SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: SmithKline Beecham plc et al
- (ii) TITLE OF THE INVENTION: Novel compounds
- (iii) NUMBER OF SEQUENCES: 19
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham
 - (B) STREET: Two, New Horizons Court, Great West Road
 - (C) CITY: Brentford
 - (D) STATE:
 - (E) COUNTRY: UK
 - (F) ZIP: TW8 9EP
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Valentine, Jill B
 - (B) REGISTRATION NUMBER:
 - (C) REFERENCE/DOCKET NUMBER: P31731

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 0181-9752000(B) TELEFAX: 0181-9756294
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7193 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCATGGCGGG	CGGCGGCTGC	CCCGGAGCCT	CGGCCGGACC	GGTGACCAGG	ACCACCCCGG	60
TGGGATAGTG	GCCCGCCACC	CGGCGCAGCA	GACTCCCGGA	CACGGACCCG	TGGGTGTGCG	120
CGGAAAGGCC	CGGAGGCCGG	GTCACAGCCA	CGGGTAACGC	GCGGTGTCCT	TGCCCGCGTA	180
ATCGGGGTCC	AGATAGACGA	AGGCCCGGTG	GACGAGGAAG	TCCCGCACCT	CGTAGACCCT	240
GCACCAGCGC	CCGGCGGCCC	ACTCGGGGTC	ACCCGCCCGC	CACGGCCCGT	CCCGGTGCTC	300
ACCGTGGGTG	GTGCCCTCCG	CGGCGAGGAG	TTCGGTCCCG	GTCAGAATCC	AGTTGACGGA	360
CCACAGATGG	TGGGTGATCG	AGCGGATGGT	GCCCCGAGG	TCGTCGAAGA	GCCGGGCGAT	420
CTCGGACTTG	CCCCGGGCCA	GACCCCACTT	GGGGAAGAAG	AAGACCGCGT	CCTCGCCGAA	420
GTAGTCGATC	GCGGGGGTGC	CGTCGCTGCC	GACGCCGCCG	TTGTCGAACG	CCጥጥር Δ Δ C ጥ λ	540
CGCGGTGATG	ACCGCCTTGC	GCTGCTCGTC	CGTCATACCG	GCCGATGCCA	CGGACATGAA	600
ACGACCTCCA	GAGATTCCGG	GTGGCTGTGC	TGGGGCTGCG	GAAGGGGTGT	CCCCCCCAA	
GGACGGCGGA	CGCCGCGGAC	GCCGCGGCCG	TCTCCCCGGC	GGACGGGTCC	CACCCGCGAA	660
GAGAGGGCTT	GGCGGCGGCT	TGACGCCGTG	CTGTCCCGCG	GCTTGCGGAA	CAGCGICCIG	720
CGGCCAGCGT	ACGGGCGTTG	CACCGGACGT	GTACGCCGGT	CGGGACCCCT	CGCGAAGTAC	780
GAGCCGGCCG	ACCCCGGCGG	CTCCGGGGGT	ACGGACGCGC	CGGACCGGCC	CGTACCCCCG	840
GGACGGGTCG	GACGGTGCGC	GTGGTTCCGG	TGTGTCGGAC	AGCTCGGACG	CGAGCGAGCC	900
TGCGCGTGGT	TCCGGTGTGT	CGGACAGCTC	GGACGGGTCG	GACGGTGCGC	GACCGGACGG	960
CACGCCGGAC	GGGTCAGTTG	CCGATCATGG	CGAGCAATGC	CCCCCTCTT	GTGGTTCCGG	1020
ACACCGGGTG	GGAGATCGCG	GCCGTCACCT	CCCCACCCA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCTCCCCGG	1080
AGGCGGCGC	GAGATTGTCC	GCGAGATGGG	CCGCGTTCCC	CCGGTCGTCC	AGCCGGATCG	1140
CGTCCTCGCC	CCGGTGGTGC	AGCCAGGCGA	CCCCCACCEC	GGTGCCCGGG	ATCGGGACGA	1200
			GCGCGAGCTG	TGCCAGGGTC	AGCCCCAGAC	1260

