

Relatório do Trabalho Prático nº3: D31 The Rise of the Ballz

Beatriz Isabel F. Santos bisantos@student.dei.uc.pt 2017263066, PL6

José Veríssimo Lamas lamas@student.dei.uc.pt 2017259895, PL6

Pedro José F. Marcelino pjmarcelino@student.dei.uc.pt 2017277263, PL2

Departamento de Engenharia Informática Licenciatura em Engenharia Informática Introdução à Inteligência Artificial 3º Ano, 2º Semestre 2019/20

Índice

1 Introdução	3
2 Implementação	3
3 Setup Experimental	4
4 Resultados Experimentais e Análise	5
4.1 Mapa 1 – Evolving-ControlTheBallToAdversaryGoal	5
$4.2\ Mapa\ 2-Evolving-Control The Ball To Adversary Goal Random\$	6
4.3 Mapa 3 – Evolving-Defense	7
4.4 Mapa 4 – Evolving-DefenseBallRandom	8
4.5 Mapa 5 – Evolving-OnevsOne	9
5 Conclusão	12
6 Referências	12
7 Anexos	13

1 Introdução

No âmbito da cadeira de Introdução á Inteligência Artificial, foi-nos pedida a realização de várias experiências num simulador de treino virtual, para que o agente D31 ganhe a capacidade de realizar variadas tarefas, nomeadamente de defesa, controlo de bola, e jogar com um adversário.

Com estes testes pretende-se desmistificar redes neuronais e algoritmos genéticos usando agentes adaptativos. Vão ser utilizados vários mapas com diferentes ambientes, onde o agente irá ser treinado para adquirir diferentes aptidões e condicioná-lo de forma a que este obtenha o comportamento pretendido. As a rede neuronal irá evoluir tendo em conta os melhores resultados que forem obtidos ao longo do treino.

2 Implementação

Nesta fase foram implementados os algoritmos Algoritmo de Mutação Gaussiana, Algoritmo de Seleção por Torneio de acordo com o pseudocódigo fornecido no enunciado do trabalho prático. Foi também implementada uma função de recombinação (crossover), que combina a informação genética dos dois progenitores baseado numa probabilidade que vai sendo alterada ao longo da fase de experimentação.

É possível manipular os parâmetros da experiência a partir do Unity, tais como a probabilidade de crossover, probabilidade de mutação, número de gerações e neurónios de forma a facilitar a fase experimental.

A função de aptidão (fitness) foi alterada sempre que um comportamento precisava de ser encorajado ou penalizado. A implementação inicial da função foi aplicada tanto ao individuo da equipa azul como ao individuo da equipa vermelha e é a seguinte:

fitness = (distanceTravelled*1000 + GoalsOnAdversaryGoal) - 1

3 Setup Experimental

Após a fase de implementação foram planeados todos os testes necessários para realizar a análise experimental. As condições em que as experiências foram realizadas foram as seguintes: Em cada um dos 5 mapas diferentes (*Evolving-ControlTheBallToAdversaryGoal, Evolving-ControlTheBallToAdversaryGoalRandom, Evolving-Defense, Evolving-DefenseBallRandom, Evolving-OnevsOne*), foi testado o algoritmo genético. O algoritmo foi testado com probabilidades de mutação de 0.15, 0.25, 0.5 e 0.9 e probabilidade de crossover de 0.9, 0.8, 0.6, 0.05. Em todos os mapas foram aplicados 3 neurónios com uma população de 50 indivíduos e com o tamanho do torneio a 50.

Os indivíduos foram testados ao longo de 200 gerações em cada experiência para que conseguissem evoluir mais facilmente.

Como os algoritmos usados têm uma componente estocástica, as experiências foram repetidas 3 vezes para cada mapa com as seguintes seeds aleatórias: 3021, 4022.

Mana x

17Iapa x							
	Seeds	Prob. de	Prob. de	N° de	N° de	População	Tam. Do
		Mutação	Crossover	Neurónios	Gerações		Torneio
Algoritmo	3021	0.15	0.9	3	200	50	50
Genético	4022	0.25	0.8				
		0.5	0.6				
		0.9	0.05				
		0.7					
	I	I		l .	I	1	

Tab. 1 – Dados para as experiências efetuadas em cada mapa.

