WHAT IS CLAIMED IS:

1. A method of inhibiting checkpoint kinase 1 in a cell comprising a step of contacting the cell with an effective amount of a compound of formula

$$X^1$$
 X^2
 Z

wherein X^1 is null, -O-, -S-, -CH $_2$ -, or -N(\mathbb{R}^1)-;

 X^2 is -O-, -S-, or -N(R^1)-;

Y is O or S; or =Y represents two hydrogen atoms attached to a common carbon atom;

W is selected from the group consisting of heteroaryl, aryl, heterocycloalkyl, cycloalkyl, and C_{1-3} alkyl substituted with a heteroaryl or aryl group;

Z is selected from the group consisting of hydro, aryl, and heteroaryl;

wherein said aryl groups of W and Z are optionally substituted with one to four substituents represented by R^2 , said heteroaryl groups of W and Z are optionally substituted with one to four substituents represented by R^5 , and said heterocycloalkyl and cycloalkyl groups of W are optionally substituted with one to two substituents represented by R^6 ;

 R^1 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

 R^2 is selected from the group consisting of halo, optionally substituted $C_{1\text{-}6}alkyl$, $C_{2\text{-}6}alkenyl$, OCF_3 , NO_2 , CN, NC, $N(R^3)_2$, OR^3 , CO_2R^3 , $C(O)N(R^3)_2$, $C(O)R^3$, $N(R^1)COR^3$, $N(R^1)C(O)OR^3$, $N(R^3)C(O)OR^3$, $N(R^3)-C(O)C_{1\text{-}3}alkyleneC(O)R^3$, $N(R^3)C(O)C_{1\text{-}3}alkyleneC(O)OR^3$, $N(R^3)C(O)C_{1\text{-}3}alkyleneNHC(O)-OR^3$, $N(R^3)C(O)C_{1\text{-}3}alkyleneOR^3$, $N(R^3)C(O)C_{1\text{-}3}alkyleneOR^3$, and SR^3 ;

 $\rm R^3$ is selected from the group consisting of hydro, $\rm C_{1\text{-}6}alkyl$, $\rm C_{2\text{-}6}alkenyl$, cycloalkyl, aryl, heteroaryl, $\rm SO_2R^4$, $\rm C_{1\text{-}6}alkyl$ substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $\rm N(R^4)_2$, and $\rm SO_2R^4$, $\rm C_{1\text{-}3}alkylenearyl$, $\rm C_{1\text{-}3}alkylenearyl$, $\rm C_{1\text{-}3}alkylenearyl$, cheerocycloalkyl, $\rm C_{1\text{-}3}$ alkylenesO2aryl, optionally substituted C1-3alkylene- $\rm N(R^4)_2$, OCF3, C1-3alkyleneN(R^4)3^+, C3-8heterocycloalkyl, and CH(C1-3alkyleneN(R^4)2)2, or two R³ groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^4 is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} -alkylenearyl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken together to form an optionally substituted 3-to 6-membered ring;

 R^5 is selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , halo, N_3 , CN, C_{1-3} alkyl-enearyl, C_{1-3} alkylene $N(R^3)_2$, $C(O)R^3$, and

$$C_{1-3}$$
alkylene $-N$

 R^6 is selected from the group consisting of halo and C_{1-6} alkyl;

and pharmaceutically acceptable salts, prodrugs, or solvates thereof.

2. The method of claim 1 wherein X^1 and X^2 are -N(H)-;

Y is O or S;

W is heteroaryl containing at least two heteroatoms selected from the group consisting of N, O, and S, said ring is optionally substituted with from one to four substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo;

Z is selected from the group consisting of

wherein Q is selected from the group consisting of hydro, OR^3 , SR^3 , and $N(R^3)_2$;

J is selected from the group consisting of CR^{20} , NR^{20} , O, and S;

K is selected from the group consisting of CR^{21} , NR^{21} , O, and S;

L is selected from the group consisting of CR^{22} , NR^{22} , O, and S;

M is selected from the group consisting of CR^{23} , NR^{23} , O, and S; wherein:

 R^{20} , R^{21} , and R^{22} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF_3 , NO_2 , CN, NC, $N(R^{25})_2$, OR^{25} , CO_2R^{25} , $C(O)N(R^{25})_2$,

