A.5 Notation Used in Instruction Set Summary

```
CPU Register Notation
            Accumulator A — A or a
                                             Index Register Y — Y or y
            Accumulator B — B or b
                                             Stack Pointer — SP, sp, or s
            Accumulator D — D or d
                                             Program Counter — PC, pc, or p
            Index Register X — X or x
                                             Condition Code Register — CCR or c
Explanation of Italic Expressions in Source Form Column
       abc — A or B or CCR
   abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
       abd — A or B or D
    abdxys — A or B or D or X or Y or SP
      dxys — D or X or Y or SP
     msk8 — 8-bit mask, some assemblers require # symbol before value
      opr8i — 8-bit immediate value
     opr16i — 16-bit immediate value
     opr8a — 8-bit address used with direct address mode
    opr16a — 16-bit address value
oprx0_xysp — Indexed addressing postbyte code:
               oprx3,-xys Predecrement X or Y or SP by 1 . . . 8
                oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
                oprx3,xys— Postdecrement X or Y or SP by 1 . . . 8
                oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
                oprx5,xysp 5-bit constant offset from X or Y or SP or PC
                abd,xysp Accumulator A or B or D offset from X or Y or SP or PC
     oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
     oprx5 — Any integer in the range -16...+15
     oprx9 — Any integer in the range -256 . . . +255
    oprx16 — Any integer in the range –32,768 . . . 65,535
      page — 8-bit value for PPAGE, some assemblers require # symbol before this value
       rel8 — Label of branch destination within –128 to +127 locations
       rel9 — Label of branch destination within –256 to +255 locations
      rel16 — Any label within 64K memory space
   trapnum — Any 8-bit integer in the range $30-$39 or $40-$FF
       xys — X or Y or SP
      xysp — X or Y or SP or PC
```

Operators

- + Addition
- Subtraction
- Logical AND
- Logical OR (inclusive)

Continued on next page

Operators (continued)

- ⊕ Logical exclusive OR
- × Multiplication
- ÷ Division
- M

 Negation. One's complement (invert each bit of M)
- : Concatenate

Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A with 8-bit accumulator B.

A is in the high-order position.

- → Transfer
 - Example: (A) \Rightarrow M means the content of accumulator A is transferred to memory location M.
- ⇔ Exchange

Example: $D \Leftrightarrow X$ means exchange the contents of D with those of X.

Address Mode Notation

- INH Inherent; no operands in object code
- IMM Immediate; operand in object code
- DIR Direct; operand is the lower byte of an address from \$0000 to \$00FF
- EXT Operand is a 16-bit address
- REL Two's complement relative offset; for branch instructions
- IDX Indexed (no extension bytes); includes:

5-bit constant offset from X, Y, SP, or PC

Pre/post increment/decrement by 1 . . . 8

Accumulator A, B, or D offset

- IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
- IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
- [IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC
- [D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Machine Coding

- dd 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
- ee High-order byte of a 16-bit constant offset for indexed addressing.
- eb Exchange/Transfer post-byte. See **Table A-5** on page 436.
- ££ Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
- hh High-order byte of a 16-bit extended address.
- ii 8-bit immediate data value.
- jj High-order byte of a 16-bit immediate data value.
- kk Low-order byte of a 16-bit immediate data value.
- 1b Loop primitive (DBNE) post-byte. See **Table A-6** on page 437.
- 11 Low-order byte of a 16-bit extended address.
- mm 8-bit immediate mask value for bit manipulation instructions.

 Set bits indicate bits to be affected.

Instruction Reference

- pg Program page (bank) number used in CALL instruction.
- tn Trap number \$30-\$39 or \$40-\$FF.
- Signed relative offset \$80 (-128) to \$7F (+127).
 Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
- xb Indexed addressing post-byte. See **Table A-3** on page 434 and **Table A-4** on page 435.

Access Detail

Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation. For complex sequences see the *CPU12 Reference Manual* (CPU12RM/AD) for more detailed information.

- f Free cycle, CPU doesn't use bus
- q Read PPAGE internally
- i Read indirect PPAGE value (CALL indirect only)
- n Write PPAGE internally
- Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code — otherwise, appears as a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction
- P Program word fetch (always an aligned-word read)
- r 8-bit data read
- R 16-bit data read
- s 8-bit stack write
- s 16-bit stack write
- w 8-bit data write
- w 16-bit data write
- u 8-bit stack read
- ∪ 16-bit stack read
- ∨ 16-bit vector fetch (always an aligned-word read)
- t 8-bit conditional read (or free cycle)
- T 16-bit conditional read (or free cycle)
- x 8-bit conditional write (or free cycle)
- () Indicate a microcode loop
- , Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not

OPPP/OPO - Long branch, OPPP if branch taken, OPO if not

Condition Codes Columns

- Status bit not affected by operation.
- 0 Status bit cleared by operation.
- 1 Status bit set by operation.
- Δ Status bit affected by operation.
- fl Status bit may be cleared or remain set, but is not set by operation.
- ? Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Table A-1. Instruction Set Summary (Sheet 1 of 14)

		Addr.	Machine	Acc	ess Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00	00	Δ-	ΔΔΔΔ
ABX	(B) + (X) \Rightarrow X Translates to LEAX B,X	IDX	1A E5	Pf	PP^1		
ABY	(B) + (Y) \Rightarrow Y Translates to LEAY B,Y	IDX	19 ED	Pf	PP^1		
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysp ADCA oprx9,xysp ADCA oprx16,xysp	(A) + (M) + C ⇒ A Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2	89 ii 99 dd B9 hh 11 A9 xb A9 xb ff A9 xb ee ff	P rPf rPO rPf rPO frPP	P rfP rOP rfP rPO frPP	Δ-	ΔΔΔΔ
ADCA [D,xysp] ADCA [oprx16,xysp]		[D,IDX] [IDX2]	A9 xb A9 xb ee ff	fIfrPf fIPrPf	flPrfP fIPrfP		
ADCB #opr8i ADCB opr8a ADCB opr16a ADCB oprx0_xysp ADCB oprx16,xysp ADCB oprx16,xysp ADCB [D,xysp] ADCB [oprx16,xysp]	(B) + (M) + C \Rightarrow B Add with Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C9 ii D9 dd F9 hh l1 E9 xb E9 xb ff E9 xb ee ff E9 xb E9 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	P rfP rOP rfP fPP fIfrfP fIPrfP	Δ-	ΔΔΔΔ
ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0_xysp ADDA oprx9,xysp ADDA oprx16,xysp ADDA [D,xysp] ADDA [oprx16,xysp]	(A) + (M) ⇒ A Add without Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8B ii 9B dd BB hh 11 AB xb AB xb ff AB xb ee ff AB xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP	Δ-	ΔΔΔΔ
ADDB #opr8i ADDB opr8a ADDB opr16a ADDB oprx0_xysp ADDB oprx9,xysp ADDB oprx16,xysp ADDB [D,xysp] ADDB [oprx16,xysp]	(B) + (M) ⇒ B Add without Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CB ii DB dd FB hh ll EB xb EB xb ff EB xb ee ff EB xb EB xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	P rfP rOP rfP rPO fIFrP fIfrfP	Δ-	ΔΔΔΔ
ADDD #opr16i ADDD opr8a ADDD opr16a ADDD oprx0_xysp ADDD oprx9,xysp ADDD oprx16,xysp ADDD [D,xysp] ADDD [0,xysp] ADDD [0,xysp]	(A:B) + (M:M+1) ⇒ A:B Add 16-Bit to D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C3 jj kk D3 dd F3 hh 11 E3 xb E3 xb ff E3 xb ee ff E3 xb	PO RPf RPO RPf RPO fRPP fifRPf fiPRPf	OP RfP ROP RfP RPO fRPP fIfRfP		ΔΔΔΔ
ANDA #opr8i ANDA opr8a ANDA opr16a ANDA oprx0_xysp ANDA oprx9,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]	(A) • (M) ⇒ A Logical AND A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd B4 hh ll A4 xb A4 xb ff A4 xb ee ff A4 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfp rOP rfp rPO frpp fIfrfp		ΔΔ0-
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysp ANDB oprx9,xysp ANDB oprx16,xysp ANDB [D,xysp] ANDB [oprx16,xysp] ANDCC #opr8i	(B) • (M) ⇒ B Logical AND B with Memory (CCR) • (M) ⇒ CCR	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C4 ii D4 dd F4 hh ll E4 xb E4 xb ff E4 xb ee ff E4 xb E4 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	P rfP rOP rfP rPO fIFrPP fIFrfP		ΔΔ0-
,	Logical AND CCR with Memory						

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 2 of 14)

