

of the accredited test laboratory

TÜV Nr.:M/FG-16/116

Applicant:

Naim Audio Limited

Southampton Road

Salisbury Wiltshire UK

SP1 2LN

Tested Product:

Zigbee module

FCC-ID:

2ACURZIGEE

IC-ID:

12217A-ZIGEE

Manufacturer:

See applicant

Output power /

0,60 mW eirp.

power supply:

5 VDC

field strength:

Frequency range:

2425 - 2475 MHz Channel separation:

5 MHz

Standard:

FCC: 47 CFR Part 15 (October 1, 2015 edition)

RSS-247 Issue 1, May 2015; including modifications and

clarifications in CB Notice 2015-07

TUV Austria Services GmbH Test laboratory for EMC

Supervisor of EMC-laboratory:

Ing. Wilhelm Seier

Rundsjegel

15.12.2016

Copy Nbr.:

Ing. Michael Emminger

checked by

A publication of this test report is only permitted literally. Copying or reproduction of partial sections needs a written permission of TUV Austria Services GmbH.

The results of this test report only refer to the provided equipment.

TÜV AUSTRIA SERVICES GMBH

Office:

1230 Vienna/Austria Tel.: +43 1 61091-0 Fax: +43 1 61091-6505

Deutschstrasse 10

Division: Industry & Energy

emv@tuv.at

Department: Testing Body for Communication Technology/ EMC

TÜV®

Akkreditiert als: Prüfstelle Inspektionsstelle, Zertifizierungsstelle, Kalibrierstelle, Erst- und Kesselprüfstelle, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Vorsitzender des Aufsichtsrats: KR Dipl.-Ing. Johann MARIHART

Geschäftsführung: Dipl.-Ing. Dr. Stefan HAAS Mag. Christoph WENNINGER

Sitz:

Krugerstraße 16 1010 Wien/Österreich

weitere Geschäftsstellen: Dornbirn, Graz, Innsbruck, Klagenfurt,

Linz, Salzburg, St. Pöll Wels, Wien, Brixen (I) und Filderstadt (D)

Firmenbuchgericht/ -nummer: Wien / FN 288476 f

Bankverbindungen: UC BA 52949 001 066 IBAN AT1312000529490010 **BIC BKAUATWW** RZB 001-04.093.282 **IBAN** AT1531000001040932 **BIC RZBAATWW**

Relative humidity: 36%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 15 and RSS-247 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
2.1033	Number of channels and channel spacing	4
15.247(a)(2) 5.2 (1)	6 dB Bandwidth	5-7
15.247(b)(3) 5.4 (4)	Maximum Peak RF Power Output (eirp)	8
15.247(e) 5.2 (2)	Power Spectral Density	9-11
15.247(d) 5.5	Out-of-band Emissions – no permanent antenna connector	N/A
15.209(a) RSS-Gen	Emissions in restricted bands	12-19
15.207 RSS-Gen 8.8	Conducted Limits	20
15.247(i)	Maximum permissible exposure	21

Relative humidity: 369

TEST OBJECT DATA

General EUT Description

This ZigBee Module is used only by the applicant.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 1M58F1D -Channel spacing 5 MHz
- 2.1033 (5) Frequency range: 2425 to 2475 MHz (channel center frequencies).
- 2.1033 (6) Power range and Controls: The maximum peak output power is 0,60 mW and there is no power regulation.
- 2.1033 (7) Maximum output power rating: 0,60 mW eirp.
- 2.1033 (8) DC Voltage and Current: 5 V DC maximum current consumption: <100 mA)
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

A test sample with temporary antenna connector was provided and used for conducted measurement, where this kind of measurement is representative and easier to perform.

Tests were performed May 23rd till 30th 2016.

Test Report Reference: M/FG-16/116

Ambient temperature: 27°C

Relative humidity: 36%

Number of channels and channel spacing

§ 2.1033

Conducted Measurement

Rated output power: 0,60 mW

There are 40 Channels used starting at 2425 till 2475 MHz each separated by 5 MHz channel spacing with a maximum bandwidth of 1,583 MHz.

Relative humidity: 36%

6dB Bandwidth

§ 15.247(a)(2) 5.2(1)

Conducted Measurement

Rated output power: 0,60 mW Channel 15 (2425 MHz center frequency)

Date

1.JAN.1997 01:56:10

6dB Bandwidth:

1303 kHz

LIMIT

SUBCLAUSE 15.247(e) - 5.2(1)

Under normal test conditions	6 dB Bandwidth at least 500 kHz

Relative humidity: 36%

6dB Bandwidth

§ 15.247(a)(2) 5.2(1)

Conducted Measurement

Rated output power: 0,60 mW Channel 20 (2450 MHz center frequency)

Date:

1.JAN.1997 01:54:47

6dB Bandwidth:

