NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

CONTENIDO

1	Sist	ema de coordenadas rectangulares o cartesianas	2
2	Coo	rdenadas cartesianas de un punto	3
3	Distancia entre dos puntos		4
	3.1	Ejercicios	5
4	Área del triángulo		11
	4.1	Ejercicios	12
	4.2	Condición para que tres puntos estén alineados	13
5	División de un segmento de recta en partes proporcionales		14
	5.1	Ejercicios	15
	5.2	Punto medio de un segmento de recta	17
6	Eier	Eiercicios	

Nociones Básicas de la Geometría Analítica.

La **Geometría Analítica** es el estudio o tratamiento analítico de la geometría, y por primera vez fue presentado por **René Descartes** en su libro llamado **Géometrie** que se publicó en el año de 1637. En esta obra, se establecía la relación explícita entre las curvas y las ecuaciones y podemos decir, que además de **Descartes**, todos los matemáticos de los siglos **XVII** y **XVIII**, contribuyeron de una forma o de otra, al desarrollo de esta nueva teoría, que en la actualidad se estudia con el nombre de **Geometría Analítica**, y que se fundamenta en el uso de **Sistemas de Coordenadas Rectangulares** o **Cartesianas** en honor de su fundador.

La **Geometría Analítica** es una parte de las matemáticas que, entre otras cosas, se ocupa de resolver algebraicamente los problemas de la geometría.

En esta materia se puede conocer una ecuación y poder deducir su gráfica, o también conocer la gráfica de una curva y determinar su ecuación. A estos dos problemas se les conoce como los *Problemas Fundamentales* de la *Geometría Analítica*.

1 Sistema de coordenadas rectangulares o cartesianas.

En forma general se dice que la posición de un lugar cualquiera sobre la superficie de la tierra se identifica conociendo la *latitud* y *longitud* de ese lugar, esto es, un *Sistema de Coordenadas*.

Durante el desarrollo del curso, se describen los sistemas de coordenadas *cartesianas* o *rectangulares* y las *polares*, para la localización de puntos. Esto nos crea la necesidad de establecer el procedimiento que permitirá ubicar la posición de un punto cualquiera. Empezaremos por el *Sistema de Coordenadas Rectangulares* o *Cartesianas*, el cual se describe a continuación.

Este sistema está formado por dos *rectas* o *ejes*, perpendiculares entre sí, generalmente un *eje* es *horizontal* y el otro *vertical*, que al intersectarse forman *ángulos rectos* y dividen al plano donde están contenidos en *cuatro* partes llamados *cuadrantes*, las cuales se enumeran en el sentido contrario de las manecilla del reloj, como se muestra en la *Figura* 1.

Sobre los *ejes* se marcan divisiones que corresponden a *números enteros*, siendo el *cero* el punto de intersección de dichos ejes llamado *Origen* de las *Coordenadas*.

los números reales en forma creciente de *izquierda* a *derecha* en el *eje horizontal* y de *abajo* a *arriba* en el eje *vertical*, es decir todos los números *positivos* están a la *derecha* y *arriba* del *origen* y los *negativos* a la *izquierda* y *abajo* del mismo *origen*.

Al eje **horizontal** se le llama **eje** de las **X** o de las **Abscisas**, y al eje **vertical** de las **Y** o de las **Ordenadas**.

Para la ubicación de un punto cualquiera en el plano se consideran las distancias a los ejes, que son sus **Coordenadas**. La distancia de un punto al eje de las **Y** es su **Abscisa** y la distancia al eje de las **X** es su **ordenada**. Las **Abscisas** se representan por la letra **X** y las **Ordenadas** por la letra **Y**, es decir que las **coordenadas** de un punto **P** son **P(X, Y)**, las cuales se anotan como parejas ordenadas dentro de un paréntesis y separadas por una coma.

2 Coordenadas cartesianas de un punto.

Se ha visto que al poner en movimiento a un *punto* nos engendra una *línea*, la cual al ponerse en movimiento engendra una *superficie*, y ésta a su vez, al ponerse también en movimiento engendra un *volumen*, se puede concluir que todas las figuras geométricas tienen como base de formación el *punto*.

Para su estudio, cuando menos por ahora, utilizaremos el **Sistema Cartesiano de Ejes Rectangulares**. Dentro de éste convendremos en que siempre que se hable de un punto conocido o de posición fija, designaremos sus **coordenadas** por las letras **x** y **y** con índices, mientras que siempre que se trate de un **punto** móvil o de posición desconocida sus **coordenadas** serán simplemente **x** y **y** sin índices.

Por ejemplo (Ver *Figura 2*), si tenemos una *circunferencia* de *radio* conocido, referida a un sistema de ejes, su *centro* es un punto conocido, de manera que al referirnos a él podemos decir, el punto $C(x_1, y_1)$, en tanto que si suponemos que esta *circunferencia* es descrita por el extremo libre del compás, dicho extremo es un punto cuyas *coordenadas* cambian para cada posición, de tal manera que al mencionarlo podemos decir, el punto M(x, y)

Ejemplo:

Trazar un sistema de coordenadas rectangulares y señalar los puntos signientes: A (4, 3) B (-1, 5) C (-3, -2) D

siguientes: A(4,3),B(-1,5),C(-3,-2),D(6,-4) y trazar además, el segmento de recta que une los puntos E(-3,-1) con F(5,6).

