Code	Name and Key Concepts
MMu1t1	Functions and graphs: Midpoint of a Line, $y=mx+c$, Quadratic Equations in Vertex and Factorised Forms, Inverse Proportions, Polynomials, Relations, Translations and Dilations
MMu1t2 MMu1t3	Trigonometric functions: Unit Circle, Radians, SOH CAH TOA, Sine Rule, Cosine Rule, Exact Values, Amplitude/ Period/ Phase Counting and probability: Binomial Coefficients, Set Complement
	Intersection and Union, Probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, Conditional Probability, Independence
MMu2t1 MMu2t2	Exponential functions: Index Laws, Fractional Indices, Functions, Asymptotes, Graphs Arithmetic and geometric sequences and series: Arithmetic and
MMu2t3	Geometric Sequences as Recurrence Relations, Limiting Behaviour, and Partial Sum Formulae, Growth and Decay Introduction to differential calculus Average Rate of Change, First
	Principles, Leibniz Notation, Instantaneous Rate of Change, Slope of Tangent, Derivitive of Polynomials, Linearity of Differentiation, Optimisation, Anti-Derivitives, Interpret Position-Time Graphs
MMu3t1	Further differentiation and applications. Define e as a s.t. $\lim_{h\to 0}\frac{a^h-1}{h}=1$, Derivitives of $e^x\sin(x)$ and $\cos(x)$, Chain Product
MMu3t2	and Quotient Rules, Second Derivitives Integrals: Integrate Polynomial Exponential and Trigonometric Functions, Linearity of Integration, Determine Displacement given Velocity,
MMu3t3	Definite Integrals, Fundamental Theorem of Calculus, (signed) Area Under a Curve Discrete random variables: Frequencies, General Properties, Ex-
MMu4t1	pected Value, Variance, Standard Deviation, Bernoulli and Binomial Distribtions The logarithmic function: Logs as Inverse of Exponentials, Log-
MMu4t2	Scales, Log Laws, Log Function Graphs, Natural Log, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, $\int \frac{1}{x}dx=\ln(x)+c$ for $x>0$ Continuous random variables and the normal distribution: Prob-
	ability Density Function, Cumulative Distribution Function, Probabilites Expected Value, Variance and Standard Deviation as Integrals, Linear Transformation of Random Variables, Normal Distribution using Tech-
MMu4t3	nology Interval estimates for proportions Simple Random Sampling, Bias,
	Sample Proportion, Normal Approximation to the Binomial Proportion, Wald Confidence Interval, Trade-Off Between Width and Level of Confidence
SMu1t1	Combinatorics Multiplication of Possibilities, Factorial Notation, Permutations with and without Repeated Objects, Union of Three Sets,
SMu1t2	Pigeon-Hole Principle, Combinations, Pascals Triangle Vectors in the plane : Magnetude and Direction, Scalar Multiplication, Addition and Substraction as a Triangle, Vector Notation, $a\mathbf{i} + b\mathbf{j}$
SMu1t3	Notation, Scalar Dot Product, Projection, Parallel and Perpendicular Vectors Geometry : Notation for Implication (\Rightarrow) and Equivalence (\Leftrightarrow) , Con-
	verse $(B\Rightarrow A)$ Negation $(\neg A\Rightarrow \neg B)$ and Contrapositive $(\neg B\Rightarrow \neg A)$, Proof by Contradiction, \forall and \exists Notation, Counter-Examples, Circle Theorems, Quadrilateral Proofs in \mathbb{R}^2
SMu2t1 SMu2t2	Trigonometry : Graph and Solve Trig Functions, Prove Various Trig Indentities, Reciprocal Trig Functions Matrices: Notation, Addition and Scalar Multiplication of Matrices,
SMu2t3	Multiplicative Identity and Inverse, Determinant, Matrices as Transformations Real and complex numbers: Rationality and Irrationality, Induc-
31114213	tion, $i=\sqrt{-1}$, Complex Numbers $a+bi$ and Arithmetic (+, -, ×, \div), Complex Conjugates, Complex Plane, Complex Conjugate Roots of
SMu3t1	Polynomials Complex numbers: Modulus and Argument, Arithmetic $(\times, \div, \text{ and } z^n)$ in Polar Form, Convert between Polar and Cartesian Form, De
SMu3t2	Moivre's Theorem, Roots of Complex Numbers, Factorising Polynomials Functions and sketching graphs: Composition of Functions, One-to-One, Inverse Functions, Absolute Value Function, Rational Functions
