Deep Learning and Practice Lab2 – EEG classification

310554009 杜葳葳

1. Introduction

比較 EEGNet 和 DeepConvNet 對 BCI competition 資料集做大腦訊號分類器, EEGNet 和 DeepConvNet 皆為卷積神經網絡, 主要用來自動提取特徵和分類。實驗嘗試三種 Activation function(ReLU, Leaky ReLU, ELU) 、並調整超參數做比較, 最終可以到達 87.87%的準確率。

2. Experiment set up

A. The detail of your model

EEGNet

依照 spec 的規定建立模型,主要分為四個部分,第一個 conv2D 將訊號 讀入並提取特徵, depthwiseconv2D 將訊號維度降低, separableconv2D 的輸入與輸出層沒有完全連接,最後是分類層。


```
EEGNet(
  (firstconv): Sequential(
      (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
      (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
  (deptwiseConv): Sequential(
      (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): LeakyReLU(negative_slope=0.01)
      (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
      (4): Dropout(p=0.25, inplace=False)
    }
  (separableConv): Sequential(
      (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): LeakyReLU(negative_slope=0.01)
      (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
      (4): Dropout(p=0.25, inplace=False)
    }
    (classify): Sequential(
      (0): Linear(in_features=736, out_features=2, bias=True)
    }
}
```

DeepConvNet

與 EEGNet 相比,有較多個卷積層。

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		${\rm epsilon} = 1\text{e-}05, {\rm momentum} = 0.1$
Activation				ELU	
${\bf MaxPool2D}$		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

```
DeepConvNet(
(conv8): Conv2d(1, 25, kernel_size=(1, 5), stride=(1, 1))
(conv1): Sequential(
(0): Conv2d(25, 25, kernel_size=(2, 1), stride=(1, 1))
(1): BatchNorm2d(25, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
(4): Dropout(p=0.5, inplace=False)
)
(conv2): Sequential(
(0): Conv2d(25, 50, kernel_size=(1, 5), stride=(1, 1))
(1): BatchNorm2d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
(4): Dropout(p=0.5, inplace=False)
)
(conv3): Sequential(
(0): Conv2d(50, 100, kernel_size=(1, 5), stride=(1, 1))
(1): BatchNorm2d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
(4): Dropout(p=0.5, inplace=False)
)
(conv4): Sequential(
(0): Conv2d(100, 200, kernel_size=(1, 5), stride=(1, 1))
(1): BatchNorm2d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
(4): Dropout(p=0.5, inplace=False)
)
(classify): Linear(in_features=8600, out_features=2, bias=True)
```

B. Explain the activation function (ReLU, Leaky ReLU, ELU)

◆ ReLU (Rectified Linear Unit)

若值為正數,則輸出該值大小,若值為負數,則輸出為 0。ReLU 是近年來最頻繁被使用的激勵函數,因其存在以下特點,包含:解決梯度爆炸問題、計算數度相當快、收斂速度快等特性。

♦ Leaky ReLU

為了解決 Dead ReLU Problem,將 ReLU 的前半段輸出設為 0.01x,故能防止負號時永遠無法被激活的問題。Leaky ReLU 擁有 ReLU 的所有優點,也成功避免 Dead ReLU Problem 的問題,但實際上沒有辦法證明 Leaky ReLU 永遠優於 ReLU。

♦ ELU (Exponential Linear Units)

ELU 也是為了解決 Dead ReLU 問題而被提出

3. Experimental results

A. The highest testing accuracy

Screenshot with two models

■ EEGNet

DeepConvNet

```
Epoch 780 Accuracy: 0.812962962963
[DeepConvNet] Activation function: elu => Best Accuracy: 0.812962962963
```

Epoch 636 Accuracy: 0.8212962962962963 [DeepConvNet] Activation function: leakyrelu => Best Accuracy: 0.8212962962963

Best model

Accuracy	Architecture	Activation Function	Epoch	LR	Batch Size	Optimi zer
87.87%	EEGNet	ReLU	2942	1e-1	64	Adam

Anything you want to present

為方便 demo、分為兩支程式, train.py 會將每個 activation function 最好 (準確率最高) 的模型存起來, test.py 則可以直接用 testing data 做測試,不用每次重新訓練,下面為其中一次執行 test.py 的截圖。

B. Comparison figures

EEGNet

DeepConvNet

4. Discussion

在訓練與實驗過程中,有嘗試一次調整一個參數、固定其他參數,觀察準確率的變化。

A. Batch size

EEGNet 的表現皆比 DeepConvNet 來的好, 其中 Batch size 為 64 與 128 時, 模型會有比較好的表現。

♦ EEGNet

Batch size		8	16	32	64	128	256
Accuracy	Accuracy ELU		0.82	0.81	0.82	0.82	0.82
	ReLU	0.83	0.84	0.84	0.83	0.84	0.83
	LeakyReLU	0.83	0.83	0.84	0.85	0.85	0.85

DeepConvNet

Batch size		8	16	32	64	128	256
Accuracy	ELU	0.80	0.81	0.81	0.80	0.80	0.80
	ReLU	0.81	0.79	0.81	0.80	0.80	0.80
LeakyReL		0.80	0.80	0.80	0.79	0.80	0.80

B. Learning rate

Learning rate 在 1 和 1e-1 時模型會有比較好的表現,在訓練時有使用 Learning rate scheduler 來調整學習率,避免遇到無法收斂的問題。

◆ EEGNet

Learning rate		1	1e-1	1e-2	1e-3	1e-4
Accuracy	ELU	0.82	0.82	0.80	0.82	0.81
	ReLU	0.84	0.84	0.80	0.83	0.84
	LeakyReLU		0.85	0.79	0.85	0.85

◆ DeepConvNet

Learning rate		1	1e-1	1e-2	1e-3	1e-4
Accuracy	Accuracy ELU		0.80	0.80	0.80	0.81
	ReLU	0.80	0.80	0.80	0.80	0.80
	LeakyReLU	0.80	0.80	0.79	0.80	0.79