Компьютерная математика

Лабораторная работа №

1. (MatLab)	Нахождение приближённой сеточной производной по заданной сеточной функции 2
2.	Интегрировать сеточную функцию на указанном интервале по обобщённому методу
Симпсона (1	MatLab или Python)2
`	
Ссыл	ıки

1. Нахождение приближённой сеточной производной по заданной сеточной функции (MatLab)

Построить графики обеих функций в одной и той же плоскости.

(Демидович и Марон 1966) Глава 15, §2, стр. 563-567.

Тестовые примеры:

Входные данные (функция, интервал, шаг):				
[-0.008, -0.066, -0.209, -0.439, -0.734, -1.044, -1.31, -1.484, -1.542, -1.491, -1.366, -	[-3;3]	0.2		
1.218, -1.093, -1.02, -0.998, -1, -0.982, -0.901, -0.733, -0.479, -0.174, 0.128, 0.372,				
0.513, 0.537, 0.46, 0.323, 0.177, 0.065, 0.009, -0.002]				
[-5, -4.597, -4.178, -3.727, -3.234, -2.688, -2.082, -1.411, -0.674, 0.131, 1, 1.929,	[0;2]	0.1		
2.91, 3.935, 4.99, 6.063, 7.134, 8.187, 9.198, 10.145, 11]				
[0, 1.483, 2.739, 3.782, 4.647, 5.437, 6.363, 7.723, 9.749, 12.314, 14.659, 15.538,	[0;4]	0.2		
14.109, 11.222, 9.578, 11.331, 14.75, 15.096, 11.393, 9.66, 13.403]				
[-4.045, 1.782, 2.279, 2.398, 2.322, 2.109, 1.784, 1.355, 0.83, 0.281, 0, 0.281, 0.83,	[-3;3]	0.3		
1.355, 1.784, 2.109, 2.322, 2.398, 2.279, 1.782, -4.045]				

2. Интегрировать сеточную функцию на указанном интервале по обобщённому методу Симпсона (MatLab или Python)

Построить сетку значений функции в указанном интервале с соответствующим шагом. Численно проинтегрировать.

(Демидович и Марон 1966) Глава 16, §7, стр. 589-593.

Тестовые примеры:

Входные данные (функция, интервал, шаг):			
Влодиме данные (функция, интерван, шаг).			
M: $f1 = @(x) (sin(x)).^3 - (cos(x/2)).^2 + 2;$	[-3;3]	0.2	данные: 8.8588
Py: $f1 = lambda x$: $(math. sin(x)) ** 3 - (math. cos(x/2)) ** 2 + 2$,- 1		
$M: f2 = @(x) - x.^4 + 3 * x.^3 + 4 * x - 5;$	[0;2]	0.1	3.5999
Py: $f2 = lambda x$: $-x ** 4 + 3 * x ** 3 + 4 * x - 5$			
$M: f3 = @(x) \sin(x).^3 - 3 * \sin(x.^2) + 4 * \sin(x) + 4 * x;$	[0;4]	0.2	37.581
Py: $f3 = lambda x$: $(math. sin(x)) ** 3 - 3 * math. sin(x ** 2) +$			
4*math.sin(x) + 4*x			
M: $f4 = @(x) log(10 * sin((3 * x./5).^2) + 1);$	[-3;3]	0.005	9.0994
Py: $f4 = lambda x: math. log(10 * math. sin((3 * x/5) ** 2) + 1)$			

Ссылки

Демидович, Борис Павлович, и Исаак Абрамович Марон. *Основы вычислительной математики*. Москва: Наука, 1966.