Szükséges szigetelési vastagság számítása (A1 feladat)

Számítsa ki, hogy milyen hőátbocsátási tényezőjű (X) padlásfödém tervezése szükséges ahhoz, hogy az épület fajlagos hőveszteségtényezője pontosan megfeleljen a fajlagos hőveszteségtényező követelményének! (egyszerűsített számítás sugárzási nyereségek számítása nélkül).

Ezt követően számítsa ki, hány cm vastag 0,04 W/mK átlagos (eredő) hővezetési tényezőjű hőszigetelés szükséges a számított hőátbocsátási tényező eléréséhez, ha a többi szerkezeti réteg hővezetési ellenállása összesen 0,30 m2K/W (hőátadási tényezők: 10 és 12 W/m²K). A számított vastagságot kerekítse fel egész cm-re.

Lehűlő felületek (A, m²):

Homlokzat: 500

Homlokzati fal (hőszigeteletlen): 360

• Homlokzati üvegezett nyílászárók: 140

Padlásfödém: 250

• Pincefödém (szerkezeten belüli hőszigeteléssel, fűtetlen pincetér felett): 250

Rétegtervi hőátbocsátási tényezők (U, W/m²K):

• Homlokzati fal: 0,40

Homlokzati üvegezett nyílászárók: 1,50

Padlásfödém: XPincefödém: 0,50

Hőhidak hossza (m): Homlokzati fal: 400

Fűtött épülettérfogat: $V = 1600 \text{ m}^3$

Feladat megoldása

Az épület geometriai jellemzőjének számítása

Lehűlő összfelület: $\Sigma A = 500 + 250 + 250 = 1000 \text{ m}^2$ $\Sigma A/V = 1000/1600 = 0.625 \text{ m}^2/\text{m}^3$

A fajlagos hőveszteségtényező követelményértéke:

$$\begin{array}{lll} A/V \leq 0{,}3 & q_m = 0{,}2 & W/m^3K \\ 0{,}3 \leq A/V \leq 1{,}3 & q_m = 0{,}086 + 0{,}38 \; (\Sigma A/V) & W/m^3K \\ A/V \geq 1{,}3 & q_m = 0{,}58 & W/m^3K \end{array}$$

$$q_{m} = 0.086 + 0.38 * \sum\!A/V = \ 0.086 + 0.38 * 0.625 = \ 0.3235 \ W/m^{3}K$$

Az épület hőveszteségtényezőjének számítása a sugárzási nyereségek számítása nélkül

$$q = \frac{1}{V} \cdot \left(\sum A \cdot U_R + \sum l \cdot \Psi - \frac{Q_{sd} + Q_{sid}}{72} \right) \left[W / m^3 K \right]$$

Mivel egyszerűsített számítás a feladat, az összefüggés így módosul:

$$q = \frac{1}{V} \cdot \sum A \cdot U_R \quad [W / m^3 K]$$

 U_R - a hőhidak hatását kifejező korrekciós tényezővel (χ) módosított rétegtervi hőátbocsátási tényező: $U_R = U (1 + \chi)$

Rétegtervi hőátbocsátási tényezők korrekciója

 1 m^2 -re jutó hőhíd hossza a fal esetén: $400 \text{ m} / 500 \text{ m}^2 = 0.8 \text{ m/m}^2$

7/2006. (V. 24.) TNM rendelet 2. melléklet II/2. táblázat

4	A hőhidak hosszának fajlagos mennyisége (fm/m²)					
Épülethatároló szerkezetek	Épülethata	Épülethatároló szerkezet besorolása				
	gyengén hőhidas	közepesen hőhidas	erősen hőhidas			
Külső falak	< 0,8	0,8 – 1,0	> 1,0			
Lapostetők	< 0,2	0,2 - 0,3	> 0,3			
Beépített tetőtereket határoló szerkezetek	< 0,4	0,4 - 0,5	> 0,5			

A külső fal besorolása közepesen hőhidas.

7/2006. (V. 24.) TNM rendelet 2. melléklet II/1. táblázat

	A hőhidak hatását kifejező korrekciós tényező <i>χ</i>			
	lette # ala		gyengén hőhidas 1)	0,15
		ali, vagy szerkezeten akítatlan hőszigeteléssel	közepesen hőhidas 1)	0,20
Külső falak	beluli megsze	initalian noszigetelessei	erősen hőhidas ¹⁾	0,30
Kuiso iaiak			gyengén hőhidas 1)	0,25
	eg	yéb külső falak	közepesen hőhidas 1)	0,30
			erősen hőhidas 1)	0,40
			gyengén hőhidas ²⁾	0,10
Lapostetők			közepesen hőhidas 2)	0,15
			erősen hőhidas ²⁾	0,20
			gyengén hőhidas ³⁾	0,10
Beépített tető	íteret határoló s	zerkezetek	közepesen hőhidas 3)	0,15
			erősen hőhidas 3)	0,20
Padlásfödém	ek		4)	0,10
Árkádfödéme	ek		4)	0,10
Dipoefädéres	ıle	szerkezeten belüli hős	szigeteléssel ⁴⁾	0,20
Pinceloaeme	Pincefödémek alsó oldali hőszigetek		essel 4)	0,10
	Fűtött és fűtetlen terek közötti falak, fűtött pincetereket határoló, külső oldalon hőszigetelt falak			

Hőmérsékleti korrekciót kell alkalmazni. Egyszerűsített számítást választunk a padlásfödémre 0,9 a pincefödémre 0,5 $U_{Rfal}=0,4*(1+0,3)=0,52~W/m^2K$

