DS n°2 (le 08/10/2011)

Calculatrices non autorisées.

QUESTIONS DE COURS: E3A PSI 2008

Question 1.

Les assertions suivantes, dans lesquelles $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ désignent deux séries numériques réelles, sont-elles vraies, ou fausses?

En cas de réponse affirmative, vous démontrerez le résultat, et en cas de réponse négative, vous donnerez un contre-exemple.

- 1. (u_n) converge vers $0 \Rightarrow \sum_{n \ge 0} u_n$ converge.
- 2. $\sum_{n>0} u_n$ converge $\Rightarrow (u_n)$ converge vers 0.
- 3. $u_n \underset{+\infty}{\sim} v_n \Rightarrow \sum_{n \ge 0} u_n$ et $\sum_{n \ge 0} v_n$ sont de même nature.
- **4.** $\sum_{n\geq 0} u_n$ converge $\Rightarrow \sum_{n\geq 0} |u_n|$ converge.

Question 2.

Étudier la convergence de la série $\sum_{n\geq 2} (-1)^n \frac{\ln n}{n}$.

PROBLÈME : CCP PSI 2006

Notations.

Pour $z \in \mathbb{C}$, on note |z| son module.

Pour tout entier naturel n, on note:

- n! la factorielle de n avec la convention 0! = 1,
- $\llbracket 0, n \rrbracket$ l'ensemble des entiers naturels k vérifiant $0 \le k \le n$,
- $-\binom{n}{k}$ le nombre de parties ayant k élément d'un ensemble de n éléments, pour $k \in [0, n]$.

On rappelle:

- la valeur de $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour $k \in [1, n]$,
- $-\,$ la formule du binôme : si $z_1\,$ et $z_2\,$ sont des nombres complexes et $n\,$ un entier naturel, alors

$$(z_1 + z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}$$

Enfin, si n est un entier naturel non nul, on note σ_n la somme $\sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ et on pose $\sigma_0 = 0$.

Objectifs.

Dans les parties I et II, on étudie un procédé de sommation, la partie III est consacrée à l'étude de diverses fonctions et en particulier à une fonction ϕ à laquelle on applique ledit procédé de sommation.

Étude d'un procédé de sommation

Dans les parties I et II les notations utilisées sont les suivantes.

Toute application de $\mathbb N$ dans $\mathbb C$ étant une suite complexe, si a est une telle suite, on utilise la notation usuelle $a(n) = a_n$.

A toute suite complexe a, on associe la suite a^* définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

L'objet des parties I et II est de comparer les propriétés de la série $\sum_{n>0} a_n^*$ aux propriétés de la série $\sum_{n>0} a_n$.

Partie I : deux exemples.

I.1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$; on suppose que la suite a est définie par $\forall n \in \mathbb{N}, a_n = \alpha$.

I.1.1. Expliciter
$$\sum_{k=0}^{n} \binom{n}{k}$$
 pour $n \in \mathbb{N}$.

I.1.2. Expliciter a_n^* pour $n \in \mathbb{N}$.

I.1.3. La série
$$\sum_{n>0} a_n$$
 (resp. $\sum_{n>0} a_n^*$) est-elle convergente?

I.2. Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : $\forall n \in \mathbb{N}, a_n = z^n$.

I.2.1. Exprimer a_n^* en fonction de z et n.

I.2.2. On suppose que |z| < 1.

1.2.2.1. Justifier la convergence de la série
$$\sum_{n\geq 0} a_n$$
 et expliciter sa somme $A(z) = \sum_{n=0}^{\infty} a_n$.

1.2.2.2. Justifier la convergence de la série
$$\sum_{n\geqslant 0} a_n^*$$
 et expliciter sa somme $\sum_{n=0}^{\infty} a_n^*$ en fonction de $A(z)$.

I.2.3. On suppose que $|z| \ge 1$.

I.2.3.1. Quelle est la nature (convergente ou divergente) de la série
$$\sum_{n>0} a_n$$
?

I.2.3.2. Quelle est la nature de
$$\sum_{n\geq 0} a_n^*$$
 si $z=-2$?

I.2.3.3. On suppose
$$z = e^{i\theta}$$
, avec θ réel tel que $0 < |\theta| < \pi$.

I.2.3.3. On suppose $z=e^{i\theta}$, avec θ réel tel que $0<|\theta|<\pi$.

Montrer que la série $\sum_{n=0}^{\infty}a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de

la somme
$$\sum_{n=0}^{\infty} a_n^*$$
.

Partie II : étude du procédé de sommation.

Dans cette partie, et pour simplifier, on suppose que a est à valeurs réelles.

II.1. Comparaison des convergences des deux suites.

II.1.1. Soit $n \in \mathbb{N}^*$, on considère une entier k fixé, $k \in [0, n]$.

II.1.1.1. Préciser un équivalent de
$$\binom{n}{k}$$
 lorsque n tend vers $+\infty$.

II.1.1.2. En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.

II.1.2. Soit *a* une suite réelle et *q* un entier naturel fixé.

On considère pour n > q la somme $S_q(n, a) = \sum_{k=0}^q \binom{n}{k} \frac{a_k}{2^n}$. Quelle est la limite de $S_q(n, a)$ lorsque l'entier n tend vers $+\infty$?

