Geometría Proyectiva - 2° cuatrimestre 2016 Final

1. Introcción y resultados previos

En este final vamos a demostrar el teorema de Gauss-Bonnet que relaciona la curvatura total de una superficie regular con una característica topológica de la superficie medida en la característica de Euler-Poincaré.

Comenzemos con unos lemas que nos facilitarán los cálculos.

Lema 1.1 Angulo de campos

Seam a,b funciones diferenciables tal que $a^2 + b^2 = 1$ y sea ϕ_0 tal que $\cos(\phi_0) = a(t_0), \sin(\phi_0) = b(t_0)$ Luego:

$$\phi = \phi_0 + \int_{t_0}^t a\dot{b} - b\dot{a}dt$$

Cumple que $a = \cos(\phi), b = \sin(\phi)$

Demostración Notemos que basta ver que:

$$0 = (a - \cos(\phi))^2 + (b - \sin(\phi))^2 = 2 - 2(a\cos(\phi) + b\sin(\phi))$$

que pasa si y sólo si

$$A = a\cos(\phi) + b\sin(\phi) = 1$$

Por un lado recordemos que $a^2 + b^2 = 1$ por lo que $a\dot{a} = -b\dot{b}$ y juntando todo:

$$\dot{A} = -a\sin(\phi)\dot{\phi} + \dot{a}\cos(\phi) + b\cos(\phi)\dot{\phi} + \dot{b}\sin(\phi)$$

$$= -a\sin(\phi)\left(a\dot{b} - b\dot{a}\right) + \dot{a}\cos(\phi) + b\cos(\phi)\left(a\dot{b} - b\dot{a}\right) + \dot{b}\sin(\phi)$$

$$= -\sin(\phi)\left(aa\dot{b} + bb\dot{b}\right) + \dot{a}\cos(\phi) + \cos(\phi)\left(-a^2\dot{a} - b^2\dot{a}\right) + \dot{b}\sin(\phi)$$

$$= -\sin(\phi)\dot{b}\left(a^2 + b^2\right) + \dot{a}\cos(\phi) - \dot{a}\cos(\phi)\left(a^2 + b^2\right) + \dot{b}\sin(\phi)$$

Como $A(t_0) = 1$ se tiene que A = 1.

Recordemos que dada una curva α en S y un campo $X \in \chi_c$ esta bien definida la derivada covariante de w dada por:

$$\frac{Dw}{dt} = (\dot{w})^T$$

Si se cumple que $\|w\|=1$ entonces $\frac{Dw}{dt}\perp N, \frac{Dw}{dt}\perp w$ por lo que:

$$\frac{Dw}{dt} = \lambda N \times w$$

A $\lambda = \left\| \frac{Dw}{dt} \right\|$ se le denomina el valor algebraico de la derivada covariante y lo notaremos $\lambda = \left[\frac{Dw}{dt} \right]$.

Definición Ángulo entre campos vectoriales

Sea α una curva en S y $v, w \in \chi_{\alpha}$ tal que ||v|| = ||w|| = 1, luego existe \bar{v} tal que $\{v, \bar{v}\}$ son base de $T_{\alpha(t)}S$ para todo $t \in I$. Por lo tanto existen a, b funciones diferenciables tal que $w = av + b\bar{v}$ y por 1.1 existe ϕ tal que $w = \cos(\phi)v + \sin(\phi)\bar{v}$.

Lema 1.2 Sea α una curva en S y $v, w \in \chi_{\alpha}$ tal que ||v|| = ||w|| = 1, luego:

$$\left[\frac{Dw}{dt}\right] - \left[\frac{Dv}{dt}\right] = \frac{d\phi}{dt}$$

Donde ϕ esta definida anteriormente.

