Introduction

Remark 1.1.1. This document considers stochastic order notation, limits of sets, and the different modes of convergence for random variables: almost sure, in L^p , in probability, and in distribution. Throughout, assume that (X_n) is a sequence of scalar or vector-valued random variables with candidate limit X, and that the (X_n) and X are defined on a *common* probability space (Ω, \mathcal{F}, P) .

Order Notation

2.1 Definitions

Definition 1.2.1. Let α_n and β_n denote sequences of real numbers, then $\alpha_n = \mathcal{O}(\beta_n)$ if there exist a bound $M \in \mathbb{R}^+$ and a threshold $\nu \in \mathbb{N}$ s.t. for $n \geq \nu$: $|\alpha_n| \leq M|\beta_n|$.

Definition 1.2.2. A sequence of random variables (X_n) is **bounded in probability**, expressed $X_n = \mathcal{O}_p(1)$, if for $\forall \epsilon > 0$ there $\exists (M_{\epsilon}, \nu_{\epsilon})$ s.t. $n \geq \nu_{\epsilon}$ implies:

$$P(||\boldsymbol{X}_n||_2 > M_{\epsilon}) < \epsilon.$$

If the sequence of random variables (X_n) is bounded in probability, then the corresponding sequence (F_n) of probabilities measures is described as uniformly tight.

Definition 1.2.3. Let α_n and β_n denote sequences of real numbers, then $\alpha_n = o(\beta_n)$ if for $\forall \epsilon > 0$ there $\exists (\nu_{\epsilon})$ s.t. for $n \geq \nu_{\epsilon}$: $|\alpha_n| \leq \epsilon |\beta_n|$.

Definition 1.2.4. A sequence of random variables (X_n) converges in probability to zero, expressed $X_n = o_p(1)$, if for $\forall \epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}(||\boldsymbol{X}_n||_2 > \epsilon) = 0.$$

Convergence of the sequence (\mathbf{X}_n) in probability to zero requires that for $\forall \epsilon, \delta > 0$ there exists ν_{δ} s.t. when $n \geq \nu_{\delta}$ the probability $P(||\mathbf{X}_n||_2 > \epsilon) < \delta$.

Definition 1.2.5. Suppose (X_n) is a sequence of random variables, and that $(\alpha_n) \in \mathbb{R}^+$ is a sequence of positive constants.

i.
$$\boldsymbol{X}_n = o_p(\alpha_n) \iff \alpha_n^{-1} \boldsymbol{X}_n = o_p(1).$$

ii.
$$\boldsymbol{X}_n = \mathcal{O}_p(\alpha_n) \iff \alpha_n^{-1} \boldsymbol{X}_n = \mathcal{O}_p(1).$$

2.2 Properties

Proposition 1.2.1. If X_n converges in probability to zero, then X_n is bounded in probability: $X_n = o_p(1) \implies X_n = \mathcal{O}_p(1)$.

Proof. Fix $\epsilon > 0$, then by the definition of convergence in probability, for $\forall \delta > 0$ there $\exists \nu_{\delta} \in \mathbb{N} \text{ s.t. when } n \geq \nu_{\delta}, \mathbb{P}(||\boldsymbol{X}_n||_2 > \epsilon) < \delta.$

Proposition 1.2.2 (Sub-additivity). Suppose $\{X_i\}$ is a finite collection of random variables, not necessarily independent nor identically distributed. Then:

$$\mathbb{P}\left(\left|\left|\sum_{i=1}^{n} \boldsymbol{X}_{i}\right|\right|_{2} > \epsilon\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(\left|\left|\boldsymbol{X}_{i}\right|\right|_{2} > \epsilon/n\right)$$
(1.2.1)

Proof. If $\left|\left|\sum_{i=1}^{n} X_i\right|\right|_2 > \epsilon$, then at least one $||X_i||_2 > \epsilon/n$, for suppose not, then:

$$\left|\left|\sum_{i=1}^{n} X_{i}\right|\right|_{2} \leq \sum_{i=1}^{n} ||X_{i}||_{2} \leq \sum_{i=1}^{n} \frac{\epsilon}{n} = \epsilon,$$

which leads to a contradiction. Expressed In terms of events:

$$\left\{\omega \in \Omega : \left|\left|\sum_{i=1}^{n} \boldsymbol{X}_{i}\right|\right|_{2} > \epsilon\right\} \subset \bigcup_{i=1}^{n} \left\{\omega \in \Omega : ||\boldsymbol{X}_{i}||_{2} > \epsilon/n\right\}.$$