		Addr.	Machine	Access Detail			
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
ASL opr16a	_	EXT	78 hh 11	rPwO	rOPw		ΔΔΔΔ
ASL oprx0_xysp		IDX	68 xb	rPw	rPw		
ASL oprx9,xysp	C b7 b0	IDX1	68 xb ff	rPwO frPwP	rPOw frPPw		
ASL oprx16,xysp ASL [D,xysp]	Arithmetic Shift Left	IDX2 [D,IDX]	68 xb ee ff 68 xb	fTfrPw	fIfrPw		
ASL [oprx16,xysp]	Antimetic Shift Left	[IDX2]	68 xb ee ff	fIPrPw	fIPrPw		
ASLA	Arithmetic Shift Left Accumulator A	INH	48	0	0		
ASLB	Arithmetic Shift Left Accumulator B	INH	58	0	0		
ASLD	C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH	59	0	0		ΔΔΔΔ
ASR opr16a		EXT	77 hh 11	rPwO	rOPw		ΔΔΔΔ
ASR oprx0_xysp		IDX	67 xb	rPw	rPw		
ASR oprx9,xysp	b7 b0 C	IDX1	67 xb ff	rPwO	rPOw		
ASR oprx16,xysp	1 2	IDX2	67 xb ee ff	frPwP	frPPw		
ASR [D,xysp] ASR [oprx16,xysp]	Arithmetic Shift Right	[D,IDX] [IDX2]	67 xb 67 xb ee ff	fIfrPw fIPrPw	fIfrPw fIPrPw		
ASRA	Arithmetic Shift Right Accumulator A	INH	47	O	O		
ASRB	Arithmetic Shift Right Accumulator B	INH	57	0	0		
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹	PPP/P ¹		
BCLR opr8a, msk8	$(M) \bullet (\overline{mm}) \Rightarrow M$	DIR	4D dd mm	rPwO	rPOw		ΔΔ0-
BCLR opr16a, msk8	Clear Bit(s) in Memory	EXT	1D hh ll mm	rPwP	rPPw		
BCLR oprx0_xysp, msk8		IDX	0D xb mm	rPwO	rPOw		
BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8		IDX1 IDX2	OD xb ff mm OD xb ee ff mm	rPwP frPwPO	rPwP frPwOP		
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹	PPP/P ¹		
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹	PPP/P ¹		
BGE rel8	Branch if Greater Than or Equal	REL	2C rr	PPP/P ¹	PPP/P ¹		
DGE 1810	(if N ⊕ V = 0) (signed)	KEL	20 11	PPP/P	PPP/P		
BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP	VfPPP		
BGT rel8	Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P ¹	PPP/P ¹		
BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P ¹	PPP/P ¹		
BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹	PPP/P ¹		
BITA #opr8i	(A) • (M)	IMM	85 ii	P	P		ΔΔ0-
BITA opr8a	Logical AND A with Memory	DIR	95 dd	rPf	rfP		
BITA opr16a BITA oprx0_xysp	Does not change Accumulator or Memory	EXT IDX	B5 hh 11 A5 xb	rPO rPf	rOP rfP		
BITA oprx9,xysp		IDX IDX1	A5 xb ff	rPO	rIP rPO		
BITA oprx16,xysp		IDX2	A5 xb ee ff	frPP	frPP		
BITA [D,xysp]		[D,IDX]	A5 xb	fIfrPf	fIfrfP		
BITA [oprx16,xysp]		[IDX2]	A5 xb ee ff	fIPrPf	fIPrfP		
BITB #opr8i	(B) • (M)	IMM	C5 ii	P	P		ΔΔ0-
BITB opr8a	Logical AND B with Memory	DIR	D5 dd	rPf	rfP		
BITB opr16a	Does not change Accumulator or Memory	EXT	F5 hh 11	rPO	rOP		
BITB oprx0_xysp BITB oprx9,xysp		IDX IDX1	E5 xb E5 xb ff	rPf rPO	rfP rPO		
BITB oprx16,xysp		IDX1	E5 xb ee ff	frPP	frPP		
BITB [D,xysp]		[D,IDX]	E5 xb	fIfrPf	fIfrfP		
BITB [oprx16,xysp]		[IDX2]	E5 xb ee ff	fIPrPf	fIPrfP		
BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P ¹	PPP/P ¹		
BLO rel8	Branch if Lower (if C = 1) (unsigned)	REL	25 rr	PPP/P ¹	PPP/P ¹		
	same function as BCS						
		L		<u> </u>			

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Instruction Reference

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
	·	Mode	Coding (hex)	HCS12 M68HC1	2	
BLS rel8	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	PPP/P ¹ PPP/P		
BLT rel8	Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	2D rr	PPP/P ¹ PPP/P		
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹ PPP/P		
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹ PPP/P		
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹ PPP/P		
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP PP		
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9,xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh ll mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rppp rpp rfppp rfpp rppp rpp rfppp rfppp prfppp frpffpp	; ;	
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P :		
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if $(\overline{M}) \bullet (mm) = 0$ (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh ll mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rPP rfPPP rfPP rPPP rPP rfPPP rfPPP prfPPP frPffPP	? ?	
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8	(M) + (mm) ⇒ M Set Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPwO rPO rPwP rPP rPwO rPO rPwP rPw frPwPO frPwO	v v >	ΔΔ0-
BSR rel8	$ \begin{array}{l} (SP)-2\Rightarrow SP; RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)}\\ Subroutine \ address\Rightarrow PC\\ Branch \ to \ Subroutine \end{array} $	REL	07 rr	SPPP PPP:	5	
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹ PPP/P		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹ PPP/P	1	
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D.xysp] CALL [oprx16, xysp]	$\begin{split} (SP) - 2 &\Rightarrow SP; RTN_H; RTN_L \Rightarrow M_{(SP)}; M_{(SP+1)} \\ (SP) - 1 &\Rightarrow SP; (PPG) \Rightarrow M_{(SP)}; \\ pg &\Rightarrow PPAGE \ register; \ Program \ address \Rightarrow PC \\ Call \ subroutine \ in \ extended \ memory \\ (Program \ may \ be \ located \ on \ another \\ expansion \ memory \ page.) \\ Indirect \ modes \ get \ program \ address \\ and \ new \ pg \ value \ based \ on \ pointer. \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh ll pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb ee ff	gnSsPPP gnfSsPP gnSsPPP gnfSsPP gnSsPPP gnfSsPP fgnSsPPP fgnfSsPP flignSsPPP flignSsPP flignSsPPP flignSsPP		
СВА	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00 0		ΔΔΔΔ
CLC	0 ⇒ C Translates to ANDCC #\$FE	IMM	10 FE	P :		0
CLI	0 ⇒ I Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	P	0	
CLR opr16a CLR oprx0_xysp CLR oprx9,xysp CLR oprx16,xysp CLR [0,xysp] CLR [0,xysp] CLR [0,xysp] CLR [0,xysp] CLRA CLRB	$0 \Rightarrow M$ Clear Memory Location $0 \Rightarrow A \qquad \text{Clear Accumulator A} \\ 0 \Rightarrow B \qquad \text{Clear Accumulator B}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 87 C7	0	v	0100
CLV	0 ⇒ V Translates to ANDCC #\$FD Vertical tables these evaluation are set if the large state of the set is a set in the	IMM	10 FD			0-

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	SXHI	NZVC
CMPA #opr8i CMPA opr8a CMPA opr16a CMPA oprx0_xysp CMPA oprx9_xysp CMPA oprx16,xysp CMPA [D,xysp] CMPA [Oprx16,xysp]	(A) – (M) Compare Accumulator A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	81 ii 91 dd B1 hh 11 A1 xb A1 xb ff A1 xb ee ff A1 xb ee ff	P P rPf rfp rP0 rOP rPf rfp rPO rPO frPP frPP filfrPf filfrfp filprpf filprfp		ΔΔΔΔ
CMPB #opr8i CMPB opr8a CMPB opr16a CMPB oprx0_xysp CMPB oprx9_xysp CMPB oprx16,xysp CMPB [D,xysp] CMPB [oprx16,xysp]	(B) – (M) Compare Accumulator B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C1 ii D1 dd F1 hh l1 E1 xb E1 xb ff E1 xb ee ff E1 xb E1 xb ee ff	P P rPf rfp rP0 rOP rPf rfp rP0 rp0 frPP frPP flfrpf flfrfp flprpf flprfp		ΔΔΔΔ
COM opr16a COM oprx0_xysp COM oprx9,xysp COM oprx16,xysp COM [D,xysp] COM [oprx16,xysp] COMA COMA	$\begin{array}{l} (\overline{M}) \Rightarrow M \ \ equivalent \ to \ \$FF - (M) \Rightarrow M \\ 1's \ Complement \ Memory \ Location \\ \\ (\overline{A}) \Rightarrow A \qquad Complement \ Accumulator \ A \\ (\overline{B}) \Rightarrow B \qquad Complement \ Accumulator \ B \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	71 hh ll 61 xb 61 xb ff 61 xb ee ff 61 xb 61 xb ee ff 41 51	rPwO rOPw rPw rPw rPwO rPow frPwP frPpw fifrPw fifrPw fiPrPw 0 0 0 0 0		ΔΔ01
CPD #opr16i CPD opr8a CPD opr16a CPD oprx0_xysp CPD oprx9,xysp CPD oprx16,xysp CPD [D,xysp] CPD [oprx16,xysp]	(A:B) – (M:M+1) Compare D to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jj kk 9C dd BC hh ll AC xb AC xb ff AC xb ee ff AC xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPO fRPP fRPP fifRPF fifRfP fifRPP fifRfP fifRPP fifRfP fifRPP fifRfP		ΔΔΔΔ
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysp CPS oprx9,xysp CPS oprx16,xysp CPS [D,xysp] CPS [oprx16,xysp]	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh 11 AF xb AF xb ff AF xb ee ff AF xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPO FRPP fRPP fifRPF fifRfP fipRPF fipRfP		ΔΔΔΔ
CPX #opr16i CPX opr8a CPX opr16a CPX oprx0_xysp CPX oprx9,xysp CPX oprx16,xysp CPX [D,xysp] CPX [Oprx16,xysp]	(X) – (M:M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jj kk 9E dd BE hh 11 AE xb AE xb ff AE xb ee ff AE xb AE xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPO fRPP fRPP fifRPf fifrfp fiprpf fiprfp		ΔΔΔΔ
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysp CPY oprx9,xysp CPY oprx16,xysp CPY [D,xysp] CPY [oprx16,xysp]	(Y) – (M:M+1) Compare Y to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jj kk 9D dd BD hh ll AD xb AD xb ff AD xb ee ff AD xb ee ff	PO OP RPf RfP RPO ROP RPF RfP RPO RPO fRPP fRPP fifRPf fifRfP fipRPf fipRfP		ΔΔΔΔ
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	ofo ofo		ΔΔ?Δ
DBEQ abdxys, rel9	(cntr) – 1⇒ cntr if (cntr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP PPO (no branch)		

