Boolean Algebra

A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND (•), a unary operation NOT ('), an equality sign (=) to indicate equivalence of expressions, and parenthesis to indicate the ordering of the operations, which preserves the following postulates:

P1. The OR operation is closed

for all
$$x, y \in B$$

$$x + y \in B$$

P2. The OR operation has an identity (denoted by 0)

for all
$$x \in B$$

$$x + 0 = 0 + x = x$$

P3. The OR operation is commutative

for all
$$x, y \in B$$

$$x + y = y + x$$

P4. The OR operation distributes over the AND operation

for all
$$x, y, z \in B$$

$$x + (y \bullet z) = (x + y) \bullet (x + z)$$

P5. The AND operation is closed

for all
$$x, y \in B$$

$$x \bullet y \in B$$

P6. The AND operation has an identity (denoted by 1)

for all
$$x \in B$$

$$x \bullet 1 = 1 \bullet x = x$$

P7. The AND operation is commutative

for all
$$x, y \in B$$

$$x \bullet y = y \bullet x$$

P8. The AND operation distributes over the OR operation

for all
$$x, y, z \in B$$

$$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$$

P9. Complement

for all $x \in B$ there exists an element $x' \in B$, called the complement of x, such that

(a)
$$x + x' = 1$$

(b)
$$x \bullet x' = 0$$

P10. There exist at least two elements $x, y \in B$ such that $x \neq y$

Theorem 1 The complement of x is unique

Proof:

Assume x_1 ' and x_2 ' are both complements of x.

Then by P9

$$x + x_1' = 1$$
, $x \cdot x_1' = 0$, $x + x_2' = 1$, $x \cdot x_2' = 0$
 $x_1' = x_1' \cdot 1$
 $= x_1' \cdot (x + x_2')$
 $= (x_1' \cdot x) + (x_1' \cdot x_2')$
 $= (x \cdot x_1') + (x_1' \cdot x_2')$
 $= 0 + (x_1' \cdot x_2')$
 $= (x \cdot x_2') + (x_1' \cdot x_2')$
 $= (x \cdot x_2') + (x_1' \cdot x_2')$
 $= (x \cdot x_2') + (x_1' \cdot x_2')$
 $= (x_2' \cdot x) + (x_2' \cdot x_1')$
 $= x_2' \cdot (x + x_1')$
 $= x_2' \cdot 1$
 $= x_2'$
 $= (x \cdot x_1' + x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1')$
 $= (x \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_1' \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x_1' \cdot x_1' \cdot x_1' \cdot x_2' \cdot x_1' \cdot x$

Thus, any two elements that are the complement of x are equal. This implies that x' is unique

Theorem 2-1 x + 1 = 1

Proof:

$$x + 1 = 1 \bullet (x + 1)$$
 1 is the identity for AND (P6)
 $= (x + x') \bullet (x + 1)$ Complement, $x + x' = 1$ (P9a)
 $= x + (x' \bullet 1)$ OR distributes over AND (P4)
 $= x + x'$ 1 is the identity for AND (P6)
 $= 1$ Complement, $x + x' = 1$ (P9a)

Theorem 2-2 $x \bullet 0 = 0$

Theorem 3-1 AND's identity is the complement of OR's identity 0' = 1

Proof:

$$0' = 0 + 0'$$

= 1

0 is the identity for OR (P2) Complement, x + x' = 1 (P9a)

Theorem 3-2 OR's identity is the complement of AND's identity 1' = 0

Theorem 4-1 Idempotent x + x = x

Proof:

$$x + x = (x + x) \bullet 1$$

$$= (x + x) \bullet (x + x')$$

$$= x + (x \bullet x')$$

$$= x + 0$$

$$= x$$

1 is the identity for AND (P6) Complement, x + x' = 1 (P9a) OR distributes over AND (P4) Complement, $x \cdot x' = 0$ (P9b) 0 is the identity for OR (P2)

