

Temporal Programmer: An Introduction

Temper

Abbas K. Zaidi
Alexander H. Levis
<szaidi2>, <alevis>@gmu.edu

Adversary Behavioral Modeling
Maxwell AFB, Montgomery AL
March 18 - 19, 2008

Outline

- **A Logic for Time**
 - Point-Interval Logic
 - Point Graphs
- **Temper - Software Implementation of Point-Interval Formalism**
- **Temporal Issues in Forensics**
- **Example: Applying Temper to London Bombing Data**

Point-Interval Logic (PIL)

- Allen introduced Interval Algebra as a framework for temporal reasoning. The algebra takes time intervals to be primitives.
- Zaidi expanded this logic by adding points to create Point Interval Logic (PIL)
 - Three Cases
- Case I: X and Y both intervals with non-zero lengths

$X = [sx, ex]$, $Y = [sy, ey]$ with $sx < ex$ and $sy < ey$

Before	$X < Y$	$ex <$	
Meets	$X \text{ m } Y$	$ex = sy$	
Overlaps	$X \text{ o } Y$	$sx < sy, sy < ex; ex < ey$	
Starts	$X \text{ s } Y$	$sx = sy, ex < ey$	
During	$X \text{ d } Y$	$sx > sy, ex < ey$	
Finishes	$X \text{ f } Y$	$sy < sx, ey = ex$	
Equals	$X = Y$	$sx = sy, ex = ey$	

Case II: X and Y both points

$X = [px]$ and $Y = [py]$ with $sx = ex = px$ and $sy = ey = py$

Before	$X < Y$	$px < py$	$\begin{matrix} X \\ \bullet \\ px \end{matrix} \quad \begin{matrix} Y \\ \bullet \\ py \end{matrix}$
Equals	$X = Y$	$px = py$	$\begin{matrix} X;Y \\ \bullet \end{matrix}$

A point-point relation “less than or equal to” (\leq) can be added to PIL without losing tractability.

Case III—X is a point and Y is an interval

$Y = [sx, ey]$ with $px = sx = ex$ and

$sy < ey$

Before	$X < Y$	$px < sy$	$\begin{matrix} X \\ \bullet \\ px \end{matrix} \quad \begin{matrix} Y \\ \text{---} \\ sy \quad ey \end{matrix}$
Starts	$X \leq Y$	$px = sy$	$\begin{matrix} X \\ \bullet \\ px \end{matrix} \quad \begin{matrix} Y \\ \text{---} \\ sy \quad ey \end{matrix}$
During	$X \leq Y$	$sy < px < ey$	$\begin{matrix} X \\ \bullet \\ px \end{matrix} \quad \begin{matrix} Y \\ \text{---} \\ sy \quad ey \end{matrix}$
Finishes	$X \geq Y$	$px = ey$	$\begin{matrix} Y \\ \text{---} \\ sy \quad ey \end{matrix} \quad \begin{matrix} X \\ \bullet \\ px \end{matrix}$
Before	$Y < X$	$ey < px$	$\begin{matrix} Y \\ \text{---} \\ sy \quad ey \end{matrix} \quad \begin{matrix} X \\ \bullet \\ px \end{matrix}$

- **Quantitative Temporal Information**
 - $d_1 \leq \text{Length}[X, Y] \leq d_2$
 - $t_1 \leq \text{Stamp}[X] \leq t_2$
 - where d_1 , d_2 , t_1 , and t_2 are rational numbers, and X , Y are points
 - This allows for “at least” and “at most” temporal relationships for interval lengths, and “no earlier than” and “no later than” temporal relationships between time points
- **Knowledge Representation**
 - A graph with nodes representing time points and edges representing the ‘inequalities’ captures the information in PIL statements

Point Graphs

Point Interval Logic Statements and the corresponding Point

Construct Gantt Chart Queries

PIL Statements

Compiled To Be Deleted Inferred To Be Added Comments

```
sB < eB
sC < eC
sD < eD
sF < eF
sG < eG
sH < eH
Length [sB,eB] = 8
Length [sC,eC] = 9
Length [sD,eD] = 4
Length [sF,eF] = 1
```

Point Graph

LT Edge

Time Stamp

LE Edge

Virtu

Input Window W

Int Chart Output

	Earliest Start Time	Latest End Time
0	8	
0	12	
8	12	
9	13	
12	15	
10	15	

Output Window W

Temper - The Software

- **Temper** is a tool for temporal knowledge representation, reasoning, and planning using **Point-Interval Logic (PIL)**.
- PIL is a formal algebraic framework for reasoning with time. It has the ability to handle both:
 - Events and Activities
 - Quantitative and Qualitative temporal relationships
 - Reasoning and Planning
- The relationships among various activities and events in a domain are specified in the form of PIL statements. These statements are converted into a graphical construct called **Point Graphs (PG)**.
 - Algorithms for verification, inference, and planning are implemented on the Point Graph representation.
- The implementation of PIL is in the form of a .NET class library called **PIL Engine**. It provides an application programming interface (API) that can be used in any .NET compliant programming language. It uses **QuickGraph**, which is an open-source C# implementation of the **Graphviz** library from AT&T.
- **Temper** provides a graphical user interface (GUI) to PIL Engine.

Add/Delete PIL Statements

Add Stamp	Delete Stamp	<input type="button" value=""/>	=	<input type="button" value=""/>	
Add Length	Delete Length	<input type="button" value=""/>	<input type="button" value=""/>	=	<input type="button" value=""/>
Add Relation	Delete Relation	<input type="button" value=""/>	<input type="button" value=""/>	<	<input type="button" value=""/>
Add Composite Relation		<input type="button" value=""/>	<input type="button" value=""/>	<	<input type="button" value=""/>
Reference Date and Time		Wednesday, October 11, 2006	<input type="button" value=""/>	24:0:0	
<input type="checkbox"/> Numeric Stamp					
<input checked="" type="checkbox"/> Day	<input checked="" type="checkbox"/> Hour	<input checked="" type="checkbox"/> Minute	<input type="checkbox"/> Second		

Language Editor

Query

Query Stamp	<input type="button" value=""/>	
Query Length	<input type="button" value=""/>	<input type="button" value=""/>
Query Relation	<input type="button" value=""/>	<input type="button" value=""/>
Close		

Modeling with **Temper**

- Convert the available temporal information into statements in Point-Interval Logic.
- Input these statements to **Temper** using the language editor of **Temper**.
- Construct a Point Graph representation of the set of Point Interval Logic (PIL) statements.
 - If the set of PIL statements is inconsistent then **Temper** will not be able to construct the Point Graph representation.
 - **Temper** will identify the subset of PIL statements causing the inconsistency.
 - User will remove the inconsistent statements.
- Once a consistent Point Graph has been constructed, it can be used to draw inferences.

Applications

- Knowledge Management and Reasoning
 - Forensics
 - Understanding of an incident of interest or a critical activity requires reconstruction of events that lead to an observable effect
 - Information regarding the incident/activity unfolds in no specific order and originates from different locations
 - Temporal information may be both qualitative and quantitative
 - Information may be inconsistent/incorrect
 - Information may contain hidden patterns or temporal relations that can help identify missing links
 - This calls for an automated tool for temporal knowledge representation, management, verification and reasoning
 - **Temper** is also the temporal algorithm embedded in **Pythia**

Application to Forensics

London Bombing
July 07, 2005

Example: London Bombing

- There were four explosions in London.
- The sites of these explosions were: Travistock Square, Edgware Road, Aldgate and Russell Square.
- Three of these explosions (Edgware, Aldgate and Russell Square) were in trains.
- These trains left from King's Cross station. The journey of these trains ended in explosions.
- The time it takes a train from King's Cross to reach Edgware is at least 5 minutes.
- The time it takes a train from King's Cross to reach Aldgate is at least 4 minutes.
- The time it takes a train from King's Cross to reach Russell Square is at least 5 minutes.

Interval Train_King_Cross_to_Edgware,
 Train_King_Cross_to_Aldgate,
 Train_King_Cross_to_Russell_Sq

Point Explosion_at_Travistock_Square,
 Explosion_near_Edgware,
 Explosion_near_Aldgate,
 Explosion_near_Russell_Sq

Explosion_near_Edgware *finishes*
 Train_King_Cross_to_Edgware

Explosion_near_Aldgate *finishes*
 Train_King_Cross_to_Aldgate

Explosion_near_Russell_Sq *finishes*
 Train_King_Cross_to_Russell_Sq

Length [Train_King_Cross_to_Edgware] $\geq 0:5:0$

Length [Train_King_Cross_to_Aldgate] $\geq 0:4:0$

Length [Train_King_Cross_to_Russell_Sq] $\geq 0:5:0$

- New
- Open ...
- Append ...
- Close
- Save ...
- Save As ...
- Recent Files ▾
- Exit

PIL Statements

Compiled	To Be Deleted	Inferred	To Be Added	Comments
----------	---------------	----------	-------------	----------

```

sTrain_King_Cross_to_Edgware < eTrain_King_Cross_to_Edgware
sTrain_King_Cross_to_Aldgate < eTrain_King_Cross_to_Aldgate
sTrain_King_Cross_to_Russell_Sq < eTrain_King_Cross_to_Russell_Sq
Length[sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Length[sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Length[sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
Explosion_near_Edgware f[sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Explosion_near_Aldgate f[sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Explosion_near_Russell_Sq f[sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
    
```

PIL statements

Activity Table	Real Time	Gantt Chart	Output
----------------	-----------	-------------	--------

```

sTrain_King_Cross_to_Edgware : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Edgware : 0 days 0 hour 0 minute 0 seconds
sTrain_King_Cross_to_Aldgate : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Aldgate : 0 days 0 hour 0 minute 0 seconds
sTrain_King_Cross_to_Russell_Sq : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Russell_Sq : 0 days 0 hour 0 minute 0 seconds
Explosion_near_Edgware : 0 days 0 hour 0 minute 0 second
Explosion_near_Aldgate : 0 days 0 hour 0 minute 0 second
Explosion_near_Russell_Sq : 0 days 0 hour 0 minute 0 second
Explosion_at_Travistock_Square : 0 days 0 hour 0 minute 0 seconds
    
```

Example: London Bombing (cont'd)

Query Stamp (when did the train to Edgware leave from King's Cross?)

The screenshot shows a software window titled "Query". On the left, there are three buttons: "Query Stamp", "Query Length", and "Query Relation". A dropdown menu is open under "Query Stamp", showing the following options:

- sTrain_<▼>
- sTrain_KingX_Edgware
- eTrain_KingX_Edgware
- sTrain_KingX_Aldgate
- eTrain_KingX_Aldgate
- sTrain_KingX_Russell_Sq
- eTrain_KingX_Russell_Sq
- Explosion_Edgware
- Explosion_Aldgate

A yellow callout bubble points to the first item in the list, "sTrain_<▼>". At the bottom right of the window is a "Close" button.

Example: London Bombing (cont'd)

- The explosion near Edgware Road took place between time units 8:40 and 8:52.**
- The explosion near Aldgate took place between time units 8:45 and 8:50.**
- The explosion near Russell Square took place between time units 8:40 and 8:50.**
- The explosion at Travistock Square took place between time units 9:45 and 9:55.**


```

8:40 <= Stamp [Explosion_near_Edgware] <= 8:52
8:45 <= Stamp [Explosion_near_Aldgate] <= 8:50
8:40 <= Stamp [Explosion_near_Russell_Sq] <= 8:50
9:45 <= Stamp [Explosion_at_Travistock_Square] <=
9:55

```

File Insert Settings Help

New CtrlN

Open ... CtrlO

Open PIL Binary ...

Append ...

Close

Save ...

Save As ...

Save PIL Binary ...

Recent Files

Exit CtrlX

PIL Statements

Compiled | To Be Deleted | Inferred | To Be Added | Comments

```

sTrain_King_Cross_to_Edgware < eTrain_King_Cross_to_Edgware
sTrain_King_Cross_to_Algatee < eTrain_King_Cross_to_Algatee
sTrain_King_Cross_to_Russell_Sq < eTrain_King_Cross_to_Russell_Sq
Length [sTrain_King_Cross_to_Edgware, eTrain_King_Cross_to_Edgware]
Length [sTrain_King_Cross_to_Algatee, eTrain_King_Cross_to_Algateee]
Length [sTrain_King_Cross_to_Russell_Sq, eTrain_King_Cross_to_Russell_Sq]
  
```

Activity Table | Real Time | Gantt Chart | Output

```

sTrain_King_Cross_to_Edgware : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Edgware : 0 days 0 hour 0 minute 0 seconds
sTrain_King_Cross_to_Algatee : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Algateee : 0 days 0 hour 0 minute 0 seconds
sTrain_King_Cross_to_Russell_Sq : 0 days 0 hour 0 minute 0 seconds
eTrain_King_Cross_to_Russell_Sq : 0 days 0 hour 0 minute 0 seconds
Explosion_near_Edgware : 0 days 0 hour 0 minute 0 seconds
Explosion_near_Algate : 0 days 0 hour 0 minute 0 seconds
Explosion_near_Russell_Sq : 0 days 0 hour 0 minute 0 seconds
Explosion_at_Travistock_Square : 0 days 0 hour 0 minute 0 seconds
  
```

Construct Gantt Chart Queries

PIL Statements

Compiled | To Be Deleted | Inferred | To Be Added | Comments

```

sTrain_King_Cross_to_Edgware < eTrain_King_Cross_to_Edgware
sTrain_King_Cross_to_Aldgate < eTrain_King_Cross_to_Aldgate
sTrain_King_Cross_to_Russell_Sq < eTrain_King_Cross_to_Russell_Sq
Length[sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Length[sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Length[sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
Explosion_near_Edgware f [sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Explosion_near_Aldgate f [sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Explosion_near_Russell_Sq f [sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
Stamp [Explosion_near_Edgware] >= 31200
Stamp [Explosion_near_Edgware] <= 31920
Stamp [Explosion_near_Aldgate] >= 31500
Stamp [Explosion_near_Aldgate] <= 31800
Stamp [Explosion_near_Russell_Sq] >= 31200
Stamp [Explosion_near_Russell_Sq] <= 31800
  
```

Activity Table | Real Time | Gantt Chart | Output

	Name	Duration

Example: London Bombing (cont'd)

Query Stamp (when did the train to Edgware leave from King's Cross?)

The screenshot shows a software interface for querying data. On the left, a window titled "Query" contains three buttons: "Query Stamp", "Query Length", and "Query Relation". A dropdown menu labeled "sTrain_" is open, showing a list of query results:

- sTrain_KingX_Edgware
- eTrain_KingX_Edgware
- sTrain_KingX_Aldgate
- eTrain_KingX_Aldgate
- sTrain_KingX_Russell_Sq
- eTrain_KingX_Russell_Sq
- Explosion_Edgware
- Explosion_Aldgate

A yellow callout bubble points to the first item in the list: "sTrain_KingX_Edgware". Below the dropdown is a "Close" button.

Below the main window is a smaller "Stamp" dialog box:

Stamp

Stamp [sTrain_King_Cross_to_Edgware] <= 0 day 8:47:0

OK

PIL Statements

Compiled	To Be Deleted	Inferred	To Be Added	Comments
----------	---------------	----------	-------------	----------

```
sTrain_King_Cross_to_Edgware < eTrain_King_Cross_to_Edgware
sTrain_King_Cross_to_Aldgate < eTrain_King_Cross_to_Aldgate
sTrain_King_Cross_to_Russell_Sq < eTrain_King_Cross_to_Russell_Sq
Length[sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Length[sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Length[sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
Explosion_near_Edgware f [sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]
Explosion_near_Aldgate f [sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]
Explosion_near_Russell_Sq f [sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]
Stamp [Explosion_near_Edgware] >= 31200
Stamp [Explosion_near_Edgware] <= 31920
Stamp [Explosion_near_Aldgate] >= 31500
Stamp [Explosion_near_Aldgate] <= 31800
Stamp [Explosion_near_Russell_Sq] >= 31200
Stamp [Explosion_near_Russell_Sq] <= 31800
Stamp [sTrain_King_Cross_to_Edgware] = 31680
```

Activity Table

	Name	Duration

Error

The point graph contains inconsistent Paths:

- (1) sTrain_King_Cross_to_Edgware -->
 $_UB_Stamp_eTrain_King_Cross_to_Russell_Sq; Explosion_near_Russell_Sq; _UB_Stamp_eTrain_King_Cross_to_Aldgate; Explosion_near_Aldgate \rightarrow _UB_Stamp_eTrain_King_Cross_to_Edgware; Explosion_near_Edgware \rightarrow eTrain_King_Cross_to_Edgware; Explosion_near_Edgware$
- (2) sTrain_King_Cross_to_Edgware --> _LB_Length_sTrain_King_Cross_to_Edgware --> _LB_Length_eTrain_King_Cross_to_Edgware -->
 $eTrain_King_Cross_to_Edgware; Explosion_near_Edgware$

OK

On-the-fly
Deletion of a
PIL Statement

PIL Statements

Compiled	To Be Deleted	Inferred	To Be Added	Comments
sTrain_King_Cross_to_Edgware < eTrain_King_Cross_to_Edgware				
sTrain_King_Cross_to_Aldgate < eTrain_King_Cross_to_Aldgate				
sTrain_King_Cross_to_Russell_Sq < eTrain_King_Cross_to_Russell_Sq				
Length[sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]				
Length[sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]				
Length[sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]				
Explosion_near_Edgware f [sTrain_King_Cross_to_Edgware,eTrain_King_Cross_to_Edgware]				
Explosion_near_Aldgate f [sTrain_King_Cross_to_Aldgate,eTrain_King_Cross_to_Aldgate]				
Explosion_near_Russell_Sq f [sTrain_King_Cross_to_Russell_Sq,eTrain_King_Cross_to_Russell_Sq]				
Stamp [Explosion_near_Edgware] >= 31200				
Stamp [Explosion_near_Edgware] <= 31920				
Stamp [Explosion_near_Aldgate] >= 31500				
Stamp [Explosion_near_Aldgate] <= 31800				
Stamp [Explosion_near_Russell_Sq] >= 31200				
Stamp [Explosion_near_Russell_Sq] <= 31800				
Stamp [sTrain_King_Cross_to_Edgware] = 31680				

Delete

Activity Table | Real Time | Gantt Chart | Output

Name	Duration
------	----------

Example: London Bombing (cont'd)

- The alleged four bombers spotted entering the Luton station at time unit 7:20.**
- The next train from Luton to King's Cross left at 7:48 reaching King's Cross at 8:42.**
- Train to Edgware left after the train from Luton.**
- Train to Aldgate left after the train from Luton.**
- Train to Russell Sq. left after the train from Luton.**

Interval Train_Luton_to_King_Cross
Point Bombers_spotted_at_Luton
Stamp [Bombers_spotted_at_Luton] = 7:20
Stamp [sTrain_Luton_to_King_Cross] = 7:48
Stamp [eTrain_Luton_to_King_Cross] = 8:42
eTrain_Luton_to_King_Cross before Train_King_Cross_to_Edgware
eTrain_Luton_to_King_Cross before Train_King_Cross_to_Aldgate
eTrain_Luton_to_King_Cross before Train_King_Cross_to_Russell_Sq

Example: London Bombing (cont'd)

Query

Query Stamp (when did the train to Edgware leave from King's Cross?)

Query Stamp sTrain_<
 Query Length sTrain_KingX_Edgware
 Query Relation eTrain_KingX_Edgware
 sTrain_KingX_Aldgate
 eTrain_KingX_Aldgate
 sTrain_KingX_Russell_Sq
 eTrain_KingX_Russell_Sq
 Explosion_Edgware
 Explosion_Aldgate

Close

Stamp

0 day 8:42:0 <Stamp [sTrain_King_Cross_to_Edgware] <= 0 day 8:47:0

OK

Conclusion

- A formal approach to modeling and analyzing temporal information related to an event of interest, e.g., terrorist acts
- A software implementation of the approach with
 - An easy-to-use input language
 - Analysis toolkit that includes a consistency checker and a reasoning tool with a query language/interface
 - An efficient revision mechanism that helps add/modify temporal information without restarting the whole process
 - A graphical interface
- What might be added in future
 - Connectivity to temporal information in databases
 - Automated extraction of temporal information from textual source(s)
 - Better user/analyst input/output interfaces for display of information (both input and inferred)

Future Direction— GeoTemper

- Integration of the three dimensions of spatial knowledge with the temporal dimension to create a unified approach for handling change

