PRC 2009 – Resumo de Aula – Redes e Internet

- Internet
 - Rede de redes
 - Será o nosso modelo para o estudo de redes
- Descrições da Internet
 - Seus componentes
 - PCs, Workstations, Servidores, outros equipamentos (supervisão remota de equipamentos por exemplo), protocolos, meio físico, velocidade (bandwidth ou largura de banda – termos banda larga ou banda estreita), routers, Provedores de acesso (operadoras), Provedores de serviços, etc...
 - Seus serviços
 - Tipos de aplicação
 - Web
 - email
 - transferência de arquivos
 - · jogos, etc...
 - Modos de funcionamento da aplicação
 - Orientado a conexão TCP mais seguro
 - Não orientado a conexão UDP menos seguro
 - Qualidade dos serviços
 - · A Internet não dá garantia de serviços
 - O cliente corporativo espera
 - Qualidade de Serviço QoS
 - Tempo de resposta
 - Controle de atrasos
 - Nível de Serviço SLA (Service Level Agreement)
 - se pifar em quanto tempo o serviço é restabelecido?
 - Se for essencial a qualidade do serviço
 - Só é possível com uma rede privativa recursos dedicados
 - exemplo Bancos
 - A rede que interliga as agências ao ponto central é privativa
 - Os clientes acessam o banco de casa via Internet

(menor exigência)

Protocolos

- É o que mais tem nas redes
- Em todos os níveis (aplicação e transmissão), os procedimentos são definidos através de protocolos.
- Novos protocolos mais orientados a determinadas aplicações
- Definição
 - Um protocolo define o formato e a ordem de mensagens trocadas entre duas ou mais entidades de uma rede, bem como as ações tomadas na transmissão ou recepção de mensagens e outros eventos (por exemplo time-out).

Visão geral das redes

- Bordas da rede (edge) PCs e WS rodando as aplicações
 - serviços orientados a conexão exemplo: protocolo TCP
 - garantia de entrega, controle de fluxo e controle de congestionamento
 - serviços não orientados a conexão exemplo: protocolo UDP
 - sem garantia de entrega, sem controle de fluxo e sem controle de congestionamento
 - Porque existe o UDP se o TCP é mais confiável?
 - Resposta UDP é mais rápido
- Núcleo da rede (core) routers e switches
 - Comutação de circuitos (Circuit switching) otimiza a transmissão usando:
 - TDM multiplexação por divisão de tempo
 - FDM multiplexação por divisão de frequência
 - Comutação de pacotes (Packet switching) otimiza a transmissão usando:
 - Datagrama pacotes independentes. O roteamento é baseado somente no endereço destino – a internet é assim
 - Circuitos virtuais O roteamento é feito pelo circuito virtual que é estabelecido antes de iniciar a troca de mensagens – redes ATM, Frame relay e X.25
- Taxinomia das redes de telecomunicações
 - Redes de telecomunicações
 - Redes de Comutação de Circuitos
 - FDM ou TDM
 - Redes de Comutação de Pacotes
 - Redes de Circuitos Virtuais
 - Redes de Datagrama

Meio Físico das redes de acesso

- Acesso residencial
 - Discado (dial), ISDN, ADSL, HFC (TV a cabo)
 - polêmica ADSL e HFC
 - dial, ISDN, ADSL são dedicados

Acesso Institucional

- Idem aos acima (dependendo do uso), por fibra ou wireless (rádio ou satélite)
- A diferença é que em geral o que é conectado é uma LAN ethernet com vários usuários, isto é, há um router/switch na instituição que conecta a ethernet interna.
- Ethernet pode ser com par trançado, coax ou fibra
 - Ethernet é tão interessante que começa a ser usada para redes de longa distância (WAN) e não somente redes locais (LAN)
 - Um exemplo são redes metropolitanas (MAN) que são totalmente ethernet. Note que com o uso de um só protocolo, elimina-se uma conversão de protocolos da LAN para a WAN (menos equipamentos e mais eficiência)
 - Na verdade a ethernet de longa distância (LRE long reach ethernet) tem algumas diferenças com a ethernet para LANs.

