

Global United Technology Services Co., Ltd.

Report No: GTSE11120102201

FCC REPORT (WiFi)

Applicant: Corporativo Lanix S.A. de C.V.

Address of Applicant: Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo,

Sonora, Mexico

Equipment Under Test (EUT)

Product Name: GSM Dual Band GPRS Digital Mobile Phone

Model No.: LX12

Trade mark: LANIX

FCC ID: ZC4LX12

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Dec. 22, 2011

Date of Test: Dec. 23-27, 2011

Date of report issued: Dec. 28, 2011

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Stephen Guo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Version

Version No.	Date	Description
00	Dec. 28, 2011	Original

Prepared By:	collin. He	Date:	Dec. 28, 2011	
	Project Engineer			
Check By:	Homs. Hu	Date:	Dec. 28, 2011	
	Reviewer			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1 5.2	CLIENT INFORMATION	-
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4 5.5	TEST FACILITY TEST LOCATION	7
	5.6 5.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1 6.2	ANTENNA REQUIREMENT: CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	13
	6.4 6.5	6DB OCCUPY BANDWIDTH POWER SPECTRAL DENSITY	
	6.6 6.7	BAND EDGES	
	6.7. 6.7.2	1 Conducted Emission Method	24
7	0	T SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	38

Page 3 of 50

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 4 of 50

5 General Information

5.1 Client Information

Applicant:	Corporativo Lanix S.A. de C.V.
Address of Applicant:	Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo,
	Sonora, Mexico
Manufacturer:	ShenZhen Konka Telecommunication Technology Co., Ltd
Address of Manufacturer:	No.9008 Shennan Road, Overseas Chinese Town, ShenZhen, Guangdong, China
Factory:	SHENZHEN KONKA TELECOMMUNICATION TECHNOLOGY CO., LTD
Address of Factory:	No.9008 Shennan Road, Overseas Chinese Town, ShenZhen, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	GSM Dual Band GPRS Digital Mobile Phone
Model No.:	LX12
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g)
Channel numbers:	11 for 802.11b/802.11g
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	сск
Modulation technology: (IEEE 802.11g)	OFDM
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Antenna Type:	PIFA
Antenna gain:	0.47 dBi
AC adapter:	Model: LX12-C
	Input: AC 100-240V 50/60Hz
	Output: DC 5V 500mA
Power supply:	Model: LX12-BAT
	Type: lithium-ion 3.7V 900mAh
	Voltage: DC 3.7V

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 6 of 50

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
WIFI mode	Keep the EUT in transmitting with modulation			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 50

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2012	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 26 2011	Feb. 25 2012	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2012	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	Apr. 01 2011	Mar. 31 2012	
9	Coaxial Cable	GTS	N/A	GTS211	Apr. 01 2011	Mar. 31 2012	
10	Coaxial cable	GTS	N/A	GTS210	Apr. 01 2011	Mar. 31 2012	
11	Coaxial Cable	GTS	N/A	GTS212	Apr. 01 2011	Mar. 31 2012	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012	
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012	
14	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 30 2011	June 29 2012	
15	Band filter	Amindeon	82346	GTS219	June 30 2011	June 29 2012	

Cond	Conducted Emission/ Disturbance voltages:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS252	Jul. 04 2011	Jul. 03 2012		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012		
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012		
5	Coaxial Cable	GTS	N/A	GTS227	Apr. 01 2011	Mar. 31 2012		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is a PIFA antenna which fixed on the main board, the best case gain of the antenna is 0.47 dBi

