ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

26.01.2009.

PRVA SKUPINA ZADATAKA

- 1. Koji spoj pojačala je prikazan na slici te u kakvom su faznom odnosu signali u_{ul} i u_{iz} ? (1 bod)
 - (a) spoj zajedničkog kolektora; u_{ul} i u_{iz} su u fazi
 - (b) spoj zajedničkog kolektora; u_{ul} i u_{iz} su u protufazi
 - (c) spoj zajedničkog emitera; u_{ul} i u_{iz} su u fazi
 - (d) spoj zajedničkog emitera; u_{ul} i u_{iz} su u protufazi
 - (e) spoj zajedničke baze; u_{ul} i u_{iz} su u fazi
- 2. Za sklop prikazan na slici vrijedi tvrdnja (1 bod):
 - (a) ima negativno strujno pojačanje manje od jedan i veliki ulazni otpor
 - (b) ima pozitivno strujno pojačanje manje od jedan i veliki ulazni otpor
 - (c) ima pozitivno strujno pojačanje manje od jedan i mali ulazni otpor
 - (d) ima pozitivno strujno pojačanje veće od jedan i mali ulazni otpor
 - (e) ima negativno strujno pojačanje veće od jedan i veliki ulazni otpor
- 3. Na diferencijsko pojačalo na slici priključeni su naponi $u_{g1} = -2\sin\omega t$ mV i $u_{g2} = 8\sin\omega t$ mV. Koliki su zajednički napon u_z i iznos diferencijskog napona u_d ? (1 bod)
 - (a) $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 6 \sin \omega t \text{ mV}$
 - (b) $u_z = 3\sin \omega t \text{ mV}$, $|u_d| = 10\sin \omega t \text{ mV}$
 - (c) $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - (d) $u_z = 3\sin \omega t \text{ mV}$, $|u_d| = 6\sin \omega t \text{ mV}$
 - (e) $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 3 \sin \omega t \text{ mV}$
- **4.** U diferencijskom pojačalu A_{Vd} je pojačanje diferencijskog signala, a A_{Vz} je pojačanje zajedničkog signala. Dobro diferencijsko pojačalo mora imati (**1 bod**):
 - (a) veliki iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$
 - (b) mali iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$
 - (c) veliki iznos pojačanja $|A_{Vd}|$, a pojačanje A_{Vz} nije bitno
 - (d) veliki iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$
 - (e) mali iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$
- 5. Koji uvjet mora zadovoljavati otpor R_C da bi osigurao rad tranzistora na slici u zasićenju. Zadano je $U_{CC} = 5 \text{ V}$, $U_{CEzas} = 0.2 \text{ V}$, $U_{BEzas} = 0.8 \text{ V}$, $R_B = 10 \text{ k}\Omega$, β može imati vrijednosti od 50 do 150, $u_{UL} = 0 \text{ V}$ u stanju logičke 0, a $u_{UL} = U_{CC}$ u stanju logičke 1. (1 bod)
 - (a) $R_C < 228,6 \Omega$
 - (b) $R_C > 76.2 \Omega$
 - (c) $R_C > 228,6 \Omega$
 - (d) $R_C < 76.2 \Omega$
 - (e) $R_C > 175 \Omega$

6. U stabilizatoru na slici $U_{IZ} = 10 \text{ V i } R_T \ge 200 \Omega$. Najmanja struja koja smije teći kroz otpornik R je 52 mA, a najveća 100 mA. Odrediti na I-U karakteristici područje rada Zener diode korištene u ovom sklopu (**1 bod**).

