TABLE 15.1

Properties of the Laplace transform.

Property	f(t)	F(s)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1 F_1(s) + a_2 F_2(s)$
Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Time shift	f(t-a)u(t-a)	$e^{-as} F(s)$
Frequency shift	$e^{-at}f(t)$	F(s+a)
Time differentiation	$\frac{df}{dt}$	$sF(s) - f(0^-)$
	$\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0^-) - f'(0^-)$
	$\frac{d^3f}{dt^3}$	$s^{3}F(s) - s^{2}f(0^{-}) - sf'(0^{-}) - f''(0^{-})$
	$\frac{d^n f}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}f'(0^{-})$ - $\cdots - f^{(n-1)}(0^{-})$
Time integration	$\int_0^t f(x)dx$	$\frac{1}{s}F(s)$
Frequency differentiation	tf(t)	$-\frac{d}{ds}F(s)$
Frequency integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s)ds$
Time periodicity	f(t) = f(t + nT)	$\frac{F_1(s)}{1 - e^{-sT}}$
Initial value	f(0)	$\lim_{s\to\infty} sF(s)$
Final value	$f(\infty)$	$\lim_{s\to 0} sF(s)$
Convolution	$f_1(t)*f_2(t)$	$F_1(s)F_2(s)$

TABLE 15.2

Laplace transform pairs.*

Laplace transform pairs.		
f(t)	F(s)	
$\delta(t)$	1	
u(t)	$\frac{1}{s}$	
e^{-at}	$\frac{1}{s+a}$	
t	$\frac{1}{s^2}$	
t^n	$\frac{n!}{s^{n+1}}$	
te ^{-at}	$\frac{1}{\left(s+a\right)^2}$	
$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	
$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$	
$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$	
$e^{-at}\sin \omega t$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	
$e^{-at}\cos\omega t$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	

^{*}Defined for $t \ge 0$; f(t) = 0, for t < 0.

Obtain the Laplace transform of $f(t) = \delta(t) + 2u(t) - 3e^{-2t}u(t)$.

Example 15.3

Solution:

By the linearity property,

$$F(s) = \mathcal{L}[\delta(t)] + 2\mathcal{L}[u(t)] - 3\mathcal{L}[e^{-2t} u(t)]$$
$$= 1 + 2\frac{1}{s} - 3\frac{1}{s+2} = \frac{s^2 + s + 4}{s(s+2)}$$

Find the Laplace transform of $f(t) = (\cos (2t) + e^{-4t})u(t)$.

Practice Problem 15.3

Answer: $\frac{2s^2 + 4s + 4}{(s+4)(s^2+4)}$.