Security Policy Models

- Chapters 5 & 6
- Overview
 - Confidentiality policy
 - Integrity policy
- Bell-LaPadula model
- Biba's model

Confidentiality

- X set of entities as subject, I information as object
- *I* has *confidentiality* property with respect to *X* if no $x \in X$ can obtain information from *I*
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Confidentiality Policy

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
 - Comes from the military's need to keep information
 - No disclosure of military and government information
 - Privacy act : constraints on what information a government entity can legally obtain from individuals

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Integrity

- X set of entities as subject, I information as object
- *I* has *integrity* property with respect to *X* if all $x \in X$ trust information in *I*
- Types of integrity:
 - trust *I*, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)

Integrity Policy

- Commercial security policy
 - Policy primarily protecting integrity
 - Comes from the need of commercial firms to prevent tampering of data
 - Confidentiality: disclosure of customer information is not the direct concern of a bank.
 - Integrity: the loss resulted from the disclosure is the direct concern of a bank.

Outline

- Overview
 - Confidentiality policy
 - Integrity policy
- Bell-LaPadula model
- Biba's model

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering

Top Secret: highest

Secret

Clearine

Unclassified: lowest

- Subjects are issued security clearance L(s)
- Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists 09/20/18

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject *s* can read object *o* iff $L(o) \le L(s)$ and *s* has permission to read *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject *s* can write object *o* iff $L(s) \le L(o)$ and *s* has permission to write *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

(TS,r), (TS,s, C,uc, w)} oprain

Define Browdure 55,810 Access Control Matrix

- Objects are sorted in descending according to their security classification.
- Subjects are sorted in descending according to their security clearance.
- What does the ACM look like?
- What mechanism can implement the ACM?
 - Ring

Problem in Step 1 Model

Examples

- on some land (Can read eachother)
 Sul 7: Influent security
 levels (one can read
 other) A general is leading two teams in a covert operation.
 - How to prevent the two teams exchange information?
- A headquarter of a company is managing to branch offices.
 - How to prevent the two offices to exchange information?

09/20/18

Sal 1: Patr 18/2

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
 - Security level is (clearance, category set)
 - A category corresponds to a set of information
- Examples

```
- (Top Secret, { NUC, EUR, ASI } )
```

- (Confidential, { EUR, ASI })

Levels and Dominance

- A: a level
- C: a set

- $(A, C) dom(A', C') iff A' \leq A and C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
 - (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) $\neg dom$ (Confidential, {EUR})

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff L(s) dom L(o)
 and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s)
 and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Access Control Matrix

ACL

CL

Ring Dam = 1 < 1 No Pom

- Levels: TS and S
- Sets: A and B
 - $-\{A,B\},\{A\},\{B\}$
- ACM?
- Implementation?

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR})
 clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Colonel cannot issue commands

/proc

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, { NUC, EUR })
 - Colonel sets curlevel to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"

DG/UX System

- Provides mandatory access controls
 - MAC label identifies security level Monitored Access cutrol
 - Default labels, but can define others
- Initially
 - Subjects assigned MAC label of parent
 - Initial label assigned to user, kept in Authorization and Authentication database
 - Object assigned label at creation
 - Explicit labels stored as part of attributes
 - Implicit labels determined from parent directory

MAC Regions

ACM of DG/UX

sanitation

B-L Model

DG/UX

	AA	User	Sys
AA	rw	r	r
User	Country log	rw	r
Sys	W	W	rw

	AA	User	Sys
AA	r _{tup} tup	rwsan	r
User	-	r W tup	r
Sys	-	W	r W tup

MAC Regions

- Administrative region (highest and special)
 - For logs, MAC label definitions, and so forth
 - No read up (B-L model)
 - No write up (no arbitrary alteration) from lower regions
 - This is an additional MAC to the B-L model
 - Administrative processes with MAC labels in this region can sanitize data and send data to user processes in the user region.
 - Sanitize is the key to confidentiality

MAC Regions

- Virus protection region (lowest)
 - Store system programs
 - Can be read/executed by users (B-L)
 - Cannot be modified (no write) by users (B-L)
- User program region (in the middle)
 - What if a user program is a virus

Using MAC Labels

- Simple security condition implemented
- *-property not fully implemented
 - Process MAC must equal object MAC
 - Writing allowed only at the same security level
- Overly restrictive in practice
- Instead of one MAC level, using a range of
 MAC levels

 CS4371, Oijun Gu

MAC Tuples

- MAC range is a set of labels with upper, lower bound assigned to objects
 - Upper bound must dominate lower bound of range
 - An object has a MAC tuple.
 - A subject has a MAC label and a tuple
 - The subject can change its label within its tuple.
- Examples
 - 1. [(Secret, {NUC}), (Top Secret, {NUC})]
- 2. [(Secret, \oslash), (Top Secret, {NUC, EUR, ASI})]
 - 3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]

MAC Tuples

- Process can read object when:
 - Object MAC range (lr, hr); process MAC label pl
 - pl dom hr
 - Process MAC label grants read access to upper bound of range
- Example
 - Peter, with label (Secret, {EUR}), cannot read paper
 - (Top Secret, {NUC, EUR}) dom (Secret, {EUR})
 - Paul, with label (Top Secret, {NUC, EUR, ASI}) can read paper
 - (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})
 09/20/18

 CS4371, Qijun Gu
 30

MAC Tuples

- Process can write object when:
 - Object MAC range (lr, hr); process MAC label pl
 - $-pl \in (lr, hr)$
 - Process MAC label grants write access to any label in range
- Example
 - Peter, with label (Secret, {EUR}), can write paper
 - (Top Secret, {NUC, EUR}) dom (Secret, {EUR}) and (Secret, {EUR}) dom (Secret, {EUR})
 - Paul, with label (Top Secret, {NUC, EUR, ASI}), cannot read paper
 - 09/20/18 (Top Secret, {NUC, ECSP3/ASSIM) Godom (Top Secret, {NUC, EUR})

Outline

- Overview
 - Confidentiality policy
 - Integrity policy
- Bell-LaPadula model
- Biba's model

Intuition for Integrity Levels

- The higher the level, the more confidence
 - A program will execute correctly
 - Data is accurate and dependable
- Note relationship between integrity and trustworthiness
- Important point: integrity levels are not security levels

Biba's Model

- Similar to Bell-LaPadula model
 - 1. $s \in S$ can read $o \in O$ iff $i(s) \le i(o)$
 - 2. $s \in S$ can write to $o \in O$ iff $i(o) \le i(s)$
 - 3. $s_1 \in S$ can execute $s_2 \in S$
 - iff $i(s_2) \le i(s_1)$, when the result affects s_2 (Biba)
 - iff $i(s_1) \le i(s_2)$, when the result affects s_1 (Locus)
- Add compartments and discretionary controls to get full dual of Bell-LaPadula model

Access Control Matrix

- Integrity levels of subject and objects
- ACM and implementation?
- Combined B-L and Biba model
 - Security levels = integrity levels
 - ACM and implementation?

LOCUS and Biba

- Goal: prevent untrusted software from altering data or other software
- Approach: make levels of trust explicit
 - Credibility rating based on estimate of software's trustworthiness (0 untrusted, n highly trusted)
 - Trusted file systems contain software with a single *credibility* level (objects)
 - A user has a risk level (subjects)
 - A user can execute software if risk level ≤ credibility level
 - Must use *run-untrusted* command to run software at lower credibility level (objects)

Summary of Topic 1

- Security concepts
 - Confidentiality
 - Integrity
 - Availability
- Access control practices and theories
 - Access control mechanisms
 - Access control matrix