§ 9 Das Prinzip von Cavalieri

Die Bezeichnungen seien wie im Paragraphen 8.

Satz 9.1 (Prinzip von Cavalieri)

Sei $C \in \mathfrak{B}_d$. Dann:

$$\lambda_d(C) = \int_{\mathbb{R}^k} \lambda_l(C^x) \, dx = \int_{\mathbb{R}^l} \lambda_k(C_y) \, dy$$

Das heißt:

$$\int_{\mathbb{R}^d} \mathbb{1}_C(x,y) \ \mathrm{d}(x,y) = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \mathbb{1}_C(x,y) \ dy \right) \ dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} \mathbb{1}_C(x,y) \ dx \right) \ dy$$

Beispiel

(1) Sei k=l=1, also d=2. Sei r>0 und

$$C := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$$

Da C abgeschlossen ist, gilt $C \in \mathfrak{B}_2$.

Ist |y| > r, so ist $C_y = \emptyset$, also $\lambda_1(C_y) = 0$.

Sei also $|y| \le r$. Sei $x \in \mathbb{R}$ so, dass $(x, y) \in \partial C$. Dann ist $x^2 + y^2 = r^2$, also $x = \pm \sqrt{r^2 - y^2}$. Das heißt, es ist

$$C_y = \left[-\sqrt{r^2 - y^2}, +\sqrt{r^2 - y^2} \right] \text{ und } \lambda_1(C_y) = 2\sqrt{r^2 - y^2}$$

Aus 9.1 folgt:

$$\lambda_2(C) = \int_{\mathbb{R}} \lambda_1(C_y) \, dy$$

$$= \int_{[-r,r]} \lambda_1(C_y) \, dy + \int_{\mathbb{R} \setminus [-r,r]} \lambda_1(C_y) \, dy$$

$$= \int_{[-r,r]} 2\sqrt{r^2 - y^2} \, dy$$

$$\stackrel{4.13}{=} \text{R-} \int_{-r}^r 2\sqrt{r^2 - y^2} \, dy$$

$$\stackrel{AnaI}{=} \pi r^2$$

(2) Sei $\emptyset \neq X \subseteq \mathbb{R}^d$. X sei kompakt, also $X \in \mathfrak{B}_d$. Weiter sei $f: X \to [0, \infty)$ stetig, woraus mit 4.11 $f \in \mathfrak{L}^1(X)$ folgt. Setze

$$C := \{(x, y) : x \in X, 0 < y < f(x)\}$$

C ist kompakt und somit gilt: $C \in \mathfrak{B}_{d+1}$.

Ist $x \notin X$, so ist $C^x = \emptyset$, also $\lambda_1(C^x) = 0$.

Ist $x \in X$, so ist $C^x = [0, f(x)]$, also $\lambda_1(C^x) = f(x)$. Damit gilt

$$\lambda_{d+1}(C) \stackrel{\textbf{9.1}}{=} \int_{\mathbb{R}^d} \lambda_1(C^x) \, dx = \int_X \lambda_1(C^x) \, dx + \int_{\mathbb{R}^d \setminus X} \lambda_1(C^x) \, dx = \int_X f(x) \, dx$$

(3) Sei $I = [a, b] \subseteq \mathbb{R}$ mit a < b und $f: I \to [0, \infty]$ stetig. Setze

$$C := \{(x, y) \in \mathbb{R}^2 : x \in I, 0 \le y \le f(x)\}\$$

Aus Beispiel (2) und 4.13 folgt

$$\lambda_2(C) = \text{R-} \int_a^b f(x) \, dx$$

(4) X und f seien wie in Beispiel (2). Setze

$$G := \{(x, f(x)) : x \in X\}$$

G ist kompakt, also ist $G \in \mathfrak{B}_2$. Ist $x \notin X$, so ist $G^x = \emptyset$, also $\lambda_1(G^x) = 0$. Ist $x \in X$, so ist $G^x = \{f(x)\}$, also $\lambda_1(G^x) = 0$. Aus 9.1 folgt

$$\lambda_2(G) = \int_{\mathbb{R}} \lambda_1(G^x) \, dx = 0$$

Beweis (Prinzip von Cavalieri)

Wir definieren $\mu, \nu : \mathfrak{B}_d \to [0, \infty]$ durch:

$$\mu(A) := \int_{\mathbb{R}^k} \lambda_l(A^x) \, dx \qquad \qquad \nu(A) := \int_{\mathbb{R}^l} \lambda_k(A_y) \, dy$$

Dann ist klar, dass $\mu(\emptyset) = \nu(\emptyset) = \lambda_d(\emptyset) = 0$ ist.

