최적화 알고리즘

학습 목표

• 신경망을 학습시키기 위해 필요한 최적화 알고리즘을 이해한다.

주요 내용

- 1. SGD의 문제점
- 2. SGD + Momentum
- 3. AdaGrad
- 4. RMSProp
- 5. Adam

Loss Function을 최소화 하려면?

Loss Function Minimization

<u>최적화 알고리즘</u>

1차 미분

- Gradient Descent
- Variants of Gradient Descent :
 - : SGD, Adagrad, Momentum, RMS prob, Adam

Deep Learning에서 주로 사용하는 방법

1.5차 미분

- Quasi-Newton Method
- Conjugate Gradient Descent
- Levenberg-Marquardt Method

2차 미분

- Newton Method
- Interior Point Method

Gradient Descent

Gradient Descent

Parameter Update

$$y^+ = y^- - \alpha \frac{\partial J}{\partial y}$$
Step Size Gradient

훈련 단위

Batch

전체 훈련 데이터를 하나의 배치로 만들어 훈련

훈련 집합이 너무 크면 불가능!

Mini-Batch

n개 샘플을 묶은 미니배치 단위로 훈련

Stochastic

각 example 단위로 훈련

Too Noisy!

훈련 단위

Gradient Descent Trajectory

[그림] https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

1 SGD의 문제점

Issue 학습률이 자동으로 조정되지 않는다.

Gradient Descent 수렴 경로

최소점 부근에서 수렴하지 못하고 진동

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Issue Ill-Conditioning 상태에서는 잘 수렴되지 않는다.

Loss 함수의 곡면이 좁은 계곡 모양인 경우?

진동하면서 학습이 중단

Issue III-Conditioning 상태에서는 잘 수렴되지 않는다.

[그림] Convex Optimization, Stephen Boyd, Lieven Vandenberghe

$$f(x) = \frac{1}{2}(x_1^2 + 10x_2^2)$$

condition number: 10

Condition number란?

- 타원에서의 장축과 단축의 비율
- Hessian 행렬에서 가장 큰 singular value와 가장 작은 singular value의 비율

Issue 임계점에서 탈출하지 못한다.

임계점 (Critical Point)에서 학습이 중단

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

Issue 임계점에서 탈출하지 못한다.

Saddle Point

어떤 차원으로는 Maximum이고 어떤 차원으로는 Minimum인 지점

차원이 높아질수록 Saddle Point가 많아진다!

Issue 수렴 경로가 많이 왔다 갔다 한다.

SGD vs. GD의 비교 동영상: https://youtu.be/6a5Nn49MsYY?t=38

Issue Summary

Stochastic Gradient Descent는

- 경사에 따라 학습률이 자동으로 조정되지 않는다.
- III-Conditioning 상태에서는 잘 수렴되지 않는다.
- 임계점에서 탈출하지 못한다.
- 수렴 경로가 많이 왔다 갔다 한다.

Variants of Gradient Descent

NAG: Nesterov accelerated gradient

An overview of gradient descent optimization algorithms, Sebastian Ruder

2 SGD + Momentum

SGD + Momentum

SGD + Momentum

• ρ : "friction" 마찰 계수로 0.9이나 0.99를 사용

$$x_{t+1} = x_t - \alpha v_{t+1}$$

장점

Local Minima & Saddle Point

장점

<u>SGD</u>

SGD+Momentum

•+ Gets to the optimal quicker

18

http://www.thushv.com/deep-learning/a-practical-guide-to-understanding-stochastic-optimization-methods-workhorse-of-machine-learning/

단점

SGD+Momentum

- 최소점에 도달한 이후에도 Overshooting 될 수 있음
 즉, 현재 Gradient가 작더라도 Velocity가 크면 최적 화가 계속 진행됨

19

코드

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

```
while True:
    dx = compute_gradient(x)
    x = learning_rate * dx
```

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

Variants of Gradient Descent

NAG: Nesterov accelerated gradient

An overview of gradient descent optimization algorithms, Sebastian Ruder

3 AdaGrad

Adaptive Learning Rate

작은 폭으로 이동하기 때문에 최 솟점에 도달하기 위해 많은 step 이 필요 초기에는 큰 폭으로 이동하다가 최솟점에 가까이 갈수록 폭을 줄 여서 이동 큰 폭으로 이동하기 때문에 최솟 점를 지나쳐서 반대편으로 진동하 거나 발산

23

곡면의 변화량에 따라 학습률을 조절해야 최소점에 빠르게 수렴할 수 있다!

https://www.jeremyjordan.me/nn-learning-rate/

AdaGrad

경로의 변화가 크면 적은 폭으로 이동하고 변화가 없으면 큰 폭으로 이동하자!

변화량에 따라 자동으로 조절되게 할 수는 없을까?

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

AdaGrad

총 Gradient 크기는 전체 변화량이므로 이것으로 학습률을 정해보자!