Demostración Sean $\bar{v} = N \times v$ y $\bar{w} = N \times w$, luego:

$$w = \cos(\phi)v + \sin(\phi)\bar{v}$$

$$\bar{w} = \cos(\phi)N \times v + \sin(\phi)N \times \bar{v}$$

$$= \cos(\phi)\bar{v} - \sin(\phi)v$$

Luego tenemos que:

$$\begin{split} \dot{w} &= -\sin(\phi)v\dot{\phi} + \cos(\phi)\dot{\phi}\bar{v} + \cos(\phi)\dot{v} + \sin(\phi)\dot{\bar{v}} \\ \langle \dot{w}, \bar{w} \rangle &= -\dot{\phi}\cos\phi\sin(\phi)\underbrace{\langle v, \bar{v} \rangle}_{=0} + \cos^2(\phi)\dot{\phi}\underbrace{\langle \bar{v}, \bar{v} \rangle}_{=1} + \cos^2(\phi)\langle \dot{v}, \bar{v} \rangle + \sin(\phi)\cos(\phi)\underbrace{\langle \dot{\bar{v}}, \bar{v} \rangle}_{=0} \\ &= 0 + \sin^2(\phi)\dot{\phi}\underbrace{\langle v, v \rangle}_{=1} - \cos(\phi)\sin(\phi)\dot{\phi}\underbrace{\langle \bar{v}, v \rangle}_{=0} - \sin(\phi)\cos(\phi)\underbrace{\langle \dot{v}, v \rangle}_{=0} - \sin^2(\phi)\underbrace{\langle \dot{\bar{v}}, v \rangle}_{=-\langle \dot{v}, \bar{v} \rangle}_{=0} \\ &= \dot{\phi} + \langle \dot{v}, \bar{v} \rangle \end{split}$$

Por lo que concluímos que:

$$\left\lceil \frac{Dw}{dt} \right\rceil = \langle \dot{w}, N \times w \rangle = \langle \dot{w}, \bar{w} \rangle = \dot{\phi} + \langle \dot{v}, \bar{v} \rangle = \dot{\phi} + \left\lceil \frac{Dv}{dt} \right\rceil \qquad \blacksquare$$

Lema 1.3 Sea (U,x) una carta alrededor de p de una superficie S y supongamos que $f := x^{-1}$ es una parametrización ortogonal. Sea $\alpha = f \circ g$ una curva en U y $w \in \chi_{\alpha}$ tal que ||w|| = 1, luego:

$$\left[\frac{Dw}{dt}\right] = \frac{1}{2\sqrt{EG}}\left(G_u\frac{dv}{dt} - E_v\frac{du}{dt}\right) + \frac{d\phi}{dt}$$

Donde $\phi(t)$ esta dado por 1.1 entre $\partial x_1 \ y \ w$.

Demostración Sean $e_1 = \frac{\partial x_1}{\sqrt{E}}, e_2 = \frac{\partial x_2}{\sqrt{G}}$, luego por 1.2 se tiene:

$$\left[\frac{Dw}{dt}\right] = \left[\frac{De_1}{dt}\right] + \frac{d\phi}{dt}$$

Pero notemos que:

$$\begin{split} \left[\frac{De_1}{dt}\right] &= \left\langle \frac{de_1}{dt}, N \times e_1 \right\rangle \\ &= \left\langle \frac{de_1}{dt}, e_2 \right\rangle \\ &= \left\langle (e_1)_u, e_2 \right\rangle \frac{du}{dt} + \left\langle (e_1)_v, e_2 \right\rangle \frac{dv}{dt} \\ &= \underbrace{-\frac{1}{2} \frac{E_v}{\sqrt{EG}}}_{\langle f_u, f_v \rangle = 0 \implies \langle f_{uu}, f_v \rangle = -\frac{1}{2} E_v} \\ &= -\frac{1}{2} \frac{E_v}{\sqrt{EG}} \frac{du}{dt} + \underbrace{\frac{1}{2} \frac{G_u}{\sqrt{EG}}}_{\langle f_{uv}, f_v \rangle = \langle f_{vu}, f_v \rangle = \frac{1}{2} G_u}_{\langle f_{uv}, f_v \rangle = \langle f_{vu}, f_v \rangle = \frac{1}{2} G_u} \\ &= \frac{1}{2\sqrt{EG}} \left(G_u \frac{dv}{dt} - E_v \frac{du}{dt} \right) \quad \blacksquare \end{split}$$

Lema 1.4 Sea (U,x) una carta alrededor de p de una superficie S y supongamos que $f := x^{-1}$ es una parametrización ortogonal, entonces vale:

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_v \right)$$

Demostración Recordemos de la demostración del teorema Egregium que:

$$-EK = \Gamma_{12}^{1}\Gamma_{11}^{2} + \left(\Gamma_{12}^{2}\right)_{n} + \Gamma_{12}^{2}\Gamma_{12}^{2} - \Gamma_{12}^{2}\Gamma_{11}^{1} - \left(\Gamma_{12}^{2}\right)_{n} - \Gamma_{11}^{2}\Gamma_{22}^{2}$$

Por otro lado al deducir los símbolos de Christoffel dedujimos los siguientes tres sistemas de ecuaciones:

$$\frac{1}{2}E_u = \langle f_{uu}, f_u \rangle = \Gamma_{11}^1 E + \Gamma_{11}^2 F$$

$$F_u - \frac{1}{2}E_v = \langle f_{uu}, f_v \rangle = \Gamma_{11}^1 F + \Gamma_{11}^2 G$$

$$\frac{1}{2}E_v = \langle f_{uv}, f_u \rangle = \Gamma_{12}^1 E + \Gamma_{12}^2 F$$

$$\frac{1}{2}G_u = \langle f_{uv}, f_v \rangle = \Gamma_{12}^1 F + \Gamma_{12}^2 G$$

$$F_v - \frac{1}{2}G_u = \langle f_{vv}, f_u \rangle = \Gamma_{22}^1 E + \Gamma_{22}^2 F$$

$$\frac{1}{2}G_v = \langle f_{vv}, f_v \rangle = \Gamma_{22}^1 F + \Gamma_{22}^2 G$$

Pero como la parametrización es ortogonal tenemos que F=0 por lo que esto se resuelve:

$$\Gamma^{1}_{11} = \frac{E_{u}}{2E}$$

$$\Gamma^{1}_{12} = \frac{E_{v}}{2E}$$

$$\Gamma^{1}_{22} = -\frac{G_{u}}{2E}$$

$$\Gamma^{2}_{11} = -\frac{E_{v}}{2G}$$

$$\Gamma^{2}_{12} = \frac{G_{u}}{2G}$$

$$\Gamma^{2}_{22} = \frac{G_{v}}{2G}$$

Y juntando todo:

$$-EK = -\frac{E_v}{2E} \frac{E_v}{2G} + \left(\frac{G_u}{2G}\right)_u + \frac{G_u}{2G} \frac{G_u}{2G} - \frac{G_u}{2G} \frac{E_u}{2E} - \left(\frac{G_u}{2G}\right)_v + \frac{E_v}{2G} \frac{G_v}{2G}$$
$$= -\frac{E_v^2}{4EG} + \frac{G_{uu}}{2G} - \frac{G_u^2}{4G^2} - \frac{E_uG_u}{4EG} + \frac{E_vv}{2G} - \frac{E_vG_v}{4G^2}$$

$$\begin{split} K = & \frac{E_v^2}{4E^2G} - \frac{G_{uu}}{2EG} + \frac{G_u^2}{4EG^2} + \frac{E_uG_u}{4E^2G} - \frac{E_vv}{2EG} + \frac{E_vG_v}{4EG^2} \\ = & -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right) \quad \blacksquare \end{split}$$

Definición Sea $\alpha:[0,l]\to S$ una función continua, decimos que es una curva simple, cerrada y regular a trozos si:

- 1. $\alpha(0) = \alpha(l)$
- 2. Para todos $t_1 \neq t_2 \in [0, l]$ se tiene que $\alpha(t_1) \neq \alpha(t_2)$
- 3. Existe una partición Π de [0,l] tal que para todo subintervalo $I_j\in\Pi$ se tiene que $\alpha|_{I_j}$ es regular.

Notemos que si tenemos una curva simple, cerrada y regular a trozos entonces para todos los extremos t_i de la partición Π está bien definido:

Definición Dada una curva simple, cerrada y regular a trozos en una superficie orientada S con normal N, entonces definimos el ángulo externo en el vértice $\alpha(t_i)$ como $|\theta_i| := ang(\dot{\alpha}(t_i - 0), \dot{\alpha}(t_i + 0))$ y el signo dado por $sg(det(\dot{\alpha}(t_i - 0), \dot{\alpha}(t_i + 0), N))$.