 $U_{Rpad} = X*(1+0,1)$

 $U_{Rpif} = 0.5*(1+0.2) = 0.6 \text{ W/m}^2\text{K}$

A hőveszteségtényező számított értéke

$$q = \sum \! A^* U_{\rm R}/V = (U_{\rm Rfal} * A_{\rm fal} + U_{\rm Rpad} * A_{\rm pad} * 0.9 + U_{\rm Rpif}^* * A_{\rm pif} * 0.5 + U_{\rm Rnyz} * A_{\rm nyz})/V$$

$$q = (0.52*360+X*(1+0.1)*250*0.9+0.6*250*0.5+1.50*140)/1600$$

$$q = (187,\!2 + X*247,\!5 + 75 + 210)/1600 = 0,\!3235 \text{ W/m}^3\text{K}$$

A padlásfödém hőátbocsátási tényezője: $X = 0.1834 \text{ W/m}^2\text{K}$

Szükséges szigetelési vastagság számítása

$$U = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{R_e}$$

$$R_e = \frac{1}{U} = \frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}$$

$$\frac{1}{0,1834} = \frac{1}{12} + 0,3 + \frac{d}{0,04} + \frac{1}{10}$$

$$d=0{,}1987~m\cong 20~cm$$

HMV primer energiaigény számítása (B1 feladat)

Határozza meg egyszerűsített számítással az adott A_N =105 m² alapterületű lakóépület (családi ház) folyamatos melegvízellátása primer energia igényét, a végeredménynél számológépéből kiadódó 4 tizedes jegy pontossággal!

A HMV ellátás jellemzői:

- 50 %-ban az áramszolgáltatótól nyert villamos árammal üzemelő hőszivattyúval (a távozó levegő felhasználásával), külön villamos segédenergia beszámítás nélkül
- 50 %-ban villamos segédenergia nélküli napkollektoros hőenergia felhasználással
- cirkulációval, elosztással, a fűtött téren belül
- indirekt tárolóval a fűtött téren belül
- a villamos fogyasztások 2/3-része csúcsidőben, 1/3 része csúcsidőn kívül történik, ez a primer-energia átalakítási tényező meghatározásához figyelembe veendő!
- a tárolási veszteséget, valamint az elosztási és cirkulációs vezeték fajlagos energia igényét a HMV teljes nettó hőenergia igényére számítjuk!

Feladat megoldása

A HMV rendszer fajlagos energiaigénye

$$E_{HMV} = q_{HMV} \cdot \left(1 + \frac{q_{HMV,v}}{100} + \frac{q_{HMV,t}}{100}\right) \cdot \sum \left(C_k \cdot \alpha_k \cdot e_{HMV}\right) + (E_C + E_K)e_v$$

Tervezési adatok

7/2006. (V. 24.) TNM rendelet 3. melléklet IV.1. táblázat

Az épület	Légcsere-		Használati	Világítás	Világítási	Szakaszos	Belső hő-	
rendeltetése	szán	ı fűtés	i	melegvíz	energia	energia	üzem	nyereség
	idényben		nettó	igénye	igény	korrekciós	átlagos	
	[1/h]			hőenergia		korrekciós		értéke
	1)	2)	3)	igénye		szorzó		
				[kWh/m ² a]	[kWh/m ² a]	$v^{4)}$	σ 5)	$[W/m^2]$
Lakóépületek 6)		0,5		30	(8) 9)	-	0,9	5
Irodaépületek 7)	2	0,3	0,8	9	22	0,7	0,8	7
Oktatási épületek	2,5	0,3	0,9	7	12	0,6	0,8	9

Hőszivattyú teljesítménytényezője

7/2006. (V. 24.) TNM rendelet 2. melléklet VII.2. táblázat

Hőforrás		Teljesítménytényező
	$C_K[-]$	
Elektromos fű	tőpatron	1,00
Átfolyós vízm	elegítő, tároló	1,00
II.ő agir rattvy	Távozó levegő	0,26
HMV	Hőszivattyú Távozó levegő/Friss levegő hővisszanyerő η _r =0,6	
riivi v készítésre Távozó levegő/Friss levegő hővisszanyerő η _r =0,8		0,31
Reszlieste	Pince levegő	0,33

Hőszivattyú segédenergia igénye a kiírás értelmében $E_K=0~kWh/m^2a$ Napkollektor teljesítménytényezője érdektelen, a megújuló energia miatt 0 szorzóval szorozzuk. Legyen $C_K=1$

Napkollektor segédenergia igénye a kiírás értelmében E_K=0 kWh/m²a

Az elosztás fajlagos vesztesége, a cirkuláció segédenergia igénye

7/2006. (V. 24.) TNM rendelet 2. melléklet VII.6. táblázat

Alap-	Az elosztás hővesztesége a nettó melegvíz készítési hőigény százalékában						
terület	Cirku	lációval	Cirkuláció nélkül				
A_N [m ²]	Elosztás a fűtött	Elosztás a fűtött	Elosztás a fűtött	Elosztás a fűtött			
$[m^2]$	téren kívül	téren belül	téren kívül	téren belül			
	%	%	%	%			
100	28	24					
150	22	19					
200	19	17					
300	17	15	13	10			
500	14	13					
750	13	12					
>750	13	12					

7/2006. (V. 24.) TNM rendelet 2. melléklet VII.7. táblázat

,	,
A_N	Fajlagos segédenergia igény
$[m^2]$	[kWh/m ² a]
100	1,14
150	0,82
200	0,66
300	0,49
500	0,34
750	0,27
1000	0,22
1500	0,18
2500	0,14
5000	0,11
>5000	0,10

A hőtárolás fajlagos vesztesége

7/2006. (V. 24.) TNM rendelet 2. melléklet VII.4. táblázat

Alap-	A tárolás hővesztesége a nettó melegvízkészítési hőigény százalékában							
terü-		A tároló a fűtött légtéren belül						
let	Indirekt fűtésű	Indirekt fűtésű Csúcson kívüli árammal Nappali árammalműködő Gázüzemű						
A_N	tároló	roló működő elektromos bojler elektromos bojler						
$[m^2]$	%	%	%					
100	24	20	13	78				
150	17	16	10	66				
200	14	14	8	58				
300	10	12	7	51				
500	7	7 8 6						
>500	5	6	5	35				

