応用数学特論Ⅱ (集中講義)

Day 5 Cyclic Designs and Their Applications

盧 暁南 (山梨大学) Xiao-Nan LU (University of Yamanashi)

> Aug. 31, 2021 Kobe University

Outline

- 1 Binary sequences with optimal autocorrelation and cyclic designs
- 2 Statistical designs for fMRI experiments and cyclic almost orthogonal arrays (CAOA)
- CAOAs, optimal sequences, and ADSs

Binary periodic sequences

Definition (binary periodic sequences with period n)

A binary sequence (系列) $\mathbf{s}=(s_0,s_1,\ldots,\mathbf{g}_{n-1},\mathbf{g}_n,\mathbf{g}_{n+1},\ldots)$ is said to be periodic with period (周期) n if

$$s_i = s_{i+n}$$
 for any $i \ge 0$.

- A binary periodic sequence s with period n can be seen as a binary string of length n, say, $\mathbf{s} = (s_t) \in \{0,1\}^n$.
- In this lecture, we say s is a binary sequence of length n.

Autocorrelation magnitude of binary sequences

Definition (Autocorrelation of binary sequences)

(n=4 a (31))

The periodic autocorrelation (周期的自己相関関数) of a binary sequence $\mathbf{s}=(s_t)\in\{0,1\}^n$ at shift w is defined by

where the subscript of s_{t+w} is reduced by modulo n.

- The maximum absolute value of the off-peak autocorrelation $\max_{w\neq 0} |\rho_{\mathbf{s}}(w)|$ is called the autocorrelation magnitude (自己相関のマグニチュード) of s.
- Sequences with low autocorrelation magnitudes are desired.

Example: > Jupyper Notebook

Perfect sequence

Definition (Perfect sequences)

A binary sequence $\mathbf{s} = (s_t) \in \{0,1\}^n$ with autocorrelation magnitude 0 is called a perfect sequence (完全系列).

Proposition

A binary sequence of length n is a perfect sequence $\implies n \equiv 0 \pmod{4}$.

Example (n=4)

 ${f s}=(1110)$ is a perfect sequence. This is the only known binary perfect sequence (up to equivalence of cyclic shift).

Binary sequences with optimal autocorrelation magnitude

- 1 For $n \equiv 0 \pmod 4$, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| \geq 0$. There is only one example (perfect sequence) with $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 0$. So, it is natural to consider $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 4 \iff \rho_{\mathbf{s}}(w) \in \{0,4\}$ or $\{0,-4\}$ for all $1 \leq w \leq n-1$; in this case, the sequence is said to have optimal autocorrelation.
- 2 For $n \equiv 3 \pmod 4$, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| \ge 1$. Moreover, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 1 \iff \rho_{\mathbf{s}}(w) = -1$ for all $1 \le w \le n-1$; in this case, the sequence is said to have optimal autocorrelation.
- 3 For $n \equiv 1 \pmod 4$, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| \geq 1$. But there is some evidence that there is no binary sequence of length n > 13 with $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 1$. So, it is natural to consider $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 3 \iff \rho_{\mathbf{s}}(w) \in \{1, -3\}$ for all $1 \leq w \leq n 1$; in this case, the sequence is said to have optimal autocorrelation.
- **4** For $n \equiv 2 \pmod{4}$, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| \geq 2$. Moreover, $\max_{w \neq 0} |\rho_{\mathbf{s}}(w)| = 2 \iff \rho_{\mathbf{s}}(w) \in \{2, -2\}$ for all $1 \leq w \leq n 1$; in this case, the sequence is said to have optimal autocorrelation.

Example of sequences with optimal autocorrelation

Example (A bad example)

- $\mathbf{s} = (1101000101)$
- For w = 5, we have $(s_{t+w} s_t)_t = (-1, -1, 1, 1, 1, 1, 1, -1, 1, -1)$.

$$\rho_{\mathbf{s}}(w) = \sum_{t=0}^{n-1} (-1)^{s_{t+w}-s_t} = -10 \notin \{2, -2\}$$

Example (A good example)

- $\mathbf{s} = (1000101101)$
- For w = 5, we have $(s_{t+w} s_t)_t = (-1, 1, 1, 0, 0, 1, -1, -1, 0, 0)$.

Optimal binary sequences with one valued autocorrelation

- 1 For $n \equiv 0 \pmod{4}$, there are only two examples (n = 8, 40) with $\rho_{\mathbf{s}}(w) = 4$ for all $1 \le w \le n 1$. It is proved that no other exists. ¹
- 2 For $n \equiv 3 \pmod 4$, there are infinite many examples with $\rho_{\mathbf{s}}(w) = -1$ for all $1 \le w \le n 1$ (see the next slide).
- 3 For $n \equiv 1 \pmod 4$, there are only two examples (n=5,13) with $\rho_{\mathbf{s}}(w)=1$ for all $1 \leq w \leq n-1$. It is conjectured that no other exists (verified true for 13 < n < 101701 except possibly for $n \in \{29525, 30013, 34061\}$).
- 4 For $n \equiv 2 \pmod 4$, there is only one examples (n=6) with $\rho_{\mathbf{s}}(w) = 2$ for all $1 \le w \le n-1$. It is conjectured that no other exists (verified true for 6 < n < 33895686).