En caso de que $|\theta_i| = \pi$ entonces por la regularidad a trozos existe $\epsilon' > 0$ tal que $\det(\dot{\alpha}(t_i - \epsilon), \dot{\alpha}(t_i + \epsilon), N) \neq 0$ para todo $0 < \epsilon < \epsilon'$.

Recuerdo:

Teorema 1.5 Sea $c:[a,b] \to \mathbb{R}^2$ una curva regular cerrada, simple y orientada positivamente, entonces:

$$I_c = \frac{1}{2\pi} \int_a^b k_c ds = 1$$

Cuya generalización a superficies es:

Teorema 1.6 De las tangentes cambiantes

Sea α una curva simple, cerrada y regular a trozos en una superficie orientada S con normal N, además sea $\Pi = \{t_1, \ldots, t_i, \ldots, t_k\}$ la partición asociada a α tal que $\alpha|_{[t_i, t_{i+1}]}$ es regular. Consideremos ϕ_i que mida el ángulo entre f_u y $\dot{\alpha}$; entonces:

$$\sum_{i=0}^{k} (\phi_i(t_{i+1}) - \phi_i(t_i)) + \sum_{i=0}^{k} \theta_i = \pm 2\pi$$

Donde el signo depende de la orientación de α .

Demostración Caso sin vértices

Sea g el primer tensor fundamental en S y notemos $l(u, v) = \langle u, v \rangle$ al producto interno usual de \mathbb{R}^2 , entonces para $v \in [0, 1]$:

$$g^v = vg + (1 - v)l$$

resulta una métrica Riemmaniana para S. Sean e_1^v, e_2^v una base ortonormal según g^v de T_pS dada por $e_1^v = \frac{f_u}{\|f_u\|_{q^v}}$. Sea θ^v el ángulo entre e_1^v y $\dot{\alpha}$ que por 1.1 existe y es continua.

Consideremos $h(v) := \theta^v(l) - \theta^v(0)$ que es una función continua respecto de v. Es conocido que $h: [0,1] \to 2\pi\mathbb{Z}$ y entonces como \mathbb{Z} es discreto se tiene que h es constante. Por 1.6 además se sabe que $h(0) = 2\pi$ por lo que concluímos que $h(1) = \theta(l) - \theta(0) = 2\pi$.

Definición Sea S una superficie orientada, un subconjunto $R \subset S$ se dice una región si es la unión de una abierto conexo y su frontera. Similarmente R se dice una región simple si R es homeomorfo a un disco y $\partial R = \alpha(I)$ con α una curva simple, cerrada y regular a trozo.

En ese caso decimos que α esta orientada positivamente si para todo $t \in I$ y para cada curva β tal que $\beta(0) = \alpha(t), \dot{\beta}(0) \neq \dot{\alpha}(t)$ se tiene que $\langle \dot{\beta}(0), N \times \dot{\alpha}(t) \rangle > 0$.

Intuitivamente esto refiere a que recorriendo la curva α en la dirección de N se tiene que a la izquierda se encuentra R.

Definición Sea f una parametrización de una superficie orientada S alrededor de un punto p, luego si g es diferenciable definimos para una región acotada de f(A):

$$\iint_{f^{-1}(R)} g\sqrt{EG - F^2} du dv$$

Como la integral de g sobre R y la notaremos $\iint_R f d\sigma$.

2. El teorema de Gauss-Bonnet local

Teorema 2.1 El teorema de Gauss-Bonnet local

Sea (U,x) una carta alrededor de un punto $p \in S$ una superficie orientada, supongamos que $x^{-1} := f$ sea una parametrización ortogonal compatible con la orientación de S y $x(U) := A \subset \mathbb{R}^2$ es homeomorfo a un disco. Sea $R \subset U$ una región simple y sea α la parametrización de su frontera, asumamos además que α esta orientada positivamente y reparametrizada por longitud de arco; finalmente sean $\alpha(t_0), \ldots, \alpha(t_k)$ y $\theta_0, \ldots, \theta_k$ los vértices y ángulos externos de α . Entonces:

$$\int k_g ds + \iint_R K d\sigma + \sum_{i=0}^k \theta_i = 2\pi$$

Donde k_g es la curvatura geodésica de los arcos regulares de α , la integral se interpreta como la suma de los subintervalos donde α es regular y K es la curvatura gaussiana de S.

