Χρυσανθοπούλου Αριστέα ΑΜ:1067483

Ερώτημα 1:

(Μια παραδοχή δεν έχω χρησιμοποιήσει τα spaces του A)

 $1.\alpha$)

```
function [dict,avglen] = myhuffmandict(s,p)
      c=cell(1,length(p));
      n=length(p)-2;
      global dict
      global helper
      dict=cell(length(p),2); %δημιουργια cell
      phelper=p;
      for i=1:length(p) % αποθηκευση συμβολών και πιθανοτητών
         dict{i,1}=s(i);
         dict{i,2}=p(i);
      end
      dict = sortrows(dict,[2]); %ταξινομηση
      for i=1:length(p) %ξαναβαζω σωστα ταξινομημενες τις πιθανοτητες
      p(i)=dict{i,2};
     end
     for i=1:length(p) %αρχικοποιω το "δεντρο μου"
          c{i}=dict{i,1};
     end
     helper=c;
     for k=1:n
        c\{2\} = \{c\{1\}, c\{2\}\};
         c(1) = [];
        p(2) = p(1) + p(2);
        p(1) = [];
        [~,i]=sort(p); %ταξινομηση
        c=c(i);
     end
       getcodes(c,[]);
       avglen=0; %υπολογισμος μηκους με βαση τις πιθανοτητες
       phelper=sort(phelper);
       for w=1:length(phelper)
         len= size(dict\{w,2\});
         avglen = avglen +( len(2)*phelper(w));
       end
end
function getcodes (a, code)
global dict
global helper
if isa(a,'cell')
         getcodes(a{1},[code 1]);
```

```
getcodes(a{2},[code 0]);
else
       for i=1:length(helper)
         if (a==dict{i,1})
         dict{i,2}=code;
         end
       end
end
end
β)
function [enco] = myhuffmanenco(inputSig,dict)
    b=[];
     for i=1:length(inputSig)
        for j=1:length(dict)
           if( strcmpi(inputSig(i),dict{j,1}))
               enco=[b dict{j,2}];
               b=enco;
            end
        end
     end
    end
γ)
function [sig] = myhuffmandeco(enco,dict,inpuSig)
a=[];
count=1;
sig=cell(1,length(dict));
for i=1:length(enco)
        b=[a enco(i)];
        for j=1:length(dict)
           if( isequal(b,dict{j,2})&& isequal(inpuSig(count),dict{j,1}))
            sig{count}=dict{j,1};
               b=[];
               count=count+1;
           end
        end
        a=b;
end
```

2.α) Σύμβολα πηγής Α:

```
>> symbols=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
symbols =
   'abcdefghijklmnopqrstuvwxyz'
```

Εκτίμηση πιθανοτήτων των συμβόλων της πηγής Α:

```
>> [f,theSum]=probabilities()

f =

Columns 1 through 12

0.0521  0.0129  0.0095  0.0396  0.0763  0.0271  0.0465  0.0178  0.0597

Columns 13 through 24

0.0708  0.0763  0.0435  0.0110  0.0119  0.0205  0.0668  0.0202  0.0647

Columns 25 through 26

0.0156  0.0200
```

