Instruction Finetuning

Tópicos em Ciência de Dados

Prof. Dr. Denis Mayr Lima Martins

Pontifícia Universidade Católica de Campinas

Objetivos de Aprendizagem

- Explicar a necessidade e função do Ajuste Fino de Instruções (AFI)
- Descrever a metodologia de treinamento e perda: detalhar a estrutura dos dados de AFI (instrução, contexto, resposta alvo) e explicar a função da perda
- Avaliar o desempenho do modelo: utilizar métricas de avaliação e entender o papel de modelos externos (*LLM-as-a-Judge*) na avaliação da qualidade do alinhamento.

Baseado no Livro Build a Large Language Model From Scratch de Sebastian Raschka

Code repository: https://github.com/rasbt/LLMs-fromscratch

Relembrando: O Conceito de Fine-Tuning

- **Definição:** É o processo de utilizar um modelo pré-treinado como base e treiná-lo adicionalmente em um *dataset* menor e específico de um domínio ou tarefa.
- Objetivo: Adaptar o modelo ao novo contexto, aprimorando o desempenho em aplicações especializadas, como tradução de linguagem, análise de sentimento ou sumarização.
- **Vantagem:** O *fine-tuning* se baseia no conhecimento pré-existente do modelo, o que reduz substancialmente os requisitos computacionais e de dados em comparação com o treinamento do modelo do zero (*pre-training*).

Por Que os LLMs Tradicionais Falham com Diretivas

- **Objetivo do Pré-treinamento:** Os LLMs são otimizados para o reconhecimento de padrões linguísticos, minimizando o erro de previsão contextual da próxima palavra em vastos *corpora*.
 - O modelo prevê o próximo token em uma sequência com base em padrões estatísticos.
- A Limitação: Este objetivo de previsão do próximo token não otimiza inerentemente o modelo para seguir instruções explícitas do usuário.
 - Sem treinamento adicional, um LLM de base simplesmente completa um prompt, em vez de fornecer uma resposta útil.
 - Exemplo: Solicitar "me ensine a fazer pão" pode resultar em "em um forno de casa" (uma conclusão gramaticalmente correta, mas inútil).
- A Solução: O AFI refina o modelo pré-treinado para interpretar as consultas do usuário como instruções formais que exigem ações específicas.

O Que é Ajuste Fino de Instruções (AFI)?

- **Definição:** AFI é uma técnica de ajuste fino que refina LLMs pré-treinados para aderir a instruções de tarefas específicas.
- Metodologia: Envolve treinamento supervisionado em conjuntos de dados que consistem em pares explícitos de prompt-resposta.
- Função Chave: O AFI preenche a lacuna entre a capacidade inerente de previsão da próxima palavra do LLM e o objetivo definido pelo ser humano de aderir a diretivas.
- Benefícios:
 - 1. **Alinhamento:** Conecta o objetivo de pré-treinamento com o objetivo de seguir instruções.
 - 2. **Controlabilidade:** Restringe os *output*s do modelo para alinhá-los com as características desejadas (e.g., formato ou conhecimento de domínio).
 - 3. **Generalização:** Modelos ajustados por instruções demonstram forte desempenho *zero-shot* e *few-shot* em tarefas não vistas.

Anatomia de uma Amostra de Dados AFI

O AFI requer pares de instruções e seus *output*s de alta qualidade correspondentes.

- 1. Instrução (A Diretiva): Define claramente a tarefa necessária.
 - Exemplo: "Traduza a seguinte frase para o Francês".
- 2. Input/Contexto (O Conteúdo): Informações suplementares opcionais relevantes para a tarefa.
 - Exemplo: "A frase a traduzir: 'O processo de ajuste fino é complexo.'".
- 3. Resposta Alvo (A Resposta Ouro): O *output* de referência de alta qualidade que demonstra a conclusão correta da tarefa.

Prompt Style Template

```
An entry in the instruction dataset
                         "instruction": "Identify the correct spelling of the following word.",
                         "input": "Ocassion",
                         "output": "The correct spelling is 'Occasion.'"
                     },
One way to format the data
                                                                            Apply Phi-3 prompt style template
 entry to train the LLM
                          Apply Alpaca prompt style template
                                                       Sebastian Raschka
                   Below is an instruction that
                                                                      <|user|>
                   describes a task. Write a response
                                                                      Identify the correct spelling of the
                   that appropriately completes the
                                                                      following word: 'Ocassion'
                   request.
                                                                      <|assistant|>
                   ### Instruction:
                                                                      The correct spelling is 'Occasion'.
                   Identify the correct spelling of the
                   following word.
                   ### Input:
                   Ocassion
                   ### Response:
                   The correct spelling is 'Occasion'.
```

Estratégias de Coleta de Dados I

A curadoria e o dimensionamento de pares de instrução-*output* de alta qualidade são desafios centrais do AFI.

