Notes for High-Dimensional Probability: Random Vectors in High Dimensions

Isak Falk & Dimitri Meunier

April 10, 2021

1 Preliminaries

Proposition 1. Let X be a real-values random variable and $Y = \sqrt{|X|}$. Then X is sub-exponential if and only if Y is sub-Gaussian, and in such case $||X||_{\psi_1} = ||Y||_{\psi_2}^2$

Theorem 2 (Bernstein's inequality). Let $(X_i)_{i=1}^n$ be a sequence of independent real-valued zero-mean random variables such that $\|X_i\|_{\psi_2} < \infty$. Then, for every t > 0

$$\mathbb{P}(|\sum_{i=1}^{n} X_i| > t) \le 2 \exp(-\frac{1}{2} \min(\frac{t^2}{\sum_{i=1}^{n} ||X_i||_{\psi_1}}, \frac{t}{\max_i ||X_i||_{\psi_1}})). \tag{1}$$

2 Concentration of the Norm

Theorem 3 (Concentration of the L_2 norm). Let $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ be a random vector with independent sub-gaussian coordinates X_i that satisfy $\mathbb{E}X_i^2 = 1$. Then

$$\|\|X\|_2 - \sqrt{n}\|_{\psi_2} \le CK^2,$$
 (2)

where $K = \max_i ||X_i||_{\psi_2}$ and C is an absolute constant.

Proof. We first note that $K \ge 1$. By Jensen's Inequality we have that $\mathbb{E} \exp(\frac{X_i^2}{t^2}) \ge \exp(\frac{\mathbb{E} X_i^2}{t^2}) = \exp(t^{-2})$ and using t = 1 we see that $\mathbb{E} \exp(X_i^2) \ge e > 2$ so $\|X_i\|_{\psi_2} \ge 1$ for all $i \in \{1, \dots, n\}$. Since $K = \max_i \|X_i\|_{\psi_2} \ge 1$ we are done.

Now consider the quantity $\frac{1}{n}||X||_2^2 - 1$ which we can write as

$$\frac{1}{n} \|X\|_{2}^{2} - 1 = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{2} - 1) = \frac{1}{n} \sum_{i=1}^{n} Y_{i},$$
(3)

where $Y_i=X_i^2-1$. Since $\mathbb{E}X_i^2=1$ for any i, $(Y_i)_{i=1}^n$ is a vector of zero-centred random variables. Since $\|X_i\|_{\psi_1}<\infty$ we can show that $\|Y_i\|_{\psi_1}<\infty$ since

$$||X_i^2 - 1||_{\psi_1} \le C||X_i^2||_{\psi_1} \tag{4}$$

$$=C\|X_i\|_{\psi_2}^2\tag{5}$$

$$\leq CK^2,$$
 (6)

by use of centring property of sub-exponential norm, proposition 1 and definition of K. Since we showed that Y_i 's are sub-exponential we can apply Bernstein's Inequality Thm. 2