BCSE209L - Machine Learning – A1+TA1

Multimodal System for Deepfake Detection

Team Members:

- ∠ V Ashwin 22BDS0002
- M Thirunarayanan 22BDS0342
- Anand Vignesh 22BDS0364

Introduction

- Deepfake is a media file like an image, video or audio that is altered using an artificial intelligence model
- This is done to depict another person by face swapping and mimicking expressions
- Alter a person's speech to manipulate the video and its context
- The goal is to make a manipulated media look and sound convincingly real
- Deepfakes can be used for entertainment but they are increasingly being used for malicious activities

Domain

- Artificial Intelligence
- Deep Learning Computer Vision
- Cybersecurity
- Digital Forensics

Relevance to Industry and Society

Relevance to Society:

- Prevents the spread of misinformation and manipulation of public opinion
- · Protects individuals from harassment, political smear campaigns, and identity fraud

Relevance to Industry:

- Social media platforms can automatically flag and remove harmful content
- News agencies can verify authenticity before publication
- Legal and law enforcement can use it for evidence validation
- Video streaming and content creation platforms can protect brand trust

Comparative Analysis of Models

Model Type	Strengths	Limitations	Datasets Used	ML Techniques Applied
XceptionNet	Fast inference (23ms/video) High accuracy on studio data	Fails on real-world compression	FaceForensics++ (HQ, LQ, raw)	CNN (deep convolutional)
Convolutional Vision Transformer	Good at capturing subtle artifacts	Needs very large datasets to generalize	DFDC, UADFV, FaceForensics++	Vision transformer + convolutional networks
EfficientNet-LSTM	Good Temporal consistency checks Can be mobile-optimized	Struggles with brief clips (<3sec) High RAM usage	Celeb-DF	EfficientNet (CNN backbone) + LSTM
Spatio Temporal Graph Networks	Captures spatial and temporal inconsistencies in video frames	Graph based processing requires high computing	Celeb-DF, DFDC, WildDeepfake	Spatial-Spectral- Temporal Graph Neural Network
Cross-Attentive Spatio- Temporal (CAST)	Integration of spatial and temporal cues using cross-attention	Model complexity may stop deployment	FaceForensics++, DeepfakeDetection, Celeb-DF (v2)	CNN + Transformer with cross-attention fusion

Datasets

Dataset Name	Fake Face Sequences	Real Face Sequences	Real Video Source	Link
DFDC	~100,000	~20,000	Volunteer Actors	<u>Kaggle</u>
Celeb-DF v2	5,639	590	YouTube	Kaggle
WildDeepfake	3,509	3,805	Internet	Hugging Face
Deepfake-Eval- 2024	Video: 964 Image: 767 Audio: 710	Video: 1,072 Image: 1,208 Audio: 1,110	Social Media	Hugging Face

Member 1 Objectives – Anand Vignesh

1. Implement XceptionNet and testing model robustness

- Limitation: XceptionNet is trained on FaceForensics++ but fails on other recent datasets and real world uses
- Improvement: New benchmarks and wild-data to show better robustness for XceptionNet

2. Integrate confidence scoring and explainability mechanism system

- Limitation: Confidence scoring mechanism Current detectors give binary results without reliability measures, making them less reliable in critical decisions
- Improvement: Show suspected manipulated region and give confidence score. General users can visually see the reason of model's detection

Member 2 Objectives – V Ashwin

1. Attention-based CNN Model

- Limitation: Traditional CNNs excel at local feature extraction but struggle at capturing global relationships
- Improvement: Attention mechanisms in CNNs helps the network focus on important regions, capturing both fine-grained local details and broader global context

2. Optimizing the detection model for real time inference

- Limitation: Recent deepfake detectors have high accuracy but large model size and slow inference make it impossible to use in real time deployment
- Improvement: Apply model compression techniques (pruning, quantization) to optimize models and get good accuracy

Member 3 Objectives – M Thirunarayanan

1. Classify Generation method used in creating deepfake images

- Limitation: Cannot know source of deepfake images
- Improvement: Usage of machine learning models to classify the deepfake generation model

2. Website Development for Commercial usage

- Limitation: Existing models don't focus on public usability
- Improvement: Smooth and Easy user interface. Can experiment the model

3. Data Collection and Preprocessing. Check Generalizability

 Data based on real world setting is needed for models like XceptionNet to generalize well. This can improve robustness of the model

Insights and Improvements

- Gap Identified: Current high-accuracy models (CAST, SSTGNN) are not deployment-friendly for real-time web services due to heavy compute requirements
- Use multiple datasets (DFDC, Celeb-DF, WildDeepfake, Deepfake-Eval-2024) to avoid overfitting to a single domain
- Usage of recent datasets and benchmarks to show robustness of model
- User-Centric Design: Confidence scores on detection, explanation visualizations - heatmaps showing manipulated areas

THANK YOU!