Question 18, Page 158

Required: Prove that the following is equivalent to the axiom of choice:

Statement 1: For any set A whose members are nonempty sets, there is a function f with domain A such that $f(X) \in X$ for all $X \in A$

Proof. (\Rightarrow) Assume statement 1. We will show that the statement implies a version of the axiom of choice.

i.e. Let A be an arbitrary set.

Let $B = P(A) - \{\emptyset\}$. Thus, B is a set whose members are nonempty sets.

By Statement 1, there exists a function f with domain B such that $f(X) \in X$ for all $X \in B$.

This is equivalent to saying there exists a function f with domain being the set of all nonempty subsets of A such that $f(X) \in X$ for all nonempty $X \subseteq A$.

This is exactly the axiom of choice version (3) on page 151 of Enderton. i.e. that there exists a choice function.

 (\Leftarrow)

Assume the axiom of choice version (2) on page 151 of Enderton.

i.e. Let A be a set of nonempty sets. Then, by the axiom of choice version (2), the cartesian product of the elements in A is also non-empty.

i.e.
$$\Pi_{X \in A} X \neq \emptyset$$

By definition of Cartesian product, there exists a function $f: A \to \bigcup A$ such that $f(X) \in X$ for all $X \in A$, where A is a set of nonempty sets.

This is exactly Statement 1 that we needed to prove.

Therefore Statement 1 is equivalent to the axiom of choice.

Question 19, Page 158

Assume that H is a function with finite domain I and that $H(i) \neq \emptyset$ for each $i \in I$.

Required: Without using axiom of choice, show that Statement 1 holds. Use induction on card(I).

Statement 1: There is a function f with domain I such that $f(i) \in H(i)$ for each $i \in I$.

Notation: We will write |I| instead of card(I) for simplicity.

Let $T = \{n \in \omega | n = 0 \lor n = |I| \text{ and Statement 1 holds} \}$

So $0 \in T$.

If |I| = 1, then there exists exactly one $i \in I$. So $H(i) \neq \emptyset$.

Let $x \in H(i)$. Let $f_1(i) = x \in H(i)$.

So $1 \in T$.

Assume that $k \in T$ for $k \in \omega$.

Now consider $k^+ \in \omega$ such that $|I| = k^+$.

Let $j \in I$ be arbitrary.

Now consider $I - \{j\}$. So $|I - \{j\}| = k$.

Since $k \in T$, there exists a function f_k with domain $I - \{j\}$ and $|I - \{j\}| = k$ such that $f_k(i) \in H(i)$ for each $i \in I$.

Now consider any $z \in H(j)$.

Define $f_{k^+} = f_k \cup \{ < j, z > \}$.

So, for all $i \in I$ we have $f_{k^+}(i) \in H(i)$.

Therefore, $k^+ \in T$.

Therefore, $T = \omega$ by induction.

This completes the proof, as required.

Question 20, Page 158

Assume that A is a nonempty set and R is a relation such that $(\forall x \in A)(\exists y \in A)yRx$.

Required: Show that there is a function $f: \omega \to A$ with $f(n^+)Rf(n)$ for all $n \in \omega$.

Case 1: If there is an $a \in A$ such that aRa, then let f(n) = a for all $n \in \omega$.

Note, aRa and $f(n^+) = a$ and f(n) = a for all $n \in \omega$.

It follows that $f(n^+)Rf(n)$ for all $n \in \omega$.

Case 2: If there is no $a \in A$ such that aRa, then by the axiom of choice let $g : A \to A$ be a function such that $g \subseteq R$ and dom(g) = dom(R).

Similarly, by the axiom of choice, let $h:A\to A$ be a function such that that $h\subseteq R^{-1}$ and $dom(h)=dom(R^{-1})$

Now, define a function $i: A \to A$ such that i(a) = g(h(a)).

Clearly, i(a)Ra for each $a \in A$

Now, let $x \in A$ be fixed.

By the Recursion Theorem, there exists a unique function $f: \omega \to A$ such that f(0) = x and $f(n^+) = i(f(n))$ for all $n \in \omega$.

