Конспект по матану 10 класс

Коченюк Анатолий

26 апреля 2019 г.

Глава 1

1 четверть

1.1 Функция

```
f(x): X \to Y \quad X, Y \subseteq \mathbb{R} \lim_{x \to a} f(x) = A a - \text{предельная точка } X \forall \varepsilon > 0 \exists \delta > 0 \forall x \in O_{\delta}(a) \Rightarrow f(x) \in O_{\varepsilon}(A) A \neq f(a), \text{ потому что она там может быть даже не определена} \begin{cases} a \in \mathbb{R}, O_{\delta}(a) = (a - \delta, a + \delta) \\ a = +\infty, O_{\delta}(a) = (\delta, +\infty) \\ a = -\infty, O_{\delta}(a) = (-\infty, -\delta) \\ \forall \varepsilon > 0 \exists \delta > 0: f(O_{\delta(a)}) \subset O_{\varepsilon}(A) \end{cases} Определение 1.1. f(x) - \delta.\delta. \iff |f(x)| \to \infty, x \to a \in \overline{\mathbb{R}} \iff \forall k > 0 \exists \delta > 0: \forall x \in O_{\delta}(a), x \neq a |f(x)| \geqslant K Определение 1.2. f(x) - \delta.M. \iff |f(x)| \to 0, x \to a \in \overline{\mathbb{R}} Теорема 1.1 (О представлении). A = \lim_{x \to a} f(x) \iff f(x) = A + g(x), g(x) - \delta.M. \text{ при } x \to a Определение 1.3 (По Гейне). A = \lim_{x \to a} f(x) \iff \forall x_n \to a (x_n \in X, x_n \neq a) \text{ выполияется } f(x_n) \to A
```

Пример:

Доказать на языке $\varepsilon - \delta$

$$\lim_{x\to 1} (3x-2) = 1$$
 $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \colon |x-1| < \delta \Rightarrow |3x-2-1| < \varepsilon$
Уметь по $\forall \varepsilon$ предъявлять соответствующее δ
 $|3x-3| < \varepsilon \Leftarrow 3|x-1| < \varepsilon \Leftarrow |x-1| < \frac{\varepsilon}{3} = \delta$
 $\Rightarrow \delta = \frac{\varepsilon}{3}$ – искомое

Пример:

$$\lim_{x\to -1} \frac{2x-1}{x+3} = -\frac{1}{2}$$
 $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \colon |x+1| < \delta \Rightarrow \left|\frac{2x+1}{x+3} + \frac{1}{2}\right| < \varepsilon$

$$\left|\frac{5(x+1)}{2(x+3)}\right| < \varepsilon$$

$$\forall \varepsilon > 0 \exists \delta = \frac{1}{2} min\{1; \frac{2\varepsilon}{5}\}$$

$$\Rightarrow |x+1| < \delta$$
 $\delta < 1 \Rightarrow |x+3| > 1$
А тогда $\left|\frac{2x+1}{x+3} + \frac{1}{2}\right| = \left|\frac{5(x+1)}{2(x+3)}\right| = \frac{5|x+1|}{2|x+3|} < \frac{5}{2} \cdot \frac{\delta}{1} \leqslant \frac{5}{2} \cdot \frac{1}{2} \cdot \frac{2\varepsilon}{5} = \frac{\varepsilon}{2} < \varepsilon$ ч.т.п.

$$\exists f(x): E \to \mathbb{R} \quad E \subseteq \mathbb{R}$$

Определение 1.4. f(x) – ограничена сверху или ограничена снизу или ограничена на $E \iff \exists K \geqslant 0 : \forall x \in E$ выполняется $f(x) \leqslant K \lor -k \leqslant f(x) \lor |f(x)| \leqslant L$

Определение 1.5. f(x) называется локально ограниченной в точке a, которая либо принадлежит E, либо является предельной для $E \quad (a \in \overline{E}) \Longleftrightarrow \exists K \geqslant 0, \exists O(a): |f(x)| \leqslant K \forall x \in O(a) \cap E$

Лемма 1.1.
$$\lim_{x \to \frac{\pi}{4}} \frac{\left(\frac{\operatorname{tg} x + 1}{1 - \operatorname{tg} x}\right)}{\left(\frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x}\right)} \ f$$
 – локально ограничена $\forall a \in \overline{E} \not\Rightarrow f$ – ограничено на E

Доказательство. f(x) = x $E = \mathbb{R}$

в $\forall a \in \mathbb{R}$ она локально ограничена

$$\exists K = max\{|a+1|, |a-1|\}$$

$$\forall x \in O_1(a)$$
 выполняется $|x| \leqslant K$ $O_{\delta}(a) = (a - \delta, a + \delta)$

$$\overline{E} = E \cup \partial E$$

$$\exists O(a) \subset E$$

1.2 Предельный переход в неравенствах

Теорема 1.2 (1). \Box $\exists \lim_{x \to a} f(x) = A \ u \ \Box \ A < B \Rightarrow \exists O(a) : \forall x \in \overset{\circ}{O}(a) \cap E$ выполняется f(x) < B

Доказательство. $\exists \varepsilon > 0 : A + \varepsilon_1 < B$

По определению предела для этого $\varepsilon_1 \exists \delta: \forall x \in \overset{\circ}{O}_{\delta}(a) \cap E \quad |f(x) - A| < \varepsilon_1 \Rightarrow -\varepsilon_1 < f(x) - A < \varepsilon_1 \Rightarrow f(x) < f(x) <$

т.о. (таким образом) эта
$$O_\delta(a)$$
 – искомая окрестность.

ДЗ:

Теорема 1.3 (2). $\exists f(x) < g(x) \forall x \in E \ u \ \exists \lim_{x \to a} f(x) = A, \exists \lim_{x \to a} g(x) = B \Rightarrow A \leqslant B$

- 2a) контрпример, почему нельзя писать A < B
- 3) $\lim_{x \to +\infty} (\sqrt{x^2 + 1} x) = ?$
- 4) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$ 5)

Лемма 1.2. f – ограничена на $E\Rightarrow f$ – локально ограничена $\forall a\in \overline{E}$

1.3 Неопределённости

$$\frac{0}{0}; \frac{\infty}{\infty}; 0 \cdot \infty; \infty - \infty; 1^{\infty}$$

Теорема 1.4 (Безу). $P_n(x) = (x - x_0)Q_{n-1}(x)$

$$\lim x + to - 1 \frac{x^2 + 3x + 2}{x^3 + 1} = \lim_{x \to -1} \frac{(x+1)(x+2)}{(x+1)(x^2 - x + 1)} = \lim_{x + to - 1} \frac{x+2}{x^2 - x + 1} = \frac{\lim_{x \to -1} (x+2)}{\lim_{x \to -1} (x^2 - x + 1)} = \lim_{x \to -1} \frac{x+2}{(x+1)(x^2 - x + 1)} = \lim_{x \to -1} \frac{x+2}{x^2 - x + 1} = \lim_{x \to -1} \frac{x+2}$$

$$= \frac{\lim_{x \to -1} x + \lim_{x \to -1} 2}{\lim_{x \to -1} x \cdot \lim_{x \to -1} x - \lim_{x \to -1} x + \lim_{x \to -1} 1}$$

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x : 0 < |x - 1| < \delta \Rightarrow \left| \frac{x^2 + 3x + 2}{x^3 + 1} - \frac{1}{3} \right| < \varepsilon$$

$$\left| \frac{x^2 + 3x + 2}{x^3 + 1} - \frac{1}{3} \right| = \left| \frac{x + 2}{x^2 - x + 1} - \frac{1}{3} \right| = \frac{|2x + 6 - x^2 + x - 1|}{|3(x^2 - x + 1)|} = \frac{|x^2 - 4x + 5|}{3(x^2 - x + 1)} = \frac{|x + 1| \cdot |x - 5|}{3(x^2 - x + 1)}$$

$$x^{2} + pz + q = (x + \frac{p}{2})^{2} + q - \frac{p^{2}}{4}$$

$$\leq \frac{|x+1| \cdot 7}{2 \cdot \frac{3}{4}} < \frac{\delta \cdot 28}{9} = \varepsilon$$

Пусть $\exists \delta = min\{1, \frac{0\varepsilon}{28}\}$ Решено.

Теорема 1.5 (о двух милиционерах). $\exists \forall x \in E \quad f(x) \leq g(x) \leq h(x)$

$$\exists \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$$

$$\Rightarrow \exists \lim_{x \to a} g(x) = A$$

Доказательство. Воспользуемся языком последовательностей (Гейне)

Берём для $\forall x_n \to a$

 $f(x_n) \leqslant g(x_n) \leqslant h(x_n)$ Пользуемся теоремой о двух милиционерах для последовательностей. Таким образом $g(x_m) \to A \forall x_n \to A \Rightarrow \exists \lim_{n \to \infty} g(x) = A$

1.4 Замечательные пределы

1. $\lim_{x\to 0} \frac{\sin x}{x} = 1$ $\left(\frac{0}{0}\right)$ Было доказано, что $\forall x_n \to 0$ $\sin x \to \sin 0 = 0 \Rightarrow \lim_{x\to 0} \sin x = 0$ (непрерывность $y = \sin x$ в 0)

Определение 1.6. Пусть $f: E \to \mathbb{R}$ Функция f непрерывно в точке $a \in E$ (т.е. f(a) – определено заранее) $\iff \lim_{x \to a} f(x) = A$ и A = f(a), т.е. $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a)$.

f коммутирует c пределом.

Было доказано (вопрос 13 п. 5), что $\forall x_n \to a \quad \sin x \to \sin a \iff \exists \lim_{x \to a} \sin x = \sin a \iff \Phi$ ункция была непрерывна в каждой точке из $\mathbb R$

Определение 1.7. $f: E \to \mathbb{R}$. Говорят, что f непрерывно на E, если f непрерывно в каждой точке из E.

Множество функций, непрерывных на E обозначают C(E)

 $x \in (0, \frac{\pi}{2})$ $\sin x < x < \operatorname{tg} x$

•
$$\frac{\sin x}{x} = \frac{|\sin x|}{|x|} < 1, \forall x \in \mathring{O}_{\delta}(0), \quad \delta < \frac{\pi}{2}$$

•
$$|\cos x| < \left|\frac{\sin x}{x}\right|$$

Задача 1.1. $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$

Доказательство. $\lim_{x\to 0}\frac{\sin 2x}{\sin 3x}=\lim_{x\to 0}\frac{\sin 2x}{2x}\cdot\frac{3x}{\sin 3x}\cdot\frac{2}{3}=\lim_{x\to 0}\frac{\sin 2x}{2x}\cdot\lim_{x\to 0}\frac{3x}{\sin 3x}\frac{2}{3}$

$$\lim_{x \to 0} \frac{\sin 2x}{2x} = \lim_{t \to 0} \frac{\sin t}{t}$$

Следствия из предела №1:

$$\begin{array}{ll} \text{(a)} & \lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} \quad \left(\frac{0}{0}\right) \\ & \cos 2\alpha = 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1 = \cos^2\alpha - \sin^2\alpha \\ & \cos x = 1 - 2\sin^2\frac{x}{2} \Rightarrow 1 - \cos x = 2\sin^2\frac{x}{2} \\ & \lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = 2\cdot\lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{\frac{x}{2}}\cdot\lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{\frac{x}{2}}\cdot\frac{1}{4} = \frac{1}{2}\cdot1\cdot1 = \frac{1}{2} \\ & \lim_{x\to 0} \frac{x\sin x}{1-\cos x} = \lim_{x\to 0} (\frac{x^2}{1-\cos x}\cdot\frac{\sin x}{x} = 2\cdot1 = 2) \text{ можем заменить предел произведения, так как оба выражения имеют предел} \end{array}$$

(b)
$$\lim_{x \to 0} \frac{\lg x}{x} = 1$$

 $\lim_{x \to 0} \frac{\sin x}{\cos x \cdot x} = \lim_{x \to 0} \frac{1}{\cos x} \cdot \lim_{x \to 0} \frac{\sin x}{x} = 1 \cdot 1$

$$\begin{array}{c}
x \to 0 \cos x \cdot x & x \\
\text{(c)} \lim_{x \to 0} \frac{\arcsin x}{x} = 1
\end{array}$$

 $\arcsin = (\sin \left| \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right|^{-1}$

 $\arcsin(\sin x) \neq x$, no $\sin(\arcsin x) = x$

 $\arcsin a$ – тот корень уравнения $\sin x = a$, при котором $a \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

 $y = \arcsin x$

 $x \to 0; x \in O_{\delta}(0) \Rightarrow x = \sin y$

$$\lim_{x\to 0}\frac{\arcsin x}{x}=\lim y\to ?\frac{y}{\sin y}$$

Лемма 1.3. Покажем (на языке Гейне) $x_n \to 0 \Rightarrow y_n \to 0 \forall x_n$

Доказательство. $x_n=m\sin y_n, y\quad y_n\in \left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow \{y_n\}$ – orp \Rightarrow сх п/п y_{n_k}

Но мы только что доказали, что любая сходящаяся подпоследовательность $y_{n_k} \to 0 \Rightarrow$ сама $y_n \to 0$ Допустим противное:

 $\exists y_n \not\to 0$ пишем отрицание существования предела

 $\exists \varepsilon_0 \forall N : \exists n_N \geqslant N : |y_{n_N}| \geqslant \varepsilon_0 \quad N = 1, 2, 3, \dots$

рассмотрим последовательность $\{y_{n_N}\}\cap O_{\varepsilon_0}(0)=\emptyset$, но $\{y_{n_N}\}\subset [-\frac{\pi}{2};\frac{\pi}{2}]$ – orp! $\Rightarrow \{y_n\}$ – orp

Ещё один пример доказательства предела на языке $\varepsilon-\delta$

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} x \to 1$$
 $\frac{\sqrt{x} - 1}{(\sqrt{x}) - 1)(\sqrt{x} + 1)} = \frac{1}{\lim_{x \to 1} \sqrt{x} + 1} = \frac{1}{2}$ Мы почитали этот предел, а теперь дока-

жем это на языке $\varepsilon - \delta$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x \quad 0 < |x - 1| < \delta \text{ выполнено} \left| \frac{\sqrt{x} - 1}{x - 1} - \frac{1}{2} \right| < \varepsilon$$

$$\left| \frac{\sqrt{x} - 1}{x - 1} - \frac{1}{2} \right| = \left| \frac{1}{\sqrt{x} + 1} - \frac{1}{2} \right| = \frac{1}{2} \left| \frac{1 - \sqrt{x}}{\sqrt{x} + 1} \right| = \frac{1}{2} \frac{|\sqrt{x} - 1|}{|\sqrt{x} + 1|} \leqslant \frac{1}{2} |\sqrt{x} - 1| = \frac{1}{2} \left| \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} + 1} \right| \leqslant \frac{1}{2} |(\sqrt{x} - 1)(\sqrt{x} + 1)|$$

$$1)(\sqrt{x}+1)| = \frac{1}{2}|x-1| < \frac{\delta}{2} = \varepsilon$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} x \to 0$$

$$x_n \to 0 \stackrel{?}{\Rightarrow} y_n \to 0 \quad y_n = \arctan x_n$$

 $x_n \to 0 \stackrel{?}{\Rightarrow} y_n \to 0 \quad y_n = \arctan x_n$ При $x \to 0 \sin x \to 0, \cos x \to 1 \Rightarrow \tan x \to 0$ при $x \to 0$ $\Rightarrow 0$ \Rightarrow

$$\exists \varepsilon_0 > 0: \forall N (=1,2,3) \exists n_N > N$$
 и $|y_{n_N}| > \varepsilon_0$

рассмотрим $y_{n_N}=\arctan x_{n_k}\to a$ – ограничена $\Rightarrow \exists$ сходящаяся подпоследовательность $y_{n_N}>0$

Лемма 1.4. $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$ (1^{∞})

Доказательство. Классический вариант $\lim_{n \to +\infty} (1 + \frac{1}{n})^n = e$

$$\lim_{n \to -\infty} (1 + \frac{1}{n})^n = e$$

$$\forall x_n \to \pm \infty \quad \lim_{x \to 0} (1 + \frac{1}{x_n})^{x_n} = e$$

Следствие: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = \lim_{y\to \infty} (1\frac{1}{y})^y = e, \quad y = \frac{1}{x}$

Лемма 1.5. $\lim_{x\to 0} \frac{\ln(1+x)}{r} = 1$

Доказательство.
$$\lim_{x_n \to 0} \frac{1}{x_n} ln(1+x_n) = \lim_{x_n \to 0} ln(1+x_n) \frac{1}{x_n} = lne = 1 \quad \forall x_n$$

Следствие:

$$\bullet \lim_{x \to 0} \frac{\ln(1+ax)}{r} = a$$

$$\bullet \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

1. $y = \arcsin(\sin x)$ – нарисовать график

2. $y = \arctan(\tan x) - \text{нарисовать график}$

3.
$$\lim_{x \to 0} (1 + \tan x)^{\cot x}$$
 (1^{∞})

$$4. \lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\operatorname{ctg} x}}$$

5.
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^x$$

6.
$$\lim_{x \to \infty} \left(\frac{1+x}{2+x} \right)^{\frac{1-\sqrt{x}}{1-x}}$$

7.
$$\lim_{x \to \infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})}$$

8. Прошлое дз (на фотке в беседе)

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\operatorname{tg} x}$$

$$x_n \to a \Rightarrow \ln x_n \to \ln a$$

$$f(x) \to A \Rightarrow \ln f(x) \to \ln A$$

$$\lim_{x \to \frac{\pi}{2}} \ln(\sin x)^{\operatorname{tg} x} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x \cdot \ln(\sin x)}{\cos x} \stackrel{x = \frac{\pi}{2} - t}{=} \lim_{t \to 0} \frac{\cos t \cdot \ln(\cos t)}{\sin t} = \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} \cdot (\cos t - 1) \stackrel{y = \cos t - 1}{=} \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} = \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} \cdot (\cos t - 1)$$

$$\lim_{t \to 0} \frac{(\cos t - 1)}{\sin t} \cdot \lim_{y \to 0} \frac{\ln(1 + y)}{y} \cdot \lim_{t \to 0} \cos t = \lim_{t \to 0} \frac{\cos t - 1}{\sin t} = \lim_{t \to 0} \frac{t}{\sin t} \cdot \frac{-(1 - \cos t)^2}{t^2} \frac{-t^2}{t} = 0$$

$$\lim_{x \to \frac{\pi}{2}} \ln(\sin x)^{\lg x} = 0 \Rightarrow \lim_{x \to \frac{\pi}{2}} (\sin x)^{\lg x} = 1$$

4)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

 $\exists y = e^x - 1 \quad x \to 0 \Rightarrow y \to 0 \quad e^x = 1 + y \quad x = \ln(1 + y)$
 $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\ln(1 + y)} \stackrel{3}{=} 1$

Следствие 1.1. $\lim_{x\to 0} \frac{a^x-1}{x} = \lim_{x\to 0} \frac{e^{\ln a}-1}{(x \cdot \ln a)} \cdot \ln a = \ln a$

5)
$$\lim_{\substack{x \to 0 \ (1+x)^{\alpha} = 1}} \frac{(1+x)^{\alpha} - 1}{x} = \alpha \quad \alpha \in \mathbb{R} \ \exists \ y = (1+x)^{\alpha} - 1 \quad x \to 0 \Rightarrow y \to 0$$

$$\begin{array}{l} \mathbf{5)} \ \lim\limits_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha \quad \alpha \in \mathbb{R} \ \exists \ y = (1+x)^{\alpha}-1 \quad x \to 0 \Rightarrow y \to 0 \\ (1+x)^{\alpha} = 1+y \quad \alpha \ln(1+x) = \ln(1+y) \\ \lim\limits_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \lim\limits_{x \to 0} \frac{y}{x} = \lim\limits_{x \to 0, y \to 0} \frac{y}{\ln(1+y)} \cdot \frac{\ln(1+y)}{x} = \lim\limits_{y \to 0} \frac{y}{\ln(1+y)} \cdot \lim\limits_{x \to 0} \frac{\alpha \ln(1+x)}{x} = 1 \cdot \alpha \cdot 1 = \alpha \\ \end{array}$$

Следствие 1.2. Покажем, $(x^{\alpha})' = \alpha x^{\alpha-1}, \alpha \neq 0$

$$(x^{\alpha})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{\alpha} - x^{\alpha}}{\Delta x} = \lim \Delta x \to 0 \frac{x^{\alpha} (1 + \frac{\Delta x}{x})^{\alpha} - x^{\alpha}}{\Delta x} = x^{\alpha} \lim_{\Delta x \to 0} \frac{(1 + \frac{\Delta x}{x})^{\alpha} - 1}{\frac{\Delta x}{x} \cdot x} = x^{\alpha - 1} \cdot \alpha$$

$$x = 0 \quad \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\alpha} - 0^{\alpha}}{\Delta x} = \lim_{\Delta x \to 0} (\Delta x)^{\alpha - 1} = \begin{bmatrix} 0 & \alpha > 1 \\ 1 & \alpha = 1 \\ \infty & \alpha < 1 \end{bmatrix}$$

$$x^{\alpha-1} \cdot \alpha|_{x=0} = \begin{bmatrix} 0 & \alpha > 1\\ 1 = \alpha & \alpha = 1\\ \infty & \alpha < 1 \end{bmatrix}$$

8 ГЛАВА 1. 1 ЧЕТВЕРТЬ

$$\lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \cos x}{1 + \sqrt{\cos x}} \cdot \frac{cy^2}{1 - \cos \sqrt{x} \cdot cy^2} = \lim_{x \to 0} \frac{1 - \cos x}{2 \cdot x^2} \cdot x^2 \cdot \frac{(\sqrt{x})^2}{1 - \cos \sqrt{x}} \cdot \frac{1}{(\sqrt{x})^2} = \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \lim_{x \to 0} \frac{1 - \cos x}{1 - \cos x} \cdot \frac{1}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1}{1 - \cos x} \cdot \frac{1}$$

$$\lim_{x \to +\infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})} = \lim_{x \to +\infty} \frac{\ln(e^{3x}(2e^{-3x} + 1))}{\ln(e^{2x}(3e^{-2x} + 1))} = \lim_{x \to +\infty} \frac{3x + \ln(1 + 2e^{-3x})}{2x + \ln(1 + 3e^{-2x})} = \lim_{x \to +\infty} \frac{3 + \frac{\ln(1 + 2e^{-3x})}{x}}{2 + \frac{\ln(1 + 3e^{-2x})}{x}} = \frac{3}{2}$$

$$\lim_{x \to 0} x(e^{\frac{1}{x}} - 1) = \lim_{y \to \infty} \frac{e^y - 1}{y}$$

$$\lim_{x \to 0} \frac{e^y}{y} = +\infty$$

1.
$$\lim_{x \to e} \frac{\ln x^3 - 3}{x - e}$$

2.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\lg x} - 1}{2\sin^2 x - 1}$$

3.
$$\lim_{x \to 0} \frac{\ln(1 - \sin x)}{3^{\lg x} - 1}$$

4.
$$\lim_{x \to 2} \frac{2^x - x^2}{x - 2}$$

$$\begin{pmatrix} \frac{0}{0} \end{pmatrix} \lim_{x \to 0} \frac{\sqrt[5]{1+x} - \sqrt[4]{1+x}}{x} - \lim_{x \to 0} \frac{(1+x)^{\frac{1}{5}} - 1 - ((1+x)^{\frac{1}{4}} + 1)}{x} = \lim_{x \to 0} \frac{(a+x)^{\frac{1}{5}} - 1}{x} - \lim_{x \to 0} \frac{(1+x)^{\frac{1}{4}} - 1}{x} = \lim_{x \to 0} \frac{1}{x} - \lim_{x \to 0} \frac{(1+x)^{\frac{1}{4}} - 1}{x} = \lim_{x \to 0}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \lim_{x \to -\frac{p_1^2}{2} - \frac{\pi}{2}} \lim_{(\sin x + 1)(\sin x + 2)} = \frac{0}{-3} = 0$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to -\frac{pi}{2} - \frac{\pi}{2}} \frac{(\sin x + 1)^2}{(\sin x + 1)(\sin x + 2)} = \frac{0}{-3} = 0$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to 0} \frac{2^x + 3^x - 2}{x^2 - x} = \lim_{x \to 0} \frac{2^x - 1}{x^2 - x} + \lim_{x \to 0} \frac{3^x - 1}{x^2 - x} = \lim_{x \to 0} \frac{2^x - 1}{x} \frac{x}{x^2 - x} + \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_{x \to 0} \frac{3^x - 1}{x^2 - x} = \lim_{x \to 0} \frac{3^x -$$

$$= \ln 2 \cdot (-1) + \ln 3 \cdot (-1) = -\ln 6$$

$$\left(\frac{\infty}{\infty}\right) \quad \lim_{x \to \infty} \frac{x^{\sqrt[4]{x^3 + 1} + \sqrt[3]{x^2 - 1}}}{x^2 - \sqrt{x + 2}} = \lim_{x \to \infty} \frac{x^{1 + \frac{3}{4}} \sqrt{1 + \frac{1}{x^3}} + x^{\frac{2}{3}} \sqrt{1 - \frac{1}{x^2}}}{x^2 (1 - \frac{\sqrt{x + 2}}{x^2})} = \lim_{x \to \infty} \frac{x^{-\frac{1}{4}} \sqrt{1 + x^{-3}} + x^{-1\frac{1}{3}} \sqrt{1 - x^{-2}}}{1 - \frac{\sqrt{x + 2}}{x^2}} = 0$$

$$\left(\frac{\infty}{\infty}\right) \quad \lim_{x \to \frac{\pi}{4}} \frac{\operatorname{tg}(x + \frac{\pi}{4})}{\operatorname{tg} 2x} = \lim_{x \to \frac{\pi}{4}} \frac{\left(\frac{\operatorname{tg} x + 1}{1 - \operatorname{tg} x}\right)}{\left(\frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x}\right)} \stackrel{t}{=} \operatorname{tg} x \lim_{t \to 1} \frac{(1 + t)(1 - t^2)}{(1 - t) \cdot 2t} = \frac{2 \cdot 2}{2} = 2$$

$$(\infty - \infty)$$
 $\lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x+1}) = \lim_{x \to \infty} \frac{(x+2)(x+1)}{\sqrt{x+2} + \sqrt{x+1}} = \frac{1}{\infty} = 0$

$$(\infty - \infty) \quad \lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x+1}) = \lim_{x \to \infty} \frac{(x+2)(x+1)}{\sqrt{x+2} + \sqrt{x+1}} = \frac{1}{\infty} = 0$$

$$(\infty - \infty) \quad \lim_{x \to 2} \left(\frac{1}{x^2 - 4} - \frac{1}{4(x-2)} \right) = \lim_{x \to 2} \frac{4 - x - 2}{4(x-2)(x+2)} = \lim_{x \to 2} \frac{-(x-2)}{4(x-2)(x+2)} = -\frac{1}{16}$$

$$(\infty - \infty) \quad \lim_{x \to 0} (\operatorname{ctg} x - \frac{1}{\sin x}) = \lim_{x \to 0} \frac{\cos x - 1}{\sin x} = \lim_{x \to 0} \frac{\cos x - 1}{x^2} \cdot \frac{x^2}{x} \cdot \frac{x}{\sin x} = \frac{1}{2} \cdot 0 \cdot 1 = 0$$

$$(\infty - \infty) \quad \lim_{x \to 0} \left(\frac{2^x}{x} - \frac{3^x}{x}\right) = \lim_{x \to 0} \frac{2^x - 3^x}{x} = \ln 2 - \ln 3$$

$$(\infty - \infty)$$
 $\lim_{x \to 0} \left(\frac{2^x}{x} - \frac{3^x}{x} \right) = \lim_{x \to 0} \frac{2^x - 3^x}{x} = \ln 2 - \ln 3$

$$(\infty \cdot ?) \quad \lim_{x \to \infty} x (\ln(1+x) - \ln x) = \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{2}} \stackrel{t}{=} \frac{1}{x} \lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$$

$$\left(\frac{\frac{\pi}{2}}{\infty}\right) \quad \lim_{x \to \infty} \frac{1}{x} \arctan x = 0$$

$$\begin{array}{ll} (\infty \cdot 0) & \lim\limits_{\to \infty} x(2^{\frac{1}{x}}-1) \stackrel{t}{=} \frac{1}{x} \lim\limits_{t \to 0} \frac{2^{t}-1}{t} = \ln 2 \\ (1^{\infty}) & \lim\limits_{\to \gamma} (\lg x)^{\lg 2x} = e^{A} = e^{-1} \\ \\ Limx_{\frac{\pi}{4}} \ln(\lg x)^{\lg 2x} = \lim\limits_{x \to \frac{\pi}{4}} \frac{2 \lg x}{1 - \lg^{2}x} \cdot \ln(\lg x) \stackrel{\lg x}{=} 1 - t \lim\limits_{t \to 0} \frac{2(1-t)}{t(2-t)} \ln(1-t) = \frac{2 \cdot (-1)}{2} = -1 \\ (\infty \cdot 0) & \lim\limits_{x \to +0} \frac{\ln(1+2 \operatorname{arctg} x(x\sqrt{x^{5}+x^{2}}))}{(1+\operatorname{arcsin}(x^{2}))^{\frac{3}{4}}-1} = \lim\limits_{x \to 0} \frac{\ln(1+2x^{2})}{\frac{3}{4}x^{2}} = \lim\limits_{x \to 0} \frac{2x^{2}}{\frac{3}{4}x^{2}} = \frac{8}{3} \\ \operatorname{arctg}(x\sqrt{x^{5}+x^{2}}) = \operatorname{arctg} \sqrt{x^{7}+x^{4}} \sim \operatorname{arctg} x \sim x^{2} \\ (1+\operatorname{arcsin}(x^{2}))^{\frac{3}{4}}-1 \sim \frac{3}{4} \operatorname{arcsin} x^{2} \sim \frac{3}{4}x^{2} \\ \frac{\operatorname{arcsin} x}{x} \to 1 & \operatorname{arcsin} x \sim x \\ \ln(1+t) \sim t \Rightarrow \ln(1+2x^{2}) \sim 2x^{2} \\ \lim\limits_{x \to \infty} \left(\frac{x+\sqrt{(2x)}}{x+\sqrt{3x}}\right)^{\sqrt{x}} = e^{A} \\ A = \lim\limits_{x \to \infty} \sqrt{x} \ln\left(\frac{x+\sqrt{2x}}{x+\sqrt{3x}}\right) = \lim\limits_{x \to \infty} \sqrt{x} \ln\left(\frac{1+\frac{\sqrt{2}}{\sqrt{x}}}{1+\frac{\sqrt{3}}{\sqrt{x}}}\right) = \lim\limits_{x \to \infty} \frac{\ln(1+\frac{\sqrt{2}}{2})-\ln(1+\frac{\sqrt{3}}{\sqrt{x}})}{\frac{1}{\sqrt{x}}} \stackrel{t}{=} \frac{1}{\sqrt{x}} \lim\limits_{t \to 0} \frac{\ln(1+\sqrt{2t})-\ln(1+\sqrt{3})}{t} = \frac{\sqrt{2}-\sqrt{3}}{1} \\ 13 : \end{array}$$

- готовиться к работе по нахождению пределов.
- $\lim_{x \to -1} \frac{x^2 x 2}{x^3 + 1}$
- $\lim_{x\to 0} \frac{\operatorname{tg} 3x}{\arcsin 2x}$
- $\lim_{x \to \infty} (\sqrt{x^2 2x 3} \sqrt{x^2 3x 4})$
- $\bullet \lim_{x \to \infty} \left(\frac{x^2 + 2}{x^2 3} \right)^{x^2}$
- $\lim_{x \to \infty} x(e^{\sin \frac{1}{x}} 1)$
- $\bullet \lim_{x \to 0} \frac{2^{\sin x} + 2^{2x} 2}{x \sqrt{x}}$

1.5 Односторонние пределы

 $f:E o\mathbb{R},\ \exists\ a$ — предельная точка $E\quad (E\cap \overset{\circ}O(a)
eq\emptyset,\ \mathrm{rge}\ \overset{\circ}O(a)$ — произвольная проколотая окрестность. $f(x) o A, (x\in E) o a\Longleftrightarrow orall arepsilon>0 \exists \overset{\circ}O_\Delta(a): orall x\in \overset{\circ}O_\delta(a)\cap E$ выполняется |f(x)-A|<arepsilon

1.5.1 Левосторонний предел

$$\lim_{x \to a = 0} f(x) = A \Longleftrightarrow \forall \varepsilon > 0 \\ \exists \delta > 0 : \forall x \in E \cap (a - b, a) \ \text{и} \ -\delta < x - a < 0 \ \text{выполняется} \ |f(x) - A| < \varepsilon|$$

1.5.2 Правосторонний

$$\lim_{x \to a+0} f(x) = A \Longleftrightarrow \forall \varepsilon > 0 \\ \exists \delta > 0 : \forall x \in E \cap (a,a+b) \text{ и } -\delta < x-a < 0 \text{ выполняется } |f(x) - A| < \varepsilon |f(x) - A|$$

Если a=0, то пишут просто $x \to -0$ и $x \to +0$ x>0

$$sign \ x = \begin{bmatrix} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{bmatrix}$$

$$\lim_{x \to +0} sign \ x = 1 \quad \lim_{x \to -0} sign \ x = -1$$

Теорема 1.6 (Признак существования $\lim f(x)$ при $x \to a$). $\lim_{x \to a} f(x)$ – существует $\iff \exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x)$

Доказательство.

- \Rightarrow очевидно, потому что определение полного предела не исключает возможности, что x только < a или только > a, а тогда и будут получаться односторонние пределы.
- ← От противного.
 ☐ односторонние пределы существуют и равны, а полный предел не существует. Напишем отрицание существования предела.

$$\exists \varepsilon_o > 0: \forall \delta > 0 \exists x_\delta \in E \cap \overset{\circ}{O}(a)$$
 для которого $|f(x_\delta) - A| \geqslant \varepsilon_0$

В качестве
$$\delta=\frac{1}{n}\to 0, n\in\mathbb{N}$$
 и тогда $\exists x_n\in E\cap \overset{\circ}{O}_{\frac{1}{n}}(a):|f(x_n)-A|\geqslant \varepsilon_0$

Имеем бесконечное количество точек $\{x_n\}$. Каждое x_n либо > 0 либо < 0.

Ясно, $\exists \infty$ много номеров, для которых выполняется: либо > a либо < a

Таким образом $\exists x_{n_k} : x_{n_k} < a$ либо $x_{n_k} > a$

Не умаляя общности (далее НУО) считаем, что $\exists x_{n_k} > a$

Но тогда получается, что нашлось такое $\varepsilon_0>0: \forall \delta>0 \exists x_{n_k}\in E\cap (a,a+\delta)$ и при этом $|f(x_{n_k})-A|>\varepsilon_0$

Это означает, что $\lim_{x\to a+0} f(x)$ не существует.??!

Очевидные свойства переводятся на

Пример:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to +0} \frac{\sqrt{x^2 + x^3}}{x} = \lim_{x \to +0} \sqrt{\frac{x^2 + x^3}{x^2}} = \lim_{x \to +0} \sqrt{1 + x} = 1$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \lim_{x \to -0} \frac{\sqrt{x^2 + x^3}}{x} = \lim_{x \to -0} \left(-\sqrt{\frac{x^2 + x^3}{x^2}} \right) = -1$$

Ещё один признак существования предела

последовательность $\{x_n\}$ – фундаментальная или последовательность Коши $\iff \forall \varepsilon>0 \exists N: \forall n,m\geqslant N \quad |x_n-x_m|<\varepsilon$

Теорема 1.7. Коши Последовательность x_n – сходится $\iff x_n$ – фундаментальная последовательность

Теорема 1.8. Коши $\Box f: E \to \mathbb{R}, \quad a$ — конечная предельная точка $a \in E$ Тогда $\exists \lim_{x \to a} f(x) = A$ — конечный $\iff \forall \varepsilon > 0 \exists \delta > 0: \forall x', x'' \in \overset{\circ}{O}_{\delta}(a) \cap E$ выолняется $|f(x') - f(x'')| < \varepsilon$

Доказательство.

$$\Rightarrow \exists \lim_{x \to a} f(x) = A$$

т.е. по
$$\forall \varepsilon > 0 \exists \delta : \forall x \in \overset{\circ}{O}(a) \cap E \quad |f(x) - A| < \frac{\varepsilon}{2}$$

Теперь возьмём любые две точки $x'x'' \in \overset{\circ}{O}_{\delta}(a) \cap E$

Рассмотрим
$$|f(x')-f(x'')|=|(f(x')-A)+(A-f(x''))|\leqslant |f(x')-A|+|A-f(x'')|\leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

 \Leftarrow Воспользуемся я языком Гейне. Возьмём \forall последовательность $x_n \in \overset{\circ}{O}(a) \cap E: x_n \to a$

Покажем, что последовательность $\{f(x_n)\}$ – фундаментальна

Берём
$$\forall \varepsilon > 0$$
 по условию $\exists \delta : \forall x'x'' \in \overset{\circ}{O}_{\delta}(a) \cap E$ выполняется $|f(x') - f(x'')| < \varepsilon$

Так как
$$x_n \to a \Rightarrow \exists N : \forall n \geqslant N \quad x_n \in \overset{\circ}{O}_{\delta}(a) \cap E$$

Доказано: $\exists n, m \geqslant N \Rightarrow x_n, x_m \in \overset{\circ}{O}_{\delta}(a) \cap E \Rightarrow |f(x_n) - f(x_m)| < \varepsilon$

Таким образом $\{f(x_n)\}$ – фундаментальная

По теореме Коши $\exists \lim f(x_n) = A$

Покажем, что A не зависит от выбранной последовательности x_n , т.е. если взять два ряда: последовательности $\overline{x_n}, \overline{\overline{x_n}} \quad \exists \lim_{n \to \infty} (\overline{x_n}) = \overline{A} \quad \exists \lim_{n \to \infty} f(\overline{\overline{x_n}}) = \overline{A}$

Рассмотрим последовательность $y_n = \{\overline{x_1}, \overline{\overline{x_1}}, \dots \overline{x_n}, \overline{\overline{x_n}}\}$

Очевидно $y_n \to a \Rightarrow y_n$ – фундаментальная $\Rightarrow \exists \lim_{n \to \infty} f(y_n) = A < ... >$

<...>

Сравнение асимптотического поведения функций

Определение 1.8. $\exists f, g : E \to \mathbb{R}$

 $\exists \ a$ – предельная точка E. Если $\exists \ функция \ \varphi(x): E \to \mathbb{R} \ u$ такая $O(a) \cap E$ выполняется $f(x) = \varphi(x)g(x)$ To:

1. Если $\varphi(x)$ локально ограничено в окрестности a, то говорят, что f=O(q) при $x\to a$

f – O-большое от g (npu x, $cmремящемся <math>\kappa$ a)

2. Ecnu $\varphi(x) \to 0$ npu $x \to a$, mo говорят, что f = o(q) npu $x \to a$

f – o-маленькое om g (npu x, $cmремящемся <math>\kappa$ a)

3. Если $\varphi(x) \to 1$ при $x \to a$, то говорят, что $f \sim g$ при $x \to a$

f (асимптотически) эквивалентно g (при x, стремящемся κ a)

Определение 1.9. Если одновременно f = O(q) & q = O(f) при $x \to a$, то говорят, что f, g геравнимы при $x \to a$ $f \simeq g$

Лемма 1.6. 1)f = O(g) $npu \ x \to a \iff \exists c > 0 \& O(a)$ ()), что выполняется неравенство $|f(x)| \leqslant c|g(x)| \forall x \in A$ $\overset{\circ}{O}_a \cap E$ 2) f = o(g) при $x \to a \Longleftrightarrow \forall \varepsilon > o \exists \delta > 0 : \forall x \in \overset{\circ}{O}_\delta(a) \cap E$ выполняется $|f(x)| < \varepsilon |g(x)|$

Доказательство. .

$$1)f = O(g)$$
 при $x \to a$

$$f(x)=arphi(x)g(x)$$
, где $arphi(x)$ – локально ограничена, т.е. $\exists C>0$ и $\exists \overset{\circ}{O}; |arphi(x)|\leqslant C \forall x\in \overset{\circ}{O}(a)\cap E$ Тогда $|f(x)|=|arphi(x)g(x)|=|arphi(x)|\cdot |g(x)|\leqslant C|g(x)|\Rightarrow |f(x)|\leqslant C|g(x)|$

Обратно: \sqsupset выполняется $|f(x)|\leqslant C|g(x)|$ Будем брать $x\in \overset{\circ}{O}(a)\cap E$

Заметим, что если $g(x) = 0 \Rightarrow f(x) = 0$

Положим
$$\varphi(x) \stackrel{def}{=} \begin{cases} \frac{f(x)}{g(x)} &, g(x) \neq 0 \\ 0 &, g(x) = 0 \end{cases}$$

$$\varphi: \overset{\circ}{O}(a) \cap E \to \mathbb{R}$$

Выполняется $f(x) = \varphi(x)g(x), \quad \forall x \in \overset{\circ}{O}(a) \cap E$

Покажем, что $\varphi(x)$ – локально ограничена $|\varphi(x)| < C$, где C взято из (4)

Если
$$g(x) \neq 0$$
 $\varphi(x) = \frac{f}{g}$ и т.к. $|f| \leqslant C|g|$ Если $g(x) = 0 \Rightarrow \varphi(x) = 0 \Rightarrow \varphi(x) \leqslant C$

Если
$$g(x) = 0 \Rightarrow \varphi(x) = 0 \Rightarrow \varphi(x) \leqslant C$$

Таким образом в любом случае $|\varphi(x)| \leq C$ чтп 2)<...>

В 99% практических задач встречается случай, когда $g(x) \neq 0$ в $O(a) \cap E$ Тогда можно дать "упрощённые"переформулировки для О-символ

1.
$$f = O(g)$$
 при $x \to a \Longleftrightarrow \frac{f}{g}$ – локально ограниченная функция

2.
$$f = o(g) \Longleftrightarrow \frac{f}{g} \to 0$$
 при $x \to a$

3.
$$f \sim g \Longleftrightarrow \frac{f}{g} \to 1$$
 при $x \to a$

ДЗ:

Доказать:

1. $f \sim g$ — отношение эквивалентности

2.
$$f = o(g) \Rightarrow f = O(g)$$

3.
$$f \sim g \iff f = g + o(g) \iff f = g + o(f)$$

4. Если
$$f \sim \alpha g, \alpha \neq 0 \Rightarrow f \asymp g$$

5.
$$o(g) + o(g) = o(g)$$

$$o(g) - o(g) = o(g),$$
 а не 0!, как можно подумать . Привести пример

$$2O(g) = O(g)$$

$$O(g)O(h) = O(gh)$$

Вернёмся к замечательным пределам <...>

Теорема 1.9 (о замене на эквивалентное при вычислении пределов). $\Box f, g, \tilde{f}, \tilde{g}: E \to \mathbb{R}$

 $\exists \ a \ - \ npe$ дельная точка E

$$\exists f \sim \widetilde{f}, g \sim \widetilde{g} \ npu \ x \to a$$
$$(f = \widetilde{f} + o(\widetilde{f}), g = \widetilde{g} + o(\widetilde{g}))$$

Тогда справедливы равенства:

1.
$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x)g(x) = \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x)$$

2. Если
$$\exists \overset{\circ}{O}(a)$$
 в которой $g(x) \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\tilde{f}(x)}{\tilde{g}(x)}$

Равенства надо понимать так: Предел стоящий справа и слева существует и не существует одновре-

Доказательство. По определению эквивалентности $\exists \varphi(x): f(x) = \varphi(x) \overset{\circ}{f}(x)$ в некоторой $\overset{\circ}{O}_1(a) \cap E$ и $\varphi(x) \to$

$$\exists \psi(x): g(x)=\psi(x)\tilde{g}(x) \text{ в некоторой } \overset{\circ}{O}_2(a)\cap E \text{ и } \psi(x)\to 1, x\to a$$

$$\forall x\in \overset{\circ}{O}_1(a)\cap \overset{\circ}{O}_2(a)\cap E \\ \lim_{x\to a}(f(x)g(x))=<...>$$

Замечание 1.1. Из теоремы не следует, что то же самое можно делать для $f(x) \pm g(x)$

Booбще говоря
$$\lim_{x\to a} (f(x)\pm g(x)) \pm \lim_{x\to a} (\varphi(x)\widetilde{f}(x)\pm \varphi(x)\widetilde{g}(x))$$

мечание 1.1. Из теоремы не следует, что то же самое можно в Вообще говоря
$$\lim_{x\to a} (f(x)\pm g(x))\pm\lim_{x\to a} (\varphi(x)\widetilde{f}(x)\pm \varphi(x)\widetilde{g}(x))$$

Пример: $a=+\infty$ $f(x)=x+1$ $\widetilde{f}(x)=g(x)=\widetilde{g}(x)=x$ $f\sim \widetilde{f}(x)$
 $\lim_{x\to +\infty} (f-g)=\lim_{x\to +\infty} (x+1-x)=1$

$$\lim_{x \to +\infty} (\widetilde{f}(x) - \widetilde{g}(x)) = \lim_{x \to +\infty} (x - x) = 0$$

$$(0\cdot\infty,\,rac{0}{0},\,rac{\infty}{\infty})$$
 – бро $(\infty-\infty)$ – не бро

$$\lim_{x\to 0} \frac{\ln(1+x+x^2) + \arcsin 3x - 5x^3}{\sin 2x + \lg^2 x} = \lim_{x\to 0} \frac{x+x^2 + o(x+x^2) + 3x + o(3x) - 5x^3}{2x + o(2x) + (x + o(x))^2} = \lim_{x\to 0} \frac{4x + o(x)}{2x + o(2x)} = \lim_{x\to 0} \frac{4 + \frac{o(x)}{x}}{2 + \frac{o(x)}{x}} = \lim_{x\to 0} \frac{4x - o(x)}{2x + o(2x)} = \lim_{x\to 0} \frac{4x - o(x)}{2x + o(x)} =$$

1.
$$\lim_{x \to 0} \frac{\log(1 + 2arsin \ x^2)}{(\cos x)^{\frac{3}{2}} - 1}$$

$$2. \lim_{x \to \frac{\pi}{2}} (\operatorname{tg} \frac{x}{2}) \frac{1}{\cos x}$$

3.
$$\lim_{x \to \infty} \sqrt[3]{x^2 + x + 1} - \sqrt[3]{x^2 - x - 1}$$

1.7 Формулы Тейлора

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1})$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n})$$

3.
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{1\cdot 2}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n)}{1\cdot 2\cdot \dots \cdot n}$$

4.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

5.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1}}{n} x^n + o(x^n)$$

$$\lim_{x \to 0} \frac{e^x - x - \cos x}{\sqrt{1 + x} - 1 - \frac{x}{2}} = \lim_{x \to 0} \frac{x^2 + o(x^2)}{-\frac{x^2}{2} + o(x^2)} = -8$$

1.8 Асимптоты

(асимптотическое представление функции на бесконечность)

$$\supset f: \mathbb{R} \to \mathbb{R}$$

Определение 1.10. Вертикальная прямая x=a называется асимптотой, если $\exists \lim_{x \to a+0} f(x)$ и $\exists \lim_{x \to a-0} f(x)$ равные либо $+\infty$, либо $-\infty$

Определение 1.11. $\exists f : \langle a, +\infty \rangle \to \mathbb{R}$

nрямая y = kx + b называется наклонной асимптотой функции f(x) npu $x \to +\infty$, если f(x) = kx + b + o(1)

Асимптота при $x \to -\infty$ аналогично определяется

Если k = 0, то асимптота называется горизонтальной

Утверждение 1.1. y = kx + b – асимптота функции f, если f(kx + b)to0

Утверждение 1.2. y=b является горизонтальной асимптотой для f $npu \, x \to +(-)\infty \iff \lim_{x \to +(-)\infty} f(x) =$ b

Доказательство. y=b является горизонтальной асимптотой для $f \Longleftrightarrow f(x)=b+o(1), x \to +(-)\infty \Longleftrightarrow \exists \lim_{+(-)\infty \to f} (x)=b$ По теореме о преставлении предела.

$$o(1)$$
 – любая бесконечно малая функция при $x o + (-) \infty$

Примеры:

- 1. $y=\sin x$ нет горизонтальной асимптоты, т.к. $\not\exists \lim_{x\to\infty}\sin x$
- 2. $y = \lg x$ есть вертикальная асимптота (см. рисунок в вики)
- 3. $y = \sqrt{x} \exists \lim_{x \to \infty} \underline{\text{конечного}}$
- 4. $y = \ln x \not\exists$ конечного $\lim_{x \to +\infty} \ln x$
- 5. $y = \operatorname{arctg} x \exists \lim_{x \to +\infty} \operatorname{arctg} x = \frac{\pi}{2}$ $y = \frac{\pi}{2}$ горизонтальная асимптота $\exists \lim_{x \to -\infty} \operatorname{arctg} x = -\frac{\pi}{2}$ $y = -\frac{\pi}{2}$

Теорема 1.10. $\exists f : \langle a, +\infty \rangle \to \mathbb{R}$

прямая
$$y = kx + b$$
 будет наклонной асимптотой $\iff \begin{cases} \exists \lim\limits_{x \to +\infty} \frac{f(x)}{x} = k \\ \exists \lim\limits_{x \to +\infty} (f(x) - kx) = b \end{cases}$

Доказательство.

$$\Rightarrow \ \, \exists \ y = kx + b - \text{ наклонная асимптота} \stackrel{def}{\Rightarrow} f(x) = kx + b + o(1) \Rightarrow \begin{cases} f(x) - kx = b + o(1) \\ \frac{f(x)}{x} = k + \frac{b}{x} + \frac{o(1)}{x} \end{cases} \Rightarrow \begin{cases} \exists \lim_{x \to \infty} (f(x) - kx) = b \\ \exists \lim_{x \to \infty} \frac{f(x)}{x} = k \end{cases}$$

$$\Leftarrow$$
 По условию $\exists\lim_{x\to\infty} \frac{f(x)}{x}=k$ По условию $\exists\lim_{x\to\infty} (f(x)-kx)=b\Rightarrow f(x)-kx=b+o(1)\Rightarrow f(x)=kx+b+o(1)$

1.9 Непрерывные функции

 $\supseteq f: E \to \mathbb{R}$

Определение 1.12. $\supseteq x_0 \in E$ Функция f называется непрерывной в точке x_0 , если выполняется любое одно из следующих утверждений:

- 1 Предел функции f в точке x_0 существует и равен $f(x_0)$ т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$ (это определение работает только для случая когда x_0 предельная точка E)
- язык ε δ 2 $\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in E \quad |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \varepsilon$ (Если x_0 изолированная точка \Rightarrow из $|x x_0| < \delta$ достаточно мало $\Rightarrow x = x_0 \Rightarrow |f(x) f(x_0)| = 0 < \varepsilon$ автоматически выполнено). Поэтому, если x_0 изолированная точка E, то автоматически f будет непрерывна в x_0
- язык окрестностей $\exists \forall O_{\varepsilon}(f(x_1))\exists O_{\delta}(x_0): f(O_{\delta}\cap E)\subset O_{\varepsilon}(f(x_0)) \ (O_{\delta}\cap E=\{x|x\in E\&|x-x_0|<\delta\}).$ Если δ мало то $E\cap O_{\delta}(x_0)=\{x_0\}\ u\ ecmb\ f(x_0)\in O_{\varepsilon}(f(x_0))$
 - язык Гейне 4 $\forall x_n \in E \ u \ x_n \to x_0$ выполняется $f(x_n) \to f(x_0)$ (это тоже работает тогда, когда x_0 предельная точка E)
- язык приращений 5 Бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции. $T.e.\ \Delta y \to 0\$ при $\Delta x \to 0.\$ $x \in E\$ $\Delta x = x - x_0, \Delta y = y - y_0\$ (раз появляется $\Delta x \to 0 \Rightarrow x_0\$ должна быть предельной точкой E)

Из плодотворной и оживлённой дискуссии во время лекции \Rightarrow все 5 определений эквивалентны. Эквивалентность $1 \sim 2 \vee 3$ — определение \lim Эквивалентность $4 \sim 2$ — эквивалентность ε — δ и языка Гейне 5 — другая переформулировка 1

Определение 1.13. f называется <u>непрерыной</u> на множестве E, если она <u>непрерывна</u> в каждой точке E обозначение: $f \in C(E)$

Определение 1.14. $\supseteq f: E \to \mathbb{R}, x_0 \in E$. Если f не является непрерывной в точке x_0 , то x_0 называется точкой разрыва f. (f терпит разрыв в x_0 , f разрывна в x_0)

Определение 1.15. $\supseteq f: E \to \mathbb{R}, x_0 \in E$

Обозначим: $E_{-} = (-\infty; x_{0}] \cap E \quad E_{+} = [x_{0}, +\infty) \cap E$

Если сужение $f|_{E_{-}}$ – непрерывно в x_{0} , то говорят, что f непрерывно в x_{0} слева

Eсли сужение $f|_{E_+}$ – непрерывно в x_0 , то говорят, что f непрерывно в x_0 справа

Замечание 1.2. Если f непрерывна в x_0 слева $\Longleftrightarrow \exists \lim_{x \to x_0 = 0} = f(x_0)$

аналогично Если f непрерывна в x_0 справа $\iff \exists \lim_{x \to x_0 + 0} = f(x_0)$ (убедиться)

Замечание 1.3. Помним: $\exists \lim_{x \to x_0} f(x) \Longleftrightarrow \begin{cases} \exists \lim_{x \to x_0 + 0} f(x) \\ \exists \lim_{x \to x_0 - 0} f(x) \end{cases}$ и они равны

Из этого следует: f – непрерывна в $x_0 \iff f$ непрерывна в x_0 слева и справа

Замечание 1.4. обозначения:

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0)$$
$$\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$$

 $\exists x_0$ – точка разрыва

Определение 1.16. Если \exists конечные числа $f(x_0-0), f(x_0+0)$, но не все β числа $f(x_0-0), f(x_0), f(x_0+0)$ равны между собой $\Rightarrow x_0$ – точка разрыва 1 рода

разрыв первого рода также называют скачком

Существует терминология:

скачком называют разность $f(x_0 + 0) - f(x_0 - 0)$

 $f(x_0+0)-f(x_0)$ – правый скачок

 $f(x) - f(x_0 - 0)$ – левый скачок

Бывает, что f определена в проклотой окрестности x_0 , но в x_0 не определена.

Eсли \exists конечные $f(x_0-0), f(x_0+0),$ которые не равны, то также говорят, что x_0 – точка разрыва 1 рода

Определение 1.17. Если точка разрыва x_0 не является разрывом 1 рода, то x_0 – точка разрыва 2 рода т.е. Либо хотя бы одно из чисел $f(x_0-0), f(x_0+0)$ "равно" ∞ , либо вообще не существует

аналогично случаю разрыва 1 рода, если f определено в проколотой окрестности x_0 , но не в самой x_0 и хотя бы одно из чисел $f(x_0-0), f(x_0+0)$ либо не существует либо "равен" ∞ , то x_0 также называется точкой разрыва 2 рода.

Определение 1.18. $\exists x_0$ – точка разрыва 1 рода и $f(x_0 - 0) = f(x_0 + 0 = A)$, но $f(x_0) \neq A$, тогда x_0 называют точкой устранимого разрыва (сам разрыв или скачок называется устранимым).

Мотивация. Если у f поменять значение в x_0 на $A(вместо x_0)$, т.е. рассмотреть функцию

$$\tilde{f}(x)=egin{cases} f(x),x
eq x_0 \\ A,x=x_0 \end{cases}$$
 , то \tilde{f} становится непрерывна в x_0

Примеры:

1.
$$f(x) = sign x = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

 $x_0 = 0$ – разрыв 1 рода не устранимый

2.
$$f(x) = sign^2 x = \begin{cases} 1, x \neq 0 \\ 0, x = 0 \end{cases}$$
 $x_0 = 0$ – устранимый разрыв

3.
$$f(x) = \frac{1}{x}$$
 – гипербола

$$f(-0) = -\infty$$
 $f(+0) = +\infty$ разрыв второго рода

 x_0 – разрыв второго рода (хоть функция в 0 не определена)

Если
$$\tilde{f}(x)=\begin{cases} \frac{1}{x}, x\neq 0 \\ A, x=0 \end{cases}$$
 всё равно 0 – разрыв 2 рода

4.
$$f(x) = \frac{1}{x^2}$$
, $x_0 = 0$ $f(-0) = f(0) = +\infty$ разрыв 2 рода

5.
$$f(x) \equiv \frac{x-1}{x^2-1}$$
 B $\mathbb{R} \setminus \{-1,1\}$

ясно
$$f = \frac{x-1}{(x-1)(x+1)} = \frac{1}{x+1}$$

$$x_0 = -1$$

$$f(-1-0) = \frac{1}{-0} = -\infty$$
 $f(-1+0) = \frac{1}{+0} = +\infty$

$$x_0 = 1$$

$$f(1+0) = f(1-0) = \frac{1}{2}$$
 устранимый разрыв разрыв 2 рода

$$6. \ f(x) = \sin\frac{1}{x}$$

Теорема 1.11. $x_0 = 0$ разрыв 2 рода, т.к. f(+0) $\not\exists$

Доказательство. $\neg \exists \lim_{x \to +0} f(x)$ – надо доказать

$$\exists x_n^{(1)} = \frac{1}{\frac{\pi}{2} + 2\pi n} \to +0 \quad sin(\frac{1}{x_n^{(1)}}) = 1 \forall n$$

$$\exists x_n^{(2)} = \frac{1}{\pi n} \to +0 \quad \sin(\frac{1}{x_n^{(2)}}) = 0 \forall n$$

7.
$$f(x) = x \sin x$$
 в $\widehat{\mathbb{R}} \setminus \{0\}$

$$x_0=0$$
 – 1 рода, устранимый $(f(+0)=f(-0)=0 \quad |f(x)|\leqslant |x|\Rightarrow \lim_{x\to\pm 0}f(x)=0)$

8.
$$f(x) = 2^{\frac{1}{x}}$$
 на $\mathbb{R} \setminus \{0\}$

$$f(-0) = 2^{\frac{1}{-0}} = 2^{-\infty} = \frac{1}{2^{\infty}} = 0$$

$$f(+0) = 2^{\frac{1}{+0}} = 2^{\infty} = \infty$$

$$x_0 = 0$$
 — разрыв 2 рода

y=1 – горизонтальная асимптота

9. Функция Дирихле $\chi(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$

Лемма 1.7. В любой точке из \mathbb{R} у χ разрыв 2 рода

Доказательство. достаточно доказать, что в любой точке x_0 не существует $f(x_0+0)$

(a)
$$x_0 \in \mathbb{Q}$$
 $x_n^{(1)} = x_0 + \frac{\pi}{n} \downarrow x_0$ $\chi(x_n^{(1)} + 0) \to 0$
 $x_n^{(2)} = x_0 + \frac{1}{n} \downarrow x_0 + 0 \in \mathbb{Q}$ $\chi(x_n^{(2)} + 0) = 1 \neq 0 = \chi(x^{(1)} + 0)$

Дз с 13 ноября:

1. Функция Римана
$$\psi(x)=\begin{cases} \frac{1}{q}, x=\frac{p}{q1}$$
– несократимая $\in \mathbb{Q}\\ 0, x \not\in \mathbb{Q} \end{cases}$

Доказать:

- ullet ψ непрерывна во всех иррациональных точек
- имеет разрыв 1 рода во всех рациональных точках
- 2. Построить график и исследовать на разрывность/непрерывность

$$f(x) = \begin{cases} \frac{|x^2 - 1|}{x^2 - 1}, & x \neq \pm 1\\ 0, & x = -1\\ 1, & x = 1 \end{cases}$$

3. Подобрать
$$k:f(x)=\dfrac{\sqrt{1-2x}-1+x}{x^k}$$
 была бы непрерывна в 0

1.9.1 Свойства непрерывных функций

 $f: E \to \mathbb{R} \quad E \subset \mathbb{R}$

 $x_0 \in E$ возможны два случая:

- x_0 изолированная точка
- x_0 предельная точка

Теорема 1.12. $\supset f$ – непрерывна в $x_0 \Rightarrow f$ – локально ограничена в x_0

Доказательство. f – локально ограничена $\iff \exists K \geqslant 0$ и \exists окрестность $O(x_0) \quad |f(x)| \leqslant k \quad \forall x \in O(x_0) \cap E$ Если x_0 – изолированная точка, то всё очевидно, т.к. достаточно малая окрестность $O(x_0 \cap E = \{x_0\})$ и для этой окрестности $K = |f(x_0)|$ (т.к. $\forall x \in O(x_0) \cap E \Rightarrow x = x_0$ и $|f(x) = |f(x_0)| \leqslant k$) [для этого случая непрерывность не нужна]

 $\exists x_0$ – не изолированная точка. Воспользуемся определением непрерывности на языке $\varepsilon - \delta$

Возьмём $\varepsilon=1.$ По непрерывности $\exists \delta>0: \forall x\in O_\delta(x_0)\cap E\Rightarrow |f(x)-f(x_0)|<1\Rightarrow |f(x)<1+|f(x_0)||\quad k=1+|f(x_0)||$

Т.о. мы нашли k и окрестность $O_{\delta}(x_0)$

Теорема 1.13 (О стабилизации знака). f – непрерывна в x_0 и $f(x_0) \neq 0$, тогда \exists такая окрестность x_0 , в которой знак f(x) совпадает со знаком $f(x_0)$

T.e.
$$iff(x_0) > 0 \Rightarrow \exists \text{ окрестность } O(x_0) : \forall x \in O(x_0) \cap E \quad f(x) > 0$$

 $iff(x_0) < 0 \Rightarrow \exists \text{ окрестность } O(x_0) : \forall x \in O(x_0) \cap E \quad f(x) < 0$

Доказательство. Рассмотрим случай $f(x_0) > 0$ $(f(x_0) < 0$ – аналогично)

 $\exists \varepsilon = \frac{f(x_0)}{2}$ по определению непрерывности $\exists \delta : x \in O_\delta(x_0) \cap E$ выполняется $|f(x) - f(x_0)| < \varepsilon = \frac{f(x_0)}{2}$ Вспомним $|a| + |b| \geqslant |a - b| \geqslant ||a| - |b||$

$$||f(x)| - |f(x_0)|| < \frac{f(x_0)}{2}$$
$$-|f(x)| + |f(x_0)| < \frac{f(x_0)}{2}$$

$$f(x_0) - \frac{f(x_0)}{2} < f(x)$$

 $f(x) > \frac{f(x_0)}{2} > 0 \quad \forall x \in O_{\delta}(x_0) \cap E$

Теорема 1.14 (Арифметические действия над непрерывными функциями). $\Box f, g: E \to \mathbb{R} \quad \Box f, g$ - непрерывны в x_0

Тогда:

- 1. $\forall \alpha, \beta \in \mathbb{R}$ $\alpha f(x) + \beta g(x)$ непрерывна в x_0
- 2. $f \cdot g$ непрерывно в x_0
- 3. Если $g(x_0) \neq 0$, то $\frac{f}{g}$ непрерывна в x_0

 $\exists x_0$ – предельная точка E и воспользуемся языком Гейне

Возьмём произвольную последовательность $x_n \to x_0$

По непрерывности $f(x_n) \to f(x_0), g(x_n) \to g(x_0)$

Тогда из Теоремы об арифметических действиях над пределами следует $\alpha f(x_n) + \beta g(x_n) \to \alpha f(x_0) + \beta g(x_0)$

$$f(x_n)g(x_n) o f(x_0) o g(x_0)$$
 и Если $g(x \neq 0)$, то $\dfrac{f(x_n)}{g(x_n)} o \dfrac{f(x-0)}{g(x_0)}$ это и означает непрерывность

Замечание к 3. Т.к. $g(x_0) \neq 0$ по теореме о стабилизации знака $g(x) \neq 0$ в некоторой окрестности $O(x) \Rightarrow$ функция $\frac{f}{g}$ корректно определена в $O(x_0)$

Класс элементарных функций:

- 1. Все многочлены (включая константы)
- 2. $a^x(a > 0)$
- 3. $\log_a x (a > 0, a \neq 1)$
- $4. \ sinx, cosx$
- 5. Любая комбинация, произведение, частное элементарных функций снова считается элементарной (добавляются все рациональные функции = $\frac{\text{многочлен}}{\text{многочлен}}$ и все тригонометрические функции)
- 6. Композиция элементарных функций элементарная функция. (добавляется $\lg(x+1) \lg(x^2-3x+1) x^\alpha = e^{\alpha \ln x}$)

Теорема 1.15 (О непрерывности композиции). $\exists f: E \to M; g: M \to \mathbb{R}$

$$E \xrightarrow{f} M \xrightarrow{g} \mathbb{R}$$

 \Box f – непрерывна в $x_0 \in E$, а g непрерывно в $f(x_0) \in M \Rightarrow$ композиция $g \circ f = g(f(x))$ непрерывна в x_0

Доказательство. обозначим $y_0 = f(x_0)$ на языке последовательностей (Гейне).

Возьмём $x_n \to x_0$ Т.к. f – непрерывна в точке $x_0 \Rightarrow f(x_n \to f(x_0))$

$$\exists y_n = f(x_n)$$
, тогда $y - n \to y_0$

Т.к. g непрерывна в $y_0 \Rightarrow g(y_n) \rightarrow g(y_0)$

Окончательно $g(f(x_n)) o g(f(x_0))$ Т.е. g(f(x)) – непрерывно в x_0

Пример:
$$f(x) = x \sin \frac{1}{x}$$
 $g(y) = |sign y|$ $\lim_{x \to 0} f(x) = 0, g(0) = 0$

Однако $\lim_{x\to 0} g(f(x))$ – не существует !!! (=0?)

Это не всё: кто-то заявит, что это "понятно т.к. f не является непрерывной в 0

Другой парадокс: $\lim_{y\to 0}g(y)=1$ – существует!!

Но снова $\lim_{x\to 0} g(f(x)) \neq 1$, т.к. он вообще не существует

Покажм, что $\lim_{x\to 0} g(f(x))$ – не существует

$$\exists x_n = \frac{1}{\pi n} \quad f(x_n) = \frac{1}{\pi n} \sin \pi n = 0$$

$$g(f(x_n)) = 0 \to 0, n \to \infty$$

$$\exists x_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \to 0 \quad f(x_n) = \frac{1}{\frac{\pi}{2} + 2\pi n} \cdot \sin(\frac{\pi}{2} + 2\pi n) = \frac{1}{\frac{\pi}{2} + 2\pi n} > 0$$

$$g(f(x)) = 1 \to 1$$

Теорема 1.16. Все элементарные функции непрерывны на своей области определения

Теорема 1.17 (1-ая Больцано-Коши о промежуточном значении). $\exists f \in C([a;b]), \exists f(a), f(b) < 0$ $Tor \partial a \; \exists c \in (a;b) : f(c) = 0$

Доказательство. Метод половинного деления Кантора

$$\sphericalangle x_1 = rac{a+b}{2}$$
 Если $f(x_1) = 0$ – теорема доказана

Если $f(x_1) \neq 0$, то оно либо > 0, либо < 0

Тогда берём отрезок либо $[a, x_1]$, либо $[x_1, b]$ так, чтобы выполнялось $f(a)f(x_1) < 0 \lor f(x_1)f(b) < 0$

В итоге получаем последовательность вложенных отрезков, где длина каждого следующего в два раза меньше предыдущего.

$$[a,b] \supset [a_1,x_1] \supset [x_2,x_1] \supset \cdots \supset [x_n,x_{n+1}] \supset \cdots$$
$$|x_{n+1}-x_n| \leqslant \frac{b-a}{2^{n-1}}$$
$$\forall n \quad f(x_n)f(x_{n+1}) < 0$$

По теореме Коши
$$\exists! c = \bigcap\limits_{n=1}^{\infty} [x_n, x_{n+1}]$$
 Покажем, что $f(c) = 0$

От противного $\exists f(c) \neq 0$

Тогда по тереме о стабилизации знака \exists окрестность $(c - \delta, c + \delta)$ точки c, в которой f(x) принимает тот же знак, что и f(c)

Ясно, что НСНМ
$$[x_n, x_{n+1} \subset (c-\delta, c+\delta)]$$
 $(x_n, x_{n+1} \to c) \Rightarrow f(x_n) f(x_{n+1}) > 0$, что невозможно Т.О. $f(c) = 0$ ч.т.д.

Доказательство. Будем считать для определённости, что f(a) < 0 < f(b)

$$M \stackrel{def}{=} \{x | x \in [a, b], f(x) < 0\}$$

 $M \neq \emptyset$, t.k. $a \in M$

M – ограничено, не $\emptyset \Rightarrow \exists \sup M = c \in [a, b]$ –замкнутое

Покажем, что f(c) = 0

От противного. Если f(c) > 0, то по теореме о стабилизации знака $\exists (c - \delta, c + \delta) : f(x) > 0 \Rightarrow c$ – не sup для f(x) < 0, т.к. в любой окрестности sup должны лежать точки из M

Если f(c) < 0, то по теореме о стабилизации знака f(x) < 0 на $(c - \delta, c + \delta) \Rightarrow$ нашлись точки из M: $(c, c + \delta) \cap M$ f(x < 0), no x > c

Это невозможно, т.к. c наибольшее из таких чисел

Теорема 1.18 (2-ая Больцано-Коши о промежуточном значении). $\exists f \in C([a;b])$ Тогда \forall числа c , лежащего межеду числами f(a) и $f(b)\exists x \in [a,b]: c = f(x)$

Иными словами, непрерывная функция принимает все значения, заключённые между f(a) и f(b)

Доказательство. Рассмотрим вспомогательную функцию g(x) = f(x-c) Ясно, что $g \in C([a,b])$

Т.к. c лежит между f(a) и f(b), то $(f(a)-c)(f(b)-c)<0 \iff (f(a)< c< f(b) \lor f(a)>c>f(b)) \iff$ g(a)g(b) < 0

Тогда по 1-ой ТБК
$$\exists x \in (a,b): g(x) = 0 \Longleftrightarrow f(x) = C$$
 (нашлось значение)

Следствие 1.3 (Лемма о сохранении промежутка). Непрерывный образ промежутка есть снова промежу-

Доказательство. $\langle a;b \rangle$ – промежуток $(a \geqslant -\infty, b \leqslant +\infty)$ – Связное множество (т.е. без дыр)

Лемма 1.8. Характеристическое свойство промежутка – I – промежуток $\iff \forall x_1, x_2 \in I$ выполняется $[x,x_2]\subset I$.

Доказательство.

⇒ Это следует из определения промежутка.

$$I$$
 – промежуток \iff $I=< a,b>=\{x\mid a\stackrel{\leqslant}{<}x\stackrel{\leqslant}{<}b\}$ $a\leqslant x_1\leqslant xb\quad a\leqslant x_2\leqslant b\Rightarrow \forall x\in [x_1,x_2]\quad a\leqslant x_1\leqslant x\leqslant x_2\leqslant b$ T.e. $[x_1,x_2]\in< a,b>$

 $\Leftrightarrow \ \, \exists \ a = \inf \ I, b = \sup I \ ($ может быть, что $a = -\infty \lor b = +\infty)$

Ясно, что $I \subset [a;b]$ Если $a = -\infty \lor b = +\infty$, то пишем '(', ')'

Покажем, что $(a,b) \subset I$, тогда понятно, что I либо совпадает с (a,b) и это промежуток, либо I получается из (a,b) добавлением одной или двух точек из a и b

T.e. $I = [a, b) \lor \langle a, b \rangle \lor [a, b]$ и это тоже промежуток

$$\exists x \in (a, b) \Rightarrow a < x < b$$

т.к.
$$a = \inf I \Rightarrow \exists x_1 \in I : a < x_1 < x$$

аналогично $b = \sup I \Rightarrow \exists x_2 \in I : x < x_2 < b$

Т.о. нашёлся отрезок $[x_1,x_2] \ni x$ и такой что $x_1 \in I, x_2 \in I$ По условию $[x-1,x_2 \in I] \Rightarrow x \in I$ Т.о. $(a,b) \in I$

Возвращаемся к лемме.

$$\exists I = f(\langle a, b \rangle)$$

берём
$$c_1 \in I \Rightarrow \exists x_1 \in \langle a, b \rangle : f(x - 1 = c_1)$$

$$c_2 \in I \Rightarrow x_2 \in \langle a, b \rangle : f(x_2) = c_2$$

По Т2БК $\forall c \in [c_1, c_2] \exists x \in \langle a, b \rangle$ f(x) = c, т.е. $c \in f(\langle a, b \rangle)$, т.е. $[c_1, c_2] \subset f(\langle a, b \rangle) \Rightarrow f(\langle a, b \rangle)$ промежуток

Теорема 1.19 (1-ая Теорема Вейрштрасса). $\Box f \in C([a,b]) \Rightarrow f$ – ограничено на [a,b]

Доказательство. От противного. $\Box f$ – неограничена $\Rightarrow \forall n \in \mathbb{N} \exists x_n \in [a,b] : |g(x_n)| > n$

Рассмотрим последовательность $\{x_n\}\subset [a,b]\Rightarrow$ это ограниченная последовательность

По теореме Больцано-Коши из неё можно выбрать сходящуюся подпоследовательность $x_{n_k} \to x^*$. Т.к. [a,b] – замкнутое множество $\Rightarrow x^{\in}[a,b]$

Т.к. f – непрерывно $\Rightarrow f$ – локально ограничено, в частности в окрестности точки $x^* \exists K$ и $O_\delta(x^*) : \forall x \in O_\delta(x^*) |f(x)| \leqslant K$

с другой стороны
$$x_{n_k} \to x^* \Rightarrow$$
 HCHM $x_{n_k} \in O_{\delta(x^*)}$ при этом $|f(x_{n_k})| > n_k \to +\infty$
Это несовместимо с неравенством $|f(x_{n_k})| \leqslant K?!!$

Теорема 1.20 (2-ая Теорема Вейрштрасса). *Непрерывная функция на отрезка принимает (достигает)* своих наибольших и наименьших значений

$$m = \inf_{x \in [a,b]} f(x), M = \sup_{[a,b]} f(x) \text{ Torda } \exists x_1, x_2 \in [a,b] : m = f(x-1), M = f(x_2)$$

$$\inf_{[a,b]} = \min_{[a,b]}, \text{ m.e. } \exists \max_{[a,b]} f(x) = f(x_2) - \sup_{[a,b]} f$$

Доказательство. Докажем, что достигается M (для m надо рассмотреть просто -f(x))

Т.к.
$$M = \sup f \Rightarrow \forall x \in [a, b] \quad f(x) \leqslant M$$

Предположим противное $\forall x \in [a, b] f(x) < M$

Рассмотрим вспомогательную функцию $g(x)=\frac{1}{M-f(x)}>0$, т.к. знаменатель $\neq 0$, то это снова непрерывная функция на [a,b]

По Т1БВ она ограничена $\Rightarrow \exists \mu > 0 : g(x) \leqslant \mu$

По ГГВВ она ограничена
$$\Rightarrow \exists \mu > 0$$
 . $g(x)$ $\frac{1}{M-f(x)} \leqslant \mu \Rightarrow \frac{1}{\mu} \leqslant M-f(x)$ $\Rightarrow f(x) \leqslant M-\frac{1}{\mu}$ выполнятеся $\forall x \in [a,b]$ $\sup_{[a,b]} f(x) \leqslant M-\frac{1}{\mu}$, а он равен M ??!

Теорема 1.21. Если f(x) непрерывна и обратима на [a,b], то обратная κ ней тоже непрерывна Более аккуратно \Box $f \in C([a,b])$ и $f:[a,b] \to [A,B]$ и f – обратима : $\exists f^{-1}:[A,B] \to [a,b]$ Тогда $f^{-1} \in C([A,B])$

Доказательство. y = f(x) $x = f^{-1}(y)$

 $(x_0 - \varepsilon, x_0 + \varepsilon)$ что и требовалось доказать

Замечание 1.5. f([a;b]) = [A;B] это следует из предыдущей теоремы

 $\exists y_0 \in [A;B]$ по теореме о промежуточном значении $\exists x_0 \in [a;b]: y_0 = f(x_0)$ Возьмём $\forall \varepsilon > 0$ и $\lhd(x_0 - \varepsilon, x_0 + \varepsilon)$ $\exists \sigma > 0$ такое маленькое число $[x_0 - \sigma, x_0 + \sigma] \subset (x_0 - \varepsilon, x_0 + \varepsilon)$ $\lhd f([x_0 - \sigma, x_0 + \sigma]) = [\alpha, \beta]$ т.к. непрерывный образ отрезка – отрезок Ясно, что $y_0 \in (\alpha, \beta)$ $(y_0 \neq \alpha$ иначе $y_0 = f(x_0) = f(x_0 - \sigma)$ аналогично $y_0 \neq \beta$ f – биекция?!) А теперь, наконец, подумаем, что же надо доказать? f^{-1} – непрерывна в $y_0 \Longleftrightarrow \forall \varepsilon > 0 \exists \delta > 0: f^{-1}(y_0 - \delta, y_0 + \delta) \subset (x_0 - \varepsilon, x_0 + \varepsilon)$ Так мы это уже и доказали: по $\forall \varepsilon$ мы нашли $\delta: y \in (y_0 - \delta, y_0 + \delta) \subset [\alpha, \beta] \Rightarrow x = f^{-1}(y) \subset [x_0 - \sigma, x_0 + \sigma] \subset [\alpha, \beta]$

Следствие 1.4 (Непрерывность обратных элементарных функций). • y = x6n, n > 0 на $[0, +\infty), \uparrow \Rightarrow$ она обратима и непрерывна (мы это знаем из того $\forall x_n^{\alpha} \to x_0^{\alpha}$ и эквивалентность языка Гейне и языка $\varepsilon - \delta \Rightarrow x^{\frac{1}{n}}$ – непрерывна (т.е. $\sqrt{x}, \sqrt[3]{x}$ и т.д.)

- ullet Если мы доказали, что e^x непрерывна и возрастает, то из этого уже бы следовало, что $\ln x$ непрерывна
- $f = \sin \left|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right|$ $f \uparrow u$ непрерывна $f : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ $\exists f^{-1} = \arcsin : \left[-11\right] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \uparrow$ $\arcsin - \text{непрерывен } f(x) = a \iff x = f^{-1}(a)$ $\arcsin(-x) = -\arcsin x$
- $f = \cos |_{[0,\pi]}, \downarrow$ $f : [0,\pi] \to [-1,1]$ $\exists f^{-1} = \arccos$ $\arccos : [-1,1] \to [0,\pi]$ $\arccos(-x) =$ $\arccos \downarrow u \text{ непрерывен}$
- $f = \operatorname{tg} \mid_{(-\frac{\pi}{2}, \frac{\pi}{2})} : (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}, \uparrow$ $\exists f^{-1} = \operatorname{arctg} : \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}), \uparrow, \text{ непрерывен}$ вертикальные асимптоты tg превращаются в горизонтальные асимптоты arctg
- $f = \operatorname{cth}|_{(0,\pi)}$ $\exists f^{-1} = \operatorname{arcctg} : \mathbb{R} \to (0,\pi), \downarrow$, непрерывен вертикальные асимптоты переходят в горизонтальные

Теорема 1.22 (Непрерывность, обратимость, монотонность). Если f непрерывна на [a,b] и обратима на нём, то f монотонна (строго) на [a,b]

Доказательство. От противного $\Rightarrow \exists x_1 < x_2 < x_3$, в которых будет реализовываться следующие картинки $\exists c \in (min\{f(x_1), f(x_3)\}, f(x_2))$ По теореме о промежуточном значении $\exists x' \in (x_1, x_2) : c = f(x')$ $\exists x'' \in (x_2, x_3) : c = f(x'') \Rightarrow f(x') = f(x'')$, но $x' \neq x''$ это противоречит обратимости.

Теорема 1.23 (Теорема о непрерывности монотонной функции). $\exists f: \langle a;b \rangle \to \mathbb{R}$ – монотонная Тогда она не может иметь разрывов 2 рода и непрерывность функции f равносильно тому, что множество значений, т.е. $f(\langle a;b \rangle)$, есть промежуток

Доказательство. Пусть для определённости она монотонно возрастающая. В противном случае нужно рассматривать -f

Теорема 1.24. Любое уравнение нечётной степени имеет хотя бы один вещественный корень

1.10 Равномерная непрерывность

Обычной непрерывности может не хватать. Например $f(x)_n = x^n o \begin{cases} 1, x = 1 \\ 0, 0 \leqslant x < 1 \end{cases}$

Определение 1.19. $\supset f: E \to \mathbb{R}$

```
f – непрерывна на E \Longleftrightarrow f – непрерывна в \forall точке E т.е. \forall \overline{x} \in E \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon, \overline{x}) : \forall x \in O_{\delta}(\overline{x}) \cap E \Rightarrow f(x) \in O_{\varepsilon}(f(\overline{x}))
```

В двух словах равномерная непрерывность \iff δ не зависит от \overline{x} , т.е для всех точек \overline{x} из E δ можно выбрать одинаковой (по ε

Определение 1.20. f – равномерно непрерывно на множестве $E \iff \forall \overline{x} \in E, \forall \varepsilon > 0 \exists \delta = \underline{\delta(\varepsilon)} > 0$ (δ зависит только от ε): $\forall x \mid |x - \overline{x}| < \delta \Rightarrow |f(x) - f(\overline{x})| < \varepsilon$

Лемма 1.9 (равносильное определение). f – равномерно непрерывна на $E \Longleftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall \overline{x}\overline{x} \in E \quad |\overline{x} - \overline{x}| < \delta \Rightarrow |f(\overline{x}) - f(\overline{x})| < \varepsilon$

Доказательство.

- \Leftarrow очевидно (считаем, что $x \overline{\overline{x}}$)
- \Rightarrow Если по любому \overline{x} и по любому ε выбрать $\delta = \delta(\varepsilon)$, то $\forall \overline{x} \in E \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall \overline{\overline{x}} \in E \quad |\overline{\overline{x}} \overline{x}| < \varepsilon \Rightarrow |f(\overline{\overline{x}}) f(\overline{x})| < \varepsilon$ Квантер для $\overline{\overline{x}}$ можно занести внутрь, получив утверждение из леммы

Замечание 1.6. Из равномерной непрерывности, конечно же, следует обычная непрерывность. Обратное неверно (будут примеры).

Теорема 1.25 (Кантор). Если f определена на отрезке [a;b] и непрерывна на нём, то она равномерно непрерывна на отрезке

Доказательство. $\Box f \in C([a;b])$

От противного. Напишем отрицание определения равномерной непрерывности (из леммы):

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \exists \overline{x}_{\delta}, \overline{\overline{x}}_{\delta} \in [a; b]; |\overline{x}_{\delta} - \overline{\overline{x}}_{\delta}| < \delta, \text{ HO } |f(\overline{x}_{\delta}) - f(\overline{\overline{x}}_{\delta})| \geqslant \varepsilon_0 \quad (*)$$

Будем брать
$$\delta = \frac{1}{n} \to 0, n \in \mathbb{N}$$

Получим
$$\exists \overline{x}_n, \overline{\overline{x}}_n : |\overline{x}_n - \overline{\overline{x}}_n| < \frac{1}{n} \Rightarrow |f(\overline{x}_n) - f(\overline{\overline{x}}_n)| \geqslant \varepsilon_0$$

Мы имеем две последовательности $\{\overline{x}_n\}$ и $\{\overline{\overline{x}}_n\}$ из отрезка [a;b]

Из $\{\overline{x}_n\}$ можно выбрать сходящуюся подпоследовательность

$$\exists \overline{x}_{n_k} \to c \in [a; b]$$

Тогда и
$$\overline{\overline{x}}_{n_k} \to x$$
, т.к. $|\overline{x}_{n_k} - \overline{\overline{x}}_{n_k}| < \frac{1}{n_k} \to 0$

$$|\overline{\overline{x}}_{n_k} - c| = |\overline{\overline{x}}_{n_k} - \overline{x}_{n_k} + \overline{x}_{n_k} - c| \leqslant |\overline{\overline{x}}_{n_k} - \overline{x}_{n_k}| + |\overline{x}_{n_k} - c| \text{ Первое слогаемое стремится к 0, т.к.} < \frac{1}{n_k} \to 0. \text{ A}$$

второе стремится к
$$0$$
, т.к. $c = \lim \overline{x}_{n_k}$

Тогда
$$|f(\overline{x}_{n_k}) - f(\overline{\overline{x}}_{n_k})| \ge \varepsilon_0$$
 (*)

$$f$$
 – непрерывна и монотонно убывает $n_k \to \infty$

$$|f(c)-f(c)| \geqslant \varepsilon_0 \quad 0 \geqslant \varepsilon_0$$
 странно

1.10.1 Примеры

1.
$$f(x) = x : \mathbb{R} \to \mathbb{R}$$
 – равномерно непрерывно

$$\forall \varepsilon > 0 \exists \delta = \varepsilon \quad |\overline{x} - \overline{\overline{x}}| < \delta \Rightarrow |f(\overline{x}) - f(\overline{\overline{x}})| = |\overline{x} - \overline{\overline{x}}| < \varepsilon?$$

2. Но
$$f(x) = x^2$$
 – не равномерно непрерывная на \mathbb{R} (но само x^2 непрерывно на \mathbb{R}).

Возьмём $\varepsilon_0 = 1$, возьмём $\forall \delta > 0$

$$\sqsupset \overline{x} = \frac{1}{\delta}, \overline{\overline{x}} = \frac{1}{q} + \frac{\delta}{2}$$

Тогда
$$|\overline{x}-\overline{\overline{x}}|=rac{\delta}{2}<\delta$$

$$\operatorname{Ho} |f(\overline{x}) - f(\overline{\overline{x}})| = |(\overline{x} - \overline{\overline{x}})(\overline{x} - \overline{\overline{x}})| = \left| \frac{\delta}{2} \cdot \left(\frac{1}{\delta} + \frac{1}{\delta} + \frac{\delta}{2} \right) \right| = \left| \frac{1}{2} + \frac{1}{2} + \frac{\delta^2}{4} \right| > \varepsilon_0$$

Определение 1.21. Колебания
$$f(x)$$
 н $\langle a,b \rangle$ $\omega_{\langle a,b \rangle}(f) = \sup_{\overline{x},\overline{\overline{x}} \in \langle a,b \rangle} |f(\overline{x}) - f(\overline{\overline{x}})|$

ДЗ(прошлый листок):

- 1. 572.1
- 2. 573.1
- 3. 574.1
- 4. 579.1

 Γ ЛАВА 1. 1 ЧЕТВЕРТЬ

Глава 2

Дифференциальные исчисления (функции от одной переменной)

Дифференцируемость

Определение 2.1 (Скорость). $v = \frac{S}{t}$ – средняя скорость на отрезке. Непригодно для характеризации движения.

Определение 2.2 (Мгновенная скорость). $\exists \lim_{\Delta t \to 0} v_{cp} = v_{{}_{\!\!M\!R\!H}}$

$$s(\Delta t) = x(t + \Delta t) - x(t) = \Delta x$$

$$v_{{}_{\!\!\mathit{MPH}}}=\lim_{\Delta t o 0} \frac{x(t+\Delta t)-x(t)}{x(t)}=\dot{x}(t)$$
 – флюксия (Ньютон), производная.

Определение 2.3 (ускорение). $a(t) = \dot{v}(t) = \ddot{x}(t)$

$$m\ddot{x}(t) = F(t, x(t), \dot{x}(t))$$

Ньютон изобрёл дифференциальные уравнения.

2.1.1 Задача о касательной (Лейбниц)

Определение 2.4. Касательная – предельное положение секущей

$$(x_1, f(x_0))$$
 и $(x_1, f(x_1))$ $\frac{y - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ по подобности треугольников. $l_{x_1}(x) : y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_0) + f(x_0), x_1 \to x_0$ $l_{x_0} \exists \iff \exists \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$

Определение 2.5 (Определение 1). $\Box f : \langle a, b \rangle \rightarrow \mathbb{R}$

$$\exists x_0 \in < a, b > E$$
сли \exists число A : выполняется $f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0)$, то говорят, что:

- 1. f дифференцируется в x_0
- 2. Число A называется производной функции f в x_0

Определение 2.6 (Определение 2). $\exists f : \langle a, b \rangle \to \mathbb{R}$

 $\exists x_0 \in < a,b>$. Если $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, то f называется дифференцируемой, а конечное значение предела называют производной f в точке x_0 .

Теорема 2.1. Два определения выше эквивалентны

Доказательство.

1. \Rightarrow Пусть выполняется (1)

Во-первых
$$o(x-x_0) = \varphi(x) \cdot (x-x_0), \varphi(x) \to 0, x \to x_0$$

$$f(x)-f(x_0)=A\cdot(x-x_0)+arphi(x)\cdot(x-x_0)\Rightarrow rac{f(x)-f(x_0)}{x-x_0}=A+arphi(x)\to A, x\to x_0\Rightarrow$$
 предел из 2-го определения существует и равен A

$$2. \Leftarrow \exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A \in \mathbb{R}$$

$$\varphi(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - A & x \neq x_0 \\ 0 & x = x_0 \end{cases}$$

Из 2-го определения следует, что $\lim_{x\to x_0} \varphi(x)=0$ и Т.О. $\varphi(x)$ непрерывна в x_0

Тогда
$$\frac{f(x)-f(x_0)}{x-x_0}=A+\varphi(x)\Rightarrow f(x)=f(x_0)+A\cdot(x-x_0)+\varphi(x)\cdot\underbrace{(x-x_0)}_{o(x-x_0)},$$
 т.к $\varphi(x)\to 0, x\to x_0$

Т.е. выполняется равенство из 1-го определения

Замечание 2.1. В виду теоремы о единственности предела получаем, что производная в точке определяется однозначно

Обозначения для производной

	$f'(x_0)$	Лагранж
:	$\frac{df(x_0)}{x_0}$	Лейбниц
	$Df(x_0)$	Коши
	$\dot{x}(t)$	Ньютон

В последнем примере x(t) – функция от времени t

Дробь
$$\frac{f(x)-f(x_0)}{x-x_0}$$
 — разностное отношение

Введём обозначение: $u = f(x), y_0 = f(x_0)$ $\Delta y = y - y_0 = \Delta_{x_0} f$ – приращение функции (в точке x_0)

А тогда предел из второго определения можно записать следующим образом :

$$\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{\Delta_{x_0}f}{\Delta x}=f'(x_0)$$
 Также производной от f называется сопоставление $x\to f'(x)$

Найти
$$(x^2)'$$
 (обычно (2) удобнее, чем (1)) $\leq \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2x \cdot \Delta x + (\Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$ ДЗ – посчитать производные:

1.
$$(x^n)', n \in \mathbb{N}, n \in \mathbb{R}$$

2.
$$(\sqrt{x})'$$

3.
$$\left(\frac{1}{x}\right)'$$

4. $(\sin x)' = \cos x$ и вывести из неё $(\cos x)' = \sin x$

5.
$$(e^x)' = e^x$$

6.
$$(\ln x)' = \frac{1}{x}$$

$$f(x_0 + \Delta x) - f(x_0) = \Delta f(x_0) = f'(x_0) \Delta x + o(\Delta x)$$
 (*)

Определение 2.7. Рассмотрим приращение функции f в точке x_0 как функцию от Δx : $(\Delta x_0 f)(\Delta x)$

Eсли f дифференцируема в точке x_0 , то справедлива формула(*) (это просто определение)

 $(\Delta_{x_0} f)(\Delta x) = f'(x_0)\Delta x + o(\Delta x)$ $f'(x_0)\Delta x$ – линейная/главная часть

Дифференциалом f в точке x_0 называется линейная (главная) часть приращения f, т.е. $f'(x_0)\Delta x$

Понимаем так: Дифференциал – линейная функция от Δx

Обозначение: коротко df, целое $d_{x_0}f$, подробное $(d_{x_0}f)\Delta x$

$$(d_{x_0}f)(\Delta x) \stackrel{def}{=} f'(x_0)\Delta x \quad (**)$$

Более абстрактно $(d_{x_0}f)h = f'(x_0) \cdot h \forall h \in \mathbb{R}$

 $\Box f(x) = x$ f'(x) = 1 $(d_{x_0}x)(\Delta x) = \Delta x$ позволяет сделать отождествление $\Delta x = dx$

 $(**) \iff (d_{x_0}f) = f'(x_0)dx$ или совсем коротко df = f'dx

Эта формула оправдывает обозначение Лейбница для производной $f'(x)=\dfrac{df(x)}{dx}$ – это $\underline{\partial pobb}$

 $df(x) = (d_x f)(dx) = f'(x) \cdot dx$ – конечно dx – конечное приращение \forall

Вычислить дифференциал функции x^2 в точке $x_0 = 1$ для приращения dx = 3 $dx^2 = 2xdx$ $(d_{x_0}x^2)h = 2 \cdot x_0 \cdot h$ $(d_2x^2)(3) = 2 \cdot x \mid_{x=1} 3 = 6$

1. Написать функцию, которая дифференцируема только в нуле

Допускается, чтобы $f'(x_0), f'_{+}(x_0) \vee f'_{-}(x_0)$ равны $\pm \infty$

Но диффиренцируемость означает ∃ <u>конечная</u> производная

Функция f(x) называется гладкой на $\langle a,b\rangle$, если дифференцируема на $\langle a,b\rangle$

Класс гладких функций $C^{2}(\langle a,b\rangle)$

Лемма 2.1. Если функция дифференцируема в $x_0 \Rightarrow f$ – непрерывна в x_0

Доказательство. По определению дифференцируемости $f(x) - f(x_0) = f'(x_0) \cdot (x - x_0) + o(x - x_0)$

$$\lim_{\substack{x\to x_0\\x\to x_0}} (f(x)-f(x_0)) = \lim_{\substack{x\to x_0\\x\to x_0}} f'(x_0)\cdot (x-x_0) + \lim_{\substack{x\to x_0\\x\to x_0}} o(x-x_0) = 0$$
 Т.О.
$$\lim_{\substack{x\to x_0\\x\to x_0}} f(x) = f(x_0) \Rightarrow f$$
 — непрерывна в x_0

Примеры:

1. $f(x) = x^2$ покажем, что $f \in C^1(\mathbb{R})$

$$\Delta f = (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2 = 2x_0 \Delta x + o(\Delta x)$$

выпишем определение дифференцируемости $f'(x_0) = 2x_0$ $x_0 \in \mathbb{R}$ – любое

или f'(x) = 2x

2. $f(x) = \sqrt{x} \in C^1(0, +\infty)$ в $x_0 = 0$ $f'(0) = +\infty \Rightarrow$ дифференцируемости нет

$$\exists x_0 \neq 0$$

$$\lim_{\Delta x \to 0} \frac{\sqrt{x_0 + \Delta x} - \sqrt{x_0}}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x) - x_0}{\Delta x (\sqrt{x_0 + \Delta x} + \sqrt{x_0})} = \frac{1}{2\sqrt{x_0}} - -\exists$$

T.O.
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Если
$$x_0 = 0$$
 $f'(0) = f'_+(0) = \lim_{\Delta x \to +0} \frac{\sqrt{\Delta x} - 0}{\Delta x} = \lim_{\Delta \to +0} \frac{1}{\sqrt{\Delta x}} = +\infty$

Кстати, \sqrt{x} в 0 непрерывен, таким образом из нерперрывности # дифференцируемость

3. $f(x) = |x| \in C^1(\mathbb{R} \setminus \{0\})$, а в 0- не дифференцируема

$$x \in \mathbb{R} \backslash \{0\} \Rightarrow \begin{cases} x \in (0, +\infty & f(x) = x & f'(x) = 1 \\ x \in (-\infty, 0) & f(x) = -x & f'(x) = -1 \end{cases}$$

$$x = 0$$
 $f'(0) = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$ – не \exists

$$f'_{+}(0) = \lim_{\Delta x \to +0} \frac{+\Delta x}{\Delta x} = +1, \qquad f'_{-}(0) = \lim_{\Delta x \to -0} \frac{-\Delta x}{\Delta x} = -1$$

Лево- и право-сторонние производные существуют, но производной f' – нет

$$f(x) = x \sin \frac{1}{x}$$

$$f'(0)=\lim_{\substack{\Delta x \to 0}} rac{\Delta x \sin rac{1}{\Delta x}-0}{\Delta x}=\lim_{\substack{\Delta x \to 0}} sinrac{1}{\Delta x}$$
 — не сущетсвует даже односторонней, но при этом есть непрерыность

5 Согласно лемме: дифференцируемость в точке ⇒ непрерывность

но ∃ произодная в точке ⇒ непрерыность в точке

$$f(x) = signx \ B \ x = 0$$

$$f'_{+}(0) = \lim_{\Delta x \to +0} = \frac{sign\Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} = +\infty$$

$$f'_{-}(0) = \lim_{\Delta x \to -0} = \frac{sign\Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{-1}{\Delta x} = -\infty$$

2.1.2 К задаче о касательной

Определение 2.8. $\supseteq f - \partial u \phi \phi$ еренцируема в x_0

касательная κ f ϵ точке $(x_0, f(x_0))$ (обычно говорят коротко: ϵ точке x_0) называется прмая, задаваемая формулой $y = f'(x_0) \cdot (x - x_0) + f(x_0)$

Обсуждение: \triangleleft множество всех прямых, проходящих через $(x_0, f(x_0))$

$$y = k(x - x_0) + f(x_0), k$$
 – угловой коэффициент, параметр

Поставим вопрос: Какая прямая "лучше"всего приближает график f в окретсности точки $(x_0, f(x-0))$

Если
$$f'(x_0) \neq k$$
 $\Delta = O(x - x_0) \frac{\Delta}{x - x_0} \to f'(x_0) - k \neq 0$

Если
$$f'(x_0) = k$$
 $\Delta = o(x - x_0)!$ $\frac{\Delta}{x - x_0} \to 0$

Лучше 2-ой вариант

Т.О.
$$f(x) - k(x - x_0) - f(x_0) = o(x - x_0) \iff k = f'(x_0)$$
 и прямая касательная

Заметим, что уравнение касательной возникает в самой формуле дифференцируемости

$$f(x) = \underbrace{f(x_0) + A \cdot (x - x_0)}_{} + o(x - x_0)$$

уравнение касательной

Уравенние касательной – линейные члены разложения в ряд Тейлора.

Факт: \exists касательная \Longleftrightarrow дифференцируемость в x_0

Если $f'(x_0) = \pm \infty$, то можно говорить о вертикальной касательной

$$f(x) = \sqrt[3]{x}$$

$$f'(x) = \frac{1}{3x^{\frac{2}{3}}}$$

$$f'(0) = \infty$$

Если $\exists f'_{+}(x_0)$, то можно говорить о лево и право сторонних касательных

$$y = |x|$$

y=-x – касательная ко всем точкам $(-\infty,0)$ и левосторонняя касательная в 0

y = x – касательная ко всем точкам $(0, +\infty)$ и правосторонняя касательная в 0

 $f'_{-}(x_0) \neq f'_{+}(x_0)$, то касательная "терпит"скачок

График имеет угол \Rightarrow т.е. он не гладкий

Замечание 2.2.
$$f(x) = \sqrt{|x|}$$

$$f'_{\perp}(0) = +\infty \qquad f_{-}(0) = -\infty$$

не гладкая, хотя лево и право сторонние касательные в 0 совпадают. Касательные меняются непрерывно, но это не означает гладкость функции

2.2 Правила Дифференцирования

- 1. Пишем x вместо x_0
- $2. \ \Delta x \longleftrightarrow h$

3.

Предложение 2.1. $(f \pm g)'(x) = f'(x) \pm g'(x)$

Доказательство.
$$\lim_{h\to 0} \frac{(f\pm g)(x+h)-(f\pm g)(x)}{h} = \lim_{h\to 0} \frac{(f(x+h)-f(x))\pm (g(x+h)-g(x))}{h} = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \pm \lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = f'(x)\pm g'(x)$$
 Т.О. если $\exists f', g'\Rightarrow \exists (f\pm g)'$

Следствие 2.1. $\left(\sum\limits_{k=1}^{n}f_{k}(x)\right)'=\sum\limits_{k=1}^{n}f'_{k}(x)$ (доказательство проводится по индукции)

Предложение 2.2. (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

Доказательство.
$$f(x+h)=f(x)+f'(x)h+o(h)$$
 $g(x+h)=g(x)+g'(x)h+o(h)$ $f(x+h)g(x+h)=(f(x)+f'(x)h+o(h))\cdot(g(x)+g'(x)h+o(h))=$ $=f(x)g(x)+(f'(x)g(x)+f(x)g'(x))h+(f'(x)+g'(x))h+o(h)+f'(x)g'(x)h^2+(f(x)+g(x))o(h)+(o(h))^2=$ $=f(x)g(x)+(f'(x)g(x)+f(x)g'(x))h+o(h)$ $(f\cdot g)(x+h)-(fg)(x)=(f'g+fg')(x)\cdot h+o(h)\Rightarrow fg$ — дифференцируема и $(fg)'=f'g+fg'$

Следствие 2.2. (cf(x))' = cf'(x)

Более общий вариант – $(\alpha f(x) + \beta g(x))' = \alpha f(x) + \beta g(x)$

Доказательство.
$$(cf(x))' = c'f(x) + cf'(x) = cf'(x)$$

Следствие 2.3. $(f_1 \cdot f_2 \cdot \dots \cdot f_n)' = f_1' f_2 \dots f_n + f_1 f_2' \dots f_n + \dots + f_1 f_2 \dots f_n'$

Предложение 2.3. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'g - fg'}{g^2}$ при условии $g(x) \neq 0$ в окрестности рассматриваемой точки.

Доказательство.

Лемма 2.2.
$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

Доказательство.
$$\Delta \frac{1}{g}(x) = \frac{1}{g(x) + h} - \frac{1}{g(x)} = \frac{g(x) - g(x+h)}{g(x+h)g(x)}$$

$$g'(x) = \lim_{h \to 0} \frac{\Delta \frac{1}{g}}{h} = \lim_{h \to 0} \left(-\frac{g'(x)h + o(h)}{h \cdot g(x+h)g(x)} \right) = -\lim_{h \to 0} \frac{g'(x) + \frac{o(h)}{h}}{g(x+h)g(x)} = -\frac{g'}{g^2}$$

$$(f \cdot \frac{1}{g})' = f' \cdot \frac{1}{g} + f \cdot (\frac{2}{g})' = \frac{f'}{g} - \frac{f \cdot g'}{g^2} = \frac{f'g - fg'}{g^2}$$

Предложение 2.4. $\Box f$ – дифференцируема в x_0 , а g в $f(x_0) \Rightarrow (g \circ f) = g(f(x))$ – дифференцируема в x_0 $(g(f(x_0)))' = g'(f(x_0)) \cdot f'(x_0)$

Доказательство. Из дифференцируем ости следует: f(x+h) = f(x) + f'(x)h + o(h)

$$x = x_0, y_0 = f(x_0)$$

$$f(x_0 + h) - f(x_0) + f'(x_0)h + o(h)$$

$$g(y_0 + k) = g(y_0) + g'(y_0)k + o(k)$$

$$(g \circ f)(x_0 + h) = g(f(x_0) + f'(x_0)h + o(h)) = g(y_0 + g'(y_0) + g'(y_0) \cdot (f'(x_0)h + o(h)) + o(f'(x_0)h + o(h)) =$$

$$= g(f(x_0)) + g'(f(x_0)) \cdot f'(x_0) \cdot h + g'(y_0)o(h) + o(f'(x_0)h + o(h)) = g(f(x_0)) + g'(f(x_0)) \cdot f'(x_0) \cdot h + o(h)$$

Следствие 2.4. $(f_1 \circ f_2 \circ \cdots \circ f_n)' = f'(f_2 \circ \cdots \circ f_n) \cdot f'_2(f_3 \circ \cdots \circ f_n) \cdot \cdots \cdot f'_{n-1}(f_n) \cdot f'_n$

ДЗ (посчитать производные):

1.
$$y = x^2 \cdot e^{2x}$$

2.
$$u = e^{\sin(x^2)}$$

3.
$$y = e^{x^3} \cdot (\cos x + \sin x)$$

$$4. \ y = \frac{\sin^4(5x)}{\cos^2(\sqrt{x})}$$

Предложение 2.5 (производная обратной функции). $\Box f :< a, b> \to < \alpha, \beta>$ – биективна и непрерывна на < a,b> u дифференцируема в $x_0 \in < a,b>$, причём $f'(x_0) \neq 0$, тогда обратная функция x=g(y)дифференцируема в $y_0 = f(x_0) \in \langle \alpha, \beta \rangle$, при этом $g'(y_0) = \frac{1}{f'(x_0)}$

1. В условиях предложения 2.5 обратная функция x = g(y) – непрерывна на $< \alpha, \beta >$ Замечание 2.3.

2. Другая запись:
$$g'(y) = \frac{1}{f'(g(y_0))}$$

Доказательство. Существование

 $\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0}$ – Если он существуют, то он равен $g'(y_0)$. Надо показать, что этот предел существует и

$$\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{d(x) - f(x_0)} = \lim_{x \to x_0} \frac{1}{\left(\frac{f(x) - f(x_0)}{x - x_0}\right)} = \frac{1}{f'(x_0)}$$

Т.к. $f'(x_0) \neq 0$, то при x достаточно близких к x_0 , то дробь $\frac{f(x) - f(x_0)}{x - x_0} \neq 0$ и потому значение $\neq 0$ в окрестности x_0 $(f(x) \to A > 0, x \to x_0 : \forall x \in O_\delta(x_0) \quad f(x) > \frac{A}{2} > 0)$

2.3 Дифференцирование элементарных функций

1.
$$c' = 0$$

$$2. \ \ \exists \ n \in \mathbb{Z}, n \neq 0 \quad (x^n)' = nx^{n-1}$$

$$\underline{\text{CHOCO} \ 1} \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{x^n((a+\frac{h}{x})^n - 1)}{h} = x^n \lim_{h \to 0} \frac{h}{x} + o(\frac{h}{x}) = nx^{n-1}$$

$$(1+\alpha)^n = 1 + n\alpha + o(\alpha), \alpha \to 0$$

Всё это катит, пока $x \neq 0$

Рассмотрим x=0 – отдельно. Тогда, очевидно $n\geqslant 1$

$$(x^n)'|_{x=0} = nx^{n-1}|_{x=0} = \begin{cases} 1, n=1\\ 0, n>1 \end{cases} = 0$$

$$(x^n)'\mid_{x=0}=\lim_{h\to 0} \frac{(0+h)^-0}{h}=\lim_{h\to 0} h^{n-1}= \begin{cases} 1, n=1 \\ 0, n>1 \end{cases}$$
чтд

способ $2 \supset n \in \mathbb{N}$

по формуле Лейбница $(x^n)' = x' \cdot x \cdot \dots \cdot x + x \cdot x' \cdot \dots \cdot x + \dots + x \cdot \dots \cdot x \cdot x' = nx^{-1}$ $x^n = x \cdot x \cdot \dots \cdot x$ $n \in \mathbb{Z}_{-} = \{-1, -2, \dots\}$

$$(x^n)' = \left(\frac{1}{x^{-n}}\right)' = \frac{-(x^{-n})'}{(x^{-n})^2} = \frac{-(-n)x^{-n-1}}{x^{-2n}} = nx^{2n-n-1} = nx^{n-1}$$

3.
$$(e^x)' = e^x$$

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

Следствие 2.5. $(a^x)' = a^x \cdot ln(a)$

Доказательство.
$$a^x = e^{x \ln a} = g(f(x))$$
 $g = e^x$ $f(x) = x \ln a$ $(a^x)' = (e^{x \ln a})' = g'(f(x)) \cdot f'(x) = e^{f(x)} \cdot (x \ln a)' = e^{x \ln a} \ln ax' = a^x \ln a$

4.
$$(\ln x)' = \frac{1}{x}$$

$$\underline{\text{способ 1}} \ y = e^x \quad x = \ln y$$

$$(\ln y)' = \frac{1}{(e^x)'} = \frac{1}{e^x} = \frac{1}{e^{\ln y}} = \frac{1}{y}$$
 чтд

$$\underline{\text{способ 2}} \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \frac{\ln(\frac{x+h}{x})}{h} = \lim_{h \to 0} \frac{\ln(1 + \frac{h}{x})}{h} = \frac{1}{x}$$

Следствие 2.6.
$$(\log_a x)' = \frac{1}{x \ln a}$$

Доказательство.
$$\log_a x = \frac{\ln x}{\ln a}$$
 и всё

5. Произвольная степенная функция $y=x^{\alpha}, \alpha \neq 0$ $(x^{\alpha})'=\alpha x^{\alpha-1}$

<u>способ 1</u> $x^{\alpha} = e^{\alpha \ln x}$ (это определение в классе элементарных функций)

$$x^{\alpha} = g(f(x))$$
 $g(y) = e^{y}$ $f(x) = \alpha \ln x$

$$(x^{\alpha})' = g'(y) \cdot f'(x) = e^y \cdot (\alpha \ln x)' = e^{\alpha \ln x} \cdot \frac{\alpha}{x} = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}$$

способ 2
$$(1+h)^{\alpha} = 1 + \alpha h + o(h)$$

$$\lim_{h \to 0} \frac{(x+h)^{\alpha} - x^{\alpha}}{h} = \lim_{h \to 0} \frac{x^{\alpha}((1+\frac{h}{x})^{\alpha} - 1)}{h} = x^{\alpha} \lim_{h \to 0} \frac{1 + \alpha \frac{h}{x} + o(h) - 1}{h} = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{n-1}$$

6. $(\sin x)' = \cos x$ (ясно)

$$\cos x = \sin(x + \frac{\pi}{2})$$

$$(\cos x)' = (\sin(x + \frac{\pi}{2}))' = \cos(x + \frac{\pi}{2}) \cdot (x + \frac{\pi}{2})' = -\sin x \cdot 1$$

$$(\cos x)' = -\sin x$$

7.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$y = \arcsin x, x \in [-1, 1]$$
 $y \in [-\frac{\pi}{2}, +\frac{\pi}{2}]$

$$x = \sin y$$
 $\sin(\arcsin x) = x$

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{+\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}$$

Д/З:

1.
$$(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}$$
 (2 доказательства)

2.
$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{1}{\cos^2 x}$$

3.
$$(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$$

4.
$$(\operatorname{arcctg} x)' = \frac{-1}{1+x^2}$$
 (2 доказательства)

2.4 Основные теоремы дифференциального исчисления

Теорема 2.2 (Ферма). $\Box f(x) : \langle a, b \rangle \to \mathbb{R}$

$$\Box x_0 \in (a,b)$$
 $\Box f(x_0) = \max_{\langle a,b \rangle} f(x)$ или $f(x_0) = \min_{\langle a,b \rangle} f(x)$ $\Box f$ – дифференцируемо в $x_0 \Rightarrow f'(x_0) = 0$

Геометрический смысл - касательные в точках минимума и максимума - горизонтальные

Доказательство. Пусть, для определённости, $f(x_0) = \max_{\langle a,b \rangle} f(x) \Rightarrow \forall x < x_0 \quad f(x) \leqslant f(x_0)$

$$\forall x > x_0 f(x) \le f(x_0)$$

$$f'(x_0) = f'_+(x_0) = f'_-(x_0)$$

$$f'_+(x_0) = \lim_{h \to +0} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

$$f'_-(x_0) = \lim_{h \to -0} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

$$\Rightarrow f'(x_0) = 0$$

Замечание 2.4. Дифференцируемость важна.

$$f(x) = |x|, x \in [-1, 1]$$

Ясно, что $1 - min$, но $f'(-1)$ $\not\supseteq$

Замечание 2.5. Важно, что x_0 – внутренняя точка промежутка $\langle a,b \rangle$

$$f(x) = x^2, x \in [0, 1]$$

 $min \ 6 \ x_0 = 0$
 $u \ mam \ f'(x) \ 6 \ x = 1$
 $f'(1) = 2 \neq 0$

Теорема 2.3 (Роля). $\Box f : [a, b] \to \mathbb{R}$

$$f \in C[a, b] \quad \exists f'$$

$$f(a) = f(b)$$

$$\Rightarrow \exists c \in (a, b) : f'(c) = 0$$

Доказательство. .

$$f \in C([a,b])$$
 по теореме Вейерштрасса $\exists x_q, x_2 \in [a,b]: f(x_1) = f(x_0) = \max_{[a,b]} f(x)$ $f(x_2) = \min_{[a,b]} f(x)$

1.
$$\{x_1, x_2\} = \{a, b\} \Rightarrow f(x_1) = f(x_2) \Rightarrow f(x) = const \Rightarrow f'(x) = 0$$

2. Хотя бы одна точка x_1 или x_2 – внутренняя. Тогда – по теореме Ферма – в ней производная =0

Теорема 2.4 (Лагранжа). $\Box f$ – непрерывна на [a,b] и дифференцируема на $(a,b) \Rightarrow \exists x \in (a,b)$ $\frac{f(b) - f(a)}{b-a} = pf(c)$

геометрический смысл – угловой коэффициент хорды, соединяющей концы графика. И говорится, что есть точка, в которой касательная параллельна хорде

Теорема 2.5 (Коши). $\exists f,g$ – непрерывны на [a,b] и дифференцируемы на (a,b), причём $g'(x) \neq 0 \forall x \in (a,b) \Rightarrow \exists c \in (a,b)$ $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Tеорема Лагранжа – частный случай теоремы Kоши npu g(x)=x

Доказательство. Сведём теорему Коши к теореме Роля.

$$\sphericalangle \varphi(x) = f(x) - k \cdot g(x), k \in \mathbb{R}$$
 пожберём k так, чтобы $\varphi(a) = \varphi(b)$

f(a) - kg(a) = f(b) - kg(b) k(g(b) - g(a)) = f(b) - f(a) заметим, что $g(b) \neq g(a)$, иначе по теореме Роля существовала бы точка $x \in (a,b)$: g'(c) = 0, а это запрещено по условию теоремы

$$\Rightarrow k = \frac{f(b) - f(a)}{g(b) - g(a)},$$
 а значит такое k существует

Применим к
$$\varphi(x)$$
 теорему Роля $\exists x \in (a,b) : \varphi(c) = 0 \iff f'(x) - kg'(c) = 0 \iff k = \frac{f'(c)}{g'(c)}$

Таким образом,
$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$$

Замечание 2.6 (К теоремам Лагранжа и Коши). 1. Если f(x) трактовать как расстояние, а x как время, то тогда f(b) - f(a) – пройдённый путь, а $\frac{f(b) - f(a)}{b - a}$ – средняя скорость, b - a – затраченное время

f'(c) – мнгновенная скорость в момент времени c

При любом движении существует такой момент времени с, в котором снгновенная скорость равна средней

- 2. Формулу из теоремы Лагранжа часто записывают как $f(b) f(a) = f'(c) \cdot (b-a)$ и называют формулой Лагранжа/формулой конечных приращений (приращение функции = приращение аргумента на значение производной в некоторой точке)
- 3. Пусть $a=x,b=x+\Delta x$ Формула Лагранжа записывается, как $f(x+\Delta x)-f(x)=f'(x+\theta\Delta x)\cdot \Delta x,$ $\theta\in(0,1)$

Пусть с между x и $x + \Delta x$ $c = x + \theta \Delta x$

4.

Лемма 2.3 (об оценке приращения функции). \Box f удовлетворяет условию теоремы Лагранэнса u \Box $\exists M: |f'(x)| \leq M \forall x \in (a,b) \Rightarrow |f(x+\Delta x)-f(x)| \leq M \cdot |\Delta x| \forall x, x+\Delta x \in (a,b)$

(Если функция удовлетворяет данному нарвенству, то говорят, что функция удовлетворяет условию Липшеца)

Доказательство.
$$|f(x + \Delta x) - f(x)| = |f'(x + \theta \Delta x)| \cdot |\Delta x| \leqslant M \cdot |\Delta x|$$

5. f – непрерывна на (a,b) $(a\geqslant -\infty;b\leqslant +\infty)$ и дифференцируема на (a,b) и производная ограничена $|f'(x)|\leqslant M|\forall x\in (a,b)\Rightarrow f$ – равномерно непрерывна на (a,b)

Доказательство. f – равномерно непрерывна на $(a,b) \Longleftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x_1, x_2 \in (a,b) \quad |x_2 - x_1| < \delta \Rightarrow |f(x_2) - f(x_1)| < \varepsilon$

Берём ε , предъявляем $\delta = \frac{\varepsilon}{M}$ – искомое?

Берём $\forall x_1, x_2 : |x_2 - x_1| < \delta$

6. $\exists f - \partial u \phi \phi$ еренцируема на (a,b), непррерывна на $[a,b] \ u \ \forall x \in (a,b) \ f'(x) > 0 \ (f'(x) < 0)$ Тогда $f(x) \uparrow (u \land u \downarrow)$

Доказательство. $\Box f'(x) > 0$

Берём
$$\forall x_2 > x_1 \quad \langle f(x_2) - f(x_1) = f'(c) \cdot (x_2 - x_1) > 0 \Rightarrow f(x_2) \geqslant f(x_1)$$

7. Если $f'(c) \geqslant 0 (\leqslant 0)$, то f может (не обязательно строго) возрастать (или убывать)

"Контрпример" если f – дифференцируема в x_0 и $f'(x_0) > 0 \Rightarrow f \uparrow$ в окрестности x_0

$$f \in C(\mathbb{R}) \quad \lim_{x \to 0} = f(0) = 0$$

$$m.\kappa. \lim_{x\to 0} (x + 2x^2 \sin \frac{1}{x}) = 0$$

$$f'(x) = \begin{cases} 1 + 4x \sin\frac{1}{x} + 2x^2 \cos\frac{1}{x}(-\frac{1}{x^2}) = 1 + 4x \sin\frac{1}{x} - 2\cos\frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x + 2x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} (1 + 2\sin \frac{1}{x}) = 1$$

T.O. $f'(0) = 1 > 0$

1. $f - \partial u \phi \phi$ еренцируема на [a, b]

$$f'(x) > 0$$
 на $[a,b] \Rightarrow f(x) \uparrow$

2. Если $f'(x_0) > 0 \Rightarrow f \uparrow в$ некоторой окрестности x_0 $\Rightarrow f \uparrow no oтношению к x_0 \quad \forall x > x_0 \quad f(x) > f(x_0)$ $\forall x < x_0 \quad f(x) < f(x_0)$

Теорема 2.6 (Сравнения 1). $\Box f, g$ дифференциируемы на (a,b) и справедливы неравенства $f(x_0) \geqslant g(x_0), \quad f'(x_0) \geqslant$ $g'(x_0) \forall x \in (a,b) \Rightarrow f(x) \geqslant g(x) \text{ Ha } [x_0,b) \text{ } u \text{ } f(x) \leqslant g(x) \text{ Ha } (a,x_0]$

Доказательство. h(x) = f(x) - g(x)

 \triangleleft случай $[x_0, b)$ (случай $(a, x_0]$ рассматривается аналогично)

Докажем противное, т.е. $\exists x_1 \in (x_0, b) : h(x_1) < 0$, при этом $h(x_0 \ge 0)$

$$h(x_1) - h(x_0) = h'(c) \cdot (x_1 - x_0)$$
, где $c \in (x_0, x_1) \Rightarrow h'(c) < 0$??!, но $h'(c) = f'(c) - g'(c) \geqslant 0$

Теорема 2.7 (Сравнения 2). То же самое условие, но неравенства такие $f(x_0) \geqslant g(x_0)$, $f'(x) \geqslant g'(x) \forall x \in$ (a,b)

Доказательство. h(x) = f(x) - g(x)

$$\triangleleft(x_0,b)$$

Допустим противное: $\exists x_1 \in (x_0, b)$

$$h(x_1) \leq 0$$

$$h(x_1) - h(x_2 = h'(c)(x_1 - x_0) \Rightarrow h'(c) \le 0??!$$

$$\cos x > 1 - \frac{x^2}{2} \forall x > 0$$

$$f(x) = \cos x$$
 $g(x) = 1 - \frac{x^2}{2}$ $f(0) = g(0) = 0$

$$f(x) = \cos x \quad g(x) = 1 - \frac{x^2}{2} \quad f(0) = g(0) = 0$$

$$f'(x) = -\sin x > g'(x) = -x \; (\text{при } x > 0 \; \text{т.к. } sinx < x \quad \cos x < 1)$$

По Т2

$$f(x) = \sin x$$
 $g(x) = x - \frac{x^3}{6}$ $f(0) = g(0) = 0$

$$f'(x) = \cos x > g'(x) = 1 - \frac{x^2}{2}$$
 по предыдущей задаче

$$2\sqrt{x} < 3 - \frac{1}{x}$$

$$f(1) = g(1) = 2$$

$$f'(x) = \frac{1}{\sqrt{x}} > g'(x) = \frac{1}{x^2}$$
 чтд

$$e^x \geqslant 1 + x + \frac{x^2}{2!} \forall x \geqslant 0$$

$$f(x) = e^x$$
 $g(x)^2 = 1 + x$ $f(0) = g(0) = 1$

$$f'(x) = e^x \geqslant g'(x) = 1 + x$$
 $f'(0) = g'(0) = 1$

$$f''(x) = e^x \geqslant g''(x) = 1 \forall x \geqslant 0$$

ДЗ:

- 1. 214.2
- 2. 216.2
- 3. Доказать неравенства:

•
$$(a+b)^p \leqslant a^p + b^p$$
 $(0 \leqslant p \leqslant 1)$

$$\bullet \ e^x \leqslant 1 + x + \frac{x^2 e^x}{2!} \quad x \geqslant 0$$

•
$$\ln(1+x) \leqslant x\frac{x^2}{2} + 1\frac{x^3}{3} \quad \forall x \geqslant 0$$

$$f(x) = |x|$$
 дифференцируема в $\mathbb{R} \setminus \{0\}$

$$f'(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Производная функции не обязана быть непрерывной $\begin{cases} x^2\sin\frac{1}{x} & x\neq 0\\ 0 & x=0 \end{cases}$

Теорема 2.8 (Дарбу). \Box f – дифференцируема на [a;b]. Тогда \forall числа C заключённого между f'(a) и f'(b) $\exists C \in (a;b): f'(c) = C$

(Т.е. производная дифференцируемой функции обладает свойством принимать все промежуточные значения, как и непрерывная функция по Теореме Больцано-Коши)

HУО
$$\Box f'(a) < 0 < f'(b)$$

Т.к. f — дифференцируема на $[a;b] \Rightarrow f \in C[a;b] \Rightarrow$ По теореме Вейерштрасса f достигает на [a;b] наибольшего и наименьшего значения $\leq \min f(x)$

$$\exists x \in [a;b] : f(c) = \min_{[a;b]} f(x)$$

По теореме Ферма f'(c) = 0 Остаётся доказать, что $c \in (a; b)$

От противного $\exists c = a \Rightarrow \forall x \in (a; b] \quad f(x) \geqslant f(a)$

$$f'(a) = \lim_{q \to +0} \frac{f(a+h) - f(a)}{h}$$
 правосторонняя производная

но
$$f(a+h) - f(a) \ge 0 \Rightarrow f'(a) \ge 0$$
, а у нас $f'(a) < 0$??!

Если
$$c = b$$
 $f(b) \geqslant f(x) \forall x \in [a; b)$

$$f'(b) = \lim_{h \to -0} \frac{f(b+h) - f(b)}{h} \le 0 \quad f'(b) > 0$$

• Считаем (НУО), что f'(a) < f'(b) и берём $\forall C : f'(a) < C < f'(b)$

$$\triangleleft q(x) = f(x) - Cx$$

$$g'(a) = f'(a) - C < 0; g'(b) = f'(b) - C > 0$$

По Случаю 1
$$\exists c \in (a;b) : q'(c) = f'(c) - C = 0$$

T.e.
$$f'(c) = C$$

Замечание 2.8. Теорема Дарбу похожа на Теорему Больцано-Коши для непрерывных функций. Но производная дифференцируемой функции не обязана быть непрерывной

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

 $V\,g(x)=2x\sinrac{1}{x}-\cosrac{1}{x}$ не существует предела в heta, т.е. heta – разрыв heta рода

Замечание 2.9. Если $(\alpha; \beta) \subset [a; b]$ – проивзольный промежуток, то и f'((a; b)) – тоже промежуток

Замечание 2.10. Производная f'(x) не может иметь разрывов 1-го рода (неустранимых) (в условии теоремы Дарбу)

Доказательство. $\exists x_0 \in (a,b)$ – разрыв 1-го рода неустранимый $\exists \lim_{h \to -0} f'(x_0 + h) = f'(x_0 - 0) \neq \lim_{h \to +0} f'(x_0 + h) = f'(x_0 + h)$ $\exists f'(x_0 - 0) < f'(x_0 + 0)$ $\exists \frac{f'(x_0 + \delta) - f'(x_0 + \delta)}{2} > \varepsilon$ $\exists \delta_1 : \forall x \in [a_0 - \delta_1, x_0] \quad |f'(x) - f'(x_0 - 0)| < \varepsilon$ $\exists \delta_2 : \forall x \beta(x_0, x_0 + \delta_2) \quad |f'(x) - f'(x_0 + 0)| < \varepsilon$ $\exists \delta = min\{\delta_1, \delta_2\}$ < отрезок $[x_0 - \delta, x_0 + \delta]$ На нём нарушается теорема Дарбу $C = \frac{f'(x_0 + \delta) - f'(x_0 - \delta)}{2} + f'(x_0 - 0)$

Лемма 2.4 (Базовая теорема единственности в теории дифференциальных уравнений). $\Box f - \partial u \phi \phi e p e h u u$ руема на (a,b) и $f'(x) = 0 \forall x \in (a,b) \Rightarrow f(x) \equiv const$

Доказательство. Пусть есть $x_1 \neq x_2 : f(x_1 \neq f(x_2))$. Применим формулу Лагранжа $f(x_2) - f(x_1) = f'(c)(x_2 - f(x_2))$ x_1), $x \in (x_1, x_2)$ f'(c) = 0, $f(x_2) - f(x_1) \neq 0$??!

2.5Правило Лопиталя

Точнее говоря стоило бы говорить о правилах Иоганна Бернулли - Лопиталя

Теорема 2.9 (Правило Лопиталя для неопределённостей вида $\frac{0}{0}$). $\Box f(x), g(x)$ – непрерывны на [a;b] и дифференцируемы на (a,b), при этом $g'(x) \neq 0 \forall x \in (a,b)$

Пусть выполняется:

1.
$$f(a) = g(a) = 0$$

2.
$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \ u \ on = A$$

 $T.e. \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ Читается справа на лево. Обратно неверно.

Доказательство. $\exists x \in a; b$] По теореме Коши $\exists c(x) \in (a,x): \quad \frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c(x))}{g'(c(x))}$

Если
$$x \to a \Rightarrow c(x) \to a$$
 (По теореме о двух милиционерах)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(c(x))}{g'(c(x))} = \lim_{t \to a} \frac{f'(t)}{g'(t)} = A$$

Замечание 2.11. Справедлив правосторонний вариант эттой теоремы $x \to b$ f(b) = g(b) = 0 $g'(x) \neq$

$$0 \quad \lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f'(x)}{g'(x)}$$

Примеры:

1.
$$\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{1} = \cos(0) = 1$$
 (в качестве доказательства это не законно, т.к. получается цикл)

$$2. \lim_{x \to +0} x^a \ln x = 0 \forall a > 0 \qquad \lim_{x \to 0} \frac{\ln x}{x^{-a}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-ax^{-a-1}} = -\frac{1}{a} \lim_{x \to 0} x^a = 0 \text{ (неопределённость } \frac{\infty}{\infty}\text{)}$$

3.
$$\lim_{x \to 0} \frac{\ln(a+x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = 1$$

ДЗ (вычислить только по Лопиталю):

$$1. \lim x0 \frac{x^2 \cos x}{\cos x - 1}$$

2.
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right)$$

3.
$$\lim_{x \to 0} \frac{x \sin(\sin x) - \sin^2 x}{x^6}$$

4.
$$\lim_{x \to 1} \frac{\sqrt{2x - x^4} - \sqrt[3]{x}}{1 - \sqrt[4]{x^3}}$$

Теорема 2.10 $(\frac{0}{0})$. $\Box f, g - \partial u \phi \phi$ еренцируемы на $(a, +\infty)$ (считаем a > 0) $\Box \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$$

$$\exists g'(x) \neq 0 \forall x \in (a, +\infty)$$

$$\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = A \Rightarrow \exists \frac{f(x)}{g(x)} = A$$

Доказательство. Сведём к предыдущей теореме. $x=\frac{1}{t}$ – взаимооднозначная замена. $x\in(a,+\infty)$ $t\in$

$$(+0,\frac{1}{a})$$

$$\Box \phi(t) = f(\frac{1}{t}) \qquad \Box \psi(t) = g(\frac{1}{t})$$

$$\phi'(t) = f'(\frac{1}{t}) \cdot (-\frac{1}{t^2}); \quad \psi'(t) = g'(\frac{1}{t}) \cdot (-\frac{1}{y^2})$$

$$\lim_{t\to +0} = \frac{\phi'(\frac{1}{t})}{\psi'(t)} = \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = A$$

Тогда, по предыдущей теореме $\exists \lim_{t \to +0} \frac{\phi(t)}{\imath / \iota(t)} = A$

Ho
$$\lim_{t \to +\infty} \frac{\phi(t)}{\psi(t)} = \lim_{t \to +\infty} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \lim_{x \to +0} \frac{f(x)}{g(x)} = A$$

Теорема 2.11 $(\frac{\infty}{\infty})$. $\exists f,g$ – дифференцируемы на (a,b), где $-\infty \leqslant a < b \leqslant +\infty$, $g'(x) \neq 0$ на (a,b)

 $\exists \lim_{x \to a+0} g(x) = \infty$ $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \Rightarrow \exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = A$ Комментарий Эта теорема объединяет в себе оба случая, когда a u b – конечны (2.9) u a u b – бесконечны (2.10).

Мы не предполагаем $f(x) \to \infty, x \to a+0$. Если f – ограниена, то предел равен 0 без всякого Лопиталя

Доказательство. Случай $1: \exists A = 0$. Воспользуемся языком последовательностей (языком Гейне). Покажем, что $\forall x_n \to a+0 \Rightarrow \frac{f(x_n)}{g(x_n)} \to 0$

По условию
$$\frac{f'(x)}{g'(x)} \to 0, x \to a + 0 \Rightarrow \forall \varepsilon > 0 \exists y_{\varepsilon} \in (a,b) : \forall x \in (a,y_{\varepsilon}) \quad \left| \frac{f'(x_n)}{g'(x_n)} \right| < \frac{\varepsilon}{4}$$

$$x_n \to a + 0$$
, to HCHM N_1 $x_n \in (a, y_c)$

$$x_n \to a + 0, \text{ TO HCHM } N_1 \quad x_n \in (a, y_{\varepsilon})$$

$$\preceq \frac{f(x_n)}{g(x_n)} = \frac{f(x_n) - f(y_{\varepsilon})}{g(x_n) - g(y_{\varepsilon})} \cdot \frac{g(x_n) - g(y_{\varepsilon})}{g(x_n)} + \frac{f(y_{\varepsilon})}{g(x_n)} \stackrel{\text{Komm}}{=} \frac{f'(c_n)}{g'(c_n)} \cdot \left(1 - \frac{g(y_{\varepsilon})}{g(x_n)}\right) + \frac{f(y_{\varepsilon})}{x_n}$$

$$c_n \in (x_n, y_{\varepsilon}) \subset (a, y_{\varepsilon})$$

$$g(x_n) o \infty, y_{arepsilon}$$
 – как бы фиксировано. $\Rightarrow \exists N_2 : \forall n \geqslant N-2 \quad \left| \frac{g(y_{arepsilon})}{g(x_n)} \right| < 1 \& \left| \frac{f(y_{arepsilon})}{f(x_n)} \right| < \frac{arepsilon}{2}$

$$\left|\frac{f()x_n}{g(x_n)}\right| < \frac{\varepsilon}{4} \cdot (1+1) + \frac{1}{2} = \varepsilon$$
 Это и означает $\frac{f(x_n)}{g(x_n)} \to 0 \Rightarrow$ Случай 1 доказан Случай 2 \Box $A \neq 0$ – конечно $\lhd h(x) = f(x) - Ag(x)$ quadh' $(x) = f'(x) - Ag'(x)$

$$quadh'(x) = f'(x) - Ag'(x)$$

$$\lim_{x \to a+0} \frac{h(x)}{g(x)} = \lim_{x \to a+0} \left(\frac{f(x)}{g(x)} - A \right) = 0$$

Таким образом к $\frac{h(x)}{g(x)}$ можно применить случай 1

$$\exists \lim_{x \to a+0} \frac{h(x)}{g(x)} = 0 \Longleftrightarrow \exists \lim_{x \to a+0} \left(\frac{f(x)}{g(x)} - A \right) = 0 \Longleftrightarrow \exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = A$$
 ч.т.д.

Случай 3 $A=\infty$. Т.е. $\lim_{x\to a+0}\frac{f'(x)}{g'(x)}=\infty\Rightarrow \exists$ правосторонние окрестности точки $a\ (a,a+\delta)$, в которых

$$f'(x) \neq 0$$
 (Иначе $\exists x_n \to a: f'(x_n) = 0 \Rightarrow$ поменяем роли f и g местами $\frac{f'(x_n)}{g'(x_n)} = 0 \nrightarrow \infty$) $\Rightarrow \exists \lim_{x \to a+0} \frac{g(x)}{f(x)} = 0$

$$0 \Rightarrow \lim_{x \to a+0} \frac{f(x)}{g(x)} = \infty$$

Замечание 2.12. 2.11 не обратима $\exists \frac{f}{g} \Rightarrow \frac{f'}{g'}$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha x^{\alpha - 1}} = \frac{1'}{\alpha} \lim_{x \to +\infty} \frac{1}{x^{\alpha}} = 0$$

$$\lim_{x \to \infty} \frac{x^{\alpha}}{a^{x}} = \lim_{x \to \infty} \frac{\alpha x^{\alpha - 1}}{a^{x} \ln a} = \dots = \lim_{x \to \infty} \frac{\alpha(\alpha - 1) \dots (\alpha - h)}{e^{x}} \ln^{n} a = 0 \quad h = \lceil \alpha \rceil + 1$$

2.6 Исследование функции на тах и тіп с помощью производных

- 1. Если x_0 точка тах или min \Rightarrow по теореме Ферма $f'(x_0)$ (критические точки функции)
- 2. $f(x_0) -max \Rightarrow$ производная меняет знак с + на -
- 3. $f(x_0) -min \Rightarrow$ производная меняет знак с на +
- 4. f(x) задано на отрезке. Возможен случай, когда тах или min достигается в концевых точках, при этом производная не обязана равняться нулю. Решение отдельно посмотреть значения функции на концах промежутка.

$$y=x^2(x-4)$$
 $y'=2x(x-4)+x^2=x(2x-8+x)=x(3x-8)$ Критические точки $y'=0 \Longleftrightarrow x=0 \lor x=rac{8}{3}$. Смотрим на возрастание/убывание: $0-max-rac{8}{3}-min$

Определение 2.9. P(x) – многочлен

$$x_0$$
 – корень кратности т $P(x)=(x-x_0)^m\cdot Q(x),\ \emph{rde }Q(x_0)\neq 0$ $P(x_0)=P'(x_0)=\cdots=P^{(m-1)}(x_0)=\qquad P^{(m)}(x_0)\neq 0$