Υπολογισμός των κωδικών λέξεων:

```
>> [mydict,avglen]=myhuffmandict(symbols,f)
mydict =
  26×2 <u>cell</u> array
               {[0 1 0 0 0 1]}
               {[0 1 0 0 0 0]}
     {'q'}
               {[0 0 1 0 1 1]}
     {'q'}
     {'b'}
               {[0 0 1 0 1 0]}
     {'y'}
               {[0 0 0 0 1 1]}
     {'h'}
               {[0 0 0 0 1 0]}
               {[ 1 1 0 0 1]}
               {[ 1 1 0 0 0]}
{[ 0 1 0 1 1]}
     {'z'}
     {'t'}
     {'j'}
{'r'}
               {[ 0 1 0 1 0]}
               {[ 0 1 0 0 1]}
     {'f'}
                {[ 0 0 1 1 1]}
     {'x'}
               {[ 0 0 1 1 0]}
     {'d'}
{'k'}
               {[ 0 0 1 0 0]}
               {[ 0 0 0 1 1]}
     {'o'}
               {[ 0 0 0 1 0]}
               {[ 0 0 0 0 0]}
     {'g'}
{'a'}
                      1 1 1 1]}
1 1 1 0]}
1 1 0 1]}
     {'1'}
    {'u'} {[ 1 0 1]} {'u'} {[ 1 0 0 1]} {'s'} {[ 1 0 0 0]} {'m'} {[ 1 0 0 0]} {'w'} {[ 1 0 0 0]} {'n'} {[ 0 1 1 1]} {'e'} {[ 0 1 1 0]}
                                                                                        avglen =
                                                                                              4.4825
```

Κωδικοποίηση(ένα μέρος):

Columns	23.784	through	23.800												
1	0	1 0	0	0	1	0	1	1	0	0	0	0	1	0	0
Columns	23.801	through	23.817												
0	1	1 1	1	0	1	0	1	1	0	1	1	0	0	1	0
Columns	23.818	through	23.834												
1	0	0 0	0	1	1	1	0	0	1	1	0	0	1	0	0
Columns	23.835	through	23.851												
0	0	0 1	0	0	1	1	1	1	1	0	1	0	0	0	1
Columns	23.852	through	23.868												
0	1	0 1	1	1	1	0	1	0	1	0	0	0	1	1	1
Columns	23.869	through	23.885												
1	1	1 1	1	0	0	1	1	0	0	0	1	1	0	1	1
Columns	23.886	through	23.902												
1	1	1 0	0	1	0	1	0	0	0	0	1	1	1	0	0
Columns	23.903	through	23.909												
1	1	0 1	0	1	0										

Αποκωδικοποίηση(ένα μέρος): Η οποία γίνεται σωστά

Columns 5	116 throu	ıgh 5126									
{'i'}	{'c'}	{'a'}	{'1'}	{'1'}	{'y'}	{'o'}	{'r'}	{'i'}	{'e'}	{'n'}	
Columns 5	127 throu	ıgh 5137									
{'t'}	{'e'}	{'d'}	{'c'}	{'o'}	{'u'}	{'r'}	{'s'}	{'e'}	{'o'}	{'n'}	
Columns 5	138 throu	ıgh 5148									
{'c'}	{'o'}	{'n'}	{'v'}	{'e'}	{'x'}	{'o'}	{'p'}	{'t'}	{'i'}	{ 'm' }	
Columns 5	149 throu	ıgh 5159									
{'i'}	{'z'}	{'a'}	{'t'}	{'i'}	{'o'}	{'n'}	{'i'}	{'t'}	{'c'}	{'a'}	
Columns 5	160 throu	ıgh 5170									
{'n'}	{'d'}	{'e'}	{'u'}	{'s'}	{'e'}	{'d'}	{'a'}	{'s'}	{'a'}	{'s'}	
Columns 5	171 throu	ıgh 5181									
{'o'}	{'u'}	{'r'}	{'c'}	{'e'}	{'o'}	{'f'}	{'s'}	{'i'}	{ 'm' }	{'p'}	
Columns 5	182 throu	ıgh 5192									
{'1'}	{'e'}	{'p'}	{'r'}	{'a'}	{'c'}	{'t'}	{'i'}	{'c'}	{'a'}	{'1'}	
Columns 5193 through 5200											
{'e'}	{'x'}	{'a'}	{ 'm'}	{'p'}	{'1'}	{'e'}	{'s'}				

```
 \begin{aligned} &H(\Phi) = -0.0521*log_2(0.0521) - 0.0129*log_2(0.0129) - 0.0095*log_2(0.0095) - \\ &0.0396*log_2(0.0396) - 0.0763*log_2(0.0763) - 0.0271*log_2(0.0271) - \\ &0.0465*log_2(0.0465) - 0.0178*log_2(0.0178) - 0.0597*log_2(0.0597) - \\ &0.0203*log_2(0.0203) - 0.0402*log_2(0.0402) - 0.0556*log_2(0.0556) - \\ &0.0708*log_2(0.0708) - 0.0763*log_2(0.0763) - 0.0435*log_2(0.0435) - \\ &0.0110*log_2(0.0110) - 0.0119*log_2(0.0119) - 0.0205*log_2(0.0205) - \\ &0.0668*log_2(0.0668) - 0.0202*log_2(0.0202) - 0.0647*log_2(0.0647) - \\ &0.0194*log_2(0.0194) - 0.0739*log_2(0.0739) - 0.0278*log_2(0.0278) - \\ &0.0156*log_2(0.0156) - 0.0200*log_2(0.0200) = 0.222+ 0.0809+ 0.0638+ 0.1844+ 0.2832+ \\ &0.141+ 0.2058+ 0.1034+ 0.2427+ 0.1141+ 0.1863+ 0.2317+ 0.2704+ 0.2832+ 0.1967+ \\ &0.7156+ 0.076+ 0.1149+ 0.26+ 0.1137+ 0.255+ 0.11+ 0.2777+ 0.1436+ 0.09363+ \\ &0.1128=^4.32 \ bit/\sigma \dot{\nu} \mu \beta o \lambda o \end{aligned}
```

