```
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

customerData = pd.read_csv('/content/QVI_purchase_behaviour.csv')

transactionData = pd.read_csv('/content/QVI_transaction_data.csv')

customerData.head()
```

	Y_CARD_NBR LIFESTAGE PREMIUM_CUSTOMER			
ılı	Premium	YOUNG SINGLES/COUPLES	1000	0
	Mainstream	YOUNG SINGLES/COUPLES	1002	1
	Budget	YOUNG FAMILIES	1003	2
	Mainstream	OLDER SINGLES/COUPLES	1004	3
	Mainstream	MIDAGE SINGLES/COUPLES	1005	4

transactionData.head()

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_
0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3	
ე	43605	1	13/13	২ ৪২	61	Smiths Crinkle	2)

transactionData.dtypes

```
DATE
                  int64
STORE_NBR
                 int64
LYLTY_CARD_NBR
                  int64
TXN_ID
                  int64
PROD NBR
                 int64
PROD_NAME
                object
PROD_QTY
                 int64
TOT_SALES
                float64
dtype: object
```

transactionData['DATE'] = pd.to_datetime(transactionData['DATE'], origin="1899-12-30", unit = 'D')

transactionData['DATE'].head()

```
0 2018-10-17
1 2019-05-14
2 2019-05-20
3 2018-08-17
```

4 2018-08-18

Name: DATE, dtype: datetime64[ns]

transactionData['PROD_NAME'].describe()

```
count 264836 unique 114 top Kettle Mozzarella Basil & Pesto 175g
```

```
freq
Name: PROD NAME, dtype: object
```

Converting the PROD_NAME column to column with just the name of the product.

3304

```
\label{eq:prod_Name_Only = transactionData['PROD_NAME'].str.replace('[0-9]', ' ').str.replace('[gG]', ' ').str.replace('[^\w]', - ').str.replace('[n-9]', - ').str.replace('
             <ipython-input-12-0ebc3398f8fe>:1: FutureWarning: The default value of regex will change from True to False in a f
                  Prod_Name_Only = transactionData['PROD_NAME'].str.replace('[0-9]', ' ').str.replace('[gG]', ' ').str.replace('[^
Prod Name Only.head()
                                                  [Natural, Chip, Compny, SeaSalt]
             1
                                                                                 [CCs, Nacho, Cheese]
             2
                                  [Smiths, Crinkle, Cut, Chips, Chicken]
                               [Smiths, Chip, Thinly, S, Cream, Onion]
             4
                          [Kettle, Tortilla, ChpsHny, Jlpno, Chili]
             Name: PROD_NAME, dtype: object
Prod_Total = pd.value_counts([word for name in Prod_Name_Only
                                                                            for word in name])
Prod_Total.head()
             Chips
                                       49770
             Kettle
                                       41288
             Smiths
                                       28860
                                       27976
             Salt
             Cheese
                                       27890
             dtype: int64
Prod_Total = Prod_Total.sort_values(ascending = False)
It looks like the products also include the Salsa products but as we are only looking for at the Chips data we will remove the
Salsa Products.
print(Prod_Total['Salsa'])
             18094
SalsaRows = transactionData['PROD_NAME'].str.contains('[Ss]alsa')
SalsaRows.head(10)
             0
                          False
             1
                          False
             2
                          False
             3
                          False
             4
                          False
                           True
                          False
             6
                          False
             8
                          False
                          False
             Name: PROD_NAME, dtype: bool
transactionData = transactionData[~SalsaRows]
transactionData.head(10)
```

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g Smiths Crinkle Cut Chips Chicken 170g Smiths Chip Thinly S/Cream&Onion 175g	3	
2	2019- 05-20	1	1343	383	61		2	
3	2018- 08-17	2	2373	974	69		5	
4	2018-	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno	3	>

Now the data only has the information about chips.

transactionData.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 246742 entries, 0 to 264835
Data columns (total 8 columns):
# Column
              Non-Null Count Dtype
--- -----
                    -----
    DATE 246742 non-null datetime64[ns] STORE_NBR 246742 non-null int64
 0 DATE
 1
    LYLTY_CARD_NBR 246742 non-null int64
              246742 non-null int64
 3 TXN_ID
                     246742 non-null int64
246742 non-null object
 4
    PROD NBR
 5 PROD_NAME
                 246742 non-null int64
246742 non-null floate
 6 PROD QTY
 7 TOT_SALES
                     246742 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(5), object(1)
memory usage: 16.9+ MB
```

transactionData.describe()

	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	
count	246742.000000	2.467420e+05	2.467420e+05	246742.000000	246742.000000	2467
mean	135.051098	1.355310e+05	1.351311e+05	56.351789	1.908062	
std	76.787096	8.071528e+04	7.814772e+04	33.695428	0.659831	
min	1.000000	1.000000e+03	1.000000e+00	1.000000	1.000000	
25%	70.000000	7.001500e+04	6.756925e+04	26.000000	2.000000	
50%	130.000000	1.303670e+05	1.351830e+05	53.000000	2.000000	
75%	203.000000	2.030840e+05	2.026538e+05	87.000000	2.000000	
max	272.000000	2.373711e+06	2.415841e+06	114.000000	200.000000	6

transactionData.isnull().sum()

DATE	0
STORE_NBR	0
LYLTY_CARD_NBR	0
TXN_ID	0
PROD_NBR	0
PROD_NAME	0
PROD_QTY	0
TOT SALES	0
dtype: int64	

There is no null values in any rows. But the PROD_QTY and TOT_SALES is showing an outlier.

 $\verb|plt.scatter(transactionData['PROD_QTY'], transactionData['TOT_SALES']|)|$

<matplotlib.collections.PathCollection at 0x7892de6a70d0>

There is definitely an outlier in PROD_QTY so let's look in it further.

transactionData.loc[transactionData['PROD_QTY'] == 200]

		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_S
4	69762	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme	200	€

There are 2 transaction by same customer so we are going to remove it.

PROD_QTY_OUT = transactionData.loc[transactionData['PROD_QTY'] == 200]
PROD_QTY_OUT.head()

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_S
69762	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme	200	ť
4								>

transactionData =transactionData.drop(index =[69762, 69763])

transactionData.loc[transactionData['PROD_QTY'] == 200]

```
DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_NAME PROD_QTY TOT_SALES
```

Now that looks better.

```
transaction_date = transactionData.groupby(['DATE']).count()
```

transaction_date.describe()

		STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT
(count	364.000000	364.000000	364.000000	364.000000	364.000000	364.000000	364.
1	mean	677.857143	677.857143	677.857143	677.857143	677.857143	677.857143	677.
	std	33.687536	33.687536	33.687536	33.687536	33.687536	33.687536	33.
	min	607.000000	607.000000	607.000000	607.000000	607.000000	607.000000	607.
	25%	658.000000	658.000000	658.000000	658.000000	658.000000	658.000000	658.
	50%	674.000000	674.000000	674.000000	674.000000	674.000000	674.000000	674.
	75%	694.250000	694.250000	694.250000	694.250000	694.250000	694.250000	694.
	max	865.000000	865.000000	865.000000	865.000000	865.000000	865.000000	865.
4								•

The data is for a whole year but total rows are 364 that means there is a missing value. So let's look for it.

transactionData.head(10)

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	тот_
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	
4	2018-	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno	3	>

First we will the find the missing date then add it to our data.

new_dates = transaction_date.reindex(date_pattern)

new_dates

	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
2018- 07-01	663.0	663.0	663.0	663.0	663.0	663.0	663.0
2018- 07-02	650.0	650.0	650.0	650.0	650.0	650.0	650.0
2018- 07-03	674.0	674.0	674.0	674.0	674.0	674.0	674.0
2018- 07-04	669.0	669.0	669.0	669.0	669.0	669.0	669.0
2018- 07-05	660.0	660.0	660.0	660.0	660.0	660.0	660.0
2019- 06-26	657.0	657.0	657.0	657.0	657.0	657.0	657.0
2019- 06-27	669.0	669.0	669.0	669.0	669.0	669.0	669.0
4							•

new_dates.index.difference(transactionData['DATE'])

DatetimeIndex(['2018-12-25'], dtype='datetime64[ns]', freq=None)