Example: > Jupyper Notebook

¹X. Niu, H. Cao, and K. Feng. Binary periodic sequences with 2-level autocorrelation values. Discrete Math. 343(3): 111723 (2020).

Combinatorial designs and optimal binary sequences

- Let ${\bf s}$ be a binary sequence of length n.
- Let supp(s) denote the support of s, i.e., $supp(s) = \{1 \le i \le n-1 : s_i = 1\}.$

Theorem (Difference sets (DS) & almost difference sets (ADS) \iff optimal sequences)

- For $n \equiv 3 \pmod{4}$, $\rho_{\mathbf{s}}(w) = -1$ for all $1 \le w \le n-1 \iff \operatorname{supp}(\mathbf{s})$ is an (n, (n+1)/2, (n+1)/4) or (n, (n-1)/2, (n-3)/4) DS in \mathbb{Z}_n .
- 2 For $n \equiv 1 \pmod{4}$, $\rho_{\mathbf{s}}(w) \in \{1, -3\}$ for all $1 \leq w \leq n 1 \iff \operatorname{supp}(\mathbf{s})$ is an $(n, k, k (n+3)/4, (n-k)k (n-1)^2/4)$ ADS in \mathbb{Z}_n .
- 3 For $n \equiv 0 \pmod{4}$, $\rho_{\mathbf{s}}(w) \in \{0, -4\}$ for all $1 \leq w \leq n 1 \iff \operatorname{supp}(\mathbf{s})$ is an (n, k, k (n + 4)/4, (n k)k n(n 1)/4) ADS in \mathbb{Z}_n .
- For $n \equiv 2 \pmod{4}$, $\rho_{\mathbf{s}}(w) \in \{2, -2\}$ for all $1 \le w \le n 1 \iff \operatorname{supp}(\mathbf{s})$ is an (n, k, k (n+2)/4, (n-k)k (n-1)(n-2)/4) ADS in \mathbb{Z}_n .

Cyclic difference sets

• For $D=\{b_1,\ldots,b_k\}\subseteq \mathbb{Z}_n$ and nonzero $x\in \mathbb{Z}_n$,

$$\Delta_x(D) := \{(b_i, b_j) \in D \times D : b_i - b_j = x\}.$$

$$(n,k,\lambda)$$

Cyclic difference set (DS) - Difference family (DF) with 1 block

A k-subset $D \subseteq \mathbb{Z}_n$ is an (n, k, λ) difference set (DS) in \mathbb{Z}_n if $|\Delta_x(D)| = \lambda$ for any nonzero $x \in \mathbb{Z}_n$.

- Paley-type DS: (4m-1,2m-1,m-1)-DS [Hadamard matrix H_{4m}]
- Singer DS: $(\frac{q^{m+1}-1}{q-1}, \frac{q^m-1}{q-1}, \frac{q^{m-1}-1}{q-1})$ -DS [finite projective geometry $PG(m, \mathbb{F}_q)$]

Cyclic almost difference sets: Definition

• For $D=\{b_1,\ldots,b_k\}\subseteq \mathbb{Z}_n$ and nonzero $x\in \mathbb{Z}_n$,

$$\Delta_x(D) := \{(b_i, b_j) \in D \times D : b_i - b_j = x\}.$$

Cyclic almost difference set (ADS)

A k-subset $D\subseteq \mathbb{Z}_n$ is an (n,k,λ,t) almost difference set (ADS) in \mathbb{Z}_n if $|\Delta_x(D)|=\lambda$ for any $x\in X$ and $|\Delta_y(D)|=\lambda+1$ for any $y\in Y$, where $X\cup Y=\mathbb{Z}_n\setminus\{0\}$ with |X|=t.

$$(n,k,\lambda)$$
-DS \Leftrightarrow $(n,k,\lambda,n-1)$ -APS

- Paley-type DS: (4m 1, 2m 1, m 1, 4m 2)-ADS.
- In this lecture, I will focus on (4m-2, 2m-1, m-1, 3m-2)-ADS.
- Motivated by sequences and (recent work on) experimental designs.

Cyclic almost difference sets: Example

Example: (10, 5, 2, 7)-ADS in \mathbb{Z}_{10}

- $D = \{0, 4, 6, 7, 9\} \subseteq \mathbb{Z}_{10}$.
- $X = \{\pm 1, \pm 2, \pm 4, 5\}, Y = \{\pm 3\}.$

$$\lambda = 2$$

$$\lambda + 1 = 3$$

$$\Delta_2(D) = \{(6,4), (9,7)\},$$

$$\Delta_3(D) = \{(7,4), (9,6), (0,7)\},$$

$$\Delta_4(D) = \{(4,0), (0,6)\},$$

$$\Delta_5(D) = \{(9,4), (4,9)\}.$$

 $\Delta_1(D) = \{(0,9), (7,6)\},\$

$$\triangle_6(D) = \triangle_4(D)$$

Cyclic almost difference sets: Constructions

Known constructions for cyclic ADS with $n \equiv 2 \pmod{4}$ and k = n/2

There exits an $(n, \frac{n}{2}, \frac{n-2}{4}, \frac{3n-2}{4})$ -ADS for the following n:

- (SLCE^{2 3}) n = q 1, where $q \equiv 3 \pmod{4}$ is a prime power;
- 2 (DHM⁴) n=2p, where $p\equiv 5\pmod 8$ is a prime and p-1 or p-4 is a perfect square.
- **3** $n \in \{34, 38, 50\}$ by computer search.

