Redes Neuronales y Aprendizaje Profundo para Visión Artificial

Dr. Ariel H. Curiale

Cuatrimestre: 2do de 2019

PRÁCTICA 1: INTRODUCCIÓN A LAS TÉCNICAS DE ML

1. Generar de forma aleatoria un conjunto de datos n-dimensionales ($n \ge 5$) de miles de puntos tales que un ajuste lineal representaría una aproximación razonable, i.e. $y = a_1x_1 + \cdots + a_nx_n + b$. Luego implementar una regresión lineal utilizando mínimos cuadrados para calcular los parámetros b, a_1, \ldots, a_n . En la figura se muestran los datos y el resultado de un ajuste lineal para el caso 1D que siguen un de la forma y = ax + b.

2. Generar un conjunto de datos n-dimensionales $(n \ge 3)$ utilizando p distribuciones normales con $p \ge 4$ (ver figura)). De forma aleatoria fije el centro y la varianza de las distribuciones, elija un rango razonable de los mismos. A partir de estos datos implementar el algoritmo de k-means $(k \ge 4)$.

- 3. Implementar el método de clasificación lineal k-nearest neighbors para clasificar las imágenes de la base de datos MNIST y CIFAR-10.
- 4. Generar un conjunto de datos bidimensionales formado por 5 o más clases. Luego, utilizar el método k-nearest neighbors para clasificar los datos tomando 1, 3 y 7 vecinos. Por último, graficar las fronteras de decisión.
- Implementar el método de clasificación lineal SVM utilizando el paradigma de objetos y graficar los pesos aprendidos. Evaluar la implementación con la base de datos MNIST y CIFAR-10.

Nota: Implementar el clasificador SVM heredando las funcionalidades de la clase LinearClassifier: fit, predict y loss_gradient. Implementar también la métrica accuracy para ir viendo la precisión durante el entrenamiento.

6. Idem al punto anterior pero para el método de clasificación lineal Softmax.