

Tamaño de los índices

Sistemas de Gestión de Datos y de la Información Enrique Martín - emartinm@ucm.es Máster en Ingeniería Informática Fac. Informática

Índices

- Los índices almacenan una lista de entradas por cada palabra del vocabulario.
- Cada entrada puede ser simple (docID) o muy detallada (docID y lista de apariciones).
- Por tanto, los índices ocupan una cantidad elevada de memoria. Pueden incluso no caber en memoria principal.

Ley de Heaps

 La Ley de Heaps estima el tamaño del vocabulario V en base al número de palabras T en una colección:

$$V = kT^b$$
, con $30 \le k \le 100 \ y \ b \approx .5$

- Es una ley empírica, con valores concretos para cada colección.
- Muestra que el número de términos crece proporcional a la raíz del número de palabras.
- Por tanto, el vocabulario crece de manera controlada según aumenta la colección.

Ley de Heaps

Para k=50 y b=0,5

Ley de Zipf

- Por otro lado la Ley de Zipf relaciona la repeticiones de cada término.
- Sea cfi las repeticiones del i-ésimo término más frecuente. Estas repeticiones cfi son proporcionales a 1/i:

$$cf_i \approx \frac{1}{i}$$

- El segundo elemento más frecuente aparece 1/2 de veces que el más frecuente.
- El tercer elemento más frecuente aparece 1/3 de veces que el más frecuente.

Ley de Zipf

Ley de Zipf

- Esta ley empírica nos indica que unos pocos términos se repetirán mucho, por lo que contribuirán mucho al tamaño del índice.
- Estos términos suelen ser separadores/palabras vacías (stopping words) como artículos, pronombres, conjunciones, etc.
- Descartar separadores reducirá el tamaño del índice. Sin embargo no siempre es posible → búsquedas de frases.

- Para reducir el tamaño de un índice se utilizan distintas técnicas de compresión.
- Las técnicas que más reducen el tamaño son las que comprimen listas de apariciones.
- Representan las apariciones a bajo nivel usando bits, por lo que reducen el tamaño pero incrementan el coste al necesitar procesarlas → compensa si evitas accesos a disco.

- Las listas de repeticiones son listas de posiciones donde aparece un término en un documento: [4,16,65,89,134].
- Un primer paso para comprimir es no almacenar posiciones sino sus diferencias:

```
[4,16-4,65-16,89-65,134-89] = [4,12,49,24,45]
```

 Las diferencias son números más pequeños y por tanto necesitarán menos bits para representarse.

- Si todos los números necesitan el mismo número de bits no se gana nada al usar diferencias, pues todos ocuparán 32/64 bits.
- Debemos aplicar codificación de **longitud variable**.
- Veremos 4 técnicas:
 - Código unario
 - Elias-gamma
 - Elias-delta
 - Bytes variables

- Sin embargo existen más técnicas:
 - Elias-omega
 - Golomb/Rice
 - LLRUN
 - Combinaciones de las anteriores

Código unario

Muy sencilla: un número n se representa como (n-1) 1's seguido de un 0.

- 1:0

- 3: **110**

- 7: **1111110**

 Una lista de diferencias se puede representar fácilmente como una lista de bits:

 $[1,3,7] \rightarrow 01101111110 (11 bits)$

 Es óptimo desde el punto de vista de espacio para distribuciones de probabilidad:

$$P(n) = 2^{-n}$$

Elias-gamma

- La representación Elias-gamma (Elias- γ)n número **n** se forma concatenando 2 partes:
 - *offset:* **n** en binario, quitando el primer 1.
 - longitud: representación en **unario** de la longitud de **n** en **binario** $(|log_2|n|+1)$
- La representación es longitud + offset

Número	Binario	Offset	Longitud (unario)		Representación
1	1		0	(1)	0
2	10	0	10	(2)	100
3	11	1	10	(2)	101
4	100	00	110	(3)	11000
5	101	01	110	(3)	11001

Elias-delta

- La representación Elias-delta (Elias- δ) milar a Elias-gamma, se concatenan 2 partes.
 - offset: n en binario, quitando el primer 1.
 - longitud: representación en Elias- γ ongitud de n en binario $(|\log_2 n|+1)$
- La representación es longitud + offset

Número	Binario	Offset	Longitud Elias-gamma		Representación
1	1		0	(1)	0
2	10	0	100	(2)	1000
3	11	1	100	(2)	1001
4	100	00	101	(3)	10100
5	101	01	101	(3)	10101

Elias-gamma y Elias-delta

- En general la codificación Elias-gamma es más corta que Elias-delta para número pequeños (hasta 32).
- Según los números van creciendo, la codificación Eliasdelta genera codificaciones más cortas.
- En ambos códigos, una lista de repeticiones se codifica concatenando la representación de sus elementos. P. ej. la lista [3,4,5]:
 - Elías-gamma → 1011100011001 (13 bits)
 - Elías-delta → 10011010010101 (14 bits)

Bytes variables

- Cada números se representan como secuencias de 1 o varios bytes. Este número de bytes es variable.
- El primer bit de cada byte es el llamado flag de continuación:
 - 1: el byte actual es el último de la secuencia.
 - O: el byte actual será continuado con otro byte.
- Los restantes 7 bits almacenan (una parte de) la representación en binario del número.

Bytes variables

Número	Binario	Variable bytes
1	1	1 000001
2	10	1 0000010
4	100	1 0000100
5	101	1 0000101
127	1111111	1 1111111
315	100111011	0 0000010 1 0111011
824	1100111000	0 0000110 1 0111000

 Una lista de número se representa como una cadena de bytes:

```
10000100 10000101 11111111 00000010 10111011
4 5 127 315
```

Comparación codificaciones

Comparación codificaciones

- Tamaño de la representación de una lista aleatoria de 50 números entre el 1 y el 1000:
 - Enteros en binario: 1600 bits (32.0 bits/número)
 - Unario: 23107 bits (462.14 bits/número)
 - Elias-gamma: 838 bits (16.76 bits/número)
 - Elias-delta: 730 bits (14.6 bits/número)
 - Bytes variables: 744 bits (14.88 bits/número)