Wave Optics and Astronomical Applications - astro846

Degree - M.Sc. in Astrophysics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Observational Astronomy
Module No.	astro840

\overline{Course}	Wave Optics and Astronomical Applications
Course No.	astro846

		Teaching			
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture	English 2	3	ST	

Requirements for Participation:

Preparation:

Form of Testing and Examination: Written or oral examination

Length of Course: 1 semester

Aims of the Course: Acquire the fundamentals necessary to carry out research projects in the field of wave optics and astronomical infrared interferometry

Contents of the Course: Fundamentals of wave optics; Fourier mathematics; digital image processing; Michelson interferometry; speckle interferometry; speckle holography; Knox-Thompson method; bispectrum-speckle interferometry; interferometric spectroscopy; infrared-long-baseline interferometry; optical phase-closure method; infrared interferometry of young stars and stars in late evolutionary stages and in nuclei of galaxies

Recommended Literature:

Lecture Notes

J. W. Goodman; Introduction to Fourier Optics (Roberts & Company Publishers 3rd edition, 2004)