AMPLIFICADORES OPERACIONAIS CONVERSORES A/D E D/A

Relatório 09 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório abordará o tema sobre os conversores A/D e D/A que utilizam amplificadores operacionais, com o objetivo de entender o seu funcionamento. Dessa forma, foram realizados algumas simulações a fim de comprovar o seu funcionamento. Ao final, serão apresentados os resultados das simulações.

Introdução

Na eletrônica existem dois tipos de sinais chamados digitais e analógico, sendo que o primeiro possui nível específicos para baixo e alta, e o segundo possui valores variados dentro de faixa com o passar do tempo. Portanto, este relatório fará uma analise sobre este tópico.

O conversor digital-analógico (D/A) recebe o número binário representando um valor e o converte em uma grandeza elétrica de tensão ou corrente. Essa grandeza é proporcional ao valor binário de entrada.

Objetivos

Logo, o objetivo principal deste relatório é entender o funcionamento dos conversores A/D e D/A que utilizam amplificadores operacionais.

Materiais e Métodos

• 06 resistores de 1 k Ω ; • 01 resistores de 8 k Ω ;

• 06 resistores de $2 \text{ k}\Omega$; • 06 Amp-op's 741.

• 04 resistores de 3,3 Ω ; • Interruptores;

• 01 resistor de 4 k Ω ; • LEDs;

A simulação foi realizada no software QUCS.

Parte teórica

Conversor D/A Binário Ponderado

Observando a Figura 1, conclui-se que se as chaves estiverem abertas não haverá tensão chegando na porta do amp-op, estando em nível *float*. Aplicando LKT na entrada do amp-op, encontra-se a Equação 1, dessa forma, quando uma chave estiver ativa, a mesma deve será substituída por "1"na equação e caso ela estiver desativada deve ser substituída por "0", sendo assim existiram 16 combinações diferentes possíveis de entrada.

Figura 1: Conversor: Chaveamento de resistores com pesos binários.

$$V_o = -V_{ref} \left(\frac{D0}{8k} + \frac{D1}{4k} + \frac{D2}{2k} + \frac{D3}{1k}\right) R_{escala}$$
 (1)

Conversor D/A de escada R/2R

O conversor D/A de escada R/2R, mostrado na Figura 2, possui uma grande semelhança com o anterior, sendo esse modelo mais utilizado em circuitos integrados. Neste modelo são utilizados dois valores de resistências. Fazendo uma analise geral, é observado que as

chaves estão ativas, além disto este circuito também converte os valores de entrada binária possíveis de 0000 a 1111 para um dos 16 níveis de tensão de saída. Para este modelo de conversor D/A, a chave D0 é considerada o bit de entrada menos significativo (LSB) enquanto D3 é o bit mais significativo (MSB). Logo, para determinar a V_o , deve-se converter o valor da entrada binaria para decimal, BIN, por meio da Equação 2, aplicando a mesma regra de chaves que o modelo anterior. Agora, considerando N o numero de entradas utilizadas, tem-se a Equação 3 que resulta no sinal V_o .

Figura 2: Conversor: D/A de escada R/2R.

$$BIN = (D0 \times 2^{0}) + (D1 \times 2^{1}) + (D2 \times 2^{2}) + (D3 \times 2^{3})$$
 (2)
$$V_{o} = \frac{BIN}{2^{N}} \times V_{ref}$$
 (3)

Conversor A/D de 1 Bit

Este modelo de conversor usa circuito comparadores. Para um valor pre-estabelecido de referencia, a entrada é comparada a este valor e fornece uma tensão de saída igual à $V_{sat} \approx V_{cc}$, ou uma saída próximo de 0 V já que o terminal - V_{cc} está aterrado. Pela Figura 3, percebe-se que a entrada do circuito está conectada no terminal inversor do amplificador, logo se $V_{bat} > V_{ref} \Rightarrow V_o \approx 0$ V, e se $V_{bat} \leq V_{ref} \Rightarrow V_o \approx V_{cc}$.

Figura 3: Conversor: A/D de 1 Bit.

Conversor A/D de 3 Bits

Na figura 4 é apresentado uma combinação do conversor D/A de 1 Bit, sendo que este agora possui 3 bits de entrada e seu funcionamento é semelhante ao de 1 bit.

Figura 4: Conversor: A/D de 3 Bits.

Parte Prática

Conversor D/A Binário Ponderado

Primeiro, foi simulado o circuito da Figura 5 para cada combinação possível de entrada, obtendo a Tabela 1. Foram considerados $V_{ref}=V_{CC}=15~{\rm V}~{\rm e}~R_{escala}=1~k\Omega.$

Figura 5: Conversor simulado: Chaveamento de resistores com pesos binários.

Tabela 1: Resultados do Conversor D/A binário ponderado.

D3	D2	D1	D0	$Vo_{Sim.}$	$Vo_{Teo.}$
0	0	0	0	0,00	0,00
0	0	0	1	-1,87	-1,85
0	0	1	0	-3,75	-3,75
0	0	1	1	-5,62	-5,62
0	1	0	0	-7,50	-7,50
0	1	0	1	-9,37	-9,37
0	1	1	0	-11,20	-11,25
0	1	1	1	-13,10	-13,12
1	0	0	0	-13,50	-15,00
1	0	0	1	-13,50	-15,00
1	0	1	0	-13,50	-15,00
1	0	1	1	-13,50	-15,00
1	1	0	0	-13,50	-15,00
1	1	0	1	-13,50	-15,00
1	1	1	0	-13,50	-15,00
1	1	1	1	-13,50	-15,00

Por meio destes resultados, inicialmente os valores coincidem com os teóricos. Contudo, quando D3 foi acionado, o amp-op atingiu o valor de saturação, com isso seu valor de saída ficou fixo em 13,5 V.

Conversor D/A de escada R/2R

Depois, foi simulado o circuito da Figura 6 para cada combinação de entrada, obtendo a Tabela 2. Foram considerados, novamente, $V_{ref}=V_{CC}=15~{
m V}$ e $R_{escala}=1~k\Omega$.

Figura 6: Conversor simulado: D/A de escada R/2R.

Conforme pode ser visto na Tabela 2 e foi estudado, essa tipologia resulta em valores próximos ao da tipologia anterior, contudo contendo mais precisão, ou seja, para a mesma quantidade de combinação foram obtidos mais valores específicos. Perceba que neste modelo também ha saturação, sendo que a variação começa a ficar menor a medida que se aproxima de 13,5 V.

Conversor A/D de 1 Bit

Em seguida, foi simulado o circuito da Figura 7, considerando $V_{ref}=8$ V e $R_L=3,3$ $k\Omega$. Para esta simulação foi variado o valor de V_{bat} , obtendo a Tabela 3.

Tabela 2: Resultados Conversor D/A de escada R/2R.

D3	D2	D1	D0	$Vo_{Sim.}(V)$	$Vo_{Teo.}(V)$
0	0	0	0	0,00	0,00
0	0	0	1	-0,94	-0,94
0	0	1	0	-1,87	-1,87
0	0	1	1	-2,81	-2,81
0	1	0	0	-3,75	-3,75
0	1	0	1	-4,69	-4,69
0	1	1	0	-5,62	-5,62
0	1	1	1	-6,56	-6,56
1	0	0	0	-7,50	-7,50
1	0	0	1	-8,43	-8,44
1	0	1	0	-9,37	-9,37
1	0	1	1	-10,30	-10,31
1	1	0	0	-11,20	-11,25
1	1	0	1	-12,20	-12,19
1	1	1	0	-13,10	-13,12
1	1	1	1	-13,50	-14,06

Figura 7: Conversor simulado: A/D de 1 Bit.

Tabela 3: Resultados Conversor A/D de 1 Bit.

$V_{bat}(V)$	Saída (V)	Nível Lógico
0	14,20	1
1	14,20	1
2	14,20	1
3	14,20	1
4	14,20	1
5	14,20	1
6	14,20	1
7	14,20	1
8	14,20	1
9	1,51	0
10	1,51	0
11	1,51	0
12	1,51	0

Para esta próxima tipologia, devido a tensão fixa na porta não inversora ao variar o sinal V_{bat} , pela tabela 3, observa-se que em quanto o valor não atinge o 8 V o LED permanece acesso, e ao atingir e ultrapassalo o LED apaga.

REFERÊNCIAS REFERÊNCIAS

Conversor A/D de 3 Bits

Por último, foi simulado o circuito da Figura 8, considerando $V_{ref_1}=8$ V, $V_{ref_2}=10$ V, $V_{ref_3}=12$ V e $R_{L1}=R_{L2}=R_{L3}=3,3$ $k\Omega$. O valor de V_{bat} foi variado, preenchendo a Tabela 4.

Figura 8: Conversor: A/D de 3 Bits.

Tabela 4: Nível lógico do conversor A/D de 3 Bits.

$V_{bat}(V)$	LED ₃	LED_2	LED ₁
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	1
9	0	0	1
10	0	1	1
11	0	1	1
12	1	1	1
13	1	1	1
14	1	1	1
15	1	1	1

Por último, sendo esta tipologia a combinação da anterior, ao variar a V_{bat} , enquanto o valor V_{ref_N} o LED não é apagado, estando em nível lógico 1.

Conclusão

Portanto, podemos concluir que o objetivo deste relatório foi atendido. Além disto, pudemos ver o funcionamento e conversão, por meio de topologias diferentes, do sinal digital para analógico.

Referências

- [1] "All datasheet-Im741 datasheet (pdf)-fairchild semiconductor https://www.alldatasheet.com/datasheetpdf/pdf/53589/fairchild/Im741.html."
- [2] R. L. Boylestad and L. Nashelsky, *Dispositivos eletrônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.