Untitled

Sam Harper

29/10/2021

First, let's read in the Stata dataset, and create a smaller version with just the variables of interest for looking at skilled birth attendance:

Next let's aggregate up to the district level

glimpse(d_sba)

'summarise()' has grouped output by 'district', 'dist_id'. You can override using the '.groups' argu

```
## Rows: 40
## Columns: 11
## Groups: district, dist_id [8]
```

\$ district <fct> Kaliua DC, Kaliua DC, Kaliua DC, Kaliua DC, Kaliua DC, Nzega ~

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

```
## $ dist id
           <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5~
## $ time
           <dbl> 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1~
           <dbl> 409, 49, 63, 9, 94, 465, 60, 43, 9, 88, 165, 13, 12, 4, 21, 3~
## $ tsba
## $ tpop
           <int> 705, 73, 77, 10, 114, 634, 76, 57, 10, 101, 182, 13, 14, 5, 2~
## $ psba
           <dbl> 0.5801418, 0.6712329, 0.8181818, 0.9000000, 0.8245614, 0.7334~
## $ txdel
           <dbl> 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0~
## $ group
           <dbl> 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4
## $ g2
           ## $ g3
           <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
## $ g4
```

Since the CS DiD approach functions by aggregating different kinds of group-time DDs, we can also aggregate up to the group level, since we have 2 groups being treated at each wave post-baseline:

```
# create group-time aggregate data
d_agg <- d_sba %>% group_by(group, time) %>%
summarise(tsba = sum(tsba),
    tpop = sum(tpop),
    psba = tsba / tpop, # % SBA
    txdel = mean(txdel),
    g2 = mean(g2),
    g3 = mean(g3),
    g4 = mean(g4))
```

Now, just to get a look at what we are comparing when we run the group-time DDs, let's reshape this data to wide (just to see it):

Group Time ATTS

Group 2

The basic idea of the group-time ATTs is to estimate a series of ATTs for each group G that is treated at time T. So if we wanted to estimate the ATT at time=2 for the group that is first treated at time=2, we calculate the 'long' difference, i.e., post minus pre for the treated group (G = 2) and the difference for all groups not already treated for the same period. Thus, the groups we are comparing to estimate ATT(2,2) are:

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g22	time1	time2	Long diff	ATT_2_2
0	0.745	0.814	0.069	NA
1	0.631	0.711	0.080	0.011

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(2:3, color = "black", background = "red") %>%
  row_spec(2:4, background = "lightgray") %>%
  column_spec(4:6, background = "white") %>%
  column_spec(1, background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

If we take the population-weighted average SBA proportions for these two groups, we get

'summarise()' has grouped output by 'g22'. You can override using the '.groups' argument.

Now, we can ask about how the effect in Group 2 changes with time after the intervention. The ATT(2,3) asks about the estimated treatment effect at time 3 (t=3) for the group that was first treated at time 2 (g=2). To get this estimate, we now create a similar 2x2 table but are using time 3 as the 'post' estimate. But note here that, since group 3 (G=3) is treated at time 3, we don't want to include it as a part of our control group, we that means we restrict our control comparison to only those groups that are **not** treated by time 3. So we are comparing:

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g23	time1	time3	Long diff	ATT_2_3
0	0.803	0.725	-0.078	NA
1	0.631	0.814	0.182	0.26

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(c(2,4), color = "black", background = "red") %>%
  row_spec(2, background = "white") %>%
  row_spec(3:4, background = "lightgray") %>%
  column_spec(c(3,5,6), background = "white") %>%
  column_spec(1, background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

And we get:

'summarise()' has grouped output by 'g23'. You can override using the '.groups' argument.

We can of course extend our view of how the treatment effect evolves for Group 2 by calculating the effect of being treated at time 4 for the group that was first treated at time 2, i.e., ATT(2,4). This is comparing:

```
gt %>%
kbl(digits=3, escape = FALSE) %>%
kable_styling() %>%
column_spec(c(2,5), color = "black", background = "red") %>%
row_spec(2:3, background = "white") %>%
```

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g24	time1	time4	Long diff	ATT_2_4
0	0.854	0.800	-0.054	NA
1	0.631	0.846	0.215	0.269

```
row_spec(4, background = "lightgray") %>%
column_spec(6, background = "white") %>%
column_spec(c(1,3,4), background = "white") %>%
kable_minimal() %>%
footnote(general = "Red = treated, Gray = untreated")
```

Note that the control group here also changes, since at t = 4 group 4 has now been treated, so we exclude them from the control group for this comparison. And the estimate is:

'summarise()' has grouped output by 'g24'. You can override using the '.groups' argument.

