Cryptography Final Exam Review

Arkady Yerukhimovich

December 9, 2024

Outline

Constructing Block Ciphers

- 2 Public-Key Crypto
 - Number Theory and Group Theory
 - Key Exchange and Encryption
 - Digital Signatures

- Objectives:
 - Confusion-diffusion paradigm
 - Avalanche effect

- Objectives:
 - Confusion-diffusion paradigm
 - Avalanche effect
- Substitution-Permutation Networks (AES as an example)
 - Construction know the main steps (key-mixing, substitution, permutation)
 - Intuition on why steps are necessary

- Objectives:
 - Confusion-diffusion paradigm
 - Avalanche effect
- Substitution-Permutation Networks (AES as an example)
 - Construction know the main steps (key-mixing, substitution, permutation)
 - Intuition on why steps are necessary
- Feistel Network (DES as an example)
 - Be able to simulate by hand
 - Be able to explain how to invert
 - Why we don't need invertible round function?

- Objectives:
 - Confusion-diffusion paradigm
 - Avalanche effect
- Substitution-Permutation Networks (AES as an example)
 - Construction know the main steps (key-mixing, substitution, permutation)
 - Intuition on why steps are necessary
- Feistel Network (DES as an example)
 - Be able to simulate by hand
 - Be able to explain how to invert
 - Why we don't need invertible round function?
- Key-length extension
 - Meet-in-the-middle attack
 - Why 2DES fails to add security
 - 3DES construction and its security

Outline

Constructing Block Ciphers

- Public-Key Crypto
 - Number Theory and Group Theory
 - Key Exchange and Encryption
 - Digital Signatures

Number Theory and Group Theory

- Modular Arithmetic
- ullet Euclidean algorithm, gcd, Euler ϕ function
- Chinese Remainder Theorem
- Groups: $\mathbb{Z}_p^*, \mathbb{Z}_N^*$, Quadratic residues mod p
 - Definition of a group
 - modular arithmetic in base (mod N) and exponent (mod $\phi(N)$)
 - cyclic groups, order (of elements and groups)
- Be able to do simple number theory by hand

Cryptographic Hardness Assumptions

- Hard Problems
 - Factoring
 - RSA
 - Discrete LOG (DLOG)
 - CDH, DDH
 - Understand relationships between these hard problems

Cryptographic Hardness Assumptions

- Hard Problems
 - Factoring
 - RSA
 - Discrete LOG (DLOG)
 - CDH, DDH
 - Understand relationships between these hard problems
- Private-key crypto from these assumptions
 - PRG, PRF from DDH
 - CRHF from DLOG

Public-Key Revolution

- The limitations of private-key crypto
- Key distribution center (KDC)
- Goals of public-key crypto

Public-Key Revolution

- The limitations of private-key crypto
- Key distribution center (KDC)
- Goals of public-key crypto
- Key Exchange
 - Security definition
 - Diffie-Hellman key exchange
 - Construction
 - Why it's secure

Public-Key Encryption

- Security definitions (CPA, CCA), difference from private-key definitions
- El Gamal Encryption
 - Construction be able to simulate by hand
 - Relationship to DH-KE
 - Why is it secure

Public-Key Encryption

- Security definitions (CPA, CCA), difference from private-key definitions
- El Gamal Encryption
 - Construction be able to simulate by hand
 - Relationship to DH-KE
 - Why is it secure
- Plain RSA encryption
 - Construction be able to simulate by hand
 - Why it is not secure
 - Padded-RSA be able to explain how this avoids above attacks

Public-Key Encryption

- Security definitions (CPA, CCA), difference from private-key definitions
- El Gamal Encryption
 - Construction be able to simulate by hand
 - Relationship to DH-KE
 - Why is it secure
- Plain RSA encryption
 - Construction be able to simulate by hand
 - Why it is not secure
 - Padded-RSA be able to explain how this avoids above attacks
- Hybrid encryption

Digital Signatures

- Objectives how they are different from MACs
- Security definition
- Applications

Digital Signatures

- Objectives how they are different from MACs
- Security definition
- Applications
- Plain RSA signatures
 - Construction be able to simulate by hand
 - Understand attacks on this
 - RSA-FDH
 - Understand construction
 - Don't need to understand proof of security

Hash-based signatures

- Definition of one-way function
- Lamport one-time signature scheme
 - Construction
 - Proof of security

Hash-based signatures

- Definition of one-way function
- Lamport one-time signature scheme
 - Construction
 - Proof of security
- Chain-based signatures
- Tree-based signatures
- How to make this stateless (and what this means)

Exam Procedures

- Exam on Mon., Dec. 16, 12:40-2:40 PM in the classroom
- ullet You may bring 2 pieces of 8.5 x 11 inch paper (back and front) with notes
- No computers, phones, or calculators during exam bring pens or pencils

Exam format

The exam will contain the following:

- 10 True/False questions no partial credit
- 2-3 compute by hand problems Number theory, RSA, El Gamal, Feistel
- 2 long answer questions definitions, reductions, Encryption, Signatures
- 1 challenge problem
- Questions may have multiple parts, complete as much as you can.