VECTORES

TRABAJO PRÁCTICO Nº1:

A- Vectores en R²

1. Determinar las componentes del vector \vec{v} que tiene por origen al punto M(8;3) y por extremo a N(5;-1), luego representarlo gráficamente.

2. Dado los siguientes vectores:

- a) Escribir las coordenadas de los puntos origen y extremo.
- b) Determinar las componentes de los vectores.
- c) Graficar dos vectores equipolentes a los dados
- d) Graficar el vector fijo de cada familia de vectores
- 3. a) Encontrar el origen del vector $\overrightarrow{u} = (-2; 5)$ cuyo extremo es B(3;1).
 - b) Encontrar el extremo del vector $\vec{w}=(4;-3)$ cuyo origen es A(-3;-1).
 - c) Calcular el módulo del vector $\overset{\rightharpoonup}{u}$ y graficar al vector fijo de esta familia de vectores equipolentes.
- 4. Sea un vector $\overrightarrow{AB} \subseteq \mathbb{R}^2$ cuyas componentes son (5;-2).
 - a) Hallar las coordenadas de A sabiendo que el extremo es B (12; -3).
 - b) ¿La longitud del vector \overrightarrow{AB} es 5 unidades? Justificar la respuesta dada con los cálculos correspondientes.
- 5. a) Determinar la longitud de los lados del triángulo ABC utilizando vectores, sabiendo que sus vértices son los puntos A(1;1), B(-1;3) y C(-3;-3).
 - b) Con lo calculado en el ítem a) determinar el valor del perímetro del triángulo ABC.

- 6. a) Encontrar las coordenadas del origen del vector \overrightarrow{MN} sabiendo que M es el punto medio del segmento AB, donde A(3, 9) y B(-1, 5).
 - b) Determine las componentes del vector \vec{MN} sabiendo que N $(\sqrt{2};5)$

B- Puntos en R³

- 7. a) Representar gráficamente los siguientes puntos de R³: P(3;3;2) y A(-2;1;4).
 - b) Escribir las coordenadas de todos los vértices de las siguientes figuras espaciales.

- 8. Entrar al siguiente link: https://www.geogebra.org/m/udft29et y resolver las actividades propuestas sobre puntos y vectores en el espacio coordenado.
- 9. En un mismo sistema de ejes coordenados, representar gráficamente los puntos: T(-3;2;1), M(2;4;-2), R(-1;-3;-2) e indicar el octante al cual pertenecen.
- 10. a) Escribir las coordenadas de los puntos A y L:

- b) Indicar si las siguientes afirmaciones son verdaderas o falsas, justificando su respuesta.
 - b.1) El punto A del ítem a), se encuentra en el cuarto cuadrante.

Profesorado en Matemática - Profesorado en Física

- b.2) El sistema de referencia en R³ divide al espacio en cuadrantes.
- b.3) Un punto F(-4;-5;-2) se encuentra en el tercer octante.
- b.4) Un punto del octavo octante posee su primera coordenada positiva mientras que la segunda y la tercera son negativas.
- b.5) Si un punto posee la primera y la segunda coordenadas negativas, y la tercera es positiva pertenece al tercer octante.

C- Vectores en R³

- 11. Sean los puntos P(-5;3;7), Q(3;-1;3) y R(4;3;5).
 - a) Determinar las componentes de \overrightarrow{PQ} y \overrightarrow{RP} .
 - b) Determinar el módulo de cada uno de estos vectores.
- 12. a) Hallar las componentes del vector \overrightarrow{v} , sabiendo que las coordenadas de su origen y extremo son P(3;-3;-1) y Q(-1;2;-2) respectivamente.
 - b) Graficar al representante fijo de esta familia de vectores equipolentes.
- 13. a) Utilizar vectores para calcular la distancia entre los puntos S(3;5;-1) y T(-2;2;3).
 - b) Determinar las coordenadas del punto medio del segmento ST.
 - c) ¿ \overrightarrow{ST} es un vector unitario? Justificar con los cálculos correspondientes.
- 14. Sean los puntos P(2;1;4), Q(3;4;4) y R(1;2;-1).
 - a) Represente gráficamente los vectores $\vec{u}=\overset{\rightarrow}{PQ}$ y $\vec{v}=\overset{\rightarrow}{QR}$.
 - b) Calcular la longitud de cada uno de ellos.
- 15. Calcular el módulo de los vectores: $\vec{a}=(-\frac{2}{3};\sqrt{2};\sqrt{2})$ $\vec{b}=(\frac{\sqrt{2}}{2};\frac{1}{3};-1)$.
- 16. a) Utilizando vectores, encontrar la distancia entre los puntos A(1, 2, 3) y B(-1, 2, 0).
 - b) Determinar las componentes del vector que tiene por origen al punto P(-2;1; -3) y por extremo al punto medio entre A y B.

