Homework #6

Dongkyu Kim(20162050)

September 23, 2017

Benchmark with results for the general Poisson equation

Analytic results: $\vec{E_s}|_x = \sqrt{\frac{2K_bTN_a^-}{\epsilon_{\text{silicon}}}} \left\{ \left(e^{-\frac{q_0\phi_d}{K_bT}} + \frac{q_0\phi_d}{K_bT} - 1 \right) + \left(\frac{n_i}{N_a^-} \right)^2 \left(e^{\frac{q_0\phi_d}{K_bT}} - \frac{q_0\phi_d}{K_bT} - 1 \right) \right\}^{\frac{1}{2}}$ where $\phi_d = \phi_s - \phi_N$, ϕ_s is the external potential at the oxide surface and ϕ_N is the potential at the silicon juction with satisfying the charge neutrality condition.

Numerical results: $-\nabla \phi|_x \simeq -\frac{\phi_2 - \phi_1}{x_2 - x_1}$, where $\phi_1 = \phi_s$.

Figure 1: Comparison between the analytic results and numerical results for the general Poisson equation in the metal oxide silicon(MOS) structure

Results for the Eigensolver embedded with the potential $\phi(x)$

case1.

 $T_{\rm si} = 1 \mu m, \, \phi_s = 10^{-2} {\rm ev}, \, \phi_N = -0.287 {\rm ev}, \, N_a^- = 10^{15} {\rm cm}^{-3}, \, \Delta x = 10^{-3} \mu m$

Figure 2: The wave funtions and the given potential V(x) where $V(x) = -q\phi(x) + E_c - E_i$

case 2.

 $T_{\rm si} = 1 \mu m, \, \phi_s = -0.28 {\rm ev}, \, \phi_N = -0.287 {\rm ev}, \, N_a^- = 10^{15} {\rm cm}^{-3}, \, \Delta x = 10^{-3} \mu m$

Figure 3: The wave funtions and the given potential V(x) where $V(x)=-q\phi(x)+E_c-E_i$