Stimulated Neutrino Flavor Conversions and Rabi Oscillations

Lei Ma

Department of Physics UNM

January 23, 2017

OUTLINE

- Introduction
 What are Neutrinos
 Neutrino Oscillations
 Why Do Neutrinos Oscillate
- Matter Effect
 Interactions with Matter
 MSW Effect
 Stimulated Neutrino Oscillations
- Stimulated Neutrino Flavor Transitions
 Rabi Oscillations
 Single Frequency Matter Profile and Rabi Oscillations
- Single Frequency Matter Potential Revisited Basis and Formalism Multifrequency Matter Potential
- Summary

OVERVIEW

Introduction
What are Neutrinos
Neutrino Oscillations
Why Do Neutrinos Oscillate

Matter Effect

Stimulated Neutrino Flavor Transitions

Single Frequency Matter Potential Revisited

Summary

WHAT ARE NEUTRINOS?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- ► fermions,
- ► electrically neutral,
- ► light.

Adapted from Olga Mena & Stephen Parke (2004)

WHAT ARE NEUTRINOS?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- ► fermions,
- ► electrically neutral,
- ► light.

Adapted from Olga Mena & Stephen Parke (2004)

WHAT ARE NEUTRINO OSCILLATIONS?

Neutrino Oscillations || Neutrino Flavor Conversions

Neutrino Oscillations

WHAT ARE NEUTRINO OSCILLATIONS?

Probabilities of finding neutrinos to be in each flavor.

$\label{eq:Why-Do-Neutrinos-Oscillate} \textbf{WHY-DO-NEUTRINOS-OSCILLATE} ? \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_\nu & \sin\theta_\nu \\ -\sin\theta_\nu & \cos\theta_\nu \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$

Equation of Motion

$$i\partial_{x}egin{pmatrix}\psi_{e}\\psi_{\mu}\end{pmatrix}=\mathbf{H}egin{pmatrix}\psi_{e}\\psi_{\mu}\end{pmatrix}$$

$\label{eq:Why-Do-Neutrinos-Oscillate} \text{WHY Do-Neutrinos-Oscillate} ? \begin{pmatrix} \psi_{\text{e}} \\ \psi_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{\nu} & \sin\theta_{\nu} \\ -\sin\theta_{\nu} & \cos\theta_{\nu} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$

Equation of Motion

$$i\partial_x \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \mathbf{H} \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix}$$

$$\mathbf{H} = \frac{\omega_{\mathbf{v}}}{2} \left(-\cos 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_3 + \sin 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_1 \right)$$

► Oscillation frequency:

$$\omega_{ ext{v}}=rac{\delta m^2}{2E}=rac{m_2^2-m_1^2}{2E}$$

▶ Mixing angle θ_v

FLAVOR ISOSPIN

Hamiltonian: $\mathbf{H} = -rac{ec{\sigma}}{2} \cdot ec{H}$ Flavor isospin: $ec{s} = \Psi^\dagger rac{ec{\sigma}}{2} \Psi$ Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

FLAVOR ISOSPIN

Hamiltonian:
$$\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

Flavor isospin:
$$\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

Vacuum oscillation Hamiltonian

$$\frac{\omega_{v}}{2}\left(-\cos2\theta_{v}\boldsymbol{\sigma}_{3}+\sin2\theta_{v}\boldsymbol{\sigma}_{1}\right.)$$

$$ightarrow \cos 2 heta_{
m v} egin{pmatrix} 0 \ 0 \ \omega_{
m v} \end{pmatrix} - \sin 2 heta_{
m v} egin{pmatrix} \omega_{
m v} \ 0 \ 0 \end{pmatrix}$$

OVERVIEW

Introduction

Matter Effect
Interactions with Matter
MSW Effect
Stimulated Neutrino Oscillations

Stimulated Neutrino Flavor Transitions

Single Frequency Matter Potential Revisited

Summary

INTERACTIONS WITH MATTER

Neutral current interaction between $\nu_{\rm e},\,\nu_{\mu},\,\nu_{\tau},\,{\rm and}\,\,e^-,\,{\rm quarks}$ etc.

