情報構造第四回

良いアルゴリズムとは

おまけ

JST ERATO 港離散構造処理系プロジェクト YouTube MiraikanChannnel

『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう! https://youtu.be/Q4gTV4r0zRs

本日の内容:

- アルゴリズム
 - べき乗 aⁿ の計算
- 計算量
 - ランダムアクセス機械
 - ・ 漸近的計算量(おおよその計算量)
 - nⁿの計算量
 - ・バブルソート, 階乗計算の計算量

アルゴリズム

ある目的のために、どのような手続きを表現するかを記述した 手順書

- 問題を解くための機械的操作からなる、有限の手続き
 - ・機械的操作:四則演算やジャンプなど有限個の命令の集まり
 - 有限の手続き:有限の時間で必ず停止する
 - 数列の極限 $\lim_{n \to \infty} a_n$ は停止しないので<u>命令ではない</u>

アルゴリズムの例:べき乗計算

- べき乗計算 (Ocamlの一回目の授業の演習で解いた?)
 - 入力:整数値 a と n
 - 出力:*a*ⁿ
- $a^n = ((\dots(((a \times a) \times a) \times a) \times \dots) \times a)$
 - 一つずつかけていく
 - n-1回のかけ算

アルゴリズムの例:べき乗計算(改良)

- ・nが偶数の時
 - $a^n = a^{2(\frac{n}{2})} = (a^2)^{n/2}$
- ・nが奇数の時

•
$$a^n = a \times a^{2(\frac{n-1}{2})} = a \times (a^2)^{(\frac{n-1}{2})}$$

- さらに
 - n/2や $\frac{n-1}{2}$ が偶数または奇数でさらに式変形ができる a a a

•
$$a^n = a^{2(\frac{n}{2})} = (a^2)^{n/2} = ((a^2)^2)^{n/4} = ((a^2)^2)^{2n/4} = \cdots$$

- 基本的に $n = 2^k$ に依存して計算回数が変動する
- つまりおおよそ $k = \log_2 n$ 回で計算可能になる

アルゴリズムの重要性

• n = 1024のときのかけ算の回数

一つずつかける

1023回

(およそ *n*回)

• 改良

10回

(およそ $\log n$ 回)

発散の仕方が まったく異なる

アルゴリズムの選択は 重要!!

アルゴリズムの効率:計算量

- アルゴリズムの効率を決める尺度
 - 時間計算量(time complexity):計算に要する時間
 - 領域計算量(space complexity):使われるデータの大きさ
- 入力サイズに依存
 - 値の大きさ:整数のような原子データ型
 - 例えば、階乗計算
 - 要素数:配列のような要素をもつデータ構造
 - 例えば:並び替え(ソート)

計算機のモデル

- プログラミング言語やハードウェアに依存しない議論がしたい ⇒計算機のモデルをつくり、ステップを数える
- 計算機のモデル
 - 例:
 - チューリング機械、ランダムアクセス機械(RAM)、 λ 計算、帰納的関数など
 - 計算可能性について議論
 - アルゴリズムを一律に比較

ランダムアクセス機械RAM

- 現在のコンピュータに近いモデル
- 構成
 - ①入力テープ
 - ②出力テープ
 - ③プログラム
 - 命令の列
 - ④プログラムカウンタ
 - 現在命令中の命令
 - ⑤メモリ
 - 任意の大きさの整数を蓄える
 - ⑥累算器
 - 演算結果を累積 (メモリのr0)

ランダムアクセス機械のプログラム

- プログラム内の命令(単位時間で実行されると過程)
 - 算術命令:
 - 四則演算(累算器 r0 を介して行う)
 - 入出力命令:
 - 読み取り、書き込み(入力テープをそれぞれ右へ1つ進める)
 - 分岐命令:
 - ジャンプ, 条件分岐, 停止

```
RAMプログラム
        READ
        LOAD
        JGTZ
        WRITE
                =0
        JUMP
                endif
        LOAD
pos:
        STORE
                =1
        STORE
        LOAD
while:
        JGTZ
                continue
                endwhile
        JUMP
continue: LOAD
        MULT
        STORE
        LOAD
        SUB
                =1
        STORE
        JUMP
endwhile: WRITE
        HALT
endif:
```

プログラムの例

プログラムの命令

• 命令の記述法

書き方: 命令コード オペランド(被演算子)

LOAD

• オペランド a :算術・入出力命令(3種類の書き方)

=i整数 i そのもの (リテラル)i第 i レジスタ (番地) の内容 第iレジスタ(番地)の内容(ポインタ)

間接番地:第iレジスタの内容iの,第iレジスタの内容(ポインタのポインタ)

プログラムの例

RAMプログラム **READ LOAD**

endif

endwhile

while

JGTZ WRITE **JUMP**

LOAD STORE SUB STORE

LOAD

JGTZ

JUMP

MULT STORE LOAD

STORE

JUMP

HALT

continue: LOAD

endwhile: WRITE

while:

endif:

• オペランド a の値 v(a)の定義 (c(i)は第 i レジスタの整数)

v(=i) = i オペランドの値 i そのものを表す

v(i) = c(i) 第 i レジスタの持つ値を表す

v(*i) = c(c(i)) 第 i レジスタの持つ値の間接番地の値

• オペランド b : 分岐命令の場所を表すラベル(このラベルは命令コードの前に記述)

JUMP

b: I OAD

代表的な命令とその意味

命令コード	<u>オペランド</u>	意味 $\begin{bmatrix} 0$ は累算器 $\\ c(i)$ は第 i レジスタの値 $\\ v(=i) = i$ オペランドの値
LOAD	а	$v(a) \rightarrow c(0)$ $ v(i) = c(i) 第 i レジスタの持 \\ v(*i) = c(c(i)) 第 i レジスタ$
STORE	i	$c(0) \rightarrow c(i)$
STORE	* i	$c(0) \rightarrow c(c(i))$
ADD	а	$c(0) + v(a) \rightarrow c(0)$
MULT	а	$c(0) * v(a) \rightarrow c(0)$
SUB	а	$c(a) - v(a) \rightarrow c(0)$
READ	i	入力値 (入力ヘッドの値) → c(i)
READ	* i	入力值 → c(c(i))
WRITE	a	v(a)→ 出力ヘッド下のセル
JUMP	b	bの表す番地 →プログラムカウンタ
JGTZ	b	c(0)>0のとき、b→プログラムカウンタ
HALT		プログラムの実行停止

│c(i)は第ⅰレジスタの値 値iそのもの 持つ値 タの持つ値の間接番地の値

$$\mathbf{a} = \begin{cases} = 1 \\ i \\ *i \end{cases}$$

命令の例:LOAD

命令

命令コード	<u>オペランド</u>	<u>意味</u>	r_0	
LOAD	а	$v(a) \rightarrow c(0)$	r ₁	5
LOAD	=3	roに3をセット	r ₂	1
LOAD	3	roに2をセット	r ₃	2
LOAD	*3	roに1をセット		•
	<u>.2</u> =1		'	ı

```
=i 整数 i そのものを表す(リテラル)
i 第 i レジスタの内容を表す
*i 間接番地:第 i レジスタの内容が j のとき,第 j レジスタの内容
```

命令の例:STORE

命令

命令コード	<u>オペランド</u>	<u>意味</u>	r_0	7
STORE	i	$c(0) \rightarrow c(i)$	r ₁	5
STORE	*i	$c(0) \rightarrow c(c(i))$	r ₂	1
STORE	3	7をr3にセット	r ₃	2
STORE	*3	7をr2にセット		•
STORE	=3 ×	あり得ない!		•

```
=i 整数 i そのものを表す(リテラル)
i 第 i レジスタの内容を表す
*i 間接番地:第 i レジスタの内容が j のとき,第 j レジスタの内容
```


