CS563 Natural Language Processing Assignment: 1

Mukuntha N S (1601CS27) Shikhar Jaiswal (1601CS44)

February 4, 2020

1 Assignment Description

Designing and implementing a Hidden Markov Model (HMM) based model and a Recurrent Neural Network (RNN) based model and applying them for Named Entity Recognition (NER) on the NER Tweet Datasets.

2 Procedure

Installation

Install the following dependencies either using pip or through conda in a Python 3.5+ environment:

- jupyter
- numpy
- sklearn
- \bullet keras

python3 -m pip install jupyter numpy sklearn keras

or alternatively,

conda install -c anaconda jupyter numpy sklearn keras

Running The Notebook

To run the program, head to the directory Assignment1/Q1 and Assignment1/Q2. Please note that the **dataset** should be present in the assignment folder. Use the following command to run the notebook:

jupyter notebook

3 Features

Throughout most of the model, we consider words to be ordered pairs (or two-element vectors), composed of word and word-feature. The word feature is a simple, deterministic computation performed on each word as it is added to or looked up in the vocabulary. It produces one of the fourteen values stated as follows:

Features

Word Feature	Example Text	Intuition
twoDigitNum	90	Two-digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
otherNum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of	No useful capitalization
	sentence	information
initCap	Sally	Capitalized word
lowerCase	can	Uncapitalized word
other	,	Punctuation marks, all other words

4 Discussion

The primary objective of the assignment is to implement a Hidden Markov Model (HMM) based model and a Recurrent Neural Network (RNN) based model and applying them for Named Entity Recognition (NER). The following sub-sections contain the explanation for individual code snippets. For a detailed look at the output, please refer the notebook and the individual files provided.

Notebook Code - HMM

Pre-processing and Visualization

Import the Python dependencies, and check the data samples and their values and pre-process the corpus.

```
# Import the required libraries.
import re
import math
import random
import collections
import operator
import numpy as np
from sklearn.model_selection import KFold
```

```
from sklearn.metrics import precision_recall_fscore_support, f1_score
from sklearn.metrics import confusion_matrix
from collections import defaultdict, Counter
random.seed(11)
np.random.seed(11)
with open('NER-Dataset-Train.txt', 'r') as f:
   ner_dataset = f.readlines()
sentences = []
words = []
tags = []
for line in ner_dataset:
   line = line.strip()
   if line == '':
        sentences.append((words, tags))
        words = []
        tags = []
   else:
        word, tag = line.split('\t')
        words.append(word)
       tags.append(tag)
if len(words) > 0:
   sentences.append((words, tags))
   words = []
   tags= []
vocab_counts = Counter(sum([a[0] for a in sentences], [])).most_common()
words_to_keep = set([word for word, count in vocab_counts if count > 1])
parsed_sentences = [([w if w in words_to_keep else 'UNK' for w in words], tags) for
                      words, tags in sentences]
```

```
for sent in Y_train:
        for tag in sent:
            if tag not in tag2id.keys():
                tag2id[tag] = len(tag2id)
   return vocabulary2id, tag2id
def get_word_tag_counts(X_train, Y_train, vocabulary2id, tag2id):
   Function for calculating the counts pertaining to the
    individual word tags.
   wordcount = defaultdict(int)
   tagcount = defaultdict(int)
   tagpaircount = defaultdict(int)
   tagtriplecount = defaultdict(int)
   for sent in X_train:
        for word in sent:
            wordcount[word] += 1
   for sent in Y_train:
        for tag in sent:
            tagcount[tag] += 1
   for sent in Y_train:
        for i in range(len(sent) - 1):
            tagpaircount[sent[i], sent[i + 1]] += 1
   for sent in Y_train:
        for i in range(len(sent) - 2):
            tagtriplecount[sent[i], sent[i + 1], sent[i + 2]] += 1
   return wordcount, tagcount, tagpaircount, tagtriplecount
```

