_Credit Card Fraud Detection___

Importing Basic Libraries Pandas, Numpy and Data file

In [1]:	im im	<pre>port pandas port numpy port matplo port seabor</pre>	as npotlib.	pyplot	t as plt						
n [2]:		=pd.read_cs .head(2)	sv(r"C	:\Use	rs\Hp\Deskt	op\DS_	work\Dee	p Learning\	12.02_Prad	ctical Sess	ion
Out[2]:		Transaction ID	Date	Time	Type of Card	Entry Mode	Amount	Type of Transaction	Merchant Group	Country of Transaction	Shi Ac
	0	#2546 884	13- Oct- 20	23	MasterCard	Тар	17.0	Online	Restaurant	United Kingdom	
	1	#2546 895	14- Oct- 20	21	Visa	Тар	28.0	Online	Gaming	United Kingdom	l Kin
											•

EDA-Checking dataset for anamolies, disturbances and datatypes

1 [3]:	df.sha	аре			
ıt[3]:	(10000	00, 15)			
]:	df.des	scribe()			
[4]:		Time	Amount	Age	Fraud
	count	100000.000000	100000.000000	100000.000000	100000.000000
	mean	14.559320	112.566480	53.081630	0.071900
	std	5.315905	123.428493	18.742452	0.258324
	min	0.000000	5.000000	21.000000	0.000000
	25%	10.000000	17.000000	37.000000	0.000000
	50%	15.000000	30.000000	53.000000	0.000000
	75%	19.000000	208.000000	69.000000	0.000000
	max	23.000000	400.000000	85.000000	1.000000
[5]:	df.isr	null().sum()			

```
Transaction ID
                                     0
Out[5]:
         Date
                                     0
         Time
                                     0
         Type of Card
                                     0
         Entry Mode
                                     0
         Amount
                                     0
                                     0
         Type of Transaction
         Merchant Group
                                     0
         Country of Transaction
                                     0
         Shipping Address
                                     0
         Country of Residence
                                     0
         Gender
                                     0
                                     0
         Age
         Bank
                                     0
         Fraud
                                     0
         dtype: int64
```

Data has no null values or disturbances, data looks pretty clean...

```
df.columns
 In [6]:
          Index(['Transaction ID', 'Date', 'Time', 'Type of Card', 'Entry Mode',
 Out[6]:
                   'Amount', 'Type of Transaction', 'Merchant Group',
                  'Country of Transaction', 'Shipping Address', 'Country of Residence',
                  'Gender', 'Age', 'Bank', 'Fraud'],
                 dtype='object')
          df.columns.nunique()
          15
 Out[7]:
          df2=df.iloc[:,3:15]
 In [8]:
          df2.head()
 Out[8]:
                                                                                           Country
                 Type of Entry
                                             Type of
                                                         Merchant Country of Shipping
                                Amount
                                                                                                of
                                                                                                    Gen
                   Card
                         Mode
                                         Transaction
                                                            Group Transaction
                                                                                Address
                                                                                         Residence
                                                                        United
                                                                                            United
          0 MasterCard
                                    17.0
                                              Online
                           Tap
                                                        Restaurant
                                                                                  Russia
                                                                                          Kingdom
                                                                      Kingdom
                                                                        United
                                                                                  United
                                                                                            United
          1
                    Visa
                                    28.0
                                              Online
                           Tap
                                                           Gaming
                                                                      Kingdom
                                                                                Kingdom
                                                                                          Kingdom
                                                                        United
                                                                                 United
                                                                                            United
          2
                    Visa
                           Tap
                                     8.0
                                              Online
                                                       Subscription
                                                                      Kingdom
                                                                                Kingdom
                                                                                          Kingdom
                                                                        United
                                                                                 United
                                                                                            United
             MasterCard
                           PIN
                                   186.0
                                                ATM Entertainment
                                                                      Kingdom
                                                                                Kingdom
                                                                                          Kingdom
                                                                                            United
                                                                        United
                                                                                 United
                    Visa
                           PIN
                                    86.0
                                              Online
                                                          Children
                                                                      Kingdom
                                                                                          Kingdom
                                                                                Kingdom
          type(list(df2.columns.unique()))
 In [9]:
          list
 Out[9]:
          df2.info()
In [10]:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 12 columns):
# Column
                               Non-Null Count Dtype
---
                                -----
0 Type of Card 100000 non-null object
1 Entry Mode 100000 non-null object
2 Amount 100000 non-null float64
3 Type of Transaction 100000 non-null object
4 Merchant Group 100000 non-null object
    Country of Transaction 100000 non-null object
6 Shipping Address 100000 non-null object
    Country of Residence 100000 non-null object
7
 8 Gender
                      100000 non-null object
                               100000 non-null int64
9
     Age
10 Bank
                               100000 non-null object
                                100000 non-null int64
 11 Fraud
dtypes: float64(1), int64(2), object(9)
```

