

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Ingeniería en Sistemas Inteligentes

Programa de Asignatura: Teoría de Grafos

Código: MCOM 22239

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Teoría de Grafos
Ubicación:	Segundo o tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

2. REVISIONES I ACTUALIZACIONES		
	Dr. Cesar Bautista Ramos,	
Autores:	Dr. Guillermo De Ita,	
	M.C. Pedro Bello López	
Fecha de diseño:	Noviembre 2012	
Fecha de la última actualización:	Marzo 2017	
Revisores:	Dr. Fernando Zacarias Flores,	
	M.C. Meliza Contreras González	
Sinopsis de la revisión y/o actualización:	Revisión de contenido	

3. OBJETIVOS:

Educacional: Lograr que el estudiante sea capaz de plantear y dar solución a problemas prácticos con el uso de la teoría de grafos y la aplicación de métodos combinatorios.

General: Que el estudiante comprenda los conocimientos y principios que rigen a la teoría de grafos y que desarrolle sus habilidades para plantear problemas modelados con grafos y combinatoria.

Específicos: Preparar al estudiante con los conceptos más comúnmente empleados en la teoría de grafos y combinatoria. Presentar un panorama general del tipo de problemas que se pueden resolver utilizando grafos.

4. CONTENIDO

Unidad	Contenido Temático
1. Combinatoria	 1.1 Técnicas de Conteo. Principio de la suma, Principio de la Multiplicación. 1.2 Permutaciones con repetición. Números multinómicos. 1.3 Permutaciones de elementos distintos. 1.4 Principio de inclusión-exclusión. 1.5 Combinaciones con repetición limitada. 1.6 Relaciones de recurrencia. 1.7 Resolución de ecuaciones de recurrencia.
2. Grafos	 1.8 Funciones generatrices. 2.1 Definiciones básicas. Tipos de grafos. Isomorfismo de grafos. 2.2 Grafos conexos. Árboles. Árboles generadores. 2.3 Algoritmos de búsqueda en grafos. 2.4 Grafos ponderados. Árboles generadores mínimos. 2.5 Grafos Eulerianos y Hamiltonianos. 2.6 Planaridad. Coloración de mapas. Coloración en grafos. 2.7 Pareamientos y grafos bipartidos. Teorema de Hall.
3. Problemas típicos con grafos	3.1 Isomorfismos de grafos, Conectividad, Planaridad.3.2 Conjuntos Independientes.3.3 Coloreo de grafos.3.4 Cliques.3.5 Matchings.
Conteo de objetos combinatorios	 4.1 Conteo de clases de equivalencia: Teorema de Polya 4.2 Lema de Burnside 4.3 Conteo: conjuntos independientes, cubierta de aristas, cubiertas de vértices. 4.4 Conteo de coloreo de Grafos.

Bibliografía		
Básica	Complementaria	
Alfred V. Aho, John E. Hopcroft,		
Jeffrey D. Ullman, Estructuras de		
datos y algoritmos, Addison-Wesley, 1988.		
J.A. Bondy U.S.R. Murty, Graph		
Theory, Springer		
Ralph P. Grimaldi, Matemáticas		
Discreta y Combinatoria, una		
introducción con aplicaciones. 3ª		
Edición. Pearson, Prentice Hall		
Gary Chartrand, Ping Zhang,		
Introduction to Graph Theory, Mc-		
Graw Hill 2005.		
 William Kocay, Donald L. Kreher, 		
Graphs, Algorithms, and Optimization,		
Chapman & Hall/CRC, 2005.		
Edgard M. Reingold, Combinatorial		
Algorithms, Prentice Hall 1977.		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	40%
Participación en clase	10%
Tareas	20%
Exposiciones	10%
Simulaciones	
 Trabajo de investigación y/o de 	
intervención	
 Prácticas de laboratorio 	
 Reporte de actividades académicas y 	
culturales	
Mapas conceptuales	
Portafolio	
Proyecto final	20%
Total	100%