Table A-1. Instruction Set Summary (Sheet 5 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
DBNE abdxys, rel9	(cntr) – 1 ⇒ cntr If (cntr) not = 0, then Branch; else Continue to next instruction Decrement Counter and Branch if ≠ 0	REL (9-bit)	04 lb rr	PPP (branch) PPP PPO (no branch)		
DEC opr16a DEC oprx0_xysp DEC oprx9,xysp DEC oprx16,xysp DEC [D,xysp] DEC [oprx16,xysp] DEC [oprx16,xysp] DECA DECB	$\begin{array}{l} (\text{cntr} = A, B, D, X, Y, \text{ or SP}) \\ \hline \text{(M)} - \$01 \Rightarrow M \\ \text{Decrement Memory Location} \\ \hline \\ \text{(A)} - \$01 \Rightarrow A \\ \text{(B)} - \$01 \Rightarrow B \\ \hline \end{array} \begin{array}{l} \text{Decrement A} \\ \text{Decrement B} \\ \hline \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb ee ff 43 53	rPwO rOPw rPw rPw rPw rPw rPwO rPow frPwP frPPw fifrPw fifrPw fiPrPw fiPrPw O O O		ΔΔΔ-
DES	(SP) – \$0001 ⇒ SP Translates to LEAS –1,SP	IDX	1B 9F	Pf PP ¹		
DEX	(X) – \$0001 ⇒ X Decrement Index Register X	INH	09	0 0		-Δ
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0 0		-Δ
EDIV	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11	fffffffffo ffffffffff		ΔΔΔΔ
EDIVS	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffff Offffffffff		ΔΔΔΔ
EMACS opr16a ²	$\begin{split} &(M_{(X)}:M_{(X+1)})\times (M_{(Y)}:M_{(Y+1)})+(M-M+3) \Rightarrow M-M+3\\ &16\text{ by }16\text{ Bit} \Rightarrow 32\text{ Bit}\\ &\text{Multiply and Accumulate (signed)} \end{split}$	Special	18 12 hh 11	ORROFFFRREWWP ORROFFFRREWWP		ΔΔΔΔ
EMAXD oprx0_xysp EMAXD oprx9,xysp EMAXD oprx16,xysp EMAXD [D,xysp] EMAXD [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ D MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1A xb 18 1A xb ff 18 1A xb ee ff 18 1A xb 18 1A xb	ORPF ORFP ORPO ORPO OFRPP OFRPP OfITRPF OFIFRFF OFIPRPF OFIPRFP		ΔΔΔΔ
EMAXM oprx0_xysp EMAXM oprx9,xysp EMAXM oprx16,xysp EMAXM [D,xysp] EMAXM [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ M:M+1 MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1E xb 18 1E xb ff 18 1E xb ee ff 18 1E xb 18 1E xb	ORPW ORPW ORPWO ORPWO OFRPWP OFFRPW OFIFRPW OFIFRPW OFIPRPW OFIPRPW		ΔΔΔΔ
EMIND oprx0_xysp EMIND oprx9,xysp EMIND oprx16,xysp EMIND [D,xysp] EMIND [oprx16,xysp]	MIN((D), (M:M+1)) \Rightarrow D MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1B xb 18 1B xb ff 18 1B xb ee ff 18 1B xb 18 1B xb ee ff	ORPF ORFP ORPO ORPO OFRPP OFRPP OfIFRPF OFIFRFF OFIPRPF OFIPRFP		ΔΔΔΔ
EMINM oprx0_xysp EMINM oprx9,xysp EMINM oprx16,xysp EMINM [D,xysp] EMINM [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ M:M+1 MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1F xb 18 1F xb ff 18 1F xb ee ff 18 1F xb 18 1F xb	ORPW ORPW ORPWO ORPWO OfFRPWP OfRPWP OfIfRPW OfIfRPW OfIPRPW OfIPRPW		ΔΔΔΔ
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13	ffo ffo		ΔΔ-Δ
EMULS	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (signed)	INH	18 13	OfO OfO (if followed by page 2 instruction) OffO OfO		ΔΔ-Δ
EORA #opr8i EORA opr8a EORA opr16a EORA oprx0_xysp EORA oprx16,xysp EORA [D,xysp] EORA [oprx16,xysp]	$(A) \oplus (M) \Rightarrow A$ Exclusive-OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	88 ii 98 dd B8 hh ll A8 xb A8 xb ff A8 xb ee ff A8 xb A8 xb ee ff	P P rPf rfp rPO rOP rPf rfp rPO rPO frPP frPP fifrPf fifrfp fIPrpf fiPrfp		ΔΔ0-

<sup>Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.</sup>

Table A-1. Instruction Set Summary (Sheet 6 of 14)

Source Form	Operation	Addr.	Machine	Acces	s Detail	SXHI	NZVC
Source I offin	Ореганоп	Mode	Coding (hex)	HCS12	M68HC12	3 × 111	112 7 0
EORB #opr8i	$(B) \oplus (M) \Rightarrow B$	IMM	C8 ii	P	P		ΔΔ0-
EORB opr8a	Exclusive-OR B with Memory	DIR	D8 dd	rPf	rfP		
EORB opr16a		EXT	F8 hh 11	rPO	rOP		
EORB oprx0_xysp		IDX	E8 xb	rPf	rfP		
EORB oprx9,xysp		IDX1	E8 xb ff	rPO	rPO		
EORB oprx16,xysp		IDX2	E8 xb ee ff	frPP	frPP		
EORB [D,xysp]		[D,IDX]	E8 xb E8 xb ee ff	fIfrPf fIPrPf	fIfrfP fIPrfP		
EORB [oprx16,xysp]	(444.4) ((2) ((44.044.6) (444.4))	[IDX2]					
ETBL oprx0_xysp	$(M:M+1)+[(B)\times((M+2:M+3)-(M:M+1))] \Rightarrow D$ 16-Bit Table Lookup and Interpolate	IDX	18 3F xb	ORRffffffp	ORRffffff		$\begin{array}{ c c c } \Delta \Delta - \Delta & ? \\ \hline ? & ? \\ \end{array}$
	Initialize B, and index before ETBL.						ındefined
	<ea> points at first table entry (M:M+1)</ea>					ın ⊦	IC12
	and B is fractional part of lookup value						
	(no indirect addr. modes or extensions allowed)						
EXG abcdxys,abcdxys	$(r1) \Leftrightarrow (r2)$ (if r1 and r2 same size) or	INH	B7 eb	P	P		
	$\$00:(r1) \Rightarrow r2$ (if $r1=8$ -bit; $r2=16$ -bit) or						
	$(r1_{low}) \Leftrightarrow (r2)$ (if $r1=16$ -bit; $r2=8$ -bit)						
	-1 d -2 h -						
	r1 and r2 may be A, B, CCR, D, X, Y, or SP						
FDIV	$(D) \div (X) \Rightarrow X; Remainder \Rightarrow D$	INH	18 11	Offfffffff	Offfffffff		-ΔΔΔ
	16 by 16 Bit Fractional Divide	IIIII	10 11	OTTITITIO	OIIIIIIIIIO		-444
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr	REL	04 lb rr	PPP (branch)	PPP		
IDEC abanyo, roio	If (cntr) = 0, then Branch	(9-bit)	01 10 11	PPO (no branch)			
	else Continue to next instruction	(1.2.9)		,			
	Increment Counter and Branch if = 0						
	(cntr = A, B, D, X, Y, or SP)						
IBNE abdxys, rel9	(cntr) + 1⇒ cntr	REL	04 lb rr	PPP (branch)	PPP		
	if (cntr) not = 0, then Branch;	(9-bit)		PPO (no branch)			
	else Continue to next instruction						
	Increment Counter and Branch if ≠ 0						
	(cntr = A, B, D, X, Y, or SP)						
IDIV	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$	INH	18 10	Offffffffff	Offfffffffo		- Δ 0 Δ
	16 by 16 Bit Integer Divide (unsigned)						
IDIVS	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$	INH	18 15	Offffffffff	OfffffffffO		ΔΔΔΔ
	16 by 16 Bit Integer Divide (signed)						
INC opr16a	(M) + \$01 ⇒ M	EXT	72 hh 11	rPwO	rOPw		ΔΔΔ-
INC oprx0_xysp	Increment Memory Byte	IDX	62 xb	rPw	rPw		
INC oprx9,xysp		IDX1	62 xb ff	rPwO	rPOw		
INC oprx16,xysp		IDX2	62 xb ee ff	frPwP	frPPw		
INC [D,xysp]		[D,IDX]	62 xb	fIfrPw	fIfrPw		
INC [oprx16,xysp]	(1) 404 4	[IDX2]	62 xb ee ff	fIPrPw	fIPrPw		
INCA	(A) + \$01 ⇒ A Increment Acc. A	INH	42	0	0		
INCB	(B) + \$01 ⇒ B Increment Acc. B	INH	52	0	0		
INS	(SP) + \$0001 ⇒ SP Translates to LEAS 1,SP	IDX	1B 81	Pf	PP^1		
INX	$(X) + \$0001 \Rightarrow X$	INH	08	0	0		-Δ
IINA	(X) + \$0001 ⇒ X Increment Index Register X	IINH	08	0	0		-Δ
INY	(Y) + \$0001 ⇒ Y	INIII	100				Α
IINY	(Y) + \$000 I ⇒ Y Increment Index Register Y	INH	02	0	0		-Δ
JMP opr16a	Routine address ⇒ PC	EXT	06 hh 11	PPP	PPP		
JMP oprx0_xysp	Troughe address — 1 C	IDX	05 xb	PPP	PPP		
JMP oprx9,xysp	Jump	IDX1	05 xb ff	PPP	PPP		
JMP oprx16,xysp		IDX1	05 xb ee ff	fPPP	fPPP		
JMP [D,xysp]		[D,IDX]	05 xb	fIfPPP	fIfPPP		
JMP [oprx16,xysp]		[IDX2]	05 xb ee ff	fIfPPP	fIfPPP		
<u> </u>			1				

