Počítačové videnie - RANSAC a Total Squares Fit

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

22.4.2021

Formulácia úlohy

Problém

Dnes budeme riešiť problém hľadania priamky v dátach so šumom. Teda dostaneme dáta s bodmi a naša úloha bude v nich nájsť priamku definovanú ako $y = m \cdot x + k$, ktorá ich najlepšie vystihuje.

Vstupné dáta

Vstupné dáta si vygenerujeme pomocou funckie generate_noisy_data ktorú nájdete v zipe k dnešnému cvičeniu.

generate_noisy_data.m

 $X = generate_noisy_data(n, p, sigma)$ - vráti maticu tvaru $n \times 2$, ktorá obsahuje na každom riadku vygenerovaný bod. Parameter p určuje podieľ dát na priamke (medzi 0 a 1) a sigma (nastavujte do 0.05) určuje ako veľmi sú body z priamky zašumené. Skript dáta aj zobrazí.

Úloha

Úloha

Naimplementujte funkciu [m, k]= ransac(X, t, p, max_iters), kde m a k sú parametre výstupnej priamky $y=m\cdot x+k$, X sú vstupné dáta, t je prah na vzdialenosť bodu od priamky tak aby sme ju zarátali ako inliera, p je podiel inlierov pri ktorom skončíme a vrátime hodnotu a max_iters je maximálny počet iterácii.

Teória

Ešte nezačínajte pracovať keďže najprv si prejdeme teóriu.

Úloha

Algoritmus

Naimplementujte funkciu [m, k]= ransac(X, t, p, max_iters), kde m a k sú parametre výstupnej priamky $y = m \cdot x + k$, X sú vstupné dáta, t je prah na vzdialenosť bodu od priamky tak aby sme ju zarátali ako inliera, p je podiel inlierov pri ktorom skončíme a vrátime hodnotu a max_iters je maximálny počet iterácii.

Teória

Ešte nezačínajte pracovať keďže najprv si prejdeme teóriu.

Algoritmus

- 1. Vyberieme dva náhodne body z množiny dát
- 2. Pre body spočítame m = k.
- 3. Pre všetky body spočítame ich vzdialenosť od tejto priamky.
- 4. Spočítame koľko máme inlierov, tj. počet bodov v dátach ktorých vzdialnosť od priamky je menšia ako *t*.
- 5. Ak je podiel bodov inlierov k celkovému počtu bodov väčší ako *p* tak vrátime *m* a *k*.
- 6. Ak je počet iterácii väčší ako *max_iters*, tak vrátime tie parametre *m* a *k*, pre ktoré bolo v dátach najviac inlierov.
- 7. Vrátime sa na 1.

Teória

Výpočet parametrov z dvoch bodov

Vzorce na výpočet k a m môžeme odvodiť zo systému:

$$y_1 = k \cdot x_1 + m \tag{1}$$

$$y_2 = k \cdot x_2 + m, \tag{2}$$

kde (x_1, y_1) a (x_2, y_2) sú dva body definujúce priamku.

Teória

Vzdialenosť bodu od priamky

V prípade, že máme parametre priamky k a m a bod (x, y) tak ich vzdialenosť môžeme vypočítať ako:

$$d = \frac{|k + mx - y|}{\sqrt{1 + m^2}} \tag{3}$$

Implementácia

Tento vzorec si implementujte pomocou vektorových operácií, tak aby sa spočítal naraz pre všetky body.

Implementácia

Výber dvoch náhodných bodov

Na výber dvoch bodov môžete použiť buď funkciu randsample (vyžaduje štatistický toolbox) alebo randi. Pozrite si ich v helpe.

Funkcia na vykreslovanie

V zipe cvičeniu nájdete aj funkciu display_line, ktorá na vstupe berie dáta X a parametre *m* a *k* a vykreslí priamku a dáta.

Úloha

Úloha

Naimplementujte funkciu [m, k] = ransac(X, t, p, max_iters), kde m a k sú parametre výstupnej priamky $y = m \cdot x + k$, X sú vstupné dáta, t je prah na vzdialenosť bodu od priamky tak aby sme ju zarátali ako inliera, p je podiel inlierov pri ktorom skončíme a vrátime hodnotu a max_iters je maximálny počet iterácii.

Testovanie

Funkciu si otestujte najprv na dátach bez šumu (p = 1, sigma=0, k a m môže byť ľubovoľne, ale t dajte $\inf()$ a potom len s nenulovou sigmou. Potom otestujte ako sa mení výsledok v závislosti na parametroch šumu, parametri p a t.

Nevýhoda RANSACu

Presnosť priamky z dvoch bodov

Ako výstup z RANSACu dostaneme parametre ktoré boli presne spočítané pre dva body. To vôbec nemusí byť vhodné.

Vylepšenie

Ako vylepšenie môžeme po aplikácii RANSACu zobrať všetkých inlierov a túto množinu bodov použijeme na výpočet nových parametrov.

Total Squares Fit

Formulácia

Pri total squares fittingu hľadáme parametre m a k tak aby sme minimalizovali cenovú funkciu:

$$C = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} \frac{(k + mx - y)^2}{1 + m^2}.$$
 (4)

Analytické riešenie

$$k = \frac{w + \sqrt{w^2 + r^2}}{r} \tag{5}$$

$$m = \overline{y} - k\overline{x} \tag{6}$$

$$w = \sum_{i=1}^{n} (y_i - \overline{y})^2 - \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (7)

$$r = 2\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
 (8)

Total Squares Fit

Úloha

Naimplementujte funkciu [m, k] = $tsf(X, m_0, k_0, t)$, ktorá vráti parametre m a k po total squares fite na dátach X z ktorých sa vyberú inliere pre priamku s parametre m_0 , k_0 a prah t.

Testovanie

Funkciu si otestujte najprv na dátach bez šumu (p = 1, sigma=0, k a m môže byť ľubovoľne, ale t dajte inf()) a potom len s nenulovou sigmou. Nakoniec skúste v kombinácii s RANSACom a otestujte ako sa mení výsledok v závislosti na parametroch šumu, RANSACu a zvolenom prahu.