Theorem 4-2 Idempotent

$$x \bullet x = x$$

Theorem 5 Involution (x')' = x

Proof:

Let x' be the complement of x and (x')' be the complement of x'. Then by P9, x + x' = 1, xx' = 0, x' + (x')' = 1, and x'(x')' = 0

$$(x')' = (x')' + 0$$

$$= (x')' + xx'$$

$$= [(x')' + x][(x')' + x']$$

$$= [x + (x')'][x' + (x')']$$

$$= [x + (x')'] \bullet 1$$

$$= [x + (x')'][x + x']$$

$$= x + [(x')' \bullet x']$$

$$= x + [x' \bullet (x')']$$

$$= x + 0$$

$$= x$$

0 is the identity for OR (P2) Substitution, xx' = 0OR distributes over AND (P4) OR is commutative (P3), twice Substitution, x' + (x')' = 1Substitution, x + x' = 1OR distributes over AND (P4) AND is commutative (P7) Substitution, x'(x')' = 0

0 is the identity for OR (P2)

Theorem 6-1 Absorption x + xy = x

Proof:

$$x + xy = (x \bullet 1) + xy$$

$$= x(1 + y)$$

$$= x(y + 1)$$

$$= x \bullet 1$$

$$= x$$

1 is the identity for AND (P6) AND distributes over OR (P8) OR is commutative (P3) x + 1 = 1 (Thm 2-1) 1 is the identity for AND (P6)

Theorem 6-2 Absorption x(x + y) = x

Theorem 7-1 x + x'y = x + y

Proof:

$$x + x'y = (x + x') (x + y)$$
$$= 1 \bullet (x + y)$$
$$= x + y$$

OR distributes over AND (P4) Complement x + x' = 1 (P9a) 1 is the identity for AND (P6)

Theorem 7-2 x(x' + y) = xy

Theorem 8-1 OR is associative x + (y + z) = (x + y) + z

```
Proof: Let A = x + (y + z) and B = (x + y) + z
       To Show: A = B
       First,
                                            Substitution of A
          xA = x [x + (y + z)]
                                            Absorption x(x + y) = x (Thm 6-2)
              = x
and,
          xB = x[(x + y) + z]
                                            Substitution of B
               = x(x + y) + xz
                                            AND distributes over OR (P8)
                                            Absorption x(x + y) = x (Thm 6-2)
               = x + xz
              = x
                                            Absorption x + xy = x (Thm 6-1)
       Therefore xA = xB = x
       Second,
       x'A
              = x'[x + (y + z)]
                                            Substitution of A
              = x'x + x'(y + z)
                                            AND distributes over OR (P8)
              = xx' + x'(y + z)
                                            AND is commutative (P7)
              = 0 + x'(y + z)
                                            Complement, x \bullet x' = 0 (P9b)
              = x'(y + z)
                                            0 is the identity for OR (P2)
and.
       x'B
              = x'[(x + y) + z]
                                            Substitution of B
              = x'(x + y) + x'z
                                            AND distributes over OR (P8)
              = (x'x + x'y) + x'z
                                            AND distributes over OR (P8)
               = (xx' + x'y) + x'z
                                            AND is commutative (P7)
                                            Complement, x \bullet x' = 0 (P9b)
              = (0 + x'y) + x'z
               = x'y + x'z
                                            0 is the identity for OR (P2)
              = x'(y + z)
                                            AND distributes over OR (P8)
       Therefore x'A = x'B = x'(y + z)
       Finally,
            A = A \bullet 1
                                            1 is the identity for AND (P6)
                                            Complement, x + x' = 1 (P9a)
              =A(x+x')
               = Ax + Ax'
                                            AND distributes over OR (P8)
              = xA + x'A
                                            AND is commutative (P7), twice
                                            Substitution xA = xB
              = xB + x'A
              = xB + x'B
                                            Substitution x'A = x'B
              = Bx + Bx'
                                            AND is commutative (P7), twice
              =B(x+x')
                                            AND distributes over OR (P8)
                                            Complement, x + x' = 1 (P9a)
              = B \bullet 1
               = B
                                            1 is the identity for AND (P6)
```

