Homework 5 for "Convex Optimization" Part. 3

1500010611 汪袆非

We consider the *l*1-regularized problem

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1} \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\mu > 0$ are given. We denote $f(x) = \frac{1}{2} ||Ax - b||_2^2 + \mu ||x||_1$, $g(x) = \frac{1}{2} ||Ax - b||_2^2$, $h(x) = ||x||_1$.

1 Problem 3(g)

The original problem 1 is equivalent to

$$\begin{cases} \min \frac{1}{2} ||y||_2^2 + \mu ||x||_1 \\ \text{s.t.} \quad Ax - b = y \end{cases}$$
 (2)

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

We apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy and one parameter M_3 for Newton method. We set $\mu_0 = \max\{\mu, \alpha || A^T b||_{\infty}\}$ and set i = 0. For each μ_i , problem 2 turns to be

$$\begin{cases} \min \frac{1}{2} ||y||_2^2 + \mu_i ||x||_1 \\ \text{s.t.} \quad Ax - b = y \end{cases}$$
 (3)

The corresponding Lagrangian is

$$L(x, y, z) = \frac{1}{2} ||y||_2^2 + \mu_i ||x||_1 + z^T (Ax - b - y)$$

= $-b^T z + g(y) - z^T y + \mu_i h(x) - (A^T z)^T x$ (4)

where $z \in \mathbb{R}^m$. Then, we have

$$\min_{x,y} L(x, y, z) = -b^{T}z + \min_{y} (g(y) - z^{T}y) + \min_{x} (\mu_{i}h(x) - (A^{T}z)^{T}x)$$

$$= -b^{T}z - \max_{y} (z^{T}y - g(y)) + \min_{x} ((A^{T}z)^{T}x - \mu_{i}h(x))$$

$$= -b^{T}z - g^{*}(z) - \mu_{i}h^{*}(A^{T}z/\mu_{i})$$

And we know that $g^*(z) = \frac{1}{2} \|z\|_2^2$, $h^*(z) = \begin{cases} 0 & \|z\|_\infty \le 1 \\ +\infty & \|z\|_\infty > 1 \end{cases}$. Therefore, the dual problem for problem 2 is

$$\begin{cases} \min \frac{1}{2} \|z\|_2^2 + b^T z \\ \text{s.t.} \quad \|A^T z\|_{\infty} \le \mu_i \end{cases}$$
 (5)

It is equivalent to

$$\begin{cases} \min \frac{1}{2} \|z\|_2^2 + b^T z \\ \text{s.t.} \quad A^T z = w, \quad \|w\|_{\infty} \le \mu_i \end{cases}$$
 (6)

where $w \in \mathbb{R}^n$.

The augmented Lagrangian for problem 6 is

$$L_t(z, w, \lambda) = \frac{1}{2} \|z\|_2^2 + b^T z + \lambda^T (A^T z - w) + \frac{t}{2} \|A^T z - w\|_2^2$$
 (7)

where $\lambda \in \mathbb{R}^n$ and t is a constant.

At first, we set $z^0 = 0$, w^0 , $\lambda^0 = 0$. For given (z^k, w^k, λ^k) , we consider the relation ship between w^{k+1} and z^{k+1} if w^{k+1} and z^{k+1} minimize $L_t(w, z, \lambda^k)$.

$$w^{k+1} = \arg \min_{\|w\|_{\infty} \le \mu_{i}} L_{t}(z^{k+1}, w, \lambda^{k})$$

$$= \arg \min_{\|w\|_{\infty} \le \mu_{i}} \frac{1}{2} \|z^{k+1}\|_{2}^{2} + b^{T} z^{k+1} + (\lambda^{k})^{T} (A^{T} z^{k+1} - w) + \frac{t}{2} \|A^{T} z^{k+1} - w\|_{2}^{2}$$

For each w_I , it is equivalent to minimize

$$-\lambda_l^k w_l + \frac{t}{2} (w_l - (A^T z^{k+1})_l)^2 = \frac{t}{2} \left((w_l)^2 - 2(\frac{\lambda_l^k}{t} + (A^T z^{k+1})_l) w_l + (A^T z^{k+1})_l^2 \right)$$

If $|\lambda_l^k/t + (A^T z^{k+1})_l| \le \mu_i$, then the minimum of the above function is attained when $w_l = \frac{\lambda_l^k}{t} + (A^T z^{k+1})_l$. If $\lambda_l^k/t + (A^T z^{k+1})_l > \mu_i$, then the minimum of the above function is attained

when $w_l = \mu_i$. And if $\lambda_l^k/t + (A^T z^{k+1})_l < -\mu_i$, then the minimum of the above function is attained when $w_l = -\mu_i$. Therefore, if we define the soft-thresholding function

$$S_{\mu_i}(w)_l = \begin{cases} 0 & |w_l| \le \mu_i \\ w_l - \mu_i & w_l > \mu_i \\ w_l + \mu_i & w_l < -\mu_i \end{cases}$$
 (8)

Then, we get the relation ship between w^{k+1} and z^{k+1}

$$w^{k+1} = \lambda^k/t + A^T z^{k+1} - S_{\mu_i}(\lambda^k/t + A^T z^{k+1})$$

We now consider the following problem:

$$\arg\min_{z} \frac{1}{2} ||z||_{2}^{2} + b^{T}z + (\lambda^{k})^{T} (\lambda_{k}/t - S_{\mu_{i}}(\lambda^{k}/t + A^{T}z)) + \frac{t}{2} ||\lambda_{k}/t - S_{\mu_{i}}(\lambda^{k}/t + A^{T}z)||_{2}^{2}$$

It is equivalent to

$$\arg\min_{z} \frac{1}{2} \|z\|_{2}^{2} + b^{T}z + \frac{t}{2} \|S_{\mu_{i}}(\lambda^{k}/t + A^{T}z)\|_{2}^{2}$$

We consider to use Newton's method to compute z^{k+1} . We start from $z^{(0)} = z^k$. We denote the derivative of the above equation by d_z and the Hessian of the above function at z by H_z . Suppose $v = \lambda^k/t + A^T z$ and A_l is the l-th column of A. Then, we have

$$d_z = z + b + t \sum_{|v_l| > \mu_i} A_l S_{\mu_i}(v)_l$$

$$H_z = I + t \sum_{|v_l| > \mu_i} A_l A_l^T$$

Nevertheless, calculation of the above formula is computationally costly. In practice, we use the following estimations of d_z and H_z :

$$d_z \approx \hat{d}_z = z + b + tAS_{\mu_i}(v)$$

$$H_z \approx \hat{H}_z = I + tAA^T$$

We iteratively compute

$$z^{(j+1)} = z^{(j)} - \hat{H}_{z^{(j)}}^{-1} \hat{d}_{z^{(j)}}$$

 M_3 times. Suppose the outcome is denoted by $z^{k+1} = N_{\mu}(z^k, \lambda^k)$. Then, we get the update rule for $(z^{k+1}, w^{k+1}, \lambda^{k+1})$:

$$\begin{cases} z^{k+1} = N_{\mu}(z^{k}, \lambda^{k}) \\ w^{k+1} = \lambda^{k}/t + A^{T}z^{k+1} - S_{\mu_{i}}(\lambda^{k}/t + A^{T}z^{k+1}) \\ \lambda^{k+1} = \lambda^{k} + t(A^{T}z^{k+1} - w^{k+1}) \end{cases}$$
(ALM-upd)

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$ and i = i + 1. we use z^k and λ^k as the initial value for z^0 and λ_0 . From (ALM-upd), the value of w^0 is unnecessary.

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of augmented Lagrangian method for the dual problem is given below.

Algorithm 1 Augmented Lagrangian method for the dual problem with continuation strategy

Input: t, continuation parameter α , M_1 , M_2 , Newton method parameter M_3 .

```
1: Calculate \mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, z^0 = 0, \lambda^0 = 0, k = 0.
```

2: **while** $\mu_i > \mu$ **do**

3: **while** $k < M_1$ **do**

4: Update
$$(z^{k+1}, w^{k+1}, \lambda^{k+1})$$
 by (ALM-upd), $k = k + 1$

5: end while

6: $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}, i = i + 1$

7: Set
$$z^0 = z^k$$
, $\lambda^0 = \lambda^k$, $k = 0$.

8: end while

9: **while** $k < M_2$ **do**

10: Update
$$(z^{k+1}, w^{k+1}, \lambda^{k+1})$$
 by (ALM-upd), $k = k + 1$

11: end while

12: **return** $x = -\lambda_k$

The Lagrangian for problem 6 is $L(z, w, \lambda) = \frac{1}{2} ||z||_2^2 + b^T z + \lambda^T (A^T z - w)$. Then, we consider

$$\begin{split} & \min_{z \in \mathbb{R}^m, \|w\|_{\infty} \le \mu} \frac{1}{2} \|z\|_2^2 + b^T z + \lambda^T (A^T z - w) \\ &= \min_{z} (\frac{1}{2} \|z\|_2^2 + b^T z + \lambda^T A^T z) + \min_{\|w\|_{\infty} \le \mu} -\lambda^T w \\ &= -\frac{1}{2} \|A\lambda + b\|_2 - \mu \|\lambda\|_1 \end{split}$$

Therefore, $-\lambda$ from algorithm 1 is the approximation of the solution to the primal problem.

In practice, we take $t = 10^{-2}$, $\alpha = 0.1$, $M_1 = 10$, $M_2 = 10$, $M_3 = 1$.

