Physics Simulation Cookbook

Alexandre Bilger

alexandre.bilger@inria.fr ${\it DEFROST/SED}$ 02 June 2025

ABSTRACT

This cookbook provides a curated collection of fundamental equations essential for simulating solid bodies.

Keywords Physics simulation

Contents

1	\mathbf{Lag}	rangian Mechanics	
	1.1	States	5
	1.2	Kinetic Energy	5
	1.3	Lagrangian	5
	1.4	Forces	6
	1.5	Momentum	6
	1.6	Action	6
	1.7	Euler-Lagrange Equation	6
2	Nev	wton's Second Law of Motion	
	2.1	Deduction from the Lagrangian	8
	2.2	Ordinary Differential Equation	8
		2.2.1 Rayleigh Damping	9
3	Stat	tics	10
4	\mathbf{Spr}	ing	11
	4.1	Linear Spring	11
	4.2	Nonlinear Spring	12
		4.2.1 Quadratic Spring	12
5	Nur	merical Integration	14
	5.1	Definition	14
	5.2	Linear Multistep Method	14
	5.3	Backward Differentiation Formula	14
		5.3.1 Derivative:	14
		5.3.2 Lagrange polynomials to solve an ODE	14
		5.3.3 Constant Step Size	15
		5.3.3.1 BDF1	15
		5.3.3.2 BDF2	15
	5.4	Numerical Integration of Newton's Second Law of Motion	16
	5.5	Newton-Raphson	16
		5.5.1 Nonlinear function	16
6	Exp	olicit Time Integration	18
	6.1	Forward Euler Method	18
	6.2	Semi-implicit Euler method	18
7	Imp	olicit Time Integration	20
	7.1	Backward Differentiation Formula	20
	7.2	1-step BDF (Backward Euler)	20
		7.2.1 Solve for \dot{q}	21
		7.2.2 Solve for q	22
		7.2.3 Rayleigh Damping	22
		7.2.3.1 Solve for \dot{q}	22
		7.2.4 Force Linearization	23
		7.2.4.1 Solving for $\Delta \dot{q}$	
		7.2.4.2 Solving for Δq	23
		7.2.5 Force Linearization with Rayleigh Damping	24

		7.2.5.1 Solving for Δv	24
		7.2.5.2 Solving for Δx	24
	7.3	Crank–Nicolson method	24
		7.3.1 Force Linearization	25
		7.3.1.1 Solve for Δv	25
		7.3.2 Force Linearization with Rayleigh Damping	25
		7.3.2.1 Solve for Δv	26
	7.4	2-step BDF	26
	7.5	Newmark	27
	7.6	Implicit Linear Multistep Methods	27
		7.6.1 Solve for \dot{q}	28
		7.6.2 Rayleigh Damping	28
		7.6.2.1 Solve for \dot{q}	29
8	Con	straints	30
O	8.1	Definitions	
	0.1	8.1.1 Velocity-level equation	
		8.1.2 Acceleration-level Equation	
		8.1.3 Linear Combination	
	8.2	Lagrangian	
	8.3	Static	
	0.0	8.3.1 2-steps Solver	
	8.4	Equation of Motion	
	0.1	8.4.1 Position-level Equation of Motion	
		8.4.2 Velocity-level Equation of Motion	
	8.5	Linear Multistep Methods	
	0.0	8.5.0.1 2-steps Solver	
	8.6	Constraint Linearization	
	0.0	8.6.1 Multiple Interacting Objects	
		8.6.2 Relaxation	
	8.7	Models	
	O.,	8.7.1 Fixation	
		8.7.2 Bilteral	
^	ъ т		
9	_	oping	
	9.1	Velocity	
	9.2	Force	
	9.3	Derivatives	
	9.4	Mass	
	9.5	Momentum	
	9.6	Newton's Second Law of Motion	
10		hs	
	10.1	Outer Product	42
		Derivative of the 2-norm	
	10.3	Derivative of a normalized vector	42
	10.4	Schur Complement	43
	10.5	Integration by parts	44

11 Other Resources	. 45
Bibliography	. 46

1 Lagrangian Mechanics

1.1 States

q = q(t) is the generalized coordinates (= position in Cartesian coordinates).

 $\dot{q} = \dot{q}(t)$ is the generalized velocity (= velocity in Cartesian coordinates), i.e. the time derivative of the generalized coordinates.

$$\dot{\mathbf{q}}(t) = \frac{d\mathbf{q}}{dt} \tag{1}$$

 $\ddot{q} = \ddot{q}(t)$ is the generalized acceleration (= acceleration in Cartesian coordinates), i.e. the time derivative of the generalized velocity.

$$\ddot{\mathbf{q}}(t) = \frac{d\dot{\mathbf{q}}}{dt} = \frac{d^2\mathbf{q}}{dt^2} \tag{2}$$

If we combine Equation 1 and Equation 2:

$$\begin{bmatrix} \dot{\boldsymbol{q}}(t) \\ \ddot{\boldsymbol{q}}(t) \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix}$$
 (3)

Global state

$$\boldsymbol{x}_{\boldsymbol{q}}(t) = \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \tag{4}$$

$$\begin{bmatrix} \dot{\boldsymbol{q}}(t) \\ \ddot{\boldsymbol{q}}(t) \end{bmatrix} = \frac{d\boldsymbol{x_q}}{dt} \tag{5}$$

1.2 Kinetic Energy

The continuous total kinetic energy T of a deformable body with mass density $\rho(q)$ is given by integrating over the entire volume V:

$$\mathcal{T} = \frac{1}{2} \int_{V} \|\dot{\boldsymbol{q}}(t)\|^{2} \rho(\boldsymbol{q}) dv$$

$$= \frac{1}{2} \int_{V} \dot{\boldsymbol{q}}(t)^{T} \cdot \dot{\boldsymbol{q}}(t) \rho(\boldsymbol{q}) dv$$

$$= \frac{1}{2} \dot{\boldsymbol{q}}(t)^{T} \left(\int_{V} \rho(\boldsymbol{q}) dv \right) \dot{\boldsymbol{q}}(t)$$
(6)

The term $\int_{V} \rho(\boldsymbol{q}) dv$ is called mass:

$$\mathcal{M}(q) = \int_{V} \rho(q) dv \tag{7}$$

Therefore,

$$\mathcal{T} = \frac{1}{2} \, \dot{\boldsymbol{q}}(t)^T \, \mathcal{M}(\boldsymbol{q}) \, \dot{\boldsymbol{q}}(t) \tag{8}$$

In general, the mass \mathcal{M} depends on the state q, and therefore varies with time.

1.3 Lagrangian

The Lagrangian \mathcal{L} of a system is defined as:

$$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = \mathcal{T} - V \tag{9}$$

where:

- \mathcal{T} is the total kinetic energy
- \bullet V is the potential energy

1.4 Forces

Conservative forces $F = F(q, \dot{q})$ are forces deriving from a potential energy:

$$\boldsymbol{F} = -\frac{\partial V}{\partial \boldsymbol{q}} \tag{10}$$

 $\mathcal{K}(q,\dot{q}) = rac{\partial F}{\partial q}$ is called stiffness.

 $\mathcal{B}(q,\dot{q}) = \frac{\partial F}{\partial \dot{q}}$ is called damping.

1.5 Momentum

The conjugate momentum is defined as:

$$\boldsymbol{p} = \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \tag{11}$$

Based on the definition of the Lagrangian (Equation 9):

$$\boldsymbol{p} = \frac{\partial \mathcal{T}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial V}{\partial \dot{\boldsymbol{q}}} \tag{12}$$

When the potential energy does not depend on the velocity (magnetic forces, dissipative forces...):

$$\frac{\partial V}{\partial \dot{\boldsymbol{a}}} = 0 \tag{13}$$

Therefore,

$$\boldsymbol{p} = \frac{\partial \mathcal{T}}{\partial \dot{\boldsymbol{q}}} = \mathcal{M}(\boldsymbol{q}) \ \dot{\boldsymbol{q}}(t) \tag{14}$$

1.6 Action

The action is the accumulation of values of the Lagrangian between two states:

$$S = \int_{t_*}^{t_2} \mathcal{L} dt \tag{15}$$

The action principles state that the true path of \boldsymbol{q} from t_1 to t_2 is a stationary point of the action:

$$\delta S = \frac{dS}{d\mathbf{q}} = 0 \tag{16}$$

where δ represents a small variation of the trajectory.

1.7 Euler-Lagrange Equation

We develop the Lagrangian at the first-order:

$$\mathcal{L}(\boldsymbol{q} + \delta \boldsymbol{q}, \dot{\boldsymbol{q}} + \delta \dot{\boldsymbol{q}}, t) \approx \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) + \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} \delta \boldsymbol{q} + \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \dot{\boldsymbol{q}}$$
(17)

The variation of the action in terms of the first-order development:

$$\delta S = S[\boldsymbol{q} + \delta \boldsymbol{q}] - S[\boldsymbol{q}]
= \int_{t_1}^{t_2} \left(\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) + \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} \delta \boldsymbol{q} + \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \dot{\boldsymbol{q}} \right) dt - \int_{t_1}^{t_2} \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) dt
= \int_{t_1}^{t_2} \left[\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} \delta \boldsymbol{q} + \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \dot{\boldsymbol{q}} \right] dt
= \int_{t_1}^{t_2} \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} \delta \boldsymbol{q} dt + \int_{t_2}^{t_2} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \dot{\boldsymbol{q}} dt$$
(18)

The velocity term is transformed using integration by parts (Equation 322):

$$\int_{t_1}^{t_2} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \dot{\boldsymbol{q}} \ dt = \left[\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \boldsymbol{q} \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) \delta \boldsymbol{q} \ dt \tag{19}$$

The position at t_1 and t_2 is fixed. Only the path from t_1 to t_2 is subject to change. It means that $\delta \boldsymbol{q}(t_1) = 0$ and $\delta \boldsymbol{q}(t_2) = 0$. We can deduce that $\left[\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \delta \boldsymbol{q}\right]_{t_1}^{t_2} = 0$.

Finally, the velocity term is replaced in Equation 18:

$$\delta S = \int_{t_{1}}^{t_{2}} \frac{\partial \mathcal{L}}{\partial \mathbf{q}} \delta \mathbf{q} \, dt + \int_{t_{1}}^{t_{2}} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \delta \dot{\mathbf{q}} \, dt
= \int_{t_{1}}^{t_{2}} \frac{\partial \mathcal{L}}{\partial \mathbf{q}} \delta \mathbf{q} \, dt - \int_{t_{1}}^{t_{2}} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) \delta \mathbf{q} \, dt
= \int_{t_{1}}^{t_{2}} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{q}} \delta \mathbf{q} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) \delta \mathbf{q} \right] dt
= \int_{t_{1}}^{t_{2}} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) \right] \delta \mathbf{q} \, dt$$
(20)

From the fundamental lemma of the calculus of variations:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) = 0 \tag{21}$$

This is the Euler-Lagrange equation.

2 Newton's Second Law of Motion

2.1 Deduction from the Lagrangian

We apply the Euler-Lagrange equation on the Lagrangian defined in Equation 9. It requires to compute $\frac{\partial \mathcal{L}}{\partial \mathbf{q}}$ and $\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right)$.

First, let's compute the term $\frac{\partial \mathcal{L}}{\partial q}$:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \frac{\partial \mathcal{T}}{\partial \boldsymbol{q}} - \frac{\partial V}{\partial \boldsymbol{q}} \tag{22}$$

$$\frac{\partial \mathcal{T}}{\partial \boldsymbol{q}} = \frac{\partial}{\partial \boldsymbol{q}} \left[\frac{1}{2} \dot{\boldsymbol{q}}(t)^T \mathcal{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}(t) \right]
= \frac{1}{2} \dot{\boldsymbol{q}}(t)^T \frac{\partial \mathcal{M}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}(t)$$
(23)

Therefore,

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \frac{1}{2} \dot{\boldsymbol{q}}(t)^T \frac{\partial \mathcal{M}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}(t) + \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$
(24)

Then, the term $\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right)$ is the time derivative of the momentum (Equation 11):

$$\frac{d\mathbf{p}}{dt} = \frac{d\mathcal{M}(\mathbf{q})\dot{\mathbf{q}}(t)}{dt} = \dot{\mathcal{M}}(\mathbf{q})\dot{\mathbf{q}}(t) + \mathcal{M}(\mathbf{q})\ddot{\mathbf{q}}(t)$$
(25)

Putting all together from Equation 21:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) = 0 \Leftrightarrow \frac{1}{2} \dot{\boldsymbol{q}}(t)^T \frac{\partial \mathcal{M}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}(t) + \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - \left(\dot{\mathcal{M}}(\boldsymbol{q}) \dot{\boldsymbol{q}}(t) + \mathcal{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}(t) \right) = 0$$

$$\Leftrightarrow \mathcal{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}(t) + \dot{\mathcal{M}}(\boldsymbol{q}) \dot{\boldsymbol{q}}(t) - \frac{1}{2} \dot{\boldsymbol{q}}(t)^T \frac{\partial \mathcal{M}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}(t) = \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$
(26)

Let's us define the Coriolis and centrifugal terms $\mathcal{C}(q,\dot{q})$ such that

$$\mathcal{C}(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}}(t) = \dot{\mathcal{M}}(\boldsymbol{q})\dot{\boldsymbol{q}}(t) - \frac{1}{2}\dot{\boldsymbol{q}}(t)^T \frac{\partial \mathcal{M}}{\partial \boldsymbol{q}}\dot{\boldsymbol{q}}(t)$$
(27)

The final form of the second Newton's law deduced from the Lagrangian is:

$$\mathcal{M}(\mathbf{q})\ddot{\mathbf{q}}(t) + \mathcal{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}(t) = \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}})$$
(28)

In the special case where the mass does not depend on the position, nor time, $\mathcal{C} = 0$. Then the Newton's law of motion is:

$$\mathcal{M}(\mathbf{q})\ddot{\mathbf{q}}(t) = \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}}) \tag{29}$$

2.2 Ordinary Differential Equation

Equation 28 is a second-order differential equation. We transform it to a first-order.

Substituting Equation 2 into Equation 28:

$$\mathcal{M}(\mathbf{q})\frac{d\dot{\mathbf{q}}}{dt} + \mathcal{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}(t) = \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}})$$
(30)

Combined with Equation 1, we have a first-order ordinary differential equation in \mathbf{q} and $\dot{\mathbf{q}}$:

$$\begin{bmatrix} \frac{d\mathbf{q}}{dt} \\ \mathcal{M}(\mathbf{q}) \frac{d\dot{\mathbf{q}}}{dt} + \mathcal{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}(t) \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{q}} \\ \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}}) \end{bmatrix}$$
(31)

2.2.1 Rayleigh Damping

Rayleigh damping is defined as:

$$F_{\text{Rayleigh}} = \left(-\alpha \mathcal{M} + \beta \underbrace{\frac{\partial \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \mathbf{q}}}_{\mathcal{K}(\mathbf{q}, \dot{\mathbf{q}})}\right) \dot{\mathbf{q}}$$
(32)

 $F_{\rm Rayleigh}$ is added to the sum of forces in Equation 31:

$$\begin{bmatrix} \frac{d\mathbf{q}}{dt} \\ \mathcal{M}(\mathbf{q}) \frac{d\dot{\mathbf{q}}}{dt} + \mathcal{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}(t) \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{q}} \\ F(\mathbf{q}, \dot{\mathbf{q}}) + (-\alpha \mathcal{M} + \beta \mathcal{K}) \dot{\mathbf{q}} \end{bmatrix}$$
(33)

3 Statics

The physical system does not experience any acceleration ($\ddot{q} = 0$). $\ddot{q} = 0$ does not necessarily imply $\dot{q} = 0$. It means that \dot{q} is a constant. If this constant is nonzero, it is called dynamic equilibrium or steady motion. In this section, we consider $\dot{q} = 0$. Second Newton's law (Equation 28) becomes:

$$F(q) = 0 (34)$$

This is a non-linear equation. It is solved using Newton-Raphson method.

Solve for $\Delta q^i = q^{i+1} - q^i$:

$$\left. \frac{\partial \mathbf{F}}{\partial \mathbf{q}} \right|_{\mathbf{q}^i} \Delta \mathbf{q}^i = -\mathbf{F}(\mathbf{q}^i) \tag{35}$$

This is a linear system to be solved.

With $\mathcal{K}^i = \frac{\partial F}{\partial q}\Big|_{\boldsymbol{q}^i}$, we solve:

$$\mathcal{K}^i \ \Delta q^i = -F(q^i) \tag{36}$$

Then,

$$\mathbf{q}^{i+1} = \Delta \mathbf{q}^i + \mathbf{q}^i \tag{37}$$

4 Spring

4.1 Linear Spring

DEFINITION

Hooke's law:

$$F = kx (38)$$

x is the amount by which the free end of the spring was displaced from its "relaxed" position. Considering two points a and b, $x = \|b - a\|$, and the force is exerted along the direction b - a. Then:

$$F_a = k (\|b - a\| - L_0) \frac{b - a}{\|b - a\|}$$
(39)

$$F_b = k \; (\|a - b\| - L_0) \frac{a - b}{\|a - b\|} = -F_a \tag{40}$$

where:

- k is the spring stiffness constant
- a The position vector of the first end of the spring
- b The position vector of the second end of the spring.
- ||b-a|| is the distance between the two ends of the spring,
- L_0 is the rest length of the spring.

To compute the derivative of F_a and F_b , we define $\delta = \|b - a\|$

$$\begin{split} F_a &= k(\delta - L_0) \frac{b-a}{\delta} \\ &= k \bigg(1 - \frac{L_0}{\delta} \bigg) (b-a) \\ &= k \bigg(b - a - \frac{L_0}{\delta} (b-a) \bigg) \end{split} \tag{41}$$

$$\begin{split} \frac{\partial F_a}{\partial a} &= k \frac{\partial}{\partial a} \left(b - a - \frac{L_0}{\delta} (b - a) \right) \\ &= -k \left(I + L_0 \frac{\partial}{\partial a} \left(\frac{b - a}{\delta} \right) \right) \end{split} \tag{42}$$

From Equation 315,

$$\frac{\partial}{\partial a} \left(\frac{b-a}{\delta} \right) = -\frac{1}{\delta} I + \frac{1}{\delta^3} (b-a) \otimes (b-a) \tag{43}$$

Finally,

$$\begin{split} \frac{\partial F_a}{\partial a} &= -k \left(I + L_0 \left(-\frac{1}{\delta} I + \frac{1}{\delta^3} (b - a) \otimes (b - a) \right) \right) \\ &= -k \left(\left(1 - \frac{L_0}{\delta} \right) I + \frac{L_0}{\delta^3} (b - a) \otimes (b - a) \right) \\ &= -k \left(\left(1 - \frac{L_0}{\delta} \right) I + \frac{L_0}{\delta} \widehat{b - a} \otimes \widehat{b - a} \right) \end{split} \tag{44}$$

RESULT

$$\frac{\partial F_a}{\partial a} = -k \bigg(\bigg(1 - \frac{L_0}{\delta} \bigg) I + \frac{L_0}{\delta} \widehat{b - a} \otimes \widehat{b - a} \bigg) \tag{45}$$

Similarly,

$$\begin{split} \frac{\partial F_a}{\partial b} &= k \frac{\partial}{\partial b} \bigg(b - a - \frac{L_0}{\delta} (b - a) \bigg) \\ &= k \bigg(I - L_0 \frac{\partial}{\partial b} \bigg(\frac{b - a}{\delta} \bigg) \bigg) \end{split} \tag{46}$$

From Equation 314,

$$\frac{\partial}{\partial b} \left(\frac{b-a}{\delta} \right) = \frac{1}{\delta} I - \frac{1}{\delta^3} (b-a) \otimes (b-a) \tag{47}$$

Finally,

$$\begin{split} \frac{\partial F_a}{\partial b} &= k \bigg(I - L_0 \bigg(\frac{1}{\delta} I - \frac{1}{\delta^3} (b - a) \otimes (b - a) \bigg) \bigg) \\ &= k \bigg(\bigg(1 - \frac{L_0}{\delta} \bigg) I - \frac{L_0}{\delta^3} (b - a) \otimes (b - a) \bigg) \\ &= k \bigg(\bigg(1 - \frac{L_0}{\delta} \bigg) I - \frac{L_0}{\delta} \widehat{b - a} \otimes \widehat{b - a} \bigg) \end{split} \tag{48}$$

RESULT

$$\frac{\partial F_a}{\partial b} = k \bigg(\bigg(1 - \frac{L_0}{\delta} \bigg) I - \frac{L_0}{\delta} \widehat{b - a} \otimes \widehat{b - a} \bigg) \tag{49}$$

4.2 Nonlinear Spring

$$F = F(x) \tag{50}$$

4.2.1 Quadratic Spring

-DEFINITION $F = kx^2 \tag{51}$

Considering two points a and b, $\delta = ||b - a||$,

$$\begin{split} F_{a} &= k \; (\|b-a\|-L_{0})^{2} \frac{b-a}{\|b-a\|} \\ &= k (\delta-L_{0})^{2} \frac{b-a}{\delta} \end{split} \tag{52}$$

$$\begin{split} F_{b} &= k \; (\|a-b\| - L_{0})^{2} \frac{a-b}{\|a-b\|} \\ &= -k(\delta - L_{0})^{2} \frac{b-a}{\delta} \\ &= -F_{a} \end{split} \tag{53}$$

5 Numerical Integration

5.1 Definition

For any function y = y(t), we call

$$y_n = y(t_n) \tag{54}$$

with

$$t_n = t_0 + n \,\Delta t \tag{55}$$

Numerical methods for ordinary ordinary differential equation approximate solutions to initial value problems of the form:

$$y' = f(t, y), \quad y(t_0) = y_0$$
 (56)

5.2 Linear Multistep Method

$$\begin{aligned} y_{n+s} + a_{s-1}y_{n+s-1} + a_{s-2}y_{n+s-2} + \ldots + a_0y_n &= \\ \Delta t(b_sf(t_{n+s},y_{n+s}) + b_{s-1}f(t_{n+s-1},y_{n+s-1}) + \ldots + b_0f(t_n,y_n)) \end{aligned} \tag{57}$$

or

$$\sum_{j=0}^{s} a_{j} y_{n+j} = \Delta t \sum_{j=0}^{s} b_{j} f \left(t_{n+j}, y_{n+j} \right) \tag{58}$$

If $b_s = 0$, the method is called "explicit": it is possible to compute y_{n+s} directly. If $b_s \neq 0$, the method is called "implicit": the value of y_{n+s} depends on the value of $f(t_{n+s}, y_{n+s})$.

5.3 Backward Differentiation Formula

Given a set of s+1 nodes $\{t_n,t_{n+1},...,t_{n+s}\}$, the Lagrange basis for polynomials of degree $\leq s$ for those notes is the set of polynomials $\{l_0(t),l_1(t),...,l_s(t)\}$:

$$l_{j}(t) = \prod_{\substack{0 \le m \le s \\ m \ne j}} \frac{t - t_{n+m}}{t_{n+j} - t_{n+m}}$$
(59)

The Lagrange interpolating polynomial for those nodes through the corresponding values $\{y_n, y_{n+1}, ..., y_{n+s}\}$ is the linear combination:

$$L(t) = \sum_{j=0}^{s} y_{n+j} l_j(t)$$
 (60)

5.3.1 Derivative:

$$L'(t) = \sum_{j=0}^{s} y_{n+j} l'_{j}(t)$$
(61)

$$l'_{j}(t) = \sum_{\substack{i=0\\i\neq j}}^{s} \left[\frac{1}{t_{n+j} - t_{n+i}} \prod_{\substack{m=0\\m\neq (i,j)}} \frac{t - t_{n+m}}{t_{n+j} - t_{n+m}} \right]$$
(62)

5.3.2 Lagrange polynomials to solve an ODE

We approximate y' by L' in Equation 56:

$$\sum_{j=0}^{s} y_{n+j} l_j'(t) = f(t, y) \tag{63}$$

We want to find $y(t_{n+s})$, therefore

$$\sum_{j=0}^{s} y_{n+j} l_j'(t_{n+s}) = f(t_{n+s}, y_{n+s})$$
 (64)

$$\sum_{j=0}^{s} y_{n+j} \left(\sum_{\substack{i=0\\i\neq j}}^{s} \left[\frac{1}{t_{n+j} - t_{n+i}} \prod_{\substack{m=0\\m\neq (i,j)}} \frac{t_{n+s} - t_{n+m}}{t_{n+j} - t_{n+m}} \right] \right) = f(t_{n+s}, y_{n+s})$$
 (65)

5.3.3 Constant Step Size

$$t_{n+j} = t_n + j \,\Delta t \tag{66}$$

So, for all i, j

$$\begin{split} t_{n+j} - t_{n+i} &= t_n + j \; \Delta t - (t_n + i \; \Delta t) \\ &= (j-i)\Delta t \end{split} \tag{67}$$

$$\sum_{j=0}^{s} y_{n+j} \left(\sum_{\substack{i=0\\i\neq j}}^{s} \left[\frac{1}{j-i} \prod_{\substack{m=0\\m\neq (i,j)}} \frac{s-m}{j-m} \right] \right) = \Delta t \ f(t_{n+s}, y_{n+s})$$
 (68)

BDF1

For s = 1:

j = 0:

$$l_0'(t_{n+1}) = \sum_{\substack{i=0\\i\neq 0}}^{1} \left[\frac{1}{0-i} \prod_{\substack{m=0\\m\neq (i,0)}} \frac{1-m}{-m} \right] = \frac{1}{-1} \prod_{\substack{m=0\\m\neq (1,0)}} \frac{1-m}{-m} = -1$$
 (69)

j = 1:

$$l_1'(t_{n+1}) = \sum_{\substack{i=0\\i\neq 1}}^{1} \left[\frac{1}{1-i} \prod_{\substack{m=0\\m\neq (i,1)}} \frac{1-m}{1-m} \right] = \frac{1}{1} \prod_{\substack{m=0\\m\neq (0,1)}} \frac{1-m}{1-m} = 1$$
 (70)

Finally, for s = 1:

$$y_{n+1} - y_n = \Delta t \ f(t_{n+1}, y_{n+1}) \tag{71}$$

BDF2

For s = 2:

j = 0:

$$\begin{split} l_0'(t_{n+2}) &= \sum_{\substack{i=0\\i\neq 0}}^2 \left[\frac{1}{-i} \prod_{\substack{m=0\\m\neq (i,0)}} \frac{2-m}{-m} \right] \\ &= \left(\frac{1}{-1} \prod_{\substack{m=0\\m\neq (1,0)}} \frac{2-m}{-m} \right) + \left(\frac{1}{-2} \prod_{\substack{m=0\\m\neq (2,0)}} \frac{2-m}{-m} \right) \\ &= -\frac{1}{2} \left(\frac{2-1}{-1} \right) = \frac{1}{2} \end{split} \tag{72}$$

j = 1:

$$l_1'(t_{n+2}) = \sum_{\substack{i=0\\i\neq 1}}^{2} \left[\frac{1}{1-i} \prod_{\substack{m=0\\m\neq(i,1)}} \frac{2-m}{1-m} \right]$$

$$= \left(\frac{1}{1} \prod_{\substack{m=0\\m\neq(0,1)}} \frac{2-m}{1-m} \right) + \left(\frac{1}{1-2} \prod_{\substack{m=0\\m\neq(2,1)}} \frac{2-m}{1-m} \right)$$

$$= -2$$

$$(73)$$

j = 2:

$$l_{2}'(t_{n+2}) = \sum_{\substack{i=0\\i\neq 2}}^{2} \left[\frac{1}{2-i} \prod_{\substack{m=0\\m\neq (i,2)}} \frac{2-m}{2-m} \right]$$

$$= \left(\frac{1}{2} \prod_{\substack{m=0\\m\neq (0,2)}} \frac{2-m}{2-m} \right) + \left(\frac{1}{2-1} \prod_{\substack{m=0\\m\neq (1,2)}} \frac{2-m}{2-m} \right)$$

$$= \frac{3}{2}$$

$$(74)$$

Finally, for s = 1:

$$\frac{3}{2}y_{n+2} - 2y_{n+1} + \frac{1}{2}y_n = \Delta t \ f(t_{n+2}, y_{n+2}) \eqno(75)$$

which can be written:

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}\Delta t \ f(t_{n+2}, y_{n+2}) \eqno(76)$$

5.4 Numerical Integration of Newton's Second Law of Motion

The second Newton's law (Equation 31) is a first-order ordinary differential equation of the form of Equation 56 $(y' = f(t, y), y(t_0) = y_0)$ where:

$$y(t) = \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \tag{77}$$

$$f(t,y) = \begin{bmatrix} \dot{q}(t) \\ \mathcal{M}^{-1}(\mathbf{F}(\mathbf{q},\dot{\mathbf{q}}) - \mathcal{C}\dot{\mathbf{q}}) \end{bmatrix}$$
 (78)

In case of Rayleigh damping (Equation 32):

$$f(t,y) = \begin{bmatrix} \dot{\boldsymbol{q}}(t) \\ \boldsymbol{\mathcal{M}}^{-1}(\boldsymbol{F}(\boldsymbol{q},\dot{\boldsymbol{q}}) - \boldsymbol{\mathcal{C}}\dot{\boldsymbol{q}} + (-\alpha\boldsymbol{\mathcal{M}} + \beta\boldsymbol{\mathcal{K}}(\boldsymbol{q},\dot{\boldsymbol{q}}))\dot{\boldsymbol{q}}) \end{bmatrix}$$
(79)

5.5 Newton-Raphson

For implicit methods, Equation 58 is nonlinear. Newton-Raphson algorithm can be used to solve it.

5.5.1 Nonlinear function

Find the root x_r of a nonlinear function $r:\mathbb{R}^k \to \mathbb{R}^k$ such that:

$$r(x_r) = 0 (80)$$

Let's define x^0 the first estimate of the solution of this equation, called the initial guess.

$$\Delta x^0 = x_r - x_0 \tag{81}$$

Taylor series expansion of r around x^0

$$\begin{split} r(x_r) &= r(x_0 + \Delta x_0) \\ &= r(x_0) + \frac{\partial r}{\partial x} \bigg|_{x^0} \Delta x^0 + O\Big(\left\| \Delta x^0 \right\|^2 \Big) \end{split} \tag{82}$$

If we neglect second-order terms and higher:

$$r(x_r) \approx r(x_0) + \frac{\partial r}{\partial x} \bigg|_{x^0} \Delta x^0$$
 (83)

If we use this approximation to solve the equation, it leads to:

$$r(x^0) + \frac{\partial r}{\partial x} \Big|_{x^0} \Delta x^0 = 0 \tag{84}$$

This is a linear system to solve for the unknown Δx^0 :

$$\left. \frac{\partial r}{\partial x} \right|_{x^0} \Delta x^0 = -r(x^0) \tag{85}$$

Once Δx^0 is found, x^1 can be deduced:

$$x^1 = \Delta x^0 + x^0 (86)$$

The process is repeated as

$$\left. \frac{\partial r}{\partial x} \right|_{x^i} (x^{i+1} - x^i) = -r(x^i) \tag{87}$$

6 Explicit Time Integration

6.1 Forward Euler Method

The time derivative in Equation 3 can be approximated using a forward first-order finite difference:

$$y'(t) \approx \frac{1}{\Delta t} (y(t + \Delta t) - y(t)) \Leftrightarrow \frac{d}{dt} \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \approx \frac{1}{\Delta t} \left(\begin{bmatrix} \boldsymbol{q}(t + \Delta t) \\ \dot{\boldsymbol{q}}(t + \Delta t) \end{bmatrix} - \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \right) \tag{88}$$

Substituting this approximation into Equation 31:

$$\frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}(t + \Delta t) - \boldsymbol{q}(t) \\ \boldsymbol{\mathcal{M}}(\boldsymbol{q}) \left(\dot{\boldsymbol{q}}(t + \Delta t) - \dot{\boldsymbol{q}}(t) \right) \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{q}}(t) \\ \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - \boldsymbol{\mathcal{C}}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}(t) \end{bmatrix}$$
(89)

From Equation 54, we can also write:

$$\frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \boldsymbol{\mathcal{M}} (\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{q}}_n \\ \boldsymbol{F} (\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \boldsymbol{\mathcal{C}} (\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \dot{\boldsymbol{q}}_n \end{bmatrix}$$
(90)

Grouping the terms in n+1 on the left-hand side:

$$\begin{bmatrix} \boldsymbol{q}_{n+1} \\ \dot{\boldsymbol{q}}_{n+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_n + \Delta t \ \dot{\boldsymbol{q}}_n \\ \dot{\boldsymbol{q}}_n + \Delta t \ \mathcal{M}^{-1}(\boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \mathcal{C}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \dot{\boldsymbol{q}}_n) \end{bmatrix}$$
(91)

6.2 Semi-implicit Euler method

The time derivative in Equation 3 can be approximated using a backward first-order finite difference for x and a forward first-order finite difference for v:

$$\frac{d}{dt} \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \approx \frac{1}{\Delta t} \left(\begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t + \Delta t) \end{bmatrix} - \begin{bmatrix} \boldsymbol{q}(t - \Delta t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \right)$$
(92)

Substituting this approximation into Equation 3:

$$\begin{bmatrix} \dot{\boldsymbol{q}}(t) \\ \ddot{\boldsymbol{q}}(t) \end{bmatrix} = \frac{1}{\Delta t} \left(\begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t + \Delta t) \end{bmatrix} - \begin{bmatrix} \boldsymbol{q}(t - \Delta t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \right) \tag{93}$$

From Equation 54, we can also write:

$$\begin{bmatrix} \dot{\boldsymbol{q}}_n \\ \ddot{\boldsymbol{q}}_n \end{bmatrix} = \frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_n - \boldsymbol{q}_{n-1} \\ \dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n \end{bmatrix}$$
(94)

or

$$\begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \ddot{\boldsymbol{q}}_n \end{bmatrix} = \frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n \end{bmatrix}$$
(95)

