```
In [1]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import numpy as np
    from scipy import stats
    import statsmodels.formula.api as smf

import warnings
    warnings.filterwarnings('ignore')
```

1)

```
In [2]: delivery_data =pd.read_csv('delivery_time.csv')
    delivery_data
```

Out[2]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

```
In [3]: delivery_data.shape
Out[3]: (21, 2)
In [4]: delivery_data.isna().sum()
Out[4]: Delivery Time
                          0
        Sorting Time
                          0
        dtype: int64
In [5]: |delivery_data.dtypes
Out[5]: Delivery Time
                          float64
        Sorting Time
                            int64
        dtype: object
In [6]: delivery_data.info(show_counts = all)
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 21 entries, 0 to 20
        Data columns (total 2 columns):
         #
             Column
                             Non-Null Count Dtype
                             -----
         0
             Delivery Time 21 non-null
                                              float64
             Sorting Time
                             21 non-null
                                              int64
         1
        dtypes: float64(1), int64(1)
        memory usage: 464.0 bytes
In [7]:
        sns.distplot(a=delivery_data['Delivery Time'],hist=False)
        plt.show()
           0.07
           0.06
           0.05
           0.04
           0.03
           0.02
           0.01
           0.00
                            10
                                 15
                                       20
                                            25
                                                  30
                                                       35
                                 Delivery Time
In [8]: |delivery_data['Delivery Time'].skew()
Out[8]: 0.3523900822831107
```

```
In [9]: | delivery_data['Delivery Time'].kurtosis()
 Out[9]: 0.31795982942685397
In [10]:
          sns.distplot(a=delivery_data['Sorting Time'],hist=False)
          plt.show()
             0.12
             0.10
             0.08
           Density
             0.06
             0.04
             0.02
             0.00
                                                   10
                                                         12
                                     Sorting Time
In [11]: | delivery_data['Sorting Time'].skew()
Out[11]: 0.047115474210530174
In [12]: delivery data['Sorting Time'].kurtosis()
Out[12]: -1.14845514534878
In [13]: delivery_data = delivery_data.rename({'Delivery Time':'Delivery_Time','Sorting T:
In [14]: | delivery_data.corr()
Out[14]:
                        Delivery_Time Sorting_Time
           Delivery_Time
                             1.000000
                                          0.825997
            Sorting_Time
                                          1.000000
                             0.825997
```

```
In [15]:
         sns.regplot(x=delivery_data['Delivery_Time'],y=delivery_data['Sorting_Time'])
         plt.show()
             14
             12
            10
          Sorting_Time
             8
             6
                     10
                              15
                                                  25
                                                            30
                                  Delivery_Time
In [16]: model = smf.ols(formula = 'Delivery_Time ~ Sorting_Time',data= delivery_data).fit
In [17]: model.params
Out[17]: Intercept
                          6.582734
         Sorting Time
                          1.649020
         dtype: float64
In [18]: model.pvalues,model.tvalues
Out[18]: (Intercept
                           0.001147
           Sorting Time
                           0.000004
           dtype: float64,
           Intercept
                            3.823349
           Sorting_Time
                           6.387447
           dtype: float64)
In [19]: round(model.rsquared,4),round(model.rsquared adj,4)
Out[19]: (0.6823, 0.6655)
In [20]: delivery time = 6.582734+(1.649020*6)
         delivery_time
Out[20]: 16.476854
In [21]: | test_data = pd.DataFrame(data={'Sorting_Time':[5,6,7,8]})
```

In [22]: test_data

Out[22]:

	Sorting_Time
0	5
1	6
2	7
3	8

In [23]: model.predict(test_data)

Out[23]: 0

0 14.827833
1 16.476853
2 18.125873
3 19.774893
dtype: float64

In [61]: x_sqrt = np.sqrt(delivery_data['Sorting_Time'])
 delivery_data['sqrt_sortingtime'] = pd.DataFrame(x_sqrt)
 delivery_data

6	19.00	7	2.645751	•
7	9.50	3	1.732051	
8	17.90	10	3.162278	
9	18.75	9	3.000000	
10	19.83	8	2.828427	
11	10.75	4	2.000000	
12	16.68	7	2.645751	
13	11.50	3	1.732051	
14	12.03	3	1.732051	
15	14.88	4	2.000000	
16	13.75	6	2.449490	
17	18.11	7	2.645751	
18	8 00	2	1 414214	•

```
In [62]:
         sns.regplot(x=delivery_data['Delivery_Time'],y=delivery_data['sqrt_sortingtime'])
          plt.show()
             4.0
             3.5
           sqrt_sortingtime
             3.0
             2.5
             2.0
             1.5
                     10
                               15
                                          20
                                                    25
                                                              30
                                  Delivery_Time
In [64]:
         sqrt_model = smf.ols(formula = 'Delivery_Time ~sqrt_sortingtime',data= delivery_d
In [65]:
         sqrt model.params
Out[65]: Intercept
                              -2.518837
          sqrt sortingtime
                               7.936591
          dtype: float64
In [66]:
          sqrt_model.pvalues,model.tvalues
Out[66]: (Intercept
                                0.410857
           sqrt sortingtime
                                0.000003
           dtype: float64,
           Intercept
                               -0.840911
           sqrt_sortingtime
                                6.592434
           dtype: float64)
In [67]:
         round(sqrt_model.rsquared,4),round(sqrt_model.rsquared_adj,4)
Out[67]: (0.6958, 0.6798)
         delivery_time = 6.582734+(1.649020*6)
          delivery_time
Out[20]: 16.476854
In [68]: | test_data = pd.DataFrame(data={'sqrt_sortingtime':[5,6,7,8]})
```

```
In [69]: test_data
```

