ME 233 Advance Control II

Continuous-time results 4

Linear Quadratic Gaussian Loop Transfer Recovery

(ME233 Class Notes pp.LTR1-LTR9)

Outline

- Review of Feedback
- · LQG stability margins
- LQG-LTR

Basic Feedback Transfer Functions (TF)

- Y(s) is the controlled output
- *U(s)* is the control input
- *E*(s) is error signal fed to the controller
- R(s) is the output reference
- D(s) is the disturbance input
- V(s) is the measurement noise

$$E_T(s) = R(s) - Y(s)$$
 "true" error signal

$$E_T(s) = [I + G_o(s)]^{-1} [R(s) - D(s)] + [I + G_o(s)]^{-1} G_o(s) V(s)$$

Basic Feedback Transfer Functions (TF)

$$E_T(s) = R(s) - Y(s)$$
 "true" error signal

$$E_T(s) = \underbrace{[I+G_o(s)]^{-1}}_{S(s)} [R(s)-D(s)] + \underbrace{[I+G_o(s)]^{-1}G_o(s)}_{T(s)} V(s)$$
 sensitivity TF complementary sensitivity TF

T(s) + S(s) = I

Basic Feedback Transfer Functions (TF)

$$E_T(s) = R(s) - Y(s)$$

$$T(s) + S(s) = I$$

$$E_{T}(s) = \underbrace{[I + G_{o}(s)]^{-1}}_{S(s)} [R(s) - D(s)] + \underbrace{[I + G_{o}(s)]^{-1} G_{o}(s)}_{T(s)} V(s)$$

Frequency domain and singular values:

$$\sigma_{\max}[A(j\omega)] = (\lambda_{\max}[A^*(j\omega)A(j\omega)])^{\frac{1}{2}} \qquad \sigma_{\min}[A(j\omega)] = (\lambda_{\min}[A^*(j\omega)A(j\omega)])^{\frac{1}{2}}$$

$$\sigma_{\min}[A(j\omega)] = (\lambda_{\min}[A^*(j\omega)A(j\omega)])^{\frac{1}{2}}$$

$$Y(j\omega) = A(j\omega)U(j\omega)$$

$$||Y(j\omega)|| \le \sigma_{\mathsf{max}}[A(j\omega)] ||U(j\omega)|$$

Basic Feedback Transfer Functions (TF)

$$E_T(s) = R(s) - Y(s)$$

$$T(s) + S(s) = I$$

$$E_T(s) = \underbrace{[I + G_o(s)]^{-1}}_{S(s)} [R(s) - D(s)] + \underbrace{[I + G_o(s)]^{-1} G_o(s)}_{T(s)} V(s)$$

Frequency domain:

- 1) $||R(i\omega)||$ and $||D(i\omega)||$ are normally large at low frequencies
- $\Rightarrow \sigma_{\max}[S(j\omega)] < 1$ at low frequencies
- 2) $||V(j\omega)||$ and plant model uncertainties are normally large at high frequencies

 - $\longrightarrow \sigma_{\mathsf{max}}[T(j\omega)] < 1$

at high frequencies

Basic Feedback Transfer Functions (TF)

$$E_T(s) = \underbrace{[I + G_o(s)]^{-1}}_{S(s)} [R(s) - D(s)] + \underbrace{[I + G_o(s)]^{-1}G_o(s)}_{T(s)} V(s)$$

 $\sigma_{\max}[S(j\omega)] < 1$ at low frequencies $\sigma_{\min}[G_o(j\omega)] >> 1$

 $\sigma_{ ext{max}}[T(j\omega)] < 1$ at high frequencies \longrightarrow $\sigma_{ ext{max}}[G_o(j\omega)] << 1$