Hidden Markov Model Code

We implement a standard second-order Hidden Markov Model. We split the overall training dataset into 5 fold cross validation sets. We obtain the accuracy, precision, recall and f-score on the individual folds. Finally, we obtain the prediction results on the test dataset.

```
# Token to map all out-of-vocabulary words (OOVs).
UNK = "UNK"
# Index for UNK
UNKid = 0
epsilon = 1e-100
array, ones, zeros, multiply, unravel_index = np.array, np.ones, np.zeros, np.multiply,
```

```
np.unravel_index
class HMM:
   def __init__(self, state_list, observation_list, transition_proba = None,
                 observation_proba = None, initial_state_proba = None,
                 smoothing_obs = 0.01, transition_proba1 = None, prob_abs = 0.00001):
        Builds a Hidden Markov Model.
        * state_list is the list of state symbols [q_0...q_N-1]
        * observation_list is the list of observation symbols [v_0...v_(M-1)]
        * transition_proba is the transition probability matrix
            [a\_ij] \ a\_ij, a\_ik = Pr(Y\_(t+1) = q\_i/Y\_t = q\_j, Y\_(t-1) = q\_k)
        * observation_proba is the observation probablility matrix
            [b_ki] b_ki = Pr(X_t=v_k/Y_t=q_i)
        *\ initial\_state\_proba is the initial state distribution
            [pi_i] pi_i = Pr(Y_0=q_i)
        # Number of states.
        self.N = len(state_list)
        # Number of possible emissions.
        self.M = len(observation_list)
        self.prob_abs = prob_abs
        self.omega_Y = state_list
        self.omega_X = observation_list
        if transition_proba1 is None:
            self.transition_proba1 = zeros( (self.N, self.N), float)
        else:
            self.transition_proba1 = transition_proba1
        if transition_proba is None:
            self.transition_proba = zeros( (self.N, self.N, self.N), float)
        else:
            self.transition_proba=transition_proba
        if observation_proba is None:
            self.observation_proba = zeros( (self.M, self.N), float)
            self.observation_proba = observation_proba
        if initial_state_proba is None:
            self.initial\_state\_proba = zeros( (self.N,), float )
        else:
            self.initial_state_proba = initial_state_proba
        # Build indexes, i.e., the mapping between token and int.
        self.make_indexes()
        self.smoothing_obs = smoothing_obs
```

```
def make_indexes(self):
    Function for creating the reverse table that maps
    states/observations names to their index in the probabilities
    111
    self.Y_index = {}
    for i in range(self.N):
        self.Y_index[self.omega_Y[i]] = i
    self.X_index = {}
    for i in range(self.M):
        self.X_index[self.omega_X[i]] = i
def get_observationIndices(self, observations):
    Function for returning observation indices,
    and dealing with OOVs.
    111
    indices = zeros( len(observations), int )
    k = 0
    for o in observations:
        if o in self.X_index:
            indices[k] = self.X_index[o]
        else:
            indices[k] = UNKid
        k += 1
    return indices
def data2indices(self, sent):
    Function for extracting the words and tags and returning a
    list of indices for each.
    wordids = list()
    tagids = list()
    for couple in sent:
        wrd = couple[0]
        tag = couple[1]
        if wrd in self.X_index:
```

```
wordids.append(self.X_index[wrd])
        else:
            wordids.append(UNKid)
        tagids.append(self.Y_index[tag])
    return wordids, tagids
def observation_estimation(self, pair_counts):
    Function for building the observation distribution where
    observation\_proba~is~the~observation~probablility~matrix.\\
    # Fill with counts.
    for pair in pair_counts:
        wrd = pair[0]
        tag = pair[1]
        cpt = pair_counts[pair]
        # For UNK.
        k = 0
        if wrd in self.X_index:
            k = self.X_index[wrd]
        i = self.Y_index[tag]
        self.observation_proba[k, i] = cpt
    # Normalize.
    self.observation_proba = self.observation_proba + self.smoothing_obs
    self.observation_proba = self.observation_proba /
                              self.observation_proba.sum(axis = 0).reshape(1, self.N)
def transition_estimation(self, trans_counts):
    Function for building the transition distribution where
    transition\_proba is the transition matrix with:
    [a_ij] a[i, j] = Pr(Y_{-}(t+1) = q_i \mid Y_{-}t = q_j, Y_{-}(t-1) = q_k)
    # Fill with counts.
    for triple in trans_counts:
        i = self.Y_index[triple[2]]
        j = self.Y_index[triple[1]]
        k = self.Y_index[triple[0]]
        self.transition_proba[k, j, i] = trans_counts[triple]
    # Normalize.
    self.transition_proba = self.transition_proba /
                             self.transition_proba.sum(axis = 0).reshape(self.N, self.N)
```

```
def transition_estimation1(self, trans_counts):
    Function for building the transition distribution where
    transition_proba is the transition matrix with:
    [a_i] a[i,j] = Pr(Y_(t+1)=q_i/Y_t=q_j)
    111
    # Fill with counts.
    for pair in trans_counts:
        i = self.Y_index[pair[1]]
        j = self.Y_index[pair[0]]
        self.transition_proba1[j, i] = trans_counts[pair]
    # Normalize.
    self.transition_proba1 = self.transition_proba1 /
                              self.transition_proba1.sum(axis = 0).reshape(1, self.N)
def init_estimation(self, init_counts):
    Function for building the initial distribution.
