Temporal and Spatial Complexity Analysis

Selection Sort

```
Public void sort(int arr[]) {
    int n = arr.length;
    for (int i = 0; i < n-1; i++)
        int min_idx = i;
    for (int j = i+1; j < n; j++) {
        if (arr[j] < arr[min_idx]) {
            min_idx = j;
        }
}

int temp = arr[min_idx];
    arr[min_idx] = arr[i];
    arr[i] = temp;
}
</pre>
```

Temporal Complexity

# Line	# Times it repeats
2	1
3	N
4	N-1
5	((N(N+1))/2)+N
6	((N(N+1))/2)
7	((N(N+1))/2)
10	N-1
11	N-1
12	N-1

$$T(A) = C2 + C3N + C4(N-1) + C10(N-1) + C11(N-1) + C12(N-1) + C5\left(\frac{N(N+1)}{2} + N\right) + C6\left(\frac{N(N+1)}{2}\right) + C7\left(\frac{N(N+1)}{2}\right)$$

$$T(A) = C2 + C3N + C4N - C4 + C10N - C10 + C11N - C11 + C12N - C12 + C5\left(\frac{N(N+1)}{2} + N\right) + (C6 + C7)\left(\frac{N(N+1)}{2}\right)$$

$$T(A) = -(-C2 + C4 + C10 + C11 + C12) + N(C3 + C4 + C10 + C11 + C12) + C5\left(\frac{N(N+1)}{2} + N\right) + (C6 + C7)\left(\frac{N(N+1)}{2}\right)$$

$$T(A) = -A + N(B) + C\left(\frac{N(N+1)}{2} + N\right) + D\left(\frac{N(N+1)}{2}\right)$$

$$T(A) = C\left(\frac{N^2 + 3N}{2}\right) + D\left(\frac{N^2 + N}{2}\right) - A + NB$$

 $T(A) = \frac{N^2 + 3N}{2} + \frac{N^2 + N}{2}$

$$T(A) = \frac{2N^2 + 4N}{2}$$
$$T(A) = N^2 + 2N$$

Temporal Complexity O (N²)

Spatial Complexity

Туре	Variable	Size of 1 Atomic	Number of Atomic
		Value	Values
Input	Int[] arr	32 bits	N
Tempt	Int n	32 bits	1
	Int i	32 bits	1
	Int min_indx	32 bits	1
	Int j	32 bits	1
	Int temp	32 bits	1

Total spatial complexity = Input+Tempt+Output= n+5= θ (n) Auxiliary spatial complexity =1+1+1+1= (1) Auxiliary spatial complexity tempt+ output =1+1+1+1= (1)

Insertion Sort

```
Public void insertionSort(int arr[]) {
    int n = arr.length;
    for (int i = 1; i < n; ++i) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j = j - 1;
        }
        arr[j + 1] = key;
    }
}
```

Temporal Complexity

# Line	# Times it repeats	
2	1	
3	N	
4	N-1	
5	N-1	
6	((N(N+1))/2)+N	
7	((N(N+1))/2)	
8	((N(N+1))/2)	
10	N-1	

$$\begin{split} T(A) &= C2 + C3N + C4(N-1) + C5(N-1) + C10(N-1) + C6\left(\frac{N(N+1)}{2} + N\right) + C7\left(\frac{N(N+1)}{2}\right) \\ &+ C8\left(\frac{N(N+1)}{2}\right) \\ T(A) &= C2 + C3N + C4N - C4 + C5N - C5 + C10N - C10 + C6\left(\frac{N(N+1)}{2} + N\right) + (C7 + C8)\left(\frac{N(N+1)}{2}\right) \\ T(A) &= -(-C2 + C4 + C5 + C10) + N(C3 + C4 + C5 + C10) + C6\left(\frac{N(N+1)}{2} + N\right) + (C7 + C8)\left(\frac{N(N+1)}{2}\right) \\ T(A) &= -A + N(B) + C\left(\frac{N(N+1)}{2} + N\right) + D\left(\frac{N(N+1)}{2}\right) \\ T(A) &= C\left(\frac{N^2 + 3N}{2}\right) + D\left(\frac{N^2 + N}{2}\right) - A + NB \end{split}$$

$$T(A) = \frac{N^2 + 3N}{2} + \frac{N^2 + N}{2}$$
$$T(A) = \frac{2N^2 + 4N}{2}$$
$$T(A) = N^2 + 2N$$

Temporal Complexity O (N²)

Spatial Complexity

Туре	Variable	Size of 1 Atomic	Number of Atomic
		Value	Values
Input	Int[] arr	32 bits	N
	Int n	32 bits	1
Tomat	Int i	32 bits	1
Tempt	Int key	32 bits	1
	Int j	32 bits	1

Total spatial complexity = Input+Tempt+Output= n+4= θ (n) Auxiliary spatial complexity =1+1+1+1= (1) Auxiliary spatial complexity tempt+ output =1+1+1+1= (1)