1.34. Тело брошено со скоростью v_0 под углом к горизонту. Время полета t = 2,2 с. На какую высоту h поднимется тело?

Решение:

Перемещение по вертикали $S_y = (v_0 \sin \alpha) \cdot t - \frac{gt^2}{2}$ — (1). Обозначим t_1 — время подъема тела на высоту h. Тогда из (1) получим

 $h = v_0 \sin \alpha \cdot t_1 - \frac{gt_1^2}{2}$. B Bepx-

ней точке
$$v_y = 0$$
, но $v_y = v_0 \sin \alpha - gt_1$, следовательно,

$$v_0 \sin \alpha = gt_1$$
. Тогда $h = gt_1^2 - \frac{gt_1^2}{2} = \frac{gt_1^2}{2}$. Поскольку $t_1 = \frac{t}{2}$,

TO
$$h = \frac{gt^2}{8}$$
; $h = \frac{9.8 \cdot 2.2^2}{8} = 5.9 \text{ M}.$

1.35. Камень, брошенный со скоростью $v_0 = 12$ м/с под углом $\alpha = 45^\circ$ к горизонту, упал на землю на расстоянии l от места бросания. С какой высоты h надо бросить камень в горизонтальном направлении, чтобы при той же начальной скорости v_0 он упал на то же место?

Решение:

Если камень брошен под углом к горизонту, $l = v_0 \cos \alpha t_1$ — (1), где $t_1 = \frac{2v_0 \sin \alpha}{g}$ (см. задачу 1.32.). Во втором случае

 $l=v_0t_2$. Подставив выражение для t_1 в (1), получим $l=\frac{v_0^2\sin 2\alpha}{g}$, откуда $t_2=\frac{v_0^2\sin 2\alpha}{gv_0}=\frac{v_0\sin 2\alpha}{g}$. Высота, с которой нужно бросить камень, $h=\frac{gt_2^2}{2}=\frac{gv_0^2\sin^2 2h}{2g^2}=\frac{v_0^2\sin^2 2\alpha}{2g^2}$ = $\frac{v_0^2\sin^2 2\alpha}{2g^2}$; $h=\frac{144\cdot 1}{2\cdot 9\cdot 8}=7,3$ м.

1.36. Тело брошено со скоростью $v_0 = 14.7$ м/с под углом $\alpha = 30^\circ$ к горизонту. Найти нормальное a_n и тангенциальное a_r ускорения тела через время t = 1.25 с после начала движения.

Решение:

Найдем время, за которое тело поднимется до верхней точки траектории. Вертикальная составляющая скорости $v_y = v_0 \sin \alpha - gt_1$. В верхней точке $v_y = 0$, следовательно, $v_0 \sin \alpha = gt_1$, откуда $t_1 = \frac{v_0 \sin \alpha}{g}$; $t_1 = 0.75 \, \mathrm{c}$, т.е.

при t=1.25 с тело находится уже на спуске; таким образом можно представить, что тело бросили горизонтально со скоростью $v_x=v_0\cos\alpha$, и нужно найти a_n и a_r через время $t_2=t-t_1=0.5$ с. Изобразим треугольник ускорений и совместим его с треугольником скоростей. Тангенциальное ускорение a_r направлено по касательной, так же, как вектор \vec{v} , $\vec{a}_n \perp \vec{a}_r$, полное ускорение — ускорение свободного падения. Из рисунка видно, что $\cos \varphi = v_x / v = a_n / g$; $\sin \varphi = \frac{v_x}{v} = \frac{a_r}{g}$; отсюда $a_n = g \frac{v_x}{v}$;

$$a_{\tau} = g \frac{v_{y}}{v} . \quad \text{Полная} \quad \text{скорость} \quad \text{тела} \quad v = \sqrt{v_{x}^{2} + v_{y}^{2}} = \\ = \sqrt{(v_{0} \cos \alpha)^{2} + (gt_{2})^{2}} \; , \quad \text{тогда} \quad a_{n} = g \frac{v_{0} \cos \alpha}{\sqrt{(v_{0} \cos \alpha)^{2} + (gt_{2})^{2}}} \; ;$$

$$a_r = g \frac{gt_2}{\sqrt{(v_0 \cos \alpha)^2 + (gt_2)^2}}$$
. Подставив числовые значения, получим $a_n = 9.15 \text{ м/c}^2$; $a_r = 3.52 \text{ м/c}^2$.

1.37. Тело брошено со скоростью $v_0 = 10 \,\text{м/c}$ под углом $\alpha = 45^{\circ}$ к горизонту. Найти радиус кривизны R траектории тела через время t = 1 с после начала движения.

