

LowCost Sensoren – quantitative Genauigkeit - Reproduzierbarkeit

INSTITUT FÜR MECHANISCHE VERFAHRENSTECHNIK UND MECHANIK

Ziel des Treffens / Hintergrund

- LowCost PM-Sensoren finden weltweit zunehmend Verwendung in der Immissionsmessung
- SDS011 wird im OKLab zur Messung des lokalen Feinstaubwerts (PM10, PM2.5) verwendet
 - Qualitativ gute Messwerte
 - Quantitativ offene Fragestellungen z.T. untersucht bei
 - LUBW
 - Bürgern
 - Weiteren Partnern
- Austausch zum Stand der unterschiedlichen Aktivitäten
- Ergebnisaustausch
- Abstimmung weiterer Aktivitäten

Qualitative Einordnung unterschiedlicher Quellen mittels Low-cost Sensoren

Qualitative Einordnung unterschiedlicher Quellen mittels Low-cost Sensoren

Zeitgleiche lokale Entwicklung der Messwerte

Stuttgart, 28.3.2017 – 8:15h-9:15h

Messqualität

Erste Erkenntnisse:

- zufriedenstellende Korrelation an Tagen mit
 - mittlerer Luftfeuchtigkeit (20 50 % r. F.) und
 - Konzentrationen kleiner 20 μg/m³
- deutliche Abweichungen bei
 - Schwankungen der klimatischen Bedingungen (Luftfeuchte, Luftdruck, Lufttemperatur)
 - Sensoren aus unterschiedlichen Chargen weisen unterschiedliche Messergebnisse auf
 - undefinierter Probengasstrom durch ungeregelten Lüfter führt zu starken Schwankungen des Messvolumens

Untersuchungen am KIT

- MVM-GPS plant, LowCost-Sensoren auch zur Emissionsmessung einzusetzen (geplantes AiF-Projekt)
- Voruntersuchungen zur Messgenauigkeit
 - Messungen mit monodispersem Aerosol & Vergleich mit Palas Promo 2000
 - Vergleich von 3 SDS011 Reproduzierbarkeit der Ergebnisse

REM-Aufnahmen monodisperser Partikeln

$$x = 2.8 \mu m$$

 $\rho = 1.055 \text{ g/cm}^3$

Versuchsaufbau – Aerosol-Generator

Partikelaustritt

Trockensäule mit integriertem Partikelfilter

Getesteter
Funktionsbereich:
Microspheres
von 0,1 – 15 µm
Volumenstrom:
Ca. 25 – 30 l/min

Mischer für Tropfen-Aerosol mit Trockenluft

Heizung

Dispergierkammer

Suspension

Versuchsaufbau - Gesamtansicht

Versuchsaufbau - Details

Referenzsystem: Palas Promo 2000

Verwendeter Sensor: Welas 2100

- Messbereich: 0,2 μm 10 μm
- Max. Konzentration: 10⁵ Partikel/cm³
- Probenvolumenstrom: 5 l/min

PMx-Gewichtung durch Werte aus Referenzkurven

Erste Ergebnisse mit monodispersem Aerosol

Vergleich SDS011 – Welas2100, PM2.5

Erste Ergebnisse mit monodispersem Aerosol

Vergleich SDS011 – Welas2100, PM10

Erster Vergleich von 3 SDS011 unter identischen Versuchsbedingungen

Polystyrol 0,42 μm

RF: 43 %

T: 27°C

c_{N,max}: 1786 Part./cm³

Zusammenfassung & weiteres Vorgehen - KIT

- Untersuchungen mit monodispersem Aerosol
 (isotherm; konstante Feuchte; Konzentrationsbereich < 2500#/cm³)
 - SDS011:
 - Deutlich höhere Messwerte bei kleinem Partikeldurchmesser
 - Deutlich geringere Messwerte bei großem Partikeldurchmesser
- Untersuchungen zur Reproduzierbarkeit der Messergebnisse
 - 3 baugleiche Sensoren
 - Deutliche Abweichungen zwischen unterschiedlichen Sensoren
 - PM10 / PM2.5 Abweichungen
 - Sensor-zu-Sensor Abweichungen
- Geplante weitere Messungen
 - bei geringerer Partikelkonzentration & anderen Materialien (SiO₂)
 - Bei anderen Temperaturen / Feuchten

