Modeling Variable Throughput Channels with Stochastic ODEs

D. Masi, P. Pegus II, J. M. Wong

April 22, 2014

Outline

- Introduction
 - Networking Basics
 - Channel Characteristics
- 2 Implementation
 - Euler-Marauyama Method
- 3 Demonstration

Introduction

Stochastic differential equations are often used to model the nondeterministic behavior of network channels in computer science.

Networking Basics

A **Channel** is the medium through which a message propagates from sender to receiver.

Channel Characteristics

Euler-Marauyama Method

We approximate the solution by assigning y-values $w_0 < w_1 < w_2 < \cdots < w_n$ at discretized t, given the SDE IVP

$$dy(t) = f(y,t)dt + g(t,y)dB_t$$
 (1)

$$y(a) = y_a \tag{2}$$

- 1: **procedure** Euler-Marauyama Method
- 2: $w_0 \leftarrow y_0$
- 3: **for** $i = 0, 1, 2, \cdots$ **do**
- 4: $\Delta t_i \leftarrow t_{i+1} t_i$
- 5: $\Delta B_i \leftarrow B_{i+1} B_i$
- 6: $w_{i+1} \leftarrow w_i + f(t_i, w_i)(\Delta t_i) + g(t_i, w_i)(\Delta B_i)$

algorithm 1: euler-marauyama method, numerical method for SDE

Demonstration