By sub-additivity of the probability measure:

$$\mathbb{P}\left(\left|\left|\sum_{i=1}^{n}\boldsymbol{X}_{i}\right|\right|_{2} > \epsilon\right) \leq \mathbb{P}\left(\bigcup_{i=1}^{n}\left\{\omega \in \Omega: ||\boldsymbol{X}_{i}||_{2} > \epsilon/n\right\}\right) \leq \sum_{i=1}^{n}\mathbb{P}\left(||\boldsymbol{X}_{i}||_{2} > \epsilon/n\right).$$

Proposition 1.2.3. If $X_n = \mathcal{O}_p(1)$ and $Y_n = \mathcal{O}_p(1)$, then:

- i. $X_n + Y_n = \mathcal{O}_p(1)$.
- ii. $X_n Y_n = \mathcal{O}_p(1)$.

Proof. i. Since $X_n = \mathcal{O}_p(1)$ and $Y_n = \mathcal{O}_p(1)$. Fix $\epsilon > 0$, there $\exists (M_X, \nu_X)$ and $\exists (M_Y, \nu_Y)$ s.t. when $n \geq \nu_X$, $\mathbb{P}(||X_n||_2 > M_X) < \epsilon/2$ and when $n \geq \nu_Y$, $\mathbb{P}(||Y_n||_2 > M_Y) < \epsilon/2$. Set $M = \max(M_X, M_Y)$, then:

$$\mathbb{P}\big(||X_n+Y_n||_2>2M\big)\leq \mathbb{P}\big(||X_n||_2>M\big)+\mathbb{P}\big(||Y_n||_2>M\big)\leq \epsilon/2+\epsilon/2=\epsilon.$$

ii.

$$\mathbb{P}(||X_n Y_n||_2 > M_X M_Y) \le \mathbb{P}(||X_n||_2 > M_X \cup ||Y_n||_2 > M_Y)$$

$$\le \mathbb{P}(||X_n||_2 > M_X) + \mathbb{P}(||Y_n||_2 > M_Y) \le \epsilon/2 + \epsilon/2 = \epsilon.$$

Proposition 1.2.4. If $X_n = o_p(1)$ and $Y_n = \mathcal{O}_p(1)$, then:

- i. $X_n + Y_n = \mathcal{O}_p(1)$.
- ii. $X_n Y_n = o_p(1)$.

Proof. i. Since $X_n = o_p(1) \implies X_n = \mathcal{O}_p(1)$, (i.) follows from the last proposition.

ii. Fix $\epsilon > 0$. For $\forall (M, \delta)$,

$$\mathbb{P}(||X_n Y_n||_2 > M) = \mathbb{P}(||X_n Y_n > \delta \cap ||Y_n||_2 > M) + \mathbb{P}(||X_n Y_n||_2 \le \delta \cap ||Y_n||_2 \le M)$$

$$\le \mathbb{P}(||Y_n||_2 > M) + \mathbb{P}(||X_n||_2 > \delta/M)$$

Since $Y_n = \mathcal{O}_p(1)$, for any $\epsilon > 0$ there $\exists M_{\epsilon}$ s.t. when $n \geq \nu_{\epsilon}$, $\mathbb{P}(||Y_n||_2 > M_{\epsilon}) < \epsilon$. Moreover, since $X_n = o_p(1)$, $\lim_{n \to \infty} \mathbb{P}(||X_n||_2 > \delta/M) = 0$. Thus:

$$\lim_{n \to \infty} \mathbb{P}(||X_n Y_n||_2 > M_{\epsilon}) \le \epsilon + \lim_{n \to \infty} \mathbb{P}(||X_n||_2 > \delta/M) = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, conclude $X_n Y_n = o_p(1)$.

Theorem 1.2.1. Suppose $X_n = o_p(\alpha_n)$ and $Y_n = o_p(\beta_n)$, then:

- i. $\mathbf{X}_n + \mathbf{Y}_n = o_p \{ \max(\alpha_n, \beta_n) \}.$
- ii. $\boldsymbol{X}_n \boldsymbol{Y}_n = o_p(\alpha_n \beta_n)$.
- iii. $||\boldsymbol{X}_n||_2^r = o_p(\alpha_n^r)$ where r > 0.

