UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 2 INGENIERA GLENDA GARCÍA SORIA

AUXILIAR: Walter Osorio

Marzo 30 del 2022

CARNE	NOMBRE
202100081	Javier Andrés Monjes Solórzano

PROBLEMA	CALIFICACIÓN
PRESENTACION Y CONTENIDO	. /10
Problema 1	. /25
Problema 2	. /15
Problema 3	. /40
Hojas de Desarrollo	. /10
TOTAL	. /100

Introducción

Las matemáticas son de los conocimientos más antiguos y a su vez mas importantes para el ser humano a tal punto de estar involucradas en el día a día de las personas. Con el desarrollo de la tecnología han sido investigadas y estudiadas durante el paso del tiempo, y han evolucionado de tal forma que se puedan usar para la resolución de dudas y problemas que aquejan a la humanidad. De la misma manera han sido creadas herramientas para facilitar el desarrollo y comprensión de estas, y nosotros como estudiantes de ingeniería debemos de estar familiarizados con estas herramientas. Los Sistemas Algebraicos por Computadora representan una herramienta que facilita la comprensión de forma gráfica y algebraica de problemas matemáticos, eso implica el desarrollo de habilidades necesarias para la utilización de dichas herramientas. Con el presente proyecto buscamos afianzar dichas habilidades e integrarlas a nuestros estudios futuros.

El desarrollo de la tecnología en el área de las computadoras y las calculadoras con capacidades numéricas, simbólicas y de traficación ha influido en las metodologías utilizadas en los procesos enseñanza aprendizaje de las matemáticas. Esto se debe en parte a que los Sistemas Algebraicos por Computadora (SAC) permiten visualizar todo tipo de gráficas y realizar una amplia variedad de cálculos que hace apenas algunos años era imposible.

Objetivos

- Aplicar las capacidades de la tecnología para poder modelar graficas mediante funciones delcálculo.
- Determinar mediante los programas de computación que tan bien se pueden llegar a comprobar ycomprender los teoremas matemáticos.
- Al poder demostrar los límites y las aplicaciones de la derivada de forma gráfica ayuda a facilitarlas nociones que nosotros como estudiantes debemos tener para resolver iniciar a estos resolver los problemas

Problema No. 1: Cálculo de límites

I.

$$\lim_{x\to 1} \left[\frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})} \right]$$

$$\lim_{x\to 1} \frac{1}{2(1-x)} - \frac{1}{3(1-x)}$$

A.

Limite por la izquierda Limite por la Derecha

$$h = 0, 1$$

X	F(X)
1.1	0.082230
1.01	0.083218
1.001	0.083322
1.0001	0.083333

X	F(X)
0.9	0.084553
0.99	0.083450
0.999	0.083345
0.9999	0.083333

Por las gráficas se puede estimar el valor del limite a 0.083

C.

$$f(x) = \frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})}$$

Exacto = Limite(f, 1)

$$\lim_{X\to 1^+} \left(\frac{1}{2(1-\sqrt{X})} - \frac{1}{3(1-\sqrt[3]{X})} \right) = \frac{1}{12}$$

$$\lim_{X\to 1^{-}} \left(\frac{1}{2(1-\sqrt{X})} - \frac{1}{3(1-\sqrt[3]{X})} \right) = \frac{1}{12}$$

D.

$$\lim_{X \to 1} \left(\frac{1}{2(1 - \sqrt{X})} - \frac{1}{3(1 - \sqrt[3]{X})} \right)$$

Se tiene la interminación de tipo

 $\frac{0}{0}$

Probando las derivadas del numerado y denominador hasta elimina la indeterminación (L'Hopital).

$$\lim_{x\to 1} \left(\frac{-3\sqrt[3]{x} + 2\sqrt{x} + 1}{6(1 - 3\sqrt[3]{x})(1 - \sqrt{x})} \right)$$

$$\lim_{x \to 1} \left(\frac{\frac{d}{dx} - 3\sqrt[3]{x} + 2\sqrt{x} + 1}{\frac{d}{dx} 6(1 - 3\sqrt[3]{x})(1 - \sqrt{x})} \right)$$

$$\lim_{x \to 1} \left(\frac{\frac{1}{\sqrt{x}} - \frac{1}{x^2/3}}{-\frac{3}{\sqrt{x}} - \frac{2}{x^2/3} + \frac{5}{\sqrt[6]{x}}} \right)$$

$$\frac{1}{12}$$

II.

$$\lim_{X\to 0}\frac{e^{4x}-1-4x}{x^2}$$

Α.

Limite por la izquierda

X	F(X)
-0.2	6.233224
-0.04	7.589868
-0.008	7.915345
-0.0016	7.982961
-0.00032	7.996588

h = 0,2
Limite por la Derecha

X	F(X)
0.2	10.638523
0.04	8.444294
0.008	8.086020
0.0016	8.017094
0.00032	8.003414

Por las gráficas se puede estimar el valor del limite a 8

C.

$$f(x) \, = \, \frac{e^{4x} - 1 - 4\,x}{x^2}$$

 $\mathsf{Exacto} \, = \, \mathsf{L}\,\mathsf{imite}(\mathsf{f},\mathsf{0})$

$$\lim_{X\to 0^+} \frac{e^{4x}-1-4x}{x^2} = 8$$

$$\lim_{X\to 0^-}\frac{e^{4x}-1-4x}{x^2}=8$$

D.

Tenemos la indeterminación de tipo

 $\frac{0}{0}$

Probar las derivadas del numerador y denominador hasta eliminar la indeterminación (L'Hopital).

$$\lim_{X\to 0}\frac{e^{4x}-1-4x}{x^2}$$

$$\frac{1}{2} \lim_{x \to 0} \frac{e^{4x} - 1 - 4}{x}$$

$$\frac{1}{2}\lim_{x\to 0}\frac{4(e^x-1)(e^x+1)(e^{2x}-1)}{x}$$

$$\frac{1}{2}\lim_{x\to 0} 4(e^x - 1)(e^{2x} - 1) = {}^{16}*\lim_{x\to 0} \frac{(e^x - 1)}{x}$$

$$\frac{16}{2} \lim_{x \to 0} \frac{(e^x - 1)}{x} = 8 \lim_{x \to 0} \frac{(e^x - 1)}{x}$$

Aplicando la sustitución:

$$e^{x} - 1 = t \rightarrow x = ln(t+1): x \rightarrow 0: t = e^{0} - 1 \rightarrow t = 0$$

$$8\lim_{x\to 0}\frac{t}{ln(t+1)} = 8\lim_{x\to 0}\frac{1}{t^{-1}ln(t+1)} = 8\lim_{x\to 0}\frac{1}{ln(1+\frac{1}{t})^t}$$

Límite del tipo

$$\lim_{x\to 0}(1+\frac{1}{x})^x=e$$

$$8\lim_{x\to 0}\frac{1}{\ln(1+\frac{1}{t})^t}=8*\frac{1}{\ln(e)}=8$$

III.

$$\lim_{x\to 1} (2 x)^{tan(\pi x/2)}$$

A. h = 0,3

<u>Limite por la izquierda</u> <u>Limite por la Derecha</u>

X	F(X)
0.7	1.673550
0.91	1.832197
0.973	1.873485
0.9919	1.885176
0.99757	1.888616
0.999271	1.889642

X	F(X)
1.3	2.013781
1.09	1.939948
1.027	1.905959
1.0081	1.894922
1.002430	1.891540
1.000729	1.890519

Por las gráficas se puede estimar el valor del limite a 1.89

C.

$$f(x) = (2-x)^{\tan(\frac{\pi x}{2})}$$

Exacto = Limit(f, 1)

 \rightarrow 1.8900811645722

D.

