Ασκηση 1

Ερώτηση α (Ερωτήματα 1,2,3) Συμπληρώστε τον παρακάτω πίνακα με τα μέτρα απόκρισης συχνότητας των φίλτρων που σχεδιάσατε.

Επίσης ακούστε το σήμα μετά το φιλτράρισμα. Τι παρατηρείτε;

Απάντηση:

> Παρατηρώ πως ο θόρυβος που είχε εισαχθεί στις χαμηλές συχνότητες πριν το φιλτράρισμα διατηρήθηκε, με αποτέλεσμα το τελικό σήμα yf να μην είναι/ακούγεται ακριβώς το ίδιο με το αρχικό y0.

Ασκηση 2

Ερώτηση α-γ

Σχεδιάστε την απόκριση συχνότητας.

Ερώτηση δ

Σχεδιάστε τα πρώτα και τελευταία 100 δείγματα ενός εκ των τριών αποθορυβοποιημένων σημάτων που προέκυψαν από την εφαρμογή του εκάστοτε φίλτρου στο σήμα $\Box_{\Box}(\Box)$ και τα αντίστοιχα του ιδανικού σήματος $\Box_{\Box}(\Box)$ και σχολιάστε την διάρκεια των μεταβατικών φαινομένων (αν υπάρχουν).

Απάντηση:

> Τα παραπάνω φίλτρα είναι FIR, επομένως η διάρκεια των μεταβατικών φαινομένων (που παρουσιάζονται στην αρχή και στο τέλος των τελικών αποθορυβοποιημένων σημάτων) ισούται με το μήκος της κρουστικής απόκρισης μείον 1:

Διάρκεια Μεταβατικών Φαινομένων = N-1 = 35-1 = 34 δείγματα

Ερώτηση ε

Υπολογίστε το μέσο τετραγωνικό σφάλμα (MSE) για κάθε ένα από τα αποθορυβοποιημένα σήματα. Αξιολογήστε την απόδοση κάθε φίλτρου. Είναι αυτή η απόδοση σε πλήρη συμφωνία με αυτό που ακούτε; Πού αποδίδετε την ασυμφωνία (αν υπάρχει);

Απάντηση:

Αφού υπολογίσουμε τα MSE για κάθε αποθορυβοποιημένο σήμα, μπορούμε να αξιολογήσουμε την απόδοση κάθε φίλτρου. Ένα γαμηλότερο MSE υποδεικνύει καλύτερη απόδοση.

MSE for yf1: 0.11388

MSE for yf2: 0.12128

MSE for yf3: 0.14757

Άσκηση 3

Ερώτηση α

Καταγράψτε τα πιθανά είδη θορύβου που έχουν κατά τη γνώμη σας μολύνει το σήμα εισόδου.

Απάντηση:

Πιθανότατα ο θόρυβος που ακούγεται πρόκειται για ένα σήμα που η περισσότερη ενέργειά του κατανέμεται σε μία μόνο συχνότητα (πχ ένα ημίτονο).

Ερώτηση β

Ερώτηση γ

Αιτιολογήστε την επιλογή της κατηγορίας του φίλτρου που επιλέξατε να χρησιμοποιήσετε.

Απάντηση:

Απόκριση συχνότητας φίλτρου

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΜΑΤLΑΒ

Επέλεξα να χρησιμοποιήσω ένα Bandstop FIR φίλτρο το οποίο αποκόπτει τις συχνότητες μεταξύ των 8100 Hz και 8200 Hz, εκεί όπου εμφανίζεται δηλαδή ο θόρυβος. Έτσι, καταφέρνω να εξουδετερώσω τον θόρυβο, ενώ διατηρώ το υπόλοιπο σήμα ως έχει.

Ερώτηση ε

Απάντηση:

Θόρυβος	Σήμα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ

ΠΑΡΑΛΕΙΓΜΑΤΑ ΜΕ ΜΑΤLAΒ

ПАРАРТНМА

Ακολουθεί η επισύναψη όλου του κώδικα.

Ότι είναι highlighted με κίτρινο μαρκαδόρο υπογράμμισης σημαίνει ότι ακολουθούν οι απαντήσεις για κάθε ερώτημα των Ασκήσεων.

