Zadanie 1.

W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne:

- *K* liczba przejeżdżanych kilometrów (w tysiącach rocznie)
- NP liczba szkód w ciągu roku, w których kierowca jest stroną poszkodowaną
- NS liczba szkód w ciągu roku, w których kierowca jest sprawcą Pojedynczą szkodę zdefiniowano w taki sposób, że każdej szkodzie odpowiada dokładnie jeden sprawca i jeden poszkodowany, że są to zawsze dwie różne osoby, przy tym obie należą do rozważanej populacji.
 - Zmienna K ma w populacji kierowców rozkład Gamma o gęstości danej na półosi dodatniej wzorem $f_K(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x)$

Przyjmujemy prosty model, w którym doświadczenie kierowcy zmniejsza ryzyko (w przeliczeniu na tysiac przejechanych kilometrów):

•
$$\frac{1}{K}$$
E(NS|K)= a_S exp(- b_S K),

•
$$\frac{1}{K} E(NP|K) = a_P \exp(-b_P K),$$

gdzie wszystkie parametry a_S, b_S, a_P, b_P mają wartości dodatnie, przy czym $b_S > b_P$, ponieważ doświadczenie kierowcy redukuje przede wszystkim szansę spowodowania szkody, a w mniejszym stopniu redukuje ryzyko "zostania poszkodowanym".

Jasne jest, że w tym modelu kierowcy jeżdżący mało będą częściej sprawcami niż poszkodowanymi, zaś kierowcy jeżdżący dużo będą częściej poszkodowanymi niż sprawcami. Niech K^* oznacza taką liczbę tysięcy kilometrów przejeżdżanych rocznie przez kierowcę, dla której warunkowe (przy danym K) oczekiwane liczby szkód obu rodzajów są równe.

Przy założeniach, że:

•
$$\alpha = 2$$
, $\beta = 1/5$, $b_S = 1/20$, $b_P = 1/40$

liczba K^* z dobrym przybliżeniem wyniesie:

- (A) 13.4
- (B) 12.6
- (C) 11.8
- (D) 10.9
- (E) 10.0

Zadanie 2.

O zmiennej losowej X wiemy, że:

- $\Pr(X \ge 0) = 1$
- E(X) = 25

- $F_X(0) = 0.7$ $F_X(10) = 0.9$ $E(X|X \in (0,10]) = 7.5$

Przy tych założeniach najmniejsza możliwa wartość $E\{(X-6)_+\}$ wynosi:

- (A) 22.9
- (B) 23.0
- (C) 23.1
- (D) 23.2
- (E) 23.3

Zadanie 3.

Rozważamy klasyczny model procesu nadwyżki $U(t) = u + ct - S_{N(t)}$, gdzie:

- *u* jest nadwyżką początkową,
- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n X_i$ jest sumą wypłat z tytułu *n* pierwszych wypadków
- wypłata X_i jest równa łącznej kwocie szkód z jednego wypadku: $X_i = Y_i(1) + ... + Y_i(M_i)$
- kwoty szkód $Y_1(1), Y_1(2), Y_1(3), ..., Y_2(1), Y_2(2), Y_2(3), ..., Y_3(1), Y_3(2), Y_3(3), ...$ oraz liczby szkód przypadających na poszczególne wypadki $M_1, M_2, M_3, ...$ są niezależnymi zmiennymi losowymi.

Jeśli przyjmiemy następujące założenia:

- zmienne $Y_1(1), Y_1(2), Y_1(3), ..., Y_2(1), Y_2(2), Y_2(3), ..., Y_3(1), Y_3(2), Y_3(3), ...$ mają ten sam rozkład wykładniczy o wartości oczekiwanej jeden
- zmienne $M_1, M_2, M_3,...$ mają ten sam rozkład przesunięty geometryczny:

$$\Pr(M_i = k) = \left(\frac{1}{2}\right)^k$$
 dla $k = 1, 2, ...$

• parametr składki wynosi $c = \lambda \cdot E(X_1) \cdot 120\%$

wtedy współczynnik dopasowania (adjustment coefficient) R wyniesie:

- (A) 1/6
- (B) 1/18
- (C) 1/9
- (D) 1/10
- (E) 1/12

Zadanie 4.

