CS 1332R WEEK 14

Dijkstra's
Minimum Spanning Tree

Prim's

Kruskal's

ANNOUNCEMENTS

REFRESHER: Graphs

- We define a graph (G) by its vertices and edges.
- We define an edge (e) by the two vertices it connects (u, v) and its weight (w).

V = the set of vertices

E = the set of edges

|V| = the # of vertices

|E| = the # of edges

RELEVANT TERMINOLOGY

ORDER(G) = |V|

SIZE(G) = |E|

Indegree(v) = # of edges going into a vertex

Outdegree(v) = # of edges going out of a vertex

Adjacent = describes two vertices that are connected by an edge

Connected Graph = every vertex has a path to every other vertex

Unconnected Graph = not all vertices have a path to every other vertex

Directed Graph = edges have a direction, they are distinct ordered pairs

Undirected Graph = edges do not have a direction, e(u, v) is the same as

e(v, u)

Subgraph = a graph G' such that V' is a subset of V and E' is a subset of E

Cycle = a path with the same start and end vertex

Acyclic Graph = a graph containing no cycles

Tree = a minimally connected, acyclic graph

REFRESHER: Graphs

- We define a graph (G) by its vertices and edges.
- We define an edge (e) by the two vertices it connects (u, v) and its weight (w).

V = the set of vertices

E = the set of edges

|V| = the # of vertices

|E| = the # of edges

HOW WE REPRESENT A GRAPH

- 1. Adjacency Matrix
 - a. |V| x |V| 2D array
 - b. Space: O(|V|^2)
 - c. Matrix[v1, v2] = edge(v1, v2, w)
- 2. Adjacency List (*used in your homework*)
 - a. Map of each vertex to its incident edges
 - b. Space: O(|V| + |E|)
 - c. In your homework, we map each vertex to a list of <u>VertexDistance</u> objects. The VertexDistance contains an adjacent vertex and the distance to that adjacent vertex, a.k.a the weight of the edge connecting the two vertices.
- 3. Edge Set (*used in your homework*)
 - a. A set of all edges in the graph
 - b. Space: O(|E|)

Dijkstra's Shortest Path Algorithm

PURPOSE: Finding the shortest path between a start vertex and all other vertices in a graph with non-negative edge weights.

INTUITION: Dijkstra's is BFS generalized for a weighted graph.

STRUCTURES WE NEED

- PriorityQueue<VertexDistance<T>>: a priority queue of VertexDistance objects ordered by the distance, which is the cumulative distance from the start vertex to the vertex
- Set<Vertex<T>>: a visited set containing vertices we have found the shortest path to
- Map<Vertex<T>, Integer>: a distance map of each vertex in the graph to its shortest distance to the start vertex

← This is our final solution.

Dijkstra's: Implementation

STRUCTURES ALGORITHM

- PriorityQueue<VertexDistance<T>>: a
 priority queue of VertexDistance objects
 ordered by the distance, which is the
 cumulative distance from the start vertex
 to the vertex
- Set<Vertex<T>>: a visited set containing vertices we have found the shortest path to
- Map<Vertex<T>, Integer>: a distance map of each vertex in the graph to its shortest distance to the start vertex

```
initialize s as start vertex
initialize pq, visitedSet, distanceMap
for all v in G, initialize distanceMap to +inf
pq.enqueue((s, 0))
                                    2 termination conditions
while pq is not empty and visitedSet is not full:
      (u, d1) = pq.dequeue()
                                    a vertex is considered visited
      f u is not in visitedSet:
                                     once it has been dequeued
           visitedSet.add(u)
                                   from pq - GREEDY ALGORITHM
           distanceMap.put(u, d1)
           for all (w, d2) adjacent to u and w not in visitedSet:
                 pq.enqueue((w, d1 + d2))
                          VertexDistance objects hold
                          the cumulative distance to w
```

How do we get all VertexDistance objects adjacent to u?

graph.getAdjList(u)

DIAGRAMMING SETUP

DISTANCE MAP

А	inf
В	inf
С	inf
D	inf
E	inf

VISITED SET

PRIORITY QUEUE

(A, o)

DIAGRAMMING SETUP

DISTANCE MAP

А	0
В	inf
С	inf
D	inf
E	inf

VISITED SET

Α

/ A	٥١
42.4	7

PRIORITY QUEUE

(B, 3)

(C, 2)

(D, 1)

DIAGRAMMING SETUP

DISTANCE MAP

Α	0
В	inf
С	inf
D	1
E	inf

VISITED SET

A D

PRIORITY QUEUE

(A, o)

(B, 3)

(C, 2)

(D, 1)

(B, 11)

(E, 31)

DIAGRAMMING SETUP

DISTANCE MAP

Α	0
В	inf
С	2
D	1
Е	inf

VISITED SET

A

D

С

PRIORITY QUEUE

(A, o)

(B, 3) (C, 2)

(D, 1)

(B, 11)

(E, 31)

(E, 6)

DIAGRAMMING SETUP

DISTANCE MAP

Α	0
В	3
С	2
D	1
E	inf

VISITED SET

A D C

В

PRIORITY QUEUE

(A, o) (B, 3)

(C, 2)

(D, 1)

(B, 11)

(E, 31) (E, 6)

DIAGRAMMING SETUP

DISTANCE MAP

А	0
В	3
С	2
D	1
Е	6

VISITED SET

A D C B

PRIORITY QUEUE

(A, o)

(B, 3)
(C, 2)
(D, 1)
(B, 11)
(E, 31)
(E, 6)

Vertex 0 1	Distance 0 5
2	14 17
4	9
5	13
6	25
7	8

DIAGRAMMING SETUP

PRIORITY QUEUE VISITED SET

(o, o)

0	inf
1	inf
2	inf
3	inf
4	inf
5	inf
6	inf
7	inf

DISTANCE MAP

Dijkstra's: Efficiencies

STRUCTURES

- PriorityQueue<VertexDistance<T>>: a priority queue of VertexDistance objects ordered by the distance, which is the cumulative distance from the start vertex to the vertex
- Set<Vertex<T>>: a visited set containing vertices we have found the shortest path to
- Map<Vertex<T>, Integer>: a distance
 map of each vertex in the graph to its
 shortest distance to the start vertex

ALGORITHM

- Time: O(|E|log|E|) removing from the priority queue |E| times
- Space: O(|E|) priority queue could contain all edges, we are guaranteed to not "reuse" edges

Minimum Spanning Trees (MST)

MORE TERMINOLOGY

Subgraph = a graph G'(V', E') is a subgraph of G(V, E) if V' and E' are subsets of V and E **Connected Graph** = every vertex can reach every other vertex

Tree = a connected, acyclic graph

Spanning Tree = a subgraph of an undirected graph containing all vertices and edges

Minimum Spanning Tree = a spanning tree of minimum edge weight - NOT UNIQUE

Can a disconnected graph have a spanning tree?

NO

$$|V| = 6$$

How many undirected edges does the MST have?

An MST always has |V| - 1 undirected edges and 2

* (|V| - 1) directed edges.

Prim's

PURPOSE: Finding the minimum spanning tree of an undirected graph given a starting vertex.

INTUITION: Prim's is Dijkstra's with a priority queue of edges.

STRUCTURES WE NEED

- PriorityQueue<Edge<T>>: a priority queue of edges in the graph
- Set<Vertex<T>>: a visited set containing vertices already added to the minimum spanning tree
- Set<Edge<T>>: an edge set representing our minimum spanning tree

← This is our final solution.

Prim's: Implementation

STRUCTURES ALGORITHM

- PriorityQueue<Edge<T>>: a priority
 queue of edges in the graph
- Set<Vertex<T>>: a visited set containing vertices already added to the minimum spanning tree
- Set<Edge<T>>: an edge set
 representing our minimum spanning tree

```
initialize s as start vertex
initialize pq, visitedSet, mst
visitedSet.add(s)
for all e(s, v) in G:
     pq.enqueue(e(s,v))
                                  3 termination conditions
while pq is not empty and visitedSet and mst is not full:
     e(u, w) = pq.dequeue()
                                  a vertex is considered visited
      if w is not in visitedSet:
                                  once it has been dequeued
           visitedSet.add(w)
                                 from pg - GREEDY ALGORITHM
           mst.add(e(u, w))
           for all e(w, x) and x not in visitedSet:
                pq.enqueue(e(w, x))
```

How do we know that the MST is valid after we exit the while loop?

If the size of the MST is equal to |V| - 1 or 2 * (|V| - 1) for undirected edges

DIAGRAMMING SETUP

PRIORITY QUEUE VISITED SET EDGE SET

(A, B, 3)

(A, C, 2)

(A, D, 1)

Α

DIAGRAMMING SETUP

PRIORITY QUEUE	VISITED SET	EDGE SET
(A, B, 3)	Α	(A, D, 1)
(A, C, 2)	D	
(A, D, 1)		
(D, B, 10)		

(D, E, 30)

PRIORITY QUEUE	VISITED SET	EDGE SET
(A, B, 3)	Α	(A, D, 1)
(A, C, 2)	D	(A, C, 2)
(A, D, 1)	С	
(D, B, 10)		
(D, E, 30)		
(C, E, 4)		

PRIORITY QUEUE	VISITED SET	EDGE SET
(A, B, 3)	Α	(A, D, 1)
(A, C, 2)	D	(A, C, 2)
(A, D, 1)	С	(A, B, 3)
(D, B, 10)	В	
(D, E, 30)		
(C. E. 4)		

PRIORITY QUEUE	VISITED SET	EDGE SET
(A, B, 3)	Α	(A, D, 1)
(A, C, 2)	D	(A, C, 2)
(A, D, 1)	С	(A, B, 3)
(D, B, 10)	В	(C, E, 4)
(D, E, 30)	E	
(C.E.4)		

Prim's: Efficiencies

STRUCTURES

- PriorityQueue<Edge<T>>: a priority
 queue of edges in the graph
- Set<Vertex<T>>: a visited set containing for all e(s, v) in G: vertices already added to the minimum spanning tree
 Set<Vertex<T>>: a visited set containing for all e(s, v) in G:
 pq.enqueue(e(s, v) in G:
 while pq is not empty
- Set<Edge<T>>: an edge setrepresenting our minimum spanning tree

```
initialize s as start vertex
initialize pq, visitedSet, mst

for all e(s, v) in G:
    pq.enqueue(e(s,v))

while pq is not empty and visitedSet and mst is not full:
    e(u, w) = pq.dequeue()
    if w is not in visitedSet:
        visitedSet.add(w)
        mst.add(e(u, w))
        for all e(w, x) and x not in visitedSet:
        pq.enqueue(e(w, x))
```

AI GORITHM

- ☐ Time: O(|E|log|E|) removing from the priority queue |E| times
- Space: O(|E|) priority queue could contain all edges, we are guaranteed to not "reuse" edges

Kruskal's

PURPOSE: Finding the minimum spanning tree of an undirected graph.

INTUITION: Dequeuing from a Priority Queue of edges.

STRUCTURES WE NEED

- PriorityQueue<Edge<T>>: a priority queue of <u>all</u> edges in the graph
- DisjointSet<Vertex<T>>: a disjoint set containing vertices already added to the minimum spanning tree
- Set<Edge<T>>: an edge set representing our minimum spanning tree

← This is our final solution.

Disjoint Set ADT

- In Kruskal's, using a visited set of vertices does not work. The disjoint set tells us if there is already an edge connecting two vertices in the minimum spanning tree. *All operations are O(1)*.
- Keeps tracks of vertices that are already connected, visualized as "clusters"

A constructor taking in a set of vertices

$$\rightarrow \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$$

Vertex<T> find(Vertex<T> v)

void union(Vertex<T> v1, Vertex<T> v2)

*Don't worry about the implementation, just know how to use it *

Kruskal's: Implementation

STRUCTURES

- AI GORITHM
- **PriorityQueue<Edge<T>>**: a priority queue of **all** edges in the graph
- **DisjointSet<Vertex<T>>**: \(\alpha \) disjoint set containing vertices already added to the minimum spanning tree
- Set<Edge<T>> : an edge set representing our minimum spanning tree

```
initialize disjointSet, mst
initialize pq of all edges in G 2 termination conditions
while pq is not empty and mst is not full:
```

```
e(u, w) = pq.dequeue()
if u and w are not in the same cluster: visited once it has been
     mst.add(e(u, w))
      disjointSet.union(u, w)
```

an edge is considered dequeued from pq -**GREEDY ALGORITHM**

Final Step Missing?

```
if mst is not full:
```

return null (the graph is disconnected and does not have a valid mst)

return mst

A		В
С		D
	E	

PRIORITY QUEUE	DISJOINT SET	EDGE SET
(A, D, 1)	{A}	
(A, C, 2)		
(A, B, 3)	{B}	
(C, E, 4)		
(B, D, 10)	{C}	
(D, E, 30)		
	{D}	
	{E}	

Α В D

PRIORITY QUEUE	DISJOINT SET	EDGE SET
(A, D, 1)	{A, D}	(A, D, 1)
(A, C, 2)		
(A, B, 3)	{B}	
(C, E, 4)		
(B, D, 10)	{C}	
(D, E, 30)		
	{E}	

В Α D

PRIORITY QUEUE	DISJOINT SET	EDGE SET
(A, D, 1)	{A, D, C}	(A, D, 1)
(A, C, 2)		(A, C, 2)
(A, B, 3)	{B}	
(C, E, 4)		
(B, D, 10)	{E}	
(D, E, 30)		

3 В Α D

PRIORITY QUEUE	DISJOINT SET	EDGE SET
(A, D, 1)	{A, D, C, B}	(A, D, 1)
(A, C, 2)		(A, C, 2)
(A, B, 3)	{E}	(A, B, 3)
(C, E, 4)		
(B, D, 10)		
(D. E. 30)		

PRIORITY QUEUE	DISJOINT SET	EDGE SET
(A, D, 1)	{A, D, C, B, E}	(A, D, 1)
(A, C, 2)		(A, C, 2)
(A, B, 3)		(A, B, 3)
(C, E, 4)		(C, E, 4)
(B, D, 10)		
(D, E, 30)		

Kruskal's: Efficiencies

STRUCTURES

ALGORITHM

GREEDY ALGORITHM

- PriorityQueue<Edge<T>>: a priority
 queue of <u>all</u> edges in the graph
- **DisjointSet<Vertex<T>>**: a **disjoint set** containing vertices already added to the minimum spanning tree
- **Set<Edge<T>>**: an **edge set** representing our minimum spanning tree

```
initialize disjointSet, mst
initialize pq of all edges in G 2 termination conditions
while pq is not empty and mst is not full:

e(u, w) = pq.dequeue()
   if u and w are not in the same cluster:
        mst.add(e(u, w))

an edge is considered visited once it has been dequeued from pq -
```

disjointSet.union(u, w)

- **Time:** O(|E|log|E|) (+ O(|E|)) removing from the priority queue |E| times + buildHeap
- Space: O(|E|) priority queue

LEETCODE PROBLEMS

1584. Minimum Cost to Connect All Points

1091. Shortest Path In A Binary Matrix

2642. Design Graph with Shortest Path Calculator

Any questions?

Name Office Hours Contact Name Office Hours Contact

Let us know if there is anything specific you want out of recitation!