Lab Session 7

1. Introduction

In this lab session, you will use a lot of the previously seen classifier on the iris dataset

2. Ressources

Libraries Documentation

Python: https://docs.python.org/3/
NumPy: https://numpy.org/doc/

SciPy: https://docs.scipy.org/doc/scipy/
Matplotlib: https://matplotlib.org/3.5.1/
Panda: https://pandas.pydata.org/docs/
mglearn: https://scikit-learn.org/stable/

PyTorch: https://pytorch.org/docs/stable/index.html
*to proceed with the lab session, refer to this section

3. Setup

to install pyTorch in UTBM Desktops:

Create and activate your conda environement (refers to moodle)
Install pytorch packages in conda environment using the following instruction

!pip3 install torch torchvision torchaudio

4. IRIS dataset

```
df.columns = ['s_length', 's_width', 'p_length', 'p_width', 'target', 'species']

X = df[['s_length', 's_width', 'p_length', 'p_width']]
y = df['species']

#define data to plot
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

Exercise

Build a prediction model (accuracy above 90%) with:

- KNN
- Decision Tree
- Random Forest
- Naive Bayes
- LDA
- QDA
- Neural Network