Generalidades sobre funções

Definição

Chamamos **função** a dois conjuntos não vazios, X e Y, munidos de uma lei de formação ou regra de correspondência, f, que a cada elemento x de X associa um único elemento f(x) de Y. Em geral denotamos a função por $f: X \longrightarrow Y$.

Usa-se a notação $x \longmapsto f(x)$ para indicar que o elemento x é enviado por f em f(x) ou que f faz corresponder a x o elemento f(x).

Dados os conjuntos X e Y e a função $f: X \longrightarrow Y$, designa-se:

- o conjunto X por domínio da função e denota-se por Dom(f);
- o conjunto $f(X) = \text{Im}(f) = \{f(x) : x \in X\}$ por contradomínio ou imagem da função;
- os elementos x de X por objetos;
- os elementos f(x) tais que $x \in X$ por **imagens**;
- o conjunto $Gr(f) = \{(x, y) \in X \times Y : y = f(x)\}$ por gráfico de f.

 Cálculo (LEI)
 2. Funções
 2012/2013
 2 / 16

Dada uma função $f: X \longrightarrow Y$, A um subconjunto de X, B um subconjunto de Y, denomina-se por:

- imagem de A por f ou f(A) o conjunto $\{f(x) : x \in A\}$;
- imagem recíproca de B por f ou $f^{-1}(B)$ o conjunto $\{x \in X : f(x) \in B\}$.

Definição

Uma função $f: X \longrightarrow Y$ diz-se:

- injetiva se $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$;
- sobrejetiva se $\forall y \in Y \ \exists x \in X : f(x) = y;$
- bijetiva se for simultaneamente injetiva e sobrejetiva.

 Cálculo (LEI)
 2. Funções
 2012/2013
 3 / 16

Funções reais de variável real

Definição

Chamamos função real de variável real a uma função $f: X \longrightarrow Y$, em que X e Y são subconjuntos não vazios de \mathbb{R} .

Definição

Define-se $\operatorname{Id}_X: X \longrightarrow X$ e designa-se função identidade (em X), a função tal que $\operatorname{Id}_X(x) = x, \ \forall \ x \in X$.

Definição

Dado um subconjunto X, não vazio, de \mathbb{R} , diz-se que X é simétrico relativamente a 0 se $X=-X=\{-x:x\in X\}$.

 Cálculo (LEI)
 2. Funções
 2012/2013
 4 / 16

Seja $f: X \longrightarrow Y$ uma função. Diz-se que:

• f é uma função par se X é simétrico relativamente a 0 e $\forall x \in X$ f(-x) = f(x).

Seja $f: X \longrightarrow Y$ uma função. Diz-se que:

• f é uma função ímpar se

X é simétrico relativamente a 0 e $\forall x \in X \ f(-x) = -f(x)$.

2012/2013

6 / 16

Dadas duas funções $f,g:X\longrightarrow \mathbb{R}$, define-se

ullet soma de f e g:

$$f+g: X \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x)+g(x)$

• produto de f e g:

$$fg: X \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x)g(x)$

• quociente de f e g (supondo que $g(x) \neq 0$, $\forall x \in X$):

$$\begin{array}{cccc} \frac{f}{g}: & X & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{f(x)}{g(x)} \end{array}$$

7 / 16

Dada uma função $f: X \longrightarrow Y$, diz-se que

- f é majorada se $\exists M \in \mathbb{R} \ \forall x \in X$ $f(x) \leq M$;
- f é minorada se $\exists m \in \mathbb{R} \ \forall x \in X$ $m \leq f(x)$;
- ullet f é limitada se f é majorada e minorada.

