Introduction to Trees

Lecture 20

Menu

- Introduction to Trees
 - –What are trees?
- Binary Tree
- General Tree
- Terminology
- Different Types of Tree
- Tree Ordering
- Trees and Recursion
- What are they used for?
 - -Tic Tac Toe example
 - -Chess
 - -Taxonomy Tree
 - Decision Tree

Trees

- Some data are not linear (it has more structure!)
 - –Family trees
 - Organisational charts
 - **—**...
- Linear implementations are sometimes inefficient
 - -Linked lists don't store such structure information
- Trees offer an alternative
 - -Representation
 - –Implementation strategy
 - –Set of algorithms

Example: Taxonomy Tree

Trees

- linear data structures: lists, stacks, queues
- non-linear data structures: trees

Binary Tree

Binary Tree

Size is limited by the depth of the tree.

Binary Tree

- Every node in the tree has a left child (or null)
- Every node in the tree has a right child (or null)
- The root of the tree is just another node

This is what you Make a class for:

Binary tree

- A binary tree is either:
 - -empty or
 - –a root node together with two binary trees left subtree & right subtree of the root

What is a tree exactly?

- Models the parent/child relationship between different elements
 - -Each child only has one parent
 - –Each parent has ? children
- From mathematics:
 - –A "directed acyclic graph" (DAG)
 - —At most one path from any one node to any other node
- Different kinds of trees exist
- Trees can be used for different purposes

In what order do we visit elements in a tree?

Terminology

- Level:
 - -Equivalent to the "row" that a value is in
- Depth:
 - -The number of levels in the tree
- Leaf Nodes
 - —A node with no children
- Non-leaf Nodes
- Balanced:

How many types of tree are there?

- Far too many:
 - -Red-Black Tree
 - -AVL Tree
 - $-\dots$
- Different types are used for different things
 - –To improve speed
 - —To improve the use of available memory
 - -To suit particular problems
- But we'll look at three:
 - –Binary Tree
 - -General Tree (n-ary tree)
 - -AVL Tree

General Trees

Question: Why is this not a Binary Tree?

Design Issue - Ordering of Values

- Do the children of a parent have a particular order?
 - –Does it matter which is the "first", "second", or "third" child?
 - –Is there an inherent ordering there?
- Are the values of the children comparable with the values of the parent?

Trees and Recursion

- Recursively defined data structure
- Recursion is very natural for trees important!
- Recursion tree
- If you don't use recursion then use iteration

Recursion tree for n!

recursion tree for n!

Recursion tree for fibonacci(4)

What is a tree useful for?

- Artificial Intelligence planning, navigating, games
- Representing things:
 - -Simple file systems
 - -Class inheritance and composition
 - -Classification, e.g. taxonomy (the is-a relationship)
 - –HTML pages
 - Parse trees for languages
 - -Essential in compilers like Java, C# etc.
 - -3D graphics (e.g. BSP trees)

Example: Tic Tac Toe

Example: Chess

Example: Decision Tree

Binary tree implementation

In brief

- Data representation of tree is important
- Efficiently adding, accessing and removing data from a tree is important
- Trees can be made efficient and help you organise data
- Trees are useful in:
 - Computer graphics
 - –Artificial Intelligence
 - -Databases

 $-\dots$

Q&A

- Tree represents an efficient 1-dimensional data structure.
 (T or F?)
- A leaf node in a tree has no children. (T or F?)
- Binary tree has no ordering upon its sibling nodes. (T or F?)
- Name 3 applications for tree.
- Relationship among recursive calls can be expressed in what type of tree?

Summary

- Introduction to Trees
 - -What are trees?
- Binary Tree
- General Tree
- Terminology
- Different Types of Tree
- Tree Ordering
- Trees and Recursion
- What are they useful for?
 - -Tic Tac Toe example
 - -Chess
 - -Taxonomy Tree
 - Decision Tree

Readings

- [Mar07] Read 4.1, 4.2, 4.6
- [Mar13] Read 4.1, 4.2, 4.6