```
new_dates.loc['2018-12-25', :]

STORE_NBR NaN
LYLTY_CARD_NBR NaN
TXN_ID NaN
PROD_NBR NaN
PROD_NAME NaN
PROD_QTY NaN
TOT_SALES NaN
Name: 2018-12-25 00:00:00, dtype: float64
```

As the difference is in december so we will look only at december dates.

```
fig = plt.subplots(figsize=(20,5))
sns.lineplot(data= new_dates.loc['2018-12-20':'2018-12-31', :])
plt.xlabel("Date")
plt.ylabel("Number of Transactions")
```


The reason for this missing is that it is Christmas holiday so it is not treated as outlier.

Now looking at pack sizes

```
pack_size = transactionData['PROD_NAME'].str.extract('([0-9]+)').astype('float')
```

pack_size.head()

	0	
0	175.0	ılı
4	175.0	

2 170.0

3 175.0

4 150.0

pack_size.describe()

	0	II
count	246740.000000	ılı
mean	175.583521	
std	59.432118	
min	70.000000	
25%	150.000000	
50%	170.000000	
75%	175.000000	
max	380.000000	

transactionData['pack_size'] = pack_size

Looks Sensible

```
plt.hist(x= transactionData['pack_size'],bins = 10)
plt.title("Transactions by Pack Size",fontsize=15)
plt.xlabel("Pack_Size",fontsize=10)
plt.ylabel("Number of Transactions",fontsize=10)
```

Text(0, 0.5, 'Number of Transactions')

transactionData["brand_name"] = transactionData["PROD_NAME"].str.split().str[0]

```
transactionData['brand_name']
```

```
Natural
1
              CCs
2
           Smiths
3
           Smiths
           Kettle
264831
           Kettle
264832
        Tostitos
264833
         Doritos
264834
         Doritos
264835
         Tostitos
Name: brand_name, Length: 246740, dtype: object
```

transactionData['brand_name'].unique()

If we look at it more closely, we see that some brand names are same and are written differently. If we don't change it products of same company will be divided into parts and analysis regarding the brands will be wrong. So we will change the names of them.

transactionData['brand_new'] = brand_new
transactionData.head()

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_S
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	

```
fig3 = plt.figure(figsize=(18,8))
sns.barplot(x = transactionData['brand_new'].value_counts(), y=transactionData["brand_new"].value_counts().index,)
plt.title('No. of Transactions according to Chips Brands', fontsize =15)
plt.xlabel("Number of Transactions")
plt.ylabel("Brand Name")
```


Now let's explore the customer data

customerData.head()

Burger

	PREMIUM_CUSTOMER	LIFESTAGE	LYLTY_CARD_NBR	
ıl.	Premium	YOUNG SINGLES/COUPLES	1000	0
	Mainstream	YOUNG SINGLES/COUPLES	1002	1
	Budget	YOUNG FAMILIES	1003	2
	Mainstream	OLDER SINGLES/COUPLES	1004	3
	Mainstream	MIDAGE SINGLES/COUPLES	1005	4

customerData.info()

customerData.describe()

	LYLTY_CARD_NBR	\blacksquare
count	7.263700e+04	ılı
mean	1.361859e+05	
std	8.989293e+04	
min	1.000000e+03	
25%	6.620200e+04	
50%	1.340400e+05	
75%	2.033750e+05	
max	2.373711e+06	

```
plt.figure(figsize=(15,8))
customerData['LIFESTAGE'].value_counts().plot(kind='pie',labels = None, autopct='%.1f%%')
plt.legend(customerData['LIFESTAGE'].value_counts().index.str.capitalize(), loc = 'best', bbox_to_anchor = (1.05,1))
plt.title('Customers by LifeStage')
plt.show()
```



