

FCC PART 15.247 TEST REPORT

For

CDM MIAMI INC

1825 NW 112th AVE, UNIT 158, MIAMI, FL 33172

FCC ID: ZZRTM9207

Report Type: Product Type:

Original Report GSM Mobile Phone

Test Engineer: Henry Ding

Report Number: RSZ120529004-00B-Wi-Fi

Report Date: 2012-07-09

Alvin Huang

Reviewed By: RF Leader

Bay Area Compliance Laboratories Corp. (Shenzhen)

Henry . Ving

6/F, the 3rd Phase of WanLi Industrial Building,

Test Laboratory: ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "\(\dagger \dagger \)" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
§15.247 (i) and §1.1307 (b) (1), §2.1093 – RF EXPOSURE	9
STANDARD APPLICABLE	
RESULT:	
FCC §15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP.	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	13
TEST RESULTS SUMMARY	
TEST DATA	13
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	
Measurement Uncertainty	16
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST EQUITMENT LIST AND DETAILS.	20

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	31
APPLICABLE STANDARD	31
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	31
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	36
APPLICABLE STANDARD	
TEST PROCEDURE	36
TEST EQUIPMENT LIST AND DETAILS	36
TEST DATA	36
FCC §15.247(e) - POWER SPECTRAL DENSITY	40
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	40
TEST DATA	40
PRODUCT SIMILARITY DECLARATION LETTER	45

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *CDM MIAMI INC*'s product, model number: *FLY (FCC ID: ZZRTM9207)* (the "EUT") in this report is a *GSM Mobile Phone*, which was measured approximately: 11.0 cm (L) x 6.0 cm (W) x 1.5 cm (H), rated input voltage: DC 3.7 V Li-ion battery or DC 5V charging from adapter.

Report No.: RSZ120529004-00B-Wi-Fi

Adapter Information: Model: US5PIN;

Input: AC 100-240V 50/60Hz 0.1A;

Output: DC 5.0V 500mA.

Note: The product, model FLY, K700, SURF and CRUISE, they are electrically identical, only different in model number, Model FLY was selected for full testing, which was explained for details in the attached declaration letter.

* All measurement and test data in this report was gathered from production sample serial number: 1205091 (Assigned by BACL, Shenzhen). The EUT was received on 2012-05-29.

Objective

This report is prepared on behalf of *CDM MIAMI INC* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP, Part 15.247 DSS and Part 22H&24E PCE submissions with FCC ID: ZZRTM9207.

FCC Part 15.247 Page 4 of 45

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Report No.: RSZ120529004-00B-Wi-Fi

The uncertainty of any RF tests which use conducted method measurement is ± 0.96 dB, the uncertainty of any radiation on emissions measurement is ± 4.0 dB

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

FCC Part 15.247 Page 5 of 45

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b and 802.11g mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Report No.: RSZ120529004-00B-Wi-Fi

EUT was tested with Channel 1, 6 and 11.

The worst case data rate is determined with the data rate with highest output power. For 802.11b mode: 11 Mbps data rate was chosen for full testing. For 802.11g mode: 54 Mbps data rate was chosen for full testing.

The system was configured for testing in an Engineering Mode.

EUT Exercise Software

Software supplied by client

Equipment Modifications

No modification was made to the unit tested.

External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable DC Power Cable	1.0	EUT	Adapter

FCC Part 15.247 Page 6 of 45

Configuration of Test Setup

Block Diagram of Test Setup

FCC Part 15.247 Page 7 of 45

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

FCC Part 15.247 Page 8 of 45

§15.247 (i) and §1.1307 (b) (1), §2.1093 – RF EXPOSURE

Standard Applicable

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ120529004-00B-Wi-Fi

Table 2 - Summary of SAR Evaluation Requirements for a Cell Phone with Multiple Transmitters

	· · ·	<u>-</u>
	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output ≤ 60/f: SAR not required o output > 60/f: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when o output ≤ 2·P _{Ref} and antenna is ≥ 5.0 cm from other antennas o output ≤ P _{Ref} and antenna is ≥ 2.5 cm from other antennas o output ≤ P _{Ref} and antenna is < 2.5 cm from other antennas o output ≤ P _{Ref} and antenna is < 2.5 cm from other antennas, each with either output power ≤ P _{Ref} or 1-g SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply
Jaw, Mouth and Nose	Flat phantom SAR required o when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues o position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

FCC Part 15.247 Page 9 of 45

- 1) GSM can transmit simultaneously with Wi-Fi.
- 2) The distance between Wi-Fi and GSM antenna is 6.2 cm > 5.0 cm. The max output power of Bluetooth antenna is $(12.58 \text{dBm}) \ 18.0 \ \text{mW} < 2 \text{*P}_{\text{Ref}} (24 \ \text{mW})$. According to KDB648474, standalone SAR is not required for Wi-Fi antenna.