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Source Form	Operation	Addr.	Machine	Acces	ss Detail	SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	3 7 11 1	NZVC
JSR opr8a	(SP) – 2 ⇒ SP;	DIR	17 dd	SPPP	PPPS		
JSR opr16a JSR oprx0_xysp	$RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)};$ Subroutine address $\Rightarrow PC$	EXT IDX	16 hh ll 15 xb	SPPP PPPS	PPPS PPPS		
JSR oprx9,xysp	Subrodine address \rightarrow 1 C	IDX1	15 xb ff	PPPS	PPPS		
JSR oprx16,xysp	Jump to Subroutine	IDX2	15 xb ee ff	fPPPS	fPPPS		
JSR [D,xysp]		[D,IDX]	15 xb	fIfPPPS	fIfPPPS		
JSR [oprx16,xysp] LBCC rel16	Long Branch if Carry Clear (if C = 0)	[IDX2] REL	15 xb ee ff	fIfPPPS OPPP/OPO ¹	fIfPPPS OPPP/OPO ¹		
	3		18 24 qq rr	OPPP/OPO ¹			
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr		OPPP/OPO ¹		
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGE rel16	Long Branch Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	18 2C qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLT rel16	Long Branch if Less Than (if N \oplus V = 1) (signed)	REL	18 2D qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	OPPP/OPO1		
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LDAA #opr8i	(M) ⇒ A	IMM	86 ii	P	P		ΔΔ0-
LDAA opr8a	Load Accumulator A	DIR	96 dd	rPf	rfP		
LDAA opr16a		EXT	B6 hh ll	rPO	rOP		
LDAA oprx0_xysp LDAA oprx9,xysp		IDX IDX1	A6 xb A6 xb ff	rPf rPO	rfP rPO		
LDAA oprx16,xysp		IDX1	A6 xb ee ff	frPP	frPP		
LDAA [D,xysp]		[D,IDX]	A6 xb	fIfrPf	fIfrfP		
LDAA [oprx16,xysp]		[IDX2]	A6 xb ee ff	fIPrPf	fIPrfP		
LDAB #opr8i	$(M) \Rightarrow B$	IMM	C6 ii	P	P		ΔΔ0-
LDAB opr8a	Load Accumulator B	DIR	D6 dd	rPf	rfP		
LDAB opr16a		EXT	F6 hh ll	rPO	rOP		
LDAB oprx0_xysp		IDX	E6 xb	rPf	rfP		
LDAB oprx9,xysp		IDX1	E6 xb ff	rPO	rPO		
LDAB (D. vyca)		IDX2	E6 xb ee ff E6 xb	frPP	frPP		
LDAB [D,xysp] LDAB [oprx16,xysp]		[D,IDX] [IDX2]	E6 xb ee ff	fIfrPf fIPrPf	fIfrfP fIPrfP		
LDD #opr16i	(M:M+1) ⇒ A:B	IMM	CC jj kk	PO	OP		ΔΔ0-
LDD #opr8a	Load Double Accumulator D (A:B)	DIR	DC dd	RPf	RfP		440-
LDD opr16a		EXT	FC hh 11	RPO	ROP		
LDD oprx0_xysp		IDX	EC xb	RPf	RfP		
LDD oprx9,xysp		IDX1	EC xb ff	RPO	RPO		
LDD oprx16,xysp		IDX2	EC xb ee ff	fRPP	fRPP		
LDD [D,xysp]		[D,IDX]	EC xb	fIfRPf	fIfRfP		
LDD [oprx16,xysp]	this instruction takes four evoles to refill the instruction question	[IDX2]	EC xb ee ff	fIPRPf	fIPRfP		

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 8 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	M68HC12	SXHI	NZVC
LDS #opr16i LDS opr8a LDS opr16a LDS oprx0_xysp LDS oprx9,xysp LDS oprx16,xysp LDS [D,xysp] LDS [Oprx16,xysp]	(M:M+1) ⇒ SP Load Stack Pointer	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CF jj kk DF dd FF hh ll EF xb EF xb ff EF xb ee ff EF xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPF fIPRPF	OP RfP ROP RfP RPO fRPP fIfRfP		ΔΔ0-
LDX #opr16i LDX opr16a LDX opr16a LDX opr16a LDX oprx0_xysp LDX oprx30_xysp LDX oprx16,xysp LDX [D,xysp] LDX [Oprx16,xysp] LDX [oprx16,xysp]	(M:M+1) ⇒ X Load Index Register X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CE jj kk DE dd FE hh ll EE xb EE xb ff EE xb ee ff EE xb ee ff	PO RPf RPO RPf RPO fRPP fifRPF fifRPF fipRPf	OP RfP ROP RfP RPO fRPP fifRfP		ΔΔ0-
LDY #opr16i LDY opr8a LDY opr16a LDY oprx9_xysp LDY oprx9_xysp LDY porx16_xysp LDY [D,xysp] LDY [oprx16,xysp]	(M:M+1) ⇒ Y Load Index Register Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CD jj kk DD dd FD hh ll ED xb ED xb ff ED xb ee ff ED xb ED xb ee ff	PO RPf RPO RPf RPO fRPP fifRPF fiprPf	OP RfP ROP RfP RPO fRPP fIfRfP		ΔΔΟ-
LEAS oprx0_xysp LEAS oprx9,xysp LEAS oprx16,xysp	Effective Address ⇒ SP Load Effective Address into SP	IDX IDX1 IDX2	1B xb 1B xb ff 1B xb ee ff	Pf PO PP	PP ¹ PO PP		
LEAX oprx0_xysp LEAX oprx9,xysp LEAX oprx16,xysp	Effective Address ⇒ X Load Effective Address into X	IDX IDX1 IDX2	1A xb 1A xb ff 1A xb ee ff	Pf PO PP	PP ¹ PO PP		
LEAY oprx0_xysp LEAY oprx9,xysp LEAY oprx16,xysp	Effective Address ⇒ Y Load Effective Address into Y	IDX IDX1 IDX2	19 xb 19 xb ff 19 xb ee ff	Pf PO PP	PP ¹ PO PP		
LSL opr16a LSL oprx0_xysp LSL oprx16,xysp LSL [D,xysp] LSL [oprx16,xysp] LSL [oprx16,xysp] LSLA LSLA	C b7 b0 Logical Shift Left same function as ASL Logical Shift Accumulator A to Left Logical Shift Accumulator B to Left	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48 58	rPwO rPw rPwO frPPw fIfrPw fIFrPw O O	rOPw rPw rPOw frPPw fIfrPw fIPrPw O		ΔΔΔΔ
LSLD	C b7 A b0 b7 B b0 Logical Shift Left D Accumulator same function as ASLD	INH	59	0	0		ΔΔΔΔ
LSR opr16a LSR oprx0_xysp LSR oprx16,xysp LSR [D,xysp] LSR [D,xysp] LSR [oprx16,xysp] LSRA LSRB	0 b7 Logical Shift Right Logical Shift Accumulator A to Right Logical Shift Accumulator B to Right	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	74 hh 11 64 xb 64 xb ff 64 xb ee ff 64 xb ee ff 64 xb ee ff 44 54	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	rOPw rPw rPOw frPPw fIfrPw fIPrPw O		Ο Δ Δ Δ
LSRD	0 - O - O - O - O - O - O - O - O - O -	INH	49	О	0		Ο Δ Δ Δ
MAXA oprx0_xysp MAXA oprx9,xysp MAXA oprx16,xysp MAXA [D,xysp] MAXA [oprx16,xysp]	MAX((A), (M)) \Rightarrow A MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 18 xb 18 18 xb ff 18 18 xb ee ff 18 18 xb 18 18 xb	1	OrfP OrPO OfrPP OfIfrfP OfIPrfP		ΔΔΔΔ

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Instruction Reference

Table A-1. Instruction Set Summary (Sheet 9 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detai	M68HC12	SXHI	NZVC
MAXM oprx0_xysp MAXM oprx9,xysp MAXM oprx16,xysp MAXM [D,xysp] MAXM [oprx16,xysp]	MAX((A), (M)) ⇒ M MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw		ΔΔΔΔ
МЕМ	$\begin{array}{l} \mu \ (\text{grade}) \Rightarrow M_{(Y)}; \\ (X) + 4 \Rightarrow X; \ (Y) + 1 \Rightarrow Y; \ A \ unchanged \\ \text{if } (A) < P1 \ or \ (A) > P2 \ then \ \mu = 0, \ else \\ \mu = MINI((A) - P1) \times S1, \ (P2 - (A)) \times S2, \ FF] \\ \text{where:} \\ A = \text{current crisp input value;} \\ X \ points \ at \ 4 - byte \ data \ structure \ that \ describes \ a \ trapezoidal \ membership function \ (P1, P2, S1, S2); \\ Y \ points \ at \ fuzzy \ input \ (RAM \ location). \\ \text{See } \ \textit{CPU12 Reference Manual for special cases.} \end{array}$	Special	01	RRFOW	RRfOw	?-	????
MINA oprx0_xysp MINA oprx9,xysp MINA oprx16,xysp MINA [D,xysp] MINA [oprx16,xysp]	$\begin{aligned} & MIN((A), (M)) \Rightarrow A \\ & MIN \text{ of 2 Unsigned 8-Bit Values} \\ & N, Z, V \text{ and C status bits reflect result of internal compare ((A) – (M)).} \end{aligned}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb 18 19 xb ee ff	OrPf OrPO OfrPP OfIfrPf OfIPrPf	OrfP OrPO OfrPP OfIfrfP OfIPrfP		ΔΔΔΔ
MINM oprx0_xysp MINM oprx9,xysp MINM oprx16,xysp MINM [D,xysp] MINM [oprx16,xysp]	$\begin{split} & \text{MIN}((A), (M)) \Longrightarrow M \\ & \text{MIN of 2 Unsigned 8-Bit Values} \\ & \text{N, Z, V and C status bits reflect result of internal compare ((A) – (M)).} \end{split}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb ee ff 18 1D xb ee ff	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw		ΔΔΔΔ
MOVB #opr8, opr16a ¹ MOVB #opr8i, oprx0_xysp ¹ MOVB opr16a, opr16a ¹ MOVB opr16a, oprx0_xysp ¹ MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹	$(M_1) \Rightarrow M_2$ Memory to Memory Byte-Move (8-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 09 xb hh ll 18 0D xb hh ll	OPWP OPWO OrPWPO OPPW OPPW OrPWPO OPPWO	OPwP OPwO OrPwPO OPrPw OrPwP OrPwO		
MOVW #oprx16, opr16a ¹ MOVW #opr16i, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW oprx0_xysp, opr16a ¹ MOVW oprx0_xysp, oprx0_xysp ¹	(M:M+1 ₁) ⇒ M:M+1 ₂ Memory to Memory Word-Move (16-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX		OPWPO OPPW ORPWPO OPRPW ORPWP ORPWO	OPWPO OPPW ORPWPO OPRPW ORPWP ORPWO		
MUL	$(A) \times (B) \Rightarrow A:B$ 8 by 8 Unsigned Multiply	INH	12	0	ffO		Δ
NEG opr16a NEG oprx0_xysp NEG oprx9,xysp NEG oprx16,xysp NEG [D,xysp] NEG [oprx16,xysp] NEGA	$\begin{array}{l} 0-(M)\Rightarrow M \ \ equivalent \ to \ (\overline{M})+1\Rightarrow M \\ Two's \ Complement \ Negate \\ \\ 0-(A)\Rightarrow A \ \ equivalent \ to \ (\overline{A})+1\Rightarrow A \\ Negate \ Accumulator \ A \\ 0-(B)\Rightarrow B \ \ equivalent \ to \ (\overline{B})+1\Rightarrow B \\ Negate \ Accumulator \ B \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	70 hh 11 60 xb 60 xb ff 60 xb ee ff 60 xb 60 xb ee ff 40	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	rOPw rPw rPOw frPPw fIfrPw fIPrPw O		ΔΔΔΔ
NOP	No Operation	INH	A7	0	0		
ORAA #opr8i ORAA opr8a ORAA opr16a ORAA opr02.xysp ORAA oprx9.xysp ORAA oprx16.xysp ORAA [D,xysp] ORAA [oprx16.xysp]	(A) + (M) ⇒ A Logical OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8A ii 9A dd BA hh ll AA xb AA xb ff AA xb ee ff AA xb AA xb ee ff	P rPf rPO rPf rPO frpP fIfrPf fIPrPf	P rfP rOP rfP rPO frPP fIfrfP		ΔΔΟ-

