

How to design economic mechanisms for efficient operation of low-inertia power grids

Luis Badesa

TRANSIT

3 topics covered

1. Unlocking the support from DER via risk-constrained optimization

2. From **low-level control** instructions to **system-level optimization** via data-driven methods

3. Who should pay for frequency-containment services?

Frequency stability

the European Union

Key to keep frequency within safe limits to avoid demand disconnection!

Lower inertia on the road to lower emissions

Thermal generators (nuclear, gas, coal...):

Inertia stores kinetic energy:

The risk of instability has increased!

the European Union

this energy gave us time to contain a sudden generation-demand imbalance

3 topics covered

- 1. Unlocking the support from DER via risk-constrained optimization
- 2. From **low-level control** instructions to **system-level optimization** via data-driven methods
- 3. Who should pay for frequency-containment services?

Paper:

C. O'Malley, L. Badesa et al., "Frequency Response from Aggregated V2G Chargers With Uncertain EV Connections," *IEEE Trans. on Power Systems*, 2023

Unlocking support from Distributed Energy Resources

- DER could be very valuable to support system stability, but they
 are inherently uncertain
- We focus on **Vehicle-to-Grid (V2G)**: the system operator cannot control when the EV owners plug in their vehicles

Why is this important?

Now

Future

Stability through gas plants

- Pros: certain + reliable
- Cons: expensive + polluting

Stability services from **DER**

- Pros: abundant + cheap
- Cons: uncertain

Stability conditions for optimization

What is the value of V2G as a countermeasure to low inertia?

Mapping the stability boundary

Ancillary services

Economic optimization

Described by

differential equations

(timescale of sub-seconds)

Based on algebraic equations (timescale of min/hours)

Uncertainty within the stability conditions

We propose the use of chance constraints:

Probability of complying with **stability limit** ≥ 1 - €

Uncertainty in **EV plug-in** times

Risk appetite (e.g., 1% chance of under-delivery)

What do we mean by risk?

Probabilistic forecast

for EV connections

Naïve scheduling:

- Use deterministic
 forecast (mean)
- Count on 100k EVs
- 50% chance of having less than expected

Risky!

the European Union

What do we mean by risk?

Probabilistic forecast

for EV connections

Risk-limited scheduling:

- Specify **risk tolerance** (e.g., 5%)
- Count on 76k EVs

What do we mean by risk?

Probabilistic forecast

for EV connections

Risk-limited scheduling:

- Specify risk tolerance
 (e.g., 1%)
- Count on 70k EVs

Lower risk implies

less support from EVs

considered

the European Union

Steps for deducing chance constraints

1. Model system frequency via single-machine swing equation:

$$\frac{2\boldsymbol{H}}{f_0}\frac{d\boldsymbol{\Delta}\boldsymbol{f}}{dt} = \boldsymbol{R^{EV}}(t) + \boldsymbol{R^{ND}}(t) + \boldsymbol{R^{G}}(t) - \boldsymbol{PL_{max}}$$

2. Solve swing equation to obtain RoCoF and nadir constraints:

$$\mathbb{P}\left[\left(\frac{\boldsymbol{H}}{f_0} - \frac{(\boldsymbol{R^{ND}} + \boldsymbol{R^{EV}}) \cdot T_1}{4\Delta f_{max}}\right) \frac{\boldsymbol{R^G}}{T_2} \quad \geq \left(\frac{\boldsymbol{PL_{max}} - (\boldsymbol{R^{ND}} + \boldsymbol{R^{EV}})}{2\sqrt{\Delta f_{max}}}\right)^2\right] \geq 1 - \epsilon$$

3. Use a **convex reformulation** for the non-convex chance constraints

Convexification of chance constraint

<u>Several options</u> for the **convex reformulation**:

The more information available in the forecast, less conservative | the reformulation:

- Gaussian uncertainty?
- Unimodal distribution? (single peak)
- Only mean and variance known? **Distributionally-robust** formulation (most conservative)