Proof. i. If $||X_n + Y_n||_2 / \max(\alpha_n, \beta_n) > \epsilon$, then either:

$$\frac{||\boldsymbol{X}_n||_2}{\alpha_n} > \frac{\epsilon}{2} \vee \frac{||\boldsymbol{Y}_n||_2}{\beta_n} > \frac{\epsilon}{2}.$$

By subadditivity:

$$\lim_{n\to\infty} \mathbb{P}\left\{\frac{||\boldsymbol{X}_n+\boldsymbol{Y}_n||_2}{\max(\alpha_n,\beta_n)}>\epsilon\right\} \leq \lim_{n\to\infty} \mathbb{P}\left(\alpha_n^{-1}||\boldsymbol{X}_n||_2>\frac{\epsilon}{2}\right) + \mathbb{P}\left(\beta_n^{-1}||\boldsymbol{Y}_n||_2>\frac{\epsilon}{2}\right) = 0.$$

Edited: Nov 2019 Asymptotics Zachary McCaw

ii. If $||\boldsymbol{X}_n\boldsymbol{Y}_n||_2/(\alpha_n\beta_n) > \epsilon$, then either:

$$\{\alpha_n^{-1}||X_n||_2 \le 1, \ \beta_n^{-1}||Y_n||_2 > \epsilon\} \bigcup \{\alpha_n^{-1}||X_n||_2 > 1, (\alpha_n\beta_n)^{-1}||X_nY_n||_2 > \epsilon\}.$$

By subadditivity:

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{||\boldsymbol{X}_n\boldsymbol{Y}_n||_2}{\alpha_n\beta_n} > \epsilon\right) \leq \lim_{n\to\infty} \mathbb{P}\left(\beta_n^{-1}||\boldsymbol{Y}_n||_2 > \epsilon\right) + \mathbb{P}\left(\alpha_n^{-1}||\boldsymbol{X}_n||_2 > 1\right) = 0.$$

iii.

$$\lim_{n \to \infty} \mathbb{P}\left(\alpha_n^{-r} || \boldsymbol{X}_n ||_2^r > \epsilon\right) = \lim_{n \to \infty} \mathbb{P}\left(\alpha_n^{-1} || \boldsymbol{X}_n ||_2 > \epsilon^{1/r}\right) = 0.$$

Proposition 1.2.5.

$$X_n - X = o_p(1) \iff ||X_n - X||_2 = o_p(1).$$

Proof. Let $Y_n = X_n - X$, then by definition $Y_n = o_p(1)$ if and only if for $\forall \epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}(||\boldsymbol{Y}_n||_2 > \epsilon) = 0,$$
$$\lim_{n \to \infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon) = 0.$$

Now let $Y_n = ||\boldsymbol{X}_n - \boldsymbol{X}||_2$, then $Y_n = o_p(1)$ if and only if for $\forall \epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}(|Y_n| > \epsilon) = 0,$$
$$\lim_{n \to \infty} \mathbb{P}(||X_n - X||_2 > \epsilon) = 0.$$

Thus, the statements $X_n - X = o_p(1)$ and $||X_n - X||_2 = o_p(1)$ are identical.

Proposition 1.2.6. Suppose (X_n) and (Y_n) are sequences of random variables. If 1. $X_n - Y_n = o_p(1)$ and 2. $Y_n - Y = o_p(1)$, then $X_n - Y = o_p(1)$.

Proof. By the triangle inequality:

$$||\boldsymbol{X}_n - \boldsymbol{Y}||_2 \le ||\boldsymbol{X}_n - \boldsymbol{Y}_n||_2 + ||\boldsymbol{Y}_n - \boldsymbol{Y}||_2 = o_p(1)$$

Proposition 1.2.7. Suppose (X_n) is a sequence of J dimension random variables, and $(\alpha_n) \in \mathbb{R}^+$ is a sequence of positive constants, then:

i.
$$X_n = o_p(1) \iff X_{nj} = o_p(1) \text{ for } j \in \{1, \dots, J\}.$$

ii.
$$X_n = \mathcal{O}_p(1) \iff X_{nj} = \mathcal{O}_p(1) \text{ for } j \in \{1, \dots, J\}.$$

That is, a sequence of random variables converges in probability to zero, or is bounded in probability, if and only if the components convergence in probability to zero, or are bounded in probability.