- 1. Dados Criados por Humanos: Dados anotados manualmente ou obtidos diretamente, confiando apenas na coleta e verificação humana.
 - Prós: Geralmente a mais alta qualidade e consistência.
 - Contras: Demorado e custoso para grandes escalas.
 - Exemplos: Databricks Dolly (15K instâncias, abrangendo 7 tipos como Q&A, escrita criativa), Meta LIMA (1K exemplos cuidadosamente selecionados).
- 2. Integração de Dados de Conjuntos de Dados Anotados:
 - Envolve a conversão de conjuntos de dados de PLN existentes (e.g., NLI, análise de sentimentos) em pares de instrução-output usando templates.
 - Isto formaliza diversas tarefas de PLN em um formato unificado sequenceto-sequence.
 - Exemplos: FLAN (transforma 62 benchmarks de PLN), P3 (integra 170 conjuntos de dados de PLN).

Estratégias de Coleta de Dados II

LLMs podem ser usados para aumentar conjuntos de dados de AFI quando a criação manual é inviável.

- **Self-Instruct**: Começa com um pequeno conjunto de pares sementes. Um LLM gera novas instruções e outra instância gera *outputs* correspondentes.
 - Exemplo: O modelo Alpaca usou 52K pares sintéticos gerados desta forma.
- **Bonito**: Converte texto não anotado em datasets de treino para AFI. Modelo base: Mistral-7B
- Magpie: Gera dados de instrução solicitando a um LLM alinhado (e.g., Llama 3 8B Instruct) com um template de pré-consulta para sintetizar instruções e respostas de forma totalmente automática.

Alpaca

Workflow Alpaca. AFI sobre o modelo base Llama-7B. Qualidade similar ao modelo da OpenAI, mas muito menor e mais barato de reproduzir. Fonte: Weights and Biases.

Bonito

Workflow do framework Bonito. Fonte: Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation.

Magpie

Workflow do framework Magpie. Step 1: apenas pre-query template como entrada para LLM e geração autorregressiva de instrução. Step 2: Combinação de post-query template e outra pre-query template. Fonte: Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing.

Pré-processamento

- 1. **Formatação do Prompt:** Adote um estilo de *prompt* consistente (e.g., Alpaca) para todas as amostras de treinamento.
- 2. **Tokenização:** Converta o texto formatado de instrução-resposta em IDs de token.
- 3. **Colagem/Preenchimento Customizado (packing):** Uma função de colagem customizada é usada para preencher sequências dentro de um lote (ou *batch*) até o comprimento da sequência mais longa nesse lote.
- 4. **Mascaramento de Instrução (Opcional):** Mascarar IDs de *token* que correspondem à instrução impede que a função de perda seja calculada sobre o texto da instrução. Isto força o modelo a focar o treinamento na geração da *resposta*. Mas... (veja figura ao lado).

Instruction Masking x Instruction Modeling (não mascara instrução) em (https://arxiv.org/html/2405.14394v2). Fonte: Raschka.

Packing

Packing: Combinando múltiplas amostras em uma única sentença. Fonte: Laurens Weitkamp.

Packing: Otimização do tamanho do contexto. Fonte: Weights and Biases.

Eficiência: Ajuste Fino com Eficiência de Parâmetros (PEFT)

O Ajuste Fino Completo (*Full Fine-Tuning*) é caro e corre o risco de esquecimento catastrófico. Os métodos PEFT reduzem drasticamente os custos.

- Low-Rank Adaptation (LoRA): A técnica PEFT mais comum.
 - Mantém a maioria dos parâmetros LLM pré-treinados congelados.
 - Injeta pequenas matrizes de decomposição de baixa classificação (A e B) nos parâmetros de atenção.
 - Reduz drasticamente o número de parâmetros treináveis (e.g., 10.000x de redução para GPT-3) e o uso de memória.
- Quantized LoRA (QLoRA): Uma extensão do LoRA otimizando ainda mais a memória.
 - Quantiza os pesos base do LLM congelado para precisão ultrabaixa (e.g., 4-bit).
 - Permite o ajuste fino de modelos de alta qualidade usando uma única GPU de consumo.
- Veja também o vídeo no Youtube: LoRA explained (and a bit about precision and quantization).

