Página inicial / Meus cursos / INF01047 2023 2 / Prova 1 / Revisão Prova 1

	_								
Inicia		inta, 7 dez 2023	3, 10:31						
		nalizada							
		iinta, 7 dez 2023 nora 22 minutos							
	Tempo 1 regado	iora 22 minutos							
Questão 1									
Completo									
Não avaliada									
Informaçõe	es e regras i	nportantes:							
• Esta é u	ma avaliaçã	o individual;							
 Você po 	de utilizar fo	erramentas com	putacionais;						
 Você po 	de consulta	todo o materia	ıl disponibili	zado pelo p	rofessor no M	oodle;			
 Você po 	de consulta	· livros texto;	·						
		sultar páginas n	a Internet;						
		sultar colegas o		lurante a pro	ova:				
	-			•					
		rocê declara que		_					
Para confiri	mar sua con	cordância, copie	e o seguinte	texto no cai	mpo abaixo:				
					egas ou				
	ros dur	ante a rea	alização	ltar col o da pro	egas ou ova.		as (
terceir	ros dur	ante a rea	alização	ltar col o da pro	egas ou ova.		as (
terceir Resposta:	ros dur	ante a rea	alização	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo	ros dur	ante a rea	alização	ltar col o da pro	egas ou ova.		as ı		
terceir Resposta:	ros dur	ante a rea	alização	ltar col o da pro	egas ou ova.		as ı		
Resposta: Questão 2 Completo Não avaliada	Eu entendo	que esta é um	alização	ltar col o da pro	egas ou ova.		as ı		
Resposta: Questão 2 Completo Não avaliada	Eu entendo	ante a rea	alização	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo Não avaliada	Eu entendo	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as ı		
Resposta: Questão 2 Completo Não avaliada Preencha se	Eu entendo	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo Não avaliada Preencha se	Eu entendo	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo Não avaliada Preencha se Resposta: Questão 3 Completo	Eu entendo	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as ı		
Resposta: Questão 2 Completo Não avaliada Preencha se Resposta:	Eu entendo	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo Não avaliada Preencha se Resposta: Questão 3 Completo Não avaliada	Eu entendo eu nome co Léo Herna	que esta é um	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as (
Resposta: Questão 2 Completo Não avaliada Preencha se Resposta: Questão 3 Completo Não avaliada	Eu entendo eu nome co Léo Herna	que esta é um que esta é um mpleto no camp	alização i a avaliação i oo abaixo:	ltar col o da pro	egas ou ova.		as (

Questão **4**Completo

Não avaliada

Informe o código identificador da etiqueta branca colada no computador que você está usando para realizar esta prova (S-67-...-..).

Resposta: S-67-103-03

Informação

Responda aos questionamentos desse questionário de acordo com os conceitos discutidos em aula. Considere sempre que os vetores $\vec{x}, \vec{y}, \vec{z}$ representam um sistema de coordenadas Cartesiano (ortonormal) com origem no ponto \mathbf{o} .

Ouestão **5**

Correto

Vale 1,00 ponto(s)

Considere um ponto $\mathbf{p} = \mathbf{o} + 3\vec{x} - 2\vec{y} + 2\vec{z}$ no espaço tridimensional. Determine a posição final deste ponto na imagem gerada pelo pipeline gráfico com as condições abaixo:

- Parâmetros da Câmera:
 - Posicionada no ponto $\mathbf{c} = \mathbf{o} + 13\vec{x} + 2\vec{y} 7\vec{z}$;
 - Olhando para a origem;
 - \circ Com vetor $\overrightarrow{up}=+\overrightarrow{y}$;
 - o Com projeção perspectiva e field of view vertical de 60 graus;
 - o Considere que os planos de near e far estão posicionados de forma que o ponto **p** esteja dentro do frustum da câmera;
- Parâmetros do Framebuffer (imagem gerada):
 - o Tamanho de 800 pixels de largura e 600 pixels de altura;
 - o Coordenada (0,0) no canto inferior esquerdo.
 - o Coordenada (800,600) no canto superior direito.

