CHEMINFORMATICS @ UNIVERSITI SAINS MALAYSIA

NURUL HASHIMAH AHAMED HASSAIN MALIM
PRAGMA 33 MEETING, BRISBANE
17 OKTOBER 2017

PAST & PRESENT

SIMILARITY SEARCHING – AN ILLUSTRATION

THE TRANSITION — ENHANCING SIMILARITY SEARCHING

One target search

Similar Property
Principle

Direct Relationship (Target-Database)

Similarity Search

Multiple target search

Neighbourhood Behaviour

Indirect Relationship (Target-Database)

Data Fusion; Turbo Similarity Search

TURBO SIMILARITY SEARCHING (WILLETT'S GROUP, SHEFFIELD)

TURBO SIMILARITY SEARCHING (WILLETT'S GROUP, SHEFFIELD)

+ ALIA AZLEEN, NORASYIKIN YUSRI, YONG PEI CHIA, ABEER ALHASBARY, NURUL HASHIMAH AHAMED HASSAIN MALIM

Multi-level of indirect relationship

Fusion Rules, Similarity Measures Combination

SIMILARITY FUSION ON OPENMP & CUDA

MOSTAFA ALBARMAWI, NURUL HASHIMAH AHAMED HASSAIN MALIM

Figure 4.3: The Execution of Four Coefficients in Different Platforms

Figure 4.9: The Execution of Ten Coefficients in Different Platforms

GROUP FUSION ON OPENMP & CUDA

MOHD NORHADRI HILMI, NURUL HASHIMAH AHAMED HASSAIN MALIM

Fig. 9. Comparison on Sequential, parallel OpenMP and parallel CUDA for 10 query compounds.

TSS ON CUDA & OPENMP

MARWAH HAITHAM AL-LAILA, NURUL HASHIMAH AHAMED HASSAIN MALIM

```
//SS for the 2nd phase
void SS2(TanVal *A,int rowa, tScreen *DB,int rowd, TanVal *Rank)
  int i, j, c=0;
  float h=0;
  #pragma omp parallel for private(c,h,j) num_threads(no_proc)
   for (i=0; i<rowd; i++)
             Rank[i].id=DB[i].id;
             for (j=0; j<NumBits; j++)
                 { if (( A[rowa].screen[j]==1)&&(DB[i].screen[j]==1))
                     Rank[i].screen[j]=DB[i].screen[j];
             h=(A[rowa].bitsset+DB[i].bitsset-c);
             Rank[i].bitsset=DB[i].bitsset;
             Rank[i].value=c/h;
//GF function for the 2nd phase
void Fusion (TanVal *R1, TanVal *R2)
      #pragma omp parallel for num_threads(no_proc)
      for (i=0; i<wombat; i++)
              if (R2[i].value>R1[i].value)
                       R1[i].id=R2[i].id;
                      R1[i].value=R2[i].value;
                      R1[i].bitsset=R2[i].bitsset;
                        for (j=0; j<NumBits; j++)
                                   R1[i].screen[j]=R2[i].screen[j];
```

Figure 3.13: Pragma directives on SS and GF

```
Procedure TSS(R, DB[0: n-1])
Input: R (one structure, reference structure )
       DB[0:n-1]) (an array of structure with n element size, database)
Output: L_i [0:n-1] (i number of List L, L is array with n element size)
       Allocate the memory on the CPU for (R, DB, List) with size (1, n, n)
       Read (R. DB)
       No threads ←1024; //maximum no. of thread in block
       If n% No threads == 0 then
                                           //n is even
            No_blocks ← n/ No_threads;
       else No_blocks ← n/ No_threads +1; //n is odd
       endif
       cudaMalloc(R d, 1)
       cudaMalloc(DB d, n)
       cudaMalloc(List d, n)
       cudaMemcpy(R d, R, 1, cudaMemcpyHostToDevice);
       cudaMemcpy(DB_d, DB, n, cudaMemcpyHostToDevice);
       cudaMemcpy(List2_d, List, 200, cudaMemcpyHostToDevice);
       SS1 kernel <<<No blocks, No threads >>> (R d,DB d,n,List0 d);
       cudaMemcpy(List, List_d, n,cudaMemcpyDeviceToHost );
       QuickSort(List)
       cudaMemcpy(List2_d List, 200, cudaMemcpyHostToDevice);
       cudaMemcpy(L d L, (200*n), cudaMemcpyHostToDevice);
       SS2 Fusion kernel <<< No blocks, No threads >>> (List2 d,200, DB d,n,
       L_d,n,L
       cudaDeviceSynchronize();
       cudaMemcpy(L, L_d,(9*n),cudaMemcpyDeviceToHost);
       write (L) to text files
end TSS
```

