Medical terms relation classifier

dataset

Source

• Figure Eight: Medical Sentence Summary - Medical sentence summary and relation-extraction (https://www.kaggle.com/kmader/figure-eight-medical-sentence-summary)

about

This dataset contains 3,984 medical sentences extracted from PubMed abstracts and relationships between discrete medical terms were annotated. This dataset focuses primarily on "treat" and "cause" relationships, with 1,043 sentences containing treatment relations and 1,787 containing causal ones.

Human-in-the-loop annotators were given two different terms (such as "Lewy Body Dementia" and "Well-formed Visual Hallucinations") and were asked to mark the relationship between those terms (in this case "Lewy Body Dementia causes Well-Formed Visual Hallucinations).

Data reference

- CrowdTruth Measures for Language Ambiguity (http://ceur-ws.org/Vol-1467/LD4IE2015_Dumitrache.pdf)
- Achieving expert-level annotation quality with crowdtruth (https://pdfs.semanticscholar.org/f760/1751415836c59b0cf4d08df0945bcc8bf4ab.pdf)
- · CrowdTruth ground truth for medical relation extraction (github) (https://github.com/CrowdTruth/Medical-Relation-Extraction/)

Plan of the project

We will use transfer learning strategy for the project. The retionale behind this idea came out of the fact that 2,830 sentences are quite not enough to build the deep learning model with high accuracy.

The first base model we will use is AWD-LSTM/QRNN model trained with Wikitext 103 dataset.

- data reference (https://arxiv.org/abs/1609.07843)
- AWD-LSTM/QRNN (https://arxiv.org/abs/1708.02182)

Secondly, we will train our Figure Eight language model with transfer learning method from the AWD-LSTM/QRNN model.

The final deep learning model which does the job we are interested in will be the tranfer-learned model from the Figure Eight language model.

(Put a intuitive figure here about the plan)

Data exploration

From the given research papers, this dataset represents twelve relations in medical sentences:

Table 1: Set of medical relations.

Relation	Corresponding	Definition	Example
	UMLS relation(s)		
treat	may treat	therapeutic use of a drug	penicillin treats infection
prevent	may prevent	preventative use of a drug	vitamin C prevents influenza
diagnosis	may diagnose	diagnostic use of an ingredient, test or a drug	RINNE test is used to diagnose hear-
			ing loss
cause	cause of;	the underlying reason for a symptom or a disease	fever induces dizziness
	has causative agent		
location	disease has primary	body part in which disease or disorder is observed	leukemia is found in the circulatory
	anatomic site;		system
	has finding site		
symptom	disease has finding;	deviation from normal function indicating the	pain is a symptom of a broken arm
	disease may have	presence of disease or abnormality	
	finding		
manifestation	has manifestation	links disorders to the observations that are closely	
		associated with them	tion of liver failure
contraindicate	contraindicated drug	a condition for which a drug or treatment should	patients with obesity should avoid
		not be used	using danazol
associated with		signs, symptoms or findings that often appear to-	patients who smoke often have yellow
		gether	teeth
side effect		a secondary condition or symptom that results	use of antidepressants causes dryness
		from a drug	in the eyes
is a		a relation that indicates that one of the terms is	migraine is a kind of headache
		more specific variation of the other	
part of		an anatomical or structural sub-component	the left ventricle is part of the heart

Importing libraries

```
In [1]: import os
    import re
    import pathlib

import pandas as pd
    import torch
    from fastai.text import *
    from fastai.callbacks.tracker import EarlyStoppingCallback
```

Importing train dataset

```
In [2]: cwd = pathlib.Path.cwd()
    path = cwd/'data'

train = pd.read_csv(path/'train.csv')
```

Data inspection

Dataset has a 25 columns with following names.

```
In [3]: columns = list(train.columns)
    print(f'length of columns: {len(columns)}')
    print(f'column names:\n{columns}')

length of columns: 25
    column names:
    ['_unit_id', '_created_at', '_canary', '_id', '_started_at', '_channel', '_trust', '_worker_id', '_country', '_region', '_city', '_ip', 'direction', 'b1', 'b2', 'direction_gold', 'e1', 'e2', 'relation', 'relex_relcos', 'sent_id', 'sentence', 'term1', 'term2', 'twrex']
```

Here are the 10 head samples of the dataset. Dataframe is transposed to see all the column values for the convenience.

Out[4]:

	0	1	2	3	4	5	6	7	
_unit_id	502808352	502808352	502808352	502808352	502808352	502808352	502808352	502808354	
_created_at	7/13/2014 13:48:35	7/13/2014 13:51:12	7/13/2014 16:24:57	7/13/2014 16:33:49	7/13/2014 16:47:27	7/13/2014 16:56:13	7/13/2014 17:14:41	7/13/2014 13:45:15	7/10
_canary	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
_id	1321892767	1321894040	1321961909	1321965723	1321970904	1321973849	1321979856	1321891302	
_started_at	7/13/2014 13:48:14	7/13/2014 13:51:07	7/13/2014 16:24:35	7/13/2014 16:33:31	7/13/2014 16:47:06	7/13/2014 16:55:37	7/13/2014 17:14:06	7/13/2014 13:44:25	7/1:
_channel	clixsense	neodev	instagc	elite	neodev	clixsense	prodege	clixsense	
_trust	0.9167	0.8333	0.6639	0.3923	0.6552	0.6639	0.6151	0.9167	
_worker_id	27871219	17610000	25990856	28276268	27597779	28037714	2422962	27871219	
_country	NLD	GBR	USA	USA	CAN	GBR	USA	NLD	
_region	07	12	NV	CA	AB	14	IA	07	
_city	Amsterdam	Manchester	Las Vegas	San Diego	Calgary	Mitcham	Honey Creek	Amsterdam	
_ip	87.210.207.223	90.200.140.201	68.108.98.78	76.88.95.100	68.146.86.137	94.4.232.118	12.73.110.97	87.210.207.223	
direction	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	URETHRAL OR RECTAL GONORRHEA treats IM CEFTRIA	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	URETHRAL OR RECTAL GONORRHEA treats IM CEFTRIA	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	no_relation	OS ⁻ RETI
b1	41	41	41	41	41	41	41	175	
b2	128	128	128	128	128	128	128	203	
direction_gold	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
e1	69	69	69	69	69	69	69	187	
e2	142	142	142	142	142	142	142	217	
relation	treats	treats	treats	treats	treats	treats	treats	diagnosed by	
relex_relcos	1	1	1	1	1	1	1	0.53033	
sent_id	907845-FS1-2	907845-FS1-2	907845-FS1-2	907845-FS1-2	907845-FS1-2	907845-FS1-2	907845-FS1-2	906321-FS1-13	
sentence	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	For treatment of uncomplicated cervical, URETH	Diagnosis specific malignancies available for	Di
term1	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	URETHRAL OR RECTAL GONORRHEA	OSTEOSARCOMA	OS.
term2	IM CEFTRIAXONE	IM CEFTRIAXONE	IM CEFTRIAXONE	IM CEFTRIAXONE	IM CEFTRIAXONE	IM CEFTRIAXONE	IM CEFTRIAXONE	RETINOBLASTOMA	RETI
twrex	RO-may_treat	RO-may_treat	RO-may_treat	RO-may_treat	RO-may_treat	RO-may_treat	RO-may_treat	RO- has_manifestation	ha

Column explanation from the document:

- SID: unique ID of the sentence and term pair
- relation: medical relation
- sentence: medical sentence
- term1, term: the 2 medical terms after correction with FactSpan and RelDir, together, they express the relation: term1 cause of/treated by
- b1, b2: the beginning position of each term in the sentence, measured in number of characters
- e1, e2: the end position of each term in the sentence, measured in number of characters
- sentence_relation_score: the sentence relation score of the medical relation; using cosine similarity over the aggregated crowd data, it computes the likelihood that the relation is expressed between the 2 terms in the sentence
- **crowd**: the score used to train the relation extraction classifier by Chang et al.(4) with crowd data; it is the sentence-relation score, with a threshold to select positive and negative examples equal to 0.5, and rescaled in [0.5, 1] for positives, and [-1, -0.5] for negatives.
- baseline: discrete (positive or negative) labels are given for each data entry by the distant supervision (1) method, based on whether the relation is expressed between the 2 terms in the sentence
- expert: discrete labels based on an expert's judgment as to whether the baseline label is correct
- test_partition: manual evaluation scores over the sentences where crowd and expert disagreed, used for evaluating the classifier; the sentencerelation score threshold was set at 0.7 for maximum agreement; sentences scored with 0 were determined to be unclear and were removed from
 testing
- term1_UMLS, term2_UMLS: the original UMLS (4) terms used for distant supervision, before correction with FactSpan and RelDir

• UMLS seed relation: the UMLS relation used as a seed in distant supervision to find the given entry

There are some differences in the columns stated in the document and our dataset, but it seems enough for data analysis.

Column selection

We will use these columns to train our classifier:

- · direction
- relation
- · relex_relcos
- sentence
- term1
- term2

relex_relcos

We could find some hints about what it means from the research papers mentioned earlier. The annotation process is named as RelEx (Relation Extraction task) in the research papers. And based on the RelEx task, sentence-annotation score is calculated:

sentence-annotation score: A core CrowdTruth concept, this metric computes annotation ambiguity in a sentence with the use of cosine similarity. In the case of RelEx, it becomes the sentence-relation score, and is computed as the cosine similarity between the sentence vector and the unit vector for the relation: srs(s; r) = cos(Vs; ^r). The higher the value of this metric, the more clearly the relation is expressed in the sentence. (Dumitrache, A., Aroyo, L., & Welty, C. (2015). Achieving expert-level annotation quality with crowdtruth. In Proc. of BDM2I Workshop, ISWC.)

Thus, we concluded that relex relcos stands for RELation EXtraction task - RELation COSine similarity.

Inputs and outputs

- · Input: the medical sentences
- · Output: relation between the terms.

If we successfully create the classification model for the relation, we will improve our model to predict direction between terms in the sentences as well.

Data preprocessing

1. Dropping unnecessary columns.

validation = pd.read_csv("data/validation.csv")
validation.drop(drop, axis=1, inplace=True)

n [7]:	train.head().Т				
ıt[7]:		0	1	2	3	4
	direction	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	URETHRAL OR RECTAL GONORRHEA treats IM CEFTRIA	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR	URETHRAL OR RECTAL GONORRHEA treats IM CEFTRIA	IM CEFTRIAXONE treats URETHRAL OR RECTAL GONOR
	relation	treats	treats	treats	treats	treats
	relex_relcos	1	1	1	1	1
	sentence	For treatment of uncomplicated cervical, URETH				
	term1	URETHRAL OR RECTAL GONORRHEA				
	term2	IM CEFTRIAXONE				
[8]:	test.head()	.т				
[8]:		0	1	2	3	4
	direction	LIVER location HEPATOCELLULAR CARCINOMA	LIVER location HEPATOCELLULAR CARCINOMA	HEPATOCELLULAR CARCINOMA location LIVER	HEPATOCELLULAR CARCINOMA location LIVER	no_relation
	relation	location	location	location	location	location
	relex_relcos	0.353553	0.353553	0.353553	0.353553	0.353553
	sentence	Therefore, although serum P III P can be a use	Therefore, although serum P III P can be a use	Therefore, although serum P III P can be a use	Therefore, although serum P III P can be a use	Therefore, although serum P III P can be a use
	term1	LIVER	LIVER	LIVER	LIVER	LIVER
	term2	HEPATOCELLULAR CARCINOMA	HEPATOCELLULAR CARCINOMA	HEPATOCELLULAR CARCINOMA	HEPATOCELLULAR CARCINOMA	HEPATOCELLULAR CARCINOMA
9]:	validation.	head().T				
[9]:		0	1		2 3	4
	direction	PHEOCHROMOCYTOMA diagnosed by HYPERTENSION	PHEOCHROMOCYTOMA diagnosed by HYPERTENSION	hyperiension diagnosed		PHEOCHROMOCYTOMA diagnosed by HYPERTENSION
	relation	diagnosed by				
	relex_relcos	0.824163	0.824163	0.824163	0.824163	0.824163
	sentence	This case demonstrates a typical presentation	This case demonstrates a typical presentation			This case demonstrates a typical presentation
	term1	HYPERTENSION	HYPERTENSION	I HYPERTENSION	HYPERTENSION	HYPERTENSION
	term2	PHEOCHROMOCYTOMA	PHEOCHROMOCYTOMA	PHEOCHROMOCYTOMA	A PHEOCHROMOCYTOMA	PHEOCHROMOCYTOMA

2. Defect detection in each column

Shape of the dataset

```
In [10]: print(f'train data shape: {train.shape}')
    print(f'validation data shape: {validation.shape}')
    print(f'test data shape: {test.shape}')

    train data shape: (13340, 6)
    validation data shape: (4270, 6)
```

Types of the dataset

test data shape: (4566, 6)

```
In [11]: print(f'train dtype:\n{train.dtypes}\n----')
         print(f'validation dtype:\n{validation.dtypes}\n----')
         print(f'test dtype:\n{test.dtypes}\n----')
         train dtype:
         direction
                          object
         relation
                          object
         relex relcos
                         float64
                          object
         sentence
         term1
                          object
         term2
                          object
         dtype: object
         validation dtype:
         direction
                          object
         relation
                          object
         relex_relcos
                         float64
         sentence
                          object
         term1
                          object
         term2
                          object
         dtype: object
         test dtype:
         direction
                          object
         relation
                          object
         relex_relcos
                         float64
         sentence
                          obiect
         term1
                          object
         term2
                          object
         dtype: object
```

Null value check

```
In [12]: train['direction'].isna().sum()
Out[12]: 0
In [13]: validation['direction'].isna().sum()
Out[13]: 0
In [14]: test['direction'].isna().sum()
Out[14]: 0
```

