First properties of algebraic groups

Let \mathbf{k} be a field and \mathbf{k} its algebraic closure. All varieties are defined over \mathbf{k} unless otherwise specified.

1 Basic concepts

Definition 1. An algebraic group is a group object in the category of algebraic varieties, i.e. an algebraic variety G together with morphisms Yang: To be continued...

Proposition 2. Let G be an algebraic group. Then G is a smooth variety over \mathbf{k} .

Example 3. The additive group \mathbb{G}_a is defined to be the affine line \mathbb{A}^1 with the group law given by addition. Concretely, we can write $\mathbb{G}_a = \operatorname{Spec} \mathbf{k}[T]$ with the group law given by the morphism

$$\begin{split} \mu : \mathbb{G}_a \times \mathbb{G}_a &\to \mathbb{G}_a \quad \mathbf{k}[T] \to \mathbf{k}[T] \otimes_{\mathbf{k}} \mathbf{k}[T], \quad T \mapsto T \otimes 1 + 1 \otimes T. \\ \iota : \mathbb{G}_a &\to \mathbb{G}_a \quad \mathbf{k}[T] \to \mathbf{k}[T], \quad T \mapsto -T. \\ \varepsilon : \operatorname{Spec} \mathbf{k} \to \mathbb{G}_a \quad \mathbf{k}[T] \to \mathbf{k}, \quad T \mapsto 0. \end{split}$$

Yang: To be continued...

Example 4. The multiplicative group \mathbb{G}_m is defined to be the affine variety $\mathbb{A}^1 \setminus \{0\}$ with the group law given by multiplication. Concretely, we can write $\mathbb{G}_m = \operatorname{Spec} \mathbf{k}[T, T^{-1}]$ with the group law given by the morphism

$$\begin{split} \mu : \mathbb{G}_m \times \mathbb{G}_m &\to \mathbb{G}_m \leadsto \mathbf{k}[T, T^{-1}] \to \mathbf{k}[T, T^{-1}] \otimes_{\mathbf{k}} \mathbf{k}[T, T^{-1}], \quad T \mapsto T \otimes T. \\ \iota : \mathbb{G}_m &\to \mathbb{G}_m \leadsto \mathbf{k}[T, T^{-1}] \to \mathbf{k}[T, T^{-1}], \quad T \mapsto T^{-1}. \\ \varepsilon : \operatorname{Spec} \mathbf{k} &\to \mathbb{G}_m \leadsto \mathbf{k}[T, T^{-1}] \to \mathbf{k}, \quad T \mapsto 1. \end{split}$$

Yang: To be continued...

Example 5. The general linear group GL_n is defined to be the open subvariety of \mathbb{A}^{n^2} consisting of invertible matrices, with the group law given by matrix multiplication. Concretely, we can write $GL_n = \operatorname{Spec} \mathbf{k}[T_{ij}, \det(T_{ij})^{-1}]$ where $1 \leq i, j \leq n$ and the group law is given by the morphism Yang: To be continued...

Example 6. An *elliptic curve* is a smooth projective curve of genus 1 with a specified point O. Given an elliptic curve E, we can define a group law on E using the chord-tangent process. Concretely, for any two points $P, Q \in E$, we can define their sum P + Q as follows:

- If $P \neq Q$, then let L be the line passing through P and Q. Since E is a cubic curve, L intersects E at a third point R. Then we define P + Q to be the point obtained by reflecting R across the x-axis (i.e., if R = (x, y), then P + Q = (x, -y)).
- If P = Q, then let L be the tangent line to E at P. Again, since E is a cubic curve, L intersects E at a second point R. Then we define 2P = P + P to be the point obtained by reflecting R across the x-axis.

Date: September 15, 2025, Author: Tianle Yang, My Homepage

- The identity element is the specified point O.
- The inverse of a point P = (x, y) is given by -P = (x, -y).

This group law makes E into an algebraic group. We can identify the k-points of E with the set of points on the elliptic curve defined over k. Yang: To be continued...

