LINEAR REGRESSION III

11.9.2020

RECAP

- * receptive fields
 - * what kind of stuff in the world does a neuron (or voxel, or whatever) respond to?
 - * we can estimate receptive fields by measuring responses in different conditions, and then fitting a model

RECAP

- * how do we fit a stimulus—>response model?
- * regression!
 - * find weights that minimize squared error
 - * one method uses gradient descent

2D EXAMPLE

subject

- * y = output of a neuron that you are measuring
- * **x1** = how many times **left** side of screen flashes per second
- * x2 = how many times **right** side of screen flashes per second

SQUARED ERROR

* squared error is the sum of squared differences between actual and predicted data

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

2D EXAMPLE

* here the error function takes two variables, E(b1, b2)

GRADIENT DESCENT

Squared Error:
$$Err(\beta) = (Y - X\beta)^2$$

Gradient:
$$\frac{\partial Err(\beta)}{\partial \beta} = -X^\top (Y - X\beta)$$

ANALYTIC REGRESSION

- * but there's another way to find the optimal b1 and b2
- * what's the shape of the error function?
 - * a parabola!

ANALYTIC REGRESSION

* there is an analytic solution to the minimum of a parabola!

$$\frac{\partial Err(\beta)}{\partial \beta} = -X^{\top}(Y - X\beta) = 0$$
$$-X^{\top}Y + X^{\top}X\beta = 0$$
$$X^{\top}X\beta = X^{\top}Y$$
$$\beta = (X^{\top}X)^{-1}X^{\top}Y$$

ANALYTIC REGRESSION

- * np.linalg.lstsq solves least squares regression
- * it returns 4 things:
 - * the regression weights (beta)
 - * the residuals (final squared error)
 - * the rank (we'll talk about this later)
 - * the singular values (ditto)

- * how do you know if a regression model is good?
- * one common metric is R², also called the coefficient of determination or variance explained

- * $R^2 = 1 (RSS / TSS)$
 - * where RSS is the "residual sum of squares" (this is just another name for squared error)
 - * and TSS is the "total sum of squares" (squared error with beta=0)

* R² can also be defined in terms of variance

```
* R^2 = 1 - (var(y-y_hat) / var(y))
```

* what's the difference between squared error and variance?

- * suppose that we are given a matrix of variables (aka regressors) X, and a vector of outputs Y
- * we fit a linear model Y_hat = X . beta
- * then we evaluate it by computing \mathbf{R}^2 using \mathbf{X} and \mathbf{Y}
- * what are the possible values of R²?

IN-SET VS. OUT-OF-SET EVALUATION

- * evaluating a regression model using the same data that we used to train/estimate/fit it is called in-set evaluation
- * in-set evaluation is biased *upward*, and the amount of bias depends on the number of regressors in the model

IN-SET VS. OUT-OF-SET EVALUATION

- * for example: suppose we have N data points and N regressors that are pure noise—they have no relationship to the output whatsoever
- * in-set variance explained is **EXACTLY 1.0**
- * THE MODEL IS PERFECT

IN-SET VS. OUT-OF-SET EVALUATION

- * instead, what if you split up your X and Y into "training" and "test" sets?
- * you could fit your regression model using (X_trn, Y_trn), and then test how well it works on (X_test, Y_test)!
- * is **R**² biased in this case? What possible values can it take?

END