Efficient Solution of Capacitated Arc Routing Problems with a Limited Computational Budget

Min Liu and Tapabrata Ray

School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, Australia min.liu@student.adfa.edu.au, T.Ray@adfa.edu.au

Abstract. Capacitated Arc Routing Problem (CARP) is a well known combinatorial problem that requires the identification of the minimum total distance travelled by a set of vehicles to service a given set of roads subject to the vehicle's capacity constraints. While a number of optimization algorithms have been proposed over the years to solve CARP problems, all of them require a large number of function evaluations prior to its convergence. Application of such algorithms are thus limited for practical applications as many of such applications require an acceptable solution within a limited time frame, e.g., dynamic versions of the problem. This paper is a pre-cursor to such applications, and the aim of this study is to develop an algorithm that can solve such problems with a limited computational budget of 50,000 function evaluations. The algorithm is embedded with a similarity based parent selection scheme inspired by the principles of multiple sequence alignment, hybrid crossovers, i.e., a combination of similarity preservation schemes, path scanning heuristics and random key crossovers. The performance of the algorithm is compared with a recent Memetic algorithm, i.e., Decomposition-Based Memetic Algorithm proposed in 2010 across three sets of commonly used benchmarks (qdb, val, eql). The results clearly indicate the superiority of performance across both small and large instances.

Keywords: Capacitated arc routing problem, memetic algorithm, heuristic, random key representation, multiple sequence alignment.

1 Background

The capacitated arc routing problem (CARP) [12] can be described as follows: Assume a road network represented using a undirected graph G=(V,E) with a set V of v nodes and a set E of e edges. The set of p tasks (required edges) $T=(t_1,...,t_p)$ needs to be served by a fleet of vehicles which are associated with a same capacity C and located at a depot s ($s \in V$). Each edge is associated with a distance $d(i) \geq 0 (i=1,2,...,e)$ and a demand $q(i) \geq 0 (i=1,2,...,e)$. A demand of q(i) equal to zero indicates that the edges do not need service. The objective is to find the set of vehicle trips using minimum total distance D, such that each vehicle trip starts and ends at the depot s, each required edge is serviced by one single trip, and the total demand handled by any vehicle must not exceed its capacity C. The distance of a trip includes the distance of its serviced tasks and the distance traveled through edges that are not serviced.

Symbol	Meaning
Q	Population
w	Population size
S	Solution
N	Number of trips
C	Capacity of vehicle
e	Number of edges
$d_i (i = 1,, e)$	Distance of each edge
$q_i \ (i = 1,, e)$	Demand of each edge
T	A set of tasks
s	Depot of the vehicles
p	Number of tasks
D	Total distance, i.e., fitness of the solution

Table 1. Mathematical Symbols used in this paper

The symbols used in the paper are provided in Table 1.

Arc routing problems [7, 9, 10] are classic combinatorial optimization problems, wherein the aim is to find a route with minimum total distance subject to the set of predefined constraints. CARP is a practical form of an arc routing problem, in which a fleet of homogeneous (same capacity) vehicles needs to service the set of demands associated with the edges. CARP is known to be NP-hard and thus application of exact optimization methods are still limited small problems (20-30 edges) [12]. Although exact methods can solve some large instances of CARP, the computational cost is exorbitantly large, e.g., the branch-and-cut-price algorithm required around 20000 seconds [16] to solve a problem with 190 edges. In most real-world applications, it is necessary to obtain a solution within a given time budget. Different heuristic based approaches have been proposed over the years to deal with such problems, which include augment-merge [12], path-scanning [11, 21], construct-and-strike [19], Ulusoy's tour splitting [23], argment-insert [20] etc. Metaheuristic based approaches have also been proposed such as Simulated Annealing [8], Tabu Search [17], Variable Neighborhood Search [22], Guided Local Search [4], Genetic Algorithm [18], Evolutionary Algorithm (EA) [24], Ant Colony Optimization [1] and more recently hybrids such as Memetic Algorithm (MA) [13,22] which is an intelligent combination of a genetic algorithm and a local search.

A memetic algorithm with extended neighborhood search (referred as MAENS) [22] was introduced by Yi Mei $et\ al$ in 2010 and is one of the most efficient algorithms developed till date. However, the number of function evaluations required (approximate from 4.0×10^7 to 3.0×10^9) are still far more than what can be afforded for practical problems such as for dynamic CARPs. The performance of any optimization algorithm is largely dependent on the mechanisms of parent selection, method of recombination and local search strategies. The proposed algorithm is realized using a memetic algorithm as its baseline form. The parent selection is based on a similarity measure inspired by multiple sequence alignment while the recombination process is a hybrid consisting of path scanning heuristics and random key crossovers. The performance of the proposed method has been evaluated on three sets of CARP instances (gdb, val, egl) that

contain a total of 81 instances and compared with MAENS [22]. Section 2 describes the proposed Memetic Algorithm (MA) and Section 3 describes the numerical experiments and results. The conclusions are summarized in Section 4.

2 Proposed Algorithm

The algorithm maintains a population of solutions which are evolved over generations. Fitter individuals are paired with its partner based on a multiple sequence alignment inspired similarity measure. Such a scheme identifies pairs of solutions that have the maximum number of common vehicle trips which is then inherited by the child solution. Such a process is similar to inheriting good building blocks from parents in the context of genetic algorithms. As for the remaining set of demand edges, path scanning heuristic is used. Unique solutions are always maintained in a population and in the event, the number of unique solutions is less than the population size, solutions are generated using random key crossovers. In order to further improve a child solution, a neighborhood based local search is invoked with a given probability. The pseudocode of the algorithm is presented in Algorithm 1.

2.1 Solution Representation and Generation of the Initial Population

Firstly, the undirected graph of the road network is transformed to a directed graph, i.e., each edge is represented as two directed arcs in opposite directions and each of these arcs have the same edge ID. A solution(chromosome) for CARP is represented as a list of edge IDs. The set of w chromosomes are generated to form the initial population Q using a set of edge IDs using path-scanning (PS) heuristic without considering the capacity constraints (Rule 1: maximize the distance dist(t,s) from task t to depot; Rule 2: minimize the distance dist(t,s); Rule 3: maximize the yield q(t)/d(t), i.e., the ratio of demand/distance for each task; Rule 4: minimize the yield q(t)/d(t); Rule 5: use Rule 1 if the vehicle's capacity is less than half-full, else use Rule 2) [11]. Non-unique solutions are replaced with randomly generated chromosomes. Then the chromosomes are (split) using Ulusoy heuristic [13] which identifies the locations of the split that results in a minimum D while satisfying capacity constraints of the vehicles. This D is assigned as the fitness of the chromosome. The individuals of the population are sorted based on their fitness.

2.2 Multiple Sequence Alignment Inspired Selection

Parent selection is an important element in any population based search strategy. There are different variants of parent selection such as through the use of roulette wheel, binary tournament, random selection etc [24]. Fundamentally, all such processes aim to generate child solutions which inherit good building blocks from fitter parents. In the context of molecular biology [14], scientists are faced with the challenge of aligning multiple DNA sequences. Each DNA sequence is a set containing the base elements, i.e., A, C, T or G, and similarity between two sequences are sought via maximization

Algorithm 1. Proposed Algorithm

REQUIRE: Population size (w), Maximum number of function evaluations (MFE), Local search probability r_{LS}

```
1: Generate an initial population Q
 2: while Number of solutions evaluated \leq MFE do
       Apply MSA inspired selection operator to select w/2 pairs of parents
 3:
 4:
       Save the common trips of each pair of parents, keep the different part of each pairs, i.e., a
       set of edges that contains different trips, as P*
 5:
       w solutions P_c are generated by using path-scanning heuristic (PS) without considering
       capacity constraints on each edge in P* twice
       Keep the unique solutions in P_c
 6:
 7:
       if Number of P_c < w then
          for i = 1:w-Number of P_c do
 8:
 9:
             Apply roulette wheel to select two solutions P_{c1} and P_{c2} in P_c
10:
             Apply Random Key Crossover on P_{c1} and P_{c2} to generate a child Child
11:
             Insert Child into P_c
12:
          end for
13:
       end if
14:
       Sort P_c
15:
       Select the best one in P_c as C_1 (if the best one is same (all generated solutions are worse
       than the best in P_c), using roulette wheel instead)
16:
       if m \leq r_{LS}; m is a random number [0,1] then
17:
          Apply local search to C_1 to generate C_3
18:
          if C_3 is not a clone of any chromosome in Q then
19:
             Insert C_3 into Q
20:
          else if C_1 is not a clone of any chromosome in Q then
21:
             Insert C_1 into Q
22:
       else if C_1 is not a clone of any chromosome in Q then
23:
24:
          Insert C_1 into Q
25:
       end if
26:
       Sort the chromosomes in Q and keep the best w solutions in Q
27: end while
```

of the matching score. In the current context of a population of solutions sorted based on fitness, a partner of solution P_1 is the solution that has maximum number of vehicle trips in common. In the event there are multiple potential partners (i.e., with the same number of trips in common), a random partner is chosen among them.

2.3 Hybrid Recombination

A hybrid recombination scheme is used in this study. The recombination process identifies trips that are common in both the parents and maintains the same for the child solution. As for the remaining set of edges, a path-scanning heuristic without considering the capacity (PS) is used to generate the giant trip. By applying PS twice on the same set

of remaining edges, two offsprings are generated. After all w child solutions are created, unique solutions are maintained and in the event the number of unique solutions is less than the size of the population, a random key crossover [2] is used to generate new solutions. From the set of w parent solutions and newly generated w child solutions, the best w individuals are maintained in Q.

The process of random key crossover is illustrated below for completeness. Two individuals P_{c1} and P_{c2} are identified using a roulette wheel based selection. Seven random numbers (one for each task in P_{c1}) are drawn uniformly from (1, 3000) and for the discussion assume them as follows: (2100, 569, 3, 888, 970, 1100, 30). The sorted list of random numbers is (3, 30, 569, 888, 970, 1100, 2100). The original chromosome (6, 1, 5, 4, 2, 3, 7) is encoded such that the element 3 in the sorted list of random numbers is inserted in location 6, 30 in location 1, 569 in location 5 and so on resulting in an encoded chromosome as (30, 970, 1100, 888, 569, 3, 2100). The process is repeated for P_{c2} , the encoded form of which is (90, 220, 457, 140, 1400, 700, 550). It is important to highlight that the random numbers used in P_{c1} and P_{c2} should be unique. Following the standard form of two point crossover in the encoded space, the child chromosomes R_1* and R_2* assumes the form (30, 970, 1100, 140, 1400, 3, 2100) and (90, 220, 457, 888, 569, 700, 550). A decoding of the chromosomes R_1* and R_2* back to the original space results in (6, 1, 4, 2, 3, 5, 7) and (1, 2, 3, 7, 5, 6, 4) respectively, where 6 denotes the position of the smallest random number in the encoded chromosome, 1 denotes the position of next smallest random number and so on. These offsprings generated by crossover via random keys are guaranteed to be feasible and a random one is selected. The pseudocode of the process is presented below.

Algorithm 2. Modifed Random Key Crossover

```
1: for i = 1 \rightarrow w - Number of P_c do
2:
        Apply roulette wheel to select two individual P_{c1} and P_{c2}
3:
       for j=1 \rightarrow 2 do
4:
           Randomly select h numbers \subseteq (1,3000) {Number of total tasks in P_{ci}}
5:
           Encode P_{cj} \Longrightarrow R_i
           Randomly select two integer numbers m_{point1} \subseteq [1, h-1] and m_{point2} \subseteq [1, h-1]
6:
           to split R_i
7:
           while m_{point1} = m_{point2} do
8:
              Randomly select a integer number m_{point2} \subseteq [1, h-1]
9:
           R_i \Longrightarrow (part_i^1*, part_i^2*, part_i^3*)
10:
        end for
11:
        Swap (part_1^2* \iff part_2^2*) \Longrightarrow R_1*, R_2*
12:
        for j=1 \rightarrow 2 do
13:
           Decode R_i * \Longrightarrow Chr_i *
14:
15:
        end for
        Randomly select Chr_1* and Chr_2* \Longrightarrow C_1
16:
17: end for
```

2.4 Local Search

Apart from recombination, local search plays an important role in any hybrid or memetic forms. Firstly, the child C_1 is improved using a local search with a probability r_{LS} . Three move operators have been used to perturb the solution, i.e., *single insertion*, *double insertion*, and *swap*. The best chromosome C_2 with the shortest distance is the outcome of this phase. It is very important to highlight that if the top Q is still the same after a generation, a roulette wheel selection is used to identify C_1 .

The best result S from splitting C_1 identified from phase 1 is now improved further using a larger search domain, wherein tasks of two vehicle trips are redistributed among them using five rules of path scanning respectively resulting in five candidate part-solutions. The best candidate part-solution is inserted into the rest of the S to result in the new solution S_C . Since there are C_N^2 combinations possible, the following condition is enforced, i.e., if I:N!/2(N-2)! < 50, $l_{times} = I$, else $l_{times} = 50$, where l_{times} denotes the number of attempts.

The solution identified through this second phase of local search is accepted if its distance is lower than the one obtained during the first phase of local search, else the local search phase is aborted and the best solution corresponds to the one obtained in phase one. In the event, the solution obtained from the second phase of local search is better than the one obtained from the first phase, the algorithm offers one more chance to the solution to improve while moving through phase one and phase two of the local search procedure. The best solution of this phase is denoted as C_3 .

The pseudocode of the local search process is presented in Algorithm 3.

Algorithm 3. Local Search Algorithm

```
REQUIRE: Probability \leq r_{LS}
```

- 1: Perform single insertion operator to $C_1 \Longrightarrow C_1^1$
- 2: Perform double insertion operator to $C_1 \Longrightarrow C_1^2$
- 3: Perform swap operator to $C_1 \Longrightarrow C_1^3$
- 4: Keep the best one of C_1^1 , C_1^2 and $C_1^3 \Longrightarrow C_2$
- 5: Apply split method to $C_2 \Longrightarrow S = (S_1, S_2, ..., S_N)$
- 6: $l_{times} = \min[I, 50]$
- 7: **for** i = 1 to l_{times} **do**
- 8: Apply path-scanning to each pair of solutions to generate five different part solutions
- 9: Select the best one of them $\Longrightarrow S_C$
- 10: Combine S_C with the rest solutions $\Longrightarrow C_3$
- 11: Apply split method to evaluate C_3
- 12: Update the solution if C_3 is better than C_2 , $C_3 \Longrightarrow C_{new}$
- 13: end for
- 14: **if** Found C_{new} = true **then**
- 15: Apply local search again on C_{new}
- 16: end if

3 Performance on Benchmarks

In this section, the computational experiments and results are discussed. The first benchmark set contains 23 instances (gdb) originally generated by DeArmon [6]. The second benchmark set is from Benavent $et\ al\ [3]$ which contains 34 instances $(val\ benchment)$ defined using 10 different graphs. In both these instance sets, all the edges of the graphs require service. The final benchmark set [8] consists of 24 instances with large number of edges constructed from winter gritting data of Lancashire. The road networks of all the instances are undirected. Although the proposed algorithm can deal with mixed networks, we still focus on these problems since there are no mixed graph data instances in public domain.

The performance of the proposed algorithm is presented in Tables 2 3 4 and compared with the state-of-the-art algorithm MAENS [22] using a limited budget of 50,000 function evaluations(FE). For each instance, the results reported are averaged over 20 independent runs. Population size (w) is set to 30. Local search is applied with a probability $r_{LS} = 0.2$. In each table, the number of vertices are denoted as |V|, edges as |E|, the number of tasks as |T|, the average computational time as $T_c(second)$ and low bound as LB [4, 5, 15]. The average distance, standard deviation of the distance, best distance and the number of vehicles corresponding to the solution with the best distance are indicated for all the problem instances. The value in column R_s indicates the number of runs in which the worst solution obtained by the proposed algorithm in 20 runs is better than the best obtained using MAENS. A value of 20 indicates that the results obtained in all the runs of the proposed algorithm is better than the best obtained using MAENS. The progress plot of the median run for one of each problem classes are presented in Figure 1. One can clearly observe the benefits of the initialization scheme and the efficiency of the proposed approach. Detailed comparison of results of MAENS with other approaches have appeared in [22] and hence have been omitted in this paper.

Table 2 presents the results of experiments on the gdb benchmark, which consist of small networks with no more than 55 tasks. It is clear that the proposed algorithm performs significantly better than MAENS in terms of the best, average and the standard deviation when the budget is limited to 50,000FE. Table 3 and Table 4 present the results for val and eql benchmarks which represent large size network instances. It can be observed that the proposed algorithm still performs significantly better than MAENS in all aspects, i.e., best, average and the standard deviation. While this study considered the performance of the proposed algorithm with limited number of evaluations (50,000), a quick comparison with the known lower bounds reported in [13] indicates that in 63 out of 81 instances, the best solution obtained by the proposed algorithm is within 20% of the lower bound. In order to observe the performance of the algorithm for higher number of function evaluations, the algorithm was allowed to use 250,000 function evaluations and in 71 out of 81 instances the best solution was siwthin 20% of the lower bound. One can observe a significant improvement in performance when the allowed number of function evaluatsiona are higher. In order to study the effect of MSA based parent selection, the same algorithm was run with random parent selection. The results of MSA based parent selection are significantly better than the random parent selection scheme.

Table 2. Results on the set of gdb benchmark

Std ₃ D ₃ N ₃ Average ₄
4.3 316 5 4.5 345 6
351.3 4.5 351.3 4.5 4.5
16 5 20.2 15 6 19.2 75 5 18.5 17 4 19.6
316 345 275 287
5.6 316 9.3 345 5.6 275 11.5 287 9.7 383
323.5 362.4 288.1 298.3 400.2
18 372 5 30 12.7 420 6 30 7.9 382 6 30 21.8 333 4 30 10.7 481 6 30
397.9 1 433.8 12 394.3 7
22 316 2 26 339 4 22 275 3
12 22 3

Table 3. Results on the set of val benchmark

Inst.	$ \Lambda $	E	L	LB	MAENS	3(50,00	OFE)		R_s	With-	MSA(5	00,00	OFE.		With-MS/	v(250,0	00FI	E)	Without-M	SA(50	,000	FE)	ı
				7	$4verage_1$	Std_1	D_1	N_1		$Average_2$	Std_2	D_2	N_2	$T_c(s)$	$Average_3$	Std_3	D_3	N_3	$Average_4$	Std_4	D_4	N_4	1
valla	24	39	36	173	327.5	11.8			30	215.8	12.4	189	α	24.4	6.761	10.9	180	3	213.9	10.11	186		ı
vallb	24	39	39	173	324	10.8			30	216.2	9.1	191	4	21.7	192.2	6.2	183	4	214.3	9.6	192		
vallc	24	39	39	245	369.3	6.7			30	267.4	6.9	254	10	20.3	256.6	4.1	250	6	275.6	9.2	258		
val2a	24	34	34	227	369.8	11.9	355	7	30	300.1	26.3	246	7	22.6	247.9	7.4	231	7	299.8	15.7	269	7	
val2b	75	34	34	259	410.8	13.1			30	315.8	16.6	278	С	19	282.4	7.7	264	ж	319.5	17.4	278		
val2c	54	34	34	457	589	13.3			30	499.1	11.9	479	∞	20.3	488.2	10.7	473	∞	501.6	12.9	475		
val3a	24	35	35	81	137.8	4.2			30	104.6	7	86	7	22.8	9.68	3.4	84	7	104.7	6.5	91		
val3b	24	35	35	87	162.5	7.2			30	112.7	7.1	86	4	20.2	98.2	4.2	93	κ	114.9	4.3	108		
val3c	54	35	35	138	218.7	9		∞	30	151.3	3.6	143	7	17.4	148.1	2.9	4	7	155.2	5.2	14		
val4a	41	69	69	400	9.962	7.2	-	4	30	551.9	21.4	206	4	31.6	539.9	20	506	4	549.3	21	507		
val4b	4	69	69	412	844.1	15.8		S	30	570.3	19.3	531	S	38	557.6	23.8	495		569.4	18.6	525		
val4c	4	69	69	428	778	8.7	-	7	30	596.7	21.4	528	9	31.2	573	18.9	528		598.8	16.9	557		
val4d	41	69	69	530	922.6	16.3	-	Ξ	30	671.2	25.4	620	10	33.2	638.6	19	601		678.7	20.7	93		
val5a	34	65	65	423	736.1	16.2	-	5	30	590.5	18.1	546	4	27.6	576.4	21.6	539		588.5	23.4	538		
val5b	34	65	65	446	808	14.2	-	S	30	613.1	22.8	545	S	36.4	601.6	20.8	549		611	17	573		
val5c	34	65	65	474	831.3	6			30	643.5	17.7	587	9	27	621.3	15.9	571		647.6	19.5	612		
val5d	34	65	65	577	943.7	10.5	-		30	729.4	22.3	689	6	28.1	703.3	12.3	9/9		730.2	18.6	686		
val6a	31	20	50	223	430	11.8	-		30	289.8	8.3	276	S		275.5	13.4	253		292.9	8.6	274		
val6b	31	50	50	233	422.7	11.3	•		30	300.7	12.9	271	S		274.1	12.9	253		303.1	9.6	281		
val6c	31	50	50	317	542.2	7.9		Ξ	30	372.7	10	339	10		346.3	8.9	330	10	373.5	12.9	354	10	
val7a	4	99	99	279	889	14.5	_		30	363.1	12.7	333	4		354.6	10.4	335		365.1	11.4	343		
val7b	40	99	99	283	553	12.2			30	356.2	16.1	319	5		339	10.6	316		363.1	11.5	336		
val7c	40	99	99	334	602	14.6			30	403.6	14.4	371	10	27.6	381.7	11.8	362		421.9	18.1	385		
val8a	30	63	63	386	783.1	16.8	•		30	548.1	18	516	ϵ	29.2	527	16.9	501		554.8	15.6	524		
val8b	30	63	63	395	721.7	13.5	•		30	568.9	24.1	494	4	28.5	536.3	26.2	474		581.9	16.2	547		
val8c	30	63	63	521	895.3	14.9			30	678.7	23.1	623	Ξ	33.7	636.5	14.1	610		686.3	28.5	635		
val9a	20	92	92	323	748.8	16.7	-		30	431	15.7	399	4	54	405.6	10.1	392		435.1	12.5	402		
val9b	50	92	92	326	785	16.6	•		30	443.8	12.1	416	9	58.1	431.1	9.6	402		441.7	10.4	416		
val9c	20	92	35	332	666.1	13	_		30	453	11.9	420	9	58.2	423.3	10.1	399		456	8.4	436		
val9d	20	92	35	391	815	15	-	12	30	519	16.3	8 0	12	50.2	483.5	12.1	457		520	15	481		
val10a	20	26	24	428	855.6	16.4		S	30	584	12.1	555	4	61.6	577.9	12.9	555		580.7	11.5	556		
val10b	20	26	24	436	712.6	12.9	_	9	30	598.6	12.5	571	2	73.4	595.8	17.8	554		8.009	10.8	575		
val10c	20	6	97	446	993.7	11.3	84	7	30	611.3	15.5	555	9	61.4	590.5	18.2	534		612.9	Ξ	585		
val10d	50	26	76	531	926.3	13.3	•	12	30	9.969	14.8	929	10	28	681.9	4	653		692.5	15.8	6 5		

Table 4. Results on the set of egl benchmark

egl-e1-A 77 98 51 354 egl-e1-B 77 98 51 449 egl-e1-C 77 98 51 556 egl-e2-A 77 98 72 501 egl-e2-B 77 98 72 630 egl-e2-C 77 98 72 824 egl-e3-A 77 98 87 589	∞ ∞ ∨	/								,					
1112227	∞ ∞ ∨	$Average_1$	Std_1 D_1	N_1	$Average_2$	$2 Std_2 D_2$	N2 '	$T_c(s)$.	$Average_3$	Std_3	D_3 N	N_3 Aver	$Average_4$	Std_4	D_4 N
112227	4498	7856	187 7618	9	3926	95.6 3729	9 5	20.7	3783	(.,	3672)29		3296
egl-e1-C 77 98 51 egl-e2-A 77 98 72 egl-e2-B 77 98 72 egl-e2-C 77 98 72 egl-e3-A 77 98 87	7722	8274	194.1 8026	9 30	4852	78.3 4681	1 7	24.5	4728	7	, 603	7 45	345	158.4 4	4683
egl-e2-A 77 98 72 egl-e2-B 77 98 72 egl-e2-C 77 98 72 egl-e3-A 77 98 87	2200	8723	157.2 8563	10 30	5992	64.1 585 0	0 10	24.5	5876	65 5	5742 1)9 0)34	89.9 5	5896 1
egl-e2-B 77 98 72 egl-e2-C 77 98 72 egl-e3-A 77 98 87	5018	8335	100.2 8211	8 30	5800	150.9 5486	2 9	27	5499	٠,	, 9772	7 57		161.5 5	5419
egl-e2-C 77 98 72 egl-e3-A 77 98 87	6305	8199	127.8 8630	10 30	9869	139.7 6728	8 10	26.6	6733	8.06	5563 1	0 70	35	164.6 6	6743 1
egl-e3-A 77 98 87	8243	14433	102.9 13650	16 30	8959	100.9 8716	6 15	26.5	8778		8600 1	4 90	9024		8750 1
•	5898	12545	102 10960	9 30	6752	100.5 6422	8	43.6	6530		6297	8 7(005	262.7 6	6462 8
egl-e3-B 77 98 87		13720	142.1 12333	14 30	8659	127.4 8267	7 13	4.9	8767	263.9	8296 1	2 83	383		172 1
egl-e3-C 77 98 87	10163	16166	199.5 15930	18 30	11163	149.4 10827	77 17	4.2	10968	, ,	10793 1	7 111.		198.9 10	10827 1
egl-e4-A 77 98 98	6408	10381	162.2 10200	12 30	7532	234.9 7024	4	53.3	7319		7000	9 75		-	7131
egl-e4-B 77 98 98	8884	15440	222 15201	15 30	10106	169.4 9613	3 15	55.3	2686		9562 1	4 10			9608 1
egl-e4-C 77 98 98	98 11427	18577	206.6 18265	22 30	12735	201.5 12210	10 20	55.1	12521	178.9 1	12080 2	0.12	. ,	222.9 12	12542 2
91	5018	8210	176.4 7964	8 30	5734	110.5 5433	3 7	41.6	5564		, 8985	7 58			5449
egl-s1-B 140 190 75	5 6384		177.3 9633	11 30	6940	124.7 672]	1 10	33.8	6854		6631 1	0 70	. 181	163.1 6	6718 1
egl-s1-C 140 190 75 8493	8493		198.2 14212	14 30	8971	122.1 8715	5 14	33.9	8786		8668 1	4 92			8792 1
egl-s2-A 140 190 147 9824	9824	19136	176 18965	16 30	11752	152.2 11372	72 15	95.4	11545		10987 1	4 11			11497 1
egl-s2-B 140 190 147	12968	20082	228.1 19869	22 30	15004	159.6 14706	36 21	102.7	14784	160.3 1	14387 2	15		268.7 14	4744 2
egl-s2-C 140 190 147 163	16353	21523	142.5 21321	29 30	18645	194.4 18291	11 29	100.1	18404	179.5 1	18115 2	9 18			18249 2
egl-s3-A 140 190 159 10143	10143	19290	226.7 18927	16 30	12124	158 11792	32 15	116	12011	139.3 1	11654 1	5 12	2222	218.8 1	1802 1
egl-s3-B 140 190 159 1361	13616	22565	145.3 20563	23 30	15900	189.3 15505)5 23	111.7	15739	179.9 1	15433 2	2 15	5893	223.7 15	15564 2
egl-s3-C 140 190 159 171	17100	25643	244 25362	31 30	19464	207.4 19069	20 30	108	19291	122.2 1	18909 3	11 19.	9464	199.6 18959	3626 3
egl-s4-A 140 190 190 121	12143	18733	210.1 18520	20 30	14956	247.8 14334	34 20	176.3	14771	317.5 1	13991 1	9 14	4966	264.3 14	14452 1
egl-s4-B 140 190 190 160	16093	24411	206.7 24122	30 30	19041	194.5 18533	33 28	173.9	18900	178.2 1	18449 2	61 6	9075	157.2 18	18621 2
egl-s4-C 140 190 190 2037	20375	26730	167.9 26541	37 30	23669	263.1 2324 0	40 39	168	23489	275.4 2	22926 3	38 23	3818	174.4 23	23251 38

Fig. 1. The rate of convergence

4 Conclusion

In this paper, a memetic algorithm is introduced that relies on the use of multiple sequence alignment inspired parent selection scheme, a hybrid recombination strategy and a local search. Results on both small and large scale instances with limited number of solution evaluations indicate the applicability of the proposed algorithm for dynamic CARP problems, where one is interested in identifying an acceptable quality of solution within a short time. Although in reality, computational time is of primary interest, we focus here on a more objective performance indicator, i.e., number of function evaluations which is independent of the computing platform and skills of implementation. The proposed algorithm obtained high quality solutions to 81 well studied CARP instances within 50,000 function evaluations and all of which are better than the existing state-ofthe-art approach based on MAENS. The performance of the algorithm is also presented for 250,000 function evaluations for further studies. Apart from the convergence observed in the objective function space, the detailed performance on its components are analyzed and discussed. In future, we would incorporate an adaptive strategy which allocates/redistributes function evaluations to local search and recombination strategies based on their success which is likely to further improve the effectiveness of the algorithm.

References

- Bautista, J., Fernández, E., Pereira, J.: Solving an urban waste collection problem using ants heuristics. Computers & Operations Research 35(9), 3020–3033 (2008)
- 2. Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 6(2), 154–160 (1994)
- 3. Benavent, E., Campos, V., Corberán, A., Mota, E.: The capacitated arc routing problem: lower bounds. Networks-New York 22, 669–669 (1992)
- Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research 147(3), 629–643 (2003)
- 5. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated arc routing problem. Computers & Operations Research 35(4), 1112–1126 (2008)

- DeArmon, J.: A comparison of heuristics for the capacitated chinese postman problem. Master's thesis (University of Maryland, College Park, MD) (1981)
- 7. Dror, M.: Arc routing: theory, solutions, and applications. Springer, Netherlands (2000)
- Eglese, R.: Routeing winter gritting vehicles. Discrete Applied Mathematics 48(3), 231–244 (1994)
- 9. Eiselt, H., Gendreau, M., Laporte, G.: Arc routing problems, part i: The chinese postman problem. Operations Research, 231–242 (1995)
- Eiselt, H., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural postman problem. Operations Research, 399

 –414 (1995)
- 11. Golden, B., DeArmon, J., Baker, E.: Computational experiments with algorithms for a class of routing problems. Computers & Operations Research 10(1), 47–59 (1983)
- 12. Golden, B., Wong, R.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)
- 13. Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms for arc routing problems. Annals of Operations Research 131(1), 159–185 (2004)
- Lecompte, O., Thompson, J., Plewniak, F., Thierry, J., Poch, O.: Multiple alignment of complete sequences (macs) in the post-genomic era. Gene 270(1-2), 17–30 (2001)
- 15. Longo, H., de Aragâo, M., Uchoa, E.: Solving capacitated arc routing problems using a transformation to the cvrp. Computers & Operations Research 33(6), 1823–1837 (2006)
- 16. Martinelli, R., Pecin, D., Poggi, M., Longo, H.: A branch-cut-and-price algorithm for the capacitated arc routing problem. Experimental Algorithms, 315–326 (2011)
- 17. Mei, Y., Tang, K., Yao, X.: A global repair operator for capacitated arc routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3), 723–734 (2009)
- Morgan, M., Mumford, C.: A weight-coded genetic algorithm for the capacitated arc routing problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 325–332. ACM (2009)
- Pearn, W.: Approximate solutions for the capacitated arc routing problem. Computers & Operations Research 16(6), 589–600 (1989)
- Pearn, W.: Augment-insert algorithms for the capacitated arc routing problem. Computers & Operations Research 18(2), 189–198 (1991)
- Santos, L., Coutinho-Rodrigues, J., Current, J.: An improved heuristic for the capacitated arc routing problem. Computers & Operations Research 36(9), 2632–2637 (2009)
- Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Transactions on Evolutionary Computation 13(5), 1151–1166 (2009)
- Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research 22(3), 329–337 (1985)
- Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: An evolutionary approach to the multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary Computation 14(3), 356–374 (2010)