Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{\#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	-t ₁
•				

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

SO(3) irreps	Fundamental fields	Multiplicities		
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1		
$\tau_{0}^{\#1} - 2 \bar{\imath} k \sigma_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3		
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3		
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3		
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$			
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$			
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$			
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5		
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$			
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$			
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$			
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$			
	$6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$			
	$6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$			
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta} = 0$			
Total constraints/gauge generators: 16				

_	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\scriptscriptstyle\#}$	±1 - α	$\omega_{1^{-}\alpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$						
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	_	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	()	0	0	0	$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$	
$\omega_{1}^{ ext{#2}} \dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	()	0	0	0	$\tau_{0}^{\#2}$		0	0	0	
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0	()	0	0	0 0		$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$\omega_{1}^{ ext{\#}1}\dagger^{lpha}$	0	0	0	$\frac{1}{6}$ (6 $k^2 r_5$	$+t_1+4t_3$)	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)	τ#1 τ ₀ +	I)		
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	t ₁ -2	2 <i>t</i> ₃ √2	<u>t1+t3</u> 3	0	$\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	(0	0	0	Ь					
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}k(t)$	$(1 - 2t_3)$	$-\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$	3) 0	$\frac{2}{3}k^2(t_1+t_3)$		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}$ †	
	$\sigma_{1^{+}lphaeta}^{\#1}$	$\sigma_{1}^{\#2}$	αβ	$ au_{1}^{\#1}{}_{lphaeta}$		$\sigma_{1}^{\#1}{}_{\alpha}$		$\sigma_{1-lpha}^{\#2}$	$ au_1^{\#1}$	γ		$ au_1^{\#2}$ α		
$\sigma_{1^+}^{\sharp 1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{t_1+k}}{t_1+k}$	$\frac{\overline{2}}{x^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$		0	0		0	0				
$\sigma_{1^+}^{\!\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r!}{(1+k^2)}$	$\frac{5+t_1}{2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$		0		0		0				
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r!)}{(1+k^2)}$	$\frac{5-kt_1}{2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	0			0		0				
$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0		0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$		$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$, O	$-\frac{2 i k (t_1-2 t_3)}{(1+2 k^2) (3 t_1 t_3+2 k^2 r_5 (t_1+t_3))}$				
$\sigma_1^{\!\scriptscriptstyle \#2}\dagger^lpha$	0	0		0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$		$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$		- O	$\frac{i \sqrt{2} k (6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1 t_3 + 2k^2 r_5 (t_1 +$				
$ au_1^{\#1} \dagger^{lpha}$	0	0		0		0	0		0	0				
$\tau_{1}^{#2} +^{\alpha}$	0	0		0		$\frac{i k (t_1 - 2 t_3)}{1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$		$\sqrt{2} k (6k^2r_5 + t_1 + 4t_3)$ $(3t_1t_3 + 2k^2r_5(t_1 + t_3)$	<u>,</u> 0	(1+2)	$2k^2 (6k^2)^2 (3t_1)^2$	$\frac{2}{r_5+t}$	$\frac{1+4t_3}{k^2r_5(t_1+t_3)}$	

|--|

Massive and massless spectra

Massive particle				
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$			
Spin:	1			
Parity:	Odd			

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1 || t_3 > 0))$