Chapitre 3

Sens de variation d'une fonction

I. Par opérations

1) Somme de fonctions

Propriétés :

Soit u et v deux fonctions définies sur le même intervalle I.

- Si u et v sont **croissantes** sur I, alors la somme u+v est **croissante** sur I.
- Si u et v sont **décroissantes** sur I, alors la somme u+v est **décroissante** sur I.

Démonstration :

Supposons que u et v sont croissantes sur I.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$ et $v(a) \le v(b)$.

Donc $u(a)+v(a) \le u(b)+v(a) \le u(b)+v(b)$, soit $(u+v)(a) \le (u+v)(b)$

Ainsi, u+v est croissante sur I.

On procède de la même manière pour l'autre cas.

Remarques:

- Les fonctions u et u+k (k est un réel) ont même sens de variation sur I.
- Si u et v n'ont pas même sens de variation, on ne peut pas conclure directement pour le sens de variation de u+v.
- Construction graphique:

Pour obtenir la courbe \mathcal{C}_{u+v} : on regarde chaque abscisse x de l'intervalle I, et on ajoute les ordonnées des points des courbes \mathcal{C}_u et \mathcal{C}_v de même abscisse x:

$$y_M = y_A + y_B$$

Exemple:

u et v sont définies sur $[0;+\infty[$ par u(x)=x et $v(x)=x^2$. u et v sont croissantes sur $[0;+\infty[$, donc f=u+v, définie sur $\mathbb R$ par $f(x)=x+x^2$ est croissante sur $[0;+\infty[$.

2) Produit d'une fonction par un nombre

Propriété:

Soit *k* un réel non nul et *u* une fonction définie sur un intervalle I.

- Si k est strictement **positif**, les fonctions u et ku ont **même** sens de variation.
- Si k est strictement **négatif**, la fonction ku est de sens de variation **contraire** à celui de u.

Démonstration :

Supposons que u est croissante sur I et k > 0.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$.

Donc $ku(a) \le ku(b)$, soit $(ku)(a) \le (ku)(b)$

Ainsi, ku est croissante sur I.

On procède de la même manière pour les autres cas.

Remarques:

- L'opposé -u a le sens de variation contraire de u. La courbe \mathcal{C}_{-u} est symétrique de \mathcal{C}_u par rapport à l'axe des abscisses.
- Construction graphique:

Pour obtenir la courbe \mathcal{C}_{ku} , on regarde chaque abscisse x de l'intervalle I, on multiplie par k l'ordonnée du point de la courbe \mathcal{C}_u .

Exemple:

On sait que la fonction $x \mapsto x^2$ est croissante sur $[0; +\infty[$. Donc la fonction $x \mapsto 2x^2$ est croissante sur $[0; +\infty[$ et la fonction $x \mapsto -3x^2$ est décroissante sur $[0; +\infty[$.

3) Fonction composée g∘u

Propriétés:

Soit u et g deux fonctions telles que $g \circ u$ est définie sur l'intervalle I.

- Si u et g ont **même sens** de variation, alors leur composée $g \circ u$ est **croissante** sur I.
- Si u et g ont des **sens** de variation **contraires**, alors leur composée $g \circ u$ est **décroissante** sur I.

Démonstration :

Supposons que u et g sont croissantes sur I.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$. Or, g étant croissante $g[u(a)] \le g[u(b)]$ Donc $(g \circ u)(a) \le (g \circ u)(b)$

Ainsi, $g \circ u$ est croissante sur I.

On procède de la même manière pour les autres cas.

Exemple:

La fonction $u: x \mapsto x^2 + 1$ est croissante sur $]0; +\infty[$ (somme de deux fonctions croissantes) et la fonction $g: X \mapsto \frac{1}{X}$ est décroissante sur $]0; +\infty[$.

Ainsi la fonction $g \circ u$ définie sur $]0; +\infty[$ par $(g \circ u)(x) = g[u(x)] = g[x^2 + 1] = \frac{1}{x^2 + 1}$ est décroissante sur $]0;+\infty[$.

II. A l'aide de la dérivée

1) Rappels

f est une fonction définie sur un intervalle I.

Définitions:

Dire que f est **dérivable en** a signifie que la fonction $t:h \longmapsto \frac{f(a+h)-f(a)}{h}$ admet une limite finie en 0.

On note $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. f'(a) est appelé le **nombre dérivé de f en a**.

- $\frac{f(a+h)-f(a)}{h}$ est le **taux de variation** de f entre a et a+h.
- Lorsque f est **dérivable** en tout point x de I, la fonction $x \mapsto f'(x)$ est appelé la **fonction dérivée** de f et est notée f'.

Règles de calculs :

f(x)	f'(x)	f dérivable sur	
<i>k</i> (constante)	0	IR	
x+k	1	IR	
$\frac{1}{x}$	$-\frac{1}{x^2}$	IR*	
x^{n}	$n x^{n-1}$	IR pour <i>n</i> entier, $a_n \neq 0$ IR pour <i>n</i> entier, $a_k x^k$	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[

Propriétés:

•
$$(u+v)'=u'+v'$$

•
$$(k \times u)' = k \times u'$$

•
$$(uv)'=u'v+uv'$$

•
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 • $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$

- Toute fonction polynôme est dérivable sur IR.
- Toute fonction rationnelle est dérivable sur son ensemble de définition.

Démonstration :

• Considérons une fonction polynôme de degré n :

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_1 0$$
 (avec $a_n \neq 0$)

Chaque fonction $x \mapsto a_k x^k$, produit de la fonction $x \mapsto x^k$ par la constante a_k est dérivable sur \mathbb{R} .

Donc f, somme de fonctions dérivables sur \mathbb{R} , est dérivable sur \mathbb{R} .

• Une fonction rationnelle, $\frac{f(x)}{g(x)}$, quotient de deux fonctions polynômes, est dérivable sur I si $g(x) \neq 0$ sur I.

Interprétation graphique :

f est une fonction dérivable sur un intervalle I et a est un réel de I. \mathcal{C}_f est la courbe représentative de f dans un repère.

La tangente à \mathcal{C}_f au point A(a; f(a)) est la droite T qui passe par A et de coefficient directeur f'(a).

2) <u>Étude de fonction</u>

Variations

Théorème :

Soit f une fonction définie et dérivable sur un intervalle I.

- f est **croissante** sur I si, et seulement si, pour tout réel x de I, $f'(x) \ge 0$.
- f est **décroissante** sur I si, et seulement si, pour tout réel x de I, $f'(x) \le 0$.
- f est constante sur I si, et seulement si, pour tout réel x de I, f'(x)=0.

Extremums

Propriété:

Soit *f* une fonction dérivable sur un intervalle I.

Si la dérivée s'annule en changeant de signe, alors la fonction admet un extremum.

x	a		c		b
f'(x)		+	0	_	
f(x)	,	1	maximum	•	

x	a	С		b
f'(x)	_	0	+	
f(x)	1	minimum	A	

Exemples:

Théorème des valeurs intermédiaires

Théorème:

Toute fonction dérivable sur I est continue sur I.

Remarque:

La réciproque de ce théorème est fausse.

La fonction $x \mapsto |x|$ est continue en 0 mais n'est pas dérivable en 0.

Propriété:

 $\overline{\text{Si } f' > 0} \text{ sur }]a;b[$, ou si f' < 0 sur]a;b[, alors f prend une fois et une seule toute valeur comprise entre f(a) et f(b).

Pour tout réel k compris entre f(a) et f(b), l'équation f(x)=k admet une solution unique sur [a;b].

Exemple:

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + x$.

On a
$$f'(x)=2x+1$$
 donc $f'(x)>0$ sur $\left|-\frac{1}{2};+\infty\right|$ et $f'(x)<0$ sur $\left|-\infty;-\frac{1}{2}\right|$.

Sur l'intervalle I = [0;5], on a f' > 0, donc f prend une fois et une seule toute valeur comprise entre f(0) et f(5), soit toute valeur entre f(5) et f(5).

