CHAPTER 10 PROPERTIES OF STOCK OPTIONS

Derivatives Securities Junho Park

Chapter Outline

■ Factors affecting option prices. 영향요소들

■ Bounds for option prices.

Sadria 바운드리

- Early exercise of American options. 아메리칸 옵션 조기행사
- Effects of dividends. 배당의 효과

Factors of Options Prices

- There are six main factors affecting the price of a stock option:
 - The current stock price.
 - The strike price.
 - The time to expiration.
 - The volatility of the stock price.
 - The risk-free interest rate.
 - The dividends that are expected to be paid.

옵션가격에 영향을 끼치는 요소 6가지

- 1. 주가
- 2. 행사가
- 3. 잔존만기일
- 4. 변동성
- 5. 무위험이자율
- 6. 예정 배당

Table 11.1 Summary of the effect on the price of a stock option of increasing one variable while keeping all others fixed.

Variable	European call	European put	American call	American put
Current stock price	+	_	+	_
Strike price	_	+	_	+
Time to expiration	?	?	+	+
Volatility	+	+	+	+
Risk-free rate	+	_	+	_
Amount of future dividends	_	+	_	+

Stock Prices and Strike Prices

- A call option is more valuable as the stock price increases, while it is less valuable as the strike price increases.
 - For a call option, the payoff is the stock price exceeds the strike price.
- A put option is less valuable as the stock price increases, while it is more valuable as the strike price increases.

(콜옵션기준) 주가가 오를수록, 행사가는 낮을수록 옵션의 가치가 커짐

Times to Expiration

- American options are more valuable as the time to expiration increases.
 - An option with longer life has more right to exercise than an option with shorter life.

아메리칸: 만기길수록 가치 상승 -> 시간가치 상기

유러피안: 만기만 보았을 때는 상관 X

		주문 :	차트	# 월물별	옵션 ▼ 202	104 🕶 선	물	123.60 🔺	4.40	1.05% 1	66,757 🗌 🕅	상
	K0SP1200	423.74	4.32	1.03%	į	클옵션				풋옵션		^
	선 물	423.60		1.05%	거래량 '		현재가	행사가	현재가		거래량	
Ī	상한가	31.15	하한가	0.01	38,580			447.50	23.60		1	
,	이론가		역사적변동	22.70	62,517			445.00	22.50		5	
	괴리도	-1.48	괴리율	-24.79	72,134			442.50	18.40		1	
			델타	54.5233	107,830			440.00	16.70		1	
	내재변동성	16.28			97,910			437.50	14.45		27	
	감마	2.9796	베가	0.2326	123,221			435.00	12.15		116	
	세타	-0.3813	로	0.0432	115,077			432.50	10.00		141	
	내재가치	1.24	시간가치	3.25	143,184			430.00	7.99		847	
	최종거래일	2021/04/08	잔존일	7 5	80,211			427.50	6.21		3,094	
	상장최고	+18.00	-75.06%	2021/02/15	58,606			425.00	4.68			
	상장최저	1.28	+250.78%	2021/03/25	17,985			422.50	3.42		21,253	
j	투자가	다별	프루그램	# UH UH	10,000		C 00	422.50	0.42	2.70	40 540	
) 선물	옵션야간	거래 🗔	□事.	T ? _ 🗆)
		주문	차트	☆ 월물별	옵션 ▼ 202	2105 ▼ 2	년물	423.60 🛦	4.40	1.05%	166,757 U	l상
ā	K0SP1200	423.74	▲ 4.32	1.03%		콜옵션				풋옵션	1	
1	선 물	423.60					SATIL DI	행사가	ALTICL "		거래량	-
1	상한가	38.85	하한가	0.01	71410					-401		
l	_	77.5	이인가 "역사적변동		1,236				27.50	0		
)	이론가			22.70				442.50		0		
4	괴리도	-3.44	괴리율	-24.95	4 004							
1	내재변동성	16.65	델타	53.4975	302					0		
ı	감마	1.2196	베가	0.5712	040			437.50		0		
1	세타	-0.1585	로	0.2450	217			432.50		0		
	내재가치	1.24	시간가치	9.11	1,345			432.50		0		
	최종거래일	2021/05/13	잔존일	42 29	176			427.50			_	
	상장최고	+13.45	-23.05%	2021/03/12	492			425.00				
	상장최저	4.95	+109.09%	2021/03/24	432			422.50	9.33			
1	= = =	TIM		an un un	40	2.0					T ? _ [
		주문	차트 📳 📑	## 원물별	옵션 ▼ 200	2106 🕶		423.60			166,757 🗆 0	
8	K0SP1200	423.74			1	콜옵션			1	풋옵:		^
	선 물	423.60	4.40		거래량	[CH HI		한 사가		_	거래량	
	상한가	44.20		0.01	-		0 3.5					0
	이론가 괴리도	17.68 -6.48	「역사적변동 괴리율	22.70 -36.65	-	▲ 0.3 ▲ 1.3		445.00 4 442.50				0
á	비재변동성	13.88		53.7305		1.5		440.00				0
	감마	0.9442	베가	0.7371	0		0 6.0	437.50	23.85	- 1		0
	쎄타	-0.1237	로	0.4027	-11 0			435.00 432.50			0 0	
	내재가치	1.24		9.96	20	2.0		430.00			0 0	
	최종거래일 상장최고	2021/06/10	잔존일 0%	70 48 2021/04/02	1			1 427.50			0 0	
	상장최저	0.00	0%		23	1.9	_	425.00			0 20	
		자별		램매매	401			422.50 420.00			0 0	
		●금액(억)			0)	0 13.8	417.50	12.15	- 1	0 0	0
							- 10 1	415.00	0.00			-