SOLUCIÓN

La *Figura 3* muestra la ubicación gráfica de los *puntos* dados, así como la *recta* pedida.

3 Distancia entre dos puntos.

Vamos a determinar una fórmula mediante la cual podamos calcular, en todos los casos, la *distancia entre dos puntos* de *coordenadas* conocidas. $A(x_1, y_1)$ y $B(x_2, y_2)$ los representamos en el sistema de coordenadas, trazamos las *perpendiculares* \overline{AC} y \overline{BD} al eje de las \overline{X} y \overline{EF} al eje de las \overline{Y} . Así mismo, trazamos el *segmento* \overline{AB} para obtener el *triángulo* \overline{ABE} . La gráfica se muestra en la \overline{Figura} 4.

De la *figura* anterior, se tiene:

$$\overline{OC} = x_1$$
, $\overline{CA} = y_1$

$$\overline{OD} = \chi_2$$
, $\overline{DB} = \gamma_2$

Si aplicamos el teorema de **Pitágoras** al triángulo rectángulo **ABE** de la **Figura 4**, obtenemos:

$$\overline{AB}^2 = \overline{AE}^2 + \overline{EB}^2 \qquad (1)$$

Pero:

 $\overline{AB} = d$

Y:

$$\overline{AE} = \overline{CD} = \overline{OD} - \overline{OC} = x_2 - x_1$$

$$\overline{EB} = \overline{DB} - \overline{DE} = \overline{DB} - \overline{CA} = y_2 - y_1$$

Sustituyendo en (1):

$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Extrayendo raíz cuadrada en ambos miembros, tenemos:

$$d = \pm \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
....(1)

Que es la **fórmula** para obtener la **distancia entre dos puntos** de coordenadas conocidas. Esta igualdad, es posible expresarla en la siguiente forma, porque cualquiera que sea la diferencia, está elevada al cuadrado y el cuadrado de la diferencia de dos números no varía cuando se invierte el orden de la resta.

$$d = \pm \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$
(I')

Ambas fórmulas, se leen. La **distancia entre dos puntos** es igual a la raíz cuadrada de la suma del cuadrado de la diferencia de las **abscisas**, más el cuadrado de la diferencia de las **ordenadas**.

Respecto al doble signo del radical, tomamos la raíz cuadrada positiva porque nos interesa únicamente la magnitud del segmento y ésta es positiva.

Para resolver un problema, se recomienda para todos los casos, se grafiquen los datos disponibles antes de hacer operaciones.

3.1 EJERCICIOS

1. Calcular la distancia entre los puntos: A(-3,2) y B(1,-1).

SOLUCIÓN

Aplicando la fórmula (I), la distancia entre dos puntos, tenemos:

$$\overline{AB} = \sqrt{(-3-1)^2 + (2+1)^2} = \sqrt{16+9} = \sqrt{25} = 5$$

2. Calcular la distancia entre los puntos: P(6,5) y Q(-7,-3).

SOLUCIÓN

Según la fórmula (I), se obtiene:

$$\overline{PQ} = \sqrt{(6+7)^2 + (5+3)^2} = \sqrt{13^2 + 8^2} = \sqrt{169 + 64} = \sqrt{233} = 15.26$$

3. Calcular el perímetro del triángulo cuyos vértices son: A(-4,6), B(6,2) y C(4,-4).

SOLUCIÓN

Sustituyendo valores en la expresión (I), en cada caso se tiene:

$$\overline{AB} = \sqrt{(-4-6)^2 + (6-2)^2} = \sqrt{100+16} = \sqrt{116} = 10.77$$
 $\overline{AC} = \sqrt{(-4-4)^2 + (6+4)^2} = \sqrt{64+100} = \sqrt{164} = 12.80$
 $\overline{BC} = \sqrt{(6-4)^2 + (2+4)^2} = \sqrt{4+36} = \sqrt{40} = 6.32$

Por tanto, por conocimientos previos sabemos que:

Perímetro = $\overline{AB} + \overline{AC} + \overline{BC} = 29.89$ unidades lineales

4. Determinar todos los *puntos* que, además de *distar* **5** unidades del *punto* **A(1,2)**, *disten* **2** unidades del eje de las **x**.

