ゼミノート #5

Categorical Part of Descent Theory, and Stacks

七条彰紀

2018年12月12日

今回のノートで一貫して用いる記号と記法を定める.

 \mathbf{C} :: site, π : $\mathcal{F} \to \mathbf{C}$:: fibered category を考える^{†1}.

記法を定める. $U \in \mathbf{C}, \mathcal{U} = \{\phi_i : U_i \to U\}_{i \in I} \in \text{Cov}(U)$ について,

$$U_{ij} := U_i \times_U U_j, \quad U_{ijk} := U_i \times_U U_j \times_U U_k \quad (i, j, k \in I)$$

と書くことにする. また、添字 a,b=i or j or k について、fiber product からの射影を

$$\operatorname{pr}_a : U_{ij}(\text{ or } U_{ijk}) \to U_a, \quad \operatorname{pr}_{a,b} : U_{ijk} \to U_{ab}$$

とする. さらに $\operatorname{pr}_i:U_{ij}\to U_i$ による pullback を $(-)|_{U_{ij}}$ などと書く.

1 The Category of Descent Data

1.1 Definition

定義 1.1 (F(U), [2] 4.2.4, [1] Def4.2)

圏 F(U) を次のように定める.

Object.

- $\xi_i \in \mathcal{F}(U_i)$ なる対象の class $\{\xi_i\}_{i \in I}$ と,
- $\mathcal{F}(U_{ij})$ 中の同型 $\sigma_{ij} \colon \xi_j|_{U_{ij}} \to \xi_i|_{U_{ij}}$ の class $\{\sigma_{ij}\}_{i,j\in I}$

の組 $(\{\xi_i\}, \{\sigma_{ij}\})$ であって,以下で述べる cocycle condition を満たすもの.このような組を object with descent data と呼ぶ^{†2}.

Arrow.

射 $\{\alpha_i\}$: $(\{\xi_i\}, \{\sigma_{ij}\}) \to (\{\eta_i\}, \{\tau_{ij}\})$ とは, $\mathcal{F}(U_i)$ の射 α_i : $\xi_i \to \eta_i$ の class であって, σ_{ij}, τ_{ij} と整合的であるもの.すなわち,任意の $i, j \in I$ について以下の図式が可換であるもの.

$$\begin{array}{c|c} \xi_{j}|_{U_{ij}} \xrightarrow{\alpha_{j}|_{U_{ij}}} \eta_{j}|_{U_{ij}} \\ \sigma_{ij} \downarrow & \downarrow \tau_{ij} \\ \xi_{i}|_{U_{ij}} \xrightarrow{\alpha_{i}|_{U_{ij}}} \eta_{i}|_{U_{ij}} \end{array}$$

^{†1} ほとんど fiber of π しか扱わないので、psuedo-functor $\mathbf{C} \to \mathbf{Cat}$ をとっても構わない.

 $[\]dagger^2$ 同型の class $\{\sigma_{ij}\}$ が descent data と呼ばれる.

■cocycle condition 組 $(\{\xi_i\}, \{\sigma_{ij}\})$ が cocycle condition を満たすとは、任意の $i, j, k \in I$ について以下 が成り立つということ.

$$\sigma_{ik}|_{U_{ijk}} = (\sigma_{ij}|_{U_{ijk}}) \circ (\sigma_{jk}|_{U_{ijk}}).$$

図式でかけば、圏 $\mathcal{F}(U_{ijk})$ における以下の図式が可換であることと同値.

注意 1.2

この定義に於いて fiber products :: U_{ij}, U_{ijk} を暗黙のうちに選択している。たが、どのように選択しても得られる圏は同型に成る。 U_{ij}, U_{ijk} の選択も込めて $(\{\xi_i\}, \{\xi_{ij}\}, \{\xi_{ijk}\})$ を F(U) の対象とする定義の仕方も有るが、ここでは述べない。詳細は [1] Remark 4.3 にある。

定義 **1.3** ([1] p.72)

 $\xi \in \mathcal{F}(U), \mathcal{U} = \{\phi_i : U_i \to U\} \in \text{Cov}(U)$ について、 $\mathcal{F}(\mathcal{U})$ の元を以下のデータに対応させる:

- $\xi_i := \phi_i^* \xi \mathcal{O} \text{ class } \{\xi_i\}_{i \in I}.$
- $\xi_i|_{U_{ij}} \geq \xi_j|_{U_{ij}}$ が、いずれも

$$\phi_i \circ \operatorname{pr}_i = \phi_i \circ \operatorname{pr}_i \colon U_{ij} \to U$$

による ξ の pullback であることから得られる標準的同型の class $\{\sigma_{ji}\colon \xi_j|_{U_{ij}} \to \xi_i|_{U_{ij}}\}_{i,j}.$

このデータをまとめて $(\{\phi_i^*\xi\}, \text{cano})$ などと書く.この対応を $\epsilon_{\mathcal{U}}: \mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ と書く. $\mathcal{F}(U)$ の射 $\xi \to \eta$ から, ϕ_i に沿った pullback によって $(\{\phi_i^*\xi\}, \text{cano}) \to (\{\phi_i^*\eta\}, \text{cano})$ が得られるので,対応 $\epsilon_{\mathcal{U}}$ は関手である.

1.2 Example

例 1.4 ([2], 4.2.1)

一つの射から成る cover :: $\mathcal{U} = \{f \colon V \to U\}$ について $\mathcal{F}(\mathcal{U})$ を考えてみる. この圏の対象は,

- 対象 $E \in \mathcal{F}(V)$
- $\mathcal{F}(V \times_U V)$ の中の同型射 σ : $\operatorname{pr}_1^* E \to \operatorname{pr}_2^* E$

の組である.

参考文献

[1] Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008).

[2]		Spaces and l Society, 4	(American	Mathematical	Society	Colloquium	Publica-