Open Source Machine Learning Tools Overview

All Things Open 10-26-2016

Phillip Rhodes Fogbeam Labs

https://github.com/fogbeam/ATO2016

Goals

- Overview of what the "cutting edge" projects in the field are
- An argument against solely focusing on the "cutting edge"
 - FDD Fad Driven Development
 - Nothing in AI is every really out-dated. See: ANN's
- Don't forget about GOFAI Good Old Fashioned AI
- Some speculation in regards to uniting the AI/ML fiefdoms

Latest Entrants

- IBM / Apache SystemML August 27, 2015
- Google TensorFlow November 9, 2015
- Microsoft DMTK November 12, 2015
- Baidu WarpCTC January 14, 2016
- Microsoft CNTK January 25, 2016
- Yahoo CaffeOnSpark Feb 24, 2016
- Amazon.com DSSTNE ("Destiny") May 10, 2016
- Apache PredictionIO Jul 22, 2016
- Facebook FastText August 18, 2016
- Baidu PaddlePaddle August 31, 2016

Apache SystemML

- General purpose distributed machine learning platform
- Written in Java, but exposes functionality in a dialect of R (DML), or a dialect of Python (PyDML)
- Heavily rooted in query optimizer technology ala RDBMS's
- Allows for automatic, seamless scalability from a single core to a thousand node cluster
- Especially handy for R programmers, since R doesn't scale terribly well by default

Apache SystemML

- Includes a lot of pre-built implementations of popular ML algorithms out of the box
- Runs on top of Spark or Hadoop (Map/Reduce)
- Spark MLContext supports programming in Scala, Java or Python
- Lacks native GPU support

Google TensorFlow

- Billed as a library for "deep learning" but is much more general than that
- Really a numerical computing library
- Based on data-flow graphs (similar to Spark)
- Written in C++, primary API interface is via Python
- Wrappers can be implemented using SWIG and there are some out there already
- TF Board is a handy debugging tool for introspecting TF graphs

Google TensorFlow

- TF Learn is a simpler, friendlier API
- TensorFlow Serving for "productionizing" TF models
- Seamless CPU/GPU support
- Supports distributed operation on compute clusters
- More Neural Network focused, at least in terms of docs and examples
- Includes many optimization algorithms out of the box
- contrib package includes other packaged algorithm implementations
- HDFS support

Microsoft - DMTK

- Framework for distributed computation, focusing on machine learning
- Written in C++
- Uses MPI or 0MQ for cluster communication
- Native Windows support, but also supports Linux
- Seems to cater heavily to a couple of specific algorithms.
 - LightLDA, an extremely fast and scalable topic model algorithm
 - a distributed version of (multi-sense) word embedding
- But general purpose, you can implement your own algorithms

Baidu Warp-CTC

- "A fast parallel implementation of CTC, on both CPU and GPU" (Warp-CTC README)
- "What is Aleppo, er, CTC?"
- Connectionist Temporal Classification
 - A specific "objective function" that works well for training RNN's (Recurrent Neural Networks) for "sequence labeling" tasks.
 - Specifically, things like handwriting recognition, speech recognition, gesture recognition, etc.
- Differentiable function, so works with standard Gradient Descent and the like

Microsoft - CNTK

- "a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph" (CNTK README)
- Makes it easy to realize NN models including feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
 - But provides a plug-in architecture allowing users to define their own computation nodes
- Includes stochastic gradient descent learning with automatic differentiation and parallelization across multiple GPUs and servers
- Custom networks are described in CNTK's custom network description language "BrainScript"
- Use models from C++ and C#

Yahoo - CaffeOnSpark

- A Spark package for deep learning
- Combines features from Caffe with Apache Spark and Hadoop
- Enables distributed deep learning on a cluster of GPU and CPU servers
- Scala API
- Tight Hadoop (HDFS) integration
- Incremental learning is supported to leverage previously trained models
 - This has the potential to be a big deal

Amazon – DSSTNE ("Destiny")

- An open source software library for training and deploying recommendation models with sparse inputs, fully connected hidden layers, and sparse outputs
- Used at Amazon to generate personalized product recommendations
- Designed for production deployment of real-world applications which need to emphasize speed and scale over experimental flexibility
- Data must be in NetCDF format
- Definitions for the Neural Networks fed into DSSTNE are represented in a custom JSON format

Apache - PredictionIO

- An open source Machine Learning Server
- Sits on top of other ML engines and provides services
 - quickly build and deploy an engine
 - evaluate and tune multiple engine variants systematically
 - speed up machine learning modeling with systematic processes and pre-built evaluation measures
 - respond to dynamic queries in real-time
- support machine learning and data processing libraries such as Spark MLLib and OpenNLP
- unify data from multiple platforms
- implement your own machine learning models and seamlessly incorporate them into your engine

Facebook - FastText

- A library for efficient learning of word representations and sentence classification
- Builds on Mac OSX and Linux; requires a modern C++ 11 compile
- Represents sentences with bag of words or bag of ngrams
- Faster to train and test than a deep neural network
 - FastText is exclusively dedicated to text classification.
 This allows it to be quickly trained on extremely large datasets
- Uses a hierarchical classifier instead of a flat structure
- Besides text classification, FastText can also be used to learn vector representations of words

Baidu - PaddlePaddle

- "PArallel Distributed Deep LEarning is an easy-to-use, efficient, flexible and scalable deep learning platform"
- Neural-network / deep-learning focused
- Written in C++
- C++ and Python API
- Includes many optimization algorithms out-of-the-box
- Has built-in clustering code, but docs suggest using MPI or other cluster software for more robust operation
- Has GPU support using CUDA libraries
- Requires significantly less code than on other popular deep learning platforms?

But wait, there's more...

Apache SAMOA

- Scalable Advanced Massive Online Analysis
- Specifically oriented towards streaming scenarios
- Runs on top of Storm, S4, Flink, or Samza
- "Provides a collection of distributed streaming algorithms for the most common data mining and machine learning tasks such as classification, clustering, and regression"
- Also provides the primitives you need to implement your own algorithms

Apache Singa

- Yet another distributed deep learning framework
- Similar to TensorFlow in that Tensors (multidimensional arrays) are the primary data abstraction
- GPU support using CUDA or OpenCL
- Provides optimization algorithms and abstractions designed for implementing neural networks
- Has Python and C++ APIs

Caffe

- Deep learning framework by the Berkeley Vision and Learning Center
- Somewhat targeted towards computer vision applications, at least in terms of the docs, examples, etc.
- Written in C++
- C++, Python and Matlab API's
 - As of August 2015, the Matlab support requires "real" Matlab, and doesn't support Octave
- Claims to be one of the fastest DL frameworks out there

Keras

- "Keras is a high-level neural networks library, written in Python and capable of running on top of either TensorFlow or Theano"
- Developed with a focus on enabling fast experimentation
- Supports both convolutional networks and recurrent networks, as well as combinations of the two
- Runs seamlessly on CPU and GPU
- Python API
- Supports arbitrary connectivity schemes
- The core data structure of Keras is a model, a way to organize layers

Sci-kit Learn

- General purpose machine learning library written in Python
- Built on NumPy, SciPy, and matplotlib
- Provides many "out of the box" algorithms for:
 - Clustering
 - Classification
 - Dimensionality reduction
 - Model selection
 - Pre-processing
- Not natively a distributed / cluster-aware framework
- But the API does support "out of core" processing using a streaming model and incremental training
- No GPU support

Theano

- "Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently"
- Integrated with Numpy
- Native GPU support
- No native multi-node / cluster support
- Automatic compilation to C or C++ for performance optimization
- Has a reputation for being very fast

Torch

- "A scientific computing framework with wide support for machine learning algorithms that puts GPUs first."
- Based on Lua/LuaJIT
- Features:
 - a powerful N-dimensional array
 - lots of routines for indexing, slicing, transposing, etc.
 - linear algebra routines
- Easy to use, fast interface to C code
- Embeddable, with ports to iOS, and Android, as well as custom FPGA backends

A Lot More!

- Aerosolve
- Lasagne
- DL4J
- MLLib
- Mahout
- Weka
- MXNet

- OpenNLP
- CoreNLP
- OpenCV
- Yahoo Yamall
- Veles
- Leaf
- ... see http://mloss.org

Fad Driven Development

- Things in our industry tend to come in and out of fashion in cycles
 - Neural Networks may be THE canonical example of this
 - Expert Systems
 - Genetic Algorithms
 - Logic Programming
 - Most of what falls under "GOFAI"
- Use what works, not what's trendy

Al vs. ML

ML is a subset of Al?

ML is a subset of AI?

Or maybe it's more like this?

Artificial Intelligence Machine Learning **Machine Learning** Artificial Intelligence

Al vs. ML

 In either case, the point is to not "throw the baby out with the bathwater" and forget all of GOFAI just because we don't have AGI yet

GOFAI

- OpenCog
- NuPIC
- OpenCyc
- ACT-R
- CLIPS
- Racer
- LOOM
- Constraint Logic Programming
- Answer Set Programming
- Etc.

Genetic Algorithms

- Jenetics
- JGAP
- Watchmaker
- MOEA
- JAGA
- ECJ
- JENES 2.0

Rule Induction

- Charade
- PROGOL
- RuleX
- CN2

Thought Vectors

- Somewhat analogous to a "word vector" which is a vector of associations between one word and a group of other words
- A "thought vector" then is a "thought" and a vector of associations to other thoughts
- Language independent and heavily used in Machine Translation

Thought Vectors

- "Thoughts" are linked by a chain of reasoning, similar to how words are linked by grammar
- Common representation of a "thought"
- Possibly a route to unifying disparate approaches to AI
- Share thought vectors between different processing sub-systems or "minds"

Multiple Minds

- Blackboard Architecture
- Tuple Spaces
- Multi-Agent Systems
- Pandemonium Architecture
- Competitive Learning

•