    # Fill with counts.
    for tag in init_counts:
        i = self.Y_index[tag]
        self.initial_state_proba[i] = init_counts[tag]
    # Normalize.
    self.initial_state_proba = self.initial_state_proba / sum(self.initial_state_proba)
def supervised_training(self, pair_counts, trans_counts, init_counts, trans_counts1):
    Function for training the HMM's parameters.
    self.observation_estimation(pair_counts)
    self.transition_estimation(trans_counts)
    self.transition_estimation1(trans_counts1)
    self.init_estimation(init_counts)
def viterbi(self, observations):
    if len(observations) < 2:</pre>
        return [hmm.Y_index[z] for z in observations]
    nSamples = len(observations)
    # Number of states.
    nStates = self.transition_proba.shape[0]
    # Scale factors (necessary to prevent underflow).
    c = np.zeros(nSamples)
    # Initialise viterbi table.
```

```
viterbi = np.zeros((nStates, nStates, nSamples))
    # Initialise viterbi table.
    viterbi1 = np.zeros((nStates, nSamples))
    # Initialise the best path table.
    psi = np.zeros((nStates, nStates, nSamples))
    best_path = np.zeros(nSamples)
    idx0 = self.X_index[observations[0]]
    idx1 = self.X_index[observations[1]]
    viterbi1[:, 0] = self.initial_state_proba.T * self.observation_proba[idx0, :].T
    # Loop through the states.
    for s in range (0, nStates):
        for v in range (0, nStates):
            viterbi[s, v, 1] = viterbi1[s, 0] * self.transition_proba1[s, v] *
                               self.observation_proba[idx1, v]
    psi[0] = 0;
    # Loop through time-stamps.
    for t in range(2, nSamples):
        idx = self.X_index[observations[t]]
        # Loop through the states.
        for s in range (0, nStates):
            for v in range (0, nStates):
                self.transition_proba[np.isnan(self.transition_proba)] = self.prob_abs
                trans_p = viterbi[:, s, t-1] * self.transition_proba[:, s, v]
                if (math.isnan(trans_p[0])):
                    trans_p[0] = 0
                psi[s, v, t], viterbi[s, v, t] = max(enumerate(trans_p),
                                                     key = operator.itemgetter(1))
                viterbi[s, v, t] = viterbi[s, v, t] * self.observation_proba[idx, v]
    cabbar = viterbi[:, :, nSamples - 1]
    best_path[nSamples - 1] = unravel_index(cabbar.argmax(), cabbar.shape)[1]
    best_path[nSamples - 2] = unravel_index(cabbar.argmax(), cabbar.shape)[0]
    # Return the best path, number of samples and psi.
    for t in range(nSamples - 3, -1, -1):
        best_path[t] = psi[int(round(best_path[t + 1])),
                       int(round(best_path[t + 2])), t + 2]
    return best_path
def fwd_bkw(self, observations):
    observations = x
    self = hmm
```

```
nStates = self.transition_proba.shape[0]
start_prob = self.initial_state_proba
trans_prob = self.transition_proba1.transpose()
emm_prob = self.observation_proba.transpose()
# Forward part of the algorithm.
fwd = []
f_prev = {}
for i, observation_i in enumerate(observations):
    f_curr = {}
   for st in range(nStates):
        if i == 0:
            # Base case for the forward part.
           prev_f_sum = start_prob[st]
        else:
           prev_f_sum = sum(f_prev[k] * trans_prob[k][st] for k in range(nStates))
        f_curr[st] = emm_prob[st][self.X_index[observation_i]] * prev_f_sum
    fwd.append(f_curr)
    f_prev = f_curr
p_fwd = sum(f_curr[k] for k in range(nStates))
# Backward part of the algorithm.
bkw = []
b_prev = {}
for i, observation_i_plus in enumerate(reversed(observations[1:] + [None,])):
    b_curr = {}
   for st in range(nStates):
        if i == 0:
            # Base case for backward part.
           b_curr[st] = 1.0
        else:
            b_curr[st] = sum(trans_prob[st][1] *
                             emm_prob[1][self.X_index[observation_i_plus]]
                             * b_prev[l] for l in range(nStates))
   bkw.insert(0,b_curr)
   b_prev = b_curr
p_bkw = sum(start_prob[1] * emm_prob[1][self.X_index[observations[0]]] * b_curr[1]
           for l in range(nStates))
# Merging the two parts.
posterior = []
```

```
for i in range(len(observations)):
    posterior.append({st: fwd[i][st] * bkw[i][st] / p_fwd for st in range(nStates)})
assert abs(p_fwd - p_bkw) < 1e-6
return fwd, bkw, posterior</pre>
```

```
def make_counts(X, Y):
    111
   Function for building the different count tables to train a HMM.
   Each count table is a dictionary.
   c_words = dict()
   c_tags = dict()
   c_pairs= dict()
   c_transitions = dict()
   c_inits = dict()
   c_transitions1 = dict()
   for sent in zip(X, Y):
        sent = list(zip(*sent))
        for i in range(len(sent)):
            couple = sent[i]
            wrd = couple[0]
            tag = couple[1]
            # Word counts.
            if wrd in c_words:
                c_words[wrd] = c_words[wrd] + 1
            else:
                c\_words[wrd] = 1
            # Tag counts.
            if tag in c_tags:
                c_{tags}[tag] = c_{tags}[tag] + 1
            else:
                c_{tags}[tag] = 1
            # Observation counts.
            if couple in c_pairs:
                c_pairs[couple] = c_pairs[couple] + 1
            else:
                c_pairs[couple] = 1
            if i >= 1:
                trans1 = (sent[i - 1][1], tag)
                if trans1 in c_transitions1:
                    c_transitions1[trans1] = c_transitions1[trans1] + 1
```

