10-701: Introduction to Machine Learning

Lecture 15 – Unsupervised Learning: Dimensionality Reduction

Hoda Heidari

* Slides adopted from F24 offering of 10701 by Henry Chai.

Recipe for *K*-means

- Define a model and model parameters
 - Assume K clusters and use the Euclidean distance
 - Parameters: $\mu_1, ..., \mu_K$ and $z^{(1)}, ..., z^{(N)}$

- Write down an objective function
 - within-cluster sum of squares (WCSS)

$$\sum_{i=1}^{N} ||x^{(i)} - \mu_{z^{(i)}}||_{z}$$

- Optimize the objective w.r.t. the model parameters
 - Use (block) coordinate descent

K-means Algorithm

• Input:
$$\mathcal{D} = \{(x^{(i)})\}_{i=1}^{N}, K$$

- 1. Initialize cluster centers $\mu_1, ..., \mu_K$
- While NOT CONVERGED
 - Assign each data point to the cluster with the nearest cluster center:

$$z^{(i)} = \underset{k}{\operatorname{argmin}} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{k} \right\|_{2}$$

b. Recompute the cluster centers:

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i: z^{(i)} = k} \boldsymbol{x}^{(i)}$$

where N_k is the number of data points in cluster k

• Output: cluster assignments $z^{(1)}, ..., z^{(N)}$

Shortcomings of *K*-means

- Clusters cannot overlap
- Clusters must all be of the same "width"
- Clusters must be linearly separable

Probabilistic or "Soft" Assignments

- Instead of $z^{(i)}$ being a deterministic scalar, let $z^{(i)}$ be a 1-of-K vector indicating cluster membership
 - For example, $z^{(1)}=[0,1,0,...,0]$ indicates that the first data point belongs to the second cluster
 - Let $\pi_k \coloneqq p\left(z_k^{(i)} = 1\right)$

Gaussian Mixture Models (GMMs)

Assume the following data-generating model for our dataset, $\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N}$

1. Sample a cluster at random:

$$p\left(z_k^{(i)} = 1\right) = \pi_k$$

2. Sample a data point from the chosen cluster:

$$p\left(\mathbf{x}^{(i)}\middle|z_k^{(i)}=1\right) \sim N(\mu_k, \Sigma_k)$$

Gaussian Mixture Models (GMMs)

Assume the following data-generating model for our dataset, $\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N}$

1. Sample a cluster at random:

$$p\left(z_k^{(i)} = 1\right) = \pi_k$$

2. Sample a data point from the chosen cluster:

$$p\left(\mathbf{x}^{(i)}\middle|z_k^{(i)}=1\right) \sim N(\mu_k, \Sigma_k)$$

Let
$$\theta = \{ \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K, \boldsymbol{\pi}_1, \dots, \boldsymbol{\pi}_K \}$$

• The log
$$\ell_{\mathcal{D}}(\theta) =$$

likelihood of
$$\mathcal{D} = \left\{ \boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)} \right\}_{i=1}^{N}$$
 is

Maximizing the Likelihood?

Maximizing the Likelihood?

• The log likelihood of
$$\mathcal{D} = \{x^{(i)}, z^{(i)}\}_{i=1}^{N}$$
 is

$$\ell_{\mathcal{D}}(\theta) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)} | \theta) = \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)} | \theta)$$

$$= \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}, \theta) + \log p(\mathbf{z}^{(i)} | \theta)$$

$$= \sum_{i=1}^{N} \log \prod_{k=1}^{K} p(\mathbf{x}^{(i)} | z_{k}^{(i)} = 1, \theta)^{z_{k}^{(i)}} + \log \prod_{k=1}^{K} p(z_{k}^{(i)} = 1 | \theta)^{z_{k}^{(i)}}$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} z_{k}^{(i)} \log p(\mathbf{x}^{(i)} | z_{k}^{(i)} = 1, \theta) + \sum_{k=1}^{K} z_{k}^{(i)} \log p(z_{k}^{(i)} = 1 | \theta)$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} z_{k}^{(i)} (\log N(\mathbf{x}^{(i)}; \mu_{k}, \Sigma_{k}) + \log \pi_{k})$$

Maximizing the Complete Likelihood is easy but requires $z^{(i)}$!