 $^{^{2}}$ V. M. Sidelnikov: Some k-valued pseudo-random sequences and nearly equidistant codes. Probl. Peredachi Inf. 5(1):16–22 (1969).

³A. Lempel, M. Cohn, W. Eastman. A class of balanced binary sequences with optimal autocorrelation properties. IEEE Trans. Inform. Theory, IT-23 (1), 38–42 (1977).

⁴C. Ding, T. Helleseth, H. Martinsen: New families of binary sequences with optimal three-level autocorrelation. IEEE Trans. Inform. Theory, 47(1): 428–433 (2001).

SLCE sequences
$$f(x) = \{g^*, g', ..., g^{\ell-2}\}$$
• g : generator of \mathbb{F}_q^*

- $C_1^{(2,q)} = \{g^{2t+1} : 0 \le t < (q-1)/2\}.$

$C_{n}^{(2,k)} = \{g', g^{2}, g^{4}, ..., g^{3-3}\}$ = 版上の平方元の集台(Swlgpp)

Theorem (SLCE sequence)

Let $q \equiv 3 \pmod{4}$ be a prime power and g be a primitive element of \mathbb{F}_q . Let D be the subset of \mathbb{Z}_{a-1} defined by $\log_a(C_1^{(2,q)}-1)$, where \log_a denotes the discrete logarithm in \mathbb{F}_a to the base g. Then D is a $(q-1, \frac{q-1}{2}, \frac{q-3}{4}, \frac{3q-5}{4})$ ADS in \mathbb{Z}_{q-1} . In other words, the corresponding binary sequence of D of length q-1 is perfect and balanced.

The admissible prime powers q < 100 for SLCE sequences are

An example of SLCE sequences

Table: The cyclic group \mathbb{F}_{11}^* generated by g=2

i	0	1	2	3	4	5	6	7	8	9
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6

Example (A SLCE type (10, 5, 2, 7) ADS in \mathbb{Z}_{10})

Take g=2 as a generator of \mathbb{F}_{11}^* . Then

$$C_1^{(2)} = \{2^1, 2^3, 2^5, 2^7, 2^9\} \equiv \{2, 8, 10, 7, 6\} \pmod{11}.$$

Let

$$D = \log_2(C_1^{(2)} - 1) = \log_2\{1, 7, 9, 6, 5\} = \{0, 7, 6, 9, 4\},$$

where \log_2 denotes the discrete logarithm in \mathbb{F}_{11} to the base 2.

DHM sequences

$$C_i^{(4,p)} = \left\{ g^{4t+i} : 0 \le t < \frac{p-1}{4} \right\}$$

Theorem (DHM sequences)

Let n be a positive integer such that n=2p with prime $p\equiv 5\pmod 8$. Let $i,j,l\in\{0,1,2,3\}$ be three distinct integers, and let

$$C_0 = C_i^{(4,p)} \cup C_j^{(4,p)}$$
 and $C_1 = C_j^{(4,p)} \cup C_l^{(4,p)}$.

Then,

$$D = (\{0\} \times C_0) \cup (\{1\} \times C_1) \cup \{(0,0)\}$$

is an $(n, \frac{n}{2}, \frac{n-2}{4}, \frac{3n-2}{4})$ ADS in $\mathbb{Z}_2 \times \mathbb{Z}_p$ (isomorphic to \mathbb{Z}_{2p}) if the generator of \mathbb{Z}_p^* is properly chosen for the cyclotomic classes and

- **1** p-4 is a perfect square and $(i,j,l) \in \{(0,1,3),(0,2,3),(1,2,0),(1,3,0)\}$ or

An example of DHM sequences

Table: The cyclic group \mathbb{F}_5^* generated by g=3

i	0	1	2	3
$3^i \bmod 5$	1	3	4	2

Example (A DHM type (10, 5, 2, 7) ADS in \mathbb{Z}_{10})

Take
$$g=3$$
 as a generator of \mathbb{F}_5^* . Let $C_0=C_0^{(4)}\cup C_1^{(4)}=\{1,3\}$ and $C_1=C_1^{(4)}\cup C_2^{(4)}=\{3,4\}$, and let $D=\left(\{0\}\times C_0\right)\cup\left(\{1\}\times C_1\right)\cup\left\{(0,0)\right\}$. Then,

$$D=\{(0,1),(0,3),(1,3),(1,4),(0,0)\}\subseteq \mathbb{Z}_2 imes \mathbb{Z}_5 \cong \mathbb{Z}_{10}.$$

Equivalently,
$$D = \{6, 8, 3, 9, 0\} \subseteq \mathbb{Z}_{10}$$
. $(0, \frac{1}{6}) \in \mathbb{Z}_2 \times \mathbb{Z}_3 \iff \{j+1\}$ (j.ed)

Existence for (n = 4m - 2, 2m - 1, m - 1, 3m - 2)-ADS with small n

- (SLCE) n = q 1, where $q \equiv 3 \pmod{4}$ is a prime power;
- (DHM) n=2p, where $p\equiv 5\pmod 8$ is a prime and p-1 or p-4 is a perfect square.
- $n \in \{34, 38, 50\}$ by computer search.

n	6	10	14	18	22	26	30	34	38	42	46
Construction	S	S,D	Æ	S	S	S,D	S	PC	PC	S	S
n	50	54	58	62	66	70	74	78	82	[86, 98]	
Construction	PC	∄?	S,D	?	S	S	D	S	S	?	

