UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 5

Fall 2023

1. On Almost Sure Convergence

- a. Suppose that, with probability 1, the sequence $(X_n)_{n\in\mathbb{N}}$ oscillates between two values $a\neq b$ infinitely often. Is this enough to prove that $(X_n)_{n\in\mathbb{N}}$ does not converge almost surely? Justify your answer.
- b. Suppose that Y is uniform on [-1,1], and X_n has distribution

$$\mathbb{P}(X_n = (y + n^{-1})^{-1} \mid Y = y) = 1.$$

Does $(X_n)_{n\in\mathbb{N}}$ converge a.s.?

- c. Define random variables $(X_n)_{n\in\mathbb{N}}$ in the following way: first, set each X_n to 0. Then, for each $k\in\mathbb{N}$, pick j uniformly randomly in $\{2^k,\ldots,2^{k+1}-1\}$, and set $X_j=2^k$. Does the sequence $(X_n)_{n\in\mathbb{N}}$ converge a.s.?
- d. Does the sequence $(X_n)_{n\in\mathbb{N}}$ from the previous part converge in probability to some X? If so, is it true that $\mathbb{E}(X_n) \to \mathbb{E}(X)$ as $n \to \infty$?

2. Convergence in Probability

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables distributed uniformly in [-1,1]. Show that the following sequence $(Y_n)_{n\in\mathbb{N}}$ converges in probability to some limit where $Y_n=(X_n)^n$.

3. Convergence in L^p

Let $p \ge 1$. A sequence of random variables $(X_n)_{n\ge 1}$ is said to **converge in** L^p (norm) to a random variable X if

$$\lim_{n\to\infty} \mathbb{E}(|X_n - X|^p) = 0.$$

Prove that if $X_n \to X$ in L^p , then $X_n \to X$ in probability.