Can QFT on Moyal-Weyl spaces look as on commutative ones?

Gaetano Fiore *

Dip. di Matematica e Applicazioni, V. Claudio 21, 80125 Napoli; and

I.N.F.N., Sez. di Napoli, Complesso MSA, V. Cintia, 80126 Napoli

Abstract

We sketch a natural affirmative answer to the question based on a joint work [11] with J. Wess. There we argue that a proper enforcement of the "twisted Poincaré" covariance makes any differences $(x-y)^{\mu}$ of coordinates of two copies of the Moyal-Weyl deformation of Minkowski space like undeformed. Then QFT in an operator approach becomes compatible with (minimally adapted) Wightman axioms and time-ordered perturbation theory, and physically equivalent to ordinary QFT, as observables involve only coordinate differences.

1 Introduction: twisting Poincaré group and Minkowski spacetime

In the last decade a broad attention has been devoted to the construction of QFT on Moyal-Weyl spaces, perhaps the simplest examples of noncommutative spaces. These are characterized by coordinates \hat{x}^{μ} fulfilling the commutation relations

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu},\tag{1}$$

^{*}Talk given at the 21^{st} Nishinomiya-Yukawa Memorial Symposium on Theoretical Physics "Noncommutative Geometry and Spacetime in Physics", Nishinomiya-Kyoto, Nov. 2006. Preprint 07-16 Dip. Matematica e Applicazioni, Università di Napoli; DSF/12-2007.

where $\theta^{\mu\nu}$ is a constant real antisymmetric matrix. For present purposes $\mu = 0, 1, 2, 3$ and indices are raised or lowered through multiplication by the standard Minkowski metric $\eta_{\mu\nu}$, so as to obtain a deformation of Minkowski space. We shall denote by $\widehat{\mathcal{A}}$ the algebra "of functions on Moyal-Weyl space", i.e. the algebra generated by $\mathbf{1}, \hat{x}^{\mu}$ fulfilling (1). For $\theta^{\mu\nu} = 0$ one obtains the algebra \mathcal{A} generated by commuting x^{μ} .

Clearly (1) are translation invariant, but not Lorentz-covariant. As recognized in [5, 18, 13, 14], they are however covariant under a deformed version of the Poincaré group, namely a triangular noncocommutative Hopf *-algebra H obtained from the UEA UP of the Poincaré Lie algebra P by twisting [9]¹. This means that (up to isomorphisms) H and UP (extended over the formal power series in $\theta^{\mu\nu}$) are the same *-algebras, have the same counit ε , but different coproducts Δ , $\hat{\Delta}$ related by

$$\Delta(g) \equiv \sum_{I} g_{(1)}^{I} \otimes g_{(2)}^{I} \longrightarrow \hat{\Delta}(g) = \mathcal{F}\Delta(g)\mathcal{F}^{-1} \equiv \sum_{I} g_{(\hat{1})}^{I} \otimes g_{(\hat{2})}^{I}$$
 (2)

for any $g \in H \equiv U\mathcal{P}$. The antipodes are also changed accordingly. The socalled twist \mathcal{F} is not uniquely determined, but what follows does not depend on its choice. The simplest is

$$\mathcal{F} \equiv \sum_{I} \mathcal{F}_{I}^{(1)} \otimes \mathcal{F}_{I}^{(2)} := \exp\left(\frac{i}{2} \theta^{\mu\nu} P_{\mu} \otimes P_{\nu}\right). \tag{3}$$