- Atrasos em redes de pacotes (se não for pacotes só propagação)
 - Propagação (do sinal em cada link)
 - Transmissão do pacote (o pacote tem que ser recebido todo antes de ser enviado)
 - Filas (é o atraso mais interessante) é variável depende da carga do nó
 - Processamento (todo nó de rede é um computador, portanto tem processamento)
 - Atraso fim-a-fim (total)

$$d_{\text{no}} = d_{\text{proc}} + d_{\text{fila}} + d_{\text{trans}} + d_{\text{prop}}$$

- Intensidade do Tráfego
 - L = Tamanho do pacote (bps bits/segundo)
 - A = Taxa média de chegada de pacotes (pacotes/segundo)
 - R = Velocidade de trasmissão velocidade com que os bits são retirados da fila

LA/R > 1 – chega mais do que sai

LA/R < 1 – este é o objetivo – mesmo assim existe fila, pois pode haver picos de tráfego.

• A estruturação em camadas das redes

- Tentativa de descrever as redes de maneira mais intuitiva
 - cada nível realiza uma função usando as funções do nível imediatamente inferior
 - cada nível provê serviços para o nível imediatamente superior
 - algumas vantagens
 - só a simplificação já é uma vantagem
 - o resto do sistema pode permanecer inalterado ao modificarmos um dos níveis
 - em sistemas complexos, essa habilidade de modificar parte de forma que o resto não seja alterado é importante

Aplicação
Transporte
Rede
Enlace
Física

- Os protocolos e as camadas
 - CADA PROTOCOLO PERTENCE A UM CERTO NÍVEL
 - Cada uma dos elementos da rede possui a pilha de protocolos completa ou não
 - O nivel n de um elemento da rede (um nó) troca mensagens tipo n com o nivel n do elemento seguinte
 - o nível n provê serviços ao nivel n+1 e usa serviços do nivel n-1
 - A divisão dos protocolos em niveis não é uma unanimidade entre os estudiosos de rede devido a:
 - duplicidade de funções em níveis diferentes
 - a divisão em níveis não é perfeita. Existem casos partiulares em que um determinado nível n precisa de informações que estão em uma mensagem de nivel diferente de n

- A pilha de protocolos da internet
 - Implementados em hw ou sw
 - sw aplicação e transporte
 - sw ou firmware rede , enlace
 - hw físico
 - Aplicação
 - HTTP (para a web), SMTP (email) e FTP (file transfer)
 - Outros protocolos para e-commerce, e-banking, B2B, B2C, etc...
 - Transporte
 - Na internet TCP e UDP
 - Rede
 - Protocolo IP conhece a rede o suficiente para rotear os pacotes
 - Existem outros protocolos de roteamento usados em conjunto com o IP
 - Enlace
 - PPP (point-to-point protocol) na internet
 - Ethernet
 - ATM e Frame Relay
- Físico
 - Transportar os bits

- A camada de protocolos e sua relação com os elementos da rede
 - Núcleo da rede Routers ou switches (roteadores ou comutadores)
 - Bordas da rede Sistemas finais (PCs e WSs)
 - Nos sistemas finais os 5 níveis estão presentes
 - Nos routers em geral os 3 últimos (físico, enlace e rede)
 - Nas Bridges apenas os 2 primeiros

- Cabeçalho das mensagens em cada nivel (slide 52)
 - A cada nivel que passa a mensagem, um novo cabeçalho é adicionado

- Estrutura da Internet levemente hierarquica
 - Provedores de acesso
 - locais
 - regionais
 - nacionais
 - internacionais
 - No Brasil
 - locais e regionais
 - Telefonica, Telemar, Brasil Telecom são os maiores (concesionárias de serviços públicos) também vão poder ser nacionais e internacionais
 - Empresas espelho GVT (Brasil Telecom) e Intelig (Embratel)
 - Existem outras empresas menores Comsat, Impsat, Diveo, AT&T, Metrored, etc...
 - nacionais
 - Embratel é a maior
 - Intelig
 - internacionais
 - Embratel, AT&T, GTE, etc ...
 - Provedores de conteúdo
 - Terra, UOL, AOL, IG, e centenas de outros menores e locais

• Desenvolvimentos recentes

- Novas aplicações
 - Telefonia IP
 - Distribuição de conteúdo
 - Motores de busca (Google)
 - Etc ...

Destaques

- Redes de acesso de alta velocidade (DSL, Cabo, WiMax, WiMesh, Etc.)
- Segurança nas redes
- Aplicações P2P peer-to-peer (ex: compartilhamento de arquivos)