4 Resultados Experimentais e Análise

4.1 Mapa 1 – Evolving-ControlTheBallToAdversaryGoal

Neste primeiro mapa o objetivo foi treinar os agentes para que estes conseguissem ir ao encontro da bola e marcar na baliza adversária. A função de fitness inicial reforça a distância percorrida, os golos no adversário e bater na bola. Esta função foi testada várias vezes com probabilidade de crossover e mutação distintas. Foi possível observar que, de um modo geral, em todos os testes experimentais a população se aproximava muito das paredes do campo de jogo e alguns indivíduos conseguiram nas gerações iniciais ir ao encontro da bola. Das gerações 100 a 200 os indivíduos da população sincronizaram e já tentavam bater na bola e andar em direção da baliza adversária, marcando golos em alguns casos. Neste mapa só foi treinado o individuo vermelho. Após uma primeira análise verificou-se que em todas as repetições dos testes com diferentes *seeds* o comportamento do agente adaptativo foi semelhante. Neste mapa o individuo foi evoluindo ao longo das gerações tendo os melhores resultados com probabilidade de mutação de 0.15 e probabilidade de crossover de 0.9. O agente obteve melhor pontuação quando a probabilidade de crossover era mais elevada. No entanto este resultado deveu-se aos pesos elevados na função de fitness.

A função de aptidão inicial implementada apenas encorajava a distância viajada e os golos na baliza adversaria o que mostrou não ser a melhor para o ambiente em causa, pois o agente ficava sempre encostado a um canto do campo de jogo sem evoluir muito ao longo das gerações. A função que permitiu alcançar o objetivo do mapa foi a seguinte:

fitness = distanceTravelled + GoalsOnAdversaryGoal * 1000 + hitTheBall * 500 fitness = fitness - (distanceToBall.Average() * 3000)

Pontuação Média

Esta função encorajou o agente a ir contra a bola e marcar golo na baliza adversária.

Melhor Pontuação

PM = 0.15, PC = 0.9	536889.7	267626.01	538497.2
PM = 0.25, PC = 0.8	79812.9	23007.3	80957.1
PM = 0.5, PC = 0.6	8692.9	2622.0	13467.1
PM = 0.9, PC = 0.05	6074.1	1594.9	14333.5

Tab. 2 - Resultados médios ponderados ao longo de 200 Gerações. (PM – Probabilidade de Mutação, PC = Probabilidade de Crossover)

Gráfico 1 - Melhor resultado geral ao longo de 200 gerações.

Melhor Global

(Legenda: Azul-BestOverallRed (PM = 0.15, PC = 0.9), Laranja – BestOverallRed (PM = 0.25, PC = 0.8), Amarelo – BestOverallRed (PM = 0.5, PC = 0.6), Cizento – BestOverallRed (PM = 0.9, PC = 0.05)).

4.2 Mapa 2 – Evolving-ControlTheBallToAdversaryGoalRandom

Neste mapa ao contrário do anterior, a bola aparece em lugares aleatórios no mapa de jogo o que torna treinar o agente bastante mais complicado.

Como os indivíduos se aproximavam dos limites do campo de jogo no mapa anterior, a função de aptidão foi alterada de forma a penalizar este comportamento, daí o decremento da variável - hitTheWall.

Após esta adaptação na função de fitness, foi possível observar que os indivíduos tentaram não se aproximar das paredes e focar-se em bater na bola e marcar na baliza adversária. Os comportamentos começaram a ficar cada vez mais rápidos ao longo das gerações.

Nas primeiras gerações (geração 60) como se usou a informação obtida do primeiro mapa, ao diminuir a *distance travelled* o indivíduo limitou-se a andar em frente e reduzir a velocidade.

Por volta da 100^a geração quase todos os indivíduos começaram a marcar golos e autogolos. Em média na 160^a geração os agentes tocavam na bola e andavam para trás enquanto a bola estava a andar na direção da baliza oposta. Alterações às funções de fitness não resultaram.

```
fitness = (distance Travelled/100) + (Goals On Adversary Goal*10000) + (hit The Ball*5000) - hit The Wall; \\ fitness = fitness - (distance To Ball. Sum()*3000) - (Goals On My Goal*500)
```

Foi feita uma nova alteração à função de aptidão, mas o agente demora algumas gerações a agir de uma forma expectável, demorando sempre pelo menos 2 gerações a adaptar-se à bola numa nova posição. Após atingir a bola uma vez o agente não tenta atingi-la de novo com frequência, sendo que, em alguns casos bate diretamente numa parede e noutros acompanha a bola a uma distância algo constante, mas sem a tocar. Nesta função foi introduzido o peso *avgSpeed* de forma a fazer com que o robô se movimentasse mais rápido e atingisse a bola com força suficiente para marcar golo. Quando a bola se encontra numa boa posição (em frente ao agente ou um pouco para os lados) existem membros da população que conseguem marcar golos com alguma regularidade.

```
fitness = 0;
if(hitTheBall > 0){
	fitness = hitTheBall * 10;
}else{
	fitness = distanceTravelled - hitTheWall;
}
fitness = (fitness * avgSpeed) - (distanceToBall.Sum() * 3) - (GoalsOnMyGoal * 5) - hitTheWall + (GoalsOnAdversaryGoal * 10000);
```

	Melhor Pontuação	Pontuação Média	Melhor Global
PM = 0.15, PC = 0.9	283035.7	18324.3	283035.7
PM = 0.25, PC = 0.8	330735.3	23410.6	330735.3
PM = 0.5, PC = 0.6	149734.0	22507.7	149734.0
PM = 0.9, PC = 0.05	36533.9	3147.7	3533.9

Tab. 3 - Resultados médios ponderados ao longo de 200 Gerações. (PM – Probabilidade de Mutação, PC = Probabilidade de Crossover)

Foi feita uma última tentativa de alteração da função de fitness e o agente começa com movimentos aleatórios, acabando muitas vezes por ficar colado á parede. À medida que vai evoluindo vai passando a aproximar-se da bola, tocando nela com alguma frequência e marcando golos, embora acidentalmente. Ás vezes o robô não toca na bola, acabando começando-se a afastar dela quando se aproxima demasiado (uso de Average() em vez de Sum()). Quando a bola muda de posição são sempre precisas algumas gerações para o agente se ajustar à nova posição, o que influenciou bastante o seu desenvolvimento e os resultados.

```
\label{eq:float_fitness} \begin{split} &\text{float fitness} = 0; \\ &\text{if (hitTheBall} == 0) \; \{ \\ &\text{fitness} = \text{fitness} - ((\text{distanceToBall.Average()}) * 2000) - (\text{hitTheWall} * 4000); \\ &\} \; \text{else} \; \{ \\ &\text{fitness} = \text{distanceTravelled} + \; \text{GoalsOnAdversaryGoal} * \; 10000 + \text{hitTheBall} * \; 8000; \; \text{fitness} = \\ &\text{fitness} - ((\text{distanceToBall.Average()} * 2000) - (\text{hitTheWall} * \; 4000) * (1 + \; \text{GoalsOnMyGoal)}); \\ &\} \end{split}
```


Gráfico 2 - Melhor resultado geral ao longo de 200 gerações.

(Legenda: Azul-BestOverallRed (PM = 0.15, PC = 0.9), Laranja - BestOverallRed (PM = 0.25, PC = 0.8), Amarelo - BestOverallRed (PM = 0.5, PC = 0.6), Cizento - BestOverallRed (PM = 0.9, PC = 0.05)).

4.3 Mapa 3 - Evolving-Defense

Neste mapa a bola encontra-se no centro e mexe-se em direção à baliza e o agente tem como objetivo defender de modo a que a bola não entre na sua própria. Nas gerações iniciais, o agente defendia a bola e empurrava-a para o seu campo, mesmo com a penalização na função de fitness. Nas gerações seguintes o agente já defendia a bola mais certeiramente e empurrava-a para o canto superior direito do campo de jogo. Em algumas simulações o agente ultrapassava-a a bola e tentava manter-se à frente dela.

De um modo geral foi possível observar que o agente cumpriu o objetivo pretendido, sendo mais eficaz quando a probabilidade de mutação era 0.9 e a probabilidade de recombinação 0.05. A função de fitness usada nesta fase de testes foi a seguinte:

```
float fitness = 0;

if(hitTheBall > 0){

	fitness = hitTheBall * 100;

}else{
	fitness = distanceTravelled/5 - hitTheWall;

}

fitness = fitness - (distanceToBall.Average() * 3) - (GoalsOnMyGoal*50) - hitTheWall +

(GoalsOnAdversaryGoal*1 000 000);
```

É também possível observar que o agente foi evoluindo ao longo das gerações sendo o sucesso de aprendizagem dependente das probabilidades utilizadas.

	Melhor Pontuação	Pontuação Média	Melhor Global
PM = 0.15, PC = 0.9	366.2	-34863.6	606.8
PM = 0.25, PC = 0.8	404.5	-39404.1	821.7
PM = 0.5, PC = 0.6	7.7	-147.3	7.87
PM = 0.9, PC = 0.05	558	-198795.8	832.8

Tab. 4 - Resultados médios ponderados ao longo de 200 Gerações. (PM – Probabilidade de Mutação, PC = Probabilidade de Crossover)

Gráfico 3 - Melhor resultado geral ao longo de 200 gerações.

(Legenda: Azul-PopAvgRed (PM = 0.15, PC = 0.9), Laranja – PopAvgRed (PM = 0.25, PC = 0.8), Amarelo – PopAvgRed (PM = 0.5, PC = 0.6), Cizento – PopAvgRed (PM = 0.9, PC = 0.05)).

