臺北區 106 學年度第二學期 指定科目第一次模擬考試

物理考科

一作答注意事項-

考試範圍:基礎物理(一)、基礎物理(二)B(上)(下)、

選修物理(上)

考試時間:80分鐘

作答方式:

- 選擇題用2B鉛筆在「答案卡」上作答;更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。
- 非選擇題用筆尖較粗之黑色墨水的筆在「答案 卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占80分)

一、單選題(占60分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在 答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選 項者,該題以零分計算。

第1-2 題為題組

1. 水平地面上有一靜止的光滑 1 圓柱體,在其圓心正上方以不計 質量的細繩懸掛一質量為 m 的小鋼珠,小鋼珠離地面之垂直 高度為 h, 圓柱體半徑與小鋼珠半徑總和恰為 2h, 如圖 1 所 示。設重力加速度為 g, 則小鋼珠所受的細繩張力為何?

 $(D)\frac{2}{\sqrt{3}}mg$

(A) 4mg

- (E) mg
- 2. 若整個系統以等加速度向右運動,當小鋼珠脫離圓柱體時細繩也恰好斷裂,細繩斷裂後, 圓柱體繼續以等加速度向右運動。已知小鋼珠離開後不會再撞到圓柱體,則經過多久以後 會著地?
 - (A) $\sqrt{\frac{4h}{a}}$

- (B) $\sqrt{\frac{2h}{g}}$ (C) $\sqrt{\frac{h}{g}}$ (D) $\sqrt{\frac{h}{2g}}$
- 3. 光滑水平桌面上,一質量 m 的質點受彈力作用,已知彈簧的彈 性常數為k、彈簧原長為 L_0 、重力加速度為g。另以細線通過桌 面中央一小洞與質量M的砝碼相連,欲使該質點作半徑R的等 速圓周運動如圖 2 所示,則此質點的運動週期為何?

(C) $2\pi\sqrt{\frac{mR}{ML_0}}$

(D) $2\pi\sqrt{\frac{MR}{mg}}$ (E) $2\pi\sqrt{\frac{mR}{k~(R-L_0)}}$

- 4. 物體 A 的質量為 m,受一固定水平外力作用,由靜止開始,在 t 秒內移動 S;物體 B 的質量 為 2m,受另一固定水平外力作用,由靜止開始,在 t 秒內移動 2S。不計一切阻力,則在此 t 秒內物體 A 所受衝量與物體 B 所受衝量之比值為何?
 - $(A)\frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) 1
- (D) 2
- (E) 4

5. 質量分別為 70 kg、55 kg 的 A 男與 B 女兩人,均靜止站立在無摩擦的冰湖上,準備練習花 式雙人溜冰賽。若 A 男以 14 m/s 的速度水平擲出一 1.0 kg 之彩球,而 B 女穩穩將球接住 了,則後來A、B兩人的相對速度量值約為下列何者?

(A) 0.1 m / s

- (B) 0.3 m / s

- (C) 0.5 m/s (D) 1.0 m/s (E) 1.4 m/s
- 6. 過年期間,阿銘一家人夜晚於老家旁空地施放煙火,若煙火從地面 起以初速 40 m/s 鉛直上升,恰於最高點炸裂成數片小碎片,美麗火 光如圖 3 所示。假設炸裂前後總質量幾乎不變,重力加速度 g=10 m/s^2 ,請問煙火炸裂後 2s 時,若煙火之小碎片皆未落地,則小碎片 的質心高度為多少?

(A) 80 m

(B) 60 m

(C) 50 m

(D) 40 m

(E) 20 m

7. 如圖 4 所示,兩同相波源 $S_1 \times S_2$ 相距 4 公尺,水波波長為 1.5 公尺,小琳由 S₁ 出發,垂直波源連線前進 3 公尺至 P 點,則 小琳會遇到幾個節點?

(A) 5

(B) 4

(C) 3

(D) 2

(E) 1

8. 在光滑地面上放置一斜面,斜面與地面的夾角為 37°,斜面上 放置一物體,質量為5kg,如圖5所示,今發現物體相對斜面 為靜止且一起與斜面以等加速度 $a=6 \,\mathrm{m/s^2}$ 向右滑行,試問此 物體受到的摩擦力量值為何?(假設重力加速度 $g=10 \text{ m}/\text{s}^2$)

