CHAPTER 4 Applications of Boolean Algebra/ Minterm and Maxterm Expansions

This chapter in the book includes:

Objectives Study Guide

- 4.1 Conversion of English Sentences to Boolean Equations
- 4.2 Combinational Logic Design Using a Truth Table
- 4.3 Minterm and Maxterm Expansions
- 4.4 General Minterm and Maxterm Expansions
- 4.5 Incompletely Specified Functions
- 4.6 Examples of Truth Table Construction
- 4.7 Design of Binary Adders and Subtracters

Objective

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- Minterm and Maxterm Expansions
- General Minterm and Maxterm Expansions
- Incompletely Specified Functions (Don't care term)
- Examples of Truth Table Construction
- Design of Binary Adders(Full adder) and Subtracters

4.1 Conversion of English Sentences to Boolean Equations

- Steps in designing a single-output combinational switching circuit
- 1. Find switching function which specifies the desired behavior of the circuit
- 2. Find a simplified algebraic expression for the function
- 3. Realize the simplified function using available logic elements

Ex) F is 'true' if A and B are both 'true' -> F=AB

4.1 Conversion of English Sentences to Boolean Equations

- 1. The alarm will ring(Z) iff the alarm switch is turned on(A) **and** the door is not closed(B'), **or** it is after 6PM(C) and window is not closed(D')
- 2. Boolean Equation

$$Z = AB' + CD'$$

3. Circuit realization

4.2 Combinational Logic Design Using a Truth Table

- Combinational Circuit with Truth Table

A	В	С	f	f'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0
(b)				

When expression for $f=1 \rightarrow$

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

4.2 Combinational Logic Design Using a Truth Table

Original equation \rightarrow

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

Simplified equation
$$\rightarrow$$
 $f = A'BC + AB' + AB = A'BC + A = A + BC$

Circuit realization →

$$C$$
 A A

4.2 Combinational Logic Design Using a Truth Table

- Combinational Circuit with Truth Table

Α	В	C	f	f'	
0	0	0	0	1	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	
(b)					

When expression for $f=0 \rightarrow$

$$f = (A + B + C)(A + B + C')(A + B' + C)$$

$$f = (A+B)(A+B'+C) = A+B(B'+C) = A+BC$$

When expression for $f'=1 \rightarrow$ and take the complement of f'

$$f' = A'B'C' + A'B'C + A'BC'$$

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

- *literal* is a variable or its complement (e.g. A, A')

- Minterm, Maxterm for three variables

Row No.	АВС	Minterms	Maxterms
0	000	$A'B'C'=m_0$	$A+B+C=M_0$
1	0 0 1	$A'B'C=m_1$	$A + B + C' = M_1$
2	010	$A'BC'=m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C'=m_4$	$A'+B+C=M_4$
5	1 0 1	$AB'C = m_s$	$A'+B+C'=M_{5}$
6	1 1 0	$ABC' = m_6$	$A'+B'+C=M_6$
7	1 1 1	$ABC = m_7$	$A'+B'+C''=M_7$

- Minterm of n variables is a product of n literals in which each variable appears exactly once in either true (A) or complemented form(A'), but not both. $(\rightarrow m0)$

- -Minterm expansion,
- -Standard Sum of Product →

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f(A,B,C) = \sum m(3,4,5,6,7)$$

- *Maxterm* of *n* variables is a sum of *n* literals in which each variable appears exactly once in either true (A) or complemented form(A'), but not both. $(\rightarrow M0)$

- Maxterm expansion,
- Standard Product of Sum →

$$f = (A + B + C)(A + B + C')(A + B' + C)$$

$$f(A,B,C) = M_0 M_1 M_2$$

$$f(A,B,C) = \prod M(0,1,2)$$

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f' = m_0 + m_1 + m_2 = \sum m(0,1,2)$$

$$f(A,B,C) = M_0 M_1 M_2$$
 $f' = \prod M(3,4,5,6,7) = M_3 M_4 M_5 M_6 M_7$

- Minterm and Maxterm expansions are complement each other

$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)' = m'_3 m'_4 m'_5 m'_6 m'_7 = M_3 M_4 M_5 M_6 M_7$$
$$f' = (M_0 M_1 M_2)' = M'_0 + M'_1 + M'_2 = m_0 + m_1 + m_2$$

4.4 General Minterm and Maxterm Expansions

АВС	F
0 0 0	a_0
0 0 1	$a_{_1}$
0 1 0	a_2
0 1 1	a_3
100	a_4
101	a_5
1 1 0	a_{6}
111	a_7

- Minterm expansion for general function

$$F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 = \sum_{i=0}^{7} a_i m_i$$

 $a_i = 1$, minterm m_i is present

 a_i =0, minterm m_i is not present

- Maxterm expansion for general function

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2)...(a_7 + M_7) = \prod_{i=0}^{7} (a_i + M_i)$$

 $a_i=1$, $a_i+M_i=1$, Maxterm M_i is not present $a_i=0$, Maxterm is present

-General truth table for 3 variables

- a_i is either '0' or '1'

4.4 General Minterm and Maxterm Expansions

$$F' = \left[\prod_{i=0}^{7} (a_i + M_i)\right]' = \sum_{i=0}^{7} a'_i M'_i = \sum_{i=0}^{7} a'_i m_i$$

 \rightarrow All minterms which are not present in F are present in F '

$$F' = \left[\sum_{i=0}^{7} a_i m_i\right]' = \prod_{i=0}^{7} (a'_i + m'_i) = \prod_{i=0}^{7} (a'_i + M_i)$$

 \rightarrow All maxterms which are not present in F are present in F '

$$F = \sum_{i=0}^{2^{n}-1} a_{i} m_{i} = \prod_{i=0}^{2^{n}-1} (a_{i} + M_{i})$$

$$F' = \sum_{i=0}^{2^{n}-1} a'_{i} m_{i} = \prod_{i=0}^{2^{n}-1} (a'_{i} + M_{i})$$

4.4 General Minterm and Maxterm Expansions

If i and j are different, $m_i m_j = 0$

$$f_{1} = \sum_{i=0}^{2^{n}-1} a_{i} m_{i} \qquad f_{2} = \sum_{j=0}^{2^{n}-1} b_{j} m_{j}$$

$$f_{1}f_{2} = (\sum_{i=0}^{2^{n}-1} a_{i} m_{i})(\sum_{i=0}^{2^{n}-1} b_{j} m_{j}) = \sum_{i=0}^{2^{n}-1} \sum_{i=0}^{2^{n}-1} a_{i} b_{j} m_{i} m_{j} = \sum_{i=0}^{2^{n}-1} a_{i} b_{i} m_{i}$$

Example

$$f_1 = \sum m(0, 2, 3, 5, 9, 11)$$
 and $f_2 = \sum m(0, 3, 9, 11, 13, 14)$
 $f_1 f_2 = \sum m(0, 3, 9, 11)$

Conversion between minterm and maxterm expansions of F and F'

	Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
Minterm Expansion of F		Maxterm nos, are those nos, not on the minterm list for F	List minterms Not present In F	Maxterm nos, Are the same As minterm nos, of F
Maxterm Expansion of F	Minterm nos, Are those nos, Not on the maxterm list forF		Minterm nos, Are the same as maxterm nos, of F	List maxterms not present inF

Conversion between minterm and maxterm expansions of F and F'

Example

	Minterm Expansion of f	Maxterm Expansion of f	Minterm Expansion of f'	Maxterm Expansion of f'
$f = \sum_{m(3,4,5,6,7)}$		$\prod M(0,1,2)$	$\sum m(0,1,2)$	$\prod M(3,4,5,6,7)$
f= \[\int M(0,1,2)\]	$\sum m(3,4,5,6,7)$		$\sum m(0,1,2)$	$\prod M(3,4,5,6,7)$

4.5 Incompletely Specified Functions

If N_1 output does not generate all possible combinations of A,B,C, the output of $N_2(F)$ has 'don't care' values.

Truth Table with Don't Cares

АВС	F
0 0 0	1
0 0 1	X
0 1 0	0
0 1 1	1
100	0
1 0 1	0
1 1 0	X
1 1 1	1

4.5 Incompletely Specified Functions

Finding Function:

Case 1: assign '0' on X's

$$F = A'B'C'+A'BC+ABC = A'B'C'+BC$$

Case 2: assign '1' to the first X and '0' to the second 'X'

$$F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC$$

Case 3: assign '1' on X's

$$F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB$$

→ The case 2 leads to the simplest function

4.5 Incompletely Specified Functions

- Minterm expansion for incompletely specified function

$$F = \sum m(0,3,7) + \sum d(1,6)$$
 Don't Cares

- Maxterm expansion for incompletely specified function

$$F = \prod M(2,4,5) \prod D(1,6)$$

4.6 Examples of Truth Table Construction

Example 1 : Binary Adder

а	b	Sum	
0	0	0 0	0+0=0
0	1	0 1	0+1=1
1	0	0 1	1+0=1
1	1	1 0	1+1=2

$$X = AB, Y = A'B + AB' = A \oplus B$$

4.7 Design of Binary Adders and Subtracters

Half Adder

Full Adder

CIBA	s co
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1	0 0 1 0 1 0 0 1 1 0 0 1 1 1

$$S = A' \cdot B' \cdot C + A \cdot B' \cdot CI' + A \cdot B \cdot CI + A' \cdot B \cdot CI'$$

$$= B' \cdot (A' \cdot CI + A \cdot CI') + B \cdot (A \cdot CI + A' \cdot CI')$$

$$= B' \cdot (A \oplus CI) + B \cdot (A \oplus CI)'$$

$$= B \oplus (A \oplus CI)$$

$$= A \oplus B \oplus CI$$

$$CO = A \cdot CI + B \cdot CI + A \cdot B$$

Full Adder

Carry Ripple Adder or Ripple Carry Adder (Cascading Full Adder)

Parallel Adder for 4 bit Binary Numbers

10110 (carries)
1011
+1011
10110

Parallel adder composed of four full adders ← Carry Ripple Adder (slow!)

26/32

Truth Table for a Full Adder

X	Y	C_{in}	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

$$= X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$$

$$C_{out} = X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC_{in}$$

$$= (X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in})$$

$$= YC_{in} + XC_{in} + XY$$

When 1's complement is used, the end-around carry is accomplished by connecting C4 to C0 input.

Overflow(V) when adding two signed binary number

$$V = A'_3 B'_3 S_3 + A_3 B_3 S'_3$$

Subtracters

Binary Subtracter using full adder

- Convert an adder into a subtracter by inverting the subtrahend and setting the CI to 1

2's complemented number

Subtracters

Binary Subtracter using full adder

- Subtraction is done by adding the 2's complemented number to be subtracted

Alternative Subtracters- Parallel Subtracter

Truth Table for a Full Subtracter

Xi	y _i	b _i	b_{i+1}	d _i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

32/32