

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Course ECE 36800 - Data Structures

Type of Course Required for CmpE Program, Elective for EE Program

Catalog Description Provides insight into the use of data structures. Topics include stacks,

queues and lists, trees, graphs, sorting, searching, and hashing.

Credits

Contact Hours 3

Prerequisite Courses ECE 22900

Prerequisites by Topics Programming experience in C/C++. Experience in using software

scripting tools and software testing tools.

- M. Main and W. Savitch, Data Structures and Other Objects Using **Recommended Texts**

C++, Pearson, Current Edition.

M. Weiss, Data Structures and Algorithm Analysis in C++,

Pearson, Current Edition.

R. Sedgewick, Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, Pearson, Current Edition.

R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Pearson,

Current Edition.

Course Objectives This course provides insight into the use of data structures. Covered

> topics include data structures of lists, stacks, queues, trees, and graphs. Associated algorithms of searching, sorting, tree-based and graph-based algorithms are also covered. Students use their previous programming experience to design and test software using the data

structures and algorithms learned in this course.

Course Outcomes On successful completion of this course, students should be able to:

> 1. Analyze the time complexity of basic algorithms using big-O notation. (1)

- 2. Apply recursive programming in problem solving. (1)
- 3. Use basic data structures (arrays, linked lists, stacks, queues, trees, heaps, and hash tables) for storage and retrieval of data. (2)

- 4. Select the appropriate searching and hashing algorithms for a given application. (2)
- 5. Select the appropriate sorting algorithms for a given application. (2)
- 6. Apply graph algorithms to solve engineering problems. (2)
- 7. Write, test, and debug computer program solutions to problems using learned data structures and algorithms.(7)

Lecture Topics

- 1. Complexity analysis using big-O notation
- 2. Basic abstract data types
- 3. Arrays and lists
- 4. Stacks and queues
- 5. Recursive thinking
- 6. Trees and heaps
- 7. Searching algorithms
- 8. Hashing and hash table
- 9. Sorting algorithms
- 10. Graphs and graph algorithms

Computer Usage High

Laboratory Experience High

Design Experience High

Coordinator Chao Chen, Ph.D.

Date 09/15/2018