Proof. i. (\Longrightarrow) :

$$|X_{nj} - X_j| \le \sqrt{\sum_{j=1}^k (X_{nj} - X_j)^2},$$

$$\lim_{n \to \infty} \mathbb{P}(|X_{nj} - X_j| > \epsilon) \le \lim_{n \to \infty} \mathbb{P}(||X_n - X_j||_2 > \epsilon) = 0.$$

 (\Leftarrow) :

$$\lim_{n\to\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon) \le \lim_{n\to\infty} \sum_{j=1}^J \mathbb{P}(|X_{nj} - X_j| > \epsilon/J) = 0.$$

ii. (\Longrightarrow) Since $X_n = \mathcal{O}_p(1)$, for $\forall \epsilon > 0$ there $\exists (M_{\epsilon}, \nu_{\epsilon})$ s.t. when $n \geq \nu_{\epsilon}$:

$$\mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > M_{\epsilon}) < \epsilon.$$

Since $\mathbb{P}(|X_{nj} - X_j| > M_{\epsilon}) \leq \mathbb{P}(||X_n - X||_2 > M_{\epsilon})$, conclude $X_{nj} = \mathcal{O}_p(1)$. For $\epsilon > 0$ there $\exists M_{\epsilon}, \nu_{\epsilon}$ s.t. when $n \geq \nu_{\epsilon}$:

$$\mathbb{P}(|X_{nj} - X_j| > M_{\epsilon}) \le \mathbb{P}\left(\sqrt{\sum_{j=1}^k (X_{nj} - X_j)^2} > M_{\epsilon}\right) = \mathbb{P}\left(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > M_{\epsilon}\right) < \epsilon.$$

(\iff) Fix $\epsilon > 0$. For each $j \in \{1, \dots, J\}$ there $\exists M_j, \nu_j$ s.t. when $n \ge \nu_j$:

$$\mathbb{P}(|X_{nj} - X_j| > M_j) < \frac{\epsilon}{J}.$$

Set $M = \max_j M_j$ and $\nu = \max_j \nu_j$. Now when $n \ge \nu$:

$$\mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > JM) \le \sum_{j=1}^{J} \mathbb{P}(|X_{nj} - X_j| > M) \le J \cdot \frac{\epsilon}{J} = \epsilon.$$

Limits of Sets

3.1 Definitions

Definition 1.3.1. Suppose (B_n) is a *decreasing* sequence of measurable sets. The limit $\lim_{n\to\infty} B_n$ is defined as their intersection:

$$\lim_{n \to \infty} B_n = \bigcap_{n=1}^{\infty} B_n.$$

 $\omega \in \lim_{n \to \infty} B_n$ if for $\forall n \in \mathbb{N}, \ \omega \in B_n$.

Definition 1.3.2. Suppose (C_n) is an *increasing* sequence of measurable sets. The limit $\lim_{n\to\infty} C_n$ is defined as their union:

$$\lim_{n \to \infty} C_n = \bigcup_{n=1}^{\infty} C_n.$$

 $\omega \in \lim_{n \to \infty} C_n$ if there exists an $n \in \mathbb{N}$ s.t. $\omega \in C_n$.

Definition 1.3.3. Define the *supremum* of sequence of sets as:

$$\sup_{k \ge n} A_k = \bigcup_{k > n} A_k.$$

The **limit supremum** of a sequence (A_n) of sets is:

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k.$$

Observe that $B_n = \sup_{k \ge n} A_k$ is a *decreasing* sequence of sets, since each consecutive B_n is the union of fewer A_n .

Definition 1.3.4. Define the *infimum* of a sequence of sets as:

$$\inf_{k \ge n} A_n = \bigcap_{k > n} A_k.$$

The **limit infimum** of a sequence (A_n) of sets is:

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k$$

Observe that $C_n = \inf_{k \ge n} A_k$ is an *increasing* sequence of sets, since each consecutive C_n is the intersection of fewer A_n .

