

Pyramic array An FPGA based platform for many-channel audio acquisition

Juan Azcarreta Ortiz

Supervised by René Beuchat (LAP) Robin Scheibler (LCAV) Ramón Bragos (UPC)

AN/FPS-115 PAVE PAWS radars

Microphone arrays

Alfred M. Mayer

MIT

2 microphones

Beamformer, indoor-localization, source separation...

1024 microphones

Pyramic array

Objectives

Objectives: implementation

Terasic DE1-SoC

Objectives

Outline

- 1. SPI Communication System
- 2. DDR3 memory storage
- 3. Real-time Filter-and-Sum beamforming
- 4. Experiment
- 5. Live demo

System Overview

FPGA Design: SPI Communication

FPGA Design: SPI Communication

Implementation

SPI Communication memory

System Overview

Implementation

HPS System 12 DDR3 memory **HPS System CPU SDRAM ARM Cortex-9** Controller processor SD card Lightweight **FPGA** Interconnect **HPS-FPGA** controller **UART Ethernet** controller Controller

- ARM processor runs applications on Linux OS
- Ethernet connection for Internet access
- FPGA is configured from image stored on microSD card at power up time

System Overview

Implementation

FPGA Design: Filter-and-sum beamformer

- Real-time delay-and-sum beamformer
- Serializer reduces hardware resources

$$TDM = \frac{f_{clk}}{f_s} = \frac{50 \ MHz}{48 \ kHz} = 1024$$

System Overview

Experiment

- SRP Phat: Steered-response power algorithm [1] for speech signals.
- Tested at INR019 in EPFL.

[1] J. H. DiBiade, 'A high-accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays,' Ph.D. dissertation, Providence, RI, 2000.

Further work

- Build advanced applications for the Pyramic array.
- Characterize the microphones' response.
- Design FPGA based hardware accelerators.
- Resolve output overflow when using the FIR filters bank
- Build reconfigurable FIR filters

DEMO

SRP algorithm parameters

• Frequency range: 100 Hz to 7 kHz

Far-field model

• Hop size: 1024

Thanks for your attention

Appendix: Summary

- SPI Communication with the Pyramic array
- Filters-beamforming
- microSD card
 - Powers on the system
 - Configures the FPGA
- Ethernet controller: Internet sharing
- ARM Cortex-A9 processor
 - Runs on Linux OS

Appendix: SPI Communication

^{*} Source_Data[21..0]: First 16 bits correspond to the audio data and the last 5 bits correspond to the channel

Appendix: Delay-and-sum beamformer

Appendix: HPS System

