Understanding & Visualizing Data

Lecture 2 Emma Ning, M.A.

If You Were a Politician, How Would You Use the Left vs. Right Figure?

TODAY'S PLAN

Intro to Dataframe

How does a dataframe look like?

03
Summarizing &
Visualizing Data

Creating frequency tables to summarize our data & Plotting our data

Types of Data

What kind of data can we analyze?

Review + Reminders

Learning objectives

- Differentiate and give examples of **nominal, ordinal, interval**, and **ratio** data
- Construct a **frequency table** based on a given set of data
- Construct univariate visualizations based on the four types of data, including basic forms of pie chart, bar chart, histogram, and line graph
- Interpret the univariate visualizations you create
- Optional (if time): Able to differentiate between univariate vs. bivariate visualizations

01

Intro to Dataframe

How do "data" look like, typically?

user	app_version	age	sleep_hours	subscription	stress_level
Hafsah	v3.1	23	8.5	Free	Med
Jackie	v2.9	30	6	Pro	Low
Aseem	v3.1	19	9.5	Free	High
Oscar	v3.3	21	5.9	Free	High

These are **columns**. Each column represents one variable. sleep_hours subscription stress_level app_version user age Hafsah v3.1 23 8.5 Free Med **Jackie** v2.9 30 6 Pro Low Aseem v3.1 19 9.5 Free High High Oscar v3.3 21 5.9 Free

These are **rows**. Each row represents one **observation** (e.g., person).

user	app_version	age	sleep_hours	subscription	stress_level
Hafsah	v3.1	23	8.5	Free	Med
Jackie	v2.9	30	6	Pro	Low
Aseem	v3.1	19	9.5	Free	High
Oscar	v3.3	21	5.9	Free	High

The variables in red seem to include some text. The variables in blue seem to only have numbers.

02 Types of Data

Two Broad Types of Data/Variable

Categorical

These are variables that are categories, such as first language, hometown, or favorite song. Think of categorical variables as labels.

Continuous

These are **numeric** variables that are coded with **meaningful numbers**, including height, heart rate, or stress level. Think of them as **quantities**.

Scales of Measurement

The 4 scales of measurement "zoom into" the smaller differences between categorical vs. continuous variables, and are what scientists use.

Categorical Ordinal Interval Ratio

Four Levels of Measurement

Categorical (nominal)	These are categories or names ; they have no inherent order		name; gender identity; hometown
Ordinal	The are names or numbers that represent a rank-order ; the distance between each rank is not equal.		order in a competition; income bracket
Interval	The numbers represent equal distances , but there is <u>not</u> a true zero (e.g., zero point is arbitrary, like calendar year)		Temperature in Celsius/Fahrenheit; credit score
Ratio	The numbers represent equal distances, but there is a true & meaningful zero .		Income; Age

	Nominal	Ordinal	Interval	Ratio
Categorizes and labels variables	V	/	V	✓
Ranks categories in order		/	~	✓
Has known, equal intervals				✓
Has a true, meaningful zero				✓

Back to the Dataset...

categorical, app_version is ordinal

continuous

Categorical - but seem to have some order? - ordinal!

			L				
user		app_version		age	sleep_hours	subscription	stress_level
Hafsal	h	v3.1		23	8.5	Free	Med
Jackie	9	v2.9		30	6	Pro	Low
Aseen	n	v3.1		19	9.5	Free	High
Oscar	r	v3.3		21	5.9	Free	High

The variables in red seem to include some text. The variables in blue seem to only have numbers.

THINK - PAIR - SHARE

What **scales of measurement** are the following variables on?