D- Vectores unitarios y dirección de vectores en R².

- 17. Sabiendo que $\overrightarrow{u} = \left(\frac{1}{3}; y\right)$ es un vector unitario. Determinar el valor de su segunda componente.
- 18. a) Determinar las componentes del \vec{v} sabiendo que $|\vec{v}| = 2$ y su dirección está dada por $\theta = \frac{\pi}{3}$.

Profesorado en Matemática - Profesorado en Física

- b) Encontrar el vector unitario que posee la misma dirección y sentido que el vector $\vec{v} = (1; -\frac{4}{3})$
- 19. Determinar la dirección de los siguientes vectores pertenecientes a \mathbb{R}^2 :
- a) $\vec{v} = (2; 3)$ b) $\vec{w} = (-2; \sqrt{2})$ c) $\vec{u} = (-2; -\sqrt{3})$
- 20. Hallar un vector unitario que posea la misma dirección que el vector $\overrightarrow{v}=(3;4)$.
- 21. Un vector \overrightarrow{v} tiene longitud 8 y dirección $\frac{\pi}{3}$, encuentre la componente horizontal y vertical. Luego escriba en términos de i, 'j.
- 22. Un avión se dirige hacia el norte a 300mi/h, también hay un viento cruzado a N 30° E (60°)
 - Expresar la velocidad del avión con respecto al aire y la velocidad del viento en forma de componente (la rapidez es de 40mi/h)
 - Hallar la velocidad verdadera del avión
 - Hallar la rapidez y la dirección verdadera del avión. c)

E- Vectores unitarios y dirección de vectores en R3.

- 23. Hallar un vector unitario que posea la misma dirección que el vector $\overrightarrow{v} = (1; 4; \frac{1}{2})$.
- 24. Hallar el valor de la segunda componente del vector $\overrightarrow{v} = \left(\frac{2}{3}; v_2; \frac{1}{4}\right)$ sabiendo que es un \overrightarrow{v} es un versor.
- 25. Dado un vector $\vec{a}=(2;-3;1)$, encontrar dos representantes de la misma familia de vectores, tales que:
 - a) Tenga origen en el punto Q(1; -4; 2).
- b) Tenga extremo en el punto R(2; 2; 0).
- 26. ¿Cuál es la dirección de los siguientes vectores pertenecientes a \mathbb{R}^3 ?
 - a) $\vec{u} = (4; 5; 3)$
- b) $\vec{w} = (2; 4; 4)$
- 27. Analizar si $\hat{\alpha}=72^\circ$, $\hat{\beta}=76^\circ$ y $\hat{\gamma}=23^\circ$ son los ángulos directores de un vector \vec{v} o no. En caso afirmativo, hallar las componentes de este vector v.
- 28. Calcular las componentes de vector \vec{a} de R3 que forma, con los ejes x e y, los ángulos $\hat{\alpha} = \frac{\pi}{3}$ y $\hat{\beta} = \frac{2}{3}\pi$, respectivamente, sabiendo que posee $|\vec{a}| = 3$. Expresar al vector en su forma canónica.

29. Analizar cuál debe ser la amplitud de $\overset{\hat{}}{\alpha}$ para que los ángulos $\overset{\hat{}}{\beta}=60^\circ$ y $\overset{\hat{}}{\gamma}=75^\circ$ sean ángulos directores de un vector.

Profesorado en Matemática - Profesorado en Física

Para pensar

- 1. $\overrightarrow{El} \text{ vector } \overrightarrow{PQ} \text{ es el mismo vector que } \overrightarrow{QP} ?$
- 2. Con $P(x_p, y_p, z_p)$ y $Q(x_q, y_q, z_q)$ ¿Qué se hace para graficar el vector fijo y el vector libre?
- 3. ¿Un vector tiene coordenadas?
- 4. ¿Se puede determinar el valor absoluto de un vector? Desarrolle.
- 5. ¿Cómo se determina la longitud de un vector? Explicar.
- 6. Dadas las coordenadas de 2 puntos $A(x_a, y_a)$ y $B(x_b, y_b)$ ¿Cuáles son los pasos para determinar

las coordenadas del punto medio M?

- 7. ¿Cuándo un vector es unitario?
- 8. Si el vector no es unitario ¿Cuáles son los pasos a seguir para determinar uno?

¿Qué significa el nuevo vector hallado?

- 9. ¿Qué se considera para hallar la dirección de un vector en R^2 y R^3 ?
- 10. Conociendo la magnitud de un vector v y su dirección θ . ¿Cómo se expresan las componentes del vector?