部分习题参考答案

习题 1-1

1. (1) $D = (1,2) \cup (2,+\infty)$; (2) $D = \left[-\frac{1}{3},1 \right]$; (3) $D = (-\infty,0) \cup (0,3]$; (4)

D = [-1,1).

- 2. (1) 不是同一函数; (2) 是同一函数; (3) 不是同一函数.

- 3. (1) $f(x) = e^{(x+1)^3}$; (2) $\varphi(x) = \frac{1+2\ln x}{2-3\ln x}$.
- **4.** $f[g(x)] = \begin{cases} 1, & x \in (-\sqrt{2}, \sqrt{2}), \\ -2, & \text{if } \text{if } \end{cases}, g[f(x)] = \begin{cases} 1, & x > 0, \\ -2, & x \le 0. \end{cases}$

习题 1-2

- **1**. 提示: $|f(x)| \le \frac{1}{2}$.
- **2.** 提示: 对于 $\forall M > 0$, 取 $x_0 = -1 + e^{-2(M+1)} \in (-1,1]$.
- 3. (1) 偶函数; (2) 奇函数; (3) 既不是奇函数也不是偶函数; (4) 奇函 数.
 - **4.** $\varphi(x)$ 单减; $\psi(x)$ 单增.

习题 1-3

- 2. (1) $f(x) = x^2 + 2$; (2) $f(x) = 1 x^2 + \frac{1 x^2}{x^2}$.
- 3. a = -1, b = 3.
- **4.** 函数 $y = f_1(x)$ 的图形与函数 y = f(x) 的图形关于 y 轴对称; 函数 $y = f_2(x)$ 的图形与函数 y = f(x) 的图形关于 x 轴对称; 函数 $y = f_3(x)$ 的图形与函数 y = f(x)的图形关于原点对称.

习题 1-4

1. 提示: 利用几何算术平均值不等式.

习题 1-5

- 1. $r = \frac{1}{\cos\theta + \sin\theta}$; $\frac{\pi}{4}$; $\frac{2\pi}{3}$.
- 2. $r^2 = 2\cos 2\theta$; $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$.

总复习题一

- 1. $[-\sqrt{2}, \sqrt{2}]$.
- 2. $f^{-1}(x) = \pi \arcsin x$.
- 3. C.
- **4.** (1) f(2) = 2a, f(5) = 5a; (2) a = 0.
- 7. $\Leftrightarrow \varphi(x) = \frac{1}{2} [f(x) + f(-x)], \psi(x) = \frac{1}{2} [f(x) f(-x)], \quad f(x) = \varphi(x) + \psi(x).$

习题 2-1

- **1**. (1) 存在,且 $\lim_{n\to\infty} x_n = 0$; (2) 存在,且 $\lim_{n\to\infty} x_n = 0$; (3) $\lim_{n\to\infty} x_n$ 不存在;
- (4) 存在,且 $\lim_{n\to\infty} x_n = 1$; (5) $\lim_{n\to\infty} x_n$ 不存在.
 - **4.** 反例: $x_n = (-1)^n$, 则 $\lim_{n \to \infty} |x_n| = 1$, 但 $\lim_{n \to \infty} x_n$ 不存在.

习题 2-2

2. (1) 图略; (2) $f(2^-) = 4$, $f(2^+) = 4$; (3) $\lim_{x \to 2} f(x) = 4$.

习题 2-3

- **1.** (1) 正确. 因为若 $\lim_{x \to x_0} [f(x) + g(x)]$ 存在,则 $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \{ [f(x) + g(x)] f(x) \}$ 存在,矛盾.
 - (2) 不正确. 例如,极限 $\limsup_{x\to 0} \frac{1}{x} = \lim_{x\to 0} \left(1-\sin\frac{1}{x}\right)$ 均不存在,但 $\lim_{x\to 0}$

$$\left[\sin\frac{1}{x} + \left(1 - \sin\frac{1}{x}\right)\right] = 1.$$

- (3) 不正确. 例如, $\lim_{x\to 0} x = 0$, $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在,但 $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.
 - **2.**(1)原式=17;(2)原式= $\lim_{x\to -2}\frac{x-2}{x^2-x+4}=-\frac{2}{5}$;(3)原式= $\lim_{x\to 0}\frac{x^2-4x}{x(x^2+2)}=-2$;
- - 3. 不能断定一定有A > 0.

反例:
$$f(x) = \begin{cases} x^2, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 则 $f(x) > 0$, 但 $\lim_{x \to 0} f(x) = 0$.

习题 2-4

- 1. 上述结论都不正确.

 - (2) 例如 $f(x) = 1 + x^2$, 当 $x \to 0$ 时;
- (3) 例如 $f(x) = -\frac{1}{x^2}$, $g(x) = 1 + \frac{1}{x^2}$, 当 $x \to 0$ 时均为无穷大,但 $\lim_{x \to 0} [f(x) + g(x)] = 1;$
 - (4)例如 $f(x) = x^2$, $g(x) = \frac{1}{x}$, 当 $x \to 0$ 时 g(x) 是无穷大, 但 $\lim_{x \to 0} f(x)g(x) = 0$;
 - (5) 当 $x \to 0$ 时, $x^2 + 5x + 2$ 与 $x^2 + 8x + 2$ 都不是无穷小.
 - 2. 当 $|x| > \sqrt[3]{1001}$ 时,有 $|f(x)| > 10^3$.
 - **3**. (1) 2; (2) ∞ ; (3) 3; (4) $\frac{1}{3}$.

6. (1) a = 3; (2) a = 0.

习题 2-5

1. (1) $\frac{3}{2}$; (2) 1; (3) -1; (4) 1; (5) $-\frac{1}{2}$; (6) e^{-3} ; (7) e^{-2} ; (8) e^{-1} ;

(9) e^2 .

- **2.** $a = \ln 3$.
- **3**. 1.
- 4. 2.

习题 2-6

- 1. (1) 正确. 因为若 f(x) 在区间 I 上连续,且 f(x)+g(x) 在区间 I 上也连续,则 g(x)=[f(x)+g(x)]-f(x) 在区间 I 上必然也连续.
 - (2) 不正确. 反例如下:

$$f(x) = \begin{cases} 1, x \le 0, \\ -1, x > 0, \end{cases} g(x) = \begin{cases} -1, x \le 0, \\ 1, x > 0, \end{cases} \text{ } \iint \ f(x), g(x) \ \text{ } \pounds \ x = 0 \text{ } \pounds \text{ } \digamma \text{ } \pounds \text{ } \pounds \text{ } , \text{ } \pounds \text{ }$$

 $f(x)+g(x), f(x)g(x), \frac{f(x)}{g(x)}$ 均在 x=0 处连续,又令 h(x)=f(x),那么 f(x)-h(x) 在 x=0 处也连续.

- (3) 不正确. 反例: $f(u) = 1, \varphi(x) = \operatorname{sgn} x = \begin{cases} -1, x < 0, \\ 0, x = 0, \\ 1, x > 0. \end{cases}$
- (4) 不正确. 反例: $f(x) = \begin{cases} -1, x \le 0, \\ 1, x > 0, \end{cases} a = 0.$
- (5) 不正确. 反例: $f(x) = \begin{cases} 0, x < 0, \\ 1, x \ge 0. \end{cases}$
- (6) 不正确. 反例: $f(x) = \frac{\sin x}{x}$ 在 x = 0 点分母为 0, 但 x = 0 不是 f(x) 的无穷间断点.
 - **3.** (1) x = 1 为可去间断点,补充定义 $f(1) = \frac{1}{2}$,则函数 f(x) 在 x = 1 处连续,

x = -3 为 f(x) 的无穷间断点.

- (2) $x = \pm 1$ 为 f(x) 的跳跃间断点.
- (3) x = 0 为 f(x) 的跳跃间断点,x = 1 为 f(x) 的无穷间断点.
- (4) x = 0 为可去间断点,补充定义 f(0) = 1,则函数 f(x) 在 x = 0 处连续; $x = k\pi$, $k = \pm 1, \pm 2, \cdots$ 为 f(x) 的无穷间断点;

$$x = k\pi + \frac{\pi}{2}, k = 0, \pm 1, \pm 2, \cdots$$
 为可去间断点,补充定义 $f\left(k\pi + \frac{\pi}{2}\right) = 0$,

 $k = 0, \pm 1, \pm 2, \cdots$, 则函数 f(x) 在 $x = k\pi + \frac{\pi}{2}, k = 0, \pm 1, \pm 2, \cdots$ 处连续.

- 4. a = -2.
- 5. (1) $\ln(1+\sqrt{3})$; (2) $-\frac{1}{2}$; (3) $-\frac{1}{4}$; (4) e^{x-1} ; (5) e^3 .

总复习题二

- 1. (1) 必要, 充分; (2) 必要, 充分; (3) 充分必要.
- 2. (1) D; (2) D.
- **5.** (1) e; (2) $\frac{n}{m}$; (3) $\frac{1}{8}$; (4) $-\frac{3}{2}$; (5) e^{a-b} .
- **6**. 1.
- 7. a = 1, b = 2.
- **8.** $a=1, b=\frac{1}{2}$.
- **9**. (1) 1; (2) $\frac{1}{2}$.
- **10**. 0.
- 11. \sqrt{a} .
- **12.** n = 3.
- 13. $f(x) = \begin{cases} x, & |x| > 1, \\ -1, -1 \le x < 1, x = 1 是 f(x) 的跳跃间断点. \\ 0, x = 1, \end{cases}$
- **14.** $x = \frac{\pi}{4}$ 与 $x = \frac{3\pi}{4}$ 是 f(x) 在区间 $(0,\pi)$ 内的间断点. $x = \frac{\pi}{4}$ 是 f(x) 的无穷间

断点, $x = \frac{3\pi}{4}$ 是 f(x) 的可去间断点, 补充定义 $f\left(\frac{3\pi}{4}\right) = 1$, 则 f(x) 在 $x = \frac{3\pi}{4}$ 处连

续.

习题 3-1

- **1.** (1) 正确. 用 $-\Delta x$ 代替 Δx 即可.
- (2) 不正确. 例如 $f(x) = |x|, x_0 = 0$,则 $\lim_{\Delta x \to 0} \frac{f(\Delta x) f(-\Delta x)}{2\Delta x} = 0$ 存在,但 f'(0) 不存在.
 - 2. (1) $\frac{3}{2}f'(x_0)$; (2) $-\frac{1}{2}f'(x_0)$.
 - **4.** $f\left(\frac{1}{2}\right) = -1$, $f'\left(\frac{1}{2}\right) = 6$.
 - 5. 物体在时刻t温度的变化速度为 $\lim_{\Delta t \to 0} \frac{T(t + \Delta t) T(t)}{\Delta t} = T'(t)$.
 - 6. 结论不正确.
 - 7. $y = \frac{\sqrt{3}}{2}x \frac{2\sqrt{3}\pi}{3} \frac{1}{2}$.
- (2) $g'_{-}(a) = -\varphi(a), g'_{+}(a) == \varphi(a)$, 如 g'(a) 存在,则必有 $\varphi(a) = 0$,相应的导数值为 g'(a) = 0.
 - **10**. (1) 不可导; (2) 可导, 且 f'(0) = 0.
 - 11. a = e, b = 0, $f'(x) = \begin{cases} e^x, & x \le 1, \\ ex, & x > 1. \end{cases}$

习题 3-2

- 1. (1) 正确; (2) 不正确; (3) 不正确; (4) 不正确.
- 2. (1) $y' = 3\cos x(1+\sin x)^2$;
- $(2) \quad y' = 2e^x \cos x \; ;$
- (3) $y = -\frac{1}{x^2} \sin \frac{2}{x} e^{\sin^2 \frac{1}{x}};$

(4) $y' = \sec x$;

(5)
$$y' = \frac{\sqrt{1 + e^x} - 1}{1 + e^x - \sqrt{1 + e^x}};$$

(6)
$$y' = 2\sqrt{a^2 - x^2}$$
;

(7)
$$y' = \frac{1 + 2\sqrt{x} + 4\sqrt{x^2 + x\sqrt{x}}}{8\sqrt{x^2 + x\sqrt{x}} \cdot \sqrt{x + \sqrt{x + \sqrt{x}}}};$$

(8)
$$y' = \frac{-1}{1+x^2}$$
;

- (9) $y' = 2 \cos \ln x$;
- (10) $y' = n \sin^{n-1} x \cos(n+1)x$.

3.
$$y' = \frac{f(x)f'(x) + g(x)g'(x)}{\sqrt{f^2(x) + g^2(x)}}$$
.

4.
$$y' = v(x)^{u(x)} \left[u'(x) \ln v(x) + \frac{u(x)v'(x)}{v(x)} \right]$$
. $(x^{\sin x})' = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right)$.

习题 3-3

1. (1)
$$f'''(11) = 336$$
; (2) $y'' = -\sec^2 x$; (3) $n = 2$.

3. (1)
$$y'' = \frac{e^x(x^2 - 2x + 2)}{x^3}$$
; (2) $y^{(4)} = -4e^x \cos x$;

(3)
$$y^{(20)} = x^2 \cos x + 40x \sin x - 380 \cos x$$
; (4) $y^{(n)} = -2^{n-1} \cos \left(2x + \frac{n\pi}{2}\right)$.

3. (1)
$$y'' = 2f'(x^2) + 4x^2f''(x^2)$$
; (2) $y'' = e^{-x}(x-2)f'(e^{-x}) + xe^{-2x}f''(e^{-x})$.

5. 提示: 用数学归纳法证明.

习题 3-4

1. (1)
$$y' = \frac{x+y-1}{y-x}$$
; (2) $y'|_{x=0} = \frac{1}{e}-1$;

(3)
$$y'' = \frac{1+y'^2}{x-y} = \frac{2(x^2+y^2)}{(x-y)^3}$$
; (4) $\frac{d^2y}{dx^2}\Big|_{x=0} = 1$.

