Оглавление

1	Kpi	иволинейный интеграл Ориентация кривой		
	1.1			
		1.1.1	Замкнутая кривая	
		1.1.2	Длина кривой	
		1.1.3	Криволинейный интеграл	
	1.2	Криво	линейный интеграл второго рода	
		1.2.1	Важное свойство сумм Римана	
		1.2.2	Свойства криволинейных интегралов второго рода	

Глава 1

Криволинейный интеграл

1.1. Ориентация кривой

Определение 1. $\Gamma:[a,b] o \mathbb{R}^{n\geq 2}$ — разомкнутая кривая.

 $\Gamma(a)$ называется началом кривой, $\Gamma(b)$ — концом.

Начало и конец задают ориентацию кривой.

$$a < c_1 < \dots < c_m < b$$

Точки $\Gamma(a), \Gamma(c_1), \dots, \Gamma(c_m), \Gamma(b)$ проходятся в соответствии с выбранной ориентацией.

Рассмотрим образ кривой:

$$\Gamma \subset \mathbb{R}^n$$

$$\Gamma(a) =: A, \qquad \Gamma(b) =: B, \qquad \Gamma(c_k) =: M_k$$

Точки A, M_1, \dots, M_m, B проходятся в соотвествии с выбранной ориентацией.

Можно выбрать т. н. обратную ориентацию:

$$\Gamma_1:[a,b]\to\mathbb{R}^n$$

$$\Gamma_1(t) := \Gamma(a+b-t)$$

$$\Gamma_1(a) = \Gamma(b), \qquad \Gamma_1(b) = \Gamma(a)$$

Справедливо следующее топологическое утверждение:

Теорема 1. Если имеется разомкнутая или замкнутая кривая в \mathbb{R}^n (здесь имеется в виду образ), то на ней можно ввести одну из двух ориентаций.

Без доказательства.

1.1.1. Замкнутая кривая

Для замкнутой кривой всё то же самое.

1.1.2. Длина кривой

При определении длины кривой мы вводили следующие суммы (записанные теперь через образ):

$$\sum_{k=0}^{m} \|M_{k+1} - M_k\|$$

Рассмотрим противоположную ориентацию:

$$M_k' = M_{m+1-k}$$

Поменяем индексы:

$$\sum_{k=0}^{m} \|M_{k+1} - M_k\| = \sum_{k=0}^{m} \|M_{m+1-k} - M_{m-k}\| = \sum_{k=0}^{m} \|M'_{k+1} - M'_k\|$$

Таким образом мы доказали, что

Утверждение 1. Длина кривой не зависит от ориентации.

Другая формулировка. Длина кривой зависит только от её образа.

1.1.3. Криволинейный интеграл

Рассмотрим $\Gamma \subset \mathbb{R}^n$ — образ замкнутой кривой. Пусть даны разбиение $\mathbf{T} = \{\ t_k\ \}$ и оснащение $\mathbf{P} = \{\ au_j\ \}$.

$$\Gamma(a) = A,$$
 $\Gamma(b) = B,$ $\Gamma(t_k) = M_k$
$$A = B,$$
 $\Gamma(\tau_j) =: N_j$

Можно переписать суммы Римана в новых обозначениях:

$$\mathtt{S}(f,\mathtt{T},\mathtt{P}) = \sum_{k=1}^m f(N_k) l\bigg(\Gamma(M_{k-1},M_k)\bigg)$$

Они (при стремелении диаметра разбиения к нулю) стремились к интегралу первого рода. Аналогично длине кривой, здесь можно поменять индексы определённым образом. Таким образом верно следующее:

Утверждение 2. Криволинейный интеграл первого рода не зависит от ориентации кривой.

