මිනුම් උපකරන වල කුඩාම මිනුම

මිනුම් උපකරන වල දෝෂය

මිනුම් උපකරණයක සිදුවිය හැකි උපරිම දෝෂය එහි කුඩාම මිනුමට ආසන්න වශයෙන් සමාන වේ.

🕹 ගණනයේ දී මිනුම් උපකරණයක

උපරිම දෝෂය = කුඩාම මිනුම ලෙස සලකයි.

ගැටළු වල දී මිනුම් උපකරණයේ දෝෂය දී නොමැති නම්

දෝෂය = උපරිම දෝෂය = කුඩාම මිනුම ලෙස ගන්න.

Ex:- මීටර් රූලෙහි දෝෂය = 1 mm

භාගික දෝෂය

දෝෂය = කුඩාම මිනුම නිසා

පුතිශත දෝෂය

දෝෂය = කුඩාම මිනුම නිසා

- 💠 කිසියම් පාඨාංකයක පුතිශත දෝෂය
 - 1 % ට වඩා අඩු නම් එම පාඨාංකය නිවැරදි පාඨාංකයක් ලෙසද එම පාඨාංකය ලබාගැනීම සඳහා භාවිතා කළ උපකරණය එම පාඨාංකය ලබාගැනීමට සුදුසු බවද සලකයි.
 - 1 % ට වඩා වැඩි නම් එම පාඨාංකය වැරදි පාඨාංකයක් ලෙසද එම පාඨාංකය ලබාගැනිම සඳහා භාවිතා කළ උපකරණය එම පාඨාංකය ලබාගැනීමට නුසුදුසු බවද සලකයි.

Question Type 01

1.	ලී කුට්ටියක දිග මීටර් රූලක් මගින් මනිනු ලැබූවිට 160 mm ක අගයක් ලැබිණි මෙම පාඨාංක
	ලබාගැනීමේදී සිදුවන පුතිශත දෝශය සොයන්න. මේ අනුව ලී කුට්ටියේ දිග මැනීමට මීටර් රූල
	සුදුසුද නැද්ද යන බව හේතු දක්වමින් සඳහන් කරන්න.
• • • •	
2.	මීටර් රූලක් මගින් වීදුරු තහඩුවක දිග මනිනු ලැබූවිට 12.5cm ක අගයක් ලැබිණි මෙම පාඨාංක
	ලබාගැනීමේදී සිදුවූ උපරිම පුතිශත දෝශය සොයන්න. මේ අනුව වීදුරු තහඩුවේ දිග මැනීමට
	මීටර් රූල සුදුසුද නැද්ද යන බව හේතු දක්වමින් සඳහන් කරන්න.
3	මීටර් රූල භාවිතයෙන් මැනිමට සුදුසු කුඩාම දිග සොයන්න.
Ο.	මටට රුල භාවක්ෂයන් මැන්වෙ සුදුසු කුයාම දිහි මසායන්න.
4.	මීටර් රූලක් මගින් ප්ලාස්ටික් පටියක දිග මැන ලබාගත් පාඨාංකයේ පැවතිය හැකි උපරිම පුතිශත
-	දෝශය සෙවු විට පුතිශත දෝශය ලෙස 0.25% ක අගයක් ලැබුණෙනම් පටියේ දිග සොයන්න.

5. මීටර් රූලක් මගින් ලෝහ තහඩුවක දිග මැන ලබාගත් පාඨාංකයේ පැවතිය හැකි උපරිම පුතිශත දෝශය සෙවු විට පුතිශත දෝශය ලෙස 0.2% ක අගයක් ලැබුණේනම් තහඩුවේ දිග සොයන්න.

දිග මැනීමේ උපකරණ ව` නියර් කැලිපරය

💠 පහත ව` නීයර් කැලිපරයේ දක්වා ඇති කොටස් නම් කරන්න

I	2
3	4
5	6
7	
💠 3,4,5,6,7 කොටස් මගින් සිදුකරන කාර්යය වි	ස්තර කරන්න

SFT

වරින් වාಷලගේ

මිනුම් උහකරන

එ ව' නියර් කැලිපරයේ බාහිර :	හනු , අභාන්තර හනු සහ ගැඹුර	් මනින කූර මගින් මැනිය හැකි			
දිගවල් සඳහා උදාහරණ පහත	B වගුවේ දක්වා ඇත. B වගුවේ	ඇති උදාහරණ අතුරින් තෝරා A			
වගුවේ හිස්තැන් පුරවන්න					
	🛕 වගුව				
බාහිරහනු	අභෳන්තර හනු	ගැඹුර මනින කුර			
B වගුව					
පරීක්ෂණ නලයක භාහිර විශ්කම්බය , පරීක්ෂන නලයක අභාාන්තර විශ්කම්බය , ඍජුකෝණාසුාකාර					
කැබැල්ලක දිග , පළල සහ උස	, කුහරයක විශ්කම්බය , කුහරයක (ගැඹුර , පරීක්ෂණනලයක ගැඹුර			

කුඩාම මිනුම

කුඩාම මිනුම = පුධාන පරිමානයේ කුඩාම කොටසක දිග ව'නියර් පරිමානයේ කොටස් ගණන

පාඨාංකය

පාඨාංකය = පුධාන පරිමාණ පාඨාංකය + ව ' නියර් පරිමාන පාඨාංකය

මිනුම් උපක්රන	SFT	වරින් වානලගේ 6

පාඨාංකය = පුධාන පරිමාණ පාඨාංකය + 🌓 කුඩාම මිනුම 🛮 X ව නියර් පරිමානලය් ශූනාගයේ සිට සමපාත වී ඇති රේඛාව දක්වා ඉකාටස් ගණන

මූලාංක දෝශ

	~~~
<b>*</b>	මූලාංක දෝශ සහිත ව ` නියර් කැලිපරයක් හඳුනාගන්නේ කෙසේද ?
ධප	ත මුලාංක දෝශය
<b>*</b>	ව ` නියර් කැලිපරයක ධන මුලාංක දෝශය යනු කුමක්ද ?
	ධන මූලාංක දෝෂය = කුඩාම මිනුම X ව'නියර් පරිමානයේ ශූනායයේ සිට සමපාත රේඛාව දක්වා කොටස් ගණන
L	
	නිවැරදි පාඨාංකය = පාඨාංකය - ධන මූලාංක දෝෂය

# සාණ මුලාංක දෝශය



නිවැරදි පාඨාංකය = පාඨාංකය + ඍන මූලාංක දෝෂය