 $\begin{array}{l} C\,(O)\,R^{25},\; N\,(R^{24})\,COR^{25},\; N\,(R^{24})\,C\,(O)\,OR^{25},\; N\,(R^{25})\,C\,(O)\,OR^{25},\\ N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkyleneC\,(O)\,R^{25},\; N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkylene-\\ C\,(O)\,OR^{25},\; N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkyleneOR^{25},\; N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkyl-\\ eneNHC\,(O)\,OR^{25},\; N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkyleneSO_2NR^{25},\; CF_3,\; C_{1\text{-}3}-\\ alkyleneN\,(R^{25})\,SO_2aryl,\; C_{1\text{-}3}alkyleneN\,(R^{25})\,SO_2heteroaryl,\\ C_{1\text{-}3}alkyleneOC_{1\text{-}3}alkylenearyl,\; C_{1\text{-}3}alkyleneN\,(R^{25})\,C_{1\text{-}3}-\\ alkylenearyl,\; C_{1\text{-}3}alkyleneN\,(R^{25})\,C_{1\text{-}3}alkyleneheteroaryl,\\ C_{1\text{-}3}alkyleneN\,(R^{25})\,C\,(O)\,R^7,\; C_{1\text{-}3}alkyleneN\,(R^{25})\,C\,(O)\,C_{1\text{-}3}-\\ alkyleneOR^{25},\; C_{1\text{-}3}alkyleneN\,(R^{25})\,C\,(O)\,aryl,\; C_{1\text{-}3}alkylene-\\ N\,(R^{25})\,C\,(O)\,C_{1\text{-}3}alkyleneN\,(R^{25})_2,\; C_{1\text{-}3}alkyleneN\,(R^{25})\,C\,(O)\,het-\\ eroaryl,\; C_{1\text{-}3}alkyleneOR^{25},\; and\; SR^{25}; \end{array}$

 R^{23} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{24} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl; R^{25} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, heterocycle, aryl, heteroaryl, SO_2R^{26} , and C_{1-6} alkyl substituted with halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{26})_2$, or SO_2R^{26} ; and

 $\rm R^{26}$ is selected from the group consisting of hydro, $\rm C_{1-6}alkyl$, cycloalkyl, aryl, and $\rm SO_2C_{1-6}-alkyl$, or two $\rm R^4$ groups are taken together to form an optionally substituted 3- to 6-membered ring.

3. The method of claim 2 wherein W is selected from the group consisting of pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl, optionally substituted with from one to four substituents selected from the group consisting of optionally substituted C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo.

4. The method of claim 2 wherein W is selected from the group consisting of

N N

and

5. The method of claim 2 wherein

J is selected from the group consisting of CR^{20} and NR^{20} , wherein R^{20} is null, hydro, optionally substituted C_{1-6} alkyl, and halo;

K is selected from the group consisting of CR^{21} and NR^{21} ;

L is selected from the group consisting of ${\rm CR}^{22}$ and ${\rm NR}^{22}$; and

one of R^{21} and R^{22} is hydro and the other is a substituent selected from the group consisting of CO_2R^{25} , $C(O)N(R^{25})_2$, $C(O)R^{25}$, $N(R^{24})COR^{25}$, $N(R^{24})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneC($O)R^{25}$, $N(R^{25})-C(O)C_{1-3}$ alkyleneC($O)C_{1-3}$ alkyleneC($O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkylene- SO_2NR^{25} , CF_3 , C_{1-3} alkyleneN(C^{25}) SO_2 aryl, C_{1-3} alkylene- $N(R^{25})SO_2$ heteroaryl, C_{1-3} alkyleneOC₁₋₃alkyleneN($C^{25})C_{1-3}$ -alkyleneN($C^{25})C_{1-3}$ alkyleneAryl, C_{1-3} alkyleneN($C^{25})C_{1-3}$ -alkyleneheteroaryl, C_{1-3} alkyleneN($C^{25})C(O)C_{1-3}$ alkyleneOC₂, C_{1-3} alkyleneN($C^{25})C(O)$ C_{1-3} alkyleneN($C^{25})C(O)$ C_{1-3} alkyleneOC₂, C_{1-3} alkyleneN($C^{25})C(O)$ C_{1-3} alkyleneOC₂, C_{1-3} alkyleneOC₃, and C^{25} .

