Álgebra Lineal - Clase 4

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Matrices
- Operaciones
- Matrices inversibles

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 2 (Secciones 2.1 y 2.2).

Definiciones básicas

$$K^{n\times m} = \left\{ \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \middle/ a_{ij} \in K \ \forall 1 \leq i \leq n, \ 1 \leq j \leq m \right\}$$

es el conjunto de las matrices de n filas y m columnas con coeficientes en K.

Si $A \in K^{n \times m}$, para cada $1 \le i \le n$ y $1 \le j \le m$, escribimos A_{ij} para especificar el elemento que se halla en el lugar ij, correspondiente a la intersección de la fila i y la columna j.

Ejemplo.

 $A \in \mathbb{R}^{3 \times 4}$ tal que $A_{ij} = i - j$, para $1 \le i \le 3$, $1 \le j \le 4$, es

$$A = \left(\begin{array}{cccc} 0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \end{array}\right)$$

Observación.

Si
$$A, B \in K^{n \times m}$$
, $A = B \iff A_{ij} = B_{ij} \ \forall 1 \le i \le n, 1 \le j \le m$.

Definición

Sea $A \in K^{n \times m}$. Se llama matriz transpuesta de A, y se nota A^t , a la matriz $A^t \in K^{m \times n}$ definida por $(A^t)_{ij} = A_{ji}$ para cada $1 \le i \le m, \ 1 \le j \le n$.

$$A = \begin{pmatrix} 0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \end{pmatrix} \Rightarrow A^{t} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \\ -3 & -2 & -1 \end{pmatrix}$$

Definición.

Si $A \in K^{n \times n}$, la traza de A es el escalar $tr(A) = \sum_{i=1}^{n} A_{ii}$.

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & 5 \\ 2 & 1 & 7 \end{pmatrix} \Rightarrow tr(A) = 1 + (-3) + 7 = 5.$$

Operaciones

La suma de matrices y el producto por escalares se definen como

+:
$$K^{n\times m} \times K^{n\times m} \to K^{n\times m}$$
, $(A+B)_{ij} = A_{ij} + B_{ij}$,
·: $K \times K^{n\times m} \to K^{n\times m}$, $(\lambda \cdot A)_{ij} = \lambda A_{ij}$ $(1 \le i \le n, 1 \le j \le m)$.

 $(K^{n\times m},+,\cdot)$ es un K-espacio vectorial.

El producto de matrices se define para matrices A y B tales que la cantidad de columnas de A es igual a la cantidad de filas de B: si $A \in K^{n \times m}$ y $B \in K^{m \times r}$, se define $A \cdot B \in K^{n \times r}$ como

$$(A \cdot B)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$
 $(1 \le i \le n, \ 1 \le j \le r).$

Ejemplo.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \ B = \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 2}$$

$$A \in \mathbb{R}^{2\times3}, B \in \mathbb{R}^{3\times2} \Rightarrow A \cdot B \in \mathbb{R}^{2\times2}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & 0 & 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & 3 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & 3 \end{pmatrix}$$
$$A \cdot B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & 3 \end{pmatrix}.$$

$$B \in \mathbb{R}^{3 imes 2}$$
, $A \in \mathbb{R}^{2 imes 3} \Rightarrow B \cdot A \in \mathbb{R}^{3 imes 3}$

$$B \cdot A = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 1 \\ & & & \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 1 \\ 2 & 2 & 2 \\ 6 & -3 & 0 \end{pmatrix}.$$

$$B \cdot A = \begin{pmatrix} 3 & 0 \\ 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
.

$$B \cdot A = \begin{pmatrix} -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ 6 & -3 & 0 \end{pmatrix}.$$

$$B \cdot A = \begin{pmatrix} 1 & 1 \\ -2 & 2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 1 \\ 2 & 2 & 2 \\ 6 & -3 & 0 \end{pmatrix}.$$

Propiedades del producto de matrices.

- 1. Propiedad asociativa: si $A \in K^{n \times m}$, $B \in K^{m \times r}$ y $C \in K^{r \times s}$, $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- 2. Para cada $r \in \mathbb{N}$, sea $I_r \in K^{r \times r}$, $(I_r)_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$ la matriz identidad de $K^{r \times r}$.

Si $A \in K^{n \times m}$, se verifica: $I_n \cdot A = A \cdot I_m = A$.

- 3. Propiedades distributivas:
 - 3.1 Si $A \in K^{n \times m}$ y $B, C \in K^{m \times r}$, entonces
 - $A\cdot (B+C)=A\cdot B+A\cdot C.$
 - 3.2 Si $A, B \in K^{n \times m}$ y $C \in K^{m \times r}$, entonces $(A + B) \cdot C = A \cdot C + B \cdot C$.

Observación.

 $(K^{n\times n},+,\cdot)$ es un anillo.

Demostración. (Propiedad asociativa)

Observar que si $A \in K^{n \times m}$, $B \in K^{m \times r}$ y $C \in K^{r \times s}$, entonces $(A \cdot B) \cdot C \in K^{n \times s}$ y $A \cdot (B \cdot C) \in K^{n \times s}$.

Para cada $1 \le i \le n$, $1 \le j \le s$:

$$((A \cdot B) \cdot C)_{ij} = \sum_{\alpha=1}^{r} (A \cdot B)_{i\alpha} C_{\alpha j} = \sum_{\alpha=1}^{r} \left(\sum_{\beta=1}^{m} A_{i\beta} B_{\beta \alpha} \right) C_{\alpha j}$$

$$= \sum_{\alpha=1}^{r} \left(\sum_{\beta=1}^{m} A_{i\beta} B_{\beta \alpha} C_{\alpha j} \right) = \sum_{\beta=1}^{m} \left(\sum_{\alpha=1}^{r} A_{i\beta} B_{\beta \alpha} C_{\alpha j} \right)$$

$$= \sum_{\beta=1}^{m} A_{i\beta} \left(\sum_{\alpha=1}^{r} B_{\beta \alpha} C_{\alpha j} \right) = \sum_{\beta=1}^{m} A_{i\beta} (B \cdot C)_{\beta j}$$

$$= (A \cdot (B \cdot C))_{ij}.$$

$$\Rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$$

Observación.

▶ El producto de matrices en $K^{n \times n}$ no es conmutativo.

Por ejemplo, si
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,

$$A \cdot B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 y $B \cdot A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- ► $A \cdot B = 0 \implies A = 0$ o B = 0. En el ejemplo anterior, $A \neq 0$ y $B \neq 0$, pero $A \cdot B = 0$.
- Por ejemplo, si A y B son las anteriores $y C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, se tiene que $A \cdot B = A \cdot C y B \neq C$.

Producto de matrices y sistemas lineales

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ \vdots &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

puede escribirse como una ecuación matricial:

$$A \cdot x = b$$

- ▶ $A \in K^{m \times n}$ es la matriz de coeficientes del sistema,
- ▶ $x \in K^{n \times 1}$ se define como $x_{i1} = x_i$ (matriz de una columna cuyos elementos son las incógnitas del sistema),
- ▶ $b \in K^{m \times 1}$ se define como $b_{j1} = b_j$ (matriz de una columna cuyos elementos son los resultados de las ecuaciones).

Si existe A^{-1} inversa de A para el producto de matrices,

$$Ax = b \Rightarrow A^{-1}(Ax) = A^{-1}b \Rightarrow (A^{-1}A)x = A^{-1}b \Rightarrow x = A^{-1}b$$

Pero esto no siempre ocurre...

Matrices inversibles

Definición.

 $A \in K^{n \times n}$ se dice inversible si existe una matriz $B \in K^{n \times n}$ tal que $A \cdot B = B \cdot A = I_n$.

