$Assignment \ 3$

Haohu Shen UCID: 30063099

MATH 271 - Discrete Mathematics

Instructor Jerrod Smith

March 15, 2019

Question 1

(a)

- The statement is false.
- Its negation is: There exists sets A,B and C and functions $f:A\to B,g:B\to C$ such that $g\circ f$ is onto but f is not onto. We show that the negation is true.
- **Proof** (of negation) For example, let $A=\{1\}$, $B=\{1,2\}$, $C=\{1\}$ and let function $f:A\to B$ defined by f(1)=1, $g:B\to C$ defined by g(1)=1, g(2)=1. Since 1 is the only element in C and $(g\circ f)(1)=1$, $1\in A$, therefore $g\circ f$ is onto, but f is not onto since $\forall x\in A$, $f(x)\neq 2\in B$. The arrow diagram of $g\circ f$ is given below:

(b)

The statement is true.

• **Proof** Suppose $g\circ f:A\to C$ is onto. We show that g is onto. Suppose $b\in C$, since $g\circ f$ is onto, $\exists a\in A$ such that $(g\circ f)(a)=b$, thus g(f(a))=b. Let $c=f(a)\in B$, then g(f(a))=g(c)=b. Thus g is onto by its definition. Therefore, we can conclude that if $g\circ f$ is onto then g is onto.

(c)

- The statement is true.
- **Proof** Suppose $g\circ f$ is onto and g is one-to-one. We show that f is onto. Suppose $b\in B$, let $c=g(b)\in C$. Since $g\circ f$ is onto, $\exists a\in A$ such that $(g\circ f)(a)=g(f(a))=c=g(b)$. Since g is one-to-one, we have f(a)=b, thus f is onto by the definition. Therefore, we can conclude that if $g\circ f$ is onto and g is one-to-one then f is onto.

Question 2

(a)

- The statement is false.
- Its negation is: $f \circ g$ is not one-to-one, that is, $\exists a,b \in \mathbb{Z}$ such that $(f \circ g)(a) = (f \circ g)(b)$ but $a \neq b$. We show its negation is true.
- Proof (of negation)

For example, let $a=0\in\mathbb{Z}$, $b=-1\in\mathbb{Z}$, thus

$$(f\circ g)(a)=f(g(a))=f(\lfloor rac{a+1}{2}
floor)=3\lfloor rac{a+1}{2}
floor-1=3\lfloor rac{0+1}{2}
floor-1=-1 \ (f\circ g)(b)=f(g(b))=f(\lfloor rac{b+1}{2}
floor)=3\lfloor rac{b+1}{2}
floor-1=3\lfloor rac{-1+1}{2}
floor-1=-1$$

Therefore, $(f \circ g)(a) = -1 = (f \circ g)(b)$, but $a \neq b$ because $0 \neq -1$.

(b)

- The statement is false.
- Its negation is: $f \circ g$ is not onto. We prove the negation is true by contradiction.
- Proof (of negation by contradiction)

Suppose $f\circ g$ is onto, that is, $\forall b\in\mathbb{Z},\,\exists a\in\mathbb{Z}$ such that $(f\circ g)(a)=b$. Thus:

$$(f\circ g)(a)=f(g(a))=f(\lfloor rac{a+1}{2}
floor)=3\lfloor rac{a+1}{2}
floor-1=b$$

Let b=1, then

$$3\lfloor \frac{a+1}{2} \rfloor - 1 = 1$$

thus

$$\lfloor \frac{a+1}{2} \rfloor = \frac{2}{3} \notin \mathbb{Z}$$

but $\frac{a+1}{2} \in \mathbb{Z}$ by the definition, thus $\lfloor \frac{a+1}{2} \rfloor \in \mathbb{Z}$ and $\lfloor \frac{a+1}{2} \rfloor \notin \mathbb{Z}$, which leads to a contradiction. Therefore, by contradiction, we can conclude that the negation is true, thus the original statement is false.

(c)

- The statement is true.
- Suppose $a,b\in\mathbb{Z}$ and $(g\circ f)(a)=(g\circ f)(b)$, we show that a=b.
- Proof

Since

$$(g\circ f)(a)=(g\circ f)(b) \ g(f(a))=g(f(b)) \ g(3a-1)=g(3b-1) \ igg\lfloor rac{(3a-1)+1}{2} igg
floor = igg\lfloor rac{3b}{2} igg
floor \ a+ig\lfloor rac{a}{2} ig
floor = b+ig\lfloor rac{b}{2} ig
floor$$

Thus, we can split the value of a into two cases by its parity.

Case 1 a is odd, thus $\exists m \in \mathbb{Z}$ such that a=2m+1.

• *Subcase 1* If b is odd, then $\exists n \in \mathbb{Z}$ such that b=2n+1, thus when we back-substitute to $a+\lfloor \frac{a}{2} \rfloor=b+\lfloor \frac{b}{2} \rfloor$, we have

$$egin{align} (2m+1) + \left\lfloor rac{2m+1}{2}
ight
floor = (2n+1) + \left\lfloor rac{2n+1}{2}
ight
floor \ (2m+1) + m + \left\lfloor rac{1}{2}
ight
floor = (2n+1) + n + \left\lfloor rac{1}{2}
ight
floor \ 3m+1 = 3n+1 \ m=n \ \end{pmatrix}$$

Thus

$$a = 2m + 1 = 2n + 1 = b$$

 \circ **Subcase 2** If b is even, then $\exists n\in\mathbb{Z}$ such that b=2n, thus when we back-substitute to $a+\lfloor \frac{a}{2}\rfloor=b+\lfloor \frac{b}{2}\rfloor$, we have

$$egin{aligned} (2m+1) + \left\lfloor rac{2m+1}{2}
ight
floor = 2n + \left\lfloor rac{2n}{2}
ight
floor \ (2m+1) + m + \left\lfloor rac{1}{2}
ight
floor = 2n + n \ 3m+1 = 3n \end{aligned}$$

Since

$$b = 2n = 2 \cdot rac{3m+1}{3} = 2(m+rac{1}{3}) = 2m + rac{2}{3}
otin \mathbb{Z}$$

and

$$b=2n\in\mathbb{Z}$$

thus $b \in \mathbb{Z}$ and $b \notin \mathbb{Z}$, which leads to a contradiction, thus it is impossible that b is even.

Case 2 a is even, thus $\exists m \in \mathbb{Z}$ such that a=2m.

 \circ **Subcase 1** If b is even, then $\exists n \in \mathbb{Z}$ such that b=2n, thus when we back-substitute to $a+\lfloor \frac{a}{2} \rfloor=b+\lfloor \frac{b}{2} \rfloor$, we have

$$egin{aligned} 2m + \left\lfloor rac{2m}{2}
ight
floor = 2n + \left\lfloor rac{2n}{2}
ight
floor \ 2m + m = 2n + n \ 3m = 3n \ m = n \end{aligned}$$

Thus

$$a = 2m = 2n = b$$

• *Subcase 2* If b is odd, then $\exists n \in \mathbb{Z}$ such that b=2n+1, thus when we back-substitute to $a+\lfloor \frac{a}{2} \rfloor=b+\lfloor \frac{b}{2} \rfloor$, we have

$$egin{align} 2m + \left\lfloor rac{2m}{2}
ight
floor = (2n+1) + \left\lfloor rac{2n+1}{2}
ight
floor \ 2m + m = (2n+1) + n + \left\lfloor rac{1}{2}
ight
floor \ 3m = 2n+1+n \ 3m = 3n+1 \ \end{pmatrix}$$

Since

$$a = 2m = 2 \cdot rac{3n+1}{3} = 2(n+rac{1}{3}) = 2n + rac{2}{3}
otin \mathbb{Z}$$

and

$$a=2m\in\mathbb{Z}$$

thus $a \in \mathbb{Z}$ and $a \notin \mathbb{Z}$, which leads to a contradiction, thus it is impossible that b is odd.

Conclusion Since we have a=b in both cases, we can conclude that, $g\circ f$ is one-to-one by definition.

(d)

- The statement is false.
- Its negation is: $g \circ f$ is not onto. We show that the negation is true by contradiction.
- **Proof** (of negation by contradiction) Suppose $g\circ f$ is onto. Thus $\forall b\in\mathbb{Z},\,\exists a\in\mathbb{Z}$ such that $(g\circ f)(a)=b$. So

$$(g\circ f)(a)=g(f(a))=g(3a-1)=\left\lfloorrac{(3a-1)+1}{2}
ight
floor=\left\lfloorrac{3a}{2}
ight
floor=b$$

Let b=5, then

$$\left\lfloor \frac{3a}{2} \right\rfloor = 5$$

Thus, by the definition, we have

$$5 \le \frac{3a}{2} < 6$$

therefore

$$\frac{10}{3} \le a < 4$$

However, there is no integer a such that $a \in [\frac{10}{3}, 4)$, which contradicts that a is an integer. Hence, by contradiction, we can conclude that, the negation is true, thus the original statement is false.

