Cahier des charges préliminaire PredimRc V4

Sujet:

Application PredimRc de conception d'aéronef

Objectifs:

Rendre l'appli autonome et multiplateforme

Simplifier l'interface

Améliorer l'ergonomie et la facilité de prise en main

Améliorer le pilotage du logiciel externe xFoil

Apporter de nouvelles fonctionnalités et calculs

Expression simplifiée du besoin

Type d'aéronef traités :

- Classique, bi-dérive, stab en V, canard, aile volante, jet, biplan

Fonctionnement de base :

- Une fenêtre principale (modélisation 2D + informations géométrie / réglages)
- Toutes les autres fenêtre volantes afin de conserver l'accès à la fenêtre principale

Modélisation graphique 2D (fenêtre principale) :

- Repère général = bord d'attaque aile à l'emplanture
- Repère indivuel par composant (aile, stab, dérive, fuselage) = pointe avant ou bord d'attaque aile à l'emplanture
- Contours aile / dérive / stabilisateur / fuselage segmentés
- Manipulation des entités en contextuel par clics gauche / droit

Modélisation graphique 3D (fenêtre flottante) :

- TBD

Calculs (idem PredimRc 2.34 + quelques ajouts mineurs) :

- Majorité des calculs : de type analytique, formulaire détaillé fourni (+ jeux de test)
- VLM (éléments finis) : code Java fourni, à interfacer
- xFoil (soufflerie numérique) : soft externe à piloter en mode batch (via fichiers texte)

Fonctions particulières :

- Edition de rapport
- Comparaison de perfos : modèles déjà créés + en cours de conception

Architecture logiciel

Géométrie modèle (fenêtre principale)

Données manipulées / saisies :

- Dimensions aile : cordes, flèches, longueurs panneaux, dièdres (1 à 5 panneaux max, 1 ou 2 ailes)
- Dimensions stab : cordes, flèches, longueurs panneaux, angle d'ouverture (1 à 5 panneaux)
- Dimensions dérive : cordes, flèches, longueurs panneaux (1 à 2 panneaux)
- Dimensions fuselage: sections (largeur, hauteur) + position section (5 sections)
- Dimensions gouvernes : ailerons, volets, profondeur, dérive
- Position stab / aile : longitudinale, verticale
- Position dérive / aile : longitudinale, verticale, écartement (bi-dérive)
- Position fuselage / aile : longitudinale, verticale
- Profils sélectionnés : aile, stab
- Valeurs de réglage : marge statique, Cz de calage
- Masse mini, masse maxi

Fonctionnement:

- Dimensions aile, stab, fuselage, gouvernes :
 - Entités sélectionnables : extrémités segments + segments
 - Clic gauche sur entité + glisser : recalcul automatique de la nouvelle dimension, pas = 1 mm
 - Clic droit sur entité : affichage des coordonnées X,Y par rapport au repère local (« pointe avant ») dans un panel flottant et éditable
- Positions stab, dérive, fuselage / aile :
 - Entités sélectionnables : surface contenue entre les segments
 - Clic gauche sur entité + glisser : recalcul automatique de la nouvelle dimension, pas = 1 mm
 - Clic droit sur entité : affichage des distances X,Y dans un panel flottant et éditable
- Ajout / suppression panneau aile, stab ou dérive : clic droit sur segment externe, affichage boutons + et (à côté des dimensions)
- Profils sélectionnés : dans listes déroulantes (1 à 3 profils dans BDD profils pour aile, 5 profils génériques pour stab)
- Valeurs de réglages : dans champs de saisie

Données de sortie :

- Données géométriques de base : allongements, envergures, surfaces, positions foyers, bras de levier stab, volume de stab, charges alaires, etc.
- Coefficient de sillage
- Données de réglage : position CG, calages + Vé longi, Cz ailes et stab / CG ou foyer

- Graphique :
 - Dessin du modèle en trois vues orthonormées : dessus, face, côté (même échelle pour tous, zoom automatique au mieux)
 - Fond des dessins : quadrillage dégressif (traits mi-fort par pas de 100mm, fin par pas de 10mm)
 - Dessin des différents foyers : aile, fuselage, stab
 - Dessin du CG avec valeur en % (sur corde moyenne aile) et en mm (/ bord d'attaque aile)
 - Dessin des angles de calage avec valeur en °
- Récapitulatif données de sortie

Gestion profils + polaires profils (fenêtre volante)

Données manipulées / saisies :

- Points profils (géométrie) : format Eppler (fichier texte en .dat), un fichier par profil
- Polaires profils (sur 5 Reynolds fixés à l'avance) : Alpla, Cz, Cx, Cm, Xtr, etc., un fichier texte (.txt) par profil avec même nom que profil + NCrit
- Paramètrage Xfoil : nombre de points de relissage, NCrit, turbulateur, flap, etc.