4.4 Mapa 4 - Evolving-DefenseBallRandom

Neste mapa a bola aparecia em diferentes posições e movimentava-se em direção à baliza vermelha. O agente à semelhança do mapa anterior tentava defender a bola, no entanto demorava a reagir. A função de aptidão foi alterada de forma a que o agente empurrasse a bola para longe da própria baliza e tentava-se manter próximo desta. O agente obteve valores negativos visto que que que foi bastante penalizado por sofrer golos e como o agente demorava algum tempo a adaptar-se acabou por não obter pontos positivos. No entanto cumpriu o objetivo deste mapa ainda que demorasse algum tempo a fazê-lo. A função de fitness usada nesta fase de testes foi a seguinte:

float fitness = 0; f

itness += GoalsOnAdversaryGoal*10 - GoalsOnMyGoal*100_000 + distanceTravelled +
distancefromBallToMyGoal.Average()*100 + hitTheBall*5;

	Melhor Pontuação	Pontuação Média	Melhor Global
PM = 0.15, PC = 0.9	-2984788.7	-13176078.7	-2984788.7
PM = 0.25, PC = 0.8	-4726107.7	-16737272	-4726107.7
PM = 0.5, PC = 0.6	-25146.3	-216319	-25146.3
PM = 0.9, PC = 0.05	-144655.0	-255357.4	-144655.0

Tab. 5 - Resultados médios ponderados ao longo de 200 Gerações. (PM – Probabilidade de Mutação, PC = Probabilidade de Crossover)

Gráfico 4 - Melhor resultado geral ao longo de 200 gerações.

(Legenda: Azul- PopAvgRed (PM = 0.15, PC = 0.9), Laranja - PopAvgRed (PM = 0.25, PC = 0.8), Amarelo - PopAvgRed (PM = 0.5, PC = 0.6), Cizento - PopAvgRed (PM = 0.9, PC = 0.05)).

4.5 Mapa 5 -Evolving-OnevsOne

Neste mapa existem dois jogadores onde a bola aparece sempre no centro e cada um dos jogadores aparece na sua baliza.

	Melhor Pontuação	Pontuação Média	Melhor Global
PM = 0.15, PC = 0.9	269207.2	43934.1	269207.2
PM = 0.25, PC = 0.8	471674.1	-40803.4	471674.1

Tab. 6 - Resultados médios ponderados ao longo de 200 Gerações para o agente vermelho (PM - Probabilidade de Mutação, PC = Probabilidade de Crossover)

	Melhor Pontuação	Pontuação Média	Melhor Global
PM = 0.15, PC = 0.9	259281.0	40587.0	259281.0
PM = 0.25, PC = 0.8	517422.0	43970.9	517422.0

Tab. 7 - Resultados médios ponderados ao longo de 200 Gerações para o agente azul (PM – Probabilidade de Mutação, PC = Probabilidade de Crossover)

Gráfico 5 - Melhor resultado geral ao longo de 200 gerações.

(**Legenda:** Azul- PopAvgRed (**PM** = **0.15**, **PC** = **0.9**), Laranja – PopAvgRed (**PM** = **0.25**, **PC** = **0.8**)).

Gráfico 6 - Melhor resultado geral ao longo de 200 gerações.

(**Legenda:** Azul- PopAvgRed (**PM** = **0.15**, **PC** = **0.9**), Laranja – PopAvgRed (**PM** = **0.25**, **PC** = **0.8**)).

5 Conclusão

Neste trabalho é possível é possível observar através dos testes efetuados, que o jogador evolui de uma forma reativa, o que influencia de forma significativa o seu desenvolvimento em mapas com elementos aleatórios. Também podemos concluir que, as probabilidades de crossover e de mutação desempenham um papel essencial no desenvolvimento da inteligência artificial. Nomeadamente, uma probabilidade de mutação elevada permite ao robô adaptar-se mais facilmente a ambientes desconhecidos, pois está relacionado com a geração de comportamentos diferentes na população, comportamentos estes que podem ser mais eficazes do que o atual. Verifica-se também que uma probabilidade de crossover elevada é benéfica quando nos encontramos em ambientes com elementos maioritariamente estáticos, pois estes permitem que o robô melhore o seu comportamento atual (ao invés de gerar comportamentos novos), pegando nos melhores membros da população anterior e usando-os para gerar a nova geração

6 Referências

- Inteligência Artificial: Fundamentos e Aplicações
 Ernesto Costa, Anabela Simões
- Artificial Intelligence: A Modern Approach Stuart Russel, Peter Norvig

7 Anexos

- Juntamento com este relatório, será enviado três ficheiros com resultados de todas as experiências efetuadas, os gráficos utilizados e o package do Unity onde foram efetuadas as experiências.
 - BestDados_e_Gráficos.xlsx
 - TestesIIA.pdf
 - Tp3_final.unitypackage