Zweite Definition des Endlichen und Unendlichen.

Richard Dedekind

1889. 3. 9. [9th March 1889]

"Was sind und was sollen die Zahlen?" Seite XVII, in der Form: und was sollen die Zahlen?" page XVII, in the form:

Ein System S heißt endlich, wenn es sich so in sich selbst abbilden lässt, dass kein echter Teil von S in sich selbst abgebildet wird; im entgegengesetzten Fall heißt S ein unendliches System.

Verfolgung dieser Definition eines endlichen Systems S ohne Benutzung der natürlichen Zahlen.

Es sei φ eine Abbildung von S in sich selbst, durch welche kein echter Teil von S in sich selbst abgebildet wird. Kleine lateinische Buchstaben $a,b\dots z$ bedeuten immer *Elemente* von S, große lateinische Buchstaben $A, B \dots Z$ bedeuten Teile von S; die durch φ erzeugten Bilder von a, A werden resp. mit a', A' bezeichnet.

Dass A Teil von B ist, wird durch A 3 B ausgedrückt. Das aus den Elementen a, b, c, \ldots bestehende System wird mit $[a, b, c \ldots]$ bezeichnet.

Es ist also

$$(1) S' 3 S$$

und

(2) aus
$$A'$$
 3 A folgt $A = S$.

1. Satz. S' = S.

 \triangleright Jedes Element von S ist Bild von (mindestens) einem Element r von S. Denn aus (1) folgt (S')' 3 S', also nach (2) unser Satz.

Jedes aus einem einzigen Element s bestehende System [s] ist endlich, weil es keinen echten Teil besitzt und durch die identische Abbildung in sich selbst abgebildet wird. Dieser Fall wird im folgenden ausgeschlossen, S bedeutet ein endliches System, das nicht aus einem einzigen Element besteht.

2. Satz. Jedes Element s ist verschieden von seinem Bilde s', in Zeichen: $s \neq s'$.

 \triangleright Denn wäre s = s', so wäre $[s]' = [s'] = [s] \ 3 \ [s]$, nach (2) auch [s] = S im Widerspruch zu unserer Annahme über S.

Zuerst veröffentlicht in der zweiten Auflage (1893) der Schrift First published in the second edition (1893) of the text "Was sind

A system S is called finite if it can be mapped into itself in such a way that no proper part of S is mapped into itself; in the opposite case, S is called an infinite system.

Pursuing this definition of a finite system S without using the natural numbers.

Let φ be a mapping of S into itself, which maps no proper part of S into itself. Small Latin letters $a, b \dots z$ always mean elements of S, capital Latin letters $A, B \dots Z$ mean parts of S. The images of a, A generated by φ are respectively denoted by a', A'.

That A is part of B is expressed by $A \subseteq B$. The system consisting of the elements a, b, c, \ldots is denoted by $[a, b, c, \ldots]$.

This gives

$$(1) S' \subseteq S$$

and

(2) from
$$A' \subseteq A$$
 it follows that $A = S$.

1. Theorem. S' = S.

 \triangleright Every element of S is an image of (at least) one element r of S. Because from (1) it follows $(S')' \subseteq S'$, hence by (2), our proposition.

Every system [s] consisting of a single element s is finite because it has no proper part and is mapped into itself by the identity function. This case is excluded in the following; S means a finite system that does *not* consist of a single element.

2. Theorem. Every element s is different from its image s', in symbols: $s \neq s'$.

 \triangleright Because if s = s', then $[s]' = [s'] = [s] \subseteq [s]$, so according to (2), also [s] = S in contradiction to our assumption about S.

- H_s jeder solche Teil von S bezeichnet werden, der den beiden any part of S that satisfies the following two conditions: folgenden Bedingungen genügt:
 - I. s ist Element von H_s , also [s] 3 H_s , also auch

$$[s] + H_s = H_s.$$

- II. Ist h ein von s verschiedenes Element von H_s , so ist auch h'Element von H_s ; ist also H 3 H_s , aber s nicht in H enthalten, so ist H' 3 H_s .
- **4. Satz.** S und [s] sind spezielle Systeme H_s , und [s] ist der Durchschnitt (die Gemeinheit) aller dem Elemente s entsprechenden Systeme H_s .
 - ▷ Offenbar.
- **5. Satz.** $H_s = S$ oder echter Teil von S, je nachdem s' in H_s liegt oder nicht.
- \triangleright Denn wenn s' in H_s liegt, so folgt aus (3.11), dass H'_s 3 H_s , also nach (2), dass $H_s = S$ ist; und umgekehrt, wenn $H_s = S$, so liegt auch s' in H_s .
- **6. Satz.** Ist H_s echter Teil von S, so ist s' das einzige Element von H'_s , das außerhalb H_s liegt.
- \rhd Denn jedes Element k von H_s' ist Bildh' von mindestens einem Element h in H_s ; ist nun k = h' verschieden von s', so ist auch h verschieden von s, und folglich (nach 3.II) liegt k = h' in H_s , während das Element s' von H'_s nach $\underline{5}$ außerhalb H_s liegt.
- 7. Satz. Jedes System H'_s ist ein System $H_{s'}$, das heißt (Definition <u>3</u>):
 - I'. s' ist Element von H'_s .
 - II'. Ist k ein von s' verschiedenes Element von H'_s , so liegt auch k' in H'_{s} .
- \triangleright Das Erste folgt daraus, dass s in H_s liegt, das Zweite daraus, dass nach Satz $\underline{6}$ k in H_s liegt.
- **8. Satz.** Sind $A, B, C \dots$ spezielle, demselben s entsprechende Systeme H_s , so ist auch ihr Durchschnitt H ein System H_s .
- \triangleright Denn zufolge <u>3.1</u> ist s gemeinsames Element von A, B, C, \ldots also auch Element von H. Ist ferner h ein von s verschiedenes Element von H, so ist zufolge 3.II das Bild h' Element von A, von B, von C, ..., also auch von H. Mithin erfüllt H die beiden für jedes H_s charakteristischen Bedingungen I, II in $\underline{3}$.
- **9. Definition.** Sind a, b bestimmte Elemente von S, so soll das Symbol ab den Durchschnitt aller derjenigen Systeme H_b bedeuten (Strecke ab), welche (wie z. B. S) das Element a enthalten.

- 3. Definition. Ist s ein bestimmtes Element von S so soll mit 3. Definition. If s is a certain element of S, then H_s shall denote
 - I. s is element of H_s , so $[s] \subseteq H_s$, also

$$[s] + H_s = H_s.$$

- II. If h is an element of H_s different from s, then h' is also an element of H_s . So if $H \subseteq H_s$, but s is not contained in H, then $H' \subseteq H_s$.
- **4. Theorem.** S and [s] are special systems H_s , and [s] is the intersection (the common) of all systems H_s corresponding to the element s.
 - ▷ Obvious.
- **5. Theorem.** $H_s = S$ or H_s is a *proper* part of S, depending on whether s' lies in H_s or not.
- \triangleright For if s' lies in H_s , then it follows from (3.II) that $H'_s \subseteq H_s$, therefore by (2) that $H_s = S$. Conversely, if $H_s = S$, then s' also lies in H_s .
- **6. Theorem.** If H_s is a proper part of S, then s' is the only element of H'_s that lies outside H_s .
- \triangleright This is because every element k of H'_s is the image h' of at least one element h in H. If k = h' is different from s', then h is also different from s, and consequently (by 3.II) k = h' lies in H_s , while the element s' of H'_s by $\underline{5}$ lies outside H_s .
- 7. Theorem. Every system H'_s is a system $H_{s'}$, that is (by definition 3.):
 - I'. s' is element of H'_s
 - II'. If k is an element of H'_s that is different from s', then k' also lies in H'_s .
- \triangleright The first follows from the fact that s lies in H_s , the second from the fact that k lies in H_s by 6.
- **8. Theorem.** If $A, B, C \dots$ are special systems H_s corresponding to the same s, then their intersection H is also a system H_s .
- \triangleright Because according to 3.I s is a common element of A, B, C, \ldots thus also an element of H. If h is an element of H that is different from s, then by 3.II, the image h' is an element of A, of B, of C, \dots , and therefore also of H. H thus fulfills the two conditions I and II in definition 3 that are characteristic of every H_s .
- **9. Definition.** If a, b are certain elements of S, then the symbol ab (section ab) should mean the intersection of all those systems H_b which (such as S) contain the element a.

10. Satz. *a* ist Element von *ab*, d. h. [*a*] 3 *ab*.

 \triangleright Denn ab ist der Durchschnitt von lauter solchen Systemen H_b in denen a liegt. (a Anfang von ab.)

11. Satz. ab ist ein System H_b , d. h. [b] 3 ab, und wenn s ein von b verschiedenes Element von ab ist, so ist [s'] 3 ab.

 \triangleright Dies folgt aus 8.

Also b Element (Ende) von ab. Ist H 3 ab, aber b nicht in H enthalten, so ist H' 3 ab.

12. Satz. Aus [a] 3 H_b folgt ab 3 H_b .

□ Unmittelbare Folge von 9.

13. Satz. aa = [a].

 \triangleright Dies folgt aus $\underline{4}$, weil aa der Durchschnitt aller H_a ist, die ja alle das Element a enthalten nach $\underline{3}$.I

14. Satz. Ist b' Element von ab, so ist ab = S.

 \triangleright Dies folgt aus 11 und 5.

15. Satz. b'b = S.

 \triangleright Dies folgt aus 14 und 10.

16. Satz. Ist c Element von ab, so ist $cb \ 3 \ ab$.

 \triangleright Dies folgt aus <u>12</u>, denn *ab* ist ein H_b , (nach <u>11</u>), welches das Element c enthält.

17. Satz. Bedeutet A+B das aus A,B zusammengesetzte System, so ist

$$a'b + b'a = S$$
.

 \triangleright Denn wenn s Element von a'b, so ist s' in b'a oder a'b enthalten, je nachdem s=b oder verschieden von b (zufolge $\underline{10}$ oder $\underline{11}$ und $\underline{3}$.II), und ebenso, wenn s Element von b'a, so ist s' in a'b oder b'a enthalten; also ist (a'b+b'a)' 3 a'b+b'a; hieraus folgt der Satz nach (2).