- 6. The method of claim 2 wherein W is pyrazinyl.
- 7. The method of claim 1 wherein X^1 is null, X^2 is -N(H)-, Y is O, and Z is hydro.

8. A method of sensitizing cells in an individual undergoing a chemotherapeutic or radiotherapeutic treatment for a medical condition, comprising administering a therapeutically effective amount of a compound of formula (I) in combination with a chemotherapeutic agent, a radiotherapeutic agent, or a mixture thereof to the individual, said compound of formula (I) having a structure

$$W$$
 X^1
 X^2
 Z

wherein X^1 is null, -O-, -S-, -CH $_2$ -, or -N(\mathbb{R}^1)-;

 X^2 is -O-, -S-, or -N(R^1)-;

Y is 0 or S; or =Y represents two hydrogen atoms attached to a common carbon atom;

W is selected from the group consisting of heteroaryl, aryl, heterocycloalkyl, cycloalkyl, and C_{1-3} alkyl substituted with a heteroaryl or aryl group;

Z is selected from the group consisting of hydro, aryl, and heteroaryl;

wherein said aryl groups of W and Z are optionally substituted with one to four substituents represented by R^2 , said heteroaryl groups of W and Z are optionally substituted with one to four substituents represented by R^5 , and said heterocycloalkyl

and cycloalkyl groups of W are optionally substituted with one to two substituents represented by R^6 ;

 R^1 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

 R^2 is selected from the group consisting of halo, optionally substituted $C_{1-6}alkyl,\ C_{2-6}alkenyl,\ OCF_3,\ NO_2,\ CN,\ NC,\ N(R^3)_2,\ OR^3,\ CO_2R^3,\ C(O)N(R^3)_2,\ C(O)R^3,\ N(R^1)COR^3,\ N(R^1)C(O)OR^3,\ N(R^3)C(O)OR^3,\ N(R^3)-C(O)C_{1-3}alkyleneC(O)R^3,\ N(R^3)C(O)C_{1-3}alkyleneC(O)OR^3,\ N(R^3)C(O)C_{1-3}alkyleneOR^3,\ N(R^3)C(O)C_{1-3}alkyleneNHC(O)-OR^3,\ N(R^3)C(O)C_{1-3}alkyleneOR^3,\ AlkyleneOR^3,\ AlkyleneOR^3,\$

 $\rm R^3$ is selected from the group consisting of hydro, $\rm C_{1-6}alkyl$, $\rm C_{2-6}alkenyl$, cycloalkyl, aryl, heteroaryl, $\rm SO_2R^4$, $\rm C_{1-6}alkyl$ substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $\rm N(R^4)_2$, and $\rm SO_2R^4$, $\rm C_{1-3}alkylenearyl$, $\rm C_{1-3}alkylene-heteroaryl$, $\rm C_{1-3}alkyleneC_{3-8}heterocycloalkyl$, $\rm C_{1-3}alkyleneN(R^4)_2$, eneSO_2aryl, optionally substituted $\rm C_{1-3}alkyleneN(R^4)_2$, OCF_3, $\rm C_{1-3}alkyleneN(R^4)_3^+$, $\rm C_{3-8}heterocycloalkyl$, and CH(C_{1-3}alkyleneN(R^4)_2)_2, or two R³ groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^4 is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} -alkylenearyl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken together to form an optionally substituted 3-to 6-membered ring;

 R^5 is selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , halo, N_3 , CN, C_{1-3} alkyl-enearyl, C_{1-3} alkylene $N(R^3)_2$, $C(O)R^3$, and

$$C_{1-3}$$
alkylene $-N$

 R^6 is selected from the group consisting of halo and C_{1-6} alkyl;

and pharmaceutically acceptable salts, prodrugs, or solvates thereof.

9. The method of claim 8 further comprising administering one or more cytokine, lymphokine, growth factor, or other hematopoietic factor.

