2차전지

刀丞

전기전자/2차전지 Analyst 주민우

2차전지 기초

Part I 전기차 산업

Part II 배터리 산업 이해

Part Ⅲ 배터리 기술 진보 방향

메리츠증권의 분석자료 저작재산권은 메리츠증권에 있으므로, 메리츠<mark>증권의 허락없이 무단</mark> 복사, 대여, 배포 될 수 없습니다. 이를 위반한 경우 저작권법에 따라 법적 대응할 방침입니다.

Part I

전기차 산업

기초 2차전지

전기차판매량전망

- 2019년 기준 순수전기차(BEV) 침투율은 2.2%
- 전기차 산업은 방향성의 문제가 아닌, 속도의 문제

XEV 내 BEV(순수전기차) 비중 증가

참고: xEV=HEV(하이브리드 전기차)+PHEV(플러그인 하이브리드 전기차)+BEV(순수전기차)

자료: SNE리서치, 메리츠증권 리서치센터

글로벌 순수전기차 판매량 전망

자료: SNE리서치, 메리츠증권 리서치센터

지역별 전기차 판매량

- 글로벌 순수전기차 판매량의 가장 큰 비중을 차지하는 국가는 중국
- 중국의 글로벌 순수전기차 판매 비중 66%(2018년) → 53%(2020년)
- 향후 성장속도는 유럽이 가장 가파를 전망

국가별 순수전기차 판매량 전망

자료: SNE리서치, 메리츠증권 리서치센터

국가별 순수전기차 판매 비중

자료: SNE리서치, 메리츠증권 리서치센터

업체별 전기차 판매량

- 2020년 11월 누적 기준 순수전기차 판매량은 TESLA(23%), SHANGHAI GM(8%), BYD(6%), RENAULT(5%), VOLKSWAGEN(4%), HYUNDAI(4%) 순
- 테슬라의 판매량은 공격적인 Capa 증설과 강한 수요에 힘입어 가파른 성장 지속 예상

글로벌 순수전기차 판매 Top10 업체

자료: SNE리서치, 메리츠증권 리서치센터

테슬라 판매량 추이

자료: Tesla, 메리츠증권 리서치센터

- 2020년 유럽 탄소배출 규제 강화 (평균 120g/km → 95g/km)
- 2030년까지 탄소배출 규제는 더욱 강화 예정
- 배출허용치 초과할 경우 '(배출한 CO₂ –배출허용 CO₂) × 95유로 × 판매대수' 과징금 부과
- 100만대 판매한 A 업체 배출허용 CO_2 가 $100g/km인데 120g/km 배출할 경우, <math>20g \times 95$ 유로 $\times 100$ 만대 = 19억 유로(2조원 이상) 과징금
- 아직 전기차 플랫폼, 배터리 조달 등의 준비가 미흡한 업체들은 CO2 크레딧 계약을 통해 과징금 회피

유럽 이산화탄소 배출 규제 산식

- **2019년 탄소배출 기준 (g/km):** 130 + 0.046 X (신차 평균중량 1,372.00)
- **2020년 탄소배출 기준 (g/km):** 95 + 0.033 X (신차 평균중량 1,379.88)
- 2021-2024년 탄소배출 기준 (g/km): 95 + 0.033 × ((각 연도별 신차 평균중량 - 1,379.88)
- (20년 신차 평균중량 -1,379.88))

	2019	2020	2021E	2025E	2030E
승용차	120g/km	105g/km	95g/km	80.75g/km (95g × 0.85)	59.38g/km (95g × 0.625)
				21년 대비 15% 감축	21년 대비37.5% 감축
상용차	147g/km	147g/km	147g/km	124.95g/km (147g × 0.85)	89.67g/km (147g × 0.625)
				21년 대비 15% 감축	21년 대비 31% 감축

자료: ICCT, EU집행위, 메리츠증권 리서치센터

CO2 크레딧 풀링 계약 (언론자료)

Fiat Chrysler pools fleet with Tesla to avoid EU emissions fines

Tough new targets for average CO2 output from cars will be introduced next year

Honda Joins Fiat in Paying Tesla for Europe CO2 Compliance

자료: FT, Bloomberg, 메리츠증권 리서치센터

전기차 판매량이 늘어날 수 밖에 없는 이유-1) 규제

	2024	2025	2030	2035
아테네		1		
오클랜드		1		2
발레아릭 제도			1	
바르셀로나			2	
케이프타운			2	
코펜하겐			2	
런던			2	
로스앤젤레스			2	
마드리드		1		
멕시코시티		1	2	
밀란			2	
옥스퍼드			2	
파리	1		2, 3	
로마	1			
시애틀			2	
스톡 홀롬			3	
밴쿠버			2	

1	디젤차량 진입금지
2	내연기관 없는 도로
3	내연기관 진입금지
4	내연기관 판매금지

전기차 판매량이 늘어날 수 밖에 없는 이유-1) 규제 (중국)

