Politechnika Poznańska Wydział Informatyki i Telekomunikacji

Wstęp do Cyfrowego Przetwarzania Sygnałów - Laboratorium

Filtry FIR (FIR ang. Finite Impulse Response)

Wymagana wiedza i dodatkowe materiały

- Zagadnienia związane z transformacją Z (lab 3)
- Analiza częstotliwościowa układów LSI (transmitancja, odpowiedź impulsowa, charakterystyka amplitudowa i fazowa, znajomość równań różniczkowych układu)
- Znajomość metod projektowania filtrów cyfrowych typu FIR: metoda okien i metoda aproksymacji

Przydatne źródła:

- Literatura z prezentacji wstępnej
- Wstęp teoretyczny patrz eKursy
- Materiały dotyczące metod dostępne w Internecie UWAGA NA ŹRÓDŁA!
- 1. Ćwiczenie

Projektowanie Metodą Okna

1. Uruchom plik CPS_FIR_met_ok.m i odczytaj (z Workspace) wymiar macierzy b oraz rząd filtru n, zaprojektowanego metodą okna. (**1pkt**)

Wymiar macierzy b: 1x70

Rząd filtru: 69

~ Apks

2. Przeanalizuj wykres z charakterystyką amplitudową, fazową oraz odpowiedzią impulsową(**4 pkt**)

Jest to filtr dolnoprzepustowy, zatem zarważamy że charakterystyka amplitudowa, opada powyżej częstotliwości granicznej przepustowej (2000 Hz) i wyższe częstotliwości są tłumione. Zafalowania narastają w paśmie przepustowym, aż osiągną maksimum, odwrotnie w paśmie zaporowym, tam zaczynają się od maksimum i stopniowo słabną.

4 plet

Zauważamy, że charakterystyka fazowa opada liniowo w paśmie przepustowym, od 0 Hz, aż nieco powyżej granicznych 2000 Hz, w paśmie zaporowym, przypomina ona natomiast coś na kształt sygnału piłokształtnego.

Widmo odpowiedzi impulsowej , przypomina funkcję Sa, ale jest przesunięte w próbkach w prawo, ponieważ filtr musi być przyczynowy, zgodnie z nazwą filtru, jest ona skończona, wygasa po pewnej ilości próbek, dzieje się tak ze względu na zastosowanie okna, w tym przypadku Kaisera

- 3. Sprawdź parametry zaprojektowanego filtru: (2 pkt)
 - pasmo przenoszenia od 0 do 2000 Hz
 - pasmo zaporowe 2100 Hz do 4096 Hz
 - zafalowanie w paśmie przenoszenia, 0.1
 - zafalowanie w paśmie zaporowym, 0.1
 - liczbę próbek odpowiedzi impulsowej, 70

2pt!

e doliodnie?

4. Sprawdź zależność rzędu filtru od zafalowań wypełniając tabele. Skomentuj wyniki, jak zmieniają się zafalowania na wykresach ? (**6 pkt**)

Zafalowania w paśmie przenoszenia (zafalowanie w paśmie zaporowy = 0.1)	Rząd filtru (n)
0.00001	525
0.0001	411
0.001	297
0.01	183
0.1	69
0.3	69
0.5	69

5 pkt

Zafalowania w paśmie zaporowym (zafalowania w paśmie przenoszenia = 0.01)	Rząd filtru (n)
0.0001	411
0.001	297
0.01	183
0.1	183
0.3	183
0.5	183
0.6	183

1/

Zauważamy, że ustawiając stałe zafalowania w paśmie zaporowym = 0.1, powodujemy, że minimalny rząd filtru wynosi 69. Ustawiając mniejsze zafalowania w paśmie przenoszenia, zwiększymy rząd filtru, ustawiając większe nie zmienimy nic bo jesteśmy blokowani, stałymi zafalowaniami w paśmie zaporowym.

Zauważamy również, że ustawiając stałe zafalowania w paśmie przenoszenia = 0.01, powodujemy, że minimalny rząd filtru wynosi 183. Ustawiając mniejsze zafalowania w paśmie zaporowym, zwiększymy rząd filtru, ustawiając większe nie zmienimy nic bo jesteśmy blokowani, stałymi zafalowaniami w paśmie przenoszenia.

