X 射线衍射实验报告

吴熙楠

2021年9月4日

目录

1	实验目的	2
2	实验器材	2
3	实验过程及数据整理 3.1 NaCl 晶体衍射实验	2 2 4
4	思考题	6
5	分析与讨论	6
6	收获与感想	7

1 实验目的 2

摘要

X 射线具有波动特性,当一束单色 X 射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射 X 射线波长有 X 射线衍射分析相同数量级,在某些特殊方向上产生强 X 射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子排列规律。在本次实验中,我们将学习测量 X 射线通过单晶的衍射曲线。

关键词: X 射线, 衍射, 原子

1 实验目的

- (1) 了解 X 射线的基本性质;
- (2) 理解 X 射线衍射的原理和实验技术;
- (3) 测量 X 射线通过单晶的布拉格衍射曲线。

2 实验器材

X 射线实验装置, NaCl 晶体, LiF 晶体

3 实验过程及数据整理

3.1 NaCl 晶体衍射实验

表 1: NaCl 晶体衍射实验数据表

$\beta/^{\circ}$	R/s	β/°	R/s	$\beta/^{\circ}$	R/s	$\beta/^{\circ}$	R/s	β/°	R/s	β/°	R/s
2.5	5.4	6.3	1535.2	10.1	151.0	13.9	79.4	17.7	33.8	21.5	18.8
2.6	4.0	6.4	1517.2	10.2	143.8	14.0	77.4	17.8	36.8	21.6	22.6
2.7	6.0	6.5	993.6	10.3	133.2	14.1	84.0	17.9	31.8	21.7	18.6
2.8	4.8	6.6	669.4	10.4	131.6	14.2	88.0	18.0	36.0	21.8	19.0
2.9	4.8	6.7	609.0	10.5	142.8	14.3	185.2	18.1	32.0	21.9	47.8
3.0	4.6	6.8	603.4	10.6	132.0	14.4	479.0	18.2	29.6	22.0	104.6
3.1	3.8	6.9	792.4	10.7	136.0	14.5	736.2	18.3	39.0	22.1	167.8
3.2	4.2	7.0	1626.4	10.8	118.6	14.6	575.8	18.4	27.8	22.2	121.0
3.3	6.8	7.1	2844.4	10.9	127.2	14.7	232.2	18.5	29.6	22.3	68.0

3.4	12.6	7.2	2972.6	11.0	123.0	14.8	84.6	18.6	33.2	22.4	28.0
3.5	56.8	7.3	1601.2	11.1	122.4	14.9	66.2	18.7	30.2	22.5	18.2
3.6	159.0	7.4	544.4	11.2	116.4	15.0	61.8	18.8	28.4	22.6	19.0
3.7	345.0	7.5	432.0	11.3	111.8	15.1	67.4	18.9	24.2	22.7	15.2
3.8	490.8	7.6	407.0	11.4	112.6	15.2	64.6	19.0	26.2	22.8	17.0
3.9	634.4	7.7	398.4	11.5	104.4	15.3	65.4	19.1	31.6	22.9	18.6
4.0	723.2	7.8	363.2	11.6	110.6	15.4	60.0	19.2	35.8	23.0	15.2
4.1	800.4	7.9	361.2	11.7	107.8	15.5	62.6	19.3	37.4	23.1	11.6
4.2	846.0	8.0	342.4	11.8	103.6	15.6	58.6	19.4	35.6	23.2	17.2
4.3	923.6	8.1	332.4	11.9	94.2	15.7	55.4	19.5	64.0	23.3	10.2
4.4	945.4	8.2	322.0	12.0	97.8	15.8	57.2	19.6	64.2	23.4	15.6
4.5	959.2	8.3	316.4	12.1	104.0	15.9	55.6	19.7	42.6	23.5	16.4
4.6	969.8	8.4	277.4	12.2	102.8	16.0	54.0	19.8	30.2	23.6	10.0
4.7	1008.8	8.5	294.0	12.3	96.2	16.1	51.2	19.9	21.8	23.7	14.2
4.8	977.8	8.6	271.2	12.4	89.2	16.2	53.4	20.0	21.4	23.8	14.6
4.9	964.8	8.7	256.6	12.5	108.6	16.3	50.2	20.1	20.4	23.9	12.2
5.0	980.0	8.8	264.2	12.6	128.0	16.4	46.2	20.2	20.6	24.0	11.6
5.1	972.0	8.9	243.2	12.7	168.0	16.5	48.4	20.3	18.4	24.1	12.6
5.2	955.4	9.0	229.2	12.8	249.4	16.6	48.2	20.4	22.2	24.2	12.0
5.3	929.8	9.1	232.8	12.9	294.0	16.7	43.6	20.5	20.6	24.3	13.8
5.4	902.6	9.2	215.4	13.0	194.0	16.8	44.0	20.6	22.2	24.4	14.8
5.5	882.2	9.3	202.0	13.1	101.6	16.9	40.0	20.7	21.8	24.5	10.0
5.6	869.6	9.4	189.0	13.2	91.6	17.0	37.2	20.8	18.2	24.6	11.6
5.7	841.6	9.5	173.6	13.3	93.0	17.1	40.8	20.9	18.8	24.7	7.6
5.8	788.4	9.6	179.2	13.4	86.4	17.2	35.8	21.0	19.6	24.8	9.6
5.9	757.2	9.7	170.2	13.5	86.0	17.3	40.2	21.1	18.0	24.9	9.6
6.0	734.4	9.8	160.2	13.6	83.6	17.4	34.0	21.2	16.8	25.0	8.6
6.1	849.0	9.9	160.6	13.7	82.2	17.5	33.6	21.3	19.0	-	-
6.2	1100.4	10.0	161.6	13.8	79.8	17.6	40.4	21.4	18.2	-	-

图 1: NaCl 晶体衍射曲线

3.2 LiF 晶体衍射实验

表 2: LiF 晶体衍射实验数据表

β/°	R/s	β/°	R/s	β/°	R/s	β/°	R/s	β/°	R/s	β/°	R/s
3.0	7.8	7.6	63.4	12.2	36.8	16.8	26.4	21.4	20.2	26.0	17.8
3.1	8.2	7.7	67.6	12.3	44.0	16.9	25.0	21.5	23.8	26.1	12.0
3.2	9.2	7.8	59.6	12.4	32.2	17.0	25.6	21.6	19.2	26.2	15.6
3.3	9.2	7.9	61.4	12.5	29.0	17.1	27.4	21.7	18.4	26.3	16.6
3.4	11.4	8.0	60.8	12.6	32.4	17.2	22.4	21.8	20.2	26.4	14.2
3.5	11.4	8.1	66.6	12.7	31.0	17.3	25.2	21.9	18.6	26.5	17.0
3.6	7.8	8.2	67.8	12.8	31.4	17.4	22.0	22.0	19.4	26.6	12.4
3.7	9.0	8.3	64.0	12.9	35.6	17.5	26.6	22.1	15.2	26.7	12.4
3.8	10.8	8.4	66.2	13.0	34.4	17.6	25.8	22.2	21.8	26.8	15.8
3.9	11.2	8.5	62.8	13.1	28.2	17.7	22.0	22.3	17.8	26.9	13.2
4.0	9.8	8.6	71.8	13.2	25.2	17.8	26.8	22.4	18.8	27.0	16.8
4.1	13.2	8.7	73.2	13.3	30.6	17.9	22.2	22.5	19.4	27.1	13.0
4.2	9.8	8.8	76.8	13.4	26.8	18.0	23.0	22.6	20.0	27.2	16.0

ı		1	1	1		п			1 1	1	ı
4.3	9.8	8.9	91.4	13.5	26.0	18.1	24.6	22.7	16.2	27.3	12.6
4.4	12.0	9.0	113.2	13.6	28.8	18.2	24.4	22.8	19.2	27.4	15.8
4.5	10.0	9.1	148.6	13.7	30.0	18.3	25.8	22.9	16.6	27.5	15.2
4.6	13.8	9.2	98.4	13.8	27.8	18.4	28.2	23.0	18.6	27.6	15.2
4.7	12.0	9.3	58.2	13.9	22.8	18.5	22.8	23.1	18.8	27.7	15.0
4.8	17.2	9.4	58.8	14.0	29.6	18.6	24.6	23.2	16.6	27.8	11.4
4.9	14.6	9.5	65.0	14.1	24.8	18.7	22.4	23.3	15.8	27.9	13.4
5.0	15.4	9.6	55.8	14.2	27.4	18.8	26.4	23.4	19.4	28.0	12.6
5.1	17.6	9.7	61.2	14.3	25.2	18.9	25.4	23.5	15.4	28.1	14.4
5.2	21.2	9.8	72.6	14.4	29.8	19.0	25.2	23.6	17.0	28.2	15.2
5.3	25.6	9.9	94.8	14.5	27.2	19.1	21.6	23.7	19.8	28.3	11.8
5.4	33.0	10.0	123.6	14.6	27.8	19.2	23.6	23.8	17.0	28.4	15.2
5.5	32.4	10.1	171.2	14.7	26.8	19.3	20.0	23.9	16.0	28.5	14.4
5.6	45.0	10.2	259.2	14.8	19.4	19.4	28.2	24.0	14.4	28.6	15.8
5.7	44.0	10.3	245.8	14.9	23.4	19.5	22.2	24.1	15.0	28.7	12.2
5.8	44.2	10.4	98.6	15.0	24.0	19.6	19.2	24.2	18.6	28.8	14.4
5.9	49.8	10.5	53.8	15.1	22.2	19.7	22.6	24.3	18.6	28.9	14.4
6.0	52.6	10.6	46.0	15.2	23.4	19.8	24.2	24.4	15.6	29.0	14.8
6.1	50.0	10.7	47.0	15.3	24.4	19.9	25.2	24.5	17.0	29.1	15.2
6.2	58.0	10.8	37.8	15.4	24.6	20.0	22.8	24.6	16.4	29.2	13.8
6.3	60.4	10.9	46.2	15.5	24.4	20.1	26.0	24.7	14.6	29.3	13.8
6.4	61.2	11.0	44.6	15.6	29.0	20.2	24.8	24.8	16.2	29.4	10.6
6.5	59.6	11.1	42.8	15.7	24.2	20.3	28.0	24.9	15.8	29.5	18.4
6.6	64.4	11.2	44.0	15.8	22.4	20.4	27.8	25.0	18.8	29.6	13.0
6.7	68.8	11.3	38.8	15.9	18.8	20.5	24.6	25.1	17.0	29.7	14.4
6.8	57.2	11.4	41.6	16.0	18.8	20.6	29.0	25.2	17.0	29.8	16.0
6.9	61.2	11.5	36.0	16.1	23.0	20.7	39.0	25.3	12.0	29.9	11.6
7.0	56.0	11.6	36.8	16.2	25.0	20.8	34.6	25.4	14.0	30.0	10.8
7.1	63.2	11.7	32.6	16.3	21.8	20.9	27.8	25.5	14.6	-	-
7.2	64.6	11.8	39.8	16.4	24.4	21.0	25.8	25.6	13.4	_	-
7.3	58.8	11.9	39.2	16.5	24.8	21.1	23.0	25.7	11.4	_	-
7.4	59.4	12.0	37.8	16.6	21.6	21.2	22.2	25.8	17.2	_	-
7.5	67.0	12.1	37.8	16.7	24.2	21.3	22.6	25.9	18.8	-	-

4 思考题 6

图 2: LiF 晶体衍射

通过观察 LiF 的 X 射线衍射图可知 K_{α} 线的衍射峰 $\theta = 10.2^{\circ}, 2dsin\theta = \lambda \Rightarrow d = 200.75pm$, 即 LiF 的晶面间距为 200.75pm。

4 思考题

说明测角器零点的方法的原理

因为机器虽然调到了 couple 模式,但是入射角和接收角仍然可能不一样,为此就要调整角度使得入射角和接收角一致,因为我们考虑标准峰位和测角器峰位的偏差就是测角器的零点偏差,因此最后倒回去就是零点。

5 分析与讨论

Q:NaCl 晶体各个衍射峰的来源

A: 从左至右第一个峰为连续谱,为电子与阳极撞击产生的辐射;第二个峰为 K_{β} 线一级衍射峰,理论值为 6.4° ,实际值为 6.3° ;第三个峰为 K_{α} 线一级衍射峰,理论值为 7.2° ,实际值为 7.2° ;第四个峰为 K_{β} 线二级衍射峰,理论值为 12.9° ,实际值为 12.9° ;第五个峰为 K_{α} 线二级衍射峰,理论值为 14.6° ,实际值为 14.5° ;第六个峰为 K_{β} 线三级衍射峰,理论值为 19.7° ,实际值为: 19.6° ;第七个峰为 K_{α} 线三级衍射峰,理论值为 22.2° ,实际值为 22.1° ;因此可以看出衍射峰对应角度实际值与理论值还是符合的较好的。

6 收获与感想 7

Q:LiF 晶体各个衍射峰的来源

A: 从左至右第一个峰为连续谱,为电子与阳极撞击产生的辐射;第二个峰为 K_{β} 线一级衍射峰,理论值为 9.1° ,实际值为 9.1° ;第三个峰为 K_{α} 线一级衍射峰,理论值为 10.2° ,实际值为 10.2° ;此图中不能看出剩余峰值具体分布在什么位置,信号稳定度比 NaCl 晶体较差。

6 收获与感想

在本次实验中,我们通过实验了解了 X 射线的基本性质,理解了 X 射线衍射的原理和实验技术,同时也测量了 X 射线通过单晶的布拉格衍射曲线。更进一步加深了我们对于 X 射线衍射的认识,为我们以后从事相关工作奠定了良好的知识储备与实验储备。