Corrida

Considere o seguinte problema¹.

Alice e Beto estão apostando corrida. Ambos correm com a mesma velocidade, andam com a mesma velocidade e correm mais rápido do que andam. A diferença está na resistência deles. Alice corre metate do tempo e anda a outra metade do tempo. Beto corre metade do espaço e anda a outra metade do espaço. Quem ganha a corrida?

Neste exercício-programa, sua tarefa consiste em fazer um programa que resolve uma versão generalizada desse problema. O comportamento de cada competidor é descrito por uma sequência de intruções. Cada instrução diz se o competidor corre ou anda e por que fração do tempo ou do espaço restante ele faz isso. Tomando como exemplo o problema original enunciado acima, a sequência de Alice teria duas instruções:

Quer dizer que, no início da corrida, Alice corre 50% do tempo que resta para completar a corrida e, feito isso, anda 100% do tempo que resta para completar a corrida a partir daquele ponto. São instruções equivalentes:

No exemplo, a sequência de instruções correspondente ao Beto seria

Para representar as instruções de uma forma que o computador consiga entender, vamos usar C para correr, A para andar, T para tempo e E para espaço. Além disso, vamos substituir porcentagem por dois inteiros representando uma fração positiva menor que 1. Por exemplo, as instruções da Alice ficariam assim.

C 1 2 T A 1 1 T

 $^{^1{\}rm Adaptação}$ do problema 6 no livro Eaí, algum problema? de Beth Bürgers e Elis Pacheco, Editora Moderna, São Paulo, 1997.

Generalizar o problema significa que, agora, podemos ter muitos competidores (não só Alice e Beto) e que cada competidor tem seu comportamento ditado por uma sequência de múltiplas instruções. Por exemplo, poderíamos imaginar uma corrida com três competidores que se comportam de acordo com as regras a seguir.

```
Competidor 1: C 1 6 T A 1 4 E C 1 6 E C 1 1 T Competidor 2: C 1 4 T A 2 7 E C 1 1 T Competidor 3: C 3 11 T C 2 7 E A 1 3 T C 1 1 E
```

Só para ter certeza de que você entendeu, se o comprimento do percurso fosse 100km, e os competidores corressem a 10km/h e andassem a 5km/h, o Corredor 1 demoraria 12h para completá-lo: correria 20km em 2h (1/6 das 12h), depois andaria 20km (1/4 dos 80km restantes) em 4h, depois correria 10km (1/6 dos 60km restantes) em 1h e, finalmente, correria 50km em 5h (1/1 das 5h restantes). O Corredor 2 empataria com o Corredor 1. Dada essa informação, tente deduzir sozinho quanto tempo e espaço ele corre correspondente a cada uma das instruções. Finalmente, deduza sozinho o tempo que o Corredor 3 demora para completar a corrida e decida se ele é o vencedor ou o perdedor.

Vamos continuar supondo que todos correm com a mesma velocidade, andam com a mesma velocidade e correm mais rápido do que andam. O problema é que, nessa versão mais geral, a relação entre a velocidade de corrida e de caminhada e o comprimento do percurso pode afetar o resultado de quem será o vencedor. Portanto, para que o problema de se determinar o vencedor esteja bem definido, vamos fixar em 10km/h a velocidade de corrida, em 5km/h a velocidade de caminhada e em 100km a distância a ser percorrida.

Este exercício poderá ser feito em duplas, não triplas. O nome dos integrantes deve aparecer em um comentário, no início do arquivo .c que será entregue no Tidia. Somente um dos integrantes deve submeter no Tidia.

Dicas de implementação

Em uma das maneiras de se fazer este exercício programa, você precisará representar uma função linear (i.e. uma função da forma f(x) = ax + b, onde a e b são frações) como uma estrutura e deverá implementar operações binárias de soma e composição, uma operação de produto por escalar e deve ser capaz de inverter uma tal função. A dica é que as instruções devem ser consideradas na ordem inversa para que se possa descobrir o tempo e o espaço percorridos.