SOLUCIÓN

Suponiendo que, por lo menos, haya un punto Q(x, y) que satisfaga las condiciones del enunciado, se tendrá de acuerdo a la Figura 5, aplicando la fórmula de la distancia entre dos puntos que:

Sustituyendo datos en la fórmula (I), se tiene:

$$\overline{Q A} = \sqrt{(x-1)^2 + (y-2)^2} = 5$$

Elevando al cuadrado, se obtiene:

$$(x-1)^2 + (y-2)^2 = 25$$
 (1)

Pero como la distancia del punto **Q** al eje de las **x** debe ser de **2** unidades, dicha distancia no es más que la ordenada del punto **Q**, la que puede ser positiva o negativa, por lo que estamos en obligación de considerar los dos

signos y hacer las correspondientes sustituciones en la ecuación (1)

Para y = 2, tenemos:

$$(x-1)^2 + (2-2)^2 = 25$$

Por tanto:

$$(x-1)^2=25$$

Extrayendo raíz cuadrada a ambos miembros:

$$x - 1 = \pm 5$$

De la expresión anterior, se obtiene:

$$x_1-1=5$$
. De donde : $x_1=6$
 $x_2-1=-5$. De donde : $x_2=-4$

Así, los **dos** primeros *puntos* que resuelven nuestro problema, son:

$$Q_1(6,2); Q_2(-4,2)$$

De la misma manera, ahora para y = -2, tenemos:

$$(x-1)^2 + (-2-2)^2 = 25$$

Por tanto:

$$(x-1)^2 = 25-19 = 9$$

Extrayendo raíz cuadrada a ambos miembros:

$$x - 1 = \pm 3$$

De la expresión anterior, se obtiene:

$$x_3$$
-1= 3. De donde: x_3 = 4
 x_4 -1=-3. De donde: x_4 =-2

Por consiguiente, otras dos soluciones del problema están dadas por los puntos:

$$Q_3(4,-2); Q_4(-2,-2)$$

5. Determinar el centro de la circunferencia que pasa por los puntos: P(-2,8), Q(2,4) y R(4,-6).

SOLUCIÓN

Llamaremos C(x, y) al *centro* y tomaremos en cuenta que *equidista* de los *puntos* dados, por lo cual debe de tenerse:

$$\overline{CP} = \overline{CQ} \tag{1}$$

$$\overline{CQ} = \overline{CR} \tag{2}$$

Y según la fórmula (I), podemos escribir:

$$\overline{CP} = \sqrt{(x+2)^2 + (y-8)^2}$$

$$\overline{CQ} = \sqrt{(x-2)^2 + (y-4)^2}$$

$$\overline{CR} = \sqrt{(x-4)^2 + (y+6)^2}$$

Sustituyendo los valores dados, de acuerdo a las igualdades (1) y (2) En (1):

$$\sqrt{(x+2)^2+(y-8)^2} = \sqrt{(x-2)^2+(y-4)^2}$$

Elevando al cuadrado, desarrollando y simplificando, se tiene:

$$x^{2}+4x+4+y^{2}-16y+64=x^{2}-4x+4+y^{2}-8y+16$$

 $x-8y=-48$

Dividiendo entre 8 y despejando a y, se obtiene:

$$x - y = -6$$
. Por tanto: $y = x + 6$(3)

Siguiendo los pasos anteriores. En (2):

$$\sqrt{(x-2)^2 + (y-4)^2} = \sqrt{(x-4)^2 + (y+6)^2}$$

$$x^2 - 4x + 4 + y^2 - 8y + 16 = x^2 - 8x + 16 + y^2 + 12y + 36$$

$$4x - 20y = 32$$

Dividiendo entre 4:

$$x - 5y = 8$$
(4)

Sustituyendo (3) en (4):

$$x-5(x+6) = 8$$

 $x-5x-30 = 8$
 $-4x = 38$

Despejando a x:

$$x = \frac{38}{-4} = \frac{-19}{2}$$

Sustituyendo x en (3):

$$y = \frac{-19}{2} + \frac{12}{2} = -\frac{7}{2}$$

Por tanto, el *centro* es:

$$C\left(-\frac{19}{2},-\frac{7}{2}\right)$$

6. Demostrar que los *puntos A(1,-2)*, *B(4,2)* y *C(-3,-5)* son los *vértices* de un *triángulo isósceles*.

SOLUCIÓN

Para que el triángulo sea **isósceles** debe tener dos lados iguales, razón por la que tendremos que calcular las longitudes de cada uno de los tres lados, que de acuerdo a la fórmula (I) se tiene:

$$\overline{AB} = \sqrt{(1-4)^2 + (-2-2)^2} = \sqrt{9+16} = \sqrt{25} = 5$$

$$\overline{AC} = \sqrt{(1+3)^2 + (-2+5)^2} = \sqrt{16+9} = \sqrt{25} = 5$$

$$\overline{BC} = \sqrt{(4+3)^2 + (2+5)^2} = \sqrt{49+49} = \sqrt{98} = 9.89$$

Como los lados **AB** y **AC** resultaron iguales, queda demostrado que los puntos dados son los *vértices* de un *triángulo isósceles*.