 P_{μ} denote the generators of translations, and in (2), (3), we have used Sweedler notation; \sum_{I} may denote an infinite sum (series), e.g. $\sum_{I} \mathcal{F}_{I}^{(1)} \otimes \mathcal{F}_{I}^{(2)}$ comes out from the power expansion of the exponential. A straightforward computation gives

$$\hat{\Delta}(P_{\mu}) = P_{\mu} \otimes \mathbf{1} + \mathbf{1} \otimes P_{\mu} = \Delta(P_{\mu}), \qquad \hat{\Delta}(M_{\omega}) = M_{\omega} \otimes \mathbf{1} + \mathbf{1} \otimes M_{\omega} + P[\omega, \theta] \otimes P \neq \Delta(M_{\omega}),$$

where we have set $M_{\omega} := \omega^{\mu\nu} M_{\mu\nu}$ and used a row-by-column matrix product on the right. The left identity shows that the Hopf P-subalgebra remains undeformed and equivalent to the abelian translation group \mathbb{R}^4 . Therefore, denoting by \triangleright , $\hat{\triangleright}$ the actions of $U\mathcal{P}, H$ (on $\mathcal{A} \triangleright$ amounts to the action of the corresponding algebra of differential operators, e.g. P_{μ} can be identified with $i\partial_{\mu} := i\partial/\partial x^{\mu}$), they coincide on first degree polynomials in x^{ν}, \hat{x}^{ν} ,

$$P_{\mu} \triangleright x^{\rho} = i\delta^{\rho}_{\mu} = P_{\mu} \hat{\triangleright} \hat{x}^{\rho}, \qquad M_{\omega} \triangleright x^{\rho} = 2i(x\omega)^{\rho}, \qquad M_{\omega} \hat{\triangleright} \hat{x}^{\rho} = 2i(\hat{x}\omega)^{\rho}, \qquad (4)$$

and more generally on irreps (irreducible representations); this yields the same classification of elementary particles as unitary irreps of \mathcal{P} . But $\triangleright, \hat{\triangleright}$ differ on products of coordinates, and more generally on tensor products of representations, as \triangleright is extended by the rule $g \triangleright (ab) = (g_{(1)} \triangleright a)(g_{(2)} \triangleright b)$ involving $\Delta(g)$ (the rule reduces to the usual Leibniz rule for $g = P_{\mu}, M_{\mu\nu}$), whereas $\hat{\triangleright}$ is extended as at the lhs of

$$g \hat{\triangleright} (\hat{a} \hat{b}) = \sum_{I} (g_{(\hat{1})}^{I} \hat{\triangleright} \hat{a}) (g_{(\hat{2})}^{I} \hat{\triangleright} \hat{b}) \quad \Leftrightarrow \quad g \triangleright_{\star} (a \star b) = \sum_{I} (g_{(\hat{1})}^{I} \triangleright_{\star} a) \star (g_{(\hat{2})}^{I} \triangleright_{\star} b), \tag{5}$$

¹In section 4.4.1 of [14] this was formulated in terms of the dual Hopf algebra

involving $\hat{\Delta}(g)$ and a deformed Leibniz rule for $M_{\omega}\hat{\triangleright}$. Summarizing, the H-module unital *-algebra $\widehat{\mathcal{A}}$ is obtained by twisting the $U\mathcal{P}$ -module unital *-algebra \mathcal{A} .

Several spacetime variables. The proper noncommutative generalization of the algebra of functions generated by n sets of Minkowski coordinates x_i^{μ} , i=1,2,...,n, is the noncommutative unital *-algebra $\widehat{\mathcal{A}}^n$ generated by real variables \widehat{x}_i^{μ} fulfilling the commutation relations at the lhs of

$$[\hat{x}_i^{\mu}, \hat{x}_i^{\nu}] = \mathbf{1}i\theta^{\mu\nu} \qquad \Leftrightarrow \qquad [x_i^{\mu}, x_i^{\nu}] = \mathbf{1}i\theta^{\mu\nu}; \tag{6}$$

note that the commutators are not zero for $i \neq j$. The latter are compatible with the Leibinz rule (5), so as to make $\widehat{\mathcal{A}}^n$ a H-module *-algebra, and dictated by the braiding associated to the quasitriangular structure $\mathcal{R} = \mathcal{F}_{21}\mathcal{F}^{-1}$ of H.

