EECS 16A Imaging 1

Insert your names here

IMPORTANT: LAB CAPACITY

Only students enrolled in this lab section should be present here

- If you lie about being enrolled in this section, you will be REMOVED from the course
 - Please be ready to show either CalCentral enrollment or an email confirming a switch.

Semester Outline

Why Imaging?

- Use linear algebra techniques to capture real world images with limited sensors
- Today:
 - Finding a link between physical quantities and voltage
 - If you can digitize it, you can do anything (IOT devices, internet, code, processing)

Today's Lab: Imaging Part 1

- You should have received lab materials (TI MSP430F5529 + lab kit)
- Circuits + Breadboarding 101
- Build circuit that reacts to light intensity
 - Use Launchpad/TinkerCAD to see how the circuit behaves
- Graded checkoff starts today!
- If you haven't received your lab kit yet, you can still do today's lab and get checked off

Today's Lab: Imaging Part 1

- Hardware lab
 - Uses physical Launchpad and breadboard
 - All students with kits should do this option

- Software lab
 - Uses online circuit simulations in TinkerCad
 - Look at other group members' physical setups and lab videos to get an idea of the hardware
 - All students without kits should do this option

NOTE

- Do not worry if you don't get the Launchpad/Energia setup working today
 - Attend buffer section to get help with Energia issues
 - Can still get checked off for Imaging 1 today

Imaging 2 and 3 are software labs

Our circuit

A Little Physics: Voltage, Current, and Resistors

- Voltage [Volts] pushes charge through circuit
- Current [Amps] flow of charge through circuit
 - 1 Amp = 1 charge per second
- Resistor [Ohms] circuit component that resists the flow of charge through circuit

Simple Circuit: The Tools™

- Components
 - Resistors
 - Capacitors
 - Voltage Source
- Wires / Jumpers [male-to-male vs male-to-female]

What's on your circuit?: Resistors $-\sqrt{\sqrt{-}}$

4 Band Resistor Color Coding				
COLOR	1ST BAND	2ND BAND	MULTIPLIER	TOLERANCE
BLACK	0	0	χ1 Ω	
BROWN	1	1	x10Ω	±1%
RED	2	2	x100Ω	±2%
ORANGE	3	3	x1000Ω	
YELLOW	4	4	x10000Ω	
GREEN	5	5	x100000Ω	±0.5%
BLUE	6	6	x1000000Ω	±0.25
VIOLET	7	7	x10000000Ω	±0.10
GREY	8	8		±0.05
WHITE	9	9		
GOLD			0.1	±5%
SILVER			0.01	±10%

Poll Time! What color is a 100 ohm resistor? $\sqrt{}$

- black-brown-red
- brown-black-brown
- brown-black-red
- brown-black-black

Poll Time! What color is a 100 ohm resistor? $\sqrt{}$

- black-brown-red
- brown-black-brown
- brown-black-red
- brown-black-black

Poll Time! What color is a 100<u>K</u> resistor? (100 kilo-ohms, so 100,000 ohms)

- 1. brown-black-red
- 2. brown-black-brown
- 3. brown-black-yellow
- 4. brown-black-white

Poll Time! What color is a 100<u>K</u> resistor? (100 kilo-ohms, so 100,000 ohms)

- brown-black-red
- 2. brown-black-brown
- 3. brown-black-yellow
- 4. brown-black-white

Ambient Light Sensor

It behaves like a resistor and the current passing through it depends on how much light there is around it!

Direction matters!

Equipment for Today: Capacitors

They store your charge! Called capacitors because they have a set capacity (in Farads)

Equipment for Today: Wires/Jumpers

Equipment for Today: Voltage Source

IMPORTANT: Always keep current limited @ 0.1 A limit

PSU cables are hanging on back wall

Equipment for Today: Voltage Source

Power Supply Unit (PSU)

We will be using the LaunchPad instead of the PSU as our voltage source. The 3V3 and GND pins on the LaunchPad are the + and terminals of the voltage source respectively

- Components
- Nodes
 - Point in circuit where circuit elements meet
 - Wire between components are considered part of one node
- We know you don't know much about circuits yet; we've given you very detailed instructions on how to build the circuit in the lab

- Components (Resistors, LEDs, Capacitors)
- Nodes
 - Point in circuit where circuit elements meet
 - Wire between components are considered part of one node

What components?

