Mestrado Integrado em Engenharia Electrónica Industrial e Computadores Microcontroladores 09/01/2013

Nomas	Nymana
Nome:	Numero:

1. Analise o programa da listagem que se segue:

01	#includ	e <8	9c51rx2.inc>	26	CONFIG TMR	2:
82	Š.			27	MOV	I2CON,#4H
03	DSEG	AT	30H	28	MOV	TH2, #OFFH
04	THIGH:	DS	1	29	MOV	RCAP2H, #OFFH
05	TLOW:	DS	1	30	MOV	TL2,#OD9H
06				31	MOV	RCAP2L, #OD9H
07	BSEG	AT	OH	32	MOV	TLOW, RCAP2L
08	PRONTO:	DBI	T 1	33	MOV	THIGH, RCAP2H
09				34	SETB	ET2
10	CSEG	AT	OH	35	SETB	EA
11	JMP	MAI	N	36	RET	
12	CSEG	AT	2BH	37		
13	JMP	ISR	_TMR2	38	ISR_TMR2:	
14	Š			39	CLR	TF2
15	CSEG	AT	50H	40	CPL	P1.0
16	MAIN:			41	JB	PRONTC, ISR_T2_CHANGE
17	CLR		PRONTO	42	RETI	
18	SET	В	P3.5	43	ISR_T2_CHA	NGE:
19	CAL	L	CONFIG_TMR2	44	CLR	PRONTC
20	MAINLOO	P:		45	MOV	DPL,TLOW
21	JB		P3.5,MAINLOOP	46	MOV	DPH, THIGH
22	SET	В	PRONTO	47	INC	DPTR
23	JNB		P3.5,\$	48	MOV	THIGH, DPH
24	JMP		MAINLOOF	49	MOV	TLOW, DPL
25				50	MOV	RCAP2L,TLOW
				51	MOV	RCAP2H, THIGH
				52	RETI	
				53	END	

- a) Explique o funcionamento do temporizador 2?
- b) Durante a execução como é alterado o valor da flag PRONTO?
- c) Para que fim está a ser utilizado o temporizador 2 e a sua interrupção?
- d) Como se altera a frequência do sinal gerado e qual o seu valor por defeito?
- 2. Escreva um programa que recebe 10 bytes pela porta série (9600 bps, 8 bits de dados, 1 start bit e 1 stop bit) e que devolva o número de pares existentes nesses bytes.
 - a) Escreva uma rotina que configure as comunicações série e a interrupção série.
 - b) Escreva uma rotina que conte o número de pares de uma sequência de 10 números colocados na memória de dados na posição 80h e que devolva no acumulador o nº de pares.
 - c) Escreva o código que implementa a resposta ao Reset e a resposta à interrupção série.
 - d) Escreva o código da rotina de serviço à interrupção série. Esta rotina deve armazenar um byte de cada vez que é executada a partir do endereço 80h. Quando receber e armazenar o 10° byte deve activar uma flag (declare a flag na área endereçável ao bit).
 - e) Escreva o restante código que permite resolver o problema.

Boa Sorte