MATH 250A: Groups, Rings, and Fields

Jad Damaj

Fall 2022

Contents

1	Gro	ups	3			
	1.1 August 25					
		1.1.1	Groups			
		1.1.2	Review of homomorphisms, isomorphims			
		1.1.3	Classify all finite groups up to isomorphim			
	1.2	August	t 30			
		1.2.1	Langrange's Theorem			
		1.2.2	Normal Subgroups			
	1.3	Septen	1 ber $1 \dots $			
		1.3.1	Semidirect Products			
		1.3.2	Cauchy's Theorem			
		1.3.3	Burnside's Lemma			
	1.4	Septen	nber 6			
		1.4.1	Burnside's Lemma			
		1.4.2	Groups of order p^2			
		1.4.3	Dihedral Groups			
	1.5	Septen	ıber 8			
		1.5.1	Sylow Theorems			
		1.5.2	Classification of Abelian Groups (finite)			

Chapter 1

Groups

1.1 August 25

1.1.1 Groups

Two ways to define groups

• concrete: group = symmetries of an object X. Here a symmetry is a bijection $X \to X$ with inverse that preserves "structure" (topology, order, binary operation, ...)

Example 1.1.1. The rectangle has 4 symmetries.

The icossahedron has 20×3 symmetries since after fixing the first face there are 3 possible rotations. Vector space \mathbb{R}^k : $n \times n$ matrices with det $\neq 0$, denoted $GL_n(K)$

• abstract definition:

```
Definition 1.1.2. A group is a set G with a binary operation G \times G \to G by (a,b) \mapsto ab, a \times, a+b, \ldots with "Inverse": G \to G by a \mapsto a^{-1} and "Identity": 1,0,e,I,\ldots satisfying the axioms: 1x = x1 = x x(x^{-1}) = (x^{-1})x = 1 (xy)z = x(yz)
```

We can go from the concrete definition to the abstract one: the binary operation is composition, the identity is the trivial symmetry, inverses given y "undoing" a symmetry.

Is an abstract group the symmetries of something?

Theorem 1.1.3 (Cayley's Theorem). Any abstract group is the group of symmetries of some mathematical object.

Recall group actions:

Definition 1.1.4. Given a group G, a set S, a (left) group action is a map $G \times S \to S$ by $(g, s) \mapsto g(s), gs$ satisfying g(h(s)) = gh(s), 1s = s.

To prove Cayley's theorem we need to find :

1. a set S acted on by G

2. structure on S so that G = all symmetries.

What is S? Take S = G.

Need to define the action of GonG. There are 8 natural ways to do this.

First 4, we defin $4 G \times S \to S$ by

- g(s) = s trivial action
- g(s) = gs group product
- Try g(s) = sg Fails since G not necessarily commutative: $g(h(s)) = (sh)g \neq s(gh) = gh(s)$
- $g(s) = sg^{-1}$ works since $g(h(s)) = g(sh^{-1}) = sh^{-1}g^{-1} = s(gh)^{-1} = gh(s)$
- $g(s) = gsg^{-1}$ adjoint action

The above group action is known as a left group action, We define a right group action in a similar way : $S \times G \to S$ by $(s, g) \mapsto (s)g$, s^g satisfying (sg)h = s(gh), $s^g = s(gh)$, $s^g = s(gh)$.

We now define right group actions of G on G: $S \times G \to G$ by

- $(s,g) \mapsto s$
- $(s,g) \mapsto sg$
- $(s,g)\mapsto g^{-1}s$
- $(s, g) \mapsto g^{-1}sg$

Now we have S=G, S=set acted on by G using left action g(s)=gs - left translation. So we have shown $G\subseteq$ symmetries of S.

Want : G =symmetries of S + "structure". Let structure on S= right action of G on S. We now have 3 copies of G:

- 1. set S = G
- 2. G acts on left on S (G = symmetries of S)
- 3. G acts o the right on S (Structure of S)

Object S = S + right G action

What are the symmetries of this?

Bijection $f: S \to S$ preserving the right G-action. eg. f(sg) = f(s)g

Need to check:

- 1. Left G-action of G preserves the right G-action
- 2. Anything that preserves the right G-action is given by left multiplication of an element of G

Check (1): For $g \in G$ need (gs)h = g(sh), follows by commutativity

Note: left G-action does not preserve right G-action: $g(hs) \neq h(gs)$ in general

Check (2): Suppose $f: S \to S$ preserves the right G-action, f(sh) = f(s)h for all $h \in G$. Need to find $g \in G$ such that f(s) = gs. Take s = 1, f(1) = g1 = g so g = f(1). If g = f(1), then f(s) = gs since gs = (f(1))s = f(1s) = f(s).

So we have G = symmetries of (Set G + right G action)

Example 1.1.5. G=symmetries of rectange, set S=G

We get the graph:

Cayley graph: Point for each $g \in G$ Draw a line from g to h with gf = h.