18. Satz. Ist a verschieden von b, so ist ab = [a] + a'b.

 \triangleright Denn da a ein von b verschiedenes Element von ab ist, so ist a' Element von ab $\underline{10}$, $\underline{11}$, und folglich $\underline{16}$ ist a'b 3 ab; da ferner $\underline{10}$ auch [a] 3 ab, mithin

$$[a] + a'b \ 3 \ ab.$$

Ferner: jedes von b verschiedene Element s von [a]+a'b ist entweder =a oder ein von b verschiedenes Element von a'b, in beiden Fällen ist s' (nach $\underline{10}$, $\underline{11}$) Element von a'b, also auch von [a]+a'b, und da $\underline{11}$ auch [b] 3 [a]+a'b, so ist [a]+a'b ein System H_b ; da endlich auch [a] 3 [a]+a'b, so ist $\underline{12}$ auch

$$ab \ 3 \ [a] + a'b.$$

Aus der Vergleichung beider Resultate folgt der Satz.

10. Theorem. a is an element of ab, i.e., $[a] \subseteq ab$.

 \triangleright This is because ab is the intersection of all systems H_b in which a lies. (So a is the start of ab.)

11. Theorem. ab is a system H_b , i.e. $[b] \subseteq ab$, and if s is an element of ab different from b, then $[s'] \subseteq ab$.

 \triangleright This follows from 8.

So b is an element (the end) of ab. If $H \subseteq ab$ but b is not contained in H, then $H' \subseteq ab$.

12. Theorem. From $[a] \subseteq H_b$, follows from $ab \subseteq H_b$.

▶ Immediate consequence of definition 9.

13. Theorem. aa = [a].

 \triangleright This follows from $\underline{4}$, because aa is the intersection of all H_a that contain the element a according to $\underline{3}$.I.

14. Theorem. If b' is an element of ab, then ab = S.

 \triangleright This follows from $\underline{11}$ and $\underline{5}$.

15. Theorem. b'b = S.

 \triangleright This follows from 14 and 10.

16. Theorem. If c is an element of ab, then $cb \subseteq ab$.

 \triangleright This follows from <u>12</u>, since ab is an H_b by <u>11</u>, that contains the element c.

17. Theorem. If A + B means the system composed of A, B, then one has

$$a'b + b'a = S$$
.

 \triangleright Because if s is an element of a'b, then s' is contained in b'a or a'b, depending on s=b or different from b (according to $\underline{10}$ or $\underline{11}$ and $\underline{3}$.II), and likewise if s is an element of b'a, then s' is contained in a'b or b'a; therefore $(a'b+b'a)'\subseteq a'b+b'a$. This leads to the theorem according to (2).

18. Theorem. If a is different from b, then ab = [a] + a'b.

 \triangleright For since a is an element of ab different from b, then a' is an element of ab (by $\underline{10}$, $\underline{11}$), and consequently (by $\underline{16}$) $a'b \subseteq ab$; since furthermore, by $\underline{10}$, we also have $[a] \subseteq ab$, therefore

$$[a] + a'b \subseteq ab.$$

Also, every element s of [a] + a'b that is different from b is either = a or an element of a'b that is different from b. Thus in both cases s' is (by $\underline{10}$, $\underline{11}$) an element of a'b, therefore also of [a] + a'b, and since by $\underline{11}$) also $[b] \subseteq [a] + a'b$, it follows that [a] + a'b is a system H_b . Finally, since $[a] \subseteq [a] + a'b$, by $\underline{12}$ also

$$ab \subseteq [a] + a'b$$
.

The theorem follows from the comparison of both results.

19. Satz. Sind a, b verschiedene Elemente von S, so liegt a außer19. Theorem. If a, b are different elements of S, then a lies outside halb a'b, und b liegt außerhalb b'a.

 \triangleright Nimmt man nämlich das Gegenteil an, es gebe ein von b verschiedenes Element a, das in a'b liegt, und bezeichnet mit A das System aller solcher Elemente a, so ergibt sich folgendes.

Setzt man a' = s, so liegt a in sb, und da a verschieden von b ist, also (nach $\underline{13}$) nicht in bb liegt, so ist s verschieden von b, und hieraus folgt (nach 18), dass sb = [s] + s'b ist. Da ferner a (nach 2) verschieden von s ist und in sb liegt, so muss a in s'b liegen, und hieraus folgt (wieder nach $\underline{1}$), dass auch s (als Bild a') in s'b liegt.

Mithin ist das Bild a' eines jeden Elementes a von A ebenfalls in A enthalten, also A' 3 A. Da aber hieraus a = S folgen würde, während doch A das Element b nicht enthält, so ist unsere Annahme unzulässig, also der Satz wahr, w.z.b.w.

Der zweite Teil folgt durch Vertauschung von a mit b.

20. Satz. Sind a, b verschieden, so haben die Strecken a'b, b'a kein gemeinsames Element.

⊳ Nimmt man nämlich das Gegenteil an, es gebe ein gemeinsames Element m von a'b, b'a, so folgt aus dem vorhergehenden Satz 19, dass m verschieden von b und von a ist; mithin muss 11 das Bild m' ebenfalls gemeinsames Element von a'b und b'a sein.

Bezeichnet man daher mit M das System aller solcher Elemente m, so ist M' 3 M, also M = S. Dies ist aber unmöglich, weil a, bElemente von S, aber nicht Elemente von M sind. Also ist unser Satz wahr.

21. Satz. Sind a, b verschieden, so sind auch die Bilder a', b' ver- **21. Theorem.** If a, b are different, then the images a', b' are also schieden.

 \triangleright Denn sonst hätten die Strecken a'b, b'a ein gemeinsames Element a' = b', weil a' (nach 10) Element von a'b und b' Element von b'a ist.

22. Satz. Aus cb = S folgt c = b'.

 \triangleright Es gibt (nach 1 und 21) in S ein und nur ein Element a, welches der Bedingung a' = c genügt, und es ist also a'b = S, mithin [a] 3 a'b; es muss daher (19) a = b, also c = b' sein, w.z.b.w.

23. Satz. Sind a, b verschieden, so ist jedes Element von S in einer und nur einer der Strecken a'b, b'a enthalten.

 \triangleright Dies folgt aus 17 und 20.

a'b kein gemeinsames Element, und dasselbe gilt von den Strecken a'c, b'a, c'b.

▷ Denn die gegenteilige Annahme, es gebe ein den Strecken b'c, c'a, a'b gemeinsames Element m, führt zu einem Widerspruch. common to the segments b'c, c'a, a'b, leads to a contradiction. Let Es sei M das System aller solcher Elemente. Da (nach 19) a nicht M be the system of all such elements. Since (according to 19) a is

a'b, and b lies outside b'a.

 \triangleright If one assumes the opposite, that there is an element a that is different from b and lies in a'b, and that A denotes the system of all such elements a, the following holds.

If one puts a' = s, then a lies in sb, and since a is different from b, and therefore (according to $\underline{13}$) is not in bb, then s is different from b, and from this it follows (according to $\underline{18}$) that sb = [s] + s'b. Furthermore, since a (according to 2) is different from s and lies in sb, then a must lie in s'b, and from this it follows (again according to $\underline{1}$) that s (as the image a') also lies in s'b. Therefore, the image a' of every element a of A is also contained in A, i.e. $A' \subseteq A$. But since A = S would follow from this, while A does not contain the element b, our assumption is inadmissible, so the theorem is true, ged. The second part follows by exchanging a with b.

20. Theorem. If a, b are different, then the segments a'b, b'ahave no common element.

▶ If one assumes the opposite, that there is a common element m of a'b, b'a, then it follows from the preceding Theorem 19 that m is different from b and from a; therefore (according to 11) the image m' must also be a common element of a'b and b'a.

Therefore, if M denotes the system of all such elements m, then $M' \subseteq M$, thus M = S. But this is impossible because a, b are elements of S but not elements of M. So our theorem is true.

different.

 \triangleright Otherwise the segments a'b, b'a would have a common element a' = b', because (according to 10) a' is an element of a'b and b' is an element of b'a.

22. Theorem. From cb = S follows c = b.

 \triangleright There is (according to 1 and 21) in S one and only one element a which satisfies the condition a' = c, and therefore a'b = S, therefore $[a] \subseteq a'b$; therefore (by $\underline{19}$) a = b, thus c = b', qed.

23. Theorem. If a, b are different, then every element of S is contained in one and only one of the segments a'b, b'a.

 \triangleright This follows from 17 and 20.

24. Satz. Sind a, b, c verschieden, so haben die Strecken b'c, c'a, **24. Theorem.** If a, b, c are different, then the segments b'c, c'a, a'b have no common element, and the same applies to the segments a'c, b'a, c'b.

 \triangleright Because the opposite assumption, that there is an element m

in a'b, b nicht in b'c, c nicht in c'a liegt, so ist m verschieden von c, a, b, und folglich (11) ist m' ebenfalls gemeinsames Element von b'c, c'a, a'b, also Element von M.

Mithin ist M' 3 M, also M = S. Dies ist aber unmöglich, weil M keins der Elemente a, b, c enthält. Also ist unser Satz wahr.

Der zweite Teil ergibt sich aus dem ersten, wenn man a mit bvertauscht, wodurch die Annahme nicht geändert wird.

Zusatz. Setzt man (wie auch in dem folgenden 25):

$$A = c'b$$
, $B = a'c$, $C = b'a$; $A_1 = b'c$, $B_1 = c'a$, $C_1 = a'b$,

$$S = A + A = B + B_1 = C + C_1;$$

 $0 = A - A_1 = B - B_1 = C - C_1.$

Dies gilt auch dann (nach 20), wenn von den Elementen a, b, c This also applies (according to 20) if at least two of the elements wenigstens zwei verschieden sind.

25. Satz. Sind a, b, c verschieden, so tritt einer und nur einer der beiden folgenden Fälle ein: Entweder ist

$$b'c = b'a + a'c$$
, $c'a = c'b + b'a$, $a'b = a'c + c'b$
 $c'b = c'a - a'b$, $a'c = a'b - b'c$, $b'a = b'c - c'a$

und jedes Element von S liegt in einer, aber nur einer der Strecken c'b, a'c, b'a; oder es ist

$$c'b = c'a + a'b$$
, $a'c = a'b + b'c$, $b'a = b'c + c'a$
 $b'c = b'a - a'c$, $c'a = c'b - b'a$, $a'b = a'c - c'b$

und jedes Element von S liegt in einer, aber nur einer der Strecken b'c, c'a, a'b.

 \triangleright Zufolge 23 liegt c entweder in a'b oder in b'a. Wir betrachten nur den ersten Fall, weil aus ihm der zweite durch Vertauschung von a mit b hervorgeht. Da c in a'b liegt und von b verschieden ist, so liegt (nach 11)) auch c' in a'b, und folglich (16) ist c'b 3 a'b; hieraus folgt (nach 19), dass c'b mit b'a kein gemeinsames Element hat; nun ist (mit $\underline{17}$) a'b + b'a = b'c + c'b, mithin $b'a \ 3 \ b'c$ und folglich (11) liegt a in b'c.

Aus der Annahme, dass c in a'b liegt, hat sich also ergeben: c'b 3 a'b, b'a 3 b'c, a liegt in b'c. Auf dieselbe Weise ergeben sich aus dieser letzten Folgerung, wenn man c, a, b in der Annahme resp. durch a, b, c ersetzt, wieder die Folgerungen a'c 3 b'c, c'b 3 c'a, b liegt in c'a; und hieraus folgt abermals b'a 3 c'a, a'c 3 a'b (und die erste Annahme: c liegt in a'b).

Es ist also: c'b 3 a'b, b'a 3 b'c, a'c 3 b'c, c'b 3 c'a, b'a 3 c'a, $a'c \ 3 \ a'b$, also auch $b'a + a'c \ 3 \ b'c$, $c'b + b'a \ 3 \ c'a$, $a'c + c'b \ 3 \ a'b$.

not in a'b, b is not in b'c, c is not in c'a, then m is different from c, a, b, and consequently (by 11) m' is a common element of b'c, c'a, a'b, i.e. an element of M; therefore $M' \subseteq M$, hence M = S.

But this is impossible because M does not contain any of the elements a, b, c. So our theorem is true.

The second part results from the first if one swaps a with b, which does not change the assumption.

Corollary. If you put (as in the following 25):

$$A = c'b$$
, $B = a'c$, $C = b'a$; $A_1 = b'c$, $B_1 = c'a$, $C_1 = a'b$,

so ist A - B - C = 0 (leer) (dabei bedeutet das Zeichen – den then A - B - C = 0 (empty) (the symbol – denotes intersection) Durchschnitt) und $A_1 - B_1 - C_1 = 0$ (leer) und (nach $\underline{17}$, $\underline{20}$) ist and $A_1 - B_1 - C_1 = 0$ (empty) and (according to $\underline{17}$, $\underline{20}$) hence

$$S = A + A = B + B_1 = C + C_1;$$

 $0 = A - A_1 = B - B_1 = C - C_1.$

a, b, c are different.

25. Theorem. If a, b, c are different, then one and only one of the following two cases occurs: Either

$$b'c = b'a + a'c$$
, $c'a = c'b + b'a$, $a'b = a'c + c'b$
 $c'b = c'a - a'b$, $a'c = a'b - b'c$, $b'a = b'c - c'a$

and each element of S lies in one, but only one, of the segments c'b, a'c, b'a; or

$$c'b = c'a + a'b$$
, $a'c = a'b + b'c$, $b'a = b'c + c'a$
 $b'c = b'a - a'c$, $c'a = c'b - b'a$, $a'b = a'c - c'b$

and each element of S lies in one, but only one, of the segments b'c, c'a, a'b.

 \triangleright According to 23, c lies either in a'b or in b'a. We only consider the first case because the second arises from it by exchanging a for b. Since c is in a'b and is distinct from b, then (according to 11) c' also lies in a'b, and consequently (by 16) $c'b \subseteq a'b$; from this it follows (by 19) that c'b has no element in common with b'a; now (by $\underline{17}$) is a'b + b'a = b'c + c'b, therefore $b'a \subseteq b'c$, and consequently (by $\underline{11}$) a is in b'c.

From the assumption that c lies in a'b, it follows: $c'b \subseteq a'b$, $b'a \subseteq b'c$, a lies in b'c. In the same way, this last conclusion follows if one assumes c, a, b replaced by a, b, c, respectively, again we have the consequences $a'c \subseteq bc$, $cb \subseteq c'a$, and that b lies in c'a; and from this it follows again $b'a \subseteq c'a$, $a'c \subseteq a'b$ (and the first assumption: c lies in a'b).

Therefore: $c'b \subseteq a'b$, $b'a \subseteq b'c$, $a'c \subseteq b'c$, $c'b \subseteq ca$, $b'a \subseteq c'a$, $a'c \subseteq a'b$, and also $b'a + a'c \subseteq b'c$, $c'b + b'a \subseteq c'a$, $a'c + c'b \subseteq a'b$.

Läge nun z. B. ein Element von b'c weder in b'a, noch in a'c, so wäre es (nach 23) gemeinsames Element von b'c, a'b, c'a, was (nach 24) unmöglich ist; mithin ist b'c 3 b'a+a'c, also auch b'c=b'a+a'c, und ebenso folgt c'a = c'b + b'a, a'b = a'c + c'b.

Hätten nun z. B. b'a, a'c ein gemeinsames Element, so wäre dasselbe auch gemeinsames Element von b'c, c'a, a'b, was (nach 24) nicht der Fall ist. Aus S = b'c + c'b folgt endlich S = b'a + a'c + c'b, womit unser Satz vollständig bewiesen ist.

Zusatz. Es kann nie gleichzeitig [a] 3 cb und [b] 3 ca sein; weil (nach 18) dann auch gleichzeitig [a] 3 c'b und [b] 3 c'a sein müsste, was unmöglich.

26. Satz. Aus ab = cb folgt a = c, und wenn ab = cd ein echter Teil von S ist, so ist a = c, b = d.

 \triangleright Dies folgt schon aus früheren Sätzen. Da (nach $\underline{10}$) c in cb, also auch in ab liegt, so muss, falls a = b, also ab = [a] ist, auch c = asein. Ist aber a verschieden von b, so ist (nach 18) ab = [a] + a'b, und (nach $\underline{19}$) a'b ist echter Teil von ab; nimmt man an, es sei c verschieden von a, so muss c in a'b liegen, also ist (nach 16) $cb \ 3 \ a'b$, also cb echter Teil von ab; da aber cb = ab ist, so ist diese Annahme unzulässig, mithin immer c = a, w.z.b.w.