→ Homework

Outline

- ① Binary sequences with optimal autocorrelation and cyclic designs
- 2 Statistical designs for fMRI experiments and cyclic almost orthogonal arrays (CAOA) Statistical models and designs for fMRI experiments Statistical optimality for designs
- 3 CAOAs, optimal sequences, and ADSs

Outline

- ① Binary sequences with optimal autocorrelation and cyclic designs
- Statistical designs for fMRI experiments and cyclic almost orthogonal arrays (CAOA) Statistical models and designs for fMRI experiments Statistical optimality for designs
- CAOAs, optimal sequences, and ADSs

fMRI experiments

- Functional magnetic resonance imaging (fMRI) is a way to study neural correlates of consciousness involving perception, memory, learning, thinking, and affection by measuring hemodynamic response to mental stimuli.
- An fMRI experiment measures brain activity by detecting changes associated with blood flow.
- In an fMRI experiment, the experimental subject is asked to participate in mental tasks in response to the stimuli, while the subject's brain is scanned by a magnetic resonance (MR) scanner.

An fMRI image from https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging

HRFs

- The MR signal changes following stimuli are of great interests.
- Hemodynamic response functions (HRF) are typically used for describing the signal changes.

An example of HRF

from: https://doi.org/10.1002/mrm.27146

Model assumption for statistical analysis

Time series data

- In an fMRI experiment, each observation at a constant time interval is supposed to be affected by not only the current stimulus but also the preceding stimuli.
- A mental stimulus (e.g., a 1.5-second flickering image) is presented to a subject during n time points in the experiment.
- The HRF completely returns to baseline after k time points.

Next we review the statistical model (linear regression model) for an experiment with a single type of stimulus to estimate hemodynamic response functions (HRFs).

Linear model for estimating an HRF

The linear model for estimating an HRF can be expressed as follows:

$$y_i = \gamma + x_i h_1 + x_{i-1} h_2 + \dots + x_{i-k+1} h_k + \varepsilon_i$$
, for $i = 1, 2, \dots, n$,

- y_i : measurement obtained by an fMRI scanner at the *i*th time point.
- γ : nuisance parameter.
- h_j : unknown height (magnitude) of the HRF at the (j-1)th time point.
- $x_{i-k+1} \in \{0,1\}$ s.t. $x_{i-k+1} = 1$ if h_j contributes to y_i and $x_{i-k+1} = 0$ otherwise.
- ε_i : Gaussian noise with mean 0 and variance σ^2 .

Moreover,

•
$$x_l = x_{n+l}$$
 for $l \leq 0$. (cf. [Cheng and Kao, 2015]⁵) (\star)

⁵C. S. Cheng, M. H. Kao, Optimal experimental designs for fMRI via circulant biased weighing designs, Ann. Stat., 43(6): 2565–2587 (2015).

Linear model for estimating an HRF: matrix form

$$y_{1} = \gamma + x_{1}h_{1} + x_{0}h_{2} + x_{-1}h_{3} + \dots + x_{2-k}h_{k} + \varepsilon_{1},$$

$$y_{2} = \gamma + x_{2}h_{1} + x_{1}h_{2} + x_{0}h_{3} + \dots + x_{3-k}h_{k} + \varepsilon_{2},$$

$$y_{3} = \gamma + x_{3}h_{1} + x_{2}h_{3} + x_{1}h_{3} + \dots + x_{4-k}h_{k} + \varepsilon_{3},$$

$$\vdots$$

$$y_{n} = \gamma + x_{n}h_{1} + x_{n-1}h_{2} + x_{n-2}h_{3} + \dots + x_{n-k+1}h_{k} + \varepsilon_{k}.$$

Matrix form of the model

$$\mathbf{y} = \gamma \mathbf{1}_n + \mathbf{X}\mathbf{h} + \boldsymbol{\varepsilon},$$

- $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}$, $\mathbf{h} = (h_1, \dots, h_k)^{\mathsf{T}}$, $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^{\mathsf{T}}$, $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.
- $\mathbf{X} = [\mathbf{X}_{(1)}, \dots, \mathbf{X}_{(k)}] = (x_{ij}) \in \{0, 1\}^{n \times k}$: design matrix.

盧 暁南 (Xiao-Nan LU)

Design matrix for the linear model

$$\mathbf{X} = \begin{bmatrix} x_1 & x_0 & x_{-1} & \cdots & x_{2-k} \\ x_2 & x_1 & x_0 & \cdots & x_{3-k} \\ x_3 & x_2 & x_1 & \cdots & x_{4-k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n & x_{n-1} & x_{n-2} & \cdots & x_{n-k+1} \end{bmatrix} =: \begin{bmatrix} \mathbf{X}_{(1)}, \dots, \mathbf{X}_{(k)} \end{bmatrix} \in \{0, 1\}^{n \times k}$$

- $x_l = x_{n+l}$ for $l \le 0$. By (\star) , \mathbf{X} is circulant, i.e. $\mathbf{X}_{(j)} = \mathbf{C}^{j-1}\mathbf{X}_{(1)}$ for $1 \le j \le k$, where $\mathbf{C} = \begin{bmatrix} \mathbf{0}^\top & 1 \\ \mathbf{I}_{n-1} & \mathbf{0} \end{bmatrix}$.

暁南 (Xiao-Nan LU)

Information matrix for the linear model

- A: $k \times n$ $\{0,1\}$ circulant array. ($\mathbf{X} = \mathbf{A}^{\top}$: design matrix)
- Let $\tilde{\mathbf{X}} = (\mathbf{J} 2\mathbf{A})^{\top} (\leftarrow \text{ a } \pm 1 \text{ matrix})$
- Let $\mathbf{M}(\mathbf{A}) = \tilde{\mathbf{X}}^{\top} \left(\mathbf{I}_n \frac{1}{n} \mathbf{J}_n \right) \tilde{\mathbf{X}}$. (\leftarrow information matrix for the ± 1 matrix)

The information matrix for estimating h is given as

$$\mathbf{M}_{\mathbf{X}} = \mathbf{X}^{\top} \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{X} = \frac{1}{4} \mathbf{M}(\mathbf{A}),$$

where
$$\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n^{ op}$$
. For convenience, we consider $\mathbf{M}(\mathbf{A})$ instead of $\mathbf{M}_{\mathbf{X}}$.

Design matrix: an example

• n = 10. k = 5.

$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{M}_{\mathbf{X}} = \frac{1}{2} \begin{bmatrix} 5 & -1 & -1 & 1 & -1 \\ -1 & 5 & -1 & -1 & 1 \\ -1 & -1 & 5 & -1 & -1 \\ 1 & -1 & -1 & 5 & -1 \\ -1 & 1 & -1 & -1 & 5 \end{bmatrix}$$

$$\tilde{\mathbf{X}}^{\top} = \begin{bmatrix} - & + & + & - & + & + & - & + \\ - & - & + & + & - & + & + & - & + \\ - & - & - & + & + & - & + & + & - \\ - & + & - & - & - & + & + & - & + & + \end{bmatrix}, \qquad \mathbf{M}_{\mathbf{X}} = \begin{bmatrix} 10 & -2 & -2 & 2 & -2 \\ -2 & 10 & -2 & -2 & 2 \\ -2 & -2 & 10 & -2 & -2 \\ 2 & -2 & -2 & 10 & -2 \\ -2 & 2 & -2 & -2 & 10 \end{bmatrix}$$

$$\mathbf{M_X} = \frac{1}{2} \begin{vmatrix} 5 & -1 & -1 & 1 & -1 \\ -1 & 5 & -1 & -1 & 1 \\ -1 & -1 & 5 & -1 & -1 \\ 1 & -1 & -1 & 5 & -1 \\ -1 & 1 & -1 & -1 & 5 \end{vmatrix}$$

$$\mathbf{M_X} = \begin{vmatrix} 10 & -2 & -2 & 2 & -2 \\ -2 & 10 & -2 & -2 & 2 \\ -2 & -2 & 10 & -2 & -2 \\ 2 & -2 & -2 & 10 & -2 \\ -2 & 2 & -2 & -2 & 10 \end{vmatrix}$$

Definition of CAOAs

Definition (Circulant almost orthogonal arrays; CAOAs)

A binary circulant $k \times n$ array \mathbf{A} is a circulant almost orthogonal array (CAOA) with parameter (n,k,2,t,b), if in any $t \times n$ subarray of \mathbf{A} it holds that $|\lambda(\mathbf{a}_1) - \lambda(\mathbf{a}_2)| \leq b$ for any distinct $\mathbf{a}_1, \mathbf{a}_2 \in \{0,1\}^t$, where $\lambda(\mathbf{a})$ is the frequency of \mathbf{a} as column vectors. [Lin, et al., 2017] ⁶

Example (CAOA(10, 5, 2, 2, 1))

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

盧 暁南 (Xiao-Nan LU)

⁶Y. L. Lin, F. K. H. Phoa, M. H. Kao. Optimal design of fMRI experiments using circulant (almost-) orthogonal arrays. Ann. Stat.,45(6): 2483–2510 (2017).

$\mathsf{CAOA}(n, k, 2, 2, b) \text{ for } n \not\equiv 2 \pmod{4}$

- When $n \equiv 0 \pmod{4}$
 - ▶ A CAOA(n, k, 2, 2, b = 0) is equivalent to a circulant partial Hadamard design⁷ 0-H $(k \times n)$.
 - ► Construction via H-sequence, Paley difference sets ⁸.
 - ► CAOA(4u, 14, 2, 2, 0) for any $u \ge 9$ [Lin, et al., 2017] (by a recursive construction).
- When $n \equiv 1, 3 \pmod{4}$,
 - Construction via extended H-sequences.
 - Construction by difference variance algorithms (DVA).
- When $n \equiv 3 \pmod{4}$, a CAOA(n, n, 2, 2, 1) exists if:
 - $n \equiv 3 \pmod{4}$ and n is a prime. (via Paley difference sets)
 - ightharpoonup n=p(p+2) where p and p+2 are both odd primes. (via twin prime difference sets)
 - ▶ $n = 2^m 1$ where $m \ge 2$. (via Singer difference sets)

盧 暁南 (Xiao-Nan LU)

⁷Y. L. Lin, F. K. H. Phoa, M. H. Kao. Circulant partial Hadamard matrices: construction via general difference sets and its application to fMRI experiments. Stat. Sinica, 27(4): 1715–1724 (2017).