Goal of Group theory

- 1. Classify all groups
 - Hard but can do special cases: Groups of order 60, finite subgroups of rotations in \mathbb{R}^3 , all finite simple groups, symmetries of crystals
- 2. Given a group G, classify all ways G can act on something (called a representation of G)
 - ullet Permutation representation : G acts on a set S
 - \bullet Linear representation : G acts on a vector space

Example 1.1.6. Poncaire group = symmetries of space time elementary particle: space of states = vector space acted on by G = linear group of G

1.1.2 Review of homomorphisms, isomorphims

Definition 1.1.7. A homomorphism is a map $f: G \to H$ that preserves structure eg. f(gh) = f(g)f(h), f(1) = 1, $f(g^{-1}) = f(g)^{-1}$

Note: last two properties can be derived from the first.

Example 1.1.8.
$$\exp(x) = e^x : (\mathbb{R}, +) \to (\mathbb{R}, \times)$$

 $\exp(x + y) = \exp(x) \exp(y), \exp(0) = 1, \exp(-x) = \exp(x)^{-1}$

Definition 1.1.9. The kernel of a homomorphism f is the set of elements with image the identity.

Example 1.1.10. $\mathbb{R} \to \text{rotation}$ is the plane by $\theta \mapsto \text{rotation}$ by angle θ .

nontrivial kernel : multiples of 2π .

We get the short exact sequence: $0 \to 2\pi \mathbb{Z} \to \mathbb{R} \to \text{rotations} \to 0$

Definition 1.1.11. A sequence of homomorphisms $A \to B \to C$ is exact if Image $A \to B = \text{Kernel } B \to C$

 $0 \to A \to B$ means $A \to B$ is injective $A \to B \to 0$ means $A \to B$ is surjective

Definition 1.1.12. $f: A \to B$ is an isomorphim if it is a homomorphism with an inverse. We say A, B are isomorphic. "basically the same"

Example 1.1.13. $2\pi\mathbb{Z}$ is isomorphic to \mathbb{Z} .

Example 1.1.14. $\mathbb{Z}/4\mathbb{Z}$, integers mod 4 with addition: $\{0, 1, 2, 3\}$ and $(\mathbb{Z}/5\mathbb{Z})^{\times}$, under multiplication: $\{1, 2, 3, 4\}$ are isomorphic.

We map $0 \to 1 = 2^0$, $1 \to 2 = 2^1$, $2 \to 4 = 2^2$, $3 \to 3 = 2^3$ eg. $x \mapsto 2^x$

1.1.3 Classify all finite groups up to isomorphim

Definition 1.1.15. The order of a group G = number of elements in G

Order 1: $e \times e = e$ 1 group - trivial group

Order 2: 1 group - e, f with $f^2 = e \cong \mathbb{Z}/2\mathbb{Z}$

Order p for p prime: only one group $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Definition 1.1.16. For $g \in G$ the order of g is the smallest $n \ge 1$ with $g^n = 1$

Theorem 1.1.17 (Lagrange's Theorem). If $g \in G$, the roder of g divides the order of G.

Example 1.1.18. Suppose |G| = p, (p prime). Pick $g \in G$ with $g \neq e$. Order of g divides |G| = p so is either 1 or p. Can't be one since $g \neq e$. So elements of G 1, g, ..., g^{p-1} are all distinct since $g^p = 1$, $g^x \neq 1$ for $0 \leq x < p$ and if $g^i = g^j$, $g^{i-j} = 1$. Thus, these must be all elements of G.

Order 4:

- Ex: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle, $(\mathbb{Z}/5\mathbb{Z})^{\times}$, $(\mathbb{Z}/8\mathbb{Z})^{\times}$, symmetries of
- only 2 groups of order 4

1.2 August 30

1.2.1 Langrange's Theorem

Order 4: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle

How to show not isomorphic?

Find some property (preserved by isomorphism) that one group has but the other does not.

Property: Order of elements

- in $\mathbb{Z}/4\mathbb{Z}$, 0, 1, 2, 3 have orders 1, 4, 2, 4 respectively
- all nontrivial elements of the group of symmetries of the rectangle have order 2

Note: counting elements of each order works for small gorups but 2 groups of order 16 with same number of elements of each order

Classification: By Lagrange's theorem, each element has order 1, 2, or 4

- 1. Have an element of order 4: g, group = $\{1, g, g^2, g^3\} \cong \mathbb{Z}/4\mathbb{Z}$ In general, if a group of n elements has an element of order n, it is $\cong \mathbb{Z}/4\mathbb{Z}$
- 2. All elements have order 1 or 2.

Suppose G is finite and has this property. Then G commutes since $(gh)^2 = ghgh = 1 = g^2g^2$ so gh = hg. Note: only true for prime 2, there is a group of order 27 such that all elements have order 1 or 3 but is not commutative

Write group operation as +. G is a vector space over \mathbb{F}_2 (field of 2 elements). So $G \cong \mathbb{F}_2^k$ for osme set $|G| = 2^k$. We get 1 group of order 4 with all elements of order 1 or 2.

Group of order 4 is product of 2 groups, $\mathbb{F}_2^2 = \mathbb{F}_2 \oplus \mathbb{F}_2$.

Suppose G, H are gorups, $G \times H$ is a gorup under operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$

Example 1.2.1. $\mathbb{C}^{\times} \cong \mathbb{R}_{\geq 0} \times S^1$, $z = |z| \cdot e^{i\theta}$

Chinese Remainder Theorem: (m, n) coprime, $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

We have maps $f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $g: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. This gives $h: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. If (m, n) = 1, then the map is injective since if h(k) = 0, $k \equiv 0 \mod m$, mod n

Infinite Products: $G_1 \times G_2 \times G_3 \times \cdots$, set of all elements $(g_1, g_2, g_3, \ldots,)$ Infinite Sums: Like infinite products but all but finitely many of g_1 are 1.

Example 1.2.2. Roots of $1 = e^{2\pi q}$, $q \in \mathbb{Q}$.

Infinite sum $G_2 + G_3 + G_5 + G_7 + G_1 + \cdots$ $(G_p = \text{roots of order } p^n \text{ for some } n \ge 1)$

Symmetry of Platonic Solids

Faces	Name	Rotations	Rotations + Reflections	
4	tetrahedron	$12 = 4 \times 3$	$24 \rightarrow \text{not a product}$	
6	hexahedron (cube)	$24 = 6 \times 4$	48	All except tetrahedron have
8	octahedron	$24 = 8 \times 3$	$\begin{cases} 48 \\ 120 \end{cases}$ product $\mathbb{Z}/2\mathbb{Z} \times \text{rotations}$	-
12	dodecahedron	$60 = 12 \times 5$	120 \int product $\mathbb{Z}/2\mathbb{Z} \times 10$ tations	
20	icosahedron	$60 = 20 \times 3$	120	
	/-1		,	

symmetry $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ fo reflections in \mathbb{R}^3 , so it commutes with everything

For the tetrahedron, we have $\begin{pmatrix} -1 & \\ & 1 \\ & & 1 \end{pmatrix}$

Order 5: $\mathbb{Z}/5\mathbb{Z}$

Exercise 1.2.3. Find a graph as small as possible with symmetries $\mathbb{Z}/5\mathbb{Z}$

Order 6: 3 obvious examples: $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, symmetries of the triangle

- $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
- group of symmetries of the triange is not abelian Permutation Notation: $(5\,2\,1\,3) = \text{function sending } 5 \rightarrow 2, 2 \rightarrow 1, 1 \rightarrow 3, 3 \rightarrow 5$ (Insert Figure) $(1\,2)(2\,3) = (1\,2\,3)$ but $(2\,3)(1\,2) = (1\,3\,2)$

Definition 1.2.4. A subgroup of a group G, is a subset closed under group operations.

Theorem 1.2.5 (Lagrange's Theorem). If H is a subgroup of G, |H| divides |G|.

Special Case: If $H = \text{powers of } g, 1, g, g^2, \dots, g^{n-1}, |H| = |g|$

Construction of subgorups: Pick a set S acted on by G, pick $s \in S$.

H: elements g with gs = s (elements fixing s). Then H is a subgroup.

Lagrange (Converse to Cayley's Thm): If H is a subgroup of G we can find a set acted on by G, such that H=elements fixing $s \in S$.

Given a gorup G, subgroup H. We want to construct: a set S acted on by G.

Consider G=symmetries of triangle, $H = \{(1)(2)(3), (23)\}$ fixing 1.

How do we write 1, 2, 3 in terms of G, H?

Left cosets of $H: 1 \leftrightarrow \text{elements } g \text{ with } g(1) = 1 \text{ (H)}, 2 \leftrightarrow \text{elements } g \text{ with } g(1) = 2 \text{ ((12)}H), 3 \leftrightarrow \text{elements } g \text{ with } g(1) = 3 \text{ ((13)}H)$

Left cosets of H are sets of the from aH (some fixed $a \in G$).

Define $g_1 \approx g_2$ if $g_1 = g_2 h$ for some $h \in H$. This is an equivalence relation:

Reflexivity: $g_1 \approx g_1$ group identity, 1

Symmetry: $g_1 \approx g_2 \rightarrow g_2 \approx g_1$ group inverses, h^{-1}

Transitivity: $g_1 \approx g_2, g_2 \approx g_3 \rightarrow g_1 \approx g_3$ group operation, $h_1 h_2$

 $G = \text{disjoint union of cosets (equivalence classes of } \approx)$ and any two cosets have the same same |H| since we have a bijection $H \to aH$ byb $h \mapsto ah$ with inverse $h \mapsto a^{-1}h$.

So G = # cosets \times size of cosets = # elements of $S \times |$ subgroup of elements fixing s|

Note: We assume S is transisitve - if $s_1, s_2 \in S$. $g(s_1) = s_2$ for some g

Rotations of a dodecahedron: 12 (faces) \times 5 = 20 (vertices) \times 3 = 30 (edges) \times 2 = 60

Conways Group: has order 831555361308172000

Acting on Frames: # 8252375 Group fixing each frame: 1002795171840

Special Cases of Lagrange:

- Fermat: $a^p \equiv a \mod p$ (p prime), $a^{p-1} \equiv 1 \mod p$ (a, p) = 1 Group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ integers modulo p under \times has order p-1. Lagrange: order of a divides p-1 so $a^{p-1} \equiv 1$
- Euler: $a^{\varphi(m)} \equiv 1 \mod n \ (a, m) = 1$ $(\mathbb{Z}/m\mathbb{Z})^{\times} =$ group of elements coprime to m, mod m, order $= \varphi(m)$

m = 8: $\varphi(m) = 4$, $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$. Euler $a^4 \equiv 1 \mod 8$ (a odd) but we see $a^2 \equiv 1 \mod 8$

Right Cosets: $Ha \leftrightarrow$ elements of a set acted on, on the right by $G. S \times G \rightarrow S$

Are left cosets the same as right cosets? sometimes

Example 1.2.6. Take G = symmetries of triangle. $H = \{1, (23)\}$. Find the left, right costs of H in G.