중국 NEV 크레딧 계산식 / 중국 ZEV 규제 사항

NE	EV	1차안	2차안	3차안
발표	시점	2016년 9월	2017년 6월	2019년 7월
의무시	행년도	2018년	2019년	2021년 1월 1일
주요	내용	2018년 내연기관차 생산량의 8%에 해당하는 크레딧 필요 2019년 내연기관차 생산량의 10%에 해당하는 크레딧 필요 2020년 내연기관차 생산량의 12%에 해당하는 크레딧 필요	2019년 내연기관차 생산량의 10%에 해당하는 크레딧 필요 2020년 내연기관차 생산량의 12%에 해당하는 크레딧 필요	2021년 내연기관차 생산량의 14%에 해당하는 크레딧 필요 2022년 내연기관차 생산량의 16%에 해당하는 크레딧 필요 2023년 내연기관차 생산량의 18%에 해당하는 크레딧 필요
적용	대상	승용차 연간 판매량 50,000대 이상 업체	승용차 연간 판매량 30,000대 이상 업체	승용차 연간 판매량 30,000대 이상 업체. 고연비 승용차 생산할 경우 해당 대수의 ½를 내연기관차 생산량에서 차감 후 의무 비율 적용 (규제완화)
크레딧	Ų 이월	불가	원칙적으로 불가하나 2019→2020, 2020→2019 이월은 예외적으로 가능	21년 이후 취득한 NEV 초과 크레딧의 경우 연비규제 목표를 달성한 경우에만 이월 인정
EV	80km ≤ 주행거리 < 150, 2 credit 150km ≤ 주행거리 < 250, 3 credit 250km ≤ 주행거리 < 350, 4 credit 주행거리 ≥ 350km, 5 credit		[(0.012 x 주행거리) + 0.8] x 가산점 * ≤ 6	[(0.006 x 주행거리) + 0.4] x 가산점* ≤ 3.4
크레딧			5) ≤1600),	1) SP<100km/h or R<100km 해당시 가산점 0, R<150km 해당시 가산점 1 2) Y≤0.0112×m+0.4 (m≤1,000), Y≤0.0078×m+3.81 (1,000 <m≤1,600), (m="" y≤0.0038×m+10.28="">1,600) 미충족시 가산점 0.5 (가산점 cap 1.5)</m≤1,600),>
	계산	2	2 x 가산점*	1.6 x 가산점*
PHEV 크레딧	가산점*	R<50km 해당시 가산점 0 (크레딧 없음) R<80km 해당시 non-electric 모드에서 동급 내연기관 모델 연료소모 R≥80km 해당시 EV 크레딧 가산점 2번조건 부합하면 가산점 1, 부합하		non-electric 모드에서 동급 내연기관 모델 연료소모량(L/100km) 의 70% 이상 경우 가산점 0.5electric 모드에서 동급 BEV 모델 에너 지소모량 목표치의 135% 이상일 경우 가산점 0.5
FCEV	계산	250km ≤ 주행거리 < 350, 4 credit 주행거리 ≥ 350km, 5 credit	[(0.16xKW) x 가산점*] ≤ 5	[(0.08xKW) x 가산점*] ≤ 6
크레딧	가산점*	R<300km 해당시 가산점 0 (크레딧 없음) R≥300km 해당시 수소연료파워가 10KW의 30% 초과할 경우 가산점	1(크레딧 cap 5), 이하일 경우 가산점 0.5 (크레딧 cap 2.5)	R<300km 해당시 가산점 0 (크레딧 없음) R≥300km 해당시 수소연료 파워가 10KW의 30% 초과할 경우 가산점1, 이하일 경우 가산점 0.5

주:SP는 최고속력 (km/h), R은 주행거리 (Km), m은 차량중량(Kg), Y는 에너지소비량(KWh/100km)

전기차 판매량이 늘어날 수 밖에 없는 이유-1) 규제 (중국)

- 중국 자동차 공정학회는 10월 27일 자동차 기술 로드맵 2.0 발표
- 신에너지차(BEV+PHEV+FCEV) 판매비율을 2025년 20% → 2030년 40% → 2035년 50%로 확대 계획
- 내연기관차는 2025년 40% → 2030년 15% → 2035년 퇴출(판매금지) 예정
- 신에너지차 구매세 2020년까지 면제 → 2022년까지 면제로 수정
- 신에너지차 구매보조금 2021년부터 폐지 → 2022년까지 지급으로 수정

중국 정부의 신차 판매 비율 목표

(%)	2019	2025	2030	2035
전통 내연기관	95	40	15	퇴출
하이브리드차	95	40	45	50
신에너지차 (NEV)	5	20	40	50

주: 신에너지차(NEV)는 BEV+PHEV+FCEV 자료: 산업자료 취합 정리, 메리츠증권 리서치센터

중국 정부 신에너지차 구매 보조금 상대비교

주: 신에너지차(NEV)는 BEV+PHEV+FCEV 자료: 산업자료 취합 정리, 메리츠증권 리서치센터

중국 순수전기차 판매량

자료: SNE리서치, 메리츠증권 리서치센터

전기차 판매량이 늘어날 수 밖에 없는 이유-1) 규제 (미국)

- 미국 전기차 판매량은 테슬라를 제외할 경우 2014년부터 현재까지 성장이 없음 → 규제완화 때문
- 바이든 정부의 친환경 정책 기조아래 트럼프 정부가 완화한 CO₂ 배출 규제 + 평균연비 규제 부활 예상

테슬라 제외한 미국전체 xEV 판매량

자료: SNE리서치, 메리츠증권 리서치센터

트럼프 행정부, 기존 이산화탄소 배출 규제 및 평균연비 규제 철폐

자료: EPA, NHTSA, 메리츠증권 리서치센터

전기차 판매량이 늘어날 수 밖에 없는 이유-1) 규제 (미국)

미국 크레딧 계산식 / 미국 ZEV 규제 사항

ZE	EV	TZEV		
거리 크레딧		거리	크레딧	
R < 50miles	0	R < 10miles	0	
R ≥ 50miles	(0.01xR)+0.5	R≥10miles	(0.01xR)+0.3	
R > 350miles	4.0	R > 80miles	1.1	

의무비율 (credit)	Minimum ZEV	TZEV	Total ZEV
2009~2011	11.0		
2012~2014	12.0		
2015~2017	14.0		
2018	2.0	2.5	4.5
2019	4.0	3.0	7.0
2020E	6.0	3.5	9.5
2021E	8.0	4.0	12.0
2022E	10.0	4.5	14.5
2023E	12.0	5.0	17.0
2024E	14.0	5.5	19.5
2025E	16.0	6.0	22.0