Ist ferner ab = cd ein echter Teil von S, so muss b = d sein; ist nämlich b verschieden von d, so muss (11) auch b' in cd, also auch in ab liegen; dann wäre aber (14) ab = S gegen die Voraussetzung, also ist b = d, mithin ab = cb, also auch a = c, w.z.b.w.

27. Satz. Jedes (in 3 erklärte) System H_s , ist eine Strecke a'smit dem Ende s und ihr Anfang a' ist völlig bestimmt.

 \triangleright Ist $H_s = S$, so ist $H_s = s's$ (nach <u>15</u>). Ist H_s aber echter Teil von S, so sei A das System aller außerhalb H_s liegenden Elemente von S, also $S = A + H_s$. Da A echter Teil von S ist, so kann nicht A' 3 A sein, es gibt also gewiss ein Element a in A, dessen Bild a'außerhalb A, also in H_s liegt; da (nach 12) folglich $a's 3 H_s$ ist, so haben a's, A kein gemeinsames Element.

Da a in A, s in H_s (sogar in a's) liegt, so sind a, s verschieden, also haben (nach 20) die Strecken a's, s'a kein gemeinsames Element, und (nach $\underline{17}$) ist $a's + s'a = S = H_s + A$, mithin $A \ni s'a$. Nimmt man nun an, es sei a's ein echter Teil von H_s , und bezeichnet mit H das System aller derjenigen Elemente von H_s , welche außerhalb a's, also in s'a, so ist $H_s = H + a's$, und s'a = H + A, $H_s = H + a's$, and s'a = H + A, so $H = H_s - s'a$ is the intersection also ist $H = H_s - s'a$ der Durchschnitt der Systeme H_s , s'a.

Da nun weder s noch a in H liegt, so folgt aus H 3 H_s , und $H \ 3 \ s'a \ (\text{nach } \underline{3} \ \text{und } \underline{11}), \ \text{dass auch } H' \ 3 \ H_s \ \text{und } H' \ 3 \ s'a, \ \text{also}$ auch H' 3 H, mithin H = S ist. Dies ist aber unmöglich, weil s(und ebenso a) außerhalb H liegt. Mithin ist gewiss $H_s = a's$, und A = s'a, w.z.b.w.

If now an element of, say, b'c is neither in b'a nor in a'c, then (by 23) it would be a common element of b'c, a'b, c'a, which (by 24) is impossible; therefore $b'c \subseteq b'a + a'c$, therefore also b'c = b'a + a'c, and likewise follows c'a = c'b + b'a, a'b = a'c + c'b.

If, say, b'a, a'c have a common element, then the same would also be a common element of b'c, c'a, a'b, which (according to $\underline{24}$) is not the case. From S = b'c + c'b we finally get S = b'a + a'c + c'b, which means our theorem is completely proven.

Corollary. It can never be that $[a] \subseteq cb$ and $[b] \subseteq ca$ at the same time; because (according to $\underline{18}$) then $[a] \subseteq c'b$ and $[b] \subseteq c'a$ would have to be at the same time, which is impossible.

26. Theorem. From ab = cb it follows that a = c, and if ab = cdis a proper part of S, then a = c, b = d.

 \triangleright This follows from earlier theorems. Since (by <u>10</u>) c is in cb, and therefore also in ab, then if a = b, then ab = [a], then must also c = a. But if a is different from b, then (by 18) ab = [a] + a'b, and (by $\underline{19}$) a'b is a proper part of ab. If one assumes that c is different from a, then c must lie in a'b, so (by 16) $cb \subseteq a'b$, i.e. cb is a proper part of ab; But since cb = ab, this assumption is inadmissible, and therefore always c = a, qed.

Furthermore, if ab = cd is a proper part of S, then b = d; If b is different from d, then (by 11) b' must also be in cd, and therefore also in ab; But then (by $\underline{14}$) would ab = S violating the assumption, so b = d, therefore ab = cb, therefore also a = c, qed.

27. Theorem. Every system H_s (defined in 3) is a segment a'swith the end s and its beginning a' completely determined.

 \triangleright If $H_s = S$, then $H_s = s's$ (according to <u>15</u>). But if H_s is a proper part of S, then A is the system of all elements of S that lie outside H_s , so $S = A + H_s$. Since A is a proper part of S, then $A' \subseteq A$ cannot be, so there is certainly an element a in A, whose image a' lies outside A, hence in H_s . Since (according to 12) $a's \subseteq H_s$, then a's and A have no common element.

Since a is in A, s is in H_s (even in a's), then a and s are different, so (by $\underline{20}$) the segments a's, s'a have no common element, and (by <u>17</u>) $a's + s'a = S = H_s + A$, therefore $A \subseteq s'a$. If one now assumes that a's is a proper part of H_s , and H denotes the system of all those elements of H_s which are outside a's, i.e., in s'a, then of the systems H_s , s'a.

Since neither s nor a lies in H, it follows from $H \subseteq H_s$, and $H \subseteq s'a$ (according to $\underline{3}$ and $\underline{11}$) that $H' \subseteq H_s$ and $H' \subseteq s'a$, therefore also $H' \subseteq H$, hence H = S. But this is impossible because s (and also a) lies outside H. Therefore certainly $H_s = a's$, and A = s'a, qed.

28. Satz. Der Durchschnitt von solchen Strecken as, bs, \ldots welche dasselbe Ende s haben, ist selbst eine solche Strecke hs, und ihr Anfang h ist vollständig bestimmt.

 \triangleright Denn jede solche Strecke ist (nach <u>11</u>) ein System H_s , und (nach <u>8</u>) gilt dasselbe von ihrem Durchschnitt, woraus der Satz (nach <u>27</u>) folgt.

Zusatz. Der Durchschnitt der Strecken as, bs, cs, ... ist selbst eine dieser Strecken.

Zum Beweise schicke man folgenden Hilfssatz voraus:

Hilfssatz. Ist hs echter Teil von as, und k das Element, dessen Bild k' = h ist, so ist hs auch echter Teil von ks, und zugleich ist ks 3 as.

ightharpoonupWäre k=s, so wäre hs=s's=S, während doch hs echter Teil von as, also auch von S ist. Da also k verschieden von s ist, so ist (nach $\underline{18}$) ks=[k]+hs und (nach $\underline{19}$) k nicht in hs enthalten, also hs echter Teil von ks. Da hs echter Teil von as ist, so sei as=M+hs, wo M das System aller Elemente m von as, die außerhalb hs liegen und also auch von s verschieden sind. Daraus folgt M' 3 as, und da offenbar M' nicht Teil von M sein kann (weil M nicht =S ist), so muss es in M ein Element m geben, dessen Bild m' außerhalb M, also in hs liegt, woraus m's 3 hs folgt.

[Der Beweis ist offenbar unvollständig. Ein Beweis des Hilfssatzes ergibt sich nach Mitteilung von J. Cavaillès direkt aus <u>25</u>, indem man die dortigen a, b, c durch a, k, s ersetzt. Der Zusatz folgt aus <u>28</u> und dem Hilfssatz. E. N.

29. Satz. Ist T ein Teil von S, und s ein Element von S, so gibt es in S immer ein und nur ein zugehöriges Element s_1 , welches die beiden folgenden Eigenschaften hat:

- 1. Wenn a der Bedingung T 3 as genügt, so ist s_1s 3 as.
- 2. $T \ 3 \ s_1 s$.

Hieraus folgen die beiden Eigenschaften:

- 3. s_1 liegt in T.
- 4. Die Strecke ss_1 enthält kein von s und s_1 verschiedenes Element von T.

 \triangleright Da s's=S, also T 3 s's ist $(\underline{15})$, so gibt es mindestens ein Element a, das der Bedingung T as genügt. Ist A das System aller dieser Elemente a, so ist (nach $\underline{28}$) der Durchschnitt aller ihnen entsprechenden Strecken eine Strecke s_1s , wo s_1 ein völlig bestimmtes Element von S ist. Nach dem Begriffe eines Durchschnitts hat s_1 die Eigenschaft 1., aber auch die Eigenschaft 2., weil T ein gemeinsamer Teil aller as, mithin auch Teil ihres Durchschnitts

28. Theorem. The intersection of such segments as, bs, \ldots which have the same end s is itself such a segment hs, and its beginning h is completely determined.

 \triangleright For every such segment is (according to $\underline{11}$) a system H_s , and (according to $\underline{8}$) the same applies to its intersection, from which the theorem (according to $\underline{27}$) follows.

Corollary. The intersection of the segments as, bs, cs... is itself one of these segments.

To prove it, we first provide the following lemma:

Lemma. If hs is a proper part of as, and k is the element whose image is k' = h, then hs is also a proper part of ks, and at the same time $ks \subseteq as$.

ightharpoonup If k=s, then hs=s's=S, while hs is a proper part of as, and therefore also of S. Since k is different from s, then (by 18) ks=[k]+hs, and (according to 19) k is not contained in hs, so hs is a proper part of ks. Since hs is a proper part of as, let as=M+hs, where M is the system of all elements m of as that lie outside hs and are therefore also different from s. From this follows $M'\subseteq as$, and since M' obviously cannot be part of M (because M is not =S), there must be in M an element m, the image m' of which lies outside M, hence in hs, from which $m's\subseteq hs$ follows.

[The proof is apparently incomplete. According to J. Cavaillès, a proof of the Lemma results directly from <u>25</u> by replacing the a, b, c there by a, k, s. The Corollary follows from <u>28</u> and the Lemma. E. N.]

- **29. Theorem.** If T is a part of S, and s is an element of S, then in S there is always one and only one associated element s_1 , which has the following two properties:
 - 1. If a satisfies the condition $T \subseteq as$, then $s_1s \subseteq as$.
 - 2. $T \subseteq s_1 s$.

From this follow the two properties:

- 3. s_1 is in T.
- 4. the segment ss_1 contains no element of T that is different from s and s_1 .

 \triangleright Since s's = S, therefore $T \subseteq s's$ (by <u>15</u>), there is at least one element a that satisfies the condition $T \subseteq as$. If A is the system of all such elements a, then (according to <u>28</u>) the intersection of all the segments corresponding to them is a segment s_1s , where s_1 is a completely determined element of S. According to the concept of an intersection, s_1 has the property 1., but also property 2., because T is a common part of all as, and therefore also part

 s_1s ist. Ist $s_1 = s$, also $s_1s = ss = [s]$, so folgt aus 2., dass T aus dem einzigen Elemente s besteht; und umgekehrt, wenn s in Tliegt und das einzige Element von T ist, so ist T = [s] = ss], also nach 1. auch s_1s 3 ss, mithin $s_1=s$; in diesem Falle hat daher s_1 die Eigenschaft 3. und offenbar auch die Eigenschaft 4. Ist aber s_1 verschieden von s, so ist (nach $\underline{18}$) $s_1s = [s_1] + (s_1)'s$.

Nimmt man nun an, s_1 liege außerhalb T, es sei also jedes Element von T verschieden von s_1 , so folgt aus 2. auch T 3 $(s_1)'s$, und hieraus nach 1. auch ss_1 3 $(s_1)'s$, was aber unmöglich ist, weil das (nach $\underline{10}$) in s_1s liegende Element s_1 (nach $\underline{19}$) außerhalb $(s_1)'s$ liegt. Mithin ist unsere Annahme unzulässig, d. h. s_1 hat die Eigenschaft 3.

Wir betrachten nun die Strecke ss_1 ; besitzt sie ein von s und s_1 verschiedenes Element u, so ist auch s verschieden von s_1 (weil sonst $ss_1 = [s]$, also auch u = s wäre), und (nach $\underline{18}$) $ss_1 = [s] + ss_1$; mithin liegt u in $s's_1$, also (nach 19) außerhalb $(s_1)'s$, und da (wie oben) $s_1s = [s_1] + (s_1)'s$, und u auch von s_1 verschieden ist, so liegt u auch außerhalb s_1s , also zufolge 2. auch außerhalb T', d. h. s_1 hat auch die Eigenschaft 4.

30. Abbildung von S nach T. Durch $\underline{29}$ ist eine Abbildung ψ von S in T hergestellt, welche dadurch definiert wird, dass jedes Element s von S durch ψ in das dort erklärte, (nach 3) in T liegende Element s_1 übergeht. Ist dann A irgend ein Teil von S, so soll A_1 das zugehörige Bild von A (d. h. das System der Bilder aller Elemente a_1 von A) bedeuten. Es ist also S_1 3 T, also auch T_1 3 T, d. h. T wird durch ψ in sich selbst abgebildet.

31. Satz. Diese Abbildung ψ von T in sich selbst ist eine ähnliche, d. h. sind a, b verschiedene Elemente von T, so sind auch deren Bilder a_1, b_1 verschieden.

 \triangleright Nach 29 ist T 3 a_1a und T 3 b_1b . Da nun a, b Elemente von T sind, so ist auch [a] 3 b_1b , [b] 3 a_1a . Wäre nun, obgleich a, bwäre), so ist dies (nach Zusatz zu 25) unmöglich. Mithin sind a_1 , to 25). Therefore a_1, b_1 are different, qed. b_1 verschieden, w.z.b.w.

of their intersection s_1s . If $s_1 = s$, then $s_1s = ss = [s]$, then it follows from 2. that T consists of the single element s; and vice versa, if s lies in T and is the only element of T, then T = [s] = ss, so then according to 1. $s_1s \subseteq ss$, therefore $s_1 = s$. In this case, s_1 therefore has the property 3. and obviously also the property 4. But if s_1 is different from s, then (according to $\underline{18}$) $s_1s = [s_1] + (s_1)'s$.

If one now assumes that s_1 lies outside T, if every element of T is different from s_1 , it follows from 2. also that $T \subseteq (s_1)'s$, and from this according to 1. we also have $s_1s \subseteq (s_1)'s$, but this is impossible because (according to $\underline{10}$) in s_1s is the element s_1 (according to $\underline{19}$) which lies outside $(s_1)'s$; therefore our assumption is inadmissible, i.e., s_1 has property 3.

We now consider the segment ss_1 ; if it has an element u that is different from s and s_1 , then s is also different from s_1 (because otherwise $ss_1 = [s]$, which would also give u = s), and (according to <u>18</u>) $ss_1 = [s] + ss_1$; therefore u lies in $s's_1$, therefore (according to $\underline{19}$) outside $(s_1)'s$, and since (as above) $s_1s = [s_1] + (s_1)'s$, and u is also different from s_1 , then u also lies outside s_1s , therefore according to 2. also outside T', i.e., s_1 also has property 4.

30. Mapping of S into T. Through $\underline{29}$ a mapping ψ of S into T is created, which is defined by the fact that each element s of S is sent by ψ into the element s_1 , which is defined there and (according to 3) lies in T. If A is then any part of S, then A_1 should mean the associated image of A (i.e., the system of images a_1 of all elements a of A). So $S_1 \subseteq T$, also $T_1 \subseteq T$, i.e. T is mapped by ψ into itself.

31. Theorem. This mapping of T into itself is a similar one, i.e., if a, b are different elements of T, then their images a_1, b_1 are also different.

 \triangleright By 29, $T \subseteq a_1a$ and $T \subseteq b_1b$. Since a, b are elements of T, then $[a] \subseteq b_1 b, [b] \subseteq a_1 a.$ If, although a, b are different, $a_1 = b_1 = c$, verschieden sind, doch $a_1 = b_1 = c$, so wäre [a] 3 cb, [b] 3 ca. so then $[a] \subseteq cb$, $[b] \subseteq c$. But since c is different from a and b Da aber c von a und b verschieden ist (weil sonst auch a = b (because otherwise a = b), this is impossible (after the Corollary