## Assignment 2

## September 30, 2022

Q1 Use both  $\underline{\text{vector scale graphs}}$  and  $\underline{\text{algebraic calculation}}$  to determine the total displacement:

(a) 
$$\vec{\Delta d_1} = 3m \ [W], \ \vec{\Delta d_2} = 5m \ [E]$$

(b) 
$$\vec{\Delta d_1} = 2m [S], \vec{\Delta d_2} = 5m [N], \vec{\Delta d_1} = 7m [S]$$

Q2 Determine the (a) Total Displacement and (b) Acceleration of the motion from the figures below from 0s to 3s:





HINT: Look at the units carefully.

- Q3 You are a forensic scientist, and you were trying to determine how fast a bullet can travel. On a test fire, you measured a bullet accelerated to 120 m/s from rest in  $1.3 \times 10^{-2}$  [s]. What is the acceleration of the bullet?
- Q4 A squash ball with an initial velocity of 25 m/s [W] is hit by a squash racket, changing its velocity to 29 m/s [E] in 0.25s.
  - (a) What is the squash ball's average acceleration?
  - (b) Assume the acceleration is constant, what is the displacement of the ball in this 0.25s time interval?
- Q5 Determine the  $\underline{\text{total displacement}}$  and  $\underline{\text{average velocity}}$  of the motion illustrated below from:
  - t = 0 s to t = 8 s
  - t = 1 s to t = 7 s



Note: Positive is defined to be the "positive" direction.

Q6 Determine the total displacement and average velocity of the motion illustrated below from 0s - 8s



Note: Positive is defined to be the "positive" direction.

Q7 Determine the type of the motion from graph below:



Q8 A car on the highway is traveling at  $110\,\mathrm{km/h[N]}$  and experiences an acceleration of  $0.5\,\mathrm{m/s^2[N]}$ .

- (a) What will the final velocity of the car be in 5s?
- (b) What will the displacement of the car be if it travels for 5 s?

Q9 A plane is cruising at  $900 \,\mathrm{km/h[S]}$ , and is slowing down to approach for landing. Experiencing an acceleration of  $10 \,\mathrm{m/s^2[N]}$ ,

- (a) how fast would the plane be after 3 s?
- (b) how much distance will the plane traverse in that 3s interval?

Bonus: What is the total displacement of the motion described below from 0s to 3s:

- (a)  $\vec{a}(t) = t + 3$ ,  $\vec{v}_o = 0$
- (b)  $\vec{v}(t) = 46.798 \sin \frac{2\pi}{3} t$ . Do not take an integral.