Derivation of Algorithms Lab1 Solutions

Problem sheet 1

Question 1

```
A = B = true  and X = Y = false
i)
\neg (A \lor X)
= \{ substitution \}
¬ (true v false)
= \{v\}
¬true
= {¬}
false
iv)
\neg(A \lor X) \land \neg(A \lor Y)
= {substitution}
\neg(true v false) \land \neg(true v false)
= \{v\}
¬true ∧ ¬true
■ {¬}
false A false
= \{Constants\}
false
vii)
Y \Rightarrow B \Rightarrow [\neg Y \lor B]
= {substitution}
false \Rightarrow true \Rightarrow [\neg false \lor true]
false \Rightarrow true \Rightarrow [true \lor true]
= \{v\}
false \Rightarrow true \Rightarrow true
= {⇒}
true ⇒ true
\equiv \{\Rightarrow\}
```

true

Question 2

Use truth table to prove the following tautologies

ii)
$$(\neg P \Rightarrow (P \land Q)) \equiv P$$

P	Q	¬Р	(P ∧ Q)	$\neg P \Rightarrow (P \land Q)$	$(\neg P \Rightarrow (P \land Q)) \equiv P$
T	T	F	T	T	T
T	F	F	F	T	T
F	T	T	F	F	T
F	F	T	F	F	T

v)

$$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$$

P	Q	R	¬Р	(PvQ)	(¬P∨R)	$(P \vee Q) \wedge (\neg P \vee R)$	QvR	$(P \vee Q) \wedge (\neg P \vee R) \Rightarrow Q \vee R$
T	T	T	F	T	T	T	T	T
T	T	F	F	T	F	F	T	T
T	F	F	F	T	F	F	F	T
F	F	F	T	F	T	F	F	T
F	F	T	T	F	T	F	T	T
F	T	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T	T
T	F	T	F	T	T	T	T	T

Question 3

Use truth table to characterise the following statement forms as tautologies, contradictions, or contingents.

i)
$$P \Rightarrow \neg P$$

P	¬Р	$P \Rightarrow \neg P$
T	F	F
F	T	T

Therefore this is a contingent statement

$$v) (\neg P \land Q) \land (Q \Rightarrow P)$$

P	Q	¬Р	$(\neg P \land Q)$	$(Q \Rightarrow P)$	$(\neg P \land Q) \land (Q \Rightarrow P)$
T	T	F	F	T	F
T	F	F	F	T	F
F	T	T	T	F	F
F	F	T	F	T	F

Therefore this is a contradictory statement