```
plt.figure(figsize=(15,8))
customerData['PREMIUM_CUSTOMER'].value_counts().plot(kind='pie',colors = ['lightcoral', 'darkseagreen', 'plum'], labels
plt.legend(customerData['PREMIUM_CUSTOMER'], loc = 'best', bbox_to_anchor = (1.05,1))
plt.title('Customers by Type')
plt.show()
```


Merging the two datasets for further analysis

data_merged = pd.merge(customerData, transactionData, how = 'outer', on = 'LYLTY_CARD_NBR')
data_merged.head()

	LYLTY_CARD_NBR	LIFESTAGE	PREMIUM_CUSTOMER	DATE	STORE_NBR	TXN_ID	PRC
0	1000	YOUNG SINGLES/COUPLES	Premium	2018- 10-17	1.0	1.0	
1	1002	YOUNG SINGLES/COUPLES	Mainstream	2018- 09-16	1.0	2.0	
2	1003	YOUNG FAMILIES	Budget	2019- 03-07	1.0	3.0	
3	1003	YOUNG FAMILIES	Budget	2019- 03-08	1.0	4.0	
4	1004	OLDER SINGLES/COUPLES	Mainstream	2018- 11-02	1.0	5.0	

Saving our data as csv file

data_merged = data_merged.to_csv('data_merged.csv')

```
data_merged = pd.read_csv('/content/data_merged.csv')
```

total_sales = data_merged.groupby(['LIFESTAGE', 'PREMIUM_CUSTOMER'])['TOT_SALES'].sum()
total_sales

LIFESTAGE	PREMIUM_CUSTOMER	
MIDAGE SINGLES/COUPLES	Budget	33345.70
	Mainstream	84734.25
	Premium	54443.85
NEW FAMILIES	Budget	20607.45
	Mainstream	15979.70
	Premium	10760.80
OLDER FAMILIES	Budget	156863.75
	Mainstream	96413.55
	Premium	75242.60
OLDER SINGLES/COUPLES	Budget	127833.60
	Mainstream	124648.50
	Premium	123537.55
RETIREES	Budget	105916.30
	Mainstream	145168.95
	Premium	91296.65
YOUNG FAMILIES	Budget	129717.95
	Mainstream	86338.25
	Premium	78571.70
YOUNG SINGLES/COUPLES	Budget	57122.10
	Mainstream	147582.20
	Premium	39052.30
Name: TOT_SALES, dtype:	float64	

total_sales.sort_values().plot(kind = 'barh')
plt.show()

tot_customer = customerData.groupby(['LIFESTAGE', 'PREMIUM_CUSTOMER']).count()
tot_customer

		LYLTY_CARD_NBR
LIFESTAGE	PREMIUM_CUSTOMER	
MIDAGE SINGLES/COUPLES	Budget	1504
	Mainstream	3340
	Premium	2431
NEW FAMILIES	Budget	1112
	Mainstream	849
	Premium	588
OLDER FAMILIES	Budget	4675
	Mainstream	2831
	Premium	2274
OLDER SINGLES/COUPLES	Budget	4929
	Mainstream	4930
	Premium	4750
RETIREES	Budget	4454
	Mainstream	6479
	Premium	3872
YOUNG FAMILIES	Budget	4017
	Mainstream	2728
	Premium	2433
OUNG SINGLES/COUPLES	Budget	3779
	Mainstream	8088
	Premium	2574

tot_customer.sort_values(by = 'PREMIUM_CUSTOMER').plot(kind = 'barh', color = ['seagreen'])


