Lezione 04

1.2.3. Esempio 2.8

Calcolare l'andamento del potenziale elettrostatico tra due piani indefiniti, paralleli, uniformemente carichi con densità di superficie $+\sigma$ e $-\sigma$ e a distanza h.

So che il campo tra i due piani ha modulo $|\vec{E}|=\frac{\sigma}{2\epsilon_0}$. Se quindi prendo un punto A sulla superficie interna del piano positivo e un punto B sulla superficie interna del piano negativo, alla stessa altezza di A, calcolo il potenziale:

$$V = -\int_A^B ec{E} \cdot \, dec{s} = -\int_A^B E \, ds = \int_A^B rac{\sigma}{\epsilon_0} \, ds = -rac{\sigma}{\epsilon_0} (B-A) = -rac{\sigma}{\epsilon_0} h$$

Osservo che il campo all'esterno dei piani è nullo, quindi il potenziale è costante.

1.2.4. Legge di conservazione dell'Energia

Durante il moto della particella, l'energia totale, ovvero la somma dell'energia cinetica e dell'energia elettrostatica, rimane costante

$$E_{tot} = rac{1}{2} m v^2 + q V = \mathrm{cost}$$

Nota bene

Dati A=B, si ha $V_A=V_B$, quindi alla fine di un percorso chiuso l'energia cinetica è la stessa che all'inizio, la velocità può

aver cambiato direzione, ma non modulo.

(!) Osservazione

Dato un campo uniforme, quindi constante in modulo, direzione e verso, si ottiene $V_B-V_A=-\int_A^B \vec E\cdot d\vec s=-E(z_B-z_A)$ perciò $V_A=-Ez_A+c$, $V_B=-Ez_B+c$, con c costante, ovvero

$$V(z) = -Ez + c$$

Questo vuol dire che il potenziale ha lo stesso valore in tutti i punti di un piano ortogonale alla direzione del campo (come avviene nell'esempio 2.8 e nell'esempio seguente).

Esempi 1.9 e 2.3

Una carica puntiforme q di massa m è liberata in quiete tra due piani indefiniti, paralleli, uniformemente carichi con densità di superficie $+\sigma$ e $-\sigma$ e a distanza h. Descrivere il moto della carica. Calcolare l'energia cinetica acquisita.

$$x(t) = x_0 + v_0 t + \frac{a}{2} t^2$$

$$v(t) = v_0 + at$$

$$qE = F = ma \implies a = \frac{qE}{m}$$

$$E_I=rac{1}{2}mv_0^2+qV_I=qV_I$$

$$E_F = rac{1}{2} m v_f^2 + q V_F$$

Per la conservazione dell'energia ho:

$$E_F = E_I \implies E_{F,K} = q(V_I - V_F) = q\left(-rac{\sigma}{\epsilon_0}h
ight)$$

Ŋ Unità di misura

Quando una carica elementare viene accelerata dalla differenza di potenziale di 1V essa acquista energia cinetica pari a $e\Delta V=1.6\cdot 10^{-19}J$.

Questa quantità di energia, che è adeguata per descrivere le energie dei fenomeni su scala atomica, definisce l'unità di misura elettronvolt, di simbolo eV

$$1eV = 1.6 \cdot 10^{-19} J \implies 1J = 6.25 \cdot 10^{18} eV$$

1.2.5. Energia potenziale elettrostatica

Supponiamo di avere una distribuzione di N cariche. QUal è il lavoro esterno necessario per "costruire" questa distribuzione partendo con tutte le cariche all'infinito?

Cominciando portando la prima carica. Non essendoci ancora nessun'altra carica, il campo è nullo, così come il lavoro esterno. La seconda carica risente il campo generato dalla prima carica, quindi il lavoro esterno è $\mathcal{L}_{ext}=-\mathcal{L}_{el}=-\int_{\infty}^{p_2}q_2\vec{E}\cdot d\vec{s}=q_2V_{p_2}=\frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r_{12}}$.

() Osservazione

Il lavoro è positivo se fatto contro la forza repulsiva della cariche, altrimenti è negativo.

La terza carica risente il campo generato dalla prima e seconda carica. Vige il principio di sovrapposizione, quindi il lavoro è $\mathcal{L}=\mathcal{L}_{13}+\mathcal{L}_{23}=-\int_{\infty}^{p_3}q_3\vec{E}^{(1)}\cdot d\vec{s}-\int_{\infty}^{p_3}q_3\vec{E}^{(2)}\cdot d\vec{s}=q_3V_{p_3}^{(1)}+q_3V_{p_3}^{(2)}=\frac{1}{4\pi\epsilon_0}q_3\left(\frac{q_1}{r_{13}}+\frac{q_2}{r_{23}}\right)$ In generale il lavoro è

$$\mathcal{L}_{ext} = \sum_{j>i} rac{1}{4\pi\epsilon_0} rac{q_i q_j}{r_{ij}} = rac{1}{2} \sum_{i
eq j} rac{1}{4\pi\epsilon_0} rac{q_i q_j}{r_{ij}}$$

1.2.6. Gradiente di una funzione scalare

Sia f(x,y,z) funzione continua e derivabile delle coordinate x,y,z; con le derivare parziali $\frac{d}{dx}f$, $\frac{d}{dy}f$, $\frac{d}{dz}f$.

Possiamo costruire un vettore le cui componenti siano uguali alle rispettive derivate parziali. Questo vettore viene chiamato gradiente

$$ec{
abla}f=ec{ ext{grad}}f=rac{d}{dx}f\hat{x}+rac{d}{dy}f\hat{y}+rac{d}{dz}f\hat{z}=egin{pmatrix}rac{df}{dx} \ rac{df}{dy} \ rac{df}{dz} \end{pmatrix}$$

Il gradiente indica la direzione di massima crescita.

1.2.6.1. Esempio

Calcoliamo il gradiente della funzione $f(x,y,z)=x^2yz^3\,.$

$$ec{
abla}=(2xyz^3,x^2z^3,3x^2yz^2)$$

La componente lungo x è la derivata parziale di f rispetto a x e fornisce una misura della rapidità con cui varia f quando ci si muove lungo x. Vale l'analogo per la componente y e la z. La direzione del campo coincide con quella lungo cui si muove per trovare il più rapido incremento della funzione f.

1.2.6.2. Teorema del differenziale totale

$$df = f(x+dx,y+dy,z+dz) - f(x,y,z) = rac{df}{dx}dx + rac{df}{dy}dy + rac{df}{dz}dz = ec{
abla}f \cdot ec{s}$$

1.2.7. Legame tra potenziale e campo elettrostatico

Ricordo che $V(r)=-\int_{-\infty}^r ec E\cdot dec s$ e che $dV=-ec E\cdot dec s$. Usando il teorema di differenziale totale

$$dV = rac{dV}{dx} dx + rac{dV}{dy} dy + rac{dV}{dz} dz = ec{
abla} V \cdot dec{s}$$

Quindi

$$ec{E} = - ec{
abla} V$$

Il campo elettrostatico è un campo vettoriale che è equivalente a un singolo numero per punto dello spazio, per quanto riguarda l'aspetto delle informazioni.

1.2.8. Esempio 2.6

Una carica q è distribuita uniformemente su un sottile anello di raggio R. Calcolare il potenziale elettrostatico sull'asse dell'anello.

Figura 2.21

Definisco $\lambda=\frac{q}{2\pi R}$, quindi $dq=\lambda dl$, mentre definisco la distanza tra un punto dell'anello e un punto P sull'asse $r=\sqrt{R^2+x^2}$ (come si può vedere in figura).