Решение:

Найдем время, за которое тело поднимется до верхней точки траектории. Вертикальная составляющая его скорости $v_y = v_0 \sin \alpha - gt_1$. В верхней точке траектории $v_v = 0$, следо-

вательно, $v_0 \sin \alpha = gt_1$, откуда $t_1 = \frac{v_0 \sin \alpha}{\sigma}$; $t_1 = 0.7$ с, т.е.

при t = 1 с тело находится уже на спуске, таким образом можно представить, что тело бросили горизонтально со скоростью $v_x = v_0 \cos \alpha$. Нормальное ускорение тела

$$a_n = \frac{v^2}{R}$$
, где $v = \sqrt{v_x^2 + v_y^2}$. Из рисунка видно, что

$$a_n = g \sin \varphi$$
; $\sin \varphi = \frac{v_x}{\sqrt{v_x^2 + v_y^2}}$. Тогда $a_n = g \frac{v_x}{\sqrt{v_x^2 + v_y^2}}$ и

$$R = \frac{v^2}{a_n} = \frac{\left(v_x^2 + v_y^2\right)\sqrt{v_x^2 + v_y^2}}{v_x g}$$
. Вычислим отдельно v_x и v_y :

 $v_x = v_0 \cos \alpha = 5\sqrt{2}$ м/с; $v_y = g(t - t_1) = 3$ м/с. Подставив числовые значения, получим $R \approx 6.3$ м.

1.38. Тело брошено со скоростью v_0 под углом α к горизонту. Найти скорость v_0 и угол α , если известно, что высота подъема тела h=3 м и радиус кривизны траектории тела в верхней точке траектории R=3 м.

Решение:

Уравнения движения тела по вертикали $v_y = v_0 \sin \alpha - gt$; $v_y = v_0 \sin \alpha - gt$; $v_y = v_0 \sin \alpha - gt$. В верхней точке траектории $v_y = 0$, $v_y = 0$

следовательно, $v_0 \sin \alpha = gt_1$, отсюда $t_1 = \frac{v_0 \sin \alpha}{g}$. Высота

подъема $h = s_y = \frac{v_0^2 \sin^2 \alpha}{2g}$ — (1). Нормальное ускорение

тела в верхней точке траектории $a_n = g = \frac{v_x^2}{R}$, где

$$v_x = v_0 \cos \alpha$$
 . Тогда $g = \frac{v_0^2 \cos^2 \alpha}{R}$, откуда

 $v_0 = \sqrt{\frac{gR}{\cos^2 \alpha}} = \frac{\sqrt{gR}}{\cos \alpha}$ — (2). Подставив (2) в (1), получим:

$$h = \frac{gR \cdot \sin^2 \alpha}{\cos^2 \alpha \cdot 2g} = tg^2 \alpha \frac{R}{2}, \quad \text{откуда} \quad tg\alpha = \sqrt{\frac{2h}{R}}; \quad tg\alpha = \sqrt{2};$$

$$\alpha \approx 60^{\circ}30' \text{ M3 угаричица (2) } y = 9.35 \text{ м/s}$$

 $\alpha \approx 60^{\circ}30'$. Из уравнения (2) $v_0 = 9{,}35$ м/с.

1.39. С башни высотой $h_0 = 25$ м брошен камень со скоростью $v_0 = 15$ м/с под углом $\alpha = 30^\circ$ к горизонту. Какое время t

камень будет в движении? На каком расстоянии l от основания башни он упадет на землю? С какой скоростью v он упадет на землю? Какой угол ϕ составит траектория камня с горизонтом в точке его падения на землю?

Решение:

28

Движение тела, брошенного с высоты h_0 под углом α к горизонту можно разложить на два этапа: движение тела до наивысшей точки A и движение тела, брошенного из точки A горизонтально со скоростью $v_x = v_0 \cos \alpha$. Вы-