WiFi Antenna

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 9 of 50

6.2 Conducted Emissions

FCC Part15 C Section 15.207		
ANSI C63.4:2003		
150KHz to 30MHz		
Class B		
RBW=9KHz, VBW=30KHz		
(A411.)	Limit (d	lBuV)
Frequency range (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
		46
		50
 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograph 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar 	s are connected to the ation network(L.I.S.N.). pedance for the measure also connected to the des a 50ohm/50uH con (Please refer to the blombs). The checked for maximum at the maximum emissed all of the interface care.	The provide a uring equipment. e main power upling impedance ck diagram of the m conducted sion, the relative ables must be
AUX Equipment E.U Test table/Insulation pla	J.T EMI Receiver	er — AC power
Refer to section 5.7 for details	;	
Refer to section 5.3 for details	·	
Pass		
	ANSI C63.4:2003 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm 1. The E.U.T and simulators a line impedance stabilized 500hm/50uH coupling im 2. The peripheral devices at through a LISN that proving with 500hm termination. (test setup and photograph) 3. Both sides of A.C. line are interference. In order to fing positions of equipment are changed according to AN measurement. Reference LISN LISN LISN LISN Reference LISN Refer to section 5.7 for details Refer to section 5.3 for details Refer to section 5.3 for details	Class B RBW=9KHz, VBW=30KHz Frequency range (MHz) Ouasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the a line impedance stabilization network(L.I.S.N.). 500hm/50uH coupling impedance for the measu. 2. The peripheral devices are also connected to the through a LISN that provides a 500hm/50uH coupling impedance for the measu. 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emis positions of equipment and all of the interface on the changed according to ANSI C63.4: 2009 on commeasurement. Reference Plane Reference Plane

Measurement Data

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 50

Line:

Condition : FCC PART15 CLASSB QP LISN(2011) LINE

Job No. : 1022RF Test Mode : WiFi mode Test Engineer: Gavin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	-dB	dB	dBu₹	-dBuV	dB	-
1	0.159	47.98	0.68	0.10	48.76		-16.76	
2	0.159	34.73	0.68	0.10	35.51	55.52	-20.01	Average
3	0.212	41.52	0.65	0.10	42.27	63.14	-20.87	QP
4	0.212	27.14	0.65	0.10	27.89	53.14	-25.25	Average
5	0.516	38.69	0.55	0.10	39.34	56.00	-16.66	QP
23456789	0.516	21.63	0.55	0.10	22.28	46.00	-23.72	Average
7	1.289	40.13	0.45	0.10	40.68		-15.32	
8	1.289	23.94	0.45	0.10	24.49			Average
9	2.066	37.39	0.40	0.10	37.89		-18.11	
10	2.066	18.62	0.40	0.10	19.12			Average
11	2.721	35.91	0.37	0.10	36.38		-19.62	
12	2.721	17.71	0.37	0.10	18.18			Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 1022RF Test Mode : WiFi mode Test Engineer: Gavin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.160	49.67	0.68	0.10	50.45	65.47	-15.02	QP
2	0.160	36.28	0.68	0.10	37.06	55.47	-18.41	Average
3	0.325	36.90	0.60	0.10	37.60	59.57	-21.97	QP
23456789	0.325	22.62	0.60	0.10	23.32	49.57	-26.25	Average
5	0.491	39.06	0.56	0.10	39.72	56.14	-16.42	QP
6	0.491	22.43	0.56	0.10	23.09	46.14	-23.05	Average
7	0.654	38.77	0.52	0.10	39.39	56.00	-16.61	QP
8	0.654	20.28	0.52	0.10	20.90	46.00	-25.10	Average
9	1.262	40.34	0.45	0.10	40.89	56.00	-15.11	QP
10	1.262	21.73	0.45	0.10	22.28	46.00	-23.72	Average
11	2.678	36.05	0.37	0.10	36.52	56.00	-19.48	QP
12	2.678	17.90	0.37	0.10	18.37	46.00	-27.63	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 12 of 50

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

T1 OII	Average Outpu	ıt Power (dBm)	Peak Output	Power (dBm)		D It
Test CH	802.11b	802.11g	802.11b	802.11g	Limit(dBm)	Result
Lowest	10.52	8.43	15.08	12.47		
Middle	10.86	8.68	15.32	13.08	30.00	Pass
Highest	11.38	9.06	15.69	13.40		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 13 of 50

Page 14 of 50

Page 15 of 50

Project No.: GTSE111201022RF

6.4 6dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

T 011	6dB Occupy Bandwidth (MHz)			
Test CH	802.11b	802.11g	Limit(kHz)	Result
Lowest	10.20	16.60		
Middle	10.60	16.50	>500	Pass
Highest	10.40	16.60		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 50

Test mode: 802.11b

Date: 23.DEC.2011 03:18:07

Date: 23.DEC.2011 03:24:15

Date: 23.DEC.2011 03:32:01

Highest channel

Test mode: 802.11g

Date: 23.DEC.2011 03:37:26

Date: 23.DEC.2011 03:42:48

Date: 23.DEC.2011 03:47:57

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Tast OU	Power Spectral Density (dBm)		Limit/dDm) Docult	
Test CH	802.11b	802.11g	Limit(dBm)	Result
Lowest	-14.78	-20.37		
Middle	-14.18	-20.07	8.00	Pass
Highest	-13.90	-18.99		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 19 of 50

Test mode: 802.11b

Date: 23.DEC.2011 03:20:07

Date: 23.DEC.2011 03:26:45

Date: 23.DEC.2011 03:33:32

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 802.11g

Date: 23.DEC.2011 03:38:48

Date: 23.DEC.2011 03:44:49

Highest channel

Date: 23.DEC.2011 03:49:22

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 21 of 50

6.6 Band edges

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 22 of 50

Test mode: 802.11b

Highest channel

Date: 23.DEC.2011 03:34:48

Date: 23.DEC.2011 03:50:14

Test mode: 802.11g

Lowest channel

Lowest channel

Highest channel

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 23 of 50

Project No.: GTSE111201022RF

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 24 of 50

Test mode: 802.11b

%

Lowest channel

Date: 23.DEC.2011 03:22:21

Date: 23.DEC.2011 03:28:27

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 25 of 50

Highest channel

30MHz~10GHz

10GHz~25GHz

Test mode:	802.11g
------------	---------

Lowest channel

Date: 23.DEC.2011 03:40:49

30MHz~10GHz

10GHz~25GHz

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 26 of 50

Middle channel

30MHz~10GHz

Highest channel

Date: 23.DEC.2011 03:50:53

30MHz~10GHz

Date: 23.DEC.2011 03:46:12

10GHz~25GHz

Date: 23.DEC.2011 03:51:08

10GHz~25GHz

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 27 of 50

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.4:2003										
Test Frequency Range:	30MHz to 25GHz										
Test site:	Measurement D	Measurement Distance: 3m									
Receiver setup:											
receiver cotap.	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value										
	30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value										
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGHZ	Average	1MHz	10Hz	Average Value						
Limit:	Thorage Table Transage Table										
The second secon	Freque		Limit (dBuV/	m @3m)	Remark						
	30MHz-8	8MHz	40.0)	Quasi-peak Value						
	88MHz-21		43.5		Quasi-peak Value						
	216MHz-9		46.0		Quasi-peak Value						
	960MHz-1GHz 54.0 Quasi-peak Value										
	Above 1	GHz	54.0		Average Value						
			74.0		Peak Value e 0.8 meters above						
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna the ground Both horizon make the make the maters and to find the rospecified B 6. If the emission the limit spevalues of the did not have	at a 3 meter can be the position of the position of the position of the position of the position at a height is variated and vertical and the position of the posit	amber. The soft the highests away from ted on the total end from one maximum all polarizations turned so was turned from the EUT in peasiting could be reported.	table was rest radiation. the interfer op of a variate meter to for a value of the ons of the and a value of the ons of the and to heights from 0 degreeak Detect old Mode. It was arranded to heights of the one of the old Mode. It was arranded to heights of the old Mode.	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
30.11	53.31	12.35	0.20	32.27	33.59	40.00	-6.41	Vertical
38.62	49.71	15.24	0.26	32.16	33.05	40.00	-6.95	Vertical
41.57	48.08	15.57	0.27	32.12	31.80	40.00	-8.20	Vertical
46.83	44.03	16.11	0.30	32.05	28.39	40.00	-11.61	Vertical
51.66	40.33	16.18	0.32	32.01	24.82	40.00	-15.18	Vertical
69.60	41.53	11.94	0.39	31.89	21.97	40.00	-18.03	Vertical
30.00	39.96	12.36	0.20	32.27	20.25	40.00	-19.75	Horizontal
38.75	36.73	15.24	0.26	32.16	20.07	40.00	-19.93	Horizontal
47.33	38.88	16.19	0.30	32.05	23.32	40.00	-16.68	Horizontal
59.86	36.04	15.61	0.36	31.95	20.06	40.00	-19.94	Horizontal
92.14	35.04	13.90	0.46	31.73	17.67	43.50	-25.83	Horizontal
113.32	34.01	11.63	0.52	31.78	14.38	43.50	-29.12	Horizontal