Calcolo il potenziale:

$$V=rac{1}{4\pi\epsilon_0}\intrac{dq}{r}=rac{\lambda}{4\pi\epsilon_0}\int dl=rac{\lambda_2\pi R}{4\pi\epsilon_0 r}=rac{q}{4\pi\epsilon_0\sqrt{R^2+x^2}}$$

(!) Osservazione

Il potenziale elettrostatico è massimo nel centro ${\it O}$ e decresce simmetricamente rispetto al piano contenente l'anello all'aumentare della distanza di P dal centro.

Per $x\gg R$ il potenziale elettrostatico vale $rac{q}{4\pi\epsilon_0|x|}$, come se la carica fosse al centro.

Posso anche calcolare $ec{E}$ in maniera più semplice di quanto fatto nell'<u>esercizio 1.6</u>:

$$E_x=-rac{dV}{dx}=rac{qx}{4\pi\epsilon_0(R^2+x^2)^{3/2}}$$

$$E_y = -\frac{dV}{dy} = 0$$

$$E_y = -rac{dV}{dy} = 0 \ E_z = -rac{dV}{dz} = 0$$
 .

1.2.9. Esempio 2.7

Un disco sottile di raggio R ha una carica q distribuita su tutta la sua superficie. Calcolare il potenziale elettrostatico sull'asse del disco.

Chiamo la densità superficiale di carica $\sigma=rac{q}{\pi R^2}$, quindi $dq=\sigma d\Sigma$, con $d\Sigma$ l'area di una superficie infinitesima.

Considero un anello, concentrico al disco, di raggio r e area $d\Sigma=2\pi r dr$; allora il potenziale su questo anello è (calcolato come nell'esempio precedente):

$$dV(x)=rac{dq}{4\pi\epsilon_0\sqrt{r^2+x^2}}=rac{2\pi\sigma r\,dr}{4\pi\epsilon_0\sqrt{r^2+x^2}}=rac{\sigma}{2\epsilon_0}rac{r\,dr}{\sqrt{r^2+x^2}}$$

Integro allora su tutto il disco e ottengo:

$$V(x)=\int_{\Sigma}dV=rac{\sigma}{2\epsilon_0}\int_0^Rrac{r}{\sqrt{r^2+x^2}}\,dr=rac{\sigma}{2\epsilon_0}(\sqrt{R^2+x^2}-x)$$
ù

(!) Osservazione

In x=0 il potenziale elettrostatico è massimo e vale $V=rac{\sigma R}{2\epsilon_0}$. Per $x\gg R$ il potenziale è $V(x\gg R)=rac{q}{4\pi\epsilon_0x}$, come se la carica fosse posta al centro del disco.

Come nell'esercizio precedente, si può calcolare il campo:

$$E_x(x) = -rac{dV}{dx} = rac{\sigma}{2\epsilon_0} \Big(1 - rac{x}{\sqrt{R^2 + x^2}} \Big)$$
 .

1.2.10. Superfici equipotenziali

Le *superfici equipotenziali* sono una rappresentazione grafica complessiva del potenziale elettrostatico.

Sono superfici dello spazio tridimensionale, il luogo geometrico dei punti il cui potenziale elettrostatico ha lo stesso valore

$$V(x, y, z) = \text{costante}$$

Non forniscono direttamente l'intensità del campo.

1.2.10.1. Proprietà

- Per un punto passa un ed una sola superficie equipotenziale;
- Le linee di forza in ogni punto sono ortogonali alle superfici equipotenziali.

La prima proprietà dipende dal fatto che il potenziale elettrostatico è una funzione univoca, mentre la seconda è conseguenza del fatto che il campo elettrostatico \vec{E} non può avere una componente tangente a una superficie equipotenziale.

(!) Osservazione

Il verso del campo elettrostatico indica il verso in cui le superfici equipotenziali diminuiscono in valore.

Inoltre, le superfici equipotenziali si infittiscono nello zone in cui il campo è maggiore (fissato un certo passo ΔV).