Since A = x + (y + z) and B = (x + y) + z, we have shown that x + (y + z) = (x + y) + z

Theorem 8-2 AND is associative x(yz) = (xy)z

Theorem 9-1 DeMorgan's Law 1 (x + y)' = x' y'

Proof:

By Theorem 1 (complements are unique) and Postulate P9 (complement), for every x in a Boolean algebra there is a unique x' such that

$$x + x' = 1$$
 and $x \bullet x' = 0$

So it is sufficient to show that x'y' is the complement of x + y. We'll do this by showing that (x + y) + (x'y') = 1 and $(x + y) \bullet (x'y') = 0$

$$(x + y) + (x'y') = [(x + y) + x'] [(x + y) + y']$$
 OR distributes over AND (P4)
 $= [(y + x) + x'] [(x + y) + y']$ OR is commutative (P3)
 $= [y + (x + x')] [x + (y + y')]$ OR is associative (Thm 8-1), twice
 $= (y + 1)(x + 1)$ Complement, $x + x' = 1$ (P9a), twice
 $= 1 \bullet 1$ $x + 1 = 1$ (Thm 2-1), twice
 $= 1$ Idempotent, $x \bullet x = x$ (Thm 4-2)

Also,

$$(x + y)(x'y') = (x'y')(x + y)$$

$$= [(x'y')x] + [(x'y')y]$$

$$= [(y'x')x] + [(x'y')y]$$

$$= [(y'x')x] + [(x'y')y]$$

$$= [y'(x'x)] + [x'(y'y)]$$

$$= [y'(xx')] + [x'(yy')]$$

$$= [y' \bullet 0] + [x' \bullet 0]$$

$$= 0 + 0$$

$$= 0$$

$$= 0$$
AND is commutative (P7)
AND is associative (Thm 8-2), twice
$$= (P7)$$
AND is commutative (P7), twice
$$= (P7)$$
Complement, $P7$
Complement,

Theorem 9-2
DeMorgan's Law 2
(xy)' = x' + y'

Summary

OD: 1 1		D1
OR is closed	for all $x, y \in B, x + y \in B$	P1
0 is the identity for OR	x + 0 = 0 + x = x	P2
OR is commutative	x + y = y + x	P3
OR distributes over AND	$x + (y \bullet z) = (x + y) \bullet (x + z)$	P4
AND is closed	for all $x, y \in B, x \bullet y \in B$	P5
1 is the identity for AND	$x \bullet 1 = 1 \bullet x = x$	P6
AND is commutative	$x \bullet y = y \bullet x$	P7
AND distributes over OR	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	P8
Complement (a)	$\mathbf{x} + \mathbf{x'} = 1$	P9a
Complement (b)	$\mathbf{x} \bullet \mathbf{x}' = 0$	P9b
Complements are unique		Thm 1
	x + 1 = 1	Thm 2-1
	$\mathbf{x} \bullet 0 = 0$	Thm 2-2
	0' = 1	Thm 3-1
	1' = 0	Thm 3-2
Idempotent	X + X = X	Thm 4-1
Idempotent	$X \bullet X = X$	Thm 4-2
Involution	(x')' = x	Thm 5
Absorption	x + xy = x	Thm 6-1
Absorption	x(x+y) = x	Thm 6-2
	x + x'y = x + y	Thm 7-1
	x(x'+y) = xy	Thm 7-2
OR is associative	x + (y + z) = (x + y) + z	Thm 8-1
AND is associative	x(yz) = (xy)z	Thm 8-2
DeMorgan's Law 1	(x+y)' = x' y'	Thm 9-1
DeMorgan's Law 2	(xy)' = x' + y'	Thm 9-2