RAMプログラム例: $f(n) = n^n$

$$f(n) = n^n$$
 … $n > 0$
 O … その他
 出力テープ 27

• 分かり易さのために、RAMプログラムの右側に同じ機能のCプログラム, 日本語説明を記す

n^n のフローチャート

```
#include <stdio.h>
int r1, r2, r3;
int main(void){
  scanf("%d", &r1);
  r2 = r1;
  r3 = r1-1;
  if(r1 <= 0){
     printf("%d\fomation n", 0);
  }else{
     while (r3>0)
        r2 *= r1;
        r3 -= 1;
     printf("%d\u00e4n", r2);
  return 0;
```


R	AMプロク	<u> </u>	対応するC言語風表現	日本語説明	
	READ	1	scanf("%d", &r1);	入力テープの値をr1にセット	
	LOAD	1		r1の値をr0にセット	
	JGTZ	pos	if $(r1 \le 0)$	r0の値が0より大きいとき posラベルへ	ヽジャンプ
	WRITE	=0	printf("%d",0);	0を出力テープにセット	
	JUMP	endif		endifラベルヘジャンプ	
pos:	LOAD	1	else	r1の値をr0にセット	
	STORE	2	r2=r1;	r0の値をr2をにセット	
	SUB	=1		r0の値から1を引いてr0にセット	
	STORE	3	r 3= r1-1;	r0の値をr3にセット	
while:	LOAD	3		r3の値をr0にセット	
	JGTZ	continue		r0が0より大きいとき continueヘジャンプ	
	JUMP	endwhile	while (r3>0) {	endwhileラベルヘヘジャンプ	メモリ
continue	LOAD	2		r2の値をr0にセット	r ₀ 累算器
	MULT	1		r0の値にr1の値をかけてr0にセット	光 升 伯
	STORE	2	r2=r2* r1;	r0の値をr2にセット	r_1
	LOAD	3		r3の値をr0にセット	r_2
	SUB	=1		r0の値から1を引いてr0にセット	_
	STORE	3	r3=r3-1;	r0の値をr3にセット	r ₃
	JUMP	while		whileラベルヘジャンプ	:
endwhile		2	printf("%d", r2); };	rOの値を出力テープにセット	•
endif:	HALT			プログラム実行停止	

$f(n) = n^n$:初期設定

```
scanf("%d", &r1);
        READ
                                                    入力が0以下ならば、
        LOAD
                                                    0を出力して終了
        JGTZ
                    pos
                             if (r1<=0) printf("%d",0);
        WRITE
                    =0
                                                                 LOAD 1
        JUMP
                    endif
        LOAD
                             else {
pos:
                                                              r_2
        STORE
                                r2=r1;
                                         r₁:3
                                               入力値
                                                                 STORE 2
        SUB
                                        r<sub>2</sub>:3<sup>1</sup> 求める値
                               r3=r1-1; r<sub>3</sub>:2(3-1)ループ
        STORE
                                                 カウンタ
         --- ここからループ -----
                                        r<sub>3</sub>:2のループの始まり
while:
        LOAD
```

$f(n) = n^n : \mathcal{V} - \mathcal{I} \square \square$

```
-----r<sub>3</sub>:2のループの始まり
while:
          LOAD
                                 r<sub>1</sub>:3 入力値
while (r3>0)<sup>r</sup>2<sup>:31</sup> 求める値
          JGTZ
                     continue
                     endwhile
          JUMP
                                                  r<sub>3</sub>:2(3-1)最初のループ
                        2
continue: LOAD
                                                            カウンタ値
          MULT
          STORE
                                       r2=r2*r1;
                        3
          LOAD
                                                       r<sub>1</sub>:3 入力值
                                                       r<sub>2</sub>:9(3<sup>2</sup>) 求める値
          SUB
                                                     r<sub>3</sub>:1(3-2) 次の
                                      r3=<u>r3</u>-1;
          STORE
                        3
                                                    カウンタ値
ループの最後r<sub>3</sub>:1
          JUMP
                        while
```