10. The method of claim 8 wherein:

 X^1 and X^2 are -N(H) -;

Y is O or S;

W is heteroaryl containing at least two heteroatoms selected from the group consisting of N, O, and S, said ring is optionally substituted with from one to four substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo;

Z is selected from the group consisting of:

wherein Q is selected from the group consisting of hydro, OR^3 , SR^3 , and $N(R^3)_2$;

J is selected from the group consisting of CR^{20} , NR^{20} , O, and S;

K is selected from the group consisting of $\mbox{\rm CR}^{21}, \; \mbox{\rm NR}^{21}, \; \mbox{\rm O, and S;}$

L is selected from the group consisting of $\mbox{CR}^{22},\ \mbox{NR}^{22},\ \mbox{O,}\ \mbox{and}\ \mbox{S;}$

M is selected from the group consisting of CR^{23} , NR^{23} , O, and S; wherein:

 R^{20} , R^{21} , and R^{22} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF_3 , NO_2 , CN, NC, $N(R^{25})_2$, OR^{25} , CO_2R^{25} , $C(O)N(R^{25})_2$,

 $C(O)R^{25}$, $N(R^{24})COR^{25}$, $N(R^{24})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneC(O) R^{25} , $N(R^{25})C(O)C_{1-3}$ alkylene- $C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneSO₂NR²⁵, CF_3 , C_{1-3} -alkyleneN(R^{25})SO₂aryl, C_{1-3} alkyleneN(R^{25})SO₂heteroaryl, C_{1-3} alkyleneOC₁₋₃alkylenearyl, C_{1-3} alkyleneN(R^{25})C₁₋₃-alkyleneN(R^{25})C₁₋₃alkyleneN(R^{25})C₁₋₃alkyleneN(R^{25})C(O)C₁₋₃-alkyleneN(R^{25})C(O)R⁷, C_{1-3} alkyleneN(R^{25})C(O)C₁₋₃-alkyleneOR²⁵, C_{1-3} alkyleneN(R^{25})C(O)aryl, C_{1-3} alkyleneN(R^{25})C(O)C₁₋₃alkyleneN(R^{25})C(O)heteroaryl, C_{1-3} alkyleneN(R^{25})C(O)heteroaryl, C_{1-3} alkyleneOR²⁵, and C_{1-3} alkyleneOR²⁵, and C_{1-3} alkyleneOR²⁵, and C_{1-3} alkyleneOR²⁵,

 R^{23} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{24} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl; R^{25} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, heterocycle, aryl, heteroaryl, SO_2R^{26} , and C_{1-6} alkyl substituted with halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{26})_2$, or SO_2R^{26} ; and

 R^{26} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, and SO_2C_{1-6} -alkyl, or two R^4 groups are taken together to form an optionally substituted 3- to 6-membered ring.

- 11. The method of claim 10 wherein W is selected from the group consisting of pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl, optionally substituted with from one to four substituents selected from the group consisting of optionally substituted C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , C_{1-3} alkylenearyl, C_{1-3} alkyleneheteroaryl, C_{1-3} alkylene C_{3-8} heterocycloalkyl, C_{1-3} alkylene SO_2 aryl, optionally substituted C_{1-3} alkylene $N(R^4)_2$, OCF_3 , C_{1-3} alkylene $N(R^4)_3$, C_{3-8} heterocycloalkyl, $CH(C_{1-3}$ alkylene $N(R^4)_2$, and halo.
- 12. The method of claim 10 wherein J is selected from the group consisting of CR^{20} and NR^{20} , wherein R^{20} is null, hydro, optionally substituted C_{1-6} alkyl, and halo;

K is selected from the group consisting of CR^{21} and NR^{21} ;

L is selected from the group consisting of CR^{22} and NR^{22} ; and

one of R^{21} and R^{22} is hydro and the other is a substituent selected from the group consisting of CO_2R^{25} , $C(O)N(R^{25})_2$, $C(O)R^{25}$, $N(R^{24})COR^{25}$, $N(R^{24})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneC(O) R^{25} , $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkylene-SO₂NR²⁵, C_{1-3} alkyleneOR²⁵, CF_3 , C_{1-3} alkyleneN($R^{25})SO_2$ aryl, C_{1-3} alkyleneN($R^{25})SO_2$ heteroaryl, C_{1-3} alkyleneOC₁₋₃ alkyleneN($R^{25})C_{1-3}$ alkyleneN($R^{25})C_{1-3}$ alkyleneN($R^{25})C_{1-3}$ alkyleneN($R^{25})C_{1-3}$ alkyleneN($R^{25})C_{1-3}$ alkyleneOR³, C_{1-3} alkyleneN($R^{25})C(O)C_{1-3}$ alkyleneOR³, C_{1-3} alkyleneN($R^{25})C(O)$ aryl, C_{1-3} alkyleneN($R^{25})C(O)$ coloryleneN($R^{25})C(O$