Note 1. The first operand in the source code statement specifies the source for the move.

Table A-1. Instruction Set Summary (Sheet 10 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	SXHI	NZVC
0040 " 0"			• • •	HCS12 M68HC12		
ORAB #opr8i ORAB opr8a	$(B) + (M) \Rightarrow B$ Logical OR B with Memory	IMM DIR	CA ii DA dd	P P		ΔΔ0-
ORAB opr16a	Logical OK B with Memory	EXT	FA hh 11	rPO rOP		
ORAB oprx0_xysp		IDX	EA xb	rPf rfP		
ORAB oprx9,xysp		IDX1	EA xb ff	rPO rPO		
ORAB oprx16,xysp		IDX2	EA xb ee ff	frPP frPP		
ORAB [D,xysp]		[D,IDX]	EA xb	fIfrPf fIfrfP		
ORAB [oprx16,xysp]		[IDX2]	EA xb ee ff	fIPrPf fIPrfP		
ORCC #opr8i	(CCR) + M ⇒ CCR Logical OR CCR with Memory	IMM	14 ii	P P	1 - 1 1	$\uparrow\uparrow\uparrow\uparrow\uparrow$
PSHA	$(SP) - 1 \Rightarrow SP; (A) \Rightarrow M_{(SP)}$ Push Accumulator A onto Stack	INH	36	Os Os		
PSHB	$(SP) - 1 \Rightarrow SP$; $(B) \Rightarrow M_{(SP)}$ Push Accumulator B onto Stack	INH	37	Os Os		
PSHC	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$ Push CCR onto Stack	INH	39	Os Os		
PSHD	$(SP) - 2 \Rightarrow SP$; $(A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push D Accumulator onto Stack	INH	3B	os os		
PSHX	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register X onto Stack	INH	34	os os		
PSHY	$(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register Y onto Stack	INH	35	os os		
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	ufO ufO		
PULB	$(M_{(SP)}) \Rightarrow B$; $(SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	ufO ufO		
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	ufO ufO	$\Delta \Downarrow \Delta \Delta$	ΔΔΔΔ
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO UfO		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO UfO		
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L: (SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO UfO		
REV	MIN-MAX rule evaluation	Special	18 3A	Orf(t,tx)O Orf(t,tx)O	?-	??∆?
	Find smallest rule input (MIN).			(exit + re-entry replaces comma	1	
	Store to rule outputs unless fuzzy output is already larger			above if interrupted)		
	(MAX).			ff + Orf(t, ff + Orf(t,		
	For rule weights see REVW.					
	Each rule input is an 8-bit offset from the base address in Y.					
	Each rule output is an 8-bit offset from the base address in Y.					
	\$FE separates rule inputs from rule outputs. \$FF terminates the rule list.					
	REV may be interrupted.					
REVW	MIN-MAX rule evaluation	Special	18 3B	ORf(t,Tx)O ORf(t,Tx)O	?-	??Δ!
	Find smallest rule input (MIN),			(loop to read weight if enabled)		
	Store to rule outputs unless fuzzy output is already larger			(r,RfRf) (r,RfRf)		
	(MAX).				1	
	Rule weights supported, optional.			(exit + re-entry replaces comma above if interrupted)		
				ffff + ORf(t, fff + ORf(t,		
	Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list.			TILL ORIGINAL TORING,		
	REVW may be interrupted.					
	, '		I .	1		

Table A-1. Instruction Set Summary (Sheet 11 of 14)

	0	Addr.	Machine	Access Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC12	SXHI	NZVC
ROL opr16a		EXT	75 hh 11	rPwO rOPw		ΔΔΔΔ
ROL oprx0_xysp		IDX	65 xb	rPw rPw		
ROL oprx9,xysp	C b7 b0	IDX1	65 xb ff	rPwO rPOw	1	
ROL oprx16,xysp	Rotate Memory Left through Carry	IDX2	65 xb ee ff	frPwP frPPw	1	
ROL [D,xysp]		[D,IDX]	65 xb	fIfrPw fIfrPw		
ROL [oprx16,xysp]	Detete A Left there werk Commi	[IDX2]	65 xb ee ff	fIPrPw fIPrPw		
ROLA ROLB	Rotate A Left through Carry Rotate B Left through Carry	INH INH	45 55			
ROR opr16a		EXT	76 hh 11	rPwO rOPw		ΔΔΔΔ
ROR oprx0_xysp		IDX	66 xb	rPw rPw		
ROR oprx9,xysp	b7 b0 C	IDX1	66 xb ff	rPwO rPOw	1	
ROR oprx16,xysp	Rotate Memory Right through Carry	IDX2	66 xb ee ff	frPwP frPPw	1	
ROR [D,xysp]	,g,	[D,IDX]	66 xb	fIfrPw fIfrPw	1	
ROR [oprx16,xysp]		[IDX2]	66 xb ee ff	fIPrPw fIPrPw	1	
RORA	Rotate A Right through Carry	INH	46	0 0		
RORB	Rotate B Right through Carry	INH	56	0 0	1	
RTC	$(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP;$	INH	0A	uUnfPPP uUnPPP		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$ $(SP) + 2 \Rightarrow SP$					
	Return from Call					
RTI	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$	INH	0B	uUUUUPPP uUUUUPPP	Δ↓ΔΔ	ΔΔΔΔ
	$(M_{(SP)}^{(SP)}:M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP$			(with interrupt pending)	1	
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 4 \Rightarrow SP$			1 ' ' ' '		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L: (SP) - 2 \Rightarrow SP$			uUUUUVfPPP uUUUUfVfPPF		
	$\begin{array}{l} (M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_{H}:PC_{L}:(SP)-2 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_{H}:Y_{L}:(SP)+4 \Rightarrow SP \\ \text{Return from Interrupt} \end{array}$					
RTS	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$	INH	3D	UfPPP UfPPP		
KIS	$(W(SP) \cdot W(SP+1)) \rightarrow FCH \cdot FCL$ $(SP) + 2 \Rightarrow SP$	IIVII	ענ	OLPPP		
	Return from Subroutine					
SBA	(A) – (B) ⇒ A	INH	18 16	00 00		ΔΔΔΔ
	Subtract B from A					
SBCA #opr8i	$(A) - (M) - C \Rightarrow A$	IMM	82 ii	P F		ΔΔΔΔ
SBCA opr8a	Subtract with Borrow from A	DIR	92 dd	rPf rfF		
SBCA opr16a		EXT	B2 hh 11	rPO rOF		
SBCA oprx0_xysp		IDX	A2 xb	rPf rfF		
SBCA oprx9,xysp		IDX1	A2 xb ff	rPO rPC		
SBCA oprx16,xysp		IDX2	A2 xb ee ff	frPP frPP		
SBCA [D,xysp]		[D,IDX]	A2 xb	fIfrPf fIfrfF		
SBCA [oprx16,xysp]		[IDX2]	A2 xb ee ff	fIPrPf fIPrfF		
SBCB #opr8i	(B) – (M) – C ⇒ B	IMM	C2 ii	P P	1	ΔΔΔΔ
SBCB opr8a	Subtract with Borrow from B	DIR	D2 dd	rPf rfF	1	
SBCB opr16a		EXT	F2 hh 11	rPO rOF		
SBCB oprx0_xysp		IDX	E2 xb	rPf rfF		
SBCB oprx9,xysp		IDX1	E2 xb ff	rPO rPC		
SBCB oprx16,xysp		IDX2	E2 xb ee ff	frPP frPP		
SBCB [D,xysp]		[D,IDX]	E2 xb	fIfrPf fIfrfF		
SBCB [oprx16,xysp]		[IDX2]	E2 xb ee ff	fIPrPf fIPrfF		
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P F		1
SEI	1 ⇒ I; (inhibit I interrupts) <i>Translates to</i> ORCC #\$10	IMM	14 10	P F	1	
SEV	1 ⇒ V	IMM	14 02	P P		1-
SEV aha daya	Translates to ORCC #\$02	1811.1	D7 ob	P F		
SEX abc,dxys	$\$00:(r1) \Rightarrow r2 \text{ if } r1, \text{ bit } 7 \text{ is } 0 \text{ or}$ $\$FF:(r1) \Rightarrow r2 \text{ if } r1, \text{ bit } 7 \text{ is } 1$	INH	B7 eb	P F		
	Sign Extend 8-bit r1 to 16-bit r2					
	r1 may be A, B, or CCR				1	
	r2 may be D, X, Y, or SP					
	Alternate mnemonic for TFR r1, r2					

