Big-O Cheat Sheet

- Data Structures
- Sorting
- Graphs
- Heaps
- Chart
- Comments

Know Thy Complexities!

Hi there! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them. Over the last few years, I've interviewed at several Silicon Valley startups, and also some bigger companies, like Yahoo, eBay, LinkedIn, and Google, and each time that I prepared for an interview, I thought to myself "Why hasn't someone created a nice Big-O cheat sheet?". So, to save all of you fine folks a ton of time, I went ahead and created one. Enjoy! - Eric

Legend

Data Structure Operations

Data Structure	Time Complexity							Space Complexity	
		Average				Worst			
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	0(1)	<mark>0(n)</mark>	0(n)	0(n)	0(1)	0(n)	0(n)	0(n)	<mark>0(n)</mark>
<u>Stack</u>	0(n)	<mark>0(n)</mark>	0(1)	0(1)	<mark>0(n)</mark>	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	-	0(1)	0(1)	0(1)	-	0(n)	<mark>0(n)</mark>	0(n)	<mark>0(n)</mark>
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
<u>Cartesian Tree</u>	-	0(log(n))	0(log(n))	0(log(n))	-	0(n)	0(n)	0(n)	0(n)

http://bigocheatsheet.com/

B-Tree	$(\log(n)) \ 0(\log(n)) \ 0(\log(n)) \ 0(\log(n)) \ 0(\log(n)) \ 0(\log(n)) \ 0(\log(n)) \ 0(\log(n))$	n)) <mark>0(n)</mark>
Red-Black Tree	$(\log(n))$ $0(\log(n))$ $0(\log(n))$ $0(\log(n))$ $0(\log(n))$ $0(\log(n))$ $0(\log(n))$ $0(\log(n))$	n)) <mark>0(n)</mark>
Splay Tree	$O(\log(n)) O(\log(n)) O(\log(n)) - O(\log(n)) O(\log(n)) O(\log(n)) $	n)) <mark>0(n)</mark>
AVL Tree	$(\log(n)) O(\log(n)) O(\log(n$	(n)

Array Sorting Algorithms

Algorithm		Time Complex	Space Complexity		
	Best	Average	Worst	Worst	
Quicksort	O(n log(n))	0(n log(n))	0(n^2)	$O(\log(n))$	
<u>Mergesort</u>	O(n log(n))	0(n log(n))	0(n log(n))	<mark>0(n)</mark>	
<u>Timsort</u>	0(n)	0(n log(n))	0(n log(n))	<mark>0(n)</mark>	
<u>Heapsort</u>	O(n log(n))	0(n log(n))	0(n log(n))	0(1)	
Bubble Sort	0(n)	0(n^2)	0(n^2)	0(1)	
<u>Insertion Sort</u>	0(n)	0(n^2)	0(n^2)	0(1)	
Selection Sort	0(n^2)	0(n^2)	0(n^2)	0(1)	
Shell Sort	0(n)	O((nlog(n))^2)	O((nlog(n))^2)	0(1)	
Bucket Sort	0(n+k)	0(n+k)	0(n^2)	<mark>0(n)</mark>	
Radix Sort	0(nk)	0(nk)	0(nk)	0(n+k)	

Graph Operations

Node / Edge Management	t Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	e Query
Adjacency list	O(V + E)	0(1)	0(1)	O(V + E)	O(E)	0(V)
<u>Incidence list</u>	O(V + E)	0(1)	0(1)	O(E)	O(E)	O(E)
Adjacency matrix	0(V ^2)	0(V ^2)	0(1)	0(V ^2)	0(1)	0(1)
<u>Incidence matrix</u>	O(V · E)	O(V · E)	O(V · E)	$O(V \cdot E)$	$O(V \cdot E)$	O(E)

Heap Operations

Type	Time Complexity							
	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge	
<u>Linked List (sorted)</u>	-	0(1)	0(1)	O(n)	0(n)	0(1)	O(m+n)	
Linked List (unsorted)	_	0(n)	0(n)	0(1)	0(1)	0(1)	0(1)	
Binary Heap	0(n)	0(1)	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(m+n)	
Binomial Heap	-	0(1)	0(log(n))	0(log(n))	0(1)	0(log(n))	$O(\log(n))$	
Fibonacci Heap	-	0(1)	0(log(n))	0(1)	0(1)	0(log(n))	0(1)	

Big-O Complexity Chart

http://bigocheatsheet.com/

Recommended Reading

- Cracking the Coding Interview: 150 Programming Questions and Solutions
- Introduction to Algorithms, 3rd Edition
- Data Structures and Algorithms in Java (2nd Edition)
- High Performance JavaScript (Build Faster Web Application Interfaces)

Contributors

- 1. Eric Rowell, founder of Coder Lifestyle
- 2. Quentin Pleple
- 3. Michael Abed
- 4. Nick Dizazzo
- 5. Adam Forsyth
- 6. David Dorfman
- 7. Jay Engineer
- 8. Jennifer Hamon
- 9. Josh Davis
- 10. Nodir Turakulov
- 11. Bart Massey
- 12. Vinnie Magro
- 13. Miguel Amigot
- 14. Drew Bailey
- 15. Aneel Nazareth
- 16. Rahul Chowdhury
- 17. Robert Burke
- 18. steven41292
- 19. Brandon Amos

http://bigocheatsheet.com/