Vedant Puri

Contact Email: vpuri3@illinois.edu LinkedIn: https://linkedin.com/in/vpuri3

Information Phone: +1-347-330-1343 Code: https://github.com/vpuri3

EDUCATION University of Illinois Urbana-Champaign

B.S. Engineering Mechanics, Secondary Field: Fluid Mechanics GPA: 3.65/4.00

B.S. Mathematics (dual degree), Concentration: Graduate Preparatory

Minor: Computational Science and Engineering

WORK Research Air EXPERIENCE - Condu

Research Aide, Argonne National Laboratory

May-Jul 2018

2015 - 2019

- Conducted Direct Numerical Simulations of wall-bounded flows in undulating geometries utilising up to 1024 compute nodes for 200 hours at Argonne Leadership Computing Facility supercomputers
- Computed budget terms for the tensor Reynolds Stress Transport Equation to study mechanisms responsible for transport, production and dissipation of turbulent kinetic energy
- Wrote post-processing setup to compute wall stresses, spatial averages and other turbulence statistics

Intern, National Center for Supercomputing Applications

Sep 2017–Apr 2018

- Extended the novel Scheduled Relaxation Jacobi method for iteratively solving discrete linear systems associated with elliptic partial differential equations to nonlinear boundary value problems
- Obtained preliminary results using above method for initial data of the spacetime metric associated with a binary black hole system, for simulations of the Einstein Field Equations
- Wrote tensor-product based preconditioners for iteratively solving elliptic boundary value problems implemented using a discrete sine transform in numerical framework PETSc

Course Assistant, Introductory Statics, University of Illinois

Jan 2016–Dec 2018

- Conducted four weekly discussion sections where 32 students collaboratively worked on problem sets
- Wrote problem sets, assisted with course logistics, and taught students to use computational tools

RESEARCH Work

(thesis) V. Puri, R. Balakrishnan, A. Obabko, P. Fischer, Turbulent Kinetic Energy Budgets for Direct Numerical Simulations of Wall-bounded Flows in Model Geometries

(talk) V. Puri, R. Haas, E. Bentivegna, *Initial Data Generation Algorithms for 'Einstein Toolkit'*. American Physical Society April Meeting, 2018

Collegiate Involvement

President, Society for Engineering Mechanics

Aug 2018–May 2019

- Led an organisation of 30 students to complete projects such as 'Chocolate 3D Printer', and 'S'mores Machine' for annual Engineering Open House
- Augmented student participation in Engineering Mechanics program through tutorials, advising sessions, company information sessions, workshops, social events, and annual department research fair
- Facilitated in recruiting students to department of Mechanical Science and Engineering

Curriculum Development, Society for Engineering Mechanics

Oct 2016-May 2018

- Led a student group to design and build instructional demonstrations such as Ackermann steering system, zero-force trusses for Theoretical and Applied Mechanics (TAM) courses serving 2500 students
- Student advisor to Strategic Instructional Innovations Program group for three TAM courses

Honours and Awards

Theoretical and Applied Mechanics Merit Award

2019

Department of Mechanical Science and Engineering award given in honour of a student's special contributions to the Engineering Mechanics program

TECHNICAL SKILLS Programming Fortran 77/90, C, C++, MATLAB, Python, Shell

Miscellaneous LATEX Typesetting, Computer Aided Design, woodworking, soldering, photography

Projects

https://github.com/vpuri3

- /IlliniHyperloop: Capstone project to implement a passive cooling solution absorbing 300 kJ of heat from propulsion system of a Hyperloop pod; fabrication handled by sponsor, Novark Technologies, Inc.
- /Spec: MATLAB spectral/spectral element codes for incompressible fluid flow problems
- /Notes: Compiled notes on mathematics and mechanics