

Review: General Linear Models & Model Comparisons

The basic data analysis equation

Data = Model + Error

- Data = the raw, empirical observations that we want our model to explain
- Model = an algebraic expression that describes a geometric shape (e.g., a line, a plane, etc.) that captures the general pattern observed in the data
- Error = the part of the data left unexplained by the model

The best-fitting model is the one that best does best at predicting the data by minimizing the sum of squared errors (SSE).

The best-fitting model

Sum of squared errors:

- SSE = $\Sigma (Y_i Y_i')^2$
 - Y_i = each participant's raw score in the data set
 - Y'_{i} = the score predicted by the model for each participant
 - (Y_i Y'_i) = the error for each participant; the difference between their actual and predicted scores (aka, **residual**)
 - $(Y_i Y_i)^2$ = each error (or residual) squared

The general equation for a linear model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \dots + \beta_{j}X_{ij} + \varepsilon_{i}$$
Data
$$Model$$
Error

This equation describes the relationship between the predictor variables (X's) and outcome variable (Y) at the population level:

- Y_i = Every participant's raw score on the outcome variable
- βs are called model parameters
 - β_0 = the model's intercept
 - β_1 to β_i = The slope contribution corresponding to each of the predictors in the model
- X_{i1} to X_{ij} = Every participant's raw scores on each of the predictor variables
- ε_i = Every participant's error

The estimate of a linear model

$$Y_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + b_{3}X_{i3} + ... + b_{j}X_{ij} + e_{i}$$
Data

Model

Error

We typically do not have population-level data and instead have to *estimate the equation using sample data* that represents the linear relationship between the predictor(s) (X's) and outcome variable (Y):

- Y_i = Participants' raw scores on the outcome variable in the sample
- *b*'s are called **parameter estimates**
 - b_0 = estimate of the model's intercept
 - b_1 b_i = estimates of the slope contribution corresponding to each of the predictors in the model
- X_{i1} X_{ij} = Participants' raw scores on each of the predictor variables in the sample
- e_i = Each participant's error in the sample

Assumptions underlying a linear model

- Errors are normally distributed
- Errors are independent
- Errors are equally distributed across the range of fitted values (i.e., homogeneity of variance)

Models we've covered

Zero parameter model:

•
$$Y_i = B_0 + \varepsilon_i$$

One parameter model:

•
$$Y_i = \beta_0 + \varepsilon_i$$

Model with a single categorical predictor with 2 levels (# of codes = m - 1):

•
$$Y_i = \beta_0 + \beta_1 \text{Code}_i + \epsilon_i$$

Model with a single categorical predictor with 2+ levels (# of codes = m-1):

•
$$Y_i = \beta_0 + \beta_1 \text{Code1}_i + \beta_2 \text{Code2}_i + \dots + \beta_i \text{CodeJ}_i + \epsilon_i$$

Model with multiple categorical predictors (# of codes = m - 1, inclusion of interaction effects):

•
$$Y_i = \beta_0 + \beta_1 \text{Code1}_i + \beta_2 \text{Code2}_i + \dots + \beta_i \text{CodeJ}_i + \epsilon_i$$

Testing significance of predictor(s) using model comparisons

Sampling Distributions

• The **sampling distribution** of a statistic is a distribution that demonstrates how a statistic could vary across all possible samples of a given size.

• Example: Sample Distribution of Means

Sampling Distributions

- A sampling distribution can be constructed for any type of statistic.
 - Sampling distribution of means
 - Sampling distribution of F-statistics
 - Sampling distribution of *t*-statistics, etc.

The sampling distribution is used to represent the statistics that would be possible to obtain via sampling if the null hypothesis is true.

- Key to how we test the <u>significance</u> of a statistic
- A *p*-value is the probability of obtaining our particular test statistic (*F*-statistic or *t*-statistic) if the null hypothesis is true

Testing significance using model comparisons

Step 1: Construct the Model C / Model A comparison

- Model A includes all of the predictors
- Model C excludes *only* the predictor(s) we would like to test the significance of

Step 2: State the null (and alternative) hypotheses

• The null hypothesis is particularly important – this is the hypothesis we actually end up testing!

Step 3: Estimate the parameters in Model C & Model A and evaluate each model's fit to the data:

- SSE(C) & SSE(A)
- SSR = SSE(A) SSE(C)

Step 5a: Construct a sampling distribution representing the results one would theoretically expect to obtain *if the null hypothesis is true*

• Often using a t- or F- sampling distribution

Testing significance using model comparisons

Step 5b: State the researcher's willingness to make a Type I error, which determines *where* on the sampling distribution a test statistic must fall to be significant

• Typically $\alpha = .05$

Step 6: Calculate the test statistic

- $F = \frac{\text{additional variance explained by Model A}}{\text{variance left unexplained by Model A}}$
- $t = \frac{\text{parameter estimate}}{\text{standard error}}$

Step 7: To assess significance, obtain

- A *p*-value corresponding to the test statistic, and/or
- A confidence interval around the parameter estimate of interest

Step 8: Calculate a measure of effect size

Linear Regression with a Single Continuous Predictor

Linear regression with a single continuous predictor

Example: Humility has been defined as a combination of having a willingness to see oneself accurately, an appreciation of others' strengths, and an openness to others' feedback. A researcher is interested in whether people's humility is a predictor of their generosity, or their willingness to help others.

Humility was measured on a 1 (strongly disagree) to 5 (strongly agree) scale using items like, "Even when I disagree with others, I can recognize that they have sound points." Generosity was measured based on how much money participants offered to donate to a local charity that was raising money to house people during winter. Participants' scores are shown in the table to the right.

Humility	Generosity		
1	7		
4	30		
3	25		
5	40		
2	10		
3	20		

$$M_{\text{Humility}} = 3$$
 $M_{\text{Generosity}} = 22$

Data Visualization

• When fitting a linear model, it's important for the researcher to first *visualize* the relationships being tested to ensure they follow the pattern of a straight line

Humility	Generosity
1	7
4	30
3	25
5	40
2	10
3	20

$$M_{Humility} = 3$$
 $M_{Generosity} = 22$

Centering the continuous predictor

 Continuous predictors are often mean-centered prior to using them in a model

- To mean-center a predictor, simply subtract the mean of the predictor variable from each of the raw scores
 - Expresses each person's score in terms of how far away it is from the mean in raw units

Humility	Humility_C
1	-2
4	1
3	0
5	2
2	-1
3	0

$$M_{\text{Humility}} = 3$$
 $M_{\text{Humility}_C} = 0$

Centering the continuous predictor

- Centering shifts the predictor along the x-axis:
 - b₀ becomes the predicted score on Y for someone who scores equal to the mean of X
 - The meaning of b₁ does not change and the fit of the model does not change

Centering the continuous predictor

When do you center a continuous predictor?

- When the researcher wants the y-intercept to occur at a meaningful value
- When there are multiple continuous predictors, and interaction effects between them, in the model.
 - Mean-centering the continuous predictors will reduce their redundancy with the interaction term more to come on this!

If there is only a single continuous predictor in the model, it is up to the researcher.

For this example, we'll use the centered predictor (Humility_C)

Model Comparison

Model Comparison:

Model C:
$$Y_i = \beta_0 + \epsilon_i$$

PC = 1

Model A:
$$Y_i = \beta_0 + \beta_1 Humility_C_i + \epsilon_i$$

PA = 2

Null & Alternative Hypotheses:

$$H_0$$
: $\beta_1 = 0$

$$H_1: \beta_1 \neq 0$$

Estimate the parameters in Model C

Model C:
$$Y_i = \beta_0 + \epsilon_i$$

• When only a single numerical value is used to predict scores on Y, the mean of Y does the best at minimizing SSE

Estimate of Model C:

$$Y_{i} = 22 + e_{i}$$

Humility_C	Generosity
-2	7
1	30
0	25
2	40
-1	10
0	20

$$M_{Humility_C} = 0$$
 $M_{Generosity} = 22$

Evaluate Fit of Model C

Y _i Generosity	Y' Value predicted by model	$(Y_i - Y'_i)$	$(Y_i - Y'_i)^2$
7	22	-15	225
30	22	8	64
25	22	3	9
40	22	18	324
10	22	-12	144
20	22	-2	4