13. The method of claim 10 wherein W is pyrazinyl.

- 14. The method of claim 8 wherein the chemotherapeutic agent is selected from the group consisting of an alkylating agent, an antimetabolite, a hormone or antagonist thereof, a radioisotope, an antibody, and mixtures thereof.
- 15. The method of claim 8 wherein the radiotherapeutic agent is selected from the group consisting of gamma-radiation, X-ray radiation, ultraviolet light, visible light, infrared radiation, and microwave radiation.
- 16. The method of claim 8 wherein the condition is a cancer selected from the group consisting of a colorectal cancer, a head and neck cancer, a pancreatic cancer, a breast cancer, a gastric cancer, a bladder cancer, a vulvar cancer, a leukemia, a lymphoma, a melanoma, a renal cell carcinoma, an ovarian cancer, a brain tumor, an osteosarcoma, and a lung carcinoma.

The method of claim 8 wherein the 17. condition is a cancer selected from the group consisting of myxoid and round cell carcinoma, a locally advanced tumor, metastatic cancer, Ewing's sarcoma, a cancer metastase, a lymphatic metastase, squamous cell carcinoma, esophageal squamous cell carcinoma, oral carcinoma, multiple myeloma, acute lymphocytic leukemia, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, chronic myelocytic leukemia, hairy cell leukemia, effusion lymphomas (body cavity based lymphomas), thymic lymphoma lung cancer, small cell carcinoma, cutaneous T cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cancer of the adrenal cortex, ACTH-producing tumors, nonsmall cell cancers, breast cancer, small cell carcinoma, ductal carcinoma, stomach cancer, colon cancer, colorectal cancer, polyps associated with colorectal neoplasia, pancreatic cancer, liver cancer, bladder cancer, primary superficial bladder tumors, invasive transitional cell carcinoma of the bladder, muscle-invasive bladder cancer, prostate cancer, ovarian carcinoma, primary peritoneal epithelial neoplasms, cervical carcinoma, uterine endometrial cancers, vaginal cancer, cancer of the vulva, uterine cancer and solid tumors in the ovarian follicle, testicular cancer, penile cancer, renal cell carcinoma, intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, osteomas and osteosarcomas, malignant melanoma, tumor progression of human skin keratinocytes, squamous cell cancer, thyroid cancer, retinoblastoma, neuroblastoma, peritoneal effusion, malignant pleural effusion, mesothelioma, Wilms's

tumors, gall bladder cancer, trophoblastic neoplasms, hemangiopericytoma, and Kaposi's sarcoma.

18. The method of claim 8 wherein the treatment is administered for an inflammatory condition selected from the group consisting of rheumatoid arthritis, psoriasis, vitiligo, Wegener's granulomatosis, and systemic lupus erythematosus.

19. A compound having a formula

$$W'$$
 NH
 Y'
 Z'

wherein Y' is O or S;

W' is selected from the group consisting

of

, and

optionally substituted with from one to four substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^7)_2$, OR^7 , N_3 , CN, $C(O)R^7$, C_{1-3} alkylene $N(R^{12})_2$,

$$C_{1-3}$$
alkylene $-N$

and halo;

Z' is selected from the group consisting of:

wherein:

Q' is selected from the group consisting of hydro, OR^7 , SR^7 , and $N(R^7)_2$, with the proviso that Q' is hydro only when at least one of J', K', L', and M' is N, O, or S;

J' is selected from the group consisting of CR^8 , NR^8 , O, and S;

K' is selected from the group consisting of CR^9 , NR^9 , O, and S;

L' is selected from the group consisting of CR^{10} , NR^{10} , O, and S;

