

注思	《事项: 1、谷杀以订异过在必须填与任谷苍纸上,省则兀然。	
	2、交卷时,试题及答案须一同提交,否则试卷作废。	
— ,	是非题(正确的在答卷纸上填" $$ ",错误的划" \times "。每小题 1 分,共 20 题 20 分)	
1.	已知过程的热化学方程式为 $UF_6(l)=UF_6(g)$, $\Delta_r H_m^{\Theta}=30.1~{ m kJ~mol}^{-1}$, 则此温度时蒸	发
	1 mol UF ₆ (l), 会放出 30.1 kJ 的热。()	
2.	对于同一反应方程式,反应进行的任意时刻,不论选用哪种物质来表示反应进度,是	其
	数值是相等的。()	
3.	热和功是在系统和环境之间的两种能量传递方式,在系统内部不讨论功和热。()
4.	弹式热量计(也称氧弹),可以精确地测得恒压条件下的反应热。()	
5.	一个导致气体分子数增加的过程或反应,总伴随着熵值增大,即 $\Delta S > 0$ 。()	
6.	水合离子中水合氢离子的标准熵最小。()	
7.	催化剂能改变反应历程,降低反应的活化能,但不能改变反应的 $\Delta_{ m r} G_{ m m}^{\ \Theta}$ ()	
8.	已知反应: $2SO_3(g) \leftrightarrows 2SO_2(g) + O_2(g)$, 其 $\Delta H_m^{\Theta} = 198.2 \text{ kJ mol}^{-1}$, 反应在一定条件下列	建
	立平衡。在此反应的平衡系统中减小 $p(SO_3)$ 的分压,平衡向左移动, K^{Θ} 值减小。()
9.	某反应 $aA(g)+bB(g)=gG(g)+dD(g)$, 其中 $a+b < g+d$, 且 $\Delta H_m^{\Theta} < 0$, 则在低温高压	下
	可提高转化率。()	
10.	等体积的 0.10 mol dm ⁻³ NH ₃ 和 0.20 mol dm ⁻³ HCl 混合后,混合溶液为缓冲溶液。()
11.	FeS、PbS 的 K _s 分别为 1.59×10 ⁻¹⁹ 和 9.04×10 ⁻²⁹ , 则 25°C时反应 Pb ²⁺ +FeS(s)=Fe ²⁺ +PbS(s)
	的平衡常数 $K^0 = 1.76 \times 10^{-9}$ 。	
12.	一定温度下, 甘汞电极的电极电势值随氯化钾溶液的浓度减小而减小。()	
13.	由铂片和两种不同 H ⁺ (aq)浓度的氢电极组成的浓差电池, 其原电池图式可表示为:	
	(-) Pt $ H_2(p^{\Theta}) H^+$ (0.010mol dm ⁻³) $ H^+$ (0.1mol dm ⁻³) $ H_2(p^{\Theta}) Pt (+)$ ()	
14.	在氧化还原电对中氧化态的浓度降低时,其还原态的还原能力增强。()	
15.	化学键是有关原子和分子间作用力。()	
16.	离子键的主要特点是没有方向性,但有饱和性。()	
17.	轨道能量简并、能级分裂和交错现象可以用屏蔽效应和钻穿效应进行解释。()	
18.	原子的基本性质如原子半径、氧化值、电离能、电负性等都与原子的结构密切相关。	,
	呈现明显的周期性。()	
19.	石墨导电,因为它是 sp 杂化,而金刚石不导电,是因为它是 sp3 杂化。()	
20.	极性分子一定是由极性键组成,而非极性分子不一定是由非极性键组成。()	

Ξ,	选择题(将正确答案的标号填	至答卷纸上,每小题 2 分,共 20 题 40 分)
1.	设有一可逆反应 A(g)+2B(g)↔C	(g)+D(g)的 ΔH>0, 欲使 A 和 B 的转化率增大, 其最佳
	条件是:	()
	(A) 低温低压	(B) 高温低压
	(C) 低温高压	(D) 高温高压
2.	下列各式中能用来表示反应或这	性程处于平衡状态的是()
	$(\mathbf{A}) \Delta G^{\Theta} = 0$	$(\mathbf{B}) \Delta H^{\Theta} = T \Delta \mathbf{S}^{\Theta}$
	(C) $\Delta G^{\Theta} = -RT \ln Q$	(D) $\Delta G = \Delta G^{\Theta} + RT \ln Q$
3.	下列物质中 $S_{\mathrm{m}}^{}}$ (298.15K)最大的	的是:()
	$(A) C_2H_6(l)$	(B) $C_2H_6(g)$
	(C) CH ₄ (g)	(D) C_6H_6 (g)
4.	满足下列哪组条件的反应可自发	t进行?()
	(A) Δ _r H>0, Δ _r S>0, 高温。	(B) Δ _r H>0, Δ _r S>0, 低温。
	(C) Δ _r H<0, Δ _r S<0, 高温。	(D) Δ _r H>0, Δ _r S<0, 低温。
5.	对于一个化学反应, 下列说法明	『一个是正确的? ()
	$(A) \Delta_{ m r} G_{ m m}^{\;\; heta}$ 越负,反应速度越快	\mathcal{L} 。 (B) $\Delta_{\mathrm{r}}H_{\mathrm{m}}^{\Theta}$ 越负,反应速度越快。
	(C) 活化能越大, 反应速度越	央。 (D) 活化能越小,反应速度越快。
6.	由难挥发的非电解质所形成的和	溶液, 当浓度略有增加时, 其性质表述不正确的是:
		······ ()
	(A) 溶液的蒸汽压上升	(B) 溶液的沸点上升
	(C) 溶液的凝固点下降	(D) 溶液渗透压增大
7.	已知具有相同物质的量浓度的 [NaCl、H ₂ SO ₄ 、C ₆ H ₁₂ O ₆ 和 CH ₃ COOH 的稀溶液,一定
	温度下, 其蒸汽压由小到大的顺	[序是:()
	(A) H_2SO_4 $<$ $NaCl$ $<$ CH	$C_3 \text{COOH} < C_6 \text{H}_{12} \text{O}_6$
	(B) $C_6H_{12}O_6 < CH_3COOH$	$< NaCl < H_2SO_4$
	(C) $CH_3COOH < NaCl <$	$H_2SO_4 < C_6H_{12}O_6$
	(D) NaCl $<$ H ₂ SO ₄ $<$ CH	$C_3 \text{COOH} < C_6 \text{H}_{12} \text{O}_6$
8.	在浓度为 0.010 mol dm ⁻³ 的二氯	貳代乙酸(CHCl ₂ COOH, $K_a=3.32\times10^{-2}$)溶液中的 $c(\mathbf{H}^+)/$
	mol dm ⁻³ 为	()
	(A) 1.8×10^{-2} (B) 8.0×10^{-2}	(C) 1.8×10^{-3} (D) 8.0×10^{-3}

٦.	已知某正反应的活化	$_{1}$ 能 E_{a} =114 kJ \mathbf{mol}^{-1}	, 则当及应由 600 K	升到 700K 时, v _{E(700}	$_{)}/v$
	正(600)为			()
	(A) 1.5 (B	3) 26.2	C) 3.2	D) 1584.9	
10.	配制 pH=9.0 的缓冲;	溶液,缓冲体系最好	选择:	()
	(A) 一氯乙酸 (pKa	a=2.86) -一氯乙酸盐	(B) 氨水 (pK ₁	=4.74) -氯化铵	
	(C) 六亚甲基四胺	(pK _b =8.85) -盐酸	(D) 醋酸 (pK	a=4.74)-醋酸盐	
11.	对于基元反应: 2NO	$O(g) + O_2(g) = 2NO_2(g)$	(g), 若将体系的压;	力由原来的 10⁵Pa 增力	上到
	2×10 ⁵ Pa,则正反应的	的速率为原来的:)
	(A) 2 倍 (B)	4倍 (C) 6	倍 (D) 8	倍	
12.	在标准条件下,下列	两个反应均向正方向	进行:	X	
	$Cr_2O_7^{2-} + 6Fe^{2+} + 14I$	$H^{+} = 2Cr^{3+} + 6Fe^{3+} + 6$	$7H_2O; 2Fe^{3+} + Sr$	$^{2+} = 2Fe^{2+} + Sn^{4+}$	
		L剂和最强的还原剂 是		()
	(A) Cr ₂ O ₇ ²⁻ 和 Fe ³⁺			7	
	(C) Cr ³⁺ 和 Sn ⁴⁺	(D) $\operatorname{Cr}_2\operatorname{O}_7^2$	和 Sn ²⁺		
13.	在下列四组标准原电	.池中,若分别向各银	半电池中加入适量的	内 NaCl(s), 则其电子可	丁反
	向流动的是(K _{sp} (AgC	(1)=1.77×10 ⁻¹⁰)		()
	(A) (-) Cu Cu ²⁺ ::	$Ag^{+} Ag(+) (E^{\Theta} = 0.4$	571V)		
		$g^{+} \Lambda g(1) = 0$	60V)		