LoRA

Weight update in regular finetuning

Weight update in LoRA

Finetuning convencional x finetuning LoRA. Fonte: Raschka.

```
import torch.nn as nn

class LoRALayer(nn.Module):
    def __init__(self, in_dim, out_dim, rank, alpha):
        super().__init__()
        std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
        self.A = nn.Parameter(torch.randn(in_dim, rank) * std_dev)
        self.B = nn.Parameter(torch.zeros(rank, out_dim))
        self.alpha = alpha

def forward(self, x):
        x = self.alpha * (x @ self.A @ self.B)
        return x
```

LoRA

LoRA can even outperform full finetuning training only 2% of the parameters

Full finetuning	Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL	- ROUGE scores
	GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	
Only tune bias vectors>	4	14.2M	71.3	91.0	51.3/27.4/43.5	
	GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
Prompt tuning	GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
Prefix tuning	GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8	
	GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
	GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
	GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results on WikiSQL have a fluctuation around $\pm 0.5\%$, MNLI-m around $\pm 0.1\%$, and SAMSum around $\pm 0.2/\pm 0.2/\pm 0.1$ for the three metrics.

Resultados LoRA. Fonte: Lightning Al.

Métricas de Avaliação I: Quantitativas e Técnicas

A avaliação mede o quão bem o modelo ajustado fino generaliza e adere aos objetivos. Leia mais em Patterns for Building LLM-based Systems & Products.

- Cross-Entropy Loss (Perda de Entropia Cruzada): A métrica fundamental monitorada durante o treinamento e a validação.
 - Quantifica a diferença entre a distribuição de probabilidade prevista pelo modelo e a distribuição real de tokens.
- Métricas de PLN Tradicionais (para tarefas específicas):
 - BLEU: Mede a proximidade entre traduções geradas e de referência (Tradução Automática, Sumarização).
 - Acurácia/F1 Score: Usado para tarefas de classificação e QA.
- Avaliação de Codificação:
 - HumanEval: Consiste em 164 problemas de programação para avaliar a capacidade do modelo de gerar programas corretos a partir de docstrings.
- Aderência à Instrução:
 - **IFEval (Instruction Following Evaluation)**: Testa especificamente a capacidade de um modelo de seguir restrições explícitas, como contagem de palavras ou formatação de *output* necessária.

Métricas de Avaliação II: Alinhamento e Pontuação

Para geração aberta, as métricas puramente automatizadas geralmente são insuficientes, exigindo avaliação centrada no ser humano.

- LLM-como-Juiz (*LLM-as-a-Judge*): Utiliza um LLM altamente capaz (e.g., Llama 3 8B) para avaliar a qualidade dos *outputs*.
 - O modelo Juiz recebe o input, o output correto e a resposta do modelo ajustado fino, fornecendo uma pontuação numérica (e.g., 0 a 100).
 - Isto é eficiente para avaliação em grande escala.
- Benchmarking de Alinhamento:
 - MT-Bench: Usa 80 questões multi-turno de alta qualidade para avaliar o alinhamento com a preferência humana, cobrindo tarefas como escrita, codificação e raciocínio.
 - WildBench: Curado a partir de interações reais do usuário, apresentando
 1.024 instruções desafiadoras que exigem pensamento crítico.
- Métricas de Segurança: Avaliam respostas do LLM quanto a toxicidade, viés e aderência a diretrizes de segurança. Exemplos incluem Llama Guard 2/3 e ShieldGemma.

Armadilhas Comuns e Limitações em AFI

O AFI está sujeito a modos de falha específicos que podem minar a utilidade a longo prazo.

- Esquecimento Catastrófico (Catastrophic Forgetting): O ajuste fino em novas tarefas pode fazer com que o modelo perca o conhecimento pré-treinado.
 - Mitigação: Usar técnicas PEFT (LoRA/QLoRA) para congelar a maioria dos pesos base.
- Alinhamento Superficial (Superficial Alignment): O modelo aprende apenas padrões de superfície e estilos (e.g., formato de output ou tom) em vez de melhorar o raciocínio subjacente.
 - Isto levanta a preocupação de que os ganhos de desempenho dependam fortemente das tarefas representadas no dado de treinamento.
- **Dependência da Qualidade dos Dados:** O desempenho depende criticamente da qualidade, diversidade e cobertura de tarefas do conjunto de dados de instrução.
 - Dados mal selecionados (especialmente sintéticos) podem reforçar vieses ou deficiências.

Resumo e Leitura Adicional

- O AFI (SFT) é essencial para alinhar a previsão do próximo token dos LLMs com os objetivos do usuário.
- O AFI depende de pares de instrução-resposta de alta qualidade e diversificados, gerados manualmente (Flan, Dolly) ou sinteticamente (Self-Instruct, Evol-Instruct).
- O processo de treinamento usa uma perda de objetivo duplo e se beneficia de aprimoramentos arquiteturais (e.g., arquitetura de dois fluxos) e PEFT (LoRA/QLoRA).
- A avaliação requer métricas quantitativas (Entropia Cruzada, HumanEval) e técnicas qualitativas (LLM-como-Juiz, checagens de segurança).
- Leitura Adicional:
 - Instruction Pretraining LLMs
 - Instruction Tuning for Large Language Models: A Survey
 - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities