Subfile Example

Team Learn ShareLaTeX

1 Вопросы на 9

1.1 Эквивалентность определений нормального сепарабельного расширения (расширения Галуа)

Пусть $K\supset F$ — конечное сепарабельное расширение. Тогда следуещие условия эквивалентны:

- 1. Для любого элемента $\alpha \in K$, любой сопряженный к α над F тоже лежит в K
- $2.\ K$ является полем разложения какого-либо многолена над F
- 3. $|Aut_F K| = [K:F]$
- 4. $K^{Aut_FK} = F$

Такое расширение называется *нормальным* или *расширением* Γ *алуа*. 1 \rightarrow 2

Так как расширение конечное, $K = F(\alpha_1, \ldots, \alpha_n)$.

Положим $f:=m_{\alpha_1,F}\cdot\ldots\cdot m_{\alpha_n,F}$. Тогда, поскольку все сопряженные к α_1,\ldots,α_n лежат в $K,\,K$ содержит все корни f. С другой стороны, если $K\supset L$ содержит все корни F, то $\alpha_1,\ldots,\alpha_n\in L\Rightarrow F(\alpha_1,\ldots,\alpha_n)\subset L\Rightarrow K\subset L\subset K\Rightarrow L=K$, то есть K— поле разложения f над F.

Утверждение 1. Любой гомоморфизм $\varphi K \to \overline{F}$, сохраняющий F переводит элементы K в сопряженные к ним над F.

Доказательство утверждения 1:

Пусть
$$\alpha \in K$$
, $m_{\alpha,F} = \sum_{k=0}^{n} a_k x^k . m_{\alpha,F}(\alpha) = 0 \Rightarrow \varphi(m_{\alpha,F}(\alpha)) = \varphi(0) = 0.$

С другой стороны $0=\varphi(m_{\alpha,F}(\alpha))=\varphi(\sum\limits_{k=0}^n a_k\alpha^k)=\sum\limits_{k=0}^n a_k\varphi(\alpha)^k=m_{\alpha,F}(\varphi(\alpha)),$ что и означает, что $\varphi(\alpha)$ сопряжен к α над F.

Утверждение 2. Пусть $\varphi:K\to \overline{F}$ — гомоморфизм, сохраняющий F. Тогда φ является автоморфизмом K.

Действительно, пусть K — поле разложения f над F, и α_1,\dots,α_n — корни f.

Тогда $K = F(\alpha_1, \ldots, \alpha_n)$.

Поскольку для любого $i:m_{\alpha_i,F}|f\Rightarrow$ то все сопряженные к α_i над Fнаходятся среди корней f.

По утверждению 1 множество $\{\alpha_1, \ldots, \alpha_n\}$ переходит в свое подмножество, а учитывая, что любой нетривиальный гомоморфизм полей инъективен, то на самом деле оно переходит само в себя (в силу конечности). Тогда φ задает на множестве индексов корней f некую перестановку $\sigma.$

Пусть
$$\beta \in K, \beta = \sum_{k=0}^n a_k \alpha_k, a_k \in F$$
. Тогда $\varphi(\beta) = \varphi(\sum_{k=0}^n a_k \alpha_k) ==$

$$\sum_{k=0}^n a_k \alpha_{\sigma(k)} \in K.$$

 То есть $\varphi(K) \subset K.$

С другой стороны
$$\varphi(\sum_{k=0}^n a_k \alpha_{\sigma^{-1}(k)}) = \sum_{k=0}^n a_k \alpha_k = \beta$$
. То есть $\varphi(K) = K$. Итого, $\varphi: K \to K$ — сюръективный гомоморфизм полей, а значит —

автоморфизм K.

Поскольку $K \supset F$ — конечное сепарабельное, то по теореме о примитивном элементе найдется такое γ , что $K = F(\gamma)$.

Пусть $\gamma=\gamma_1,\gamma_2,\dots,\gamma_m$ — корни $m_{\gamma,F}.$ Вспомним утверждение 6.13 (точнее, его доказательство).

$$K=F(\gamma_1)\stackrel{\varphi}{\cong} F(\gamma_i)$$
, причем φ сохраняет F и $\varphi(\gamma_1)=\gamma_2$.

 $\varphi:K o \overline{F}$ — гомоморфизм, сохраняющий F, следовательно, по утверждению 2 он является автоморфизмом K, сохраняющем F. То есть для любого i существует $\varphi \in Aut_F K : \varphi(\gamma_1) = \gamma_i \Rightarrow |Aut_F K| \geqslant m$.

С другой стороны, тем, куда переходит $\gamma = \gamma_1$ автоморфизм, сохраняющий F полностью определяется (поскольку любой элемент K разлагается по степеням γ с коэффициентами из F). Значит, $Aut_FK \leqslant m$. Значит, $Aut_FK = m = \deg m_{\gamma,F} = [K:F]$, что и требовалось доказать.

$$3 \Rightarrow 4$$

Пусть
$$K^{Aut_FK} = L.K \supset L \supset F$$
 (5.31)

Пусть, по-прежнему, $K = F(\gamma)$. Мы уже выяснили, что при автоморфизме K, сохраняющем F γ переходит в корень $m_{\gamma,F}$, причем тем, куда переходит γ полностью определяется автоморфизм.

Заметим, что $K = L(\gamma)$, и что все вышесказанное справедливо и для расширения $K \supset L$, то есть $|Aut_L K| \leq \deg m_{\gamma,L} = [K:L]$

Все автоморфизмы, сохраняющие F сохраняют и L (по определению L), значит, $|Aut_FK| \leq |Aut_LK| \leq [K:L] \leq [K:F]$.

Ho
$$|Aut_FK| = [K:F] \Rightarrow [K:L] = [K:F] \Rightarrow L = F$$
.

Рассмотрим вспомогательное утверждение:

Пусть $K^H = F$. Тогда для любого $\beta \in K : |H| \geqslant m_{\alpha,F}$ (это нам конкретно сейчас не понадобится) и любой сопряженный к β над F лежит в K (а вот это будем использовать).

Докажем его. Рассмотрим
$$f_{\beta} = \prod_{h \in H} (x - h(\beta)).$$

Рассмотрим действие элементами H на элементах K[x]:

$$H \ni h \mapsto \alpha_h(\sum a_k x^k) = \sum h(a_k) x^k.$$

Проверим, что это действие (напомню: действие, это гомомофизм из Hв группу биекций K[x]).

1) Инъективность:

Пусть $\alpha_h(g_1) = \alpha_h(g_2)$, тогда образы всех коэффициенто g_1 совпадают с образами всех коэффициентов g_2 . Но h — автоморфизм, так что все κo эф- $\phi uuuehmu g_1$ совпадают с коэффициентами g_2

2) Сюръективность:

$$\alpha_h(\sum h^{-1}(\alpha_k)x^k) = \sum \alpha_k x^k$$

3) Гомоморфность:

3) Гомоморфность:
$$\alpha_{h_1} \circ \alpha_{h_2}(\sum a_k x^k) = \alpha_{h_1}(\sum h_2(a_k)x^k) = \sum h_1 h_2(a_k)x^k = \alpha_{h_1 h_2}$$
 Заметим также, что
$$\alpha_h((\sum a_k x^k)(\sum b_k x^k)) = \alpha_h(\sum (\sum_{i+j=k} a_i b_j)x^k) = \sum h(\sum_{i+j=k} a_i b_j)x^k = \sum (\sum_{i+j=k} h(a_i)h(b_j))x^k = (\sum h(a_k)x^k)(\sum h(b_k)x^k) = \alpha_h(\sum a_k x^k)\alpha_h(\sum b_k x^k).$$

$$\sum \left(\sum_{i+j=k} h(a_i)h(b_j)\right)x^k = \left(\sum h(a_k)x^k\right)\left(\sum h(b_k)x^k\right) = \alpha_h\left(\sum a_k x^k\right)\alpha_h\left(\sum b_k x^k\right)$$

Иными словами, $\alpha_h(fg) = \alpha_h(f)\alpha_h(g)$.

Возьмем произвольный $g \in H$. Учитывая вышесказанное

$$\alpha_g(f_\beta) = \prod_{h \in H} \alpha_g(x - h(\beta)) = \prod_{h \in H} (x - gh(\beta))$$
. Но умножение на элемент

группы есть автоморфизм группы, то есть gH = H, то есть $\alpha_q(f_\beta) = f_\beta$. То есть все коэфиициенты f_{β} сохраняются под действием любого элемента H.

Поскольку $K^H = F$, все коэффициенты f_β лежат в F, то есть $f_\beta \in F[x]$.

Поскольку $id \in H \Rightarrow f_{\beta}(\beta) = 0 \Rightarrow m_{\beta,F}|f_{\beta}$. То есть, во первых, $\deg m_{\beta,f} \leqslant$ $\deg f_{\beta} = |H|$ (последнее равенство – из определения f_{β}).

Во-вторых, все корни $m_{\beta,f}$ являются корнями f_{β} , то есть образами β при каком-то автоморфизме K, то есть лежат в K.

Значит, все сопряженные к β лежат в K.

По условию $K^{Aut_FK} = F$, значит, по утверждению, любой сопряженный к любому элементу K лежит в K. Что и требовалось доказать.

1.2Теорема Гильберта о базисе

Нужно доказать, что если K — нетерово, то и K[x] тоже нетерово (это и есть теорема Гильберта о базисе).

Пусть есть цепочка строго вложеных в K[x] идеалов $I_1 \subsetneq I_2 \subsetneq \ldots \subsetneq$ $I_n \subsetneq \dots$

Положим $I = \bigcup I_i$. Как неоднократно обсуждалось (5.6, 8.2) I — идеал.

Будем итеративно строить последовательность $f_1, \ldots, f_n, \ldots \in K[x]$

На i-м шаге будем выбирать $f_i \in I \setminus (f_1, f_2, \dots, f_{i-1}) : \deg f_i \to \min$.

(На первом шаге просто выберем $f_i \in I : \deg f_1 \to \min$. Под (f_1, \ldots, f_{i-1}) подразумевается идеал, порожденный соответствующими многочленами).

Корректность выбора (т.е что такое f_i существует) следует из того, что $f_1, \ldots f_{i-1} \in I_{i-1} \Rightarrow (f_1, \ldots, f_{i-1}) \subset I_{i-1} \subsetneq I_i \subset I.$

Рассмотрим теперь старшие коэффициенты этих многочленов $a_1, a_2, \ldots, a_n, \ldots$ Сразу заметим, что при $i < j : I \setminus (f_1, \ldots, f_i) \supset I \setminus (f_1, \ldots, f_j) \Rightarrow \deg f_i \leqslant I$ $\deg f_i$

Рассмотрим цепочку идеалов $(a_1) \subset (a_1,a_2) \subset \ldots \subset (a_1,\ldots,a_n) \subset \ldots$ Это последовательность вложенных идеалов из K. Поскольку K — нетерово, она стабилизируется, то есть существует такое N, что $a_{N+1} \in \mathbb{R}^N$

$$(a_1, \ldots, a_N) \Rightarrow \exists b_1, b_2, \ldots b_N : a_{N+1} = \sum_{i=1}^N b_i a_i.$$

Рассмотрим $f = f_{N+1} - \sum_{i=1}^N b_i \cdot f_i \cdot x^{\deg f_{N+1} - \deg f_i}$. (Все степени x-ов неотрицательны по замечанию выше). Степень f строго меньше степени f_{N+1} . С другой стороны, если $f \in (f_1, \dots, f_N) \Rightarrow f_{N+1} \in (f_1, \dots, f_N)$, что не так. Получили противоречие с минимальностью степени f_{N+1} .

То есть в K[x] не существует последовательности строго вложенных идеалов.

Пусть в K[x] есть последовательность вложенных идеалов, которая не стабилизируется. Тогда из нее мож но выделить подпоследовательность строго вложенных идеалов. (Не стабилизируется равносильно тому, что $\forall N \exists n > N: I_N \subsetneq I_n$).

Получили, что K[x] нетерово, что и требовалось.

- 1.3 Если кольцо K факториально, то K[x] тоже факториально
- 1.4 Основная теорема теории Галуа
- 1.5 Основная теорема алгебры
- 1.6 Теорема Ферма при n=3 с использованием чисел Эйзенштейна
- 1.7 Сведение разрешимости уравнения в радикалах к разрешимости соответствующей группы Галуа

(Теоремой Куммера можно пользоваться без доказательства)

1.8 Пример уравнения, неразрешимого в радикалах

(Теоремой о разрешимости группы Галуа можно пользоваться без доказательства).

- 1.9 Неприводимость многочлена деления круга $\Psi(x)$ над $\mathbb Q$
- 1.10 Теорема Островского