Duplicate value check

Number of unique values of term1 column in test: 458

It is normal to have much less unique values in direction, and sentece column because more then one annotator labeled relationship of two term in a sentence.

```
In [15]: print(f"Number of unique values of direction column in train: {len(train['direction'].unique())}")
         print(f"Number of unique values of direction column in validation: {len(validation['direction'].unique())}")
         print(f"Number of unique values of direction column in test: {len(test['direction'].unique())}")
         Number of unique values of direction column in train: 2349
         Number of unique values of direction column in validation: 847
         Number of unique values of direction column in test: 862
In [16]: print(f"Number of unique values of sentence column in train: {len(train['sentence'].unique())}")
         print(f"Number of unique values of sentence column in validation: {len(validation['sentence'].unique())}")
         print(f"Number of unique values of sentence column in test: {len(test['sentence'].unique())}")
         Number of unique values of sentence column in train: 1618
         Number of unique values of sentence column in validation: 584
         Number of unique values of sentence column in test: 590
In [17]: print(f"Number of unique values of term1 column in train: {len(train['term1'].unique())}")
         print(f"Number of unique values of term1 column in validation: {len(validation['term1'].unique())}")
         print(f"Number of unique values of term1 column in test: {len(test['term1'].unique())}")
         Number of unique values of term1 column in train: 1056
         Number of unique values of term1 column in validation: 465
```

```
In [18]: print(f"Number of unique values of term2 column in train: {len(train['term2'].unique())}")
         print(f"Number of unique values of term2 column in validation: {len(validation['term2'].unique())}")
         print(f"Number of unique values of term2 column in test: {len(test['term2'].unique())}")
         Number of unique values of term2 column in train: 1216
```

Ambiguity check

There are some columns whose names are ambiguous to distinguish.

Number of unique values of term2 column in validation: 494 Number of unique values of term2 column in test: 504

```
In [19]: | print(f"Unique values of relation column in train:\n{list(train['relation'].unique())}\n----")
         print(f"Unique values of relation column in validation:\n{list(validation['relation'].unique())}\n----")
         print(f"Unique values of relation column in test:\n{list(test['relation'].unique())}\n----")
         Unique values of relation column in train:
         ['treats', 'diagnosed by', 'contraindicates', 'causes', 'location', 'is location of', 'location of', 'is diagnosed by',
         'diagnose_by_test_or_drug']
         Unique values of relation column in validation:
         ['diagnosed by', 'causes', 'treats', 'is location of', 'contraindicates', 'location of', 'is diagnosed by', 'diagnose_by
         _test_or_drug']
         Unique values of relation column in test:
         ['location', 'diagnosed by', 'causes', 'treats', 'is location of', 'contraindicates', 'is diagnosed by']
```

Again, from the research papers, it is stated that there are 12 relationships in the dataset:

```
treat, prevent, diagnosis, cause, location, symptom, minifestation, contraindicate, associated with, side effect, is a, part of
```

And we have two sets of relationships which have ambiguity:

{'diagnosed by', 'is diagnosed by', 'diagnose_by_test_or_drug'}, and {'location', 'location of', 'is location of'}

{'diagnosed by', 'is diagnosed by', 'diagnose_by_test_or_drug'}

```
In [20]: diagnosed_by = train.loc[train['relation'] == 'diagnosed by']
         is_diagnosed_by = train.loc[train['relation'] == 'is diagnosed by']
         by_test_or_drug = train.loc[train['relation'] == 'diagnose_by_test_or_drug']
```

```
In [21]: pd.options.display.max_colwidth = 300
```

In [22]: diagnosed_by.sample(5)

Out[22]:

	direction	relation	relex_relcos	sentence	term1	term2
761	VASOVAGAL SYNCOPE diagnosed by ISOPROTERENOL TEST	diagnosed by	0.956183	Thus the nitroglycerin test seems to be a useful alternative tool for diagnosis of VASOVAGAL SYNCOPE; it is equally specific but more sensitive and feasible than the ISOPROTERENOL TEST.	VASOVAGAL SYNCOPE	ISOPROTERENOL TEST
1132	ALLERGIC CONTACT DERMATITIS diagnosed by HYPERSENSITIVITY	diagnosed by	0.549442	a Patch testing (e.g., 1% bacitracin in petrolatum) may be useful in diagnosing suspected ALLERGIC CONTACT DERMATITIS when HYPERSENSITIVITY to other topical antibiotics (e.g., neomycin) is suspected.	ALLERGIC CONTACT DERMATITIS	HYPERSENSITIVITY
111	MYASTHENIA GRAVIS diagnosed by INTRAVENOUS EDROPHONIUM CHLORIDE	diagnosed by	1.000000	Maximum velocity and amplitude of repetitive (1 per second) 30 degrees saccadic eye movements were quantitatively assessed for 4 minutes before and after INTRAVENOUS EDROPHONIUM CHLORIDE as a diagnostic test for MYASTHENIA GRAVIS	MYASTHENIA GRAVIS	INTRAVENOUS EDROPHONIUM CHLORIDE
1412	PPD SKIN TEST diagnosed by TUBERCULOSIS	diagnosed by	0.936329	Lower fracture risk by arranging for home safety assessment and devices to improve gait stability, and by recommending tai chi or other balance exercises Arrange periodic ophthalmologic screening for cataracts (posterior subcapsular) and glaucoma to detect vision loss Anticipate reactivation of	TUBERCULOSIS	PPD SKIN TEST
849	MICROVASCULAR PROLIFERATION diagnosed by GLIOBLASTOMA MULTIFORME	diagnosed by	0.600000	The presence of MICROVASCULAR PROLIFERATION leads to the histological diagnosis of GLIOBLASTOMA MULTIFORME.	MICROVASCULAR PROLIFERATION	GLIOBLASTOMA MULTIFORME

Out[23]:

	direction	relation	relex_relcos	sentence	term1	term2
5584	RADIAL SCARS is diagnosed by MICROCALCIFICATIONS	is diagnosed by	0.392232	Only the presence of MICROCALCIFICATIONS in 11 of those patients helped the authors distinguish carcinoma from RADIAL SCARS	MICROCALCIFICATIONS	RADIAL SCARS
5978	no_relation	is diagnosed by	0.424264	Ayestaran A, Lopez R, Montoro JB et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of AMPHOTERICIN B in a group of patients with NEUTROPENIA	NEUTROPENIA	AMPHOTERICIN B
5589	RADIAL SCARS is diagnosed by MICROCALCIFICATIONS	is diagnosed by	0.392232	Only the presence of MICROCALCIFICATIONS in 11 of those patients helped the authors distinguish carcinoma from RADIAL SCARS	MICROCALCIFICATIONS	RADIAL SCARS
6059	ERGONOVINE is diagnosed by VASOSPASTIC ANGINA	is diagnosed by	0.975900	These results suggest that the two provocative tests for coronary spasm that involve acetylcholine and ERGONOVINE are clinically useful in the diagnosis of VASOSPASTIC ANGINA, but testing with intracoronary ergonovine is needed when a spontaneous focal coronary spasm is relieved by the intracoro	VASOSPASTIC ANGINA	ERGONOVINE
5981	NEUTROPENIA is diagnosed by AMPHOTERICIN B	is diagnosed by	0.424264	Ayestaran A, Lopez R, Montoro JB et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of AMPHOTERICIN B in a group of patients with NEUTROPENIA	NEUTROPENIA	AMPHOTERICIN B

In [24]: by_test_or_drug.sample(5)

