Convex hull computation — Graham's scan

Gabriel Nivasch

Convex hull

Let S be a set of n points in the plane

The *convex hull* of S is a convex polygon P, with vertices in S, that contains all the points of S

Convex hull

Let S be a set of n points in the plane

The *convex hull* of S is a convex polygon P, with vertices in S, that contains all the points of S

Convex hull

Let S be a set of n points in the plane

The *convex hull* of S is a convex polygon P, with vertices in S, that contains all the points of S

How do we compute the convex hull efficiently?

Basics: Orientation of 3 points

Given points p_1 , p_2 , p_3 , not on the same line,

The path $p_1 \rightarrow p_2 \rightarrow p_3$ can make either a **left turn** or a **right turn** at p_2

Basics: Orientation of 3 points

Given points p_1 , p_2 , p_3 , not on the same line,

The path $p_1 \rightarrow p_2 \rightarrow p_3$ can make either a **left turn** or a **right turn** at p_2

How do we calculate whether p_1 , p_2 , p_3 make a left or a right turn?

How do we calculate whether p_1, p_2, p_3 make a left or a right turn?

Claim: Look at the sign of det $\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$ Positive: Left turn Negative: Right turn Zero: Points are collinear

How do we calculate whether p_1, p_2, p_3 make a left or a right turn?

Claim: Look at the sign of det $\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$ Positive: Left turn Negative: Right turn Zero: Points are collinear

Example:

$$\det \begin{bmatrix} 1 & 1 & 1 \\ 1 & 7 & 4 \\ 2 & 1 & 7 \end{bmatrix} = 33$$
 Left turn

Recall: A *line* is a set of the form $L = \{(x, y) : ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Recall: A *line* is a set of the form $L = \{(x, y) : ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2 Is p_3 also in L?

Recall: A *line* is a set of the form $L = \{(x, y) : ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2

Is p_3 also in L?

Say $a \neq 0$. Suppose w.l.o.g. a = 1

We first prove the 0 case **Proof:**

Recall: A *line* is a set of the form $L = \{(x, y): ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2

Is p_3 also in L?

Say $a \neq 0$. Suppose w.l.o.g. a = 1

Take the matrix $\begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$ and do the row operation $r_2 \leftarrow r_2 + br_3 - cr_1$

Recall: A *line* is a set of the form $L = \{(x, y): ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2

Is p_3 also in L?

Say $a \neq 0$. Suppose w.l.o.g. a = 1

Take the matrix $\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$ and do the row operation $r_2 \leftarrow r_2 + br_3 - cr_1$

Determinant is unchanged

Recall: A *line* is a set of the form $L = \{(x, y): ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2

Is p_3 also in L?

Say $a \neq 0$. Suppose w.l.o.g. a = 1

Take the matrix $\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$ and do the row operation $r_2 \leftarrow r_2 + br_3 - cr_1$

Determinant is unchanged

Row r_2 becomes 0 if and only if $p_3 \in L$

Recall: A *line* is a set of the form $L = \{(x, y): ax + by = c\}$ where a, b are not both 0 Example: 3x + 4y = 5

Given p_1, p_2, p_3 let $L = \{(x, y): ax + by = c\}$ be the line through p_1, p_2

Is p_3 also in L?

Say $a \neq 0$. Suppose w.l.o.g. a = 1

Take the matrix $\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$ and do the row operation $r_2 \leftarrow r_2 + br_3 - cr_1$

Determinant is unchanged

Row r_2 becomes 0 if and only if $p_3 \in L$ (Also $y_1 \neq y_2$)

Suppose $P=(p_1,p_2,p_3)$ make a left turn, and $Q=(q_1,q_2,q_3)$ also

We can transform P into Q continuously, without the points ever becoming collinear

Suppose $P=(p_1,p_2,p_3)$ make a left turn, and $Q=(q_1,q_2,q_3)$ also

We can transform P into Q continuously, without the points ever becoming collinear

Determinant varies continuously, and never becomes 0

Suppose $P=(p_1,p_2,p_3)$ make a left turn, and $Q=(q_1,q_2,q_3)$ also

We can transform P into Q continuously, without the points ever becoming collinear

Determinant varies continuously, and never becomes 0

 \rightarrow P and Q have the same determinant sign

Verify an easy "left turn" case:
$$p_1 = (0,0), p_2 = (1,0), p_3 = (0,1)$$

Verify an easy "left turn" case:
$$p_1 = (0,0), p_2 = (1,0), p_3 = (0,1)$$

Determinant is positive

Verify an easy "left turn" case: $p_1 = (0,0), p_2 = (1,0), p_3 = (0,1)$

Determinant is positive

→ Every left turn has positive determinant

Verify an easy "left turn" case: $p_1 = (0,0), p_2 = (1,0), p_3 = (0,1)$

Determinant is positive

→ Every left turn has positive determinant

"Right turn": Similarly

Graham's scan

Input: Sequence of n points $p_1 = (x_1, y_1), ..., p_n = (x_n, y_n)$

Output: Vertices of the CH, in clockwise order

Graham's scan

Input: Sequence of n points $p_1 = (x_1, y_1), ..., p_n = (x_n, y_n)$

Output: Vertices of the CH, in clockwise order

(Assume general position: No 3 points collinear)

Graham's scan

Input: Sequence of n points $p_1 = (x_1, y_1), ..., p_n = (x_n, y_n)$

Output: Vertices of the CH, in clockwise order

(Assume general position: No 3 points collinear)

Step 1: Find a point q_1 that is certainly a CH vertex, say point with lowest y-coordinate

Time: O(n)

Step 2: Sort the remaining points clockwise w.r.t. q_1

Whenever the sorting algorithm asks "is r < s?" we check whether r, q_1, s make a left turn

Time: $O(n \log n)$

- Initialize a stack to $S = (q_1, q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$
- Return the points in *S*

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- Initialize a stack to $S=(q_1,q_2)$
- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn
 - *S*.pop()
 - $S.push(q_i)$

- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn S.pop()
 - $S.push(q_i)$

- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn O(n) worst case S.pop()
 - $S.push(q_i)$

- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn O(n) worst case S.pop()
 - $S.push(q_i)$

Worst-case time $O(n^2)$??

- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn O(n) worst case S.pop()
 - $S.push(q_i)$

Worst-case time $O(n^2)$??

No! Each point is pushed once, and popped at most once

- For i = 3 to n:
 - While S[-2], S[-1], q_i make a left turn O(n) worst case S.pop()
 - $S.push(q_i)$

Worst-case time $O(n^2)$??

No! Each point is pushed once, and popped at most once

Step 3 running time: O(n)

This is called *amortized analysis*

Time to handle each point q_i in step 3:

• Worst case: O(n)

• Amortized: O(1)

Meaning, handling all n points together takes time O(n), so we divide that by n

This is called *amortized analysis*

Time to handle each point q_i in step 3:

• Worst case: O(n)

• Amortized: O(1)

Meaning, handling all n points together takes time O(n), so we divide that by n

Overall running time of Graham's scan: $O(n \log n)$