Testing and Analysis

We perform 5-fold cross validation along with accuracy, precision, recall and f-score metrics for both the regular and the 10-types dataset.

```
# Build the test and training sets of sentences.
kf = KFold(n_splits = 5, shuffle = False)
parsed_sentences = np.asarray(parsed_sentences)
scores = []
scores1 = []
y_pred_idx = []
y_pred_idx1 = []
y_test_idx = []
y_test_idx1 = []
for train_index, test_index in kf.split(parsed_sentences):
    train_data = parsed_sentences[train_index]
    test_data = parsed_sentences[test_index]
   X_train = [a[0] for a in train_data]
    Y_train = [a[1] for a in train_data]
    X_test = [a[0] for a in test_data]
   Y_test = [a[1] for a in test_data]
    # Build the vocabulary and word counts.
    vocabulary2id, tag2id = get_vocab(X_train, Y_train)
   wordcount, tagcount, tagpaircount, tagtriplecount = get_word_tag_counts(X_train,
                                        Y_train, vocabulary2id, tag2id)
    cwords, ctags, cpairs, ctrans, cinits, ctrans1 = make_counts(X_train, Y_train)
    state_list = list(ctags.keys())
    observation_list = [a[0] for a in sorted(vocabulary2id.items(), key = lambda x: x[1])]
```

```
hmm = HMM(state_list = state_list, observation_list = observation_list,
              transition_proba = None, observation_proba = None, initial_state_proba = None,
              smoothing_obs = 0.4, prob_abs = 0)
   hmm.supervised_training(cpairs, ctrans, cinits, ctrans1)
   for x, y_true in zip(X_test, Y_test):
       for i in range(len(x)):
            if x[i] not in vocabulary2id.keys():
                x[i] = 'UNK'
       pred_idx = hmm.viterbi(x)
       y_pred = np.asarray([state_list[int(round(i))] for i in pred_idx])
       y_true = np.asarray(y_true)
       y_pred_idx += np.asarray([tag2id[lab] for lab in y_pred], dtype = np.int32).tolist()
       y_test_idx += np.asarray([tag2id[lab] for lab in y_true], dtype = np.int32).tolist()
       scores += (y_pred == y_true).tolist()
   x, y_true = X_train[0], Y_train[0]
   for x, y_true in zip(X_test, Y_test):
       for i in range(len(x)):
            if x[i] not in vocabulary2id.keys():
                x[i] = 'UNK'
       pred_probs = hmm.fwd_bkw(x)
       pred_idx = [max(probs.items(), key=lambda x: x[1])[0] for probs in pred_probs[2]]
       y_pred = np.asarray([state_list[int(round(i))] for i in pred_idx])
       y_true = np.asarray(y_true)
       y_pred_idx1 +=np.asarray([tag2id[lab] for lab in y_pred], dtype = np.int32).tolist()
       y_test_idx1 +=np.asarray([tag2id[lab] for lab in y_true], dtype = np.int32).tolist()
       scores1 += (y_pred == y_true).tolist()
prec, rec, fscore, _ = precision_recall_fscore_support(y_test_idx, y_pred_idx,
                                                       average = 'macro')
print('Overall Accuracy and Scores:')
print('Only Forward-Backward Accuracy: {}, Precision: {}, Recall: {}, FScore: {}'.format(
   np.asarray(scores1).mean(), prec1, rec1, fscore1))
print('Viterbi Accuracy: {}, Precision: {}, Recall: {}, FScore: {}'.format(
   np.asarray(scores).mean(), prec, rec, fscore))
```