(a)

(b)

(c)

(d)

7. Odrediti iznos izlaznog napona za sklop na slici ako je $u_{ul1} = 2,1 \text{ V}$ i $u_{ul2} = 1,9 \text{ V}$. Operacijska pojačala spojena su na napajanje -5 V i 5 V. (1 bod)

(b)
$$u_{iz} = 1,2 \text{ V}$$

(c)
$$u_{iz} = -5 \text{ V}$$

(d)
$$u_{iz} = -1.2 \text{ V}$$

(e)
$$u_{iz} = -0.8 \text{ V}$$

8. Odrediti izlazni napon za sklop i ulazni napon na slici ako je početni napon na kondenzatoru 0 V. $R = 1 \text{ k}\Omega$, $C = 1 \text{ }\mu\text{F}$. Operacijsko pojačalo spojeno je na napajanje –5 V i 5 V. (1 bod)

- 9. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -2 V? Zadano je $U_D = 0.7$ V. (1 bod)
 - (a) -2.8 V
 - (b) -1,4 V
 - (c) +2,8 V
 - (d) +1,4 V
 - (e) +0.7 V
- 10. Ako se u komparatoru iz prethodnog pitanja napon poveća sa -2 V na +2 V, koliki će biti izlazni napon nakon promjene? (1 bod)

- (a) -2.8 V
- (b) -1,4 V
- (c) +2.8 V
- (c) +2,8 V (d) +1,4 V
- (e) +0.7 V

DRUGA SKUPINA ZADATAKA

1. ZADATAK

Na slici je zadana CR mreža i napon koji je priključen na njezin ulaz.

- **1.1.** Izračunati vrijednost izlaznog napona u t = 0 ms (1 bod).
- **1.2.** Izračunati vrijednost izlaznog napona u t = 6 ms (1 bod).
- **1.3.** Izračunati vrijednost izlaznog napona u t = 10 ms (**1 bod**).

Odgovori

(a)
$$u_{iz}$$
 (0 ms) = 0 V

(b)
$$u_{iz}$$
 (0 ms) = -3 V

(c)
$$u_{iz}$$
 (0 ms) = 3 V

(d)
$$u_{iz}$$
 (0 ms) = 2 V

(e)
$$u_{iz}$$
 (0 ms) = -4 V

1.2.

(a)
$$u_{iz}$$
 (6 ms) = -1,51 V

(b)
$$u_{iz}$$
 (6 ms) = -0,29 V

(c)
$$u_{iz}$$
 (6 ms) = -2,02 V

(d)
$$u_{iz}$$
 (6 ms) = 2,02 V

(e)
$$u_{iz}$$
 (6 ms) = 0,39 V

1.3.

(a)
$$u_{iz}$$
 (10 ms) = -2,35 V

(b)
$$u_{iz}$$
 (10 ms) = 2,59 V

(c)
$$u_{iz}$$
 (10 ms) = 0,59 V

(d)
$$u_{iz}$$
 (10 ms) = 3,04 V

(e)
$$u_{iz}$$
 (10 ms) = 2,35 V

2. ZADATAK

Izlazna karakteristika nekog MOSFET-a prikazana je na slici. Napon praga tranzistora iznosi $U_{GS0} = -0.5 \text{ V}$, a faktor modulacije duljine kanala $\lambda = -0.005 \text{ V}^{-1}$. Strujna konstanta MOSFET-a iznosi -2 mA/V^2 .

- **2.1.** Odrediti tip MOSFET-a (1 bod).
- **2.2.** Izračunati strminu u točki A (1 bod).
- **2.3.** Izračunati struju i izlazni dinamički otpor u točki B (1 bod).

Odgovori

2.1.

(a) obogaćeni NMOS

(b) osiromašeni PMOS

(c) obogaćeni PMOS

(d) osiromašeni NMOS

(e) neutralni PMOS

2.2.

(a) $g_{mA} = 2 \text{ mA/V}$

(b) $g_{mA} = 0.5 \text{ mA/V}$

(c) $g_{mA} = 4 \text{ mA/V}$

(d) $g_{mA} = 1 \text{ mA/V}$

(e) $g_{mA} = 0.25 \text{ mA/V}$

2.3.

