Geometric and Exponential Growth

The equations for geometric and exponential growth

The equations for geometric and exponential growth

The relationship between geometric growth and the BIDE model

The equations for geometric and exponential growth

The relationship between geometric growth and the BIDE model

The difference between continuous and discrete time models of population growth

The equations for geometric and exponential growth

The relationship between geometric growth and the BIDE model

The difference between continuous and discrete time models of population growth

The definition of density independent population growth

WHAT IS POPULATION DYNAMICS?

The study of spatial and temporal variation in population size and structure

FUNDAMENTAL QUESTION

How does abundance go from N_t to N_{t+1} ?

Fundamental Question

How does abundance go from N_t to N_{t+1} ?

Answer: The BIDE Model
$$N_{t+1} = N_t + B_t + I_t - D_t - E_t$$

B=Births, I=Immigrations, D=Deaths, E=Emigrations

FUNDAMENTAL QUESTION

How does abundance go from N_t to N_{t+1} ?

Answer: The BIDE Model
$$N_{t+1} = N_t + B_t + I_t - D_t - E_t$$

B=Births, I=Immigrations, D=Deaths, E=Emigrations

Geometric growth is a simplification of BIDE

FUNDAMENTAL QUESTION

How does abundance go from N_t to N_{t+1} ?

Answer: The BIDE Model
$$N_{t+1} = N_t + B_t + I_t - D_t - E_t$$

B=Births, I=Immigrations, D=Deaths, E=Emigrations

Geometric growth is a simplification of BIDE

Exponential growth is a continuous time version of geometric growth

REVEREND THOMAS MALTHUS, 1766–1834

Relevance To Wildlife Biology and Management

Charles Darwin (Origin of Species)

"There is no exception to the rule that every organic being increases at so high a rate, that if not destroyed, the earth would soon be covered by the progeny of a single pair."

RELEVANCE TO WILDLIFE BIOLOGY AND MANAGEMENT

Charles Darwin (Origin of Species)

"There is no exception to the rule that every organic being increases at so high a rate, that if not destroyed, the earth would soon be covered by the progeny of a single pair."

"Hence, as more individuals are produced than can possibly survive, there must in every case be a struggle for existence..."

ALDO LEOPOLD, GAME MANAGEMENT 1946

"Every wild species has certain fixed habits which govern the reproductive process, and determine its maximum rate. [...] Thus one pair of quail, if entirely unmolested in an "ideal" environment, would increase at this rate:"

At End of	Young	Adults	Total
	8		
1st year	14	2	16
2nd year	(16/2)14=112	16	128
3rd year	(128/2)14 = 896	128	1024

ALDO LEOPOLD, GAME MANAGEMENT 1946

"Every wild species has certain fixed habits which govern the reproductive process, and determine its maximum rate. [...] Thus one pair of quail, if entirely unmolested in an "ideal" environment, would increase at this rate:"

At End of	Young	Adults	Total
1st year	14	2	16
2nd year	(16/2)14=112	16	128
3rd year	(128/2)14 = 896	128	1024

"The maximum rate of increase is of course never attained in nature. Part of it never takes place, part of it is absorbed by natural enemies, and part of it $[\ldots]$ is absorbed by hunters."

SO WHAT IS GEOMETRIC GROWTH?

DISCRETE TIME, $t = 1, 2, \dots$

$$N_t = N_0 (1+r)^t$$

r =discrete-time version of intrinsic rate of increase

SO WHAT IS GEOMETRIC GROWTH?

DISCRETE TIME, $t = 1, 2, \dots$

$$N_t = N_0 (1+r)^t$$

Or, for one time step:

$$N_{t+1} = N_t + N_t r$$

r = discrete-time version of intrinsic rate of increase

$$N_0 = 3, r = 1$$
Time Population size
 $N_t = N_t = 1$
 $N_t = 1$
 $N_t = 1$
 $N_t = 1$

$N_0 = 3$, $r = 1$		
Time	Population size	
(<i>t</i>)	(N_t)	
0	3	
1	6	

$N_0 = 3$, $r = 1$		
Time	Population size	
(t)	(N_t)	
0	3	
1	6	
2	12	

$N_0 = 3, r = 1$		
Time	Population size	
(t)	(N_t)	
0	3	
1	6	
2	12	
3	24	

N_0	r = 3, r = 1
Time	Population size
(t)	(N_t)
0	3
1	6
2	12
3	24
4	48

N_0	r = 3, r = 1
Time	Population size
(t)	(N_t)
0	3
1	6
2	12
3	24
4	48
5	96

N_0	= 3, r = 1
Time	Population size
(t)	(N_t)
0	3
1	6
2	12
3	24
4	48
5	96
6	192

N_0	= 3, r = 1
Time	Population size
(t)	(N_t)
0	3
1	6
2	12
3	24
4	48
5	96
6	192
7	384

	= 3, r = 1
Time	Population size
(t)	$\frac{(N_t)}{3}$
0	3
1	6
2	12
3	24
4	48
5	96
6	192
7	384
8	768

N_0	= 3, r = 1
Time	Population size
(t)	$\frac{(N_t)}{3}$
0	3
1	6
2	12
3	24
4	48
5	96
6	192
7	384
8	768
9	1536

N_0	=3, r=1
Time	Population size
(t)	(N_t)
0	3
1	6
2	12
3	24
4	48
5	96
6	192
7	384
8	768
9	1536
10	3072

Three Possible Outcomes, $N_{t+1} = N_t + N_t r$

r and λ , $N_{t+1} = N_t + N_t r$

r is the discrete growth rate

 λ is the finite growth rate

$$\lambda = \frac{N_{t+1}}{N_t}$$

$$\lambda = 1 + r$$

From BIDE To Geometric Growth

Fundamental equation of population ecology

$$N_{t+1} = N_t + B_t + I_t - D_t - E_t$$

 N_t = Abundance at year t

B = Births

I = Immigrations

D = Deaths

E = Emigrations

From BIDE To Geometric Growth

Ignore immigration and emigration

$$N_{t+1} = N_t + B_t - D_t$$

 N_t = Abundance in year t

B = Births

D = Deaths

FROM BIDE TO GEOMETRIC GROWTH

Step 1: Divide both sides by N_t

$$\frac{N_{t+1}}{N_t} = 1 + \frac{B_t}{N_t} - \frac{D_t}{N_t}$$

FROM BIDE TO GEOMETRIC GROWTH

Step 1: Divide both sides by N_t

$$\frac{N_{t+1}}{N_t} = 1 + \frac{B_t}{N_t} - \frac{D_t}{N_t}$$

Step 2: Write in terms of *per capita* birth and death *rates*

$$\frac{N_{t+1}}{N_t} = 1 + b - d$$

From **BIDE** To Geometric Growth

Step 1: Divide both sides by N_t

$$\frac{N_{t+1}}{N_t} = 1 + \frac{B_t}{N_t} - \frac{D_t}{N_t}$$

Step 2: Write in terms of *per capita* birth and death *rates*

$$\frac{N_{t+1}}{N_t} = 1 + b - d$$
$$= 1 + r$$

FROM BIDE TO GEOMETRIC GROWTH

Step 1: Divide both sides by N_t

$$\frac{N_{t+1}}{N_t} = 1 + \frac{B_t}{N_t} - \frac{D_t}{N_t}$$

Step 2: Write in terms of per capita birth and death rates

$$\frac{N_{t+1}}{N_t} = 1 + b - d$$

$$= 1 + r$$

$$= \lambda$$

From BIDE To Geometric Growth

Step 1: Divide both sides by N_t

$$\frac{N_{t+1}}{N_t} = 1 + \frac{B_t}{N_t} - \frac{D_t}{N_t}$$

Step 2: Write in terms of *per capita* birth and death *rates*

$$\frac{N_{t+1}}{N_t} = 1 + b - d$$

$$= 1 + r$$

$$= \lambda$$

Step 3: Geometric growth

$$N_{t+1} = N_t + N_t r$$

CONTINUOUS TIME VERSION OF GEOMETRIC GROWTH

$$N_t = N_0 e^{rt}$$

 $N_0 = \text{initial abundance}$

r = intrinsic rate of increase

t = time (any positive number)

