The dangers of using Seasonal Adjustment and other filters in Econometrics

Some economic and environmental examples

44TH INTERNATIONAL SYMPOSIUM ON FORECASTING, DIJON

Antonio García-Ferrer ¹ Marcos Bujosa ²

¹Dpto. de Análisis Económico: Economía Cuantitativa. Universidad Autónoma de Madrid

²Dpto. de Análisis Económico y Economía Cuantitativa. Universidad Complutense de Madrid

June 30 - July 3, 2024

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

0

1 Introduction

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the estimated components are not observable, is it enough to pay attention to just the component of interest and forget about the remaining ones?
- Is the ideal property of orthogonality among the different component reasonably fulfilled?
- How potential outliers and other variants of intervention analysis affect final estimated components?

1 Introduction

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the estimated components are not observable, is it enough to pay attention to just the component of interest and forget about the remaining ones?
- Is the ideal property of *orthogonality* among the different component reasonably fulfilled?
- How potential *outliers* and other variants of *intervention* analysis affect final estimated components?

1 Introduction

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the estimated components are not observable, is
 it enough to pay attention to just the component of interest
 and forget about the remaining ones?
- Is the ideal property of orthogonality among the different component reasonably fulfilled?
- How potential outliers and other variants of intervention analysis affect final estimated components?

2 Traditional approach

$$y_t = T_t + C_t + S_t + e_t$$

3 Small empirical exercise

Four monthly time series pertaining to the Spanish economic CLI used in: http://uam-ucm-economic-indicators.es/

- CAR REGISTRATIONS
- HOUSING STARTS
- CEMENT CONSUMPTION
- TRUCKS

From 1978M01 to 2013M12

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

4 Small empirical exercise

5 Several signal extraction methodologies

Using several model-based signal extraction methodologies, namely

- SEATS-TRAMO
- X-12 ARIMA
- Linear Dynamic Harmonic Regression (Bujosa et al., 2007)

Disclaimer and explanation of the posterior empirical results

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

6 Dynamic Harmonic Regression Model

The DHR model consists of several unobserved components plus an irregular stationary zero mean component $e=\{e_t\}_{t\in\mathbb{Z}}$

$$y = \sum_{j=0}^{R} s^j + e. \tag{1}$$

ullet DHR components $s^j=\{s^j_t\}_{t\in\mathbb{Z}}$ are oscillatory

$$s_t^j = a_t^j \cos(\omega_j t) + b_t^j \sin(\omega_j t), \tag{2}$$

where frequency ω_i is associated to the *j*-th component.

- Oscillations are modulated by two GRW processes $a^j=\{a^j_t\}_{t\in\mathbb{Z}}$ and $b^j=\{b^j_t\}_{t\in\mathbb{Z}}.$
- $\omega_0 = 0$ corresponds to the trend (or zero frequency term).
- The model is fitted in the frequency domain.

7 Car registrations Seasonal Factors: DHR, ST, X12

8 Seasonally adjusted Car registrations: DHR, ST, X12

oduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

9 FAC - First Difference of Seasonally adjusted Car registrations

10 Summary of tentative results of the four series

 Outlier detection plus other interventions as easter effects and calendar effects are crucial in the estimation of unobserved components models

 As a matter of fact when you don't use this option in SEATS-TRAMO there is evidence of seasonality in the SA series

 Using outlier detection plus easter and calendar effects produce considerable reduction in the estimated residual variances ranging from 21% to 31% 11 Results from a Stock & Watson data base

- Housing starts
- IPI
- Money supply M1
- Retail sales

12 Results from a Stock & Watson data base

13 Results from a Stock & Watson data base: Housing starts

14 Results from a Stock & Watson data base: IPI

15 Results from a Stock & Watson data base: Money supply

16 Results from a Stock & Watson data base: Retail sales

17 Hodrick–Prescott filter

Hodrick and Prescott (1981, 1997); Whittaker (1922)

$$y_t = \tau_t + c_t + \epsilon_t$$

Given a positive λ , there is a trend component τ that solves

$$\min_{\tau} \left(\sum_{t=1}^{T} (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} \left[(\tau_{t+1} - \tau_t) - (\tau_t - \tau_{t-1}) \right]^2 \right)$$

Why
$$\lambda = 1600$$
?

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

18 Why You Should Never Use the Hodrick-Prescott Filter (Hamilton, 2018)

Figure 2. Autocorrelations and cross-correlations for first-difference of stock prices and real consumption spending.

