Linear Regression Quiz

Total points 14/20

Email address * skkumarlokam@gmail.com	
Name * Siva Lokam	
1. Which of the following methods do we use to find the best fit line for data in Linear Regression?	1/1
Least Square ErrorMaximum Likelihood	✓
Logarithmic Loss Both A and B	
2. Which of the following evaluation metrics can be used to evaluate a model while modeling a continuous output variable?	1/1
Accuracy	
AUC-ROC	
Mean Squared ErrorLogloss	✓

3. Ridge Regularization can be used for variable selection in Linear Regression.	0/1
○ True	
False	×
Correct answer	
True	
Feedback Ridge regression is a regularization method intended to penalize features with too high weights	
4. What linear regression algorithm can you use if you have a training s with millions of features?	et 0/1
Normal Equation	
Stochastic Gradient Descent	×
Batch Gradient Descent	
None	
Correct answer	
Batch Gradient Descent	

~	5. Why would you want to use Ridge Regression over Normal Regression? 1/1	
0	It generalizes the data Underfits the data Overfits the data Regularizes the data ✓	
	Negularizes tile data	
✓	6. Is it good to stop Mini-batch Gradient Descent immediately when the 1/1 validation error goes up?	
0	Yes	
•	No 🗸	
~	7. In Polynomial Regression, on plotting learning curve we see a huge gap 1/1 between training error and validation error(this being higher), this is so because of ??	
0	Model Underfitting	
•	Model Overfitting	
0	Generalization of Model	
0	None	

8. What can you expect an overfit model to have among these?	1/1
Low Bias, High Variance	✓
High Bias, High Variance	
Low Bias, Low Variance	
High Bias, Low Variance	
9. What will happen when you fit degree 3 polynomial in linear regression?	0/1
There are high chances that degree 3 polynomial will under fit the data	×
There are high chances that degree 2 polynomial will over fit the data	
Can't say	
None of these	
Correct answer	
Can't say	
Feedback	
Depends on the complexity of data	

✓	10. Suppose you plotted a scatter plot between the residuals and predicted values in linear regression and you found that there is a relationship between them. Which of the following conclusion do you make about this situation?	1/1
0	Since there is a relationship the model is good	
	Since there is a relationship the model is not good	✓
0	None of these	
0	Can't say	
×	11. Can you help me out in knowing the assumptions before building any Linear Regression Model?	0/1
0	Linear relationship, Singlevariate normality, Multicollinearity among features, Homoscedasticity	
0	Linear relationship, Bivariate normality, No Multicollinearity among features, Homoscedasticity	
0	Linear relationship, Singlevariate normality, No or little Multicollinearity among features, No autocorrelation among features, Heteroscedasticity	
•	Linear relationship, Multivariate normality, No or little Multicollinearity among features, No autocorrelation among features, Homoscedasticity	×
Corr	ect answer	
	Linear relationship, Singlevariate normality, No or little Multicollinearity among features, No autocorrelation among features, Heteroscedasticity	

✓	12. Which of the following statement is true about outliers in Linear 1/1 regression?
\bigcirc	Linear regression is not sensitive to outliers
•	Linear regression is sensitive to outliers
0	None of these
0	Can't say
×	13. We can also compute the coefficient of linear regression with the help0/1 of an analytical method called "Normal Equation". Which of the following is/are true about Normal Equation?
~	There is no need to iterate
✓	We don't have to choose the learning rate
	It becomes slow when number of features is very large
Corr	ect answer
	There is no need to iterate
	We don't have to choose the learning rate
/	It becomes slow when number of features is very large
Ne Tř Ne	permal equation method uses matrices and hence: nere's no need to iterate to learning rate since there's no optimizing function like gradient descent to imputation becomes very complex as the number of features increases due to matrices

14. Which among the following is true about Residuals?	1/1
Higher is better	
Lower is better	✓
Can't say	
O None of these	
✓ 15. Can all data points lying above IQR > 3 be treated as outliers?	? 1/1
Yes	
O No	
Maybe	✓
MaybeNone of these	✓
	1/1
None of these	1/1
None of these✓ 16. When the correlation coefficient , r , is close to one:	1/1
 None of these ✓ 16. When the correlation coefficient, r, is close to one: ○ there is no relationship between the two variables 	✓
 None of these ✓ 16. When the correlation coefficient, r, is close to one: there is no relationship between the two variables there is a strong linear relationship between the two variables 	✓

Given the following data pairs (x, y):- (1, 1.24), (2, 5.23), (3, 7.24), (4, 7.60), (5, 9.97), (6, 14.31), (7, 13.99), (8, 14.88), (9, 18.04), (10, 20.70) Answer the questions below

B

17. Find the regression equation.

1/1

- y = 0.490 x 0.053
- y = 2.04 x
- y = 1.98 x + 0.436

- y = 0.49 x
- 18. Calculate the correlation coefficient.

0/1

- r = 0.490
- r = 0.985
- r = 0.971

X

r = 0.240

Correct answer

r = 0.985

Below is the scatter plot showing relationship between 'x' independent variable and 'y' dependent variable

19. The data in the scatterplot above would have a correlation coef that is close to:	ficient 1/1
-1.0-0.5+1.0+0.5	✓
✓ 20. The intercept in linear regression represents:	1/1
 the strength of the relationship between x and y the expected mean x value when y is zero the expected mean y value when x is zero a population parameter 	✓

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms