2019年6月2日

Downscaling Daily Temperature with Evolutionary Artificial Neural Networks

Methods:

Algorithm Evolutionary Algorithm Initialize a population

Evaluate all individuals in the population

repeat

Select parents from the population Recombine parents to generate new individuals

Mutate individuals Evaluate new individuals

Decide survival individuals for a new population until terminal condition is satisfied

return the best individual from the population

Fig. 3 A basic pseudo-code of typical Evolutionary Algorithms

Fig. 4 Map of study area. Black markers are known stations and yellow markers are unknown stations

本文抛弃了BP算法,使用了遗传算法

研究初心:评估使用遗传算法对GCM降尺度的效果

研究空间: 挪威南部 研究时间: 1970-2010

随机将全部数据的80%作为训练数据,20%作为验证数据;

共运行了10次,为训练ANN学习已知地区和未知地区最高温间的关系(本文目的)。

Results:

Fig. 5 Average learning curves of the ANNs from the 10 runs for the five unknown stations.

RMSE平均曲线在前100代中下降 迅速,在接下来的时间下降较为 缓慢。

这是因为NE模型自身在前期 就可以很快找到ANN权重的优化 关系。

Table 4: Overall performance measures. Average RMSE and R² for test from 10 runs

Station	RMSE	R ²
Åbjørsbråten	2.91	0.898
Løken i Volbu	3.19	0.893
Kise Pa	2.85	0.912
Hedmark		
Geilostølen	2.78	0.797
Skåbu	2.79	0.911
storslålen		

该算法的平均RMSE相对其他算法较小,但是如果对比相 关系数平均值,该方法并未表现出较好的优势。

这是因为在训练过程中RMES是模型的优化函数而并没有考虑相关系数,因此模型的相关系数并未有较好优势。这也告诉我们拥有很小的RMSE并不代表R2会很大。因此,在训练模型的过程中不光要考虑将RMSE尽可能的最小化,也要同时考虑尽可能最大化相关系数。