

Stations (stations)

Singapurško Internetno Hrbtenico (SIH) tvori n točk, katerim so dodeljene **oznake** od 0 do n-1. Obstaja še n-1 dvosmernih povezav, označenih z 0 do n-2. Vsaka povezava povezuje dve ločeni točki. Dve točki, kateri povezuje ena povezava, sta sosednji.

Pot od točke x do točke y je zaporedje točk a_0, a_1, \dots, a_p , tako da $a_0 = x$, $a_p = y$, in vsaki dve zaporedni točki na poti sta sosednji. Obstaja **natanko ena** pot od katere koli točke x do katere koli druge točke y.

Vsaka točka x lahko ustvari paket (košček podatka) in ga pošlje kateri koli drugi točki y, kar imenujemo paketov **cilj**. Ta paket se mora usmeriti po edinstveni poti od x do y: Oglejmo si točko z, ki trenutno drži paket, katerega ciljna točka je y ($z \neq y$). Ta točka

- 1. izvede **usmerjevalno proceduro**, ki določi soseda točke z, ki leži na edinstveni poti od z do y, in
- 2. usmeri paket k temu sosedu.

Vendar: točke imajo omejeno količino pomnilnika in ne hranijo celotnega seznama povezav v SIH za izvedbo usmerjevalne procedure.

Implementiramo usmerjevalno shemo za SIH, ki se sestoji iz dveh funkcij.

- Prva funkcija sprejme n, seznam povezav v SIH, in celo število $k \ge n-1$. Vsaki točki dodeli edinstveno celoštevilsko **oznako** med 0 in k, vključujoče.
- Druga funkcija je usmerjevalna procedura, ki se jo razpošlje na vse točke po tem, ko se jim dodeli oznake. Dobi **zgolj** naslednje vhode:
 - o s, oznaka točki, ki trenutno zadržuje paket,
 - t, **oznaka** ciljne točke ($t \neq s$),
 - \circ c, seznam **oznak** vseh sosedov s.

Rezultat naj bo **oznaka** soseda *s*, kateremu naj se paket pošlje naprej.

Dodatno, rezultat tvoje rešitve je odvisen od največje oznake dodeljene katerikoli točki (v splošnem, manjše je boljše).

Podrobnosti implementacije

Implementiraj naslednji funkciji:

```
int[] label(int n, int k, int[] u, int[] v)
```

- n: število točk SIH.
- k: največja oznaka, ki se jo lahko uporabi.
- u in v: polji velikosti n-1, ki opisujeta povezave. Za vsak i ($0 \le i \le n-2$), povezava i povezuje točki z oznakama u[i] in v[i].
- Ta funkcija vrne eno polje L velikosti n. Za vsak i ($0 \le i \le n-1$) je L[i] oznaka dodeljena točki z indeksom i. Vsi elementi polja L so med seboj različni in med 0 in k, vključujoče.

```
int find_next_station(int s, int t, int[] c)
```

- s: oznaka točke, kjer se nahaja paket.
- *t*: oznaka ciljne točke.
- *c*: polje oznak vseh sosedov točke *s*. Polje *c* je urejeno v naraščajočem vrstnem redu.
- Funkcija vrne oznako točke s, h kateri naj se paket pošlje.

Vsak testni primer vključuje enega ali več neodvisnih scenarijev (t.j. različnih opisov SIH). Za testni primer, ki vsebuje r scenarijev, je **program**, ki kliče zgornje funkcije, klican natanko dvakrat:

Med prvim klicem programa:

- funkcija label je poklicana r-krat,
- vrnjene oznake si shrani ocenjevalni sistem, in
- find next station ni poklicana.

Med drugim klicem programa:

- find next station se lahko večkrat pokliče,
- oznake, uporabljene pri klicih find_next_station so oznake, katere je vrnil klic label za poljubno izbran scenarij iz prvega klica, in
- label ni poklicana.

Pomembno: nobena od informacij, shranjenih v statične ali globalne spremenljivke v prvem klicu programa, ni dostopna znotraj funkcije find_next_station.

