载 (B2) 許 公

昭55-26164

⑤ Int.Cl.³ C 21 D 8/00 識別記号

庁内整理番号

20(20公告 昭和55年(1980) 7月11日

//C 22 C 38/14

CBA

6793-4K 6339-4K

発明の数 7

2

(全30頁)

1

ᡚ大入熱溶接用鋼材の製造法

@特 願 昭48-86230

22出 昭48(1973)7月31日

公 昭50-33920

④昭50(1975)4月2日

79発 明 者 権藤永

木更津市滑見台南1丁目15の3

明 中杉甫 72発 者

木更津市太田 792

砂発 明 松田浩男

木更津市太田 790

者 川田保幸 (2)発 岄

君津市八重原 172

70発 明 千々岩力雄

君津市大和田 324

⑫発 明 松田昭一

横浜市港北区下田町 391-21

の出 願 人 新日本製鐵株式会社

3号

何代 理 人 弁理士 大関和夫

切特許請求の範囲

1 $C 0.03 \sim 0.18\%$, S i $0.1 \sim 1.0\%$, Mn 0.5~1.8%, Al total 0.1%以下, Ti 0.004~0.03%, Ntotal 0.001~ 0.009%, 残部 Fe 及び不可避的不純物からな る鋼塊または鋼片を、TiNが0.004%以上固 加熱した後、圧延又は鍛造加工するかあるいは次 いで1150℃以下の温度で再加熱することによ り、前記固溶TiNを微細なTiNとして分散再析 出させることを特徴とする大入熱溶接用鋼材の製 造法。

2 $C 0.03 \sim 0.18\%$, S i $0.1 \sim 1.0\%$, Mn 0.5~1.8%, Al total 0.1%以下,

T i 0.004~0.03%, N total 0.001~ 0.009%、残部Fe及び不可避的不純物からな る鋼塊または鋼片を、TiNが0.004%以上固 溶するように1250~1400℃の温度範囲に 5 加熱した後、圧延又は鍛造加工を行ない、次いで 水又は水と気体の混合物により800℃以下まで 強制冷却した後、1150℃以下の温度で再加熱 することにより固溶TiNを微細なTiNとして 分散再析出させることを特徴とする大入熱溶接用 10 鋼材の製造法。

3 C 0.0 3 ~ 0.1 8 %, S i 0.1 ~ 1.0 %, M n 0.5~1.8%, A ℓ totaℓ 0.1%以下、 Ti 0.004~0.03%, Ntotal 0.001~ 0.009%、残部Fe及び不可避的不純物から成 15 る鋼塊又は鋼片を、TiNが0.004%以上固溶 するように1250~1400℃の温度範囲に加 熟した後、1000℃以上の温度範囲で圧延又は 鍛造加工を終了し、しかる後1150℃以下の温 度で再加熱することにより前記固溶TiNを豃細 東京都千代田区大手町 2 丁目 6 番 20 な T i N として分散再析出させることを特徴とす る大入熱溶接用鋼材の製造法。

4 $C 0.0 3 \sim 0.1 8\%$, S i $0.1 \sim 1.0\%$, Mn 0.5~1.8%, Al total 0.1%以下, Ti 0.004~0.03%, Ntotal 0.001~ 25 0.009%, REM 0.001~0,03%、残部Fe および不可避的不純物からなり、REM/S 1.0 ~6.0 を満足する鋼塊または鋼片を、TiNが 0.004%以上固溶するように1250~1400 ℃の温度範囲に加熱した後、圧延又は鍛造加工す 溶するように1250~1400℃の温度範囲に 30 るかあるいは次いで1150℃以下の温度で再加 熱することにより、前記固溶TiNを微細な TiNとして分散再析出させることを特徴とする 大入熱溶接用鋼材の製造法。

> 5 $C 0.0 3 \sim 0.1 8 \%$, S i $0.1 \sim 1.0 \%$, 35 Mn 0.5~1.8%, Al total 0.1%以下、

Ti 0.004~0.03%, Ntotal 0.001~ 0.009%に、Nb 0.05%以下、V 0.08%以

下、B0.003%以下の1種または2種以上を含 有させ、残部Feおよび不可避的不純物からなる 鋼塊または鋼片を、TiNが0.004%以上固溶 するように1250~1400℃の温度範囲に加 熱した後、圧延又は鍛造加工するかあるいは次い 5 接に際して で1150℃以下の温度で再加熱することにより、 前記固溶TiNを徴細なTiNとして分散再析出 させることを特徴とする大入熱溶接用鋼材の製造法。 6 $C 0.03 \sim 0.18\%$, Si $0.1 \sim 1.0\%$, Mn 0.5~1.8%, A & total 0.1%以下、 T i 0.0 0 4 \sim 0.0 3 %, N to ta ℓ 0.0 0 1 \sim 0.009%にCr0.35%以下、Mo0.35%以 下、Cu0.6%以下、Ni1.5%以下、W1.0% 以下の1種または2種以上を含有させ、残部Fe および不可避的不純物からなり、(С u + N i +W) / 5 + C r + M o ≦ 0.7 5 %を満足する鰯 塊または鋼片を、TiNが0.004%以上固溶す るように1250~1400℃の温度範囲に加熱 した後、圧延又は鍛造加工するかあるいは次いで 前記固溶TiNを微細なTiNとして分散再析出 させることを特徴とする大入熱溶接用鋼材の製造 法。

7 特許請求の範囲1項から6項の製造法におい Hfと置換するか、もしくはTi,Zr,Hfの 2 種 ま た は 3 種を総量として 0.0 0 4 ~ 0.0 3 %含有させるかして、加熱過程における窒化物の 固溶量を2 r N または H f N として 0.0 0 4 %以 は3種の総量として0.004%以上とし、微細な TiN,ZrN,HfNを分散再析出させること を特徴とする大入熱溶接用鋼材の製造法。

発明の詳細な説明

溶接時に起る溶接割れ、溶接部の材質劣化等につ いても、個別の要求から両者を兼ね備えた総合的 な要求へと変つて来た。すなわち溶接割れは、一 般に小入熱溶接部に生ずる現象であり、一方材質 劣化は溶接入熱が大となるに従つて著しくなる傾 40 分けたりするという不都合を無くする目的で開発 向のものである。との様に密接入熱に関して全く 逆の場合に起る二つの現象についての要求特性を 同時に満足させることが最近の溶接用鋼材に対す る要求の特徴である。

本発明はこの様に相反する要求に対処する目的 で開発された高靱性溶接用鋼材の製造方法に関す

溶接用鋼材の溶接部に対する要求としては、溶

- (イ) 硬化性の小さいこと
- (ロ) 耐割れ性の優れていること
- (1) 靱性劣化の少いこと

が、一般に要求される。(イ)、(ロ)については溶接入 10 熱の小さい溶接の場合、例えば仮付け溶接、上向 き及び横向き等の溶接時に問題となる。硬化性及 び耐割れ性は使用する溶接材料及び構造物が一定 であれば、一義的に鋼材の化学成分及び溶接入熱 で決つてしまうため、一般にはパラメーターとし 15 てCeq 又はPc値等によつて規定される。

本発明鋼はC含有量及びCeq を低く抑えると とにより、イイ)、(中)の特性が優れていることは勿論 であるが、本発明の最も特徴とする所は、次に述 べる溶接熱影響部(以後HAZと称す)の靱性劣 1150℃以下の温度で再加熱することにより、 20 化が少いことにある。すなわち通常使用する溶接 入熱350KJ/cm程度迄はHAZの靱性劣化は 実用上問題ないことを特徴としたものである。

従来の知見によれば、HAZの靱性は組織依存 性が強く、組織が低炭素下部ベイナイトになつた て、Ti0.004~0.03%を同量のZrまたは 25 場合 に最 も良好な靱性が得られることが知られ ている。溶接に際してHAZの組織を下部ベイナ イトとするためには、C含有量をできるだけ低く 抑えることは勿論、Ni,Mo等の合金元素をか なり大量に添加して強度を確保すると共に、HAZ 上、もしくはTiN,ZIN,HfNの2 植また 30 の組織を下部ベイナイトとなし得る溶接入熱範囲 を実用上 意 味 あ る程度まで拡げることが必要で ある。この事実は、経済上及び母材強度上(合金 元素の大量添加により母材強度レベルが上つてく る)の両方の観点から、HAZ組織を下部ベイナ 最近の溶接用鋼材に対する要求は一段と厳しく、35 イトとする溶接用鋼の適用範囲を著しく制約する ものである。

> 本発明は従来鋼の欠点、すなわちHAZの硬化 性、耐割れ性及び靱性劣化のために溶接入熱を制 限したり、構造物の使用個所に応じて鋼材を使い されたもので、HAZの靱性劣化が実用上問題な く、溶接に際して上配溶接上の制限を不要とする ものである。

一般の溶接用鋼材のHAZの組織は下部ベイナ

イト組織ではなく、多くはマルテンサイト、下部 ベイナイト、上部ベイナイト及びフエライト・パ ーライトの混合組織であり、オーステナイト粒度 依存性が著しく大きい。とのため、これら混合組 織からなるHAZの靱性劣化防止に最も重要なこ 5 とした。 とはオーステナイト粒を出来るだけ小さくするこ とである。第1図に示す如く一般の構造用鋼の大 入熱溶接HAZに生成する初析フェライト+上部 ペイナイト組織の場合、溶接入熱350KJ/cm 撃値 4.2 ㎏・π以上を得るためにはHAZのオー ステナイト 粒度はASTM M0以上とする必要があ

以上の如く、HAZ靱性の向上策として、HAZ は極めて有効であるが、この事実を工業的に意味 あるものにするためには、HAZのオーステナイ ト粒を小さく調整し得る成分の選択と製造工程の 限定が必要である。

整法について鋭意研究の結果、溶接前の鋼材に微 細なTiNを一定量以上分散させておくことが有 効であるとの事実に基づき、この様な微細TiN を一定最以上分散させる方法について研究した結 (すなわち溶鋼の凝固冷却過程を急冷して微細な TiNを析出させ、その後の加熱はできるだけ TiNの租大化の起らない温度で行ない、凝固冷 却時に生成した微細TiNを最終鋼成品まで保持 最も望ましい)以外にも以下に述べるような方法 で微細なTiNを溶接前の鋼材に一定量以上分散 させることを可能とし、大入熱溶接時のHAZの オーステナイト粒を小さく調整して、HAZの0 少くとも 4.2 kg・m以上を確保し得る鋼材を開発 した。

すなわち、通常の製鋼法で製造されたTi含有 鋼は、鋼塊の凝固過程でTiNが析出し、凝固及・ 殆んどTiNの大きさ及び量の調整は不可能であ つた。このため、Ti含有鋼において微細 な TiNの分散状態を得る方法としては凝固冷却時 の析出TiNを微細にする方法以外には、本発明

以前に開発されていない。

本発明者等は、この調整不可能とされていた Ti含有鋼中の粗大TiNを、次の加熱以降の工 程で微細TiNとして大きさ及び量の調整を可能

すなわち本発明はTi及びNの量を制限するこ とによつて、凝固冷却中に析出したTiNを通常 の鉄鋼製造過程で採用し得る加熱温度に加熱する ことにより、0.004%以上一旦固溶させた後、 において0℃における2mmVノツチシヤルビー衡 10 固溶させたTiΝを0.0 2 μ以下の微細なTiN として再析出させることを可能にしたものである。 以下本発明方法について具体的に詳細に説明する。 本発明の製造工程上の特徴は、通常の製鋼法で 溶製した Ti含有鋼を鋼塊又は鋼片より圧延又は のオーステナイト心をできるだけ小さくすること 15 鍛造加工により鋼成品とするに当り、凝固冷却中 に析出したTiNを 0.0 0 4 %以上溶解する加熱 過程と、その溶解したTiNを再析出させる圧延 又は鍛造加工過程、或いは圧延又は鍛造加工後更 に再加熱する過程の二つの製造過程よりなり、そ 本発明者等はHAZのオーステナイト粒度の調 20 の場合に再析出した徴細TiNによりHAZのオ ーステナイト粒の成長を抑制し靱性劣化を抑える 所にある。この場合Ti含有量が多過ぎると、凝 固過程で析出した粗大 TiNを通常の加熱過程で はTiNとして、0.004%以上固溶させること 果、特願昭45-25042号に示すような方法 25 は不可能である。とのため通常の製鋼法で製造さ れた鋼の場合、Ti含有量は 0.0 0 4 ~ 0.0 3 % に制限する必要がある。との場合でも、TiNの 固溶は加熱温度と時間で決るが、加熱温度があま りに髙すぎると所謂パーニング現象を起すため、 する方法で、工業的には連続鋳造法によることが 30 鋼であれば自ら決る最高温度がある。しかし、場 合によつては一部バーニングを起しても差し支え ないこともあり、現在の鉄鋼製造技術では前記の 製鋼法の場合、Ti含有量の最大は 0.0 3%に抑 える必要がある。又、微細TiNの最小必要量 ℃における2㎜Vノツチシヤルピー衝撃値として 35 0.004%に見合うTi畳は酸化物等を形成する Ti量を若干見込んで工業的には 0.0 0 4 %とな り、このためTi含有量は 0.0 0 4 ~ 0.0 3 %と` する必要がある。

加熱過程で固溶したTiNは、圧延又は鍛造加 び冷却中に粗大化するため、それ以降の工程では 40 工とそれに続く冷却過程で析出するが、圧延、鍛 造加工条件又は冷却条件によつては、固溶状態で **幾存するものが増加する。これを次の再加熱過程** で十分に像細再析出させることは、特にTiN量 の少い場合にTiNの細粒化効果を安定させるた

めに効果的である。

溶鋼の凝固冷却中に析出した T i Nの溶解加熱 温度、再加熱温度及びN含有量、TiN含有量の 制限について以下に述べる。

本発明に従つて得られた鋼材は前述の如く HAZの硬化性は低く耐割れ性が優れている上に、 350KJ/cm程度迄の大入熱溶接を行なつても HAZの靱性劣化が少なくなければならない。こ のため本発明方法は溶鋼の凝固冷却中に析出した せ微細なTiNに変えることによりHAZのオー ステナイト粒を小さくし、HAZの靱性を確保す るととを特徴とする。この様な加熱過程でTiN を工業的に経済的かつ安定に固溶させるためには、 現在の技術ではTi含有量のAならず、N含有量を 15接部の硬化性、割れ性が著しく損なわれるのみな も併せ制限することが効果的である。 N total の下限を 0.001 %とした理由は、加熱過程で固溶 させる必要のあるTi N量の下限が 0.0 0 4%で あるため、それに見合う値としたものである。更 に加熱過程で固溶するTiN量を十分確保するた 20 元素であるが 0.1 %未満になると母材の切欠靱性 めにはNtotalの上限がTiの上限の当量を越 えることは不利となるためTi0.03%に見合う 値としてNtotalの上限を0.009%とした。

一方、TiN量が0.0 4%超となると、HAZ の靱性よりむしろ母材の靱性が損なわれるため、 25 TiNの上限を0.04%とする必要があるが、 Ti,Ntotalが前記の範囲に入つていれば、 TiN含有量が 0.0 4%を超えることはない。

Ti、N含有量が前記の範囲であればTiNを 0.004%以上固溶させるための加熱温度の下限 30 部ベイナイトとなり靱性劣化が著しくなるため、 は、実験の結果求められた第4図に示すように 1250℃となる。しかして上限は前述の如く鋼 表面の酸化鉄がバーニングを一部起すが実用上可 能な温度として、1400℃に限定した。

めの再加熱温度の上限について述べると、再加熱 温度が1150℃以上であると第5図に示すよう に既に析出していたTiNも再加熱に伴つて析出 する T i N も 共 に 粗 大 化 し て 、 0.0 2 μ 以 下 の TiN量が減少し、本発明の特徴である微細 TiNによるHAZのオーステナイト粒度のコン トロールが出来なくなる。以上の理由により再加 熱温度の上限を1150℃とした。

前記特徴を持つ本発明中、特許請求範囲の第1

項に示した第1の発明の出発鋼成分範囲は C $0.0~3\sim0.1~8\,\%$, S i $0.1\sim1.0\,\%$, M n 0.5~1.8%, Altotal 0.1%以下, Ti 0.004 ~0.3%, N total 0.001~0.009%、残 5 部鉄及び不可避的不純物から成る溶接に適した鋼 である。

