Digital Electronics Assignment I - Solutions

Engineering College Ajmer

CS IIIrd Sem - Date: 23/09/25

Problem 1: Addition

(a) Addition of Octal Numbers

Problem: (327.5)₈ + (665.37)₈

Solution:

• Converting to decimal: 327.58 = 215.62510 and 665.378 = 437.48437510

• Sum in decimal: 215.625 + 437.484375 = 653.109375₁₀

• Answer: 1215.078

(b) Addition of Hexadecimal Numbers

Problem: (38CA.5078)₁₆ + (9EBD.97F3)₁₆ + (5F.BE2C)₁₆

Solution:

• 38CA.5078₁₆ = 14538.314331₁₀

• 9EBD.97F3₁₆ = 40637.593552₁₀

• 5F.BE2C₁₆ = 95.742859₁₀

• Sum = 55271.650742₁₀

Answer: D7E7.A69716

Problem 2: Subtraction using Complement Method

(a) Decimal Subtraction using 9's Complement

Problem: (76532)₁₀ - (4280)₁₀

Solution:

1. Minuend: 76532

2. Subtrahend (padded): 04280

- 3. 9's complement of 04280: 95719
- 4. Add: 76532 + 95719 = 172251
- 5. Since carry is generated, add 1 and discard carry: 72252
- 6. **Answer: 72252**10

(b) Octal Subtraction using r's Complement

Problem: (4120)8 - (6253)8

Solution:

- Since 41208 < 62538, the result is negative
- $4120_8 = 2128_{10}$ and $6253_8 = 3243_{10}$
- $2128 3243 = -1115_{10}$
- Answer: -21338

(c) Hexadecimal Subtraction

Problem: (B145)₁₆ - (2974)₁₆

Solution:

- $B145_{16} = 45381_{10}$ and $2974_{16} = 10612_{10}$
- 45381 10612 = 34769₁₀
- Answer: 87D1₁₆

(d) Binary Subtraction

Problem: (1110)₂ - (10110)₂

Solution:

- $1110_2 = 14_{10}$ and $10110_2 = 22_{10}$
- $14 22 = -8_{10}$
- Answer: -1000₂

Problem 3: BCD Addition

(a) BCD Addition Process

Problem: (386 + 756)₁₀

Detailed BCD Process:

```
0011 1000 0110 (386 in BCD)
+ 0111 0101 0110 (756 in BCD)
-------
1010 1101 1100 (intermediate sum)
+ 0110 0110 0110 (add 6 to groups > 9)
------
0001 0001 0100 0010 (1142 in BCD)
```

Answer: 114210

(b) Second BCD Addition

Problem: (123 + 987)₁₀

Solution:

• 123₁₀ in BCD: 0001 0010 0011

• 987₁₀ in BCD: 1001 1000 0111

• Sum: 111010 in BCD: 0001 0001 0001 0000

• Answer: 1110₁₀

Problem 4: Excess-3 Code

Properties of Excess-3 Code:

- 1. Self-complementing code
- 2. Unweighted code
- 3. Each decimal digit is represented by adding 3 to it
- 4. Range: 0011 (for 0) to 1100 (for 9)

Addition in XS-3 Code

Problem: (158.2)₁₀ + (347.6)₁₀

Solution:

• 158.2 in XS-3: 0100 1000 1011.0101

• 347.6 in XS-3: 0110 0111 1010.1001

• Sum: 505.8₁₀ in XS-3: 1000 0011 1000.1011

XS-3 Addition Rules:

- 1. Add the XS-3 representations
- 2. If carry is generated, add 0011 (3)
- 3. If no carry is generated, subtract 0011 (3)

Problem 5: Number System Conversions

(a) Binary to Decimal Conversion

Problem: $(10101110)_2 = (?)_{10}$

Solution:

$$10101110_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 128 + 32 + 8 + 4 + 2 = **17410**

(b) Octal to Binary Conversion

Problem: $(10110)_8 = (?)_2$

Solution:

• $10110_8 = 4168_{10}$

• Answer: 10000010010002

Properties of Gray Code:

- 1. Only one bit changes between consecutive code words
- 2. Also called Unit Distance Code or Reflected Binary Code
- 3. Minimizes errors in mechanical shaft encoders
- 4. Constructed using reflection property
- 5. Not a weighted code

Problem 6: Basic Gates and Universal Gates

Truth Tables for Basic Gates:

AND Gate

Α	В	Y = A⋅B
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

Α	В	Y = A+B
0	0	0
0	1	1
1	0	1
1	1	1

NAND Gate (Universal)

А	В	Y = (A·B)'
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate (Universal)

Α	В	Y = (A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

Universal Gates:

NAND and NOR gates are universal because:

- 1. Any Boolean function can be implemented using only NAND gates
- 2. Any Boolean function can be implemented using only NOR gates
- 3. All basic gates can be constructed using NAND or NOR gates

Implementation using NAND:

- NOT: A' = (A·A)'
- AND: $A \cdot B = ((A \cdot B)')'$
- OR: A+B = (A'·B')'

Problem 7: Half Adder and Full Adder

Half Adder

Truth Table:

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Boolean Expressions:

- Sum = $A \oplus B$ (XOR)
- Carry = $A \cdot B$ (AND)

Full Adder

Truth Table:

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean Expressions:

- Sum = A ⊕ B ⊕ Cin
- Cout = $A \cdot B + Cin \cdot (A \oplus B)$

Applications:

- Half Adder: Used in LSB addition
- Full Adder: Used in all other bit positions
- Both used in arithmetic logic units (ALU)

Problem 8: Complement Operations

(a) 9's Complement of (425.6)₁₀

Answer: 574.3

(b) 15's Complement of (A13.40)₁₆

Answer: 5EC.BF16

(c) 7's Complement of (613.025)₈

Answer: 164.7528

(d) 1's Complement of (1011.0010)₂

Answer: 0100.11012

Types of Complements:

r's complement (Radix complement):

- 10's complement for decimal
- 2's complement for binary
- 16's complement for hexadecimal
- 8's complement for octal

(r-1)'s complement (Diminished radix complement):

- 9's complement for decimal
- 1's complement for binary
- 15's complement for hexadecimal
- 7's complement for octal

Relationship: r's complement = (r-1)'s complement + 1

Summary

This assignment covered fundamental concepts in digital electronics including:

- Number system conversions and arithmetic operations
- Complement arithmetic for subtraction
- Binary coded decimal (BCD) and Excess-3 codes
- · Logic gates and their universal implementations
- Adder circuits (half and full adders)
- Various complement operations across different number systems

All problems have been solved with detailed step-by-step explanations and verification of results.

