Modeling Clustering All Features

Ryan Rogers/Tyler Marshall

10/31/2022

Library imports are left as-is. They'll be necessary in almost every version. New imports added for helper libraries

Modeling with threshold 50 number of claims

Will leave data import alone for now.

```
data <- read.csv("priv_mcare_f_pay_20220ct18.csv")
hospital_data <- read.csv("Hospital_Master_Sheet.csv")
data2 <- read.csv("combined_features.csv")</pre>
```

Modeling with Cluster 50 number of claims

```
data <- read.csv("priv_mcare_f_pay_20220ct18.csv")</pre>
cluster_0 <- c("bariatric", "breast reconstruction", "bsp", "bunionectomy",</pre>
                "clavicle fixation", "fess", "hysterect", "kidney ablation",
                "lap appendectomy", "liver ablation", "mastectomy", "navigation",
                "orthovisc monovisc", "partial shoulder arthroplasty", "pka",
                "pnn", "prostatectomy", "radius/ulna internal fixation",
                "robotic assisted surgery", "rtc slap bank", "septoplasty")
cluster_1 <- c("ant_tls_fusion", "hepat", "intracranial_thromb", "post_cerv_fusion",</pre>
                "post_tls_fusion")
cluster_2 <- c("ankle_fix", "ant_cerv_fusion", "cardiac ablation", "cardiac ablation_additional_discrete",</pre>
                "cardiac ablation_linear_focal", "cardiac_ablaton_anesthesia", "cardiac_ablaton_ice",
                "colorect", "femoral shaft fixation", "hernia", "hip_fracture_fixation", "laac",
                "lung ablation", "prox_tibia_fixation", "proximal humerus", "revision_tha",
                "revision_tka", "tavr", "tha", "thoracic", "tka", "tpa", "tsa")
cluster_data <- within(data2, {</pre>
  Cluster = NA
  Cluster[group %in% cluster_0] = 0
  Cluster[group %in% cluster_1] = 1
  Cluster[group %in% cluster_2] = 2
})
cluster 0 <- cluster data %>%
  filter(Cluster == 0)
cluster_1 <- cluster_data %>%
  filter(Cluster == 1)
cluster 2 <- cluster data %>%
  filter(Cluster == 2)
```

Cluster 0

```
# Hospital data aggregation - validated for sameness
hospitals_msa <- hospital_data %>% aggregate_hospital_features()
# Data split into model data and predict - varies from original slightly
split_dataset <- cluster_0 %>% data_split(count_thresh = 49)
working_set <- split_dataset[[1]]</pre>
predict_set <- split_dataset[[2]]</pre>
model_data <- working_set %>%
  select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -msa, -Cluster)
rm(working_set)
predict_data <- left_join(predict_set, hospitals_msa, by = "msa") %>%
  select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -Urban, -msa, -Cluster)
rm(predict_set)
# Train test split
train_test_data <- model_data %>% train_test_split(proportion = 0.8)
train <- train_test_data[[1]]</pre>
test <- train_test_data[[2]]</pre>
```

Model Creation and Prediction are now compartmentalized

```
# Random Forest model
# Fit Random Forest Model on training data
Random_Forest <- baseline_rdm_forest(data = train)
model = train(priv_pay_median ~ . , data=model_data, method = "rf", na.action = na.omit,trControl = tra
linear_model = train(priv_pay_median ~ . , data=model_data, method = "lm", na.action = na.omit,trContro

cv_mod <- model$pred

cv_mape = MAPE(cv_mod$pred, cv_mod$obs)

cv_lin_mod <- linear_model$pred

cv_lin_mape = MAPE(cv_lin_mod$pred, cv_lin_mod$obs)

train_predict <- make_baseline_prediction(Random_Forest, train)
rm(train)

train_mape_percent = get_mape_percentage(train_predict)

varImpPlot(Random_Forest, bg = "aquamarine3")</pre>
```

Random_Forest


```
test_predict <- make_baseline_prediction(Random_Forest, test)
rm(test)

test_mape_percent = get_mape_percentage(test_predict)

cat("With Threshold >50 claims for training set:\n")

## With Threshold >50 claims for training set:
cat("Train MAPE:" , round(train_mape_percent, 2), "%\n")

## Train MAPE: 19.05 %

cat("Test MAPE:" , round(test_mape_percent, 2), "%\n")

## Test MAPE: 17.82 %

cat("CV MAPE:" , round(100*cv_mape, 2), "%\n")

## CV MAPE: 21.02 %

cat("CV Lin MAPE:" , round(100*cv_lin_mape, 2), "%\n")
```

