RICERCA OPERATIVA

prova scritta del 30 aprile 2008

GRUPPO B

Cognome:		_	_	_	_		_	 	_					 	 		 	 	
Nome:				_		_				<u></u>	 	 	 				 		
Matricola:	ĺ		Ĺ	Ĺ		Ĺ	ĺ												

Domanda 1

Dare la definizione di problema combinatorico e di problema di ottimizzazione combinatoria.

Un problema combinatorico è definito da una coppia (U, \Im) , dove U è un insieme finito e \Im una famiglia di sottoinsiemi di U definita implicitamente tramite una predicato verificato da tutti e soli gli elementi di \Im . Il problema consiste nel dire se \Im è vuota oppure no.

Un problema di ottimizzazione combinatoria aggiunge a questi elementi una funzione $c: U \to IR$, e, posto $c(X) = \sum_{u \in U} c(u)$, consiste nell'individuare, se esiste, un $X^* \in \mathfrak{I}$ tale che $c(X^*) \leq c(X)$ per ogni $X \in \mathfrak{I}$.

Domanda 2

- 1. Dare la definizione di edge-cover di un grafo.
- 2. Definire la coppia (U, \Im) del problema combinatorico associato all'edge-cover di un grafo.
- 3. Dato il grafo G di figura illustrare e applicare l'algoritmo greedy per determinare un edge-cover di peso minimo rispetto alla funzione peso c: $E \rightarrow \mathbb{R}_+$ i cui valori sono rappresentati in figura..
- 4. La soluzione trovata è ottima?
- 5. In generale l'algoritmo greedy trova l'ottimo per il problema del minimo edge-cover? Motivare la risposta.

- 1. Un edge-cover di un grafo G = (V, E) è un insieme C di archi tale che ogni nodo di V appartiene ad almeno un arco di C.
- 2. U = E, $\Im = \{X \subseteq E : \forall u \in V \exists uv \in X\}$
- 3. Iniziando da C := E, l'algoritmo greedy elimina archi da C in ordine di peso non crescente finché C conserva la proprietà di essere un edge-cover. In questo caso un run dell'algoritmo eliminerebbe nell'ordine gli archi 15, 25, 36, 47, 27, 46, 48, 18, 26, 13. La soluzione ottenuta ha peso 7 ed è ottima.
- 4. In generale, però, l'algoritmo greedy non è in grado di determinare una soluzione ottima.

Prendiamo il grafo ($\{1, 2, 3, 4\}$, $\{12, 13, 14, 23\}$) e supponiamo $c_{12} = c_{13} = c_{14} = 2$, $c_{23} = 3$. L'algoritmo greedy elimina dunque l'arco 23 e raggiunge un insieme minimale (albero ricoprente) di peso 6; tuttavia il matching perfetto $\{14, 23\}$ è un edge-cover di peso 5.

Domanda 3

- 1. Definire la combinazione affine di un insieme di vettori.
- 2. Dire se il vettore $\mathbf{v} = (1, 1/3, -1/2)$ è una combinazione convessa dei vettori $\mathbf{u}_1 = (3, -1, 0), \mathbf{u}_2 = (1, 4, 2)$ e $\mathbf{u}_3 = (-2, 0, -3).$
- 1. La combinazione affine di un insieme di m vettori è un vettore ottenuto combinandoli linearmente con coefficienti $I_1, \ldots I_m$ che verificano la condizione $\sum I_i = 1$.
- 2. Il vettore \mathbf{v} è combinazione lineare di \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 con coefficienti $I_1 = 7/15$, $I_2 = 1/5$, $I_3 = 3/10$. Poiché la somma dei coefficienti dà 29/30 < 1, la combinazione è conica ma non convessa.

Domanda 4

- 1. Dare la definizione di matroide.
- 2. Dato un grafo G = (V, E), due archi di E si dicono adiacenti se hanno un vertice comune. Siano U = E l'insieme universo e \Im la famiglia formata da tutti gli insiemi $X \subseteq U$ tali che per ogni arco $e \in X$ esiste un arco $e \notin U X$ adiacente a e.
 - Dire se la coppia (U, \Im) è un matroide oppure, in caso contrario, fornire un controesempio.
- 1. Una coppia (U, \Im) con $\Im \subseteq 2^U$ è un matroide se verifica le condizioni $(i) \varnothing \in \Im$; $(ii) X \in \Im$, $Y \subseteq X \Rightarrow Y \in \Im$; $(iii) X, Y \in \Im$, $|X| < |Y| \Rightarrow \exists y \in Y X : X \cup \{y\} \in \Im$.
- 2. \Im non è subclusiva, basta prendere il grafo (sconnesso) $G = (\{1, 2, 3, 4, 5\}, \{12, 34, 45\}) = P_2 \cup P_3$: chiaramente $\{12, 34\} \in \Im$ (perché 34 è adiacente a $45 \in U X$), mentre $\{12\} \notin \Im$. Anche la proprietà di scambio in generale non è verificata: prendiamo il semplice grafo $P_4 = (\{1, 2, 3, 4\}, \{12, 23, 34\}), X = \{23\}, Y = \{12, 34\}$; evidentemente sia X che Y appartengono a \Im , tuttavia né $\{12, 23\}$ né $\{23, 34\}$ appartengono a \Im , poiché $\{12, 23\}$ nó $\{23, 34\}$ appartengono a $\{23, 34\}$ appartengono a $\{3, 23\}$ nó $\{34, 24\}$ appartengono a $\{3, 24\}$ appartengono a $\{4, 24\}$

Domanda 5

Indicato con A(e) l'insieme degli archi adiacenti a e, formulare come programmazione lineare 0-1 il problema di determinare il più grande insieme X che soddisfi la proprietà descritta al punto 2 della domanda precedente.

Per ogni arco a definiamo una variabile binaria y_a in modo che $y_a = 1$ se e solo se $a \notin X$.

Ora, se *a* appartiene a *X* (quindi $y_a = 0$) deve esistere un *b* in $N(a) \cap (U - X)$: quindi la somma degli y_b in A(a) deve dare almeno $1 = 1 - y_a$.

Se invece a non appartiene a X, la somma degli y_b in A(a) può assumere un qualsiasi valore intero tra 0 e |E|.

Massimizzare il numero di elementi di *X* corrisponde a minimizzare il numero di elementi che non sono in *X*, quindi il problema si formula:

min
$$\sum_{a \in E} y_a$$

 $\sum_{b \in A(a)} y_b \ge 1 - y_a$ per ogni $a \in E$
 $y_a \in \{0, 1\}$ per ogni $a \in E$