

¿Continuamos con las Formas Normales?

Forma Normal de Boyce y Codd (FNBC)

4 Formal Normal (4FN)

Recordemos...

X -> Y: Y depende funcionalmente de X

X determina funcionalmente a Y

Cuando: A cada valor de X le corresponde sólo uno de Y

Se denomina:

- X determinante
- Y determinado

Analicemos estos ejemplos:

- nroPatente -> marca, modelo ?
- nroPatente -> color ?
- nroPatente -> cuilDueño ?

Forma Normal de Boyce y Codd

Una relación <u>R está en FNBC</u> si todo determinante es clave candidata

Nota:

- No refiere a una FN anterior

Forma Normal de Boyce y Codd

Veamos un ejemplo:

Cada parcela es identificada dentro de un municipio, por su nro. de parcela

Las sup. de las parcelas de cada municipio son diferentes, pero, no existe una sup.que corresponda a más de un municipio.

Determinantes:

Claves candidatas:

- Nro Catastral
- •Nombre_Municipio+Parcela
- Superficie

No es clave candidata

- Nro_Catastral
- Nombre_Municipio+Parcela

FNBC

Forma Normal de Boyce y Codd

Al descomponer:

Determinantes:

Nro_Catastral

<u>Claves candidatas:</u>

• Nro_Catastral

Determinantes:

• Superficie

<u>Claves candidatas:</u>

• Superficie

BCNF

Dependencia Multivaluada (DMV): X ->-> Y

Dada una relación R con atributos (X,Y,Z):

X multidetermina a Y, y se simboliza X->->Y, si se cumple que:

- ❖ Y depende de X, pero es independiente de Z.
- ❖ Por lo tanto, para cada par de valores (X,Z) el conjunto de valores de {Y} que coinciden con el par, "dependen" de X y "no dependen" de Z.
- ❖ A X le pueden corresponder varios valores de Y (n valores).

La relación **CURSOS** describe datos de cursos:

CURSOS = {Curso, Profesor, Texto}

Restricciones:

- Cada curso puede ser dictado por varios profesores.
- Un profesor puede dictar varios cursos.
- Cada curso tiene libros asignados, independientemente del profesor que lo dicte. Es decir, el profesor no decide los libros que usa en un curso.

Curso	Profesor	Libro
Bases de Datos I	Castro	Fundamentos de Base de Datos
Bases de Datos I	Castro	Introducción a los DBMS
Bases de Datos I	Gomez	Fundamentos de Base de Datos
Bases de Datos I	Gomez	Introducción a los DBMS
Bases de Datos II	Gomez	Fundamentos de Base de Datos
Bases de Datos II	Gomez	Introducción a Oracle 11g
Bases de Datos II	Gomez	Datawarehousing e Inteligencia de Negocio
Bases de Datos II	Manrique	Fundamentos de Base de Datos
Bases de Datos II	Manrique	Introducción a Oracle 11g
Bases de Datos II	Manrique	Datawarehousing e Inteligencia de Negocio

¿Curso → Libro?

X->-> Y si para cada par de valores (X,Z) el conjunto de valores Y {Y} que coinciden con ese par, "dependen" de X y "no dependen" de Z.

Curso	Profesor	Libro
Bases de Datos I 🕢	Castro 📥	Fundamentos de Base de Datos
Bases de Datos I	Castro	introducción a los DBMS
Bases de Datos I	Gomez <	-undamentos de Base de Datos
Bases de Datos I	Gomez	Introducción a los DBMS
Bases de Datos II 🖊	Gomez 🖛	undamentos de Base de Datos
Bases de Datos II	Gomez	Introducción a Oracle 11g
Bases de Datos II	Gomez	Datawarehousing e Inteligencia de Negocio
Bases de Datos II	Manrique 🖛	Fundamentos de Base de Datos
Bases de Datos II	Manrique	Introducción a Oracle 11g
Bases de Datos II	Manrique	Datawarehousing e Inteligencia de Negocio

- Debemos evaluar los pares (Curso, Profesor)
- Sea el par (Bases de Datos I, Castro) el conjunto de valores de Libro correspondientes es= {Fundamentos de Bases de Datos, Introducción a los DBMS}:

¿Depende del Curso?

¿Depende del Profesor?

Ahora analicemos...

¿Qué condiciones debe tener una relación para estar en 4FN?

Una relación <u>R está en 4FN</u> sii está en **FNBC y no existen DMV**

Otra forma de definir la 4FN:

Una relación <u>R está en 4FN</u> sii está en FNBC y <u>toda DMV es DF</u>. Se considera la DF como un caso particular de DMV, donde n=1.

Volviendo a la relación ejemplo:

	Curso	Profesor	Libro
	Bases de Datos I	Castro	Fundamentos de Base de Datos
	Bases de Datos I	Castro	Introducción a los DBMS
	Bases de Datos I	Gomez	Fundamentos de Base de Datos
	Bases de Datos I	Gomez	Introducción a los DBMS
	Bases de Datos II	Gomez	Fundamentos de Base de Datos
	Bases de Datos II	Gomez	Introducción a Oracle 11g
	Bases de Datos II	Gomez	Datawarehousing e Inteligencia de Negocio
	Bases de Datos II	Manrique	Fundamentos de Base de Datos
	Bases de Datos II	Manrique	Introducción a Oracle 11g
	Bases de Datos II	Manrique	Datawarehousing e Inteligencia de Negocio
DMV1			
D	MV2		†

Las dos dependencias multivaluadas no son funcionales.

Por lo tanto, la relación no está en 4FN.

<u>Solución</u>: Como siempre, descomponer sin perdida, tratando de mantener dependencias.

CURSOS1

	Curso	Profesor
Þ	Bases de Datos I	Castro
	Bases de Datos I	Gomez
	Bases de Datos II	Gomez
	Bases de Datos II	Manrique

CURSOS2

	Curso	Libro
\mathbf{F}	Bases de Datos I	Fundamentos de Base de Datos
	Bases de Datos I	Introducción a los DBMS
	Bases de Datos II	Datawarehousing e Inteligencia de Negocio
	Bases de Datos II	Fundamentos de Base de Datos
	Bases de Datos II	Introducción a Oracle 11g

- Está en BCNF
- No presenta DMV

Está en 4FN

- Está en BCNF
- No presenta DMV

Está en 4FN

Unidad 3: Normalización

Terminamos!!!

FIN