Multiplying the second line of Equation 95 by \mathcal{M} :

$$\begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \mathcal{M} \ddot{\boldsymbol{q}}_n \end{bmatrix} = \frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \mathcal{M} (\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) \end{bmatrix}$$
(96)

From Equation 28:

$$\begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \mathcal{C}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \dot{\boldsymbol{q}}_n \end{bmatrix} = \frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \mathcal{M}(\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) \end{bmatrix}$$
(97)

Finally,

$$\begin{bmatrix} \boldsymbol{q}_{n+1} \\ \dot{\boldsymbol{q}}_{n+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_n + \Delta t \ \dot{\boldsymbol{q}}_{n+1} \\ \dot{\boldsymbol{q}}_n + \Delta t \ \mathcal{M}^{-1}(\boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \mathcal{C}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \dot{\boldsymbol{q}}_n) \end{bmatrix}$$
(98)

7 Implicit Time Integration

7.1 Backward Differentiation Formula

A family of implicit methods for the numerical integration of ordinary differential equations

$$\sum_{k=0}^{s} \ddot{q}_{k} y_{n+k} = \Delta t \ \beta \ f(t_{n+s}, y_{n+s})$$
 (99)

- For any $n \ge 0$, $t_n = t_0 + n \Delta t$
- y_n denotes the state at time t_n
- \ddot{q}_k and β are coefficients that depend on the order s of the method
- f the function of the ODE

Coefficients [1]:

Order	$\ddot{m{q}}_0$	$\ddot{m{q}}_1$	$\ddot{m{q}}_2$	$\ddot{m{q}}_3$	$\ddot{m{q}}_4$	$\ddot{m{q}}_{5}$	$\ddot{m{q}}_6$	β
1	-1	1						1
2	1	-4	3					2
3	-2	9	-18	11				6
4	3	-16	36	-48	25			12
5	-12	75	-200	300	-300	137		60
6	10	-72	225	-400	450	-360	147	60

7.2 1-step BDF (Backward Euler)

In Equation 56, the time derivative can be approximated using the backward first-order finite differences:

$$y'_{n+1} \approx \frac{y_{n+1} - y_n}{\Delta t} \Leftrightarrow \frac{d}{dt} \begin{bmatrix} \boldsymbol{q}(t + \Delta t) \\ \dot{\boldsymbol{q}}(t + \Delta t) \end{bmatrix} \approx \frac{1}{\Delta t} \begin{pmatrix} \begin{bmatrix} \boldsymbol{q}(t + \Delta t) \\ \dot{\boldsymbol{q}}(t + \Delta t) \end{bmatrix} - \begin{bmatrix} \boldsymbol{q}(t) \\ \dot{\boldsymbol{q}}(t) \end{bmatrix} \end{pmatrix}$$
(100)

Equation 56 becomes:

$$\begin{split} \frac{y_{n+1}-y_n}{\Delta t} &= f(t+\Delta t, y_{n+1}) \\ \Leftrightarrow y_{n+1}-y_n &= \Delta t \; f(t+\Delta t, y_{n+1}) \end{split} \tag{101}$$

We observe that the method enters into the category of linear multistep methods (Equation 58) with:

$$\begin{cases} s &= 1 \\ a_1 &= 1 \\ a_0 &= -1 \\ b_1 &= 1 \\ b_0 &= 0 \end{cases} \tag{102}$$

We apply this equation on y from Equation 77 and f from Equation 78:

$$\begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n \end{bmatrix} = \Delta t \begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \mathcal{M}^{-1} \boldsymbol{F}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) \end{bmatrix}$$
(103)

We multiply the second line by \mathcal{M} to get rid of the inverse:

$$\begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \mathcal{M}(\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) \end{bmatrix} = \Delta t \begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \boldsymbol{F}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) \end{bmatrix}$$
(104)

This is a non-linear set of equations: F is non-linear with respect to the unknown q_{n+1} and \dot{q}_{n+1} .

Let's define the residual function r such that:

$$r(\boldsymbol{x}_{q}) = r(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \begin{bmatrix} \boldsymbol{q} - \boldsymbol{q}_{n} - \Delta t \ \dot{\boldsymbol{q}} \\ \boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_{n}) - \Delta t \ F(\boldsymbol{x}_{q}) \end{bmatrix} = \begin{bmatrix} r_{1}(\boldsymbol{x}_{q}) \\ r_{2}(\boldsymbol{x}_{q}) \end{bmatrix}$$
(105)

Based on Equation 104, we want to find the root $x_{q_{n+1}} = \begin{bmatrix} q_{n+1} \\ \dot{q}_{n+1} \end{bmatrix}$ of r such that

$$r\left(\boldsymbol{x_q}_{n+1}\right) = 0\tag{106}$$

We will need to compute the Jacobian J_r of r:

$$J_r = \frac{\partial r}{\partial x} = \begin{bmatrix} \frac{\partial r_1}{\partial \mathbf{q}} & \frac{\partial r_1}{\partial \dot{\mathbf{q}}} \\ \frac{\partial r_2}{\partial \mathbf{q}} & \frac{\partial r_2}{\partial \dot{\mathbf{q}}} \end{bmatrix}$$
(107)

Let's compute each term:

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = I \tag{108}$$

$$\frac{\partial r_1}{\partial \dot{q}} = -\Delta t I \tag{109}$$

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\Delta t \; \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}} = -\Delta t \; \boldsymbol{\mathcal{K}}$$
 (110)

$$\frac{\partial r_2}{\partial \dot{q}} = \mathcal{M} - \Delta t \, \frac{\partial \mathbf{F}}{\partial \dot{q}} = \mathcal{M} - \Delta t \, \mathcal{B} \tag{111}$$

The final expression of the Jacobian is:

$$J_{r} = \frac{\partial r}{\partial \boldsymbol{x_{\sigma}}} = \begin{bmatrix} \boldsymbol{I} & -\Delta t \ \boldsymbol{I} \\ -\Delta t \ \boldsymbol{\mathcal{K}} & \boldsymbol{\mathcal{M}} - \Delta t \ \boldsymbol{\mathcal{B}} \end{bmatrix}$$
(112)

Let's define q^0 and \dot{q}^0 the first estimate of the solution of this equation, called the initial guess. Newton-Raphson to solve $r(x_q) = 0$:

$$J_r(\boldsymbol{x_q}^i)(\boldsymbol{x_q}^{i+1} - \boldsymbol{x_q}^i) = -r(\boldsymbol{x_q}^i)$$
 (113)

$$\begin{bmatrix} \boldsymbol{I} & -\Delta t \, \boldsymbol{I} \\ -\Delta t \, \boldsymbol{\mathcal{K}}(\boldsymbol{x_q}^i) & \boldsymbol{\mathcal{M}} - \Delta t \, \boldsymbol{\mathcal{B}}(\boldsymbol{x_q}^i) \end{bmatrix} \begin{bmatrix} \boldsymbol{q}^{i+1} - \boldsymbol{q}^i \\ \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i \end{bmatrix} = \begin{bmatrix} -\boldsymbol{q}^i + \boldsymbol{q}_n + \Delta t \, \dot{\boldsymbol{q}}^i \\ -\boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}}^i - \dot{\boldsymbol{q}}_n) + \Delta t \, \boldsymbol{F}(\boldsymbol{x_q}^i) \end{bmatrix}$$
(114)

7.2.1 Solve for \dot{q}

Using the Schur complement (see Equation 319), we obtain the reduced equation in $\dot{q}^{i+1} - \dot{q}^i$:

$$(\mathcal{M} - \Delta t \,\mathcal{B}(\mathbf{x}_{\mathbf{q}}^{i}) - (-\Delta t \,\mathcal{K}(\mathbf{x}_{\mathbf{q}}^{i}))(-\Delta t \,\mathbf{I}))(\dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i}) = -\mathcal{M}(\dot{\mathbf{q}}^{i} - \dot{\mathbf{q}}_{n}) + \Delta t \,\mathbf{F}(\mathbf{x}_{\mathbf{q}}^{i}) - (-\Delta t \,\mathcal{K}(\mathbf{x}_{\mathbf{q}}^{i}))(-\mathbf{q}^{i} + \mathbf{q}_{n} + \Delta t \,\dot{\mathbf{q}}^{i})$$
(115)

Cleaning:

$$(\mathcal{M} - \Delta t \, \mathcal{B}(\mathbf{x}_{q}^{i}) + \Delta t^{2} \, \mathcal{K}(\mathbf{x}_{q}^{i}))(\dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i}) =$$

$$-\mathcal{M}(\dot{\mathbf{q}}^{i} - \dot{\mathbf{q}}_{n}) + \Delta t \, \mathbf{F}(\mathbf{x}_{q}^{i}) + \Delta t \, \mathcal{K}(\mathbf{x}_{q}^{i})(-\mathbf{q}^{i} + \mathbf{q}_{n} + \Delta t \, \dot{\mathbf{q}}^{i})$$

$$(116)$$

From Equation 318, we can deduce $q^{i+1} - q^i$:

$$\begin{aligned} \boldsymbol{q}^{i+1} - \boldsymbol{q}^i &= -\boldsymbol{q}^i + \boldsymbol{q}_n + \Delta t \; \dot{\boldsymbol{q}}^i - (-\Delta t \; \boldsymbol{I}) (\dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i) \\ &= -\boldsymbol{q}^i + \boldsymbol{q}_n + \Delta t \; \dot{\boldsymbol{q}}^i + \Delta t \; (\dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i) \\ &= -\boldsymbol{q}^i + \boldsymbol{q}_n + \Delta t \; \dot{\boldsymbol{q}}^{i+1} \end{aligned} \tag{117}$$

Then

$$\boldsymbol{q}^{i+1} = \boldsymbol{q}_n + \Delta t \; \dot{\boldsymbol{q}}^{i+1} \tag{118}$$

7.2.2 Solve for q

Using the Schur complement (see Equation 321), we obtain the reduced equation in $q^{i+1} - q^i$:

$$\left(\left(-\Delta t \, \mathcal{K}(\boldsymbol{x}_{\boldsymbol{q}}^{i})\right) - \left(M - \Delta t \, \mathcal{B}(\boldsymbol{x}_{\boldsymbol{q}}^{i})\right)\left(-\frac{1}{\Delta t}I\right)\right)(\boldsymbol{q}^{i+1} - \boldsymbol{q}^{i}) = \\
-M(\dot{\boldsymbol{q}}^{i} - \dot{\boldsymbol{q}}_{n}) + \Delta t \, \boldsymbol{F}(\boldsymbol{x}_{\boldsymbol{q}}^{i}) - \left(M - \Delta t \, \mathcal{B}(\boldsymbol{x}_{\boldsymbol{q}}^{i})\right)\left(-\frac{1}{\Delta t}\right)(-\boldsymbol{q}^{i} + \boldsymbol{q}_{n} + \Delta t \, \dot{\boldsymbol{q}}^{i})$$
(119)

Cleaning:

$$\left(\frac{1}{\Delta t}M - \mathcal{B}(\boldsymbol{x_q}^i) - \Delta t \, \mathcal{K}(\boldsymbol{x_q}^i)\right)(\boldsymbol{q}^{i+1} - \boldsymbol{q}^i) = \\
-M(\dot{\boldsymbol{q}}^i - \dot{\boldsymbol{q}}_n) + \Delta t \, \boldsymbol{F}(\boldsymbol{x_q}^i) + \frac{1}{\Delta t}(M - \Delta t \, \mathcal{B}(\boldsymbol{x_q}^i))(-\boldsymbol{q}^i + \boldsymbol{q}_n + \Delta t \, \dot{\boldsymbol{q}}^i)$$
(120)

7.2.3 Rayleigh Damping

 $F_{\rm Ravleigh}$ (Equation 32) is added to the sum of forces in Equation 104:

$$M(\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) = \Delta t \left(F(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) + F_{\text{Rayleigh}} \right)$$

$$= \Delta t \left(F(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) + (-\alpha M + \beta K) \dot{\boldsymbol{q}}_{n+1} \right)$$
(121)

We define the residual function r such that:

$$r(\boldsymbol{x}_{\boldsymbol{q}}) = \begin{bmatrix} \boldsymbol{q} - \boldsymbol{q}_{n} - \Delta t \ \dot{\boldsymbol{q}} \\ \boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_{n}) - \Delta t \ (\boldsymbol{F}(\boldsymbol{x}_{\boldsymbol{q}}) + (-\alpha \boldsymbol{\mathcal{M}} + \beta \boldsymbol{\mathcal{K}}) \dot{\boldsymbol{q}}_{n+1}) \end{bmatrix} = \begin{bmatrix} r_{1}(\boldsymbol{x}_{\boldsymbol{q}}) \\ r_{2}(\boldsymbol{x}_{\boldsymbol{q}}) \end{bmatrix}$$
(122)

The nonlinear equation to solve is $r(\mathbf{q}, \dot{\mathbf{q}}) = 0$

The derivatives of r_1 with respect to \boldsymbol{q} and $\dot{\boldsymbol{q}}$ can be found respectively in Equation 108 and Equation 109.

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\Delta t \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}} = -\Delta t \; \boldsymbol{\mathcal{K}} \tag{123}$$

$$\frac{\partial r_2}{\partial \dot{q}} = \mathcal{M} - \Delta t \left(\frac{\partial \mathbf{F}}{\partial \dot{q}} - \alpha \mathcal{M} + \beta \mathcal{K} \right)
= (1 + \alpha \Delta t) \mathcal{M} - \Delta t \mathcal{B} - \beta \Delta t \mathcal{K}$$
(124)

The Jacobian of r:

$$J_{r} = \frac{\partial r}{\partial x_{q}} = \begin{bmatrix} I & -\Delta t I \\ -\Delta t \, \mathcal{K} & (1 + \alpha \Delta t) \mathcal{M} - \Delta t \mathcal{B} - \beta \Delta t \, \mathcal{K} \end{bmatrix}$$
(125)

Newton-Raphson to solve $r(\boldsymbol{x}_q) = 0$:

$$\begin{bmatrix} I & -\Delta t I \\ -\Delta t \, \mathcal{K} & (1 + \alpha \Delta t) \mathcal{M} - \Delta t \mathcal{B} - \beta \Delta t \, \mathcal{K} \end{bmatrix} \begin{bmatrix} \mathbf{q}^{i+1} - \mathbf{q}^{i} \\ \dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i} \end{bmatrix} = \begin{bmatrix} -\mathbf{q}^{i} + \mathbf{q}_{n} + \Delta t \, \dot{\mathbf{q}}^{i} \\ -\mathcal{M}(\dot{\mathbf{q}}^{i} - \dot{\mathbf{q}}_{n}) + \Delta t \, (\mathbf{F}(\mathbf{x}_{\mathbf{q}}^{i}) + (-\alpha \mathcal{M} + \beta \mathcal{K}) \dot{\mathbf{q}}_{n+1}) \end{bmatrix}$$
(126)

Solve for \dot{q}

Using the Schur complement (see Equation 319), we obtain the reduced equation in $\dot{q}^{i+1} - \dot{q}^i$:

$$(((1 + \alpha \Delta t)\mathcal{M} - \Delta t\mathcal{B} - \beta \Delta t \mathcal{K}) - (-\Delta t \mathcal{K})(-\Delta t))(\dot{q}^{i+1} - \dot{q}^{i}) = \mathcal{M}(\dot{q}^{i} - \dot{q}_{n}) + \Delta t \left(\mathbf{F}(\mathbf{x}_{q}^{i}) + (-\alpha \mathcal{M} + \beta \mathcal{K})\dot{q}_{n+1} \right) - (-\Delta t \mathcal{K})(-q^{i} + q_{n} + \Delta t \dot{q}^{i})$$
(127)

Cleaning:

$$\left((1 + \alpha \Delta t) \mathcal{M} - \Delta t \mathcal{B} - \Delta t (\beta + \Delta t) \mathcal{K} \right) (\dot{q}^{i+1} - \dot{q}^{i}) =$$

$$\mathcal{M}(\dot{q}^{i} - \dot{q}_{n}) + \Delta t \left(\mathbf{F}(\mathbf{x}_{q}^{i}) + (-\alpha \mathcal{M} + \beta \mathcal{K}) \dot{q}_{n+1} + \mathcal{K}(-q^{i} + q_{n} + \Delta t \ \dot{q}^{i}) \right)$$
(128)

7.2.4 Force Linearization

Equation 104 is a nonlinear equation. Instead of solving it iteratively, we use an approximation of the expression of forces.

Let's define:

$$\Delta q = q_{n+1} - q_n \tag{129}$$

$$\Delta \dot{q} = \dot{q}_{n+1} - \dot{q}_n \tag{130}$$

From Equation 104, we can deduce:

$$\Delta q = \Delta t \; \dot{q}_{n+1} = \Delta t (\Delta \dot{q} + \dot{q}_n) \tag{131}$$

$$\Delta \dot{\boldsymbol{q}} = \frac{1}{\Delta t} (\boldsymbol{q}_{n+1} - \boldsymbol{q}_n) - \dot{\boldsymbol{q}}_n = \frac{1}{\Delta t} \Delta \boldsymbol{q} - \dot{\boldsymbol{q}}_n \tag{132}$$

Taylor series expansion of F around $(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)$:

$$\begin{split} \boldsymbol{F}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) &= \boldsymbol{F}(\boldsymbol{q}_n + \Delta \boldsymbol{q}, \dot{\boldsymbol{q}}_n + \Delta \dot{\boldsymbol{q}}) \\ &= \boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \Delta \boldsymbol{q} + \frac{\partial \boldsymbol{F}}{\partial \dot{\boldsymbol{q}}}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \Delta \dot{\boldsymbol{q}} + o(\|\Delta \boldsymbol{q}\|^2, \|\Delta \dot{\boldsymbol{q}}\|^2) \end{split} \tag{133}$$

 \boldsymbol{F} is approximated:

$$\boldsymbol{F}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) \approx \boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \underbrace{\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)}_{\mathcal{K}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)} \Delta \boldsymbol{q} + \underbrace{\frac{\partial \boldsymbol{F}}{\partial \dot{\boldsymbol{q}}}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)}_{\mathcal{B}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)} \Delta \dot{\boldsymbol{q}}$$
(134)

Second line of Equation 104 becomes:

$$\mathcal{M} \Delta \dot{\mathbf{q}} = \Delta t(\mathbf{F}(\mathbf{q}_n, \dot{\mathbf{q}}_n) + \mathcal{K}(\mathbf{q}_n, \dot{\mathbf{q}}_n) \Delta \mathbf{q} + \mathcal{B}(\mathbf{q}_n, \dot{\mathbf{q}}_n) \Delta \dot{\mathbf{q}})$$
(135)

Solving for $\Delta \dot{q}$

Replacing Δq from Equation 131 in Equation 135:

$$\mathcal{M} \Delta \dot{\mathbf{q}} = \Delta t (\mathbf{F}(\mathbf{q}_n, \dot{\mathbf{q}}_n) + \mathcal{K}(\mathbf{q}_n, \dot{\mathbf{q}}_n) \Delta t (\Delta \dot{\mathbf{q}} + \dot{\mathbf{q}}_n) + \mathcal{B}(\mathbf{q}_n, \dot{\mathbf{q}}_n) \Delta \dot{\mathbf{q}})$$
(136)

Grouping terms in $\Delta \dot{q}$ in LHS:

$$\left(\mathcal{M} - \Delta t \ \mathcal{B}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \Delta t^2 \ \mathcal{K}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)\right) \Delta \dot{\boldsymbol{q}} = \Delta t \ \boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \Delta t^2 \mathcal{K}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) \dot{\boldsymbol{q}}_n \quad (137)$$

Defining $A = \mathcal{M} - \Delta t \,\mathcal{B}(\mathbf{q}_n, \dot{\mathbf{q}}_n) - \Delta t^2 \,\mathcal{K}(\mathbf{q}_n, \dot{\mathbf{q}}_n)$ and $b = \Delta t \,\mathbf{F}(\mathbf{q}_n, \dot{\mathbf{q}}_n) + \Delta t^2 \mathcal{K}(\mathbf{q}_n, \dot{\mathbf{q}}_n) \dot{\mathbf{q}}_n$, we have a linear system to solve:

$$A \Delta \dot{\mathbf{q}} = b \tag{138}$$

Then we use Equation 131 to deduce Δq .

Solving for Δq

Replacing $\Delta \dot{q}$ from Equation 132 in Equation 135:

$$\mathcal{M}\left(\frac{1}{\Delta t}\Delta q - \dot{q}_n\right) = \Delta t \left(\mathbf{F}(q_n, \dot{q}_n) + \mathcal{K}(q_n, \dot{q}_n) \Delta q + \mathcal{B}(q_n, \dot{q}_n) \left(\frac{1}{\Delta t} \Delta q - \dot{q}_n\right) \right)$$
(139)

Grouping terms in Δq in LHS:

$$\left(\frac{1}{\Delta t}\mathcal{M} - \mathcal{B}(\boldsymbol{q}_{n}, \dot{\boldsymbol{q}}_{n}) - \Delta t \mathcal{K}(\boldsymbol{q}_{n}, \dot{\boldsymbol{q}}_{n})\right) \Delta \boldsymbol{q} = \Delta t \ \boldsymbol{F}(\boldsymbol{q}_{n}, \dot{\boldsymbol{q}}_{n}) + (\mathcal{M} - \Delta t \ \mathcal{B}(\boldsymbol{q}_{n}, \dot{\boldsymbol{q}}_{n})) \dot{\boldsymbol{q}}_{n} \ (140)$$

Defining $A = \frac{1}{\Delta t} \mathcal{M} - \mathcal{B}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) - \Delta t \mathcal{K}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)$ and $b = \Delta t \, \boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + (\mathcal{M} - \Delta t \, \mathcal{B}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n)) \dot{\boldsymbol{q}}_n$, we have a linear system to solve:

$$A \Delta q = b \tag{141}$$

Then we use Equation 132 to deduce $\Delta \dot{q}$.

7.2.5 Force Linearization with Rayleigh Damping

$$F\big(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}\big) + F_{\mathrm{Rayleigh}, n+1} \approx F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + F_{\mathrm{Rayleigh}, n}$$

$$+\left(\underbrace{\frac{\partial F}{\partial x}}_{K} + \underbrace{\frac{\partial F_{\text{Rayleigh}}}{\partial x}}_{0}\right) \Delta x$$

$$+\left(\underbrace{\frac{\partial F}{\partial v}}_{B} + \underbrace{\frac{\partial F_{\text{Rayleigh}}}{\partial v}}_{-\alpha M + \beta K}\right) \Delta v$$
(142)

$$F(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) + F_{\text{Rayleigh}, n+1} \approx F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + (-\alpha M + \beta K) \dot{\boldsymbol{q}}_n + K \Delta x + (B - \alpha M + \beta K) \Delta v$$
(143)

Equation 104 becomes:

$$M \Delta v = \Delta t (F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + (-\alpha M + \beta K) \dot{\boldsymbol{q}}_n + K \Delta x + (B - \alpha M + \beta K) \Delta v)$$
(144)

Solving for Δv

Replacing Δx from Equation 131 in Equation 144:

 $M~\Delta v = \Delta t(F(\boldsymbol{q}_n,\dot{\boldsymbol{q}}_n) + (-\alpha M + \beta K)\dot{\boldsymbol{q}}_n + K~\Delta t(\Delta v + \dot{\boldsymbol{q}}_n) + (B - \alpha M + \beta K)\Delta v)~(145)$ Grouping terms in Δv in LHS:

$$((1 + \alpha \Delta t)M - \Delta tB - \Delta t(\Delta t + \beta)K)\Delta v = \Delta t F(\mathbf{q}_n, \dot{\mathbf{q}}_n) + \Delta t (-\alpha M + (\beta + \Delta t)K)\dot{\mathbf{q}}_n$$
(146)

Solving for Δx

Replacing Δv from Equation 132 in Equation 144:

$$M\left(\frac{1}{\Delta t}\Delta x - \dot{\boldsymbol{q}}_n\right) = \Delta t \left(F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + (-\alpha M + \beta K)\dot{\boldsymbol{q}}_n + K \Delta x + (B - \alpha M + \beta K)\left(\frac{1}{\Delta t}\Delta x - \dot{\boldsymbol{q}}_n\right)\right)$$
(147)

Grouping terms in Δx in LHS:

$$\left(M\left(\frac{1}{\Delta t}\right) - \Delta t \ K - (B - \alpha M + \beta K)\right) \Delta x = \tag{148}$$

$$\Delta t(F(\boldsymbol{q}_n,\dot{\boldsymbol{q}}_n) + (-\alpha M + \beta K)\dot{\boldsymbol{q}}_n - (B - \alpha M + \beta K)\dot{\boldsymbol{q}}_n) + M\dot{\boldsymbol{q}}_n$$

$$\left(\frac{1}{\Delta t} \left(\frac{1}{\Delta t} + \alpha\right) M - \frac{1}{\Delta t} B - \left(1 + \frac{\beta}{\Delta t}\right)\right) \Delta x = F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \Delta t \ M \dot{\boldsymbol{q}}_n - B \dot{\boldsymbol{q}}_n \qquad (149)$$

7.3 Crank-Nicolson method

It is the average of the forward Euler method (Equation 90) and the backward Euler method (Equation 104)

$$\underbrace{\frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_{n} \\ \boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_{n}) \end{bmatrix}}_{\text{forward}} + \underbrace{\frac{1}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_{n} \\ \boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_{n}) \end{bmatrix}}_{\text{backward}} = \underbrace{\begin{bmatrix} \dot{\boldsymbol{q}}_{n} \\ \boldsymbol{F}(\boldsymbol{q}_{n}, \dot{\boldsymbol{q}}_{n}) \end{bmatrix}}_{\text{forward}} + \underbrace{\begin{bmatrix} \dot{\boldsymbol{q}}_{n+1} \\ \boldsymbol{F}(\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) \end{bmatrix}}_{\text{backward}}$$
(150)

$$\frac{2}{\Delta t} \begin{bmatrix} \boldsymbol{q}_{n+1} - \boldsymbol{q}_n \\ \boldsymbol{\mathcal{M}} (\dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n) \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{q}}_n + \dot{\boldsymbol{q}}_{n+1} \\ \boldsymbol{F} (\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \boldsymbol{F} (\boldsymbol{q}_{n+1}, \dot{\boldsymbol{q}}_{n+1}) \end{bmatrix}$$
(151)

Definition of the residual function r:

$$r(\boldsymbol{x}_{\boldsymbol{q}}) = r(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \begin{bmatrix} \boldsymbol{q} - \boldsymbol{q}_n - \frac{\Delta t}{2} (\dot{\boldsymbol{q}}_n + \dot{\boldsymbol{q}}) \\ \boldsymbol{\mathcal{M}} (\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_n) - \frac{\Delta t}{2} (\boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}})) \end{bmatrix}$$
(152)

Based on Equation 151, we want to find the root $\boldsymbol{x}_{\boldsymbol{q}_{n+1}} = \begin{bmatrix} \boldsymbol{q}_{n+1} \\ \dot{\boldsymbol{q}}_{n+1} \end{bmatrix}$ of r such that $r(\boldsymbol{x}_{\boldsymbol{q}_{n+1}}) = 0$.

We will need to compute the Jacobian $J_r = \frac{\partial r}{\partial x} = \begin{bmatrix} \frac{\partial r_1}{\partial q} & \frac{\partial r_1}{\partial q} \\ \frac{\partial r_2}{\partial q} & \frac{\partial r_2}{\partial q} \end{bmatrix}$ of r. Let's compute each term:

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = \boldsymbol{I} \tag{153}$$

$$\frac{\partial r_1}{\partial \dot{\boldsymbol{q}}} = -\frac{\Delta t}{2} \, \boldsymbol{I} \tag{154}$$

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\frac{\Delta t}{2} \frac{\partial F}{\partial \boldsymbol{q}} = -\frac{\Delta t}{2} \; K \tag{155} \label{eq:155}$$

$$\frac{\partial r_2}{\partial \dot{\boldsymbol{q}}} = M - \frac{\Delta t}{2} \frac{\partial F}{\partial \dot{\boldsymbol{q}}} = M - \frac{\Delta t}{2} B \tag{156}$$

The final expression of the Jacobian is:

$$J_r = \begin{bmatrix} \mathbf{I} & -\frac{\Delta t}{2} \mathbf{I} \\ -\frac{\Delta t}{2} K & M - \frac{\Delta t}{2} B \end{bmatrix}$$
 (157)

Newton-Raphson to solve $r(\boldsymbol{x}_{\boldsymbol{q}}) = 0$

$$\begin{bmatrix} \boldsymbol{I} & -\frac{\Delta t}{2} \, \boldsymbol{I} \\ -\frac{\Delta t}{2} \, K & \mathcal{M} - \frac{\Delta t}{2} \, B \end{bmatrix} \begin{bmatrix} \boldsymbol{q}^{i+1} - \boldsymbol{q}^i \\ \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i \end{bmatrix} = \begin{bmatrix} -\boldsymbol{q}^i + \boldsymbol{q}_n + \frac{\Delta t}{2} (\dot{\boldsymbol{q}}_n + \dot{\boldsymbol{q}}^i) \\ -M(\dot{\boldsymbol{q}}^i - \dot{\boldsymbol{q}}_n) + \frac{\Delta t}{2} (\boldsymbol{F}(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \boldsymbol{F}(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i)) \end{bmatrix} (158)$$

7.3.1 Force Linearization

Replacing the linearized force from Equation 134 in the bottom row of Equation 151:

$$M \Delta v = \frac{1}{2} \Delta t (2F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + K\Delta x + B\Delta v)$$
 (159)

Solve for Δv

Replacing Δx from in Equation 159:

$$M \Delta v = \frac{1}{2} \Delta t \left(2F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + K \frac{1}{2} \Delta t (\Delta v + 2\dot{\boldsymbol{q}}_n) + B \Delta v \right)$$
 (160)

Grouping terms in Δv in LHS:

$$\left(M - \frac{1}{2}\Delta t \ B - \frac{1}{4}\Delta t^2 \ K\right)\Delta v = \Delta t \ F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + \frac{1}{2}\Delta t^2 K \dot{\boldsymbol{q}}_n \tag{161}$$

7.3.2 Force Linearization with Rayleigh Damping

Replacing the linearized force from Equation 143 in the bottom row of Equation 151:

$$M \Delta v = \frac{1}{2} \Delta t [2F(\boldsymbol{q}_n, \dot{\boldsymbol{q}}_n) + 2(-\alpha M + \beta K)\dot{\boldsymbol{q}}_n + K \Delta x + (B - \alpha M + \beta K)\Delta v]$$

$$(162)$$

Solve for Δv

Replacing Δx from in Equation 159:

$$\left[\left(1 + \frac{1}{2} \alpha \Delta t \right) M - \frac{1}{2} \Delta t B - \frac{1}{2} \Delta t \left(\frac{1}{2} \Delta t + \beta \right) K \right] \Delta v$$

$$= \Delta t F(\mathbf{q}_n, \dot{\mathbf{q}}_n) + \Delta t \left(-\alpha M + \left(\beta + \frac{1}{2} \Delta t \right) K \right) \dot{\mathbf{q}}_n$$
(163)

7.4 2-step BDF

In Equation 56, the time derivative can be approximated using the backward first-order finite differences:

$$y'_{n+2} \approx \frac{3y_{n+2} - 4y_{n+1} + y_n}{2\Delta t} \tag{164}$$

Equation 56 becomes:

$$\begin{split} \frac{3y_{n+2}-4y_{n+1}+y_n}{2\Delta t} &= f(t_{n+2},y_{n+2})\\ \Leftrightarrow y_{n+2}-\frac{4}{3}y_{n+1}+\frac{1}{3}y_n &= \frac{2}{3}\Delta t\ f(t_{n+2},y_{n+2}) \end{split} \tag{165}$$

We observe that the method enters into the category of linear multistep methods (Equation 58) with:

$$\begin{cases} s = 2 \\ a_2 = 1 \\ a_1 = -\frac{4}{3} \\ a_0 = \frac{1}{3} \\ b_2 = \frac{2}{3} \\ b_1 = 0 \\ b_0 = 0 \end{cases}$$
 (166)

We apply this equation on y from Equation 77 and f from Equation 78:

$$\begin{bmatrix} \mathbf{q}_{n+2} - \frac{4}{3}\mathbf{q}_{n+1} + \frac{1}{3}\mathbf{q}_{n} \\ \dot{\mathbf{q}}_{n+2} - \frac{4}{3}\dot{\mathbf{q}}_{n+1} + \frac{1}{3}\dot{\mathbf{q}}_{n} \end{bmatrix} = \frac{2}{3}\Delta t \begin{bmatrix} \dot{\mathbf{q}}_{n+2} \\ \mathcal{M}^{-1}\mathbf{F}(\mathbf{q}_{n+2}, \dot{\mathbf{q}}_{n+2}) \end{bmatrix}$$
(167)

We multiply the second line by \mathcal{M} to get rid of the inverse:

$$\begin{bmatrix} \boldsymbol{q}_{n+2} - \frac{4}{3}\boldsymbol{q}_{n+1} + \frac{1}{3}\boldsymbol{q}_{n} \\ \boldsymbol{\mathcal{M}} \left(\dot{\boldsymbol{q}}_{n+2} - \frac{4}{3}\dot{\boldsymbol{q}}_{n+1} + \frac{1}{3}\dot{\boldsymbol{q}}_{n} \right) \end{bmatrix} = \frac{2}{3}\Delta t \begin{bmatrix} \dot{\boldsymbol{q}}_{n+2} \\ \boldsymbol{F} \left(\boldsymbol{q}_{n+2}, \dot{\boldsymbol{q}}_{n+2} \right) \end{bmatrix}$$
(168)

Definition of the residual function r:

$$r(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \begin{bmatrix} \boldsymbol{q} - \frac{4}{3}\boldsymbol{q}_{n+1} + \frac{1}{3}\boldsymbol{q}_n - \frac{2}{3}\Delta t \ \dot{\boldsymbol{q}} \\ \boldsymbol{\mathcal{M}}(\dot{\boldsymbol{q}} - \frac{4}{3}\dot{\boldsymbol{q}}_{n+1} + \frac{1}{3}\dot{\boldsymbol{q}}_n) - \frac{2}{3}\Delta t \ \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \end{bmatrix} = \begin{bmatrix} r_1(\boldsymbol{x}_{\boldsymbol{q}}) \\ r_2(\boldsymbol{x}_{\boldsymbol{q}}) \end{bmatrix}$$
 (169)

Based on Equation 168, we want to find the root $\boldsymbol{x_q}_{n+1} = \begin{bmatrix} \boldsymbol{q}_{n+1} \\ \dot{\boldsymbol{q}}_{n+1} \end{bmatrix}$ of r such that $r(\boldsymbol{x_q}_{n+1}) = 0$.

We will need to compute the Jacobian $J_r = \frac{\partial r}{\partial x} = \begin{bmatrix} \frac{\partial r_1}{\partial q} & \frac{\partial r_1}{\partial q} \\ \frac{\partial r_2}{\partial q} & \frac{\partial r_2}{\partial q} \end{bmatrix}$ of r. Let's compute each term:

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = \boldsymbol{I} \tag{170}$$

$$\frac{\partial r_1}{\partial \dot{\boldsymbol{q}}} = -\frac{2}{3} \Delta t \; \boldsymbol{I} \tag{171}$$

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\frac{2}{3} \Delta t \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}} = -\frac{2}{3} \Delta t \,\, \boldsymbol{\mathcal{K}}$$
 (172)

$$\frac{\partial r_2}{\partial \dot{\boldsymbol{q}}} = \mathcal{M} - \frac{2}{3} \Delta t \frac{\partial F}{\partial \dot{\boldsymbol{q}}} = \mathcal{M} - \frac{2}{3} \Delta t \, \mathcal{B} \tag{173}$$

The final expression of the Jacobian is:

$$J_r = \begin{bmatrix} \mathbf{I} & -\frac{2}{3}\Delta t \, \mathbf{I} \\ -\frac{2}{3}\Delta t \, \mathcal{K} & \mathcal{M} - \frac{2}{3}\Delta t \, \mathcal{B} \end{bmatrix}$$
(174)

Newton-Raphson to solve $r(x_q) = 0$

$$\begin{bmatrix} \mathbf{I} & -\frac{2}{3}\Delta t \, \mathbf{I} \\ -\frac{2}{3}\Delta t \, \mathcal{K} & \mathcal{M} - \frac{2}{3}\Delta t \, \mathcal{B} \end{bmatrix} \begin{bmatrix} \mathbf{q}^{i+1} - \mathbf{q}^{i} \\ \dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i} \end{bmatrix} = \begin{bmatrix} -r_{1}(\mathbf{x}_{\mathbf{q}}^{i}) \\ -r_{2}(\mathbf{x}_{\mathbf{q}}^{i}) \end{bmatrix}$$
(175)

7.5 Newmark

7.6 Implicit Linear Multistep Methods

Based on Equation 58, let's define the residual function as:

$$r(x) = a_s x + \sum_{j=0}^{s-1} a_j y_{n+j} - \Delta t \left(b_s f(t_{n+s}, x) + \sum_{j=0}^{s-1} b_j f(t_{n+j}, y_{n+j}) \right) \tag{176}$$

To find the next unknown state y_{n+s} , we need to compute the root x_r of r such that $r(x_r) = 0$. Newton-Raphson algorithm can be applied.

In the case of the Newton's second law (Equation 31),

$$r(\boldsymbol{x}_{\boldsymbol{q}}) = r(\boldsymbol{q}, \dot{\boldsymbol{q}}) =$$

$$a_{s} \begin{bmatrix} \boldsymbol{q} \\ \mathcal{M} \dot{\boldsymbol{q}} \end{bmatrix} + \sum_{j=0}^{s-1} a_{j} \begin{bmatrix} \boldsymbol{q}_{n+j} \\ \mathcal{M} \dot{\boldsymbol{q}}_{n+j} \end{bmatrix} - \Delta t \left(b_{s} \begin{bmatrix} \dot{\boldsymbol{q}} \\ \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \end{bmatrix} + \sum_{j=0}^{s-1} b_{j} \begin{bmatrix} \dot{\boldsymbol{q}}_{n+j} \\ \boldsymbol{F}(\boldsymbol{q}_{n+j}, \dot{\boldsymbol{q}}_{n+j}) \end{bmatrix} \right)$$

$$= \begin{bmatrix} r_{1}(\boldsymbol{x}_{\boldsymbol{q}}) \\ r_{2}(\boldsymbol{x}_{\boldsymbol{q}}) \end{bmatrix}$$
(177)

We will need to compute the Jacobian $J_r = \frac{\partial r}{\partial x} = \begin{bmatrix} \frac{\partial r_1}{\partial q} & \frac{\partial r_1}{\partial q} \\ \frac{\partial r_2}{\partial q} & \frac{\partial r_2}{\partial q} \end{bmatrix}$ of r. Let's compute each term:

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = a_s \boldsymbol{I} \tag{178}$$

$$\frac{\partial r_1}{\partial \dot{\boldsymbol{a}}} = -\Delta t \ b_s \ \boldsymbol{I} \tag{179}$$

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\Delta t \; b_s \; \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}} = -\Delta t \; b_s \; \boldsymbol{\mathcal{K}} \tag{180} \label{eq:180}$$

$$\frac{\partial r_2}{\partial \dot{\boldsymbol{q}}} = a_s \mathcal{M} - \Delta t \; b_s \; \frac{\partial \boldsymbol{F}}{\partial \dot{\boldsymbol{q}}} = a_s \mathcal{M} - \Delta t \; b_s \; \boldsymbol{\mathcal{B}} \tag{181}$$

The final expression of the Jacobian is:

$$J_r = \begin{bmatrix} a_s \mathbf{I} & -\Delta t \ b_s \ \mathbf{I} \\ -\Delta t \ b_s \ \mathcal{K} & a_s \mathcal{M} - \Delta t \ b_s \ \mathcal{B} \end{bmatrix}$$
(182)

We define $\mathcal{K}^i = \mathcal{K}(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i)$ and $\mathcal{B}^i = \mathcal{B}(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i)$.

Newton-Raphson to solve $r(\boldsymbol{x}_q) = 0$:

$$\begin{bmatrix} a_s \mathbf{I} & -\Delta t \ b_s \ \mathbf{I} \\ -\Delta t \ b_s \ \mathcal{K}^i & a_s \mathcal{M} - \Delta t \ b_s \ \mathcal{B}^i \end{bmatrix} \begin{bmatrix} \mathbf{q}^{i+1} - \mathbf{q}^i \\ \dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^i \end{bmatrix} = -r(\mathbf{x}_{\mathbf{q}}^{\ i})$$
(183)

7.6.1 Solve for \dot{q}

Using the Schur complement (see Equation 319), we obtain the reduced equation in $\dot{q}^{i+1} - \dot{q}^i$:

$$\left(a_s\mathcal{M} - \Delta t \ b_s \ \mathcal{B}^i - \Delta t^2 \frac{b_s^2}{a_s} \mathcal{K}^i\right) (\dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i) = -r_2(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i) - \Delta t \frac{b_s}{a_s} \mathcal{K}^i r_1(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i) \quad (184)$$

Equation 184 is a linear system of the form

$$A^i x^i = b^i (185)$$

where

$$\begin{cases} A^{i} = a_{s} \mathcal{M} - \Delta t \ b_{s} \ \mathcal{B}^{i} - \Delta t^{2} \frac{b_{s}^{2}}{a_{s}} \mathcal{K}^{i} \\ x^{i} = \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^{i} \\ b^{i} = -r_{2}(\boldsymbol{q}^{i}, \dot{\boldsymbol{q}}^{i}) - \Delta t \frac{b_{s}}{a_{s}} \mathcal{K}^{i} r_{1}(\boldsymbol{q}^{i}, \dot{\boldsymbol{q}}^{i}) \end{cases}$$

$$(186)$$

From Equation 318, we can deduce $q^{i+1} - q^i$

$$q^{i+1} - q^{i} = \frac{1}{a_{s}} \left(-r_{1}(x_{q}^{i}) + \Delta t \ b_{s}(\dot{q}^{i+1} - \dot{q}^{i}) \right) \tag{187}$$

7.6.2 Rayleigh Damping

$$r(\boldsymbol{x}_{\boldsymbol{q}}) = r(\boldsymbol{q}, \dot{\boldsymbol{q}}) =$$

$$a_{s} \begin{bmatrix} \boldsymbol{q} \\ \boldsymbol{\mathcal{M}} \dot{\boldsymbol{q}} \end{bmatrix} + \sum_{j=0}^{s-1} a_{j} \begin{bmatrix} \boldsymbol{q}_{n+j} \\ \boldsymbol{\mathcal{M}} \dot{\boldsymbol{q}}_{n+j} \end{bmatrix}$$

$$-\Delta t \left(b_{s} \begin{bmatrix} \dot{\boldsymbol{q}} \\ \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + (-\alpha \boldsymbol{\mathcal{M}} + \beta \boldsymbol{\mathcal{K}}(\boldsymbol{q}, \dot{\boldsymbol{q}})) \dot{\boldsymbol{q}} \end{bmatrix} + \right)$$

$$\sum_{j=0}^{s-1} b_{j} \begin{bmatrix} \dot{\boldsymbol{q}}_{n+j} \\ \boldsymbol{F}(\boldsymbol{q}_{n+j}, \dot{\boldsymbol{q}}_{n+j}) + (-\alpha \boldsymbol{\mathcal{M}} + \beta \boldsymbol{\mathcal{K}}(\boldsymbol{q}_{n+j}, \dot{\boldsymbol{q}}_{n+j})) \dot{\boldsymbol{q}} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}(\boldsymbol{x}_{\boldsymbol{q}}) \\ r_{2}(\boldsymbol{x}_{\boldsymbol{q}}) \end{bmatrix}$$

$$(188)$$

Only the second line is modified, so only the derivatives of r_2 must be computed:

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = -\Delta t \; b_s \; \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}} = -\Delta t \; b_s \; \boldsymbol{\mathcal{K}} \tag{189}$$

$$\frac{\partial r_2}{\partial \dot{q}} = a_s \mathcal{M} - \Delta t \ b_s \left(\frac{\partial \mathbf{F}}{\partial \dot{q}} - \alpha \mathcal{M} + \beta \mathcal{K} \right)
= a_s \mathcal{M} - \Delta t \ b_s \left(\mathcal{B} - \alpha \mathcal{M} + \beta \mathcal{K} \right)
= (a_s + \Delta t \ b_s \alpha) \mathcal{M} - \Delta t \ b_s (\mathcal{B} + \beta \mathcal{K})$$
(190)

The final expression of the Jacobian is:

$$J_r = \begin{bmatrix} a_s \mathbf{I} & -\Delta t \ b_s \ \mathbf{I} \\ -\Delta t \ b_s \ \mathcal{K} & (a_s + \Delta t \ b_s \alpha) \mathcal{M} - \Delta t \ b_s (\mathcal{B} + \beta \mathcal{K}) \end{bmatrix}$$
(191)

Newton-Raphson to solve
$$r(\boldsymbol{x_q}) = 0$$
:
$$\begin{bmatrix} a_s \boldsymbol{I} & -\Delta t \ b_s \ \boldsymbol{I} \\ -\Delta t \ b_s \ \boldsymbol{\mathcal{K}} & (a_s + \Delta t \ b_s \alpha) \boldsymbol{\mathcal{M}} - \Delta t \ b_s (\boldsymbol{\mathcal{B}} + \beta \boldsymbol{\mathcal{K}}) \end{bmatrix} \begin{bmatrix} \boldsymbol{q}^{i+1} - \boldsymbol{q}^i \\ \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i \end{bmatrix} = -r(\boldsymbol{x_q}^i)$$
 (192)

Solve for \dot{q}

Using the Schur complement (see Equation 319), we obtain the reduced equation in $\dot{q}^{i+1} - \dot{q}^i$:

$$\begin{split} \bigg((a_s + \Delta t \ b_s \alpha) \mathcal{M} - \Delta t \ b_s \ \mathcal{B}^i - \Delta t \ b_s \bigg(\beta + \Delta t \frac{b_s}{a_s} \bigg) \mathcal{K}^i \bigg) (\dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i) = \\ - r_2(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i) - \Delta t \frac{b_s}{a_s} \mathcal{K}^i r_1(\boldsymbol{q}^i, \dot{\boldsymbol{q}}^i) \end{split} \tag{193}$$

From Equation 318, we can deduce $q^{i+1} - q^i$:

$${\pmb q}^{i+1} - {\pmb q}^i = \frac{1}{a_s} \bigl(-r_1 \bigl({\pmb x_{\pmb q}}^i \bigr) + \Delta t \; b_s \bigl(\dot{{\pmb q}}^{i+1} - \dot{{\pmb q}}^i \bigr) \bigr) \eqno(194)$$

8 Constraints

8.1 Definitions

Holonomic constraints are relations between position variables:

$$\delta(\mathbf{q}, t) = 0 \tag{195}$$

Non-holonomic constraints are relations between velocity variables, or higher time-derivatives of position:

$$\delta(\mathbf{q}, \dot{\mathbf{q}}, t) = 0 \tag{196}$$

Solving both the ODE from Equation 31 and the constraint is a Differential-algebraic system of equations (DAE):

8.1.1 Velocity-level equation

We assume that the constraints must be satisfied over time ($\delta(t) = 0$ at all times):

$$\delta = 0 \Leftrightarrow \dot{\delta} = 0 \tag{198}$$

By chain rule:

$$\dot{\delta} = \frac{\partial \delta}{\partial t}
= \frac{\partial \delta}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial t}
= \mathcal{H} \dot{\mathbf{q}}$$
(199)

This gives an alternative equation to the position-level constraint equation (Equation 195).

8.1.2 Acceleration-level Equation

$$\delta = 0 \Leftrightarrow \dot{\delta} = 0 \Leftrightarrow \ddot{\delta} = 0 \tag{200}$$

By chain rule:

$$\ddot{\delta} = \frac{\partial \dot{\delta}}{\partial t} = \frac{\partial [\mathcal{H}\dot{q}]}{\partial t} = \dot{\mathcal{H}}\dot{q} + \mathcal{H}\ddot{q}$$
 (201)

 $\dot{\mathcal{H}}$ can also be written:

$$\dot{\mathcal{H}} = \frac{\partial \dot{\delta}}{\partial \mathbf{q}} \tag{202}$$

8.1.3 Linear Combination

Let's define

$$c(\boldsymbol{x}_{\boldsymbol{q}},t) = \alpha_{\ddot{\boldsymbol{q}}} \ddot{\delta}(\boldsymbol{x}_{\boldsymbol{q}},t) + \alpha_{\dot{\boldsymbol{q}}} \dot{\delta}(\boldsymbol{x}_{\boldsymbol{q}},t) + \alpha_{\boldsymbol{q}} \delta(\boldsymbol{x}_{\boldsymbol{q}},t)$$
(203)

with $\alpha_{\ddot{q}}$, $\alpha_{\dot{q}}$ and α_{q} constant factors.

Constraint equation:

$$c = 0 (204)$$

$$\begin{cases} \alpha_{\ddot{\boldsymbol{q}}} = 0, \alpha_{\dot{\boldsymbol{q}}} = 0, \alpha_{\boldsymbol{q}} = 1 \Rightarrow \text{position-level constraint equation} \\ \alpha_{\ddot{\boldsymbol{q}}} = 0, \alpha_{\dot{\boldsymbol{q}}} = 1, \alpha_{\boldsymbol{q}} = 0 \Rightarrow \text{velocity constraint equation} \\ \alpha_{\ddot{\boldsymbol{q}}} = 1, \alpha_{\dot{\boldsymbol{q}}} = 0, \alpha_{\boldsymbol{q}} = 0 \Rightarrow \text{acceleration-level constraint equation} \end{cases} \tag{205}$$

8.2 Lagrangian

We want to apply C holonomic constraints δ_i , for 0 < i < C - 1. We introduce a Lagrange multiplier λ_i for each of the constraint.

The Lagrangian (Equation 9) is modified by incorporating Lagrange multipliers λ on the holonomic constraints equation:

$$\mathcal{L}'(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) + \sum_{i=0}^{C-1} \lambda_i(t) \delta_i(\boldsymbol{q}, t)$$
 (206)

Definition:

$$\lambda(t) = \begin{bmatrix} \lambda_0(t) \\ \vdots \\ \lambda_{C-1}(t) \end{bmatrix}$$
 (207)

$$\delta(t) = \begin{bmatrix} \delta_0(\boldsymbol{q}, t) \\ \vdots \\ \delta_{C-1}(\boldsymbol{q}, t) \end{bmatrix}$$
 (208)

Using the dot product $\lambda \cdot \delta(\boldsymbol{q},t) = \sum_{i=0}^{C-1} \lambda_i \delta_i(\boldsymbol{q},t)$: $\mathcal{L}'(\boldsymbol{q},\dot{\boldsymbol{q}},t) = \mathcal{L}(\boldsymbol{q},\dot{\boldsymbol{q}},t) + \lambda \cdot \delta(\boldsymbol{q},t)$

$$\mathcal{L}'(\mathbf{q}, \dot{\mathbf{q}}, t) = \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) + \lambda \cdot \delta(\mathbf{q}, t)$$
(209)

We can apply the Euler-Lagrange equation (Equation 21) on the modified Lagrangian:

$$\frac{\partial \mathcal{L}'}{\partial \mathbf{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{\mathbf{q}}} \right) = 0$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial \mathbf{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) + \left(\frac{\partial \delta}{\partial \mathbf{q}} \right)^{T} \lambda = 0$$
(210)

This is the Lagrange's equation of the first kind.

We introduce the Jacobian matrix of the constraints \mathcal{H} such that:

$$\mathcal{H}(\boldsymbol{q},t) = \frac{\partial \delta(\boldsymbol{q},t)}{\partial \boldsymbol{q}} \tag{211}$$

With n degrees of freedom and m constraints, $\mathcal{H} \in \mathbb{R}^{m \times n}$:

$$\mathcal{H}(\boldsymbol{q},t) = \begin{bmatrix} \frac{\partial \delta_0}{\partial \boldsymbol{q}_0} & \cdots & \frac{\partial \delta_0}{\partial \boldsymbol{q}_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \delta_{m-1}}{\partial \boldsymbol{q}_0} & \cdots & \frac{\partial \delta_{m-1}}{\partial \boldsymbol{q}_{n-1}} \end{bmatrix}$$
(212)

8.3 Static

In statics

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \boldsymbol{F}(\boldsymbol{q}) \tag{213}$$

and

$$\frac{\partial \mathcal{L}}{\partial \dot{q}} = 0 \tag{214}$$

Equation 210 becomes:

$$\begin{cases} F(q) + \mathcal{H}^T \lambda = 0 \\ \delta(q) = 0 \end{cases}$$
 (215)

This is a nonlinear set of equations of unknowns (q, λ) that can be solved using a Newton-Raphson algorithm.

Let's define the residual function r such that:

$$r(\boldsymbol{q}, \lambda) = \begin{bmatrix} \boldsymbol{F}(\boldsymbol{q}) + \boldsymbol{\mathcal{H}}^T \lambda \\ \delta(\boldsymbol{q}) \end{bmatrix} = \begin{bmatrix} r_1(\boldsymbol{q}, \lambda) \\ r_2(\boldsymbol{q}, \lambda) \end{bmatrix}$$
 (216)

We want to find the root q_{eq} , λ_{eq} of r such that $r(q_{eq}, \lambda_{eq}) = 0$.

We will need to compute the Jacobian J_r of r:

$$J_r = \begin{bmatrix} \frac{\partial r_1}{\partial \mathbf{q}} & \frac{\partial r_1}{\partial \lambda} \\ \frac{\partial r_2}{\partial \mathbf{q}} & \frac{\partial r_2}{\partial \lambda} \end{bmatrix}$$
 (217)

Let's compute each term:

$$\frac{\partial r_1}{\partial \mathbf{q}} = \mathcal{K} + \frac{\partial [\mathcal{H}^T \lambda]}{\partial \mathbf{q}}$$
 (218)

We introduce the geometric stiffness $\widetilde{\mathcal{K}}_{\lambda}$ such as:

$$\widetilde{\mathcal{K}}_{\lambda(q,\lambda)} = \frac{\partial [\mathcal{H}^T \lambda]}{\partial q}$$
 (219)

Then,

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = \mathcal{K} + \widetilde{\mathcal{K}}_{\lambda} \tag{220}$$

$$\frac{\partial r_1}{\partial \lambda} = \mathcal{H}^T \tag{221}$$

$$\frac{\partial r_2}{\partial \boldsymbol{q}} = \mathcal{H} \tag{222}$$

$$\frac{\partial r_2}{\partial \lambda} = 0 \tag{223}$$

The final expression of the Jacobian J_r is:

$$J_r = \begin{bmatrix} \mathcal{K} + \widetilde{\mathcal{K}}_{\lambda} & \mathcal{H}(\mathbf{q})^T \\ \mathcal{H}(\mathbf{q}) & 0 \end{bmatrix}$$
 (224)

Newton-Raphson iteration:

$$J_r \begin{bmatrix} \boldsymbol{q}^{i+1} - \boldsymbol{q}^i \\ \lambda^{i+1} - \lambda^i \end{bmatrix} = -r(\boldsymbol{q}^i, \lambda^i)$$
 (225)

or,

$$\begin{bmatrix} \mathcal{K}(\boldsymbol{q}^{i}) + \widetilde{\mathcal{K}}_{\lambda}(\boldsymbol{q}^{i}, \lambda^{i}) & \mathcal{H}(\boldsymbol{q}^{i})^{T} \\ \mathcal{H}(\boldsymbol{q}^{i}) & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}^{i+1} - \boldsymbol{q}^{i} \\ \lambda^{i+1} - \lambda^{i} \end{bmatrix} = - \begin{bmatrix} \boldsymbol{F}(\boldsymbol{q}^{i}) + \mathcal{H}(\boldsymbol{q}^{i})^{T} \lambda^{i} \\ \delta(\boldsymbol{q}^{i}) \end{bmatrix}$$
(226)

8.3.1 2-steps Solver

We denote $\mathcal{H}^i = \mathcal{H}(q^i)$

Using the Schur complement (Equation 319) on the previous equation, we obtain the reduced equation in $\lambda^{i+1} - \lambda^i$:

$$\underbrace{-\mathcal{H}^{i}\left(\mathcal{K}(\boldsymbol{q}^{i}) + \widetilde{\mathcal{K}}_{\lambda(\boldsymbol{q}^{i},\lambda^{i})}\right)^{-1}\mathcal{H}^{i^{T}}}_{\boldsymbol{w}}(\lambda^{i+1} - \lambda^{i})$$

$$= -\delta(\boldsymbol{q}^{i}) + \mathcal{H}^{i}\left(\mathcal{K}(\boldsymbol{q}^{i}) + \widetilde{\mathcal{K}}_{\lambda(\boldsymbol{q}^{i})}\right)^{-1}\left(\boldsymbol{F}(\boldsymbol{q}^{i}) + \mathcal{H}^{i^{T}}\lambda^{i}\right)$$

$$\stackrel{\sim}{=} \sum_{i=1}^{n-1} \boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma}_{i}^{T} + \boldsymbol{\sigma}_{i}^{T} \boldsymbol{\sigma$$

 $\mathcal{W} = \mathcal{H}^i \left(\mathcal{K}(q^i) + \widetilde{\mathcal{K}}_{\lambda(q^i,\lambda^i)} \right)^{-1} \mathcal{H}^{i^T}$ is called the compliance matrix.

From Equation 318, we can deduce:

$$\boldsymbol{q}^{i+1} - \boldsymbol{q}^{i} = \left(\boldsymbol{\mathcal{K}}(\boldsymbol{q}^{i}) + \widetilde{\boldsymbol{\mathcal{K}}}_{\lambda(\boldsymbol{q}^{i})} \right)^{-1} \left(-\boldsymbol{F}(\boldsymbol{q}^{i}) - \boldsymbol{\mathcal{H}}^{i^{T}} \lambda^{i} \right) - \boldsymbol{\mathcal{H}}^{i^{T}} (\lambda^{i+1} - \lambda^{i})$$
(228)

8.4 Equation of Motion

Constraint Newton's second law of motion can be deduced from Equation 210 (see also Section 2.1):

$$F(q, \dot{q}) - \mathcal{M} \frac{d\dot{q}}{dt} + \mathcal{H}(x_q)^T \lambda = 0$$
(229)

By rearranging the terms:

$$\mathcal{M}\frac{d\dot{q}}{dt} = F(q, \dot{q}) + \mathcal{H}(x_q)^T \lambda$$
 (230)

8.4.1 Position-level Equation of Motion

$$\begin{cases}
\frac{d\mathbf{q}}{dt} = \dot{\mathbf{q}} \\
\mathcal{M}\frac{d\dot{\mathbf{q}}}{dt} = \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}}) + \mathcal{H}(\mathbf{x}_{\mathbf{q}})^T \lambda \\
\delta(\mathbf{q}, t) = 0
\end{cases} (231)$$

8.4.2 Velocity-level Equation of Motion

$$\begin{cases} \frac{d\mathbf{q}}{dt} = \dot{\mathbf{q}} \\ \mathcal{M} \frac{d\dot{\mathbf{q}}}{dt} = \mathbf{F}(\mathbf{q}, \dot{\mathbf{q}}) + \mathcal{H}(\mathbf{x}_{\mathbf{q}})^T \lambda \\ \mathcal{H} \dot{\mathbf{q}} = 0 \end{cases}$$
(232)

8.5 Linear Multistep Methods

Based on Equation 230, we add the constraint term in the residual function of the linear multistep methods (Section 7.6):

$$\begin{split} \tilde{r}(\boldsymbol{x}_{\boldsymbol{q}}, \boldsymbol{\lambda}) &= \tilde{r}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\lambda}) = \\ a_{s} \begin{bmatrix} \boldsymbol{q} \\ \boldsymbol{\mathcal{M}} \dot{\boldsymbol{q}} \end{bmatrix} + \sum_{j=0}^{s-1} a_{j} \begin{bmatrix} \boldsymbol{q}_{n+j} \\ \boldsymbol{\mathcal{M}} \dot{\boldsymbol{q}}_{n+j} \end{bmatrix} \\ -\Delta t \left(b_{s} \begin{bmatrix} \dot{\boldsymbol{q}} \\ \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \boldsymbol{\mathcal{H}}(\boldsymbol{q}, t)^{T} \boldsymbol{\lambda} \end{bmatrix} + \sum_{j=0}^{s-1} b_{j} \begin{bmatrix} \dot{\boldsymbol{q}}_{n+j} \\ \boldsymbol{F}(\boldsymbol{q}_{n+j}, \dot{\boldsymbol{q}}_{n+j}) + \boldsymbol{\mathcal{H}}(\boldsymbol{q}_{n+j}, t_{n+j})^{T} \boldsymbol{\lambda}_{n+j} \end{bmatrix} \right) (233) \\ &= \begin{bmatrix} r_{1}(\boldsymbol{x}_{\boldsymbol{q}}, \boldsymbol{\lambda}) \\ \tilde{r_{2}}(\boldsymbol{x}_{\boldsymbol{q}}, \boldsymbol{\lambda}) \end{bmatrix} \end{split}$$

 $\tilde{r_2}$ can be related to r_2 from Section 7.6:

$$\tilde{r_2} = r_2(\boldsymbol{x_q}) - \Delta t \left(b_s \mathcal{H}(\boldsymbol{q}, t)^T \lambda + \sum_{j=0}^{s-1} b_j \mathcal{H}(\boldsymbol{q}_{n+j}, t_{n+j})^T \lambda_{n+j} \right)$$
(234)

We know have more unknowns (q, \dot{q}, λ) than equations, so we add the constraint Equation 195 to \tilde{r} :

$$\tilde{r} = \begin{bmatrix} r_1(\boldsymbol{x}_q) \\ \tilde{r}_2(\boldsymbol{x}_q) \\ \delta(\boldsymbol{x}_q, t) \end{bmatrix}$$
(235)

We need to compute the Jacobian $J_{\tilde{r}}$ of \tilde{r} :

$$J_{\tilde{r}} = \begin{bmatrix} \frac{\partial r_1}{\partial q} & \frac{\partial r_1}{\partial \dot{q}} & \frac{\partial r_1}{\partial \lambda} \\ \frac{\partial \tilde{r}_2}{\partial q} & \frac{\partial \tilde{r}_2}{\partial \dot{q}} & \frac{\partial \tilde{r}_2}{\partial \lambda} \\ \frac{\partial \delta}{\partial q} & \frac{\partial \delta}{\partial \dot{q}} & \frac{\partial \delta}{\partial \lambda} \end{bmatrix}$$
(236)

Let's compute each term:

$$\frac{\partial r_1}{\partial \boldsymbol{q}} = a_s \boldsymbol{I} \tag{237}$$

$$\frac{\partial r_1}{\partial \dot{\boldsymbol{q}}} = -\Delta t \; b_s \; \boldsymbol{I} \tag{238}$$

$$\frac{\partial r_1}{\partial \lambda} = 0 \tag{239}$$

$$\frac{\partial \tilde{r_2}}{\partial \boldsymbol{q}} = -\Delta t \ b_s \left(\boldsymbol{\mathcal{K}} + \frac{\partial [\boldsymbol{\mathcal{H}}^T \boldsymbol{\lambda}]}{\partial \boldsymbol{q}} \right) = -\Delta t \ b_s \left(\boldsymbol{\mathcal{K}} + \widetilde{\boldsymbol{\mathcal{K}}}_{\boldsymbol{\lambda}} \right)$$
(240)

$$\frac{\partial \tilde{r_2}}{\partial \dot{\boldsymbol{q}}} = a_s \mathcal{M} - \Delta t \; b_s \; \mathcal{B} \tag{241} \label{eq:241}$$

$$\frac{\partial \tilde{r_2}}{\partial \lambda} = -\Delta t \ b_s \mathcal{H}(\mathbf{q})^T \tag{242}$$

$$\frac{\partial \delta}{\partial \boldsymbol{q}} = \mathcal{H}(\boldsymbol{q}) \tag{243}$$

$$\frac{\partial \delta}{\partial \dot{\boldsymbol{q}}} = 0 \tag{244}$$

$$\frac{\partial c}{\partial \lambda} = 0 \tag{245}$$

The final expression of the Jacobian $J_{\tilde{r}}$ is:

$$J_{\tilde{r}} = \begin{bmatrix} a_s \mathbf{I} & -\Delta t \ b_s \ \mathbf{I} & 0 \\ -\Delta t \ b_s \left(\mathbf{\mathcal{K}}(\mathbf{x}_{\boldsymbol{q}}) + \widetilde{\mathbf{\mathcal{K}}}_{\lambda(\boldsymbol{q},\lambda)} \right) \ a_s \mathbf{\mathcal{M}} - \Delta t \ b_s \ \mathbf{\mathcal{B}}(\mathbf{x}_{\boldsymbol{q}}) \ -\Delta t \ b_s \mathbf{\mathcal{H}}(\boldsymbol{q})^T \\ \mathbf{\mathcal{H}}(\boldsymbol{q}) & 0 & 0 \end{bmatrix}$$
(246)

We denote $\mathcal{H}^i = \mathcal{H}(q^i)$.

Newton-Raphson to solve $\tilde{r}\big(\boldsymbol{x}_{\boldsymbol{q}}\big)=0$

$$\begin{bmatrix} a_{s}\mathbf{I} & -\Delta t \ b_{s} \ \mathbf{I} & 0 \\ -\Delta t \ b_{s} \left(\mathbf{K} + \widetilde{\mathbf{K}}_{\lambda} \right) \ a_{s} \mathbf{M} - \Delta t \ b_{s} \ \mathbf{B} \ -\Delta t \ b_{s} \mathbf{H}^{i^{T}} \end{bmatrix} \begin{bmatrix} \mathbf{q}^{i+1} - \mathbf{q}^{i} \\ \dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i} \\ \dot{\mathbf{q}}^{i+1} - \dot{\mathbf{q}}^{i} \\ \lambda^{i+1} - \lambda^{i} \end{bmatrix} = -\tilde{r} \left(\mathbf{x}_{\mathbf{q}}^{i} \right)$$
(247)

We define a block division of the matrix such as:

$$\begin{bmatrix}
A & B & 0 \\
\overline{D} & E & F \\
G & 0 & 0
\end{bmatrix} = \begin{bmatrix}
a_s \mathbf{I} & -\Delta t \ b_s \ \mathbf{I} & 0 \\
-\Delta t \ b_s \left(\mathcal{K} + \widetilde{\mathcal{K}}_{\lambda}\right) & a_s \mathcal{M} - \Delta t \ b_s \ \mathcal{B} & -\Delta t \ b_s \mathcal{H}^{i^T} \\
\mathcal{H}^i & 0 & 0
\end{bmatrix}$$
(248)

Using the Schur complement (Equation 319), we obtain the reduced equation in $\Delta \dot{q}$ and $\Delta \lambda$:

$$\left(\begin{bmatrix} E & F \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} D \\ G \end{bmatrix} A^{-1} \begin{bmatrix} B & 0 \end{bmatrix} \right) \begin{bmatrix} \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^{i} \\ \lambda^{i+1} - \lambda^{i} \end{bmatrix} = - \begin{bmatrix} \tilde{r_2}(\boldsymbol{x_q}^{i}) \\ \tilde{r_3}(\boldsymbol{x_q}^{i}) \end{bmatrix} + \begin{bmatrix} D \\ G \end{bmatrix} A^{-1} r_1 \tag{249}$$

$$\Leftrightarrow \begin{bmatrix} E - \frac{1}{a_s}DB & F \\ -\frac{1}{a_s}GB & 0 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^i \\ \lambda^{i+1} - \lambda^i \end{bmatrix} = -\begin{bmatrix} \tilde{r_2}(\boldsymbol{x_q}^i) \\ \tilde{r_3}(\boldsymbol{x_q}^i) \end{bmatrix} + \frac{1}{a_s} \begin{bmatrix} D \\ G \end{bmatrix} r_1(\boldsymbol{x_q}^i)$$
 (250)

Finally:

$$\begin{bmatrix}
a_{s}\mathcal{M} - \Delta t \, b_{s} \, \mathcal{B} - \Delta t^{2} \frac{b_{s}^{2}}{a_{s}} \left(\mathcal{K} + \widetilde{\mathcal{K}}_{\lambda}\right) \middle| -\Delta t \, b_{s} \mathcal{H}^{i^{T}} \\
\Delta t \, \frac{b_{s}}{a_{s}} \mathcal{H}^{i} & 0
\end{bmatrix} \begin{bmatrix}
\dot{q}^{i+1} - \dot{q}^{i} \\
\lambda^{i+1} - \lambda^{i}
\end{bmatrix}$$

$$= -\begin{bmatrix} \tilde{r_{2}} \\ \delta(\boldsymbol{x_{q}}^{i}) \end{bmatrix} + \frac{1}{a_{s}} \begin{bmatrix} -\Delta t \, b_{s} \left(\mathcal{K} + \widetilde{\mathcal{K}}_{\lambda}\right) \\ \mathcal{H}^{i} \end{bmatrix} r_{1} \left(\boldsymbol{x_{q}}^{i}\right)$$
(251)

We use the notations from Equation 186 and define $A^i_{\lambda} = A^i - \Delta t^2 \frac{b_s^2}{a_s} \widetilde{\mathcal{K}}_{\lambda}$ and

$$b_{\lambda}^{i} = b^{i} + \Delta t \left(b_{s} \mathcal{H}(\boldsymbol{q}, t)^{T} \lambda + \sum_{j=0}^{s-1} b_{j} \mathcal{H}(\boldsymbol{q}_{n+j}, t_{n+j})^{T} \lambda_{n+j} \right) - \Delta t \frac{b_{s}}{a_{s}} \widetilde{\mathcal{K}}_{\lambda} r_{1}(\boldsymbol{x}_{\boldsymbol{q}}^{i})$$
(252)

It yields:

$$\begin{bmatrix} A_{\lambda}^{i} & -\Delta t \ b_{s} \mathcal{H}^{iT} \\ \Delta t \ \frac{b_{s}}{a_{s}} \mathcal{H}^{i} & 0 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^{i} \\ \lambda^{i+1} - \lambda^{i} \end{bmatrix} = \begin{bmatrix} b_{\lambda}^{i} \\ \delta(\boldsymbol{x_{q}}^{i}) + \frac{1}{a_{s}} \mathcal{H}^{i} r_{1}(\boldsymbol{x_{q}}^{i}) \end{bmatrix}$$
(253)

This linear system can be solved directly, or in 2 steps:

2-steps Solver

Using the Schur complement (Equation 319), we obtain the reduced equation in $\lambda^{i+1} - \lambda^i$:

$$\frac{b_s^2}{a_s} \Delta t^2 \mathcal{H}^i A_{\lambda}^{i^{-1}} \mathcal{H}^{i^T} (\lambda^{i+1} - \lambda^i) = -\delta^i - \frac{1}{a_s} \mathcal{H}^i r_1 (\boldsymbol{x_q}^i) - \Delta t \frac{b_s}{a_s} \mathcal{H}^i A_{\lambda}^{i^{-1}} b_{\lambda}^i$$
 (254)

The right-hand side is called constraint violation.

From Equation 318, we can deduce:

$$\dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^{i} = A_{\lambda}^{i^{-1}} \left(b_{\lambda}^{i} + \Delta t \ b_{s} \mathcal{H}^{i^{T}} (\lambda^{i+1} - \lambda^{i}) \right)$$

$$\Leftrightarrow \dot{\boldsymbol{q}}^{i+1} - \dot{\boldsymbol{q}}^{i} = \underbrace{A_{\lambda}^{i^{-1}} b_{\lambda}^{i}}_{\text{free motion}} + \underbrace{A_{\lambda}^{i^{-1}} \Delta t \ b_{s} \mathcal{H}^{i^{T}} (\lambda^{i+1} - \lambda^{i})}_{\text{corrective motion}}$$

$$(255)$$

We define the free motion as:

$$\Delta \dot{q}_{\text{free}}(\boldsymbol{x}_{\boldsymbol{q}}^{i}, \lambda^{i}) = A_{\lambda}^{i^{-1}} b_{\lambda}^{i}$$
 (256)

It can be computed independently of the unknowns λ^{i+1} .

The free motion allows to define a free unconstrained velocity $\dot{\boldsymbol{q}}_{\text{free}}^i = \dot{\boldsymbol{q}}^i + \Delta \dot{\boldsymbol{q}}_{\text{free}}$

 $\mathcal{W}^i = \mathcal{H}^i A_{\lambda}^{i^{-1}} \mathcal{H}^{i^T}$ is the compliance matrix projected in the constraint space.

Assuming a single Newton step, $\boldsymbol{x_q}^0 = \boldsymbol{x_q}_n$, $\lambda^0 = 0$, and with a backward Euler:

$$\begin{cases} \Delta t^2 \mathcal{H}_n A_{\lambda}^{-1} \mathcal{H}_n \lambda = -\delta(\boldsymbol{q}_n) - \mathcal{H}_n \Delta t \dot{\boldsymbol{q}}_n - \Delta t \mathcal{H} \Delta \dot{\boldsymbol{q}}_{\text{free}} \\ \dot{\boldsymbol{q}}_{n+1} - \dot{\boldsymbol{q}}_n = A_{\lambda}^{-1} \left(b + \Delta t^2 \widetilde{\mathcal{K}}_{\lambda} \dot{\boldsymbol{q}}_n + \Delta t \mathcal{H}^T \lambda \right) \end{cases}$$
(257)

8.6 Constraint Linearization

From Equation 137 and Equation 195:

$$\begin{cases} A \Delta \dot{\boldsymbol{q}} = b + \Delta t \mathcal{H}(\boldsymbol{q}_n)^T \lambda \\ \delta(\boldsymbol{q}_{n+1}) = 0 \end{cases}$$
 (258)

Taylor series expansion of δ around q_n :

$$\delta(\boldsymbol{q}_{n+1}) = \delta(\boldsymbol{q}_n + \Delta \boldsymbol{q}) = \delta(\boldsymbol{q}_n) + \mathcal{H}(\boldsymbol{q}_n)\Delta \boldsymbol{q} + o(\|\Delta \boldsymbol{q}\|^2)$$
 (259)

 δ is approximated:

$$\delta(\mathbf{q}_n + \Delta \mathbf{q}) \approx \delta(\mathbf{q}_n) + \mathcal{H}(\mathbf{q}_n) \Delta \mathbf{q}$$
 (260)

Replacing Δq by Equation 131:

$$\delta(\mathbf{q}_n + \Delta \mathbf{q}) \approx \delta(\mathbf{q}_n) + \mathcal{H}(\mathbf{q}_n) \Delta t (\Delta \dot{\mathbf{q}} + \dot{\mathbf{q}}_n)$$

$$\approx \delta(\mathbf{q}_n) + \Delta t \mathcal{H}(\mathbf{q}_n) \Delta \dot{\mathbf{q}} + \Delta t \mathcal{H}(\mathbf{q}_n) \dot{\mathbf{q}}_n$$
(261)

Then,

$$\begin{cases} A \Delta \dot{\boldsymbol{q}} = b + \Delta t \mathcal{H}(\boldsymbol{q}_n)^T \lambda \\ \delta(\boldsymbol{q}_n) + \Delta t \mathcal{H}(\boldsymbol{q}_n) \Delta \dot{\boldsymbol{q}} + \Delta t \mathcal{H}(\boldsymbol{q}_n) \dot{\boldsymbol{q}}_n = 0 \end{cases}$$
(262)

In matrix format:

$$\begin{bmatrix} A & -\Delta t \mathcal{H}(\boldsymbol{q}_n)^T \\ \Delta t \mathcal{H}(\boldsymbol{q}_n) & 0 \end{bmatrix} \begin{bmatrix} \Delta \dot{\boldsymbol{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} b \\ -\delta(\boldsymbol{q}_n) - \Delta t \mathcal{H}(\boldsymbol{q}_n) \dot{\boldsymbol{q}}_n \end{bmatrix}$$
(263)

Using the Schur complement (Equation 319):

$$\begin{split} \Delta t^2 \mathcal{H}(\boldsymbol{q}_n) A^{-1} \mathcal{H}(\boldsymbol{q}_n)^T \lambda &= -\delta(\boldsymbol{q}_n) - \Delta t \mathcal{H}(\boldsymbol{q}_n) \dot{\boldsymbol{q}}_n - \Delta t \mathcal{H}(\boldsymbol{q}_n) A^{-1} b \\ &= -\delta(\boldsymbol{q}_n) - \Delta t \mathcal{H}(\boldsymbol{q}_n) (\dot{\boldsymbol{q}}_n + \Delta \dot{\boldsymbol{q}}_{\text{free}}) \\ &\approx -\delta(\boldsymbol{q}_n + \Delta \boldsymbol{q}_{\text{free}}) = -\delta(\boldsymbol{q}_{\text{free}}) \end{split} \tag{264}$$

Then,

$$\Delta \dot{\mathbf{q}} = A^{-1} \left(b + \Delta t \mathcal{H} (\mathbf{q}_n)^T \lambda \right) \tag{265}$$

Force and constraint linearization method is equivalent to a single Newton step, $\boldsymbol{x_q}^0 = \boldsymbol{x_q}_n$, $\lambda^0 = 0$, and with a backward Euler.

8.6.1 Multiple Interacting Objects

If the matrix A is made of multiple blocs:

$$A = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \tag{266}$$

We can also divide A^{-1} :

$$A = \begin{bmatrix} A_{00}^{-1} & A_{01}^{-1} \\ A_{10}^{-1} & A_{11}^{-1} \end{bmatrix}$$
 (267)

The Jacobian matric can also be divided:

$$\mathcal{H} = [\mathcal{H}_0 \ \mathcal{H}_1] = [\mathcal{H}_0 \ 0] + [0 \ \mathcal{H}_1] \tag{268}$$

And the compliance matrix projected into the constraint space:

$$\mathcal{W} = \mathcal{H}A^{-1}\mathcal{H}^{T} = ([\mathcal{H}_{0} \ 0] + [0 \ \mathcal{H}_{1}])A^{-1} \begin{pmatrix} \left[\mathcal{H}_{0}^{T}\right] + \begin{bmatrix} 0\\ 0 \end{bmatrix} + \begin{bmatrix} 0\\ \mathcal{H}_{1}^{T} \end{bmatrix} \end{pmatrix}$$

$$= [\mathcal{H}_{0} \ 0]A^{-1} \begin{bmatrix} \mathcal{H}_{0}^{T}\\ 0 \end{bmatrix} + [0 \ \mathcal{H}_{1}]A^{-1} \begin{bmatrix} \mathcal{H}_{0}^{T}\\ 0 \end{bmatrix} + [0 \ \mathcal{H}_{1}]A^{-1} \begin{bmatrix} 0\\ \mathcal{H}_{1}^{T} \end{bmatrix} + [0 \ \mathcal{H}_{1}]A^{-1} \begin{bmatrix} 0\\ \mathcal{H}_{1}^{T} \end{bmatrix}$$

$$(269)$$

Let's compute each term:

$$\underbrace{\begin{bmatrix} \mathcal{H}_0 & 0 \end{bmatrix}}_{\in \mathbb{R}^{m \times n}} \underbrace{\begin{bmatrix} \mathcal{H}_0^T \\ 0 \end{bmatrix}}_{\in \mathbb{R}^{n \times m}} = \begin{bmatrix} \mathcal{H}_0 & 0 \end{bmatrix} \begin{bmatrix} A_{00}^{-1} \mathcal{H}_0^T \\ A_{10}^{-1} \mathcal{H}_0^T \end{bmatrix} = \mathcal{H}_0 A_{00}^{-1} \mathcal{H}_0^T \tag{270}$$

Similarly

$$[0 \ \mathcal{H}_1]A^{-1} \begin{bmatrix} \mathcal{H}_0^T \\ 0 \end{bmatrix} = [0 \ \mathcal{H}_1] \begin{bmatrix} A_{00}^{-1} \mathcal{H}_0^T \\ A_{10}^{-1} \mathcal{H}_0^T \end{bmatrix} = \mathcal{H}_1 A_{10}^{-1} \mathcal{H}_0^T$$
 (271)

All together:

$$\mathcal{H}A^{-1}\mathcal{H}^{T} = \mathcal{H}_{0}A_{00}^{-1}\mathcal{H}_{0}^{T} + \mathcal{H}_{1}A_{10}^{-1}\mathcal{H}_{0}^{T} + \mathcal{H}_{0}A_{01}^{-1}\mathcal{H}_{1}^{T} + \mathcal{H}_{1}A_{11}^{-1}\mathcal{H}_{1}^{T}$$
(272)

8.6.2 Relaxation

 $\mathcal{C}\lambda = -\delta$

Equation 262 becomes:

$$\begin{cases} A \Delta \dot{\boldsymbol{q}} = b + \Delta t \mathcal{H}(\boldsymbol{q}_n)^T \lambda \\ \delta(\boldsymbol{q}_n) + \Delta t \mathcal{H}(\boldsymbol{q}_n) \Delta \dot{\boldsymbol{q}} + \Delta t \mathcal{H}(\boldsymbol{q}_n) \dot{\boldsymbol{q}}_n = -\mathcal{C}\lambda \end{cases}$$
(273)

$$\begin{bmatrix} A & -\Delta t \mathcal{H}(\boldsymbol{q}_n)^T \\ \Delta t \mathcal{H}(\boldsymbol{q}_n) & \mathcal{C} \end{bmatrix} \begin{bmatrix} \Delta \dot{\boldsymbol{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} b \\ -\delta(\boldsymbol{q}_n) - \Delta t \mathcal{H}(\boldsymbol{q}_n) \dot{\boldsymbol{q}}_n \end{bmatrix}$$
(274)

Using the Schur complement (Equation 319):

$$\left(\mathcal{C} + \Delta t^{2} \mathcal{H}(\boldsymbol{q}_{n}) A^{-1} \mathcal{H}(\boldsymbol{q}_{n})^{T}\right) \lambda = -\delta(\boldsymbol{q}_{n}) - \Delta t \mathcal{H}(\boldsymbol{q}_{n}) \dot{\boldsymbol{q}}_{n} - \Delta t \mathcal{H}(\boldsymbol{q}_{n}) A^{-1} b$$

$$= -\delta(\boldsymbol{q}_{n}) - \Delta t \mathcal{H}(\boldsymbol{q}_{n}) (\dot{\boldsymbol{q}}_{n} + \Delta \dot{\boldsymbol{q}}_{\text{free}})$$

$$\approx -\delta(\boldsymbol{q}_{n} + \Delta \boldsymbol{q}_{\text{free}}) = -\delta(\boldsymbol{q}_{\text{free}})$$
(275)

8.7 Models

8.7.1 Fixation

$$\delta(\mathbf{q}) = \mathbf{q} - \mathbf{q}_0 \tag{276}$$

$$\mathcal{H}(q) = I \tag{277}$$

$$\widetilde{\mathcal{K}} = \frac{\partial [\mathcal{H}^T \lambda]}{\partial \mathbf{q}} = 0 \tag{278}$$

8.7.2 Bilteral

$$\delta(\boldsymbol{q}_{1},\boldsymbol{q}_{2}) = \boldsymbol{q}_{2} - \boldsymbol{q}_{1} - \left(\boldsymbol{q}_{2_{0}} - \boldsymbol{q}_{1_{0}}\right) \tag{279}$$

$$\mathcal{H}(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}) = \begin{bmatrix} \frac{\partial \delta}{\partial \boldsymbol{q}_{1}} & \frac{\partial \delta}{\partial \boldsymbol{q}_{2}} \end{bmatrix}$$

$$= \begin{bmatrix} -\boldsymbol{I} & \boldsymbol{I} \end{bmatrix}$$

$$\tilde{\mathcal{K}} = \frac{\partial [\mathcal{H}^{T} \lambda]}{\partial \boldsymbol{q}} = 0$$
(280)

$$\widetilde{\mathcal{K}} = \frac{\partial [\mathcal{H}^T \lambda]}{\partial q} = 0 \tag{281}$$

$$\delta_{\text{free}}$$
 (282)

9 Mapping

A mapping is a coordinate transformation function \mathcal{F} such that:

$$\boldsymbol{q}_{\text{out}} = \boldsymbol{\mathcal{F}}(\boldsymbol{q}_{\text{in}}) \tag{283}$$

9.1 Velocity

The velocity is deduced from Equation 283:

$$\dot{\boldsymbol{q}}_{\mathrm{out}} = \frac{d\boldsymbol{q}_{\mathrm{out}}}{dt} = \frac{d\boldsymbol{\mathcal{F}}(\boldsymbol{q}_{\mathrm{in}})}{dt} = \frac{d\boldsymbol{\mathcal{F}}(\boldsymbol{q}_{\mathrm{in}})}{d\boldsymbol{q}_{\mathrm{in}}} \frac{d\boldsymbol{q}_{\mathrm{in}}}{dt} = \frac{d\boldsymbol{\mathcal{F}}(\boldsymbol{q}_{\mathrm{in}})}{d\boldsymbol{q}_{\mathrm{in}}} \dot{\boldsymbol{q}}_{\mathrm{in}}$$
(284)

We introduce the jacobian matrix \mathcal{J} of the mapping

$$\mathcal{J}(q) = \partial \mathcal{F}(q) = \frac{\partial \mathcal{F}(q)}{\partial q}$$
 (285)

Such that:

$$\dot{\mathbf{q}}_{\text{out}} = \mathcal{J}(\mathbf{q}_{\text{in}})\dot{\mathbf{q}}_{\text{in}} \tag{286}$$

9.2 Force

The power of the force applying on $q_{\rm in}$ is equivalent to the power of the force applying on $q_{\rm out}$:

$$\dot{\mathbf{q}}_{\text{in}}^T \mathbf{F}_{\text{in}}(\mathbf{q}_{\text{in}}) = \dot{\mathbf{q}}_{\text{out}}^T \mathbf{F}_{\text{out}}(\mathbf{q}_{\text{out}}) \tag{287}$$

Then,

$$\dot{\boldsymbol{q}}_{\text{in}}^{T} \boldsymbol{F}_{\text{in}}(\boldsymbol{q}_{\text{in}}) = (\mathcal{J}(\boldsymbol{q}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}})^{T} \boldsymbol{F}_{\text{out}}(\boldsymbol{q}_{\text{out}}) = \dot{\boldsymbol{q}}_{\text{in}}^{T} \mathcal{J}(\boldsymbol{q}_{\text{in}})^{T} \boldsymbol{F}_{\text{out}}(\boldsymbol{q}_{\text{out}})$$
(288)

We can deduce from the principle of virtual work:

$$\mathbf{F}_{\text{in}}(\mathbf{q}_{\text{in}}) = \mathcal{J}(\mathbf{q}_{\text{in}})^{T} \mathbf{F}_{\text{out}}(\mathbf{q}_{\text{out}})$$
(289)

9.3 Derivatives

If we are interested in the derivatives, such as the stiffness matrix:

$$\mathcal{K}_{in}(\boldsymbol{q}_{in}) = \frac{\partial \boldsymbol{F}_{in}(\boldsymbol{q}_{in})}{\partial \boldsymbol{q}_{in}} = \frac{\partial \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T}}{\partial \boldsymbol{q}_{in}} \boldsymbol{F}_{out}(\boldsymbol{q}_{out}) + \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T} \frac{\partial \boldsymbol{F}_{out}(\boldsymbol{q}_{out})}{\partial \boldsymbol{q}_{in}} \\
= \frac{\partial \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T}}{\partial \boldsymbol{q}_{in}} \boldsymbol{F}_{out}(\boldsymbol{q}_{out}) + \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T} \frac{\partial \boldsymbol{F}_{out}(\boldsymbol{q}_{out})}{\partial \boldsymbol{q}_{out}} \frac{\partial \boldsymbol{q}_{out}}{\partial \boldsymbol{q}_{in}} \\
= \frac{\partial \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T}}{\partial \boldsymbol{q}_{in}} \boldsymbol{F}_{out}(\boldsymbol{q}_{out}) + \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T} \boldsymbol{\mathcal{K}}_{out}(\boldsymbol{q}_{out}) \frac{\partial \boldsymbol{\mathcal{F}}(\boldsymbol{q}_{in})}{\partial \boldsymbol{q}_{in}} \\
= \frac{\partial \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T}}{\partial \boldsymbol{q}_{in}} \boldsymbol{F}_{out}(\boldsymbol{q}_{out}) + \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})^{T} \boldsymbol{\mathcal{K}}_{out}(\boldsymbol{q}_{out}) \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{in})$$
(290)

The term $\frac{\partial \mathcal{J}(\boldsymbol{q}_{\text{in}})^T}{\partial \boldsymbol{q}_{\text{in}}}$ is called the geometric stiffness of the mapping.

The term $\mathcal{J}(\boldsymbol{q}_{\text{in}})^T \mathcal{K}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \mathcal{J}(\boldsymbol{q}_{\text{in}})$ is a projection of the matrix \mathcal{K}_{out} from the space "out" to the space "in".

9.4 Mass

The kinetic energy:

$$\mathcal{T}_{\text{out}} = \frac{1}{2} \dot{\boldsymbol{q}}_{\text{out}}^T \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \dot{\boldsymbol{q}}_{\text{out}}$$
(291)

From Equation 286:

$$\mathcal{T}_{\text{out}} = \frac{1}{2} (\mathcal{J}(\boldsymbol{q}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}})^{T} \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) (\mathcal{J}(\boldsymbol{q}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}})
= \frac{1}{2} \dot{\boldsymbol{q}}_{\text{in}}^{T} \mathcal{J}(\boldsymbol{q}_{\text{in}})^{T} \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \mathcal{J}(\boldsymbol{q}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}}$$
(292)

We also have

$$\mathcal{T}_{\rm in} = \frac{1}{2} \dot{\boldsymbol{q}}_{\rm in}^T \mathcal{M}_{\rm in}(\boldsymbol{q}_{\rm in}) \dot{\boldsymbol{q}}_{\rm in}$$
 (293)

The kinetic energy is invariant under coordinate transformation: $\mathcal{T}_{in} = \mathcal{T}_{out}$. By identification, we can deduce that

$$\mathcal{M}_{in}(\boldsymbol{q}_{in}) = \mathcal{J}(\boldsymbol{q}_{in})^{T} \mathcal{M}_{out}(\boldsymbol{q}_{out}) \mathcal{J}(\boldsymbol{q}_{in})$$
(294)

9.5 Momentum

From Equation 11,

$$p_{\text{in}} = \frac{\partial \mathcal{T}_{\text{in}}}{\partial \dot{q}_{\text{in}}} = \frac{\partial}{\partial \dot{q}_{\text{in}}} \left(\frac{1}{2} \dot{q}_{\text{in}}^T \mathcal{M}_{\text{in}}(q_{\text{in}}) \dot{q}_{\text{in}} \right)$$

$$= \mathcal{M}_{\text{in}}(q_{\text{in}}) \dot{q}_{\text{in}}$$

$$= \mathcal{J}(q_{\text{in}})^T \mathcal{M}_{\text{out}}(q_{\text{out}}) \mathcal{J}(q_{\text{in}}) \dot{q}_{\text{in}}$$
(295)

From Equation 286:

$$\boldsymbol{p}_{\text{in}} = \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{\text{in}})^{T} \boldsymbol{\mathcal{M}}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \dot{\boldsymbol{q}}_{\text{out}}$$
(296)

We also have:

$$p_{\text{out}} = \frac{\partial \mathcal{T}_{\text{out}}}{\partial \dot{q}_{\text{out}}} = \frac{\partial}{\partial \dot{q}_{\text{out}}} \left(\frac{1}{2} \dot{q}_{\text{out}}^T \mathcal{M}_{\text{out}}(q_{\text{out}}) \dot{q}_{\text{out}} \right)$$

$$= \mathcal{M}_{\text{out}}(q_{\text{out}}) \dot{q}_{\text{out}}$$
(297)

We can deduce that:

$$\boldsymbol{p}_{\rm in} = \boldsymbol{\mathcal{J}}(\boldsymbol{q}_{\rm in})^T \boldsymbol{p}_{\rm out} \tag{298}$$

9.6 Newton's Second Law of Motion

In Section 2.1, we deduced the Newton's second law of motion from the Euler-Lagrange equation (Equation 21):

$$\mathcal{M}_{\text{in}}(\boldsymbol{q}_{\text{in}})\dot{\boldsymbol{q}}_{\text{in}(t)} + \mathcal{C}(\boldsymbol{q}_{\text{in}},\dot{\boldsymbol{q}}_{\text{in}})\dot{\boldsymbol{q}}_{\text{in}(t)} = \boldsymbol{F}_{\text{in}}(\boldsymbol{q}_{\text{in}},\dot{\boldsymbol{q}}_{\text{in}})$$
(299)

We are already able to compute the inertia term $(\mathcal{M}_{in} = \mathcal{J}^T \mathcal{M}_{out} \mathcal{J})$ in Equation 294) and the forces $(\mathbf{F}_{in} = \mathcal{J} \mathbf{F}_{out})$ in Equation 289), so let's focus on the Coriolis term:

$$\mathcal{C}(\boldsymbol{q}_{\text{in}}, \dot{\boldsymbol{q}}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}(t)} = \dot{\mathcal{M}}_{\text{in}}(\boldsymbol{q}_{\text{in}}) \dot{\boldsymbol{q}}_{\text{in}(t)} - \frac{1}{2} \dot{\boldsymbol{q}}_{\text{in}}(t)^T \frac{\partial \mathcal{M}_{\text{in}}}{\partial \boldsymbol{q}_{\text{in}}} \dot{\boldsymbol{q}}_{\text{in}(t)}$$
(300)

First term:

$$\begin{split} \dot{\mathcal{M}}_{\text{in}}(\boldsymbol{q}_{\text{in}})\dot{\boldsymbol{q}}_{\text{in}(t)} &= \frac{d\boldsymbol{\mathcal{M}}_{\text{in}}}{dt}\dot{\boldsymbol{q}}_{\text{in}} \\ &= \frac{d}{dt}[\boldsymbol{\mathcal{J}}^T\boldsymbol{\mathcal{M}}_{\text{out}}\boldsymbol{\mathcal{J}}]\dot{\boldsymbol{q}}_{\text{in}} \\ &= \dot{\boldsymbol{\mathcal{J}}}^T\boldsymbol{\mathcal{M}}_{\text{out}}\boldsymbol{\mathcal{J}}\dot{\boldsymbol{q}}_{\text{in}} + \boldsymbol{\mathcal{J}}^T\dot{\boldsymbol{\mathcal{M}}}_{\text{out}}\boldsymbol{\mathcal{J}}\dot{\boldsymbol{q}}_{\text{in}} + \boldsymbol{\mathcal{J}}^T\boldsymbol{\mathcal{M}}_{\text{out}}\dot{\boldsymbol{\mathcal{J}}}\dot{\boldsymbol{q}}_{\text{in}} \end{split} \tag{301}$$

The second term involve the derivative of the mass with respect to the state:

$$\frac{\partial \mathcal{M}_{\text{in}}}{\partial \boldsymbol{q}_{\text{in}}} = \frac{\partial \left[\mathcal{J}(\boldsymbol{q}_{\text{in}})^{T} \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \mathcal{J}(\boldsymbol{q}_{\text{in}}) \right]}{\partial \boldsymbol{q}_{\text{in}}} \tag{302}$$

$$= \frac{\partial \mathcal{J}^{T}}{\partial \boldsymbol{q}_{\text{in}}} \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \mathcal{J}(\boldsymbol{q}_{\text{in}}) + \mathcal{J}(\boldsymbol{q}_{\text{in}})^{T} \frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{in}}} \mathcal{J}(\boldsymbol{q}_{\text{in}}) + \mathcal{J}(\boldsymbol{q}_{\text{in}})^{T} \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}}) \frac{\partial \mathcal{J}(\boldsymbol{q}_{\text{in}})}{\partial \boldsymbol{q}_{\text{in}}}$$
The term
$$\frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{in}}} :$$

$$\frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{in}}} = \frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{out}}} \frac{\partial \boldsymbol{q}_{\text{out}}}{\partial \boldsymbol{q}_{\text{in}}}$$

$$= \frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{out}}} \mathcal{J}(\boldsymbol{q}_{\text{in}})$$

$$= \frac{\partial \mathcal{M}_{\text{out}}(\boldsymbol{q}_{\text{out}})}{\partial \boldsymbol{q}_{\text{out}}} \mathcal{J}(\boldsymbol{q}_{\text{in}})$$

10 Maths

10.1 Outer Product

Given two vectors of size $m \times 1$ and $n \times 1$ respectively $u = (u_1, ..., u_n)$, $v = (v_1, ..., v_n)$, their outer product, denoted $u \otimes v$, is defined as the $m \times n$ matrix A obtained by multiplying each element of u by each element of v:

$$u \otimes v = A = \begin{bmatrix} u_1 v_1 & u_1 v_2 & \dots & u_1 v_n \\ u_2 v_1 & u_2 v_2 & \dots & u_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_m v_1 & u_m v_2 & \dots & u_m v_n \end{bmatrix}$$
(304)

The outer product $u \otimes v$ is equivalent to a matrix multiplication uv^T .

10.2 Derivative of the 2-norm

The 2-norm of vector $x = (x_1, ..., x_n)$ is

$$\|x\|_2 \coloneqq \sqrt{\sum_{i=1}^n x_i^2} \tag{305}$$

The partial derivative of the 2-norm is given by

$$\frac{\partial}{\partial x_k} \|x\|_2 = \frac{x_k}{\|x\|_2} \tag{306}$$

The derivative with respect to x is

-RESULT-

$$\frac{\partial \|x\|_2}{\partial x} = \frac{x}{\|x\|_2} \tag{307}$$

Result can be found in [2].

Considering two points a and b, and $\gamma = a - b$:

$$\begin{split} \frac{\partial \|a - b\|}{\partial a} &= \frac{\partial \|\gamma\|}{\partial \gamma} \cdot \frac{\partial \gamma}{\partial a} \\ &= \frac{\gamma}{\|\gamma\|_2} \cdot 1 \\ &= \frac{a - b}{\|a - b\|_2} \end{split} \tag{308}$$

and

$$\frac{\partial \|a - b\|}{\partial a} = \frac{b - a}{\|b - a\|_2} \tag{309}$$

10.3 Derivative of a normalized vector

The normalized vector of x is a vector in the same direction but with norm 1. It is denoted \hat{x} and given by

$$\hat{x} = \frac{x}{\|x\|_2} \tag{310}$$

Using the quotient rule, the partial derivative of the normalized vector is given by

$$\frac{\partial \hat{x}}{\partial x} = \frac{\|x\|_2 \frac{\partial x}{\partial x} - x \frac{\partial \|x\|_2}{\partial x}}{\|x\|_2^2} \tag{311}$$

Using Equation 307,

$$\frac{\partial \hat{x}}{\partial x} = \frac{\|x\|_2 I - x \frac{x}{\|x\|_2}}{\|x\|_2^2} \tag{312}$$

Finally,

RESULT

$$\frac{\partial \hat{x}}{\partial x} = \frac{1}{\|x\|_2} I - \frac{1}{\|x\|_2^3} x \otimes x \tag{313}$$

Considering two points a and b, and $\gamma = a - b$:

$$\begin{split} \frac{\partial \widehat{a-b}}{\partial a} &= \frac{\partial \widehat{\gamma}}{\partial a} = \frac{\partial \widehat{\gamma}}{\partial \gamma} \cdot \frac{\partial \gamma}{\partial a} \\ &= \frac{1}{\|\gamma\|_2} I - \frac{1}{\|\gamma\|_2^3} \gamma \otimes \gamma \end{split} \tag{314}$$

$$\frac{\partial \widehat{a-b}}{\partial b} = \frac{\partial \widehat{\gamma}}{\partial b} = \frac{\partial \widehat{\gamma}}{\partial \gamma} \cdot \frac{\partial \gamma}{\partial b}$$

$$= -\frac{1}{\|\gamma\|_2} I + \frac{1}{\|\gamma\|_2^3} \gamma \otimes \gamma$$

$$= -\frac{\partial \widehat{a-b}}{\partial a}$$
(315)

10.4 Schur Complement

The following is a linear system of equations in the matrix form using a 2x2 partition:

Suppose p, q are nonnegative integers such that p+q>0, and suppose A, B, C, D are respectively $p \times p$, $p \times q$, $q \times p$, and $q \times q$ matrices.

$$\begin{cases}
Ax + By = u \\
Cx + Dy = v
\end{cases}$$
(317)

Using the first line, we can express x in terms of y:

$$x = A^{-1}(u - By) (318)$$

Substituting this expression into the second line of the equation:

$$(D - CA^{-1}B)y = v - CA^{-1}u (319)$$

 $(D-CA^{-1}B)$ is the Schur complement of the block A.

Similarly, we can express y in terms of x using the first line:

$$y = B^{-1}(u - Ax) (320)$$

Substituting this expression into the second line of the equation:

$$(C - DB^{-1}A)x = v - DB^{-1}u (321)$$

10.5 Integration by parts

$$\begin{split} \int_{a}^{b} u(x)v'(x) \; dx &= [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \; dx \\ &= u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \; dx \end{split} \tag{322}$$

11 Other Resources

[3]

Bibliography

- [1] E. Süli and D. F. Mayers, An introduction to numerical analysis. Cambridge university press, 2003.
- [2] K. B. Petersen and M. S. Pedersen, "The Matrix Cookbook. Technical University of Denmark," *Technical University of Denmark*, 2012.
- [3] M. Li, C. Jiang, and Z. Luo, *Physics-Based Simulation*. 2024. [Online]. Available: https://phys-sim-book.github.io/