Rattrapage Projet Mathématiques

Nombres complexes

Table des matières

Ι	Introduction	2
	I.1 Le nombre <i>i</i>	2
	I.2 L'ensemble des nombres complexes	2
II	Forme algébrique	3
	II.1 Définition	3
	II.2 Premiers calculs	
	II.3 Représentation graphique	4
	II.4 Conjugué d'un complexe	5
	II.5 Inverse d'un complexe	5
II	I Forme trigonométrique	6
	III.1 Module d'un nombre complexe	6
	III.2 Argument d'un complexe non nul	6
	III.3 Ecriture trigonométrique	7
τī	Equations du second degré	8

I Introduction

On travaille en mathématiques avec différents ensembles de nombres :

- l'ensemble des **entiers naturels**, noté $\mathbb{N} : \mathbb{N} = \{0, 1, 2, 3, ...\}$.
- l'ensemble des **entiers relatifs**, noté \mathbb{Z} : $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
- l'ensemble des **décimaux**, noté \mathbb{D} . Un nombre décimal est le quotient d'un entier relatif par une puissance de 10, $\frac{a}{10^n}$, par exemple $\frac{32}{100}$, mais aussi $\frac{3}{5} = \frac{6}{10}$. Les nombres décimaux sont ceux qui ont une écriture décimale finie.
- l'ensemble des **rationnels**, noté Q. Un nombre rationnel est le quotient a/b d'un entier relatif a par un entier naturel non nul b. Les nombres rationnels sont ceux qui ont une écriture décimale périodique.
- l'ensemble des **réels**, noté \mathbb{R} , qui est l'ensemble de tous les nombres usuels. Parmi eux, on trouve $\sqrt{2}$ ou π .

Tous les nombres positifs ont une racine carrée. Par exemple, 9 a pour racines carrées 3 et -3 c'est-à-dire que $3^2 = 9$ et $(-3)^2 = 9$.

Par contre, aucun réel négatif n'a de racine carrée (réelle). Les nombres complexes offrent la possibilité de pallier à cette injustice!

I.1 Le nombre i

Le <u>nombre</u> i est un nombre dont le carré vaut -1. Ainsi, $i^2 = -1$. De plus, son opposé -i a aussi pour carré -1. En effet : $(-i)^2 = i^2 = -1$. Les deux racines de -1 sont les deux nombres irréels i et -i.

I.2 L'ensemble des nombres complexes

On connait déjà 5 ensembles permettant de "ranger" les nombres : il s'agit de $\mathbb{N}, \mathbb{Z}, \mathbb{D}, \mathbb{Q}$ et \mathbb{R} .

Définition 1

On définit l'ensemble $\mathbb C$ qui a les caractéristiques suivantes :

- ➤ Ses éléments sont appelés nombres complexes,
- ➤ Il contient le nombre i vérifiant $i^2 = -1$.

II Forme algébrique

II.1 Définition

Définition 2

Chaque élément z de l'ensemble $\mathbb C$ s'écrit de manière unique z=a+ib, a et b étant des réels.

- \blacktriangleright a est appelé partie réelle de z et est noté $\Re \mathfrak{c}(z)$,
- \blacktriangleright b est appelé partie imaginaire de z et est noté $\mathfrak{Im}(z)$.

Remarque 1

Nombres particuliers:

- si b = 0, on a z = a, z est donc réel,
- si a = 0, on a z = ib, on dit que z est un imaginaire pur.

Exemple 1

Dans chacun des exemples suivants, on donne la partie réelle et la partie imaginaire :

	•
a = 2	b = 3
a = -1	$b = \frac{1}{2}$
a = 0	b = -1
$a = \pi$	b = 0
$a = -\frac{1}{3}$	b=4.
	$a = -1$ $a = 0$ $a = \pi$

Propriété 1

Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire :

$$z = z' \Leftrightarrow a + ib = a' + ib' \Leftrightarrow a = a' \text{ et } b = b'.$$

II.2 Premiers calculs

Propriété 2

On pose z = a + ib, z' = a' + ib' et k un réel, on a :

- \bullet z + z' = (a + a') + i(b + b'),
- ♦ z z' = (a a') + i(b b'),
- kz = ka + ikb,

Démonstration de la dernière propriété :

$$zz' = (a+ib)(a'+ib')$$

$$= aa' + iab' + ia'b + i^{2}bb'$$

$$= aa' + iab' + ia'b - bb'$$

$$= (aa' - bb') + i(ab' + a'b).$$

Exemple 2

Soit z=2+3i et $z^\prime=i-5$, on a :

$$\Rightarrow z + z' = 2 + 3i + i - 5 = -3 + 4i,$$

$$\Rightarrow$$
 $z-z'=2+3i-(i-5)=2+3i-i+5=7+2i$,

→
$$2z - 3z' = 2(2+3i) - 3(i-5) = 4+6i-3i+15 = 19+3i$$
,

$$\Rightarrow zz' = (2+3i)(i-5) = 2i-10+3i^2-15i = 2i-10-3-15i = -13-13i,$$

⇒
$$z^2 = (2+3i)^2 = 2^2 + 2 \times 2 \times 3i + (3i)^2 = 4 + 12i + 9i^2 = 4 + 12i - 9 = -5 + 12i$$
.

II.3 Représentation graphique

Définition 3

Au point M de coordonnées (a;b) on peut associer le nombre complexe z=a+ib,

Exemple 3

On place dans le plan complexe les points M_i d'affixes z_i :

→
$$z_2 = 3 + i$$

→
$$z_3 = -1 + 2i$$

→
$$z_4 = 2 - i$$

$$\rightarrow z_5 = i$$

→
$$z_6 = -2i$$

→
$$z_7 = -2$$

→
$$z_8 = -i - 3$$

Propriété 3

Si M a pour affixe z = a + ib et si M' a pour affixe z' = a' + ib', alors :

- lacktriangle Le vecteur $\overrightarrow{MM'}$ a pour affixe z'-z=(a'-a)+i(b'-b),
- $\bullet \ ||\overrightarrow{OM}|| = \sqrt{a^2 + b^2},$
- $||\overrightarrow{MM'}|| = \sqrt{(a'-a)^2 + (b'-b)^2},$
- Le milieu I de [MM'] a pour affixe $z_I = \frac{z+z'}{2}$.

II.4 Conjugué d'un complexe

Définition 4

On appelle conjugué du nombre complexe z = a + ib le nombre $\overline{z} = a - ib$.

Géométriquement, si M_1 est le point d'affixe z, le point M_2 d'affixe \overline{z} est le symétrique de M_1 par rapport à l'axe des abscisses.

Exemple 4

Soit z = 3 + 5i et z' = -2 + 3i, on a :

- → z + z' = (3 + 5i) + (-2 + 3i) = 1 + 8i, $z \times z' = (3+5i) \times (-2+3i) = -6+9i-10i+15i^2 = -6-i-15 = -21-i.$
- $\overline{z'} = -2 3i.$
- → $\overline{z} + \overline{z'} = (3 5i) + (-2 3i) = 1 8i$,
- ⇒ $\overline{z} \times \overline{z'} = (3-5i) \times (-2-3i) = -6-9i+10i+15i^2 = -6+i-15 = -21+i$

Propriété 4

Soit z et z' deux nombes complexes, alors :

- $\blacklozenge \ \overline{\overline{z}} = z.$

II.5Inverse d'un complexe

Soit z = a + ib, on a : $z\overline{z} = (a + ib)(a - ib) = a^2 - (ib)^2 = a^2 + b^2$ qui est un nombre réel.

Ainsi, on a:

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{a^2 + b^2} = \frac{a - ib}{a^2 + b^2}.$$

Exemple 5

Calculs d'inverses :

- $\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = \frac{1}{2} \frac{1}{2}i.$ $\frac{1}{2-3i} = \frac{2+3i}{(2-3i)(2+3i)} = \frac{2+3i}{13} = \frac{2}{13} + \frac{3}{13}i.$
- $\Rightarrow \frac{2}{i} = \frac{2 \times -i}{i \times -i} = \frac{-2i}{1} = -2i.$
- $\Rightarrow \frac{2+i}{-3+i} = \frac{(2+i)(-3-i)}{(-3+i)(-3-i)} = \frac{-6-2i-3i+1}{10} = \frac{-5-5i}{10} = -\frac{1}{2} \frac{1}{2}i.$

Propriété 5

Soit z et z' deux nombres complexes, alors :

$$\blacklozenge \ \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z}'}.$$

III Forme trigonométrique

III.1 Module d'un nombre complexe

Définition 5

Le <u>module</u> du complexe z est le réel positif noté |z| tel que $|z| = \sqrt{z \ \overline{z}} = \sqrt{a^2 + b^2}$.

Remarque 2

Si a est un réel, $|a| = \sqrt{a} \ \overline{a} = \sqrt{a} \ a = \sqrt{a^2} \ \text{car} \ \overline{a} = a$.

La notion de module dans $\mathbb C$ généralise donc celle de valeur absolue dans $\mathbb R$.

Exemple 6

Calcul du module de nombres complexes :

 \rightarrow $|3+4i| = \sqrt{3^2+4^2} = \sqrt{9+16} = \sqrt{25} = 5.$

 \rightarrow $|1-i| = \sqrt{1^2 + (-1)^2} = \sqrt{1+1} = \sqrt{2}$.

→ $|-5-2i| = \sqrt{(-5)^2 + (-2)^2} = \sqrt{25+4} = \sqrt{29}$.

→ |-5| = 5.

 \rightarrow $|9i| = \sqrt{0^2 + 9^2} = \sqrt{81} = 9.$

Propriété 6

 $|z| = 0 \Leftrightarrow z = 0.$

 $\blacklozenge \ |-z| = |\overline{z}| = |z|.$

 $\blacklozenge |z \times z'| = |z| \times |z'|.$

 $\blacklozenge \left| \frac{1}{z} \right| = \frac{1}{|z|}.$

 $\blacklozenge \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}.$

III.2 Argument d'un complexe non nul

Définition 6

Soit z = a + ib un nombre complexe non nul et M le point d'affixe z :

- ▶ On appelle <u>argument</u> de z tout nombre réel θ tel que $\theta = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$,
- ightharpoonup On note $\theta = \arg(z)$.

$$\blacktriangleright \theta \text{ v\'erifie}: \begin{cases} \cos \theta &=& \frac{a}{\sqrt{a^2 + b^2}}, \\ \sin \theta &=& \frac{b}{\sqrt{a^2 + b^2}}. \end{cases}$$

Exemple 7

Calcul d'un argument de nombres complexes :

$$\Rightarrow z_1 = 2 + 2i : \begin{cases} \cos \theta &= \frac{2}{\sqrt{2^2 + 2^2}} &= \frac{2}{2\sqrt{2}} &= \frac{\sqrt{2}}{2} \\ \sin \theta &= \frac{2}{\sqrt{2^2 + 2^2}} &= \frac{2}{2\sqrt{2}} &= \frac{\sqrt{2}}{2} \end{cases} \Rightarrow \theta = \frac{\pi}{4} \Rightarrow \arg(2 + 2i) = \frac{\pi}{4}.$$

$$\Rightarrow z_2 = 1 + i\sqrt{3} : \begin{cases} \cos \theta &= \frac{1}{\sqrt{1^2 + \sqrt{3}^2}} &= \frac{1}{\sqrt{4}} &= \frac{1}{2} \\ \sin \theta &= \frac{\sqrt{3}}{\sqrt{1^2 + \sqrt{3}^2}} &= \frac{2}{\sqrt{4}} &= \frac{\sqrt{3}}{2} \end{cases} \Rightarrow \theta = \frac{\pi}{3} \Rightarrow \arg(1 + \sqrt{3}i) = \frac{\pi}{3}.$$

