Genus and the Geometry of the Cut Graph

James R. Lee (University of Washington)
Anastasios Sidiropoulos (Toyota Technological Institute)

Metric spaces

Metric space M=(X,d)

- Positive definiteness
 d(p,q) = 0 iff p = q
- Symmetry
 d(p,q) = d(q,p)
- Triangle inequality $d(p,q) \le d(p,r) + d(r,q)$

Equivalently:

Shortest-path metrics on graphs

Random partitions

- •Metric M = (X,D)
- •Randomly partition X into C₁, ..., C_k
- •diam(C_i) $\leq r$
- •Pr[C(x) \neq C(y)] $\leq \beta \cdot D(x,y)/r$

Goal: small β (modulus of decomposability)

Example: Partitioning the reals

Pick t in [0,r) uniformly at random Shift intervals by t

β=1

Random partitions

General graphs:

```
\beta = O(\log n) [Bartal'95]
```

Planar graphs:

```
\beta = O(1) [Klein, Plotkin, Rao'93]
```

• K_t-free graphs:

```
\beta = O(t^2) [KPR'93], [Fakcharoenphol, Talwar'03]
```

• Genus-g graphs:

```
\beta = O(g) [KPR'93], [FT'03]
```

$$\beta = O(\log g)$$
 [Lee,S'09]

Orientable surfaces

Calinescu-Karloff-Rabani partitions

- Let $X = \{x_1, ..., x_n\}$
- Pick random σ in S_n
- Pick random α in [½,1)

Klein-Plotkin-Rao partitions

Graph that excludes K_t as a minor

 $r/20t^2$ Repeat t times • $Pr[C(x)\neq C(y)]\leq O(t^2)\cdot D(x,y)/r$ [Fakcharoenphol, Talwar'03]

Genus

- Genus-t² graphs exclude K_t
- So, $\beta = O(g)$
- To get O(log g) we need a non-iterative approach
- We will remove all handles at once!
- Use homotopy generators [deVerdiere,Lazarus'02], [Erickson,Whittlesey'05]

Homotopy generators

- Greedy system of loops [Erickson, Whittlesey'05]
 - Set H of cycles s.t. G\H is planar

Fact: H consists of O(g) shortest paths

Partitioning surfaces

Partitioning surfaces

Pick random permutation of paths

Pr[C(x)≠C(y)]≤O(log g)·D(x,y)/r(by [Calinescu, Karloff, Rabani'01])

Implications

- O(log g)-approx for uniform Sparsest-cut [KPR'93]
- $O(((log g)\cdot(log n))^{1/2})$ -approx for Non-uniform Sparsest-cut [Krauthgamer,Lee,Mendel,Naor'04]
- O(log g)-approx for treewidth [Feige, Hajiaghayi, Lee'05]
- k-th Laplacian eigenvalue: O(kg/n)·(log g)² [Kelner,Lee,Price,Teng'09]
- O(log g)-approx for 0-extension [Lee, Naor'04], [Calinescu, Karloff, Rabani'01]
- Similar improvements for Lipschitz extensions [Lee,Naor'04]
- Similar improvements for Minimum Crossing Number [Even,Guha,Schieber'02]

Open question

Graphs that exclude K_t
 Pr[C(x)≠C(y)]≤O(log t)·r/D(x,y) ?