Generative Adversarial Nets (GAN)

Pinkesh Badjatiya Nikhil Pattisapu Shashank Gupta

Generative/Discriminative Models

- Difference between generative and discriminative, P(x,y) **VS** P(y|x)
- Captures data distribution
 - Joint probability distribution (distribution of P(x,y))?
- Discriminative Models
 - Examples: Text classification
 - Learns P(y|x) i.e. probabilities on the target variables.
 - Does not need to model the data distribution
- Generative Models
 - Example: Language models, sequence completion
 - Learns P(x, y) ---> Convertible into P(y|x) for classification.
 - P(Sequence) Captures data distribution so easy to compute
 - P(current word | previous sequence) Bayes rule, models probs of all the variables

GAN Objective

- Learn a generative model approximating the data distribution
 - $\circ \quad X \to P(X)$
- Train G to Maximize D(G(x))

GAN structure and Idea

- Formulation of zero sum game
- Individual components and their role: G, D
 - \circ G(z) Generator for z. G(z) generates a samples which closely resembles the data.
 - \circ D(x) Discriminator for x. D(x) is the probability that x comes from data rather than $\mathbf{p_g}$ (the simulated data distribution by G)
- What to expect Eventually the algo converges at a saddle point, where 'G' learns to "accurately approximate" the data distribution. The best that 'D' can do is to toss a coin (0.5)
- Analogy
 - Generator: Team of counterfeiters, printing fake currency
 - Discriminator Police.

What is the next best to GAN's (Literature Survey)

- Deep Generative model.
 - Best example: Deep Boltzmann Machines
 - These models provide parametric specification of a pdf
 - Maximize log-likelihood.
 - Problem Intractable Likelihood function.
 - Numerous approximations are needed.

- Do not explicitly represent the likelihood [Thereby avoiding intractability, approximations]
- Can be trained with simple backprop
- Current work extends generative stochastic networks [NIPS 2010, Bengio]
- Noise Contrastive Estimation

Simplified GAN Structure - Image example

GAN Structure

- Normally, Both G, D are multilayer perceptrons.
- Generic GAN architecture, with an optional input variable Z. For ex. It can be
 a class variable of input image.

Training The Network

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

Can we generate text using GAN?

- NO !!
- It cannot be applied since the output produced by the generator should be a continuous vector and small delta change in it should result in a meaningful entity

Cont.

- Images exist in continuous domains
- Text consists of discrete entities, words
- Even with recent continuous representations of text word embeddings, existing framework would still fail.
- For e.g. Consider a GAN trying to generate one word at a time
- W is a continuous representation generated by generator, now W + epsilon (epsilon is a std. Gaussian noise) may not be a valid word vector
- Word vectors exists as discrete points in the real space.

Future

- Adapting GANs in text scenario.
- SeqGAN recent example
- Some works in NIPS addressing this problem.
- Adversarial learning workshop NIPS
- Video lecture of GAN by IAN Goodfellow NIPS Tutorial
 - https://channel9.msdn.com/Events/Neural-Information-Processing-Syste
 ms-Conference/Neural-Information-Processing-Systems-Conference-NIP
 S-2016/Generative-Adversarial-Networks

