Given the two diff. eq's:

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1 \qquad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$$

where $C_1 + C_2 = 0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

C.
$$C_1 = C_2 = 0$$
 here

D. It doesn't matter.

ANNOUNCEMENTS

- Exam 1 graded
 - Returned at the end of class today (Avg. 73; Median. 76)
- Sent out individual grade reports on Saturday
 - Please check that your grades make sense to you!
- Homework 5 is due on Friday
 - It's a bit longer...start early!

Given the two diff. eq's:

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1 \qquad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$$

where $C_1 + C_2 = 0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

C.
$$C_1 = C_2 = 0$$
 here

D. It doesn't matter.

When does $\sin(ka)e^{-ky}$ vanish?

A.
$$k = 0$$

B.
$$k = \pi/(2a)$$

$$C. k = \pi/a$$

Suppose $V_1(r)$ and $V_2(r)$ are linearly independent functions which both solve Laplace's equation, $\nabla^2 V = 0$.

Does $aV_1(r) + bV_2(r)$ also solve it (with a and b constants)?

- A. Yes. The Laplacian is a linear operator
- B. No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions!
- C. It is a definite yes or no, but the reasons given above just aren't right!
- D. It depends...

What is the value of $\int_0^{2\pi} \sin(2x) \sin(3x) dx$?

- A. Zero
- Β. π
- $C. 2\pi$
- D. other

E. I need resources to do an integral like this!

SEPARATION OF VARIABLES (SPHERICAL)

Given $\nabla^2 V=0$ in Cartesian coords, we separated V(x,y,z)=X(x)Y(y)Z(z). Will this approach work in spherical coordinates, i.e. can we separate $V(r,\theta,\phi)=R(r)\Theta(\theta)\Phi(\phi)$?

- A. Sure.
- B. Not quite the angular components cannot be isolated, e.g., $f(r,\theta,\phi)=R(r)Y(\theta,\phi)$
- C. It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

V everywhere on a spherical shell is a given constant, i.e. $V(R,\theta)=V_0$. There are no charges inside the sphere. Which terms do you expect to appear when finding V(inside)?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0
- D. Just B_0
- E. Something else!

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(inside)**?

- A. Many A_I terms (but no B_I 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

Given $V_0(\theta) = \sum_l C_l P_l(\cos \theta)$, we want to get to the integral:

$$\int_{-1}^{+1} P_l(u) P_m(u) du = \frac{2}{2+1} \text{ (for } l = m)$$

we can do this by multiplying both sides by:

- A. $P_m(\cos\theta)$
- B. $P_m(\sin \theta)$
- C. $P_m(\cos\theta)\sin\theta$
- D. $P_m(\sin\theta)\cos\theta$
- $E. P_m(\sin \theta) \sin \theta$

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(outside)**?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

How many boundary conditions (on the potential V) do you use to find V inside the spherical plastic shell?

- A. 1
- B. 2
- C. 3
- D. 4
- E. It depends on $V_0(\theta)$