La matriz B, si existe, es única y la notaremos $B = A^{-1}$: si $A \cdot B = B \cdot A = I_n$ y $A \cdot B' = B' \cdot A = I_n$, entonces

$$B = I_n \cdot B = (B' \cdot A) \cdot B = B' \cdot (A \cdot B) = B' \cdot I_n = B'.$$

Observación.

No toda matriz en $K^{n \times n}$ tiene inversa para el producto.

Por ejemplo,
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in K^{2 \times 2}$$
 no tiene inversa.

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = I_2$$

Para $n \in \mathbb{N}$, sea $GL(n, K) = \{A \in K^{n \times n} / A \text{ es inversible}\}.$

Proposición.

- 1. $I_n \in GL(n, K)$.
- 2. $A, B \in GL(n, K) \Rightarrow AB \in GL(n, K) \text{ y } (AB)^{-1} = B^{-1}A^{-1}$.
- 3. $A \in GL(n, K) \Rightarrow A^{-1} \in GL(n, K) \text{ y } (A^{-1})^{-1} = A.$

Demostración.

- 1. $I_n.I_n = I_n$.
- 2. $A, B \in GL(n, K) \Rightarrow \exists A^{-1} \text{ y } B^{-1} \text{ en } K^{n \times n}$. $(AB).(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$. Análogamente, $(B^{-1}A^{-1}).(AB) = I_n$. $\Rightarrow AB$ es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. $A \in GL(n, K) \Rightarrow A.A^{-1} = A^{-1}.A = I_n$ $\Rightarrow A^{-1}$ es inversible y $(A^{-1})^{-1} = A$
- $(GL(n, K), \cdot)$ es un grupo, llamado el grupo lineal general.

Cálculo de la inversa de una matriz

Ejemplo.

Hallar, si existe, la inversa de
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
.

Buscamos
$$B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
 tal que $A.B = B.A = I_3$.
$$A \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$A\begin{pmatrix} a \\ d \\ g \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ A\begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ A\begin{pmatrix} c \\ f \\ i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Resolvemos estos tres sistemas lineales simultáneamente.

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & -2 & 0 & 1 \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -4 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & -1 & -1 \\ 0 & 1 & 0 & -2 & 1 & 1 \\ 0 & 0 & 1 & -4 & 1 & 2 \end{pmatrix}$$

Además, podemos comprobar que vale
$$B.A = I_3$$
.
 $\Rightarrow AB = BA = I_2$ es decir $A^{-1} = \begin{bmatrix} 3 & -1 & -1 \\ -2 & 1 & 1 \end{bmatrix}$

Entonces $B = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 1 & 1 \\ -4 & 1 & 2 \end{pmatrix}$ verifica $A.B = I_3$.

$$\Rightarrow A.B = B.A = I_3$$
, es decir $A^{-1} = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 1 & 1 \\ -4 & 1 & 2 \end{pmatrix}$.

Cómo decidir si $A \in K^{n \times n}$ es inversible y hallar su inversa:

- ► Armar la matriz $(A \mid I_n)$ en $K^{n \times 2n}$. Esto corresponde a plantear $A.B = I_n$ con $B \in K^{n \times n}$, considerar n
 - sistemas lineales igualando columna a columna, y escribir la matriz ampliada para resolverlos simultáneamente.
 - Si al escalonar la matriz no aparece ningún 0 en la diagonal, se sigue haciendo operaciones de filas hasta llegar a $(I_n \mid B)$.
 - En este caso, A es inversible y A⁻¹ = B.
 Si al escalonar la matriz aparece algún 0 en la diagonal,
 - En efecto, en este caso el sistema homogéneo A.x=0 tiene solución no trivial. Pero si A es inversible,

solution no trivial. Pero si A es inversible, $x = A^{-1}.A.x = A^{-1}.0 = 0$, contradicción.

entonces A no es inversible.