⁸C. S. Cheng, M. H. Kao. Optimal experimental designs for fMRI via circulant biased weighing designs. Ann. Stat., 43(6): 2565–2587 (2015).

$\mathsf{CAOA}(n, k, 2, 2, b) \text{ for } n \equiv 2 \pmod{4}$

- - $ightharpoonup \exists T_2\text{-CAOA}(2n, n, 2, 2, 1)$ for all odd prime n [Lin, et al., 2017] (using Paley DS).

Definition $(T_1$ -, T_2 -, T_3 -, T_3^* -CAOA)

- **1** A is a T_1 -CAOA if $\mathbf{M}(\mathbf{A}) = (n-2)\mathbf{I}_k + 2\mathbf{J}_k$,
- **2** A is a T_2 -CAOA if $\mathbf{M}(\mathbf{A}) = (n+2)\mathbf{I}_k 2\mathbf{J}_k$,
- **3** A is a T_3 -CAOA if A is neither T_1 nor T_2 -CAOA.

Problems

- Which type of CAOA is better (best = optimal)?
- **2** How large k can be for given $n \equiv 2 \pmod{4}$?
- 3 How do we construct such CAOAs?

Outline

- ① Binary sequences with optimal autocorrelation and cyclic designs
- 2 Statistical designs for fMRI experiments and cyclic almost orthogonal arrays (CAOA) Statistical models and designs for fMRI experiments Statistical optimality for designs
- CAOAs, optimal sequences, and ADSs

Some well-known optimality criteria

- Roughly speaking, optimality criteria are functionals of the eigenvalues of the information matrix \mathbf{M} .
- M: non-negative definite symmetric matrix of rank k with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$.
- D-optimality (determinant): minimize $\det(\mathbf{M}^{-1})$, i.e., maximize $\prod_{i=1}^k \lambda_i$.
- A-optimality (trace or "average"): minimize $\operatorname{tr}(\mathbf{M}^{-1})$, i.e., minimize $\sum_{i=1}^k \lambda_i^{-1}$.
- Φ_p -optimality: minimize $\sum_{i=1}^k \lambda_i^{-p}$ with 0 .
- E-optimality (eigenvalue): maximize λ_k (the minimum eigenvalue).

Type-1 optimality criteria

• M: non-negative definite symmetric matrix of rank k with eigenvalues $\lambda_1, \ldots, \lambda_k$.

Definition (Type 1 optimality criteria [Cheng, 1978]⁹)

A type 1 criterion is of the form $\Phi_f(\mathbf{M}) = \sum_{i=1}^k f(\lambda_i)$, where $f: \mathbb{R} \to [0, \infty)$ is continuously differentiable in $(0, \infty)$ with f' < 0, f'' > 0, and f''' < 0, and $\lim_{x \to 0^+} f(x) = f(0) = \infty$.

In particular, the *D*-optimality criterion is of type 1 for $f(\lambda) = -\log \lambda$.

- \mathcal{A} : the set of all $k \times n$ $\{0,1\}$ circulant arrays.
- $\mathcal{M}_{\mathcal{A}} = \{ \mathbf{M}(\mathbf{A}) : \mathbf{A} \in \mathcal{A} \}.$

Definition (Optimality for CAOAs)

If $\mathbf{M} \in \mathcal{M}_{\mathcal{A}}$ (resp. $\mathbf{A} \in \mathcal{A}$ with $\mathbf{M} = \mathcal{M}_{\mathcal{A}}$) minimizes $\Phi_f(\mathbf{M})$ in the class $\mathcal{M}_{\mathcal{A}}$ for all f, then \mathbf{M} (resp. $\mathbf{A} \in \mathcal{A}$) is optimal over $\mathcal{M}_{\mathcal{A}}$ (resp. \mathcal{A}) w.r.t. all type 1 criteria.

盧 暁南 (Xiao-Nan LU) Advanced Applied Math II Aug. 31, 2021 Kobe University

34 / 48

⁹C. S. Cheng, Optimality of certain asymmetrical experimental designs, Ann. Stat., 6: 1239–1261 (1978).

Three types of CAOAs (Revisit)

- $n \equiv 2 \pmod{4}$ and $k \ge 2$.
- **A**: CAOA(n, k, 2, 2, 1)
- \mathcal{A} : the set of $k \times n$ $\{0,1\}$ -circulant arrays.

h -2 2 -2 2 -2

Definition (T_1 -, T_2 -, T_3 -, T_3^* -CAOA)

- **1** A is a T_1 -CAOA if $\mathbf{M}(\mathbf{A}) = (n-2)\mathbf{I}_k + 2\mathbf{J}_k$, optimal (by [Cheng, et al., 2017]¹⁰)
- **2** A is a T_2 -CAOA if $\mathbf{M}(\mathbf{A}) = (n+2)\mathbf{I}_k 2\mathbf{J}_k$,
- **3 A** is a T_3 -CAOA if **A** is neither T_1 nor T_2 -CAOA. In particular, if $\mathbf{M}(\mathbf{A}) = (n-2)\mathbf{I}_k + 2\mathbf{L}_k$ with $\mathbf{L}_k = (\ell_{ij})$ where $\ell_{ij} = (-1)^{i+j}$, then **A** is a T_3^* -CAOA. optimal [L.]

¹⁰C. S. Cheng, M. H. Kao, F. K. H. Phoa. Optimal and efficient designs for functional brain imaging experiments. J Statist. Plann. Inference 181: 71–80 (2017).

盧 暁南 (Xiao-Nan LU)

A new type of optimal CAOAs

Theorem (L. et. al, 2021)

 T_3^* -CAOA **A** is optimal over \mathcal{A} w.r.t. any type 1 criterion.

Proof (sketch): T_3^* -CAOA(n, k, 2, 2, 1) has the same eigenvalues with a T_1 -CAOA(n, k, 2, 2, 1).

Actually, we proved a stronger theorem. 11

Theorem (L. et. al, 2021)

If there exists a T_1 - or a T_3^* -CAOA(n,k,2,2,1), then, with respect to any type 1 criterion, any optimal array in $\mathcal A$ is either a T_1 - or a T_3^* -CAOA(n,k,2,2,1).

¹¹X.-N. Lu, M. Mishima, N. Miyamoto, M. Jimbo. Optimal and efficient designs for fMRI experiments via two-level circulant almost orthogonal arrays. J Statist. Plann. Inference, 213: 33-49, (2021).

An example of T_3^* -CAOA

- n = 14, k = 6.
- Generating vector (the first row of a CAOA): 11101100001010

$$\mathbf{M} = \begin{bmatrix} 14 & -2 & 2 & -2 & 2 & -2 \\ -2 & 14 & -2 & 2 & -2 & 2 \\ 2 & -2 & 14 & -2 & 2 & -2 \\ -2 & 2 & -2 & 14 & -2 & 2 \\ 2 & -2 & 2 & -2 & 14 & -2 \\ -2 & 2 & -2 & 2 & -2 & 14 \end{bmatrix}$$

• Eigenvalues of M: (24, 12, 12, 12, 12, 12)

Table of T_3^* -CAOAs

Example $(T_3^*\text{-CAOA}(n, k_3^*, 2, 2, 1) \text{ (optimal)})$

\overline{n}	k_3^*	(k_1)	Generating vector
10	<u>5</u>	<u>(3)</u>	1101000101
14	<u>6</u>	$(\underline{4})$	11101100001010
18	<u>6</u>	$(\underline{6})$	110101110100001001
22	<u>8</u>	$(\underline{7})$	0010100100011110111010
26	<u>13</u>	$(\underline{9})$	110101000001100101011111100
30	$\underline{14}$	$(\underline{10})$	1001111111001101010100000110010
34	<u>13</u>	$(\underline{11})$	0011000000011110011101101101010101
38	14	(13)	11010100000111000100010101101100111110
42	16	(13)	11011010111011110010101000001011001100
46	17	(14)	1011001001011110000100001001110100011101111
_50	18	(15)	0110101010100000110001100100011010011111

^{*} The best known k for T_1 -CAOAs are also listed. The underlined values are best possible (cannot be larger).

Outline

- ① Binary sequences with optimal autocorrelation and cyclic designs
- 2 Statistical designs for fMRI experiments and cyclic almost orthogonal arrays (CAOA)
- 3 CAOAs, optimal sequences, and ADSs

How large k can be? (1/2)

Proposition (Upper bound for k)

- **1** For $n \geq 6$, any of T_1 -, T_2 and T_3^* -CAOA(n, k, 2, 2, 1) satisfies $k \leq n/2$.
- 2 For $n \geq 10$, any T_1 -CAOA(n, k, 2, 2, 1) satisfies $k \leq n/2 2$.

Problem

For which kind of T_3 -CAOA(n, k, 2, 2, 1), k = n - 1 may hold?

How large k can be? (2/2)

Example
$$(T_3^*\text{-CAOA}(n=10,k=5,2,t=2,b=1) \text{ Revisit})$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

How large k can be? (2/2)

Example (Information matrix of T_3^* -CAOA(n = 10, k = 5, 2, t = 2, b = 1))

$$\mathbf{M}(\mathbf{A}) = \begin{bmatrix} 10 & -2 & 2 & -2 & 2 \\ -2 & 10 & -2 & 2 & -2 \\ 2 & -2 & 10 & -2 & 2 \\ -2 & 2 & -2 & 10 & -2 \\ 2 & -2 & 2 & -2 & 10 \end{bmatrix}.$$

How large k can be? (2/2)

Example (Forcing
$$k=9$$
 for a T_3^* -CAOA $(n=10,k=5,2,t=2,b=1)...)$

$$\mathbf{M}(\mathbf{A}) = \begin{bmatrix} 10 & -2 & 2 & -2 & 2 & -10 & 2 & -2 & 2 \\ -2 & 10 & -2 & 2 & -2 & 2 & -10 & 2 & -2 \\ 2 & -2 & 10 & -2 & 2 & -2 & 2 & -10 & 2 \\ -2 & 2 & -2 & 10 & -2 & 2 & -2 & 2 & -10 \\ \vdots & \vdots \end{bmatrix}.$$

