A.1 Dataset1: Swissmetro Case

This dataset consists of survey data collected on the trains between St. Gallen and Geneva, Switzerland, during March 1998. The respondents provided information in order to analyze the impact of the modal innovation in transportation, represented by the Swissmetro, a revolutionary mag-lev underground system, against the usual transport modes represented by car and train.

Context

Innovation in the market for intercity passenger transportation is a difficult enterprise as the existing modes: private car, coach, rail as well as regional and long-distance air services continue to innovate in their own right by offering new combinations of speeds, services, prices and technologies. Consider for example high-speed rail links between the major centers or direct regional jet services between smaller countries. The Swissmetro SA in Geneva is promoting such an innovation: a mag-lev underground system operating at speeds up to 500 km/h in partial vacuum connecting the major Swiss conurbations, in particular along the Mittelland corridor (St. Gallen, Zurich, Bern, Lausanne and Geneva).

Data Collection

The Swissmetro is a true innovation. It is therefore not appropriate to base forecasts of its impact on observations of existing revealed preferences (RP) data. It is necessary to obtain data from surveys of hypothetical markets/situations, which include the innovation, to assess the impact. Survey data were collected on rail-based travels, interviewing 470 respondents. Due to data problems, only 441 are used here. Nine stated choice situations were generated for each of 441 respondents, offering three alternatives: rail, Swissmetro and car (only for car owners).

A similar method for relevant car trips with a household or telephone survey was deemed impractical. The sample was therefore constructed using license plate observations on the motorways in the corridor by means of

video recorders. A total of 10529 relevant license plates were recorded during September 1997. The central Swiss car license agency had agreed to send up to 10000 owners of these cars a survey-pack. Until April 1998, 9658 letters were mailed, of which 1758 were returned. A total of 1070 persons filled in the survey completely and were willing to participate in the second SP survey, which was generated using the same approach used for the rail interviews. 750 usable SP surveys were returned, from the license-plate based survey.

Variables and Descriptive Statistics

The variables of the dataset are described in Tables 9 and 10, and the descriptive statistics are summarized in Table 11. A more detailed description of the data set as well as the data collection procedure is given in: M. Bierlaire and K.W. Axhausen and G. Abay, The acceptance of modal innovation: The case of swissmetro, in Proceedings of the 1st Swiss Transportation Research Conference, Ascona, Switzerland, March 13, 2001.

Variable	Description				
GROUP	Different groups in the population. 2: current rail users,				
	3: current road users				
SURVEY	Equivalent to GROUP but using different coding: 0:				
	train users, 1: car users				
SP	It is fixed to 1 (stated preference survey)				
ID	Respondent identifier				
PURPOSE	Travel purpose. 1: Commuter, 2: Shopping, 3: Busi-				
	ness, 4: Leisure, 5: Return from work, 6: Return from				
	shopping, 7: Return from business, 8: Return from				
	leisure, 9: other				
FIRST	First class traveler $(0 = no, 1 = yes)$				
TICKET	Travel ticket. 0: None, 1: Two way with half price card,				
	2: One way with half price card, 3: Two way normal				
	price, 4: One way normal price, 5: Half day, 6: Annual				
	season ticket, 7: Annual season ticket Junior or Senior,				
	8: Free travel after 7pm card, 9: Group ticket, 10: Other				
WHO	Who pays (0: unknown, 1: self, 2: employer, 3: half-				
	half)				
LUGGAGE	0: none, 1: one piece, 3: several pieces				
AGE	It captures the age class of individuals. The age-class				
	coding scheme is of the type:				
	1: $age \le 24$, 2: $24 < age \le 39$, 3: $39 < age \le 54$, 4: $54 < age \le$				
	65, 5: 65 < age, 6: not known				
MALE	Traveler's Gender 0: female, 1: male				
INCOME	Traveler's income per year [thousand CHF]				
	0 or 1: under 50, 2: between 50 and 100, 3: over 100, 4:				
	unknown				
GA	Variable capturing the effect of the Swiss annual season				
	ticket for the rail system and most local public trans-				
	port. It is 1 if the individual owns a GA, zero otherwise.				
ORIGIN	Travel origin (a number corresponding to a Canton, see				
	Table 12)				

Table 9: Description of variables

Variable	Description				
DEST	Travel destination (a number corresponding to a Can-				
	ton, see Table 12)				
TRAIN_AV	Train availability dummy				
CAR_AV	Car availability dummy				
SM_AV	SM availability dummy				
TRAIN_TT	Train travel time [minutes]. Travel times are door-				
	to-door making assumptions about car-based distances				
	(1.25*crow-flight distance)				
TRAIN_CO	Train cost [CHF]. If the traveler has a GA, this cost				
	equals the cost of the annual ticket.				
TRAIN_HE	Train headway [minutes]				
	Example: If there are two trains per hour, the value of				
	TRAIN_HE is 30.				
SM_TT	SM travel time [minutes] considering the future Swiss-				
	metro speed of 500 km/h				
SM_CO	SM cost [CHF] calculated at the current relevant rail				
	fare, without considering GA, multiplied by a fixed fac-				
CALIT	tor (1.2) to reflect the higher speed.				
SM_HE	SM headway [minutes]				
	Example: If there are two Swissmetros per hour, the				
CAL CE AEC	value of SM_HE is 30.				
SM_SEATS	Seats configuration in the Swissmetro (dummy). Airline				
CAD TET	seats (1) or not (0).				
CAR_TT	Car travel time [minutes]				
CAR_CO	Car cost [CHF] considering a fixed average cost per kilo-				
GHOIGE	meter (1.20 CHF/km)				
CHOICE	Choice indicator. 0: unknown, 1: Train, 2: SM, 3: Car				

Table 10: Description of variables

Variable	Min	Max	Mean	St. Dev.
GROUP	2	3	2.63	0.48
SURVEY	0	1	0.63	0.48
SP	1	1	1.00	0.00
ID	1	1192	596.50	344.12
PURPOSE	1	9	2.91	1.15
FIRST	0	1	0.47	0.50
TICKET	1	10	2.89	2.19
WHO	0	3	1.49	0.71
LUGGAGE	0	3	0.68	0.60
AGE	1	6	2.90	1.03
MALE	0	1	0.75	0.43
INCOME	0	4	2.33	0.94
GA	0	1	0.14	0.35
ORIGIN	1	25	13.32	10.14
DEST	1	26	10.80	9.75
TRAIN_AV	1	1	1.00	0.00
CAR_AV	0	1	0.84	0.36
SM_AV	1	1	1.00	0.00
TRAIN_TT	31	1049	166.63	77.35
TRAIN_CO	4	5040	514.34	1088.93
TRAIN_HE	30	120	70.10	37.43
SM_TT	8	796	87.47	53.55
SM_CO	6	6720	670.34	1441.59
SM_HE	10	30	20.02	8.16
SM_SEATS	0	1	0.12	0.32
CAR_TT	0	1560	123.80	88.71
CAR_CO	0	520	78.74	55.26
CHOICE	1	3	2.15	0.63

Table 11: Descriptive statistics

Number	Canton		
1	ZH		
2	BE		
3	LU		
4	UR		
5	SZ		
6	OW		
7	NW		
8	GL		
9	ZG		
10	FR		
11	SO		
12	BS		
13	BL		
14	Schaffhausen		
15	AR		
16	AI		
17	SG		
18	GR		
19	AG		
20	TH		
21	TI		
22	VD		
23	VS		
24	NE		
25	GE		
26	JU		

Table 12: Coding of Cantons