As H is even triangular, an essentially equivalent formulation of these H-module algebras is in terms of \star -products derived from \mathcal{F} . For $n \geq 1$ denote by \mathcal{A}^n the n-fold tensor product algebra of \mathcal{A} and $x^{\mu} \otimes \mathbf{1} \otimes ..., \mathbf{1} \otimes x^{\mu} \otimes ..., ...$ respectively by $x_1^{\mu}, x_2^{\mu}, ...$ Denote by \mathcal{A}^n_{θ} the algebra obtained by endowing the vector space underlying \mathcal{A}^n with a new product, the \star -product, related to the product in \mathcal{A}^n by

$$a \star b := \sum_{I} (\overline{\mathcal{F}}_{I}^{(1)} \triangleright a) (\overline{\mathcal{F}}_{I}^{(2)} \triangleright b), \tag{7}$$

with $\overline{\mathcal{F}} \equiv \mathcal{F}^{-1}$. This encodes both the usual \star -product within each copy of \mathcal{A} , and the " \star -tensor product" algebra [2, 3]. As a result one finds the isomorphic \star -commutation relations at the rhs of (6) (this follows from computing $x_i^\mu \star x_j^\nu$, which e.g. for the specific choice (3) gives $x_i^\mu x_j^\nu + i\theta^{\mu\nu}/2$) and that $\widehat{\mathcal{A}}^n$, \mathcal{A}_{θ}^n are isomorphic H-module unital *-algebras, in the sense of the equivalence (5). More explicitly, on analytic functions f, g (7) reads $f(x_i) \star g(x_j) = \exp[\frac{i}{2}\partial_{x_i}\theta\partial_{x_j}]f(x_i)g(x_j)$, and must be followed by the indentification $x_i = x_j$ after the action of the bi-pseudodifferential operator $\exp[\frac{i}{2}\partial_{x_i}\theta\partial_{x_j}]$ if i=j. It should be extended to functions in $L^1 \cap \mathbb{F}L^1$ in the obvious way using their Fourier transforms \mathbb{F} . In the sequel we shall formulate the noncommutative spacetime only in terms of \star -products and construct QFT on it replacing all products of functions and/or fields with \star -products.

Let $a_i \in \mathbb{R}$ with $\sum_i a_i = 1$. An alternative set of real generators of \mathcal{A}_{θ}^n is:

$$\xi_i^{\mu} := x_{i+1}^{\mu} - x_i^{\mu}, \quad i = 1, ..., n-1, \qquad X^{\mu} := \sum_{i=1}^{n} a_i x_i^{\mu}$$
 (8)

It is immediate to check that $[X^{\mu}, X^{\nu}] = \mathbf{1}i\theta^{\mu\nu}$, so X^{μ} generate a copy $\mathcal{A}_{\theta,X}$ of \mathcal{A}_{θ} , whereas $\forall b \in \mathcal{A}_{\theta}^n$

$$\xi_i^{\mu} \star b = \xi_i^{\mu} b = b \star \xi_i^{\mu} \qquad \Rightarrow \qquad [\xi_i^{\mu} \star b] = 0, \tag{9}$$

so ξ_i^{μ} generate a \star -central subalgebra \mathcal{A}_{ξ}^{n-1} , and $\mathcal{A}_{\theta}^{n} \sim \mathcal{A}_{\xi}^{n-1} \otimes \mathcal{A}_{\theta,X}$. The \star -multiplication operators $\xi_i^{\mu} \star$ have the same spectral decomposition on all \mathbb{R} (including 0) as multiplication operators ξ^{μ} by classical coordinates, which make up a space-like, or a null, or

a time-like 4-vector, in the usual sense. Moreover, \mathcal{A}_{ξ}^{n-1} , $\mathcal{A}_{\theta,X}$ are actually H-module subalgebras, with

$$g\hat{\triangleright}a = g \triangleright a \qquad a \in \mathcal{A}_{\xi}^{n-1}, \quad g \in H$$

$$g\hat{\triangleright}(a \star b) = (g_{(1)} \triangleright a) \star (g_{(2)}\hat{\triangleright}b), \qquad b \in \mathcal{A}_{\theta}^{n},$$
(10)

i.e. on \mathcal{A}_{ξ}^{n-1} the *H*-action is undeformed, including the related part of the Leibniz rule. [By (10) \star can be also dropped]. All ξ_i^{μ} are translation invariant, X^{μ} is not.

2 Revisiting Wightman axioms for QFT and their consequences

As in Ref. [17] we divide the Wightman axioms [16] into a subset (labelled by \mathbf{QM}) encoding the quantum mechanical interpretation of the theory, its symmetry under spacetime translations and stability, and a subset (labelled by \mathbf{R}) encoding the relativistic properties. Since they provide minimal, basic requirements for the field-operator framework to quantization we try to apply them to the above noncommutative space keeping the QM conditions, "fully" twisting Poincaré-covariance R1 and being ready to weaken locality R2 if necessary.

QM1. The states are described by vectors of a (separable) Hilbert space \mathcal{H} .

QM2. The group of space-time translations \mathbb{R}^4 is represented on \mathcal{H} by strongly continuous unitary operators U(a). The spectrum of the generators P_{μ} is contained in $\overline{V}_+ = \{p_{\mu} : p^2 \geq 0, p_0 \geq 0\}$. There is a unique Poincaré invariant state Ψ_0 , the vacuum state

QM3. The fields (in the Heisenberg representation) $\varphi^{\alpha}(x)$ [α enumerates field species and/or $SL(2,\mathbb{C})$ -tensor components] are operator (on \mathcal{H}) valued tempered distributions on Minkowski space, with Ψ_0 a *cyclic* vector for the fields, i.e. \star -polynomials of the (smeared) fields applied to Ψ_0 give a set \mathcal{D}_0 dense in \mathcal{H} .

We shall keep QM1-3. Taking v.e.v.'s we define the Wightman functions

$$\mathcal{W}^{\alpha_1,\dots,\alpha_n}(x_1,\dots,x_n) := (\Psi_0,\varphi^{\alpha_1}(x_1)\star\dots\star\varphi^{\alpha_n}(x_n)\Psi_0), \qquad (11)$$

which are in fact distributions, and (their combinations) the Green's functions

$$G^{\alpha_1,\dots,\alpha_n}(x_1,\dots,x_n) := (\Psi_0, T[\varphi^{\alpha_1}(x_1)\star\dots\star\varphi^{\alpha_n}(x_n)]\Psi_0)$$
(12)

where also time-ordering T is defined as on commutative space (even if $\theta^{0i} \neq 0$),

$$T[\varphi^{\alpha_1}\!(x)\!\star\!\varphi^{\alpha_2}\!(y)]\!=\!\varphi^{\alpha_1}\!(x)\!\star\!\varphi^{\alpha_2}\!(y)\!\star\!\vartheta(x^0\!-\!y^0)\!+\!\varphi^{\alpha_2}\!(y)\!\star\!\varphi^{\alpha_1}\!(x)\!\star\!\vartheta(y^0\!-\!x^0)$$

(ϑ denotes the Heavyside function). This is well-defined as $\vartheta(x^0-y^0)$ is \star -central.

QM1-3 (alone) imply exactly the same properties as on commutative space:

W1. Wightman and Green's functions are translation-invariant tempered distributions and therefore may depend only on the ξ_i^{μ} :

$$\mathcal{W}^{\alpha_{1},...,\alpha_{n}}(x_{1},...,x_{n}) = W^{\alpha_{1},...,\alpha_{n}}(\xi_{1},...,\xi_{n-1}),
\mathcal{G}^{\alpha_{1},...,\alpha_{n}}(x_{1},...,x_{n}) = G^{\alpha_{1},...,\alpha_{n}}(\xi_{1},...,\xi_{n-1}).$$
(13)

W2. (Spectral condition) The support of the Fourier transform \widetilde{W} of W is contained in the product of forward cones, i.e.

$$\widetilde{W}^{\{\alpha\}}(q_1, \dots q_{n-1}) = 0, \quad \text{if } \exists j : \quad q_j \notin \overline{V}_+.$$

$$\tag{14}$$

W3. $W^{\{\alpha\}}$ fulfill the **Hermiticity and Positivity** properties following from those of the scalar product in \mathcal{H} .

R1. (Untwisted Lorentz Covariance) $SL(2,\mathbb{C})$ is represented on \mathcal{H} by strongly continuous unitary operators U(A), and under extended Poincaré transformations U(a,A) = U(a)U(A)

$$U(a,A)\varphi^{\alpha}(x)U(a,A)^{-1} = S^{\alpha}_{\beta}(A^{-1})\varphi^{\beta}(\Lambda(A)x+a), \tag{15}$$

with S a finite dimensional representation of $SL(2,\mathbb{C})$.

In ordinary QFT as a consequence of QM2,R1 one finds

W4. (Lorentz Covariance of Wightman functions)

$$\mathcal{W}^{\alpha_1..\alpha_n}(\Lambda(A)x_1,...,\Lambda(A)x_n) = S^{\alpha_1}_{\beta_1}(A)..S^{\alpha_n}_{\beta_n}(A)\mathcal{W}^{\beta_1..\beta_n}(x_1,...,x_n). \tag{16}$$

In particular, Wightman (and Green) functions of scalar fields are Lorentz invariant.

R1 needs a "twisted" reformulation $\mathbf{R1}_{\star}$, which we defer. Now, however $\mathrm{R1}_{\star}$ will look like, it should imply that $W^{\{\alpha\}}$ are $SL_{\theta}(2,\mathbb{C})$ tensors (in particular invariant if all involved fields are scalar). But, as the $W^{\{\alpha\}}$ are to be built only in terms of ξ_i^{μ} and other $SL(2,\mathbb{C})$ tensors (like $\partial_{x_i^{\mu}}$, $\eta_{\mu\nu}$, γ^{μ} , etc.), which are all annihilated by $P_{\mu} \triangleright$, \mathcal{F} will act as the identity and $W^{\{\alpha\}}$ will transform under $SL(2,\mathbb{C})$ as for $\theta=0$. Therefore we shall require W4 also if $\theta \neq 0$ as a temporary substitute of $\mathrm{R1}_{\star}$.

The simplest sensible way to formulate the *-analog of locality is

 $\mathbf{R2}_{\star}$. (Microcausality or locality) The fields either \star -commute or \star -anticommute at spacelike separated points

$$[\varphi^{\alpha}(x) , \varphi^{\beta}(y)]_{\mp} = 0, \quad \text{for } (x - y)^2 < 0.$$
 (17)

This makes sense, as space-like separation is sharply defined, and reduces to the usual locality when $\theta = 0$. Whether there exist reasonable weakenings of R2_{*} is an open question also on commutative space, and the same restrictions will apply.

Arguing as in [16] one proves that QM1-3, W4, R2_{*} are independent and compatible, as they are fulfilled by free fields (see below): the noncommutativity of a Moyal-Weyl space is compatible with R2_{*}! As consequences of R2_{*} one again finds

W5. (Locality) if $(x_j - x_{j+1})^2 < 0$

$$W(x_1, ...x_j, x_{j+1}, ...x_n) = \pm W(x_1, ...x_{j+1}, x_j, ...x_n).$$
(18)

W6. (Cluster property) For any spacelike a and for $\lambda \to \infty$

$$W(x_1,...x_j,x_{j+1}+\lambda a,...,x_n+\lambda a) \to W(x_1,...,x_j) W(x_{j+1},...,x_n),$$
 (19)

(convergence in the distribution sense); this is true also with permuted x_i 's.

