Given an array of integers and a positive integer \emph{k} , determine the number of (\emph{i},\emph{j}) pairs where $\emph{i}<\emph{j}$ and $ar[\emph{i}]$ + $ar[\emph{j}]$ is divisible by \emph{k} .

Example

$$ar = [1, 2, 3, 4, 5, 6]$$

$$k = 5$$

Three pairs meet the criteria: [1,4], [2,3], and [4,6].

Function Description

Complete the divisibleSumPairs function in the editor below.

divisibleSumPairs has the following parameter(s):

- int n: the length of array $\it ar$
- int ar[n]: an array of integers
- · int k: the integer divisor

Returns

- int: the number of pairs

Input Format

The first line contains 2 space-separated integers, n and k.

The second line contains n space-separated integers, each a value of arr[i].

Constraints

- $2 \le n \le 100$
- $1 \le k \le 100$
- $1 \le ar[i] \le 100$

Sample Input

STDIN	Function
6 3	n = 6, k = 3
132612	ar = [1, 3,

Sample Output

Explanation

Here are the ${f 5}$ valid pairs when ${\it k}={\bf 3}$:

- $(0,2) \rightarrow ar[0] + ar[2] = 1 + 2 = 3$
- $(0,5) \to ar[0] + ar[5] = 1 + 2 = 3$
- $(1,3) \rightarrow ar[1] + ar[3] = 3 + 6 = 9$
- $(2,4) \rightarrow ar[2] + ar[4] = 2 + 1 = 3$
- $(4,5) \rightarrow ar[4] + ar[5] = 1 + 2 = 3$