	(B) (-) $Fe Fe^{2+ ::}A$	(\mathbf{E}) =1.24	00 ()		
	(C) (-) $Ag Ag^{+}$:: H (D) (-) $Pt I_2 I^{-}$:: Ag	$(E^{\Theta})^{-1} = 0.0$ $(E^{\Theta})^{-1} = 0.24$	521V) 35V)		
14.	(C) (-) $Ag Ag^{+}$:: H (D) (-) $Pt I_2 I^{-}$:: Ag	$(E^{\Theta})^{-1} = 0.0$ $(E^{\Theta})^{-1} = 0.24$	521V) 35V)	×10 ⁻¹³ 、3.6×10 ⁻¹¹ 。某消	空液
14.	(C) (-) Ag Ag ⁺ !!H (D) (-)Pt I ₂ Г !! Ag 已知 AgCl、AgBr、	$egin{aligned} E[g^{2+}] Hg(+) & (E^{\Theta}=&0.0] \ E^{+} Ag(+) & (E^{\Theta}=&0.24] \ Ag_2Cr_2O_4 & K_{\mathrm{sp}} & \mathcal{F}_{\mathrm{sp}} \end{aligned}$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35	×10 ⁻¹³ 、3.6×10 ⁻¹¹ 。某沒 ^{逐液逐滴加入 0.01mol}	활液 L ⁻¹
14.	(C) (-) Ag Ag ⁺ !!H (D) (-)Pt I ₂ Г!!Ag 已知 AgCl、AgBr、 中含有 Cl'、Br'、C	$egin{aligned} E[g^{2+}] Hg(+) & (E^{\Theta}=&0.0] \ E^{+} Ag(+) & (E^{\Theta}=&0.24] \ Ag_2Cr_2O_4 & K_{\mathrm{sp}} & \mathcal{F}_{\mathrm{sp}} \end{aligned}$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;)1mol L ⁻¹ ,在向该沟	学液逐滴加入 0.01mol	孥液 Ł-1)
14.	(C) (-) Ag Ag ⁺ !!H (D) (-)Pt I ₂ Г!!Ag 已知 AgCl、AgBr、 中含有 Cl'、Br'、C	$E[g^{2+} Hg(+)]$ $(E^{\Theta}=0.0]$ $E^{+} Ag(+)]$ $(E^{\Theta}=0.24]$ $E^{\Theta}=0.24]$ $E^{\Theta}=0.24$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;)1mol L ⁻¹ ,在向该沟	字液逐滴加入 0.01mol(L-1
14.	(C) (-) Ag Ag ⁺ :: H (D) (-)Pt I ₂ I [*] :: Ag 已知 AgCl、AgBr、 中含有 Cl [*] 、Br [*] 、Ci 的 AgNO ₃ 时,最先看	$E[g^{2+} Hg(+)]$ ($E^{\Theta}=0.0$ $E^{+} Ag(+)]$ ($E^{\Theta}=0.24$ $E^{\Theta}=0$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;)1mol L ⁻¹ ,在向该沟 引是 (B) AgBr 和 AgCl	字液逐滴加入 0.01mol(L-1
	(C) (-) Ag Ag ⁺ !! H (D) (-)Pt I ₂ I [*] !! Ag 已知 AgCl、AgBr、 中含有 Cl [*] 、Br [*] 、C 的 AgNO ₃ 时,最先和 (A) AgBr 和 Ag ₂ ($E[g^{2+} Hg(+)]$ ($E^{\Theta}=0.0$ $E^{+} Ag(+)]$ ($E^{\Theta}=0.24$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;)1mol L ⁻¹ ,在向该沟 別是 (B) AgBr 和 AgCl (D) 一齐沉淀	客液逐滴加入 0.01mol (L-1
