A Numerical Experiment on Fermat's Theorem (not intended as formal proof or disproof)

V. Chrisitanto (vxianto@yahoo.com)
F. Smarandache (fsmarandache@yahoo.com)

Fermat's "Last Theorem" asserts that if n > 2, the equation $x^n + y^n = z^n$ cannot be solved in integers x, y, z, with xyz <> 0: http://www.fortunecity.com/emachines/e11/86/mathex5.html.

Theorem:

For any triplets of numbers (a,b,c) obeying Pythagorean theorem we have $a^2+b^2=c^2$.

It perhaps could be shown (numerically) that : $a^n+b^n=c^n$,

or:

(a^n+b^n)/c^n=k =1 (Fermat's Surface)

holds true if and only if n=2. (Generalized Fermat's Last Theorem)

First try: 3, 4, 5 $(3^2 + 4^2 = 5^2)$ Second try: 5,12,13 $(5^2+12^2=13^2)$ Third try: 6, 8,10 $(6^2 + 8^2 = 10^2)$ Fourth try: 1, 2, sqrt $(1^2 + 2^2 = 2.236^2)$

	K	K	K	K
Ν	First try	Second try	Third try	Fourth try
	3,4,5	5,12,13	8,15,17	1,2,sqrt(5)
-5				
-4	10.16			
-3	6.58		11.05	12.58
-2	4.34	7.93	5.80	6.25
-1	2.92	3.68	3.26	3.35
0	2.00	2.00	2.00	2.00
1	1.40	1.31	1.35	1.34
2	1.00	1.00	1.00	1.00
3	0.73	0.84	0.79	0.81
4	0.54	0.75	0.66	0.68
5	0.41	0.68	0.56	0.59
6	0.31	0.62	0.48	0.52
7	0.24	0.57	0.42	0.46
8	0.18	0.53	0.37	0.41
9	0.14	0.49	0.33	0.37
10	0.11	0.45	0.29	0.33
11	0.09	0.41	0.25	0.29

Conclusions:

- (i) It is clear from the diagram that for the triplets (3,4,5) and (5,12,13) k=1 only at n=2.
- (ii) For other triplets of numbers it perhaps does not obey the same formula.
- (iii) But generally speaking, from the Chart given below it appears that:
 - => For n < 2 --> k tends > 1;
 - => For n>2 --> k tends < 1.
- (iv) For triplets of numbers (a,b,c), which do not follow the Pythagorean Triangle (> 180 degrees or < 180 degrees), i.e. when the triangle is on curved-surface, then Fermat theorem could be broken.
- (v) We can make an 'associated condition': for the same triplets of (a,b,c) following Pythagorean theorem $a^2+b^2=c^2$, it follows that for n=0 then $(a^n+b^n)/c^n=k$ will yield k=2 (of course).

Numerical Test on Fermat's Theorem

References (for similar simplified proof of Fermat's Theorem):

- [1] http://www.fortunecity.com/emachines/e11/86/mathex5.html
- [2] http://www.economics.ox.ac.uk/Members/giuseppe.mazzarino/Fermat_March_2003.pdf
- [3] http://www.skidmore.edu/academics/theater/productions/arcadia/math.html
- [4] http://www.fermatproof.com/
- [5] http://www.itsoc.org/review/05pl1.pdf
- [6] http://yacas.sourceforge.net/Algochapter3.html
- [7] http://www.blackdouglas.com.au/webpapr/workmath/workmath.htm

(Jan. 18, 2006)