Numerical Optimization

Instructor: Sung Chan Jun

Week #2 : September 04, 2023 (Monday Class)

Course Syllabus (Tentative)

Calendar	Description	Remarks
1 st week	Introduction of optimization	
2 nd week	Univariate Optimization	
3 rd week	Univariate Optimization	
4 th week	Unconstrained Optimization	
5 th week	Unconstrained Optimization	
6 th week	Constrained Optimization	
7 th week	Constrained Optimization, No Class	Oct. 9 (National Holiday)
8 th week	Constrained Optimization, Midterm	Oct. 18 (Midterm)

Optimization

- Optimization problem is to find the best solution under the various constraints such that a given cost function is optimized (minimized or maximized).
- Applications
 - data analysis and model fitting, structural design problems
 - planning, scheduling, computer tomography
 - too many others ...

- Optimization-Categories
 - Based on number of variables : Univariate, Multivariate
 - Based on constraints: Unconstrained, Constrained
 - Based on numerical techniques : Local, Global
 - Based on linearity: Linear, Nonlinear
- Mathematical modeling
 - Problem formulation

Define the optimization problem and model parameters

Define the decision variables

Define the objective (cost function)

Define the constraints

- Optimization Formulation
 - General Formulation
 - Decision variables (design variables): $\mathbf{x} = (x_1, x_2, ..., x_n)^T$
 - minimize f(x)
 - subject to $c_i(\mathbf{x}) = 0$, i = 1,...,m; $c_i(\mathbf{x}) \ge 0$, i = m+1,...,p
 - Feasibility of x
 - $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)^T$ is said to be feasible or a feasible solution, if it satisfies all the constraints in the above optimization problem.
 - Feasible sets
 - Discrete Optimization Problem : Feasible set is discrete
 - Optimization control theory, calculus of variations: Feasible set is a function space (usually infinite dimension)
 - Maximization and minimization : f is maximized ⇔ -f is minimized

Minimum

- The point x^* is a strong local minimum of F(x) if there exists $\delta > 0$ such that
 - F(x) is defined on Nbh(x^* , δ), and $F(x^*) < F(y)$ for all $y \in Nbh(x^*$, δ), $y \neq x^*$.
- The point x^* is a weak local minimum of F(x) if there exists $\delta > 0$ such that
 - F(x) is defined on $Nbh(x^*, \delta)$, and $F(x^*) \le F(y)$ for all $y \in Nbh(x^*, \delta)$.
- The point x^* is a global minimum of F(x) if $F(x^*)$ is the least value.

- Optimality Condition : Unconstrained Univariate
 - Let univariate function f(x) be at least twice-continuously differentiable.
 - x^* be a local minimum of f(x). What would happen around x^* ?

Taylor expansion of f(x) at x*

There exists a scalar t $(0 \le t \le 1)$ such that $f(x^* + \varepsilon) = f(x^*) + \varepsilon f'(x^*) + \frac{1}{2}\varepsilon^2$ $f''(x + t\varepsilon)$.

Continuity of f' and f" at x*

When we assume $f'(x^*) < 0$, there exists positive ε^* such that $\varepsilon f'(x^*) + \frac{1}{2}\varepsilon^2 f''(x^* + t\varepsilon) < 0$ for all $0 < \varepsilon \le \varepsilon^*$.

$f(x^* + \varepsilon) < f(x^*)$ for all such ε

It contradicts the optimality (local minimum) of x^* . So, it should be $f'(x^*) \ge 0$.

$$\varepsilon f'(x^*) + \frac{1}{2}\varepsilon 2f''(x^* + t\varepsilon) < 0$$
 for all $\varepsilon^* \le \varepsilon < 0$.

$$f(x^* + \varepsilon) = f(x^*) + \frac{1}{2}\varepsilon 2f''(x^* + t\varepsilon)$$
 for some $0 \le t \le 1$.

(Continued) x^* be a local minimum of f(x). What would happen around x^* ?

Continuity of f' and f'' at x^* When we assume $f'(x^*) > 0$, there exists negative ε^* such that $\varepsilon f'(x^*) + \frac{1}{2}\varepsilon 2f''(x^* + t\varepsilon) < 0$ for all $\varepsilon^* \le \varepsilon < 0$.

Then $f(x^* + \varepsilon) < f(x^*)$ for all such ε . It contradicts local minimum of x^* .

