БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа № 1 «Интерполяция алгебраическими многочленами»

Выполнил Студент 11 группы Сергиенко Лев Эдуардович

Способ выбора узлов	3
Представление, использованное при построении интерполяционных многочленов	4
Три пары графиков: график Р1,n и график С1,n для n = 3, 10, 30	5
Таблица погрешностей интерполяции для f1 f1	8
Три пары графиков: график P2,n и график C2,n для n = 3, 10, 30	10
Таблица погрешностей интерполяции для f2 f2	13
Выводы о сходимости интерполяционного процесса по	
равноотстоящим и чебышевским узлам	15
Листинг программы с комментариями	17

Способ выбора узлов

1. Равноотстоящие узлы

$$x_i = a + i \frac{b - a}{n}, i = \overline{0, n}$$

2. Чебышевские узлы

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{\pi(2i+1)}{2n+2}, i = \overline{0,n}$$

Представление, использованное при построении интерполяционных многочленов

- Для построения интерполяционного многочлена Ньютона используется формула:

$$P(x)=f[x_0]+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)+\ldots+f[x_0,x_1,\ldots,x_n](x-x_0)(x-x_1)\ldots(x-x_{n-1})$$
, где f - разделенные разности

- Разделенные разности удобно вычислять путем построения треугольной таблицы следующего вида:

Однако нет необходимости хранить все значения. Разделенные разности для интерполяционного многочлена Ньютона можно посчитать, используя лишь массив размерности n+1.

Три пары графиков: график Р1,n и график С1,n для n = 3, 10, 30

P1,10

C1,30

Таблица погрешностей интерполяции для f1

n	$\max_{i=\overline{0,100}} \left P_{1,n}\left(\overline{x}_i\right) - f_1\left(\overline{x}_i\right) \right $	$\max_{i=0,100} \left C_{1,n}\left(\overline{x}_i\right) - f_1\left(\overline{x}_i\right) \right $
3	0.2105284764	0.1622549658
4	0.1497679232	0.0943220846
5	0.0199019363	0.0098586685
6	0.0140370852	0.0053914996
7	0.0011424276	0.0003305093
8	0.0008116830	0.0001755981
9	0.0000442162	0.000070707
10	0.0000315878	0.0000036711
11	0.000012084	0.000001052
12	0.000008772	0.000000540
13	0.000000259	0.000000012
14	0.000000186	0.000000006
15	0.000000004	0.000000000
16	0.000000003	0.000000000
17	0.000000000	0.000000000
18	0.000000000	0.000000000
19	0.000000000	0.000000000
20	0.000000000	0.000000000
21	0.000000000	0.000000000
22	0.000000000	0.000000000
23	0.000000000	0.000000000
24	0.000000000	0.000000000
25	0.000000000	0.000000000
26	0.000000000	0.000000000

27	0.000000000	0.000000000
28	0.000000000	0.000000000
29	0.000000000	0.000000000
30	0.000000000	0.000000000

Три пары графиков: график P2,n и график C2,n для n = 3, 10, 30

P2,10

C2,30

Таблица погрешностей интерполяции для f2

n	$\max_{i=0,100} \left P_{2,n}\left(\overline{x}_i\right) - f_2\left(\overline{x}_i\right) \right $	$\max_{i=\overline{0,100}} \left C_{2,n}\left(\overline{x}_i\right) - f_2\left(\overline{x}_i\right) \right $
3	0.1773431223	0.1923882919
4	0.1092645377	0.0919078224
5	0.0975686822	0.1212070582
6	0.1356222356	0.0646748439
7	0.0657009195	0.0878694694
8	0.2361291755	0.0499459691
9	0.0486722162	0.0684000468
10	0.4967403070	0.0408782321
11	0.0807590254	0.0556029498
12	1.1624938940	0.0344364239
13	0.1658212101	0.0465416390
14	3.0419798313	0.0298028293
15	0.3764096666	0.0397870442
16	8.1308040011	0.0263353633
17	0.8868899597	0.0345582999
18	22.5742723974	0.0235411984
19	2.2854533283	0.0303919778
20	69.6506552836	0.0208642223
21	6.3828692760	0.0269953972
22	217.6058150628	0.0193732994
23	18.2081668631	0.0241745045
24	686.6594565122	0.0179270864
25	52.8463071105	0.0217955038
26	2184.2138583529	0.0165213728

27	155.5779281032	0.0197631255
28	6993.1878484552	0.0151584231
29	463.4839295871	0.0180076768
30	22509.1433197204	0.0138403406

Выводы о сходимости интерполяционного процесса по равноотстоящим и чебышевским узлам

Из полученных данных можно сделать следующие выводы относительно сходимости интерполяционного процесса метода Ньютона по равноотстоящим и чебышёвским узлам для функций f1 и f2:

Для функции f1:

Равноотстоящие узлы:

- С увеличением степени интерполяционного многочлена n погрешность уменьшается.
- Погрешность сходится быстро, и уже при n=10 она становится достаточно малой.
- Для n>17 погрешность практически стремится к нулю.

Чебышёвские узлы:

- Погрешность с чебышёвскими узлами сходится ещё быстрее и остается на более низком уровне.
- Уже при n=6 погрешность значительно меньше, чем у равноотстоящих узлов, и продолжает уменьшаться с увеличением n.
- Стремится к нулю с увеличением n.

Для функции f2:

Равноотстоящие узлы:

- С увеличением степени интерполяционного многочлена n погрешность растет.
- Сходимость к нулю отсутствует, и погрешность становится очень высокой даже при небольших значениях n.

Чебышёвские узлы:

- Погрешность также растет с увеличением n, но находится на более низком уровне по сравнению с равноотстоящими узлами.
- Сходимость к нулю отсутствует, но погрешность все равно остается на более низком уровне.

Выводы:

- Для обеих функций использование чебышёвских узлов приводит к более быстрой и стабильной сходимости интерполяционного процесса, чем равноотстоящие узлы.
- При использовании равноотстоящих узлов, сходимость может быть заметно медленнее, и в случае функции f2 даже отсутствовать.
- Использование чебышёвских узлов предпочтительно для достижения более точных результатов интерполяции.

Листинг программы с комментариями

Структура программы:

```
— internal/
— interPoly/
  interPoly.go
— node/
 — builder.go
 L- node.go
- main.go
```

builder.go

```
package interPoly
import (
 "mv2.1/internal/node"
// NewtonPolyBuilder строит полином Ньютона на основе заданных узлов
// nodes - узлы для интерполяции
NewtonPoly
func NewtonPolyBuilder(nodes []node.Node)                                   NewtonPoly {
 // Инициализация полинома Ньютона
 poly := NewtonPoly{
  separatedDif: make([]float64, len(nodes)),
   nodes: make([]node.Node, len(nodes)),
 // Копирование узлов
 copy(poly.nodes, nodes)
 // Инициализация первых разделенных разностей значениями Y из узлов
 for i := 0; i < len(poly.separatedDif); i++ {</pre>
   poly.separatedDif[i] = poly.nodes[i].Y
 // Вычисление разделенных разностей
```

```
for j := 1; j < len(poly.separatedDif); j++ {
  for i := len(poly.separatedDif) - 1; i >= j; i-- {
    poly.separatedDif[i] = (poly.separatedDif[i] - poly.separatedDif[i-1]) /
  (poly.nodes[i].X - poly.nodes[i-j].X)
  }
}

// Возвращение построенного полинома Ньютона
  return poly
}
```

