

FIT1043 Lecture 7 Introduction to Data Science

Mahsa Salehi

Faculty of Information Technology, Monash University

Semester 2, 2022

Unit Schedule

Week	Activities	Assignments
1	Overview of data science	Weekly Lecture/tutorial active participation assessment
2	Introduction to Python for data science	
3	Data visualisation and descriptive statistics	
4	Data sources and data wrangling	
5	Data analysis theory	Assignment 1
6	Regression analysis	
7	Classification and clustering	
8	Introduction to R for data science	
9	Characterising data and "big" data	Assignment 2
10	Big data processing	
11	Issues in data management	
12	Industry guest lecture	Assignment 3

Our Standard Value Chain

Outline

- Classification
 - How to evaluate
 - Classification metrics
 - Decision trees
- Regression
 - Regression trees
- Ensemble learning
 - Random forest
- Clustering
 - K-means

Learning Outcomes (Week 7)

By the end of this week you should be able to:

- Differentiate between classification and regression models
- Explain how decision trees and regression trees work
- Explain how random forest works
- Explain how k-means clustering works
- Analyse confusion matrix and how to calculate prediction accuracy
- Differentiate between different classification metrics

Data Analysis Algorithms

Classification

From <u>Data Mining: Concepts and Techniques</u> by J. Han et al, 2011

Classification

Cat Dog

Classification

Classification (cont.)

Classification (Real World Example)

Question: Can we predict the diabetes status of a patient given their health measurements (i.e., 'pregnant', 'insulin', 'BMI', 'age')?

Dataset

How do we evaluate the prediction accuracy?

Percentage of correct predictions by comparing the actual with the predicted response values

Confusion Matrix

A tool to measure performance for classification

Predicted Values

Positive(1)	Negative(0)
True Positive	False Negative
(TP)	(FN)
False Positive	True Negative
(FP)	(TN)

Actual Values
Negative(0) Positive(1)

Classification Metrics

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Actual class	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

Image src: manisha-sirsat.blogspot.com

Classification Metrics

- Accuracy: Overall, how often is the prediction correct?
- **Sensitivity (Recall):** When the actual value is positive, how often is the prediction correct?
- **Specificity:** When the actual value is negative, how often is the prediction correct?
- False Positive Rate: When the actual value is negative, how often is the prediction incorrect?
- Precision: When a positive value is predicted, how often is the prediction correct?

FLUX Question

Determine classification accuracy for the following Confusion Matrix?

	Predicted:	Predicted:	
n=192	0	1	
Actual:			
0	TN = 118	FP = 12	130
Actual:			
1	FN = 47	TP = 15	62
	165	27	

Which Metrics Should be Used?

It depends ...

- · Spam filter: Optimise precision or specificity
 - False negatives (spam goes to the inbox) are more acceptable than false positives (non-spam is caught by the spam filter)
- Fraudulent transaction detector: Optimise sensitivity
 - False positives (normal transactions that are flagged as possible fraud) are more acceptable than false negatives (fraudulent transactions that are not detected)

Data Analysis Algorithms Decision Trees

Decision Trees and Regression Trees

What is Decision Trees?

Predict binary (or categorical)outcomes

What is Regression Trees?

Predict continuous (i.e. real) values

Tree

Prediction model is a tree

Decision Tree Example

Decision Tree Example

Set of rules:

G-Day to play tennis ⇔

(Sunny and Normal) or Overcast or (Rain and Weak)

B-Day to play tennis ⇔ ?

FLUX Question

According to the previous slide when is a bad day to play tennis?

- A. When it's sunny and humidity is high
- B. When it's rainy and wind is strong
- C. Both the above options

Regression Tree Example

How to Build Regression and Decision Trees?

- Recursively partition (divide up) the feature space into regions
- While grouping similar instances together

Prediction Model is a Tree

- This model learnt can be represented as a tree with predictions at the leaves:

Prediction in Decision and Regression Trees

Decision Trees:

► Prediction is the <u>most common values</u> in each region

Regression Trees:

► Prediction is usually the <u>average value</u> in each region

Decision/Regression Trees-More information

- Algorithms for building Decision & Regression trees differ on the criteria (e.g., Entropy) used to:
 - Decide on which feature to split on in each iteration
 - Decide when to stop splitting

Data Analysis Algorithms

Random Forest

What is Random Forest?

 Ensemble learning method that operate by constructing a number of decision trees

Data Analysis Algorithms Clustering

What is Clustering?

From lecture notes by Andrew Ng

 Grouping a set of data points into different <u>subgroups</u> based on their similarity

K-means

- T-shirt manufacturer
- Group into 3 sizes: Small, Medium and Large

K-means Clustering

Example: Partition into two clusters based on similarity

K=the number of clusters

Cluster centroid= The **mean** (average) of the location of all data points in a cluster

K-means Initial Step

> Randomly initialize two points

- 1. Cluster assignment
- 2. Move centroid

- Cluster assignment
- 2. Move centroid

- 1. Cluster assignment
- 2. Move centroid

Iterate until there is no changes

- 1. Cluster assignment
- 2. Move centroid

- 1. Cluster assignment
- 2. Move centroid

- 1. Cluster assignment
- 2. Move centroid

K-means Algorithm

- ➤ Input:
 - A set of data points
 - The number of clusters (K)
- > Method:
 - Select K initial random points
 - Repeat
 - Cluster assignment
 - Move the cluster centroids to the mean value of data points in the cluster
 - Until no change

Group Discussion

 Would the results change if we chose different initial points?

Impact of Random Initial Points

Two Key Messages We Learnt

- Steps of K-means clustering
- Importance of initial step in K-means

Decision Tree Implementation Python

Dataset

Iris Data Set

Import Dataset

from sklearn.datasets import load iris

```
#load dataset
iris=load iris()
#display the names of features
print(iris.feature names)
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
#display the names of different types of flowers
print(iris.target names)
['setosa' 'versicolor' 'virginica']
#diplay the value of the features(first observation)
print(iris.data[0])
[5.1 3.5 1.4 0.2]
#display the index of flowers
print(iris.target[0])
0
#display the dataset
for i in range(len(iris.target)):
    print("Example %d: lable %s, features %s" %(i, iris.target[i],iris.data[i]))
Example 0: lable 0, features [5.1 3.5 1.4 0.2]
Example 1: lable 0, features [4.9 3. 1.4 0.2]
Example 2: lable 0, features [4.7 3.2 1.3 0.2]
Example 3: lable 0, features [4.6 3.1 1.5 0.2]
Example 4: lable 0, features [5, 3,6 1,4 0,2]
Example 5: lable 0, features [5.4 3.9 1.7 0.4]
Example 6: lable 0, features [4.6 3.4 1.4 0.3]
Example 7: lable 0, features [5. 3.4 1.5 0.2]
```

Splitting Dataset (Test/Training)

```
import numpy as np
from sklearn.datasets import load_iris

iris = load_iris()
test_idx = [0,50,100]

#training data
train_target = np.delete(iris.target, test_idx)
train_data = np.delete(iris.data, test_idx, axis = 0)

#testing data
test_target = iris.target[test_idx]
test_data = iris.data[test_idx]
```

Train a Classifier

```
from sklearn import tree

#create classifier decision tree and train it on the training data
clf = tree.DecisionTreeClassifier()
clf.fit(train_data, train_target)
```

Predict Label For New Flower

```
# Making a Prediction On a New Sample
sample_one_pred = int(clf.predict([[5, 5, 1, 3]]))
sample_two_pred = int(clf.predict([[5, 5, 2.6, 1.5]]))
print(f"The first sample most likely is a {iris.target_names[sample_one_pred]} flower.")
print(f"The second sample most likely is a {iris.target_names[sample_two_pred]} flower.")
```

The first sample most likely is a setosa flower. The second sample most likely is a versicolor flower.

Visualise The Tree

Visualise The Tree

Tutorial/Lab Week 7

- We use Python to
 - train Decision Trees and random forests
 - build clusters using k-means