WBL DERECHOS DE LAS MUJERES

AUTOR: MARIA EUGENIA GONZALEZ

CONTEXTO

WBL son informes semestrales que miden las diferencias de género en la ley. Los puntajes del índice WBL se basan en el promedio de los puntajes de cada economía para los 8 temas incluidos en el puntaje agregado de este año. Una puntuación más alta indica más leyes de igualdad de género, desde la perspectiva de la movilidad, maternidad, pago, emprendedurismo, matrimonio, etc Nos planteamos distintas hipótesis a desarrollar. Desde el Banco Mundial han solicitado un análisis del desarrollo de los Derechos de Mujeres a nivel mundial, para así lograr marcar el campo de acciones presentes y futuras para llegar a una verdadera igualdad.

Preguntas

- 1. ¿Que países son los que han evolucionado más en el campo de Derechos de Mujeres?
- 2. ¿Tiene relación la clase social con el Desarrollo de Derechos?
- 3. Análisis Univariados de Desarrollo de Derechos, relación con la PAGA, MATRIMONIO Y BIENES
- 4. Con respecto a la movilidad ¿Las mujeres han ganado más derechos?
- 5. ¿Tienen los hombres y las mujeres los mismos derechos de propiedad sobre los bienes inmuebles?
- 6. Con respecto a la Libertad Económica ¿Ha habido una evolución favorecedora?
- 7. ¿La edad a la que hombres y mujeres pueden jubilarse con pensión completa es la misma?
- 8. ¿Cual es la relación entre la Paga y el Indice WBL?

Objetivo:

En base a todas las variables presentadas en el dataset descubrir: ¿Como han evolucionado los Derechos de las Mujeres?

TRABAJO FINAL DE MARIA EUGENIA GONZALEZ WBL

→ INTRODUCCION

Contexto empresarial. WBL son informes semestrales que miden las diferencias de género en la ley. Los puntajes del índice WBL se basan en el promedio de los puntajes de cada economía para los 8 temas incluidos en el puntaje agregado de este año. Una puntuación más alta indica más leyes de igualdad de género, desde la perspectiva de la movilidad, maternidad, pago, emprendedurismo, matrimonio, etc Nos planteamos distintas hipotesis a desarrollar. Desde el Banco Mundial han solicitado un análisis del desarrollo de los Derechos de Mujeres a nivel mundial, para así lograr marcar el campo de acciones presentes y futuras para llegar a una verdadera igualdad.

PROBLEMA Y OBJETIVOS

Problema comercial. La tarea consiste en manipular y analizar los datos proporcionados y por medio de visualizaciones responder las preguntas específicas, que se mencionan a continuación.

Preguntas

- 1. ¿Que paises son los que han evolucionado más en el campo de Derechos de Mujeres?
- 2. ¿Tiene relación la clase social con el Desarrollo de Derechos?
- 3. Analisis Univariados de Desarrollo de Derechos, relacion con la PAGA, MATRIMONIO Y BIENES
- 4. Con respecto a la movilidad ¿Las mujeres han ganado más derechos?
- 5. ¿Tienen los hombres y las mujeres los mismos derechos de propiedad sobre los bienes inmuebles?
- 6. Con respecto a la Libertad Economica ¿Ha habido una evolución favorecedora?
- 7. ¿La edad a la que hombres y mujeres pueden jubilarse con pensión completa es la misma?
- 8. ¿Cual es la relación entre la Paga y el Indice WBL?

Pregunta Objetivo:

En base a todas las variables presentadas en el dataset descubrir: ¿Como han evolucionado los Derechos de las Mujeres?

DATA ACQUISITION

El dataset elegido contiene datos obtenidos del Banco Mundial, en particular estos datos se centran en la evolucion de ciertos Derechos de las Mujeres, en distintos lugares del mundo. El Dataset es publico y se encuentra en la carpeta de este proyecto.

2.1 Importacion de Librerias

```
import numpy as np
import pandas as pd
import scipy as sp
from prettytable import PrettyTable
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import plotly express as px
mpl.style.use('bmh')
from sklearn.decomposition import PCA
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sm
from sklearn.utils import resample
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn import preprocessing
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import roc_curve, roc_auc_score
import warnings
warnings.filterwarnings('ignore')
```

2.2 Obtencion de Datos

Can a

df1= pd.read_excel("/content/drive/MyDrive/Datasetwl.xlsx") #leer el archivo .
df1.head()

	Economy	Economy Code	ISO Code	Region	Income Group	Report Year	WBL INDEX	MOBILITY	can a woman choose where to live in the same way as a man?
0	Afghanistan	AFG	AFG	South Asia	Low income	1971	26.25	25	No
1	Afghanistan	AFG	AFG	South Asia	Low income	1972	26.25	25	No
2	Afghanistan	AFG	AFG	South Asia	Low income	1973	26.25	25	No
3	Afghanistan	AFG	AFG	South Asia	Low income	1974	26.25	25	No
4	Afghanistan	AFG	AFG	South Asia	Low income	1975	26.25	25	No

5 rows × 55 columns

▼ ** EDA (análisis univariado, bivariado y multivariado)**

```
for c in df1.columns:
        t.add_row([c,
                    df1[c].dtype,
                    len(df1[c])-np.sum(df1[c].isna()),
                    np.sum(df1[c].isna()),
                    np.count_nonzero(df1[c].unique()),
                    df1[\sim df1[c].isnull()][c].iloc[0],
                   1)
    print(t)
    print()
    return
df1_explore(df1)
```

Column

Economy Economy Code ISO Code Region Income Group Report Year WBL INDEX **MOBILITY**

Can a woman choose where to live in the same way as a man? Can a woman travel outside her home in the same way as a man? Can a woman apply for a passport in the same way as a man? Can a woman travel outside the country in the same way as a ma **WORKPLACE**

Can a woman get a job in the same way as a man? Does the law prohibit discrimination in employment based on gend Is there legislation on sexual harassment in employment? Are there criminal penalties or civil remedies for sexual harassment in PAY

> Does the law mandate equal remuneration for work of equal valu Can a woman work at night in the same way as a man? Can a woman work in a job deemed dangerous in the same way as a Can a woman work in an industrial job in the same way as a man

MARRIAGE Is the law free of legal provisions that require a married woman to obey Can a woman be head of household in the same way as a man?

Is there legislation specifically addressing domestic violence Can a woman obtain a judgment of divorce in the same way as a m Does a woman have the same rights to remarry as a man?

PARENTHOOD

Is paid leave of at least 14 weeks available to mothers? Length of paid maternity leave

Does the government administer 100% of maternity leave benefit Is there paid leave available to fathers?

> Length of paid paternity leave Is there paid parental leave? Shared days

Dave for the mother

Days for the father
Is dismissal of pregnant workers prohibited?
ENTREPRENEURSHIP

Does the law prohibit discrimination in access to credit based on g
Can a woman sign a contract in the same way as a man?
Can a woman register a business in the same way as a man?
Can a woman open a bank account in the same way as a man?

ASSETS

Do men and women have equal ownership rights to immovable proper Do sons and daughters have equal rights to inherit assets from their Do male and female surviving spouses have equal rights to inherit a Does the law grant spouses equal administrative authority over assets dur Does the law provide for the valuation of nonmonetary contributi PENSION

Is the age at which men and women can retire with full pension benefits
Is the age at which men and women can retire with partial pension benefi
Is the mandatory retirement age for men and women the same?

