Chapitre XVIII

Loi des Grands Nombres

I. Inégalités Probabilitstes

A. Inégalité de Markov

Pour toute variable aléatoire X à valeurs positives, et pour tout nombre réel δ strictement positif :

$$P\big(X \geqslant \delta\big) \leqslant \frac{E(X)}{\delta}$$

1. DÉMONSTRATION

$$E(X) = \sum_{i=1}^{n} x_{i} P(X = x_{i})$$

$$= \sum_{x_{i} < \delta} x_{i} P(X = x_{i}) + \sum_{x_{i} \ge \delta} x_{i} P(X = x_{i})$$

$$\geq \sum_{x_{i} \ge \delta} x_{i} P(X = x_{i}) \quad \text{on minore}$$

$$\geq \sum_{x_{i} \ge \delta} \delta P(X = x_{i}) = \delta \sum_{x_{i} \ge \delta} P(X = x_{i}) \quad \text{car } x_{i} \ge \delta \text{ on minore encore}$$

$$E(X) \geq \delta P(X \ge \delta)$$

$$\iff P(X \ge \delta) \le \frac{E(X)}{\delta}$$

B. Inégalité de Bienaymé-Tchebychev

Pour toute variable aléatoire X, et pour tout nombre réel δ strictement positif :

$$P(|X - E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$$

1. DÉMONSTRATION

$$P(|X - E(X)| \ge \delta) = P((X - E(X))^2 \ge \delta^2)$$

D'après l'inégalité de Markov:

$$P((X - E(X))^{2} \ge \delta^{2}) \le \underbrace{\frac{V(X)}{E((X - E(X))^{2})}}_{\delta^{2}}$$

C. REMARQUE

Souvent, on prendre $\delta = \sigma$ ou $k\sigma$ car l'écart type σ d'une variable aléatoire X est l'unité naturelle pour étudier la dispersion de X autour de sons espérance.

L'inégalité de Bienaymé-Tchebychev montre notamment que des écarts de X à E(X) de quelques σ deviennent improbables.

D. REMARQUE

L'Inégalité de Bienaymé-Tchebychev est loin de donner le meilleur majorant.

Si X est une variable aléatoire suivant la loi binomiale $\mathcal{B}(n; p)$, on a $P(|X - E(X)| \ge 2\sigma) \approx 0,05$ ce qui est bien meilleur que le 0,25 obtenu avec l'inégalité.

En effet, si $\delta = 2\sigma$ et $X \sim \mathcal{B}(n; p)$:

$$\frac{V(X)}{\delta^2} = \frac{np(1-p)}{\left(4\sqrt{np(1-p)}\right)^2} = \frac{1}{4}$$

II. LOI DES GRANDS NOMBRES

A. Propriété

Soit une variable aléatoire X associée à un échantillon $(X_1, X_2, ..., X_n)$, c'est-à-dire que $(X_1, X_2, ..., X_n)$ est un échantillon de n variables aléatoires identiques et indépendantes qui suivent toutes la loi de probabilité suivie par X. On note M_n la moyenne de cet échantillon.

Alors, pour tout réel $\delta > 0$:

$$P(|M_n - E(X)| \ge \delta) \le \frac{V(X)}{n\delta^2}$$
 (c'est l'inégalité de concentration)

Et:

$$\lim_{n \to +\infty} P(|M_n - E(X)| \ge \delta) = 0 \quad \text{(c'est la loi des grands nombres)}$$

Autrement dit, plus la taille n d'un échantillon d'une variable aléatoire X est grande, plus l'écart entre la moyenne de cet échantillon et l'espérance de X est faible.