Année Universitaire : 2022/2023	Date de l'Examen : 00/10/2023		
Nature : DC	Durée : 1h30min		
Diplôme: ☐ Mastère ☐ Ingénieur	Nombre de pages : 2		
Section: GCP □ GCV ☑ GEA □ GCR □ GM	Enseignant (e) : Aymen Flah		
Niveau d'étude : □ 1 êre ☑ 2 ême □ 3 ême année	Documents Autorisés :□ Oui ☑ Non		
Matière: CSA	Remarque : Calculatrice autorisée		

Questions de cours : (4 pts)

- 1-Quells sont les conditions d'activation d'un thyristor et quelle est la condition d'arrêt
- 2-Dans quels cas on parle de la conduction forcée d'un thyristor.
- 3- Est-il possible d'ajouter une diode de roue libre pour un gradateur monophasé : expliquer.
- 4-Dans quel cas un gradateur sera un redresseur.

Problème: (16 pts)

Soit un variateur de tension monophasé, à base deux gradateurs, alimenté par un transformateur à point milieux. Ce transfo fourni deux niveaux de tension: Niveau 1: Mex Ve1=220V, Niveau 2: Ve2=110V. Ce variateur alimente deux types de charges diffèrent: Charge résistive et charge inductive.

En désire traiter le cas où ce variateur est couplé sur une charge résistive

- 1. Donner le schéma de ce variateur avec la charge.
- Donner la combinaison d'ouverture et de fermeture des différents thyristors dans ce variateur à fin que ce variateur n'est fonctionnel que comme un gradateur simple et sur le niveau 1 d'alimentation.
- Pour un retard à l'amorçage qui vaut 90°, donner l'allure de la tension au niveau de la charge.
- 4. On désire ajouter une diode de roue libre avec la charge. Interpréter le cas.
- Calculer la valeur moyenne de la tension au niveau de la charge.

Le variateur sera couplé maintenant sur une charge inductive où l'angle d'extinction vaut 15°. On désire le faire fonctionner en mode contacteur statique sur le niveau le plus faible de tension.

- Donner la combinaison d'ouverture et de fermeture des différents thyristors, pour assurer ce mode, ainsi que la valeur maximale/minimale de retard à l'amorçage sur chaque thyristor.
- 7. Sur une période de fonctionnement (T), donner l'allure de Vch.
- Trouver la valeur de la puissance efficace de la charge sur cette période.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 02/12/2019

Page: 2/2

EPREUVE D'EVALUATION

Les deux niveaux de tension interviennent maintenant dans le variateur (mode de fonctionnement en variation de tension). On désire déterminer la stratégie de commande de ces thyristors.

- 9. Donner l'ordre d'ouverture de ces thyristors (exp d'ordre d'ouverture : Th1 → Th2, ou Th1 et Th1' \rightarrow Th2, etc..)
- 10. Pour un retard d'amorçage appliqué sur les thyristors liés au gradateur couplé sur le niveau 1, équivaut à 90° et pour un retard d'amorçage appliqué sur les thyristors liés au gradateur couplé sur le niveau 2, équivaut à 45°, donner :
 - a. Les zones d'amorçabilité et de conduction
 - b. L'allure de Vch
 - L'allure de la tension de thyristor couplé en anode sur la source de niveau 1
 - Donner l'expression de Vch efficace.

On note pour le gradateur niveau « 1 » les thyristors comme suit (Th1 et Th1') pour le niveau « 2 » (Th2 et Th2')

Ra:

Essayer de présenter les courbes et les zones de conduction proprement.

Name of	1510		200	-	1000
	1			0	3
311	-	16	圆引	10 C	

EPREUVE D'EVALUATION

Date: 02/12/20

Page : 1/2

Année Universitaire : 2022/2023	Date de l'Examen : 13 /01/2023		
Nature: □ DC	Durée : □ 1h □ 1h30min ☑ 2h		
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 2		
Section: ☐ GCP ☐ GCV ☐ GEA ☐ GCR ☐ GM	Enseignant (e): Aymen Flah		
Niveau d'étude : □ 1 êre ☑ 2 ênte □ 3 ême année	Documents Autorisés :□ Oui ☑ Non		
Matière : CSA	Remarque : Calculatrice autorisée		

Exercice 1 (12 pts)

Etudier le cas d'un variateur de tension à base gradateur monophasé, qui alimente <u>une</u> charge purement résistive. Sachant que les sources d'alimentation sont <u>les deux identiques à 220V</u>, où et la fréquence est de 50Hz.

Sur un intervalle de 360° et pour un angle de retard à l'amorçage appliqué sur tout le thyristor équivaut à 90°, donner :

- 1- Donner le montage électronique de ce système
- 2- L'Etat de conduction des différents contacteurs
- 3- Le mode de fonctionnement de variateur
- 4- La forme de la tension appliquée sur la charge
- 5- L'état de courant de chaque thyristor
- 6- Donner votre opinion sur les résultats de courant et déduire le rôle de ce montage

Exercice 2 (8 pts)

Soit l'onduleur Triphasé de la figure (1) qui alimente une charge triphasée et équilibrée purement résistive. On désire étudier le comportement de cet onduleur pour deux états différents.

C2 - C1. C4 - C3. C6 - C5

Figure 1 : onduleur Triphasé

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

F 31 3

Indice: 3

Date: 02/12/201

Ref: DE-EX-01

Page: 2/2

EPREUVE D'EVALUATION

- 1. Pour la stratégie de contrôle disjointe 180°
 - a) Déterminer les zones de conduction de chaque élément
 - b) Trouver l'allure de tension au niveau de la charge B, pour E=200V
 - c) Donner l'allure de courant de la source B, pour $R=10\Omega$
 - d) Exprimer la fonction de puissance Pch au niveau de la charge triphasée
- 2. Si une des trois bras est détruite (Bras A : interrupteur haut et bas), donner la nouvelle appellation de ce convertisseur en conservant la même forme de commande.
 - e) Déterminer les zones de conduction de chaque élément conducteur
 - f) Trouver l'allure de tension au niveau de la charge B
- 3. Est 'il possible der changer le type des semiconducteurs, par des thyristors.
- 4. Qu'elle est le rôle des diodes au sein d'un onduleur
- 5. Refaire la question (2) pour une charge inductive ou l'angle d'extinction vaut 15°.

Bonne chance