```
[Курс матана от Храброва♥♥♥ часть 1]
[Курс матана от Храброва♥♥♥ часть 2]
```

Глава 1. Введение

Множества

- A,B,C множества, a,b,c элементы множества.
- $x \in A$ x лежит в множестве A.
- $x \notin A$ x не лежит в множестве A.
- $A\subset B$ $(B\supset A)$ A подмножество B, любой элемент A есть в B.
- A=B совпадающие множества $(A\subset B, B\subset A)$.
- $A \neq B$ множества не равны.
- Пустое множество (\varnothing) множество, в котором ничего нет: $\forall x \notin \varnothing$.
- Собственное подмножество: $A \subset B, A \neq B$.
- 2^A совокупность всех подмножеств множества A.

Как задавать множества

- 1. Явное перечисление: a, b, c.
- **2.** Последовательность: 1, 2, 3, ..., n.
- 3. Описание. Пример: множество простых чисел.
- 4. Предикатом. Пусть X множество, на X задаём условие $\varphi(x)$, принимающее значения «истина» или «ложь». Тогда множество имеет вид: $x \in X : \varphi(x)$ истинно.

Удобные обозначения

- ∀ для всякого (для любого).
- 🗄 существует (найдётся).

Действия с множествами

- 1. $A\cap B=\{x:x\in A$ и $x\in B\}$ пересечение. $\{x:x\in A \text{ при всех }\alpha\in I\} = \underset{\alpha\in I}{\cap}A_{\alpha}$ $\underset{n\in\mathbb{N}}{\cap}A_{n} \overset{\infty}{\underset{n=1}{\cap}}A_{n}$
- 2. $A\cup B=\{x:x\in A$ или $x\in B\}$ объединение $\underset{lpha\in I}{\cup}A_lpha=\{x:x\in A_lpha,$ для некоторых $lpha\in I\}$
- 3. $A\setminus B$ = $\{x:x\in A,x
 otin B\}$ разность множеств
- 4. $A\triangle B=(A\setminus B)\cup (B\setminus A)$ симметрическая разность (элементы лежат ровно в одном из двух множеств)

Формулы

$$A\setminus {\displaystyle \mathop{\cup}_{lpha\in I}} B_lpha = {\displaystyle \mathop{\cap}_{lpha\in I}} (A\setminus B_lpha) \ A\setminus {\displaystyle \mathop{\cap}_{lpha\in I}} B_lpha = {\displaystyle \mathop{\cup}_{lpha\in I}} (A\setminus B_lpha)$$

Теорема

Для множеств A и семейства $\{B_{\alpha}\}_{{\alpha}\in I}$ справедливы равенства:

$$A \cup igcap_{lpha \in I} B_lpha = igcap_{lpha \in I} (A \cup B_lpha), \ A \cap igcup_{lpha \in I} B_lpha = igcup_{lpha \in I} (A \cap B_lpha).$$

Доказательство

Пусть $x \in A \cup \underset{\alpha \in I}{\cap} B_{\alpha}$. Тогда:

- ullet либо $x\in A$,
- либо $x\in \underset{lpha\in I}{\cap} B_lpha\iff orall lpha\in I: x\in B_lpha$.

В обоих случаях $x \in A \cup B_{lpha}$ для любого $lpha \in I$. Значит,

$$x\in igcap_{lpha\in I}(A\cup B_lpha).$$

Обратно: если $x\in \underset{\alpha\in I}{\cap}(A\cup B_{\alpha})$, то для всех $\alpha\in I$ выполняется $x\in A\cup B_{\alpha}$. Если $x\not\in A$, то $orall \alpha\in I$ имеем $x\in B_{\alpha}$, то есть $x\in \underset{\alpha\in I}{\cap}B_{\alpha}$.

Следовательно, $x \in A \cup \mathop{\cap}\limits_{lpha \in I} B_{lpha}$.

Аналогично доказывается второе равенство.

Теорема (правила Де Моргана для разности)

Для любого множества A и семейства $B_{lpha}, lpha \in I$ выполняются равенства:

$$A\setminus igcup_{lpha\in I} B_lpha = igcap_{lpha\in I} (A\setminus B_lpha),$$

$$A\setminus \bigcap_{lpha\in I} B_lpha = igcup_{lpha\in I} (A\setminus B_lpha).$$

Доказательство

Пусть $x\in A\setminus \underset{\alpha\in I}{\cup} B\alpha$. Тогда $x\in A$ и $x\notin \underset{\alpha\in I}{\cup} B\alpha$, то есть $(\forall \alpha\in I)(x\notin B_{\alpha})$. Следовательно, $(\forall \alpha\in I)(x\in A\setminus B_{\alpha})$, то есть $x\in \underset{\alpha\in I}{\cap} (A\setminus B_{\alpha})$.

