

5.2.Probabilistic parsing

Lê Thanh Hương School of Information and Communication Technology

Email: huonglt@soict.hust.edu.vn

Motivation: how to choose a parse structure?

- Choice among parses, e.g.

 I saw a man with a telescope.
- As #rules increases, possibility of ambiguity goes up
- Large NYU grammars: Apple pie parser: 20,000-30,000 CF rules for English
- Choice between two rules: V DT NN PP
 - (1) $VP \rightarrow V NP PP$ $NP \rightarrow DT NN$
 - (2) $VP \rightarrow V NP$ $NP \rightarrow DT NN PP$

Word associations (bigrams pr)

Example:

Eat ice-cream (high freq)
Eat John (low, except on Survivor)

Some disadvantages:

- P(John decided to bake a) has a high probability
- Consider:

$$P(w_3) = P(w_3|w_2w_1) = P(w_3|w_2)P(w_2|w_1)P(w_1)$$

The assumption is too strong, e.g., the subject of a sentence can 'select' the object:

Clinton admires honesty

- > use syntactic structure to stop selection from propagating
- Consider Fred watered his mother's small garden. What is pr contributed from *garden*?
 - Pr(garden|mother's small) is not high \Rightarrow trigram model would *not* do well
 - Pr(garden | X is head of object NP to water) is higher
- use bigram + syntactic relation

Syntactic associations (Pr cfg)

- V takes a certain kind of argument
 - ⇒ Verb-with-obj, verb-without-obj
- The correspondance between sbj and obj:

John admires honesty Honesty admires John ???

Disadvantages:

- Grammar size increases
- 1 year of Wall Street Journal (WSJ corpus): 47,219 sentences, avg. length 23 words; bracketed by hand: only 4.7% or 2,232 have exactly same structure as any other in the corpus
- Can't do it all by table lookup. Instead, build up set of particular little pieces

Example

Rule 3

This apple pie looks good and is a real treat

Rules

- 1. NP \rightarrow DT NN NN
- 2. $NP \rightarrow DT JJ NN$
- 3. $S \rightarrow NP VBX JJ CC VBX NP$
- Collapse (NNS, NN) to NX; (NNP, NNPs)=NPX;
 (VBP, VBZ, VBD)=VBX;
- Choose rules by their frequencies

Calculating frequencies

$$\begin{array}{ccc}
\text{Pr}(X \to Y) & \Longrightarrow & & & & \\
Y & \Longrightarrow & & & & & \\
\hline
 & DT JJ NN & = & & & \\
\hline
 & NP & & & & \\
\hline
 & NP & & & & \\
\hline
 & 9711 & & & \\
\end{array}$$
= 0.1532

Pr calculation

 $S \rightarrow NP VP; 0.35$

 $NP \rightarrow DT JJ NN; 0.1532$

 $VP \rightarrow VBX NP; 0.302$

Rule applied

Pr chain

 $1 S \rightarrow NP VP$

0.35

 $2 \text{ NP} \rightarrow \text{DT JJ NN}$

 $0.1532 \times 0.35 = 0.0536$

 $3 \text{ VP} \rightarrow \text{VBX NP}$

 $0.302 \times 0.0536 = 0.0162$

 $4 \text{ NP} \rightarrow \text{DT JJ NN}$

 $0.1532 \times 0.0162 = 0.0025$

Pr = 0.0025

PCFGs

- A PCFG G consists of the usual parts of a CFG
- A set of terminals, $\{w^k\}$, $k = 1, \dots, V$
- A set of nonterminals, $\{N^i\}$, i = 1, ..., n
- A designated start symbol, N¹
- A set of rules, $\{N^i \to \zeta^j\}$, (where ζ^j is a sequence of terminals and nonterminals)

and

• A corresponding set of probabilities on rules such that:

$$\forall i \sum_{j} P(N^{i} \rightarrow \zeta^{j}) = 1$$

• Probability of a derivation (i.e. parse) tree:

$$P(T) = \prod_{i=1..n} p(r(i))$$

Assumptions

• *Place Invariance:* The probability of a subtree does not depend on where in the string the words it dominates are.

$$\forall k, P(N_{jk}(k+c) \rightarrow \zeta)$$
 is the same

• **Context Free:** The probability of a subtree does not depend on words *not dominated* by the subtree.

$$P(N_{jkl} \rightarrow \zeta | \text{ anything outside } k \text{ through } l) = P(N_{jkl} \rightarrow \zeta)$$