A primer energia átalakítási tényezők

7/2006. (V. 24.) TNM rendelet 3. melléklet V.1. táblázat

Energia	е
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
megújuló: tűzifa, biomassza, biomasszából közvetve vagy közvetlenül előállított energia, a biogázok energiája, fapellet, agripellet	0,60
megújuló: nap-, szél-, hullám energia, vízenergia, a geotermikus, hidrotermikus, légtermikus energia	0,00

A HMV rendszer fajlagos energiaigénye

 $E_{HMV} = 15,93 \text{ kWh/a}$

$$E_{HMV} = q_{HMV} \cdot \left(1 + \frac{q_{HMV,v}}{100} + \frac{q_{HMV,t}}{100}\right) \cdot \sum \left(C_k \cdot \alpha_k \cdot e_{HMV}\right) + (E_C + E_K)e_v$$

$$E_{HMV} = 30 \cdot \left(1 + \frac{24}{100} + \frac{24}{100}\right) \cdot \left(0,26 \cdot 0,5 \cdot \left(\frac{2}{3} \cdot 2,5 + \frac{1}{3} \cdot 1,8\right) + 1 \cdot 0,5 \cdot 0\right) + (1,14 + 0) \cdot 2,5$$

Fűtés primer energiaigény számítása (B2 feladat)

Egy lakóépületben 4 db 140 m2-es lakás hőellátását a fűtetlen alagsorban elhelyezett széntüzelésű 90/70 °C hőlépcsőjű központi fűtéses kazán biztosítja. Az állandó hőmérsékletű fűtési rendszerben központi szabályozó van beépítve. A keringtetést állandó fordulatú szivattyú biztosítja. Az épület fajlagos nettó fűtési energiaigénye: $q_F = 150 \text{ kWh/m}^2$ a. A rendszerben nincs hőtároló.

Állapítsa meg, hogy

- széntüzeléses
- fatüzelésű, szabályozott
- pellet tüzelésű, ventilátorral, elektromos gyújtással ellátott

központi fűtéses kazán esetében lesz-e kedvezőbb a fajlagos fűtési primer energiaigény.

Feladat megoldása

A fűtési rendszer fajlagos energiaigénye

$$E_{F} = (q_{f} + q_{f,h} + q_{f,v} + q_{f,t}) \cdot \sum (C_{k} \cdot \alpha_{k} \cdot e_{f}) + (E_{FSz} + E_{FT} + q_{k,v})e_{v}$$

A hőtermelők adatai

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.5. táblázat

Szilárdtüzelésű	árdtüzelésű Fatüzelésű		Faelgázosító
kazán	kazán kazán		kazán
1,85	1,75	1,49	1,2

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.6. táblázat

Alapterületig <i>AN</i> [m2]	Szilárdtüzelésű kazán (szabályozó nélkül)	Fatüzelésű kazán (szabályozóval)	Pellet-tüzelésű kazán (Ventilátorral/elektromos gyújtással)
100	0	0,19	1,96
150	0	0,13	1,84
200	0	0,10	1,78
300	0	0,07	1,71
500	0	0,04	1,65

Az elosztás fajlagos vesztesége

A rendszer által kiszolgált alapterület: $4*140 = 560 \text{ m}^2$

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.7. táblázat

Alapterület $A_N[\text{m}^2]$	A hőelosztás veszteségei $q_{f,v}$ [kWh/m²a] Vízszintes elosztóvezetékek a fűtött téren kívül							
	90/70°C	90/70°C 70/55°C 55/45°C 35/28°C						
100	13,8 10,3 7,8 4,0							
150	10,3	7,7	5,8	2,9				
200	8,5 6,3 4,8 2,3							
300	6,8	5,0	3,7	1,8				
500	5,4 3,9 2,9 1,3							
>500	4,6	3,4	2,5	1,1				

A keringtetés fajlagos vesztesége

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.9. táblázat

Alap-	Fordul	Fordulatszám szabályozású szivattyú			Á	llandó fo	ordulatú	szivattyú
terület	Szabad fűtőfelületek			Beágyazott	Szabad fűtőfelületek			Beágyazott
A_N				fűtőfelületek				fűtőfelületek
$[m^2]$	20 K	15 K	10 K	7 K	20 K	15 K	10 K	7 K
	90/70	70/55	55/45		90/70	70/55	55/45	
	°C	°C	°C		°C	°C	°C	
100	1,69	1,85	1,98	3,52	2,02	2,22	2,38	4,22
150	1,12	1,24	1,35	2,40	1,42	1,56	1,71	3,03
200	0,86	0,95	1,06	1,88	1,11	1,24	1,38	2,44
300	0,61	0,68	0,78	1,39	0,81	0,91	1,04	1,85
500	0,42	0,48	0,57	1,01	0,57	0,65	0,78	1,38
750	0,33	0,38	0,47	0,83	0,45	0,52	0,64	1,14
1000	0,28	0,33	0,42	0,74	0,39	0,46	0,58	1,02
1500	0,23	0,28	0,37	0,65	0,33	0,39	0,51	0,90
2500	0,20	0,24	0,33	0,58	0,28	0,34	0,46	0,81
5000	0,17	0,22	0,30	0,53	0,24	0,30	0,42	0,74
10000	0,16	0,20	0,28	0,50	0,22	0,28	0,40	0,70

A szabályozás pontatlansága miatti veszteség

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.10. táblázat

Rendszer Szabályozás		$q_{f,h}$	Megjegyzések
		[kWh/m ² a]	
Vízfűtés	Szabályozás nélkül	15,0	
Kétcsöves	Épület vagy rendeltetési egység egy	9,6	
radiátoros	központi szabályozóval		
és beágyazott	(pl. szobatermosztáttal)		
fűtések	Termosztatikus szelepek és más arányos	3,3	
	szabályozók 2 K arányossági sávval		
	1 K arányossági sávval	1,1	
	Elektronikus szabályozó	0,7	Idő- és hőmérséklet szabályozás
			PI - vagy hasonló tulajdonsággal
	Elektronikus szabályozó optimalizálási	0,4	Pl. ablaknyitás, jelenlét
	funkcióval		érzékelés funkciókkal kibővítve
Egycsöves	Épület vagy rendeltetési egység 1 központi	9,6	Pl. lakásonkénti vízszintes
fűtések	szabályozóval (pl. szobatermosztáttal)		egycsöves rendszer
	Időjárásfüggő központi szabályozás	5,5	Pl. panelépületek átfolyós vagy
	helyiségenkénti szabályozás nélkül		átkötőszakaszos rendszere
	Termosztatikus szelepekkel	3,3	

