DEC 80 A G HANSEN, S J PADGETT NRL-MR-439A -AD-A094 823 UNCLASSIFIED l or **2**00 94823 END 3 -8 F DTrc

An Analysis of the Vertical Distribution of Ozone in the Atmosphere

December 31, 1980

This report was prepared by the Scientex Corporation, Washington, D.C. under contract number N00173-80-M-3579 with the Naval Research Laboratory, Washington, D.C.

NAVAL RESEARCH LABORATORY son, D.C.

Approved for public release; distribution unlimited.

081

19, NV - 118/1)

REPORT DOCUMENTATION	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NRL Memorandum Report 4398	AD-A094	820
4. TITLE (and Subtitle)		TYPE OF REPORT & PERIOD COVERED
AN ANALYSIS OF THE VERTICAL DIS OZONE IN THE ATMOSPHI		Final repert
	(4)	TSC-11-1
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(*)
Allen G. Hansen and Stephen J. Padgett	12.	N00173-8Ø-M-3579
9. PERFORMING ORGANIZATION NAME AND ADDRE	SS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
The Scientex Corporation 5630 Kansas Avenue, NW		63213N; W0468AA;
Washington, DC 20011	· 10 89	65-1233-0-1
11. CONTROLLING OFFICE NAME AND ADDRESS	7	12. REPORT DATE
Naval Research Laboratory		December 31, 1980
Washington, DC 20375		13. NUMBER OF PAGES 90
14. MONITORING AGENCY NAME & ADDRESS(II dille	rent from Controlling Office)	15. SECURITY CLASS. (of this report)
(12,92)		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	······································	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	$\mathcal{P}_{\mathcal{L}}$	WHY SHE
Approved for public release; distribution		WOY 15 / AA
17. DISTRIBUTION STATEMENT (of the abetract enter	ed in Block 20, ii different fro	m Report)
TO. SUPPLEMENTARY NOTES		
This report was prepared by the Scientex number N00173-80-M-3579 with the Nava		
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number)	
Ozone		
20. ABSTRACT (Continue on reverse side II necessary		
An analysis of vertical ozone distribu		
graphical form for altitudes up to 25 kilos used to quantify the ozone distribution.	neters. Histograms and	a concentrations probabilities are
The analysis is limited to the consider	eration of the probability	ties of ozone concentration
occurrence obtained by lumping the data		
recommendations are made with regard to		
variations with location and time.		
DD 1 FORM 1473 EDITION OF 1 NOV 65 4 085	SOLETE j	

SECURITY CLASSIFICATION OF THIS PAGE (When Dots Entered)

410,162

CONTENTS

LIST OF TABLE	s	iv
LIST OF FIGUR	ES	v
NOTATION		vi
ACKNOWLEDGE	MENTS	vii
INTRODUCTION	V	1
THE DATA BAS	E	2
DATA ANALYS	is	3
Ozone Concen Ozone Concen	mination tration Determination tration Histograms tration Distributions	3 4
DISCUSSION, CO	ONCLUSIONS AND RECOMMENDATIONS	7
REFERENCES	•••••	9
APPENDIX A:	Format of the Ozonesonde Data Base Magnetic Tape	31
APPENDIX B:	Ozone Concentration Histograms	33
APPENDIX C:	Probability of Exceeding Ozone Concentrations for Altitudes up to 25 Kilometers	59

Accession For	
NITE GPAAT	Y
DTIC TIT	
Unappe proced	5.76
Ji. Birth -	3
E	
1	
,	
L	
A	

LIST OF TABLES

1 — Distribution of Ozone Sondings by Station	10
2 — Distribution of Rejected Data by Location and Sampling Date and by Rejection Criteria	11
3 — Distribution of Data Base by Location and Sampling Date	12
4 — Pressure and Temperature of the U.S. Standard Atmosphere Versus Altitude	13
5 — Distribution of the Data Base by Altitude Band and Ozone Concentration Band	14
6 — Cumulative Probability that Ozone Concentration will be Less Than Designated Value for Each Altitude Band	17

LIST OF FIGURES

1 — Ozonesonde Data Base Station Locations	19
2 — Probability of Exceeding an Ozone Concentration of 5 × 10 ¹⁷ Molecules per Cubic Meter	20
3 — Probability of Exceeding an Ozone Concentration of 10 × 10 ¹⁷ Molecules per Cubic Meter	21
4 — Probability of Exceeding an Ozone Concentration of 15 × 10 ¹⁷ Molecules per Cubic Meter	22
5 — Probability of Exceeding an Ozone Concentration of 20 × 10 ¹⁷ Molecules per Cubic Meter	23
6 — Probability of Exceeding an Ozone Concentration of 25 × 10 ¹⁷ Molecules per Cubic Meter	24
7 — Probability of Exceeding an Ozone Concentration of 30 × 10 ¹⁷ Molecules per Cubic Meter	25
8 — Probability of Exceeding an Ozone Concentration of 35 × 10 ¹⁷ Molecules per Cubic Meter	26
9 — Probability of Exceeding an Ozone Concentration of 40 × 10 ¹⁷ Molecules per Cubic Meter	27
10 — Probability of Exceeding an Ozone Concentration of 45 × 10 ¹⁷ Molecules per Cubic Meter	28
11 — Probability of Exceeding an Ozone Concentration of 50 × 10 ¹⁷ Molecules per Cubic Meter	29

NOTATION

C Degrees Celsius

K Kelvin

k Boltzmann's Constant

 $(1.38x10^{-23} \text{joules/K-molecule})$

km Kilometers

m Meters

mbar Millibars Pressure

N Number of Molecules

nbar Nanobars Pressure

P Pressure

T Temperature

V Volume

ACKNOWLEDGMENTS

This report represents the final deliverable under Contract Number N00173-80-M-3579 between The Scientex Corporation and the Naval Research Laboratory. The technical guidance provided by the contract monitor, Mr. Frank Daspit, and by Messrs. Paul Wyman and Lawrence Dunkelman, all of the Naval Research Laboratory and by Mr. Eddie Neal of The Scientex Corporation is gratefully acknowledged.

AN ANALYSIS OF THE VERTICAL DISTRIBUTION OF OZONE IN THE ATMOSPHERE

INTRODUCTION

While a great deal of data on the vertical distribution of ozone is available from the World Ozone Data Center (WODC) in Canada, little information is published on the probability of encountering a given ozone concentration at a particular altitude. In order to obtain at least an initial feel for the statistical distribution of ozone with altitude, it was decided to analyze the data on the Ozonesonde Observation data tape from the WODC^{1*} to determine the probability of finding (or not finding) a given ozone concentration.

An ozonesonde in this context is an instrumented package which is sent up through the atmosphere, making periodic measurements of atmospheric pressure, ozone partial pressure, temperature, and (perhaps) wind speed and direction. The data tape has information from 4250 ozonesonde ascents, each of which has many data entries representing different altitudes, and covers the period 1962 to 1975 inclusive, as shown in Table 1. These observations were taken at 30 locations throughout the world, 25 of which are shown in Figure 1. Four of the remaining five locations are below 70° south latitude and hence do not appear on the map, while the fifth location (not shown) is a ship which changes positions.

* Superscripts indicate references listed on page 11.

Manuscript submitted October 7, 1980.

II. THE DATA BASE

The data tape from the World Ozone Data Center contained 166,852 entries consisting of atmospheric pressure, ozone partial pressure, and temperature. Data reduction began by converting atmospheric pressure to altitude and ozone partial pressure to ozone concentration in a manner to be described in Section III. Next any entries which failed to meet the following criteria were rejected:

5K < Temperature < 373K

0.001 km < Altitude < 9990 km

0.1 nbar < Ozone partial pressure < ∞.

While the selection of limits was somewhat arbitrary, it was felt that any readings outside these limits were probably the result of equipment malfunction rather than an actual quantity. Table 2 shows the distribution of the rejected data entries by location, time of year, and rejection criteria. Of the 23,459 points rejected, 16,341 were rejected due to the temperature criterion (almost all from station 99), 6,431 due to the altitude criterion, and 699 due to the ozone criterion.

The remaining 143,393 data entries constitute the data base for this analysis. Table 3 shows the distribution of this data base by location and time of year. It can be seen that a significant amount of data has been gathered at most of the locations, and that, with few exceptions, the data were obtained throughout the year. Note, however, that the data cover a 14-year time span, and that three of the stations, Resolute (Canada), Aspendale (Australia), and Payerne (Switzerland), account for 45% of the data base.

III. DATA ANALYSIS

The analysis of the ozonesonde data consisted of several phases.

First, data were transferred from magnetic tape to a digital computer file.* Next, altitude and ozone concentrations were computed from the raw data. Next, some of the entries were rejected as described previously, and the remaining 143,393 entries became the data base for this analysis. Finally, the computed parameters were organized into histograms and probability estimates to quantify ozone concentrations.

Altitude Determination

Total pressure was converted to altitude by comparing the local atmospheric pressure provided in the data base with a table of standard atmospheric pressure versus altitude² summarized in Table 4. Linear interpolation between table entries was used. Because the change in the pressure slope between entries was small, the interpolation error was minimal. The error at 1.5 kilometers, the area of maximum slope change, was less than 30 meters. For this limited study, no corrections were made for local variations in temperature or pressure.

Ozone Concentration Determination

For this study it was desired to express the ozone concentrations in terms of a molecular density (molecules/cubic meter). To accomplish this the ozone partial pressures in the data base were converted to molecular density using the equation of state of an ideal accomplish.

PV = NkT,

* For convenience, the data format on the magnetic tape is presented in Appendix A.

where: P = Ambient partial pressure of ozone (newton/m²)

V = Volume (m³)

N = Number of molecules of ozone

 $k = Boltzmann's constant (1.38x10^{-23} Joules/K-molecule)$

T = Ambient temperature (K).

Since 1 bar = 10^5 newton/m², the above equation reduces to:

Ozone concentration (molecules/m³) = $7.24 \times 10^{18} P(nbar)/T(K)$

Ozone Concentration Histograms

Once the altitude and ozone concentration were determined, the data base was sorted by altitude and concentration, and the sorted data counted in preparation for making histograms. The sorted data is presented in Table 5, which shows the number of data entries recorded in each altitude and concentration band. For example, at altitudes between 10 and 11 kilometers, there were 132 data entries where the ozone concentration was between 1×10^{17} and 2×10^{17} molecules per cubic meter. The first part of Table 5 was then put into histograms showing the distribution of ozone for each altitude band. These histograms are presented in Appendix B.

Ozone Concentration Distributions

To begin evaluating the statistical distribution of ozone with altitude, the data from Table 5 were used to compute cumulative concentration probabilities for each altitude band. For the purpose of this analysis, the probability of an event is defined as the relative frequency of the event's occurrence in the data base. Hence, the altitude band cumulative probabilities were defined as the sum of all data entries up to the specified ozone concentration normalized by the total number of data entries

for the entire altitude band. To express the results in percentages, this number has been multiplied by 100.

The results of this analysis are shown in Table 6. As an example of the calculation procedure, consider the probability that the ozone concentration will be less than or equal to 5×10^{17} molecules per cubic meter for an altitude between 6 and 7 kilometers. From Table 5, the data entries in this altitude band are:

Ozone Concentration Limit	Number of						
(molecules/cubic meter)	Data Entries						
1×10 ¹⁷	12						
2×10 ¹⁷	61						
3×10 ¹⁷	132						
4×10 ¹⁷	2 52						
5×10 ¹⁷	243						

and the total number of data entries is 1.667. Therefore, the cumulative probability that the ozone concentration will be less than or equal to 5×10^{17} molecules per cubic meter is,

Cumulative Probability =
$$\frac{12+61+132+252+243}{1,667} \times 100(\%)$$

= 41.99 or 42%

in ac eement with Table 6.

Since the probability of exceeding a given ozone concentration was actually of more direct interest, the complements of the probabilities listed in Table 6 were analyzed further. The first step was to plot the probability of exceeding various ozone concentrations for each of the altitude bands. These curves are presented in Appendix C. Finally,

curves showing the probability of exceeding a specific ozone concentration as a function of altitude were prepared for various concentrations.

These curves are shown in Figures 2 through 11.

IV. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

The curves showing the probability of exceeding given ozone concentrations, which are presented in Figures 2 through 11, reveal several characteristics of the atmospheric ozone distribution up to an altitude of 25 kilometers. The ozone concentration is rarely greater than 15×10^{17} molecules per cubic meter below an altitude of 8 kilometers. Between 8 and 10 kilometers, however, all probability curves exhibit a significant increase in slope, indicating a rapid increase in ozone density. This rapid increase continues up to a point between 18 and 22 kilometers, depending on concentration level. The curves uniformly shift to the right as the concentration limit increases, and no curve reaches 100 percent probability at a concentration of 30×10^{17} molecules per cubic meter and above.

The results of the data analysis provide useful information regarding ozone concentrations. However, this study has two significant limitations:

- o Data are lumped from all time periods and measurement locations.
- The data are not uniformly distributed geographically or temporally.

The first limitation means that variations in time and geographic location cannot be determined. The second limitation means that the results are biased toward locations and time intervals where most of the observations were made, for example, Resolute (Canada), Aspendale (Australia), and Payerne (Switzerland). Additional analyses are

necessary if these limitations are to be overcome and the applicability of the ozonesonde data base expanded. Specifically, it is recommended that a more detailed study be made, broadening the scope of the present effort by detailing variations in ozone concentration over time, by month, season or year, variations by latitude, and variations by specific locations around the world. Variations can be quantified by considering maximum and minimum values, and by a statistical measure such as the standard deviation. Once these variations are quantified, additional concentration probabilities can be established that account for their occurrence.

These additional analyses have several possible applications. Such applications may include:

- o The development of ozone concentration profiles to determine ambient ozone concentrations along aircraft flight patterns.
- o The determination of the amount of ozone along a line of sight for optical sensing studies.
- o The determination of the amount of ozone above or below a specific altitude.

REFERENCES

- "Ozone Data for the World", World Meteorological Organization, World Ozone Data Center, 4905 Dufferin Street, Downsview, Ontario, M3H 5T4, Canada, 1962-1974.
- 2. "Handbook of Geophysics and Space Environments", S.L. Valley, Editor,
 Air Force Cambridge Laboratories, 1965, Table 2-5.
- Sears, F.W. and M.W. Zemansky, <u>University Physics</u>, Second Edition,
 Reading, Massachusetts: Addison-Wesley Publishing Co., 1956, page 321.

Table 1 — Distribution of ozone sondings by station

STATION NUMBER	NUMBER OF SONDINGS	EARLIEST Date	LATEST DATE
7 12 14 26 38 55 64 67 77 61 82 89 101 105 107 108 109 113 137 138 146 146 146 146 146 146 146 157	189 211 202 441 5 55 100 179 211 49 27 70 63 515 130 77 112 12 12 12 144 144	5 12 68 5 12 68 6 68 6 68 6 68 5 1 6 68 5 1 6 68 5 1 6 68 5 1 1 6 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 12 74 31 12 75 31 12 75 31 12 77 31 12 77 31 12 77 31 12 66 31 12 66 31 12 66 31 12 65 31 12 75 31
163 181	7 358	15 8 68 11 2 63 2 11 66	30 12 72 23 11 63 31 12 73

Table 2 — Distribution of rejected data by location and sampling date and by rejection criteria

EMPER		•	0	•		•	4	-	0	0	8	0	~	7	N	0	0	0	ŀ	0	0	_	0	0	0	0	0	0	0	m	1 9
UNKNOWN OZONE T	7	•	3	~	~	-	93	45	17	0	29	~	~	-	47 163	m	24	_	<u>.</u>	-	0	m	_	0	_	0	•	4	0	7.1	99 1634
ALT O	288	3.10	322	574	4 15	80	205	319	62	202	67	-9	135	93	766 1	211	141	112	205	45	- 5	203	47	21	51	34	5	742	15		431 6
		_	_	_	_		_	_		_	_				_	_			_		_	_	_					_		_	<u>چ</u>
TOTAL	295	3.0	326	677	417	₩	302	365	79	202	98	63	139	96	17234	214	165	113	223	46	4 1	207	48	21	52	34	•	744	15	826	23459
DEC	32	30	23	57	56	4	25	2	0	32	ī	5 6	34	0	1411	17	21	33	- 6	5	91	36	∞	0	12	m	0	69	0	9	2035
NOV	5	~	42	33	39	Ξ	30	12	8 2	12	'n	6	•	0	1337	-	19	12	-	0	-	9	0	0	7	~	0	73	•	~	1888
0CT	23	54	53	52	52	7	0	9	∞	*	6	=	9	m	1215	40	22	•	5 8	m	-	19	0	0	•	m	0	59	m	40	1700
SEP	~	~	8	2	4		33	8	-	7	_				129	7	_		~			20			4	J	ø	5			180
AUG	22	56	•	59	37	Š	37	53	m	2	9	•	12	0	1351	-13	<u>*</u>	'n	20	m	J	6	0	0	•	0	~	26	0	55	1796
JUL		28		51	58	25	9	34	_	∞	Ţ	m	12	0	1264	25	ø	<u>-</u>	=	•	0	16	•0	0	~	0		73	0	9	1739
N N	±	54	32	52	34	~	33	82	m	54	•	m	-		1355	σ	ø	=	₩.	m	-	25	'n	0	e Ø	-	~	53	0	9	1899
¥¥	24	-	2	7 0	5	•	5	20	•	€	23	7	∞	0	1519	'n	~	7	16	m	0	^	m	₽	0	0	m	57	0	7	1990
APR	30	27	47	73	34	9	34	25	=	12	6	0	•		1759	5	7	m	15	0	m	5	8	m	0	2	-	74	0	\sim	2308
MAR		8 2				2	5	54	^	9	æ	Ţ	=	m			35		20	7	7	54	ø	0	9	'n		26	m	~	2131
FEB	26	ñ	23	68	25	•	36	5 6	•	<u>*</u>	-	0	m	ক	1472	€	-	•	9	-	0	∞	'n	0	0	0		62	7	9	1977
JAN		35				-	<u></u>	52	0	-	7	0	∞	m	1711	12	€	9	~	0	0	7	<u>-</u>	0	0	0	0	26	0	Ξ	2189
STATION	,	~	•	•	9	•	2	•	<u></u>	~	9	<u> </u>	2		•	_	•	Ñ	7	•••	•	_	_	_	•	و	•	9		_	TOTAL
S		_	-	8	7	m	5	•	•	_	^	∞	∞	6	•	-	2	-	-	2	_	Ξ	73		~	14	*	5	16	₽	

Table 3 - Distribution of data base by location and sampling date

L LOCATION	KAGOSHIMA, JAPAN	SAPPORD, JAPAN	TATENO, JAPAN	RESOLUTE, CAN	ASPENDALE, AUSTR	ELMAS, ITALY	UCCLE, BELGIUM	STERLING, U.S.	HALLETT, (ANT)	BYRD, (ANT)	G00SE, CAN	BASE KING, (ANT)	LISBON, PORT	VAL JOYEUX(PARIS)	HOHENPEISSENBUERG, W GER	SYDWA, (ANT)	BEDFORD, MASS	FAIRBANKS, ALASKA	WALLOPS IS, VIRGINIA	CANTON IS, U.S.	HILO, HAWAII	AMUNDSEN-SCOTT(ANT)	PUERTO MONTT, CHILE	TOPEKA, KANSAS	CHRISTCHURCH, N.Z.	USNS ELTANIN	LA PAZ, BOLIVIA	PAYERNE, SWITZERLAND	WILKES(ANT)	BERLIN, W GER	
TOTAL	5477	7430	6642	15919	30087	2819	2586	8 135	657	3722	1434	813	4453	684	6818	4066	3199	1483	3149	762	443	3693	632	275	544	626	278	18692	197	7678	143393
DEC	432	674	529	666	2366	216	155	37.1	0	336	23	106	430	0	657	395	319	275	297	153	\$	304	*	-	88	~	0	1483	0	508	11329
YON	378	699	642	1054	2445	289	98	164	43	331	75	199	216	0	539	607	273	204	249	48	23	336	28	0	22	99	0	1639	20	534	11184
OCT	425	636	571	1124	3792	285	0	308	\$ 8	326	115	165	246	£	553	784	382	4	354	53	27	425	0	0	5	85	0	1552	53	404	. 2002
SEP	386	480	663	948	3030	198	351	383	96	397	120	83	167	0	688	438	273	116	315	66	72	420	0	0	150	56	54	1269	25	562	1613
AUG	394	505	103	1224	2787	199	307	491	37	170	7.0	28	436	0	569	195	290	83	216	6.5	25	163	0	0	48	0	58	1372	58	401	10284
as	452	636	112	1233	2576	347	200	6 14	23	330	96	53	476	0	368	37.1	222	114	173	46	58	168	88	0	46	0	23	1779	0	507	1053
SUR	6 10	5 16	940	972	2562	145	243	1494	25	288	120	57	£8,	0	669	159	198	137	354	4	13	31.	83	0	35	S	54	15.3	0	722	12321
MAY	888	5 10	737	1446	2360	280	347	784	*	120	325	92	396	55	557	127	154	-	236	69	0	265	53	254	0	٥	37	1643	c	804	2174
APR	505	621	825	1919	1882	390	302	131	137	368	167	6	555	26	48.1	2-	177	73	125	54	53	365	30	21	0	144	23	1738	0	928	3404
T A A	665	764	1034	191	2259	299	280	1426	101	364	116	25	473	192	764	179	313	158	304	93	20	408	6	0	54	143	52	1764	33	837	4985
FEB	955	737	585	1836	1947	112	252	566	68	370	=	0	241	303	460	180	234	99	268	15	0	438	59	0	0	0	0	1678	45	634	1647
JAN	6 6 5	685	621	1253	2081	59	63	403	0	322	4	28	336	53	513	320	364	82	258	0	0	90	141	0	0	0	0	1252	0	837	10499 1
5	32N	- 22	36x	75H	385	39K	Six	39H	725	808	SIN	705	268	- K64	- X8 +	695	42H	- NS 9	38K	35	20N	908	- 519	- H62	435	SHIP	175	- IL	665	42H	~
LONG	130E																														TOTAL
STATION	~;	21	<u>*</u>	58	56	38	53	\$ 9	69	72	76	-	82	8	66	101	104	105	107	108	109	=	131	137	138	146	149	156	163	181	