Projektowanie Metodą Aproksymacji

5. Uruchom plik CPS_FIR_met_ap.m i odczytaj (z Workspace) wymiar macierzy b oraz rząd filtru n, zaprojektowanego metodą aproksymacji równomiernie falistej. (**1pkt**) Wymiar macierzy: b = 59 x 1

Rząd filtru: n = 58

6. Przeanalizuj wykres z charakterystyką amplitudową, fazową oraz odpowiedzią impulsową (4pkt)

W charakterystyce amplitudowej zauważamy, że zafalowania są równomierne i pojawiają się od samego początku pasma przepustowego, aż do częstotliwości granicznej. Podobnie zafalowania w paśmie zaporowym, od początku do końca są równomierne.

Charakterystyka fazowa wygląda w zasadzie identycznie, jak w poprzedniej metodzie. \checkmark

Odpowiedź impulsowa, wygląda nieco inaczej niż w pierwszym przypadku. Prążki są nieco inaczej ustawione.

4016

epkt)

Oblasie

partosu?

7. Sprawdź parametry zaprojektowanego filtru: (2 pkt)

• pasmo przenoszenia, 0-2000 Hz

• pasmo zaporowe, 2100-4096Hz

• zafalowanie w paśmie przenoszenia, 0.1

• zafalowanie w paśmie zaporowym, 0.1

liczbę próbek odpowiedzi impulsowej, 59

Zafalowania w paśmie przenoszenia (zafalowanie w paśmie zaporowy = 0.1)	Rząd filtru (n)
0.00001	261
0.0001	212
0.001	162
0.01	111
0.1	58
0.3	33
0.5	21

Zafalowania w paśmie zaporowym (zafalowania w paśmie przenoszenia = 0.01)	Rząd filtru (n)
0.0001	257
0.001	209
0.01	160
0.1	111
0.3	87
0.5	77
0.6	73

Zafalowania w paśmie zaporowym

A/B – ile razy większy filtr w

1.99977628988225

A - metoda okien	B - metoda aproksymacji	metodzie okien
525	261	2.01149425287356
411	212	1.93867924528302
297	162	1.83333333333333
183	111	1.64864864864865
69	58	1.18965517241379
69	33	2.09090909090909
69	21	3.28571428571429
	Suma:	13.9984340291757
	Ilość:	7

Zafalowania w paśmie przepustowym

Średnia:

Zururo Warria W publine przepublo Wym		
	A/B – ile razy	
B - metoda aproksymacji	większy filtr w metodzie okien	
257	1.59922178988327	
209	1.42105263157895	
160	1.14375	
111	1.64864864864865	
87	2.10344827586207	
77	2.37662337662338	
73	2.50684931506849	
Suma:	12.7995940376648	
Ilość:	7	
Średnia:	1.82851343395211	
	B - metoda aproksymacji 257 209 160 111 87 77 73 Suma: Ilość:	

Zauważamy, że otrzymujemy średnio 2 razy niższy rząd filtru korzystając z metody aproksymacji, metoda ta nie ogranicza nas także, ze względu na stałe wartości zafalowań w paśmie przenoszenia lub zaporowym, odpowiednio manipulując wartościami zmiennymi, możemy uzyskać niższy rząd filtru niż w przypadku metody okien.

Wnioski – porównanie metod i cechy charakterystyczne (**4 pkt**)

- Zauważamy, że w metodzie okien, zafalowania pojawiają się dopiero, gdy zbliżamy się do częstotliwości granicznej, narastają one w paśmie przepustowym zwiększając swoją amplitudę, tymczasem dla metody aproksymacji zauważamy, że zafalowania występują na całym paśmie przepustowym i są one stałe od samego początku do końca.
- Zafalowania w paśmie zaporowym odpowiednio dla metody okien, zmniejszają się w paśmie zaporowym, aż do całkowitego wygaśnięcia, a dla metody aproksymacji również są stałe.
- Zauważamy, że metoda aproksymacji zwraca w obu przypadkach mniejsze rzędy filtrów, dla każdej wartości zafalowania, zarówno jeżeli jako stałe ustawimy te w paśmie zaporowym i zmieniać będziemy te w paśmie przepustowym jak i na odwrót.