CGTCCGCGAC	CGGGCGCAGC	CGGTGCAGCA	ACGAGCGGTT	GCGCGCGAGG	GCCGGAGCGC	1320
TGAACCGGGG	CTGGCCCCGG	CGGAAGTCCT	CGTCCCCAG	ATCGTCGGTG	GTGCGGATGG	1380
TGCCGGTGAG	AAAACCCCGT	CCCAGAGGGG	CGTAAGCGAC	GATCCCGATC	CCCAGCTCCC	1440
GGCAGACGGG	CACCACCTCG	TCCTCGATCC	CGCGCGACCA	CAGGCTCCAC	TCGCTCTGCA	1500
CCGCCGTCAC	CGGGTGCACC	GCGTCCGCCC	GGCGCAGCGT	GGCCGCGGAG	GGCTCGGAGA	1560
GACCGAGCCT	GCGGACCTTG	CCCTCGCGCA	CCAGCTCGGC	CACCGCACCC	ACGGTCTCCT	1620
CGATCGGCAC	CGCCGGGTCC	GTCCAGTGCT	GGTAGTACAG	GTCGATGCGG	TCGGTGCCGA	1680
GACGACGCAG	GGACCGTTCG	CAGGCCGCGC	GGACGTAGGA	CGGCTCGCCG	CACAAGCCCT	1740
GGGAGGCGCC	GTCGGACGAG	CGCACCATGC	CGAACTTGGT	GGCGATCAGC	ACCTCGTCCC	1800
GGCGGCCCGC	GACCGCCCGT	CCGAGCAGCT	CCTCACCGGC	GCCGAGCCCC	TGGACGTCGG	1860
CGGTGTCCAG	CAGGGTGACC	CCGGCGTCGA	CGGCGGCGCG	GATGGTGGCC	GTCGCCCGGG	1920
CGCGGTCCGG	GCGTCCGTAG	AAGTCGGTGG	TCGGCAGGCA	GCCGAGCCCC	TGGGCACTGA	1980
CCGGAAGGTC	CCGCAGGGCG	CGGACCGGCG	GACGCGGAAC	CGCGGCGGAC	ACGGAACCGG	2040
CCGGGGACTC	GGGCGGAGAG	CGGGACATAC	GGAACCTCCA	CAGGCGGAGC	CGGGAACGGG	2100
ACGAGGGCGA	GGACGGGACG	GAACGAAGGA	GAGGACGGGA	CGGACAGCAC	GGACGGGACG	2160
GACGGAACGG	AGTCGGGAAC	CGGGGGGGT	GACCGGAACC	GGGCCGTCCT	TGGCCCTCCC	2220
CCGTCCTCCC	CGCCATCCGC	CGTTCTCCCC	CGTTCCCTCT	CCCGTCCTCC	AGCCAACACC	2280
GCCGCCCTTT	CCAAGCGCTT	GACACGGCAC	CGACAGCCGC	CGCCGGGCGC	CCGATGGGGA	2340
CCCGTGCCCG	CCGGTGAGCG	GCGGTGAGCG	CCGGTACGGG	ACCCCACGCG	CCGCCGCCCG	2400
GGCGCCCGCC	AGGGCCCGCG	CGGCCACCCC	GGCCGGCCC	GGCCGGAGCG	GCGATCCGGG	2460
CCGCTCGCTG	CAAGAGGAAC	ATCCACAGCC	GCACAAGGAG	CGCTCCGCAC	AGTGGGCACC	2520
ACGTCCGCCC	CGTCCCCCAC	ACCGTGGCCG	GTCCCCACCG	GACAGCACAG	CACCGCACAG	2580
CACCACATCG	CACGGCACAG	CACAGCACCA	CCGGCACGAG	GAACCAAGGA	AAGGAACCAC	2640
ACCACCATGA	CCTCAGTGGA	CTGCACCGCG	TACGGCCCCG	AGCTGCGCGC	GCTCGCCGCC	2700
CGGCTGCCCC	GGACCCCCCG	GGCCGACCTG	TACGCCTTCC	TGGACGCCGC	GCACACAGCC	2760
GCCGCCTCGC	TCCCCGGCGC	CCTCGCCACC	GCGCTGGACA	CCTTCAACGC	CGAGGGCAGC	2820
GAGGACGGCC	ATCTGCTGCT	GCGCGGCCTC	CCGGTGGAGG	CCGACGCCGA	CCTCCCCACC	2880
ACCCCGAGCA	GCACCCCGGC	GCCCGAGGAC	CGCTCCCTGC	TGACCATGGA	GGCCATGCTC	2940
GGACTGGTGG	GCCGCCGGCT	CGGTCTGCAC	ACGGGGTACC	GGGAGCTGCG	CTCGGGCACG	3000
GTCTACCACG	ACGTGTACCC	GTCGCCCGGC	GCGCACCACC	TGTCCTCGGA	GACCTCCGAG	3060
ACGCTGCTGG	AGTTCCACAC	GGAGATGGCC	TACCACCGGC	TCCAGCCGAA	CTACGTCATG	3120
CTGGCCTGCT	CCCGGGCCGA	CCACGAGCGC	ACGGCGGCCA	CACTCGTCGC	CTCGGTCCGC	3180
AAGGCGCTGC	CCCTGCTGGA	CGAGAGGACC	CGGGCCCGGC	TCCTCGACCG	GAGGATGCCC	3240
TGCTGCGTGG	ATGTGGCCTT	CCGCGGCGGG	GTGGACGACC	CGGGCGCCAT	CGCCCAGGTC	3300
AAACCGCTCT	ACGGGGACGC	GGACGATCCC	TTCCTCGGGT	ACGACCGCGA	GCTGCTGGCG	3360
CCGGAGGACC	CCGCGGACAA	GGAGGCCGTC	GCCGCCCTGT	CCAAGGCGCT	CGACGAGGTC	3420
ACGGAGGCGG	TGTATCTGGA	GCCCGGCGAT	CTGCTGATCG	TCGACAACTT	CCGCACCACG	3480
CACGCGCGGA	CGCCGTTCTC	GCCCGCTGG	GACGGGAAGG	ACCGCTGGCT	GCACCGCGTC	3540
TACATCCGCA	CCGACCGCAA	TGGACAGCTC	TCCGGCGGCG	AGCGCGCGGG	CGACGTCGTC	3600
GCCTTCACAC	CGCGCGGCTG	AGCTCCCGGG	TCCGACACCG	CGCGGCTGAA	CCCACGGTCC	3660

