Mechanics at the viscous end of food webs

Stuart Humphries

Size matters

http://micro-universe.tumblr.com

Physics at small scales

Molecular diffusion

Brownian motion

Kinematic reversibility

Animal images © Y. Tsukii (Protist Information Server, URL: http://protist.i.hosei.ac.jp/) & D. Davies

Animal images © Y. Tsukii (Protist Information Server, URL: http://protist.i.hosei.ac.jp/) & D. Davies

Momentum and inertia

Momentum and inertia

Convergent evolution

Images from Phylopic: Opthalmosaurus - Gareth Monger; Tursiops - Chris Huh

Release from selection

Images from phylopic: Chlorphyceae - Sergio A. Muñoz-Gómez

Temperature

Temperature

Escherichia coli

Mytilius edulis

Escherichia coli

Reynolds number

$$Re = \frac{\rho l U}{\mu} = \frac{l U}{V}$$

For similar geometries, similar Re indicates similar flows

Re = 100,000

Laminar

Turbulent

Characteristics of Low Re regimes

- Non-intuitive
- Inertia is negligible
- Flows are reversible
- Drag depends on surface
 - friction drag dominates
 - streamlining impossible (pressure drag negligible)
 - shape and orientation can help

$$Re = \frac{U}{V}$$

High Re

 $Drag \propto U^2$

Low Re

Drag & U

Godoy-Diana, R. & Thiria, B., 2018. On the diverse roles of fluid dynamic drag in animal swimming and flying. Journal of the Royal Society, Interface 15(139), p.20170715.

Fluid dynamicists describe effect of shape through empirically derived "fudge factor"

Drag coefficient, Cd

Measured Drag Coefficients

C_d not necessarily constant, varies with...

- velocity
- object size
- density/viscosity ratio

$$Re = \frac{\rho lU}{\mu} = \frac{lU}{\nu}$$

Bale, R. et al., 2014. PNAS, 111(21), pp.7517-7521.

Andersen, K.H. et al., 2015. Annual Review of Materials Science, 8(1), pp. 150710224004001–241.

Bale, R. et al., 2014. PNAS, 111(21), pp.7517-7521.

Humphries, S., 2013. PNAS, 110(36), pp.14693-14698.

Reynolds number

$$Re = \frac{\rho l U}{\mu} = \frac{l U}{V}$$

Froude number

$$Fr = \frac{\sqrt{gl}}{\sqrt{gl}}$$

Froude number

Constructional Morphology and Evolution pp 71-79 | Cite as

Dynamic Similarity in the Analysis of Animal Movement

Authors Authors and affiliations

R. McN. Alexander

Conference paper

Summary

Dynamic similarity is a concept from physical science, related to the more familiar concept of geometric similarity. Two motions are dynamically similar if one could be made identical to the other by uniform changes of the scales of length, time and force. This chapter asks whether different-sized animals move in dynamically similar fashion

Evolution, R.A.C.M.A.1991, Dynamic similarity in the analysis of animal movement. Springer.

Figure 1 An Asian elephant marked with dots for gait analysis.

AIR

Hutchinson, J.R. et al., 2003. Biomechanics: Are fast-moving elephants really running? Nature, 422(6931), pp.493-494.

The physics of human sperm vs. the physics of the sperm whale - Aatish Bhatia

LESSON CREATED BY STUART HUMPHRIES USING TEDED

VIDEO FROM TED-Ed YOUTUBE CHANNEL

Let's Begin...

Traveling is extremely arduous for microscopic organisms -- think of a human trying to swim in a pool made of...other humans. We can compare the journey of a sperm to that of a sperm whale by calculating the Reynolds number, a prediction of how fluid will behave, often fluctuating due to the size of the swimmer. Aatish Bhatia explores the great (albeit tiny) sperm's journey.

Watch
Think
Dig Deeper
...And Finally

Resources: handbook; ed.ted.com/on/KwQTKDKj