7. **Determinar** los *puntos* cuyas *distancias* al *punto P(2,3)* son de 4 unidades y cuyas *ordenadas* son iguales a 5 (Ver *Figura 6*)

SOLUCIÓN

Suponemos un sólo *punto Q(x,5)*, cuya distancia al *punto P* debe ser igual a 4. Por lo que, según la fórmula (*I*) tenemos:

$$\overline{QP} = \sqrt{(x-2)^2 + (5-3)^2} = \sqrt{(x-2)^2 + 4} = 4$$

Elevando al cuadrado y simplificando:

$$(x-2)^2 + 4 = 16$$

 $(x-2)^2 = 12$

Extrayendo raíz cuadrada a ambos miembros:

$$x-2=+3.46$$

Se tienen **dos** valores de *x* que satisfacen la ecuación anterior, cuyos valores son:

$$x_1 - 2 = 3.46$$
, por tanto : $x_1 = 5.46$
 $x_2 - 2 = -3.46$, por tanto : $x_2 = -1.46$

Los dos puntos solicitados son:

$$Q_1(5.46,5) y Q_2(-1.46,5)$$

8. Determinar el centro de la circunferencia que pasa por los puntos: P(0,0), Q(-3,3) y R(5,4)

SOLUCIÓN

Considerando que C(x, y) es el **centro** y sabiendo que los **puntos** son **equidistantes** de

éste, se tiene:

$$\overline{CP} = \overline{CQ} \tag{1}$$

$$\overline{CP} = \overline{CR} \tag{2}$$

Sustituyendo las **coordenadas** de los puntos dados en la fórmula (I), se tiene:

$$\overline{CP} = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$$

$$\overline{CQ} = \sqrt{(x+3)^2 + (y-3)^2}$$

$$\overline{CR} = \sqrt{(x-5)^2 + (y-4)^2}$$

Sustituyendo en (1) se obtiene:

$$\sqrt{x^2 + y^2} = \sqrt{(x+3)^2 + (y-3)^2}$$

Elevando al cuadrado ambos miembros y desarrollando:

$$x^2 + y^2 = x^2 + 6x + 9 + y^2 - 6y + 9$$

Simplificando:

$$6x - 6y = -18$$

Dividiendo entre 6:

$$x - y = -3$$

Despejando a y:

$$y = x + 3 \tag{3}$$

Sustituyendo en (2), se obtiene:

$$\sqrt{x^2 + y^2} = \sqrt{(x-5)^2 + (y-4)^2}$$

Elevando al cuadrado ambos miembros y desarrollando:

$$x^2 + y^2 = x^2 - 10x + 25 + y^2 - 8y + 16$$

Simplificando:

$$10 x + 8 y = 41$$
(4)

Sustituyendo (3) en (4):

$$10 x + 8 (x + 3) = 41$$

$$10 x + 8 x + 24 = 41$$

$$18 x = 17$$

$$x = \frac{17}{18}$$

Sustituyendo x en (3):

$$y = \frac{17}{18} + \frac{54}{18} = \frac{71}{18}$$

Por tanto, el centro de la circunferencia es:

$$C\left(\frac{17}{18},\frac{71}{18}\right)$$

4 Área del triángulo.

Vamos a deducir una fórmula que nos permita calcular el área de un triángulo conociendo

las **coordenadas** de sus **vértices**, de acuerdo a la **Figura 7**:

De la *Figura 7*, se tiene la siguiente relación de *áreas*:

$$A = A_T - A_1 - A_2 - A_3 - A_4$$

En donde:

A = Área del *triángulo*

A_T = Área total del **rectángulo** de la figura

A₁ = Área del trapecio
 A₂ = Área del triángulo
 A₃ = Área del rectángulo
 A₄ = Área del trapecio

Se sabe que el área del **triángulo** es $A = \frac{bh}{2}$, que la relación para obtener el área de un

trapecio es $A = \frac{a+b}{2}h$ y la de un rectángulo es A = bh, por lo que:

$$A = x_3 y_2 - \frac{(x_1 + x_2)(y_2 - y_1)}{2} - \frac{(x_3 - x_2)(y_2 - y_3)}{2} - x_1 y_1 - \frac{(x_3 - x_1)(y_1 + y_3)}{2}$$

Multiplicando por 2, desarrollando, simplificando y factorizando, se obtiene:

$$2A=2x_3y_2-x_1y_2+x_1y_1-x_2y_2+x_2y_1-x_3y_2+x_3y_3+x_2y_2-x_2y_3-2x_1y_1-x_3y_1-x_3y_3+x_1y_1+x_1y_3=$$

$$=x_1y_3-x_1y_2+x_2y_1-x_2y_3+x_3y_2-x_3y_1=y_1(x_2-x_3)+y_2(x_3-x_1)+y_3(x_1-x_2)$$

Dividiendo entre 2:

$$A = \frac{1}{2} [y_1(x_2-x_3)+y_2(x_3-x_1)+y_3(x_1-x_2)]....(II)$$

Que es la relación que permite obtener el área de un triángulo en función de las coordenadas de sus vértices.

Al aplicar esta fórmula, a veces el resultado es *positivo* y otras *negativo*. En todos los casos se considerará el *valor absoluto* de dicho resultado.

