Lab Manual for Embedded System Design

Lab No. 13

Raspberry PI Hardware Applications

Objectives

Design and Interface Raspberry-PI Hardware Applications.

Design Traffic Lights and Pulse Width Modulation (PWM)

circuits.

LAB # 13

Raspberry PI Hardware Applications

Introduction

Raspberry – Pi GPIO Controller:

- The R-Pi GPIO connector actually has a number of different types of connection on them. There are:
- True GPIO (General Purpose Input Output) pins that you can use to turn LEDs on and off etc.
- I2C interface pins that allow you to connect hardware modules with just two control pins
- SPI interface with SPI devices, a similar concept to I2C but a different standard
- Serial Rx and Tx pins for communication with serial peripherals
- In addition, some of the pins can be used for PWM (pulse Width Modulation) for power control and another type of pulse generation for controlling servo motors called PPM (Pulse Position Modulation).

Raspberry Pi 3 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power	00	DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I2C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Fig. 9.1: GPIO Inputs

PWM:

Pulse width modulation (PWM) is a powerful technique for controlling analog circuits with a microprocessor's digital outputs.

Time Boxing

Activity Name	Activity Time	Total Time
Login Systems + Setting up Raspberry PI Environment	3 mints + 5 mints	8 mints
Walk through Theory & Tasks	60 mints	60 mints
Implement Tasks	80 mints	80 mints
Evaluation Time	30 mints	30 mints
	Total Duration	178 mints

Objectives

- 1. Design and Interface Raspberry-PI Hardware Applications.
- 2. Design Traffic Lights and Pulse Width Modulation (PWM) circuits.

Lab Tasks/Practical Work

1. In this task we will write a simple Python script in LXTerminal to glow LED using GPIO 7 of Raspberry-Pi.

```
import RPi.GPIO as GPIO
GPIO.setmode (GPIO.BOARD)
GPIO.setup (7, GPIO.OUT)
GPIO.output (7, True)
```

2. In this task we will write a simple Python script in LXTerminal to blink single LED using a GPIO 7 of Raspberry-Pi.

```
import RPi.GPIO as GPIO
import time
GPIO.setmode (GPIO.BOARD)
GPIO.setup (7, GPIO.OUT)
While True:
GPIO.output (7, True)
time.sleep (0.5)
GPIO.output (7, False)
time.sleep (0.5)
```

3. In this task we will write a simple Python script to control LED using GPIOs as PWM application.

```
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)
pwm_led = GPIO.PWM(7, 500)
pwm_led.start(100)
while True:
    duty_s = input("Enter Brightness (0 to 100):")
    duty = int(duty_s)
    pwm_led.ChangeDutyCycle(duty)
```

4. In this task we will write a simple Python script for Traffic control signals using various GPIOs.


```
import RPi.GPIO as GPIO
import time
GPIO.cleanup()
```

```
GPIO.setmode(GPIO.BOARD)
GPIO.setup(3,GPIO.OUT)
GPIO.setup(5,GPIO.OUT)
GPIO.setup(7,GPIO.OUT)
GPIO.setwarnings(False)
while True:
      GPIO.output(7,GPIO.HIGH)
      time.sleep(5)
      GPIO.output(5,GPIO.HIGH)
      time.sleep(2)
      GPIO.output(7,GPIO.LOW)
      GPIO.output(5,GPIO.LOW)
      GPIO.output(3,GPIO.HIGH)
      time.sleep(10)
      GPIO.output(3,GPIO.LOW)
      GPIO.output(5,GPIO.HIGH)
```

4. Write a simple Python script to drive dc motors in both directions.