Q1:
Since
$$\sqrt{x} = \sqrt{n} (\frac{N-n}{N-1})$$

when $n = 4$ $\sqrt{x} = \sqrt{\frac{2^2(60-4)}{4(60-4)}} = \sqrt{\frac{56}{59}}$
When $n = 16$ $\sqrt{x} = \sqrt{\frac{2^2(60-16)}{16(60-4)}} = \sqrt{\frac{11}{59}}$
Hence, $\sqrt{x} = \sqrt{\frac{2^2(60-16)}{16(60-4)}} = \sqrt{\frac{11}{59}}$
Drecise estimator of unwhen sample.

precise estimator of m when sample Size was increase from n=4 to n=16

i) Since we know m and we can casily write $\sigma^2 = E[X; -\mu)^2$] $\forall i = 1...n$ we don't need to estimated μ . Then

ii) With R script, we can estimate each sample varience $\widehat{\tau}_i$ with $\widehat{\tau}^2 = \frac{1}{h} \sum_{i=1}^{n} (x_i - \mu_i)^2$

17ence the 111st of esympton