Left: $H = \{1(23)\}, (31)H = \{(31), (321)\}, (12)H = \{(12), (123)\}$

Right: $H = \{1(23)\}, (31)H = \{(31), (123)\}, (12)H = \{(12), (321)\}$

so left cosets \neq right cosets

Definition 1.2.7. Index of H in G, [G:H] = # cosets of H in G.

Left or right cosets? [G:H][H] = |G| when G finite so # left cosets = # right cosets. In gernal, right cosets \rightarrow left cosets by $Ha \mapsto a^{-1}H$ so # left cosets = # right cosets

1.2.2 Normal Subgroups

G/H = set of left coset of G. Is G/H a group?

How to definte $(g_1H) \times (g_2H)$? g_1g_2H

Problem: not well defined - suppose we have g_1, g_2, g_1h_1, g_2h_2 . Want $g_1g_2H = g_1h_1g_2h_2H$

Is $h_1g_2 = g_2(h \in H)$? not in general

Want: $ghg^{-1} \in H$ for all $g \in G$. If this holds, then we can turn G/H into a group.

Definition 1.2.8. If H satisfies the above property, H is called a normal subgroup of G.

Example 1.2.9. $G = \text{symmetries of triangle. } H = \{(23), 1\}. \text{ Is } H \text{ normal?}$

 $(12)(23)(12)^{-1} = (13) \notin H$ so H is not normal

What about $H = \{1, (123), (132)\}$. Is H normal?

H has index 2 in G. $[G:H] = \frac{|G|}{|H|} = 2$. We claim any subset of order 2 is normal. There are only 2 left cosets: H, things not in H. Similarly for right cosets. So right cosets = left cosets. So His normal.

Classifying Groups of Order 6

- orders of elements 1, 2, 3, 6
- If element of order 6, group must be cyclic
- Want element of order 3

Lagrange: order of element divides order of group

Converse: If n divides |G|, does G have a subgroup of order n?

No: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has no element of order 4

Yes: if n is prime (Cauchy)

So G has elements a, b of order 2,3 and subset $(1,b,b^2)$ has order 2 so it is normal.

1.3 September 1

1.3.1 Semidirect Products

Groups of Order 6:

 $|A| \cdot |B| = |G|, A \cap B = \{e\}$ 2 subgroups A, B of order 2,3

In general, suppose that for a group G, subgroups A, B

1.
$$|G| = |A| \cdot |B|$$

2.
$$A \cap B = \{e\}$$

Want to reconstruct G from A, B

$$G = AB = \{ab \mid a \in A, b \in B\}, \# \text{ pairs } (a, b) = |G|$$

If $a_1b_1 = a_2b_2$, $a_2^{-1}a_1 = b_2b_1^{-1} \in A \cap B = \{e\}$ so $a_1 = a_2, b_1 = b_2$ Every element of G can be written uniquely as a product of $a \in A$, $b \in B$

Problem: What is $a_1b_1 \cdot a_2b_2$? $= a_3b_3$

Easy case: ab = ba for all $a \in A, b \in B$ $(a_1b_1)(a_2b_2) = (a_1a_2)(b_1b_2)$

We can view G as the product of $A, B \to G = A \times B$

Slightly less easy case: A is a normal subgroup of G. We get an action of the group B on the group A.

Define the action of B on A by $b(a) = bab^{-1} \in A$ (A normal)

This determines the product on G. $(a_1b_1)(a_2b_2) = a_1(b_1a_2b^{-1})b_1b_2 = \underbrace{a_1b_1(a_2)}_{GA} \times \underbrace{b_1b_2}_{GB}$.

Suppose given groups A, B action of V on A. We construct the semidirect product of A and B, $A \times B$ on the set $A \times B$ with the product given by : $(a_1, b_1)(a_2, b_2) = (a_1b_1(a_2), b_1b_2)$. We can check this is a group.

Order 6

So $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ defined by the action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/3\mathbb{Z}$.

 $\operatorname{Sym}(\mathbb{Z}/3\mathbb{Z})$: either f(1)=1 or f(1)=2 so only two possible homomorphisms $\mathbb{Z}/2\mathbb{Z} \to \operatorname{Sym}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$: identity and trivial homomorphisms

So groups of order 6:

- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ trivial action $\cong \mathbb{Z}/6\mathbb{Z}$
- $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ nontrivial action $\cong S_3$

1.3.2 Cauchy's Theorem

Theorem 1.3.1 (Cauchy's Theorem). If $p \mid |G|$ (p prime), G has an element of order p.

Proof. We use induction on the size of the group: can assume true for any peroper subgroups and quotient groups

G abelian: pick $g \in G$. If p||g|, g has order pn so g^n has order p.

If $p \mid |g|$, look at $G/\langle g \rangle$. $\langle g \rangle$ normal since G is ableian, p divides $|G/\langle g \rangle|$. Pick $h \in G/\langle g \rangle$, order divisible by p. Lift h_1 in G. Then $p \mid h_1$.

Standard Error: Can't always lift h to element of the same order

 $G \cong \mathbb{Z}/4\mathbb{Z}, g = 2$. $G/\langle g \rangle$ has order 2 so take nontrivial element. Its lift does not have order 2 in G

Definition 1.3.2. The center of G is the elements that commute with all elements of G.

Lemma 1.3.3. Suppose G is nonotrivial, all proper subgroups have index divisible by p. Then the center of G is divisible by p.

Proof. Look at left action of G on itself by conjugation. G = union of orbuts where a, b in the same orbit if there is some g such that g(a) = b. $|G| = \sum (\text{size of orbits})$

Size of orbit = |G|/subgroup of elements fixing a point. Either 1 or divisble by p so

 $G = \underbrace{1+1+1}_{\text{size }1} + \cdots + \underbrace{pn_1 + pn_2}_{\text{size }>1} + \cdots$. Since G divisible by p # orbits with one element is. Theorem follows

since Center of G = elements with orbit of size 1.

Proof (Cauchy's Theorem (Cont)). Case 1: Some proper subgroup has order dvisible by p.

Such a subgroup has an element of order divisble by p by induction.

Casse 2: All proper subgroups have index divisible by p. By lemma, center of G has order divisible by p Center of G is abelian so it has an element of order p.

Order 7: $\mathbb{Z}/7\mathbb{Z}$

Order 8: Obvious examples: Producst $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

 $\mathbb{Z}/8\mathbb{Z}$, symmetries of a square (D_8) - dihedral group.

Orders of elements: 1, 2, 4, 8

• If element has order 8, group is cylic

• If all elements have order 1 or 2, group is vector field over \mathbb{F}^2 so is $(\mathbb{Z}/2\mathbb{Z})^2$

So can assume G has an element a, of order 4. $a^4 = 1$. Subgroup $A = \{1, a, a^2, a^3\}$ has index 2 so is normal. Quotient group has order 2 so $\cong \mathbb{Z}/2\mathbb{Z}$

We have an exact sequence $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$

Problem: Given $1 \to A \to G \to B \to 1$ How to construct G form A, B?

Possibilities: $G = A \times B$, or $A \times B$, not always the case:

• $1 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 1$ not a semidirect product

• $1 \to \mathbb{Z}/3\mathbb{Z} \to S_3 \to \mathbb{Z}/2\mathbb{Z} \to 1$ $S_3 = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

We get an action of B on A by conjugation so considering $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$ we can take the nontrivial element b of $\mathbb{Z}/2\mathbb{Z}$. Cant say $b^2 = 1$, but $b^2 \in A$. Also B acts on A by conjugation.

So we have $\mathbb{Z}/4\mathbb{Z} = \{1.a, a^2, a^3\}$ $a \mapsto bab^{-1}$: $a \mapsto a$ or $a \mapsto a^{-1}$

Possibilities:

bab⁻¹ =
$$a$$
 bab⁻¹ = a^{-1}
 $b^2 = 1$
 $b^2 = a \ b^2 = a^3$
 $b^2 = a^2$
 $b^2 = a^2$
 $b^2 = a^2$
 $b^2 = a^3$
 $b^2 = a^3$
 $b^2 = a^2$
 $b^2 = a^3$
 $b^2 = a^3$
 $b^2 = a^2$
 $b^2 = a^2$

Semidirect Products
 $a = b^2, ab = ba \rightarrow a^2 = 1$

Semidirect Products
$$= b^2$$
, $ab = ba \rightarrow a^2 = 1$

Quaternion group: generated by a, b with $a^4 = 1, b^2 = a^2, bab^{-1} = a^{-1}$

Does it exst? Yes: have be viewed in $M_2(\mathbb{C})$ - $a = \begin{pmatrix} i \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Usually denote elements: $I = \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$, $J = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $K = IJ = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

Quaternions $Q_8 = \{i, I, J, J, -1, -I, -J, -K\}$ satisfying $I^2 = J^2 = K^2 = 1$, IJ = K, JK = 1, KI = J

Hamilton's Quaternions(H) = all numbers a + bi + cj + dk a, b, c, d real

Nonzero elements of H form a gorup. Problem: Show inverses exist.

 $(a+bi+cj+dk)(a-bi-cj-dk) = a^2+b^2+c^+d^2 > 0 \text{ so}$ $(a+bI+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$

Can also look at $S^3 \subset H = \{a + bi + cj + dk \mid a^2 + b^2 + c^2 = d^2 = 1\}$

For z = a + bi + cj + dK, $\overline{z} = a - bi - cj - dk$ let $z\overline{z} = N(z)$

We see $N(z_1z_2) = N(z_1)N(z_2)$ so if N(z) = 1 closed under \times so is a group.

Only spheres that are a group are S^0, S^1, S^3 . Elements of $\mathbb{R}, \mathbb{C}, H$ with absolute value 1.

Note: $Q_8 \subseteq S^3$

1.3.3 Burnside's Lemma

Problem: How many ways to arrange 8 rooks on a chess board so that no 2 attack each other? 8 ways for first row, 7 for second, ..., so 8! = 40320 total Suppose we want to count them up to symmetry:

• For 3×3 : (Insert Figure) can only have 2

Approximate number = $\frac{\text{total } \# \text{ of elements}}{\text{order of group}} = \frac{8!}{8} = 7! = 5050$

General problem: Suppose we have a group G acting on a set S. How many orbits? $\geqslant \frac{|S|}{|G|}$ Answer:

Lemma 1.3.4 (Burnside's Lemma). # of orbits = average number of fixed points of $g \in G$, eg. $s \in S$ with g(s) = s

Proof. Count number of pairs $(g, s) \in G \times S$ with g(s) = s in 2 ways:

- 1. Sum over $G: \sum_{g \in G} (\# \text{ fixed by } g)$
- 2. Sum over S: Each orbit contributes (size of orbit) × (# of elements fixing a point) = |G| so sum = $|G| \times \#$ of orbits

So # of orbits $=\frac{1}{|G|}\sum_g \#$ fixed points = avg # fixed points

1.4 September 6

1.4.1 Burnside's Lemma

Example 1.4.1. Find the number of ways to arrange 8 nonattacking rooks on a chessboard up to symmetry. Recall - # of orbits of a set = average number of fixed points = $\frac{1}{|G|} \sum_{g \in G} \#$ fixed points of g. $G = \text{dihedral group } D_8$, acting on 8! = 40320 ways to arrange 8 rooks Elements of D_8 :

- Trivial (Insert Figure): 8! = 40320
- 180° rotation (Insert Figure) : 8 options for 1rst, 6 options for 2cnd, ... so $8 \times 6 \times 4 \times 2$
- 90° rotation (Insert Figure): 6 options for 1rst, 2 options for 2cnd so 6×2

2 elements g_1, g_2 are called conjugate if $g_1 = gg_2g^{-1}$ for some g (Formalizes notion of "looks the same") $g_1 = (\text{Insert Figure})$ $g_2 = (\text{Insert Figure})$ g = (Insert Figure) exchanging g_1, g_2 . If two elements are conjugate then they have the same number of fixed points. $g_1(s) = s \rightarrow g_2(gs) = gg_1g^{-1}gs = gs$

• (Insert Figure): conjugate with 90° rotation so 6×2

- (Insert Figure): conjugate and have 0 since rotates rook to the same column/row
- (Insert Figure): conjugate. $C_n = \#$ ways to place rooks on $n \times n$ chessboard invariant under transformation. $c_0 = 1, c_1 = 1$.

```
Case 1 : (Insert Figure) Case 2: (Insert Figure) so c_n = c_{n-1} + (n-1)c_{n-2} and c_n = 1, 1, 2, 4, 10, 26, 76, 232, 764
```

So # of ways to place rooks = $\frac{1}{8}(1 \times 8! + 1 \times 384 + 2 \times 12 + 2 \times 0 + 2 \times 764) = 5282$ Slighly more than original guess $\frac{40320}{8} = 5040$

Example 1.4.2. Find the number of ways to color a cube with n different colors up to symmetry.

1.4.2 Groups of order p^2

Order 9: Obvious examples = $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Classify all groups of order p^2 (p prime): only ex are $\mathbb{Z}/p^2\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$ (1): Every group of order p^n (p prime, n > 0) has nontrivial order

Proof. Recall, if all proper subgroups have index divisible by p, p||G| then G has nontrivial center. So if $|G| = p^n$, n > 0, we see G has nontrivial center.

Implies that if $|G| = p^n$, G is nilpotent. ie. repeatedly modding out by the center gives you the trivial group. $G_0 = G$, $G_1 = G_0/Z(G_0)$, $G_2 = G_1/Z(G_1)$, ... If G_n is trivial for some n, G is called nilpotent. This gives an exact sequence: $1 \to Z(G_i) \to G_i \to G_{i+1} \to 1$

Note: A group may still have nontrivial center even after modding out by the original center: $G = D_8$, $G/Z(G) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

 S_3 (order 6) is not nilpotent

(2): If G/Z(G) is cyclic then G is abelian.

Proof. Consider $1 \to Z(G) \to G/Z(G) \to 1$. Z/(G) is powers of g_1 , lift g_1 to g in G. Every element in G is of the form zg^n ($z \in \text{center}$) so all commute $z_1g^{n_1}, z_2g^{n_2}$: z_1 commutes with $z_2g^{n_1}$, $z_3g^{n_2}$ commutes with $z_3g^{n_1}$ commutes with $z_3g^{n_2}$

(3): Every group of order p^2 is abelian.

Note: not true for p^3 , consider D_8 , Q_8 of order 2^3

Proof. Center is nontrivial so has order $\geq p$. G/Z(G) has order 1 or p so it is cyclic so G is abelian.

(4): Every group of order p^2 is $(\mathbb{Z}/p^2\mathbb{Z})$ or $(\mathbb{Z}/p\mathbb{Z})^2$

Proof. Case 1 : elements of order $p^2 \to G$ is cyclic $\cong \mathbb{Z}/p^2\mathbb{Z}$

Case 2: all elements have order p or 1+G abelian. G is really a vector field over \mathbb{F}_p the field with p elements so $G=\mathbb{F}_p\oplus\mathbb{F}_p$.

1.4.3 Dihedral Groups

```
Order 10: \mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}, D_{10} = (\mathbb{Z}/5\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}
```

Groups of Order 2p: G has a subgroup of order p, index 2 so is normal. G has a subgroup of order 2 so $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, determined by action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/p\mathbb{Z}$.