Table A-1. Instruction Set Summary (Sheet 12 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)		ccess Detail	SXHI	NZVC
STAA opr8a	$(A) \Rightarrow M$	DIR	5A dd	HCS12	M68HC12		ΔΔ0-
STAA opr16a	Store Accumulator A to Memory	EXT	7A hh 11	PwO PwO	Pw wOP		
STAA oprx0_xysp	,	IDX	6A xb	Pw	Pw		
STAA oprx9,xysp		IDX1	6A xb ff	PwO	PwO		
STAA oprx16,xysp		IDX2	6A xb ee ff	PwP	PwP		
STAA [D,xysp]		[D,IDX] [IDX2]	6A xb 6A xb ee ff	PIfw	PIfPw		
STAA [oprx16,xysp]	(D) . M			PIPw	PIPPw		4.4.0
STAB opr8a STAB opr16a	(B) ⇒ M Store Accumulator B to Memory	DIR EXT	5B dd 7B hh 11	Pw PwO	Pw wop		ΔΔ0-
STAB oprx0_xysp	Store Accumulator B to Memory	IDX	6B xb	Pw	Pw		
STAB oprx9,xysp		IDX1	6B xb ff	PwO	PwO		
STAB oprx16,xysp		IDX2	6B xb ee ff	PwP	PwP		
STAB [D,xysp]		[D,IDX]	6B xb	PIfw	PIfPw		
STAB [oprx16,xysp]		[IDX2]	6B xb ee ff	PIPw	PIPPw		
STD opr8a	$(A) \Rightarrow M$, $(B) \Rightarrow M+1$	DIR	5C dd	PW	PW		ΔΔ0-
STD opr16a STD oprx0_xysp	Store Double Accumulator	EXT IDX	7C hh 11 6C xb	PWO PW	WOP PW		
STD oprx9,xysp		IDX1	6C xb ff	PWO	PWO		
STD oprx16,xysp		IDX2	6C xb ee ff	PWP	PWP		
STD [D,xysp]		[D,IDX]	6C xb	PIfW	PIfPW		
STD [oprx16,xysp]		[IDX2]	6C xb ee ff	PIPW	PIPPW		
STOP	$(SP) - 2 \Rightarrow SP$;	INH	18 3E	(er	ntering STOP)		
	$\begin{array}{l} RTN_H : RTN_L \Longrightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Longrightarrow SP; \ (Y_H : Y_L) \Longrightarrow M_{(SP)} : M_{(SP+1)}; \end{array}$			OOSSSSsf	OOSSSfSs		
	$(SP) - 2 \Rightarrow SP$, $(Y_H, Y_L) \Rightarrow M(SP) \cdot M(SP+1)$, $(SP) - 2 \Rightarrow SP$; $(X_H; X_L) \Rightarrow M_{(SP)} \cdot M_{(SP+1)}$;			(e	xiting STOP)		
	$(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)};$			fVfPPP	fVfPPP		
	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)};$				(continue)		
	STOP All Clocks				` '		
	Registers stacked to allow quicker recovery by interrupt.			ff	fO		
	Registers stacked to allow quicker recovery by interrupt.			(if S	TOP disabled)		
	If S control bit = 1, the STOP instruction is disabled and acts like a two-cycle NOP.			00	00		
STS opr8a	$(SP_H:SP_I) \Rightarrow M:M+1$	DIR	5F dd	PW	PW		ΔΔ0-
STS opr16a	Store Stack Pointer	EXT	7F hh 11	PWO	WOP		
STS oprx0_xysp		IDX	6F xb	PW	PW		
STS oprx9,xysp		IDX1	6F xb ff	PWO	PWO		
STS oprx16,xysp		IDX2	6F xb ee ff	PWP	PWP		
STS [D,xysp] STS [oprx16,xysp]		[D,IDX] [IDX2]	6F xb 6F xb ee ff	PIfW PIPW	PIfPW PIPPW		
STX opr8a	$(X_H; X_I) \Rightarrow M:M+1$	DIR	5E dd	PW			ΔΔ0-
STX opr16a	(∧ _H ,∧ _L) ⇒ M:M+1 Store Index Register X	EXT	7E hh 11	PWO	PW WOP		ΔΔ0-
STX oprvo xysp	Store index register A	IDX	6E xb	PW	PW		
STX oprx9,xysp		IDX1	6E xb ff	PWO	PWO		
STX oprx16,xysp		IDX2	6E xb ee ff	PWP	PWP		
STX [D,xysp]		[D,IDX]	6E xb	PIfW	PIfPW		
STX [oprx16,xysp]		[IDX2]	6E xb ee ff	PIPW	PIPPW		
STY opr8a	$(Y_H:Y_L) \Rightarrow M:M+1$	DIR	5D dd	PW	PW		ΔΔ0-
STY opr16a STY oprx0_xysp	Store Index Register Y	EXT IDX	7D hh 11 6D xb	PWO PW	WOP PW		
STY oprx9,xysp		IDX1	6D xb ff	PWO	PWO		
STY oprx16,xysp		IDX2	6D xb ee ff	PWP	PWP		
STY [D,xysp]		[D,IDX]	6D xb	PIfW	PIfPW		
STY [oprx16,xysp]		[IDX2]	6D xb ee ff	PIPW	PIPPW		
SUBA #opr8i	$(A) - (M) \Rightarrow A$	IMM	80 ii	P	P		
SUBA opr8a SUBA opr16a	Subtract Memory from Accumulator A	DIR EXT	90 dd B0 hh 11	rPf rPO	rfP		
SUBA oprx0_xysp		IDX	A0 xb	rPf	rOP rfP		
SUBA oprx9,xysp		IDX1	A0 xb ff	rPO	rPO		
SUBA oprx16,xysp		IDX2	A0 xb ee ff	frPP	frPP		
SUBA [D,xysp]		[D,IDX]	A0 xb	fIfrPf	fIfrfP		
SUBA [oprx16,xysp]		[IDX2]	A0 xb ee ff	fIPrPf	fIPrfP		

Instruction Reference

Table A-1. Instruction Set Summary (Sheet 13 of 14)

Source Form	Operation	Addr.	Machine	Access I	Detail	SXHI	NZVC
oodi oo i oiiii	·	Mode	Coding (hex)	HCS12	M68HC12	O X III	
SUBB #opr8i	$(B) - (M) \Rightarrow B$	IMM	CO ii	P	P		ΔΔΔΔ
SUBB opr8a	Subtract Memory from Accumulator B	DIR	D0 dd	rPf rPO	rfP		
SUBB opr16a SUBB oprx0_xysp		EXT IDX	F0 hh ll E0 xb	rPf	rOP rfP		
SUBB oprx9,xysp		IDX1	E0 xb ff	rPO	rPO		
SUBB oprx16,xysp		IDX1	E0 xb ee ff	frPP	frPP		
SUBB [D,xysp]		[D,IDX]	E0 xb	fIfrPf	fIfrfP		
SUBB [oprx16,xysp]		[IDX2]	E0 xb ee ff	fIPrPf	fIPrfP		
SUBD #opr16i	(D) – (M:M+1) ⇒ D	IMM	83 jj kk	PO	OP		ΔΔΔΔ
SUBD opr8a	Subtract Memory from D (A:B)	DIR	93 dd	RPf	RfP		
SUBD opr16a		EXT	B3 hh 11	RPO	ROP		
SUBD oprx0_xysp		IDX	A3 xb	RPf	RfP		
SUBD oprx9,xysp		IDX1	A3 xb ff	RPO	RPO		
SUBD oprx16,xysp		IDX2	A3 xb ee ff	fRPP	fRPP		
SUBD [D,xysp]		[D,IDX]	A3 xb	fIfRPf	fIfRfP		
SUBD [oprx16,xysp]		[IDX2]	A3 xb ee ff	fIPRPf	fIPRfP		
SWI	$(SP) - 2 \Rightarrow SP;$	INH	3F	VSPSSPSsP*	VSPSSPSsP*	1	
	$\begin{aligned} &RTN_H : RTN_L \Longrightarrow M_{(SP)} : M_{(SP+1)};\\ &(SP) - 2 \Longrightarrow SP; \ (Y_H : Y_L) \Longrightarrow M_{(SP)} : M_{(SP+1)}; \end{aligned}$			(for Re	eset)		
	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SD)}:M_{(SD+1)};$			VfPPP	VfPPP	11-1	
	$(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)};$						
	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$						
	1 ⇒ I; (SWI Vector) ⇒ PC						
	Software Interrupt						
*The CPU also uses the SWI mi	crocode sequence for hardware interrupts and unimplemented o	pcode trap	s. Reset uses the Vfpp	variation of this sequen	ice.		•
TAB	$(A) \Rightarrow B$	INH	18 OE	00	00		ΔΔ0-
	Transfer A to B						
TAP	$(A) \Rightarrow CCR$	INH	B7 02	P	P	Δ↓ΔΔ	ΔΔΔΔ
	Translates to TFR A , CCR						
TBA	(B) ⇒ A Transfer B to A	INH	18 OF	00	00		ΔΔ0-
TBEQ abdxys,rel9	If (cntr) = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
	else Continue to next instruction	(9-bit)		PPO (no branch)			
	Toot Country and Dranch if Zoro						
	Test Counter and Branch if Zero (cntr = A, B, D, X,Y, or SP)						
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$	IDX	18 3D xb	ORfffP	OrrffffP		ΔΔ-Δ
	8-Bit Table Lookup and Interpolate	IDX	10 3D AD	OKITII	OTTITI		?
						C Bit is u	ı ındefined
	Initialize B, and index before TBL.						IC12
	<ea> points at first 8-bit table entry (M) and B is fractional part</ea>						I
	of lookup value.						
	(no indirect addressing modes or extensions allowed)						
TBNE abdxys,rel9	If (cntr) not = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
, , , , , , , , , , , , , , , , , , ,	else Continue to next instruction	(9-bit)		PPO (no branch)			
	Test Counter and Branch if Not Zero						
TFR abcdxys,abcdxys	(cntr = A, B, D, X,Y, or SP)	INIII	D7 ob	P	P		
TER adcaxys, adcaxys	$(r1) \Rightarrow r2 \ or$ $\$00:(r1) \Rightarrow r2 \ or$	INH	B7 eb	P	Р		
	$(r1[7:0]) \Rightarrow r2$					(or
	V 1 - 1 - 1 - 1					$\Delta \downarrow \Delta \Delta$	ΔΔΔΔ
	Transfer Register to Register						
			I	1		l	1
	r1 and r2 may be A, B, CCR, D, X, Y, or SP			1			l
TPA	r1 and r2 may be A, B, CCR, D, X, Y, or SP $(CCR) \Rightarrow A$	INH	B7 20	P	P		

