UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

1a. REVISIÓN DE ECONOMETRÍA II 14 de mayo de 2015

Ejercicio (20 puntos)

Se desea estudiar el efecto de estar sindicalizado en los salarios de los trabajadores. Para realizar dicho estudio se cuenta con una base con información sobre 545 trabajadores a través de 8 años, desde 1990 hasta 1997 (4360 observaciones). Dicha base incluye las siguientes variables:

Lwage: salario por hora (en logaritmos)

Educ: años de educación

Exper: años de experiencia y expersq años de experiencia al cuadrado

Union: variable binaria que vale 1 si el trabajador está sindicalizado en 0 en caso contrario

t: tendencia temporal, vale 1 para 1990, 2 para 1992, etc.

Sect1 a Sect9: variables binarias que recogen el sector de actividad de la empresa.

En primer lugar se estima un modelo de regresión lineal por MCO. Los resultados son:

Salida 1

. reg lwage union t educ exper expersq

Source + Model Residual	SS 210.020833 1026.50881		MS 42.0041 .235762	667		Number of obs F(5, 4354) Prob > F R-squared	= =	4360 178.16 0.0000 0.1698
Total	1236.52964					Adj R-squared Root MSE	=	0.1689
lwage	Coef.	Std. E	Err.	t	P> t	[95% Conf.	In	cerval]
union t educ exper expersq cons	.1771933 .0242261 .0940819 .072108 0024994 -47.89742	.01717 .00654 .00519 .01245 .00073	119 965 1 511 346 -	0.32 3.70 8.10 5.79 3.40	0.000 0.000 0.000 0.000 0.000	.1435155 .0114008 .0838942 .0476974 0039395 -73.20682	. (2108712 0370515 1042697 0965185 0010593

Un analista plantea que la variable *union* podría ser endógena en el modelo estimado. Debido a ello propone estimar el modelo utilizando el estimador de Mínimos Cuadrados en 2 etapas. Propone como instrumento para *union* utilizar el conjunto de dummies que captan el sector de actividad de las empresas.

Se estima un modelo de probabilidad lineal para la variable *union*. Los resultados son los siguientes:

Salida 2 reg union educ exper expersq sect1-sect8

reg union eau	ic exper exper	sq sect	:I-sec	T8				
Source	SS	df		MS		Number of obs F(11, 4348)		
Model Residual	50.7519868 753.592967		4.613 .173	81699 31945		Prob > F R-squared Adj R-squared	= 0.000 = 0.063	0
Total	804.344954	4359	.184	52511		Root MSE	= .4163	
union	Coef.	Std. E	Err.	t	P> t	[95% Conf.	Interval]
educ	.0170313	.00427	733	3.99	0.000	.0086534	.025409	2
exper	.0408176	.00867	717	4.71	0.000	.0238166	.057818	6
expersq	0025552	.0006	512	-4.18	0.000	003755	001355	4
sect1	214857	.02767	757	-7.76	0.000	2691154	160598	6
sect2	2736854	.0283	324	-9.66	0.000	3292149	218155	9
sect3	2904177	.03325	551	-8.73	0.000	3556147	225220	7
sect4	0684348	.02648	396	-2.58	0.010	1203678	016501	7
sect5	0855727	.02309	936	-3.71	0.000	130848	040297	5
sect6	.0223529	.02325	509	0.96	0.336	0232308	.067936	5
sect7	.0475308	.02783	377	1.71	0.088	0070453	.102106	9
sect8	2136662	.05525	87	-3.87	0.000	3220013	105331	1
_cons	0103404	.05881	93	-0.18	0.860	1256562	.104975	4

Se procede a realizar un contraste de la significación conjunta de las variables sect1 a sect8, los resultados son:

```
Salida 3 . test sect1 sect2 sect3 sect4 sect5 sect6 sect7 sect8 F \left( \begin{array}{ccc} 8 \,, & 4348 \right) \,=\, & 34.71 \\ & \text{Prob} \,>\, F \,=\, & 0.0000 \end{array}
```

A continuación se estima el modelo por MC2E:

Salida 4
. ivreg lwage educ exper expersq (union = sect1-sect8)

Instrumental variables (2SLS) regression

Source	SS	df	MS		Number of obs	
Model Residual	33.8077034 1202.72194		5192586 6170365		Prob > F R-squared Adj R-squared	= 0.0000 = 0.0273
Total	1236.52964	4359 .283	3672779		Root MSE	= .52552
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
union educ exper expersq _cons	29104 .1008443 .1146839	.0757557 .0050128 .0111579 .0007889 .0699136	-3.84 20.12 10.28 -5.39 0.01	0.000 0.000 0.000 0.000 0.990	4395597 .0910167 .0928089 005799 136231	1425203 .110672 .136559 0027057 .1379015
Instrumented: Instruments:	union educ exper e	xpersq sect	t1 sect2	sect3 se	ct4 sect5 sect	6 sect7

