Задание 1. Термоскоп Галилея.

пункт	Критерии	Всего	баллы	Оценки
	Часть 1. Конструирование и градуировка в			
	идеальном случае.			
1.1		6		
	Уравнение состояния (1)		2	
	Формула для объема сосуда (2)		2	
	Численное значение объема			
	(допустимая погрешность 2 <i>см</i> ³)		2	
1.2		4		
	значение параметра $\alpha \ \left(\pm \ 0.1 \cdot 10^{-3}\right)$		2	
	значение параметра $\beta \ \left(\pm \ 0.2 \cdot 10^{-3}\right)$		2	
1.3		4		
	Уравнение состояния (4)		2	
	Уравнение в безразмерном виде (5)		2	
1.4		8		
	Решение уравнения (6)		2	
	Выбор корня со знаком "минус"		2	
	Расчет значений z (7x0,3 с округлением) $(\pm 0,01)$		2	
	Построение графика (все точки, сглаживающая			
	кривая) – оценивается, если оценены расчеты		2	
	Часть 2. Реальные измерения.			
2.1		8		
	Условие равновесия столба жидкости (7)		2	
	Уравнение состояния (9)		3	
	Уравнение в безразмерном виде (10)		3	
2.2		5		
	Расчет значений z (7x0,4 с округлением) $(\pm 0,01)$		3	
	Построение графика (все точки, сглаживающая			
	кривая) оценивается, если оценены расчеты		2	
	Всего за задачу	35		

Задание 2. Капельница Кельвина.

пункт	Критерии	Всего	баллы	Оценки
1.1		8		
	Идея - равенство потенциалов кольца и			
	сосуда		3	
	Формула для потенциала сферы (1)		2	
	Формула для разности потенциалов (2)		1	
	Формула для заряда кольца (3)		2	
1.2		12		
	Потенциал капли равен нулю		3	
	Потенциал поля кольца (4)		4	
	Потенциал поля капли (5)		1	
	Формула для заряда капли (6)		3	
	Формула для коэффициента (7)		1	
1.3		5		
	Рекуррентное соотношение (8)		3	
	Геометрическая прогрессия (9)		2	
	Всего за задачу	25		

Задание 3. Диск на рельсах.

пункт	Критерии	Всего	баллы	Оценки
	Часть 1. Динамика вращательного движения.			
1.1		6		
	Уравнение для изменения энергии		2	
	Работа сил трения		2	
	Приближение малых изменений		2	
	Использование уравнения динамики			
1.2		6		
	Использование уравнения (1)		1	
	Формула для силы трения (4)		1	
	Зависимость угловой скорости от времени (6)		2	
	Формула для времени (7)		2	
1.3		3		
	Связь между начальной скоростью и числом		2	
	Формула для числа оборотов		1	
	Часть 2. Движение диска по рельсам.			
2.1		18		
	Скорость поступательного движения			
	больше:			
	Направление сил трения со стороны рельсов		2	
	Зависимость скорости от времени (9)		1	
	Момент сил трения равен нулю		3	

	Угловая скорость не изменяется		1	
	Скорость вращательного движения			
	больше:			
	Направление сил трения со стороны рельсов		2	
	Зависимость угловой скорости от времени			
	(10)		2	
	Суммарная сила трения равна нулю		3	
	Скорость поступательного движения			
	постоянна		1	
	Схематический график (скорости			
	поступательного и вращательного движений			
	до выравнивания, скорости после			
	выравнивания 1+1+1)		3	
2.2		2		
	Формула для равенства скоростей		1	
	Формула для времени (11)		1	
2.3		12		
	Движение с постоянными ускорениями не			
	возможно		2	
	Модель скачкообразного движения		4	
	Оценка времен "скачков" (12)-(13)		4	
	Вычисление среднего ускорения (14)		2	_
2.4		3		
	Путь до выравнивания скоростей		1	
	Путь от равенства скоростей до остановки		1	
	Общий путь до остановки		1	
	Всего за задачу	50		

Задание	Баллы жюри	Апелляции	Итоговые	Подпись	Подпись
			баллы	жюри	участника
1					
2					
3					

Задание 1. Размер Солнца.

