Outline

1. What tools did i use?

Step 1: Used SQL to extract data into a csv file, then downloaded it

Step 2: Uploaded the csv file into Python, did all the calculation and visualization using Python

`SELECT 'LOCAL' "TYPE", YEAR, AVG_TEMP FROM CITY_DATA WHERE CITY='HANOI'

UNION ALL

SELECT 'GLOBAL' "TYPE", YEAR, AVG_TEMP FROM GLOBAL_DATA `

- How did i calculate the moving average?
 I use the function DataFrame.rolling(x).mean() with x as the number of years
- 2. What were my key considerations when deciding how to visualize the trends?

 I want the visualization to be clear, easy to follow and minimize all the excessive information

Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")
```

Upload CSV file

```
In [ ]: df = pd.read_csv("results.csv")
In [ ]: df.head(5)
```

```
        Out[]:
        type
        year
        avg_temp

        0
        LOCAL
        1840
        21.00

        1
        LOCAL
        1841
        21.30

        2
        LOCAL
        1842
        21.16

        3
        LOCAL
        1843
        21.26

        4
        LOCAL
        1844
        20.78
```

```
In [ ]: local_df = df[df['type']=='LOCAL']
    local_df
```

Out[]:		type	year	avg_temp
	0	LOCAL	1840	21.00
	1	LOCAL	1841	21.30
	2	LOCAL	1842	21.16
	3	LOCAL	1843	21.26
	4	LOCAL	1844	20.78
	•••			
	169	LOCAL	2009	22.59
	170	LOCAL	2010	22.57
	171	LOCAL	2011	21.03
	172	LOCAL	2012	22.09
	173	LOCAL	2013	23.10

174 rows × 3 columns

Calculate moving average

```
In [ ]: local_df['moving_avg'] = local_df['avg_temp'].rolling(10).mean()
    local_df.dropna(inplace=True)
    local_df.loc[:,]
```

Out[]:		type	year	avg_temp	moving_avg
	13	LOCAL	1853	21.51	21.021
	14	LOCAL	1854	21.45	21.088
	15	LOCAL	1855	21.10	21.130
	16	LOCAL	1856	20.69	21.074
	17	LOCAL	1857	20.89	21.080
	•••	•••			
	169	LOCAL	2009	22.59	22.063
	170	LOCAL	2010	22.57	22.140
	171	LOCAL	2011	21.03	22.064
	172	LOCAL	2012	22.09	22.060
	173	LOCAL	2013	23.10	22.108

161 rows × 4 columns

```
In [ ]: global_df = df[df['type']=='GLOBAL']
    global_df
```

Out[]:		type	year	avg_temp
	174	GLOBAL	1750	8.72
	175	GLOBAL	1751	7.98
	176	GLOBAL	1752	5.78
	177	GLOBAL	1753	8.39
	178	GLOBAL	1754	8.47
	•••			
	435	GLOBAL	2011	9.52
	436	GLOBAL	2012	9.51
	437	GLOBAL	2013	9.61
	438	GLOBAL	2014	9.57
	439	GLOBAL	2015	9.83

266 rows × 3 columns

```
In [ ]:
    global_df['moving_avg'] = global_df['avg_temp'].rolling(10).mean()
    global_df.dropna(inplace=True)
    global_df
```

Out[]:		type	year	avg_temp	moving_avg
	183	GLOBAL	1759	7.99	8.030
	184	GLOBAL	1760	7.19	7.877
	185	GLOBAL	1761	8.77	7.956
	186	GLOBAL	1762	8.61	8.239
	187	GLOBAL	1763	7.50	8.150
	•••				
	435	GLOBAL	2011	9.52	9.554
	436	GLOBAL	2012	9.51	9.548
	437	GLOBAL	2013	9.61	9.556
	438	GLOBAL	2014	9.57	9.581
	439	GLOBAL	2015	9.83	9.594

Plot the results

257 rows × 4 columns

```
# Set names for each category
year = local_df['year']
avg_temp = local_df['avg_temp']
```

```
moving_avg_temp = local_df['moving_avg']
test = local_df[['avg_temp','moving_avg']]

plt.subplots(figsize = (16,8))

# Plot 1st set of data
plt.plot(year, avg_temp, 'g--', label = 'Average')

# Plot 2nd set of data
plt.plot(year, moving_avg_temp , 'r-', label = 'Moving Average')

# Create Legend
plt.legend(loc = 'upper left') # để Legend ở góc trên bên trái

plt.style.use('ggplot')
plt.title('HANOI, VIETNAM')
plt.xlabel('Year')
plt.ylabel('Temperature')

plt.show()
```



```
In []: # Set names for each category
    year = global_df['year']
    avg_temp = global_df['avg_temp']
    moving_avg_temp = global_df['moving_avg']

    plt.subplots(figsize = (16,8))

# Plot sets of data
    plt.plot(year, avg_temp, 'g--', label = 'Average')
    plt.plot(year, moving_avg_temp, 'r-', label = 'Moving Average')

# Create Legend
    plt.legend(loc = 'upper left')

plt.style.use('ggplot')
    plt.title('GLOBAL')
    plt.xlabel('Year')
```

```
plt.ylabel('Temperature')
plt.show()
```


Observations

The above charts compare the temperature between Hanoi (Vietnam) and the global. Here are some observations obtained from the charts.

- Overall, both Hanoi and the world witnessed a rise in temperature over the years.
- Hanoi's temperature was much hotter than the world's, ranging from 20.5 to above 23 Celcius degree, whereas the global temperature ranges from 6.5 to nearly 10 Celcius degree.
- While temperature trend in Hanoi tended to increase moderately, the world had seen a fluctuation in temperature during the period of 1770 to 1830.
- Over a few hundred years, Hanoi grew by 1 degree, from 21 to 22, whereas the world grew by nearly 2.6 degree, from 8 to 9.6 approximately