$

(c) $\frac{\sqrt{3a^2}}{4}$

(iv) Rectangle with sides = $\frac{\sqrt{3}a}{\sqrt{2}}$, $\sqrt{3}a$

(d) $\frac{\sqrt{3}}{2}a^2$

EXERCISE – 3

1.		fields are in the ratio 16	: 49. If the radius of th	e latter is 14 m, then what is the		
	radius of the former:	4) 0	() 10	(1) 22		
_	(a) 4 m	(b) 8 m	(c) 18 m	(d) 32 m		
2.	If the ratio of areas of two					
	(a) 2:3	(b) 3:2	(c) 4:9	(d) 9:4		
3.	The perimeter of a circle is	equal to the perimeter of	f a square. Then, their are	eas are in the ratio:		
	(a) 4:1	(b) 11:7	(c) 14:11	(d) 22:7		
4.	The diameter of a wheel is	1.26 m. How far will it to	ravel in 500 revolutions?			
	(a) 1492 m	(b) 1980 m	(c) 2530 m	(d) 2880 m		
5.	The number of revolutions	a wheel of diameter 40 c	m makes in travelling a	distance of 176 m, is:		
	(a) 140	(b) 150	(c) 160	(d) 166		
6.	The radius of a wheel is 0.2	25 m. The number of rev	olutions it will make to t	ravel a distance of 11 km will be:		
	(a) 2800	(b) 4000	(c) 5500	(d) 7000		
7.	The wheel of an engine, m	neters in circumference m	nakes 7 revolutions in 9	seconds. The speed of the train in		
	km per hour is:					
	(a) 130	(b) 132	(c) 135	(d) 150		
8.	The wheel of a motorcycle	e, 70 cm in diameter, mal	xes 40 revolutions in eve	ery 10 seconds. What is the speed		
	of the motorcycle in km/hr	?				
	(a) 22.32	(b) 27.68	(c) 31.68	(d) 36.24		
9.	Wheels of diameters 7 cm	and 14 cm start rolling	simultaneously from X	and Y, which are 1980 cm apart,		
	towards each other in opposite directions. Both of them make the same number of revolutions per second. If					
	both of them meet after 10 seconds, the speed of the smaller wheel is:					
	(a) 22 cm/sec	(b) 44 cm/sec	(c) 66 cm/sec	(d) 132 cm/sec		
10	•					
10.	A toothed wheel of diameter 50 cm is attached to a smaller wheel of diameter 30 cm. How many revolutions will the smaller wheel make when the larger one makes 15 revolutions?					
	(a) 18	(b) 20	(c) 25	(d) 30		
11						
11.	Find the diameter of a whe		-			
10	(a) m	(b) m	(c) m	(d) m		
12.	The font wheels of a wagon are 2p feet in circumference and the rear wheels are 3p feet in circumference.					
		ve made 10 more revolu	tions than the rear whee	ls, how many feet has the wagon		
	travelled?					
	(a) 30p	(b) 60p	(c) 90p	(d) 150 p		
13.	A circular ground whose of	liameter is 35 meters, ha	s a 1.4 m broad garden	around it. What is the area of the		
	garden in square metres?					

16. A circular park has a path of uniform width around it. The difference between outer and inner circumferences of the circular path is 132 m. Its width is:

(a) 20 m (b) 21 m (c) 22 m (d) 24 m

17. A circular swimming pool is surrounded by a concrete wall 4 ft. wide. If the area of the concrete wall surrounding the pool is that of the pool, then the radius of the pool is:

(a) 8 ft (b) 16 ft (c) 20 ft (d) 30 ft

18. The ratio of the outer and the inner perimeters of a circular path is 23 : 22. If the path is 5 meters wide, The diameter of the inner circle is:

(a) 55 m (b) 110 m (c) 220 m (d) 230 m

(a) 22 m^2 (b) 77 m^2 (c) 154 m^2 (d) 308 m^2

19. What will be the area of a semi-circle of 14 m diameter?

(a) 22 m^2 (b) 77 m^2 (c) 154 m^2 (d) 308 m^2

20. A semi-circular shaped window has diameter of 63 cm. Its perimeter equals:

(a) 126 cm (b) 162 cm (c) 198 cm (d) 251 cm

21. The length of a room is 5.5 m and width is 3.75 m. Find the cost of paving the floor by slabs at the rate of Rs 800 per sq. metre.

(a) Rs. 15,000 (b) Rs. 15,550 (c) Rs. 15600 (d) Rs. 16,500

22. The length of a rectangle is 18 cm and its breadth is 10 cm. When the length is increased to 25 cm, what will be the breadth of the rectangle if the area remains the same?

(a) 7 cm (b) 7.1 cm (c) 7.2 cm (d) 7.3 cm

23. A rectangular plot measuring 90 meters by 50 meters is to be enclosed by wire fencing. If the poles of the fence are kept 5 metres apart, how many poles will be needed?

(a) 55 (b) 56 (c) 57 (d) 58

24. A length of a rectangular plot is 60% more than its breadth. If the difference between the length and the breadth of that rectangle is 24 cm, what is the area of that rectangle?

(a) 2400 sq. cm (b) 2480 sq. cm (c) 2560 sq. cm (d)Data inadequate

25. A rectangular parking space is marked out by painting three of its sides. If the length of the unpainted side is 9 feet, and the sum of the lengths of the painted sides is 37 feet, then what is the area of the parking space in square feet?

(a) 46 (b) 81 (c) 126 (d) 252

26. The difference between the length and breadth of a rectangle is 23m. If its perimeter is 206 m then its area is:

- (a) 1520 m^2
- (b) 2420 m^2
- (c) 2480 m^2
- (d) 2520 m^2
- 27. The length of a rectangular plot is 20 metres more than its breadth. If the cost of fencing the plot @ Rs. 26.50 per metre is Rs. 5300, what is the length of the plot in meters?
 - (a) 40

- (b) 50
- (c) data inadquete
- (d) none of these
- 28. The breadth of a rectangular field is 60% of its length. If the perimeter of the field is 800 m., what is the area of the field?
 - (a) 18750 sq. m
- (b) 37500 sq. m
- (c) 40000 sq. m
- (d) 48000 sq. m
- 29. The ratio between the length and the perimeter of a rectangular plot is 1 : 3. What is the ratio between the length and breadth of the plot?
 - (a) 1:2
- (b) 2:1
- (c) 3:2
- (d) Data inadequate
- 30. The ratio between the length and the breadth of a rectangular park is 3: 2. If a man cycling along the boundary of the park at the speed of 12 km/hr completes one round in 8 minutes, then the area of the park (in sq.) is:
 - (a) 15360
- (b) 153600
- (c) 30720
- (d) 307200
- 31. Three cubes of side 4 cm each are joined end to end to form a cuboid. The surface area of the resulting cuboid and total surface area of the three cubes are in the ratio:
 - (a) 1:1

