

Lecture 6 Model Selection II STAT 441/505: Applied Statistical Methods in Data Mining

Linglong Kong

Department of Mathematical and Statistical Sciences University of Alberta

Winter, 2016

Outline

Ridge Regression

The LASSO

Ridge regression and the LASSO

Summary and Remark

Ridge Regression

Ridge Regression

► The ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimize

$$\sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_i x_{ij} \right)^2 + \lambda \sum_{j} \beta_j^2,$$

where λ is a tuning parameter, to be determined separately.

- ► The second term $\lambda \sum_i \beta_i^2$ called a shrinkage penalty, is small when β_i , $j \ge 1$ are close to zero, and so it has the effect t of shrinking the estimates of β_i towards zero.
- \triangleright The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates.
- \triangleright Selecting a good value for λ is critical; cross-validation is used for this.

As λ increases, the coefficients are shrunken to zeros.

4/15

Scaling of predictors

- ► The standard least squares coefficient estimates are scale equivariant: multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of 1/c. In other words, regardless of how the j-th predictor is scaled $X_j \hat{\beta}_j$ will remain the same.
- ▶ In contrast, the ridge regression coefficient estimates can change substantially when multiplying a given predictor by a constant, due to the sum of squared coefficient term in the penalty part of the ridge regression objective function.
- ► Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula

$$\tilde{x}_{ij} = x_{ij} / \sqrt{\sum_i (x_{ij} - \bar{x}_j)^2 / n}.$$

Simulated data with n = 50 observations, p = 45 predictors, all having nonzero coefficient. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

The LASSO

- ▶ Ridge regression, unlike subset selection, will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model.
- ► The LASSO is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficient $\hat{\beta}^L$ minimize the quantity

$$\sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_i x_{ij} \right)^2 + \lambda \sum_{j} |\beta_j|,$$

where λ is a tuning parameter.

▶ The LASSO uses l_1 penalty instead of l_2 (ridge regression).

The LASSO

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero as λ increases.
- ▶ However, in the case of the lasso, the l_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficientl large. Thus performs variable selection.
- We say that the lasso yields sparse models that is, models that involve only a subset of the variables.
- ▶ Selecting a good value for λ is critical; cross-validation is again used for this.

Ridge Regression

As λ increases, the coefficients are shrunken to exact zeros.

9/15

Ridge Regression

Ridge regression and the LASSO

- ▶ Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?
- ▶ One can show that the lasso and ridge regression coefficient estimates solve the problems

$$\min_{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_i x_{ij} \right)^2, \text{ subject to } \sum_{j} |\beta_j| \le c;$$

$$\min_{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{i} \beta_i x_{ij} \right)^2, \text{ subject to } \sum_{i} \beta_j^2 \le c;$$

Ridge Regression

Ridge regression and the LASSO

Left: Plots of squared bias (black), variance (green), and test mean squared error (purple) for the LASSO on a simulated data set. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). The purple crosses indicate the LASSO models for which the MSE is smallest.

Left: Plots of squared bias (black), variance (green), and test mean squared error (purple) for the LASSO on another simulated data set. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). The purple crosses indicate the LASSO models for which the MSE is smallest.

Conclusions

- ► These two examples illustrate that neither ridge regression nor the lasso will universally dominate the other.
- ▶ In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of predictors.
- ► However, the number of predictors that is related to the response is never known a priori for real data sets.
- ► A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.

Summary and Remark

- Ridge Regression
- ► The LASSO
- Ridge Regression and the LASSO
- ► Read textbook Chapter 3
- ▶ Do R lab