Temporal Link Prediction with GConvGRU on Dynamic Graphs

Abdurrahman Kürşat Özkan

Department of Computer Science, Akdeniz University, Antalya, Türkiye Email: kursatozkan.job@gmail.com

Alperen Cevahiroğlu

Department of Computer Science, Akdeniz University, Antalya, Türkiye Email: 20200808016@ogr.akdeniz.edu.tr

Abstract—We present a modular pipeline for temporal link prediction on large-scale dynamic graphs, built with PyTorch Geometric Temporal. Key components include ID remapping and streaming sampling to handle 27M+ edges, a custom TemporalLinkPredictionDataset, a recurrent GNN encoder (GConvGRU with K=2 hops and hidden size 64), and a two-layer MLP link scorer. We validate on held-out future edges (last 10% of timestamps) and evaluate using ROC AUC, average precision, and PR AUC. Our experiments on a sampled subset (2.7M edges) demonstrate robust performance and clear guidelines for scaling to full datasets.

Index Terms—Temporal link prediction, dynamic graphs, GConvGRU, negative sampling, streaming preprocessing

I. INTRODUCTION

Temporal link prediction forecasts future interactions in evolving networks, important for applications such as social event forecasting, e-commerce demand, and recommender systems. Static methods ignore sequence effects; our approach models spatial-temporal dependencies via a graph-convolutional GRU, enabling richer representations of node dynamics. We describe a full workflow: preprocessing, dataset construction, model design, training, validation query generation, inference, and evaluation.

II. DATA PREPROCESSING

Handling 27 million raw edges on an Apple M1 requires streaming and sampling:

- ID map generation: build_id_maps reads the first column of node_features.csv and edge_type_features.csv, enumerates unique raw IDs to contiguous zero-based integers, and writes node_id_map.json and etype_id_map.json.
- Static feature remapping:
 remap_and_save_static applies these
 maps to the static feature tables, producing node_features_mapped.csv and
 edge_type_features_mapped.csv.
- Streaming edge sampling: remap_edges_stream reads edges_train_A.csv in 1,000,000-row chunks, randomly samples a fraction (sample_frac=0.000005) of each chunk (yielding approximately 5 edges per chunk), remaps source, destination, and

edge-type IDs, and appends the results to edges_train_A_mapped.csv. A fixed random seed (seed=42) ensures reproducibility.

III. DATASET CONSTRUCTION

In src/dataset.py, we implement
TemporalLinkPredictionDataset:

- Load remapped edges (columns src, dst, etype, ts) and sort unique timestamps $\{t_0, \ldots, t_T\}$.
- For each index *i*:
 - 1) Historical edges $\{e \mid ts_e \leq t_i\}$ form graph snapshot G_{t_i} with edge_index.
 - 2) Positive pairs: edges with $t_i < ts_e \le t_{i+1}$.
 - 3) Negative pairs: uniformly sample K random node pairs (K equals the number of positives).
 - Return x (node features), edge_index, pairs, and labels.

IV. MODEL ARCHITECTURE

Our GConvGRULinkPredictor (in src/model.py) comprises:

- GConvGRU encoder: $F \to H$ node feature transform with two graph-convolutional hops (K=2) and hidden dimension H=64.
- Link MLP: concatenate $h_u, h_v \in \mathbb{R}^H$ to \mathbb{R}^{2H} , then Linear(2H, H)-ReLU-Linear(H, 1)-Sigmoid for edge probability.

V. TRAINING

Scripts in src/train.py perform training with:

- DataLoader (batch_size=None) streams one snapshot per iteration.
- Device: mps if available, otherwise cpu.
- Optimizer: Adam (lr = 10^{-3}); Loss: Binary Cross-Entropy.
- Epochs and hidden size configurable via CLI flags (--epochs, --hidden).
- Progress tracked via tqdm.
- Final model saved to model/model.pth.

VI. VALIDATION QUERY GENERATION

We hold out the latest 10% of edges by timestamp using make_val.py:

- 1) Compute cutoff $t_{\text{cut}} = \text{quantile}(ts, 0.9)$.
- 2) Positives: edges with $ts > t_{\text{cut}}$ in windows (t 1, t], label = 1.
- 3) Negatives: an equal number of random (src, dst) pairs with random edge types in the same windows, label = 0.
- 4) Shuffle and export to data/val_queries.csv.

VII. INFERENCE AND EVALUATION

Inference (src/inference.py) loads the checkpoint, computes full-graph embeddings, and scores queries into output/*.csv. Evaluation (src/evaluate.py) computes:

- **ROC AUC**: roc_auc_score = 0.7908
- Average Precision: average_precision_score = 0.8479
- **PR AUC**: area under the precision-recall curve = 0.8429

VIII. DISCUSSION

Our pipeline achieves efficient preprocessing and strong performance on held-out data:

- The GConvGRU encoder effectively captures temporal dynamics, yielding a ROC AUC of 0.7908.
- Streaming sampling and negative sampling strategies proved critical for learning with large-scale data.
- Precision–Recall metrics demonstrate high confidence in top-ranked predictions (AP 0.8479, PR AUC 0.8429).

Future work includes scaling to the full 27M-edge graph via streaming TGN and exploring mixed-precision on MPS.

IX. CONCLUSION

We deliver a scalable, modular system for temporal link prediction, validated on a large dynamic graph sample. The method generalizes to other domains requiring time-aware interaction forecasting.