Niech w złożonym procesie Poissona (T_n, Y_n) oznaczają moment zajścia i wartość n-tej szkody, zaś $\Delta T_1 = T_1$ oraz $\Delta T_n = T_n - T_{n-1}$ czasy oczekiwania. Oczywiście:

- $\Delta T_1, Y_1, \Delta T_2, Y_2, \Delta T_3, Y_3, \dots$ są niezależne,
- $\Delta T_1, \Delta T_2, \Delta T_3,...$ mają ten sam rozkład wykładniczy o wartości oczekiwanej λ^{-1}
- $Y_1, Y_2, Y_3,...$ mają ten sam rozkład o skończonej wartości oczekiwanej μ_Y i wariancji σ_Y^2 .

Niech $S = \sum_{n=1}^{\infty} Y_n \exp(-\delta T_n)$ oznacza zdyskontowaną wartość szkód (wszystkich).

Wariancja zmiennej *S* wyraża się wzorem:

(A)
$$\operatorname{Var}(S) = \frac{\lambda}{\delta} (\sigma_Y^2 + \mu_Y^2)$$

(B)
$$\operatorname{Var}(S) = \frac{\lambda}{2\delta} (\sigma_Y^2 + \mu_Y^2)$$

(C)
$$\operatorname{Var}(S) = \frac{\lambda}{2\delta} (2\sigma_Y^2 + \mu_Y^2)$$

(D)
$$\operatorname{Var}(S) = \frac{\lambda}{2\delta} \sigma_Y^2$$

(E)
$$\operatorname{Var}(S) = \frac{\lambda}{S} \sigma_Y^2$$

Wskazówka: Jeśli przez S_2 oznaczysz wartość szkód zdyskontowaną na moment tuż po zajściu pierwszej szkody: $S_2 = \sum_{n=2}^{\infty} Y_n \exp\left(-\delta(T_n - T_1)\right)$, to zmienna ta ma oczywiście dokładnie ten sam rozkład co zmienna S, a związane są te zmienne równaniem: $S = \exp\left(-\delta T_1\right)(Y_1 + S_2)$,

gdzie trzy zmienne występujące po prawej stronie są niezależne. Wykorzystując ten fakt łatwo otrzymasz wynik $E(S) = \frac{\lambda}{\delta} \mu_Y$. Pozostało wyznaczyć wariancję.

Zadanie 5.

Proces nadwyżki ubezpieczyciela jest złożonym procesem Poissona z zerową nadwyżką początkową, z dodatnią wartością oczekiwaną przyrostów procesu, oraz z rozkładem wartości pojedynczej szkody danym gęstością:

rozkładem wartości pojedyn
$$f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & poza tym \end{cases}$$

Warunkowa wartość oczekiwana deficytu w momencie ruiny (pod warunkiem że do ruiny dojdzie) wynosi:

- (A) 1/12
- (B) 2/12
- (C) 3/12
- (D) 4/12
- (E) 5/12

Zadanie 6.

 $N, Y_1, Y_2, Y_3,...$ to niezależne zmienne losowe, N ma rozkład Poissona z wartością oczekiwaną równą 10, zaś $Y_1, Y_2, Y_3,...$ mają identyczny rozkład Pareto o dystrybuancie określonej na półosi dodatniej wzorem:

$$\bullet F(y) = 1 - \left(\frac{1}{1+y}\right)^2$$

Niech $M = \max\{Y_1, Y_2, ..., Y_N\}$, przy czym jeśli N = 0, to przyjmujemy M = 0.

Niech $m_{0.95}$ oznacza taką liczbę, że $\Pr(M \le m_{0.95}) = 0.95$

Liczba $m_{0.95}$ wynosi (z przybliżeniem do jednej dziesiątej):

- (A) 14.0
- (B) 13.0
- (C) 11.9
- (D) 10.8
- (E) 9.7

Zadanie 7.

Liczby szkód $N_1,...N_t,N_{t+1}$ w kolejnych latach są, dla ustalonej wartości parametru Q=q, niezależnymi zmiennymi losowymi o jednakowym rozkładzie dwumianowym o parametrach (1,q). Niech $N=N_1+...+N_t$. Parametr ryzyka Q jest zmienną losową o rozkładzie beta o gęstości:

$$f_{\mathcal{Q}}(q) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot q^{\alpha - 1} \cdot (1 - q)^{\beta - 1}, \quad q \in (0, 1), \qquad \alpha, \beta > 0.$$

Wobec tego $VAR(N_{t+1}/N_1,...,N_t)$ wyraza się wzorem:

(A)
$$\frac{(\alpha+N)(\beta+t-N)}{(\alpha+\beta+t)^2}$$

(B)
$$\frac{(\alpha+N)(\beta+t-N)}{(\alpha+\beta+t)^2(\alpha+\beta+t+1)}$$

(C)
$$\frac{(\alpha+N)(\beta+t-N)}{(\alpha+\beta+t)(\alpha+\beta+t+1)}$$

(D)
$$\frac{(\alpha+N)(\beta+t-N)}{(\alpha+\beta+t)(\alpha+\beta+t+1)(\alpha+\beta+t+2)}$$

(E)
$$\frac{(\alpha+N)(\beta+t-N)}{(\alpha+\beta+t)^2(\alpha+\beta+t+2)}$$

Zadanie 8.

W pewnym portfelu ryzyk łączna wartość szkód:

$$W = Y_1 + Y_2 + ... + Y_N$$

ma złożony rozkład Poissona o parametrze częstotliwości $\lambda = 200$ oraz rozkładzie wartości pojedynczej szkody Y wykładniczym z wartością oczekiwaną E(Y) = 10. Niech:

$$Y_{M,i}=\min\{Y_i,M\}\,; \qquad i=1,2,...,N$$
 , oraz niech:
$$W_M=Y_{M,1}+...+Y_{M,N}\,,$$

gdzie W_M oznacza tę część łącznej wartości szkód W, która pozostaje na udziale ubezpieczyciela (po scedowaniu nadwyżki każdej szkody z tego portfela ponad M na reasekuratora). Aktualnie parametrem kontraktu reasekuracyjnego jest wartość zachowku M=42. Rozważamy jednak możliwość zmiany tego parametru, oraz wpływ takiej zmiany na charakterystyki zmiennej losowej W_M .

Pochodna wariancji zmiennej W_M :

$$\frac{\partial \operatorname{Var}(W_M)}{\partial M}\Big|_{M=42}$$

wynosi (w przybliżeniu do jednej dziesiątej):

- (A) 240
- (B) 246
- (C) 252
- (D) 234
- (E) 228

Zadanie 9.

Niech:

- *Y* oznacza wartość szkody.
- D oznacza czas, jaki upływa od momentu zajścia szkody do momentu jej likwidacji, który otrzymujemy w wyniku doświadczenia polegającego na losowaniu z populacji szkód z równym prawdopodobieństwem wyboru każdej szkody
- Zdefiniujmy nową zmienną *DW*, którą będziemy interpretować jako czas likwidacji szkody uzyskany w wyniku losowania szkody z populacji szkód z prawdopodobieństwem wyboru proporcjonalnym do wartości szkody.

Jeśli więc założymy ciągły rozkład łączny zmiennych Y oraz D, to gęstość brzegową zmiennej DW możemy wyrazić wzorem:

•
$$f_{DW}(x) = f_D(x) \frac{E(Y|D=x)}{E(Y)}$$
.

Załóżmy, że zmienna D ma w populacji szkód rozkład Gamma o gęstości danej na półosi dodatniej wzorem

$$f_D(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x),$$

oraz że oczekiwana wartość szkody pod warunkiem czasu likwidacji dana jest wzorem:

$$E(Y|D) = \mu_0 + \mu_1 D.$$

Jeśli parametry zadania wynoszą:

$$\mu_0 = 1$$
, $\mu_1 = 1/2$, $\alpha = 3/2$, $\beta = 5/2$

to wartość oczekiwana zmiennej DW wyniesie:

- (A) 9/13
- (B) 3/5
- (C) 3/4
- (D) 8/13
- (E) 9/14

Zadanie 10.

W pewnym ubezpieczeniu liczba szkód, które w ciągu t lat wygeneruje ubezpieczony charakteryzujący się wartością λ parametru ryzyka Λ ma rozkład warunkowy Poissona z wartością oczekiwaną λt .

Zakładamy, że rozkład wartości parametru ryzyka Λ w populacji ubezpieczonych dany jest na półosi dodatniej gęstością:

•
$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta \lambda)$$
,

z parametrami $\alpha = 2$, $\beta = 4$.

Pewnego ubezpieczonego ubezpieczyliśmy w tym roku po raz pierwszy. Prawdopodobieństwo, że ubezpieczony ten nie zgłosi żadnych szkód w drugim półroczu, pod warunkiem że nie zgłosił szkód w pierwszym półroczu, w przybliżeniu wynosi:

- (A) 0.800
- (B) 0.810
- (C) 0.819
- (D) 0.826
- (E) 0.833

Egzamin dla Aktuariuszy z 5 czerwca 2006 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODPOWIEDZI	
Decel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	D	
3	Е	
4	В	
5	С	
6	В	
7	A	
8	С	
9	A	
10	В	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.