10. Explain how does the adjusted R-squared penalize the presence of unnecessary predictors in the model?

Adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model. The adjusted R-squared increases when the new term improves the model more than would be expected by chance. It decreases when a predictor improves the model by less than expected. Typically, the adjusted R-squared is positive, not negative. It is always lower than the R-squared.

The adjusted R-squared compensates for the addition of variables and only increases if the new predictor enhances the model above what would be obtained by probability. Conversely, it will decrease when a predictor improves the model less than what is predicted by chance.

11. Differentiate between Ridge and Lasso Regression.

The word "LASSO" denotes Least Absolute Shrinkage and Selection Operator. Lasso regression follows the regularization technique to create prediction. It is given more priority over the other regression methods because it gives an accurate prediction. Lasso regression model uses shrinkage technique. In this technique, the data values are shrunk towards a central point similar to the concept of mean. The lasso regression algorithm suggests a simple, sparse models (i.e. models with fewer parameters), which is well-suited for models or data showing high levels of multicollinearity or when we would like to automate certain parts of model selection, like variable selection or parameter elimination using feature engineering.

Lasso Regression algorithm utilises L1 regularization technique It is taken into consideration when there are more number of features because it automatically performs feature selection.

Ridge Regression is another type of regression algorithm in data science and is usually considered when there is a high correlation between the independent variables or model parameters. As the value of correlation increases the least square estimates evaluates unbiased values. But if the collinearity in the dataset is very high, there can be some bias value. Therefore, we create a bias matrix in the equation of Ridge Regression algorithm. It is a useful regression method in which the model is less susceptible to overfitting and hence the model works well even if the dataset is very small.

12. What is VIF? What is the suitable value of a VIF for a feature to be included in a regression modelling?

A variance inflation factor (VIF) is a measure of the amount of multicollinearity in regression analysis. Multicollinearity exists when there is a correlation between multiple independent variables in a multiple regression model. This can adversely affect the regression results. Thus, the variance inflation factor can estimate how much the variance of a regression coefficient is inflated due to multicollinearity.

VIF<3 is mostly acceptable for regression modelling.

13. Why do we need to scale the data before feeding it to the train the model?

To ensure that the gradient descent moves smoothly towards the minima and that the steps for gradient descent are updated at the same rate for all the features, we scale the data before feeding it to the model.

14. What are the different metrics which are used to check the goodness of fit in linear regression?

Three statistics are used in Ordinary Least Squares (OLS) regression to evaluate model fit: R-squared, the overall F-test, and the Root Mean Square Error (RMSE)

15. From the following confusion matrix calculate sensitivity, specificity, precision, recall and accuracy.

Actual/Predicted	True	False
True	1000	50
False	250	1200

Sensitivity – TP/TP+FN = 1000/1250 = 0.8

Precision – TP/TP+FP = 0.95

Recall - TP/TP+FN = 1000/1250 = 0.8

Accuracy - TP + TN / TP + TN + FP + FN = 0.88

Specificity - TN / TN + FP = 0.96