Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. W. Schumacher

Prof. Dr.-Ing. T. Form

Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben			Grundlagen der Elektrotechnik				18.03.2008
N:	ame:		·				
MatrNr.:			Studiengang:				
1:	2:	3:	4:	5:	6:	7:	8:
Summe:					N	lote:	

Alle Lösungen sollen nachvollziehbar bzw. begründet sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine roten Stifte verwenden.

1 Kondensatornetzwerk

Vor dem Anschluss der Spannungsquelle $U_0 = 210 \, V$ an das Netzwerk sind alle Kondensatoren entladen und alle Schalter geöffnet. Der Schalter S_1 wird geschlossen.

Gegeben: $C_1 = C$, $C_2 = 2C$

a) Geben Sie den zeitlichen Verlauf des Stromes $i_{R1}(t)$ durch den Widerstand R_1 in Abhängigkeit von C und R_1 an.

Die Widerstände R_1 und R_2 repräsentieren im Folgenden die ohmschen Verluste und werden bei der weiteren Rechnung vernachlässigt. Nachfolgende Betrachtungen gelten nach Abklingen der Einschwingvorgänge $(t \to \infty)$.

- b) Berechnen Sie allgemein die Spannung U₁.
- c) Berechnen Sie die Kapazität C_2 , wenn die Gesamtladung der Anordnung $Q_{Ges} = 420 \mu C$ beträgt.

Nun wird der Schalter S_2 geschlossen. Der Schalter S_1 bleibt geschlossen und das Abklingen des neuen Einschwingvorganges wird abgewartet.

- d) Berechnen Sie die unbekannte Kapazität C_3 , wenn die neue Spannung $U_{1\text{neu}} = 70 \text{ V}$ gemessen wird.
- e) Die Energiedifferenz $\Delta W = W_2 W_1$ der Gesamtenergie aller Kondensatoren nach und vor dem Schließen von Schalter S_2 ist zu bestimmen und kurz zu erläutern.

2 Kondensator

Zwischen den Platten des dargestellten Plattenkondensators sind zwei homogene Dielektrika mit der Permittivität ε_{r1} und ε_{r2} eingebracht. Alle Platten haben die Fläche 2h.b. Die Anordnung befindet sich im Medium Luft, Randeffekte sind zu vernachlässigen. Der Schalter S befindet sich wie in der linken Skizze dargestellt in der Stellung 1.

Gegeben:
$$d = 1mm$$
, $h = 3cm$, $b = 2cm$, $\epsilon_{r1} = 2 \epsilon_{r2} = 4$, $\epsilon_0 = 8.854 \cdot 10^{-12} As/Vm$.

- a) Für die gegebene Anordnung (linke Skizze) ist ein elektrisches Ersatzschaltbild zu zeichnen.
- b) Berechnen Sie die Gesamtladung Q der Kondensatoren, wenn die Gleichspannungsquelle $U_0 = 500 \text{ V}$ beträgt.
- c) Welche maximal zulässige Spannung U_{O max} kann an den Kondensator angelegt werden, wenn die Durchschlagfeldstärke in Luft $E_D = 30 \, kV/cm$ beträgt?

Der Schalter S wird nun in die Position 2 umgeschaltet (rechte Skizze).

- d) Zeichnen Sie ein elektrisches Ersatzschaltbild für diese Anordnung.
- e) Berechnen Sie allgemein die an der Spannungsquelle Uo angeschlossene Gesamtkapazität $C_G = f(h)$ in Abhängigkeit der Plattenbreite h und skizzieren Sie diese für h = 10...20mm.

3 Gleichstromnetzwerk

Das Netzwerk ist bezüglich der Klemmen A und B durch eine Ersatzspannungsquelle darzustellen.

Gegeben: $I = \frac{U}{R}$

- a) Berechnen Sie den Innenwiderstand R_i der Ersatzquelle.
- b) Berechnen Sie allgemein die Leerlaufspannung $U_{\!\scriptscriptstyle L}.$

Das Netzwerk ist bei Leistungsanpassung an den Klemmen A-B durch einen Widerstand R_{L} belastet.

- c) Welchen Wert hat R_L?
- d) Geben Sie U_{AB} in Abhängigkeit von R und U an.
- e) Berechnen Sie die im Lastwiderstand R_L umgesetzte Leistung P_{RL}.
- f) Die Stromquelle I ist abweichend von $\frac{U}{R}$ so zu dimensionieren, dass der durch den Lastwiderstand fließende Strom I_{RL} gleich Null wird. Berechnen Sie den hierfür erforderlichen Strom I^* der Stromquelle.
- g) Berechnen Sie für den Fall e) die von der Stromquelle abgegebene Leistung P_{Qi} .

4 Gleichstromnetzwerk

- a) Berechnen Sie den Strom IAB.
- b) Wie groß muss R_x gewählt werden, damit die Spannung $U_{AB} = I \cdot R$ beträgt.
- c) Welche Leistung P_{AB} wird unter Berücksichtigung des Ergebnisses von b) in R_{x} verbraucht ?
- d) Welchen Grenzwert erreicht die Spannung U_{AB} jeweils für $R_x \to 0$ und $R_x \to \infty$?
- e) Skizzieren Sie den Spannungsverlauf $U_{AB} = f(R_x)$ für den Bereich von $R_x = 0\Omega \dots 100\Omega$, wenn I = 1A und $R = 20\Omega$ betragen.

5 Induktion

Der dargestellte Kupferring mit einer Leitfähigkeit κ wird von einem homogenen Magnetfeld mit der Flussdichte $B(t)=B_0$ t senkrecht durchsetzt, das linear mit der Zeit ansteigt. Der Ring weist einen kreisförmigen Querschnitt auf und ist in Achsrichtung mit einem dünnen Schlitz versehen, an dem die induzierte Spannung $U_i(t)$ gemessen wird.

- a) Berechnen Sie allgemein die induzierte Spannung $U_i(t)$ und kennzeichnen Sie ihre Richtung.
- b) Geben Sie die im Schlitz wirkende elektrische Feldstärke E(t) an, wenn das elektrische Feld im Schlitz homogen ist.

Gegeben: r = 50mm, $r_1 = 56mm$, h = 20mm, d = 6mm, $K = 58 \cdot 10^6 S/m$

c) Berechnen Sie den ohmschen Widerstand R des Kupferringes. (Hinweis: Berechnung über den mittleren Radius des Ringes)

Durch Überbrückung des Schlitzes wird der Ring kurzgeschlossen.

- d) In einer Querschnittsskizze des Ringes ist für $B_0 > 0$ der im Ring fließende Kurzschlussstrom I und die Richtung des induzierten B-Feldes einzuzeichnen.
- e) Unter Vernachlässigung der Rückwirkung auf das äußere Magnetfeld B und der Annahme, dass der Kurzschlussstrom I eine Magnetfeldstärke $H_i(r_1) = 142\mu A/m$ auf der Oberfläche des Ringes verursacht, sind die Beträge des Stromes und der Stromdichte \overline{S} in dem Ring zu berechnen.
- f) Wie muss der Ring zum äußeren Feld B orientiert werden, damit dieses nicht durch Induktion verändert wird.

6 Magnetischer Kreis

Punkte: 17

Der gegebene Transformator hat einen Kern aus Dynamoblech mit konstanter Permeabilität μ_r . Auf dem mittleren Schenkel sind zwei Spulen mit N_1 und N_2 Windungen angebracht. Die Querschnittsfläche ist überall quadratisch und weist die Kantenlänge h auf. Streuung ist zunächst zu vernachlässigen. Durch die Primärspule fließt ein sinusförmiger Strom mit der Amplitude \hat{I}_1 , die Sekundärspule ist stromlos.

Gegeben:
$$h = 10 mm$$
, $b = 55 mm$, $\ell_2 = 80 mm$, $\delta = 15 mm$, $\mu_r = 2000$, $\mu_0 = 1,256 \cdot 10^{-6} H/m$

- a) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein.
- b) Berechnen Sie allgemein den durch die Primärspule erzeugten Fluss Φ_1 .
- c) Berechnen Sie den magnetischen Gesamt-Ersatzwiderstand R_m , der vom Fluss Φ_1 durchsetzt wird.
- d) Berechnen Sie die Induktivitäten L_1 und L_2 der Primär- und Sekundärspule für $N_1 = 400$ und $N_2 = 60$ Windungen.

Der Amplitudenwert \hat{I}_1 des Stromes durch die Primärspule wird im Folgenden so eingestellt, dass die maximale Flussdichte durch den mittleren Schenkel den Wert $\hat{B}_1 = 0.4T$ erreicht. Die Sekundärspule bleibt weiterhin stromlos.

- e) Berechnen Sie den Effektivwert des Stromes I1.
- f) Berechnen Sie die primär- und sekundärseitigen Spannungen \hat{U}_1 und \hat{U}_2 in Abhängigkeit von \hat{I}_1 , wenn der Strom eine Frequenz f = 50 Hz aufweist.
- g) Berechnen Sie den Gesamtstreufaktor σ und die Gegeninduktivität M, wenn der Kopplungsfaktor des Transformators k=0,9 beträgt.

7 Komplexe Wechselstromrechnung

Das dargestellte Netzwerk wird an einer Wechselspannung mit der Frequenz f betrieben. Der Schalter S ist geöffnet. Die Spannungsquelle $\underline{\mathsf{U}}_0$ wird durch das Netzwerk induktiv belastet.

Gegeben:
$$|\underline{U}_0| = 10 V$$
, $|\underline{I}_R| = 34 mA$, $C = 2 \mu F$, $R = 350 \Omega$, $f = \frac{10^3}{2 \cdot \pi} s^{-1}$

- a) Berechnen Sie die Beträge der Spannung \underline{U}_R und des Stromes \underline{I}_C .
- b) Das vollständige Zeigerdiagramm mit allen Strömen und Spannungen ist zu entwickeln (Maßstab: 1V = 1cm, 10mA = 1cm). Die Größen \underline{I}_0 , \underline{U}_L und der Phasenwinkel ϕ_0 der Spannung \underline{U}_0 sind betragsmäßig anzugeben (abzulesen). (Hinweis: Verwenden Sie \underline{U}_R als Bezugszeiger.)
- c) Bestimmen Sie die Größe der Induktivität L mit den Ergebnissen aus b).
- d) Die in dem Netzwerk umgesetzte Wirk-, Blind- und Scheinleistung ist zu berechnen.

Der Blindwiderstand \underline{X}_{p} wird durch Schließen des Schalters S dem Netzwerk parallel angeschaltet.

- e) Der Blindwiderstand \underline{X}_p soll so bestimmt werden, dass an den speisenden Klemmen cos $\phi_0=1$ wird.
- f) Die von der Spannungsquelle gelieferte Wirk-, Blind- und Scheinleistung ist für die neue Einstellung zu berechnen.

8 Ortskurven

Die Wechselspannungsquelle \underline{U}_0 mit Innenwiderstand R_i wird an einem L, C, R – Netzwerk betrieben.

- a) Berechnen Sie allgemein die Lastimpedanz \underline{Z} der Spannungsquelle in der Form A + jB zwischen den Klemmen 1 und 2.
- b) Geben Sie die Bedingung für Resonanz an und bestimmen Sie die Resonanzfrequenz ω_0 . Welcher Resonanzfall ist hier zu finden?
- c) Bestimmen Sie die Grenzwerte der Impedanz \underline{Z} für $\omega = 0s^{-1}$, $\omega = \omega_0$ und $\omega \to \infty$.
- d) Zeichnen Sie die Ortskurve von \underline{Z} . Die Punkte für die Frequenzen nach c), sowie der kapazitive und induktive Bereich sind zu kennzeichnen.

Die Schaltung ist im Folgenden so dimensioniert, dass im Resonanzfall Leistungsanpassung vorliegt.

- e) Bestimmen Sie den Betrag $\left|\frac{\underline{U}}{\underline{U}_0}\right|$ der komplexen Spannungsteilers bei den Frequenzen $\omega=0,\ \omega=\omega_0$ und $\omega\to\infty.$
- f) Skizzieren Sie den Verlauf von $\left| \frac{\underline{U}}{U_0} \right| = f(\omega)$.