Selecione a alternativa correta abaixo:

- a. O ponto **p** cairá no pixel (447.51, 15.8)
- b. O ponto **p** cairá no pixel (735.03, 236.71)
- oc. O ponto **p** cairá no pixel (216.95, 306.55)
- ⊙ d. O ponto p cairá no pixel (277.39, 214.91)
- igcup e. O ponto ${f p}$ cairá no pixel (464.38, 404.97)
- igcup f. O ponto ${f p}$ cairá no pixel (343.93, 390.9)
- g. O ponto **p** cairá no pixel (607.96, 374.77)
- igcup h. O ponto ${f p}$ cairá no pixel (264.31, 15.49)
- i. O ponto **p** cairá no pixel (493.38, 531.18)
- \bigcirc j. O ponto $\mathbf p$ cairá no pixel (76.25, 403.81)

Questão 6	
Correto	
Vale 1,00 ponto	o(s).
A 1. ~	~ →
A subtraça	ão ${f p}-ec v$ entre o ponto ${f p}$ e o vetor $ec v$ resulta em um:
Escolha ur	
a. pe	
O b. n	úmero real
O c. âı	ngulo
O d. ve	etor
○ e. va	alor inválido (esta operação não é bem definida segundo nossas definições)
Questão 7	
Correto	
Vale 1,00 ponto	o(s).
O produto	o $lpha {f q}$ entre o número real $lpha$ e o ponto ${f q}$ resulta em um:
Escolha ur	ma opcão:
a. po	
O b. âı	ngulo
O C. Ve	etor
O d. nı	úmero real
e. va	alor inválido (esta operação não é bem definida segundo nossas definições)❤
Questão 8	
Correto Vale 1,00 ponto	
Tale 1,00 perits	
A subtracâ	ão $ec{u}-\mathbf{q}$ entre o vetor $ec{u}$ e o ponto \mathbf{q} resulta em um:
Escolha ur	
O a. po	
	alor inválido (esta operação não é bem definida segundo nossas definições)❤
C. Ve	etor
○ d. âı	ngulo

Correto	
Vale 1,00 po	onto(s).
O prod	uto interno $lpha\cdoteta$ entre o número real $lpha$ e o número real eta resulta em um:
	uma opção:
○ a.	número real
O b.	ângulo
O c.	ponto
d.	valor inválido (esta operação não é bem definida segundo nossas definições)❤
О е.	vetor
Questão 1 (0
Correto	
/ale 1,00 po	onto(s).
	uto interno $ec{u}\cdotec{v}$ entre o vetor $ec{u}$ e o vetor $ec{v}$ resulta em um:
Escolha	uma opção:
О а.	vetor
O b.	valor inválido (esta operação não é bem definida segundo nossas definições)
O c.	ângulo
d.	número real ❤
О е.	ponto
Questão 1 ′	1
Correto	
/ale 1,00 po	onto(s).
	uto vetorial $ec{u} imes {f q}$ entre o vetor $ec{u}$ e o ponto ${f q}$, em três dimensões, resulta em um:
O prod	
	uma opção:
Escolha	uma opção: vetor
Escolha	
Escolha a. b.	vetor
Escolha a. b. c.	vetor valor inválido (esta operação não é bem definida segundo nossas definições)❤

Questão 1 2 Correto	2
∠orreto √ale 1,00 p	onto(s).
1,00 p	
A soma	$ec{u}+\mathbf{q}$ entre o vetor $ec{u}$ e o ponto \mathbf{q} resulta em um:
	uma opção:
a.	vetor
b.	ponto♥
O c.	número real
O d.	valor inválido (esta operação não é bem definida segundo nossas definições)
О е.	ângulo
Questão 1	3
Correto	
Vale 1,00 p	onto(s).
A soma	lpha+eta entre o número real $lpha$ e o número real eta resulta em um:
Escolha	uma opção:
О а.	vetor
O b.	valor inválido (esta operação não é bem definida segundo nossas definições)
O c.	ponto
O d.	ângulo
e.	número real♥
Questão 1 4	
Correto	
Vale 1,00 p	onto(s).
O prod	uto vetorial $ec{u} imesec{v}$ entre o vetor $ec{u}$ e o vetor $ec{v}$, em três dimensões, resulta em um:
Escolha	uma opção:
a.	ponto
	valor inválido (esta operação não é bem definida segundo nossas definições)
O b.	
	vetor ✓
c.	