Propriété 7

Propriétés algébriques des arguments :

Exemple 8

D'après l'exemple précédent, on obtient :

- $\rightarrow \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) = \frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12}.$
- $\Rightarrow \arg\left(\frac{1}{z_1}\right) = -\arg z_1 = -\frac{\pi}{4}.$
- \Rightarrow arg $\left(\frac{z_1}{z_2}\right) = \arg z_1 \arg z_2 = \frac{\pi}{4} \frac{\pi}{3} = -\frac{\pi}{12}$.

Ecriture trigonométrique III.3

On se place dans un plan muni du repère $(O; \overrightarrow{u}; \overrightarrow{v})$.

Définition 7

Tout nombre complexe non nul z peut-être écrit sous la forme $z = r(\cos \theta + i \sin \theta)$ avec :

- ightharpoonup arg $(z) = \theta \in \mathbb{R}$ est l'argument de z
- \triangleright $|z| = r \in \mathbb{R}_*^+$ est le module de z

cette écriture s'appele la forme trigonométrique de z.

Pour trouver la forme trigonométrique d'un nombre z, il faut donc calculer successivement le module et l'argument $\mathrm{de}\ z.$

Exemple 9

Passage de la forme algébrique à la forme trigonométrique :

$$\Rightarrow z_1 = 1 - i: \begin{cases} |1 + i| &= \sqrt{2} \\ \cos \theta &= \frac{\sqrt{2}}{2} \\ \sin \theta &= -\frac{\sqrt{2}}{2} \end{cases} \Rightarrow r = \sqrt{2} \text{ et } \theta = -\frac{\pi}{4} \Rightarrow 1 - i = \sqrt{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right].$$

$$\Rightarrow z_2 = \sqrt{3} + i: \begin{cases} |\sqrt{3} + i| &= 2 \\ \cos \theta &= \frac{\sqrt{3}}{2} \\ \sin \theta &= \frac{1}{2} \end{cases} \Rightarrow r = 2 \text{ et } \theta = \frac{\pi}{6} \Rightarrow \sqrt{3} + i = 2 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right].$$

$$\Rightarrow z_2 = \sqrt{3} + i: \begin{cases} \left|\sqrt{3} + i\right| = 2\\ \cos \theta = \frac{\sqrt{3}}{2}\\ \sin \theta = \frac{1}{2} \end{cases} \Rightarrow r = 2 \text{ et } \theta = \frac{\pi}{6} \Rightarrow \sqrt{3} + i = 2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right].$$

IV Equations du second degré

Propriété 8

Soit $az^2+bz+c=0$ une équation du second degré où $a;b;c\in\mathbb{R}$ avec $a\neq 0$. On pose $\Delta=b^2-4ac$.

 \blacklozenge Si $\Delta>0,$ l'équation du second degré admet deux solutions réelles distinctes :

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

 \blacklozenge Si $\Delta=0,$ l'équation du second degré admet une unique solution réelle :

$$z_0 = \frac{-b}{2a}.$$

 \blacklozenge Si $\Delta<0,$ l'équation du second degré admet deux solutions complexes conjuguées :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.

Exemple 10

Résolution dans $\mathbb C$ de $z^2-2z+2=0$:

$$\rightarrow \Delta = b^2 - 4ac = -4 = (2i)^2.$$

→ Le disciminant étant négatif, l'équation admet deux solutions complexes conjuguées :

$$ightharpoonup z_1 = rac{-b + i\sqrt{-\Delta}}{2a} = rac{2 + 2i}{2} = 1 + i,$$

→
$$z_2 = \frac{-b - i\sqrt{-\Delta}}{2a} = \frac{2 - 2i}{2} = 1 - i$$
.