Table 4 - Pressure and temperature of the U. S. standard atmosphere versus altitude 2

Altitude (km)	Temperature (°C)	Pressure (mbar							
0	15.0	1013.25							
1	8.5	898.76							
2	2.0	795.01							
3	- 4.5	701.21							
4	-11.0	616.60							
5	-17.5	540.48							
6	-24.0	472.18							
7	-30.5	411.05							
8	-36. 9	356.52							
9	-43.4	308.01							
10	-49.9	265.00							
11	-56.4	227.00							
12	-56.5	193.99							
13	-56.5	165.80							
14	-56.5	141.70							
15	-56.5	121.12							
16	-56.5	103.53							
17	-56.5	88.50							
18	-56.5	75.65							
19	-56.5	64.67							
20	-56.5	55.29							
21	-55.6	47.2 9							
22	-54.6	40.47							
23	-53.6	34.67							
24	-52.6	29.72							
25	-51.6	25.49							

Table 5 — Distribution of the data base by altitude band and ozone concentration band

ا بد	snoitsvread to redmuN
TOTAL	111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
25+	00000000000000000000000000000000000000
25	00000000000000000000000000000000000000
24	61 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
23	10000000000000000000000000000000000000
22	000-0000000000000000000000000000000000
21	477 - 478 -
20	00000000000000000000000000000000000000
19	00000000000000000000000000000000000000
18	0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
17	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
16	
15	10010101010101010101010101010101010101
14	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
13	$\begin{array}{c} + \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
12	2000
-	0.000
10	049694400
•	00001
•	-0484800486048604860486048604860486048604860486
,	
9	- K474KV- 4851- 48
	1100 110 110 110 110 110 110 110 110 11
4	12m4/8/24/26
3	**************************************
2	######################################
km) 1	W446/800/W4/S+++
; ; ;	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALTITUDE* (km)	* (1939m concentration * (101) * moiseunce meter)

 * Number shown is upper limit of the band. The lower limit is implied. For example, n = 20 means 19 < n \leq 20.

Table 5 (Continued) — Distribution of the data base by altitude band and ozone concentration band

20	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	means $19 < n \le 20$.
20	4 7 5 0 6	19 < n ≤
20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 <
20	- 0 0 4 6 0 0 m V	
20	-004	ē
######################################		Ĕ
 № W4~-N®®+®®®W+-+®NNVWN®®®®®®-~NWNWD-D-W0NWV~80~NN № W4@NNVW44N4W4VNWS~++++++++++++++++++++++++++++++++++++		~ 20
 № №4~~ ИФФ+ФФФМ/~ - БИЛД/ МДФФОФФ - ГИМДИО - О - МФЛИГ/ ФФФ № № ФФИЛИПФФФОДО - ТО -		<u>-</u>
### ### ##############################	252 ·	examble
}		
# ####################################	82.67	For
######################################	0 L R L	ed.
# N4488488888888888882855858688786786786786786786786786786786786786	2 W W Z	mplied
	25.00	is i
		E,
มี พละกพละกับลัง ๑ ๑ ๑ ๑ ภับ ๑ พ. โบ พ. ค.พ. กท. กก. ล. พ. ล.พ. ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก		ir li
00000000000000000000000000000000000000	0000	Jowe
- magawy4vwwwwwwwon-00-000000000000000000000000000	0000	The
0 NN44-N-00-0-0-000000000000000000000000		ď.
• • • • • • • • • • • • • • • • • • • •		band.
***************************************		f the
~ 000000000000000000000000000000000000	0000	د د
* *************************************	2000	Jim.
N 8000000000000000000000000000000000000	2000	pper
* *************************************	0000	is
# 000000000000000000000000000000000000	2000	Shown
N 80900000000000000000000000000000000000		
• • • • • • • • • • • • • • • • • • •	2000	umber
Ozone Concentration (101) *molecules/cubic meter) ***********************************		ž

Table 5 (Continued) — Distribution of the data base by altitude band and ozone concentration band

P
tri
Entries
Cata
Total
(km)
Altitude

- 0000	2225	- 0 0 0 0 0 M P	4734 6890 4038 4728 5526 5947 43393
2000	00000	NW4200	22.52.22.22.22.22.22.22.22.22.22.22.22.2

* Number shown is upper limit of the band. The lower limit is implied. For example, n = 20 means 19 < n < 20.

Table 6 — Cumulative probability that ozone concentration will be less than designated value for each altitude band

	, , , , , , , , , , , , , , , , , , , ,
25+	りゅうしょうこうちょうにしょうこうちょうこうちょうしょい アート・ロロロー こうしょうしょう こうしょう こうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしょう しょうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしゅう しゅう
25	
56	00000000000000000000000000000000000000
23	8/1/10000000000000000000000000000000000
22	7-700000000000000000000000000000000000
5	00000000000000000000000000000000000000
20	00000000000000000000000000000000000000
<u>•</u>	00000000000000000000000000000000000000
50	- 0 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
_ 2	りょうしょうない ちょうしゅうちょうしゅうかい おうかい ちょうりょう ちゅうちゅう ちゅうしょうしょう ちゅうかい ちょくしょくしょく しゅうりょう ちょうちょう ちょう ちょうしゅう しゅうしょう しゅうしゅう しゅう
band	でいっているログログラントのログラントのログラントを見るといるできるというないとのできないととくとくとくとしているのでは、日本では、日本では、日本では、日本では、日本では、日本では、日本では、日本
altitude	
each	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Iore	00000000000000000000000000000000000000
value	
gua Suga	
desig	- M 4 M 4 M 4 M + M 5 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8
_	
•	-4W070VNVWVWVWVWVWVWVVOOO00000000000000000000
en.	
	-W/4// M W W W W W W W W W W W W W W W W W W
1 00	
~	-W8-60-60-60-60-60-60-60-60-60-60-60-60-60-
	-4vue-munumu44vueveenenenenenenenenenenenenen
km) 1	
∵ *a	
Altitude* (km)	Ozone Concentration Limit (10 17 molecules/cubic meter)

Cumulative Probability (percent)

* Number shown is upper limit of the band. The lower limit is implied. For example, n=20 means 19 < n < 20.

Table 6 (Continued) — Cumulative probability that ozone concentration will be less than

	(trecent) (percent)	
25+	\$\$\$\$0000000000000000000000000000000000	ć
25	04044444444444444444444444444444444444	
24	######################################	,
23	######################################	
22		6
12	アファ 思想 最 最 最 最 あ る み み み み み み み み み み み み み み み み み み	
20	てきぬぎききむきむむりゅうかうううかりゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅうし () () こうしょうしょうしょうしょうしょう () () () () () () () () () () () () ()	
6	は思想性性性性なななるなるなるなるなるなるなるなるなるなるなるなるなるなるなるなるな	
8	を思想性意思性性性のなるなるなるなるなるなるなるなるなるなるなるなるなるなるなるなるなるなる	
17	我我我我我我我我你你你你你你你你你你你你你你你你你你你你你你你你你你你你你	
16	は我は我は我のならならなるならならならならならならならならならならならならららららららららら	
15	おりりゅうちゅうちゅうちゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅうりゅう	
14	00000000000000000000000000000000000000	
13	80000000000000000000000000000000000000	
11 12	66666666666666666666666666666666666666	
=	866666666666666666666666666666666666666	
0		
8 9 10		
€0		
7		
٠		
8		
4		
8		
~	00000000000000000000000000000000000000	
1 (1		
(km)	W 7 - NATA - NAT	
Altitude*	Ozone Concentration Limit (101) Timid molecules/cubic meter)	*

Cumulative Probability (percent)

Fig. 1 - Ozonesonde data base station locations

Fig. 2 — Probability of exceeding an ozone concentration of 5×10^{17} molecules per cubic meter

Fig. 3 — Probability of exceeding an ozone concentration of $10 \times \, 10^{17}\,$ molecules per cubic meter

Fig. 4 — Probability of exceeding an ozone concentration of 15×10^{17} molecules per cubic meter

Fig. 5 – Probability of exceeding an ozone concentration of 20×10^{17} molecules per cubic meter

Fig. 6 — Probability of exceeding an ozone concentration of 25×10^{17} molecules per cubic meter

Fig. 7 — Probability of exceeding an ozone concentration of 30×10^{17} molecules per cubic meter

Fig. 8 – Probability of exceeding an ozone concentration of 35×10^{17} molecules per cubic meter

Fig. 9 — Probability of exceeding an ozone concentration of 40×10^{17} molecules per cubic meter

