

CHEMISTRY Chapter 9

HIDRUROS - HIDROXIDOS

¿Qué es un hidruro?

Los hidruros son compuestos binarios formados por átomos de hidrógeno y de otro elemento que puede ser metálico o no metálico.

Hidruros Metálicos

X -1 Metal + H

BaH₂

- Sistemática (IUPAC)
 - Stock
 - Clásica

- Dihidruro de bario
- Hidruro de bario
- Hidruro bárico

FeH₃

Anhídrido	Total	
Hipo oso		
050		Х
opi	Х	Х
Per <u>ico</u>		

Sistemática (IUPAC) - Trihidruro de hierro

Stock → Hidruro de hierro (III)

Clásica → Hidruro férrico

2

Hidruros No Metálicos

- >El hidrógeno presenta estado de oxidación +1
- Pueden ser:

<u>Hidruros especiales</u>: Cuando el no metal pertenece al grupo:

III A (-3)	IVA (-4)	VA (-3)
B (boro)	C (carbono) Si (silicio)	N (nitrógeno) P (fósforo) As (arsénico)

Anfigenuros y Haluros: Cuando el no metal pertenece al grupo:

VI A (-2)	VIIA (-1)
S (azufre) Se (selenio) Te (teluro)	F (flúor) Cℓ (cloro) Br (bromo) I (yodo)

Hidruros especiales

BH₃ BORANO

CH₄ metano

SiH₄ SILANO

PH₃ FOSFINA

NH₃ AMONIACO

AsH₃ ARSINA

III A (-3)	IVA (-4)	VA (-3)
B (boro)	C (carbono) Si (silicio)	N (nitrógeno) P (fósforo) As (arsénico)

Anfígenuro y Haluros

+1 -x
Hidrógeno + No Metal

SULFURO DE HIDRÓGENO

+1	-1
H	Cℓ

HCℓ (g)

CLORURO DE HIDRÓGENO

VI A (-2)	VIIA (-1)
S (azufre) Se (selenio) Te (teluro)	F (flúor) Cℓ (cloro) Br (bromo) I (yodo)

anfigenuros
y haluros se
encuentran
en estado
gaseoso

¿Qué es un hidróxido?

Los hidróxidos son compuestos ternarios. Llamados también bases. Se forman al combinarse:

$$K_2O$$
 + H_2O \longrightarrow KOH
Hidróxido de potasio

Pb(OH)₄

Sistemática (IUPAC)

Tetrahidróxido de plomo

Stock

Hidróxido de plomo (IV)

Clásica

Hidróxido plúmbico

Nombre el siguiente hidruro (nomenclatura sistemática): PbH₄

RESOLUCIÓN

PbH₄

Tetrahidruræle plomo

Nombre el siguiente hidróxido:

RESOLUCIÓN

Stock: Hidróxido de cobre (II)

IUPAC: DiHidróxido de cobre

CLÁSICO: Hidróxido cúprico

Formule el siguiente hidruro:

Hidruro de oro (III)

STOCK

Formule el siguiente hidróxido y luego indique el número de átomos:

Hidróxido férrico:_____

RESOLUCIÓN

Atomicidad = 7

Relacione.

- I. CrH₃
- II. $Zn(OH)_2$
- III. HI_(g)
- IV. CaO

- (IV) Óxido de calcio
- (III) Yoduro de hidrógeno
- (II) Hidróxido de zinc
- (I) Trihidruro de cromo

RESOLUCIÓN

+3

CrH₃

IUPAC:

Trihidruro de cromo

Haluros

HI_(g)

Yoduro de hidrógeno

+2

 $Zn(OH)_2$

Stock:

Hidróxido de zinc

+2

CaO

Stock:

Óxido de calcio

El hidróxido sódico (NaOH) se emplea mucho en la industria de los jabones y los productos de belleza y cuidado corporal. Su principal uso es en la saponificación de determinados ácidos grasos para formar jabón. También están los antiácidos que neutralizan los ácidos digestivos, tenemos ejemplos como Mg(OH)₂, Ca(OH)₂, Al(OH)₃. Con respecto a los tres últimos hidróxidos mencionados dar nombre -IUPAC-clásico respectivamente.

Stock: Hidróxido de magnesio Mg(OH)₂ Dihidróxido de magnesio CLÁSICO: Hidróxido magnésico

Pregunta	N°	6

Stock: Hidróxido de calcio

Ca(OH)₂

IUPAC: Dihidróxido de calcio

CLÁSICO: H

Hidróxido cálcico

Al(OH)3

Stock: Hidróxido de aluminio

IUPAC:

Trihidróxido de aluminio

CLÁSICO:

Hidróxido alumínico

El vanadio es un elemento metálico del grupo VB de la tabla periódica. Este metal tiene un gran número de usos, principalmente conformando aleaciones. Alrededor del 95 % del vanadio del mundo se obtiene en Sudáfrica, China y Rusia. El vanadio no se halla en su forma elemental, pero puede ser obtenido a partir de 65 minerales distintos. Sabiendo que un hidróxido de vanadio presenta una atomicidad de 5, determine el nombre del óxido correspondiente.

- A) Óxido de vanadio (II)
- C) Óxido de vanadio (III)
- B) Óxido vanádico
- D) Óxido de vanadio (IV)

RESOLUCIÓN

Hidróxido de vanadio presenta una atomicidad de 5. Vanadio (+2;+3;+4;+5)

Rta: a) óxido de vanadio