Answer the questions in two hours.

- 1. (30 points) Let $L = \{x^R \# y : x, y \in \{0,1\}^* \text{ and } x \text{ is a substring of } y \}$
 - 1. Show a context-free grammar for L.
 - 2. Show a natural PDA that accepts L.
- 2. (30 points) Construct a standard Turing machine to decide the following language:

$$L = \{ w \in \{a, b, c, d\}^* : \#_b(w) \ge \#_c(w) \ge \#_d(w) \ge 0 \}$$

3. (30 points) Construct a DFA for the following language:

 $\{w \in \{a,b\}^* | w \text{ has exactly three a's and at least two b's} \}$

4. (20 points) What is the reflexive transitive closure R^* of the relation $R = \{(a, b), (a, c), (a, d), (d, c), (d, c)\}$? Draw a directed graph representing R^* .

Q1. Let $L = \{x^R # y : x, y \in \{0,1\}^* \text{ and } x \text{ is a substring of } y \}$

a.
$$S \rightarrow AB$$
 $A \rightarrow 0AO$
 $A \rightarrow 1AI$
 $A \rightarrow BB$
 $B \rightarrow 0B11B1e$

b.
$$(s, 0, e)$$
 $(s, 0)$
 $(s, 1, e)$ $(s, 1)$
 $(s, #, e)$ (m, e)
 $(m, 0, e)$ (m, e)
 $(m, 1, e)$ (m, e)
 (m, e, e) (r, e)
 $(r, 0, 0)$ (r, e)
 $(r, 1, 1)$ (r, e)
 (r, e, e) (l, e)
 $(l, 0, e)$ (n, e)
 $(l, 1, e)$ (n, e)
 (n, e, e) (f, e)

 $L = \{ w \in \{a, b, c, d\}^* ; \#_b(w) \ge \#_c(w) \ge \#_d(w) \ge 0 \}$

Q3. Construct a DFA for the following language:

{w \in \{a_1b_3^*\} | w has exactly three a's

and at least two b's \{\}

d as the connecting node.

(a,d), (d,e) add (a,e)

$$R^* = \begin{array}{c} a & b & c & d & e \\ a[0] & 1 & 1 & 1 & 1 \\ b & 0 & 0 & 0 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 0 \end{array}$$

make it reflexive.