Bode's integral theorem (SIS0)

$$S(s) = \frac{1}{1 + G_o(s)}$$

Let the open loop transfer function Go(s) have relative degree ≥ 2 and let p1, p2, ... pm be the unstable open loop poles (right have plane)

$$\int_0^\infty \ln(|S(j\omega)|dw = \pi \sum_{i=1}^m p_i$$

When Go(s) is stable,

$$\int_0^\infty \ln(|S(j\omega)|dw = 0$$

Multivariable Nyquist Stability Criterion

return difference

$$L(s) = [I + G_o(s)]$$

$$\det[L(s)] = \frac{A_c(s)}{A(s)}$$

roots of $A_c(s) = 0$ are the **closed loop** poles

roots of A(s) = 0 are the **open loop** poles

Nyquist path D

 $N(0, \det[L(s)], D)$: number of counterclockwise encirclements around ${\bf 0}$ by $\det[L(s)]$ when s is along the Nyquist path ${\bf D}$

Multivariable Nyquist Stability Criterion

$$L(s) = [I + G_o(s)]$$

 $N(0, \det[L(s)], D) = P - Z$

P = # of unstable **open** loop poles

Z = # of unstable **closed** loop poles

Nyquist path D

 $N(0, \det[L(s)], D)$: number of <u>counterclockwise</u> encirclements around **0** by $\det[L(s)]$ when s is along the Nyquist path **D**

Stationary LQR

Cost:

$$J_{s} = \frac{1}{2} E\{x^{T}(t) C_{Q}^{T} C_{Q} x(t) + u^{T}(t) R u(t)\}$$

• Optimal control: $u^o(t) = -K x(t) + r$

Where the gain is obtained from the solution of the steady state LQR

$$K = R^{-1}B^TP$$

$$A^TP + PA + C_Q^TC_Q - PBR^{-1}B^TP = 0$$

Stationary Kalman Filter

Kalman Filter Estimator:

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu(t) + L\tilde{y}(t)$$

$$\tilde{y}(t) = y(t) - C\hat{x}(t)$$

$$L = M C^T V^{-1}$$

$$AM + MA^T = -B_w W B_w^T + M C^T V^{-1} C M$$

KF dual robustness properties

$$G_o(j\omega) = C\Phi(j\omega)L$$

 $\gamma = 1$

Phase Margin ≥ 60°

Close loop system is stable for:

$$\frac{1}{2}<\gamma<\infty$$

"Fictitious" KF robustness properties

$$G_o(j\omega) = C\Phi(j\omega)L$$

 $\gamma = 1$

Phase Margin ≥ 60°

Close loop system is stable for:

$$\frac{1}{2} < \gamma < \infty$$

LQR example 1

Double integrator (example in pp ME232-143):

$$\frac{d}{dt} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \ = \ \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] + \left[\begin{array}{c} 0 \\ 1 \end{array} \right] u$$

$$J = \frac{1}{2} \int_0^\infty \left\{ x^T C_Q^T C_Q x + R u^2 \right\} dt$$

with

$$C_Q = \left[\begin{array}{cc} 1 & 0 \end{array} \right] \qquad R > 0$$
 Only position is penalized

LQR example 1 margins R = 0.1 $G_o(s) = K\Phi(s)B$ $GM = \infty$ $G_o(s) = \frac{2.5(s+1.26)}{s^2}$ $\int_{\frac{9}{80} - 135}^{\frac{50}{100}} PM = 65.5^{\circ}$

Controller design parameters $B_{\mathbf{w}}$ W, V are chosen

$$W = 1 \qquad V = R = 0.1 \qquad B_w = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

KF return difference equality = LQR return difference equality

$$G_w(s) = G_Q(s)$$

Stationary LQG

Cost:

$$J_{s} = \frac{1}{2} E\{x^{T}(t) C_{Q}^{T} C_{Q} x(t) + u^{T}(t) R u(t)\}$$

• Optimal control:

$$u^o(t) = -K\,\hat{x}(t)$$

Where the gain is obtained from the solution of the steady state LQR

$$K = R^{-1}B^TP$$

$$A^TP + PA + C_Q^TC_Q - PBR^{-1}B^TP = 0$$

Stationary LQG

Kalman Filter Estimator:

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu(t) + L\tilde{y}(t)$$

$$\tilde{y}(t) = y(t) - C\hat{x}(t)$$

$$L = M C^T V^{-1}$$
$$AM + MA^T = -B_w W B_w^T + M C^T V^{-1} C M$$

LQG example 1

Double integrator (example in pp ME232-143):

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$J = \frac{1}{2} \int_0^\infty \left\{ x^T \, C_Q^T \, C_Q \, x + R \, u^2 \right\} \, dt$$

with

$$C_Q = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 $R = 0.1$

LQG - Loop Transfer Recovery

LQG-LTR was developed by Prof. John Doyle (when he was a M.S. student at MIT).

- `Guaranteed margins for LQG regulators," J. Doyle, IEEE Trans. on Auto. Control (T-AC), August, 1978.
- ``Robustness with observers," J. Doyle and G. Stein, IEEE T-AC, August, 1979.

John Doyle

Other important contributions in Robust Control

- State-space solutions to standard H2 and H∞ optimal control problems," J. Doyle, K. Glover, P. Khargonekar, and B. Francis, IEEE T-AC, August, 1989 (Outstanding Paper Award Winner and Baker Prize Winner).
- ``Analysis of feedback systems with structured uncertainty (μ),"
 J. Doyle, IEE Proceedings, V129, Part D, No.6, November, 1982.

LQG - Loop Transfer Recovery

LQG-LTR is a **robust control design methodology** that uses the LQG control structure

- · LQG-LTR is not an optimal control design methodology.
- LQG-LTR is not even a stochastic control design methodology.
- A fictitious Kalman Filter is used as a robust control design methodology.
 - Output noise intensity and input noise vector ($V\&B_{\it w}$) are used as design parameters not true noise parameters.

Stationary LQG Compensator $E(s) \xrightarrow{L} \Phi(s) \xrightarrow{\hat{X}(s)} K \qquad U(s)$ $V(s) = C_{LQG}(s) E(s)$ $C_{LQG}(s) = K (sI - A + BK + LC)^{-1} L$

LQG-LTR Method 1

 How to make an LQG compensator <u>structure</u> robust to unmodeled <u>output</u> multiplicative uncertainties

• $\Delta(s)$ is a multiplicative uncertainty which is stable and bounded, i.e.

$$\sigma_{\max}[\Delta(j\omega)] \le m(j\omega) < \infty$$

45

Under the assumptions in the previous page

• If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then point-wise in s

$$\lim_{\rho \to 0} G(s) C_{LQG}(s) = C\Phi(s)L$$

LQG-LTR Theorem 1

Let $G_o(s) = G(s) C_{LQG}(s)$ where

$$C_{LQG}(s) = K (sI - A + BK + LC)^{-1} L$$

And let $\,K\,$ be the state feedback gain that is obtained as follows

$$K = \frac{1}{\rho} N^{-1} B^T P_{\rho} \qquad N = N^T \succ 0 \qquad \qquad R = \rho N$$

$$A^{T} P_{\rho} + P_{\rho} A + C^{T} C - \frac{1}{\rho} P_{\rho} B N^{-1} B^{T} P_{\rho} = 0$$

$$\rho > 0$$
make LQR weight: $C_{Q} = C$

LQG-LTR Theorem 1

 ${\cal K}$ is the state feedback solution of the following LQR

$$J = \frac{1}{2} \int_0^\infty \left\{ x^T C C x + \rho u^T N u \right\} dt \quad N = N^T \succ 0$$

• *C* is the state output matrix in:

$$y(t) = Cx(t) + v(t)$$

• $\rho > 0$ which is made very small, i.e.

$$ho
ightharpoonup 0$$
 "cheap" control LQR

16

Since the LTR procedure achieves:

$$\lim_{\rho \to 0} G(s) C_{LQG}(s) = C\Phi(s)L$$

We need to determine the observer feedback L so that the target system has desirable properties

More on this later

LTR procedure for computing $\,K\,$

1) For a small ho > 0 compute:

$$K = \frac{1}{\rho} N^{-1} B^T P_{\rho}$$

where $P_{
ho}$ is the solution of

$$A^{T} P_{\rho} + P_{\rho} A + C^{T} C - \frac{1}{\rho} P_{\rho} B N^{-1} B^{T} P_{\rho} = 0$$

2) Check if $G(s) \, C_{LQG}(s) pprox C \Phi(s) L$

otherwise, decrease ho and repeat the process.

Fictitious KF design parameters

$$\lim_{\rho \to 0} G(s) C_{LQG}(s) = C\Phi(s)L$$

$$G_{o_{kf}}(s)$$

Select ${\bf \it B}_{\it \it w}$, ${\bf \it W}$, and ${\bf \it V}$ as design parameters to shape the open loop transfer function ${\it Go}_{kf}(s) = C\Phi(s)L$

Fictitious KF Feedback Loop

Sensitivity and Complementary sensitivity Transfer Functions:

$$S(s) = \left[I + G_{o_{kf}}(s)\right]^{-1} \qquad r(s) \to U(s)$$

$$T(s) = G_{o_{kf}}(s) \left[I + G_{o_{kf}}(s) \right]^{-1} \qquad r(s) \to Y(s)$$

Simplify fictitious noise covariance description

$$U \xrightarrow{B} W \xrightarrow{\Phi(s)} X \xrightarrow{V} Y$$

$$E\{w(t)w(t)^T\} = I\delta(t) \implies W = I \qquad \text{only the ratio} W/V$$

$$E\{v(t)v(t)^T\} = \mu^2 I\delta(t) \implies V = \mu^2 I \qquad \text{is important}$$

KF gain L is calculated by:

μ: measurement nois standard deviation

$$L = \frac{1}{\mu^2} M C^T$$
$$AM + MA^T = -B_w B_w^T + \frac{1}{\mu^2} M C^T C M$$

Simplify fictitious noise covariance description

KF gain L is calculated by: $L = \frac{1}{\mu^2} M \, C^T$ $AM + MA^T = -B_w B_w^T + \frac{1}{\mu^2} M C^T CM$

Return difference equality:

$$(1 + G_{o_{kf}}(s))(1 + G_{o_{kf}}(-s))^{T} = I + \frac{1}{\mu^{2}}G_{w}(s)G_{w}(-s)^{T}$$

Fictitious KF Feedback Loop Design

Design parameters:

- · Fictitious input noise input vector:
- Fictitious output noise standard deviation:

 (affects bandwidth of close loop system)

Design equation: (return difference equation)

$$\sigma_{i}[1 + G_{o_{kf}}(j\omega)] = \sqrt{1 + \left(\frac{\sigma_{i}[G_{w}(j\omega)]}{\mu}\right)^{2}}$$

$$i^{th} \text{ singular value}$$

Fictitious KF Feedback Loop Design

 $\sigma_i[1 + G_{o_{kf}}(j\omega)] = \sqrt{1 + \left(\frac{\sigma_i[G_w(j\omega)]}{\mu}\right)^2}$

2. High frequency attenuation:

As
$$\omega o \infty$$

 $G_{\omega}(s)$

$$\sigma_{i}[G_{o_{kf}}(j\omega)] \approx \frac{\sigma_{i}[CL]}{\omega} \implies \begin{cases} \sigma_{i}[T(j\omega)] \approx \sigma_{i}[G_{o_{kf}}(j\omega)] \\ \sigma_{i}[S(j\omega)] \approx 1 \end{cases}$$

(gain Bode plot has -20 db/dec slope)

Fictitious KF Feedback Loop Design

 Designer-specified shapes: When (generally at low frequency)

$$rac{\sigma_{\mathsf{min}}\left[G_w(j\omega)
ight]}{\mu}>>1$$

$$\sigma_i[G_{o_{kf}}(j\omega)] \approx \frac{\sigma_i[G_w(j\omega)]}{\mu}$$

use B_w to place zeros of $G_w(j\omega)$

Fictitious KF Feedback Loop Design

3. Well-behaved crossover frequency:

Sensitivitiy and complementary sensitivity TFs never become too large (even in the vicinity of the gain crossover frequency)

$$\sigma_i[S(j\omega)] \leq 1$$
 $\sigma_i[T(j\omega)] \leq 2$

Example-2: Unstable Plant

$$U = B \longrightarrow G(s)$$
 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

no unstable zeros

Example-2: I-action

- Introduce I-action to achieve 0 steady-state error to constant reference input
- Define I-action extended system

Example-2: I-action

· Define I-action extended system

$$A_e = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$$
 $B_e = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C_e = \begin{bmatrix} C & 0 \end{bmatrix}$

Example-2: LQG-LTR $R(s) \longrightarrow C_{LQG}(s) \longrightarrow G(s) \longrightarrow S_{\text{tep Response}} From: y1 \text{ To: Out(1)}$ $Keep decreasing \ \rho \ until \\ G_e(s) \ C_{LQG}(s) \approx C_e \Phi_e(s) L_e$ $\rho = 10^{-17}$ Step Responses - target - LQG-LTR $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5$ $1.4 \quad 0.5$ $0.8 \quad 0.8 \quad 0.8$

LQG-LTR Method 2

 How to make an LQG compensator <u>structure</u> robust to unmodeled <u>input</u> multiplicative uncertainties

• $\Delta(s)$ is a multiplicative uncertainty which is stable and bounded, i.e.

$$\sigma_{\mathsf{max}}\left[\Delta(j\omega)\right] \leq m(j\omega) < \infty$$

LQG-LTR Theorem 2

Let
$$G_o(s) = C_{LQG}(s) G(s)$$
 where

$$C_{LOG}(s) = K (sI - A + BK + LC)^{-1} L$$

And let $\ L$ be the Kalman Filter feedback gain that is obtained as follows

$$L = \frac{1}{\rho} M_{\rho} C^T N^{-1} \qquad N = N^T \succ 0$$

$$AM_{\rho} + M_{\rho}A^{T} + BB^{T} - \frac{1}{\rho}M_{\rho}C^{T}N^{-1}CM_{\rho} = 0$$

$$\rho > 0$$

Under the assumptions in the previous page

• If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then point-wise in s

$$\lim_{\rho \to 0} C_{LQG}(s) G(s) = K\Phi(s)B$$

LQG-LTR Theorem 2

 ${\cal L}$ is the Kalman Filter gain solution of the following filtering problem

$$E\{v(k)v(k)^T\} = V = \rho N \succ 0$$

• $\rho > 0$ which is made very small, i.e.

$$ho
ightarrow 0$$
 "noiseless" output measurement

More on LQG-LTR

- LTR Theorem Proof: Read ME233 Class Notes, pages LTR-3 to LTR-5 (also back of these notes)
- Fictitious Kalman Filter Design Techniques: Read ME233 Class Notes, pages LTR-6 to LTR-9
- Stein and Athans "The LQG/LTR Procedure for Multivariable Feedback Control Design," IEEE TAC. Vol. AC-32. NO. 2, Feb 1987

Outline

- Continuous time LQR stability margins
- Continuous time Kalman Filter stability margins
- Fictitious Kalman Filter
- · LQG stability margins
- LQG-LTR

92

LQG-LTR Theorem 1

Assume that:

• $G_o(s) = G(s) C_{LQG}(s)$ where

-
$$C_{LQG}(s) = K (sI - A + BK + LC)^{-1} L$$

- The feedback gain K is satisfies

$$K = \frac{1}{\rho} N^{-1} B^T P_{\rho} \qquad N = N^T \succ 0$$
$$A^T P_{\rho} + P_{\rho} A + C^T C - \frac{1}{\rho} P_{\rho} B N^{-1} B^T P_{\rho} = 0$$

• If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then point-wise in s

$$\lim_{\rho \to 0} G(s) C_{LQG}(s) = C\Phi(s)L$$

Notation

• For convenience, we define:

$$\Phi(s) = (sI - A)^{-1}$$

$$\Phi_{LC}(s) = (sI - A + LC)^{-1}$$

Linear Algebra Result

· We often use results like:

$$K [I + \Phi(s)BK]^{-1} = [I + K\Phi(s)B]^{-1} K$$

 which can be easily verified by multiplying left and right by the appropriate matrices:

$$[I + K\Phi(s)B] K = K [I + \Phi(s)BK]$$

$$K + K\Phi(s)BK = K + K\Phi(s)BK$$

LQG-LTR – Theorem 1 Proof

Proof: The result is obtained in 4 steps:

Step 1: Alternate expression for the LQG compensator $C_{LQG}(s)$

$$C_{LQG}(s) = [I + K\Phi_{LC}(s)B]^{-1} K\Phi_{LC}(s) L$$

where

$$\Phi_{LC}(s) = (sI - A + LC)^{-1}$$

96

LQG-LTR – Theorem 1 Proof

Step 2: Let $K(\rho)$ be given by

$$K(\rho) = \frac{1}{\rho} N^{-1} B^T P_{\rho}$$

where P_{ρ} is the solution of

$$A^{T} P_{\rho} + P_{\rho} A + C^{T} C - \frac{1}{\rho} P_{\rho} B N^{-1} B^{T} P_{\rho} = 0$$

(LTR procedure for computing $K(\rho)$)

Lemma: maximally achievable accuracy of LQR

To proof step 2 we use the following lemma from:

Kwakernaak, H. and Sivan, R. "The maximally achievable accuracy of linear optimal regulators and linear optimal filters." *IEEE Transactions* on *Automatic Control*, vol.AC-17, no.1, Feb. 1972, pp. 79-86. USA.

Let P_a be the solution of the following algebraic Riccati equation

$$A^{T} P_{\rho} + P_{\rho} A + C^{T} C - \frac{1}{\rho} P_{\rho} B N^{-1} B^{T} P_{\rho} = 0$$

where $N = N^T \succ 0$ and $G(s) = C\Phi(s)B$ is square.

Then

$$G(s) = C \Phi(s) B$$
 has no unstable zeros $\inf_{\rho \to 0} P_{
ho} = 0$

LQG-LTR – Theorem 1 Proof

If $G(s) = C\Phi(s)B$ has no unstable zeros

Then as $\rho \to 0$

$$K(\rho) \rightarrow \frac{1}{\sqrt{\rho}} N^{-1/2} T C$$

where T is unitary, i.e.

$$T^T T = I$$

Sketch of proof of step 2

Rewriting the Riccati equation

$$A^T P_{\rho} + P_{\rho} A + C^T C - \rho K^T(\rho) N K(\rho) = 0$$

and utilizing $P_{
ho}
ightarrow 0$

results in $\rho K^T(\rho) N K(\rho) \to C^T C$

Thus,
$$K(\rho) \rightarrow \frac{1}{\sqrt{\rho}} N^{-1/2} T C$$
 $T^T T = I$

101

LQG-LTR - Proof

Step 3: If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then as $\rho \to 0$

$$C_{LQG}(s) \rightarrow [C\Phi_{LC}(s)B]^{-1} C\Phi_{LC}(s)L$$

where

$$\Phi_{LC}(s) = (sI - A + LC)^{-1}$$

LQG-LTR - Theorem 1 Proof

Step 4: If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then as $\rho \to 0$

$$C_{LQG}(s) \rightarrow [C\Phi(s)B]^{-1} [C\Phi(s)L]$$

where

$$\Phi(s) = (sI - A)^{-1}$$

102

Proof of Step 3

$$C_{LQG}(s) = [I + K\Phi_{LC}(s)B]^{-1} K\Phi_{LC}(s) L$$

substitute:

$$K(\rho) \rightarrow \frac{1}{\sqrt{\rho}} N^{-1/2} T C$$

 $C_{LQG}(s) \rightarrow \left[\sqrt{\rho}T^TN^{1/2} + C\Phi_{LC}(s)B\right]^{-1}C\Phi_{LC}(s)L$

$$C_{LQG}(s) \rightarrow [C\Phi_{LC}(s)B]^{-1} C\Phi_{LC}(s) L$$

10

LQG-LTR Theorem 2

Let:

- $G_o(s) = C_{LQG}(s) G(s)$ where
 - $C_{LQG}(s) = K (sI A + BK + LC)^{-1} L$
 - The feedback gain *L* is satisfies

$$L = \frac{1}{\rho} M_{\rho} C^{T} N^{-1} \qquad N = N^{T} \succ 0$$
$$AM_{\rho} + M_{\rho} A^{T} + BB^{T} - \frac{1}{\rho} M_{\rho} C^{T} N^{-1} CM_{\rho} = 0$$

• If $G(s) = C\Phi(s)B$ is square and has no unstable zeros, then point-wise in s

$$\lim_{\rho \to 0} C_{LQG}(s) G(s) = K\Phi(s)B$$

Proof LQG-LTR Theorem 2

- Start with LQG-LTR Theorem 1
- Apply LQG KF duality