## Neural networks.

V. Kitov



Imperial College London Department of Physics

January 2015

## Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Neural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

# History

 Neural networks originally appeared as an attempt to model human brain





- Human brain consists of multiple interconnected neuron cells
  - cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons
  - communication is performed by sending electrical and electro-chemical signals
  - signals are transmitted through axons long thin parts of neurons.

#### Table of Contents

- Introduction
- 2 Definition
- Output generation
- 4 Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

## Definition

- acyclic directed graph
- verticals called neurons
- edges correspond to certain weighs



- Structure of neural network:
  - 1-input layer
  - 2-hidden layers
  - 3-output layer

## Definition

- ullet Each neuron j is associated a non-linear transformation arphi.
- ullet For multilayer perceptron class neural networks arphi belongs to a class of activation functions.
- Most common activation functions:
  - sigmoidal:  $\sigma(x) = \frac{1}{1+e^{-x}}$ 
    - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
  - hyperbolic tangent: tangh(x) =  $\frac{e^x e^{-x}}{e^x + e^{-x}}$



#### Activation functions

Activation functions are smooth approximations of step functions:



 $\sigma(ax)$  limits to 0/1-step function as  $a \to \infty$ 



tangh(ax) limits to -1/1-step function as  $a \to \infty$ 

## Definition details

- Label each neuron with integer i.
- Denote:  $I_i$  input to neuron i,  $O_i$  output of neuron i
- Output of neuron i:  $O_i = A(I_i)$ , where A is activation function.
- Input to neuron i:  $I_i = \sum_{k \in inc(i)} w_{ki} O_k + w_{k0}$ ,
  - $w_{k0}$  is the bias term
  - inc(i) is a set of neurons with outgoing edges to neuron i.
  - further we will assume that at each layer there is a vertex with constant output  $O_{const} \equiv 1$ , so we can simplify notation

$$I_i = \sum_{k \in inc(i)} w_{ki} O_k$$

## Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Meural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

## Output generation

 Forward propagation is a process of successive calculations of neuron outputs for given features.



# Output generation

- Output layer transformations
  - regression:  $\varphi(I) = I$
  - classification:
    - 2 classes: sigmoid, indicating target class probability

$$\varphi(I) = \frac{1}{1 + e^{-I}}$$

• multiple classes: softmax, indicating probabilities of each class:

$$\varphi(I_i) = \frac{e^{O_i}}{\sum_{k \in OL} e^{O_k}}, i \in OL$$

where OL denotes neuron indices at output layer.

#### Generalizations

- ullet each neuron j may have custom non-linear transformation  $arphi_i$
- weights may be constrained:
  - non-negative
  - equal weights
  - etc.
- layer skips are possible



• Not considered here: RBF-networks, recurrent networks.

# Number of layers selection

- Number of layers usually denotes all layers except input layer (hidden layers+output layer)
- We will consider only continuous activation functions.
- Classification:
  - single layer network selects arbitrary half-spaces
  - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
    - therefore it can approximate arbitrary convex sets
  - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
    - therefore it can approximate almost all sets with well defined volume (Borel measurable)

# Number of layers selection

- Regression
  - single layer can approximate arbitrary linear function
    - 2-layer network can model indicator function of arbitrary polyhedron
    - 3-layer network can uniformly approximate arbitrary continuous function (as sum of indicators of various polyhedra)

#### Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and wide range of activation functions (excluding polynomial).

- In practice often it is more convenient to use more layers with fewer amount of neurons
  - model becomes more interpretable and tunable

#### Neural network architecture selection

- Network architecture selection:
  - increasing complexity (control by validation error)
  - decresing complexity ("optimal brain damage")
    - may be used for feature selection

## Table of Contents

- Introduction
- 2 Definition
- Output generation
- 4 Weight space symmetries
- Meural network optimization
- 6 Backpropagation algorithm
- Invariances
- Case study: ZIP codes recognition

# Weight space symmetries

- Consider a neural network with 1 hidden layer
  - with tangh(x) activation functions
  - consisting of *M* neurons



# Weight space symmetries

- The following transformations in weight space lead to neural networks with equivalent outputs:
  - for any neuron in hidden layer: simultaneous change of sign of input and output weights
    - 2<sup>M</sup> possible equivalent transformations of such kind
  - for any pair of neurons in the hidden layer: interchange of input weights between the neurons and simultaneous interchange of output weights
    - this is equivalent to reordering of neurons in the hidden layer, so there are M! such orderings
  - 2<sup>M</sup> M! equivalent transformations exist in total.
  - For neural network with K hidden layers, consisting of  $M_k$ , k = 1, 2, ...K neurons each, we obtain  $\prod_{k=1}^K 2^{M_k} M_k!$  equivalent neural networks.
  - In general case these are the only symmetries existing in the weights space.

