Amendments to the Claims

Please cancel claims 2, 4 and 5, and amend claims 1, 3, 6-8, 12 and 13 as shown in the following listing of claims. This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1 1. (currently amended) Demodulator arranged to demodulate a first signal
- with the aid of a second signal, the demodulator comprising:
- a first bandpass filter arranged to recover the first signal from a
- 4 received signal; and
- a second bandpass filter arranged to recover the second signal from
- a received signal, the passband of the second bandpass filter being substantially
- 7 narrower than the passband of the first bandpass filter; and
- 8 in which the passband of the second bandpass filter is substantially
- 9 narrower than the passband of the first bandpass filter
- compensation means for compensating phase error between the
- recovered first and second signals, the compensation means comprising a phase
- shifter that is arranged to shift a phase of the recovered first signal, the phase shift
- being dependent upon the phase difference between the recovered second signal
- and a reference signal, the compensation means further comprising a selector that
- is arranged to select the reference signal from at least two sources.
- 1 2. (canceled).
- 1 3. (currently amended) Demodulator according to claim 1 [[2]], wherein the
- 2 compensation means comprises a delay element that is arranged to delay the
- 3 recovered first signal.
- 1 4. (canceled).
- 1 5. (canceled).

- 6. (currently amended) Demodulator according to claim $\underline{1}$ [[5]], wherein the
- 2 selector is a programmable selector.
- 7. (currently amended) Demodulator according to claim 1 [[5]], wherein one
- of the at least two sources is a demodulated first signal.
- 8. (currently amended) Demodulator according to claim 1 [[5]], wherein one
- of the at least two source is an image of a demodulated first signal which is stored
- 3 in memory means.
- 9. (previously presented) Demodulator according to claim 8 wherein, the
- 2 memory means comprises an analogue to digital converter arranged to provide a
- 3 digital image of the demodulated first signal.
- 1 10. (previously presented) Demodulator according to claim 1 wherein the
- 2 demodulator further comprises a phase locked loop for stabilizing the recovered
- 3 second signal.
- 1 11. (previously presented) Demodulator according to claim 1 wherein the
- 2 recovered second signal is used for frequency down converting at least a third
- 3 signal.
- 1 12. (currently amended) Apparatus comprising a demodulator, the
- 2 demodulator being arranged to demodulate a first signal with the aid of a second
- 3 signal, the demodulator comprising:
- a first bandpass filter arranged to recover the first signal from a
- 5 received signal; and
- a second bandpass filter arranged to recover the second signal from
- 7 the received signal, the passband of the second bandpass filter being substantially
- 8 narrower than the passband of the first bandpass filter; and
- 9 in which the passband of the second bandpass filter is substantially
- 10 narrower than the passband of the first bandpass filter

11	compensation means for compensating phase error between the
12	recovered first and second signals, the compensation means comprising a phase
13	shifter that is arranged to shift a phase of the recovered first signal, the phase shift
14	being dependent upon the phase difference between the recovered second signal
15	and a reference signal, the compensation means further comprising a selector that
16	is arranged to select the reference signal from at least two sources.
1	13. (currently amended) Method for demodulating a first signal with the aid of
2	a second signal the method comprising the steps of:
3	using a first bandpass filter for recovering the first signal from a
4	received signal;
5	using a second bandpass filter having a substantially narrower
6	passband than the first bandpass filter, for recovering the second signal from the
7	received signal; and
8	compensating phase error between the recovered first and second
9	signals, the compensating including shifting a phase of the recovered first signal,
10	the shifting being dependent upon the phase difference between the recovered
11	second signal and a reference signal, the compensating further including selecting
12	the reference signal from at least two sources.
1	14. (previously presented) Demodulator according to claim 1 further
2	comprising a mixer connected to the first and second bandpass filters to mix the

first signal and the second signal.

3