	(C) (-) Ag Ag ⁺ !! H (D) (-)Pt I ₂ I [*] !! Ag 已知 AgCl、AgBr、 中含有 Cl [*] 、Br [*] 、C 的 AgNO ₃ 时,最先和 (A) AgBr 和 Ag ₂ ((C) Ag ₂ Cr ₂ O ₄ 和 A 假定有下列电子的各种	$E[g^{2+} Hg(+)]$ ($E^{\Theta}=0.0$ $E^{+} Ag(+)]$ ($E^{\Theta}=0.24$	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;]	客液逐滴加入 0.01mol (L -1
15.	(C) (-) Ag Ag ⁺ !! H (D) (-)Pt I ₂ I [*] !! Ag 已知 AgCl、AgBr、 中含有 Cl [*] 、Br [*] 、C 的 AgNO ₃ 时,最先和 (A) AgBr 和 Ag ₂ ((C) Ag ₂ Cr ₂ O ₄ 和 A 假定有下列电子的各种	$E_{\rm g}^{2+} { m Hg}(+)$ ($E^{\Theta}=0.0$ g ⁺ ${ m Ag}_{2}(+)$ ($E^{\Theta}=0.24$ ${ m Ag}_{2}{ m Cr}_{2}{ m O}_{4}$ 的浓度均为 0.0 印最后产生沉淀的分别 ${ m Cr}_{2}{ m O}_{4}$ (${ m Bg}(-1)$) 不可能存在 ${ m (B)}$ 3, 0, -1, 1/2	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;] 和 1.8×10 ⁻¹⁰ 、 5.35;] 和 L-1, 在向该沟] 是	字液逐滴加入 0.01mol ((D) 3, 1, -1, 1/2	L-1)
15.	(C) (-) Ag Ag ⁺ :: H (D) (-)Pt I ₂ Г:: Ag 已知 AgCl、AgBr、 中含有 Cl 、Br 、C: 的 AgNO ₃ 时,最先和 (A) AgBr 和 Ag ₂ C (C) Ag ₂ Cr ₂ O ₄ 和 A 假定有下列电子的各。 (A) 3, 2, 2, -1/2	[g ²⁺ Hg(+) (E ^Θ =0.0 g ⁺ Ag(+) (E ^Θ =0.24 Ag ₂ Cr ₂ O ₄ 的 K _{sp} 分别 r ₂ O ₄ ²⁻ 的浓度均为 0.0 和最后产生沉淀的分别 Cr ₂ O ₄ AgC1 套量子数,不可能存在 (B) 3, 0, -1, 1/2	521V) 35V) 为 1.8×10 ⁻¹⁰ 、5.35;] 和 1.8×10 ⁻¹⁰ 、 5.35;] 和 L-1, 在向该沟] 是	字液逐滴加入 0.01mol ((D) 3, 1, -1, 1/2	L-1)

17.	关于共价键的正确叙述是()					
	(A)σ键一般较π键强;					
	(B) 杂化轨道重叠成键原子将有利于提高键能;					
	(C) 金属与非金属元素原子间不会形成共价键;					
	(D) 共价键具有方向性,容易破坏。					
18.	已知某元素+4 价离子的电子分布式为 $1s^22s^22p^63s^23p^6$, 该元素在元素周期表中所属的分					
	区为					
	$(A) s \boxtimes \qquad \qquad (B) ds \boxtimes \qquad \qquad (C) p \boxtimes \qquad \qquad (D) d \boxtimes$					
19.	NH ₃ 的沸点比 PH ₃ 高,这是由于 NH ₃ 分子间存在着()					
	(A) 色散力 (B)诱导力 (C)取向力 (D) 氢键					
20.	下列物质中,原子晶体为()					
	(A) KCl (B) SiC (C) CaO (D) HI					
三、	填空题: (在答卷纸上按题序号填空,每个空1分,共20空20分)					
1.	对于可逆反应 $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$; $\Delta H^{\Theta}(298.15K) = 172.5 \text{ kJ mol}^{-1}$ 。若增加体系					
	总压力,则 k (逆) ①, v (逆) ②, 标准平衡常数 K ^O ③, 平					
	衡移动方向④。					
2.	在下列系统中,各加入约 1.00 g NH4Cl 固体并使其溶解,对所指定的性质影响如何(增					
	加、减小、不变或是基本不变)?					