Fig. 10- Probability of exceeding an ozone concentration of 45×10^{17} molecules per cubic meter

Fig. 11 — Probability of exceeding an ozone concentration of 50×10^{17} molecules per cubic meter

APPENDIX A

Format of the Ozonesonde Data Base Magnetic Tape

The ozonesonde data is stored on magnetic tape in 80 column punched card integer format. The format is as follows:

Card 1

Columns

- 1 3 Used by data center
- 4 5 Card number (01, 02, ... 21)
- 6 11 YYMMJJ, day, month, year
- 12 13 GG, nearest hour in Greenwich Mean Time
- 14 16 Used by data center
- 17 21 $\lambda S\Omega\Omega\Omega$, total amount of ozone
- 22 24 $\Omega_{\rm p}(\Omega\Omega\Omega)_{\rm p}$, total amount of ozone above or below lowest pressure level (LPL). Optical sondes $(\Omega\Omega\Omega)_{\rm p}$ is the total amount above LPL. For chemical sondes, $(\Omega\Omega\Omega)_{\rm p}$ is the total amount below LPL.
- 27 31 Correction factor
- 32 80 Significant comments

Cards 2 through 21

Columns

- 1 16 Complete as for card 1
- 17 20 PPPP, pressure level in millibars
- 21 23 P_3 ($P_3P_3P_3$), ozone partial pressure in micro-millibars
- 24 26 TTT, air temperature in degrees Celsius
- 27 29 ddd, wind direction in degrees
- 30 32 fff, wind speed in meters per second
- 33 48 Complete as for 17 32
- 49 64 Complete as for 17 32
- 65 80 Complete as for 17 32

APPENDIX B

Ozone Concentration Histograms for Altitudes up to 25 Kilometers

This appendix contains histograms showing the frequency of occurrence of ozone concentrations up to and including 49×10^{17} molecules per cubic meter. Data may exist beyond this limit. See Table 5 for concentrations up to 100×10^{17} molecules per cubic meter.

Note 10**17 is computer notation for 10¹⁷.

Fig. B1 — Ozone concentration histogram for altitudes between 0 and 1 kilometer

Fig. B2 - Ozone concentration histogram for altitudes between 1 and 2 kilometers

Fig. B3 - Ozone concentration histogram for altitudes between 2 and 3 kilometers

Fig. B4 — Ozone concentration histogram for altitudes between 3 and 4 kilometers

OZONESONDE HISTOGRAM ALTITUDE=4 -5 KM NO OF OBSERVATIONS=2291

Fig. B5 — Ozone concentration histogram for altitudes between 4 and 5 kilometers

Fig. B6 - Ozone concentration histogram for altitudes between 5 and 6 kilometers

Fig. B7 — Ozone concentration histogram for altitudes between 6 and 7 kilometers

Fig. B8 - Ozone concentration histogram for altitudes between 7 and 8 kilometers

Fig. B9 - Ozone concentration histogram for altitudes between 8 and 9 kilometers

Fig. B10 - Ozone concentration histogram for altitudes between 9 and 10 kilometers

Fig. B11 - Ozone concentration histogram for altitudes between 10 and 11 kilometers

OZONESONDE HISTOGRAM ALTITUDE=11-12 KM NO OF OBSERVATIONS=6764

Fig. B12 - Ozone concentration histogram for altitudes between 11 and 12 kilometers

OZONESONDE HISTOGRAM ALTITUDE=12-13 KH NO OF OBSERVATIONS=4846

Fig. B13 — Ozone concentration histogram for altitudes between 12 and 13 kilometers

OZONESONDE HISTOGRAM ALTITUDE=13-14 KM NO OF OBSERVATIONS=7293

Fig. B14 — Ozone concentration histogram for altitudes between 13 and 14 kilometers

Fig. B15 — Ozone concentration histogram for altitudes between 14 and 15 kilometers

OZONESONDE HISTOGRAM ALTITUDE=15-16 KM NO OF OBSERVATIONS=5807

Fig. B16 — Ozone concentration histogram for altitudes between 15 and 16 kilometers

OZONESONDE HISTOGRAM ALTITUDE=16-17 KM NO OF OBSERVATIONS=8200

Fig. B17 — Ozone concentration histogram for altitudes between 16 and 17 kilometers

Fig. B18 — Ozone concentration histogram for altitudes between 17 and 18 kilometers

OZONESONDE HISTOGRAM ALTITUDE=18-19 KM NO OF OBSERVATIONS=7737

Fig. B19-Ozone concentration histogram for altitudes between 18 and 19 kilometers

OZONESONDE HISTOGRAM ALTITUDE=19-20 KM NO OF OBSERVATIONS=4734

Fig. B20 — Ozone concentration histogram for altitudes between 19 and 20 kilometers

OZONESONDE HISTOGRAM ALTITUDE=20-21 KM NO OF OBSERVATIONS=6890

Fig. B21 — Ozone concentration histogram for altitudes between 20 and 21 kilometers

OZONESONDE HISTOGRAM ALTITUDE=21-22 KM NO OF OBSERVATIONS=4038

Fig. B22 - Czone concentration histogram for altitudes between 21 and 22 kilometers

Fig. B23 — Ozone concentration histogram for altitudes between 22 and 23 kilometers

OZONESONDE HISTOORAM ALTITUDE=23-24 KM NO OF OBSERVATIONS=5526

Fig. B24 — Ozone concentration histogram for altitudes between 23 and 24 kilometers

OZONESONDE HISTOGRAM ALTITUDE=24-25 KM NO OF OBSERVATIONS=2947

Fig. B25 — Ozone concentration histogram for altitudes between 24 and 25 kilometers

APPENDIX C

Probability of Exceeding Ozone Concentrations for Altitudes up to 25 Kilometers

This appendix contains curves showing the probability of exceeding a given ozone concentration for concentrations up to and including 50×10^{17} molecules per cubic meter. Data up to 100×10^{17} molecules per cubic meter can be found in Table 6.

