CCNU-UOW CSCI964 Computational Intelligence Spring 2020

Laboratory Exercise 2 (Week 2)

1 Task One: Delta Rule for Single Artificial Neural Networks Training

The delta rule is expressed as the following equation

$$w_i \leftarrow w_i - \eta \frac{dE}{dw} \tag{1}$$

$$\theta \leftarrow \theta - \eta \frac{dE}{d\theta} \tag{2}$$

In which

$$p = \sum_{i=1}^{n} x_i w_i - \theta \tag{3}$$

$$\widehat{y} = f(p) \tag{4}$$

$$f(p) = \frac{1}{1 + e^{-p}} \tag{5}$$

$$E = \frac{1}{2}(y - \widehat{y})^2 \tag{6}$$

So we can get the following quation by the chain rule

$$\frac{dE}{dw_i} = \frac{dE}{d\hat{y}} \frac{d\hat{y}}{dp} \frac{dp}{dw_i} \tag{7}$$

Where

Figure 1: Perceptron with activation function

Algorithm 1 Delta Rule for learning single ANN

Input: training dataset $D = \{(\boldsymbol{x}_k, \boldsymbol{y}_k)\}_{k=1}^m$; learning rate η randomly initialize w_i and θ

Process:

- 1. repeat
- 2. for all $(\boldsymbol{x}_k, \boldsymbol{y}_k)$ do
- 3. compute \hat{y} through the forward process
- 4. update w_i through $w_i \leftarrow w_i \eta(\widehat{y} y)\widehat{y}(1 \widehat{y})x_i$
- 5. update θ through $\theta \leftarrow \theta + \eta(\widehat{y} y)\widehat{y}(1 \widehat{y})$
- 6. end for

7. until $|E_{t+1} - E_t| \le \varepsilon$ or t >= T in which t stands for Epoches for training Output: w_i and θ

$$\frac{dE}{d\hat{y}} = (\hat{y} - y) \tag{8}$$

$$\frac{d\widehat{y}}{dp} = f(p)(1 - f(p))$$

$$= \widehat{y}(1 - \widehat{y})$$
(9)

$$\frac{d\widehat{y}}{dp} = f(p)(1 - f(p))$$

$$= \widehat{y}(1 - \widehat{y})$$
(10)

So put $(7)\sim(9)$ into (6), we have

$$\frac{dE}{dw_i} = \frac{dE}{d\hat{y}} \frac{d\hat{y}}{dp} \frac{dp}{dw_i}
= (\hat{y} - y)\hat{y}(1 - \hat{y})x_i$$
(11)

So for w_i updating we have

$$w_i \leftarrow w_i - \eta(\widehat{y} - y)\widehat{y}(1 - \widehat{y})x_i \tag{12}$$

In the same way, we can learn θ

$$\frac{dE}{d\theta} = \frac{dE}{dy} \frac{d\hat{y}}{dp} \frac{dp}{d\theta}
= (\hat{y} - y)\hat{y}(1 - \hat{y})(-1)$$
(13)

$$\theta \leftarrow \theta + \eta(\widehat{y} - y)\widehat{y}(1 - \widehat{y}) \tag{14}$$

Using C++ and delta rule to train the following ANNs by online learning With the following input and output

$$y = 0 \ 0 \ 1 \ 1$$
 (16)

Figure 2: ANNS with 3 inputs

2 Task Two: Implementation of the Batch Method

Using batch method to train the above ANN and coding with C++.