2 群の例: 置換群

問題 2.1 X を集合とし, X から X への全単射全体の集合を S_X (または $\mathrm{Sym}(X)$) と書くことにする. S_X は写像の合成に関して群となることを示せ.

群 S_X の元を X 上の置換と呼ぶ. また、置換の集合 $(S_X$ の部分集合)で写像の合成に関して群となるもの (つまり S_X の部分群)は置換群と呼ばれる. 特に $X=\{1,2,\ldots,n\}$ のとき、 S_X を S_n と書いて、n 次の対称群と呼ぶ. $(S_n$ については線形代数の授業で学んだと思う.)

問題 2.2 置換群がアーベル群になる例と、そうでない例をそれぞれ挙げよ、

問題 2.3 次の置換を巡回表示せよ. また、偶置換か奇置換かを判定せよ.

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 6 & 2 & 4 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$

問題 $2.4~S_n$ の偶置換全体のなす部分集合を A_n と書く.

- (1) A_n も写像の合成に関して群となる (つまり S_n の部分群となる) ことを示せ.
- (2) A_n の元の個数 (位数) は n!/2 であることを示せ.

上記の A_n を n 次の交代群と呼ぶ.

 $^{{}^1\}pi-\Delta ^\bullet-\mathcal{Y} \text{ http://www.math.tsukuba.ac.jp/$\tilde{}^amano/lec2012-2/e-algebra-ex/index.html}$