```
merge_lp = pd.concat([total_sales, tot_customer],axis=1)
merge_lp = pd.DataFrame(merge_lp)
merge_lp.rename(columns = {'LYLTY_CARD_NBR': 'CUSTOMER_CNT'}, inplace = True)
merge_lp['TOT_QTY'] = data_merged.groupby(['LIFESTAGE','PREMIUM_CUSTOMER'])['PROD_QTY'].sum()
merge_lp['AVG_QTY'] = merge_lp['TOT_QTY'] / merge_lp['CUSTOMER_CNT']
merge_lp['AVG_PR'] = merge_lp['TOT_SALES'] / merge_lp['TOT_QTY']
merge_lp
```

		TOT_SALES	CUSTOMER_CNT	TOT_QTY	AVG_QTY	ΑV
LIFESTAGE	PREMIUM_CUSTOMER					
MIDAGE SINGLES/COUPLES	Budget	33345.70	1504	8883.0	5.906250	3.75
SINGLES/COUPLES	Mainstream	84734.25	3340	21213.0	6.351198	3.99
	Premium	54443.85	2431	14400.0	5.923488	3.78
NEW FAMILIES	Budget	20607.45	1112	5241.0	4.713129	3.93
	Mainstream	15979.70	849	4060.0	4.782097	3.93
	Premium	10760.80	588	2769.0	4.709184	3.88
OLDER FAMILIES	Budget	156863.75	4675	41853.0	8.952513	3.74
	Mainstream	96413.55	2831	25804.0	9.114800	3.73
	Premium	75242.60	2274	20239.0	8.900176	3.71
OLDER SINGLES/COUPLES	Budget	127833.60	4929	32883.0	6.671333	3.88
SINGLES/COUPLES	Mainstream	124648.50	4930	32607.0	6.613996	3.82
	Premium	123537.55	4750	31695.0	6.672632	3.89
RETIREES	Budget	105916.30	4454	26932.0	6.046700	3.93
	Mainstream	145168.95	6479	37677.0	5.815249	3.85
	Premium	91296.65	3872	23266.0	6.008781	3.92
YOUNG FAMILIES	Budget	129717.95	4017	34482.0	8.584018	3.76
	Mainstream	86338.25	2728	23194.0	8.502199	3.72
	Premium	78571.70	2433	20901.0	8.590629	3.75
YOUNG	Budget	57122.10	3779	15500.0	4.101614	3.68
SINGLES/COUPLES	Mainstream	147582.20	8088	36225.0	4.478858	4.07
	Premium	39052.30	2574	10575.0	4.108392	3.69
1						•

```
plt.figure(figsize=(20,10))
sns.barplot(x=merge_lp.reset_index()['LIFESTAGE'], y=merge_lp.reset_index()['AVG_QTY'], hue=merge_lp.reset_index()['PR
plt.xlabel('LIFESTAGE')
plt.ylabel('AVERAGE SALES')
plt.title('AVERAGE SALES BY LIFESTAGE, CUSTOMER TYPE')
plt.legend( loc='best', bbox_to_anchor=(1.05, 1), fontsize =15)
plt.show()
```



```
plt.figure(figsize=(20,10))
sns.barplot(x=merge_lp.reset_index()['LIFESTAGE'], y=merge_lp.reset_index()['AVG_PR'], hue=merge_lp.reset_index()['PRE
plt.xlabel('LIFESTAGE')
plt.ylabel('AVERAGE SALES')
plt.title('AVERAGE SALES BY LIFESTAGE, CUSTOMER TYPE')
plt.legend( loc='best', bbox_to_anchor=(1.05, 1), fontsize =15)
plt.show()
```



```
from scipy import stats

merge_lp.shape
        (21, 5)

merge_lp = merge_lp.reset_index()

MS = merge_lp.loc[merge_lp['PREMIUM_CUSTOMER'] == 'Mainstream']
Pr_Bu = merge_lp.loc[(merge_lp['PREMIUM_CUSTOMER'] == 'Premium') | (merge_lp['PREMIUM_CUSTOMER'] == 'Budget')]