Out[69]:

	sqrt_sortingtime
0	5
1	6
2	7
3	8

```
In [70]: model.predict(test_data)
```

```
Out[70]: 0 37.164117
```

1 45.100708 2 53.037299 3 60.973889 dtype: float64

2)

```
In [24]: data = pd.read_csv('Salary_Data.csv')
```

In [25]: data

Out[25]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
In [26]: data.shape
```

Out[26]: (30, 2)

```
In [27]: data.isna().sum()
Out[27]: YearsExperience
                              0
          Salary
                              0
          dtype: int64
In [28]: data.info(show_counts ='all')
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 30 entries, 0 to 29
          Data columns (total 2 columns):
               Column
                                 Non-Null Count
                                                  Dtype
           0
               YearsExperience 30 non-null
                                                  float64
                                                  float64
               Salary
                                 30 non-null
           1
          dtypes: float64(2)
          memory usage: 608.0 bytes
In [29]: data.dtypes
Out[29]: YearsExperience
                              float64
                              float64
          Salary
          dtype: object
         sns.distplot(a=data['YearsExperience'],hist = False)
In [30]:
          plt.show()
             0.12
             0.10
             0.08
          0.06
0.08
             0.04
             0.02
             0.00
                   -2.5
                         0.0
                               2.5
                                     5.0
                                           7.5
                                                10.0
                                                      12.5
                                                            15.0
                                   YearsExperience
In [31]: data['YearsExperience'].skew()
Out[31]: 0.37956024064804106
In [32]: data['YearsExperience'].kurt()
Out[32]: -1.0122119403325072
```

```
In [33]: sns.distplot(a=data['Salary'],hist=False)
plt.show()
```



```
In [34]: data['Salary'].skew()
```

Out[34]: 0.35411967922959153

In [35]: data['Salary'].kurt()

Out[35]: -1.295421086394517

In [36]: data.corr()

Out[36]:

	rearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

```
In [37]: sns.regplot( x= data['YearsExperience'],y= data['Salary'])
    plt.show()
```



```
In [38]:
         linear model = smf.ols(formula = 'Salary~YearsExperience',data = data).fit()
In [39]:
         linear_model.params
Out[39]: Intercept
                             25792.200199
         YearsExperience
                              9449.962321
         dtype: float64
In [40]: linear_model.tvalues
Out[40]: Intercept
                             11.346940
         YearsExperience
                             24.950094
         dtype: float64
In [41]: linear_model.pvalues
Out[41]: Intercept
                             5.511950e-12
         YearsExperience
                             1.143068e-20
         dtype: float64
In [42]: round(linear_model.rsquared,4)
Out[42]: 0.957
In [43]: round(linear_model.rsquared_adj,4)
Out[43]: 0.9554
In [44]: | salary_hike = 25792.2001+(9449.9623*3)
         salary_hike
Out[44]: 54142.087
In [45]:
         salary_data_predct = pd.DataFrame(data = {'YearsExperience':[3,4,5,6,7]})
         salary_data_predct
Out[45]:
             YearsExperience
          0
                         3
          1
                         4
          2
                         5
          3
                         6
                         7
```

```
In [46]: linear_model.predict(salary_data_predct)
```

Out[46]: 0 54142.087163

1 63592.049484

2 73042.011806

3 82491.974127

4 91941.936449

dtype: float64

Out[47]:

	YearsExperience	Salary	Log_Experience
0	1.1	39343.0	0.095310
1	1.3	46205.0	0.262364
2	1.5	37731.0	0.405465
3	2.0	43525.0	0.693147
4	2,2	39891.0	0.788457


```
In [51]: log_model = smf.ols(formula = 'Salary~Log_Experience',data = data).fit()
```

In [53]: log_model.params

Out[53]: Intercept 14927.97177 Log_Experience 40581.98796

dtype: float64

```
In [54]: |log_model.tvalues
Out[54]: Intercept
                             2.895135
         Log_Experience
                            12.791989
         dtype: float64
In [55]:
         log_model.pvalues
Out[55]: Intercept
                            7.268813e-03
         Log_Experience
                            3.250155e-13
         dtype: float64
In [56]: round(log_model.rsquared,4)
Out[56]: 0.8539
In [57]: round(log_model.rsquared_adj,4)
Out[57]: 0.8487
In [58]: salary_hike = 25792.2001+(9449.9623*3)
         salary_hike
Out[58]: 54142.087
         salary data predct = pd.DataFrame(data = {'Log Experience':[3,4,5,6,7]})
In [59]:
         salary data predct
Out[59]:
             Log_Experience
          0
                        3
                        4
          1
          2
                        5
                        6
          3
                        7
In [60]:
         log_model.predict(salary_data_predct)
Out[60]: 0
               136673.935649
              177255.923609
         1
         2
              217837.911569
               258419.899529
               299001.887489
         dtype: float64
 In [ ]:
```