2. 切线方程为
$$y = \sqrt[3]{4}$$
, 法线方程为 $x = \sqrt[3]{2}$.

3. (1)
$$y' = \frac{1 - \frac{1}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{t}{2}, y'' = \frac{\frac{1}{2}}{\frac{2t}{1 + t^2}} = \frac{1 + t^2}{4t};$$

(2)
$$y' = \frac{-\sin t}{3t^2}, y'' = \frac{2\sin t - t\cos t}{9t^5};$$

(3)
$$y' = t, y'' = \frac{1}{f''(t)};$$

(4)
$$y' = \frac{\sin t + t \cos t}{\cos t - t \sin t}, y'' = \frac{2 + t^2}{(\cos t - t \sin t)^3}.$$

- **4.** 所求切线方程为 $y = -\frac{4}{3}x + \frac{4}{3}$, 法线方程为 $y = \frac{3}{4}x + \frac{1}{2}$.
- 5. 所求切线方程为 $y = x + e^{\pi}$.

习题 3-5

1. 当 $\Delta x = 1$ 时, $\Delta y = 5$, d y = 4; 当 $\Delta x = 0.1$ 时, $\Delta y = 0.41$, d y = 0.4; 当 $\Delta x = 0.01$ 时, $\Delta y = 0.0401$, d y = 0.04.

2. (1)
$$d\left(\frac{1}{2}x^2 + C\right) = x dx$$
; (2) $d(\sin x + C) = \cos x dx$;

(3)
$$d(\ln|1+x|+C) = \frac{1}{1+x}dx$$
; (4) $d(-e^{-x}-\cot x+C) = (e^{-x}+\csc^2 x)dx$.

3. (1) $dy = (2x \sin 2x + 2x^2 \cos 2x) dx$;

(2)
$$dy = \frac{1}{a^2 - x^2} dx$$
;

(3)
$$dy = \arcsin \frac{x}{2} dx$$
;

(4)
$$dy = e^{-x} [\sin(3-x) - \cos(3-x)] dx$$
.

4. (1)
$$\diamondsuit f(x) = 10x^{\frac{1}{3}}, \sqrt[3]{997} = f(0.997) \approx f(1) + f'(1) \times (-0.003) = 9.99$$
;

(2)
$$\Leftrightarrow f(x) = \arctan x, \arctan 1.05 = f(1.05) \approx f(1) + f'(1) \times 0.05 \approx 0.810398$$
;

(3)
$$\Leftrightarrow f(x) = \ln(1+x), \ln 1.01 = f(0.01) \approx f(1) + f'(0) \times 0.01 \approx 0.01$$
.

5.
$$V = \frac{4\pi(D+h)^3}{3} - \frac{4\pi D^3}{3} \approx 4\pi^2 h$$
.

总复习题三

1. (1)
$$f'(x_0) = 0$$
; (2) $f'(x_0) \neq 0$; (3) $f'(x_0) = 1$.

- **3.** (1) 不正确. 例如令 f(x) = x,则 $\lim_{x \to \infty} f(x) = \infty$,但 $\lim_{x \to \infty} f'(x) = 1$.
- (2) 不正确. 例如令 $f(x) = \sqrt[3]{x}, x_0 = 0$,则 $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{1}{3\sqrt[3]{x^2}} = \infty$,但

 $\lim_{x\to 0} f(x) = 0.$

- **4.** (1) $\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 \sin \frac{1}{x} = 0 = f(0)$, f(x) 在 x = 0 处连续;
- (2) $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} x \sin \frac{1}{x} = 0, f'(0) = 0, \quad f(x) \stackrel{.}{\text{t}} = 0 \stackrel{.}{\text{t}} \stackrel{.}{\text{t}} = 0$
- (3) $x \neq 0$ 时, $f'(x) = 2x \sin \frac{1}{x} \cos \frac{1}{x}$, $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \sin \frac{1}{x} \cos \frac{1}{x} \right)$ 不存

在,因而 f'(x)在 x=0 处不连续.

- 5. 当|x| < 2时, $F'(x) = 4x(2-x^2)$,当|x| > 2时,F'(x) = 0; F'(2)、F'(-2)均不存在.
 - **6.** $a = f(x_0), b = f'(x_0), c = \frac{1}{2}f''(x_0).$
 - 7. $\sqrt{2}$.
 - **8**. 所求切线方程为 y = 2(x+1).
 - **9.** (1) 若 $f(x_0) \neq 0$, 在点 x_0 处 |f(x)| 可导;
 - (2) 若 $f(x_0) = 0$,且 $f'(x_0) = 0$,在点 x_0 处|f(x)|可导;
 - (3) $f(x_0) = 0$, 且 $f'(x_0) \neq 0$, 在点 x_0 处 |f(x)| 不可导.
 - 10. $y' = \sin x \ln \tan x$.

11.
$$dy = -\frac{\tan y + y \sin(xy)}{x[\sin(xy) + \sec^2 y]} dx$$
.

12. $y'' = 2\sec^2[f(x^2)]f'(x^2) + 8x^2 \sec^2[f(x^2)]\tan[f(x^2)][f'(x^2)]^2 + 4x^2 \sec^2[f(x^2)] f''(x^2)$.

13.
$$y'' = \frac{f''(y) - [1 - f'(y)]^2}{x^2 [1 - f'(y)]^3}$$
.

14.
$$\frac{d^2 y}{d x^2}\Big|_{t=0} = \frac{e(2e-3)}{4}$$
.

15.
$$y^{(4)} = -\frac{15x + 120}{16(1+x)^4 \sqrt{1+x}}$$
.

17.
$$a = \frac{1}{2e}$$
,所求切线方程为 $y = \frac{1}{\sqrt{e}}x - \frac{1}{2}$.

习题 4-1

1. (1) 不正确. 例如令 $f(x) = \begin{cases} 0, 0 \le x < \frac{1}{2}, \\ 1, \frac{1}{2} \le x < 1, 则 f(x) 在 [a,b] 上有间断点, 0, x = 1, \end{cases}$

且在(a,b)內有不可导点,但 $\forall \xi \in \left(0,\frac{1}{2}\right)$ 或 $\forall \xi \in \left(\frac{1}{2},1\right)$,则有 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$ 成立.

- (2) 正确. 因为可导一定连续,因而函数 f(x) 在 [a,b] 上满足拉格朗日中值定理的条件.
- (3) 不正确.例如令 f(x)=x, [a,b]=[0,1],则对 $\forall \xi \in (0,1)$ 均有 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$ 成立.
 - (4) 正确.

2.
$$\xi = \frac{\pi}{2}$$
.

4. 因为 f(0) = f(1) = f(2) = f(3) = 0,由罗尔定理可知方程 f'(x) = 0分别在

区间 (0,1),(1,2),(2,3) 内至少有一个根,由于方程 f'(x)=0 最多只有三个不同的根,故方程 f'(x)=0 的三个不同根分别位于区间 (0,1),(1,2),(2,3) 内.