Finally, it should be $f'(x^*) = 0$ ('First order optimality')

Taylor Expansion of f(x) at x^* by first order optimality $f(x^* + \varepsilon) = f(x^*) + \frac{1}{2}\varepsilon 2f''(x^* + t\varepsilon)$ for some $0 \le t \le 1$.

Continuity of f'' at x^* Assuming $f''(x^*) < 0$, f''(x) < 0 in some Nbd(x^*), that is, $f''(x^* + t\varepsilon) < 0$ for sufficiently small ε . So, $f(x^* + \varepsilon) < f(x^*)$ in that Nbd(x^*). sufficiently small ε . So, $f(x^* + \varepsilon) < f(x^*)$ in that Nbd(x*).

This contradicts local minimum of x*.

So, it should be $f''(x^*) \ge 0$. ('second order optimality')

Optimality Condition : Unconstrained Univariate

Let objective univariate function f(x) be at least twice-continuously differentiable.

- When do we make sure that x* is a local minimum of f(x)?
 - How about $f'(x^*) = 0$ and $f''(x^*) > 0$?

Taylor Expansion of f(x) at x*

$$f(x^* + \varepsilon) = f(x^*) + \varepsilon f'(x^*) + \frac{1}{2}\varepsilon^2 f''(x^* + t\varepsilon)$$
 (due to $f'(x^*) = 0$)
= $f(x^*) + \frac{1}{2}\varepsilon^2 f''(x^* + t\varepsilon)$ for some $0 \le t \le 1$.

Continuity of f" at x*

There exists $\varepsilon_0 > 0$ such that $f''(x^* + t\varepsilon) > 0$, $\forall 0 < |\varepsilon| \le \varepsilon_0$.

Then $f(x^* + \varepsilon) > f(x^*) \ \forall \ 0 < |\varepsilon| \le \varepsilon_0$. So, x^* is a local minimum.

- Summary of Optimality Conditions in Univariate Function
 - Assume objective univariate function f(x) is at least twicecontinuously differentiable.

(NC) Necessary condition for a local minimum

$$f'(x^*) = 0$$
 ("stationary point") & $f''(x^*) \ge 0$

i.e. x^* is a local minimum \Rightarrow $f'(x^*) = 0 \& f''(x^*) \ge 0$

(SC) Sufficient condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) > 0$$

i.e. $f'(x^*) = 0 \& f''(x^*) > 0 \Rightarrow x^*$ is a local minimum

- Optimality Condition : Unconstrained Univariate
 - When f(x*) or f'(x*) is not continuous
 - When x* is not a point of discontinuity and f(x) is twice-continuously differentiable in the neighborhood of x*
 - The previous optimal condition is OK.
 - When f(x) is continuous at x^* , but x^* is a point of discontinuity in f'(x)
 - Sufficient conditions for x* to be a strong local minimum are that

Optimality Condition: Unconstraine d Univariate

- Question?
 - Does there exist a stationary point x^* (when $f'(x^*) = 0$) that is neither a minimum nor a maximum?
 - Yes! For example, f(x) = x3 or f(x) = x5
 or f(x) = xn (n is odd integer) around 0.

- Point of inflection
 - When stationary point x* is neither a minimum nor a maximum

Optimality Condition:Unconstrained Univariate

(Generalization of optimal conditions)

Assume objective univariate function f(x) is at least <u>n times</u> continuously differentiable.

- Let $f'(x^*) = f''(x^*) = ... = f^{(n-1)}(x^*) = 0 & f^{(n)}(x^*) \neq 0$. Then
 - If $f^{(n)}(x^*) > 0$ and n even, x^* is a local minimum.
 - What happen when n is odd?

- Calculus of functions depending on two or more variables
 - Basic concept is the same to the one with one variable, but it is more tricky.
- Differentiation of function $z = f(x, y) : R^2 \rightarrow R^1$
 - partial differentiation (in general)
 - notation : $\partial f(x, y)/\partial x$, $\partial f(x, y)/\partial y$
 - definition : $\partial f(x, y)/\partial x = \lim_{h_x \to 0} [f(x + h_x, y) f(x, y)]/h_x$

$$\partial f(x, y)/\partial y = \lim_{h_y \to 0} [f(x, y + h_y) - f(x, y)]/h_y$$

Differentiation of vector valued function

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $F(x, y) = (f_1(x, y), f_2(x, y))$

- Partial differentiation
 - $D_xF(x, y) = (\partial f_1(x, y)/\partial x \ \partial f_2(x, y)/\partial x)^T$
- Derivative matrix DF
 - DF satisfies

DF satisfies
$$\lim_{h \to 0} \frac{f(x+h) - f(x) - f'(x)h}{h} = 0$$

$$\lim_{h = (h_x \ h_y) \to 0} \left\| F(x+h_x, y+h_y) - F(x,y) - DF(x,y)(h_x \ h_y)^T \right\| / \left\| (h_x \ h_y) \right\| = 0$$

 $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f'(x)$

Let $f(\mathbf{x})$ be a scalar valued function $R^n \to R$.