Por procedimiento, que justificaremos más adelante, o por simple comprobación con esta fórmula, se ha obtenido el siguiente *determinante* para calcular el *área del triángulo*, en función de las *coordenadas* de sus *vértices*.

$$A = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}(II')$$

4.1 Ejercicios

 Empleando las fórmulas (II) y (II'), calcular el área del triángulo cuyos vértices son: P(-4,2), Q(5,4) y R(2,-3)

SOLUCIÓN

Aplicando la fórmula, tenemos:

$$A = \frac{1}{2}[2(5-2)+4(2+4)+(-3)(-4-5)] =$$

$$= \frac{1}{2}(6+24+27) = \frac{1}{2}57$$

$$A = 28.5 \text{ u}^2$$

Por el *determinante*:

$$A = \frac{1}{2} \begin{vmatrix} 1 & -4 & 2 \\ 1 & 5 & 4 \\ 1 & 2 & -3 \end{vmatrix} = \frac{1}{2} (-15 - 16 + 4 - 10 - 8 - 12) = \frac{1}{2} (-57)$$

Como el área debe ser positiva, se toma el valor absoluto, obteniéndose:

$$A = 28.5 u^2$$

2. Calcular el área del triángulo cuyos vértices son: P(-6,-6), Q(-2,8), R(4,2)

SOLUCIÓN

Aplicando la fórmula (II):

$$A = \frac{1}{2} \left[-6(-2-4) + 8(4+6) + 2(-6+2) \right] = \frac{1}{2} (36+80-8) = \frac{1}{2} 108 = 54 u^2$$

Aplicando el determinante, fórmula (II'):

$$A = \frac{1}{2} \begin{vmatrix} 1 & -6 & -6 \\ 1 & -2 & 8 \\ 1 & 4 & 2 \end{vmatrix} = \frac{1}{2} (-4 - 48 - 24 - 12 - 32 + 12) = \frac{1}{2} (-108)$$

$$A = \begin{vmatrix} -54 \end{vmatrix} = 54 u^{2}$$

3. Calcular el área del triángulo formado por los puntos P(-3,4), Q(5,3) y R(2,0)

SOLUCIÓN

Por medio del *determinante*, fórmula (II'):

$$A = \frac{1}{2} \begin{vmatrix} 1 & -3 & 4 & 1 & -3 \\ 1 & 5 & 3 & 1 & 5 = \frac{1}{2} & (0 - 9 + 8 - 20 - 6 + 0) = \frac{1}{2} & (-27) \\ 1 & 2 & 0 & 1 & 2 \end{vmatrix}$$

$$A = \begin{vmatrix} -13.5 \end{vmatrix} = 13.5 u^{2}$$

Aplicando la fórmula (II):

$$\mathbf{A} = \frac{1}{2} \left[(4(5-2)+3(2+3)+0(-3-5)) \right] = \frac{1}{2} (12+15+0) = \frac{1}{2} (27) = \mathbf{13.5} \,\mathbf{u}^2$$

4.2 Condición para que tres puntos estén alineados

Para que **tres puntos** tales como: $A(x_1, y_1)$, $B(x_2, y_2)$ y $C(x_3, y_3)$ estén en **línea recta** es indispensable, como es natural, que no puedan formar un **triángulo**. Dicho de otra manera, se necesita que el **área del triángulo** que forman valga **cero**.

Por lo anterior, se concluye: Para que *tres puntos estén alineados* debe satisfacerse la siguiente condición:

$$\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} = 0$$

Ejemplo: Demostrar que los puntos: A(-1,-4), B(0,-1) y C(2,5) están situados sobre una misma línea recta.

SOLUCIÓN

Obteniendo el área del triángulo formado por los puntos A, B y C, por medio del determinante, se obtiene:

$$\begin{vmatrix} 1 & -1 & -4 & 1 & -1 \\ 1 & 0 & -1 & 1 & 0 = 0 + 2 + 5 + 0 + 1 - 8 = \mathbf{0} \\ 1 & 2 & 5 & 1 & 2 \end{vmatrix}$$

La Figura 8, muestra la solución gráfica:

5 División de un segmento de recta en partes proporcionales.

Vamos a determinar las coordenadas de un punto que divida a un segmento de recta

AB de extremos conocidos, en partes tales que guarden entre sí la relación Figura 9)

acuerdo a la Figura 9, consideramos el segmento AB, en donde A como B son puntos cualesquiera y se designan con las coordenadas:

$$A(x_1, y_1) y B(x_2, y_2)$$

El punto que divide el segmento es

P(x, y) y la proporción es debe

aclararse que lo que se busca son las coordenadas del punto P.