出発鋼成分範囲をこの様に限定した理由を以下 に説明する。

Cは0.03%未満では一般に溶接用として使用 Ti Nを一旦加熱により固溶させた後に再析出さ 10 される鋼材(母材)の強度を得られないこと、及 び現在の様に大入熱溶接が一般化されて来ると、 HAZの軟化が大きく溶接部と母材との強度差が 大きくなり実用に供し得ないため、C含有量の下 限は 0.0 3 % とした。 C が 0.1 8 %超になると溶 らず、硬化によつてHAZの靱性が劣化し、HAZ 細粒化の効果が著しく阻害されるためにC含有量 の上限を 0.18% とした。

> Siは脱酸上、溶接用鋼に必然的に含有される が劣化するため下限を 0.1 %とした。一方、Si が多過ぎるとHAZを脆化させるばかりでなく、 鋼材自体の清浄度をも阻害するため、上限を1.0 %とした。

> Mnは 0.5 %未満ではHAZの軟化が大きいこ と及び母材の強度靱性が低下し、通常の溶接用鋼 材に不適のため下限を0.50%とした。一方、 Mnが多過ぎるとHAZの靱性が急激に劣化する こと及び圧延ままの鋼材の場合、母材の組織が上 上限を1.8%とした。

A ℓ は脱酸上との種キルド鋼には必然的に含有 される元衆であるが、Altotalが0.1%超に なるとHAZの靱性のみならず溶接金属の靱性を 固溶状態で残存するTi,Nを再析出させるた 35 も著しく劣化させる。このためAℓtotalの上 限を0.1%とした。

> Ti及びN totalの含有量については、先に 述べた理由によりTiについて 0.0 0 4 %~ 0.03%, N total について 0.001~0.009 40 %に制限する。 Ti, Nがとの範囲内であれば TiN含有量が 0.0 4%を超えること はない。 本発明鋼は不純物としてP,Sを含有するが、P については通常 0.0 4%以下であり、本発明では 故意に添加しない。

Sについては通常 0.0 3 5%以下であり、現在 の技術水準では0.0005%程度までは低下させ ることが出来、その場合HAZ、母材靱性とも改 良されることは明らかである。本発明では、Sは 故意に添加しない。

特許請求の範囲第2項に示した第2の発明にお いては、同じく第1項に示した第1発明における 出発鋼成分及び製造工程に、更に凝固冷却中に析 出した粗大TiNを加熱によつて溶解させ圧延又 限したものである。すなわち水又は水と気体の混 合物によつて強制的に冷却し、その冷却終了温度 を800℃以下とすることによつて次の1150 ℃以下の再加熱過程後の微細なT i Nの量を増加 従つて処理した場合、HAZの靱性は一層安定化 する。一方、溶接用鋼材としての他の諸特性は全 く阻害されない。

HAZの靱性が安定化する理由について、少し ~1400℃の加熱で一旦固溶したTiNは圧延 又は鍛造加工過程及びその後の冷却中に再析出す る。との場合、析出物の量及び大きさは第6図に 示すように冷却速度によつて決定される。すなわ 却速度が比較的遅い場合は冷却過程で析出するの みならず租大化をも起す。

第2の発明はこの様な欠点を補う方法として開 ·発されたもので、TiNを含有する前記成分の鋼 鍛造加工後の冷却過程を水又は水と気体の混合物 で強制的に冷却し、冷却中に析出するTiNの大 きさをできるだけ小さくすると共に、析出量も抑 え、次の再加熱過程で 0.0 2 µ以下の微細 T i N 一層安定化させるものである。又、この場合の冷 却終了温度は800℃以下が必要であり、その理 由は連続冷却の場合TiNの析出、生長に大きく 寄与するのは800℃以上の温度領域であること なく、析出物も小さいため次の1150℃以下の再 加熱過程で粗大化せず、0.0 2 µ以下のTiN量 には影響を与えない。なお、鋼塊を鋼片に加工す るに当つて、加工後の冷却を第2の発明に従つて

強制冷却しTiNの粗大化を抑え、更に鋼片を最 終鋼成品に加工する際の加熱温度を1250℃~ 1400℃とすることは、第2の加熱における Ti Nの溶解が(第1の加熱)+(強制冷却)に 5 より促進されるため、最終鋼成品中の徴細TiN の量を増加させ、HAZ靱性の安定化に有効であ

特許請求の範囲第3項に記載した第3の発明に おいては、第1発明における出発鋼成分及び製造 は鍛造加工を加えた後の冷却方法について特に制 10 工程に、更に凝固冷却中に析出した粗大TiNを 加熱によつて溶解させ、圧延又は鍛造加工を加え る際の加工条件について特に制限したものである。 すなわち、加工終了温度を1000℃以上とする ことによつて、次の1150℃以下の再加熱過程 させ得る。従つて本発明の出発鋼を第2の発明に15後の微細なTiNの量を増加させ得るもので、第 3の発明に従つて得られた鋼材のHAZの靱性は 一層安定化する。

溶解加熱後の製造条件を特に制限して、再加熱 前の粗大TiNの析出をできるだけ抑え、再加熱 く詳細に以下に述べる。先に述べた如く、 1250 *20* 過程で 0.0 2 µ以下の微細TiNをより多く析出 させるという点において、第3の発明は第2項発 明と手段は異なるが治金的に共通である。

第3の発明においては、加工終了温度を1000 ℃以上とすることにより、圧延又は鍛造加工中の ちTiNのように過飽和度の小さい析出物は、冷 25 TiN析出核の発生が少なくなり、その後の冷却 過程におけるTiNの析出が減少すると共に粗大 TiNの析出も抑制される。従つて、第2の発明 と治金的に同様の効果をもたらし、最終鋼成品の HAZ靱性は一層安定化する。なお、第3の発明 ・を1250~1400℃の髙温に加熱し圧延又は 30 に更に第2の発明を適用すれば、より一層HAZ の靱性が、安定化することは勿論である。

特許請求の範囲第4項に記載した第4の発明に おいては、第1の発明の出発鋼成分及び製造工程 に更にREM(主としてCe,La,Pr)を をより多く析出させることによつてHAZ 靱性を $35\,0.001\sim0.03\%$ 添加し、かつREM/Sの比 を 1.0~6.0 に制限したものである。本発明に従 つて処理された鋼のHAZ靱性は第4表に示すよ うに一層安定化する。REMの添加量については、 0.001%未満であると実用上HAZ及び母材の による。800℃より低い温度領域では析出も少 40 靱性に効果がなく、又 0.03%超になると R E M ーサルフアイド(Sulfide)が大型化するばか りでなくREM-オキシサルフアイド

(Oxysulfide)が大量に生成して大型介在 物となり、母材の靭性のみならず滑浄度をも著し

く損なうことになる。このためREMの添加量を 0.001~0.03%とした。一方、REMはS量 との相関においてHAZ及び母材の靱性向上、安 定化に効果があり、この最適範囲はREM/S比 で 1.0 ~ 6.0 である。なお、第 4 の発明について、5 + N i + W) / 5 + C r + M o ≦ 0.7 5 %となる 更に第2及び第3の発明の一方又は両方を適用す ればHAZの靱性が一層安定化することは勿論で ある。

特許請求の範囲の第5項に記載した第5の発明 においては、第1の発明において出発鋼成分およ 10 の拡大を可能とすることにあり、その添加量は自 び製造工程に、更にNb0.05%以下、V0.08 %以下、B0.003%以下の1種又は2種以上を 添加するという要件を付加したものである。これ らの添加元素は、本発明に従つて処理された鋼の 母材強度、靱性向上、製造可能板厚の拡大、並び 15 %とした。 に大入熱溶接部の継手強度確保のために添加され るものであり、いずれも添加量が多きに失すると、 本発明に従つて処理された鋼の様に微細TiNに よる細粒化でHAZの靱性を改良した鋼において 規制している。

Nbについては、0.05%まではHAZの靱性 をあまり劣化させることなく上記の諸特性を向上 するが、0.05%を超えて添加するとHAZの靱 した。

VについてはNbとほぼ同様であるが、上限は 0.08%まで許容される。

Bについては特に本発明に従つて処理された鋼 を焼入れ焼戾しする際に有効な元素であるが、 0.003%を超えて添加すると大入熱溶接時の HAZにBーコンステイテユエント

(Constituent)が生成し、HAZの靱性を 著しく劣化させるためその上限を0.003%とし

一方、これらの添加元素について複合添加の実 験を行なつた所、相互作用によるHAZ靱性の劣 化は見られず、複合添加しても本発明に従つて処 理された鋼の特徴は失われないことが判明した。 第4の発明に従つた方法の1乃至2以上を適用す ればHAZ靱性が一層安定化することは勿論であ る。

特許請求の範囲の第6項に記載された第6の発

明においては、第1の発明における出発網成分お よび製造工程に、更にCr0.35%以下、Mo 0.35%以下、Ni1.5%以下、Cu0.6%以下、 W1.0%以下の1櫃又は2櫃以上を添加し(Cu 様にするという要件を付加したものである。

これらの添加元素の、本発明に従つて処理され る鋼における主たる目的はHAZの靱性を大きく 損なうことなく母材の強度、靱性向上、製造板厚 ら制限されるべき性質のものである。

Crについては、多きに失するとHAZの硬化 性を増大させ、靱性及び耐割れ性の低下を招き好 ましくない。からる点を考慮してその上限は0.35

MoについてもCrとほぼ同様であつて母材の 諸特性改良には有効であるがHAZに対する悪影 響から添加量の上限は0.35%に制約される。

NiについてはHAZの硬化性及び靱性に悪い もHAZの靱性を著しく劣化させるため、上限を 20 影響を与えることなく母材の強度・靱性を向上さ せるが、1.5%を越えるとHAZの硬化性、靱性 に好ましくなるため、上限を1.5%とした。Cu, WについてはNiとほぼ同様の効果と共に耐食性 にも効果があるが、Cuについては0.6%を超え 性が著しく劣化する。このため上限を0.05%と25ると鋼材の圧延又は鍛造加工中にСиークラツク (Crack)が発生し製造が難しくなる。このた め上限を 0.6 %とした。

> 一方Wについては 1.0 %を超えるとHAZの靱 性劣化及び硬化性増大を招くため上限を 1.0%と 30 した。

更にとれらの添加元素は上記の範囲内で全く独 立に添加して良いわけではなく、(Cu+Ni+W) /5+Cr+Mo≦ 0.75%を満足しないと HAZの硬度が著しく高くなり、小入熱溶接時に 35 HAZに割れが発生するため溶接用鋼材として不 適となる。このため(Cu+Ni+W)/5+Cr +Mo≦0.75%とする必要がある。なお、第6 の発明における出発鋼に第2、第3、第4の発明 に従つた処理の1乃至2以上を適用すればHAZ なお、第5の発明に従つた出発鰯に第2、第3、 40 の靱性は一層安定化することは勿論であり、又第 5の発明を適用することも可能である。

> 特許請求の範囲の第7項に記載された第7の発 明においては第1~第6の発明における出発鋼成 分及び処理工程においてTi 0.0 0 4 ~ 0.0 3 %

をTi+Zr+Hf0.004~0.03%におかえ たものである。Zr及びHfはTiの同族元素で ありTiと同様安定な窒化物を形成し、微細分散 によりHAZのオーステナイト粒度粗大化を防止 し、HAZ靱性を向上させる。従つて、Ti, Zr, Hfの1種乃至2種以上を0.004~0.03 %添加しTiN+ZrN+HfNを0.004%以 上固密させた後、再析出させればTiについてと 同等の効果を有する。 Ti, Zr, Hf以外の成 べたと同じ理由で同じ範囲に制限する。なお上述 14

の第1~第7の発明において、Ti,REM, Zr,Hf等を添加するに当り、これらを単体成 いは他の元素との公知の複合剤として、公知の万 法により添加できるととは当然であり、添加時期 5 も公知のごとく製鋼炉内、取鍋内、脱ガス槽内或 いは溶網注入流、鋳型内、連続鋳造鋳片内等任意 に選択できる。また脱酸剤等の公知の各種溶鋼系 加剤を使用し、Ti,REM等が本発明の主旨に 沿う効果を発揮するよう配慮することは勿論であ 分の制約については、第1~第6発明に関して述 10 る。第1~第7の発明の実施例をそれぞれ第1表 ~第7表に示す。

0.0056 製造条件 8 0 0 0 0 0.203 0.432 0.282 0.378 0.378 0.282 0.318 % ⋧ 1 Mo 1 ı 1 1 1 1 1 1 Cr 1 1 1 1 1 1 ſ ı 第1の発明に関する実施例 Ca 1 1 1 ſ 1 1 1 1 ž 1 1 1 1 l 1 1 N 1 1. Í % > i 1 ĺ 1 ł 1 1 1 1 ϕ 8 1 Į 表 0.0102 0.0062 0.0036 0.0102 0.0048 0.0051 0.0036 0.0036 0.00520.0052 N total 仦 紙 0.016 0.025 क्र 0.031 0.018 0.031 0.031 0.031 0.037 0.037 0.012 0.050 0.004 0.025 0.0250.025 0.0 5 0 0.025 ļ ١ T i 0.20 1.75 0.95 1.37 1.37 1.30 Ä 0.23 0.250.48 0.48 0.25 0.25 0.31 0.25 S. 0.12 0.15 0.16 0.04 0.04 0.04 0.13 Ç 羅 10 9 M 4 本発即觀 뀼 数 羅

-26-

7	Ω

			17		_								
	機手 件	vEo(kg-m)	1 0.1	8.6	1 1.8	9.3	2.1	1.8	2.8	3.8	2.7	3.1	
特性 ⁴⁾	大入熱溶接機手 HAZの靱性	密接法及 ぴ 入 熱	SAW(KJ/cm) 220	EG 150	ES 34.5	EG 190	EG 190	S A W 2 2 0	EG 150	S AW 2 2 0	ES 327	EG 150	
格条	手溶接機手11,200	vEo (kg-m)	2 1.4	1 8.2	3 2.5	3 4.5	2 2.3	1 3.2	1 8.7	1 0.2	1 2.0	1 6.3	
	最高値は	(3101) (3101)	2 1 0	385	2 4 0	243	248	320	3 1 5	3 3 0	375	3 5 8	
	vTrs	(၁့)	-20	- 45	9 –	06-	-85	-25	- 4 0	0	+ 5	- 15	
粗	vE-10	(kg/nii) (%) (kg-m)	2 7.6	1 8.9	3 6.2	4 0.3	3 8.7	1 0.9	1 9.3	1 0.6	6. 7	1 9.3	
本本	⊅ #	(%)	4 8	2.4	5 3	2 8	2 8	3 6	2.7	3 2	2.4	2 6	
母	抗張力	(kg/m²)	4 3.1	6 8.3	4 1.8	6 2.4	6 3.1	5 2.1	6 1.0	4 5.7	6 2.0	6 4.8	
	降伏点	(kg/nd)	2 4.8	5 9.0	2 3.6	4 7.3	4 6.3	3 4.0	4 8.7	2 6.0	4 3.7	5 1.2	
	板厚	(3	3.2	2 5	3 2	3.2	3 2	3 2	2 5	3.2	3.2	2 5	
	御を	の処理	A R	QT	Z	Q T	Q T	A R	ΔT	AR	A R	Q T	
华	田本	(38) (38)	1.2	2.1	1.2	1.2	1.2	1.2	2.1	1.2	1.2	2.1	
绝条	E 整 种	(C)	1150	1100	1150	1350	1150	1 1 5 0	1250	1 1 5 0	1 1 0 0	1 1 0 0	
*	40000000000000000000000000000000000000	(2) (2)	1.0	1.0	5 0		1	2 0	1.0	1.0	1.0	1.0	
	分 独 始 西 田 田	1350	1300	1350	_	_	1350	1350	1200	1 3 5 0	1350		
	羅			2	3	4	2	9	7	8	6	10	
N 4				本発	影器			· ±	3 #	¥ 8	<u>K</u>		

1) $C e_q = C + \frac{1}{6}Mn + \frac{1}{5}Cr + \frac{1}{4}Mo + \frac{1}{40}(Ni + Cu + W) + \frac{1}{14}V$