习题 4-2

- **1.** (1) 不正确. 只有当极限是" $\frac{0}{0}$ "或" $\frac{\infty}{\infty}$ "型时,该结论才能成立.
- (2) 不正确. 例如 $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ 就不能用洛必达法则来计算.
- (3) 不正确.例如极限 $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0$,但 $\lim_{x\to 0} \frac{\left(x^2 \sin \frac{1}{x}\right)'}{\left(\sin x\right)'} = \lim_{x\to 0} \frac{2x \sin \frac{1}{x} \cos \frac{1}{x}}{\cos x}$ 不存在.
- **2.** (1) 3; (2) $\frac{9}{4}$; (3) 1; (4) $-\frac{1}{3}$; (5) $\frac{1}{2}$; (6) 0; (7) $-\frac{e}{2}$; (8) $+\infty$; (9) 1; (10) \sqrt{ab} .
- 3. 因为 $\lim_{x \to \infty} \frac{x + \cos x}{x} = \lim_{x \to \infty} \left(1 + \frac{1}{x} \cos x \right) = 1$,但 $\lim_{x \to \infty} \frac{(x + \cos x)'}{(x)'} = \lim_{x \to \infty} (1 \sin x)$ 不存在,故不能用洛必达法则.
 - 5. (1) a = f'(0);
 - (2) $\stackrel{\text{def}}{=} x \neq 0 \text{ pr}, \quad g'(x) = \frac{xf'(x) f(x)}{x^2}, \quad g'(0) = \frac{1}{2}f''(0);$
 - (3) g'(x)在($-\infty$,+ ∞)内连续.

习题 4-3

- 1. (1) 正确. 因为它在 x_0 处的 n 阶泰勒多项式的 $(x-x_0)^k$ 项系数为 $a_k = \frac{1}{k!} f^{(k)}(x_0)$,取值惟一.
 - (2) 不正确. 例如 $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0, \text{则 } f^{(k)}(0) = 0, k = 1, 2, \cdots, \text{因而在 } x = 0 \text{ 点 } \\ 0, x = 0, \end{cases}$

处,对于任意正整数n,它的n阶泰勒多项式恒为零,即不论阶数n如何提高,都不能减小误差.

- (3)正确. 因为若 f(x) 为奇函数,且 $f^{(2k)}(x)(k=1,2,\cdots)$ 存在,则 $f^{(2k)}(x)$ 必然也为奇函数,所以有 $f^{(2k)}(0)=0(k=1,2,\cdots)$,即它的麦克劳林多项式中只含有 x 的奇数次项,同理可得偶函数的麦克劳林多项式中只含有 x 的偶数次项.
 - 2. $2x^3 + 5x^2 4x + 1 = 4 + 12(x-1) + (x-1)^2 + 2(x-1)^3$.
- 3. $(1+x)\ln(1+x) = x + \frac{1}{2}x^2 \frac{1}{6}x^3 \frac{1}{6(1+\xi)^3}x^4, x \in (-1, +\infty)$, ξ 为介于 0 到 x 之间的某个点.
 - **4.** $\tan x = x + \frac{1}{3}x^3 + o(x^3), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$
 - 5. $\cos x = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \left(x \frac{\pi}{4} \right) \frac{\sqrt{2}}{4} \left(x \frac{\pi}{4} \right)^2 + \frac{\sqrt{2}}{12} \left(x \frac{\pi}{4} \right)^3 + o \left[\left(x \frac{\pi}{4} \right)^3 \right], \quad x \in$

 $(-\infty, +\infty)$.

6. (1)
$$-\frac{1}{12}$$
; (2) $\frac{\ln^2 a - \ln^2 b}{2}$.

习题 4-4

- **1.** (1) 否. 例如 $f(x) = x^3, -1 < x < 1$.
 - (2) 否. 例如 $f(x) = x^2, -1 < x < 1$.
 - (3) 否. 例如 $f(x) = x^2, -1 < x < 1$.
- (4) 否. 例如 $f(x) = \begin{cases} x+1, -2 \le x < 0, \\ x, 0 \le x \le 2, \end{cases}$ 那么函数 f(x) 在定义域内既不是单调的,也没有极值点.
 - (5) 否. 例如 $f(x) = |x|, x_0 = 0$. (6) 否. 例如 $f(x) = |x|, x_0 = 0$.
 - (7) 否. 例如 $f(x) = x^2$, $g(x) = \begin{cases} -\frac{1}{2}x^2, & x \le 0, \\ -2x^2, & x > 0, \end{cases}$
 - (8) 否. 例如令 $f(x) = \begin{cases} -\sin x, & -\pi \le x < 0, \\ x+2, & 0 \in [0,1) \cup (1,2], 则 \ x = -\frac{\pi}{2}$ 是函数的极大值 2, x=1

点, x=1 是函数的极小值点, 但 $f\left(-\frac{\pi}{2}\right)=1 < f(1)=2$.

- (9) 否.例如 $f(x) = x, x \in [0,1]$,则 x = 1 是 f(x) 的取得最大值的点,但不是极大值点.
 - (10) 是. (11) 是. 函数 y = f(x) 与函数 y = -f(-x) 的图形关于原点对称.
 - (12) 否. 因为最大(小)值可能在原点区间端点取得.
- 2. (1) n+1; (2) $(-\infty,-1]$ π [1,+ ∞); (3) $(0,\frac{1}{\sqrt{2}}]$; (4) $f'(x_0), f''(x_0) \ge 0$; (5) $\frac{5}{4}, \sqrt{2}-1$.
 - **3.** (1) D. 记 $\varphi(x) = f(x)g(x)$, 由题设有 $\varphi'(x_0) = 0, \varphi''(x_0) < 0$, 因而应选D.

(2) B.
$$\lim_{x\to 0} \frac{f(x)}{1-\cos x} = \lim_{x\to 0} \frac{f(x)}{\frac{1}{2}x^2} = 1 \, \text{fm}, \ f(0) = 0, f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0,$$

且 $\exists \delta > 0$, 当 $0 < |x| < \delta$ 时有 $\frac{f(x)}{x^2} > 0$, f(x) > 0 = f(0), 答案为 B.

- **4.** (1) 单增区间为 $\left[0,\frac{\pi}{6}\right]$ 和 $\left[\frac{5\pi}{6},2\pi\right]$,单减区间为 $\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$;
- (2) 单增区间为 $[-\sqrt{\ln 2}, 0]$ 及 $[\sqrt{\ln 2}, +\infty)$,单减区间为 $(-\infty, -\sqrt{\ln 2}]$ 与 $[0, \sqrt{\ln 2}]$;
 - (3) 单增区间为 $\left(-\infty,\frac{2a}{3}\right]$ 和 $\left[a,+\infty\right)$,单减区间为 $\left[\frac{2a}{3},a\right]$.
- 7. (1) 点 $x_1 = \frac{2\pi}{3}$ 与 $x_3 = \frac{4\pi}{3}$ 均为函数 $y = \cos x + \frac{1}{2}\cos 2x$ 的极小值点,且取极小值为 $y\left(\frac{2\pi}{3}\right) = y\left(\frac{4\pi}{3}\right) = -\frac{3}{4}$,而 $x_2 = \pi$ 为它的极大值点,且取极大值为 $y(\pi) = -\frac{1}{2}$.
- (2) $x_1 = -1$ 是函数 y 的极大值点,且有极大值为 $y(-1) = -2e^{\frac{\pi}{4}}$, $x_2 = 0$ 是函数 y 的极小值点,且有极小值为 $y(0) = -e^{\frac{\pi}{2}}$.
 - **8.** a = 0, b = -3.x = -1 为极大值点,且有极大值为 f(-1) = 2, x = 1 为极小值

点,且有极小值为f(-1) = -2.

- 9. 若 n 为偶数,函数 f(x) 无极值点;若 n 为奇数, x = 0 为函数的极大值点,且有极大值为 f(0) = 1. (1) $y_{max} = 116$, $y_{min} = -5$; (2) $y_{max} = 132$, $y_{min} = 0$.
 - **11**. 所求的点为 $\left(\pm \frac{1}{\sqrt{3}}, \frac{3}{4}\right)$.
 - **12**. 所求直线方程为 $y = -\frac{y_0}{x_0}x + 2y_0$.
 - **13.** $\varphi = \frac{2\sqrt{6}\pi}{3}$.
 - **14.** r: h = 1:2.

习题 4-5

- 1. 全部不正确.
- (1) 反例: 对于函数 f(x) = |x(x-1)|, 点 (0,0) 是曲线 y = f(x) 的拐点, 同时 x = 0 也是函数 f(x) 的极小值点;
- (2) 反例: 令 f(x) = |x(x-1)|, 则点(0,0) 是曲线 y = f(x) 的拐点,但 f''(0) 不存在;
- (3) 只有对区间 [a,b] 内任意不同的两点 x_1, x_2 ,均有 $\forall \lambda \in (0,1), \lambda f(x_1) + (1-\lambda)f(x_2) > f[\lambda x_1 + (1-\lambda)x_2]$ 成立,则曲线 y = f(x) 才能在 [a,b] 上是凹的;
 - (4) λ应该在区间(0,1)内取值.
 - 2. (1) 填 "<"; (2) 填 "(-∞,-2]"与"(-2,-2e⁻²)"; (3) 填 "直线".
- 3. (1) 凸区间是 $(-\infty, -6]$ 和 [0,6],凹区间是 [-6,0] 和 $[6,+\infty)$; 拐点是 $\left(-6, -\frac{9}{2}\right), (0,0)$ 和 $\left(6, \frac{9}{2}\right)$;
 - (2) 凸区间 $(0,e^{-\frac{3}{2}}]$,凹区间 $[e^{-\frac{3}{2}},+\infty)$,拐点是 $(e^{-\frac{3}{2}},-\frac{3}{2}e^{-3})$;
 - (3) 凹区间是[0,+∞), 无拐点;

(4) 凹区间是
$$\left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right]$$
, 凸是区间 $\left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right]$. 拐点为
$$\left(2k\pi - \frac{\pi}{2}, 2k\pi - \frac{\pi}{2}\right)$$
及 $\left(2k\pi + \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right)$, 其中 $k = 0, \pm 1, \pm 2, \cdots$.

- **4.** a = 1, b = -3, c = 0, d = 3.
- 5. $k = \pm \frac{\sqrt{2}}{8}$.

习题 4-6

- 1. (1) 是. (2) 是.
- (3) 否. 因为有可能 $\lim_{x\to a^+} f(x) = \infty$ 或者 $\lim_{x\to b^-} f(x) = \infty$,这样 x = a 或者 x = b 就是它的垂直渐近线.
 - (4) 否. 只有在该点是函数的无穷间断点时,相应的才会有垂直渐近线.
 - 2. D.
 - 3. x=-1 和 x=2 均为它的垂直渐近线, y=x+1 是它的斜渐近线.

习题 4-7

- **1.** 令 $f(x) = \arctan x + \frac{1}{x}, x > 0$, 利用单调性证明.
- **2.** 令 $f(x) = \frac{\ln x}{x}, x \in [e, +\infty)$,利用单调性证明.
- **3**. 令 $f(x) = x^2$,对函数 f(x) 在区间[a,b]上应用拉格朗日中值定理可证.
- **4.** 令 $f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) \sqrt{1 + x^2}$,利用最值证明.
- **5.** 令 $f(x) = \frac{1}{p}x^p + \frac{1}{q} x, x \in (0, +\infty)$, 利用最值证明.
- **6**. 对 $f(x) = e^x$, $g(x) = \sin x$ 在区间 [a,b] 上应用柯西中值定理可证.
- 7. 由泰勒中值定理可证.

习题 4-8

- 2. 两船之间距离增加的速度为v = 50 km/h.
- 3. $-\frac{16}{25}$ cm/min, 负号表示与漏斗中表面下降的速度方向相反.

总复习题四

10. (1)
$$e^{-\frac{4}{\pi}}$$
; (2) 2; (3) $\frac{1}{6}$; (4) $\frac{1}{6}$.

11.
$$p=3, C=-\frac{4}{3}$$
.

12.
$$a = \frac{1}{6}, b = \frac{1}{8}$$
.

- **13**. A.
- **14**. D.
- 15. C.

16.
$$a=2$$
, $x=\frac{\pi}{3}$ 是函数 $f(x)$ 的极大值点,且取极大值为 $f\left(\frac{\pi}{3}\right)=\sqrt{3}$.

17.
$$f(x) = -x^3 + 3x^2 + 2$$
.

18. a可以取的最大值为e.

19. (1)
$$\max_{0 \le x \le 1} f_n(x) = \left(\frac{n}{n+1}\right)^{n+1}$$
; (2) e^{-1} .

21.
$$P\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$$
,面积最小值为 $A_{\min} = ab$.

22. 函数 y = y(x) 有惟一的驻点 x = 1, x = 1 为函数 y = y(x) 的极小值点.

23.
$$a = \frac{3}{2}, b = -\frac{1}{2}$$
.

24. (1) $x = \frac{5}{2}(4-t)$ 时,商家利润最大; (2) t = 2 时,政府所获得的利润最大.

29. a,b满足条件: $b \ln a \le \frac{1}{e}$ 时,该方程有实根.

习题 5-1

- 1. e-1.
- 2. $\frac{\pi}{16}$.

4. (1)
$$\int_0^1 \ln(1+x) \, dx > \int_0^1 \ln(1+x^2) \, dx$$
; $\int_0^{\frac{\pi}{2}} e^x \cos x \, dx > \int_0^{\pi} e^x \cos x \, dx$.

5.
$$\frac{2(e-1)}{e} \le \int_{e}^{e^2} \frac{\ln x}{x} dx \le e-1$$
.

