

Languages and Machines

Context-free Grammars, Languages, and PDAs

Context-Free Grammars

A context-free grammar G is a quadruple, (V, Σ, R, S) , where:

- *V* is the rule alphabet
 - Σ , a subset of V, the set of terminals
 - $V \Sigma$, the set of nonterminals
- R, a finite subset of $(V \Sigma) \times V^*$, the set of rules
- S, an element of $V \Sigma$, the start symbol

Example:

$$(\{S, a, b\}, \{a, b\}, \{S \rightarrow a S b, S \rightarrow \epsilon\}, S)$$

Derivations

$$x \Rightarrow_G y \text{ iff } x = \alpha A \beta$$
and $A \rightarrow \gamma \text{ is in } R$

$$y = \alpha \gamma \beta$$

$$w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n$$
 is a derivation in G .

Let \Rightarrow_G^* be the reflexive, transitive closure of \Rightarrow_G .

Then the language generated by G, denoted L(G), is:

$$L(G) = \{ w \in \Sigma^* : S \Rightarrow_G^* w \}.$$

Definition of a Context-Free Grammar

A language *L* is *context-free* iff it is generated by some context-free grammar *G*.

An Example Derivation

Example:

Let
$$G = (\{S, a, b\}, \{a, b\}, \{S \rightarrow a S b, S \rightarrow \epsilon\}, S)$$

$$S \Rightarrow a \ S \ b \Rightarrow aa \ S \ bb \Rightarrow aaa \ S \ bbb \Rightarrow aaabbb$$

$$S \Rightarrow^*$$
 aaabbb

A^nB^n

$$S \rightarrow \varepsilon$$

 $S \rightarrow aSb$

Balanced Parentheses

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow (S)$

Self-Embedding Grammar Rules

- A rule in a grammar G is self-embedding iff it is:
 X → w₁Yw₂, where Y ⇒* w₃Xw₄ and both w₁w₃ and w₄w₂ are in Σ⁺.
- A grammar is self-embedding iff it contains at least one self-embedding rule.
- Example: $S \rightarrow aSa$ is self-embedding $S \rightarrow aS$ is recursive but not self-embedding

$$S \rightarrow aT$$

$$T \rightarrow Sa$$
 is self-embedding

Recursive Grammar Rules

- A rule is **recursive** iff it is $X \rightarrow w_1 Y w_2$, where: $Y \Rightarrow^* w_3 X w_4$ for some w_1, w_2, w_3 , and w in V^* .
- A grammar is recursive iff it contains at least one recursive rule.
- Examples: $S \rightarrow (S)$ $S \rightarrow (T)$ $T \rightarrow (S)$

Where Context-Free Grammars Get Their Power

- If a grammar *G* is not self-embedding then *L*(*G*) is regular.
- If a language *L* has the property that every grammar that defines it is self-embedding, then *L* is not regular.

PalEven = $\{ww^R : w \in \{a, b\}^*\}$

$$G = \{\{S, a, b\}, \{a, b\}, R, S\}, \text{ where: }$$

$$R = \{ S \rightarrow aSa$$

 $S \rightarrow bSb$
 $S \rightarrow \epsilon \}.$

Arithmetic Expressions

$$G = (V, \Sigma, R, E)$$
, where
 $V = \{+, *, (,), id, E\}$,
 $\Sigma = \{+, *, (,), id\}$,
 $R = \{$
 $E \rightarrow E + E$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id \}$

Equal Numbers of a's and b's

Let
$$L = \{w \in \{a, b\}^*: \#_a(w) = \#_b(w)\}.$$

$$R = \{ S \rightarrow aSb \\ S \rightarrow bSa \\ S \rightarrow SS$$

$$S \rightarrow \epsilon$$
 }.

BNF

A notation for writing practical context-free grammars

• The symbol | should be read as "or".

Example:
$$S \rightarrow aSb \mid bSa \mid SS \mid \epsilon$$

 Allow a nonterminal symbol to be any sequence of characters surrounded by angle brackets.

Examples of nonterminals:

BNF for a Java Fragment

English

```
S → NP VP

NP → the Nominal | a Nominal | Nominal |

ProperNoun | NP PP

Nominal → N | Adjs N

N → cat | dogs | bear | girl | chocolate | rifle

ProperNoun → Chris | Fluffy

Adjs → Adj Adjs | Adj

Adj → young | older | smart

VP → V | V NP | VP PP

V → like | likes | thinks | shots | smells

PP → Prep NP

Prep → with
```

HTML

```
    <!i>Item 1, which will include a sublist
    <!i>First item in sublist
    <!i>Second item in sublist
    <!i>Second item in sublist
    <!>Item 2
    <!
        <ul>
            Item 2
            Item 3
            Item 4
            Ite
```

Designing Context-Free Grammars

• Generate related regions together.