						2000
			GCCCCGGGT			3720
			CGCGCACCGG			3780
			CCGGCGGACC			3840
ACAGAGCCGG	GTGCGGGAGG	ACGTCCTCCC	GCACCCGGCT	CCCACCGTTC	CGCACCGACC	3900
GCACCCGACC	GTGCCGCAGG	CGCCACCGGC	ACCGCACCGC	CCGCGCCGGC	AGCCACCACA	3960
GGCGCCACGC	CGCCCGCACG	GTGCCCGCGC	TGCTCAGCCC	CCGTCCACCG	GGCTGTCCAG	4020
CAGCCGCCGC	AGCGCGCCCC	CGATGAACTC	CCGGTCGGCG	GCCGACCCCC	CGGACCCCGC	4080
GAGATGCCCC	CACACTCCCG	GGATCACCTC	CAGCGAGGCA	TACGGCAGCA	GATCGGCCAC	4140
CCGCTTCTCG	TCCTCGACGG	CGAAACACAC	GTCCAGGGCG	CCCGGCAGCA	CCACGGCCCG	4200
CGCCGTGACG	GAGGCCAGCG	CCGCCTCGAC	GCTCCCCCG	GCCCGGGTG	TCGCCCCCAC	4260
ATCCGTGTTC	TCCCAGGTGC	GCACCATGGT	GAGCAGATCC	GCGGCGCCGG	GCCCGGAGAG	4320
GAAGACCTGC	TCCCAGAAGC	CGGTGAGGTA	CTCCTCGCGG	GTGGCGAAAC	CCAGCTCCCG	4380
GTGGGCACGG	CGGGCCCAGA	AGGAACGCGA	GGTCCCCCAC	CCGGCGAACA	CCCGGCCCGC	4440
CGCCTTCCGC	CCCCGCTCCC	CGGCGTCGGC	GCTGAGCGCC	GCGGCCAGAC	CGGACAGCAG	4500
GACCAGGCTG	TGCGGGCTGC	TCACCGGCGC	CCCGCAGATC	GGGGCGATCC	GGCGCACCAT	4560
CCCCGGATGC	GACACGGCCC	ACTGGTAGGC	GTGGGCCGCG	CCCATCGACC	AGCCCGTGAC	4620
CAGGGCCAGT	TCCCGTACCC	CCAGCTCCTC	GGTGAGCAGC	CGGTGCTGCG	CCGCGACATT	4680
GTCCTGCGGA	GTGATCAGCG	GAAAGCGGGA	CCCCGACGGG	TGGTTGCCGG	GCGAGCTGGA	4740
GACCCCGTTG	CCGAAGAGTC	CGGCGGTGAC	GACGCAGTAC	CGCCGGGTGT	CCAGCGGCAG	4800
CCCCGCACCG	ATCAGCCAGT	CGTACCCGGT	GTGGTCCCGG	CCGAAGAACG	ACGGACAGAG	4860
CACCACGTTC	GTCCCGTCGG	CGTTCGGCGT	GCCGTACATG	GCGTAACCGA	TCCGGGCGTC	4920
CCGCAGGACC	TCCCCGTCCA	GCAACGGCAG	TTCGTCGATC	TCGAATATGC	GGCATTCCAC	4980
CGCTGACCTC	CTTGTTCGAT	CCCCCGGAC	AACAGGTCGG	TCGTGGCCGG	AGACTCAGAG	5040
CCAGTTGGGG	GCGATCTCGG	TGGCCCACAG	CTCCAGGCTG	CGCAGCTGGA	CATCGTGCGG	5100
GATCAGCCCG	GAGTACTGGC	ACTGGAGCAG	ATACTCCGGA	TCGTGCCGCT	CCACCAGCTT	5160
CTCGATCATG	CGGTTGATGT	CGTCCGGGGT	GCCGACCCAC	TCCAGCCCCC	GGTCGACCAG	5220
GGTCTTGTAG	TCCGAGCCGA	TCGGACCCGT	CTCGCCGGTC	GCGCGCAGCG	CCTCGGTGAA	5280
GCCCATGGGG	CCGAACCAGT	TCTCGAAGAT	GAAGCCGCCG	CCGCGGGACG	CCCAGTGGTG	5340
GGCCTCGCCG	GAGTCCCGGG	AGACCAGGAC	GTCCTTCATC	ACCCCGACCC	GCTCGCCCCG	5400
CCGCAGGGTG	CCGTGGCCCG	CCGCCTCGGC	CTCCTCCCGG	TAGATGTCCA	TCAGCCGGGC	5460
GACGATCTGG	TCGTCGGTGT	TCATCAGGAT	CGGCACCACG	CCCTCCCGGG	CACAGAACCG	5520
GAACGTGTCC	TCACTGAAGC	TGAACGGCTG	GAAGACGGGC	GGGTGGGGGC	GCTGGTAGGG	5580
CTTGGGCGCG	ATGCCCACCT	CGCGGATGAC	GCCGTTCTCG	TCGAGGCCCC	GGCCGTAGCG	5640
GCGCACCGCC	TCGTAGGGGA	ACTCCAGGTC	CGGCACCGGG	ATCGTCCACT	GCTCCCCGGA	5700
GTGGGTGAAC	GTCTCGGTCG	TCCACGCCTT	CTTGATGATC	TCCCAGTGCT	CCTCGAAGAG	5760
GGCACGATTG	CGCCGGTCCC	GCTCCCGGC	GTCGGACAGG	GTGCCGCCGA	CCCCGTACAC	5820
CTGCCCCATG	ATGTCGGCCC	AGCGCTTCTG	GAACCCGCGC	GCGATCCCGA	CGAAGGCGCG	5880
GCCCGGGTC	ATGTGGTCGA	GCATCGCCAG	ATCCTCGGCC	AGCCGCAGCG	GATTGTGCAG	5940
CGGCAGGACG	TTGGCCATCT	GGCCGACCCG	GATGTGCCGG	GTCTGCATGC	CGAGGTAGAG	6000
CCCCAGCATG	ATCGGGTTGT	TGGAGACCTC	GAAACCCTCG	GTGTGGAAGT	GGTGCTCGGT	6060

Attorney Docket: P31731
Group Art Unit: 1652 -5-

GAAGGACAGT	CCCCAGTAGC	CGAGTTCGTC	GGCCGCCTGC	GCCTGCCGGG	TGAGCTGCCG	6120
GAGCATGTTC	TGGTAGTTCT	GCGGATTGAC	CCCCGCCATA	CCCCGCTGGA	CCTGCGCATG	6180
ACTGCCGACC	GTTGGCAGAT	AGAAGAGAAT	GGACTTCACC	CTGGCTCCTC	CGGTTCGCGG	6240
CGCCCTCCAT	TGACGTGCGC	CGAAAGCGGC	TCGACCGTCC	CACTCCGCCC	TTGAGTTCCG	6300
TCTGACGCCG	CGCCAGTCGG	CGGGCCGTCC	GCCGGGGTGC	CCGCCGGGT	CCGCACCCGC	6360
CGGACGGCAC	GGCGCGCACC	GCGCGCGCGG	CGCTTCGGGG	CACCGGGCTC	GACGGGGTGC	6420
TCAGCGGGAC	GTCCAACGGA	AGGCAAGCCC	CCGTACCCAG	CCTGGTCAAG	GCGCTCATCG	6480
CCATTCCCTG	AGGAGGTCCC	GCCTTGACCA	CAGCAATCTC	CGCGCTCCCG	ACCGTGCCCG	6540
GCTCCGGACT	CGAAGCACTG	GACCGTGCCA	CCCTCATCCA	CCCCACCCTC	TCCGGAAACA	6600
CCGCGGAACG	GATCGTGCTG	ACCTCGGGGT	CCGGCAGCCG	GGTCCGCGAC	ACCGACGGCC	6660
GGGAGTACCT	GGACGCGAGC	GCCGTCCTCG	GGGTGACCCA	GGTGGGCCAC	GGCCGGGCCG	6720
AGCTGGCCCG	GGTCGCGGCC	GAGCAGATGG	CCCGGCTGGA	GTACTTCCAC	ACCTGGGGGA	6780
CGATCAGCAA	CGACCGGGCG	GTGGAGCTGG	CGGCACGGCT	GGTGGGGCTG	AGCCCGGAGC	6840
CGCTGACCCG	CGTCTACTTC	ACCAGCGGCG	GGGCCGAGGG	CAACGAGATC	GCCCTGCGGA	6900
TGGCCCGGCT	CTACCACCAC	CGGCGCGGGG	AGTCCGCCCG	TACCTGGATA	CTCTCCCGCC	6960
GGTCGGCCTA	CCACGGCGTC	GGATACGGCA	GCGGCGGCGT	CACCGGCTTC	CCCGCCTACC	7020
ACCAGGGCTT	CGGCCCCTCC	CTCCCGGACG	TCGACTTCCT	GACCCCGCCG	CAGCCCTACC	7080
GCCGGGAGCT	GTTCGCCGGT	TCCGACGTCA	CCGACTTCTG	CCTCGCCGAA	CTGCGCGAGA	7140
CCATCGACCG	GATCGGCCCG	GAGCGGATCG	CGGCGATGAT	CGGCGAGCCG	ATC	7193