- Gradient (grad f, ∇ f)
 - $\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) = (\partial f/\partial \mathbf{x}_1 \ \partial f/\partial \mathbf{x}_2 \ ... \ \partial f/\partial \mathbf{x}_n)^T$
 - Physical meaning: steepest increasing direction

Let F be a vector valued function $R^n \rightarrow R^n$. F is called vector field.

- Divergence (div F, $\nabla \cdot F$): Let F = (f₁, f₂,..., f_n)
 - $\nabla \cdot \mathbf{F} = \partial \mathbf{f}_1 / \partial \mathbf{x}_1 + \partial \mathbf{f}_2 / \partial \mathbf{x}_2 + \dots + \partial \mathbf{f}_n / \partial \mathbf{x}_n$
 - Physical meaning: rate of volume change per unit volume

Gradient & Divergence

https://en.wikipedia.org/wiki/Gradient

$$f(x, y) = -(\cos^2 x + \cos^2 y)^2$$

$$\nabla \cdot \vec{\mathbf{v}} < 0$$
 $\nabla \cdot \vec{\mathbf{v}} > 0$ $\nabla \cdot \vec{\mathbf{v}} = 0$

$$\nabla \cdot \vec{\mathbf{v}} > 0$$

$$\nabla \cdot \vec{\mathbf{v}} = 0$$

https://www.khanacademy.org

The divergence of a vector field at a given point measures how much it is flowing out of, or into, that point.

- 2nd derivative for univariate f(x)

- 2nd derivative for multivariate $f(\mathbf{x}) = f(x_1, x_2)$: $R^2 \rightarrow R$

• notation : f'' or
$$\partial^2 f(\mathbf{x})/\partial \mathbf{x}^2$$

• notation : f'' or $\partial^2 f(\mathbf{x})/\partial \mathbf{x}^2$
• notation end derivative for multivariate $f(\mathbf{x}) = f(\mathbf{x}_1, \mathbf{x}_2)$: $\mathbf{R}^2 \to \mathbf{R}$
• notation : $\mathbf{H}(\mathbf{x}) = \mathbf{H}(\mathbf{x}_1, \mathbf{x}_2)$ called 'Hessian'
• definition : matrix $\mathbf{H}(\mathbf{x}_1, \mathbf{x}_2)$ defined by
$$\begin{pmatrix} \partial^2 f / \partial \mathbf{x}_1^2 & \partial^2 f / \partial \mathbf{x}_1 \partial \mathbf{x}_2 \\ \partial^2 f / \partial \mathbf{x}_2 \partial \mathbf{x}_1 & \partial^2 f / \partial \mathbf{x}_2^2 \end{pmatrix}$$

- How about differentiation of $F(\mathbf{x}) = F(x_1, x_2, ..., x_n) : \mathbb{R}^n \to \mathbb{R}^m$? and derivative DF? or Hessian?
 - Please refer to calculus book.

Optimality Conditions Unconstrained Multivariate

Assume objective function f(x) is at least twice-continuously

differentiable.

Let objective univariate function f(x) be at least twice-continuously differentiable.

· Necessary condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) \ge 0$$

Sufficient condition for a local minimum

$$f'(x^*) = 0 & f''(x^*) > 0$$

- (NC) Necessary condition for a local minimum
 - 1. $\operatorname{grad}(f(\mathbf{x})) = 0$
 - 2. H(x) ("hessian") ≥ 0 i.e H(x) is positive semi-definite.
- (SC) Sufficient condition for a local minimum
 - $1. \quad \operatorname{grad}(f(\mathbf{x})) = 0$
 - 2. H(x) > 0 i.e H(x) is positive definite.