Κώδικας Άσκησης 1

```
close all;clear;clc;
N = 29;
fc = 0.4; % \omega c = 0.4*pi
hc1 = fir1(N-1,fc,'low');
hc2 = fir1(N-1,fc,'high');
% Impulse Response of highpass fir filter hc1
figure
stem(hc1);
title('Filter Impulse Response');
grid on
% Impulse Response of highpass fir filter hc2
figure
stem(hc2);
title('Filter Impulse Response');
grid on
% Frequency Response of highpass fir filter hc1 using freqz()
figure
freqz(hc1,1,512);
title('Filter Frequency Response');
% Frequency Response of highpass fir filter hc2 using freqz()
figure
freqz(hc1,1,512);
title('Filter Frequency Response');
grid on
```

%%

```
NumFFT = 4096;
Freqs = linspace(-pi,pi,NumFFT);
figure
plot(Freqs, abs(fftshift(fft(hc1,NumFFT))));
title('Filter frequency response')
figure
plot(Freqs, 20*log10(abs(fftshift(fft(hc1,NumFFT)))));
title('Filter frequency response (dB)')
grid on
figure
plot(Freqs, angle(fft(hc1,NumFFT)));
title('Filter frequency response (dB)')
grid on
% ΑΣΚΗΣΗ 1 --> γράφος μέτρου απόκρισης συχνότητας για FIR highpass filter
% shifted frequency response of highpass fir filter hc2
figure
plot(Freqs, 20*log10(abs(fftshift(fft(hc2,NumFFT)))));
title('Filter frequency response (dB)')
grid on
%%
% ΑΣΚΗΣΗ 1 --> β) γράφοι μέτρου απόκρισης συχνότητας για FIR highpass και lowpass
<mark>% φίλτρα</mark>
% χρήση της firls()
h_low = firls(N-1,[0, 0.1, 0.35, 1] , [1 1 0 0]);
h_{high} = firls(N-1,[0, 0.1, 0.35, 1], [0 0 1 1]);
plot(Freqs, 20*log(abs(fftshift(fft(h_low,NumFFT)))));
title('Filter frequency response (dB)')
grid on
hold on
plot(Freqs, 20*log10(abs(fftshift(fft(h_high,NumFFT)))));
title('Filter frequency response (dB)')
grid on
```

%%

```
% ΑΣΚΗΣΗ 1 --> γ) γράφοι μέτρου απόκρισης συχνότητας για FIR highpass και lowpass
φίλτρα
% χρήση της firpm()

h_low = firpm(N-1,[0, 0.1, 0.35, 1] , [1 1 0 0]);
h_high = firpm(N-1,[0, 0.1, 0.35, 1] , [0 0 1 1]);

figure
plot(Freqs, 20*log(abs(fftshift(fft(h_low,NumFFT)))));
title('Filter frequency response (dB)')
grid on

hold on
plot(Freqs, 20*log10(abs(fftshift(fft(h_high,NumFFT)))));
title('Filter frequency response (dB)')
grid on
```

Κώδικας Άσκησης 2

```
close all;clear;clc;

load chirp
y0=y;
noise =0.5*randn(size(y));
Fs = 8192;
yw = y0 + noise;

NumFFT = 4096;
F = linspace(-Fs/2,Fs/2,NumFFT);

% Windows Visualization Tool to view Chebyshev window in time and frequency domain
```

```
% w=chebwin(35,30);
% wvtool(w);
% AΣΚΗΣΗ 2 --> α)
b1 = fir1(34,0.48, 'high', chebwin(35,30));
% frequency response of highpass filter b1 using freqz()
freqz(b1,1,512);
% Plot the frequency response in dB using fft()
figure
plot(F, 20*log(abs(fftshift(fft(b1,NumFFT)))));
title('Filter frequency response-fir1 (dB)')
yf1 = filtfilt(b1,1,yw);
% representation of signals y0,yw,yf in the frequency domain
subplot(131);plot(F, abs(fftshift(fft(y0,NumFFT))))
subplot(132);plot(F, abs(fftshift(fft(yw,NumFFT))))
subplot(133);plot(F, abs(fftshift(fft(yf1,NumFFT))))
% listening to each of the above signals
% sound(y, Fs)
% sound(yw, Fs)
% sound(yf1, Fs)
% AΣKHΣH 2 --> β)
b2 = firls(34, [0, 0.48, 0.5, 1], [0 0 1 1]);
yf2 = filtfilt(b2,1,yw);
% Plot the frequency response
plot(F, 20*log(abs(fftshift(fft(b2,NumFFT)))));
title('Filter frequency response-firls (dB)')
grid on
% listening to the signals
% sound(y, Fs)
% sound(yw, Fs)
% sound(yf2, Fs)
```

```
% AΣΚΗΣΗ 2 --> ν)
b3 = firpm(34, [0, 0.48, 0.5, 1], [0 0 1 1]);
yf3 = filtfilt(b3,1,yw);
% Plot the frequency response
figure
plot(F, 20*log(abs(fftshift(fft(b3,NumFFT)))));
title('Filter frequency response-firpm (dB)')
% listening to the signals
% sound(y, Fs)
% sound(yw, Fs)
% sound(yf3, Fs)
%%
% AΣKHΣH 2 --> δ)
% Απεικόνιση πρώτων και τελευταίων 100 δειγμάτων
start_idx = 1;
end_idx = 100;
% Αποθορυβοποίηση των σημάτων
yf1 = filtfilt(b1, 1, yw);
yf2 = filtfilt(b2, 1, yw);
yf3 = filtfilt(b3, 1, yw);
% Αποθορυβοποιημένα σήματα πρώτων και τελευταίων 100 δειγμάτων
yf1_first_last = [yf1(start_idx:end_idx), yf1(end-99:end)];
yf2 first last = [yf2(start idx:end idx), yf2(end-99:end)];
yf3_first_last = [yf3(start_idx:end_idx), yf3(end-99:end)];
yo first last = [y0(start idx:end idx), y0(end-99:end)];
% Δείγματα για τον άξονα χ
t = 0:length(yf1)-1;
% Απεικόνιση των σημάτων
figure;
subplot(4, 2, 1);
plot(t(start_idx:end_idx), yo_first_last(start_idx:end_idx));
title('First 100 Samples of yo(n)');
xlabel('Samples');
ylabel('Amplitude');
```

```
subplot(4, 2, 2);
plot(t(end-99:end), yo_first_last(end-99:end));
title('Last 100 Samples of yo(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 3);
plot(t(start_idx:end_idx), yf1_first_last(start_idx:end_idx));
title('First 100 Samples of yf1(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 4);
plot(t(end-99:end), yf1_first_last(end-99:end));
title('Last 100 Samples of yf1(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 5);
plot(t(start_idx:end_idx), yf2_first_last(start_idx:end_idx));
title('First 100 Samples of y2(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 6);
plot(t(end-99:end), yf2_first_last(end-99:end));
title('Last 100 Samples of y2(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 7);
plot(t(start_idx:end_idx), yf3_first_last(start_idx:end_idx));
title('First 100 Samples of y3(n)');
xlabel('Samples');
ylabel('Amplitude');
subplot(4, 2, 8);
plot(t(end-99:end), yf3_first_last(end-99:end));
title('Last 100 Samples of y3(n)');
xlabel('Samples');
ylabel('Amplitude');
%%
% AΣKHΣH 2 --> ε)
% Υπολογισμός MSE για κάθε σήμα
mse1 = mean((y0 - yf1).^2);
```

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΜΑΤLAΒ

```
mse2 = mean((y0 - yf2).^2);
mse3 = mean((y0 - yf3).^2);

% Εκτύπωση MSE
disp(['MSE for yf1: ', num2str(mse1)]);
disp(['MSE for yf2: ', num2str(mse2)]);
disp(['MSE for yf3: ', num2str(mse3)]);
```

Κώδικας Άσκησης 3

```
close all;clear;clc;
load Noisy
Fs = 44100;
% AΣΚΗΣΗ 3 --> α)
%sound(yw, Fs)
% AΣKHΣH 3 --> β)
NumFFT = 4096;
F = linspace(-Fs/2,Fs/2,NumFFT);
% Plot the frequency response in dB using fft()
figure
plot(F, 20*log(abs(fftshift(fft(yw,NumFFT)))));
title('Frequency response of yw (dB)')
%%
% AΣΚΗΣΗ 3 --> ν)
% Σχεδιάζουμε ένα φίλτρο για την αφαίρεση του θορύβου με το Filter Designer της
MATLAB
```

```
% Equiripple Bandstop filter designed using the FIRPM function.
% All frequency values are in Hz.
Fs = 44100; % Sampling Frequency
% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord([Fpass1 Fstop1 Fstop2 Fpass2]/(Fs/2), [1 0 ...
                        1], [Dpass1 Dstop Dpass2]);
% Calculate the coefficients using the FIRPM function.
b = firpm(N, Fo, Ao, W, {dens});
% Φιλτράρουμε το σήμα με το φίλτρο που δημιουργήσαμε
y clean = filtfilt(b, 1, yw);
% Filter's frequency response
figure;
freqz(b,1,512);
% AΣKHΣH 3 --> δ)
% Ακούμε το φιλτραρισμένο σήμα
sound(y_clean, Fs);
% AΣKHΣH 3 --> ε)
% Σχεδιάζουμε την κυματομορφή του θορύβου και του αποθορυβοποιημένου σήματος
num samples = 250;
figure;
t = 0:num_samples-1;
subplot(2,1,1);
plot(t, yw(1:num_samples));
title('Noisy Signal');
xlabel('Samples');
ylabel('Amplitude');
subplot(2,1,2);
plot(t, y_clean(1:num_samples));
title('Clean Signal');
xlabel('Samples');
```

ylabel('Amplitude');