Обратно, пусть $x\in \underset{\alpha\in I}{\cap}(A\setminus B_{\alpha})$. Тогда $(\forall \alpha\in I)(x\in A\wedge x\not\in B_{\alpha})$. Значит, $x\in A$ и $x\notin\underset{\alpha\in I}{\cup}B_{\alpha}$, то есть $x\in A\setminus\underset{\alpha\in I}{\cup}B_{\alpha}$.

Аналогично доказывается второе равенство.

Упорядоченная пара

- Пусть A, B множества.
- ullet $\langle a,b
 angle$, где $a\in A,b\in B$.
- ullet Свойство: $\langle a_1,b_1
 angle=\langle a_2,b_2
 angle$ тогда и только тогда, когда $a_1=a_2,b_1=b_2$.
- Пример: $\langle 1,2
 angle
 eq \langle 2,1
 angle$, но 1,2=2,1.

Кортеж

- Пусть A_1,A_2,\ldots,An множества, $a_i\in A_i$.
- Кортеж: $\langle a_1, a_2, \dots, a_n \rangle$.
- Свойство: равенство поэлементное.

Декартово произведение множеств

$$A imes B = \langle a,b
angle : a\in A, b\in B$$
 .

Бинарное отношение

- Определение: $R \subset A imes B$.
- Запись: $xRy \iff \langle x,y
 angle \in R$.
- Область определения: $\delta_R = x \in A: \exists y \in B, \langle x,y
 angle \in R$.
- Область значений: $ho_R = y \in B: \exists x \in A, \langle x,y
 angle \in R$.

• Обратное отношение: $R^{-1} = \langle y, x
angle : \langle x, y
angle \in R \subset B imes A$.

Примеры

- 1. $A = B = \mathbb{N}, R = \langle x,y
 angle : x < y$. Тогда:
 - $\delta_R = \mathbb{N}$,
 - $ho_R = 2, 3, 4, \ldots$
 - R^{-1} отношение «больше».
 - Композиция: $R\circ R=\langle a,c
 angle: c-a\geq 2$.
- **2.** A = B прямые на плоскости.
 - || \circ || = || ,
 - ⊥ ∘ ⊥=||.
- 3. A=B, $\langle a,b
 angle \in R$, если a отец b.
 - Тогда $R \circ R$: a дед c.
 - ho_R : все, у кого есть сыновья.
 - R^{-1} : a СЫН b.

Вещественные числа

Аксиомы

- 1. Коммутативность: a+b=b+a, $a\cdot b=b\cdot a$.
- 2. Ассоциативность: (a+b)+c=a+(b+c), $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.
- 3. Ноль и единица: существует 0, что a+0=a; существует $1 \neq 0$, что $1 \cdot a = a$.
- 4. Противоположный и обратный элемент:
 - ullet $orall a \in \mathbb{R}, \exists -a: a+(-a)=0$.
 - $\forall a \neq 0, \exists a^{-1} : a \cdot a^{-1} = 1$.
- 5. Дистрибутивность: $(a+b)\cdot c = a\cdot c + b\cdot c$.

Аксиомы порядка

- Задано отношение \leq на $\mathbb R$:
 - 1. Рефлексивность.
 - 2. Антисимметричность.
 - 3. Транзитивность.
 - 4. $\forall x,y \in \mathbb{R} \Rightarrow x \leq y; \forall; y \leq x$.
 - 5. Если $x \leq y$, то $x + z \leq y + z$.
 - 6. Если $0 \le x, 0 \le y$, то $0 \le x + y$.

Аксиома полноты

Если $A,B\subset\mathbb{R}$ непустые и $a\leq b$ для всех $a\in A,b\in B$, то существует $c\in\mathbb{R}$, такое что $a\leq c\leq b$.

Пример: в $\mathbb Q$ аксиома полноты не выполняется.

- ullet $A=x\in \mathbb{Q}: x^2<2$.
- $B = x \in \mathbb{Q} : x > 0, x^2 > 2$.