Are periods of absence due to childcare accounted for in pension be

df1.duplicated().any()

False

ANALISIS No se variables de datos nulas ni duplicadas

Verifico los valores únicos de las variables de tipo object

```
def df1_unique_val_col(df1, col_list = [] ):
    cant_table_col = 0
    for i in col_list:
        l = len(df1[i].unique())
        if cant_table_col < l:</pre>
            cant_table_col = l
    A = []
    for i in range(cant_table_col):
        A.append('Value : '+str(i))
    dg = pd.DataFrame(index = A,
                           columns = df[col_list].columns)
    for m in df1[col_list]:
        uni = df1[m].unique()
        le = len(uni)
        for j in range(cant_table_col):
            if j < le:
                dg[m][j] = uni[j]
            else:
                dg[m][j] = '-'
    print('Valores únicos de algunos campos de interes')
    return dg
```

▼ Estadisticas

df1.describe().round(2).T

	count	mean	std	min	25%	50%	75 %	m
Report Year	10070.0	1997.00	15.30	1971.0	1984.00	1997.00	2010.00	202
WBL INDEX	10070.0	59.73	18.62	17.5	46.88	59.38	73.12	100
MOBILITY	10070.0	82.14	25.73	0.0	75.00	100.00	100.00	100
WORKPLACE	10070.0	43.08	33.70	0.0	25.00	25.00	75.00	100
PAY	10070.0	47.66	31.27	0.0	25.00	50.00	75.00	100
MARRIAGE	10070.0	61.81	29.89	0.0	40.00	80.00	80.00	100
PARENTHOOD	10070.0	34.98	30.64	0.0	0.00	20.00	60.00	100
Length of paid maternity leave	10070.0	85.44	62.11	0.0	60.00	84.00	101.00	63!
Length of paid paternity leave	10070.0	1.75	6.84	0.0	0.00	0.00	0.00	180
Shared days	10070.0	38.56	159.93	0.0	0.00	0.00	0.00	146
Days for the mother	10070.0	5.27	40.54	0.0	0.00	0.00	0.00	109
Days for the father	10070.0	3.68	27.85	0.0	0.00	0.00	0.00	36
ENTREPRENEURSHIP	10070.0	72.72	21.23	0.0	75.00	75.00	75.00	100
ASSETS	10070.0	73.77	29.20	0.0	40.00	80.00	100.00	100

Analizo distribuciones y participaciones

1.¿Que países son los que han evolucionado más en el campo de Derechos de Mujeres?

```
fig, ax = plt.subplots(figsize=(40,20))
ax.bar ( df1['Region'],df1['WBL INDEX'], alpha=0.7)
ax.set_title('Indice WBL de acuerdo a region')
ax.set_ylabel('Indice WBL')
ax.set_xlabel('Region')
```


ANALISIS En esta grafica se denota la diferencia entre regiones mas desarolladas en el campo de los derechos de mujeres. Podemos ver que Europa y Asia central, además de los paises integrantes de grandes ingresos OECD cuentan con mayor desarrollo que los demás paises.

▼ 2.¿Tiene relación la clase social con el Desarrollo de Derechos?

```
fig, ax = plt.subplots(figsize=(10, 8))
ax.barh(df1['Region'], df1['Income Group'])
ax.set_title('Ingresos de acuerdo a Region')
ax.set_ylabel('Region')
ax.set_xlabel('Segmentos de ingresos')
```

Text(0.5, 0, 'Segmentos de ingresos')

sns.histplot(x = df1['WBL INDEX'], hue = df1['Income Group'], data= df1)

<Axes: xlabel='WBL INDEX', ylabel='Count'>


```
def column_exploration(df1,column_name,sort_index=False):
    print(f'COLUMN: {column_name}')
    abs_values =df1[column_name].value_counts()
    prc_values =(df1[column_name].value_counts(normalize=True)*100).apply(lambda
    df1_values = pd.merge(abs_values, prc_values, left_index=True, right_index=T
    if sort index is True:
        df1_values = df1_values.sort_index(axis = 0)
    ax = df1_values[column_name+'_abs'].plot(kind='bar', figsize=(12,6))
    ax.set_title(f"WBL INDEX by {column_name}")
    ax.set_xlabel(column_name)
    ax.set_ylabel('WBL INDEX')
    rects = ax.patches
    labels = [f'{p}%' for p in df1_values[column_name+'_prc'].to_list()]
    for rect, label in zip(rects, labels):
        height = rect.get_height()
        ax.text(rect.get_x() + rect.get_width()/2 , height + 1, label,
                ha='center', va='bottom')
```

return

column_exploration(df1,'Income Group')

COLUMN: Income Group

ANALISIS Si bien en la primera grafica podemos notar que no existe una manera de afirmar si hay una verdadera relación entre clase social y desarrollo, sin cierto error, ya que Latinoamerica y el caribe no estan clasificados. Por medio de una segunda y tercera lectura notamos que si hay relación directa con el nivel de ingresos y el desarrollo de Derechos femeninos, así los grupos que más desarrollados se encuentran son grupos de clases de ingresos altos y medios inclinados a altos.

3.Analisis Univariados de Desarrollo de Derechos, relacion con la PAGA, MATRIMONIO Y BIENES

column_exploration(df1,'PAY',True)

COLUMN: PAY

column_exploration(df1,'ASSETS',True)

COLUMN: ASSETS

column_exploration(df1, 'MARRIAGE')

ANALISIS Podemos notar que no hay una relacion directa entre paga y la evolucion de Derechos, pero si en lo relativo al matrimonio y bienes.

from seaborn import lmplot

4.Con respecto a la movilidad ¿Las mujeres han ganado más derechos?

lmplot(x="Report Year", y="MOBILITY", hue= "Can a woman choose where to live in

ANALISIS Tal como se puede ver, la respuesta más que con una variable de tiempo tiene que ver con la movilidad con la que cuentan estas mujeres. Así en grupos con menor movilidad la respuesta es negativa, inversamente de lo que sucede en grupos de más movilidad. Sin embargo se nota que hay aumento de libertad a partir de 1990, por lo que afirmamos que dependiendo la movilidad la respuesta será afirmativa o negativa.

5.¿Tienen los hombres y las mujeres los mismos derechos de propiedad sobre los bienes inmuebles?

lmplot(x="Report Year", y="ASSETS", hue="Do men and women have equal ownership r

ANALISIS Al igual que en la pregunta anterior, la respuesta más que con una variable de tiempo tiene que ver con la movilidad con la que cuentan estas mujeres. A partir del 2000 solo en segmentos desarrollados altos las mujeres afirman tener igualdad, sin embargo en la mayoria de los segmentos e historicamente sigue siendo un sector para tomar acciones y alcanzar la igualdad.

6.Con respecto a la Libertad Economica ¿Ha habido una evolución favorecedora?

lmplot(x="Report Year", y="PAY", hue="Does the law mandate equal remuneration fo

lmplot(x="Report Year", y="ENTREPRENEURSHIP", hue="Can a woman register a busine

ANALISIS Bajo el análisis de dos puntos, si hubo una evolución favorecedora de libertades pero que ha beneficiados más a mujeres dependientes de alguna empresa, mientras que en mujeres emprendedoras independiente no hubo una evolución historica favorecedora, si excepcionalmente en casos de desarrollo alto.

7.¿La edad a la que hombres y mujeres pueden jubilarse con pensión completa es la misma?

lmplot(x="Report Year", y="PENSION", hue="Is the age at which men and women can

ANALISIS La respuesta es parcialmente afirmativa, ya que también depende de que sector se trate. En el 20% correspondiente a los menos desarrollados la edad continua siendo distinta.

