

Challenger 2: Certified Data Removal from Machine Learning Models

Weijie Guan

Weakness

1. Limited application scenarios

- 1. The theory in the paper is based on **linear models and convex loss functions**, which limits the application scenarios, for example, the paper only use logistic-regression-based model to verify the effectiveness even on multiclassification problem.
- 2. The paper mentions removing data from the machine learning model, but it seems like Certified Removal only remove data on a simple linear downstream model, and does not remove the data at the source, for example, there is a potential risk of data leakage in the upstream encoder that cannot be addressed or handled by this approach

2. Incomplete experiments

- 1. The experiment did not independently explore the effects of λ and σ .
 - 1. How do the value of λ and σ affect the expected number of supported removals independently?
 - 2. How do the value of λ and σ affect the effectiveness of Certified Removal?
- 2. The experiment lacks proof of the effectiveness of **loss perturbation** and direct verification of the effect of **Certified Removal**, for example, comparing the prediction uncertainty for the removed samples.
 - 1. How to evaluate that whether data points are actually effectively removed from the model?

Weakness

3. Complexity

1. It seems like Certified Removal needs to calculate the Hessian matrix and its inversion which leads to high complexity. Is it possible that retraining the model is a faster way than Certified Removal especially when a lot of data needs to be removed?