Symmetries of $\mathbb{Z}/p\mathbb{Z}$: map generator $1 \to \text{elment of order } p. \ n \mapsto na \ p \ | a$

Symmetries = $(\mathbb{Z}/p\mathbb{Z})^{\times}$ nonzero integers mod p under \times . Only elements of order 2 are $\pm a \mod p$

 $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}2\mathbb{Z}$ (trivial action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/p\mathbb{Z}$)

 $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}2\mathbb{Z}$ ($\mathbb{Z}/2\mathbb{Z}$ acting by -1 on $\mathbb{Z}/p\mathbb{Z}$) = dihedral group.

Dihedral Groups: symmetries of a regular n-gon $(n \ge 3)$. Order 2n (Insert Figure)

What is the center of D_{2n} ? $(n \ge 2)$? Order 2 if even, order 1 if odd.

Why does D_{12} split as a product?

(Insert Figure) $D_1 2 = D_6 \times \mathbb{Z}/2\mathbb{Z} = \text{symmetries of triangels} \times 180^{\circ} \text{ rotation commutes with elements and flips the two triangles}$

 D_{10} (Insert Figure) Problem: 180° does not flip two squares.

 D_{2n} can be split $D_{2n} \times \mathbb{Z}/2\mathbb{Z}$ for $D_4, D_{12}, D_{20}, D_{28} \pmod{4}$

Involutions in dihedral groups (elements of order 2)

 D_{2n} (Insert Figure)

Reflection Groups (generated by relations)

(Insert Figure) Suppose g and h are relations. If $g^2 = 1$, $h^2 = 1$, $(gh)^n = 1$

• Fid property of all finite groups that doesn't hold for all infinite groups, in the language of groups.

Property: If g, h are involutions, either g, h are conjugates or some involution commutes with g, h $g^2 = 1$, $h^2 = 1$, $(gh)^n = 1$ for some n (since group finite)

n even: D_{2n} has nontrivoal element in center

n odd: All involutions commute

Fails for ∞ dihedral group $g^2=1, h^2=1$ (Insert Figure)

Order 12: $\mathbb{Z}/12\mathbb{Z}$, products - $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $S_3 \times \mathbb{Z}/2\mathbb{Z}$, rotations of tetrahedrons, semidirect products- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$), $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$.

Binary Dihedral: S^3 (= unit quaternions) is a group acting on $\mathbb{R}^3 = bi + cj + dk$ - rotations in \mathbb{R}^3

 $1 \to \pm 1 \to S^3 \to \text{rotaitons on } \mathbb{R}^3 \to 1 \text{ where } \pm 1 \text{ act trivially on } \mathbb{R}^3$

 $1 \to \pm 1 \to \hat{G} \to G = \text{finite reflecction group.}$ Ex: group over D_{2n}

Binary dihedral groups of order 4n so binary dihedral group of order 12. (Q_8 binary dihedral group of order 8) 5 groups of order 12.

1.5 September 8

1.5.1 Sylow Theorems

Order 12: $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $S_3 \times \mathbb{Z}/2\mathbb{Z}$, A_4 , $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$

Sylow Theorems:

- Lagrange: if $H \subseteq G$, |H| | |G|
- If m | |G| can we find a subgroup of order G?
 No: A₄=reflections of tetrahedron has no subgroup of order 6

Theorem 1.5.1 (Sylow's Theorems). 1. If $p^n | |G|$ (p prime) then G has a subgroup of order p^n if n is maximal, called p-Sylow subgroup.

- 2. Number is 1 mod p, divides |G|
- 3. All p-sylow subgroup are conjugate (so all isomorphic)
- 4. Any p-subgroup is contained in some sylow p-subgroup.

Example 1.5.2. $G = D_8$, contains two non-conjugate elements of order 2 - (Insert Figure)

Example 1.5.3. $G = D_8$, has nonisomorphic subgroups of order 4 (Insert Figure)

Proof. 1. Existence. We proceed by induction on the order of the group.

Case 1: G has some proper subgroup H, index not divisible by p.

• Pick sylow p-subgroup of H. This is a sylow p-subgroup of G.

Case 2: All Sylow p-subgroups have index divisble by $p \to \text{center}$ if G has order divisible by p.

- pick $g \in \text{center}$, $g^p = 1$. Look at $G/\langle g \rangle$. Pick p-sylow subgroup. Inverse image in G is a sylow p-subgroup.
- 2. Number of Sylow subroups is $1 \mod p$

Key idea: look at action of Sylow p-subgroup S on set of sylow p-subgroups by conjugation All orbits have size power of p. Orbit $\{S\}$ has size 1. No other orbits of size 1. if $\{T\}$ orbit of size 1, then S normalizes T so ST of order p^m , m > n. impossible.

1 orbit of size 1, all other orbits have size p^k , k > 0. Divisible by p so total is 1 mod p

3. All Sylow *p*-subgroups are conjugate

Suppose not, then if S is a p-sylow subgroup, number of conjugates is divisble by p-1. Suppose T is a non-conjugate p-subgroup and let T act on the set of p-sylow subgroups conjugate to S. T can have no fixed points so the total number of p-sylow subgroups conjugate to S is divisble by p, contradiction.

