EXERCICES — CHAPITRE 12

Exercice 1 – Résoudre les équations suivantes sur l'intervalle considéré.

- 1. $\ln(x+4) = 2\ln(x+2) \sin I = -2, +\infty$
- 2. $\ln(x+3) + \ln(x+1) = \ln(x+13) \text{ sur } I =]-1, +\infty[$
- 3. $\ln(3x-1) \ln x = \ln 2 \text{ sur } I = \left| \frac{1}{3}, +\infty \right|$
- 4. $\ln x = 1 \text{ sur } I = [0, +\infty[$

Exercice 2 – Résoudre les inéquations suivantes sur l'intervalle considéré.

- 1. $\ln(x-2) \le 0 \text{ sur } I = |2, +\infty|$
- 2. $\ln(3x+1) \ln(x+1) \ge \ln 2 \text{ sur } I = \left[-\frac{1}{3}, +\infty \right]$
- 3. $\ln(x-3) \ge 1 \text{ sur } I = |3, +\infty|$
- 4. $\ln\left(\frac{2x+1}{x+1}\right) \leqslant 0 \text{ sur } I = \left[-\frac{1}{2}, +\infty\right]$

Exercice 3 – Déterminer les limites des fonctions suivantes en $+\infty$.

- 1. $f(x) = \frac{1}{\ln(x)}$
- 2. $f(x) = \frac{x}{\ln(x^2)}$
- 3. $f(x) = \ln(x^2 3x + 1)$
- 4. $f(x) = \ln\left(\frac{x-1}{x+1}\right)$ 5. $f(x) = \frac{\ln(2x)}{x^2}$

Exercice 4 – Déterminer les limites des fonctions suivantes en 0.

- 1. $f(x) = x \ln(x)$
- 2. $f(x) = (x^2 + 1)\ln(x)$
- 3. $f(x) = x \ln(x^2)$

- 5. $f(x) = \frac{1}{x} + \ln(x)$

Exercice 5 – Dans chacun des cas suivants, étudier les limites aux bornes de l'ensemble de définition de la fonction f définie sur $]0, +\infty[$.

- $f(x) = 3x + 2 \ln x$
- $f(x) = \frac{2x + \ln x}{x}$

- $f(x) = \frac{2\ln x 1}{x}$ $f(x) = \frac{1}{x} \ln x$

Exercice 6 – Donner le domaine de définition et calculer la dérivée f'(x) des fonctions suivantes.

- 1. $f(x) = x 2 2 \ln x$

- 2. $f(x) = x \ln x$ 3. $f(x) = \frac{\ln x}{x}$ 5. $f(x) = x^2 \ln x$ 6. $f(x) = \frac{x+3\ln x}{x}$ 9. $f(x) = \frac{10}{\ln(4x-2)}$

Exercice 7 – Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{1}{x} + \ln x$.

- 1. Étudier les limites de f en 0 et en $+\infty$.
- 2. On note f' la dérivée de la fonction f. Calculer f'(x).
- 3. Étudier les variations de *f* .

Exercice 8 -

Partie I

Soit *g* la fonction définie sur $]0, +\infty[$ par $g(x) = 1 - x^2 - \ln(x)$.

- 1. Calculer la dérivée de la fonction g et étudier son signe. En déduire les variations de la fonction g.
- 2. Calculer g(1). En déduire le signe de g(x) pour x appartenant à l'intervalle $]0, +\infty[$.

Partie II

Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{\ln(x)}{2x} - \frac{x}{2} + 1.$ On note C_f sa courbe représentative dans un repère du plan.

- 1. (a) Calculer la limite de *f* en 0. Interpréter graphiquement ce résultat.
 - (b) Calculer la limite de f en $+\infty$.
 - (c) Montrer que la droite \mathcal{D} d'équation $y = -\frac{x}{2} + 1$ est asymptote à la courbe \mathcal{C}_f en $+\infty$.
 - (d) Calculer les coordonnées du point A, intersection de la droite \mathcal{D} et de la courbe \mathcal{C}_f .
- (a) Montrer que pour tout réel x appartenant à l'intervalle $]0, +\infty[, f'(x) = \frac{g(x)}{2x^2}]$.
 - (b) En déduire le signe de f'(x) puis les variations de la fonction f.
- 3. Tracer la droite \mathcal{D} et la courbe \mathcal{C}_f dans un repère.

Exercice 9 – Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{\ln x}{x^2}$. On note \mathcal{C}_f sa courbe représentative.

- 1. (a) Étudier les limites de f aux bornes de son intervalle de définition.
 - (b) La courbe C_f admet-elle des asymptotes?
- 2. (a) Montrer que $f'(x) = \frac{1 2 \ln x}{x^3}$.
 - (b) Étudier les variations de la fonction f.
- 3. Donner une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1.

Exercice 10 – On considère la fonction f définie et dérivable sur l'intervalle $]0, +\infty[$ telle que pour tout réel x de cet intervalle $f(x) = (1 + \ln x)(2 - \ln x)$ et dont la courbe représentative \mathcal{C}_f est donnée ci-dessous.

- 1. Calculer les limites de la fonction f en 0 et en $+\infty$.
- 2. (a) On note f' la fonction dérivée de la fonction f. Calculer f'(x) et vérifier que $f'(x) = \frac{1-2\ln x}{x}$ pour tout réel x de l'intervalle $]0,+\infty[$.
 - (b) Étudier les variations de f. On précisera la valeur exacte du maximum de f et la valeur exacte de x pour laquelle il est atteint.
- 3. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1 et la tracer sur le graphique.
- 4. (a) Donner le nombre de solutions de l'équation f(x) = 2.
 - (b) Résoudre dans **R** l'équation (1 + X)(2 X) = 2.
 - (c) En déduire les solutions de l'équation f(x) = 2.

Exercice 11 (extrait de ECRICOME 2019) – Soit g la fonction numérique réelle définie sur l'intervalle $]0, +\infty[$ par

$$g(x) = 2x - 1 + \ln\left(\frac{x}{x+1}\right).$$

On note \mathcal{C} sa courbe représentative dans un repère orthonormé.

- 1. (a) Calculer la limite de g en 0 et interpréter graphiquement le résultat.
 - (b) Montrer que $\lim_{x \to +\infty} \ln \left(\frac{x}{x+1} \right) = 0$. En déduire la limite de g en $+\infty$.
- 2. Étudier le sens de variation de g sur $]0,+\infty[$ et dresser son tableau de variation.
- 3. (a) Démontrer que la courbe $\mathcal C$ admet une asymptote oblique $\mathcal D$ dont on précisera l'équation.
 - (b) Étudier la position de \mathcal{C} par rapport à \mathcal{D} .