IEOR E4601: Dynamic Pricing and Revenue Management Assignment 2

Notes

- All questions in this homework must be individual work. You are allowed to discuss the
 assignment with others but please mention in your write-up if you have discussed the solution
 with someone.
- For the questions involving data, you should also submit your programming code (Python, R, MATLAB or Excel) along with the answers.

Homework Exercises

1. (Single Fare Class Overbooking) In class, we have seen a problem of finding optimal overbooking amount for single fare class. Suppose the capacity is C seats, the price per seat is fixed at p, the number of no-show customers is a random variable $Y \sim \operatorname{cdf} F(\cdot)$ and the number of overbooked tickets is q. Assume we are able to sell all (C+q) seats for any q. The profit or the revenue function is as follows.

$$\Pi(q) = p * q - \gamma * E_Y[(q - Y)_+],$$

where $\gamma > p$, is the penalty per customer who can't get a seat. Suppose Y is a Poisson random variable with mean 5, $p = 100, \gamma = 300, C = 100$.

- (a) Compute the optimal overbooking limit, q^* that maximizes the expected profit.
- (b) For q^* computed in part a), find the expected penalty paid due to overbooking.
- 2. (Callable Tickets). US Tennis Association (USTA) is trying to devise a strategy to sell tickets for the Men's Quarterfinals for US Open 2017 in New York. The stadium has a seating capacity of 20000. Since the quarterfinals are held on a weekday, the demand is quite uncertain (assume all quarter finals are held on a single day and there is a single ticket that grants admission for all four quarter finals). USTA plans to offer a low-price ticket of \$50 with a restriction that USTA can buy it back from the customer anytime at the price of \$75. USTA estimates that there is enough demand for the low-price tickets and any number will be sold. USTA also plans to offer a high-price ticket of \$100 that does not have any restrictions. However, demand for the high-price tickets is uncertain and USTA estimates that is uniformly distributed between 8000 and 17000. Assume that all the low-price demand arrives before the first high-price demand arrives and there is enough demand for low price tickets in the initial period that any number of low-price tickets can be sold. However, no low-price tickets can be sold after high price demand arrives.
 - (a) What is the optimal number of tickets that USTA should offer at high-price initially to maximize the expected revenue from sales?
 - (b) What is the expected revenue if USTA offers the high-price tickets as computed in part a)?

3. (Multiple Fare Class Protection Levels). Suppose there are 3 fare classes on a particular airline route. Let the random demand for the three fare classes be given by D_1 , D_2 and D_3 , where D_3 is the lowest fare class demand that arrives first, then D_2 , and D_1 , the highest fare class demand arrives last. The fares for the three classes are $p_3 = 100$, $p_2 = 200$, $p_1 = 300$. Suppose we have C = 10 seats in total and the demand distributions are given as follows.

$$D_3 = \begin{cases} 9 & \text{with prob.} \quad \frac{1}{2} \\ 6 & \text{with prob.} \quad \frac{1}{2} \end{cases}$$

$$D_2 = \begin{cases} 9 & \text{with prob.} \quad \frac{1}{4} \\ 6 & \text{with prob.} \quad \frac{1}{2} \\ 2 & \text{with prob.} \quad \frac{1}{4} \end{cases}$$

$$D_1 = \begin{cases} 9 & \text{with prob.} \quad \frac{1}{4} \\ 2 & \text{with prob.} \quad \frac{1}{4} \end{cases}$$

Find the optimal protection levels y_1^* and y_2^* for D_1 and $D_1 + D_2$ to maximize the expected revenue.

4. (Multinomial Logit Model) Consider the multinomial logit (MNL) model we have discussed in class. Suppose the utility of product j is a linear function of the price p_j of item j. Then, the MNL model is given as follows. For any product j = 1, ..., n,

$$u_j = \beta_0 - \beta_1 p_j$$

$$v_j = e^{u_j}$$

$$P(j \mid S) = \frac{v_j}{1 + \sum_{i \in S} v_i}$$

Suppose there are N=10 different substitutable products with prices $p_1=1, p_2=2, p_3=3, p_4=4, p_5=5, p_6=6, p_7=7, p_8=8, p_9=9, p_{10}=10$. Suppose we are given historical data in a separate file AssortmentSample.xlsx about what set was offered and what product was selected (possibly no-purchase, i.e., product 0). Each row denotes the assortment offered and the corresponding choice of the customer. The following table shows a sample line of the dataset.

No-purchase0	item1	item 2	item3	item 4	item 5	item 6	item7	item8	item9	item10	Choice
1	0	1	1	0	0	0	0	0	1	1	0

Here a 1 in a column corresponding to a particular item denotes that the item is in the assortment and 0 denotes that the item is not in the assortment. The last column denotes the item chosen by the customer. In the instance we gave, the offer set is $\{2, 3, 9, 10\}$ and the customer chooses to not purchase.

- (a) Give the first order optimality condition for MLE for β_0, β_1 .
- (b) Use the numbers for β_1 and β_0 you get above to find the optimal assortment we should offer to customers.
- (c) Now, we consider to reset the prices for all products. Use the numbers for β_1 and β_0 you get above and suppose all the products will be offered to the customers, find the optimal prices for these N products.