Proof by Induction - Recurrance Relations

The Method

This method of proof by induction is used for questions of the form:

$$U_1=x$$
 and $U_{n+1}=f(U_n)$
Prove by induction that $U_n=g(n)$

There are several steps to this proof:

- 1. Prove $U_n=g(n)$ true for n=1
- 2. Assume $U_k=g(k)$ (This is the same as saying 'Assume $U_n=g(n)$ is true for n=k')
- 3. Substitute in k+1 ($U_{k+1}=f(U_k)$)
- 4. Rearrange to be in the same form as g(n), except all instances of n are replaced by k+1.
- 5. As this is true for n=1, and true for n=k+1, this is true for all $n\in\mathbb{N}$.
- 6. You have proved the statement via induction.

An Example

Question

Given
$$u_1=8$$
 and $u_{n+1}=4u_n-9n$, prove $u_n=4^n+3n+1$

Step 1

$$u_1 = 4^1 + 3(1) + 1$$
 $u_1 = 4 + 3 + 1$
 $u_1 = 8$
 \checkmark True for $n = 1$

Step 2

Assume
$$u_n=4^n+3n+1$$
 true for $n=k$. $u_k=4^k+3k+1$

Step 3

$$u_{k+1} = 4(u_k) - 9k \ u_{k+1} = 4(4^k + 3k + 1) - 9k$$

Step 4

$$egin{aligned} u_{k+1} &= 4^{k+1} + 12k + 4 - 9k \ u_{k+1} &= 4^{k+1} + 3k + 4 \ u_{k+1} &= 4^{k+1} + 3(k+1) + 1 \end{aligned}$$

In the last part of this step, 3k+4 is rearranged into 3(k+1)+1. This does not appear to be a normal thing to do, but, if guided by the question, and what it is asking you to prove, it becomes far

more understandable.

Step 5

- $\label{eq:lambda} \checkmark \text{ True for } n=k+1 \text{ if true for } n=k.$
- \therefore True for all $n\in\mathbb{N}$.

Step 6

$$\therefore u_n = 4^n + 3n + 1$$
 must be true.