Задание

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1. По регулярному выражению строит НКА.
- 2. По НКА строит эквивалентный ему ДКА.
- 3. По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний.
- 4. Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики

Результаты и выводы

Входные данные		Результат
Рег.выражение	Строка	
(a b)* пустая		OK
	aab	OK
	ab	OK
	b	OK
	aaaac	INVALID STRING

Контрольные вопросы

- 1. Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
 - а. Множество цепочек с равным числом нулей и единиц. Не является регулярным множеством (возможно
 - контекстно-зависимая грамматика?) b. Множество цепочек из $\{0,\ 1\}^*$ с четным числом нулей и

1(00|11|10|01)*

нечетным числом единиц.

P.S. она не совсем верно работает)) Например, 101 пропускает.

- с. Множество цепочек из $\{0, 1\}^*$, длины которых делятся на 3. $((0|1)(0|1)(0|1))^*$
- d. Множество цепочек из $\{0, 1\}^*$, не содержащих подцепочки 101. 0*(1|00|000)*0*
- 2. Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.

b	С	d
$S \rightarrow 1A$	$S \rightarrow A$	$S \to A$
$A \rightarrow 00A$	$A \rightarrow 0B$	$A \rightarrow 0A$
$A \rightarrow 11A$	$A \rightarrow 1B$	$A \rightarrow B$
$A \rightarrow 10A$	$A \rightarrow \varepsilon$	$B \rightarrow 1B$
$A \rightarrow 01A$	$B \rightarrow 0C$	$B \rightarrow 00B$
$A \rightarrow \varepsilon$	$B \rightarrow 1C$	$B \rightarrow 000B$
	$C \rightarrow 0A$	$B \rightarrow C$
	$C \rightarrow 1A$	$C \rightarrow 0C$
		$C \rightarrow \varepsilon$

3. Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны

b.

НКА

Рисунок 1 – НКА 3b

ДКА

Рисунок 2 – ДКА 3b

c.

НКА

Рисунок 3 – НКА 3с

ДКА

Рисунок 4 -- ДКА 3с

d.

НКА

Рисунок 5 -- 3d

Рисунок 6 -- ДКА 3d

4. Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M = (\{A, B, C, D, E\}, \{0, 1\}, d, A, \{E, F\})$, где функция задается таблицей

Состояние	Вход		
	0	1	
A	В	С	
В	Е	F	
С	A	A	
D	F	Е	
Е	D	F	
F	D	Е	

Рисунок 7 -- 4 задание

Использовался метод различимых состояний.

Таблица неэквивалентности:

	A	В	С	D	Е	F
Α						
В						
C						
D						
A B C D E						
F						

Вектор классов эквивалентности:

	A	В	C	D	Е	F
ſ	0	1	2	1	3	3

Стартовая вершина: А

Терминальная вершина: Е

Минимальный КА:

Рисунок 8 -- Минимальный КА