(A) 0 N

(B) 27 N

(C) 50 N

(D) 54 N

(E) 108 N

9. A、B 兩車在光滑平面上以相同速率 v 相向運動, 如圖 6 所示。 已知 $A \cdot B$ 的質量分別為 $M \cdot 2M$, 其中 B 車前方有一彈性常數 為 k 且質量可忽略的彈簧,則彈簧之最大壓縮量為何?

(B) $\sqrt{\frac{5Mv^2}{3k}}$ (C) $\sqrt{\frac{8Mv^2}{3k}}$ (D) $\sqrt{\frac{4Mv^2}{5k}}$

10. 一質量為 2m 的小球 A 自傾斜角為 30° 的斜面頂端 下滑,與另一質量為 m 之靜止小球 B 發生正面彈性 碰撞,並滑上半圓形軌道,如圖7所示。若斜面長 為 ℓ ,半圓形軌道半徑為 R ,忽略所有摩擦力,且碰 撞後 B 球可到達半圓形軌道的頂端,則斜面長ℓ與 半圓形軌道半徑 R 之比值最小值為何?

(B) $\frac{45}{16}$ (C) $\frac{5}{4}$ (D) $\frac{25}{16}$

 $(E)\frac{32}{15}$

11. 飛機飛行時受到空氣阻力的作用,若所受空氣阻力的量值與飛行速率的平方成正比。當飛機 以等速率v水平飛行L的距離時,引擎所作總功為W;而當飛機以等速率2v水平飛行3L的 距離時,則引擎所作總功為何?

(A) 2W

(B) 4W

(C) 6W

(D) 12W

(E) 18W

- 12. 一列連續的橫波之繩波沿水平方向傳播,繩的一端在t=0時開始作週期為T的簡諧運動, 經過時間 $t \left(\frac{3}{4} T < t < T \right)$,繩上某點位於平衡位置上方最大位移處。試問在時間為 2t 時,該 點位於平衡位置的何處?
 - (A)上方,且向上運動
 - (B)上方,且向下運動
 - (C)下方,且向上運動
 - (D)下方,且向下運動
 - (E)恰位於平衡位置, 且向上運動
- 13. 在真空中有兩個點電荷 A 與 B, 電量分別為-Q 與 2Q 且相 距 L,如果兩個點電荷連線的中點有一個空心金屬球,此金 屬球半徑小於 $\frac{L}{2}$ 且球心位於O,如圖8所示,庫侖常數為

k,則下列敘述何者正確?

- (A)在空心金屬球内 O 處的電場強度不為 0
- (B) 金屬球殼上感應電荷在 O 處所建立的電場量值為 $\frac{12kQ}{L^2}$
- (C)金屬球殼上 C 點的電位高於 D 點電位
- (D)因為金屬球殼的屏蔽效應,A、B兩個點電荷之間沒有靜電作用力
- (E)若A、B兩個點電荷同時都向金屬球接近一些,C、D的電位維持不變
- 14. 將波長 21 及 31 的單色光同時照射在同一雙狹縫上,可於屏幕上產生兩種不同色光的干涉 條紋,有一觀察者發現兩干涉條紋有互相重疊的部分。試問位於屏幕上與中央亮帶最接近, 且為兩種色光的亮帶互相重疊之位置到雙狹縫的光程差為多少?

(A) 2

(B) 2λ

(C) 32

(D) 62

(E) 12 λ

15. 甲、乙、丙三介質折射率 $n_{\text{H}}=2$ 、 $n_{\text{Z}}=\frac{7}{4}$ 、 $n_{\text{M}}=\frac{3}{2}$ 如圖 9 所示,且 甲、乙介質界面 X 與乙、丙介質界面 Y 彼此平行,若逐漸增大入 射角 θ ,第一次全反射將於下述何情況下發生?

$$(A) \sin \theta = \frac{7}{8}$$
時,於X界面發生全反射

$$(B) \sin \theta = \frac{6}{7}$$
時,於X界面發生全反射

$$(C)$$
 $\sin \theta = \frac{6}{7}$ 時,於Y界面發生全反射

$$(D)$$
 $\sin \theta = \frac{3}{4}$ 時,於 X 界面發生全反射

$$(E) \sin \theta = \frac{3}{4}$$
時,於Y界面發生全反射

16. 一顆鋼珠沿著無摩擦力的細桿,由靜止開始下滑,細桿與地面呈 30°, 如圖 10 所示,重力加速度為 g。今光線由上方鉛直向下照射,則鋼珠在水平地面上的影子,其加速度量值為何?

$$(A)\frac{1}{2}g$$

$$(B)\frac{\sqrt{3}}{2}g$$

$$(C)\frac{1}{4}g$$

$$(D)\frac{\sqrt{3}}{4}g$$

(E)g

17. 如圖 11 所示,在長度為 R 的輕繩子一端繫上質量為 m 的物體,使之作鉛直面且轉向為順時針的圓周運動,圓心為 O 點,最高點為 A 點,最低點為 C 點,請問當物體從 A → B → C 時,下列對物體的敘述何者正確?