Out[24]:

	direction	relation	relex_relcos	sentence	term1	term2
6199	N PURIFIED PROTEIN DERIVATIV diagnose_by_test_or_drug TUBERCULOSIS	diagnose_by_test_or_drug	0.961524	In contemporary skin tests for TUBERCULOSIS Koch's, or old, tuberculin has been replaced by tuberculiN PURIFIED PROTEIN DERIVATIVe.	TUBERCULOSIS	N PURIFIED PROTEIN DERIVATIV
6194	TUBERCULOSIS diagnose_by_test_or_drug N PURIFIED PROTEIN DERIVATIV	diagnose_by_test_or_drug	0.961524	In contemporary skin tests for TUBERCULOSIS Koch's, or old, tuberculin has been replaced by tuberculiN PURIFIED PROTEIN DERIVATIVe.	TUBERCULOSIS	N PURIFIED PROTEIN DERIVATIV
6222	DEPRESSION diagnose_by_test_or_drug DEXAMETHASONE	diagnose_by_test_or_drug	0.990148	The DEXAMETHASONE suppression test for the detection, diagnosis, and managemnt of DEPRESSION	DEPRESSION	DEXAMETHASONE
6195	TUBERCULOSIS diagnose_by_test_or_drug N PURIFIED PROTEIN DERIVATIV	diagnose_by_test_or_drug	0.961524	In contemporary skin tests for TUBERCULOSIS Koch's, or old, tuberculin has been replaced by tuberculiN PURIFIED PROTEIN DERIVATIVe.	TUBERCULOSIS	N PURIFIED PROTEIN DERIVATIV
6154	TREATMENT OF UNCOMPLICATED URINARY TRACT INFECTION IN THE ELDERLY diagnose by test_or_drug CONTROLLED TRIAL OF NORFLOXACIN AND AMOXYCILLIN IN	diagnose_by_test_or_drug	0.486664	Hill S, Yeates M, Pathy J et al. A CONTROLLED TRIAL OF NORFLOXACIN AND AMOXYCILLIN IN the TREATMENT OF UNCOMPLICATED URINARY TRACT INFECTION IN THE ELDERLY.	TREATMENT OF UNCOMPLICATED URINARY TRACT INFECTION IN THE ELDERLY	CONTROLLED TRIAL OF NORFLOXACIN AND AMOXYCILLIN IN

After looking into some samples of each relation, it seems like all three relations are the same. We need to change it's relation column value to diagnosis. Thus, change all these values to 'diagnosis':

Also, we need to change words in the direction column as well. E.g. TREATMENT OF UNCOMPLICATED URINARY TRACT INFECTION IN THE ELDERLY diagnose_by_test_or_drug CONTROLLED TRIAL OF NORFLOXACIN AND AMOXYCILLIN IN

{'location', 'location of', 'is location of'}

The definition of location relation is 'body part in which disease of disorder is observed.' E.g. 'leukemia is found in the circulatory system'. So, when looking into the data set, read one of {'location', 'location of', 'is location of'} as 'is found in' helped a lot to understand the direction. These three relationship also seemed to fall into location relation.

```
In [28]: location = train.loc[train['relation'] == 'location']
location_of = train.loc[train['relation'] == 'location of']
is_location_of = train.loc[train['relation'] == 'is location of']
```

In [29]: location.sample(5)

Out[29]:

	direction	relation	relex_relcos	sentence	term1	term2
52	no_relation	location	0.40452	It is said that the JOINTS of the affected limb by poliomyelitis are protected from the development of OSTEOARTHRITIS	JOINTS	OSTEOARTHRITIS
50	no_relation	location	0.40452	It is said that the JOINTS of the affected limb by poliomyelitis are protected from the development of OSTEOARTHRITIS	JOINTS	OSTEOARTHRITIS
55	no_relation	location	0.40452	It is said that the JOINTS of the affected limb by poliomyelitis are protected from the development of OSTEOARTHRITIS	JOINTS	OSTEOARTHRITIS
49	OSTEOARTHRITIS location JOINTS	location	0.40452	It is said that the JOINTS of the affected limb by poliomyelitis are protected from the development of OSTEOARTHRITIS	JOINTS	OSTEOARTHRITIS
54	OSTEOARTHRITIS location JOINTS	location	0.40452	It is said that the JOINTS of the affected limb by poliomyelitis are protected from the development of OSTEOARTHRITIS	JOINTS	OSTEOARTHRITIS

In [30]: location_of.sample(5)

Out[30]:

	direction	relation	relex_relcos	sentence	term1	term2
5640	BONE MARROW location of CHRONIC EOSINOPHILIC LEUKAEMIA	location of	0.718421	A diagnosis of CHRONIC EOSINOPHILIC LEUKAEMIA was made on the basis of myeloproliferative involvement of both peripheral blood and BONE MARROW, associated with eosinophilic differentiation and a t(5;12)(q33;p13) translocation	BONE MARROW	CHRONIC EOSINOPHILIC LEUKAEMIA
5652	no_relation	location of	0.718421	A diagnosis of CHRONIC EOSINOPHILIC LEUKAEMIA was made on the basis of myeloproliferative involvement of both peripheral blood and BONE MARROW, associated with eosinophilic differentiation and a t(5;12)(q33;p13) translocation	BONE MARROW	CHRONIC EOSINOPHILIC LEUKAEMIA
5508	no_relation	location of	0.676123	Many similarities exist between cerebral ischemia and EPILEPSY regarding BRAIN-damaging and auto-protective mechanisms that are activated following the injurious insult	BRAIN	EPILEPSY
5522	EPILEPSY location of BRAIN	location of	0.676123	Many similarities exist between cerebral ischemia and EPILEPSY regarding BRAIN-damaging and auto-protective mechanisms that are activated following the injurious insult	BRAIN	EPILEPSY
5642	no_relation	location of	0.718421	A diagnosis of CHRONIC EOSINOPHILIC LEUKAEMIA was made on the basis of myeloproliferative involvement of both peripheral blood and BONE MARROW, associated with eosinophilic differentiation and a t(5;12)(q33;p13) translocation	BONE MARROW	CHRONIC EOSINOPHILIC LEUKAEMIA

```
In [31]: is_location_of.sample(5)
Out[31]:
                          direction relation relex relcos
                                                                                                        sentence
                                                                                                                       term1
                                                                                                                                          term2
                                                           The clinicopathologic features of intestinal type adenocarcinoma have
                                                                                                                  INTESTINAL
                                                                                                                                INTESTINAL TYPE
                                                         been well documented in the stomach, and INTESTINAL METAPLASIA
           2304
                         no_relation location
                                              0.371391
                                                         and INTESTINAL TYPE ADENOCARCINOMA has also been reported in METAPLASIA ADENOCARCINOMA
                                        οf
                   SKIN is location of
                                                        Repeated exposures over a period of hours induce a state of tolerance in
           1975
                                   location
                                              0.956183
                                                                                                                        SKIN
                                                                                                                                      URTICARIA
                        URTICARIA
                                                                             the SKIN so that URTICARIA fails to develop.
                                        of
                                                       Furthermore, histological analyses verified significant HEPATOCELLULAR
                  LIVER is location of
                                        is
                                                                                                                               HEPATOCELLULAR
                                              0.064901
                                                                                                                       I IV/FR
           1754
                  HEPATOCELLULAR
                                   location
                                                            NECROSIS as well as enhanced myeloperoxidase staining in these
                                                                                                                                      NECROSIS
                        NECROSIS
                                       of
                                                                                                 LIVER specimens.
                                        is
                   ANENCEPHALY is
                                                         Infants with ANENCEPHALY are born without all or most of their BRAIN
                                              0.750479
                                                                                                                       BRAIN
                                                                                                                                  ANENCEPHALY
            946
                                   location
                    location of BRAIN
                                        of
                     PROSTATES is
                                                         We investigate the presence of HPV in 60 prostatic benign hyperplasias
                                                                                                                                     PROSTATIC
                         location of
           2901
                                              0.979958
                                                        and in 5 PROSTATIC CARCINOMAS in surgically resected PROSTATES PROSTATES
                                   location
                        PROSTATIC
                                                                                                                                   CARCINOMAS
                                                                 by PCR technique using consensus and type specific primers.
                                       of
                     CARCINOMAS
          Correct relation name:
In [32]: train.loc[train['relation'] == 'location of', 'relation'] = 'location'
          train.loc[train['relation'] == 'is location of', 'relation'] = 'location'
          validation.loc[validation['relation'] == 'location of', 'relation'] = 'location'
          validation.loc[validation['relation'] == 'is location of', 'relation'] = 'location'
          test.loc[test['relation'] == 'is location of', 'relation'] = 'location'
          Correct relation name in the direction column as well.
In [33]: condition = '(location of)|(is location of)'
          replace sub = lambda x: re.sub(condition, 'location',x)
In [34]: train.loc[train['relation'] == 'location', 'direction'] = (
              train.loc[train['relation'] == 'location', 'direction'].apply(replace_sub))
          validation.loc[validation['relation'] == 'location', 'direction'] = (
              validation.loc[validation['relation'] == 'location', 'direction'].apply(replace sub))
          test.loc[test['relation'] == 'location', 'direction'] = (
              test.loc[test['relation'] == 'location', 'direction'].apply(replace_sub))
          We have clean list of relation now
In [35]: | print(f"Unique values of relation column in train:\n{list(train['relation'].unique())}\n----")
          print(f"Unique values of relation column in validation:\n{list(validation['relation'].unique())}\n----")
          print(f"Unique values of relation column in test:\n{list(test['relation'].unique())}\n----")
          Unique values of relation column in train:
          ['treats', 'diagnosis', 'contraindicates', 'causes', 'location']
          Unique values of relation column in validation:
          ['diagnosis', 'causes', 'treats', 'location', 'contraindicates']
          Unique values of relation column in test:
          ['location', 'diagnosis', 'causes', 'treats', 'contraindicates']
          Save data for reuse
In [36]: | dest = path/'preprocessed'
          if not os.path.exists(dest):
              os.makedirs(dest)
          train.to_csv(dest/'train.csv')
```

test.to_csv(dest/'test.csv')

validation.to_csv(dest/'validation.csv')

3. Choose best direction

We determined the direction by majority vote of annotators: term1->relation->term2, term2->relation->term1, or no_relation. Therefore, we set mode direction of each sentence as a best direction.

First, we looked into train dataset to decide the best directions.

In [37]: train.sample(5)

Out[37]:

	direction	relation	relex_relcos	sentence	term1	term2
6297	PCD causes SITUS INVERSUS	causes	0.750479	The number of PCD index patients who have SITUS INVERSUS (because of the randomization of left right symmetry) argues that the disease may be more common than previously suspected; this supposition could be verified if a sensitive and easily used screening test were available.	SITUS INVERSUS	PCD
8215	CARDIOMEGALY IN GSD TYPE II causes ORGAN CELLS (EG) HEPATOMEGALY IN HEPATIC FORMS	causes	0.507093	Organomegaly may reflect a failure in substrate degradation resulting in substrate accumulation within the ORGAN CELLS (EG) HEPATOMEGALY IN HEPATIC FORMS of GSD and many lysosomal storage diseases, CARDIOMEGALY IN GSD TYPE II	ORGAN CELLS (EG) HEPATOMEGALY IN HEPATIC FORMS	CARDIOMEGALY IN GSD TYPE II
897	no_relation	causes	0.904194	Lacunes consist of small vascular lesions with a volume of between 2 and about 30 mm. These lacunar infarctions are determined by an ISCHEMIA caused by obstructive diseases of small terminal VESSELS in the deep areas of the brain.	VESSELS	ISCHEMIA
7792	FIBROMYALGIA causes PAIN	causes	0.924500	The patient complained of long standing aching PAIN in both lower legs which was diagnosed and managed as FIBROMYALGIA	PAIN	FIBROMYALGIA
8086	no_relation	causes	0.781133	40,41 In GSS, which is transmitted as an autosomal dominant trait, the affected persons develop ATAXIA followed by dementia; patients with FFI are unable to sleep.	ATAXIA	FFI

We create new dataframe with no duplicate senteces. The best relation and it's direction of sentences will be saved in this dataframe and be used in model training.

```
In [38]: train_unique = train.drop_duplicates(subset='sentence', ignore_index=True)
    train_unique_sentence = list(train_unique['sentence'])
    len(train_unique_sentence)
```

Out[38]: 1618

There's 1618 unique sentences in the training data.

```
In [40]: train_ambiguious_sentence = get_ambiguous_sentences(train, train_unique_sentence)
len(train_ambiguious_sentence)
```

Out[40]: 101

Among 1618 unique sentences in the training set, we could find 101 sentences with high ambiguity. The definition of ambiguous sentence is the sentence which has more than one most frequent direction and relation annotated.

If a sentence has more than one most frequent direction, we treated as a ambiguous sentence.

One example of a sentence with high ambiguity:

In [41]: train.loc[train['sentence'] == 'Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED

Out	Γ /11]	
out	[41]	٠

	direction	relation	relex_relcos	sentence	term1	term2
126	HYPERTENSION diagnosis SPONTANEOUSLY ELEVATED BP	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
127	HYPERTENSION diagnosis SPONTANEOUSLY ELEVATED BP	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
128	HYPERTENSION diagnosis SPONTANEOUSLY ELEVATED BP	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
129	HYPERTENSION diagnosis SPONTANEOUSLY ELEVATED BP	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
130	no_relation	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
131	SPONTANEOUSLY ELEVATED BP diagnosis HYPERTENSION	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
132	no_relation	diagnosis	0.480384	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
238	no_relation	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
239	SPONTANEOUSLY ELEVATED BP causes HYPERTENSION	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
240	HYPERTENSION causes SPONTANEOUSLY ELEVATED BP	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
241	no_relation	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
242	SPONTANEOUSLY ELEVATED BP causes HYPERTENSION	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
243	SPONTANEOUSLY ELEVATED BP causes HYPERTENSION	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION
244	HYPERTENSION causes SPONTANEOUSLY ELEVATED BP	causes	0.640513	Taken together, these data suggest that African green monkeys with SPONTANEOUSLY ELEVATED BP may be a useful experimental model for particular types of human HYPERTENSION	SPONTANEOUSLY ELEVATED BP	HYPERTENSION

We decided to remove those 101 sentences because it may cause confusion during the model training as well.

```
In [42]: train_unique = train_unique.query(f'sentence not in {train_ambiguious_sentence}').reset_index(drop = True)
```

In [43]: len(train_unique)

