Erratum

Where it was written $(0 \le \varphi \le 2\pi)$ should read $(0 \le \varphi \le \pi)$. (See equation 14)

Robust confidence ellipsoid

The robust confidence ellipsoid is built from equation $\hat{\mu}_{rob} + \left(\sqrt{3\cdot F_{3;(n-1);(1-\alpha)}}\right)\cdot U\cdot Q$ where $\hat{\mu}_{rob} = [\bar{x}_{rob} \quad \bar{y}_{rob} \quad \bar{z}_{rob}]$ is the vector of robust means, $F_{3;(n-1);(1-\alpha)}$ is the quantile of the Fisher-Snedecor distribution with 3 and (n-1) degrees of freedom and confidence level of $(1-\alpha)\%$ and Q is the Cholesky decomposition of the robust variance-covariance matrix S_{rob} . Lastly, the $m\times 3$ matrix $U=[cos(\pmb{\theta})sin(\pmb{\varphi})\quad sin(\pmb{\theta})sin(\pmb{\varphi})\quad cos(\pmb{\varphi})]$ is the sphere of radius 1 where $\pmb{\theta}=[\theta_1 \quad \cdots \quad \theta_m]$ is a vector of size m $(0\leq \pmb{\theta}\leq 2\pi)$ and $\pmb{\varphi}=[\varphi_1 \quad \cdots \quad \varphi_m]$ is a vector of size m $(0\leq \pmb{\varphi}\leq \pi)$.

Figure 1. Spherical coordinates (r, θ, φ) are $x = r \cdot cos(\theta) \cdot sen(\varphi)$, $y = r \cdot sen(\theta) \cdot sen(\varphi)$ and $z = r \cdot cos(\varphi)$ where $r \in [0; \infty)$ is radial distance, $\theta \in [0; 2\pi)$ is polar angle and $\varphi \in [0; \pi)$ is azimuthal angle.