Volatilities

옵션의 특성상 변동성 커질수록 가치 커짐

- Any option is more valuable as the volatility of a stock increases.
 - The increase in the volatility will lead to the chance that the stock will do very well or very poorly.
 - The benefits of the positive result belongs to the holder of the option, while the costs of the negative results are not burdened on the holder.

Futures Dividends

- A call option is less valuable as the dividends increases.
 - After paying dividends, the stock price will fall.
- A put option is more valuable as the dividends increases.

현금 배당 이후에는 주가하락 (현금배당은 옵션 조정 X)

무위험이자율의 변화

책 이론상으로는

무위험 이자율 높아지면 -> 요구수익률도 높아짐 -> 향후 주가 더 높아짐 -> 콜옵션 가치 올라감 (당장의 주가 고려 x)

또한

주식을 사면 당장 돈을 지불해야하는데 콜옵션을 사면 현금지출을 미룰 수있음 -> 유휴자금 무위험이자율로 운용가능

실질적으로는......

이자율 높아지면 -> 미래현금흐름의 현재가치 떨어짐 -> 주가도 떨어짐

무위험이자율과 옵션의 가치는 명확하게정의하기 애매

옵션가격의 상, 하한선 (가정 r > 0)

상한선 Upper bound

콜옵션은 주식의 가치를 넘길 수 없다 (특정 조건을 넘기면 살 수있는 권리인건데, 그럴거면 그냥 확정적으로 주식사지...) Else -> 콜매도, 주식매수 -> 차익기회

아메리칸 풋: $P \leqslant K$

유러피언 풋: $p \leqslant Ke^{-rT}$

풋 옵션은 특정 조건(주가가 행사가격보다 떨어지면) 만족해야지 행사할 수 있는데, 만약 옵션의 가치가 행사가보다 크면 -> 뭐하러 조건부로 이득내지? 그냥 옵션 K + a로 매도하고 상대방이 옵션행사하면 K만큼 줘도 a가 남는데? -> 차익거래발생

기호 정의

 S_0 :현재 주가

K:행사가

T:만기일

 S_T :만기시 주가

r:연속복리 무위험이자율

C 아메리칸 콜옵션 가치

P:아메리칸 풋옵션 가치

c:유러피언 콜옵션 가치

p:유러피언 풋옵션 가치

Lower Bound for European Calls

• For the price *c* of a European call option on a non-dividend-paying stock, the following inequality holds:

$$c \ge S_0 - Ke^{-rT}$$

- S_0 is the current stock price.
- *K* is the strike price of the option.
- r is the risk-free rate.
- *T* is the time to expiration.