2) $CM = \frac{1}{5} (C_u + N_i + W) + C_r + M_o$

3) 溶接前の鋼材における値

4)SAW: 潜弧溶接

EG :エレクトロガス溶接 ES :エレクトロスラグ溶接

20

第 2 表 第2の発明に関する実施例

	r		r 		,					20		
	≋		1	1	1	1	1	1	1	ı	l	ı
	M o		I	1	I	ı	1	1	ı	ļ	ı	l
	Cr		1	ı	ı	1	1	-		f	ı	
	n ɔ		ì	ı	-	ı	1	1	1	ı	1	ı
			ı	1	1	ı	1	1	-	,	1	ı
(%)	Q N		ı	ı	ı	l	1	1	ı		ı	
\$	Λ		!	1	l		J	1	ı	ı	I	1
斑	В		l	I	l	ı	l	1	1	1	1	1
孙	Z	total	0.0 0 3 6	0.0 0 3 6	0.0 0 3 6	0.0036	0.0036	0.000.0	0.0 0 0 0	0.0037	0.0051	0.0 0 1 5
lk.	A 6	total	0.035	0.0 3 5	0.035	0.0 3 5	0.035	0.038	0.038	0.027	0.038	0.033
	. I		0.013	0.0 1 3	0.013	0.0 1 3	0.013	0.0 1 4	0.014	0.040	-	0.0 1 2
	M n		1.38	1.38	1.38	1.38	1.38	1.45	1.45	1.35	1.36	1.4 5
	. <u>.</u> %		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.27	0.25	0.37
	ن 		0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.14	0.13	0.12
	概		Ø−1	Q -2	@ -3	@- 4	2-0	9-0	2-@	Q-8	@— B	Ø-10
	4		11項用	第2項	I A	1項	Ħ	2項 用	1項用用	8	T.	2項用
	风分		無潤	無	樱	紙	熠	無酒	無增	#	¥	無增
		_			₩	発明	癥			£	ર	本部路

4	田延加 田延冷速 鰯板の 板厚熱 温度 (プ/sec) (カース・342) (カース・342) (カース・342) (カース・342)	1150 1.2 AR 32	1150 1.2 AR 32	1150 1.2 QT 32	1150 1.2 AR 32	1250 1.2 AR 32	1150 1.2 AR 32				
€€	⇒媽強冷 終了閻度 (°C)	1 1 0 0	800	8 0 0	1	ı	800	1050	800	8 0 0	
桕	分塊合速 (°C / ≈)	0 9	5 0	5 0	0.15	0.15	0 9	5 0	5 0	5 0	
蘇	多海海 (C)	1350	1350	1350	1350	1350	1350	1350	1350	1350	
	0.02 μ以 下のT:N (%)	0.0 1 0 0	0.0118	0.0116	0.0081	0.0032	0.0045	0.0042	0.0033	l	
	C.M (%)	0	0	0	0	0	0	0	0	0	
	(%)	0.350	0.350	0.350	0.350	0.350	0.372	0.372	9 8 70	0.357	
	羅	Ø 1	2 -2	Ø−3	Ø− 4	@ − 5	⊘ − €	7-0	Ø−8	Ø−9	
	X	第1項 適用	第2項	煙	第1項		第2項商	第1項	•	**	: 4
	<u>~</u>			₩	傑 野	審				1	81

	·				·							
	张 手	v Ео (kg—m)	1 3.9	1 8.7	1 6.3	1 1.7	4.3	9.3	2.9	3.7	1.8	1 0.2
4年 任	大人熱密接維手 HAZの靱性	榕接法及び入熱	S (KJ/cm) 320	S(KJ/cm) 320	G 190	8 320	\$ 320	S 320	\$ 320	\$ 320	S 320	S 320
椒	*# G		е Э	3 E	<u>ы</u>	3	<u>4</u> 편	E3	1 🖼	E	[편]	田田
雑	手容接 手HAZの		1 9.	1 8.	1 7.9	2 0.4	1 6.4	1 4.8	1 6.1	1 0.4	1 3.8	1 8.0
	最高硬さ 1187	$(\frac{3101}{3101})$	342	3 2 8	350	3 2 1	3 3 5	390	386	3 5 5	341	3 3 3
	vTrs	(2)	- 15	-28	-45	-20	0	- 4 0	-45	+15	0	-40
和	vE-10	(kg-m)	17.4	1 9.3	2 0.8	1 8.2	1 3.3	2 8.3	2 4.1	3.1	1 4.3	2 8.3
本	御び	(%)	4 8	4 3	2 8	4.7	4 8	4 0	4 2	2 3	3 9	4 8
₽	抗張力	(kg/mg)	47.3	4 8.3	5 9.3	4 6.7	4 5.3	4 9.8	5 0.2	6 3.5	5 0.6	5 0.2
	降伏点	(kg/mi)	3 1.3	3 3.1	4 7.2	3 1.3	3 0.6	3 3.0	3 3.8	4 4.2	3 4.3	3 3.4
	癥		@ 1	2-0	Ø-3	Ø-4	@ -5	9-©	7-0	8 – 8	6-0	Ø-10
	X 4		跳 倒 田	第2項	通用	第1項	適用	第2項 適用	第1項 田	\$ **		第2項 随 用
	<u> </u>				₩	然 第	裹			·	I	本部路額

i

i

ï

ł

1

×

ı

Μo I i ţ ı ı 1 ပ 1 ı ı 1 1 1 ı 1 ł ı ı ပ 1 ı ı . 1 1 1 ١ Z þ t z 1 ı 1 1 i t 1 1 ı > ţ ı ı ı 1 8 Ī ! i 第3の発明に関する実施例 % 3 3 2 **4**. 3 5 35 S N total က 0.00 0.00 0.00 0 0 0 0.0 0.0 0.0 A & total **8** 2 œ 9 0.028 ∞ œ 0.0 2 0.02 \$ ~ 8 0.0 0.0 0.0 畄 0.012 0.0 1 2 0.0 1 2 0.012 釥 8 ന 第3表 4 त्र 0.0 0.0 ⊣ 1.35 1.35 S S Ŋ 1.31 Mn 1.3 I. 3 1.3 0.27 0.27 ß 0.27 0.27 0.27 0.2 Ø 0.12 ~ 8 2 က 8 0.1 0.1 0.1 0.1 0.1 C **3**− 1 8 က S 9 9 寥 **6** 9 9 **6** 第3項 3届 旺 項用 比較鐵 ¢ 捯 無煙 無烟 区 ₩ 緥 涠 礟

-31-

鋼板の板厚	一	(828)	3 2	3 2	~	2	2	2
	理		<u> </u>		က	33	က	8
	熱処理		AR	Z	Z	z	z	z
压延冷速		(198/1)	1.2	1.2	1.2	1.2	1.2	1.2
压延仕上	福展	(c)	9 7 0	1050	1000	006	965	1050
圧延加熱	調風	(a)	1150	1250	1250	.1250	1250	1250
分塊強冷	終了温度	(a)		i	I	ı	800	ı
分塊冷速		(C/min)	1.0	1.0	1.0	1.0	5.0	1.0
分塊仕上	間	(۵)	1100	1050	1050	1050	1050	1050
分塊均熱	逼	(a)	1350	1350	1350	1350	1350	1350
0.0 2 μ以	FOT i N	(%)	0.0086	0.0065	0.0061	0.0 0 5 4	0.0 1 1 3	0.0 0 2 7
CM	%		0	0	0	0	0	0
C e p	<u>%</u>		0.3 5 6	0.356	0.356	0.356	0.356	0.358
審			@ - 1	3 – 2	⊚ -3	6 – 4	© 15	9 – 0
风				等過	#	無極 配田	路海	比較強
	分 鋼 Cep CM 0.02 4以 分塊均熱 分塊仕上 分塊冷凍 分塊強冷 圧延加熱 圧延仕上	分 鋼 Cep CM 0.02 μ以 分塊均熱 分塊化上 分塊倍速 分塊倍速 分塊倍速 分塊倍速 圧延仕上 (%) (%) 下のTiN 個 個 個 概 総 2 2 2 2 2 2 3	分類 Cep CM 0.02 μ以 分塊均熱 分塊化上 分塊冷凍 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 日延化上 1 (%) 下のTiN 温度 温度 株子温度 温度 温度 (%) (で) (で) (で) (で) (で)	区 分 鋼 Cep CM 0.02 μ以 分塊均熱 分塊化上 分塊冷凍 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 正距化上 1 (%) (%) (で) (で) (で) (で) (で) (で) (で) (で) ③-1 0.356 0 0.0086 1350 1100 1.0 - 1150 970	区 分 鋼 Cep CM 0.0 2 μ以 分塊均熱 分塊化上 分塊冷凍 分塊治染 分塊治染 分塊治染 分塊治染 分塊治染 分塊治療 分塊治染 分塊治染 分塊治染 日本 日本	区 分 鋼 Ce p CM 0.0 2 μ以 分塊均熱 分塊化上 分塊冷速 分塊治 分塊治 分塊化上 分塊治 分塊治 分塊治 形型 胚位上上 (%) (%) (万) (で) (で) (で) (で) (で) (で) (で) (場) (3) </td <td>区 分 鋼 C e p CM 0.0 2 μ以 分塊均熱 分塊化比 分塊均減 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 形型 胚胚加熱 胚胚加熱 胚胚化比 (%) (%) (%) (で) (で)<td>区 分 鋼 Cep CM 0.0 2 µ以 分塊均熱 分塊化上 分塊的法 分塊化上 分塊的法 分塊的 企業 <th< td=""></th<></td></td>	区 分 鋼 C e p CM 0.0 2 μ以 分塊均熱 分塊化比 分塊均減 分塊治液 分塊治液 分塊治液 分塊治液 分塊治液 形型 胚胚加熱 胚胚加熱 胚胚化比 (%) (%) (%) (で) (で) <td>区 分 鋼 Cep CM 0.0 2 µ以 分塊均熱 分塊化上 分塊的法 分塊化上 分塊的法 分塊的 企業 <th< td=""></th<></td>	区 分 鋼 Cep CM 0.0 2 µ以 分塊均熱 分塊化上 分塊的法 分塊化上 分塊的法 分塊的 企業 企業 <th< td=""></th<>

	AZの靱件	v E o (Kq/m)	1 2.3	1 1.2	1 0.7	8.6	1 5.4	2.1
年 任	大人熱格接継手HAZの靱性	格接法及び入業	ES(KJ/cm) 320	ES(KJ/cm) 320	ES(KJ/cm) 320	ES(KJ/cm) 320	ES (KJ /cm) 3 2 0	ES(KJ:/cm) 320
密	手溶接機手口 4 2 の物	HALOW 性vEo (Kg/m)	1 5.0	1 7.8	1 8.3	1 6.9	1 8.5	1 0.5
	力理如此	JISZ (3101	3 3 2	328	326	3 3 2	3 2 9	146
和	E	(c)	- 5	- 4 0	- 4 5	- 4 0	-45	-35
泰	· c	(Kq/m)	1 3.6	2 3.5	2 5.1	2 5.8	2 6.3	2 5.9
*	#	. <u>~</u>	4 6	2 4	4.7	4 5	46	46
母	ት የ2 የ	(Kg/ma)	4 6.9	4 7.3	4 7.6	4 7.8	4 7.5	4 7.9
	क्ष स	Kg/==)	3 1.5	3 2.1	3 2.4	3 2.7	3 2.5	3 2.6
	羅		<u>6</u>	3 -2	®− 3	6 – 4	⊚ − 5	3 — 6
	区		本 報 3 項			海海河田	第3項	比較網
			1 "	DEL.		QPA		l

第4表 第4の発明に関する実施例

									サンカが、因う シ米 個別	Ř	K	649						
		_				1	化华	成分	\$	_	%					2	韓	1000年
<u> </u>	\$	礟	<u>ر</u>		Ma	; E	AC	AC N	,							Cea	₹ S	0.0 2 1451
	ŀ		,	5		1	8101	8 1 0 1	n n	=	<u> </u>	<u>.</u>	<u>ပ</u> =	REM	V Nb Ni Cu Cr REM REM/S	· &	<u> </u>	(%) (%)
₩	形理	(4) 1	0.14		1.37	0.0 1 0	0.040	0.27 1.37 0.010 0.040 0.0041 0.002 -	0.00	1	1	1		0	0	0 0.368	0	0 00064
鰥		@ - 2	0.14	0.27	1.37	00 10	0.040	0.27 1.37 0.010 0.040 0.0041 0.002 -	0.00		1	1	1	- 0.0 0.2		1 0369		2000
EF	第 4 4 項 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	@ -3	0.14		1.37	0.0 1 0	0.040	0.27 1.37 0.010 0.040 0.0041 0.002 -	0.00	1,	1	1	+ '	- 0000		0000	- 1	20000
蹇		3 4 0.1 4	0.14	0.27	1.37	0.010	0.0 40	0.27 1.37 0.010 0.040 0.0041 0.002 -	0.00	1	1	1		- 0.008		4 0368		1 00000
丑	比較個	(((((((((((((0.12	0.29 1.45	1.45	1	0.038	- 0.038 0.0051 0.004 -	0.0 0 4	1	1	1	+-	- 0.0 0 4		1 0.362	0	4 6 000
										1	-	1	7			-	,	

_		-						
	T +Actor	が性の物質	v Eo (Kq-m)	1 3.7	1 6.3	1 5.2	21.3	1.9
#		ハヘMHKを除す HAZの靱性	格 接 び 入熟	EG (KJ/cm)	190	190	190	190
密接等		手格接機		1 7.3	1 8.3	1 6.2	1 7.3	1 0.8
		最高硬は1107	_	375	380	367	377	342
		ئے 	(a)	-20	-30	-30	-30	-25
和		年 7% マル・ド・10	(Kg-m)	1 5.7	1 6.9	2 0.8	2 2.1	1 8.0
材		在 Xy	<u>&</u>	40	43	41	43	41
母		が張力	(Kg/mi) (%) (Kg-m) (°C)	5 0.6	4 9.8	51.7	5 1.0	5 2.3
		降伏点	(ms) (Kg/rd)	34.1	3 3.7	24.1	3 3.8	3 4.0
		板厚		32	32	32	32	32
#		鍋板	の処験理	AR	AR	AR	AR	AR
破祭		压矩冷速	数	1.2	1.2	1.2	1.2	1.2
數		圧延加	整品でつい	1150	1150	1150	1150	1150
		分塊冷速	(T./Mil)	0.6	0.6	0.6	50	50
		起る	を配のでは、	1350	1350	1350	1350	1350
	裹			⊕ −1 1350	@ - 2	@ – 3	@ - 4	@ - 5
	RI 4			題 題 图 田	第4項			比較鐵
				₩	銀	田 選		

第5表 第5の発明に関する実施例

$\overline{}$		1		· · · · ·	1		ı İ	1			
条 年	0.02 µ以下の Tin (%)	0.0057	0.0055	0.0052	0.0052	0.0058	0.0 0 5 3	0.0 0 5 8	0.0049	0.0044	1 6 0 0 0
型	CM (%)	0	0	0	0	0	0	0	0	0	0
蘇	Ce q (%)	0.348	0.3 48	0.348	0.397	0.405	0.378	0.330	0.358	0.358	0.356
	W	l	ı	ı	ŧ	1	1	1	1	1	1
	Mo	1	-	ł	1	ľ	ı	1	1	Į.	1
	C.	1	t	1	J	ŀ	1	ł	1	1	i
	Cu	I	1	1	1	1	I	ł	ı	1	I
%	Nb	0.0 3	900	0.0 8	1	-	0.0 3	0.03	l	1	0.0 3
	Λ	_	1	ı	0.06	0.10	0.0 3	0.0 2	1	ľ	0.0 2
#	æ	I	1	ı	-	l	l	ı	0.0 0 0 8	0.0 0 3 8	0.0 0 0 0
台	N total	0.0025	0.0 0 2 5	0.0 0 2 5	0.0 0 4 2	0.0042	0.0 0 5 9	0.0 0 0 0	0.0 0 4 8	0.0048	0.0 0 38
#	AL total	0.0 3 0	0.030	0.0 3 0	0.0 2 1	0.0 2 1	0.0 4 0	0.0 2 4	0.0 3 1	0.0 3 1	0.0 2 7
75	Ti	0.0 0 8	0.0 0 8	0.0 0 8	0.0 1 4	0.0 1 4	0.0 1 8	0.0 1 1	0.012	0.012	0.014
	Mn	1.25	1.25	1.2 5	1.35	1.35	1.50	1.60	1.3 7	1.37	1.27
	S i	0.3 5	0.3 5	0.3 5	0.27	0.27	0.45	0.43	0.27	0.27	0.18
	ບ	0.14	0.14	0.14	0.16	0.16	0.12	0.15	0.13	0.13	0.14
	蹇	3- 1	2- 2	⊕ -3	9-4	9-5	9-6	Q-1	8-8	6@	3 –10
	¢	ເລ	煙	比較網	新 基 用	比較鐵	題5題	l v	煙	比較確	第5項
	M	¥ ₩	部	· 开	本 と と と と	式	本 紹 選	Ø ₩	多	五	本 院 発

	}	-		r	1	т		,	,		r .	
	FHAZ	VE0 (Kg−m)	1 0.7	6.8	3.6	8.1	29	6.7	6.7	1 4.3	3.9	11.2
接時性	大入熱容接継手H の靱性	쯈接法及び入熱	SAW(KJ/cm)	06	06	0.6	06	0.6	06	EG 150	150	150
颂		チHAZの 概性v Eo (Kg-m)	1 6.2	1 4.8	1 3.6	1 0.3	8.7	1 2.3	12.3	18.1	1 4.6	1 7.3
	最高硬さ	(3101)	230	240	260	280	290	240	340	370	375	356
	vTrs	(c)	-35	-45	09-	-20	0	-40	-45	-45	-25	09-
和	01- []^	(Kg-m)	1 2.6	1 8.1	1 1.6	1 2.1	7.5	1 9.3	2 0.6	1 4.8	1 0.8	1 8.3
材格	伸び	Z	38	3.7	42	32	28	39	39	27	22	27
母	抗張力	(Kg/nd) (Kg/nf)	5 6.2	6 0.1	5 4.3	5 6.1	5 7.1	5 2.8	5 7.6	6 1.8	6 2.1	6 4.8
	降伏点	(Kg/nd)	4 0.3	4 6.6	4 0.2	3 8.0	4 0.2	3 9.4	4 3.2	4 6.1	4 6.9	5 3.1
	极厚	(127)	20	20	20	20	20	20	20	25	25	25
华	選 6	が通	AR	AR	AR	AR	AR	AR	AR	QT	Ιð	Τφ
₩	开 庭加 湖湖 斯	(a)	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
凝照	東海	(で/理)	0.6	9.0	9.0	9.0	9.0	9.0	50 (800℃ まで)	0.6	9:0	9:0
	分 機 領 語 時	(a)	1300	1300	0061	1320	1320	1350	1350	1350	1350	1370
	暴		9 -1	9-2	5-3	Ø-4	2-©	9 - 6	0-7	3-8	6©	©−10
	\$		第5項		光製館	第5項 適用	比較網	海 海 田	第5項		比較鋼	第5項適
	Ŋ	_ [鉄	33	丑	本知過	五	名 路 路 路	路	を を を を を を を を を を を を を を を を を を を	比車	海路

38

ı ł 0.0 0.0 1 0 1 ł 1 1 ſ 0 2 0.0 9 œ 9 က 2 4 9 % 0.00 0.00 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 AL total 0.0 0.0 8 8 0.0 8 ~ 4 2 က 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 2 0 0 7 0.0 1 1 9 ∞ 0.0 2 8 0.0 0.0 ~ 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E 0 0 0 0 镃 Ö 第6の発明に関する実施例 8 S 仦 1.2 0.8 1.1 0.9 1.2 0.9 S 0.7 ਨ 00 0.2 0.2 0.2 က 0.2 0.1 0.2 0.1 0.2 0.5 Ø 0.1 က 3 8 က က ö Ġ Ö Ö ö o 第6表 0.1 0.0 0.1 0.0 0.1 0.1 ပ 0.1 0.1 0.1 0.1 0.1 Ö 6 - 126-11 8 9 6 က S 牙 9 9 _ _ _ -(e) 9 9 9 <u>@</u> **(a)** <u>ه</u> 9 -0 9 9 **©** 6項適用 第6項適用 ϕ 羅 穊 魯 本発明網 本発明網 丑 凶

•	_
.⊀	

			3 :	9	_									40)				
件	0.0 2 µ以 下のT i N	၈ ဝ	0 0 5	0.0070	0.0049	0.0048	0.0059	0.0053	0.0052	0.0 0 7 1	0.0 0 9 6	0.0067	0.0044	0.0 0.7 9	0.0 0 5 0	0.0 0 7 1	0.0067	0.0 1 1 6	0.0080
造条件	C M	0.340	0.300	0.260	0.100	0.080	0.380	0.472	0.272	0.210	0.410	0.150	0.35	0.35	0.416	0.2 1	0.84	0.26	0.19
数	0 e d		0.360	0.352	0.364	0.343	0.272	0.284	0.333	0.372	0.320	0.301	0.3 1 7	0.278	0.366	0.370	0.526	0.404	0.390
	W	1	1	1		0.40	I	ı	l	0.40	0.50	ı	ı	1	0.40	0.30	ı	ł	
(%)	M o	ı	0.30	1	1	1	0.13	ı	I	ŀ	0.3 1	0.10	0.0 9	0.15	0.10	0.10	0.28	0.10	0.15
成 分	Cr	0.34	ı	ı	1	1	0.2 5	0.31	0.2 1	0.12	ı	1	ı	1	0.20	ı	0.3 1	_	ı
种	n O		1	1	0.50	_	-	I	0.3 1	1	_	0.30	i	0.2.0	0.18	i	ţ.	1	ľ
14	Z i	ı	1	1.30	_	1	_	0.8 1	1	1	1	1	1.30	0.80		0.25	1.2 5	0.80	0.2.0
	d S	ı	ı	ı	1	_	ı		1	1	1	1	_		1	l	_	1	ı
	豪	6-1	6-2	6-3	6 – 4	9 – 9	6 6	2 -9	8-9	6 - 9	6-10	6-11	6-12	6-13	6-14	6-15	@ -16	6-17	6-18
	\$								第6項適用								較銅	田英名中	\neg
	X								坏架明롋								五	# 23 FB #B	#K24+

				×= &	造条	华		47 .	母材特色	任
M	\$	***	分塊均熱溫度	分類や速	圧延加熱温度	は一番を	板厚	降伏点	抗跟力	ゆ び
			(c)	(c/ma)	(a)	雑食の報答は	(226)	(Kg / nd)	(Kg / mil)	(%)
		6-1	1350	1.0	1150	AR	2.5	2 8.0	4 4.3	4 6
		6-2	1350	1.0	1150	AR	2.5	3 0.2	47.6	3.2
		6-3	1350	(至2008)	1150	×	2.5	3 9.3	5 2.4	3.9
		6-4	1350	1.0	1150	AR	2.5	3 2.4	5 0.1	4 0
		6-5	1350	(300年)	1150	AR	2 5	3 0.0	4 7. 2	3.9
		9 - 9	1350	1.0	1150	Z	2.5	2 2.7	4 0.8	4.7
		6-7	1350	1.0	1150	N	2 5	2 3.0	4 4.1	4 8
本発明網(第	第6項適用	8 – 9	1350	1.0	1150	AR	5 2	2 8.3	4 2.0	46
	•	6 9	1350	1.0	1150	N	2.5	3 2.0	4.7.3	4 2
		6-10	1350	(3000%)	1150	QT	2 5	4 7.0	5 6.9	2 8
		6-11	1350	1.0	1150	QT	2 5	4 2.6	5 4.3	2.7
		6-12	1350	1.0	1150	Z	2 5	3 3.0	5 0.7	4 2
<u></u>		6-13	1350	1.0	1150	Z	2.5	3 3.2	5 1.0	4 3
		6-14	1350	1.0	1150	Q.T	2 5	5 2.3	6 3.1	2.4
		6-15	1350	1.0	1150	QT	2.5	5 4.3	6 4.5	2.2
比較	. 88	6-16	1350	(8000定)	1150	QT	2 5	6 3.2	7 5.3	2 2
	田城田	6-17	135.0	(800で枚)	1150	φT	2 5	6 0.2	7 1.3	2 1
	ം ഗുപ്യൂഗ്വ	6-18	1350	(至2008)	1150	QT	2.5	6 4.8	7 7.4	2 0

													<u> </u>							
	HAZの靱性	v E o (Kg-m)	9.2	7.5	1 4.9	1 2.3	1 4.2	1 0.1	1 0.4	1 5.0	1 8.7	1 1.4	1 0.8	9.0	1.4.7	8.2	1 3.3	4.3	1 0.6	1 2.7
件 件	大人熱榕接継手HA2の靱性	容接法及び入熱	SAW(KJ/cm)	SAW(KJ/cm)	SAW(KJ/cm)	SAW(KJ/cm)	SAW(KJ/cm)	ED 150	EG 150	0 6 WA S	S AW 90	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150
茶	手格接條手11.00包	n A 2 0 數件 v E o (Kg-m)	1 2.1	. 8.6	1 7. 2	1 7.9	1 3.2	2 0.6	2 4.3	1 6.2	1 8.2	2 0.6	9.6	1 7 1	2 3.4	2 2.7	1 4.3	1 0.6	6.6	1 3.1
莉	最高優か	10	325	378	316	323	314	265	2 3 5	301	352	241	340	295	276	298	350	422	408	392
材 特	v Trs	(c)	0 7 -	- 1 5	06-	- 2 5	-20	- 40	09-	-25	-35	08-	-45	- 50	-50	-65	- 6 5	08-	-45	08-
盘	v = E - 10	(Kq/m)	1 2.1	9.8	1 7.6	1 2.7	1 9.2	2 9.3	3 0.6	1 9.3	2 0.9	3 8.0	2 6.3	1 9.7	1 8.7	2 6.3	1 9.3	1 2.3	1 8.3	1 4.6
	塞		6-1	6-2	6-3	6-4	6-5	9 - 9	2 – 9	8 -9	6 9	6-10	6-11	6-12	6-13	6-14	6-15	6-16	6-17	6-18
	\$									第6項適用								較鋼	j 1	第6項適用
	凶									本発明鋼								光		本統治劉

0.0 0 1 8	0.31 0.31
1 8	- 0.3
1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 1	
1 8 8 8 1 1 8 1 8 1 2 2 3 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0 3 1
成 A & 1 0 tal 0.0 2 9 0.0 2 9 0.0 3 1	0.035
# 5 東 施 例 H f	0.0 4 3
第7 の発明に関する実施例 学 - 0.0 1 1	I
海 H 0 0 0 0	l
第7款 Mn Mn 1.3 6 1.3 6 1.3 5 [1 1.3 5 [1 1.3 3]	1.35
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.27
0.1 2 0.1 2 0.1 3 0.1 3	0.1 3
(3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	9-0
等 7 項適用 後	3
五	

-41-

—-			,	·			
	英 (三)	2 5	3 2	3 2	2 5	2 5	2.
		2 T	A R	A R	Q T	Ιð	QT
世	圧延冷速 (で/sec)	2.1	1.2	1.2	2.1	2.1	2.1
	田原白教	1150	1150	1150	1150	1150	1150
₩.	分塊冷凍 (た/畸)	1.0	0 9	0 9	0 9	6 0	0 9
報	争 独均教 間 展 産	1380	1380	1350	1380	1380	1380
類	0.0 2 4以下の TiN ZrN HfNの合計 (%)	0.006	0.0 8	0.0 1 3	0.006	0.002	0.002
	C W (%)	0	0	0	0.126	0	0.124
	(%)	0.3 5 9	0.359	0.358	0.367	0.362	0.382
化学成分(%)	T i + Z r + H f	0.0 1 1	0.0 1 1	0.0 1 8	0.0 1 2	0.040	0.0 4 3
	饔	0-1	0-2	(j – 3	(j)— 4	7)— 5	9 - 0
	及 .			课 / 吳適用		Į.	E
		₩	鰥	雷	籔		숙 .

50

区 分 類 除伏点 抗張力 伸び vE-10 vTrs 最高硬き 特別報酬 大小熱格強離手AZの即性 (Kg/mi) (Kg/mi) (K
区 分 角 存 柱 柱 柱 区 分 角 行送力 中 び (Kg/m) (T r s) (3101) 日本区の町 (Kg/mi) (Kg/mi) (Kg/mi) (Kg/mi) (T r s) (118Z) 日本区の町 (Kg/mi) 日本区の町 (Kg/mi) 日本区の町 (Kg/mi) (D-1 5.0.8 6.3.5 2.6 2.0.3 -4.0 3.2.7 1.4.7 (D-2 3.0.6 4.7.0 4.7 1.5.8 -1.5 34.3 1.8.6 (D-3 3.3.9 5.0.4 4.5 1.7.6 -2.0 34.1 2.0.3 (D-4 5.7.5 6.8.1 2.4 2.2.1 -4.5 33.1 1.3.6 (D-5 5.1.5 6.4.3 2.5 1.8.6 -2.5 32.9 9.4 (D-6 5.9.3 6.9.7 2.3 1.9.5 -3.5 33.5 10.8
区 分 角 存 柱 柱 柱 区 分 角 行送力 中 び (Kg/m) (T r s) (3101) 日本区の町 (Kg/mi) (Kg/mi) (Kg/mi) (Kg/mi) (T r s) (118Z) 日本区の町 (Kg/mi) 日本区の町 (Kg/mi) 日本区の町 (Kg/mi) (D-1 5.0.8 6.3.5 2.6 2.0.3 -4.0 3.2.7 1.4.7 (D-2 3.0.6 4.7.0 4.7 1.5.8 -1.5 34.3 1.8.6 (D-3 3.3.9 5.0.4 4.5 1.7.6 -2.0 34.1 2.0.3 (D-4 5.7.5 6.8.1 2.4 2.2.1 -4.5 33.1 1.3.6 (D-5 5.1.5 6.4.3 2.5 1.8.6 -2.5 32.9 9.4 (D-6 5.9.3 6.9.7 2.3 1.9.5 -3.5 33.5 10.8
区 分 鋼 降伏点 抗張力 伸 び vE-10 vTrs (J1SZ) (Kg/md) (Kg/md) (Kg/md) (Kg/md) (Tr) (Tr) (3101) (Tr) (Tr) (3101) (Tr) (Tr) (Tr) (Tr) (Tr) (Tr) (Tr) (Tr
区 分 解 特 特 性 機局硬き (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (C) (Kq/m) (C) (3101) (3171) (C) (3101) (C) (3101) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
区 分 解 降伏点 抗張力 伸 び v E - 1 0 (Kg/md) (Mg/md)
区 分 鋼 降伏点 抗張力 伸 び (Kg/md) (Kg/md) (%) (
区 分 鋼 降伏点 抗張力 伸 (Kg/mid) (Kg/mid) (Wg/mid) (W
区 分 解 降伏点 抗張力 (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Kq/md) (Mq/md) (Mq/md
(ス) (カー1) (ス) (ス) (ス) (ス) (ス) (ス) (ス) (ス) (ス) (ス
(A)

図面の簡単な説明

第1図は本発明による網及び比較材のエレクト ロスラグ溶接継手(入熱350KJ/cm)の HAZのオーステナイト粒度番号と0℃における 図は本発明による剱のN含有量が 0.0 0 1 5 %及 び 0.0 0 3 6 %の鋼(第 2 表の鋼②-10 及び② -2)のエレクトロガス溶接継手部のHAZの0 でにおける2%Vノツチシャルピー衝撃値と溶接 関係を示す図、第3図は本発明による鋼(第2表 の鋼②-10)と比較鋼(第2表の鋼②-9)の 各種溶接法により溶接した場合の溶接入熱とHAZ の0℃における2%Vノツチシヤルピー衝撃値と の鋼②-10及び②-2)を各種温度に加熱しそ の温度に120分間保持後水中に急冷した場合の NasTiN/Nの比(○及び●印で示したもの)及 びその処理材を1150℃の加熱温度に120分 間保持し水中に急冷した場合の 0.0 2 4以下の微 20 である(1…溶接金属、t…板厚)。 細なTiNの量(△及び▲印)の関係を示す図、

52

第5図は本発明出発鋼(第2表の鋼(2)-10及び ②-2)を1350℃に600分加熱保持後分塊 圧延し60℃/minの冷却速度で水冷した鋼を各種 温度に再加熱(保持時間200分)した場合の 2 ma V ノツチ衝撃試験値との関係を示す図、第2 5 0.0 2 μ以下の微細 T i N の量と温度の関係を示 す図、第6図は本発明出発鋼(第2表の鋼2)-10及び②-2)を1350℃に600分加熱保 持した後に分塊圧延し、各種冷却速度で冷却した 後、再加熱温度1150℃に200分加熱保持し 前の母材中の 0.0 2 4 以下の微細TiNの量との 10 た場合の微細TiNの量(図中△及び▲で示す) と分塊圧延後冷却速度との関係を示す図である。 第7図は本発明出発鋼(第1表の鋼11)を 1350℃に600分加熱保持後分塊圧延し、 HAZの靱性安定化のために冷却過程を水冷する の関係を示す図、第4図は本発明出発鋼(第2表 15 場合の冷却終了温度と0℃におけるHAZの靱性 (2%Vノツチシヤルピー試験)との関係を示す 図、第8図は第1表~第6表に各種溶接継手の靱 性値 vEo(Kg-m) を示しているがその場合の 2 %V/ツチシヤルピー試験片の採取位置を示す図