Group 3

Now, what about the groups that are first treated at time 3, i.e., (t = 3)? Since we actually have more than one pre-period for this group, we can also see whether there is some evidence of non-parallel trends by looking at, for example, the ATT(3,2), which is the effect of being treated at **time=2** for the group that is first treated at time 3. In essence, we are comparing the pre-intervention 'long difference' between t = 1 and t = 2 for the group eventually treated at time 3 with the same long difference among the controls:

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
```

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g32	time1	time2	Long diff	ATT_3_2
0	0.803	0.85	0.046	NA
1	0.678	0.77	0.091	0.045

```
column_spec(2:3, color = "black", background = "red") %>%
row_spec(3:4, background = "lightgray") %>%
row_spec(1, background = "white") %>%
column_spec(4:6, background = "white") %>%
column_spec(1, background = "white") %>%
kable_minimal() %>%
footnote(general = "Red = treated, Gray = untreated")
```

The estimate of the ATT(3,2) is:

'summarise()' has grouped output by 'g32'. You can override using the '.groups' argument.

Now for the treatment effect at time 3 for the groups first treated at time 3 we are comparing:

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(3:4, color = "black", background = "red") %>%
  row_spec(3:4, background = "lightgray") %>%
  row_spec(1, background = "white") %>%
  column_spec(1, background = "white") %>%
  column_spec(1, background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g33	time2	time3	Long diff	ATT_3_3
0	0.85	0.725	-0.124	NA
1	0.77	0.664	-0.106	0.018

The estimate of the ATT(3,3) is:

'summarise()' has grouped output by 'g33'. You can override using the '.groups' argument.

The groups for comparison for the estimated treatment effect at time 4 for the groups first treated at time 3 now also need to exclude group 4, since it has received the treatment at time 4, but note also that the 'pre-intervention' period is still (t = 2) since group 3 was actually treated at time 3. So, we care comparing:

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(c(3,5), color = "black", background = "red") %>%
  row_spec(c(1,3), background = "white") %>%
  row_spec(4, background = "lightgray") %>%
  column_spec(c(1,2,4,6), background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

The estimate of the ATT(3,4) is:

```
d_agg %>% filter((time == 2 | time == 4) & (group == 3 | group == 5)) %>%
  mutate(g34 = if_else(group==3,1,0)) %>%
  group_by(g34, time) %>%
```

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g34	time2	time4	Long diff	ATT_3_4
0	0.939	0.8	-0.139	NA
1	0.770	0.8	0.030	0.17

Group 4

Since we have untreated groups remaining at time 5, the last group we can estimate a 'clean' ATT for is Group 4. In this case, we also now have 2 pre-intervention periods we can use to assess the parallel trends assumption. For the time 2 periods before treatment starts for Group 4, we can compare the change in SBA between time 1 and time 2 for our treated group, i.e., the group first treated at time 4, and a control group. In this case the control group will only include Group 3 and Group 5, since Group 2 is treated at (t=2) and we have to exclude it. So our comparison groups are:

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(c(2,3), color = "black", background = "red") %>%
  row_spec(1, background = "white") %>%
  row_spec(c(2,4), background = "lightgray") %>%
  column_spec(c(1,4,5,6), background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

Again, taking the population-weighted estimate for the control group and the estimates for Group 4, we can calculate the ATT at time 2 for the group first treated at time 4, i.e., ATT(4,2):

```
d_agg %>% filter(time < 3 & group >= 3) %>%
mutate(g42 = if_else(group==4,1,0)) %>%
group_by(g42, time) %>%
```

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

g42	time1	time2	Long diff	ATT_4_2
0	0.727	0.818	0.091	NA
1	0.778	0.807	0.029	-0.062

As you might expect, we now make the same progression for the addition ATTs for the the group first treated at time 4. First, for the next ATT for the pre-intervention period we want the treatment effect at time 3 for the group that is first treated at time 4. That means comparing only Groups 4 and 5 (since group 3 is treated at time 3, it has to be excluded from the control population):

```
gt %>%
  kbl(digits=3, escape = FALSE) %>%
  kable_styling() %>%
  column_spec(c(3,4), color = "black", background = "red") %>%
  row_spec(1:2, background = "white") %>%
  row_spec(4, background = "lightgray") %>%
  column_spec(c(1,2,5,6), background = "white") %>%
  kable_minimal() %>%
  footnote(general = "Red = treated, Gray = untreated")
```

And the resulting ATT(4,3) is:

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Note:

Red = treated, Gray = untreated

g43	time2	time3	Long diff	ATT_4_3
0	0.939	0.854	-0.086	NA
1	0.807	0.673	-0.134	-0.048

group	time1	time2	time3	time4	time5
2	0.631	0.711	0.814	0.846	0.826
3	0.678	0.770	0.664	0.800	0.784
4	0.778	0.807	0.673	0.750	0.868
5	0.854	0.939	0.854	0.800	0.855

Red = treated, Gray = untreated

Finally, the last ATT we can estimate is the effect of being treated at time 4 for the group that is first treated at time 4. Again, we can only compare groups 4 and 5 here, since every other group has already been treated. So we are comparing:

```
gt %>%
kbl(digits=3, escape = FALSE) %>%
kable_styling() %>%
column_spec(c(4,5), color = "black", background = "red") %>%
row_spec(1:2, background = "white") %>%
row_spec(4, background = "lightgray") %>%
column_spec(c(1,2,3,6), background = "white") %>%
kable_minimal() %>%
footnote(general = "Red = treated, Gray = untreated")
```

And the resulting ATT(4,3) is:

g44	time3	time4	Long diff	ATT_4_4
0	0.854	0.80	-0.054	NA
1	0.673	0.75	0.077	0.13

Weighted ATTs