NONDETERMINISTIC FINITE AUTOMATA (NFA)

A nondeterministic finite automaton (NFA) can be defined as $M = (Q, \Sigma, \delta, q_0, F)$, where:

- ullet Q is the finite set of states
- Σ : input alphabet (finite set of symbols)
- $q_0 \in Q$: starting state
- $F \subseteq Q$: set of accepting states
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$, where $\mathcal{P}(Q)$ is the power set of Q

Exercise 1

Let language $L = \{\text{strings where the second letter from the back is 0}\}$ and alphabet $\Sigma = \{0, 1\}$. Create an NFA and DFA that accepts L.

DFA

NFA

Exercise 2

Let language $L = \{\text{strings where the third letter from the back is 1}\}$ and alphabet $\Sigma = \{0, 1\}$. Create an NFA and DFA that accepts L.

Exercise 3

Create an NFA for each of the following languages over alphabet $\Sigma = \{0, 1\}$:

(a)
$$L_1 = \{0(0|1)^*1\}$$

NFA

(b)
$$L_2 = \{(0|1)^*(00|11)\}$$

(c)
$$L_3 = \{(0|1)^*1(0|1)\}$$
. Is this familiar from Exercise 1?

(d)
$$L_4 = \{(0|1)^*1(0|1)^k\}$$
. How would you construct this if you knew the value of k ?

(e)
$$L_5 = \{w|w_{|1|} = 1\}.$$

Exercise 4

Create NFA-s for each of the languages in Exercise 10-13 from last week (DFA).

(a)
$$L_{10} = \{b^n a b^m | n, m \ge 0\}$$

(b)
$$L_{11} = \{b^n a b^m | n, m \ge 1\}$$

(c)
$$L_{12} = \{a^{2n}b^{2m+1}|n,m \ge 0\}.$$

(d)
$$L_{13} = \{a^n b a^m | n, m \ge 0, (n+m)\% 2 = 0\}.$$

Exercise 5

Transform the following NFA into DFA.

(a)

The states and transitions of the DFA version of 5.a are given in the following table:

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow \{q_0\} & \{q_0, q_1\} & \emptyset \\ *\{q_0, q_1\} & \{q_0, q_1\} & \{q_0\} \\ \emptyset & \emptyset & \emptyset \\ \end{array}$$

(b)

The states and transitions of the DFA version of 5.b are given in the following table:

	a	b
$\longrightarrow \{q_0\}$	$\{q_1,q_2\}$	$\{q_1\}$
$*\{q_1\}$	$\{q_0,q_2\}$	Ø
$*\{q_1,q_2\}$	$\{q_0,q_2\}$	$\{q_0,q_1\}$
$\{q_0,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1\}$
$*\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_1\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_1\}$
Ø	Ø	Ø

Exercise 6

Transform the following ε -NFA into an NFA.

The transition table of the ε -NFA of exercise 6 is given below:

	0	1	ε
$\rightarrow q_0$	$\{q_4\}$	$\{q_1\}$	Ø
q_1	Ø	$\{q_2\}$	$\{q_3\}$
q_2	Ø	$\{q_3\}$	Ø
$*q_3$	Ø	$\{q_6\}$	Ø
q_4	$\{q_5\}$	Ø	$\{q_1,q_2,q_3\}$
q_5	$\{q_3\}$	Ø	Ø
q_6	Ø	Ø	Ø

The states that have a closure with size greater than 1 are:

$$CL(q_1) = \{q_1, q_3\}$$

$$CL(q_4) = \{q_1, q_2, q_3, q_4\}$$

These will be used for the transformation. The states and transitions of the transformed NFA are given by the transition table below. Notice that the transition values changed for non- ε symbols where we had states with a closure size > 1, or where the removed states from the ε column had a transition on either 0 or 1. Also notice the new accepting states q_1 and q_4 , because they have an accepting state in their closure.

	0	1
$\rightarrow q_0$	$\{q_1, q_2, q_3, q_4\}$	$\{q_1,q_3\}$
$\rightarrow q_0$ * q_1	Ø	$\{q_2,q_6\}$
q_2	Ø	$\{q_3\}$
$*q_3$	Ø	Ø
$*q_4$	$\{q_5\}$	$\{q_2,q_3,q_6\}$
q_5	$\{q_3\}$	Ø
q_6	Ø	Ø

Exercise 7

Create an ε -NFA that accepts the following language $L=\{a^n|n\%2=0 \text{ or } n\%3=0\},$ $\Sigma=\{a\}$. Transform it into an NFA.