- (B)動量量值先增而後降
- (C)對 O 點而言,角動量量值先增而後降
- (D)對 O 點而言,重力對物體所施力矩量值先增而後降
- (E)對 O 點而言,繩張力對物體所施力矩量值先增而後降
- 18. 圖 12 為某一等位線分布,今放置一負電荷於圖中 A 點處,則由靜止釋放瞬間,該電荷會往哪個方向移動?

$$(B)\searrow$$

$$(C)\,\uparrow$$

(E)~

19. 如圖 13 所示,無窮大帶電平行板的兩極板豎直放置並分別與電源的正負極相連,一帶電小球經絕緣輕繩懸掛於兩極板之間,處於靜止狀態。現保持右極板不動,將左極板向右緩慢移動,移動過程中左極板皆未碰觸帶電小球。關於小球所受的電場之電力量值 F 與繩子張力量值 T,下列何者判斷正確?

- (A) F逐漸減小, T逐漸減小
- (B) F逐漸增大, T逐漸增大
- (C) F逐漸增大, T逐漸減小
- (D) F 逐漸減小, T 逐漸增大
- (E) F逐漸增大, T量值不變
- 20. 一靜止的密閉容器中裝有理想氣體,若不考慮密閉容器體積隨溫度的變化,則下列關於此容 器內理想氣體之敘述,何者正確?
 - (A)總動量為零
 - (B)總動能為零
 - (C)總位能隨溫度上升而變大
 - D)體積隨溫度下降而變小
 - (E)壓力隨溫度上升而變小

二、多選題(占20分)

說明:第21.題至第24.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得5分; 答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項 均未作答者,該題以零分計算。

21. 置於軌道頂端 A 的金屬球從靜止開始,分別通過甲、乙、丙三個不同高度的光滑軌道,如圖 14 所示。若不計一切阻力,則下列敘述中哪些是正確的?

- (A)金屬球經甲軌道可最快到達終點 B
- (B)金屬球經乙軌道可最快到達終點 B
- (C)金屬球經丙軌道可最快到達終點 B
- (D)無論從哪一軌道到達終點 B,金屬球的末速皆相同
- (E)到達終點 B 時,經丙軌道的金屬球動能最大

- 22. 使用波長為 λ 之雷射光做雙狹縫干涉實驗,若狹縫與屏幕距離為 L,狹縫間距為 d (d \ll L),其實驗結果中央亮帶寬度為 Δy ,則下列敘述哪些正確?
 - (A)若將狹縫間距改為 $\frac{d}{2}$,則中間亮帶寬度會變為 $2\Delta y$
 - (B)若將狹縫與屏幕距離改為 2L,則中間亮帶寬度會變為 $2\Delta y$
 - (C)若將雷射光的亮度增加,則中間亮帶也會隨之變寬
 - (D)若改以波長為 2λ 的雷射光做實驗,則中間亮帶寬度會變為 $\frac{\Delta y}{2}$
 - (E)若將雙狹縫改換成狹縫寬為d的單狹縫,則中間亮帶寬度會變為 $2\Delta y$
- 23. 下列關於「碰撞」的敘述,何者正確?
 - (A)非彈性碰撞不遵守動量守恆律
 - (B)兩物體作彈性碰撞過程中,系統總動能守恆
 - (C)兩物體作完全非彈性碰撞後,速度相同
 - (D)兩物體作彈性碰撞過程中,兩物體相對速度量值不變
 - (E)兩物體發生碰撞過程中,兩者相對於質心之動量和為零
- 24. 一定質量之理想氣體,在 P-T (壓力—絕對溫度)圖上,由狀態 a P 經狀態 b、狀態 c、狀態 d 再回到原狀態 a,如圖 15 所示。圖中 ab 平行於 cd,且 ab 之延長線通過原點,c點氣壓較 a 點高。下列 敘述,何者正確?

