1

Solution of Q9.3.23

Anek Anjireddy - EE22BTECH11007

A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.

Solution:

Parameter	Values	Description
n	5	Number of throws
k	3	Number of favourable outcomes
p	0.5	Probability of getting odd number
X	$1 \le X \le 5$	X favourable out of 5 total outcomes
Y	$1 \le Y \le 5$	gaussian variable
$\mu = np$	2.5	mean
$\sigma = \sqrt{np(1-p)}$	1.118	standard deviation

1) Binomial Distribution:

The X is the random variable, the pmf of X is given by

$$p_X(k) = {}^{n}C_k p^k (1-p)^{n-k} \tag{1}$$

We require Pr(X = 3). Since n = 5,

$$p_X(3) = 0.3125 \tag{2}$$

2) Gaussian Distribution

Let Y be gaussian variable. Using central limit theorem, we can use the gaussian distribution function:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3)

(4)

Using Normal distribution at X=3.

$$p_Y(3) = \frac{1}{\sqrt{2\pi\left(\frac{5}{4}\right)}} e^{-\frac{\left(x-\frac{5}{2}\right)^2}{2\left(\frac{5}{4}\right)}}$$
 (5)

$$= \frac{1}{\sqrt{2\pi \left(\frac{5}{4}\right)}} e^{-\frac{1}{10}} \tag{6}$$

$$= 0.3228684517$$
 (7)

3) using Q function:

$$Y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$
 (8)

Fig. 3. Binomial-PMF and Gaussian-PDFof X

The CDF of Y:

$$F_{Y}(y) = \begin{cases} 1 - Q\left(\frac{y - \mu}{\sigma}\right), & y > \mu \\ Q\left(\frac{\mu - y}{\sigma}\right), & y < \mu \end{cases}$$
(9)

But,

$$\frac{Y - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{10}$$

$$\implies F_Y(y) = 1 - Q\left(\frac{y - \mu}{\sigma}\right) \tag{11}$$

to include correction of 0.5,

$$p_Y(2.5 < Y < 3.5) = F_Y(3.5) - F_Y(2.5) \quad (12)$$

$$= Q\left(\frac{3.5 - \mu}{\sigma}\right) - Q\left(\frac{2.5 - \mu}{\sigma}\right)$$

$$= Q(0.8944) - Q(0) \quad (14)$$

$$= 0.314446 \quad (15)$$