Классификация алгоритмов RecSys

Popular recommender

Рекомендует всем пользователям самые популярные товары

Popular recommender

Рекомендует всем пользователям самые популярные товары

Плюсы:	Минусы:
√ Простой	✓ Не персонализированный
✓ Может давать неплохое качество	✓ Не рекомендует большую часть товаров

Random recommender

Рекомендует всем пользователям случайные товары

Random recommender

Рекомендует всем пользователям случайные товары

Плюсы:	Минусы:
√ Простой	✓ Не учитывает потребности пользователя
✓ Рекомендации покрывают почти все объекты	√ Качество, как правило, довольно низкое

Random Popular weighted recommender

Рекомендует всем пользователям случайные товары с вероятностью, пропорциональной популярности

Random Popular weighted recommender

Рекомендует всем пользователям случайные товары с вероятностью, пропорциональной популярности

Плюсы:	Минусы:
√ Простой	✓ Не учитывает потребности пользователя
✓ Рекомендации покрывают почти все объекты	✓ Качество, как правило, довольно низкое,
✓ Лучше учитывает популярность объектов	но лучше чем у Random

User Popular recommender

Рекомендует товары, которые каждый пользователь чаще всего покупал

User Popular recommender

Рекомендует товары, которые каждый пользователь чаще всего покупал

Плюсы:	Минусы:
√ Простой	✓ Не рекомендует пользователю новые товары
✓ Показывает хорошее качество для регулярных	
покупок	

Взаимодействия User/Item

В ячейках матрицы может быть

- Рейтинг
- Факт покупки (0/1)
- Количество покупок
- Взвешенная метрика

- + 0.3 * кол-во лайков
- + 0.5 * кол-во комментариев
- + 0.9 * кол-во покупок

User/Item based алгоритмы

Часто могут показывать достаточно высокое качество

Item based алгоритм

Необходимо построить матрицу похожести объектов

Есть несколько способов ее формировать

- 1. Скалярное произведение
- 2. Косинусная близость
- 3. Взвешивание с весом tf-idf (user=term, item=doc)

$$ext{simil}(x,y) = \cos(ec{x},ec{y}) = rac{ec{x}\cdotec{y}}{||ec{x}|| imes||ec{y}||} = rac{\sum\limits_{i\in I_{xy}}r_{x,i}r_{y,i}}{\sqrt{\sum\limits_{i\in I_x}r_{x,i}^2}\sqrt{\sum\limits_{i\in I_y}r_{y,i}^2}}$$

$$TF(t,d) = rac{number\ of\ times\ t\ appears\ in\ d}{total\ number\ of\ terms\ in\ d}$$

$$IDF(t) = lograc{N}{1+df}$$

$$TF - IDF(t,d) = TF(t,d)*IDF(t)$$

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot (1-b+b \cdot rac{|D|}{ ext{avgdl}})},$$