Towards Autonomous RL

Learning to Act with Less Human Supervision

Ben Eysenbach PhD student in MLD beysenba@cs.cmu.edu Abhishek Gupta
PhD student at UC Berkeley
abhigupta@eecs.berkeley.edu

Jan 27, 2021

Challenge: Current RL Requires Human Supervision

Need human supervision for:

- Designing reward functions
- Specifying useful skills
- Tuning parameters of learning algorithm
- Resetting
- Avoiding dangerous states
- Designing a curriculum

Properties of good skills:

- Exploration at most one skill "dithers"; forces skills to explore large regions of the state space.
- Predictability want to predict what a skill will do (important for hierarchical RL).
- Interpretability easy to infer which skill is being executed at any given point in time.

Idea: Learn a set of skills that is as diverse as possible.

How many bits of information can communicate to ??

$$\geq E \left[\log p("B" \mid \mathbf{x}) \right]$$

Diversity Is All You Need [DIAYN]

DIAYN: How does the algorithm work?

 $\begin{array}{c|c} & \text{SKILL} \\ a_t \sim \pi_{\theta}(a_t \mid s_t, z) \\ \hline & a_t & s_{t+1} \end{array}$

 $\frac{s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)}{s_{t+1} \mid s_{t+1} \mid s_t, a_t)}$

2. Collect one episode with this skill.

3. Discriminator estimates skill from state. Update discriminator to maximize discriminability.

DISCRIMINATOR $q_{\phi}(z \mid s_{t+1})$

 $r_z(s) = \log q_\phi(z \mid s_{t+1})$

4. Update skill to maximize discriminability.

Visualizing DIAYN

- Exploration
- Predictability
- Interpretability

DIAYN maximizes *future* diversity.

Skills for different forward gaits

Skills for different backward gaits

Skills for different front flips

Why is DIAYN useful?

Returns a policy $\pi_{\theta}(a \mid s, z)$ with a low dimensional knob that spans a large set of behaviors.

Applications of DIAYN:

- Hierarchical RL
- Imitation Learning
- Learn an environment-specific policy initialization
- Unsupervised Meta-Learning

DIAYN for Hierarchical RL

DIAYN for 0-Shot Imitation Learning

Expert

DIAYN

See [Pathak '18]

Is Diversity Really All You Need?

DIAYN

- learns a latent-conditioned policy that can span many skills
- Does not explicitly optimize for future fine-tuning

A Principled Framework for Unsupervised Meta-RL

Self-propose a task $\operatorname{\underline{\bf distribution}} p(\tau)$ to learn on

Formalizing Unsupervised Task Proposals

Regret
$$(f,p) = E_{\mathrm{task} \sim p(T)} \sum_{i} R(\pi_i, \mathrm{task}) - R(\pi_i^*, \mathrm{task})$$

$$\pi_i = f(\pi_{i-1}, \mathrm{task}) \qquad \text{Update of a learning procedure.}$$

$$\pi_i^* = f^*(\pi_{i-1}^*, \mathrm{task}) \qquad \text{Update of the optimal learning procedure.}$$

Regret

$$\min_{f} E_{\mathcal{T} \sim p(\mathcal{T})}[\operatorname{Regret}(f, \mathcal{T})]$$

Known test task distribution

Worst Case Regret

$$\min_{f} \max_{p} E_{\mathcal{T} \sim p(\mathcal{T})}[\operatorname{Regret}(f, \mathcal{T})]$$

Adversarial worst-case test task distribution

Optimizing Worst Case Regret

Worst Case Regret

Uniform Distribution $\mathcal{U}(\tau)$

Preparing for the Future: Meta-RL

Idea: Do meta-learning on DIAYN skills to learn a good, environment-specific learning algorithm.

Meta-Learning with Unsupervised Task Distributions

What meta-learning algorithm is suitable?

Gradient Based Meta-Learners

$\theta \xrightarrow{\text{meta-learning}} \theta$ $\nabla \mathcal{L}_3$ $\nabla \mathcal{L}_2 \cdot \theta_3^*$ $\theta_1^* \cdot \theta_2^*$

Recurrent Meta-Learners

What about No Free Lunch?

Why would this help at all?

Exploring in the same environment provides the free lunch!

Learning Quickly with Unsupervised Meta-Learning

Quicker fine-tuning with provided rewards!

Learning Unsupervised Curricula

Meta-train acquire skills and explore $r_{\mathbf{z}}(\mathbf{s}) = \lambda \log q_{\phi}(\mathbf{s}|\mathbf{z}) - \log q_{\phi}(\mathbf{s})$

Direction encoded as color

Step 1

Learning Unsupervised Curricula

Perspectives on Unsupervised RL

- 1. Unsupervised RL can obtain semantically meaningful skills without rewards
- 2. Skills can help solve harder tasks, learn from demonstrations and improve fine-tuning
- 3. Combining with meta-learning can help prepare for the future!

Open Problems and Conclusion

Learning without Rewards:

- 1. Chicken-and-Egg Problem: Skills learn to be diverse by using the discriminator's decision function, but the discriminator cannot learn to discriminate skills if they are not diverse.
- 2. Application to the Real World: How can we learn skills unsupervised and reset free?
- 3. Semi-supervised RL: How can we leverage small amounts of supervision with large amounts of unsupervised interaction?

Thanks!

Diversity Is All You Need: https://arxiv.org/abs/1802.06070
Unsupervised Meta-Learning for Reinforcement Learning https://arxiv.org/abs/1806.04640
Unsupervised Curricula for Visual Reinforcement Learning https://arxiv.org/abs/1912.04226