ÜBUNGEN ZUR VORLESUNG GRUNDBEGRIFFE DER THEORETISCHEN INFORMATIK

THOMAS SCHWENTICK

Jonas Schmidt, Jennifer Todtenhoefer Erik van den Akker

SOSE 2024 WARM-UP-BLATT 2 22.04.-24.04.2024

Warm-Up-Aufgabe 2.1 [Endliche Automaten: Interpretation]

Beschreiben Sie die durch den folgenden DFA, den folgenden NFA und den folgenden ε -NFA gegebenen Sprachen jeweils in $ein\ bis\ zwei$ umgangssprachlichen Sätzen:

a) Es sei der folgende DFA \mathcal{A} über dem Alphabet $\Sigma = \{a, b\}$ gegeben:

b) Es sei der folgende NFA \mathcal{B} über dem Alphabet $\Sigma = \{a, b, c\}$ gegeben:

c) Es sei der folgende ε -NFA \mathcal{C} über dem Alphabet $\Sigma = \{a, b, c\}$ gegeben:

Warm-Up-Blatt 2 Übungen zur GTI Seite 2

Warm-Up-Aufgabe 2.2 [Endliche Automaten: Konstruktion]

Im Morse-Code werden die Buchstaben von A bis Z als Folgen von kurzen (\bullet) und langen (-) Signalen kodiert. Um einzelne Buchstaben voneinander unterscheiden zu können, werden zwischen den Buchstaben Pausen gelassen, die wir hier mit dem Zeichen \sqcup notieren. Der Einfachheit halber betrachten wir hier nur die Codierungen der Buchstaben G (- \bullet), T (-), I ($\bullet \bullet$) und U ($\bullet \bullet$ -). Sie M die Sprache über dem Alphabet $\Sigma = \{\bullet, -, \sqcup\}$, die genau die korrekten Morse-Codierungen beliebiger nichtleerer Wörter aus den Buchstaben G, T, I und U erkennt, wobei die Codierungen zweier Buchstaben jeweils durch Pausen getrennt werden müssen, Wörter aber nicht mit einer Pause beginnen oder enden dürfen.

- a) Konstruieren Sie einen ε -NFA, der die Sprache M entscheidet.
- b) Konstruieren Sie einen DFA, der die Sprache M entscheidet.

Warm-Up-Aufgabe 2.3 [NFAs → DFAs: Potenzmengenkonstruktion]

a) Gegeben sei der folgende NFA \mathcal{A} über dem Alphabet $\{a, b\}$.

Konstruieren Sie den Potenzmengenautomaten zu dem NFA \mathcal{A} . Beschränken Sie sich auf die vom Startzustand aus erreichbaren Zustände.

b) Betrachten Sie nun den im Folgenden angegebenen ε -NFA \mathcal{B} , der im Vergleich zum NFA \mathcal{A} aus Teilaufgabe a) eine ε -Transition von Zustand 3 zu Zustand 2 hat.

Geben Sie ε -closure(3) an und konstruieren Sie dann den Potenzmengenautomaten zu dem ε -NFA \mathcal{B} . Beschränken Sie sich auf die vom Startzustand aus erreichbaren Zustände.

Warm-Up-Aufgabe 2.4 [DFAs → REs]

Wir betrachten noch einmal den DFA aus Aufgabe 2.1a):

Konstruieren Sie einen äquivalenten regulären Ausdruck. Gehen Sie dabei nach der anschaulichen Vorgehensweise (Kapitel 3, Folien 18-21) vor und behandeln/eliminieren Sie dabei die Zustände in der Reihenfolge 2,3,4.