Report No.: RSZ120529004-00B-Wi-Fi

- 3) When the sum of the 1-g SAR is <1.6W/kg for GSM and Bluetooth, the simultaneous SAR is not required.
- 4) P_{Ref} is defined as the maximum conducted power available at the antenna according to source-based time-averaging requirements of Section 2.1093(d)(5).

Result:

The SAR measurement is exempt.

FCC Part 15.247 Page 10 of 45

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ120529004-00B-Wi-Fi

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an integrated antenna arranement for Wi-Fi, which was permanently attached and the gain was -2 dBi, fulfill the requirement of this section. Please refer to the internal photos.

Result: Compliance.

FCC Part 15.247 Page 11 of 45

Applicable Standard

FCC§15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Shenzhen) is 2.4 dB (k=2, 95% level of confidence).

Report No.: RSZ120529004-00B-Wi-Fi

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC Part 15.247 Page 12 of 45

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Report No.: RSZ120529004-00B-Wi-Fi

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2011-11-24	2012-11-23
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2011-11-17	2012-11-16
Rohde & Schwarz	Pulse limiter	ESH3Z2	DE25985	2011-07-08	2012-07-07
BACL	CE Test software	BACL-CE	V1.0	-	-

^{*} **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, with the worst margin reading of:

21.74 dB at 1.825 MHz in the Neutral conducted mode

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Henry Ding on 2012-07-04.

Test Mode: Transmitting

FCC Part 15.247 Page 13 of 45

120 V, 60 Hz, Line:

Co	onducted Emissio	ons	FCC Part 15.207		
Frequency (MHz)	Corrected Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.180	42.56	9.64	65.14	22.58	QP
1.750	31.75	9.89	56.00	24.25	QP
0.740	30.25	9.78	56.00	25.75	QP
0.180	29.20	9.64	55.14	25.94	Ave.
0.455	31.25	9.67	57.29	26.04	QP
0.265	35.49	9.65	62.71	27.22	QP
0.350	31.86	9.66	60.29	28.43	QP
1.755	14.47	9.89	46.00	31.53	Ave.
0.455	14.71	9.67	47.29	32.58	Ave.
0.740	11.66	9.78	46.00	34.34	Ave.
0.350	14.67	9.66	50.29	35.62	Ave.
0.265	14.50	9.65	52.71	38.21	Ave.

FCC Part 15.247 Page 14 of 45

120V, 60 Hz, Neutral:

Co	Conducted Emissions			FCC Part 15.20)7
Frequency (MHz)	Corrected Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
1.825	34.26	9.90	56.00	21.74	QP
1.575	33.66	9.89	56.00	22.34	QP
0.180	42.16	9.67	65.14	22.98	QP
4.350	30.27	9.98	56.00	25.73	QP
0.180	28.91	9.67	55.14	26.23	Ave.
0.455	31.03	9.67	57.29	26.26	QP
0.270	35.91	9.66	62.57	26.66	QP
1.585	17.13	9.89	46.00	28.87	Ave.
0.455	17.47	9.67	47.29	29.82	Ave.
1.825	15.60	9.90	46.00	30.40	Ave.
4.390	15.44	9.98	46.00	30.56	Ave.
0.270	17.54	9.66	52.57	35.03	Ave.

FCC Part 15.247 Page 15 of 45

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ120529004-00B-Wi-Fi

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is $4.0 \, dB(k=2, 95\%)$ level of confidence).