6. 提示: (1) 用反证法; (2) 分 $g(x) \equiv 0$ 和 $g(x) \equiv 0$ 两种情况讨论,并利用 连续函数的介值定理证明.

习题 5-2

1. (1)
$$f'(x) = \frac{x}{\sqrt{1+x^3}}$$
; (2) $f'(x) = 2xe^{-x^4} - e^{-x^2}$;

(3)
$$f'(x) = -\sin x \cos(\pi \cos^2 x) - \cos x \cos(\pi \sin^2 x)$$
;

(4)
$$f'(x) = \cos x^2 \sin(1 + \int_1^x \cos t^2 dt)$$
.

2.
$$y'(0) = -1$$
.

3. (1) 1; (2)
$$\sqrt{2}$$
; (3) 0.
4. (1) $\frac{2}{\pi}$; (2) $\frac{1}{1+p}$.

4. (1)
$$\frac{2}{\pi}$$
; (2) $\frac{1}{1+p}$

5. 提示: 构造
$$\varphi(t) = \int_a^b [f(x) + tg(x)]^2 dx$$
,且 $\varphi(t) \ge 0$.

6. (1)
$$\frac{\pi}{3}$$
; (2) 2; (3) 6+e.

7.
$$F(x) = \begin{cases} \frac{1}{2}(x^2 - 1), & x \in [-1, 0], \\ \sin x - \frac{1}{2}, & x \in (0, 1], \end{cases}$$
$$F(x) \stackrel{\text{def}}{=} [-1, 1] \stackrel{\text{def}}{=} \text{Log}_{x} \stackrel{\text{def}}{=} [-1, 0] \stackrel{\text{def}}{=} (0, 1] \stackrel{\text{def}}{=} (0, 1) \stackrel{\text{def}}{=} ($$

处处可导.

习题 5-3

1.
$$\int (2x^{\frac{3}{2}} + 3x^{\frac{5}{6}}) dx = \frac{4}{5}x^{\frac{5}{2}} + \frac{18}{11}x^{\frac{11}{6}} + C$$
.

2.
$$2 \arctan x - \arcsin x + C$$
.

3.
$$\ln |x| + 2 \arctan x + C$$
.

4.
$$\frac{3^x e^{3x}}{3 + \ln 3} - e^x + C$$
.

5.
$$4 \tan x - \cot x - 9x + C$$
.

6.
$$-3\cot x - x + C$$
.

7.
$$\sin x - \cos x + C$$
.

8.
$$\frac{1}{2} \int \sin x \, dx = -\frac{1}{2} \cos x + C$$
.

9.
$$\cos x - \cot x + C$$
.

10.
$$\frac{1}{2} \tan x + \frac{1}{2} x + C$$
.

11.
$$3e^t - \frac{3}{4}t^{\frac{4}{3}} + C$$
.

12.
$$\theta - \cos \theta + C$$
.

习题 5-4

1. (1)
$$-\frac{1}{3}\ln|4-3x|+C$$
; (2) $\sqrt{1+x^2}+C$; (3) $-\frac{1}{3}e^{-3x}+C$;

(4)
$$\frac{1}{2\sqrt{a}}\arctan\frac{\sqrt{a}x}{2} + C$$
; (5) $\frac{1}{\omega}\sin(\omega t + \varphi) + C$; (6) $\frac{1}{9}\ln(3x^3 + 4) + C$;

(7)
$$\frac{1}{4\sqrt{3}} \ln \left| \frac{\sqrt{3}x - 2}{\sqrt{3}x + 2} \right| + C$$
; (8) $-e^{\frac{1}{x}} + C$; (9) $-\arctan(\cos^2 x) + C$;

(10)
$$\ln \left| \sin 2x \right| + C$$
; (11) $\frac{1}{2} \sin x - \frac{1}{10} \sin 5x + C$; (12) $e^{\arctan x} + C$;

$$(13) - \frac{1}{3}(1 + \cos^2 x)^{\frac{3}{2}} + C; (14) - \ln\left|\cos\sqrt{2x + 1}\right| + C; (15) \frac{1}{6}\sin^6 x - \frac{1}{8}\sin^8 x + C;$$

(16)
$$\frac{1}{4} \tan \left(\frac{\pi}{2} + 2x^2 \right) + C$$
; (17) $-\frac{1}{2(x \ln x)^2} + C$; (18) $-\frac{1}{2} (\ln \cos x)^2 + C$.

2. (1)
$$\sqrt{x^2-4}-2\arccos\frac{2}{x}+C$$
; (2) $\frac{3}{2}(x+1)^{\frac{2}{3}}-3(x+1)^{\frac{1}{3}}+3\ln\left|1+(x+1)^{\frac{1}{3}}\right|+C$;

(3)
$$\frac{a^2}{2}\arcsin\frac{x}{a} - \frac{1}{2}x\sqrt{a^2 - x^2} + C$$
; (4) $\ln(x + 1 + \sqrt{x^2 + 2x + 5}) + C$;

(5)
$$\frac{1}{54}\arccos\frac{3}{x} + \frac{\sqrt{x^2 - 9}}{18x^2} + C$$
; (6) $\frac{1}{2}\arctan\frac{2x}{\sqrt{1 + x^2}} + C$;

(7)
$$\frac{2}{3}(1+\ln x)^{\frac{3}{2}}-2(1+\ln x)^{\frac{1}{2}}+C$$
; (8) $2\ln(\sqrt{1+e^x}-1)-x+C$.

3. (1) 0; (2)
$$\frac{6}{25}$$
; (3) 2; (4) $\frac{2}{5}$; (5) 1; (6) 1.

4. (1)
$$\frac{4\sqrt{2}-5}{3}a^3$$
; (2) $\sqrt{2}-\frac{2\sqrt{3}}{3}$; (3) $2-\frac{\pi}{2}$; (4) $\frac{4}{3}$.

5. (1) 0; (2)
$$2-\sqrt{3}$$
.

7. 提示: (1) 利用变换
$$x = \frac{\pi}{2} - t$$
; (2) 利用变换 $x = \pi - t$, $\frac{\pi}{\sqrt{2}} \ln(\sqrt{2} + 1)$.

习题 5-5

1. (1)
$$\frac{1}{4}x^2 - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C$$
; (2) $-(x^2 + 2x + 2)e^{-x} + C$;

(3)
$$2\sqrt{x}(\ln x - 2) + C$$
; (4) $x(\arcsin x)^2 + 2\sqrt{1 - x^2} \arcsin x - 2x + C$;

(5)
$$x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + C$$
; (6) $\frac{1}{2}x[\sin(\ln x) - \cos(\ln x)] + C$;

(7)
$$6(e^2-1)$$
; (8) $2-\frac{2}{e}$; (9) $\frac{2n}{2n+1}\cdot\frac{2n-2}{2n-1}\cdot\dots\cdot\frac{2}{3}$; (10) $\frac{\sqrt{2}}{2}+\frac{1}{2}\ln(\sqrt{2}+1)$.