• Ancestor Free: The probability of a subtree does not depend on nodes in the derivation outside the subtree

$$P(N_{jkl} \rightarrow \zeta | \text{ anything ancestor nodes outside } N_{jkl}) = P(N_{jkl} \rightarrow \zeta)$$

Parsing algorithms

- CKY
- Beam search
- Agenda/chart-based search

•

CKY with probabilities

- Data structure:
 - Dynamic programming array $\pi[i,j,a]$ holds the maximum probability for a constituent with nonterminal a spanning words i...j.
 - Backptrs store links to constituents in tree
- Output: Maximum probability of parse

Compute Pr by induction

• <u>Base case</u>: input is a single word. $Pr(tree) = pr(A \rightarrow w_i)$

• Recursive case. Input is a string of words.

$$A \stackrel{*}{\Rightarrow} w_{ij}$$
 if $\exists k: A \rightarrow BC$, $B \stackrel{*}{\Rightarrow} w_{ik}$, $C \stackrel{*}{\Rightarrow} w_{kj}$, $i \le k \le j$.
 $p[i,j] = \max(p(A \rightarrow BC) \times p[i,k] \times p[k,j])$.

function CYK(words,grammar) **returns** best_parse

Create and clear *p*[*num_words,num_words,num_nonterminals*]

```
# base case
for i = 1 to num\_words
  for A = 1 to num nonterminals
     if A \rightarrow w_i is in grammar then
        \pi[i, i, A] = P(A \rightarrow w_i)
# recursive case
for j = 2 to num\_words
  for i = 1 to num\_words-j+1
     for k = 1 to j-1
        for A = 1 to num_nonterminals
        for B = 1 to num\_nonterminals
        for C = 1 to num\_nonterminals
           prob = \pi[i, k, B] \times p[i+k, j-k, C] \times P(A \rightarrow BC)
           if (prob > \pi[i, j, A]) then
              \pi[i,j,A] = \text{prob}
              B[i, j, A] = \{k, A, B\}
```


Calculation of Viterbi probabilities (CKY algorithm)

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP\rightarrowVNP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

	1	2	3	4	5
1	$\delta_{NP} = 0.1$		$\delta_{S} = 0.0126$		$-\delta_{S} = 0.0009072$
			0.0504		
2		$\delta_{NP} = 0.04$	$\delta_{VP} = 0.126$		$-\delta_{VP} = 0.009072$
		δ _V = 1.0 <			
3			$\delta_{NP} = 0.18$		$\delta_{NP} = 0.01296$
4				$\delta p = 1.0$	$\delta_{\rm PP} = 0.18$
5					$\delta_{NP} = 0.18$
	astronomers	saw	stars	with	ears

Pr calculation

1.
$$S \rightarrow NP VP$$
 1.0

2.
$$VP \rightarrow V NP PP 0.4$$

3.
$$VP \rightarrow V NP$$
 0.6

4.
$$NP \rightarrow N$$
 0.7

5.
$$NP \rightarrow NPP$$
 0.3

6.
$$PP \rightarrow PREP N$$
 1.0

7.
$$N \rightarrow a_{dog}$$
 0.3

8.
$$N \rightarrow a_cat$$
 0.5

9.
$$N \rightarrow a_{\text{telescop}} 0.2$$

10.
$$V \rightarrow saw$$
 1.0

11. PREP
$$\rightarrow$$
 with 1.0

a_dog saw a_cat with a_telescope

$$P_1 = 1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 = .00588$$

$$P_r = 1 \times .7 \times .6 \times .3 \times .3 \times 1 \times .5 \times 1 \times 1 \times .2 = .00378$$

Beam search

- State space search
- States are partial parses with an associated probability
 - Keep only the top scoring elements at each stage of the beam search
- All parses of a sentence have the same number N steps

Forward and Backward Pr

Forward
Probability =

 $a_i(t) = P(w_{1(t-1)}, X_t = i)$

Backward
Probability = $b_i(t)=P(w_{tT} \mid X_t=i)$

- Forward=probability of everything <u>above</u> & <u>including</u> a certain node
- Backward= probability of of everything below the node, given the node

Inside and outside probabilities

- N_{pq} = Nonterminal N^j spans positions p through q in string (phrase N^j dominates words w_{pq})
- α_i = outside probabilities
- β_i = inside probabilities
- N^{j} <u>dominates</u> words w_{p} ... w_{q} iff $N^{j} \Rightarrow * w_{p}$... w_{q}

