Package 'MPS'

October 12, 2022

Title Estimating Through the Maximum Product Spacing Approach

Author Mahdi Teimouri and Saralees Nadarajah
Maintainer Mahdi Teimouri <teimouri@aut.ac.ir></teimouri@aut.ac.ir>
Description Developed for computing the probability density function, computing the cumulative dis-
tribution function, computing the quantile function, random generation, drawing q-q plot, and es-
timating the parameters of 24 G-family of statistical distributions via the maximum product spac-
ing approach introduced in https://www.jstor.org/stable/2345411 . The set of fami-
lies contains: beta G distribution, beta exponential G distribution, beta extended G distribu-
tion, exponentiated G distribution, exponentiated exponential Poisson G distribution, exponenti-
ated generalized G distribution, exponentiated Kumaraswamy G distribution, gamma type I G dis-
tribution, gamma type II G distribution, gamma uniform G distribution, gamma-X gener-

cated-exponential skew-symmetric G distribution, and Weibull G distribution.

ated of log-logistic family of G distribution, gamma-X family of modified beta exponential G distribution, geometric exponential Poisson G distribution, generalized beta G distribution, generalized transmuted G distribution, Kumaraswamy G distribution, log gamma type I G distribution, log gamma type II G distribution, Marshall Olkin G distribution, Marshall Olkin Kumaraswamy G distribution, modified beta G distribution, odd log-logistic G distribution, trun-

License GPL (>= 2)
Encoding UTF-8
Depends R(>= 3.1)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-04 20:00:02 UTC

R topics documented:

Type Package

Version 2.3.1

MPS-package	2
betaexpg	4
betag	<i>6</i>
expexppg	8

2 MPS-package

MPS-p	oackage	 	ile, random generation, dra ters of 24 G-family of statis	
Index				53
	weibullg	 		. 50
	_			
	mbetag	 		. 38
	loggammag2	 		. 36
	loggammag1	 		. 34
	kumg	 		. 32
	0 0			
	-			
	1 0			
	avna			10

Description

Developed for computing the probability density function, computing the cumulative distribution function, computing the quantile function, random generation, and estimating the parameters of 24 G-family of statistical distributions via the maximum product spacing approach introduced in https://www.jstor.org/stable/2345411. These families are: beta G distribution due to Eugene et al. (2002), beta exponential G distribution due to Alzaatreh et al. (2013), beta extended G distribution due to Alzaatreh et al. (2013), exponentiated G distribution due to Gupta et al. (1998), exponentiated Kumaraswamy G distribution due to Lemonte et al. (2013), exponentiated exponential Poisson G distribution due to Ristic and Nadarajah (2014), exponentiated generalized G distribution due to Cordeiro et al. (2013), gamma type I G distribution due to Zografos and Balakrishnan (2009), gamma type II G distribution due to Ristic and Balakrishnan (2012), gamma uniform G distribution due to Torabi and Montazeri (2012), gamma-X generated of log-logistic family of G distribution due to Alzaatreh et al. (2013), gamma-X family of modified beta exponential G distribution due to Alzaatreh et al. (2013), geometric exponential Poisson G distribution due to Nadarajah et al. (2013), generalized beta G distribution due to Alexander et al. (2012), generalized transmuted G distribution due to Merovci et al. (2017), Kumaraswamy G distribution due to Cordeiro and Castro (2011), log gamma type I G distribution due to Amini et al. (2013), log gamma type II G distribution due to Amini et al. (2013), Marshall-Olkin G distribution due to Marshall and Olkin (1997),

MPS-package 3

Marshall-Olkin Kumaraswamy G distribution due to Roshini and Thobias (2017), modified beta G distribution due to Nadarajah et al. (2013), odd log-logistic G distribution due to Gauss et al. (2017), truncated-exponential skew-symmetric G distribution due to Nadarajah et al. (2014), and Weibull G distribution due to Alzaatreh et al. (2013).

Details

Package: MPS Type: Package Version: 2.3.1 Date: 2019-09-04

License: GPL(>=2)

Author(s)

Mahdi Teimouri and Saralees Nadarajah

Maintainer: Mahdi Teimouri <teimouri@aut.ac.ir>

References

Alexander, C., Cordeiro, G. M., and Ortega, E. M. M. (2012). Generalized beta-generated distributions, *Computational Statistics and Data Analysis*, 56, 1880-1897.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Amini, M., MirMostafaee, S. M. T. K., and Ahmadi, J. (2013). Log-gamma-generated families of distributions, *Statistics*, 48 (4), 913-932.

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Cordeiro, G. M. and Castro, M. (2011). A new family of generalized distributions, *Journal of Statistical Computation and Simulation*, 81, 883-898.

Cordeiro, G. M., Ortega, E. M. M., and da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions, *Journal of Data Science*, 11, 1-27.

Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal distribution and its applications, *Communications in Statistics-Theory and Methods*, 31, 497-512.

Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives, *Communications in Statistics-Theory and Methods*, 27, 887-904.

Gauss, M. C., Alizadeh, M., Ozel, G., Hosseini, B. Ortega, E. M. M., and Altunc, E. (2017). The generalized odd log-logistic family of distributions: properties, regression models and applications, *Journal of Statistical Computation and Simulation*, 87(5), 908-932.

Lemonte, A. J., Barreto-Souza, W., and Cordeiro, G. M. (2013). The exponentiated Kumaraswamy distribution and its log-transform, *Brazilian Journal of Probability and Statistics*, 27, 31-53.

Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, *Biometrika*, 84, 641-652.

4 betaexpg

Merovcia, F., Alizadeh, M., Yousof, H. M., and Hamedani, G. G. (2017). The exponentiated transmuted-G family of distributions: Theory and applications, *Communications in Statistics-Theory and Methods*, 46(21), 10800-10822.

Nadarajah, S., Cancho, V. G., and Ortega, E. M. M. (2013). The geometric exponential Poisson distribution, *Statistical Methods & Applications*, 22, 355-380.

Nadarajah, S., Teimouri, M., and Shih, S. H. (2014). Modified beta distributions, *Sankhya*, 76 (1), 19-48.

Nadarajah, S., Nassiri, V., and Mohammadpour, A. (2014). Truncated-exponential skew-symmetric distributions, *Statistics*, 48 (4), 872-895.