Cálculo (LEI)

Uma função $f: X \longrightarrow Y$ diz-se

• estritamente crescente se

$$\forall x_1, x_2 \in X \qquad x_1 < x_2 \Longrightarrow f(x_1) < f(x_2);$$

- crescente se $\forall x_1, x_2 \in X$ $x_1 \leq x_2 \Longrightarrow f(x_1) \leq f(x_2)$;
- estritamente decrescente se

$$\forall x_1, x_2 \in X \qquad x_1 < x_2 \Longrightarrow f(x_1) > f(x_2);$$

- decrescente se $\forall x_1, x_2 \in X$ $x_1 \leq x_2 \Longrightarrow f(x_1) \geq f(x_2)$;
- monótona se for crescente ou decrescente;
- estritamente monótona se for estritamente crescente ou estritamente decrescente.

Seja $f: X \longrightarrow Y$ uma função. Um ponto $x_0 \in X$ diz-se

• um ponto de máximo local ou maximizante local de f se

$$\exists \delta > 0 \ \forall \ x \in]x_0 - \delta, x_0 + \delta[\cap X \qquad f(x) \le f(x_0)$$

e $f(x_0)$ diz-se máximo local de f;

• um ponto de mínimo local ou minimizante local de f se

$$\exists \delta > 0 \ \forall \ x \in]x_0 - \delta, x_0 + \delta[\cap X \qquad f(x_0) \le f(x)$$

e $f(x_0)$ diz-se mínimo local de f;

um ponto de máximo local estrito de f se

$$\exists \delta > 0 \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap X \setminus \{x_0\} \quad f(x) < f(x_0)$$

e $f(x_0)$ diz-se máximo local estrito de f;

• um ponto de mínimo local estrito de f se

$$\exists \, \delta > 0 \,\,\forall \, x \in \,]x_0 - \delta, x_0 + \delta[\,\cap X \setminus \{x_0\} \quad f(x_0) < f(x)$$

e $f(x_0)$ diz-se mínimo local estrito de f;

ullet um ponto de máximo absoluto ou maximizante absoluto $de\ f$ se

$$\forall x \in X \qquad f(x) \le f(x_0),$$

 $e f(x_0)$ diz-se máximo absoluto de f;

um ponto de mínimo absoluto ou minimizante absoluto de f) se

$$\forall x \in X \qquad f(x_0) \le f(x),$$

e $f(x_0)$ diz-se mínimo absoluto de f;

• um ponto de extremo (local ou absoluto) se for ponto de máximo ou de mínimo (local ou absoluto) de f.

Dadas duas funções $f: X \longrightarrow Y$ e $g: Y \longrightarrow W$, define-se a função g composta com f (escreve-se $g \circ f$) do seguinte modo:

$$g \circ f: X \longrightarrow W$$

 $x \longmapsto g(f(x))$

Dada uma função $f: X \longrightarrow Y$, uma função $g: Y \longrightarrow X$ diz-se inversa de f se $f \circ g = \operatorname{Id}_Y$ e $g \circ f = \operatorname{Id}_X$. Uma função que admite inversa diz-se invertível.

Nota

Facilmente se verifica que se $f: X \longrightarrow Y$ é invertível, a sua inversa é única. Podemos então denotar a função inversa de f por $f^{-1}: Y \longrightarrow X$. Observe-se que f^{-1} é invertível e que $\left(f^{-1}\right)^{-1} = f$.

Proposição

Uma função $f: X \longrightarrow Y$ é invertível se e só se é bijetiva.

14 / 16

A partir de uma representação gráfica da função f podemos obter uma representação gráfica de f^{-1} , procedendo como se indica na figura seguinte:

Nota

Se uma função $f: X \longrightarrow Y$ real de variável real é injetiva mas não sobrejetiva, é usual falar da inversa de f. Na realidade, cometemos um abuso de notação, chamando ainda f à função bijetiva que se obtém substituindo Y pelo contradomínio de f.

Definição

Sejam $f: X \longrightarrow Y$ e $g: A \longrightarrow Y$, funções tais que $A \subseteq X$ e g(x) = f(x), $\forall \, x \in A$. A função g diz-se uma **restrição** de f e denota-se $g = f_{|_A}$. A função f diz-se um **prolongamento** de g.