Inside and outside probabilities

$$\alpha_{j}(p,q)=P(w_{1(p-1)}, N_{pq}^{j}, w_{(q+1)m}|G)$$

 $\beta_{j}(p,q)=P(w_{pq}|N_{pq}^{j}, G)$

$$\alpha_{j}(p,q) \beta_{j}(p,q) = P(N^{1} \Rightarrow * w_{1m}, N^{j} \Rightarrow * w_{pq} \mid G)$$

$$= P(N^{1} \Rightarrow * w_{1m} \mid G) \bullet P(N^{j} \Rightarrow * w_{pq} \mid N^{1} \Rightarrow * w_{1m}, G)$$

Compute Pr of a string

• We use the *Inside Algorithm*, a dynamic programming algorithm based on the inside probabilities:

$$P(w_{1m}|G) = P(N^1 \Rightarrow^* w_{1m}|G) = P(w_{1m}|N_{1m}^{-1}, G) = \beta_1(1,m)$$

• Base Case:

$$\beta_i(k,k) = P(w_k|N_{kk}^j, G) = P(N^j \rightarrow w_k|G)$$

• Induction:

$$\beta_i(p,q) = \sum_{r,s} \sum_{d \in (p,q-1)} P(N^j \longrightarrow N^r N^s) \ \beta_r(p,d) \ \beta_s(d+1,q)$$

Induction

Find $\beta_j(p,q)$ for p < q — calculate over all 'splits' j — do this 'bottom up'

Example PCFG

1.
$$S \rightarrow NP VP$$
 1.0

2.
$$VP \rightarrow V NP PP = 0.4$$

3.
$$VP \rightarrow V NP$$
 0.6

4.
$$NP \rightarrow N$$
 0.7

5.
$$NP \rightarrow NPP$$
 0.3

6.
$$PP \rightarrow PREP N$$
 1.0

7.
$$N \rightarrow a_{dog}$$
 0.3

8.
$$N \rightarrow a_cat$$
 0.5

9.
$$N \rightarrow a_{\text{telescope } 0.2}$$

10.
$$V \rightarrow saw$$
 1.0

11.
$$PREP \rightarrow with$$
 1.0

P(a_dog saw a_cat with a_telescope) =

 $1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 + ... \times .6... \times .3... = .00588 + .00378 = .00966$

Compute outside Pr, $\alpha_j(p,q)$

Compute outside Pr, $\alpha_j(p,q)$

Sum over both; restrict $g \neq j$ to avoid double counting $N^{j}N^{j}$

- 2 types of ambiguities:
 - A sentence can be understood by different ways, resulting in different syntactic trees
 - Eg., "Tôi nhìn thấy anh Hải ở tầng hai"
 - A sentence with only one meaning but the syntactic parser generates more than one syntactic tree, in which only one tree is correct.
 - Eg., "Hôm nay trời mưa"

Solution:

Solution 1: Using more detailed syntactic labels Phân loại chi tiết hơn các nhãn từ loại/ngữ loại:

Instead of the rule

<Danh ngữ> → <Danh từ><Danh từ>

Using a rule:

<Danh ngữ> → <Danh từ loại A><Danh từ loại B>.

Disadvantages:

- The set of syntactic labels is not unique.
- The size of the rule set is increased remarkable
- The rule set needs to be created manually \rightarrow difficult to be done

Solution 2: add probabilities into the rule set

- The ambiguity in the sentence "*Tôi nhìn thấy anh Hải ở tầng hai*" can be solved
- The ambiguity of word characteristics has not been solved.
- Eg., noun phrase "vấn đề trong phần trước và phần này"

Specific words may affect the result of syntactic parsing

For example:

- "Tôi ăn" rarely be accepted as a sentence because the information in that sentence is small.
- "*Tôi đang ăn*" is more likely to be accepted.
- ➤ Has to consider the characteristic of the main word in a sentence
- 2. Ambiguity due to removing the conjunction word
 - Can say: bạn tôi, con tôi;
 - Cannot say: con chó tôi, con mèo tôi.
- ➤ Word also play an important role in syntactic parsing
- Add word information to the grammar (enriching PCFG)

- A naive PCFG works quite poorly due to the independence assumptions
- Fix: encode more information into the nonterminal space
 - Structure sensitivity
 - Expansion of nodes depends a lot on their position in the tree (independent of lexical content)
 - E.g., enrich nodes by also recording their parents: ^SNP is different to ^{VP}NP