Since i(a)Ra for each $a \in A$, it follows that $f(n^+)Rf(n)$ for all $n \in \omega$.

Question 21, Page 158

Assume that A is a nonempty set such that for every set B,

 $B \in A \Leftrightarrow \text{every finite subset of B is a member of } A$

Required: Show that A has a maximal element.

Let $B \subseteq A$ be a chain.

Let $D \subseteq \bigcup B$ be finite.

Enuermate the elements of D such that $D = \{d_1, ..., d_n\}$.

Since $D \subseteq \bigcup B$, there exists sets $B_1, ..., B_n \in B$, not necessarily all distinct, such that $d_i \in B_i$ for each $i \in \{1, ..., n\}$.

But since B is a chain, we have a set B_j , where $j \in \{1, ..., n\}$ that contains all other B_i where $i \in \{1, ..., n\}$.

So, $d_1, ..., d_n \in B_j$.

So $D \subseteq B_j$.

But $B_j \in B$ and $B \subseteq A$. So $B_j \in A$.

Since $B_j \in A$, by (1), every finite subset of B_j is a member of A.

Therefore, $D \in A$.

Since a finite $D \subseteq \bigcup B$ was arbitrary, we have that every finite subset of $\bigcup B$ is an element of A.

By (1), we have that $\bigcup B \in A$.

Thus, we have shown that for every chain $B \subseteq A$, we have that $\bigcup B \in A$.

Therefore, by applying Zorn's Lemma, A contains a maximal element.

Question 32, Page 165

Let F(A) be the collection of all finite subsets of A.

Required: Show that if A is infinite, then $A \approx F(A)$.

First consider the following function $f: A \to F(A)$ defined by $f(x) = \{x\}$.

i.e. f maps an element of A to the singleton containing that element.

Clearly f is injective. Let $x, y \in A$.

$$f(x) = f(y) \Rightarrow \{x\} = \{y\} \Rightarrow x = y$$

Therefore, we have that $A \preceq F(A)$

Now, we will show that $card(F(A)) \leq card(A)$ which would show that $F(A) \leq A$.

Notation: For simplicity, we will write card(X) as |X|.

First we will partition the set F(A).

Let $F(A)_n$ be the set of finite subsets of A of cardinality $n \in \omega$.

Therefore, $F(A) = \bigcup_{n \in \omega} F(A)_n$

Notice that $|F(A)_n| \leq |A|^n$ since we can consider any subset of A of size n to be a selection of n elements of A. If we consider our selections to allow for repetitions, we can bound $|F(A)_n|$ by $|A|^n$. Call this Fact 1.

Now, consider the following.

$$|F(A)| = \left| \bigcup_{n \in \omega} F(A)_n \right|$$

$$= \sum_{n \in \omega} |F(A)_n| \quad \text{Since each } F(A)_n \text{ is disjoint for } n \in \omega$$

$$\leq \sum_{n \in \omega} |A|^n \quad \text{By Fact 1}$$

$$= \sum_{n \in \omega} |A| \quad \text{By } n \text{ applications of Lemma 6R since } A \text{ is infinite}$$

$$= \aleph_0 |A| \quad \text{Since we have a countable summation over } \omega$$

$$= \max(\aleph_0, |A|) \quad \text{By absorption law}$$

$$= |A| \quad \text{Since } A \text{ is infinite and } \aleph_0 \leq K \text{ for any infinite cardinal } K \text{ by Thm 6N}$$

Therefore, we have that $card(F(A)) \leq card(A)$.

Thus, we also know that $F(A) \preceq A$

Since $A \leq F(A)$ and $F(A) \leq A$, by Cantor-Schroder-Bernstein Theorem, we have that $A \approx F(A)$, as required.

Question 33, Page 165

Assume that A is an infinite set. Prove that $A \approx Sq(A)$.

Proof. First we will show that $A \leq Sq(A)$.

