

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A compound of formula I:

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or

C₅₋₁₂ hetaryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,

and either

one of R^3 , R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; $-CN$; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

R^1 is H or C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl and R^2 is C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl,

$R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

$C_1 - C_{10}$ alkyl, optionally substituted by halogen up to perhaloalkyl,

$C_1 - C_{10}$ alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

M is $-CH_2-$, $-S-$, $-N(CH_3)-$, $-NHC(O)-$, $-CH_2-S-$, $-S-CH_2-$, $-C(O)-$, or $-O-$; and

L^1 is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, NO_2 or,

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, or NO_2 ,

naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

pyrazine, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂,
pyrimidine, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂,
benzodioxane, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂,
benzopyridine, optionally substituted by C₁₋₁₀-alkyl, one C₁₋₁₀-alkoxy, halogen, -OH, -SCH₃ or
NO₂,
or
benzothiazole, optionally substituted by, C₁₋₁₀ alkyl C₁₋₁₀ alkoxy, halogen, OH, -SCH₃ or NO₂
or a pharmaceutically acceptable salt thereof.

2. (Original) A compound according to claim 1, having a pKa greater than 10.

3. (Previously Presented) A compound according to claim 1, wherein

R³ is H, halogen or C₁₋₁₀- alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

R^{3'} is H, halogen, C₄₋₁₀-alkyl, or CF₃ and

R^{6'} is H, halogen, CH₃, CF₃ or -OCH₃.

4. (Previously Presented) A compound according to claim 1, wherein

R^{3'} is C₄₋₁₀-alkyl, Cl, F or CF₃;

R^{4'} is H, Cl or F ;

R^{5'} is H, Cl, F or C₄₋₁₀-alkyl; and

R⁶ is H or OCH₃.

5. (Previously Presented) A compound according to claim 4, wherein R³ or R⁵ is t-butyl.

6. (Previously Presented) A compound according to claim 1, wherein M is -CH₂- , -N(CH₃)- or -NHC(O)-.

7. (Previously Presented) A compound according to claim 6, wherein L¹ is phenyl or pyridyl.

8. (Previously Presented) A compound according to claim 1, wherein M is -O-.

9. (Previously Presented) A compound according to claim 8, wherein L¹ is phenyl, pyridyl, pyridone or benzothiazole.

10. (Previously Presented) A compound according to claim 1, wherein M is -S-.

11. (Previously Presented) A compound according to claim 10, wherein L¹ is phenyl or pyridyl.

12. (Original) A compound of the formula

13. (Original) A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.

14. (Original) A pharmaceutical composition comprising a compound of claim 12, and a physiologically acceptable carrier.

15. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

or a pharmaceutically acceptable salt thereof wherein

A is

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n, wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₇-C₂₄ alkaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₃-C₁₃ heteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkoheteroaryl, optionally substituted with halogen, C₁-

C_{10} alkyl, or C_1-C_{10} alkoxy; substituted C_1-C_{10} alkyl, substituted C_2-C_{10} alkenyl, substituted C_2-C_{10} alkenoyl, substituted C_1-C_{10} alkoxy, substituted C_3-C_{10} cycloalkyl, substituted C_4-C_{23} alkheteroaryl and $-M-L^1$;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R^7 is independently selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, up to per-halosubstituted C_1-C_{10} alkyl, up to per-halo substituted C_2-C_{10} alkenyl, up to per-halosubstituted C_3-C_{10} cycloalkyl, up to per-halosubstituted C_6-C_{14} aryl and up to per-halosubstituted C_3-C_{13} hetaryl,

wherein Q M is -O-, -S-, -N(R^7)-, $-(CH_2)_m$, $-C(O)$ -, $-CH(OH)$ -, $-(CH_2)_mO$ -, $-NR^7C(O)NR^7R^7$ -, $-NR^7C(O)$ -, $-C(O)NR^7$ -, $-(CH_2)_mS$ -, $-(CH_2)_mN(R^7)$ -, $-O(CH_2)_m$ -, $-CHX^a$, $-CX^{a2-}$, $-S-(CH_2)_m$ and $-N(R^7)(CH_2)_m$,

$m = 1-3$, and X^a is halogen; and

L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein n_1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-C(O)R^7$, $-NR^7C(O)R^7$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)OR^7$,

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl,

$C_1 - C_{10}$ alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}, R^{4'}, R^{5'}$ and $R^{6'}$ together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl.

16. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

IIa

wherein A is

R^3 , R^4 , R^5 and R^6 are each independently H, halogen, NO_2 ,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,
C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,
C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,
C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or
C₅₋₁₂ hetaryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,
and either

one of R³, R⁴, R⁵ and R⁶ is -M-L¹; or

two adjacent of R³, R⁴, R⁵ and R⁶ together are an aryl or hetaryl ring with 5- 12 atoms, optionally substituted by C₁₋₁₀-alkyl, halo-substituted C₁₋₁₀-alkyl up to perhaloalkyl , C₁₋₁₀- alkoxy, halo-substituted C₁₋₁₀-alkoxy up to perhaloalkoxy, C₃₋₁₀-cycloalkyl, C₂₋₁₀-alkenyl, C₁₋₁₀- alkanoyl; C₆₋₁₂-aryl, C₅₋₁₂-hetaryl, C₆₋₁₂-alkaryl, halogen; -NR¹R¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²;

in which

R¹ is H or C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo and

R² is C₁₋₁₀-alkyl, optionally substituted by halogen,

R^{3'}, R^{4'}, R^{5'} and R^{6'} are independently H, halogen,

C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁ -C₁₀ alkoxy optionally substituted by halogen up to perhaloalkoxy or

two adjacent of R^{3'}, R^{4'}, R^{5'} and R^{6'}, together with the base phenyl, form a naphthyl group optionally substituted by halogen up to perhalo, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkanoyl, C₆₋₁₂ aryl, C₅₋₁₂ hetaryl or C₆₋₁₂ aralkyl, halogen up to perhalo ;

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L^1 is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiazane, benzopyridine or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, - SCH_3 , NO_2 or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

17. (Previously Presented) A method according to claim 16, wherein
 R^3 is halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;
 R^4 is H, halogen or NO_2 ;
 R^5 is H, halogen or C_{1-10} - alkyl;
 R^6 is H, C_{1-10} - alkoxy, thiophene, pyrole or methylsubstituted pyrole
 $R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and
 $R^{6'}$ is H, halogen, CH_3 , CF_3 or OCH_3 .

18. (Previously Presented) A method according to claim 16, wherein M is $-CH_2-$, $-S-$, $-N(CH_3)-$ or $-NHC(O)-$ and L^1 is phenyl or pyridyl.

19. (Previously Presented) A method according to claim 16, wherein M is $-O-$ and L^1 is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.

Please add the following claims:

20. (New) A compound of formula I:

DOCKET NO.: BAYER 6P1

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

pyridinyl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,

and one of R³, R⁴, R⁵ and R⁶ is -M-L¹;

R^{3'}, R^{4'}, R^{5'} and R^{6'} are independently H, halogen,

C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁ -C₁₀ alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^{3'}, R^{4'}, R^{5'} and R^{6'}, together with the base phenyl, form a naphthyl group, optionally substituted by C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkanoyl, C₆₋₁₂ aryl, C₅₋₁₂ hetaryl or C₆₋₁₂ aralkyl;

R^{3'} is H, halogen, C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl, C₁ - C₁₀ alkoxy optionally substituted by halogen up to perhaloalkoxy

M is $-\text{CH}_2-$, $-\text{S}-$, $-\text{N}(\text{CH}_3)-$, $-\text{NHC(O)}-$, $-\text{CH}_2\text{S}-$, $-\text{S-CH}_2-$, $-\text{C(O)}-$, or $-\text{O-}$; and

L^1 is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$, NO_2 or,

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$, or NO_2 ,

naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2 ,

pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2 ,

pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2 ,

pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2 ,

benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2 ,

benzopyridine, optionally substituted by C_{1-10} -alkyl, OH, one C_{1-10} -alkoxy, halogen, $-\text{SCH}_3$ or NO_2 ,

or

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, $-\text{SCH}_3$ or NO_2

or a pharmaceutically acceptable salt thereof.

21. (New) A compound of formula I:

I

DOCKET NO.: BAYER 6P1

wherein A is

wherein

R³ is H, halogen or C₁₋₁₀- alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

R^{3'} is H, Cl, F , C₄₋₁₀-alkyl, or CF₃ and

R^{4'} is H, Cl or F ;

R^{5'} is H, Cl, F or C₄₋₁₀-alkyl; and

R^{6'} is H , halogen, CH₃, CF₃ or -OCH₃.

and one of R³, R⁴, R⁵ and R⁶ is -M-L¹; wherein

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L^1 is phenyl, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃, NO₂ or,

pyridyl, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃, or NO₂, naphthyl, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C₁₋₁₀-alkyl, one C₁₋₁₀-alkoxy, halogen, -SCH₃ or NO₂, or benzothiazole, optionally substituted by, C₁₋₁₀ alkyl C₁₋₁₀ alkoxy, halogen, -SCH₃ or NO₂ or a pharmaceutically acceptable salt thereof.

22. (New) A compound according to claim 21, wherein R^{3'} or R^{5'} is t-butyl.
23. (New) A compound according to claim 21, wherein M is -CH₂- , -N(CH₃)- or -NHC(O)-.
24. (New) A compound according to claim 21, wherein L¹ is phenyl or pyridyl.

25. (New) A compound according to claim 21, wherein M is -S-.
26. (New) A compound according to claim 26, wherein L¹ is phenyl or pyridyl.