

Francesco Sorce

Università di Pisa Dipartimento di Matematica

Contents

1		duli Spaces
	1.1	Introduction to moduli problems
	1.2	Fine and Coarse moduli spaces
		Zariski sheaves and gluing of fine moduli spaces
2	Grassmanians	
	2.1	Classical view of Grassmannians
	2.2	Representability of the Grassmannian functor
	2.3	Proprieties of the Grassmanian scheme

Chapter 1

Moduli Spaces

Set theoretic issues: whenever I write that something is an element of a class, what I mean is that that object satisfies the proposition that defines the class.

1.1 Introduction to moduli problems

Definition 1.1 (Presheaf).

A contravariant functor $F: \mathcal{C}^{op} \to \text{Set}$ is called a **presheaf** on \mathcal{C} .

Definition 1.2 (ModuHomli problem).

Let S be a scheme. A presheaf on Sch/S is called a **moduli problem**.

1.2 Fine and Coarse moduli spaces

1.3 Zariski sheaves and gluing of fine moduli spaces

Definition 1.3 (Equalizer).

Let \mathcal{C} be a category, $A, B, C \in \mathcal{C}$ and $f, g : B \to C$. We say that the pair (A, h) is an **equalizer** of the diagram

$$B \overset{f}{\underset{g}{\Longrightarrow}} C$$

if $h:A\to B$ is such that $f\circ h=g\circ h$ and if (Q,q) is another such pair then there exists a unique morphism $Q\to A$ which makes the diagram commute

$$\begin{array}{ccc}
A & \xrightarrow{h} & B & \xrightarrow{g} & C \\
\uparrow & & \downarrow & & \\
Q & & & & \\
\end{array}$$

Definition 1.4 (Zariski sheaf).

A moduli problem $F \in (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ is a **Zariski sheaf** if for any S-scheme X and any Zariski open cover $\{U_i \to X\}$ the following diagram is an equalizer

$$F(X) \longrightarrow \prod_k F(U_k) \Longrightarrow \prod_{i,j} F(U_i \cap U_j)$$

where the arrows are induced by the inclusions.

Proposition 1.5 (Representable moduli functors are Zariski sheaves).

Let $F: (Sch/S)^{op} \to Set$ be a moduli problem, then if there exists a fine moduli space M for F it must be the case that F is a Zariski sheaf.

Proof.

By composing with the natural isomorphism we may assume $F = h_M$. Let X be an S-scheme and $\{U_i \to X\}$ a Zariski open cover for it. We want to show that the following diagram is an equalizer

$$\operatorname{Mor}(X, M) \longrightarrow \prod_{k} \operatorname{Mor}(U_{k}, M) \Longrightarrow \prod_{i,j} \operatorname{Mor}(U_{i} \cap U_{j}, M)$$

The arrows in this case correspond to restriction of morphisms, so the thesis is equivalent to the fact that restriction to a given set doesn't depend on the intermediate restrictions and that morphisms of schemes that coincide on double intersections glue to the union, both of which are true.

Definition 1.6 (Subfunctor).

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor. A **subfunctor** of G is a pair (F, i) consisting of a functor $F: \mathcal{C} \to \mathcal{D}$ and a natural transformation $i: F \to G$ such that $i_X: F(X) \to G(X)$ is a monomorphism for all $X \in \mathcal{C}$.

Remark 1.7.

If $\mathcal{D} = \text{Set}$ then we can express the same data equivalently as follows:

A functor $F: \mathcal{C} \to \text{Set}$ is a subfunctor of $G: \mathcal{C} \to \text{Set}$ if for all $X \in \mathcal{C}$ and for all $f \in Mor_{\mathcal{C}}(A, B)$

$$F(X) \subseteq G(X),$$
 and $F(f) = G(f)|_{F(A)}.$

In this case we write $F \subseteq G$.

Definition 1.8 (Fibered product of presheaves).

Let $F, G, H : \mathcal{C}^{op} \to \text{Set}$ be presheaves together with two natural transformations $\xi^1 : F \to H$ and $\xi^2 : G \to H$. We define their fibered product as follows: If $X \in \mathcal{C}$ then

$$(F \times_H G)(X) = F(X) \times_{H(X)} G(X),$$

if $f: A \to B$ then¹

$$(F \times_H G)(f): \begin{array}{ccc} F(B) \times_{H(B)} G(B) & \longrightarrow & F(A) \times_{H(A)} G(A) \\ (b_1, b_2) & \longmapsto & (F(f)(b_1), G(f)(b_2)) \end{array}.$$

Definition 1.9 (Open subfunctor).

Let $F: (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ be a moduli problem. We say that a subfunctor $G \subseteq F$ is **open** if for any S-scheme T and any natural transformation $h_T \to F$, the pullback $h_T \times_F G$ is representable by an open subscheme of T.

Remark~1.10.

By Yonede's lemma, giving a natural transformation like in the above definition is equivalent to choosing a family $\xi \in F(T)$. We can thus rephrase the definition as follows:

A subfunctor $G \subseteq F$ is open if for any S-scheme T and any family $\xi \in F(T)$ there

the map is well defined because $\xi_A^1(F(f)(b_1)) = H(f)(\xi_B^1(b_1)) = H(f)(\xi_B^2(b_2)) = \xi_A^2(G(f)(b_2))$.

exists an open subscheme $U\subseteq T$ such that the following diagram is natural in R and commutes

and a map $f \in \text{Mor}(R,T)$ factors as $R \xrightarrow{g} U \subseteq T$ if and only if $F(f)(\xi) \in G(R)^2$.

² the "only if" is trivially true by commutativity but for the "if" we are using the fact that $h_U \cong h_T \times_F G$.

Chapter 2

Grassmanians

2.1 Classical view of Grassmannians

Definition 2.1 (Grassmannian).

Let us fix two natural numbers $k \leq n$. We define the (n,k)-Grasssmannian, denoted $Gr(k,n,\mathbb{K})$ (or just Gr(k,n) if the base field is clear), as the set of (n-k)-dimensional \mathbb{K} -vector subspaces of \mathbb{K}^n .

Remark 2.2 (Definition via quotients).

We may equivalently define Gr(k, n) to be the following set:

$$\left\{\ker\varphi\mid\varphi\in\operatorname{Hom}_{\,\mathbb{K}}(\mathbb{K}^n,\mathbb{K}^k),\,\operatorname{rnk}\varphi=k\right\}.$$

To further lean into the definition we will adopt in the case of schemes, we may equivalently consider

$$\left\{\varphi\in\operatorname{Hom}_{\,\mathbb{K}}(\mathbb{K}^n,\mathbb{K}^k)\mid\operatorname{rnk}\varphi=k\right\}/\sim,$$

where 1

$$\varphi \sim \varphi' \iff \ker \varphi = \ker \varphi' \iff \exists \psi \in GL_k(\mathbb{K}) \ s.t. \ \varphi = \psi \circ \varphi'.$$

2.2 Representability of the Grassmannian functor

2.3 Proprieties of the Grassmanian scheme

¹if $\ker \varphi = \ker \varphi'$, \mathcal{B}' is a basis for it and \mathcal{B} is an extension of \mathcal{B}' to a basis of \mathbb{K}^n , then we can define ψ as the automorphism of \mathbb{K}^k that takes $\varphi'(\mathcal{B} \setminus \mathcal{B}')$ to $\varphi(\mathcal{B} \setminus \mathcal{B}')$.