Consider the following injective function $f: A \to Sq(A)$

For any $x \in A$, define $f(x) = \{ < 0, x > \}$.

i.e. f maps any element x in A to the function (sequence) which maps 0 to x.

Clearly, for any $x, y \in A$,

$$f(x) = f(y) \Rightarrow \{<0, x>\} = \{<0, y>\}$$
$$\Rightarrow <0, x> = <0, y>$$
$$\Rightarrow x = y$$

So f is injective. Therefore, $A \leq Sq(A)$

Now we will show that $card(Sq(A)) \leq card(A)$ which would show that $Sq(A) \preccurlyeq A$

Notation: For simplicity, we will write card(X) as |X|.

We know that $Sq(A) = {}^{0}A \cup {}^{1}A \cup {}^{2}A \cup ... = \bigcup_{n \in \omega} {}^{n}A$. It follows that,

$$|Sq(A)| = \left| \bigcup_{n \in \omega} {}^n A \right|$$

$$= \sum_{n \in \omega} |n^n A| \qquad \text{Since each } {}^n A \text{ is disjoint}$$

$$= \sum_{n \in \omega} |A|^n \qquad \text{Since } |n^n A| = |A|^n$$

$$= \sum_{n \in \omega} |A| \qquad \text{By } n \text{ applications of Lemma } 6R \text{ since } A \text{ is infinite}$$

$$= \Re_0 |A| \qquad \text{Since we have a countable summation over } \omega$$

$$= \max(\aleph_0, |A|) \qquad \text{By absorption law}$$

$$= |A| \qquad \text{Since } A \text{ is infinite and } \aleph_0 \leq K \text{ for any infinite cardinal } K \text{ by Thm } 6N$$

Therefore, $card(Sq(A)) \leq card(A)$.

Thus, $Sq(A) \leq A$.

Since $A \leq Sq(A)$ and $Sq(A) \leq A$, by Cantor-Schroder-Bernstein Theorem, we have that $A \approx Sq(A)$, as required.

Question 34, Page 165

Assume that $2 \le \kappa \le \lambda$. Prove that $\kappa^{\lambda} = 2^{\lambda}$

Proof. Since $2 \le \kappa$, by Theorem 6L, we have that $2^{\lambda} \le \kappa^{\lambda}$

Now, we must show that $\kappa^{\lambda} \leq 2^{\lambda}$. Consider the following.

$$\begin{array}{ll} \kappa \leq 2^{\kappa} & \text{Obvious fact of cardinals} \\ \kappa^{\lambda} \leq (2^{\kappa})^{\lambda} & \text{By Theorem 6L, since } \kappa \leq 2^{\kappa} \\ &= 2^{\kappa \cdot \lambda} & \text{By Theorem 6I} \\ &= 2^{\lambda} & \text{Since } \kappa \leq \lambda, \text{ so by absorption law, } \kappa \cdot \lambda = \lambda \end{array}$$

Therefore, $k^{\lambda} \leq 2^{\lambda}$.

Since $2^{\lambda} \leq \kappa^{\lambda}$ and $k^{\lambda} \leq 2^{\lambda}$, we have that $\kappa^{\lambda} = 2^{\lambda}$.

This completes the proof, as required.

Question 35, Page 165

Required: Find a collection A of 2^{\aleph_0} sets of natural numbers such that any two distinct members of A have finite intersection. Suggestion: Start with the collection of infinite set of primes.

Let \mathbb{P} be the infinite set of prime numbers. We know that this set is well-ordered.

Consider any subset $Q \subseteq \mathbb{P}$.

Q could either be finite or infinite.

Regardless, we can enumerate the elements by < such that $Q = \{p_1, p_2, p_3, ...\}$.

Now consider the function $f: P(\mathbb{P}) \to P(\mathbb{P})$ defined by,

$$f(Q) = \{p_1, p_1p_2, p_1p_2p_3, \dots\}.$$

So, f takes an ordered subset of \mathbb{P} and multiplies the ith element of A by each of the elements with indices less than i.

