Оглавление

Введение	
1 Аналитическая часть	3
1.1 Постановка задачи	3
1.2 Анализ существующих решений	3
1.3 Формализация данных	4
1.4 Типы пользователей	5
1.5 Описание существующих СУБД	6
1.5.1 Основные функции СУБД	6
1.5.2 Классификации СУБД	7
1.5.3 Обзор наиболее популярных СУБД	9
Выводы	11
Список литературы	12

Введение

Проблема поиска места для репетиций является актуальной для любого музыканта, тем более группы. В крупных городах есть достаточно много репетиционных баз (далее: реп. баз). Все они имеют разные цены и характеристики. Поэтому существует потребность в приложении, которое собирало воедино имеющуюся информацию бы всю 0 различных репетиционных базах, образом освобождая таким музыкантов OT необходимости вручную искать и изучать каждую реп. базу, заходить на их сайты, звонить лично, чтобы забронировать репетицию и т. д.

Цель данной работы — реализовать базу данных, содержащую информацию о репетиционных базах. В приложении, работающем с этой БД, должна быть возможность для музыканта бронировать или отменять свои репетиции, а для владельца реп. базы - отслеживать записи на свою реп. базу.

Чтобы достигнуть поставленной цели, требуется решить следующие задачи:

- формализовать задание, определить необходимый функционал;
- провести анализ СУБД;
- описать структуру БД;
- создать и заполнить БД;
- реализовать интерфейс для доступа к БД;
- разработать ПО, которое позволит пользователю-музыканту бронировать и отменять свои репетиции, а владельцу отслеживать их.

1 Аналитическая часть

В этом разделе будет проанализирована поставленная задача, и рассмотрены различные способы её реализации.

1.1 Постановка задачи

Необходимо разработать программу для отображения информации о репетиционных базах с возможностью для музыканта бронировать или отменять свои репетиции, а для владельца реп. базы - отслеживать записи на свою реп. базу.

1.2 Анализ существующих решений

На сегодняшний день существует всего два подобных приложения:

MUSbooking

Это наиболее известное и популярное приложение по бронированию творческих площадок.

Его основные преимущества:

- о возможность бронирования не только репетиционных баз, но и, например, студий звукозаписи, танцевальных залов и т. д.;
- о возможность бронирования творческих площадок в других городах России (не только в Москве).

Основной недостаток: нельзя посмотреть сразу весь список зарегистрированных реп. баз в текущем городе. Список доступных реп. баз можно посмотреть только после указания конкретного времени репетиции, что крайне неудобно в определённых ситуациях.

TONESKY

Основное преимущество: возможность заранее посмотреть весь список зарегистрированных реп. баз.

Из недостатков:

- о нет поиска по реп. базам;
- о нет цены на превью репетиционной комнаты (т. е., чтобы посмотреть цену, надо зайти «вглубь» и посмотреть подробную информацию);
- о ориентировано только на Москву (не существенно в рамках моей задачи).

1.3 Формализация данных

База данных должна хранить информацию о:

- репетиционной базе и её комнатах;
- оборудовании и дополнительных услугах;
- пользователях (музыкантах и владельцах) и об их забронированных репетициях или реп. базах соответственно.

Рис. 1.1: ER диаграмма разрабатываемой базы данных

Таблица 1.1: категории и сведения о данных

Категория	Сведения
Реп. база	Название, адрес, телефон, почта, кому принадлежит (аккаунт)
Комната	Название, тип (вокал/группа и т. д.), площадь, стоимость за 3 часа, к какой реп. базе относится
Оборудование в комнате	Тип (усилитель/ударные/микрофон и т. д.), бренд, количество, к какой комнате относится
ROMITATO	ROSIN ICCIDO, R RURON ROMINATO OTHOCHICA
Аккаунт	ФИО, телефон, почта, пароль
Репетиция	Время, какой музыкант (аккаунт), какая комната

1.4 Типы пользователей

Из задачи ясно, что есть два типа пользователей: обычный музыкант и владелец реп. базы. Помимо этого, будет также выделена роль администратора приложения. Для всех троих будет нужна авторизация.

Рис. 1.2: Use-case диаграмма приложения

Таблица 1.2: типы пользователей и их полномочия

Тип пользователя	Полномочия
Музыкант	Бронирование репетиций, отмена репетиций, просмотр брони
	- F
Владелец	Добавление реп. базы, удаление своей реп. базы, просмотр записей на репетиции, отмена репетиций,
	блокировка/разблокировка музыканта на своей реп.
	базе
Администратор	Удаление реп. базы, отмена репетиций,
	блокировка/разблокировка аккаунта

1.5 Описание существующих СУБД

Система управления базами данных (СУБД) – совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных [1].

1.5.1 Основные функции СУБД

Основными функциями СУБД являются:

- управление данными на внешней памяти;
- управление данными в оперативной памяти с использованием дискового кэша;
- журнализация изменений, резервное копирование и восстановление базы данных после сбоев;
- поддержка языков БД.

1.5.2 Классификации СУБД

По модели данных:

• дореляционные;

Иерархические. Это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.

Сетевые. Это логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.

Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

• реляционные.

Реляционная модель данных является совокупностью данных и состоит из набора двумерных таблиц. При табличной организации отсутствует иерархия элементов. Таблицы состоят из строк — записей и столбцов — полей. На пересечении строк и столбцов находятся конкретные значения. Для каждого поля определяется множество его значений. За счет возможности просмотра строк и столбцов в любом порядке достигается гибкость выбора подмножества элементов.

Реляционная модель является удобной и наиболее широко используемой формой представления данных.

Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует

пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных [2].

По степени распределённости:

- локальные (все части локальной СУБД размещаются на одном компьютере);
- распределённые (части СУБД могут размещаться не только на одном, но на двух и более компьютерах).

По способу доступа к БД:

• файл-серверные;

В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. СУБД располагается на каждом клиентском компьютере (рабочей станции). Доступ СУБД к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок.

Преимуществом этой архитектуры является низкая нагрузка на процессор файлового сервера.

Недостатки: потенциально загрузка локальной высокая сети; затруднённость невозможность централизованного управления; ИЛИ обеспечения затруднённость или невозможность таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность. Применяются чаще всего в локальных приложениях, которые используют функции управления БД; в системах с низкой интенсивностью обработки данных и низкими пиковыми нагрузками на БД. На данный момент файл-серверная технология считается устаревшей, а её использование в крупных информационных системах — недостатком [3].

Пример: Microsoft Access.

• клиент-серверные;

Клиент-серверная СУБД располагается на сервере вместе с БД и осуществляет доступ к БД непосредственно, в монопольном режиме. Все клиентские запросы на обработку данных обрабатываются клиент-серверной СУБД централизованно.

Недостаток клиент-серверных СУБД состоит в повышенных требованиях к серверу.

Достоинства: потенциально более низкая загрузка локальной сети; удобство централизованного управления; удобство обеспечения таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность.

Примеры: Oracle Database, MS SQL Server, PostgreSQL, MySQL.

• встраиваемые.

СУБД, которая может поставляться как составная часть некоторого программного продукта, не требуя процедуры самостоятельной установки. Встраиваемая СУБД предназначена для локального хранения данных своего приложения и не рассчитана на коллективное использование в сети.

Физически встраиваемая СУБД чаще всего реализована в виде подключаемой библиотеки. Доступ к данным со стороны приложения может происходить через SQL либо через специальные программные интерфейсы.

Примеры: SQLite, Microsoft SQL Server Compact.

1.5.3 Обзор наиболее популярных СУБД

В данном подразделе будут рассмотрены популярные СУБД, которые могут быть использованы для реализации хранения данных в разрабатываемом программном продукте.

1. PostgreSQL

Свободная объектно-реляционная система управления базами данных (СУБД).

Сильными сторонами PostgreSQL считаются:

- высокопроизводительные и надёжные механизмы транзакций и репликации;
- расширяемая система встроенных языков программирования: в стандартной поставке поддерживаются PL/pgSQL, PL/Perl, PL/Python и PL/Tcl; дополнительно можно использовать PL/Java, PL/PHP, PL/Py, PL/R, PL/Ruby, PL/Scheme, PL/sh и PL/V8, а также имеется поддержка загрузки модулей расширения на языке C [4];
- наследование;
- возможность индексирования геометрических (в частности, географических) объектов и наличие базирующегося на ней расширения PostGIS;
- встроенная поддержка слабоструктурированных данных в формате JSON с возможностью их индексации;
- расширяемость (возможность создавать новые типы данных, типы индексов, языки программирования, модули расширения, подключать любые внешние источники данных).

2. Microsoft SQL Server

Система управления реляционными базами данных (РСУБД), разработанная корпорацией Microsoft. Основной используемый язык запросов — Transact-SQL, создан совместно Microsoft и Sybase. Transact-SQL является реализацией стандарта ANSI/ISO по структурированному языку запросов (SQL) с расширениями. Используется для работы с базами данных размером от персональных до крупных баз данных масштаба предприятия; конкурирует с другими СУБД в этом сегменте рынка.

СУБД поставляется в различных редакциях, ориентированных на различные сценарии разработки и развертывания приложений (а также отличающиеся ценой): Enterprise, Standard, Web, Business intelligence, Workgroup, Express.

3. Oracle Database

Объектно-реляционная система управления базами данных компании Oracle.

СУБД поставляется в шести различных редакциях, ориентированных на различные сценарии разработки и развертывания приложений (а также отличающиеся ценой):

- Enterprise Edition;
- Standard Edition не может устанавливаться на системы, имеющие более 4 процессорных разъёмов;
- Standard Edition One не может устанавливаться на системы, имеющие более 2 процессорных разъёмов; не поддерживает кластеризацию (RAC);
- Personal Edition один пользователь;
- Lite для мобильных и встраиваемых устройств;
- Express Edition (XE) бесплатная редакция, используемая оперативная память 1 ГБ, а также используется только 1 процессор, максимальный объём базы данных 11 ГБ (для 10g 4ГБ), из них от 0,5 до 0,9 ГБ используются словарём данных, внутренними схемами и временным дисковым пространством. В 18с используется 2 процессора, оперативная память 2 ГБ, максимальный объём базы данных 12 ГБ.

Выводы

В этом разделе была проанализирована поставленная задача. А также были формализованы данные и типы пользователей и рассмотрены разные типы СУБД. Для данной работы выбрана реляционная, клиент-серверная СУБД PostgreSQL, так как она является свободно распространяемой.

Список литературы

- ISO/IEC TR 10032:2003 Information technology Reference model of data management.
- 2. Дейт К. Дж. Введение в системы баз данных. 8-е изд. М.: «Вильямс», 2006.
- 3. Еленев Д.В. и др. Автоматизация системы управления национальным исследовательским университетом и мониторинга его деятельности // Программные продукты и системы, №3, 2012.
- 4. PostgreSQL: Documentation: 11: Procedural Languages. [Электронный ресурс]. Режим доступа: https://www.postgresql.org/docs/11/xplang.html, свободный (дата обращения: 28.04.2022).