```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

import seaborn as sns
import warnings

warnings.filterwarnings('ignore')

Check the version

```
In [2]: ▶
```

```
sns.__version__
```

Out[2]:

'0.11.1'

```
In [3]: ▶
```

```
x=[10,20,30,40]
y=[0,15,10,25]
plt.plot(x,y)
plt.show()
```


In [43]: ▶

```
sns.set()
plt.plot(x,y)
plt.show()
```


Seaborn style

```
In [44]: ▶
```

```
sns.set_style('darkgrid')
plt.plot(x,y)
plt.show()
```


In [45]: ▶

```
sns.set_style('whitegrid')
plt.plot(x,y)
plt.show()
```


In [46]:
▶

```
sns.set_style('dark')
plt.plot(x,y)
plt.show()
```


In [47]: ▶

```
sns.set_style('ticks')
plt.plot(x,y)
plt.show()
```


In [48]: ▶

```
sns.set_style('white')
plt.plot(x,y)
plt.show()
```


In [49]:
▶

```
sns.get_dataset_names()
```

```
Out[49]:

['anagrams',
    'anscombe',
    'attention',
    'brain_networks',
    'car_crashes',
    'diamonds',
    'dots',
    'exercise',
    'flights',
    'fmri',
    'gammas',
    'geyser',
    'iris',
```

'mpg',
'penguins',
'planets',
'tips',
'titanic']

Load built in Dataset

In [5]: ▶

cars=sns.load_dataset('mpg')
cars

Out[5]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	n
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chev che m
1	15.0	8	350.0	165.0	3693	11.5	70	usa	t sk
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plym sat
3	16.0	8	304.0	150.0	3433	12.0	70	usa	rebe
4	17.0	8	302.0	140.0	3449	10.5	70	usa	tı
***	•••								
393	27.0	4	140.0	86.0	2790	15.6	82	usa	mus
394	44.0	4	97.0	52.0	2130	24.6	82	europe	pi
395	32.0	4	135.0	84.0	2295	11.6	82	usa	d∈ ram∣
396	28.0	4	120.0	79.0	2625	18.6	82	usa	ra
397	31.0	4	119.0	82.0	2720	19.4	82	usa	che

398 rows × 9 columns

Type of dataset

In [6]: ▶

type(cars)

Out[6]:

pandas.core.frame.DataFrame

number of rows and columns

In [52]: ▶

cars.shape

Out[52]:

(398, 9)

Drop the null values

In [53]: ▶

cars.dropna(inplace=True)
cars

Out[53]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	n
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chev che m
1	15.0	8	350.0	165.0	3693	11.5	70	usa	ł sk
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plym sat
3	16.0	8	304.0	150.0	3433	12.0	70	usa	rebe
4	17.0	8	302.0	140.0	3449	10.5	70	usa	tı
	•••							•••	
393	27.0	4	140.0	86.0	2790	15.6	82	usa	mus
394	44.0	4	97.0	52.0	2130	24.6	82	europe	pi
395	32.0	4	135.0	84.0	2295	11.6	82	usa	d _i ram _l
396	28.0	4	120.0	79.0	2625	18.6	82	usa	ra
397	31.0	4	119.0	82.0	2720	19.4	82	usa	che

392 rows × 9 columns

In [54]: ▶

cars.head()

Out[54]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	nam
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrole chevell malib
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buic skylar 32
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymout satellit
3	16.0	8	304.0	150.0	3433	12.0	70	usa	am rebel s:
4	17.0	8	302.0	140.0	3449	10.5	70	usa	for torin

In [55]: ▶

cars.tail()

Out[55]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	n
393	27.0	4	140.0	86.0	2790	15.6	82	usa	mus
394	44.0	4	97.0	52.0	2130	24.6	82	europe	pi
395	32.0	4	135.0	84.0	2295	11.6	82	usa	dı ramı
396	28.0	4	120.0	79.0	2625	18.6	82	usa	ra
397	31.0	4	119.0	82.0	2720	19.4	82	usa	che [,]

In [56]:
▶

```
sns.set_style('darkgrid')
sns.stripplot(x='origin',y='horsepower',data=cars)
plt.show()
```


In [57]: ▶

```
sns.set_style('darkgrid')
sns.stripplot(x='origin',y='horsepower',hue='cylinders',data=cars)
plt.show()
```


In [58]:
▶

```
sns.set_style('darkgrid')
sns.stripplot(x='origin',y='horsepower',hue='cylinders',jitter=0.50,data=cars)
plt.show()
```


Dodge

In [59]: ▶

```
sns.set_style('darkgrid')
sns.stripplot(x='origin',y='horsepower',hue='cylinders',jitter=0.5,dodge=True,data=cars)
plt.show()
```


Replot

In [60]:

```
sns.scatterplot(x='model_year',y='mpg',style='origin',data=cars)
plt.show()
```


In [61]:

```
sns.scatterplot(x='model_year',y='mpg',style='cylinders',data=cars)
plt.show()
```


In [62]:

```
sns.scatterplot(x='origin',y='mpg',style='cylinders',data=cars)
plt.show()
```


In [63]: ▶

sns.relplot(x='model_year',y='mpg',col='origin',hue='cylinders',data=cars)
plt.show()

In [64]: ▶

sns.relplot(x='model_year',y='mpg',col='origin',hue='cylinders',kind='line',data=cars)
plt.show()

catplot

In [65]: ▶

sns.catplot(x='model_year',y='mpg',col='origin',hue='cylinders',data=cars)
plt.show()

In [66]: ▶

sns.catplot(x='model_year',y='mpg',col='origin',kind='boxen',data=cars)
plt.show()

In [67]: ▶

sns.catplot(x='model_year',y='mpg',col='origin',hue='cylinders',kind='point',data=cars)
plt.show()

In [68]:

sns.catplot(x='model_year',y='mpg',col='origin',kind='point',data=cars)
plt.show()

Catplot

In [69]: ▶

sns.catplot(x='model_year',y='mpg',col='origin',hue='cylinders',data=cars)
plt.show()

kdeplot

In [70]: ▶

```
sns.kdeplot(cars['mpg'])
plt.show()
```


In [71]: ▶

sns.kdeplot(cars['mpg'],color='red',shade=True)
plt.show()

In [33]: ▶

sns.kdeplot(cars['mpg'],color='red',vertical=True,shade=True)
plt.show()

In [72]: ▶

sns.kdeplot(cars['mpg'],cars['horsepower'],color='red',shade=True)
plt.show()

In [73]: ▶

```
sns.set_style('whitegrid')
cyl_4=cars[cars.cylinders==4]
cyl_8=cars[cars.cylinders==8]
plt.figure(figsize=(8,6))
sns.kdeplot(cyl_4.horsepower,cyl_4.mpg,cmap='Blues',shade=True,shade_lowest=False)
sns.kdeplot(cyl_8.horsepower,cyl_8.mpg,cmap='Reds',shade=True,shade_lowest=False)

plt.xlabel('Horsepower')
plt.ylabel('miles per gallon')
plt.annotate('4 Cylinders',(105,32),color='b',fontsize=16,fontweight='bold')
plt.annotate('8 Cylinders',(109,18),color='r',fontsize=16,fontweight='bold')
plt.show()
```


In [74]: ▶

sns.pairplot(cars)
plt.show()

In [75]:
▶

```
sns.pairplot(cars,diag_kind='kde')
plt.show()
```


In [76]:
▶

```
sns.pairplot(cars,diag_kind='kde',hue='origin')
plt.show()
```


In [77]: ▶

```
sns.pairplot(cars,diag_kind='hist',kind='reg')
plt.show()
```


In [84]:
▶

Violin plot

In [86]: ▶

sns.violinplot(x=cars.horsepower)
plt.show()

In [87]: ▶

sns.violinplot(x='origin',y='horsepower',data=cars)
plt.show()

In [89]: ▶

```
sns.violinplot(x='origin',y='horsepower',hue='cylinders',data=cars)
plt.show()
```



```
In [92]: ▶
```

```
usa=cars[cars.origin=='usa']
sns.violinplot(x=usa.cylinders,y=usa.horsepower,color='xkcd:forest green')
plt.show()
```


Swarm plot

```
In [93]: ▶
```

```
sns.swarmplot(cars['horsepower'])
plt.show()
```


In [94]: ▶

```
sns.swarmplot(x='origin',y='horsepower',data=cars)
plt.show()
```


In [96]: ▶

```
sns.swarmplot(x='origin',y='horsepower',hue='cylinders',data=cars)
plt.show()
```


In [97]: ▶

sns.swarmplot(x='origin',y='horsepower',hue='cylinders',dodge=True,data=cars)
plt.show()


```
In [98]: ▶
```

```
usa=cars[cars.origin=='usa']
sns.swarmplot(x=usa.cylinders,y=usa.horsepower,color='green',size=3)
```

Out[98]:

<AxesSubplot:xlabel='cylinders', ylabel='horsepower'>

In [99]: ▶

```
usa=cars[cars.origin=='usa']
sns.violinplot(x=usa.cylinders,y=usa.horsepower,scale='width',inner=None,color='xkcd:forest
sns.swarmplot(x=usa.cylinders,y=usa.horsepower,color='white',size=3)
plt.show()
```


Box plot

In [100]:

```
sns.boxplot(cars['horsepower'])
plt.show()
```


In [101]: ▶

```
sns.boxplot(y=cars['horsepower'])
plt.show()
```


In [102]:

```
sns.boxplot(x='origin',y='horsepower',hue='cylinders',width=0.7,data=cars)
plt.show()
```


In [103]:

```
usa=cars[cars.origin=='usa']
sns.boxplot(x=usa.cylinders,y=usa.horsepower,color='xkcd:forest green')
sns.swarmplot(x=usa.cylinders,y=usa.horsepower,color='white',size=3)
plt.show()
```


In [104]: ▶

sns.catplot(x='model_year',y='mpg',col='origin',hue='cylinders',kind='swarm',data=cars)
plt.show()

Heatmap

In [105]:

N

cars.corr()

Out[105]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_y
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.3450
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290
model_year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.0000

In [106]: ▶

sns.heatmap(cars.corr())
plt.show()

In [108]: ▶

sns.heatmap(cars.corr(),cmap='RdBu')
plt.show()

In [109]: ▶

sns.heatmap(cars.corr(),cmap='RdBu',vmin=-1,vmax=1)
plt.show()

In [110]:

sns.heatmap(cars.corr(),cmap='RdBu',vmin=0,vmax=1)
plt.show()

In [111]:

sns.heatmap(cars.corr(),center=0)
plt.show()

In [7]: ▶

sns.heatmap(cars.corr(),cmap='RdBu',annot=True)
plt.show()

In [9]:
▶

```
sns.heatmap(cars.corr(),cmap='RdBu',annot=True,fmt='.1f')
plt.show()
```


In [13]: ▶

```
sns.heatmap(cars.corr(),cmap='RdBu',linewidth=1)
plt.show()
```


In [12]:

```
sns.heatmap(cars.corr(),cmap='RdBu',linewidth=1,linecolor='yellow')
plt.show()
```


In [14]: ▶

sns.heatmap(cars.corr(),cmap='RdBu',linewidth=1,square=True)
plt.show()

Distplot

In [15]:

sns.distplot(cars.horsepower)
plt.show()

In [18]: ▶

sns.displot(cars.horsepower)
plt.show()

In [20]: ▶

```
sns.distplot(cars.horsepower,color='green')
plt.show()
```


In [22]: ▶

sns.distplot(cars.horsepower,hist=False)
plt.show()

In [23]: ▶

sns.distplot(cars.horsepower,kde=False)
plt.show()

In [24]: ▶

sns.distplot(cars.horsepower,bins=10)
plt.show()


```
In [29]: ▶
```


In []:	M
In []:	И
In []:	К