EUT Setup

Below 1 GHz:

Above 1 GHz:

FCC Part 15.247 Page 16 of 45

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

During the radiated emission test, the adapter was connected to the outlet of the floor.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 17 of 45

Test Equipment List and Details

Manufacturer	Description	Description Model S Nu		Calibration Date	Calibration Due Date
НР	Amplifier	HP8447D	2944A09795	2011-11-24	2012-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2011-11-17	2012-11-16
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2012-11-27
SUPER ULTRA	Amplifier	ZVA-213+	N/A	2011-11-24	2012-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2012-11-30
Rohde & Schwarz	& Schwarz Signal Analyzer I		8386001028	2011-11-24	2012-11-23
Agilent	Agilent Spectrum Analyzer		3943A01781	2012-04-12	2013-04-11
the electro- Mechanics Co. Horn Antenna		3116	9510-2270	2011-10-14	2012-10-13
R&S	Auto test Software	EMC32	V6.30	-	-

Report No.: RSZ120529004-00B-Wi-Fi

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

9.74 dB at 9648.0 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Henry Ding on 2012-07-04.

FCC Part 15.247 Page 18 of 45

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

30 MHz-25 GHz:

802.11b Mode:

Indica	ated		Table	Ante	enna	Cor	rection	Factor	FCC	Part 15.247	/15.209/1	15.205
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)	A1 -	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
				L	ow Cha	annel (24	12 MH	z)				
2412.0	74.58	PK	38	1.3	V	29.60	3.03	26.50	80.71	/	/	Fund.
2412.0	69.47	Ave.	38	1.3	V	29.60	3.03	26.50	75.60	/	/	Fund.
9648.0	24.98	Ave.	358	1.3	Н	39.80	5.98	26.50	44.26	54.00	9.74	Harmonic
7236.0	25.10	Ave.	68	1.3	Н	37.90	5.22	26.50	41.72	54.00	12.28	Harmonic
9648.0	40.39	PK	358	1.3	Н	39.80	5.98	26.50	59.67	74.00	14.33	Harmonic
2396.9	32.62	Ave.	8	1.3	V	29.60	3.03	26.50	38.75	54.00	15.25	spurious
4824.0	26.09	Ave.	131	1.1	Н	34.60	4.30	26.50	38.49	54.00	15.51	Harmonic
7236.0	41.26	PK	68	1.3	Н	37.90	5.22	26.50	57.88	74.00	16.12	Harmonic
2395.4	31.37	Ave.	16	1.2	Н	29.60	3.03	26.50	37.50	54.00	16.50	spurious
4824.0	43.26	PK	131	1.1	Н	34.60	4.30	26.50	55.66	74.00	18.34	Harmonic
2396.9	41.58	PK	8	1.3	V	29.60	3.03	26.50	47.71	74.00	26.29	spurious
2491.9	20.29	Ave.	23	1.2	V	30.20	3.11	26.50	27.10	54.00	26.90	spurious
2395.4	40.38	PK	16	1.2	Н	29.60	3.03	26.50	46.51	74.00	27.49	spurious
2491.9	35.04	PK	23	1.2	V	30.20	3.11	26.50	41.85	74.00	32.15	spurious
				Mi	ddle Cl	nannel (2	437 MI	Hz)				
2437.0	73.69	PK	338	1.1	V	29.60	3.03	26.50	79.82	/	/	Fund.
2437.0	68.55	Ave.	338	1.1	V	29.60	3.03	26.50	74.68	/	/	Fund.
9748.0	23.97	Ave.	58	1.2	Н	39.80	6.10	26.50	43.37	54.00	10.63	Harmonic
7311.0	24.86	Ave.	81	1.2	Н	37.90	5.09	26.50	41.35	54.00	12.65	Harmonic
9748.0	41.22	PK	58	1.2	Н	39.80	6.10	26.50	60.62	74.00	13.38	Harmonic
2399.4	31.96	Ave.	27	1.1	Н	29.60	3.03	26.50	38.09	54.00	15.91	spurious
4874.0	25.34	Ave.	38	1.2	V	34.60	4.36	26.50	37.80	54.00	16.20	Harmonic
7311.0	40.22	PK	81	1.2	Н	37.90	5.09	26.50	56.71	74.00	17.29	Harmonic
2389.6	30.54	Ave.	56	1.1	V	29.60	3.03	26.50	36.67	54.00	17.33	spurious
4874.0	42.18	PK	38	1.2	V	34.60	4.36	26.50	54.64	74.00	19.36	Harmonic
2489.9	20.11	Ave.	115	1.3	V	30.20	3.11	26.50	26.92	54.00	27.08	spurious
2399.4	40.27	PK	27	1.1	Н	29.60	3.03	26.50	46.40	74.00	27.60	spurious
2389.6	39.68	PK	56	1.1	V	29.60	3.03	26.50	45.81	74.00	28.19	spurious
2489.9	34.86	PK	115	1.3	V	30.20	3.11	26.50	41.67	74.00	32.33	spurious
				Н	igh Cha	annel (24	62 MH	z)				
2462.0	73.54	PK	38	1.2	V	30.20	3.11	26.50	80.35	/	/	Fund.
2462.0	68.28	Ave.	38	1.2	V	30.20	3.11	26.50	75.09	/	/	Fund.
9848.0	24.58	Ave.	225	1.1	Н	39.80	6.09	26.50	43.97	54.00	10.03	Harmonic
7386.0	25.94	Ave.	111	1.1	Н	37.20	5.21	26.50	41.85	54.00	12.15	Harmonic
9848.0	40.17	PK	225	1.1	Н	39.80	6.09	26.50	59.56	74.00	14.44	Harmonic
7386.0	42.57	PK	111	1.1	Н	37.20	5.21	26.50	58.48	74.00	15.52	Harmonic
4924.0	25.29	Ave.	55	1.2	V	34.60	4.40	26.50	37.79	54.00	16.21	Harmonic

FCC Part 15.247 Page 19 of 45

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ120529004-00B-Wi-Fi

4924.0	44.25	PK	55	1.2	V	34.60	4.40	26.50	56.75	74.00	17.25	Harmonic
2485.4	21.23	Ave.	163	1.3	V	30.20	3.11	26.50	28.04	54.00	25.96	spurious
2487.3	20.36	Ave.	26	1.1	Н	30.60	3.11	26.50	27.57	54.00	26.43	spurious
2338.5	21.29	Ave.	238	1.1	Н	29.00	2.98	26.50	26.77	54.00	27.23	spurious
2485.4	34.69	PK	163	1.3	V	30.20	3.11	26.50	41.50	74.00	32.50	spurious
2487.3	33.83	PK	26	1.1	Н	30.60	3.11	26.50	41.04	74.00	32.96	spurious
2338.5	34.57	PK	238	1.1	Н	29.00	2.98	26.50	40.05	74.00	33.95	spurious

FCC Part 15.247 Page 20 of 45

802.11g Mode:

Indic	cated		Table	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.209/1	15.205
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave)	Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
				L	ow Cha	annel (24	12 MH	z)			,	
2412.0	76.41	PK	27	1.2	V	29.60	3.03	26.50	82.54	/	/	Fund.
2412.0	64.26	Ave.	27	1.2	V	29.60	3.03	26.50	70.39	/	/	Fund.
9648.0	23.88	Ave.	143	1.1	Н	39.80	5.98	26.50	43.16	54.00	10.84	Harmonic
7236.0	24.59	Ave.	33	1.1	Н	37.90	5.22	26.50	41.21	54.00	12.79	Harmonic
9648.0	39.68	PK	143	1.1	Н	39.80	5.98	26.50	58.96	74.00	15.04	Harmonic
4824.0	25.66	Ave.	42	1.3	V	34.60	4.30	26.50	38.06	54.00	15.94	Harmonic
7236.0	40.87	PK	33	1.1	Н	37.90	5.22	26.50	57.49	74.00	16.51	Harmonic
4824.0	42.89	PK	42	1.3	V	34.60	4.30	26.50	55.29	74.00	18.71	Harmonic
2390.0	24.05	Ave.	38	1.2	V	29.60	3.03	26.50	30.18	54.00	23.82	spurious
2493.2	22.51	Ave.	37	1.1	Н	30.60	3.11	26.50	29.72	54.00	24.28	spurious
2389.7	23.17	Ave.	44	1.2	Н	29.60	3.03	26.50	29.30	54.00	24.70	spurious
2390.0	41.63	PK	38	1.2	V	29.60	3.03	26.50	47.76	74.00	26.24	spurious
2389.7	40.88	PK	44	1.2	Н	29.60	3.03	26.50	47.01	74.00	26.99	spurious
2493.2	35.36	PK	37	1.1	Н	30.60	3.11	26.50	42.57	74.00	31.43	spurious
				Mi	ddle Cl	nannel (2	437 MI	Hz)				
2437.0	76.33	PK	35	1.2	V	29.60	3.03	26.50	82.46	/	/	Fund.
2437.0	64.27	Ave.	35	1.2	V	29.60	3.03	26.50	70.40	/	/	Fund.
9748.0	24.67	Ave.	20	1.2	Н	39.80	6.10	26.50	44.07	54.00	9.93	Harmonic
7311.0	25.93	Ave.	6	1.3	Н	37.90	5.09	26.50	42.42	54.00	11.58	Harmonic
9748.0	40.88	PK	20	1.2	Н	39.80	6.10	26.50	60.28	74.00	13.72	Harmonic