▼ 8.¿Cual es la relacion entre la Paga y el Indice WBL?

crosstab=pd.crosstab(index=df1['WBL INDEX'], columns=df1['PAY'])
crosstab

PAY	0	25	50	75	100
WBL INDEX					
17.500	49	0	0	0	0
18.750	6	0	0	0	0
20.000	0	1	0	0	0
20.625	7	13	0	0	0
21.875	2	0	0	0	0
•••					
94.375	0	0	0	16	54
95.000	0	0	0	0	42
96.875	0	0	0	23	41
97.500	0	0	0	0	133
100.000	0	0	0	0	84

121 rows × 5 columns

from matplotlib import rcParams
plt.subplots(figsize=(10,6))
rcParams['figure.figsize'] = 8,4
import seaborn as sns
sns.heatmap(crosstab,cmap='0ranges')

ANALISIS En esta situación lo que podemos ver es que la mayor concentración se encuentra en los sectores intermedios en la franja de 43 y 58, mostrandonos que no existe relacion entre la paga y la evolucion de Derechos

▼ 9.Analisis Multivariado

▼ 9.1 Correlacion Indice vs Emprendedurismo

```
#plt.figure(dpi = 90,figsize= (10,10))
df1_ = df1.drop(['WBL INDEX','ENTREPRENEURSHIP'],axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(),dtype = bool))
sns.heatmap(df1_.corr(),mask = mask, fmt = ".2f",annot=True,lw=1,cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.2 Correlacion Indice vs Matrimonio

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX', 'MARRIAGE'], axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(), dtype = bool))
sns.heatmap(df1_.corr(), mask = mask, fmt = ".2f", annot=True, lw=1, cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.3 Correlacion Indice vs Bienes

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX', 'ASSETS'], axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(), dtype = bool))
sns.heatmap(df1_.corr(), mask = mask, fmt = ".2f", annot=True, lw=1, cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.4 Correlacion Indice vs Paga

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX','PAY'],axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(),dtype = bool))
sns.heatmap(df1_.corr(),mask = mask, fmt = ".2f",annot=True,lw=1,cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.5 Correlacion Indice vs Pensiones

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX', 'PENSION'], axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(), dtype = bool))
sns.heatmap(df1_.corr(), mask = mask, fmt = ".2f", annot=True, lw=1, cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.6 Correlacion Indice vs Mobilidad

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX', 'MOBILITY'], axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(), dtype = bool))
sns.heatmap(df1_.corr(), mask = mask, fmt = ".2f", annot=True, lw=1, cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


▼ 9.7 Correlacion Indice vs Lugar de trabajo

```
#plt.figure(dpi = 90, figsize= (10,10))
df1_ = df1.drop(['WBL INDEX', 'WORKPLACE'], axis=1)

plt.figure(figsize= (16,10))
mask = np.triu(np.ones_like(df1_.corr(), dtype = bool))
sns.heatmap(df1_.corr(), mask = mask, fmt = ".2f", annot=True, lw=1, cmap = 'plasma'
plt.yticks(rotation = 0)
plt.xticks(rotation = 90)
plt.title('Correlation Heatmap')
plt.show()
```


ANALISIS De los sucesivos analisis, podemos notar que las correlaciones entre variables con indices mayores a 0,6 se verifican que son pocas las variables que llegan arriba de esos valores. Notando que en definitiva, si existe un vinculo no se trata de un vinculo directo.

- ▼ 10 Evolucion de Derechos relaciones sobre ingreso y regiones
- ▼ 10.1 Derechos de la Propiedad relaciones sobre ingreso y regiones

```
plt.subplots(figsize=(12,6))
plt.title('Income vs Region')
ax = sns.stripplot(x="Region", y="Income Group", hue = "Do men and women have eq
plt.ylabel('Income')
plt.show()
```


▼ 10.2 Seguridad social relaciones sobre ingreso y regiones

```
plt.subplots(figsize=(12,6))
plt.title('Income vs Region')
ax = sns.stripplot(x="Region", y="Income Group", hue = "Is the age at which men
plt.ylabel('Income')
plt.show()
```


▼ 10.3 Remuneracion y relaciones sobre ingreso y regiones

```
plt.subplots(figsize=(12,6))
plt.title('Income vs Region')
ax = sns.stripplot(x="Region", y="Income Group", hue = "Does the law mandate equ
plt.ylabel('Income')
plt.show()
```


ANALISIS En lo relativo a los Derechos de la propiedad, existe una relacion directa entre bienes e ingresos, pero es indistinto en lo referido a las zonas. Con respecto a los beneficios de pensiones no se notan en las clases sociales altas pero si en los sectores sociales medios y bajos, cuestion que llama bastante la atencion. En lo relativo a los ingresos pasa lo inverso.

→ 11 Limpieza y filtrado de Datos

```
df1 1 = df1.copy()
df1_1 = df1_1.drop(columns=['Length of paid paternity leave', 'Days for the fath
df1 1.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10070 entries, 0 to 10069
    Data columns (total 25 columns):
     #
         Column
     0
         Economy
     1
         Income Group
     2
         Report Year
     3
         WBL INDEX
     4
         MOBILITY
     5
         Can a woman choose where to live in the same way as a man?
     6
         WORKPLACE
     7
         Can a woman get a job in the same way as a man?
         Does the law prohibit discrimination in employment based on gender?
     9
         Is there legislation on sexual harassment in employment?
     10
         PAY
         Does the law mandate equal remuneration for work of equal value?
     11
     12
        MARRIAGE
         Is there legislation specifically addressing domestic violence?
     14
         Can a woman obtain a judgment of divorce in the same way as a man?
         PARENTHOOD
         Length of paid maternity leave
     16
         Shared days
     17
     18 Days for the mother
         ENTREPRENEURSHIP
     19
     20 Can a woman register a business in the same way as a man?
        ASSETS
     21
     22
        Do men and women have equal ownership rights to immovable property?
     23
         PENSION
         Is the age at which men and women can retire with full pension benefit
    dtypes: float64(1), int64(12), object(12)
```

▼ 11.1 Transformacion de variables

memory usage: 1.9+ MB

```
le_Economy = preprocessing.LabelEncoder()
df1_1['Economy'] = le_Economy.fit_transform(df1_1['Economy'] )
le_IncomeGroup = preprocessing.LabelEncoder()
df1_1['Income Group'] = le_IncomeGroup .fit_transform(df1_1['Income Group'] )
```

le Canawomanchoosewheretoliveinthesamewayasaman = preprocessing.LabelEncoder() df1_1['Can a woman choose where to live in the same way as a man?'] le_Canawomangetajobinthesamewayasaman = preprocessing.LabelEncoder() df1_1['Can a woman get a job in the same way as a man?'] = le_Canawomangetajobi le_Doestlawdiscriminationgender = preprocessing.LabelEncoder() df1_1['Does the law prohibit discrimination in employment based on gender?'] le_Isexualharassmentemployment = preprocessing.LabelEncoder() df1_1['Is there legislation on sexual harassment in employment?'] = le Isexual le_Doesequalremuneration = preprocessing.LabelEncoder() df1_1['Does the law mandate equal remuneration for work of equal value?'] = le le_Candivorcesameasman = preprocessing.LabelEncoder() df1_1['Can a woman obtain a judgment of divorce in the same way as a man?'] le_Canregisterbusinesssameasman = preprocessing.LabelEncoder() df1 1['Can a woman register a business in the same way as a man?'] le_Doequalownershiprightsimmovableproperty = preprocessing.LabelEncoder() df1_1['Do men and women have equal ownership rights to immovable property?'] le_Isageretirefullpensionsame = preprocessing.LabelEncoder() df1_1['Is the age at which men and women can retire with full pension benefits t le_Idomesticviolence = preprocessing.LabelEncoder() df1_1['Is there legislation specifically addressing domestic violence?'] df1_1

	Economy	Income Group	Report Year	WBL INDEX	MOBILITY	Can a woman choose where to live in the same way as a man?	WORKPLACE	Can a woman get a job in the same way as a man?	I dis ir
0	0	1	1971	26.250	25	0	25	1	
1	0	1	1972	26.250	25	0	25	1	
2	0	1	1973	26.250	25	0	25	1	
3	0	1	1974	26.250	25	0	25	1	
4	0	1	1975	26.250	25	0	25	1	
•••		•••							
10065	189	2	2019	86.875	100	1	100	1	
10066	189	2	2020	86.875	100	1	100	1	
10067	189	2	2021	86.875	100	1	100	1	
10068	189	2	2022	86.875	100	1	100	1	
10069	189	2	2023	86.875	100	1	100	1	

10070 rows × 25 columns

▼ 11.2 Media de variables

Income Group

print('-----')
print('Media de cada variable')
print('-----')
df1_1.mean(axis=0)

-----Media de cada variable
-----Economy
94.500000

