LÖSNINGAR TILL LINJÄR ALGEBRA II, 2019-01-16

(1) Vi väljer en godt. bas som innehåller \overline{v} . T. e.x., $B = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (1, 0, 0), (0, 0, 1)\}.$ Sedan ortogonaliserar vi B. Svaret blir $\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (0, 0, 1)\}$

(2)

$$\begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\ x & x^2 & x^3 & x^4 & 1 \\ x^2 & x^3 & x^4 & 1 & x \\ x^3 & x^4 & 1 & x & x^2 \\ x^4 & 1 & x & x^2 & x^3 & x^4 \end{pmatrix} = \begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\ 0 & 0 & 0 & 0 & 1 - x^5 \\ 0 & 0 & 0 & 1 - x^5 & x - x^6 \\ 0 & 0 & 1 - x^5 & x - x^6 & x^2 - x^7 \\ 0 & 1 - x^5 & x - x^6 & x^2 - x^7 & x^3 - x^8 \end{pmatrix} = (1 - x^5)^4$$

Så är x=1 den ända reella lösningen. De övriga lösningar är 5:te rötter ur

(3) Vi har att

$$A^*A = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}.$$

Egenvärdena till A^*A är lösningarna till ekvationen $det(A^*A - \lambda I) = 0$. Uträkning ger att A^*A har egenvärdena $\lambda_1 = 25$ och $\lambda_2 = 9$, vilket ger att A har singulära värden $\sigma_1 = \sqrt{\lambda_1} = 5$ och $\sigma_2 = \sqrt{\lambda_2} = 3$.

Egenrummet för egenvärdet λ_i ges av nollrummet till matrisen $(A^*A \lambda I$). Explicita uträkningar (som studenter borde skriva ner) ger att egenrummet för egenvärdet $\lambda_1 = 25$ ges av $\mathrm{Span}(1,1)^t$. En ON-bas för egenrummet till λ_1 ges av $v_1 = \frac{1}{\sqrt{2}}(1,1)$.

Egenrummet för egenvärdet $\lambda_2 = 9$ ges av Span $(-1,1)^t$. En ON-bas för egenrummet till λ_2 ges av $v_2 = \frac{1}{\sqrt{2}}(-1,1)$. Låt nu V vara matrisen vars i:te kolonn är v_i , d.v.s.

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Nu hittar vi en ON-bas (u_1,u_2,u_3) för \mathbb{R}^3 där $u_1=\frac{1}{\sigma_1}Av_1$ och $u_2=\frac{1}{\sigma_2}Av_2$. Uppsättningen (u_1,u_2) kan utvidgas till en ON-bas för \mathbb{R}^3 antingen genom att applicera Gram-Schmidt metod på (u_1, u_2, v) där v är en vektor som är linjärt oberoende av u_1 och u_2 (t.ex. $(1,0,0)^t$)) eller genom att ansätta $u_3 = u_1 \times u_2$ (vilket fungerar bara i \mathbb{R}^3). Vi väljer den andra metoden och får att $u_3 = (-\frac{2}{3}, \frac{2}{3}, \frac{1}{3})^t$. Låt nu U vara matrisen vars i:te kolonn är u_i , d.v.s

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ 0 & -\frac{4}{3\sqrt{2}} & \frac{1}{3} \end{pmatrix}.$$

Slutligen, låt S vara av samma storlek som A (d.v.s. 3×2) och ges av

$$S_{ij} = \begin{cases} \sigma_i & \text{om } i = j \\ 0 & \text{annars.} \end{cases}$$

Det följer nu att vi har en singulärvärdesdekomposition

$$A = USV^* = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ 0 & -\frac{4}{3\sqrt{2}} & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

(4) Egenvärdena är $\lambda_1=2$ och $\lambda_2=3$

För $\lambda_1=2$ får vi egenvektoren $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ och för $\lambda_2=3$ får vi egenvektoren

 $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$. Vi har två egenvektorer som inte räcker för att bilda en bas.

(5)
$$T(x^5) = x^5 + 20x^3$$

 $T(20x^3) = 20x^3 + 120x$
 $T(120x) = 120x$
 $T(x^4) = x^4 + 12x^2$
 $T(12x^2) = 12x^2 + 24$
 $T(24) = 24$
Matrisen blir

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

(6) (1) satisfierar alla villkor för att vara en skalärprodukt. T.e.x. blir sista villkor

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} > = x_1^2 + (x_1 + x_2)^2,$$

som är ≥ 0 med likhet $x_1=x_2=0$. Men (2) satisfierar alla villkor utom sista. T.e.x.

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -1.$$