- Let $D = (S, \sqsubseteq)$, and let $f: D \to D$ be a function on this domain.
- A value $x \in S$ is called a fixpoint of f if f(x) = x.

- Let $D = (S, \sqsubseteq)$, and let $f: D \to D$ be a function on this domain.
- A value $x \in S$ is called a fixpoint of f if f(x) = x.
- For the powerset domain:

- Let $D = (S, \sqsubseteq)$, and let $f: D \to D$ be a function on this domain.
- A value $x \in S$ is called a fixpoint of f if f(x) = x.
- For the powerset domain:
 - Every element of the domain is a fixpoint for the identity function $I = \lambda x \cdot x$.

- Let $D = (S, \sqsubseteq)$, and let $f: D \to D$ be a function on this domain.
- A value $x \in S$ is called a fixpoint of f if f(x) = x.
- For the powerset domain:
 - Every element of the domain is a fixpoint for the identity function $I = \lambda x \cdot x$.
 - For the function $G = \lambda x. x \cup \{a\}$, the elements $\{a\}$, $\{a,b\}$, $\{a,c\}$, and $\{a,b,c\}$ are fixpoints.

- Let $D = (S, \sqsubseteq)$, and let $f: D \to D$ be a function on this domain.
- A value $x \in S$ is called a fixpoint of f if f(x) = x.
- For the powerset domain:
 - Every element of the domain is a fixpoint for the identity function $I = \lambda x \cdot x$.
 - For the function $G = \lambda x. x \cup \{a\}$, the elements $\{a\}$, $\{a,b\}$, $\{a,c\}$, and $\{a,b,c\}$ are fixpoints.
 - The function $H = \lambda x$. $\{a\} \setminus x$ has no fixpoints.

• If $D = (S, \sqsubseteq)$ is a domain, \bot is its least element, and $f: D \to D$ is monotonic, then f has a least fixpoint that is the largest element in the sequence (chain) $[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), ...]$.

• If $D = (S, \sqsubseteq)$ is a domain, \bot is its least element, and $f: D \to D$ is monotonic, then f has a least fixpoint that is the largest element in the sequence (chain) $[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), ...]$.

- Example
 - For the powerset domain, $\perp = \emptyset$.

• If $D = (S, \sqsubseteq)$ is a domain, \bot is its least element, and $f: D \to D$ is monotonic, then f has a least fixpoint that is the largest element in the sequence (chain) $[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), ...]$.

Example

- For the powerset domain, $\bot = \emptyset$.
- For the identity function I, the sequence is $[\emptyset, \emptyset, \emptyset, \emptyset, \dots]$, so the least fixpoint is \emptyset , which is correct.

• If $D = (S, \sqsubseteq)$ is a domain, \bot is its least element, and $f: D \to D$ is monotonic, then f has a least fixpoint that is the largest element in the sequence (chain) $\Big[\bot, f(\bot), f(f(\bot)), f(f(f(\bot)))\Big]$.

Example

- For the powerset domain, $\bot = \emptyset$.
- For the identity function I, the sequence is $[\emptyset, \emptyset, \emptyset, \emptyset, \dots]$, so the least fixpoint is \emptyset , which is correct.
- For the function $G = \lambda x. x \cup \{a\}$, the sequence is $[\emptyset, \{a\}, \{a\}, \{a\}, ...]$, so the least fixpoint is $\{a\}$, which is correct.

Proof of Fixpoint Theorem #1

- The largest element of the sequence is a fixpoint.
 - $\bot \sqsubseteq f(\bot)$ (by definition of \bot).
 - $f(\bot) \sqsubseteq f(f(\bot))$ (from previous fact and monotonicity of f).
 - $f(f(\bot)) \sqsubseteq f(f(f(\bot)))$ (same argument).
 - Since the set D is finite, the chain $[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), ...]$ cannot grow arbitrarily, so it has some largest element that f maps to itself. Therefore, we have constructed a fixpoint of f.

Proof of Fixpoint Theorem #1

- The largest element of the sequence is a fixpoint.
 - $\bot \sqsubseteq f(\bot)$ (by definition of \bot).
 - $f(\bot) \sqsubseteq f(f(\bot))$ (from previous fact and monotonicity of f).
 - $f(f(\bot)) \sqsubseteq f(f(f(\bot)))$ (same argument).
 - Since the set D is finite, the chain $[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), ...]$ cannot grow arbitrarily, so it has some largest element that f maps to itself. Therefore, we have constructed a fixpoint of f.
- This is the least fixpoint.
 - Let p be any other fixpoint of f.
 - $\bot \sqsubseteq p$ (from definition of \bot).
 - So $f(\bot) \sqsubseteq f(p) = p$ (by monotonicity of f).
 - Similarly, $f(f(\bot)) \sqsubseteq p$, etc.
 - Therefore, all elements of the chain are $\sqsubseteq p$, so largest element of chain must be $\sqsubseteq p$.
 - Therefore, the largest element of chain is the least fixpoint of f.

Solving A Fixpoint Equation

• If D is a domain and $f: D \to D$ is monotonic, then the equation x = f(x) has a least solution given by the largest element in the sequence

$$[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \dots].$$

• Proof: follows trivially from fixpoint theorem #1.

Solving A Fixpoint Equation

• If D is a domain and $f: D \to D$ is monotonic, then the equation x = f(x) has a least solution given by the largest element in the sequence

$$[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \dots].$$

- Proof: follows trivially from fixpoint theorem #1.
- Generalization #1: The proof goes through even if *D* is not a finite set but only has finite height.
 - All we need is that there be no infinite chains.

Solving A Fixpoint Equation

• If D is a domain and $f:D\to D$ is monotonic, then the equation x=f(x) has a least solution given by the largest element in the sequence

$$[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \dots].$$

- Proof: follows trivially from fixpoint theorem #1.
- Generalization #1: The proof goes through even if *D* is not a finite set but only has finite height.
 - All we need is that there be no infinite chains.

• Generalization #2: If D is a domain with a *greatest* element T and $f:D\to D$ is monotonic, then the equation x=f(x) has a *greatest* solution given by the smallest element in the descending sequence

$$[\mathsf{T}, f(\mathsf{T}), f(f(\mathsf{T})), f(f(f(\mathsf{T}))), \dots].$$

Functions with Multiple Arguments

- If D is a domain, a function $f: D \times D \to D$ that takes two arguments is said to be monotonic if it is monotonic in each argument when the other argument is held constant.
 - $\forall x_0, x_1, y \in D: x_0 \sqsubseteq x_1 \Longrightarrow f(x_0, y) \sqsubseteq f(x_1, y).$
 - $\forall x, y_0, y_1 \in D: y_0 \sqsubseteq y_1 \Longrightarrow f(x, y_0) \sqsubseteq f(x, y_1).$

Functions with Multiple Arguments

- If D is a domain, a function $f: D \times D \to D$ that takes two arguments is said to be monotonic if it is monotonic in each argument when the other argument is held constant.
 - $\forall x_0, x_1, y \in D: x_0 \sqsubseteq x_1 \Longrightarrow f(x_0, y) \sqsubseteq f(x_1, y).$
 - $\forall x, y_0, y_1 \in D: y_0 \sqsubseteq y_1 \Longrightarrow f(x, y_0) \sqsubseteq f(x, y_1).$
- Fixpoint Theorem #2
 - If D is a domain and functions $f, g: D \times D \to D$ are monotonic, the following system of simultaneous equations has a least solution computed in the obvious way.

$$x = f(x, y)$$
$$y = g(x, y)$$

Functions with Multiple Arguments

- If D is a domain, a function $f: D \times D \to D$ that takes two arguments is said to be monotonic if it is monotonic in each argument when the other argument is held constant.
 - $\forall x_0, x_1, y \in D : x_0 \sqsubseteq x_1 \Longrightarrow f(x_0, y) \sqsubseteq f(x_1, y).$
 - $\forall x, y_0, y_1 \in D: y_0 \sqsubseteq y_1 \Longrightarrow f(x, y_0) \sqsubseteq f(x, y_1).$
- Fixpoint Theorem #2
 - If D is a domain and functions f, g: $D \times D \to D$ are monotonic, the following system of simultaneous equations has a least solution computed in the obvious way.

$$x = f(x, y)$$
$$y = g(x, y)$$

 This theorem generalizes to more than two equations and to the case when D has a greatest element T.

• Suppose $D_1 = (S_1, \sqsubseteq_1)$ and $D_2 = (S_2, \sqsubseteq_2)$ are domains.

- Suppose $D_1 = (S_1, \sqsubseteq_1)$ and $D_2 = (S_2, \sqsubseteq_2)$ are domains.
- Define $D = D_1 \times D_2 = (S, \sqsubseteq)$ to be the following domain:
 - Set $S = S_1 \times S_2$, i.e., elements are ordered pairs in which the first member is from S_1 and the second is from S_2 .
 - The ordering relation \sqsubseteq is defined by $\langle d_1, d_2 \rangle \sqsubseteq \langle d_3, d_4 \rangle \equiv d_1 \sqsubseteq_1 d_3 \wedge d_2 \sqsubseteq_2 d_4$.

- Suppose $D_1 = (S_1, \sqsubseteq_1)$ and $D_2 = (S_2, \sqsubseteq_2)$ are domains.
- Define $D = D_1 \times D_2 = (S, \sqsubseteq)$ to be the following domain:
 - Set $S = S_1 \times S_2$, i.e., elements are ordered pairs in which the first member is from S_1 and the second is from S_2 .
 - The ordering relation \sqsubseteq is defined by $\langle d_1, d_2 \rangle \sqsubseteq \langle d_3, d_4 \rangle \equiv d_1 \sqsubseteq_1 d_3 \wedge d_2 \sqsubseteq_2 d_4$.
- Replace the system of equations

$$x = f(x, y)$$
$$y = g(x, y)$$

with one equation $\langle x, y \rangle = h(\langle x, y \rangle) = \langle f(x, y), g(x, y) \rangle$.

- Suppose $D_1 = (S_1, \sqsubseteq_1)$ and $D_2 = (S_2, \sqsubseteq_2)$ are domains.
- Define $D = D_1 \times D_2 = (S, \sqsubseteq)$ to be the following domain:
 - Set $S = S_1 \times S_2$, i.e., elements are ordered pairs in which the first member is from S_1 and the second is from S_2 .
 - The ordering relation \sqsubseteq is defined by $\langle d_1, d_2 \rangle \sqsubseteq \langle d_3, d_4 \rangle \equiv d_1 \sqsubseteq_1 d_3 \wedge d_2 \sqsubseteq_2 d_4$.
- Replace the system of equations

$$x = f(x, y)$$
$$y = g(x, y)$$

with one equation $\langle x, y \rangle = h(\langle x, y \rangle) = \langle f(x, y), g(x, y) \rangle$.

• Check that D is a domain and that h is a monotonic function.