ESTADÍSTICA II, GRADO EN MATEMÁTICAS RESUMEN DEL MODELO DE REGRESIÓN LINEAL CURSO 2020-2021

1. Ingredientes y datos

- $k \ge 1$ variables explicativas X_1, \ldots, X_k .
- Variable respuesta Y.
- Serie de n datos (cada uno de longitud k+1).
- $n \ge k + 2$
- No colinealidad (columnas X_1 a X_k).

X_1	X_2	 X_k	Y
$x_{1,1}$	$x_{1,2}$	 $x_{1,k}$	y_1
$x_{2,1}$	$x_{2,2}$	 $x_{2,k}$	y_2
:	:	i	:
$x_{n,1}$	$x_{n,2}$	 $x_{n,k}$	y_n

2. Modelo

El vector $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}$ es una realización del vector aleatorio $\mathbb{Y} = (Y_1, \dots, Y_n)^{\mathsf{T}}$ dado por

$$\mathbb{Y} = X \cdot \boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

donde

$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix}$$

es la matriz de diseño (de rango k+1), y donde

- $\beta = (\beta_0, \beta_1, \dots, \beta_k)^{\mathsf{T}}$ es el vector de parámetros,
- $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^{\mathsf{T}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n)$ tiene vector de medias $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$ y matriz de covarianzas $\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 I_n$, donde σ^2 es otro parámetro e I_n es la matriz identidad $n \times n$.
- (Hipótesis de normalidad). Para buena parte de lo que sigue (intervalos de confianza, contrastes de hipótesis), supondremos que $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n)$. Es decir, las variables ε_i son normales independientes de media 0 y varianza σ^2 .

Bajo esta hipótesis de normalidad, el vector \mathbb{Y} se distribuye como una $\mathcal{N}(X \cdot \boldsymbol{\beta}, \sigma^2 I_n)$.

3. Estimación de parámetros

a) Dada la muestra $\mathbf{y} = (y_1, \dots, y_n)^\mathsf{T}$, la estimación (por mínimos cuadrados, y también por máxima verosimilitud, si hay normalidad) de los parámetros es

$$\widehat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}.$$

Para el caso de la regresión lineal simple (k = 1), llamando $\mathbf{x} = (x_1, \dots, x_n)^{\mathsf{T}}$ a la (única) columna de observaciones,

$$\widehat{\beta}_1 = \frac{\mathrm{cov}_{\mathbf{x}, \mathbf{y}}}{V_{\mathbf{x}}}, \qquad \widehat{\beta}_0 = \overline{y} - \frac{\mathrm{cov}_{\mathbf{x}, \mathbf{y}}}{V_{\mathbf{x}}} \ \overline{x},$$

donde

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad V_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2, \quad \operatorname{cov}_{\mathbf{x}, \mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}).$$

b) Valores pronosticados y residuos. Dada la muestra $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}$, los pronósticos $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_n)^{\mathsf{T}}$ y los residuos $\mathbf{e} = (e_1, \dots, e_n)^{\mathsf{T}}$ son

$$\widehat{\mathbf{y}} = X\widehat{\boldsymbol{\beta}} = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} := H\mathbf{y},$$

 $\mathbf{e} = \mathbf{y} - \widehat{\mathbf{y}} = (I_n - H)\mathbf{y}.$

La matriz H es $n \times n$, simétrica, definida positiva e idempotente de rango k+1. La matriz $I_n - H$ es asimismo simétrica, definida positiva e idempotente, pero de rango n-k-1.

c) Sumas de cuadrados: TSS = MSS + RSS, con

$$(\text{total}) \qquad \text{TSS} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = nV_{\mathbf{y}} = \mathbf{y}^{\mathsf{T}} (I_n - \frac{1}{n} J_n) \, \mathbf{y},$$

$$(\text{explicada por modelo}) \qquad \text{MSS} = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 = \mathbf{y}^{\mathsf{T}} (H - \frac{1}{n} J_n) \, \mathbf{y},$$

$$(\text{residual}) \qquad \text{RSS} = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = \mathbf{y}^{\mathsf{T}} (I_n - H) \, \mathbf{y},$$

donde J_n denota la matriz $n \times n$ con unos.

d) Estimación para σ^2 :

$$\widehat{\sigma^2} = s_R^2 = \frac{1}{n-k-1} \sum_{i=1}^n c_i^2 = \frac{\text{RSS}}{n-k-1}$$

e) Coeficiente \mathbb{R}^2 :

$$R^2 = \frac{\text{MSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

Obsérvese que MSS/RSS = $R^2/(1-R^2)$.

4. Propiedades de los estimadores

Consideramos los estimadores (estadísticos asociados a $\mathbb{Y}=(Y_1,\ldots,Y_n)^{\mathsf{T}})$

$$\widehat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\,\mathbb{Y} \qquad \mathbf{y} \qquad s_R^2 = \frac{1}{n-k-1}\,\mathbb{Y}^{\mathsf{T}}(I_n-H)\,\mathbb{Y}.$$

En el caso k=1, llamando $\overline{Y}=\frac{1}{n}\sum_{i=1}^{n}Y_{i},$

$$\widehat{\beta}_1 = \frac{1}{V_{\mathbf{x}}} \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y}), \qquad \widehat{\beta}_0 = \overline{Y} - \frac{\overline{x}}{V_{\mathbf{x}}} \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y}).$$

Se consideran también los estadísticos:

- vector de pronósticos $\hat{\mathbb{Y}} = H\mathbb{Y}$,
- vector de residuos $\mathbf{e} = (I_n H)\mathbb{Y} = (I_n H)\varepsilon$.

Medias y varianzas/covarianzas.

El vector $\widehat{\boldsymbol{\beta}}$ tiene

- vector de medias $\mathbb{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ (estimadores insesgados).
- y matriz de covarianzas $\mathbf{cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(X^{\mathsf{T}}X)^{-1}$.

En el caso k = 1,

$$\mathbf{V}(\widehat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{nV_{\mathbf{x}}} \right], \quad \mathbf{V}(\widehat{\beta}_1) = \sigma^2 \frac{1}{nV_{\mathbf{x}}}, \quad \operatorname{cov}(\widehat{\beta}_0, \widehat{\beta}_1) = -\sigma^2 \frac{\overline{x}}{nV_{\mathbf{x}}}.$$

Por su parte, $\mathbb{E}(s_R^2) = \sigma^2$ (también estimador insesgado). La variable aleatoria $(n-k-1)s_R^2/\sigma^2$ tiene media (n-k-1) y varianza 2(n-k-1).

Distribución bajo normalidad.

Si suponemos que $\mathbb{Y} \sim \mathcal{N}(X\beta, \sigma^2 I_n)$, entonces

- $\widehat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(X^{\mathsf{T}}X)^{-1}),$
- $(n-k-1)s_R^2/\sigma^2 \sim \chi_{n-k-1}^2$,
- y s_R^2 es independiente de $\widehat{\beta}$.

En particular, para $j=0,\ldots,k$, y llamando q_{jj} al elemento que está en la posición j+1 de la diagonal de la matriz $(X^{\mathsf{T}}X)^{-1}$ (que tiene dimensiones $(k+1)\times(k+1)$),

$$\frac{\widehat{\beta}_j - \beta_j}{s_R \sqrt{q_{ij}}} \sim t_{n-k-1}.$$

(Nota: todo lo que sigue es válido bajo la hipótesis de normalidad).

5. Intervalos de confianza para los parámetros

Dado α , y para $j = 0, \ldots, k$,

$$IC_{1-\alpha}(\beta_j) = \widehat{\beta}_j \pm t_{\{n-k-1;\alpha/2\}} s_R \sqrt{q_{jj}}.$$

Para el caso k = 1,

$$IC_{1-\alpha}(\beta_0) = \widehat{\beta}_0 \pm t_{\{n-2;\alpha/2\}} s_R \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{n V_{\mathbf{x}}}}, \quad IC_{1-\alpha}(\beta_1) = \widehat{\beta}_1 \pm t_{\{n-2;\alpha/2\}} s_R \sqrt{\frac{1}{n V_{\mathbf{x}}}}.$$

Para σ^2 ,

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-k-1)\,s_R^2}{\chi_{\{n-k-1;\alpha/2\}}^2}, \frac{(n-k-1)\,s_R^2}{\chi_{\{n-k-1;1-\alpha/2\}}^2}\right).$$

6. Contrastes de hipótesis

a) Hipótesis individuales $H_0: \beta_j = 0$, con $j \in \{1, ..., k\}$.

Región de rechazo con nivel de significación α :

$$\mathcal{R}_{j} = \left\{ \left| \frac{\widehat{\beta}_{j}}{S_{R} \sqrt{q_{jj}}} \right| > t_{\{n-k-1;\alpha/2\}} \right\}.$$

b) Hipótesis global $H_0: \beta_1 = \cdots = \beta_k = 0.$

Bajo H_0 , se tiene que

$$\frac{\text{MSS}/k}{\text{RSS}/(n-k-1)} \sim F_{k,n-k-1}.$$

Región de rechazo con nivel de significación α :

$$\mathcal{R} = \left\{ \frac{\text{MSS}/k}{\text{RSS}/(n-k-1)} > F_{\{k,n-k-1;\alpha\}} \right\}.$$

Tabla ANOVA:

Fuente	suma cuadrados	g.l.	varianza	estadístico F
explicada por regresión	MSS	k	MSS/k	$(MSS/k)/s_R^2$
residual	RSS	n-k-1	$RSS/(n-k-1) = s_R^2$	
total	TSS	n-1		

7. Predicciones

Condicionando sobre una observación $\mathbf{x}_0 = (x_{0,1}, \dots, x_{0,k})^\mathsf{T}$, y si llamamos $\widetilde{\mathbf{x}}_0 = (1, x_{0,1}, \dots, x_{0,k})^\mathsf{T}$, la predicción, tanto sobre la media de Y como sobre el valor de Y, es

$$\widehat{y}_0 = \widetilde{\mathbf{x}}_0^{\mathsf{T}} \cdot \widehat{\boldsymbol{\beta}}.$$

Intervalos de confianza:

$$\begin{split} & \text{IC}_{1-\alpha}(\text{media de }Y\,|\,\mathbf{x}_0) = \widehat{y}_0 \pm \,t_{\{n-k-1;\alpha/2\}} \cdot s_R \cdot \sqrt{\,\widetilde{\mathbf{x}}_0^\intercal\,(X^\intercal X)^{-1}\,\widetilde{\mathbf{x}}_0} \\ & \text{IC}_{1-\alpha}(\text{valor de }Y\,|\,\mathbf{x}_0) = \widehat{y}_0 \pm \,t_{\{n-k-1;\alpha/2\}} \cdot s_R \cdot \sqrt{\,1 + \widetilde{\mathbf{x}}_0^\intercal\,(X^\intercal X)^{-1}\,\widetilde{\mathbf{x}}_0} \end{split}$$

En el caso k = 1, dada la observación x_0 ,

$$\begin{split} & \text{IC}_{1-\alpha}(\text{media de } Y \,|\, x_0) = \widehat{y}_0 \pm \, t_{\{n-2;\alpha/2\}} \cdot s_R \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{n \, V_{\mathbf{x}}}}, \\ & \text{IC}_{1-\alpha}(\text{valor de } Y \,|\, x_0) = \widehat{y}_0 \pm \, t_{\{n-2;\alpha/2\}} \cdot s_R \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{n \, V_{\mathbf{x}}}} \,. \end{split}$$