An Actor-Critic Algorithm for Sequence Prediction

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua Bengio

Presented By Payam Nikdel

RL Background

- Agent learning sequence of actions(a_t)
- Observes outcomes (state s_{t+1} , rewards r_{t+1}) of those actions
- Goal: find a Policy π that maximizes the return R

$$\pi = p(a|s)$$

$$R = \sum_{t=0}^{T} \gamma^{t} r_{t+1} \quad \text{piscount rate}$$

$$V(s_{t}): \text{ Value function} = E_{a \sim \pi}[R|S_{t}]$$

Policy Evaluation

Method for calculating the value function for a policy

Monte Carlo Learning:

Wait until end of episode to observe R

$$V(s_t) = V(s_t) + \alpha [R - V(s_t)]$$

• TD(0) Learning:

bootstrap off previous estimate of v

$$V(s_t) = V(s_t) + \alpha \left[\left(r_t + \gamma V(s_{t+1}) \right) - V(s_t) \right]$$

Monte Carlo

$$V(s_t) = V(s_t) + \alpha [R - V(s_t)]$$

$$V(s_t) = V(s_t) + \alpha [(r_t + \gamma V(s_{t+1})) - V(s_t)]$$

TD learning, adapted from Sutton and Barto (2017)

```
Input: the policy \pi to be evaluated
Output: value function V
initialize V arbitrarily, e.g., to 0 for all states
for each episode do:
    initialize state s
    for each step of episode, state s is not terminal do:
         a \leftarrow action given by \pi for s
         take action a, observe r, s'
        V(s) \leftarrow V(s) + \alpha[r + \gamma V(s') - V(s)]
         s \leftarrow s'
    end
end
```


Initially: act out some policy

Initially: act out some policy

Critic ≡ policy evaluation

Actor ≡ policy improvement

Critic ≡ policy evaluation

• Have a parametrized value function V (the critic) and policy π (the actor)

• Actor takes actions according to π , critic 'criticizes' them with TD error

TD error drives learning of both actor and critic

Sutton & Barto, 1998

Critic learns with usual TD learning, or with LSTD

 Actor learns according to the policy gradient theorem

Sutton & Barto, 1998

Actor-Critic for Sequence Prediction

• Actor: some function with parameters θ that predicts sequence one token at a time (i.e. generates 1 word at a time)

• Critic: some function with parameters ϕ that computes the TD-error of decisions made by actor, which is used for learning

Why Actor-Critic?

- Teacher forcing (like maximum log-likelihood)[1]:
 - During training, tokens come from training data
 - At generation time, tokens are previous generated y
 - > leads to discrepancies between train and test time.
 - actor-critic, can condition on actor's previous outputs

 Allows for the direct optimization of a task-specific score, e.g. BLEU, rather than log-likelihood

[1]Maximum likelihood training can be suboptimal. (Bengio et al 2015)

Actor & Critic Notation

• Critic:

- Separate RNN parametrized by φ
- Conditioned on actor generated sequence $\hat{Y}_{1,...,t} = (\hat{y}_1, ..., \hat{y}_t)$ and ground-truth output Y
- Produces the estimates $Q^{(a; \hat{Y}1...)}$ for all $a \in A$
- Critic Q-values are only required during training! No critic in test time

Actor:

• Actor policy $p(a; \hat{Y}_{1,...,t}, X)$ is conditioned on outputs so far $\hat{Y}_{1...t}$ and the input X

Actor & Critic Notation

• Denote V as the expected reward under $\pi_{ heta}$

Proposition 1 The gradient $\frac{dV}{d\theta}$ can be expressed

using Q values of intermediate actions:

$$\frac{dV}{d\theta} = \mathbb{E}_{\hat{Y} \sim p(\hat{Y})} \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \frac{dp(a|\hat{Y}_{1...t-1})}{d\theta} Q(a; \hat{Y}_{1...t-1})$$

- 2: while Not Converged do
- 3: Receive a random example (X, Y).
- 4: Generate a sequence of actions \hat{Y} from p'.
- 5: Compute targets for the critic

$$q_{t} = r_{t}(\hat{y}_{t}; \hat{Y}_{1...t-1}, Y) + \sum_{a \in \mathcal{A}} p'(a|\hat{Y}_{1...t}, X) \hat{Q}'(a; \hat{Y}_{1...t}, Y)$$

6: Update the critic weights ϕ using the gradient

$$\frac{d}{d\phi} \left(\sum_{t=1}^{T} \left(\hat{Q}(\hat{y}_t; \hat{Y}_{1...t-1}, Y) - q_t \right)^2 + \lambda C \right)$$

7: Update actor weights θ using the following gradient estimate

$$\frac{dV(X,Y)}{d\theta} = \sum_{t=1}^{T} \sum_{a \in A} \frac{dp(a|\hat{Y}_{1...t-1},X)}{d\theta} \hat{Q}(a;\hat{Y}_{1...t-1},Y)$$

Deep implementation: ACTOR

• use an RNN with 'soft- attention' (Bahdanau et al., 2015)

Encode source sentence X with bi-directional GRU

• Compute weighted sum over x's at each time step using weights α T_{T}

 $c_i = \sum_{j=1}^{I_x} \alpha_{ij} h_j.$

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Deep implementation: CRITIC

 use the same architecture, except conditioned on Y instead of X

• Input: the sequence generated so far $\hat{Y}_{1...t}$, and the ground-truth sequence Y

Output: Q-value prediction

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Tricks: Target network

Similarly to DQN, use a target network

• In particular, have both delayed actor ${\bf p'}$ and a delayed critic ${\bf Q'}$, with params θ' and ϕ' , respectively

Use this delayed values to compute target for critic:

$$q_{t} = r_{t}(\hat{y}_{t}; \hat{Y}_{1...t-1}, Y) + \sum_{a \in \mathcal{A}} p'(a|\hat{Y}_{1...t}, X) \hat{Q}'(a; \hat{Y}_{1...t}, Y)$$

Tricks: Target network

 After updating actor and critic, update delayed actor and critic using a linear interpolation:

8: Update delayed actor and target critic, with a constant $\tau \ll 1$:

$$\theta' = \tau\theta + (1 - \tau)\theta'$$

$$\phi' = \tau \phi + (1 - \tau)\phi'$$

Tricks: variance penalty

- Problem: critic can have high variance for words that are rarely sampled
- <u>Solution</u>: artificially reduce values of rare actions by introducing a variance regularization term:

$$C = \sum_{a} \left(\hat{Q}(a; \hat{Y}_{1...t-1}) - \frac{1}{|\mathcal{A}|} \sum_{b} \hat{Q}(b; \hat{Y}_{1...t-1}) \right)^{2},$$

Tricks: Reward decomposition

- Could train critic using all the score at the last step, but this signal is sparse
- Want to improve learning of critic (and thus the actor) by providing rewards at each time step
- If final reward is $R(\hat{Y})$, decompose the reward into scores for all prefixes: $(R(\hat{Y}_{1...1}), R(\hat{Y}_{1...2}), ..., R(\hat{Y}_{1...T}))$
- Then the reward at time step t is:

$$r_{t}(\hat{y}_{t}) = R(\hat{y}_{1...t}) - R(\hat{y}_{1...t-1})$$

Tricks: Pre-training

• It will take forever to learn, if we start off with a random actor and critic

• Use pre-training: first train actor to increase likelihood of correct answer (Maximizing log $p(y_{t+1}|Y_{1...t},X)$

• Then, train critic by feeding samples from a fixed actor

Experiments

- 1. Tested on a synthetic spelling correction task
 - Dataset generated by randomly replacing a character using a random character
 - One billion word dataset (no chance for overfitting)
 - Used a character error rate (CER) as reward
 - models:
 - Maximum likelihood
 - Actor-critic
 - Two version of REINFORCE
 - I. Exactly as in [1]
 - II. Use critic as a base line for REINFORCE

[1] SEQUENCE LEVEL TRAINING WITH RECURRENT NEURAL NETWORKS (Ranzato et al 2015)

Figure 2: Progress of log-likelihood (LL), RE-INFORCE (RF) and actor-critic (AC) training in terms of BLEU score on the training (train) and validation (valid) datasets. LL* stands for the annealing phase of log-likelihood training. The curves start from the epoch of log-likelihood pretraining from which the parameters were initialized.

Table 1: Character error rate of different methods on the spelling correction task. In the table L is the length of input strings, η is the probability of replacing a character with a random one. LL stands for the log-likelihood training, AC and RF-C and for the actor-critic and the REINFORCE-critic respectively, AC+LL and RF-C+LL for the combinations of AC and RF-C with LL.

Setup	Character Error Rate						
	LL	AC	RF-C	AC+LL	RF-C+LL		
$L = 10, \eta = 0.3$	17.81	17.24	17.82	16.65	16.97		
$L = 30, \eta = 0.3$	18.4	17.31	18.16	17.1	17.47		
$L = 10, \eta = 0.5$	38.12	35.89	35.84	34.6	35		
$L = 30, \eta = 0.5$	40.87	37.0	37.6	36.36	36.6		

Experiments

2. Tested on a real-world German to English and English to French machine translation

- 1. IWSLT 2014:
 - 153,000 aligned sentence pairs in training set (German to English)
 - Changed the actor to 256 hidden units instead of GRU to compare it with REINFORCE [1] model.

2. WMT 14:

 More than 12 million examples

[1] SEQUENCE LEVEL TRAINING WITH RECURRENT NEURAL NETWORKS (Ranzato et al 2015)

Table 3: Our IWSLT 2014 machine translation results with a bidirectional recurrent encoder compared to the previous work. Please see Table 1 for an explanation of abbreviations. The asterisk identifies results from (Wiseman & Rush, 2016).

Decoding method	Model						
	LL*	BSO*	LL	RF-C	RF-C+LL	AC	AC+LL
greedy search	22.53	23.83	25.82	27.42	27.7	27.27	27.49
beam search	23.87	25.48	27.56	27.75	28.3	27.75	28.53

Table 4: Our WMT 14 machine translation results compared to the previous work. Please see Table 1 for an explanation of abbreviations. The apostrophy and the asterisk identify results from (Bahdanau et al., 2015) and (Shen et al., 2015) respectively.

Decoding method	Model						
	LL'	LL*	MRT *	LL	AC+LL	RF-C+LL	
greedy search	n/a	n/a	n/a	29.33	30.85	29.83	
beam search	28.45	29.88	31.3	30.71	31.13	30.37	

Word	Words with largest \hat{Q}
one	and(6.623) there(6.200) but(5.967)
of	that(6.197) one(5.668) 's(5.467)
them	that(5.408) one(5.118) i(5.002)
i	that(4.796) i(4.629) ,(4.139)
want	want(5.008) i(4.160) 't(3.361)
to	to(4.729) want(3.497) going(3.396)
tell	talk(3.717) you(2.407) to(2.133)
you	about(1.209) that(0.989) talk(0.924)
about	about(0.706) .(0.660) right(0.653)
here	.(0.498) ?(0.291) –(0.285)
	.(0.195) there (0.175) know (0.087)
Ø	.(0.168) Ø (-0.093) ?(-0.173)

Table 3: The best 3 words according to the critic at intermediate steps of generating a translation. The numbers in parentheses are the value predictions \hat{Q} . The German original is "über eine davon will ich hier erzählen ." The reference translation is "and there's one I want to talk about".

