#### 02393 Programming in C++



# Before and after teaching:



If you feel ill, go home



Keep your distance to others, also during breaks



Disinfect table and chair



Respect the marking/do not move furniture



Do not share your equipment with others



If in doubt, please ask

# 02393 Programming in C++ Module 10: Recursion Lecturer: Alceste Scalas

(Slides based on previous versions by Andrea Vandin, Alberto Lluch Lafuente, Sebastian Mödersheim)

3 November 2020

#### **Lecture Plan**

| #            | Date  | Topic                      | Book chapter *        |
|--------------|-------|----------------------------|-----------------------|
| 1            | 01.09 | Introduction               |                       |
| 2            | 08.09 | Basic C++                  | 1                     |
| 3            | 15.09 | Data Types                 | 2                     |
| 4            | 22.09 | Data Types                 | 2                     |
|              |       | Libraries and Interfaces   | 3                     |
| 5            | 29.09 | Libraries and interraces   | 3                     |
| 6            | 06.10 | Classes and Objects        | 4.1, 4.2 and 9.1, 9.2 |
| Autumn break |       |                            |                       |
| 7            | 20.10 | Templates                  | 4.1, 11.1             |
| 8            | 27.10 | LAB DAY                    | Old exams             |
| 9            | 03.11 | Inheritance                | 14.3, 14.4, 14.5      |
| 10           | 10.11 | Recursive Programming      | 5                     |
| 11           | 17.11 | Linked Lists               | 10.5                  |
| 12           | 24.11 | Trees                      | 13                    |
| 13           | 01.12 | Summary & Exam Preparation |                       |
|              | 07.12 | Exam                       |                       |

<sup>\*</sup> Recall that the book uses sometimes ad-hoc libraries that are slightly different with respect to the standard libraries (e.g., strings and vectors).

#### Recursion

#### What is Recursion?

- Solution technique that solves large problems by reducing them to smaller problems of the same form
- It is crucial that the smaller problem has the same form
- This means we can use the same technique for the big and the small problem!

#### Recursion

#### What is Recursion?

- Solution technique that solves large problems by reducing them to smaller problems of the same form
- It is crucial that the smaller problem has the same form
- This means we can use the same technique for the big and the small problem!

#### Why might recursion seem... weird?

- It requires a form of mathematical inductive reasoning
- Other programming concepts have a clearer real-life intuition
  - ★ *loop*: repeat an action several times, on different objects
  - ★ if then else: making decisions

Mathematical definitions often use recursion:

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot ((n-1)!) & \text{otherwise} \end{cases}$$

Mathematical definitions often use recursion:

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot ((n-1)!) & \text{otherwise} \end{cases}$$

A possible *iterative* implementation in C++:

```
int factorial = 1;
for (unsigned int i = n; i > 0; i--) {
    factorial = factorial * i;
}
```

Mathematical definitions often use recursion:

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot ((n-1)!) & \text{otherwise} \end{cases}$$

A possible *iterative* implementation in C++:

```
int factorial = 1;
for (unsigned int i = n; i > 0; i---) {
   factorial = factorial * i;
}
```

A possible *recursive* implementation in C++:

```
int Fact(unsigned int n) {
   if (n == 0) return 1;
   else return n * Fact(n-1);
}
```

Mathematical definitions often use recursion:

$$Fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (Fact(n-1)) & \text{otherwise} \end{cases}$$

A possible *iterative* implementation in C++:

```
int factorial = 1;
for (unsigned int i = n; i > 0; i---) {
    factorial = factorial * i;
}
```

A possible *recursive* implementation in C++:

```
int Fact(unsigned int n) {
   if (n == 0) return 1;
   else return n * Fact(n-1);
}
```

## **Executing the factorial**

```
main

Fact

if (n == 0) {
    return (1);
    } else {
       return (n * Fact(n - 1));
    }
```

```
main

Fact

Fact

n → if (n == 0) {
    return (1);
    } else {
    return (n * Fact(n - 1));
    }
```









#### Recursion

#### When using recursion we must ensure:

- 1 Every recursion step reduces to a smaller problem
- 2 There is a smallest problem (or a set of smallest problems) that can be handled directly, without recursion
- 3 Every sequence of recursion steps eventually reaches one of such smallest problems

#### Recursion

#### When using recursion we must ensure:

- 1 Every recursion step reduces to a smaller problem
- 2 There is a smallest problem (or a set of smallest problems) that can be handled directly, without recursion
- 3 Every sequence of recursion steps eventually reaches one of such smallest problems

#### Otherwise?

Risk of non-termination or crash (stack overflow)!

