#### **Decision Trees**

Boris Velichkov

#### **Decision Tree**

- Machine Learning
  - Supervised Learning
    - Classification
    - Regression
  - Global Learning
  - Model-Based Learning
  - Eager Learning

#### **Decision Tree**

- Decision tree learning is a method for approximating discrete-valued target functions, in which the learned function is represented as a decision tree
- Decision tree representation:
  - Each internal node tests an attribute
  - Each branch corresponds to attribute value
  - Each leaf node assigns a classification
- Re-representation as if-then rules: disjunction of conjunctions of constraints on the attribute value instances

#### Decision Tree for Play Tennis



Logical Formulation: (Outlook = Sunny  $\land$  Humidity = Normal)

V (Outlook = Overcast)

V (Outlook = Rain  $\land$  Wind = Weak)

## When to Consider Decision Trees

- Instances describable by attribute—value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

#### **Examples:**

- Equipment or medical diagnosis
- Credit risk analysis
- Modelling calendar scheduling preferences

# Top-Down Induction of Decision Trees (ID3)

- 1. A is the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

#### Which attribute is best?



#### Entropy

- S is a sample of training examples
- P+ is the proportion of positive examples in S
- P- is the proportion of negative examples in S
- Entropy measures the impurity of S  $Entropy(S) \equiv H(S) \equiv -p + log2 p + -p log2 p log2 p$
- H(S) = 0 if sample is pure (all + or all -), H(S) =
   1 bit if p+ = p- = 0.5

#### Information Gain

 Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

 Information gain is also called the mutual information between A and the labels of S



# Training Examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### Building the Decision Tree



Which attribute should be tested here?

```
S_{SLOWY} = \{D1,D2,D8,D9,D11\}

Gain (S_{SLOWY}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970

Gain (S_{SLOWY}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570

Gain (S_{SLOWY}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019
```

#### Decision Tree Visualization



#### How to Fix the Overfitting?

- Common technics
  - Getting more training data
  - Cross-validation sampling
  - Reducing number of features
  - Pruning
  - Regularization
    - Increase Regularization term

#### How to Fix the Overfitting?

- Mostly for Decision Trees
  - Pruning
    - Pre-Pruning
    - Post-Pruning
  - Ensemble Learning
    - Random Forest
    - XGBoost

### Example

https://www.saedsayad.com/decision\_tree.htm