

DPP: 03

Subjective Ouestions

- Prove that $\left(1+\cos\frac{\pi}{4}\right)\left(1+\cos\frac{3\pi}{4}\right)\left(1+\cos\frac{5\pi}{4}\right)\left(1+\cos\frac{7\pi}{4}\right) = \frac{1}{4}$. 1.
- If $x = y \cos \frac{2\pi}{2} = z \cos \frac{4\pi}{2}$, then prove that xy + yz + zx = 0. 2.
- Show that $\sec^2 \theta + \csc^2 \theta \ge 4$. **3.**

Only One Option Correct Type

- 4. Which statement is correct, when a, b, m and n are non-zero real numbers?
 - (a) $4\sin^2 \theta = 5$

- (b) $(a^2 + b^2)\cos\theta = 2ab$
- (c) $(m^2 + n^2)\cos ec\theta = m^2 n^2$ (d) $\sin \theta = 2.375$
- The value of $e^{\log_{10} \tan 1^{\circ} + \log_{10} \tan 2^{\circ} + \log_{10} 3^{\circ} + \dots + \log_{10} \tan 89^{\circ}}$ is 5.

- (c) 1/e
- (d) None of these
- The set of all possible values of α in $[-\pi, \pi]$ such that $\sqrt{\frac{1-\sin\alpha}{1+\sin\alpha}} = \sec\alpha \tan\alpha$, is 6.

 - (a) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ (b) $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ (c) $\left(\frac{\pi}{2}, \pi \right)$
- (d) None of these
- 7. If $4n\alpha = \pi$, then the value of $\cot \alpha \cdot \cot 2\alpha \cdot \cot 3\alpha \cdot ... \cdot \cot (2n-1)\alpha$ is
 - (a) 0

- (d) None of these
- The number of real solutions of the equation $\cos^7 x + \sin^4 x = 1$ in interval $[-\pi, \pi]$, is 8.

- The value of $\cos^2 5^\circ + \cos^2 10^\circ + \cos^2 15^\circ + \dots + \cos^2 85^\circ + \cos^2 90^\circ$ is 9.

(d) None of these

- If $x \in R \{0\}$, then $\cos \theta$ is 10.

- (a) $> x + \frac{1}{x}$ (b) $= x + \frac{1}{x}$ (c) $\neq x + \frac{1}{x}$ (d) None of these
- The value of $3\left[\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4\left(3\pi+\alpha\right)\right]-2\left[\sin^6\left(\frac{\pi}{2}+\alpha\right)+\sin^6\left(5\pi-\alpha\right)\right]$ is 11.

- If $\frac{\sin^3 \theta \cos^3 \theta}{\sin \theta \cos \theta} \frac{\cos \theta}{\sqrt{1 + \cot^2 \theta}} 2 \tan \theta \cot \theta = -1, \theta \in [0, 2\pi]$ then θ belongs to 12.
- (a) $[0,\pi] \left\{ \frac{\pi}{4}, \frac{\pi}{2} \right\}$ (b) $(0,\pi)$ (c) $(0,\pi) \left\{ \frac{\pi}{4}, \frac{\pi}{2} \right\}$ (d) None of these
- The number of solutions for which $e^{\sin x} e^{-\sin x} = 4$, is **13.**
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

Answer Key

4. (b) 5. (d) 6. (b) 7. (b) 8. (d) 9. (d) 10. (c) 11. (b) 12. (c) 13. (a)