Charged current interaction between $\nu_{\rm e}$ and e^-

MATTER INTERACTION

Hamiltonian with matter interaction in flavor basis ($\omega_{\rm v} = \delta m^2/2E$):

$$\mathbf{H} = \frac{\omega_{\mathbf{v}}}{2} \left(-\cos 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_{3} + \sin 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_{1} \right) + \frac{\lambda(\mathbf{x})}{2} \boldsymbol{\sigma}_{3}$$

- ► Vacuum Hamiltonian
- ► Matter interaction
- $\lambda(x) = \sqrt{2}G_{\rm F}n_{\rm e}(x)$

MSW EFFECT

$$egin{aligned} \mathbf{H} &= rac{\omega_{\mathrm{v}}}{2} \left(-\cos 2 heta_{\mathrm{v}} oldsymbol{\sigma}_{3} + \sin 2 heta_{\mathrm{v}} oldsymbol{\sigma}_{1}
ight) \ &+ rac{\lambda(x)}{2} oldsymbol{\sigma}_{3} \ \\ & o \omega_{\mathrm{v}} \begin{pmatrix} -\sin 2 heta_{\mathrm{v}} \\ 0 \\ \cos 2 heta_{\mathrm{v}} \end{pmatrix} \ + \begin{pmatrix} 0 \\ 0 \\ -\lambda(x) \end{pmatrix} \ \\ & o ec{H}_{\mathrm{v}} \ + ec{H}_{\mathrm{m}}(x) \end{aligned}$$

MSW EFFECT

Large density

MSW EFFECT

Low density

MORE COMPLICATED MATTER EFFECT

Why Do We Care

Astrophysical environments: supernovae etc

Supernova shock and turbulence. E. Borriello, et al (2014)

STIMULATED NEUTRINO OSCILLATIONS $\lambda(x) = \sqrt{2}G_F n_e$

$$\lambda(x) = \sqrt{2}G_{\rm F}n_e$$

Matter Profile

$$n_e(x) = n_0 + \delta n \cos(kx)$$

 $\Rightarrow \lambda(x) = \lambda_0 + \delta \lambda \cos(kx)$

STIMULATED NEUTRINO OSCILLATIONS

P. Krastev and A. Smirnov (1989); J. Kneller et al (2013);

K. Patton et al (2014);

Stimulated oscillations. $\lambda(x) = \lambda_0 + A\cos(kx)$ with $\hat{x} = \omega_{\rm m}x$, $A = 0.1\omega_{\rm m}$, $k = 0.995\omega_{\rm m}$, $\theta_{\rm m} = \pi/6$

OVERVIEW

Introduction

Matter Effect

Stimulated Neutrino Flavor Transitions
Rabi Oscillations
Single Frequency Matter Profile and Rabi Oscillations

Single Frequency Matter Potential Revisited

Summary

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\mathrm{m}}}{2}\sigma_{3}-\frac{\alpha}{2}\begin{pmatrix}0&e^{ikt}\\e^{-ikt}&0\end{pmatrix}$$

$$E_2 = \frac{\omega_m}{2}$$

$$E_1 = -\frac{\omega m}{2}$$

Incoming light

Frequency : k

$$\vec{H}_3 = \omega_{\mathrm{m}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \\ \vec{H}_+ = \alpha \begin{pmatrix} \cos(kt) \\ -\sin(kt) \\ 0 \end{pmatrix} \quad \vec{H}_3' = (\omega_{\mathrm{m}} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \\ \vec{H}_+' = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$ec{H}_3' = (\omega_{
m m} - k) egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = 0$$

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\rm m}}{2}\sigma_3 - \frac{\alpha}{2} \begin{pmatrix} 0 & e^{ikt} \\ e^{-ikt} & 0 \end{pmatrix} \qquad E_1 = -\frac{\omega_m}{2}$$

$$E_2 = \frac{\omega_{m}}{2}$$

Incoming light

$$E_1 = -\frac{\omega_m}{2}$$

Frequency: k

Rabi formula

$$P_{1\rightarrow 2} = \frac{1}{1+D^2} \sin^2\left(\frac{\Omega_{\rm R}}{2}t\right).$$

Relative detuning

$$D = \left| \frac{\omega_{\rm m} - k}{\alpha} \right|.$$

Rabi frequency

$$\Omega_{\rm R} = \sqrt{\frac{\alpha^2 + (\omega_{\rm m} - k)^2}{}}$$

Amplitude of Rabi oscillations for different driving field frequency \boldsymbol{k}

$\begin{array}{ll} \textbf{HAMILTONIAN IN MATTER BASIS} & \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix} \end{array}$

$$\begin{pmatrix} e \\ \mu \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x) = \lambda_0$$

Basis

Background matter basis (eigen energy basis):

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} \right) \boldsymbol{\sigma_{3}}$$

$\begin{array}{ll} \textbf{HAMILTONIAN IN MATTER BASIS} & \begin{pmatrix} \psi_e \\ \psi_u \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix} \end{array}$

$$\begin{pmatrix} e \\ \mu \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Basis

Background matter basis (eigen energy basis):

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\mathbf{A} \cos(\mathbf{k} \mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}$$

HAMILTONIAN IN MATTER BASIS

$$\alpha = \frac{\sin 2\theta_{\rm m}}{2}$$

Matter potential frequency

$$k \sim \omega_{\rm m}$$

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}$$

$$\rightarrow \omega_{\mathrm{m}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(\mathbf{k}\mathbf{x}) \\ -\sin(\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-\mathbf{k}\mathbf{x}) \\ -\sin(-\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix}$$

RABI FORMULA WORKS

Lines: Rabi formula Dots, diamonds, triangles, and squares are for $k=\omega_{\rm m},$ $k=(1-2\times 10^{-5})\omega_{\rm m},$ and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

OVERVIEW

Introduction

Matter Effect

Stimulated Neutrino Flavor Transitions

Single Frequency Matter Potential Revisited Basis and Formalism Multifrequency Matter Potential

Summary

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

We have been making approximations.

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} A \cos(kx) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} A \cos(kx) \sigma_{1}$$

$$\rightarrow -\frac{\omega_{\mathrm{m}}}{2} \sigma_{3} - \frac{A \sin 2\theta_{\mathrm{m}}}{2} \cos(kx) \sigma_{1}$$

RABI BASIS

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\frac{\delta \lambda(\mathbf{x})}{2}}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

A Better Basis

Define Rabi basis $\{|\tilde{\nu}_L\rangle,|\tilde{\nu}_H\rangle\}$ in which the wave function is related to wave function in background matter basis $\{|\nu_L\rangle,|\nu_H\rangle\}$ through

$$\begin{pmatrix} \psi_{\rm L} \\ \psi_{\rm H} \end{pmatrix} = \begin{pmatrix} e^{-i\eta(x)} & 0 \\ 0 & e^{i\eta(x)} \end{pmatrix} \begin{pmatrix} \tilde{\psi}_{\rm L} \\ \tilde{\psi}_{\rm H} \end{pmatrix},$$

where

$$\eta(x) - \eta(0) = \frac{\cos 2\theta_{\rm m}}{2} \int_0^x \frac{\delta \lambda(\tau) d\tau}{}.$$

SINGLE FREQUENCY MATTER POTENTIAL

Matter profile

$$\lambda(x) = \lambda_0 + A\sin(kx),$$

Hamiltonian in new basis

$$\widetilde{\mathbf{H}} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} - rac{\delta\lambda(\mathbf{x})}{2}\sin2\theta_{\mathrm{m}} \begin{pmatrix} 0 & e^{2i\eta(\mathbf{x})} \\ e^{-2i\eta(\mathbf{x})} & 0 \end{pmatrix} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \begin{pmatrix} 0 & h \\ h^{*} & 0 \end{pmatrix}$$

Hamiltonian in New Basis
$$h \equiv -\frac{\delta \lambda(x)}{2} e^{2i\eta(x)}$$

$$= \frac{i}{4} \left[\exp\left(ikx + \frac{i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}{\cos(kx)}\right) - \exp\left(-ikx + \frac{i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}{\cos(kx)}\right) \right]$$

SINGLE FREQUENCY MATTER POTENTIAL

Off-diagonal Term in Our System
$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \begin{pmatrix} 0 & h \\ h^{*} & 0 \end{pmatrix}$$

$$h \propto \left[\exp \left(ikx + \frac{i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)}{-i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)} \right) \right]$$

$$-\exp \left(-ikx + \frac{i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)}{-i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)} \right) \right]$$

Jacobi-Anger expansion

$$e^{i\beta\cos(kx)} = \sum_{n=-\infty}^{\infty} i^n J_n(\beta) e^{inkx},$$

where $J_n(\beta)$ are Bessel's functions of the first kind.