```
1.778947
Report Year
1997.000000
WBL INDEX
59.725919
MOBILITY
82.142502
Can a woman choose where to live in the same way as a man?
0.678749
WORKPLACE
43.083416
Can a woman get a job in the same way as a man?
0.796624
Does the law prohibit discrimination in employment based on gender?
0.421946
Is there legislation on sexual harassment in employment?
0.263456
PAY
47.656405
Does the law mandate equal remuneration for work of equal value?
0.207944
MARRIAGE
61.813307
Is there legislation specifically addressing domestic violence?
Can a woman obtain a judgment of divorce in the same way as a man?
0.690169
PARENTHOOD
34.975174
Length of paid maternity leave
85.440020
Shared days
38.561867
Days for the mother
5.271500
ENTREPRENEURSHIP
72.715988
Can a woman register a business in the same way as a man?
0.917180
ASSETS
73.769613
Do men and women have equal ownership rights to immovable property?
0.790367
PENSION
61.650943
Is the age at which men and women can retire with full pension benefits
the same?
                0.504171
dtype: float64
```

▼ 11.3 Varianza

```
print('----')
print('Varianza de cada variable')
print('----')
df1 1.var(axis=0)
    Varianza de cada variable
    Economy
    3008.548764
    Income Group
    2.372424
    Report Year
    234.023240
    WBL INDEX
    346.868461
    MOBILITY 
    662,245557
    Can a woman choose where to live in the same way as a man?
    0.218071
    WORKPLACE
    1135,615248
    Can a woman get a job in the same way as a man?
    Does the law prohibit discrimination in employment based on gender?
    0.243932
    Is there legislation on sexual harassment in employment?
    0.194066
    PAY
    978.095259
    Does the law mandate equal remuneration for work of equal value?
    0.164720
    MARRIAGE
    893,523589
    Is there legislation specifically addressing domestic violence?
    Can a woman obtain a judgment of divorce in the same way as a man?
    0.213857
    PARENTHOOD
    938.578190
    Length of paid maternity leave
    3857.636237
    Shared days
    25577.474323
    Days for the mother
    1643.128585
    ENTREPRENEURSHIP
    450.761518
    Can a woman register a business in the same way as a man?
    0.075969
    ASSETS
    852.667147
    Do men and women have equal ownership rights to immovable property?
    0.165703
```

```
PENSION
839.574741
Is the age at which men and women can retire with full pension benefits the same? 0.250007
dtype: float64

df1_1.shape
(10070, 25)
```

▼ 12 Analisis de componentes

Can a woman

Income

Report

WBL

choose

where to

	Economy	Group	Year	INDEX	MOBILITY	where to live in the same way as a man?	WORKPLA
PC	1.451214e- 02	3.733748e- 02	-2.188192e- 01	-0.345031	-0.214661	-2.229140e- 01	-0.3066
PC	1.903800e- 02	-1.237730e- 01	2.450320e- 01	0.019487	-0.230886	-2.750894e- 01	0.1356
PC	-1.599607e- 01	1.361695e- 01	-1.559993e- 02	0.045908	0.260799	4.620882e- 02	-0.0107
PC	-1.668838e- 01	-2.497264e- 02	1.691961e- 01	-0.098742	-0.233758	-1.896798e- 01	0.1250
PC	-1.533083e- 01	-3.953108e- 01	-1.947381e- 01	0.066838	-0.057074	-1.252136e- 01	-0.2254
PC	5.580485e- 01	-4.972060e- 01	-1.189620e- 01	0.001748	0.039045	-2.657372e- 03	0.0130
PC	-2.311904e- 03	1.038695e- 01	1.739394e- 01	-0.050920	-0.066541	-1.065946e- 02	-0.0027
PC	-5.510097e- 01	-6.642479e- 02	-2.779302e- 01	0.051347	0.176561	8.918808e- 02	0.0375
PC	1.143118e- 01	4.773726e- 01	8.757092e- 02	-0.020588	0.128491	1.981825e- 01	-0.0893
РС	-3.071264e- 01	-3.315598e- 01	3.543219e- 02	-0.056429	-0.017409	-4.954509e- 02	0.1470
РС	-4.058034e- 01	-2.461265e- 02	1.809413e- 02	-0.005433	-0.065844	1.356335e- 02	-0.0476
РС	1.230842e- 02	-3.002485e- 01	9.053914e- 02	-0.034646	0.388055	4.675935e- 01	0.0894
РС	-6.417503e- 02	-2.912361e- 01	2.254391e- 01	-0.029832	0.100189	1.800119e- 01	-0.2568
РС	6.269697e- 02	-3.414207e- 02	-2.372262e- 01	0.067065	0.061881	-2.171977e- 01	0.2408
РС	1.070948e- 01	1.113387e- 01	-3.057093e- 01	0.152083	0.166186	3.078336e- 02	-0.0817
РС	-9.155153e- 02	-9.766121e- 02	1.667567e- 01	0.041635	0.031930	-1.460543e- 01	-0.1241

0 0004

2.155841e-

▼ 12.1 Ejes

```
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 10))
componentes = modelo_pca.components_
plt.imshow(componentes.T, cmap='seismic', aspect='auto')
plt.yticks(range(len(df1_1.columns)), df1_1.columns)
plt.xticks(range(len(df1_1.columns)), np.arange(modelo_pca.n_components_) + 1)
plt.grid(False)
plt.colorbar();
```

-3.183113e- -1.826534e- -2.910392e-

ANALISIS Por la alta cantidad de variables se hace confuso, igualmente se nota diferenciados los ejes.

modelo_pca.n_components_

25