Ristic, M. M. and Balakrishnan, N. (2012). The gamma exponentiated exponential distribution, *Journal of Statistical Computation and Simulation*, 82, 1191-1206.

Ristic, M. M. and Nadarajah, S. (2014). A new lifetime distribution, *Journal of Statistical Computation and Simulation*, 84 (1), 135-150.

Roshini, G. and Thobias, S. (2017). Marshall-Olkin Kumaraswamy Distribution, *International Mathematical Forum*, 12 (2), 47-69.

Torabi, H. and Montazeri, N. H. (2012). The gamma uniform distribution and its applications, *Kybernetika*, 48, 16-30.

Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference, *Statistical Methodology*, 6, 344-362.

betaexpg

beta exponential G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the beta exponential G distribution. The General form for the probability density function (pdf) of the beta exponential G distribution due to Alzaatreh et al. (2013) is given by

$$f(x,\Theta) = \frac{d g(x-\mu,\theta) \left[1 - (1 - G(x-\mu,\theta))^d\right]^{b-1} (1 - G(x-\mu,\theta))^{ad-1}}{B(a,b)},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the beta exponential G distribution is given by

$$F(x,\Theta) = 1 - \frac{\int_0^{(1-G(x-\mu,\theta))^d} y^{a-1} (1-y)^{b-1} dy}{B(a,b)}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,d,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

betaexpg 5

Usage

```
dbetaexpg(mydata, g, param, location = TRUE, log=FALSE)
pbetaexpg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qbetaexpg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rbetaexpg(n, g, param, location = TRUE)
qqbetaexpg(mydata, g, location = "TRUE", method)
mpsbetaexpg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
p	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

6 betag

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dbetaexpg(mydata, "weibull", c(1,1,1,2,2,3))
pbetaexpg(mydata, "weibull", c(1,1,1,2,2,3))
qbetaexpg(runif(100), "weibull", c(1,1,1,2,2,3))
rbetaexpg(100, "weibull", c(1,1,1,2,2,3))
qqbetaexpg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsbetaexpg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

betag

beta G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the beta G distribution. General form for the probability density function (pdf) of beta G distribution due to Eugene et al. (2002) is given by

$$f(x,\Theta) = \frac{g(x-\mu,\theta)(G(x-\mu,\theta))^{a-1}(1-G(x-\mu,\theta))^{b-1}}{B(a,b)},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the beta G distribution is given by

$$F(x,\Theta) = \frac{\int_0^{G(x-\mu,\theta)} y^{a-1} (1-y)^{b-1} dy}{B(a,b)}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

betag 7

Usage

```
dbetag(mydata, g, param, location = TRUE, log=FALSE)
pbetag(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qbetag(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rbetag(n, g, param, location = TRUE)
qqbetag(mydata, g, location = TRUE, method)
mpsbetag(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

8 expexppg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal distribution and its applications, *Communications in Statistics-Theory and Methods*, 31, 497-512.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dbetag(mydata, "weibull", c(1,1,2,2,3))
pbetag(mydata, "weibull", c(1,1,2,2,3))
qbetag(runif(100), "weibull", c(1,1,2,2,3))
rbetag(100, "weibull", c(1,1,2,2,3))
qqbetag(mydata, "weibull", TRUE, "Nelder-Mead")
mpsbetag(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

expexppg

exponentiated exponential Poisson G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the exponentiated exponential Poisson G distribution. The general form for the probability density function (pdf) of the exponentiated exponential Poisson G distribution due to Ristic and Nadarajah (2014) is given by

$$f(x,\Theta) = \frac{a b g(x - \mu, \theta) (G(x - \mu, \theta))^{a-1} e^{-b(G(x - \mu, \theta))^a}}{1 - e^{-b}},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the exponentiated exponential Poisson G distribution is given by

$$F(x,\Theta) = \frac{1 - e^{-b(G(x-\mu,\theta))^a}}{1 - e^{-b}}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

expexppg 9

Usage

```
dexpexppg(mydata, g, param, location = TRUE, log=FALSE)
pexpexppg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qexpexppg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rexpexppg(n, g, param, location = TRUE)
qqexpexppg(mydata, g, location = TRUE, method)
mpsexpexppg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

10 expg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Ristic, M. M. and Nadarajah, S. (2014). A new lifetime distribution, *Journal of Statistical Computation and Simulation*, 84 (1), 135-150.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dexpexppg(mydata, "weibull", c(1,1,2,2,3))
pexpexppg(mydata, "weibull", c(1,1,2,2,3))
qexpexppg(runif(100), "weibull", c(1,1,2,2,3))
rexpexppg(100, "weibull", c(1,1,2,2,3))
qqexpexppg(mydata, "weibull", location = TRUE, "Nelder-Mead")
mpsexpexppg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

expg

exponentiated G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the exponentiated G distribution. General form for the probability density function (pdf) of the exponentiated G distribution due to Gupta et al. (1998) is given by

$$f(x,\Theta) = a g(x - \mu, \theta) (G(x - \mu, \theta))^{a-1},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the exponentiated G distribution is given by

$$F(x,\Theta) = (G(x - \mu, \theta))^{a}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a is the shape parameter). Always, the location parameter μ is placed in the last component of Θ .

expg 11

Usage

```
dexpg(mydata, g, param, location = TRUE, log=FALSE)
pexpg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qexpg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rexpg(n, g, param, location = TRUE)
qqexpg(mydata, g, location = TRUE, method)
mpsexpg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

12 expgg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives, *Communications in Statistics-Theory and Methods*, 27, 887-904.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dexpg(mydata, "weibull", c(1,2,2,3))
pexpg(mydata, "weibull", c(1,2,2,3))
qexpg(runif(100), "weibull", c(1,2,2,3))
rexpg(100, "weibull", c(1,2,2,3))
qqexpg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsexpg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

expgg

exponentiated generalized G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the exponentiated generalized G distribution. The General form for the probability density function (pdf) of the exponentiated generalized G distribution due to Cordeiro et al. (2013) is given by

$$f(x,\Theta) = a b g(x - \mu, \theta) (1 - G(x - \mu, \theta))^{a-1} [1 - (1 - G(x - \mu, \theta))^{a}]^{b-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the exponentiated generalized G distribution is given by

$$F(x,\Theta) = [1 - (1 - G(x - \mu, \theta))^a]^b.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