주: ZEV는 BEV, FCEV. TZEV는 PHEV이며 미국 10개주만 적용 중

전기차 판매량이 늘어날 수 밖에 없는 이유-2) TCO

기초 2차전지

(천원)	내연기관	2018년 순수전기차	2020년 순수전기차	2022년 순수전기차	2025년 순수전기차
리테일 가격	30,800	41,250	37,335	34,404	31,840
연비(km/L, Km/KWh)	10	6.4	6.5	6.7	6.9
연료가격 (원)	1,400	173.8	184.4	195.6	213.8
1년 유류비(1만키로 주행가정)	1,400,000	273,701	281,912	290,369	308,053
2년 유류비(2만키로 주행가정)	2,800,000	547,402	563,824	580,738	616,105
3년 유류비(3만키로 주행가정)	4,200,000	821,102	845,735	871,107	924,158
4년 유류비(4만키로 주행가정)	5,600,000	1,094,803	1,127,647	1,161,477	1,232,211
5년 유류비(5만키로 주행가정)	7,000,000	1,368,504	1,409,559	1,451,846	1,540,263
6년 유류비(6만키로 주행가정)	8,400,000	1,642,205	1,691,471	1,742,215	1,848,316
7년 유류비(7만키로 주행가정)	9,800,000	1,915,906	1,973,383	2,032,584	2,156,369
8년 유류비(8만키로 주행가정)	11,200,000	2,189,606	2,255,294	2,322,953	2,464,421
9년 유류비(9만키로 주행가정)	12,600,000	2,463,307	2,537,206	2,613,322	2,772,474
10년 유류비(10만키로 주행가정)	14,000,000	2,737,008	2,819,118	2,903,692	3,080,526
보험료 (원)	800,000	800,000	800,000	800,000	800,000
자동차세 (원)	250,000	250,000	250,000	250,000	250,000
1년 TCO	33,250	42,574	38,667	35,744	33,198
2년 TCO	34,650	42,847	38,948	36,035	33,506
3년 TCO	36,050	43,121	39,230	36,325	33,814
4년 TCO	37,450	43,395	39,512	36,615	34,122
5년 TCO	38,850	43,669	39,794	36,906	34,430
6년 TCO	40,250	43,942	40,076	37,196	34,738
7년 TCO	41,650	44,216	40,358	37,486	35,046
8년 TCO	43,050	44,490	40,640	37,777	35,354
9년 TCO	44,450	44,763	40,922	38,067	35,662
10년 TCO	45,850	45,037	41,204	38,357	35,970

참고: 국내 급속충전 요금은 KWh당 기존 313.1원에서 173.8원으로 인하. 매년 3%씩 전기료 인상 가정. 음영은 TCO 역전구간 자료: 산업자료 취합 정리, 메리츠증권 리서치센터

Part II

배터리 산업 이해

기초 2차전지

배터리 전방 수요처 비중

- 2차전지 전방 수요처 비중은 전기차 67%, Non-IT 14%, IT기기 12%, ESS 7%
- 전기차향 비중이 절대적

배터리 전방 수요처 비중

주요 완성차 업체별 배터리 공급망 현황

전기차 배터리는 수주산업

- 1) 전기차 업체들의 모델별 생산계획 수립 (5년 이상)
- 2) 배터리 업체 선정
- 3) 모델별 배터리 발주
- → 통상 모델별 5년이상의 수량을 발주하기 때문에 한번 배터리 공급사로 선정되면 장기간 공급사 지위 유지
- → 초기 선점 효과가 중요한 산업

주요 배터리 업체별 수주잔고 추정 (2020년 상반기 누적기준)

자료: 각 사, 메리츠증권 리서치센터

폭스바겐 MEB 플랫폼 생산 계획

	TR1	TR2			Total
(천대)	EU	EU	US	China	
2019	3				3
2020	150	40		10	200
2021E	190	200		400	790
2022E	160	230	30	530	950
2023E	190	260	120	620	1,190
2024E	210	350	140	670	1,370
2025E	220	440	160	700	1,520
2026E	220	490	150	700	1,560
2027E		380	140		520
2028E		270	120		390
2029E		230	40		270
2030E		180			180
2031E		90			90
Total	1,343	3,160	900	3,630	9,033

자료: SNE리서치, 메리츠증권 리서치센터

- 전기차 배터리는 차량 하부에 배치
- 전기차 종류에 따라 배터리 탑재용량은 상이
- 평균적으로 HEV 1KWh, PHEV 10KWh, BEV 60KWh의 배터리가 탑재됨
- 스마트폰 한대당 배터리 용량 10~14Wh → 순수전기차에 스마트폰의 4,000~6,000배의 배터리 탑재

전기차 하부에 탑재되는 배터리

자료: 디일렉, 2019.07.11, "LG화학 올 전기차 배터리 점유율 10% 이상 급성장"... B3 전망"

전기차 종류별 배터리 탑재 용량

배터리가격표기

- 배터리는 개당 가격이 아니라 용량당 가격으로 표기 → KWh당 가격으로 표기
- 셀/모듈/팩 별로 가격은 상이함
- 통상적으로 배터리 업체들은 배터리 모듈 형태로 공급을 하고, 자동차 업체가 모듈을 팩으로 조립
- 배터리 셀/모듈/팩 가격은 규모의 경제 시현으로 하향 안정화 추세
- 팩 기준 100달러/KWh가 내연기관과의 Price parity 달성 가격

일반적인 배터리 조립 단계 (셀 → 모듈 → 팩)

자료: Bosch, 메리츠증권 리서치센터

배터리 가격 추이

배터리 생산공정

기초 2차전지

- 2차전지 4대 소재= 양극재(양극기판에 코팅)+음극재(음극기판에 코팅)+전해액+분리막
- 작동원리: 리튬과 전자가 음극 ▶양극으로 이동(방전), 리튬과 전자가 양극 ▶음극으로 이동(충전)
- 내구성: 충방전 500~600회 반복시 배터리 성능의 80% 수준 유지 여부가 내구성 테스트 통과 기준 (실제 충방전은 1,500~2,000번까지 가능. 1회 충전시 300km 가정하면 45만km 주행 가능)
- 생산된 젤리롤을 어떤 포장재에 넣느냐에 따라 파우치형, 각형, 원통형으로 구분

2차전지 구조

자료: LG화학

형태에 따른 2차전지 종류

자료: 뉴스핌, 2017.09.28, "SK이노, 현대-기아차 배터리 LG화학 주도권 깨다"

배터리 원가 구조, 재료비 비중이 높아 높은 마진 기대하기 어려워

- 전기차 제조 원가 중 가장 많은 비중을 차지하는 부품은 배터리(40%)
- 배터리의 원가 구조는 재료비 비중이 높아 고정비 레버리지 효과 낮음
- 따라서 배터리는 높은 마진 기대하기 어려워
- 반도체보다는 디스플레이에 가까운 원가구조 가지고 있음
- SK하이닉스 원가 비중 = 감가상각비 30% + 원재료 26% + 인건비 19% + 지급수수료 7% + 기타 18%
- LG디스플레이 원가 비중 = 원재료 53% + 감가상각비 13% + 인건비 13% + 지급수수료 3% + 기타 18%

내연기관 vs 전기차 원가 구조

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

배터리 원가 구조. 재료비 내 원가 구조

배터리 단가 인하 압력 vs 배터리 원가절감 노력

- 2013년 독일 평균 차 가격 26,000유로, 2016년 대한민국 평균 차 가격 3,000만원
- 전기차 대중화를 위한 핵심은 합리적인 전기차 가격 ▶ 원가의 40%를 차지하는 배터리 가격 인하 필수
- 내연기관과 Price parity가 달성되는 배터리 팩 가격은 100달러/KWh
- 내연기관 ASP 3,000만원기준 매출원가율 80%(2,400만원) ▶ 공통부품인 차체 + 샤시 + 기타 비중이 43.5%(1,045만원) ▶ 남은 1,355만원으로 배터리와 모터 비용이 구성되야함 ▶ 모터 550만원+배터리 805만원 ▶ 70KWh 탑재 기준 배터리 팩 가격은 KWh당 105달러까지 빠져야 함

배터리 가격 추이

배터리 단가 인하 압력 vs 배터리 원가절감 노력

- 노력1) 생산속도 향상에 따른 단위당 Capex 15% 감소 (100PPM ▶200PPM ▶300PPM)
- 노력2) 수율(생산제품 중 정상제품 비율)개선에 따른 제조원가 감소
- 노력3) 단위 셀/모듈 크기를 키워 모듈/팩에 들어가는 부품수 최소화 ▶ 무게, 부피, 원가 모두 감소
- 노력4) 에너지 밀도 향상에 따른 단위당 원가 감소

배터리 Capex 추이

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

배터리 투자비용 감소

자료: 삼성SDI, 메리츠증권 리서치센터

기초 ^{2차전지}

Part III

배터리 기술 진보 방향

1) 에너지 밀도 증가

- 주행거리는 소비자가 전기차 구매시 고려하는 가장 중요한 요소중 하나
- 완성차 업체들은 1회 충전 주행거리를 내연기관 수준만큼 늘리려는 계획
- 주행거리 증가는 1) 배터리 에너지 밀도 증가, 2) 배터리관리시스템(BMS) 성능 개선, 3) 모터 효율성 개선,
 4) 차체 경량화를 통해 구현 할 수 있음
- 특히 배터리 에너지 밀도 증가를 위해서는 배터리 소재들의 고도화가 필수

주요 모델별 주행거리

참고: 해당 차종 내 가장 많이 팔리는 모델을 기준으로 함

자료: SNE리서치, 메리츠증권 리서치센터

배터리 소재 기술 변화 로드맵

- 양극재의 발전 방향은 ① 니켈비중 극대화(하이니켈), ② 단결정화로 진행 예상
- 하이니켈: 양극재 내 니켈비중이 높을수록 에너지 밀도는 증가함. 다만 안전성과 수명은 취약해지게 됨. 이를 최소화하는 것이 양극재 업체들이 풀어야할 과제이자 기술적 진입장벽

니켈 함량별 에너지 밀도 비교

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

니켈함량 올라갈수록 안전성과 수명은 취약

자료: SKI, 메리츠증권 리서치센터

하이니켈 양극재 점유율

자료: SNE리서치, 메리츠증권 리서치센터

- 단결정: 알루미늄 극판 위에 양극소재 분말을 코팅 후 압연(press)하는 과정에서 다결정 양극분말은 부서지며 부반응을 일으킴. 단결정 분말은 부서지지 않아 부반응을 일으키지 않음
- 에너지 밀도를 극대화하기 위해서는 압연의 세기도 강해져야 하는데 다결정 양극분말로는 한계 존재
- 단결정 분말은 부서지는 잔해물들이 없어 수세공정(Washing)을 거칠 필요가 없음 → 가공비 절감, 수율개선, 에너지밀도 증가로 이어짐
- 향후 전고체 전지에서도 단결정 양극분말 사용이 더 유리할 전망
- 배터리 업체들은 '17년부터 양극소재 업체들에게 단결정 개발 과제를 부여해 현재 개발 진행 중

극판 압연 공정중 양극분말에 발생하는 문제점

자료: 에스엠랩, 메리츠증권 리서치센터

단결정과 다결정구조의 차이 비교

구분	LCO	NCM811/NCA	NCM/NCA (고객사 요구사항)
사진 (형상)			
구조	단결정 구조	다결정 구조	단결정 구조
밀도	극판밀도 < 4.0g/cc	극판밀도 < 3.3g/cc	극판밀도 > 3.6g/cc
용량	전극부피당 용량 < 640mAh/cc	전극부피당 용량 < 660mAh/cc	전극부피당 용량 < 780mAh/cc
수세/세척 공정*	×	0	×

자료: 에스엠랩, 메리츠증권 리서치센터

- 리사이클 대상은 1) 폐배터리, 2) 폐양극재가 있음 → 양극재 원료 추출
- 양극재 원가 절감을 위해서는 폐양극재 리사이클 필수
- 리사이클 관련업체로는 성일하이텍, GEM, CATL 자회사, 유미코어, 에코프로CNG 등이 있음
- 폐배터리는 2020년 28GWh → 2030년 802GWh 발생 예상
- 폐배터리 1GWh당 200억원, 폐양극재 1톤당 1,800만원 매출 발생 추정

폐배터리 리사이클을 통해 추출

자료: 성일하이텍, 메리츠증권 리서치센터

에코프로CNG 주주 구성

자료: Company data, 메리츠증권 리서치센터

에코프로CNG 실적 전망

자료: Company data, 메리츠증권 리서치센터

- 양극재 제조공정 단순화& 원가절감의 핵심은 건식 전구체에 있음
- 양극재 원료인 전구체는 보통 황산용액과 함께 습식 전구체로 제조됨
- 건식 전구체는 황산용액을 넣지 않아 제조공정 단순화는 물론 투자비와 유틸리티 비용도 절감됨
- 다만 건식 전구체는 입자 균일성이 떨어져 상용화는 매우 어려움
- 더 나아가 양극재 제조공정에서 발생하는 부산물(물포함)들을 최대한 재활용할 계획

전통적 양극재 생산 공정

자료: Tesla

Tesla가 목표하는 양극재 생산 공정

자료: Tesla

1-2) 음극재 발전방향: 실리콘계 음극재 첨가

- 양극재와 달리 음극재는 자생적으로 에너지 밀도를 개선시킬 방법이 제한적
- 기존 인조/천연흑연에 실리콘을 첨가하는 방식으로 에너지 밀도 극대화 →실리콘 에너지밀도는 탄소의 10배
- 700Wh/ℓ이상부터는 실리콘계 소재의 사용이 '필수적' → '21년부터 실리콘계 시장 개화 예상
- 실리콘은 에너지밀도는 우수하지만, 팽창문제, 낮은효율, 낮은수명 문제를 극복해야 하는 과제가 있음
- 대주전자재료가 실리콘산화물을 상용화해서 19년 포르쉐 타이칸향 공급
- 실리콘 팽창문제와 수명문제는 실리콘 나노화, 바인더 소재 변경, 전해액 첨가제를 통해, 효율저하 문제는 실리콘 산화물 링 안에 메탈을 균일하게 반응시켜 개선

