Final Exam Xarxes de Computador	s (XC), Grau en Enginyeria Informàtica	20/6/2018	Spring 2019
FIRST NAME (CAPITALS):	NAME (CAPITALS):	GROUP:	DNI/ID:
Duration: 2h45m. The quiz will be Quiz (2.5 points) Multiple choice questions (any nur 1. Regarding the address range 1 The broadcast address is 147 The broadcast address is 147 The netmask is 255.255.192.0 The last unicast IP address of	mber of correct answers). Half when one error a 47.83.0.0/18: .83.255.255. .83.63.255.).	nd 0 when more.	
2. About IP: The maximum size of ☐ MTU. ☐ MSS. ☐ The size of an Ethernet frame ☐ 65535 bytes.	an IP packet is always limited by		
	carry a checksum to detect corruption. indication of the source and destination port.		
4. About TCP: ☐ Provides in order and reliable ☐ The segments can be sent ou ☐ The optimal window determine ☐ To close the connection you c	t of order. es the reception window.		
5. About LANs: Switches use the RIP protoco Switches use the spanning tre The ARP protocol uses broad The ICMP protocol uses broad	ee protocol to avoid loops. cast Ethernet.		
6. About Wi-Fi: ☐ Uses RTS/CTS to handle the ☐ Uses CSMA/CD to handle the ☐ The BSS Identifier (BSSID) is ☐ A Wi-Fi frame can be include	hidden node problem. a 48-bit number.		
7. In a DNS resolution: ☐ A server can query another to ☐ A query for an MX record can ☐ The TTL indicates the date of ☐ The root server logs have a log	return more than one answer. modification of a record.		

Final exam of Computer Networks (XC), Degree in Informatics Engineering		20/6/2019		Spring 2019
NAME:	SURNAME:	GRUP	ID	

Duration: 2h45m. The test will be collected in 30 minutes. Please, answer the questions in the given tables.

Problem 1 (2.5 points)

The figure represents the network topology of a company, which includes two locations, Factory and the Headquarters, geographically separated. Three routers (R1..R3) and five switches (Sw1..5) are used for the network that is internally configured as 5 sub-networks (*Production* and *Operation and Maintenance* in Factory and *Management*, *Administration*, and *Servers* in the Headquarters) to facilitate its management. Routers R1 and R2 are used to connect the locations between them by an IP tunnel through the Internet.

The figure specifies the number of stations in every sub-network, as well as the name of the interfaces in the routers. Stations have a single interface named "e0".

The Internet access is provided by an ISP; routers R1 and R2 are connected to R1_ISP and R2_ISP, respectively through the ppp0 interface. The company has been assigned two public IPs 207.36.19.33 for R1 and 207.36.54.87 for R2, being the IP addresses for R1_ISP 207.36.19.1 and that for R2_ISP 207.36.54.1. The internal IP addressing has been planned based on the private IP address block 192.168.32.0/25.

Answer the following questions.

A) (<u>0.75 points</u>) complete the following table with the internal IP addressing plan by assigning sub-networks ordered by the number of IPs to be configured. Note that the mask must be configured to allow addressing the number of devices specified in the figure and be as tight as possible.

Sub-network	Number IPs to be configured	Prefix	mask
Tunnel	2	192.168.32.0	/30

B) (<u>0.75 points</u>) complete the routing table of router R2. Use route aggregation to the smallest mask, to reduce the routing table as much as possible, while maintaining reachability to all sub-networks and name the resulting sub-network concatenating the names of the aggregated ones. Add routes from more to less restrictive masks and use default routes when possible.

Sub-network	Prefix/mask	Gateway	Interface
ISP-R2	207.36.54.1/32	-	ppp0
Tunnel	192.168.32.0/30	-	tun0

C) (<u>0.5 points</u>) Imagine that a manager boots one of the stations in Management network (referred to as "Station"). Assume that all the ARP tables are empty and that the station sends a query to the DNS. Specify in the next table all the devices that will have the ARP table modified and their values when the station receives the reply message. Use the notation the <name of device>.<name of interface>, with <name of interface> in upper case for IP addresses (e.g., "R1.E1") and lower case for MAC addresses (e.g., "R1.e1").

Device name	IP address	MAC address

D) (<u>0.5 points</u>) To test the connectivity between the two locations, an operator executes a ping from the console of router R3 to the interface R1.e1. Write the IP addresses and the value in protocol field in the outer header of the IP datagram seen after the IP datagram leaves the following interfaces:

Output	IP Header		
Interface	Source address Destination address Protocol		Protocol
R3.e0			
R2.tun0			
R2.ppp0			

