Lista 6

Exercício 1. O objetivo deste exercício é mostrar que a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é injetiva.

1. Mostre que se $a \ge 0$ e b < 0, então $f(a) \ne f(b)$.

Neste caso, $a^3 \ge 0$, e $b^3 < 0$, logo $a^3 > b^3$.

2. Mostre que se $a>b\geq 0$, então $a^3>b^3$ (use o fato que existe um c>0 tal que a=b+c).

Usando o fato, segue que $a^3 = (b+c)^3 = b^3 + 3(b^2c + c^2b) + c^3$. Como c > 0, $c^3 > 0$, e daí $a^3 > b^3$.

3. Mostre que se a < b < 0, então $a^3 < b^3$.

Neste caso teremos 0 < -b < -a. Logo, pelo item acima, $(-b)^3 < (-a)^3$, mas então $-b^3 < -a^3$, logo $a^3 < b^3$.

4. Use os itens anteriores para mostrar que f é injetiva.

Suponha que $a \neq b$. Sem perda de generalidade, algum dos casos acima será verdade. Mas então $f(a) \neq f(b)$, garantindo que f é injetiva.

Exercício 2. Suponha que f seja uma função de A para B.

1. Sejam $b_1 \neq b_2$ elementos de B. Explique por que a imagem inversa de b_1 é disjunta da imagem inversa de b_2 .

Suponha que $a \in A$ pertença a imagem inversa de b_1 e a de b_2 . Por definição, seguiria que $f(a) = b_1$ e $f(a) = b_2$, o que contradiria a definição de função. Logo as imagens inversas são disjuntas.

2. Mostre que se f é sobrejetiva, então o conjunto que contém as imagens inversas de todos os elementos de B é uma partição de A.

Uma coleção de subconjuntos de A é uma partição se eles são disjuntos, sua união contém todos os elementos de A, e eles são não vazios. Já vimos que são disjuntos. Para ver que eles contêm todos os elementos, note que por definição, f associa um elemento de B a todo elemento de A, logo todo elemento de a pertence a pelo menos uma imagem inversa. O único fato relevante aqui é as imagens inversas serem não-vazias: isso só ocorre se para cada elemento de $b \in B$, existir ao menos um elemento $a \in A$ tal que a0 de função sobrejetiva.

Exercício 3. Escreva em detalhes a demonstração de que a composição de funções bijetivas é uma bijeção. Seja $f:A\to B$ e $g:B\to C$ bijeções. Suponha que $x,y\in A$, e $x\neq y$. Então $f(x)\neq f(y)$, já que f é injetiva. Agora, como g também é, segue que $g(f(x))\neq g(f(y))$, portanto $x\neq y$ implica $g\circ f(x)\neq g\circ f(y)$. A composição é injetiva. Agora seja $c\in C$. Existe $b\in B$ tal que g(b)=c, já que g é sobrejetiva. Mas como f é sobrejetiva, existe $a\in A$ tal que f(a)=b. Daí teremos que dado o $c\in C$, existe $a\in A$ tal que $g\circ f(a)=c$, e a composição é portanto sobrejetiva, como queríamos mostrar.

Exercício 4. Determine quais das funções abaixo é O(x). E $\Omega(x)$? E $\Theta(x)$? Note que aqui estou me referindo à função g(x) = x.

1.
$$f(x) = 15$$

É O(x), por exemplo porque para todo $x \ge 15$, temos que $|15| \le 1.|g(x)|$. Não é $\Omega(x)$, e portanto não é $\Theta(x)$.

2.
$$f(x) = x^2 - 30x$$

Não é O(x), é Ω , mas não é Θ .

3.
$$f(x) = \lfloor 2x \rfloor$$

É Θ. Note que para todo $x \ge 1$, temos

$$1 \cdot |x| \le |f(x)| \le 3 \cdot |x|.$$

A primeira desigualdade mostra que $f \in \Omega(x)$, e a segunda que $f \in O(x)$.

4.
$$f(x) = 5 \log x$$

É O(x) mas não é Ω , e portanto não é Θ .

Exercício 5. Mostre que $f(x) = 2^x \in O(3^x)$. É $\Theta(3^x)$?

Note que para todo x>1, temos que $2^x<3^x$. Isso mostra que $f\in O(3^x)$. Para ver que não é Θ , vamos mostrar que não é $\Omega(3^x)$. Suponha que existem constantes k>0 e C tais que para todo $x\geq k$,

$$C \cdot 3^x \le 2^x.$$

Daí temos

$$\left(\frac{3}{2}\right)^x \le \frac{1}{C}$$

para todo x. Uma contradição.

Exercício 6. Ache o menor $n \in \mathbb{Z}$ para o qual f(x) é $O(x^n)$ para as funções abaixo.

1.
$$f(x) = 2x^2 + x^3 \log x$$

$$n=4$$
.

2.
$$f(x) = (\log(x))^4$$

$$n = 1$$
.

3.
$$f(x) = \frac{x^4 + x^2 + 1}{x^4 + 1}$$

$$n = 0$$
.

4.
$$f(x) = \sqrt{x}$$

$$n=1$$
.

Ache o maior $n \in \mathbb{Z}$ para o qual $f(x) \in \Omega(x^n)$.

- 1. n = 3.
- 2. n = 0.
- 3. n = 0.
- 4. n = 0.

Exercício 7. 1. Suponha que $f(x) \in O(1)$. O que podemos dizer sobre f(x)?

Que f(x) é limitada superiormente por uma constante.

- 2. Suponha que $f(x) \in \Omega(1)$. O que podemos dizer sobre f(x)?
 - Que f(x) é limitada inferiormente por uma constante.
- 3. Suponha que $f(x) \in \Theta(1)$. O que podemos dizer sobre f(x)?

Que todos os valores de f(x) se encontram entre duas constantes.