Digital Twin Development Plan Digital Twin for Plant Health Monitoring

Rayan Contuliano Bravo

Université Libre de Bruxelles

September 18, 2025

Table of Contents

Project Overview

Critical Tasks Priority

Development Phases

Timeline Overview

Project Objectives

- Build a fully autonomous digital twin for plant health monitoring
- Implement advanced analytics and machine learning models
- Create feedback loops for automated control
- Develop comprehensive data preprocessing capabilities
- Establish real-time monitoring and prediction systems

Most Critical Tasks for Core Functionality

1. Data Preprocessing & Quality Assurance

- Real-time validation and anomaly detection
- Missing data handling and normalization

2. Core Data Pipeline & Storage

- Real-time streaming (Kafka/Spark)
- Time-series database optimization

3. Basic ML Models for Health Classification

- Plant health status classification
- Simple prediction models

Critical Tasks (Continued)

4. Minimal Viable Feedback Loop

- Basic automated responses (irrigation, alerts)
- Manual override capabilities

5. Core User Interface & Monitoring

- Real-time sensor visualization
- Health status display
- System alerts and control interface

Phase 1: Data Preprocessing Module (Months 1-3)

- Establish robust data preprocessing pipeline
- ► Handle anomalies and missing data
- ► Handle multivariate DB (1 for time series data, 1 for historical data (logs, ...))

Phase 2: Feedback Loop & Control (Months 3-6)

- Implement closed-loop control
- Enable autonomous decision making

Phase 3: Advanced Analytics & ML (Months 6-10)

- Model Registry setup
- ► Health classification models
- Prediction algorithms
- Pipeline for models
- Discriminate between OFFLINE and ONLINE (how both will coexist)

Phase 4: Enhanced UI

- ► Develop modern user interface
- Integrate computer vision

Development Timeline