First Control de Xarxes de Comput	tadors (XC), Grau en Enginyeria Informàtica	20/6/20	19	Spring 2019
Name:	Surname:	Group DNI		- <u>r</u> - g - × - ×
Problem 2. (2.5 points) In the network of the figure there throughput towards the server S using switch are fastethernet (100 Mbps) GigabitEthernet. The router has a q Suppose that window scale is used, s		LAN1	1Gbp 100M	LAN2 X2 10 sbps
the figure shows. The figure indicate	indow of all connections follows a periodic saw shes the maximum window Wmax, the average windy what is the relationship between Wmax and ssth.		<u></u>	W _{max} W ssth
	e previous sketch, compute the relationship betwee tion. To simplify, do not take into account the time is			
	erage window of PC connections in LAN1 (W1) can maximum windows (Wmax1 and Wmax2) can i			
2.5 (0,25 points) Compute the relative Wmax1).	ionship between the maximum window of a LAN	VI and LAN	2 conne	ections (Wmax2 /
	simple estimate of the size of the windows we will ueue is full, the window of all connections reach LAN2 connection.			
2.7 (0,25 points) With the previous ap	oproach, estimate the mean RTT of a connection.			
2.8 (0,25 points) Estimate the maximum	um RTT of a connection.			
2.9 (0.25 points) Justify why the appr	roximation in 2.6 is coarse (not exact).			

2.10 (0.25 points) Say whether the maximum windows will be actually larger or smaller than those estimated in section 2.6.

Justify the answer.

Final exam. Xarxes de Computadors (XC). Grau en Enginyeria Informàtica		20/06/2019	Spring 2019
NAME (in UPPERCASE LETTERS):	FAMILY NAME (in UPPERCASE LETTERS):	GROUP:	DNI/NIE:

Duration: 2h 45 minutes. The quiz will be collected in 30 minutes.

Problem 3 (1 point)

The figure shows a network including the configuration of the VLANs. VLAN1 provides access to the Internet via ISP1 and VLAN2 via ISP2. According with this configuration D has access to Internet via R2 and ISP2. The rest of the hosts (A, B and C) have access to the Internet via ISP1. The links in the figure show the VLAN defined. All of them are 1Gbps links.

For each of the following scenarios identify the sequence of devices each flow follows, the bottleneck, how flow control applies, and what is the maximum transmission speed the hosts may achieve.

- a) Hosts A, B and D send traffic towards the Internet. C does not generate traffic. What is the transmission speed A, B and D may achieve?
- b) Hosts A, B and D send traffic towards the Internet. C does not generate traffic. If host A transmits 250Mbps, what is the transmission speed B and D may achieve?
- c) As in the previous scenario but now C transmits as much as possible to ISP1.

Suppose that C must transmit a continuous flow at 300Mbps towards D.

- d) Which will be the path of the flow? Do we need any change in the configuration?
- e) In the previous scenario, what is the transmission rate A may achieve when transmitting towards B?

Final Exam Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		20/6/2018	Spring 2019
FIRST NAME (CAPITALS):	NAME (CAPITALS):	GROUP:	DNI/ID:

Duration: 2h45m. The quiz will be collected in 30 minutes.

Problem 4 (1.5 points) According to the following message:

```
Return-Path: < fr@a.org >
Received: from mx1.upc.es (localhost [127.0.0.1])
     by mbox-1.upc.es with SMTP;
     Mon, 17 Jun 2019 10:10:12 +0200
Received: from mail.a.org
     by mx1.upc.es with SMTP id x5JHI04
     for <xc@upc.edu>; Mon, 17 Jun 2019 10:10:11 +0200
Received: from fr.local
      (Authenticated sender: fr)
     by mail.a.org with SMTP id 095D9B
     for <xc@upc.edu>; Mon, 17 Jun 2019 10:10:10 +0200 (CEST)
To: xc@upc.edu
From: fr sender <fr@a.org>
Subject: Logo
Message-ID: <c315223f-7565@a.org>
Date: Mon, 17 Jun 2019 10:10:10 +0200
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="C5C74"
This is a multi-part message in MIME format.
--C5C74
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit
El logo *UPC*
--C5C74
Content-Type: multipart/related; boundary="98BA2"
--98BA2
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: 7bit
<html>
  <head>
   <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
   El logo <b>UPC</b>
   <img src="cid:p1.4F61@a.org" alt="">
  </body>
</html>
--98BA2
Content-Type: image/png; name="logo_upc.png"
Content-Transfer-Encoding: base64
Content-ID: <p1.4F61@a.org>
Content-Disposition: inline; filename="logo upc.png"
\verb|iVBORw0KGgoAAAANSUhEUgAAAJEAAACKCAYAAACqyah7AAAAAXNSR0IArs4c6QAAAgtpVFh0||
NzbjRolAREi5In+uYRZcJDLPEhzv/4+E/wKicXTRs39VDQAAAABJRU5ErkJggg==
--98BA2--
--C5C74--
```

- a) (0.25 points) What DNS resource records has required the originating email server (a.org) to send it (to upc.edu)? Indicate why.
- b) (0.25 points) What are the parts and content types in each part?

c) (0.25 points) The text "This is a multi-part message in MIME format." Will be seen by the user or not, and why?
d) (0.25 points) With reference to the attachment, what does "Content-Transfer-Encoding: base64" mean and what does the base64 encoding do?
e) (0.25 points) How can you detect that the message end?
f) (0.25 points) What the name of the receiver mailbox server and which lines indicate that.