Algoritmos Genéticos

Algoritmo Genético Binario

Si se tiene un problema que se desea resolver y se puede representar cada posible solución al problema como una cadena de bits, entonces un Algoritmo Genético puede resolver el problema.

Representación

Supongase que se tiene que diseñar un robot de bajo peso con suficiente poder para navegar terreno difícil y suficiente energía para no regresar a la base muy seguido.

Parámetros:

Tipo de motor y tamaño Tipo de fuente de energía y tamaño

Motor	Fuente de Energía
000 = 5 volts motor a pasos	000 = 12 volts batería nickel-cadmio
001 = 9 volts motor a pasos	001 = 24 volts batería nickel-cadmio
010 = 12 volts motor a pasos	010 = 12 volts batería de litio
011 = 24 volts motor a pasos	011 = 24 volts batería de litio
100 = 5 volts servo motor	100 = 12 volts panel solar
101 = 9 volts servo motor	101 = 24 volts panel solar
110 = 12 volts servo motor	110 = 12 volts panel solar
111 = 24 volts servo motor	111 = 24 volts panel solar

X

Fitness

No se puede simular evolución si no se tiene una buena definición de fitness o aptitud

Para el ejemplo se podría plantear una función de aptitud como la siguiente:

Fitness = Energia(horas)+Potencia(Watts)-Peso(Kilogramos)

Individuos

Individuo 1

24 volts motor a pasos 011

24 volts batería nickel-cadmio 001

Individuo 2

5 volts servo motor 100 24 volts panel solar 111

Alelo: Cada bit en un individuo

Gen: Una secuencia de bits que contenga una sección de

información de un individuo

Genotipo: Un gen específico

Fenotipo: El parámetro específico al problema que

representa el genotipo

Cromosoma: Colección de genes de un individuo

24 volts motor a pasos 011

24 volts batería nickel-cadmio 001

2 Genes, uno para motor y otro para batería

Genotipo de motor: 011

Fenotipo de motor: 24 volts motor a pasos

Genotipo de energía: 001

Fenotipo de batería: 24 volts batería nickel-

cadmio

Selección y Cruza

En terminos de los algoritmos genéticos la *cruza* significa que cada individuo comparte algo de su información con su descendencia.

Para ello se debe seleccionar una posición aleatoria a partir de la cual los alelos de dos individuos se intercambian

Cruza

Padres

011001

100111

Punto de cruza

Hijos

011011

100101

Selección

La selección de qué individuos cruzar se lleva a cabo con base en la aptitud (fitness) de los individuos de la población. Los individuos más aptos son más propensos a reproducirse y generar crias.

Un método común para la selección es el de la ruleta.

Selección

Mutación

Es el último paso del algoritmo genético.

Para implementarla se selecciona una probabilidad de mutación, por ejemplo del 1%. Esto significa que despupes del proceso de cruza cada bit de cada cria tiene un 1% de probabilidad de cambiar al valor opuesto (un 1 cambia a 0 o

un 0 cambia a 1)

Si se tiene una población de N individuos χ_i , donde cada individuo tiene n bits y el factor de mutación es ρ , entonces al final de cada generación se invierte cada bit de cada individuo con una probabilidad de ρ

$$r \leftarrow U[0,1]$$

$$x_i(k) \leftarrow \begin{cases} x_i(k) & \text{if } r \ge \rho \\ 0 & \text{if } r < \rho \text{ and } x_i(k) = 1 \\ 1 & \text{if } r < \rho \text{ and } x_i(k) = 0 \end{cases}$$

Para $i \in [1, N]$ y $k \in [1, n]$ donde U[0, 1] es un número aleatorio uniformemente distribuido entre 0 y 1

Algoritmo de Ruleta

```
X_i = i-ésimo individuo en la población i \in [1, N]
 f_i \leftarrow fitness(x_i) para i \in [1, N]
 f_{\text{sum}} = \sum_{i=1}^{N} f_i
generar número aleatorio r \in [0, f_{suma}]
 F \leftarrow f_1
 k \leftarrow 1
mientras F < r
           k \leftarrow k+1
          F \leftarrow F + f_{\nu}
padre \leftarrow x_{\nu}
```


Algoritmo Genético

```
Padres ← {Población generada aleatoriamente}
mientras no (criterio de paro)
   calcular la aptitud de cada individuo en la población
   Hijos \leftarrow \emptyset
   mientras |Hijos| < |Padres|
      usar aptitud para seleccionar un par de padres
      cruzar a los padres para generas las crías c1 y c2
      Hijos ← Hijos U {c1, c2}
   mutar aleatoriamente algunos hijos
   Padres ← Hijos
```