Занятие Nº 11

Feature Selection

Содержание

- 1 Введение. Зачем всё это?
- 2 Статистика в отборе признаков
- 3 Декомпозиция данных
- 4 Практика

Введение. Зачем всё это?

Проклятье размерности

X X X X

X

Методы отбора признаков

Позволит получить:

- упрощение моделей для повышения возможности интерпретации исследователями или пользователями
- более короткое время тренировки
- уменьшения влияния проклятия размерности
- улучшение обобщения путём сокращения переобучения
- фильтрацию шумных признаков

Что можно сделать?

- Отобрать признаки
- Преобразовать признаки

Методы отбора признаков

Методы отбора

Задача – найти подмножество признаков на котором

выбранная модель покажет лучшее

Фильтры Качество

основаны на некоторых показателях, которые не зависит от метода классификации (коэффициент корреляции, взаимная информация, WOE, IG)

Обертки

опираются на информацию о важности признаков полученную от других методов или моделей ML

(последовательный отбор и последовательное исключение признаков и др.)

Встроенные в алгоритмы

выполняют отбор признаков во время процедуры обучения классификатора, и именно они явно оптимизируют набор используемых признаков для достижения лучшей точности (регрессия с L1-регуляризация, Random Forest, SHAP)

Корреляция

Корреля́ция — статистическая взаимосвязь двух или более случайных величин. При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.

Ковариация

$$cov_{XY} = \mathbf{M}\left[(X - \mathbf{M}(X))(Y - \mathbf{M}(Y))\right] = \mathbf{M}(XY) - \mathbf{M}(X)\mathbf{M}(Y)$$

Коэффициент корреляции Пирсона

$$\mathbf{r}_{XY} = rac{\mathbf{cov}_{XY}}{\sigma_X \sigma_Y} = rac{\sum (X - ar{X})(Y - ar{Y})}{\sqrt{\sum (X - ar{X})^2 \sum (Y - ar{Y})^2}}$$

Random Forest

L1 - регуляризация

SHAP (SHapley Additive exPlanations)

Преобразование признаков

Метод главных компонент (principal component analysis, PCA): позволяет уменьшить размерность данных с помощью преобразования на основе линейной алгебры

$$M\vec{x}=\lambda\vec{x}$$

Собственный

Сингулярное разложение (SVD)

PCA

Зачем он нужен? Он уменьшает размерность с минимумом потери информации

- перевести данные в пространство меньшей размерности
- найти такое преобразование при котором разброс данных и дисперсия в ортогональной проекциях максимален
- корреляция между отдельными координатами обратятся в ноль.

$$Cov(X_i, X_j) = E\left[\left(X_i - E(X_i)\right) \cdot \left(X_j - E(X_j)\right)\right] = E(X_i X_j) - E(X_i) \cdot E(X_j)$$

$$Var(X^*) = \Sigma^* = E(X^* \cdot X^{*T}) = E\left((\vec{v}^T X) \cdot (\vec{v}^T X)^T\right) =$$

$$= E(\vec{v}^T X \cdot X^T \vec{v}) = \vec{v}^T E(X \cdot X^T) \vec{v} = \vec{v}^T \Sigma \vec{v}$$

LDA

Линейный дискриминантный анализ

Метод уменьшения размерности, используемый в качестве этапа предварительной обработки в приложениях машинного обучения и классификации.

Первый шаг - вычислить разделимость между разными классами (то есть расстояние между средними значениями разных классов), также называемое межклассовой дисперсией.

$$S_b = \sum_{i=1}^{g} N_i (\overline{x}_i - \overline{x}) (\overline{x}_i - \overline{x})^T$$

Второй шаг - вычислить расстояние между средним значением и выборкой каждого класса, которое называется внутриклассовой дисперсией.

$$S_{w} = \sum_{i=1}^{g} (N_{i} - 1) S_{i} = \sum_{i=1}^{g} \sum_{j=1}^{N_{i}} (x_{i,j} - \overline{x}_{i}) (x_{i,j} - \overline{x}_{i})^{T}$$

Третий шаг - построить пространство более низкой размерности, которое максимизирует дисперсию между классами и минимизирует дисперсию внутри класса.
Р - проекция пространства нижней размерности

$$P_{lda} = \arg\max_{P} \frac{\left| P^{T} S_{b} P \right|}{\left| P^{T} S_{w} P \right|}$$

LDA

Отображение распределение в 1- мерное пространство

Two-Dimensional Representation

One-Dimensional Representation

Отображение картинок MNIST в 2- и 1- мерное пространство

NCA

Анализ компонентов соседства

Метод уменьшения размерности, используемый в качестве этапа предварительной обработки в приложениях машинного обучения и классификации. Решаемая задача максимизации качества классификации методом К-средних, с использованием концепции стохастических ближайших соседей

$$rg\max_{L} \sum_{i=0}^{N-1} p_i$$

Используется расстояние Махаланобиса

$$d(x,y) = ||L(x-y)||^2 = (x-y)^{\top} \dot{Q}(x-y) = (Ax-Ay)^{\top} (Ax-Ay)$$

Класс точки определяется взвешенным объединением классов всех остальных точек

$$p_i = \sum_{j \in C_i} p_{ij}$$
 $p_{ii} = 0$ $p_{ij} = \frac{\exp(-\|Ax_i - Ax_j\|^2)}{\sum_{k \neq i} \exp(-\|Ax_i - Ax_k\|^2)}$

Приближение матрицы преобразования происходит градиентными итеративными методами

$$rac{\partial f}{\partial A} = 2A\sum_i \left(p_i\sum_k p_{ik}x_{ik}x_{ik}^{\scriptscriptstyle op} - \sum_{j\in C_i} p_{ij}x_{ij}x_{ij}^{\scriptscriptstyle op}
ight)$$

NCA Анализ компонентов соседства

Метод уменьшения размерности, используемый в качестве этапа предварительной обработки в приложениях машинного обучения и классификации. Решаемая задача максимизации качества классификации методом К-средних, с использованием концепции *стохастических ближайших соседей*

Сравнение LDA, РСА и NCA

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

NCA:

maximizing component axes for better KNN performance - classifier

Метод случайных проекции (RP)

При большом количество объектов $N > 10^6$ и признаков $d > 10^4$ преобразования для PCA, LDA, NCA становятся достаточно сложными.

Поэтому в задачах, связанных с обработкой больших объемов данных, используется метод понижение размерности на основе случайных проекций. (базируется на лемма Джонсона-Линденштрасса). Если точки векторного пространства проецируются на некоторое выбранное случайным образом подпространство достаточно большой размерности, то в среднем расстояния между точками сохраняются.

$$Y = XR$$

Для генерации матрицы случайных чисел R = [d x k] может использоваться стандартное нормальное распределение. (d и k количество признаков до и после преобразования)

ПРАКТИКА

Спасибо 38 внимание!