MS
```

Pr_Bu

	LIFESTAGE	PREMIUM_CUSTOMER	TOT_SALES	CUSTOMER_CNT	TOT_QTY	AVG_QTY
0	MIDAGE SINGLES/COUPLES	Budget	33345.70	1504	8883.0	5.906250
2	MIDAGE SINGLES/COUPLES	Premium	54443.85	2431	14400.0	5.923488
3	NEW FAMILIES	Budget	20607.45	1112	5241.0	4.713129
5	NEW FAMILIES	Premium	10760.80	588	2769.0	4.709184
6	OLDER FAMILIES	Budget	156863.75	4675	41853.0	8.952513
8	OLDER FAMILIES	Premium	75242.60	2274	20239.0	8.900176
9	OLDER SINGLES/COUPLES	Budget	127833.60	4929	32883.0	6.671333
11	OLDER SINGLES/COUPLES	Premium	123537.55	4750	31695.0	6.672632
12	RETIREES	Budget	105916.30	4454	26932.0	6.046700
14	RETIREES	Premium	91296.65	3872	23266.0	6.008781
15	YOUNG FAMILIES	Budget	129717.95	4017	34482.0	8.584018
17	YOUNG FAMILIES	Premium	78571 70	2433	20901 0	8 590629

 $\begin{tabular}{ll} MS_mid_y = MS["AVG_PR"][(merge_lp["LIFESTAGE"] == "MIDAGE SINGLES/COUPLES") | (merge_lp["LIFESTAGE"] == "YOUNG SINGLES/COUPLES" | (merge_lp["LIFESTAGE"] == "YOUNG SINGLES/COUPLES" | (merge_lp["LIFESTAGE"] == "YOUNG SINGLE$

MS_mid_y

1 3.99444919 4.074043

Name: AVG_PR, dtype: float64

 $\verb|stats.ttest_ind(MS_mid_y, PB_mid_y)|\\$

TtestResult(statistic=7.181830997406295, pvalue=0.0019909612272297904, df=4.0)

MS_mysc = data_merged['PREMIUM_CUSTOMER'] == 'Mainstream') & (data_merged['LIFESTAGE'] == 'YOUNG SINGLES/
MS_mysc

MIUM_CUSTOMER	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
Mainstream	2018- 09-16	1.0	2.0	58.0	Red Rock Deli Chikn&Garlic Aioli 150g	1.0	2.7
Mainstream	2018- 09-09	1.0	10.0	51.0	Doritos Mexicana 170g	2.0	8.8
Mainstream	2018- 09-03	1.0	22.0	3.0	Kettle Sensations Camembert & Fig 150g	1.0	4.6
Mainstream	2018- 11-28	1.0	23.0	97.0	RRD Salt & Vinegar 165g	1.0	3.0
Mainstream	2019- 06-20	1.0	24.0	38.0	Infuzions Mango Chutny Papadums 70g	1.0	2.4
Mainstream	2018- 12-07	272.0	270205.0	63.0	Kettle 135g Swt Pot Sea Salt	2.0	8.4
Mainstream	2018- 09-23	77.0	236718.0	24.0	Grain Waves Sweet Chilli 210g	2.0	7.2
Mainstream	2018- 07-30	77.0	236756.0	71.0	Twisties Cheese Burger 250g	2.0	8.6
Mainstream	2018- 08-02	88.0	240146.0	36.0	Kettle Chilli 175g	2.0	10.8
Mainstream	2018- 12-14	88.0	241815.0	16.0	Smiths Crinkle Chips Salt & Vinegar 330g	2.0	11.4

