An Immediate Multi-Party Generalization of ID-NIKE from Constrained PRF

Ruxandra F. Olimid and Dragos Alin Rotaru

University of Bucharest

September 16, 2014

Eve

Alice

$$m \leftarrow D(sk, c)$$

Eve

 $c \leftarrow E(Bob@ex.com, m)$

Alice

Constrained PRF

Definition

A PRF is a function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ such that there is a polynomial algorithm to evaluate $F(k,\cdot)$, $k \in \mathcal{K}$

• A constrained PRF (cPRF) is similar to a PRF, with an additional set of constrained keys \mathcal{K}_c such that a key $k_s \in \mathcal{K}_c$ enables the evaluation of F only in a certain subset $S \in \mathcal{X}$.

Left/Right cPRF, Bit-Fixing cPRF

Definition

Let $F: \mathcal{K} \times \mathcal{X}^2 \to \mathcal{Y}$ be a PRF. Then, $\forall w \in \mathcal{X}$, a left/right cPRF supports two constrained keys k_w^L and k_w^R that enable the evaluation of F at all points $(w, x) \in \mathcal{X}^2$, respectively $(x, w) \in \mathcal{X}^2$.

Left/Right cPRF, Bit-Fixing cPRF

Definition

Let $F: \mathcal{K} \times \mathcal{X}^2 \to \mathcal{Y}$ be a PRF. Then, $\forall w \in \mathcal{X}$, a left/right cPRF supports two constrained keys k_w^L and k_w^R that enable the evaluation of F at all points $(w, x) \in \mathcal{X}^2$, respectively $(x, w) \in \mathcal{X}^2$.

Definition

Let $F: \mathcal{K} \times \{0,1\}^N \to \mathcal{Y}$ be a PRF. Then, $\forall v \in \{0,1,?\}^N$, a bit-fixing cPRF supports a constrained key k_v that enables the evaluation of F at all points $x \in \{0,1\}^N$ that satisfy the pattern v.

Left/Right cPRF, Bit-Fixing cPRF

Definition

Let $F: \mathcal{K} \times \mathcal{X}^2 \to \mathcal{Y}$ be a PRF. Then, $\forall w \in \mathcal{X}$, a left/right cPRF supports two constrained keys k_w^L and k_w^R that enable the evaluation of F at all points $(w, x) \in \mathcal{X}^2$, respectively $(x, w) \in \mathcal{X}^2$.

Definition

Let $F: \mathcal{K} \times \{0,1\}^N \to \mathcal{Y}$ be a PRF. Then, $\forall v \in \{0,1,?\}^N$, a bit-fixing cPRF supports a constrained key k_v that enables the evaluation of F at all points $x \in \{0,1\}^N$ that satisfy the pattern v.

Example

When v := 0.21, $k_{0.21}$ enables the evaluation of $F(k_{0.21}, 0.01)$ and $F(k_{0.21}, 0.01)$

Alice

Alice

We have a common secret key: F(msk, (Alice, Bob))

- Setup(λ):
 - let $F: \mathcal{K} \times \mathcal{X}^2 \to \mathcal{Y}$ be $PRF^{L/R}$, $msk \leftarrow^R \mathcal{K}$
 - outputs msk
- Extract(*msk*, *id_i*):
 - computes F.constrain(msk, $\{(id_i, \cdot)\}$) to obtain $k_{id_i}^L$ and F.constrain(msk, $\{(\cdot, id_i)\}$) to obtain $k_{id_i}^R$
 - outputs $sk_{id_i} = (k_{id_i}^L, k_{id_i}^R)$
- KeyGen (sk_{id_i}, id_j) outputs:

$$k_{id_i,id_j} = \begin{cases} F(msk,(id_i,id_j)) & \text{if } id_i < id_j \\ F(msk,(id_j,id_i)) & \text{if } id_i > id_j \end{cases}$$

$$F(k_{Bob}, (Bob, \cdot, \cdot))$$

 $F(k_{Bob}, (\cdot, Bob, \cdot))$
 $F(k_{Bob}, (\cdot, \cdot, Bob))$

Bob

$$F(k_{Alice}, (Alice, \cdot, \cdot))$$

 $F(k_{Alice}, (\cdot, Alice, \cdot))$
 $F(k_{Alice}, (\cdot, \cdot, Alice))$

Alice

$$F(k_{Bob}, (Bob, \cdot, \cdot))$$

 $F(k_{Bob}, (\cdot, Bob, \cdot))$
 $F(k_{Bob}, (\cdot, \cdot, Bob))$

Bob

 $F(k_{Alice}, (Alice, \cdot, \cdot))$ $F(k_{Alice}, (\cdot, Alice, \cdot))$ $F(k_{Alice}, (\cdot, \cdot, Alice))$

Alice

$$F(k_{Bob}, (Bob, \cdot, \cdot))$$

 $F(k_{Bob}, (\cdot, Bob, \cdot))$
 $F(k_{Bob}, (\cdot, \cdot, Bob))$

Bob

 $F(k_{John}, (John, \cdot, \cdot))$

 $F(k_{Alice}, (Alice, \cdot, \cdot))$ $F(k_{lohn}, (\cdot, John, \cdot))$ $F(k_{Alice}, (\cdot, Alice, \cdot))$ $F(k_{John}, (\cdot, \cdot, John))$ $F(k_{Alice}, (\cdot, \cdot, Alice))$

Alice

$$F(k_{Bob}, (Bob, \cdot, \cdot))$$

 $F(k_{Bob}, (\cdot, Bob, \cdot))$
 $F(k_{Bob}, (\cdot, \cdot, Bob))$

Bob

 $F(k_{lohn}, (John, \cdot, \cdot))$ $F(k_{John}, (\cdot, \cdot, John))$

Alice

Secret Shared Key: F(msk, (Alice, Bob, John))

- Setup(λ):
 - let $F: \mathcal{K} \times \mathcal{X}^N \to \mathcal{Y}$ be PRF^{bf} , $msk \leftarrow^R \mathcal{K}$
 - outputs *msk*
- Extract(msk, idi):
 - computes F.constrain(msk, $\{(id_i, \cdot, \dots, \cdot)\}$) to obtain $k_{id_i}^1$, F.constrain(msk, $\{(\cdot, id_i, \cdot, \dots, \cdot)\}$) to obtain $k_{id_i}^2$, \cdots , F.constrain(msk, $\{(\cdot, \dots, \cdot, id_i)\}$) to obtain $k_{id_i}^N$
 - outputs $sk_{id_i} = (k_{id_i}^1, \dots, k_{id_i}^N)$
- KeyGen $(sk_{id_i}, \{id_1, \ldots, id_N\})$ outputs:

$$k_{id_1,...,id_N} = F(msk, (id_{\pi(1)}, id_{\pi(2)}, ..., id_{\pi(N)}))$$

where $id_{\pi(1)} < id_{\pi(2)} < \cdots < id_{\pi(N)}$ (in lexicographic order)

Thank you!