Definition 1.3.5. The limit supremum and limit infimum of a sequence of sets (A_n) always exist. If these two sets are equal, than the **limit** exists and is defined as:

$$\lim_{n \to \infty} A_n \equiv \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n.$$

3.2 Properties

Proposition 1.3.1. For any sequence of sets,

$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n.$$

Proof. Suppose $\omega \in \liminf_{n \to \infty} A_n$, then there exists an $n \in \mathbb{N}$ s.t. $\omega \in A_k$ for $\forall k \geq n$. That is, ω belongs to every A_k far enough out in the sequence. Thus, for any $n \in \mathbb{N}$, there exists $k \geq n$ s.t. $\omega \in A_k$. Conclude that $\omega \in \limsup_{n \to \infty} A_n$.

Remark 1.3.1. Since the limit infimum is always a subset of the limit supremum, to prove the limit $\lim_{n\to\infty} A_n$ exists, it suffices to prove that the limit supremum is a subset of the limit infimum.

Proposition 1.3.2. Suppose $C_n \to C$ is an increasing sequence of measurable sets on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$, then:

$$\mathbb{P}\left(\lim_{n\to\infty} C_n\right) = \lim_{n\to\infty} \mathbb{P}(C_n).$$

Proof. Define the sequence of disjoint sets $D_1 = C_1$, and $D_k = D_k - D_{k-1}$ for $k \geq 2$. Clearly $C_n = \bigcup_{k=1}^n D_k$. By finite additivity of the probability measure:

$$\mathbb{P}(C_n) = \mathbb{P}\left(\bigcup_{k=1}^n D_k\right) = \sum_{k=1}^n \mathbb{P}(D_k).$$

Note too that since the C_n are increasing:

$$\lim_{n \to \infty} C_n = \bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} D_k = \bigcup_{k=1}^{\infty} D_k.$$

By σ -additivity of the probability measure \mathbb{P} :

$$\mathbb{P}\left(\lim_{n\to\infty}C_n\right) = \mathbb{P}\left(\bigcup_{k=1}^{\infty}D_k\right) = \sum_{k=1}^{\infty}\mathbb{P}(D_k) = \lim_{n\to\infty}\sum_{k=1}^{n}\mathbb{P}(D_k) = \lim_{n\to\infty}\mathbb{P}(C_n).$$

Corollary 1.3.1. Suppose $B_n \to B$ is a decreasing sequence of measurable sets, then:

$$\mathbb{P}\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n).$$

Proof. Since (B_n) is decreasing, the sequence of complements (B_n^c) is necessarily increasing, thus:

$$\mathbb{P}\left(\lim_{n\to\infty}B_n^c\right) = \lim_{n\to\infty}\mathbb{P}(B_n^c),$$
$$1 - \mathbb{P}\left(\lim_{n\to\infty}B_n^c\right) = 1 - \lim_{n\to\infty}\mathbb{P}(B_n^c).$$

Created: Aug 2018 7

The LHS is:

$$1 - \mathbb{P}\left(\lim_{n \to \infty} B_n^c\right) = P\left(\bigcup_{n=1}^{\infty} \bigcap_{k \ge n} B_k^c\right)^c = P\left(\bigcap_{n=1}^{\infty} \bigcup_{k \ge n} B_k\right) = \mathbb{P}(\lim_{n \to \infty} B_n).$$

The RHS is:

$$1 - \lim_{n \to \infty} \mathbb{P}(B_n^c) = \lim_{n \to \infty} \left\{ 1 - \mathbb{P}(B_n^c) \right\} = \lim_{n \to \infty} \mathbb{P}(B_n).$$

Corollary 1.3.2. Let (A_n) denote a sequence of sets, then:

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{k \ge n} A_k\right) = \mathbb{P}\left(\limsup_{n \to \infty} A_n\right)$$
$$\lim_{n \to \infty} \mathbb{P}\left(\inf_{k \ge n} A_k\right) = \mathbb{P}\left(\liminf_{n \to \infty} A_n\right)$$

Proof. The conclusion follows because $B_n = \sup_{k \ge n} A_k$ is decreasing and $C_n = \inf_{k \ge n} A_k$ is increasing.

