

Cálculo Computacional

Relatório: Billing AWS

Ivan Rangel | 04241013

Felipe Gasparotto | 04241041

Vinicius Miralha | 04241021

Raul Gomes Reis | 04241064

Lucas Alves | 04241005

São Paulo Tech School, 2024.

Sumário

01

BASE DE DADOS RESUMO SOBRE...

REGRESSÃO LINEAR PADRÃO

02

03

REGRESSÃO LINEAR DE SÉRIES TEMPORAIS

REGRESSÃO COM DADOS DOS SLIDES

04

05

CÁLCULO DE LAMBDA E S3

Base de dados

Ao consultar o gerenciamento de cobranças, nos deparamos com os custos da AWS por mês, esses dados vão ser usados para realizar as previsões dos proximos meses, temos dados a partir de agosto, já que essa foi a epoca que iniciamos os estudos sobre sistemas operacionais em nuvem.

Quando analisamos os dados percebemos que de longe, os que mais se destacam são os custos relacionados a instancia EC2, já que estamos atuando no *ambiente de desenvolvimento*, onde revisamos e atualizamos os códigos diariamente, o contrario do que acontece no ambiente de produção onde o site e o banco de dados não sofrerão atualizações constantes e a nossa Lambda, responsavel pelo tratamento dos dados, funcionaria em tempo integral.

Group costs by

Service ▼

Costs (\$)

2.00

1.00

Jun 2024 Jul 2024 Aug 2024 Sep 2024 Oct 2024 Nov 2024

Amazon Virtual Private Cloud ■ EC2 - Other

Amazon Elastic Compute Cloud - Compute ■ AmazonCloudWatch

CloudWatch Events ■ Others

Servidor 1

Servidor 2

Regressão Linear Padrão

Explicação

Antes de usarmos uma regressão linear com séries temporais criamos um modelo preditivo "padrão" para nossos dados e a partir dele, prevemos os gastos do mês de Dezembro:

Código

```
library(ggplot2)
meses_aws1 <- c("Setembro", "Outubro", "Novembro")</pre>
custos_aws1 <- c(1.13, 1.89, 1.18)
meses_aws2 <- c("Agosto", "Setembro", "Outubro", "Novembro")</pre>
custos_aws2 <- c(0.12, 0.27, 1.10, 1.40)
tempo_aws1 <- c(9, 10, 11)
tempo_aws2 <- c(8, 9, 10, 11)
df_aws1 <- data.frame(Tempo = tempo_aws1, Custo = custos_aws1)</pre>
df_aws2 <- data.frame(Tempo = tempo_aws2, Custo = custos_aws2)</pre>
modelo_aws1 <- lm(Custo ~ Tempo, data = df_aws1)
modelo_aws2 <- lm(Custo ~ Tempo, data = df_aws2)
tempo_previsao <- data.frame(Tempo = 12)</pre>
previsao_aws1 <- predict(modelo_aws1, tempo_previsao)</pre>
previsao_aws2 <- predict(modelo_aws2, tempo_previsao)</pre>
cat("Previsão AWS 1 (Dezembro):", previsao_aws1, "\n")
cat("Previsão AWS 2 (Dezembro):", previsao_aws2, "\n")
```

Resultados

----- -----

```
> cat("Previsão AWS 1 (Dezembro):", previsao_aws1, "\n")
Previsão AWS 1 (Dezembro): 1.45
> cat("Previsão AWS 2 (Dezembro):", previsao_aws2, "\n")
Previsão AWS 2 (Dezembro): 1.89
```

Graficos

Regressão Linear - AWS 1

Conclusão

Por meio desses gráficos conseguimos ver que os dados do segundo servidor tem residuos com valor bem menor e de forma mais constante, o que é comprovado chamando a função residuals:

Talvez isso se deva a quantidade de dados de cada modelo ou a menor variação e constancia dos dados, mas para essa simulação de previsão vamos focar nos dados do segundo servidor.

Regressão Linear Com Séries Temporais

Código

A biblioteca forecast é usada para criar modelos com séries temporais

```
library(forecast)
library(tidyverse)

set.seed(123)

servidor1 <- data.frame(
   data = seq(as.Date("2024-06-01"), as.Date("2024-11-01"), by = "month"),
   custo = c(0, 0, 0.15, 0.25, 1.08, 1.45)
)</pre>
```

Aqui o modelo pega a coluna que contem os custos e define cada dado como de um "periodo" dentro do total de 12, simbolizando os meses do ano

tslm = Time Series Linear Model

Trend representa o tempo (meses no caso)

forecast tem o mesmo uso que predict

```
meses_previsao <- 9

ts_data <- ts(servidor1$custo, frequency = 12)

modelo <- tslm(ts_data ~ trend)
modelo

previsao <- forecast(modelo, h = meses_previsao)

previsao|

datas_futuras <- seq(max(servidor1$data) + 1, by = "month", length.out = length(previsao$mean))
resultados_df <- data.frame(
    data = datas_futuras,
    custo = as.numeric(previsao$mean),
    tipo = "Previsão")
</pre>
```

Juntando as previsões com os dados reais em um unico dataset

```
datas_futuras <- seq(max(servidor1$data) + 1, by = "month", length.out = length(previsao$mean))
resultados_df <- data.frame(
    data = datas_futuras,
    custo = as.numeric(previsao$mean),
    tipo = "Previsão"
)

dados_historicos <- servidor1
dados_historicos$tipo <- "Real"

# Combinando dados históricos e previsões
dados_completos <- rbind(
    dados_historicos,
    resultados_df
)

dados_completos$servidor <- "Servidor 1"
cores <- c("Real" = "#2196F3", "Previsão" = "#FF9800")</pre>
```

Resultados

O modelo preveu um crescimento excessivo do uso da EC2 devido as grandes alterações que tem sido feitas, chegando a prever 4 dolares por mês em Julho de 2025

Custos AWS - Servidor 1 Valores reais e previsões

Dataset disponibilizado

Explicação

Agora vamos realizar a previsão com série temporal usando o dataset disponibilizado nos Slides

Código

As unicas alterações feitas foram das entradas e da quantidade de meses previstos

```
library(forecast)
library(tidyverse)
set.seed(123)

df <- data.frame(
   data = seq(as.Date("2024-01-01"), as.Date("2024-10-01"), by ="month"),
   custo = c(57, 65, 80, 47, 57, 90, 58, 85, 52, 67)
)

meses_previsao <- 5

ts_data <- ts(df$custo, frequency = 12)</pre>
```

Resultado

Custos AWS - Servidor 1 Valores reais e previsões

Conclusão

O resultado dessa regressão com série temporal é uma inclinação muito mais leve, de 0.54, como podemos ver ao dar um summary:

```
Call:
tslm(formula = ts_data ~ trend)
Residuals:
    Min
                Median
            1Q
                            3Q
                                   Max
-17.982 -8.595 -3.800
                        11.950 23.927
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.8000
                       10.5085 5.976 0.000332 ***
                        1.6936
                                 0.322 0.755655
             0.5455
trend
```

Previsão de uso da Lambda e dos Buckets

Explicação

Dentro da nossa regra de negócio, conseguimos calcular exatamente qual vai ser o uso de nossa estrutura de armazenamento na AWS, e quantas vezes os gatilhos da Lambda vão ser usados, assim conseguimos prever qual será o preço recorrente do nosso projeto por servidor, embora não seja necessário usar algum tipo de regressão para realizar os calculos.

Código da Lambda:

```
# Calculando preço da LAMBDA:
# Roda a cada 10 segundos, ou seja, 360 vezes por hora. Um mes tem aproximadamente 720 horas
total_execucoes = 360 * 720
# Cada csv tem 435 Bytes
tamanho_total_dados = 435 * total_execucoes
# arredondando para mb
tamanho_total_dados <- round(tamanho_total_dados / (1024\\(^2\)), 2)
# A LAMBDA cobra por uso de RAM por segundo (GB-segundo)
#informações do cloudWatch
memoria_alocada = 0.5 #0.5 GB ou seja 512 mb
duracao_media = 0.2 #segundos
duracao_gb_segundos = total_execucoes * duracao_media * memoria_alocada
duracao_gb_segundos
preco_gb_segundo = 0.0000166667
preco_lambda = duracao_gb_segundos * preco_gb_segundo
preco_lambda
```

Preço por servidor:

> preco_lambda [1] 0.4320009

Código dos Buckets:

```
#custos aws:
custo_leitura_s3 = 0.0004 # por 1000
custo_gravacao_s3 = 0.005 # por 1000
custo_leitura_total = (total_execucoes / 1000) * custo_leitura_s3
custo_gravacao_total = (total_execucoes / 1000) * custo_gravacao_s3
custo_leitura_total
custo_gravacao_total
custo_s3 = custo_gravacao_total + custo_leitura_total
custo_s3
custo_total = custo_s3 + preco_lambda
custo_total
```

Preço por servidor:

[1] 1.39968

Custo total do armazenamento por servidor:

USD = 1.831681

BRL = 10,57

