

Max Schaufelberger February 8, 2024 — KTH Royal Institute of Technology 250 -

00 —

350 -

400

450 -

-500

- 550 -

60

65

70

Table of Contents

Introduction

Simulation

Control

Learning

Combined Learning

BackupSlides

Control

Learning

Learned Control

Conclusion

Max Schaufelberger

KTH

2/47

Introduction

3(

350

400

450 -

0 ---

0

0

50 —

\nat are we talking about

Control a Linear system

Use Spiking neural networks

\inat are we talking about

Control a Linear system

Tracking of reference trajectory

$$\dot{x} = Ax + Bu \\
y = Cx$$
(1)

300 Only stable systems

Use Spiking neural networks

- Third Generation of NN
- Working with discrete spikes
- Inherently fit for temporal data

200 250 300 350 400 450 500 550 600

Coal / Motivation

Artificial SNN can already solve various cognitive task such as

- Memorization
- Basic Logic
- Simulation of Dynamic Systems
- Control

Although with varying levels of biologic plausibility. We set out to build a controlled dynamic system based on SNN using learning and biologic plausibility

- Allow for black-box deployment without manual parameter tuning
- "Limit ourselves to use the brains capabilities to design a controller"

Max Schaufelberger KTH 5/47

Method

1 Simulate

Use a spiking network to simulate a dynamic system

2. Control

Devise a control scheme to control the network output

3. Learn

Figure 1 biologically plausible learning rules to our network

4. Combine

Integrate all three steps into a single controller

Max Schaufelberger

Simulation of Linear systems

- Build NN that outputs \hat{x} from the system $\dot{x} = Ax + c$ given c
- Group of LIF neurons with with intrinsic Voltage, tracking the projected error $V_i = F(x - \hat{x}) + \mu r_i$
- Network decoding $\hat{x} = F^T r$

$$\dot{V} = -\lambda_V V + Fc + W^f o(t) + W^s r(t) + \sigma_V \eta(t)$$

Coometric

Control

Cuntrol Concept

- 250 (Almost) identical network architecture
- Network output is external input into (previous) simulating network ←→ Network state contains control signal
- Governed by PD-control as $c = \dot{x} Ax$
- In presence of output matrix $C \neq I \Leftrightarrow \operatorname{rank}(B^T C^T) = \operatorname{rank}(B^T)$

fix the layouting of this page

Max Schaufelberger KTH 11/4

C₁₀₀:rol ₁₅₀

200 –

-250

300

350 -

400

450

-500

-55

600

65

700

Examples

Insert Picture

200

250

300

350

Insert Picture

Max Schaufelberger

KTH

12/47

Luarning

00 450

500

550

650

$V_i = F_i(x - \hat{x}) - \mu r_i$

Learning rules

Slow Learning rule $W^s = F(A + \lambda_d \mathbf{I})F^T$

- Online Learning of Student teacher dynamics $\hat{x} = M\hat{x} + c$
- Error Feedback Ke during Training
- $\delta M \propto e\hat{x}^T \longrightarrow \delta W^s \propto F(e\hat{x}^T)F^T \approx Fer^T$
- Error alignment?
- Supervised Learning rule

Fast Learning rule $W^f = FF^T + \mu \mathbb{I}$

- Voltage measures system error
- Minimize average Voltage outside of Neuron Threshold
- Biologically plausible prexpost locally
- Unsupervised Learning Rule

- 250 -

00 --- 3

350 —

450

-500

-550

600

65

700

Examples

Insert Picture

Insert Picture

200

250

300

Combined Learning

300 —

350

400

450 -

- 500

550

600

0

Control Concept

[HC19]

250

300

50 --- 3

00

) — 4

450

- 500

550

600

550 —

70

Control Concept

[HC19]

250

Max Schaufelberger KTH 17/47

0

400

450 -

- 500

550

- 600

650 -

70

[HC19]