현재 P8 250 , 원H P8 236 哥叫豆 十星叫公 唇电 芒引

(S = 20, K=18, r=10x, T=12)

(ase 1) 클옵션 행세시 공메되션 생리 (Sr>K일메)

(ase 2) 그냥 시중국식 메일버 공메 되는 (ST (k 이 다니)

18.79 - 17= 1.79 Ly if St =17

골음선 7세 X의 하는선 3.91

 $(20-3)e^{0.|x|}-k$

18.79 -18= 0.79

만약 X= 3이라면?

早月包 이 难 1 世年以

17.0°= 19.79

Le+

(So-x)e^r-k ≤0 $(S_0-x)-ke^{-x}\leq 0$ $S_0-ke^{-x}\leq x$

和时是

Proof: European Calls

- - Portfolio A: One European call option and a zerocoupon bond that provides payoff *K* at *T*.
 - Portfolio B: One share of the stock.

 포폴 B: 주식 1주
- At T, portfolio A gives দ্যাম স্ক্র সম

- At T, portfolio B gives S_T .
- Hence, portfolio A always outperforms portfolio B.

$$\max(S_T, K) \geq S_T$$
 만기시 A의 가치 만기시 B의가치

Proof: European Calls

The present value of portfolio A is

$$c + Ke^{-rT}$$

• The present value of portfolio B is

$$S_0$$

Therefore,

$$c + Ke^{-rT} \ge S_0 \equiv c \ge S_0 - Ke^{-rT}$$

콜옵션 행사 못했을 경우

$$c \geqslant \max(S_0 - Ke^{-rT}, 0)$$

Example: European Calls

- Suppose that:
 - There is a European call option on a non-dividend-paying stock.
 - The current stock price is \$51.
 - The strike price is \$50.
 - The time to maturity is 6 months.
 - The risk-free interest rate is 12% per annum with continuous compounding.
- Then, the price of the option is at least

$$c \ge 51 - 50e^{-0.12 \times 0.5} = \$3.91$$

Lower Bounds for European Puts

 For a European put option on a non-dividendpaying stock, the following inequality holds:

$$p \ge Ke^{-rT} - S_0 \qquad \text{CF) } c \geqslant S_0 - Ke^{-rT}$$

CF)
$$c \geqslant S_0 - Ke^{-rT}$$

• p is the price of the European put option.

站起 2.01 , 贵妃 7时 X if x = 1 ① (37+1) 礼则 年 (67222) 是是他正 平山则 So 2 3x ② 炒起到的整至: (37+1) e = 38.96 (ase I) if ST(K -> 贵妃 战从

可对性 Pg 252, 影A 237 ~238

5,=31, K=40, r=51., T=0.5

Let,

k - (So+x)em <0

J, xe-1

(.e-"-So-2 10

K.en-So EX

Proof: European Puts

- Portfolio C: One European put option and a share.
- Portfolio D: A zero-coupon bond paying *K* at *T*.
- \blacksquare At T, the payoff of portfolio C is

포폴D: 만기시 K지급하는 무이표채

$$\max(K - S_T, 0) + S_T = \max(K, S_T)$$

- At T, the payoff of portfolio D is K.
- Hence, portfolio C always outperforms portfolio D.

$$\max(K, S_T) \ge K$$
만기시 포폴A 가치 만기시 포폴B 가치

Proof: European Puts

The present value of portfolio C is

$$p + S_0$$

The present value of portfolio D is

$$Ke^{-rT}$$

Therefore,

$$p + S_0 \ge Ke^{-rT} \longrightarrow p \ge Ke^{-rT} - S_0$$

풋옵션 행사 못 할 경우

$$p \geqslant \max(Ke^{-rT} - S_0, 0)$$

Example: European Puts

- Suppose that:
 - There is a European put option on a non-dividend-paying stock.
 - The stock price is \$38.
 - The strike price is \$40.
 - The time to maturity is 3 months.
 - The risk-free rate of interest is 10% per annum with continuous compounding.
- Then, the price of the option is at least

$$p \ge 40e^{-0.1 \times 0.25} - 38 = \$1.01$$

Put-Call Parity

• For a European call option with strike price *K* on a non-dividend-paying stock and a European put option with the same strike price on the same stock, the following equality always holds:

$$c + Ke^{-rT} = p + S_0$$

Proof: Put-Call Parity

앞서 하한선 증명할 때 썼던 포폴A와 포폴 C를 다시 생각해보자!

- Consider again the two portfolios:
 - Portfolio A: One European call option and a zerocoupon bond that provides payoff *K* at *T*.
 - Portfolio C: One European put option and a share.
- \blacksquare Then, the payoff of portfolio A at T is

$$\max(S_T, K)$$

■ The payoff of portfolio C at *T* is

$$\max(K, S_T)$$

Table 11.2	Portfolios illustrating put-call parity.				
		$S_T > K$	$S_T < K$		
Portfolio A	Call option Zero-coupon bond	$S_T - K$	0 <i>K</i>		
	Total	S_T	K		
Portfolio C	Put Option	0	$K - S_T$		
	Share	S_T	S_T		
	Total	S_T	K		

Proof: Put-Call Parity

 By no arbitrage argument, the present value of two portfolio should be the same. That is,

포폴A의 현재가치
$$c + Ke^{-rT} = p + S_0$$

만기시 포폴A:
$$M_{\text{AX}}(S_{\text{T}},k) = M_{\text{AX}}(S_{\text{T}}-k,o) + k = N_{\text{T}}$$
 만기 콜옵션 무이표채 (학)

만기시 포폴C:
$$M_{\text{ex}}(k,S_{T}) = M_{\text{ex}}(k-S_{T},o) + S_{T} = \sum_{\text{evl} \mp \text{ad}} P + S_{\sigma}$$

아메리칸일 경우

$$S_0 - K \leqslant C - P \leqslant S_0 - Ke^{-rT}$$

유러피언 옵션일 경우는 풋-콜 패리티(등식)

아메리칸일 경우는 부등식으로!

Why?

American Calls

- There is no reason for an American call option of a non-dividend-paying stock is exercised early.
- The benefits of waiting are:
 - No income is sacrificed.
 - The present value of the paying strike price decreases.
 - There is a possibility that stock price decreases.
- Since American calls for non-dividend-paying stocks are exercised only at the maturity, the prices are the same as European calls. That is,

$$C = c$$

- The benefits of waiting are:
- No income is sacrificed.
- 2 The present value of the paying strike price decreases.
- **3** There is a possibility that stock price decreases.
- 1. 무배당주식이므로 기회비용(배당) 없음 오히려 지출 늦게해서 유휴자금 운용가능
- 3. 주식이 정말 필요한 경우 미래에 행사가보다 주가가 더 떨어지면 더 싸게 주식 보유 가능 (차익노리는거 X)

아메리칸 옵션 = 내재가치 + 시간가치 만기전 행사시에는 저 시간가치만큼 가치가 사라지는 것 만기전 행사는 손해 (옵션 행사와 매매를 구별할 것!)

- Contrary to calls, it is sometimes optimal for American put options to be exercised early.
 - As the holder of a put option delays its exercise, the present value of receiving strike price decreases.
- Since American put options can be exercised early, the prices are greater than the prices of European put options. That is,

$$P \ge p$$

조기행사가 더 이득일 수도 있는이유

- 무배당이기때문에 주식보유하고 있을 경우 얻는 이득도 없음
- 2. 조기행사시에 행사가격의 (시간적)가치가 늘어남
- 1. 조기행사시 돈을 더 빨리 받으므로 자금 운용 더 빨리 할 수 있음 Max (Ke-7-50,0) MAX (K-So,0)

보유시 가치

3. 주가는 음수가 될 수 없음. (만약 현재 주가가 1이면 상방이 더 열려있음)

$$S_0 - K \leqslant C - P \leqslant S_0 - Ke^{-rT}$$

$$C - P \le S_0 - ke^{-rT} \left(\frac{2}{9}\right) = 0$$

$$\frac{1}{7} = \frac{1}{7} = \frac{1$$

$S_0 - k \leq C - P$

포트 갑: 아메리칸 콜옵션 + 현금 K만큼 $\left(\left(\begin{array}{c} + K \end{array} \right)$

포트 을: 아메리칸 풋 + 주식 1주

(P+50)

7/2: Max (ST-K,0) + Ke"= Max (ST,K)+ K.e"-K

=: Max (K-ST,0) + ST= Max (K,ST)

: (+K > P+So => So-K < (-P)

조기행사 했을 경우 $\left(\int_{a} \langle k \rangle \right)$

74: K.en

2: Max (K-50,0)+50 = K

74 > 9

(+K > P+So => So-K < (-P

Calls for Dividend Paying Stocks

• For a European call option of a dividend-paying stock, the following inequality holds:

$$c \geq S_0 - D - Ke^{-rT}$$

• *D* is the present value of the dividends.

$$c \ge (S_0 - D) - Ke^{-rT}$$

Proof: Calls with Dividends

하한선 구할때처럼 일단 증명

- Consider the following two portfolios:
 - Portfolio A': One European call option, cash D, and zero-coupon bond paying K at T.
 - Portfolio B: One share.

목표: A'가 B보다 항상 크다는 것을 보여주는 것

• Then, at T, portfolio A' gives

$$\max(S_T - K, 0) + De^{rT} + K$$

= $\max(S_T + De^{rT}, K + De^{rT})$

■ At *T*, portfolio B gives

$$S_T + De^{rT}$$
 배당 받은 주식 1주

Proof: Calls with Dividends

- Hence, portfolio A' always outperforms portfolio B.
- The present value of portfolio A' is

$$c + D + Ke^{-rT}$$

■ The present value of portfolio B is

$$S_0$$

Therefore,

$$c + D + Ke^{-rT} \ge S_0$$

좌변에 콜만 남기고 맥스함수 씌우면

$$c \geqslant \max(S_0 - D - Ke^{-rT}, 0)$$

Puts for Dividend-Paying Stocks

• For a European put option of a dividend-paying stock, the following inequality holds:

$$p \ge D + Ke^{-rT} - S_0$$

$$y$$

$$p \ge Ke^{-rT} - (S_0 - D)$$

Proof: Puts with Dividends

- Consider the following two portfolios: รุง ฐัง มอย เพราะ
 Portfolio C': One European put option and one share.

 - Portfolio B: Cash amount to *D* and zero-coupon bond paying K at T.
- Then, at T, portfolio C' gives

$$\max(K - S_T, 0) + S_T + De^{rT}$$

=
$$\max(K + De^{rT}, S_T + De^{rT})$$

• At T, portfolio D gives

$$De^{rT} + K$$

Proof: Puts with Dividends

- Hence, portfolio C' outperforms portfolio D.
- The present value of portfolio C' is

$$p + S_0$$

■ The present value of portfolio B is

$$D + Ke^{-rT}$$

Therefore,

$$p + S_0 \ge D + Ke^{-rT}$$

식 정리후 맥스 씌우면 -> $p \ge \max(D + Ke^{-rT} - S_0, 0)$

무배당 포폴 A와 C로 풋 콜 패리티 유도했던 방법 (하한선 유도할 때 썼던 포폴 A, C로)

Proof: Put-Call Parity

앞서 하한선 증명할 때 썼던 포폴A와 포폴 C를 다시 생각해보자!

- Consider again the two portfolios:
 - Portfolio A: One European call option and a zerocoupon bond that provides payoff *K* at *T*.
 - Portfolio C: One European put option and a share.
- \blacksquare Then, the payoff of portfolio A at T is

$$\max(S_T, K)$$

■ The payoff of portfolio C at *T* is

$$\max(K, S_T)$$

Table 11.2	Portfolios illustrating put-call parity.				
		$S_T > K$	$S_T < K$		
Portfolio A	Call option	$S_T - K$	0		
	Zero-coupon bond	K	K		
	Total	S_T	K		
Portfolio C	Put Option	0	$K - S_T$		
	Share	S_T	S_T		
	Total	S_T	K		

같은 방식으로 배당 포폴 A'와 C'이용해서 유도해보자!

포폴 A'는 유로피언 콜 하나 Cash D 그리고 만기 시 K지급 무이표채

T:
$$Max(S_T-K,0) + De^{rT} + K = Max(S_T+De^{rT}, K+De^{rT})$$

포폴 C'는 유로피언 풋 하나에 주식 1주

포폴 A'와 C'는 어떤상황이든 같은 값을 가짐 (만기때)

현재가치로 각 포폴을 나타내주면......

$$A' = C + D + Ke^{-T}$$

 $C' = P + S_0$

Put-Call Parity with Dividends

• For European options of a dividend-paying stock, the following equality holds:

$$c + D + Ke^{-rT} = p + S_0$$

- Pf., Problem 10.19.
 - Hint: Compare the values of portfolios A' and C'.