ATH PLANNING OPTIMIZATION	FOR AUTONOMOUS FLOOR MAINTENANC
	PATH PLANNING OPTIMIZATION FOR AUT
	PROPRIETARY AND CONFIDENTIAL
	NaviFloor Robotics, Inc.
	Last Updated: January 11, 2024

1. OVERVIEW AND SCOPE

1. This document describes the proprietary path planning optimization algorithms also also be a second of the proprietary path planning optimization algorithms.

1-
2. The Path Planning System encompasses the complete technological frame
2. TECHNICAL SPECIFICATIONS
- 1. Core Components
- Dynamic Terrain Mapping Module (DTM-2000)
-
Adaptive Route Generation Algorithm (ARGA v4.2)
Multi-Surface Classification System (MSC-23)
Real-time Path Adjustment Protocol (RPAP)

- 2 -

- 2. Key Features
- (a) Multi-level surface detection and classification
- (b) Real-time obstacle avoidance with predictive modeling
- (c) Energy-optimized route planning
- (d) Fleet coordination and traffic management
- (e) Machine learning-based performance optimization

3. INTELLECTUAL PROPERTY PROTECTION

-

1. Patent Protection

The Path Planning System is protected under the following:

_

U.S. Patent No. 11,789,XXX ("Adaptive Navigation System for Autonomo
-
U.S. Patent Application No. 17/XXX,XXX ("Method for Multi-Surface Cl.
-
PCT Application No. PCT/US2023/XXXXX
-
2. Trade Secrets
The following components are maintained as trade secrets:
(a) Surface friction coefficient calculation methods
(b) Energy consumption optimization algorithms
(c) Fleet coordination protocols
(d) Machine learning training datasets

4. IMPLEMENTATION SPECIFICATIONS

1. System Requirements

Minimum processing power: 4.2 GHz quad-core processor

RAM: 16GB DDR4

Storage: 256GB SSD

Sensor array: NaviFloor LiDAR Model NF-L2024 or higher

Operating System: NaviFloor OS v3.5 or higher

- 5 -

2. Performance Metrics

_

Path optimization completion time: <500ms

_

Obstacle detection accuracy: 99.98%

-

Surface classification accuracy: 99.95%

-

Maximum supported fleet size: 50 units

-

Minimum turning radius: 0.75m

5. SECURITY PROTOCOLS

- 6 1. Data Protection
(a) All path planning data is encrypted using AES-256 encryption
(b) Secure boot verification system
(c) Encrypted communication channels between units
(d) Regular security audits and penetration testing
2. Access Controls
Role-based access management
Multi-factor authentication for system modifications

Audit logging of all system access and changes

6. PRÓPRIETARY NOTICES

1. All components of the Path Planning System, including but not limited to
2. Any unauthorized use, reproduction, or distribution is strictly prohibited a

7. MAINTENANCE AND UPDATES

1. Regular system updates are provided through the NaviFloor Update Serve

2. Critical security patches are automatically deployed

-

3. Performance optimization updates are released quarterly
-
4. System logs are retained for 90 days
8. COMPLIANCE AND CERTIFICATION
6. COMI LIANCE AND CERTIFICATION
-
1. The Path Planning System complies with:
_
ISO/TS 15066:2016 (Robots and robotic devices)
iso, is isomorphic (Robots and robotic devices)
-
IEC 61508 (Functional Safety)
-
CE Marking requirements
-

UL 3100 certification for automated guided vehicles

9. CONFIDENTIALITY

1. This document contains confidential and proprietary information of NaviF

2. Distribution of this document is restricted to authorized personnel only an

AUTHENTICATION

Document ID: NF-PPO-2024-011

Version: 4.2

Classification: CONFIDENTIAL

Approved by:

_

Dr. Elena Kovacs

Chief Research Officer

NaviFloor Robotics, Inc.

Date: January 11, 2024

-

Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

Date: January 11, 2024

