A Book of Abstract Algebra (2nd Edition)

	Chapter 33, Problem 5ED	Bookmark	Show all steps: ON	
Problem				
	Let G be a group. The symbol $H \triangleleft G$ should be read, " H is a normal subgroup of G ." A maximal normal subgroup of G is an $H \triangleleft G$ such that, if $H \triangleleft J \triangleleft G$, then necessarily $J = H$ or $J = G$. Prove the following: If an abelian group G has no nontrivial subgroups, G must be a cyclic group of prime order. (Otherwise, choose some $a \in G$ such that $\langle a \rangle$ is a proper subgroup of G .)			
	Step-by-step solution			
	Step 1 of 4 Here, objective is to prove that G must be a cyclic group of prime order. Comment Step 2 of 4 Consider an abelian group G has no nontrivial subgroups. $g \in G$; Where g is a proper subgroup of G . So, the order of g is not infinite. Since G has no nontrivial subgroups. G must be a cyclic group.			
	Comment			
Step 3 of 4				
	lot (Cl			

: n

If $g \in G$ and $g \neq 1$.Since $|G| > 1, \langle g \rangle = G$

Comment

Step 4 of 4

Consider

 $k \in N; 1 < k < n$

such that

 $n = mk; m \in N$

Then,

 $\operatorname{ord}(g^k) > 1$

$$(g^k)^m = g^{mk}$$

$$=g^n$$

=1

And

1 < k < n

$$1 < g^k < g = G$$

It is clear that we have a nontrivial subgroup. So no such k exist.

Which implies n is a prime number.

Therefore, G must be a cyclic group of prime order.

Hence, proved

Comment