(a) $I_{DB} = -1.01 \text{ mA}, r_d = 200 \text{ k}\Omega$

(b) $I_{DB} = -2.02 \text{ mA}, r_d = 100 \text{ k}\Omega$

(c) $I_{DB} = 1.01 \text{ mA}, r_d = 200 \text{ k}\Omega$

(d) $I_{DB} = 0$ mA, $r_d = \infty$ k Ω

(e) $I_{DB} = -4 \text{ mA}, r_d = 50 \text{ k}\Omega$

3. ZADATAK

Za pojačalo na slici zadano je: $U_{CC} = 10 \text{ V}$, $R_g = 500 \Omega$, $R_1 = 82 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$ i $R_T = 4.7 \text{ k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe} = 150$ i $U_{\gamma} = 0.7 \text{ V}$. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- **3.1.** Odrediti struju I_{CQ} i napon U_{CEQ} , ako je vrijednost otpornika $R_E = 2,2 \text{ k}\Omega$. (1 bod)
- **3.2.** Odrediti dinamičke parametre g_m i r_{be} , ako je poznato $I_{CQ} = 665 \, \mu\text{A}, \, U_{CEQ} = 5.54 \, \text{V} \, \text{i} \, R_E = 2 \, \text{k}\Omega. \, (1 \, \text{bod})$
- **3.3.** Odrediti pojačanje $A_V = u_{iz}/u_{ul}$, ako su poznati dinamički parametri $g_m = 29,37 \text{ mA/V}$ i $r_{be} = 5107 \Omega$, te $R_E = 1,8 \text{ k}\Omega$. **(1 bod)**
- **3.4.** Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri $g_m = 29,37 \text{ mA/V}$ i $r_{be} = 5107 \Omega$, te $R_E = 1,8 \text{ k}\Omega$. (1 **bod**)
- **3.5.** Odrediti izlazni otpor R_{iz} , ako su poznati dinamički parametri $g_m = 29,37 \text{ mA/V}$ i $r_{be} = 5107 \Omega$, te $R_E = 1,8 \text{ k}\Omega$. **(1 bod)**

Odgovori

3.1.

(a) $I_{CO} = 607.5 \, \mu \text{A i } U_{CEO} = 6.5 \, \text{V}$

(b) $I_{CQ} = 607.5 \,\mu\text{A i} \,U_{CEQ} = 5.8 \,\text{V}$

(c) I_{CQ} = 1,42 mA i U_{CEQ} = 6,5 V (d) I_{CQ} = 1,42 mA i U_{CEQ} = 5,8 V

(e) $I_{CO} = 0.84$ mA i $U_{CEO} = 6.35$ V

3.2.

(a) $g_m = 26.6 \text{ mA/V}$, r_{be} = 5640 Ω

 $r_{be} = 4852 \ \Omega$ (b) $g_m = 26.6 \text{ mA/V}$,

 r_{be} = 5640 Ω (c) $g_m = 26.6 \, \mu \text{A/V}$,

(d) $g_m = 31,35 \text{ mA/V}$, r_{be} = 5640 Ω (e) $g_m = 37,35 \text{ mA/V}$, $r_{be} = 4852 \ \Omega$

3.3. 3.4.

(a) $A_V = 31$

(b) $A_V = -69$

(c) $A_V = -31$

(d) $A_V = 0.448$

(e) $A_V = 69$

(a) $R_{ul} = 42,1 \Omega$

(b) $R_{ul} = 33,2 \Omega$

(c) $R_{ul} = 19.3 \Omega$

(d) $R_{ul} = 204,2 \Omega$

(e) $R_{ul} = 132,2 \Omega$

3.5.

4.3.

(a) $R_{iz} = 8.2 \text{ k}\Omega$

(b) $R_{iz} = 3.9 \text{ k}\Omega$

(c) R_{iz} = 4,7 k Ω

(d) R_{iz} = 6,8 k Ω

(e) $R_{iz} = 5.6 \text{ k}\Omega$

4. ZADATAK

Parametri Zenerove diode su $U_Z = 11,7 \text{ V}, I_{Zmin} = 5 \text{ mA}, P_{Zmax} = 750 \text{ mW} \text{ i}$ r_z = 5 Ω. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe}$ = 150 i U_{BE} = 0,7 V. Ulazni napon kreće se u granicama od 20 V do 25 V, a otpor trošila ima minimalni iznos od 560 Ω .