CONTINUOUS TIME VERSION OF GEOMETRIC GROWTH

$$N_t = N_0 e^{rt}$$

Or, in terms of instantaneous rate of change:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN$$

 $N_0 = \text{initial abundance}$

r = intrinsic rate of increase

t = time (any positive number)

CONTINUOUS TIME VERSION OF GEOMETRIC GROWTH

$$N_t = N_0 e^{rt}$$

Or, in terms of instantaneous rate of change:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN$$

 $N_0 = \text{initial abundance}$

r = intrinsic rate of increase

t = time (any positive number)

The exponential growth model is often considered more appropriate than the geometric growth model for birth flow populations in which reproduction occurs throughout the year

CONTINUOUS TIME VERSION OF GEOMETRIC GROWTH

$$N_t = N_0 e^{rt}$$

Or, in terms of instantaneous rate of change:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN$$

 $N_0 = \text{initial abundance}$

r = intrinsic rate of increase

t = time (any positive number)

The exponential growth model is often considered more appropriate than the geometric growth model for birth flow populations in which reproduction occurs throughout the year

However, geometric growth models can provide a good approximation of birth flow or birth pulse populations

DENSITY INDEPENDENT GROWTH

Geometric and exponential growth are examples of density independent growth

DENSITY INDEPENDENT GROWTH

Geometric and exponential growth are examples of density independent growth

Definition: Population growth rate (r) is *not* affected by population size (N).

DENSITY INDEPENDENT GROWTH

Geometric and exponential growth are examples of density independent growth

Definition: Population growth rate (r) is *not* affected by population size (N).

Implications: Resources are unlimited and there is no carrying capacity!

MODEL ASSUMPTIONS

- (1) Population is geographically closed
 - ► No immigration
 - ▶ No emigration

Model Assumptions

- (1) Population is geographically closed
 - No immigration
 - No emigration
- (2) Reproduction occurs seasonally (for geometric growth)

Model Assumptions

- (1) Population is geographically closed
 - No immigration
 - No emigration
- (2) Reproduction occurs seasonally (for geometric growth)
- (3) Constant birth rate (b) and death rate (d)
 - No genetic variation among individuals
 - No age- or stage-structure
 - No time lags

Model Assumptions

- (1) Population is geographically closed
 - No immigration
 - ► No emigration
- (2) Reproduction occurs seasonally (for geometric growth)
- (3) Constant birth rate (b) and death rate (d)
 - ► No genetic variation among individuals
 - No age- or stage-structure
 - No time lags
- (4) No stochasticity
 - No random variation in birth or death
 - ▶ No random variation in environmental conditions

CAN WE APPLY THE MODEL TO REAL DATA?

All models are wrong, but some are useful. (George Box)

CAN WE APPLY THE MODEL TO REAL DATA?

All models are wrong, but some are useful. (George Box)

Is exponential growth a useful model?

CAN WE APPLY THE MODEL TO REAL DATA?

All models are wrong, but some are useful. (George Box)

Is exponential growth a useful model?

- Possibly for describing some populations during short time periods, e.g. invasive species
- Also useful as foundation for more realistic models.

LOOKING AHEAD

Is the human population exhibiting exponential growth?

https://ourworldindata.org/world-population-growth

ASSIGNMENT

Read pages 15-19 in Conroy and Carroll

Be prepared for a quiz