LAB 2

Submitted By	Submitted To
Ashish Thapa	Prof. Sudan Jha
CE III/II	
Roll no: 56	

- 1. Design and simulate an ALU circuit using multiple full adders and other logic gates in Proteus. The circuit should be able to perform various arithmetic and logic operations on two binary numbers of any length.
- 2. Display the result on a seven-segment display or other output component

Truth Table for ALU

S0	S1	S2	Cin	Output
0	0	0	Х	And
0	0	1	Х	Or
0	1	0	Х	Xor
0	1	1	Х	Complement A
1	0	0	0	Add
1	0	1	1	Subract
1	1	0	0	Decrement A
1	1	0	1	Transfer A
1	1	1	1	Increment A

Fig 1: ALU truth table

Circuit Diagram

Fig 2: Full Adder

fig: ALU circuit Design

Output

Fig 4: Add operation

Fig 5: Subtract Operation

Fig 6: Decrement Operation

Fig 7: Increment Option