EPITA

Mathématiques

Contrôle de mi-semestre S3

Novembre 2022

Durée : 3 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note se ramenée à une note sur 20 par une simple division par 2.
Consignes:
 Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée. Ne pas écrire au crayon de papier.

Exercice 1 (6 points)

1.	Déterminer la nature de la série de terme général $u_n = \frac{\sin\left(\frac{1}{n}\right)}{n^2}$. Justifier proprement.
2.	Déterminer la nature de la série de terme général $u_n = \frac{n^2 e^{-\sqrt{n}}}{2^{2n}}$. Justifier proprement.
3.	Déterminer la nature de la série de terme général $u_n = (-1)^n \frac{n}{e^n}$. Justifier proprement.

Exercice 2 (6 points)

Soit $a \in \mathbb{R}$ tel que a > 0. Considérons la suite (u_n) définie pour tout $n \ge 2$ par : $u_n = \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$.

Le but de l'exercice est d'étudier la nature de $\sum u_n$.

1.	Déterminer $c \in \mathbb{R}$ tel que $u_n = \frac{(-1)^n}{n^{a/2}} + \frac{c}{n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$.
2.	À l'aide du résultat de la question précédente, discuter la nature de $\sum u_n$ en fonction de la valeur de a .

Exercice 3 (8 points)

On se donne pour but d'étudier le comportement de la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \frac{\mathbb{Z}^n}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$ Pour cela, on utilise la suite auxiliaire (v_n) définie par : $v_n = \ln(u_n) - \frac{1}{2}\ln(n)$. 1. Soit $n \in \mathbb{N}^*$. Calculer $\frac{u_{n+1}}{u_n}$ 2. En déduire que $v_{n+1} - v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{2n} \right)$. 3. Déterminer $a \in \mathbb{R}$ tel que $v_{n+1} - v_n \sim \frac{a}{n^2}$. 4. Montrer que (v_n) converge. On note ℓ sa limite.

5.	Déduire des questions précédentes qu'il existe $k \in \mathbb{R}$ tel que $u_n \sim k \sqrt{n}$. Exprimer k en fonction de ℓ .
	ccice 4 : critère spécial des séries alternées (5 points)
oit (u	(u_n) une suite réelle de signe alterné.
1.	Énoncer le critère spécial des séries alternées.
	N.B. : on ne démontrera que la convergence de la série $\sum u_n$. Il n'est pas demandé de démontrer la majoration du rest de la série.

rcice 5 : probabil	,	tos proport lours va	slours dans (1-2)	tollos que pour tout i
	les aléatoires indépendan			${ m telles}$ que pour ${ m tout}\ i$
	les aléatoires indépendan	tes, prenant leurs va ${ m et} \qquad P(X_i = 3)$		telles que pour tout i
X_1, X_2 et X_3 trois variab	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$	et $P(X_i=3)$		${ m telles}$ que pour ${ m tout}\ i$
X_1, X_2 et X_3 trois variab	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$	et $P(X_i=3)$		i telles que pour tout i
X_1, X_2 et X_3 trois variab	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$	et $P(X_i=3)$		telles que pour tout i
X_1, X_2 et X_3 trois variab	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$	et $P(X_i=3)$		i telles que pour tout i
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=\frac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	déduire la loi de Y.
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	déduire la loi de Y.
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	déduire la loi de Y .
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	déduire la loi de Y .
X_1, X_2 et X_3 trois variab Quelles sont les fonctions	les aléatoires indépendan $P(X_i{=}1) = rac{1}{3}$ génératrices G_{X_i} de ces	et $P(X_i=3)$ trois variables?	$=rac{2}{3}$	déduire la loi de Y .

3. Détermin	ner l'espérance et la variance de Y .
Exercice 6	6 : séries entières (10 points)
On se propose o	de trouver une fonction f qui satisfait aux conditions suivantes (C) : $\begin{cases} f'' + xf' + f = 0 \\ f(0) = 1 \text{ et } f'(0) = 0 \end{cases}$
Pour cela, on su	uppose qu'il existe une série entière $\sum a_n x^n$, admettant un rayon de convergence $R > 0$, telle que :
	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R, R[$
ne cherchera	on différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. On donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car ce nctionnent que pour des équations à coefficients constants.
1. Exprime	er $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
2. Définir e	en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$,
	$xf'(x) = \sum_{n=0}^{+\infty} b_n x^n$ et $f''(x) = \sum_{n=0}^{+\infty} c_n x^n$

3. En reportant ces expressions de xf'(x) et de f''(x) dans l'équation f''(x) + xf'(x) + f(x) = 0, mettre cette dernière équation sous la forme

$$\forall x \in]-R, R[, \quad \sum_{n=0}^{+\infty} d_n x^n = 0$$

où les coefficients (d_n) sont exprimés en fonction de la suite (a_n) .

	 			 	٠.		٠.	 ٠	 ٠.			٠.		 			 •			 			 ٠.	٠.		 ٠.	•	 	٠.		 		 •	 	•			 	
 	 	 		 					 ٠.		 			 		 ٠		 ٠		 		٠	 ٠.			 		 		٠	 	 		 		٠.		 	
	 			 			٠.	 ٠	 					 			 ٠	 ٠		 		٠	 ٠.	٠.		 	٠	 	٠.		 			 	٠			 	

4. En remarquant que la condition $\sum_{n=0}^{+\infty} d_n x^n = 0$ implique que tous les coefficients d_n sont nuls, montrer que

$$a_2=-rac{1}{2}, \qquad a_3=0 \qquad \text{et plus généralement}: \qquad \forall \in \mathbb{N}, \, a_{n+2}=-rac{a_n}{n+2}$$

 • •	• •	• •	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	• •	•	 • •	٠.	•	 • •	• •	• •	• •	• •	 • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	 • •	• •	• •	 •	 • •	٠

- 5. Que vaut a_n quand n est impair?
-
- 6. Déterminer la valeur de a_n quand n est pair.

Indication: on posera n=2k $(k \in \mathbb{N})$, puis on exprimera a_{2k} d'abord en fonction de $a_{2(k-1)}$, puis en fonction de $a_{2(k-2)}$, etc. jusqu'à une expression de a_{2k} en fonction de a_0 .

7.	En déduire $f(x)$, qu'on exprimera d'abord sous la forme d'une série entière, puis à l'aide des fonctions usuelles.
8.	(Bonus) Vérifier que l'expression trouvée à la question précédente est solution de (C) sur $\mathbb R$ tout entier.