expgg 13

Usage

```
dexpgg(mydata, g, param, location = TRUE, log=FALSE)
pexpgg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qexpgg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rexpgg(n, g, param, location = TRUE)
qqexpgg(mydata, g, location = TRUE, method)
mpsexpgg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

6	
g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

14 expkumg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Cordeiro, G. M., Ortega, E. M. M., and da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions, *Journal of Data Science*, 11, 1-27.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dexpgg(mydata, "weibull", c(1,1,2,2,3))
pexpgg(mydata, "weibull", c(1,1,2,2,3))
qexpgg(runif(100), "weibull", c(1,1,2,2,3))
rexpgg(100, "weibull", c(1,1,2,2,3))
qqexpgg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsexpgg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

expkumg

exponentiated Kumaraswamy G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the exponentiated Kumaraswamy G distribution. The General form for the probability density function (pdf) of exponentiated Kumaraswamy G distribution due to Lemonte et al. (2013) is given by

$$f(x,\Theta) = a b d g(x-\mu,\theta) (G(x-\mu,\theta))^{a-1} \left[1 - (G(x-\mu,\theta))^a\right]^{b-1} \left\{1 - \left[1 - (G(x-\mu,\theta))^a\right]^b\right\}^{d-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the exponentiated Kumaraswamy G distribution is given by

$$F(x,\Theta) = \left\{1 - \left[1 - \left(G(x - \mu, \theta)\right)^{a}\right]^{b}\right\}^{d}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,d,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

expkumg 15

Usage

```
dexpkumg(mydata, g, param, location = TRUE, log=FALSE)
pexpkumg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qexpkumg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rexpkumg(n, g, param, location = TRUE)
qqexpkumg(mydata, g, location = TRUE, method)
mpsexpkumg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Lemonte, A. J., Barreto-Souza, W., and Cordeiro, G. M. (2013). The exponentiated Kumaraswamy distribution and its log-transform, *Brazilian Journal of Probability and Statistics*, 27, 31-53.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dexpkumg(mydata, "weibull", c(1,1,1,2,2,3))
pexpkumg(mydata, "weibull", c(1,1,1,2,2,3))
qexpkumg(runif(100), "weibull", c(1,1,1,2,2,3))
rexpkumg(100, "weibull", c(1,1,1,2,2,3))
qqexpkumg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsexpkumg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gammag

gamma uniform G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the gamma uniform G distribution. General form for the probability density function (pdf) of the gamma uniform G distribution due to Torabi and Montazeri (2012) is given by

$$f(x,\Theta) = \frac{g(x-\mu,\theta)}{\Gamma(a)(1-G(x-\mu,\theta))^2} \left(\frac{G(x-\mu,\theta)}{1-G(x-\mu,\theta)}\right)^{a-1} e^{-\frac{G(x-\mu,\theta)}{1-G(x-\mu,\theta)}},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the gamma uniform G distribution is given by

$$F(x,\Theta) = \int_0^{\frac{G(x-\mu,\theta)}{1-G(x-\mu,\theta)}} \frac{y^{a-1}e^{-y}}{\Gamma(a)} dy.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a is the shape parameter). Always, the location parameter μ is placed in the last component of Θ .

Usage

```
dgammag(mydata, g, param, location = TRUE, log=FALSE)
pgammag(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgammag(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgammag(n, g, param, location = TRUE)
qqgammag(mydata, g, location = TRUE, method)
mpsgammag(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
p	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Torabi, H. and Montazeri, N. H. (2012). The gamma uniform distribution and its applications, *Kybernetika*, 48, 16-30.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgammag(mydata, "weibull", c(1,2,2,3))
pgammag(mydata, "weibull", c(1,2,2,3))
qgammag(runif(100), "weibull", c(1,2,2,3))
rgammag(100, "weibull", c(1,2,2,3))
qqgammag(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgammag(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gammag1

gamma uniform type I G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the gamma uniform type I G distribution. General form for the probability density function (pdf) of the gamma uniform type I G distribution due to Zografos and Balakrishnan (2009) is given by

$$f(x,\Theta) = \frac{g(x-\mu,\theta)}{\Gamma\left(a\right)} \left[-\log\left(1-G(x-\mu,\theta)\right)\right]^{a-1},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the gamma uniform type I G distribution is given by

$$F(x,\Theta) = \int_0^{-\log(1-G(x-\mu,\theta))} \frac{y^{a-1}e^{-y}}{\Gamma(a)} dy.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a is the shape parameter). Always, the location parameter μ is placed in the last component of Θ .

Usage

```
dgammag1(mydata, g, param, location = TRUE, log=FALSE)
pgammag1(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgammag1(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgammag1(n, g, param, location = TRUE)
qqgammag1(mydata, g, location = TRUE, method)
mpsgammag1(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference, *Statistical Methodology*, 6, 344-362.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgammag1(mydata, "weibull", c(1,2,2,3))
pgammag1(mydata, "weibull", c(1,2,2,3))
qgammag1(runif(100), "weibull", c(1,2,2,3))
rgammag1(100, "weibull", c(1,2,2,3))
qqgammag1(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgammag1(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gammag2

gamma uniform type II G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the gamma uniform type II G distribution. General form for the probability density function (pdf) of the gamma uniform type II G distribution due to Ristic and Balakrishnan (2012) is given by

$$f(x,\Theta) = \frac{g(x-\mu,\theta)}{\Gamma(a)} \left[-\log\left(G(x-\mu,\theta)\right)\right]^{a-1},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the gamma uniform type II G distribution is given by

$$F(x,\Theta) = \int_0^{-\log(G(x-\mu,\theta))} \frac{y^{a-1}e^{-y}}{\Gamma(a)} dy.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a is the shape parameter). Always, the location parameter μ is placed in the last component of Θ .

