PERGUNTA 28 (ESTRUTURAÇÃO DA CPU)	
Como a CPU faz a execução de um programa?	
Como funciona o processo de Busca pela Instrução fei pelo processador?	ta
Como funciona o processo de Decodificação feita pel processador?	o
Como funciona o processo de Execução da Instrução feita pelo processador?)
Em que duas grandes categorias podemos dividir as funções dos componentes de um processador?	
Quais as funções da ULA em um processador?	
Quais as funções do Registrador ACC em um processador?	
Quais as funções do CI ou PC em um processador?	
Quais as funções do Registrador RDM em um processador?	
Quais as funções do Registrador REM em um processador?	

PERGUNTA 28 (ESTRUTURAÇÃO DA CPU)

A CPU faz isso seguindo a sequência de funcionamento conhecida como ciclo "Busca – Decodificação – Execução". Todo programa ou instrução é construído em série de instruções (em linguagem de máquina) sequênciais que devem ser seguidas sucessivamente. Por isso primeiro a CPU "busca" os dados e instruções, segundo a CPU decodifica essas instruções sequencialmente e terceiro ela executa.

Primeiro um componente da CPU chamado Contador de Instruções (PC – Program Counter) Registrador de Instruções (IR - Instructions Recorder) busca as instruções da memória principal (RAM) e envia essas instruções a outro componente do processador chamado de Registrador de Instruções (IR - Instructions Recorder), ele recebe as intruções sequêncialmente e as armazena para que sejam decodificadas. Esse é o processo de Busca pela Instrução.

Depois que o Registrador de Instrução deixa as instruções posicionadas sequencialmente, Circuitos de Decodificação transformam as instruções em sinais eletrônicos que são enviados a UC (Unidade de Controle) e passados aos componentes processadores seguintes.

Os sinais eletrônicos decodificados são enviados a UC que gera sinais de transferência diretamente direcionados aos componentes processadores, como a ULA, e são executados. Somente quando uma instrução é executada, o Contador de Instrução atualiza a próxima instrução. Quando ocorre uma nova instrução que causará uma mudança de fluxo chamamos isso de "iumo".

Podemos dividí-las em Funções de Processamento e Funções de Controle. A Função de Processamento executa as instruções. (ULA - Unidade Lógica e Aritmética) A Função de Controle auxilia no processamento com atividades de busca, interpretação de dados e controle de execução das instruções.

A ULA, Unidade Lógica e Aritmética (ou ALU em inglês), responsável por efetuar operações matemáticas com os dados. Essas operações podem ser: soma, subtração, multiplicação, divisão, operações lógicas AND, OR, XOR, NOT, deslocamento de bits à direita e esquerda, armazenamento e exclusão de bits, comparações.

O Registrador ACC, também conhecido como Registrador Acumulador é um Registrador (ou Registradores dependendo do processador) onde a ULA colhe e armazena as instruções antes e depois do processamento. É o elemento mais próximo da ULA.

O CI, Contador de Instruções (do inglês PC Program Counter) também é um Registrador, mas a sua função é exclusivamente armazenar e posicionar os ENDEREÇOS das próximas instruções a serem executadas pelos processador.

Obs: os dados são enviados da RDM diretamente para o RI. (Registrador de Instruções)

O Registrador RDM, ou Registrador de Dados da Memória, (Do inglês MDR - Memory Data Recorder) é responsável por armazenar os dados recebidos da memória principal e enviá-los para o RI (Registrador de Instruções).

O Registrador REM, ou Registrador de Endereços da Memória, (Do inglês MAR - Memory Adress Recorder) é responsável por armazenar os endereços recebidos da memória principal (RAM) e enviá-los para o CI. (Controle de Instruções)

PERGUNTA 28 (ESTRUTURAÇÃO DA CPU)
Quais as funções do Registrador RI em um processador?
Quais as funções do Clock em um processador?
Quais as funções da UC em um processador?
Quais as duas estruturas básicas dos dispositivos UC?
Quais as funções do Decodificador de Instruções em um processador?
Quais as funções dos Barramentos em um processador? E quais tipos de barramentos o processador tem?
Como a ULA pode ter influência total sobre o projeto de estruturação de um processador?
O que é o Ciclo de Instrução LTR?
Que medidas podemos usar para medir o desempenho de um processador?
Que medidas usamos para medir o total desempenho da máquina?

PERGUNTA 28 (ESTRUTURAÇÃO DA CPU)

O Registrador RI, ou Registrador de Instruções, (Do inglês IR Instructions Recorder) é responsável por armazenar as Instruções recebidas pelo Controlador de Instruções e também por armazenar as instruções decodificadas pelos Circuitos Decodificadores, até que essas informações sejam requeridas pela ULA.

O Relógio, do inglês Clock, é o dispositivo gerador de pulsos elétricos. A quantidade de vezes em que esse pulso básico se repete define a medida da velocidade de um processador, essa medida é expressa em Hertz por segundo.

A UC, Unidade de Controle (do inglês CU - Control Unit) É o dispositivo responsável por controlar toda a ação de todos os dispositivos dentro do processador. Pois ele possuí toda a lógica de programação necessária para controlar os componentes e transferir os dados entre eles. Ele é muito rápido, seus sinais de controle ocorrem em vários instantes durante o período de realização do ciclo de instruções.

Eles podem ser classificados em:

Organização Convencional: uma UC formada por flip-flops, contadores e decodificadores, que geram sinais de controle em tempo hábil e de acordo com os demais dispositivos da UC.

Organização Microprogramada: uma UC formada por sinais de controle armazenados numa memória especial chamada memória de controle.

O Decodificador de Instruções é um dispositivo utilizado para identificar as operações a serem realizadas dentro das instruções enviadas pelo Controle de Instruções, ele decodifica essas instruções e as transforma em sinais eletrônicos para que a ULA possa recebê-los, processá-los e enviá-los.

Os Barramentos tem a função de transmitir dados e fazer a comunicação entre os dispositivos da CPU.

Dentro da CPU temos 3 tipos específicos de barramentos: Barramentos de Dados, de Endereços e de Controle.

A ULA processa dados por através de um número pré-determinado de bits. Um tamanho maior ou menor de bits pode acarretar diretamente na velocidade de execução da ULA e portanto do computador como um todo. O quantidade de bits afeta na largura dos barramentos interno e externo a CPU, sendo que no mínimo deve ser suportável a quantidade de bits transferidos por vez.

O ciclo de Instrução LTR é um ciclo que ocorre entra a transferência de instrução do CI (Controle de Instrução) até a finalização do processo no RI. (Registrador de Instrução) Quando a informação já foi decodificada e enderessada corretamente na CPU. Esse ciclo é chamado de LTR por que significa Linguagem de Transferência entre Registradores.

MIPS: Milhões de Instruções por Segundo. Mas é muito questionado, pois mede todos os tipos de execuções por segundo, sendo que algumas levam mais ou menos tempo.

FLOPS: Mais aceita, mede somente operações complexas;

OBS: Hoje em dia temos computadores mais rápidos que chegam a MFLOPS (Milhões de FLOPS por segundo) e GFLOPS (Só para supercomputadores.)

Usamos o **Tempo de Resposta.** Ele se refere ao tempo gasto desde o instante em que **o usuário iniciou uma solicitação** e o instante em que **o sistema apresentou ao usuário a resposta.**