2 Problem 3(h)

We also apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy. We set $\mu_0 = \max\{\mu, \alpha || A^T b||_{\infty}\}$ and set i = 0. For each μ_i , based on the analysis from previous section, the dual problem is problem 6. And its corresponding augmented Lagrangian is 7.

For given (z^k, w^k, λ^k) , we first update w^{k+1} . Based on the previous analysis, we can write its update rule as:

$$w^{k+1} = \lambda^k/t + A^T z^k - S_{\mu_i}(\lambda^k/t + A^T z^k)$$

Then, we update z^{k+1} . We consider

$$\arg\min_{z} \frac{1}{2} ||z||_{2}^{2} + b^{T}z + (\lambda^{k})^{T} (A^{T}z - w^{k+1}) + \frac{t}{2} ||A^{T}z - w^{k+1}||_{2}^{2}$$

$$= \arg\min_{z} \frac{1}{2} z^{T} (I + tAA^{T})z + (b + A\lambda^{k} - tAw^{k+1})^{T} z$$

$$= (I + tAA^{T})^{-1} (-b - A\lambda^{k} + tAw^{k+1})$$

Therefore, the update rule of $(z^{k+1}, w^{k+1}, \lambda^{k+1})$ is given by:

$$\begin{cases} w^{k+1} = \lambda^{k}/t + A^{T}z^{k} - S_{\mu_{i}}(\lambda^{k}/t + A^{T}z^{k}) \\ z^{k+1} = (I + tAA^{T})^{-1}(-b - A\lambda^{k} + tAw^{k+1}) \\ \lambda^{k+1} = \lambda^{k} + t(A^{T}z^{k+1} - w^{k+1}) \end{cases}$$
(ADMM-d-upd)

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$ and i = i + 1. we use z^k and λ^k as the initial value for z^0 and λ^0 . From (ADMM-d-upd), the value of w^0 is unnecessary. If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of ADMM for the dual problem is given below.

Similarly, $-\lambda$ from algorithm 2 is the approximation of the solution to the primal problem. In practice, we take $t = 10^{-2}$, $\alpha = 0.1$, $M_1 = 10$, $M_2 = 10$.

3 Problem 3(i)

We apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy and one parameter s for linearization. We set $\mu_0 = \max\{\mu, \alpha || A^T b||_{\infty}\}$ and set i = 0. For each

Algorithm 2 ADMM for the dual problem with continuation strategy

Input: t, continuation parameter α , M_1 , M_2 .

- 1: Calculate $\mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}$. Let $i = 0, z^0 = 0, \lambda^0 = 0, k = 0$.
- 2: while $\mu_i > \mu$ do
- 3: **while** $k < M_1$ **do**
- 4: Update $(z^{k+1}, w^{k+1}, \lambda^{k+1})$ by (ADMM-d-upd), k = k + 1
- 5: end while
- 6: $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}, i = i + 1$
- 7: Set $z^0 = z^k$, $\lambda^0 = \lambda^k$, k = 0.
- 8: end while
- 9: **while** $k < M_2$ **do**
- 10: Update $(z^{k+1}, w^{k+1}, \lambda^{k+1})$ by (ADMM-d-upd), k = k + 1
- 11: end while
- 12: **return** $x = -\lambda_k$

 μ_i , we consider another splitting form of the primal problem 1. It is equivalent to:

$$\begin{cases} \min \frac{1}{2} ||Ax - b||_2^2 + \mu_i ||y||_1 \\ \text{s.t.} \quad x = y \end{cases}$$
 (9)

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$.

The corresponding augmented Lagrangian is

$$L_t(x, y, z) = \frac{1}{2} ||Ax - b||_2^2 + \mu_i ||y||_1 + z^T (x - y) + \frac{t}{2} ||x - y||_2^2$$
 (10)

For given (x^k, y^k, z^k) , we first update x^{k+1} . We have

$$x^{k+1} = \arg\min_{x} L_{t}(x, y^{k}, z^{k}) = \arg\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \frac{t}{2} ||x - y^{k} + \frac{z^{k}}{t}||_{2}^{2}$$

$$= (A^{T}A + tI)^{-1} (A^{T}b + ty^{k} - z^{k})$$
(11)

Although we have a closed form solution to $\arg\min_x L_t(x, y^k, z^k)$, the computation cost of calculating $(A^TA + tI)^{-1}(A^Tb + ty^k - z^k)$ is a bit large. Therefore, we consider to use the following linear approximation to update x^{k+1}

$$x^{k+1} = x^k - s \left(A^T A x^k - A^T b + t (x^k - y^k + \frac{z^k}{t}) \right)$$
 (12)

where s is the step size of the linear approximation.

Then, we update y^{k+1} by:

$$y^{k+1} = \arg\min_{y} L_{t}(x^{k+1}, y, z^{k}) = \arg\min_{y} \mu_{i} ||y||_{1} + \frac{t}{2} ||x^{k+1} - y + \frac{z^{k}}{t}||_{2}^{2}$$

$$= \arg\min_{y} \frac{\mu_{i}}{t} ||y||_{1} + \frac{1}{2} ||y - (x^{k+1} + \frac{z^{k}}{t})||_{2}^{2} = S_{\mu_{i}/t}(x^{k+1} + \frac{z^{k}}{t})$$

where $S_{\mu_i}(x)$ is the soft-thresholding function 8.

Finally, we update z^{k+1} by

$$z^{k+1} = z^k + t(x^{k+1} - y^{k+1})$$

In summary, the update rule of $(x^{k+1}, y^{k+1}, z^{k+1})$ is given by:

$$\begin{cases} x^{k+1} = x^k - s \left(A^T A x^k - A^T b + t (x^k - y^k + \frac{z^k}{t}) \right) \\ y^{k+1} = S_{\mu_i/t} (x^{k+1} + \frac{z^k}{t}) \\ z^{k+1} = z^k + t (x^{k+1} - y^{k+1}) \end{cases}$$
(ADMM-pl-upd)

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$ and i = i + 1. we use x^k , y^k and z^k as the initial value for x^0 , y^0 and z^0 .

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of ADMM with linearization for the primal problem is given below.

Algorithm 3 ADMM with linearization for the primal problem with continuation strategy

```
Input: x^0, t, continuation parameter \alpha, M_1, M_2, linearization step size s.
```

- 1: Calculate $\mu_0 = \max\{\alpha ||A^T b||_{\infty}, \mu\}$. Let $i = 0, y^0 = x_0, z^0 = 0, k = 0$.
- 2: **while** $\mu_i > \mu$ **do**
- while $k < M_1$ do
- Update $(x^{k+1}, y^{k+1}, z^{k+1})$ by (ADMM-pl-upd), k = k + 14:
- end while 5:
- $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}, i = i + 1$ Set $x^0 = x^k, y^0 = y^k, z^0 = z^k, k = 0$.
- 8: end while
- 9: **while** $k < M_2$ **do**
- Update $(x^{k+1}, y^{k+1}, z^{k+1})$ by (ADMM-pl-upd), k = k + 1
- 11: end while
- 12: **return** $x = x_k$

In practice, we take $t = 10^2$, $s = 5 \times 10^{-4}$, $\alpha = 0.1$, $M_1 = 200$, $M_2 = 200$. We also implement the ADMM for the primal problem with continuation strategy. The only difference is that we use 12 to update x^{k+1} instead of 11. The parameters for the ADMM for the primal problem with continuation strategy is: $t = 10^2$, $\alpha = 0.1$, $M_1 = 10$, $M_2 = 10$.

4 Numerical result

The whole test program is named $Test_hw05_03.m$. This time we run all algorithms mentioned before with same A and b. We compare the objective value of the primal problem. Suppose the value of objective function from cvx mosek is f_c , the value from proposed method is f_p , then the value of objval to cvx mosek is $\frac{f_p-f_c}{f_c}$. ALM is the augmented Lagrangian method for the dual problem. ADMM-d is the ADMM for the dual problem. ADMM-l-p is the ADMM with linearization for the primal problem. ADMM-p is the ADMM for the primal problem. We mark ADMM-p with * because this method is not required in the assignment. The numerical result is given in the following tables:

Table 1 Random seed is 2. The cpu time of cvx mosek is 1.06

Method	cpu time	objval to cvx mosek	error to cvx mosek
ALM	0.82	-1.87×10^{-6}	3.47×10^{-6}
ADMM-d	0.36	-8.69×10^{-7}	3.22×10^{-6}
ADMM-l-p	0.69	-1.87×10^{-6}	3.27×10^{-6}
ADMM-p*	1.22	-8.06×10^{-7}	3.17×10^{-6}

Table 2 Random seed is 7. The cpu time of cvx mosek is 1.27

Method	cpu time	objval to cvx mosek	error to cvx mosek
ALM	0.90	-3.09×10^{-6}	3.22×10^{-6}
ADMM-d	0.33	-1.93×10^{-6}	3.29×10^{-6}
ADMM-l-p	0.67	-3.09×10^{-6}	3.21×10^{-6}
ADMM-p*	1.31	-1.86×10^{-6}	3.26×10^{-6}

Table 3 Random seed is 9. The cpu time of cvx mosek is 1.05

Method	cpu time	objval to cvx mosek	error to cvx mosek
ALM	0.77	-2.06×10^{-6}	2.68×10^{-6}
ADMM-d	0.37	-6.32×10^{-7}	2.75×10^{-6}
ADMM-l-p	0.67		2.65×10^{-6}
ADMM-p*	1.23	-4.89×10^{-7}	2.76×10^{-6}