Theorem 1.3.1 (Continuity). If (A_n) is a sequence of sets converging to A, then:

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\lim_{n \to \infty} A_n\right). \tag{1.3.2}$$

Proof. Since $\inf_{k\geq n} A_k \subseteq A_n \subseteq \sup_{k\geq n} A_k$:

$$\mathbb{P}\left(\inf_{k\geq n} A_k\right) \leq \mathbb{P}(A_n) \leq \mathbb{P}\left(\sup_{k>n} A_k\right).$$

Taking the limit as $n \to \infty$:

$$\lim_{n \to \infty} \mathbb{P}\left(\inf_{k \ge n} A_k\right) \le \lim_{n \to \infty} \mathbb{P}(A_n) \le \lim_{n \to \infty} \mathbb{P}\left(\sup_{k \ge n} A_k\right),$$
$$\mathbb{P}\left(\liminf_{n \to \infty} A_n\right) \le \lim_{n \to \infty} \mathbb{P}(A_n) \le \mathbb{P}\left(\limsup_{n \to \infty} A_n\right).$$

Since $A_n \to A$:

$$\lim_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n.$$

Conclude that:

$$\mathbb{P}\left(\lim_{n\to\infty} A_n\right) \le \lim_{n\to\infty} \mathbb{P}(A_n) \le \mathbb{P}\left(\lim_{n\to\infty} A_n\right).$$

Almost Sure Convergence

Definition 1.4.1. A sequence of random variables (X_n) converges almost surely to X, expressed $X_n \xrightarrow{as} X$, if:

$$\mathbb{P}\left\{\omega: \lim_{n\to\infty} \boldsymbol{X}_n(\omega) = \boldsymbol{X}(\omega)\right\} = 1.$$

Equivalently, for $\forall \epsilon > 0$:

$$\mathbb{P}\left\{\omega: \limsup_{n\to\infty} ||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon\right\} = 0.$$

Remark 1.4.1. In the following, the notation:

$$\left\{ \limsup_{n \to \infty} ||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon \right\},\,$$

will implicitly refer to the set of $\omega \in \Omega$ where the condition $\{\cdot\}$ holds.

Proposition 1.4.1. Almost sure convergence implies convergence in probability:

$$oldsymbol{X}_n \stackrel{as}{\longrightarrow} oldsymbol{X} \implies oldsymbol{X}_n \stackrel{p}{\longrightarrow} oldsymbol{X}.$$

Proof. Suppose $X_n \stackrel{as}{\longrightarrow} X$, then for $\forall \epsilon > 0$:

$$0 = \mathbb{P}\left\{ \limsup_{n \to \infty} ||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon \right\}$$
$$= \lim_{n \to \infty} \mathbb{P}\left\{ \sup_{k \ge n} ||\boldsymbol{X}_k - \boldsymbol{X}||_2 > \epsilon \right\}$$
$$\geq \lim_{n \to \infty} \mathbb{P}\left\{ ||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon \right\}.$$

Proposition 1.4.2. If for $\forall \epsilon > 0$:

$$\sum_{n=1}^{\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon) < \infty,$$

then $X_n \xrightarrow{as} X$.

Proof.

$$\begin{split} & \mathbb{P}\left\{\limsup_{n\to\infty}||\boldsymbol{X}_n-\boldsymbol{X}||_2>\epsilon\right\} = \lim_{n\to\infty}\mathbb{P}\left\{\sup_{k\geq n}||\boldsymbol{X}_k-\boldsymbol{X}||_2>\epsilon\right\} \\ & = \lim_{n\to\infty}\mathbb{P}\left\{\bigcup_{k\geq n}||\boldsymbol{X}_k-\boldsymbol{X}||_2\right\} \leq \lim_{n\to\infty}\sum_{k=n}^{\infty}\mathbb{P}\big(||\boldsymbol{X}_k-\boldsymbol{X}||_2>\epsilon\big). \end{split}$$

Since the series $\sum_{n=1}^{\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon)$ converges,

$$\lim_{n\to\infty}\sum_{k=n}^{\infty}\mathbb{P}\big(||\boldsymbol{X}_k-\boldsymbol{X}||_2>\epsilon\big)=0.$$

Proposition 1.4.3. If $\exists (p > 0)$ such that:

$$\sum_{n=1}^{\infty} E||\boldsymbol{X}_n - \boldsymbol{X}||_2^p < \infty,$$

then $X_n \stackrel{as}{\longrightarrow} X$.

