Міністерсто освіти і науки України Івано-Франківський національний технічний університет нафти і газу

Кафедра КСМ

Лабораторна робота №5 Тема "Обчислення площ за допомогою визначених інтегралів"

Виконав студент групи КІ-18-1 Марчук О. Р.

Перевірла Мануляк І.З.

м.Івано-Франківськ 2020р.

Мета: Навчитися обчислюватизначення площі за допомогою визначених інтегралів.

1. Завдання на лабораторну роботу

Варіант 20

1.1

Згідно варіанту написати програму, що реалізує обчислення площі заданої підінтегральної функції f(x) для заданої кількості розбиттів n інтервалу [a,b]. Крім того, здійснити підбір мінімально допустимої кількості розбиттів n інтервалу [a,b] для забезпечення необхідної точності ε обчислення площі підінтегральної функції f(x).

Варіант	f(x)	а	b	n	3	Метод розв'язку
20	$x\pi \cdot \cos(8x) + x^3$	$\pi/3$	3π	14	0.0005	парабол

2. Хід роботи

2.1

Пишу функцію, що реалізує обчислення площі заданої підінтегральної функції f(x) для заданої кількості розбиттів n інтервалу [a,b]:

```
function getArea (a, b, n) {
  let I = 0
  let V = 0
  let h = (b - a) / n

for (x = a + h; x <= b - h; x += 2 * h) {
  I += f(x)
  }

for (x = a + 2 * h; x <= b - h; x += 2 * h) {
  V += f(x)
  }

return h * (f(a) + f(b) + 4 * I + 2 * V) / 3
}

function f(x) {
  return x * math.pi * math.cos(8 * x) + x ** 3
}</pre>
```

2.2

Пишу функцію, що здійснює підбір мінімально допустимої кількості розбиттів n інтервалу [a,b] для забезпечення необхідної точності ε обчислення площі підінтегральної функції f(x):

```
function getMinimalInerval(a, b, accuracy) {
  let interval = 2
  let currentAccuracy = 0
  do {
    I = getArea(a, b, interval)
    I_2 = getArea(a, b, interval * 2)
    currentAccuracy = math.abs(I_2 - I) / 15
    interval++
  } while (currentAccuracy > accuracy)
  return interval
}
```

Код всієї програми:

```
const math = require('mathjs')
let a = math.pi / 3
let b = 3 * math.pi
let n = 14
let accuracy = 0.0005
let area = getArea(a, b, n)
console.log("area", area)
let minimalInterval = getMinimalInerval(a, b, accuracy)
console.log("minimalInterval", minimalInterval)
function getMinimalInerval(a, b, accuracy) {
 let interval = 2
 let currentAccuracy = 0
 do {
   I = getArea(a, b, interval)
   I_2 = getArea(a, b, interval * 2)
   currentAccuracy = math.abs(I_2 - I) / 15
    interval++
 } while (currentAccuracy > accuracy)
 return interval
function getArea (a, b, n) {
 let I = 0
 let V = 0
 let h = (b - a) / n
 for (x = a + h; x \le b - h; x += 2 * h) {
   I += f(x)
 for (x = a + 2 * h; x \le b - h; x += 2 * h) {
   V += f(x)
 return h * (f(a) + f(b) + 4 * I + 2 * V) / 3
function f(x) {
 return x * math.pi * math.cos(8 * x) + x ** 3
```

Результат виконання:

Висновок: На цій лабораторній роботі я навчився обчислювати площу за допомогою визначених інтегралів. Склав алгоритм для визначення мінімальної допустимо кількості розбиттів для забезпечення необхідної точності обчислення.