Chapitre 11

Droites dans le plan repéré

I. Équation de droite

1) <u>Caractérisation analytique</u>

m, p et c sont des nombres réels.

Théorème:

Dans un repère, l'ensemble des points M(x;y) tels que y=mx+p ou x=c est une droite.

Démonstration :

• L'ensemble d des points M(x; y) tels que y = mx + p est la courbe représentative de la fonction affine $x \mapsto mx + p$, donc d est la droite d'équation y = mx + p

m est le coefficient directeur p est l'ordonnée à l'origine

• L'ensemble d des points M(x; y) tels que x = c est l'ensemble des points d'abscisse c et d'ordonnée quelconque, donc d est une droite parallèle à l'axe des ordonnées.

Théorème (réciproque) :

Dans un repère, toute droite d a une équation soit de la forme y=mx+p, soit de la forme x=c.

Démonstration (par disjonction de cas) :

d est une droite du plan.

• Si d est parallèle à l'axe des ordonnées, elle coupe l'axe des abscisses au point A, dont l'abscisse est noté c.

Un point M(x; y) du plan appartient à d si, et seulement si, il a la même abscisse que le point A.

Une équation de la droite d est donc x=c.

Si d coupe l'axe des ordonnées, on note B et C les points de d d'abscisses respectives 0 et 1.
 On pose y_B=p et y_C=q et f la fonction affine définie par f(x)=(q-p)x+p.
 La droite représentant la fonction f passe par B et C puisque f(0)=p et f(1)=q.
 On en déduit donc que la droite d est la courbe représentative de la fonction f.
 Ainsi l'équation de d est y=(q-p)x+p qui est bien de la forme y=mx+p.

Remarque:

Une équation de droite, dans le plan repéré, est une égalité liant l'abscisse et l'ordonnée d'un point M caractérisant le fait que M appartienne à d.

Ainsi, la droite d'équation $y = \frac{1}{3}x - 7$ a aussi pour équation 3y - x + 21 = 0 et la droite d'équation $x = \frac{1}{2}$ admet aussi pour équation 2x = 1.

Par contre, une droite non parallèle à l'axe des ordonnées admet une unique équation de la forme y = mx + p (équation réduite)

2) Coefficient directeur

Propriété:

Dans un repère, $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points tels que $x_A \neq x_B$.

Le coefficient directeur de (AB) est $m = \frac{y_B - y_A}{x_B - x_A}$.

Démonstration :

L'équation de la droite (AB) est de la forme y = mx + p puisque (AB) n'est pas parallèle à l'axe des ordonnées ($x_A \neq x_B$).

On a donc : $y_A = mx_A + p$ et $y_B = mx_B + p$. D'où $y_A - mx_A = y_B - mx_B$ et ainsi $m(x_B - x_A) = y_B - y_A$. Par conséquent $m = \frac{y_B - y_A}{x_B - x_A}$.

II. Droites parallèles, droites sécantes

1) <u>Droites parallèles</u>

Théorème:

Dans un repère, la droite d a pour équation y=mx+p et la droite d' a pour équation y=m'x+p'. d et d' sont parallèles si et seulement si m=m'.

Démonstration :

- Montrons dans un premier temps que la droite d d'équation y=mx+p est parallèle à la droite Δ d'équation y=mx.
 - \circ Si p = 0, d et Δ ont la même équation. Ainsi elles sont confondues donc parallèles.
 - Raisonnement par l'absurde :
 Si p≠0, supposons que d et Δ sont sécantes en un point A(x_A; y_A).
 A ∈Δ donc y_A=mx_A et A ∈d donc y_A=mx_A+p. Ainsi p = 0, ce qui est contradictoire.
 Donc d // Δ.

• Soit Δ' la droite d'équation y = m'x. On a donc $d' // \Delta'$. Ainsi, puisque d // d' et $d' // \Delta'$, « d // d'» si et seulement si « $\Delta // \Delta'$ ».

Or Δ et Δ ' ont un point commun : l'origine du repère.

Donc « Δ // Δ ' » si et seulement si « Δ et Δ ' confondues » si et seulement si « Δ et Δ ' ont même équation » si et seulement si « m = m' ».

Par conséquent : « d / / d' » si et seulement si « m = m' ».

Remarque:

Si deux droites sont parallèles à l'axe des ordonnées, elles sont parallèles.

2) <u>Droites sécantes</u>

Théorème (contraposée):

Dans un repère, la droite d a pour équation y=mx+p et la droite d' a pour équation y=m'x+p'. d et d' sont sécantes si et seulement si $m\neq m'$.

Exemple:

Dans un repère, les droites d'équations y=5x-2 et $y=-\frac{1}{4}x+1$ sont sécantes car $5\neq -\frac{1}{4}$.

Remarque:

Lorsque deux droites sont sécantes, pour trouver les coordonnées du point d'intersection, on résout le système formé à partir des équations de ces deux droites.

Exemple:

Les droites d'équations y=5x-2 et $y=-\frac{1}{4}x+1$ sont sécantes en M(x;y).

Les coordonnées de M vérifient : $\begin{cases} y = 5x - 2 \\ y = -\frac{1}{4}x + 1 \end{cases}$. Donc après résolution $\begin{cases} x = \frac{4}{7} \\ y = \frac{6}{7} \end{cases}$ et $M\left(\frac{4}{7}; \frac{6}{7}\right)$ est

le point d'intersection des deux droites.

3) Alignement de trois points

Théorème:

Étant donné trois points A, B et C distincts deux à deux :

A, B et C sont alignés si et seulement si (AB) et (AC) ont le même coefficient directeur.

Remarque:

Si A, B et C ont tous la même abscisse, ils sont alignés car ils sont sur la droite d'équation $x = x_A$.

Exemple:

$$A(1;-1)$$
, $B(3;5)$, $C(4;8)$
 $\frac{y_B - y_A}{x_B - x_A} = \frac{5 - (-1)}{3 - 1} = 3$ et $\frac{y_C - y_A}{x_C - x_A} = \frac{8 - (-1)}{4 - 1} = 3$.

Les droites (AB) et(AC) ont le même coefficient directeur donc A, B et C sont alignés.

Utilisation de la calculatrice :