Out[43]: 1517

And we set best direction of sentence by refering mode of each sentence's direction:

```
In [44]: train_unique['direction'] = train_unique['sentence'].apply(
             lambda x: train.loc[train['sentence'] == x, 'direction'].mode()[0])
         Apply same logic to validation and test data as well.
         Validation data:
In [45]: validation_unique = validation.drop_duplicates(subset='sentence', ignore_index=True)
         validation_unique_sentence = list(validation_unique['sentence'])
         len(validation unique sentence)
Out[45]: 584
In [46]: validation_ambiguious_sentence = get_ambiguous_sentences(validation, validation_unique_sentence)
         len(validation_ambiguious_sentence)
Out[46]: 5
In [47]: validation_unique = validation_unique.query(f'sentence not in {validation_ambiguious_sentence}').reset_index(drop = True)
         validation_unique['direction'] = validation_unique['sentence'].apply(
             lambda x: validation.loc[validation['sentence'] == x, 'direction'].mode()[0])
         Test data:
In [48]: test_unique = test.drop_duplicates(subset='sentence', ignore_index=True)
         test_unique_sentence = list(test_unique['sentence'])
         len(test_unique_sentence)
Out[48]: 590
In [49]: test_ambiguious_sentence = get_ambiguous_sentences(test, test_unique_sentence)
         len(test_ambiguious_sentence)
Out[49]: 9
In [50]: test_unique = test_unique.query(f'sentence not in {validation_ambiguious_sentence}').reset_index(drop = True)
         test_unique['direction'] = test_unique['sentence'].apply(
             lambda x: test.loc[test['sentence'] == x, 'direction'].mode()[0])
         Save data for reuse
In [51]: dest = path/'for training'
         if not os.path.exists(dest):
             os.makedirs(dest)
         train_unique.to_csv(dest/'train.csv', index=False)
         test_unique.to_csv(dest/'test.csv', index=False)
         validation_unique.to_csv(dest/'validation.csv', index=False)
         4. Class distribution check
In [52]: train_unique.groupby('relation')['sentence'].count()
Out[52]: relation
         causes
                            780
         contraindicates
                              7
         diagnosis
         location
                             63
         treats
                            612
         Name: sentence, dtype: int64
```

```
contraindicates 7
diagnosis 55
location 63
treats 612
Name: sentence, dtype: int64

In [53]: validation_unique.groupby('relation')['sentence'].count()

Out[53]: relation
    causes 275
    contraindicates 5
    diagnosis 28
    location 25
    treats 246
    Name: sentence, dtype: int64
```

```
In [54]: test_unique.groupby('relation')['sentence'].count()
Out[54]: relation
          causes
                               293
          contraindicates
                                 4
                                34
          diagnosis
          location
                                32
                               227
          treats
          Name: sentence, dtype: int64
          5. Fix unbalanced data
In [55]: def downsample(df, n):
              columns = ['causes', 'treats', 'contraindicates']
causes_downsampled = df.query("relation == 'causes'").sample(n=n, replace=False, random_state=777)
treats_downsampled = df.query("relation == 'treats'").sample(n=n, replace=False, random_state=777)
              other = df.query(f"relation not in {columns}")
              return pd.concat([causes_downsampled, treats_downsampled, other])
In [56]: train downsampled = downsample(train unique, 60)
          validation_downsampled = downsample(validation_unique, 30)
          test_downsampled = downsample(test_unique, 30)
In [57]: train_downsampled.groupby('relation')['sentence'].count()
Out[57]: relation
          causes
                        60
          diagnosis
                        55
          location
                        63
          treats
                        60
          Name: sentence, dtype: int64
In [58]: validation_downsampled.groupby('relation')['sentence'].count()
Out[58]: relation
                        30
          causes
          diagnosis
                        28
          location
                        25
          treats
                        30
          Name: sentence, dtype: int64
In [59]: test_downsampled.groupby('relation')['sentence'].count()
Out[59]: relation
          causes
                        30
          diagnosis
                        34
          location
                        32
          treats
                        30
          Name: sentence, dtype: int64
          Save data for training
In [60]: dest = path/'for_training'
          if not os.path.exists(dest):
              os.makedirs(dest)
          train_downsampled.to_csv(dest/'train_downsampled.csv', index=False)
          test_downsampled.to_csv(dest/'test_downsampled.csv', index=False)
          validation_downsampled.to_csv(dest/'validation_downsampled.csv', index=False)
```

Multi-class classification

Importing data

```
In [61]: data_path = path/'for_training'
```

```
In [63]: data.save()
```

When we import data using fastai.text.TextDataBunch, it automatically tokenize the sentence.

In [64]: data.show_batch()

neuroblastoma , retinoblastoma , xxup osteosarcoma xxmaj wilms ' tumour , xxup retinoblastoma xxmaj xxunk ' sarcoma , central nervous system (xxup cns) tumours on and xxunk . xxbos xxmaj acute xxunk state moderate exercise significantly altered circulating ige concentrations in volunteers with known xxup allergy while ige

combination for painful knee osteoarthritis xxmaj osteoarthritis and xxmaj cartilage a randomized , placebo controlled , cross over study of xxunk extracts and ibuprofen in osteoarthritis xxmaj rheumatic xxmaj diseases xxmaj xxunk of xxmaj north xxmaj xxunk xxmaj xxunk and rheumatic disease xxmaj rheumatology (xxmaj xxunk) a

concentrations in xxup non xxup allergy sufferers did not change . xxbos xxup salmeterol prevented xxup exercise xxup induced xxup asthma

randomized, double blind, placebo controlled trial of xxup glucosamine xxup sulphate as an analgesic in xxup osteoarthritis xxup of

- the xxup bronchial xxup hyperreactivity to xxup methacholine inhalation challenge were observed on the first day of study . xxbos xxmaj on the other hand xxup primary xxup skin xxup diseases such as xxup psoriasis atopic dermatitis , xxunk vulgaris , chronic idiopathic urticaria and alopecia areata may induce xxunk features . xxbos xxmaj we describe a patient with cutaneous xxunk who presented with xxup neurological xxup symptoms due to
- de xxunk appeared xxup hypertension in a young female patient at her xxunk trimester of pregnancy . xxbos xxmaj phase xxup iii study of concurrent xxunk with 3 cisplatin , vinblastine , dacarbazine , interleukin 2 , and interferon alfa 2b versus cisplatin , vinblastine , and xxup dacarbazine alone in patients with xxup metastatic xxup malignant xxup melanoma (xxunk last modified 10 / xxunk . xxbos xxmaj when xxunk
-) can be given to xxunk to control xxup inflammation in patients who develop severe renal disease . xxbos xxmaj studies have shown that xxup subcutaneous xxup xxunk 20 microg / day is effective in women with xxup postmenopausal xxup osteoporosis men with idiopathic or xxunk osteoporosis and patients with glucocorticoid induced osteoporosis . xxbos xxup mastocytosis is a heterogeneous group of disorders characterized by mast cell xxup hyperplasia xxup

As you see they use special tokens.

idx

The rules are all listed below, here is the meaning of the special tokens:

- UNK (xxunk) is for an unknown word (one that isn't present in the current vocabulary)
- · PAD (xxpad) is the token used for padding, if we need to regroup several texts of different lengths in a batch
- BOS (xxbos) represents the beginning of a text in your dataset
- FLD (xxfld) is used if you set mark_fields=True in your TokenizeProcessor to separate the different fields of texts (if your texts are loaded from several columns in a dataframe)
- TK_MAJ (xxmaj) is used to indicate the next word begins with a capital in the original text
- TK_UP (xxup) is used to indicate the next word is written in all caps in the original text
- TK_REP (xxrep) is used to indicate the next character is repeated n times in the original text (usage xxrep n {char})
- TK_WREP(xxwrep) is used to indicate the next word is repeated n times in the original text (usage xxwrep n {word})