A hőtárolás fajlagos vesztesége és a primer energia átalakítási tényezők

Hőtároló nincs, ezért annak fajlagos energiaigénye q_{f,t}=0 kWh/m²a, és segédenergia igénye E_{FT}=0 kWh/m²a.

7/2006. (V. 24.) TNM rendelet 3. melléklet V.1. táblázat

Energia	е
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
megújuló: tűzifa, biomassza, biomasszából közvetve vagy közvetlenül előállított energia, a biogázok energiája, fapellet, agripellet	0,60
megújuló: nap-, szél-, hullám energia, vízenergia, a geotermikus, hidrotermikus, légtermikus energia	0,00

A fűtési rendszer fajlagos energiaigénye

$$E_{F} = (q_{f} + q_{f,h} + q_{f,v} + q_{f,t}) \cdot \sum (C_{k} \cdot \alpha_{k} \cdot e_{f}) + (E_{FSz} + E_{FT} + q_{k,v})e_{v}$$

Széntüzeléses kazánnal

$$E_F = (150+9,6+4,6+0)*(1,85*1*1)+(0,57+0+0)*2,5=305,2 \text{ kWh/m}^2\text{a}$$

Fatüzelésű, szabályozott kazánnal

$$E_F = (150+9,6+4,6+0)*(1,75*1*0,6)+(0,57+0+0,04)*2,5=173,9 \text{ kWh/m}^2\text{a}$$

Pellet tüzelésű, ventilátorral, elektromos gyújtással ellátott kazánnal

$$E_F = (150+9,6+4,6+0)*(1,49*1*0,6)+(0,57+0+1,65)*2,5=152,3 \text{ kWh/m}^2\text{a}$$

A pellet tüzelésű, ventilátorral, elektromos gyújtással ellátott kazánnal lesz a legalacsonyabb a fajlagos primer energiaigény.

Légtechnikai rendszer fajlagos energiaigénye (C1 feladat)

Számítsa ki az alábbi adatokkal rendelkező épületnél a légtechnikai rendszer fajlagos energiaigényét.

Alapadatok:

Egy 2400 m³ fűtött térfogatú, 800 m² fűtött alapterületű irodaépület szellőző rendszere használati időben n=2 1/h légcsereszámmal üzemel. A befúvó rendszer áramlási ellenállása 450 Pa, az elszívó rendszeré 250 Pa. A befúvó légcsatorna 25 m hosszúságú, NA 600 mm méretű szakasza a fűtetlen padláson halad keresztül, a padlástér átlaghőmérséklete télen +4 °C. A légcsatorna 20 mm hőszigeteléssel rendelkezik. A szellőzőrendszer működési ideje fűtési idényben Z_{LT}=1833 óra, a teljes évben Z_{a,LT}=3650 óra. A befújt levegő hőmérséklete 24 °C, központilag szabályozva, az épület átlagos belső hőmérséklet 20 °C. A szellőző rendszer ηr=0,6 hatásfokú hővisszanyerővel rendelkezik. A kalorifer fűtővizét az épület alatti fűtetlen alagsorban elhelyezett hagyományos kazán állítja elő földgáz energiahordozóból. Ugyanez a kazán szolgálja ki a fűtési rendszert, ezért nem kell ismételten a segédenergia felhasználással számolni.

Feladat megoldása

Számítási összefüggés

$$E_{LT} = \{ [Q_{LT,n} \cdot (1 + f_{LT,sz}) + Q_{LT,v}] \cdot C_k \cdot e_{LT} + (E_{VENT} + E_{LT,s}) \cdot e_v \} \cdot \frac{1}{A_N}$$

Légtechnika nettó energiaigénye

$$\begin{aligned} Q_{LT,n} &= 0.35 \cdot V \cdot n_{LT} \cdot (1 - \eta_r) \cdot Z_{LT} \cdot (\bar{t}_{bef} - 4) \quad [kWh/a] \\ Q_{LT,n} &= 0.35 \cdot 2400 \cdot 2 \cdot (1 - 0.6) \cdot 1.833 \cdot (24 - 4) = 24636 \quad [kWh/a] \end{aligned}$$

Ventilátor villamos energiaigénye

$$E_{VENT} = \frac{V_{LT} \cdot \Delta p_{LT}}{3600 \cdot \eta_{...}} \cdot Z_{a,LT} \quad [kWh/a]$$

A rendszer térfogatárama:

$$V_{LT} = V \cdot n_{LT} = 2400 \cdot 2 = 4800 \quad [m^3 / h]$$

Ventilátorok összhatásfoka:

7/2006. (V. 24.) TNM rendelet 2. melléklet VIII.1. táblázat

	Ventilátor térfogatárama	Ventilátor összhatásfoka
	V_{LT} [m ³ /h]	η_{vent} [-]
Nagy ventilátorok	$10.000 \le V_{LT}$	0,70
Közepes ventilátorok	$1.000 \le V_{LT} < 10.000$	0,55
Kis ventilátorok	$V_{LT} < 1.000$	0,40

$$E_{VENT} = \frac{4800 \cdot (450 + 250)}{3600 \cdot 0.55} \cdot 3,65 = 6193,9 \left[kWh / a \right]$$

Légcsatorna hőleadása

A légcsatorna keresztmetszete:

$$A = \frac{D^2 \cdot \pi}{4} = \frac{\left(\frac{600}{1000}\right)^2 \cdot \pi}{4} = 0.283 \quad [m^2]$$

Az áramlási sebesség:

$$v = \frac{\dot{V}}{A} = \frac{\left(\frac{4800}{3600}\right)}{0.283} = 4.7 \quad [m/s]$$

Egységnyi hosszra vonatkoztatott hőátbocsátási tényező:

7/2006. (V. 24.) TNM rendelet 2. melléklet VIII.3. táblázat

Cső	Szigetelés nélkül			20 mm hőszigetelés		50 mm hőszigetelés			
átmérő			Áı	ramlási	sebessé	g w _{lev} [1	m/s]		
d [mm]	2	4	6	2	4	6	2	4	6
100	1,39	1,83	2,08	0,53	0,57	0,59	0,32	0,33	0,34
150	1,95	2,57	2,93	0,73	0,80	0,83	0,43	0,45	0,46
200	2,48	3,28	3,74	0,94	1,03	1,06	0,53	0,56	0,57
300	3,49	4,63	5,29	1,33	1,47	1,52	0,75	0,79	0,80
500	5,49	7,27	8,30	2,13	2,34	2,43	1,17	1,23	1,25
800	8,30	11,0	12,5	3,29	3,63	3,78	1,79	1,88	1,92
1000	10,1	13,4	15,3	4,05	4,48	4,66	2,20	2,32	2,37
1250	12,2	16,2	18,5	4,99	5,52	5,76	2,71	2,86	2,92
1600	15,2	20,1	23,0	6,29	6,97	7,28	3,42	3,61	3,69

Légcsatorna veszteségtényezője f_v=1. (fűtetlen téren halad keresztül)

$$\begin{split} U_{_{k\ddot{o}r}} &= (0,65\cdot 2,34+0,35\cdot 2,43)\cdot \frac{2}{3} + (0,65\cdot 3,63+0,35\cdot 3,78)\cdot \frac{1}{3} = 2,81 \ [W/mK] \\ Q_{_{LT,v}} &= U_{_{k\ddot{o}r}}\cdot l_{_{v}}\cdot \left(t_{_{l,k\ddot{o}z}} - t_{_{i,\acute{a}tl}}\right)\cdot f_{_{v}}\cdot Z_{_{LT}} \\ Q_{_{LT,v}} &= 2,81\cdot 25\cdot \left(24-4\right)\cdot 1\cdot 1,833 \\ Q_{_{LT,v}} &= 2575 \quad \left[kWh/a\right] \end{split}$$

A szabályozás pontatlansága miatti veszteség

7/2006. (V. 24.) TNM rendelet 2. melléklet VIII.2. táblázat

Rendszer	Hőmérséklet szabályozás módja	$f_{LT,sz}$	Megjegyzés
		%	
20 °C feletti befúvási	Helyiségenkénti szabályozás	5	Érvényes az egyes helyi (helyiségenkénti) és
hőmérséklet esetén	Központi előszabályozással,	10	a központi kialakításokra, függetlenül a
	helyiségenkénti szabályozás nélkül		levegő melegítés módjától.
	Központi és helyiségenkénti	30	
	szabályozás nélkül		
20 °C alatti befúvási		0	Pl.: hővisszanyerős rendszer utófűtő nélkül
hőmérséklet esetén			

Kazán teljesítménytényezője

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.1. táblázat

	Tel	Segédenergia $q_{k,v}$		
Alapterület	Állandó	Alacsony	Kondenzációs	[kWh/m ² a]
A_N [m ²]	hőmérsékletű	hőmérsékletű	kazán	
	kazán	kazán		
100	1,38	1,14	1,05	0,79
150	1,33	1,13	1,05	0,66
200	1,30	1,12	1,04	0,58
300	1,27	1,12	1,04	0,48
500	1,23	1,11	1,03	0,38
750	1,21	1,10	1,03	0,31
1000	1,20	1,10	1,02	0,27
1500	1,18	1,09	1,02	0,23
2500	1,16	1,09	1,02	0,18
5000	1,14	1,08	1,01	0,13
10000	1,13	1,08	1,01	0,09

A primer energia átalakítási tényezők

7/2006. (V. 24.) TNM rendelet 3. melléklet V.1. táblázat

Energia	е
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
megújuló: tűzifa, biomassza, biomasszából	0,60
közvetve vagy közvetlenül előállított energia,	
a biogázok energiája, fapellet, agripellet	
megújuló: nap-, szél-, hullám energia,	0,00
vízenergia, a geotermikus, hidrotermikus,	
légtermikus energia	

Légtechnika primer energiaigénye

$$E_{LT} = \left\{ \left[Q_{LT,n} \cdot \left(1 + f_{LT,sz} \right) + Q_{LT,v} \right] \cdot C_k \cdot e_{LT} + \left(E_{VENT} + E_{LT,s} \right) \cdot e_v \right\} \cdot \frac{1}{A_N}$$

$$E_{LT} = \left\{ \left[24636 \cdot \left(1 + \frac{10}{100} \right) + 2575 \right] \cdot 1,21 \cdot 1 + (6193.9 + 0) \cdot 2.5 \right\} \cdot \frac{1}{800}$$

$$E_{LT} = 64,24 \quad \left[\frac{kWh}{m^2 a} \right]$$

Fűtési rendszer fajlagos energiaigénye (C2 feladat)

Számítsa ki az alábbi adatokkal rendelkező épületnél a fűtési rendszer fajlagos energiaigényét. Alapadatok:

Egy 466 m² összterületű társasház kétféle típusú lakásból áll. Az egyik lakás típusból 2 db 65 m² alapterületű lakás van az épületben, ezekben a lakásokban szabályozó termosztáttal ellátott parapet konvektorok üzemelnek.

A másik lakás típusból 4 db 84 m² alapterületű lakás van az épületben, ezeknél a fűtési rendszer közös, a fűtetlen pincében elhelyezett állandó hőmérsékletű kazánról üzemel. A kétcsöves fűtési rendszer 70/55 °C hőfoklépcsőjű, állandó fordulatú szivattyúval üzemel, a rendszer központi időjárásfüggő szabályozással rendelkezik. Az alapvezetékek a fűtetlen pincetérben vannak kiépítve.

A nettó fűtési energiaigény valamennyi lakásnál az átlagos 130 kWh/m²a értékkel veendő figyelembe. (A táblázati értékek megválasztásánál nem kell interpolálni, használja a közelebbi értéket!)

Feladat megoldása

Számítási összefüggés

$$E_{F} = (q_{f} + q_{f,h} + q_{f,v} + q_{f,t}) \cdot \sum (C_{k} \cdot \alpha_{k} \cdot e_{f}) + (E_{FSz} + E_{FT} + q_{k,v})e_{v}$$

Mivel az épületben 2 különböző rendszer van, ezért kétszer kell alkalmazni az összefüggést.

1. lakástípus fűtési rendszere

Gázkonvektor teljesítménytényezője

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.12. táblázat

Hőforrás / Fűtőközeg	Teljesítménytényező
Thornas / Lutonozog	Ck [-]
Elektromos hősugárzó	1,0
Elektromos hőtárolós kályha	1,0
Cserépkályha	1,60
Kandalló	1,80
Egyedi fűtés kályhával	1,90
Hőmérsékletszabályozó nélküli, vagy csak folyamatos	1,40
hőmérsékletszabályozásra képes gázkonvektorok (A készülék	
nem képes a csökkentett gázterhelés állapotából a főégő	
kikapcsolt állapotába kapcsolni.)	
Kombinált hőmérsékletszabályozással ellátott, hagyományos	1,32
gázkonvektor (A készülék képes a csökkentett gázterhelés	
állapotából a főégő kikapcsolt állapotába kapcsolni.)	
Kombinált hőmérséklet szabályozóval ellátott és szakaszos	1,12
gázlevegő arányszabályozást megvalósító nyílt égésterű,	
gravitációs kéménybe kötött gázkonvektorok, amelyek csökkentett	
terhelésen mért hatásfoka legalább 89%.	
Kombinált hőmérséklet szabályozóval ellátott és szakaszos	1,07
gázlevegő arányszabályozást megvalósító külsőfali	
gázkonvektorok, amelyek csökkentett terhelésen mért hatásfoka	
legalább 93%.	

Szabályozás pontatlansága miatti veszteség

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.13. táblázat

Rendszer		Szabályozás	qf,h [kWh/m2/a]
Egyedi fűtések Gázkonvektor Szabályozó termo		Szabályozó termosztáttal	5,5
		Szabályozás nélkül	
Egyedi kályha		Szabályozás nélkül	15,0
	Kandalló	Szabályozás nélkül	10,0
Elektromos fűtések	Hősugárzó	Szabályozás nélkül	5,5
		Szabályozó termosztáttal	0,7
	Hőtárolós kályha	Szabályozó termosztáttal	4,4

Nem kell vezeték és tároló hőveszteséggel számolni. Valamennyi elektromos segédenergia igény 0 kWh/m²a.

A primer energia átalakítási tényezők

7/2006. (V. 24.) TNM rendelet 3. melléklet V.1. táblázat

Energia	е
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
megújuló: tűzifa, biomassza, biomasszából közvetve vagy közvetlenül előállított energia,	0,60
a biogázok energiája, fapellet, agripellet	
megújuló: nap-, szél-, hullám energia,	0,00
vízenergia, a geotermikus, hidrotermikus,	
légtermikus energia	

Fűtési rendszer fajlagos energiaigénye

$$\begin{split} E_F &= \left(q_f + q_{f,h} + q_{f,v} + q_{f,t}\right) \cdot \sum \left(C_k \cdot \alpha_k \cdot e_f\right) + (E_{FSz} + E_{FT} + q_{k,v})e_v \\ E_F &= \left(130 + 5.5 + 0 + 0\right) \cdot \left(1.40 \cdot 1 \cdot 1\right) + \left(0 + 0 + 0\right) \cdot 2.5 \\ E_F &= 189.7 \quad kWh/m^2a \end{split}$$

2. lakástípus fűtési rendszere

A fűtési rendszer összterülete: 4 lakás x $84 \text{ m}^2/\text{lakás} = 336 \text{ m}^2$

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.1. táblázat

	Telj	Segédenergia $q_{k,v}$		
Alapterület	Állandó	Alacsony	Kondenzációs	[kWh/m²a]
A_N [m ²]	hőmérsékletű	hőmérsékletű	kazán	
	kazán	kazán		
100	1,38	1,14	1,05	0,79
150	1,33	1,13	1,05	0,66
200	1,30	1,12	1,04	0,58
300	1,27	1,12	1,04	0,48
500	1,23	1,11	1.03	0,38
750	1,21	1,10	1,03	0,31
1000	1,20	1,10	1,02	0,27
1500	1,18	1,09	1,02	0,23
2500	1,16	1,09	1,02	0,18
5000	1,14	1,08	1,01	0,13
10000	1,13	1,08	1,01	0,09

Az elosztás fajlagos vesztesége

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.7. táblázat

Alapterület $A_N[\text{m}^2]$	A hőelosztás veszteségei $q_{f,v}$ [kWh/m²a] Vízszintes elosztóvezetékek a fűtött téren kívül					
	90/70°C 70/55°C 55/45°C 35/28°C					
100	13,8	10,3	7,8	4,0		
150	10,3	7,7	5,8	2,9		
200	8,5	6,3	4,8	2,3		
300	6,8	5,0	3,7	1,8		
500	5,4	3,9	2,9	1,3		
>500	4,6	3,4	2,5	1,1		

A keringtetés fajlagos vesztesége

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.9. táblázat

Alap-	Fordulatszám szabályozású szivattyú				Állandó fordulatú szivattyú			
terület	Szabad fűtőfelületek			Beágyazott	Szabad fűtőfelületek			Beágyazott
A_N				fűtőfelületek				fűtőfelületek
$[m^2]$	20 K	15 K	10 K	7 K	20 K	15 K	10 K	7 K
	90/70	70/55	55/45		90/70	70/55	55/45	
	°C	°C	°C		°C	°C	°C	
100	1,69	1,85	1,98	3,52	2,02	2,22	2,38	4,22
150	1,12	1,24	1,35	2,40	1,42	1,56	1,71	3,03
200	0,86	0,95	1,06	1,88	1,11	1,24	1,38	2,44
300	0,61	0,68	0,78	1,39	0,81	0,91	1,04	1,85
500	0,42	0,48	0,57	1,01	0,57	0,65	0,78	1,38
750	0,33	0,38	0,47	0,83	0,45	0,52	0,64	1,14
1000	0,28	0,33	0,42	0,74	0,39	0,46	0,58	1,02
1500	0,23	0,28	0,37	0,65	0,33	0,39	0,51	0,90
2500	0,20	0,24	0,33	0,58	0,28	0,34	0,46	0,81
5000	0,17	0,22	0,30	0,53	0,24	0,30	0,42	0,74
10000	0,16	0,20	0,28	0,50	0,22	0,28	0,40	0,70

A szabályozás pontatlansága miatti veszteség

7/2006. (V. 24.) TNM rendelet 2. melléklet VI.10. táblázat

Rendszer	Szabályozás	$q_{f,h}$ [kWh/m ² a]	Megjegyzések
Vízfűtés	Szabályozás nélkül	15,0	
Kétcsöves	Épület vagy rendeltetési egység egy	9,6	
radiátoros	központi szabályozóval		
és beágyazott	(pl. szobatermosztáttal)		
fűtések	Termosztatikus szelepek és más arányos	3,3	
	szabályozók 2 K arányossági sávval		
	1 K arányossági sávval	1,1	
	Elektronikus szabályozó	0,7	Idő- és hőmérséklet szabályozás
			PI - vagy hasonló tulajdonsággal
	Elektronikus szabályozó optimalizálási	0,4	Pl. ablaknyitás, jelenlét
	funkcióval		érzékelés funkciókkal kibővítve
Egycsöves	Épület vagy rendeltetési egység 1 központi	9,6	Pl. lakásonkénti vízszintes
fűtések	szabályozóval (pl. szobatermosztáttal)		egycsöves rendszer
	Időjárásfüggő központi szabályozás	5,5	Pl. panelépületek átfolyós vagy
	helyiségenkénti szabályozás nélkül		átkötőszakaszos rendszere
	Termosztatikus szelepekkel	3,3	

A hőtárolás fajlagos vesztesége és a primer energia átalakítási tényezők

Hőtároló nincs, ezért annak fajlagos energiaigénye $q_{f,t}$ =0 kWh/m²a, és segédenergia igénye E_{FT} =0 kWh/m²a. 7/2006. (V. 24.) TNM rendelet 3. melléklet V.1. táblázat

Energia	е
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
megújuló: tűzifa, biomassza, biomasszából közvetve vagy közvetlenül előállított energia, a biogázok energiája, fapellet, agripellet	0,60
megújuló: nap-, szél-, hullám energia, vízenergia, a geotermikus, hidrotermikus, légtermikus energia	0,00

A fűtési rendszer fajlagos energiaigénye

$$E_{F} = (q_{f} + q_{f,h} + q_{f,v} + q_{f,t}) \cdot \sum (C_{k} \cdot \alpha_{k} \cdot e_{f}) + (E_{FSz} + E_{FT} + q_{k,v})e_{v}$$

$$E_{F} = (130 + 9,6 + 5,0 + 0) \cdot (1,27 \cdot 1 \cdot 1) + (0,91 + 0 + 0,48) \cdot 2,5$$

$$E_{F} = 187,1 \quad kWh/m^{2}a$$

A kétféle lakás átlagos fűtési fogyasztása

A kétféle rendszer fogyasztását területarányosan kell átlagolni.

$$E_F = \frac{n_1 \cdot A_1 \cdot E_{F1} + n_2 \cdot A_2 \cdot E_{F2}}{n_1 \cdot A_1 + n_2 \cdot A_2}$$

$$E_F = \frac{2 \cdot 65 \cdot 189, 7 + 4 \cdot 84 \cdot 187, 1}{2 \cdot 65 + 4 \cdot 84}$$

$$E_F = 187.8 \quad kWh/m^2a$$

Külső fal hőszigetelésének gazdaságossági számítása (D1 feladat)

Adott egy egyszintes alápincézetlen lakóépület ($A_N = 65 \text{ m}^{2}$; $V = 174 \text{ m}^3$), melynél a vonalmenti hőátbocsátás veszteségtényezője: 33,3 W/K

 $padlás födém \ vesztes \'egtényezője: \qquad A_{padl\acute{a}s} \ U_{Rpadl\acute{a}s} = 20,6 \ W/K$

nyílászárók veszteségtényezője: $A_{nyz} \cdot U_{Rnyz} = 18,9 \text{ W/K}$

nyílászárók üvegfelületei: $A_{\ddot{U}\dot{E}}$ = 2,4 m²; $A_{\ddot{U}D}$ = 6,4 m²; $A_{\ddot{U}K}$ = 0,8 m²; $A_{\ddot{U}NY}$ = 3,2 m²

a tömör, szigeteletlen közepesen hőhidas falfelület adatai: $A = 81 \text{ m}^2$,

belső és külső vakolat: d= 1,5 cm; λ = 0,87 W/mK; tégla: d= 30 cm, λ = 0,72 W/mK

 $\alpha_e = 24$ es $\alpha_i = 8$ értékkel számoljunk, $\epsilon = 0.75$, g = 0.65

- 1. Milyen mértékű lesz a fajlagos hőveszteségtényező változása, ha a tömör falfelületre 15 cm-es szigetelést teszünk? A szigetelőanyag adatai: d = 15 cm; $\lambda = 0.04$ W/mK
- 2. ha feltételezzük, hogy az egyszerűsített számítási módszerrel meghatározott nettó fűtési energiaigény megegyezik a tényleges gázfogyasztással, akkor a szigetelt fal milyen gázfelhasználás-csökkenést eredményez?

Feladat megoldása

A falszerkezet hőátbocsátási, eredeti és szigetelt állapotban

$$U_{fal} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}}$$

$$U_{fal} = \frac{1}{\frac{1}{24} + \frac{0,015}{0,87} + \frac{0,3}{0,72} + \frac{0,015}{0,87} + \frac{1}{8}} = 1,619 \quad W/m^2K$$

$$U_{fal,sz} = \frac{1}{\frac{1}{24} + \frac{0,015}{0,87} + \frac{0,15}{0,04} + \frac{0,3}{0,72} + \frac{0,015}{0,87} + \frac{1}{8}} = 0,229 \quad W/m^2K$$

A sugárzási energiahozam

$$Q_{sd} = \varepsilon \cdot \sum A_{ii} \cdot Q_{TOT} \cdot g$$

7/2006. (V. 24.) TNM rendelet 3. melléklet I.3. táblázat

A számítás célja	Tájolás		
	É	D	K - N
Sugárzási energiahozam a fűtési idényre fajlagos hőveszteségtényező számításához Q_{TOT} [kWh/m²a]	100	400	200
Átlagintenzitás egyensúlyi hőmérsékletkülönbség számításához / [W/m²]	27	96	50
Átlagintenzitás nyári túlmelegedés kockázatának számításához / [W/m²]	85	150	150

$$Q_{sd} = 0.75 \cdot (2.4 \cdot 100 + 6.4 \cdot 400 + 0.8 \cdot 200 + 3.2 \cdot 200) \cdot 0.65 = 1755$$
 kWh/a

Az épületben nincsen üvegház, Trombe-fal stb. ezért Q_{sid}=0 W/K.

Rétegtervi hőátbocsátási tényezők korrekciója

7/2006. (V. 24.) TNM rendelet 2. melléklet II/1. táblázat

	A hőhidak hatását kifejező korrekciós tényező X			
	1.21- 4 - 1.1	- P	gyengén hőhidas 1)	0,15
		ali, vagy szerkezeten ıkítatlan hőszigeteléssel	közepesen hőhidas 1)	0,20
Külső falak	beidii megaza	initiatian noozigeteleosei	erősen hőhidas ¹⁾	0,30
Kuiso lalak			gyengén hőhidas 1)	0,25
	eg	yéb külső falak	közepesen hőhidas 1)	0,30
			erősen hőhidas 1)	0,40
	0,10			
Lapostetők			közepesen hőhidas 2)	0,15
			erősen hőhidas ²⁾	0,20
			gyengén hőhidas ³⁾	0,10
Beépített tető	őteret határoló s	zerkezetek	közepesen hőhidas 3)	0,15
			erősen hőhidas ³⁾	0,20
Padlásfödém	nek		4)	0,10
Árkádfödéme	ek		4)	0,10
Pincefödémek		szerkezeten belüli hős	0,20	
		alsó oldali hőszigetelé	0,10	
Fűtött és fűt hőszigetelt fala	0,05			

A fajlagos hőveszteségtényező számítása mindkét esetre

$$q = \frac{1}{V} \cdot \left(\sum A \cdot U + \sum I \cdot \Psi - \frac{Q_{sd} + Q_{sid}}{72} \right) [W/m^{3}K]$$

$$q = \frac{1}{174} \cdot \left(20.6 + 18.9 + 81 \cdot 1.619 \cdot 1.3 + 33.3 - \frac{1755}{72} \right) = 1,258 [W/m^{3}K]$$

$$q_{szig} = \frac{1}{174} \cdot \left(20.6 + 18.9 + 81 \cdot 0.229 \cdot 1.2 + 33.3 - \frac{1755}{72} \right) = 0,406 [W/m^{3}K]$$

A fajlagos hőveszteségtényező az eredeti érték 0,406/1,258*100 = 32,3 %-ára csökkent.

Tervezési adatok

7/2006. (V. 24.) TNM rendelet 3. melléklet IV.1. táblázat

Az épület	Légcsere-		Használati	Világítás	Világítási	Szakaszos	Belső hő-	
rendeltetése	szám fűtési		melegvíz	energia	energia	üzem	nyereség	
	idényben			nettó	igénye	igény	korrekciós	átlagos
	[1/h]		hőenergia		korrekciós	szorzó	értéke	
	1)	2)	3)	igénye		szorzó		
				[kWh/m ² a]	[kWh/m ² a]	$v^{4)}$	σ 5)	$[W/m^2]$
Lakóépületek ⁶⁾ 0,5		30	$(8)^{9)}$	-	0,9	5		
Irodaépületek 7)	2	0,3	0,8	9	22	0,7	0,8	7
Oktatási épületek	2,5	0,3	0,9	7	12	0,6	0,8	9

A nettó fűtési energiaigény mindkét esetre

$$Q_F = H \cdot V \cdot (q + 0.35 \cdot n_{LT}) \cdot \sigma - Z_F \cdot A_N \cdot q_b \ [kWh/a]$$

$$Q_F = 72 \cdot 174 \cdot (1,258 + 0,35 \cdot 0,5) \cdot 0,9 - 4,4 \cdot 65 \cdot 5 = 14727 \ [kWh/a]$$

$$Q_{F,szig} = 72 \cdot 174 \cdot \left(0,406 + 0,35 \cdot 0,5\right) \cdot 0,9 - 4,4 \cdot 65 \cdot 5 = 5121 \ \left[kWh/a\right]$$

A nettó fűtési energiaigény az eredeti érték 5121/14727*100 = 34,8 %-ára csökkent, 65,2 %-os a csökkenés.