Fonctions de coûts

Le coût total de production d'un produit en quantité q est la somme de tous les coûts de fabrication : la fonction de coût total est toujours croissante.

Définition:

Soit \mathscr{C} une courbe de coût total :

- Le **coût total** CT(q) est l'ordonnée du point M de $\mathscr C$ d'abscisse la quantité q.
- Les **coûts fixes** sont les coûts lorsque l'on produit une quantité nulle CT(0)
- Le **coût moyen** est le quotient du coût total par la quantité :

$$C_M(q) = \frac{CT(q)}{q}$$

• Le **coût marginal** en q est donné par $C(q+1)-\tilde{C(q)}$

Le coût moyen (C_M) est la pente de la droite (OM):

$$C_M(q) = \frac{CT(q) - 0}{q - 0}$$

Le coût marginal (C_m) est la pente de la droite (MM'):

$$C_m(q) = \frac{C(q+1) - C(q)}{(q+1) - q}$$

Le **coût marginal** est assimilé à la dérivée du coût total :

$$C_m(q) \approx CT'(q)$$

Propriété:

Lorsque le **coût moyen** est **minimal**, le coût moyen est **égal** au coût marginal.

Démonstration :

Lorsque le coût moyen est minimal, sa dérivée s'annule.

Or
$$C_M(q) = \frac{CT(q)}{q}$$
, est de la forme $\frac{u}{v}$, et sa dérivée est $C_M'(q) = \frac{CT'(q) \times q - 1 \times CT(q)}{q^2}$.

$$\text{Ainsi } C_{\scriptscriptstyle M}{}'(q) = 0 \iff CT'(q) \times q = CT(q) \iff \frac{CT(q)}{q} = CT'(q) \,.$$

Ainsi le coût moyen est égal au coût marginal.

Remarque:

Lorsque le coût d'une unité supplémentaire produite (coût marginal C_m) est inférieur au coût moyen (C_M) calculé jusque-là, le coût moyen diminue.

Et inversement, lorsque le coût d'une unité supplémentaire produite est plus grand que le coût moyen, celui-ci augmente.

III. <u>Dérivée d'une fonction composée</u>

Formule générale 1)

Théorème :

Soit u et g deux fonctions telles que la composée $f = g \circ u$ existe sur un intervalle I.

Si u est dérivable en x de I et g est dérivable en u(x), alors la composée $f = g \circ u$ est dérivable en x de I et sa dérivée est :

$$f'(x)=g'[u(x)]\times u'(x)$$

On écrit aussi $(g \circ u)' = g'(u) \times u'$.

Exemple:

Soit la fonction f définie sur [-10;10] par $f(x) = \sqrt{100-x^2}$.

On pose $u(x) = 100 - x^2$ et $g(X) = \sqrt{X}$. On a donc $f(x) = g[u(x)] = (g \circ u)(x)$ $f: x \mapsto 100 - x^2 \mapsto \sqrt{100 - x^2}$.

$$f: x \longmapsto 100 - x^2 \longmapsto \sqrt{100 - x^2}$$

On a u'(x) = -2x et la dérivée de la racine carrée est $g'(X) = \frac{1}{2\sqrt{X}}$ lorsque X > 0.

Ici $X = 100 - x^2$, donc la dérivée n'existe que]-10;10[. D'où :

$$f'(x) = g'[u(x)] \times u'(x) = \frac{1}{2\sqrt{100 - x^2}} \times (-2x) = -\frac{x}{\sqrt{100 - x^2}}$$

Interprétation graphique :

Soit u la fonction définie sur $]0;+\infty[$ par $u(x)=\frac{1}{x}+2$ et g la fonction définie sur \mathbb{R} par $g(x) = x^2 - 2$.

La composée $f = g \circ u$ est définie sur $]0; +\infty[$ par :

 $f(x)=(g\circ u)(x)=g[u(x)]=g(\frac{1}{x}+2)=(\frac{1}{x}+2)^2-2$.

$$f(1) = g[u(1)] = g(3) = 7$$

 $f'(1) = g'[u(1)] \times u'(1)$
 $f'(1) = g'(3) \times u'(1) = -6$

2) Formules de dérivées

Propriété:

u est une fonction dérivable sur un intervalle I, et n est un entier relatif.

Alors la fonction $f = u^n$ est dérivable :

- en tout point de I lorsque $n \ge 2$
- en tout point de I où u ne s'annule pas lorsque $n \le -1$.

De plus:

$$f'(x)=n[u(x)]^{n-1}\times u'(x)$$

Démonstration :

Pour tout x de I, $f(x)=[u(x)]^n$.

On peut donc écrire f(x)=g[u(x)] avec $g(y)=y^n$.

- **1**^{er} **cas**: $n \ge 2$: alors la fonction g est dérivable sur \mathbb{R} : $g'(y) = ny^{n-1}$ Donc d'après le théorème précédent on sait que f est dérivable sur \mathbb{I} et que, pour tout x de \mathbb{I} : $f'(x) = g'[u(x)] \times u'(x) = n[u(x)]^{n-1} \times u'(x)$
- **2**° **cas**: $n \le -1$: alors la fonction g est dérivable sur \mathbb{R}^* : $g'(y) = ny^{n-1}$ Donc d'après le théorème précédent on sait que f est dérivable sur I et que, pour tout x de I: $f'(x) = g'[u(x)] \times u'(x) = n[u(x)]^{n-1} \times u'(x)$

Exemples:

• f est la fonction définie sur \mathbb{R} par $f(x) = (x^2 + 3x - 1)^4$. On peut dire que $f = u^n$ avec $u(x) = x^2 + 3x - 1$ et n = 4. Le polynôme u est dérivable sur \mathbb{R} , donc f est dérivable sur \mathbb{R} et, pour tout réel x,

$$f'(x) = 4(x^2 + 3x - 1)^3 \times (2x + 3)$$
• g est la fonction définie sur $I = \left] -\frac{1}{2}; +\infty \right[par \ g(x) = \frac{1}{(2x+1)^3}.$

On peut dire que $g=u^n$ avec u(x)=2x+1 et n=-3.

u est dérivable sur I et ne s'annule pas sur I, donc g est dérivable sur I et pour tout réel x,

$$g'(x) = -3(2x+1)^{-4} \times 2 = -6(2x+1)^{-4} = \frac{-6}{(2x+1)^4}$$

Remarques:

- Si $f = \frac{1}{u}$ alors $f' = -\frac{1}{u^2} \times u' = -\frac{u'}{u^2}$
- Si $f = \frac{1}{u^n}$ alors $f' = \frac{-n}{u^{n+1}} \times u' = \frac{-nu'}{u^{n+1}}$

Propriété :

u est une fonction dérivable et strictement positive sur un intervalle I.

Alors la fonction $f = \sqrt{u}$ est dérivable sur I, et on a :

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}.$$

Démonstration :

Pour tout x de I, $f(x) = \sqrt{u(x)}$. On peut donc écrire f(x) = g[u(x)] avec $g(y) = \sqrt{y}$.

Pour tout x de I, u(x) > 0; or g est dérivable sur $]0; +\infty[$ et $g'(y) = \frac{1}{2\sqrt{y}}$.

Donc d'après le théorème précédent on sait que f est dérivable sur I et que, pour tout x de I :

$$f'(x) = g'[u(x)] \times u'(x) = \frac{1}{2\sqrt{u(x)}} \times u'(x) = \frac{u'(x)}{2\sqrt{u(x)}}.$$

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x^2 + 1}$.

On peut dire que $f(x) = \sqrt{u(x)}$ avec $u(x) = x^2 + 1$.

u est dérivable sur \mathbb{R} et pour tout réel x, u(x)>0; donc f est dérivable sur \mathbb{R} et, pour tout réel x,

$$f'(x) = \frac{1}{2\sqrt{x^2+1}} \times 2x = \frac{x}{\sqrt{x^2+1}}$$
.