线性代数 作业 4

2025年2月27日

1 基础题

本部分题必做.

題 1. 考虑如下 2 阶方阵的集合 $M=\{A=\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mid a,b \in \mathbb{R}\}.$

- 1. 请证明 M 在矩阵的加法,数乘和乘法下封闭.
- 2. 请证明 M 上的乘法满足交换律,而且 M 中的任何非零矩阵均可逆,且逆矩阵也在 M 中.
- 题 2. 计算如下矩阵的逆矩阵:

$$1. \begin{bmatrix} 1 & a & z \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix};$$

2.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, ad - bc \neq 0;$$

3.
$$\begin{bmatrix} 17 & 8 & 3 \\ 2 & 3 & 1 \\ 0 & 8 & 2 \end{bmatrix}$$
. 利用你计算的结果解方程
$$\begin{bmatrix} 17 & 8 & 3 \\ 2 & 3 & 1 \\ 0 & 8 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 18 \\ 36 \\ 0 \end{bmatrix}$$
.

题 3. 回顾第一次课里介绍的 Google 的 PageRank 算法. 对任意一个有向图 G, 其对应的线性方程组是否一定有非零解?

提示: 这个方程可以表示为 Ax=0, A 是某个方阵. 考虑 A^T 以及方程 $A^Ty=0$.

题 4. 证明线性方程组 $A\mathbf{x} = \mathbf{b}$ 有解当且仅当 $\begin{bmatrix} A^T \\ \mathbf{b}^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$ 无解.

题 5. 令 $A = (a_{ij})_{1 \leq i,j \leq n}$ 为 n 阶实矩阵。证明若 $\forall 1 \leq i \leq n, |a_{ii}| > \sum_{j \neq i} |a_{ij}|, 则 <math>A$ 可逆.

提示: 利用 Ax = 0 是否有非零解的判定法则.

题 6. 证明 $n \times m$ 的实矩阵 A 的 rank 小于或等于 1 等价于存在 n 维列向量 α 和 m 维列向量 β 使得 $A = \alpha \cdot \beta^T$.

2 思考题, 不用交

题 7. 设 $A=(a_{ij})_{1\leq i,j\leq n}$ 是一个可逆方阵. A 的一个 LDU 分解指 A=LDU, 其中 L 是一个主对角线均为 1 的下三角矩阵, U 是一个主对角线均为 1 的上三角矩阵, D 是一个可逆的对角矩阵. 记 $A_m=(a_{ij})_{1\leq i,j\leq m}$. 证明, A 存在 LDU 分解当且仅当对每个 $1\leq m\leq n$, A_m 都可逆, 并且当 A 存在 LDU 分解时, 其 LDU 分解是唯一的. (注:这 A_m 称做 A 的顺序主子阵。请用这个结论说服自己,"大部分"实矩阵都具有 LDU 分解,思考如何来定义"大部分"。)

题 8. 令 $GL(n,\mathbb{R})$ 是域 \mathbb{R} 上的 n-阶可逆矩阵全体, B 是上三角矩阵全体. 记 S_n 是每行每列有且仅有一个 1 的 n-矩阵全体. 对任意 $w \in S_n$, 定义 $GL(n,\mathbb{R})$ 的子集为

$$BwB = \{A_1 \cdot w \cdot A_2 \mid A_1 \in B, A_2 \in B\}.$$

证明 $GL(n,\mathbb{R})$ 是所有 BwB 的无交并.

题 9. 称 n 阶实方阵 A 是幂零矩阵,如果 $A^k=0$ 对某个正整数 k 成立.证明

- 1. 若 A 是 n 阶幂零矩阵,则 I+A 可逆.
- 2. 假设 I-X 是 n 阶幂零方阵, B 是 n 阶实方阵, 且 $X^mB=BX^m$ 对某一个正整数 m 成立.请问是否一定有 XB=BX 成立?如果是请证明,如果不是请给出反例.