```
np.arange(len(df1_1.columns)) + 1
    array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
           18, 19, 20, 21, 22, 23, 24, 25])
modelo_pca.explained_variance_ratio_
    array([3.16970949e-01, 1.01156300e-01, 8.00370605e-02, 7.19089389e-02,
           5.27860474e-02, 4.63102029e-02, 4.00254850e-02, 3.66061254e-02,
           3.41505847e-02, 3.25554005e-02, 3.02999519e-02, 2.69270758e-02,
           2.27108463e-02, 1.87816129e-02, 1.73438225e-02, 1.58659981e-02,
           1.30278880e-02, 1.15494905e-02, 8.68109548e-03, 6.72044735e-03,
           5.75262198e-03, 4.99194099e-03, 4.56362661e-03, 2.76487143e-04,
           2.30952718e-331)
print('Porcentaje de varianza explicada por cada componente')
print('-----')
print(modelo_pca.explained_variance_ratio_)
import seaborn as sns
sns.set_style("whitegrid")
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 5))
ax.bar(
          = np.arange(modelo pca.n components ) + 1,
    height = modelo_pca.explained_variance_ratio_
)
for x, y in zip(np.arange(len(df1_1.columns)) + 1, modelo_pca.explained_variance
    label = round(y, 2)
    ax.annotate(
       label,
        (x,y),
       textcoords="offset points",
       xytext=(0,20),
       ha='center'
    )
ax.set xticks(np.arange(modelo pca.n components ) + 1)
ax.set_ylim(0, 0.5)
ax.set_title('Porcentaje de varianza explicada por cada componente')
ax.set xlabel('Componente principal')
ax.set ylabel('Por. varianza explicada');
```

Porcentaje de varianza explicada por cada componente

```
[3.16970949e-01 1.01156300e-01 8.00370605e-02 7.19089389e-02 5.27860474e-02 4.63102029e-02 4.00254850e-02 3.66061254e-02 3.41505847e-02 3.25554005e-02 3.02999519e-02 2.69270758e-02 2.27108463e-02 1.87816129e-02 1.73438225e-02 1.58659981e-02 1.30278880e-02 1.15494905e-02 8.68109548e-03 6.72044735e-03 5.75262198e-03 4.99194099e-03 4.56362661e-03 2.76487143e-04 2.30952718e-33]
```


print(prop_varianza_acum)

print('----')
print('Porcentaje de varianza explicada acumulada')

```
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 6))
ax.plot(
    np.arange(len(df1_1.columns)) + 1,
    prop_varianza_acum,
    marker = 'o'
)
for x, y in zip(np.arange(len(df1_1.columns)) + 1, prop_varianza_acum):
    label = round(y, 2)
    ax.annotate(
        label,
        (x,y),
        textcoords="offset points",
        xytext=(0,10),
        ha='center'
    )
ax.set_ylim(0, 1.1)
ax.set_xticks(np.arange(modelo_pca.n_components_) + 1)
ax.set_title('Porcentaje de varianza explicada acumulada')
ax.set_xlabel('Componente principal')
ax.set_ylabel('Por. varianza acumulada');
```

Porcentaje de varianza explicada acumulada

[0.31697095 0.41812725 0.49816431 0.57007325 0.6228593 0.6691695 0.70919498 0.74580111 0.77995169 0.81250709 0.84280705 0.86973412 0.89244497 0.91122658 0.9285704 0.9444364 0.95746429 0.96901378 0.97769488 0.98441532 0.99016795 0.99515989 0.99972351 1. 1.

→ 13 Regresion Linear

from sklearn import datasets
from sklearn.linear_model import LinearRegression
import numpy as np

```
X = df1[['MOBILITY', 'PENSION', 'MARRIAGE', 'WORKPLACE']]
y = df1['WBL INDEX']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
     ▼ LinearRegression
     LinearRegression()
regressor.coef_
    array([0.1804499 , 0.1587452 , 0.19964468, 0.26426854])
regressor.intercept_
    11.331810502380968
coeff_df = pd.DataFrame(regressor.coef_, X.columns, columns=['Coefficient'])
coeff_df
                  Coefficient
       MOBILITY
                      0.180450
       PENSION
                      0.158745
      MARRIAGE
                      0.199645
     WORKPLACE
                      0.264269
```

y_test

1121	22.500
318	55.625
9133	50.000
1149	61.250
33	26.250
1362	76.875
1437	36.875
1437 9696	36.875 70.625
_	

Name: WBL INDEX, Length: 3021, dtype: float64

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df['Sesgo']=df.Actual -df.Predicted
df['Error_porc']=((df.Actual -df.Predicted)/df.Actual) *100
df

	Actual	Predicted	Sesgo	Error_porc
1121	22.500	36.301616	-13.801616	-61.340517
318	55.625	55.923718	-0.298718	-0.537022
9133	50.000	55.923718	-5.923718	-11.847437
1149	61.250	63.318361	-2.068361	-3.376916
33	26.250	30.411295	-4.161295	-15.852553
	•••			
1362	76.875	79.145608	-2.270608	-2.953636
1437	36.875	36.819970	0.055030	0.149233
9696	70.625	66.499062	4.125938	5.842036
8601	63.750	63.836715	-0.086715	-0.136023
56	59.375	51.955088	7.419912	12.496693

3021 rows × 4 columns

Values

Distributions

2-d distributions

Actual Predicted

ANALISIS En el modelo de regresion linear, en lo relativo a matrimonio, pension, matrimonio y lugar de trabajo, en los modelos actuales la prediccion demuestra un avance pero en el modelo predicho no se nota de manera uniforme ese crecimiento. La nota en particular, por el tipo de variable es alto el sesgo.

Productos pagados de Colab - Cancela los contratos aquí

▼ SEGUNDA PARTE PROYECTO FINAL PARTE 2

```
import numpy as np
import pandas as pd
import scipy as sp
from prettytable import PrettyTable
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
mpl.style.use('bmh')
from sklearn.decomposition import PCA
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sm
from sklearn.utils import resample
from sklearn.model_selection import StratifiedKFold
from sklearn.model selection import GridSearchCV
from sklearn import preprocessing
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import roc_curve, roc_auc_score
import warnings
warnings.filterwarnings('ignore')
```

df1= pd.read_excel("/content/drive/MyDrive/Datasetwl (1).xlsx")
df1.head()

	Economy	Economy Code	ISO Code	Region	Income Group	Report Year	WBL INDEX	MOBILITY	Can a woman choose where to live in the same way as a man?
0	Afghanistan	AFG	AFG	South Asia	Low income	1971	26.25	25	No
1	Afghanistan	AFG	AFG	South Asia	Low income	1972	26.25	25	No
2	Afghanistan	AFG	AFG	South Asia	Low income	1973	26.25	25	No
3	Afghanistan	AFG	AFG	South Asia	Low income	1974	26.25	25	No
4	Afghanistan	AFG	AFG	South Asia	Low income	1975	26.25	25	No

5 rows × 55 columns

```
df1 1 = df1.copy()
df1_1 = df1_1.drop(columns=['Length of paid paternity leave', 'Days for the fath
df1 1.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10070 entries, 0 to 10069
    Data columns (total 25 columns):
         Column
     0
         Economy
     1
         Income Group
     2
         Report Year
     3
         WBL INDEX
     4
         MOBILITY
     5
         Can a woman choose where to live in the same way as a man?
     6
         WORKPLACE
     7
         Can a woman get a job in the same way as a man?
         Does the law prohibit discrimination in employment based on gender?
         Is there legislation on sexual harassment in employment?
     9
     10
         PAY
     11 Does the law mandate equal remuneration for work of equal value?
     12 MARRIAGE
     13 Is there legislation specifically addressing domestic violence?
     14 Can a woman obtain a judgment of divorce in the same way as a man?
     15 PARENTHOOD
     16 Length of paid maternity leave
     17
        Shared days
     18 Days for the mother
     19 ENTREPRENEURSHIP
     20 Can a woman register a business in the same way as a man?
     21 ASSETS
     22 Do men and women have equal ownership rights to immovable property?
     23 PENSION
     24 Is the age at which men and women can retire with full pension benefit
    dtypes: float64(1), int64(12), object(12)
```

Transformacion de variables

memory usage: 1.9+ MB