Table A-1. Instruction Set Summary (Sheet 14 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC1	SXHI	NZVC					
TRAP trapnum	$\begin{split} (SP) - 2 &\Rightarrow SP; \\ RTN_H:RTN_L &\Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 &\Rightarrow SP; (Y_H:Y_1) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 &\Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 &\Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 1 &\Rightarrow SP; (CCR) \Rightarrow M_{(SP)} \\ 1 &\Rightarrow I; (TRAP \ Vector) \Rightarrow PC \end{split}$	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSSP OfVSPSSPSS	1						
TST opr16a TST oprx0_xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TST [oprx16,xysp] TST [oprx16,xysp] TST [oprx16,xysp]	(M) – 0 Test Memory for Zero or Minus (A) – 0 Test A for Zero or Minus (B) – 0 Test B for Zero or Minus	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb E7 xb ee ff D7	0		ΔΔ00					
TSX	(SP) ⇒ X Translates to TFR SP,X	INH	B7 75								
TSY	$ (SP) \Rightarrow Y $ Translates to TFR SP,Y	INH	B7 76	P							
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	P							
TYS	(Y) ⇒ SP Translates to TFR Y,SP	INH	B7 67	P :							
WAI	$\begin{split} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(Y_H:Y_I)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(X_H:X_I)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP;\;(CCR)\Rightarrow M_{(SP)};\\ &WAIT\;for\;interrupt \end{split}$	INH	3E	OSSSSSS OSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1	 or or 					
WAV	$\sum_{i = 1}^{B} S_i F_i \Rightarrow \textit{Y:D} \qquad \text{and} \qquad \sum_{i = 1}^{B} F_i \Rightarrow \textbf{X}$ Calculate Sum of Products and Sum of Weights for Weighted Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. All S_i and F_i elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values	Special	18 3C	Of (frr,ffff)O Off (frr,fffff)O (add if interrupt) SSS + UUUrr, SSSf + UUUr	1	?Δ??					
wavr pseudo- instruction	see WAV Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)	Special	3C	UUUrr,ffff UUUrrfffff (frr,ffff)O (frr,fffff)O (exit + re-entry replaces comma above if interrupted) SSS + UUUrr, SSSf + UUUrr		?∆??					
XGDX	(D) ⇔ (X) Translates to EXG D, X	INH	B7 C5	P							
XGDY	(D) ⇔ (Y) Translates to EXG D, Y	INH	B7 C6	P							

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

Ref				Та	ble A-3	. Index	ed Add	lressin	g Mode	Postby	te Enc	oding (xb)			
Reference	00 0,X	10 -16,X	20 1,+X	30 1,X+	40 0,Y	50 –16,Y	60 1,+Y	70 1,Y+	80 0,SP	90 -16,SP	A0 1,+SP	B0 1,SP+	C0 0,PC	D0 -16,PC	E0 n,X	F0 n,SP
g	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
	01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
	1,X	_15,X	2,+X	2,X+	1,Y	-15,Y	2,+Y	2,Y+	1,SP	-15,SP	2,+SP	2,SP+	1,PC	-15,PC	_n,X	-n,SP
1 23	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
Manual	02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
=	2,X	-14,X	3,+X	3,X+	2,Y	-14,Y	3,+Y	3,Y+	2,SP	-14,SP	3,+SP	3,SP+	2,PC	-14,PC	n,X	n,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b const	16b const
	03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
	3,X	-13,X	4,+X	4,X+	3,Y	-13,Y	4,+Y	4,Y+	3,SP	-13,SP	4,+SP	4,SP+	3,PC	-13,PC	[n,X]	[n,SP]
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b indr	16b indr
	04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
	4,X	-12,X	5,+X	5,X+	4,Y	-12,Y	5,+Y	5,Y+	4,SP	-12,SP	5,+SP	5,SP+	4,PC	-12,PC	A,X	A,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
	05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5	E5	F5
	5,X	-11,X	6,+X	6,X+	5,Y	-11,Y	6,+Y	6,Y+	5,SP	_11,SP	6,+SP	6,SP+	5,PC	_11,PC	B,X	B,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
	06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
	6,X 5b const	-10,X 5b const	7,+X pre-inc	7,X+ post-inc	6,Y 5b const	-10,Y 5b const	7,+Y pre-inc	7,Y+ post-inc	6,SP 5b const	-10,SP 5b const	7,+SP pre-inc	7,SP+ post-inc	6,PC 5b const	-10,PC 5b const	D,X D offset	D,SP D offset
	07	17	27	37	47	57	67	77	87	97	A7	B7	C7	D7	E7	F7
	7,X	-9,X	8,+X	8,X+	7,Y	-9,Y	8,+Y	8,Y+	7,SP	-9,SP	8,+SP	8,SP+	7,PC	-9,PC	[D,X]	[D,SP]
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
	08	18	28	38	48	58	68	78	88	98	A8	B8	C8	D8	E8	F8
	8,X	-8,X	8,-X	8,X-	8,Y	-8,Y	8,-Y	8,Y-	8,SP	_8,SP	8,-SP	8,SP-	8,PC	-8,PC	n,Y	n,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
	09	19	29	39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
	9,X	-7,X	7,-X	7,X-	9,Y	-7,Y	7,-Y	7,Y-	9,SP	-7,SP	7,-SP	7,SP-	9,PC	-7,PC	-n,Y	-n,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
	0A	1A	2A	3A	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
	10,X	-6,X	6,-X	6,X-	10,Y	-6,Y	6,-Y	6,Y-	10,SP	_6,SP	6,-SP	6,SP-	10,PC	-6,PC	n,Y	n,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
	0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	СВ	DB	EB	FB
	11,X	-5,X	5,-X	5,X-	11,Y	-5,Y	5,-Y	5,Y-	11,SP	-5,SP	5,–SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec AC	post-dec BC	5b const	5b const	16b indr	16b indr
	0C	1C	2C 4,–X	3C	4C	5C	6C 4,–Y	7C	8C	9C	4,–SP	_	12,PC	-4,PC	EC	FC A,PC
	12,X 5b const	-4,X 5b const	pre-dec	4,X- post-dec	12,Y 5b const	-4,Y 5b const	pre-dec	4,Y- post-dec	12,SP 5b const	-4,SP 5b const	pre-dec	4,SP- post-dec	5b const	5b const	A,Y A offset	A offset
	0D	1D	2D	3D	4D	5D	6D	7D	8D	9D	AD	BD	CD	DD	ED	FD
	13,X	-3,X	3,-X	3,X-	13,Y	-3,Y	3,-Y	3,Y-	13,SP	_3,SP	3,-SP	3,SP-	13,PC	-3,PC	B,Y	B,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
	0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
	14,X	-2,X	2,-X	2,X-	14,Y	-2,Y	2,-Y	2,Y-	14,SP	_2,SP	2,–SP	2,SP-	14,PC	-2,PC	D,Y	D.PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D offset	D offset
	0F	1F	2F	3F	4F	5F	6F	7F	8F	9F	AF	BF	CF	DF	EF	FF
	15,X	-1,X	1,–X	1,X-	15,Y	-1,Y	1,-Y	1,Y-	15,SP	-1,SP	1,-SP	1,SP-	15,PC	-1,PC	[D,Y]	[D,PC]
CPL	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D indirect	D indirect
ס ו			•	•	17	to Toble			•	•	•		•		•	

