

12 Gebrauchsmuster
10 DE 297 14 857 U 1

5 Int. Cl. 6:
B21D 17/00

27 Aktenzeichen: 297 14 857.5
28 Anmeldetag: 20. 8. 97
29 Eingangstag: 9. 10. 97
30 Bekanntmachung
im Patentblatt: 20. 11. 97

22 Inhaber:

Ziegerer, Rainer, 74245 Löwenstein, DE

23 Vertreter:

Patentanwälte Dipl.-Ing. Hans Müller, Dr.-Ing.
Gerhard Clemens, 74074 Heilbronn

54 Vorrichtung zum Verformen eines gitterrostähnlichen, radial verformbaren Rohrstückes

BESCHREIBUNG

Vorrichtung zum Verformen eines gitterrostähnlichen, radial
05 verformbaren Rohrstückes

TECHNISCHES GEBIET

Die Erfindung betrifft eine Vorrichtung, mit der sich radial
10 verformbare, gitterrostähnliche Rohrstücke verformen lassen.
Derartige Rohrstücke sind beispielsweise in der Medizin-
Technik als sog. Stent bekannt. Sie werden in menschliche
Blutgefäße (Arterien) eingesetzt und dienen als innere
Stützkörper zum Offenhalten des Adernquerschnittes. Zum Ein-
15 führen in eine Ader wird ein Stent auf einen stirnseitig
verschlossenen Schlauch aufgezogen und in die Ader einge-
führt. An der vorbestimmten Stelle im Inneren der Ader wird
Flüssigkeit in den Schlauch von außen eingeführt und dadurch
das vordere Schlauchende aufgeweitet. Dabei weitet sich auch
20 der Stent zwangsläufig querschnittsmäßig auf, so daß er sich
von innen an die Wandung der Ader anlegen kann. Anschließend
wird der Schlauch wieder entspannt, indem die Flüssigkeit
aus ihm nach außen wieder herausgelassen wird. Der Schlauch
verkleinert sich dadurch wieder querschnittsmäßig, so daß er
25 seinen Sitz an der Innenseite des Stents verliert. Der
Schlauch wird dann aus der Ader wieder rückwärts herausgezo-
gen und der Stent bleibt als Stützkörper in der Ader zurück.

STAND DER TECHNIK

30 Zum Einsetzen eines Stents ist es erforderlich, denselben
auf den Schlauch, mit dem er in eine Ader eingeführt werden
soll, von außen pressend ausreichend fest aufzudrücken. Der
Stent darf beim Einführen des Schlauches nämlich seinen Sitz
35

auf dem Schlauch nicht verlieren. Damit der Stent sich innerhalb einer Ader wieder mit kreisförmigem Querschnitt aufweiten kann, muß er mit ebenfalls kreisförmigem Querschnitt auf dem Schlauch pressend aufsitzen. Der Kreisquerschnitt des Stents ist kleiner oder größer, je nachdem in welcher Position er sich befindet; ob er auf dem Schlauch mit kleinem Querschnitt aufgedrückt positioniert ist, oder ob er mit größerem Querschnitt im Inneren einer Ader platziert ist. Es ist nun bekannt, mit zangenartigen Werkzeugen den Stent auf den Schlauch aufzudrücken. Dabei besteht die Gefahr, daß der Stent sich nicht genau kreisförmig zusammen drückt und daß Knicke in seiner zartgliedrigen, aus miteinander verbundenen Stegen gebildeten Wandung ausgebildet werden. Diese Knicke verhindern eine exakte Aufweitung des Stent-Querschnittes im Inneren einer Ader.

DARSTELLUNG DER ERFINDUNG

Der Erfindung liegt die Aufgabe zugrunde, eine Möglichkeit anzugeben, um einen Stent unter Beibehaltung eines Kreisquerschnittes auf einen rohrförmigen Schlauch von außen pressend anzulegen.

Diese Erfindung ist durch diese Merkmale des Hauptanspruchs gegeben. Die Erfindung beinhaltet, daß umfangsmäßig auf den Stent von außen Wandteile drückend einwirken, die in der Umfangsrichtung mäanderförmig ausgebildet sind. Dadurch ist eine radiale Verformung dieser Wände und dadurch wiederum eine radiale Verkleinerung des Kreisquerschnittes des Stents möglich. Derartige mäanderförmige Wände lassen sich ausbilden und entsprechend verformen mit Hilfe einer Vorrichtung, bei der in ein zangenartiges Werkzeug ein diese mäanderartig ausgebildeten Wände besitzender Verformkörper eingesetzt und

durch Zusammendrücken des zangenartigen Werkzeuges entsprechend radial verformt wird.

