

CMPT 431 Distributed Systems Fall 2019

Logical Time

https://www.cs.sfu.ca/~keval/teaching/cmpt431/fall19/

Instructor: Keval Vora

Distributed Systems

- No global clock
- Causality important to analyze distributed system
- How to capture the fundamental monotonicity property associated with causality?

- Logical time!
- Distributed computations make progress in spurts
 - They are asynchronous
- Logical time captures this progress across processes

Logical Time

Captures causality in distributed systems

- Scalar Time
- Vector Time
- Implementations of vector clocks

Reading

- [DC] Chapter 3
 - Upto 3.5

System of Logical Clocks

- Time domain T and Logical clock C
- Elements of T form a partially ordered set over a relation <
 - Causal precedence or happens before relationship
- Intuitively, analogous to the "earlier than" relation provided by physical time
- C is a function that maps an event e to an element in T
 - Timestamp of e, denoted as C(e)
 - For two events e_i and e_j : $e_i \rightarrow e_j \Rightarrow C(e_i) < C(e_j)$

System of Logical Clocks

- C is a function that maps an event e to an element in T
 - Timestamp of e, denoted as C(e)
 - For two events e_i and e_j : $e_i \rightarrow e_j \Rightarrow C(e_i) < C(e_j)$
- Monotonicity property is called the clock consistency condition
- The system of clocks is strongly consistent when, for any two events e_i and e_i:

$$e_i \rightarrow e_j \Leftrightarrow C(e_i) < C(e_i)$$

Implementing Logical Clocks

- Requires two things:
 - Data structures local to every process to represent logical time
 - A protocol to update the data structures in a way that ensures the clock consistency condition
- Logical clock implementations differ in their representation of logical time, and also in their protocol to update the logical clocks

Logical Clocks: Data Structures

- Each process p_i maintains:
 - A logical local clock that helps p_i measure its own progress
 - Denoted by Ic_i
 - A logical global clock which represents p_i's local view of the logical global time
 - Denoted by gc_i
- Typically, Ic_i is a part of gc_i

Logical Clocks: Protocol

 The protocol ensures that a process's logical clock, and thus its view of the global time, is managed consistently

- The protocol consists of following two rules:
 - R1: This rule governs how the local logical clock is updated by a process when it executes an event
 - R2: This rule governs how a process updates its global logical clock to update its view of the global time and global progress

Scalar Time

Proposed by Lamport to totally order events

Time domain is the set of non-negative integers

 The logical local clock of a process p_i and its local view of the global time are squashed into one integer variable C_i

Scalar Time

R1: Before executing an event (send, receive, or internal),
 process p_i executes: C_i := C_i + 1

- R2: Each message piggybacks the clock value of its sender at sending time
- When a process p_i receives a message with timestamp C_{msg} , it does the following:
 - $C_i := max(C_i, C_{msg})$
 - Execute R1
 - Deliver the message (i.e., continue forward)

Scalar Time

Scalar Time: Consistency

- Scalar clocks satisfy the monotonicity, and hence the consistency property
- For two events e_i and e_j : $e_i \rightarrow e_j \Rightarrow C(e_i) < C(e_j)$

Scalar Time: Total Ordering

- Does scalar clock provide total ordering?
- Two or more events at different processes may have identical timestamp

Scalar Time: Total Ordering

- Tie-breaking: Process identifiers are linearly ordered based on which ties among events with identical scalar timestamps are broken
- Lower process identifier means higher priority
- Timestamp is denoted by a tuple (t, i) where t is its time and i is the process id
- The total order relation < on two events x and y with timestamps (h,i) and (k,j), respectively, is defined as:

$$x < y \Leftrightarrow (h < k \text{ or } (h = k \text{ and } i < j))$$

Scalar Time: Event Counting

- If event e has a timestamp h, what can we say about when e happened (in terms of h)?
- h-1 represents the minimum logical duration (counted in units of events) required before producing event e
- h-1 events have happened sequentially before the event e

Scalar Time: Strong Consistency

- Are scalar clocks strongly consistent?
- No. For two events e_i and e_j : $C(e_i) < C(e_j) \Rightarrow e_i \rightarrow e_j$

Scalar Time: Strong Consistency

- Are scalar clocks strongly consistent?
- No. For two events e_i and e_j : $C(e_i) < C(e_j) \Rightarrow e_i \rightarrow e_j$
- Logical local clock and logical global clock of a process are squashed into one, resulting in the loss of causal dependency information among events at different processes

 Time domain is represented by a set of n-dimensional non-negative integer vectors

- Each process p_i maintains a vector vt_i[1..n]
 - vt_i[i] is the local logical clock of p_i and describes the logical time progress at process p_i
 - vt_i[j] is p_i's latest knowledge of p_i's local time
- If vt_i[j]=x, then p_i knows that local time at p_j has progressed till x
- The entire vector vt_i constitutes p_i's view of the global logical time, and is used to timestamp events

- R1: Before executing an event, process p_i updates its local logical time as follows: vt_i[i] := vt_i[i] + 1
- R2: Each message m is piggybacked with the vector clock vt of the sender process at sending time
- On the receipt of such a message (m, vt), process p_i does the following:
 - Update its global logical time as:

$$1 \le k \le n : vt_i[k] := max(vt_i[k], vt[k])$$

- Execute R1
- Deliver the message m

 The timestamp of an event is the value of the vector clock of its process when the event is executed

Comparing Vector Timestamps

$$vh = vk \Leftrightarrow \forall x : vh[x] = vk[x]$$
 $vh \le vk \Leftrightarrow \forall x : vh[x] \le vk[x]$
 $vh < vk \Leftrightarrow vh \le vk \text{ and } \exists x : vh[x] < vk[x]$
 $vh \mid \mid vk \Leftrightarrow \neg(vh < vk) \land \neg(vk < vh)$

• If events x and y respectively occurred at processes p_i and p_i , and are assigned timestamps vh and vk respectively:

$$x \rightarrow y \Leftrightarrow vh[i] \leq vk[i]$$

 $x \mid \mid y \Leftrightarrow vh[i] > vk[i] \land vh[j] < vk[j]$

Vector Time: Isomorphism

 There is an isomorphism between the set of partially ordered events produced by a distributed computation and their vector timestamps

• If two events x and y have timestamps vh and vk:

$$x \rightarrow y \Leftrightarrow vh < vk$$

$$x \mid \mid y \Leftrightarrow vh \mid \mid vk$$

Vector Time: Strong Consistency

- Are vector clocks strongly consistent?
 - Yes: $x \rightarrow y \Leftrightarrow vh < vk$ (previous slide)

- We can find if events are causally related by simply examining their vector timestamps
- The dimension of vector clocks cannot be less than n for this property to hold (n = the total number of processes)

Vector Time: Event Counting

 vt_i[i] denotes the number of events that have occurred at p_i until that instant

 If an event e has timestamp vh, vh[j] denotes the number of events executed by process p_j that causally precede e

 ∑vh[j] – 1 represents the total number of events that causally precede e

Implementing Vector Clocks

- If number of processes is large, vector clocks will require piggybacking of huge amount of information in messages
 - The message overhead grows linearly with the number of processes in the system
 - Message size becomes huge even if there are only a few events
- To have strong consistency property, vector timestamps must be at least of size n
- Optimizations are possible! Any thoughts?

Singhal-Kshemkalyani's differential technique

 Key observation: between successive message sends to the same process, only a few entries of the vector clock at the sender process are likely to change

Send only the differences in vector clocks!

• When p_i sends a message to p_j , it piggybacks only those entries of its vector clock that differ since the last message sent to p_j

• If entries i_1, i_2, \ldots, i_{n1} of the vector clock at p_i have changed to v_1, v_2, \ldots, v_{n1} respectively, since the last message sent to p_j , then p_i piggybacks a compressed timestamp to the next message to p_i :

$$\{(i_1, v_1), (i_2, v_2), \ldots, (i_{n1}, v_{n1})\}$$

• When p_i receives this message, it updates its vector clock:

$$vt_i[i_k] = max(vt_i[i_k], v_k)$$
 for $k = 1, 2, ..., n_1$

- Cuts down the message size, communication bandwidth, and buffer (to store messages) requirements
- · Worst case: every element of the vector clock gets updated
- On an average, the size of timestamp on a message will be less than n

Assumption: Communication channels are FIFO

- Naïve implementation: each process remembers the vector timestamp last sent to every other process
 - What is the storage requirement at each process?
 - O(n²) storage at each process
- Clever implementation to reduce overhead to O(n)
- Process p_i maintains:
 - LS_i[1..n] ('Last Sent'): LS_i[j] indicates the value of vt_i[i] when process p_i last sent a message to process p_j
 - LU_i[1..n] ('Last Update'): LU_i[j] indicates the value of vt_i[i] when process p_i last updated the entry vt_i[j]

- LS_i[j]: when process p_i last sent a message to process p_j
- LU_i[j]: when process p_i last updated the entry vt_i[j]
- LU_i[i] = vt_i[i] at all times
- LU_i[j] is updated only upon receipt of a message which causes p_i to update entry vt_i[j]
- LS_i[j] is updated only when p_i sends a message to p_i
- How to find out the differences?

 Since the last communication from p_i to p_j, the changed elements of vt_i[k] are ones for which LS_i[j] < LU_i[k]

Vector timestamp sent from p_i to p_i

$$\{(x, vt_i[x]) | LS_i[j] < LU_i[x]\}$$

- Fowler-Zwaenepoel's direct dependency technique
- Reduces size of timestamp transmission to scalar values
 - No vector clocks maintained on the fly
- Key idea
 - Only track direct dependency information between processes
 - Vector representing transitive dependencies is constructed offline using recursive search on direct dependencies
- Originally developed for causal distributed breakpoints

Process p_i maintains dependency vector D_i

- When event occurs at p_i, D_i[i] := D_i[i] + 1
- When p_i sends message, piggyback D_i[i]
- When pi receives a message with piggybacked value d,
 D_i[j] := max{D_i[j], d}

- Only direct dependencies are maintained
- p₂ is never informed about its indirect dependency on p₄

 D_i[j] denotes the sequence number of the latest event on p_j that directly affects the current state of p_i

```
DependencyTrack(i:process, \sigma:event\ index) 
\* Casual distributed breakpoint for \sigma_i *\\
\* DTV holds the result *\\

for all k \neq i do

DTV[k]=0

end for

DTV[i]=\sigma

end DependencyTrack
```

```
VisitEvent(j: process, e: event index)

* Place dependencies of \tau into DTV * for all k \neq j do

\alpha = D_j^e[k]

if \alpha > DTV[k] then

DTV[k] = \alpha

VisitEvent(k, \alpha)

end if

end for

end VisitEvent
```

Reading

- [DC] Chapter 3
 - Upto 3.5