- 2. $(x^2-4x+6)e^x+C$.
- 3. $I_n = e nI_{n-1}$, 9e 24.

习题 5-6

1.
$$\frac{1}{2}\ln|x+1| + \frac{1}{2}\arctan x - \frac{1}{4}\ln(x^2+1) + C$$
.

2.
$$\ln |x+1| - \frac{1}{2} \ln(x^2 - x + 1) + \sqrt{3} \arctan \frac{2x-1}{\sqrt{3}} + C$$
.

3.
$$x^2 - \frac{1}{3x} - \frac{1}{3\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C$$
.

4.
$$\frac{1}{x+1} + \frac{1}{2} \ln |x^2 - 1| + C$$
.

5.
$$-\frac{2}{1+\tan\frac{x}{2}}+C$$
.

6.
$$\frac{1}{\sqrt{5}} \arctan \left[\frac{1}{\sqrt{5}} \left(2 \tan \frac{x}{2} + 1 \right) \right] + C$$
.

7.
$$\frac{1}{2} \ln \left| \tan \frac{x}{2} \right| - \frac{1}{4} \tan^2 \frac{x}{2} + C$$
.

8.
$$\ln |\tan x| + \frac{1}{2} \tan^2 x + C$$
.

9.
$$-\frac{1}{1+\tan x} + C$$
.

10.
$$\ln |\sin x + \cos x| + C$$
.

11.
$$\frac{1}{7(x+1)^7} + \frac{1}{4(x+1)^8} - \frac{1}{9(x+1)^9} + C$$
.

12.
$$\frac{1}{4}x^4 - \frac{1}{4}\ln(x^8 + 2x^4 + 2) + C$$
.

13.
$$x-4\sqrt{x+1}+4\ln(\sqrt{x+1}+1)+C$$
.

14.
$$\ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + 2 \arctan \sqrt{\frac{1 - x}{1 + x}} + C$$
.

15.
$$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(1 + \sqrt[6]{x}) + C$$
.

16.
$$-\frac{3}{2}\sqrt[3]{\frac{x+1}{x-1}} + C$$
.

习题 5-7

1. 说法不对. 正确的说法是积分 $\int_{-\infty}^{+\infty} \sin x \, dx$ 是发散的.

2. (1)
$$\frac{1}{2}$$
; (2) $\frac{\pi^2}{16}$; (3) $\frac{\pi}{3}$; (4) $\ln 2$; (5) $\frac{2}{3}$; (6) $\frac{28}{3}$; (7) -2; (8) -6.

3. 当 k > 1 时,该积分收敛;当 $k \le 1$ 时,该积分发散;当 $k = 1 - \frac{1}{\ln \ln 2}$ 时,该积分取得最小值,且有 $I_{\min} = \frac{-\ln \ln 2}{(\ln 2)^{\frac{-1}{\ln \ln 2}}}$.

4. *n*!.

总复习题五

1. (1)
$$(\arcsin \sqrt{x})^2 + C$$
; (2) $\ln |x + \cos x| + C$; (3) $\frac{1}{12}$; (4) $e^x + 6x$;

(5)
$$\frac{\pi}{3}$$
; (6) $\frac{(\sqrt{3}+1)\pi}{12}$.

3. (1)
$$2(x-2)\sqrt{e^x-1} + 4\arctan\sqrt{e^x-1} + C$$
; (2) $-\cot x - \arctan x + C$;

(3)
$$x \arcsin \sqrt{x} - \frac{1}{2} \arcsin \sqrt{x} + \frac{1}{2} \sqrt{x(1-x)} + C$$
;

(4)
$$x \ln^2(x + \sqrt{1+x^2}) - 2\sqrt{1+x^2} \ln(x + \sqrt{1+x^2}) + 2x + C$$
;

(5)
$$\arctan(e^x - e^{-x}) + C$$
; (6) $\frac{1}{2}(\arcsin x)^2 + x\sqrt{1 - x^2}\arcsin x - \frac{1}{2}x^2 + C$;

(7)
$$-\cos x \ln(\tan x) + \ln|\csc x - \cot x| + C$$
;

(8)
$$2\ln(1+\sqrt{2})-\sqrt{2}$$
; (9) $2-\frac{6}{e^2}$; (10) $\frac{\pi}{4e^2}$.

4.
$$\alpha = 1, \beta = 1$$
.

5. 提示: 利用零点定理和单调性.

6.
$$-2\sqrt{1-x} \arcsin \sqrt{x} + 2\sqrt{x} + C$$
.

7.
$$\frac{x\cos x - \sin x}{x^2} + C$$
.

8.
$$2\sqrt{2}$$
.

9. 提示: (1) 令 F(x) = f(x) - x; (2) 令 $G(x) = e^{-x}[f(x) - x]$,并利用罗尔中值定理.

10 . 提示: 先证明当 $x \in [0,1]$ 时, $1-x \le f(x) \le 1+x$; 当 $x \in [1,2]$ 时, $x-1 \le f(x) \le 3-x$.

11.
$$e^{-1}$$
.

12.
$$\left[0, \ln(1+e) - \frac{e}{e+1}\right]$$
.

习题 6-2

1. (1) $e-\frac{5}{2}$; (2) $\frac{4\pi}{3}$; (3) $\sqrt{2}(e^{\pi}-1)$; (4) $\frac{1}{2\sqrt{2}}$.

- 2. $\frac{32}{15}$.
- 3. $\frac{16p^2}{3}$.
- 4. $\frac{3\pi a^2}{8}$.
- 5. $\frac{(5\pi-8)a^2}{4}$.
- 6. $\frac{\pi}{6} + \frac{1-\sqrt{3}}{2}$.
- 7. $\frac{11}{15}\sqrt{2}\pi a^3$.
- 8. $\frac{5\pi a^3}{2}$.
- 9. $\frac{4\sqrt{3}}{3}R^3$.
- **10**. 4.
- 11. $1+\frac{1}{2}\ln\frac{3}{2}$.
- 12. $\ln \frac{\pi}{2}$.
- 13. $\frac{\sqrt{2}}{2}$; $\sqrt{2}$.

习题 6-3

- 1. $\frac{3456k}{7}$.
- 2. $1875\pi\rho g$.
- 3. $\frac{\rho gah^2}{3}$.
- $4. \quad \left\{ \frac{-2km\rho l}{a\sqrt{4a^2+l^2}}, 0 \right\}.$

总复习题六

- 1. (1) 1; (2) $\frac{4\pi}{3}$; (3) 6a.
- 2. (1) A; (2) D; (3) B; (4) B; (5) A.

3. (1)
$$t = \frac{1}{2}$$
; (3) $t = 1$.

4. (1)
$$\theta = \frac{x_0 e^{x_0} - e^{x_0} + 1}{x_0 (e^{x_0} - 1)}$$
; (2) $\frac{1}{2}$.

5.
$$a = -\frac{5}{4}, b = \frac{3}{2}, c = 0$$
.

6. (1)
$$\frac{\pi \xi^2}{1+\xi^2}$$
; (2) $a=1$.

7.
$$2\sqrt{5} + \ln(2 + \sqrt{5})$$
.

8. (1)
$$\frac{9\pi}{4}$$
(m³); (2) $\frac{27\times10^3}{8}\pi g(J)$.

9.
$$\theta = \arccos \frac{1}{\sqrt{3}}$$
.

习题 7-1

- **1.** (1) 二阶; (2) 一阶; (3) 三阶; (4) 二阶.
- **2**. (1) 是通解; (2) 是特解; (3) 是通解; (4) 若a=1, 则函数为方程的通解, 若 $a \neq 1$, 则函数不是方程的解.

3. (1)
$$C_1 = 0$$
, $C_2 = 1$, 所求函数是 $y = xe^{2x}$; (2) $C_2 = \frac{\pi}{2}$, $C_1 = 1$, 所求函数是 $y = \sin\left(x - \frac{\pi}{2}\right)$, 即为 $y = -\cos x$.

4.
$$y'' + y' - 2y = 0$$
.

习题 7-2

1. (1) $y = e^{Cx}$; (2) $\sin x \sin y = C$; (3) $\arcsin y = \arcsin x + C$, $\Box y = \sin(\arcsin x + C)$;

(4)
$$(e^x + 1)(e^y - 1) = C$$
; (5) $\sin \frac{y}{x} = Cx$; (6) $y = Cx^2 - x$; (7) $x^2 - y^2 = Cy$;

(8)
$$y = C(1+x)^2 + \frac{2}{3}(1+x)^{\frac{7}{2}}$$
; (9) $y = x^4 + Cx^2$; (10) $x = \ln y \ln \ln y + C \ln y$;

(11)
$$\frac{1}{y^2} = (C+2x)e^{-x^2}$$
; (12) $(y-2x)^3 = C(y-x-1)^2$.

2. (1)
$$y = \sqrt{1 + 2\ln\frac{1 + e^x}{1 + e}}$$
; (2) $y = \arctan\frac{1}{\tan x}$; (3) $y = \sqrt{2x^2(\ln x + 1)}$;

(4)
$$(x^2 + y^2)e^{\arctan \frac{y}{x}} = 2e^{\frac{\pi}{4}};$$
 (5) $y = -\frac{\cos x}{x};$ (6) $y = \frac{1 - 5e^{\cos x}}{\sin x}.$

3.
$$f(x) = \frac{1}{2} (\sin x + \cos x - e^{-x})$$
.

4.
$$y = \frac{2}{x}$$
.

5.
$$x = \frac{Nx_0 e^{Nkt}}{N - x_0 + x_0 e^{Nkt}}$$
.

6.
$$v(60) = \sqrt{72500} \text{ cm/s}$$
.

7. (1)
$$y = \tan(x+C) - x$$
; (2) $\frac{1}{x} = 2 - y^2 + Ce^{-\frac{y^2}{2}}$; (3) $2x^2y^2 \ln y - 2xy - 1 =$

$$Cx^2y^2$$
; (4) $y^2 = 1 + 2x + Ce^{2x}$.

习题 7-3

2.
$$(1-x)y'' + xy' - y = x(\sin x + \cos x) - 2\sin x$$
.

3. (1)
$$y = C_1 e^{-5x} + C_2 e^x$$
; (2) $y = e^{2x} (C_1 \cos 3x + C_2 \sin 3x)$; (3) $y = (C_1 + C_2 x) e^{5x}$;

(4)
$$y = (C_1 + C_2 x)\cos x + (C_3 + C_4 x)\sin x$$
.

4. (1)
$$y = (2+x)e^{-\frac{1}{2}x}$$
; (2) $y = \frac{1}{5}e^{4x} - \frac{1}{5}e^{-x}$; (3) $y = \sin \pi x$.

5. (1)
$$y = C_1 e^x + C_2 e^{2x} + e^{4x}$$
; (2) $y(x) = (C_1 + C_2 x + x^2 + x^3)e^{3x}$;

(3)
$$y = C_1 + C_2 e^{3x} - x^3 - 3x^2 - 7x$$
;

(4)
$$y = C_1 e^x \cos 3x + C_2 e^x \sin 3x + \left(\frac{5}{29}\cos 2x - \frac{2}{29}\sin 2x\right) e^x$$
;

(5)
$$y = C_1 e^x \cos x + C_2 e^x \sin x + e^x \sin x;$$

(6)
$$Y(x) = C_1 + C_2 e^{-x} + x(x^2 - 3x - 6) - xe^{-x}$$
.

6. (1)
$$y = \sin x + \sin 2x - \cos x$$
; (2) $y = \left(x^2 - \frac{1}{2}x + \frac{3}{8}\right)e^{2x} - \frac{3}{8}e^{-2x}$.

7.
$$f(x) = \left(\frac{3}{4} + \frac{1}{2}x\right)e^x + \frac{1}{4}e^{-x}$$
.

8.
$$\frac{m^2g}{k^2}(e^{-\frac{kt_0}{m}}-1)+\frac{mgt_0}{k}$$
.

习题 7-4

1. (1)
$$y = C_1 x^2 + C_2 x + C_3 + \cos x + e^x$$
; (2) $y = \frac{1}{2} \ln^2 x + C_1 \ln x + C_2$; (3) $y = C_1 e^{C_2 e^x}$.

2. (1)
$$y = \frac{1}{6}x^3 - \frac{3}{4}x^2 + \frac{1}{2}x + \frac{1}{2}x^2 \ln x + \frac{13}{12}$$
; (2) $y = \frac{(x+1)^3}{12} - \frac{2}{3}$; (3) $y = \frac{1}{1-x}$.

3.
$$y = \left(C_1 + \frac{3}{7} \ln x\right) x + C_2 \frac{1}{x^2} + \frac{1}{10} x^3$$
.

4.
$$y = (1+x)e^{-2x}, z = (2+x)e^{-2x}$$
.

总复习题七

1. (1)
$$y = (C+x)\cos x$$
; (2) $y = 2\sqrt{1+x^2}$; (3) $f(x) = 2e^{2x} - e^x$; (4) $e^{\arcsin \frac{y}{x}} = Cx$;
(5) $y = (C_1 + x)e^{-x} + C_2e^{4x}$.

3.
$$y = e^x (1 - e^{e^{-x} - \frac{1}{2}})$$
.

4.
$$y = \frac{1}{x} + \frac{3x^2}{C - x^3} (C = 3C')$$
.

5.
$$f(x) = \frac{2e^x}{3 - e^{2x}}$$
.

6.
$$f(x) = 3 \ln x + 2$$
.

7.
$$y(x) = e^x$$
.

8.
$$y = \frac{C_1 \cos 2x + C_2 \sin 2x + \frac{1}{5}e^x}{\cos x}$$
.

9. 6 h.

10.
$$t = \sqrt{\frac{6}{g}} \ln(6 + \sqrt{35})$$
.