Los segmentos A'P' y P'B' quardan la misma relación que los segmentos AP y PB, es decir:

$$\frac{\overline{A'P'}}{\overline{P'B'}} = \frac{m}{n} \tag{1}$$

Por otra parte:

$$\overline{OP'} = \overline{OB'} - \overline{P'B'}$$
 (2)

Pero:

$$\overline{OP'} = x$$
, $\overline{OB'} = x_2$, $\overline{OA'} = x_1$

Y:

$$\overline{A'P'} = \overline{OP'} - \overline{OA'} = x - x_1$$

Despejando P'B' de la ecuación (1) y sustituyendo datos, se tiene:

$$\overline{P'B'} = \frac{n\overline{A'P'}}{m} = \frac{n(\overline{OP'} - \overline{OA'})}{m} = \frac{n(x - x_1)}{m}$$
(3)

Sustituimos en la ecuación (2):

$$x = x_2 - \frac{n(x - x_1)}{m}$$

Multiplicando ambos miembros por m y simplificando:

$$m x = m_{X_2} - n x + n_{X_1}$$

 $m x + n x = n_{X_1} + m_{X_2}$
 $x (m + n) = n_{X_1} + m_{X_2}$

Despejando a x:

$$x = \frac{n_{X_1} + m_{X_2}}{m + n}$$
 (III)

Siguiendo el mismo procedimiento para y, se obtiene:

$$y = \frac{n y_1 + m y_2}{m + n}$$
 (IV)

Estas fórmulas nos permiten **determinar** un **punto** que divida a un **segmento de recta** en partes **proporcionales**.

5.1 EJERCICIOS

 Los extremos de un segmento de recta son: A(-3,-4) y B(4,2). Determinar sobre dicho segmento un punto que diste de A el doble que de B.

SOLUCIÓN

Del enunciado del problema, se determina que la relación es: $\frac{m}{n} = \frac{2}{1}$; es decir: m = 2 y n=1.

Sustituyendo valores en las relaciones (III) y (IV) previas, se obtiene:

$$x = \frac{1(-3) + 2(4)}{2 + 1} = \frac{-3 + 8}{3} = \frac{5}{3}$$
$$y = \frac{1(-4) + 2(2)}{2 + 1} = \frac{-4 + 4}{3} = \frac{0}{3} = 0$$

El punto pedido es:

$$P\left(\frac{5}{3},0\right)$$

Para comprobar los resultados, se calcula las distancias de **P** a **A** y de **P** a **B**, aplicando la fórmula (I), correspondiente a la **distancia** entre dos puntos:

$$\overline{PA} = \sqrt{\left(\frac{5}{3} + 3\right)^2 + \left(-4 - 0\right)^2} = \sqrt{\left(\frac{5}{3} + \frac{5}{9}\right)^2 + 16} = \sqrt{\frac{196}{9} + \frac{144}{9}} = \sqrt{\frac{340}{9}} = \sqrt{\frac{4x85}{9}} = 2\frac{\sqrt{85}}{3}$$

$$\overline{PB} = \sqrt{\left(\frac{5}{3} - 4\right)^2 + \left(0 - 2\right)^2} = \sqrt{\left(\frac{5}{3} - \frac{12}{3}\right)^2 + 4} = \sqrt{\left(\frac{-7}{3}\right)^2 + 4} = \sqrt{\frac{49}{9} + \frac{36}{9}} = \sqrt{\frac{85}{9}} = \frac{\sqrt{85}}{3}$$

De los resultados anteriores, se concluye que:

$$\overline{PA} = 2\overline{PB}$$

La *Figura 10* muestra los resultados gráficamente:

2. Dado el **segmento de recta** cuyos extremos son A(-6,8) y B(4,-2) **Determinar** el **punto** que lo **divide** en la relación $\frac{2}{3}$, debiendo estar dicho **punto** más cerca de A que de B.

SOLUCIÓN

Del enunciado, se determina que $\frac{m}{n} = \frac{2}{3}$. Sustituyendo valores en las expresiones (III) y (IV), se obtiene:

$$x = \frac{(3)(-6) + (2)(4)}{2+3} = \frac{-18+8}{5} = -\frac{10}{5} = -2$$
$$y = \frac{(3)(8) + (2)(-2)}{2+3} = \frac{24-4}{5} = \frac{20}{5} = 4$$

El punto es:

Se deja al alumno comprobar los resultados obtenidos, realizando la gráfica correspondiente.

5.2 Punto medio de un segmento de recta.

Las fórmulas para calcular las **coordenadas** del **punto medio** de un **segmento de recta**, se obtienen a partir de las expresiones (III) y (IV) vistas anteriormente, considerando que **m=n**, en cuyo caso resulta:

Partiendo de:

$$x = \frac{n_{x_1+m_{x_2}}}{m+n}$$
, $y = \frac{n_{y_1+m_{y_2}}}{m+n}$

Con *m*=*n*, tenemos:

$$x = \frac{m x_1 + m x_2}{m + m} = \frac{m x_1 + m x_2}{2m} = \frac{m (x_1 + x_2)}{2m} = \frac{x_1 + x_2}{2}$$
$$y = \frac{m y_1 + m y_2}{m + m} = \frac{m y_1 + m y_2}{2m} = \frac{m (y_1 + y_2)}{2m} = \frac{y_1 + y_2}{2}$$

Resultando:

$$x = \frac{x_1 + x_2}{2}$$

$$y = \frac{y_1 + y_2}{2}$$
(VI)

Que son las fórmulas para obtener las **coordenadas** del **punto medio** de un **segmento de recta** de extremos conocidos.