T_3 -CAOAs and sequences

Theorem (Relationship between T_3 -CAOAs and sequences)

For $n \equiv 2 \pmod{4}$, the following are equivalent:

- 1 There exists a perfect binary sequence of length n consisting of equal numbers of 0 and 1 (called balanced);
- 2 A T_3 -CAOA(n, n-1, 2, 2, 1) (not necessarily T_3^*) exits;
- 3 A T_3 -CAOA(n, k, 2, 2, 1) (not necessarily T_3^*) exits for any $n/2 < k \le n-1$.

Binary balanced optimal sequences and almost difference sets (revisit)

- For $\mathbf{s} \in \{0,1\}^n$, regard the indices as in $\mathbb{Z}_n = \{0,1,\ldots,n-1\}$.
- The set of indices of 1's in s is the support of s, denoted by supp(s).
- For an optimal s with $n \equiv 2 \pmod{4}$, $\operatorname{supp}(s)$ is an almost difference set in \mathbb{Z}_n .

Proposition

A T_3 -CAOA(n, k, 2, 2, 1) with generating vector $\mathbf{s} \iff$

An optimal balanced binary sequence $\mathbf{s} \iff$

 $D:=\operatorname{supp}(\mathbf{s})$ is an $(n,\frac{n}{2},\frac{n-2}{4},\frac{3n-2}{4})$ ADS in \mathbb{Z}_n

Known constructions for sequences (revisit)

Using known sequence constructions and computer search, we have:

Theorem

There exits a T_3 -CAOA(n, n-1, 2, 2, 1) for the following n:

- **1** (From SLCE seq.) n = q 1, where $q \equiv 3 \pmod{4}$ is a power of a prime;
- 2 (From DHM seq.) n=2p, where $p\equiv 5\pmod 8$ is a prime such that p-1 or p-4 is a perfect square.
- $n \in \{34, 38, 50\}.$

Comparison of D-efficiency(%) between T_3 - and T_2 -CAOAs

		k =	= n/2	k = n - 1		k = 9		
$\frac{n}{}$		T_3	(T_2)	T_3	(T_2)	T_3	(T_2)	
6	S	92.83	(92.83)	84.41	(84.41)	NA	NA	
10	S	97.67	(89.13)	82.74	(69.44)	82.74	(69.44)	
10 -	D	97.67	(89.13)	82.74	(69.44)	82.74	(69.44)	
18	S	97.01	(89.01)	85.28	(55.47)	97.01	(89.01)	
22	S	97.14	(89.49)	86.38	(51.24)	98.05	(95.79)	
26	S	98.16	(90.00)	87.37	(47.91)	99.08	(97.78)	
20	D	98.16	(90.00)	87.37	(47.91)	99.08	(97.78)	
30	S	98.02	(90.50)	88.17	(45.18)	99.43	(98.66)	
34	РС	99.05	(90.95)	91.26	(42.89)	99.79	(99.12)	
34		98.61	(90.95)	90.09	(42.89)	99.59	(99.12)	
38	PC	98.39	(91.37)	91.79	(40.93)	99.59	(99.39)	
42	S	98.67	(91.75)	90.08	(39.23)	99.65	(99.56)	
46	S	98.76	(92.10)	90.57	(37.73)	99.87	(99.67)	
50	PC	98.88	(92.42)	92.17	(36.39)	99.87	(99.75)	

Enumerating $(n, \frac{n}{2}, \frac{n-2}{4}, \frac{3n-2}{4})$ ADS

Problem

For given $n \equiv 2 \pmod{4}$, how many different are there?

By further characterizing optimal balanced sequences and employing SUGAR¹², a SAT-based constraint solver, a complete search of all optimal balanced sequences of length n=2u with $u\in\{3,5,\ldots,23\}$ was carried out.

Table: The numbers of equivalence classes of optimal balanced sequences of length n

n=2u	6	10	14	18	22	26	30	34	38	42	46
# eq. classes	1	1	0	8	12	24	30	4	4	16	8
Known constr.	S	S,D	-	S	S	S,D	S	-	-	S	S

¹²https://cspsat.gitlab.io/sugar/

Updated D-efficiency (%) of T_3 -CAOA(n, n-1, 2, 2, 1)

\overline{n}		T_3	best T_3
6	S	84.41	-
10	S	82.74	-
10	D	82.74	-
18	S	85.28	-
22	S	86.38	86.90
26	S	87.37	89.22
20	D	87.37	09.22
30	S	88.17	90.97
34	PC	91.26	
94	1	90.09	_
38	PC	91.79	91.89
42	S	90.08	92.58
46	S	90.57	92.51

Homework assignments (レポート課題) for 5th day

Exercise 1

Construct an SLCE sequence of length n=18.

Hint: take q = 19.

Exercise 2

Find all the integers $100 \le n \le 200$ such that there exists an SLCE sequence or a DHM sequence of length n.

- You are encouraged to use computer programs.
- Deadline: 6th Sept., 23:59:59