Intelligenza Artificiale

Anno Accademico 2022 - 2023

Esercizi su Ricerca Non Informata

Dato il seguente albero:

- si indichi l'ordine con cui sono disposti i nodi dell'albero per ciascuna delle seguenti strategie di ricerca (scegliendo per primi i rami più a sinistra):
 - 1. Ricerca in profondità
 - 2. Ricerca ad approfondimento iterativo
 - 3. Ricerca in ampiezza

Si consideri il problema degli 8-Tasselli con i seguenti stati di partenza ed obiettivo

2	8	3
1	6	4
7		5

Obiettivo

- Definire gli operatori.
- Si dimostri che è possibile arrivare alla soluzione con una ricerca in profondità limitata a profondità 6, <u>evitando gli</u> <u>stati ripetuti</u>. (Si assuma pari ad 1 la profondità del nodo radice).

- Si supponga di avere un albero di ricerca perfettamente bilanciato, con branching factor pari a 4.
- Se si esegue una ricerca ad approfondimento iterativo fino a una profondità pari a 3 (considerando la radice a profondità 0) quanti nodi vengono espansi in totale?

Elencare la sequenza dei nodi che vengono scelti per l'espansione dalle seguenti strategie di ricerca:

Depth First	
Breadth First	
Iterative Deepening	

Problema: sono a Milano e voglio andare a Napoli.

Ho una mappa d'Italia che rappresenta gli operatori ed i costi loro associati: la mappa indica quali città sono collegate direttamente, insieme al relativo costo di percorrenza, in decine di chilometri.

	AQ	AN	BA	ВО	FI	GE	MI	NA	PG	PΙ	RM	ТО
\overline{AQ}		19							17		11	
AN	19		46	21					16			
BA		46									45	
ВО		21			10		21					
FI				10		22			15	9	28	
GE					22		14			16		
MI				21		14						14
NA											22	
PG	17	16			15						17	
PΙ					9	16					37	
RM	11		45		28			22	17	37		
ТО							14					

• Quale tipo di struttura si utilizza per rappresentare gli stati?

Ciascuno stato della ricerca è identificato dalla città in cui mi trovo.

In questo caso uno stato è una struttura semplice, che possiamo rappresentare mediante un "atomo" (di un tipo di dati semplice: stringa, intero, ...) che identifica il nome della città in cui ci si trova.

Ad esempio: Aq, An, Ba, Bo, Fi, ...

• Qual è lo stato iniziale?

Stato Iniziale: Mi

• Qual è il goal test (funzione da stati a booleani)?

Goal(s): s=Na

• Quali sono gli operatori?

Operatori: GO(a,b), dove (a,b) è una delle coppie di città per le quali è noto il costo del collegamento diretto.

Condizioni di applicabilità: GO(a,b) è applicabile solo allo stato a.

Descrizione dell'operatore: GO(a,b), applicato allo stato a, riporta lo stato b:

$$GO(a,b)(a) = b$$

Costo dell'operatore: è quello indicato in tabella.

- Disegnare lo spazio degli stati
- Costruire l'albero di ricerca seguendo le strategie di ricerca in ampiezza, in profondità, guidata dal costo. Indicare in ciascun caso la soluzione trovata (se l'algoritmo termina con una soluzione).