memory usage: 9.2+ MB

Used loop to get columns with their unique values

```
In [11]: for i in range(len(list(df2.columns.unique()))):
                 x=list(df2.columns.unique())
                 y=df2[x[i]].unique()
                  print(x[i],y)
```

```
Type of Card ['MasterCard' 'Visa']
         Entry Mode ['Tap' 'PIN']
         Amount [ 17. 28.
                            8. 186. 86. 24. 129. 12. 153. 295. 44. 325. 79.
          113. 370. 123. 5. 47. 151. 244. 16. 23. 213. 335. 25. 305.
                              14. 169. 193. 393. 74.
          210. 371. 134. 336.
                                                        9. 179. 338.
                                                                     70.
          317. 22. 89. 20.
                               6. 212. 102. 11. 226. 373. 75. 358. 342.
          156. 360. 392. 248. 149. 19. 351. 10. 96. 361. 110. 108. 137.
           29. 381. 243. 30. 344. 302.
                                         7. 207. 144. 237. 55. 18.
          334. 154. 109. 322. 398. 352. 104. 375. 367. 297. 301. 165. 139. 225.
          131. 189. 115. 242. 76. 61. 346. 206. 276. 219. 38. 382. 97. 331.
          383. 292. 176. 387. 296. 271. 58. 363. 357. 259. 234.
                                                                41. 368. 251.
          182. 291. 40. 67. 200. 275. 254. 50. 90. 315. 172. 62. 60. 191.
          204. 333. 95. 282. 262. 253. 356. 209. 54. 340. 314. 232. 195. 32.
          294. 170. 80. 146. 309. 42. 178. 52. 53. 268. 223. 194. 168. 201.
          127. 87. 270. 181. 277. 261. 300. 299. 88. 391. 180. 255. 236. 318.
          400. 269. 235. 35. 196. 174. 48. 319. 321. 274. 65. 293. 198. 284.
          265. 354. 380. 241. 173. 399. 329. 280. 378. 252. 215. 228. 264. 238.
          188. 133. 307. 162. 218. 81. 136. 135. 122. 316. 121. 263. 158. 155.
          199. 217. 143. 266. 247. 82. 36. 203. 171. 308. 374. 272. 384. 31.
          341. 349. 56. 397. 369. 290. 214. 78. 246. 258. 71. 216. 311. 364.
           66. 221. 281. 185. 84. 157. 230. 385. 287. 372. 379. 312. 91. 362.
          303. 202. 107. 327. 231. 138. 166. 117. 43. 260. 359. 278. 119. 285.
           45. 128. 366. 353. 116. 324. 389. 85. 118. 98. 130. 313. 94. 211.
           99. 132. 126. 205. 304. 46. 279. 192. 197. 106. 163. 257. 320. 177.
           49. 240. 345. 224. 150. 72. 310. 267. 161. 388. 124. 68. 100. 229.
          249. 59. 37. 34. 343. 233. 222. 125. 92. 141. 350. 83. 283. 239.
          114. 386. 145. 220. 326. 167. 390. 298. 256. 306. 175. 337. 286. 328.
          147. 120. 93. 396. 51. 190. 64. 273. 148. 208. 289. 103. 227. 140.
               69. 183. 111. 250. 164. 159. 33. 245. 355. 63. 323. 160. 348.
          105. 377. 112. 332. 142. 365. 330. 395. 77. 394. 288. 339. 152. 347.
          101. 376. 184. 73.]
         Type of Transaction ['Online' 'ATM' 'POS']
         Merchant Group ['Restaurant' 'Gaming' 'Subscription' 'Entertainment' 'Children' 'F
         ashion'
          'Electronics' 'Services' 'Food' 'Products']
         Country of Transaction ['United Kingdom' 'India' 'China' 'Russia' 'USA']
         Shipping Address ['Russia' 'United Kingdom' 'USA' 'India' 'China']
         Country of Residence ['United Kingdom' 'China' 'India' 'Russia' 'USA']
         Gender ['F' 'M']
         Age [36 41 32 65 61 67 21 48 53 78 81 25 47 42 29 71 22 85 52 59 79 37 55 26
          43 33 27 75 38 77 51 68 63 82 70 74 56 84 23 30 24 83 64 80 28 34 40 54
          39 72 46 44 35 49 76 57 66 69 62 31 73 58 50 45 60]
         Bank ['Barclays' 'RBS' 'Monzo' 'Lloyds' 'Barlcays' 'Halifax' 'HSBC'
         Fraud [0 1]
         df2.shape
In [12]:
         (100000, 12)
Out[12]:
```

Dividing data in dependent and independent variables

```
In [13]: X=df2.iloc[:,0:11]
X.shape
Out[13]: (100000, 11)
In [14]: y = df.iloc[:, -1]
y.shape
Out[14]: (100000,)
```

In [15]:	Х	head()								
Out[15]:		Type of Card	Entry Mode	Amount	Type of Transaction	Merchant Group	Country of Transaction	Shipping Address	Country of Residence	Gen
	0	MasterCard	Тар	17.0	Online	Restaurant	United Kingdom	Russia	United Kingdom	
	1	Visa	Тар	28.0	Online	Gaming	United Kingdom	United Kingdom	United Kingdom	
	2	Visa	Тар	8.0	Online	Subscription	United Kingdom	United Kingdom	United Kingdom	
	3	MasterCard	PIN	186.0	ATM	Entertainment	United Kingdom	United Kingdom	United Kingdom	
	4	Visa	PIN	86.0	Online	Children	United Kingdom	United Kingdom	United Kingdom	
4										

Feature engineering--> Encoding categorical values, OneHotEncoded

In [16]: x=pd.get_dummies(X)
 x.head()

Out[16]:		Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Type of Transaction_ATM	Transactio
	0	17.0	36	1	0	0	1	0	
	1	28.0	41	0	1	0	1	0	
	2	8.0	32	0	1	0	1	0	
	3	186.0	65	1	0	1	0	1	
	4	86.0	61	0	1	1	0	0	

5 rows × 44 columns

Feature engineering--> Scaling down the values to bring between 0 to 1

```
In [17]: from sklearn.preprocessing import MinMaxScaler
In [18]: scaler=MinMaxScaler()
In [19]: x[["Amount", "Age"]]=scaler.fit_transform(x[["Amount", "Age"]])
In [20]: x.describe()
```

Out[20]:		Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap
	count	100000.000000	100000.000000	100000.000000	100000.000000	100000.00000	100000.00000
	mean	0.272320	0.501275	0.461880	0.538120	0.50163	0.49837
	std	0.312477	0.292851	0.498547	0.498547	0.50000	0.50000
	min	0.000000	0.000000	0.000000	0.000000	0.00000	0.00000
	25%	0.030380	0.250000	0.000000	0.000000	0.00000	0.00000
	50%	0.063291	0.500000	0.000000	1.000000	1.00000	0.00000
	75%	0.513924	0.750000	1.000000	1.000000	1.00000	1.00000
	max	1.000000	1.000000	1.000000	1.000000	1.00000	1.00000

8 rows × 44 columns

Saving cleaned file as a backup

In [25]: df_new.to_csv("Scaled,Encoded Credit card Fraud detection full dataset.csv")

Importing Basic Libraries Pandas, Numpy and Data file to start with

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,classification_report
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
In [33]: df=pd.read_csv("Scaled,Encoded Credit card Fraud detection full dataset.csv")
df.head(1)
```

Out[33]:	Unname	d: 0	Amount	Age	Card_	Type of MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Transa	Ty action
	0	0	0.03038	0.234375		1	0	0	1		
	1 rows × 46	со	lumns								
4											•
In [34]:	df=df.iloddf.head(1	_	,1:]								
Out[34]:	Amount		Age	Ty Card_Maste	pe of rCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Ty Transaction	/pe of _ATM	Trans
	0 0.03038	0	.234375		1	0	0	1		0	
	1 rows × 45	СО	lumns								
4											•

Verifying all datasets for Application of Machine Learning Algorithms

:	df.des	scribe()					
		Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap
	count	100000.000000	100000.000000	100000.000000	100000.000000	100000.00000	100000.00000
	mean	0.272320	0.501275	0.461880	0.538120	0.50163	0.49837
	std	0.312477	0.292851	0.498547	0.498547	0.50000	0.50000
	min	0.000000	0.000000	0.000000	0.000000	0.00000	0.00000
	25%	0.030380	0.250000	0.000000	0.000000	0.00000	0.00000
	50%	0.063291	0.500000	0.000000	1.000000	1.00000	0.00000
	75%	0.513924	0.750000	1.000000	1.000000	1.00000	1.00000
	max	1.000000	1.000000	1.000000	1.000000	1.00000	1.00000
	8 rows	× 45 columns					

It is observed data is highly biased on Non-Fraud side

```
In [36]:
         sns.countplot(df.iloc[:,-1])
         <AxesSubplot:xlabel='Fraud', ylabel='count'>
Out[36]:
```


Understanding inter-relationships

In [82]: df.corr()

Out[82]:

	Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Tra
Amount	1.000000	0.001335	-0.001359	0.001359	0.767967	-0.767967	
Age	0.001335	1.000000	0.006618	-0.006618	-0.003054	0.003054	
Type of Card_MasterCard	-0.001359	0.006618	1.000000	-1.000000	0.000871	-0.000871	
Type of Card_Visa	0.001359	-0.006618	-1.000000	1.000000	-0.000871	0.000871	
Entry Mode_PIN	0.767967	-0.003054	0.000871	-0.000871	1.000000	-1.000000	
Entry Mode_Tap	-0.767967	0.003054	-0.000871	0.000871	-1.000000	1.000000	
Type of Transaction_ATM	-0.000660	-0.000039	-0.006430	0.006430	0.004680	-0.004680	
Type of Transaction_Online	-0.000855	0.000139	0.006772	-0.006772	-0.005661	0.005661	
Type of Transaction_POS	0.001517	-0.000100	-0.000352	0.000352	0.000990	-0.000990	
Merchant Group_Children	-0.004026	0.001258	-0.000412	0.000412	-0.005369	0.005369	
Merchant Group_Electronics	0.002302	-0.001000	-0.002517	0.002517	0.002746	-0.002746	
Merchant Group_Entertainment	0.004304	-0.001700	0.000141	-0.000141	0.004362	-0.004362	
Merchant Group_Fashion	-0.000780	-0.006501	0.004634	-0.004634	-0.002387	0.002387	
Merchant Group_Food	-0.000314	0.006188	-0.000035	0.000035	-0.001279	0.001279	
Merchant Group_Gaming	-0.003716	0.002517	0.000979	-0.000979	-0.002087	0.002087	
Merchant Group_Products	0.001828	-0.002453	-0.001407	0.001407	0.002146	-0.002146	
Merchant Group_Restaurant	-0.004744	-0.003973	-0.001188	0.001188	-0.001091	0.001091	
Merchant Group_Services	-0.002169	0.008175	-0.002382	0.002382	-0.003786	0.003786	
Merchant Group_Subscription	0.007533	-0.002548	0.002166	-0.002166	0.006989	-0.006989	
Country of Transaction_China	0.000582	-0.001511	-0.003142	0.003142	-0.000051	0.000051	
Country of Transaction_India	0.000536	0.003716	0.002726	-0.002726	-0.000784	0.000784	
Country of Transaction_Russia	-0.000145	-0.001597	0.005191	-0.005191	-0.002955	0.002955	
Country of Transaction_USA	-0.000617	-0.000479	0.000555	-0.000555	-0.001145	0.001145	
Country of Transaction_United Kingdom	-0.000198	-0.000057	-0.003050	0.003050	0.002824	-0.002824	

	Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Tra
Shipping Address_China	0.000227	-0.001471	-0.005167	0.005167	-0.001677	0.001677	
Shipping Address_India	0.000714	0.004704	0.004166	-0.004166	-0.000175	0.000175	
Shipping Address_Russia	-0.000982	0.000373	0.001689	-0.001689	-0.004404	0.004404	
Shipping Address_USA	-0.000373	0.000274	0.001260	-0.001260	-0.003817	0.003817	
Shipping Address_United Kingdom	0.000261	-0.002338	-0.001181	0.001181	0.006157	-0.006157	
Country of Residence_China	-0.000338	-0.005690	-0.003652	0.003652	0.000685	-0.000685	
Country of Residence_India	0.001364	0.004417	0.002380	-0.002380	0.000811	-0.000811	
Country of Residence_Russia	-0.000980	-0.005227	0.006216	-0.006216	-0.004720	0.004720	
Country of Residence_USA	-0.004759	-0.000377	-0.000099	0.000099	-0.004251	0.004251	
Country of Residence_United Kingdom	0.002575	0.003770	-0.002628	0.002628	0.004078	-0.004078	
Gender_F	0.000297	0.007241	-0.000158	0.000158	-0.001383	0.001383	
Gender_M	-0.000297	-0.007241	0.000158	-0.000158	0.001383	-0.001383	
Bank_Barclays	0.004839	0.003984	-0.001967	0.001967	0.002411	-0.002411	
Bank_Barlcays	0.005233	0.001865	-0.001309	0.001309	0.003348	-0.003348	
Bank_HSBC	-0.005702	-0.004560	-0.001707	0.001707	-0.001752	0.001752	
Bank_Halifax	-0.003191	-0.003549	-0.001355	0.001355	0.003517	-0.003517	
Bank_Lloyds	-0.005398	-0.004742	0.003877	-0.003877	-0.008629	0.008629	
Bank_Metro	0.005581	0.000053	0.001185	-0.001185	0.004243	-0.004243	
Bank_Monzo	-0.005151	0.001004	0.000973	-0.000973	-0.004112	0.004112	
Bank_RBS	0.001239	0.003818	0.001331	-0.001331	-0.000291	0.000291	
Fraud	-0.110096	-0.000867	-0.034703	0.034703	-0.152347	0.152347	

In [37]: sns.heatmap(df.corr())

Out[37]: <AxesSubplot:>

Divided the data into x and y as dependent and independent variables

```
In [38]: y=df.iloc[:,-1]
x=df.iloc[:,:-1]
x.shape,y.shape

Out[38]: ((100000, 44), (100000,))
```

Spliiting dataset and keeping 30% as testing data

```
In [39]: x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.3,random_state=10)
In [40]: x_train.shape,y_test.shape
Out[40]: ((70000, 44), (30000,))
```

Applying Logistic Algorithm -ML

```
In [41]: model=LogisticRegression()
model.fit(x_train,y_train)

Out[41]: LogisticRegression()

In [42]: y_pred=model.predict(x_test)
```

Checking accuracies for predicted model with, confusion matrix & classification report

Applying Decision Tree Classifier Algorithm- ML

```
In [49]:
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import classification_report,confusion_matrix
         model=DecisionTreeClassifier()
In [50]:
         model.fit(x_train,y_train)
In [51]:
         DecisionTreeClassifier()
Out[51]:
In [52]:
         y_pred=model.predict(x_test)
```

Checking accuracies for predicted model with, confusion matrix & classification report

```
con=confusion_matrix(y_pred,y_test)
In [53]:
         sns.heatmap(con,annot=True)
```

<AxesSubplot:> Out[53]:

In [54]: print(class	ification_rep	port(y_pred	d,y_test))	
	precision	recall	f1-score	support
6	0.98	0.98	0.98	27812
1	0.79	0.78	0.78	2188
accuracy	1		0.97	30000
macro avg	0.88	0.88	0.88	30000
weighted avg	0.97	0.97	0.97	30000

Applying Random Forest Classifier Algorithm-ML

```
from sklearn.ensemble import RandomForestClassifier
In [55]:
          model=RandomForestClassifier()
In [56]:
          model.fit(x_train,y_train)
In [57]:
         RandomForestClassifier()
Out[57]:
In [58]:
         y_pred=model.predict(x_test)
```

Checking accuracies for predicted model with, confusion matrix & classification report

```
In [59]:
         con=confusion_matrix(y_pred,y_test)
In [42]:
          sns.heatmap(con,annot=True)
         <AxesSubplot:>
Out[42]:
```



```
print(classification_report(y_pred,y_test))
In [60]:
                        precision
                                      recall f1-score
                                                         support
                     0
                             0.99
                                        0.98
                                                  0.99
                                                           28268
                             0.73
                                        0.92
                                                  0.81
                                                            1732
                                                  0.98
             accuracy
                                                           30000
                             0.86
                                        0.95
                                                  0.90
                                                           30000
            macro avg
         weighted avg
                             0.98
                                        0.98
                                                  0.98
                                                           30000
         x_test.head()
In [61]:
```

Out[61]:		Amount	Age	Type of Card_MasterCard	Type of Card_Visa	Entry Mode_PIN	Entry Mode_Tap	Type of Transaction_ATM	т
	33226	0.577215	0.03125	1	0	1	0	0	
	64804	0.020253	0.93750	1	0	0	1	0	
	39763	0.177215	0.59375	1	0	1	0	0	
	51270	0.235443	0.71875	0	1	1	0	0	
	9698	0.060759	0.25000	1	0	0	1	1	

5 rows × 44 columns

Applying Support Vector Machine Classifier Algorithm-ML

```
In [62]: from sklearn.svm import SVC
In [63]: model=SVC()
In [64]: model.fit(x_train,y_train)
Out[64]: SVC()
In [65]: y_pred=model.predict(x_test)
```

Checking accuracies for predicted model with, confusion matrix & classification report

```
In [66]: con=confusion_matrix(y_pred,y_test)
In [67]: sns.heatmap(con,annot=True)
Out[67]: <AxesSubplot:>
```


In [68]: pr	int(class	ification_re	port(y_pred	d,y_test))	
		precision	recall	f1-score	support
	(0 1.00	0.98	0.99	28409
	:	1 0.70	0.96	0.81	1591
	accuracy	y		0.98	30000
	macro av	g 0.85	0.97	0.90	30000
we	ighted av	g 0.98	0.98	0.98	30000

Applying Naive Bayes Algorithm-ML

```
In [69]: from sklearn.naive_bayes import GaussianNB
In [70]:
         model=GaussianNB()
In [71]:
         model.fit(x_train,y_train)
         GaussianNB()
Out[71]:
         y_pred=model.predict(x_test)
In [72]:
```

Checking accuracies for predicted model with, confusion matrix & classification report

```
con=confusion_matrix(y_pred,y_test)
In [73]:
         sns.heatmap(con,annot=True)
         <AxesSubplot:>
Out[74]:
```


In [75]: print(<pre>print(classification_report(y_pred,y_test))</pre>					
		precision	recall	f1-score	support	
	0	0.89	1.00	0.94	24726	
	1	0.98	0.40	0.57	5274	
ac	curacy			0.89	30000	
mac	ro avg	0.93	0.70	0.76	30000	
weight	ed avg	0.90	0.89	0.88	30000	

Applying K nearest neighbours Classifier Algorithm -ML

```
In [76]: from sklearn.neighbors import KNeighborsClassifier
         model=KNeighborsClassifier()
In [77]:
In [78]:
         model.fit(x_train,y_train)
         KNeighborsClassifier()
Out[78]:
         y_pred=model.predict(x_test)
In [79]:
```

Checking accuracies for predicted model with, confusion matrix & classification report

```
con=confusion_matrix(y_pred,y_test)
In [80]:
         sns.heatmap(con,annot=True)
         <AxesSubplot:>
Out[80]:
```


In [81]:	print(cla					
			precision	recall	f1-score	support
		0	0.99	0.98	0.98	28286
		1	0.69	0.87	0.77	1714
	accur	racy			0.97	30000
	macro	avg	0.84	0.92	0.88	30000
	weighted	avg	0.97	0.97	0.97	30000

Insights/ Outcomes from the Activity

- 1. Here models have less data for training Fraud Detected("1")
- 2. Almost all the models are giving good precision, recall and f1-score as they are having good amount of data
- 3. From comaprison of Recall score Random forest proved the best algorithm of all. Logistic regression gave 0.77 recall, decision tree gave 0.78 recall and Random forest gave 0.92 recall, where all three algorithms gave almost equal F1 score.
- 4. Naive bayes model is giving least type 2 error amount. But, this is not enough, we should also focus on its classification report. Its F1-score for naive bayes for Frauds is just 0.57. Naive bayes model is cleary not working accurately in this dataset, as expected.
- 5. SVM and KNN did good in terms of recall score but they lead to decrease precision values.