

Sales Forecast Analytics

DATA SCIENCE PRODEGREE PROJECT

DSP -18 (Group 1)

- Komal Ise
- Niva Srivastava
- Kishore Kumar
- Dhivya Anandan
- Sakshi Yadav

Agenda

- Introduction
- Problem Statement
- Dataset Overview
- EDA (Exploratory Data Analysis)
- Data Cleaning and Preparation
- Feature Engineering
- Model Building
- Testing and Cross-validation
- Visualizing Forecasts
- Conclusion

Introduction

- Pest control is the major part of agriculture. There are different types of pesticides available in the market.
- Some external factors may affect the sales trend.
- Here, we are analyzing and forecasting the sales of different pesticides for particular company named "ABC manufacturing".

Problem
Statement

Statement

State Level Sales Data: containing sales data by various Pesticide manufacturing companies. This data is available for state and district level ranging from 2014-2018.

Data and Problem Details

- Conduct statewise trend analysis of the given sales
- To identify other reasons if they are influencing Pesticide sales
- To provide statewise forecast of Pesticide sales for ABC Manufacturing.

Dataset Overview

```
In [5]: sale_forecast_df=pd.read_excel("Sales_Forecast_Data.xlsx")
In [6]: sale_forecast_df.head(10)
Out[6]:
            ▲ FIN_YEAR ♦ MONTH ♦ STATE ♦
                                                       FG \( \phi \) DISTRICT \( \phi \) COMPANY \( \phi \) VALUE \( \phi \)
                  2014-2015
                                                                                           675.00
                                         Haryana Insecticides
                                                                   Rohtak
                                                                               monous
                  2014-2015
                                         Haryana Insecticides
                                                                   Rewari
                                                                               monous
                                                                                            73.71
                  2014-2015
                                                                                           405.00
                                         Haryana Insecticides
                                                                 Gurgaon
                                                                               monous
                  2014-2015
                                                                                          1188.00
                                         Haryana Insecticides
                                                                   Mewat
                                                                               monous
                  2014-2015
                                                                                          5188.59
                                         Haryana Insecticides
                                                                   Palwal
                                                                                monous
                  2014-2015
                                                                                             0.00
                                         Haryana Insecticides
                                                                     Jind
                                                                                 kadoo
                  2014-2015
                                         Haryana Insecticides
                                                                    Sirsa
                                                                                 kadoo
                                                                                             0.00
                  2014-2015
                                         Haryana Insecticides
                                                                    Hisar
                                                                                 kadoo
                                                                                             0.00
                 2014-2015
                                         Haryana Insecticides
                                                                  Bhiwani
                                                                                 kadoo
                                                                                             0.00
                                         Haryana Insecticides
                  2014-2015
                                                                   Rohtak
                                                                                 kadoo
                                                                                             0.00
```

EDA

(Exploratory Data Analysis)

As per the graph,

- 1. Consumption of pesticide is high in Uttar Pradesh.
- 2. Punjab is the second highest state in pesticide consumption.
- 3. Himachal Pradesh consumes least while comparing all other 5 Northern States

Sales of different category of pesticides 5000 4000 2000 1000 Insecticides FG Rodenticides

As per the graph,

• For ABC_Manufacturing, Insecticides accounts for the highest portion of the sales whereas Herbicides are the least.

From the above graph,

- Punjab and UP are consuming higher proportion of Insecticides.
- Haryana consumes least Herbicides
- Himachal Pradesh has no consumption of Rodenticides.

Plotting the graph to check stationarity

The plot indicates that the time series has seasonality pattern. There is no upward or downward trend. So, it looks stationary.

Performing the Augumented Dickey Fuller test

Here, the p-value is also less than 0.05. So we can reject the null hypothesis and confirm that our time series is stationary.

Model Building

ACF and PACF Plots

```
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
#function to create acf plot
def show_acf(df,state):
   plot acf(df)
   plt.title("ACF plot of {}". format(state))
   plt.show()
#function to show pacf plot
def show_pacf(df,state):
   plot pacf(df)
   plt.title("PACF plot of {}". format(state))
   plt.show()
show_acf(UP, "UP")
show_pacf(UP,"UP")
                     ACF plot of UP
  1.00
  0.75
  0.50
  0.25
  0.00
 -0.25
 -0.50
 -0.75
             2.5 5.0 7.5 10.0 12.5 15.0 17.5
                       PACF plot of UP
  1.00
  0.75
  0.50
  0.25
  0.00
 -0.25
```

10.0 12.5 15.0 17.5

-0.50

-0.75

Splitting the dataset as Training and Testing

SARIMA Model

```
p,d,q,P,D,Q=range(3),range(1),range(3),range(3),range(1),range(3)
\#p,d,q,P,D,Q=[4,5,6],range(1),range(4,6),range(3),range(1),[4,5,6]
pList,dList,qList,PList,DList,QList=[],[],[],[],[],[]
#for storing the MAPE values of the different model
mapeList=[]
def perform_gridSearch(original_df,train_df):
    for i in p:
        for j in d:
            for k in q:
                for 1 in P:
                    for m in D:
                        for n in Q:
                            print(i,j,k,l,m,n)
                            temparima_model=ARIMA((i,j,k),(l,m,n,12)).fit(train_df)
                            Forecast=pd.Series(temparima_model.predict(14)).rename('Forecast')
                            Forecast.index=test UP.index
                            Actual Forecast Df=pd.concat([original df,Forecast],axis=1)
                            Validation df=Actual Forecast Df[-14:].copy()
                            tempMAPE=np.mean(abs(Validation df['VALUE']-Validation df['Forecast'])/Validation df['VALUE'])*100
                            pList.append(i)
                            dList.append(j)
                            qList.append(k)
                            PList.append(1)
                            DList.append(m)
                            QList.append(n)
                            mapeList.append(tempMAPE)
```

- By performing the grid search, we have found the best P,D,Q/p,d,q values.
- Based on the values, we have performed the SARIMA model for statewise.
- Statewise forecast for next
 12 months was shown in the next slide.

70000		. N I	VALUE Final_Forecast_UK
60000		Λ Λ	
50000	M	MILA	
40000	////	$+ \setminus + \vee M \setminus$	Y ' \ \
30000	Y U	4 1	

	MAPE values					
Models	UP	HR	PNB	HP	UK	
ARIMA	27.65	94.31	58.81	253.70	34.46	
SARIMA	33.33	60.64	69.81	96.69	30.57	

Conclusion

- Overall, our forecasts align with the true values very well.
- So, we can proceed with SARIMA model.
- By forecasting the data for the next 12 months, we can say that ABC Manufacturing company is good to grow in all states.

THANKYOU