Questão 15	
Correto Vale 1,00 ponto(s).	
vale 1,00 portio(s).	
A subtração $ec{u}-eta$ entre o vetor $ec{u}$ e o número real eta resulta em um:	
A subtração $u-eta$ entre o vector u e o número rear eta resulta em um.	
Escolha uma opção:	
o a. número real	
O b. vetor	
○ c. ponto	
 ■ d. valor inválido (esta operação não é bem definida segundo nossas definições) 	
○ e. ângulo	
Questão 16	
Correto	
Vale 1,00 ponto(s).	
A soma $ec{u} + ec{v}$ entre o vetor $ec{u}$ e o vetor $ec{v}$ resulta em um:	
Escolha uma opção:	
a. ponto	
b. vetor ✓	
○ c. ângulo	
od. número real	
e. valor inválido (esta operação não é bem definida segundo nossas definições)	
Questão 17 Correto	
Vale 1,00 ponto(s).	
A combinação convexa $aec{u}+bec{v}$ entre o vetor $ec{u}$ e o vetor $ec{v}$, onde $a,b\in[0,1]$ e $a+b=1$, resulta em um:	
Escolha uma opção:	
a. ângulo	
 b. valor inválido (esta operação não é bem definida segundo nossas definições) 	
c. ponto	
c. pontod. vetor	

Correto	
\/ala 1 00 na	nto(c)
Vale 1,00 po	nucis).
O produ	to $ec{u}eta$ entre o vetor $ec{u}$ e o número real eta resulta em um:
Escolha	uma opção:
	valor inválido (esta operação não é bem definida segundo nossas definições)
O b.	ponto
О с.	ângulo
d.	vetor ✓
О e.	número real
Questão 19 Correto	
Vale 1,00 po	nto(s).
A comb	nação convexa $a{f p}+b{f q}$ entre o ponto ${f p}$ e o ponto ${f q}$, onde $a,b\in[0,1]$ e $a+b=1$, resulta em um:
	uma opção: ponto❤
b.	
	ângulo
	valor inválido (esta operação não é bem definida segundo nossas definições)
U.	valor invalido (esta operação não e bem deninda segundo nossas deninições)
	númera real
	número real
	número real
e. Questão 20	
e. Questão 20 Correto	
e. Questão 20 Correto	
Questão 20 Correto Vale 1,00 po	nto(s).
e. Questão 20 Correto Vale 1,00 po	
e. Questão 20 Correto Vale 1,00 po A subtra Escolha	${f q}$ nto(s). ção ${f p}-{f q}$ entre o ponto ${f p}$ e o ponto ${f q}$ resulta em um: uma opção:
Questão 20 Correto Vale 1,00 po A subtra Escolha a.	${f q}$ nto(s). Ção ${f p}-{f q}$ entre o ponto ${f p}$ e o ponto ${f q}$ resulta em um: uma opção: ponto
Questão 20 Correto Vale 1,00 po A subtra Escolha a. b.	${f q}$ nto(s). ${f q}$ o ${f p}$ — ${f q}$ entre o ponto ${f p}$ e o ponto ${f q}$ resulta em um: uma opção: ponto valor inválido (esta operação não é bem definida segundo nossas definições)
Questão 20 Correto Vale 1,00 po A subtra Escolha a. b. c.	${\sf p}$ nto(s). ${\sf q}$ entre o ponto ${\sf p}$ e o ponto ${\sf q}$ resulta em um: ${\sf q}$ uma opção: ${\sf p}$ ponto ${\sf q}$ valor inválido (esta operação não é bem definida segundo nossas definições) ${\sf q}$
Questão 20 Correto Vale 1,00 po A subtra Escolha a. b. c.	${f q}$ nto(s). ${f q}$ o ${f p}$ — ${f q}$ entre o ponto ${f p}$ e o ponto ${f q}$ resulta em um: uma opção: ponto valor inválido (esta operação não é bem definida segundo nossas definições)

Sabendo que os vetores desenhados abaixo possuem comprimento unitário, selecione a alternativa verdadeira:

Escolha uma opção:

- a. O produto interno entre os vetores desenhados é -1.90
- b. O produto interno entre os vetores desenhados é 0.00
- oc. O produto interno entre os vetores desenhados é 1.90
- e. O produto interno entre os vetores desenhados é 0.90

Questão **22**

Correto

Vale 1,00 ponto(s).