SINGLE FREQUENCY MATTER POTENTIAL

Scaled Quantities

Characteristic scale: $\omega_{\rm m}$

- $\rightarrow \hat{A} = A/\omega_{\rm m}$
- $ightharpoonup \hat{k} = k/\omega_{
 m m}$
- $\hat{\mathbf{x}} = \omega_{\mathrm{m}} \mathbf{x}$
- $\blacktriangleright \hat{h} = h/\omega_{\rm m}$

SINGLE FREQUENCY MATTER POTENTIAL

Rotation Wave Approximation

The off-diagonal element of Hamiltonian

$$\widetilde{\mathbf{H}} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} egin{pmatrix} 0 & rac{1}{2}\hat{B}_{n}e^{i(n\hat{k})\hat{x}} \ rac{1}{2}\hat{B}_{n}^{*}e^{-i(n\hat{k})\hat{x}} & 0 \end{pmatrix}$$

where $\hat{B}_n = -(-i)^n n\hat{k} \tan 2\theta_{\rm m} J_n(\hat{A}\cos 2\theta_{\rm m}/\hat{k})$.

$$ec{H} = egin{pmatrix} 0 \ 0 \ \omega_m \end{pmatrix} + lpha_1 egin{pmatrix} \cos(k_1 x) \ -\sin(k_1 x) \ 0 \end{pmatrix} + egin{pmatrix} lpha_2 egin{pmatrix} \cos(k_2 x) \ -\sin(k_2 x) \ 0 \end{pmatrix}$$

Corotating frame of the second frequency,

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 - k_2 x) \\ -\sin(k_1 - k_2 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\sqrt{(\omega_{\rm m}-k_2)^2+\alpha_2^2}\rightarrow \omega_{\rm m}-k_2+\frac{1}{2}\frac{\alpha_2^2}{\omega_{\rm m}-k_2}$$

Relative detuning

$$D' = \left| \frac{\omega_{\mathrm{m}} - k_1}{\alpha_1} + \frac{\alpha_2^2}{2\alpha_1(\omega_{\mathrm{m}} - k_2)} \right|$$

Consider $k_1 = \omega_{\rm m}$

$$D' = \left| \frac{\alpha_2^2}{2\alpha_1(\omega_{\rm m} - k_2)} \right|$$

Amplitude reduces from 1 to 1/2 if

$$D' = 1$$
.

Two driving frequencies k_1 , and k_2 , with amplitude α_1 , and α_2 Destruction effect: $k_1 = \omega_{\rm m}$,

$$|\alpha_2| \gg \sqrt{2\omega_{\rm m}|\alpha_1(k_2 - \omega_{\rm m})|} \equiv \alpha_{2,\rm C}$$

Grid lines: amplitude predicted using $1/(1+D^{\prime 2})$

α_2, κ_1 values				
Dashed	dotted	dash-dotted	solid	
$10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$10^{-2}\omega_{\rm m}, 10^{-1}\omega_{\rm m}$	$5.0 \times 10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$5 \times 10^{-2} \omega_{\rm m}, 10^{-1} \omega_{\rm m}$	

SINGLE FREQUENCY MATTER POTENTIAL

Resonances of different $n=1/\hat{k}.$ Width becomes extremely narrow for high orders.

SINGLE FREQUENCY MATTER POTENTIAL

Resonances of different $n=1/\hat{k}$. Width becomes extremely narrow for high orders.

CASTLE WALL MATTER POTENTIAL

OVERVIEW

Introduction

Matter Effect

Stimulated Neutrino Flavor Transitions

Single Frequency Matter Potential Revisited

Summary

- Vacuum oscillations: flavor sates are not mass states.
- MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances
- Oscillations with two driving fields of different frequencies: large width to destroy the resonance.

- 1. Vacuum oscillations: flavor sates are not mass states.
- MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large width to destroy the resonance.

- Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large width to destroy the resonance.

- Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large width to destroy the resonance.

BACKUP SLIDES

BACKUP SLIDES

WHY DO NEUTRINOS OSCILLATE?

Equation of Motion

$$i\partial_x \ket{\Psi} = \hat{\mathbf{H}} \ket{\Psi}$$

 Basis: Hamiltonian diagonalized basis/mass basis/propagation basis, {|ν₁⟩, |ν₂⟩}.

Þ

$$\mathrm{H}=-rac{\omega_{\mathrm{v}}}{2}\sigma_{3}, \qquad ext{where} \ \omega_{\mathrm{v}}=rac{\delta m^{2}}{2E}=rac{m_{2}^{2}-m_{1}^{2}}{2E}.$$

► The system can be solved given initial condition of the amplitudes of the two eigenstates $(\langle \nu_1 | \Psi(0) \rangle, \langle \nu_2 | \Psi(0) \rangle)^T$,

$$\begin{pmatrix} \langle \nu_1 | \Psi(x) \rangle \\ \langle \nu_2 | \Psi(x) \rangle \end{pmatrix} = \begin{pmatrix} \langle \nu_1 | \Psi(0) \rangle \exp{(i\omega_v x/2)} \\ \langle \nu_2 | \Psi(0) \rangle \exp{(-i\omega_v x/2)} \end{pmatrix}$$

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

Neutrino wave function in flavor basis $\{|\nu_{\rm e}\rangle\,, |\nu_{\mu}\rangle\}$ is related to state in energy basis $\{|\nu_{\rm 1}\rangle\,, |\nu_{\rm 2}\rangle\}$ through

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

 $\theta_{\rm v}$: vacuum mixing angle

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

Neutrino wave function in flavor basis $\{\ket{\nu_{\rm e}},\ket{\nu_{\rm \mu}}\}$ is related to state in energy basis $\{\ket{\nu_1},\ket{\nu_2}\}$ through

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

 $\theta_{\rm v}$: vacuum mixing angle

Hamiltonian H

Mass basis

$$\begin{split} \frac{\omega_{v}}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} & \frac{\omega_{v}}{2} \begin{pmatrix} -\cos 2\theta_{v} & \sin 2\theta_{v} \\ \sin 2\theta_{v} & \cos 2\theta_{v} \end{pmatrix} \\ = -\frac{\omega_{v}}{2} \boldsymbol{\sigma}_{3} & = \frac{\omega_{v}}{2} \left(-\cos 2\theta_{v} \boldsymbol{\sigma}_{3} + \sin 2\theta_{v} \boldsymbol{\sigma}_{1} \right) \end{split}$$

NATURE OF NEUTRINO OSCILLATION

Transition Probability

$$P(|\nu_{\rm e}\rangle \rightarrow |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm v})\sin^2(\omega_{\rm v}x/2)$$

- $\omega_{\rm v} = (m_2^2 m_1^2)/2E$ determines oscillation wavelength.
- ▶ Mixing angle θ_v determines flavor oscillation amplitude.

MSW EFFECT

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_v & \sin\theta_v \\ -\sin\theta_v & \cos\theta_v \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix}$$

Constant matter profile λ_0 as an example,

Significance of $\theta_{\rm m}$

Define matter basis (eigenenergy basis) $\left\{ \left|\nu_{\rm L}\right\rangle,\left|\nu_{\rm H}\right\rangle\right\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

In matter basis

$$\mathbf{H}_{\mathsf{matter ext{-}basis}} = -rac{\omega_{\mathsf{m}}}{2}oldsymbol{\sigma_3}$$

MSW EFFECT

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{\rm 1}\rangle \\ |\nu_{\rm 2}\rangle \end{pmatrix}$$

Constant matter profile λ_0 as an example,

Significance of $\theta_{\rm m}$

Define matter basis (eigenenergy basis) $\{|\nu_{\rm L}\rangle, |\nu_{\rm H}\rangle\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

In matter basis

$$\mathbf{H}_{\mathsf{matter ext{-}basis}} = -rac{\omega_{\mathrm{m}}}{2}oldsymbol{\sigma_{3}}$$

