$S == \iiint \left(h^{\alpha\beta} \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\beta} h^{\chi}_{\chi} \, \partial^{\beta} h^{\alpha}_{\alpha} + \right)$

PSALTer results panel

$$\alpha_{1} (\partial_{\alpha}h^{\alpha\beta}\partial_{\chi}h_{\beta}^{\ X} - \partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\chi}h_{\beta}^{\ X} - \frac{1}{2}\partial_{\chi}h_{\alpha\beta}\partial^{\chi}h^{\alpha\beta}))[$$

$$t, x, y, z] dz dy dx dt$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$\frac{1}{2}\mathcal{T}^{\perp^{\alpha}}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		3

Massive spectrum

(No particles)

Massless particle Massless particle Pole residue: $\left| \frac{p^2}{-\alpha_1 + \alpha_2} \right| > 0$ Pole residue: $\left| -\frac{p^2}{\alpha_1} \right| > 0$ Polarisations: Polarisations: 2

Unitarity conditions

$$\alpha. < 0 \&\& \alpha. > \alpha.$$