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GTGACCCGGC	CTCCGGGCCT	TTCCGCGCAC	ACCCACGGGT	CCGTGTCCGG	GAGTCTGCTG	60
CGCCGGGTGG	CGGGCCACTA	TCCCACCGGG	GTGGTCCTGG	TCACCGGTCC	GGCCGAGGCT	120
CCGGGGCAGC	CGCCGCCCGC	CATGG				145

- (2) INFORMATION FOR SEQ ID NO:3:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 base pairs

Attorney Docket: P31731
Group Art Unit: 1652 -6-

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGTCCGTGG	CATCGGCCGG	TATGACGGAC	GAGCAGCGCA	AGGCGGTCAT	CACCGCGTAC	60
TTCAAGGCGT	TCGACAACGG	CGGCGTCGGC	AGCGACGGCA	CCCCGCGAT	CGACTACTTC	120
GCCGAGGACG	CGGTCTTCTT	CTTCCCCAAG	TGGGGTCTGG	CCCGGGGCAA	GTCCGAGATC	180
GCCCGGCTCT	TCGACGACCT	CGGGGGCACC	ATCCGCTCGA	TCACCCACCA	TCTGTGGTCC	240
GTCAACTGGA	TTCTGACCGG	GACCGAACTC	CTCGCCGCGG	AGGGCACCAC	CCACGGTGAG	300
CACCGGGACG	GGCCGTGGCG	GGCGGGTGAC	CCCGAGTGGG	CCGCCGGGCG	CTGGTGCACG	360
GTCTACGAGG	TGCGGGACTT	CCTCGTCCAC	CGGGCCTTCG	TCTATCTGGA	CCCCGATTAC	420
GCGGGCAAGG	ACACCGCGCG	TTACCCGTGG	CTG			453

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1032 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGTCCCGCT	CTCCGCCCGA	GTCCCCGGCC	GGTTCCGTGT	CCGCCGCGT	TCCGCGTCCG	60
CCGGTCCGCG	CCCTGCGGGA	CCTTCCGGTC	AGTGCCCAGG	GGCTCGGCTG	CCTGCCGACC	120
ACCGACTTCT	ACGGACGCCC	GGACCGCGCC	CGGGCGACGG	CCACCATCCG	CGCCGCCGTC	180
GACGCCGGGG	TCACCCTGCT	GGACACCGCC	GACGTCCAGG	GGCTCGGCGC	CGGTGAGGAG	240
CTGCTCGGAC	GGGCGGTCGC	GGGCCGCCGG	GACGAGGTGC	TGATCGCCAC	CAAGTTCGGC	300
ATGGTGCGCT	CGTCCGACGG	CGCCTCCCAG	GGCTTGTGCG	GCGAGCCGTC	CTACGTCCGC	360
GCGGCCTGCG	AACGGTCCCT	GCGTCGTCTC	GGCACCGACC	GCATCGACCT	GTACTACCAG	420
CACTGGACGG	ACCCGGCGGT	GCCGATCGAG	GAGACCGTGG	GTGCGGTGGC	CGAGCTGGTG	480
CGCGAGGGCA	AGGTCCGCAG	GCTCGGTCTC	TCCGAGCCCT	CCGCGGCCAC	GCTGCGCCGG	540
GCGGACGCGG	TGCACCCGGT	GACGGCGGTG	CAGAGCGAGT	GGAGCCTGTG	GTCGCGCGG	600
ATCGAGGACG	AGGTGGTGCC	CGTCTGCCGG	GAGCTGGGGA	TCGGGATCGT	CGCTTACGCC	660

-7-

CCTCTGGGAC	GGGGTTTTCT	CACCGGCACC	ATCCGCACCA	CCGACGATCT	GGGGGACGAG	720
GACTTCCGCC	GGGGCCAGCC	CCGGTTCAGC	GCTCCGGCCC	TCGCGCGCAA	CCGCTCGTTG	780
CTGCACCGGC	TGCGCCCGGT	CGCGGACGGT	CTGGGGCTGA	CCCTGGCACA	GCTCGCGCTC	840
GCCTGGCTGC	ACCACCGGGG	CGAGGACGTC	GTCCCGATCC	CGGGCACCGC	GAACCCGGCC	900
CATCTCGCGG	ACAATCTCGC	CGCCGCCTCG	ATCCGGCTGG	ACGACCGGTC	CCTCGCGGAG	960
GTGACGGCCG	CGATCTCCCA	CCCGGTGTCC	GGGGAGCGGT	ACACCCGGC	ATTGCTCGCC	1020
ATGATCGGCA	AC					1032

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 984 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTGGAATGCC	GCATATTCGA	GATCGACGAA	CTGCCGTTGC	TGGACGGGGA	GGTCCTGCGG	60
GACGCCCGGA	TCGGTTACGC	CATGTACGGC	ACGCCGAACG	CCGACGGGAC	GAACGTGGTG	120
CTCTGTCCGT	CGTTCTTCGG	CCGGGACCAC	ACCGGGTACG	ACTGGCTGAT	CGGTGCGGG	180
CTGCCGCTGG	ACACCCGGCG	GTACTGCGTC	GTCACCGCCG	GACTCTTCGG	CAACGGGGTC	240
TCCAGCTCGC	CCGGCAACCA	CCCGTCGGGG	TCCCGCTTTC	CGCTGATCAC	TCCGCAGGAC	300
AATGTCGCGG	CGCAGCACCG	GCTGCTCACC	GAGGAGCTGG	GGGTACGGGA	ACTGGCCCTG	360
GTCACGGGCT	GGTCGATGGG	CGCGGCCCAC	GCCTACCAGT	GGGCCGTGTC	GCATCCGGGG	420
ATGGTGCGCC	GGATCGCCCC	GATCTGCGGG	GCGCCGGTGA	GCAGCCCGCA	CAGCCTGGTC	480
CTGCTGTCCG	GTCTGGCCGC	GGCGCTCAGC	GCCGACGCCG	GGGAGCGGGG	GCGGAAGGCG	540
GCGGGCCGGG	TGTTCGCCGG	GTGGGGGACC	TCGCGTTCCT	TCTGGGCCCG	CCGTGCCCAC	600
CGGGAGCTGG	GTTTCGCCAC	CCGCGAGGAG	TACCTCACCG	GCTTCTGGGA	GCAGGTCTTC	660
CTCTCCGGGC	CCGGCGCCGC	GGATCTGCTC	ACCATGGTGC	GCACCTGGGA	GAACACGGAT	720
GTGGGGGCGA	CACCCGGGGC	CGGGGGGAGC	GTCGAGGCGG	CGCTGGCCTC	CGTCACGGCG	780
			GTGTGTTTCG			840
			GAGGTGATCC			900
			GAGTTCATCG		GCGGCGGCTG	960
CTGGACAGCC						984
						20.4

(2) INFORMATION FOR SEQ ID NO:6:

-8-

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1182 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GTGAAGTCCA	TTCTCTTCTA	TCTGCCAACG	GTCGGCAGTC	ATGCGCAGGT	CCAGCGGGGT	60
ATGGCGGGG	TCAATCCGCA	GAACTACCAG	AACATGCTCC	GGCAGCTCAC	CCGGCAGGCG	120
CAGGCGGCCG	ACGAACTCGG	CTACTGGGGA	CTGTCCTTCA	CCGAGCACCA	CTTCCACACC	180
GAGGGTTTCG	AGGTCTCCAA	CAACCCGATC	ATGCTGGGGC	TCTACCTCGG	CATGCAGACC	240
CGGCACATCC	GGGTCGGCCA	GATGGCCAAC	GTCCTGCCGC	TGCACAATCC	GCTGCGGCTG	300
GCCGAGGATC	TGGCGATGCT	CGACCACATG	ACCCGGGGCC	GCGCCTTCGT	CGGGATCGCG	360
CGCGGGTTCC	AGAAGCGCTG	GGCCGACATC	ATGGGGCAGG	TGTACGGGGT	CGGCGGCACC	420
CTGTCCGACG	CCGGGGAGCG	GGACCGGCGC	AATCGTGCCC	TCTTCGAGGA	GCACTGGGAG	480
ATCATCAAGA	AGGCGTGGAC	GACCGAGACG	TTCACCCACT	CCGGGGAGCA	GTGGACGATC	540
CCGGTGCCGG	ACCTGGAGTT	CCCCTACGAG	GCGGTGCGCC	GCTACGGCCG	GGGCCTCGAC	600
GAGAACGGCG	TCATCCGCGA	GGTGGGCATC	GCGCCCAAGC	CCTACCAGCG	CCCCCACCCG	660
CCCGTCTTCC	AGCCGTTCAG	CTTCAGTGAG	GACACGTTCC	GGTTCTGTGC	CCGGGAGGGC	720
GTGGTGCCGA	TCCTGATGAA	CACCGACGAC	CAGATCGTCG	CCCGGCTGAT	GGACATCTAC	780
CGGGAGGAGG	CCGAGGCGGC	GGGCCACGGC	ACCCTGCGGC	GGGGCGAGCG	GGTCGGGGTG	840
ATGAAGGACG	TCCTGGTCTC	CCGGGACTCC	GGCGAGGCCC	ACCACTGGGC	GTCCCGCGC	900
GGCGGCTTCA	TCTTCGAGAA	CTGGTTCGGC	CCCATGGGCT	TCACCGAGGC	GCTGCGCGCG	960
ACCGGCGAGA	CGGGTCCGAT	CGGCTCGGAC	TACAAGACCC	TGGTCGACCG	GGGGCTGGAG	1020
TGGGTCGGCA	CCCCGGACGA	CATCAACCGC	ATGATCGAGA	AGCTGGTGGA	GCGGCACGAT	1080
CCGGAGTATC	TGCTCCAGTG	CCAGTACTCC	GGGCTGATCC	CGCACGATGT	CCAGCTGCGC	1140
AGCCTGGAGC	TGTGGGCCAC	CGAGATCGCC	CCCAACTGGC	TC		1182

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 660 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other

- 9 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GTGCCCGGCT	CCGGACTCGA	AGCACTGGAC	CGTGCCACCC	TCATCCACCC	CACCCTCTCC	60
GGAAACACCG	CGGAACGGAT	CGTGCTGACC	TCGGGGTCCG	GCAGCCGGGT	CCGCGACACC	120
GACGGCCGGG	AGTACCTGGA	CGCGAGCGCC	GTCCTCGGGG	TGACCCAGGT	GGGCCACGGC	180
CGGGCCGAGC	TGGCCCGGGT	CGCGGCCGAG	CAGATGGCCC	GGCTGGAGTA	CTTCCACACC	240
TGGGGGACGA	TCAGCAACGA	CCGGGCGGTG	GAGCTGGCGG	CACGGCTGGT	GGGGCTGAGC	300
CCGGAGCCGC	TGACCCGCGT	CTACTTCACC	AGCGGCGGG	CCGAGGGCAA	CGAGATCGCC	360
CTGCGGATGG	CCCGGCTCTA	CCACCACCGG	CGCGGGGAGT	CCGCCCGTAC	CTGGATACTC	420
TCCCGCCGGT	CGGCCTACCA	CGGCGTCGGA	TACGGCAGCG	GCGGCGTCAC	CGGCTTCCCC	480
GCCTACCACC	AGGGCTTCGG	CCCCTCCCTC	CCGGACGTCG	ACTTCCTGAC	CCCGCCGCAG	540
CCCTACCGCC	${\tt GGGAGCTG\underline{\intercal}\underline{\intercal}}$	CGCCGGTTCC	GACGTCACCG	ACTTCTGCCT	CGCCGAACTG	600
CGCGAGACCA	TCGACCGGAT	CGGCCCGGAG	CGGATCGCGG	CGATGATCGG	CGAGCCGATC	660