Refer here (https://docs.fast.ai/text.transform.html#Tokenizer) for more information.

```
In [65]: print(f'Total number of tokens in a vocabulary: {len(data.vocab.itos)}')
print(f'Sample tokens:\n{data.vocab.itos[:50]}')

Total number of tokens in a vocabulary: 3672
Sample tokens:
   ['xxunk', 'xxpad', 'xxbos', 'xxeos', 'xxfld', 'xxmaj', 'xxup', 'xxrep', 'xxwrep', ',', 'of', 'the', 'and', 'in', '.', 'w ith', 'a', '(', 'to', ')', 'for', 'or', 'is', 'patients', 'by', 'treatment', ':', ']', '[', ';', 'as', 'that', 'be', 'ma y', 'are', 'disease', 'was', 'pain', 'an', '%', '1', 'syndrome', 'from', 'caused', 'not', 'were', '/', 'on', 'therapy', 'other']
```

Train language model with transfer learning based on Wikitext 103 language model

We will use sequence to sequence model consist of awd_lstm layers trained with Wiki103 data as a base model of our classifier. Before we build classifier, we will build language model first to make our model have some sense of the language used in our dataset.

```
In [66]: language_model = language_model_learner(data, AWD_LSTM, drop_mult=0.3)
```

Find good learning rate

In [67]: language_model.lr_find()

87.50% [7/8 00:14<00:02]

epoch	train_loss	valid_loss	accuracy	time
0	5.353878	#na#	00:02	
1	5.359056	#na#	00:01	
2	5.355369	#na#	00:01	
3	5.332349	#na#	00:02	
4	5.169907	#na#	00:02	
5	4.826412	#na#	00:02	
6	4.852095	#na#	00:02	

61.54% [8/13 00:01<00:00 8.4261]

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

```
In [68]: language_model.recorder.plot(skip_end=15, suggestion = True)
min_grad_lr = language_model.recorder.min_grad_lr
```

Min numerical gradient: 1.74E-01 Min loss divided by 10: 5.25E-02

In [69]: language_model.fit_one_cycle(1, min_grad_lr, moms=(0.8,0.7))

epoch	train_loss	valid_loss	accuracy	time
0	5.183836	4.190846	0.300446	00:02

In [70]: language_model.unfreeze() language_model.fit_one_cycle(3, 1e-2, moms=(0.8,0.7))

epoch	train_loss	valid_loss	accuracy	time
0	3.898834	3.719529	0.354643	00:02
1	3.393292	3.274726	0.420491	00:02
2	2.839921	3.301594	0.430223	00:02

To check our language model's performance, we printed out 5 sentences with the input "The evidence for." Though the accuracy is 0.41 and losses are high, it seems our language model works pretty well. We used this way as a heuristic way of assessing the language model's performance.

```
In [71]: print("\n\n".join(language_model.predict('if they cause', 100, temperature=1.1) for _ in range(5)))
         TOT VINOS ( DS / , TIVEL WISCOSC HOLE , LOUELD LEASING )
         if they cause sulfasalazine or SULFASALAZINE for pelvic SEVERE HYPERTENSION for rheumatoid arthritis , SULFASALAZINE o
         r nipple ssris , sufferers develop combined with additional supported propofol for management of RHEUMATOID ARTHRITIS
         xxbos The species cause the OCULAR ALLERGY PRODUCE anemia it should be considered to respond experience rather than in
         emergency in patients with LYMPHOMA who have REACTIONS . xxbos The presence of microliters , the state of allergy AND
         the occurrence of webster among other conditions leads to the hypothesis that the hypothesis that there accelerated in
         crease in
         if they cause both gabapentin and nerves [ see 7 : NEUTROPENIA and Dystonia palsy , huntington conclusions , has been
         tested in experimental ) , the drug of choice for DRUG RESISTANT MG ALLERGY ( SULPHATE ) is at risk for transmitting t
         he movement procedure . xxbos Study selection and assessment : Nicotine Addiction responses to NICOTINE represents a s
         tudy of nicotine addiction fibrillation , and the possibility of von Nicotine Addiction syndrome NICOTINE ADDICTION xx
         bos Often has The authors investigated the risk of an
         if they cause NEUTROPENIA , we present fluconazole with withwithwith otitisotitisotitisotitis 渴渴渴渴 膩膩膩膩 ((((
         relapserelapserelapserelapse withwithwith alzheimeralzheimeralzheimer 's's's's diseasediseasediseasedisea
         se )))) thethethethe resultingresultingresulting fromfromfromfrom MEDULLARY TRAUMA ( granulomatis xxbos LQTS
         fibrosis in autonomic trials a. Late case reports were published on an obese population women and women were taking m
         4 can recently determined to predict condoms and blood iron capacity . xxbos Main causes of reactivation of herpes fro
In [72]: language model.save encoder('fine tuned enc')
```

Train classifier with transfer learning based on our custom language model's encoder

We checked that our language model works well. From this, we regarded that the encoder of our language model undersands the data and have a sense of the data. So, we used the encoder as base model of our classifier.

```
In [74]: data_clas.show_batch()
                                                                                                                                                                        text
                                                                                                                                                                                  target
                             xxbos prolonged xxup at interval, torsades de pointes) 1 xxmai concomitant use contraindicated 1 xxmai digoxin xxmai increased digoxin plasma
               concentrations 1 xxmaj if used concomitantly, monitor digoxin plasma concentrations 1 xxmaj ergot alkaloids (ergotamine, dihydroergotamine) xxmaj possible
                                                                                                                                                                                  treats
                      pharmacokinetic interaction (increased plasma concentrations of ergot alkaloids resulting in ergotism) 1 xxmaj concomitant use contraindicated 1 xxmaj
                                                                                                                       alipizide xxmai no clinically important pharmacokinetic
                     xxbos xxmai the xxunk points of the xxmai xxunk consensus are: the usefulness of xxun ct scanning evaluation of adrenal incidentalomas, the systematic
                 screening for pheochromocytoma, the usefulness of the 1 mg overnight xxup dexamethasone test to screen for xxup latent xxup hypercortisolism the xxunk to
                                                                                                                                                                              diagnosis
                                                xxunk mild biological abnormalities of the xxup xxunk axis , the consensus to remove surgically most of tumours greater than 4
                      xxbos xxmaj affinity xxunk with a xxup xxunk labelled xxunk derivative of xxup tsh (xxup xxunk xxup tsh) was used to xxunk xxup tsh receptor size in the
                    following specimens of human thyroid tissue: (1) xxup cold xxup nodules; (2) autonomous nodules; (3) papillary carcinoma; (4) xxup medullary xxup
                                                                                                                                                                                location
                                                                                                                                              carcinoma: (5) metastasis of
               xxbos xxmaj it might take at least 12 days, when the ph of nitrite solution is lowered, for the concentration of xxup no to xxunk a level sufficiently high to activate
                 xxunk xxunk and so it seems xxunk that naturally circulating nitrite is involved in vasodilation in ischemic tissue through its conversion into xxup no . xxmaj it is
                                                                                                                                                                                location
                                                                                                                            more xxunk to consider that xxup no is produced
                     xxbos a case of xxmaj xxunk 's xxup disease ( xxup subacute xxup xxunk xxup xxunk ) is reported with such xxunk features as early onset , xxup dystonia
                 paraparesis the presence of low xxunk areas in both basal ganglias on xxunk tomography of the brain and the presence of a high xxunk intensity in both basal
                                                                                                                                                                                 causes
                                                                                                         ganglias in xxup xxunk xxunk image by xxup mr . xxmaj the electron
```