пункт	Критерии	Всего	баллы	Оценки
1		5		
	Рисунок хода лучей		2	
	Формула для расстояния		1	
	Численное значение расстояния			
	(± 2 <i>см</i>)		2	
2		6		
	Рисунок хода лучей		2	
	Формула для интенсивности		2	
	Численное значение			
	интенсивности $(\pm 0.2 \cdot 10^6 \frac{Bm}{M^2})$		2	
3		7	-	
	Рисунок тени и полутени		2	
	Формула для длины тени		2	
	Формула для высоты шара		1	
	Численное значение высоты			
	$(\pm 10 M)$		2	
4		17		
	Оптическая схема Юнга		3	
	Объяснение эффекта (сдвиг полос,			
	отсутствие когерентности)		5	
	Формула для разности хода (8)-(9)		3	
	Сдвиг на ширину полосы для краев		_	
	Солнца (половина ширины – 1)		2	
	Изменение разности хода - длина		4	
	ВОЛНЫ		1	
	Формула для расстояния между		1	
	Щелями		1	
	Численное значение расстояния		_	
	$\left(\pm 0.2 \cdot 10^{-5} \mathrm{M}\right)$		2	
	Всего за задачу	35		

Задание 2. Кислород и водород – методы охлаждения.

пункт	Критерии	Всего	баллы	Оценки			
	Часть 1. Адиабатическое расширение «в пустоту	»					
1.1		9					
	Газ работы не совершает		2				
	Сохранение внутренней энергии газа		1				
	Уравнение (1)		2				
	Формула для изменения температуры		1				
	Температура идеального газа не изменяется		3				
1.2		13					
	Использование уравнения ИГ для расчета объема		4				
	Оценка поправки, связанной с b		2				
	Оценка поправки, связанной с а		2				
	Оценка поправки, связанной с малостью ΔT		3				
	Формула (7)		2				
	Численные значения (2x1) (допустимая						
	погрешность – 2 единицы последнего разряда)		2				
	Часть 2. Дросселирование.						
2.1		14					
	Изменение внутренней энергии – разность работ		4				
	Формула для работы		2				
	Уравнение (12)		3				
	Формула для разности температур (15)		5				
2.2		5					
	Неравенство (17)		2				
	Неравенство (18)		3				
2.3		4					
	Численное значение для кислорода $(\pm 0.1 \cdot 10^3 K)$		2				
	Численное значение для водорода $(\pm 0.1 \cdot 10^2 K)$		2				
	Всего за задачу	45					

Задание 3. Гемодинамика - артериальная система.

пункт	Критерии	Всего	баллы	Оценки
II J III CI	Часть 1. Предварительные расчеты.	Beero		одения
1.1	Формулы:	4	1	
1.1.1	Средняя скорость (2)	-	2	
1.1.2	Время движения (3)		1	
1.1.3	Разность давлений (4)		1	
1.2	Tublice TD Auditermin (1)	14		
1.2	Постоянство объема (5)	17	2	
	Изменение кинетической энергии		2	
	Формула для кинетической энергии		2	
	Формула для работы		2	
	Уравнение (6)		2	
	Ссылка на уравнение Бернули принимается (10 баллов)		2	
	Формула (8)		2	
	Указана область скачка		2	
1.3	J Rasana Oojiacib Cranra	8		
1.3	Вуможания инд возмости портаний (0)	O	3	
	Выражения для разности давлений (9) Уравнение (11)		2	
	Решение уравнения (12)		2	
			1	
1 /	Выбран положительный корень	<i>E</i>	1	
1.4	1 (0)	5	2	
	Использована формула (8)		3 2	
	Учтена общая площадь сечения	<u> </u>		
	Часть 2. Характеристики кровотока в артериальной с		іовека.	
2.1		16		
2.1.1	Средняя скорость течения в группе:			
	формула (16)		1	
	Численный расчет для групп (4x0,25		1	
2.1.2	Среднее время			
	формула (17)		1	
	Численный расчет для групп (4x0,25		1	
	Общее время движения		1	
2.1.3	Разности давлений			
	Формула (18)		1	
	Численный расчет для групп (4x0,5)		2	
2.1.4	Скачки давлений на стыках			
	формула (19)		3	
	Численный расчет для групп (4x0,5)		2	
2.1.5	Общая разность давлений		3	
2.2		3		
	Разность давлений велика по сравнен		2	
	Есть дополнительные "насосы"		1	
	Всего за задачу	50		

Допустимая погрешность во всех численных расчетах -5%.

Задание	Баллы жюри	Апелляции	Итоговые	Подпись	Подпись
			баллы	жюри	участника
1					
2					
3					