Key to Table A-3

Table A-5. Transfer and Exchange Postbyte Encoding

			TRAN	SFERS				
↓ LS MS⇒	0	1	2	3	4	5	6	7
0	$A \Rightarrow A$	$B \Rightarrow A$	CCR ⇒ A	$TMP3_L \Rightarrow A$	$B \Rightarrow A$	$X_L \Rightarrow A$	$Y_L \Rightarrow A$	$SP_L \Rightarrow A$
1	$A \Rightarrow B$	$B \Rightarrow B$	CCR ⇒ B	$TMP3_L \Rightarrow B$	$B \Rightarrow B$	$X_L \Rightarrow B$	$Y_L \Rightarrow B$	$SP_L \Rightarrow B$
2	$A \Rightarrow CCR$	$B \Rightarrow CCR$	CCR ⇒ CCR	$TMP3_L \Rightarrow CCR$	$B \Rightarrow CCR$	$X_L \Rightarrow CCR$	$Y_L \Rightarrow CCR$	$SP_L \Rightarrow CCR$
3	sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D ⇒ TMP2	X ⇒ TMP2	Y ⇒ TMP2	SP ⇒ TMP2
4	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	$D \Rightarrow D$	$X \Rightarrow D$	$Y \Rightarrow D$	$SP \Rightarrow D$
5	sex:A ⇒ X SEX A,X	sex:B ⇒ X SEX B,X	sex:CCR ⇒ X SEX CCR,X	TMP3 ⇒ X	$D \Rightarrow X$	$X \Rightarrow X$	$Y \Rightarrow X$	$SP \Rightarrow X$
6	sex:A ⇒ Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3 ⇒ Y	$D \Rightarrow Y$	$X \Rightarrow Y$	$Y \Rightarrow Y$	$SP \Rightarrow Y$
7	sex:A ⇒ SP SEX A,SP	sex:B ⇒ SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	$D \Rightarrow SP$	$X \Rightarrow SP$	$Y \Rightarrow SP$	$SP \Rightarrow SP$
			EXCH	ANGES				
U LS MS⇒	8	9	Α	В	С	D	E	F
0	A ⇔ A	B⇔A	CCR ⇔ A	$TMP3_{L} \Rightarrow A$ $\$00:A \Rightarrow TMP3$	$\begin{array}{c} B \Rightarrow A \\ A \Rightarrow B \end{array}$	$X_L \Rightarrow A$ $\$00:A \Rightarrow X$	$Y_L \Rightarrow A$ $\$00:A \Rightarrow Y$	$SP_L \Rightarrow A$ $$00:A \Rightarrow SP$
1	A ⇔ B	B⇔B	CCR ⇔ B	$TMP3_{L} \Rightarrow B$ $FF:B \Rightarrow TMP3$	$\begin{array}{c} B \Rightarrow B \\ \$FF \Rightarrow A \end{array}$	$X_L \Rightarrow B$ \$FF:B \Rightarrow X	$Y_L \Rightarrow B$ \$FF:B \Rightarrow Y	$SP_L \Rightarrow B$ $\$FF:B \Rightarrow SP$
2	A ⇔ CCR	B ⇔ CCR	CCR ⇔ CCR	$\begin{aligned} TMP3_L &\Rightarrow CCR \\ \$FF:CCR &\Rightarrow TMP3 \end{aligned}$	$\begin{array}{c} B \Rightarrow CCR \\ \$FF : CCR \Rightarrow D \end{array}$	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	$Y_L \Rightarrow CCR$ \$FF:CCR \Rightarrow Y	$\begin{array}{c} SP_L \Rightarrow CCR \\ \$FF:CCR \Rightarrow SP \end{array}$
3	$$00:A \Rightarrow TMP2$ $TMP2_L \Rightarrow A$	$$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	$$00:CCR \Rightarrow TMP2$ $TMP2_L \Rightarrow CCR$	TMP3 ⇔ TMP2	D ⇔ TMP2	X ⇔ TMP2	Y ⇔ TMP2	SP ⇔ TMP2
4	\$00:A ⇒ D	\$00:B ⇒ D	$$00:CCR \Rightarrow D$ $B \Rightarrow CCR$	TMP3 ⇔ D	$D \Leftrightarrow D$	$X \Leftrightarrow D$	$Y \Leftrightarrow D$	SP ⇔ D
5	$\begin{array}{c} \$00\text{:}A \Rightarrow X \\ X_L \Rightarrow A \end{array}$	$00:B \Rightarrow X$ $X_L \Rightarrow B$	$$00:CCR \Rightarrow X$ $X_L \Rightarrow CCR$	TMP3 ⇔ X	$D \Leftrightarrow X$	$X \Leftrightarrow X$	$Y \Leftrightarrow X$	SP ⇔ X
6	$\begin{array}{c} \$00\text{:}A\Rightarrow Y\\ Y_L\Rightarrow A \end{array}$	$\begin{array}{c} \$00:B\Rightarrow Y\\ Y_L\Rightarrow B \end{array}$	$$00:CCR \Rightarrow Y$ $Y_L \Rightarrow CCR$	TMP3 ⇔ Y	D⇔Y	$X \Leftrightarrow Y$	Y⇔Y	SP ⇔ Y
7	$$00:A \Rightarrow SP$ $SP_L \Rightarrow A$	$\begin{array}{c} \$00\text{:B} \Rightarrow SP \\ SP_L \Rightarrow B \end{array}$	$$00:CCR \Rightarrow SP$ $SP_L \Rightarrow CCR$	TMP3 ⇔ SP	D ⇔ SP	X ⇔ SP	Y⇔SP	SP ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Table A-6. Loc	p Primitive	Postbyte	Encoding	(lb))
----------------	-------------	-----------------	----------	------	---

00 A DBEQ	10 A DBEQ	20 A DBNE	30 A DBNE	40 A TBEQ	50 A TBEQ	60 A TBNE	70 A TBNE	80 A IBEQ	90 A IBEQ	A0 A IBNE	B0 A IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B		B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
02	12	22	32	42	52	62	72	82	92	A2	B2
_	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	A3	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
05 X	15 X		35X	45 X	55X	65X			95 X		
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
06 Y	16 Y	26 Y	36 Y	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	,	B6 Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)

Key to Table A-6

Table A-7. Branch/Complementary Branch

	Br	anch		Complementary Branch					
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment		
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed		
r≥m	BGE	2C	N ⊕ V = 0	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed		
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed		
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed		
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned		
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned		
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned		
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned		
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple		
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple		
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple		
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple		
Always	BRA	20	_	Never	BRN	21	Unconditional		

For 16-bit offset long branches precede opcode with a \$18 page prebyte.

A.7 Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to decimal, look up the decimal equivalent of each hexadecimal digit in **Table A-9**. The decimal equivalent of the original hexadecimal number is the sum of the weights found in the table for all hexadecimal digits.

15	E	3it	8	7	В	it	0	
15	12	11	8	7	4	3	0	
4th Hex Digit		3rd	Hex Digit	2nd	Hex Digit	1st Hex Digit		
Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	
0	0	0	0	0	0	0	0	
1	4,096	1	256	1	16	1	1	
2	8,192	2	512	2	32	2	2	
3	12,288	3	768	3	48	3	3	
4	16,384	4	1,024	4	64	4	4	
5	20,480	5	1,280	5	80	5	5	
6	24,576	6	1,536	6	96	6	6	
7	28,672	7	1,792	7	112	7	7	
8	32,768	8	2,048	8	128	8	8	
9	36,864	9	2,304	9	144	9	9	
Α	40,960	A	2,560	Α	160	Α	10	
В	45,056	В	2,816	В	176	В	11	
С	49,152	С	3,072	С	192	С	12	
D	53,248	D	3,328	D	208	D	13	
E	57,344	E	3,484	E	224	E	14	
F	61,440	F	3,840	F	240	F	15	

Table A-9. Hexadecimal to/from Decimal Conversion

A.8 Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,535₁₀) to hexadecimal, find the largest decimal number in **Table A-9** that is less than or equal to the number you are converting. The corresponding hexadecimal digit is the most significant hexadecimal digit of the result. Subtract the decimal number found from the original decimal number to get the *remaining decimal value*. Repeat the procedure using the remaining decimal value for each subsequent hexadecimal digit.

Table A-4. Indexed Addressing Mode Summary

Postbyte Code (xb)	Operand Syntax	Comments
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 rr can specify X, Y, SP, or PC
111rr0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte (s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) rr can specify X, Y, SP, or PC
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or postincrement; p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 rr can specify X, Y, or SP (PC not a valid choice)
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa - 00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC
111rr111	[D,r]	Accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC

Table A-8. Hexadecimal to ASCII Conversion

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
\$00	NUL	\$20	SP space	\$40	@	\$60	` grave
\$01	SOH	\$21	!	\$41	Α	\$61	а
\$02	STX	\$22	" quote	\$42	В	\$62	b
\$03	ETX	\$23	#	\$43	С	\$63	С
\$04	EOT	\$24	\$	\$44	D	\$64	d
\$05	ENQ	\$25	%	\$45	Е	\$65	е
\$06	ACK	\$26	&	\$46	F	\$66	f
\$07	BEL beep	\$27	ʻapost.	\$47	G	\$67	g
\$08	BS back sp	\$28	(\$48	Н	\$68	h
\$09	HT tab	\$29)	\$49	I	\$69	i
\$0A	LF linefeed	\$2A	*	\$4A	J	\$6A	j
\$0B	VT	\$2B	+	\$4B	K	\$6B	k
\$0C	FF	\$2C	, comma	\$4C	L	\$6C	1
\$0D	CR return	\$2D	- dash	\$4D	M	\$6D	m
\$0E	SO	\$2E	. period	\$4E	N	\$6E	n
\$0F	SI	\$2F	1	\$4F	0	\$6F	0
\$10	DLE	\$30	0	\$50	Р	\$70	р
\$11	DC1	\$31	1	\$51	Q	\$71	q
\$12	DC2	\$32	2	\$52	R	\$72	r
\$13	DC3	\$33	3	\$53	S	\$73	s
\$14	DC4	\$34	4	\$54	Т	\$74	t
\$15	NAK	\$35	5	\$55	U	\$75	u
\$16	SYN	\$36	6	\$56	V	\$76	V
\$17	ETB	\$37	7	\$57	W	\$77	W
\$18	CAN	\$38	8	\$58	Χ	\$78	х
\$19	EM	\$39	9	\$59	Υ	\$79	у
\$1A	SUB	\$3A	:	\$5A	Z	\$7A	Z
\$1B	ESCAPE	\$3B	;	\$5B	[\$7B	{
\$1C	FS	\$3C	<	\$5C	\	\$7C	1
\$1D	GS	\$3D	=	\$5D]	\$7D	}
\$1E	RS	\$3E	>	\$5E	۸	\$7E	~
\$1F	US	\$3F	?	\$5F	_ under	\$7F	DEL delete