

Chapter 4: Network Layer – Data Plane

Data Forwarding Methods

Mountains & Minds

Forwarding methods

Packet switching

- Store and forward: entire packet must arrive at router before it can be transmitted on next link
- Assuming packet has l bits and link capacity r, what is the end-to-end delay over two hops? (assume only serialization delay)

Mountains & Minds

Circuit switching

 End-to-end resources reserved for the duration of transmission

Datagram networks

- Datagram network provides network-layer connectionless service
 - No call setup at network layer
 - Routers: no state about endto-end connections
- Packets forwarded to *ranges* of destination addresses

Address range	Interface
128.11.52.0 - 128.11.52.255	1
153.90.2.0 - 153.90.2.255	2
153.90.2.87 - 153.90.2.89	1

Mountains & Minds

Virtual Circuit (VC) networks

- Virtual-circuit network provides network-layer connection service
 - Call setup, teardown for each call before data can flow
 - Every router on source-dest path maintains "state" for each passing connection
 - Bandwidth and buffers allocated to VC (dedicated resources = predictable service)
- Packets forwarded using VC identifiers:
 - VC ids embedded in cells (packets)
 - Router looks up outgoing interface for VC id
- Can you think of advantages and disadvantages of VC-based forwarding?
 - + Smaller headers, instant forwarding
 - Per-flow state at router

Interface 2

Are VC ids unique for the whole network?

In interface	In VC id	Out VC id	Out interface	
1	6	22	1	
1	7	13	2	
1	13	5	1	

Mountains & Minds

Network layer service models

Network architecture	Service model	Guarantees				Congestion feedback
		Bandwidth	Loss	Order	Timing	
Internet	Best effort	none	no	no	no	no (inferred from loss)
ATM	CBR	constant rate	yes	yes	yes	no
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no

Mountains & Minds

3

VC or Datagram network: why?

ATM (VC)

- Evolved from telephony
- Human conversation:
 - Strict timing, reliability requirements
 - Need for guaranteed service
- "Dumb" end systems
 - Telephones
 - Complexity inside network

Internet (datagram)

- Data exchange among computers
 - "Elastic" service, no strict timing requirements
- Many link types
 - Different characteristics
 - Uniform service difficult
- "Smart" end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple inside network, complexity at "edge"

Mountains & Minds

Router architecture overview

- Two key router functions:
 - Run routing algorithms/protocol (RIP, OSPF, BGP), but also can be centrally configured
 - Forwarding datagrams from incoming to outgoing link

Switching fabrics

- Transfer packet from input buffer to appropriate output buffer
- Switching rate: rate at which packets can be transferred from inputs to outputs
 - Often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- Three types of switching fabrics

Which is best? Discuss relative advantages. Consider different forwarding patterns and describe performance bottlenecks.

Queuing scenarios

- Where are packets queued when:
 - Line speed in = switch fabric speed = line speed out?
 - Line speed in = switch fabric speed > line speed out?
 - Line speed in << switch fabric speed >> line speed out?

Green packet experiences HOL blocking

Output port contention

Only one red datagram can be transferred. *Lower red packet is blocked*

isierrea. Lower rea packet is bloc

Mountains & Minds