```
le_Economy = preprocessing.LabelEncoder()
df1_1['Economy'] = le_Economy.fit_transform(df1_1['Economy'] )
le_IncomeGroup = preprocessing.LabelEncoder()
df1_1['Income Group'] = le_IncomeGroup .fit_transform(df1_1['Income Group'] )
le_Canawomanchoosewheretoliveinthesamewayasaman = preprocessing.LabelEncoder()
df1_1['Can a woman choose where to live in the same way as a man?'] = le Canawomanchoosewheretoliveinthesamewayasaman
```

le Canawomangetajobinthesamewayasaman = preprocessing.LabelEncoder() df1_1['Can a woman get a job in the same way as a man?'] = le_Canawomangetajobi le_Doestlawdiscriminationgender = preprocessing.LabelEncoder() df1 1['Does the law prohibit discrimination in employment based on gender?'] le_Isexualharassmentemployment = preprocessing.LabelEncoder() df1_1['Is there legislation on sexual harassment in employment?'] = le_Isexual le_Doesequalremuneration = preprocessing.LabelEncoder() df1_1['Does the law mandate equal remuneration for work of equal value?'] le_Candivorcesameasman = preprocessing.LabelEncoder() df1_1['Can a woman obtain a judgment of divorce in the same way as a man?'] le_Canregisterbusinesssameasman = preprocessing.LabelEncoder() df1_1['Can a woman register a business in the same way as a man?'] = le Canrec le_Doequalownershiprightsimmovableproperty = preprocessing.LabelEncoder() df1 1['Do men and women have equal ownership rights to immovable property?'] le_Isageretirefullpensionsame = preprocessing.LabelEncoder() df1_1['Is the age at which men and women can retire with full pension benefits t le_Idomesticviolence = preprocessing.LabelEncoder() df1_1['Is there legislation specifically addressing domestic violence?'] df1 1

	Economy	Income Group	Report Year	WBL INDEX	MOBILITY	Can a woman choose where to live in the same way as a man?	WORKPLACE	Can a woman get a job in the same way as a man?	di i
0	0	1	1971	26.250	25	0	25	1	
1	0	1	1972	26.250	25	0	25	1	
2	0	1	1973	26.250	25	0	25	1	
3	0	1	1974	26.250	25	0	25	1	
4	0	1	1975	26.250	25	0	25	1	
10065	189	2	2019	86.875	100	1	100	1	
10066	189	2	2020	86.875	100	1	100	1	
10067	189	2	2021	86.875	100	1	100	1	
10068	189	2	2022	86.875	100	1	100	1	
10069	189	2	2023	86.875	100	1	100	1	

10070 rows × 25 columns

→ 14 Defino variables

X = df1_1.drop("Do men and women have equal ownership rights to immovable proper
y = df1_1 ['Do men and women have equal ownership rights to immovable property?'
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random)

→ 15 Arbol de Decision

```
A_train = []
A_test = []
for i in range(0,25):
    if i == 0:
        i = None

        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, rainsol_de_decision = DecisionTreeClassifier(max_depth=i, random_state = 11)
        arbol_de_decision.fit(X_train,y_train)
        y_train_pred = arbol_de_decision.predict(X_train)
        y_test_pred = arbol_de_decision.predict(X_test)
        train_accuracy = accuracy_score(y_train, y_train_pred)
        test_accuracy = accuracy_score(y_test, y_test_pred)

A_train.append(train_accuracy)
        A_test.append(test_accuracy)
```

```
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(A_train,marker='o', label='Set Entrenamiento')
ax.plot(A_test,marker='o', label='Set Test', color='C1')
ax.set_xlabel('Nivel del árbol')
ax.set_xticks(range(0,26,2))
ax.set_ylabel('% Accuracy')
#ax.set_ylim(0, 1.1)
ax.set_title('Accuracy de un arbol de decisión')
ax.legend()
```

<matplotlib.legend.Legend at 0x7e92c60375b0>


```
arbol de decision = DecisionTreeClassifier(max depth=4, random state = 42)
arbol_de_decision.fit(X_train,y_train)
y_train_pred = arbol_de_decision.predict(X_train)
y_test_pred = arbol_de_decision.predict(X_test)
train_accuracy = accuracy_score(y_train, y_train_pred)
test_accuracy = accuracy_score(y_test, y_test_pred)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy,4))
#print('% de aciertos sobre el set de entrenamiento:', train_accuracy)
print('% de aciertos sobre el set de evaluación:',round(test_accuracy,3))
    % de aciertos sobre el set de entrenamiento: 0.9397
    % de aciertos sobre el set de evaluación: 0.942
train_accuracy_10_1_1 = accuracy_score(y_train, y_train_pred)
test_accuracy_10_1_1 = accuracy_score(y_test, y_test_pred)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_1_
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_10_1_1,3))
    % de aciertos sobre el set de entrenamiento: 0.94
    % de aciertos sobre el set de evaluación: 0.942
confusion_matrix(y_test, y_test_pred)
    array([[ 565, 65],
           [ 111, 2280]])
precision_10_1_1 = round(precision_score(y_test, y_test_pred),5)
precision_10_1_1
    0.97228
```

recall_10_1_1 = round(recall_score(y_test, y_test_pred),5)
recall_10_1_1
 0.95358

```
y_score1 = arbol_de_decision.predict_proba(X_test)[:,1]

false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor roc_10_1_1 = round(roc_auc_score(y_test, y_score1),5)
print('roc_auc_score for DecisionTree: ', roc_10_1_1)

plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - DecisionTree')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

roc_auc_score for DecisionTree: 0.97201

→ 16 Random Forest

```
A_{train} = []
A_{\text{test}} = []
for i in range(1,50):
    #Creamos el modelo
    random_forest_model = RandomForestClassifier(n_estimators = i, random_state
    #Entrenamos el modelo
    random_forest_model.fit(X_train,y_train)
    #Prediccion en Train y Test
    y_train_pred = random_forest_model.predict(X_train)
    y test pred = random forest model.predict(X test)
    #Calculo el accuracy en Train y Test
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test_accuracy = accuracy_score(y_test, y_test_pred)
    # Acumulo los resultados de Accuracy para cada corrida:
    A_train.append(train_accuracy)
    A_test.append(test_accuracy)
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(A_train,marker='o', label='Set Entrenamiento')
ax.plot(A_test,marker='o', label='Set Test', color='C1')
ax.set_xlabel('Cantidad de n_estamators para el Random Forest Classifier')
ax.set_xticks(range(0,50,5))
ax.set_ylabel('% Accuracy')
#ax.set_ylim(0, 1.1)
ax.set title('Accuracy de un RandomForest')
ax.legend()
```

A_train = [] A_test = []

<matplotlib.legend.Legend at 0x7e92c5235540>


```
for i in range(3,25):
    #Creamos el modelo
    random_forest_model = RandomForestClassifier(n_estimators = 9, class_weight
                                                 max_depth = i, random_state = 4
    random_forest_model.fit(X_train,y_train) #Entrenamos el modelo
    y_train_pred = random_forest_model.predict(X_train) #Prediccion en Train
    y_test_pred = random_forest_model.predict(X_test) #Prediccion en Test
    train_accuracy = accuracy_score(y_train, y_train_pred) #Calculo el accuracy
    test_accuracy = accuracy_score(y_test, y_test_pred) #Calculo el accuracy en
   # Acumulo los resultados de Accuracy para cada corrida:
    A_train.append(train_accuracy)
    A_test.append(test_accuracy)
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(A_train,marker='o', label='Set Entrenamiento')
ax.plot(A_test,marker='o', label='Set Test', color='C1')
ax.set_xlabel('Máxima profundidad en el árbol para el Random Forest Classifier')
ax.set_xticks(range(0,25,1))
ax.set_ylabel('% Accuracy')
```

```
#ax.set_ylim(0, 1.1)
ax.set_title('Accuracy de un RandomForest')
ax.legend()
```