Question 3

(a) Solution Since $I_A:A o A$ and $I_A=x$ for each $x\in A$, we have

$$I_A = \{(1,1), (2,2), (3,3), (4,4)\}$$

Let f:A o A be defined by

$$f = \{(1,1), (2,2), (3,3), (4,4)\}$$

Then we have

$$f(1) = 2, f(2) = 1, f(3) = 3, f(4) = 4$$

- Since $(1,2) \in f$ and $(1,2)
 otin I_A$, $f
 eq I_A$.
- Since

$$(f\circ f)(1)=f(f(1))=f(2)=1=I_A(1) \ (f\circ f)(2)=f(f(2))=f(1)=2=I_A(2) \ (f\circ f)(3)=f(f(3))=f(3)=3=I_A(3) \ (f\circ f)(4)=f(f(4))=f(4)=4=I_A(4)$$

We have $f \circ f = I_A$ from A to A.

The arrow diagram of $f \circ f$ is shown below:

- **(b)** We introduce two lemmas and prove them are both true at first.
 - ullet Lemma 1 I_A is one-to-one.
 - **Proof** (of Lemma 1) Suppose $x,y\in A$ such that $I_A(x)=I_A(y)$. We prove I_A is one-to-one by showing x=y. Since $I_A(x)=I_A(y)$, we have x=y by the definition of I_A . Thus I_A is one-to-one.
 - Lemma 2 I_A is onto.
 - ullet Proof (of Lemma 2) Suppose $x\in A$, since $I_A(x)=x$, we have I_A is onto by the definition.

Now we claim the statement is true and we prove that f is one-to-one and onto separately.

ullet Proof We suppose $f\in F$ and $f\circ f=I_A$. We also suppose $x,y\in A$ and f(x)=f(y). Let c=f(x)=f(y), then

$$f(c) = f(f(x)) = f(f(y))$$

Since $f\circ f=I_A$, we have $I_A(x)=I_A(y)$, from **Lemma 1** we know I_A is one-to-one, thus

$$x = y$$

Since f(f(x)) = f(f(y)) and x = y such that $x, y \in A$, we have f is one-to-one by the definition.

From **Lemma 2** we know I_A is onto, thus $orall b \in A$, $\exists a \in A$ such that $I_A(a) = b$. Therefore

$$I_A(a)=(f\circ f)(a)=f(f(a))=b$$

Let c = f(a), thus $c \in A$ and f(c) = b. So we have f is onto by the definition.

Conclusion Thus we can conclude that, for all $f \in F$, if $f \circ f = I_A$ then f is one-to-one and onto.

(c)

- The statement is false.
- Its negation is: $\exists f,g \in F$ such that $f \circ f = g \circ g$ but $f \neq g$. We prove that the negation is true.
- Proof (of negation)

Let f:A o A be defined by

$$f = \{(1, 2), (2, 1), (3, 3), (4, 4)\}$$

also let g:A o A be defined by

$$g = \{(1,1), (2,2), (3,3), (4,4)\}$$

Since

$$(f\circ f)(1)=f(f(1))=f(2)=1=g(1)=g(g(1))=(g\circ g)(1)$$
 $(f\circ f)(2)=f(f(2))=f(1)=2=g(2)=g(g(2))=(g\circ g)(2)$ $(f\circ f)(3)=f(f(3))=f(3)=3=g(3)=g(g(3))=(g\circ g)(3)$ $(f\circ f)(4)=f(f(4))=f(4)=4=g(4)=g(g(4))=(g\circ g)(4)$

We have $\forall x \in A$, $(f \circ f)(x) = I_A(x)$, thus $f \circ f = I_A$, but since $(1,2) \in f$ and $(1,2) \notin g$, $f \neq g$. Thus the negation is true and the arrow diagrams of $f \circ f$ and $g \circ g$ are shown below:

(d)

- The statement is false.
- Its negation is: $\exists f,g \in F$ such that $f \circ g = g \circ f$ but f
 eq g. We prove that the negation is true.
- Proof (of negation)

Let f:A o A be defined by

$$f = \{(1,2), (2,2), (3,3), (4,3)\}$$

also let $g:A \to A$ be defined by

$$g = \{(1,1), (2,2), (3,3), (4,4)\}$$

Since

$$(f\circ g)(1)=f(g(1))=f(1)=1=g(1)=g(f(1))=(g\circ f)(1)$$

 $(f\circ g)(2)=f(g(2))=f(2)=2=g(2)=g(f(2))=(g\circ f)(2)$
 $(f\circ g)(3)=f(g(3))=f(3)=3=g(3)=g(f(3))=(g\circ f)(3)$
 $(f\circ g)(4)=f(g(4))=f(4)=3=g(3)=g(f(4))=(g\circ f)(4)$

We have $\forall x \in A$, $(f \circ g)(x) = (g \circ f)(x)$, thus $f \circ g = g \circ f$. But since $(4,3) \in f$ and $(4,3) \notin f$, $f \neq g$. Thus the negation is true and the arrow diagrams of $g \circ f$ and $f \circ g$ are shown below:

