#### Алешко Альберт АС-21-05 Лабораторная работа №5

#### Задание:

- 1. Классификация данных
  - 1.1. Дискриминантный анализ.
    - 1.1.1. Построить классификационное правило, используя обучающую выборку  $(p = 8 \cdot k = 2)$
    - 1.1.2. Провести оценку качества построенного правила.
    - 1.1.3. Провести классификацию 10 новых объектов.
  - 1.2. Кластерный анализ (р = 8)
    - Провести классификацию, используя различные метрики и алгоритмы кластерного анализа.
    - Сравнить результаты кластеризации с классификацией полученной другими методами.
    - Определить характеристики случайных величин, представляющих полученные классы. Построить регрессионную модель для каждого кластера.
- 2. Снижение размерности. Метод главных компонент (p = 8; p' = 2)
  - 2.1. Найти выражение для двух главных компонент Z1, Z2.
  - 2.2. Определить основные характеристики компонент.
  - Провести визуальную классификацию данных, спроектированных в пространство первых двух главных компонент.
  - 2.4. Какую часть дисперсии объясняют эти компоненты.
  - 2.5. Сколько компонент необходимо для объяснения 90% дисперсии (р'-?).

```
In [463... import numpy as np
              import pandas as pd
              from matplotlib import pyplot as plt
              import seaborn as sns
              \textbf{from} \  \, \textbf{sklearn.linear\_model} \  \, \textbf{import} \  \, \textbf{LogisticRegression}
              from scipy.cluster.vq import whiten, kmeans, vq
              \textbf{from} \  \, \textbf{sklearn.metrics} \  \, \textbf{import} \  \, \textbf{silhouette\_score}
              from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
              \textbf{from} \  \, \textbf{sklearn.preprocessing} \  \, \textbf{import} \  \, \textbf{StandardScaler}
              from sklearn.decomposition import PCA
              from bioinfokit.visuz import cluster
In [464... def get_info(df):
                   columns = ['count', 'nunique', 'mean', 'range', 'std', 'varience', 'min', '25%', '50%', '75%', 'max', 'skew', 'kurt', 'sem', 'sum']
info = df.describe().T
                   info['nunique'] = df.nunique()
info['range'] = df.max(0) - df.min(0)
                   info['varience'] = df.var()
info['skew'] = df.skew()
info['kurt'] = df.kurtosis()
                   info['sem'] = df.sem()
info['sum'] = df.sum()
                   mode = df.mode(axis=0).T
                   mode_names = [f'mode{i + 1}' for i in range(len(mode.T))]
mode.columns = [f'mode{i + 1}' for i in range(len(mode.T))]
                   columns = columns + mode_names[:3]
                   info = pd.concat([info, mode], axis=1)
                   return info[columns]
```

### Считывание данных

In [466... df\_train

```
Out[466...
                         var2
                                 var3
                                        var4
                                                var5
                                                        var6
                                                               var7
                                                                      var8 cls
          index
              0 13.829 13.054
                                 2.072
                                       9.316 -75.047
                                                      0.728 -5.127
                                                                     0.520
                                                                            0
              1 13.595 14.198
                                 1.949
                                       4.541
                                               23.833
                                                      -0.557
                                                              8.205
                                                                      2.712 0
              2 15.199
                        12.208
                                 2.295
                                        6.440
                                                -7.980
                                                       3.087
                                                              4.551
                                                                      1.538
              3 3.449
                        2.002
                                 2.870
                                       7.656 -36.830
                                                      0.339
                                                             -2.888
                                                                      1.273
              4 9.297
                        1.674
                                 7.481
                                       6.199
                                                -2.556
                                                      4.813
                                                              4.066
                                                                     0.943
                                                                            0
              5 13.285
                        17.957
                                 1.687
                                        4.993
                                                5.851
                                                       -4.215
                                                              5.515
                                                                      1.177
                   6.74
                        -4.922
                                 -0.852
                                       2.361
                                                1.984
                                                       5.337
                                                              1.861
                                                                      0.683
                                       9.282 -72.814
             7 7.929
                        7.038
                                 2.152
                                                      0.480
                                                             -6.536
                                                                      1.354
                 4.929
                        -0.397 -14.155
                                       4.212
                                               -1.863
                                                      1.782
                                                              -0.630
                                                                      1.036
                 7.679
                        3.864
                                 3.188
                                        1.683
                                                4.001
                                                       1.989
                                                              3.312
                                                                    -0.156
             10 -3.056
                        11.077
                                 9.879
                                       10.818
                                                -8.632
                                                       6.164
                                                              3.904
                                                                      9.663
             11 10.219 37.730
                                19.992 14.205 -27.490 15.293
                                                              9.600 12.009
             12 1.624 26.560
                                14.205 13.141 -25.556 10.936
                                                              5.693 12.907
                 4.915 33.325
                                16.151
                                       10.585 -29.385
                                                      11.883
                                                              6.524 11.986
                 5.884 38.263
                                15.818
                                        6.457
                                              -52.694
                                                      10.727
                                                              3.340 11.680
             15 -5.536 19.209
                                 3.969
                                       7.454 -19.132
                                                      7.280
                                                              1.929 10.077
             16 -1.544 36.043
                                 9.125 16.400
                                               66.582
                                                      10.520 18.435 11.779
             17 -5.346 22.670
                                 4.675 12.285
                                              -60.253
                                                       8.561
             18 -0.776 29.698
                                10.563 11.567 -89.128
                                                       9.874 -3.765
                                                                    10.781
                                 9.597 7.489 -32.518 9.479 2.632 9.366
             19 -1.843 26.677
         df_test = df.iloc[22:, :-1]
In [467...
          df test['index'] = range(10)
          df test = df test.set index('index')
          df test
Out[467..
                     var1
                                var2
                                          var3
                                                    var4
                                                               var5
                                                                         var6
                                                                                  var7
                                                                                            var8
          index
                 7.067112 14.126164 1.398492 12.248382
                                                          15.720863 -3.387396 6.533666
                 5.404137 21.548591 22.137885
                                                8.843795
                                                          -5.157064 16.663980 9.734781 10.677927
              2 1.821365 27.883897 14.096621
                                               11.050607
                                                         -24.370467 10.914315 5.736915 11.610423
                           3.676102
                                      2.256440
                                                2.327041
                                                          -1.380254
                                                                     0.237134 1.676466
                 3.838606 33.584304 14.948935
                                                8.628067
                                                         -33.720832 11.061429 5.259817 11.713002
                                                4 956740
                                                          -4.611220 1.670255 2.196810
                   6.16695
                           2.178221
                                     4.204207
                                                                                        1.973321
              6 2.394137 27.222858
                                     15.018086
                                               11.618131
                                                         -21.099159 11.423781
                                                                              6.463490
                                                                                        10.750459
                           2.970610
                                      4.483372
                                                           2.432537
                                                2.367415
                                                                    3.786637 3.769759
              8 4.976684 26.629139 18.619270
                                                8.900759
                                                          -9.059375 14.223080 8.929193
                                                                                       11.923076
              9 10.732772 5.193872 3.283666 5.332875 -2.416008 4.036576 3.898864
                                                                                        0.856805
```

# Дискриминантный анализ

```
In [468...

df_train1 = df_train.loc[df_train['cls'] == 0][column_names]

df_train2 = df_train.loc[df_train['cls'] == 1][column_names]

n1, n2 = len(df_train1), len(df_train2)

mean1, mean2 = df_train1.mean(), df_train2.mean()

cov1, cov2 = df_train1.cov(), df_train2.cov()

unestablished_estimates = np.linalg.inv((n1*cov1 + n2*cov2) / (n1 + n2 - 2))

unestablished_estimates

coeffs = unestablished_estimates @ (mean1 - mean2)

mean = (np.mean(df_train1.values @ coeffs) + np.mean(df_train2.values @ coeffs)) / 2
```

