$N_{n+1} = \frac{RN_n^2}{(R-1)N_n^2 + N_n + S}$ ₁₁
₁₁
₂
₁₁
₂
₃ refe R= const>1, M= const>0, S=const>0 Henogburuoce vocku: $N^* = \frac{\mathbb{R}(N^*)^2}{(\mathbb{R}-2)(N^*)^2} + N^* + S^*$ B ganblierswen ongeren * 6 0603 Mar reserver $N\left(1-\frac{RN}{(R-1)N_{+}^{2}N+S}\right)=0$ RNM (R-1)N2+MN+SH = 1 $RNM=(R-1)N^2+MN+SM_2$ non 2004 (R-1)N2+MN+SM +0 $N^2 + N\left(\frac{M-RM}{R-1}\right) + \frac{SM}{R-1} = 0$ $N'' - MN + \frac{SM}{R-1} = 0$ D=M2-45M $N_{2,3} = \frac{M + \sqrt{M^2 - \frac{4SM}{R-1}}}{2}$ $N_1 = 0$ $f(N) = \frac{RN}{(R-1)N^2 + N+S}$, refe R= const>1, M= const>0, S=const>0 Ro reopene of ycrowruboczu nenogbux. rozku, narigen npouz bognyw q-yun f(n): $2NR\left(\frac{(R-1)}{M}N^{2}+N+S\right)-\left(\frac{2(R-1)}{M}N+1\right)RN^{2}$ $\left(\frac{(R-1)N^2}{M} + N+S\right)^2$ $= \frac{RN^2 + 2NRS}{\left(\frac{(R-1)N^2}{M} + N+S\right)^2}$ $f'(N_1) = 0 \Rightarrow \tau. N_1$ 96n. OICUMNSOTUR.

yesourusou, $\tau. R. \left[f'(N_1) \right] \angle 1$ Onpegenery yesots resocrt voter N24 N3 upu norucuse Wolfvan Monthemortica

NN6 Beggenne 2.1 Ruparno D-C.