PSALTer results panel

$$S = = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} \alpha_{0} (\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} + 2 f^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha\chi} - 2 \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 f^{\alpha\beta} \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta\chi}_{\beta} - 2 \partial_{\beta}\mathcal{A}^{\alpha\beta\chi}_{\beta} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\beta}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\gamma\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\gamma\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\gamma\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\gamma\chi}_{\beta} - 2 \partial_{\alpha}\mathcal{A}^{\gamma\chi}_{\beta}) - \alpha_{2} (\partial_{\chi}\mathcal{A}^{\gamma\chi}_{\beta} - 2 \partial_{\alpha$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$\frac{2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} = 0}{2 i k n^{\alpha} + 1 \sigma^{\perp \alpha}}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1 \cdot \tau^{\parallel^{\alpha}}}{} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
Total expected gauge generators:		10

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0^2} > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_0 > 0$