Results for Great Britain

- Frequency-secured UC run for a full year in 2030
- Two EV fleets considered:
 - > 'Domestic V2G': 85,000 units, 10 kW chargers
 - > 'Work V2G': 15,000 units, 20 kW chargers
- Risk of under-delivery set at 1%
 - ➤ Does **not mean** 1% risk of **violating security**: that risk is extremely small (largest *N*-1 contingency needs to happen too)

EV connectivity forecasting and data analysis

the European Union

Data from UK Department of Transport, 2017

Test for ambiguity set

Domestic fleet disconnections on weekday

- Not Gaussian
- Unimodal with high confidence (from Shapiro-Wilk test)

Results: comparison of V2G to BESS

V2G capacity shown to be **one third as valuable** as stationary BESS

- > EV chargers only have an EV connected ~40% of the time
- > EV chargers are subject to uncertainty

But EVs have no additional investment cost!

IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT- Europe)

Where does this value come from?

Fewer CCGTs

are needed,

thanks to

frequency support

from **EVs**

3 topics covered

- 1. Unlocking the support from DER via risk-constrained optimization
- 2. From **low-level control** instructions to **system-level optimization** via data-driven methods
- 3. Who should pay for frequency-containment services?

Paper:

Q. Chen, L. Badesa et al., "Adaptive Droop Gain Control for Optimal Kinetic Energy Extraction From Wind Turbines to Support System Frequency," *IEEE Access*, 2024

Research question

How to **translate** the **system** optimal **dispatch** into **specific control gains** for devices?

(not possible with fully analytical methods as the one shown earlier)

Goal:

Optimal kinetic energy extraction from wind turbines depending on overall system dispatch

Approach we used

Data-driven methods | allow to compute explicit control instructions

But, how to choose the classifier?

> We opt for an **Optimal Classification Tree** (OCT): **simple** structure and **tractable** for incorporating into optimization

Other options:

- ➤ Logistic regression and SVM: limited by hyperplane separation (although kernels could be used)
- > Neural Networks: problems with tractability due to binary variables

Adaptive Droop Gain (ADG)

ADG
$$(v_w, P_G, L_D, pl, \Delta P_L, \omega_r) = \widetilde{K}_{\rm sys} \cdot (\omega_r^2 - \omega_{r, min}^2)$$

System operating condition

 $\widetilde{K}_{\rm sys} = f(v_w, P_G, L_D, pl, \Delta P_L)$

An **Optimal Classification Tree** (OCT) is used to <u>encode frequency-stability</u> conditions within a system-wide economic dispatch

> The ADG is explicitly incorporated into the OCT

Communication requirements

the European Union

Optimal Classification Tree

Offline training

(outside the Unit Commitment / OPF)

> Penalize 'false safe' predictions (adjustable parameter)

Minimize classification error Penalize tree depth

s.t.
$$l_t \ge \omega \cdot n_{0t} - \mathcal{M} \cdot (1 - c_t) \quad \forall t \in \underline{\Omega}^T$$

$$l_t \le \omega \cdot n_{0t} + \mathcal{M} \cdot c_t \quad \forall t \in \underline{\Omega}^T$$

$$l_t \ge n_{1t} - \mathcal{M} \cdot c_t \quad \forall t \in \underline{\Omega}^T$$

$$l_t \le n_{1t} + \mathcal{M} \cdot (1 - c_t) \quad \forall t \in \underline{\Omega}^T$$

$$n_{1t} = \sum_{i \in \Omega^{\mathcal{N}}} z_{it} \cdot Y_i \quad \forall t \in \underline{\Omega}^{\mathcal{T}}$$

$$= \sum_{i \in \Omega^{\mathcal{N}}} z_{it} \cdot Y_i \quad \forall t \in \underline{\Omega}^{\mathcal{I}}$$

$$n_{0t} = \sum_{i \in \Omega^{\mathcal{N}}} z_{it} - n_{1t} \quad \forall t \in \underline{\Omega}^{\mathcal{T}}$$

