

并行计算 Parallel Computing

主讲人 添广中 Spring, 2016

并行计算——结构·算法·编程

- 第一篇 并行计算的基础
 - 第一章 并行计算与并行计算机结构模型
 - 第二章 并行计算机系统互连与基本通信操作
 - 第三章 典型并行计算机系统介绍
 - 第四章 并行计算性能评测

第一章并行计算及并行机结构模型

- 1.1 <u>计算与计算机科学</u>
- 1.2* 单处理机与指令级并行
- 1.3* 多核处理器与线程级并行
- 1.4 并行计算机体系结构
 - 1.4.1 并行计算机结构模型
 - 1.4.2 并行计算机访存模型
 - 1.4.3 Intel和AMD多核CPU架构

并行计算、计算科学、计算需求

- 并行计算: 并行机上所作的计算, 又称高性能计算或超级计算。
- 计算科学: 计算物理、计算化学、计算生物等。
- 计算是科学发现的三大支柱之一。
- 科学与工程问题的需求:气象预报、油藏模拟、核武器数值模拟、航天器设计、基因测序等。
- 需求类型: 计算密集、数据密集、网络密集。
- 美国ASCI计划(1996):核武器数值模拟。

第一章并行计算及并行机结构模型

- 1.1 计算与计算机科学
- 1.2* 单处理机与指令级并行
- 1.3* 多核处理器与线程级并行
- 1.4 并行计算机体系结构
 - 1.4.1 并行计算机结构模型
 - 1.4.2 并行计算机访存模型
 - 1.4.3 Intel和AMD多核CPU架构

中国科学技术文学 计算机科学与技术系 University of Science and Wechnology of Chings (1) DEPARTMENT OF TOMPTONER SHEWELD (1)

(c) MPP

(d) DSM 国家高性能计算中心(合肥)

(e)COW

6

并行计算机结构模型 (2)

(f) SMP-Cluster

(g) DSM-Cluster

(h) Grid (Cluster of Clusters)

SISD computer -Von Neumann's model

SIMD computer

并行计算机结构模型 (4)

Symmetric multiprocessor - MIMD-SM

Massively parallel processor - MIMD-DM

Cluster of workstations - MIMD-DM

并行计算机体系合一结构

- SMP、MPP、DSM和COW并行结构渐趋一致。
 - 大量的节点通过高速网络互连起来
 - 节点遵循Shell结构:用专门定制的Shell电路将商用微处理器和节点的其它部分(包括板级Cache、局存、NIC和DISK)连接起来。优点是CPU升级只需要更换Shell。

五种结构特性一览表

属性	PVP	SMP	MPP	DSM	COW
结构类型	MIMD	MIMD	MIMD	MIMD	MIMD
处理器类型	专用定制	商用	商用	商用	商用
互连网络	定制交叉开关	总线、交叉开 关	定制网络	定制网络	商用网络(以 太ATM)
通信机制	共享变量	共享变量	消息传递	共享变量	消息传递
地址空间	单地址空间	单地址空间	多地址空间	单地址空间	多地址空间
系统存储器	集中共享	集中共享	分布非共享	分布共享	分布非共享
访存模型	UMA	UMA	NORMA	NUMA	NORMA
代表机器	Cray C-90, Cray T-90, 银河1号	IBM R50, SGI Power Challenge, 曙光1号	Intel Paragon, IBMSP2,曙 光1000/2000	Stanford DASH, Cray T 3D	Berkeley NOW, Alpha Farm

国家高性能计算中心(合肥)

并行计算机访存模型 (1)

- UMA (Uniform Memory Access)模型是均匀存储访问模型的简称。其特点是:
 - 物理存储器被所有处理器均匀共享;
 - 所有处理器访问任何存储字取相同的时间;
 - 每台处理器可带私有高速缓存;
 - 外围设备也可以一定形式共享。

中国科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER PRIENCE AND TECHNOLOGY

并行计算机访存模型 (2)

- NUMA(Nonuniform Memory Access)模型是非均匀存储 访问模型的简称。特点是:
 - 被共享的存储器在物理上是分布在所有的处理器中的,其所有本地存储器的集合就组成了全局地址空间;
 - 处理器访问存储器的时间是不一样的;访问本地存储器LM或 群内共享存储器CSM较快,而访问外地的存储器或全局共享存 储器GSM较慢(此即非均匀存储访问名称的由来);
 - 每台处理器照例可带私有高速缓存,外设也可以某种形式共享。

并行计算机访存模型 (3)

- COMA(Cache-Only Memory Access)模型是全高速缓存 存储访问的简称。其特点是:
 - 各处理器节点中没有存储层次结构,全部高速缓存组成了全局 地址空间;
 - 利用分布的高速缓存目录D进行远程高速缓存的访问;
 - COMA中的高速缓存容量一般都大于2级高速缓存容量;

■ 使用COMA时,数据开始时可任意分配,因为在运行时它最终 会被迁移到要用到它们的地方。

中国科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF THE THE PARTMENT OF THE THE PARTMENT OF THE PA

- CC-NUMA(Coherent-Cache Nonuniform Memory Access)模型是**高速缓存一致性非均匀存储访问**模型的简称。其特点是:
 - 大多数使用基于目录的高速缓存一致性协议;
 - 保留SMP结构易于编程的优点,也改善常规SMP的可扩放性;
 - CC-NUMA实际上是一个分布共享存储的DSM多处理机系统;
 - 它最显著的优点是程序员无需明确地在节点上分配数据,系统的硬件和软件开始时自动在各节点分配数据,在运行期间,高速缓存一致性硬件会自动地将数据迁移至要用到它的地方。

并行计算机访存模型 (5)

- NORMA(No-Remote Memory Access)模型是非远程 存储访问模型的简称。NORMA的特点是:
 - 所有存储器是私有的,仅能由其处理器访问;
 - 绝大数NORMA都不支持远程存储器的访问;

构筑并行机系统的不同存储结构

The cache coherence problem cache一致性问题

- Since we have private caches: How to keep the data consistent across caches?
- Each core should perceive the memory as a monolithic array, shared by all the cores

Suppose variable x initially contains 15213

国家高性能计算中心(合肥)

Core 1 reads x

Core 2 reads x

Core 1 writes to x, setting it to 21660

Core 2 attempts to read x... gets a stale copy

Solutions for cache coherence

- This is a general problem with multiprocessors, not limited just to multi-core
- There exist many solution algorithms, coherence protocols, etc.
- A simple solution: invalidation-based protocol with snooping

Inter-core bus

Invalidation protocol with snooping

- Invalidation:
 If a core writes to a data item, all other copies of this data item in other caches are invalidated
- Snooping:
 All cores continuously "snoop" (monitor) the bus
 connecting the cores.

Revisited: Cores 1 and 2 have both read x

Core 1 writes to x, setting it to 21660

After invalidation:

Core 2 reads x. Cache misses, and loads the new copy.

Alternative to invalidate protocol: update Core 1 writes x=21660: protocol

Which do you think is better? Invalidation or update?

Invalidation vs update

- Multiple writes to the same location
 - invalidation: only the first time
 - update: must broadcast each write (which includes new variable value)
- Invalidation generally performs better: it generates less bus traffic