Business Analytics

Session 8a. Difference-in-Differences

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

Midterm Feedback

More explanations on coding.

Sample questions for final.

Slow down the pace.

Proof read code and lecture notes.

Some Questions from Office Hours

- No coding in the final exam.
 - Though you may be asked to recognize a short piece of code.
- t-test: To examine whether the mean value of a variable in two samples is the same.
 - 95% confidence interval: $[-1.96\widehat{SE}, 1.96\widehat{SE}]$
 - If $\hat{\mu}_1 \hat{\mu}_2$ is out of the 95% confidence interval, the mean values of a variable in two samples are statistically different.
- Balance check: Make sure that the treatment assignment mechanism is well randomized.
 - The distribution of each covariate is the same for the treatment group and the control group.
- Including interactions of treatment and covariate in causal inference: When you believe the causal effect depends on the covariate.

Selection on Unobservables

 Often treated and untreated subjects differ in unobservable characteristics that are associated with potential outcomes even after controlling for differences in observed characteristics.

• In this case, treated and untreated subjects are not directly comparable. What can we do then?

 If we can trace the subjects over-time, we can say more about the causal effect of treatment.

Do higher minimum wages reduce employment?

Example: Minimum Wage and Employment

- Difficult to measure the impact of minimum wage on employment.
- Card and Krueger (1994) consider impact of New Jersey's 1992 minimum wage increase from \$4.25 to \$5.05 per hour.
- Compare employment in 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise.
- Survey data on wages and employment from two waves:
 - Wave 1: March 1992, one month before the minimum wage increase.
 - Wave 2: December 1992, eight month after the increase.

Restaurant Locations

Before Minimum Wage Rise

After Minimum Wage Rise

Diff-in-Diff Setup

- Subjects: $i = 1, 2, \dots, N$ (N is the sample size)
- Treatment: $W_i \in \{0,1\}$, not necessarily randomly assigned
- Two periods:
 - t = 0: Pre-treatment period
 - t = 1: Post-treatment period
- Potential outcomes:
 - $Y_{it}(1)$: Potential outcome of subject i in period t if treated.
 - $Y_{it}(0)$: Potential outcome of subject *i* in period *t* if not treated.
- ullet # of treated/untreated subjects: $N_1 = \sum_{i=1}^N W_i$ and $N_0 = N N_1$
- Causal effect of treatment for subject i in period t:

$$\mathbf{Y}_{it}(1) - \mathbf{Y}_{it}(0)$$

Diff-in-Diff Identification Strategy

Want to estimate:

$$ATT = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|W_i = 1]$$

	Post-Period ($t = 1$)	Pre-Period ($t = 0$)
Treated ($W_i = 1$)	$\mathbb{E}[\mathbf{Y}_{i1}(1) \mathbf{W}_i=1]$	$\mathbb{E}[\mathbf{Y}_{i0}(0) \mathbf{W}_i=1]$
Control ($W_i = 0$)	$\mathbb{E}[\mathbf{Y}_{i1}(0) \mathbf{W}_i=0]$	$\mathbb{E}[\mathbf{Y}_{i0}(0) \mathbf{W}_i=0]$

- Missing potential outcome: $\mathbb{E}[\mathbf{Y}_{i1}(0)|\mathbf{W}_i=1]$, i.e., the average post-period outcome for treated in the absence of the treatment.
- Paralell trends assumption:

$$\mathbb{E}[\mathbf{Y}_{i1}(0) - \mathbf{Y}_{i0}(0) | \mathbf{W}_{i} = 1] = \mathbb{E}[\mathbf{Y}_{i1}(0) - \mathbf{Y}_{i0}(0) | \mathbf{W}_{i} = 0]$$

Under the parallel trends assumption,

$$ATT = \mathbb{E}[\mathbf{Y}_{i1}(1) - \mathbf{Y}_{i0}(0)|\mathbf{W}_{i} = 1] - \mathbb{E}[\mathbf{Y}_{i1}(0) - \mathbf{Y}_{i0}(0)|\mathbf{W}_{i} = 0]$$

Diff-in-Diff Identification Strategy

Estimation of Causal Effect using Diff-in-Diff

Diff-in-Diff Estimator

$$\widehat{ATT} = \left\{ \frac{1}{N_1} \sum_{W_i=1} \mathbf{Y}_{i1}(1) - \frac{1}{N_0} \sum_{W_i=0} \mathbf{Y}_{i1}(0) \right\} - \left\{ \frac{1}{N_1} \sum_{W_i=1} \mathbf{Y}_{i0}(0) - \frac{1}{N_0} \sum_{W_i=0} \mathbf{Y}_{i0}(0) \right\} \\
= \left\{ \frac{1}{N_1} \sum_{W_i=1} (\mathbf{Y}_{i1}(1) - \mathbf{Y}_{i0}(0)) - \frac{1}{N_0} \sum_{W_i=0} (\mathbf{Y}_{i1}(0) - \mathbf{Y}_{i0}(0)) \right\}$$

