Homework: Sec. 5B # 3, 9

Sam Fleischer

Due: Tues. Mar. 12, 2015

Sec. 5B

3

Suppose $T \in \mathcal{L}(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove T = I.

By the multiplicative properties of polynomials and operators, $T^2 - I = (T - I)(T + I)$. But $T^2 = I \implies T^2 - I = \mathbf{0}$ where $\mathbf{0}$ is the zero operator. Thus $(T - I)(T + I)(v) = \mathbf{0}(v) = 0 \ \forall v \in V$. Since -1 is not an eigenvalue of T, T + I is bijective, and thus range(T) = V. Then $\forall w \in V$, $\exists v \in V$ such that (T + I)(v) = w. Then (T - I)(w) = 0, $\forall w \in V$. Then $T - I = \mathbf{0} \implies T = I$.

9

Suppose V is finite dimensional, $T \in \mathcal{L}(V)$, and $v \in V$ with $v \neq 0$. Let p be a nonzero polynomial of smallest degree such that (p(T))(v) = 0. Prove that every zero of p is an eigenvalue of T.

Let λ be a zero of p. Then $p(x) = (x - \lambda)q(x)$ for some polynomial q(x) with $\deg(q) = \deg(p) - 1$. Then $p(T) = (T - \lambda I)q(T)$.

$$(p(T))(v) = 0 \implies (T - \lambda I)(q(T))(v) = 0$$

Since p is a polynomial of smallest degree such that (p(T))(v) = 0 and $\deg(q) < \deg(p)$, then (q(T))(v) = w for some $w \in V$, $w \neq 0$.

$$(T - \lambda I)(q(T))(v) = 0 \implies (T - \lambda I)(w) = 0$$

Thus $T - \lambda I$ is *not* injective. Thus λ is an eigenvalue of T.