



## Outline

#### Introduction

Download DataSynthesizer and setup the running environment

#### **DataSynthesizer usage**

- Random mode
- Independent attribute mode
- Correlated attribute mode

Some useful statistical measures



## Introduction





# DataSynthesizer installation

#### GitHub repo

https://github.com/DataResponsibly/DataSynthesizer

- Download it
- Add ./DataSynthesizer/ into sys.path



## Random mode

- Generate type-consistent data
- Learn the domains of attributes
  - Data type
  - Categorical vs non-categorical
    - Threshold = 20 by default
    - True for rating, gender
    - False for score, name
  - Numerical vs non-numerical
    - Integer, Float, Datetime are numerical
    - Datetimes → timestamps if non-categorical
  - Active domain
    - if is\_categorical:
      - Attribute values in dataset
    - else if is\_numerical:
      - Range(min, max)

| Data Type | Example              |
|-----------|----------------------|
| Integer   | ID, age              |
| Float     | Score, rating        |
| String    | Name, gender         |
| Datetime  | Birthday, event time |



## Independent attribute mode

### Assume the attributes (or columns) are independent.

- Run random mode first to get the attribute domains
- Model attribute distributions
  - Bar charts for categorical attributes
  - Histograms for numerical attributes
- Inject Laplace noise into the bar charts / histograms.
  - Sensitivity = 2/n
  - d = #attributes, then privacy budget is  $\varepsilon/d$  for each attribute.
  - Inject Lap(2d/nε)





## Correlated attribute mode

#### **Parameters**

- epsilon: the privacy budget
- k: #parents in Bayesian network (BN)

#### Run GreedyBayes to construct a BN

- Connect attributes with high mutual information
- Randomize the attribute connections
- Cost epsilon/2, half of the privacy budge

### Populate conditional probability tables (CPTs)

- Inject Laplace noise into CPTs
- Cost epsilon/2, half of the privacy budge

## Randomize BN structure

#### **Algorithm 1** GreedyBayes(D, A, k)

**Require:** Dataset D, set of attributes A, maximum number of parents k

- 1: Initialize  $\mathcal{N} = \emptyset$  and  $V = \emptyset$ .
- 2: Randomly select an attribute  $X_1$  from A.
- 3: Add  $(X_1, \emptyset)$  to  $\mathcal{N}$ ; add  $X_1$  to V.
- 4: **for** i = 2, ..., |A| **do**
- 5: Initialize  $\Omega = \emptyset$
- $6: \quad p = \min(k, |V|)$
- 7: **for** each  $X \in A \setminus V$  and each  $\Pi \in \binom{V}{p}$  **do**
- 8: Add  $(X, \Pi)$  to  $\Omega$
- 9: end for
- 10: Compute mutual information based on D for all pairs in  $\Omega$ .
- Select ( $X_i$ ,  $\Pi_i$ ) from Ω with maximal mutual information.
- 12: Add  $(X_i, \Pi_i)$  to  $\mathcal{N}$ .
- 13: end for
- 14: return N

Select the (child, parents) among all combinations in  $\Omega$  with a probability proportional to  $\exp(I(X,\Pi)/2\Delta)$ 

Where I() is mutual information.

$$\Delta = (d-1)S(I)/\varepsilon$$

$$S(I(X,\Pi)) = \begin{cases} \frac{1}{n}\log(n) + \frac{n-1}{n}\log\left(\frac{n}{n-1}\right), & if X \text{ or } \Pi \text{ is binary}; \\ \frac{2}{n}\log\left(\frac{n+1}{2}\right) + \frac{n-1}{n}\log\left(\frac{n+1}{n-1}\right), & otherwise, \end{cases}$$

n is the number of tuples in D.



## Randomize BN structure





# Step 0: add root

edu

age

sex

income



# Step 1: add the 1st child



sex

income



## Step 2: add the 2nd child



income



# Step 3: add the 3rd child





# CPTs with Lap(4(d-k)/(n⋅ε))\* noise





### Statistical measures

#### **Mutual information**

- How much information can be obtained from one random variable about another random variable?

### Two-sample Kolmogorov–Smirnov test

- How different are two continuous distributions?

#### **KL-divergence**

How different are two categorical distribution?



## Mutual information\*

The "amount of information" obtained from one random variable about another random variable.

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p(x,y) \log \left( rac{p(x,y)}{p(x) \, p(y)} 
ight)$$

- MI(X, Y) = 0 if random variables X and Y are independent

$$\log\left(rac{p(x,y)}{p(x)\,p(y)}
ight) = \log 1 = 0$$



## Two-sample Kolmogorov–Smirnov test\*

 Test whether two underlying one-dimensional probability distributions differ.

$$D_{n,m} = \sup_x |F_{1,n}(x) - F_{2,m}(x)|$$





# **KL-divergence\***

- How different are two categorical distribution P and Q?

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg)$$

- $D_{KL}(P||Q) = 0$  if P and Q are identical.
- The KL-divergence is defined only if for all x, Q(x)=0 implies P(x)=0



# Thank you!