$$\lim_{x\to 1} (2-x)^{\tan(\pi x/2)}$$

Tenemos la indeterminación de tipo

$$1^{\infty}$$

$$\lim_{x \to 1} (2-x)^{\frac{sen(\pi x/2)}{cos(\pi x/2)}} \to tan(\frac{\pi x}{2}) = \frac{1}{1-x} \left(tan(\frac{\pi x}{2}) - x(tan(\frac{\pi x}{2}))\right)$$

Limite del tipo

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

$$\lim_{x\to 1}(1+1-x)^{\frac{1}{1-x}\left(\tan(\frac{\pi x}{2})-x(\tan(\frac{\pi x}{2})\right)}=\lim_{x\to 1}e^{\tan(\frac{\pi x}{2})-x\tan(\frac{\pi x}{2})}$$

$$\lim_{x \to 1} e^{\frac{\sin \frac{\pi x}{2}}{\cos \frac{\pi x}{2}} - x \frac{\sin \frac{\pi x}{2}}{\cos \frac{\pi x}{2}}}$$

Sustitución:

$$x = t + 1 \Rightarrow t = x + 1 : x \rightarrow 1 \Rightarrow t \rightarrow 0$$

$$\lim_{t\to 0}e^{\frac{t\cos(\frac{\pi t}{2})}{sen(\frac{\pi t}{2})}} = \lim_{t\to 0}e^{\frac{2\cos(\frac{\pi t}{2})}{\pi}} = \frac{2}{e^{\pi}}$$

Parte II

Aterrizaje de un Avión Comercial

I.

Polinomio

$$P(x) = ax^3 + bx^2 + cx + d$$

Derivada

$$p(x) = 3ax^2 + 2bx + c$$

A.

Por el gráfico se puede decir que en el punto de origen el avión se detendrá así que

$$P(0) = 0$$

0 = d

De la misma forma la derivada que representa la velocidad será de

$$p(0) = 0$$

0 = c

En el instante antes de iniciar el descenso la velocidad en y es de 0, al mismo tiempo esta la distancia L así que:

$$p(L) = 0$$

$$0 = 3a(L)^{2} + 2b(L)$$

$$0 = 3aL^{2} + 2bL$$
Si se despeja a
$$-3aL^{2} = 2bL$$

$$a = -\frac{2b}{3L}$$

También se sabe que la altitud del avión es H cuando inicia el descenso a una distancia L:

$$P(L) = H$$

$$H = aL^{3} + bL^{2}$$

$$H = -\frac{2bL}{3L^{2}}L^{3} + bL^{2}$$

$$H = -\frac{2}{3}bL^{2} + bL^{2}$$
3

$$H = -\frac{1}{3}bL^2$$

Si resolvemos para b

$$b = \frac{3H}{I^2}$$

Ahora se reemplaza b en a

$$a = -\frac{2\frac{3H}{L^2}}{3L}$$

$$a = -\frac{6H}{3L^3}$$

$$a = -\frac{2H}{L^3}$$

Con esto se obtinen todos los valores de a,b,c,d

$$P(x) = -\frac{2H}{I^3}x^{\frac{3}{4}} + \frac{\frac{3H}{I^2}x^{-2}}{I^2}$$

Mostrar que

$$\frac{6Hv^2}{L^2} \le k$$

La velocidad dx/dt en x es constante y por el grafico se sabe que se dirije a la izquierda, por endees negativa.

$$v(x) = \frac{dx}{dt} = -v$$

De la misma forma se indica que la aceleración vertical es menor o igual que una constante k.La aceleración vertical es la segunda derivada de la posición del avión con respecto al tiempo en el ejey.