Por último se realiza un contraste de Hausman a partir de las estimaciones MCO y MC2E. El valor del estadístico de Hausman es 12.63. En la tabla siguiente se informan los valores del p-valor de este estadístico para distintas distribuciones

Distribución	p-valor correspondiente a 12.63
F(1,4360)	0.00
F(4,4360)	0.00
F(8,4360)	0.0004
CHI2(1)	0.004
CHI2(4)	0.013
CHI2(8)	0.125

Se pide:

- 1) Analice los resultados de la estimación MCO. En particular, interprete los resultados correspondientes a las variables *union* y t.
- 2) Razone las posibles causas de endogeneidad de la variable *union* en el modelo.
- 3) En base al razonamiento realizado en 2) y la evidencia disponible ¿son las dummies por sector buenos instrumentos para *union?*
- 4) Analice los resultados de la estimación MC2E y compárelos con los presentados en 1).
- 5) ¿Cuál de los estimadores MCO o MC2E considera más apropiado en el caso bajo estudio? Justifique rigurosamente.

Pregunta 1 (10 puntos)

Se desea estudiar el impacto, en la capacidad exportadora de las empresas, de un programa de exoneraciones fiscales a la inversión. Todas las empresas del país pueden presentarse al programa de exoneración. No obstante, a la hora de la decisión de otorgar exoneraciones o no a una empresa se valoran aspectos tales como la creación de puestos de trabajo de buena calidad y la potencialidad exportadora de la empresa. Proponga una estrategia para realizar dicho estudio:

- 1. Indique que variables incluiría en el análisis, que modelo(s) estimaría señalando la variable dependiente y los regresores a utilizar y los métodos que utilizaría para proceder con la estimación de dicho(s) modelo(s).
- 2. ¿Reconoce alguna(s) limitación(es) a la estrategia que propone? ¿Cuál(es)? ¿Conoce alguna alternativa que pueda colaborar a lidiar con dichas limitaciones?

Pregunta 2 (10 puntos)

Se cuenta con los datos de una muestra de adolescentes de entre 14 y 16 años a los que se les preguntó si asistían a la educación y su género. En el cuadro siguiente se informan las frecuencias según género,

	Varón	Mujer	Total
Asiste	218	263	481
No Asiste	730	774	1504
Total	948	1037	1985

Considere el siguiente modelo Logit:

$$\Pr(\mathsf{Asiste=1} \mid \mathsf{Sexo}) = \Lambda(\beta_0 + \beta_1 Mujer) = \frac{\exp(\beta_0 + \beta_1 Mujer)}{1 + \exp(\beta_0 + \beta_1 Mujer)} = \frac{1}{1 + \exp(-\beta_0 - \beta_1 Mujer)}$$

- 1. Obtenga estimaciones en el modelo Logit para Beta0 y Beta1
- 2. Someta a prueba la hipótesis H0: Beta1=0

Valores críticos para un nivel de significación del 5%:

Normal estándar	1.96
F(1,1984)	3.84
F(2,1983)	3.00
CHI2(1)	3.84
CHI2(2)	5.99

Pregunta 3 (10 puntos)

El modelo de regresión no lineal de Poisson es útil para tratar problemas en donde la variable dependiente observada es un recuento del número de ocurrencias de cierto evento, como ser fenómenos de elección individual o eventos de naturaleza poco frecuentes. Sin embargo, debido a que dicho modelo supone que la esperanza y varianza coinciden, no trata en forma adecuada el problema habitual de sobre-dispersión que poseen este tipo de fenómenos. Es por ello que una forma de mejorar la especifiación del modelo es utilizar el denominado Modelo Binomial Negativo. El mismo establece que, dado el siguiente modelo no lineal para la esperanza condicional,

$$E(y_i|x_i) = e^{x_i'\beta}$$

la función de densidad se define por:

$$f(y|x) = g(y_i, \theta) \left(\frac{e^{x_i'\beta}}{e^{x_i'\beta} + \theta^{-1}}\right)^{y_i} \left(\frac{\theta^{-1}}{e^{x_i'\beta} + \theta^{-1}}\right)^{\frac{1}{\theta}}$$

Donde $g(y_i, \theta)$ es una función continuamente diferenciable y $\theta > 0$ un parámetro que mide el grado de sobre-dispersión de la variable dependiente (cuanto mayor el θ más es la sobre-dispersión).

Se pide:

- 1. Plantee la función de verosimilitud, $L(\beta, \theta)$, para una muestra de tamaño n de observaciones i.i.d.
- 2. Formule la log-verosimilitud, plantee el problema de maximización y encuentre las condiciones de primer orden para hallar el estimador máximo verosímil de β . Es posible obtener una solución analítica cerrada para este estimador? Fundamente.
- 3. Derive el efecto parcial asociado respecto de un regresor x_j . Qué alternativas conoce para evaluar dicho efecto?