Cheat Sheet - Regression Analysis

What is Regression Analysis?

Fitting a function f(.) to datapoints $y_i=f(x_i)$ under some error function. Based on the estimated function and error, we have the following types of regression

1. Linear Regression:

Fits a line minimizing the sum of mean-squared error for each datapoint.

$$\min_{\beta} \sum_{i} \|y_i - f_{\beta}^{linear}(x_i)\|^2$$
$$f_{\beta}^{linear}(x_i) = \beta_0 + \beta_1 x_i$$
$$\min_{\beta} \sum_{i=0}^{m} \|y_i - f_{\beta}^{poly}(x_i)\|^2$$

2. Polynomial Regression:

Fits a polynomial of order k (k+1 unknowns) minimizing the sum of mean-squared error for each datapoint.

$$\min_{\beta} \sum_{i=0}^{n} ||y_i - f_{\beta}^{poly}(x_i)||^2$$
$$f_{\beta}^{poly}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k$$

3. Bayesian Regression:

er of
$$\min_{\beta} \sum_{i} \|y_i - \mathcal{N}\left(f_{\beta}(x_i), \sigma^2\right)\|^2$$
$$f_{\beta}(x_i) \stackrel{i}{=} f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$
$$\mathcal{N}\left(\mu, \sigma^2\right) \rightarrow \text{Gaussian with mean } \mu \text{ and variance } \sigma^2$$

4. Ridge Regression:

Can fit either a line, or polynomial minimizing the sum of mean-squared error for each datapoint and the weighted L2 norm of the function parameters beta.

$$min_{\beta} \sum_{i=0}^{m} ||y_i - f_{\beta}(x_i)||^2 + \sum_{j=0}^{k} \beta_j^2$$
$$f_{\beta}(x_i) = f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$

5. LASSO Regression:

Can fit either a line, or polynomial minimizing the the sum of mean-squared error for each datapoint and the weighted L1 norm of the function parameters beta.

$$min_{\beta} \sum_{i=0}^{m} ||y_i - f_{\beta}(x_i)||^2 + \sum_{j=0}^{k} |\beta_j|$$
$$f_{\beta}(x_i) = f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$

6. Logistic Regression:

Can fit either a line, or polynomial with sigmoid activation minimizing the binary cross-entropy loss for each datapoint. The labels y are binary class labels.

$$\begin{aligned} \min_{\beta} \sum_{i} -y_{i}log\left(\sigma\left(f_{\beta}(x_{i})\right)\right) - (1 - y_{i})log\left(1 - \sigma\left(f_{\beta}(x_{i})\right)\right) \\ \text{moid} \\ \text{s for} \\ f_{\beta}(x_{i}) = f_{\beta}^{poly}(x_{i}) \text{ or } f_{\beta}^{linear}(x_{i}) \\ \sigma(t) = \frac{1}{1 + e^{-t}} \end{aligned}$$

Visual Representation:

Summary:

	What does it fit?	Estimated function	Error Function
Linear	A line in n dimensions	$f_{\beta}^{linear}(x_i) = \beta_0 + \beta_1 x_i$	$\sum_{i=0}^{m} \ y_i - f_{\beta}(x_i)\ ^2$
Polynomial	A polynomial of order k	$f_{\beta}^{poly}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots$	$\sum_{i=0}^{m} \ y_i - f_{\beta}(x_i)\ ^2 \cdot$
Bayesian Linear	Gaussian distribution for each point	$\mathcal{N}\left(f_{\beta}(x_i), \sigma^2\right)$	$\sum_{i} \ y_{i} - \mathcal{N}\left(f_{\beta}(x_{i}), \sigma^{2}\right)\ ^{2}$
Ridge	Linear/polynomial	$f_{\beta}^{poly}(x_i)$ or $f_{\beta}^{linear}(x_i)$	$\sum_{i=0}^{m} y_i - f_{\beta}(x_i) ^2 + \sum_{j=0}^{n} \beta_j^2$
LASSO	Linear/polynomial	$f_{\beta}^{poly}(x_i) \ or \ f_{\beta}^{linear}(x_i)$	$\sum_{i=0}^{m} y_i - f_{\beta}(x_i) ^2 + \sum_{j=0}^{n} \beta_j $
Logistic	Linear/polynomial with sigmoid	$\sigma(f_{eta}(x_i)) \qquad min_{eta} \sum_i -y_i log$	$g\left(\sigma\left(f_{eta}(x_i) ight) ight)-(1-y_i)log\left(1-\sigma\left(f_{eta}(x_i) ight) ight)$

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial: Click here

