Face Detection and Recognition –

Learning Objectives

By the end of this lesson, students will:

- Understand the process of face detection and recognition.
- Implement face detection using Haar Cascades and DNN.
- Implement face recognition using LBPH and FaceNet.
- Analyze effects of lighting and pose variations on recognition accuracy.
- Learn enhancements to improve robustness in diverse conditions.

1. Face Detection vs Face Recognition

Task	Description
Face Detection	Locating human faces in an image
Face Recognition	Identifying the person based on detected face

2. Face Detection Techniques

A. Haar Cascades (OpenCV)

- Based on Viola-Jones algorithm.
- Detects faces by scanning the image with Haar-like features.
- Fast and lightweight, ideal for real-time applications.

Python Example:

```
import cv2

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades +
'haarcascade_frontalface_default.xml')
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

cv2.imshow('Detected Faces', img)
cv2.waitKey()
```

B. DNN (Deep Neural Network)

- More robust to scale, orientation, lighting.
- Uses Caffe/ResNet or TensorFlow-based pre-trained models.

Python Example:

```
net = cv2.dnn.readNetFromCaffe('deploy.prototxt',
   'res10_300x300_ssd_iter_140000.caffemodel')
image = cv2.imread('test.jpg')
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104, 177, 123))
net.setInput(blob)
detections = net.forward()

for i in range(detections.shape[2]):
    confidence = detections[0, 0, i, 2]
    if confidence > 0.5:
        box = detections[0, 0, i, 3:7] * [w, h, w, h]
        (startX, startY, endX, endY) = box.astype("int")
        cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)

cv2.imshow("Output", image)
cv2.waitKey(0)
```

3. Face Recognition Techniques

♦ A. LBPH (Local Binary Pattern Histogram)

- Works well with small datasets.
- Converts face region into a binary pattern, computes histogram, and compares.

Python Example:

```
import cv2
import numpy as np

recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.train(faces, np.array(labels))  # 'faces' is list of images,
'labels' is list of IDs

# Recognition
test_img = cv2.imread('test.jpg')
gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
id_, conf = recognizer.predict(gray)
print(f"ID: {id_}, Confidence: {conf}")
```

B. FaceNet (Deep Learning)

- Uses CNNs and Triplet Loss to create **128-D embeddings** of faces.
- Compares embeddings with Euclidean distance to recognize faces.

Key Mathematical Idea:

```
If f(x) is the embedding of image x, FaceNet trains using Triplet Loss:
```

```
L = max(||f(anchor) - f(positive)||^2 - ||f(anchor) - f(negative)||^2 + margin, 0)
```

• anchor: reference image

• positive: same person

• negative: different person

The goal is to minimize intra-class distance and maximize inter-class distance.

Python Tools:

```
• Use face_recognition library (built on FaceNet)
```

```
import face_recognition
```

```
image = face_recognition.load_image_file("test.jpg")
face_encoding = face_recognition.face_encodings(image)[0]
# Compare with known faces
```

```
matches = face_recognition.compare_faces(known_encodings, face_encoding)
```

4. Impact of Lighting and Pose

Factor	Effect	
Lighting	Can cause shadows or overexposure, reducing detection accuracy	
Pose	Side views or tilted faces may lead to poor matching or detection	

5. Enhancements to Improve Accuracy

A. Face Alignment

• Align faces based on landmarks (eyes, nose, mouth) before recognition.

B. Histogram Equalization

• Normalize lighting differences using cv2.equalizeHist().

C. Data Augmentation

• Simulate different lighting and pose during training to improve robustness.

6. Summary of Haar & LBPH Use

- Haar Cascades: Fast and lightweight face detection for static or frontal faces.
- **LBPH Recognizer**: Easy-to-use face recognition method for small datasets and low computational power.

7. Tools and Libraries

Tool	Use
OpenCV	Detection (Haar, DNN), Preprocessing
face_recognition	FaceNet-based face embeddings
dlib	Landmark detection, face alignment
NumPy	Matrix operations