Module 2: Introduction to Statistics

Niko Kaciroti, Ph.D. BIOINF 525 Module 2: W15 University of Michigan

Topic

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Dichotomous Variables: Binary Data

- Binary variables indicate two different states
 - Presence or absence of a characteristic: X=1 (Yes)/ O(No)
 - Tossing a Coin: Pr(Tail)=0.5
 - Pr(Carrying Gene G)=p

 $X_i \sim Bernoulli(p)$

- Choose a cutoff point in continuous measure
 - Obesity: BMI ≥ 30 kg/m2
 - Hypertension: SBP ≥ 140 or DBP ≥ 90 mmHg
- Assign status based on a checklist
 - Depressed: (If 16 or more items from the checklist are checked)
 - Control: (If < 16 items from the checklist are checked)

Binomial Distribution

- Y is the number of successes in a fixed number (n) of independent Bernoulli trials (X_i) with the same probability of success in each trial
 - X_i ~ Bernoulli(p)
 - Y= $\sum_{i=1}^{n} X_i$

 $Y \sim Bin(n, p)$

- Requirements
 - 1. Each trial has one of two possible outcomes (1=success/0=fail)
 - 2. The trials are independent
 - 3. Probability of success (event) is the same in all trials
 - 4. A fixed number of trials (i.e. n=100)

Mean and Standard Deviation of Number of Successes: Y ~ Bin(n,p)

- Mean of Y:
 - If a coin is tossed n=100, what is the expected number of Tails?

$$E(Y)=np=50$$

- n is the number of trials
- p is the probability of success
- Variance and Standard Deviation:

Var(Y)=np(1-p)=100 x 0.5 x 0.5=25
SD(Y)=
$$\sqrt{np(1-p)}$$

Mean and Standard Deviation of Proportion $Y \sim Bin(n,p)$

- Estimate of Proportion:
 - If an unfair coin is tossed 100 times and the result is 25 Tails, what is the expected value of p?

$$\hat{p} = \frac{Y}{n} = \overline{Y} = \frac{25}{100} = .25$$

$$E(\overline{Y}) = p$$

- Y number of successes
- n number of trials
- p probability of success
- Variance and Standard Deviation of \overline{Y} :

$$\begin{aligned} & \operatorname{Var}(\overline{Y}) = \operatorname{p}(1-\operatorname{p})/\operatorname{n} &\approx \hat{p}(1-\hat{p})/100 \\ & \operatorname{SD}(\overline{Y}) = \sqrt{p(1-p)/n} \end{aligned}$$

Which of These Variables Would Have a Binomial Distribution?

- Number of female students in this class given the total number of students
 - ✓ Yes
- BMI of 100 people
 - X No
- Number of people with BMI ≥ 30 kg/m2
 - ✓ Yes

Topic

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Examples of Testing for Differences Between Two Proportions

- Does the proportion of patients with hypertension differ between two groups?
 - Treatment vs. Control
 - Smoker vs. Non smoker

Notation and Display of Categorical Data 2 x 2 Contingency Tables

	Hypertension		
	Yes	No	Total
Treatment	n ₁₁	n ₁₂	n _{1.}
Placebo	n ₂₁	n ₂₂	n _{2.}
Total	n _{.1}	n _{.2}	n

 n_{ij} are referred to as cell frequencies. $n_{,j}$ and $n_{i.}$ are refereed to as marginal frequencies n is the total sample size

Example: 2 x 2 Tables

	Hypertension		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

Proportion of HT in Treatment group: $p_1 = 14/127 = 11\%$ Proportion of HT at Placebo group: $p_2 = 57/128 = 44.5\%$ Proportion of HT in both groups: p = 71/255 = 27.8%

Q: What is the number of subjects with HT from the Treated group?

Test for Differences in Proportions Between Two Groups

 Testing whether the proportions for some outcome (e.g. HT) are different between two groups:

$$\mathbf{H_0:} \ p_1 = p_2$$
 vs.

$$H_A: p_1 \neq p_2$$

Three Tests for Differences in Proportions Between Two Groups

- Two-sample test for differences in two proportions
 - Normal theory test, works for large n due to CLT

$$Y=\sum_{i=1}^{n} X_{i}$$

- Chi-Square test
 - Works when n > 5 in all cells
- Fisher's Exact test
 - Works for any n, but computationally intensive when n is large
 - Used when *n* is not large, otherwise use the Chi-Square test

Test Statistics for Difference in Two Binomial Proportions (Normal theory test)

 \hat{p}_1 : proportion in group 1 with outcome (sample size is n_1)

 \hat{p}_2 : proportion in group 2 with outcome (sample size is n_2)

Overall proportion for group 1 and 2 combined

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p} (1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

Can be used only if

$$n_1 \hat{p}_1 (1 - \hat{p}_1) > 5$$

$$n_2 \hat{p}_2 (1 - \hat{p}_2) > 5$$

e.g.
$$p=.5$$
 and $n > 20$
 $p=.1$ and $n > 56$

TROPHY Data test for Binomial Proportions (Normal theory test)

	Hypertension		
TROPHY data	Yes (% of row)	No	Total
Treatment	14(11%)	113	127 (n ₁)
Placebo	57(44.5%)	71	128 (n ₂)
Total	71(27.8%)	184	255

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}} \qquad \qquad \begin{aligned} \hat{p}_1 = 14/127 &= 11\% \\ \hat{p}_2 = 57/128 = 44.5\% \\ \hat{p} = 71/255 = 27.8\% \end{aligned}$$

$$\hat{p}_1 = 14/127 = 11\%$$

 $\hat{p}_2 = 57/128 = 44.5\%$
 $\hat{p} = 71/255 = 27.8\%$

TROPHY Data test for Binomial Proportions (Normal theory test)

$$z = \frac{.11 - .445}{\sqrt{.278 * (1 - .278)(\frac{1}{127} + \frac{1}{128})}} = \frac{-.335}{\sqrt{.207 * .01569}} = -5.96$$

p-value=2.52 x
$$10^{-9}$$
, Reject H₀: $p_1 = p_2$

Chi-Square (χ^2) Test

The Chi-Square test is the most commonly used test for categorical data analysis

- Can be used for 2 x 2 tables
- Can be used for n x m tables (for any n and m)

Observed Cell Proportions (Deriving χ^2 Test)

	Hypertension		
	Yes	No	Total
Treatment	14(5.5%)	113(44.3%)	127(49.8%)
Placebo	57(22.4%)	71(27.8%)	128(50.2%)
Total	71(27.8%)	184(72.2%)	255

Cell % relative to the overall n=255

E.g. What proportion of the total sample is from the treatment group and has HT?

14/255 =5.5%

Expected Cell Proportions (Deriving χ^2 Test)

TROPHY data	Hypertension		
	Yes	No	Total
Treatment	14	113	127(49.8%)
Placebo	57	71	128(50.2%)
Total	71(27.8%)	184(72.2%)	255

Marginal Proportions:

- Marginal Row %: What proportion is in the Treatment (Placebo) group?
 127/255 = 49.2%
- Marginal Column %: What proportion is HT (Not HT)? 71/255=27.8%

Expected Cell Proportions (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	13.8%	36%	49.8%
Placebo	14%	36.2%	50.2%
Total	27.8%	72.2%	100%

Marginal proportion are fixed.

Q: What <u>proportion</u> of the total sample is expected in each cell (when H_0 is true)? Multiply the row percent with column percent:

27.8% x 49.8% = 13.8%

Expected Cell Frequency (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	35.2(13.8%)	91.8	127
Placebo	35.7	92.3	128
Total	71	184	255

What <u>number</u> from the total sample is expected in each cell?

13.8% x 255=35.2

Compare Observed vs. Expected Frequencies (Deriving χ^2 Test)

TROPHY	Hypertension		
Data	Yes	No	Total
Treatment	14/35.2	113/91.8	127
Placebo	57/35.7	71/92.3	128
Total	71	184	255

Observed frequencies: $O_{11} = 14$

Expected frequency: $E_{11} = 35.2$

If H_0 is true then O_{11} should be close to E_{11}

Chi-Square Test

• Chi-Square test, with Yate's correction, is based on:

$$\chi^2 = \frac{(|O_{11} - E_{11}| - .5)^2}{E_{11}} + \frac{(|O_{12} - E_{12}| - .5)^2}{E_{12}} + \frac{(|O_{21} - E_{21}| - .5)^2}{E_{21}} + \frac{(|O_{22} - E_{22}| - .5)^2}{E_{22}}$$

- χ^2 has a Chi-Square distribution with df = k(?)
- Calculate the p-value based on the Chi-Square distribution with k df
 If p-value < 0.05 reject H₀

Chi-Square Test: Calculating Degrees of Freedom

	Hypertension		
TROPHY Data	Yes	No	Total
Treatment	14		127
Placebo			128
Total	71	184	255

For 2 x 2 tables, the frequency number in only one cell is free to vary. Frequencies in the remaining 3 cell are constrained and can be derived.

What is the frequency for non HT in the Treated group?

