# **News Headlines Classification**

**ANLY-580** 

Yilin Yang, Huiting Song, Shiyu Wang, Tianyi Xu

## Introduction

News happen every second. People need them.





# **Project Purpose**

1.Classify the news

2.Prediction and News Push



## **Data Collection**

Crawling data from Google News - 3600+ latest new in six topics.

Implement by Python Package Selenium.

| Business | Technology | Entertainment | Sports | Science | Health |
|----------|------------|---------------|--------|---------|--------|

|    | title topic                                                                                          | sub_topic | topic_label |
|----|------------------------------------------------------------------------------------------------------|-----------|-------------|
| 0  | Holiday shopping returned to a lower-key normal this Black Friday business                           | Latest    | 0           |
| 1  | Elon Musk says Twitter will re-launch its verification program next week business                    | Latest    | 0           |
| 2  | Musk says Twitter will launch blue check subscription next week business                             | Latest    | 0           |
| 3  | Twitter relaunching Verified, with manual authentication checks business                             | Latest    | 0           |
| 4  | Twitter Will 'Tentatively' Relaunch Paid Verification System Next Friday: Musk business              | Latest    | 0           |
| 5  | Elon Musk says Twitter's verified service with colors to start next week business                    | Latest    | 0           |
| 6  | 24 Cheap Doodads Available at Amazon's Black Friday Sale business                                    | Latest    | 0           |
| 7  | 215+ Best Black Friday Deals of 2022 business                                                        | Latest    | 0           |
| 8  | Best Black Friday deals at all-time low price: Apple Watch, Roomba business                          | Latest    | 0           |
| 9  | Black Friday discounts aren't over: Amazon just dropped 9 fantastic new deals business               | Latest    | 0           |
| 10 | The best Black Friday tech deals for 2022: discounts on TVs, laptops, smartwatches and more business | Latest    | 0           |
| 11 | US bans Chinese telecom devices, citing 'national security' business                                 | Latest    | 0           |
| 12 | US FCC bans sales, import of Chinese tech from Huawei, ZTE business                                  | Latest    | 0           |
| 13 | U.S. Expands Bans of Chinese Security Cameras, Network Equipment business                            | Latest    | 0           |
| 14 | U.S. bans Huawei, ZTE equipment sales citing national security risk business                         | Latest    | 0           |
| 15 | FCC bans U.S. sales of Huawei and ZTE equipment over national security concerns business             | Latest    | 0           |
| 16 | Stocks close mixed on holiday-shortened trading day business                                         | Latest    | 0           |
| 17 | Dow closes more than 150 points higher. Stocks notch gains for holiday week business                 | Latest    | 0           |
| 18 | Stocks Finish Mixed in Shortened Trading Day business                                                | Latest    | 0           |

news\_label



# **Data Processing: Tokenization**



# **Naïve Bayes Classification**



# **Naïve Bayes Classification**



# **Naïve Bayes: Optimization**

## Laplace smoothing

$$P(w'|positive) = \frac{\text{number of reviews with } w' \text{ and } y = \text{positive } + \alpha}{N + \alpha * K}$$

Solving the zero probability problem in Naive Bayes algorithm

 $lambda_a = 0.6$ 

# Remove words with low frequencies

- The dataset is sufficient enough
- Overfit

Low frequencies words can only be served as noise and decrease the accuracy

# Naïve Bayes: Final results

```
print(classification_report(gold_label, pre_label))
    0.3s
              precision
                            recall f1-score
                                                support
           0
                   0.76
                              0.77
                                        0.77
                                                    136
                   0.74
                              0.83
                                        0.78
                                                    149
                   0.77
                              0.86
                                        0.81
                                                    140
                   0.92
                              0.86
                                        0.89
                                                    148
                              0.67
                                        0.71
                                                     72
                   0.75
                   0.77
                              0.59
                                        0.67
                                                     86
                                        0.79
                                                    731
    accuracy
                                        0.77
                   0.79
                              0.76
                                                    731
   macro avg
weighted avg
                   0.79
                              0.79
                                        0.79
                                                    731
```

# Naïve Bayes: Final results



# **SVM: Steps to Build a Model**



## SVM: Result



## SVM: Conclusions

#### Accuracy score is low: only 37% for this model

- Feature vector from BERT needs to be fine-tuned
- SVM could not effectively classify 2-dimensional data
- Not using Word2Vec :Not suitable for SVM because word to vector will make the text vectors too high-dimensional so that SVM could not classify accurately
- o SO, SVM is not a good model for this data set.