сота подъема тела $s_y = AC = h_0 + h = h_0 + \frac{\left(v_0^2 \sin^2 \alpha\right)}{2\alpha}$. Общее время движения камня $t = t_1 + t_2$, где $t_1 = \frac{(v_0 \sin \alpha)}{\sigma}$ время подъема камня на высоту h и $t_2 = \sqrt{\frac{2s_y}{\sigma}}$ — время падения камня. Подставляя данные задачи, получим $s_v = 27.9 \text{ м}, \quad t_1 = 0.77 \text{ c}, \quad t_2 = 2.39 \text{ c};$ отсюда t = 3.16 c.Расстояние от основания башни до места падения камня на землю l = OD = OC + CD, где $OC = \frac{OE}{2} = \frac{v_0^2 \sin 2\alpha}{2\sigma} \approx 10 \,\text{M}$, $CD = v_x t_2 = v_0 t_2 \cos \alpha = 31,1 \text{ м};$ отсюда l = 41,1 м. Скорость $v = \sqrt{v_x^2 + v_y^2}$, где $v_x = v_0 \cos \alpha = 13$ м/с, $v_y = gt_2 = 23.4$ м/с; отсюда v = 26,7 м/с. Угол φ , составляемый траекторией камня с горизонтом в точке падения камня на землю, найдется из формулы $v_y = v_x t g \varphi$, откуда $t g \varphi = \frac{v_y}{v} = 1,8$ и $\varphi = 61^{\circ}$.

1.40. Мяч, брошенный со скоростью $v_0 = 10$ м/с под углом $\alpha = 45^\circ$ к горизонту, ударяется о стенку, находящуюся на расстоянии l=3 м от места бросания. Когда происходит удар мяча о стенку (при подъеме мяча или при его опускании)? На какой высоте h мяч ударит о стенку (считая от высоты, с которой брошен мяч)? Найти скорость v мяча в момент удара.

$$t_1 = \frac{v_0 \sin \alpha}{g}$$
 — (1) — время подъема до верхней точки (см. задачу 1.38). Когда мяч находится в верхней точке, $s_x = (v_0 \cos \alpha) \cdot t_1$. С учетом (1) $s_x = \frac{v_0^2 \sin \alpha \cos \alpha}{g} = \frac{v_0^2 \sin 2\alpha}{2g}$; $s_x = \frac{100 \cdot 1}{2 \cdot 9.8} = 5.1$ м, следовательно, мяч ударяется в стену при подъеме. Мяч ударится о стенку, когда координата $s_y = h = (v_0 \sin \alpha) \cdot t - \frac{gt^2}{2}$ — (2). В этот момент времени $s_x = l = (v_0 \cos \alpha) \cdot t$, откуда $t = \frac{l}{v_0 \cos \alpha}$ — (3). Подставив

(3) в (2), получим
$$h = \frac{v_0 \sin \alpha \cdot l}{v_0 \cos \alpha} - \frac{gl^2}{2v_0^2 \cos^2 \alpha} =$$
 $= l \cdot tg\alpha - \frac{gl^2}{2v_0^2 \cos^2 \alpha}$. После подстановки числовых значений $h = 2,1$ м. Горизонтальная составляющая скорости $v_x = v_0 \cos \alpha$; $v_x = 7,07$ м/с. Вертикальная составляющая скорости $v_y = v_0 \sin \alpha - gt = v_0 \sin \alpha - \frac{gl}{v_0 \cos \alpha}$; $v_y = 2,91$ м/с. Полная скорость $v = \sqrt{v_x^2 + v_y^2}$; $v = \sqrt{7,07^2 + 2,91^2} = 7,6$ м/с.

1.41. Найти угловую скорость ω : а) суточного вращения Земли; б) часовой стрелки на часах; в) минутной стрелки на часах; г) искусственного спутника Земли, движущегося по круговой орбите с периодом вращения T=88 мин. Какова линейная скорость ν движения этого искусственного спутника, если известно, что его орбита расположена на расстоянии h=200 км от поверхности Земли?

Решение:

Угловая скорость $\omega = \frac{2\pi}{T}$, где T — период обращения.

a)
$$T = 24 \text{ u} = 86,4 \cdot 10^3 \text{ c}$$
; $\omega = 72,7 \cdot 10^{-6} \text{ pag/c}$;

б)
$$T = 12 \text{ ч} = 43,2 \cdot 10^3 \text{ c}; \ \omega = 145,4 \cdot 10^{-6} \text{ рад/c};$$

в)
$$T = 1$$
 ч = 3600 с; $\omega = 1.74 \cdot 10^{-6}$ рад/с;

г)
$$T = 88$$
 мин =5280 с; $\omega = 1,19 \cdot 10^{-3}$ рад/с.

Линейная скорость спутника $\vec{v} = \left[\vec{\omega}\vec{R}\right]$, в скалярном виде $v = \omega R \sin 90^o = \omega R$, где $R = R_3 + h$. Здесь R_3 — радиус Земли. Тогда $v = \omega (R_3 + h)$; v = 7.83 км/с.

1.42. Найти линейную скорость v вращения точек земной поверхности на широте Ленинграда ($\phi = 60^{\circ}$).

Решение:

Линейная скорость $v = \omega \cdot r$ (см. задачу 1.41), где $\omega = \frac{2\pi}{T}$. Период вращения Земли T = 24 ч = 86400 с ; $r = R\cos\varphi$, где R — радиус Земли. Отсюда $v = \frac{2\pi R\cos\varphi}{T}$; $v = \frac{2 \cdot 3.14 \cdot 6.38 \cdot 10^6 \cdot 0.5}{86400} \approx 231 \,\mathrm{m/c}$.

1.43. С какой линейной скоростью должен двигаться самолет на экваторе с востока на запад, чтобы пассажирам этого самолета Солнце казалось неподвижным?

Очевидно, что самолет должен двигаться со скоростью, равной линейной скорости вращения Земли $v = \omega R = \frac{2\pi}{T} R$; где T = 24 ч — период вращения Земли; R = 6378 км — радиус Земли. Отсюда v = 1669 км/ч.

1.44. Ось с двумя дисками, расположенными на расстоянии l = 0.5 м друг от друга, вращается с частотой n = 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол $\phi = 12^{\circ}$. Найти скорость ν пули.

Решение:

$$\vec{\varphi} = \vec{\varphi}_0 + \vec{\omega} \cdot t + \frac{\beta t^2}{2}$$
. Выберем $\varphi_0 = 0$.

Из условия следует, что движение осуществляется с постоянной угловой

скоростью $\omega = 2\pi n$, следовательно, угловое ускорение равно 0, т.е. смещение $\varphi = \omega \cdot t$, откуда $t = \frac{\varphi}{\omega}$ — (1); $\omega = n \cdot 2\pi$ — (2). Скорость пули $v = \frac{l}{t}$ — (3). Подставив (2)

в (1), а затем (1) в (3) получим: $v = \frac{l \cdot 2\pi n}{\omega}$. Произведя вычисления, найдем скорость пули v = 419 м/с.

1.45. Найти радиус R вращающегося колеса, если известно, что линейная скорость v, точки, лежащей на ободе, в 2,5 раза больше линейной скорости у, точки, лежащей на расстоянии r = 5 см ближе к оси колеса.

Вектор $\overline{\omega}$ перпендикулярен плоскости чертежа, следовательно, в скалярном виде $v = \omega \cdot r$; $v_1 = \omega \cdot R$; $v_2 = \omega \cdot (R - r)$. Отсюда $\frac{v_1}{v_2} = \frac{\omega \cdot R}{\omega \cdot (R - r)} = 2.5$; $\frac{R}{R - r} = 2.5$; $1.5 \cdot R = 12.5$; R = 8.3 см.

1.46. Колесо, вращаясь равноускоренно, достигло угловой скорости $\omega = 20$ рад/с через N = 10 об после начала вращения. Найти угловое ускорение ε колеса.

Решение:

Уравнения движения колеса: $\varphi = \omega_0 t + \frac{\varepsilon \cdot t^2}{2}$, $\omega = \omega_0 + \varepsilon \cdot t$.

По условию $\omega_0 = 0$. Тогда $\varphi = \frac{\varepsilon t^2}{2}$ — (1), $\omega = \varepsilon t$ — (2).

Выражая из уравнения (1) ε и учитывая, что $\varphi=2\pi N$,

получим $\varepsilon = \frac{4\pi N}{t^2}$ — (3). Из уравнения (2) найдем $t = \frac{\omega}{\varepsilon}$ и

подставим в (3). Получим $\varepsilon = \frac{\omega^2}{4\pi N}$; $\varepsilon = 3.2 \, \mathrm{pag/c^2}$. Поскольку $\varepsilon > 0$, то направление вектора $\vec{\varepsilon}$ совпадает с направлением вектора $\vec{\omega}$ (см. рисунок к задаче 1.45).

1.47. Колесо, вращаясь равноускоренно, через время t = 1 мин после начала вращения приобретает частоту n = 720 об/мин. Найти угловое ускорение ε колеса и число оборотов N колеса за это время.

Ŧ

Решение:

Угловая скорость колеса $\vec{\omega}(t) = \vec{\omega}_0 + \vec{\varepsilon} t$. В скалярном виде при $\omega_0 = 0$ получим $\omega = \varepsilon t$, кроме того, $\omega = n \cdot 2\pi$. Отсюда $\varepsilon = \omega/t = n \cdot 2\pi/t$; $\varepsilon = 1,25$ рад/с².

1.48. Колесо, вращаясь равнозамедленно, за время t = 1 мин уменьшило свою частоту с $n_1 = 300$ об/мин до $n_2 = 180$ об/мин. Найти угловое ускорение ε колеса и число оборотов N колеса за это время.

