Spatio-temporal Flow Analysis

Tino Weinkauf KTH Royal Institute of Technology Stockholm, Sweden

Spatio-Temporal Flow Analysis, Tino Weinkauf, VIS 2016

2D time-dependent vector field particle visualization

curve parallel to the vector field in each point for a **fixed time**

describes motion of a massless particle in an **steady** flow field

path lines

curve parallel to the vector field in each point **over time**

describes motion of a massless particle in an **unsteady** flow field

• A **tangent curve** s(t) of the vector field v is a curve in $E^{2/3}$ with the property:

$$\dot{\mathbf{s}}(t) = \mathbf{v}(\mathbf{s}(t))$$
 denotes the tangent vectors of $\mathbf{s}(t)$

for any t of the domain of **s**.

Interpretation: path of a massless particle in a flow described by verification.

described by v

Properties of tangent curves:

- Tangent curves do not intersect each other (except for critical points of v).
- Given a point in the vector field v, there is one and only one tangent curve through it (except for critical points of v)
- A parametric description of stream lines is usually not possible → numerical integration schemes (Runge Kutta)

 Based on tangent curves, we define 4 types of characteristic curves of a vector field

stream lines path lines streak lines time lines

steady vector field

$$\mathbf{v}(x,y)$$

$$\frac{d}{d\tau} \mathbf{x}(\tau) = \mathbf{v}(\mathbf{x}(\tau))$$
with $\mathbf{x}(0) = \mathbf{x}_0$

stream lines

$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

unsteady vector field

$$\mathbf{v}(x,y,t)$$

$$\frac{d}{d\tau} \mathbf{x}(\tau) = \mathbf{v}(\mathbf{x}(\tau), t_0)$$
with $\mathbf{x}(0) = \mathbf{x}_0$

stream lines

$$\mathbf{s}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \\ 0 \end{pmatrix}$$

$$\frac{d}{dt} \mathbf{x}(t) = \mathbf{v}(\mathbf{x}(t), t)$$
with $\mathbf{x}(t_0) = \mathbf{x}_0$

$$\mathbf{p}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \\ 1 \end{pmatrix}$$

steady vector field

unsteady vector field

2D
$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

3D

$$\mathbf{v}(x, y, z) = \begin{pmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{pmatrix}$$

nD unsteady vector field

→ (n+1)D steady vector field

$$\mathbf{s}(x,y,z,t) = \begin{pmatrix} u(x,y,z,t) \\ v(x,y,z,t) \\ w(x,y,z,t) \\ 0 \end{pmatrix} \qquad \mathbf{p}(x,y,z,t) = \begin{pmatrix} u(x,y,z,t) \\ v(x,y,z,t) \\ w(x,y,z,t) \\ 1 \end{pmatrix}$$

$$\mathbf{p}(x, y, z, t) = \begin{pmatrix} u(x, y, z, t) \\ v(x, y, z, t) \\ w(x, y, z, t) \\ 1 \end{pmatrix}$$

streak line

location of all particles set out at a fixed point at different times

streak lines

time line location of all particles set out on a certain line at a fixed time

- unsteady topology
- vortex core lines

tangent curves in a time-independent vector field
$$\mathbf{v}(\mathbf{x})$$
 : $\frac{d}{d\tau}\mathbf{x}(\tau) = \mathbf{v}(\mathbf{x}(\tau))$ with $\mathbf{x}(0) = \mathbf{x}_0$

time-dependent vector field $\mathbf{v}(\mathbf{x},t)$

stream lines

$$\bar{\mathbf{s}}(\mathbf{x},t) = \begin{pmatrix} \mathbf{v}(\mathbf{x},t) \\ 0 \end{pmatrix}$$

$$\bar{\mathbf{p}}(\mathbf{x},t) = \begin{pmatrix} \mathbf{v}(\mathbf{x},t) \\ 1 \end{pmatrix}$$

$$\mathbf{\bar{s}} = \begin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix}$$

$$\bar{\mathbf{p}} = \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Feature extraction and analysis methods:

stream lines

$$\bar{\mathbf{s}} = \begin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix}$$
 stream lines \longleftarrow tangent curves of a derived vector field \longrightarrow path lines $\bar{\mathbf{p}} = \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$