80.00% [8/10 01:53<00:28]

epoch	train_loss	valid_loss	accuracy	time
0	1.451677	#na#	00:14	
1	1.426614	#na#	00:14	
2	1.443059	#na#	00:13	
3	1.421458	#na#	00:13	
4	1.342261	#na#	00:13	
5	1.210135	#na#	00:14	
6	1.072816	#na#	00:14	
7	1.277397	#na#	00:14	

45.45% [5/11 00:13<00:16 3.4631]

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph. Min numerical gradient: 6.31E-07
Min loss divided by 10: 3.02E-02

In [78]: classifier.fit_one_cycle(1, 5.25E-03, moms=(0.8,0.7)) # 5.25E-03

 epoch
 train_loss
 valid_loss
 accuracy
 time

 0
 1.237406
 1.253640
 0.504425
 00:27

In [79]: classifier.save('first')

In [80]: classifier.freeze_to(-2)
 classifier.lr_find()
 classifier.recorder.plot(suggestion=True)
 min_grad_lr = classifier.recorder.min_grad_lr

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
 Min numerical gradient: 1.32E-06
 Min loss divided by 10: 4.79E-03

In [81]: classifier.fit_one_cycle(1, slice(1.91E-02/(2.6**4),1.91E-02), moms=(0.8,0.7)) # 1.91E-02

 epoch
 train_loss
 valid_loss
 accuracy
 time

 0
 1.167647
 1.124194
 0.513274
 00:27

```
In [82]: classifier.save('second')
```

In [83]: classifier.unfreeze()
 classifier.lr_find()
 classifier.recorder.plot(suggestion=True)
 min_grad_lr = classifier.recorder.min_grad_lr

80.00% [8/10 01:52<00:28]

epoch	train_loss	valid_loss	accuracy	time
0	0.817241	#na#	00:13	
1	0.826611	#na#	00:13	
2	0.834398	#na#	00:13	
3	0.814255	#na#	00:13	
4	0.773931	#na#	00:14	
5	0.670090	#na#	00:14	
6	0.785223	#na#	00:13	
7	1.255693	#na#	00:13	

27.27% [3/11 00:13<00:34 2.0114]

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph. Min numerical gradient: 9.12E-07 Min loss divided by 10: 4.79E-03


```
In [84]: classifier.fit_one_cycle(5, slice(1.20E-05/(2.6**4),1.20E-05), moms=(0.8,0.7)) # 1.20E-05
```

epoch	train_loss	valid_loss	accuracy	time
0	0.838693	1.139046	0.522124	00:27
1	0.827389	1.137110	0.530973	00:27
2	0.808984	1.136704	0.539823	00:27
3	0.798182	1.142705	0.557522	00:27
4	0.804010	1.158465	0.530973	00:27
5	0.808594	1.141977	0.566372	00:27
6	0.817680	1.148137	0.522124	00:27
7	0.813212	1.148999	0.557522	00:27
8	0.817033	1.156825	0.539823	00:27
9	0.816996	1.139716	0.548673	00:27

```
In [85]: classifier.save('third')
```

Model assessment

```
In [86]: preds,y,losses = classifier.get_preds(with_loss=True)
```

```
In [87]: interp = ClassificationInterpretation(classifier, preds, y, losses)
interp.plot_confusion_matrix()
```


Binary classification

```
In [88]: target = ['causes', 'treats']
    train_binary = train_unique.query(f"relation in {target}")
    validation_binary = validation_unique.query(f"relation in {target}")
    test_binary = test_unique.query(f"relation in {target}")

In [89]: data binary = TextClasDataBunch.from df(path = data path,
```

xxbos xxmaj low grade squamous intraepithelial xxup lesion (xxup xxunk) (cellular changes consistent with xxup hpv , mild dysplasia , xxup cin 1) xxmaj high grade squamous intraepithelial lesion (xxup xxunk) (moderate to severe xxup dysplasia xxup cin 2 , xxup cin 3 , xxup cis) (indicate if there are features xxunk of xxunk) xxmaj squamous cell carcinoma xxmaj glandular

depression • xxmaj doxycycline use in xxunk xxunk , xxunk , or xxunk • xxmaj

potential, sexually active, on oral isotretinoin or topical tazarotene • xxup severe xxup nodular xxup acne resistant to oral antibiotics • xxmaj mood xxunk or

treats

xxbos xxmaj oral availability and safety should rapidly make it the preferred agent xxmaj influenza virus vaccine xxmaj induces protective antibodies against influenza 0.5 ml i m xxunk xxmaj prevents influenza, in turn preventing worsened anemia due to infection and complications of xxunk xxmaj fever and sore arm in xxmaj give to all patients with hemolytic anemias xxmaj pneumococcal xxunk vaccine xxmaj develops antibodies to pneumococcal antigens 0.5 ml

```
In [91]: data_binary.save('data_binary.pkl')
In [92]: b_classifier = text_classifier_learner(data_binary, AWD_LSTM, drop_mult=0.5)
         b_classifier.load_encoder('fine_tuned_enc')
         b_classifier.freeze()
In [93]: b_classifier.lr_find()
         b_classifier.recorder.plot(suggestion=True)
         min_grad_lr = b_classifier.recorder.min_grad_lr
                                                  50.00% [1/2 00:17<00:17]
          epoch train loss
                          valid loss accuracy time
                 0.628166
                               #na#
                                       00:17
                                                  37.68% [26/69 00:14<00:23 2.0265]
         LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
         Min numerical gradient: 5.25E-03
         Min loss divided by 10: 3.63E-02
```


0.391987 0.817658 00:31

0.412550

```
In [94]: b_classifier.fit_one_cycle(1, 1e-2, moms=(0.8,0.7))

epoch train_loss valid_loss accuracy time

0 0.458816 0.420532 0.796545 00:32
```

```
In [95]: b_classifier.save('binary-first')
In [97]: b_classifier.freeze_to(-2)
```

```
b_classifier.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2), moms=(0.8,0.7))

epoch train_loss valid_loss accuracy time
```

```
In [98]: b_classifier.save('binary-second')
In [99]: b_classifier.unfreeze()
b_classifier.fit_one_cycle(2, slice(1e-3/(2.6**4),1e-3), moms=(0.8,0.7))
```

```
        epoch
        train_loss
        valid_loss
        accuracy
        time

        0
        0.321296
        0.381456
        0.848369
        00.33

        1
        0.297446
        0.394369
        0.846449
        00:32
```

Model assessment

```
In [101]: preds,y,losses = b_classifier.get_preds(with_loss=True)
    interp = ClassificationInterpretation(b_classifier, preds, y, losses)
    interp.plot_confusion_matrix()
```

