$\begin{array}{c} \mathrm{CS}\ 61\mathrm{B} \\ \mathrm{Spring}\ 2018 \end{array}$

Graphs & Sorting

Discussion 12: April 10, 2018

1 Dijkstra's Algorithm

For the graph below, let g(u, v) be the weight of the edge between any nodes u and v. Let h(u, v) be the value returned by the heuristic for any nodes u and v.

1.1	Run Dijkstra's algorithm to find the shortest paths from A to every other vertex.
	You may find it helpful to keep track of the priority queue and make a table of
	current distances.

- Given the weights and heuristic values for the graph below, what path would A^* search return, starting from A and with G as a goal?
- No, because h(c, g) overestimates h(a, g) also overestimates

Edge weights	Heuristics
g(A,B) = 1	h(A,G) = 8
g(B,C) = 3	h(B,G) = 6
g(C, F) = 4	h(C,G) = 5
g(C,G)=4	h(F,G) = 1
g(F,G) = 1	h(D,G) = 6
g(A,D)=2	h(E,G) = 3
g(D, E) = 3	
g(E,G)=3	

verten	edgeto	disto
V A	/	0
V B	P	1
10	B	4
10	P	2
JE	D	5
18	C	6
Va	XF	87
ь <i>л</i>	B → C → F	×

2 Minimum Spanning Trees

verten	edgeto	diuto whats different from Pijksma:
√A	/	o it's distance to the rust under construction
~B	PI	2 not to the initial vertex
VC	PI	1 A-C-E
VD	B	B-DF
√ E	C	n " • •
VF	E	The 2 lines are espertial

2.2 Use Kruskal's algorithm to find a minimum spanning tree.

2.3 There are quite a few MSTs here. How many can you find?

3 Mechanical Sorting

3.1 Show the steps taken by each sort on the following unordered list:

(b) Selection sort

(c) Merge sort

04276135
01427635
01247635
01234765
01234576
01-2-144100

04276135 0427 6135 0427 6135 0427 6135 0427 6135 0427 16 35 0427 16 35

(d) Use heapsort to sort the following array (hint: draw out the heap). Draw out the array at each step:

