I	Lab 1: Class	ification with	babilistic Reasoning Multinomial and Ga	ussian Modele
	12 a moral	Hony	Student Number:	1003942 129
You should 2 MB): 2) on	hand in: 1) A	scanned .pdf version	of this sheet with your and figures for Question 2.1.(c) in your code. All these files	swers (file size should be under) in the .pdf format; and 3) two should be uploaded to Quercus.
Naïve	e Bayes Cl	assifier for	Spam Filtering	
1. (a) Wri	te down the esti-	mators for p_d and q of "Laplace smoot		ng data $\{\mathbf{x}_n,y_n\}, n=1,2,\ldots,N$
	1 = # of occura	nces of word d in	coun ti	
	total # of a	varies in species the	distinct to of words in a	pan Cham
Wis	# of occur	ences of word 1;	n hantle	ased on the expressions. (1 pt)
(b) Comp	lete function le	words in hom t	total at of district a	wels in som & has
(a) Write	down the MAI	O mula ta da da	python file classifier.py ba	ased on the expressions. (1 pt)
new e	mail $\{\mathbf{x}, y\}$. T	he d-th entry of x	netner $y = 1$ or $y = 0$ batter is denoted by $x = 0$	sed on its feature vector \mathbf{x} for a se incorporate p_d and q_d in your
			· (1 Pt)	
Y= 0	irgmex PCXI	$y = argnox \frac{(x_i)}{(x_i)}$	++x0)! (x)!(+6)! del P(xily)x
	Ti Palxa	Span 0 (9d	×1)	
o) Complet	e function clas	sify_new_email in	classifier.py, and test th	e classifier on the testing set. The
number o	of Type 1 erro	rs is, ar	d the number of Type	2 errors is 4 (1.5 pt)
) Write do traded of	wn the modifi f. Please intro	ed decision rule duce a new para	in the classifier such thameter to achieve such	at these two types of error can ba trade-off. (0.5 pt)
Introd	nce "ratio	perameter.	ratio =1 for	previous sections
	(by) xy			

Write your code in file classifier.py to implement your modified decision rule. Test it on the testing set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name nbc.pdf. (1 pt)

${\bf 2} \quad {\bf Linear/Quadratic\ Discriminant\ Analysis\ for\ Height/Weight\ Data}$

1. (a) Write down the maximum likelihood estimates of the parameters μ_m , μ_f , Σ , Σ_m , and Σ_f as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2, \dots, N$. (1 pt)

$$\frac{1}{2} = \frac{1}{2} \frac$$

(b) In the case of LDA, write down the decision boundary as a linear equation of x with parameters μ_m , μ_f , and Σ . Note that we assume $\pi=0.5$. (0.5 pt)

In the case of QDA, write down the decision boundary as a quadratic equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m, \, \boldsymbol{\mu}_f, \, \boldsymbol{\Sigma}_m$, and $\boldsymbol{\Sigma}_f$. Note that we assume $\pi = 0.5. \, (0.5 \, \mathrm{pt})$

- (c) Complete function discrimAnalysis in Idaqda.py to visualize LDA and QDA models and the corresponding decision boundaries. Please name the figures as Ida.pdf, and qda.pdf. (1 pt)
- 2. The misclassification rates are Off for LDA, and Off for QDA. (1 pt)