Решение:

Переведем числовые данные в единицы системы СИ: t=1 мин = 60 с; $n_1=300$ об/мин = 5 об/с; $n_2=180$ об/мин = 3 об/с. Поскольку вращение равнозамедленное, то $N=\frac{n_1+n_2}{2}$ t=240. Угловая скорость $\omega=\omega_0-\varepsilon t$ — (1), где $\omega_0=n_1\cdot 2\pi$; $\omega=n_2\cdot 2\pi$. Из (1) имеем $\varepsilon t=\omega_0-\omega$, откуда $\varepsilon=\frac{\omega_0-\omega}{t}=\frac{2\pi(n_1-n_2)}{t}$; $\varepsilon=\frac{2\cdot 3.14(5-3)}{60}=0.21$ рад/с².

1.49. Вентилятор вращается с частотой n = 900 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N = 75 об. Какое время t прошло с момента выключения вентилятора до полной его остановки?

n = 900 об/мин = 15 об/с. Запишем уравнения движения в

Решение:

скалярном виде: $\varphi = \omega_0 t - \frac{\varepsilon t^2}{2}$ — (1); $\omega = \omega_0 - \varepsilon t$ — (2), где $\varphi = 2\pi N$ — (3); $\omega = 0$; $\omega_0 = 2\pi n$ — (4). Тогда из (2) $t = \frac{\omega_0}{\varepsilon} = \frac{2\pi n}{\varepsilon}$ — (5). Перепишем уравнение (1) с учетом (3), (4) и (5): $2\pi N = \frac{(2\pi n)^2}{\varepsilon} - \frac{\varepsilon (2\pi n)^2}{2\varepsilon^2} = \frac{(2\pi n)^2}{2\varepsilon}$; $N = \frac{2\pi n^2}{2\varepsilon} = \frac{\pi n^2}{\varepsilon}$; отсюда $\varepsilon = \frac{\pi n^2}{N}$. Подставив это уравнение в (5), получим: $t = \frac{2\pi n \cdot N}{\pi n^2} = \frac{2N}{n}$; $t = \frac{2 \cdot 75}{15} = 10$ с.

1.50. Вал вращается с частотой n = 180 об/мин. С некоторого момента вал начинает вращаться равнозамедленно с угловым ускорением $\varepsilon = 3$ рад/с². Через какое время t вал остановится? Найти число оборотов N вала до остановки.

Решение:

 $n=180\, {\rm of/muh}=3\, {\rm of/c}.$ Поскольку вращение равнозамедленное, то число оборотов вала до остановки $N=\frac{n}{2}\cdot t$. Угловая скорость $\omega=\omega_0-\varepsilon t$. По условию $\omega=0$, следовательно, $\omega_0=\varepsilon t$, кроме того, $\omega_0=n2\pi$, тогда $\varepsilon t=n\cdot 2\pi$, откуда $t=\frac{n\cdot 2\pi}{\varepsilon}=6,28\,{\rm c}.$ $N=9,4\, {\rm of/c}.$

1.51. Точка движется по окружности радиусом R = 20 см с постоянным тангенциальным ускорением $a_r = 5$ см/с². Через какое время t после начала движения нормальное ускорение a_n точки будет: а) равно тангенциальному; б) вдвое больше тангенциального?

Решение:

По условию вращение является равноускоренным, следовательно, $a_{\tau} = \frac{v}{t}$, $a_{n} = \frac{v^{2}}{R}$; отсюда $t = \frac{v}{a_{\tau}}$, $v = \sqrt{a_{n}R}$. Тогда $t = \frac{\sqrt{a_{n}R}}{a_{\tau}}$. а) Если $a_{n} = a_{\tau}$, то $t = \sqrt{\frac{R}{a_{\tau}}} = \sqrt{\frac{20}{5}} = 2$ с; б) если $a_{n} = 2a_{\tau}$, то $t = \sqrt{\frac{2R}{a_{\tau}}} = \sqrt{\frac{2\cdot 20}{5}} = 2.8$ с.

1.52. Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением a_z . Найти тангенци-

альное ускорение a_r точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 79.2 см/с.

Решение:

$$a_{\tau} = dv/dt$$
, по условию $a_{\tau} = const$, следовательно, $a_{\tau} = v/t$ — (1), где $v = \omega R$; $\omega = 2\pi n = 2\pi N/t$. Отсюда $t = \frac{2\pi NR}{v}$ — (2). Подставив (2) в (1), получим $a_{\tau} = \frac{v^2}{2\pi NR}$; $a_{\tau} = 0.2$ м/с.