Usage

```
dgammag2(mydata, g, param, location = TRUE, log=FALSE)
pgammag2(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgammag2(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgammag2(n, g, param, location = TRUE)
qqgammag2(mydata, g, location = TRUE, method)
mpsgammag2(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

22 gbetag

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Ristic, M. M. and Balakrishnan, N. (2012). The gamma exponential distribution, *Journal of Statistical Computation and Simulation*, 82, 1191-1206.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgammag2(mydata, "weibull", c(1,2,2,3))
pgammag2(mydata, "weibull", c(1,2,2,3))
qgammag2(runif(100), "weibull", c(1,2,2,3))
rgammag2(100, "weibull", c(1,2,2,3))
qqgammag2(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgammag2(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gbetag

generalized beta G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the generalized beta G distribution. General form for the probability density function (pdf) of the generalized beta G distribution due to Alexander et al. (2012) is given by

$$f(x,\Theta) = \frac{d g(x - \mu, \theta) (G(x - \mu, \theta))^{ad - 1} \left[1 - (G(x - \mu, \theta))^d \right]^{b - 1}}{B(a, b)},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the generalized beta G distribution is given by

$$F(x,\Theta) = \frac{\int_0^{(G(x-\mu,\theta))^d} y^{a-1} (1-y)^{b-1} dy}{B(a,b)}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,d,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

gbetag 23

Usage

```
dgbetag(mydata, g, param, location = TRUE, log=FALSE)
pgbetag(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgbetag(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgbetag(n, g, param, location = TRUE)
qqgbetag(mydata, g, location = TRUE, method)
mpsgbetag(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12*m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

24 gexppg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alexander, C., Cordeiro, G. M., and Ortega, E. M. M. (2012). Generalized beta-generated distributions, *Computational Statistics and Data Analysis*, 56, 1880-1897.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgbetag(mydata, "weibull", c(1,1,1,2,2,3))
pgbetag(mydata, "weibull", c(1,1,1,2,2,3))
qgbetag(runif(100), "weibull", c(1,1,1,2,2,3))
rgbetag(100, "weibull", c(1,1,1,2,2,3))
qqgbetag(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgbetag(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gexppg

geometric exponential Poisson G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the geometric exponential Poisson G distribution. General form for the probability density function (pdf) of the geometric exponential Poisson G distribution due to Nadarajah et al. (2013) is given by

$$f(x,\Theta) = \frac{a(1-b)g(x-\mu,\theta)(1-e^{-a})e^{-a+aG(x-\mu,\theta)}}{(1-e^{-a}-b+be^{-a+aG(x-\mu,\theta)})^2},$$

where θ is the baseline family parameter vector. Also, a>0, 0<b<1, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the geometric exponential Poisson G distribution is given by

$$F(x,\Theta) = \frac{e^{-a+aG(x-\mu,\theta)} - e^{-a}}{1 - e^{-a} - b + be^{-a+aG(x-\mu,\theta)}}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

gexppg 25

Usage

```
dgexppg(mydata, g, param, location = TRUE, log=FALSE)
pgexppg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgexppg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgexppg(n, g, param, location = TRUE)
qqgexppg(mydata, g, location = TRUE, method)
mpsgexppg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

26 gmbetaexpg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Nadarajah, S., Cancho, V. G., and Ortega, E. M. M. (2013). The geometric exponential Poisson distribution, *Statistical Methods & Applications*, 22, 355-380.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgexppg(mydata, "weibull", c(1,0.5,2,2,3))
pgexppg(mydata, "weibull", c(1,0.5,2,2,3))
qgexppg(runif(100), "weibull", c(1,0.5,2,2,3))
rgexppg(100, "weibull", c(1,0.5,2,2,3))
qqgexppg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgexppg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gmbetaexpg

gamma-X family of modified beta exponential G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the gamma-X family of modified beta exponential G distribution. The General form for the probability density function (pdf) of the gamma-X family of the modified beta exponential G distribution due to Alzaatreh et al. (2013) is given by

$$f(x,\Theta) = abg(x-\mu,\theta)(1-G(x-\mu,\theta))^{-2}e^{-b\frac{G(x-\mu,\theta)}{1-G(x-\mu,\theta)}}\left[1-e^{-b\frac{G(x-\mu,\theta)}{1-G(x-\mu,\theta)}}\right]^{a-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the gamma-X family of modified beta exponential G distribution is given by

$$F(x,\Theta) = \left(1 - e^{-b\frac{G(x-\mu,\theta)}{1 - G(x-\mu,\theta)}}\right)^{a}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

gmbetaexpg 27

Usage

```
dgmbetaexpg(mydata, g, param, location = TRUE, log=FALSE)
pgmbetaexpg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgmbetaexpg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgmbetaexpg(n, g, param, location = TRUE)
qqgmbetaexpg(mydata, g, location = TRUE, method)
mpsgmbetaexpg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

28 gtransg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgmbetaexpg(mydata, "weibull", c(1,1,2,2,3))
pgmbetaexpg(mydata, "weibull", c(1,1,2,2,3))
qgmbetaexpg(runif(100), "weibull", c(1,1,2,2,3))
rgmbetaexpg(100, "weibull", c(1,1,2,2,3))
qqgmbetaexpg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgmbetaexpg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gtransg

exponentiated exponential Poisson G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the generalized transmuted G distribution. The general form for the probability density function (pdf) of the generalized transmuted G distribution due to Merovci et al. (2017) is given by

$$f(x,\Theta) = a g(x - \mu, \theta) (G(x - \mu, \theta))^{a-1} [1 + b - 2bG(x - \mu, \theta)] [1 + b (1 - G(x - \mu, \theta))]^{a-1},$$

where θ is the baseline family parameter vector. Also, a>0, b<1, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the generalized transmuted G distribution distribution is given by

$$F(x,\Theta) = (G(x-\mu,\theta))^{a} [1 + b (1 - G(x-\mu,\theta))]^{a}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

gtransg 29

Usage

```
dgtransg(mydata, g, param, location = TRUE, log=FALSE)
pgtransg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgtransg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgtransg(n, g, param, location = TRUE)
qqgtransg(mydata, g, location = TRUE, method)
mpsgtransg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

6	
g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

30 gxlogisticg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Merovcia, F., Alizadeh, M., Yousof, H. M., and Hamedani, G. G. (2017). The exponentiated transmuted-G family of distributions: Theory and applications, *Communications in Statistics-Theory and Methods*, 46(21), 10800-10822.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgtransg(mydata, "weibull", c(1,0.5,2,2,3))
pgtransg(mydata, "weibull", c(1,0.5,2,2,3))
qgtransg(runif(100), "weibull", c(1,0.5,2,2,3))
rgtransg(100, "weibull", c(1,0.5,2,2,3))
qqgtransg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgtransg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

gxlogisticg

gamma-X generated of log-logistic-X familiy of G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the log-logistic-X familiy of G distribution. General form for the probability density function (pdf) of gamma-X generated of the log-logistic-X familiy of G distribution due to Alzaatreh et al. (2013) is given by

$$f(x,\Theta) = \frac{ag(x-\mu,\theta)[-\log(1-G(x-\mu,\theta))]^{-a-1}}{(1-G(x,\theta))\{1+[-\log(1-G(x,\theta))]^a\}^2},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. It should be noted that here we set $W(G(x,\theta)) = -log(1-G(x,\theta))$. The general form for the cumulative distribution function (cdf) of the gamma-X generated of log-logistic familiy of G distribution is given by

$$F(x,\Theta) = \frac{1}{1 + \left[-\log(1 - G(x,\theta))\right]^{-a}}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a is the shape parameter). Always, the location parameter μ is placed in the last component of Θ .

gxlogisticg 31

Usage