Feature extraction and analysis methods:

Vector field topology
[Helman and Hesselink, IEEE Comp. 1989

Topology simplification [Tricoche et al., Vis 2000 & 2001]

Feature Flow Fields
[Theisel and Seidel, VisSym 2003]

Topological vector field construction [Weinkauf et al., EG 2004]

Critical point tracking 3D [Garth et al., Vis 2004]

Curvature-based seeding
[Weinkauf and Theisel, WSCG 2002]

Path line attributes
[Shi et al., TopolnVis 2007]

Unsteady PV criteria [Fuchs et al., TVCG 2008]

Predictor-Corrector for SPH [Schindler et al., Vis 2009]

$$ar{\mathbf{s}} = egin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix}$$
 stream lines $\begin{cases} \longleftarrow & \mathsf{tangent\ curves} \\ \mathsf{of\ a\ derived\ vector\ field} & lacksquare \end{pmatrix}$ path lines $ar{\mathbf{p}} = egin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$

Feature extraction and analysis methods:

Center of swirling stream/path lines

$$\mathbf{v}(\mathbf{x}) \mid\mid \mathbf{e}(\mathbf{x})$$

Eigenvector method [Sujudi and Haimes, AIAA 1995]

Parallel Vectors operator [Peikert and Roth, Vis 1999]

Tracking in scale space [Bauer and Peikert, VisSym 2002]

Parallel Vectors meet FFF [Theisel et al., Vis 2005]

Swirling Particle Cores
[Weinkauf et al., Vis 2007]

Unsteady PV criteria
[Fuchs et al., TVCG 2008]

Predictor-Corrector for SPH [Schindler et al., Vis 2009]

Weinkauf and Theisel Streak Lines as Tangent Curves of a Derived Vector Field Best Paper at IEEE Visualization 2010

$$\bar{\bar{\mathbf{q}}}(\mathbf{x},t,\tau) = \begin{pmatrix} (\nabla \phi_t^{\tau}(\mathbf{x}))^{-1} \cdot \frac{\partial \phi_t^{\tau}(\mathbf{x})}{\partial t} + \mathbf{v}(\mathbf{x},t) \\ 0 \\ -1 \end{pmatrix}$$

Streak Line Vector Field

Weinkauf, Hege, Theisel Advected Tangent Curves: A General Scheme for Characteristic Curves of Flow Fields Eurographics 2012

$$\bar{\bar{\mathbf{q}}}(\mathbf{x},t,\tau) = \begin{pmatrix} (\nabla \phi)^{-1} \cdot \left(\mathbf{a}(\bar{\phi}) - g(\bar{\phi}) \frac{\partial \phi}{\partial t} \right) - g(\bar{\phi}) \cdot \mathbf{w} \\ 0 \\ g(\bar{\phi}) \end{pmatrix}$$

Advected Tangent Curves Vector Field

Spatio-Temporal Flow Analysis, Tino Weinkauf, VIS 2016

Coffee Break

$$\mathbf{v}(\mathbf{x}_0) = \mathbf{0}$$
 with $\mathbf{v}(\mathbf{x}_0 \pm \boldsymbol{\epsilon}) \neq \mathbf{0}$

Saddle point $R_1 < 0, R_2 > 0$ $I_1 = I_2 = 0$

Repelling node R_1 , $R_2 > 0$ $I_1 = I_2 = 0$

Repelling focus $R_1 = R_2 > 0$ $I_1 = -I_2 \neq 0$

 $\begin{array}{c} \textbf{Center} \\ R_1 = R_2 = 0 \\ I_1 = -I_2 \neq 0 \end{array}$

Attracting focus $R_1 = R_2 < 0$ $I_1 = -I_2 \neq 0$

Attracting node R_1 , $R_2 < 0$ $I_1 = I_2 = 0$

critical points

separation lines

sectors of different flow behavior

Topological Structures

unsteady vector field

Topological Structures

unsteady vector field

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$

$$\mathbf{f}(x, y, t) = \begin{pmatrix} f(x, y, t) \\ g(x, y, t) \\ h(x, y, t) \end{pmatrix}$$

Feature Flow Field (FFF)

H. Theisel and H.-P. Seidel
Feature Flow Fields, VisSym 2003

 Feature Flow Field: vector field f at x pointing into direction where the feature continues

- Numerical stream line/surface integration is well-understood
- Stream object integration independent of underlying grid
- FFF gives theoretical tool for classifying local bifurcations

- H. Theisel and H.-P. Seidel Feature Flow Fields, VisSym 2003
- H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel
 Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields, IEEE Vis
 2004
- T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel Feature Flow Fields in Out-Of-Core Settings, TopolnVis 2005
- X. Zheng and A. Pang
 Topological Lines in 3D Tensor Fields and Discriminant Hessian Factorization, TVCG 2005
- H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line Tracking, IEEE Vis 2005
- S. Depardon, J. J. Lasserre, L. E. Brizzi, and J. Borée

 Automated topology classification method for instantaneous velocity fields, Experiments in Fluids 2007
- J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz
 Efficient Computation of Combinatorial Feature Flow Fields, TVCG 2011
- T. Weinkauf, H. Theisel, A. Van Gelder, A. Pang Stable Feature Flow Fields, TVCG 2011
- C. Pagot, D. Osmari, F. Sadlo, D. Weiskopf, T. Ertl, J. Comba
 Efficient Parallel Vectors Feature Extraction from Higher-Order Data, EuroVis 2011

1. Find all seeds

2. Integrate

unsteady vector field

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$

FFF-based Tracking

tracked critical points

1. Find all seeds

Finding Zeros

Domain boundaries

$$\mathbf{v}(x, y, t_{min}) = (0, 0)^T \text{ and } \mathbf{v}(x, y, t_{max}) = (0, 0)^T :$$

 $\mathbf{v}(x, y_{min}, t) = (0, 0)^T \text{ and } \mathbf{v}(x, y_{max}, t) = (0, 0)^T :$
 $\mathbf{v}(x_{min}, y, t) = (0, 0)^T \text{ and } \mathbf{v}(x_{max}, y, t) = (0, 0)^T :$

2. Integrate

Fold bifurcations

$$[\mathbf{v}(\mathbf{x}) = (0,0)^T, \det(\mathbf{J}_{\mathbf{v}}(\mathbf{x})) = 0]$$

1. Find all seeds

2. Integrate

Integrating Stream Objects

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$

$$\mathbf{f}(x, y, t) = \begin{pmatrix} \det(\mathbf{v}_y, \mathbf{v}_t) \\ \det(\mathbf{v}_t, \mathbf{v}_x) \\ \det(\mathbf{v}_x, \mathbf{v}_y) \end{pmatrix}$$

[Theisel and Seidel; VisSym 2003]

Extensions:

- Large data (out-of-core)
 TopoInVis 2007
- Stability TVCG 2011
- Combinatorial equivalent TVCG 2012

1000 time steps

Eigenvector method [Sujudi and Haimes, AIAA 1995]

Parallel Vectors operator [Peikert and Roth, Vis 1999]

Tracking in scale space [Bauer and Peikert, VisSym 2002]

Parallel Vector surfaces [Theisel et al., Vis 2005]

stream lines

NASA Langely Research Center

Swirling Motion Cores [Weinkauf et al., Vis 2007]

Streak Line Cores
[Weinkauf and Theisel, Vis 2010]

Advected Tangent Cores [Weinkauf et al., EG 2012]

Vortex Cores of Inertial Particles [Günther and Theisel, Vis 2014]

path lines, streak lines, other curves, inertial particles

cores of swirling particle motion

Eigenvector method [Sujudi and Haimes, AIAA 1995]

$$\begin{aligned} \mathbf{w}(\mathbf{x}) &= \mathbf{v}(\mathbf{x}) - (\mathbf{v}(\mathbf{x}) \cdot \mathbf{e}(\mathbf{x})) \, \mathbf{e}(\mathbf{x}) \\ \mathbf{w}(\mathbf{x}) &= \mathbf{0} \\ \textit{reduced velocity} \end{aligned}$$

Although a point \mathbf{x} on the core structure is surrounded by spiraling integral curves, the flow vector at \mathbf{x} itself is solely governed by the non-swirling part of the flow.

$$\mathbf{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

Eigenvector method [Sujudi and Haimes, AIAA 1995]

Parallel Vectors operator [Peikert and Roth, Vis 1999]

$$\mathbf{s} = \begin{pmatrix} u \\ v \\ w \\ 0 \end{pmatrix}$$

Tracking in scale space [Bauer and Peikert, VisSym 2002]

4D marching cubes like method

Parallel Vector surfaces [Theisel et al., Vis 2005]

based on Feature Flow Fields

steady vector field

critical points

$$\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$$

unsteady vector field

tracked critical points

$$\mathbf{s} = \begin{pmatrix} u \\ v \\ 0 \end{pmatrix}$$

swirling particle cores

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

2D

stream lines

3D

swirling stream line cores

stream lines

$$\mathbf{s} = \begin{pmatrix} u \\ v \\ w \\ 0 \end{pmatrix}$$

tracked stream line cores

path lines

swirling particle cores

$$\mathbf{s} = \begin{pmatrix} u \\ v \\ w \\ 0 \end{pmatrix} \qquad \text{stream lines}$$

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ w \\ 1 \end{pmatrix} \quad \text{path lines} \quad$$

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ w \\ 1 \end{pmatrix} \quad \text{path lines} \quad \longrightarrow \quad \text{no existing method}$$

$$\mathbf{J}(\mathbf{p}) = \begin{bmatrix} u_x & u_y & u_z & u_t \\ v_x & v_y & v_z & v_t \\ w_x & w_y & w_z & w_t \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c|c} \mathbf{e}_1 & e_2 & e_3 & 0 \\ \hline & complex \text{ (necessary condition)} \end{array}$$

two real eigenvectors e^s f

Original idea of Sujudi/Haimes:

Although a point \mathbf{x} on the core structure is surrounded by spiraling integral curves, the flow vector at \mathbf{x} itself is solely governed by the non-swirling part of the flow.

$$\lambda_1 \mathbf{p} + \lambda_2 \mathbf{e}^s + \lambda_3 \mathbf{f} = \mathbf{0}$$
with $\sum \lambda_i^2 > 0$

Coplanarity of three 4D vectors

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ w \\ 1 \end{pmatrix} \quad \text{path lines} \quad \longrightarrow \quad \text{no existing method}$$

steady vector field

critical points

$$egin{aligned} & \lambda \mathbf{v} = \mathbf{0} \ \mathbf{v} = \mathbf{0} \end{aligned}$$

Critical Point finder

2D

stream lines -

3D

swirling stream line cores

unsteady vector field

tracked critical points

$$\lambda_1 \mathbf{s} + \lambda \left(e^t
ight) = \mathbf{0}$$
 $\mathbf{s} = \left(v
ight)$ operator

stream lines -

tracked stream line cores

swirling particle cores

path lines -

swirling particle cores

steady vector field critical points

unsteady vector field

tracked critical points

swirling particle cores

unified notation of swirling motion cores

$$\lambda_1 \mathbf{V}(\mathbf{x}) + \sum \lambda_i \mathbf{e}_i(\mathbf{x}) = \mathbf{0}$$

with
$$\sum \lambda_i^2 > 0$$

swirling stream line cores

tracked stream line cores

swirling particle cores

Streak Line Vector Field

$$\bar{\bar{\mathbf{q}}}(\mathbf{x},t,\tau) = \begin{pmatrix} (\nabla \phi_t^{\tau}(\mathbf{x}))^{-1} \cdot \frac{\partial \phi_t^{\tau}(\mathbf{x})}{\partial t} + \mathbf{v}(\mathbf{x},t) \\ 0 \\ -1 \end{pmatrix}$$

$$\bar{\mathbf{q}}(\mathbf{x},t,\tau) = \begin{pmatrix} (\nabla \phi_t^{\tau}(\mathbf{x}))^{-1} \cdot \frac{\partial \phi_t^{\tau}(\mathbf{x})}{\partial t} + \mathbf{v}(\mathbf{x},t) \\ 0 \\ -1 \end{pmatrix} \qquad \nabla \bar{\mathbf{q}}(\mathbf{x},t,\tau) = \begin{pmatrix} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} & \frac{\partial \mathbf{w}}{\partial t} & \frac{\partial \mathbf{w}}{\partial \tau} \\ 0 \dots 0 & 0 & 0 \\ 0 \dots 0 & 0 & 0 \end{pmatrix}$$

Coplanarity of three 4D vectors

$$\lambda_1 \bar{ar{\mathbf{q}}} + \lambda_2 \bar{ar{\mathbf{e}}}_t + \lambda_3 \bar{ar{\mathbf{e}}}_{ar{ au}} = \mathbf{0}$$
with $\sum \lambda_i^2 > 0$

Streak line core (red) in the center of spiraling streak lines (gray).

2D time-dependent vector field:
$$\mathbf{v}(\mathbf{x},t) = \begin{pmatrix} -(1-t)y - ty \\ (1-t)(x-y) + t(x-y-1) \end{pmatrix}$$

attractor in the flow not detectable by classic visualization methods or feature extraction methods

Line Integral Convolution

Vector Field Topology

Path Line Cores

Finite Time Lyapunov Exponents

$$\mathbf{v}(x, y, t) = \begin{pmatrix} -(y - \frac{1}{3}\sin(t)) - (x - \frac{1}{3}\cos(t)) \\ (x - \frac{1}{3}\cos(t)) - (y - \frac{1}{3}\sin(t)) \end{pmatrix}$$

Path lines approaching the attractor (yellow curve).

attractor in the flow not detectable by classic visualization methods or feature extraction methods

Line Integral Convolution

Vector Field Topology

Path Line Cores

Finite Time Lyapunov Exponents

$$\mathbf{v}(x,y,t) = \begin{pmatrix} -(y - \frac{1}{3}\sin(t)) - (x - \frac{1}{3}\cos(t)) \\ (x - \frac{1}{3}\cos(t)) - (y - \frac{1}{3}\sin(t)) \end{pmatrix}$$

Critical points (green) and path line cores (blue) do not match the attractor.

attractor in the flow not detectable by classic visualization methods or feature extraction methods

Line Integral Convolution

Vector Field Topology

Path Line Cores

Finite Time Lyapunov Exponents

$$\mathbf{v}(x, y, t) = \begin{pmatrix} -(y - \frac{1}{3}\sin(t)) - (x - \frac{1}{3}\cos(t)) \\ (x - \frac{1}{3}\cos(t)) - (y - \frac{1}{3}\sin(t)) \end{pmatrix}$$

Streak line core (red) matches the attractor.

attractor in the flow not detectable by classic visualization methods or feature extraction methods

Line Integral Convolution

Vector Field Topology

Path Line Cores

Finite Time Lyapunov Exponents

$$\mathbf{v}(x,y,t) = \begin{pmatrix} -(y - \frac{1}{3}\sin(t)) - (x - \frac{1}{3}\cos(t)) \\ (x - \frac{1}{3}\cos(t)) - (y - \frac{1}{3}\sin(t)) \end{pmatrix}$$

massless

with mass

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \\ t \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \frac{\mathbf{u}(\mathbf{x},t) - \mathbf{v}}{r} + \mathbf{g} \end{pmatrix}$$

with
$$\begin{pmatrix} \mathbf{x} \\ \mathbf{v} \\ t \end{pmatrix} (0) = \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{v}_0 \\ t_0 \end{pmatrix}$$

Vortex Cores of Inertial Particles [Günther and Theisel, Vis 2014]

Spatio-temporal Flow Analysis

Tino Weinkauf KTH Royal Institute of Technology Stockholm, Sweden