1.53. Точка движется по окружности радиусом $R=10\,\mathrm{cm}$ с постоянным тангенциальным ускорением a_r . Найти нормальное ускорение a_n точки через время $t=20\,\mathrm{c}$ после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки $v=10\,\mathrm{cm/c}$.

Решение:

Имеем $a_n = \omega^2 R$, где $\omega = \varepsilon t$; отсюда $a_n = \varepsilon^2 t^2 R$ — (1). Найдем угловое ускорение ε . При равноускоренном движении среднее число оборотов в единицу времени (по аналогии со средней скоростью при прямолинейном равноускоренном движении) $\overline{n} = \frac{\Delta N}{\Delta t} = \frac{N}{t_1}$, где t_1 — момент времени, соответствующий концу пятого оборота. $\overline{n} = \frac{n_0 + n}{2}$; $n_0 = 0$, следовательно, $N = \frac{n}{2} \cdot t_1$ — (2). Частота оборотов $n = \frac{\omega}{2\pi} = \frac{v}{2\pi R}$ — (3). Выразим из (2) t_1 , с учетом (3): $t_1 = \frac{4\pi NR}{v}$ — (4). Угловое ускорение $\varepsilon = \frac{\omega_1}{t}$ — (5),

где $\omega_1 = v/R$ — (6). Подставив в (5) уравнения (4) и (6),

получим:
$$\varepsilon = \frac{v^2}{4\pi NR^2}$$
. Тогда из уравнения (1)

$$a_n = \frac{v^4 t^2 R}{16\pi^2 N^2 R^3}$$
; $a_n = \frac{0.1^4 \cdot 20^2 \cdot 0.1}{16 \cdot 3.14^2 \cdot 5^2 0.1^3} = 0.01 \,\text{m/c}^2$.

1.54. В первом приближении можно считать, что электрон в атоме водорода движется по круговой орбите с линейной скоростью v. Найти угловую скорость ω вращения электрона вокруг ядра и его нормальное ускорение a_{μ} . Считать радиус орбиты $r = 0.5 \cdot 10^{-10}$ м и линейную скорость электрона на этой орбите $v = 2.2 \cdot 10^6$ м/с.

Решение:

$$a_n = \frac{v^2}{r}$$
; $a_n = \frac{4.84 \cdot 10^{12}}{0.5 \cdot 10^{-10}} 9.7 \cdot 10^{22}$. $\omega = \frac{v}{r}$; $\omega = \frac{2.2 \cdot 10^6}{0.5 \cdot 10^{-10}} = 4.4 \cdot 10^{16}$ pag/c.

1.55. Колесо радиусом $R = 10 \, \text{см}$ вращается с угловым ускорением $\varepsilon = 3,14$ рад/с². Найти для точек на ободе колеса к концу первой секунды после начала движения: а) угловую скорость ω ; б) линейную скорость ν ; в) тангенциальное ускорение a_{τ} ; г) нормальное ускорение a_{η} ; д) полное ускорение a; e) угол α , составляемый вектором полного ускорения с радиусом колеса.

Решение:

а) При равнопеременном вращательном движении угловая скорость $\omega = \omega_0 + \varepsilon t$. По условию $\omega_0 = 0$, тогда $\omega = \varepsilon t$, при t = 1 с угловая скорость $\omega = 3.14 \,\mathrm{pag/c}$.

- б) Линейная скорость $v = \omega R$, при t = 1 с имеем v = 0.314 м/с.
- в) Тангенциальное ускорение $a_{\tau} = \varepsilon R$ постоянно во все время движения; при t=1 с имеем $a_{\tau}=0.314$ м/с².
- г) Нормальное ускорение $a_n = \omega^2 R = \varepsilon^2 t^2 R$, при t = 1 с имеем $a_n = 0.986$ м/с².
- д) Полное ускорение $a = \sqrt{a_{\tau}^2 + a_n^2} = a_{\tau} \sqrt{1 + \varepsilon^2 t^4}$; при t = 1 с имеем a = 1.03 м/с².
- e) $\sin \alpha = \frac{\dot{a}_r}{a} = \frac{1}{\sqrt{1 + \varepsilon^2 t^4}}$, где α —угол между вектором полного ускорения и радиусом колеса. К концу первой секунды $\sin \alpha = \frac{a_r}{a_n} = \frac{0.314}{1.03} = 0.305$ и $\alpha = 17^{\circ}46'$.
- **1.56.** Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением $s = Ct^3$, где C = 0.1 см/с³. Найти нормальное a_n и тангенциальное a_r ускорения точки в момент, когда линейная скорость точки v = 0.3 м/с.