기존 음극재와 실리콘계 음극재 에너지밀도 및 효율 비교

구분	인조흑연	천연흑연	비정질 카본 (소프트/하드카본)	실리콘계 (Si/SiO)
사진 (형상)		303		
방전용량(mAh/g)	250-360	350-370	200-300	1,000-1,700
초기효율(%)	92-95	90-94	80-90	73-87
수명	장수명	보통	보통	단수명
가격(달러/kg)	8~15	5~10	8~12	50~150
주요 제조업체	Hitachi chemical JFE Mitsubishi chemi cal BTR Nippon carbon Showa denko Tokai carbon	BTR energy Shanshan Hitachi chemical Nippon carbon 포스코케미칼	Nippon carbon Hitachi chemical JFE chemical Kureha 애경유화	대주전자재료 BTR Shinetsu OTC Hitachi chemical Showa denko

참고: 경쟁사 80% 효율 내는 소재 개발중인 반면 대주전자재료는 80% 양산을 넘어 85% 개발중.

자료: 대주전자재료, 메리츠증권 리서치센터

실리콘의 문제점을 나노화와 카본코팅으로 극복

1-2) 음극재 발전방향: 실리콘계 음극재 첨가

- 실리콘계 음극재는 크게 실리콘 산화물과 실리콘 카본으로 나뉘어지는데 대부분의 배터리 업체는 실리콘 산화물을 이용한 배터리를 개발 중
- 삼성SDI는 실리콘 카본을 이용하고 있음. 실리콘 산화물로의 전환을 하게 되면 전해액과 전지시스템이 모두 바뀌어야 하기 때문에 전환이 용이하지 않음. 향후에도 실리콘 카본을 이용하게 될 가능성이 높음
- 실리콘의 근본적인 문제점(팽창, 수명저하) 때문에 음극재 내 실리콘 첨가 비중은 10%대에 머물 전망
- 전기차향뿐 아니라 파워툴, IT향으로도 실리콘계 음극재의 첨가 트랜드는 확대될 전망

배터리 업체별 실리콘계열 사용 현황, 실리콘 산화물이 대다수

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

대주전자재료의 실리콘 산화물 로드맵

자료: 대주전자재료, 메리츠증권 리서치센터

1-3) 동박 발전방향: ① Thinnest, ② Longest, ③ Widest

- 배터리 업체들이 요구하는 동박의 방향은 ① 얇고, ② 길고, ③ 넓게 만드는 것
- ① 얇아야 전지 무게 또한 감소 (에너지 밀도에 기여)
 - ② 길어야 생산효율성이 증가 (원가절감에 기여)
 - ③ 넓어야 생산효율성이 증가 (원가절감에 기여)
- 얇고, 길어지고, 넓어지면서 동박의 품질(구김, 찢어짐, 물성변화)을 유지하는 것이 기술력

배터리 동박 제조 과정

자료: KCFT, 메리츠증권 리서치센터

배터리 업체들이 요구하는 동박의 방향

>>> 낮은 기술로 인한 제품 불량

자료: KCFT, 메리츠증권 리서치센터

1-4) 분리막 발전방향: 더 얇게, 더 안전하게

- 분리막은 양극과 음극의 접촉을 막아주는 안전성과 직결되는 소재
- 분리막에 요구되는 특징은 ① 다공성, ② 내열성, ③ 내구성, ④ 절연성 등
- 분리막 면적의 약 70%까지 기공도를 확보하게 되면 이온의 이동이 많아져 에너지밀도는 올라가나,
 기계적인 물성은 약해짐 → 이를 극복하기 위해 전해액과 친화성을 갖는 세라믹 코팅 처리를 함
- 기존 분리막 기초 소재인 PE 대비 고내열, 고강도 특성을 지닌 Super Engineering 플라스틱 개발중 → 세라믹 코팅이 없어 두께와 무게 감소 → 에너지 밀도 상승
- Energy Technology(002812.SZ)를 비롯한 중국 경쟁사들의 증설로 단위(m²)당 가격은 하락

세라믹 코팅 분리막 세라믹 레이어 증가 → 안정성 개선 베이스필름 얇아짐 PE flim 1세대 (2012) 2세대 (2014) PE flim 3세대 (2016) 슈퍼 엔지니어링 플라스틱 필름 ■ 열 저항 바인더 시스템 → 안정성 향상 4세대 (2020) ■ 코팅 레이어 얇아짐 ■ 슈퍼 엔지니어링 플라스틱 필름 → 안정성 향상 → 에너지밀도 증가 ■ 코팅 레이어 생략 → 에너지밀도 증가

자료: SK이노베이션, 메리츠증권 리서치센터

배터리 분리막 기술 변화

배터리 업체들이 요구하는 분리막의 방향

참고: 코팅 전 bare film 가격 기준

1-5) 전해액 발전방향: 구성요소 고도화 및 가격경쟁력 확보

- 전해액은 리튬이온을 양극과 음극에 전달하는 통로 역할 뿐 아니라 고온과 저온에서의 사용환경 확대, 양극과 음극 보호, 과충전과 과방전 방지 등의 역할 수행
- 전해액=염(12%)+용매(85%)+첨가제(3%)로구성 → 첨가제가 함량비중은 가장 낮지만 원가비중은 가장 큼
- 염은 수명과 저온방전량에, 용매는 리튬이온 전도도에, 첨가제는 안전성, 수명, 성능 개선에 영향
- 전해액의 성능은 첨가제 고도화, 전해액 원가절감은 첨가제 내재화를 통해 달성 가능할 전망
- 동화기업은 국내 전해액 업체 중 유일하게 용매(NMP)와 첨가제 기술 내재화

전해액 구성요소들의 함량 및 원가 비중

자료: 엔켐, 메리츠증권 리서치센터

전해액 추가주액 및 첨가제 투입 효과

2) 가격 경쟁력 확보

- 노력1) 생산속도 향상에 따른 단위당 Capex 15% 감소 (100PPM ▶200PPM ▶300PPM)
- 노력2) 수율(생산제품 중 정상제품 비율)개선에 따른 제조원가 감소
- 노력3) 단위 셀/모듈 크기를 키워 모듈/팩에 들어가는 부품수 최소화 ▶ 무게, 부피, 원가 모두 감소
- 노력4) 에너지 밀도 향상에 따른 단위당 원가 감소

배터리 Capex 추이

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

배터리 투자비용 감소

자료: 삼성SDI, 메리츠증권 리서치센터

3) 충전속도 단축

- 전기차 업체는 배터리 충전소요 시간을 15분 이내로 단축시켜 줄 것을 요구
- 급속충전은 배터리 용량의 80%까지만 진행. 그 이후부터는 전압은 유지하되 전류량을 줄여 나감
- 충전속도 단축을 위해서는 고출력 충전기 뿐 아니라 고출력 충전이 가능한 배터리가 필수
- 고출력 충전기는 이미 350~400KW 급까지 개발이 완료되어 있음
- 고전압, 고전류 구동이 가능한 배터리 설계가 뒷받침 되어야 함 → 양극/음극/분리막/전해액 개선 필요
- 특히 실리콘복합체의 사용확대를 통해 충전속도 단축 기여 예상
- 이외 음극 구조를 수평 구조에서 3D 구조로 변경해 시간당 리튬 흡수량을 늘려 고속충전 지원 가능

배터리 충전 소요시간 비교

참고: 배터리 용량 80kWh 가정, 배터리 용량의 80%만 급속충전 가정.

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

음극 구조 변경 통한 충전시간 단축

자료: 삼성SDI, 메리츠증권 리서치센터

4) 차세대 배터리

- 전고체 배터리가 가장 상용화에 근접. 이와 함께 전고체 배터리의 새로운 음극재로 리튬메탈 부상
- 리튬메탈은 흑연대비 이론적 에너지밀도가 10배 높아 배터리 에너지 밀도 향상에 도움
- 리튬메탈 음극은 충전과정에서 음극 표면에 리튬이 적체되는 덴드라이트(Dendrite)가 발생해 분리막을 훼손하는 안전 문제가 있었음 → 1) 고체 전해질이기 때문에 기존 대비 안전성이 높아졌고,
 2) 음극 표면에 특수 복합층을 형성해 덴드라이트 현상을 억제하는 방법으로 해결
- 전고체 배터리 내 리튬메탈 음극 적용시 집전체는 기존 동박을 그대로 사용하기 어려울 전망 → 고체전해질 (황)이 동박을 부식시키기 때문 → 동박은 다른 소재로 대체되거나, 니켈도금층을 추가하는 형태로 변화

차세대 배터리 종류별 특징

구분	리튬이온	리튬메탈	전고체	리튬황	리튬에어
양극	Li(Ni,Co,Mn)O ₂	Li(Ni,Co,Mn)O₂	Li(Ni,Co,Mn)O ₂	Sulfur	Carbon
음극	Graphite	Li metal	Li metal /Graphite	Li metal	Li metal
전해액	액체	액체/고체	고체	액체/고체	액체/고체
분리막	PE	PE/X	Х	PP/X	Membrane/x
동박	0	Δ	Δ	Δ	Δ
Wh/L	600	900	1,000	900	1,200
Wh/kg	250	440	500	650	950
상용화(1~5)	5	2	3	1	1

자료: KATECH, 메리츠증권 리서치센터

전고체배터리 내 리튬메탈 음극

자료: 삼성전자 종합기술원, 메리츠증권 리서치센터

4) 차세대 배터리-전고체 배터리

- 차세대 배터리중 가장 상용화에 근접해 있는 후보는 전고체 배터리
- 전고체 배터리는 기존 리튬이온 배터리에서 전해액과 분리막이 고체 전해질로 대체되는 형태
- 안전성, 에너지밀도(이론적), 충전속도 단축 측면에서 기존 배터리 대비 이점이 있음
- 전고체 배터리의 상용화를 위한 해결과제는 '높은 계면저항'과 '낮은 이온전도도'
- 전고체 배터리의 이온전도도(10 -6~-2 S/cm)는 리튬이온 배터리의 이온 전도도(10 -2 S/cm) 보다 낮아 에너지 밀도와 출력을 극대화 시키는데 제한
- 고체 전해질이 양극/음극과 맞닿은 부분에서 저항(계면저항)이 발생해 에너지 밀도와 출력 극대화 제한

소재 고도화에 따른 에너지 밀도 개선

자료: Umicore, 메리츠증권 리서치센터

리튬이온 배터리 vs 전고체 배터리 비교

구분	리튬이온 전지	전고체 전지		
양극활물질	고체(NCA, NCM, LCO 등)	고체(NCA, NCM, LCO 등)		
음극활물질	고체(인조/천연 흑연)	고체(인조/천연 흑연, 리튬)		
전해질	액체(NMP+Li-Salt 등)	고체(황화물계, 산화물계, 폴리머계 등)		
분리막	고체 폴리머(건식/습식)	없음		
구조	Anode Cathode Electrolytic Solution	Anode Solid Electroly in		
이온전도도	10 ⁻² S/cm	10 ^{-6~-3} S/cm		
안전성	낮음(발화위험 내재)	높음		

자료: SPring8, 메리츠증권 리서치센터

4) 차세대 배터리-전고체 배터리

- 기존 리튬이온배터리와 전고체 배터리의 가장 큰 차이점은 전해질이 액체에서 고체로 변경
- 전고체 배터리의 장점은 안전성 향상 외에도
- 1) 하나의 셀에 여러 전극을 직렬 연결하는 바이폴러 구조가 가능해져 부피 감소
- 2) 넓은 작동온도 범위 커버 가능해져 안전성 향상, 냉각용량 축소, BMS 단순화 → 냉각 시스템 축소 → 팩 내 셀 체적비율 향상(현재 60~70% ▶ 80%후반)
- 3) 고전압 양극소재 적용 가능으로 고용량화 가능

