

LITMOCEMUHAP 3

Раздел 1. Электростатика

- 1. Работа сил и потенциал электростатического поля
- 2. Электрический диполь и его поле

На тонком кольце радиуса R распределен по произвольному закону заряд q. Определить потенциал поля в точке A, расположенной на оси кольца на расстоянии h от его плоскости.

Omeem:
$$\varphi = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{\sqrt{R^2 + h^2}}.$$

Определить потенциал $\varphi(r)$ внутри равномерно заряженного по объему шара радиуса R. Объемная плотность заряда ρ .

Ombem:
$$\varphi(r) = \frac{\rho}{2\varepsilon_0} \left(R^2 - \frac{r^2}{3} \right)$$
.

Рис. 3.1

Диполь с электрическим моментом $p_e = 2$ нКл*м находится в однородном электрическом поле напряженностью E=30 кВ/м. Вектор p_e составляет угол $\alpha_0=60^\circ$ с направлением силовых линий поля. Определить произведенную внешними силами работу A поворота диполя на угол $\beta=30^\circ$.

Ответ: -21,9 мкДж; 30 мкДж

Найти потенциал φ и модуль E напряженности поля

диполя как функции r и θ (r – pасстояние от центра диполя,

θ – угол между осью диполя и направлением от центра

диполя к данной точке). Дипольный момент равен $p_e = ql, l-1$

«плечо диполя». Считать r >> l.

Рис. 3.2

Ответ:

$$E(r,\theta) = \sqrt{E_r^2 + E_\theta^2} = \frac{p}{4\pi\varepsilon_0 r^3} \sqrt{1 + 3\cos^2\theta}.$$

N одинаковых капелек ртути заряжены до одного и того же потенциала φ. Каков будет потенциал большой капли, получившейся при слиянии этих капелек?

Ombem:
$$\varphi = \frac{Q}{4\pi\epsilon_0 R} = \frac{Nq}{4\pi\epsilon_0 r N^{1/3}} = \varphi N^{2/3}$$
.

• Найти потенциал φ на краю тонкого диска радиуса R, по которому равномерно распределен заряд с поверхностной плотностью σ.

Ombem:
$$\varphi = \frac{\sigma R}{\pi \varepsilon_0}$$

Тонкий диск радиуса R заряжен равномерно с поверхностной плотностью σ. Определить потенциал поля в точке A, расположенной на оси диска на расстоянии h от его плоскости. Рассмотреть случаи,

когда
$$R >> h$$
, $R << h$, $\frac{R}{h} \to \infty$.

Omeem:
$$\phi = \frac{\sigma R}{2\varepsilon_0} . \quad \phi = \frac{1}{4\pi\varepsilon_0} \cdot \frac{\sigma \pi R^2}{h} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{h} . \quad = \frac{\sigma R}{2\varepsilon_0} \left(1 - \frac{h}{R}\right) . \quad \phi = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{R^2 + h^2} - h\right) .$$