- 4. Number of Sylow p-subgroups divides the order of G Look at action of G on sylow p-subgroups. Transitive so # subgroups = $\frac{|G|}{|\text{subgroup fixing 1}|}$ which divides G.
- 5. Any subgroup with order power of $p \subseteq \text{some sylow } p\text{-subgroup}$

Apply to groups of order $12 = 2^2 \times 3$

We know that G has subgroups of order 3 and 4.

Case 1: subgroup of order 3 is normal.

• Give G semiproduct $(\mathbb{Z}/3\mathbb{Z}) \rtimes (\text{order 4 group})$ 4 cases:

	Action trivial	Nontrivial
$\mathbb{Z}/4\mathbb{Z}$		binary dihedral
$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/3\mathbb{Z}$	$S_3 \times \mathbb{Z}/2\mathbb{Z}$

Case 2: Sylow 3 subgroups not normal

subgroups - divides 12, 1 mod 3, not $1 \to = 4$, call them S_1, S_2, S_3, S_4 . $S_i \cap S_j = \{e\}$ so we have 8 elements of order 3, 1 element of order 1, 3 "mystery" elements.

G has 2-sylow subgroups of order 4, at most one so must be normal. So $G = (\text{group of order 4}) \times \mathbb{Z}/2\mathbb{Z}$, only nontrivial action on: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \text{relfection of tetrahedron}$.

Example 1.5.4. Apply to groups of order 56.

Application: Nilpotent Groups Following are equivalent:

- 1. Group is nilpotent (center >1, G/center is nilpotent or |G|=1)
- 2. Any proper subgroup H has N(H) strictly bigger than H.
- 3. ALl Sylow subgroups are normal
- 4. G is product of groups of prime power order.
- $(1) \rightarrow (2)$: Suppose H is a subgroup.

Case 1: H does not contain Z(G). $Z(G) \subseteq N(H)$.

Case 2: H contains Z(G), look at $H/Z(G) \subseteq G/Z(G)$

(2) \to (3): If S is a sylow p-subgroup of G. Then N(S) is its own normalizer. $e \subseteq S \subseteq N(S) \subseteq G$. Suppose $g \in G$ normalizes N(S) g takes S to a sylow p-subgroup of N(S). This subgroup is conjugate to S in N(S) so $gSg^{-1} = hSh^{-1}$ for $h \in N(S)$ so gh^{-1} normalizes S so $gh^{-1} \in N(S)$, since $h \in N(S)$, $g \in N(S)$.

Now, if N(S) proper subgroup then N(N(S)) > N(S) so must have N(S) = G so there is only one sylow subgroup.

 $(3) \rightarrow (4)$: Main step - members of different sylow subgroups comute.

S is a sylow p-subgroup, T is a sylow q-subgroup with $p \neq q$, want st = ts for $s \in S$, $t \in T$

Follows from: If A, B normal subsets of G, and $A \cap B = \{e\}$ the elements of A commute with the elements of B. Look at $aba^{-1}b^{-1}$, commutator of a, b (=1 \leftrightarrow a, b commute). $aba^{-1} \in B$ so $aba^{-1}b^{-1} \in B$ and $ba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$

 $(4) \rightarrow (1)$: Follows since 1. p-groups are nilpotent, 2. product of nilpotent groups is nilpotent

Order 15: One group is $\mathbb{Z}/15\mathbb{Z} = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Consider $p \neq q, p > q$. G has sylow p-subgroup, number is $1 \mod p$, divides pq, q < p so only possibility is 1. So since p is normal $G = \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/q\mathbb{Z}$.

How doe $s\mathbb{Z}/q\mathbb{Z}$ act on $\mathbb{Z}/p\mathbb{Z}$? Aut $(\mathbb{Z}/p\mathbb{Z}) = (\mathbb{Z}/p\mathbb{Z})^{\times}$ order p-1 so if q does not divides p-1 only action is trivial so only subgroup is cylic subgroup of order pq

If $q|p-1, \mathbb{Z}/q\mathbb{Z}$ can act nontrivially on $\mathbb{Z}/p\mathbb{Z}$. Essentially one action $(\mathbb{Z}/p\mathbb{Z})^{\times}$ elements of order q forms a cyclic subgroup of order q.

Exactly two groups of order pq.

Order 16: Complete List

- 5 abelian: $\mathbb{Z}/16\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$, $(\mathbb{Z}/2\mathbb{Z})^4$
- 4 more, have subgroups of order $\mathbb{Z}/8\mathbb{Z}$: Generalized quaternion = binary dihedral, dihedral, groups generated by $a^8 = 1$ $b^2 = 1$, $bab^{-1} = a^3$ or a^5 , if a^3 called semi-dihedral.
- Products: $D_8 \times \mathbb{Z}/2\mathbb{Z}$, $Q_8 \times \mathbb{Z}/2\mathbb{Z}$
- Semidirect Product: two of form $\mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/4\mathbb{Z}$ one of form: $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$ (Pauli group)

1.5.2 Classification of Abelian Groups (finite)

All products of cylic-subgroups (not unique) eg. $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ Product is unique up to order either, n_1, n_2, \ldots satisfying $n_1 | n_2 | n_3 \cdots$ or n_i prime powers. eg. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}(2|6)$ or $(\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/3\mathbb{Z}$ ($2^2, 3$ prime powers)