총 Gradient의 크기 =
$$\|\nabla f(x)\|_2 = \sqrt{\nabla f(x_1)^2 + \nabla f(x_2)^2 + \dots + \nabla f(x_n)^2}$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\| \nabla f(x) \|_2}$$

$$r_{t+1} = r_t + \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

AdaGrad: adaptive gradient algorithm

장점

$$r_{t+1} = r_t + \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

- 모델 파라미터 별로 개별적인 Learning Rate를 갖게 되는 효과
- "Per-parameter learning rates" or "adaptive learning rates"

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

단점

경로가 길어질수록 총 Gradient 크기가 점점 커지는 문제 발생

- Convex 문제에 적합
- 신경망에서는 훈련 초반부터 학습률이 급격히 감소하는 문제가 있음

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

코드

$$r_{t+1} = r_t + \nabla f(x_t)^2$$
$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Variants of Gradient Descent

NAG: Nesterov accelerated gradient

An overview of gradient descent optimization algorithms, Sebastian Ruder

최근 변화량을 중심으로 이동 폭을 정해보자

지수 가중 이동 평균 (Exponentially Weighted Moving Average)

$$r_{t+1} = \alpha r_t + (1 - \alpha) \nabla f(x_t)^2$$
$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

α: 가중치 0.9 사용

 ϵ : 분모가 0이 되기 않게 더해주는 상수 (1e-7 or 1e-8 사용)

32

RMSPop: Root Mean Square Propagation

재귀식을 풀어보면 오래전 변화량은 적게 반영되고 최근 변화량은 많이 반영되는 것을 확인할 수 있다.

먼저, $r_t = \beta r_{t-1} + (1 - \beta) \nabla f(x_{t-1})^2$ 를 첫번째 식에 대입해보자.

$$r_{t+1} = \alpha r_t + (1 - \alpha) \nabla f(x_t)^2$$

$$= \beta (\beta r_{t-1} + (1 - \beta) \nabla f(x_{t-1})^2) + (1 - \beta) \nabla f(x_t)^2$$

$$= \beta^2 r_{t-1} + \beta (1 - \beta) \nabla f(x_{t-1})^2 + (1 - \beta) \nabla f(x_t)^2$$

$$= \beta^2 r_{t-1} + (1 - \beta) (\nabla f(x_t)^2 + \beta \nabla f(x_{t-1})^2)$$

 $r_t = \beta r_{t-1} + (1-\beta)\nabla f(x_{t-1})^2$ 를 대입

같은 방식으로 r_{t-1} 부터 r_1 까지 순서대로 대입하면 다음과 같이 식이 정리된다.

$$r_{t+1} = \beta^t r_1 + (1 - \beta)(\nabla f(x_t)^2 + \beta \nabla f(x_{t-1})^2 + \dots + \beta^{t-1} \nabla f(x_1)^2)$$

최근 변화(Gradient)는 많이 반영됨

오래전 변화(Gradient)는 적게 반영됨

코드

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

Variants of Gradient Descent

NAG: Nesterov accelerated gradient

An overview of gradient descent optimization algorithms, Sebastian Ruder

5 Adam

Adam

Adaptive Moments 전략

Momentum

+

Adaptive Learning Rate

=

Adam

$$\begin{aligned} v_{t+1} &= \beta_1 v_t + (1-\beta_1) \nabla f(x_t) & \text{first momentum (velocity)} \\ r_{t+1} &= \beta_2 r_t + (1-\beta_2) \nabla f(x_t)^2 & \text{second momentum (sum of squared gradient)} \\ x_{t+1} &= x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon} \end{aligned}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

Adam (almost)

- beta1 = 0.9, beta2 = 0.999
- learning_rate = 1e-3 or 5e-4

$$v_0 = 0, r_0 = 0$$

for t in range(1, num_iterations):

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$
$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon}$$

첫번째 단계에서 어떤 일이 벌어질까요?

$$v_1 = 0.1 * \nabla f(x_0)$$

 $r_1 = 0.001 * \nabla f(x_0)^2$

- $r_0 = 0$ 으로 시작하므로 r_1 이 매우 작은 숫자가 됨 따라서, step size가 매우 커져서 최적화에 좋지 않은 지점으로 이동할 수 있음

RMSProp 역시 훈련 초반에 크게 편향되는 문제가 있음

Algorithm

$$v_0 = 0, r_0 = 0$$

for t in range(1, num_iterations):

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$

$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$v_{t+1} = \frac{v_{t+1}}{(1 - \beta_1^t)}$$

$$r_{t+1} = \frac{r_{t+1}}{(1 - \beta_2^t)}$$

$$x_{t+1} = x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon}$$

훈련 초반에 발생하는 편향을 제거

$$v_1 = \nabla f(x_0)$$

$$r_1 = \nabla f(x_0)^2$$

- t가 커질수록 분모항이 1로 수렴하므로 원래의 식으로 복원됨

코드

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdaGrad / RMSProp
```

- beta1 = 0.9, beta2 = 0.999
- learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Adam은 하이퍼파라미터에 대해 가장 Robust한 방법

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

Thank you!