SMu3t3	Vectors in three dimensions : $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ Notation, Equation for Spheres, Parameterised Vector Equations, Equations of Lines, the Cross Product, Equation for a Plane, Systems of Linear Equation (Elimina-
SMu4t1	tion Method) and Geometric Interpretation of Solutions, Kinematics via Differentiation of Vector Equations, Projectile and Circular Motion Integration and applications of integration Substitution, $\int \frac{1}{x} dx =$
	In $ x +c$ for $x \neq 0$, Inverse Trig Functions and their Derivitives, Integrate $\frac{\pm 1}{\sqrt{a^2-x^2}}$ and $\frac{a}{a^2+x^2}$, Partial Fractions, Integration by Parts, Volume of Solids of Revolution, Numerical Integration using Technology
SMu4t2	Rates of change and differential equations: Implicit Differentiation, First-Order Seperable Differential Equations, The Logistic Equa-
SMu4t3	tion, Kinematics (Rates of Change) Statistical inference : Central Limit Theorem and the Resulting Confidence Interval for a Mean
S1M1	Functions and graphs: Equations for a Line, Slope, y-intercept, Intersection of Lines, Reciprocal Function, Asymptotes, Functions vs Relations, Dansel Banks, Function Natation
S1M2	lations, Domain, Range, Function Notation Polynomials: Quadratic Equations in Vertex and Factorised Forms, Quadratic Formula, Completing the Square, The Leading Coefficient
S1M3	and Degree of a Polynomials, Cubics, Quartics Trigonometry: Pythagoras, SOH CAH TOA, Cosine Rule, Sine Rule, Unit Circle, Exact Values, Sine and Cosine Functions, Radians, Length
S1M4	of Arc, Area of Sector, Amplitude, Period, Phase, $\tan(x) = \frac{\sin(x)}{\cos(x)}$ Counting and statistics : Factorial, Permutations, Multiplication Principle, Combinations, Discrete vs Continuous Random Variables, Mean,
C1ME	Median, Mode, Range, Interquartile Range, Standard Deviation, Normal Distribution,
S1M5 S1M6	Growth and decay: Index and Logarithm Laws, Exponential Functions and their Graphs Introduction to differential calculus: Average Rate of Change, First Principles Netation f'(x) = df - d - x = x = x = 1. Linearity of Differential Calculus:
	Principles, Notation $f'(x) = \frac{df}{dx}$, $\frac{d}{dx}x^n = nx^{n-1}$, Linearity of Differentiation, Slope of Tangent, Increasing vs Decreasing, Local and Global Maxima and Minima, Stationary Points, Sign Diagram
S1M7	Arithmetic and geometric sequences and series : Arithmetic and Geometric Series as Recurrance Relations and Explicit Expressions, Partial Sums, Limiting Behaviour
S1M8 S1M9	Geometry : Circle Properties, Proofs (Direct, Contradiction, and Contrapositive) Vectors in the plane : Component (column) vs $ai + bj$ Notation,
	Length and Direction, Linear Combinations of Vectors, Scalar Dot Product, Projection, Angle Between Two Vectors and Parallel/ Perpendicular, Geometric Proof
S1M10	Further Trigonometry: Sketch Trigonometric Functions with Translations and Dilations, Solve for Angles, Trigonometric Identities, Reciprocal Trigonometric Functions
S1M11	Matrices : Linear Combinations of Matrices, Matrix Multiplication, The Identity, Inverse Matrices, The 2×2 Inverse, The 2×2 Determinant, Lin-
S1M12	ear Transformations (including rotations, reflections and composition) Real and complex numbers: Rationals, Irrationals, Interval Notation, Induction, $i=\sqrt{-1}$, Real and Imaginary Components, Complex
	Conjugates and Arithmetic, Argand Diagram, Modulus, Complex Roots of Polynomals
S2MM1	Further differentiation and applications: S1M6, Chain Product and Quotient Rules, $e=2.718\ldots, \frac{d}{dx}e^x=e^x$, $\frac{d}{dx}\sin(x)=\cos(x)$, $\frac{d}{dx}\cos(x)=-\sin(x)$, Second Derivatives, Concavity and Points of In-
S2MM2	flection Discrete random variables: Random Variables, Discrete vs Continuous, Probability Functions and Distributions, Properties of Probability
	ities, Frequency, Expected Value $E[X] = \sum x p(x) = \mu_X$, Standard Deviation $\sigma_X = \sqrt{\sum (x - \mu_X)^2 p(x)}$, Uniform Bernoulli and Binomial Distributions