Summarizing: our QFT framework is based on QM1-3, W4, R2_{*}, or alternatively on the constraints W1-6 for $W^{\{\alpha\}}$, exactly as in QFT on Minkowski space. We stress that this applies for all $\theta^{\mu\nu}$, even if $\theta^{0i} \neq 0$, contrary to other approaches.

3 Free and interacting scalar field

As the differential calculus remains undeformed, so remain the equation of motions of free fields. Sticking for simplicity to the case of a scalar field of mass m, the solution of the Klein-Gordon equation reads as usual

$$\varphi_0(x) = \int d\mu(p) \left[e^{-ip \cdot x} a^p + a_p^{\dagger} e^{ip \cdot x} \right] \tag{20}$$

where $d\mu(p) = \delta(p^2 - m^2)\vartheta(p^0)d^4p = dp^0\delta(p^0 - \omega_{\mathbf{p}})d^3\mathbf{p}/2\omega_{\mathbf{p}}$ is the invariant measure $(\omega_{\mathbf{p}} := \sqrt{\mathbf{p}^2 + m^2})$. Postulating all the axioms of the preceding section (including $\mathbf{R2}_{\star}$), one can prove up to a positive factor the **free field commutation relation**

$$[\varphi_0(x) \stackrel{\star}{,} \varphi_0(y)] = 2 \int \frac{d\mu(p)}{(2\pi)^3} \sin\left[p \cdot (x - y)\right], \tag{21}$$

coinciding with the undeformed one. Applying ∂_{y^0} to (21) and setting $y^0 = x^0$ [this is compatible with (6)] one finds the canonical commutation relation

$$[\varphi_0(x^0, \mathbf{x}) , \dot{\varphi}_0(x^0, \mathbf{y})] = i \delta^3(\mathbf{x} - \mathbf{y}).$$
(22)

As a consequence of (21), also the n-point Wightman functions coincide with the undeformed ones, i.e. vanish if n is odd and are sum of products of 2-point functions (factorization) if n is even. This of course agrees with the cluster property W6.

A φ_0 fulfilling (24) can be obtained from (22) plugging a^p, a_p^{\dagger} satisfying

$$a_p^{\dagger} a_q^{\dagger} = e^{ip\theta'q} a_q^{\dagger} a_p^{\dagger}, \qquad a^p a^q = e^{ip\theta'q} a^q a^p, \qquad a^p a_q^{\dagger} = e^{-ip\theta'q} a_q^{\dagger} a^p + 2\omega_{\mathbf{p}} \delta^3(\mathbf{p} - \mathbf{q}),$$
(with $\theta' = \theta$), and $[a^p, f(x)] = [a_p^{\dagger}, f(x)] = 0$, (23)

(here $p\theta q := p_{\mu}\theta^{\mu\nu}q_{\nu}$), as adopted e.g. in [4, 12, 1]. We briefly consider the consequences of choosing $\theta' \neq \theta$ [$\theta' = 0$ gives CCR among the a^p, a_p^{\dagger} , assumed in most of the literature, explicitly [8] or implicitly, in operator [6, 7] or in path-integral approach to quantization]. One finds the non-local *-commutation relation

$$\varphi_0(x) \star \varphi_0(y) = e^{i\partial_x (\theta - \theta')\partial_y} \varphi_0(x) \star \varphi_0(y) + i F(x - y),$$

and the corresponding (free field) Wightman functions violate W4, W6, unless $\theta' = \theta$. One can obtain (23) also by assuming nontrivial transformation laws $P_{\mu} \triangleright a_{p}^{\dagger} = p_{\mu} a_{p}^{\dagger}$, $P_{\mu} \triangleright a^{p} = -p_{\mu} a^{p}$ and extending the *-product law (7) also to a^{p} , a_{p}^{\dagger} . It amounts to choosing $\theta' = -\theta$ in (23), see [11] for details; the relations define examples of deformed Heisenberg algebras covariant under a (quasi)triangular Hopf algebra H [15, 10].