$f(n) = n^n$: ループ2回目

```
-----r<sub>3</sub>:1のループの始まり
while:
         LOAD
                                             r<sub>1</sub>:3 入力值
         JGTZ
                   continue
                              while (r3>0)^{r_2:9(3^2)} 求める値 r_3:1(3-2) ループ
                   endwhile
         JUMP
                     2
continue: LOAD
                                                        カウンタ値
         MULT
         STORE
                                   r2=r2*r1;
                      3
         LOAD
                                              r<sub>1</sub>:3 入力值
         SUB
                                   r<sub>2</sub>:27(3<sup>3</sup>) 求める値
r3=r3-1; r<sub>3</sub>:0(3-3) 次の
                      3
         STORE
                                     ----- カウンタ値
         JUMP
                      while
                                              ループの最後r<sub>3</sub>:0
```

$f(n) = n^n$:ループ3回目-最終

```
while:
        LOAD
                                             r<sub>3</sub>:0のループの始まり
                                             r<sub>1</sub>:3 入力值
         JGTZ continue
        JUMP endwhile while (r3>0) r<sub>2</sub>:27(3³) 求める値
---- r<sub>3</sub>=0 よりループ終了 : endwhileにとぶ--- r<sub>3</sub>:0(3-3) ループ
                                                      カウンタ値
continue: LOAD
                 2
         MULT
         STORE
                                r2=r2*r1;
        LOAD
         SUB
                    =1
         STORE
                                r3=r3-1;
         JUMP
                    while
```

RAMプログラムの計算量

RAMプログラムの計算量

- 二つの計算量
- •時間計算量の「実行時間の単位」:命令ステップの時間
- •領域計算量の「領域の単位」:レジスタの使用量

- 二つの計算量基準
- ・一様コスト基準
- ・対数コスト基準

一様コスト基準

- 一様コスト基準 (uniform cost criterion)
 - すべての演算において一定のコストを割り当てる
- 時間計算量
 - ・どのRAM命令も1単位の時間で実行

- 領域計算量
 - どのレジスタも1単位の領域を占める

通常,このコスト基準で論じられる

対数コスト基準

- 対数コスト基準 (logarithmic cost criterion)
 - 数値の大きさ(ビット数)に比例したコストを割り当てる

•
$$l(i) = \begin{cases} \log_2|i| + 1 & i \neq 1 \\ 1 & i = 0 \end{cases}$$
 ビットは二進数

オペランドaの種類に応じた対数コストt(a)

オペランドa コスト t(a)
$$=i \qquad l(i)$$

$$i \qquad l(i)+l(c(i))$$
*i
$$l(i)+l(c(i))+l(c(c(i)))$$

• 大きな数字を扱うことが本質的な問題の時に用いられる

各命令の対数コスト基準時間計算量

<u>命令</u>		コスト	
LOAD	a	t(a)	
STORE	i	l(c(0)) + l(i)	l(c(0))
STORE	* i	l(c(0)) + l(i) + l(c(i))	
ADD	a	l(c(0)) + t(a)	r ₀
SUB	a	l(c(0)) + t(a)	
MULT	a	l(c(0)) + t(a)	$\lfloor r_j \rfloor$
READ	i	l(入力記号) + l(i)	l(c(c(i)))
WRITE	a	t(a)	
JUMP		1	r _i j
JGTZ		l(c(0))	1(('))
HALT		1	l(i) $l(c(i))$

対数コスト基準領域計算量

• 計算中に**レジスタr**_iに貯えられる整数の絶対値の 最大数を \mathbf{x}_i とするとき、 $\Sigma l(\mathbf{x}_i)$

漸近的計算量:大きいオー0と大きいオメガΩ

時間計算量と領域計算量:入力サイズnの関数 入力サイズが大きくなったときのアルゴリズムの振舞?