Type of Commute
Train, Car, Bus, Walk, Bike

4

Commute Time
5 mins, 23 mins, 105 mins

T-shirt Size
small, medium, large, x-large

5

Temperature in Fahrenheit

70 °F, 32°F, -10°F

3 Hometown

Decatur, AL; Chicago, IL; Seoul, South Korea

6

Stress rating (Likert Scale)

3 out of 7, 6 out of 7

Categorical

Ordinal

Interval

Ratio

Summarizing & Visualizing Data

We want to know how people are feeling

Say we are interested in people's emotions:

Anxious Curious Stressed Calm Distracted

Our data

ID	Emotion
Hijab	Curious
Yocelyn	Curious
Arleth	Calm
Kaden	Distracted
Andres	Anxious
Ken	Curious

Hard to see patterns? Let's **summarize** it:

Frequency Table

Emotion label	Count/ Absolute frequency	Proportion/ Relative Frequency
Anxious	1	½ ≈ 0.167 = 16.7%
Curious	3	3/6 = 0.5 = 50.0%
Stressed	0	0/6 = 0 = 0%
Calm	1	1⁄ ₆ ≈ 0.167 = 16.7%
Distracted	1	1⁄6 ≈ 0.167 = 16.7%
N	6	100%

On the left is absolute value (spending). On the right is relative/proportional value (spending).

Anxious	Curious	Stressed	Calm	Distracted
				Frequency

ID	Emotion	
Hijab		t's come back to
Yocelyn	cAsuopp	osed to 6 peopl
Arleth	Catill	e we have a lot n
Kaden	dataset.	Specifically, a sa
Andres	Anxious	
Ken	Curious	

Our data

	rrequerity rable				
come back to	Emotion our que	Count/ Stion Stiequency	Proportion/ Relative Frequency		
ed to 6 people ve have a lot m	e listed	nere, le	S ⁄ ₆ ≈ 0.167 = 16.7%		
e nave a lot m	Curious	ple in c	3/6 = 0.5 = 50.0%		
ecifically, a sa	Stressed	2e 01 /V -	0/6 = 0 = 0%		
	Calm	1	1/6 ≈ 0.167 = 16.7%		
	Distracted	1	1/6 ≈ 0.167 = 16.7%		
	N	6	100%		

Tahla

Since we have a lot more people, we can create our pie chart:

Notice the only "action" we can do to a nominal variable is to **count** it.

The % is our relative frequency/ proportion.

Anxious Curious Stressed Calm Distracted

Since we have a lot more people, we can create our pie chart:

Let's pick a specific emotion: say we want to

Notice the only "action" we can do to As a psychologist, how would you measure lative a nominal variable is to

The % is our frequency/proportion.

count it.

Loneliness

Are you lonely?

yes

no

Variable type: Nominal

Action: Count

Loneliness (Yes or no)	Count/ Absolute frequency	Proporton/ Relative frequency
No	34	34/53 = 0.642
Yes	19	19/53 = 0.358
Grand Total	53	1 (or 100%)

Loneliness

Are you lonely?

yes no

Pie Chart

Variable type: Nominal Action: Okay, from this question, we see that most people are not lonely. Though we have no idea

how lonely, or how not lonely, someone is.

Loneliness (Yes or no)		frequency
No	34	34/53 = 0.642
Yes	19	19/53 = 0.358
Grand Total	53	1 (or 100%)

No

64.2%

Yes

Rate your level of loneliness.

1 2 3 4 5 Onot lonely at all lonely

Variable type: Ordinal Action: Count & Order

Frequency Table

Rating	Count/Absolute Frequency of Rating
1	10
2	13
3	15
4	8
5	7
Grand Total	53

Bar Plot

The bars are separated because there is no rating of 1.5 or anything in-between

rating of 1.5 or anything in-between

Variable type: Ordinal Action: Count & Order

Out of the last 7 days, **how long** is your average screen time (daily)?

Type in a number

Variable type: Ratio
Action: Bin & Aggregate

Avg Screen Time (Hrs) 1.2 0.6 2.4 1.9 2.8 2.7 1.5 3.2

The bars are not separated because the numbers are continuous: 1.51 means something

3.2

Recap: What do we have so far?

We investigated people's loneliness by asking them 3 questions. Now we can have a proper dataframe, like this:

Name	Lonely - yes or no?	Self-rated loneliness (on a scale of 1-5)	Avg screen time per day (hours)
Hafsah	No	2	3.1
Jackie	No	1	2.5
Aseem	Yes	5	3.9
Oscar	Yes	4	1.7
Claudia	No	3	2.1
Zion	No	2	1.3

Name	Lonely - yes or no?	Self-rated loneliness (on a scale of 1-5)	Avg screen time per day (hours)
Hafsah	No	2	3.1
Jackie	No	1	2.5
Aseem	Yes	5	3.9
Oscar	Yes	4	1.7
Claudia	No	3	2.1
Zion	No	2	1.3

We took each column, visualized it separately. This is called **univariate** visualization. Data visualization like this summarizes data, and let us spot patterns.

visualizations.

There are also other types of univariate

This is called a **density plot**. It is basically the same as a histogram, except you trace the outline of the histogram, so it can smooth out the ruggedness of the histogram (the one below is not ideal).

Which graph best represents the data?

Which graph best represents the data?

Bernie Sanders ❖ @Bernie Sand... · 9m Ø ···· It is insane that in the richest country in the world, millions cannot afford a home and hundreds of thousands are homeless every night.

We need major investments in affordable housing, not tax breaks for billionaires.

Let's think about how to help Bernie make this a better & more objective visualization!

Fill out ICA2 on Blackboard.

04 Wrap Up

Measurement scale - visualization choice summary

	Nominal	Ordinal	Interval	Ratio
Example	Pet type (e.g., dog, cat, fish)	Likert scale; Education level	Temperature	Weight; Commute time
A atian Manha	uog, cat, 11511)	Education level		Commute time
Action Verbs Potential	Count	Count & Order		Bin & Aggregate
Visualization Choices	Pie chart; Bar chart	Pie chart; Bar chart (ordered)	Histogram; Line plot; Density plot	Histogram; Line plot; Density plot

A Note on Qualitative Data

Although not the focus of this class, many researchers work with **qualitative data**. This type of data often comes from interviews, diaries, focus groups, and open-ended survey answers. This type of data is often rich and detailed, and it may be more useful.

Survey Question: What are you looking forward to in this class?

"I am most excited about learning the various applications that statistics has in the real world and how we can analyze real data sets in our lab classes."

Name	Lonely - yes or no?	Self-rated loneliness (on a scale of 1-5)	Avg screen time per day (hours)
Hafsah	No	2	3.1
Jackie	No	1	2.5
Asee n	ivariate visu	ialization is only	useful to a
Oscar	Yes	ertain extent.	1.7
Clau For	example, it	cannot answer c	ur previous
zicque	stion "are po	eople who spent	>4 hours on
	their phon	e lonely or not l	onely?"

We took each column, visualized it separately. This is called **univariate** visualization.

Bivariate data visualization can help!

ne	Lonely - yes or no?	Self-rated loneliness (on a scale of 1-5)
Hafsah	No	2
Jackie	No	1
Aseem	Yes	5
Oscar	Yes	4
Claudia	No	3
Zion	No	2
on	No	2

Name	Lonely - yes or no?	Self-rated loneliness (on a scale of 1-5)
Hafsah	No	2
Jackie	No	1
Aseem	Yes	5
Oscar	Yes	4
Claudia	No	3
Zion	No	2

Box plots are useful to compare between groups.

The center line in each box represents median (we will cover later this semester).

Overall, this plot tells us that people who answered "Yes" to being lonely, also self-reported more loneliness.

Name	Lonely - yes or no?	Avg screen time per day (hours)	
Hafsah	No	3.1	
Jackie	No	2.5	
Aseem	Yes	3.9	
Oscar	Yes	1.7	
Claudi a	No	2.1	
Zion	No	1.3	

We can interpret this box plot similar to the last one.

This plot tells us that people who answered "Yes" to being lonely, also had longer screen time.

Note: you do not have to completely understand this graph, but you will be required to differentiate between univariate vs. bivariate visualizations.