Positive Definiteness of Matrix

- A symmetric real matrix \mathbf{A} (n \times n)
 - is said to be positive definite if z^T A z > 0 (strictly positive) for every non-zero vector z of real numbers.
- Example

$$M = \left[egin{array}{cccc} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{array}
ight]$$

is positive definite since for any non-zero column vector z with entries a, b and c, we have

$$egin{aligned} z^{\mathsf{T}} M z &= igl(z^{\mathsf{T}} Migr) \ z &= igl(2a - b) \ (-a + 2b - c) \ (-b + 2c) igr] egin{bmatrix} a \ b \ c \ \end{bmatrix} \end{aligned}$$
 $= (2a - b)a + (-a + 2b - c)b + (-b + 2c)c$
 $= 2a^2 - ba - ab + 2b^2 - cb - bc + 2c^2$
 $= 2a^2 - 2ab + 2b^2 - 2bc + 2c^2$
 $= a^2 + a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2$
 $= a^2 + (a - b)^2 + (b - c)^2 + c^2$

Positive Definiteness of Matrix

- Notes
 - A matrix in which some elements are negative may still be positive definite.
 - Conversely, a matrix whose entries are all positive is not necessarily positive definite.
- Induced partial ordering by positive definiteness
 - For arbitrary square matrices M and N, we write that M > (or ≥) N
 when M N is positive definite (or positive semi-definite). This
 defines a partial ordering on the set of all square matrices.

Optimality Conditions Unconstrained Multivariate

• If grad(f(x)) = 0 and x is neither a minimum nor a maximum, it is called a 'saddle point'.

Recall that when univariate, it is called a 'point of inflection'.

Univariate Optimization

Minimize f(x) on $x \in R$

Necessary condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) \ge 0$$

Sufficient condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) > 0$$

Conventional strategy

Due to optimality conditions,

- first seek points x with f'(x) = 0 (stationary points).
- then check the sign of f"(x) at those points.

Univariate Optimization

How to find zero of f'(x)? \Rightarrow root finding

- Conventional techniques for root finding
 - Method of bisection
 - Newton's method
 - Secant method, Regula falsi method

Univariate Optimization:Root Finding - Method of Bisection

Method of bisection

- Interval [a, b] is given such that f(a)f(b) < 0.</p>
- Step 1. compute f(x) at the midpoint x = (a + b)/2.
- Step 2. if f(x) = 0 or (b a) < TOL, then terminate.

if
$$f(x)f(a) < 0$$
, then $b := x$,

else
$$a$$
: = x .

- Step 3. Go to Step 1.
- Pros : guaranteed to converge to zero
- Cons
 - too slow (convergence rate ½)
 - relative magnitude of f(x) is not taken account.

To make sure the existence of root in an interval [a, b]

Method of Bisection

Convergence Rate

- Assume sequence {x_k} converges to x*
 - The sequence $\{x_k\}$ converges with order r

When there is a constant c > 0 and integer N such that

$$\|X_{k+1} - X^*\| \le c \|X_k - X^*\|^r \text{ for } k > N, \text{ or } 0 \le \lim_{k \to \infty} \frac{\|X_{k+1} - X^*\|}{\|X_k - X^*\|^r} < \infty \text{ for } k > N.$$

- Convergence rate
 - r = 1, linear convergence
 - r = 2, quadratic convergence
 - r > 1, superlinear convergence
 - As r is bigger (in positive), we say that convergence speed is faster.

Univariate Optimization:Root Finding - Method of Bisection

- Generalization of method of bisection
 - Interval [a, b] is given such that f(a)f(b) < 0.</p>
 - Step 1. compute f(x) at the midpoint x = (a + b)/2.
 - Step 2. if f(x) = 0 or (b a) < TOL, then terminate.

if
$$f(x)f(a) < 0$$
, then $b := x$,

else
$$a$$
: = x .

Step 3. Go to Step 1.

Midpoint x is one of choices. Any interior point In the interval [a, b] is possible to choose as a new point.

- Possible choices of next point in the interval [a, b]
 - midpoint conventional method of bisection
 - internally dividing point of interval [a, b] AB in the ratio 1:2 or 2:1
 - internally dividing point of interval [a, b] AB in the ratio n:m
 - random: choice this lecture note is prohibited without instructor's permission.

Univariate Optimization:Newton's Method

- Newton's method
 - Approximate f(x) by tangent line at the given point.
 - Assume f(x) is differentiable.
 - $x_{k+1} = x_k f(x_k)/f'(x_k)$
 - Pros
 - Very fast converging (convergence rate 2)
 - Cons
 - Convergence depending on initial guess
 - not working when f'(x_k) is small
 - Derivative is required

Newton's Method

Univariate Optimization: Secant Method

- Secant method (method of linear interpolation)
 - Computing f'(x) is very expensive and impossible to compute in some cases.
 - Approximating tangent line by straight line passing two recent iterates (many variants exist)
 - $x_{k+1} = x_k [(x_k x_{k-1})/(f(x_k) f(x_{k-1}))]f(x_k)$

Newton's Method $x_{k+1} = x_k - f(x_k)/f'(x_k)$

- Pros: rapid convergent (roughly rate 1.6180)
- Cons: divergent if straight line approximation is extrapolation

Secant Method

http://ocw.snu.ac.kr

Secant Method

- How to approximate tangent line
 - There are many ways to do it
 - Two point approximation

•
$$f'(x_n) \approx (f(x_n) - f(x_{n-1}))/(x_n - x_{n-1})$$

•
$$f'(x_n) \approx (f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

Three point approximation

•
$$f'(x_n) \approx \alpha (f(x_n) - f(x_{n-1}))/(x_n - x_{n-1}) + (1-\alpha)(f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

Secant Method

How to approximate tangent line (Richardson's extrapolation)

Assumption: all points on axis are even spaced, that is, h is fixed

- 3-point approximation
 - Forward difference $f'(t_i) \approx \frac{-f(t_i + 2h) + 4f(t_i + h) 3f(t_i)}{2h}$
 - Backward difference $f'(t_i) \approx \frac{3f(t_i) 4f(t_i h) + f(t_i 2h)}{2h}$
- 4-point approximation (Central difference)

$$f'(t_i) \approx \frac{-f(t_i + 2h) + 8f(t_i + h) - 8f(t_i - h) + f(t_i - 2h)}{12h}$$

6-point approximation (Central difference)

$$f'(t_i) \approx \frac{f(t_i + 3h) - 9f(t_i + 2h) + 45f(t_i + h) - 45f(t_i - h) + 9f(t_i - 2h) - f(t_i - 3h)}{60h}$$

Univariate Optimization: Regular Falsi Method

- Regular falsi method (method of false position)
 - Modified version of secant method & bisection method
 - Consider the given interval [a, b] such that f(a)f(b) < 0.
 - Apply a secant method with two initial points a & b. Find a point x intersecting with x-axis and a secant.
 - Choose updated interval as [a, x] or [x, b] depending on which corresponding function value agrees in sign with $f(x_{k+1})$. This removes danger of extrapolation.
 - Keep doing in the same manner until termination criterion is satisfied.

Regular Falsi Method

https://commons.wikimedia.org/

Regula Falsi Method (False Position)

http://www.uobabylon.edu.iq

- Root finding techniques
 - Method of bisection : bracketing, that is, interval is used.
 - Newton's method : straight line is used.
 - Secant method : straight line is used.
 - Regula falsi method: straight line and bracketing are used.
- How about other approaches in place of straight line?
 - Straight line (1st order polynomial) is the simplest shape in approximation, so more complex shape may be applicable in the same context.
 - Curve (2nd order or higher order polynomial) may be possible.

- Additional ideas
 - Higher order polynomial approximation
 - In place of straight line, higher order polynomials (quadratic, cubic...) are possible to approximate original function f(x).
 - That would be much rapidly convergent.
 - One problem for higher polynomial approximation is to seek the zero point_of it, which may be more difficult than straight line.
 - Key points to consider
 - higher order approximation + easy to find a zero point

- Additional ideas
 - Rational function approximation (rational interpolation)
 - Approximate f(x) by rational function of the form

$$f_{rat}(x) = \frac{x - c}{d_0 + d_1 x + d_2 x^2}$$

- d_0 , d_1 , d_2 , c are chosen so that the function value and derivatives of $f_{rat}(x)$ agree with those of f(x) at two points.
- This approximation is easy to find zero point, which is just 'c'.

- Bracketing methods
 - Given interval I_0 such that $x \in I_0$ where f(x) = 0.
 - Find $\{I_j\}$ such that $I_j \subset I_{j-1}$ and $x \in I_j$. (make sure that length of interval I_i should be sufficiently reduced)
 - It generates a set of nested intervals, which is guaranteed to converge.
 - Example : the method of bisection.

- Safeguarded methods
 - A guaranteed and reliable method: the method of bisection
 - A fast-convergent, but less reliable method : secant method
 - Mixed methods: bisection + secant
 - If f is well-behaved, it gives the rapid convergence (secant). In the worst case, it is not less efficient than the guaranteed method (bisection).