$\Delta T_{EX} 2_{\epsilon}$ -Vorlage von Matthias Pospiech

Leibniz Universität Hannover

Matthias Pospiech

May 31, 2011

Erklärung der Selbstständigkeit

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich gemacht zu haben.

<Ort einfügen>, den <Datum einfügen>

<Autor einfügen>

Contents

1	1.1 1.2 1.3	duction Person Resear Mesh	ch	ove	erv	iev	V						 										1 1 1 1
2	Evalu 2.1 2.2 2.3	uation Existin Assum Requir	pt	ions	\mathbf{s}								 										3 3 3
3	Arch 3.1 3.2	Algorit 3.1.1 3.1.2 3.1.3 Implem 3.2.1 3.2.2	C R P ne:	onc out rote	curr ting occ tion	ren g d ol d n . re	esi les	ign ign	 n . n .	 	5 5 5 5 5 6												
4	Rese 4.1 4.2	arch Metho Results			-																		7 7 7
5	Conc	clusion																					9
Bil	oliogra	aphy																					11
Lis	t of F	igures																					13
l ic	+ of T	ahlac																					15

1 Introduction

1.1 Personal motivation

This thesis describes the analysis, enhanced design and implementation of an existing microcontroller based mesh solution [Kor09]. The current solution showed.

1.2 Research overview

1.3 Mesh networks in embedded devices

2 Evaluation

- 2.1 Existing solutions
- 2.2 Assumptions
- 2.3 Requirements

3 Architecture

3.1 Algorithms

- 3.1.1 Concurrency
 - Problem description
 - Petri net design
 - Complexity
 - Thread based design
 - Stack
 - Context switch
 - Protothreads
- 3.1.2 Routing design
- 3.1.3 Protocol design
- 3.2 Implementation
- 3.2.1 Hardware

RAM

- Harvard architecture
- RAM bus
- Latch

6 3 Architecture

USB serial interface

RFM12B interface

keyboard interface

3.2.2 Software

UART

SPI

RFM12

Watchdog

Shell

4 Research

- 4.1 Methodology
- 4.2 Results

5 Conclusion

Bibliography

[Kor09] Korniowski, Marek: Projekt odpornej na awarie sieci komputerowej z transmisją danych w pasmach nielicencjonowanych (2009)

List of Figures

List of Tables

Danksagung