Demostración Por 1.3 tenemos que:

$$k_g(s) = \frac{1}{2\sqrt{EG}} \left(G_u \frac{dv}{ds} - E_v \frac{du}{ds} \right) + \frac{d\phi_i}{ds}$$

Por lo que:

$$\sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} k_g(s) ds = \sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} \left(\frac{G_u}{2\sqrt{EG}} \frac{dv}{ds} - \frac{E_v}{2\sqrt{EG}} \frac{du}{ds} \right) + \sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} \frac{d\phi_i}{ds}$$

Y por el teorema de Gauss-Green se tiene que:

$$\sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} k_g(s) ds = \iint_{x(R)} \left\{ \left(\frac{G_u}{2\sqrt{EG}} \right)_v + \left(\frac{E_v}{2\sqrt{EG}} \right)_u \right\} du dv$$

Pero por 1.4 se tiene que:

$$\iint_{x(R)} \left\{ \left(\frac{G_u}{2\sqrt{EG}} \right)_v + \left(\frac{E_v}{2\sqrt{EG}} \right)_u \right\} du dv = -\iint_{x(R)} K\sqrt{EG} du dv = -\iint_{x(R)} K d\sigma$$

Finalmente por 1.6 tenemos que:

$$\sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} \frac{d\phi_i}{ds} = \sum_{i=0}^{k} \phi_i(t_{i+1}) - \phi_i(t_i) = 2\pi - \sum_{i=0}^{k} \theta_i$$

LUego juntando todo llegamos al resultado esperado.

3. El teorema de Gauss-Bonnet global

Definición Una región $R \subset S$ se dice regular si R es compacto y ∂R es la unión de finitas curvas cerradas, simples y regulares a trozos que no se intersecan.

Observación Si S es una superficie regular compacta, entonces S es una región regular con frontera nula

Definición Sea R una región regular que tiene solo 3 vértices con ángulos externos $\theta_i \neq 0$, entonces decimos que R es un triángulo.

Definición Una triangulación de una región regular $R \subset S$ es una familia finita \mathcal{J} de triángulos T_i tal que:

- $\bullet \bigcup_{i=0}^{k} T_i = R$
- Si $T_i \cap T_j \neq \emptyset$, entonces $T_i \cap T_j$ es un lado común de T_i, T_j o es un vértice común de T_i, T_j .

Definición Dada una región regular $R \subset S$ y una triangulación \mathcal{J} definimos $\chi_R = F - E + V$ la característica de Euler Poincaré, donde F es el número de triángulos, E es el número de lados y V el número de vértices.

Asumamos los siguientes resultados topológicos:

Proposición 3.1 Toda región regular de una superficie regular admite una triangulación

Proposición 3.2 Sea S una superficie regular orientada y sea $\{x_{\alpha}^{-1}\}_{\alpha\in A}$ una familia de parametrizaciones compatibles con la orientación compatible con la orientación de S. Sea $R\subset S$ una región regular, entonces existe una triangulación $\mathcal J$ de R tal que todo triángulo $T\in \mathcal J$ esta contenido en una única carta (U,x_{α}) . Es más, si la frontera de cada triángulo de $\mathcal J$ esta orientada positivamente, entonces triángulos adyacentes determinan orientaciones opuestas en el lado común.

Proposición 3.3 Si $R \subset S$ es una región regular de una superficie S entonces la característica de Euler Poincaré no depende de la triangulación de R.

Proposición 3.4 Sea S una superficie compacta y conexa, entonces $\chi_S = 2 - 2 * g$ para g la cantidad de manijas de la superficie. Es más si S' cumple que $\chi_{S'} = \chi_S$ entonces S' es homeomorfa a S

Proposición 3.5 Dada una región regular $R \subset S$ entonces la integral:

$$\sum_{i=0}^{k} \iint_{x_i(T_i)} f\sqrt{E_i G_i - F_i^2} du_i dv_i$$

No depende de la triangulación \mathcal{J} elegida o el atlas $\{x_i\}$ elegido sobre S. Entonces la integral esta bien definida y la notaremos $\iint_R f d\sigma$, la integral de f sobre la región regular R

Teorema 3.6 Sea $R \subset S$ una región regular en una superficie orientada, sean α_i curvas cerradas, simples, orientadas positivamente, reparametrizadas por longitud de arco y regulares a trozos que no se intersecan tal que $\partial R = \bigcup \alpha_i(I)$. Finalmente sean $\theta_0, \ldots, \theta_k$ los ángulos externos de las α_i . Entonces:

$$\sum_{i=0}^{n} \int_{\alpha_i} k_g ds + \iint_R K d\sigma + \sum_{i=0}^{k} \theta_i = 2\pi \chi_R$$

Donde k_g es la curvatura geodésica de los arcos regulares de α_i , la integral se interpreta como la suma de los subintervalos donde α_i es regular y K es la curvatura gaussiana de S.

Demostración Sea \mathcal{J} la triangulación de R dada por 3.2 en un atlas ortogonal. Aplicando a cada triángulo 2.1 y 3.5 y sumando obtenemos:

$$\sum_{i=0}^{n} \int_{\alpha_i} k_g ds + \iint_R K d\sigma + \sum_{j,k=1}^{F,3} \theta_{j,k} = 2\pi F$$

Donde F es la cantidad de triángulos y $\theta_{j,1}, \theta_{j,2}$ y $\theta_{j,3}$ son los ángulos exteriores del triángulo $T_j \in \mathcal{J}$. Sean $\phi_{j,k} = \pi - \theta_{j,k}$, entonces:

$$\sum_{j,k} \theta_{j,k} = \sum_{j,k} \pi - \sum_{j,k} \phi_{j,k} = 3\pi F - \sum_{j,k} \phi_{j,k}$$

Sea:

 E_e =número de lados externos de \mathcal{J}

 E_i =número de lados internos de \mathcal{J}

 V_e =número de vértices externos de \mathcal{J}

 V_i =número de vértices internos de \mathcal{J}

Como las curvas α_i son cerradas entonces $E_e = V_e$ y además es simple ver que $3F = 2E_i + E_e$ por lo que:

$$\sum_{j,k} \theta_{j,k} = 2\pi E_i + \pi E_e - \sum_{j,k} \phi_{j,k}$$

Observemos ahora que los vértices externos pueden ser vértices de las curvas o introducidos por la triangulación, sea por lo tanto $V_e = V_{ec} + V_{et}$. Como además la suma de los vértices internos es 2π obtenemos:

$$\sum_{j,k} \theta_{j,k} = 2\pi E_i + \pi E_e - 2\pi V_i - \pi V_{et} - \sum_{l} \phi_l$$

Sumando y restando πE_e y al restar considerando que $E_e = V_e$ entonces

$$\sum_{j,k} \theta_{j,k} = 2\pi E_i + 2\pi E_e - 2\pi V_i - \pi V_{et} - \pi V_e - \pi V_{ec} + \sum_{l} \theta_l$$
$$= 2\pi E - 2\pi V + \sum_{l} \theta_l$$

Juntando todo:

$$\sum_{i=0}^{n} \int_{\alpha_i} k_g ds + \iint_R K d\sigma + \sum_l \theta_l = 2\pi (F - E + V) = 2\pi \chi_R \quad \blacksquare$$

4. Aplicaciones

Corolario 4.1 Si R es una región simple entonces recuperamos 2.1

Demostración Claramente $\chi_R = 1$.

Corolario 4.2 Sea S una superficie compacta y orientable, entonces:

$$\iint_{S} K d\sigma = 2\pi \chi_{S}$$

Demostración S es una región regular sin frontera y 3.6

Corolario 4.3 Una superficie regular compacta de curvatura positiva es homeomorfa a la esfera.

Demostración Por 3.6 es claro que $\chi_S > 0$ pues K > 0, por 3.4 se tiene que S es homeomorfa a la esfera.

Corolario 4.4 Sea S una superficie compacta de curvatura positiva, entonces si existen dos geodésicas cerradas y simples estas se intersecan.

Demostración Por 4.3 se tiene que S es homeomorfa a la esfera; supongamos que $\Gamma_1 \cap \Gamma_2 = \emptyset$, luego $\Gamma_1 \cup \Gamma_2$ es la frontera de una región regular R tal que $\chi_R = 0$, luego por 3.6 K = 0.