- (b) 7:3
- (c) 7:9
- (d) 9:7
- 32. The radii of three cylindrical jars of equal height are in the ratio 1:2:3. Second jar is full with water which is first poured into the first jar. After filling the first jar, water is poured into the third jar. Which of the following statements is true?
 - (a) Third jar is half full

(b) Third jar is one third full

(c) Third jar is two thirds full

- (d) Third jar is four ninths full.
- 33. The two diagonals of a rhombus are 64 cm and 48 cm. What is its area?
 - (a) 1639 sq. cm
- (b) 1250 sq. cm
- (c) 1600 sq. cm
- (d) 1536 sq. cm
- 34. The length of a rectangular plot is 20 m more than its breadth. If the cost of fencing the plot at the rate of ₹ 26.50 per m is ₹ 5300, then what is the length of the plot?
 - (a) 10 cm
- (b) 20 cm
- (c) 60 cm
- (d) 80 cm
- 35. The base of a solid cylinder of height 10 cm has radius 7 cm. Its total surface area is:
 - (a) 748 cm²
- (b) 514 cm²
- (c) 154 cm²
- (d) 176 cm^2
- 36.A tank 72 cm long, 60 cm high, 36 cm wide contains water to a depth of 18 cm. A metal block 48 cm by 36 by 15 cm is put into the tank and totally submerged. What is the rise in water level?

- (a) 10 cm
- (b) 20 cm
- (c) 30 cm
- (d) 40 cm
- 37. What is the area of the triangle ADE in the following figure?

(a) 45 cm²

(b) 50 cm²

(c) 55 cm²

(d) 40 cm²

38. The ratio the length and the perimeter of a rectangular plot 1 : 3 and the ratio between the breadth and perimeter of the plot is 1 : 6. What is the ratio between the length and area of that plot?

(a) 2:1

(b) 1:6

(c) 1:8

(d) Data inadequate

39. The area of a quadrilateral ABCD, in which <ABD = 90°, <BCD is an equilateral triangle of side 24 cm and AD = 26 cm is:

(a) 120 cm²

(b) 249.41 cm²

(c) 369.41 cm²

(d) 469.41 cm²

40. The parallel sides of a tapezium are 60 cm and 77 cm and non – parallel sides are 26 cm and 26 cm. The approximate area of trapezium is:

(a) 1683 cm²

(b) 204 cm²

(c) 1440 cm²

(d) 1600 cm²

41. The areas of the three adjacent faces of a cuboidal box are 120 cm², 72 cm² and 60 cm² respectively. The volume of the box is:

(a) 720 cm^3

(b) 864 cm³

(c) 936 cm³

(d) 1060 cm³

42. The sum of the length, breadth and the height of a cuboid is 20 cm and the length of its diagonal is 12 cm. Find the total surface area of the cuboid:

(a) 156 cm²

(b) 256 cm²

(c) 169 cm^2

(d) 269 cm²

43. The diamesions of a piece of iron in the shape of a cuboid are $270 \text{ cm} \times 100 \text{ cm} \times 64 \text{ cm}$. If it is melted and recast into a cube then the surface area of the cube will be:

(a) 14400 cm²

(b) 44200 cm²

(c) 57600 cm²

(d) 86400 cm²

44. The length of a rectangle is increased by 50%. By what per cent should be the breadth be becreased to get the same area?

(a) 50%

(b) $33\frac{1}{2}\%$

(c) 25%

(d) $40\frac{1}{2}\%$

45.Sam has 3 indetical squares. He places one square on top of 2 squares as shown in the figure. What is the area of the overlap?

(a) 88 cm²

(b) 92 cm²

(c) 78 cm²

(d) 112 cm²

46. Find the ratio of the area of a square to that of the square drawn on its diagonal.

(a) 1:2

(b) $1:\sqrt{2}$

(c) 2:1

(d) $\sqrt{2}$: 1

47.A covered wooden box has the inner dimensions as 115 cm, 75 cm and 35 cm and the thickness of wood is 2.5 cm. The volume of the wood is -

(a) 81000 cu. Cm

(b) 81775 cu.cm

(c) 82125 cu. Cm

- (d) None of these
- 48.A design has been drawn on a tile. ABCD and PQRS both are in the shape of a rhombus. Find the total area of semicircles drawn on each side of rhombus ABCD.

- (a) 142.843 cm²
- (b) 128.973 cm²
- (c) 39.286 cm²
- (d) 157.14 cm²
- 49. If the height of a cylinder becomes $\frac{1}{2}$ of the original height and the radius is doubled, then volume of cylinder becomes _____ of its original volume.
 - (a) 2 times
- (b) $\frac{1}{2}$ times
- (c) $\frac{1}{4}$ times
- (d) 3 times
- 50. The area of a quadrilateral is 342 sq. m. The perpendiculars from two of its opposite vertices to the dagonal are 12 m and 12 m. What is the length of the diagonal?
 - (a) 28.6 m
- (b) 25.3 m
- (c) 28. 5 cm
- (d) 22.5 m

51. Find the total area of shaded region in the given figure.

- (a) 400 cm²
- (b) 404 cm²
- (c) 396 cm²
- (d) 275 cm²
- 52. There are two boxes shown in the figure. Which box requires more amount of material to be made?

- (a) Box (i)
- (b) Box (ii)
- (c) Both requires equal amount of material
- (d) Can't be determined
- 53.A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm. If the bowl is filled with soup to a height of 4 cm, how much soup the hospital has to prepare daily to serve 250 patients?
 - (a) 38 L

- (b) 40 L
- (c) 39.5 L
- (d) 38. 5 L

EXERCISE - 4

- 1. What is the percentage change in the total surface area of a cylinder with volume $\frac{48400}{7}$ cu.cm, and radius 10 cm when it is cut into two equal parts along its horizontal cross section?
 - (a) 35.26%
- (b) 25.48%
- (c) 15.25%
- (d) 31.25%
- 2. A swimming pool is 24 m long and 15 m broad, when a number of men dive into the pool, the height of the water rises by 1 cm. If the average amount of water displaced by one of the men be 0.1 cu. M, how many men are there in the pool?
 - (a) 42

- (b) 46
- (c) 32
- (d) 36
- 3. The length and breadth of a hall are 8 m 75 cm and 6 m 25 cm respectively. The largest possible size of the square tiles which can be used to pave the floor is:
 - (a) $25 \text{ cm} \times 25 \text{ cm}$
- (b) $75 \text{ cm} \times 75 \text{ cm}$
- (c) $50 \text{ cm} \times 50 \text{ cm}$
- (d) $125 \text{ cm} \times 125 \text{ cm}$
- 4. A powder tin has a square base of side 12 cm with height equal to 10 cm. A second tin is cylindrical with base diameter 14 cm and height 16 cm. The difference in their capacities is: (in cm³)
 - (a) 1064

- (b) 1440
- (c) 1024
- (d) 1120
- 5. Four identical coins are placed in a square. For each coin, the ratio of area to circumference is same as the ratio of circumference to area. Then, find the area of the square that is not covered by the coins.

- (a) $\frac{96}{7}$ sq. units
- (b) $\frac{80}{3}$ sq. units
- (c) $\frac{95}{8}$ sq. units
- (d) $\frac{32}{5}$ sq. units
- 6. The perimeter of a rectangular garden is 420 cm. If its length is increased by 20% and breadth is decreased by 40%, we get the same perimeter. Then, the length and breadth of the new formed rectangular garden, respectively are
 - (a) 115 cm and 95 cm

(b) 168 cm and 42 cm

(c) 210 cm and 210 cm

- (d) 95 cm and 115 cm
- 7. What is the length of the greatest rod that can be placed in a room whose length is 10, breadth 8 m and height 6 m. Given that $\sqrt{2} = 1.42$.
 - (a) 13.2

- (b) 14.2
- (c) 15.2
- (d) 16.2
- 8. Two cubes, each of edge 12 cm are joined end to end. Find the surface area of resulting cuboid.
 - (a) 1450 cm².
- (b) 1440 cm²
- (c) 1420 cm²
- (d) 1410 cm²
- 9. Three cubes whose edges are 3 cm, 4 cm and 5 cm respectively are melted to form a single cube. Find the surface area of the new cube.
 - (a) 210 cm²
- (b) 213 cm²
- (c) 224 cm^2
- (d) 216 cm²

10. Three cubes of metal who	ose edges are in the ratio	3:4:5 are melted 6	lown into a single cube whose diagonal
is $12\sqrt{3}$ cm. Find the edg	ge of smallest of the three	e given cubes.	
(a) 6 cm	(b) 7 cm	(c) 8 cm	(d) 9 cm
11.If the radius of the base of	of the right circular cylin	der is reduced by 50%	6. Keeping the same height, what is the
ratio of the volume of the	e reduced cylinder to that	t of the original.	
(a) 1:9	(b) 1:8	(c) 1:4	(d) 1:2
12. The radii of the two cyli	inders are in the ratio 2:	3 and their heights a	re in the ratio 5:3 what is the ratio of
their volumes?			
(a) 20:27	(b) 18:27	(c) 15 : 21	(d) 11:15
13. The volume of the metall	lic cylindrical pipe is 748	8 cm ³ . Its length is 14	cm and its external radius is 9 cm. Find
its thickness.			
(a) 4	(b) 3	(c) 2	(d) 1
14. Find the number of coins	1.5 cm in diameter and	0.2 cm thick to be me	elted to form a right circular cylinder
whose height is 8 cm and	l diameter 6 cm.		
(a) 620	(b) 640	(c) 660	(d) 680
15. The vertical height of a c	onical tent is 42 dm and	its diameter of the ba	se is 54 dm. How many persons can it
accommodate if each per	son is to be allowed 291	6 dm ³ of space? (π =	22/7)
(a) 11	(b) 10	(c) 9	(d) 8
16.A piece of metal in the fo	orm of a cone of radius 3	cm and height 7 cm	melted and cast into a cube. Find the
side of cube (nearest to a	whole number)		
(a) 5 cm	(b) 4 cm	(c) 3 cm	(d) 2 cm
17.A right circular cylinder	and a right circular cone	have equal bases hei	ghts. If their curved surfaces are in the
ratio 8:5, what is the rat	io of their base to their h	neights?	
(a) 3:4	(b) 5:4	(c) 6:7	(d) 9:8
18. Three solid spheres of go	old whose radii are 1 cm,	6 cm and 8 cm respe	ctively are melted into a single solid
sphere. Find the radius of	f the sphere.		
(a) 6 cm	(b) 7 cm	(c) 8 cm	(d) 9 cm
19.It needs 50 ml paint for p	painting a picture 50 cm	\times 25 cm. How much	paint is needed to paint a similar picture
$100 \text{ cm} \times 50 \text{cm}$?			
(a) 100 ml	(b) 400 ml	(c) 750 ml	(d) 200 ml
20. The sides of a rectangula	r plot are in the ratio of	4 : 3 and its area is 14	52 m ² . Find the cost of fencing it at Rs.
2.50 per metre.			
(a) Rs. 480	(b) Rs. 385	(c) Rs. 375	(d) Rs. 365
21. How many metres of carp	pet 50 cm wide will be re	equired to cover the f	loor of a room 30 m \times 20m?
(a) 1000	(b) 600	(c) 2400	(d) 1200

22	2.A room is 15 metres long, 4	metres broad and 3 metr	es high. Find the cost of	white washing its four walls at
	50 p. per m ² .			
	(a) Rs. 60	(b) Rs. 57	(c) Rs. 55	(d) Rs. 52
23	The area of four walls of roo	om is 120 m ² and its leng	th is twice the breadth, th	ne height being 4 metres. Find
	the area of the floor.			
	(a) 50 m ²	(b) 60 m ²	(c) 75 m ²	(d) 100 m ²
24	.Find the cost fencing a circu	lar field at the rate of 50	paise per metre if its are	a is 138600 m ² . ($\pi = 22/7$)
	(a) Rs. 660	(b) Rs. 540	(c) Rs. 700	(d) Rs. 800
25	The inside circumference of	a circular field is 1188 n	n. A road 7 m wide is con	nstructed on the outside. Find its
	area.			
	(a) 8070 m ²	(b) 8270 m ²	(c) 8370 m ²	(d) 8470 m ²
26	The area of two circular field	ds is in the ratio 16:49.	If the radius of the latter	is 14 m, what is the radius of the
	former?			
	(a) 32 m	(b) 18 m	(c) 8 m	(d) 4 m
27	The radii of the two circular	field is in the ratio 3:5.	The area of the first field	d is what percent less than the
	area of the second?			
	(a) 50%	(b) 60%	(c) 40%	(d) 64%
28	3. What is the radius of a circul	lar field whose area is eq	ual to the sum of the are	as of the three circular fields with
	radii 4 m, 4 . 5 m and 6 m re	espectively?		
	(a) 9 m	(b) 10. 5 m	(c) 10 m	(d) 8. 5 m
29	If all the sides of a triangle b	be increased by 200 perce	ent what is the correspon	ding increase in its area?
	(a) 300%	(b) 400%	(c) 600%	(d) 800%
	.How much paint is required			$m \times 4 m \times 3m$?
	(a) 56 litres	(b) 55 litres	(c) 52 litres	(d) 50 litres
				was made by melting them. Find
	the edge of the new cube.			
	(a) 8	(b) 12	(c) 14	(d) 10
32	2.A closed wooden box 44 cm	long, 32 wide and 28 cm	n high of wood 2.5 cm th	nick. Find the quantity of wood
	used.			
	(a) 16215 cm ³	(b) 15005 cm ³	(c) 16205 cm ³	(d) 15205 cm ³
33	The circumference of a circle	e is 100 m. What is the s	ide of a square inscribed	in the circle?
	(a) $\frac{100\sqrt{2}}{\pi}$	$(b) \frac{50\sqrt{2}}{\pi}$	$(c)\frac{100}{\pi}$	(d) $50\sqrt{2}$
34	.A wire is in the form of a cir	cle of radius 28 cm. What	at is the area of the squar	be into which the wire is bent (π
	= 22/7)		•	·
	(a) 1936 cm ³	(b) 1866 cm ³	(c) 19.36 cm ³	(d) None of these

	ectangle is increased by 50% and	nd its breadth is decreased	d by 25%, what is the change
percent in its area?		() 250/ :	(1) 200(1
(a) 12.5% increas	` '	(c) 25% increase	(d) 20% decrease
			ust be poured into it to raise the
•	etres. [1 cub metric can contain	_	
(a) 540	(b) 1280	(c) 1080	(d) 1380
37. How many cubes	can be cut out of a metre cube?	Given that the parameter	of the small cube is 4 cm.
(a) 7500	(b) 15625	(c) 9261	(d) 17576
38.A water tank whos	se dimensions are 1.5 m, 0.75 m	and 0.48 m is full. Its co	ontents are emptied into another
empty tank whose	base area is 1 m ² . How much the	ne water level shall rise?	
(a) 64 cm	(b) 54 cm	(c) 5.4 cm	(d) 34 cm
39.A hall is 100 m \times	75 m \times 22m, the number of per	rsons, who can be accomm	modated in it, each requiring 50 cm
of air are:			
(a) 2200	(b) 1100	(c) 2500	(d) 3300
40. The diagonal of cu	be is 15 m what is its volume?		
(a) $375\sqrt{3} \text{ m}^3$	(b) 375 m ³	(c) $125\sqrt{3} \text{ m}^3$	(d) $750\sqrt{3} \text{ m}^3$
41.A cubic metre of a	certain metal is hamered to fro	m a fine sheet so as to co	ever one hectare of lang. What is the
thickness of the sh	eet?		
(a) 1 cm	(b) 0. 1 cm	(c) 0. 01 cm	(d) 0.001 cm
42.A conical flask of	radius r and height h is full of w	vater. It is emptied into a	nother cylindrical flask of radius xr.
If this flask become	es full, what is its height?		
(a) 3x ² h	$(b)\frac{h}{3x^2}$	$(c)\frac{xh}{3}$	$(d)\frac{3h}{x}$
-	nstruct a conical circus tent of r en what will be the length of th		nt height. If the width of the canvas e needful.
(a) 700 ml	(b) 1250 m	(c) 776.5 m	(d) 770 m
44.Two spheres have	volumes in the ratio 64: 729. It	f 160 ml paint is required	for painting the surface area of the
smaller sphere, ho	w much paint is required to pair	nt the larger one?	
(a) 729 ml	(b) 750 ml	(c) 216 ml	(d) 810 ml
45.The diagonal of a	square A is a + b, the diagonal of	of a square B with twice t	the area of A is:
(a) $2(a+b)$	(b) $\sqrt{2}$ (a + b)	(b) $a + 2b$	(d) $2a + 4b$
46. The length of a red	etangle is 1 cm more than its wi	dth and its perimeter is 1	4 cm, then the area of the rectangle
is			
(a) 16 cm ²			
(b) 14 cm ²	(b) 12 cm ²	(c) 10 cm ²	(d) none of these
47.If each of the dime	ensions of a rectangle is increase	ed by 100%, then the area	a is increased by
(a) 100%	(b) 200%	(c) 300%	(d) 400%

