2 Riemannian grometry
2.1 Metric
Notion of a distance for current in R3
$x(t)$, $a < t < b$, $L = \int_{a}^{b} \sqrt{\frac{dx}{dt} \cdot \frac{dx}{dt}} dt$
Convalue the scalar product of forget vestor with abself
$g: T_p(M) \times T_p(M) \rightarrow \mathbb{R}$, $(0,2)$ tensor
Det A metric tensor at p us a (0,2) tensor g such that
(i) symmetric: $g(X,Y) = g(Y,X)$ $\forall X,Y$
(ii) non-degenerate: $g(X,Y)=0$ $\forall Y \leq > X=0$
Notation $g(X,Y) = \langle X,Y \rangle_g = X \cdot Y = g_{ab} X^a Y^b$ deparative g at point $p \longrightarrow variable (4F pointive eigenvals, 4F negative eigenvals)$
Det A Rimanum (er a Lorentzian = pseudo-Riemannian) manifold et a pair (M, g where M et a mouth worsfold, and g et a Rimanumian (Lorentzian) metrice tenner field.
where it is a most worsfold, and g is a Renouncian (Lorentzian) metrice
tenner field
A spece-time in GIZ is a minual to be a Loventzion wantfold.
A spece-time in GR is a mount to be a Loventerion wantfold. Length of a most carrie $y:(a,b) \longrightarrow MM$ with farjust wells field X .
L= $\int_{a}^{b} \sqrt{ g(X,X) _{\lambda(t)}} dt$ (independent of parametrination) Coordinate bours $g = ds^2 = g\mu\nu dx^{\mu} \otimes dx^{\nu}$ step, and a mane $g\mu\nu = g\nu\mu$
Coordinate bour g = ds2 = quo dx1 @ dx v Sup, and a monte guo = gup
Granply 1) Enclosed methods on the , q = dx dx
2) Mylowski metric on \mathbb{K}^n , $\alpha = -d(x^0)^2 + dx \cdot dx \times \in \mathbb{R}^n$
3) Kound two yours, $g = d\theta^2 + \sin^2\theta d\theta^2$ $\theta \in (0, \pi)$
3) Round two sphere, $g = d\theta^2 + \sin^2\theta d\theta^2$, $\theta \in (0,\pi)$ This metric is inducted from $dx \cdot dx$ in \mathbb{R}^3 (in smotric embedding) (check another chart, and orunlap relations)
·

Det An inverse victorie is a symmetric (2,0) tenus field g^{ab} , s.t. $g^{ab}g_{ba} = J^{a}c$ $g^{a}g_{ba} = J^{a}c$ $g^{a}g_{ba} = J^{a}c$ $g^{a}g_{ba} = J^{a}c$ $g^{a}g_{ba} = J^{a}c$ Metric grow a natural isomorphism $T_p(M) \simeq T_p^*(M)$ $X^{a'} \longrightarrow X_a = X^b g_{ab}$, $\gamma_a \longrightarrow \gamma^a = g^{ab} \gamma_b$ (Raising / low wally indices) Tabe = Tade god Laurtevian argunture n-homenium $0 \le p, v, ... \le n-1$ Outhorsemal bound $explain for <math>T_p(M)$. $g(e_m, e_v) = y_{pv} = diag(-1, +1, ..., +1)$ Not unique: $e_n = (\Lambda')_n e_v$: $y_{\mu\nu} \Lambda^{\mu}_{\rho} \Lambda^{\sigma} = y_{\rho\sigma}$ (Lorentz transform at ρ). A nutor $X \in T_{\rho}(N)$ is finished bulk/specialise of g(X,X) < 0 / = 0 / > 0On a Riemannian unfol. $cos(A(x,y)) = \frac{g(x,y)}{x}$ Vg(X,X) Vg(Y,Y) This can shill be defined but for spacebile vectors. Det you) trueble curve with $\gamma(u) = p \in M$, if tangent vector X^a of time-like. Frager time from $\gamma(0)=p$ to $\gamma(1)=q$ if: $\tau = \int_{0}^{1} du \sqrt{-g_{\mu\nu}} \frac{dxt}{du} \frac{dx^{\nu}}{du} \quad \text{where } X^{\mu} = \frac{dxt}{du}$ Equivalently $dt^2 = -g\mu\nu dx^{\dagger} dx^{\nu}$ along the curve. Could are τ as a parameter along γ instead of μ . 4- velonity ut = dxt (unit, timelibe)