interPoly.go

```
package interPoly
import (
 "mv2.1/internal/node"
/NewtonPoly представляет интерполяционный полином Ньютона.
sype NewtonPoly struct {
          []node.Node // Узлы интерполяции
 nodes
 separatedDif []float64 // Разделенные разности
\#\mathsf{Solve} вычисляет значение интерполяционного полинома Ньютона в точке х.
func (n NewtonPoly) Solve(x float64) float64 {
 result := n.separatedDif[0]
 temp := 1.0
 // Вычисляем значение интерполяционного полинома в точке х
 for i := 1; i < len(n.nodes); i++ {
  temp *= x - n.nodes[i-1].X
  result += n.separatedDif[i] * temp
 return result
/ String возвращает строковое представление интерполяционного полинома
Ньютона.
polyString := fmt.Sprintf("%.3f", n.separatedDif[0])
```

```
и узлов интерполяции
 for i := 1; i < len(n.separatedDif); i++ {</pre>
   polyString += " + "
   polyString += fmt.Sprintf("%.3f", n.separatedDif[i])
  for j := 0; j < i; j++ {
    polyString += fmt.Sprintf(" * (x - %.3f)", n.nodes[j].X)
 return polyString
builder.go
package node
mport (
/BuildEquidistantNodes строит равноотстоящие узлы
\% f - интерполируемая функция, а и b - границы интервала, n - степны
многочлена
/ Возвращает массив узлов Node, представляющих точки интерполяции
func BuildEquidistantNodes(f func(float64) float64, a float64, b float64, n int)
[]Node {
 // Создаем слайс для хранения узлов
 nodes := make([]Node, n+1)
 // Вычисляем шаг между узлами
 h := (b - a) / float64(n)
 for i := 0; i <= n; i++ {
  x := a + float64(i)*h
  nodes[i] = Node{X: x, Y: f(x)}
 // Возвращаем массив узлов для использования при интерполяции
 return nodes
/BuildChebyshevNodes строит чебышèвские узлы
 Возвращает массив узлов Node, представляющих точки интерполяции
```

```
func BuildChebyshevNodes(f func(float64) float64, a float64, b float64, n int)
[]Node {
 // Создаем слайс для хранения узлов
 nodes := make([]Node, n+1)
 // Заполняем массив узлами, где Х - точки, определенные методом
 for i := 0; i <= n; i++ {
  x := (a+b)/2 + (b-a)/2*math.Cos(math.Pi*(2*float64(i)+1)/(2*float64(n)+2))
  nodes[i] = Node{X: x, Y: f(x)}
 return nodes
node.go
package node
// Node представляет узел для интерполяции в двумерном пространстве.
type Node struct {
 X float64 // Координата X узла в пространстве для интерполяции.
 Y float64 // Координата Y узла в пространстве для интерполяции.
main.go
package main
import (
 "mv2.1/internal/interPoly"
 "mv2.1/internal/node"
const (
 nPoints = 100
 fl = func(x float64) float64 {
  return math.Sin(x)
 f2 = func(x float64) float64 {
```

```
return math.Sqrt(4 + math.Abs(x))
func main() {
 var n int
 fmt.Println("Input n: ")
 _{-}, _{-} = fmt.Scan(&n)
 var (
  // Р1 Построение полинома Ньютона для f1 с равноотстоящими узлами
  P1 = interPoly.NewtonPolyBuilder(node.BuildEquidistantNodes(f1, \alpha, b, n))
  // С1 Построение полинома Ньютона для f1 с Чебышевскими узлами
  C1 = interPoly.NewtonPolyBuilder(node.BuildChebyshevNodes(f1, a, b, n))
  P2 = interPoly.NewtonPolyBuilder(node.BuildEquidistantNodes(f2, \alpha, b, n))
  C2 = interPoly.NewtonPolyBuilder(node.BuildChebyshevNodes(f2, \alpha, b, n))
 // Вывод полиномов Ньютона в консоль
 fmt.Println("P1: ", P1)
 fmt.Println("C1: ", C1)
 fmt.Println()
 fmt.Println("P2: ", P2)
 fmt.Println("C2: ", C2)
 // Сохранение результатов в файлы и вычисление погрешности
 saveToFile(fmt.Sprintf("%s_%d_%d.txt", "P1", n, nPoints), P1, f1)
 saveToFile(fmt.Sprintf("%s_%d_%d.txt", "C1", n, nPoints), C1, f1)
 saveToFile(fmt.Sprintf("%s_%d_%d.txt", "P2", n, nPoints), P2, f2)
 saveToFile(fmt.Sprintf("%s_%d_%d.txt", "C2", n, nPoints), C2, f2)
// saveToFile сохраняет результаты интерполяции в файл и вычисляет
func saveToFile(filename string, poly interPoly.NewtonPoly, f func(float64) float64)
 file, err := os.Create(filename)
 if err != nil {
  fmt.Println("Error creating file:", err)
```

```
defer file.Close()
// Вычисление шага для точек интерполяции
step := (b - a) / float64(nPoints-1)
interErr := 0.0
for i := 0; i < nPoints; i++ {
 x := a + float64(i)*step
 y := poly.Solve(x)
 yReal := f(x)
 // Обновление максимальной погрешности
 interErr = math.Max(interErr, math.Abs(yReal-y))
 //Запись в файл в формате "х у интерполяция у реальное значение"
 _, err := file.WriteString(fmt.Sprintf("%.10f %.10f %.10f\n",x, y, yReal))
 if err != nil {
   fmt.Println("Error writing to file:", err)
   return
//Запись погрешности интерполяции в файл
_, err = file.WriteString(fmt.Sprintf("%s %.10f", "", interErr))
if err != nil {
 fmt.Println("Error writing to file:", err)
 return
```