

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

4. Искусственные нейронные сети

Автор: Шевляков Артём Николаевич

У него есть отростки (аксоны), которые ведут в другие нейроны. Из этих нейронов может приходить нервный импульс. Нейрон может генерировать импульс и передавать его соседям.

Важно: соседи нейрона не равноправны.

Важность соседа выражается в толщине отростка (импульс от важного соседа будет более сильным).

Каждый нейрон может находится в двух состояниях:

возбужденном и невозбужденном. Если в нейрон пришел слишком большой сигнал, то нейрон переходит в возбужденное состояние.

Нейроны могут образовывать цикл.

В этом случае импульс, испущенный из нейрона, может (после всех преобразований в нейронах цикла) снова вернуться в него.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

4. Искусственные нейронные сети

Искусственный нейрон

А как представить нейрон в виде матем. объекта?

- У него должны быть входные и выходные значения.
- У него должна быть указана важность (сила) каждой связи с соседним нейроном.
- Он должен по достаточно простой формуле обрабатывать входные значения и передавать результат вычислений дальше.
- Выходное значение нейрона должно моделировать возбуждение нейрона.

В общем, нужно запилить такую штуку

У искусственного нейрона (ИН) каждый вход имеет свой вес w_i .

Входные значения x_i приходят либо из внешней среды либо из других нейронов.

Важность каждого входа выражается весом связи w_i .

ИН считает взвешенную сумму входов, прибавляет **смещение** w_0 .

Смысл смещения: порог возбуждения.

Далее к результату применяется **функции активации** (ФА).

Если результирующее значение достаточно велико, то считается, что нейрон возбудился.

Какую ФА взять?

Если строго следовать биологии, мы должны взять ступенчатую функцию

$$step(x) = \begin{cases} 1, & x > 0 \\ 0, & x \le 0 \end{cases}$$

она моделирует переход нейрона в возбужденное состояние

Пример работы искусственного нейрона

Если вход нейрона x=1, его вес $w_1=2$, смещение $w_0=-3$, ФА f(x)=step(x), то на выходе будет значение step(2*1-3)=0. То есть нейрон не возбуждается.

А вот если бы смещение было бы w_0 =-1, возбуждение ему обеспечено: step(2*1-1)=1.

Отсюда смысл смещения: мы настраиваем границу входного сигнала, при превышении которой происходит возбуждение.

Недостатки функции-ступеньки step

- Она разрывна.
- Её производная равна 0 во всех точках своей области определения.
- Следовательно, бесполезно использовать ГС при минимизации выражений, содержащих функцию-ступеньку.

Но позвольте, зачем нужно минимизировать ИН?

Это нужно для поиска их оптимальных параметров (весов и смещений), необходимых для построения модели искусственного интеллекта.

Ну что ж. Будем искать замену ступеньке. Сигмоида подойдет?

Сигмоида как функция активации

Сигмоида является гладкой аппроксимацией ступеньки. В исторически первых НС применялась именно она.

$$\sigma(x) = \frac{e^x}{1 + e^x}$$

Недостатки сигмоиды

В предыдущих лекциях мы говорили о том, что сигмоида не безупречна.

Когда у вас будет нейронная сеть, в которой несколько нейронов соединены последовательно, то возникнет суперпозиция сигмоид

$$\sigma(\sigma(\sigma(x)))$$

А у такой функции градиент практически нулевой.

Есть ли еще другие популярные ФА?

Гиперболический тангенс

$$th(x) = \frac{sh(x)}{ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

он как бы тоже аппроксимирует ступеньку. Такая ФА реально применяется в больших HC (LeNet)

А можно брать «не лежачие» функции активации?

ReLU - функция

ReLU=Rectified linear unit

Достоинства: простота.

Недоумение: она совсем не похожа

на ступеньку.

Практика показала, что часто оправдано моделировать ИН не двумя состояниями (возбудился или нет), а числовой «шкалой возбуждения».

ReLU для этого идеально подходит.

Пример работы искусственного нейрона

Если вход нейрона x=1, его вес $w_1=2$, смещение $w_0=-3$, ФА f(x)=Relu(x), то на выходе будет значение Relu(2*1-3)=0. То есть нейрон не возбуждается.

А вот если бы смещение было бы w_0 =1, то выход нейрона будет Relu(2*1+1)=3.

Несколько входов искусственного нейрона

У ИН может быть несколько входов (каждый со своим весом). Входы умножаются на веса и суммируются.

Например, для x_1 =1, x_2 =-1, w_{11} =-2, w_{12} =3, w_{10} =10, f=Relu

получаем Relu(1*(-2)+(-1)*3+10)=Relu(-5+10)=5.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

4. Искусственные нейронные сети

Нейронные сети. Общие сведения

Что можно сделать с искусственными нейронами?

Их можно соединить в нейронную сеть (НС) так, что выход одного нейрона является входом другого нейрона.

Пара нейронов

Пусть все функции активации Relu.

Тогда для входа х=1 НС выдаст ответ:

Relu((-3)*Relu(2*1-1)+1)=Relu(-2)=0

Веса нейронной сети

В НС есть два типа весов:

веса-связи (веса связи между двумя нейронами) и веса-смещения.

Веса нейронной сети

В НС есть два типа весов:

веса-связи (веса связи между двумя нейронами) и веса-смещения.

Функция сети

С НС можно связать функцию $F_{NN}(x)$, которая преобразует вход сети в выход.

Например:

Простейшие сети и их функции

$$F_{NN}(x) = f(f(w_{11}x + w_{110})w_{21} + f(w_{12}x + w_{120})w_{22} + w_{20})$$

НС с несколькими выходами

Если у НС несколько выходов (а такое бывает), то ее функция $F_{NN}(x)$ является вектором.

$$F_{NN}(x) = (F_1, F_2),$$

$$F_1 = f(w_{211}f(w_{11}x + w_{110}) + w_{221}f(w_{12}x + w_{120}) + w_{210}),$$

$$F_2 = f(w_{212}f(w_{11}x + w_{110}) + w_{222}f(w_{12}x + w_{120}) + w_{220})$$

Полносвязные НС

Если каждый нейрон некоторого слоя НС соединен со всеми нейронами следующего слоя, то такая пара слоев называется **полносвязной**.

В паре полносвязных слоев может быть разное число нейронов.

Число весов в полносвязных слоях

Если два слоя полносвязны, то число весов в связях между ними равно $n_1 n_2$, где n_1, n_2 - количество нейронов в этих слоях.

Нужно не забыть, что еще есть веса-смещения. Их число совпадает с общим числом нейронов в НС (кроме нейронов входного слоя).

Входной слой

Входной слой – особый. Там лежат входные данные. Размер входного слоя совпадает с размерностью данных.

Если в НС подаются числа, то размерность входного слоя равна 1.

Если в HC подаются пары чисел, то размерность входного слоя равна 2 и.т.д.

Выходной слой

Выходной слой – тоже особый. То, что выходит с этого слоя, считается ответом все НС. Размер выходного слоя может быть разным – в зависимости от типа ответа.

Если ответ сети – единственное число, то на выходном слое будет 1 нейрон. Но это не обязательно...

Зачем у НС несколько выходов

Несколько выходов у НС оправданы, когда НС выдает массив чисел.

Например, НС может выдать список вероятностей, что поданная на вход фотография содержит изображение собаки, кошки, автомобиля соответственно.

Задача

Найти общее количество весов НС (веса связи между нейронами и смещения), если НС состоит из входного слоя размерности 4, двух внутренних слоев размеров 3 и 5 соответственно, и выходного слоя размерности 2. Все слои в НС полносвязны.

Задача

Веса-смещения есть у каждого нейрона, кроме нейронов входного слоя. Итого: 10 весов смещений.

Число весов-связей между парой слоев равно произведению числа нейронов в этих слоях.

Будет 4*3=12 весов-связей между входным слоем и первым внутренним слоем.

Зачем считать количество весов в НС?

Во время тренировки НС ищутся оптимальные значения весов сети. Чем больше число весов НС, тем больше...

- ... время тренировки НС;
- ... требуется данных для НС;
- ... (сюрприз!) вероятность того, что HC обнаружит ложную закономерность (переобучение, overfitting).

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

4. Искусственные нейронные сети

Различия между биологическими и искусственными нейронными сетями

Похож ли искусственный нейрон на биологический?

Чем человеческие мозги лучше искусственных?

(Пока такой вопрос не считается расизмом)

Сходство в строении, бесспорно, есть. Но есть и принципиальные различия.

Сигнал в искусственной НС распространяется в одном направлении, то есть искусственные нейроны не могут образовывать циклы.

А что из этого следует?

Например, искусственная НС не подвержена галлюцинациям.

Но это не самое важное.

Искусственная нейронная сеть не может хорошо достраивать изображения.

Например, эти изображения для искусственной НС принципиально различны. И сделать, так, чтобы НС начала в них видеть сходство – весьма нетривиальная задача.

Практика показала, что для искусственных НС два состояния нейрона (возбужденный – невозбужденный) недостаточно.

Поэтому de facto была принята непрерывная «шкала возбуждения» и теперь наиболее популярна такая функция активации (Relu).

Для настройки весов искусственной НС используется алгоритм обратного распространения.

Никаких аналогов такого алгоритма в биологических НС нет!

Чтобы найти истинную закономерность в данных, человеческому мозгу требуется на порядок меньше данных.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

4. Искусственные нейронные сети

Выводы

Выводы:

- Мы обсудили строение биологического нейрона.
- Было введено определение искусственного нейрона.
- Мы рассмотрели различные типы функций активаций.
- Научились соединять несколько искусственных нейронов в нейронную сеть.
- Сравнили биологические и искусственные нейронные сети между собой.

Простейшие сети и их функции

$$F_{NN}(x) = f(f(w_{11}x + w_{110})w_{21} + f(w_{12}x + w_{120})w_{22} + w_{20})$$