M' is selected from the group consisting of CR^{11} , NR^{11} , O, and S, with the proviso that Z is different from a pyridone; wherein:

 $\rm R^7$, independently, is selected from the group consisting of hydro, $\rm C_{1-6}alkyl$, $\rm C_{2-6}alkenyl$, cycloalkyl, aryl, heteroaryl, $\rm SO_2R^{12}$, $\rm C_{1-6}alkyl$ substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $\rm N(R^{12})_2$, and $\rm SO_2R^{12}$, $\rm C_{1-3}alkylenearyl$, $\rm C_{1-3}alkyleneheteroaryl$, $\rm C_{1-3}alkylenearyl$, $\rm C_{1-3}alkyleneSO_2aryl$, optionally substituted $\rm C_{1-3}alkyleneN(R^{12})_2$, OCF3, $\rm C_{1-3}alkyleneN(R^{12})_3^+$, $\rm C_{3-8}heterocycloalkyl$, and $\rm CH(\rm C_{1-3}alkylene-N(R^{12})_2)_2$, or two R⁷ groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

R⁸, R⁹, and R¹⁰ are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF_3 , NO_2 , CN, NC, $N(R^7)_2$, OR^7 , CO_2R^7 , $C(O)N(R^7)_2$, $C(0)R^{7}$, $N(R^{13})COR^{7}$, $N(R^{13})C(0)OR^{7}$, $N(R^{7})C(0)OR^{7}$, $N(R^7)C(0)C_{1-3}alkyleneC(0)R^7$, $N(R^7)C(0)C_{1-3}alkylene C(0)OR^7$, $N(R^7)C(0)C_{1-3}alkyleneOR^7$, $N(R^7)C(0)C_{1-3}alkyl$ eneNHC(0)OR⁷, N(R⁷)C(0)C₁₋₃alkyleneSO₂NR⁷, CF₃, C₁₋₃alkyleneN(R¹²)SO₂aryl, C₁₋₃alkyleneN(R¹²)SO₂heteroaryl, C_{1-3} alkylene OC_{1-3} alkylenearyl, C_{1-3} alkylene $N(R^{12})C_{1-3}$ alkylenearyl, C₁₋₃alkyleneN(R¹²)C₁₋₃alkyleneheteroaryl, C_{1-3} alkyleneN(R^{12})C(O) R^7 , C_{1-3} alkyleneN(R^{12})C(O) C_{1-3} alkyleneOR², C₁₋₃alkyleneN(R¹²)C(O)aryl, C₁₋₃alkylene- $N(R^{12})C(0)C_{1-3}alkyleneN(R^{12})_{2}, C_{1-3}alkyleneN(R^{12})C(0)$ heteroaryl, C_{1-3} alkylene OR^7 , and SR^7 , wherein R^7 is as defined above;

 R^{11} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{12} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkylenearyl, and SO_2C_{1-6} alkyl, or two R^{12} groups

are taken together to form an optionally substituted 3- to 6-membered ring; and

 R^{13} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl; provided that when Q' is hydro or OCH3, at least one of R^8 , R^9 , and R^{10} is different from hydro, CH_3 , OCH_3 , and halo,

and pharmaceutically acceptable salts, prodrugs, or solvates thereof.

20. The compound of claim 19 wherein W' is selected from the group consisting of

and

21. The compound of claim 20 wherein W' is substituted with one to four substituents selected from the group consisting of methyl, CF_3 , optionally substituted aryl, N_3 , benzyl, $C(0)R^7$, C_{1-3} alkyleneN(R^{12})₂, OR^7 , $N(R^7)$ ₂, halo, and

$$C_{1-3}$$
alkylene $-N$

22. The compound of claim 19 wherein Q' is OR^7 .

- 23. The compound of claim 22 wherein Q' is OCH_3 .
- 24. The compound of claim 19 wherein \mathbb{R}^{13} is hydro.
- 25. The compound of claim 19 wherein J' is selected from the group consisting of CR^8 and NR^8 , wherein R^8 is null, hydro, C_{1-6} alkyl, and halo;

K' is selected from the group consisting of CR^9 and NR^9 ;