第1図

第2図

鋼	NO TEN/N	0.02µJXTOTiN
(2) - 10	0	4
(2) - 2	•	•
加熱条件	T×120'WA	T×120'W@後 1150°C×120'WC

第5図

볡	0024XF O TIN	0.02 µ超のTiN
(2) - 10	۵	
(2) - 2	•	•
加熱条件		'WC (60℃/min) 再加熱 AC

第6図

餌	
(2) - 10	0
(2) - 2	•

1350°C×600′% 1150°C×200′AC (強冷停止温度 800°C)

第7図

昭和48年特許顧第86230号(特公昭55-26164号、昭55.7.11発行の特許公報 3(4)-31(31)号掲載)については特許法第64条の規定による補正があつたので下記のとおり掲載する。

特許第1221243号

Int. Cl. 3 C 21 D 8/00 //C 22 C 38/14 識別記号 庁内整理番号 7047-4K CBA 7147-4K

記

1 「特許請求の範囲」の項を「1 C0.03%~0.18%、Si 0.1~1.0%、Mn 0.5~1.8%、Al total 0.1%以下、Ti 0.004~0.03%、N total 0.001~0.009%、残部Fe 及び不可避的不純物からなる網塊または網片を、TiN が0.004%以上固溶するように1250~1400℃の温度範囲に加熱して圧延した後、1150℃以下の温度に再加熱して再圧延することにより、1250℃以上での加熱時に固溶したTiNを微細なTiNとして分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。

2 C 0.0 3 ~ 0.1 8 %、Si 0.1 ~ 1.0 %、Mn 0.5 ~ 1.8 %、Al total 0.1 %以下、Ti 0.0 0 4 ~ 0.0 3 %、N total 0.0 0 1 ~ 0.0 0 9 %、残部Fe 及び不可避的不純物からなる鋼塊または鋼片を、Ti N が 0.0 0 4 %以上固溶するように 1 2 5 0 ~ 1 4 0 0 ℃の温度範囲に加熱して圧延し、次いで水又は水と気体の混合物により 8 0 0 ℃以下まで強制冷却した後、1 1 5 0 ℃以下の温度に再加熱して再圧延することにより、1 2 5 0 ℃以上での加熱時に固溶した Ti Nを微細な Ti Nとして分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。

3 C0.03~0.18%、Si 0.1~1.0%、Mn 0.5~1.8%、Altotal 0.1%以下、Ti0.004~0.03%、N total 0.001~0.009%、残部Fe 及び不可避的不純物から成る鋼塊又は鋼片を、TiN が0.004%以上固溶するように1250~1400℃の温度範囲に加熱し、1000℃以上の温度範囲で圧延した後1150℃以下の温度に再加熱して再圧延することにより、1250℃以上での加熱時に固溶したTiNを微細なTiNとして分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。

4 C 0.0 3 ~ 0.1 8%、Si 0.1 ~ 1.0 %、Mn 0.5 ~ 1.8 %、Al total 0.1 %以下、Ti 0.00 4 ~ 0.0 3 %、N total 0.0 0 1 ~ 0.0 0 9 %、REM 0.0 0 1 ~ 0.0 3 %、残部Fe および不可避的不純物からなり、REM / S 1.0 ~ 6.0 を満足する鋼塊または鋼片を、Ti N が 0.0 0 4 %以上固溶するように1 2 5 0 ~ 1 4 0 0 ℃の温度範囲に加熱して圧延した後、1 1 5 0 ℃以下の温度に再加熱して再圧延することにより、1 2 5 0 ℃以上での加熱時に固溶した Ti Nを微細な Ti Nとして分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。

5 C 0.0 3 ~ 0.1 8 %、Si 0.1 ~ 1.0 %、Mn 0.5 ~ 1.8 %、Al total 0.1 %以下、Ti 0.0 0 4 ~ 0.0 3 %、N total 0.0 0 1 ~ 0.0 0 9 %に、Nb 0.0 5 %以下、V 0.0 8 %以下、B 0.0 0 3 %以下の1種または2種以上を含有させ、残部Fe および不可避的不純物からなる鋼塊または鋼片を、TiN が 0.0 0 4 %以上固溶するように1250~1400℃の温度範囲に加熱して圧延した後、1150℃以下の温度に再加熱して再圧延することにより、1250℃以上での加熱時に固溶したTiN を微細なTiNとして分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。6 C 0.0 3 ~ 0.1 8 %、Si 0.1 ~ 1.0 %、Mn 0.5 ~ 1.8 %、Al total 0.1 %以下、Ti 0.004

0 0.03 0.1 8%、Si 0.1 ~ 1.0%、Mn 0.5 ~ 1.8%、Al total 0.1%以下、Ti 0.004 ~ 0.03%、N total 0.001 ~ 0.009%に、Cr 0.35%以下、Mo 0.35%以下、Cu 0.6%以下、Ni 1.5%以下、W1.0%以下の 1種または2種以上を含有させ、残部Fe および不可避的不純物からなり、(Cu+Ni+W)/5+Cr+Mo≤0.75%を満足する鋼塊または鋼片を、TiNが 0.004%以上固溶するように1250~1400℃の温度範囲に加熱して圧延した後、1150℃以下の温度に再加熱して再圧延することにより、1250℃以上での加熱時に固溶したTiNを微細なTiN として分散再析出させることを特徴とする大入熱溶接用鋼材の製造法。」と補正する。

2 「発明の詳細な説明」の項を「最近の溶接用鋼材に対する要求は一段と厳しく、溶接時に起る溶接割れ、溶接部の材質劣化等についても、個別の要求から両者を兼ね備えた総合的な要求へと変つて来た。 すなわち溶接割れは、一般に小入熱溶接部に生ずる現象であり、一方材質劣化は溶接入熱が大となるに 従つて著しくなる傾向のものである。この様に溶接入熱に関して全く逆の場合に起る二つの現象につい ての要求特性を同時に満足させることが最近の溶接用鋼材に対する要求の特徴である。

本発明はこの様に相反する要求に対処する目的で開発された高靱性溶接用鋼材の製造方法に関する。 容接用鋼材の溶接部に対する要求としては、溶接に際して

- (イ) 硬化性の小さいこと
- (ロ) 耐割れ性の優れていること
- (1) 靱性劣化の少いこと

が、一般に要求される。(イ)、(中)については溶接入熱の小さい溶接の場合、例えば仮付け溶接、上向き及び横向き等の溶接時に問題となる。硬化性及び耐割れ性は使用する溶接材料及び構造物が一定であれば、一義的に鋼材の化学成分及び溶接入熱で決つてしまうため、一般にはパラメーターとしてCeq 又はPc 値等によつて規定される。

本発明鋼はC含有量及びCeqを低く抑えることにより、(イ)、(内の特性が優れていることは勿論であるが、本発明の最も特徴とする所は、次に述べる溶接熱影響部(以後HAZと称す)の靱性劣化が少いことにある。すなわち通常使用する溶接入熱3 50 KJ/cm程度迄はHAZの靱性劣化は実用上問題ないことを特徴としたものである。

従来の知見によれば、HAZの靱性は組織依存性が強く、組織が低炭素下部ベイナイトになつた場合に最も良好な靱性が得られることが知られている。溶接に際してHAZの組織を下部ベイナイトとするためには、C含有量をできるだけ低く抑えることは勿論、Ni、Mo 等の合金元素をかなり大量に添加して強度を確保すると共に、HAZの組織を下部ベイナイトとなし得る溶接入熱範囲を実用上意味ある程度まで拡げることが必要である。この事実は、経済上及び母材強度上(合金元素の大量添加により母材強度レベルが上つてくる)の両方の観点から、HAZ組織を下部ベイナイトとする溶接用鋼の適用範囲を著しく制約するものである。

本発明は従来鋼の欠点、すなわちHAZの硬化性、耐割れ性及び靱性劣化のために溶接入熱を制限したり、構造物の使用個所に応じて鋼材を使い分けたりするという不都合を無くする目的で開発されたもので、HAZの靱性劣化が実用上問題なく、溶接に際して上記溶接上の制限を不要とするものである。

一般の溶接用鋼材のHAZの組織は下部ベイナイト組織ではなく、多くはマンテンサイト、下部ベイナイト、上部ベイナイト及びフェライト・パーライトの混合組織であり、オーステナイト粒度依存性が著しく大きい。このため、これら混合組織からなるHAZの靱性劣化防止に最も重要なことはオーステナイト粒を出来るだけ小さくすることである。第1図に示す如く一般の構造用鋼の大入熱溶接HAZに生成する初析フェライト十上部ベイナイト組織の場合、溶接入熱350KJ/cmにおいて0℃における2mmVノンチシャルピー衝撃値4.2kg・m以上を得るためにはHAZのオーステナイト粒度はASTM 160以上とする必要がある。

以上の如く、HAZ靱性の向上策として、HAZのオーステナイト粒をできるだけ小さくすることは極めて有効であるが、この事実を工業的に意味あるものにするためには、HAZのオーステナイト粒を小さく調整し得る成分の選択と製造工程の限定が必要である。

本発明者等は HAZのオーステナイト粒度の調整法について鋭意研究の結果、溶接前の鋼材に微細なTiNを一定量以上分散させておくことが有効であるとの事実に基づき、この様な微細TiNを一定量以上分散させる方法について研究した結果、特願昭45-25042号に示すような方法(すなわち溶鋼の凝固冷却過程を急冷して微細なTiNを析出させ、その後の加熱はできるだけTiNの粗大化の起らない温度で行ない、凝固冷却時に生成した微細TiNを最終鋼成品まで保持する方法で、工業的には連続鋳造法によることが最も望ましい)以外にも以下に述べるような方法で微細なTiNを溶接前の鋼材に一定量以上分散させることを可能とし、大入熱溶接時のHAZのオーステナイト粒を小さく調整して、HAZの0℃における2mmVノッチシャルピー衝撃値として少くとも4.2kg・m以上を確保し得る鋼材を開発した。

すなわち、通常の製鋼法で製造された Ti 含有鋼は、郵塊の凝固過程で Ti Nが析出し、凝固及び冷却中に粗大化するため、それ以降の工程では殆んど Ti N の大きさ及び量の調整は不可能であつた。このため、 Ti 含有鋼において微細な Ti Nの分散状態を得る方法としては凝固冷却時の析出 Ti N を微細にする方法以外には、本発明以前に開発されていない。

本発明者等は、この調整不可能とされていた Ti 含有鋼中の粗大 Ti Nを、次の加熱以降の工程で微細 Ti N として大きさ及び量の調整を可能とした。

すなわち本発明は Ti 及び No 量を制限することによって、凝固冷却中に析出した Ti No 通常の鉄鋼製造 過程で採用し得る加熱温度に加熱することにより、 0.004 %以上一旦固溶させた後、固溶させた Ti No 0.02 μ 以下の徴細な Ti No 0.00 0

本発明の製造工程上の特徴は、通常の製鋼法で容製した Ti 含有鋼を鋼塊または鋼片より圧延により鋼成品とするに当り、凝固冷却中に析出した TiN を 0.0 0 4%以上固溶させるための 1 2 5 0 で以上の加熱と該加熱により固溶した TiN を再析出させる圧延とからなる第1の加熱圧延過程と、該第1の加熱圧延過程で再析出した TiN および固溶状態で残存していて再加熱に伴つて析出する TiN が粗大化しないよう 1 1 5 0 で以上の温度での再加熱と、これに次ぐ再圧延とからなる第2の加熱圧延過程よりなり、これによつて再析出した微細 TiN により HAZのオーステナイト粒の成長を抑制し靱性劣化を抑える所にある。この場合 Ti 含有量が多過ぎると、凝固過程で析出した粗大 Ti Nを通常の加熱過程では TiN として、0.0 0 4%以上固溶させることは不可能である。このため通常の製鋼法で製造された鋼の場合、 Ti 含有量は 0.0 0 4~0.0 3%に制限する必要がある。この場合でも、 TiN の固溶は加熱温度と時間で決るが、加熱温度があまりに高すぎると所謂バーニング現象を起すため、鋼であれば自ら決る最高温度がある。しかし、場合によつては一部バーニングを起しても差し支えないこともあり、現在の鉄鋼製造技術では前記の製鋼法の場合、 Ti 含有量の最大は 0.0 3%に抑える必要がある。 又、微細 Ti Nの最小必要量 0.0 0 4%に見合う Ti 量は酸化物等を形成する Ti 量を若干見込んで工業的には 0.0 0 4%となり、このため Ti 含有量は 0.0 0 4~0.0 3%とする必要がある。

第1の加熱過程で固溶したTiNは、圧延とそれに続く冷却過程で析出するが、圧延条件又は冷却条件によつては、固溶状態で残存するものが増加する。これを次の第2の過熱過程で十分に微細再析出させることは、特にTi量の少ない場合にTiNの細粒化効果を安定させるために効果的である。また第2の圧延過程後に行う競弾、焼入れ、焼戻しなどの熱処理も微細TiNの再析出に効果がある。

溶鋼の凝固冷却中に析出したTiNの溶解加熱温度、再加熱温度及びN含有量、TiN含有量の制限について以下に述べる。

本発明に従って得られた鋼材は前述の如くHAZの硬化性は低く耐割れ性が優れている上に、350 KJ/m程度迄の大入熱溶接を行なつてもHAZの靱性劣化が少なくなければならない。このため本発明方法は溶鋼の凝固冷却中に析出したTiN を一旦加熱により固溶させた後に再析出させ微細なTiN に変えることによりHAZのオーステナイト粒を小さくし、HAZの 靱性を確保することを特徴とする。この様な加熱過程でTiN を工業的に経済的かつ安定に固溶させるためには、現在の技術ではTi 含有量のみならず、N 含有量をも併せ制限することが効果的である。N totalの下限を 0.001%とした理由は、加熱過程で固溶させる必要のある TiN 量の下限が 0.004% であるため、それに見合う値としたものである。更に加熱過程で固溶する TiN 量を十分確保するためにはN totalの上限が Ti の上限の当量を越えることは不利となるため Ti 0.03% に見合う値としてN totalの上限を 0.009% とした。

一方、TiN 量が 0.04%超となると、HAZの靱性よりむしろ母材の靱性が損なわれるため、TiN の上限を 0.04%とする必要があるが、Ti N total が前記の範囲に入つていれば、TiN 含有量が 0.04%を 超えることはない。

Ti、N含有量が前記の範囲であれば Ti Nを0.004%以上固溶させるための加熱温度の下限は、実験の結果求められた第4 図に示すように 1250となる。しかして上限は前述の如く鋼表面の酸化鉄がバーニングを一部起すが実用上可能な温度として、1400 ℃に限定した。

固溶状態で残存するTi、Nを再析出させるための再加熱温度の上限について述べると、再加熱温度

が1150℃以上であると第5図に示すように既に析出していた TiN も再加熱に伴つて析出する TiN も共に粗大化して、0.02 μ以下のTiN 量が減少し、本発明の特徴である微細 TiN による HAZのオーステナイト 粒度のコントロールが出来なくなる。以上の理由により再加熱温度の上限を 1150℃とした。

前記特徴を持つ本発明中、特許請求範囲の第1項に示した第1の発明の出発鋼成分範囲はC0.03~0.18%、Si0.1~1.0%、Mn0.5~1.8%、Altotal0.1%以下、Ti0.004~0.03%、Ntotal0.001~0.009%、残部鉄及び不可避的不純物から成る溶接に適した鋼である。 出発鋼成分範囲をこの様に限定した理由を以下に説明する。

Cは 0.0 3 %未満では一般に容接用として使用される鋼材(母材)の強度を得られないこと、及び現在の様に大入熱容接が一般化されて来ると、HAZの軟化が大きく溶接部と母材との強度差が大きくなり実用に供し得ないため、C含有量の下限は 0.0 3 %とした。Cが 0.1 8 %超になると溶接部の硬化性、割れ性が著しく損なわれるのみならず、硬化によつてHAZの靱性が劣化し、HAZ細粒化の効果が著しく阻害されるためにC含有量の上限を 0.1 8 %とした。