1.2. Криволинейный интеграл второго рода

Обозначение. Ориентирванную кривую будем обозначать $\Gamma([a,b])$ или Γ Противоположно ориентированную кривую будем обозначать $\Gamma([a,b])$ или Γ

Определение 2.

$$\overset{\smile}{\Gamma}(t)=egin{bmatrix} \gamma_1(t) \\ dots \\ \gamma_n(t) \end{bmatrix}-C^1$$
-кривая, $f\in\mathcal{C}igg(\Gammaigg)$

Криволинейным интеграл второго рода по ориентированной криивой функции f называется

$$\int\limits_{Y} f(M) \, dx_j \coloneqq \int_a^b f(\Gamma(t)) \gamma_j' \, dt$$

Определение 3.

$$c_0 = a < c_1 < \dots < cm < b = c_{m+1}$$

$$\overset{\smile}{\Gamma}[a,b], \qquad \Gamma([c_{k-1},c_k]) - C^1$$
-кривая при $k=1,\ldots,m+1$

Тогда

$$\int_{\Gamma} f(M) \, \mathrm{d} x_j := \sum_{k=1}^{m+1} \int_{\Gamma([c_{k-1}, c_k])} f(M) \, \mathrm{d} x_j$$

Определение 4. $\Gamma-C^1$ -кривая, $f\in\mathcal{C}\left(\Gamma\right)$, $\mathtt{T}=\set{t_k}_{k=0}^m$, $\mathtt{P}=\set{\tau_k}_{k=1}^m$, $\tau_k\in[t_{k-1},t_k]$ Суммой Римана для интеграла второго рода будем называть

$$\mathtt{S}_{\overset{\frown}{\Gamma}}(f,\mathtt{T},\mathtt{P},j) = \sum_{k=1}^m f \big(\Gamma(\tau_k) \big) \bigg(\gamma_j(t_k) - \gamma_j(t_{k-1}) \bigg)$$

Теорема 2. $\overset{\smile}{\Gamma} - C^1$ -кривая

$$\implies \forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall \mathtt{T} : t_{k+1} - t_k < \delta \quad \forall \mathtt{P} \quad \left| \mathtt{S}_{\overset{\smile}{\Gamma}}(f, \mathtt{T}, \mathtt{P}, j) - \int\limits_{\overset{\smile}{\Gamma}} f(M) \; \mathrm{d} \, x_j \right| < \varepsilon$$

Доказательство. $\gamma_{
u}' \in \mathcal{C}\left([a,b]\right)$

$$c_1 > 0 \quad |\gamma'_n(t)| \le c_1 \quad \forall t \in [a, b], \quad \nu = 1, \dots, n$$
 (1.1)

$$\int_{a}^{b} f(\Gamma(t)) \gamma_{j}'(t) dt \stackrel{\text{def}}{=} \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}} f(\Gamma(t)) dt$$
(1.2)

$$\Longrightarrow \mathbf{S}(\dots) - \int_{a}^{b} f\left(\Gamma(t)\right) \gamma_{j}'(t) \, \mathrm{d}\, t \stackrel{\text{def S}}{=}$$

$$= \sum_{k=1}^{m} \left(f\left(\Gamma(\tau_{k})\right) \left(\gamma_{j}(t_{k}) - \gamma_{j}(t_{k})\right) - \int_{t_{k-1}}^{t_{k}} f\left(\Gamma(t)\right) \gamma_{j}'(t) \, \mathrm{d}\, t \right) \stackrel{\text{ф. Ньютона-Лейбница}}{=}$$

$$= \sum_{k=1}^{m} \left(f\left(\Gamma(\tau_{k})\right) \int_{t_{k-1}}^{t_{k}} \gamma_{j}'(t) \, \mathrm{d}\, t - \int_{t_{k-1}}^{t_{k}} f\left(\Gamma(t)\right) \gamma_{j}'(t) \, \mathrm{d}\, t \right) \stackrel{\text{в первом слагаемом вносим константу}}{=}$$

$$= \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}} \left(f\left(\Gamma(\tau_{k})\right) - f\left(\Gamma(t)\right) \right) \gamma_{j}'(t) \, \mathrm{d}\, t \quad (1.3)$$

По теореме Кантора f равномерно непрерывна на Γ :

$$\exists \lambda > 0: \quad \forall M', M'' \in \Gamma \quad \bigg(\|M'' - M'\| < \lambda \implies |f(M'') - f(M')| < \varepsilon \bigg)$$
 (1.4)

В конце прошлой лекции мы выяснили, что

$$|t'' - t'| < \delta \implies ||\Gamma(t'') - \Gamma(t')|| \le c_1 \sqrt{n}\delta$$
(1.5)

 c_1 играло ту же роль, что сейчас ε .

Выберем δ так, чтобы выполнялось

$$c_1\sqrt{n}\delta = \lambda \tag{1.6}$$

Если $t_k - t_{k-1} < 0$, то при $t \in [t_{k-1}, t_k], \quad \tau \in [t_{k-1}, t_k]$ выполнено

$$|t - \tau| < \delta, \qquad k = 1, \dots, m$$

Тогда

$$(1.4), (1.5), (1.6) \implies \left| f(\Gamma(\tau_k)) - f(\Gamma(t)) \right| < \varepsilon$$
(1.7)

$$\frac{1}{\langle 1.3 \rangle} \left| S_{\Gamma}(\dots) - \int_{\Gamma} f(M) \, dx_j \right| \stackrel{\triangle}{\leq} \sum_{k=1}^m \left| \int_{t_{k-1}}^{t_k} \left(f(\Gamma(\tau_k)) - f(\Gamma(t)) \right) \gamma_j' \, dt \right| \leq \\
\leq \sum_{k=1}^m \int_{t_{k-1}}^{t_k} \left| f(\Gamma(\tau_k)) - f(\Gamma(t)) \right| \cdot |\gamma_j'| \, dt < \sum_{k=1}^m \int_{t_{k-1}}^{t_k} \varepsilon |\gamma_j'(t)| \, dt = \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, dt \leq \int_a^b |\mathcal{D}\Gamma(t)| \, dt \leq \varepsilon \int_a^b |\mathcal{D}\Gamma(t)| \, dt \leq \varepsilon I(\Gamma)$$

Следствие.

$$\begin{split} \Gamma(t_k) &=: M_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{nk} \end{bmatrix}, \qquad \Gamma(\tau_k) =: N_k \\ &\Longrightarrow x_{jk} = \gamma_j(t_k) \\ &\Longrightarrow \mathbf{S}_{\Gamma}(f, \mathbf{T}, \mathbf{P}, j) = \sum_{k=1}^m f(N_k)(x_{jk} - x_{j-k-1}) \end{split}$$

 N_k лежит на дуге $\Gamma(M_{k-1},M_k)$

В этой формуле нет отображения. Есть только образ и ориентация.

Значит, криволинейный интеграл второго рода зависит только от образа и ориентации кривой.

1.2.1. Важное свойство сумм Римана

Свойство. Определим $t_{\nu}' \coloneqq t_{m-\nu}, \quad \tau_{\nu}' \coloneqq \tau_{m-\nu+1}$

$$T' := \{ t_k \}_{k=0}^m, \qquad P' := \{ \tau_k \}_{m=1}^m, \qquad M'_{\nu} = M_{m-\nu}, \qquad N'_{\nu} = N_{m-\nu+1}$$

В соответствии с выбранной ориентацией проходились точки M_0,\dots,M_m

Точки M_0', \dots, M_m' — это те же самые точки, проходимые в обратном порядке. То есть мы имеем дело с противоположной ориентацией Γ

$$x'_{i\nu} = x_{i\ m-\nu}$$

$$\begin{split} \widetilde{\mathbf{S}} &= \sum_{k=1}^m f(N_k')(x_{jk}' - x_{j \ k-1}') = \boxed{\mathbf{S}_{\widetilde{\Gamma}}(f, \mathbf{T}', \mathbf{P}', j)} = \sum_{k=1}^m f(N_{m-k+1})(x_{j \ m-k} - x_{j \ m-k+1}) = \\ &= -\sum_{k=1}^m f(N_{m-k+1})(x_{j \ m-k+1} - x_{j \ m-k}) \xrightarrow[\overline{m-k+1 =: \nu}]{} - \sum_{\nu=m}^1 f(N_{\nu})(x_{j\nu} - x_{j \ \nu-1}) \xrightarrow[\overline{k := \nu}]{} - \underbrace{\mathbf{S}_{\widetilde{\Gamma}}(f, \mathbf{T}, \mathbf{P}, j)}_{K} \end{split}$$

1.2.2. Свойства криволинейных интегралов второго рода

Свойства.

$$1. \ \stackrel{\smile}{\Gamma} = \bigcup_{j=1}^l \stackrel{\smile}{\Gamma}_j, \qquad \stackrel{\smile}{\Gamma}_j - C^1\text{-кривая}, \qquad f \in \mathcal{C}\bigg(\Gamma\bigg)$$

$$\Longrightarrow \int\limits_{\Gamma} f(M) \; \mathrm{d}\, x_j = -\int\limits_{\Gamma} f(M) \; \mathrm{d}\, x_j$$

Доказательство.

• Докажем для C^1 -кривой (не кусочной):

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall \mathtt{T} \quad \forall \mathtt{P} : t_k - t_{k-1} < \delta \quad \left| \mathtt{S}_{\overset{\frown}{\Gamma}}(f, \mathtt{T}, \mathtt{P}, j) - \int\limits_{\overset{\frown}{\Gamma}} f(M) \; \mathrm{d} \, x_j \right| < \varepsilon$$

В силу важного свойства,

$$\left| \mathbb{S}_{\widecheck{\Gamma}}(f, \mathbf{T}', \mathbf{P}', j) - \int_{\widecheck{\Gamma}} f(M) \, dx_j \right| < \varepsilon$$

$$\begin{split} \left| \int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j + \int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j \right| &= \\ &= \left| \left(\int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j - \mathbf{S}_{\Gamma}(f, \mathsf{T}, \mathsf{P}, j) \right) + \left(\int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j - \mathbf{S}_{\Gamma}(f, \mathsf{T}', \mathsf{P}', j) \right) \right| \stackrel{\triangle}{\leq} \\ &\leq \left| \int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j - \mathbf{S}_{\Gamma}(f, \mathsf{T}, \mathsf{P}, j) \right| + \left| \int\limits_{\Gamma} f(M) \; \mathrm{d} \, x_j - \mathbf{S}_{\Gamma}(f, \mathsf{T}', \mathsf{P}', j) \right| < \varepsilon + \varepsilon = 2\varepsilon \end{split}$$

• Общий случай:

$$\overset{\smile}{\Gamma} = \bigcup_{\nu=1}^{l} \overset{\smile}{\Gamma}_{\nu} \quad \Longleftrightarrow \quad \overset{\smile}{\Gamma} = \bigcup_{\nu=1}^{l} \overset{\smile}{\Gamma}_{\nu}$$

$$\int_{\Gamma} f(M) \, \mathrm{d} x_j \stackrel{\mathrm{def}}{=} \sum_{\nu=1}^{l} \int_{\Gamma_{\nu}} f(M) \, \mathrm{d} x_j = \sum_{\nu=1}^{l} \left(- \int_{\Gamma_{\nu}} f(M) \, \mathrm{d} x_j \right) =$$

$$= - \sum_{\nu=1}^{l} \int_{\Gamma} f(M) \, \mathrm{d} x_j \stackrel{\mathrm{def}}{=} \int_{\Gamma} f(M) \, \mathrm{d} x_j$$

2. $\Gamma: [a,b] \to \mathbb{R}^n$, $\Gamma(t) \in \mathcal{C}([a,b])$, $c \in \mathbb{R}$

$$\Gamma(t) = \begin{bmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{bmatrix}$$

$$\implies \int c \, dx_j = c(\gamma_j(b) - \gamma_j(a))$$

В частности, если $\Gamma(a) = \Gamma(b)$, то

$$\int = \mathrm{d} x_j 0$$

$$\int \stackrel{\mathrm{def}}{=} \mathrm{d}\,x_j \int_a^b c \gamma_j'(t) \; \mathrm{d}\,t = c \left(\gamma_j(b) - \gamma_j(a) \right)$$

•
$$C^1$$
-кривая
$$\int\limits_{\Gamma}^{\det} \, \mathrm{d}x_j \int_a^b c \gamma_j'(t) \, \mathrm{d}t \xrightarrow{\overline{\Phi} \cdot \operatorname{Hisotoha-Jerishhuna}} c \left(\gamma_j(b) - \gamma_j(a)\right)$$
• $\Gamma = \bigcup_{\nu=1}^l \stackrel{\longleftarrow}{\Gamma}_{\nu}, \qquad \Gamma([t_{k-1}, t_k]) - C^1$ -кривая
$$\int\limits_{\Gamma} c \, \mathrm{d}x_j \stackrel{\det}{=} \sum_{\nu=1}^l \int\limits_{\Gamma[t_{\nu-1}, t_{\nu}]} = \mathrm{d}x_j \sum_{\nu=1}^l c \left(\gamma(t_{\nu}) - \gamma(t_{\nu-1})\right) = c \left(\gamma(t_l) - \gamma(t_0)\right) \stackrel{\det t_0, t_l}{=} c \left(\gamma(b) - \gamma(a)\right)$$

$$\Gamma = \bigcup_{\nu=1}^l \stackrel{\longleftarrow}{\Gamma}_{\nu}, \qquad f \in \mathcal{C}\left(\Gamma\right)$$

3. $\Gamma = \bigcup_{\nu=1}^{l} \Gamma_{\nu}, \qquad f \in \mathcal{C}(\Gamma)$

$$\left| \int_{\Gamma} f(M) \, \mathrm{d} x_j \right| \leq \int_{\Gamma} |f(M)| \, \mathrm{d} l(M)$$

$$\left| \int_{\Gamma} f(M) \, \mathrm{d} x_j \right| \stackrel{\text{def}}{=} \left| \int_a^b f(\Gamma(t)) \gamma_j'(t) \, \mathrm{d} t \right| \leq \int_a^b |f|(\Gamma(t))| \cdot |\gamma_j'(t)| \, \mathrm{d} t \leq \int_a^b |f(\Gamma(t))| \, \|\mathcal{D}\Gamma(t)\|_n \, \mathrm{d} t \stackrel{\text{def}}{=} \int_{\Gamma} f(M) \, \mathrm{d} t = \int$$

$$\bullet \ \stackrel{\smile}{\Gamma} = \bigcup_{\nu=1}^l \stackrel{\smile}{\Gamma}_{\nu}, \qquad \stackrel{\smile}{\Gamma}_{\nu} - C^1$$
-кривая
$$\left| \int\limits_{\Gamma} f(M) \; \mathrm{d}\, x_j \right| \stackrel{\mathrm{def}}{=} \left| \sum_{\nu=1}^l \int\limits_{\Gamma} f(M) \; \mathrm{d}\, x_j \right| \leq \sum_{\nu=1}^l \left| \int\limits_{\Gamma} f(M) \; \mathrm{d}\, x_j \right| \stackrel{\triangle}{\leq} \sum_{\nu=1}^l \int\limits_{\Gamma_{\nu}} |f(M)| \; \mathrm{d}\, l(M) = \int\limits_{\Gamma} f(M) \; \mathrm{d}\, l(M)$$