Sei (A_j) eine disjunkte Folge in \mathfrak{B}_d . Dann ist (A_j^x) ebenfalls disjunkt und $(\bigcup A_j)^x = \bigcup A_j^x$. Somit gilt:

$$\mu(\bigcup A_j) = \int_{\mathbb{R}^k} \lambda_l(\bigcup A_j^x) \, dx$$
$$= \int_{\mathbb{R}^k} \sum \lambda_l(A_j^x) \, dx$$
$$= \sum \int_{\mathbb{R}^k} \lambda_l(A_j^x) \, dx$$
$$= \sum \mu(A_j)$$

D.h. μ ist ein Maß auf \mathfrak{B}_d . Analog lässt sich zeigen, dass ν ein Maß auf \mathfrak{B}_d ist. Sei nun $I \in \mathcal{I}_d$, dann existieren $I' \in \mathcal{I}_k$, $I'' \in \mathcal{I}_l$ mit $I = I' \times I''$. Aus §8 folgt:

$$I^{x} = \begin{cases} I'' & , x \in I' \\ \varnothing & , x \notin I' \end{cases}$$

Also ist $\lambda_l(I^x) = \lambda_l(I'') \cdot \mathbb{1}_{I'}(x)$ und damit:

$$\mu(I) = \int_{\mathbb{R}^k} \lambda_l(I'') \cdot \mathbb{1}_{I'}(x) \, dx$$
$$= \lambda_l(I'') \cdot \lambda_k(I') = \lambda_d(I)$$

D.h. auf \mathcal{I}_d stimmen μ und λ_d überein. Analog gilt $\nu = \lambda_d$ auf \mathcal{I}_d . Da \mathcal{I}_d die Vorraussetzungen des Satzes 2.6 erfüllt, gilt $\mu = \lambda_d = \nu$ auf \mathfrak{B}_d .

Folgerung 9.2

(1) Sei $N \in \mathfrak{B}_d$. Dann gilt:

$$\lambda_d(N) = 0 \iff \lambda_l(N^x) = 0$$
 f.ü. auf \mathbb{R}^k
 $\iff \lambda_k(N_y) = 0$ f.ü. auf \mathbb{R}^l

(2) Sei $M \subseteq \mathbb{R}^k$ $(M \subseteq \mathbb{R}^l)$ eine Nullmenge, dann ist $M \times \mathbb{R}^l$ $(\mathbb{R}^k \times M)$ eine Nullmenge.

Beweis

(1) Nach 9.1 gilt:

$$\lambda_d(N) = \int_{\mathbb{R}^k} \lambda_l(N^x) \, \mathrm{d}x$$

Nach 5.2(2) folgt die Behauptung. Analog lässt sich die zweite Äquivalenz zeigen.

(2) Es gilt:

$$\forall y \in \mathbb{R}^l : (M \times \mathbb{R}^l)_y = M$$

Damit folgt die Behauptung aus (1).

Lemma 9.3

Sei $\emptyset \neq D \in \mathfrak{B}_d$ und $f: D \to \overline{\mathbb{R}}$ messbar. Definiere

$$\tilde{f}(z) := \begin{cases} f(z) &, z \in D \\ 0 &, z \notin D \end{cases}$$

Dann ist $\tilde{f}: \mathbb{R}^d \to \overline{\mathbb{R}}$ messbar.

Beweis

Sei $a \in \mathbb{R}$, $B_a := \{ n \in \mathbb{R}^d \mid \tilde{f}(z) \leq a \}$.

Fall a < 0:

$$B_a = \{ z \in D \mid f(z) \le a \} \stackrel{3.4}{\in} \mathfrak{B}_d$$

Fall $a \ge 0$:

$$B_a = \{ z \in D \mid f(z) \le a \} \cup \{ z \in \mathbb{R}^d \setminus D \} \in \mathfrak{B}_d$$

Also folgt aus 3.4 die Messbarkeit von \tilde{f} .

Beispiel

(1) Sei r > 0 und

$$K := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < r^2\}$$

Dann ist K offen, also $K \in \mathfrak{B}_2$ und es gilt:

$$\partial K = \overline{K} \setminus K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\} \in \mathfrak{B}_2$$

Damit enthält die Menge $(\partial K)_y$ für alle $x \in \mathbb{R}$ höchstens zwei Elemente, d.h.

$$\lambda_2(\partial K) = \int_{\mathbb{R}} \lambda_1((\partial K)_y) \, \mathrm{d}y = 0$$

Mit $\overline{K} = (\partial K) \dot{\cup} K$ folgt dann

$$\lambda_2(K) = \lambda_2(\partial K) + \lambda_2(\overline{K}) = \lambda_2(\overline{K}) = \pi r^2$$

Sei nun $A \in \mathfrak{B}_2$ mit $K \subseteq A \subseteq \overline{K}$, dann ist $\lambda_2(A) = \pi r^2$.

(2) Sei r > 0 und

$$K:=\{(x,y,z)\in\mathbb{R}^3 \mid x^2+y^2+z^2\leq r^2\}$$

Dann ist K abgeschlossen, also $K \in \mathfrak{B}_3$.

Fall |z| > r: Es ist $K_z = \emptyset$, also $\lambda_2(K_z) = 0$.

Fall $|z| \ge r$: Es ist

$$K_z = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le r^2 - z^2\}$$

und damit $\lambda_2(K_z) = \pi(r^2 - z^2)$.

Aus 9.1 folgt dann:

$$\lambda_3(K) = \int_{\mathbb{R}} \lambda_2(K_z) \, dz$$

$$= \int_{[-r,r]} \lambda_2(K_z) \, dz + \int_{\mathbb{R}\setminus[-r,r]} \lambda_2(K_z) \, dz$$

$$= \int_{[-r,r]} \pi(r^2 - z^2) \, dz$$

$$\stackrel{4.13}{=} \int_{-r}^r \pi r^2 - \pi z^2 \, dz$$

$$= \frac{4}{3}\pi r^3$$

- $(3) \lambda_2(\odot) = 0$
- (4) Wir wollen nun Rotationskörper betrachten. Sei dazu $I = [a, b] \subseteq \mathbb{R}$ mit a < b und $f: I \to [0, \infty)$ messbar. Definiere nun

$$V := \{(x, y, z,) \in \mathbb{R}^3 \mid x^2 + y^2 \le f(z)^2, z \in I\}$$

Setze $D:=\mathbb{R}^2\times I$ und $g(x,y,z):=x^2+y^2-f(z)^2$. Dann ist g nach §3 messbar und $V=\{g\leq 0\}\in\mathfrak{B}_3$.

Fall $z \notin I$: Es so ist $V_z = \emptyset$, also $\lambda_2(V_z) = 0$.

Fall $z \in I$: Es ist

$$V_z = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le f(z)^2\}$$

und damit $\lambda_2(V_z) = \pi f(z)^2$.

Aus 9.1 folgt dann:

$$\lambda_3(V) = \int_{\mathbb{R}} \lambda_2(V_z) \, dz$$
$$= \pi \int_a^b f(z)^2 \, dz$$

(5) Sei h > 0, I = [0, h] und $f(z) = \frac{r}{h}z$. Definiere den Kegel

$$V := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le \frac{r^2}{h^2} z^2\}$$

Dann ist

$$\lambda_3(V) = \pi \int_0^h \frac{r^2}{h^2} z^2 dz$$
$$= \frac{\pi r^2 h}{3}$$