Cluster 1

CV Lin MAPE: 24.72 %

```
# Hospital data aggregation - validated for sameness
hospitals_msa <- hospital_data %>% aggregate_hospital_features()

# Data split into model data and predict - varies from original slightly
split_dataset <- cluster_1 %>% data_split(count_thresh = 49)
```

```
working_set <- split_dataset[[1]]
predict_set <- split_dataset[[2]]

model_data <- working_set %>%
    select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -msa,-Cluster)
rm(working_set)

predict_data <- left_join(predict_set, hospitals_msa, by = "msa") %>%
    select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -Urban, -msa,-Cluster)
rm(predict_set)

# Train test split
train_test_data <- model_data %>% train_test_split(proportion = 0.8)

train <- train_test_data[[1]]
test <- train_test_data[[2]]</pre>
```

Model Creation and Prediction are now compartmentalized

```
# Random Forest model
# Fit Random Forest Model on training data
Random_Forest <- baseline_rdm_forest(data = train)
model_data <- model_data %>%
    select(-site)

model = train(priv_pay_median ~ . , data=model_data, method = "rf", na.action = na.omit,trControl = tra
linear_model = train(priv_pay_median ~ . , data=model_data, method = "lm", na.action = na.omit,trContro

cv_lin_mod <- linear_model$pred

cv_lin_mape = MAPE(cv_lin_mod$pred, cv_lin_mod$obs)

cv_mod <- model$pred

cv_mape = MAPE(cv_mod$pred, cv_mod$obs)

train_predict <- make_baseline_prediction(Random_Forest, train)
rm(train)

train_mape_percent = get_mape_percentage(train_predict)

varImpPlot(Random_Forest, bg = "aquamarine3")</pre>
```

Random Forest


```
test_predict <- make_baseline_prediction(Random_Forest, test)
rm(test)

test_mape_percent = get_mape_percentage(test_predict)

cat("With Threshold >50 claims for training set:\n")

## With Threshold >50 claims for training set:
cat("Train MAPE:" , round(train_mape_percent, 2), "%\n")

## Train MAPE: 13.06 %

cat("Test MAPE:" , round(test_mape_percent, 2), "%\n")

## Test MAPE: 13.5 %

cat("CV MAPE:" , round(100*cv_mape, 2), "%\n")

## CV Lin MAPE: 13.96 %

cat("CV Lin MAPE:" , round(100*cv_lin_mape, 2), "%\n")

## CV Lin MAPE: 14.15 %
```

Cluster 2

```
# Hospital data aggregation - validated for sameness
hospitals_msa <- hospital_data %>% aggregate_hospital_features()

# Data split into model data and predict - varies from original slightly
split_dataset <- cluster_2 %>% data_split(count_thresh = 49)
```

```
working_set <- split_dataset[[1]]
predict_set <- split_dataset[[2]]

model_data <- working_set %>%
    select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -msa,-Cluster)
rm(working_set)

predict_data <- left_join(predict_set, hospitals_msa, by = "msa") %>%
    select(-priv_pay_mean, -priv_pay_iqr, -mcare_pay_mean, -mcare_pay_sd, -Urban, -msa,-Cluster)
rm(predict_set)

# Train test split
train_test_data <- model_data %>% train_test_split(proportion = 0.8)

train <- train_test_data[[1]]
test <- train_test_data[[2]]</pre>
```

Model Creation and Prediction are now compartmentalized

```
# Random Forest model
# Fit Random Forest Model on training data
Random_Forest <- baseline_rdm_forest(data = train)
model = train(priv_pay_median ~ . , data=model_data, method = "rf", na.action = na.omit,trControl = tra
linear_model = train(priv_pay_median ~ . , data=model_data, method = "lm", na.action = na.omit,trContro

cv_lin_mod <- linear_model$pred

cv_lin_mape = MAPE(cv_lin_mod$pred, cv_lin_mod$obs)

cv_mod <- model$pred

cv_mape = MAPE(cv_mod$pred, cv_mod$obs)

train_predict <- make_baseline_prediction(Random_Forest, train)
rm(train)

train_mape_percent = get_mape_percentage(train_predict)

varImpPlot(Random_Forest, bg = "aquamarine3")</pre>
```

Random Forest


```
test_predict <- make_baseline_prediction(Random_Forest, test)
rm(test)

test_mape_percent = get_mape_percentage(test_predict)

cat("With Threshold >50 claims for training set:\n")

## With Threshold >50 claims for training set:
cat("Train MAPE:" , round(train_mape_percent, 2), "%\n")

## Train MAPE: 16.16 %

cat("Test MAPE:" , round(test_mape_percent, 2), "%\n")

## Test MAPE: 24.48 %

cat("CV MAPE:" , round(100*cv_mape, 2), "%\n")

## CV MAPE: 14.47 %

cat("CV Lin MAPE:" , round(100*cv_lin_mape, 2), "%\n")
```

CV Lin MAPE: 23.98 %