Solving Recurrences

1.
$$T(n)=2 * T(n/2) + 1000n \forall n \ge 2$$
 $T(1) = 1$

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Assumption: $T(n) \in O(n \log n)$

Step 1: Base case: n = 2

$$T(2) = 2 * T(2/2) + 1000(2)$$
 $<= c2log2$
 $2 * 1 + 2000$ $<= c2log2$
 $2002 <= c2log2$
 $1001 <= c$

n = 2 and c = 1001

Step 2:
$$T(k) \le c*k*log k$$

Step 3:
$$T(n) = 2T(n/2) + 1000n \le c*n*log n$$
 let $k = n/2$

$$2*c*\frac{n}{2}*log(\frac{n}{2}) + 1000n \le c*n*log n$$

$$c*n (log n - log 2) + 1000n \le c*n*log n$$

$$c*n (log n - 1) + 1000n \le c*n*log n$$

$$c*n*log(n) - cn + 1000n \le c*n*log n$$

$$c*n*log(n) - (cn - 1000n) \le c*n*log n$$

2.
$$T(n)=7*T(n/2)+18n^2$$
 $\forall n \ge 2$ $T(1)=1$

$$| \qquad \qquad |$$

$$\log n \qquad n^2 \qquad \Rightarrow \text{ This function is: } O(n^2 \log n)$$

Assumption: $T(n) \in O(n^2 \log n)$

Step 1: Base Case: (n = 2)

$$T(2) = 7 * T (2/2) + 18(2)^{2} \le c2^{2} log 2$$

79 $\le c4 log 2$
19.75 $\le c$

n = 2 and c = 19.75

Step 2:
$$T(k) = ck^2 log k$$

Step 3: T(n) =
$$7 * T(\frac{n}{2}) + 18n^2$$
 <= $cn^2 log n$
 $7*c(\frac{n}{2})^2 log(\frac{n}{2}) + 18n^2 <= cn^2 log n$
 $7 * c * \frac{n^2}{4} * (log(n) - log(2)) + 18n^2 <= cn^2 log n$
 $1.75cn^2 * (log(n) - 1) + 18n^2 <= cn^2 log n$
 $1.75cn^2 log(n) - 1.75cn^2 + 18n^2 <= cn^2 log n$
 $1.75cn^2 log(n) - n^2(1.75c + 18) <= cn^2 log n$

Note: 1.75 is just a constant and does not affect the Big O of a function.

We are left with: $cn^2 log(n) - n^2(1.75c + 18) \le cn^2 log n$

```
3. public int recursive(int n) {
    int sum=0;
    for(int i=1; i<= n; i++) {
        sum= sum +1;
    }
    if(n>1) {return recursive(n/2);}
    else{return1}
}
```

The for loop has a runtime of n and the recursive call has a runtime of n/2. The entire code has the Big O of: $O(n \log n)$

$$T(n) = 2T(\frac{n}{2}) + n \forall n \ge 2 \text{ where } T(1) = 1$$

Assumption: $T(n) \in O(n \log n)$

Step 1: Base case: n = 2

$$T(2) = 2T(2/2) + 2 \le c2\log 2$$

 $4 \le c2$

$$2 \ll c$$

n = 2 and c = 2

Step 2:
$$T(k) \le c*k*log k$$

Step 3: let
$$k = (n/2)$$

$$T(n) = 2T(\frac{n}{2}) + n <= c*n*log n$$

$$2c\frac{n}{2}log(\frac{n}{2}) + n <= c*n*log n$$

$$cn(log (n) - log 2) + n <= c*n*log n$$

$$cn (log n - 1) + n <= c*n*log n$$

$$c*n*log n - cn + n <= c*n*log n$$

Last Step: $c*n*log n - (cn - n) \le c*n*log n$