Sabendo que os vetores desenhados abaixo possuem comprimento unitário, selecione a alternativa verdadeira:

- a. O produto interno entre os vetores desenhados é 0.80
- oc. O produto interno entre os vetores desenhados é -0.80
- O d. O produto interno entre os vetores desenhados é -1.80
- e. O produto interno entre os vetores desenhados é 1.80

Questão 23

Correto

Vale 1,00 ponto(s).

Considere um triângulo com vértices $\mathbf{a} = \mathbf{o} - \vec{x} - 5\vec{y} - 3\vec{z}$, $\mathbf{b} = \mathbf{o} + 7\vec{x} - \vec{z}$, e $\mathbf{c} = \mathbf{o} - 6\vec{x} + 9\vec{y}$. Escolha a opção abaixo que representa um possível vetor normal para este triângulo:

Escolha uma opção:

- \bigcirc a. Vetor normal $ec{n}=-23ec{x}-71ec{y}+278ec{z}$
- lacktriangle b. Vetor normal $ec{n}=-26ec{x}-68ec{y}+274ec{z}$
- igcup c. Vetor normal $ec{n}=-28ec{x}-66ec{y}+272ec{z}$
- \bigcirc d. Vetor normal $ec{n}=-23ec{x}-63ec{y}+272ec{z}$

Questão 24

Correto

Vale 1,00 ponto(s).

Sejam:

- $\vec{u} = +5\vec{x} + \vec{y}$;
- $\vec{v}=+2\vec{x}+2\vec{y}$;
- $\mathbf{c} = \mathbf{o} + 6\vec{x} + 4\vec{y}$;
- e $\mathbf{a} = \mathbf{c} + 7\vec{u} \vec{v}$.

Selecione a alternativa verdadeira abaixo:

- lacktriangle a. Temos que $\mathbf{a} = \mathbf{o} + 39\vec{x} + 9\vec{y}$
- igcup b. Temos que ${f a}={f o}+38ec x+8ec y$
- \odot c. Temos que $\mathbf{a} = \mathbf{o} + 38\vec{x} + 6\vec{y}$
- \odot d. Temos que $\mathbf{a} = \mathbf{o} + 41 \vec{x} + 10 \vec{y}$
- igcup e. Temos que ${f a}={f o}+41ec x+11ec y$
- igcup f. Temos que ${f a}={f o}+41ec x+8ec y$

Questão 25	
Correto	
Vale 1,00 ponto(s).	

Sejam:

- $\vec{u} = +2\vec{x} + 9\vec{y}$;
- $\vec{v} = +6\vec{x} + 6\vec{y}$;
- $\mathbf{c} = \mathbf{o} 7\vec{x} 6\vec{y}$;
- e $\mathbf{a} = \mathbf{o} + 6\vec{x} + 5\vec{y}$.

Selecione a alternativa verdadeira abaixo:

- igcup a. Temos que ${f a}={f c}+1.71ec u+5.26ec v$
- \odot b. Temos que $\mathbf{a}=\mathbf{c}-3.29\vec{u}-0.74\vec{v}$
- lacktriangle c. Temos que $\mathbf{a}=\mathbf{c}-0.29ec{u}+2.26ec{v}$
- \odot d. Temos que ${f a}={f c}+1.71ec u+3.26ec v$
- igcup e. Temos que ${f a}={f c}+0.71ec u-0.74ec v$
- \odot f. Temos que ${f a}={f c}+2.71ec u+1.26ec v$

Questão 26

Correto

Vale 1,00 ponto(s).

Considere a transformação ${\cal T}$ definida pela matrix abaixo:

$$T = \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & -1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Determine o resultado da aplicação dessa transformação T em todos os pontos do seguinte objeto:

Escolha uma opção:

a.

O b.

O c.

Questão **27**Correto

Vale 1,00 ponto(s).

Considere a transformação ${\cal T}$ definida pela matrix abaixo:

$$T = \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Determine o resultado da aplicação dessa transformação T em todos os pontos do seguinte objeto:

Escolha uma opção:

a.

O b.

C.

Questão **28**Correto

Vale 1,00 ponto(s).