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CTGACGCTGC AGGAGGAAGT CCCGC

25

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CGGGGCGAGG ACGTCGTCCC GATCC	25
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 25 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GAGCCCCTGG ACGTCGGCGG TGTCC	25
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 25 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GACGGTGCAT GCTCAGCAGG GAGCG	25
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 972 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

- 10 -

-11-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGACCTCAG	TGGACTGCAC	CGCGTACGGC	CCCGAGCTGC	GCGCGCTCGC	CGCCCGGCTG	60
CCCCGGACCC	CCCGGGCCGA	CCTGTACGCC	TTCCTGGACG	CCGCGCACAC	AGCCGCCGCC	120
TCGCTCCCCG	GCGCCCTCGC	CACCGCGCTG	GACACCTTCA	ACGCCGAGGG	CAGCGAGGAC	180
GGCCATCTGC	TGCTGCGCGG	CCTCCCGGTG	GAGGCCGACG	CCGACCTCCC	CACCACCCCG	240
AGCAGCACCC	CGGCGCCCGA	GGACCGCTCC	CTGCTGACCA	TGGAGGCCAT	GCTCGGACTG	300
GTGGGCCGCC	GGCTCGGTCT	GCACACGGGG	TACCGGGAGC	TGCGCTCGGG	CACGGTCTAC	360
CACGACGTGT	ACCCGTCGCC	CGGCGCGCAC	CACCTGTCCT	CGGAGACCTC	CGAGACGCTG	420
CTGGAGTTCC	ACACGGAGAT	GGCCTACCAC	CGGCTCCAGC	CGAACTACGT	CATGCTGGCC	480
TGCTCCCGGG	CCGACCACGA	GCGCACGGCG	GCCACACTCG	TCGCCTCGGT	CCGCAAGGCG	540
CTGCCCCTGC	TGGACGAGAG	GACCCGGGCC	CGGCTCCTCG	ACCGGAGGAT	GCCCTGCTGC	600
GTGGATGTGG	CCTTCCGCGG	CGGGGTGGAC	GACCCGGGCG	CCATCGCCCA	GGTCAAACCG	660
CTCTACGGGG	ACGCGGACGA	TCCCTTCCTC	GGGTACGACC	GCGAGCTGCT	GGCGCCGGAG	720
GACCCCGCGG	ACAAGGAGGC	CGTCGCCGCC	CTGTCCAAGG	CGCTCGACGA	GGTCACGGAG	780
GCGGTGTATC	TGGAGCCCGG	CGATCTGCTG	ATCGTCGACA	ACTTCCGCAC	CACGCACGCG	840
CGGACGCCGT	TCTCGCCCCG	CTGGGACGGG	AAGGACCGCT	GGCTGCACCG	CGTCTACATC	900
CGCACCGACC	GCAATGGACA	GCTCTCCGGC	GGCGAGCGCG	CGGGCGACGT	CGTCGCCTTC	960
ACACCGCGCG	GC					972

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

 Met Thr Arg Pro Pro Gly Leu Ser Ala His Thr His Gly Ser Val Ser

 1
 5
 10
 15
 15

 Gly Ser Leu Leu Arg Arg Val Ala Gly His Tyr Pro Thr Gly Val Val 25
 30

 Leu Val Thr Gly Pro Ala Glu Ala Pro Gly Gln Pro Pro Pro Ala Met 35
 40
 45

Attorney Docket: P31731
Group Art Unit: 1652 - 12 -

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 151 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Ser Val Ala Ser Ala Gly Met Thr Asp Glu Gln Arg Lys Ala Val 5 1 Ile Thr Ala Tyr Phe Lys Ala Phe Asp Asn Gly Gly Val Gly Ser Asp 25 Gly Thr Pro Ala Ile Asp Tyr Phe Ala Glu Asp Ala Val Phe Phe Phe 40 Pro Lys Trp Gly Leu Ala Arg Gly Lys Ser Glu Ile Ala Arg Leu Phe 55 Asp Asp Leu Gly Gly Thr Ile Arg Ser Ile Thr His His Leu Trp Ser 75 Val Asn Trp Ile Leu Thr Gly Thr Glu Leu Leu Ala Ala Glu Gly Thr Thr His Gly Glu His Arg Asp Gly Pro Trp Arg Ala Gly Asp Pro Glu 105 Trp Ala Ala Gly Arg Trp Cys Thr Val Tyr Glu Val Arg Asp Phe Leu 120 Val His Arg Ala Phe Val Tyr Leu Asp Pro Asp Tyr Ala Gly Lys Asp 130 140 Thr Ala Arg Tyr Pro Trp Leu 145

