BIOMEDICAL INFORMATICS WEEK OF APRIL 2ND: PART 1 BIOLOGY PRIMER

Measuring Through Sequencing Quick Primer

https://www.khanacademy.org/science/biology/structure-of-a-cell/prokaryotic-and-eukaryotic-cells/a/intro-to-eukaryotic-cells

With important exceptions...

- you are diploid with a maternal and paternal copy
- ... you have two copies of 22 chromosomes plus X and sometimes Y
- ... there are four nucleotides (A, T, C, G), about 3 billion bases long (ATTATA...)
- ... a copy of your genome is every cell.
- ... there are 4 millions genetic variants between two people in their germline genome
 - Single nucleotide substitutions (SNVs), Insertions/Deletions (indels), Structural Variants (inversions, duplications, translocations)
- ... changes occurring in a specific tissue or cell during our life are called somatic events
- ... most genetic variants are not functional.
- ... 1% of your genome is coded in genes, sometimes this is called your exome
- ... in genes, DNA is transcribed to RNA, RNA is translated to proteins
- ... genes are frequently transcribed as exons broken by introns, where the introns on spliced out of mRNA
- ... a considerable number of modifications can occur to proteins (e.g. phosphorylation)
- ... 99% of your genome we don't understand, but we all recognize its important.

The exceptions are often the most important aspects of understand and treating diseases.

MOLECULAR SEQUENCING AKA NEXT-GENERATION SEQUENCING

Traditional Sanger Sequencing (1979 ->):

- Major improvements include capillaries, use of dyes, automated calling
- Consensus of billions of molecules
- P&E, AB, etc

Array-based sequencing (2002 ->)

- Sequencing millions of pre-defined SNPs via hybridization or allele extension
- Affymetrix, Illumina

Pseudo single molecule sequencing (2006->)

- Each read derived from a single molecule, clonally amplified
- Millions of sequences sequenced base*base (lawn-sequencing)
- 454, Solexa, Agencourt, Life

Real-time single molecule sequencing (2010->)

- Single molecule, fewer reads in realtime
- PacBio, Oxford, etc

Cost per Gigabase

AKA Next-Generation Sequencing

- Traditional Sanger Sequencing (1979 ->):
 - Major improvements include capillaries, use of dyes, automated calling
 - Consensus of billions of molecules
 - P&E, AB, etc
- Array-based sequencing (2002 ->)
 - Sequencing millions of pre-defined SNPs via hybridization or allele extension
 - Affymetrix, Illumina
- Pseudo single molecule sequencing (2006->)
 - Each read derived from a single molecule, clonally amplified
 - Millions of sequences sequenced base*base (lawn-sequencing)
 - 454, Solexa, Agencourt, Life
- Real-time single molecule sequencing (2010->)
 - Single molecule, fewer reads in realtime
 - PacBio, Oxford, etc

A genome is a lot of information

- 1 page = 5,000
- 1 ream =2,500,000
- 1 box = 25,000,000
- 120 boxes = 3,000,000,000
- You have 2 copies, and we sequence those 30 times in 50-100bp fragments
- A 'decent genome' is 100,000,000 bases sequenced.
- If we want to sequence a tumor's genome, and its contaminated with 90% normal tissue, we need much more sequence!

KEY PRINCIPLES

Pseudo-single molecule reads

• A heterozygous SNP will give the paternal or maternal allele in a single read, not both

Paired-Reads

First 100 bases and last 100 bases of a ~500bp DNA molecule

Billions of reads in a sequencing run

Sampling matters and is how we control error

f. New unannotated coding SNP g. New SNP

neighboring rs1042581 (het) (homozygous)

h. Novel neighboring

homozygous SNPs

USC Translational Genomics

Concept of NGS Sequence Analysis

Reference (Person A)

ATTAGATTAAATTCCGCGCATACGATAGCATACATAGATAAATTAGCTACGTATCATAACCATAATACGTATCATAACCATAATTGCGCATGCGCAT --AACCATAATACGTATCATAA

ACGATAGCATTCATACATAG-----TACGTATCATAACCATAATT

GCATACGATAGCATACATA--

Sequence (Person B) - First and last 25bp from a ~300bp fragment

Heterozygous A/T SNP

CGCATACGATAGCATACATA Read 1 What's the functional impact? AACCATAATACGTATCATAA

acgatagcattcatacatag ta**Steps**atot**remember:** Read 2

TAC ATA Alignment (produces BAM file) Read 3

2. Variant Calling (produces VCF file)

Read 4 тааЗат**Interpretation** (produces powerpoint)

Cost per Gigabase

AKA Next-Generation Sequencing

Variants: Example

CONFIDENTIAL

Translocations Leading to Fusion Events

Deletion of Exon 6 at PTEN

RNA

COUNTS & NORMALIZATION

RNA Seq is at a basic level counting expressed genes

- Gene transcripts are broken into small fragments and counted by sequencing
 - Big genes will yield more transcripts thus at some level we known we must correct or normalize for this.
- Different experiments generate different numbers of reads.
 - One sample may have millions of reads and another only yielded about 15% of the reads.
- Fragments Per Kilobase of transcript per Million mapped reads (FPKM) is one type of normalization for these effects building from these concepts.

NORMALIZATION IS SUBJECTIVE — BUT CORE CONCEPTS REMAIN

Normalization

- f sample A has been sampled deeper than sample B, we expect counts to be higher.
- Form a "virtual reference sample" by taking, for each gene, the geometric mean of counts over all samples size factor approach

Fundamental rule:

 We may attribute a change in expression to a treatment only if this change is large compared to the expected noise.

END OF PART 1