

OCTAL TRANSPARENT LATCH WITH 3-STATE OUTPUTS; **OCTAL D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUT

The SN54/74LS373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data (data changes asynchronously) when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH the bus output is in the high impedance state.

The SN54/74LS374 is a high-speed, low-power Octal D-type Flip-Flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (OE) is common to all flip-flops. The SN54/74LS374 is manufactured using advanced Low Power Schottky technology and is compatible with all Motorola TTL families.

- Eight Latches in a Single Package
- · 3-State Outputs for Bus Interfacing
- · Hysteresis on Latch Enable
- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Hysteresis on Clock Input to Improve Noise Margin
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES LOADING (Note a) HIGH

$D_0 - D_7$	Data Inputs	0.5 U.L.	0.25 U.L.
LE	Latch Enable (Active HIGH) Input	0.5 U.L.	0.25 U.L.
<u>CP</u>	Clock (Active HIGH going edge) Input	0.5 U.L.	0.25 U.L.
OE	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
$O_0 - O_7$	Outputs (Note b)	65 (25) U.L.	15 (7.5) U.L.

- a) 1 TTL Units Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 7.5 U.L. for Military (54) and 25 U.L. for Commercial (74) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (54) and 65 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS373 SN54/74LS374

OCTAL TRANSPARENT LATCH WITH 3-STATE OUTPUTS; OCTAL D-TYPE FLIP-FLOP WITH 3-STATE OUTPUT

LOW POWER SCHOTTKY

SN54/74LS374

06 D_6

05

15

CONNECTION DIAGRAM DIP (TOP VIEW)

LOW

SN54/74LS373 06 D₄ O₄ 20 | 19 | 18 16 15

NOTE: The Flatpak version D_1 has the same pinouts (Connection Diagram) as the Dual In-Line Package.

SN54/74LS373 • SN54/74LS374

TRUTH TABLE

LS373

D _n	LE	OE	o _n
Н	Н	L	Н
L	Н	L	L
Х	L	L	Q ₀
Х	Х	Н	Z*

LS374

D _n	LE	OE	On
Н	۲	L	Н
L	4	L	L
Х	Х	Н	Z*

V_{CC} = PIN 20 GND = PIN 10

= PIN NUMBERS

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = High Impedance

LOGIC DIAGRAMS

SN54LS/74LS373

SN54LS/74LS374

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ІОН	Output Current — High	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	54 74			12 24	mA

^{*} Note: Contents of flip-flops unaffected by the state of the Output Enable input (OE).

SN54/74LS373 • SN54/74LS374

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits							
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions			
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs			
V _{IL}	Input LOW Voltage	54			0.7	V	Guaranteed Input	LOW Voltage for		
VIL.	Input LOW Voltage	74			0.8	v	All Inputs			
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA		
Vou	Output HIGH Voltage	54	2.4	3.4		V	V _{CC} = MIN, I _{OH}	= MAX, V _{IN} = V _{IH}		
VOH	Output HIGH Voltage	74	2.4	3.1		V	or V _{IL} per Truth T	able		
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$		
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table		
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V			
lozL	Output Off Current LOW				-20	μΑ	V _{CC} = MAX, V _{Ol}	J⊤ = 0.4 V		
I	Lamest LIII OLL Occurs of				20	μА	V _{CC} = MAX, V _{IN}	= 2.7 V		
lіН	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V			
IIL	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN}	= 0.4 V		
los	Short Circuit Current (Note 1)		-30		-130	mA	V _{CC} = MAX			
Icc	Power Supply Current				40	mA	V _{CC} = MAX			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

			Limits						
			LS373		LS374		LS374		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency				35	50		MHz	
^t PLH ^t PHL	Propagation Delay, Data to Output		12 12	18 18				ns	C: 45 n C
^t PLH ^t PHL	Clock or Enable to Output		20 18	30 30		15 19	28 28	ns	$C_L = 45 \text{ pF},$ $R_L = 667 \Omega$
^t PZH ^t PZL	Output Enable Time		15 25	28 36		20 21	28 28	ns	
^t PHZ ^t PLZ	Output Disable Time		12 15	20 25		12 15	20 25	ns	C _L = 5.0 pF

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

		Limits				
		LS	373	LS	374	
Symbol	Parameter	Min	Max	Min	Max	Unit
tW	Clock Pulse Width	15		15		ns
t _S	Setup Time	5.0		20		ns
th	Hold Time	20		0		ns

DEFINITION OF TERMS

SETUP TIME (t_s) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to LE transition from HIGH-to-LOW in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the LE transition from HIGH-to-LOW that the logic level must be maintained at the input in order to ensure continued recognition.

SN54/74LS373

AC WAVEFORMS

Figure 1

tpLZ tpHZ tpHZ VOH VOH VOUT 1.3 V VOH 0.5 V

Figure 3

AC LOAD CIRCUIT

Figure 4

SWITCH POSITIONS

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
^t PLZ	Closed	Closed
tpH7	Closed	Closed

SN54/74LS374

AC WAVEFORMS

Figure 5

Figure 7

AC LOAD CIRCUIT

Figure 8

SWITCH POSITIONS

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
t _{PLZ}	Closed	Closed
^t PHZ	Closed	Closed