

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 4: Proteção em Instalações Elétricas – Aula 09

Instalações Elétricas I Engenharia Elétrica

4.3.2- Dimensionamento DTM: Proteção contra Sobrecarga

• Para que haja uma perfeita coordenação entre o dispositivo de proteção e os condutores, as seguintes condições devem ser satisfeitas:

(a)
$$I_p \le I_n \le I_z$$
 (b) $I_2 \le 1,45 \times I_z$

- I_p- Corrente de projeto;
- I_n- Corrente nominal do dispositivo de proteção;
- I_z- Capacidade de condução de corrente dos condutores;
- I₂- Corrente que assegura efetivamente a atuação do dispositivo de proteção.
- A condição (b) é praticável quando for possível assumir que a temperatura limite de sobrecarga dos condutores, não seja mantida por um tempo superior a mais de 100h durante 12 meses consecutivos ou por 500h ao longo da vida do condutor. Caso contrário:

$$I_2 \leq I_z$$

Proteção contra Sobrecarga

Proteção contra Curto-Circuito

- Primeira condição:
 - O disjuntor deve possuir uma capacidade de ruptura superior a corrente de curto-circuito no ponto de sua instalação (I_k) .
 - $-I_{CS}>I_k$
- Segunda condição:

$$\int_{0}^{t} i^{2} dt \leq k^{2} S^{2}$$

 $\int\limits_{0}^{t}i^{2}dt$ é a integral Joule (Energia por unidade de resistência J/ Ω) que o disjuntor deixa passar.

 k^2S^2 é a integral de Joule (energia) capaz de elevar a temperatura do condutor desde a temperatura de serviço contínuo até a temperatura de curto-circuito.

Proteção contra Curto-Circuito

- Segunda condição:
 - Para faltas de qualquer duração em que a assimetria não seja significativa e para faltas assimétricas (
 não envolvem as três fases ou três fases e neutro) com duração de 0,1
 t <5s, pode-se escrever:

$$I^2 t \le k^2 S^2 \longrightarrow t \le \frac{K^2 S^2}{I^2}$$

- t: duração do curto-circuito em segundos;
- I: Corrente de curto-circuito, em A;
- − S: Seção nominal do condutor em mm²;
- K: Fator ligado ao tipo de metal do condutor e da isolação, fornecido pela NBR 5410/2004 (Valor tabelado).
- A proteção deve atuar em até um tempo igual a:

$$T_{dd} \leq t$$

T_{dd}: é o tempo (s) que o dispositivo deve atuar para uma corrente de curto-circuito I.

Curva de Atuação

 Caso o tempo de atuação do disjuntor (T_{dd}) seja inferior ou igual ao tempo (t) estabelecido pela Integral de Joule, o condutor suportará a falta.

Proteção contra curto-circuito

• A NBR 5410/2004 define o parâmetro K:

Tabela 30 — Valores de k para condutores com isolação de PVC, EPR ou XLPE

Material do condutor	Isolação do condutor							
		P\	EPR/XLPE					
	≤300 mm ²				> 300 mm ²			
	Temperatura							
	Inicial	Final	Inicial	Final	Inicial	Final		
	70°C	160°C	70°C	140°C	90°C	250°C		
Cobre	115		103		143			
Alumínio	76		68		94			
Emendas soldadas em condutores de cobre	115		_		_			

NOTAS

- 1 Outros valores de k, para os casos mencionados abaixo, ainda não estão normalizados:
 - condutores de pequena seção (principalmente para seções inferiores a 10 mm²);
 - curtos-circuitos de duração superior a 5 s;
 - outros tipos de emendas nos condutores;
 - condutores nus.
- 2 Os valores de k indicados na tabela são baseados na IEC 60724.

Tab. 8 – Máxima solicitação térmica admissível nos condutores (k ² S ²), em A ² s – Condutores de cobre com isolação de PVC/70°C					
Seção dos condutores mm²	k^2S^2 (A ² s) x 10 ³				
1,5	29,7				
2,5	82,6				
4	211,6				
6	476,1				
10	1 322,5				
16	3 385,6				
25	8 265,6				
35	16 200,6				
50	33 062,5				

4.3.1.1- Determinação da Corrente de Curto-Circuito

- O que é um curto-circuito (falta) ?
- Exemplo: Falta Fase-Neutro

- Existem diversos tipo de faltas:
 - Faltas monofásicas (Fase-Neutro, Fase-Terra)
 - Falta bifásica (Fase-Fase, Fase-Fase-Terra)
 - Falta trifásica (Fase-Fase-Fase)

Curto-Circuito em Instalações Residenciais

Curto-Circuito em Instalações Residenciais

Diagrama Unifilar

Circuito Elétrico (Por fase)

Z_{RL} — Impedância do Ramal de Ligação

Qual a corrente de curto-circuito (fase-neutro) na saída do medidor?

Curto-Circuito em Instalações Residenciais

• A corrente de falta (I_k) no ponto de entrega é fornecido pela concessionária de energia elétrica.

- Disjuntor geral do medidor: $I_{cs} \ge I_k$
- Disjuntor dos circuitos terminais (QDC): I_{cs} ≥0,5 I_{k}
- (Fonte: Guia NBR 5410)

Exemplos de Dimensionamento

Exemplo 4.1) Dimensione o disjuntor para proteção do circuito terminal de um chuveiro, com a seguintes características:

- S= 5400 VA, V=127V
- Dois condutores de cobre carregados, instalados em eletroduto embutido em alvenaria
- Temperatura ambiente: 35°C
- Corrente de curto-circuito presumida no ponto de instalação do disjuntor: I_k=1 kA
- Quadro ventilado
- Considere que a corrente de sobrecarga do condutor ao longo de sua vida útil seja controlada e não superará 100 horas durante 12 meses consecutivos ou 500 horas ao longo da vida útil do condutor

- Cálculo da proteção (DTM)
 - Proteção contra sobrecarga:

(a)
$$I_P \le I_n \le I_z$$
 (b) $I_2 \le 1.45 \times I_z$
NBR IEC 60898 -> $I_2 = 1.45 \times I_n$ (c)

- Substituindo (c) em (b) temos:

$$I_2 = 1.45 \times I_n \le 1.45 \times I_z \rightarrow I_n \le I_z$$
 (d)

- A inequação (d) já está presente em (a), logo basta utilizar a inequação (a) para dimensionar o DTM:

$$(a) I_P \le I_n \le I_z$$

- Cálculo de I_p:

$$I_P = \frac{S}{V} = \frac{5400}{127} = 42,52 \,\text{A}$$

- Cálculo de I_z:

- Assim: $42,52 \le I_n \le 53,58$

 \rightarrow DTM com $I_n = 50A$ com curva tipo B (Folha técnica GE).

- Proteção contra curto-circuito:

$$I_{cs} \ge I_k \longrightarrow I_{cs} \ge 1 \text{ kA} \quad I_{cs} = 3 \text{ kA} \text{ (} \underline{\text{Folha técnica GE}}$$

- Máximo tempo de atuação do DTM:

$$t \le \frac{K^2 S^2}{I^2} \longrightarrow t \le \frac{115^2 10^2}{1000^2} \longrightarrow t \le 1,32 s$$
Tabela 30

- O tempo máximo para que a falta de 1kA seja eliminada é de 1,32s.
- Para uma falta de 1 kA, o tempo de atuação do DTM é:

$$\frac{I_k}{I_n} = \frac{1000}{50} = 20$$
 \longrightarrow $T_{dd} = 0.01s$

Como T_{dd} << t, o circuito está protegido.

- Especificação final do DTM:
 - Minidisjuntor monopolar
 - $I_n = 50 A$
 - 127 V
 - $I_{cs} = 3kA$
 - 60 Hz
 - Curva B

Tabelas

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

6				Méto	dos de Re	ferência l	ndicados	na Tabela	10.8			
Seções Nominais			A2		B1 B2		2			D		
mm ²	Número de Condutores Carregados											
	2	3	2_	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)
Cobre												
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67

Tabela 10.14 - Fatores de correção para temperaturas ambientes diferentes de 30°C para cabos não-enterrados e de 20°C (temperatura do solo) para linhas subterrâneas - FCT - (Tabela 40 da NBR 5410:2004).

T						
Temperatura °C	PVC	EPR ou XLPE	PVC EPR ou XI			
		Ambiente	do Solo			
10	1,22	1,15	1,10	1,07		
15	1,17	1,12	1,05	1,04		
20	1,12	1,08	-	_		
25	1,06	1,04	0,95	0,96		
30	-	-	0,89	0,93		
35	0,94	0,96	0,84	0,89		
40	0,87	0,91	0,77	0,85		

Tabelas

• Fabricante de disjuntores GE

	IEC 898	
	Intensidade	Tempo de Atuação
I _{nt}	1,13 ln	t≥1h (In≤63A)
		t≥2h (In>63A)
	1,45 ln	t<1h (In≤63A)
12		t<2h (ln>63A)

Série				
Curva	Curva B (3 a 5 In			
Corrente Nominal (In) A	1P	2P		
0.5				
1				
2				
4				
6	GE31B06	GE32B06		
10	GE31B10	GE32B10		
16	GE31B16	GE32B16		
20	GE31B20	GE32B20		
25	GE31B25	GE32B25		
32	GE31B32	GE32B32		
40	GE31B40	GE32B40		
50	GE31B50	GE32B50		
63	GE31B63	GE32B63		
70				
80				
100 125				
Capacidade de Ruptura (kA)				
IEC 898				
Icn - 127Vca	3	_		
Icn - 220Vca	3	3		
Icn - 230Vca	-	-		
Icn - 380Vca	-	3		
Icn - 400Vca	-	-		

Tabelas

Tabela 30 — Valores de k para condutores com isolação de PVC, EPR ou XLPE

Material do condutor	Isolação do condutor							
		P\	EPR/XLPE					
	≤300 mm ²				> 300 mm ²			
	Temperatura							
	Inicial	Final	Inicial	Final	Inicial	Final		
	70°C	160°C	70°C	140°C	90°C	250°C		
Cobre	115		103		143			
Alumínio	76		68		94			
Emendas soldadas em condutores de cobre	115		_		_			

NOTAS

- 1 Outros valores de k, para os casos mencionados abaixo, ainda não estão normalizados:
 - condutores de pequena seção (principalmente para seções inferiores a 10 mm²);
 - curtos-circuitos de duração superior a 5 s;
 - outros tipos de emendas nos condutores;
 - condutores nus.
- 2 Os valores de k indicados na tabela são baseados na IEC 60724.