Considere a transformação ${\cal T}$ definida pela matrix abaixo:

$$T = \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 2.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Determine o resultado da aplicação dessa transformação T em todos os pontos do seguinte objeto:

Escolha uma opção:

a.

O b.

C.

Questão **29** Correto

Vale 1,00 ponto(s).

Considere a transformação ${\cal T}$ definida pela matrix abaixo:

$$T = \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 2.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Determine o resultado da aplicação dessa transformação T em todos os pontos do seguinte objeto:

Escolha uma opção:

a.

O b.

O c.

Questão **30** Correto

Vale 1,00 ponto(s).

Considere a transformação ${\cal T}$ definida pela matrix abaixo:

$$T = \begin{bmatrix} -1.000 & 0.000 & 0.000 \\ 0.000 & 2.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 0.707 & 0.707 & 0.000 \\ -0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Determine o resultado da aplicação dessa transformação T em todos os pontos do seguinte objeto:

Escolha uma opção:

a.

b.

C.

e.

Questão 31

Correto

Vale 1,00 ponto(s).

Determine a matriz de transformação que transforma o objeto da figura da esquerda no objeto da figura da direita:

- a. $\begin{bmatrix} 0.707 & 0.707 & 0.000 \\ -0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$
- b.

 \[
 \begin{pmatrix}
 1.000 & 0.000 & 2.000 \\
 0.000 & 1.000 & 1.000 \\
 0.000 & 0.000 & 1.000
 \end{pmatrix}
 \]
- lacksquare c. $\begin{bmatrix} -1.000 & 0.000 & 0.000 \\ 0.000 & -2.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$
- d. \begin{bmatrix} 1.000 & 0.000 & 2.000 \\ 0.000 & 1.000 & 2.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}

Questão **32**Correto
Vale 1,00 ponto(s).

Determine a matriz de transformação que transforma o objeto da figura da esquerda no objeto da figura da direita:

- b. $\begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$
- d. $\begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 2.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$
- e. $\begin{bmatrix} 1.000 & 0.000 & 1.000 \\ 0.000 & 1.000 & 1.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$

Questão **33**Correto

Vale 1,00 ponto(s).

Determine a matriz de transformação que transforma o objeto da figura da esquerda no objeto da figura da direita:

$$\begin{array}{c|cccc} \bullet & & \begin{bmatrix} 1.000 & 0.000 & 2.000 \\ 0.000 & 1.000 & 1.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} -1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1.000 & 0.000 & 1.000 \\ 0.000 & 1.000 & 2.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

$$\begin{array}{c|cccc} \bullet & \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} -2.000 & 0.000 & 0.000 \\ 0.000 & -2.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Questão **34**Correto

Vale 1,00 ponto(s).

Determine a matriz de transformação que transforma o objeto da figura da esquerda no objeto da figura da direita:

Escolha uma opção:

a.
$$\begin{bmatrix} 1.000 & 0.000 & 2.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1.000 & 0.000 & 1.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0.000 \\ 0.707 & 0.707 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \checkmark$$

e.
$$\begin{bmatrix} 2.000 & 0.000 & 0.000 \\ 0.000 & 2.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix} \begin{bmatrix} -2.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Questão **35** Correto

Vale 1,00 ponto(s).

Ao descrever uma malha poligonal em uma estrutura de dados, é vantajoso representarmos separadamente a geometria e a topologia desta malha. Esse procedimento potencialmente reduz o espaço em memória necessário para armazenamento.