Shenzhen, China 518102

Above 1GHz

Test mode:	802.1	1b	Test chann	el:	Lowes	t	Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		eamp or (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	44.24	31.55	5.89	35	5.47	46.21	74.00	-27.79	Vertical
7236.00	44.52	36.50	7.10	35	5.30	52.82	74.00	-21.18	Vertical
9648.00	42.92	38.14	9.01	35	5.73	54.34	74.00	-19.66	Vertical
12060.00	*						74.00		Vertical
14472.00	*						74.00		Vertical
16884.00	*						74.00		Vertical
4824.00	43.98	31.55	5.89	35	5.47	45.95	74.00	-28.05	Horizontal
7236.00	44.26	36.50	7.10	35	5.30	52.56	74.00	-21.44	Horizontal
9648.00	42.66	38.14	9.01	35	5.73	54.08	74.00	-19.92	Horizontal
12060.00	*						74.00		Horizontal
14472.00	*						74.00		Horizontal
16884.00	*						74.00		Horizontal

Test mode:	802.1	1b	Test chann	el:	Lowes	t	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		eamp tor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	34.19	31.55	5.89	3	5.47	36.16	54.00	-17.84	Vertical
7236.00	35.16	36.50	7.10	3	5.30	43.46	54.00	-10.54	Vertical
9648.00	33.38	38.14	9.01	3	5.73	44.80	54.00	-9.20	Vertical
12060.00	*						54.00		Vertical
14472.00	*						54.00		Vertical
16884.00	*						54.00		Vertical
4824.00	33.93	31.55	5.89	3	5.47	35.90	54.00	-18.10	Horizontal
7236.00	34.90	36.50	7.10	3	5.30	43.20	54.00	-10.80	Horizontal
9648.00	33.12	38.14	9.01	3	5.73	44.54	54.00	-9.46	Horizontal
12060.00	*						54.00		Horizontal
14472.00	*						54.00		Horizontal
16884.00	*						54.00		Horizontal

Test mode:	802.1	1b	Test chann	el: Middle	.	Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	46.54	31.57	5.91	35.48	48.54	74.00	-25.46	Vertical
7311.00	46.82	36.48	7.14	35.28	55.16	74.00	-18.84	Vertical
9748.00	45.22	38.45	9.06	35.75	56.98	74.00	-17.02	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	45.32	31.57	5.91	35.48	47.32	74.00	-26.68	Horizontal
7311.00	45.60	36.48	7.14	35.28	53.94	74.00	-20.06	Horizontal
9748.00	44.00	38.45	9.06	35.75	55.76	74.00	-18.24	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.1	1b	Test chann	el: Middle)	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	36.49	31.57	5.91	35.48	38.49	54.00	-15.51	Vertical
7311.00	37.46	36.48	7.14	35.28	45.80	54.00	-8.20	Vertical
9748.00	35.68	38.45	9.06	35.75	47.44	54.00	-6.56	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	35.27	31.57	5.91	35.48	37.27	54.00	-16.73	Horizontal
7311.00	36.24	36.48	7.14	35.28	44.58	54.00	-9.42	Horizontal
9748.00	34.46	38.45	9.06	35.75	46.22	54.00	-7.78	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Test mode:	802.1	1b	Test chann	el:	Highes	st	Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		reamp tor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	46.09	31.61	5.93	3	5.49	48.14	74.00	-25.86	Vertical
7386.00	46.37	36.52	7.16	3	5.24	54.81	74.00	-19.19	Vertical
9848.00	44.77	38.70	9.08	3	5.77	56.78	74.00	-17.22	Vertical
12310.00	*						74.00		Vertical
14772.00	*						74.00		Vertical
17234.00	*						74.00		Vertical
4924.00	45.41	31.61	5.93	3	5.49	47.46	74.00	-26.54	Horizontal
7386.00	45.69	36.52	7.16	3	5.24	54.13	74.00	-19.87	Horizontal
9848.00	44.09	38.70	9.08	3	5.77	56.10	74.00	-17.90	Horizontal
12310.00	*						74.00		Horizontal
14772.00	*						74.00		Horizontal
17234.00	*						74.00		Horizontal

