Aufgabe 1 (H13T1A3). Sei die Matrix $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \in M_2(\mathbb{C})$ mit $\lambda \neq 0$ gegeben. Man zeige, daß A^k für alle $k \in \mathbb{N}$ die Jordan'sche Normalform $\begin{pmatrix} \lambda^k & 1 \\ 0 & \lambda^k \end{pmatrix}$ hat.

Aufgabe 2 (H16T3A1). Sei K ein Körper, V ein endlich dimensionaler K-Vektorraum der Dimension n, und $\phi:V\to V$ ein Endomorphismus so daß das charackteristische Polynom in Linearfaktoren zerfällt. Man zeige, daß die folgenden Aussagen äquivalent sind:

- (a) Alle Eigenräume von ϕ sind eindimensional.
- (b) Zu jedem Eigenwert von ϕ existiert in der Jordan'schen Normalform genau ein Jordanblock.
- (c) Das Minimalpolynom und das chrakteristische Polynom von ϕ stimme überein.

Aufgabe 3 (H05T3A3). Man gebe alle Lösungen X der Gleichung $X^7 = E_5$ in $\mathbf{GL}_5(\mathbb{Q})$ an.

Aufgabe 4 (F16T3A1). Sei K ein Körper, $n \in \mathbb{N}$ und $K^{n \times n}$ der K-Vektorraum der $n \times n$ -Matrizen. Ferner sei $\mathbf{GL}_n(K)$ die Gruppe der invertierbaren Matrizen aus $K^{n \times n}$.

- (a) Sei $A \in K^{n \times n}$, und V der von den Matrizen A^0, A^1, A^2, \ldots erzeugte Untervektorraum von $K^{n \times n}$. Man zeige, daß dim $v \leq n$ gilt. Hinweis: Satz von Cayley–Hamilton.
- (b) Sei K ein endlicher Körper. Man zeige, daß jedes Element aus $GL_n(K)$ höchstens die Ordnung $|K|^n 1$ hat. Hinweis: Für $A \in \mathbf{GL}_n(K)$ vergleiche man die von A erzeugte Untergruppe von $\mathbf{GL}_n(K)$ mt V.

Aufgabe 5. Man zeige, daß die irrationalen Zahlen $\ln(p)$, p prim, linear unabhängig über dem Körper \mathbb{Q} sind.