Tutorial Sheet 4

Matrix Norms and Iterative Methods

1. Show that the norm defined on the set of all $n \times n$ matrices by

$$||A|| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|.$$

is not subordinate to any vector norm on \mathbb{R}^n .

2. For a given vector $(x_1, \ldots, x_n)^T$, the corresponding Vandermonde matrix is defined as

$$V_n = (v_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

where $v_{ij} = x_i^{j-1}$. For a fixed integer n > 1, let $x_k = 1 + k/n$, for k = 1, 2, ..., n, then show that $||V_n||_{\infty} \to \infty$ as $n \to \infty$.

- 3. Let A and B be invertible matrices with condition numbers $\kappa(A)$ and $\kappa(B)$ respectively. Show that $\kappa(AB) \leq \kappa(A)\kappa(B)$.
- 4. In solving the system of equations Ax = b with matrix

$$A = \left(\begin{array}{cc} 1 & 4 \\ 1 & 4.01 \end{array}\right),$$

estimate the relative error in the solution vector \boldsymbol{x} in terms of the relative error in \boldsymbol{b} . Test your estimate in the case when $\boldsymbol{b} = (4,4)^T$ and $\tilde{\mathbf{b}} = (3.95,4.01)^T$. Use the maximum norm for vectors in \mathbb{R}^2 .

5. For $n \geq 2$, find $\kappa_2(T_n)$ where T_n is the tri-diagonal matrix given by

$$T_n = \begin{pmatrix} 2 & -1 & 0 & & & \\ -1 & 2 & -1 & & 0 & \\ & \ddots & \ddots & \ddots & & \\ & 0 & & -1 & 2 & -1 \\ & & & 0 & -1 & 2 \end{pmatrix}$$

6. Let $\boldsymbol{x}^{(12)}$ be the 12th term of the Gauss-Seidel iterative sequence for the system

$$3x_1 + 2x_2 = 1$$

$$4x_1 + 12x_2 + 3x_3 = -2$$

$$x_1 + 3x_2 - 5x_3 = 3$$

with $\boldsymbol{x}^{(0)} = (0,0,0)^T$. If \boldsymbol{x} denotes the exact solution of the given system, then show that

$$\|\boldsymbol{e}^{(12)}\|_{\infty} \le 0.0077073467 \|\boldsymbol{x}\|_{\infty}.$$

7. Consider the linear system $A\mathbf{x} = \mathbf{b}$, where $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$ be such that $a_{ii} \neq 0$ for i = 1, 2, ..., n, and $\mathbf{b} = (b_1, b_2, ..., b_n)^T \in \mathbb{R}^n$. For a given real number $\omega \neq 0$, define an iterative sequence $\{\mathbf{x}^{(k)}\}$ as

Given
$$\mathbf{x}^{(0)}$$
; $z_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right\}$,
 $x_i^{(k+1)} = (1-\omega) x_i^k + \omega z_i^{(k+1)}$, for $i = 1, 2, \dots, n$
 $k = 0, 1, 2, \dots$

This iterative method is called the *successive over relaxation method* (SOR method). Find the matrix S_{ω} and the vector \boldsymbol{c} such that the SOR iterative method is written in the matrix form

$$\mathbf{x}^{(k+1)} = S_{o} \mathbf{x}^{(k)} + \mathbf{c}, \quad k = 0, 1, 2, \dots$$

- 8. Let A be an $n \times n$ matrix with real entries. Let $\kappa_2(A)$ and $\kappa_{\infty}(A)$ denote the condition numbers of a matrix A that are computed using the matrix norms $||A||_2$ and $||A||_{\infty}$, respectively. Answer the following questions.
 - i) Determine all the diagonal matrices such that $\kappa_{\infty}(A) = 1$.
 - ii) Let Q be a matrix such that $Q^TQ = I$ (such matrices are called orthogonal matrices). Show that $\kappa_2(Q) = 1$.
 - iii) If $\kappa_2(A) = 1$, show that all the eigenvalues of $A^T A$ are equal. Further, deduce that A is a scalar multiple of an orthogonal matrix.