- a. A afirmação acima é verdadeira
- O b. A afirmação acima é falsa

correto sle 1,00 ponto(s). O uso de representações topológicas como GL_TRIANGLE_STRIP reduz o número de vértices que precisam ser ar memória, quando comparado com o uso de GL_TRIANGLES.	mazenados em
O uso de representações topológicas como GL_TRIANGLE_STRIP reduz o número de vértices que precisam ser ar memória, quando comparado com o uso de GL_TRIANGLES.	mazenados em
memória, quando comparado com o uso de GL_TRIANGLES.	mazenados em
Facellas como agraçãos	
Escolha uma opção:	
 a. A afirmação acima é verdadeira * 	
○ b. A afirmação acima é falsa	
uestão 37	
prreto	
ale 1,00 ponto(s).	
O uso de coordenadas homogêneas é necessário para construirmos uma matriz de projeção Ortográfica, apesar da "divisão por w" neste caso.	de não precisarmos
Escolha uma opção:	
a. A afirmação acima é falsa	
 b. A afirmação acima é verdadeira ✓ 	
uestão 38 prreto ple 1,00 ponto(s).	
No contexto de transformações geométricas, é necessário o uso de coordenadas homogêneas para podermos re transformações afins 2D através de matrizes.	epresentar
Escolha uma opção:	
 a. A afirmação acima é verdadeira ✓ 	
○ b. A afirmação acima é falsa	
uestão 39	
orreto ale 1,00 ponto(s).	
No Pipeline Gráfico, dados os pontos de cada objeto virtual descritos no sistema de coordenadas da câmera, mu matriz(es) de projeção e fazemos a "divisão por w". Após esses passos os pontos estão em normalized device coc	
Escolha uma opção:	
Escolha uma opção: a. A afirmação acima é falsa	

