Projet Sciences des données

Top-k Training of GANs: Improving GAN Performance by Throwing Away Bad Samples

Samarth Sinha Zhengli Zhao Anirudh Goyal Colin Raffel Augustus Odena

Sommaire

- 1) Présentation du papier
- 2) GANs
- 3) Top k training
- 4) Mixture of gaussians
- 5) Expérimentation et résultats

Top-k Training of GANs: Improving GAN Performance by Throwing Away Bad Samples

- Modification simple de l'algorithme des GANs (on ne modifie qu'une ligne de code)
- Améliore les résultats sans augmenter le coût de calcul
- <u>Top k training</u>: met à jour les paramètres du générateur uniquement sur les échantillons du mini-batch que le discriminateur considère comme les plus réalistes.

Rappel: GANs

Top-k Training

- Lors de la mise à jour des paramètres du générateur sur un batch d'images générés, ils mettent à zéro les k plus petits gradients
- En effectuant l'opération top-k sur les prédictions du discriminateur, nous ne mettons à jour le générateur que sur les "meilleurs" échantillons générés dans un batch donné, tels que notés par le discriminateur.
- $k(t) = max(\mu, k(t-1)-\Box)$

Mixture of Gaussians

Étude des performances de l'entraînement du GAN top-k sur un dataset test afin de mieux comprendre son comportement \rightarrow Le dataset est un mélange de gaussiennes avec un nombre variable de modes.

Le générateur et le discriminant sont des MLP à 4 couches avec 256 unités cachées dans chaque couche.

Pour chaque expérience, on mesure :

i) Qualité de l'échantillon

ii) Modes récupérés

Résultats:

- Au fur et à mesure que nous augmentons le nombre de modes dans la distribution cible : l'entraînement top-k est capable d'améliorer à la fois la fraction de modes récupérés et la fraction d'échantillons de haute qualité.
- Lorsque le nombre de modes passe de 25 à 100, le nombre d'échantillons de haute qualité diminue considérablement pour les GAN normaux : **l'entraînement top-k est nettement plus performant.**

Mode Dropping Reduction and High Quality Samples

Étude de ce qui se passe lorsque le générateur GAN est mis à jour soit sur les éléments les mieux notés, soit sur les éléments les moins bien notés dans un mini-lot.

→ GAN opèrent avec 50,000 itérations sur un mélange de 25 gaussiennes.

Number of Modes	% High Quality Samples (GAN)	% High Quality Samples (Top-k)	% Modes Recovered (GAN)	% Modes Recovered (Top-k)
25	85.6	95.5	100	100
64	73.8	81.8	96.2	100
100	40.3	54.7	94.6	100

Table 1: GAN training with and without Top-k on a Mixture of Gaussians. 'High Quality Samples' measures the fraction of samples that lie at most 4 standard deviations away from the nearest mode. 'Modes Recovered' measures the fraction of modes which have at least one high quality sample.

- Top-k training réduit le mode dropping
- Top-k training améliore la qualité des échantillons

Mais comment ? Pourquoi ?

Direction of samples from their closest mode

- Les éléments du bas s'éloignent de la direction d'oracle 2 (utilisé comme référence pour comparer les mises à jour).
- La mesure du mouvement des échantillons après les étapes de mise à jour par descente de gradient permet de comprendre ce qui se passe lorsque le générateur est mis à jour
- Évaluation de la similarité en cosinus entre la direction de l'oracle et le déplacement calculé ci-dessus.
 - → Le top-k améliore les performances du GAN en n'utilisant pas les gradients "inutiles".

Figure 2: Cosine similarity between the direction moved by a generator sample after an update to the direction to the nearest mode for top-k (left) and bottom-k (right) samples. Each bin in the histogram represents samples which are within a given standard deviation away from the nearest mode.

Figure 4: Diagram of what appears to happen in our toy Mixture of Gaussians experiment. On the left, we show the result of updating on the bottom-k samples. The blue points represent samples from the target distribution, and the red points represent a sample before and after the bottom-k as the sample moves away from the nearest mode. On the right, we show the result of top-k updating. The green point is a sample before and after the top-k update.

Expériences et Résultats

- 1. Ré-implémentation du code des auteurs
- 2. Implémentation d'une version personnalisée sur CIFAR-10

Mixture of Gaussian: Standard GAN Loss

Mixture of Gaussian: Standard Gan Loss + Top-k

CIFAR-10: Architecture du GAN (DC-GAN)

Discriminateur

Générateur

CIFAR-10: Expérimentations

Entraînement sur GPU local	Nvidia 3080ti	
Architecture retenue	DC-GAN	
Batch size	128	
Learning Rate	Generator = 0.0001 , Discriminator = 0.0004	
Optimizer	Adam	
Top-k	k = batch size , mu = batch size/2 , gamma = 1	
Nombre epochs	500	
Training Time	1h30	

CIFAR-10: Résultats

DCGAN

DCGAN + Top-k

CIFAR-10: Fréchet Inception Distance

Conclusion

- Méthode très simple qui réalise des améliorations sur une grande variété d'architectures GAN
- Phénomène intéressant dans le contexte du mélange de gaussiens :
 - Les générateurs mis à jour avec la mise à jour top-k poussent les échantillons vers leur mode le plus proche,
 - Les générateurs mis à jour avec la mise à jour bottom-k ont tendance à éloigner les échantillons de leur mode le plus proche.

Limites:

- Très bons résultats pour des GANs simples mais moins pour des GANs plus sophistiqués
- Enlève de la diversité dans les données générées

Avantage:

 Méthode très simple qui s'adapte à tous les types de datasets