Prof. Dr. D. Lenz

Blatt 8

Abgabe Donnerstag 05.06.2011

- (1) Sei (X, d) ein metrischer Raum. Sei $e: X \times X \longrightarrow \mathbb{R}, e(x, y) = d(x, y)/(1 + d(x, y))$. Zeigen Sie:
 - (a) Es ist e eine Metrik.
 - (b) Zu beliebigen r>0 existieren $\rho,\,\sigma>0$ mit

$$U_{\rho}^{e}(x) \subset U_{r}^{d}(x), \qquad U_{\sigma}^{d}(x) \subset U_{r}^{e}(x)$$

für alle $x \in X$.

- (c) Eine Folge ist eine Cauchy Folge bzgl. e genau dann, wenn sie eine Cauchy Folge bzgl. d ist.
- (2) Betrachten Sie den metrischen Raum (\mathbb{R}^N, d_D) mit der diskreten Metrik

$$d_D: \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \{0, 1\}, \ d_D(x, y) := \begin{cases} 0, \text{ falls } x = y \\ 1, \text{ falls } x \neq y. \end{cases}$$

- (a) Charakterisieren Sie alle bezüglich d_D konvergenten Folgen.
- (b) Sei N=2. Zeichnen Sie die offene und abgeschlossene Kugel um 0 jeweils mit Radius 1/2 und Radius 1.
- (3) Sei M eine endliche Menge und d_1, d_2 zwei Metriken auf M. Zeigen Sie, dass es Konstanten c, C > 0 gibt, so dass

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y)$$
 für alle $x,y \in M$.

(4) Sei \mathcal{L} der Vektorraum aller linearen Abbildungen von \mathbb{R}^N nach \mathbb{R}^N und $\|\cdot\|_*$ eine Norm auf \mathbb{R}^N . Zeigen Sie, dass durch

$$||A|| = \sup\{||Ax||_* : ||x||_* \le 1\}$$

eine Norm auf \mathcal{L} definiert wird und

$$||AB|| \le ||A|| ||B||$$

für alle $A, B \in \mathcal{L}$ gilt.

Zusatzaufgaben

(1) Zeigen Sie, dass der in der Vorlesung besprochene normierte Raum $\ell^2(\mathbb{N})$ vollständig ist.

Anleitung: Sei $(u_n) \in \ell^2(\mathbb{N})$ eine Cauchy-Folge. Zeigen Sie der Reihe nach:

- u_n konvergiert punktweise gegen eine Folge u, d.h. für alle $m \in \mathbb{N}$ gilt $u_n(m) \to u(m)$.
- Es existiert c > 0, so dass für alle $N \in \mathbb{N}$

$$||(u)_N||_2 \le c,$$

wobei $(u)_N = (u(1), u(2), \dots, u(N), 0, \dots)$ für $u = (u(1), u(2), \dots)$ definiert ist.

- $u \in \ell^2(\mathbb{N})$.
- $\|(u-u_n)_N\| \to 0$ gleichmäßig in N.

Viel Erfolg!