高代加 Jordan 标准型

戴云舒 王衡宇

2024年12月7日

例题 1 设 $A \neq n$ 阶复矩阵,

- (1) 用 A 的行列式因子来表示 A 的不变因子.
- (2) 用 A 的不变因子来表示 A 的行列式因子.
- (3) 用 A 的不变因子来表示 A 的初等因子.
- (4) 用 A 的初等因子来表示 A 的不变因子.

例题 2 设矩阵 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 2 & 1 \\ 2 & 1 & -2 \end{pmatrix}$,

- (1) 求 A 的有理标准形 R 和 Jordan 标准型 J.
- (2) 求三阶可逆实矩阵 P, 满足 $P^{-1}AP = J$.
- (3) $\sharp A^{2024}$.
- (4) 求三阶实矩阵 B, 使得 $B^{2025} = A$.
- (5) 求三阶实矩阵 S 和 N, 使得 A = S + N, 其中 S 可对角化, N 为幂零阵, SN = NS.
- (6) 设 $C(A) = \{x \in \mathbb{R}^3 | AX = XA\}$, 它是 \mathbb{R}^3 的子空间. 求 $dim\ C(A)$.

例题 3 求证:n 阶复矩阵 A 可对角化,当且仅当,对 A 的任一特征值 λ_0 , $(\lambda_0 I_n - A)^2$ 和 $\lambda_0 I_n - A$ 的秩相同.

例题 4 设 n(n > 1) 阶矩阵 A 的秩为 1. 试求 A 的 Jordan 标准型.

例题 5 设 $J = J_n(0)$ 是特征值为 0 的 $n(n \ge 2)$ 阶 Jordan 块, 求 J^2 的 Jordan 标准型.

例题 6 设 A 为 n 阶非奇异复矩阵. 证明: 对任一正整数 m, 存在 n 阶复矩阵 B, 使得 $A = B^m$.

例题 7 设 $A \in \mathbb{R}$ 阶复矩阵, 则存在对称矩阵 S 和 T, 其中 T 可逆, 使得 A = ST.

例题 8 设整数 $n \ge 2, A \ne n$ 阶实方阵.

(1) 如果 $A^2 = I_n$ 且 $A \neq \pm I_n$, 证明:A 是有限多个反射方阵的乘积.

其中反射方阵指实相似于
$$\operatorname{diag}\left\{\begin{pmatrix}0&1\\1&0\end{pmatrix},I_{n-2}\right\}$$
 的方阵.

(2) 如果
$$A^2 = -I_n$$
. 证明: n 是偶数,且 A 实相似于 $\begin{pmatrix} 0 & E_{n/2} \\ -E_{n/2} & 0 \end{pmatrix}$.

例题 9 设 A 是 n 阶复矩阵. 定义 $W:=\{\alpha\in\mathbb{C}^n|$ 存在正整数l,使得 $A^l\alpha=0\}$.

- (1) 证明:W 是 \mathbb{C}^n 的子空间.
- (2) 设 $dim\ W=m,$ 证明: 对任意整数 $k\geq m,$ 总有 $R(A^k)+m=n.$

例题 10 设整数 $n \geq 2, n$ 阶方阵 $A = (a_{ij})$ 是一个幂零阵, 且满足 $a_{11} = 0$, $a_{12} = 2022$, $a_{21} = 2023$, $a_{22} = 0$. 证明: 不存在 n 阶方阵 B, 使得 $B^{n-1} = A$.