Modélisation des Systèmes Décisionnels Julien DUFOUR

- Introduction
- Les Grands Principes
- Les différentes modélisations
- Le Multi-Dimensionnel
- Rappels
- Exemple

<u>Introduction - Les Grands Principes - Les différentes modélisations - Le Multi-</u>
<u>Dimensionnel</u>

Introduction

- Exemple
- Pourquoi le décisionnel
- Historique et implications
- Le décisionnel, ça sert à ...

Exemple Pharmaceutique

Introduction

Les Grands Principes

Les différentes modélisations

- Un nouveau médicament en 2000 coûte
 10 fois plus qu'en 1960
- A la sortie d'un nouveau médicament, le marché est réparti entre les laboratoires de façon inégale
- Peu rentabiliseront leur effort de R&D

Pourquoi le décisionnel

<u>Introduction</u>

Les Grands Principes

Les différentes modélisations

- Nécessité de mettre en œuvre un système permettant de prendre les bonnes orientations au bon moment
 - Optimisation de la force commerciale
 - Optimisation des achats
 - Optimisation des ressources (machines, humaines...)
 - Connaissance de la concurrence
 - Connaissance du marché (potentiel et besoins)
 - Etc...

Historique (1)

Introduction

Les Grand: Principes

Les différentes modélisations

Le Multi-Dimensionnel Après-Guerre

- Économie orientée production de masse
- Pas de difficultés à écouler les ventes

1970

- Baisse de la demande
- Besoin de se différencier des concurrents par des biens de qualité

Historique (2)

<u>Introduction</u>

- Les Grands Princines
- Les différentes modélisations
- Le Multi-Dimensionnel

1980

- Prise en compte du facteur « Temps »
- Le produit doit arriver au bon moment sur le marché
- Notion de « Time to Market » toujours fondamentale aujourd'hui
- Automatisation des processus (industriels, logistique, administratifs...)
- Début du Marketing agressif et omniprésent
- Prise de conscience que l'informatique regorge d'informations utilisables : début des infocentres

Historique (3)

Introduction

mensionnel 2000+

1990

 Tendance à améliorer les services associés au produit (SAV, conseils ...)

- La Personnalisation
- Donner à chaque client l'impression qu'il est unique
- Stratégie de « One to One »
- Ce qui implique une bonne connaissance de son client

Implications

Introduction

Les Grands Principes

Les différentes modélisations

- Collecter des données
- Fédérer les données au sein d'un même ensemble
- Valoriser les données en information exploitable
- Vérifier que la stratégie est appliquée
- Vérifier que la stratégie est la bonne
- Corriger les actions
- Simuler le futur
- « PILOTAGE »

Le décisionnel, ça sert au ... Business

Introduction

Les Grands Principes Mieux connaître ses clients (segmentation) : stratégie « One to One »

- Les différentes modélisations
- Le Multi-Dimensionnel
- Fidéliser ses clients et doper les ventes
 - Optimiser la force commerciale
- Optimiser les actions marketing et analyser leurs impacts
- Connaître les attentes futures des clients et anticiper
- Connaître la concurrence
- Simuler des tarifications pour cibler des nouveaux clients
- Gérer les fraudes

Le décisionnel, ça sert aux ... Ressources Humaines

<u>Introduction</u>

- Les Grand: Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Estimer la masse salariale à 5 ans
- Anticiper les départs (retraite, démissions)
- Homogénéiser les salaires et les classifications pour éviter des disparités inégales
- Gérer les carrières
- Anticiper et recruter

Le décisionnel, ça sert à ... l'Informatique

Introduction

Les Grands Principes

Les différentes modélisations

- Estimer et valoriser la consommation du matériel (mémoire, CPU, réseau) et anticiper
- Estimer le coût des pannes (Risque opérationnel)

Le décisionnel, ça sert à ... La Fabrication / Achats

<u>Introduction</u>

Les Grands Principes

Les différentes modélisations

- Étudier la qualité de la fabrication
- Anticiper les pannes des machines et des automates
- Étudier l'ordonnancement de la chaîne de production
- Connaître ses fournisseurs : qualité des produits, respects des délais, prix ... pour optimiser ses achats

Le décisionnel, ça sert à ... la Logistique / Distribution

Introduction

- Les Grand Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Optimiser les tournées
- Optimiser le matériel
- Optimiser les modes de picking
- Valoriser les rayons des magasins
- Valoriser les points de vente

Le décisionnel, ça sert à ... la Pharmacie et Médical

Introduction

Les Grand: Principes

- Les différentes modélisations
- Le Multi-Dimensionnel
- Étudier l'efficacité et la tolérance des produits pharmaceutiques
- Optimiser l'occupation des lits dans un hôpital
- Optimiser le service des urgences
- Répartir les médecins de garde
- Répartir les pharmacies

Le décisionnel, ça sert aux ... Assurances

Introduction

Les Grands Principes

Les différentes modélisations

- Tarification au niveau commercial :
 - attirer de nouveaux clients, fidéliser les clients actuels
- Tarification au niveau des risques :
 - tarif plus élevé pour un risque plus grand (homme 25 ans + voiture rouge + Paris)
- Connaître son taux de sinistralité
- Identifier les fraudeurs
- Simuler le futur (mutuelles santé : sur 5 ans)
- Étudier les coûts de réparation (véhicule, géographique, réparateur, expert, type de choc...)

Le décisionnel, ça sert aussi à ...

Introduction

- Les Granc Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Surbooking
 - Programmes de fidélisation
- Faire des corrélations entre différentes informations

Introduction - Les Grands Principes - Les différentes modélisations - Le Multi-Dimensionnel

Les grands principes

- Architecture
- Les données sources et les données du DWH
- Les principes de modélisation du DWH
- Le principe d'Agrégation
- Indicateurs, Dimensions etc...

Architecture

Sources de données

introduction

<u>Les Grands</u> Principes

Les différentes modélisations

- La plus grande partie des sources de données : <u>SGBDR</u>, créé pour stocker un certain type d'informations :
 - Actuelle (peu d'historique)
 - Avec accès Interrogation, modification, suppression
 - Détaillée
 - Spécifique à un domaine fonctionnel (RH, Production, Commercial, Facturation, etc ...)

Modélisation des SGBDR

Introduction

<u>Les Grands</u> <u>Principes</u>

Les différentes modélisations

- Modélisation normalisée, ce qui correspond très bien à l'opérationnel
 - Intégrité
 - Modifications
 - Recherches simples
- Mais pour le décisionnel
 - Jointures complexes difficiles à mettre en œuvre
 - Mauvaises Performances du fait des jointures
 - Nécessité de créer beaucoup d'indexation pour des raisons de performance
 - Peu d'historique

Définition du DWH

Introductior

<u>Les Grands</u> Principes

Les différentes modélisations

Le Multi-Dimensionnel « Le DataWareHouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées pour le support d'un processus d'aide à la décision »

Bill Inmon, « Using the Data Warehouse »

Données orientées sujet

Introductior

<u>Les Grands</u> <u>Principes</u>

Données structurées par thème (orientées métier)

- modélisations
 Le Multi-
- Permettant de disposer de l'ensemble des informations utiles à un sujet, transversalement aux structures fonctionnelles et organisationnelles (ex : CRM)
- Notion de datamart : approche incrémentale, qui contient des données du DWH pour un secteur particulier de l'entreprise (Ex : datamart Marketing)

Données intégrées

Introduction

<u>Les Grands</u> Principes Un indicateur peut être utilisé par différentes entités opérationnelles

Les différentes modélisations

- Les données doivent être mises en forme et unifiées afin d'avoir un état cohérent et fédéral
 - Unification
 - Qualification
- La phase d'intégration est la plus complexe et représente de 60 à 90% de la charge totale du projet

Données intégrées : Unification

Introduction

<u>Les Grands</u> Principes

Les différentes

Le Multi-Dimensionnel Exemple : 2 Canettes de soda, identiques sauf en ce qui concerne le code barre indiquant l'usine de fabrication

- Problème : ces deux produits sont équivalents dans l'analyse, mais différents dans les SGBDR opérationnels
- Solution : Créer une table de correspondance qu'il faudra maintenir (!!)

Données intégrées : Qualification

Introductior

<u>Les Grands</u> <u>Principes</u>

Les différentes modélisations

- Exemple 1 : une société d'assurance souhaite étudier ses internautes
 - Une log web trace les simulations réalisées par chaque internaute
 - Aucun identifiant commun -> DWH inutilisable
- Exemple 2 : les applications opérationnelles ne forcent pas les utilisateurs à saisir toutes les informations
 - Données manquantes
- Solution : on ne tient pas compte des informations manquantes, on les devine, on change l'opérationnel, on corrige l'historique ?

Données Historisées

Introduction

<u>Les Grands</u> Principes

Les différentes modélisations

Le Multi-Dimensionnel Système opérationnel : les données sont mises à jour régulièrement (à chaque transaction)

 Système décisionnel : les données de détail ne sont jamais mises à jour et on conserve l'historique des changements.

 Associer un référentiel de temps : les données sont datées

Données non volatiles

Introductior

<u>Les Grands</u> <u>Principes</u> Conséquences de l'historisation

Les différentes modélisations

 Les données déjà stockées dans le DWH ne sont jamais modifiées

Un infocentre est volatile

Introduction - Les Grands Principes - Les différentes modélisations - Le Multi-Dimensionnel

Les grands principes

- Architecture
- Les données sources et les données du DWH
- Les principes de modélisation du DWH
- Le principe d'Agrégation
- Indicateurs, Dimensions etc...

Principes de Modélisation du DWH

Introductior

<u>Les Grands</u> Principes Grand principe : stocker l'information à des fins d'analyse

Les différentes modélisations

- Le but est d'optimiser les prises de décision et donc le temps d'accès à l'information
- Ne pas se préoccuper des contraintes de stockage, mais au contraire des performances
- Dénormalisation afin de gagner en performance ce que l'on va perdre en stockage

Modélisation: ODS, DWH, Datamarts

Introduction

<u>Les Grands</u> <u>Principes</u>

Les différentes modélisations

Le Multi-Dimensionnel

Licences Pro CSD + SDM - UBS - Vannes - 2011/2012

A quoi sert un ODS

Introductior

<u>Les Grands</u> Principes

Les différentes modélisations

- ODS : Operational DataStore
- Structure intermédiaire qui stocke des données issues des systèmes de production.
- Stockage tampon avant l'intégration
- Souvent, modèle relationnel proche de l'opérationnel

Introduction - Les Grands Principes - Les différentes modélisations - Le Multi-Dimensionnel

Les grands principes

- Architecture
- Les données sources et les données du DWH
- Les principes de modélisation du DWH
- Le principe d'Agrégation
- Indicateurs, Dimensions etc...

Concrètement : Agrégations et Historisation

Introduction

- <u>Les Grands</u> <u>Principes</u>
- Les différentes
- Le Multi-Dimensionnel

- Données détaillées historisées
- Données détaillées
 - Données agrégées
 - Données fortement agrégées

Données détaillées historisées

Introductior

- <u>Les Grands</u> Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Historisation de tous les événements
- Volumétrie importante
- Peu d'accès de la part des utilisateurs

 Exemple : liste des évènements qui ont eu lieu sur un contrat d'assurance au 1er Avril 1985

Données détaillées

Introductior

- <u>Les Grands</u> Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Évènements les plus récents
- Volumétrie importante
- Proches des données de production
- Accès des utilisateurs lors de « Reach through » : analyse détaillée
- Exemple : liste des évènements qui ont eu lieu sur un contrat d'assurance le 1er Avril 2004

Données agrégées et fortement agrégées

Introductior

- <u>Les Grands</u> Principes
- Les différentes modélisations
- Le Multi-Dimensionnel

- Éléments fréquemment accédés par les utilisateurs
- Pré-calcul des agrégats selon certains axes
- Doivent être facilement accessibles et compréhensibles

Exemples :

- Liste des évènements qui ont eu lieu sur tous les contrats d'assurance en Avril 2004
- Nombre d'événements qui ont eu lieu sur tous les contrats d'assurance en 2004

Les 4 classes de données

Données Les Grands fortement agrégées <u>Principes</u> Données agrégées Données détaillées Données détaillées historisées

La Logique d'accès

Introduction - Les Grands Principes - Les différentes modélisations - Le Multi-Dimensionnel

Les grands principes

- Architecture
- Les données sources et les données du DWH
- Les principes de modélisation du DWH
- Le principe d'Agrégation
- Indicateurs, Dimensions etc...

Indicateurs et Table de fait

Introduction

<u>Les Grands</u> Principes

Les différentes modélisations

Le Multi-Dimensionnel

Indicateur

- Un indicateur est une valeur le plus souvent numérique, représentant une valeur décisive en relation avec la stratégie
- Exemple : Chiffre d'affaires
- Table de fait
 - Une table de fait représente et stocke les différentes valeurs des indicateurs

Dimension et Hiérarchie

Introductior

<u>Les Grands</u> <u>Principes</u>

Les différentes modélisations

Le Multi-Dimensionnel Dimension

- Une dimension est un axe d'analyse associé aux indicateurs.
- Correspond le plus souvent au sujet d'intérêt du DWH
- Exemple : le temps, les produits...
- Hiérarchie
 - Représentation hiérarchisée d'une dimension

Introduction - Les Grands Principes - <u>Les différentes modélisations</u> - Le Multi-Dimensionnel

Les différentes modélisations

- Modélisation en étoile
- Modélisation en Flocon

Étoile et Flocon

Introductior

Les Grands Principes

Les différentes modélisations

Le Multi-Dimensionnel Étoile : Star Schema

- 1 table de fait
- n tables de dimensions
- Flocon : Snow Flake
 - Une étoile
 - n tables de dimensions et n sous tables correspondant à la hiérarchie

Exemple: modèle opérationnel

Exemple : chaussures et vêtements vendus dans différents types de magasin, en centre ville ou en périphérie. Les produits ne sont pas fabriqués, mais achetés à des fournisseurs extérieurs

Modèle en étoile : Star Schema

- 1 table de fait & n tables de dimensions
- Modélisation très simple

Modèle en flocon : SnowFlake

- 1 table de fait & n tables et sous tables de dimension
- Modélisation complexe, mais lisible
- Ressort les hiérarchies

Introduction - Les Grands Principes - <u>Les différentes modélisations</u> - Le Multi-Dimensionnel

Le Multi-dimensionnel

- Le Cube
- Structure
- Actions
- Stockage

Le cube

Introductior

Les Grands Principes

Les différentes modélisations

<u>Le Multi-</u> <u>Dimensionnel</u>

- Sur l'ensemble des dimensions, on précalcule à tous les croisements la valeur des indicateurs (NWAY)
- Outils spécifiques pour créer et accéder aux données
- Intégration de la notion de hiérarchie
- Structure spécifique

Structure

Introduction

Les Grands Principes

Les différente modélisations

<u>Le Multi-</u> <u>Dimensionnel</u>

Actions : Drill

Actions: Rotate

Introduction

Les Grands Principes

Les différentes modélisations

<u>Le Multi-</u> <u>Dimensionnel</u>

Produits

Secteurs

Évolution du CA « Finance » par Mois

Évolution du CA « Serveur » par Mois

Actions : Slicing

Introductior

Les Grands Principes

Les différentes modélisations

<u>Le Multi-</u> <u>Dimensionnel</u>

Stockage: OLAP

Introductior

Les Grands Principes

Les différentes modélisations

<u>Le Multi-</u> <u>Dimensionnel</u> OLAP : pour OnLine Analytical Processing, désigne une méthode d'analyse représentée par un cube : mode de traitement et de stockage

- Différents types de stockage
 - ROLAP, Relational OLAP: mode de stockage classique
 - MOLAP, Multidimensional OLAP : pure multi-dimentionnel (SAS/MDDB)
 - HOLAP, Hybrid OLAP: repose sur des bases ROLAP (données détaillées), et MOLAP (données agrégées)

Stockage: OLTP (Transaction) vs OLAP

	OLTP	OLAP
Utilisateurs	employé	décideur
Fonction	opérations journalières	aide à la décision
Conception de BDD	orientée application	orientée sujet
Données	courante, à mettre à jour détaillée, relationnelle isolée	historique, résumée, multidimensionnelle intégrée, consolidée
Usage	répété	ad-hoc
Accès	lecture + écriture index sur clé primaire	lecture seule différentes analyses
Unité de travail	transaction simple	requête complexe
Nb enreg. utilisés	dizaines de milliers	millions
Nb utilisateurs	milliers	centaines, voir dizaines
Taille de la BDD	100 MB-GB	100 GB-TB

Rappels

Architecture

Définition du DWH

Introductior

<u>Les Grands</u> Principes

Les différentes

Le Multi-Dimensionnel « Le Data WareHouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées pour le support d'un processus d'aide à la décision »

Bill Inmon, « Using the Data Warehouse »

Étoile et Flocon

Introductior

Les Grands Principes

<u>Les différentes</u> modélisations

Le Multi-Dimensionnel Étoile : Star Schema

- 1 table de fait
- n tables de dimensions
- Flocon : Snow Flake
 - Une étoile
 - n tables de dimensions et n sous tables correspondant à la hiérarchie

A quoi sert un ODS

Introductior

<u>Les Grands</u> Principes

Les différentes modélisations

Le Multi-Dimensionnel

- ODS : Operational DataStore
- Structure intermédiaire qui stocke des données issues des systèmes de production.
- Stockage tampon avant l'intégration
- Souvent, modèle relationnel proche de l'opérationnel

Concrètement : Agrégations et Historisation

Introductior

- <u>Les Grands</u> <u>Principes</u>
- Les différentes
- Le Multi-Dimensionnel

- Données détaillées historisées
- Données détaillées
 - Données agrégées
 - Données fortement agrégées

Structure Cube

Introduction

Les Grands Principes

Les différente modélisations

<u>Le Multi-</u> <u>Dimensionnel</u>

Exemple

Exemple

- La Direction commerciale souhaite savoir si son Call Center est rentable
- Proposer une structure DWH (flocon ou étoile) avec les variables en sortie ainsi que leurs règles de gestion – Explications ???

