

1. イオン化エネルギー

演習問題1

BeとBのイオン化エネルギーの大きさが一般的な傾向から外れる理由を、有効核電荷と貫入を使って説明してみよう。

4Be: 1s22s2

2s電子: 4-0.85×2(1s)-0.35×1(2s)=1.95

5B: 1s22s22p1

2p電子: 5-0.85×2(1s)-0.35×2(2s)=2.60

有効核電荷の観点からは、IE (Be) < IE (B)になるはず、しかし実際は逆になりこれは、

買入効果: 2s > 2p; 2s電子への核の束縛大、2p電子に対する2sの遮へい 効果の大きさが影響している

	表2.1	典型元素	の第一イ	オン化エネ	・ルギー(k	J/mol)	
1族	2版、	7 13版	14族	15族	16族	17旋	18族
H(1312)				The last			He(2372)
Li(520)	Be(900)	B(801)	C(1086)	N(1402)	O(1314)	F(1681)	Ne(2081)
Na(496)	Mg(738)	A1(578)	Si(786)	P(1012)	S(1000)	CI(1251)	Ar(1520)

1. イオン化エネルギー

演習問題2

第3周期元素のイオン化エネルギーの大きさを説明してみよう。

1, 2族: Na (1族) < Mg (2族, 閉殼3s)

■ Z*の増加

13族 : Al (13族) ≤ Mg (2族)

Z*の増加、価電子3p:3sより貫入効果小 or3sの遮へい効果大

15族

: Al (13族) < Si (14族) ≪ P (15族) ■ 価電子3p3; 半閉殻(交換エネルギー効果)

16族 : S (16族) < P (15族)

一 価電子3p4;2電子収容→電子間反発

核から軌道が離れ、効果が低減される

Z*の増加&閉殻構造(同一グループで電子数最大→ 適へい効果最小) 18族 : IE最大

表2.1 典型元素の第一イオン化エネルギー(kJ/mol)

1族	2族	13族	14族	15族	16版	17族	18版
H(1312)							He(2372)
Li(520)	Be(900)	B(801)	C(1086)	N(1402)	O(1314)	F(1681)	Ne(2081)
Na(496)	Mg(738)	A1(578)	Si(786)	P(1012)	S(1000)	CI(1251)	Ar(1520)

1. イオン化エネルギー

(5) 遷移元素のイオン化エネルギー

遷移元素

Z*の増加、内殻ns, np軌道の収縮による遮へい 価電子の(n+1)s, nd軌道のエネルギー: 高

イオン化エネルギー:小

不活性電子対効果

Ga (579) < Zn (906), In (558) < Cd (876), Tl (589) < Hg (1007)

d,f軌道の遮へい効果は低い

第一イオン化エネルギー:大

特にHg (6s²4f¹⁴5d¹⁰) で顕著、<u>遷移元素で最大の第一IE</u>

演習問題3

TI, Pb, Biがどのような原子価を取りやすいか説明してみよう。

不活性電子対効果

13族 < 12族: ns²(n-1)d¹0 s,d軌道は閉殻

Ga (579) < Zn (906), In (558) < Cd (876), Tl (589) < Hg (1007)

d,f 軌道の遮へい効果は低い s軌道は貫入効果大&閉殻

価電子の安定性大

第一イオン化エネルギー:小

Hg (6s24f145d10)

TI Pb, Bi: 6s² 4f¹⁴ 5d¹⁰ 6p¹⁻³ p電子のみ放出→価数 1-3