Transition Probability

$$P(|\nu_{\rm e}\rangle \to |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm m})\sin^2(\omega_{\rm m}x)$$

SOLAR NEUTRINO PROBLEM

Chlorine detector (Homestake experiment) results and theory predictions. SNU: 1 event for 10^{36} target atoms per second. Kenneth R. Lang (2010)

MSW EFFECT AND SOLAR NEUTRINOS

$$\begin{split} \mathbf{H} &= \frac{\lambda(\mathbf{x}) - \omega_{\mathrm{v}} \cos 2\theta_{\mathrm{v}}}{2} \boldsymbol{\sigma}_{3} + \frac{\omega_{\mathrm{v}} \sin 2\theta_{\mathrm{v}}}{2} \boldsymbol{\sigma}_{1} \\ \begin{pmatrix} |\nu_{\mathrm{L}}\rangle \\ |\nu_{\mathrm{H}}\rangle \end{pmatrix} &= \begin{pmatrix} \cos \theta_{\mathrm{m}} & -\sin \theta_{\mathrm{m}} \\ \sin \theta_{\mathrm{m}} & \cos \theta_{\mathrm{m}} \end{pmatrix} \begin{pmatrix} |\nu_{\mathrm{e}}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} \\ \mathbf{H}_{\mathrm{matter-basis}} &= -\frac{\omega_{\mathrm{m}}}{2} \boldsymbol{\sigma}_{3} \end{split}$$

Yellow bar is the resonance point. Red: $|\nu_e\rangle$. Green: $|\nu_{\mu}\rangle$. Adapted from Smirnov, 2003.

MSW Effect Inverted Hierarchy

Suppose
$$\omega_{\mathrm{v}} = (m_2^2 - m_1^2)/2E < 0,$$

$$\mathbf{H} = \begin{bmatrix} -\frac{\omega_{\mathrm{v}}}{2} \begin{pmatrix} -\cos 2\theta_{\mathrm{v}} & \sin 2\theta_{\mathrm{v}} \\ \sin 2\theta_{\mathrm{v}} & \cos 2\theta_{\mathrm{v}} \end{pmatrix} & +\sqrt{2}G_{\mathrm{F}}n_{\mathrm{e}}(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$\downarrow$$

$$\mathbf{H} = \begin{pmatrix} -\frac{\omega_{\mathrm{v}}}{2} \cos 2\theta_{\mathrm{v}} + \frac{\lambda(x)}{2} \end{pmatrix} \sigma_3 - \frac{\omega_{\mathrm{v}}}{2} \sin 2\theta_{\mathrm{v}} \sigma_1$$

HAMILTONIAN

Matter Profile

$$\lambda(x) = \lambda_0 + \frac{\delta\lambda(x)}{\delta\lambda(x)}$$

Basis

Background matter basis (eigen energy basis): Hamiltonian is diagonalized with only background matter profile λ_0 ,

$$H_{background} = -\frac{\omega_m}{2} \sigma_3.$$

Hamiltonian

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{2} \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\frac{\delta \lambda(\mathbf{x})}{2}}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

HAMILTONIAN

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \sigma_{1}.$$

HAMILTONIAN

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = rac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2 heta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \right) \sigma_{3} - rac{\sin 2 heta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}.$$

RABI OSCILLATIONS

The coupling strength is calculated as

$$\alpha = \langle 1|\mathbf{d} \cdot \mathbf{E}|2\rangle$$

where the electric field is

$$\mathbf{E} = \mathbf{E}_0 \sin(kt)$$
.

and **d** is the dipole moment.

OSCILLATIONS WITH MULTIFREQUENCIES $\alpha = \frac{\sin 2\theta_m}{2}A$

$$\vec{H} = \omega_{\rm m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \sin(kx) \\ \cos(kx) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \sin(kx) \\ -\cos(kx) \\ 0 \end{pmatrix}$$

Dropping off-resonance frequency: Requirement?

$$ec{H} = egin{pmatrix} 0 \ 0 \ \omega_m \end{pmatrix} + lpha_1 egin{pmatrix} \cos(k_1 x) \ -\sin(k_1 x) \ 0 \end{pmatrix} + egin{pmatrix} lpha_2 egin{pmatrix} \cos(k_2 x) \ -\sin(k_2 x) \ 0 \end{pmatrix}$$

Corotating frame of the second frequency,

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 - k_2 x) \\ -\sin(k_1 - K_2 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$egin{pmatrix} 0 \ 0 \ \omega_m - k_2 \end{pmatrix} + egin{pmatrix} lpha_2 \ 0 \ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\sqrt{(\omega_{\mathrm{m}}-k_{2})^{2}+lpha_{2}^{2}}
ightarrow \omega_{\mathrm{m}}-k_{2}+rac{1}{2}rac{lpha_{2}^{2}}{\omega_{\mathrm{m}}-k_{2}}$$

Relative detuning

$$D' = \left| \frac{\omega_{\mathrm{m}} - k_1}{\alpha_1} + \frac{\alpha_2^2}{2\alpha_1(\omega_{\mathrm{m}} - k_2)} \right|$$

$$D' = \left| \frac{\omega_{\rm m} - k_1}{\alpha_1} + \frac{\alpha_2^2}{2\alpha_1(\omega_{\rm m} - k_2)} \right|$$

Two driving frequencies k_1 , and k_2 , with amplitude α_1 , and α_2 Destruction effect: $k_1 = \omega_{\rm m}, \, |\alpha_2| \gg \sqrt{2\omega_{\rm m}|\alpha_1(k_2-\omega_{\rm m})|} \equiv \alpha_{\rm 2,C}$

Grid lines: amplitude predicted using $1/(1+D^{\prime 2})$

α_2, κ_1 values				
Dashed	dotted	dash-dotted	solid	
$10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$10^{-2}\omega_{\rm m}, 10^{-1}\omega_{\rm m}$	$5.0 \times 10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$5 \times 10^{-2} \omega_{\rm m}, 10^{-1} \omega_{\rm m}$	

RABI FORMULA WORKS

Lines: Rabi formula Dots, diamonds, triangles, and squares are for $k=\omega_{\rm m}$, $k=(1-2\times 10^{-5})\omega_{\rm m}$, and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

PARAMETERS USED FOR VACUUM OSCILLATIONS

$$\begin{array}{l} \theta_{12}=33.36/180\pi;\,\theta_{13}=8.66/180\pi;\,\theta_{23}=40/180*\pi;\,\delta_{cp}=0;\\ m_1^2=0.01;\,m_2^2=m_1^2+0.000079;\,E=1\text{MeV} \end{array}$$

SINGLE FREQUENCY MATTER PROFILE

Why Does It Work?

$$J_n(n \operatorname{sech} \alpha) \sim \frac{e^{-n(\alpha - \tanh \alpha)}}{\sqrt{2\pi n \tanh \alpha}}, \quad ext{for large } n$$

 \Rightarrow

$$\Gamma \propto \hat{B}_n \propto rac{e^{-n(lpha - anh lpha)}}{\sqrt{2\pi n anh lpha}}$$

Small perturbation \Rightarrow Small $\hat{A} \Rightarrow$ Large $\alpha \Rightarrow$ Drops fast at large n.

SINGLE FREQUENCY MATTER PROFILE

Transition Probability

$$P_{ ext{L}
ightarrow ext{H}}^{(n)} = rac{\left|\hat{B}_{n}
ight|^{2}}{\left|\hat{B}_{n}
ight|^{2} + (n\hat{k}-1)^{2}}\sin^{2}\left(rac{q^{(n)}}{2}x
ight),$$

where

$$q^{(n)}=\sqrt{\left|\Gamma^{(n)}\right|^2+(n\hat{k}-1)^2},\quad ext{frequency of oscillations} \ \Gamma^{(n)}=\left|\hat{B}_n\right|,\quad ext{width of resonance }(n\hat{k} ext{ as parameter})$$

Resonance conditions

$$\hat{k} \sim \frac{1}{n}$$

Matter Profile

$$\lambda(x) = \lambda_0 + \delta\lambda(x), \quad \delta\lambda(x) = A_1 \sin(k_1 x) + A_2 \sin(k_2 x).$$

TWO-FREQUENCY MATTER PROFILE $\hat{h} = \sum_{i=1}^{\infty} \frac{1}{2} \hat{B}_{n} e^{i(n\hat{k}-1)\hat{x}}$,