Test mode:	802.1	1b	Test chann	el: Highes	st	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.04	31.61	5.93	35.49	38.09	54.00	-15.91	Vertical
7386.00	37.01	36.52	7.16	35.24	45.45	54.00	-8.55	Vertical
9848.00	35.23	38.70	9.08	35.77	47.24	54.00	-6.76	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	35.36	31.61	5.93	35.49	37.41	54.00	-16.59	Horizontal
7386.00	36.33	36.52	7.16	35.24	44.77	54.00	-9.23	Horizontal
9848.00	34.55	38.70	9.08	35.77	46.56	54.00	-7.44	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.1	1g	Test chann	el: Lowes	st	Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	43.88	31.55	5.89	35.47	45.85	74.00	-28.15	Vertical
7236.00	44.16	36.50	7.10	35.30	52.46	74.00	-21.54	Vertical
9648.00	42.56	38.14	9.01	35.73	53.98	74.00	-20.02	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	43.64	31.55	5.89	35.47	45.61	74.00	-28.39	Horizontal
7236.00	43.92	36.50	7.10	35.30	52.22	74.00	-21.78	Horizontal
9648.00	42.32	38.14	9.01	35.73	53.74	74.00	-20.26	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.1	1g	Test chann	el: Lowes	t	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	33.83	31.55	5.89	35.47	35.80	54.00	-18.20	Vertical
7236.00	34.80	36.50	7.10	35.30	43.10	54.00	-10.90	Vertical
9648.00	33.02	38.14	9.01	35.73	44.44	54.00	-9.56	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	33.59	31.55	5.89	35.47	35.56	54.00	-18.44	Horizontal
7236.00	34.56	36.50	7.10	35.30	42.86	54.00	-11.14	Horizontal
9648.00	32.78	38.14	9.01	35.73	44.20	54.00	-9.80	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Test mode:	802.1	1g	Test chann	el: Middle)	Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	42.56	31.57	5.91	35.48	44.56	74.00	-29.44	Vertical
7311.00	42.84	36.48	7.14	35.28	51.18	74.00	-22.82	Vertical
9748.00	41.24	38.45	9.06	35.75	53.00	74.00	-21.00	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	42.32	31.57	5.91	35.48	44.32	74.00	-29.68	Horizontal
7311.00	42.60	36.48	7.14	35.28	50.94	74.00	-23.06	Horizontal
9748.00	41.00	38.45	9.06	35.75	52.76	74.00	-21.24	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.1	1g	Test channe	el: Middle	1	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	32.51	31.57	5.91	35.48	34.51	54.00	-19.49	Vertical
7311.00	33.48	36.48	7.14	35.28	41.82	54.00	-12.18	Vertical
9748.00	31.70	38.45	9.06	35.75	43.46	54.00	-10.54	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	32.27	31.57	5.91	35.48	34.27	54.00	-19.73	Horizontal
7311.00	33.24	36.48	7.14	35.28	41.58	54.00	-12.42	Horizontal
9748.00	31.46	38.45	9.06	35.75	43.22	54.00	-10.78	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Test mode:	802.1	1g	Test chann	est channel: Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	42.86	31.61	5.93	35.49	44.91	74.00	-29.09	Vertical
7386.00	43.14	36.52	7.16	35.24	51.58	74.00	-22.42	Vertical
9848.00	41.54	38.70	9.08	35.77	53.55	74.00	-20.45	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	42.38	31.61	5.93	35.49	44.43	74.00	-29.57	Horizontal
7386.00	42.66	36.52	7.16	35.24	51.10	74.00	-22.90	Horizontal
9848.00	41.06	38.70	9.08	35.77	53.07	74.00	-20.93	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.1	1g	Test chann	el: Highest		st	Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		amp or (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	32.81	31.61	5.93	35	5.49	34.86	54.00	-19.14	Vertical
7386.00	33.78	36.52	7.16	35	5.24	42.22	54.00	-11.78	Vertical
9848.00	32.00	38.70	9.08	35	5.77	44.01	54.00	-9.99	Vertical
12310.00	*						54.00		Vertical
14772.00	*						54.00		Vertical
17234.00	*						54.00		Vertical
4924.00	32.33	31.61	5.93	35	5.49	34.38	54.00	-19.62	Horizontal
7386.00	33.30	36.52	7.16	35	5.24	41.74	54.00	-12.26	Horizontal
9848.00	31.52	38.70	9.08	35	5.77	43.53	54.00	-10.47	Horizontal
12310.00	*						54.00		Horizontal
14772.00	*						54.00		Horizontal
17234.00	*						54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Restrict band emissions

802.11b

Te	st channel:		Lowest			Level:		Pe	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or	Level (dBuV/m)	Limit Line	I I imit	Polarization	
2310.00	41.88	27.58	3.81	34.83		38.44	74.00	-35.56	Horizontal	
2390.00	42.29	27.58	3.83	34.83	3	38.87	74.00	-35.13	Horizontal	
2310.00	44.21	27.58	3.81	34.83	3	40.77	74.00	-33.23	Vertical	
2390.00	44.62	27.58	3.83	34.83	3	41.20	74.00	-32.80	Vertical	

Te	st channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Pream Loss Facto (dB) (dB)		or Or	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2310.00	32.50	27.58	3.81	34.8	3	29.06	54.00	-24.94	Horizontal	
2390.00	32.72	27.58	3.83	34.8	3	29.30	54.00	-24.70	Horizontal	
2310.00	34.83	27.58	3.81	34.8	3	31.39	54.00	-22.61	Vertical	
2390.00	35.05	27.58	3.83	34.8	3	31.63	54.00	-22.37	Vertical	

Te	st channel:		Highest	t		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line	I I Imit	Polarization	
2483.50	42.75	27.52	3.89	34.8	6	39.30	74.00	-34.70	Horizontal	
2500.00	42.01	27.55	3.90	34.8	7	38.59	74.00	-35.41	Horizontal	
2483.50	45.08	27.52	3.89	34.8	6	41.63	74.00	-32.37	Vertical	
2500.00	44.34	27.55	3.90	34.8	7	40.92	74.00	-33.08	Vertical	

Te	st channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	33.68	27.52	3.89	34.86		30.23	54.00	-23.77	Horizontal	
2500.00	32.96	27.55	3.90	34.8	7	29.54	54.00	-24.46	Horizontal	
2483.50	36.01	27.52	3.89	34.8	6	32.56	54.00	-21.44	Vertical	
2500.00	35.29	27.55	3.90	34.8	7	31.87	54.00	-22.13	Vertical	

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11g

Te	Test channel:					Level: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line	I I imit	Polarization	
2310.00	43.93	27.58	3.81	34.83		40.49	74.00	-33.51	Horizontal	
2390.00	44.34	27.58	3.83	34.8	3	40.92	74.00	-33.08	Horizontal	
2310.00	43.88	27.58	3.81	34.8	3	40.44	74.00	-33.56	Vertical	
2390.00	44.29	27.58	3.83	34.8	3	40.87	74.00	-33.13	Vertical	

Te	st channel:		Lowest			Level:		Av	erage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line	I I imit	Polarization
2310.00	34.55	27.58	3.81	34.83	3	31.11	54.00	-22.89	Horizontal
2390.00	34.77	27.58	3.83	34.83	3	31.35	54.00	-22.65	Horizontal
2310.00	34.50	27.58	3.81	34.83	3	31.06	54.00	-22.94	Vertical
2390.00	34.72	27.58	3.83	34.8	3	31.30	54.00	-22.70	Vertical

Te	st channel:		Highest			Level:		Pe	ak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	I I imit	Polarization
2483.50	44.80	27.52	3.89	34.8	6	41.35	74.00	-32.65	Horizontal
2500.00	44.06	27.55	3.90	34.8	7	40.64	74.00	-33.36	Horizontal
2483.50	44.75	27.52	3.89	34.8	6	41.30	74.00	-32.70	Vertical
2500.00	44.01	27.55	3.90	34.87		40.59	74.00	-33.41	Vertical

Te	st channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line	i imit	Polarization	
2483.50	35.73	27.52	3.89	34.86		32.28	54.00	-21.72	Horizontal	
2500.00	35.01	27.55	3.90	34.8	7	31.59	54.00	-22.41	Horizontal	
2483.50	35.68	27.52	3.89	34.8	6	32.23	54.00	-21.77	Vertical	
2500.00	34.96	27.55	3.90	34.8	7	31.54	54.00	-22.46	Vertical	

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor