Pumping Lemma for CFL

Intuition

- Recall the pumping lemma for regular languages.
- It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.

Intuition

- For CFL's the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Theorem 7.17: Suppose we have a parse tree according to a Chomsky-Normal-Form grammar G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| \leq 2^{n-1}$.

Theorem 7.17: Suppose we have a parse tree according to a Chomsky-Normal-Form grammar G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| \leq 2^{n-1}$.

PROOF: The proof is a simple induction on n.

• If $|w| > 2^{n-1}$, then the longest path is > n

Theorem 7.17: Suppose we have a parse tree according to a Chomsky-Normal-Form grammar G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| \leq 2^{n-1}$.

- If $|w| > 2^{n-1}$, then the longest path is > n
- Let |V| = m

Theorem 7.17: Suppose we have a parse tree according to a Chomsky-Normal-Form grammar G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| \leq 2^{n-1}$.

- If $|w| > 2^{n-1}$, then the longest path is > n
- Let |V| = m
- For $|w| = 2^m$, longest path is > m + 1

Theorem 7.17: Suppose we have a parse tree according to a Chomsky-Normal-Form grammar G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| \leq 2^{n-1}$.

- If $|w| > 2^{n-1}$, then the longest path is > n
- Let |V| = m
- For $|w| = 2^m$, longest path is > m + 1
- In that longest path a variable must have been repeated (since we have only m variables).

Figure 7.5: Every sufficiently long string in L must have a long path in its parse tree

Figure 7.6: Dividing the string w so it can be pumped

Parse Tree in the Pumping-Lemma

Parse Tree in the Pumping-Lemma

Pump Zero Times

Pump Twice

Pump Thrice Etc., Etc.

Statement

Theorem 7.18: (The pumping lemma for context-free languages) Let L be a CFL. Then there exists a constant n such that if z is any string in L such that |z| is at least n, then we can write z = uvwxy, subject to the following conditions:

- 1. $|vwx| \leq n$. That is, the middle portion is not too long.
- 2. $vx \neq \epsilon$. Since v and x are the pieces to be "pumped," this condition says that at least one of the strings we pump must not be empty.
- 3. For all $i \geq 0$, uv^iwx^iy is in L. That is, the two strings v and x may be "pumped" any number of times, including 0, and the resulting string will still be a member of L.

Statement

For every context-free language L

There is an integer n, such that

For every string z in L of length \geq n

There exists z = uvwxy such that:

- 1. |vwx| < n.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

We can write z = uvwxy, where $|vwx| \le n$ and v and x are not both ϵ .

We can write z = uvwxy, where $|vwx| \le n$ and v and x are not both ϵ .

Then we know that vwx cannot involve both 0's and 2's, since the last 0 and the first 2 are separated by n + 1 positions.

We can write z = uvwxy, where $|vwx| \le n$ and v and x are not both ϵ .

- There can be 5 cases where vwx is having
 - Only 0s
 - Some 0s and some 1s
 - Only 1s
 - Some 1s and some 2s
 - Only 2s.
- In all these 5 cases, $uv^2wx^2y \notin L$.

Example 7.21: Let $L = \{ww \mid w \text{ is in } \{0, 1\}^*\}.$

Show L is not a CFL.

- Note, $\{ww^R | w \in \{0,1\}^*\}$ is a CFL.
- How can you prove this??

Example 7.21: Let
$$L = \{ww \mid w \text{ is in } \{0, 1\}^*\}.$$

- Let pumping length is n.
- Let the string be $z = 0^n 1^n 0^n 1^n$
- z can be written as uvwxy, such that $|vwx| \le n$ and $vx \ne \epsilon$
- There are 7 cases, based on where vwx can occur in z.
- In all these cases it can be shown that uwy is not in L.

- $\{0^i10^i \mid i \ge 1\}$ is a CFL.
 - We can match one pair of counts.
 - Can you give CFG??

• $\{0^i 10^i \mid i \ge 1\}$ is a CFL.

- But $L = \{0^i 10^i 10^i \mid i \ge 1\}$ is not.
 - We can't match two pairs, or three counts as a group.
- Proof using the pumping lemma.
- Suppose L were a CFL.
- Let n be L's pumping-lemma constant.

- Consider $z = 0^{n}10^{n}10^{n}$.
- We can write z = uvwxy, where $|vwx| \le n$, and $|vx| \ge 1$.
- Case 1: vx has no 0's.
 - Then at least one of them is a 1, and uwy has at most one 1, which no string in L does.

- Still considering $z = 0^{n}10^{n}10^{n}$.
- Case 2: vx has at least one 0.
 - vwx is too short (length \leq n) to extend to all three blocks of 0's in $0^{n}10^{n}10^{n}$.
 - Thus, uwy has at least one block of n 0's, and at least one block with fewer than n 0's.
 - Thus, uwy is not in L.