		1						
Reg. No								

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Fifth Semester

18BTE317T - ENVIRONMENTAL BIOTECHNOLOGY

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours					Max. Marks: 100				
PART - A $(20 \times 1 = 20 \text{ Marks})$ Answer all Questions					CO				
1.	The process of eutrophication in water (A) Zooplankton (C) Bacterial	will develop as a result of the over growth of (B) Phytoplankton (D) Fungi	1	2	1				
2.	What kind of pollutant is prevalent in the (A) Carbon monoxide (C) Nitrous oxide	ne air? (B) Sulphur dioxide (D) Nitric oxide	1	3	1				
3.	Which bacterial species can withstand r (A) Dactylosporangium (C) Deinococcus	radiation? (B) Desulfomonas (D) Dermatophilus	1	1	1				
4.	The pore size of a reverse osmosis filte (A) 1 micron (C) 0.005 micron	r is about (B) 0.7 micron (D) 0.0001 micron	1	4	1				
5.	What is the second step in conversion o (A) Methanogenesis (C) Acidogenesis	f organic material to biogas? (B) Hydrolysis (D) Acetogenesis	1	2	2				
6.	Methane forming Archaebacteria is sens (A) O ₂ (C) SO ₂	sitive to (B) CO ₂ (D) NO ₂	1	2	2				
7.	Phosphate accumulating organisms can (A) Poly-D bond (C) Poly-U bond	break (B) Poly-C bond (D) Poly-P bond	1	1	2				
8.	TOL catabolic plasmid available in which (A) Bacillus (C) Agrobacterium	ch bacteria ? (B) Pseudomonas (D) E.coli	1	2	2				
9.	What type of lipids affects biofilm form (A) Rhamnolipid (C) Phospholipid	ation in bacteria? (B) Glycolipid (D) Proteolipid	1	4	2				
10.	Which of the following compound is res (A) DCE (C) PCE	sistant for aerobic biodegradation? (B) TCE (D) VC	1	,2	3				
11.	Dispersants application is common for (A) Nitric gas removal (C) Solid waste removal	(B) Heavy metal removal(D) Oil spill removal	1	4	3				

12.	Which organophosphorus pesticide has the l (A) Diazinon (C) Coumaphos	ongest soil half-life? (B) Ethoprophos (D) Monocrotophos	1	1	3
13.	Which is the key essential component involv (A) Acetoacetyl CoA (C) Succinyl CoA	1	2	3	
14.	Glutathione s transferase involved in (A) Glutathione conjugation (C) Oxidation	(B) Acetylation (D) Hydration	1	2	4
15.	P-type ATPases may transport zinc in (A) Both direction (C) Outside	(B) Inside (D) No transport	1	4	4
16.	Formation of metal ion complexes is called (A) Oxidation (C) Non-chelation	(B) Reduction (D) Chelation	1	1	4
17.	Bioaccumulation of hydrophobic organic ch (A) Active exchange (C) Both active and Passive exchange	nemicals through (B) Passive exchange (D) Non of the above	1	2	4
18.	Which of the following is non essential met (A) Cu (C) Co	al ? (B) Zn (D) Ba	1	5	4
19.	What are most common types of bioplastics (A) Polysulphone (C) Soy-based plastics	(B) Polyether sulphone (D) Polyethererther sulphone	1	2	5
20.	What enzymes are used to soften leather? (A) Oxidases (C) Kinases	(B) Pectinases (D) Proteases	1	2	6
	Marl	ks BL	CO		
21.	Define chemistry of coagulation with exam	ples	4	3	1
22.	2. Define chemical oxygen demand and biological oxygen demand of biosolids?			3	2
	3. Explain hydrolysis process of complex organic wastes.			2	2
24.	Mechanism of monooxygenases in hydrocarbon degradation?			2	3 *
25.	What are recalcitrant xenobiotics? Explain with examples?			1	3
26.	6. What is siderophore? Explain siderophore role in heavy metals removal?			3	4
27.	7. Explain about the various leather processing enzymes with neat diagram		4	1	5
	PART - C ($5 \times 12 =$ Answer all Que	Mar	ks BL	CO	
28.	(a) Explain in detail about the adsorpt wastewater treatment. (O) (b) Describe in detail about radioactive about metal resistance mechanisms in	R) e waste management and also explain	12	4	1

28NF5-18BTE317T

29.	(a) Describe in detail about nitrification and denitrification in nitrogen cycle	12	2	2
	(OR)			
	(b) Explain about the various applications of genetically engineered organisms in industrial waste management and wastewater treatment			
30.	(a) Describe about microbial (bacteria, fungi, yeast and algae) assisted degradation of aromatic compounds with metabolic pathways	12	2	3
	(OR)			
	(b) Describe microbial (bacteria, fungi, yeast and algae) assisted degradation of aliphatic compounds with metabolic pathways			
31.	(a) Explain in detail about biosorption and bioleaching in heavy metal removal.	12	1	4
7.0	(OR)			
	(b) Explain in detail about the protein families involved in microbial (bacteria, fungi, yeast and algae) metabolism of heavy-metals			
32.	(a) Explain in detail about extraction of enzymes from slaughterhouse waste and its industrial applications.	12	2	5
	(OR)			
	(b) Explain in detail about the use of anaerobic digestate, activated sludge and biosolids for land application.			

* * * *