Fiche d'exercices n°1 : nombres complexes

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Exercice 1. Pour chacun des nombres complexes ci-dessous, indiquer sa partie réelle, sa partie imaginaire, son module, un argument, et le placer dans le plan complexe.

a)
$$1 + i$$

b)
$$2 - 2i$$

c)
$$\sqrt{3} + i$$

$$d$$
) $-i$

a)
$$1+i$$
 b) $2-2i$ c) $\sqrt{3}+i$ d) $-i$
e) $-1+i\sqrt{3}$ f) $\overline{-1+i}$ g) -5 h) $a+ia$

$$f) \quad \overline{-1+i}$$

$$q) -5$$

$$h)$$
 $a+i$

Exercice 2. Mettre sous forme algébrique les expressions suivantes, et placer dans le plan complexe les différents termes mis en jeu.

a)
$$(1+i)^2$$

b)
$$(2-i)^2$$

$$(a+ib)^2$$

$$d) \quad \overline{(1+i)}(2+i)$$

$$e) (1+2i)(3+4i)$$

$$f) (1-3i)(5+2i)$$

a)
$$(1+i)^2$$
 b) $(2-i)^2$ c) $(a+ib)^2$ d) $\overline{(1+i)}(2+i)$
e) $(1+2i)(3+4i)$ f) $(1-3i)\overline{(5+2i)}$ g) $(2+3i)^2\overline{(2+3i)}$ h) $(3+i)^3$
i) $(2+5i)(2-5i)$ j) $(1-4i)(1+4i)$ k) $(2+3i)^2+(2-3i)^2$ l) $(a+bi)^2+(a-bi)^2$

$$(a+bi)^2 + (a-bi)^2$$

Exercice 3. Simplifier les expressions suivantes :

a)
$$\mathcal{R}e(3-7i)$$

b)
$$\mathcal{R}e(-\sqrt{7}+2i)$$

c)
$$\mathcal{I}m(\sqrt{5}+i)$$

$$d)$$
 $\mathcal{I}m(\overline{2+a})$

$$e) \quad \mathcal{R}e((1-i)(3+4i))$$

a)
$$\mathcal{R}e(3-7i)$$
 b) $\mathcal{R}e(-\sqrt{7}+2i)$ c) $\mathcal{I}m(\sqrt{5}+i)$ d) $\mathcal{I}m(\overline{2+i})$ e) $\mathcal{R}e((1-i)(3+4i))$ f) $\mathcal{R}e((1+i)(3+i))$ g) $\mathcal{I}m(i(2-i))$ h) $\mathcal{I}m(\overline{(3-i)}(1+2i))$

$$\mathcal{I}m(i(2-i))$$
 h

)
$$\mathcal{I}m((3-i)(1+2i))$$

Exercice 4. Mettre sous forme algébrique les expressions suivantes :

a)
$$\frac{5-5i}{4-3i}$$

$$b) \quad \frac{3+2i}{3-2i}$$

$$\frac{3+i}{2-i}$$

$$d) \quad \frac{1+i}{3+4i}$$

$$e) \quad \frac{a+ib}{a-ib}$$

a)
$$\frac{5-5i}{4-3i}$$
 b) $\frac{3+2i}{3-2i}$ c) $\frac{3+i}{2-i}$ d) $\frac{1+i}{3+4i}$ e) $\frac{a+ib}{a-ib}$ f) $\frac{(1-2i)^2}{(1+2i)^2}$

Exercice 5.

- 1. Soit A le point du plan de coordonnées (1,3). Quelle est l'équation caractérisant les affixes des points du cercle de centre A et de rayon 2?
- 2. Généraliser le résultat précédent au cercle de centre A(a,b) et de rayon r.
- 3. Soient P(1,3) et Q(-1,2) deux points du plan. Quelle est l'équation caractérisant les affixes des points de la médiatrice de [PQ]?
- 4. Généraliser le résultat de la question précédente à la médiatrice des points P(a,b) et Q(c,d).

Exercice 6. Par un raisonnement géométrique, trouver pour chacun des cas suivants l'ensemble des points dont l'affixe z satisfait la condition indiquée.

a)
$$|z-3| = |z-1+i|$$

$$b) \quad |z+2-i| = \sqrt{3}$$

a)
$$|z-3| = |z-1+i|$$
 b) $|z+2-i| = \sqrt{3}$ c) $|z-1+2i| \le 2$ d) $\left|\frac{z-3}{z-5}\right| = 1$

$$d) \quad \left| \frac{z-3}{z-5} \right| =$$

Exercice 7. Soit $z \in \mathbb{C}$ avec $z \neq 1$, et $Z = \frac{z+2i}{z-1}$.

Déterminer l'ensemble des points d'affixe z tels que :

- a) Z soit un nombre réel b) Z soit un nombre imaginaire pur

Exercice 8. Mettre sous forme algébrique les nombres complexes suivants :

$$e^{2i\pi} \qquad e^{i\pi} \qquad e^{-i\pi} \qquad e^{i\frac{\pi}{3}} \qquad 2\,e^{i\frac{2\pi}{3}} \qquad e^{i\frac{\pi}{4}} \qquad \sqrt{2}\,e^{i\frac{3\pi}{4}} \qquad e^{i\frac{\pi}{6}} \qquad 4\,e^{i\frac{7\pi}{6}}$$

Exercice 9. Mettre sous forme exponentielle les nombres complexes suivants :

a)
$$i$$
 b) -1 c) $-i$ d) $(-i)^7$ e) $\overline{e^{i\frac{\pi}{3}}}$

$$f) \quad \left(e^{i\frac{\pi}{6}}\right)^{-2} \qquad g) \qquad \left(e^{i\frac{\pi}{3}}\right)^{5} \qquad \quad h) \qquad \quad \frac{1}{e^{i\frac{\pi}{4}}} \qquad \qquad i) \qquad \, -2e^{i\frac{\pi}{3}} \qquad \quad j) \qquad \quad ie^{-i\frac{\pi}{6}} \qquad \qquad i$$

$$f) \quad \left(e^{i\frac{\pi}{6}}\right)^{-2} \quad g) \quad \left(e^{i\frac{\pi}{3}}\right)^{5} \quad h) \quad \frac{1}{e^{i\frac{\pi}{4}}} \quad i) \quad -2e^{i\frac{\pi}{3}} \quad j) \quad ie^{-i\frac{\pi}{6}} \\ k) \quad -ie^{i\frac{\pi}{4}} \quad l) \quad \left(\overline{2e^{i\frac{\pi}{7}}}\right)^{-3} \quad m) \quad \overline{\left(\frac{1}{2}e^{i\frac{\pi}{3}}\right)^{-2}} \quad n) \quad \left(\frac{4e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{2}}}\right)^{-2} \quad o) \quad \left(\frac{2e^{i\frac{\pi}{6}}}{3e^{i\frac{\pi}{3}}}\right)^{-1} \\ \end{array}$$

Exercice 10. Mettre sous forme exponentielle les nombres complexes suivants :

a)
$$1+i$$
 b) $1-i$ c) $\frac{1}{1+i}$ d) $-2+2i$ e) $(1+i)^9$

$$f) \quad \frac{1}{2} + \frac{\sqrt{3}}{2}i \qquad g) \quad \frac{1}{2} - \frac{\sqrt{3}}{2}i \qquad h) \quad i + \sqrt{3} \qquad i) \qquad \frac{1+i}{i+\sqrt{3}} \qquad j) \quad \frac{(-1+i)^4}{1+i\sqrt{3}}$$

k)
$$(1-i\sqrt{3})^{10}$$
 l) $\frac{(1+i\sqrt{3})^5}{(1-i\sqrt{3})^5}$ m) $\frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$ n) $\left(\frac{1}{\sqrt{2}}+i\frac{\sqrt{2}}{2}\right)^{17}$

Exercice 11. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$X^2 + 3 = 0$$
 b) $X^2 - X + 6 = 0$ c) $X^2 - 4X + 5 = 0$ d) $X^2 - 2X + 4 = 0$

e)
$$Z^2 = 8 - 6i$$
 f) $Z^2 = -3 + 4i$ g) $Z^2 = 7 + 24i$ h) $Z^2 = 9 + 40i$

Exercice 12. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$z^2 + (1-5i)z + 2i - 6 = 0$$
 b) $z^2 - (3+4i)z + 7i - 1 = 0$ c) $2z^2 + (5+i)z + 2 + 2i = 0$

Pour vous entrainer...

Exercice 13. Mettre sous forme algébrique les expressions suivantes, et placer dans le plan complexe les différents termes mis en jeu.

a)
$$(1-i)^2$$
 b) $(3-i)^2$ c) $(2+3i)^2$ d) $(a-ib)^3$

a)
$$(1-i)^2$$
 b) $(3-i)^2$ c) $(2+3i)^2$ d) $(a-ib)^2$
e) $(2-i)(3-4i)$ f) $(1+2i)\overline{(4-2i)}$ g) $(1-3i)^3$ h) $\overline{(2-i)}^3$
i) $(1+3i)(1-3i)$ j) $(2-i)(2+i)$ k) $(-1+2i)^2+(-1-2i)^2$ l) $\overline{(1+2i)}(3-4i)$

i)
$$(1+3i)(1-3i)$$
 j) $(1+2i)(1-2i)$ g) $(1-3i)(1-2i)(1-2i)$ k) $(-1+2i)^2+(-1-2i)^2$ l) $(1+2i)(3-4i)$

Exercice 14. Simplifier les expressions suivantes :

a)
$$\mathcal{R}e((2+i)(3-4i))$$
 b) $\mathcal{R}e((-1+i)(2+3i))$ c) $\mathcal{I}m(-i(2+i))$ d) $\mathcal{I}m(\overline{(2-i)}(1-2i))$

Exercice 15. Mettre sous forme algébrique les expressions suivantes :

a)
$$\frac{1-5i}{1+2i}$$
 b) $\frac{2-3i}{3-2i}$ c) $\frac{1+i}{2+i}$ d) $\frac{2-2i}{2+4i}$ e) $\frac{a-ib}{2a+ib}$ f) $\frac{(1+i)^2}{(1-2i)^2}$

Exercice 16. Par un raisonnement géométrique, trouver pour chacun des cas suivants l'ensemble des points dont l'affixe z satisfait la condition indiquée.

a)
$$|1+i-z| = |z-4+2i|$$
 b) $|z+3-2i| = 5$ c) $|z-2+i| > 1$

b)
$$|z+3-2i|=5$$

c)
$$|z-2+i| > 1$$

Exercice 17. Mettre sous forme algébrique les nombres complexes suivants :

$$e^{-i\frac{\pi}{2}} \qquad e^{i\frac{\pi}{2}} \qquad e^{i\frac{3\pi}{2}} \qquad 2\,e^{-i\frac{2\pi}{3}} \qquad e^{-i\frac{\pi}{3}} \qquad e^{i\frac{3\pi}{4}} \qquad \sqrt{2}\,e^{-i\frac{\pi}{4}} \qquad e^{i\frac{5\pi}{6}} \qquad 2\,e^{i\frac{\pi}{6}}$$

$$e^{i\frac{3\pi}{2}}$$

$$2e^{-i\frac{2\pi}{3}}$$

$$e^{-i\frac{\pi}{3}}$$

$$e^{i\frac{3\pi}{4}}$$

$$\sqrt{2} e^{-i\frac{\pi}{4}}$$

$$e^{i\frac{5\pi}{6}}$$

Exercice 18. Mettre sous forme exponentielle les nombres complexes suivants :

$$(e^{i\frac{3\pi}{4}})^3 \qquad (2e^{-i\frac{\pi}{6}})^{-3} \qquad \frac{e^{i\frac{\pi}{3}}}{\left(e^{i\frac{\pi}{8}}\right)^2} \qquad \left(e^{i\frac{\pi}{3}}\right)^3 \left(e^{i\frac{\pi}{2}}\right)^3 \qquad \left(e^{-i\frac{\pi}{4}}\right)^6 \left(e^{i\frac{\pi}{2}}\right)^6 \qquad \left(\overline{3}e^{i\frac{\pi}{3}}\right)^2$$

$$\frac{e^{i\frac{\pi}{3}}}{\left(e^{i\frac{\pi}{8}}\right)^2}$$

$$\left(e^{i\frac{\pi}{3}}\right)^3 \left(e^{i\frac{\pi}{2}}\right)^3$$

$$\left(e^{-i\frac{\pi}{4}}\right)^6 \left(e^{i\frac{\pi}{2}}\right)^6$$

$$\left(\overline{3e^{i\frac{\pi}{3}}}\right)$$

$$\overline{\left(2e^{i\frac{3\pi}{4}}\right)^{-2}}$$

$$\left(\frac{e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}}\right)^{-2}$$

$$\frac{\left(e^{i\frac{\pi}{3}}\right)^{5}}{\left(e^{i\frac{2\pi}{3}}\right)^{7}\left(e^{-i\frac{\pi}{3}}\right)^{4}}$$

$$\frac{1}{\left(2e^{i\frac{3\pi}{4}}\right)^{-2}} \qquad \left(\frac{e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}}\right)^{-2} \qquad \frac{\left(e^{i\frac{\pi}{3}}\right)^{5}}{\left(e^{i\frac{2\pi}{3}}\right)^{7}\left(e^{-i\frac{\pi}{3}}\right)^{4}} \qquad \left(2e^{i\frac{\pi}{3}}\right)^{-3} \left(\sqrt{2}e^{i\frac{\pi}{6}}\right)^{4} \qquad \frac{\left(ie^{i\frac{\pi}{3}}\right)^{6}}{\left(-e^{i\frac{2\pi}{3}}\right)^{-2}}$$

$$\frac{\left(ie^{i\frac{\pi}{3}}\right)^{0}}{\left(-e^{i\frac{2\pi}{3}}\right)^{-2}}$$

Exercice 19. Mettre sous forme exponentielle les nombres complexes suivants :

a)
$$\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)(1+i)$$
 b) $\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}\right)e^{i\frac{\pi}{2}}$ c) $(1+i)e^{i\frac{\pi}{3}}$ d) $\frac{1}{\sqrt{3}-i}$

$$b) \quad \left(\frac{\sqrt{3}}{2}i + \frac{1}{2}\right)e^{i\frac{\pi}{2}}$$

$$c) \quad (1+i)e^{i\frac{\pi}{3}}$$

$$d) \qquad \frac{1}{\sqrt{3}-i}$$

$$e) \qquad \frac{1-i}{i-\sqrt{3}}$$

$$f) \qquad \frac{(1 - i\sqrt{3})^3}{(1 + i\sqrt{3})^3}$$

$$g) \quad \frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$$

e)
$$\frac{1-i}{i-\sqrt{3}}$$
 f)
$$\frac{(1-i\sqrt{3})^3}{(1+i\sqrt{3})^3}$$
 g)
$$\frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$$
 h)
$$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{57}$$

Exercice 20. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$X^2 - X + 3 = 0$$

b)
$$2X^2 - X + 5 = 0$$

$$3X^2 - X + 1 = 0$$

a)
$$X^2 - X + 3 = 0$$
 b) $2X^2 - X + 5 = 0$ c) $3X^2 - X + 1 = 0$ d) $X^2 + 2X + 4 = 0$

$$e) Z^2 = 1 + i$$

$$f) \qquad Z^2 = 7 - 24a$$

$$(g) Z^2 = 3 + 4i$$

e)
$$Z^2 = 1 + i$$
 f) $Z^2 = 7 - 24i$ g) $Z^2 = 3 + 4i$ h) $Z^2 = 1 - 3i$

Exercice 21. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$z^2 - (3+2i)z + 5 + 5i = 0$$

a)
$$z^2 - (3+2i)z + 5 + 5i = 0$$
 b) $z^2 + (2-i)z - 13 + 11i = 0$ c) $z^2 + (3-3i)z - 5i = 0$

c)
$$z^2 + (3-3i)z - 5i = 0$$

Pour aller plus loin...

Exercice 22.

- 1. Résoudre l'équation $Z^2 = 1 + i$ de deux façons différentes (via la forme exponentielle et via la forme algébrique).
- 2. En déduire les valeurs de $\cos \frac{\pi}{\varrho}$ et $\sin \frac{\pi}{\varrho}$.
- 3. Retrouver ces valeurs en utilisant les formules de trigonométrie $\cos 2a = \cos^2 a \sin^2 a$ et $\cos^2 a + \sin^2 a = 1$.

Exercice 23. On considère les nombres complexes $z_1 = e^{i\frac{\pi}{3}}$ et $z_2 = e^{-i\frac{\pi}{4}}$.

- 1. Écrire z_1 et z_2 sous forme algébrique.
- 2. Déterminer les écritures sous formes algébriques et exponentielles de z_1z_2 .

3. En déduire les valeurs exactes de $\sin \frac{\pi}{12}$ et $\cos \frac{\pi}{12}$

Exercice 24. Trouver les valeurs du paramètre réel a pour lesquelles le module du nombre complexe z est égal à 1. Pour les valeurs de a trouvées, mettre z sous forme exponentielle.

a)
$$z = \frac{(1+i)}{(1-ai)}$$
 b) $z = \frac{(1+i)^2}{(1+ai)}$ c) $z = \frac{(1+\sqrt{3}i)^2(\sqrt{3}+2i)^2}{7(\sqrt{3}+ai)^2}$ d) $z = \frac{a+2i}{1-ai}$

Exercice 25. Montrer que : $\forall w, z \in \mathbb{C}$, $|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$. Donner une interprétation géométrique de ce résultat.

Exercice 26. Soit $z \in \mathbb{C} \setminus \{i\}$. Montrer que $\frac{z+i}{1+iz}$ est un nombre réel si et seulement si |z|=1.

Exercice 27.

- 1. En raisonnant sur le cercle trigonométrique, exprimer $\cos \frac{4\pi}{5}$, $\cos \frac{6\pi}{5}$ et $\cos \frac{8\pi}{5}$ en fonction de $\cos \frac{\pi}{5}$ et $\cos \frac{2\pi}{5}$. Rappeler par ailleurs la formule reliant $\cos \frac{\pi}{5}$ et $\cos \frac{2\pi}{5}$.
- 2. Soit $z=e^{\frac{2i\pi}{5}}$. En utilisant les connaissances sur les suites géométriques, ou en raisonnant sur le cercle trigonométrique, calculer $1+z+z^2+z^3+z^4$.
- 3. En déduire les valeurs de $\cos \frac{\pi}{5}$ et $\sin \frac{\pi}{5}$.

Exercice 28. On pose $j = e^{\frac{2i\pi}{3}}$.

- 1. Trouver les racines troisièmes de l'unité et les exprimer en fonction de j.
- 2. Les représenter sur le cercle trigonométrique.
- 3. Montrer que la somme des racines troisièmes de 1 vaut 0.
- 4. Trouver les racines troisièmes de -8i.

Exercice 29. Résoudre dans \mathbb{C} l'équation : $z^n + 1 = 0$.

Exercice 30. Déterminer les nombres complexes z tels que :

a)
$$z^2 + |z| - 2 = 0$$
 b) $z|z| - 2z = i$ c) $z^2 = \bar{z}$ d) $z^2 - z = |z|^2 - |z|$

Exercice 31. Déterminer les nombres complexes z et w tels que

a)
$$\begin{cases} zw^2 = 1 \\ z^2 + w^4 = 2 \end{cases}$$
 b) $\begin{cases} z\bar{w} = i \\ |z|^2w + z = 1 \end{cases}$

Exercice 32. Déterminer et représenter dans le plan complexe l'ensemble des nombres complexes z tels que :

a)
$$|1-z| \le \frac{1}{2}$$
 b) $|(1-i)z - 3i| = 3$ c) $Re(1-z) \le 2$ d) $Re(iz) \ge 1$

e)
$$\left|1 - \frac{1}{z}\right|^2 = 2$$
 f) z^7 et $\frac{1}{z^2}$ soient conjugués g) $\frac{|z-3|}{|z+3|} > 2$ h) $\frac{|z-3|}{|z-5|} < 1$