48. If the length of a rectangle is increased by $\frac{1}{3}$ rd and the width is decreased by $\frac{1}{3}$ rd, then the area of the				
rectangle i	s decreased by the fr	raction		
(a) 2/3	(t	o) 1/6	(c) 1/9	(d) 1/8
49. The length	of a given rectangle	e is increased by 20% a	nd the breadth is decreas	sed by 20%, then the area
(a) Remai	ns the same		(b) Increase by 5%	
(c) Decrea	ases by 5%		(d) Decreases by 4%	
50.A room is	rectangular in shape	and has a flat roof. It i	s 10 m wide, 13 m long	and 5 m high. It is to be painted
inside and	outside and on the fl	loor but not on the ceili	ing, then the total area to	be painted is
(a) 360 m	2 (t	o) 460 m²	(c) 490 m ²	(d) 590 m ²
51.The side o	f an equilateral trians	gle are $(2a - b)$ cm, $(a - b)$	+ 3b) cm and $(2a - 2b +$	1), then the perimeter of the
triangle is:				
(a) 3 cm	(t	o) 12 cm	(c) 15 cm	(d) 21 cm
52.In a right t	riangle with sides x a	and y, hypotenuse z, th	e altitude drawn on the l	nypotenuse is a, then
(a) Xy =	a ² (t	$(x) \frac{1}{x} + \frac{1}{y} = \frac{1}{a}$	(c) $2 + y^2 = 2a^2$	(d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$
53.If the diag	onals of a rhombus a	are 24 dm and 10 dm, tl	nen the perimeter of the	rhombus will be
(a) 68 dm	(t	o) 60 dm	(c) 52 dm	(d) 50 dm
54.If the radio	is of the circle is inci	reased by 100%, then t	he area is increased by	
(a) 100%	(t	o) 200%	(c) 300%	(d) 400%
55.The side o	f a square is 2 cm an	d semicircles are const	ructed on each side of th	ne square, then the area of the
whole figu	re is			
(a) $(4+2x)$	au) cm ² (h	$(4 + 4\pi) \text{ cm}^2$	(c) $4\pi \text{ cm}^2$	(d) 8π cm ²
56. The area o	f a square that can be	e inscribed in a circle o	of radius r is	
(a) r ²	(t	o) 2r ²	(c) 4r ²	(d) $1\pi^2$
57. If the circu	imference of a circle	is reduced by 50%, the	en the area will be reduc	ed by
(a) 50%	(t	0) 25%	(c) 75%	(d) 12.5%
58. The circum	nference of a circle is	s 100 cm. Then the side	e of a square inscribed in	n the circle is
(a) $\frac{100\sqrt{2}}{\pi}$	em (t	$\frac{50\sqrt{2}}{\pi} \text{ cm}$	$(c) \frac{100}{\pi} cm$	(d) $50\sqrt{2}$ cm
59. The area o	f a circle inscribed in	n an equilateral triangle	e is 48π square units. Th	en the perimeter of the triangle is
(in units)				
(a) $71\sqrt{3}$	(t	$(3) 48\sqrt{3}$	(c) 72	(d) 36
60. The area o	f the largest triangle	that can be inscribed in	n a semi circle whose rad	dius r cm is
(a) 2 r cm	2 (t	o) r ² cm ²	(c) 2r ² cm ²	(d) $\frac{1}{4}$ r ² cm ²
61.A cord in	he form of a square	encloses the area 'S' cr	m ² . If the same cord is be	ent into the form of a circle, then
the area of	the circle is			
(a) $\frac{\pi S^2}{4}$	(t	o) $4\pi S^2$	$(c)\frac{s}{4\pi}$	$(d) \frac{4S}{\pi}$

62.A circula	r disc of radius 10	cm is divided into sectors	s with angles 120° and 15	50°, then the ratio of the areas of
two secto	ors is			
(a) 4:5		(b) 5:4	(c) 2:1	(d) 8:7
63. The area	s of three adjacent t	faces of a cuboid are x, y	and z, then the volume of	of the cuboid is:
(a) Xy		(b) Xyz	(c) \sqrt{xyz}	(d) $\sqrt[3]{xyz}$
64. Three me	etal cubes of volum	e 125 cm ³ , 64cm ³ and 27	cm3 are melted to form a	new cube, then the edge of the
new cube	e formed is			
(a) 12 ci	n	(b) 6 cm	(c) 20 cm	(d) 10 cm
65.If 'I', 'b'	and 'h' of a cuboic	l are increased, decreased	d and increased by 1%, 3	% and 2% respectively, then the
volume o	of the cuboid			
(a) Incre	eases			
(b) Decr	eases	· ·		
(c) Incre	eases or decreases d	epending on original din	nensions	
(d) Can'	t be calculated with	given data	-	
66.A metal	pipe has an externa	I diameter of 4 cm and in	ternal diameter of 3 cm a	and is 20 cm long, then the
volume o	of the metal used is			
(a) 22 cı	m³	(b) 110 cm ³	(c) 220 cm ³	(d) 440 cm^3
67.A rectang	gular paper of dime	nsions 6 cm and 3 cm is	rolled to form a cylinder	with height equal to the width of
the paper	, then its base radiu			
(a) $\frac{6}{\pi}$ cm		(b) $\frac{3}{2\pi}$ cm	(c) $\frac{6}{2\pi}$ cm	(d) $\frac{9}{2\pi}$ cm
68.A conica	l container of base	radius 'r' and height 'h'	is full of water which is p	ooured into a cylindrical
containe	of radius mr, then	it will occupy a height ed	qual to	
(a) 3m ² h	ı	$(b)\frac{h}{3m^2}$	$(c)\frac{mh}{3}$	$(d)\frac{3h}{m}$
69.The volu	me of a sphere of d	iameter 2p cm is given b	у	
(a) πp^2	cm ³	(b) $\pi p^3 \text{cm}^3$	(c) $4\pi p^3 \text{cm}^3$	$(d) \frac{4}{3} \pi p^3 cm^3$
70. The radio	as of a solid sphere	is 'r' cm. It is bisected, t	hen the total surface area	of the two pieces obtained is
(a) $8\pi r^2$	cm ²	(b) $4\pi r^2 \text{cm}^2$	(c) $5\pi r^2 \text{cm}^2$	(d) $6\pi r^2 \text{cm}^2$
71. The radio	as of a sphere is inc	reased by 50%, then the	increase in surface area of	of a sphere is
(a) 200%	ó	(b) 150%	(c) 125%	(d) 50%
72.If the vol	ume in m ³ and the	surface area in m2 of a sp	here are numerically equ	al, then the radius of the sphere
in m is				
(a) 4		(b) 2	(c) 3.5	(d) 3
73.A sphere	of radius 5 cm wei	ghts 4.4 kg, then the wei	ght of a sphere of the sar	ne material whose radius is 3 cm
is				
(a) 2.64	kg	(b) 1.584 kg	(c) 0.9504 kg	(d) $\frac{4}{3}$ (0.9504) kg