<matplotlib.legend.Legend at 0x7e92c614d090>


```
A_{train} = []
A_{\text{test}} = []
for i in range(3,25):
    random_forest_model = RandomForestClassifier(n_estimators = 9, class_weight
                                                  max_depth = i, random_state = 4
    random_forest_model.fit(X_train,y_train)
    y_train_pred = random_forest_model.predict(X_train)
    y_test_pred = random_forest_model.predict(X_test)
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test_accuracy = accuracy_score(y_test, y_test_pred) #
    A_train.append(train_accuracy)
    A_test.append(test_accuracy)
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(A_train,marker='o', label='Set Entrenamiento')
ax.plot(A_test,marker='o', label='Set Test', color='C1')
ax.set_xlabel('Máxima profundidad en el árbol para el Random Forest Classifier')
```

ax.set_xticks(range(0,25,1))
ax.set_ylabel('% Accuracy')
ax.set_title('Accuracy de un RandomForest')
ax.legend()

<matplotlib.legend.Legend at 0x7ac4e16e3460>


```
random forest model = RandomForestClassifier(n estimators=9,
                                            max_depth = 3,
                                            random_state=42,
                                            max_features="log2")
random_forest_model.fit(X_train, y_train)
y_train_pred_random_forest_model = random_forest_model.predict(X_train)
y test pred random forest model = random forest model.predict(X test)
train_accuracy_random_forest = accuracy_score(y_train, y_train_pred_random_fores
test_accuracy_random_forest = accuracy_score(y_test, y_test_pred_random_forest_n
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_rando
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_random_for
    % de aciertos sobre el set de entrenamiento: 0.918
    % de aciertos sobre el set de evaluación: 0.919
train_accuracy_10_2_2 = accuracy_score(y_train, y_train_pred_random_forest_model
test_accuracy_10_2_2 = accuracy_score(y_test, y_test_pred_random_forest_model)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_2_
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_10_2_2,3))
    % de aciertos sobre el set de entrenamiento: 0.918
    % de aciertos sobre el set de evaluación: 0.919
confusion_matrix(y_test, y_test_pred_random_forest_model)
    precision_10_2_2 = round(precision_score(y_test, y_test_pred_random_forest_model
precision_10_2_2
    0.90951
```

```
recall_10_2_2 = round(recall_score(y_test, y_test_pred_random_forest_model),5)
recall_10_2_2
0.99624
```

▼ 17 Logistic Regression

```
regresion_logistica = LogisticRegression()
regresion_logistica.fit(X_train, y_train)
y_train_pred_regresion_logistica = regresion_logistica.predict(X_train)
y test pred regresion logistica = regresion logistica.predict(X test)
train_accuracy_regresion_logistica = accuracy_score(y_train, y_train_pred_regres
test_accuracy_regresion_logistica = accuracy_score(y_test, y_test_pred_regresion
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_regre
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_regresion_
    % de aciertos sobre el set de entrenamiento: 0.914
    % de aciertos sobre el set de evaluación: 0.912
train_accuracy_10_3_1 = accuracy_score(y_train, y_train_pred_regresion_logistica
test_accuracy_10_3_1 = accuracy_score(y_test, y_test_pred_regresion_logistica)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_3_
print('% de aciertos sobre el set de evaluación:',round(test accuracy 10 3 1,3))
    % de aciertos sobre el set de entrenamiento: 0.914
    % de aciertos sobre el set de evaluación: 0.912
confusion_matrix(y_test, y_test_pred_regresion_logistica)
    array([[ 432, 198],
           [ 69, 2322]])
```

 $\label{eq:precision_10_3_1} precision_10_3_1 = round(precision_score(y_test, y_test_pred_regresion_logistical precision_10_3_1)$

0.92143

recall_10_3_1 = round(recall_score(y_test, y_test_pred_regresion_logistica),5)
recall_10_3_1

0.97114

```
y_score1 = regresion_logistica.predict_proba(X_test)[:,1]

false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor roc_10_3_1 = round(roc_auc_score(y_test, y_score1),5)
print('roc_auc_score for regresion_logistica: ', roc_10_3_1)

plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - DecisionTree')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

roc_auc_score for regresion_logistica: 0.94169


```
d3 = {'LogReg':[test_accuracy_10_3_1,precision_10_3_1,recall_10_3_1,roc_10_3_1]}
LogReg = pd.DataFrame(d3, index = ['Accuracy','Precision','Recall','ROC_curve'])
LogReg
```

	LogReg
Accuracy	0.911619
Precision	0.921430
Recall	0.971140
ROC_curve	0.941690

→ 18 KNN

```
classifier = KNeighborsClassifier(n_neighbors = 7, metric = 'minkowski', p = 5)

classifier.fit(X_train, y_train)

y_train_pred_knn = classifier.predict(X_train)
y_test_pred_knn = classifier.predict(X_test)

train_accuracy_knn = accuracy_score(y_train, y_train_pred_knn)
test_accuracy_knn = accuracy_score(y_test, y_test_pred_knn)

print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_knn,3))
% de aciertos sobre el set de entrenamiento: 0.994
```

% de aciertos sobre el set de evaluación: 0.993

```
y_score1 = classifier.predict_proba(X_test)[:,1]

false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor roc_10_4_1 = round(roc_auc_score(y_test, y_score1),5)
print('roc_auc_score for knn classifier: ', roc_10_4_1)

plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - knn classifier')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

roc_auc_score for knn classifier: 0.99742

Receiver Operating Characteristic - knn classifier


```
d4 = {'knn':[test_accuracy_10_4_1,precision_10_4_1,recall_10_4_1,roc_10_4_1]}
knn_classifier = pd.DataFrame(d4, index = ['Accuracy','Precision','Recall','ROC_knn_classifier
```

	knn
Accuracy	0.993049
Precision	0.992930
Recall	0.998330
ROC_curve	0.997420

▼ 19 Oversampling balanced Árbol de decisión

```
arbol_de_decision = DecisionTreeClassifier(max_depth=4, random_state = 42)
arbol_de_decision.fit(X_train,y_train)
y_train_pred = arbol_de_decision.predict(X_train)
y_test_pred = arbol_de_decision.predict(X_test)
train_accuracy = accuracy_score(y_train, y_train_pred)
test_accuracy = accuracy_score(y_test, y_test_pred)
print('Accuracy:')
train_accuracy_10_6_1_1 = accuracy_score(y_train, y_train_pred)
test_accuracy_10_6_1_1 = accuracy_score(y_test, y_test_pred)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_6_
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_10_6_1_1,3
print(' Matriz de Confusión')
print(confusion_matrix(y_test, y_test_pred) )
precision_10_6_1_1 = round(precision_score(y_test, y_test_pred),5)
print('\n Precisión:', precision_10_6_1_1)
recall_10_6_1_1 = round(recall_score(y_test, y_test_pred),5)
print('\n Recall: ', recall_10_6_1_1)
y_score1 = arbol_de_decision.predict_proba(X_test)[:,1]
false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor
roc_10_6_1_1 = round(roc_auc_score(y_test, y_score1),5)
```

```
print('\n roc_auc_score for DecisionTree: ', roc_10_6_1_1)

plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - DecisionTree')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

Accuracy:

% de aciertos sobre el set de entrenamiento: 0.94
% de aciertos sobre el set de evaluación: 0.942

Matriz de Confusión [[565 65] [111 2280]]

Precisión: 0.97228

Recall: 0.95358

roc_auc_score for DecisionTree: 0.97201

▼ 19.1 Oversampling balanced Logistic Regression

