Propagation d'un cancer :

Victor LE BRUN

Romain BALLU

Ibtissam HAMICH

Ai-Ling BONNET

https://gitlab-cw5.centralesupelec.fr/victor.lebrun/propagationcancer

Groupe 5

01 Présentation générale

- Quoi ? Pourquoi ? Pour qui ? Comment ?
- Travail en groupe.

02 **Modélisation**

- Pavage hexagonal
- Présentation des règles
- Algorithme cellulaire

03 **Programme**

- Découpage du travail
- Modules du code

04 **Simulation**

RDV sur Vscode

Sommaire:

Présentation générale :

Quoi?

Modélisation de la propagation d'un cancer donc des cellules tumorales dans différents types de sites.

Utilité?

Malgré avancées téchnologiques, le taux de survie stagne. Nouvelle piste pour comprendre les mécanismes

Comment?

Automates cellulaires avec un pavage hexagonal. Travail en groupe.

Pourquoi?

Le cancer touche actuellement 12% de la population mondiale.

Pour qui ?

Institut de recherche en cancérologie.

Présentation générale :

- Répartition des tâches le premier jour sur un document Excel
- Travail en parallèle
- Réunion TEAMS toute la journée pour s'aider dans les différents problèmes rencontrés
- Mise en commun souvent en fin de journée

AUTOMATES CELLULAIRES

VOCABULAIRE, TYPES DE « CELLULES »

Justification du choix de pavage hexagonal :

- Système de coordonnées plus compliqué
- ❖ Affichage plus difficile
- ❖ BEAUCOUP plus réaliste

Univers : composé de sites hexagonaux

Cellules: occupent les sites, 3 types:

- cellules saines
- cellules tumorales
- astrocytes sains

Centre: zone où il n'y a que des cellules

tumorales, qui se régénèrent.

Cellule saine

Astrocyte (saine)

Cellule tumorale

REGLES DE DEPLACEMENT

CHOIX UNIFORME

Choix uniforme:

Pour chaque cellule tumorale :

- 1. On choisit un voisin aléatoirement
- 2. Si c'est une cellule saine, la cellule tumorale migre dessus
- 3. Le site initial est laissé vide s'il n'est pas dans le centre

Cellule saine

Astrocyte (saine)

Cellule tumorale

REGLES DE DEPLACEMENT

JONCTION HOMOTYPE

- 1. Deux types de voisins :
- A) ayant une autre cellule tumorale voisine
- B) n'en n'ayant pas

P : probabilité de choisir une cellule de type A

2. On tire un nombre t entre 0 et 1.

Si t <= p : choix type A Si t > p : choix type B

3. Déplacement cellule, regénération du centre si besoin

P > 0.5 : attraction P < 0.5 : répulsion

Cellule saine

Astrocyte (saine)

Cellule tumorale

REGLES DE DEPLACEMENT

JONCTION HOMOTYPE PAR GOUPES

Logique de groupes de cellules tumorales

P : probabilité de rester au contact de ses voisines tumorales.

Même algorithme que règle précédente.

P > 0.5 : attraction par le centre de la tumeur

Inconvénient déplacement homotype : pas de prise en compte des particularités de l'organisme

Cellule saine

Astrocyte (saine)

Cellule tumorale

REGLES DE DEPLACEMENT

JONCTION HETEROTYPE

Probabilité q de se déplacer sur un astrocyte

Pour chaque cellule tumorale :

- 1. On choisit aléatoirement si la cellule se déplace sur un astrocyte ou pas.
- 2. Parmi les voisins vérifiant la condition choisie, le choix final est aléatoire
- 3. Le site initial est laissé vide (mais représenté comme une cellule saine)

Cellule saine

Astrocyte (saine)

Cellule tumorale

REGLES DE DEPLACEMENT

COUPLAGE JONCTION HETEROTYPE ET HOMOTYPE

On tient compte des deux probabilités p et q

Pour chaque cellule tumorale:

- 1. Nombre aléatoire t dans [0,1]
- 2. Selon la valeur de t, on choisit les conditions:
 - Homotype: la cellule reste à côté des ses voisines ou pas
 - 2. Hétérotype: la cellule migre sur un astrocyte ou pas
- 3. On détermine les sites vérifiant l'un ou l'autre des conditions
- 4. Parmi ces site, le choix final est aléatoire

Cellule saine

Astrocyte (saine)

Cellule tumorale

Algorithme cellulaire

Actualisation environnement

Animation avec le nombre d'itérations souhaitées

Analyse environnement cellules tumorales

A l'aide de fonctions simples, on determine la liste des voisins mais aussi les voisins qui sont des astrocytes, saines ou des cellules tumorales;

Parcours de toutes les cellules tumorales pour appliquer fonctions précédentes

Application règle de mouvement à une cellule tumorales

- → Choix uniforme
- → Jonction homotype
- → Jonction hétérotype
- → Couplage junction homotype et hétérotype

Découpage du travail :

Modules

Modèle Fichiers data_*.py

Vue Fichiers vue_*.py Controlleur Fichiers controlleur_*.py

Tests
Fichiers test_*.py
Coverage : 56%

Programme:

Itérations :	20		*
Modèle:	Homotype		\$
P:	0.00		
Q:	0.00		
Interv:	100		*
Centre (coord) :	0	• 0	† †
Taille centre :	1	⊉ 1	+
Univers			
Taille stat :	50		‡

Etude Statistique

- Traduction de l'avancée de la tumeur
- Disparition des astrocytes
- Corrélation
- Permet de voir à partir de quelle date on n'a plus d'astrocytes

Etude Statistique

- Etalement de la tumeur au cours du temps
- Premier pas vers l'évaluation de la surface occupée par la tumeur
- Quels organes touchés ?

Fonctionnalités à venir :

Affiner le modèle avec notamment des interactions chimiques

Optimiser le modèle de données

Optimiser le temps de calcul pour les statistiques

Exploiter davantage notre programme avec plus d'interprétations statistique.

Annexe: Performances

```
| The content of the
```

- Complexité des simulation proportionnelle au nombre d'itération et au nombre de cellules
- Complexité des stats également proportionnelle au nombre d'échantillon
- Optimisation au moyen de liste triées pour permettre des fusions rapides

Annexe : problèmes rencontrés

- Problèmes liés à Gitlab
- Plantages spécifiques à des configurations spécifiques
- Lenteur sur certaines versions
- Compatibilité entre matplotlib et tkinter
- Compatibilité entre les différentes règles
- Système de coordonnées

MERCI POUR VOTRE ATTENTION!

Passons à la simulation sur Vscode