Chi-Square Test: Calculating Degrees of Freedom

	Hypertension		
TROPHY Data	Yes	No	Total
Treatment	14	113(127-14)	127
Placebo	57 (<mark>71</mark> -14)	71(128-57)	128
Total	71	184	255

- df=(Rows-1) x (Columns-1)=1
- Then, use the Chi-Square with 1 df to derive the p-value. If p-value < .05, then reject H_0 : $p_1 = p_2$

Chi-Square Test in R

- In R: chisq.test(HT,Trt)
- Output:

Pearson's Chi-squared test with Yates' continuity correction

data: HT and Trt

X-squared = 33.9775, df = 1, p-value = 5.575e-09 \longrightarrow Reject H_0 of no treatment effect

Fisher's Exact Test

- Fisher's exact test is not based on the normal approximation theory. It is an exact test
- It calculates the <u>exact probability</u> (under H₀) that one would observe a 2 x 2 table same or more extreme than the one observed (if < .05 reject H₀)
- It is used when n is small, and the Chi-square test or the normal approximation theory might not apply

Example: 2 x 2 Contingency Table Fisher's Exact Test (Small Sample)

Example	Not HT	нт	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8

Marginal counts (are fixed)

- Under the H₀ of no difference on HT between two groups, calculate the probability of each table with the same marginal counts
- How many Tables with these given margins are possible?

Example	Not HT	нт	Total
Treated	?		4
Placebo			4
Total	5	3	8

All Tables With Same Marginal Counts

Table 1	No HT	нт	Total
Treated	4		4
Placebo			4
Total	5	3	8
Table 3	No HT	НТ	Total
Treated	2		4
Placebo			4
Total	5	3	8
Table 5	No HT	НТ	Total
Treated	0		4
Placebo	5(?)		4
Total	5	3	8

Table 2	No HT	НТ	Total
Treated	3		4
Placebo			4
Total	5	3	8
Table 4	No HT	нт	Total
Treated	1		4
Placebo			4
Total	5	3	8

All Tables With Same Marginal Counts

Table 1	No HT	нт	Total
Treated	4	0	4
Placebo	1	3	4
Total	5	3	8
Table 3	No HT	нт	Total
Table 3 Treated	No HT	HT 2	Total 4

Table 2	No HT	нт	Total
Treated	3	1	4
Placebo	2	2	4
Total	5	3	8
Table 4	No HT	НТ	Total
Table 4 Treated	No HT	HT 3	Total 4

Tables (1 and 4) are <u>same or less likely</u> than the observed data (Table 1)

Total Probabilities: Table 1 = 0.071Table 2 = 0.429Table 3 = 0.429Table 4 = 0.071

The p-value for Fisher exact test is: p=.071+.071=.142

Table1: How Many Combinations Can Have This Result?

Table 1	No HT	HT	Total
Treated	4	0	4(A,B,C,D)
Placebo	1	3	4(a,b,c,d)
Total	5	3	8

 Table 1a
 No HT
 HT
 Total

 Treated
 4 (A,B,C,D)
 0
 4

 Placebo
 1 (a)
 3 (b,c,d)
 4

 Total
 5
 3
 8

HT

Total

8

Treatment row: 1 combination Placebo row: 4 combinations

Treated 4 (A,B,C,D) 0 4
Placebo 1 (b) 3 (a,c,d) 4

Table 1b No HT

Total: 1*4=4 Tables

Table 1d	No HT	HT	Total	Table 1c	No HT	HT	Total
Treated	4 (A,B,C,D)	0	4	Treated	4 (A,B,C,D)		4
Placebo	1 (d)	3 (a,b,c)	4	Placebo	1 (c)	3 (a,b,d)	4
Total	5	3	8	Total	5	3	8

Total

How Many Total Tables are Possible?

Table 1	Not HT	нт	# Tables	Proportion
Treatment	4	0	1*4=4	4/56=.071
Placebo	1	3		
Table 2				
Treatment	3	1	4*6=24	24/56=.429
Placebo	2	2		
Table 3				
Treatment	2	2	6*4=24	24=56=.429
Placebo	3	1		
Table 4				
Treatment	1	3	4*1=4	4/56=.071
Placebo	4	0		
Total			56	1.00

Fisher's Exact Test in R

• In R: fisher.test(HT,Trt)

• R output:

Fisher's Exact Test for Count Data

data: HT and Trt p-value = 0.1429

alternative hypothesis: true odds ratio is not equal to 1

Topic

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

How to Measure Treatment Effect for Binary Data

There are several measures of a treatment effect (or associations) for binary data. Three most commonly used are:

- Absolute Risk Reduction (ARR)
- Relative Risk Reduction (RR)
- Odds Ratio (OR)

Absolute Risk Reduction (ARR)

	Hyperte		
TROPHY data	Yes (% of row)	Total	
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

• Risk of HT is measured by the probability of developing HT: Pr(HT=Yes).

Pr(HT=Yes|Treated)=11%

Pr(HT=Yes|Placebo)=44.5%

 Absolute risk reduction (ARR) measures how much the risk is reduced due to Treatment?

• If ARR=0, no Trt effect

Relative Risk (RR)

	Hypertension		
TROPHY data	Yes (% of row)	Total	
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71(27.8%)	184	255

 Relative risk (RR) measures how much the risk is reduced due to Treatment relative to Placebo?

$$RR = \frac{0.11}{0.445} = 0.25$$

• If RR=1, no Trt effect

Which is a Better Measure: ARR or RR?

• The ARR and RR are sensitive to the magnitude of the proportions:

Ex 1: ARR=2%-1%=1% (small effect) RR=1%/2%=0.5 (big effect)

Ex 2: ARR=95%-80%=15% (big effect) RR=.95/.8=0.84 (small effect)

• Always report both the ARR and the RR

Odds Ratio(OR)

	Hyperte		
TROPHY data	Yes (% of row)	Total	
Treatment	14(11%)	113	127
Placebo	57(44.5%)	71	128
Total	71 (27.8%)	184	255

• Odds of developing HT are: $ODD = \frac{\Pr(HT = Yes)}{\Pr(HT = No)} = p/1-p$

ODD(Treated)=.11/.89=.124 ODD(Placebo)=.445/.556=.80

 Odds Ratio (OR) measures how much the Odds are reduced due to Treatment compared to Placebo.

OR= $\frac{.124}{.80}$ = 0.16 (If OR=1, no Trt effect)

Odds Ratio(OR)

- OR are useful for measuring the relationship of any variable (Age, Trt) with a binary outcome (HT). They are usually derived using logistic regression
- In short, logistic regression is a statistical modeling technique used to predict the ODDs of HT (or any binary outcome) based on one <u>or more</u> variables

Modeling OR (log-OR) as a function of other predictors

Logistic regression model is:

$$\log(\frac{\Pr(HT=1)}{1-Pt(HT=1)}) = \beta_0 + \beta_1 * \mathsf{Trt} + \beta_2 * \mathsf{BMI} + \beta_3 * \mathsf{X} + \dots$$

• $OR(Trt)=e^{\beta_1}$ Compares the ODDs of HT between Treatment and Placebo

• OR(BMI)= e^{β_2} How much the ODDs of HT change if BMI increases by 1 (e.g. BMI=27 vs. BMI=26)

• $OR(X)=e^{\beta_3}=1$, implies no relationship between X and Y.

Q: If X does not relate to Y, what is β_3 ?

Topic

- Dichotomous Variables
- Compare Proportions
 - Two sample test (Normal approximation theory)
 - Chi-square test
 - Fisher Exact test
- Measuring Treatment Effect on Binary Outcomes
 - Absolute Risk Reduction (ARR)
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Application and Discussion of a Research Article
 - Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et al. N Engl J Med. 2006; 354:1685-97

Application and Discussion of a Research Article*

- Trial of Preventing Hypertension (TROPHY Study)
 - Background: Hypertension is a strong predictor of excessive cardiovascular risk. TROPHY study investigated whether pharmacologic treatment of prehypertension prevents or postpones hypertension, thus reducing the CV risk.

^{*}Feasibility of treating prehypertension with an angiotensin-receptor blocker. Julius S. et. al. N Engl J Med. 2006; 354:1685-97

TROPHY Study

• **Objective:** The primary hypothesis of the study was to determine whether two years of treatment with candesartan reduces the incidence of hypertension two years after treatment <u>and</u> 2 years <u>after discontinuation</u> of treatment.

Characteristics of the Study Population

Table 1. Baseline Characteristics of the Study Participants.*				
	Candesartan Group (N=391)	Placebo Group (N=381)		
Age — yr	48.6±7.9	48.3±8.2		
Male sex — no. (%)	231 (59.1)	229 (60.1)		
Race — no. (%)†				
White	312 (79.8)	321 (84.3)		
Black	48 (12.3)	31 (8.1)		
Other	31 (7.9)	29 (7.6)		
Weight — kg	89.0±17	88.8±17.7		
Body-mass index‡	29.9±5.1	30.0±5.5		
Blood pressure — mm Hg				
Measured at clinic visit with automated device∫	133.9±4.3/84.8±3.8	134.1±4.2/84.8±4.1		

Main Results of the Study

	Candesartan Group (N=391)	Placebo Group (N=381)	P Value	Relative Risk (95% CI)
New-onset hypertension				
No. of participants in whom hypertension developed	208	240		
Hypertension at year 2 visit — %	13.6	40.4	<0.001†	0.34 (0.25-0.4
Hypertension at year 4 visit — %	53.2	63.0	0.007†	0.84 (0.75-0.9
Hypertension during study period			<0.001‡	0.58 (0.49-0.7
Clinical criteria for end-point determination				
BP at three clinic visits, ≥140 mm Hg systolic, ≥90 mm Hg diastolic, or both — no. (%)	142 (36)	168 (44)	0.03†	0.82 (0.69–0.9
BP at any clinic visit ≥160 mm Hg systolic, ≥100 mm Hg diastolic, or both — no. (%)	15 (3.8)	19 (5.0)	0.49†	0.77 (0.40–1.4
BP requiring pharmacologic treatment — no. (%)	45 (12)	48 (13)	0.66†	0.91 (0.62-1.3
BP at month 48 clinic visit ≥140 mm Hg systolic, ≥90 mm Hg diastolic, or both — no. (%)	6 (1.5)	5 (1.3)	>0.99†	1.17 (0.36–3.8

Main Results of the Study

Candesartan Placebo Relative Risk (N=391) (N = 381)(95% CI) New-onset hypertension No. of participants in whom hypertension developed 240 208 Hypertension at year 2 visit — % 13.6 40.4 <0.001† 0.34 (0.25-0.44) Hypertension at year 4 visit — %53.2 63.0 0.007† 0.84 (0.75-0.95)

At 2 Years	Hypertension		
	Yes(row %)	No	Total
Candesartan	53(13.6%)	338	391
Placebo	154(40.4%)	227	381
Total	207	565	772

ARR at 2 years: 40.4-13.6=26.8% RR at 2 years

RR at 2 years: .136/.404=.34

Main Results of the Study

Candesartan Placebo Relative Risk Group Group (N=391) (N=381) P Value (95% CI) New-onset hypertension No. of participants in whom hypertension developed 240 Hypertension at year 2 visit — %<0.001† 0.34 (0.25-0.44) Hypertension at year 4 visit — % 53.2 63.0 0.007† 0.84 (0.75-0.95)

At 4 Years	Hypertension		
	Yes(row %)	No	Total
Candesartan	208 (53.2%)	183	391
Placebo	240(63.0%)	141	381
Total	448	324	772

ARR at 4 years: 63.0-53.2=9.8%

RR at 4 years: 53.2/63.0=.84

Cumulative Incidence of HT by Treatment Group

Kaplan-Meier Analysis shows if the overall cumulative incidence of HT is different between groups <u>over time</u>. It gives the full picture on the development of HT over the 4 year follow-up.

Note: Cumulative incidence is calculated as 100% - K-M curve

SBP Values Over 4 Years

SBP curve (mean of SBP at each visit) over 4 years

Two-ample t-test: Showed 2.0 mm Hg (p=0.037) decrease in SBP at year 4 due to Candesartan

Subgroup Analysis: Does Candesartan work the same way for different subgroups

Summary Points

Tests for Comparing Proportions: H_0 : $p_1 = p_2$ vs. H_A : $p_1 \neq p_2$

Statistical test

• Two-sample normal theory test

$$- z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

Chi-square test

- Use χ^2_k where k=(nrow-1) x (ncol-1)

• Fisher's exact test

- Calculates the exact p-value

Used when

$$\mathsf{n_1} \hat{p}_1 (1 - \hat{p}_1) > 5$$

$$n_2 \hat{p}_2 (1 - \hat{p}_2) > 5$$

n > 5 in all cells

n is small and the other two tests does not apply

Summary Points

Measure of association (treatment effect) for Dichotomous Outcomes. "Risk" is defined as: Pr(Y=Yes)=p, $(p_1$ is for treatment, p_2 is for control)

Measure of association

Interpretation

• Absolute Risk Reduction (ARR)

$$- \mathsf{ARR} = p_2 - p_1$$

(ARR=0 do not reject H_0 : $p_1 = p_2$)

• Relative Risk (RR)

$$- RR = \frac{p_1}{p_2}$$

(RR=1 do not reject H_0 : $p_1 = p_2$)

• Odds Ratio (OR)

$$- ODDs = \frac{Pr(Y=1)}{Pr(Y=0)} = \frac{p}{1-p}$$

$$- \text{ OR} = \frac{ODDs(Trt)}{ODDS(Control)} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

(OR=1 do not reject H_0 : $p_1 = p_2$