

UE22EC351B - Transmission Lines, Waveguides, and Antennas (4-0-2-4-5)

RR: Dr. RGK, Prof. PR, Prof. AK

EC: Dr. RK, Prof. SG

74 (Teaching) + 10 (A/H/P) + 42 (Lab) = 126 slots

Unit	Unit Title	Lecture	A/H/P	Lab	DD in-	Status of DD
No.		slots	slots*	slots*	charge	
1	Transmission Lines &	19	2	9	PR	Yet to be
	Impedance Matching					done
2	Waveguides, cavities, and	18	3	12	AK	available
	radiation from point source:					
3	Wire antennas and radiation	18	2	12	RK	available
	parameters					
4	Friis transmission formula and	19	3	9	SG	available
	antenna arrays:					

^{*6} lab slots for Open-ended experiments, lab exams will be conducted in the last slots.

Class	Chantan Title /		% of Portions covered			
No.	Chapter Title / Reference Literature	Topics to be covered	Class- wise	Cumulative		
	UNIT1: Transmission Lines & Impedance Matching					
1	T1: 2.1 P:48-49	Lumped element circuit model of Tx. Line	1	1		
2	T1: 2.1 P:49-50	Voltage and current waves on Tx. Line	1	2		
3	T1: 2.1 P:50-51	Lossless line and terminated lossless line	2	4		
4	T1: 2.1 P:56-59	Reflection coefficient and transmission coefficient	1	5		
5	T1: 2.1 P:56-59	Return loss and insertion loss	1	6		
6	T1: 2.1 P:56-59	Standing wave ratio and input impedance	2	8		
7-9	Lab 1	Familiarization of QUCS – Simple transmission line in the time domain				
10	T1: 2.1 P:59-63	Short-circuited line	1	9		
11	T1: 2.1 P:59-63	Open-circuited line	1	10		
12	T1: 2.1 P:59-63	Half wavelength line	1	11		
13	T1: 2.1 P:59-63	Quarter wave transformer	2	13		