How many nodes?

- Components (Resistors, LEDs, Capacitors)
- Nodes
 - Point in circuit where circuit elements meet
 - Wire between components are considered part of one node

What components?

Voltage source, resistor

How many nodes? 2

- Components (Resistors, LEDs, Capacitors)
- Nodes
 - Point in circuit where circuit elements meet
 - Wire between components are considered part of one node

What components?

How many nodes?

- Components (Resistors, LEDs, Capacitors)
- Nodes
 - Point in circuit where circuit elements meet
 - Wire between components are considered part of one node

What components? Same

How many nodes? 3

Breadboard

Breadboard

How do we make this circuit? → **5V PWR**

R1 100 Ω

✓ Do plug component's ends into two different rows - separate nodes

✓ Do plug components across the gap in your breadboard - A-E and F-J are separate

Is this okay? If there is an error, where?

X Do not plug both ends of component into the same row! This creates a short

Breadboarding Color Convention

Light-detecting Circuit

How to get your lab kit (1 per student)

- After finishing ~20% of the lab you will reach the end of the "Obtaining a Lab Kit" section
- Call over a lab staff member and: (also described in lab notebook)
 - Show answers to PSU, Oscilloscope, and lab kit questions
 - Demonstrate how to use the equipment
 - Be able to name components in the lab kit
- Everything in kit (bag+Launchpad) is yours to keep but EACH STUDENT HAS TO BRING THEM BACK TO EVERY LAB

How to start

- Please use the station desktops for this lab
- If you need an instructional account, let us know
- Work in pairs
- This week's lab is listed as "Imaging Lab 1"
- Make sure website says Spring 2020

FAQ

- Lab notebook link is on course website
- Check following slide for common Energia Install errors and possible fixes
- Keep voltage source leads from LaunchPad to breadboard disconnected whilst building your circuit
 - Female ends can stay connected to the LaunchPad
- Make sure you are using the correct resistors (Brown Black Yellow Gold for light sensor)
- Make sure your ambient light sensor is in the right direction
- Complete the lab in GROUPS OF 4 in your assigned breakout room
 - You must each build your own setup and answer all questions in your own notebook
- DON'T LEAVE/PACK UP YOUR CIRCUIT WITHOUT BEING CHECKED OFF FIRST
- Use the help queue and google checkoff form (linked in the lab)
 - lab.eecs16a.org

Common Energia Install Errors

- Error: The system cannot find the file specified
 - Fix: Manually update your board from version 1.0.6 to 1.0.7 (Tools --> Board --> Boards Manager
 --> Energia MSP430 Boards --> Update)
- Error: Serial monitor not displaying anything
 - Fix: select correct Baud rate in the serial monitor window (refer to lab notebook); press RST (reset) button on LaunchPad
- **Error**: Serial monitor displaying strange symbols
 - Fix: close serial monitor; reupload the code to the other COM port and open serial monitor again.
- **Error**: not detecting the launchpad as a launchpad (something like COM3 and COM4 show up)
 - Fix: if on Windows, make sure to install drivers https://energia.nu/guide/install/windows/
- Error: If you have a space in your Windows username and you encounter an error when running the program, follow these instructions (courtesy of a 16B student's Piazza post)
 - Energia stores some important stuff in this directory C:\Users\First Last\AppData\Local\Energia15
 note: username has a space
 - Create the following directory structure: C:\Users\First\AppData\Local
 - Now copy the Energia15 folder from your actual home directory into the local folder in your firstname only user home directory.