- Der Verformkörper kann schräg zu seiner Ausrichtung ausgerichteter Außenwandbereiche besitzen. Dementsprechend besitzt dann auch das Werkzeug Spannbacken, die gegen diese schräg ausgerichteten Außenwandbereiche anlegbar sind, so daß durch Zusammendrücken des Werkzeuges die Spannbacken den Verformkörper in radialer Richtung verformen können.
- 10 Zumindest eine der Spannbacken kann eine ringförmige Anlagefläche am Verformkörper besitzen. Entsprechend besitzt dann der Verformkörper zumindest auf seiner dieser Spannbacke zugerichteten Seite eine in etwa kegelige Oberfläche.
- 15 Um im Querschnitt verschieden große Stents verformen zu können, können verschiedene Verformkörper erforderlich werden. Um nicht die gesamte Vorrichtung dem unterschiedlich großen Stent entsprechend austauschen zu müssen, ist der Verformkörper austauschbar in dem Werkzeug gelagert. Dadurch braucht nur der Verformkörper und nicht auch das zangenartige Werkzeug dem jeweiligen Stent entsprechend angepaßt zu werden.
- 25 Um das Austauschen des Verformkörpers einfach zu gestalten, sind die Spannbacken des Werkzeuges lösbar in dem Werkzeug vorhanden.
- 30 Weitere Vorteile auf der Ausgestaltung der Erfindung ergeben sich durch die in den Unteransprüchen weiter aufgeführten Merkmale sowie aus den nachstehenden Ausführungsbeispielen.

KURZE BESCHREIBUNG DER ZEICHNUNG

Die Erfindung wird im folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher beschrieben und

05 erläutert. Es zeigen:

Fig. 1.1 eine teilweise geschnittene Seitenansicht einer Vorrichtung nach der Erfindung,

10 Fig. 1.2 eine gegenüber Fig. 1.1 um 90 Grad gedrehte Ansicht dieser Vorrichtung,

Fig. 2 einen Stent in seinem aufgeweiteten, in einer Ader einsitzenden Zustand,

15 Fig. 3 den Stent nach Fig. 2 in seinem im Querschnitt gegenüber Fig. 2 verkleinerten, auf einem Schlauch mit Hilfe der Vorrichtung nach Fig. 1 aufgedrückten Zustand,

20 Fig. 4 den in der Vorrichtung nach Fig. 1 radial verformbaren Verformkörper in Seitenansicht,

25 Fig. 5 einen Querschnitt durch den Verformkörper nach Fig. 4,

Fig. 6 den Querschnitt einer anderen Ausführungsform eines Verformkörpers.

30

35

WEGE ZUM AUSFÜHREN DER ERFINDUNG

Eine in Fig. 1 dargestellte Vorrichtung zum Verformen eines 05 gitterrostähnlichen radial verformbaren Rohrstückes, besteht aus einer Spannzange 10 und einem rohrförmigen Verformkörper 12. Durch Zusammendrücken der Spannzange 10 wird der Verformkörper 12 in radialem Richtung, d.h. senkrecht zu der Längsachse 14 seiner in Längsrichtung durch ihn hindurch führenden kanalartigen Durchgangsöffnung 16 verformt.

10 Die Spannzange 10 besitzt einen U-förmigen Bügel 18. Durch Zusammendrücken dieses Bügels 18 werden seine beiden Bügelschenkel 20, 22 aufeinander zu bewegt. In dem einen Bügel 18 ist eine Abstandsschraube 21 verstellbar gelagert. Die Position des Schraubenkopfes 23 im Bereich zwischen den beiden 15 Schenkeln 20, 22 lässt sich durch ein Verstellrad 24 in an sich bekannter Weise veränderlich einstellen. Dadurch lässt sich der Abstand 26 zwischen den beiden Schenkeln 20, 22 unterschiedlich groß einstellen. Der Abstand 26 definiert 20 den maximalen Weg, um den die beiden Schenkel 20, 22 im Bereich des Schraubenkopfes 23 aufeinander zu bewegen können.

25 Im oberen Bereich der beiden Schenkel 20, 22 ist jeweils eine zylinderförmige Gelenkpfanne 30, 32 ausgebildet. In jeder dieser Gelenkpfannen 30, 32 sitzt ein zylinderförmiger Gelenkknochen 34, 36 drin.

30 Die beiden Gelenkknochen 34, 36 bilden das jeweilige Ende von zwei stabförmigen Schenkeln 40, 42. Diese beiden Schenkel 40, 42 sind an ihrem in der Zeichnung oberen Ende gelenkig miteinander verbunden. Dazu besitzt der in der Zeichnung rechte Schenkel 40 eine Ausbildung in Art eines Gelenkkno-

chens 44, der in einer entsprechend geformten Gelenkpfanne 46 des anderen Schenkels 42 einsitzt.