1583 kHz

LIMIT

SUBCLAUSE 15.247(e) - 5.2(1)

Under normal test conditons	6 dB Bandwidth at least 500 kHz

Relative humidity: 36%

6dB Bandwidth

§ 15.247(a)(2) 5.2(1)

Conducted Measurement

Rated output power: 0,60 mW Channel 25 (2475 MHz center frequency)

Date:

1.JAN.1997 01:53:19

6dB Bandwidth:

1583 kHz

LIMIT

SUBCLAUSE 15.247(e) - 5.2(1)

Under normal test conditions 6 db Balldwidth at least 500 kHz	Under normal test conditons	6 dB Bandwidth at least 500 kHz
---	-----------------------------	---------------------------------

Relative humidity: 36%

Maximum Peak RF Power Output (conducted)

§ 15.247(b)(3) 5.4(4)

Conducted Measurement

Rated output power: 0,60 mW

Test conditions		Transmitter power (mW)		
		2402 MHz	2440 MHz	2480 MHz
T _{nom} (27)°C	V _{nom} (5) V			
	Conducted *)	0,891	0,891	0,871
	Radiated	0,603	0,562	0,525
Maximum deviation under normal test	on from rated output power conditions (dB)		(4)	
Measurement uncertainty		<u>+</u> 0,75 dB		

LIMIT

SUBCLAUSE 15.247(b)(3) - 5.4(4)

Under normal test conditons	1W conducted (4W eirp)

^{*)} conducted measurement is informative only, as there is no permanent antenna connector available.

Test Equipment used: NT-204; NT-229; NT233/1a

Relative humidity: 36%

Power spectral density (conducted)

§ 15.247(e) 5.2(2)

Conducted Measurement

Rated output power: 0,60 mW Channel 15 (2425 MHz center frequency)

Date:

1.JAN.1997 01:58:22

Power Spectral density: -12,77 dBm @ 2424,890 MHz

LIMIT SUBCLAUSE 15.247(e) - 5.2(2)

Under normal test conditons	+8dBm in any 3 kHz band

Test Equipment used: NT-207

QFM-EMV-FG_Protokoll Rev.00 / FG16-116.doc

Page 9 of 21

15.12.2016

Relative humidity: 36%

Power spectral density (conducted)

§ 15.247(e) 5.2(2)

Conducted Measurement

Rated output power: 0,60 mW Channel 20 (2450 MHz center frequency)

Date:

1.JAN.1997 01:59:49

Power Spectral density: -13,08 dBm @ 2449,890 MHz

LIMIT SUBCLAUSE 15.247(e) - 5.2(2)

Under normal test conditons	+8dBm in any 3 kHz band
Chack Helinian test certainens	

Relative humidity: 36%

Power spectral density (conducted)

§ 15.247(e) 5.2(2)

Conducted Measurement

Date:

1.JAN.1997 02:02:01

Power Spectral density: -13,54 dBm @ 2474,890 MHz

LIMIT

SUBCLAUSE 15.247(e) - 5.2(2)

Under normal test conditons	+8dBm in any 3 kHz band

Test Equipment used: NT-207

QFM-EMV-FG_Protokoli Rev.00 / FG16-116.doc

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector:

Setup: CH 15: 2425 MHz

Worst case emission: 61,6 dBµV/m @ 19,8 kHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-122; NT-207

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector (magenta line) and Average detector (green line):

Setup: CH 15: 2425 MHz

Worst case emission: 51,5 dBµV/m @ 4,85 GHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load. Although the measurement above ends at 18 GHz, all measurements were performed up to the thenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-126; NT-131/1; NT-139; NT-207; NT-337

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

Setup: CH 15: 2425 MHz

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-139; NT-207

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector:

Setup: CH 20: 2450 MHz

Worst case emission: 59,7 dBµV/m @ 19,6 kHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-122; NT-207

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector (magenta line) and Average detector (green line):

Setup: CH 20: 2450 MHz

Worst case emission: 53,4 dBµV/m @ 4,9 GHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load. Although the measurement above ends at 18 GHz, all measurements were performed up to the thenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-126; NT-131/1; NT-139; NT-207; NT-337

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector:

Setup: CH 25: 2475 MHz

Worst case emission: 63,5 dBµV/m @ 19,8 kHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-122; NT-207

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector (magenta line) and Average detector (green line):

Setup: CH 25: 2475 MHz

Worst case emission: 53,1 dBµV/m @ 4,95 GHz

Remark: As the highest spurious conducted emission was measured as to be -55 dB below the fundamental, all radiated measurements (except Band edges) were made with RF connector terminated with 50 ohm load. Although the measurement above ends at 18 GHz, all measurements were performed up to the thenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-126; NT-131/1; NT-139; NT-207; NT-337

Relative humidity: 36%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

Setup: CH 25: 2475 MHz

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-139; NT-207

Relative humidity: 36%

Conducted Limits

§ 15.207 RSS-Gen 8.8

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Setup: CH 20: 2450 MHz

LIMIT

SUBCLAUSE 15.207(a) - RSS-Gen 8.8

Frequency of emission (MHz)	Conducted limit (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

Test Equipment used: NT-300; NT-554; NT-441; NT-207

Test Report Reference: M/FG-16/116

Ambient temperature: 27°C

Relative humidity: 36%

Maximum permissible Exposure

§ 15.247(i)

This kind of radio equipment is categorically excluded from routine environmental evaluation.