Cuntrol Concept

Max Schaufelberger

KTH

17/47

400

450 -

500

550 —

00

550 –

Control Concept II

Max Schaufelberger

Foblems

In conjunction, problems can arise:

- Divergence in Learning
- Control with Noise
- Reliance on analytic results
- Biologically implausible Learning

Dual network approach I

No Learning rule for control network available

Open loop control

Incapable of noise detection or correction

No compensation of training error

Highly dependent on governing dynamics from $c_{cont} = \dot{x} - Ax$

Dual network approach II

No Learning rule for control network available

Open loop controller

Incapable of noise detection or correction

No compensation of training error

Highly dependent on governing dynamics from $c_{contr} = \dot{x}_{ref} - Ax_{ref}$

Single network approach I

No Learning rule for control network available

Open loop controller

Incapable of noise detection or correction

No compensation of training error

Highly dependent on governing dynamics from $c_{\text{contr}} = \dot{x}_{\text{ref}} - Ax_{\text{ref}}$ Compensation on Input Matrix $B \mid B^T B = I$

300

Single network approach II

No Learning rule for control network available

Open loop controller
Incapable of noise detection or correction

No compensation of training error

Highly dependent on governing dynamics from $c_{\text{contr}} = \dot{x}_{\text{ref}} - Ax_{\text{ref}}$ Connormality restriction on Input Matrix $B \in \mathbb{B} := \{M \mid M^TM = \mathbb{I}\}$ Write this with such that I dont have 5 versions i need to keep trake of

300

LackupSlides

00 —

250

300 —

350 -

400 -

450 -

-500

550 -

-600

650 -

---700

Autoencoder

$$\hat{x} = Do(t)$$

$$\dot{r} = -\lambda r + o(t)$$
(2)

Max Schaufelberger KTH 25/47

200 -

250

300

350

400

450

 $\int_{550}^{2} = -\lambda r \frac{1}{600}(t)$

-650

700

Autoencoder II

$$\dot{x} = -\lambda x + c
\hat{x} = Dr$$
(3)

350

Max Schaufelberger KTH 26/47

$$\dot{r} = -\lambda r + o(t)$$
550
$$x = Dr$$

 $\dot{x} = Ax + C$

Autoencoder III

Max Schaufelberger

KTH

(4)

27/47

(5)

Coometric

Coometric

Minimize the cost J (Greedy)

$$J = \int_{0}^{T} \|x - \hat{x}\|_{2}^{2} + C(r) dt$$
 (6)

$$V_{i} = \Gamma_{i}^{T}(x - \hat{x}) - \mu r_{i}$$

$$\dot{V_{i}} = -\lambda_{V}V_{i} + \Gamma^{T}c(t)$$

$$+ W^{f}o(t) + W^{s}r(t) + \sigma_{V}\eta(t)$$

$$VV^{f} = \Gamma^{T}\Gamma + \mu I$$

$$VV^{s} = \Gamma^{T}(A + \lambda_{d}I)\Gamma$$

$$(7)$$

Max Schaufelberger

28/47

Example Simple

content...

Example Big

content...

Conclusion

content...

Max Schaufelberger

Control

C₁₀₀:rol ₁₅₀

200

-250

300 -

350

400

- 450 -

- 500

- 55

600

650 -

700

Cuntrol Concept

[HC19]

Add a separator here

300

350

Max Schaufelberger KTH 33/4

C₁₀₀:rol ₁₅₀

200

- 250

300 -

-350

400

450

- 500

- 550

600

650 -

700

Cuntrol Concept

[HC19]

Add a separator here

Max Schaufelberger KTH 33/47

C₁₀₀:rol 150 200 250 300 350 400 450 500 550 600

(11)

Control with SNN

It is necessary on $B \in \mathbb{R}^{n \times p}$

$$u = \Gamma r + \Omega o(t) \tag{8}$$

Slow and Instantaneous decoding

$$\operatorname{rank}(B^TC^T) = p$$

$$\dot{V}(t) = -\lambda_V V(t) + \Omega^T B^T A e(t) + \Omega^T B^T c(t) + W^s r(t) + W^f o(t) + \sigma_V \eta(t)$$
(9)