計算量の上界(大きいオー)と下界(大きいオメガ)で論じる

大きいオー (オーダー)

- 関数C(n)の上界:大きいオーで論じる
- 関数C(n)に対し、ある正定数 $k \ge n_0$ が存在して n_0 以上の n に対して、常に $C(n) \le k$ f(n) が成立するとき 『大きいオー〇』を使い、C(n) = O(f(n)) と記す…『C(n)は、f(n)のオーダーである』という。

- $C(n) \le k f(n)$
 - $\frac{C(n)}{f(n)} \le k$

- 大きいオーは、関数C(n)の「上界」を表す
- C(n)の「上界」は無数に存在する
- 注意: C(n)=O(f(n))の等号は厳密な意味での等号ではない!
- 注意: = O(f(n)) は必ず右辺に書く

nの関数のオーダの例

- $f(n) \leq k f(n) \downarrow \emptyset$, k f(n) = O(f(n))
- 3000 = O(1) ··· 定数時間(定数オーダ)
 - f(n)=1, k=3000とすればよい
- 100 n = O(n) ··· 線形時間
 - f(n)=n、k=100とすればよい(係数は無視できる)
- In n = O(log₂ n) · · · 対数時間
 - In n=(ln 2)log₂n ≤ log₂n 底変換しても変わらない(定数を省略して書くことも)
- $10n^2 + n^3 = O(n^3)$

 - $10n^2 + n^3 = O(n^3) = O(n^4) = O(n^5) = \cdots$
 - 最も大きな次数に吸収される

$$\frac{C(n)}{f(n)} \le k$$

大きいオメガΩ

- 関数C(n)の下界:大きいオメガで論じる
- 関数C(n)に対し、ある正定数kが存在して、 無限個のnに対して、k $f(n) \leq C(n)$ が成立するとき、 『大きいオメガ Ω 』を使い、 $C(n) = \Omega$ (f(n)) と記す
- ・大きいオメガは、関数C(n)の「下界」を表す
- C(n)の「下界」は無数に存在する
- 注意: $C(n) = \Omega(f(n))$ の等号も厳密な意味での等号ではない!

大きいシータの

- 関数C(n)の下界:大きいオメガで論じる
- C(n)の「上界」と「下界」は無数にあるため、C(n)=O(f(n))かつ $C(n)=\Omega(f(n))$ なるf(n)が存在する.これを $C(n)=\Theta(f(n))$ と記し、「上限」とする。
- 注意:C(n)=Θ(f(n))の等号も厳密な意味での等号ではない!
- それぞれの意味 (O, Ω, Θ)
 - O(f(n)) 上界: 速くてもf(n)と同じくらいで発散する
 - Ω(f(n)) 下界: **遅くても**f(n)と同じくらいで発散する
 - Θ(f(n)) 上限: だいたいf(n)と同じスピードで発散する

〔例〕
$$C(n)=3n^2+2n$$

- C(n) = O(n²),O(n³),O(n⁴),…が成立
- $C(n) = \Omega(n^2), \Omega(n), \dots$ も成立する
- C(n)=Θ(n²) n²/は3n²+2nの「上限」になる!

f(n)=nⁿの計算量は?

f(n)=nⁿの一様コスト基準時間計算 (ループ外)

```
scanf("%d", &r1);
              READ
              LOAD
                                          if (r1<=0)
printf("%d",0);
              JGTZ
                            pos
=0
              WRITE
                            endif
              JUMP
              LOAD
                                           else {
pos:
                            2
=1
3
              STORE
                                              r2=r1;
              SUB
                                              r3=r1-1;
while (r3>0) {
              STORE
while:
              JUMP
                            while
                                              printf("%d", r2); }
endwhile:
              WRITE
endif:
              HALT
```

- ・ループ以外の最初と最後の命令は、7+2回実行される(入力が0の時は6回) ・1命令の時間計算量は、1単位時間より、ループ以外の時間は9単位時間。

f(n)=nⁿの一様コスト基準時間計算 (ループ内)

```
while:
            LOAD
            JGTZ
                        continue
                                       while (r3>0) {
            JUMP
                        endwhile
continue:
            LOAD
            MULT
            STORE
                                             r2=r2*r1;
            LOAD
            SUB
                                             r3=r3-1; }
            STORE
            JUMP
                        while
```