Estimate of Model C: $Y_i = 22 + e_i$

$$SSE(C) = \Sigma(Y_i - Y_i)^2$$

$$SSE(C) = 770$$

Estimate the parameters in Model A

Model A: $Y_i = \beta_0 + \beta_1 Humility_C_i + \varepsilon_i$

The values of b_1 and b_0 that best minimize SSE for a model with a single continuous predictor:

$$b_1: \frac{\Sigma(x_i - M_x)(y_i - M_y)}{\Sigma(X - M_x)^2} = \frac{SP}{SS_x}$$

•
$$b_0: M_Y - b_1 M_X$$

Humility_C	Generosity
-2	7
1	30
0	25
2	40
-1	10
0	20

$$M_{\text{Humility_C}} = 0$$
 $M_{\text{Generosity}} = 22$

• See derivation on page 78 of your textbook

Estimate the parameters in Model A

X _i Humility_C	Y _i Generosity	$(X_i - M_X)$	$(Y_i - M_Y)$	$(X_i - M_X)^*(Y_i - M_Y)$	$(X_i - M_X)^2$
-2	7	-2	-15	30	4
1	30	1	8	8	1
0	25	0	3	0	0
2	40	2	18	36	4
-1	10	-1	-12	12	1
0	20	0	-2	0	0
$M_X = 0$	$M_{Y} = 22$			SP = 86	$SS_X = 10$

$$b_1 = \frac{\sum (x_i - M_x)(y_i - M_y)}{\sum (X - M_x)^2} = \frac{SP}{SS_x}$$

$$b_1 = \frac{86}{10} = 8.60$$

$$b_0 = M_Y - b_1 M_X$$

 $b_0 = 22 - (8.6*0) = 22$

Estimate of Model A:

$$Y_i = 22 + 8.60 * Humility_C$$

Evaluate Fit of Model A

Y _i Generosity	X _i Humility_C	Y _i ' = 22 + 8.6*Humility_C	$(Y_i - Y'_i)$	$(Y_i - Y'_i)^2$
7	-2	22 + (8.6*-2) = 4.8	2.2	4.84
30	1	22 + (8.6*1) = 30.6	-0.6	0.36
25	0	22 + (8.6*0) = 22	3	9
40	2	22 + (8.6*2) = 39.2	0.8	0.64
10	-1	22 + (8.6*-1) = 13.4	-3.4	11.56
20	0	22 + (8.6*0) = 22	-2	4

Estimate of Model A:

$$Y_i = 22 + 8.60 * Humility_C$$

$$SSE(A) = \sum (Y_i - Y_i)^2$$

$$SSE(A) = 30.4$$

Comparing Fit of Model A vs Model C

SSR is how much additional error is explained by Model A compared to Model C:

•
$$SSR = SSE(C) - SSE(A)$$

PRE describes the reduction in error as a proportion:

• PRE =
$$\frac{SSR}{SSE(C)} = \frac{739.6}{770} = 0.96$$

Model A explains 96% more of the variability in generosity scores compared to Model C.

Summary Table

Source	SS	df	MS	F	p
Reduced	SSR = SSE(C) - SSE(A)	$df_{\text{Reduced}} = PA - PC$	$MSR = \frac{SSR}{df_{Reduced}}$	$F = \frac{MSR}{MSE}$	Use R to obtain
Model A	$SSE(A) = \Sigma (Y_i - Y'_i)^2$	$df_{\text{ModelA}} = n - PA$	$MSE = \frac{SSE(A)}{df_{ModelA}}$		

Summary Table

			•			
Analysis of	Va	ariance	Table			
Response: g	gene	erosity				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
humility_c	1	739.6	739.6	97.316	0.0005924	***
Residuals	4	30.4	7.6			

	SS	df	MS	F p
Reduced	739.6	2-1 = 1	739.6	$F = \frac{739.6}{7.6} = 97.32$ $p < .001$
Model A	30.4	6-2 = 4	7.6	0 0 0 0 0 0 0 0 0

The F-statistic indicates where we land on a sampling distribution of F-statistics that would be expected *if* the null hypothesis is true.

