NEURAL NETWORKS AND DEEP LEARNING

MICHELLE KUCHERA DAVIDSON COLLEGE

HSF-INDIA VECC 18 DECEMBER 2024

MICHELLE KUCHERA

B.S., M.S. PHYSICS M.S., PH.D. COMPUTATIONAL SCIENCE

EXPERIMENTAL DATA

AT-TPC

CLAS 12

CMS

EXPERIMENTAL DATA

AT-TPC

CLAS 12

CMS

LECTURE 1 TOPICS

- Computational graphs
- •Gradient-descent optimization
- Logistic regression
- Regression neural networks

MICHELLE KUCHERA DAVIDSON COLLEGE

HSF-INDIA VECC 18 DECEMBER 2024

GOALS

- Each of us learns something today
- Stop me with any questions

MICHELLE KUCHERA DAVIDSON COLLEGE

HSF-INDIA VECC 18 DECEMBER 2024

COMMUNITY

- •Each of you arrived here with your own backgrounds, specialty, and path in life
- Your experience and expertise are valuable here, no matter what it is
- •If the activity is within your background, help others!
- •If you are totally (or a little) lost, ask for help!
- •It is our shared goal to have **each** of us leave with some new skill/knowledge/understanding

MACHINE LEARNING:

LEARNING FROM DATA

Without Machine Learning

With Machine Learning

Without Machine Learning

With Machine Learning

* VERY SPECIFIC / \
INSTRUCTIONS

Learning from data was a paradigm shift in thinking about predictive models

Learning from data was a paradigm shift in thinking about predictive models

Learning from data was a paradigm shift in thinking about predictive models

NEURON

MATHEMATICS

Neural Networks

Volume 4, Issue 2, 1991, Pages 251-257

Approximation capabilities of multilayer feedforward networks

Kurt Hornik △

Show more \vee

https://doi.org/10.1016/0893-6080(91)90009-T

Get rights and content

Abstract

We show that standard multilayer feedforward networks with as few as a single hidden layer and arbitrary bounded and nonconstant activation function are universal approximators with respect to $L^p(\mu)$ performance criteria, for arbitrary finite input environment measures μ , provided only that sufficiently many hidden units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and its derivatives.

MATHEMATICS

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

$$\hat{y} = x_1 w_1 + x_2 w_2$$

MACHINE LEARNING

SUPERVISED LEARNING

REGRESSION

$$\hat{y} = x_1 w_1 + x_2 w_2$$

Loss function

$$J(w) = \hat{y} - y$$

SUPERVISED LEARNING

$$\hat{y} = x_1 w_1 + x_2 w_2$$

Loss function

MSE across N examples

$$J(w) = \frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial w_1}$$

 $w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{w}_2}$

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

$$w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$$

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

$$w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$$

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

$$w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$$

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

 $w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

$$w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$$

$$\frac{\partial q_2}{\partial w_2} = x_2$$

$$J(w) = \hat{y} - y$$

LOGISTIC REGRESSION

LOGISTIC REGRESSION

CLASSIFICATION

LOGISTIC REGRESSION

Features

Summation + Nonlinearity

Output

CHECK: HOW MANY TRAINABLE PARAMETERS?

Features

Summation + Nonlinearity

Output

Features

Features

Hidden Layer

CHECK: HOW MANY TRAINABLE PARAMETERS?

Features

Hidden Layer

CHECK: HOW MANY TRAINABLE PARAMETERS?

Features

Hidden Layer

Output

Loss function

$$J(w) = \hat{y} - y$$

Loss function

$$J(w) = \hat{y} - y$$

Loss function

$$J(w) = \hat{y} - y$$

$$w_1 = w_1 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

 $w_2 = w_2 - \eta * \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial q_2} \frac{\partial q_1}{\partial w_2}$

 $J(w) = \hat{y} - y$

LOSS FUNCTIONS

Loss function

Mean squared error (MSE)

$$J(w) = \frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2$$

Mean absolute error
$$J(w) = \frac{1}{N} \sum_{i=0}^{N} |\hat{y}_i - y_i|$$
 (MAE)

LOSS FUNCTIONS

Loss function

Mean squared error mean

$$J(w) = \frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2$$

Mean absolute error
$$J(w) = \frac{1}{N} \sum_{i=0}^{N} |\hat{y}_i - y_i|$$
 median

LEARNING (LOSS) CURVES

TRAINING

Remember that our goal is NOT to minimize loss on training data!

Learning curves

AUTOMATIC DIFFERENTIATION

MODERN NEURAL NETWORK ARCHITECTURES

"GoogLeNet network with all the bells and whistles"

MODERN NEURAL NETWORK ARCHITECTURES

"GoogLeNet network with all the bells and whistles"

PRACTICAL TIPS FOR TRAINING MODELS

DATA

	Feature 1	Feature 2	Feature 3	Target
Example 1				
Example 2				
Example 3				
Example 4				

NORMALIZATION

- Puts each feature on same scale
- •Allows default hyperparamters to be a good starting point
 - learning rate, initialization of weights, etc.
- Options depend on data distribution
 - •Standardization: mean: 0 stdev: 1
 - •Min-max: [0,1]

DATA

	Feature 1	Feature 2	Feature 3	Target
Example 1				
Example 2				
Example 3				
Example 4				

ENCODING

- Non-numeric data
- Class-based features:
 - One-hot encoding: $3 \rightarrow [0\ 0\ 1]\ [0\ 1\ 0]\ [1\ 0\ 0]$

WHY??

DATA

	Feature 1	Feature 2	Feature 3	Target
Example 1				
Example 2				
Example 3				
Example 4				

ENCODING

- Non-numeric data
- Class-based features:
 - One-hot encoding: $3 \rightarrow [0\ 0\ 1]\ [0\ 1\ 0]\ [1\ 0\ 0]$
 - When classes do not have sequential
 - meaning: Cars vs dogs vs plants months

BUILDING AND TRAINING MODELS

TRAINING

- •The most challenging part of machine learning is gaining the experience for tuning models well.
- •We will work on this skill!

COMMUNITY

- •Each of you arrived here with your own backgrounds, specialty, and path in life
- Your experience and expertise are valuable here, no matter what it is
- •If the activity is within your background, help others!
- •If you are totally (or a little) lost, ask for help!
- •It is our shared goal to have **each** of us leave with some new skill/knowledge/understanding