Merge-Sort

EECS 233

Previous Lecture: Quick-Sort

- ☐ Quick-Sort: a recursive, divide-and-conquer algorithm:
 - divide: partition the array into two subarrays so that :
 - □ each element in the left array <= each element in the right array
 - conquer: apply quick-sort recursively to the subarrays, stopping when a subarray has a single element
 - combine: nothing needs to be done, because of the criterion used in forming the subarrays
- ☐ Implementation of Quick-Sort
 - Choosing a good pivot value
 - Partitioning procedure
 - Recursive method
- Analysis of Quick-Sort running time
 - Best-case O(nlogn) and worst-case O(n²)

An exercise

Merge-Sort

- ☐ Like quick-sort, merge-sort is a divide-and-conquer algorithm.
 - divide: split the array in half, forming two subarrays
 - conquer: apply merge-sort recursively to the subarrays, stopping when a subarray has a single element
 - combine: merge the sorted subarrays

Merge-Sort

- All of the sorting algorithms we've seen thus far have sorted the array in place. They used only a small amount of additional memory, i.e., O(logn) additional space (for recursion)
- Merge-sort is a sorting algorithm that requires an additional temporary array of the same size as the original one.
 - it needs O(n) additional space, where n is the array size
 - space for merging two sorted arrays into a single sorted array.

Merging Sorted Subarrays

To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

- ☐ We repeatedly do the following:
 - compare A[i] and B[j]
 - copy the smaller of the two to C[k]
 - increment the index of the array whose element was copied
 - increment k

Merging Sorted Subarrays - Steps

Merging Sorted Subarrays - Steps

- Comparisons stop when either index reaches the end of its subarray
- The remaining elements in the other subarray are copied to the combined array C

Recursive Procedure - Skeleton

Assume we have the merge() method, we will write a recursive method to implement the divide-andconquer approach.

```
static void mergeSort(int[] arr) {
     myMergeSort(arr);
static void myMergeSort(int[] arr) {
     if (arr.length == 1) return; // Base case
    // Allocate leftArr and rightArr
     split(arr,leftArr,rightArr);
     myMergeSort(leftArr);
     myMergeSort(rightArr);
     Merge(leftArr,RightArr,arr);
```

```
static void mergeSort(int[] arr) {
                                            12
                                                  8
                                                      14
                                                                 6
                                                                     33
                                                                          2
                                                                               27
                                                            4
     myMergeSort(arr);
}
                                             Call to split:
                                            12
                                                  8
                                                      14
                                                                6
                                                                     33
                                                                          2
                                                                               27
                                                            4
static void myMergeSort(int[] arr) {
     if (arr.length == 1) return;
                                                8
                                                    14
                                                              Call to myMergeSort(leftArr)
    // Allocate leftArr and rightArr
     split(arr,leftArr,rightAr
     myMergeSort(leftArr);
                                            12
                                                  8
                                                      14
                                                           4
                                                                6
                                                                     33
                                                                              27
     myMergeSort(rightArr);
     Merge(leftArr,rightArr,arr);
                                                    14
                                                                Call to split:
                                         12
                                               8
}
                                                        Call to myMergeSort(leftArr)
```

```
static void mergeSort(int[] arr) {
     myMergeSort(arr);
static void myMergeSort(int[] arr) {
     if (arr.length == 1) return;
    // Allocate leftArr and rightArr
     split(arr,leftArr,rightArr);
     myMergeSort(leftArr);
     myMergeSort(rightArr);
     Merge(leftArr,rightArr,arr);
```

Further split it into two size-1 subarrays, and issue recursive calls again

We are down to the base cases, so simply return (we have two sorted subarrays {12} and {8})


```
static void mergeSort(int[] arr) {
     myMergeSort(arr);
}
static void myMergeSort(int[] arr) {
     if (arr.length == 1) return;
     // Allocate leftArr and rightArr
     split(arr,leftArr,rightArr);
     myMergeSort(leftArr);
     myMergeSort(rightArr);
     Merge(leftArr,RightArr, arr);
```

Call merge() to merge two subarrays into original array

Return to the recursive call for the 4-element subarray, and start another recurise call for the right subarray {14, 4}.

Repeat the similar process for the right 2-element subarray


```
      12
      8
      14
      4
      6
      33
      2
      27

      8
      12
      14
      4

      14
      4
      4
      14
```

```
static void mergeSort(int[] arr) {
     myMergeSort(arr);
static void myMergeSort(int[] arr) {
     if (arr.length == 1) return;
    // Allocate leftArr and rightArr
     split(arr,leftArr,rightArr);
     myMergeSort(leftArr);
     myMergeSort(rightArr);
     Merge(leftArr,RightArr, arr);
```

Return from the recursive call for the 2-element right subarray. We have

Call merge() to merge the 2-element subarrays, and copy the elements back

Etc.

Implementation of Merge-Sort

- Our approach so far was to create new arrays for each new set of subarrays, and to merge them back into the array that was split.
 - Creates a lot of arrays in the recursive call chain
- ☐ Instead, we'll create a temp. array of the same size as the original.
 - pass it to each call of the recursive merge-sort method
 - use it when merging subarrays of the original array:

after each merge, copy the result back into the original array:

The Helper Method merge()

static void merge(int[] arr, int[] temp, int leftStart, int leftEnd, int rightStart, int rightEnd) {

```
int i = leftStart; // index into left subarray
int j = rightStart; // index into right subarray
int k = leftStart; // index into temp
while (?) {

for (i = leftStart; i <= rightEnd; i++) // copy back
    arr[i] = temp[i];</pre>
```



```
static void merge(int[] arr, int[] temp, int leftStart, int leftEnd, int rightStart, int rightEnd) {
       int i = leftStart; // index into left subarray
       int j = rightStart; // index into right subarray
int k = leftStart; // index into temp
       while (i \leq leftEnd && j \leq rightE) {
             if (array[i] \le array[i])
                         temp[k] = array[i];
                         i++;
                       else
                         temp[k] = array[i];
                         j++;
                      k++; }
        /* Copy remaining elements of left array if any */
                     while (i \le leftEnd)
                              temp[k] = array[i];
                              i++;
                              k++;
       /* Copy remaining elements of right if any */
       for (i = leftStart; i <= rightEnd; i++)  // copy back
    arr[i] = temp[i];
```

mergeSort()

We use a wrapper method to create the temporary array, and to make the initial call to a separate recursive method:

```
static void mergeSort(int[] arr) {
     int[] temp = new int[arr.length];
     myMergeSort(arr, tmp, 0, arr.length - 1);
static void myMergeSort(int[] arr, int[] temp, int start, int end) {
     if (?) // base case
          return;
     int middle = (start + end)/2; // The splitting step
     ?
```

mergeSort()

```
static void mergeSort(int[] arr) {
     int[] temp = new int[arr.length];
     myMergeSort(arr, tmp, 0, arr.length - 1);
static void myMergeSort(int[] arr, int[] temp, int start, int end) {
     if (start >= end ) // base case
          return;
     int middle = (start + end)/2; // The splitting step
               // Sort first and second halves
                myMergeSort (arr, temp, start, middle);
                myMergeSort (arr , temp, middle+1, end);
                // Merge the sorted halves
                merge(arr, temp, start, middle, middle+1, end);
```

Running Time Analysis

- Merging two halves of an array of size n requires 2n moves.
- Merge-sort repeatedly divides the array in half, so we have the following call tree:

- At all but the last level of the call tree, there are 2n moves
 - ☐ How many levels are there?
- \rightarrow M(n) = 2nlog₂n (worst-case or best-case)
- \gt C(n) \le nlog₂n (between 0.5n*log(n) and n*log(n))
- O(n log n) overall

Compared to Quick-sort

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- best case: partitioning always divides the array in half

- > at each level of the call tree, we perform n comparisons
- There are $log_2 n$ levels in the tree. So $C(n) = nlog_2 n$
- > M(n) ≤ 1.5 nlog₂n (at most n/2 swaps at each level)

Quick-Sort or Merge-Sort?

- □ Quick-sort used often
 - Low extra space
 - Good performance average
- □ For Quick-Sort
 - worst-case does not appear often, average-case is closer to best-case (n*log(n) comparisons and 1.5n*log(n) moves)
 - It is important to choose good pivots, to have n*log(n) running time
- □ For merge-sort
 - Average-case is close to worst-case
 - Between 0.5n*log(n) and n*log(n) comparisons and 2n*log(n) moves

Comparisons

Algorithm	Best-case	Worst-case	Average-case	Extra space
Selection sort	O(n²)	O(n²)	O(n²)	O(1)
Bubble sort	O(n²)	O(n²)	O(n²)	O(1)
Insertion sort	O(n)	O(n²)	O(n²)	O(1)
Shell-sort	O(n*logn)	O(n ^{1.5})	O(n ^{1.5}), but can be O(n ^{1.25})	O(1)
Quick-sort	O(n*logn)	O(n²)	O(n*logn)	O(logn) (ave case) O(n) (worst case)
Merge-sort	O(n*logn)	O(n*logn)	O(n*logn)	O(n)
Heap-sort	O(n*logn)	O(n*logn)	O(n*logn)	O(1)

Bucket Sort

- □ Bucket sort
 - Assumption: integer keys in the range [0, M)
 - Basic idea:
 - 1. Create *M* linked lists (*buckets*), one for each possible key value
 - 2. Add each input element to appropriate bucket
 - 3. Concatenate the buckets
- Remember hash tables also uses buckets?

Bucket Sort Example

Bucket Sort Example

Pull the elements from the buckets into the array

- Hashing mixes up elements with diverse key values
 - 1 1 2 2 3

Keys of Non-integer Types?

- ☐ What if keys are not integers?
 - Assumption: input is N floating numbers (scaled) in [0, 1]
 - Basic idea:
 - ☐ Create *M* linked lists (*buckets*) to divide interval [0,1] into subintervals of size 1/*M*
 - Add each input element to appropriate bucket and sort the bucket with insertion sort
 - Choose M=O(N)
 - ➤ Uniform input distribution → expected bucket size is O(1)
 - Therefore the expected total time is O(N): O(N) to put elements into the buckets and O(N) to move them back into the array
- □ With uniform key distribution, Bucket Sort has O(N) running time
- But sensitive to the key distribution in the range (what if it's not uniform?)
- Pays with space for time
- ☐ Pays with worst-case time for average-case time