

## Republic of the Philippines

## Laguna State Polytechnic University Province of Laguna



| Laboratory Exercise No. 1 |                                           |                |                 |  |  |
|---------------------------|-------------------------------------------|----------------|-----------------|--|--|
| Topic:                    | Topic 2: Supervised Learning Fundamentals | Week No.       | 3               |  |  |
| Course Code:              | CSST102                                   | Term:          | 1st<br>Semester |  |  |
| Course Title:             | Basic Machine Learning                    | Academic Year: | 2024-2025       |  |  |
| Student Name              |                                           | Section        |                 |  |  |
| Due date                  |                                           | Points         |                 |  |  |

## **Laboratory Exercise 1: Linear Regression Implementation**

#### **Objective:**

To apply the concepts of linear regression learned in lectures by implementing a simple linear regression model from scratch in Python.

#### **Task Overview:**

You are provided with a dataset containing information about house prices in a particular city. The dataset includes features such as the size of the house (in square feet), the number of bedrooms, and the age of the house. Your task is to predict the price of a house based on these features using a linear regression model.

### Steps:

### 1. Data Preprocessing:

- Load the dataset into a Pandas DataFrame.
- Check for any missing values and handle them appropriately.
- Normalize the features to ensure they are on a similar scale.

## 2. Model Implementation:

- Implement the linear regression model using Python (do not use any pre-built libraries like Scikit-learn for this part).
- Derive the model parameters (slope and intercept) using the least squares method.
- Write a function that predicts the house price based on input features.

## 3. Model Training:

- Split the dataset into training and testing sets.
- Train your linear regression model on the training set.
- Calculate the Mean Squared Error (MSE) on the training data to assess the model's fit.

•



## Republic of the Philippines

## Laguna State Polytechnic University Province of Laguna



## 4. Model Evaluation:

- Test your model on the testing set and compute the MSE for the test data.
- Plot the regression line along with the test data points to visualize the model's performance.

### 5. Report:

- Write a short report (2-3 pages) summarizing your findings.
- Include sections on data preprocessing, model implementation, training, evaluation, and conclusions.
- Discuss any challenges you encountered and how you addressed them.

## **Submission Instruction:**

- After completing the laboratory exercise in Google Colab, download your notebook as a .ipynb file. Upload the. ipynb file to the GitHub repository designated for our subject.
- Filename Format: **2A-BERNARDINO-EXER1**

Inability to follow this instruction will be deducted 5 points each for filename format and late submission per day. Also, cheating and plagiarism will be penalized.



## Republic of the Philippines

# Laguna State Polytechnic University Province of Laguna



## Rubric for Laboratory Exercise 1: Linear Regression Implementation

| Criteria       | Excellent             | Good                  | Satisfactory          | Needs Improvement     |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                | (90-100%)             | (75-89%)              | (60-74%)              | (0-59%)               |
| Data           | Complete and          | Good data cleaning;   | Basic cleaning;       | Little to no          |
| Preprocessing  | thorough data         | minor issues in       | some errors or        | preprocessing;        |
|                | cleaning,             | handling or           | inconsistencies in    | significant errors.   |
|                | normalization; no     | normalization.        | processing.           |                       |
|                | errors.               |                       |                       |                       |
| Model          | Model                 | Model implemented     | Basic model           | Major errors in       |
| Implementation | implemented from      | with minor issues;    | implemented; some     | implementation;       |
|                | scratch; code is      | code is mostly clear  | errors or             | unclear or non-       |
|                | clear, efficient, and | and functional.       | inefficiencies in the | functional code.      |
|                | accurate.             |                       | code.                 |                       |
| Model Training | Model is correctly    | Model is trained with | Model is trained      | Model training is     |
|                | trained; MSE is       | minor errors; MSE is  | with some errors;     | incorrect; MSE        |
|                | appropriately         | calculated but with   | MSE is calculated     | calculation is        |
|                | calculated and        | some                  | but not well          | incorrect or missing. |
|                | interpreted.          | misinterpretations.   | interpreted.          |                       |
| Model          | Model performance     | Evaluation is mostly  | Basic evaluation      | Little to no          |
| Evaluation     | is thoroughly         | correct; plots are    | provided; plots are   | evaluation; no or     |
|                | evaluated; plots are  | provided but may lack | unclear or not fully  | very unclear plots.   |
|                | clear and             | clarity.              | accurate.             |                       |
|                | informative.          |                       |                       |                       |
| Report Quality | Report is well-       | Report is organized   | Report is somewhat    | Report is unclear,    |
|                | organized, clear,     | and mostly clear;     | clear but lacks       | disorganized, and     |
|                | and complete;         | minor issues in       | organization or       | lacks critical        |
|                | professional          | completeness or       | completeness.         | information.          |
|                | presentation.         | presentation.         |                       |                       |