```
regresion logistica = LogisticRegression()
regresion_logistica.fit(X_train, y_train)
y_train_pred = regresion_logistica.predict(X_train)
y_test_pred = regresion_logistica.predict(X_test)
print('Accuracy:')
train_accuracy_10_6_1_3 = accuracy_score(y_train, y_train_pred)
test_accuracy_10_6_1_3 = accuracy_score(y_test, y_test_pred)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_6_
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_10_6_1_3,3
print(' Matriz de Confusión')
print(confusion_matrix(y_test, y_test_pred) )
precision_10_6_1_3 = round(precision_score(y_test, y_test_pred),5)
print('\n Precisión:', precision_10_6_1_3)
recall_10_6_1_3 = round(recall_score(y_test, y_test_pred),5)
print('\n Recall: ', recall_10_6_1_3)
y_score1 = arbol_de_decision.predict_proba(X_test)[:,1]
false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor
roc_10_6_1_3 = round(roc_auc_score(y_test, y_score1),5)
print('\n roc_auc_score for DecisionTree: ', roc_10_6_1_3)
plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - Regresion Logistica')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

Accuracy:

% de aciertos sobre el set de entrenamiento: 0.914
% de aciertos sobre el set de evaluación: 0.912

Matriz de Confusión [[432 198] [69 2322]]

Precisión: 0.92143

Recall: 0.97114

roc_auc_score for DecisionTree: 0.97201

▼ 20 Stratified k-fold Y GridSearch

```
X = df1 1.drop("Do men and women have equal ownership rights to immovable proper
y = df1_1['Do men and women have equal ownership rights to immovable property?']
print('X = ', X.shape)
print('y = ', y.shape)
    X = (10070, 24)
    y = (10070,)
skf = StratifiedKFold(n_splits=4, random_state=42, shuffle=True)
train, test = list(skf.split(X, y))[0]
X train = X[train]
X_{test} = X[test]
y_{train} = y[train]
y test= y[test]
print('Tamaño de los sets de Test y Train considerando Stratified k-fold Y GridS
print('')
print('X_train = ', X_train.shape)
print('y_train = ', y_train.shape)
print('X_test = ', X_test.shape)
print('y_test = ', y_test.shape)
    Tamaño de los sets de Test y Train considerando Stratified k-fold Y GridSea
    X_{train} = (7552, 24)
    y_{train} = (7552,)
    X_{\text{test}} = (2518, 24)
    y_{test} = (2518,)
```

▼ 20.1 Árbol de decisión

```
t = DecisionTreeClassifier(random state = 42)
par = list(np.arange(0.0, 1., step=0.05))
cv = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)
param_grid = {'max_depth' : list(np.arange(2, 11, step=1)), #np.arange(2,11,1),
              'criterion':['gini', 'entropy'],
              'splitter':['best', 'random'],
              'max_features' : ['auto', 'sqrt', 'log2'],
              'ccp alpha':par
model = GridSearchCV(estimator=t, param_grid = param_grid,
                     cv=cv, scoring = 'roc_auc') #'accuracy')#,'roc_auc' ])
model.fit(X_train, y_train)
                 GridSearchCV
     ▶ estimator: DecisionTreeClassifier
           ▶ DecisionTreeClassifier
print("Mejores parametros: "+str(model.best_params_))
print("Mejor Score: "+str(model.best_score_)+'\n')
    Mejores parametros: {'ccp_alpha': 0.0, 'criterion': 'gini', 'max_depth': 10
    Mejor Score: 0.9944949275562018
arbol_de_decision = DecisionTreeClassifier(random_state = 42,
                                          criterion = 'entropy',
                                          splitter = 'random',
                                          max_depth = 5,
                                          max_features ='auto',
                                          ccp_alpha = 0.0)
arbol_de_decision.fit(X_train,y_train) #Entrenamos el modelo
y_train_pred = arbol_de_decision.predict(X_train) #Prediccion en Train
y_test_pred = arbol_de_decision.predict(X_test) #Prediccion en Test
```

```
print('Accuracy:')
train_accuracy_10_7_1_1 = accuracy_score(y_train, y_train_pred)
test_accuracy_10_7_1_1 = accuracy_score(y_test, y_test_pred)
print('% de aciertos sobre el set de entrenamiento:', round(train_accuracy_10_7_
print('% de aciertos sobre el set de evaluación:',round(test_accuracy_10_7_1_1,3
print(' Matriz de Confusión')
print(confusion_matrix(y_test, y_test_pred) )
precision_10_7_1_1 = round(precision_score(y_test, y_test_pred),5)
print('\n Precisión:', precision_10_7_1_1)
recall_10_7_1_1 = round(recall_score(y_test, y_test_pred),5)
print('\n Recall: ', recall_10_7_1_1)
y_score1 = arbol_de_decision.predict_proba(X_test)[:,1]
false_positive_rate1, true_positive_rate1, threshold1 = roc_curve(y_test, y_scor
roc_10_7_1_1 = round(roc_auc_score(y_test, y_score1),5)
print('\n roc_auc_score for DecisionTree: ', roc_10_7_1_1)
plt.subplots(1, figsize=(8,6))
plt.title('Receiver Operating Characteristic - DecisionTree')
plt.plot(false_positive_rate1, true_positive_rate1, marker = 'o')
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

Accuracy:

% de aciertos sobre el set de entrenamiento: 0.824
% de aciertos sobre el set de evaluación: 0.826

Matriz de Confusión [[395 133] [305 1685]]

Precisión: 0.92684

Recall: 0.84673

roc_auc_score for DecisionTree: 0.88786

d7_1 = {'arbol_optimizado':[test_accuracy_10_7_1_1, precision_10_7_1_1, recall_10]
arbol1_sg = pd.DataFrame(d7_1, index = ['Accuracy', 'Precision', 'Recall', 'ROC_curarbol1_sg

	arbol_optimizado
Accuracy	0.826052
Precision	0.926840
Recall	0.846730
ROC_curve	0.887860

ANALISIS Como en el modelo de regresion linear y por el tipo de variable, si bien es alta la prediccion tambien lo es la tasa de falsos positivos y errores, por lo que debemos centranos en analisis mas evolutivos que de variables en particular.

Productos de pago de Colab - Cancelar contratos

CONCLUSIONES

Sin dudar han evolucionado los derechos de las mujeres, en mayor medida lo han hecho en países y zonas de mejor situación económica.

Aun falta bastante para que los países lleguen a una igualdad total, es sin duda para replantearse por qué aún nos seguimos preguntando si tenemos iguales Derechos que los hombres.

En ámbitos de países de mejor situación económica, los Derechos han logrado mejorar y esto responde sin dudar a políticas educativas y sociales implantadas a nivel nacional e internacional.

Podemos notar también que al ser variables que son mas de carácter cualitativo, por lo que los análisis numéricos solo van a dar o hacer notar una mínima parte de la realidad. Por lo que hacer conclusiones en base a los datos numéricos para predecir futuras evoluciones, puede llevar a errores.

Al tratarse de datos sociales y de comunidades, las realidades políticas y culturales son un factor que en esta base de datos esta muy poco reflejada, y que a futuro son las que en definitiva tienen el mayor impacto.

Por esto y por todo lo demás es que si bien la tendencia va a ser a la evolución y mejoras de los Derechos de las mujeres, afirmarlo dandole un tiempo preciso es imposible.