Primeri

Predpostavimo naslednji klic.

```
label(5, 10, [0, 1, 1, 2], [1, 2, 3, 4])
```

Obstaja 5 točk in 4 povezav, ki povezujejo točke z indeksi (0,1), (1,2), (1,3) in (2,4). Vsaka oznaka je lahko med 0 in k=10.

Da zavedemo naslednjo označitev:

Indeks	oznaka
0	6
1	2
2	9
3	3
4	7

funkcija label vrne [6, 2, 9, 3, 7]. Na sliki so na levi prikazani indeksi, na desni pa točkam dodeljene oznake.

Predpostavi, da so oznake dodeljene kot je zgoraj opisano in obravnavajmo naslednji klic:

```
find_next_station(9, 6, [2, 7])
```

To pomeni, da ima točka, ki trenutno zadržuje paket, oznako 9, in da ima ciljna točka oznako 6. Oznake točk na poti do cilja so [9,2,6]. Zatorej bi klic naj vrnil 2, saj je to oznaka točke, h kateri je potrebno usmeriti paket (ima indeks 1).

Obravnavajmo drug možen klic:

```
find_next_station(2, 3, [3, 6, 9])
```

Funkcija vrne 3, saj ima ciljna točka oznako 3, ki je sosednja točki z oznako 2, in zatorej paket prejme direktno.

Omejitve

• $1 \le r \le 10$

Za vsak klic label:

- $2 \le n \le 1000$
- $k \ge n-1$
- $0 \le u[i], v[i] \le n-1$ (za vse $0 \le i \le n-2$)

Za vsak klic find next station:

- *s* in *t* sta oznaki dveh različnih točk.
- c je seznam oznak vseh sosedov točke z oznako s, v naraščajočem vrstnem redu.
- Oznake pripadajo enemu od predhodnih klicev funkcije label.

Skupna dolžina vseh seznamov c, podanih funkciji ${\tt find_next_station}$, v nobenem od testnih primerov ne preseže 100~000.

Podnaloge

- 1. (5 točk) k=1000, nobena točka nima več kot 2 soseda.
- 2. (8 točk) k=1000, povezava i povezuje točki i+1 in $\left\lfloor \frac{i}{2} \right\rfloor$.
- 3. (16 točk) $k=1\ 000\ 000$, največ ena točka ima ček kot 2 soseda.
- 4. (10 točk) $n \le 8$, $k = 10^9$
- 5. (61 točk) $k = 10^9$

Pri 5. podnalogi je možen delni rezultat. Naj bo m največja oznaka, ki jo je vrnil klic label v vseh scenarijih. Število točk za to podnalogo bo izračunano po sledeči tabeli:

Največja oznaka	Točke
$m \geq 10^9$	0
$2000 \leq m < 10^9$	$50 \cdot \log_{5\cdot 10^5}(rac{10^9}{m})$
1000 < m < 2000	50
$m \leq 1000$	61

Vzorčni ocenjevalnik

Vzorčni ocenjevalnik bere vhod v naslednjem formatu:

• vrstica 1: r

Sledi r opisov posameznih scenarijev v naslednjem formatu:

- vrstica 1: n k
- vrstica 2+i ($0 \le i \le n-2$): u[i] v[i]

- ullet vrstica 1+n: q: $ext{stevilo klicev find_next_station}$.
- line 2+n+j ($0 \le j \le q-1$): z[j] y[j] w[j]: **indeksi** točk, vpletenih v i-ti klic find_next_station. Paket je na točki z[j], točka y[j] je ciljna točka, w[j] pa je točka, na katero naj se usmeri paket.The station z[j] holds the packet, the station y[j] is the packet's target, and the station w[j] is the station that the packet should be forwarded to.

Vzorčni ocenjevalnik izpiše tvoje odgovore v naslednjem formatu:

• vrstica 1: m

Sledi r opisov posameznih scenarijev v naslednjem formatu:

ullet vrstica 1+j ($0\leq j\leq q-1$): indeks točke, katere oznako je vrnil j-ti klic find next station v tem scenariju.

Upoštevaj, da vsak zagon vzorčnega ocenjevalnika kliče label in find next station.