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

Attorney Docket: P31731
Group Art Unit: 1652
- 13 -

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Ser Arg Ser Pro Pro Glu Ser Pro Ala Gly Ser Val Ser Ala Ala 1 5 10 Val Pro Arg Pro Pro Val Arg Ala Leu Arg Asp Leu Pro Val Ser Ala Gln Gly Leu Gly Cys Leu Pro Thr Thr Asp Phe Tyr Gly Arg Pro Asp 40 Arg Ala Arg Ala Thr Ala Thr Ile Arg Ala Ala Val Asp Ala Gly Val 55 Thr Leu Leu Asp Thr Ala Asp Val Gln Gly Leu Gly Ala Gly Glu Glu 70 75 Leu Leu Gly Arg Ala Val Ala Gly Arg Arg Asp Glu Val Leu Ile Ala 90 Thr Lys Phe Gly Met Val Arg Ser Ser Asp Gly Ala Ser Gln Gly Leu 100 105 Cys Gly Glu Pro Ser Tyr Val Arg Ala Cys Glu Arg Ser Leu Arg 120 Arg Leu Gly Thr Asp Arg Ile Asp Leu Tyr Tyr Gln His Trp Thr Asp 130 135 140 Pro Ala Val Pro Ile Glu Glu Thr Val Gly Ala Val Ala Glu Leu Val 150 155 Arg Glu Gly Lys Val Arg Arg Leu Gly Leu Ser Glu Pro Ser Ala Ala 165 170 Thr Leu Arg Arg Ala Asp Ala Val His Pro Val Thr Ala Val Gln Ser 185 Glu Trp Ser Leu Trp Ser Arg Gly Ile Glu Asp Glu Val Val Pro Val 200 Cys Arg Glu Leu Gly Ile Gly Ile Val Ala Tyr Ala Pro Leu Gly Arg 210 215 Gly Phe Leu Thr Gly Thr Ile Arg Thr Thr Asp Asp Leu Gly Asp Glu 230 235 Asp Phe Arg Arg Gly Gln Pro Arg Phe Ser Ala Pro Ala Leu Ala Arg 245 250 Asn Arg Ser Leu Leu His Arg Leu Arg Pro Val Ala Asp Gly Leu Gly 260 265 Leu Thr Leu Ala Gln Leu Ala Leu Ala Trp Leu His His Arg Gly Glu Attorney Docket: P31731
Group Art Unit: 1652
- 14-

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 328 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Glu Cys Arg Ile Phe Glu Ile Asp Glu Leu Pro Leu Leu Asp Gly 5 10 Glu Val Leu Arg Asp Ala Arg Ile Gly Tyr Ala Met Tyr Gly Thr Pro 20 25 Asn Ala Asp Gly Thr Asn Val Val Leu Cys Pro Ser Phe Phe Gly Arg 40 Asp His Thr Gly Tyr Asp Trp Leu Ile Gly Ala Gly Leu Pro Leu Asp 55 Thr Arg Arg Tyr Cys Val Val Thr Ala Gly Leu Phe Gly Asn Gly Val 70 75 Ser Ser Ser Pro Gly Asn His Pro Ser Gly Ser Arg Phe Pro Leu Ile 85 90 Thr Pro Gln Asp Asn Val Ala Ala Gln His Arg Leu Leu Thr Glu Glu 105 Leu Gly Val Arg Glu Leu Ala Leu Val Thr Gly Trp Ser Met Gly Ala 120 Ala His Ala Tyr Gln Trp Ala Val Ser His Pro Gly Met Val Arg Arg 130 135 140

- 15 -

Ile Ala Pro Ile Cys Gly Ala Pro Val Ser Ser Pro His Ser Leu Val 150 155 Leu Leu Ser Gly Leu Ala Ala Ala Leu Ser Ala Asp Ala Gly Glu Arg 170 Gly Arg Lys Ala Ala Gly Arg Val Phe Ala Gly Trp Gly Thr Ser Arg 185 Ser Phe Trp Ala Arg Arg Ala His Arg Glu Leu Gly Phe Ala Thr Arg 200 205 Glu Glu Tyr Leu Thr Gly Phe Trp Glu Gln Val Phe Leu Ser Gly Pro 215 220 Gly Ala Ala Asp Leu Leu Thr Met Val Arg Thr Trp Glu Asn Thr Asp 230 235 Val Gly Ala Thr Pro Gly Ala Gly Gly Ser Val Glu Ala Ala Leu Ala 250 Ser Val Thr Ala Arg Ala Val Val Leu Pro Gly Ala Leu Asp Val Cys 265 Phe Ala Val Glu Asp Glu Lys Arg Val Ala Asp Leu Leu Pro Tyr Ala 280 285 Ser Leu Glu Val Ile Pro Gly Val Trp Gly His Leu Ala Gly Ser Gly 290 295 Gly Ser Ala Ala Asp Arg Glu Phe Ile Gly Gly Ala Leu Arg Arg Leu 310 315 Leu Asp Ser Pro Val Asp Gly Gly 325

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Lys Ser Ile Leu Phe Tyr Leu Pro Thr Val Gly Ser His Ala Gln

1 5 10 15

Val Gln Arg Gly Met Ala Gly Val Asn Pro Gln Asn Tyr Gln Asn Met

- 16 -

			20					25					30		
Leu	Arg	Gln 35	Leu	Thr	Arg	Gln	Ala 40	Gln	Ala	Ala	qzA		Leu	Gly	Tyr
מייש	Glv		Ser	Phe	Thr	Glu		His	Phe	Hie	Thr	45 G311	Gly	Phe	Glu
~-₽	50					55				1120	60	Uu	CLJ	2110	014
Val	Ser	Asn	Asn	Pro	Ile	Met	Leu	Gly	Leu	Tyr	Leu	Gly	Met	Gln	Thr
65					70					75					80
Arg	His	Ile	Arg	Val	Gly	Gln	Met	Ala	Asn	Val	Leu	Pro	Leu	His	Asn
				85					90					95	
Pro	Leu	Arg		Ala	Glu	Asp	Leu		Met	Leu	Asp	His	Met	Thr	Arg
C1	7	710	100	37- 3	G1	T I.	27-	105	93	73 16 -	~ 3	•	110		21-
GIY	ALG	115	File	Val	GIĀ	iie	120	Arg	GTA	Pne	GIN	Lys 125	Arg	Trp	Ala
Asp	Ile		Glv	Gln	Val	Tvr		Val	Glv	GIV	Thr		Ser	Asp	Ala
	130		2			135	1		1	011	140		501		
Gly	Glu	Arg	Asp	Arg	Arg	Asn	Arg	Ala	Leu	Phe	Glu	Glu	His	Trp	Glu
145					150					155					160
Ile	Ile	Lys	Lys	Ala	Trp	Thr	Thr	Glu	Thr	Phe	Thr	His	Ser	Gly	Glu
				165					170					175	
Gln	Trp	Thr		Pro	Val	Pro	Asp		Glu	Phe	Pro	Tyr	Glu	Ala	Val
*	3	m	180	•	03.	_	_	185	_		1		190		
Arg	Arg	195	GIY	Arg	GIY	Leu		Glu	Asn	GLy	Val		Arg	Glu	Val
Glv	TIA		Pro	Tare	Pro	ጥኒፖዮ	200 Gln	λκα	Pro	uic	Pro	205	Val	Dho	C12
Q _L y	210	1114	110	цуз	110	215	GIII	ALG	FIU	HIS	220	PLO	val	FILE	GIII
Pro		Ser	Phe	Ser	Glu		Thr	Phe	Arg	Phe		Ala	Arg	Glu	Gly
225	,				230					235	-		_		240
Val	Val	Pro	Ile	Leu	Met	Asn	Thr	Asp	Asp	Gln	Ile	Val	Ala	Arg	Leu
				245					250					255	
Met	Asp	Ile	Tyr	Arg	Glu	Glu	Ala	Glu	Ala	Ala	Gly	His	Gly	Thr	Leu
			260					265					270		
Arg	Arg		Glu	Arg	Val	Gly		Met	Lys	Asp	Val		Val	Ser	Arg
7.00	S0.22	275	C1	77-	uia	ui a	280	77-	C	3	G1	285	01	DI	7 7.
ASD	290	GIY	GIU	ALA	UTS	295	πp	AId	ser	Arg	300	GTĀ	Gly	Pne	TTE
Phe		Asn	Trp	Phe	Glv		Met	Glv	Phe	Thr		Δla	Leu	Ara	Δla
305					310			~-y		315	 u		Leu	ar 9	320
	Gly	Glu	Thr	Gly		Ile	Gly	Ser	Asp		Lys	Thr	Leu	Val	
				325					330					335	-
Arg	Gly	Leu	Glu	Trp	Val	Gly	Thr	Pro	Asp	Asp	Ile	Asn	Arg	Met	Ile

Attorney Docket: P31731
Group Art Unit: 1652 - 17 -

| Secondary | Seco

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 220 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Pro Gly Ser Gly Leu Glu Ala Leu Asp Arg Ala Thr Leu Ile His Pro Thr Leu Ser Gly Asn Thr Ala Glu Arg Ile Val Leu Thr Ser Gly 25 Ser Gly Ser Arg Val Arg Asp Thr Asp Gly Arg Glu Tyr Leu Asp Ala 40 Ser Ala Val Leu Gly Val Thr Gln Val Gly His Gly Arg Ala Glu Leu Ala Arg Val Ala Ala Glu Gln Met Ala Arg Leu Glu Tyr Phe His Thr 70 75 Trp Gly Thr Ile Ser Asn Asp Arg Ala Val Glu Leu Ala Ala Arg Leu 90 Val Gly Leu Ser Pro Glu Pro Leu Thr Arg Val Tyr Phe Thr Ser Gly 100 105 Gly Ala Glu Gly Asn Glu Ile Ala Leu Arg Met Ala Arg Leu Tyr His 115 120 125 His Arg Arg Gly Glu Ser Ala Arg Thr Trp Ile Leu Ser Arg Arg Ser . 135 140 Ala Tyr His Gly Val Gly Tyr Gly Ser Gly Gly Val Thr Gly Phe Pro 145 150 155 160

Attorney Docket: P31731
Group Art Unit: 1652 - 18 -

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 324 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Thr Ser Val Asp Cys Thr Ala Tyr Gly Pro Glu Leu Arg Ala Leu 5 Ala Ala Arg Leu Pro Arg Thr Pro Arg Ala Asp Leu Tyr Ala Phe Leu Asp Ala Ala His Thr Ala Ala Ala Ser Leu Pro Gly Ala Leu Ala Thr 40 Ala Leu Asp Thr Phe Asn Ala Glu Gly Ser Glu Asp Gly His Leu Leu 55 Leu Arg Gly Leu Pro Val Glu Ala Asp Ala Asp Leu Pro Thr Thr Pro 75 70 Ser Ser Thr Pro Ala Pro Glu Asp Arg Ser Leu Leu Thr Met Glu Ala 90 Met Leu Gly Leu Val Gly Arg Arg Leu Gly Leu His Thr Gly Tyr Arg 105 Glu Leu Arg Ser Gly Thr Val Tyr His Asp Val Tyr Pro Ser Pro Gly 120 Ala His His Leu Ser Ser Glu Thr Ser Glu Thr Leu Leu Glu Phe His 130 135 Thr Glu Met Ala Tyr His Arg Leu Gln Pro Asn Tyr Val Met Leu Ala

· ()

- 19 -

145					150					155					160
Cys	Ser	Arg	Ala	qaA	His	Glu	Arg	Thr	Ala	Ala	Thr	Leu	Val	Ala	Ser
				165					170					175	
Val	Arg	Lys	Ala	Leu	Pro	Leu	Leu	Asp	Glu	Arg	Thr	Arg	Ala	Arg	Leu
			180					185					190		
Leu	Asp	Arg	Arg	Met	Pro	Cys	Cys	Val	Asp	Val	Ala	Phe	Arg	Gly	Gly
		195					200					205			
Val	Asp	Asp	Pro	Gly	Ala	Ile	Ala	Gln	Val	Lys	Pro	Leu	\mathtt{Tyr}	Gly	Asp
	210					215					220				
Ala	Asp	Asp	Pro	Phe	Leu	Gly	Tyr	Asp	Arg	Glu	Leu	Leu	Ala	Pro	Glu
225					230					235					240
Asp	Pro	Ala	Asp	Lys	Glu	Ala	Val	Ala	Ala	Leu	Ser	Lys	Ala	Leu	Asp
				245					250					255	
Glu	Val	Thr	Glu	Ala	Val	Tyr	Leu	Glu	Pro	Gly	Asp	Leu	Leu	Ile	Val
			260					265					270		
Asp	Asn	Phe	Arg	Thr	Thr	His	Ala	Arg	Thr	Pro	Phe	Ser	Pro	Arg	Trp
		275					280					285			
Asp	Gly	Lys	Asp	Arg	Trp	Leu	His	Arg	Val	Tyr	Ile	Arg	Thr	Asp	Arg
	290					295					300				
Asn	Gly	Gln	Leu	Ser	Gly	Gly	Glu	Arg	Ala	Gly	Asp	Val	Val	Ala	Phe
305					310					315					320
Thr	Pro	Arq	Gly												