Consequências da Desigualdade de Cauchy

Palestrante: Leon Silva (leon.silva@ufrpe.br)

Instituição: DM-UFRPE

Evento: Live do Jornal É matemática, Ôxente!

Data: 05/09

Introdução

- A desigualdade de Cauchy-Schwarz é uma das mais úteis e conhecidas na matemática.
- Desenvolvida por **Cauchy** e **Schwarz**, ela aparece em Álgebra Linear, Análise e Teoria das Probabilidades.
- Fundamental em olimpíadas de matemática, permitindo a resolução de problemas complexos.

Sumário

- 1. Motivação
- 2. Desigualdade de Cauchy-Schwarz
- 3. Lema de Titu
- 4. Aplicações em Olimpíadas de Matemática
 - Gazeta Matemática
 - OPEMAT
 - Competição da Checoslováquia 1999
 - Olimpíada de Matemática da Irlanda, 1999
- 5. Fórmula de Herão
- 6. Conclusão

Problema Motivador (PROFMAT - 2012)

Prove que, para quaisquer números reais positivos a, b e c:

$$rac{a^3}{a^2+ab+b^2}+rac{b^3}{b^2+bc+c^2}+rac{c^3}{c^2+ca+a^2}\geq rac{a+b+c}{3}$$

Fonte: Tournament of the Towns, 1998

Desigualdade de Cauchy-Schwarz

Teorema. Sejam a_1, \ldots, a_n e $b_1, \ldots b_n$ números reais. Então:

$$\left(\sum_{i=1}^n a_i^2
ight)\left(\sum_{i=1}^n b_i^2
ight) \geq \left(\sum_{i=1}^n a_i b_i
ight)^2$$

Exemplo 1: Gazeta Matemática (Revista SPM)

Prove que para números reais não negativos (a, b, c):

$$\left(ax^2+bx+c
ight)\left(cx^2+bx+a
ight)\geq rac{(a+b+c)^2x^2}{3}$$

Solução.

Como todos os números envolvidos são não negativos, podemos expandir o lado direito da desigualdade e afirmar que

$$\left(ax^2+bx+c
ight)\left(cx^2+bx+a
ight)\geq \left(a^2x^2+b^2x^2+c^2x^2
ight)$$

Reescrevendo o lado direito da desigualdade acima e aplicando desigualdade de Cauchy-Schwarz, obtemos

$$(a^{2}x^{2} + b^{2}x^{2} + c^{2}x^{2}) = \left(\frac{x^{2}}{(\sqrt{3})^{2}} + \frac{x^{2}}{(\sqrt{3})^{2}} + \frac{x^{2}}{(\sqrt{3})^{2}}\right) (a^{2} + b^{2} + c^{2})$$

$$\geq \left(\frac{ax}{\sqrt{3}} + \frac{bx}{\sqrt{3}} + \frac{cx}{\sqrt{3}}\right)^{2}$$

$$= \frac{(a + b + c)^{2}x^{2}}{3}$$

Exemplo 2:

Sejam a,b,c,x,y,z os comprimentos dos lados de dois triângulos quaisquer. Prove que:

$$x^{2}(b^{2}+c^{2}-a^{2})+y^{2}(a^{2}+c^{2}-b^{2})+z^{2}(a^{2}+b^{2}-c^{2})>0$$

Solução.

Desenvolvendo o lado esquerdo da desigualdade é possível observar que o problema equivale mostrar que

$$(x^2 + y^2 + z^2)(a^2 + b^2 + c^2) > 2(x^2a^2 + y^2b^2 + z^2c^2)$$

Fórmula de Herão

Dada um triângulo com lados de comprimentos a, b e c, e semiperímetro $s=\frac{a+b+c}{2}$, a área A do triângulo pode ser calculada pela **Fórmula de Herão**:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

Usando a Fórmula de Herão podemos afirmar que as expressões são positivas:

$$(a+b+c)(b+c-a)(a+c-b)(a+b-c) (x+y+z)(y+z-x)(x+z-y)(x+y-z)$$

Desenvolvendo as últimas duas expressões encontramos as seguintes desigualdades

$$(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)>0, \ (x^2+y^2+z^2)^2-2(x^4+y^4+z^4)>0,$$

Reescritas como

$$a^2 + b^2 + c^2 > \sqrt{2(a^4 + b^4 + c^4)}$$
 $x^2 + y^2 + z^2 > \sqrt{2(x^4 + y^4 + z^4)}$

fornecendo que:

$$(a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$$

é maior do que:

$$2\sqrt{(a^4+b^4+c^4)(x^4+y^4+z^4)}.$$

Concluindo ...

Aplicando desigualdade de Cauchy-Schwarz:

$$2\sqrt{(a^4+b^4+c^4)(x^4+y^4+z^4)} \geq 2(x^2a^2+y^2b^2+z^2c^2)$$

Exemplo 3: Organização Brilliant

Sejam a,b,c (a>b>c números inteiros e primos entre si. De acordo com a Figura abaixo, temos dois conjuntos de caixas:

- 1. Três caixas cúbicas na cor rosa com seus respectivos comprimentos a, b e c;
- 2. Três paralelepípedos azuis idênticos cujos lados medem a, b e c.

Imagem Ilustrativa do blocos

Qual conjunto possui uma área de superfície total maior?

Solução

- Área total da superfície de todas as caixas rosas é $6a^2+6b^2+6c^2$
- ullet Área total das superfície de todas caixas azuis é 6ab+6bc+6ca,
- O problema pode ser resolvido usando desigualdades.

Desigualdade de Cauchy-Schwarz

• A desigualdade a seguir é obtida utilizando a desigualdade de Cauchy–Schwarz:

$$\left(a^2+b^2+c^2\right)\left(b^2+c^2+a^2\right) \geq \left(ab+bc+ca\right)^2$$

Simplificação da Desigualdade

Sabemos que:

$$(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) = (a^2 + b^2 + c^2)^2$$

Dessa forma, obtemos:

$$\left(a^2+b^2+c^2\right) \geq ab+bc+ca$$

Multiplicando ambos os lados por 6, temos:

$$6a^2 + 6b^2 + 6c^2 \ge 6ab + 6bc + 6ca$$

Uma vez que (a, b, c) são primos entre si e, portanto, não proporcionais, concluímos que:

$$6a^2 + 6b^2 + 6c^2 > 6ab + 6bc + 6ca$$

Concluindo

Isso significa que os cubos (caixas rosas) terão sempre uma área total da superfície maior do que os paralelepípedos (caixas azuis).

Exemplo: OPEMAT 2019

Sejam a_1,a_2,a_3 e b_1,b_2,b_3 todos números reais positivos. Sabendo que $a_1a_2a_3=1$ e $b_1b_2b_3=\pi^3$, mostre a validade da seguinte desigualdade:

$$rac{b_1^2 + b_2^2 + b_3^2}{a_1^2} + rac{b_1^2 + b_2^2 + b_3^2}{a_2^2} + rac{b_1^2 + b_2^2 + b_3^2}{a_3^2} \geq 9\pi^2$$

Solução

Reescrevendo a desigualdade acima como:

$$\left(rac{1}{a_1^2} + rac{1}{a_2^2} + rac{1}{a_3^2}
ight) \cdot (b_1^2 + b_2^2 + b_3^2)$$

Podemos aplicar a **desigualdade de Cauchy-Schwarz** e obter:

$$\left(\sum_{i=1}^3 rac{1}{a_i^2}
ight) \cdot \left(\sum_{i=1}^3 b_i^2
ight) \geq \left(\sum_{i=1}^3 rac{1}{a_i} \cdot b_i
ight)^2 = \left(rac{b_1}{a_1} + rac{b_2}{a_2} + rac{b_3}{a_3}
ight)^2$$

Por outro lado, a desigualdade entre as médias aritmética e geométrica (AM-GM) nos fornece:

$$rac{rac{b_1}{a_1} + rac{b_2}{a_2} + rac{b_3}{a_3}}{3} \geq \sqrt[3]{rac{b_1 \cdot b_2 \cdot b_3}{a_1 \cdot a_2 \cdot a_3}} = \pi$$

