Motor-Imagery Classification

Donghee-ko

donghee-ko@korea.ac.kr

Department of Artificial Intelligence Korea University

- 01 Introduction
- O2 Related works
- O3 Dataset
- 04 Evaluation
- 05 Baseline code
- 06 Submission

Introduction

What is Brain-Computer Interface?

- Brain-Computer Interface (BCI) is a technology that enables people to communicate with external devices by using human brain signals.
- **Electroencephalography (EEG) signals**, which measure the brain waves from a human scalp, are typically used due to portable, non-invasive, and cost-effective advantage.

Gu et al., 2021

Motor-Imagery BCI (MI-BCI)

• Motor imagery electroencephalography (MI-EEG) signals are generated when a person imagines a task without actually performing it.

Applications

- Robotic arms
- Self driving
- Lying on the bed and turning off the lights
- Everything you imagine

Minority Report

Goal

• Improve motor-imagery classification accuracy

Related works

EEGNet (Lawhern et al., Journal of Neural Engineering, 2018)

- EEGNet consists of three convolution blocks.
- The first convolution block applies **convolution** in the **temporal domain**. Each kernel derives a feature map of the band-pass frequencies.
- The second convolution block employs a **depthwise convolution** in the **spatial domain**, which extract frequency-specific spatial features for each feature map.
- The third convolution block uses a separable convolution.

Dataset

MI-BCI data

- 1 trial: 특정 행동에 대한 동적 상상 1회
- Class: 특정 행동 (ex: 왼손, 오른손, 양발, 혀)
- EEG 데이터: $\mathbb{R}^{N \times T}$ (N: 채널 수, T: 전체 time point의 개수)
 - ㅇ 채널: EEG 신호를 측정하는 전극
 - 측정된 연속된 EEG 신호는 sampling frequency에 따라서 discrete한 신호로 변환됨
 - Sampling frequency: 1초당 측정된 time point의 개수
- Session: 각 데이터가 찍힌 날짜

Electrode montage (BCI Competition IV-2a)

Dataset

- BCI Competition IV-2a dataset
- 9 subjects
- Classes: left hand, right hand, feet, tongue (4 classes)
- Session-to-session set up (=subject dependent)
- Training set: 216 trials per subject
- Validation set: 72 trials per subject
- Test set: 288 trials per subject

Preprocessing

- Sampling rate: 250Hz
- Time segment: [0.5, 2.5]s post-cue
- Band-pass: 0-38Hz
- Normalization: exponential moving average

Evaluation

Baseline accuracy

Model	Subject									11000
	S01	S02	S03	S04	S05	S06	S07	S08	S09	- Mean
EEGNet	76.74	54.51	79.17	54.51	63.19	57.64	83.68	75.00	68.40	68.09

Hyper parameter

• Batch size: 72

• Epoch: 1000

Optimizer: Adam

• Learning rate: 2e-03

• Weight decay: 2e-03

• Scheduler: cosine annealing

Baseline code

Github

- Pytorch == 1.9.0
- https://github.com/High-East/XAI606-EEGNet

Baseline code

```
37 lines (27 sloc) | 838 Bytes
    from utils.get_args import Args
    from utils.utils import fix_random_seed, timeit
    from data_loader.data_generator import DataGenerator
    from models.model_builder import ModelBuilder
    from trainers.trainer_maker import TrainerMaker
    @timeit
    def main():
        args_class = Args()
        args = args_class.args
        for args.subject in args.target_subject:
            args_class.preprocess()
            args_class.print_info()
            # Fix random seed
            if args.seed:
               fix_random_seed(args)
            # Load data
            data = DataGenerator(args)
            # Build model
            model = ModelBuilder(args).model
            # Make Trainer
            trainer = TrainerMaker(args, model, data).trainer
            if args.mode == 'train':
               trainer.train()
           else:
          trainer.test()
main()
```

Dataset

Submission

Submission

- Submit prediction file.
- donghee-ko@korea.ac.kr

Thankyou