 A^nB^n

• Generate concatenated regions:

$$A \rightarrow BC$$

• Generate outside in:

$$A \rightarrow aAb$$

Concatenating Independent Languages

Let
$$L = \{a^n b^n c^m : n, m \ge 0\}.$$

The c^m portion of any string in L is completely independent of the $a^n b^n$ portion, so we should generate the two portions separately and concatenate them together.

$$G = (\{S, N, C, a, b, c\}, \{a, b, c\}, R, S\})$$
 where:
 $R = \{S \rightarrow NC$
 $N \rightarrow aNb$
 $N \rightarrow \epsilon$
 $C \rightarrow cC$
 $C \rightarrow \epsilon \}$.

Unequal a's and b's

$$L = \{a^n b^m : n \neq m\}$$

$$G = (V, \Sigma, R, S), \text{ where}$$

$$V = \{a, b, S, A, B\},$$

$$\Sigma = \{a, b\},$$

$$R =$$

$$S \rightarrow A \qquad /* \text{ more a's than b's}$$

$$S \rightarrow B \qquad /* \text{ more b's than a's}$$

$$A \rightarrow a \qquad /* \text{ at least one extra a generated}$$

$$A \rightarrow aAb$$

$$A \rightarrow aAb$$

$$B \rightarrow b \qquad /* \text{ at least one extra b generated}$$

$$B \rightarrow Bb \qquad /* \text{ at least one extra b generated}$$

$$B \rightarrow Bb \qquad /* \text{ at least one extra b generated}$$

$$B \rightarrow Bb \qquad /* \text{ at least one extra b generated}$$

$$B \rightarrow Bb \qquad /* \text{ at least one extra b generated}$$

$$B \rightarrow Bb \qquad /* \text{ at least one extra b generated}$$

$$L = \{ a^{n_1}b^{n_1}a^{n_2}b^{n_2}...a^{n_k}b^{n_k} : k \ge 0 \text{ and } \forall i (n_i \ge 0) \}$$

Examples of strings in L: ϵ , abab, aabbaaabbbabab

Note that
$$L = \{a^n b^n : n \ge 0\}^*$$
.

$$G = (\{S, M, a, b\}, \{a, b\}, R, S\})$$
 where:

$$R = \{ S \to MS$$

$$S \to \varepsilon$$

$$M \to aMb$$

$$M \to \varepsilon \}.$$

Structure

Context free languages:

We care about structure.

Derivations

To capture structure, we must capture the path we took through the grammar. **Derivations** do that.

Example:

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow (S)$

1 2 3 4 5 6

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())(()$$

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())(()$
1 2 3 5 4 6

But the order of rule application doesn't matter.

Parse Trees

A parse tree, derived by a grammar $G = (V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$,
- The root node is labeled S,
- Every other node is labeled with some element of: $V-\Sigma$, and
- If m is a nonleaf node labeled X and the children of m are labeled $x_1, x_2, ..., x_n$, then R contains the rule $X \rightarrow x_1, x_2, ..., x_n$.

Derivations

Parse trees capture essential structure:

1 2 3 4 5 6

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())()$$

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())()$
1 2 3 5 4 6

Ambiguity

A grammar is **ambiguous** iff there is at least one string in L(G) for which G produces more than one parse tree.

For most applications of context-free grammars, this is a problem.

An Arithmetic Expression Grammar

$$E \rightarrow E + E$$
 id * id * id
 $E \rightarrow E * E$ $E \rightarrow (E)$ $E \rightarrow id$

Even a Very Simple Grammar Can be Highly Ambiguous

$$S \to \varepsilon$$

$$S \to SS$$

$$S \to (S)$$
(())()

Inherent Ambiguity

Some languages have the property that every grammar for them is ambiguous. We call such languages *inherently ambiguous*.

Example:

$$L = \left\{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^m : n, \ m \geq 0 \right\} \cup \left\{ \mathbf{a}^n \mathbf{b}^m \mathbf{c}^m : n, \ m \geq 0 \right\}.$$

It can be proved that *L* is inherently ambiguous.

We can generate $a^nb^nc^m$ and $a^nb^mc^m$ unambiguously but $a^nb^nc^n$ will be generated in two ways.

Inherent Ambiguity

Both of the following problems are undecidable:

- Given a context-free grammar *G*, is *G* ambiguous?
- Given a context-free language *L*, is *L* inherently ambiguous?

But We Can Often Reduce Ambiguity

We can get rid of:

- ϵ rules like $S \rightarrow \epsilon$,
- rules with symmetric right-hand sides, e.g.,

$$S \rightarrow SS$$

 $E \rightarrow E + E$

 rule sets that lead to ambiguous attachment of optional postfixes.

Resolving the Ambiguity with a Different Grammar

The biggest problem is the ϵ rule.

A different grammar for the language of balanced parentheses:

$$S^* \to \epsilon$$

$$S^* \to S$$

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

$$S \rightarrow ()$$

A Highly Ambiguous Grammar

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow (S)$

Nullable Variables

A variable X is **nullable** iff either:

- (1) there is a rule $X \rightarrow \varepsilon$, or
- (2) there is a rule $X \rightarrow PQR...$ and P, Q, R, ... are all nullable.

So compute N, the set of nullable variables, as follows:

- 1. Set N to the set of variables that satisfy (1).
- 2. Repeat until no change Add variables satisfying (2)

A General Technique for Getting Rid of ϵ -Rules

Definition: a rule is *modifiable* iff it is of the form:

 $P \rightarrow \alpha Q \beta$, for some nullable $Q, P \neq \alpha \beta \neq \epsilon$

removeEps(G: cfg) =

- 1. Let G' = G.
- 2. Find the set *N* of nullable variables in *G*′.
- 3. For each modifiable rule $P \rightarrow \alpha Q\beta$ of G do Add the rule $P \rightarrow \alpha\beta$.
- 4. Delete from G' all rules of the form $X \to \varepsilon$.
- 5. Return G'.

$$L(G') = L(G) - \{\epsilon\}$$

What If $\varepsilon \in L$?

atmostoneEps(G: cfg) =

- 1. G'' = removeEps(G).
- 2. If S_G is nullable then /* i. e., $\varepsilon \in L(G)$
 - 2.1 Create in G'' a new start symbol S^* .
 - 2.2 Add to $R_{G''}$ the two rules:

$$S^* \to \varepsilon$$

 $S^* \to S_c$

3. Return *G*".

An Example

$$G = \{\{S, T, A, B, C, a, b, c\}, \{a, b, c\}, R, S\}, R = \{S \rightarrow aTa \\ T \rightarrow ABC \\ A \rightarrow aA \mid C \\ B \rightarrow Bb \mid C \\ C \rightarrow c \mid \epsilon \}$$

Nullable varibles = $\{A, B, C, T\}$

$$G': \text{ add}: \\ S \rightarrow \text{aa} \qquad T \rightarrow AC \\ T \rightarrow A \qquad T \rightarrow BC \\ T \rightarrow B \quad B \rightarrow \text{b} \\ T \rightarrow C \quad A \rightarrow \text{a} \\ T \rightarrow AB \\ \end{cases}$$
 remove:

But There is Still Ambiguity

$$S^* \to \varepsilon$$
 What about ()()()?
 $S^* \to S$
 $S \to SS$
 $S \to (S)$
 $S \to ()$

Eliminating Symmetric Recursive Rules

$$S^* \rightarrow \varepsilon$$

$$S^* \rightarrow S$$

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

$$S \rightarrow ()$$

Replace $S \rightarrow SS$ with one of:

 $S \rightarrow SS_1$ /* force branching to the left $S \rightarrow S_1S$ /* force branching to the right

So we get:

$$S^* \to \varepsilon \qquad S \to SS_1$$

$$S^* \to S \qquad S \to S_1$$

$$S_1 \to (S)$$

$$S_1 \to ()$$

Arithmetic Expressions

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

Problem 1: Associativity

Eliminating Symmetric Recursive Rules

So we get: $S^* \rightarrow \varepsilon$ $S^* \rightarrow S$ $S \rightarrow SS_1$ $S \rightarrow S_1$ $S_1 \rightarrow (S)$ $S_1 \rightarrow ()$

Arithmetic Expressions

 $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow (E)$ $E \rightarrow id$

Problem 2: Precedence

Arithmetic Expressions - A Better Way

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Example:

Dangling "else"

The dangling else problem:

Consider:

 $\texttt{if} \; cond_1 \; \texttt{then} \; \; \texttt{if} \; cond_2 \; \texttt{then} \; stmt_1 \; \texttt{else} \; stmt_2$

Dangling "else" ambiguity

Dangling "else" solution

Dangling "else" solution