- (A)體積大小關係為 $V_a = V_b > V_d > V_c$
- (B)氣體總動能關係為 $E_{ka}=E_{kd}>E_{kc}=E_{kb}$
- (C)氣體總動量大小關係為 $p_a > p_b > p_c > p_d$
- (D)氣體方均根速率關係為 $\nu_{\rm d} > \nu_{\rm c} > \nu_{\rm a} > \nu_{\rm b}$
- (E)氣體施於某一器壁的合力大小關係為 $F_d > F_c > F_a > F_b$

第貳部分:非選擇題(占20分)

說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號(1.、2.、……)。作答時不必抄題,但必須寫出計算過程或理由,否則將 酌予扣分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題 配分標於題末。

- 一、某生做「氣柱的共鳴」實驗,請回答下列問題:
 - 1. 實驗中使用橡皮槌敲打音叉,而不用鐵鎚敲打音叉,為什麼? (2分)
 - 2. 若實驗所用音叉頻率為 600 Hz,第一次共鳴時管長為 13.0 cm,第二次共鳴時管長為 40.5 cm,求聲速為多少?(3分)
 - 3. 利用本實驗的方法,如何由已知音叉 A 的頻率求出另一未知音叉 B 的頻率?(3分)
 - 4. 如圖 16 所示,某生希望能夠聽到更清楚的共鳴聲音,理應在共鳴管口上面放置凸透鏡還是凹透鏡?為什麼?(2分)

- 二、一顆人造衛星在圓形軌道上繞地球運轉,其動能為K,軌道半徑為r,則:(答案以K、r 作答)
 - 1. 欲使其軌道半徑變為 3r, 須補充若干能量?(3分)
 - 2. 欲使其到達距地心 3r 處之高空的瞬間為靜止, 須補充若干能量? (2分)
 - 3. 欲使其脫離地球引力,至少須補充若干能量?(2分)
 - 4. 若其總能量因摩擦而損失 $\frac{K}{5}$,則軌道半徑變為何? (3分)

CATATATATAT

臺北區 106 學年度第二學期 指定科目第一次模擬考試

理考科參考答案暨詳

版權所有·翻印必究

物理考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(E)	(B)	(E)	(A)	(C)	(B)	(D)	(D)	(C)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(B)	(D)	(A)	(B)	(D)	(E)	(D)	(D)	(E)
題號	19.	20.	21.	22.	23.	24.	With the		
答案	(B)	(A)	(C)(D)	(A)(B)(E)	(C)(E)	(A)(B)(E)			

第壹部分:選擇題

一、單撰顯

1. (E)

出處:基礎物理(二)B上 靜力學

目標:直接運用基本觀念、方法與原理的能力

內容:三力平衡的關係

解析:選取小鋼珠為系統,小鋼珠受重力、正向力、 張力作用達成力平衡,如圖(一)。三力之和為

零形成一正三角形,如圖(二)。

$$mg = T = N$$

2. (B

出處:基礎物理(二) B 上 運動學——直線運動、運

動學——平面運動

目標:直接運用基本觀念、方法與原理的能力

內容:拋體運動

解析:小鋼珠離開圓柱體後以某初速向右,進行水平

拋體運動,則

$$h = \frac{1}{2}gt^2 \cdot t = \sqrt{\frac{2h}{g}}$$

經過時間 $\sqrt{\frac{2h}{g}}$,小鋼珠撞擊地面。

3. (E)

出處:基礎物理(二) B 上 牛頓運動定律的應用

目標:分析過程,找出相關數量之間關係的能力

內容:圓周運動,彈力,向心力

解析:選取質點為系統,彈力與速度方向垂直,故

彈力即為向心力,值為 $F_c = k(R - L_0)$

另選取砝碼為系統,重力即為繩張力又等於彈

力,值為 $Mg=T'=k(R-L_0)$

向心力 $F_c = k (R - L_0)$

$$=m\frac{4\pi^2R}{T^2}$$

4. (A)

出處:基礎物理(二)B上 牛頓運動定律;

基礎物理(二)B下 動量與動量守恆律

目標:分析過程,找出相關數量之間關係的能力

內容:等加速運動,牛頓第二運動定律,衝量動量

定理

解析:運用「牛頓第二運動定律」 $F=ma \Rightarrow a = \frac{F}{m}$

與等加速度運動公式之一的 $S=v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$

可列出物體 A 之 $S = \frac{1}{2} \cdot \frac{F_A}{m} \cdot t^2$

物體 B
$$\geq 2S = \frac{1}{2} \cdot \frac{F_{\rm B}}{2m} \cdot t^2$$

比較可知 $F_A: F_B=1:4$

再由「衝量動量定理」 $J=F \cdot t=m \cdot \Delta v = \Delta p$

最後得出 $J_A: J_B=F_A: F_B=1:4$

故 J_A 與 J_B 之比值為 $\frac{1}{4}$ 。

5. (C)

出處:基礎物理(二)B下 動量與動量守恆律

目標:直接運用基本觀念、方法與原理的能力

內容:相對運動,動量守恆律

解析:利用動量 $p=m\cdot v$ 與「動量守恆定律」,可

列出:

A 男丟球前後:

 $0 = 70 \times (-v_A) + 1 \times (+14)$

B 女接球前後:

 $1 \times (+14) + 0 = (55+1) \times v_B$

再由相對速度的定義為 $\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$, \vec{v}_A 方向向左、 \vec{v}_B 方向向右,則得出相對速度大小

$$=\frac{1\times14}{70}+\frac{1\times14}{55+1}=\frac{1}{5}+\frac{1}{4}$$

$$= \frac{9}{20} = 0.5 \, (m/s)$$

6. (B)

出處:基礎物理(二)B下 動量與動量守恆律

目標:直接運用基本觀念、方法與原理的能力

內容:質心運動

解析:爆炸的前後瞬間,化學能轉換成爆炸的作用力 為系統內力,且重力作用的衝量可忽略,僅需 考慮煙火好似未炸開時,質點以初速 40 m/s

作鉛直上拋運動

 $0 = 40 + (-10) t \Rightarrow t = 4 (s)$

花 4 s 可飛上最高點,再運算出小碎片的質心 高度

$$h = \frac{1}{2} \times 10 \times 4^2 - \frac{1}{2} \times 10 \times 2^2 = 60 \text{ (m)}$$

7. (D)

出處:選修物理(上) 波動

目標:分析過程,找出相關數量之間關係的能力

內容:水波槽干涉圖形的判斷

解析:水波槽之最大波程差=兩波源間距

4=半波長×N=0.75×N, N≒5.3

其中遇到奇數 1、3、5,表示最多可到第三 節線。

題目圖中波程差為 5-3= 半波長×n=0.75×n , n=2.7

2.7 大於 1 ,表示小琳由波源 S_1 往 P 點方向 走會遇到第二及第三節線上的節點。

8. (D)

出處:基礎物理(二) B上 牛頓運動定律

目標:分析過程,找出相關數量之間關係的能力

內容:力的分析

解析:分析受力圖,使用牛頓運動定律,力圖如下

將正向力(N)、摩擦力(f)分解成x、y方向 $\sum F_x = ma$ $\sum F_v = 0$

$$\begin{cases} x : f \cos 37^{\circ} - N \sin 37^{\circ} = ma \\ y : f \sin 37^{\circ} + N \cos 37^{\circ} = mg \end{cases}$$
$$\begin{cases} x : \frac{4}{5} f - \frac{3}{5} N = 5 \cdot 6 = 30 \\ y : \frac{3}{5} f + \frac{4}{5} N = 5 \cdot 10 = 50 \end{cases}$$

$$\Rightarrow \begin{cases} x:4f-3N=150 \\ y:3f+4N=250 \end{cases}$$

解聯立, f=54 (N), N=22 (N)

9. (C)

出處:基礎物理(二) B 下 位能與力學能守恆律、 碰撞

目標:綜合運用基本觀念、方法與原理的能力

內容:彈性位能,碰撞

解析:當彈簧之壓縮量最大時,兩車均以質心速度 運動,增加的彈性位能來自於系統減少的動 能。若彈簧的形變量為 x , 則

$$\frac{1}{2}kx^2 = \frac{1}{2}Mv^2 + \frac{1}{2} \cdot 2M \cdot v^2 - \frac{1}{2} (M + 2M)$$

$$\cdot \left(\frac{Mv - 2M \cdot v}{M + 2M}\right)^2$$

$$\Rightarrow kx^2 = 3Mv^2 - \frac{Mv^2}{3} = \frac{8Mv^2}{3}$$
$$\Rightarrow x = \sqrt{\frac{8Mv^2}{3k}}$$

10. (B)

出處:基礎物理(二) B 下 位能與力學能守恆律、 碰撞

目標:綜合運用基本觀念、方法與原理的能力

內容:鉛直圓周運動,力學能守恆,正面彈性碰撞

解析:設A球滑下斜面時的速度為 vA

$$2mg\ell \sin 30^\circ = \frac{1}{2} \cdot 2m \cdot v_A^2 \Rightarrow v_A = \sqrt{g\ell}$$

若一質量為 m 之小球,可沿半徑為 R 的光滑 圓形軌道作鉛直圓周運動,則小球於最低點 速度之最小值,可利用小球在圓形軌道最高

點所受的向心力為其重 v,量(此時小球所受正向力為零)及力學能守恆 求得,如右圖,設小球 在圓形軌道最高點的速 度為 v,,在最低點的速

$$mg = m \frac{{v_h}^2}{R} \Rightarrow v_h = \sqrt{gR}$$

$$mg \cdot 2R + \frac{1}{2} m v_h^2 = \frac{1}{2} m v_\ell^2$$

$$\Rightarrow 2gR + \frac{1}{2} (\sqrt{gR})^2 = \frac{1}{2} v_t^2 \Rightarrow v_t = \sqrt{5gR}$$

因此若碰撞後 B 球可到達半圓形軌道的頂端, B 球於碰撞後速度之最小值為 $\sqrt{5gR}$,設 B 球 於碰撞後速度之最小值為 $\sqrt{5gR}$

於碰撞後的速度為 v_B' ,則

$$v_{B}' = \frac{2 \cdot 2m}{2m + m} v_{A} = \frac{4}{3} \sqrt{g\ell} \ge \sqrt{5gR}$$

$$\Rightarrow \frac{16}{9} g\ell \ge 5gR$$

$$\Rightarrow \frac{\ell}{R} \ge \frac{45}{16}$$

11. (D)

出處:基礎物理(二)B下 功與動能

目標:分析過程,找出相關數量之間關係的能力

內容:功,功率

解析:設空氣阻力 $f=kv^2$,其中k為常數。

飛機以等速率飛行,引擎作正功之功率P等於 空氣阻力作負功之功率的大小,則

 $P = fv = kv \cdot v^2 = kv^3 \propto v^3$

若飛行時間為t,則

引擎所作之總功 $W=Pt=kv^3 \cdot \frac{L}{v}=kv^2L \propto v^2L$ 故當飛行速率變為2倍,而飛行距離變為3倍

時,則

引擎所作之總功 $W'=2^2 \cdot 3W=12W$

12. (A)

出處:選修物理(上) 波動

目標:理解基本觀念、方法與原理的能力

內容:週期,質點振動

解析:當時間由 $t \equiv 2t$ 時,經過了時間 t,又題目表 示t大於 $\frac{3}{4}$ 週期且小於1個週期,故位於平衡

位置之上且尚未到達最大位移處,並向上運動。

13. (B)

出處: 選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:電位,電場,屏蔽效應

解析:(A) 金屬球內之電場強度為 0。

(B) 感應電荷在 O 處之電場 E_1 與 -Q 及 2Q 建 立的電場 E_2 量值和相等、方向相反,故

$$E_1 = \frac{kQ}{(\frac{L}{2})^2} + \frac{k \cdot 2Q}{(\frac{L}{2})^2} = \frac{12kQ}{L^2}$$

(C) 同一金屬球中,電位均相同。

(D) A、B 兩個點電荷仍有靜電作用力存在。

(E) A、B 兩個點電荷接近金屬球感應電荷數 量改變,故金屬球上C、D的電位將改變。

14. (D)

出處:選修物理(上) 物理光學

目標:直接運用基本觀念、方法與原理的能力

內容:干涉,光程差

解析:亮帶的條件為光程差 $\delta = d \sin \theta = n\lambda$, $n = 1, 2, 3, \dots$ 對 2λ 而言, $\delta=n\cdot 2\lambda$,n=1,2,3,…… 對 3λ 而言 $\delta=n'\cdot 3\lambda$ n'=1 2 3 \dots

故最接近中央亮帶的光程差為 $\delta=6\lambda$

15. (E)

出處:選修物理(上) 幾何光學

目標:直接運用基本觀念、方法與原理的能力

內容:全反射

解析:在X界面發生全反射條件為 $2\sin\theta \ge \frac{7}{4}$,得

 $\sin\theta \ge \frac{7}{8}$, 在Y界面發生全反射條件為

 $2 \sin \theta \ge \frac{3}{2}$, 得 $\sin \theta \ge \frac{3}{4}$ 。故第一次全反射在

 $\sin\theta = \frac{3}{4}$ 時於 Y 界面發生全反射。

16. (D)

出處:選修物理(上) 幾何光學

目標:直接運用基本觀念、方法與原理的能力

內容:光直進性,投影量

解析:於光滑細桿上鋼珠加速度沿細桿方向量值為

 $a=g\sin\theta$,經由光線投影至水平方向,故加速

度量值為 $a'=a\cos\theta=g\sin\theta\cos\theta=\frac{\sqrt{3}}{4}g$

17. (D)

出處:基礎物理(二)B下 動量與動量守恆律

目標:直接運用基本觀念、方法與原理的能力

內容:力學能守恆,動量,角動量,力矩

解析:A、B、C三點的位能依序是由高至低,因力 學能守恆,動能及動量量值皆為由低至高,非 等速率運動。 $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times \vec{mv}$,角動量量值 為由低至高。 $\vec{\tau} = \vec{r} \times \vec{F}$,重力對物體所施力 矩量值先增而後降, 繩張力對物體所施力矩量

18. (E)

出處:選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:電力線與等位線

值為零。

解析:右圖為等位線,則電 力線應與等位線垂直, 並指向電位減少的方 向,A點電荷帶負電, 受力方向為人,故靜

止釋放瞬間運動方向 為人。

19. (B)

出處:選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:電力,靜電平衡

解析:根據題意知電壓差不變,電場在無窮大帶電 平行板間為均勻,則可運用電場與電位關係 V=Ed(d為兩平行板間距)得知,電場量值 逐漸增大,又電力與電場關係為F=qE(q)為 小球帶電量),可得電力F逐漸增大。因由 題意知帶電小球為靜止狀態,鉛直方向張 力 $T_v = mg$ 量值不變,水平方向張力 T_x 等於 電力 F 逐漸增大,故張力量值 T 逐漸增大。

20. (A)

出處:選修物理(上) 熱學

目標:直接運用基本觀念、方法與原理的能力

內容:理想氣體方程式,氣體動力論

解析:(A) 靜止密閉容器中理想氣體質心靜止,故總 動量為零。

> (B) 密閉容器中理想氣體之莫耳數n不變,故 總動能 $E_{ksys} = \frac{3}{2} nRT \propto T$,與絕對溫度成正

- (C) 理想氣體分子間除碰撞外無其他作用力, 故沒有位能。
- (D) 密閉容器中理想氣體的體積等於密閉容器 內部空間的體積,故體積不隨溫度改變。
- (E) 密閉容器中理想氣體之莫耳數n不變,且 氣體體積V不變,根據理想氣體方程式 $PV=nRT \Rightarrow P \propto T$,壓力隨溫度上升而變大。

二、多選題

21. (C)(D)

出處:基礎物理(二) B 上 運動學——直線運動、運動學——平面運動; 基礎物理(二) B 下 功與動能

目標:分析過程,找出相關數量之間關係的能力

內容:變速運動,力學能守恆

解析:由水平方向 v-t 圖可知:面積=位移,因甲、乙、丙有相同的水平位移,丙軌道速度最快,可最快到達終點 B。若不計一切阻力,則力學能守恆,設末位置為零位面,甲、乙、丙有相同初力學能(僅有位能)=末力學能(僅有動能),終點 B速度亦相同。

22. (A)(B)(E)

出處:選修物理(上) 物理光學

目標:直接運用基本觀念、方法與原理的能力

內容:雙狹縫干涉,單狹縫繞射

解析:雙狹縫實驗中,亮帶寬度 $\Delta y = \frac{L\lambda}{d}$

- (A) d 變為原來一半, Δy 變為原來 2 倍。
- (B) L變為原來 2 倍, Δy變為原來 2 倍。
- (C) 亮度不影響亮帶寬度。
- D) λ變為原來 2 倍, Δν變為原來 2 倍。
- (E) 狹縫寬度為 d 的單狹縫實驗,其中央亮帶 寬度為雙狹縫實驗亮帶寬度的 2 倍。

23. (C)(E)

出處:基礎物理(二)B下 碰撞

目標:分析過程,找出相關數量之間關係的能力

內容:動量守恆,質心速度

解析:(A) 非彈性碰撞亦遵守動量守恆律。

- (B) 兩物體作彈性碰撞過程中,系統總動能先減少再增加。
- (C) 兩物體作完全非彈性碰撞後,兩物體結合 為一體,均以質心速度運動。
- (D) 兩物體作彈性碰撞過程中,兩物體相對速度先減少再增加。兩者相對速度最小值為零,此時兩者速度相等,均為質心速度。

(E) 質心速度
$$v_{c.m.} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Rightarrow (m_1 + m_2) \ v_{c.m.} = m_1 v_1 + m_2 v_2$$

$$\Rightarrow m_1 \ (v_1 - v_{c.m.}) \ + m_2 \ (v_2 - v_{c.m.}) \ = 0$$

24. (A)(B)(E)

出處:選修物理(上) 熱學

目標:分析過程,找出相關數量之間關係的能力

內容:理想氣體方程式,方均根速率

解析:(A) P-T 圖斜率= $\frac{nR}{V}$,又定量氣體 n 為定值,故依照通過原點之斜率大小可知 $V_a = V_b > V_d > V_c$

- (B) 氣體總動能 = $\frac{3}{2} nRT$,又定量氣體 n 為定值,故由題圖橫軸溫度資訊可得,總動能關係為 $E_{ka} = E_{kd} > E_{kc} = E_{kb}$
- (C) 因均向性,氣體總動量皆為0。
- (D) 方均根速率 = $\sqrt{3\frac{kT}{m}}$, m 為一分子質量 , 故由題圖橫軸溫度資訊可得 , 方均根速率關係為 $v_{\rm d} = v_{\rm a} > v_{\rm c} = v_{\rm b}$
- (E) 因 $P = \frac{F_{\odot}}{A}$, 某一器壁面積固定,故由題 圖縱軸氣壓資訊可得,氣體施於器壁之合 力關係為 $F_{\rm d} > F_{\rm c} > F_{\rm a} > F_{\rm b}$

第貳部分:非選擇題

一、1. 見解析 2. 330 m/s 3. 見解析 4. 凹透鏡 出處:選修物理(上) 聲波

目標:分析過程,找出相關數量之間關係的能力

內容:駐波,波的折射

解析: 1. 當音叉用橡皮槌敲打時會發出單一頻率的 聲音,用鐵鎚敲打時可能發出不同頻率的 聲音。

2.
$$\frac{\lambda}{2} = 40.5 - 13 = 27.5$$

 $\Rightarrow \lambda = 55 \text{ (cm)} = 0.55 \text{ (m)}$
 $\forall v = f\lambda = 600 \times 0.55 = 330 \text{ (m/s)}$

- 3. 利用 A 音叉做共鳴實驗求出聲波波長 λ_{A} ,再利用 B 音叉做共鳴實驗,求出聲波波長 λ_{B} ,因前後實驗中可假定溫度不變,所以 $f_{A}\lambda_{A} = f_{B}\lambda_{B} = \nu$, $f_{B} = \frac{f_{A}\lambda_{A}}{\lambda_{B}}$
- 4. 凹透鏡,因聲波在介質中傳播速度比在空 氣中快,聲波由空氣進入介質時偏離法線, 故凹透鏡可使聲波匯聚。

$$\equiv 1. \ \frac{2K}{3} \ 2. \ \frac{K}{3} \ 3. \ K \ 4. \ \frac{5}{6}r$$

出處:基礎物理(二)B下 功與動能、位能與力學能 守恆律

目標:分析過程,找出相關數量之間關係的能力

內容:引力場位能、動能,能量守恆

解析:1.
$$r$$
 處: $E(r) = -K = -\frac{GMm}{2r}$
 $3r$ 處: $E(3r) = -\frac{GMm}{2(3r)} = -\frac{GMm}{6r}$
 $= -\frac{K}{3}$
 $W_{\oplus} = E(3r) - E(r)$
 $= -\frac{K}{3} - (-K) = \frac{2K}{3}$

$$= -\frac{K}{3} - (-K) = \frac{2K}{3}$$
. 同第1.小題,在3r處
$$E(3r) = U(3r) = -\frac{GMm}{3r} = -\frac{2K}{3}$$

$$W_{\#} = E(3r) - E(r) = -\frac{2K}{3} - (-K)$$

$$= \frac{K}{3}$$

3.
$$E_{x,x} = -E(r) = K$$

4. 承第1.小題,得

$$E(r') = -K - \frac{K}{5} = -\frac{6}{5}K$$

$$= -\frac{6}{5}\frac{GMm}{2r} = -\frac{GMm}{2r'}, r' = \frac{5}{6}r$$

※非選擇題評分標準

- 一、1. 寫出橡皮槌敲打音叉發聲為單一頻率 或 寫出鐵鎚敲打音叉發聲非單一頻率給2分
 - 2. 寫出計算式,算出波長給2分 求出正確波速答案 330 (m/s)給1分
 - 3. 寫出 $v=\lambda \cdot f$ 波速、波長及頻率的關係給1分 寫出聲速相同結合 A 與 B 音叉關係,算出正確答案給 2 分
 - 4. 寫出正確答案凹透鏡給1分 寫出合理原因給1分
- 二、1. 寫出r與3r處能量守恆式,得2分 求出正確答案 $\frac{2K}{3}$,得1分
 - 2. 求出 3r 處力學能 $-\frac{2K}{3}$,得 1 分 求出正確答案 $\frac{K}{3}$,得1分
 - 3. 利用能量守恆式,列出之等式完全正確者,得1分 正確計算出答案K,得1分
 - 4. 利用能量守恆式,列出之等式完全正確者,得2分 正確計算出答案 $r' = \frac{5}{6}r$,得 1 分

一 金比區 106 學年度第二字的

物理者科多者答案野

) 医昆形牙上脑肿皮型

-infololololol