Requires full state information on x and \hat{x}

$$c = \dot{x} - Ax \tag{10}$$

150 ---- 200

00

250

300

350 -

-400

- 450

-500

- 550

600

65

700

Example in Ideal Conditions

works fine+ add plot

-200

250

300

Example with 2 networks

works bad+ add plot

C 100 rol 150 200 250 300 350 400 450 500 550 600 650 700

Conclusion

Max Schaufelberger

Conclusion

Acceptable results in ideal conditions

C 100 rol 150 200 250 300 350 400 450 500 550 600 650 700

- Acceptable results in ideal conditions
- Rank condition is limiting factor

C 100 rol 150 200 250 300 350 400 450 500 550 600 650

- Acceptable results in ideal conditions
- Rank condition is limiting factor
- Network noise is invisible to the control

C 100 rol 150 200 250 300 350 400 450 500 550 600

- Acceptable results in ideal conditions
- Rank condition is limiting factor
- Network noise is invisible to the control
- Simple open loop controller in the definition of c

Luarning

250 300

400

450 -

500 —

550

500

700

Fast Learning rule

Slow Learning rule

Online Teacher-Student Scheme

Fast Learning rule

content...

200

250

300

500 $\hat{\vec{x}} = (I_{600}^{M} - K\mathbf{I})\hat{x} + Kx_{700}$ $W^{s} = \Gamma^{T} (A + \lambda_{d}\mathbf{I}) \Gamma$

Slow Learning rule

Online Teacher-Student Scheme for M under $\dot{x} = Mx + c$ Matrix update under squared loss

$$\delta M \propto e\hat{x}^T \longrightarrow \delta W^s \propto \Gamma(e\hat{x}^T)\Gamma^T \approx \Gamma er$$
(12)

replace the F with I in the picture!

KTH

Learned Control

Conclusion

250 300 350

50 ---

0 ----- 450

500

550

6

700

- Very limited applicability
- Open loop + rank condition limiting factor
 - Too inaccurate learning of slow weights W^s
 - Too dependent on initial conditions in learning

- In ideal conditions useable results achievable
- Only of theoretical interest
- Impressive accuracy
- Results are somewhat translatable to NEF and LSMs

200

-250

300 -

350 -

400

450 —

500

-- 55

600

65

700

Fature Work

150

200

-25

-30

250

Max Schaufelberger KTH 44/47

250

300 -

350 -

400 -

50 —

500 —

550 —

600

650

Future Work

• Enable non-linear dynamics

200

250

300

0 250 300 350 400 450

500

550 —

6

70

Fature Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition

250

300

Future Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- Optimize Control

250 350 400 450

Fature Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- Optimize Control
- Learning of En- and Decoder Γ

Fature Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- Optimize Control
- Learning of En- and Decoder F
- Allow for synaptic delays

- 200 -

-250

-300

- 350 -

400

450 -

-500

- 55

- 600

65

700

F.ame title

Block

Lorem ipsum!

-200

250

300

350

Max Schaufelberger KTH 45/47

00 250 300 350 400 450 500 550 600 650 700

Eibliography

Ralph Bourdoukan and Sophie Denève. "Enforcing balance allows local supervised learning in spiking recurrent networks". In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper_files/paper/2015/file/3871bd64012152bfb53fdf04b401193f-Paper.pdf.

[HC19] Fuqiang Huang and ShiNung Ching. "Spiking networks as efficient distributed controllers". In: **Biological Cybernetics** 113.1 (Apr. 2019), pp. 179–190. ISSN: 0340-1200, 1432-0770. DOI:

10.1007/s00422-018-0769-7. URL:

http://link.springer.com/10.1007/s00422-018-0769-7 (visited on

Max Schaufelber 19/23/2022).

KTH

46/47

