2) a)
$$n^{3} \in O(2^{n})$$
 $n^{3} \in C \cdot 2^{n}$
 $n^{3} = \frac{3n^{2}}{n2^{n} \ln 2} = \frac{3n}{2^{n} \ln 2} = 0$
 $n^{3} \in O(3^{n})$
 $2^{n} \in O(3^{n})$
 $2^{n} \in O(3^{n})$
 $2^{n} \in O(3^{n})$
 $2^{n} \in O(3^{n})$
 $n^{3} = \frac{n \cdot 2^{n} \ln 2}{n \cdot 3^{n} \ln 3} = \lim_{n \to \infty} \frac{2^{n} \cdot \ln 2}{3^{n} \ln 3} = 0$

c) $n^{n} \in O(100^{n})$
 $n^{3} \in O(100^{$

= cologn - en

K= chlogn

Scanned by CamScanner

d)-Worst rose =
$$T(n) \in \Theta(n^2)$$
 $T(n) \in \Theta(n^2)$ $T(n) \in \Theta(n^2)$

a)
$$(n-1)(n-1) = \frac{n^2-2n+1}{n^2}$$

Worst case:
$$O(n) \rightarrow if$$
 there is not the key or end of the list.
Average Case: $\frac{\sum_{i=1}^{n+1} \Theta(i)}{\sum_{i=1}^{n+1}} = \frac{\Theta((n+i)\times(n+1)/2)}{\sum_{i=1}^{n+1}} = \frac{G(n)}{n+1}$

10) a) According to Moster Method
$$T(n) = \Theta(n^2)$$

b) According to "" $T(n) = \Theta(n^2 \log^2 n)$

Suppose 1) a) f(n) = o(g(n) if there exist positive constants and a f(n) & cig(n). Let m is ay odd integer > < , no g(m)=1 . 50 f(m)=m 4 f(m)>< (m) > c, g(m) if m) no there is a contradetur. So initial assumption is wrong. fisnot Olg) also g isnt 0(4) O(g(n)) = f(n) if there exist positive constant cond no such that Offin) scigla) mino 0(g(n)) = +(n) = 05+(n) = = g(n) k isinteger (2 constat and fla) & Olgan) then fink eolaly) 7) func find zers (AM) if (n=-1) Sif(A[0]==0) return 1; else return 0; 3 return find zero (A[o:(n/2)-13)+ And Zero(A[n/2:n]) T(n)= 2.T(1/2)+1 According to master theren a=2 b=2 a7bd f(n)=Q(1) 2,2° T(n) = O(n 109 = 2)= O(n) Ng -1 9:0

9) a)
$$T(n) = T(n-1) + n^2 + 1$$
 $T(0) = 3$

1 $T(n) = T(n) + 1^2 + 1$

1 $T(n) = T(n) + 2^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

2 $T(n) = T(n) + n^2 + 1$

3 $T(n) = T(n) + n^2 + 1$

4 $T(n) = T(n) + n^2 + 1$

5 $T(n) = T(n) + n^2 + 1$

6 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

2 $T(n) = T(n) + n^2 + 1$

2 $T(n) = T(n) + n^2 + 1$

3 $T(n) = T(n) + n^2 + 1$

4 $T(n) = T(n) + n^2 + 1$

5 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

2 $T(n) = T(n) + n^2 + 1$

3 $T(n) = T(n) + n^2 + 1$

4 $T(n) = T(n) + n^2 + 1$

5 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

1 $T(n) = T(n) + n^2 + 1$

2 $T(n) = T(n) + n^2 + 1$

3 $T(n) = T(n) + n^2 + 1$

4 $T(n) = T(n) + n^2 + 1$

5 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

7 $T(n) = T(n) + n^2 + 1$

1

8) a)
$$T(n) = A T(n-1) + A T(n-2)$$
 $T(0) = 0$ $T(0) = 1$
 $x^2 = ax + b$
 $x^2 = -4x - 4$
 $x^2 + 4x + b = 0$ $(x + 2)^2 = 0$
 $T(n) = c_1 \cdot (2)^n + c_2 \cdot n \cdot (-2)^n$
 $T(0) = c_1 \cdot (-2) + c_2 \cdot (-2) + c_3 \cdot (-2)^n$
 $T(1) = c_1 \cdot (-2) + c_4 \cdot (-2) + c_4 \cdot (-2)^n$
 $T(2) = -\frac{1}{2} \cdot (-2)^n + c_4 \cdot (-2)^n$
 $T(3) = 0 \cdot (-2)^n + c_4 \cdot (-2)^n$
 $T(3) = 0 \cdot (-2)^n + c_4 \cdot (-2)^n$
 $T(3) = 0 \cdot (-2)^n + c_4 \cdot (-2)^n$
 $T(4) = T(1) + c_4 \cdot (-2)^n$
 $T(5) = 0 \cdot (-2)^n$
 $T(5) = 0 \cdot (-2)^n$
 $T(5) = c_1 \cdot ($