Proof.

$$\mathbb{P}\left\{\limsup_{n\to\infty}||\boldsymbol{X}_n-\boldsymbol{X}||_2>\epsilon\right\}\leq \lim_{n\to\infty}\sum_{k=n}^{\infty}\mathbb{P}\left(||\boldsymbol{X}_k-\boldsymbol{X}||_2>\epsilon\right)$$

$$\leq \frac{1}{\epsilon^p}\lim_{n\to\infty}\sum_{k=n}^{\infty}E||\boldsymbol{X}_n-\boldsymbol{X}||_2^p=0.$$

L^p Convergence

Definition 1.5.1. A sequence of random variables (X_n) conveges in L^p , expressed $X_n \xrightarrow{L^p} X$ if:

$$\lim_{n\to\infty} E(||\boldsymbol{X}_n - \boldsymbol{X}||_2^p) = 0.$$

Proposition 1.5.1 (Markov's Inequality).

$$\mathbb{P}(||\boldsymbol{X}||_2 \ge t) \le \frac{E||\boldsymbol{X}||_2}{t}.$$

Proof. Let $Y = ||X||_2$,

$$\mathbb{P}(Y \ge t) = E\{I(Y \ge t)\} = E\{I(Y/t \ge 1)\} \le E(Y/t).$$

Corollary 1.5.1. For p > 0,

$$\mathbb{P}(||\boldsymbol{X}||_2 \ge t) \le \frac{E||\boldsymbol{X}||_2^p}{t^p}.$$

Proposition 1.5.2. For p > 1, convergence in L^p implies convergence in probability:

$$X_n \stackrel{L^p}{\longrightarrow} X \implies X \stackrel{p}{\longrightarrow} X$$
.

Proof. For $\forall \epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon) \le \frac{1}{t^p} \lim_{n\to\infty} E||\boldsymbol{X}_n - \boldsymbol{X}||_2^p = 0.$$

Convergence in Probability

Definition 1.6.1. A sequence of random variables (X_n) converges in probability to X, expressed $X_n \stackrel{p}{\longrightarrow} X$, if for $\forall \epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}|| > \epsilon) = 0.$$

Proposition 1.6.1. Convergence in probability implies convergence in distribution:

$$X_n \stackrel{p}{\longrightarrow} X \implies X_n \stackrel{d}{\longrightarrow} X.$$

Proof. Suppose $X_n \stackrel{p}{\longrightarrow} X$ and that t is a continuity point of F_X , then:

$$\mathbb{P}(\boldsymbol{X}_n \leq \boldsymbol{t}) = \mathbb{P}\Big(\big\{\boldsymbol{X}_n \leq \boldsymbol{t}, ||\boldsymbol{X}_n - \boldsymbol{X}||_2 < \epsilon \boldsymbol{1}\big\} \cup \big\{\boldsymbol{X}_n \leq \boldsymbol{t}, ||\boldsymbol{X}_n - \boldsymbol{X}|| + 2 \geq \epsilon \boldsymbol{1}\big\}\Big)$$
$$\leq \mathbb{P}\big(\boldsymbol{X} \leq \boldsymbol{t} + \epsilon \boldsymbol{1}\big) + \mathbb{P}\big(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon\big).$$

Edited: Nov 2019 Asymptotics Zachary McCaw

Similarly:

$$\mathbb{P}(X \le t - \epsilon 1) \le \mathbb{P}(X_n \le t) + \mathbb{P}(||X_n - X||_2 > \epsilon).$$

Thus:

$$\mathbb{P}(\boldsymbol{X} \leq \boldsymbol{t} - \epsilon \boldsymbol{1}) - \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon) \leq \mathbb{P}(\boldsymbol{X}_n \leq \boldsymbol{t}) \leq \mathbb{P}(\boldsymbol{X} \leq \boldsymbol{t} + \epsilon \boldsymbol{1}) + \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{X}||_2 > \epsilon).$$

Taking the limit as $n \to \infty$:

$$\mathbb{P}(\boldsymbol{X} \leq \boldsymbol{t} - \epsilon \boldsymbol{1}) \leq \lim_{n \to \infty} \mathbb{P}(\boldsymbol{X}_n \leq \boldsymbol{t}) \leq \mathbb{P}(\boldsymbol{X} \leq \boldsymbol{t} + \epsilon \boldsymbol{1}).$$

