Rateiro I	and the second	1.18	e) the
Rateiro I Modelagem			
<i>V</i>	Laro	Bicalho	Guintine
	EC-	14.1.808	3
		-	
She laborde he .	1/RC 0.		4
ha wada [ha]	1/R2/c -1/R		
Vetor Ole anida	matry	de	.1
०५ व व्यव्य	estaple	2	
1-1c -ge /1	- [10].	[hi]	
$\begin{bmatrix} 0 \end{bmatrix}$	Lo I	hal	
Matin ob intrada vitado	matriz de	DHEL	1 1 -12
2) sendo C.I. #0	12.1		
	1 2	4 /	
hi = - hy(+) + 9e(+)			
RIC C		I) 241	v - 1 - 12
			-
Aplicando t.L			
a Hy(a) - Hy(a) = -1 . Hy(a).	+ 1 . Qe(a)	13.86	
R _L C	C		
H1(2)(2+1)-1 Qe(2)	+ H, (0)	72 .11	La Late
RICI C	lead.	Life !	
H,(a)/R,Cp+1) - 1 Qe6) + Hi(0)	73 T /	
RIC C	•		
Ha(+)(R,CQ+1) = R, Ge(a)	+RICHIC	(0)	1
Hz(a) = / Rz) Qe(a) +/	/R.C).H.G)	
(RCD+1)	RICO+1		
	1 1		tilibra
			Campia

: 1/RIC

$$H_{1}(a) = \begin{pmatrix} 1/c \\ a + \frac{1}{R_{1}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{1}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{1}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{1}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ a + \frac{1}{R_{2}c} \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1}c \\ R_{2}c \end{pmatrix} Qe(a) + \begin{pmatrix} 1/R_{1$$

$$A = \frac{1}{R_1C^2} \xrightarrow{P_1} \frac{1}{R_1R_2C^2} = \frac{R_2}{R_2R_2C^2} = \frac{R_2}{R_2C^2}$$

$$\frac{-1}{R_2C^2} \xrightarrow{R_2C^2} \frac{1}{C(-R_2+R_2)} \xrightarrow{R_2C^2} \frac{1}{C(-R_2+R_2)}$$

$$B = \frac{(1/R_1c^2)(a + 1/R_0c)}{(a + 1/R_1c)(a + 1/R_0c)}$$
 com $a = -1$

$$R_0c$$

$$B = \frac{1}{R_{1}C^{2}} - \frac{1}{R_{1}C^{2}} - \frac{R_{2}R_{2}C^{2} - R_{2}}{C(-R_{1}+R_{2})} - \frac{R_{2}R_{2}C^{2}}{C(-R_{1}+R_{2})} - \frac{R_{2}R_{2}C^{2}}{C(-R_{1}+R_{2})}$$

$$= \frac{1}{R_{1}C^{2}} - \frac{1}{R_{2}C^{2}} - \frac{R_{2}R_{2}C^{2}}{C(-R_{1}+R_{2})} - \frac{R_{2}R_{2}C^{2}}{C(-R_{1}+R_{2})}$$

$$\frac{1}{(a+1)} \frac{1}{R_1C} \frac{1}{R_2C} - \frac{C}{a+1/R_1C} + \frac{D}{a+1/R_2C}$$

$$C = \frac{1}{R_1C} \left(\frac{\alpha + 1}{R_1C}\right) \quad com \quad \alpha = -1$$

$$\frac{\left(\frac{\alpha + 1}{R_1C}\right) \left(\frac{\alpha + \frac{1}{R_1C}}{R_1C}\right)}{\left(\frac{\alpha + \frac{1}{R_1C}}{R_1C}\right) \left(\frac{\alpha + \frac{1}{R_1C}}{R_1C}\right)}$$

$$\frac{C = \frac{1}{R_1C} - R_2}{\frac{-R_2(+R_1C)}{(R_1C)(R_2C)}}$$

tilibra

Questão 03)

Gráfico 01 – Curvas temporais das saídas do problema.

Gráfico 02 – Altura dos tanques em função do tempo.

O Gráfico 01 a resposta do sistema é referente ao tanque 01 x tanque 02. A curvatura azul representa os níveis referenciais do tanque 01 ao tanque 02, de modo que os dois se estabilizam em uma determinada altura (aproximadamente 4m). Essa estabilização é verificada na curvatura vermelha, de modo que após um determinado tempo, os níveis do tanque 01 e 02 são aproximadamente iguais e se mantêm desse modo caso a entrada do tanque 01 se mantenha constante.

No Gráfico 02, vemos que essa informação é verídica, ao plotar os níveis de cada tanque em função do tempo. A curvatura azul representa o tanque 01, assim como a curva vermelha, o tanque 02. Vemos que após um determinado tempo, os níveis de cada tanque se mantêm constantes e aproximadamente iguais.

Questão 04)

Gráfico 03 – Resposta gráfica linearizada do estado 1 versus o estado 2

Como temos funções não lineares dadas pelas válvulas de saída de cada tanque, ao linearizarmos as mesmas, obtemos as curvaturas do Gráfico 03, onde a curva azul representa a linearização da saída do tanque 01, e a vermelha, do tanque 02. Dessa forma, para um ponto de operação de aproximadamente 4m, que é o especificado pela questão, teremos as variações de altura de cada tanque.

Questão 05)

Resposta temporal do modelo de estados obtida pelo Matlab.

$$A = \begin{pmatrix} 1/c \\ a + \frac{1}{2}k, c \end{pmatrix} \cdot \begin{pmatrix} 0,05 \\ a \end{pmatrix} a \quad com \quad a = 0$$

$$A = \frac{1}{C} \cdot \frac{0.05}{2} = \frac{0.05}{2} \cdot \frac{$$

$$B = \begin{pmatrix} \frac{1}{C} \\ \frac{1}{C} \end{pmatrix} \begin{pmatrix} 0,05 \\ \frac{1}{C} \end{pmatrix} \begin{pmatrix} 0+1 \\ \frac{1}{C} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{C} \end{pmatrix} \begin{pmatrix} 0+1 \\ \frac{1}{C} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{$$

$$H_{1}(a) = 0.05R_{1} - 0.05R_{1}$$

$$R = 0.05R_{1}$$

$$R + 1/R_{1}C$$

Fransformada innersa de laplace:

$$\begin{array}{c} H_{1}(a) = \begin{pmatrix} \frac{1}{R_{1}}C^{2} \\ \frac{1}{R_{1}}C \end{pmatrix} & 0.05 & 0.$$

Questão 06) (Parte Gráfica)