4.2. Odrediti minimalnu vrijednost otpora R_{1min} . (1 bod)

4.3. Odrediti maksimalnu vrijednost otpora R_{1max} . (1 bod)

4.4. Odrediti naponski faktor stabilizacije S_U , ako je otpornik $R_1 = 1 \text{ k}\Omega$. (1 bod)

Odrediti izlazni otpor stabilizatora R_{IZ} , ako su vrijednosti otpornika $R_1 = 1 \text{ k}\Omega \text{ i } R_T = 820 \Omega. \text{ (1bod)}$

(a) $R_{1max} = 1618 \Omega$

(b) $R_{1max} = 500 \Omega$

(c) $R_{1max} = 2003 \Omega$

(d) $R_{1max} = 1822 \Omega$

(e) $R_{1max} = 820 \Omega$

Odgovori

4.1.

4.4.

(a) U_{IZ} = 11,7 V

(b) $U_{IZ} = 10 \text{ V}$

(c) $U_{IZ} = 10.3 \text{ V}$

(d) $U_{IZ} = 11 \text{ V}$

(e) $U_{IZ} = 11.3 \text{ V}$

(a) $S_U = 0.0042$

(b) $S_U = 0.00675$

(c) $S_U = 0.002175$

4.2.

(a) $R_{1min} = 1100 \Omega$

(b) $R_{1min} = 485 \Omega$

(c) $R_{1min} = 110 \Omega$

(d) $R_{1min} = 311 \Omega$

(e) $R_{1min} = 207 \Omega$

4.5.

(b) $R_{IZ} = 1,25 \Omega$

(c) $R_{IZ} = 2,48 \Omega$

(d) $R_{IZ} = 1.5 \Omega$

(a) $R_{IZ} = 1,894 \Omega$

(e) $R_{IZ} = 2,22 \Omega$

(d) $S_U = 0.004975$ (e) $S_U = 0.00112$

5. ZADATAK

Za sklop na slici zadano je $R_2 = 20 \text{ k}\Omega$ i $R_3 = 20 \text{ k}\Omega$. Operacijska pojačala su idealna.

- **5.1.** Odrediti vrijednost otpornika R_1 , ako je izlazni napon $U_{IZ2} = 7.5 \text{ V}$ i ulazni napon $U_{UL} = -0.225 \text{ V. } (1 \text{ bod})$
- **5.2.** Odrediti vrijednost otpornika R_1 , ako je izlazni napon U_{IZ1} = 2,5 V i ulazni napon $U_{UL} = -0.225 \text{ V. } (1 \text{ bod})$
- **5.3.** Odrediti vrijednost napona U_{IZ1} , ako je ulazni napon $U_{UL} = 0.3 \text{ V}$ i $R_1 = 12 \text{ k}\Omega$. (1 bod)
- **5.4.** Odrediti vrijednost napona U_{IZ2} , ako je ulazni napon $U_{UL} = 0.3 \text{ V i}$ $R_1 = 12 \text{ k}\Omega$. (1 bod)

Odgovori

5.1.

(a) $R_1 = 2.2 \text{ k}\Omega$ (b) $R_1 = 1.8 \text{ k}\Omega$

5.2.

(a) $R_1 = 1.2 \text{ k}\Omega$

5.3.

(a) $U_{IZ1} = -0.5 \text{ V}$ (b) $U_{IZ1} = -1 \text{ V}$

(c) $U_{IZ1} = 1 \text{ V}$ (d) $U_{IZ1} = 0.5 \text{ V}$ (b) $U_{IZ2} = 1 \text{ V}$

(c) $U_{IZ2} = -1 \text{ V}$

(d) $U_{IZ2} = 0.5 \text{ V}$

(e) $U_{IZ2} = 0 \text{ V}$

(d)
$$R_1 = 3.9 \text{ k}\Omega$$

(e) $R_1 = 6.8 \text{ k}\Omega$

(c) $R_1 = 1.2 \text{ k}\Omega$

(d) $R_1 = 3.9 \text{ k}\Omega$ (e) $R_1 = 6.8 \text{ k}\Omega$

(b) $R_1 = 1.8 \text{ k}\Omega$

(c) $R_1 = 2.2 \text{ k}\Omega$

(e) $U_{IZ1} = 0 \text{ V}$