Since t is a continuity point of F_X as $\epsilon \to 0$:

$$\mathbb{P}(oldsymbol{X} \leq oldsymbol{t}) \leq \lim_{n \to \infty} \mathbb{P}(oldsymbol{X}_n \leq oldsymbol{t}) \leq \mathbb{P}(oldsymbol{X} \leq oldsymbol{t}).$$

Convergence in Distribution

Definition 1.7.1. A sequence of random variables (X_n) converges in distribution if the sequence of distribution functions (F_n) converges *pointwise* to the distribution function F_X of X on the set $C(F_X)$ of continuity points of F_X :

$$\lim_{n\to\infty} F_n(\mathbf{t}) = F_X(\mathbf{t}) \text{ for } \mathbf{t} \in \mathcal{C}(F_X)$$

Proposition 1.7.1. Convergence in distribution to a constant α implies convergence in probability:

$$oldsymbol{X_n} \stackrel{d}{\longrightarrow} oldsymbol{lpha} \implies oldsymbol{X_n} \stackrel{p}{\longrightarrow} oldsymbol{lpha}.$$

Proof. If $X_n \stackrel{d}{\longrightarrow} \alpha$, then:

$$\lim_{n\to\infty} \mathbb{P}(\boldsymbol{X}_n \leq \boldsymbol{t}) = I(\boldsymbol{t} \geq \boldsymbol{\alpha}).$$

Now, probability that $||\boldsymbol{X}_n - \boldsymbol{\alpha}||_2 < \epsilon$ is:

$$\mathbb{P}\big(||\boldsymbol{X}_n - \boldsymbol{\alpha}||_2 < \epsilon\big) = \mathbb{P}\big(\boldsymbol{\alpha} - \epsilon \boldsymbol{1} \leq \boldsymbol{X}_n \leq \boldsymbol{\alpha} + \epsilon \boldsymbol{1}\big) = F_n(\boldsymbol{\alpha} + \epsilon \boldsymbol{1}) - F_n(\boldsymbol{\alpha} - \epsilon \boldsymbol{1}).$$

Taking the limit as $n \to \infty$:

$$\lim_{n\to\infty} \mathbb{P}(||\boldsymbol{X}_n - \boldsymbol{\alpha}||_2 < \epsilon) = I(\boldsymbol{\alpha} + \epsilon \boldsymbol{1} > \boldsymbol{\alpha}) - I(\boldsymbol{\alpha} - \epsilon \boldsymbol{1} > \boldsymbol{\alpha}) = 1.$$

Theorem 1.7.1 (Skorokhod Representation). If $X_n \stackrel{d}{\longrightarrow} X$, then there exists a sequence of random variables (ξ_n) defined on a common probability space such that $X_n \stackrel{d}{=} \xi_n$ and $\xi_n \stackrel{as}{\longrightarrow} \xi$.

Summary of Convergence Relations

• Convergence almost surely implies convergence in probability:

$$X_n \stackrel{as}{\longrightarrow} X \implies X_n \stackrel{p}{\longrightarrow} X$$
.

- Convergence almost surely may be established by checking:
 - The series $\sum_{n=1}^{\infty} \mathbb{P}(||\boldsymbol{X}_n \boldsymbol{X}|| > \epsilon)$ is finite for $\forall \epsilon > 0$.
 - The series $\sum_{n=1}^{\infty} E||\boldsymbol{X}_n \boldsymbol{X}||_2^p$ is finite for some p > 0.
- Convergence in L^p implies convergence in probability:

$$oldsymbol{X}_n \stackrel{L^p}{\longrightarrow} oldsymbol{X} \implies oldsymbol{X}_n \stackrel{p}{\longrightarrow} oldsymbol{X}.$$

• Convergence in probability implies convergence in distribution:

$$X_n \stackrel{p}{\longrightarrow} X \implies X_n \stackrel{d}{\longrightarrow} X$$
.

• Convergence in distribution to a constant α implies convergence in probability to that constant:

$$X_n \stackrel{d}{\longrightarrow} lpha \implies X_n \stackrel{p}{\longrightarrow} lpha.$$