Содержание

1 17 февраля 1

2 24 февраля 2

Последнее обновление 24 февраля 2021 г. актуальная версия этого файла лежит по адресу http://mathcenter.spb.ru/nikaan/2021/topology4.pdf

Топология и геометрия-4, практика, СПбГУ 2021, факультет математики и компьютерных наук

Никита Сергеевич Калинин, Нина Дмитриевна Лебедева, Евгений Анатольевич Фоминых Для всех групп: 201,202,203

1 17 февраля

задачи и кусочек теории

http://mathcenter.spb.ru/nikaan/2021/zaniatie1parallPerenosNew.pdf

2 24 февраля

Для решения следующей задачи Вам может пригодиться уравнение параллельного переноса http://mathcenter.spb.ru/nikaan/2021/eq.pdf

Задача 8. В полярных координатах (ρ, φ) на плоскости найдите

- а) символы Кристоффеля (первого рода, здесь и далее) "внешним" (то есть через вложение плоскости в \mathbb{R}^3 и вычисление ковариантной производной базисных векторов, как проекции обычной производной на касательное пространство) и "внутренним" (решение системы, в которой коэффициентами являются координаты метрического тензора g_{ij} и их производные, см. формулы в Лекции 12) способом.
- б) используя символы Кристоффеля и соответствующее уравнение, параллельный перенос вектора $v \in T_pM$ с координатами (0,1) из точки p = (2,0) в точку $q = (2,\pi/3)$ вдоль кривой $\rho = 2$. Найдите декартовы координаты начального и конечного вектора.

Задача 9. Рассмотрим три векторных поля на плоскости: $A = \frac{\partial}{\partial x}, B = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, C = \frac{\partial}{\partial y}$. Рассмотрим верхнюю полусферу S_+ , заданную как $z = \sqrt{1 - x^2 - y^2}, |x|^2 + |y|^2 < 1$. Проекция вдоль оси z даёт диффеоморфизм между S_+ и открытым кругом, поэтому можно векторные поля A, B, C перенести на сферу. Назовём полученные векторные поля на сфере A', B', C'. Найдите

• а) скобку Ли [A', B'] (иногда её называют коммутатором векторных полей A', B');

- 6) [[A', B'], C'] + [[B', C'], A'].
- в) символы Кристоффеля
- г) ковариантную производную B' вдоль A' "внутренним" (используя символы Кристоффеля) и "внешним" способом (по определению ковариантной производной, как проекции обычной на касательное пространство).

Гладкое векторное поле на гладком многообразии называется **полным**, если поток определен на всем многообразии, для всех t.

Задача 10. Приведите пример неполного гладкого векторного поля на \mathbb{R} .

Задача 11. Дано гладкое многообразие M и гладкое векторное поле $V \in \mathfrak{X}(M)$. Докажите, что если $V_p = 0$, то для любой точки $q \neq p$ и $t \in \mathbb{R}$ $\Phi^t_V(q) \neq p$ (иначе говоря, никакая траектория потока не приведет в точку, где поле нулевое.)

Задача 12. Найдите явное выражение для потока, порожденного векторным полем на плоскости, изобразите интегральные линии, докажите полноту этого поля.

- $A = c_1 \frac{\partial}{\partial x} + c_2 \frac{\partial}{\partial y}$
- $B = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$
- $C = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$

Задача 13. *** Докажите, что векторное поле с компактным носителем является полным. (Следствие: для любого векторного поля и компакта найдется полное векторное поле, совпадающее с данным на компакте.)