Normal ordering is consistently defined as a map which on any monomial in a^p , a_q^{\dagger} reorders all a^p to the right of all a_q^{\dagger} adding a factor $e^{-ip\theta'q}$ for each flip $a^p \leftrightarrow a_q^{\dagger}$, e.g.

$$:a^p\!a^q:=a^p\!a^q,\quad :a^\dagger_p\!a^q:=a^\dagger_p\!a^q,\quad :a^\dagger_p\!a^\dagger_q:=a^\dagger_p\!a^\dagger_q,\quad :a^p\!a^\dagger_q:=a^\dagger_q\!a^pe^{-ip\theta'q}.$$

(for $\theta' = 0$ one finds the undeformed definition), and is extended to fields requiring \mathcal{A}_{θ}^{n} -bilinearity. As a result, one finds that the v.e.v. of any normal-ordered \star -polynomial of fileds is zero, that normal-ordered products of fields can be obtained from products by the same subtractions, and **the same Wick theorem** as in the undeformed case. Applying **time-orderd perturbation theory** to an interacting field again one can heuristically derive the Gell-Mann–Low formula

$$G(x_1, ..., x_n) = \frac{\left(\Psi_0, T\left\{\varphi_0(x_1) \star ... \star \varphi_0(x_n) \star \exp\left[-i\lambda \int dy^0 H_I(y^0)\right]\right\} \Psi_0\right)}{\left(\Psi_0, T\exp\left[-i\int dy^0 H_I(y^0)\right] \Psi_0\right)}.$$
(24)

Here φ_0 denotes the free "in" field, i.e. the incoming field in the interaction representation, and $H_I(x^0)$ is the interaction Hamiltonian in the interaction representation. By inspection one finds that the **Green functions (24) coincide with the undeformed ones** (at least perturbatively). They can be computed by Feynman diagrams with the undeformed Feynman rules. See [11] for some conclusions on these results, in striking contrast with the ones found in most of the literature.

References

[1] Y. Abe, Int. J. Mod. Phys. **A22** (2007), 1181-1200.

- [2] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quant. Grav. 22 (2005), 3511-3532.
- [3] P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quant. Grav. 23 (2006), 1883-1912
- [4] A. P. Balachandran, A. Pinzul, B. A. Qureshi, Phys. Lett. **B634** (2006), 434-436.
- [5] M. Chaichian, P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. **B604** (2004), 98-102.
- [6] M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94 (2005), 151602.
- [7] M. Chaichian, M. Mnatsakanova, K. Nishijima, A. Tureanu, Yu. Vernov, hep-th/0402212.
- [8] S. Doplicher, K. Fredenhagen, J. E. Roberts, Commun. Math. Phys. 172 (1995), 187-220.
- [9] V. G. Drinfeld, Sov. Math. Dokl. 28 (1983), 667.
- [10] G. Fiore, J. Math. Phys. **39** (1998), 3437-3452.
- [11] G. Fiore, J. Wess, hep-th/0701078. To appear in Phys. Rev. D.
- [12] F. Lizzi, S. Vaidya, P. Vitale, Phys. Rev. **D73** (2006), 125020.
- [13] F. Koch, E. Tsouchnika, Nucl. Phys. **B717** (2005), 387-403.
- [14] R. Oeckl, Nucl. Phys. **B581** (2000), 559-574.
- [15] W. Pusz, S. L. Woronowicz, Reports on Mathematical Physics 27 (1989), 231.
- [16] R. F. Streater, A. S. Wightman, *PCT*, Spin and Statistics and All That, Benjamin 1964.
- [17] F. Strocchi, Found. Phys. **34** (2004) 501-527. hep-th/0401143
- [18] J. Wess, Lecture given at BW2003 Workshop, hep-th/0408080