$$a_n = \frac{v^2}{R} = \frac{0.09}{0.02} = 4,5 \,\mathrm{m/c^2}; \ a_\tau = \frac{d^2s}{dt^2} = 6Ct$$
 . Выразим a_n через t : $v = \frac{ds}{dt} = 3Ct^2$, следовательно, $a_n = \frac{\left(3Ct^2\right)^2}{R} = \frac{9C^2t^4}{R}$. Отсюда $t^2 = \sqrt{\frac{a_nR}{9C^2}} = \frac{\sqrt{a_nR}}{3C}$; $t = \sqrt{\frac{\sqrt{a_nR}}{3C}}$. Тогда тангенциальное ускорение $a_\tau = 6C \cdot \sqrt{\frac{\sqrt{a_nR}}{3C}}$; $a_\tau = 0.06 \,\mathrm{m/c^2}$.

1.57. Точка движется по окружности так, что зависимость пути от времени дается уравнением $s = A - Bt + Ct^2$, где B = 2 м/с и C = 1 м/с². Найти линейную скорость v точки, ее тангенциальное a_r , нормальное a_n и полное a ускорения через время t = 3 с после начала движения, если известно, что при t' = 2 с нормальное ускорение точки $a'_n = 0.5$ м/с².

Решение:

Линейная скорость точки $v = \frac{ds}{dt} = -B + 2Ct$; v = 4 м/с. Тангенциальное ускорение $a_r = dv/dt = 2C = 2$ м/с 2 . Нормальное ускорение $a_n = \frac{v^2}{R}$ — (1). Через время t' = 2 с точка будет иметь линейную скорость v' = -B + 2Ct'; v' = 2 м/с. Радиус окружности можно выразить следующим образом: $R = \frac{(v')^2}{a_n'}$. Тогда из (1) получим $a_n = \frac{v^2 a_n'}{(v')^2}$; $a_n = 2$ м/с 2 . Полное ускорение $a = \sqrt{a_n^2 + a_r^2} = 2.8$ м/с 2 .

1.58. Найти угловое ускорение ε колеса, если известно, что через время t=2 с после начала движения вектор полного ускорения точки, лежащей на ободе, составляет угол $\alpha=60^{\circ}$ с вектором ее линейной скорости.

Из рисунка видно, что
$$tg\alpha = \vec{a}_r$$
 — (1). При равноускоренном

вращении
$$a_n = \frac{v^2}{R}$$
; $a_r = \frac{dv}{dt}$, но $v_0 = 0$,

следовательно, $a_{\tau} = \frac{v}{t}$. Линейная скорость $v = \omega R$, где $\omega = \varepsilon t$, следовательно, $v = \varepsilon t R$. Тогда $a_n = \frac{\varepsilon^2 t^2 R^2}{R} = \varepsilon^2 t^2 R$; $a_{\tau} = \frac{\varepsilon t R}{t} = \varepsilon R$. Подставив эти выражения в (1), получим: $tg\alpha = \frac{\varepsilon^2 t^2 R}{\varepsilon R} = \varepsilon t^2$, откуда $\varepsilon = \frac{tg\alpha}{t^2}$; $\varepsilon = \frac{1.7}{4} \approx 0.43$ рад/с².

1.59. Колесо вращается с угловым ускорением $\varepsilon = 2$ рад/с². Через время t = 0.5 с после начала движения полное ускорение колеса a = 13.6 см/с². Найти радиус R колеса.

Решение:

Нормальное ускорение колеса $a_n = v^2/R$ — (1). Угловое ускорение $\varepsilon = \frac{d\omega}{dt}$, но $\varepsilon = const$, следовательно, $\varepsilon = \frac{\omega}{t}$, откуда $\omega = \varepsilon t$. Линейная скорость точек на ободе колеса $v = \omega R = \varepsilon t R$ — (2). Подставив (2) в (1), получим $a_n = \varepsilon^2 t^2 R$. Тангенциальное ускорение $a_r = \varepsilon R$. Полное ускорение $a^2 = a_n^2 + a_r^2$; $a^2 = \varepsilon^4 t^4 R^2 + \varepsilon^2 R^2 = \varepsilon^2 R^2 \left(\varepsilon^2 t^4 + 1\right)$. Отсюда $R = a/\varepsilon \sqrt{\varepsilon^2 t^4 + 1}$; R = 0.06 м.