```
dgxlogisticg(mydata, g, param, location = TRUE, log=FALSE)
pgxlogisticg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgxlogisticg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgxlogisticg(n, g, param, location = TRUE)
qqgxlogisticg(mydata, g, location = TRUE, method)
mpsgxlogisticg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

32 kumg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dgxlogisticg(mydata, "weibull", c(1,2,2,3))
pgxlogisticg(mydata, "weibull", c(1,2,2,3))
qgxlogisticg(runif(100), "weibull", c(1,2,2,3))
rgxlogisticg(100, "weibull", c(1,2,2,3))
qqgxlogisticg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgxlogisticg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

kumg

Kumaraswamy G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Kumaraswamy G distribution. General form for the probability density function (pdf) of the Kumaraswamy G distribution due to Cordeiro and Castro (2011) is given by

$$f(x,\Theta) = a b g(x - \mu, \theta) (G(x - \mu, \theta))^{a-1} [1 - (G(x - \mu, \theta))^a]^{b-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the Kumaraswamy G distribution is given by

$$F(x,\Theta) = 1 - [1 - (G(x - \mu, \theta))^a]^b.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

kumg 33

Usage

```
dkumg(mydata, g, param, location = TRUE, log=FALSE)
pkumg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qkumg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rkumg(n, g, param, location = TRUE)
qqkumg(mydata, g, location = TRUE, method)
mpskumg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

34 loggammag1

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Cordeiro, G. M. and Castro, M. (2011). A new family of generalized distributions, *Journal of Statistical Computation and Simulation*, 81, 883-898.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dkumg(mydata, "weibull", c(1,1,2,2,3))
pkumg(mydata, "weibull", c(1,1,2,2,3))
qkumg(runif(100), "weibull", c(1,1,2,2,3))
rkumg(100, "weibull", c(1,1,2,2,3))
qqkumg(mydata, "weibull", TRUE, "Nelder-Mead")
mpskumg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

loggammag1

log gamma G type I distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the log gamma type I G distribution. General form for the probability density function (pdf) of the log gamma type I G distribution due to Amini et al. (2013) is given by

$$f(x,\Theta) = \frac{b^a}{\Gamma(a)} g(x-\mu,\theta) [-\log(1-G(x-\mu,\theta))]^{a-1} (1-G(x-\mu,\theta))^{b-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the log gamma type I G distribution is given by

$$F(x,\Theta) = \int_0^{-b \log(1 - G(x - \mu, \theta))} \frac{y^{a-1}e^{-y}}{\Gamma(a)} dy.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

loggammag1 35

Usage

```
dloggammag1(mydata, g, param, location = TRUE, log=FALSE)
ploggammag1(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qloggammag1(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rloggammag1(n, g, param, location = TRUE)
qqloggammag1(mydata, g, location = TRUE, method)
mpsloggammag1(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

36 loggammag2

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Amini, M., MirMostafaee, S. M. T. K., and Ahmadi, J. (2013). Log-gamma-generated families of distributions, *Statistics*, 48 (4), 913-932.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dloggammag1(mydata, "weibull", c(1,1,2,2,3))
ploggammag1(mydata, "weibull", c(1,1,2,2,3))
qloggammag1(runif(100), "weibull", c(1,1,2,2,3))
rloggammag1(100, "weibull", c(1,1,2,2,3))
qqloggammag1(mydata, "weibull", TRUE, "Nelder-Mead")
mpsloggammag1(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

loggammag2

log gamma G type II distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the log gamma type II G distribution. General form for the probability density function (pdf) of the log gamma type II G distribution due to Amini et al. (2013) is given by

$$f(x,\Theta) = \frac{b^a}{\Gamma(a)} g(x - \mu, \theta) [-\log(G(x - \mu, \theta))]^{a-1} (G(x - \mu, \theta))^{b-1},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the log gamma type II G distribution is given by

$$F(x,\Theta) = 1 - \int_0^{-b \log(G(x-\mu,\theta))} \frac{y^{a-1}e^{-y}}{\Gamma(a)} dy.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

loggammag2 37

Usage

```
dloggammag2(mydata, g, param, location = TRUE, log=FALSE)
ploggammag2(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qloggammag2(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rloggammag2(n, g, param, location = TRUE)
qqloggammag2(mydata, g, location = TRUE, method)
mpsloggammag2(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

38 mbetag

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Amini, M., MirMostafaee, S. M. T. K., and Ahmadi, J. (2013). Log-gamma-generated families of distributions, *Statistics*, 48 (4), 913-932.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dloggammag2(mydata, "weibull", c(1,1,2,2,3))
ploggammag2(mydata, "weibull", c(1,1,2,2,3))
qloggammag2(runif(100), "weibull", c(1,1,2,2,3))
rloggammag2(100, "weibull", c(1,1,2,2,3))
qqloggammag2(mydata, "weibull", TRUE, "Nelder-Mead")
mpsloggammag2(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

mbetag

modified beta G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the modified beta G distribution. General form for the probability density function (pdf) of the modified beta G distribution due to Nadarajah et al. (2013) is given by

$$f(x,\Theta) = \frac{d^a g(x-\mu,\theta) (G(x-\mu,\theta))^{a-1} (1-G(x-\mu,\theta))^{b-1}}{B(a,b) [1-(1-d)\,G(x-\mu,\theta)]^{a+b}},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cdf of the modified beta G distribution is given by

$$F(x,\Theta) = \frac{\int_0^{\frac{d G(x-\mu,\theta)}{1-(1-d)G(x-\mu,\theta)}} y^{a-1} (1-y)^{b-1} dy}{B(a,b)}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, d, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

mbetag 39

Usage

```
dmbetag(mydata, g, param, location = TRUE, log=FALSE)
pmbetag(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qmbetag(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rmbetag(n, g, param, location = TRUE)
qqmbetag(mydata, g, location = TRUE, method)
mpsmbetag(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

40 mog

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Nadarajah, S., Teimouri, M., and Shih, S. H. (2014). Modified beta distributions, *Sankhya*, 76 (1), 19-48.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dmbetag(mydata, "weibull", c(1,1,1,2,2,3))
pmbetag(mydata, "weibull", c(1,1,1,2,2,3))
qmbetag(runif(100), "weibull", c(1,1,1,2,2,3))
rmbetag(100, "weibull", c(1,1,1,2,2,3))
qqmbetag(mydata, "weibull", TRUE, "Nelder-Mead")
mpsmbetag(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

mog

Marshall-Olkin G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Marshall-Olkin G distribution. General form for the probability density function (pdf) of the Marshall-Olkin G distribution due to Marshall and Olkin (1997) is given by

$$f(x,\Theta) = \frac{ag(x-\mu,\theta)}{\left[1 - (1-a)(1 - G(x-\mu,\theta))\right]^2},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the Marshall-Olkin G distribution is given by

$$F(x,\Theta) = 1 - \frac{a(1 - G(x - \mu, \theta))}{[1 - (1 - a)(1 - G(x - \mu, \theta))]}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (Ifr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta=(a,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter. Always, the location parameter μ is placed in the last component of Θ .

mog 41

Usage

```
dmog(mydata, g, param, location = TRUE, log=FALSE)
pmog(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qmog(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rmog(n, g, param, location = TRUE)
qqmog(mydata, g, location = TRUE, method)
mpsmog(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

42 mokumg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, *Biometrika*, 84, 641-652.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dmog(mydata, "weibull", c(0.5,2,2,3))
pmog(mydata, "weibull", c(0.5,2,2,3))
qmog(runif(100), "weibull", c(0.5,2,2,3))
rmog(100, "weibull", c(0.5,2,2,3))
qqmog(mydata, "weibull", TRUE, "Nelder-Mead")
mpsmog(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

mokumg

Marshall-Olkin Kumaraswamy G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Marshall-Olkin Kumaraswamy G distribution. General form for the probability density function (pdf) of the Marshall-Olkin Kumaraswamy G distribution due to Roshini and Thobias (2017) is given by

$$f(x,\Theta) = \frac{abdg(x-\mu,\theta)(G(x-\mu,\theta))^{a-1}\big[1-(G(x-\mu,\theta))^a\big]^{b-1}}{\Big[1-(1-d)\left[1-(G(x-\mu,\theta))^a\right]^b\Big]^2},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the Marshall-Olkin Kumaraswamy G distribution is given by

$$F(x,\Theta) = 1 - \frac{d[1 - (G(x - \mu, \theta))^a]^b}{1 - (1 - d)[1 - (G(x - \mu, \theta))^a]^b}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,d,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

mokumg 43

Usage

```
dmokumg(mydata, g, param, location = TRUE, log=FALSE)
pmokumg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qmokumg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rmokumg(n, g, param, location = TRUE)
qqmokumg(mydata, g, location = TRUE, method)
mpsmokumg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.
	p n mydata param location log log.p lower.tail method

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

44 ologlogg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Roshini, G. and Thobias, S. (2017). Marshall-Olkin Kumaraswamy Distribution, *International Mathematical Forum*, 12 (2), 47-69.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dmokumg(mydata, "weibull", c(1,1,1,2,2,3))
pmokumg(mydata, "weibull", c(1,1,1,2,2,3))
qmokumg(runif(100), "weibull", c(1,1,1,2,2,3))
rmokumg(100, "weibull", c(1,1,1,2,2,3))
qqmokumg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsmokumg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

ologlogg

odd log-logistic G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the odd log-logistic G distribution. General form for the probability density function (pdf) of the odd log-logistic G distribution due to Gauss et al. (2017) is given by

$$f(x,\Theta) = \frac{a b d g(x-\mu,\theta) (G(x-\mu,\theta))^{a d-1} \left[\bar{G}(x-\mu,\theta) \right]^{d-1}}{\left[\left(G(x-\mu,\theta) \right)^{d} - \left(\bar{G}(x-\mu,\theta) \right)^{d} \right]^{a+1}} \left\{ 1 - \left[\frac{\left(G(x-\mu,\theta) \right)^{d}}{\left(G(x-\mu,\theta) \right)^{d} - \left(\bar{G}(x-\mu,\theta) \right)^{d}} \right]^{a} \right\}^{b-1},$$

with $\bar{G}(x - \mu, \theta) = 1 - G(x - \mu, \theta)$ where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the odd log-logistic G distribution is given by

$$F(x,\Theta) = 1 - \left\{ 1 - \left[\frac{\left(G(x-\mu,\theta) \right)^d}{\left(G(x-\mu,\theta) \right)^d - \left(\bar{G}(x-\mu,\theta) \right)^d} \right]^a \right\}^b.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a,b,d,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ .

ologlogg 45

Usage

```
dologlogg(mydata, g, param, location = TRUE, log=FALSE)
pologlogg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qologlogg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rologlogg(n, g, param, location = TRUE)
qqologlogg(mydata, g, location = TRUE, method)
mpsologlogg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, d, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

46 texpsg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Gauss, M. C., Alizadeh, M., Ozel, G., Hosseini, B. Ortega, E. M. M., and Altunc, E. (2017). The generalized odd log-logistic family of distributions: properties, regression models and applications, *Journal of Statistical Computation and Simulation*, 87(5), 908-932.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dologlogg(mydata, "weibull", c(1,1,1,2,2,3))
pologlogg(mydata, "weibull", c(1,1,1,2,2,3))
qologlogg(runif(100), "weibull", c(1,1,1,2,2,3))
rologlogg(100, "weibull", c(1,1,1,2,2,3))
qqologlogg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsologlogg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

texpsg

truncated-exponential skew-symmetric G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the truncated-exponential skew-symmetric G distribution. General form for the probability density function (pdf) of the truncated-exponential skew-symmetric G distribution due to Nadarajah et al. (2014) is given by

$$f(x,\Theta) = \frac{a}{1 - e^{-a}}g(x - \mu, \theta)e^{-aG(x - \mu, \theta)},$$

where θ is the baseline family parameter vector. Also, a>0 and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the truncated-exponential skew-symmetric G distribution is given by

$$F(x,\Theta) = \frac{1 - e^{-aG(x - \mu, \theta)}}{1 - e^{-a}}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Lognormal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta=(a,\theta,\mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter. Always, the location parameter μ is placed in the last component of Θ .

texpsg 47

Usage

