## Rethinking Statistics

EES 5891-03
Bayesian Statistical Methods
Jonathan Gilligan

Class #2: Tuesday, August 30 2022

# Golems and Rethinking

### Statistical Tools as Golems

- Statistical tools will do what you tell them to do ...
  - but if you're not careful, what you tell them to do may not be what you want them to do
- The goal of this book is to help you:
  - Learn to use statistical golems wisely
  - Learn to choose the right golem for the job
  - Learn to engineer your own golems if the ready-to-use golems aren't right for your job.



## Hypothesis Testing

- Karl Popper (1902–1994)
  - Science can never prove that a hypothesis is true
  - But it can prove that an incorrect hypothesis is false
  - The more false hypotheses we rule out, we narrow down the list of potentially true hypotheses.

When you have eliminated the impossible, whatever remains, however improbable, must be the truth

— Arthur Conan Doyle/Sherlock Holmes



### Problems with falsification

- The predictions of a hypothesis may not be as clear as many people assume.
- Depending on what other assumptions you make, two different hypotheses may predict the same kind of data.
  - If your data looks like  $M_{\rm I}$ , it rules out (falsifies)  $H_1$
  - But if your data looks like  $M_{II}$ , it doesn't rule out either hypothesis.
- A given hypothesis may predict may different possible kinds of data, depending on what other assumptions you make.
  - If your data doesn't look like  $M_{\rm I}$ , that doesn't imply that it's less likely  $H_{\rm 1}$  is true.



## Null-Hypothesis Significance Testing

- Most statistical tests aim to rule out a *null hypothesis*, not to falsify the actual research hypothesis.
- Often, there's not one unique alternative hypothesis to the null hypothesis, so even if we reject the null hypothesis, there are many other possibilities.
- Bayesian methods give us better, more powerful golems to answer the questions we're really interested in.
  - But they're still golems and we have to be thoughtful and careful about how to use them.

## Discussion

# Bayes's Theorem

### Bayes's Theorem

- The core of this part of the course is Bayes's theorem.
- Notation:
  - Conditional probability: \(P(a | b)\) means the probability of a, given b.
- Bayes's theorem:  $\Gamma(H|D) = \frac{P(D|H) \times P(D)}{P(D)}$ , \] where
  - \(P(H | D)\) is the *posterior*: The probability that H is true, given that you observed D.
  - \(P(D | H)\) is the *likelihood*: The probability that you would observe D, if H is true.
  - \(P(H)\) is the *prior* probability of H, based on what you knew before observing D
  - \(P(D)\) is the *evidence*: The probability that you would observe D, regardless whether H is true.
    - If H is binary (true or false), then  $\Gamma(D) = P(D|H) \times P(D) + P(D| \text{Notion of } H) \times P(H)$

## Bayes's Theorem (cont)

- We can apply Bayes's theorem to a numbers too. For a variable x that we want to predict:  $Y(x|D) = \frac{P(x|D)}{x} \times P(x)$
- In this case,  $\Gamma(D) = \int_{-\infty}^{\infty} P(D|x) \times P(x) \$  is a probability density function.

# Sampling

## Sampling

- You have a globe and want to figure out what fraction of the earth's surface is water.
- Toss the globe in the air, catch it, and note whether your index finger is on water or land: outcomes are *W* and *L*.
- At every toss, use Bayes's theorem to update your estimate of the fraction that is water.



### First toss

- Before you toss the globe, pick a prior probability distribution for the fraction that's water.
- Suppose we don't know anything.
  - Pick \(p \sim \text{Uniform}(0,1)\), a uniform prior:
- Toss the globe and your finger lands on water.
- Update the probability: \[ P(p|W) = \frac{P(W|p) P(p)}{p(W)},\] where p is the probability of water, and W is measuring water.

#### Prior:



### The calculation:

 $[P(p|W) = \frac{P(W|p) P(p)}{p(W)},\]$ 

- \(P(W | p) = p\)
- \(P(p) = 1\) (it's a uniform distribution \
   [\begin{aligned} P(W) &= \int\_0^1 P(W|p) P(p) \
   \mathrm{d}p = \int\_0^1 p \times 1 \
   \mathrm{d}p \\ &= \left. (p^2 / 2) \right|\_0^1 \
   = 1/2 \end{aligned} \]
- so the posterior  $\(P(p \mid W) = 2p)\)$
- Use this posterior as the prior for the next toss...



## Subsequent tosses



# Developing a Model

### Developing a Model

- Observations and parameters are drawn from probability distributions:
  - Likelihood: \(W \sim \text{Binomial}(N, p)\), where \(N\) is the total number of tosses.
  - Prior \(p \sim \text{Uniform}(0,1)\)
  - "\(\sim\)" means a random variable drawn from a probability distribution.
- We use the likelihood and the prior to calculate the posterior.
- We can't easily do this with analytical math using pencil and paper.
  - Computational methods:
    - Grid approximation
    - Quadratic approximation
    - Monte Carlo sampling

## Examples



## **Grid Approximation**

- 1. Define a grid:
  - specify a number of points to sample your function at.
  - Take evenly spaced values for each parameter (e.g., the proportion of water).
    - This example uses one parameter and a one-dimensional grid for simplicity.
    - For models with more than one parameter, the grid has 2, 3, or more dimensions—one per parameter.
- 2. Calculate the value of the *prior* at each grid point
- 3. Calculate the *likelihood* at each grid point
- 4. Compute an unstandardized posterior by multiplying the prior and posterior at each grid point.
- 5. Finally, standardize the *posterior* by dividing each value by the sum of all values in the *unstandardized posterior*.
- The more grid points you use, the more accurate your estimate will be, but the more computer power you'll need.
  - For one parameter, a 1000 point grid is simple.
  - For 2 parameters, a 1000 point grid for each of them means 1 million points.
  - For 3 parameters, it means 1 billion points.
  - For 30 parameters, your grid would have more points than there are atoms in the universe.

### Quadratic Approximation

- Focus our attention near the part of the distribution that has the highest probability density.
- This region looks a lot like a Gaussian (normal) distribution.
  - 1. Find the posterior mode (the highest value).
    - Hill-climbing algorithms
  - 2. Estimate the curvature of the posterior near the mode
    - Approximate probability density as a Gaussian
    - Approximate the logarithm of the probability density as a quadratic function.
  - 3. We can calculate the integral of a Gaussian easily.



# Programming Models in R

### Grid approximation

• Sample functions on a regular grid and approximate integrals by the sum of the samples.

```
define number of points in the grid
grid points = 200
# define grid
p grid \leftarrow seq(from = 0, to = 1,
               length.out = grid points)
# define prior
prior <- rep(1, grid points)</pre>
# compute likelihood at each value in grid
likelihood <- dbinom(6, size = 9, prob = p grid)</pre>
# compute product of likelihood and prior
unstd.posterior <- likelihood * prior</pre>
# standardize the posterior, so it sums to 1
posterior <- unstd.posterior / sum(unstd.posterior)</pre>
```



### Quadratic Approximation

```
library(rethinking)

globe_qa <- quap(
   alist(
        W ~ dbinom( W + L, p), # binomial likelihood
        p ~ dunif(0, 1) # uniform prior
   ),
   data = list(W = 6, L = 3)
)</pre>
```

### Now display a summary:

```
precis(globe_qa)

## mean sd 5.5% 94.5%
## p 0.6666761 0.1571315 0.4155496 0.9178027
```