74. The volume of a sphere is $\frac{4}{3}$	πr^3 cubic units, then the	ratio of the volume of a	cube to that of a sphere which					
will fit inside the cube is								
(a) $\frac{4}{3}$: π	(b) 6 : π	(c) 4:3	(d) $4 : \pi$					
75. If S_1 and S_2 be the whole s	urface of a sphere and the	curved surface of circui	mscribed cylinder, then S ₁ is					
equal to								
(a) S ₂	(b) 2S ₂	(c) $\frac{2}{3}$ S ₂	(d) none of these					
76.A sphere has the same volu	me as a cylinder whose h	eight is equal to the dian	neter of its cross section, then the					
ratio of their radii is								
(a) $\sqrt{\frac{2}{3}}$	$(b) \sqrt{\frac{3}{2}}$	(c) $\sqrt{\frac{2}{3}}$	(d) $\sqrt[3]{\frac{2}{3}}$					
77.A right circular cone and a	cylinder have a circle of u	unit radius as base and th	eir heights are equal to the radius					
itself and a hemisphere has	the same radius, then the	ir volumes are proportion	nal respectively to					
(a) 1:2:3	(b) 3:2:1	(c) 2:1:3	(d) 1:3:2					
78. In the case of cuboid, No do	enotes the number of vert	ices, N ₁ the number edge	es and N ₂ the number of faces,					
then								
(a) $N_0 + N_1 = N_2 + 2$		(b) $N_0 + N_2 = N_1 + 2$						
(c) $N_1 + N_2 = N_0 + 2$		(d) $N_1 + N_2 = 2N_0$						
79. If the diagonal of a rectangle is twice one of the sides, then the ratio of the sides of the rectangle is								
(a) $\sqrt{2}:1$	(b) $\sqrt{3}$: 1	(c) $2\sqrt{2}:1$	(d) $2\sqrt{3}:1$					
80. The length of a rectangle exceeds its breadth by 33 cm. If the numerical values of the area and the perimeter of								
the rectangle are equal, the	n the breadth of a rectangl	le will be	1					
(a) 2 cm	(b) 3 cm	(c) 1 cm	(d) 5 cm					
81. If the length of every side of	of a triangle is increased b	y 50%, then then area of	the triangle will be increased by					
(a) 50%	(b) 100%	(c) 125%	(d) 150%					
82. If the area of a circle is halv	ved when its radius is deci	reased by n, then the rad	ius is equal to					
(a) $N(2+\sqrt{2})$	(b) N $(\sqrt{2} - 1)$	(c) N $(3 - \sqrt{2})$	(d) $N\sqrt{2}$					
83. If the number of units in the	e circumference of a circle	e is same as the number	of units in the area, then the					
radius of the circle will be								
(a) 1 unit	(b) 2 unit	(c) 3 units	(d) 4 units					
84. The side of square is 2 cm.	Semicircles are construct	ed on two sides of the sq	uare, then the area of the whole					
figure is								
(a) $(4 + \pi)$ cm ²	(b) $(4 + 4\pi)$ cm ²	(c) $4\pi \text{ cm}^2$	(d) 8π cm ²					
85.A piece of wire 132 dm long is bent successively in the shape of an equilateral triangle, a square, a regular								
hexagon and a circle. Then	the area included is large	st when the shape is						
(a) Triangle	(b) Square	(c) Hexagon	(d) Circle					

86	A wire, in the shape of an eq	uilateral triangle, enclose	es an area 'S' cm². If the	same wire is bent to form a						
	circle, then the area of the circle will be									
	(a) $\frac{\pi S^2}{\pi}$	$(b)\frac{3\pi S^2}{\pi}$	$(c)\frac{3S}{\pi}$	$(d) \frac{3S\sqrt{3}}{\pi}$						
87	Two cubes have volumes in	the ratio 1:27, then the	ratio of the area of the fa	ce of one to that of the other is						
	(a) 1:3	(b) 1:6	(c) 1:9	(d) 1:18						
88	The ratio of the height of a c	ircular cylinder to the dia	ameter of its base is 1:2	, then the ratio of the areas of its						
	curved surface to the sum of	the areas of its two ends	is							
	(a) 1:1	(b) 1:2	(c) 2:1	(d) 1:3						
89	The curved surface of a circu	ular cylinder of height 'h	' and the curved surface	area of the cone of slant height						
	'2h' having the same circula	r base, are in the ratio of								
	(a) 1:2	(b) 2:1	(c) 1:1	(d) 1:3						
90	The volume of the greatest s	phere cut off from a cylin	ndrical wood of base radi	ius 1 cm and height 5 cm is						
	(a) $\frac{4}{3} \times (5\pi) \text{cm}^3$	(b) $\frac{4}{3} \pi \text{ cm}^3$	(c) 5π cm ³	$(d)\frac{10\pi}{3}cm^3$						
91	A solid cylinder of glass who	ose diameter is 1.5 m and	l height 1 m is melted an	d recasted into a sphere, then the						
	radius of the sphere is									
	(a) 1 m	(b) 0.75 m	(c) 1.25 m	(d) 1.5 m						
92	The perimeter of a right angl	led triangle is 60 cm and	its hypotenuse is 26 cm,	then the area of the triangle is						
	(a) 120 cm ²	(b) 121 cm ²	(c) 119 cm ²	(d) 125 cm ²						
93	93. The side of a regular hexagon is 'p' cm, then its area is									
	(a) $\frac{\sqrt{3}}{2}$ p ² cm ²	$(b)\frac{3\sqrt{3}}{2}p^2cm^2$	(c) $2\sqrt{3}p^2$ cm ²	(d) $6\pi^2 \text{cm}^2$						
94	If every side of a triangle is	doubled, then the area of	the new triangle is 'K' ti	mes the area of the old one. The						
	value of K is		1008							
	(a) 2	(b) 3	(c) $\sqrt{2}$	(d) 4						
95	If the longer side of a rectang	gle is doubled and the otl	her reduced to half, then	the area of the new rectangle						
	goes up by									
	(a) 50%	(b) 100%	(c) 150%	(d) No change						
96	If a rectangle of sides 5 cm a	and 15 cm is to be divided	d into three squares of eq	ual area, then the sides of the						
	squares will be									
	(a) 4 cm	(b) 6 cm	(c) 7 cm	(d) None of these						
97	97. Three cubes of metal whose edges are 3 cm, 4 cm and 5 cm are melted to form a new cube whose side is									
	(a) 4 cm	(b) 5 cm	(c) 6 cm	(d) 12 cm						
98	A closed tea box has 47 cm	\times 47 cm \times 60 cm internal	al dimensions, then the to	tal area of tin foil needed for						
	lining it is									
	(a) 1.57 m	(b) 1.81 m	(c) 1. 46 m	(d) 2. 10 m						