Si は脱酸上、溶接用鋼に必然的に含有される元素であるが 0.1%未満になると 母材の切欠靱性が劣 化するため下限を 0.1%とした。一方、 Si が多過ぎると HA Zを脆化させるばかり でなく、鋼材自体 の清浄度をも阻害するため、上限を 1.0%とした。

Mn は 0.5 %未満では HAZの 軟化が大きいこと及び母材の強度 靭性が低下し、通常の溶接用鋼材に不適のため下限を 0.5 0 %とした。一方、Mn が多過ぎると HAZの 靱性が急 殻に 劣化すること 及び 圧延まの鋼材の場合、母材の組織が上部ベイナイトとなり 靱性劣化が著しくなるため、上限を 1.8 %とした。

A1 は脱酸上この種キルド鋼には必然的に含有される元素であるが、A1 total が 0.1% 超になると HAZの靱性のみならず溶接金属の靱性をも著しく劣化させる。このため A1 total の上限を 0.1%とした。

Ti 及びN total の含有量については、先に述べた理由により Ti について $0.004\% \sim 0.03\%$ 、N total について $0.001 \sim 0.009\%$ に制限する。 Ti 、Nがこ の範囲内であれば Ti N 含有量が 0.04%を超えることはない。 本発明鋼は不純物として P、Sを含有するが、 Pについては通常 0.04%以下であり、本発明では故意に添加しない。

Sについては通常 0.03 5 %以下であり、現在の技術水準では 0.0 0 0 5 %程度までは低下させることが出来、その場合 HAZ、母材靱性とも改良されることは明らかである。本発明では、 Sは故意に添加しない。

特許請求の範囲第2項に示した第2の発明においては、同じく第1項に示した第1発明における出発 鋼成分及び製造工程に、更に凝固冷却中に析出した粗大TiNを加熱によつて溶解させ圧延を加えた後 の冷却方法について特に制限したものである。すなわち水又は水と気体の混合物によつて強制的に冷却 し、その冷却終了温度を800℃以下とすることによつて次の1150℃以下の再加熱過程後の微細な TiNの量を増加させ得る。従つて本発明の出発鋼を第2の発明に従つて処理した場合、HAZの靱性 は一層安定化する。一方、溶接用鋼材としての他の諸特性は全く阻害されない。

HAZの靱性が安定化する理由について、少しく詳細に以下に述べる。先に述べた如く、1250~1400℃の加熱で一旦固溶したTiN は圧延過程及びその後の冷却中に再析出する。この場合、析出物の量及び大きさは第6図に示すように冷却速度によつて決定される。すなわちTiN のように過飽和度の小さい析出物は、冷却速度が比較的遅い場合は冷却過程で析出するのみならず粗大化をも起す。

第2の発明はこの様な欠点を補う方法として開発されたもので、TiNを含有する前記成分の鋼を 1250℃~1400℃の高温に加熱し圧延後の冷却過程を水又は水と気体の混合物で強制的に 冷却し、冷却中に析出するTiNの大きさをできるだけ小さくすると共に、析出量も抑え、次の 再加熱過程で0.02 μ以下の徴細TiNをより多く析出させることによつて HAZ 靱性を一層安定化させるものである。又、この場合の冷却終了温度は800℃以下が必要であり、その理由は連続冷却の場合 TiNの析出、生長に大きく寄与するのは800℃以上の温度領域であることによる。800℃より 低い温度領域では析出も少なく、析出物も小さいため次の1150℃以下の再加熱過程で粗大化せず、

0.02 μ以下の Ti N の量には影響を与えない。なお、鋼塊を鋼片に加工するに当つて、加工後の冷却を第2の発明に従つて強制冷却し Ti N の粗大化を抑え、更に鋼片を最終鋼成品に加工する際の加熱温度を1250~1400℃とすることは、第2の加熱における Ti N の溶解が(第1の加熱)+(強制冷却)により促進されるため、最終鋼成品中の微細 Ti N の量を増加させ、 HAZ 靭性の安定化に有効である。

特許請求の範囲第3項に記載した第3の発明においては、第1発明における出発鋼成分及び製造工程に、更に凝固冷却中に析出した粗大TiNを加熱によつて溶解させ、圧延する際の条件について特に制限したものである。すなわち圧延終了温度を1000℃以上とすることによつて、次の1150℃以下の再加熱過程後の微細なTiNの量を増加させ得るもので、第3の発明に従って得られた鋼材のHAZの靱性は一層安定化する。

溶解加熱後の製造条件を特に制限して、再加熱前の粗大TiNの析出をできるだけ抑え、再加熱過程で0.02μ以下の微細TiNをより多く析出させるという点において、第3の発明は第2項発明と手段は異なるが冶金的に共通である。

第3の発明においては、圧延終了温度を1000℃以上とすることにより、圧延中のTiN析出核の発生が少なくなり、その後の冷却過程におけるTiNの析出が減少すると共に粗大TiNの析出も抑制される。従つて、第2の発明と冶金的に同様の効果をもたらし、最終鋼成品のHAZ靱性は一層安定化する。なお、第3の発明に更に第2の発明を適用すれば、より一層HAZの靱性が、安定化することは勿論である。

特許請求の範囲第4項に記載した第4の発明においては、第1の発明の出発網成分及び製造工程に更にREM(主としてCe、La、Pr)を0.001~0.03%添加し、かつREM/Sの比を1.0~6.0に制限したものである。本発明に従つて処理された鋼のHAZ靱性は第4表に示すように一層安定化する。REMの添加量については、0.001%未満であると実用上HAZ及び母材の靱性に効果がなく、又0.03%超になるとREMーサルフアイド(Sulfide)が大型化するばかりでなくREMーオキシサルフアイド(Oxysulfide)が大量に生成して大型介在物となり、母材の靱性のみならず清浄度をも著しく損なうことになる。このためREMの添加量を0.001~0.03%とした。一方、REMはS量との相関においてHAZ及び母材の靱性向上、安定化に効果があり、この最適範囲はREM/S比で1.0~6.0である。なお、第4の発明について、更に第2及び第3の発明の一方又は両方を適用すればHAZの靱性が一層安定化することは勿論である。

特許請求の範囲の第5項に記載した第5の発明においては、第1の発明において出発鋼成分および製造工程に、更にNb 0.05%以下、V0.08%以下、B0.003%以下の1種又は2種以上を添加するという要件を付加したものである。これらの添加元素は、本発明に従つて処理された鋼の母材強度、靱性向上、製造可能板厚の拡大、並びに大入熱溶接部の継手強度確保のために添加されるものであり、いずれも添加量が多きに失すると、本発明に従つて処理された鋼の様に微細TiNによる細粒化でHAZの靱性を改良した鋼においてもHAZの靱性を著しく劣化させるため、上限を規制している。

Nb については、0.05%まではHAZの靱性をあまり劣化させることなく上記の諸特性を向上するが、0.05%を超えて添加するとHAZの靱性が著しく劣化する。このため上限を0.05%とした。 VについてはNbとほぼ同様であるが、上限は0.08%まで許容される。

Bについては特に本発明に従つて処理された鋼を焼入れ焼戻しする際に有効な元素であるが、0.003%を超えて添加すると大入熱溶接時のHAZにB-コンスティテュエント(Constituent)が生成し、<math>HAZの靱性を著しく劣化させるためその上限を0.003%とした。

一方、これらの添加元素について複合添加の実験を行なつた所、相互作用によるHAZ 靱性の劣化は見られず、複合添加しても本発明に従つて処理された鋼の特徴は失われないことが判明した。なお、第5の発明に従つて出発鋼に第2、第3、第4の発明に従った方法の1乃至2以上を適用すればHAZ 靱性が一層安定化することは勿論である。

特許請求の範囲の第6項に記載された第6の発明においては、第1の発明における出発鋼成分および 製造工程に、更にCr 0.35%以下、Mo 0.35%以下、Ni 1.5%以下、Cu 0.6%以下、W 1.0% 以下の1種又は2種以上を添加し(Cu +Ni +W)/5 +Cr +Mo≤0.75%となる様にするという 要件を付加したものである。

これらの添加元素の、本発明に従つて処理される鋼における主たる目的は H A Zの 靱性を大きく損な うことなく母材の強度、靱性向上、製造板厚の拡大を可能とすることにあり、その添加量は自ら制限されるべき性質のものである。

Cr については、多きに失すると HA Zの硬化性を増大させ、靱性及び耐割れ性の低下を招き好ましくない。からる点を考慮してその上限は 0.3 5.%とした。

Mo についても Cr とほぼ同様であつて母材の諸特性改良には有効であるが、HAZに対する悪影響から添加量の上限は 0.3 5%に制約される。

Ni についてはHAZの硬化性及び靱性に悪い影響を与えることなく母材の強度・靱性を向上させるが、 1.5%を越えるとHAZの硬化性、靱性に好ましくなくなるため、上限を 1.5%とした。 Cu、WについてはNi とほぼ同様の効果と共に耐食性にも効果があるが、Cu については 0.6%を超えると 鋼材の圧延中にCu -クラック(Crack)が発生し製造が難しくなる。このため上限を 0.6%とした。

一方Wについては 1.0%を超えると HAZの靱性劣化及び硬化性増大を招くため上限を1.0%とした。 更にこれらの添加元素は上記の範囲内で全く独立に添加して良いわけではなく、(Cu+Ni+W)/ $5+Cr+Mo \le 0.75\%$ を満足しないと HAZの硬度が著しく高くなり、小入熱溶接時に HAZ に割れが発生するため溶接用鋼材として不適となる。このため(Cu+Ni+W)/ $5+Cr+Mo \le 0.75$ %とする必要がある。なお、第6の発明における出発鋼に第2、第3、第4の発明に従った処理の1乃至2以上を適用すれば HAZの靱性は一層安定化することは勿論であり、又第5の発明を適用することも可能である。

なお上述の第1〜第6の発明において、Ti、REM、Zr、Hf等を添加するに当り、これらを単体 或いは他の元素との公知の複合剤として、公知の方法により添加できることは当然であり、添加時期も公 知のことく製鋼炉内、取鍋内、脱ガス槽内或いは溶鋼注入流、鋳型内、連続鋳造鋳片内等任意に選択でき る。また脱酸剤等の公知の各種溶鋼添加剤を使用し、Ti、REM等が本発明の主旨に沿り効果を発揮 するよう配慮することは勿論である。第1〜第6の発明の実施例をそれぞれ第1表〜第6表に示す。

第1の発明に関する実施例 第1表

	#50		T_	0	Ι-	0			0	
	分塊均数 閻度(で)	1350	1300	135		135	1350	1200	135	1350
条	(3) 0.0 2 4以 下のTiN (%)	0.0048	0.0040	0.0056	0.0008		1	0.0004	0.0014	0.0015
製造	(2) C.M (%)	0	٥	0	0	0	0	0	0	0
	(%) Ced (%)	0.203	0.432	0.282	0.282	0.347	0.347	0.3 1.8	0.378	0.378
	W	ı	ı	ı	ı	1	1	ı	1.	ı
	Mo	l	ı	1	ı	1	1	_	ı	1
	Cr	<u> </u>	1	J	ı	1	-	1	1	١
	nე	1	1	1	1	1	_	_	ı	ı
	N i	1	ı	1	1	_	-	1	ı	1
	N _B	I	1	1	1	1		_	-	ı
	Λ	1	1	-	_	_		1	1	ı
(%)	82	ī	1	_	l	+	Ι	ı	1	١
成分	N to tal	0.0048	0.0051	0.0036	0.0036	0.0052	0.0052	0.0 0 6 2	0.0102	0.0102
孙	A l total	0.025	0.016	0.031	0.031	0.031	0.031	0.018	0.037	0.037
46	Ti	0.012	0.004	0.025	0.025	1	1	0.025	0.050	0.050
	Mn	0.50	1.7 5	1.4 5	1.45	1.30	1.30	0.95	1.37	1.37
	Si	0.23	0.25	0.48	0.48	0.25	0.25	0.3 1	0.2 5	0.25
	ບ	0.12	0.14	0.04	0.04	0.13	0.13	0.16	0.15	0.15
	餐	7	2	3	5	9	7	∞	6	10
	区分	本発	田 8	匮		共	盆	4	礟	

	熱容接継手HAZの靱性	vEo .(kg—m)	1 0.1	8.6	1 1.8	2. 1	1.8	2.8	3.8	2.7	3.1
(主) 世	热容接继手H	容接法及び入熱	SAW(KJ/cm) 2 2 0	150	345	190	V 220	150	V 220	327	150
泰	大人	容挺多	SAW	因 G	E	된 C	S AW	ΞG	SAW	E S	EG
容 按	# :	nA22製 和vEo (kgーn)	2 1.4	1 8.2	3 2.5	2 2.3	1 3.2	1 8.7	1 0. 2	1 2.0	1 6.3
	最高硬さ	$\begin{pmatrix} JISZ \\ 3101 \end{pmatrix}$	2 1 0	385	240	248	320	315	330	375	358
	E	(C)	-20	-45	- 65	-85	- 25	-40	0	+ 5	-15
拼	G	(kg-m)	27.6	18.9	3 6.2	3 8.7	1 0.9	1 9.3	1 0.6	6.7	1 9.3
1 侍), (d)	£% ±%	4.8	2.4	5 3	28	3 6	2.7	3 2	2.4	9 7
母 材	抗張力 (kg/si)		4 3.1	6.8.3	4 1.8	6 3. 1	5 2.1	6 1.0	4 5.7	6 2.0	6 4.8
	184 H	(kg/編)	2 4.8	5 9.0	2 3.6	4 6.3	3 4.0	4 8.7	2 6.0	4 3.7	5 1.2
	和西	(題)	3.2	2.5	3.2	3.2	3.2	2.5	3.2	3.2	2.5
	劉板	の処理	AR	Q T	N	Q T	A R	Q T	AR	A R	Q T
条件	五字符件	(C/sec)	1.2	2. 1	1.2	1. 2	1. 2	2. 1	1.2	1.2	2.1
製造	田野甘瀬	温度(で)	1150	1100	1150	1150	1150	1250	1150	1100	1100
	毎	(C/min)	1.0	1.0	5 0	1	5.0	1.0	1.0	1.0	1.0
	E	£		2	3	5	9	7	8	6	10
L	M	\$	本発	田	蹇	÷	₹	緻	. \$	E	

 $Ceq = C + \frac{1}{2}M_n + \frac{1}{2}Cr + \frac{1}{2}M_0 + \frac{1}{4}(Ni + Cu + W) + \frac{1}{14}V$ $CM = \frac{1}{4} (Cu + Ni + W) + Cr + Mo$

