

DS Bootcamp

Hyperiondev

Exploring Neural Networks

Welcome

Your Lecturer for this session

Sanana Mwanawina

Lecture - Housekeeping

- ☐ The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all please engage accordingly.
- No question is daft or silly ask them!
- ☐ There are Q/A sessions midway and at the end of the session, should you wish to ask any follow-up questions.
- You can also submit questions here:
 <u>hyperiondev.com/sbc4-ds-questions</u>
- □ For all non-academic questions, please submit a query: <u>hyperiondev.com/support</u>
- Report a safeguarding incident:
 <u>hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: https://hyperionde.wufoo.com/forms/zsqv4m40ui4i0q/

Lecture - Code Repo

Go to: github.com/HyperionDevBootcamps

Then click on the "C4_DS_lecture_examples" repository, do view or download the code.

Objectives

- I. Understand what Neural Networks are
- Get a good sense of how Neural Networks work

- We want to build a program that can identify hand-drawn digits
- A 28x28 grid of pixels showing the number 9:

 This is not difficult for you to do. For example, you can easily identify that all three of these images show the number 3:

- If we were to program this the traditional way, we would need to create a program that takes in a grid of 28x28 pixels, incorporate if statements, for loops, objects, functions etc.
- What started as a "simple" task (digit recognition) becomes much more complex. It seems like the way our brains go about processing this is easier.
- That is the basis of Neural Networking

 Neural Networks are a subset of machine learning that mimic the way biological neurons signal one another

Structure of Neural Networks

General structure of a neural network

Structure of Neural Networks

 On the left, we have a normal linear model and on the right we have a standard neural network

How do they work?

Neurons

- Neurons contain numbers inside them called activations
- When the activation number is high, the neuron "lights up"

Neurons

Neural Network step-by-step

Step 1: Input layer

Receives input features such as pixel values in an image

Step 2 : Hidden layers

Processes the input data from the neurons of the previous layer and produces an output based on weights and biases

Neural Network step-by-step

Step 3: Activation function

Applied to the output of each neuron in the hidden layers. It determines whether a nearon should be activated or not

Neural Network step-by-step

Step 4: Output layer

Final predictions or outputs of the neural network. In classification problems, the number of neurons in the output layer will be the number of classes

Applications of Neural Networks

Automatic Speech Recognition:

Parsing raw audio into distinct sounds, which combine to form syllables, which combine to form words

Raw audio

Applications of Neural Networks

Recommendation Systems:

Analyse user behaviour, preferences, and historical data to provide personalized recommendations. Relevant fields: e-commerce, entertainment, and content streaming platforms

Healthcare:

Medical image classification, drug response modeling, drug discovery etc.

This is far from an exhaustive list.

Hyperiondev

Q & A Section

Please use this time to ask any questions relating to the topic explained, should you have any

Hyperiondev

Thank you for joining us