- II.1.3. On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- II.1.4. On suppose que a_n tend vers ℓ (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- II.1.5. La convergence de la suite (a_n) est-elle équivalente à la convergence de la suite (a_n^*) ?
- II.2. Comparaison des convergences des séries $\sum a_n$ et $\sum a_n^*$.

Pour
$$n \in \mathbb{N}^*$$
, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- II.2.1. Pour $n \in [0,3]$, exprimer U_n comme combinaison linéaire des sommes S_k , c'est à dire sous la forme $U_n = \sum_{k=0}^n \lambda_{n,k} S_k$.
- II.2.2. On se propose de déterminer l'expression explicite de U_n comme combinaison linéaire des sommes S_k pour $k \in [\![0,n]\!]$:

(
$$\mathscr{E}$$
) $U_n = \sum_{k=0}^n \lambda_{n,k} S_k$ pour $n \in \mathbb{N}$

- II.2.2.1. A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte-tenu des résultats obtenus à la question II.2.1 ?
- II.2.2.2. Établir la formule (\mathcal{E}) par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in [0, n]$, $a_k = S_k S_{k-1}$ avec la convention $S_{-1} = 0$).
- II.2.3. On suppose que la série $\sum a_n$ est convergente. Montrer que la série $\sum a_n^*$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- II.2.4. La convergence de la série $\sum a_n$ est-elle équivalente à la convergence de la série $\sum a_n^*$?

Les résultats suivants seront admis pour la suite du problème :

Si (a_n) est une suite à termes complexes telle que il existe un réel R > 0 tel que pour tout $x \in]-R,R[$, la série $\sum_{n\geqslant 0} a_n x^n$ est convergente, alors, si l'on pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour tout réel $x \in]-R,R[$, on a les propriétés suivantes :

- f est de classe \mathscr{C}^{∞} sur] R, R[.
- Pour tout $x \in]-R,R[$, on a $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$.
- $f = 0 \text{ sur }] R, R [\iff \forall n \in \mathbb{N} , a_n = 0]$

Partie III: une étude de fonctions.

On rappelle que : $\sigma_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$ et $\sigma_0 = 0$.

Pour x réel, lorsque cela a du sens, on pose :

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!}$$
; $g(x) = \sum_{n=0}^{\infty} \frac{\sigma_n x^n}{n!}$; $\phi(x) = \sum_{n=0}^{\infty} \sigma_n x^n$

III.1. Etude de f.

III.1.1. Vérifier que f est définie sur \mathbb{R} .

III.1.2. Expliciter xf(x) pour tout x réel.

III.1.3. Expliciter $e^{-x} f(x)$ pour tout x réel.

III.2. **Etude de** g.

III.2.1. Montrer que g est définie sur \mathbb{R} .

III.2.2. D'après la propriété admise au début de cette partie, g est de classe \mathscr{C}^{∞} sur \mathbb{R} .

- DS N°2 -

Exprimer g' - g en fonction de f.

III.2.3. En déduire que pour tout x réel :

$$g(x) = e^x \int_0^x e^{-t} f(t) dt$$

III.3. La fonction F.

On considère la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x e^{-t} f(t) dt$$

III.3.1. Justifier rigoureusement l'égalité :

$$\forall x \in \mathbb{R}, \ F(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \cdot n!}$$

III.3.2. Pour $n \in \mathbb{N}^*$, on note $\gamma_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{kk!(n-k)!}$. Exprimer γ_n en fonction de n et σ_n .

Indication : On pensera à utiliser le produit de Cauchy de deux séries.

III.4. La série $\sum \frac{(-1)^{k+1}}{k}$.

Pour $n \in \mathbb{N}^*$, on note $\ln(n)$ le logarithme népérien de n.

III.4.1. Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$.

III.4.1.1. Montrer que la série $\sum_{k>1} w_k$ est convergente.

III.4.1.2. En déduire que la suite de terme général $\sigma_n - \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.

III.4.2. Pour
$$n \in \mathbb{N}^*$$
, on pose $\tau_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer τ_{2n} en fonction de σ_{2n} et σ_n .

III.4.3. Montrer en utilisant III.4.1 et III.4.2 que la série $\sum_{k\geqslant 1}\frac{(-1)^{k+1}}{k}$ est convergente et déterminer

sa somme
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}.$$

III.5. Etude de la fonction ϕ .

III.5.1. Déterminer le plus grand réel R > 0 tel que la série $\sum_{n \ge 1} \sigma_n x^n$ soit convergente pour tout $x \in]-R,R[..$

III.5.2. Préciser l'ensemble de définition Δ de la fonction ϕ , et étudier ses variations sur [0,R[.

III.5.3. Valeur de $\phi\left(\frac{1}{2}\right)$.

En utilisant les résultat de la partie II et de la question III.4.3 expliciter la valeur de $\varphi\left(\frac{1}{2}\right)$.

III.5.4. Expliciter $\phi(x)$ pour $x \in \Delta$ et retrouver la valeur de $\phi\left(\frac{1}{2}\right)$.