EG:エレクトロガス溶接 (3) 容接前の鍋材における値(4) SAW: 潜弧容接

ES:エレクトロスラグ溶接

東施列
無無
16
を関
別と
器
S
胀
表
7
無

	i					71	孙	斑	4	(%)				.				좷	油 条 年	
	区	鰀	O	S.	Mn	Ti	A1 total		N total	BV	N.	Ä	Cu	Ç	Μo	M	Ceq (%)	C W	0.02 a以 下のTiN (%)	分解均熱 阎度(%)
	第1項適用	<u>(8</u> − 1	0.12	0.2 5	1.38	0.0 13	0.03	5 0.6	0036		1		1	!	ı	ı	0.350	0	0.0100	1350
	第2項適用	2 - 2	0.12	0.25	1.38	0.0 1 3	0.03	5 0.	0036			!	!	1	ı	1	0.3 5 0	0	0.0 1 1 8	1350
本発明鋼		©~ 3	0.12	0.2 5	1.38	0.013	0.03	5 0.0	0036	+	1	1			1	1	0.350	0	0.0116	1350
	第1項通用	-00	0.12	0.25	1.38	0.0 13	0.03	5 0.	0036	1	1	<u> </u>			1	ī	0.3 5 0	0	1	
	第2項適用	<u>2</u> — 6	0.13	0.25	1.45	0.0 14	0.0 3	8 0.	0600	1	-	<u> </u>				ī	0.3 7 2	0	0.0 0 4 5	1350
	第1項通用		0.13	2.5	1.45	0.0 14	0.03	8 0.	0600	1		<u> </u>	1	1		1	0.3 7 2	0	0.0042	1350
#	舞箱	. 1	0.14	2 7	1.35	0.040	0.0 2	7 0.	0037	1	1		1		1		0.365	0	0.0033	1350
	κĺ	6 -@	0.13	0.2.5	1.3 6	ŧ	0.03	8 0.0	0051	1	1	1	_	1	Ī	1	0.357	0	1	1350
本発明鋼	第2項適用	<u>@</u> -10	0.12	0.37	1,45	0.0 12	0.03	3 0.	0 0 1 5						1	1	3 6	0	0.0 0 5 9	2
				-	類。	条				4	#	棋	華		-		斑	薪	4	
						L	-	-		f		F	비		-		₽	-	# #	
M	4	羅	分塊冷	分据路哈黎一個用				鋼板板厚	一一一一	拉	七		VE -	vT rs		最高硬さ1187		様の手数	大入熱格接継手H の靱性	手HAZ
			(記/記)	(a)	(醴)	<u>(</u> သို့)	() %() () () () () () () () () () () () () (1) (Kg/uni)	<u> </u>	Î	(%)	(kg-m)	၁)($\hat{}$	101) E	쯈佞法及び入熱	(Kg-m)
	第1項適用	(3) 1	0 9	1 1 0 0	1 1	5 0 1.	2 A	R 3	2 3 1.3	3 4	7.3	8 4	1 7.4	-1	5 3	4 2	1 9.	3	ES(KJ/cm 32	1 3.9
8	第2項適用	2 - 2	2 0	800	1 1	5 0 1.	. 2 A	R 3	3 3.	1 4 8	8,3	£ 8	19.3	- 7	3	2 8	1 8.	3	ES(KJ/cm 32	$\binom{n}{0}$ 1 8.7
是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是		-	5 0	8 0 0	1 1	5 0 1.	.2	T 3	2 4 7.2	2 5	9.3 2	2 8	2 0.8	4	5 3	5 0	1 7.	6	EG 19	0 1 6.3
	第1項適用	9-4	0.15	1	1 1	5 0 1.	2 A	R 3	2 3 1.3	3 4 (6.7	4.7	1 8.2	12	0 3	2 1	2 0.	4	ES 32	0 11.7
	第2項適用		0 9	800	1 1	5 0 1.	.2 A	R 3	2 3 3.(0 4	9.8	0	2 8.3	7 -	0 3	0 6	1 4.	∞	ES 32	0 9.3
	第1項適用	<u>-</u> @		1050	11	5 0 1.	2 A	R 3	2 3 3.	8 5	0.2	4 2	2 4.1	4 —	5 3	8 6	1 6.	-	ES 32	0 7.9
光	魯	8		8 0 0		5 0 1.	. 2 A	R 3	2 4 4.	2 6	3.5	2 3	3.1	+1	5 3	5 2	1 0.	4	ES 32	0 3.7
1				800		5 0 1.	2 Y	R 3	2 34.	3 5 (0.6 3	3 9	1 4.3	0	3	4 1	1 3.	8	ES 32	0 1.8
本希明網	第2項通用	©−1 0	0.9	800	11	5 0 1.	2 A	R 3	2 3 3.4	4 5	0.2	4.8	2 8.3	- 4	0 3	3 3	1 8.	0	ES 32	0 1 0.2

第3表 第3の発明に関する実施例

	分塊強冷 終 7 間度 (で)		i
	分類や選(で/順)	1.0	1.0
华	分越仕上 副既(で)	1 1 0 0	1050
通	分塊均熱 温度(で)	1350 1100	1350 1050
數	0.02 u以下 のTin(%)	0.0086	0.0027
	CM (%)	0	0
	(%)	0.356	0.358
	N total	0.0 0 3 5	0.0 0 4 8
(%)	A I: to ta l	0.0 1 2 0.0 2 8	0.0 2 6
政	Ţ	0.0 1 2	0.043
孙	Mn	1.35	1.3 1
4	Si	0.27	0.2 5
	၁	0.12	0.13
	窶	3- 1	9-0
	М ф	本発明鋼 (第3項 適用)	兄較鐵

_								
	AAZ O	vΕο (kg-m)	1 2.3	2.1				
和	大入熱容接継手 HAZの 靱性	容接法及び入熱	ES(KJ/cm) 320	ES(KJ/cm) 320				
华			ES (ES(F				
溶	手容接継手 HAZの靱	(kg - m)	1 5.0	1 0.5				
**	最高硬み、1188次	(3101)	3 3 2	347				
和	vTrs		1.5	- 35				
每	vE-	(kg-m)	1 3.6	2 5.9				
	争び	%	4 6	4 6				
中本	抗躁力	網板 板厚 降伏点 抗張力 伸び vE- の熱 (ma) (kg/mi) (kg/mi) (%) 10 処理 AR 32 31.5 46.9 46 13.6						
41	降伏点	(NA) REEL	3 1. 5	3 2.6 4 7.9 46 2 5.9				
	を配する	(#88)	3 2	3 2				
华	鍛め被機		AR	z				
₩	田窟冷湖(37/27/27)	38	1.2	1.2				
荊	圧延仕上 温声(で)		970	1050				
獸	圧延加熱温度(よ)		1150	3-6 1250 1050				
	概 -		3-1	9 – ©				
	R 4		本発明鋼 (第3項 適用)	比較鋼				

第4表 第4の発明に関する実施例

, ,		-				
4.	CM 0.0 2 4以 (%) 下のTiN (%)	0.0064	0.0 0 6 7	0.0 0 6 1	0.0 0 9 4	I
製造条件	© (%)	0	0	0	0	0
献	Ceq. (%)	0.3 68	0.368	0.368	0.3 6 8	0.362
	REM REM/S	0	-	4	4	7
		0	0.0 0 2	0.0 08	0.008	0.004
	V Nb Ni Cu Cr	1	ſ	ı	i i	ŀ
	Cu	1	1	ı	ſ	l
	Z i.	ı	1	1	1	1
	Np	I	1	1	l	1
	>	- 1	1	1	1	-
(%)	Ø	0.0 0 2	0.002	0.002	0.002	0.004
成分	N to tal	10 0.040 0.0041	10 0.0 40 0.0 0 41 0.0 0 2	10 0.040 0.0041 0.002	10 0.040 0.0041 0.002	0.038 0.0051 0.004
孙	A1 total	0.040	0.0 4 0	0.040	0.040	0.038
15		0.010	0.010	0.0 1 0	0.0	I
	¥.	1.37	1.37	1.3 7	1.3 7	1.45
	Si	0.27	0.27	0.27	0.27	0.29
	υ	第1項 (3-1 0.14 適用	(4) = 2 0.1 4	4-3 0.14	0.14	0.12
	8	⊕- 1	6 – 2	(4)	4-6	(4) — 5
	¢	第1項 適用		第4項 適用		数额
	M		14	密		五

	FHAZ	vEo (kg-m)	1 3. 7	1 6.3	1 5.2	2 1.3	1.9
特 件	大入熱溶疫継手HAZ の靱性	密接法及び入 熱	EG(KJ/cm) 190	EG (KJ/cm) 1 9 0	EG(KJ/cm) 190	EG(KJ/cm) 190	EG(KJ/cm) 190
裕被	手容接継手 HAZの靱	(Kg-m)	1 7.3	1 8.3	1 6.2	1 7.3	1 0.8
	抗張力 (伸び vE-10 vTrs 1187	(3101)	50.6 40 15.7 -20 375	380	367	377	3 4 2
	vTrs	(a)	-20	-30	-30	-3 0	- 2 5
-E1	vE-10	(kg−m)	1 5.7	4 9.8 4 3 1 6.9 -3 0	51.7 41 20.8 -30	2 2.1 -3 0	4 1 1 8.0 -25
特性	必動	(%)	4 0	4 3	4 1	4 3	
母材	抗張力	(kg/må)	5 0.6	4 9.8	5 1.7	5 1.0 4 3	5 2.3
	降伏点	(kg/mg)	AR 32 34.1	AR 32 33.7	2 4.1	3 3.8	3 4.0
	板厚	(ELE)	3.2	3.2	AR 32	3 2	AR 32
	盤色数	の処態	A R	AR	AR	AR 3	AR
#	田延冷速 鋼板 4	(x/sec)	1.2	1. 2	1.2	1.2	1. 2
施条	E延加熱	盛つ 0 0 0				1150	1150
簸	分塊冷凍	(4)	0.6	9.0	9.0	5.0	5 0
	分類功整	祖既(で) (で/順)	1350	1350	1350	1350	1350
	礟		6 1	4-2	A - 3	6 – 4	4-5
	\$		第1項適用		第4項國用		数
	凶			X X	部		丑

第5表 第5の発明に関する実施例

区 分 鋼 C Si Mn Ti 41 N B 本発明鋼 第5項適用 ⑤-1 0.14 0.35 1.25 0.008 0.030 0.0025 比較 國 0.2 0.14 0.35 1.25 0.008 0.030 0.0025 本発明鋼 第5項適用 0 2 0.14 0.35 1.25 0.008 0.030 0.0025 比較 國 0 2 0.14 0.35 1.25 0.008 0.030 0.0025 本発明鋼 第5項適用 0 0.14 0.35 1.25 0.014 0.021 0.0042 本発明鋼 第5項適用 0 0.12 0.45 1.50 0.011 0.024 0.0042 本発明鋼 第5項適用 0 0.15 0.43 1.60 0.011 0.024 0.006 0.006 本名明明 第5項適用 0 0.13 0.27 1.37	Ti	N total N total N total N total N N N N N N N N N N N N N N N N N N N	B B C C C C C C C C C C C C C C C C C C	V	S	C	Mo M	0.3 % % 8 0.0 0.3	CM (%) (8	0.02 4以 下のTiN (%)
分 鋼 C Si Mn Ti 41 ntal 第5項適用 ⑤- 1 0.14 0.35 1.25 0.008 0.030 0.0025 数 ⑥- 2 0.14 0.35 1.25 0.008 0.030 0.0025 数 ⑥- 2 0.14 0.35 1.25 0.008 0.030 0.0025 数 ⑥- 2 0.14 0.35 1.25 0.008 0.030 0.0025 数 ⑥- 3 0.14 0.35 1.25 0.014 0.021 0.0042 数 ⑥- 4 0.16 0.27 1.35 0.014 0.021 0.0042 数 ⑥- 5 0.16 0.27 1.37 0.012 0.040 0.0059 第5項適用 ⑥- 7 0.15 0.43 1.60 0.011 0.024 0.0060 第5項適用 ⑥- 7 0.15 0.43 1.60 0.011 0.031 0.0060 第5項適用 ⑥- 9 0.13	Mn Ti total total 25 0.008 0.03 25 0.008 0.03 25 0.008 0.03 35 0.014 0.02 25 0.018 0.04 25 0.011 0.02 27 0.012 0.03 37 0.012 0.03 27 0.014 0.02 3 37 0.012 0.03 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 37 0.014 0.02 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N total 0 0 2 5 0 0 0 2 5 0 0 0 4 2 0 0 0 4 2 0 0 0 4 8 0 0 0 4 8 8 0 0 0 4 8 8 0 0 0 3 8 8	B	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C	S 1 1 1 1 1 1 1 1 1			00	02 4 OTiN
第5項適用	25 0.008 0.03 25 0.008 0.03 25 0.008 0.03 35 0.014 0.02 35 0.014 0.02 50 0.011 0.02 60 0.011 0.02 37 0.012 0.03 37 0.012 0.03 37 0.012 0.03 37 0.014 0.02 3 4 件	0 0 2 5 0 0 0 2 5 0 0 0 4 2 0 0 0 4 2 0 0 0 5 9 0 0 6 0 0 0 4 8 0 0 0 4 8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 8 2 3			0.3	∞	\ \ \ \ \
(3) (3) (4) (4) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	25 0.008 0.03 35 0.014 0.02 35 0.014 0.02 50 0.018 0.04 60 0.011 0.02 37 0.012 0.03 37 0.012 0.03 37 0.014 0.02 造 条 件 造 条 件	0 0 0 2 5 0 0 0 4 2 0 0 0 5 9 0 0 0 6 0 0 0 4 8 8 0 0 0 0 3 8 8 8 8 0 0 0 3 8 8 8 8 0 0 0 3 8 8 8 8	00008	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			0.3	_	0.0057
第	25 0.008 0.03 35 0.014 0.02 35 0.014 0.02 50 0.018 0.04 60 0.011 0.02 37 0.012 0.03 27 0.012 0.03 益 条 件 流 条 件 高速 配យ加熱 の熱	0 0 0 2 5 0 0 0 4 2 0 0 0 5 9 0 0 6 0 0 0 4 8 0 0 0 4 8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 3 3			0.3	8 0	0.0055
第5項適用 ⑤- 4 0.16 0.27 1.35 0.014 0.021 0.0042 第5項適用 ⑥- 6 0.12 0.45 1.50 0.018 0.040 0.0059 第5項適用 ⑥- 6 0.12 0.45 1.50 0.011 0.024 0.0059 第5項適用 ⑥- 7 0.15 0.43 1.60 0.011 0.024 0.0060 数	35 0.014 0.02 35 0.014 0.02 50 0.018 0.04 60 0.011 0.02 37 0.012 0.03 37 0.012 0.03 27 0.014 0.02 选 条 件 选	0 0 0 4 2 0 0 0 5 9 0 0 6 0 0 0 4 8 0 0 0 4 8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3				0 8	0.0052
政 鋼 ⑤- 5 0.16 0.27 1.35 0.014 0.021 0.0042 第5項適用 ⑤- 6 0.12 0.45 1.50 0.018 0.040 0.0059 第5項適用 ⑥- 7 0.15 0.43 1.60 0.011 0.024 0.0060 第5項適用 ⑥- 8 0.13 0.27 1.37 0.012 0.031 0.0048 0.0 数 額 ⑥- 9 0.13 0.27 1.37 0.012 0.031 0.0048 0.0 第5項適用 ⑥- 10 0.14 0.18 1.27 0.014 0.027 0.0038 0.0 第5項適用 ⑥- 1 1300 0.06 1150 AR 20 4 6.6 6 6 数 額 ⑥- 2 1300 0.6 1150 AR 20 4 6.6 6 6 数 額 ⑥- 3 1300 0.6 1150 AR 20 380 5 第5項適用 ⑥- 4 1320 0.6 1150 AR 20 4 6.2 5 財 3 1 3 0 0 0.6 1150 AR 20 4 6.2 5 財 3 1 3 0 0 0.6 1150 AR 20 4 6.2 5	35 0.014 0.02 50 0.0118 0.04 60 0.011 0.02 37 0.012 0.03 27 0.014 0.02 造 条 件 造 条 件	0 0 4 2 0 0 0 5 9 0 0 6 0 0 0 4 8 0 0 0 3 8	- - - 0008 00038	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3			0.39	0 2	0.0052
第5項適用 ⑤— 6 0.12 0.45 1.50 0.018 0.040 0.0059 第5項適用 ⑥— 7 0.15 0.43 1.60 0.011 0.024 0.0060 0.0059 0.00 0.0 0.3 0.27 1.37 0.012 0.031 0.0048 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	50 0.018 0.04 60 0.011 0.02 37 0.012 0.03 27 0.014 0.02 造 条 件 造 条 件 高速 医延加熱 匈極	0059 0060 0048 0048	- - 0008 00038 00009	0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2	0 0 3	+	1	0.4 0	0 5	0.0058
第5項適用 ⑤— 7 0.15 0.43 1.60 0.011 0.024 0.0060 0.003 0.003 0.00048 0.00000000000000000000000000000	60 0.011 0.02 37 0.012 0.03 27 0.014 0.02 造 条 件 造 条 件	0 0 6 0 0 4 8 0 0 0 3 8	0008 00038 00038	0 2 0 0 2	0 3		1	0.37	0 8	0.0053
(5) - 8 0.13 0.27 1.37 0.012 0.031 0.0048 0.0 第5項適用 (5) - 9 0.13 0.27 1.37 0.012 0.031 0.0048 0.0 製 造 条 件	37 0.012 0.03 37 0.012 0.03 27 0.014 0.02 造 条 件 か速 圧延加熱 匈板 前) 温度(で) 処理	0 0 4 8 0 0 0 3 8	0008	0 2	1 1 4	<u> </u>	 	0.33	0	0.0058
文 鋼 (5) 9 0.13 0.27 1.37 0.012 0.031 0.0048 0.0 第5項適用 (5) (5) 1.21 0.014 0.027 0.0038 0.0 第5項適用 (5) (5) 1.27 0.014 0.027 0.0038 0.0 第5項適用 (5) (6) 1.1300 (7) (7) (2) 4.0.3 5 第5項適用 (5) 1.1300 0.6 1.150 AR 20 4.0.2 5 第5項適用 (5) 4.1320 0.6 1.150 AR 20 4.0.2 5 第5項適用 (5) 4.1320 0.6 1.150 AR 20 4.0.2 5 第5項適用 (5) 5.1320 0.6 1.150 AR 20 4.0.2 5	37 0.012 0.03 27 0.014 0.02 造 条 件 計画 (定加熱 の熱 (調板) (調板) (調板) (調板) (調板) (調板) (調板) (調板)	0048	0038	0 2	1 6	1		- 0.3 5	0 8 9	0.0049
第5項適用 ⑤—10 0.14 0.18 1.27 0.014 0.027 0.0038 0.0 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	27 0.014 0.02 造条件 高速 圧延加熱 の熱 腕) 温度(で)処理	0038	6000	0 2	ء	1	-	0.35	0 8	0.0044
会 会 条件 会 会 会 条件 会 会 会 会 会 の の の の の の の の 2 1300 0.6 1150 AR 20 46.6 66 数 の 2 1320 0.6 1150 AR 20 46.6 66 数 第 3 1320 0.6 1150 AR 20 46.6 66 数 第 3 1320 0.6 1150 AR 20 46.2 5 数 第 5 1320 0.6 1150 AR 20 46.2 5 数 9 5 1320 0.6 1150 AR 20 40.2 5	条 件 圧延加熱 匈板 温度(で) 処理				د	1	-	0.3 5	0 9	0.0091
分塊均熱 分塊均差 分塊均差 石塊分速 圧延加熱 御板 板厚 降伏点 抗 第5項適用 ⑤- 1 1300 0.6 1150 AR 20 4 0.3 5 数 鋼 ⑤- 2 1300 0.6 1150 AR 20 4 0.2 5 第5項適用 ⑥- 3 1300 0.6 1150 AR 20 4 0.2 5 第5項適用 ⑥- 4 1320 0.6 1150 AR 20 380 5 第5項適用 ⑥- 5 1320 0.6 1150 AR 20 380 5	圧延加熱 郷板 温度(で) 処理	_	母 材 梅	和			姓	椒	特件	
第 温度(で) (で/min) 温度(で) (AB (max) (kg/mik) (kg 第 5 項適用 ⑤ - 1 1300 0.6 1150 AR 20 4 6.6 6 6 6 6 6 1350 0.6 1150 AR 20 4 6.6 6 6 6 6 6 1350 0.6 1150 AR 20 4 6.2 5 第 5 第 5 1320 0.6 1150 AR 20 3 8 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	温度(で) 処理	降伏点	抗張力伸び	五 五 4	¢2	最高硬さ	手容接継手 HAZの靱		大入穀容 接継手 の靭性	手HAZ
第5項適用 ⑤- 1 1300 0.6 1150 AR 20 4 0.3 5 6. 政 鋼 ⑤- 2 1300 0.6 1150 AR 20 4 6.6 6 0. 第5項適用 ⑥- 4 1320 0.6 1150 AR 20 4 0.2 5 4. 第5項適用 ⑥- 5 1320 0.6 1150 AR 20 4 0.2 5 6.		(Kg/mi)	(%)	(kg-m)	<u>)</u> (၁)	(3101)		n)	容接法及び入熱	、数(Kg-m)
英類 ⑤ 2 1300 0.6 1150 AR 20 46.6 60. 英類 ⑥ 3 1300 0.6 1150 AR 20 40.2 54. 第5項適用 ⑥ 4 1320 0.6 1150 AR 20 38.0 56. 改 額 ⑤ 5 1320 0.6 1150 AR 20 40.2 57.	6 1150 AR	0 4 0.		12.6	-35	230	1 6.	2 S	AW(KJ/ 9 0	ст) 1 0.7
效 鋼⑤-313000.61150AR2040.254.第5項適用⑥-413200.61150AR2038056.效 鋼⑤-513200.61150AR2040.257.	6 1150 AR	0 4 6.6		1 8 1	-45	240	1 4.	8	0 6	6.8
第5項適用 ⑤— 4 1320 0.6 1150 AR 20 3.8.0 5.6. 数 ⑤— 5 1320 0.6 1150 AR 20 4.0.2 5.7.	6 1150 AR	0 4 0.2		11.6	09-	260	1 3.	9	0 6	3.6
茨 鄭 (5- 5 1320 0.6 1150 AR 20 40.2 57.	6 1150 AR	0 38.		12.1	[-20]	280	1 0.	3	0 6	8. 1
	6 1150 AR	0 4 0.		7.5	0	290	œ	7	0 6	2.9
網第5項通用⑤- 6 1350 0.6 1150 AR 20 39.4 52.	6 1150 AR	0 3 9.		19.3	-40	2 4 0	12.	m	0 6	6.7
第5項適用 ⑤ 7 1350 (800でまで) 1150 AR 20 43.2 57.	1150 AR	0 4 3.		2 0.6	-45	3 4 0	1 2.	က	0 6	6.7
(5-8 1350 0.6 1150 QT 25 46.1 61.	6 1150 QT	5 4 6.		1 4.8	-45	370	1 8.	1 E	G150	1 4.3
比較鋼 (5-9 1350 0.6 1150 QT 25 469 62.1	6 1150 QT	5 46.		1 0.8	- 2 5	375	1 4.	9	150	3.9
本発明網 第5項適用 ⑤-10 1370 0.6 1150 QT 25 53.1 64.8	6 1150 QT	5 53.		18.3	09-	356	1 7.	3	150	1 1.2