Regular NER Dataset Score

```
Fold 1 Accuracy and Scores:
Viterbi Accuracy: 1.0, Precision: 1.0, Recall: 1.0, FScore: 1.0
Fold 2 Accuracy and Scores:
```

NER 10-Types Dataset Score

```
Fold 1 Accuracy and Scores:
Viterbi Accuracy: 1.0, Precision: 1.0, Recall: 1.0, FScore: 1.0
Fold 2 Accuracy and Scores:
Viterbi Accuracy: 0.9615384615384616, Precision: 0.4807692307692308, Recall: 0.5,
FScore: 0.49019607843137253
Fold 3 Accuracy and Scores:
FScore: 0.29629629629634
Fold 4 Accuracy and Scores:
Viterbi Accuracy: 1.0, Precision: 1.0, Recall: 1.0, FScore: 1.0
Fold 5 Accuracy and Scores:
Viterbi Accuracy: 0.8888888888888888, Precision: 0.2222222222222, Recall: 0.25,
FScore: 0.23529411764705882
Overall Accuracy and Scores:
Viterbi Accuracy: 0.9012013729977116, Precision: 0.17299751704223215,
Recall: 0.1306308711792958, FScore: 0.1416866524575724
```

```
with open('NER-Dataset--TestSet.txt', 'r') as f:
    test_dataset = f.readlines()

test_sentences = []
```

```
words = []
for line in test_dataset:
    line = line.strip()
    if line == '':
        test_sentences.append((words,))
        words = []
    else:
        word = line
        words.append(word)

if len(words) > 0:
    test_sentences.append((words,))
    words = []
```

```
parsed_test_sentences = [[w if w in words_to_keep else 'UNK' for w in words[0]]
                          for words in test_sentences]
parsed_test_sentences = np.asarray(parsed_test_sentences)
train_data = parsed_sentences
test_data = np.asarray(parsed_test_sentences)
X_train = [a[0] for a in train_data]
Y_train = [a[1] for a in train_data]
X_test = [a for a in test_data]
# Build the vocabulary and word counts.
vocabulary2id, tag2id = get_vocab(X_train, Y_train)
wordcount, tagcount, tagpaircount, tagtriplecount = get_word_tag_counts(X_train, Y_train,
                                                    vocabulary2id, tag2id)
cwords, ctags, cpairs, ctrans, cinits, ctrans1 = make_counts(X_train, Y_train)
state_list = list(ctags.keys())
observation_list = [a[0] for a in sorted(vocabulary2id.items(), key = lambda x: x[1])]
hmm = HMM(state_list = state_list, observation_list = observation_list,
         transition_proba = None, observation_proba = None, initial_state_proba = None,
          smoothing_obs = 0.4, prob_abs = 0)
hmm.supervised_training(cpairs, ctrans, cinits, ctrans1)
predictions = []
for x in X_test:
   for i in range(len(x)):
        if x[i] not in vocabulary2id.keys():
           x[i] = 'UNK'
   pred_idx = hmm.viterbi(x)
   y_pred = np.asarray([state_list[int(round(i))] for i in pred_idx])
   predictions.append(y_pred)
```

```
test_predictions = [list(s) for s in predictions]
```

```
with open('NER-TestSet-HMM-Predictions.txt', 'w', encoding = 'utf-8') as f:
   for words, predictions in zip(test_sentences, test_predictions):
        assert(len(words[0]) == len(predictions))
        for word, prediction in zip(words[0], predictions):
            f.writelines(word + '\t' + prediction + '\n')
        f.writelines('\n')
```

Additionally please refer Q1/NER-TestSet-HMM-Predictions.txt and Q1/NER-TestSet-10Types-HMM-Predictions.txt for the predicted outputs for the HMM model trained on the regular and 10-type datasets respectively.

For the notebook codes, please refer Q1/Q1 - NER Prediction (HMM).ipynb and Q1/Q1 - NER Prediction - 10 Types (HMM).ipynb respectively.

Notebook Code - RNN

Pre-processing and Visualization

Import the Python dependencies, and check the data samples and their values and pre-process the corpus.

```
# Import the required libraries.
import re
import math
import random
import collections
import operator
import numpy as np
from sklearn.model_selection import KFold
from sklearn.metrics import precision_recall_fscore_support, f1_score, accuracy_score
from sklearn.metrics import confusion_matrix
from collections import defaultdict, Counter
from keras.utils import to_categorical
from keras.layers import *
from keras.models import Model
from keras import Model, Sequential
from sklearn.model_selection import StratifiedKFold
from keras.callbacks import *
from sklearn.metrics import classification_report
from sklearn.utils.class_weight import compute_class_weight
random.seed(11)
np.random.seed(11)
with open('NER-Dataset-10Types-Train.txt', 'r') as f:
   ner_dataset = f.readlines()
sentences = []
words = []
```

```
tags = []
for line in ner_dataset:
   line = line.strip()
   if line == '':
        sentences.append((words, tags))
        words = []
        tags = []
   else:
        word, tag = line.split('\t')
        words.append(word)
        tags.append(tag)
if len(words) > 0:
   sentences.append((words, tags))
   words = []
   tags= []
vocab_counts = Counter(sum([a[0] for a in sentences], [])).most_common()
words_to_keep = set([word for word, count in vocab_counts if count > 1])
with open('NER-Dataset--TestSet.txt', 'r') as f:
   test_dataset = f.readlines()
test_sentences = []
words = []
for line in test_dataset:
   line = line.strip()
   if line == '':
        test_sentences.append((words,))
        words = []
   else:
        word = line
        words.append(word)
if len(words) > 0:
   test_sentences.append((words,))
   words = []
```

```
'firstWord',
'initCap',
'lowerCase',
'other']
```

```
def get_word_features(sentence):
   features = []
    ## Optimize and use an Enum!
   firstword = True
   for word in sentence:
        if word.isnumeric() and len(word) == 2:
            features.append('twoDigitNum')
        elif word.isnumeric() and len(word) == 4:
            features.append('fourDigitNum')
        elif word.isalnum() and not word.isalpha() and not word.isnumeric():
            features.append('containsDigitAndAlpha')
        elif word.replace('-', '').isnumeric():
            features.append('containsDigitAndAlpha')
        elif word.replace('/', '').isnumeric():
            features.append('containsDigitAndSlash')
        elif word.replace('.', '').replace(',', '').isnumeric() and ',' in word:
            features.append('containsDigitAndComma')
        elif word.replace('.', '').isnumeric():
            features.append('containsDigitAndPeriod')
        elif word.isnumeric():
            features.append('otherNum')
        elif word.isupper():
            features.append('allCaps')
        elif len(word) == 2 and word[0].isupper() and word[1] == '.':
            features.append('capPeriod')
        elif firstword:
            features.append('firstWord')
        elif word[0].isupper():
            features.append('initCap')
        elif word.islower():
            features.append('lowerCase')
        else:
            features.append('other')
        firstword = False
   return features
```

```
max_len_found = max(len(s[0]) for s in sentences)
max_len = max_len_found + ((50 - (max_len_found % 50)) % 50)
eye_mat = list(np.eye(len(word_features)))
wordfeat2float = {feat: eye_mat[i] for i, feat in enumerate(word_features)}
word2idx = {'UNK': 0, 'PAD': 1}
word2idx.update({word: i + 2 for i, word in enumerate(sorted(words_to_keep))})
```

```
def numberize_sentence(words, max_len = 50):
   features = get_word_features(words)
   word_idx = [word2idx[w] if w in word2idx.keys() else word2idx['UNK'] for w in words]
   feat_np = [wordfeat2float[f] for f in features]
   word_padding = [word2idx['PAD'] for _ in range(max_len - len(word_idx))]
   feat_padding = [np.ones((len(word_features),)) * 2 for _ in range(max_len -
                   len(word_idx))]
   word_idx = np.asarray(word_idx + word_padding)
   feat_np = np.asarray(feat_np + feat_padding)
   return word_idx, feat_np
labels = set.union(*(set(s[1]) for s in sentences))
idx2labels = {i: s for i, s in enumerate(labels)}
n_labels = len(labels)
eye_mat = list(np.eye(len(labels)))
labels2float = {feat: eye_mat[i] for i, feat in enumerate(labels)}
def numberize_labels(gt_labels, max_len=50):
   labels_np = [labels2float[1] for 1 in gt_labels]
   labels_padding = [labels2float['0'] for _ in range(max_len - len(gt_labels))]
   return np.asarray(labels_np + labels_padding)
```

Recurrent Neural Network Code

We implement a standard Bi-Directional Recurrent Neural Network. We split the overall training dataset into 5 fold cross validation sets. We obtain the accuracy, precision, recall and f-score on the individual folds. Finally, we obtain the prediction results on the test dataset.

Architecture


```
parsed_sentences = [(numberize_sentence(s[0]), numberize_labels(s[1])) for s in sentences]
parsed_test_sentences = [numberize_sentence(s[0]) for s in test_sentences]
Counter(sum([s[1] for s in sentences], []))
Counter(sum([np.argmax(s[1], axis=-1).tolist() for s in parsed_sentences], []))
```

Testing and Analysis

We perform 5-fold cross validation along with accuracy, precision, recall and f-score metrics for both the regular and the 10-types dataset.

```
# Build the test and training sets of sentences.
kf = KFold(n_splits = 5, shuffle = False)
parsed_sentences = np.asarray(parsed_sentences)
scores = []
y_pred_idx = []
y_test_idx = []
preds = []
fold_count = 0
foldwise_score_outputs = []
for train_index, test_index in kf.split(parsed_sentences):
   fold_count += 1
   y_pred_idx_fold = []
   y_test_idx_fold = []
   scores_fold = []
   train_data = parsed_sentences[train_index]
   test_data = parsed_sentences[test_index]
   X_train = [np.asarray([a[0][0] for a in train_data]),
              np.asarray([a[0][1] for a in train_data])]
   Y_train = np.asarray([a[1] for a in train_data])
   X_test = [np.asarray([a[0][0] for a in test_data]),
              np.asarray([a[0][1] for a in test_data])]
   Y_test = np.asarray([a[1] for a in test_data])
   model = create_model()
   model.compile(optimizer = 'rmsprop',
                  loss = 'categorical_crossentropy',
                  metrics = ['accuracy'])
   model.fit(X_train, Y_train, epochs = 3, validation_split = 0.1, batch_size = 4)
   y_pred_padded = np.argmax(model.predict(X_test), axis = -1)
   y_true_padded = np.argmax(Y_test, axis = -1)
   for i in range(X_test[0].shape[0]):
        for j in range(X_test[0].shape[1]):
```

```
if X_test[0][i][j] == word2idx['PAD']:
                continue
            else:
                pred = y_pred_padded[i][j]
                true = y_true_padded[i][j]
                y_pred_idx_fold.append(pred)
                y_pred_idx.append(pred)
                y_test_idx_fold.append(true)
                y_test_idx.append(true)
                scores.append(pred == true)
                scores_fold.append(pred == true)
   prec_, rec_, fscore_, _ = precision_recall_fscore_support(y_test_idx_fold,
                              y_pred_idx_fold, average = 'weighted')
   print('[Fold ({}/{})] Accuracy: {}, Precision: {},' +
          ' Recall: {}, FScore: {}'.format(fold_count, kf.n_splits,
         np.asarray(scores_fold).mean(), prec_, rec_, fscore_))
   foldwise_score_outputs.append('[Fold ({}/{})] Accuracy: {}, Precision: {}, Recall: {},'
   + ' FScore: {}'.format(fold_count, kf.n_splits, np.asarray(scores_fold).mean(), prec_,
   rec_, fscore_))
prec, rec, fscore, _ = precision_recall_fscore_support(y_test_idx, y_pred_idx,
                       average = 'weighted')
print('Accuracy: {}, Precision: {}, Recall: {},' +
      ' FScore: {}'.format(np.asarray(scores).mean(), prec, rec, fscore))
```

Regular NER Dataset Score

```
Fold 1 Accuracy and Scores:
Accuracy: 0.9526610644257703, Precision: 0.9485268096309561, Recall: 0.9526610644257703, FScore: 0.949593291838548

Fold 2 Accuracy and Scores:
Accuracy: 0.9534751773049646, Precision: 0.9505178345375412, Recall: 0.9534751773049646, FScore: 0.9510871517860034

Fold 3 Accuracy and Scores:
Accuracy: 0.9556722076407116, Precision: 0.9493129500272377, Recall: 0.9556722076407116, FScore: 0.9487352416691274

Fold 4 Accuracy and Scores:
Accuracy: 0.9653212052302445, Precision: 0.9605602782699517, Recall: 0.9653212052302445, FScore: 0.9611318240196485

Fold 5 Accuracy and Scores:
Accuracy: 0.9520069808027923, Precision: 0.9422223141228804, Recall: 0.9520069808027923, FScore: 0.9450074261739186
```

```
Overall Accuracy and Scores:
Accuracy: 0.9558352402745995, Precision: 0.9498458461158625, Recall: 0.9558352402745995,
FScore: 0.9514009972305221
```

NER 10-Types Dataset Score

```
Fold 1 Accuracy and Scores:
Accuracy: 0.9420168067226891, Precision: 0.9142776578972731, Recall: 0.9420168067226891,
FScore: 0.9272401706648893
Fold 2 Accuracy and Scores:
Accuracy: 0.9353191489361702, Precision: 0.9048582847298248, Recall: 0.9353191489361702,
FScore: 0.9173771743040816
Fold 3 Accuracy and Scores:
Accuracy: 0.9431321084864392, Precision: 0.910649828091966, Recall: 0.9431321084864392,
FScore: 0.9217824440455844
Fold 4 Accuracy and Scores:
Accuracy: 0.953951108584423, Precision: 0.9138141168930782, Recall: 0.953951108584423,
FScore: 0.9329121851868873
Fold 5 Accuracy and Scores:
Accuracy: 0.9476439790575916, Precision: 0.916906011125749, Recall: 0.9476439790575916,
FScore: 0.9269635245861122
Overall Accuracy and Scores:
Accuracy: 0.9443935926773456, Precision: 0.9111339327971488, Recall: 0.9443935926773456,
FScore: 0.9257149514228921
```

```
with open('NER-TestSet-10Types-RNN-Predictions.txt', 'w', encoding = 'utf-8') as f:
    for words, predictions in zip(test_sentences, predictions_list):
        assert(len(words[0]) == len(predictions))
        for word, prediction in zip(words[0], predictions):
```

```
f.writelines(word + '\t' + idx2labels[prediction] + '\n') f.writelines('\n')
```

Additionally please refer Q2/NER-TestSet-RNN-Predictions.txt and Q2/NER-TestSet-10Types-RNN-Predictions.txt for the predicted outputs for the RNN model trained on the regular and 10-type datasets respectively.

For the notebook codes, please refer Q2/Q2 - NER Prediction (RNN).ipynb and Q2/Q2 - NER Prediction - 10 Types (RNN).ipynb respectively.