6 EJERCICIOS

1. Encontrar el punto medio del segmento PQ, sabiendo que: P(-8,-6) y Q(4,2).

SOLUCIÓN

Aplicando las fórmulas (V) y (VI), se tiene:

$$x_m = \frac{-8+4}{2} = \frac{-4}{2} = -2$$

$$y_m = \frac{-6+2}{2} = \frac{-4}{2} = -2$$

Por tanto, el punto medio es:

$$M(-2,-2)$$

Se deja al alumno comprobar los resultados obtenidos, realizando la gráfica correspondiente.

2. Los **vértices** de un **triángulo** son: **A**(-4,2), **B**(2,8) y **C**(6,-6). **Calcular** la **longitud** de la **mediana** correspondiente al lado **BC** y además **demostrar** que el **segmento de recta** que se obtiene al **unir los puntos medios de dos de sus lados mide la mitad del tercero**.

SOLUCIÓN

Las **coordenadas** del **punto medio** del **segmento** BC son, según las ecuaciones (V) y (VI):

$$x_M = \frac{x_B + x_C}{2} = \frac{2+6}{2} = 4$$

$$y_{M} = \frac{y_{B} + y_{C}}{2} = \frac{8 - 6}{2} = 1$$

Por tanto, el *punto medio* de **BC** es:

Aplicando la fórmula (I) para calcular la **distancia** entre los puntos **A** y **M**, se tiene:

$$\overline{AM} = \sqrt{(-4-4)^2 + (2-1)^2} = \sqrt{64+1} = \sqrt{65} = 8.06$$

Que es la *longitud* de la *mediana* del lado BC.

Las **coordenadas** del **punto medio** del **segmento** AB son:

$$x_{M'} = \frac{x_A + x_B}{2} = \frac{-4 + 2}{2} = -1$$

$$y_{M'} = \frac{y_A + y_B}{2} = \frac{2+8}{2} = 5$$

Por tanto, el *punto medio* de AB es:

La distancia del segmento M'M es:

$$\overline{M'M} = \sqrt{(-1-4)^2 + (5-1)^2} = \sqrt{25+16} = \sqrt{41}$$

La *distancia* del lado AC es:

$$\overline{\mathbf{AC}} = \sqrt{(-4-6)^2 + (2+6)^2} = \sqrt{100+64} = \sqrt{4 \times 41} = 2 \sqrt{41}$$

De los resultados anteriores, se puede ver claramente que:

$$\overline{M'M} = \frac{1}{2} \overline{AC}$$

Los resultados algebraicos están representados gráficamente en la Figura 11.

3. Tres vértices consecutivos de un *paralelogramo* son: *A(-6,2)*, *B(-2,8)* y *C(4,-2)*. Determinar el cuarto vértice:

SOLUCIÓN

Partimos del principio que establece que las dos *diagonales* de todo *paralelogramo* se cortan en un *punto medio*. Por lo que, sustituyendo datos en las expresiones (V) y (VI) se tiene:

$$x_M = \frac{x_A + x_C}{2} = \frac{-6 + 4}{2} = -1$$

$$y_{M} = \frac{y_{A} + y_{C}}{2} = \frac{2 - 2}{2} = 0$$

Por tanto, las coordenadas del punto medio son:

$$M(-1,0)$$

Pero también:

$$x_{M} = \frac{x_{B} + x_{D}}{2}$$

Sustituyendo los valores de x_M y x_B , se obtiene:

$$-1 = \frac{-2 + x_D}{2}$$

Despejando a X_D:

$$x_D = -2 + 2 = 0$$

Además:

$$y_{M} = \frac{y_{B} + y_{D}}{2}$$

Sustituyendo los valores de y_M y y_B , se obtiene:

$$0 = \frac{8 + y_D}{2}$$

Despejando a y_D:

$$y_{D} = 0 - 8 = -8$$

Por lo que el cuarto vértice es:

$$D(0,-8)$$

Como se comprueba en la Figura 12.

4. Los vértices de un cuadrilátero irregular son: A(-8,8), B(2,2), C(0,-2) y D(-4,-4). Demostrar que la figura resultante (Figura 13) al unir los puntos medios de sus lados consecutivos es un paralelogramo.

SOLUCIÓN

Aplicando las fórmulas (V) y (VI), las coordenadas del punto medio del segmento AB son:

$$\mathbf{X}_{M_1} = \frac{\mathbf{X}_A + \mathbf{X}_B}{2} = \frac{-8 + 2}{2} = -3$$

$$\mathbf{X}_{M_2} = \frac{\mathbf{y}_A + \mathbf{y}_B}{2} = \frac{8+2}{2} = \mathbf{5}$$