	(1) 10.0 ml 0.10 mol L-1NH3 水溶液,其解离度 ①;					
	(2) 10.0 ml 纯水, 溶液 pH 值 ②;					
	(3) 10.0 ml 带有 PbCl ₂ 沉淀的饱和溶液, PbCl ₂ 的溶解度③。					
3.	已知氧化还原反应:					
	$H_2O_2(aq) + MnO_4(aq) + H^+(aq) = O_2(g) + Mn^{2+}(aq) + H_2O$					
	氧化反应的半反应式①,还原反应的半反应式②;氧化还原反应中转					
	移的电子数为③;					
4.	水的总硬度通常是以水中所含① 离子的总浓度来表示;水的电导率越大,					
	水的纯度(越高、越低或无关)②; 要准确量取 14.28 mL 的醋酸溶液, 使					
	用的玻璃仪器为③。					
5.	原子序数为 48 的 Cd,其原子的外层电子构型为①,其未成对电子数为②					
	,所属区为③,其离子的外层电子排布式为④。					

6.	对于化合物 PH ₃ ,	其杂化轨道类型为①,	空间构型为②,	成键轨
	道夹角 θ为③	°		

四、计算题(在答卷纸上写出详细计算步骤及计算结果)(共20分)

- 1. (本题 6 分)对于下面的化学反应,用计算结果说明: (1) 室温下烤面包的小苏打是否分解? (2) 若室温下不分解,问什么温度(摄氏)下小苏打能分解? 2NaHCO₃(s) \rightarrow Na₂CO₃(s) + CO₂(g) + H₂O (g), ΔH^{Θ} (298.15K)=135.6 kJ mol⁻¹, ΔS^{Θ} (298.15K)=334 J K⁻¹ mol⁻¹。
- 2. (本题 6 分)在血液中, H_2CO_3 -NaHCO₃缓冲对的功能之一是从细胞组织中迅速地除去运动产生的乳酸(记为 HL: K^{Θ} (HL)=8.4×10⁻⁴)。已知 K_1^{Θ} (H₂CO₃)=4.3×10⁻⁷,(1)求 HL+HCO₃ \rightleftharpoons H₂CO₃+L 的平衡常数 K^{Θ} ? (2)在正常血液中,[H₂CO₃]=1.4×10⁻³ mol dm⁻³,[HCO₃]=2.7×10⁻² mol dm⁻³,求血液的 pH 值?
- 3. (本题 8 分)标准条件下 25℃时,二氧化锰与稀盐酸不反应,而与浓盐酸可反应放出 Cl₂。 (1) 写出可反应放出 Cl₂ 的电池图示; (2) 若除 H⁺离子外,其余有关物质均处于标准条件下时,求可反应的 H⁺离子浓度。

 $MnO_2+4H^++2Cl^-=Mn^{2+}+Cl_2+2H_2O$, $\varphi^{\Theta}(MnO_2/Mn^{2+})=1.224V$, $\varphi^{\Theta}(Cl_2/Cl^-)=1.358V$