Classification boundaries (linearized via big-M)

'Safe' classifications

'Unsafe' classifications

Optimal Classification Tree

Pruning redundancies

This OCT is integrated into the

OPF as a set of constraints

IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT- Europe)

Case studies

- Frequency-secured OPF run for an IEEE 14-bus network
- 1,500 **labelled samples** from **dynamic simulations** in Simulink
 - > ~2 days computing time (on standard laptop)
 - > 70% for training, 20% for validation, 10% for testing
- Training OCT offline (solving MILP): ~30 min
 - > Could be retrained, e.g., daily, using new datasets with updated wind and load forecasts (reduces conservativeness)

Results

the European Union

Dispatch solutions

the European Union

The **optimal** droop gain K_{sys} fluctuates with the system dispatch: roughly inversely proportional to wind power

Security boundary

Slight underestimation of nadir due to conservativeness in OCT

5 different
OPF solutions,
arbitrarily chosen

the European Union

Cost savings

System savings of at least 8% compared to system-unaware controller

Note that the optimal value of fixed gain (K = 20) can only be computed by system optimization (through the OCT)

3 topics covered

- 1. Unlocking the support from DER via risk-constrained optimization
- 2. From **low-level control** instructions to **system-level optimization** via data-driven methods
- 3. Who should pay for frequency-containment services?

Paper:

C. Matamala, L. Badesa et al., "Cost Allocation for Inertia and Frequency Response Ancillary Services," *IEEE Trans. on Energy Markets*, 2024

Cost allocation for frequency services

We have focused on optimizing the total cost of frequency services, but...

- 1. Who should cover this cost?
 - Generators?
 - Consumers?
 - Only a subset of the former?
- 2. How much should each market participant pay?

First, why worry about who pays?

- Currently costs are socialized in most countries (except Australia)
- Until recently, irrelevant who paid (costs were small due to high inertia)

Goal of moving towards a 'causer pays' framework:

To create incentives to 'do less harm' to the grid

(in order to reduce the cost of frequency services for consumers)

Who causes the need for frequency services?

Large units do: a low-inertia system would do fine if all units were small (there would be no large, sudden power imbalances)

Impact of inertia

under a large contingency

Impact of contingency size

in a low-inertia system

IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT- Europe)

Who causes the need for frequency services?

Large units do: a low-inertia system would do fine if all units were small (there would be no large, sudden power imbalances)

We rule out penalizing the lack of inertia

- Inertia is a service, it should be remunerated appropriately
- But lack of inertia is not a problem by itself

How to split the cost?

Option 1: proportional cost allocation

- ✓ Easy to design: each unit pays in proportion to its size
- ✓ Creates incentive for large units to 'do less harm'
- Problem: it maintains cross-subisidies
 (small units still subsidize large ones)

Option 2: sequential cost allocation (coming next)

✓ Advantage: no cross-subsidies

Sequential cost allocation (Shapley value)

the European Union

Each unit pays for the additional cost that it creates

Reference: "A report describing the Wholesale Electricity Market in the South West Interconnected System", Australian Energy Market Operator, September 2023

Steps

the European Union

1) Frequency-containment services market clearing (driven by largest unit)

Steps

the European Union

Steps

Analysis for Great Britain

the European Union

Benefits of the cost allocation

- To create investment signals
 - Large units would be <u>responsible for their system-integration cost</u> (e.g., nuclear, offshore wind, HVDC)
 - > Costs would still trickle down to consumers, but appropriate economic signals for generation would be in place
- To incentivize flexibility
 - Large units can reduce the cost they are allocated by <u>reducing</u> <u>power output/demand</u>

Thank you for your attention!

All papers and some related code on my website:

https://badber.github.io/