

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Podstawy Automatyki

Informatyka Stosowana, rok II

Metoda Zieglera-Nicholsa doboru nastaw regulatorów PID

Metoda Zieglera-Nicholsa stała się niemal standardową procedurą doboru nastaw regulatora. W wielu przypadkach zapewnia dobrą jakość regulacji, a jej podstawową zaletą jest prostota. Nastawy obliczone metodą Z-N są często traktowane jako wartości wzorcowe, z którymi porównuje się nastawy obliczone innymi metodami.

Pomimo dużej popularności metody Z-N otrzymywane w wyniku jej zastosowania wartości nastaw należy traktować jedynie jako pierwsze racjonalne przybliżenie. Dla wielu układów obliczone tą metodą wartości nastaw nie są najlepsze.

Aby obliczyć wartości nastaw regulatora PID metodą Z-N, należy wyznaczyć wartość współczynnika wzmocnienie krytycznego K_{kr} (tj. na granicy stabilności). Znając transmitancję obiektu regulacji, wzmocnienie krytyczne najłatwiej znaleźć drogą analityczną (np. za pomocą kryterium Hurwitza lub metodą bezpośredniego podstawienia).

W przypadku nieznanej transmitancji obiektu pozostaje metoda doświadczalna: nastawia się regulator na działanie proporcjonalne i zwiększa wzmocnienie doprowadzając układ do granicy stabilności. W stanie oscylacji należy zmierzyć ich okres P_{kr} (czas trwania jednego cyklu).

Znając wartości K_{kr} oraz P_{kr} i posługując się zależnościami z tabeli 1 można obliczyć wartości nastaw dla trzech podstawowych typów regulatora (tj. P, PI oraz PID). Nastawy te zapewniają współczynnik tłumienia wynoszący $\frac{1}{4}$.

Tab 1. Nastawy regulatorów – metoda Zieglera-Nicholsa.

Regulator	K _r	Ti	T_d
P	$0.5~\mathrm{K_{kr}}$	_	_
PI	$0.45~\mathrm{K_{kr}}$	$P_{kr}/1.2$	_
PID	0.6 K _{kr}	P _{kr} /2	P _{kr} /8

Dla regulatora PID opracowano zmodyfikowane nastawy zapewniające mniejsze przeregulowanie. Nastawy te zawiera tabela 2.

Tab 2. Nastawy regulatorów PID – zmodyfikowaną metoda Zieglera-Nicholsa.

	K _r	T_i	T_d
Niewielkie przeregulowanie	$0.33~\mathrm{K_{kr}}$	$P_{kr}/2$	$P_{kr}/3$
Bez przeregulowania	0.2 K _{kr}	P _{kr} /2	P _{kr} /3

Zadanie 1.

Porównaj wynik regulacji P, PI oraz PID z nastawami obliczonymi metodą Zieglera-Nicholsa dla obiektu o transmitancji:

$$G(s) = \frac{1}{\left(s+1\right)^3}$$

za pomocą poniższego układu zbudowanego w SIMULINKu:

Uwaga:

Bloczek PID znajdujący się w bibliotece *Simulink Extras\Additional Linear\PID Controller* wygląda następująco (po zaznaczeniu bloczka kliknij prawy klawisz myszy i wybierz "*Look under mask*"):

Jego transmitancja jest zatem dana wzorem:

$$G_R = K_r + \frac{T_i}{s} + T_d s$$

Regulator ten należy zmodyfikować do postaci:

Czyli do transmitancji:

$$G_R = K_r (1 + \frac{1}{T_i s} + T_d s)$$

Aby można było edytować bloczek, należy go odłączyć od biblioteki: po zaznaczeniu bloczka, kliknij prawy klawisz myszy i wybierz *Link options* \ *Disable link*.

Zadanie 2.

Dla układu z zadania 1 porównaj działanie regulatora PID z nastawami dobranymi według standardowej i zmodyfikowanej metody Zieglera-Nicholsa.