- 1命令は、1単位時間より、1ループ9単位時間
- ループはn-1回周るので、時間計算量9(n-1)+3。
- このプログラムの一様コスト基準での総時間計算量
 - $T(n) = 9(n-1) + 3 + 9 = 9n+3 = O(n)_0$

f(n)=nnの対数コスト基準時間計算

f(n)=nnの対数コスト基準時間計算量(ループタ)

```
scanf("%d",&r1);
                                                                l(入力値n) + l(1)
           READ
           LOAD
           JGTZ
                      pos
                                  if (r1<=0) printf("%d",0);
           WRITE =0
           JUMP
                      endif
                                else {
r2=r1;
           LOAD
pos:
           STORE
           SUB
                                     r3=r1-1;
while (r3>0) {
           STORE
while:
           JUMP
                      while
endwhile:
           WRITE 2
endif:
           HALT
                                                                                    l(i) = \lfloor log_2|i| + 1 \rfloor
```

- SUB =1の実行時間は、l(c(0))=l(n)と l(1) との和より log₂n+2。
 他の命令も高々 log₂n+定数 である
 最後のWRITE 2 が nlog₂n+3
 ゆえに、O(nlog₂n)。

f(n)=nnの対数コスト基準時間計算量(ループ内)

```
while:
          LOAD
                                                                 シr₃:n−iのループの始まり
           JGTZ
                      continue
                                                                           入力値
                                                                  r_1:n
                                    while (r3>0) {
           JUMP
                      endwhile
                                                                           求める値
                                                                  r<sub>2</sub>:n<sup>i</sup>
continue:
           LOAD
                          ループ
           MULT
                                                                  r<sub>3</sub>:n-i
           STORE
                                        r2=r2*r1;
                                                                           カウンタ値
           LOAD
                                                                            求める値
                                                                  r_2:n^{i+1}
           SUB
                                                                  r<sub>3</sub>:n-(i+1) カウンタ値
           STORE
                                        r3=r3-1; }
           JUMP
                      while
                                                                ー> r₃:n−iのループの終わり
```

• ループ中のMULT 1の第i回ループ時の実行時間は *l*(c(0))+t(1)

•
$$r_0 = r_2 = n^i$$
, $r_1 = n \ \ l(n^i) + l(1) + l(n) = (i + 1) \log_2 n + 3 = O(i \log_2 n)$

 $l(i) = \lfloor log_2|i| + 1 \rfloor$

- 次のSTORE 2は、O(i log₂n)、LOAD 3 はO(log₂n)
 第i回目のループの実行時間は、ある定数kでk i log₂n
- ループの実行時間= $\sum_{i=1}^{n-1} ki \log_2 n = k \frac{n(n-1)}{2} \log_2 n = O(n^2 \log_2 n)$
- プログラムの対数コスト基準の総時間計算量T(n)=O(n²log₂n)

f(n)=nnの領域計算量

f(n)=nnの領域計算量

• 一様コスト基準の領域計算量は、使用するレジスタ数が4

• O(1)

k = O(1)

• 対数コスト基準の領域計算量は、各レジスタに入る整数を考えると、

```
    累算器 r<sub>0</sub>: r<sub>2</sub>と同じ l(n<sup>n</sup>) = n log<sub>2</sub>n+1
    入力値 r<sub>1</sub>: n l(n) = log<sub>2</sub>n+1
    求める値 r<sub>2</sub>: n~n<sup>n</sup> l(n<sup>n</sup>) = n log<sub>2</sub>n+1
    ループカウンタ r<sub>3</sub>: 0~n-1 l(n-1)= log<sub>2</sub>(n-1)+1
```

 $l(i) = \log_2|i| + 1$

• O(n log₂n)

最も発散の速い項

最悪・平均・最良の計算量

- ・アルゴリズムの効率の評価
 - 最悪、平均、最良の場合の計算量
- 平均計算量(expected complexity)
 - 与えられた入力サイズの全ての入力に対する計算量の平均値
- 最良計算量(best-case complexity)
 - 与えられた入力サイズの全ての入力に対する計算量の最小値
- 最悪計算量(worst-case complexity)
 - 与えられた入力サイズの全ての入力に対する計算量の最大値
- アルゴリズムの効率は**平均計算量で**評価したいが、求めることが難しい
- アルゴリズムの効率を
 最悪計算量で評価
 → オーダで議論する

関数f(n)=nnの計算量をまとめると

- このプログラム(アルゴリズム)では
 - 入力は必ずnなので
 - 最悪計算量=平均計算量=最良計算量である
- 時間計算量
 - 一様コスト基準では O(n)
 - 対数コスト基準では O(n²log₂n)
- 領域計算量
 - 一様コスト基準では O(1)
 - 対数コスト基準では O(nlog₂n)

オーダの影響

1.5E+30 1E+30 5E+29 0 20 40 60 80 100 120 — 100n — 20nlog_2_n — 5n^2 — n^3/2 — 2^n

・計算機速度が10倍になったときや、計算時間を10倍かけたときの、各アルゴリズムの時間計算量の入力サイズの改善率

600000						
400000						
200000						
0						
Ü	0 20	40	60	80	100	120
	—100n	20nlo	og_2_n —	− 5n^2 −	n^3/2	

		時間計算量 T(n)	10 ³ で解ける問題 の大きさn ₁	10 ⁴ で解ける問題 の大きさn ₂	改善率 n ₂ /n ₁
ア	1	100n	10	100	10.0
ル	2	20nlog ₂ n	13	79	5.9
⊐"	3	5n²	14	45	3.2
リ	4	$n^{3}/2$	13	27	2.3
ズ	5	2 ⁿ	10	13	1.2
厶					

C言語プログラムの計算量

- C言語などの高級プログラミング言語で、アルゴリズムを記述して計算量を求める
 - ・入力サイズに依存しない代入文・条件判定式は、1単位時間で実行
 - ・変数は1単位領域を占めると考える
- ⇒ 『C言語プログラムの計算量』と『RAMプログラムの一様コスト基準の計算量』とは、定数倍しか違わない。
- ⇒ 問題をC言語プログラムで記述し, その計算量を求める
- ⇒オーダーで論じる限り「RAMプログラムの一様コスト基準の計算量」と「C言語プログラムの計算量」とは等しい

```
RAMプログラム
                              対応するC言語風表現
                           scanf("%d", &r1);
         READ
         LOAD
         JGTZ
                  pos
                           if (r1<=0) printf("%d",0);
         WRITE=0
         JUMP
                  endif
         LOAD
                           else {
pos:
                                           RAMプログラム
         STORE
                              r2=r1;
                  2
                                           f(n)=n^n
         SUB
                  =1
         STORE
                  3
                              r3=r1-1;
while:
         LOAD
                  3
         JGTZ
                  continue
                  endwhile
                              while (r3>0) {
         JUMP
continue: LOAD
         MULT
                  2
                                    r2=r2*r1;
         STORE
         LOAD
                  3
         SUB
                  =1
                                    r3=r3-1; }
                  3
         STORE
         JUMP
                  while
                              printf("%d", r2); }
endwhile:
                  2
         WRITE
endif:
         HALT
```

〔例〕 $f(n)=n^n O C プログラム$

```
scanf("%d", &r1); /* r1=入力值n */
  if (r1 \le 0) printf("%d",0);
  else {
        r2=r1;
        r3=r1-1;
        while (r3>0) { /* r3=n-1から1で以下をループ */
                r2=r2*r1;
                                        比較
                                                           printf
                r3=r3-1; }
                                                           終了
        printf("%d", r2); }
•時間計算量は 4 + 3(n-1) + 2 = 3n+3 : O(n)。
•領域計算量は 変数r1, r2, r3の3つ: O(1)。
```

時間計算量のオーダでの議論

- 時間計算量をオーダで議論するのは、
 - 入力サイズnが大きいときの振舞を調べる他に、
 - プログラムの実行時間は
 - 使用した**コンパイラ**(ソフトウェア)や **計算機**(ハードウェア)に<mark>依存</mark>する
- => 秒などの**具体的単位**では表わせず、『実行時間はn²log2nに**比例** する』ということしか言えない
- => 実際に動かさなくても 『実行時間はn²log2nに比例する』ということ がわかる

