Sparse VAR models and variants

- ► Lasso estimation in i.i.d. setting. Basic lasso, adaptive lasso, debiased lasso etc.
- Extension to high-dimensional VAR model.
- Some examples and extensions

Basics of Lasso - Framework

- Consider regression problem with sample $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ data with $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$: p-dimensional predictors and response vector $\mathbf{y} = (y_1, \dots, y_N)'$.
- OLS estimator is given by

$$\arg\min\frac{1}{2N}\|\mathbf{y}-\beta_0\mathbf{1}-X\boldsymbol{\beta}\|_2^2,$$

where $X=(\mathbf{x}_1'\cdots\mathbf{x}_N')'$ be $N\times p$ design matrix and $\mathbf{1}=(1,\ldots,1)'$ be vectoor of ones.

Lasso estimator is defined as

$$\begin{aligned} & \text{minimize} \, \frac{1}{2N} \|\mathbf{y} - \beta_0 \mathbf{1} - X \boldsymbol{\beta}\|_2^2 \quad \text{subject to} \\ & L_1\text{-constraint} \quad \|\boldsymbol{\beta}_1\|_1 = \sum_{j=1}^p |\beta_j| \leq t \end{aligned} \tag{1}$$

Lasso -Lagrangian form

- For the notational convenience, we standardize predictor X (centered and unit variance) and \mathbf{y} is also cnetered $(\mathbf{y} \overline{\mathbf{y}})$. Then, it gives $\widehat{\beta} = 0$.
- ▶ Then, we can rewrite Lasso problem into Lagrange form

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\text{minimize}} \frac{1}{2N} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1, \quad \lambda \ge 0$$
 (2)

➤ See Chapter 2 of Hastie et al. (2015) for details. Few Remarks in order.

Lasso: remarks

- 1. Lagrange duality means 1-1 correspondence between (1) and (2). For each t such that $\|\boldsymbol{\beta}\|_1 \leq t$, we can find corresponding λ in (2) . If $\widehat{\boldsymbol{\beta}}_{\lambda}$ solves (2) for given λ , then it solves (1) with $t = \|\widehat{\boldsymbol{\beta}}_{\lambda}\|_1$
- 2. The equivalence is non-trivial but well-known. See section 5.5.3 in Boyd et al. (2004)
- 3. $\frac{1}{2N}$ is used to cancel out derivative.
- 4. Hence, we can solve lasso by finding the solution of (2). The "derivative = 0" gives the solution because

$$\frac{1}{2N} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

is convex function. Why?

Lasso: remarks

Hence, only need to solve

$$\left\{ \begin{array}{ll} -\frac{1}{N}\langle \mathbf{x}_j,\mathbf{y}-X\boldsymbol{\beta}\rangle + \lambda \mathrm{sign}(\boldsymbol{\beta}_j) = 0, j = 1,\ldots,p & \text{if } \beta_j \neq 0, \\ & \text{any value in } [-1,+1] & \text{if } \beta_j = 0, \end{array} \right.$$

where [-1,+1] is the subgradient of absolute function. Note that |x| is not differentiable at x=0.

Lasso - Why sparsity in Lasso?

It is because of L_1 -penalty. If L_2 -penalty is used, then it is a ridge regression:

$$\text{minimize } \frac{1}{2N} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 \quad \text{subject to } \|\boldsymbol{\beta}\|_2^2 = \sum_{j=1}^p |\beta_j|^2 \leq t^2$$

Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions $|\beta_1|+|\beta_2| \le t$ and $\beta_1^2+\beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the residual-sum-of-squares function. The point $\widehat{\beta}$ depicts the usual (unconstrained) least-squares estimate.

Lasso - Generalization

We can consider L_q -penalty:

$$\tilde{\boldsymbol{\beta}} = \arg\min\left\{\|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \sum_{j=1}^p |\beta_j|^q\right\} \quad \text{for } q \ge 0$$

- ightharpoonup q=0; Variable selection, count the # of non-zero coefficients
- ightharpoonup q = 1; LASSO
- ightharpoonup q = 2; Ridge regression
- ightharpoonup q > 1; $|\beta_j|^q$ is differentiable at 0, so no sparsity

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Mixture between L₁ and L₂-norm "Elastic net"

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$$

Lasso - Coordinate descent algorithm

When λ is given, the coordinate descent algorithm updates $\beta_j(\lambda)$ one by one, iteratively.

Step1 $\beta_k(\lambda)$ be the current estimate for β_k . Then, rewrite penalty as

$$\frac{1}{2} \sum_{i=1}^{N} \left(y_i - \sum_{k \neq j} x_{ik} \tilde{\beta}_k(\lambda) - x_{ij} \beta_j \right)^2 + \lambda \sum_{k \neq j} |\beta_k| + \lambda |\beta_j|$$

Step2 Iterate untill convergence by solving

$$0 = \sum_{i=1}^{N} \left(y_i - \sum_{k \neq j} x_{ik} \tilde{\beta}_k(\lambda) - x_{ij} \beta_j \right) (-x_{ij}) + \lambda \operatorname{sign}(\beta_j)$$

gives

$$\tilde{\beta}_j(\lambda) \leftarrow S\left(\sum_{i=1}^N x_{ij}(y_i - \tilde{y}_i^{(j)}), \lambda\right),$$

where $S(t,\lambda) = \mathrm{sign}(t)(|t|-\lambda)$ is a soft-thresholding operator.

Lasso - Coordinate descent algorithm

Why? Consider single-variable case.

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2N} \sum_{i=1}^{N} (y_i - x_i \beta)^2 + \lambda |\beta|$$

Need to solve "derivative = 0"

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - x_i \beta)(-x_i) + \lambda \operatorname{sign}(\beta) = 0$$

$$\frac{1}{N} \sum_{i=1}^{N} y_i x_i - \left(\frac{1}{N} \sum x_i x_i\right) \beta - \lambda \operatorname{sign}(\beta) = 0$$

$$\therefore \beta = \frac{1}{N} \sum_{i=1}^{N} y_i x_i - \lambda \operatorname{sign}(\beta)$$

Lasso - Coordinate descent algorithm

Therefore, the solution becomes

$$\begin{split} \widehat{\beta} &= \begin{cases} \frac{1}{N} \sum_{i=1}^{N} y_i x_i - \lambda & \text{if } \frac{1}{N} \langle y, x \rangle > \lambda \\ 0 & \text{if } |\frac{1}{N} \langle y, x \rangle| \leq \lambda \\ \frac{1}{N} \sum_{i=1}^{N} y_i x_i + \lambda & \text{if } \frac{1}{N} \langle y, x \rangle < -\lambda \\ &= S\left(\frac{1}{N} \langle y, x \rangle, \lambda\right) \end{cases} \end{split}$$

Figure 2.4 Soft thresholding function $S_{\lambda}(x) = \operatorname{sign}(x) (|x| - \lambda)_{+}$ is shown in blue (broken lines), along with the 45° line in black.

Lasso - ADMM

Alternating direction method of multipliers (ADMM) is another way of solving lasso. ADMM solves

$$\underset{\boldsymbol{\alpha},\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

subject to $\beta - \alpha = 0$. It has the following explicit formula:

$$\begin{cases} \boldsymbol{\beta}^{(k)} &= (X^T X + pI)^{-1} \left(X^T \mathbf{y} + p(\boldsymbol{\alpha}^{(k-1)} - \mathbf{w}^{(k-1)}) \right) \\ \boldsymbol{\alpha}^{(k-1)} &= S_{\frac{\lambda}{p}} (\boldsymbol{\beta}^{(k)} + \mathbf{w}^{(k-1)}) \\ \mathbf{w}^{(k)} &= \mathbf{w}^{(k-1)} + \boldsymbol{\beta}^{(k)} - \boldsymbol{\alpha}^{(k)} \end{cases}$$

▶ ADMM converges very fast in a handful of iterations, but precise estimaiton requires more time than coordinate descent algorithm. See Boyd et al. (2011) for further references.

Lasso - Tuning parameter λ selection

Bootstrap and Information Criteria are most widely used. Bootstrap (k-fold Cross validation) procedures are

- 1. Fit lasso with a wide range of values $\Lambda = \{\lambda_e\}_{e=1}^m$
- 2. Divide whole sample into k groups at random
- 3. With kth group (test set) out, fit lasso path to the remaining k-1 groups (training set).
- 4. For each $\lambda \in \Lambda$, compute mean-squared prediction error for test set.
- 5. Average these errors to obtain a prediction error curve
- 6. $\hat{\lambda}_{CV}$ is the one minimizes a prediction error curve.

Lasso - Inference on β

In order to obtain the sampling distribution of $\hat{\beta}(\lambda)$, apply bootstrap. That is obtain subsample $\{(x_i^*,y_i^*)\}_{i=1}^N$ from the sample data $\{(x_i,y_i)\}_{i=1}^N$, and obtain lasso estimates $\{\beta^*\}$.

Figure 6.5 [Left] Cross-validation curve for lasso on the diabetes data, with one-standard-error bands computed from the 10 realizations. The vertical line on the left corresponds to the minimizing value for λ . The line on the right corresponds to the one-standard-error rule; the biggest value of λ for which the CV error is within one standard error of the minimizing value. [Right] 1000 bootstrap CV curves, with the average in red, and one-standard-error bands in blue. The rug-plot at the base shows the locations of the minima.

Lasso - Tuning parameter λ selection

However, CV selection may not feasible when $p\gg N$ or time dependent case, etc. Alternatively, we can use information criteria.

$$BIC = \log\left(\frac{SSE}{N}\right) + |S_{\lambda}| \frac{\log N}{N} \times C_{N}$$
 # of parameters

- $ightharpoonup C_N=1$; usual BIC, work with moderate dimension.
- $ightharpoonup C_N = \log(\log p)$; if $p \gg N$.

Simulations study advocate the use of BIC, but CV with $k=10\,$ seems to be more popular in practice.

Lasso - Theoretical Results

Denote β^* : true, $\widehat{\beta}$: Lasso estimator.

1. MSE consistency

$$\frac{1}{N} \|X(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)\|_2 \le c \|\boldsymbol{\beta}^*\|_1 \sqrt{\frac{\log p}{N}}$$

True parameter must be sparse relative to $\frac{N}{\log(p)}$.

2. Sparsistency (support recovery)

$$P\left(\operatorname{supp}(\widehat{\boldsymbol{\beta}}) = \operatorname{supp}({\boldsymbol{\beta}}^*)\right) \to 1,$$

where $\operatorname{supp}(\hat{\boldsymbol{\beta}}) = \{i : \hat{\boldsymbol{\beta}}_i \neq 0\}$ is non-zero parameters.

Lasso - Problems?

See the lasso estimator again

Figure 2.4 Soft thresholding function $S_{\lambda}(x) = \operatorname{sign}(x) (|x| - \lambda)_{+}$ is shown in blue (broken lines), along with the 45° line in black.

Since $\hat{\beta}$ shrinks toward zero, it introduces "bias".

Lasso - Debiasing I

- Method1 Since $\hat{\boldsymbol{\beta}}^{Lasso}$ is sparsistency, estimate parameters with zero constraint. This is the best, but if p is large, it takes too much time & may not feasible sometimes.
- Method2 Shrink less for large coefficients! Zou (2006) proposed the adaptive lasso given by

$$\hat{\boldsymbol{\beta}}^{adapt} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg \, min}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \sum_{j=1}^p w_j |\beta_j|,$$

where $\{w_j\}$ is weights for β_j . Zou (2006) suggested to use

$$w_j = \frac{1}{|\hat{\beta}_j^{init}|}, \quad j = 1, \dots, p.$$

It is based on the weight least squares, and if $w_j=1$, then it is a usual lasso.

Lasso - Debiasing II

Method3 Use Non-convex penalties. If q < 1, then it gives much sparse model, hence small bias.

Figure 4.12 The ℓ_q unit balls in \mathbb{R}^3 for q=2 (left), q=1 (middle), and q=0.8 (right). For q<1 the constraint regions are nonconvex. Smaller q will correspond to fewer nonzero coefficients, and less shrinkage. The nonconvexity leads to combinatorially hard optimization problems.

However, it is computationally challenging if dimension p is high. Alternatively, other non-convex penalties are suggested:

- ► MC+ (minimax convex) by Zhang et al. (2010)
- ► SCAD by Fan and Li (2001)

used alternative nonconvex penalties

Lasso - Debiasing III

It can be written as

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \sum_{j=1}^p p(|\beta_j|),$$

where $\lambda p(\cdot)$ is a penalty function given by

$$\begin{split} \lambda p(t) &= \int_0^t \left(I(t \leq \lambda) + \frac{r\lambda - x}{(r-1)\lambda} I(t > \lambda) \right) dx \quad (SCAD) \\ \lambda p(t) &= \int_0^t \left(1 - \frac{x}{r\lambda} \right)_+ dx \end{split} \tag{MC+}$$

Lasso - Debiasing IV

Figure 1. Three Penalty Functions $p_{\lambda}(\theta)$ and Their Quadratic Approximations. The values of λ are the same as those in Figure 5(c).

Figure 2. Plot of Thresholding Functions for (a) the Hard, (b) the Soft, and (c) the SCAD Thresholding Functions With $\lambda=2$ and a=3.7 for SCAD.

Lasso - Debiasing V

Figure 4.13 Left: The MC+ family of nonconvex sparsity penalties, indexed by a sparsity parameter $\gamma \in (1,\infty)$. Right: piecewise-linear and continuous threshold functions associated with MC+ (only the north-east quadrant is shown), making this penalty family suitable for coordinate descent algorithms.

Still, computationally not easy though.

Lasso - Debiasing VI

Method4 Directly subtract bias. Debiased lasso is defined as

$$\widehat{\boldsymbol{\beta}}^d = \widehat{\boldsymbol{\beta}}_{\lambda} + \frac{1}{N} \Theta X' (\mathbf{y} - X \widehat{\boldsymbol{\beta}}_{\lambda}),$$

where $\widehat{\boldsymbol{\beta}}_{\lambda}$ is a standard lasso estimator and Θ is the (approximation) inverse of $\widehat{\Sigma}=1/NX'X$. Why it works?

$$\widehat{\boldsymbol{\beta}}^{d} = \boldsymbol{\beta} + \frac{1}{N} \boldsymbol{\Theta} X' \boldsymbol{\epsilon} + \underbrace{\left(I_{p} - \frac{1}{N} \boldsymbol{\Theta} X' X\right) (\widehat{\boldsymbol{\beta}}_{\lambda} - \boldsymbol{\beta})}_{=:\Delta(bias)}$$

If Θ is close enough to $N^{-1}X'X$, then $\Delta \to 0$.

$$\therefore \hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \frac{\sigma^2}{N} \Theta \hat{\Sigma} \Theta'\right)$$

High dimensional time series

We will generally be interested in models for continuous-valued multivariate time series data:

$$X_{t} = \begin{pmatrix} X_{1,t} \\ X_{2,t} \\ \vdots \\ X_{K,t} \end{pmatrix} = (X_{j,t}), \tag{3}$$

for
$$j = 1, ..., K, t = 1, ..., T$$
.

- We are interested in both temporal dependence (across t), and component dependence (across j).
- Data examples include functional MRI (fMRI) for brain connectivity, macroeconomic series such as gross domestic product, personal consumption expeditures, private domestic investments, financial series, stock indices etc.

High-dimensional VAR(p)

Recall linear regression representation of VAR(p) process:

$$(x_{p+1}, \dots, x_T) = (\Phi_1 x_p + \dots + \Phi_1 x_1, \Phi_1 x_{p+1} + \Phi_p x_2$$

$$, \dots, \Phi_1 X_{T-1} + \dots + \Phi_p X_{T-p}) + (z_{p+1}, \dots, z_T)$$

$$= (\Phi_1 \Phi_2 \dots \Phi_p) \begin{pmatrix} x_p & x_{p+1} & x_{p+2} & \dots & x_{T-1} \\ x_{p-1} & x_p & x_{p+1} & \dots & x_{T-2} \\ \vdots & \vdots & x_0 & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \dots & x_{T-p} \end{pmatrix} + (z_{p+1}, \dots, z_T)$$

$$\boxed{Y = AL + Z,}$$

$$(4)$$

where Y is $K \times (T-p)$, A is a $K \times Kp$ parameter matrix, L is $Kp \times (T-p)$ design matrix and Z is $K \times (T-p)$ error matrix.

sparse VAR

Then, applying vec operation gives

$$\operatorname{vec}(Y) = \operatorname{vec}(AL + Z)$$

$$= \operatorname{vec}(AL) + \operatorname{vec}(Z)$$

$$= \operatorname{vec}(I_K A L) + \operatorname{vec}(Z)$$

$$= (L' \otimes I_K) \operatorname{vec}(A) + \operatorname{vec}(Z)$$

$$y = (L' \otimes I_K) \alpha + z,$$
(5)

where $z \sim MVN(0, (I_{T-p} \times \Sigma_z))$. Denote parameter vectors

$$y = \operatorname{vec}(Y), \quad z = \operatorname{vec}(Z), \quad \alpha := \operatorname{vec}(A) = \begin{pmatrix} \operatorname{vec}(\Phi_1) \\ \operatorname{vec}(\Phi_2) \\ \vdots \\ \operatorname{vec}(\Phi_p) \end{pmatrix}.$$

sparse VAR

Hence, we can apply Lasso by considering

$$\widehat{\alpha} = \operatorname*{argmin}_{\alpha} \left\{ \|y - (L' \otimes I_K)\alpha\|_2^2 + \lambda \|\alpha\|_1 \right\}.$$

- ▶ However, it does not take into account (spatial) dependence Σ_z into account.
- We will use GLS approach here. Note that Σ_z^{-1} is symmetric so that $\Sigma_z^{-1} = \Sigma_z^{-1/2} \Sigma_z^{-1/2}$. Hence,

$$(I_{T-p} \otimes \Sigma_z^{-1/2}) y = (I_{T-p} \otimes \Sigma_z^{-1/2}) (L' \otimes I_K) \alpha + (I_{T-p} \otimes \Sigma_z^{-1/2}) z$$

$$\iff \widetilde{y} = (L' \otimes \Sigma_z^{-1/2}) \alpha + \widetilde{z},$$
where $\widetilde{z} \sim MVN(0, I_{T-p})$.

26 / 42

sparse VAR

There, we can find lasso estimator from

$$\widehat{\alpha} = \operatorname*{argmin}_{\alpha} \left\{ \| \widetilde{y} - (L' \otimes \Sigma_z^{-1/2}) \alpha \|_2^2 + \lambda \| \alpha \|_1 \right\}$$

Iterative algorithm to find lasso solution for sparse VAR. Note that once Σ_z is given, we can apply usual lasso algorithm.

step1 Set an inital value $\Sigma_{z,0}$, say from full VAR(p).

step2 Update coefficients α and Σ_z till convergence:

$$\widehat{\alpha}^{(k+1)} = \underset{\alpha}{\operatorname{argmin}} \left\{ \| \widetilde{y} - (L' \otimes \Sigma_{z,k}^{-1/2}) \alpha \|_{2}^{2} + \lambda \| \alpha \|_{1} \right\}$$

$$\Sigma_{z,k+1} = \frac{1}{T} (Y - A^{(k+1)} L)) (Y - A^{(k+1)} L))'$$

Comprehensive theoretical results are provided in Basu and Michailidis (2015).

sparse VAR: simulation

- ► Remark that we can apply other variants of lasso exactly to sVAR since it can be represented as lienar regression form.
- Small simulation result for VAR(1) with dimension K=6 and T=500.

		MLE	Lasso	DB-Lasso	Alasso	DB-Alasso
	$Bias^2$	0.041	0.729	0.0484	0.093	0.047
•	MSE	14.22	5.99	14.06	2.367	13.96

► Sparse modeling gives better model interpretation, numerical stability, and improve forecasting.

sparse VAR: simulation

Figure: sVAR(1) simulation.

▶ Google flu trend data on the weekly predicted number of influenza-like-illness (ILI) related visits per 100,000 outpatients in a US region. Google flu data is available for the 50 states, the District of Columbia and 122 major cities over the US. Used 50 states and DC.

Figure: Monthly Google flu trend data for 52 states in US.

VAR(2) model $Y_t = A_1Y_{t-1} + A_2Y_{t-2} + \epsilon_t$ gives total $2*51^2 = 5202$ parameters to estimate.

Figure: A_1

Figure: A_2

Sparse modelling, that is set exact zero on AR coefficients on A_1, A_2 ensure better interpretation of models, numerical stability, improve prediction. For example,

Figure: A_1

sVAR: extension to seasonal data

Cyclic variations are a.e in time series analysis! For example,

Figure: Top: Monthly flu trend in NC. Bottom: 23 hour ozone levels at a CA location. Respective sample ACFs and PACFs are given.

SVAR and PVAR

Two popular approaches in modeling seasonality:

ightharpoonup SVAR(P,p) (seasonal VAR)

$$\Phi(B)\Phi_s(B^s)(X_n - \mu) = \epsilon_n, \quad n \in \mathbb{Z}, \tag{6}$$

where $\Phi(B)=1-A_1B-\ldots-A_pB^p$ and $\Phi_s(B^s)=1-A_{s,1}B^s-\ldots-A_{s,P}B^{Ps}$ with s denotes the period.

► PVAR(p) (periodic VAR)

$$\Phi_m(B)(X_n - \mu_m) = \epsilon_{m,n}, \quad n \in \mathbb{Z}, \tag{7}$$

where $\Phi_m(B)=1-A_{m,1}B-\ldots-A_{m,p}B^p$ with $A_{m,1},\ldots,A_{m,p}$ which depend on the season $m=1,\ldots,s$ wherein the time n falls.

sSVAR and sPVAR

- ▶ Baek et al. (2015) extended lasso algorithm to SVAR and PVAR.
- ► For example, adaptive LASSO for PVAR is straightforward by applying it to each season. At m-th season, corresponding coeffcient is calcualted from

$$\widehat{\boldsymbol{\beta}}_{m}^{(\ell)} = \underset{\boldsymbol{\beta}_{m}}{\operatorname{argmin}} \left(\frac{1}{T} \| (I_{T} \otimes \Sigma_{(\ell)}^{-1/2}) \mathbf{y}_{m} - (\mathbf{U}_{m}' \otimes \Sigma_{(\ell)}^{-1/2}) \boldsymbol{\beta}_{m} \|^{2} + \lambda_{\ell} \sum_{j=1}^{p_{m} q^{2}} w_{j}^{(\ell)} |\beta_{m,j}| \right)$$

The covariance matrix is obtained as

$$\widehat{\Sigma}_{(\ell)} = \frac{1}{T} (\mathbf{Y}_m - \widehat{\mathbf{B}}_m^{(\ell-1)} \mathbf{U}_m) (\mathbf{Y}_m - \widehat{\mathbf{B}}_m^{(\ell-1)} \mathbf{U}_m)'.$$

Real data example: Air quality

- ▶ Air quality (CO, No, NO₂, Ozone and Solar radiation) observed hourly at Azusa, CA in 2006.
- Before fitting model, detrended with cubic polynomial regression and took log-transformation.
- ► The best model is selected based on h-step ahead forecast MSE. (out of sample forecasting)

$$MSE(h) = \frac{1}{q(T_t - h + 1)} \sum_{t=T}^{T+T_t - h} (\widehat{Y}_{t+h} - Y_{t+h})' (\widehat{Y}_{t+h} - Y_{t+h}),$$

Real data example: Air quality

Figure: Time plot and sample ACF and PACF plots for detrended NO concentration. Seasonal mean and standard deviation are also depicted.

Real data example: Air quality

	h=1	h=2	h = 4	h = 8	h = 12	h = 13
sparse VAR(5;70)	.201	.678	2.107	6.458	8.840	9.589
PVAR(1;575) ₂₃	.189	.273	.356	.280	.269	.270
sparse PVAR(1;320) $_{23}$ (A-LASSO)	.182	.249	.249	.238	.235	.232

Table: The h-step forecast MSE for air quality data with sparse VAR, (non-sparse) PVAR and sparse PVAR models. The sparse PVAR(1;256)₂₃ model achieves the smallest h-step forecast MSE in all cases considered.

Real data example: Google flu trend

- Here, we consider only 5 states (CA, GA, IL, NJ, TX) for illustration.
- Considered monthly data and take a log transformation to make the series more stationary.

Figure: Monthly Google flu trend data.

Real data example: Google flu trend forecasting

	h = 1	h=2	h=3
sparse VAR(1;16)	.370	.573	.813
$SVAR(1,1;50)_{12}$.241	.396	.439
sparse SVAR $(1,1;41)_{12}$ (A-LASSO)	.222	.360	.355

Table: The h-step forecast MSE for monthly flu data with sparse VAR, (non-sparse) SVAR and sparse SVAR models.

References

- Basu, S., & Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models. The Annals of Statistics, 43(4), 1535-1567.
- Baek, C. Davis, R. A., Pipiras, V. (2017). Sparse seasonal and periodic vector autoregressive modeling. Computational Statistics and Data Analysis 106 (2017) 103–126.
- Davis, R. A., Zang, P., and Zheng, T. (2015). Sparse vector autoregressive modeling. Journal of Computational and Graphical Statistics.
- Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. CRC press.
- Zou, H. (2006). Adaptive lasso and Its Oracle Properties. Journal of American Statistical Association, 101, 1418–1429.