-Filtry tego typu, wszystkie bieguny mają w punkcie (0,0) zespolonego układu współ zędnych, zatem będą one zawsze stabilne.

+ to co w zadanaich

4 ptr 20 poniosle: Intoi i 10 5pm 26/27

2. Wzór sprawozdania

Wstęp do cyfrowego przetwarzania sygnałów – laboratorium Temat: Filtry FIR (FIR ang. Finite Impulse Response) Imię i nazwisko: Marcel Garczyk Data ćwiczenia: 28.04.22r. Data oddania sprawozdania: 28.04.22r. Ocena:

Sprawozdanie powinno zawierać:

- Wykresy otrzymanych przebiegów,
- Odpowiedzi na pytania,
- Tabele,
- Wnioski.

CPS_FIR_met_ok.m

```
% Metoda okien FIR
clear; clc;
Fs=8192;
[n, Wn, beta, ftype]=kaiserord([2000 2100], [1 0], [0.1 0.1], Fs);
b=fir1(n, Wn, ftype, kaiser(n+1, beta), 'noscale');
[H, f] = freqz(b, 1, 512, Fs);
subplot(3,1,1); plot(f,abs(H)); grid; title('Charakterystyka amplitudowa');
xlabel('f [Hz]');
subplot(3,1,2); plot(f,unwrap(angle(H))); grid; title('Charakterystyka
fazowa');
xlabel('f [Hz]');
subplot(3,1,3); stem(impz(b),'.'); grid; title('Odpowiedź impulsowa');
xlabel('Numer próbki');
%1. Odczytaj (z Matlab-Workspace) wymiar macierzy b oraz rząd filtru n
%2. Sprawdź parametry zaprojektowanego filtru:
%pasmo przenoszenia, pasmo zaporowe,
%zafalowanie w paśmie przenoszenia, zafalowanie w paśmie zaporowym,
%liczbę próbek odpowiedzi impulsowej.
%3. Sprawdź zależność rzędu filtru od zafalowań wypełniając tabelę
% 3.1. Zafalowania w paśmie przenoszenia
                                                           Rząd filtru (n)
```

```
%
       (zafalowanie w paśmie zaporowy = 0.1)
%
%
                                  0.00001
%
                                  0.0001
%
                                  0.001
%
                                  0.01
                                                             183
%
                                  0.1
%
                                  0.3
%
                                  0.5
% 3.2. Zafalowania w paśmie zaporowym
                                                             Rząd filtru (n)
       (zafalowania w paśmie przenoszenia = 0.01)
%
%
%
                                  0.0001
%
                                  0.001
%
                                  0.01
%
                                                             183
                                  0.1
%
                                  0.3
%
                                  0.5
%
                                  0.6
```

CPS_FIR_met_ap.m

```
% Metoda aproksymacji równomiernie falistej
%clear; clc;
Fs=8192;
%[n,f0,m0,w]=firpmord([2000 2100],[1 0],[0.1 0.1],Fs); %dla osób
korzystających z Matlaba
%w Octavie funkcja teoretycznie istnieje w pakiecie signal, ale jest
niezaimplementowana
%firpmord([2000 2100],[1 0],[0.01 0.1],Fs)
n=58; f0=[0;0.488281250000000;0.512695312500000;1]; m0=[1;1;0;0]; w=[1;1];
b=remez(n,f0,m0,w);
                             %alternatywnie firpm
                                                    dla Matlaba
[H, f]=freqz(b, 1, 512, Fs);
subplot(3,1,1); plot(f,abs(H)); grid; title('Charakterystyka amplitudowa');
xlabel('f [Hz]');
subplot(3,1,2); plot(f,unwrap(angle(H))); grid; title('Charakterystyka
fazowa');
xlabel('f [Hz]');
subplot(3,1,3); stem(impz(b),'.'); grid; title('Odpowiedź impulsowa');
xlabel('Numer próbki');
% fvtool(b,1);
%1. Odczytaj (z Matlab-Workspace) wymiar macierzy b oraz rząd filtru n
```

%2. Sprawdź parametry zaprojektowanego filtru: %pasmo przenoszenia, pasmo zaporowe, %zafalowanie w paśmie przenoszenia, zafalowannie w paśmie zapoprwym, %liczbę próbek odpowiedzi impulsowej