アルゴリズムと計算量の例

バブルソート

- 上下に数値データを入れる
- 上の要素と比較し大きな値を上にする
- これを下から順にやっていく
- 最後に最も大きい値が来る
- 一番上を除いてもう一度行う(繰り返す)
- 泡が上っていくように見える

Wikipediaより

バブルソートの第フェーズ

バブルソート (C言語)

```
      void BubbleSort(int A[]) {
      int i,j,temp;

      for(i=0; i<(n-1); i++)</td>
      i=0~n-2の繰返し(iの設定・比較は2回)

      for(j=n-1; j>i; j--)
      j=n-1~i+1のn-i-1回繰返し(jの設定・比較は2回)

      if( A[j-1]>A[j] ) {
      比較1回 必ず行われる

      temp=A[j-1];
      代入3回 最悪時必ず交換

      A[j-1]=A[j];
      最良時はこれらの代入は行われない

      A[j]=temp; }
```

• 入力サイズ:ソートされる配列要素数 n

最悪時間計算量
$$\sum_{i=0}^{n-2} (2+6(n-i-1)) = 3n^2-n-2$$
 最良時間計算量 $\sum_{i=0}^{n-2} (2+3(n-i-1)) = \frac{3}{2}n^2 + \frac{1}{2}n-2$ バブルソートは、最悪で n^2 のオーダの時間計算量を要する。領域計算量は、配列要素数の n と変数 i , j , t emp b b $n+3。$

〔例〕バブルソートの第0フェーズ

配列 44 55 06 42 94 18 12 67

第 0 フェーズ								
0	i→44	44	44	44	44	44	44	<u>06</u>
1	55	55	55	55	55	55	1 06 ←	-j 44
2	06	06	06	06	06	06 ←	_j 55	55
3	42	42	42	42	12 +	—ј 12	12	12
4	94 £ Ł		94		←j 42	42	42	42
5	18 較	18	12 +	– ј 94	94	94	94	94
6	比 12 換	12 ←	- ј 18	18	18	18	18	18
7	較 67 ←	•	67	67	67	67	67	67
	第1 ステッ	プ				第 プ	7 ステッ	結果

49

〔例〕 バブルソートの過程

配列 44 55 06 42 94 18 12 67

階乗計算 (C言語)

```
int Factorial(int n)
{ if(<u>n<=1</u>) <u>return(1)</u>;
  else return( n * Factorial(n-1) );
             1 T(n-1)
```

- **入力サイズ**:引数の値: *n*
- 時間計算量:

•
$$T(n) = \begin{cases} 4 + T(n-1) & n > 1 \\ 3 & otherwise \end{cases}$$

漸化式を解くと
• $T(n) = 4(n-1) + 3 = 4n - 1$

- T(n) = 4(n-1) + 3 = 4n 1
- 領域計算量
 Factorialが呼び出される度に、仮引数n(領域数1)がとられる
 再帰呼び出しはn回よって領域計算量はnになる。
- O(n)の時間計算量と領域計算量をもつ

Factorial(n)の時間計算量T(n)

まとめ

- アルゴリズム
 - aⁿ の計算
- 計算量
 - ランダムアクセス機械
 - ・ 漸近的計算量(おおよその計算量)
 - nⁿ の計算量
 - ・バブルソート, 階乗計算の計算量

アルゴリズムの速度を体感してみる

- 実際にプログラムを書いて, nを変えて実行速度を測る
- 本当に実行時間の関数は、オーダーに比例する関数になるかな?
- ・プログラムの実行時間の測定
- Unixのtimeコマンドを使ってプログラムの実行時間をはかることができる \$ time ./a.out real 0m0.011s user 0m0.004s sys 0m0.002s
 - real: プログラムの呼び出しから終了までにかかった時間
 - user: プログラム自体の処理時間(ユーザCPU時間)
 - sys: プログラムの処理するために、OSが処理をした時間(システム時間)
 - プログラムの処理時間はuserに反映される