Bayesian Learning Lecture 12 - Model evaluation.

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Overview

■ Model evaluation - Posterior predictive analysis

Models - why?

- We now know how to compare models.
- But how do we know if any given model is 'any good'?
- George Box: 'All models are false, but some are useful'.

What is your model for really?

Prediction.

- Interpretation not a concern
- Black-box approach may be ok.
- Extrapolation?
- Model averaging may be a good idea.
- Abstraction to aid in thinking about a phenomena.
 - ▶ Prediction accuracy of less concern.
 - ▶ Model averaging may be a bad idea.
- Model as a compact description of a complex phenomena.
 - ▶ Computational cost of model evaluation may be a concern.
 - Online/real-time analysis.

Posterior predictive analysis

- If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- Bayesian: simulate data from the posterior predictive distribution:

$$p(y^{\mathsf{rep}}|y) = \int p(y^{\mathsf{rep}}|\theta)p(\theta|y)d\theta.$$

- Difficult to compare y and y^{rep} because of dimensionality.
- Solution: compare low-dimensional statistic $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- Evaluates the full probability model consisting of both the likelihood *and* prior distribution.

Posterior predictive analysis

- Algorithm for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- We may now compare the observed statistic T(y) with the distribution of $T(y^{rep})$.
- Posterior predictive p-value: $Pr[T(y^{rep}) \ge T(y)]$
- Informal graphical analysis.

Posterior predictive analysis - Examples

- Ex. 1. Model: $y_1, ..., y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. $T(y) = \max_i |y_i|$.
- Ex. 2. Assumption of no reciprocity in networks. $y_{ij}|\theta \stackrel{iid}{\sim} Bernoulli(\theta)$. T(y) =proportion of reciprocated node pairs.
- **E**x. 3. ARIMA-process. T(y) may be the autocorrelation function.
- **E**x. 4. Poisson regression. T(y) frequency distribution of the response counts. Proportions of zero counts.

Posterior predictive analysis - Normal model, max statistic

