

Projective Manifold Gradient Layer for Deep Rotation Regression

Jiayi Chen¹, Yingda Yin¹, Tolga Birdal², Baoquan Chen¹, Leonidas Guibas², He Wang¹

¹Peking University ²Stanford University

Introduction

> Task: to improve the accuracy of deep rotation regression

3DoF rotation

- ➤ Motivation: SO(3) is a non-Euclidean manifold while network outputs are in a Euclidean ambient space.
 - The forward pass thus always involves **projection** onto manifold.
 - However, naïve backward pass simply backprop. based on the chain rule without considering the **many-to-one** nature of the projection.
- > Our work:
 - proposes a manifold-aware gradient layer to replace naïve backward pass while maintaining forward pass unchanged
 - **significantly improve** rotation regression on a broad range of tasks (supervised/unsupervised rotation est. from images/point clouds) and rotation representations <u>at no cost of speed and memory</u>.

Method Overview

> Forward – same as previous works

Rotation Repres.	Ambient Space	Manifold Mapping	Representation Manifold	Rotation Mapping
Quaternion	\mathbb{R}^4	Length norm	S^3	quatrot. conversion
6D [1]	\mathbb{R}^6	Gram-Schmidt process	Grassmann Manif.	cross product
9D [2]	\mathbb{R}^9	Symmetric SVD	SO(3)	identity mapping

Backward

- Find a goal R_g using **Riemannian gradient**: $\mathbf{R}_g \leftarrow R_{\mathbf{R}}(-\tau \operatorname{grad} \mathcal{L}(f(\mathbf{R})))$ especially useful when $R_{\mathbf{GT}}$ is not available (self-supervised case).
- Inverse image $\pi^{-1}(\widehat{x_g})$: one-to-many but usually an analytical solution is available after some relaxations.
- Project: To find the element which is closest to the raw output in $\pi^{-1}(\widehat{x_g})$, by solving $\mathbf{x}_{gp} = \underset{\pi(\mathbf{x}_g) = \hat{\mathbf{x}}}{\operatorname{argmin}} ||\mathbf{x} \mathbf{x}_g||_2$
- Projective manifold gradient:

$$\mathbf{g}_{PM} = \mathbf{x} - \mathbf{x}_{gp}$$

- Key insight:
 - a multi-ground-truth problem for x
 - the lowest redundancy in the gradient
 - similar to min-of-N strategy

Vanishing length problem

- Reason: the projection process will make the length of raw output decrease and further lead to unstable training.
- Solution: add a regularization term, $\lambda(\mathbf{x}_{gp}-\hat{\mathbf{x}}_g)$, which leads to our final Regularized Projective Manifold Gradient (RPMG):

$$\mathbf{g}_{RPM} = \mathbf{x} - \mathbf{x}_{gp} + \lambda(\mathbf{x}_{gp} - \hat{\mathbf{x}}_g)$$

> Reflection problem

- Reason: the analytical solution of the inverse image assumes $\hat{\mathbf{x}}_g$ close to \mathbf{x}
- Solution: use a small hyperparameter τ in Riemannian optimization.

Reference

[1] Yi Zhou *et al.* On the continuity of rotation representations in neural networks. CVPR 2019. [2] Jake Levinson *et al.* An analysis of svd for deep rotation estimation. NeurIPS 2020.

O \mathbf{x}_{gp2}

 $\hat{\mathbf{x}}_{q} \;\; \mathbf{x}_{gp1}$

Experiment

Rotation regression w/ GT supervision from point clouds

Rotation regression w/o GT supervision from point clouds

	Instance-	-Level Self-	-Supervise		Category-Level Self-Supervis		
	Mean (°)	Med (°)	5°Acc (%)		Mean (°)	Med (°)	5°Acc (%)
Euler	129.3	132.9	0	Euler	12.14	6.91	33.6
Axis-Angle	36.31	6.98	37	Axis-Angle	35.49	20.80	4.7
Quaternion	4.04	3.30	74	Quaternion	11.54	7.67	29.8
6D	43.9	6.49	44	6D	14.13	9.41	23.4
9D	2.47	2.02	92.5	9D	11.44	8.01	23.8
9D-Inf	101.5	96.61	0	9D-Inf	4.07	3.28	76.7
10D	2.18	1.91	96.5	10D	9.28	7.05	32.6
RPMG-Quat	2.88	2.38	91.5	RPMG-Quat	4.86	3.25	75.8
RPMG-6D	3.08	2.92	89.5	RPMG-6D	2.71	2.04	92.1
RPMG-9D	1.40	1.17	100	RPMG-9D	3.75	2.10	91.1

Rotation regression w/ GT supervision from images

		Chair			Sofa				
	Mean (°)	Med (°)	5°Acc (%)		Mean (°)	Med (°)	5°Acc (%)		
Euler	21.46	10.95	10.4	Euler	27.46	12.00	9.4		
Axis-Angle	25.71	14.27	7.2	Axis-Angle	30.25	14.55	6.2		
Quaternion	25.75	14.99	6.3	Quaternion	30.00	15.73	5.7		
6D	19.60	9.09	19.1	6D	17.51	7.33	27.3		
9D	17.46	8.30	23.1	9D	19.75	7.58	24.9		
9D-Inf	12.10	5.09	49.2	9D-Inf	12.48	3.45	69.7		
10D	18.40	9.02	19.6	10D	20.89	8.73	19.8		
RPMG-Quat	13.03	5.90	39.9	RPMG-Quat	13.02	3.60	66.6		
RPMG-6D	12.94	4.74	53.1	RPMG-6D	11.52	2.79	77.1		
RPMG-9D	11.93	4.36	58.1	RPMG-9D	10.49	2.41	81.7		

Ablation Study

			Complete				
			Mean (°)	Med (°)	5°Acc (%)		
L2 w/ 6D	-	-	7.25	6.15	38.2		
MG-6D	$\lambda = 1$	$ au_{convergence}$	3.27	2.68	86.1		
MO-0D	$\lambda - 1$	$ au_{gt}$	3.37	2.77	85.7		
DMC (D	$\lambda = 0$	$ au_{convergence}$	64.41	40.99	2.8		
PMG-6D	$\lambda = 0$	$ au_{gt}$	103.2	100.4	0.0		
RPMG-6D		$ au_{init}$	3.60	2.30	91.1		
	$\lambda = 0.01$	$ au_{convergence}$	3.41	2.04	87.2		
		$ au_{ m gt}$	4.12	2.22	87.1		
		$\tau_{init} \to \tau_{convergence}$	2.85	2.09	92.7		
-	$\lambda = 0.005$	_ \	3.07	2.11	89.6		
	$\lambda = 0.1$	$ au_{init} o au_{convergence}$	2.85	2.19	90.9		

Camera pose estimation from images

	King's College		Old Hospital		Shop Facade		St Mary's Church		Average	
	T(m)	R(°)	T(m)	R(°)	T(m)	R(°)	T(m)	R(°)	T(m)	R(
Euler	1.16	2.85	2.54	2.95	1.25	6.48	1.98	6.97	1.73	4.8
Axis-Angle	1.12	2.63	2.41	3.38	0.84	5.05	2.16	7.58	1.63	4.0
Quaternion	0.98	2.50	2.39	3.44	1.06	6.01	2.59	8.81	1.76	5.
6D	1.10	2.56	2.21	3.43	1.01	5.43	1.73	5.82	1.51	4.3
9D	1.14	3.03	2.11	3.50	0.88	6.39	1.95	5.95	1.52	4.
9D-Inf	0.98	2.32	1.89	3.32	1.15	6.36	1.96	6.25	1.50	4.5
10D	1.54	2.62	2.32	3.39	1.20	5.76	1.85	6.69	1.73	4.0
RPMG-Quat	1.04	1.91	2.42	2.72	0.98	4.28	1.82	4.89	1.57	3.4
RPMG-6D	1.55	1.70	2.62	3.09	0.95	5.01	2.44	5.18	1.89	3.
RPMG-9D	1.57	1.82	4.37	3.12	0.93	4.17	1.92	4.69	2.20	3.4