Lab6 α参数的讨论

王傲 15300240004

本次实验讨论参数 α 对水印和图片质量的影响。

在使用 DCT 算法进行数字水印隐藏时,为了保证 $B_i(u_1,v_1)$ 和 $B_i(u_2,v_2)$ 的相对大小不发生错位导致一 bit 的信息隐藏失效,在 hidedctadv 函数中实现隐藏一 bit 信息时,将 $B_i(u_1,v_1)$ 和 $B_i(u_2,v_2)$ 两者的较小者减去 α ,增大两者的差值来增强水印的鲁棒性。 α 越大,水印的鲁棒性越强,但对图片质量的影响也越大。因此,本次实验要探讨参数 α 对水印和图片质量的影响。

主要算法通过 jpgandalpha 函数实现。在这个函数中,通过不断地改变 JPEG 算法中的压缩率和 α 的值,获得水印的准确率曲线。具体的实现上,通过 hidedctadv 函数将水印隐藏在 temp 图像中,然后依据压缩率 q 写为 jpg 图片,再用 extractdctadv 函数从 jpg 图片中提取水印,与原水印进行比较,逐 bit 的统计准确率。

下为准确率曲线:

对应的 α 为:

这里 α 从 0 开始,以 0.3 的步长增长到 3; 压缩率从 0 开始,以 10 的步长增长到 100。可以看出,当 α 为 0 时,错误率几乎不受压缩率的影响;当 α 不为 0 时,随着压缩率的增大(信息损失越来越小),错误率逐渐减小至 0。对于不同的 α 而言, α 越大,错误率降至 0 的速度越快,即鲁棒性越强。

我们还可以看出, α 为 3.0 时, 在压缩率为 0 (信息损失很大)的情况下,错误率就已经接近 0, 鲁棒性最强,可以认为基本不受 JPEG 压缩算法的影响。

下表对应图像内容, 行为 α, 列为压缩率:

0.4909	0.4523	0.5182	0.4773	0.4977	0.5182	0.5250	0.4659	0.5636	0.5205	0.5045
0.4909	0.4545	0.5273	0.4841	0.4818	0.4841	0.5091	0.4136	0.0432	0.0068	0
0.4955	0.4568	0.5205	0.4818	0.4727	0.1500	0.0182	0	0	0	0
0.4955	0.4750	0.5091	0.4773	0.0568	0.0045	0	0	0	0	0
0.5045	0.4705	0.5091	0.0977	0.0023	0	0	0	0	0	0
0.4886	0.4636	0.3250	0.0114	0	0	0	0	0	0	0
0.3545	0.3432	0.1864	0	0	0	0	0	0	0	0
0.2591	0.2705	0.0795	0	0	0	0	0	0	0	0
0.1636	0.1568	0.0205	0	0	0	0	0	0	0	0
0.0568	0.0659	0.0023	0	0	0	0	0	0	0	0
0.0023	0.0114	0	0	0	0	0	0	0	0	0

可以看出,最后一行,当α为3.0时,信息已经可以认为可读了。

选取压缩率为50%的一列:

0.5045	0.5205	0.5636	0.4659	0.5250	0.5182	0.4977	0.4773	0.5182	0.4523	0.4909
0	0.0068	0.0432	0.4136	0.5091	0.4841	0.4818	0.4841	0.5273	0.4545	0.4909
0	0	0	0	0.0182	0.1500	0.4727	0.4818	0.5205	0.4568	0.4955
0	0	0	0	0	0.0045	0.0568	0.4773	0.5091	0.4750	0.4955
0	0	0	0	0	0	0.0023	0.0977	0.5091	0.4705	0.5045
0	0	0	0	0	0	0	0.0114	0.3250	0.4636	0.4886
0	0	0	0	0	0	0	0	0.1864	0.3432	0.3545
0	0	0	0	0	0	0	0	0.0795	0.2705	0.2591
0	0	0	0	0	0	0	0	0.0205	0.1568	0.1636
0	0	0	0	0	0	0	0	0.0023	0.0659	0.0568
0	0	0	0	0	0	0	0	0	0.0114	0.0023

对应的水印如图:

```
alpha=0 6]#N6 6050 http://doi.org/10.100 ht
```

可以看出,当压缩率为 50%时, α>1.2 起,经过压缩后的图片提取出来的水印基本上就是正确的了。

需要注意,由于 MATLAB 浮点数精度的问题,即使不经过 JPEG 算法压缩,提取水印时仍然会有少量的错误。此外,水印载体不同,性质也不同,α的影响也就不同。

再来探讨 α 与图片质量的关系。

 $\alpha = 0$:

 $\alpha = 1$:

 $\alpha = 3$:

可以看出,随着 α 的增大,图像质量也会下降。这是水印鲁棒性和图像可见性的固有矛盾。