Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

Randomization inference and causal inference

- "In randomization-based inference, uncertainty in estimates arises naturally from the random assignment of the treatments, rather than from hypothesized sampling from a large population." (Athey and Imbens 2017)
- Athey and Imbens is part of growing trend of economists using randomization-based methods for doing causal inference
- Unclear (to me) why we are hearing more and more about randomization inference, but we are.
- Could be due to improved computational power and/or the availability of large data instead of samples?

Lady tasting tea experiment

- Ronald Aylmer Fisher (1890-1962)
 - → Two classic books on statistics: Statistical Methods for Research Workers (1925) and The Design of Experiments (1935), as well as a famous work in genetics, The Genetical Theory of Natural Science
 - → Developed many fundamental notions of modern statistics including the theory of randomized experimental design.

Lady tasting tea

- Muriel Bristol (1888-1950)
 - → A PhD scientist back in the days when women weren't PhD scientists
 - → Worked with Fisher at the Rothamsted Experiment Station (which she established) in 1919
 - During afternoon tea, Muriel claimed she could tell from taste whether the milk was added to the cup before or after the tea
 - → Scientists were incredulous, but Fisher was inspired by her strong claim
 - → He devised a way to test her claim which she passed using randomization inference

Description of the tea-tasting experiment

- Original claim: Given a cup of tea with milk, Bristol claims she can discriminate the order in which the milk and tea were added to the cup
- Experiment: To test her claim, Fisher prepares 8 cups of tea 4 milk
 then tea and 4 tea then milk and presents each cup to Bristol for a taste test
- Question: How many cups must Bristol correctly identify to convince us of her unusual ability to identify the order in which the milk was poured?
- Fisher's sharp null: Assume she can't discriminate. Then what's the likelihood that random chance was responsible for her answers?

Choosing subsets

• The lady performs the experiment by selecting 4 cups, say, the ones she claims to have had the tea poured first.

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- "8 choose 4" $-\binom{8}{4}$ ways to choose 4 cups out of 8
 - \rightarrow Numerator is $8 \times 7 \times 6 \times 5 = 1,680$ ways to choose a first cup, a second cup, a third cup, and a fourth cup, in order.
 - \rightarrow Denominator is $4 \times 3 \times 2 \times 1 = 24$ ways to order 4 cups.

Choosing subsets

 There are 70 ways to choose 4 cups out of 8, and therefore a 1.4% probability of producing the correct answer by chance

$$\frac{24}{1680} = 1/70 = 0.014.$$

• For example, the probability that she would correctly identify all 4 cups is $\frac{1}{70}$

Statistical significance

- Suppose the lady correctly identifies all 4 cups. Then ...
 - 1. Either she has no ability, and has chosen the correct 4 cups purely by chance, or
 - 2. She has the discriminatory ability she claims.
- Since choosing correctly is highly unlikely in the first case (one chance in 70), the second seems plausible.
- Bristol actually got all four correct
- I wonder if seeing this, any of the scientists present changed their mind

Null hypothesis

- In this example, the null hypothesis is the hypothesis that the lady has no special ability to discriminate between the cups of tea.
- We can never prove the null hypothesis, but the data may provide evidence to reject it.
- In most situations, rejecting the null hypothesis is what we hope to do.

Null hypothesis of no effect

- Randomization inference allows us to make probability calculations revealing whether the treatment assignment was "unusual"
- Fisher's sharp null is when entertain the possibility that no unit has a treatment effect
- This allows us to make "exact" p-values which do not depend on large sample approximations
- It also means the inference is not dependent on any particular distribution (e.g., Gaussian); sometimes called nonparametric

Sidebar: bootstrapping is different

- Sometimes people confuse randomization inference with bootstrapping
- Bootstrapping randomly draws a percent of the total observations for estimation; "uncertainty over the sample"
- Randomization inference randomly reassigns the treatment;
 "uncertainty over treatment assignment"

(Thanks to Jason Kerwin for helping frame the two against each other)