Now, consider the following set A.

$$A = \{ f(Q) \subseteq \mathbb{N} | Q \subseteq \mathbb{P} \}.$$

Now consider any two elements $X, Y \in A$ such that $X \neq Y$.

By the fundamental theorem of arithmetic, we know that prime factorizations are unique.

Therefore, if we decompose each of the elements of X and Y into prime factors and compare them, we know that the first prime p_i that does not appear in the factorizations of an element in both X and Y changes the sequence of (possibly) infinite primes in the rest of the set X and Y.

Thus, X and Y can only have finitely many elements in common.

But A simply applies the function f to each subset of \mathbb{P} . But we know that $card(\mathbb{P}) = \aleph_0$. And $card(P(\mathbb{P})) = 2^{\aleph_0}$. So A must also have cardinality 2^{\aleph_0} .

Therefore, A is a collection of 2^{\aleph_0} sets of natural numbers such that any two distinct members of A have finite intersection, as required.

Question 5, Page 178

Assume that < is a well ordering on A and that $f:A\to A$ satisfies the condition,

 $x < y \Rightarrow f(x) < f(y)$ for all $x, y \in A$. Call this condition 1.

Required: Prove that $x \leq f(x)$ for all $x \in A$.

Suggestion: Consider f(f(x))

Proof. Assume for the sake of contradiction that there exists a $z \in A$ such that f(z) < z.

Now let
$$B = \{ y \in A | f(y) < y \}$$

We know B is nonempty since $z \in B$.

Since $B \subseteq A$, there exists a least element $x \in B$.

So
$$f(x) < x$$
.

Now, as the suggestion says, let us apply f again using condition 1.

i.e.
$$f(f(x)) < f(x)$$

Therefore $f(x) \in B$.

Since x is the least element of B, we have that $x \leq f(x)$.

So we have that f(x) < x and $x \le f(x)$.

Therefore, we have a contradiction. Therefore, our assumption that there exists a $z \in A$ such that f(z) < z was wrong.

Therefore, $x \leq f(x)$ for all $x \in A$, completing the proof, as required.

Question 7, Page 178

Let C be some fixed set. Apply transfinite recursion to ω (with its usual well ordering), using for $\gamma(x,y)$ the formula,

$$y = C \cup \bigcup Inn(x)$$

Let F be the γ -constructed function on ω .

(a)

Calculate F(0), F(1), and F(2). Make a good guess as to what F(n) is.

$$\begin{split} F(0) &= C \cup \bigcup \bigcup ran(F \upharpoonright seg(0)) \\ &= C \cup \bigcup \bigcup ran(\emptyset) \\ &= C \cup \bigcup \bigcup \emptyset \\ &= C \end{split}$$

$$F(1) = C \cup \bigcup \operatorname{ran}(F \upharpoonright \operatorname{seg}(1))$$

$$= C \cup \bigcup \bigcup \operatorname{ran}(\{<0, F(0) >\})$$

$$= C \cup \bigcup \bigcup \{F(0)\}$$

$$F(2) = C \cup \bigcup ran(F \upharpoonright seg(2))$$

$$= C \cup \bigcup \bigcup ran(\{<0, F(0)>, <1, F(1)>\})$$

$$= C \cup \bigcup \bigcup \{F(0), F(1)\}$$

So, we can guess that,

$$\begin{split} F(n) &= C \cup \bigcup \bigcup ran(F \upharpoonright seg(n)) \\ &= C \cup \bigcup \bigcup ran(\{<0, F(0)>, <1, F(1)>, ..., < n-1, F(n-1)>\}) \\ &= C \cup \bigcup \bigcup \{F(0), F(1), ..., F(n-1)\} \end{split}$$

(b)

Show that if $a \in F(n)$, then $a \subseteq F(n^+)$.

Assume
$$a \in F(n) = C \cup \bigcup \{F(0), F(1), ..., F(n-1)\}.$$

Now, consider
$$F(n^+) = C \cup \bigcup \{F(0), F(1), ..., F(n-1), F(n)\}$$

Clearly, $a \subseteq F(n^+)$.