O tamanho do frustum de uma câmera virtual é definido pela matriz de projeção utilizada. Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira ousda 41 ousda 41 ousda 41 ousda 41 ousda 42 ousda 50 b. A afirmação acima é verdadeira b. A afirmação acima é falsa ousda 42 ousda 42 ousda 42 ousda 42 ousda 42 ousda 43 a A afirmação acima é falsa b. A afirmação acima é falsa ousda a B afirmação acima é falsa ousda afirmaçã	O tamanho do frustum de uma câmera virtual é definido pela matriz de projeção utilizada. Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira ✓ Ouerão 41 Correto Vale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ Ouerão 42 Correto Vale 1.00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é verdadeira ✓	Questão 40
O tamanho do frustum de uma câmera virtual é definido pela matriz de projeção utilizada. Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira usata 41 arreto de 1.00 pontolo). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é verdadeira composições a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira composições Composições Composições O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O tamanho do frustum de uma câmera virtual é definido pela matriz de projeção utilizada. Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima e verdadeira Coreto Web 1.00 pentedo. O algorítmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na irragen. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira constanto das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é falsa Coreto Web 1.00 pontost. O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	Correto
Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira b. A afirmação acima é verdadeira let 1.00 pomosá. O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implicita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira correto vale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento nâo-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo de a falsa O mesmo poção: a. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	Vale 1,00 ponto(s).
Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira b. A afirmação acima é verdadeira let 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Escolha uma opção: a. A afirmação acima é falsa b. A afirmação acima é verdadeira correto vale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento nâo-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo de a falsa O mesmo poção: a. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é falsa Descolha uma opção: a. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	
 a. A afirmação acima é folsa b. A afirmação acima é verdadeira ✓ ucusão 41 arreto lie 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implicita da reta para saber quais estão sobre a mesma. Escolha uma opção: 	a. A afirmação acima é falsa b. A afirmação acima é verdadeira Correto Vale 1.00 ponto(s). O algorítmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implicita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A a firmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implicita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	O tamanho do frustum de uma câmera virtual é definido pela matriz de projeção utilizada.
 b. A afirmação acima é verdadeira ✓ usesso 41 arreto ale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento nâo-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	 b. A afirmação acima é verdadeira ✓ Correto Josephio 41 Correto Josephio 40 O algoritimo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ O mesmo algoritimo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa Ouestro 43 Correto Vales 1,00 ponto(g). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa ✓ 	
uesto 41 preto preto ple 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não- linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é falsa D algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Coesto 41 Correto Vale 1.00 pontosis. O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento nâo-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A a firmação acima é verdadeira o b. A a firmação acima é falsa O estos 43 Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A a firmação acima é falsa A afirmação acima é falsa A afirmação acima e falsa A afirmação acima e falsa A afirmação acima e falsa	a. A afirmação acima é falsa
ale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira o b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implicita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Correto Vale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Ouesto 42 Correto Vale 1.00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira D. A afirmação acima é verdadeira Ouesto 43 Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa A afirmação acima é falsa a. A afirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa a. A afirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa D. A afirmação acima é falsa A afirmação acima é falsa D. A afirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa D. A afirmação acima é falsa A afirmação acima	
O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é verdadeira o b. A afirmação acima é falsa Secolha uma opção: ale 1,00 ponto(s).	Vale 1.00 ponto(s). O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira o b. A afirmação acima é falsa Cuestão 43 Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Secolha uma opção: a. A afirmação acima é falsa A afirmação acima é falsa Secolha uma opção:	Questão 41
O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira O b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O algoritmo do Z-buffer determina, para um triângulo inteiro, se este está mais próximo da câmera e portanto deve aparecer na imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Correto Vale 1,00 pomotos. O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	Correto
imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não- linear. Escolha uma opção: a. A a firmação acima é verdadeira b. A a firmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A a firmação acima é verdadeira b. A a firmação acima é verdadeira o b. A a firmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: Baccolha uma opção:	imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Omesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira Ouestão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Secolha uma opção:	Vale 1,00 ponto(s).
imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não- linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira o b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-linear. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Omesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é verdadeira Ouestão 43 Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	
 a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ uestão 42 orreto ale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: 	a. A afirmação acima é verdadeira b. A afirmação acima é falsa Cuestão 42 Correto Vale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Cuestão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	imagem. Para isso, armazenamos durante a rasterização o valor de profundidade 3D de cada triângulo, após um mapeamento não-
 a. A afirmação acima é verdadeira b. A afirmação acima é falsa ✓ uestão 42 orreto sile 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: 	a. A afirmação acima é verdadeira b. A afirmação acima é falsa Cuestão 42 Correto Vale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Curestão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	Escolha uma oncão:
 b. A afirmação acima é falsa ✓ uestão 42 porreto ale 1.00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer poligono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: 	©uestão 42 Correto Vale 1.00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Escolha uma opção: a. A afirmação acima é falsa Sesonha uma opção: a. A afirmação acima é falsa a defirmação acima é falsa a defirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa A afirmação acima é falsa B defirmação acima é falsa A afirmação acima é falsa B defirmação acima é falsa	
uestão 42 correto cole 1.00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 correto cole 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Questão 42 Correto Vale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Ouestão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa ** ** ** ** ** ** ** ** **	
orreto ole 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 orreto ola 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Correto Vale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Questão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Escolha uma opção: a. A afirmação acima é falsa	
orreto la e 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 orreto ola e 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Correto Vale 1,00 ponto(s). O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Questão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Escolha uma opção: a. A afirmação acima é falsa	
O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 orreto olie 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira ✓ b. A afirmação acima é falsa Questão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa ✓	Questão 42
O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 porreto alle 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O mesmo algoritmo utilizado para rasterizar um triângulo pode ser utilizado para rasterizar qualquer polígono convexo, desde que se tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Questão 43 Correto Vale 1.00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa Secolha uma opção: a. A afirmação acima é falsa A afirmação acima é falsa	Correto
tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa uestão 43 orreto ale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: a. A afirmação acima é verdadeira b. A afirmação acima é falsa Questão 43 Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa a. A afirmação acima é falsa	Vale 1,00 ponto(s).
O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	Correto Vale 1,00 ponto(s). O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: a. A afirmação acima é falsa	tenha cuidado ao selecionar o sentido das arestas que definem as edge equations. Escolha uma opção: ■ a. A afirmação acima é verdadeira ✓
O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: ■ a. A afirmação acima é falsa ■	Questão 43
O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção:	O algoritmo de Bresenham testa todos os pixels do framebuffer utilizando a equação implícita da reta para saber quais estão sobre a mesma. Escolha uma opção: ■ a. A afirmação acima é falsa ■	
mesma. Escolha uma opção:	mesma. Escolha uma opção: ■ a. A afirmação acima é falsa ✓	Vale 1,00 ponto(s).
	 ■ a. A afirmação acima é falsa 	
	 ■ a. A afirmação acima é falsa 	Escolha uma opção:
	U. A diffilação actifia e vertadena	

Questão 44	
Correto	
/ale 1,00 ponto(s).	
A escolha de um sentido (horário ou anti-horário) para definição dos vértices de triângulos é importante para consistência no cálculo de seus vetores normais.	ı que haja uma
Escolha uma opção:	
 a. A afirmação acima é verdadeira 	
○ b. A afirmação acima é falsa	
■ Laboratório 3 - Código Fonte	
Seguir para	
	Prova 1 - Notas ►