Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

Final 3^a Ev.

- 1. fin
301-0 Dada la función: $f(x) = \frac{x^2 2x + 1}{2x + 3}$, calcular:
 - (a) Dominio de f(x)

Sol:
$$Dom(f) = \left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Sol: Asíntotas: A.V. x = -3/2A.O. $y = \frac{x}{2} - \frac{7}{4}$ A.O. $y = \frac{x}{2} - \frac{7}{4}$

- 2. fin
301-1 Dada la función: $f(x) = \frac{-x^2 x + 3}{x^2 + x 2},$ calcular:
 - (a) Dominio de f(x)

Sol: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Sol: Asíntotas:

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

- 3. fin
301-2 Dada la función: $f(x) = \sqrt{\frac{x}{x-1}},$ calcular:
 - (a) Dominio de f(x)

Sol: $Dom(f) = (-\infty, 0] \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Sol: Asíntotas:

A.V.
$$x = 1$$

A.H.
$$y = 1$$

A.H.
$$y = 1$$

A.O.
$$y = 1$$

A.O.
$$y = 1$$

- 4. fin
302-0 Estudia en qué puntos de $\mathbb R$ la función no es
 continua:
 - (a) $f(x) = \begin{cases} \frac{2x^2 + 7x + 3}{x^2 9} & \text{for } x \le -2x \\ \frac{\sqrt{x + 3} 1}{x^2 + 2x} & \text{otherwise} \end{cases}$

Sol: Singularidades de las expresiones analíticas: $\{-3,0\}$.

Posibles discontinuidades en los extremos de los trozos:-2.

En -2 no es continua porque no existe límite. Límites laterales: $\frac{3}{5}$ y $-\frac{1}{4}$

5. fin
302-1 - Estudia en qué puntos de $\mathbb R$ la función no es continua:

(a)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x^2 - 3x + 2} & \text{for } x < 2\\ 4 & \text{for } x < 5\\ e^{x - 5} + 3 & \text{otherwise} \end{cases}$$

Sol: Singularidades de las expresiones analíticas: {1}.

Posibles discontinuidades en los extremos de los trozos:2, 5.

En 2 es continua ya que hay límite y lím = f(2) = 4.

En 5 es continua ya que hay límite y lím = f(5) = 4

6. fin303-0 - Halla a y b de modo que las siguientes funciones sean continuas:

(a)

$$f(x) = \begin{cases} a + e^{x+2} & \text{for } x \le -2\\ \frac{x+1}{3-x} & \text{for } x < 1\\ bx + 3 & \text{otherwise} \end{cases}$$

Sol: $\{a: -\frac{6}{5}, b: -2\}$

7. fin303-1 - Halla a y b de modo que las siguientes funciones sean continuas:

(a)

$$f(x) = \begin{cases} a + e^{x+3} & \text{for } x \le -3\\ \frac{x+2}{4-x} & \text{for } x < 1\\ bx + 6 & \text{otherwise} \end{cases}$$

Sol: $\left\{a:-\frac{8}{7},\ b:-5\right\}$

8. fin304-0 - Calcula los siguientes límites:

(a)

$$\lim_{x \to 3} \left(\frac{3x^2 - 11x + 6}{x^3 - 3x^2 + x - 3} \right)$$

Sol: 0

(d)

$$\lim_{x \to 2} \left(\frac{x^3 - 4}{x^2} \right)^{\frac{1}{x - 2}}$$

Sol: $\frac{7}{10}$

$$\lim_{x \to -2} \left(\frac{x^3 + x^2 - x + 2}{x^2 + 4x + 4} \right)$$

Sol: e^2

(b)

$$\lim_{x \to \infty} e^{1-x}$$

Sol: No existe el límite

9. fin304-1 - Calcula los siguientes límites:

(a)
$$\lim_{x\to 2} \left(\frac{x^3 - 2x^2 + 2x - 4}{3x^2 - 8x + 4}\right)$$
 (c)
$$\lim_{x\to 2} \left(\frac{x^3 - 2x^2 + 2x - 4}{3x^2 - 8x + 4}\right)$$
 (d)
$$\lim_{x\to 2} \left(\frac{x^3 - 2x^2 + 2x - 4}{x^2 - 8x + 4}\right)$$
 (d)
$$\lim_{x\to 2} \left(\frac{x^3 - 2x^2 + 2x - 4}{x^2 - 8x + 4}\right)$$
 (d)
$$\lim_{x\to 3} \left(\frac{x^2 - x}{x + 3}\right)^{\frac{1}{x-3}}$$
 (b)
$$\lim_{x\to -\infty} e^{x-1}$$
 (b)
$$\lim_{x\to -\infty} e^{x-1}$$
 Sol: No existe el límite

