Exercice 1 Calcul.

- 1. Calculer la différentielle d'une application constante, linéaire et quadratique.
- 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ différentiable. Montrer que les fonctions suivantes sont différentiables et déterminer leur différentiable :

$$u(x) = f(x, -x), \quad g(x, y) = f(y, x).$$

- 3. Soit $f_A(t) = e^{tA}$. Montrer que $f'_A(t) = Ae^{tA} = e^{tA}A$.
- 4. Montrer que $\forall t \in \forall A \in M_{n,n}(\mathbb{R})$ $\det(e^{tA}) = e^{t\operatorname{Trace}(A)}$.

Exercice 2

Soit $(c^0(\mathbb{N}), N)$ l'espace vectoriel normé des suites convergeant vers 0 muni de la norme uniforme :

$$N((u_n)_{n\in\mathbb{N}}) = \sup_{n\in\mathbb{N}} |u_n|$$

En quels points la norme N est-elle différentiable?

On pourra distinguer les cas suivants :

- $-(|u_n|)_{n\in\mathbb{N}}$ admet son maximum en un unique point.
- $-(|u_n|)_{n\in\mathbb{N}}$ admet son maximum en plusieurs points.
- $\forall n \in \mathbb{N}, u_n = 0.$

Exercice 3

Soit E l'espace des fonctions continues sur [0,1] muni de la norme de la convergence uniforme. Soit $\phi: \mathbb{R} \to \mathbb{R}$ de classe C^2 . Monter que l'application suivante est différentiable :

$$\Phi: \begin{cases} E \to \mathbb{R} \\ f \mapsto \int_0^1 \phi(f(x)) dx \end{cases}.$$

L'application Φ est-elle de classe C^1 ?

Exercice 4

Donner un exemple de fonction $f \in C^1(\Omega)$, avec Ω ouvert connexe, qu'il existe $a, b \in \Omega$ telle que :

$$||f(a) - f(b)|| > ||a - b|| \sup_{x \in \Omega} ||df_x||$$

Exercice 5 Formule d'Euler

Soit E, F deux espaces de Banach et $f: E \to F$, différentiable sur E telle que : $\forall x \in E, \forall t \in \mathbb{R}$ $f(tx) = t^n f(x)$ Montrer que $\mathrm{d} f_x(x) = n f(x)$.

Exercice 6 Différentielle de l'exponentielle de matrice

- 1. Déterminer la différentiabilité en 0 de l'application exp : $\begin{cases} M_{n,n}(\mathbb{R}) \to M_{n,n}(\mathbb{R}) \\ A \mapsto e^A \end{cases}$
- 2. Soit X(t) un chemin de matrices C^1 et $f(t,s) = e^{sX(t)}$. Calculer la dérivée de $g_t(s) = e^{-sX(t)} \frac{\partial f}{\partial t}(t,s)$. En déduire que $\frac{\partial f}{\partial t}(t,1) = \int_0^1 e^{(1-u)X(t)} X'(t) e^{uX(t)} du$.
- 3. Monter que $(d \exp)_A(H) = \int_0^1 e^{(1-u)A} H e^{uA} du$.

- 4. Soit $\mathcal S$ l'espace vectoriel des matrices symétriques et $\mathcal U$ l'ensemble des matrices symétriques définies positives.
- 5. Montrer que \mathcal{U} est un ouvert de S.
- 6. Montrer que pour $A \in \mathcal{U}$, il existe un unique $B \in \mathcal{U}$ tel que $A = B^2$. On note $B = \sqrt{A}$.
- 7. Montrer que $\psi: \begin{cases} \mathcal{U} \to \mathcal{U} \\ A \mapsto \sqrt{A} \end{cases}$ est différentiable.

Exercice 7

Étudier la différentiabilité des fonctions suivantes après les avoir prolongées par continuité en (0,0):

$$f(x,y) = \frac{x^3}{x^2 + y^2}, \quad g(x,y) = \frac{x^3y}{x^4 + y^2}$$

. Soit $f \in C^0(\mathbb{R} \times \mathbb{R}, \mathbb{R})$, montrer que si les dérivées partielles existent et que l'une est continue alors f est

Exercice 8

différentiable.

Soit f de $\mathbb R$ dans $\mathbb R$ convexe, montrer que f est différentiable sauf en un nombre dénombrable de points.