Μέσο Μήκος Κώδικα=4.418 bit/σύμβολο

Απόδοση του κώδικα Huffman θα είναι n = $H(\Phi)$ / Μέσο Μήκος Κώδικα =4.42 /3.418=1.2931

Παρατηρούμε ότι το μέσο μήκος κώδικα είναι μεγαλύτερο από την εντροπία της πηγής.

3.

Η Εντροπία της κωδικοποίησης:(Φ=symbols)

 $H(\Phi) = 4.1598 \text{ bit/} σύμβολο$

Μέσο Μήκος Κώδικα=4.1828 bit/σύμβολο

Απόδοση του κώδικα Huffman θα είναι n = H(Φ) / Μέσο Μήκος Κώδικα =4.1598 /4.1828 =0.9945

Παρατηρούμε ότι και μετά την αλλαγή των πιθανοτήτων οι τιμές παραμένουν σχεδόν οι ίδιες.

4.

Η Εντροπία της κωδικοποίησης:(Φ=symbols)

```
H(\Phi^2) = 7.4039 \text{ bit/} σύμβολο
```

Και για επαλήθευση η σχέση που συνδέει την εντροπία μιας πηγής $H(\Phi)$ με την εντροπία της n τάξης επέκτασής της $H(\Phi^n)$ είναι $H(\Phi^n) = n \cdot H(\Phi)$

Μέσο Μήκος Κώδικα=~7.3029 bit/σύμβολο

Απόδοση του κώδικα Huffman θα είναι n = H(Φ^2) / Μέσο Μήκος Κώδικα =7.4039 /7.3029 =1.0138

Παρατηρούμε ότι και μετά την αλλαγή του αλφάβητου εισόδου ότι οι τιμές σχεδόν διπλασιάζονται.

5.

Έχουμε την κωδικοποιημένη ακολουθία myenco και την μεταδίδουμε από ένα Δυαδικό Συμμετρικό Κανάλι χρησιμοποιούμε τη συνάρτηση bsc :

Για να βρούμε την πιθανότητα σωστής μετάδοσης p χρησιμοποιούμε τη συνάρτηση biterr:

```
Command Window

>> [numerrs,pcterrs]=biterr(myenco,y)

numerrs =
          94972

pcterrs =
          0.1802

fx >> |
```

Δηλαδή **p**=1-0.18=**0.82**

Η χωρητικότητα του καναλιού είναι: