

연산자

산술연산자

▶ 두 개의 피 연산자 간의 산술연산을 하기 위해 사용

산술 연산자	사용예	의 미
+	a+b	두수의 합
_	a-b	두수의 차
*	a*b	두수의 곱
/	a/b	나누기 몫
%	a%b	나누기 나머지

▶ %의 경우 짝,홀수 구분이나 배수 구분 시에 사용

산술연산자- %연산자의 사용 예시

- ▶ 짝. 홀수 구분
 - 10 % 2 → 0 이므로 짝수
 - 15 % 2 → 1이므로 홀수
- ▶ 배수 구분
 - 123 % 3 → 0 이므로 3의 배수
- 숫자의 자리수 구분하기
 - 156 % 10 → 6
 - 156 / 10 → 15
 - 15 % 10 → 5
 - 15 / 10 → 1
- > 범위 안의 숫자 구하기
 - N % 100 → 0 ~ 99 사이의 값을 구할 수 있다

산술연산지

〈파일이름: 01.산술연산자.c〉

```
#include<stdio.h>
void main()
   int num1 = 20, num2 = 3;
    printf("%d + %d = %d\foralln", num1, num2,num1+num2);
    printf("%d - %d = %d\foralln", num1, num2,num1-num2);
    printf("%d * %d = %d\foralln", num1, num2,num1*num2);
    printf("%d / %d = %d\foralln", num1, num2,num1/num2);
    printf("%d %% %d = %d\foralln", num1, num2,num1%num2);
```

대입연산자

> 정의

- 우측에서 수행한 결과를 좌측에 지정된 변수로 대입 (=)
- 예 > num = 3 + 5 → num이라는 변수에 3+5 의 결과값을 대입

복합 대입 연산자

• 대입연산자와 산술연산자를 결합하여 사용

복합 대입 연산자	사용예	의미
+=	a+=b	a=a+b
-=	a-=b	a=a-b
=	a=b	a=a*b
/=	a/=b	a=a/b
%=	a%=b	a=a%b

복합대입연산자

〈파일이름: 02.복합대입연산자.c〉

```
#include<stdio.h>
void main()
   int num1, num2;
   num1 = num2 = 5;
   printf("num1 + 1 = %d\foralln", num1 += 1);
   printf("num1 - 1 = \%dWn", num1 -= 1);
   printf("num1 * num2 = \%dWn", num1 *= num2);
   printf("num1 / num2 = \%dWn", num1 /= num2);
   printf("num1 %% num2 = %d\foralln", num1 %= num2);
```

관계연산자

- ▶ 두 개의 피연산자 간의 대소관계를 비교하기 위하여 사용한다
- ▶ 관계를 비교하여 참과 거짓을 출력하는데, 0은 거짓 그외의 수는 참을 의미

연산자	의 미 사용 예	
<	보다 작다	if(a<10)~
>	보다 크다	if(a>10)~
<=	보다 작거나 같다	if(a < = 10) ~
>=	보다 크거나 같다	if(a>=10)~
==	와 같다	if(a==10)~
!=	와 같지 않다	if(a!=10)~

관계연산자

〈파일이름: 03.관계연산자.c〉

```
#include<stdio.h>

void main()
{
    float num1 = 3.01, num2 = 3.0;
    printf("변수 num1과 num2의 크기 비교 결과 : %d₩n", num1 <= num2);
    printf("변수 num1과 num2의 크기 비교 결과 : %d₩n", num1 >= num2);
    printf("변수 num1과 num2의 크기 비교 결과 : %d₩n", num1 == num2);
    printf("변수 num1과 num2의 크기 비교 결과 : %d₩n", num1 != num2);
}
```

논리연산자

▶ 참과 거짓을 판별하는 연산

피연산자	연산자	피연산자	결과
0	&&	0	0(거짓)
0	&&	1	0(거짓)
1	&&	0	0(거짓)
1	&&	1	1(참)

피연산자	연산자	피연산자	결과
0		0	0(거짓)
0		1	1(참)
1		0	1(참)
1		1	1(참)

연산자	피연산자	결과
!	0	1(참)
ļ.	1	0(거짓)

논리연산자

〈파일이름: 05.논리연산자.c〉

```
#include<stdio.h>

void main()
{
    int num1 = 2, num2 = 3, num3 = 5, result2 = 3;

    printf("result1의 값: %d\n", (num1 > 0) && (num2 < 10));
    printf("result2의 값: %d\n", (num2 <= 0) || (num3 > 10));
    printf("result3의 값: %d\n", !result2);
}
```

증감연산자

- ▶ 피연산자를 1씩 증가 혹은 감소하는 기능
- ▶ 전치와 후치에 따른 연산자 비교
 - 전치: ++a 로 표기하며 먼저 증감한 후에 연산
 - 후치: a++로 표기하며 먼저 연산한 후에 증감

증감연산자	의 미	사용 예
++	피연산자의 값을 1만큼 증가	++a 또는 a++
	피연산자의 값을 1만큼 감소	a 또는 a

예 > a=3;
2+ (++a)
$$\rightarrow$$
 6
2+ (a++) \rightarrow 5

증감연산지

〈파일이름: 04.증감연산자.c〉

```
#include<stdio.h>
void main()
{
   int num1, num2, num3;
   num1 = 10;
   num2 = ++num1;
   num1 = 10;
   num3 = num1++;
   printf("num2 = %dWn", num2);
   printf("num3 = %dWn", num3);
```

조건연산자

조건 연산자: '?' 와 ": "로 이루어져 있으며 조건식에 따라 참인 경우 앞부분, 거짓인 경우 뒷부분을 수행한다

조건식 ? 식1 : 식2

→ 조건식이 참이면 식1을 실행하고, 거짓이면 식2를 실행한다

조건연산지

〈파일이름: 06.조건연산자.c〉

```
#include<stdio.h>
void main()
   int num;
   num = 8;
   (num % 2 == 0) ? printf("%d : 짝수₩n", num) :
                     printf("%d:홀수₩n", num);
   num = 9;
   (num % 2 == 0) ? printf("%d : 짝수₩n", num) :
                     printf("%d: 홀수₩n", num);
```

기타연산자

- ➤ sizeof 연산자: 크기를 바이트 단위로 표기
- > 콤마연산자
 - 식들을 콤마로 구분하여 좌측부터 실행하며 가장 우측식이 연산결과가 된다

기타연산자

〈파일이름: 07.기타연산자.c〉

```
#include<stdio.h>
void main()
   char ch; int num; float fl; double dl;
   printf("ch변수의 크기는 %d바이트 입니다.₩n", sizeof(ch));
   printf("num변수의 크기는 %d바이트 입니다.\n", sizeof(num));
   printf("fl변수의 크기는 %d바이트 입니다.₩n", sizeof(fl));
   printf("dl변수의 크기는 %d바이트 입니다.₩n", sizeof(dl));
   int a = 0. b = 0. c = 0;
   a = (b = 3, c = 5, b + c);
   printf("a = %d, b= %d, c = %d\foralln",a, b, c);
```

연산자 우선순위

연산자	연산순서	우선순위	비고
(), [], ->, .(점)	좌에서 우		
sizeof, (type), &, *, -(단항), +(단항),, ++, ~, !	좌에서 우		단항
*(곱셈), / , %, +, /	좌에서 우		산술
<<, >>	좌에서 우		비트
<, <=, >, >=, ==, !=	좌에서 우		비교
8, ^,	좌에서 우		비트
&&,	좌에서 우		논리
?:	우에서 좌		삼항
%=, /=, *=, -=, +=, =	좌에서 우		대입
,	좌에서 우		콤마

C언어는 연산자 우선 순위에 의거하여 계산 증감 > 산술 > 비교 > 논리 > 복합(대입)

문제

<파일이름: 08.문제1.c>, 〈파일이름: 09.문제2.c>, 〈파일이름: 10.문제3.c>

[문제1] 수를 입력 받아 짝, 홀수를 구분하여 출력하시오.

[문제2] 수를 입력 받아 3의 배수이면 그 수를 출력하고 아니면 공백을 출력하시오.

[문제3] 두 수를 입력 받아 큰 수를 출력하시오.

[문제4] 수를 입력 받아 절대값을 출력하시오. (예 : 입력 : -10 -> 절대값 : 10)