## Провести оценку качества построенного правила.

## Провести классификацию 10 новых объектов.

# Кластерный анализ (р = 8)

```
In [472...
for n_clust in range(2, 10):
    data = whiten(df_train[column_names].values.astype(float))
    centroids, mean_value = kmeans(data, n_clust)
```

```
clusters, distances = vq(data, centroids)
             print(f'{n_clust = }, {silhouette_score(data, clusters) = }')
        n_clust = 2, silhouette_score(data, clusters) = 0.41690851141777685
        n_clust = 3, silhouette_score(data, clusters) = 0.34993259277881567
        n_clust = 4, silhouette_score(data, clusters) = 0.3151807648849406
        n_clust = 5, silhouette_score(data, clusters) = 0.3267105257729622
        n_clust = 6, silhouette_score(data, clusters) = 0.3110498224700978
        n_clust = 7, silhouette_score(data, clusters) = 0.3187604541806587
        n_clust = 8, silhouette_score(data, clusters) = 0.26079103202342324
        n_clust = 9, silhouette_score(data, clusters) = 0.29252784100360046
In [473... data = whiten(df_train[column_names].values.astype(float))
         centroids, mean_value = kmeans(data, 2)
         100 - (vq(data, centroids)[0::-1] == df_train['cls']).mean() * 100
Out[473...
         100.0
In [474... data = whiten(df_test[column_names].values.astype(float))
          centroids, mean_value = kmeans(data, 2)
         (vq(data, centroids)[0::-1] == y_test).mean() * 100
Out[474... 100.0
In [475... Z = linkage(df_train[column_names], method='ward')
         fig = plt.figure(figsize=(10, 5))
         dn = dendrogram(Z)
         175
         150
         125
         100
          75
         50
         25
                                                        14 17 18 0
                    1
                         2
                               5
                                         6
                                              4
                                                   9
                                                                            7 11 19 12 13
                                                                                                     3 10 15
              16
In [476...
         clusters = fcluster(Z, 120, criterion="distance") - 1
         (clusters == df_train['cls']).mean() * 100
Out[476...
         80.0
In [477... Z = linkage(df_test[column_names], method='ward')
         fig = plt.figure(figsize=(10, 5))
         dn = dendrogram(Z)
         80
         70
         60
         50
         40
         30
         20
         10
          0
                                     5
                                                          9
In [478... clusters = fcluster(Z, 60, criterion="distance") - 1
         (clusters == y_test).mean() * 100
Out[478... 100.0
In [479... Z = linkage(df_train[column_names], method='complete', metric='chebyshev')
          fig = plt.figure(figsize=(10, 5))
         dn = dendrogram(Z)
         160 -
         140
         120
         100
         80
          60
          40
          20
                              3 11 13 12 19 14 17 10 15 6
              18 0 7
                                                                                  4
                                                                                       9
                                                                                                 2
                                                                                                      5
                                                                                                            1 16
```

```
In [480... clusters = fcluster(Z, 120, criterion="distance") - 1
100 - (clusters == df_train['cls']).mean() * 100
```

Out[480... **70.0** 

In [483... g = sns.pairplot(df\_train[column\_names][clusters == 0].astype(float), kind="reg")

# Определить характеристики случайных величин, представляющих полученные классы. Построить регрессионную модель для каждого кластера.