## Table of Contents

- Introduction
- 2 Definition
- Output generation
- 4 Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

# Network optimization

- Regression (y denotes true value and  $\hat{y}$  its prediction)
  - single output:

• 
$$\frac{1}{N} \sum_{n=1}^{N} (\widehat{y}_n(x_n) - y_n)^2 \rightarrow \min_{w}$$

K outputs

• 
$$\frac{1}{NK}\sum_{n=1}^{N}\sum_{k=1}^{K}(\widehat{y}_{nk}(x_n)-y_{nk})^2 \rightarrow \min_{w}$$

- Classification
  - two class  $(y \in \{0,1\}$  denotes true class, and p is the probability of class 1):

• 
$$\prod_{n=1}^{N} p(x_n)^{y_n} (1 - p(x_n))^{1-y_n} \to \max_w \text{ equivalent to } \sum_{n=1}^{N} y_n \ln p(x_n) + (1 - y_n) \ln (1 - p(x_n)) \to \max_w$$

- C classes  $(y_{nc} = \mathcal{I}\{y_n = c\}, p_c(x_n)$  estimated probability of class c):
  - $\prod_{n=1}^{N}\prod_{c=1}^{C}p_c(x_n)^{y_{nc}} o \max_w$  equivalent to  $\sum_{n=1}^{N}\sum_{c=1}^{C}y_{nc}\ln p_c(x_n) o \max_w$

# Neural network optimization

- Let W denote the total dimensionality of weights space
- Let  $E(\hat{y}, y)$  denote the loss function of output
- We may optimize neural network using gradient descent:

```
while (stop criteria not met): w^{k+1} = w^k - \eta \nabla E(w^k)
```

- Standardization of features makes gradient descend converge faster
- Other optimization methods are more efficient (conjugate gradients)

# Neural network optimization

• Direct  $\nabla E(w)$  calculation, using

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w)}{\varepsilon} + O(\varepsilon)$$

or better

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w - \varepsilon_i)}{\varepsilon} + O(\varepsilon^2)$$

has complexity  $O(W^2)$  [W forward propagations to evaluate W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

# Multiple minima problem

- Neural network optimization function has multiple minima
- Solution: select lowest minimum from multiple optimizations with different starting values
- Robust solutions:
  - average outputs of neural networks obtained by using different starting values
  - average outputs of neural networks trained on different bootstrap subsamples

## Table of Contents

- Introduction
- 2 Definition
- Output generation
- 4 Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

- Denote  $w_{ij}$  be the weight of edge, connecting i-th and j-th neuron.
- Define "errors":  $\delta_j = \frac{\partial E}{\partial I_j} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j}$
- Since E depends on  $w_{ij}$  through the following functional relationship  $E(w_{ij}) \equiv E(O_j(I_i(w_{ij})))$ , using the chain rule we obtain:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}}$$

•  $\frac{\partial O_i}{\partial I_i} = \varphi'(I_i)$ ,  $\frac{\partial I_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left( \sum_{k \in inc(j)} w_{kj} O_k \right) = O_i$ , where inc(j) is a set of all neurons with outgoing edges to neuron j.

- If neuron j belongs to the output node, then error  $\delta_j = \frac{\partial E}{\partial O_j}$  is calculated directly.
- For quadratic loss  $E = \frac{1}{2} \sum_{j \in OL} (O_j y_j)^2$ :  $\delta_j = O_j y_j$ .
- If neuron j belongs some hidden layer, denote  $out(j) = \{k_1, k_2, ... k_m\}$  the set of all neurons, receiving output from neuron j.
- The effect of  $O_j$  on E is fully absorbed by  $I_{k_1}, I_{k_2}, ... I_{k_m}$ , so

$$\frac{\partial E(O_j)}{\partial O_j} = \frac{\partial E(I_{k_1}, I_{k_2}, \dots I_{k_m})}{\partial O_j} = \sum_{k \in out(j)} \left( \frac{\partial E}{\partial I_k} \frac{\partial I_k}{\partial O_j} \right) = \sum_{k \in out(j)} \left( \frac{\partial E}{\partial I_k} \frac{\partial I_k}{\partial O_j} \right) = \sum_{k \in out(j)} \left( \delta_k w_{jk} \right)$$

• For output layer errors are calculated directly:

$$\delta_{j} = \frac{\partial E}{\partial O_{j}} \frac{\partial O_{j}}{\partial I_{j}} = \frac{\partial E}{\partial O_{j}} \varphi'(I_{i})$$
 (1)

 For other layers errors are calculated using errors from the next layer:

$$\delta_{j} = \sum_{k \in out(j)} (\delta_{k} w_{jk}) \varphi'(I_{i})$$
 (2)

Weight derivatives are calculated using errors and outputs:

$$\frac{\partial E}{\partial w_{ii}} = \delta_j O_i \tag{3}$$

- Let M be the total number of neurons.
- Backpropagation algorithm:
  - Forward propagate  $x_n$  to the neural network, store all inputs  $I_i$  and outputs  $O_i$ , i = 1, 2, ...M.
  - **2** Calculate  $\delta_i$  for all  $i \in OL$  using (1).
  - 3 Backpropagate  $\delta_i$  from final layer backwards layer by layer using (2).
  - **4** Using calculated errors and outputs calculate  $\frac{\partial E}{\partial w_{ii}}$  with (3).
- Algorithm complexity: O(W).
- Updates:
  - batch
  - online
    - sequential sampling
    - randomized sampling

# Regularization

- Constrain model complexity directly
  - constrain number of neurons
  - constrain number of layers
  - impose constraints on weights
- Take a flexible model
  - use early stopping during iterative evaluation (by controlling validation error)
  - quadratic regularization

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} w_i^2$$

• alternative regularization (penalizes stronger smaller weights)

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} w_i^2 / (1 + w_i^2)$$

#### Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Meural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

#### Invariances

- It may happen that solution should not depend on certain kinds of transformations in the input space.
- Example: character recognition task
  - translation invariance
  - scale invariance
  - invariance to small rotations
  - invariance to small uniform noise



#### Invariances

- Approaches to build an invariant model:
  - augment training objects with their transformed copies according to given invariances
    - amount of possible transformations grows exponentially with the number of invariances
  - add regularization term to the target cost function, which penalizes changes in output after invariant transformations
    - see tangent propagation
  - extract features that are invariant to transformations
  - build the invariance properties into the structure of neural network
    - see convolutional neural networks

# Augmentation of training samples

- generate a random set of invariant transformations
- 2 apply these transformations to training objects
- obtain new training objects



# Tangent propagation

- Denote  $s(x, \xi)$  be vector x after invariant transformation parametrized by  $\xi$ .
- Denote

$$\tau_n = \left. \frac{\partial s(x_n, \xi)}{\partial \xi} \right|_{\xi=0}, \quad J_{ki} = \frac{\partial y_k}{\partial x_i}$$

- We want  $\frac{\partial y_k}{\partial \xi}\Big|_{\xi=0}$  to be as small, as possible.
- Sensitivity of  $y_k$  to small invariant transformation:

$$\left. \frac{\partial y_k}{\partial \xi} \right|_{\xi=0} = \sum_{i=1}^D \frac{\partial y_k}{\partial x_i} \frac{\partial x_i}{\partial \xi} = \sum_{i=1}^D J_{ki} \tau_i$$

• Tangent propagation - modify target cost function:

$$\tilde{E} = E + \lambda \sum_{n} \sum_{k} \left( \sum_{i=1}^{D} J_{nki} \tau_{ni} \right)^{2}$$

## Convolutional neural networks

- Convolutional neural network:
  - Used for image analysis
  - Consists of a set of convolutional layer / sub-sampling layer pairs and aggregating layer



## Convolutional neural networks

- Convolutional layer
  - Convolutional layer consists of a number of feature maps
  - Feature map has the same dimensionality as input layer
  - Locality: each neuron in the feature map takes output from small neigborhood of input layer neurons
  - Equivalence: the same transformation is applied by each neuron in the feature map
    - obtained by constraining sets of weights to each feature map layer neuron to be equal
    - similar to convolution with moving adaptive kernel
    - effectively it is feature extraction from a region
- Sub-sampling layer
  - Consists of a number of planes, each corresponding to respective feature map on the previous convolutional layer
  - Locality: Sub-sampling layer neurons take output from small neigborhood of respective feature map neurons
    - neighbourhoods are chosen to be contiguous and

#### Table of Contents

- Introduction
- 2 Definition
- Output generation
- 4 Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm
- Invariances
- 8 Case study: ZIP codes recognition

# Case study (due to Hastie et al. The Elements of Statistical Learning)

ZIP code recognition task



#### Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight sharing



## Results



#### Addition

- Neural networks weights may be constrained to belong to mixture density
  - $\tilde{E} \leftarrow E P(w)$ , where P(w) is the mixture probability of weights
  - soft forcing of weights to group into similar clusters
- Neural networks may model not only real value outputs, but densities
  - each output frequency of histogram bin
  - each output either prior or mean or variance of mixture of parametrized density (normal, beta, etc.)

#### Conclusion

- Advantages of neural networks:
  - can model accurately complex non-linear relationships
  - easily parallelizable
- Disadvantages of neural networks:
  - hardly interpretable ("black-box" algorithm)
  - optimization requires skill
    - too many parameters
    - may converge slowly
    - may converge to inefficient local minimum far from global one

# Further reading

- Further reading on this topic:
  - Pattern Recognition and Machine Learning. Christopher Bishop. Springer. 2007.
  - The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2nd Edition, Springer, 2009.