Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control

Proceedings of the AAAI Conference on Artificial Intelligence, 2020

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, Zhenhui Li

발표자: 여지호

Introduction

Traffic signal control using RL: Why?

- Pre-timed control
- Actuated control
- Optimization-based control
- Recently, reinforcement learning

• Traditional transportation modes + New Mobility Models

Research gap

- City-level traffic signal control
 - : there are three issues
- Scalability
 - : Handle large-scale traffic network
 - : Thousands of traffic lights
 - : Manhattan, NYC 2800 traffic lights
 - : Large-scale + global optimization goal
- Coordination
- Data feasibility

Research gap

- City-level traffic signal control
 - : there are three issues
- Scalability
- Coordination
 - : 신호연동
 - : Optimizing signal timings
- Data feasibility
 - : Feasible data source
 - : Should use real-world data
- None of the methods are applied to a city-level scenario with thousands of signals.

Objective

- Present a decentralized RL model to tackle the city-level traffic signal control problem
 - : satisfies 1) scalability; 2) Coordination; 3) Data feasibility

- Decentralized RL paradigm
 - : FRAP(Zheng et al., 2019) Phase competition
 - : Add 'pressure' concept for coordination

Illustration the concept of pressure

Figure 1: Illustration of max pressure control in two cases (Wei et al. 2019a). In Case A, green signal is set in the North→South direction; in Case B, green signal is set in the East→West direction.

Preliminaries

Definition 1 - Traffic movement

- Traffic travelling across an intersection from one entering lane to an exiting lane.
- We denote a traffic movement from road I to road m as (I,m)

Definition 2 – Signal Phase

- A set of permissible traffic movements
- S_i denotes the set of all the phases at intersection i

Example

- 12 traffic movement
- 8 signal phases

Figure 2: The illustration of an intersection with eight phases. In this case, phase #2 is set.

Definition 3 – Pressure of each signal phase

For each signal phase s, there are several permissible traffic movements (l,m). Denote by x(l,m) the discrepancy of the number of vehicles on lane l and lane m, for traffic movement (l,m), the pressure of a signal phase p(s) is simply the total sum of the pressure of its permissable phases $\sum_{(l,m)} x(l,m), \forall (l,m) \in s$.

Figure 2: The illustration of an intersection with eight phases. In this case, phase #2 is set.

Definition 4 – Pressure of an intersection

The pressure of an intersection

: Difference between

the sum of the queuing vehicles on all the entering lanes and the sum of the queuing vehicles on all the exiting lanes

Pressure = |#queueing cars on entering lanes - #queueing cars on exiting lanes| = | 3 + 2 + 6 + 1 - 3 - 0 - 1 - 0 | = 8

Problem 1 – Multi-intersection traffic signal control

- Each intersection is controlled by an RL agent
- At time step t, agent i views part of the environment as its observation o_i^t
- Given the traffic situation and current traffic signal phase, the goal of the agent is to take an optimal action a (which phase to set)

Method

MPLight: Deep Q-Network

- Pressure-based control law
- For large-scale network signal control,
 we leverage parameter sharing among the agents

Figure 4: The framework of MPLight for multi-intersection signal control.

Pressure-based coordination

Pressure

: difference between upstream and downstream queue length

By minimizing the pressure,

- : balance the distribution of the vehicles
- : maximize the system throughput

Pressure-based coordination

- Max Pressure Control Law
 - : Max pressure control law select the phase with maximum pressure
- Design an RL agent, PressLight
 - : using the **pressure-based reward** for long-term optimization.

```
Algorithm 1 Max Pressure Control for each intersection i do | for each phase s do | calculate p(s) end | next phase \leftarrow \arg\max\{p(s)|s\in S_i\} end
```

DQN Agent

- Setting the reward of our RL agents to be the same as max pressure control objective
- Each local agent is maximizing its own cumulative reward

DQN Agent - Observation

- Each agent observes part of the system state
- For standard intersection with 12 traffic movements
 - : 1) current phase *p*
 - : 2) Pressure of the 12 traffic movements
 - : fewer than 12 movements, the vector is zero-padded

DQN Agent - Action

- At time t, each agent chooses a phase p as its action a_t
- Agents choose from a full set of eight candidate phases

DQN Agent – Reward

- Reward r_i for agent i as the pressure on the intersection
- Pressure
 - : The queueing vehicles on all the entering lanes
 - Sum of the queueing vehicles on all the exiting lanes

Pressure = |#queueing cars on entering lanes - #queueing cars on exiting lanes| = | 3 + 2 + 6 + 1 - 3 - 0 - 1 - 0 | = 8

DQN Agent – FRAP Base Model

- FRAP architecture as our base model
 - : design a network architecture for learning the **phase competition** in traffic signal control problem.

