

"Les espèces qui survivent ne sont pas les espèces les plus fortes ni les plus intelligentes [...]"

Méthode de sélection

Sélection par tournois

Sélection par tournois

Sélection d'un couple

Sélection d'un couple

Sélection d'un n-couple

Vérification du taux de consanguinité du couple

Vérification du taux de consanguinité du couple

Vérification du taux de consanguinité du couple

$$Consanguinit\acute{e}_{corrig\acute{e}e} = Consanguinit\acute{e}_{r\acute{e}elle} * (1 - \frac{2}{1 + exp(5 * \frac{Max(Parent_i FctObj)}{Best FctObj} - 1)})$$

Vérification du taux de consanguinité d'un n-couple

"Ainsi nous descendrions du singe? Prions que cela ne s'ébruite pas!"

Méthode de croisement

SOPER Crossover

SOPER Crossover

SOPER Crossover

Solutions valides (SOPER):

Solution classique (non vérifiée):

SOPER Crossover (principe de base)

Ville Adjacences Préséances Distance (ville précédente)

Ville	Adjacences	Préséances	Distance (ville	précédente)
1	2,3	-	0	

Ville	Adjacences	Préséances	Distance (ville	précédente)
1	2,3	-	0	
2	1,3,4,5	1	∞	

Ville	Adjacences	Préséances	Distance (ville précédente
1	2,3	-	0
2	1,3,4,5	1	∞
3	1,2,4	1	∞

Ville	Adjacences	Préséances	Distance (ville précédente
1	2,3	-	0
2	1,3,4,5	1	∞
3	1,2,4	1	∞
4	2,3,5	1	∞

Ville	Adjacences	Préséances	Distance (ville pr	écédente)
1	2,3	-	0	
2	1,3,4,5	1	∞	
3	1,2,4	1	∞	
4	2,3,5	1	∞	
5	2,4	1,2,4	∞	

Ville	Adjacences	Préséances	Distance (ville précédente)
1	2,3	-	0
2	1,3,4,5	1	∞
3	1,2,4	1	∞
4	2,3,5	1	∞
5	2,4	1,2,4	∞

Ville	Adjacences	Préséances	Distance (ville précédente	e)
5	2,4	2,4	∞	
3	2,4	-	100	
2	3,4,5	-	50	
4	2,3,5	-	200	

Ville	Adjacences	Préséances	Distance (ville précédente)
5	2,4	2,4	∞
2	4,5	-	70
4	2,5	-	120

Ville	Adjacences	Préséances	Distance (ville précédente)
5	4	4	00
4	5	-	40

Ville	Adjacences	Préséances	Distance (ville	précédente)
5	-	-	10	

- Construction d'une nouvelle solution à partir de solutions valides
- L'élément le plus contraint est placé en premier afin d'éviter d'être bloqué par la suite
- Les préséances sont vérifiées avant chaque placement

SOPER Crossover (généralisation pour les n-couples)

Ville	Adjacences	Préséances	Distance (ville pr	récédente)
1	2,3	-	0	
2	1,3,4,5	1	∞	
3	1,2,4	1	∞	
4	2,3,5	1	∞	

"Seuls les plus aptes survivront."

Méthode de remplacement

Remplacement $\mu + \lambda$ classique

Remplacement $\mu + \lambda$ classique

Introduction aux castes

Introduction aux castes

Croisement & castes

Remplacement $\mu + \lambda$ par caste

"Tout dans la nature est le résultat de lois fixes."

Paramètres

Paramètres

louisquentinjoucla@gmail.com

simon lecoq@live.fr