리튬이온배터리 vs 전고체배터리 구조 비교

자료: ResearchGate, 메리츠증권 리서치센터

작동온도 범위

자료: KETI, 메리츠증권 리서치센터

4) 차세대 배터리-전고체 배터리

- 전고체 배터리를 구성하는 전해질 구성물질은 여러 종류가 존재 → 크게 황화물, 산화물, 폴리머로 나뉨
- 황화물과 겔폴리머가 상용화 가능한 수준의 이온전도도를 나타내 연구가 가장 많이 진행됨
- 산화물에 대한 연구도 최근 활발히 진행중
- 완성차 및 배터리 업체들의 가격 및 성능 전략에 따라 초기 전고체 배터리 타입은 다양하게 나타날 전망

전고체 전해질 종류

	소재	장점	단점	형태
무기 고체 전해질	황화물계	= 높은 리튬이온 전도도 = 전극/전해질 계면 형성 용이	■ 공기 중 안정성 취약 ■ 공간 전하층 형성으로 전극/ 전해질 계면에 고저항층 발생	= LSiPSCL = LGPS = LSnPS = LPS
	산화물계	■ 공기 중 안정성 우수 ■ 비교적 높은 리튬이온 전도도	■ 고체전해질 입계 저항이 큼 ■ 전극/전해질 계면 형성 어려움 ■ 1,000도 이상의 높은 소결 온도 ■ 대면적 셀 구동 곤란	= LLTO = LLZO = LAGP = LBSO
유기 고체 전해질	드라이 폴리머	전극 계면과 밀착성 우수Roll-to-Roll 공정 적용 용이	■ 낮은 리튬이온 전도도 ■ 고온 환경에서만 사용 가능	= PPE = PPO
	겔폴리머	■ 전극 계면과 밀착성 우수 ■ 리튬이온 전도도 양호	■ 낮은 기계적 강도로 단락 우려	polysiloxane

자료: KETI, 메리츠증권 리서치센터

전해질 종류별 이온전도도

자료: SNE리서치, 메리츠증권 리서치센터

4) 전고체 배터리

- 전고체 배터리의 장점은 안전성 향상 뿐만 아니라 단위 부피당 에너지밀도가 2배 가까이 증가해 배터리 부피를 현저하게 줄일 수 있음
- 기존 리튬이온 배터리는 하나의 셀당 전극(양, 음)을 하나씩만 형성하는 모노폴라 전극 구조였지만,
- 전고체 배터리는 하나의 셀 내 여러 전극을 직렬로 연결하는 바이폴라 구조가 가능
- 즉, 배터리 부피 감소, BMS 최소화, 셀 외장재 사용 최소화로 에너지 밀도 향상과 단가 절약 동시 추구 가능
- 한정된 전기차 배터리 탑재 공간에 더 많은 배터리를 탑재할 수 있게 돼 주행거리 증가로 이어질 수 있음
- 고체전해질을 개발해 샘플 대응을 하고 있는 업체는 미쯔비시화학, 센트럴 글라스, 동화기업 등이 있음

모노폴라 전극 구조와 바이폴라 전극 구조 차이

자료: KETI, 메리츠증권 리서치센터

2.0Ah 전고체 배터리 vs 1.8Ah 리튬이온 배터리 크기 비교

자료: Business wire, 메리츠증권 리서치센터

- 전고체 전지는 1) 낮은 이온전도도+계면저항, 2) 덴드라이트 발생, 3) 높은 가격을 극복해야 함
- 낮은 이온전도도+계면저항을 극복하기 위해서는
- 1) 고체전해질의 크기를 나노사이즈로 작게 만들어 양/음극에 잘 스며들수 있게 해야 하며
 - 2) 양극재 슬러리 단계에서 고체전해질을 함께 섞어 잘 섞이게 만들고
 - 3) 양/음극과 고체전해질의 접촉면적(계면)을 극대화하기 위해 더 높은 가압(press)을 부여해야 함
- → 높은 가압을 견디기 위해서는 다결정 양극재보다 단결정 양극재가 유리함
- 이외 리튬메탈 적용시, 동박과 흑연음극재는 리튬메탈로 대체
- 분리막 제거

리튬이온전지 구조

자료: JMPT

Active material Graphite Separator Lit Binder matrix Carbon black

전고체전지 구조

자료: KETI

4) 차세대 배터리-전고체 배터리 가격

- 전고체배터리 상용화의 또 다른 장애물은 높은 가격
- KWh당 투입되는 전해액+분리막의 가격은 현재 28달러(전해액 10달러+분리막18달러) 추정
- 반면 고체전해질은 현재 3,000달러 (양산기준이 아닌, 연구소 기준)
- 3,000달러(2020년) → 500달러(2025년) → 100달러(2027년)로 점진적으로 하향 안정화 예상
- 이를 고려한 전고체배터리 셀 기준 가격은 2027년 180달러/KWh vs 리튬이온배터리 86달러/KWh 예상
- 여전히 가격 차이 커 2030년 이전까지 전고체배터리가 대량양산 모델에 적용되기는 어렵다고 판단
- 2027년 전체 배터리 중 전고체 배터리 비중은 2.5%일 것으로 예상

KWh당 투입되는(전해액+분리막) vs 고체전해질 가격 비교

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

리튬이오배터리 vs 전고체배터리 KWh당 셀 가격 비교

자료: 산업자료 취합 정리, 메리츠증권 리서치센터

4) 차세대 배터리-전고체 배터리 전망

- 전고체 배터리 시장은 2025년 개화되고, 2030년 이후 본격 성장 예상
- 전체 배터리 시장 규모에서 전고체 배터리가 차지하는 비중은 2025년 0.8%, 2027년 2.5%, 2030년 7.0% 예상
- 전고체 전해질 소재는 현재 해당 소재를 준비하고 있는 업체수 기준 폴리머, 산화물, 황화물 순
- EV/ESS뿐 아니라 소형(IT/CE)용 전고체 배터리도 상용화될 전망

전고체 전해질 소재 비중 예상

자료: SNE리서치, 메리츠증권 리서치센터

전고체 배터리 시장 규모

자료:: SNE리서치, 메리츠증권 리서치센터

해외 주요 업체 개발 동향(도요타)

- 도요타는 파나소닉과 JV(도요타51%, 파나소닉49%)를 통해 전고체 배터리 상용화 추진 중
- JV명칭은 '프라임 플래닛 에너지 앤 솔루션'으로 전고체 배터리 뿐 아니라 리튬이온 각형 배터리 개발, 제조 협력
- 도요타는 전고체 전해질 물질로 황화물을 채택할 것으로 예상
- 현재 구현된 에너지 밀도는 185Wh/Kg, 400Wh/L로 현재 리튬이온 배터리 에너지 밀도의 약 80~85%
 수준 → 산화물 코팅처리된 LCO 양극재, **흑연 음극재**, 황화물계 고체전해질(LGPS)를 사용
- 2021년 올림픽에서 전고체 배터리 탑재한 prototype 전기차 공개 후, 2025년 본 양산 시작 예상

도요타 전고체 배터리 에너지 밀도

자료: SNE리서치, 메리츠증권 리서치센터

도요타 전고체 배터리 공급망 (추정)

소재	공급사	내용	가격	비고
양극재	자체개발 (니치아)	LCO with coated LiNbO3	기존대비 high single up	기존라인 활용가능
음극재	자체개발 (히타치)	Graphite	동일	기존라인 활용가능
고체 전해질	미쯔이메탈	LGPS 등	KWh당 100달러 (샘플 기준)	샘플라인 보유
음극 집전체	후루카와	Coated with Ni	기존대비 high single up	기존라인 활용가능

자료: SNE리서치, 메리츠증권 리서치센터

해외 주요 업체 개발 동향(Solid Power)

- Solid Power는 Colorado 대학 연구팀에서 시작해 2012년 설립된 스타트업
- BMW, Ford, 삼성벤처, 현대 크래들, A123 등 다수기업들이 투자
- 황화물계 고체전해질 사용할 계획이며 현재 1MWh의 파일럿 라인 보유
- 에너지밀도를 높이기 위한 계획 진행중이며, 2023년 셀/부품 양산준비 마치고, 2025년 차량 양산 계획

Solid Power 전고체 배터리 에너지 밀도 향상 계획

소재	2019	2020	2021	2022~2023
양극재	NCM	NCM	NCM	NCM
양극 집전체	사용	사용	사용	사용
음극재	Graphite	Li-metal	Li-metal	Li-metal
음극 집전체	사용	Х	X	х
Wh/kg	260	320	340	435
Wh/L	500	660	720	960

자료: SNE리서치, 메리츠증권 리서치센터

Solid Power 전고체 배터리 양산 계획

참고: SoP는 Start of production의 약자 자료: SNE리서치, 메리츠증권 리서치센터

해외 주요 업체 개발 동향(CATL)

- CATL은 2025년 전고체 배터리 양산 목표
- 전고체 전해질 물질은 황화물계와 폴리머계를 모두 준비 중 → 현재 셀 샘플 제작 중
- 폴리머 전고체: LFP 양극재, Li-metal 음극재, 폴리머계 전해질로 구성
- 황화물 전고체: LCO 양극재, Li-metal 음극재, LPS(황화물계) 전해질로 구성

CATL 배터리 로드맵

자료: SNE리서치, 메리츠증권 리서치센터

해외 주요 업체 개발 동향(QuantumScape)

- QuantumScape는 2012년부터 폭스바겐과 협업 시작 → 전고체배터리 셀 샘플 테스트 완료
- 2018년 전고체배터리 대량양산을 위한 JV 설립 마침
- 2023년 하반기 1GWh 규모의 시양산 개시 → 2025년 하반기 20GWh Capa 세팅 완료 계획
- 1) 흑연음극재와 동박을 제거한뒤 리튬메탈로 대체하고
 - 2) 덴드라이트 현상을 억제하기 위한 세라믹 물질의 고체전해질 층으로 구성

QuantumScape 전고체배터리 생산계획

자료: QuantumScape, 메리츠증권 리서치센터

QuantumScape 실적 전망

자료: QuantumScape, 메리츠증권 리서치센터

해외 주요 업체 개발 동향(ProLogium)

- 2006년 Vincent Yang Sinan에 의해 설립된 대만 전고체 배터리 생산업체
- 전기차 업체 NIO와 전고체 양산 협업 중
- 현재 40MWh 캐파 보유, 2021년 1.5GWh 캐파 추가 예정
- 전고체 전해질 물질은 산화물계 사용
- 현재 음극활 물질은 흑연계 사용했지만, 2025년 Li-metal 기반의 전고체 배터리 양산 목표

ProLogium 전고체 배터리 에너지 밀도 계획

자료: SNE리서치, 메리츠증권 리서치센터

ProLogium 전고체 배터리

자료:ProLogium

국내 주요 업체 개발 동향

- 삼성SDI는 2023년 밸류체인 구성 완료, 2025년 시양산, 2027년 본양산 예정 (1200Wh/L 추정)
- LG화학은 2025~2030년 전고체 배터리 양산 계획. 전고체 전해질 물질은 산화물, 황화물 모두 연구 중

삼성종합기술원이 개발한 전고체 배터리 구조

자료: 삼성전자 종합기술원, 메리츠증권 리서치센터

Compliance Notice

본 조사분석자료는 제3자에게 사전 제공된 사실이 없습니다. 당사는 자료작성일 현재 본 조사분석자료에 언급된 종목의 지분을 1% 이상 보유하고 있지 않습니다.

본 자료를 작성한 애널리스트는 자료작성일 현재 해당 종목과 재산적 이해관계가 없습니다.

본 자료에 게재된 내용은 본인의 의견을 정확하게 반영하고 있으며, 외부의 부당한 압력이나 간섭 없이 신의 성실하게 작성되었음을 확인합니다.

본 자료는 투자자들의 투자판단에 참고가 되는 정보제공을 목적으로 배포되는 자료입니다. 본 자료에 수록된 내용은 당사 리서치센터의 추정치로서 오차가 발생할 수 있으며 정확성이나 완벽성은 보장하지 않습니다. 본 자료를 이용하시는 분은 본 자료와 관련한 투자의 최종 결정은 자신의 판단으로 하시기 바랍니다.

따라서 어떠한 경우에도 본 자료는 투자 결과와 관련한 법적 책임소재의 증빙자료로 사용될 수 없습니다. 본 조사분석자료는 당사 고객에 한하여 배포되는 자료로 당사의 허락 없이 복사, 대여, 배포 될 수 없습니다.

메리츠증권의 분석자료 저작재산권은 메리츠증권에 있으므로, <mark>메리츠증권의 허락없이 무단</mark> 복사, 대여, 배포 될 수 없습니다. 이를 위반한 경우 저작권법에 따라 법적 대응할 방침입니다.