- Die beiden Schenkel 40, 42 sind mittels einer jeweiligen
- 05 Schraube 48, 50 an den beiden Bügelschenkeln 20, 22 festgeschraubt. Nach Lösen dieser Schrauben 48, 50 können die beiden Schenkel 40, 42, die einen Einsatz 52 bilden, von dem U-förmigen Bügel 18 gelöst werden. Anschließend können die beiden Schenkel 40, 42 um ihr in der Zeichnung oberes Gelenk 56 aufgeklappt und ein zwischen ihnen positionierter Verformkörper 12 herausgenommen oder ein entsprechender Verformkörper 12 zwischen ihre Schenkel 40, 42 eingesetzt werden.
- 15 Das durch den Verformkörper 12 radial verformbare, gitterrostähnliche Rohrstück ist in Gestalt eines sog. Stent 60 in Fig. 2 und 3 dargestellt. Dieser Stent 60 ist in Fig. 2 innerhalb einer strichpunktiert angedeuteten Ader 62 dargestellt. Er besitzt einen entsprechend großen Durchmesser D1.
- 20 In Fig. 3 besitzt der Stent 60 einen dem gegenüber kleineren Durchmesser D2. In seiner in Fig. 3 dargestellten Position sitzt er von außen aufgedrückt auf einem gestrichelt ange- deuteten Schlauch 64. Mit Hilfe dieses Schlauches 64 wird der in Fig. 3 dargestellte Stent in eine Ader eingeführt und
- 25 durch Aufweiten des Schlauches 64 in seine in Fig. 2 darge- stellte Form gebracht. Das Aufweiten eines Stents ist an sich bekannt.
- Das Verformen des Stents 60 in seinen in Fig. 3 dargestellten Zustand erfolgt mit Hilfe des in Fig. 4 dargestellten Verformkörpers 12.

Der Verformkörper 12 besitzt eine zentrale Durchgangsoffnung 16, die von unterschiedlich starken Wandbereichen umgeben ist. In den äußeren Endbereichen des rohrförmigen Verformkörpers 12 ist der Außendurchmesser D3 in Längsrichtung im Bereich 68 konstant groß. Im mittleren Bereich weitet sich dieser Durchmesser D3 zu einem maximalen Durchmesser D4 auf. Der Übergangsbereich 70 zwischen den Bereichen mit den Durchmessern D3 und D4 ist die Oberflächenstruktur des Verformkörpers 12 kegelstumpfförmig.

10

Die Wandbereiche 72 des Verformkörpers 12 sind in Richtung seines Umfangs mäanderförmig. So sind äußere Wandbögen 74 mit inneren Wandbögen 76 schleifenförmig verbunden. Dazu ist jeweils ein Schenkel 78 eines äußeren Wandbogens gleichzeitig Schenkel 80 eines inneren Wandbogens 76. Zwischen benachbarten äußeren Wandbögen ist jeweils ein äußerer Spalt 82 ausgebildet. In entsprechender Weise ist auch zwischen inneren Wandbögen 76 jeweils ein innerer Spalt 84 vorhanden.

20

Durch äußeres Drücken auf die äußeren Wandbögen 74 bewegen sich diese radial nach innen. Die Breite der äußeren und inneren Spalte 82, 84 ist ein Maß für die mögliche Bewegung der äußeren und inneren Wandbögen 74, 76 in radialex Richtung nach innen.

25

In Fig. 6 ist ein gegenüber Fig. 4 und 5 etwas anderer Verformkörper 12.1 dargestellt. Er unterscheidet sich vom Verformkörper 12 in der Ausbildung seiner äußeren und inneren Wandbögen. So sind die Schenkel 78.1 der äußeren Wandbögen 74.1 nicht ebenflächig, sondern gewölbt ausgebildet. Dadurch weitet sich der äußere Spalt 82.1 nach innen hin zu einer Kammer 90 auf. Während beim Verformkörper 12 sich der innere Spalt 84 nach außen hin in eine in etwa dreieckförmige

35

innere Kammer 86 vergrößerte, ist eine vergleichbare Kammer 86.1 bei Fig. 6 relativ klein und im Stegbereich 88 des äußeren Wandbogens 74.1 vorhanden. Die Verformung des Verformungskörpers 12.1 ist ähnlich wie die des Verformkörpers 12. Durch Drücken auf die äußeren Wandbögen 74.1 verformen sich dieselben zusammen mit den inneren Wandbögen 76.1 in Radialrichtung nach innen. Die Durchgangsöffnung 16 im Inneren des Verformkörpers 12.1 wird dadurch im Querschnitt kreismäßig kleiner in gleicher Weise, wie es beim Verformkörper 12 der Fall ist.

Die Verformung der Wand des Verformungskörpers 12 erfolgt mit Hilfe von ringförmigen Wandteilen 92, 94, die jeweils in den beiden Schenkeln 40, 42 des Einsatzes 52 (Fig. 1.1) vorhanden sind. Diese beiden ringförmigen Wandteile 92, 94 begrenzen eine entsprechende Öffnung 96, 98 in jedem der beiden Schenkel 40, 42.

Durch Zusammendrücken der beiden Schenkel 40, 42, was durch entsprechendes Zusammendrücken des U-förmigen Bügels 18 der Spannzange 10 besorgt wird, drücken die beiden ringförmigen Wandteile 92, 94 auf die beiden rechten und linken Übergangsbereiche 70 des Verformkörpers 12 bzw. 12.1. Der Verformkörper verformt sich dadurch senkrecht zu seiner Längsachse 14 und bewirkt, daß der Stent 60 auf einem Schlauch 64 mit entsprechend kleinerem Durchmesser D2 pressend aufsitzt. Der Stent 60 wird dabei lose aufsitzend auf einem Schlauch 64 in den Verformkörper 12 durch dessen Durchgangsöffnung 16 lose durchgeschoben. Mit Hilfe der entsprechend positionierten Abstandsschraube 21 der Spannzange 10 kann die Verformung des Verformkörpers 12 so begrenzt werden, daß der Stent 60 seine in Fig. 3 dargestellte im Querschnitt kreisförmige Ausrichtung erhält und in dieser kreisförmigen Ausrichtung pressend auf dem Schlauch 64 aufsitzt.

ANSPRÜCHE

- 01) Vorrichtung zum Verformen eines gitterrostähnlichen,
05 radial verformbaren Rohrstückes, mit einem zangenartigen
Werkzeug,
gekennzeichnet durch
- einen Verformkörper (12),
-- der zwischen Spannbacken (92, 94) des Werkzeuges (10)
10 positionierbar ist,
-- der in etwa rohrförmig ausgebildet, mit einer axialen
Durchgangsöffnung (16) mit konstantem Kreisdurchmesser,
-- dessen die Durchgangsöffnung (16) radial umschließen-
den Wände (74, 76) in Umfangsrichtung mäanderartig ausge-
15 bildet sind, so daß eine radiale Verformung der Wände
(74, 76) und dadurch eine radiale Verkleinerung der
Durchgangsöffnung (16) unter Beibehaltung eines Kreis-
durchmessers (D2) herstellbar ist.
- 20 02) Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, daß
- der Verformkörper (12) schräg zu seiner Längsachse (14)
ausgerichtete Außenwandbereiche (72) besitzt,
- Spannbacken des Werkzeuges (10) gegen diese schrägen
25 Außenwandbereiche (72) so anlegbar sind, daß durch Zusam-
mendrücken des Werkzeuges (10) die Spannbacken (92, 94)
den Verformkörper (12) in radialer Richtung verformen.
- 03) Vorrichtung nach einem der vorstehendem Ansprüche,
30 dadurch gekennzeichnet, daß
- zumindest eine der Spannbacken (92, 94) eine ringför-
mige Anlagefläche für den Verformkörper (12) besitzt,
- der Verformkörper (12) zumindest auf der dieser Spann-
backe (92, 94) zugerichteten Seite eine in etwa kegelige
35 Oberfläche (70) besitzt.

04) Vorrichtung nach einem der vorstehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , d aß
- der Verformkörper (12) austauschbar im Werkzeug (10)
vorhanden ist.

05

05) Vorrichtung nach einem der vorstehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , d aß
- die Spannbacken (92, 94) lösbar im Werkzeug (10) vor-
handen sind.

10

06) Vorrichtung nach Anspruch 5,
d a d u r c h g e k e n n z e i c h n e t , d aß
- das Werkzeug (10) zwei aufeinander zu bewegbare Spann-
schenkel (20, 22) besitzt,

15

- in jedem der beiden Spannschenkel (20, 22) ein stabför-
miger Schenkel (40, 42) eines Einsatzes (52) gelenkig
gelagert ist,
- die beiden stabförmigen Schenkel (40, 42) an ihren von
den Spannschenkeln (20, 22) entfernten Enden gelenkig
(56) miteinander verbunden sind,
- im mittleren Bereich der beiden stabförmigen Schenkel
(40, 42) eine Öffnung (96, 98) mit einer ringförmigen
Anlagefläche (92, 94) für einen zwischen diese Schenkel
(40, 42) einsetzbaren Verformungskörper (12) ausgebildet
ist.

25

07) Vorrichtung nach einem der vorstehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , d aß
- ein verstellbarer Anschlag (23, 24) zum Begrenzen der
Spannbewegung des Werkzeuges (10) an dem Werkzeug (10)
vorhanden ist.

1/2

FIG. 1.1

FIG. 1.2

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6