Note 10**17 is computer notation for 10¹⁷.

OZONESONDE DATA ALTITUDE=0 -1 KM NO OF OBSERVATIONS=7193

Fig. C1 — Probability of exceeding ozone concentrations for altitudes between 0 and 1 kilometer

OZONESONDE DATA
ALTITUDE=1 -2 KM
NO OF OBSERVATIONS=3642

Fig. C2 - Probability of exceeding ozone concentrations for altitudes between 1 and 2 kilometers

OZONESONDE DATA ALTITUDE=2 -3 KM NO OF OBSERVATIONS=1943

Fig. C3 - Probability of exceeding ozone concentrations for altitudes between 2 and 3 kilometers

OZONESONDE DATA
ALTITUDE=3 -4 KM
NO OF OBSERVATIONS=5238

Fig. C4 — Probability of exceeding ozone concentrations for altitudes between 3 and 4 kilometers

Fig. C5 — Probability of exceeding ozone concentrations for altitudes between 4 and 5 kilometers

OZONESONDE DATA
ALTITUDE=5 -6 KM
NO OF OBSERVATIONS=4629

Fig. C6 — Probability of exceeding ozone concentrations for altitudes between 5 and 6 kilometers

OZONESONDE DATA ALTITUDE=6 -7 KM NO OF OBSERVATIONS=1667

Fig. C7 - Probability of exceeding ozone concentrations for altitudes between 6 and 7 kilometers

Fig. C8 - Probability of exceeding ozone concentrations for altitudes between 7 and 8 kilometers

OZONESONDE DATA ALTITUDE=8 -9 KM NO OF OBSERVATIONS=2164

Fig. C9 - Probability of exceeding ozone concentrations for altitudes between 8 and 9 kilometers

OZONESONDE DATA ALTITUDE=9 -10 KM NO OF OBSERVATIONS=5675

Fig. C10 — Probability of exceeding ozone concentrations for altitudes between 9 and 10 kilometers

OZONESONDE DATA ALTITUDE=10-11 KM NO OF OBSERVATIONS=4198

Fig. C11 — Probability of exceeding ozone concentrations for altitudes between 10 and 11 kilometers

OZONESONDE DATA ALTITUDE=11-12 KM NO OF OBSERVATIONS=6764

Fig. C12 — Probability of exceeding ozone concentrations for altitudes between 11 and 12 kilometers

OZONESONDE DATA ALTITUDE=12-13 KM NO OF OBSERVATIONS=4846

Fig. C13 — Probability of exceeding ozone concentrations for altitudes between 12 and 13 kilometers

OZONESONDE DATA ALTITUDE=13-14 KM NO OF OBSERVATIONS=7293

Fig. C14 — Probability of exceeding ozone concentrations for altitudes between 13 and 14 kilometers

OZONESONDE DATA ALTITUDE=14-15 KM NO OF OBSERVATIONS=5961

Fig. C15 — Probability of exceeding ozone concentrations for altitudes between 14 and 15 kilometers

Fig. C16 — Probability of exceeding ozone concentrations for altitudes between 15 and 16 kilometers

OZONESONDE DATA ALTITUDE=16-17 KM NO OF OBSERVATIONS=8200

Fig. C17 — Probability of exceeding ozone concentrations for altitudes between 16 and 17 kilometers

OZONESONDE DATA ALTITUDE=17-18 KM NO OF OBSERVATIONS=5734

Fig. C18 — Probability of exceeding ozone concentrations for altitudes between 17 and 18 kilometers

Fig. C19 — Probability of exceeding ozone concentrations for altitudes between 18 and 19 kilometers

Fig. C20 — Probability of exceeding ozone concentrations for altitudes between 19 and 20 kilometers

OZONESONDE DATA ALTITUDE=20-21 KM NO OF OBSERVATIONS=6890

Fig. C21 — Probability of exceeding ozone concentrations for altitudes between 20 and 21 kilometers

OZONESONDE DATA ALTITUDE=21-22 KM NO OF OBSERVATIONS=4038

Fig. C22 - Probability of exceeding ozone concentrations for altitudes between 21 and 22 kilometers

OZONESONDE DATA ALTITUDE=22-23 KH NO OF OBSERVATIONS=4728

Fig. C23 — Probability of exceeding ozone concentrations for altitudes between 22 and 23 kilometers

Fig. C24 — Probability of exceeding ozone concentrations for altitudes between 23 and 24 kilometers

Fig. C25 — Probability of exceeding ozone concentrations for altitudes between 24 and 25 kilometers