第6表 第6の発明に関する実施例

			 -	т		1				1			_	_ [
#	0.02 µ 以下の TiN (%)	0.0 05 1	0.0 05 2	0.0 07 0	0.0049	0.0048	0.0059	0.0053	0.0052	0.0071	0.0096	0.0067	0.0044	0.0079	0.0050	0.0071	0.0067	0.0116	0.0 0 8 0
遊祭	CM (%)	0.340	0.300	0.260	0.100	0.080	0.380	0.472	0.272	0.210	0410	0.150	0.35	0.3 5	0.4 16	0.21	0.8 4	0.2 6	0.19
以	(%)	0.363	0.360	0.3 5 2	0.3 64	0.3 4 3	0.272	0.284	0.333	0.372	0.3 2 0	0.301	0.317	0.278	0.366	0.3 70	0.5 2 6	0.4 0 4	0.390
	W	1	ı	1	I	0.4 0	ı	ı	1	0.40	0.50	_	1	I	0.40	0.30	1	1	1
	Mo	1	0.30	ı	1	1	0.13	ı	1	1	0.31	0.10	0.09	0.15	0.10	0.10	0.28	0.10	0.15
	Cr	0.34	ı	I	1	1	0.25	0.3 1	0.21	0.12		~	1	ľ	0.2.0	1	0.31	1	i
	Cu	1	1	I	0.5 0	1	1	I	0.31	1	ı	0.30	1	0.20	0.18	ı	١	I	1
	N.	ſ	1	1.30	ı	1	ı	0.8 1	1	1	I	!	1.30	0.80	-	0.25	1.25	0.8 0	0.20
(%	g	_	1	1	1	I	ſ	ı	1	-	1		١	1	1	1	1	1	ı
₩ (>	1	1	I	l	-	1	ı	-	1	I	1	ı	1	-	[ı	0.0 3	0.04
及 2	В		l	ſ	ļ	1	1	1	1	1	í	1	1	1	1	I	I	ı	0.0010
李	N total	0.0 0 3 7	0.0 052	0.0 0 6 1	0.0047	0.0 0 8 0	0.0040	0.0072	0.0061	0.0 0 38	0.0051	0.0031	0.0047	0.0033	0.0 03 9	0.0041	0.0051	0.0 033	0.0046
韦	A1 total	0.012	0.022	0.027	0.043	0.011	0.021	0.045	0.013	0.0 4 3	0.0 2 1	0.0 4 7	0.011	0.021	0.0 41	0.029	0.033	0.013	0.0 3 7
	Ţ	0.018	0.020	0.014	0.0 2 0	0.010	0.014	0.023	0.007	0.011	0.019	0.016	0.020	0.013	0.017	0012	0.0 1 1	0.013	0.021
	Mn	0.87	0.8 7	120	1.15	0.98	0.59	0.67	0.92	1.25	8 60	0.53	0.92	0.75	1.30	121	1.40	1.27	1.3 1
	Si	0.15	0.25	0.3 4	0.3 0	0.21	0.3 1	0.21	0.18	0.28	03 1	0.31	0.17	0.25	02.1	0.17	0.27	0.27	021
	ນ	0.15	0.14	0.12	0.16	0.17	0.09	0.09	0.12	0.13	0.07	0.18	0.11	0.09	0.07	0.14	0.13	0.14	0.13
	褰	6- 1	2 —9	6— 3	6- 4	6- 5	9 -9	6- 7	89	6 -0	6 −1 0	6-11	6-12	6-13	6-14	6-15	6-16	6-17	6~18
	\$						ı e	第6項(<u>.</u>		۳	۳	<u>. =</u>	<u>, </u>	10	数额		通用
	<u>M</u>							大路	基								比	¥ ₩	憲

	74	vEo(kg-m)	9.2	7.5	1 49	12.3	1 4.2	1.0.1	10.4	1 5.0	18.7	11.4	10.8	9.0	1 4.7	8.2	13.3	4.3	10.6	12.7
特性	大入熱容接継手H	容接法及び入熱	S AW (ΚJ/cm) 9 0	SAW(KJ/cm) 90	SAW(KJ/cm) 90	SAW(KJ/cm)	SAW(KJ/cm) 90	E.G. 150	EG 150	SAW90	06WA S	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150	EG 150
格格	手格接機手	H A Z 20 数 在 v E o (kg — m)	1.2.1	9.8	1 7.2	1 7.9	13.2	2 0.6	2 4.3	16.2	18.2	20.6	9.6	17.1	23.4	22.7	1 4.3	10.6	6.6	13.1
	40	$\begin{pmatrix} S & Z \\ 0 & 1 \end{pmatrix}$	3 2 5	378	316	323	314	2 65	235	301	352	241	340	295	270	298	350	422	4 08	392
		(C)	-40	-15	06-	-25	-20	-40	09-	-25	-35	-80	-45	-5.0	-50	-65	-65	08-	-45	08-
件	4,	√K-10 (Kg-π)	12.1	8.6	1 7.6	12.7	19.2	2 9.3	3 0.6	1 9.3	2 0.9	38.0	26.3	1 9.7	18.7	2 6.3	19.3	1 2.3	1 8.3	14.6
來	_	#% \$	46	32	3.9	40	3.9	47	48	46	42	28	2.7	4.2	43	24	22	22	2.1	20
母林	1	九.城 万 (kg/聖)	4 4.3	4 7.6	52.4	5 0.1	4 72	4 0.8	4 4.1	4 2.0	47.3	5 6.9	5.4.3	5 0.7	5 1.0	6 3.1	6 4.5	7 5.3	71.3	7 7.4
	147	(Se/星)	2 8.0	3 0.2	3 9.3	3 2.4	30.0	22.7	2 3.0	2 83	32.0	4 7.0	42.6	3 3.0	3 3.2	5 2.3	5 4.3	63.2	60.2	6 4.8
	Ā	() () ()	25	25	25	25	25	25	25	25	25	25	2.5	25	25	25	2.5	25	2.5	25
	鋼板		A R	AR	Z	AR	AR	z	z	A R	z	Q T	Q T	z	z	Q T	Q T	Q T	Q T	Q T
条件	正延加	熱温度(ひ)	1150	1150	1150	1150	1150	1150	1150	1150	1150	0511	1150	1150	1150	1150	1150	1150	1150	1150
製造	÷ 4.4. 0	ケ鬼后氓(で/眉)	1.0	1.0	50 (800c定)	1.0	50 (3000年)	1.0	1.0	1.0	1.0	50 (800年)	1.0	1.0	1.0	1.0	1.0	50(800定)	50 (800℃左)	50 (800克 <u>定</u>)
	 分塊均	繁	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
		*	1 -	- 2	- 3	- 4	- 5	9 –	L -	- 8	6 –	- 10	- 1 1	-12	-13	-14	- 15	-16	-17	- i 8
			<u> </u>	<u> </u>	6	<u> </u>	ම	<u> </u>	(a)	<u></u>	<u></u>	<u> </u>	<u></u>	ම	<u></u>	ၜ	9	M (6)—	9	<u> </u>
		安							本名第6項品金属	E E								較倒	第6項	理
		<u></u>							₩ 第 第	Ę R								丑	女祭	温

昭和49年特許顧第70167号(特公昭57-34333号、昭57.7.22発行の特許公報 3(4)-43(187)号掲載)については特許法第64条の規定による補正があつたので下記のどおり 掲載する。

> 特許第1221 2 4 5 号 Int. Cl. 3 識別記号 庁内整理番号 9/52 7371 -4 K C 21 D 104 1/84 7730 – 4 K 8/06 7047-4 K ĆBD C 22 C 38/02 7147-4 K 38/04 CBC 7147-4 K

記

1 「特許請求の範囲」の項を「1 C:0.09~0.25%、Si:0.05~1.2%、Mn:0.9~2.2%、B:0.005%以下にTi:0.25%以下、Zr:0.30%以下、Nb:0.15%以下を単独或いは複合して含有し残りが鉄および不可避的不純物からなる鋼を熱間圧延後1~50℃/secの冷却速度で調整冷却し、ベイナイトを主体とした組織となし圧延まま、或いはストレンチ加工もしくは引抜加工を施したのち、200~550℃でブルーイング熱処理することを特徴とするPCワイヤおよび鋼棒の製造法。

2 C: 0.0 9 ~ 0.2 5%、Si: 0.0 5 ~ 1.2%、Mn: 0.9 ~ 2.2%、B: 0.0 0 5 %以下にCr: 1.0%以下、Mo: 0.5 0 %以下を 1 種以上含むものにTi: 0.2 5%以下、Zr: 0.3 0 %以下、Nb: 0.1 5 %以下を単独或いは複合して含有し残りが鉄および不可避的不純物からなる鋼を熱間圧延後 1 ~ 5 0 ℃/sec の冷却速度で調整冷却と、ベイナイトを主体とした組織となし圧延まま、或いはストレンチ加工もしくは 引抜加工を施したのち、200~550℃でブルーイング熱処理することを特徴とする P C ワイヤおよび鋼棒の製造法。」と補正する。

2 「発明の詳細な説明」の項を「本発明は、ベイナイトを主体とした組織を有する圧延まま線材を素材として圧延まま、またはストレルチ加工もしくは引抜加工を施したのち、ブルーインク熱処理することを特徴とする強度、延性とも高く、高温レラクセーションロスが少なくかつ耐応力腐食性の高、PCワイヤおよび鋼棒の製造法K関するものである。

PC構造物に使用される。PCワイヤおよび鋼棒については、JIS G3109、JIS G3528、JIS G3536に規格化されており、(1)高強度であること、(2)適度の延性を有すること、(3)レラクセーションロスの少ないことが特に重要な品質特性である。このうち(3)のレラクセーションロスは温度依存性の高い特性値であるが、上記JIS規格には、常温×10hr の値のみが規定されている。

従来、PCワイヤおよび鋼棒の製造法としては、素材としてJIS G3502のピアノ線材をバテンテインク熱処理したのち冷間伸線し以後ブルーイング熱処理をするか、あるいは中炭素キルド鋼を焼入焼戻処理する(JIS G3109)のが一般的である。これらの方法により製造されたPCワイヤおよび鋼棒は、常温レラクセーションロスが02~1.0%と比較的小さく実用上の問題は少ないが、常温以上では急激にその値を増大するという欠点がある。すなわち、第1図に示すような実用的にも意味のある熱サイクルを与えた場合、レラクセーションロスは20~25%に達し、例えばオートクレープを利用した高温高圧養生(短期養生)工程を採用したPC部材用にこの種のPCワイヤを使用することは初期導入応力が減少するので、実用上大きな問題となつている。

PCワイヤおよび鋼棒の高温レラクセーションロスを減少せしめる方法としては2 5 0~3 5 0℃の温度範囲でPCワイヤに引張応力を付与することにより可動転位を固着させレラクセーションロスを低減させる方法があり、この方法に依ればプルーイング熱処理だけの場合に比較して高温レラクセーショ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ CRAY SCALE DOCUMENTS
□ CREFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.