• The log complete likelihood of $\mathcal{D} = \{x^{(i)}, z^{(i)}\}_{i=1}^{N}$ is

$$\begin{split} \ell_{\mathcal{D}}(\theta) &= \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)} | \theta) = \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)} | \theta) \\ &= \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}, \theta) + \log p(\mathbf{z}^{(i)} | \theta) \\ &= \sum_{i=1}^{N} \log \prod_{k=1}^{K} p\left(\mathbf{x}^{(i)} | z_{k}^{(i)} = 1, \theta\right)^{z_{k}^{(i)}} + \log \prod_{k=1}^{K} p\left(z_{k}^{(i)} = 1 | \theta\right)^{z_{k}^{(i)}} \\ &= \sum_{i=1}^{N} \sum_{k=1}^{K} z_{k}^{(i)} \log p\left(\mathbf{x}^{(i)} | z_{k}^{(i)} = 1, \theta\right) + \sum_{k=1}^{K} z_{k}^{(i)} \log p\left(z_{k}^{(i)} = 1 | \theta\right) \\ &= \sum_{i=1}^{N} \sum_{k=1}^{K} z_{k}^{(i)} (\log N(\mathbf{x}^{(i)}; \mu_{k}, \Sigma_{k}) + \log \pi_{k}) \end{split}$$

Parameters decoupled → set partial derivatives equal to 0

Maximizing the Marginal Likelihood

• The log marginal likelihood of $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ is

$$\ell(\theta|\mathcal{D}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\theta) = \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}|\theta)$$

$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}^{(i)}} p(\mathbf{x}^{(i)}|\mathbf{z}^{(i)},\theta) p(\mathbf{z}^{(i)}|\theta)$$

$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}^{(i)}} \prod_{k=1}^{K} (p(\mathbf{x}^{(i)}|\mathbf{z}_{k}^{(i)} = 1,\theta) p(\mathbf{z}_{k}^{(i)} = 1|\theta))^{\mathbf{z}_{k}^{(i)}}$$

$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}^{(i)}} \prod_{k=1}^{K} (N(\mathbf{x}^{(i)};\mu_{k},\Sigma_{k})\pi_{k})^{\mathbf{z}_{k}^{(i)}}$$

 Parameters coupled and constrained → gradient ascent is possible but complicated and slow to converge

Recipe for GMMs

- Define a model and model parameters
 - Assume K Gaussian clusters
 - Parameters: $\theta = \{ \mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K \}$

- Write down an objective function
 - Maximize the log marginal likelihood

$$\ell_{\mathcal{D}}(\theta) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\theta)$$

- Optimize the objective w.r.t. the model parameters
 - Expectation-maximization

ExpectationMaximization for GMMs: Intuition

- Insight: if we knew the cluster assignments, $\mathbf{z}^{(i)}$, we could maximize the log complete likelihood instead of the log marginal likelihood
- Idea: replace $\mathbf{z}^{(i)}$ in the log complete likelihood with our "best guess" for $\mathbf{z}^{(i)}$ given the parameters and the data
- Observation: changing the parameters changes our "best guess" and vice versa
- Approach: iterate between updating our "best guess" and updating the parameters

Expectation-Maximization for GMMs

- Iterative algorithm that alternates between two steps
 - Expectation or E-step: for fixed parameters θ , compute the *expected* assignment vectors conditioned on θ and the data set \mathcal{D}

$$E\left[z_k^{(i)}|\boldsymbol{x}^{(i)},\theta\right] = p\left(z_k^{(i)} = 1|\boldsymbol{x}^{(i)},\theta\right) \ \forall \ i \text{ and } k$$

- Maximization or M-step: for fixed assignment vectors $\mathbf{z}^{(i)}$, set the parameters $\boldsymbol{\theta}$ to maximize the complete log likelihood of the data set $\boldsymbol{\mathcal{D}}$
- Under the hood: EM performs block-coordinate ascent on a lower bound (ELBO) of the log marginal likelihood

E-Step for GMMs

$$p\left(z_k^{(i)} = 1 \middle| \boldsymbol{x}^{(i)}, \theta\right) =$$

E-Step for GMMs

$$p(z_{k}^{(i)} = 1 | \mathbf{x}^{(i)}, \theta) = \frac{p(z_{k}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}{p(\mathbf{x}^{(i)} | \theta)}$$

$$= \frac{p(z_{k}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}{\sum_{j=1}^{K} p(z_{j}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}$$

$$= \frac{\pi_{k} N(\mathbf{x}^{(i)}; \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(\mathbf{x}^{(i)}; \mu_{j}, \Sigma_{j})} \, \forall \, i \, \text{and} \, k$$

16

M-Step for GMMs

Let
$$N_k = \sum_{i=1}^{N} p(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta)$$

$$\pi_k =$$

$$\mu_k =$$

$$\Sigma_k =$$

M-Step for GMMs

Let
$$N_k = \sum_{i=1}^{N} p\left(z_k^{(i)} = 1 \middle| \boldsymbol{x}^{(i)}, \theta\right)$$

$$\pi_k = \frac{N_k}{N}$$

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^{N} p\left(z_k^{(i)} = 1 \middle| x^{(i)}, \theta\right) x^{(i)}$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} p\left(z_{k}^{(i)} = 1 \middle| \mathbf{x}^{(i)}, \theta\right) \left(\mathbf{x}^{(i)} - \mu_{k}\right) \left(\mathbf{x}^{(i)} - \mu_{k}\right)^{T}$$

GMM Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)} \right) \right\}_{i=1}^{N}, K$$

- 1. Initialize all parameters $\mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K, \pi_1, ..., \pi_K$
- While NOT CONVERGED
 - a. E-step: compute $p\left(z_k^{(i)} = 1 \middle| \boldsymbol{x}^{(i)}, \theta\right) \forall i \text{ and } k$
 - b. M-step: update the parameters
- Output: parameters $\mu_1,\dots,\mu_K,\Sigma_1,\dots,\Sigma_K,\pi_1,\dots,\pi_K$ and assignments probabilities $p\left(z_k^{(i)}=1\Big|x^{(i)},\theta\right) \forall i$ and k

Initializing EM for GMMs

- Common heuristics for initialization
 - Cluster proportions typically initialized to be uniform
 - Cluster means
 - Randomly select data points to be cluster centers
 - Randomly sample locations in the range spanned by the data
 - Cluster covariances
 - Identity (or scaled identity) matrix
 - Random positive diagonal matrix
 - Randomly sample L, a lower triangular matrix with positive diagonal entries, and set to LL^{T}
 - Set to the empirical covariance of the data

Use multiple random restarts

Terminating EM for GMMs

- Common heuristics for termination
 - Stop if the log complete likelihood changes by less than some tolerance
 - Stop if the parameters and assignment probabilities change by less than some tolerance
 - Stop after a fixed number of iterations

GMMs: Example (Initial)

GMMs: Example (1 Iteration)

23

GMMs: Example (2 Iterations)

GMMs: Example (3 Iterations)

GMMs: Example (4 Iterations)

GMMs: Example (5 Iterations)

GMMs: Example (6 Iterations)

GMMs: Example (20 Iterations)

Key Takeaways

- Partition-based clustering
 - K-means (hard assignments)
 - Block-coordinate descent
 - Setting *K*
 - Initializing K means
- Model-based clustering
 - Gaussian mixture models (probabilistic assignments)
 - Complete vs. marginal likelihood
 - Expectation-maximization for GMMs
 - Initializing EM for GMMs

Unsupervised Learning

- Clustering: split an unlabeled data set into groups or partitions of "similar" data points
 - Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream tasks
- Dimensionality Reduction: given some unlabeled data set,
 learn a latent (typically lower-dimensional) representation
 - Use cases:
 - Decreasing computational costs
 - Improving generalization
 - Visualizing data

Feature Elimination

Feature Reduction

Henry Chai - 3/13/24

33

Which projection do you prefer?

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$2. \ \widetilde{\boldsymbol{x}}^{(n)} = \boldsymbol{x}^{(n)} - \boldsymbol{\mu} \ \forall \ n$$

3.
$$X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)}^T \\ \widetilde{\boldsymbol{x}}^{(2)}^T \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)}^T \end{bmatrix}$$

Computing Projections

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a vector \pmb{v} is

$$\mathbf{z}^{(n)} = \left(\frac{\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}}{\|\mathbf{v}\|_2}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

Length of projection

Direction of projection

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a unit vector \pmb{v} is

$$\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$\|\widetilde{\boldsymbol{x}}^{(n)} - (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v}\|_2^2$$

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a unit vector \pmb{v} is

$$\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$\begin{aligned} \left\|\widetilde{\boldsymbol{x}}^{(n)} - (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v} \right\|_{2}^{2} \\ &= \widetilde{\boldsymbol{x}}^{(n)^T} \widetilde{\boldsymbol{x}}^{(n)} - 2(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} + (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v}^T \boldsymbol{v} \\ &= \widetilde{\boldsymbol{x}}^{(n)^T} \widetilde{\boldsymbol{x}}^{(n)} - (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \\ &= \left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2} - (\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)})^{2} \end{aligned}$$

Minimizing the Reconstruction Error

1

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v} \right\|_{2}^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_{2}^{2} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{N} \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \longleftarrow \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\text{Variance of projections}}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)}^{T}\right) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmax}} \, \boldsymbol{v}^T (X^T X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) =$$

Maximizing the Variance

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmax}} \, \boldsymbol{v}^T (X^T X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\|\boldsymbol{v}\|_2^2 - 1)$$
$$= \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\boldsymbol{v}^T \boldsymbol{v} - 1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = (X^T X) \boldsymbol{v} - \lambda \boldsymbol{v}$$

$$\rightarrow (X^T X) \widehat{\boldsymbol{v}} - \lambda \widehat{\boldsymbol{v}} = 0 \rightarrow (X^T X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}}$$

• $\widehat{\boldsymbol{v}}$ is an eigenvector of X^TX and λ is the corresponding eigenvalue! But which one?

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \, \boldsymbol{v}^{T}(X^{T}X) \boldsymbol{v}$$

$$(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}} \, \rightarrow \, \widehat{\boldsymbol{v}}^{T}(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}}^{T} \widehat{\boldsymbol{v}} = \lambda$$

- The first principal component is the eigenvector $\widehat{m v}_1$ that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector $\widehat{m v}_2$ that corresponds to the second largest eigenvalue λ_1
 - $\widehat{oldsymbol{v}}_1$ and $\widehat{oldsymbol{v}}_2$ are orthogonal
- Etc ...
- λ_i is a measure of how much variance falls along $\widehat{oldsymbol{v}}_i$

Principal Components: Example

PCA Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- 1. Center the data
- 2. Compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

How many PCs should we use?

• Input:
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- 1. Center the data
- 2. Compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

$$\frac{\lambda_i}{\sum \lambda_j}$$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

PCA Example: MNIST Digits

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Shortcomings of PCA

- Principal components are orthogonal (unit) vectors
- Principal components are expressed as linear combinations of the data

Autoencoders

Insight: neural networks implicitly learn low-dimensional representations of inputs in hidden layers

Autoencoders

• Learn the weights by minimizing the reconstruction loss:

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{o}^{(L)} \right\|_2^2$$

Autoencoders

Encoder

Decoder

Deep Autoencoders

PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2014)

Key Takeaways

- PCA finds an orthonormal basis where the first principal component maximizes the variance
 ⇔ minimizes the reconstruction error
- Autoencoders use neural networks to automatically learn a latent representation that minimizes the reconstruction error