- ullet Theorem. If the parallel trends assumption holds, $\widehat{ATT}pprox ATT$.
- Estimated standard error of ATT:

$$\widehat{\mathit{SE}} = \sqrt{\frac{\hat{\sigma}_1^2}{\mathsf{N}_1} + \frac{\hat{\sigma}_0^2}{\mathsf{N}_2}},$$

where $\hat{\sigma}_1$ is the sample standard error for $\mathbf{Y}_{i1}(1) - \mathbf{Y}_{i0}(0)$ in the treatment group and $\hat{\sigma}_0$ is the sample standard error for $\mathbf{Y}_{i1}(0) - \mathbf{Y}_{i0}(0)$ in the control group.

Example: Impact of Minimum Wage on Employment

	Stores by state		
Variable	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
FTE employment before, all available observations	23.33 (1.35)	20.44 (0.51)	-2.89 (1.44)
2. FTE employment after, all available observations	21.17 (0.94)	21.03 (0.52)	-0.14 (1.07)
3. Change in mean FTE employment	-2.16 (1.25)	0.59 (0.54)	2.76 (1.36)

Diff-in-Diff Estimator using Regression

- Regression: $\mathbf{Y} \approx \hat{\beta}_0 + \hat{\beta}_1 \mathbf{W} + \hat{\beta}_2 \mathbf{t} + \hat{\beta}_3 (\mathbf{W} \cdot \mathbf{t})$.
 - $\hat{\beta}_3$ is the causal effect we are interested in.

	Post-Period ($t=1$)	Pre-Period ($t = 0$)	After-Before
Treated ($W_i = 1$)	$\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$	$\hat{\beta}_0 + \hat{\beta}_1$	$\hat{\beta}_2 + \hat{\beta}_3$
Control ($W_i = 0$)	$\hat{\beta}_0 + \hat{\beta}_2$	\hat{eta}_0	\hat{eta}_2
Treatment-Control	$\hat{\beta}_1 + \hat{\beta}_3$	\hat{eta}_1	\hat{eta}_3

- Question: How do we interpret $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, and $\hat{\beta}_3$?
- With other covariates: Diff-in-Diff + Propensity Score Matching (make the treatment and control groups comparable)
- Using multiple periods before and after treatment.

- Self-selection and targeting:
 - Self-selection: participants in worker training programs experience a decrease in earnings before they enter the program.
 - Targeting: policies may be targeted at units that are currently performing best (or worst).

- Self-selection and targeting:
 - Self-selection: participants in worker training programs experience a decrease in earnings before they enter the program.
 - Targeting: policies may be targeted at units that are currently performing best (or worst).

- Compositional Differences Across Time:
 - The composition of the sample may change between periods, i.e. due to migration.
 - This may confound any DiD estimate since the "effect" may be attributable to change in population.

- Long-term effects:
 - Parallel trends assumption is hardly true in the long run.

- Functional form dependence:
 - Training program for young workers: Employment for young workers increases from 20% to 30%.
 - Control: Employment for old workers increases from 5% to 10%.
 - DiD effect: (30% 20%) (10% 5%) = 5%.
 - If we take log: $(\log(0.3) \log(0.2) (\log(0.1) \log(0.05)) < 0$
 - DiD estimates are more reliable if treated and control are more similar in period 0.

Life-Saving Diff-in-Diff

• The cholera epidemic in London in 1849 killed over 14,000 lives.

- John Snow (the father of modern epidemiology and biostatistics)
 believed cholera was spread by cotaminated water.
 - How to prove it?

Life-Saving Diff-in-Diff

- First Difference: Water provided by two companies, (1) the Lambeth and (2) the Southwark and Vauxhall. Both got water from the Thames.
- Second Difference: Before and after 1852. In 1852, Lambeth moved their intake upriver.
- Before moving:
 - The same death rates for the housholds under the two companies.
- After moving:
 - Southwark and Vauxhall: 71 cholera deaths/10,000 homes.
 - Lambeth after moving water source: 5 cholera deaths/10,000 homes.
- As a result, Southwark and Vauxhall moved their intake upriver in 1855 and the epidemic subsided.