4874.0	26.97	Ave.	114	1.2	V	34.60	4.36	26.50	39.43	54.00	14.57	Harmonic
7311.0	42.57	PK	6	1.3	Н	37.90	5.09	26.50	59.06	74.00	14.94	Harmonic
4874.0	43.69	PK	114	1.2	V	34.60	4.36	26.50	56.15	74.00	17.85	Harmonic
2496.3	23.08	Ave.	65	1.2	Н	30.60	3.11	26.50	30.29	54.00	23.71	spurious
2386.3	23.04	Ave.	35	1.1	V	29.60	3.03	26.50	29.17	54.00	24.83	spurious
2375.4	22.28	Ave.	138	1.2	Н	29.60	3.03	26.50	28.41	54.00	25.59	spurious
2496.3	40.22	PK	65	1.2	Н	30.60	3.11	26.50	47.43	74.00	26.57	spurious
2375.4	40.17	PK	138	1.2	Н	29.60	3.03	26.50	46.30	74.00	27.70	spurious
2386.3	40.11	PK	35	1.1	V	29.60	3.03	26.50	46.24	74.00	27.76	spurious
				Н	igh Cha	annel (24	62 MH	(z)				
2462.0	75.34	PK	38	1.3	V	30.20	3.11	26.50	82.15	/	/	Fund.
2462.0	63.15	Ave.	38	1.3	V	30.20	3.11	26.50	69.96	/	/	Fund.
9848.0	24.09	Ave.	13	1.2	Н	39.80	6.09	26.50	43.48	54.00	10.52	Harmonic
7386.0	25.67	Ave.	38	1.1	Н	37.20	5.21	26.50	41.58	54.00	12.42	Harmonic
9848.0	40.17	PK	13	1.2	Н	39.80	6.09	26.50	59.56	74.00	14.44	Harmonic
4924.0	26.94	Ave.	144	1.2	V	34.60	4.40	26.50	39.44	54.00	14.56	Harmonic
7386.0	40.69	PK	38	1.1	Н	37.20	5.21	26.50	56.60	74.00	17.40	Harmonic
4924.0	43.36	PK	144	1.2	V	34.60	4.40	26.50	55.86	74.00	18.14	Harmonic
2483.5	22.69	Ave.	33	1.2	V	30.20	3.11	26.50	29.50	54.00	24.50	spurious

FCC Part 15.247 Page 21 of 45

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ120529004-00B-Wi-Fi

2483.9	21.37	Ave.	147	1.2	Н	30.60	3.11	26.50	28.58	54.00	25.42	spurious
2326.7	21.09	Ave.	33	1.3	Н	29.00	2.98	26.50	26.57	54.00	27.43	spurious
2483.5	34.87	PK	33	1.2	V	30.20	3.11	26.50	41.68	74.00	32.32	spurious
2483.9	33.96	PK	147	1.2	Н	30.60	3.11	26.50	41.17	74.00	32.83	spurious
2326.7	33.67	PK	33	1.3	Н	29.00	2.98	26.50	39.15	74.00	34.85	spurious

FCC Part 15.247 Page 22 of 45

Antenna Port Conducted Spurious Emissions:

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 23 of 45

Report No.: RSZ120529004-00B-Wi-Fi

802.11g Low Channel

FCC Part 15.247 Page 24 of 45

802.11g Middle Channel

802.11g High Channel

FCC Part 15.247 Page 25 of 45

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ120529004-00B-Wi-Fi

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

The testing was performed by Henry Ding on 2012-07-04.