Logo, segue que:

$$rac{b_1}{a_1} + rac{b_2}{a_2} + rac{b_3}{a_3} \geq 3\pi$$

Lema de Titu

Lema de Titu:

Se a_1, a_2, \ldots, a_n e b_1, b_2, \ldots, b_n são números reais positivos, então:

$$rac{a_1^2}{b_1} + rac{a_2^2}{b_2} + \cdots + rac{a_n^2}{b_n} \geq rac{(a_1 + a_2 + \cdots + a_n)^2}{b_1 + b_2 + \cdots + b_n}$$

Exemplo: Olimpíada de Matemática, Irlanda 1999

Sejam a,b,c,d números reais positivos que satisfazem a+b+c+d=1. Prove que:

$$a+b+c+d=1$$
. Prove que:

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} \ge \frac{1}{2}$$

Solução

Segue do **Lema de Titu**:

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} \ge \frac{(a+b+c+d)^2}{2(a+b+c+d)} = \frac{1}{2}$$

Exemplo: Competição Checoslováquia 1999

Sejam \$a, b, c\$ números reais positivos quaisquer. Prove a desigualdade:

$$\frac{a}{b+2c} + \frac{b}{c+2a} + \frac{c}{a+2b} \ge 1$$

Solução.

Primeiramente, reescrevemos o lado direito da desigualdade como:

$$rac{a^2}{a(b+2c)} + rac{b^2}{b(c+2a)} + rac{c^2}{c(a+2b)}$$

Em seguida, aplicamos o **Lema de Titu**, obtendo:

$$rac{a}{b+2c}+rac{b}{c+2a}+rac{c}{a+2b}\geqrac{(a+b+c)^2}{3(ab+bc+ca)}$$

Portanto, é suficiente mostrar que:

$$(a+b+c)^2 \ge 3(ab+bc+ca)$$

Sabemos que:

$$(a+b+c)^2 = a^2 + 2ab + b^2 + 2ac + 2bc + c^2$$

Isso implica que:

$$3(a+b+c)^2 - 3(a^2+b^2+c^2) = 6(ab+bc+ca)$$

Daí, aplicando novamente a desigualdade de Cauchy-Schwarz:

$$3(a^2 + b^2 + c^2) \ge (a + b + c)^2$$

Combinando com a igualdade anterior, temos:

$$2(a+b+c)^2 = 3(a+b+c)^2 - (a+b+c)^2 \ge 6(ab+bc+ca)$$

Conclusão

- Ao longo desta apresentação, exploramos desigualdades importantes, incluindo a Desigualdade de Cauchy-Schwarz e o Lema de Titu, mostrando como elas podem ser aplicadas em problemas de olimpíadas.
- Desigualdade de Cauchy-Schwarz é uma das mais poderosas ferramentas para lidar com desigualdades em diversas áreas da matemática, especialmente em álgebra linear e análise.

- O **Lema de Titu** destaca como podemos transformar expressões complexas em algo mais manejável, provando ser uma técnica valiosa para resoluções rápidas e eficientes.
- A **Fórmula de Herão**, além de ser uma ferramenta clássica para calcular áreas de triângulos, também serve como um exemplo de como podemos usar expressões matemáticas para resolver problemas geométricos envolvendo desigualdades.

Reflexão Final

Essas desigualdades e suas aplicações não são apenas ferramentas teóricas, mas são extremamente úteis em competições de matemática, onde a criatividade e a técnica precisam andar juntas. O conhecimento dessas desigualdades oferece uma vantagem significativa para quem busca solucionar problemas complexos e demonstrar seus raciocínios de maneira rigorosa e elegante.

Próximos Passos

- Continuar praticando a aplicação de desigualdades em problemas mais avançados.
- Resolver os problemas propostos no artigo
- Explorar outras desigualdades famosas e suas aplicações, como a **Desigualdade de Jensen** e a **Desigualdade de Minkowski**.

Muito obrigado pela atenção!

Se tiverem dúvidas ou quiserem discutir mais sobre o tema, fiquem à vontade para entrar em contato 👍 .