Hamiltonian Off-diagonal Element

Apply Jacobi-Anger expansion,

$$\hat{h} = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} \frac{1}{2} \hat{B}_{n_1, n_2}(\hat{k}_1, \hat{k}_2) e^{i(n_1 \hat{k}_1 + n_2 \hat{k}_2 - 1)\hat{x}},$$

where

$$\begin{aligned} \hat{B}_{n_1,n_2}(\hat{k}_1,\hat{k}_2) \\ &= -(-i)^{n_1+n_2}(n_1\hat{k}_1 + n_2\hat{k}_2)J_{n_1}\left(\frac{\hat{A}_1\cos 2\theta_{\rm m}}{\hat{k}_1}\right)J_{n_2}\left(\frac{\hat{A}_2\cos 2\theta_{\rm m}}{\hat{k}_2}\right) \end{aligned}$$

Which terms are important?

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

		$k_1=\omega_{ m m}$	
\overline{n}	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$
1	0	-	3.2×10^{5}
-1	10^{5}	4.8×10^{-6}	3.1
2	1.1×10^{9}	2.1×10^{-14}	6.3
-2	3.4×10^{9}	6.9×10^{-15}	2.1

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

	$k_1 = (1 - $	$2 \times 10^{-}$	$^{-5})\omega_{ m m}$
$\overline{}$	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$
1	1	-	2.2×10^{5}
-1	10^{5}	1	3.1
2	1.1×10^{9}	1	6.3
-2	3.4×10^{9}	1	2.1

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$k_1 = (1-10^{-4})\omega_{ m m}$					
n	D	D_1'	$2\pi\omega_{\mathrm{m}}/\Omega_{n}$		
1	5.2	-	6.2×10^{4}		
-1	10^5	5.2	3.1		
2	1.1×10^{9}	5.2	6.3		
-2	3.4×10^9	5.2	2.1		

CASTLE WALL MATTER PROFILE

Figure: Castle wall matter profile

CASTLE WALL MATTER PROFILE

Table: Relative detuning of each frequency.

$\{n_1,n_2\}$	D	$D_{\{1,0\}}'$
$\{1,0\}$ $\{-1,0\}$ $\{0,1\}$ $\{2,0\}$	$0 \\ 48 \\ 1.5 \times 10^{2} \\ 2.4 \times 10^{2}$	$\begin{array}{c} \text{1.0} \times 10^{-2} \\ \text{1.1} \times 10^{-3} \\ \text{2.0} \times 10^{-4} \end{array}$

Resonance Lines

There are still resonances, i.e., (almost) zero phases, on lines

$$n_{1,0}\hat{k}_1 + n_{2,0}\hat{k}_2 - 1 = 0$$

in $\{\hat{k}_1, \hat{k}_2\}$ plane. \Rightarrow Resonance width for each point on resonance lines.

$\text{TWO-FREQUENCY MATTER PROFIL}^{\hat{h}} \bar{\bar{E}}^{\sum_{n_1} \sum_{n_2} \frac{1}{2} \hat{h}_{n_1, n_2}(\hat{k}_1, \hat{k}_2) e^{i(n_1 \hat{k}_1 + n_2 \hat{k}_2 - 1) \hat{x}},$

Density plot of transition amplitudes calculated using only one term out of the whole summation in Hamiltonian. $n_1, n_2 \in [-2, 2]$

Resonance line, distance to resonance, and width

Width

$$\Gamma_2 = \frac{\hat{B}_{n_1,n_2}(\hat{k}_{1,\mathrm{intercept}},\hat{k}_{2,\mathrm{intercept}})}{\sqrt{n_1^2 + n_2^2}}.$$

Distance to Resonance Line

$$d = \frac{|n_1\hat{k}_{10} + n_2\hat{k}_{20} - 1|}{\sqrt{n_1^2 + n_2^2}}.$$

Distance to Resonance Width Ratio

$$Q_2 = \frac{d}{\Gamma_2}.$$

BESSEL'S FUNCTION

$$J_n(eta) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+n+1)} \left(\frac{eta}{2}\right)^{2m+n}$$

REFERENCES I