Figure 3.6: Pseudocode of the Parallel TSS algorithm using CUDA method 1

```
Procedure TSS (R, DB[0:n-1])
Input: R (one structure, reference structure )
      DB[0:n-1]) (an array of structure with n element size, database)
Output: L_i [0:n-1] (i number of List L, L is array with n element size)
      Allocate the memory on the CPU for (R, DB, List) with size (1, n, n)
       Read (R,DB)
      No threads ←1024; //maximum no. of thread in block
      If n% No threads == 0 then
                                           //n is even
           No blocks ← n/ No threads;
      else No_blocks ← n/ No_threads +1; //n is odd
      endif
      cudaMalloc(R d, 1)
      cudaMalloc(DB d, n)
      cudaMalloc(List_d, n)
      cudaMemcpy(R_d, R, 1, cudaMemcpyHostToDevice);
      cudaMemcpy(DB_d, DB, n, cudaMemcpyHostToDevice);
      cudaMemcpy(List2_d, List, 200, cudaMemcpyHostToDevice);
      SS1 kernel <<<No blocks, No threads >>> (R d,DB d,n,List0 d);
      cudaMemcpy(List, List_d, n,cudaMemcpyDeviceToHost );
      QuickSort(List)
      cudaMemcpy(List2_d List, 200, cudaMemcpyHostToDevice);
      cudaMemcpy(L_d L, (200*n), cudaMemcpyHostToDevice);
      SS2_kernel <<< No_blocks, No_threads >>> (List2_d,200, DB_d,n, L_d,n);
      cudaDeviceSynchronize();
      Fusion kernel <<<No blocks, No threads >>> ( L d,200,n);
      cudaDeviceSynchronize();
      cudaMemcpy(L, L d,(9*n),cudaMemcpyDeviceToHost);
      write (L) to text files
end TSS
```

Figure 3.11: Pseudocode of the Parallel TSS algorithm using CUDA method 2

TSS ON CUDA & OPENMP

MARWAH HAITHAM AL-LAILA, NURUL HASHIMAH AHAMED HASSAIN MALIM

Numbers of NN's SS				
results being fused	Sequential	OpenMP	CUDA1	CUDA2
5	6346	4287.6	31.894	30.341
10	11822	7363.8	66.792	63.385
15	17260	10888.8	98.846	93.320
20	22602	14083.4	131.548	124.234
30	32656	19314.8	199.846	189.193
40	42732	24291.4	267.704	253.419
50	52592	29010.4	339.664	322.185
100	99314	45289.8	703.630	671.054
200	192064	75285.4	1460	1392.35

Numbers of NN's SS results being fused	GPU Memory used for CUDA 1 (MB)	GPU Memory used for CUDA 2 (MB)	
5	444.20	805.39	
10	444.98	807.35	
15	445.76	809.30	
20	446.54	811.26	
30	447.32	815.17	
40	448.11	819.08	
50	448.89	822.99	
100	449.67	842.55	
200	450.45	881.67	

STRUCTURAL REPRESENTATION

Binary Descriptor

ECFP

Non-Binary Descriptor

ECFC

00030020011000400

Weighted by the frequency value of each fragments

SRECFC

0001.73001.410011000200

Weighted by the square root of the frequency value of each fragments

LATEST WORK .. LINGO

MUHAMMAD JAZIEM JAVEED, NORAZZAWANI AZMAN, FATEN UMIDALILA, SYUHADAH RAMLI, NURUL HASHIMAH AHAMED HASSAIN MALIM

LINGO Generation Process (Vidal et al 2005)

ASSOCIATION RULE MINING

MUHAMMAD JAZIEM JAVED, NURUL HASHIMAH AHAMED HASSAIN MALIM

Rules	Support	Confidence	Lift
{C(=O} => {(=O)}	0.638365	1	1.397802
{(=O)} => {C(=O}	0.638365	0.892308	1.397802
{0ccc} => {c0cc}	0.79717	0.998031	1.090632
{c0cc} => {0ccc}	0.79717	0.871134	1.090632
Figure 5. Interesting	rules generate	d using COX activ	itv class.

