# Volumes with Integrals

Suppose we wanted to know the volume of a theoretical irregular shape (we stipulate theoretical because, if you had this object and a large enough container, you could use displacement to determine the volume of the object). [fixme better intro]

## 1.1 Volume of a Sphere

Below, we will prove the volume of a sphere is given by  $\frac{4}{3}\pi r^3$  using the integral method. Suppose we have a sphere of radius r centered at the origin (see figure 1.1).



Figure 1.1: A vertical cross-section of a sphere

We begin by taking very thin vertical cross-sections. The radius of the cross-section is the height, y, of the sphere at the horizontal position, x. Since the edges of the cross-section lie on the sphere, we know the edge of the cross-section is distance r from the origin. Applying the Pythagorean theorem, we see that  $r^2 = x^2 + y^2$ , which implies that  $y = \sqrt{r^2 - x^2}$ . So, the area of the cross-section is given by  $\pi y^2 = \pi (r^2 - x^2)$ . If we imagine each cross section as having a width, dx, and taking the sum of all the cross sections from x = -r to x = r, we can write an integral equal to the volume of the sphere:

$$V_{sphere} = \int_{-r}^{r} \pi(r^2 - x^2) dx$$

We can then evaluate that integral:

$$V_{sphere} = \pi \int_{-r}^{r} r^2 dx - \pi \int_{-r}^{r} x^2 dx$$

$$\begin{split} V_{sphere} &= \pi \left[ r^2 x \right]_{x=-r}^{x=r} - \frac{\pi}{3} \left[ x^3 \right]_{x=-r}^{x=r} \\ V_{sphere} &= \pi \left[ r^3 - (-r^3) \right] - \frac{\pi}{3} \left[ r^3 - (-r^3) \right] \\ V_{sphere} &= 2\pi r^3 - \frac{2\pi}{3} r^3 = \frac{4}{3}\pi r^3 \end{split}$$

Prove the volume of a regular cone is  $\frac{\pi}{3}R^2H$ , where R is the radius of the base and H is the height of the cone. (Hint: A cone is a series of decreasing circles stacked on top of each other; see figure below.)



## **Working Space**

#### 1.2 Volumes of Solids of Revolution

We can also find the volume of solids made by revolving a graph about the x or y-axis. Suppose the graph  $y = \sin x$  from x = 0 to  $x = \frac{\pi}{2}$  were rotated vertically about the x-axis to form a solid. How could we find the volume of that solid? Well, we can imagine a rectangle of width dx and height y (see figure 1.2)



Figure 1.2: A cross section has width dx and height  $y = \sin x$ 

If we rotate the plot vertically about the x-axis, the rectangle becomes a cylinder with radius  $y = \sin x$  and height dx (see figure ??). Therefore, the volume of each cylindrical slice is  $V_{slice} = \pi r^2 dx = \pi \cdot \sin^2 x dx$ .



Figure 1.3: When rotated, the cross-section becomes a cylinder with radius  $\sin x$  and width dx, which has a total volume of  $\pi \sin^2 x dx$ 

We can find the total volume by integrating from 0 to  $\pi/2$ :

$$V = \pi \int_0^{\pi/2} \sin^2 x \, dx$$

Recall the half angle formula,  $\sin^2 x = \frac{1}{2} \left( 1 - \cos 2x \right)$ . Substituting, we see that:

$$V = \frac{\pi}{2} \int_0^{\pi/2} (1 - \cos 2x) \, dx$$

$$V = \frac{\pi}{2} \left( x - \frac{1}{2} \sin 2x \right) \Big|_{x=0}^{x=\pi/2}$$

$$V = \frac{\pi}{2} \left[ \left( \pi/2 - \frac{1}{2} \sin \pi \right) - \left( 0 - \frac{1}{2} \sin 0 \right) \right]$$

$$V = \frac{\pi}{2} \left[ \pi/2 - 0 - 0 + 0 \right] = \frac{\pi^2}{4}$$

Find the volume of a solid created by rotating the region bounded by  $x = 2\sqrt{y}$ , x = 0, and y = 9 about the y-axis. A graph is shown below.



Working Space —

\_\_\_ Answer on Page 14

Let  $f(x) = (\alpha x^3 + bx^2 + cx + d)\sqrt{1 - x^2}$ . Bird's eggs of various sizes can be modeled by rotating f(x) about the x-axis, with different values of  $\alpha$ , b, c, and d defining different sizes and shapes of eggs. For a domestic chicken,  $\alpha = -0.02$ , b = 0.03, c = 0.12, and d = 0.454. For a mallard duck,  $\alpha = -0.06$ , b = 0.04, c = 0.1, and d = 0.54. Use a calculator, such as a TI-89 or Wolfram Alpha, to determine which species lays a bigger egg.

| Moulin  | a Snaca |  |
|---------|---------|--|
| Working | g spuce |  |

Answer on Page 14

#### 1.2.1 Using donuts for solids of revolution

Sometimes there is space between the region we are rotating and the line we are rotating it about. Consider the region bounded between y = 2x and  $y = x^2$  (see figure 1.4):

When rotated, the slices will take the form of donuts (or washers), the volume of which is  $\pi (R^2 - r^2) dx$ , where R is the outer radius and r is the inner radius. Therefore, in this case, the total volume of the rotated region is given by:

$$V = \int_0^2 \pi \left[ (2x)^2 - \left( x^2 \right)^2 \right] dx$$

$$V = \pi \int_0^2 4x^2 - x^4 dx = \pi \left[ \frac{4}{3} x^3 - \frac{1}{5} x^5 \right]_{x=0}^{x=2}$$



Figure 1.4: When rotated, the slices will become donuts with outer radius 2x and inner radius  $x^2$ 

$$V = \pi \left[ \frac{4}{3} 2^3 - \frac{1}{5} 2^5 \right] = \pi \left[ \frac{32}{3} - \frac{32}{5} \right]$$
$$V = \frac{64\pi}{15}$$

What is the volume of the region bounded by  $y = x^2$  and  $y = 2\sqrt{x}$  when rotated about the y-axis?

| Working | Space |  |
|---------|-------|--|
| O       | ,     |  |

Answer on Page 15

#### 1.3 Volumes of Other Solids

You can also model a solid as a base defined by a function with cross-sections of specific shapes. Consider the function  $y = x^2$  from x = 0 to x = 2 ( see figure 1.5). Suppose the area between the curve, the y-axis, and the line y = 4 defines a base and each vertical cross-section is a square. So, the width of the each cross section is dx, the length is  $4 - x^2$ , and (because they are squares) the height in the z-plane is also  $4 - x^2$ . The volume of each cross-section is  $V_{\text{slice}} = (4 - x^2)^2 \, dx$  and the total volume of the solid is:

$$V = \int_0^2 (4 - x^2)^2 dx$$

$$V = \int_0^2 (16 - 8x^2 + x^4) dx$$

$$V = \left[16x - \frac{8}{3}x^3 + \frac{1}{5}x^5\right]_{x=0}^{x=2}$$

$$V = 16(2) - \frac{8}{3}(2)^3 + \frac{1}{5}(2)^5 = \frac{256}{15} \approx 17.067$$



Figure 1.5:  $y = x^2$  with a vertical cross-section

You can use a similar method for triangular, semi-circular, or any other shape cross-section. The trick is writing everything in terms of x (when you cross sections are vertical and have width dx) or y (when your cross section are horizontal and have length dy).

[This question was originally presented as a multiple-choice, calculator-allowed question on the 2012 AP Calculus BC exam.] Let R be the region in the first quadrant bounded above by the graph  $y = \ln(3-x)$ , for  $0 \le x \le 2$ . R is the base of a solid for which each cross section perpendicular to the x-axis is square. What is the volume of the solid? Give your answer to 3 decimal places.

| Working | Snace |  |
|---------|-------|--|
| working | Spuce |  |

\_ Answer on Page 16

Find the volume of a solid whose base is defined by the ellipse  $9x^2 + 16y^2 = 25$  and is made up of isosceles-triangular cross-sections perpendicular to the x-axis (with the hypotenuse in the base of the solid).

Working Space

\_\_\_\_\_ Answer on Page 16 \_\_\_\_\_

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.org/) for more details.

## **Answers to Exercises**

## **Answer to Exercise 1 (on page 2)**

Imagine a side view of the cone (see figure below), an isosceles triangle with height H and base 2R. If we take horizontal cross-sections, then each cross-section is a circle h from the top with a radius r. Because the triangles are similar (FIXME: better wording/explanation here), we also know that  $\frac{H}{h} = \frac{R}{r}$ . Therefore, we can define r in terms of h:  $r = \frac{hR}{H}$  and the volume of each subsequent cross-section is  $\pi r^2 dh = \pi \frac{h^2 R^2}{H^2} dh$ . We start with h = 0 and end with h = H:

$$\begin{split} V_{cone} &= \int_0^H \pi \frac{h^2 R^2}{H^2} \, dh = \pi \frac{R^2}{H^2} \int_0^H h^2 \, dh \\ &= \pi \frac{R^2}{H^2} \left[ \frac{1}{3} h^3 \right]_{h=0}^{h=H} = \pi \frac{R^2}{3H^2} \left[ H^3 - 0^3 \right] \\ &= \pi \frac{R^2}{3H^2} H^3 = \frac{\pi}{3} R^2 H \end{split}$$



## **Answer to Exercise 2 (on page 5)**

If we are rotating about the y axis, we should make our slices horizontal, so their width is dy (see graph below). Then, the volume of each cylinder is given by  $V = \pi r^2 dy$  and the total volume is given by:

$$V = \int_0^9 \pi [2\sqrt{y}]^2 dy$$

$$V = 4\pi \int_0^9 y dy = 2\pi y^2 \Big|_{y=0}^{y=9}$$

$$V = 2\pi (9)^2 = 162\pi$$



## **Answer to Exercise 3 (on page 6)**

Since the graph is rotated around the x-axis, we will take vertical slices with width dx, and rotate them to make cylinders with radius f(x) and height dx. The volume of each egg is given by:

$$\int_{-1}^{1} \pi \left[ f(x) \right]^2 dx$$

To determine our limits of integration, we note that  $\sqrt{1-x^2}=0$  (and therefore, f(x)=0) when  $x=\pm 1$ .