99. The length, breadth and height	ght of a cuboid are in the	ratio of 5:4:2 and the	total surface area is 1216 cm ² ,
then the volume of the cubo	id is		
(a) 2460 cm^3	(b) 2560 cm^3	(c) 2660 cm ³	(d) 2700 cm ³
100. A wood 1 cm thick require	ed to make a box of dime	ensions 24 cm \times 22 cm \times	17 cm, is
(a) 2276 cm ³	(b) 2500 cm ³	(c) 2600 cm^3	(d) 2376 cm ³
101. The volume of a solid cub	ical box whose surface a	rea is 600 cm ² is	
(a) 1000 cm^3	(b) 1200 cm ³	(c) 1100 cm ³	(d) 900 cm^3
102. If two cubes each of side	12 cm are joined end to e	nd, then the surface area	a the resulting cuboid is
(a) 1728 cm ²	(b) 1440 cm ²	(c) 1445 cm ²	(d) 1450 cm ²
103. The number of bullets of 1	radius 2 cm that can be m	ade from a cube of lead	whose side is 44 cm is
(a) 2540	(b) 2541	(c) 2560	(d) 2575
104. If the radius of a lead shot	9 cm is melted and recar	nted into a right circular o	cylinder of height 8 cm and
radius 6 cm, then the interna	al radius of the shot is (ap	pprox.).	
(a) 6 cm	(b) 7 cm	(c) 8 cm	(d) 9 cm
105. If a sphere has the same co	urved surface area as tota	al surface area of cone of	vertical height 40 cm and radius
30 cm, then the radius of the	e sphere is		
(a) $10\sqrt{6}$ cm	(b) $10\sqrt{3}$ cm	(c) $10\sqrt{2} \text{ cm}$	(d) 12 cm
106. If the sphere of radius 6 cm	n is melted and drawn int	to a wire of radius 0.2 cm	n, then the length of the wire is
(a) 75 cm	(b) 72 cm	(c) 72 cm	(d) 75 cm
107. If the radius of the base of	a right circular cone is ha	alved, keeping the height	same, then the ratio of the
volume of the reduced cone	to that of the original con	ne is	
(a) 2:1	(b) 4:1	(c) 1:4	(d) 1:2
108. The slant height of a right	circular cone is 10 m and	l its height is 8 m, then th	ne area of its curved surface is
(a) $80\pi \text{ m}^2$	(b) 60 m m^2	(c) 65 m^2	(d) 707 m^2
109. The cost of canvas require	d for a conical tent, of he		base 12 m, at the rate of Rs.
3.50 per m ² is			
(a) Rs. 620	(b) Rs. 600	(c) Rs. 640	(d) Rs. 660
110. The volume of the cone wh	hose vertical height is 8 r	n and the area of the base	e 156 m² is
(a) 416 m^3	(b) 415 m^3	(c) 312 m ³	(d) 468 m ³
111. The total surface area of a	hemisphere of radius r is	given by	
(a) $2\pi r^2$	(b) $7\pi r^2$	(c) $3\pi r^2$	(d) $4\pi r^2$
112. The total surface area of th	ne cylindrical iron pillar s	urmounted by a cone of	radius and height equal to that of
the cylinder ($r = 6$ cm, $h = 8$	s cm) is		
(a) 190m cm^2	(b) $192 \pi \text{cm}^2$	(c) 195m cm^2	(d) 198m cm^2
113. The curved surface area of	a right circular cone of h	neight 84 cm and diamete	er 70 cm is
(a) 10010 cm ²	(b) 100000 cm ²	(c) 10020 cm ²	(d) 11000 cm ²

114. The curved surface area of	a cone of slant height 1	and radius r is given by	
(a) $\frac{1}{3}\pi lr^2$	(b) πlr	(c) $\pi l r^2$	$(d) \frac{1}{3} \pi l r$
115.A conical tent of radius of	12 m and height 16 m is	to be made, then the cost	of canvas required at the rate of
Rs. 10 per m ² is			
(a) Rs. 7445	(b) Rs. 7543	(c) Rs. 7550	(d) Rs. 7500
116.A cone of height 10 cm and	d radius 10 cm is to be di	ivided into two parts by c	eutting through the mid point of
the vertical axis. Then the ve	olume of the conical part	is	
(a) $\frac{1000}{3} \text{ mcm}^3$	(b) $\frac{500}{3} \text{ mcm}^3$	(c) $\frac{250}{3} \pi \text{cm}^3$	(d) $\frac{125}{3} \text{ mcm}^3$
117.A circus tent is cylindrical	to a height of 5 m and co	onical above it. If its dian	neter is 140 m and the slant
height of the cone is 60 m, the	hen the total surface area	of the canvas required is	3
(a) 1540 m^2	(b) 3080 m ²	(c) 4620 m ²	(d) None of these
118. If the area of the base of a	right circular cone is 51	m ² and volume is 68 m ³ ,	then tis vertical height is
(a) 3.5 m	(b) 4 m	(c) 4. 5 m	(d) 5 m
119. If the diameter of a right co	one is 6 cm and its vertice	al height is 4 cm, then its	curved surface area is
(a) 47. 1 cm ²	(b) 48 cm ²	(c) 49 cm ²	(d) 50 cm ²
120. A right circular cylinder an	nd a right circular cone, b	oth having the same radi	us and height, then the ratio of
their volumes is			
(a) 2:1	(b) 3:1	(c) 1:2	(d) 1:3
121. If the height and radius of	a cone are doubled, then	the volume of the cone b	ecomes
(a) 2 times	(b) 4 times	(c) 8 times	(d) 10 times
122. The total area of sheet requ	ired to make an open co	ne of height 24 cm and ra	adius 7 cm is
(a) 470 cm ²	(b) 450 cm ²	(c) 425 cm ²	(d) 550 cm ²
123. If two cones have their hei	ghts in the ratio 1:3 and	radii 3:1, then the ratio	of their volumes is
(a) 1:3	(b) 3:1	(c) 2:3	(d) 3:2
124. If the area of the base of a	cone is 770 cm ² and the	curved surface area is 814	4 cm ² , then its volume is
(a) $616\sqrt{5} \text{ cm}^3$	(b) $616/\sqrt{5} \text{ cm}^3$	(c) $616\sqrt{3} \text{ cm}^3$	(d) $616/\sqrt{2} \text{ cm}^3$
125. If the radius and height of a	a cone are in the ratio 5:	12 and its volume is 314	cm ³ , then its slant height is
(a) 12 cm	(b) 10 cm	(c) 13 cm	(d) 15 cm
126. If the surface area of a spho	ere is 324π cm ² , then its	volume is	
(a) $950\pi \text{ cm}^3$	(b) $972\pi \text{ cm}^3$	(c) $975\pi \text{ cm}^3$	(d) $980\pi \text{ cm}^3$
127. The number of balls of rad	ius 1 cm that can be mad	e from a sphere of radius	s 10 cm will be
(a) 1000	(b) 10000	(c) 100000	(d) 100
128. Two right circular cones of	f dimensions $h = 4.1$ cm,	r = 2.1 cm and h = 4.3 c	m, $r = 2.1$ cm are melted to
form a sphere of radius			
(a) 2.5 cm	(b) 2. 7 cm	(c) 2.1 cm	(d) 2 cm
129. The number of balls of rad	ius 2 cm that can be mad	e out of a cube of side 44	1 cm are

