

第13章 连续变量的统计推断(二) ——单因素方差分析

学习目标

- 掌握单因素方差分析的方法原理
- 了解单因素方差分析的适用条件
- · 能用SPSS进行单因素方差分析

主要内容

- 13.1 方差分析概述
- 13.2 案例
- 13.3 均数间的多重比较
- 13.4 各组均数的精细比较

13.1 方差分析概述

单因素方差分析的目的

- 检验某一个影响因素的差异是否会给观察变量带来显著影响。
 - 多个样本均数的比较不能用两两t检验。
- 例如:
 - -考察不同的时间点是否对消费者信心指数产生 显著影响;
 - -考察不同产地的汽车的耗油量是否不同:
 - -考察不同疗法的效果是否不同。

两个概念: 因素和水平

考察不同时间点的消费者信心指数是否有显著差异,在这个问题中,时间点就是因素(Factor),200704、200712、200812和200912就是这个因素的4个水平(Level)或4个组。

 方差分析就是考察不同水平的总体均数是否存在 显著差异。

因素水平	样本观测值							
1	y ₁₁	y ₁₂	• • •	y _{1n1}	-			
2	y_{21}	y_{22}	• • •	y _{2n2}	- -			
• • •		•••						
k	y_{k1}	y_{k2}	• • •	y _{knk}	-			

方差分析是基于变异分解的原理进行的,在单因素方差分析中,整个样本的变异(样本观测值之间的差异)由如下两个部份构成:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i.})^2 + \sum_{i=1}^{k} n_i (\overline{y}_{i.} - \overline{y}_{..})^2$$

总变异
$$(SS_T) = 组内变异 $(SS_W) + 组间变异(SS_B)$$$

总变异 = 随机变异 + 处理因素导致的变异

- 当 H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ 成立时,组间变异与组内变异均由随机误差构成,值应当接近。
- F = 组间变异测量指标/组内变异测量指标,则F的值应当接近1。否则,F值将会偏离1,并且各组间的不一致程度越强,F值越大。
- 若组间差异远远大于组内差异,说明处理因素的 影响的确存在,如果两者相差无几,则说明该影响不存在。

- 原假设 H_0 : $\mu_1 = \mu_2 = ... \mu_k$
- 备择假设 H₁: k个总体均数不全相同
- · 检验统计量与P值

检验统计量
$$F_{k-1,N-k} = \frac{SS_B/(k-1)}{SS_W/(N-k)}$$
$$= \frac{MS_B}{MS_W} : F(k-1,N-k)$$

$$P$$
值 = $P(F_{k-1,N-k} \ge$ 样本观测量 $F)$

• 得出结论

适用条件

- · 本质上和t检验的情况类似
 - 独立性: 严格要求, 但一般都没问题。
 - 正态性: Box和Anderson等人的研究表明,方差分析对于正态性的要求是稳健的。当正态性得不到满足时,方差分析的结论并不会受到太大的影响。
 - 方差齐性: 在各组间样本含量相差不太大时, 方差轻微不齐仅会对方差分析的结论有少许影响。一般而言, 只要最大/最小方差之比小于3, 分析结果都是稳定的。
 - 样本量不能过于悬殊。

13.2 案例

- 数据文件: CCSS_Sample. sav
- 要求: 检验北京地区4个时间点的消费者总信心指数是否有显著差异
- 具体过程:
 - 选择个案(北京地区)
 - 判断是否满足适用条件
 - 独立性
 - 正态性(直方图、偏度系数和峰度系数、P-P图、Q-Q图、K-S检验)
 - · 方差齐性("分析"->"比较平均值"->"平均值", 观察4个标准差)

- "分析"→"比较平均值"→"单因素方差分析"
- 将"index1"选入"因变量列表"框,将"time"选入"因子"框
- 单击"选项"按钮,勾选"方差齐性检验"和"平均值图"

Test of Homogeneity of Variances

总指数

Levene Statistic	df1	df2	Sig.	
.534	3	374	.659	

方差齐性检验的P值,说明样本 事件是正常事件,没有出现矛盾, 不拒绝 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

ANOVA

总指数

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5721.643	3	1907.214	5.630	.001
Within Groups	126692.442	374	338.750		
Total	132414.084	377			

均值检验的P值, 说明样本事件是小概率事件, 出现矛盾, 拒绝 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

借助此图,就可明白各样本均值的大小关系:有显著差异!这种差异能否推广至总体呢?(应用单样本方差分析进行检验)

13.3 均数间的多重比较

事后比较(非计划好的多重比较)

- 前面的单因素方差分析只是回答了"多个均数间 是否有差异?"这个问题,但是具体是哪些均数 存在差异,并没有给出答案。
- 上例中,到底是四者之间均有差别?还是某一组 与其他3组有区别?还是某两组与另两组有区别?