For the chicken:

$$V_{\text{chickenegg}} = \pi \int_{-1}^{1} \left[ \left( -0.02x^3 + 0.03x^2 + 0.12x + 0.454 \right) \sqrt{1 - x^2} \right]^2 dx$$

For the mallard duck:

$$V_{\text{duckegg}} = \pi \int_{-1}^{1} \left[ \left( -0.06x^3 + 0.04x^2 + 0.1x + 0.54 \right) \sqrt{1 - x^2} \right]^2 dx$$

Using a calculator, we find that  $V_{chickenegg} \approx 0.897$  and  $V_{duckegg} \approx 1.263$ . Therefore, mallard ducks lay larger eggs than chickens do.

## **Answer to Exercise ?? (on page 8)**

First, since we are revolving around the y-axis, we know our slices will have width dy. We will rewrite the functions as x in terms of y:

$$x = \sqrt{y}$$

$$x = \frac{y^2}{4}$$

Setting them equal to each other to find the y-value at which they intercept:

$$\sqrt{y} = \frac{y^2}{4}$$

$$4 = \frac{y^2}{\sqrt{y}} = y^{3/2}$$

$$y = \sqrt[3]{4^2} = 2\sqrt[3]{2}$$

Examining a graph (shown below), we see that the outer radius is  $x = \sqrt{y}$  and the inner radius is  $x = \frac{y^2}{4}$ .



So, the total volume of the solid of revolution is given by:

$$V = \pi \int_0^{2\sqrt[3]{2}} (\sqrt{y})^2 - \left(\frac{y^2}{4}\right)^2 dy$$

$$V = \pi \int_0^{2\sqrt[3]{2}} \left[ y - \frac{y^4}{16} \right] dy$$

$$V = \pi \left[ \frac{1}{2} y^2 - \frac{1}{80} y^5 \right]_{y=0}^{y=2\sqrt[3]{2}}$$

$$V = \pi \left[ \frac{6}{5} 2^{2/3} \right] \approx 5.9844$$

## **Answer to Exercise 5 (on page 10)**

If each cross section is a square, then the volume of each cross section is given by  $s^2 dx$ , where s is the side length of the square. Since the side length is equal to the distance between the graph of y and the x-axis, we can see that  $s = y = \ln(3 - x)$ . And, therefore, the total volume of all the cross sections is given by  $\int_0^2 [\ln(3-x)]^2 dx$ . Using a calculator, this integral evaluates to  $\approx 1.029$ .

## **Answer to Exercise 6 (on page 11)**

Since the cross-sections are perpendicular to the x-axis, they will have width dx and we will integrate across the domain of the ellipse. Setting y=0 to find the domain of the ellipse:

$$9x^2 = 25 \rightarrow x^2 = \frac{25}{9} \rightarrow x = \pm \frac{5}{3}$$

A right isosceles triangle with hypotenuse h has area  $\frac{1}{4}h^2$ . In this case, each triangle's hypotenuse is given by the distance between the top and bottom of the ellipse. The top of the ellipse if defined by  $y = \frac{1}{4}\sqrt{25-9x^2}$  and the bottom by  $y = -\frac{1}{4}\sqrt{25-9x^2}$ . Therefore, the length of each hypotenuse is  $\frac{1}{2}\sqrt{25-9x^2}$ .

Then, each cross-section has a total volume of  $\frac{1}{4}h^2dx = \frac{1}{4}\left(\frac{1}{2}\sqrt{25-9x^2}\right)^2dx$  and the volume of the solid is:

$$V_{\text{solid}} = \int_{-5/3}^{5/3} \frac{1}{4} \left( \frac{1}{2} \sqrt{25 - 9x^2} \right)^2 dx$$
$$= \frac{1}{4} \int_{-5/2}^{5/3} \frac{1}{4} \left( 25 - 9x^2 \right) dx$$

$$= \frac{1}{6} \int_{-5/3}^{5/3} \left( 25 - 9x^2 \right) dx = \frac{1}{16} \left[ 25x - 3x^3 \right]_{x = -5/3}^{x = 5/3}$$

$$= \frac{1}{16} \left[ \left( 25 \left( \frac{5}{3} \right) - 25 \left( \frac{-5}{3} \right) \right) - \left( 3 \left( \frac{5}{3} \right)^3 - 3 \left( \frac{-5}{3} \right)^3 \right) \right]$$

$$= \frac{1}{16} \left[ \frac{250}{3} - \left( \frac{375}{27} + \frac{375}{27} \right) \right] = \frac{1}{16} \left[ \frac{250}{3} - \frac{250}{9} \right] = \frac{1}{16} \left[ \frac{750}{9} - \frac{250}{9} \right] = \frac{1}{16} \left[ \frac{500}{9} \right] = \frac{125}{36}$$



# INDEX

solids of revolution, 3

Volume Single Integral, 1 volume of a sphere, 1

washer method, 6