ECE 2300 Recitation Class 3

Renxiang Guan

Pre-class

- Quiz Graded.
 - No quiz this week, Quiz 2 next week.
- Homework 2 due tomorrow.
 - Not graded, but recommend you to do it.

3.1 Quiz 1 Answers

Question 1

(a) Use the cube of side length 2 in the following picture and function $\mathbf{v} = (xy)\hat{\mathbf{x}} + (2yz)\hat{\mathbf{y}} + (3xz)\hat{\mathbf{z}}$ to verify the divergence theorem.

3.1 Quiz 1 Answers

(b) Use the triangle in the following picture and function $\mathbf{v} = (xy)\hat{\mathbf{x}} + (2yz)\hat{\mathbf{y}} + (3xz)\hat{\mathbf{z}}$ to verify Stokes' theorem.

3.1 Quiz 1 Answers

Question 2

Assume the vector function $\mathbf{A} = \mathbf{a}_x 3x^2y^3 - \mathbf{a}_y x^3y^2$.

- (a) Find $\oint \mathbf{A} \cdot d\ell$ around the triangular contour shown in the following figure.
- (b) Evaluate $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{s}$ over the triangular area.
- (c) Can A be expressed as the gradient of a scalar? Explain.

3.2 Recap - Electro Statistic Fundamentals

■ Coulomb' s Law:

3.2 Recap – Maxwell's Description

- Gauss' s Law:
 - Equation:

– When to use?

- How to use?
 - Step1:
 - Step2:
 - Step3:

Recap Ex.

A total charge Q is put on a thin spherical shell of radius b. Determine the electric field intensity at an arbitrary point inside the shell

Recap Ex.

A total charge Q is put on a thin spherical shell of radius b. Determine the electric field intensity at an arbitrary point inside the shell

3.2 Recap – Maxwell's Description

Some Important Results:

different models	E(magnitude)
infinitely long, line charge	$E = \frac{\rho_{\ell}}{2\pi r \epsilon_0}$
infinite planar charge	$E = \frac{\rho_s}{2\epsilon_0}$
uniform spherical surface charge with radius R	$\begin{cases} E = 0(r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0}(r > R) \end{cases}$
uniform sphere charge with radius R	$\begin{cases} E = \frac{Qr}{4\pi R^3}(r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0}(r > R) \end{cases}$
infinitely long, cylindrical charge with radius R	$\begin{cases} E = \frac{\rho_v r}{2\epsilon_0} (r < R) \\ E = \frac{\rho_v R^2}{2r\epsilon_0} (r > R) \end{cases}$

3.3.1 Electrical Potential

Definition:

- Expression:
 - Differential form:
 - Integration form:

3.3.2 Electrical Potential For Common Models

■ Line:

Surface:

Volume:

Ex.1 Electric Potential

Obtain a formula for the electric field intensity and potential on the axis of a circular disk of radius b that carries a uniform surface charge ρ_s .

3.4.1 Conductors

Definition:

3.4.1 Conductors

- Characteristics:
 - Inside:

– Surface:

– Outside:

Definition:

- Polarization vector:
 - Defined with dipole moment:

– Density of dipole moment in a unit volume:

- Characteristics:
 - Surface Charge Density

- Characteristics:
 - Volume Charge Density

Ex.2 Conductors

Example. 3-11 A postive point charge Q is at the center of a spherical conducting shell of an inner radius R_i and an outer radius R_0 . Determine E and V as functions of the radial distance R.

Ex.3 Dielectrics

(HW3-2) Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization **P** exists.

Thank You

Credit to Deng Naihao for this slides & information