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173
Stripline according to ISO 11452-5	NT-108	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1
DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
CO3000 Controller Mast+Turntable	NT-112/1	Digital Radio Tester CTS55	NT-208
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Digital Radio Tester Aeroflex 3920	NT-212/1
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216
SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M19HWD 40 GHz – 60 GHz	NT-218
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer M12HWD 60 GHz – 90 GHz	NT-219
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	DSO9104 Digital scope	NT-220/1
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222
VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224
Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225
Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	SRM-3000 Spectrumanalyzer	NT-233
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	SRM-3006 Spectrumanalyzer	NT-233/1a
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	E-field probe SRM 75 MHz – 3 GHz	NT-234
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d
Conical Dipol Antenna PCD8250	NT-138	Hall-Teslameter ETM-1	NT-241
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	EFA-3 H-field- / E-field probe	NT-243
HZ-1 Antenna tripod	NT-150	Field Meter EMR-200 100 kHz – 3 GHz	NT-244
BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245
Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	H-field probe 300 kHz – 30 MHz	NT-246

Division: Industry & Energy

Department: FG

Test report number: M/FG-16/116

Page: 1 of 4

Date: 15.12.2016

Checked by:

Appendix 1 (continued) Test equipment used

E-field probe 3 MHz – 18 GHz	NT-247	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c
H-field probe 27 MHz – 1 GHz	NT-248	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
ELT-400 1 Hz – 400 kHz	NT-249	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
FCC-203I EM Injection clamp	NT-251	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
FCC-203I-DCN Ferrite decoupling network	NT-252	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
PR50 Current Probe	NT-253	Preamplifier 1 GHz - 4 GHz	NT-335
i310s Current Probe	NT-254/1	Preamplifier for GPS MKU 152 A	NT-336
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier 100 MHz – 23 GHz	NT-337
Model 2000 Digital Multimeter	NT-261	DC Block 10 MHz – 18 GHz Model 8048	NT-338
Fluke 87 V Digital Multimeter	NT-262/1	2-97201 Electronic load	NT-341
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	VDS 200 Mobil-impuls-generator	NT-350
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	LD 200 Mobil-impuls-generator	NT-351
PHE 4500/B Power amplifier	NT-304	MPG 200 Mobil-Impuls-Generators	NT-352
EZ10 T-Artificial Network	NT-305	EFT 200 Mobil-impuls-generator	NT-353
SMG - Signal generator 0,1 - 1000 MHz	NT-310	AN 200 S1 Artificial Network	NT-354
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
RefRad Reference generator	NT-312	PHE 4500 - Mains impedance network	NT-401
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 6.2 Coupling filter for data lines (Surge)	NT-403
40 MHz Arbitrary Generator TGA1241	NT-315	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
Artificial mains network NSLK 8127-PLC	NT-316	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
PEFT - Burst generator up to 4 kV	NT-320	IP 4 - Capacitive clamp (Burst)	NT-411
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 100 MHz – 3 GHz	NT-412
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 600 MHz – 4 GHz	NT-413
IMU4000 Immunity test system	NT-325/1	Highpass-Filter 1250 MHz – 4 GHz	NT-414
VCS 500-M6 Surge-Generator	NT-326	Highpass-Filter 1800 MHz – 16 GHz	NT-415

Division: Industry & Energy

Department: FG

Test report number: M/FG-16/116

Page: 2 of 4

Date: 15.12.2016/

Checked by:

Appendix 1 (continued) Test equipment used

	Highpass-Filter 3500 MHz – 18 GHz	NT-416	FCC-801-S25 Coupling decoupling network	NT-462	Division: Industry & Energy
, 	RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	FCC-801-T4 Coupling decoupling network	NT-463	Department: FG
	RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464	Test report number: M/FG-16/116
	RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	Page: 3 of 4
	RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Date: 15.12.2016
	RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Checked by:
	RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484	
	RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500	
	RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505	
	WRU 27 - Band blocking 27 MHz	NT-430	Monitoring camera with Monitor	NT-511	
	WHJ450C9 AA - High pass 450 MHz	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520	
	WHJ250C9 AA - High pass 250 MHz	NT-432	EMC32 Version 10.01 Test software	NT-520/1	
	RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522	
	Impedance transducer 1:4; 1:9; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
	RF-Attenuator DC – 18 GHz 6 dB	NT-436	Spitzenberger und Spies Test software V4.1	NT-525	
	RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530	
	RF-Attenuator DC – 18 GHz 10 dB	NT-438	Vertical coupling plane (ESD)	NT-531	
	RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553	
	I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554	
	ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
	Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559	
	Directional coupler 0,1 MHz 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580	
	Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #10 (for outdoor measurements)	NT-581	
	Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584	
	FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #21 for SRM-3000	NT-592	
	FCC-801-M2-50A Coupling decoupling network	NT-459	Shield chamber	NT-600	
	FCC-801-M5-25 Coupling decoupling network	NT-460	Climatic chamber	M-1200	
	FCC-801-AF10 Coupling decoupling network	NT-461			

Appendix 1 (continued) Test equipment used

Division: Industry & Energy

Department: FG

Page: 4 of 4

Checked by:

Date: 15.12.2016

Test report number: M/FG-16/116

Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304
Turntabel 6 m diameter	EMV-101	Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305
Antenna mast 1 – 4 m	EMV-102	Load Dump Generator LD 200N	EMV-350
Mast and Turntable controller	EMV-103	Ultra Compact Symulator UCS 200N100	EMV-351
FC-06 EMC Video/Audiosystem	EMV-104	Automotive Power fail module PFM 200N100.1	EMV-352
EMC Software EMC32 Version 10.01	EMV-105	Voltage Drop Symulator VDS 200Q100	EMV-353
Hornantenna 1 – 18 GHz HF 907	EMV-110	Arb. Generator AutoWave	EMV-354
Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	Ultra Compact Symulator UCS 500N7	EMV-355
Trilog Antenna 30-3000 MHz VULB9163	EMV-112	Coupling decoupling network CNI 503B7 / 32 A	EMV-356
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	Coupling decoupling network CNI 503B7 / 63 A	EMV-357
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	Telecom Surge Generator TSurge 7	EMV-358
DC Artificial Network PVDC 8300	EMV-150	Coupling decoupling network CNI 508N2	EMV-359
AC Artificial Network NNLK 8121 RC	EMV-151	Coupling decoupling network CNV 504N2.2	EMV-360
EMI Receiver ESR26	EMV-200	Immunity generator NSG4060/NSG4060-1	EMV-361
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	Coupling network CDND M316-2	EMV-362
GPS Frequency normal B-88	EMV-202	Coupling network CT419-5	EMV-363
DC Power supply N5745A	EMV-203	ESD Generator NSG 437	EMV-364
DC Power supply N5745A	EMV-204	Pulse Limiter VTSD 9561-F BNC	EMV-405
Spektrum Analyzator FSV40	EMV-205	Transient emission BSM200N40+BS200N100	EMV- 450+451
Thd Multimeter Model 2015	EMV-206	Cap. Coupling Clamp HFK	EMV-455
Poweramplifier PAS15000	EMV- 207/abc	Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458
Inrush Current Source	EMV- 208/abc	Coupling network CDN M2-100A	EMV-459
Arbgenerator Sycore	EMV-209	Coupling network CDN M3-32A	EMV-460
Harmonics/Flicker analyzer ARS 16/3	EMV-210	Coupling network CDN M5-100A	EMV-461
HF- Ampflifier 9 kHz-250 MHz BBA150	EMV-300	Current Clamp CIP 9136A	EMV-462
HF- Amplifier 80 -1000 MHz BBA150	EMV-301	DC Artificial Network HV-AN 150	EMV- 464+465
HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Coupling Clamp EM 101	EMV-466
High Power Ant. 20-200 MHz VHBD 9134	EMV-303	Decoupling Clamp FTC 101	EMV-467
VUDU 3194		Power attenuator DG 250 W 6 GHz 6 dB	EMV-469

Description: Front view

Division: Industry & Energy

Department: FG

Test report reference: M/FG-16/116

Page: 1 of 5

Date: 15.12.2016

checked by:

Description: Backside view

Division: Industry & Energy

Department: FG

Test report reference: M/FG-16/116

Page: 2 of 5

Date: 15.12.2016

checked by:

Description: RF part without shielding an with temporary antenna connector

Division: Industry & Energy

Department: FG

Test report reference: M/FG-16/116

Page: 3 of 5

Date: 15.12.2016

checked by: _

Description: Test setup radiated measurements

Division: Industry & Energy

Department: FG

Test report reference: M/FG-16/116

Page: 4 of 5

Date: 15.12.2016

checked by:

Description: Test setup radiated measurements above 1 GHz

Division: Industry & Energy

Department: FG

Test report reference: M/FG-16/116

Page: 5 of 5

Date: 15.12.2016

checked by: _

