Aaron J. Brown

DSC 640: Data Presentation & Visualization - Winter 2023

WEEKS 11-12 Exercises: Histograms, Box Plots, & Bullet Charts (PYTHON)

```
IMPORTING LIBRARIES.
```

```
import os
In [1]:
        import pandas as pd
        import numpy as np
        import seaborn as sns
         import matplotlib.pyplot as plt
         import plotly.express as px
        import warnings
        warnings.filterwarnings('ignore')
        # nltk.download('example')
        # pip install squarify
```

IMPORTING DATA.

```
education df = pd.read csv('/Users/aaronbrown/Documents/Classwork/DSC 640 - Data Presentation and Visualization/Data/educati
In [2]:
        education data = education df
```

In [3]: crime_df = pd.read_csv('/Users/aaronbrown/Documents/Classwork/DSC 640 - Data Presentation and Visualization/Data/crimeratesb crime_data = crime_df

hotdog_df = pd.read_excel('/Users/aaronbrown/Documents/Classwork/DSC 640 - Data Presentation and Visualization/Data/hotdog-c hotdog_data = hotdog_df

In [5]:

obama_df = pd.read_excel('/Users/aaronbrown/Documents/Classwork/DSC 640 - Data Presentation and Visualization/Data/obama-app obama_data = obama_df

Removing United States and D.C. rows.

```
In [6]:
        education_data = education_data.drop([0, 9])
        crime_data = crime_data.drop([0, 9])
```

crime_data['total_crime'] = crime_data['murder'] + crime_data['forcible_rape'] + crime_data['robbery'] + crime_data['aggrava In [7]: crime data.tail()

Out[7]:		state	murder	forcible_rape	robbery	aggravated_assault	burglary	larceny_theft	motor_vehicle_theft	total_crime
	47	Virginia	6.1	22.7	99.2	154.8	392.1	2035.0	211.1	2921.0
	48	Washington	3.3	44.7	92.1	205.8	959.7	3149.5	783.9	5239.0
	49	West Virginia	4.4	17.7	44.6	206.1	621.2	1794.0	210.0	2898.0
	50	Wisconsin	3.5	20.6	82.2	135.2	440.8	1992.8	226.6	2901.7
	51	Wyoming	2.7	24.0	15.3	188.1	476.3	2533.9	145.1	3385.4

PYTHON - GENERATING HISTOGRAM.

```
In [8]:
        plt.hist(crime_data['larceny_theft'], bins=20, color='darkmagenta')
        plt.title("HISTOGRAM - DISTRIBUTION OF LARCENY THEFT")
        plt.xlabel("LARCENY THEFT")
        plt.ylabel("FREQUENCY")
        plt.grid(True)
        plt.show()
```


PYTHON - GENERATING BOXPLOT.

```
In [9]:
        sns.boxplot(x = 'dropout_rate', data = education_data, palette='RdPu').set(title = 'BOXPLOT - UNITED STATES DROPOUT RATE', x
        [Text(0.5, 1.0, 'BOXPLOT - UNITED STATES DROPOUT RATE'),
Out[9]:
         Text(0.5, 0, 'DROPOUT RATE')]
```


crime_data2 = crime_df[crime_df["state"].str.strip()=="Georgia"][["state","burglary"]]

crime_data2['target'] = 900

In [10]:

```
crime_data_tuple = [tuple(x) for x in crime_data2.values][0]
         print(crime_data_tuple)
         limits = [300, 600, 1000]
         palette = sns.color_palette("RdPu", len(limits))
         fig, ax = plt.subplots()
         ax.set_aspect('equal')
         ax.set_yticks([1])
         ax.set_title("BULLET CHART - BURGLARY IN GEORGIA")
         previous_limit = 0
         for idx, lim in enumerate(limits):
             ax.barh([1], lim-previous_limit, left=previous_limit, height=50, color=palette[idx])
             previous_limit = lim
         ax.barh([1], crime_data_tuple[1], color='darkslateblue', height=15)
         ax.axvline(crime_data_tuple[2], color="brown", ymin=0.10, ymax=0.9)
         ('Georgia', 931.0, 900)
         <matplotlib.lines.Line2D at 0x140c01050>
Out[10]:
                      BULLET CHART - BURGLARY IN GEORGIA
```

PYTHON - GENERATING SCATTERPLOT.

200

0

plt.figure(7)

sns.set_palette("PRGn")

In [11]:

400

```
sns.scatterplot(x = crime_data['aggravated_assault'], y = crime_data['robbery'], hue = crime_data['total_crime'])
plt.title("SCATTERPLOT - AGGRAVATED ASSAULT X ROBBERY (TOTAL CRIME)")
plt.xlabel("AGGRAVATED ASSAULT")
plt.ylabel("ROBBERY")
plt.grid(True)
   SCATTERPLOT - AGGRAVATED ASSAULT X ROBBERY (TOTAL CRIME)
         total_crime
```

1000

800

600

References

Choosing Colormaps in Matplotlib: https://matplotlib.org/stable/tutorials/colors/colormaps.html

List of named colors in matplotlib:

https://matplotlib.org/stable/gallery/color/named_colors.html

Seaborn Styling, Color:

https://www.codecademy.com/article/seaborn-design-ii#