El punto medio de AB es:

$$M_1(-3,5)$$

Las **coordenadas** del **punto medio** del **segmento** BC son:

$$x_{M_2} = \frac{x_B + x_C}{2} = \frac{2+0}{2} = 1$$

$$y_{M_2} = \frac{y_B + y_C}{2} = \frac{2 - 2}{2} = 0$$

AUTOR: PROFESOR JESÚS INFANTE MURILLO

EDICIÓN PARA INTERNET: PROFESOR PABLO FUENTES RAMOS

El punto medio de BC es:

$$M_2(1,0)$$

Las **coordenadas** del **punto medio** del **segmento** CD son:

$$\mathbf{x}_{M_3} = \frac{\mathbf{x}_{C} + \mathbf{x}_{D}}{2} = \frac{0 - 4}{2} = -2$$

$$\mathbf{y}_{M_3} = \frac{\mathbf{y}_{C} + \mathbf{y}_{D}}{2} = \frac{-2 - 4}{2} = -3$$

El punto medio de CD es:

$$M_3(-2,-3)$$

Las coordenadas del punto medio del segmento AD son:

$$x_{M_4} = \frac{x_A + x_D}{2} = \frac{-8 - 4}{2} = -6$$

$$y_{M_4} = \frac{y_A + y_D}{2} = \frac{8 - 4}{2} = 2$$

El punto medio de AD es:

$$M_4(-6,2)$$

Aplicando la fórmula (I) de la distancia entre dos puntos:

$$\begin{split} \overline{\mathbf{M_1 M_2}} &= \sqrt{(-3-1)^2 + (5-0)^2} = \sqrt{16+25} = \sqrt{41} \\ \overline{\mathbf{M_4 M_3}} &= \sqrt{(-6+2)^2 + (2+3)^2} = \sqrt{16+25} = \sqrt{41} \\ \overline{\mathbf{M_4 M_1}} &= \sqrt{(-6+3)^2 + (2-5)^2} = \sqrt{9+9} = \sqrt{18} \\ \overline{\mathbf{M_3 M_2}} &= \sqrt{(-2-1)^2 + (-3-0)^2} = \sqrt{9+9} = \sqrt{18} \end{split}$$

De los resultados anteriores, se observa que:

$$\overline{\mathbf{M}_{1}}\overline{\mathbf{M}}_{2} = \overline{\mathbf{M}_{4}}\overline{\mathbf{M}}_{3} \quad \text{y} \quad \overline{\mathbf{M}_{4}}\overline{\mathbf{M}}_{1} = \overline{\mathbf{M}_{3}}\overline{\mathbf{M}}_{2}$$

Como resultaron iguales los lados opuestos, la Figura 13 es un paralelogramo.

5. La base de un triángulo isósceles tiene por extremos los puntos A(2,-1) y B(-1,2); los lados iguales miden cada uno 17. Encontrar el vértice opuesto a la base.

SOLUCIÓN

Considerando que el *vértice opuesto* es C(x, y):

Por medio de la fórmula (I) de la *distancia* entre *dos puntos*, para el *segmento* CB, se tiene:

$$\overline{CB} = \sqrt{(x+1)^2 + (y-2)^2} = \sqrt{17}$$

Elevando al cuadrado ambos miembros y desarrollando:

$$x^2 + 2x + 1 + y^2 - 4y + 4 = 17$$

Reduciendo términos semejantes:

$$x^2 + y^2 + 2x - 4y = 12$$
(1)

Para el segmento CA, se tiene:

$$\overline{CA} = \sqrt{(x-2)^2 + (y+1)^2} = \sqrt{17}$$

Elevando al cuadrado ambos miembros y desarrollando:

$$x^2 - 4x + 4 + y^2 + 2y + 1 = 17$$

Reduciendo términos semejantes:

$$x^2 + y^2 - 4x + 2y = 12$$
 (2)

Restando miembro a miembro la ecuación (2) de la ecuación (1):

$$6x - 6y = 0$$

Dividiendo entre 6:

$$x - y = 0$$

Por tanto:

$$\mathbf{x} = \mathbf{y}$$
(3)

Sustituyendo (3) en (1) y simplificando:

$$x^2 + x^2 + 2x - 4x = 12$$

$$2x^2 - 2x - 12 = 0$$

$$x^2 - x - 6 = 0$$

Resolviendo:

$$x_1 = -2$$
 $y_{x_2} = 3$

Según la ecuación (3):

$$y_1 = -2$$
 $y y_2 = 3$

Se puede ver que el problema tiene dos soluciones:

$$C_1(-2,-2)$$
 y $C_2(3,3)$

Lo que se comprueba según la Figura 14.

FIGURA 14

Nombre de archivo: nociones basicas Directorio: C:\Geometria_analitica

Plantilla: C:\WINDOWS\Application Data\Microsoft\Plantillas\Normal.dot

Título: Geometría Analítica

Asunto: Nociones básicas de la Geometría Analítica

Autor: Ing. Jesús Infante Mutillo

Palabras clave: Comentarios:

Fecha de creación: 11/02/02 08:48 A.M.

Cambio número: 44

Guardado el: 13/05/02 10:38 A.M. Guardado por: Pablo Fuentes Ramos

Tiempo de edición: 1,231 minutos Impreso el: 13/05/02 10:38 A.M.

Última impresión completa

Número de páginas: 23

Número de palabras: 3,182 (aprox.) Número de caracteres: 18,138 (aprox.)