多重比较的两种类型

• 非计划好的(Unplanned Comparisons, Post-hoc Comparisons): 在单因素方差分析得到的结果是拒绝H₀后才有必要进行,是一种探索性的分析。"事后比较"对话框,13.3节讲解

• 计划好的(Planned Comparisons): 在收集数据之前便 决定了要通过多重比较来考察多个组与某个特定组间的差 别或者某几个特定组间彼此的差别。这种情况应该是对数 据有了一定的了解。"对比"对话框,13.4节讲解

- 几种常用的两两比较方法:
 - Dunnett 法: 常用于多个试验组与一个对照组间的比较
 - Tukey 法: 需要进行任意两组间的比较而各组样本含量相同时
 - Scheffe 法: 多用于进行比较的两组间样本含量不等时

- 案例:继续检验北京地区4个不同时间点的消费者信心指数的均值间存在怎样的差异。
- · 选择 "Scheffe法"

Multiple Comparisons

Dependent Variable: 总指数

Scheffe

			Mean Difference (I-			95% Confidence Interval	
(I) 月份	(J) 月份	ľ	J)	Std. Error	Sig.	Lower Bound	Upper Bound
200704	200712		2.92397	2.59643	.737	-4.3675	10.2154
	200812		8.08787*	2.59009	.022	.8142	15.3615
	200912		-2.52545	2.81143	.848	-10.4207	5.3698
200712	200704		-2.92397	2.59643	.737	-10.2154	4.3675
	200812		5.16390	2.58361	.264	-2.0915	12.4193
	200912		-5.44942	2.80546	.289	-13.3279	2.4290
200812	200704		-8.08787 [*]	2.59009	.022	-15.3615	8142
	200712		-5.16390	2.58361	.264	-12.4193	2.0915
	200912		-10.61332 [*]	2.79960	.003	-18.4753	-2.7513
200912	200704		2.52545	2.81143	.848	-5.3698	10.4207
	200712	١,	5.44942	2.80546	.289	-2.4290	13.3279
	200812		10.61332	2.79960	.003	2.7513	18.4753

^{*.} The mean difference is significant at the 0.05 level.

Homogeneous Subsets

总指数

Scheffe^{a,b}

		Subset for alpha = 0.05			
月份	Ν	1	2		
200812	102	91.9668			
200712	101	97.1307	97.1307		
200704	100		100.0547		
200912	75		102.5801		
Sig.		.302	.255		

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 92.941.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

4个时间点的总指数被分为两组, (200812, 200712)以及 (200712, 200704, 200912), 组间的均值存在显著差异,而组 内的均值无显著差异。

13.4 各组均数的精细比较

对比(计划好的多重比较)

• μ_1 、 μ_2 、 μ_3 、 μ_4 分别表示200704、200712、200812和200912北京地区的index1的均值。欲检验 μ_1 与 μ_2 、 μ_2 与 μ_3 是否有显著性差异。

$$\mathbf{H_0}$$
: $\mu_1 = \mu_2$

$$H_0'$$
: $\mu_2 = \mu_3$

转换为:

$$H_0: a_1\mu_1 + a_2\mu_2 + a_3\mu_3 + a_4\mu_4 = 0, a_1=1, a_2=-1, a_3=0, a_4=0$$

$$H_0': b_1\mu_1 + b_2\mu_2 + b_3\mu_3 + b_4\mu_4 = 0, b_1=0, b_2=-1, b_3=1, b_4=0$$

- 数据文件: CCSS_Sample. sav
- 要求: 检验北京地区2007年12月的消费者总信心指数的均值(μ_2)是否与2007年4月、2009年12月均值的平均水平($(\mu_1 + \mu_4)/2$)有显著差异

• 具体过程:

- 选择个案(北京地区)
- "分析"→"比较平均值"→"单因素方差分析"
- 将"index1"选入"因变量列表"框,将"time"选入"因子"框
- 点击"对比"按钮,依次输入系数: 1、-2、0、1

对比(计划好的)

Contrast Coefficients

	月份						
Contrast	200704	200712	200812	200912			
1	1	-2	0	1			

Contrast Tests

		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
总指数	Assume equal variances	1	8.3734	4.61736	1.813	374	.071
	Does not assume equal variances	1	8.3734	4.65858	1.797	187.761	.074

P值0.071>0.05, 因此,不拒绝 H_0 : $\mu_2 = (\mu_1 + \mu_4)/2$

THE END