# 20210119/Exercises v1.1

## 1. MM-value=7

A family is used to go shopping to the same supermarket every week. Because of that, at the end of the year they have earned P points to be used to select some prizes from the catalogue. Each object  $i \in O$  can be obtained in two ways: (i) by using  $p_i$  points; or (ii) by using  $\pi_i < p_i$  points and a monetary contribute  $m_i$ . Each object can be selected at most once. After a family meeting, each of the O objects (prizes) is assigned a preference  $l_i$ . Write a MILP formulation to minimize the total monetary contribution that the family must spend, while satisfying a level of total preference (sum of the preference of the selected objects) of at least L.

Notes: (not included in XML)

#### • Solution:

- $-x_i = 1$  if the object  $i \in O$  is obtained only with the use of points; 0 otherwise.
- $-y_i = 1$  if the object  $i \in O$  is obtained with the use of points and money; 0 otherwise.

$$\min z = \sum_{i \in O} m_i y_i$$

$$x_i + y_i \le 1 \quad i \in O$$

$$\sum_{i \in O} (p_i x_i + \pi_i y_i) \le P$$

$$\sum_{i \in O} l_i (x_i + y_i) \ge L$$

$$x_i \in \{0, 1\} \quad i \in O$$

$$y_i \in \{0, 1\} \quad i \in O$$

# 2. PLI-value=6

Given the following inequality

$$x_1 + 3/4x_2 - 4/3x_3 = 5/2$$

- Write the correspondent Gomory's cut.
- Transform the obtained inequality in the standard form you use to include it into a tableau during the optimization. Motivate the answer.

Notes: (not included in XML)

• Solution: The corresponding Gomory cuts is the following:

$$3/4x_2 + 2/3x_3 > 1/2$$

It's standard form ready to be included in the tableau can be written in the following forms:

$$0x_1 + 3/4x_2 + 2/3x_3 - s_1 = 1/2$$
  

$$0x_1 - 3/4x_2 - 2/3x_3 + s_1 = -1/2$$

# 3. PLC-value=9

Consider the following linear programming problem.

$$\min \quad z = 3x_1 + 4x_2 + 3x_3 \\ 5x_1 + 3x_2 + 4x_3 \ge 5 \\ 6x_1 - 3x_2 + 3x_3 \ge 3 \\ 7x_1 - 7x_2 + 3x_3 \le 4 \\ x_1, x_2, x_3 \ge 0$$

- Perform the first iteration of the dual simplex algorithm to solve the problem by applying the Bland's rule. Write the tableau before and after the iteration.
- Is the obtained solution optimal? Motivate your answer.

Notes: (not included in XML)

• Solution:

First of all we write the standard form:

min 
$$z = 3x_1 + 4x_2 + 3x_3$$
  
 $5x_1 + 3x_2 + 4x_3 - s_1 = 5$   
 $6x_1 - 3x_2 + 3x_3 - s_2 = 3$   
 $7x_1 - 7x_2 + 3x_3 + s_3 = 4$   
 $x_1, x_2, x_3, s_1, s_2, s_3 > 0$ 

|                  | $x_1$                 | $x_2$ | $x_3$ | $s_1$ | $s_2$ | $s_3$ | -z |
|------------------|-----------------------|-------|-------|-------|-------|-------|----|
| Basis            | 3                     | 4     | 3     | 0     | 0     | 0     | 0  |
| $\overline{s_1}$ | - <b>5</b><br>-6<br>7 | -3    | -4    | 1     | 0     | 0     | -5 |
| $s_2$            | -6                    | 3     | -3    | 0     | 1     | 0     | -3 |
| $s_3$            | 7                     | -7    | 3     | 0     | 0     | 1     | 4  |

Two rows has a negative rhs: rows 1 and 2. We follow the Bland's rule and select the row in base with the smallest index:  $s_1$  is the variable that will leave the basis. The entering variable will be the one that provides the minimum among |-5|/3; |-3|/4; |-4|/3 which is  $x_1$ . Thus -5 is the pivot.

|                  | $x_1$ | $x_2$              | $x_3$ | $s_1$ | $s_2$ | $s_3$ | -z |
|------------------|-------|--------------------|-------|-------|-------|-------|----|
| Basis            |       |                    | 3/5   | 3/5   | 0     | 0     | -3 |
| $\overline{x_1}$ | 1     | 3/5 $33/5$ $-56/5$ | 4/5   | -1/5  | 0     | 0     | 1  |
| $s_2$            | 0     | 33/5               | 9/5   | -6/5  | 1     | 0     | 3  |
| $s_3$            | 0     | -56/5              | -13/5 | 7/5   | 0     | 1     | -3 |

The current solution is not optimal because it's not primal feasible.

## 4. SP-value=6

Given the following graph G = (V, E), with  $V = \{a, b, c, d, e\}$  and the of edges as in the figure, each one with a cost associated:

- Answer the following questions and provide motivations:
  - Is  $G_1 = \{(a, d), (d, c), (c, b)\}$  a shortest path from a to b in G?
  - Is  $G_2 = \{(a, c), (c, e), (a, e)\}$  a path from a to e in G?
- Applying the Dijkstra's algorithm, find the shortest path from a to e in G. Report the sequence of nodes entering the set S, and the cost of the shortest path.

Notes: (not included in XML)

Solution: G<sub>1</sub> is a path from a to b in G but is not a shortest one because, e.g., {(a, b)} is shorter.
G<sub>2</sub> is not a path because it contains a cycle.

The unique shortest path from a to e in G is  $P^* = \{(a, b), (b, d), (d, e)\}$  and has a cost of 2 units. The sequence of nodes entering S during the execution of Dijkstra's algorithm is (a, c, b, d, e).



