Notater diffgeom

Fredrik Meyer

12. mars 2015

1 Definisjoner

Definition 1.1. En affin konneksjon ∇ på en differensiabel mangfoldighet M er en avbildning

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M),$$

betegnet $(X,Y) \mapsto \nabla_X Y$ som tilfredsstiller:

1. $\mathcal{D}(M)$ -lineær i første variabel.

$$\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z.$$

2. \mathbb{R} -lineær i andre variabel.

$$\nabla_X(Y+Z) = \nabla_XY + \nabla_XZ.$$

3. Derivasjon i andre variabel.

$$\nabla_X(fY) = f\nabla_X(Y) + X(f)Y.$$

En konneksjon gir oss mulighet til å derivere vektorfelter langs kurver. Mer presist: om M er en mangfoldighet utstyrt med en affin konneksjon, og $c:I\to M$ er en differensiabel kurve, så finnes en korrespondanse som til hvert vektorfelt V langs kurven, assosierer et nytt vektorfelt $\frac{DV}{dt}$ langs kurven slik at

a)
$$\frac{D}{dt}(V+W) = \frac{DV}{dt} + \frac{DW}{dt}$$

- b) $\frac{D}{dt}(fV) = \frac{df}{dt}V + f\frac{DV}{dt}$
- c) Om V kommer fra et vektorfelt $Y \in \mathfrak{X}(M)$ (altså V(t) = Y(c(T))), så er $\frac{DV}{dt} = \nabla_{dc/dt} Y$.

Definition 1.2. A vector field V along a curve $c: I \to M$ is parallel if $\frac{DV}{dt} = 0$ for all $t \in I$.

Definition 1.3. Let M be a Riemannian manifold with a connection ∇ . The connection is *compatible* with the metric \langle , \rangle if for any pair of parallell vector fields V, W along a curve $c: I \to M$, we have $\langle V, W \rangle = constant$.

Definition 1.4. An affine connection ∇ is *symmetric* when

$$\nabla_X Y - \nabla_Y X = [X, Y]$$

for all $X, Y \in \mathfrak{X}(M)$.

Definition 1.5 (Levi-Civita-connection). The unique symmetric affine connection ∇ on a Riemannian manifold that is compatible with the Riemannian metric is called the *Levi-Civita connection* or the *Riemannian connection*.

Definition 1.6. A parametrized curve $\gamma: I \to M$ is a geodesic if $\frac{D}{dt}(\frac{d\gamma}{dt}) = 0$ for all points $t \in I$.