#### Advantages

Use pre-trained BERT to extract features

#### Disadvantages

Low accuracy ——> no reference value

# **BERT**: Encoding



## **BERT**: Modeling

Bert Model transformer with a sequence classification Optimization
Adam Algorithm
Cross Entropy Loss
70 epoch

**Evaluation** on test data

Output

Logits Loss Accuracy

## **BERT: Result**

```
[epoch 54] train_loss: 0.026
                                 dev_accuracy: 0.860
                              recall f1-score
               precision
                                                    support
                                                        123
                     0.81
                                0.83
                                            0.82
            1
2
3
4
                     0.82
                                0.87
                                            0.85
                                                        162
                     0.91
                                0.86
                                            0.89
                                                        148
                     0.98
                                0.94
                                            0.96
                                                        127
                     0.86
                                0.86
                                            0.86
                                                         88
                     0.80
                                0.80
                                            0.80
                                                         83
                                            0.87
                                                        731
    accuracy
                     0.86
                                0.86
                                            0.86
                                                        731
   macro avg
weighted avg
                     0.87
                                0.87
                                            0.87
                                                        731
                           4]
[[102
        11
                           2]
   12 141
                                      Confusion Matrix
    6
           128
                           1]
                           3]
    0 1 5
             3
               120
         4
                           7]
             0
                     76
                      6
                          66]]
```

dev\_accurate =
acc / (len(dev\_loader)\*batch\_size)

The best accuracy after training on testing set is 0.860

|               | Correctly Predicted Counts | <b>Error Counts</b> |
|---------------|----------------------------|---------------------|
| Business      | 102                        | 21                  |
| Technology    | 141                        | 21                  |
| Entertainment | 128                        | 20                  |
| Sports        | 120                        | 7                   |
| Science       | 76                         | 12                  |
| Health        | 66                         | 17                  |

## Saved Best model

|              |           |        |          |         | _     |     |
|--------------|-----------|--------|----------|---------|-------|-----|
|              | precision | recall | f1-score | support |       |     |
| 0            | 0.76      | 0.77   | 0.77     | 136     |       |     |
| 1            | 0.74      | 0.83   | 0.78     | 149     |       |     |
| 2            | 0.77      | 0.86   | 0.81     | 140     |       |     |
| 3            | 0.92      | 0.86   | 0.89     | 148     |       |     |
| 4            | 0.75      | 0.67   | 0.71     | 72      |       |     |
| 5            | 0.77      | 0.59   | 0.67     | 86      | Naive |     |
|              |           |        |          |         | Bayes | ١ ' |
| accuracy     |           |        | 0.79     | 731     |       |     |
| macro avg    | 0.79      | 0.76   | 0.77     | 731     |       |     |
| weighted avg | 0.79      | 0.79   | 0.79     | 731     |       |     |
| t            | orecision | recall | f1-score | support | _     |     |
| 0            | 0.33      | 0.29   | 0.31     | 59      |       |     |
| 1            | 0.40      | 0.46   | 0.43     | 83      |       |     |
| 2            | 0.40      | 0.50   | 0.44     | 76      | SVM   |     |
| 3            | 0.47      | 0.39   | 0.43     | 77      |       |     |
| 4            | 0.21      | 0.14   | 0.16     | 37      |       |     |
| 5            | 0.17      | 0.18   | 0.17     | 34      |       |     |
| accuracy     |           |        | 0.37     | 366     |       |     |
| macro avg    | 0.33      | 0.32   | 0.32     | 366     |       |     |
| weighted avg | 0.36      | 0.37   | 0.36     | 366     |       |     |

| [epoch | 54]  | tra | in_l | oss: | 0.026 | dev_  | accuracy: | 0.860   | l |
|--------|------|-----|------|------|-------|-------|-----------|---------|---|
|        |      |     | prec | isio | n r   | ecatt | II-Score  | Support | • |
|        |      | 0   |      | 0.83 | 1     | 0.83  | 0.82      | 123     |   |
|        |      | 1   |      | 0.82 | 2     | 0.87  | 0.85      | 162     |   |
|        |      | 2   |      | 0.93 | 1     | 0.86  | 0.89      | 148     |   |
|        |      | 3   |      | 0.98 | 3     | 0.94  | 0.96      | 127     |   |
|        |      | 4   |      | 0.86 | 5     | 0.86  | 0.86      | 88      |   |
|        |      | 5   |      | 0.80 | 9     | 0.80  | 0.80      | 83      |   |
|        |      |     |      |      |       |       | 0.07      | 721     |   |
|        | cura | •   |      |      |       | 0.00  | 0.87      | 731     |   |
|        | ro a | _   |      | 0.86 |       | 0.86  | 0.86      | 731     |   |
| weight | ed a | vg  |      | 0.87 | 7     | 0.87  | 0.87      | 731     |   |
| [[102  | 11   | 4   | 0    | 2    | 41    |       |           |         |   |
| [ 12   | 1/1  | 1   | 0    | 3    | 21    |       |           |         |   |

**BERT** 

## **Prediction**



## Demo

Given any news headlines, our demo will predict the category.



True label: entertainment

### Demo

Given any news headlines, our demo will predict the category.



True label: technology

## Demo

After the label prediction, we could get the related news:

```
def get_topic(topic):
    website_url = "https://news.google.com/home?hl=en-US&gl=US&ceid=US:en"
    driver = webdriver.Chrome('/Users/xutianyi/Desktop/2022_fall/ANLY580/final project/chromedriver')
    driver.get(website_url)
    search_box = driver.find_element(By.XPATH, "//input[@class='Ax4B8 ZAGvjd']")
    search_box.send_keys(topic)
    search_bottom = driver.find_element(By.XPATH, "//button[@class='gb_rf']")
    search_bottom.click()
    time.sleep(3)
    news = driver.find_elements(By.XPATH, "//a[@class='DY5T1d RZIKme']")
    data = [[elem.text,elem.get_attribute('href')] for elem in news]
    df = pd.DataFrame(data,columns=['title', 'link'])
    return df
```

|    | title                                          | link                                           |
|----|------------------------------------------------|------------------------------------------------|
| 0  | The Week in Business: Upheaval in China        | https://news.google.com/articles/CBMiV2h0dHBzO |
| 1  | 2023 Resolutions For Business Owners           | https://news.google.com/articles/CBMiVmh0dHBzO |
| 2  | 10 Places to Look for Small Business Grants    | https://news.google.com/articles/CBMiZGh0dHBzO |
| 3  | Business Notes for Dec. 4, 2022                | https://news.google.com/articles/CBMiQmh0dHBzO |
| 4  | Wildcats take care of business at home against | https://news.google.com/articles/CBMifWh0dHBzO |
|    |                                                |                                                |
| 95 | Alex Jones has filed for personal bankruptcy   | https://news.google.com/articles/CBMiSGh0dHBzO |
| 96 | Brookfield Asset Management Sets Share Ratio f | https://news.google.com/articles/CBMigQFodHRwc |
| 97 | Rail unions decry Biden's call for Congress to | https://news.google.com/articles/CBMiTWh0dHBzO |
| 98 | UK bans Chinese surveillance cameras from 'sen | https://news.google.com/articles/CBMiZGh0dHBzO |
| 99 | The Only Business Idea You Need to Start Makin | https://news.google.com/articles/CBMibWh0dHBzO |

## Conclusion

#### **Best Model - BERT 86% Accuracy**



### References

- Adam Algorithm <u>https://www.geeksforgeeks.org/intuition-of-adam-optimizer/</u>
- Naive Bayes Gandhi, R. (2018, May 17). Naive Bayes classifier. Medium. Retrieved December 5, 2022, from <a href="https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c">https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c</a>
- 3. Introduction Picture from: <a href="https://www.statista.com/">https://www.statista.com/</a>
- 4. Word Embeddings in NLP and its applications.

  <a href="https://www.kdnuggets.com/2019/02/word-embeddings-nlp-applications.">https://www.kdnuggets.com/2019/02/word-embeddings-nlp-applications.</a>
  <a href="https://www.kdnuggets.com/2019/02/word-embeddings-nlp-applications">httml</a>



# Thanks for listening! Any questions?

