Natural Language Processing with Python

github.com/bonzanini/nlp-tutorial

Tutor: @MarcoBonzanini

Credits: @miguelmalvarez

Nice to Meet You

Marco Bonzanini

Freelance Data Scientist

Schedule

- Intro & Logistics (10m)
- Environment Set Up (10m)
- Exploring Text Data (1h + ~30m QA)
- Break (16:30 17:00)
- Text Classification (1h)
- Bonus Content (15m + 15m QA)

The Audience (You!)

- Know some Python already?
- Know some NLP already?
- Both / None of the above?

Natural Language Processing

NLP Goals

Text Data

Useful Information Actionable Insights

Formal vs Natural

```
SELECT name, address
FROM businesses
WHERE business_type = 'pub'
AND postcode = '50121'
```

VS

Where is the nearest pub?

NLP Applications

- Text Classification
- Text Clustering
- Text Summarisation
- Machine Translation

- Semantic Search
- Sentiment Analysis
- Question Answering
- Information Extraction

Environment Set Up

- Tested with Python 3.4, 3.5 and 3.6
- Clone the repository:

```
git clone https://github.com/bonzanini/nlp-tutorial cd nlp-tutorial
```

Set up virtual environment:

```
virtualenv nlp-venv
source nlp-venv/bin/activate
pip install -r requirements.txt
```

Set up virtual environment (alternative):

```
conda create --name nlp-venv python=3.5 source activate nlp-venv pip install -r requirements.txt
```

Download NLTK data:

```
python -m nltk.downloader \
   punkt stopwords reuters
```

• Start up Jupyter notebook:

jupyter notebook

Exploring Text Data

Exercise

What are the most important ingredients in Italian cuisine?

recipes_exploratory_analysis.ipynb

Recipe Analysis: Summary

Tokenisation

Normalisation

Counting words

Stemming

Stop-words

n-grams

pyconuk_exporatory_analysis.ipynb

PyConUK Analysis Summary

- Data visualisation for text
- "This talk will ..."
- TF-IDF

Break

Text Classification

Text Classification

 "Text categorization (a.k.a. text classification) is the task of assigning predefined categories to free-text documents. It can provide conceptual views of document collections and has important applications in the real world"

Scholarpedia (Yiming Yang and Thorsten Joachims)

Text Classification

- Binary: Only two categories which are mutually exclusive
 - Spam detection, Anomaly detection, Fraud detection, ...
- Multi-class: Multiple categories, mutually exclusive
 - Language detection, ...
- Multi-label: Multiple categories with the possibility of multiple (or none) assignments.
 - News Categorisation, Marketing profiling, ...

text classification Generic.ipynb

 "If you cannot measure it, you cannot improve it".
 Lord Kelvin

 Main metrics for **Text** Classification: Precision and Recall

 1 correct case labelled in the class out of 1 prediction

 1 correct case labelled out of 3 being correct

Precision: 100%

Recall: 33%

 2 correct cases labelled in the class out of 3 predictions

 2 correct cases labelled out of 3 being correct

Precision: 66%

Recall: 66%

text_classification_Evaluation.ipynb

Classifying a real collection

text_classification_Reuters.ipynb

text_classification_Reuters.ipynb

Text Classification Summary

- Types of Classification Problems
- Document Representations: Vectorizers
- Training and predicting
- Evaluation: Precision vs Recall

Questions?

EBMMS50 (ebook 50%) BMISS15 (paperback 15%)

on packtpub.com

until 15th May

