hangian	- Motivic Chern classes & Iwahar javariants of principal Series. joint w/ P. Aluffi, L. Mihalcea & J. Schurman. arxiv: 1902. 10101 ul.
22	Savies.
	joint w/ P. Aluffi, L. Mihalcea & J. Schurman
	arxiv: 1902, 1010141
	The problem.
	t a non Arch. local field. UF = t its ring of int.s.
	The problem. F a non Arch. local field. OF = F its ring of int.s. kF = residue field = Fq.
	Ga reductive split alg. grp / OF. Fix B=T a Boxpl and maximal torus. The diagram: I -> G(OP)
_	and maximal torus.
	T - G(O-1
-	1 - 0 1 0 P
500	B(kp) = 6(kp) . Letines the Iwahar: subgrap I
	The Iwahor: - Hecke alg. is $H = (C_C II G(F)/I) x$ Govelition.
	Principlal series upps.
0. 2. 2.00	For I an unramited character of T/F)
	For I an unramitied character of T(F). (toivial on T/OF)) 6(F).
	~ In d T:= locally cst. tcts t(bg) = T(b) 8/12/b) flag) [f: 6/F/ - [be 8/F/].
(a) (b)	$\overline{L}(T) := (\overline{J_n J_{B(F)}} T)^{\overline{I}'} = C_c [B(F)] G(F)/\overline{L} J_{\overline{I}}$
	by onvolution.
	·

	Two bases in I(T)
	a) Standard basis: 3 Pm/we WY.
Relation	G(F) = IL B(P) w I
between ?	
pasis .	$f_{w} = 1$ MF/wI
	6/ Casselmen basis: 3fw/weW}.
VA	assume I is regular.
	For $x \in W$,
	Ax: Indoir T - Ind x'7
	for is defined by the condition:
	Sx (fw) (1) = Sx, w.
	Reformulation (Bump-Nakesuji)
	Mobius transformation: define qui= & Yu.
	$\phi_{W} = \sum_{t \in W} \mathbf{h}_{W,2} f_{2}$
	Example: for w = id & W. Pid = 5 Pw & (Indapper 2)
	Spherical veother.

Steenberg variety.

Steenberg variety.

Ky (Sty) ~ H= Cc[I\6(F)/I] (dual) motivic Chorn classes +> Pu quswer fixed point basis (K-theoretic generalization of Mac Phenson chasses). X/C ~ K° (Var/X) $k^{\circ}(Gh(x)) =: k(x).$ Thun [Brasselet - Schurman - Yakura]: I! natural transformation formal variable. MCy: K°(Var (x) -> k(x) [y] s.t. if X is smeeth, MCy ([x -x]) = & yi [1 Txx]. For X= 6/B X(w)= B = B/B, Y(w)= B w B [X(w) = X] = K of Var /X)

	MCy (x(w)) = MCy((x(w) = x)) E K7(6/B)
	By localization $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	· Hecke action (lusation) X = single root , Px = Bx = 6/8 - 6/Px
	Tav = (1+ y Zz). (1 = 1 = -id) Ly Ky (x1.
	Tie G Xi Ci e Pict (X).
	Thm: MCy (x(w)) = Tw- ([Oxin]) = K- (x)[y].
	Oxcid := stricture short of B & 6/B. 3) The proof.
	· Tuncami fied of T -> TET(C).
	· KT(X) is a mobile over KT(pt) = Ke(Gh(X)) = Ke(Vau/X).
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	

_

Thin: 7! is morphism of HIWI- mobiles 4: Ky (6/8)[7] @ CT = I(7). s.f. . y - - 2 = -/kp/. · [Ougo] - fw. · M(y(X/w/) 1- Pw. Pw= & Pu= & mu, 7 fz. Gr: m = = (M(-9 (Y(w))/2) (T). E K=/pt/.
MC-9 (Y(7)/2) " $(e^{\lambda}) = e^{-\lambda}$. Thus: Y(w) is smooth at 7 B 6 G/B. I komer. [Y(w)]/2 = T/ x & H# (pt). (AMSS) Mcy (Yal) /= 11 (1+yeta) 11 (1-eta). Refined Gnj. 1 # 7/m + 00 61.

Conj. 2 is reduced to (via Cor! My (Y/W/2 is dissible by 11 (1-e2x)

my thet Ky (pt) & tollows from a GKM