Definition 7. Let G be an algebraic group and $x \in G(\mathbf{k})$ a **k**-point. The *left translation* by x is the morphism

$$L_x: G \xrightarrow{\cong} \operatorname{Spec} \mathbf{k} \times G \xrightarrow{x \times \operatorname{id}_G} G \times G \xrightarrow{\mu} G,$$

Definition 8. An algebraic subgroup of an algebraic group G is a closed subvariety $H \subseteq G$ that is also a subgroup of G. In other words, the inclusion morphism $H \hookrightarrow G$ is a morphism of algebraic groups.

Example 9. The special linear group SL_n is defined to be the closed subvariety of GL_n consisting of matrices with determinant equal to 1, with the group law given by matrix multiplication. Concretely, we can write $SL_n = \operatorname{Spec} \mathbf{k}[T_{ij}]/(\det(T_{ij}) - 1)$ where $1 \le i, j \le n$ and the group law is given by the morphism Yang: To be continued...

Definition 10. Let G and H be algebraic groups. The *product* $G \times H$ is an algebraic group with the group law defined by

$$\mu_{G \times H} = (\mu_G, \mu_H) : (G \times H) \times (G \times H) \cong (G \times G) \times (H \times H) \to G \times H$$

where μ_G and μ_H are the group laws of G and H, respectively. Yang: To be continued...

Definition 11. Let G be an algebraic group. The neutral component G^0 is the connected component of G containing the identity element ε . Yang: To be continued...

Proposition 12. The neutral component G^0 is a closed, normal algebraic subgroup of G of finite index. Moreover, each closed subgroup H of finite index contains G^0 .

Proof. Yang: To be continued...

Definition 13. A homomorphism of algebraic groups is a morphism of varieties that is also a group homomorphism. In other words, a morphism $f: G \to H$ between algebraic groups G and H is a homomorphism if the following diagram commutes:

$$G \times G \xrightarrow{\mu_G} G$$

$$\downarrow^{f \times f} \qquad \downarrow^{f}$$

$$H \times H \xrightarrow{\mu_H} H$$

where μ_G and μ_H are the group laws of G and H, respectively. Yang: To be continued...

Proposition 14. Let G be an algebraic group and $H \subseteq G$ a subgroup (not necessarily closed). Then the Zariski closure \overline{H} of H in G is an algebraic subgroup of G. Yang: To be continued...

Proof. Yang: To be continued...

Proposition 15. Let G be an algebraic group, Y_i irreducible constructible subsets of G containing the identity element for i = 1, ..., n. Then the closed subgroup Yang: To be continued...

Proof. Yang: To be continued...

Remark 16. We can take $n \leq 2 \dim G$. Yang: To be continued...

2 Action and representations

Definition 17. An action of an algebraic group G on a variety X is a morphism

$$\sigma: G \times X \to X$$

such that the following diagrams commute:

$$G \times G \times X \xrightarrow{\mu \times \mathrm{id}_X} G \times X \qquad \mathrm{Spec} \, \mathbf{k} \times X \xrightarrow{\varepsilon \times \mathrm{id}_X} G \times X$$

$$\downarrow^{\mathrm{id}_G \times \sigma} \qquad \downarrow^{\sigma} \qquad \downarrow^{\sigma}$$

$$G \times X \xrightarrow{\sigma} X$$

where μ is the group law of G and ε is the identity element of G. In other words, for any field extension K/\mathbf{k} , the induced map $G(K) \times X(K) \to X(K)$ defines a group action of the abstract group G(K) on the set X(K). We say that X is a G-variety. Yang: To be continued...

Example 18. A linear representation of an algebraic group G on a finite-dimensional vector space V over \mathbf{k} is an action of G on the affine space associated to V, i.e. a morphism

$$\rho: G \times V \to V$$

such that for any field extension K/\mathbf{k} , the induced map $G(K) \times V(K) \to V(K)$ defines a group homomorphism from the abstract group G(K) to the general linear group of the vector space V(K). In other words, for any $g \in G(K)$, the map $\rho_g : V(K) \to V(K)$ defined by $\rho_g(v) = \rho(g, v)$ is a linear automorphism of V(K). We say that V is a G-module. Yang: To be continued...