情報数学 III 第1回小テストレポート課題についてのコメント

 $oxed{3}$ どんなベクトル $ec{v}$ に対しても, $\dfrac{1}{|ec{v}|} ec{v}$ は長さが 1 であることを示しなさい.

ベクトル \vec{u} の長さは $|\vec{u}|=\sqrt{\vec{u}\cdot\vec{u}}$ で与えられる. $\vec{u}=\frac{1}{|\vec{v}|}\vec{v}$ とすると,

$$|\vec{u}|^2 = \left(\frac{1}{|\vec{v}|}\vec{v}\right) \cdot \left(\frac{1}{|\vec{v}|}\vec{v}\right)$$

$$= \frac{1}{|\vec{v}|^2}\vec{v} \cdot \vec{v}$$

$$= \frac{1}{|\vec{v}|^2}|\vec{v}|^2$$

$$= 1$$

ベクトルと実数を混同している解答が多かった。これらはまった別モノである。等号で結ばれることはない。

- **「5**」 ベクトル \vec{a} 、 \vec{b} の外積 $\vec{a} \times \vec{b}$ とは以下の性質を満たす;
 - $\vec{a} \times \vec{b}$ は \vec{a} , \vec{b} の両方と直交するベクトルである.
 - \vec{a} , \vec{b} , $\vec{a} \times \vec{b}$ は「右手系」である(向きを定めている).
 - 長さは \vec{a} , \vec{b} を 2 辺とする平行四辺形の面積に等しい.
 - $\vec{a} \times \vec{b}$ が零ベクトルとなるのは. \vec{a} と \vec{b} が平行なベクトル ($\vec{b} = c\vec{a}$) のときに限る.

$$\begin{bmatrix} \mathbf{6} \end{bmatrix} \begin{pmatrix} s-2 \\ -2s+1 \\ -s+4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} を満たす実数 s が存在するか考えよう.$$

存在すると仮定すると、第 1 成分の方程式 s-2=2 が成立しなければならないので、これより s=4 でなくてはならない。しかし、この s は第 2、第 3 成分の方程式 -2s+1=-1、-s+4=4 を満たさない。これは矛盾である。したがって、このような実数 s は存在しない。