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.247 Page 26 of 45

Channel	Channel Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (MHz)	FCC Part 15.247 Limit (kHz)						
	802.11b mode									
Low	2412	1	13.05	>500						
Middle	2437	1	13.05	>500						
High	2462	1	13.05	>500						
		802.11g mode	e							
Low	2412	6	16.47	>500						
Middle	2437	6	16.47	>500						
High	2462	6	16.47	>500						

802.11b Low Channel

FCC Part 15.247 Page 27 of 45

802.11b Middle Channel

802.11b High Channel

FCC Part 15.247 Page 28 of 45

802.11g Low Channel

802.11g Middle Channel

FCC Part 15.247 Page 29 of 45

Report No.: RSZ120529004-00B-Wi-Fi

802.11g High Channel

FCC Part 15.247 Page 30 of 45

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ120529004-00B-Wi-Fi

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Henry Ding on 2012-07-04.

Test Mode: Transmitting

FCC Part 15.247 Page 31 of 45

Channel	Frequency (MHz)	Data Rate (Mbps) Reading Power (dBm)		Limit (dBm)	Result					
802.11b mode										
Low	2412	1	11.66	30	Pass					
Middle	2437	1	12.58	30	Pass					
High	2462	1	12.07	30	Pass					
		802.	11g mode							
Low	2412	6	11.64	30	Pass					
Middle	2437	6	12.00	30	Pass					
High	2462	6	11.61	30	Pass					

FCC Part 15.247 Page 32 of 45

802.11b RF Output Power, Low Channel

802.11b RF Output Power, Middle Channel

FCC Part 15.247 Page 33 of 45

802.11b RF Output Power, High Channel

802.11g RF Output Power, Low Channel

FCC Part 15.247 Page 34 of 45

802.11g RF Output Power, Middle Channel

802.11g RF Output Power, High Channel

FCC Part 15.247 Page 35 of 45

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ120529004-00B-Wi-Fi

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 1 MHz and VBW of spectrum analyzer to 1 MHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Henry Ding on 2012-07-04.

FCC Part 15.247 Page 36 of 45

Channel	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result		
802.11b mode					
Low	38.82	>20	Pass		
High	55.09	>20	Pass		
802.11g mode					
Low	28.32	>20	Pass		
High	51.67	>20	Pass		

Report No.: RSZ120529004-00B-Wi-Fi

Please refer to following plots.

FCC Part 15.247 Page 37 of 45

802.11b: Band Edge, Left Side

802.11b: Band Edge, Right Side

FCC Part 15.247 Page 38 of 45

802.11g: Band Edge, Left Side

802.11g: Band Edge, Right Side

FCC Part 15.247 Page 39 of 45

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ120529004-00B-Wi-Fi

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23	

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Henry Ding on 2012-07-04.

Test Mode: Transmitting

Test Result: Pass

FCC Part 15.247 Page 40 of 45

Channel	Frequency (MHz)	Power spectral density (dBm/100kHz)	BWCF (dB)	Power spectral density (dBm/3kHz)	Limit (dBm/3kHz)	
802.11b mode						
Low	2412	-2.85	-15.2	-18.05	8	
Middle	2437	-1.99	-15.2	-17.19	8	
High	2462	-2.58	-15.2	-17.78	8	
802.11g mode						
Low	2412	-8.37	-15.2	-23.57	8	
Middle	2437	-7.33	-15.2	-22.53	8	
High	2462	-7.70	-15.2	-22.90	8	

FCC Part 15.247 Page 41 of 45

Power Spectral Density, 802.11b Low Channel

Power Spectral Density, 802.11b Middle Channel

FCC Part 15.247 Page 42 of 45

Power Spectral Density, 802.11b High Channel

Power Spectral Density, 802.11g Low Channel

FCC Part 15.247 Page 43 of 45

Power Spectral Density, 802.11g Middle Channel

Power Spectral Density, 802.11g High Channel

FCC Part 15.247 Page 44 of 45

PRODUCT SIMILARITY DECLARATION LETTER

1825 NW 112TH AVE., UNIT 158,

MIAMI FL, 33172 TEL: 305 477 6433 FAX: 305 477 6432

2012-7-10

Product Similarity Declaration

Report No.: RSZ120529004-00B-Wi-Fi

To Whom It May Concern,

We, CDM MIAMI INC. hereby declare that our GSM Mobile Phone, Trade Mark: FUN, Model Number: K700, SURF, CRUISE are electrically identical with the FLY that was certified by BACL. They are just different in model number due to marketing purposes.

Please contact me if you have any question.

Signature:

DENNIS TANG

Marketing Director

***** END OF REPORT *****

FCC Part 15.247 Page 45 of 45