	Course Injormation			
T1: 2.1 P:63-68	Smith Chart – introduction	1	14	
T1: 2.1 P:63-68	Constant resistance circles	2	16	
Lab 2	Design an RF circuit with an ideal	_		
T1: 2.1 P:63-68		1	17	
			18	
		2	20	
R1: 11.6B P:527-528	Single stub matching using Smith	2	22	
T1: 2.1 P:57		1	23	
R1:10.11.3 P:478-479		1	24	
Lab 3	Designing a matching circuit for			
R1:10.11.3 P:478-479	S-parameters – examples	2	26	
A/H/P 1 & 2 - Write a $= \sqrt{L/C}$	MATLAB program to calculate the im	ipedance o	f a circuit Z0	
UNIT2: Wavegu	ides, cavities, and radiation from point	source		
T1: 3.1 P:96-99	Introduction: Waveguide propagation	1	27	
T1: 3.1 P:96-99		1	28	
T1: 3.1 P:96-99	Waveguide propagation	1	29	
T1: 3.1 P: 100-101	Solutions of wave equations in	1	30	
T1: 3.1 P: 100-101	Solutions of wave equations in rectangular coordinates	2	32	
AHP 3 – Derive the ge waveguide	eneral solution of the wave equation in	a rectangu	lar	
LAB -4 (Manual)	<u> </u>			
T1: 3.3 P: 110-114	TE mode in Rectangular Waveguides	1	33	
T1: 3.3 P: 115-116	TM mode in Rectangular	1	34	
T1: 3.3 P: 115-116	TM mode in Rectangular Waveguides-2	1	35	
T1: 3.3 P: 114-117	Poynting vector, Power Transmission, Power losses in rectangular waveguides	2	37	
AHP 4 – Design of sin	iple waveguide in CST			
LAB -5 (Manual) Analysis of Rectangular waveguide using CST simulator				
T1: 3.3 P: 114-117	Power losses in rectangular waveguides	1	40	
	T1: 2.1 P:63-68 Lab 2 T1: 2.1 P:63-68 T1: 2.1 P:63-68 T1: 2.1 P:63-68 R1: 11.6B P:527-528 T1: 2.1 P:57 R1:10.11.3 P:478-479 Lab 3 R1:10.11.3 P:478-479 A/H/P 1 & 2 - Write a = √L/C UNIT2: Wavegu T1: 3.1 P:96-99 T1: 3.1 P:96-99 T1: 3.1 P:100-101 T1: 3.1 P: 100-101 AHP 3 - Derive the gowaveguide LAB -4 (Manual) T1: 3.3 P: 115-116 T1: 3.3 P: 115-116 T1: 3.3 P: 115-116 T1: 3.3 P: 115-116	T1: 2.1 P:63-68 Lab 2 Design an RF circuit with an ideal transmission line using QUCS T1: 2.1 P:63-68 T1: 2.1 P:63-68 R1: 2.1 P:63-68 R1: 11.6B P:527-528 T1: 2.1 P:57 R1:10.11.3 P:478-479 Lab 3 R1: 10.11.3 P:478-479 Introduction: Waveguide or calculate the in emismatched circuit using QUCS R1: 10.11.3 P:478-479 Introduction: Waveguide propagation T1: 3.1 P:96-99 T1: 3.1 P:96-99 T1: 3.1 P:100-101 T1: 3.1 P: 100-101 T1: 3.1 P: 100-101 T1: 3.3 P: 100-101 Solutions of wave equations in rectangular coordinates AHP 3 — Derive the general solution of the wave equation in waveguide LAB -4 (Manual) T1: 3.3 P: 115-116 MATLAB implementation to obtain plot for rectangular Waveguides TM mode in Rectangular waveguides of Rectangular waveguides of Rectangular waveguides TM mode in Rectangular waveguides of Rectangular waveguides of Rectangular waveguides	T1: 2.1 P:63-68 Constant resistance circles 2 Lab 2 Design an RF circuit with an ideal transmission line using QUCS T1: 2.1 P:63-68 Constant sWR circles 1 T1: 2.1 P:63-68 Examples using Smith Chart 2 R1: 11.6B P:527-528 Single stub matching using Smith 2 T1: 2.1 P:57 Power flow in Tx. Lines 1 R1:10.11.3 P:478-479 S-parameters − introduction 1 Lab 3 Designing a matching circuit for the mismatched circuit using QUCS R1:10.11.3 P:478-479 S-parameters − examples 2 A/H/P 1 & 2 - Write a MATLAB program to calculate the impedance o = √L/C UNIT2: Waveguides, cavities, and radiation from point source T1: 3.1 P:96-99 Introduction: Waveguide propagation 1 T1: 3.1 P:100-101 Solutions of wave equations in rectangular coordinates 1 T1: 3.1 P: 100-101 Solutions of wave equations in rectangular coordinates 2 AHP 3 − Derive the general solution of the wave equation in a rectangular waveguide LAB -4 (Manual) MATLAB implementation to obtain the E-H Find plot for rectangular waveguide for TEmn and T TH: 3.3 P: 115-116 TM mode in Rectangular Waveguides 1 T1: 3.3 P: 115-116 TM mode in Rectangular Waveguides 1 T1: 3.3 P: 115-116 TM mode in Rectangular waveguide using CST s AHP 4 − Design of simple waveguide in CST LAB -5 (Manual) Power losses in rectangular vaveguide using CST s	

