Math 534 Homework 2

Morgan Gribbins

January 30, 2020

(1)

Write down the group table for $(\mathbb{Z}/4, +_4)$ and $((\mathbb{Z}/5)^{\times}, \times_5)$. Are they related? If so, explain how.

$\mathbb{Z}/4$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$(\mathbb{Z}/5)^{\times}$	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

These groups are isometric under the mapping $\psi: \mathbb{Z}/4 \to (\mathbb{Z}/5)^{\times}$, with $\psi(0) = 1, \psi(1) = 4, \psi(2) = 2, \psi(3) = 3$.

(2)

For each of the following groups G, find |G| and |g| for every $g \in G$:

(a)
$$G = \mathbb{Z}/12$$

$$|0| = 1$$
, as $0 = e$.

$$|2| = 6$$
, as $2 + 2 + 2 + 2 + 2 + 2 = 12 = 0 = e$.

$$|3| = 4$$
, as $3 + 3 + 3 + 3 = 12 = 0 = e$.

$$|4| = 3$$
, as $4 + 4 + 4 = 12 = 0 = e$.

$$|6| = 2$$
, as $6 + 6 = 12 = 0 = e$.

```
\begin{aligned} |7|&=12, \text{ as } 7+7+7+7+7+7+7+7+7+7+7+7+7+7=84=0=e.\\ |8|&=3, \text{ as } 8+8+8=24=0=e.\\ |9|&=4, \text{ as } 9+9+9+9=36=0=e.\\ |10|&=6, \text{ as } 10+10+10+10+10+10=60=0=e.\\ |11|&=12, \text{ as } 11+11+11+11+11+11+11+11+11+11+11=132=0=e. \end{aligned}
```

(b)
$$G = (\mathbb{Z}/12)^{\times}$$

$$|1| = 1$$
, as $1 = e$.
 $|5| = 2$, as $5 \times 5 = 24 = 1 = e$.
 $|7| = 2$, as $7 \times 7 = 49 = 1 = e$.
 $|11| = 2$, as $11 \times 11 = 121 = 1 = e$.

(c)
$$G = (\mathbb{Z}/16)^{\times}$$

$$\begin{aligned} |1| &= 1, \text{ as } 1 = e. \\ |3| &= 4, \text{ as } 3 \times 3 \times 3 \times 3 = 81 = 1 = e. \\ |5| &= 4, \text{ as } 5 \times 5 \times 5 \times 5 = 625 = 1 = e. \\ |7| &= 2, \text{ as } 7 \times 7 = 49 = 1 = e. \\ |9| &= 2, \text{ as } 9 \times 9 = 81 = 1 = e. \\ |11| &= 4, \text{ as } 11 \times 11 \times 11 \text{ } times11 = 14641 = 1 = e. \\ |13| &= 4, \text{ as } 13 \times 13 \times 13 \times 13 = 28561 = 1 = e. \\ |15| &= 2, \text{ as } 15 \times 15 = 225 = 1 = e. \end{aligned}$$

(d) G = the symmetries of the square

```
|R_0| = 0, as R_0 = e.

|R_{90}| = 4, as R_{90}^4 = R_0 = e.

|R_{180}| = 2, as R_{180}^2 = R_0 = e.

|R_{270}| = 4, as R_{270}^4 = R_0 = e.

|H| = 2, as H^2 = e.

|V| = 2, as V^2 = e.

|D| = 2, as D^2 = e.

|D'| = 2, as D'^2 = e.
```

(3)

Recall from lecture that Wilson's Theorem states that a number n is prime if and only if $(n-1)! \cong -1 \pmod{n}$. We proved that n being prime implies the above congruence. In this problem, we will complete the proof by showing that if n isn't prime, then $(n-1)! \ncong -1 \pmod{n}$.

(a) Complete and then prove the following statement: if n is not prime and $n \neq a$, then $(n-1)! \cong 0 \pmod{n}$.

a=1. Let n be non-prime. This implies that n can be expressed as a product of some finite amount of integers less than n. As (n-1)! is the product of all integers less than n, it must be a multiple of n, and as such, $(n-1)! \cong 0 \pmod{n}$.

(b) Prove the only thing left to complete our proof of Wilson's Theorem.

We must now prove that $0 \ncong -1 \pmod{n}$, for all $n \not= 1$. The assertion that $0 \cong -1 \pmod{n}$ means that n|0-(-1) i.e. n|1. This implies that there is some $k \in \mathbb{Z}$ that satisfies the equation kn = 1, which cannot be true for natural $n \not= 1$. Therefore, we have n prime $\implies (n-1)! \cong -1 \pmod{n}$.

Also, when n = 1, $(n - 1)! \cong 0 \cong -1 \pmod{n}$. 1 is not prime.

(4)

Let G be a group. The center of G is defined via:

$$Z(G) = \{ g \in G : gx = xg \text{ for all } x \in G \}.$$

Prove the following: if $a \in G$ is the only element in G of order 2, then $a \in Z(G)$.

Assume that $a \in G$ is the only element in G of order 2. This implies that $a^2 = e$, and $\forall b \in G$, $b \neq a$ and $b \neq e \implies b^2 \neq e$. The assertion that $a \in Z(G)$ means that $ga = ag, g \in G$, which is true for g = e or g = a because ea = a = ae and aa = e = aa. We must now show that this holds for all other cases. Let $g \in G$ be some arbitrary element of g, and let us assume g has an order k > 2. Multiplying on the left of the equation $a = a^{-1}$ by g^{k-1} gives us $g^{k-1}a = g^{k-1}a^{-1}$. Inverting this, we get $a^{-1}g = ag \implies ga = ag$, so $a \in Z(G)$.