```
dtexpsg(mydata, g, param, location = TRUE, log=FALSE)
ptexpsg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qtexpsg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rtexpsg(n, g, param, location = TRUE)
qqtexpsg(mydata, g, location = TRUE, method)
mpstexpsg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

48 weibullextg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Nadarajah, S., Nassiri, V., and Mohammadpour, A. (2014). Truncated-exponential skew-symmetric distributions, *Statistics*, 48 (4), 872-895.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dtexpsg(mydata, "weibull", c(1,2,2,3))
ptexpsg(mydata, "weibull", c(1,2,2,3))
qtexpsg(runif(100), "weibull", c(1,2,2,3))
rtexpsg(100, "weibull", c(1,2,2,3))
qqtexpsg(mydata, "weibull", TRUE, "Nelder-Mead")
mpstexpsg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

weibullextg

T-X{log-logistic} *G distribution*

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Weibull extended or T-X{log-logistic} G distribution. General form for the probability density function (pdf) of the Weibull extended G distribution due to Alzaatreh et al. (2013) is given by

$$f(x,\Theta) = \frac{a g(x - \mu, \theta)}{b(1 - G(x - \mu, \theta))^2} \left(\frac{G(x - \mu, \theta)}{1 - G(x - \mu, \theta)}\right)^{\frac{1}{b} - 1} \exp\left\{-a\left(\frac{G(x - \mu, \theta)}{1 - G(x - \mu, \theta)}\right)^{\frac{1}{b}}\right\},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the Weibull extended G distribution is given by

$$F(x,\Theta) = 1 - \exp\left\{-a\left(\frac{G(x-\mu,\theta)}{1 - G(x-\mu,\theta)}\right)^{\frac{1}{b}}\right\}.$$

Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

weibullextg 49

Usage

```
dweibullextg(mydata, g, param, location = TRUE, log=FALSE)
pweibullextg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qweibullextg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rweibullextg(n, g, param, location = TRUE)
qqweibullextg(mydata, g, location = TRUE, method)
mpsweibullextg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

50 weibullg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Examples

```
mydata<-rweibull(100, shape=2, scale=2)+3
dweibullextg(mydata, "weibull", c(1,1,2,2,3))
pweibullextg(mydata, "weibull", c(1,1,2,2,3))
qweibullextg(runif(100), "weibull", c(1,1,2,2,3))
rweibullextg(100, "weibull", c(1,1,2,2,3))
qqweibullextg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsweibullextg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

weibullg

Weibull G distribution

Description

Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Weibull G distribution. General form for the probability density function (pdf) of the Weibull G distribution due to Alzaatreh et al. (2013) is given by

$$f(x,\Theta) = \frac{a}{b^a} \frac{g(x-\mu,\theta)}{1 - G(x-\mu,\theta)} \left[-\log\left(1 - G(x-\mu,\theta)\right) \right]^{a-1} e^{-\left(\frac{-\log(1 - G(x-\mu,\theta))}{b}\right)^a},$$

where θ is the baseline family parameter vector. Also, a>0, b>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G whose pdf is g. The general form for the cumulative distribution function (cdf) of the Weibull G distribution is given by

$$F(x,\Theta) = 1 - e^{-\left(\frac{-\log(1 - G(x - \mu,\theta))}{b}\right)^a}.$$

The weibullg is the special case (Weibull-X) of the Alzaatreh et al. (2013) families of distributions. Here, the baseline G refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (Ifr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is $\Theta = (a, b, \theta, \mu)$ where θ is the baseline G family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter μ is placed in the last component of Θ .

weibullg 51

Usage

```
dweibullg(mydata, g, param, location = TRUE, log=FALSE)
pweibullg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qweibullg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rweibullg(n, g, param, location = TRUE)
qqweibullg(mydata, g, location = TRUE, method)
mpsweibullg(mydata, g, location = TRUE, method, sig.level)
```

Arguments

g	The name of family's pdf including: "birnbaum-saunders", "burrxii", "chisq", "chen", "exp", "f", "frechet", "gamma", "gompetrz", "lfr", "log-normal", "log-logistic", "lomax", "rayleigh", and "weibull".
р	a vector of value(s) between 0 and 1 at which the quantile needs to be computed.
n	number of realizations to be generated.
mydata	Vector of observations.
param	parameter vector $\Theta = (a, b, \theta, \mu)$
location	If FALSE, then the location parameter will be omitted.
log	If TRUE, then log(pdf) is returned.
log.p	If TRUE, then log(cdf) is returned and quantile is computed for exp(-p).
lower.tail	If FALSE, then 1-cdf is returned and quantile is computed for 1-p.
method	The used method for maximizing the sum of log-spacing function. It will be "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", or "SANN".
sig.level	Significance level for the Chi-square goodness-of-fit test.

Details

It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are $m(\log(m)+0.57722)-0.5-1/(12m)$ and $m(\pi^2/6-1)-0.5-1/(6m)$, respectively, with m=n+1, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n independent realizations at the given significance level, indicated in above as sig.level.

- 1. A vector of the same length as mydata, giving the pdf values computed at mydata.
- 2. A vector of the same length as mydata, giving the cdf values computed at mydata.
- 3. A vector of the same length as p, giving the quantile values computed at p.
- 4. A vector of the same length as n, giving the random numbers realizations.
- 5. A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Misses statistic (CM), Anderson Darling statistic (AD), log-likelihood statistic (log), and Moran's statistic (M). The Kolmogorov-Smirnov (KS) test statistic and corresponding p-value. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value, and the convergence status.

52 weibullg

Author(s)

Mahdi Teimouri

References

Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, *Biometrika*, 76 (2), 385-392.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions, *Metron*, 71, 63-79.

Examples

```
mydata<-rweibull(100,shape=2,scale=2)+3
dweibullg(mydata, "weibull", c(1,1,2,2,3))
pweibullg(mydata, "weibull", c(1,1,2,2,3))
qweibullg(runif(100), "weibull", c(1,1,2,2,3))
rweibullg(100, "weibull", c(1,1,2,2,3))
qqweibullg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsweibullg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)</pre>
```

Index

betaexpg, 4	gxlogisticg, 30
betag, 6	
	kumg, 32
dbetaexpg (betaexpg), 4	loggammag1, 34
dbetag(betag), 6	
dexpexppg (expexppg), 8	loggammag2, 36
dexpg (expg), 10	mbetag, 38
dexpgg (expgg), 12	mog, 40
dexpkumg (expkumg), 14	mokumg, 42
dgammag (gammag), 16	MPS-package, 2
dgammag1 (gammag1), 18	mpsbetaexpg (betaexpg), 4
dgammag2 (gammag2), 20	mpsbetag (betag), 6
dgbetag (gbetag), 22	mpsexpexppg (expexppg), 8
dgexppg (gexppg), 24	mpsexpg (expg), 10
dgmbetaexpg (gmbetaexpg), 26	mpsexpgg (expgg), 12
dgtransg (gtransg), 28	mpsexpkumg (expkumg), 14
dgxlogisticg(gxlogisticg), 30	mpsgammag (gammag), 16
dkumg (kumg), 32	mpsgammag1 (gammag1), 18
dloggammag1 (loggammag1), 34	mpsgammag2 (gammag2), 20
dloggammag2 (loggammag2), 36	mpsgbetag (gbetag), 22
dmbetag (mbetag), 38	mpsgexppg (gexppg), 24
dmog(mog), 40	mpsgmbetaexpg (gmbetaexpg), 26
dmokumg (mokumg), 42	mpsgtransg (gtransg), 28
dologlogg (ologlogg), 44	mpsgxlogisticg (gxlogisticg), 30
dtexpsg (texpsg), 46	mpskumg (kumg), 32
dweibullextg (weibullextg), 48	mpsloggammag1 (loggammag1), 34
dweibullg (weibullg), 50	mpsloggammag2 (loggammag2), 36
	mpsmbetag (mbetag), 38
expexppg, 8	mpsmog (mog), 40
expg, 10	mpsmokumg (mokumg), 42
expgg, 12	mpsologlogg (ologlogg), 44
expkumg, 14	mpstexpsg (texpsg), 46
	mpsweibullextg (weibullextg), 48
gammag, 16	mpsweibullg (weibullg), 50
gammag1, 18	. 5,
gammag2, 20	ologlogg, 44
gbetag, 22	
gexppg, 24	pbetaexpg (betaexpg), 4
gmbetaexpg, 26	pbetag (betag), 6
gtransg, 28	pexpexppg (expexppg), 8

54 INDEX

pexpg (expg), 10	qqgammag (gammag), 16
pexpgg (expgg), 12	qqgammag1 (gammag1), 18
pexpkumg (expkumg), 14	qqgammag2 (gammag2), 20
pgammag (gammag), 16	qqgbetag (gbetag), 22
pgammag1 (gammag1), 18	qqgexppg (gexppg), 24
pgammag2 (gammag2), 20	qqgmbetaexpg (gmbetaexpg), 26
pgbetag (gbetag), 22	qqgtransg (gtransg), 28
pgexppg (gexppg), 24	qqgxlogisticg(gxlogisticg), 30
pgmbetaexpg (gmbetaexpg), 26	qqkumg (kumg), 32
pgtransg (gtransg), 28	qqloggammag1 (loggammag1), 34
pgxlogisticg (gxlogisticg), 30	qqloggammag2 (loggammag2), 36
pkumg (kumg), 32	qqmbetag (mbetag), 38
ploggammag1 (loggammag1), 34	qqmog (mog), 40
ploggammag2 (loggammag2), 36	qqmokumg (mokumg), 42
pmbetag (mbetag), 38	qqologlogg (ologlogg), 44
pmog (mog), 40	qqtexpsg (texpsg), 46
pmokumg (mokumg), 42	qqweibullextg (weibullextg), 48
pologlogg (ologlogg), 44	qqweibullg (weibullg), 50
ptexpsg (texpsg), 46	qtexpsg (texpsg), 46
pweibullextg (weibullextg), 48	qweibullextg (weibullextg), 48
pweibullg (weibullg), 50	qweibullg (weibullg), 50
qbetaexpg (betaexpg), 4	rbetaexpg (betaexpg), 4
qbetag (betag), 6	rbetag (betag), 6
qexpexppg (expexppg), 8	rexpexppg (expexppg), 8
qexpg (expg), 10	rexpg (expg), 10
qexpgg (expgg), 12	rexpgg (expgg), 12
qexpkumg (expkumg), 14	rexpkumg (expkumg), 14
qgammag (gammag), 16	rgammag (gammag), 16
qgammag1 (gammag1), 18	rgammag1 (gammag1), 18
qgammag2 (gammag2), 20	rgammag2 (gammag2), 20
qgbetag (gbetag), 22	rgbetag (gbetag), 22
qgexppg (gexppg), 24	rgexppg (gexppg), 24
qgmbetaexpg (gmbetaexpg), 26 qgtransg (gtransg), 28	rgmbetaexpg (gmbetaexpg), 26
qgxlogisticg (gxlogisticg), 30	rgtransg (gtransg), 28
qkumg (kumg), 32	rgxlogisticg (gxlogisticg), 30
qloggammag1 (loggammag1), 34	rkumg (kumg), 32
qloggammag2 (loggammag2), 36	rloggammag1 (loggammag1), 34
qmbetag (mbetag), 38	rloggammag2 (loggammag2), 36
qmog (mog), 40	rmbetag (mbetag), 38
qmokumg (mokumg), 42	rmog (mog), 40
qologlogg (ologlogg), 44	rmokumg (mokumg), 42
qqbetaexpg (betaexpg), 4	rologlogg (ologlogg), 44
qqbetag (betag), 6	rtexpsg (texpsg), 46
qqexpexppg (expexppg), 8	rweibullextg (weibullextg), 48
qqexpg (expg), 10	rweibullg (weibullg), 50
qqexpgg (expgg), 12	3,7 - 3,7 - 3
gaexpkumg (expkumg), 14	texpsg. 46

INDEX 55

 $\begin{array}{c} \text{weibullextg, } 48 \\ \text{weibullg, } 50 \end{array}$