Rules	Support	Confidence	Lift
{C(=O} => {(=O)}	0.631347	1	1.36036
{(=O)} => {C(=O}	0.631347	0.858859	1.36036
{0ccc,ccc0} => {cccc}	0.618102	0.949153	1.318914
{0ccc,c0cc,ccc0} => {cccc}	0.618102	0.949153	1.318914
{cccc} => {ccc0}	0.618102	0.858896	1.314459
Figure 6. Interesting rules	generated us	sing PKC activi	ity class.

Rules	Support	Confidence	Lift
{c(cc,c0)c,cc(c} => {(cc0}	0.662778	1	1.326301
{c(cc,cc(c,Cc0c) => {(cc0}	0.725345	1	1.326301
{c(cc,c0)c,cc0)} => {(cc0}	0.662778	1	1.326301
{c(cc,cc0),Cc0c} => {(cc0}	0.715801	1	1.326301
{c(cc,c0)c,ccc(} => {(cc0}	0.660657	1	1.326301

Figure 7. Interesting rules generated using AT1 activity class.

Rules	Support	Confidence	Lift
{(Cc0,C(O)} => {(O)C}	0.610667	0.995652	1.427799
{(Cc0,C(O),Cc0c} => {(O)C}	0.610667	0.995652	1.427799
{(Cc0,C(O),cccc} => {(O)C}	0.609333	0.995643	1.427786
{(Cc0,0ccc,C(O)} => {(O)C}	0.609333	0.995643	1.427786
{(Cc0,C(O),c0cc} => {(O)C} Figure 8. Interesting rules	0.609333	0.995643	1.427786
Figure 8. Interesting rules	generated (using HIVP ac	tivity class.

PRESENT & FUTURE

Databases

- MDL Drug Data Report (MDDR)
- ChEMBL
- NADI

Applied Method

- Similarity Searching
- Data Fusion
- Machine Learning
- Deep Learning
- Association Rule Mining

Processing

- Normal Processing
- Parallel Processing
 - Multi-core
 - OpenMP
 - Many-cores
 - GPU Tesla C2060

SARAVANAN SAGADEVAN, MUHD BAQIR HAKIM, NURUL IZATI RIDZUWAN, NURUL HASHIMAH AHAMED HASSAIN MALIM

- Personality traits influence criminal to conduct crime activities.
- * The writings and used of language strongly correlated with personality traits

Raised Curiosity

- * Whether writing pattern in social networks by cyber criminals could be detect automatically by using personality traits (Psychoticism trait from Three Factor Model).
- * If yes, how much better would be the performances of the classifiers be and what are the words or combination of words that may be frequently used by cyber predators.

Linguistics and Personality

- Sir Francis Galton first person that hypothesized natural language terms might present the personality differences in humankind (Sapir, 1921).
- Allport and Odbert claimed that almost 18,000 English terms could represent personality.
- Hofstee suggested that nouns, sentences, and actions might have some kind of connotations towards personality.
- Behaviors often influence the human activities (e.g.- Crime act).
- Psychoticism trait from Three Factor Model (PEN) strongly correlated with the behaviors of criminals (Eysenck,1972).
- People that score high on psychoticism is often solitary and troublesome, sometimes cruel, un-empathic, aggressive, and has unusual tastes

Crime

Linguistics as fingerprint

Writing patterns, strings (sentiment words, symbols) and expression in the text
messages often act as fingerprints in revealing the personality traits of the culprits
who hide behind the anonymity provided by social networks[1].

Performance measurement based on True Positive (TP) and False Positive (FP)							
Cross Validation		3		5		10	
Classifier	TP	FP	TP	FP	TP	FP	
ZeroR	53.3	46.7	53.3	46.7	53.3	46.7	
NB	80.0	20.0	90.0	10.0	90.0	10.0	
KNN	63.3	36.7	56.7	43.3	56.7	43.3	
SMO	73.3	26.7	70.0	30.0	86.3	16.7	
J48	50.0	50.0	63.3	36.7	70.0	30.0	

LATEST

❖ We are seeking any collaboration with any parties that possess large textual datasets (e.g. from social networks, IRC chat or Dark Web) wrote by the real/actual cyber terrorists and cyber criminals against their victims.

Thank You!

nurulhashimah@usm.my