Problem Set 4 MATH 25800

4 Applications of Fraction Rings

Throughout this assignment, R will denote a *commutative* ring.

2/1: **4.1.** Let R be a ring, and let $f \in R$ be an element which is not a zero divisor. Recall that we defined $R_f = D^{-1}R$ for $D = \{1, f, f^2, \dots\}$. Prove that

$$R_f \cong R[X]/(fX-1)$$

using the universal property of the ring of fractions.

- **4.2.** Let $\mathbb{Z}[i] = \mathbb{Z}[X]/(X^2 + 1)$ denote the ring of **Gaussian integers**. Recall from class that $\mathbb{Z}[i]$ is a Euclidean domain with norm $N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$ defined by $N(a + bi) = a^2 + b^2$.
 - (a) Let R be a Euclidean domain with norm N which satisfies N(xy) = N(x)N(y) for all $x, y \in R$. Prove that $a \in R$ is a unit iff N(a) = 1. (Hint: Start by computing N(1).)
 - (b) Using part (a), find the units in $\mathbb{Z}[i]$.
 - (c) Prove that $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}[i]$.
- **4.3.** (a) For $a, b \in \mathbb{Z}$, prove that $a^2 2b^2 = 0$ iff a = b = 0.
 - (b) Prove that $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/(X^2 2)$ is a field.
- **4.4.** Let D be a multiplicative subset of an integral domain R. Now R is a subring of $D^{-1}R$. Let J be an ideal of $D^{-1}R$. Put $I = R \cap J$.
 - (a) Is I an ideal of R?
 - (b) Prove that if $I \neq R$, then $I \cap D = \emptyset$.
 - (c) Let $b \in J$. Is it true that $b = d^{-1}a$ for some $d \in D$ and $a \in I$?
 - (d) Prove that if I is an ideal in R, then $I^e = \{s^{-1}x \in D^{-1}R \mid s \in D, x \in I\}$ is an ideal in $D^{-1}R$.
 - (e) Using part (c), prove that if J is an ideal of $D^{-1}R$, then $J = (R \cap J)^e$. Therefore, we have a surjective map of sets

$${ Ideals in } R \rightarrow { Ideals in } D^{-1}R$$

given by $I \mapsto I^e$. Note that the right inverse is given by $J \mapsto R \cap J$. Is this map a bijection?

- (f) If R is a PID, is $D^{-1}R$ a PID?
- **4.5.** (a) Let $D = \{n \in \mathbb{Z} : 2 \nmid n\}$. Recall that we defined

$$\mathbb{Z}_{(2)} = D^{-1}R = \{a/b \in \mathbb{Q} : 2 \nmid b\}$$

Write down all of the ideals in $\mathbb{Z}_{(2)}$. You can use the fact that the ideals in \mathbb{Z} are $(n) = n\mathbb{Z}$ for $n \in \mathbb{Z}$, and the previous question. Which of these ideals are maximal? For each maximal ideal $M \in \mathbb{Z}_{(2)}$, what is the field $\mathbb{Z}_{(2)}/M$?

- (b) Let $D = \{2^n \mid n \in \mathbb{Z}_{\geq 0}\}$ and let $R = D^{-1}\mathbb{Z}$. Write down the ideals in R. Which of these ideals are maximal?
- **4.6.** (a) Define M_2 : {commutative rings} \rightarrow {sets} by

$$M_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in R \right\}$$

Show that for any R, there is a natural bijection between the set $M_2(R)$ and the set S_1 of ring homomorphisms between $\mathbb{Z}[X,Y,Z,W]$ and R. Note that notationally,

$$S_1 = \operatorname{Hom}_{\operatorname{ring}}(\mathbb{Z}[X, Y, Z, W], R)$$

One sometimes says that $\mathbb{Z}[X,Y,Z,W]$ represents the function M_2 .

Problem Set 4 MATH 25800

(b) (You do not need to turn in part (b), but you are encouraged to think about it.)

Actually, $M_2(R)$ can be naturally given a ring structure: Addition and multiplication are defined using the same procedure as $M_2(\mathbb{R})$ (or with any other field you may have seen). Hence, it makes sense to talk about the units of $M_2(R)$.

Define the set $GL_2(R)$ to be the units of $M_2(R)$, i.e.,

$$GL_2(R) = M_2(R)^{\times}$$

Show that for any R, there is a natural bijection between $GL_2(R)$ and the set S_2 defined by

$$S_2 = \operatorname{Hom}_{\operatorname{ring}}(\mathbb{Z}[X, Y, Z, W]_{XW-YZ}, R)$$

Note that $\mathbb{Z}[X,Y,Z,W]_{XW-YZ}$ denotes the **localization** of $\mathbb{Z}[X,Y,Z,W]$ by the multiplicative set generated by XW-YZ (that is, the multiplicative set $(1,XW-YZ,(XW-YZ)^2,\ldots))$. (Hint: Use the universal property.)

One sometimes says $\mathbb{Z}[X,Y,Z,W]_{XW-YZ}$ represents the function GL_2 .

4.7. Let $\mathbb{Q}(X)$ denote the field of fractions of $\mathbb{Q}[X]$. By the universal property of a polynomial ring, we know that giving a ring homomorphism $\varphi:\mathbb{Q}[X]\to\mathbb{R}$ is equivalent to choosing an element $r\in\mathbb{R}$ and setting $\varphi(X)=r$. Which ring homomorphisms $\varphi:\mathbb{Q}[X]\to\mathbb{R}$ extend to ring homomorphisms $\tilde{\varphi}:\mathbb{Q}(X)\to\mathbb{R}$? These ring homomorphisms should satisfy the following commutative diagram.

- **4.8.** F is a field. Let R be the smallest subring of F[X] such that (a) $F \subset R$ and (b) both X^2 and X^3 belong to R.
 - (a) Use the identity $(X^2)^3 = (X^3)^2$ to deduce that R is not a UFD.
 - (b) Exhibit an ideal I of R that is not a principal ideal.
- **4.9.** Mimic Euclid's proof of the infinitude of primes in \mathbb{Z} to show that F[X] has infinitely many primes for every field F.
- **4.10.** Let R be an integral domain and let d be the degree of a nonzero $f \in R[X]$. Prove that $\{a \in R \mid f(a) = 0\}$ is finite. Hint: Case 1 first prove this when R is a field. Case 2 reduce to case 1 by looking at the fraction field of R.