Management Sciences Topics: Convex Optimization

Homework 1: Due Jan 30 (11:59 pm)

Chuan Lu

(You can directly use any properties, theorems, examples or facts from the lectures.)

Problem 1: Are the following sets convex? You only need to answer yes or no and don't need to provide reasons.

- a. $\{(x,y) \in \mathbb{R}^2 | |xy| \ge 1\}$.
- b. $\{(x,y) \in \mathbb{R}^2 | x \text{ is a postive interger} \}$. Nonconvex.
- c. $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \text{ or } x + y \le 0\}.$
- d. $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \text{ and } x + y \le 0\}.$
- e. $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$.
- f. The set of all copositive matrices: $\{X \in \mathbb{S}^n | \mathbf{u}^\top X \mathbf{u} \ge 0 \text{ for any } \mathbf{u} \ge 0\}.$
- g. Second order cone: $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}|\|\mathbf{x}\|_2\leq t\}$, where $\|\cdot\|_2$ represents the Euclidean norm.
- h. The set of all rank-one $n \times n$ positive semi-definite matrices: $\{X \in \mathbb{S}^n | X = \mathbf{x}\mathbf{x}^\top, \mathbf{x} \in \mathbb{R}^n\}$.
- i. $\{X \in \mathbb{S}^n | -1 \le \operatorname{tr} X \le 1\}$, where $\operatorname{tr} X = \sum_{i=1}^n X_{ii}$ is the trace of X.

Problem 2: Are the following functions convex? You need to provide reasons only if your answer is Yes.

- a. $f(X,Y) = \lambda_{\max}(X Y)$ where $X, Y \in \mathbb{S}^n$.
- b. Hinge loss function: $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \max\{1 b_i \mathbf{a}_i \top \mathbf{x}, 0\}$ where $\mathbf{a}_i \in \mathbb{R}^n$ is a feature vector and $b_i \in \{1, -1\}$ is the class label of instance i for $i = 1, \ldots, n$.

 $\mathbf{c}.$

$$f(x) = \begin{cases} x \ln(x) & \text{if } 0 < x \le 1 \\ +\infty & \text{otherwise} \end{cases}$$

d. Entropy function:

$$f(\mathbf{x}) = \begin{cases} \sum_{i=1}^{n} x_i \ln(x_i) & \text{if } \sum_{i=1}^{n} x_i = 1 \text{ and } x_i > 0 \text{ for all } i \\ +\infty & \text{otherwise} \end{cases}$$

- e. The density function of a standard univariate Gaussian distribution $\mathcal{N}(0,1)$.
- g. Sigmoid function: $f(x) = \frac{\exp(x)}{1 + \exp(x)}$ for $x \in \mathbb{R}$.
- f. $f(x) = \min\{x, 0\}$ for $x \in \mathbb{R}$.
- h. $f(x) = (\max\{x, 0\})^2$ for $x \in \mathbb{R}$.
- i. $f(x) = (\max\{x, -1\})^2$ for $x \in \mathbb{R}$.
- j. f(x) = h(g(x)) where $g(x) = x^2$ and $h(x) = \mathbf{1}_{[1,2]}(x) = \begin{cases} 0 & \text{if } x \in [1,2] \\ +\infty & \text{otherwise} \end{cases}$, i.e., the indicator function of [0,1].

Problem 3: Suppose f is an extended-real-valued function on \mathbb{R}^n . Show that f is convex if and only if $g_{\mathbf{x}}(t) := f(\mathbf{x} + t\mathbf{v})$ (as a function on \mathbb{R}) is convex for any \mathbf{x} and \mathbf{v} in \mathbb{R}^n .