Fonctionnement:

- Stockage des profils et des polaires dans un dossier dédié : /airfoils
- Interface de gestion BDD: ajout / suppression profil, édition / modification points ou polaires
- Calculs des polaires à l'ajout d'un profil : XFoil en mode batch
- Sélection des profils dans une liste déroulante
- Polaires profils (sur 5 Reynolds fixés à l'avance) : Alpla, Cz, Cx, Cm, Xtr, etc.

- Graphique :
 - Dessin des profils sélectionnés (1 à 3) : une couleur par profil
 - Deux polaires avec abscisse et ordonnées sélectionnables (Alpha, Cz, etc.)
 - Sélecteur des Re affichés (parmi les 5 possibles) : un type de trait par Re, toujours le même
- Valeurs types :
 - Epaisseur relative, cambrure, positions ep + camb, Cm0, Alpha0

Optimisation d'allongement (fenêtre volante)

Données manipulées / saisies :

- Polaires profils dans BDD profils
- Paramètres d'optimisation : masses mini et maxi, Cz d'optimisation

Fonctionnement:

- Sélection de 1 à 3 profils dans une liste déroulante
- Réglage paramètres d'optimisation

- Graphique:
 - Polaires Allongement optimal / Cz
 - Polaires Vitesse / Cz
 - Polaires Finesse max / Cz pour allongement sélectionné
 - Polaires Potentielle finesse max / Cz
- Valeurs de sortie :
 - Allongement optimal pour chaque profil

Analyse VLM (fenêtre volante)

Données manipulées / saisies :

- Profil sélectionné + géométrie voilure dans Géométrie modèle
- Polaires profils dans **BDD** profils
- Paramètre d'analyse : incidence, braquages gouvernes

Fonctionnement:

- S'applique aussi bien à l'aile qu'au stab
- Calcul suivant logiciel Java fourni
- Doit se mettre à jour en temps réel si modification de la conception du modèle dans « Géométrie modèle »

- Graphique:
 - Répartition de portance + répartition elliptique
 - Répartition de Cz
 - Polaire Facteur d'Oswald / Cz
- Valeurs de sortie :
 - Facteur d'Oswald pour la condition en cours
 - Polaire Facteur d'Oswald / Cz

Perfos (fenêtre volante)

Données manipulées / saisies :

- Profil sélectionné + géométrie voilure + paramètres de réglage dans Géométrie modèle
- Polaires profils dans BDD profils
- Paramètres de simulation : conditions atmosphériques (temp, alt), choix des contributeurs pris en compte (stab, fuse, interaction, VLM)

Fonctionnement:

- Calcul suivant notice détaillée fournie (Cx + Cxi)
- Doit se mettre à jour en temps réel si modification de la conception du modèle dans « Géométrie modèle »

- Graphique :
 - Polaire de taux de chute
 - Polaire de finesse
 - Polaire Facteur d'Oswald / Cz
 - Polaire profil pour le Renolds en cours
- Valeurs de sortie :
 - Valeurs types : taux de chute mini, finesse max + vitesses et Cz associés, par profil et par masse
 - Export des polaires sous forme de fichiers CSV

Motorisation (fenêtre volante)

Données manipulées / saisies :

- Polaire de taux de chute dans Perfos
- Paramètre d'analyse : caractéristiques de la motorisation

Fonctionnement:

- Calcul suivant notice détaillée fournie (Cx + Cxi)
- Doit se mettre à jour en temps réel si modification de la conception du modèle dans « Géométrie modèle »

- Graphique:
 - Polaires de puissance aéro + mécanique
- Valeurs de sortie :
 - Vitesse de palier : par masse et profil
 - Vitesse ascensionnelle max : par masse
 - Caractéristiques chaîne de propulsion : régime, conso, autonomie, etc.

Servos (fenêtre volante)

Données manipulées / saisies :

- Dimensions de gouvernes dans Géométrie
- Paramètre d'analyse : vitesse de vol, débattements

Fonctionnement:

- Calcul suivant notice détaillée fournie (Cx + Cxi)

- Graphique:
 - Courbes de couple
- Valeurs de sortie :
 - Couples maxi
 - Valeurs de dimensionnement incidence intégrale / stab pendulaire

ANNEXE

Exemples d'écrans