|                              | count                                | nunique                                 | mean                                     | range                                                             | std                                                | varience                                                     | min                                             | 25%                                                  | 50%                                             | 5 75                                                 | % m                                                     | ax                                                        | skew                                                    | kurt                                                        | sem                                                              | n s                                | sum m                                           | ode1                                     | mode2                                              | mode3                           |
|------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------------------|---------------------------------|
| var2                         | 10.0                                 | 10.0                                    | 23.7017                                  | 36.261                                                            | 12.549477                                          | 157.489362                                                   | 2.002                                           | 15.45800                                             | 26.6185                                         | 32.418                                               | 25 38.2                                                 | 263 -0.63                                                 | 5882                                                    | -0.772091                                                   | 3.968493                                                         | 3 237.                             | .017                                            | 2.002                                    | 7.038                                              | 13.054                          |
| var3                         | 10.0                                 | 10.0                                    | 9.8095                                   | 17.92                                                             | 6.607734                                           | 43.662145                                                    | 2.072                                           | 3.32125                                              | 10.0800                                         | 15.414                                               | 75 19.9                                                 | 92 0.11                                                   | 1321                                                    | -1.582339                                                   | 2.089549                                                         | 98.                                | .095                                            | 2.072                                    | 2.152                                              | 2.87                            |
| var4                         | 10.0                                 | 10.0                                    | 10.1983                                  | 7.748                                                             | 2.592924                                           | 6.723256                                                     | 6.457                                           | 8.06250                                              | 9.9505                                          | 12.105                                               | 50 14.2                                                 | 205 0.0                                                   | 9058                                                    | -1.210059                                                   | 0.819955                                                         | 5 101.                             | .983                                            | 6.457                                    | 7.489                                              | 7.656                           |
| var5                         | 10.0                                 | 10.0                                    | -50.1715                                 | 63.572                                                            | 23.092027                                          | 533.241711                                                   | -89.128                                         | -69.67375                                            | -44.7620                                        | -30.168                                              | 25 -25.5                                                | 556 -0.49                                                 | 3144                                                    | -1.340762                                                   | 7.30234                                                          | 4 -501.                            | .715 -8                                         | 9.128                                    | -75.047                                            | -72.814                         |
| var6                         | 10.0                                 | 10.0                                    | 7.8300                                   | 14.954                                                            | 5.355895                                           | 28.685612                                                    | 0.339                                           | 2.68625                                              | 9.6765                                          | 10.883                                               | 75 15.2                                                 | 93 -0.56                                                  | 55641                                                   | -1.110841                                                   | 1.693683                                                         | 3                                  | 78.3                                            | 0.339                                    | 0.48                                               | 0.728                           |
| var7                         | 10.0                                 | 10.0                                    | 0.7197                                   | 16.136                                                            | 5.545143                                           | 30.748615                                                    | -6.536                                          | -3.54575                                             | 0.1780                                          | 5.104                                                | 75 9.6                                                  | 0.24                                                      | 2707                                                    | -1.425936                                                   | 1.753528                                                         | 3 7.                               | .197 -                                          | 6.536                                    | -5.127                                             | -3.765                          |
| var8                         | 10.0                                 | 10.0                                    | 8.3299                                   | 12.387                                                            | 5.111882                                           | 26.131342                                                    | 0.520                                           | 3.35700                                              | 11.1020                                         | 11.909                                               | 50 12.9                                                 | 07 -0.92                                                  | 5029                                                    | -1.263231                                                   | 1.616519                                                         | 83.                                | .299                                            | 0.52                                     | 1.273                                              | 1.354                           |
| var1                         | NaN                                  | NaN                                     | NaN                                      | NaN                                                               | NaN                                                | NaN                                                          | NaN                                             | NaN                                                  | NaN                                             | l Na                                                 | ıN N                                                    | aN                                                        | NaN                                                     | NaN                                                         | NaN                                                              | 1 1                                | NaN -                                           | 5.346                                    | -1.843                                             | -0.776                          |
| get_:                        | nfo(df                               |                                         |                                          |                                                                   |                                                    |                                                              |                                                 |                                                      |                                                 |                                                      |                                                         |                                                           |                                                         |                                                             |                                                                  |                                    |                                                 |                                          |                                                    |                                 |
|                              | ` -                                  | nunique                                 | .umn_name<br><b>mean</b>                 |                                                                   | ters == 1]                                         | varience                                                     | min                                             | 25%                                                  | 50%                                             | 75%                                                  | max                                                     | skew                                                      | ,                                                       | kurt                                                        | sem                                                              | sum                                | mode1                                           | mode                                     | 2 mod                                              | le3                             |
| var2                         | ` -                                  | nunique                                 | mean                                     | range                                                             |                                                    | varience                                                     | <b>min</b><br>-4.922                            | <b>25%</b> 2.22150                                   |                                                 |                                                      |                                                         | <b>skew</b> 0.78915                                       |                                                         |                                                             | <b>sem</b><br>765114 11                                          |                                    | <b>mode1</b><br>-4.922                          |                                          |                                                    |                                 |
| var2<br>var3                 | count                                | nunique                                 | mean                                     | <b>range</b> 40.965                                               | std                                                | varience                                                     | -4.922                                          |                                                      | 11.6425                                         |                                                      | 36.043                                                  |                                                           | 0.96                                                    | 51164 3.7                                                   | 765114 11                                                        | 10.911                             |                                                 | -0.39                                    | 7 1.6                                              |                                 |
|                              | <b>count</b> 10.0                    | nunique                                 | mean 11.0911                             | range<br>40.965<br>24.034                                         | <b>std</b> 11.906335                               | <b>varience</b> 141.760805                                   | -4.922                                          | 2.22150                                              | 11.6425                                         | 17.01725                                             | 36.043<br>9.879                                         | 0.78915<br>-1.676318                                      | 0.96<br>3 4.05                                          | 51164 3.7<br>53816 2                                        | 765114 11<br>.14837 2                                            | 10.911                             | -4.922                                          | -0.39<br>-0.85                           | 7 1.6<br>2 1.6                                     | 574<br>587                      |
| var3                         | 10.0<br>10.0                         | 10.0<br>10.0                            | mean 11.0911 2.4566 6.5101               | range<br>40.965<br>24.034<br>14.717                               | std<br>11.906335<br>6.793744<br>4.337650           | varience<br>141.760805<br>46.154958                          | -4.922<br>-14.155<br>1.683                      | 2.22150<br>1.75250<br>4.29425                        | 11.6425<br>2.7415                               | 17.01725                                             | 36.043<br>9.879<br>16.400                               | 0.78915<br>-1.676318                                      | 0.96<br>3 4.05<br>2.31                                  | 51164 3.7<br>53816 2                                        | 765114 11<br>.14837 2                                            | 24.566<br>55.101                   | -4.922<br>-14.155                               | -0.39<br>-0.85<br>2.36                   | 7 1.6<br>2 1.6<br>1 4.2                            | 574<br>587                      |
| var3<br>var4                 | 10.0<br>10.0<br>10.0                 | 10.0<br>10.0<br>10.0                    | mean 11.0911 2.4566 6.5101               | range<br>40.965<br>24.034<br>14.717<br>85.714                     | std<br>11.906335<br>6.793744<br>4.337650           | varience<br>141.760805<br>46.154958<br>18.815212             | -4.922<br>-14.155<br>1.683<br>-19.132           | 2.22150<br>1.75250<br>4.29425                        | 11.6425<br>2.7415<br>5.5960                     | 17.01725<br>6.60300<br>7.20050                       | 36.043<br>9.879<br>16.400<br>66.582                     | 0.78915<br>-1.676318<br>1.431067                          | 6 0.96<br>8 4.05<br>7 2.31<br>7 4.80                    | 51164 3.7<br>53816 2<br>18794 1.3                           | 765114 11<br>.14837 2                                            | 24.566<br>55.101                   | -4.922<br>-14.155<br>1.683                      | -0.39<br>-0.85<br>2.36<br>-8.63          | 7 1.6<br>2 1.6<br>1 4.2<br>2 -7.                   | 574<br>587<br>212               |
| var3<br>var4<br>var5         | 10.0<br>10.0<br>10.0<br>10.0         | nunique<br>10.0<br>10.0<br>10.0<br>10.0 | mean 11.0911 2.4566 6.5101 6.2088        | range 40.965 24.034 14.717 85.714 14.735                          | std 11.906335 6.793744 4.337650 24.000209          | varience 141.760805 46.154958 18.815212 576.010028           | -4.922<br>-14.155<br>1.683<br>-19.132           | 2.22150<br>1.75250<br>4.29425<br>-6.62400            | 11.6425<br>2.7415<br>5.5960<br>0.0605           | 17.01725<br>6.60300<br>7.20050<br>5.38850            | 36.043<br>9.879<br>16.400<br>66.582<br>10.520           | 0.78915<br>-1.676318<br>1.431067<br>2.027887<br>-0.312198 | 6 0.96<br>8 4.05<br>7 2.31<br>7 4.80<br>8 0.3           | 51164 3.7<br>53816 2<br>18794 1.3<br>00254 7.5<br>38688 1.3 | 765114 11<br>.14837 2<br>.371686 6<br>.589532 6<br>.320799       | 24.566<br>55.101<br>52.088         | -4.922<br>-14.155<br>1.683<br>-19.132           | -0.39<br>-0.85<br>2.36<br>-8.63<br>-0.55 | 7 1.6<br>2 1.6<br>1 4.2<br>2 -7.<br>7 1.7          | 574<br>587<br>212<br>.98        |
| var3<br>var4<br>var5<br>var6 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0    | mean 11.0911 2.4566 6.5101 6.2088 3.6200 | range<br>40.965<br>24.034<br>14.717<br>85.714<br>14.735<br>19.065 | std 11.906335 6.793744 4.337650 24.000209 4.176733 | varience 141.760805 46.154958 18.815212 576.010028 17.445102 | -4.922<br>-14.155<br>1.683<br>-19.132<br>-4.215 | 2.22150<br>1.75250<br>4.29425<br>-6.62400<br>1.83375 | 11.6425<br>2.7415<br>5.5960<br>0.0605<br>3.9500 | 17.01725<br>6.60300<br>7.20050<br>5.38850<br>5.95725 | 36.043<br>9.879<br>16.400<br>66.582<br>10.520<br>18.435 | 0.78915<br>-1.676318<br>1.431067<br>2.027887<br>-0.312198 | 6 0.96<br>3 4.05<br>7 2.31<br>7 4.80<br>8 0.3<br>6 5.19 | 51164 3.7<br>53816 2<br>18794 1.3<br>00254 7.5<br>38688 1.3 | 765114 11<br>.14837 2<br>871686 6<br>589532 6<br>820799 556672 5 | 24.566<br>55.101<br>52.088<br>36.2 | -4.922<br>-14.155<br>1.683<br>-19.132<br>-4.215 | -0.39<br>-0.85<br>2.36<br>-8.63<br>-0.55 | 7 1.6<br>2 1.6<br>1 4.2<br>2 -7.<br>7 1.7<br>1 1.9 | 574<br>587<br>212<br>.98<br>782 |



In [484... g = sns.pairplot(df\_train[column\_names][clusters == 1].astype(float), kind="reg")



# Снижение размерности. Метод главных компонент (p = 8; p' = 2)

```
In [487...
stand_scaler = StandardScaler()
stand_scaler = stand_scaler.fit(df_train[column_names])
df_train_norm = stand_scaler.transform(df_train[column_names])
```

```
pca = PCA(n_components=2)
          pca.fit(df_train_norm)
          df_train2c = pd.DataFrame(
              np.column_stack((pca.transform(df_train_norm), df_train['cls'])
                            ), columns=['var1', 'var2', 'cls'])
          df_train2c
Out[487...
                  var1
                            var2 cls
           0 -1.788326 -1.658465
           1 -1.762518 1.957775 0
           2 -1.571388 0.892515 0
           3 -1.782689
                        -0.973243
                                   0
           4 -1.346723
                          0.72403
           5 -2.129626 1.313295 0
           6 -2.363677 0.525615
                                   0
                        -1.995316
           7 -1.74808
           8 -3.049508
                        0.090103
                                   0
           9 -2.276803
                        0.835273
                                   0
          10 0.945462
                         0.01448
          11 3.400855 0.666237
          12 2.517775 -0.028337
          13 2.489414 0.172011 1
          14
               1.96083
                        -0.533896
          15 0.718986 -0.434227
          16 3.224902 3.187631
          17 1.470179
                        -1.85029
          18 1.799389 -2.421098
          19 1.291547 -0.48409
In [488... pca.components_.T
Out[488... array([[-0.25417969, 0.20518878],
                   0.42473553, 0.03368089],
                   0.40039205, -0.00075756],
                   0.3862074 , -0.07458999],
                  [-0.04785591, 0.71031922],
                  [ 0.43131966, -0.0326741 ],
                  [ 0.21255472, 0.66506489],
                  [ 0.46045208, -0.05715437]])
In [489... def myplot(score,coeff,labels=None):
              xs = score[:,0]
              ys = score[:,1]
              n = coeff.shape[0]
              scalex = 1.0/(xs.max() - xs.min())
              scaley = 1.0/(ys.max() - ys.min())
plt.scatter(xs * scalex,ys * scaley)
              for i in range(n):
                  plt.arrow(0, 0, coeff[i,0], coeff[i,1], color = 'r', alpha = 0.5)
                  if labels is None:
                      plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center')
                  else:
                      plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'center')
              plt.xlim(-1,1)
              plt.ylim(-1,1)
              plt.xlabel("PC{}".format(1))
              plt.ylabel("PC{}".format(2))
              plt.grid()
In [490... myplot(df_train2c[['var1', 'var2']].values, pca.components_)
             1.00
             0.75
             0.50
                                          Var1
             0.25
                                                          Var2
             0.00
             -0.25
            -0.50
            -0.75
```

```
In [491... get_info(df_train2c[['var1', 'var2']].astype(float))
```

-0.50

-0.25

-0.75

-1.00

-1.00

Out[491... count nunique mean std varience 25% **50**% **75**% mode1 mode2 mode3 range max 20 2.220446e-17 6.450363 2.155190 4.644846 -3.049508 -1.784098 var1 20.0 -0.313868 1.839749 3.400855 0.190587 -1.63687 0.481915 -4.440892e-16 -3.049508 -2.363677 -2.276803 20.0 20 -3.330669e-17 5.608730 1.379706 1.903589 -2.421098 -0.643733 0.052292 0.751841 3.187631 0.222154 0.31128 0.308512 -6.661338e-16 -2.421098 -1.995316 -1.850290

Провести визуальную классификацию данных, спроектированных в пространство первых двух главных компонент.

0.25

0.75

0.50

1.00

0.00

```
In [492... sns.scatterplot(data=df_train2c, x='var1', y='var2', hue='cls')
Out[492... <Axes: xlabel='var1', ylabel='var2'>
```



| out[493 |   | var1      | var2      |
|---------|---|-----------|-----------|
|         | 0 | -1.369068 | 1.295282  |
|         | 1 | 2.626671  | 1.036150  |
|         | 2 | 2.218836  | 0.065109  |
|         | 3 | -2.291303 | 0.421593  |
|         | 4 | 2.141711  | -0.052283 |
|         | 5 | -1.754328 | 0.393858  |
|         | 6 | 2.271445  | 0.228493  |
|         | 7 | -1.949557 | 0.865070  |
|         | 8 | 2.497815  | 0.863293  |
|         | 9 | -1.687453 | 0.785310  |
|         |   |           |           |

```
In [494... sns.scatterplot(data=df_test2c, x='var1', y='var2')
```

Out[494... <Axes: xlabel='var1', ylabel='var2'>



# Какую часть дисперсии объясняют эти компоненты.

```
In [495...
pca = PCA(n_components=8)
pca.fit(df_train_norm)
pca.explained_variance_ratio_[:2].sum()
```

Out[495... **0.7776266385028869** 

## Сколько компонент необходимо для объяснения 90% дисперсии (р'-4).