GEB - The Effect of Brain Size Residual on Striatal Cell Types

By Gabriel and Sumitra

Trait - Brain Size Residual

- Relation to cognition
- Possible limitations
- Brain size vs relative brain size
- Convergent evolution
- Cost of a larger brain size
- Advantages of larger brains
 - Foraging
 - Motor function
 - Social advantages

Brain Size Residual Phylogeny

blue ---> red (-1 residual) (+1 residual)

Species Of Interest

Canis lupus familiaris

Tursiops truncatus

Felis catus

Panthera onca

Eschrichtius robustus

Brain Size Residual Phylogeny

blue ---> red (-1 residual) (+1 residual)

Species Of Interest

Pan troglodytes

Peromyscus maniculatus

Mus musculus

Lepus americanus

Cell types

Microglia

- Immune system
- Relatively small
- Detects inflammation
- Synaptic pruning
- Neuron density

Oligodendrocyte Precursors

- Brain development
- Myelination in CNS
- Related to number of axons
- Multiple differentiation steps

Analysis

- Perform phylolm on every peak
- Correct p-values
- Visualize data
- Search UCSC genome browser for top peaks
- Carry out gene ontology analysis for each cell type
- Consult literature for relevance of results

for (j in c(1:26408)){

names of the data do not match with tip labels.

No results were found.

Your search was processed without automatic term mapping because it retrieved zero results

Your session crashed after using all available RAM. If you are interested in access to high-RAM runtimes, you may want to check out Colab Pro.

147536 rows x 2868 columns

P-value histograms

Correlation histograms

Most significant peaks (microglia)

		ne: 54 × 6	A data.frar			
padj	adj_corr	corr	pval	id	x	
<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<int></int>	<int></int>	
0.0001199034	0.4186502	0.4278780	4.590132e-09	22591	22591	22591
0.0001553238	0.2572139	0.2638459	5.946320e-09	10632	10632	0632
0.0003395380	0.4313965	0.4413720	1.299916e-08	15359	15359	5359
0.0003510205	0.3665104	0.3755603	1.343928e-08	16923	16923	6923
0.0006410991	0.5243472	0.5356723	2.454625e-08	24078	24078	4078

Most significant peaks (OPCs)

		•				
			A data.frar	me: 40 × 6		
	x	id	pval	corr	adj_corr	padj
	<int></int>	<int></int>	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>
247	247	247	1.035269e-10	0.2990387	0.2930983	3.135414e-06
4243	24243	24243	5.060544e-10	0.3166590	0.3099596	1.532586e-05
1588	1588	1588	2.789634e-09	0.2504935	0.2444000	8.448127e-05
5646	15646	15646	4.456784e-09	0.3025237	0.2952583	1.349648e-04
3536	23536	23536	4.911464e-09	0.2770063	0.2701856	1.487290e-04

Microglial Associated Genes

- MGMT

- DNA damage repair
- Cancer cell regulation
- I ink to autism

- EBF3

- B-Cell transcription factor
- ASD and brain development
- Neurodevelopmental syndrome

- GLRX3

- Cell cycle regulation
- Apoptosis inhibition
- Neurodegenerative disease

Microglia Gene Ontology

Term Name	Binom Rank	Raw P-Value
hemopoiesis	2	1.1615e-6
hematopoietic or lymphoid organ development	4	3.2543e-6
immune system development	5	7.2083e-6
positive regulation of carbohydrate metabolic process	12	3.0820e-5
regulation of carbohydrate biosynthetic process	14	4.3490e-5

Positive

Term Name	Binom Rank	Raw P-Value	Binom FDR Q-Val
positive regulation of GTPase activity	3	1.0939e-6	4.7981e-3
platelet activation	5	4.0224e-6	1.0586e-2
regulation of GTPase activity	11	6.1443e-6	7.3502e-3
positive regulation of hydrolase activity	13	6.5499e-6	6.6300e-3
small GTPase mediated signal transduction	20	1.3885e-5	9.1356e-3
hematopoietic or lymphoid organ development	29	2.4986e-5	1.1338e-2
hemopoiesis	31	2.8871e-5	1.2255e-2
regulation of lymphocyte activation	32	2.9903e-5	1.2297e-2
positive regulation of cell adhesion	36	4.0867e-5	1.4938e-2
immune system development	41	5.0888e-5	1.6332e-2
regulation of small GTPase mediated signal transduction	44	5.7862e-5	1.7305e-2
regulation of cell adhesion	45	6.1412e-5	1.7958e-2
regulation of leukocyte activation	49	7.1041e-5	1.9078e-2
lymphocyte differentiation	70	1.3507e-4	2.5392e-2
regulation of cell activation	80	1.9218e-4	3.1611e-2
leukocyte differentiation	86	2.4946e-4	3.8171e-2

Binom

Negative

OPC Associated Genes

- CLASP1

- Microtubule assembly
- CLASP2 specific to brain cells
- Axon growth
- Cell division
- Basal cortex
- Cell morphology in embryo

- TSN

- Chromosome translocation
- Expression and gene silencing

OPC Gene Ontology

Term Name	Binom Rank	Binom Raw P-Value	Binom FDR Q-Val
3'-UTR-mediated mRNA destabilization	3	5.0916e-6	2.2333e-2

Positive

ormal appendicular skeleton morphology ormal breathing pattern ormal tarsal bone morphology

	respiratory distress
	abnormal pectoral girdle bone morphology
	abnormal appendicular skeleton morpholog
	abnormal breathing pattern
	abnormal tarsal bone morphology
	abnormal respiratory function
_	short limbs
m	abnormal thoracic cage morphology
-Val	small scapula
	abnormal sternum morphology
Be-2	small mandible
	abnormal craniofacial bone morphology
	neonatal lethality, complete penetrance
	abnormal phalanx morphology
	short mandible
	abnormal mandible morphology
	short nasal bone
	increased diameter of long bones

abnormal tarsal bone morphology
abnormal respiratory function
short limbs
abnormal thoracic cage morphology
small scapula
abnormal sternum morphology
small mandible
abnormal craniofacial bone morpholog
neonatal lethality, complete penetrano
abnormal phalanx morphology
short mandible
abnormal mandible morphology
short nasal bone
increased diameter of long bones
abnormal scapula morphology
abnormal limb long bone morphology

ormal respiratory function rt limbs ormal thoracic cage morphology Il scapula

Negative

Term

Name

16

17

19

35

Binom

Rank

Binom

Raw

P-Value

3.0456e-8

2.1847e-7

4.6878e-5

5.3627e-5 6.0274e-5

6.6080e-5

7.0003e-5

7.0960e-5

8.1242e-5

1.1044e-4

1.2739e-4

3.0590e-7	9.3371e-4
9.0387e-7	2.0692e-3
1.0303e-6	1.8868e-3
4.6178e-6	7.0476e-3
5.5377e-6	7.2441e-3
1.3797e-5	1.2634e-2
3.3635e-5	2.3692e-2
3.4746e-5	2.2726e-2
3.7774e-5	2.3060e-2

Binom

FDR Q-Val

2.7888e-4

1.0003e-3

e-3 e-2 e-2

2.2/26e-2
2.3060e-2
2.6829e-2
2.8886e-2
2.9049e-2
2.8814e-2
2.9137e-2
2.8251e-2

2.9757e-2

3.4872e-2

3.3328e-2

Trait Visualizations - OPC highest peaks

Trait Visualizations - Microglia highest peaks

Cell visualization - Heat Map

CLASP1

Grad analysis

Prion disease

- Neurodegenerative disease
 - Parkinson's
 - Alzheimer's
- Misfolded proteins
- Self-propagating
- Alpha synuclein accumulation
- Sporadic, environmental and genetic basis
- Potential epigenetic markers

Dataset and Results

Mouse RNA-seq data

Performed cell-type analysis

Performed disease specific analysis

UMAP and Clustering

Disease vs non disease

Sum Tests

- Cdk8
- H2D1

Conclusions

- OPCs more closely related to trait
- Relevant results and p values for both cell types
- Link to neurodegenerative disorders and ASD
- Glioblastoma
- Convergent evolution
- Relevance of striatal cell types to prionic disease

References

- 1. Collinge, John. "Mammalian Prions and Their Wider Relevance in Neurodegenerative Diseases." *Nature*, vol. 539, no. 7628, 9 Nov. 2016, pp. 217–226., https://doi.org/10.1038/nature20415.
- 2. Saá, Paula, et al. "Mechanisms of Prion-Induced Neurodegeneration." *Expert Reviews in Molecular Medicine*, vol. 18, 8 Apr. 2016, https://doi.org/10.1017/erm.2016.8.
- 3. Prusiner, Stanley B. "A Unifying Role for Prions in Neurodegenerative Diseases." *Science*, vol. 336, no. 6088, 22 June 2012, pp. 1511–1513., https://doi.org/10.1126/science.1222951.
- 4. George, Sonia, et al. "Microglia Affect α-Synuclein Cell-to-Cell Transfer in a Mouse Model of Parkinson's Disease." *Molecular Neurodegeneration*, vol. 14, no. 1, 16 Aug. 2019, https://doi.org/10.1186/s13024-019-0335-3.
- 5. Hao Y, Hao S, Andersen-Nissen E, III WMM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zagar M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LB, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R (2021). "Integrated analysis of multimodal single-cell data." *Cell*. doi:10.1016/j.cell.2021.04.048, https://doi.org/10.1016/j.cell.2021.04.048.
- 6. Jellinger, Kurt A. "Multiple System Atrophy: An Oligodendroglioneural synucleinopathy1." *Journal of Alzheimer's Disease*, vol. 62, no. 3, 13 Mar. 2018, pp. 1141–1179., https://doi.org/10.3233/jad-170397.
- 7. Menzl, Ingeborg, et al. "Cdk8-Novel Therapeutic Opportunities." *Pharmaceuticals*, vol. 12, no. 2, 2019, p. 92., https://doi.org/10.3390/ph12020092.

References

- 1. Xu, Shixia et al. "Genetic basis of brain size evolution in cetaceans: insights from adaptive evolution of seven primary microcephaly (MCPH) genes." BMC evolutionary biology, vol. 17,1 206. 29 Aug. 2017, doi:10.1186/s12862-017-1051-7
- 2. Marino, Lori et al. "Cetaceans have complex brains for complex cognition." PLoS biology, vol. 5,5 (2007): e139. doi:10.1371/journal.pbio.0050139
- 3. Roth, Gerhard. "Convergent evolution of complex brains and high intelligence." Philosophical transactions of the Royal Society of London. Series B, Biological sciences vol. 370,1684 (2015): 20150049. doi:10.1098/rstb.2015.0049
- 4. Roth, G, and U Dicke. "Evolution of the Brain and Intelligence." Trends in Cognitive Sciences, vol. 9, no. 5, 2005, pp. 250–257., https://doi.org/10.1016/j.tics.2005.03.005.
- 5. Heldstab, Sandra A., et al. "The Economics of Brain Size Evolution in Vertebrates." Current Biology, vol. 32, no. 12, 20 June 2022, https://doi.org/10.1016/j.cub.2022.04.096.
- Sayol, Ferran, et al. "Relative Brain Size and Its Relation with the Associative Pallium in Birds." Brain, Behavior and Evolution, vol. 87, no. 2, June 2016, pp. 69–77., https://doi.org/10.1159/000444670.
- 7. Lemen, C. "Relationship between Relative Brain Size and Climbing Ability in Peromyscus." Journal of Mammalogy, vol. 61, no. 2, 1980, pp. 360–364., https://doi.org/10.2307/1380068.
- 8. Báez-Mendoza, Raymundo, and Wolfram Schultz. "The role of the striatum in social behavior." Frontiers in neuroscience vol. 7 233. 10 Dec. 2013, doi:10.3389/fnins.2013.00233
- 9. Hikosaka, O et al. "Role of the basal ganglia in the control of purposive saccadic eye movements." Physiological reviews vol. 80,3 (2000): 953-78. doi:10.1152/physrev.2000.80.3.953
- 10. Reader, Simon M., et al. "The Evolution of Primate General and Cultural Intelligence." *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 366, no. 1567, 2011, pp. 1017–1027., https://doi.org/10.1098/rstb.2010.0342.
- 11. Deaner, Robert O., et al. "Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates." *Brain, Behavior and Evolution*, vol. 70, no. 2, Aug. 2007, pp. 115–124., https://doi.org/10.1159/000102973.
- 12. Smeets W., and Wicht H. "Brain Size in Vertebrates." The Central Nervous System of Vertebrates, vol. 1, Springer, New York, New York, 1998, pp. 2117–2121.
- 13. Jardim-Messeder, D., Lambert, K., Noctor, S., Pestana, F. M., de Castro Leal, M. E., Bertelsen, M. F., Alagaili, A. N., Mohammad, O. B., Manger, P. R., & Herculano-Houzel, S. (2017). "Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species." Frontiers in neuroanatomy, 11, 118. https://doi.org/10.3389/fnana.2017.00118
- Horschler, D.J., Hare, B., Call, J., Kaminski, J., Miklosi, A.& MacLean, E.L. 2019, "Absolute brain size predicts dog breed differences in executive function." *Animal Cognition*, vol. 22, no. 2, pp. 187-198. https://doi.org/10.1007/s10071-018-01234-1
- 15. Herculano-Houzel S. (2007). "Encephalization, neuronal excess, and neuronal index in rodents." Anatomical record (Hoboken, N.J.: 2007), 290(10), 1280–1287. https://doi.org/10.1002/ar.20598

References

- 1. Yamaguchi, Nobuyuki & Kitchener, Andrew & Gilissen, Emmanuel & Macdonald, David. (2009). "Brain size of the lion (Panthera leo) and the tiger (P. tigris): Implications for intrageneric phylogeny, intraspecific differences and the effects of captivity." *Biological Journal of the Linnean Society*. 98. 85 93. 10.1111/j.1095-8312.2009.01249.x.
- 2. Pomeroy, S., & Ullrich, N. (2004). Development of the Nervous System. Fetal And Neonatal Physiology, 1675-1698, doi: 10.1016/b978-0-7216-9654-6.50168-5
- 3. Jakovcevski, Igor et al. "Oligodendrocyte development and the onset of myelination in the human fetal brain." Frontiers in neuroanatomy vol. 3 5, 1 Jun. 2009, doi:10.3389/neuro.05.005.2009
- 4. van Tilborg, E., de Theije, C., van Hal, M., Wagenaar, N., de Vries, L. S., Benders, M. J., Rowitch, D. H., & Nijboer, C. H. (2018). Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. *Glia*, 66(2), 221–238. https://doi.org/10.1002/glia.23256
- 5. Wake, H., Moorhouse, A., & Nabekura, J. (2011). Functions of microglia in the central nervous system beyond the immune response. Neuron Glia Biology, 7(1), 47-53. doi:10.1017/S1740925X12000063
- 6. Dos Santos, S. E., Medeiros, M., Porfirio, J., Tavares, W., Pessôa, L., Grinberg, L., Leite, R., Ferretti-Rebustini, R., Suemoto, C. K., Filho, W. J., Noctor, S. C., Sherwood, C. C., Kaas, J. H., Manger, P. R., & Herculano-Houzel, S. (2020). Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. *The Journal of neuroscience : the official journal of the Society for Neuroscience*, 40(24), 4622–4643. https://doi.org/10.1523/JNEUROSCI.2339-19.2020
- 7. Marhounová, L., Kotrschal, A., Kverková, K., Kolm, N., & Němec, P. (2019). Artificial selection on brain size leads to matching changes in overall number of neurons. *Evolution*, 73(9), 2003-2012. doi: 10.1111/evo.13805
- 8. Galjart, Niels. "Clips and Clasps and Cellular Dynamics." Nature Reviews Molecular Cell Biology, vol. 6, no. 6, 1 June 2005, pp. 487–498., https://doi.org/10.1038/nrm1664.
- 9. Sayas, Carmen Laura, et al. "Distinct Functions for Mammalian clasp1 and -2 during Neurite and Axon Elongation." Frontiers in Cellular Neuroscience, vol. 13, 2019, https://doi.org/10.3389/fncel.2019.00005.
- 10. Nakaya, Yukiko, et al. "Epiblast Integrity Requires Clasp and Dystroglycan-Mediated Microtubule Anchoring to the Basal Cortex." *Journal of Cell Biology*, vol. 202, no. 4, 2013, pp. 637–651., https://doi.org/10.1083/jcb.201302075.
- Tanaka AJ, Cho MT, Willaert R, Retterer K, Zarate YA, Bosanko K, Stefans V, Oishi K, Williamson A, Wilson GN, Basinger A, Barbaro-Dieber T, Ortega L, Sorrentino S, Gabriel MK, Anderson IJ, Sacoto MJG, Schnur RE, Chung WK. De novo variants in *EBF3* are associated with hypotonia, developmental delay, intellectual disability, and autism. Cold Spring Harb Mol Case Stud. 2017 Nov 21;3(6):a002097. doi: 10.1101/mcs.a002097. PMID: 29162653; PMCID: PMC5701309.
- 12. Turner, T.N. et al. (2017) "Genomic patterns of de novo mutation in simplex autism," Cell, 171(3). Available at: https://doi.org/10.1016/j.cell.2017.08.047.
- 13. Vaccarino FM, Smith KM. Increased brain size in autism--what it will take to solve a mystery. Biol Psychiatry. 2009 Aug 15;66(4):313-5. doi: 10.1016/j.biopsych.2009.06.013. PMID: 19643218; PMCID: PMC2803090.
- 14. Bowers, K., Li, Q., Bressler, J. et al. Glutathione pathway gene variation and risk of autism spectrum disorders. J Neurodevelop Disord 3, 132–143 (2011). https://doi.org/10.1007/s11689-011-9077-4
- 15. Mangold, Colleen A., et al. "CNS-Wide Sexually Dimorphic Induction of the Major Histocompatibility Complex 1 Pathway with Aging." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 72, no. 1, 2016, pp. 16–29., https://doi.org/10.1093/gerona/glv232.

References (images)

https://commons.wikimedia.org/wiki/File:Oligodendrocytes.tif

https://commons.wikimedia.org/wiki/File:Six_weeks_old_cat_(aka).jpg

https://commons.wikimedia.org/wiki/Category:Panthera_onca#/media/File:Jaguar_(Panthera_onca_palustris)_male_Three_B rothers_River_2_(cropped).jpg

https://commons.wikimedia.org/wiki/File:Mus_musculus_2011.jpg

https://commons.wikimedia.org/wiki/File:Tursiops_truncatus_01-cropped.jpg

https://commons.wikimedia.org/wiki/File:Eschrichtius_robustus_01-cropped.jpg

https://commons.wikimedia.org/wiki/File:Pan_troglodytes_(male).jpg

https://commons.wikimedia.org/wiki/File:Deer_Mouse_(Peromyscus_maniculatus)_(9310532204).jpg

https://commons.wikimedia.org/wiki/File:SNOWSHOE_HARE_(Lepus_americanus)_(5-28-2015)_quoddy_head,_washington_co,_maine_-01_(18988734889).jpg