FRAP has two following advantages

- (1) superior performance
- (2) faster training process compared with other sota signal control methods

DQN Agent – FRAP explanation - 1

• FRAP (Flipping and Rotation and considers All Phase configurations) http://www.personal.psu.edu/~gjz5038/paper/cikm2019_frap/cikm2019_frap_paper.pdf

: The difficulty is mainly due to the explosion of state space

: A considerable portion of state-action pairs are unnecessary to explore

Figure 1: Traffic (a) and (b) are approximately flipped cases of each other.

Figure 2: All the variations based on rotation and flipping of the left-most case. Ideally, a RL model should handle all these cases equally well.

DQN Agent – FRAP explanation - 2

 When two traffic signals conflict, priority should be given to one with larger traffic movement

DQN Agent – Deep Q-learning

- We use Deep Q-Network (DQN) to solve the multi-intersection signal control problem.
- DQN takes the state features on the traffic movements as input and predicts the score (i.e., Q value) for each action candidate (i.e., phase)

DQN Agent – Parameter sharing

- Parameters of the network are shared among all the agents.
- The single PressLight model receives observations from different intersections to predict the corresponding actions and learns from environment rewards for parameter update.

Figure 4: The framework of MPLight for multi-intersection signal control.

Experiment

Datasets – synthetic data

- Both synthetic and real-world datasets are used
 - : Synthetic data on a 4×4 network
 - : The turning ratios at the intersection are set as 10% (left), 60%(straight)

Figure 5: 4×4 road network.

Datasets – real-world data

Both synthetic and real-world datasets are used

: Manhattan, New York City from Open Street Map

: Traffic flow generated from the open-source taxi trip data

: Manhattan dataset contains signalized 2510 traffic lights

Figure 6: Road network of Manhattan in our experiments.

Simulation demo

Evaluation metrics

Travel time

: Average travel time of all vehicles in the system

Throughput

: The number of trips completed by vehicles

Performance Comparison

Table 2: Performance comparison of different methods evaluated in the four configurations of synthetic traffic data. For average travel time, the lower the better while for throughput, the higher the better.

Model	Travel Time				Throughput			
	Config 1	Config 2	Config 3	Config 4	Config 1	Config 2	Config 3	Config 4
FixedTime	573.13	564.02	536.04	563.06	3555	3477	3898	3556
MaxPressure	361.17	402.72	360.05	406.45	4702	4324	4814	4386
GRL	735.38	758.58	771.05	721.37	3122	2792	2962	2991
GCN	516.65	523.79	646.24	585.91	4275	4151	3660	3695
NeighborRL	690.87	687.27	781.24	791.44	3504	3255	2863	2537
PressLight	354.94	353.46	348.21	398.85	4887	4742	5129	5009
FRAP	340.44	298.55	361.36	598.52	5097	5113	5483	4475
MPLight	309.33	262.50	281.34	353.13	5219	5213	5652	5060

Scalability Analysis

GRL and NeighborRL
: unable to scale to large networks due to high complexity and computational costs.

Table 3: Performance of different methods on Manhattan, a large-scale road network with 2510 traffic signals.

Model	Travel Time	Throughput	-
FixedTime	974.23	1940	-
MaxPressure	497.76	2143	
GRL	_*	_*	-
GCN	653.45	5045	*No result
NeighborRL	_*	_*	
PressLight	600.42	3447	
FRAP	512.70	6346	
MPLight	472.51	6932	-

as GRL and NeighborRL can not scale up to thousands of intersections in New York's road network.

Ablation Study – pressure design

Impact of Pressure-based Design

: unable to scale to large networks due to high complexity and computational costs.

Table 4: Performance of different RL-based methods with and without "pressure" on Manhattan network.

Model	Travel Time
GCN	653.45
GCN + pressure	646.47
PressLight- pressure	654.04
PressLight	600.42
FRAP + pressure	512.70 472.51

Ablation Study – parameter sharing

Impact of Parameter sharing

: unable to scale to large networks due to high complexity and computational costs.

Figure 7: Number of episodes for models to converge.

Additional information

- Reinforcement learning for traffic signal control
 - : https://traffic-signal-control.github.io/

Cityflow

- : https://arxiv.org/abs/1905.05217
- : Twenty times faster than SUMO

Tutorial

:https://docs.google.com/presentation/d/12cqabQ_V5Q9Y2DpQOdpsHyrR6 Mlxy1CJlPmUE3Ojr8o/edit

감사합니다

Q & A