- (Head) Lexicalization (Collins 1997; Charniak 1997)
 - The head word of a phrase gives a good representation of the phrase's structure and meaning
 - Puts the properties of words back into a PCFG

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) 3*10^{-10}$ $VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) 8*10^{-11}$

- Lexicalizated PCFG: PLCFG (Probabilistic Lexicalized CFG, Collins 1997; Charniak 1997)
- Puts the properties of words back into a PCFG
- Head structure
 - Each node in the parsed tree is attached with a *lexical* head
 - To define a *head* node, we have to find it among all of its children (define *head* in the RHS of a rule).

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) 3*10^{-10}$

 $VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) 8*10^{-11}$

Figure 12.12 A lexicalized tree from Collins (1999).

Limitations of PLCFG

```
VP -> VBD NP PP
VP(dumped) -> VBD(dumped) NP(sacks)
        PP(into)
```

- We don't have a large enough corpus!
 - To represent all syntactic cases for each word

Penn Treebank

- The Penn Treebank 1 million words of parsed English WSJ has been a key resource
- Sparseness:
 - 965,000 constituents, but only 66 WHADJP, of which only 6 aren't *how much* or *how many*
- Most intelligent processing depends on bilexical statistics: likelihoods of relationships between pairs of words.

A Penn Treebank tree

```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
        (NP (CD 61) (NNS years) )
       (JJ old) )
      (,,)
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (...)
```


Evaluation

- (b) Brackets in gold standard tree (a.): **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), *NP-(9:10)
- (c) Brackets in candidate parse: **S-(0:11)**, **NP-(0:2)**, VP-(2:10), VP-(3:10), NP-(4:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)
- (d) Precision: 3/8 = 37.5% Crossing Brackets: 0 Recall: 3/8 = 37.5% Crossing Accuracy: 100% Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9% Labeled Recall: 3/8 = 37.5%

Performance's Measurements

		Human as	Iuman assignments	
		Yes	No	Total
System	Yes	HSA	SA - HSA	SA
System assignments	No	HA - HSA		
Total		HA		

Precision: %assignments made that were correct (%THợp hệ tính đúng). Recall: %possible assignments that were actually assigned (%THợp hệ tính đúng so với con người).

$$precision = \frac{HSA}{SA}$$
 $recall = \frac{HSA}{HA}$

Represent a tree by its syntactic constitutes

Evaluate

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6

$$\text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Precision =
$$100\% imes rac{C}{P} = 100\% imes rac{6}{6}$$

Example 2

(a) ROOT NΡ VΡ NP NNS NNS VBD VP NN · 11 executives 2 were VBG NP PP yesterday 10 o Sales 1 NNS 3 examining ΙN DΤ NN 5 figures 6 with 7 great 8 care 9

- (b) Brackets in gold standard tree (a.): **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), *NP-(9:10)
- (c) Brackets in candidate parse: **S-(0:11)**, **NP-(0:2)**, VP-(2:10), VP-(3:10), NP-(4:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)
- (d) Precision: 3/8 = 37.5% Crossing Brackets: 0 Recall: 3/8 = 37.5% Crossing Accuracy: 100%
 - Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%
 - Labeled Recall: 3/8 = 37.5%

Exercise – compute P, R

Gold standard syntactic structure:

- (S (NP (N Con)(N lũ)) (VP(V cuốn)(V qua) (NP (L những)(N phận)(N người))) (...))
- (S(NP(N Phận)(N người) (PP(E ở) (NP(Np Bình Sơn))))())

Automatically generated syntactic structure:

🖃 Phận người ở Bình Sơn .

Some syntactic parsers:

- CFG (context free grammar):
 - Berkeley: http://nlp.cs.berkeley.edu/software.shtml
 - Charniak: http://bllip.cs.brown.edu/resources.shtml
- HPSG (Head-driven Phrase Structure Grammar)
 - Enju, deepNLP: https://mynlp.github.io/enju/
- Depedency grammar
 - ClearNLP: http://clearnlp.wikispaces.com/depParser
 - Google SyntaxNet: open-source, using deep learning
 - https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
 - Netbase, for twitter sentences
 - https://www.codeproject.com/Articles/43372/NetBase-A-Minimal-NET-Database-with-a-Small-SQL
 - Stanford: https://nlp.stanford.edu/software/lex-parser.shtml