L' is selected from the group consisting of CR^{10} and NR^{10} ; and

one of R° and R¹⁰ is hydro and the other is a substituent selected from the group consisting of CO_2R^7 , $C(O)N(R^7)_2$, $C(O)R^7$, $N(R^{13})COR^7$, $N(R^{13})C(O)OR^7$, $N(R^7)C(O)OR^7$, $N(R^7)C(O)C_{1-3}alkyleneC(O)R^7$, $N(R^7)C(O)-C_{1-3}alkyleneC(O)OR^7$, $N(R^7)C(O)C_{1-3}alkyleneOR^7$, $N(R^7)-C(O)C_{1-3}alkyleneNHC(O)OR^7$, $N(R^7)C(O)C_{1-3}alkyleneSO_2NR^7$, $C_{1-3}alkylene-OR^7$, CF_3 , $C_{1-3}alkyleneN(R^{12})SO_2aryl$, $C_{1-3}-alkyleneN(R^{12})SO_2heteroaryl$, $C_{1-3}alkyleneOC_{1-3}alkylene-aryl$, $C_{1-3}alkyleneN(R^{12})C_{1-3}alkyleneN(R^{12})C_{1-3}alkyleneN(R^{12})C_{1-3}alkyleneN(R^{12})C_{1-3}alkyleneN(R^{12})C(O)R^7$, $C_{1-3}alkyleneN(R^{12})C(O)C_{1-3}alkyleneN(R^{12})C(O)R^7$, $C_{1-3}alkyleneN(R^{12})C(O)C_{1-3}alkyleneOR^2$, $C_{1-3}alkyleneN(R^{12})-C(O)aryl$, $C_{1-3}alkyleneN(R^{12})C(O)heteroaryl$, and SR^7 .

26. A method of inhibiting checkpoint kinase 1 (Chk1) in a cell comprising the step of contacting the cell with an effective amount of a compound of claim 19.

27. A method of sensitizing cells in an individual undergoing a chemotherapeutic or radiotherapeutic treatment for a medical condition, comprising administering a therapeutically effective amount of a compound of claim 19 in combination with a chemotherapeutic agent, a radiotherapeutic agent, or a mixture thereof to the individual.

28. A compound having a structure

$$NH$$
 NH
 R^{28}

wherein R^{27} and R^{28} are

R ²⁷	R ²⁸
H	₹ NH NH
H	NH NH
H	NH NH
CH ₃	Н
H	NH NH

R ²⁷	R ²⁸
H	₹ NH \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
O NH N	H
O NH	H

or

wherein R^{29} is

the first that the first than that the time also to the first that the first that the first that the

```
A compound selected from the group
           29.
consisting of:
N-(2-dimethylamino-1-phenyl-ethyl)-3-methoxy-4-[3-
 (5-methyl-pyrazin-2-yl)-ureido]-benzamine;
N-(1-aza-bicyclo[2.2.2]oct-3-yl)-3-methoxy-4-[3-(5-
methyl-pyrazin-2-yl)-ureido]-benzamide;
N-(3-R-1-cyclohexylmethyl-pyrrolidin-3-yl)-3-meth-
oxy-4-[3-(5-methyl-pyrazin-2-yl)-ureido]-benzamide;
1-[2-(2-dimethylamino-ethoxy)-5-methyl-phenyl]-3-
pyrazin-2-yl-urea;
1-[2-(3-dimethylamino-propoxy)-5-methyl-phenyl]-3-
(5-methyl-pyrazin-2-yl)-urea;
1-(5-methyl-pyrazin-2-yl)-3-[5-methyl-2-(pyridin-3-
ylmethoxy) -phenyl] -urea;
1-[2-(2-dimethylamino-1-dimethylaminomethyl-ethoxy)-
5-methyl-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(2-S-1-methyl-pyrrolidin-2-ylmethoxy)-
phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-{5-methyl-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-
phenyl}-3-(5-methyl-pyrazin-2-yl)-urea;
1-{5-methyl-2-(1-methyl-piperidin-4-yloxy)-phenyl]-
3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(3-(S)-1-methyl-piperidin-3-ylmeth-
oxy)-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(3-(R)-1-methyl-piperidin-3-ylmeth-
oxy)-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(1-methyl-piperidin-2-ylmethoxy)-
phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(1-methyl-piperidin-3-yloxy)-phenyl]-
3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(1-methyl-piperidin-3-ylmethoxy)-
phenyl]-3-quinoxalin-2-yl-urea;
1-[5-methyl-2-(piperidin-3-ylmethoxy)-phenyl]-3-(5-
methyl-pyrazin-2-yl)-urea;
```

```
1-[5-fluoro-2-(1-methyl-piperidin-3-ylmethoxy)-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-fluoro-2-(1-methyl-piperidin-4-yloxy)-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[4-fluoro-2-(1-methyl-piperidin-4-yloxy)-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-(2-methoxy-4-methylaminomethyl-phenyl)-3-(5-methyl-pyrazin-2-yl)-urea;
1-(4-{[(furan-3-ylmethyl)-amino]-methyl}-2-methoxy-phenyl)-3-(5-methyl-pyrazin-2-yl)-urea; and
1-{2-methoxy-4-[(4-methoxy-benzylamino)-methyl]-phenyl}-3-(5-methyl-pyrazin-2-yl)-urea.
```

