情報理論

第5回 講義

通信路のモデル化

2015. 5. 20 植松 芳彦

(復習)情報理論の扱う領域

- 1. 基本モデル
- 2. 情報理論と符号理論
- 3. 情報理論の応用分野

通信路の統計的記述

通信路への入力記号系列: $X_0 X_1 X_2 \cdots$ 通信路からの出力記号系列: Y₀ Y₁ Y₂ *** 入力アルファベット: $A = \{a_1, \bullet \bullet \bullet, a_r\}$ 出力アルファベット: $B = \{b_1, \bullet \bullet \bullet, b_{\mathfrak{c}}\}$

 a_1

$$X_0 X_1 X_2 \longrightarrow 0$$

 $\Rightarrow Y_0 Y_1 Y_2 \cdots$ 通信路

各時点の出力記号

 b_1

各時点で 各時点で 入力しうる 出力しうる

記号の値 記号の値 a_r

通信路の統計的記述

任意の長さの入力系列 X₀ X₁ X₂ *** X_{n-1}に対し対応する出力系列 Y₀ Y₁ Y₂ *** Y_{n-1}
 の条件付き確率分布が定まること

$$P_{Y_0,...,Y_{n-1} \mid X_0,...,X_{n-1}}$$
 (y_0 , "", y_{n-1}/x_0 , "", x_{n-1}) (\$\pi 3.45)

- 1. 無記憶性:各時点の出力がその時点の入力のみに依存. 他の時点の出力・入力と独立(相関なし)
- 2. 定常性:各入力記号に対する出力記号の発生確 率が各時点で不変

無記憶性(時点間で独立)

3. ある入力 X が与えられた時の出力 Y の条件付き確率 $P_{Y/X}(y|x)$ を用いて以下のように書ける

$$P_{Y_0...Y_{n-1} \mid X_0...X_{n-1}}(y_0, y_0, y_{n-1} \mid x_0, y_{n-1} \mid x_0, y_{n-1})$$

$$= \prod_{i=0}^{n-1} P_{Y/X}(y_i \mid x_i) \qquad (\sharp 3.46)$$

- 入力 X がとりうる値はA={a₁,・・・,a_r}
- 出力 Y がとりうる値はB={b₁,・・・,b_s}
- ⇒条件付き確率 $P_{Y/X}(y|x)$ は $r \times s$ 個の値の集合
- ⇒通信路行列 Tと表現する

$$T = \begin{bmatrix} P_{Y|X}(b_1 | a_1) & \cdots & P_{Y|X}(b_s | a_1) \\ \vdots & & \vdots \\ P_{Y|X}(b_1 | a_r) & \cdots & P_{Y|X}(b_s | a_r) \end{bmatrix} = \begin{bmatrix} p_{11} & \cdots & p_{1s} \\ \vdots & & \vdots \\ p_{r1} & \cdots & p_{rs} \end{bmatrix}$$
 (#3.48)

 $P_{Y|X}(b_j|a_i)$:入力 a_i の時出力 b_j となる確率

• 通信路線図による表現方法

図3.6 通信路線図に加筆

• 各確率の間に成り立つ関係

【要素表現】 $P_{Y,X}(b_j,a_i)=P_{Y|X}(b_j\,|\,a_i)\cdot P_X(a_i)$ 入力が a_i かつ出力が b_j となる結合確率分布

$$P_{Y}(b_{j}) = \sum_{i=1}^{r} P_{Y,X}(b_{j}, a_{i}) = \sum_{i=1}^{r} P_{Y|X}(b_{j} | a_{i}) \cdot P_{X}(a_{i})$$

【行列表現】 $[P_Y(b_1) \cdots P_Y(b_s)]=$

$$egin{bmatrix} P_X(a_1) & \cdots & P_X(a_r) \end{bmatrix} \cdot egin{bmatrix} P_{Y|X}(b_1 \,|\, a_1) & \cdots & P_{Y|X}(b_s \,|\, a_1) \\ dots & dots \\ P_{Y|X}(b_1 \,|\, a_r) & \cdots & P_{Y|X}(b_s \,|\, a_r) \end{bmatrix}$$

【演習1】確率分布を求める

• 下記通信路線図において、出力記号が0, 1となる確率 $P_{\gamma}(0)$, $P_{\gamma}(1)$ を p_0 , p を使って表す.

図3.7 2元対象通信路の通信路線図に加筆

【演習1】確率分布を求める

個々の結合確率分布

$$P_{Y,X}(0, 0) = P_X(0) \cdot P_{Y/X}(0/0) =$$
 $P_{Y,X}(1, 0) =$
 $P_{Y,X}(0, 1) =$
 $P_{Y,X}(1, 1) =$

出力記号が0,1となる確率

$$P_Y(0) = P_{Y,X}(0, 0) + P_{Y,X}(0, 1) =$$

 $P_Y(1) =$

【演習2】以前の公務員試験問題

図は、送信記号の集合A={O, 1}及び受信記号の集合B={O, 1}をもつ2元通信路の模式図である。送信記号と受信記号を結ぶ矢印の添えられた数字は、その送受信関係が成り立つ確率を表している。この通信路の送信側に無記憶の情報源を接続し、記号O∈Aを確率1/3で、記号1∈Aを確率2/3で送信する。記号{O, 1} ∈Bが受信されたとき、送信記号{O, 1} ∈Aの事後確率として正しいのはどれか。

O∈Bを受信		1∈Bを受信		A _{1/2} B	
0∈A,	1∈A	0∈A,	1∈A	$P_A(0) = 1/3$ 0 \longrightarrow 0	
1. 1/3	2/3	3/4	1/4	1 /2	
2. 1/2	1/2	1/4	3/4	1/2	
3. 1/2	1/2	3/4	1/4		
4. 2/3	1/3	1/4	3/4	1/4	
5. 1/4	3/4	1/2	1/2	$P_{1}(1) = 2/3 1 1$	
				3/4 12	<u>)</u>

【演習2】以前の公務員試験問題

 「受信記号Bの時の送信記号Aの事後確率」は、 あるBの値を受信した時、逆に送信したAの値に 関する条件付き確率と捉える。

【演習2】以前の公務員試験問題

個々の結合確率分布 ヒント: P_{B,A}(0, 0) = P_A(0) · P_{B/A}(0 / 0)

$$P_{BA}(0, 0) =$$

$$P_{BA}(0, 1) =$$

$$P_{B,A}(1, 0) =$$

$$P_{B,A}(1, 1) =$$

出力記号が0、1となる確率 ヒント: P_B(0) = P_{B,A}(0,0) + P_{B,A}(0,1)

$$P_{R}(0) =$$

$$P_{R}(1) =$$

• 条件付き確率 $| \text{ヒント} : P_{B,A}(0,0) = P_B(0) \cdot P_{A/B}(0,0) |$

$$P_{A/B}(0/0) =$$

$$P_{A/B}(1/0) =$$

$$P_{A/B}(0/1) =$$

$$P_{A/B}(1/1) =$$