## **Recursive Leap of Faith**

When writing a recursive function, we need to assume that each recursive call (with a smaller argument) computes the correct solution

• Example: to write Fact(n), we need Fact(n-1) to be correct

Assuming that a recursive call works correctly is called the *Recursive Leap of Faith* 

#### **Recursion: Rules of Thumb**

- 1 Identify the smallest cases before decomposition
- 2 Solve the smallest cases
- 3 Check that decomposition makes the problem simpler
- 4 Ensure that decomposition eventually reaches one of the smallest cases
- 6 Ensure that the arguments to the recursive calls are smaller versions of the original arguments
- When you take the recursive leap of faith, ensure that recursive calls yield a correct solution to all smaller problems

## **Live coding**

Another simple example: sum of n consecutive integers

## On Complexity

Resources needed by an algorithm:

• **Time**: number of operations

• **Space**: amount of memory/disk

Resources depend on the size of the algorithm inputs (denoted N)

## On Complexity

Resources needed by an algorithm:

- **Time**: number of operations
- **Space**: amount of memory/disk

Resources depend on the size of the algorithm inputs (denoted N)

#### Complexity of a problem:

- given a concrete problem (e.g., sorting a list of numbers)
- what is the best algorithm in terms of time and/or space?

## On Complexity

Resources needed by an algorithm:

- **Time**: number of operations
- **Space**: amount of memory/disk

Resources depend on the size of the algorithm inputs (denoted N)

#### Complexity of a problem:

- given a concrete problem (e.g., sorting a list of numbers)
- what is the best algorithm in terms of time and/or space?

#### Notes:

- Some problems are not computable! (no algorithm exists)
- Sometimes trade-off between time and space
- For many problems, the precise complexity is not known:
  - ★ We have a best known algorithm
  - ★ We can give a lower bound

## **Asymptotic Complexity**

**Big-O** notation and **Big-** $\Omega$  notation

We often focus on the worst-case time / space requirements of an algorithm, for input size N. We use **Big-O notation**. E.g.:

$$2N^2 + 17N + 53$$
 operations  $\implies O(N^2)$  time complexity

We only consider dominant terms because, as N grows,

- larger exponents have more impact
- constant factors and minor terms tend to become irrelevant

## **Asymptotic Complexity**

#### **Big-O** notation and **Big-** $\Omega$ notation

We often focus on the worst-case time / space requirements of an algorithm, for input size N. We use **Big-O notation**. E.g.:

$$2N^2 + 17N + 53$$
 operations  $\implies O(N^2)$  time complexity

We only consider dominant terms because, as N grows,

- larger exponents have more impact
- constant factors and minor terms tend to become irrelevant



For example, if we have:

- **1** a good algorithm, time:  $3000N \implies O(N)$
- 2 a bad algorithm, time:  $2N^2 \implies O(N^2)$

Above some N, algorithm (1) performs better

## **Asymptotic Complexity**

 $\mbox{Big-O}$  notation and  $\mbox{Big-}\Omega$  notation

#### **Definition (Big-O Notation)**

O(f): the class of functions that asymptotically grow no faster than f

$$O(f) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ : \exists N_0 \in \mathbb{N} : \forall N \ge N_0 : g(N) \le c f(N)\}$$

For instance:

$$2N^2 + 17N + 53 < 73N^2$$

For  $c = \frac{1}{73}$  and  $N_0 = 1$ , we obtain:

$$2N^2 + 17N + 53 \in O(N^2)$$

Dually, for giving lower-bounds on complexity, one uses  $\Omega(f)$ , which is the class of functions that grow at least as fast as f

## More Examples of Recursion (see lecture code)

- Efficient search: binary search
  - ★ Naive search (linear search) of an element in a set takes O(n)
  - $\star$  Binary search is a divide-and-conquer  $O(\log n)$  solution
- Efficient sorting: merge sort
  - ★ The recursion paradigm directly triggers an efficient solution!
  - ★ Naive bubble sort:  $O(n^2)$  for array of size n
  - ★ Merge sort:  $O(n \log n)$  (theoretical optimum)
- Efficient exponentiation in cryptography  $(a^n \mod p)$ 
  - $\star$  Naive exponentiation: O(n)
  - ★ Efficient exponentiation:  $O(\log n)$
  - ★ Efficient solution is hard to program without recursion!

#### 02393 Programming in C++



# Before and after teaching:



If you feel ill, go home



Keep your distance to others, also during breaks



Disinfect table and chair



Respect the marking/do not move furniture



Do not share your equipment with others



If in doubt, please ask