10. fin305-0 - Deriva las siguientes funciones (simplificando el resultado al máximo):

(a)
$$y = \frac{3x^2 - 2x + 1}{(x - 1)^2}$$

Sol: $y' = \frac{1}{4\sqrt{x}\sqrt{\sqrt{x} + 1}}$
(b) $y = \sqrt{\sqrt{x} + 1}$
Sol: $y' = \frac{1}{4\sqrt{x}\sqrt{\sqrt{x} + 1}}$
(c) $y = \frac{\log(x^2)}{x}$
Sol: $y' = \frac{-6\sin(2x)\cos(\cos(2x))}{-6\sin(2x)\cos(\cos(2x))}$

11. fin305-1 - Deriva las siguientes funciones (simplificando el resultado al máximo):

(a)
$$y = \frac{2x^2 - 2x + 1}{(x - 1)^2}$$

Sol: $y' = \frac{1 - \log(x)}{x^2}$

(b) $y = \sqrt{2 - \sqrt{x}}$

(c) $y = \frac{\log(x)}{x}$

Sol: $y' = \frac{1 - \log(x)}{x^2}$

(d) $y = 2\cos(\sin(2x))$

Sol: $y' = \frac{1 - \log(x)}{x^2}$

Sol: $y' = \frac{1 - \log(x)}{x^2}$

- 12. fin308-0 Se dispone de dos cajas, la caja A contiene 3 bolas moradas y 2 bolas rojas; mientras que la caja B contiene 4 bolas moradas y 4 rojas.
 - (a) Se escoge una bola cualquiera de la caja A y se pasa a la caja B. Posteriormente se saca una bola de la caja B. ¿Cuál es la probabilidad de que la bola extraída de la caja B sea morada?.

Sol:
$$\frac{3}{5} \cdot \frac{5}{9} + \frac{2}{5} \cdot \frac{4}{9} = \frac{23}{45}$$

(b) Ahora volvemos a la situación original de las cajas. Seleccionamos una caja al azar y se saca una bola que resulta ser roja. ¿Cuál es la probabilidad de que esa bola sea de la caja A?

Sol:
$$\frac{\frac{1}{2} \cdot \frac{2}{5}}{\frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{4}{9}$$

- 13. fin308-1 Se dispone de dos cajas, la caja A contiene 6 bolas verdes y 2 bolas blancas; mientras que la caja B contiene 4 bolas verdes y 4 blancas.
 - (a) Se escoge una bola cualquiera de la caja A y se pasa a la caja B. Posteriormente se saca una bola de la caja B. ¿Cuál es la probabilidad de que la bola extraída de la caja B sea verde?.

Sol:
$$\frac{3}{4} \cdot \frac{5}{9} + \frac{1}{4} \cdot \frac{4}{9} = \frac{19}{36}$$

(b) Ahora volvemos a la situación original de las cajas. Seleccionamos una caja al azar y se saca una bola que resulta ser blanca. ¿Cuál es la probabilidad de que esa bola sea de la caja A?

Sol:
$$\frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{1}{3}$$

- 14. fin308-2 Se dispone de dos cajas, la caja A contiene 3 bolas verdes y 2 bolas blancas; mientras que la caja B contiene 4 bolas verdes y 4 blancas.
 - (a) Se escoge una bola cualquiera de la caja A y se pasa a la caja B. Posteriormente se saca una bola de la caja B. ¿Cuál es la probabilidad de que la bola extraída de la caja B sea verde?.

Sol:
$$\frac{3}{5} \cdot \frac{5}{9} + \frac{2}{5} \cdot \frac{4}{9} = \frac{23}{45}$$

(b) Ahora volvemos a la situación original de las cajas. Seleccionamos una caja al azar y se saca una bola que resulta ser blanca. ¿Cuál es la probabilidad de que esa bola sea de la caja A?

Sol:
$$\frac{\frac{1}{2} \cdot \frac{2}{5}}{\frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{4}{9}$$