Notes to Figure 2. Upper left: autocorrelations of log growth rate of end-of-quarter value for S&P 500. Upper right: autocorrelations of log growth rate of real consumption spending. Lower panels: cross correlations.

troduction Exercise Methodologies S&W data **HP Filter** Climate 1 Climate 2 Covid References

19 Why You Should Never Use the Hodrick-Prescott Filter (Hamilton, 2018)

Figure 3. Autocorrelations and cross-correlations for HP cyclical component of stock prices and real consumption spending.

Notes to Figure 3. Upper left: autocorrelations of HP cycle for log of end-of-quarter value for S&P 500. Upper right: autocorrelations of HP cycle for log of real consumption spending. Lower panels: cross correlations.

20 Hodrick–Prescott filter

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

21 The Central England Temperature 1659–2007 (CET)

Alternative Temperature Cycles and Bayesian Turning Points

(Moreno et al., 2013; García-Ferrer et al., 2008)

22 The Central England Temperature 1659–2023 (CET)

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

23 The Central England Temperature 1659–2023 (CET)

Persuade or inform?

oduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

24 Modelling of Global Climate Change (Young et al., 2021)

25 Have AMO and GTA a common 63-years cycle?

DHR components for GTA

Trend, Cycle (shifted +0.7 units) and irregular (shifted -1 units) DHR components

$$GTA = T + S^{63} + S^{21} + \sum (\text{other harmonics}) + Irreg$$

26 Have AMO and GTA a common 63-years cycle?

DHR Trend-cycle component for AMO

$$AMO = T + S^{21} + \sum (\text{other harmonics}) + Irreg$$

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

27 Have AMO and GTA a common 63-years cycle?

Not clear GTA has a periodic cycle, but not AMO

28 Have original AMO and GTA a common 63-years cycle?

DHR components for "original" AMO data

Trend, cycle (shifted +0.7 units) and irregular (shifted -1 units) DHR components

$$AMO_{\rm with\ trend} = T + S^{63} + S^{21} + \sum ({\rm other\ harmonics}) + Irreg$$

29 Have the "original" AMO and GTA a common cycle?

They seem to have a common cycle (as suggested in Professor Young's article)

30 Coronavirus trajectories

Most western countries are on the same coronavirus trajectory. Hong Kong and Singapore have limited the spread; Japan and S Korea have slowed it

FT graphic: John Burn-Murdoch / @jburnmurdoch Source: FT analysis of Johns Hopkins University, CSSE; Worldometers. Data updated March 22, 19:00 GMT

31 Number of confirmed cases at 3/22/2020

Figure 1: Number of confirmed cases at 3/22/2020

32 Observed contagions and forecasts in Spain

Figure 2: Observed contagions and Forecasts in Spain

33 Observed deaths and forecasts in Spain

Figure 3: Observed Deaths and Forecasts in Spain

- Bujosa, M., García-Ferrer, A., and Young, P. C. (2007). Linear dynamic harmonic regression. *Comput. Stat. Data Anal.*, **52**(2), 999–1024. ISSN 0167-9473.
- García-Ferrer, A., Young, P., and Bujosa, M. (2008). Central england temperature: Analysis and forecasting. In *The 28th International Symposium on Forecasting*.
- Hamilton, J. D. (2018). Why You Should Never Use the Hodrick-Prescott Filter. *The Review of Economics and Statistics*, **100**(5), 831–843. ISSN 0034-6535. URL https://doi.org/10.1162/rest_a_00706
- Hodrick, R. J. and Prescott, E. (1981). Post-War U.S. Business Cycles: An Empirical Investigation. Discussion Papers 451, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Hodrick, R. J. and Prescott, E. C. (1997). Postwar u.u. business cycles: An empirical investigation. *Journal of Money, Credit and Banking*, **29**, 1–16.

- Moreno, E., Javier Girón, F., and García-Ferrer, A. (2013). A consistent on-line bayesian procedure for detecting change points. *Environmetrics*, **24**(5), 342–356.
- Whittaker, E. T. (1922). On a new method of graduation. *Proceedings of the Edinburgh Mathematical Society*, **41**, 63–75.
- Young, P. C., Allen, P. G., and Bruun, J. T. (2021). A re-evaluation of the earth's surface temperature response to radiative forcing. *Environmental Research Letters*, **16**(5), 054068.

URL https://dx.doi.org/10.1088/1748-9326/abfa50