1.60. Колесо радиусом R = 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt + Ct^2$, где B = 2 рад/с и C = 1 рад/с³. Для точек, лежащих на ободе колеса, найти через время t = 2 с после начала движения: а) угловую скорость ω ; б) линейную скорость ν ; в) угловое ускорение ε ; г) тангенциальное a_r и нормальное a_n ускорения.

- а) Угловая скорость вращения колеса $\omega = \frac{d\varphi}{dt} = B + 3Ct^2$;
- $\omega = 2 + 3 \cdot 4 = 14$ рад/с.
- б) Линейная скорость $v = \omega R$; $v = 14 \cdot 0, 1 = 1, 4$ м/с.
- в) Угловое ускорение $\varepsilon = \frac{d\omega}{dt} = 6Ct$; $\varepsilon = 12 \text{ рад/c}^2$.
- г) Нормальное ускорение $a_n = \omega^2 R$; $a_n = 14^2 \cdot 0.1 = 19.6 \text{ м/c}^2$. Тангенциальное ускорение $a_r = \varepsilon R$; $a_r = 12 \cdot 0.1 = 1.2 \text{ м/c}^2$.
- **1.61.** Колесо радиусом R = 5 см вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt + Ct^2 + Dt^3$, где D = 1 рад/с³. Для точек, лежащих на ободе колеса, найти изменение тангенциального ускорения Δa_r за единицу времени.

Решение:

Изменение тангенциального ускорения связано с изменением углового ускорения следующим соотношением:

$$\Delta a_r = \Delta \varepsilon R$$
; где $\varepsilon = \frac{d^2 \varphi}{dt^2}$. $\frac{d \varphi}{dt} = B + 2Ct + 3Dt^2$; $\frac{d^2 \varphi}{dt^2} = 2C + 6Dt = \varepsilon$. Тогда $\Delta \varepsilon = \varepsilon_2 - \varepsilon_1$; $\Delta \varepsilon = (2C + 6Dt_2) - (2C + 6Dt_1) = 6D(t_2 - t_1) = 6D$, учитывая, что $t_2 - t_1 = 1$ с. Отсюда $\Delta a_r = 6 \cdot 1 \cdot 0.05 = 0.3$ м/с².

1.62. Колесо радиусом R = 5 см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени дается уравнением $v = At + Bt^2$, где A = 3 см/с 2 и B = 1 см/с 3 . Найти угол α , составляемый вектором полного 40

ускорения с радиусом колеса в моменты времени t, равные: 0, 1, 2, 3, 4 и 5с после начала движения.

Решение:

Угол α можно определить следующим образом: $tg\alpha = \frac{a_{\tau}}{a_{n}}$,

где a_{τ} и a_{η} — тангенциальное и нормальное ускорения

Но
$$a_r = \frac{dv}{dt}$$
, $a_n = \frac{v^2}{R}$; следовательно, $tg\alpha = \frac{(3+2t)R}{(3t+t^2)^2}$. Под-

ставляя в эту формулу значения t=0, 1, 2, 3, 4 и 5с, получим: t=0, $tg\alpha=\infty$, т.е. $\alpha=90^\circ$ — полное ускорение направлено по касательной. Значения при t, равном от 1 до 5с, приведены в таблице:

t,c	1	2	3	4	5
tgα	3,13	0,7	0,278	0,14	0,081
α	72°17′	35°0′	15°32′	7°58′	4°38′

1.63. Колесо вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt + Ct^2 + Dt^3$, где B = 1 рад/с, C = 1 рад/с и D = 1 рад/с. Найти радиус R колеса, если известно, что к концу второй секунды движения для точек, лежащих на ободе колеса, нормальное ускорение $a_n = 3.46 \cdot 10^2$ м/с².

$$a_n = \omega^2 R$$
, где $\omega = \frac{d\varphi}{dt} = B + 2Ct + 3Dt^2$. Радиус колеса

$$R = \frac{a_n}{\omega^2} = \frac{a_n}{\left(B + 2Ct + 3Dt^2\right)^2}; \ R = \frac{3,46 \cdot 10^2}{\left(1 + 4 + 12\right)^2} = 1,2 \text{ m}.$$

1.64. Во сколько раз нормальное ускорение a_n точки, лежащей на ободе колеса, больше ее тангенциального ускорения a_r для того момента, когда вектор полного ускорения точки составляет угол $\alpha = 30^\circ$ с вектором ее линейной скорости?

Решение:

Нормальное ускорение точки $a_n = a \sin \alpha$; тангенциальное ускорение $a_\tau = a \cos \alpha$, отсюда $\frac{a_n}{a_\tau} = \frac{\sin \alpha}{\cos \alpha} \approx 0.58$.