40				
49	T1: P: 161-162	Numericals	1	41
50	T1: 6.3: P:284	Microwave Cavities	1	42
51	T1: 6.3: P:284-287	Rectangular cavity resonator	1	43
52	T2: 3.1-3.3 P: 133-138	Magnetic vector potential - introduction	1	44
53	T2: 3.1-3.3 P: 133-138	Magnetic vector potential, Retarded potentials	1	45
54-56	LAB -6 (Manual)	Familiarization with CST software: a) Analysis of monopole antenna using (b) Analysis of dipole antenna using (_	
57	AHP 5- Numericals			
58	T2: 3.1-3.3 P: 133-138	Relation between vector and scalar potential, Lorentz condition	1	46
59	T2: 3.5 P: 139-142	Inhomogeneous wave equation	1	49
60	T2: 3.5 P: 139-142	Solution for wave equation due to point source	1	50
61-63	LAB -7 (Manual)	MATLAB implementation to obtain power pattern of a Dipole antenna.		ittern and
		ISA-1 WEEK FOR UNITS 1 AND 2		
	UNIT3: W	ISA-1 WEEK FOR UNITS 1 AND 2 Vire antennas and radiation parameter		
64	UNIT3: W			52
64 65-67		Vire antennas and radiation parameter Infinitesimal current element or	2	
	T2:4.1-4.2 P:151	Vire antennas and radiation parameter Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain	2	
65-67	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3	Vire antennas and radiation parameter Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna	2 the field pa	nttern and
65-67 68	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3 P: 162-170 T2:4.5-4.5.2	Vire antennas and radiation parameter Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna Short dipole	the field pa	attern and
65-67 68 69	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3 P: 162-170 T2:4.5-4.5.2 P: 170-172 T2: 4.2.1-4.2.2	Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna Short dipole Half-wavelength dipole Current distribution and radiated	the field pa	54 56
65-67 68 69 70	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3 P: 162-170 T2:4.5-4.5.2 P: 170-172 T2: 4.2.1-4.2.2 P: 151-156 T2:4.5-4.5.2	Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna Short dipole Half-wavelength dipole Current distribution and radiated fields	the field pa	54 56 58
65-67 68 69 70 71	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3 P: 162-170 T2:4.5-4.5.2 P: 170-172 T2: 4.2.1-4.2.2 P: 151-156 T2:4.5-4.5.2 P: 170-172 T2:4.5-4.5.2 P: 170-172	Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna Short dipole Half-wavelength dipole Current distribution and radiated fields Power density and power radiated	the field pa	54 56 58
65-67 68 69 70 71 72	T2:4.1-4.2 P:151 LAB -8 (Manual) T2: 4.3-4.4.3 P: 162-170 T2:4.5-4.5.2 P: 170-172 T2: 4.2.1-4.2.2 P: 151-156 T2:4.5-4.5.2 P: 170-172 T2:4.5-4.5.2 P: 170-172 T2:4.5-4.5.2 P: 170-172 T2: 4.2.1-4.2.2	Infinitesimal current element or Hertzian dipole MATLAB implementation to obtain power pattern of a Dipole antenna Short dipole Half-wavelength dipole Current distribution and radiated fields Power density and power radiated Power density and power radiated	2 the field pa 2 2 2 2 2	54 56 58 60

		MATLAB implementation to obtain to	the radiati	on pattern of		
		a typical antenna system and find the half-power beam				
77-79	LAB -9 (Manual)	width and first null beam width.				
	width and mist hum beam witth.					
80	A/H/P 6: Numerical or	n directivity HPBW, FNBW				
81	A/H/P 7: Derive field	equations of hertz, dipole antenna, and monopole antenna				
82	do	Radiated fields and power density	2	66		
02	T2: 2.1-2.4,2.8	Antenna parameters: radiation	2			
83	P: 27-42	intensity	2	68		
84	T2: 2.1-2.4,2.8					
04	P: 27-42	Radiation pattern, directivity and gain		70		
85	T2: 2.1-2.4,2.8	Effective aperture and half-power	2	72		
0.5	P: 27-42	beam width		12		
86-88		Numericals				
		MATLAB implementation to obtain	radiation r	attorn of an		
		typical antenna systems and compare				
89-91	LAB -10 (Manual)	approximate values of maximum dire				
07-71	LAD -10 (Manual)	and Tai & Pereira for U (\textit{\Omega}) with N va				
		and far & ferena for 0 (6) with N va	ar ying ir or	11 10 2.		
92	T2:2.5,2.6,2.8.2.9,2.13	Input impedance and polarization	2	74		
72	P: 42-58,64-69,80-81	1 1		·		
93-95	LAB -11 (Manual)	Explore the concept of co-polarization	n and cros	S-		
	2772 77 (172411441)	polarization of a sectoral antenna.				
	UNIT 4: Friis	transmission formula and antenna arr	rays:			
	T2:2.16-2.17					
96	P: 92-95	Friis transmission formula	1	75		
	T2:2.16-2.17	Problems on Friss transmission				
97	P: 92-95	formula	2	77		
	1.72.73	Field regions: near field region,				
98		intermediate field region, and far field	2	79		
70		region	2	//		
	T2:5.1					
99	P: 195-199	Antenna arrays: Linear array	1	80		
	T2:5.2					
100	P: 199-212	Two-element array: broadside array	2	82		
101-103	LAB -12 (Manual)					
	(Measurement of Gain by substitution	method			
104	T2:5.1	D (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	0.2		
104	P: 195-197	Pattern multiplication and array factor	1	83		
105		Examples of pattern multiplication	1	84		
106	T2:5.2	• • •	2	96		
106	P: 199-212	Two-element array: broadside array	2	86		

		Course Injointation		1	
107	T2:5.2	Two-element array: end-fire array	2	88	
108	P: 199-212	Two ordinant array, and the array		00	
109	T2:5.2 P: 199-212	Examples on two-element arrays	1	89	
110	T2:5.3 P:212-218	Array factor of a uniform linear array of N elements	2	91	
111-113	LAB -13 (Manual)	To study and plot the radiation pattern of an End fire array & Broad-side array using MATLAB &MATLAB implementation to obtain the radiation pattern of a planar Array			
114	A/H/P 8: Numerical p	roblems for ARRAYS			
115	A/H/P 9: Project on arrays				
116	T2:5.3 P:212-218	Main lobe and grating lobes	2	93	
117	T2:5.4.1 P:228-232	Antenna array with uniform spacing and non-uniform amplitude (binomial array)	2	95	
118	T2:5.4.1 P:228-232	Array factor of binomial array	2	97	
119	T2:5.4.1 P:228-232	Comparison of uniform linear array and binomial array 1 98			
120		Special antennas (Qualitative description) 2 100			
121-123	LAB -14	Project work			
124	A/H/P 10: Numerical problems on antenna arrays				
125-126	125-126 Conduction of Lab				
ISA-2 WEEK FOR UNITS 3 AND 4					

References:

Book Type	Title & Author	Publisher	Edition
Textbook 1	Microwave Engineering by David	John Wiley & Sons	2nd Edition, 2004
	M. Pozar		
Textbook 2	Antennas and Propagation by	Oxford	1st Edition, 2007
	A.R.Harish and M.Sachidananda	University Press	
Reference book 1	Principles of Electromagnetics by	Oxford	6 th Edition, 2015
	M. N. O. Sadiku and S. V. Kulkarni	University Press	

Assessment plan:

Event	Portion	Marks		Mode
		10 (A/H/P 1	-10)	Simulation,
A/H/P	At least one per unit	+		Report
		10 (Project v	vork – LAB 14)	Coding
ISA 1	Units 1 and 2	40	Scaled to 30	Hybrid mode
ISA 2	Units 3 and 4	40		Hybrid mode
Total ISA		50		
ESA – Theory	Units 1, 2, 3, 4	100	Scaled to 50	Hybrid mode
ESA – Lab	Lab assessment	20		Lab conduction
				+ Observation
Total ESA		50		
Total ISA + ESA		100		