143. The radius of a circle whose are is equal to the sum of the areas of two circles, where radii are 5 cm and 12

144. The diameter of a wheel is 98 cm. The number of revolutions in which it will have to cover a distance of

(c) 15 cm

(d) None

(b) 14 cm

cm, is

(a) 13 cm

1540 m is

ANSWER KEY

EXERCISE - 1

- 1. 1:2
- 2. 75%
- 3. Rs. 3033.84
- 4. 8 cm^2
- 5. 51 cm
- 6. (i) 7.2 cm
- (ii) 10.2 cm
- (iii) 8.4 cm

- 7. 195 m^2
- 8. 42 cm^2
- 9. 7056 m^2
- 10.18 cm
- 11. 180 cm^2
- 12.80 cm^2
- 13.216 cm^2
- 14.9 m
- 15.8 cm
- 16.45.5 cm²
- 17. 119 m^2
- 18. 350 cm²; Rs 8750
- 19. Rs 224.64
- 20.170 cm^2
- 21.10.5 cm
- 22. Rs 234
- 23. 1.224 m²
- 24.1.5 m
- 25. Rs 40,950
- 26. Rs 43,200
- 27.125%
- 28. Rs. 376
- 29.27 cm³
- 30.15m, 9m, 3 m
- 31.278 m^2
- 32.90 m^2
- 33.10 m^2
- 34.868 m²
- 35.17 m
- 36.40 cm
- 37.45000
- $38.216 \text{ cm}^3, 216 \text{ cm}^2$
- 39.4913 cm^3
- 40.40
- 41. 1:9

Pinnacle

- 42.216 cubes
- 43.3 cm
- 44.2.4 Iitres
- 45.20 cm
- 46.8
- 47.15 cm
- 48.6 cm
- 49. 240
- 51. (i) $\frac{1}{8}$ times (ii) 27 times
- 52.8 cm
- 53.72
- 54.2m
- 55.27000
- 56.500000 litres
- 57.30 m^3
- 58.6 m
- 59.90
- 60.15 cm
- 61.1:1
- 62. 2681.25 m²
- 63.3168 cm²
- 64.880 cm^2
- 65.10:9
- 66. Rs. 440
- 67. 2310 cm³
- 68.5:9
- 69.1:4
- 70.754.28 cm²
- 71.4.66 m
- 72.9240 cm³
- 73. 13860 cm³
- 74.3850 cm³
- 75.20:27
- 76. 1078 cn³

EXERCISE - 2

- 1. 96 min.
- 2. 8.04 kg
- 3. 11.25 cm
- 4. 486 cm^2
- 5. 400
- 6. 2:5
- 7. 26.4 kg
- 8. 800 buckets
- 9. Rs 8192
- 10. 13.11 kg
- 11. 1.2 m
- 12. 5 cm
- 13. 8.6 cm
- 14. 25 cm
- 15. 960 kg
- 16. 640 buckets
- 17. 80 cm
- 18. Rs. 960
- 19. 18.6 cm
- 20. 6 kg
- 21. 4 cm
- 22. 0.001 m
- 23. 57.6 kg
- 24. 0.3 m
- 25. Rs. 528
- 26. 48 m
- 27. 8 m, 12 m, 16 m
- 28. 600
- 29. 8 cm
- 30. 6 m
- 32. 328 cm
- 33. 924 cm²
- 34. Rs. 539
- 35. 450
- 36. 1 cm
- 37. 25 cm
- $38. 539 \text{ cm}^3$
- 39. 2.805 gm
- 40. 14 m, 6 m
- 41. 594 m³
- 42. 107712 cm³
- 43. 5:3
- 44. 216 cm³, 216 cm²
- 45. 36960 cm³
- 46. 2:5
- 47. (i) False
- (ii) False
- (iii) False
- (iv) False
- (v) False

Pinnacle

48. (i) \rightarrow (c); (ii) \rightarrow (d); (iii) \rightarrow (a), (iv) \rightarrow (b)

EXERCISE - 3

Ques.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ans.	b	a	С	b	a	d	b	С	С	С
Ques.	11.	12.	13	14.	15.	16.	17.	18.	19.	20.
Ans.	b	b	a	d	a	b	С	С	b	b
Ques.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
Ans.	d	С	b	С	С	d	d	b	b	b
Ques.	31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
Ans.	С	b	d	С	a	a	d	d	С	a
Ques.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
Ans.	a	b	d	b	a	a	С	d	a	С
Ques.	51.	52.	53.							
Ans.	b	b	d							

EXERCISE – 4

Ques.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ans.	d	d	d	С	a	b	b	b	d	a
Ques.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
Ans.	с	a		b	a	b	a	d	d	b
Ques.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
Ans.	d	b	a	a	d	с	d	d	d	с
Ques.	31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
Ans.	b	d	b	a	a	С	b	b	d	a
Ques.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
Ans.	С	b	d	d	b	b	c	с	d	
Ques.	51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
Ans.	d	d	С	С	a	b	b	b	с	b
Ques.	61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
Ans.	d	a	С	b	b	b	С	b	d	d
Ques.	71.	72.	73.	74.	75.	76.	77.	78.	79.	80.
Ans.	С	d	С	b	a	d	d	b	b	b
Ques.	81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
Ans.	С	a	b	a	d	d	С	a	С	b
Ques.	91.	92.	93.	94.	95.	96.	97.	98.	99.	100.
Ans.	b	a	b	d	d	d	c	a	b	d
Ques.	101.	102.	103.	104.	105.	106.	107.	108.	109.	110.
Ans.	a	b	b	c	a	c	С	b	d	a
Ques.	111.	112.	113.	114.	115.	116.	117.	118.	119.	120.
Ans.	c	b	a	b	b	d	d	b	a	b
Ques.	121.	122.	123.	124.	125.	126.	127.	128.	129.	130.
Ans.	c	d	b	a	С	b	a	c	b	d
Ques.	131.	132.	133.	134.	135.	136.	137.	138.	139.	140.
Ans.	d	С	a	d	c	С	c	b	С	a
Ques.	141.	142.	143.	144.	145.	146.	147.	148.	149.	150.
Ans.	d	a	a	a	b	a	d	b	С	b
Ques.	151.	152.	153.	154.	155.	156.				
Ans.	a	С	a	С	a	С				