```
MS_mysc['brand_new'].value_counts().head()
```

 Kettle
 3844

 Doritos
 2379

 Pringles
 2315

 Smiths
 1921

 Infuzions
 1250

Name: brand_new, dtype: int64

MS_mysc['pack_size'].value_counts().head()

175.0 4997 150.0 3080 134.0 2315 110.0 2051 170.0 1575

Name: pack_size, dtype: int64

brand_count = MS_mysc.groupby(['LYLTY_CARD_NBR', 'brand_new'])['PROD_QTY'].sum().unstack()
basket_brand = brand_count.applymap(lambda x:1 if x>0 else 0)
basket_brand

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarnin
 and should_run_async(code)

	brand_new	Burger	CCs	Cheetos	Cheezels	Cobs	Doritos	French	Grain Waves	Infuzio
Ľ	YLTY_CARD_NBR									
	1000	0	0	0	0	0	0	0	0	
	1002	0	0	0	0	0	0	0	0	
	1003	0	0	0	0	0	0	0	1	
	1004	0	0	0	0	0	0	0	0	
	1005	0	0	1	0	0	0	0	0	
		•••								
	2370651	0	0	0	0	0	1	0	0	
	2370701	0	0	0	0	0	0	0	1	
	2370751	0	0	0	0	0	0	0	0	
	2370961	0	0	0	0	0	0	0	0	
	2373711	0	0	0	0	0	0	0	0	

71287 rows × 20 columns

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

freq_itemset1 = apriori(basket_brand, min_support = 0.04, use_colnames = True).sort_values(by='support', ascending = Fail

freq_itemset1

,			quantian internemppyrib
51	0.060712	(Smiths, Thins)	
33	0.060474	(Infuzions, Smiths)	
0	0.059562	(CCs)	
21	0.059450	(Doritos, Infuzions)	
39	0.058748	(Kettle, Twisties)	
26	0.058482	(Doritos, Thins)	
32	0.058440	(Pringles, Infuzions)	
38	0.058328	(Kettle, Tostitos)	
41	0.057865	(Woolworths, Kettle)	
45	0.057430	(Pringles, Thins)	
24	0.052450	(Doritos, Red Rock Deli)	
50	0.051580	(Woolworths, Red Rock Deli)	
43	0.051566	(Pringles, Red Rock Deli)	
54	0.050177	(Doritos, Pringles, Kettle)	
56	0.047723	(Pringles, Kettle, Smiths)	
55	0.047624	(Doritos, Smiths, Kettle)	
42	0.047526	(Smiths, Natural Chips CO)	
30	0.047274	(Grain Waves, Kettle)	
57	0.042378	(Smiths, Kettle, Red Rock Deli)	
17	0.042154	(Doritos, Cobs)	
19	0.041943	(Pringles, Cobs)	
28	0.041073	(Doritos, Twisties)	
40	0.040975	(Kettle, Tyrrells)	
52	0.040821	(Smiths, Tostitos)	
48	0.040737	(Woolworths, Pringles)	
29	0.040568	(Doritos, Woolworths)	
46	0.040540	(Pringles, Tostitos)	
47	0.040484	(Pringles, Twisties)	
20	0.040400	(Smiths, Cobs)	
27	0.040386	(Doritos, Tostitos)	
11	0.040330	(Sunbites)	

rules = association_rules(freq_itemset1, metric='lift').sort_values(['support', 'lift','confidence'], ascending= False
rules.head()

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarnin
and should_run_async(code)

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift 1
0	(Doritos)	(Kettle)	0.290446	0.423303	0.136420	0.469693	1.109591
1	(Kettle)	(Doritos)	0.423303	0.290446	0.136420	0.322276	1.109591
2	(Pringles)	(Kettle)	0.289772	0.423303	0.135452	0.467444	1.104279
3	(Kettle)	(Pringles)	0.423303	0.289772	0.135452	0.319989	1.104279
5	(Kettle)	(Smiths)	0.423303	0.314896	0.135130	0.319227	1.013754

 $size_count = MS_mysc.groupby(['LYLTY_CARD_NBR', 'pack_size'])['PROD_QTY'].sum().unstack()$

 $basket_size = size_count.applymap(lambda \ x:1 \ if \ x \ > \ 0 \ else \ 0) \\ basket_size$

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarnin
and should_run_async(code)

pack_size 70.0 90.0 110.0 125.0 134.0 135.0 150.0 160.0 165.0 170.0 1 LYLTY_CARD_NBR

1000	0	0	0	0	0	0	0	0	0	0
1002	0	0	0	0	0	0	1	0	0	0
1003	0	0	0	0	0	0	0	0	0	0
1004	0	0	0	0	0	0	0	1	0	0