S2MM3	Integral calculus: Anti-differentiation, If $F'(x) = f(x)$ then $\int f(x)dx = F(x) + c$, Reversing Chain Rule for $\int f(ax+b)dx$, Linearity of Integration, Finding the Constant of Integration, Area Under
	the Curve as Upper and Lower Sum Approximations, Definite Integral, Area Between Two Functions and Between a Negative Function and the x-axis, Fundamental Theorem of Calculus,
S2MM4	Logarithmic functions : Logs as Inverse of Exponentials, Log-Scales, Log Laws, Sketching $y=a\ln(b(x-c))$, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, For $x>0$
S2MM5	$\int \frac{1}{x} dx = \ln(x) + c$ Continuous random variables and the normal distribution: $P(X = x) = 0$, Probability Density Function, $\mu_X = \int_{-\infty}^{\infty} x f(x) dx$,
	$\sigma_X = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$, $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2}$, Standard Normal $Z = \frac{X - \mu}{\sigma}$, Simple Random Sampling, For $X \sim (\mu, \sigma)$ and $X_i \sim iidX$ Sampling Distributions of $S_n = \sum_{i=1}^n X_i \ (n\mu, \sigma \sqrt{n})$ and $\overline{X}_n = \frac{S_n}{n}$
CONANAC	$(\mu, \frac{\sigma}{\sqrt{n}})$, If X is Normally Distributed, then so are S_n and \bar{X}_n , Central Limit Theorem (CLT)
S2MM6	Sampling and confidence intervals: Confidence Interval for a Mean using CLT $\left(\bar{x}-z^*\frac{s}{\sqrt{n}}\right) \leq \mu \leq \left(\bar{x}+z^*\frac{s}{\sqrt{n}}\right)$, Wald Interval for a Proportion
S2SM1 S2SM2	Mathematical induction: Initial Case and Induction Step Complex numbers: Cartesian vs Polar Form, Real and Imaginary Com-
_	ponents, Modulus and Argument, Arithmetic in both Cartesian and Polar Forms, de Moivre's Theorem including Negative and Fractional Powers, Geometric Properties of the Argand Plane, Complex Arithmetic as
S2SM3	Transformations, n^{th} Roots of a Complex Number, Factorising Polynomials with Complex Roots Functions and sketching graphs: Function Composition, Informal
S2SM4	Intro to Domain and Range, One-to-One, Inverse Functions, Absolute Value Function, Graphing Rational Functions Vectors in three dimensions: Notation, Equations of a Line in \mathbb{R}^3 ,
VIVIT	Scalar Dot Product, Vector Cross Product, $ \mathbf{a} \times \mathbf{b} $ is the Area of their Parallelogram, Equation for a Plane in \mathbb{R}^3 , Systems of Linear Equations, Geometric Interpretation of No/Unique/Infinite Solutions to a System
S2SM5	of Linear Equations in \mathbb{R}^3 Integration techniques and applications: Integration by Substitution, Using Trigonometric Identities for Integration, Derivatives of In-
SOCN4 0	verse Trigonometric Functions (so $\int \frac{\pm 1}{\sqrt{a^2-x^2}} dx$ and $\int \frac{a}{a^2+x^2} dx$, Integration by Parts, Area Between two Curves, Volume of Solids of Revolution
S2SM6	Rates of change and differential equations: Implicit Differentiation, First-Order Seperable Differential Equations, The Logistic Differential Equation, Parameterised Curves, Example: if $\mathbf{v} = \frac{d}{dt}(x(t), y(t))$ is Velocity Ixl is Speed, and so the Ars Length along the Parameterised
	is Velocity, $ \mathbf{v} $ is Speed, and so the Arc Length along the Parameterised Curve is $\int_a^b \sqrt{\mathbf{v} \bullet \mathbf{v}} dt$, Trigonometric Parameterisations (unit circle, and non-circular parameterisations)
MS1	Numbers & Functions: Natural Numbers, Integers, Rational Numbers, Real Numbers, Functions, Intervals
MS2 MS3	Linear Functions: Equation for Linear Functions, Simultaneous Linear Equations, Sketching Linear Inequalities Quadratic Functions: Sketching a Parabola, General Form of a
MS4	Quadratic, Translations and Dilations Rational Functions: Sketching Reciprocal Functions (Hyperbola), Lines of Symmetry, Limits and Asymptotes
MS5	Trigonometry I: Pythagoras, Similar Triangles, SOH CAH TOA, Trigonometric and Inverse Trigonometric Functions using Technology, Exact Values
MS6	Trigonometry II : Unit Circle, Sketching Trigonometric Functions, Finding all Solutions to Trigonometric Equations, The Sine Rule, The Cosine Rule, Introductory Trigonometric Identities, Radians
MS7 MS8	Exponential Functions : Index Laws, Sketching Exponential Functions, $e=2.718\ldots$, Growth and Decay
	Logarithms: Natural Logarithm, Logarithm Laws, Using Logarithm to Fit Growth/Decay Functions, Half-Life/ Doubling Time Polynomials: Polynomial Division and "Remainder Theorem" Factor
MT1	Polynomials: Polynomial Division and "Remainder Theorem", Factor Theorem Linking Zeros to Factors, Continuous vs Discontinuous Functions, Smoothness, Sketching Factorised Form of Polynomials, Factorising Polynomials, The Quadratic Formula
MT2	ing Polynomials, The Quadratic Formula Matrices: Order, Notation, Linear Combinations of Matrices, Matrix Multiplication (Associative but not Commutative, Distributes across Linear Combinations). The Matrix Matrix
	ear Combinations), The Identity Matrix, Powers of Square Matrices, Matrix Transpose, Systems of Linear Equations, Matrix Inverse, 2×2 determinant, The 2×2 Inverse, $n\times n$ Inverses, Elementary Row Oper-
МТ3	ations, Vectors and Applications: Directed Line Segment Notation for Vectors, Magnetude/ Length and Direction, Linear Combinations of Vectors.
MT4	tors, Component and $a\mathbf{i} + b\mathbf{j}$ Notation, Vectors in \mathbb{R}^2 and \mathbb{R}^3 , Scalar Dot Product, Equation for a Plane in \mathbb{R}^3 Systems of Linear Equations: Augmented Matrix for Systems of
T	Linear Equations: Augmented Matrix for Systems of Linear Equations, Elementary Row Operations, Row-Echelon Form, Solutions to Systems of Linear Equations and Geometric Interpretations in \mathbb{R}^2 and \mathbb{R}^3 , Matrix Inverses by Gauss-Jordan Elimination
MT6	·
	Differentiation : Rates of Change, Gradient, First Principles, Limit Notation, Derivative Notation, $\frac{d}{dx}x^n = nx^{n-1}$ (including $n = 0$ and
MT7	Notation, Derivative Notation, $\frac{d}{dx}x^n=nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation : Sketching Polynomials and Ratio-
	Notation, Derivative Notation, $\frac{d}{dx}x^n=nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation : Sketching Polynomials and Rational Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams, Increasing and Decreasing, Stationary Points, Points of Inflection, Concavity, Optimisation,
МТ8	Notation, Derivative Notation, $\frac{d}{dx}x^n=nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation : Sketching Polynomials and Rational Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams, Increasing and Decreasing, Stationary Points, Points of Inflection, Concavity, Optimisation, Exponential and Logarithm Functions : Sketching Exponential Functions, $e=2.718\ldots$, $\frac{d}{dx}e^x=e^x$, Natural Logarithm, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, Growth and Decay, Surge Models, Logistic Models
	Notation, Derivative Notation, $\frac{d}{dx}x^n=nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation : Sketching Polynomials and Rational Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams, Increasing and Decreasing, Stationary Points, Points of Inflection, Concavity, Optimisation, Exponential and Logarithm Functions : Sketching Exponential Functions, $e=2.718\ldots$, $\frac{d}{dx}e^x=e^x$, Natural Logarithm, $\frac{d}{dx}\ln(x)=\frac{1}{x}$,
МТ8	Notation, Derivative Notation, $\frac{d}{dx}x^n=nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation : Sketching Polynomials and Rational Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams, Increasing and Decreasing, Stationary Points, Points of Inflection, Concavity, Optimisation, Exponential and Logarithm Functions : Sketching Exponential Functions, $e=2.718\ldots$, $\frac{d}{dx}e^x=e^x$, Natural Logarithm, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, Growth and Decay, Surge Models, Logistic Models Integration : Area Under a Curve, Lower and Upper Sums, Definite Integrals, Definite Integrals of Negative Functions, Linearity of Integra-