A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 3EE

Bookmark

Show all steps: ON

Problem

Use part 2 to list explicitly the six elements of $Gal(K : \mathbb{Q})$. Then write the table of $Gal(K : \mathbb{Q})$ and show that it is cyclic.

Step-by-step solution

Step 1 of 2

The objective is to list explicitly the six elements of $Gal(\mathbb{Q}(\omega);\mathbb{Q})$ where ω is the primitive seventh root of unity \cdot write the table of $Gal(\mathbb{Q}(\omega);\mathbb{Q})$ and show that it is cyclic.

Comment

Step 2 of 2

Let $\sigma_j \in Gal\left(K:\mathbb{Q}\right)$, where $K=\mathbb{Q}\left(\omega\right)$ be an automorphism such that $\sigma_j\left(\omega\right)=\omega^j$ for j = 1, 2, 3, 4, 5, 6

Then $\sigma_j \sigma_k(\omega) = \sigma_j(\omega^k)$

$$=(\omega^j)^k$$

$$=\omega^{jk}$$

 $=\sigma_m(\omega)$ where m is the product jk in \mathbb{Z}_7 .

Thus $Gal(K:\mathbb{Q})$ is isomorphic to the group $\{1,2,3,4,5,6\}$ of nonzero elements of \mathbb{Z}_7 under multiplication.

It is cyclic of order $\ 6$ generated by $\ \sigma_3$, since $\ \sigma_3\left(\omega\right)=\omega^3$, $\ \sigma_3^2\left(\omega\right)=\omega^2$,

$$\sigma_3^3(\omega) = \omega^6$$
, $\sigma_3^4(\omega) = \omega^4$, $\sigma_3^5(\omega) = \omega^5$ and $\sigma_3^6(\omega) = \omega$.

So, $Gal(K:\mathbb{Q}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$.

The Galois group $Gal(K:\mathbb{Q}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$ is described by the following table:

×	$\sigma_{ m l}$	σ_2	σ_3	σ_4	σ_5	σ_6
$\sigma_{ m l}$	σ_{l}	σ_2	σ_3	σ_4	σ_5	σ_6
σ_2	σ_2	σ_4	σ_6	$\sigma_{ m l}$	σ_3	σ_5
σ_3	σ_3	σ_6	σ_2	σ_5	$\sigma_{ m l}$	σ_4
σ_4	σ_4	$\sigma_{\rm l}$	σ_5	σ_2	σ_6	σ_3
$\sigma_{\scriptscriptstyle 5}$	σ_5	σ_3	$\sigma_{\rm l}$	σ_6	σ_4	σ_2
σ_6	σ_6	σ_5	σ_4	σ_3	σ_2	$\sigma_{\rm l}$

Comment