$$v_y = \frac{dy}{dt}$$

$$a_y = \frac{d^2y}{d^2t}$$

Para la Velocidad:

$$\frac{dy}{dt} = \frac{dy}{dx} * \frac{dx}{dt}$$

$$v_y = \frac{dy}{dx} * \frac{dx}{dt} = -\frac{6H}{1^3} x^2 + \frac{6H}{1^2} x (-v)$$

$$v_y = \frac{6H}{I^3} x^2 v - \frac{6H}{I^2} x v$$

Para la aceleracion:

$$\frac{dv_y}{dt} = \frac{dv_y}{dx} * \frac{dx}{dt} = \frac{12H}{1^3} xv - \frac{6H}{1^2} v \quad (-v)$$

$$a_y = -\frac{12H}{I^3}xv^2 + \frac{6H}{I^2}v^2.$$

La posición x cuando inicia el descenso es L así que

$$x = I$$

$$a_y = -\frac{12H}{L^3}Lv^2 + \frac{6H}{6H}v^4 = -\frac{12H}{L^2}v^2 + \frac{6H}{6H}v^4 = -\frac{6H}{6H}v^4 = \frac{6H}{6H}v^4 = \frac{6H}$$

$$\frac{6Hv^2}{I^2} \le k$$

Parte III

Temperatura Global Promedio

Año	Años después de 1950	TGP en °C
1950	0	13,75
1951	1	13,9
1952	2	13,94
1953	3	14,03
1954	4	13,8
1955	5	13,77
1956	6	13,72
1957	7	13,97
1958	8	14,02
1959	9	13,98
1960	10	13,95
1961	11	13,99
1962	12	14
1963	13	14,02
1964	14	13,76
1965	15	13,83
1966	16	13,89
1967	17	13,9
1968	18	13,87
1969	19	14
1970		13,96
1971	21	13,83
1972		13,94
1973		14,09
1974	24	13,84
1975	25	13,91
1976		13,83
1977	27	14,11
1978	28	14,02
1979	29	14,13
1980	30	14,18
1981	31	14,22
1982	32	14,09
1983	33	14,26
1984		14,07
1985	35	14,06

Año	Años después de 1950	TGP en °C
1986		14,14
1987	37	14,28
1988	38	14,29
1989		14,19
1990	40	14,35
1991	41	14,29
1992	42	14,14
1993	43	14,18
1994	44	14,24
1995	45	14,37
1996	46	14,22
1997	47	14,41
1998	48	14,55
1999	49	14,34
2000	50	14,33
2001	51	14,47
2002	52	14,52
2003	53	14,54
2004	54	14,48
2005	55	14,57
2006		14,54
2007	57	14,52
2008	58	14,44
2009	59	14,54
2010	60	14,62
2011	61	14,48
2012	62	14,54
2013		14,57
2014	64	14,64
2015		14,83
2016	66	14,89
2017		14,81
2018		14,72
2019		14,85
2020	70	14,88

I.

 $T(x) = 0.0001714276x^2 + 0.0021831657x + 13.858492186$

II.

Año	TGP	Cambio Total
2025	14.9865	0.1065
2050	15.7911	0.9111
2100	18.0431	3.1631

III.

Año	Razon de cambio	Cambio Total
	Instantanea	
202	0.0279	0.0017
5		
205	0.0365	0.0103
0		
210	0.0536	0.0274
0		

Hay una diferencia en cuanto a las predicciones, debido al tipo de dato que se utilizó, Al usar la razón de cambio(derivada de T(x)) se maneja la velocidad en la que crece la Temperatura Global Promedio, además esta aproximación puede llegar a ser más exacta que la aproximación polinómica.

٧.

Según el modelo, si las tendencias actuales de temperatura continúan, en 2025 la temperatura global promedio será 14.9 grados, que es un aumento de 0.1 grados arriba la temperatura promedio de 2019. Por otro lado, si asumimos que la tasa de aumento de la temperatura se mantiene constante atasas de 2019-2020 de 0.026 grados, entonces la temperatura global promedio será 15.01 grados en 2025, lo que es un aumento de 0.13 grados arriba de la temperatura promedio de 2019.

VI.

El modelo calculado, se aproxima al modelo en color naranja de la gráfica. De acuerdo con los modelos representados, de seguir con una alta cantidad de emisiones de CO2 podríamos llegar a un aumento de temperatura exponencial, difícil de controlar.