• The *p*-value indicates the probability of obtaining our results *if the null hypothesis is true*

Effect Size

The significance (or non-significance) of a predictor does **not** communicate the **size**, or practical importance, of the predictor

• Report the effect size along with the significance of predictors

etaSquared() function provides:

•
$$\eta^2 = \frac{SSR}{SS_{Total}}$$

• The proportion of total variability in the DV that is related to the predictor variable(s)

•
$$\eta^2_{\text{Partial}} = \frac{SSR}{SSE(C)}$$

• The proportion of the variability in the DV that is related to the predictor variable(s) that was left unexplained by the other predictors in the model

For our example:

$$\eta^2 = \frac{739.6}{770} = 0.96$$

$$\eta^2_{\text{Partial}} = \frac{739.6}{770} = 0.96$$

- η^2 is equal to PRE when Model C is the one parameter model
- η^2 is equal to $\eta^2_{Partial}$ when there is only a single predictor in the model

Performing the Analysis in R

Import (or set up) the data:

```
generosity <- c(7,30,25,40,10,20)
humility <- c(1,4,3,5,2,3)
data <- cbind.data.frame(generosity, humility)
```

Center the continuous predictor (if desired):

```
content of the second content of the se
```

Fit the model:

```
fr}
model_center <- lm(generosity ~ humility_c, data = data)

{r}
model_uncenter <- lm(generosity ~ humility, data = data)</pre>
```

Performing the Analysis in R

Output (Centered predictor):

Output (Uncentered predictor):

95% Confidence Interval

- b_1 represents our best estimate of the relationship between the predictor and outcome variable
 - However, b_1 is only a **point estimate** of β_1 .
 - b_1 is unlikely to be exactly equal to β_1 due to sampling error.
 - Instead, we can construct a 95%CI around b_1 to represent the range of values within which we are more confident the true value of β_1 may exist:

$$95\%CI = b_1 \pm \sqrt{\frac{F_{CV} * MSE}{SS_{\chi}}}$$

- b_1 is our point estimate
- F_{CV} is the F-critical value corresponding to (1, n-PA) degrees of freedom and $\alpha = .05$
- MSE = $\frac{SSE(A)}{n PA}$
- $SS_{\chi} = \Sigma (X M_{\chi})^2$

For our example:

• Lower bound:
$$8.6 - \sqrt{\frac{7.709*7.6}{10}} = 6.18$$

• Upper bound:
$$8.6 + \sqrt{\frac{7.709*7.6}{10}} = 11.02$$

Difference between correlation and linear regression?

What would the correlation between humility and generosity be if we calculated it?

• Why isn't r equal to b_1 for a model with a single continuous predictor?

The correlation describes the *standardized* linear relationship between two continuous variables.

- If you standardize (i.e., transform into z-scores) the raw data before performing a linear regression analysis with a single continuous predictor, b_1 will equal the zero-order correlation
- Recall: $z = \frac{X M_X}{SD}$

Q: How would you interpret the meaning of b_1 now?

> cor(data\$humility, data\$generosity)
[1] 0.980061

```
data$generosity_std <- scale(generosity, center = TRUE, scale = TRUE)
data$humility_std <- scale(humility, center = TRUE, scale = TRUE)
model_std <- lm(generosity_std ~ humility_std, data = data)</pre>
```

```
Coefficients:

Estimate

Std. Error t value Pr(>|t|)

(Intercept) 0.000000000000000008884 0.09069238239845851812 0.000 1.000000

humility_std 0.98006095755288613613 0.09934852726704040959 9.865 0.000592

(Intercept)
humility_std ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2222 on 4 degrees of freedom

Multiple R-squared: 0.9605, Adjusted R-squared: 0.9506
F-statistic: 97.32 on 1 and 4 DF, p-value: 0.0005924
```