of

30. A composition comprising a compound of formula (II) and a pharmaceutically acceptable carrier, said compound of formula (II) having a formula

wherein Y' is O or S;
W' is selected from the group consisting

$$\bigvee_{N}\bigvee_{N}$$

, and

optionally substituted with from one to four substituents selected from the group consisting of

 C_{1-6} alkyl, aryl, $N(R^7)_2$, OR^7 , N_3 , CN, $C(O)R^7$, C_{1-3} alkylene $N(R^{12})_2$,

$$C_{1-3}$$
alkylene $-N$

and halo;

Z' is selected from the group consisting of:

wherein:

Q' is selected from the group consisting of hydro, OR^7 , SR^7 , and $N(R^7)_2$, with the proviso that Q' is hydro only when at least one of J', K', L', and M' is N, O, or S;

J' is selected from the group consisting of CR^8 , NR^8 , O, and S;

 K^{\prime} is selected from the group consisting of $CR^9,\ NR^9,\ O,\ and\ S;$

L' is selected from the group consisting of CR^{10} , NR^{10} , O, and S;

M' is selected from the group consisting of CR^{11} , NR^{11} , O, and S, with the proviso that Z is different from a pyridone; wherein:

 R^7 , independently, is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, aryl, heteroaryl, SO_2R^{12} , C_{1-6} alkyl substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{12})_2$, and SO_2R^{12} , C_{1-3} alkylenearyl, C_{1-3} alkyleneheteroaryl, C_{1-3} alkylene- C_{3-8} heterocycloalkyl, C_{1-3} alkylene SO_2 aryl, optionally substituted C_{1-3} alkylene $N(R^{12})_2$, OCF₃, C_{1-3} alkylene- $N(R^{12})_3$, C_{3-8} heterocycloalkyl, and $CH(C_{1-3}$ alkylene- $N(R^{12})_2$, or two R^7 groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^8 , R^9 , and R^{10} are each independently selected from the group consisting of null, hydro, halo, optionally substituted $C_{1\text{-}6}alkyl$, $C_{2\text{-}6}alkenyl$, OCF_3 , NO_2 , CN, NC, $N\left(R^7\right)_2$, OR^7 , CO_2R^7 , $C\left(O\right)N\left(R^7\right)_2$, $C\left(O\right)R^7$, $N\left(R^{13}\right)COR^7$, $N\left(R^{13}\right)C\left(O\right)OR^7$, $N\left(R^7\right)C\left(O\right)OR^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneC\left(O\right)R^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneC\left(O\right)R^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneC\left(O\right)R^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneOR^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneOR^7$, $N\left(R^7\right)C\left(O\right)C_{1\text{-}3}alkyleneOR^7$, and SR^7 , wherein R^7 is as defined above;

 R^{11} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{12} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkylenearyl, and SO_2C_{1-6} alkyl, or two R^{12} groups are taken together to form an optionally substituted 3- to 6-membered ring; and

 R^{13} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

- 228 -

provided that when Q' is hydro or OCH_3 , at least one of R^8 , R^9 , and R^{10} is different from hydro, CH_3 , OCH_3 , and halo, and pharmaceutically acceptable salts, prodrugs, or solvates thereof.