419A DC NULL VOLTMETER

OPERATING AND SERVICE MANUAL

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The Hewlett-Packard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

OPERATING AND SERVICE MANUAL

(HP PART NO. 00419-90002)

MODEL 419A DC NULL VOLTMETER

SERIALS PREFIXED: 707-

Appendix C, Manual Backdating Changes, adapts this manual to Serials Prefixed: 514-, 532-, 646-

Copyright Hewlett-Packard Company 1966 P.O. Box 301, Loveland, Colorado, 80537 U.S.A.

Printed: DEC 1966

01779-2

TABLE OF CONTENTS

Sec	tion		Page	Secti	on		Page
I		RAL INFORMATION	1-1			TENANCE	5-1
	1-1.	Introduction			5-1.	Introduction	5-1
	1-3.	Specifications	1-1		5-3.	Test Equipment	5-1
	1-5.	Description and Purpose			5-5.	Performance Tests	5-1
	1-9.	Instrument/Manual Identification.	1-1		5-7.	Voltmeter Accuracy Test	5-1
	1-11.		1-1		5-9.	Bucking Voltage Test	5-1
	1-13.	Accessory Equipment Available			5-11.	Ammeter Accuracy Test	5-2
	1 10.	recessory Equipment Available	1-1		5-11. 5-13.	Response Time Test	5-2
Sac	tion		Page		5-15. 5-15.		5-2
II		LLATION			5-17.	Superimposed AC Rejection Test	5-2
11	2-1.				5-17. 5-19.	Noise Test	
	2-1.	Introduction				Input Resistance Test	5-3
	2-3. 2-5.	Initial Inspection			5-21.	Repair Procedures	5-3
		Power Requirements			5-22.	Cover Removal	5-3
	2-7.	Grounding Requirements	2-1		5-24.	Servicing Printed Circuit Boards	5-3
	2-10.	Installation			5-29.	Adjustment and Calibration	5-4
	2-12.	Bench Mounting			5-31.	Mechanical Zero Adjustment	5-4
	2-14.	Rack Mounting			5-33.	Chopper Adjustment	5-4
	2-16.	Combination Mounting			5-35.	Electrical Zero Adjustment	5-5
	2-18.	Repackaging for Shipment	2-1		5-37.	Full Scale Calibration	5-5
~			_		5-39.	Battery Test Calibration	5-5
	tion		Page		5-41.	Troubleshooting	5-5
III		ATING INSTRUCTIONS			5-43.	No Response to Input	5-5
	3-1.	Introduction			5-45.	Positive or Negative Foldover .	5-6
	3-3.	Controls, Indicators, and Connectors			5-47.	Excessive Noise	5-6
	3-5.	Operating Instructions	3-1		5-49.	Troubleshooting the Input At-	
	3-7.	Turn-On Procedure (Battery				tenuator	5-6
		Operation)	3-1		5-51.	Replacement of Factory Selected	
	3-8.	Turn-On Procedure (AC Line				Components	5-6
		Operation)	3-1			•	•
	3-9.	DC Voltage Measurements		Secti	on.		Page
	3-10.	DC Current Measurements		VI	CIRCU	JIT DIAGRAMS	6-1
	3-17.	Applications			6-1.	Introduction	6-1
		••			6-3.	Schematic Diagrams	6-1
Sec	tion		Page		6-5.	Component Location Diagrams	6-1
IV	THEO	RY OF OPERATION	4-1			1	
	4-1.	Introduction	4-1	Secti	on		Page
	4-3.	General Description				ACEABLE PARTS	7-1
	4-11.		4-1		7-1.	Introduction	7-1
	4-12.	Bucking Supply (See Figure 6-3).	4-1		7-4.	Ordering Information	7-1
	4-15.	Input Attenuator			7-6.	Non-Listed Parts	7-1
	4-17.	Input Filter	4-2			Tion Librarian	
	4-19.	Modulator/Demodulator	4-2	Appe	ndix		
	4-23.	AC Amplifier				LIST OF MANUFACTURERS	
	4-26.	DC Amplifier				LIST OF MANOTACTORERS	
	4-30.	Meter Circuit		Appe			
	4-33.	Feedback Control		В	SALE	S AND SERVICE OFFICES	
	4-35.	Power Supply and Neon Driver	1 2	Appe	ndix		
	1 00.	(Figure 6-4)	4-3			JAL BACKDATING CHANGES	
		(1 iguit 0-4)	4-0	· .	MININ	TAL DACKDATING CHANGES	
		LI	ST OF TA	ARFE	>		
	nber		Page	Num	-		Page
1-1		del 419A Specifications	1-0	5-1.		st Equipment Required	5-0
1-2		essory Equipment Supplied		5-2.		curacy Performance Test, Sup-	
1-3		essory Equipment Available				emental Data	5-1
4-1	. Mod	del 419A Attenuation and Gain		5-3.		meter Accuracy Test	5-2
	Cł	naracteristics	4-1	7-1.		placeable Parts	7-2

LIST OF ILLUSTRATIONS

Numb	er	Page	Numbe	er	Page
1-1.	Model 419A DC Null Voltmeter	1-0	5-4.	Neon Drive Waveform (A2TP2)	
3-1.	Front and Rear Panel Controls, Indi-			,	
	cators, and Connectors	3 -0	6-1.	Model 419A, Component Location	
3-2.	Leakage Measurement	3 -3		Diagram	6-2
3-3.	Calibrating a DC Standard	3 -3	6-2.	Range Switch S1, Component Location	
3-4.	Measuring Power Supply Drift	3-4		Diagram	. 6-2
4-1.	Model 419A Block Diagram	4-0	6-3.	Amplifier and Amplifier Switching,	
5-1.	Voltmeter Accuracy Performance			Schematic and Component Location	
	Test Setup	5-0		Diagrams 6-	3/6-4
5-2.	Ammeter Accuracy Test Setup	5-2	6-4.	Power Supply and Neon Driver,	
5-3.	Superimposed AC Rejection Per-			Schematic and Component Location	
	formance Test Setup	5-3		Diagrams	. 6-5

Section I Model 419A

Figure 1-1. Model 419A DC Null Voltmeter

Table 1-1. Model 419A Specifications

VOLTMETER

Ranges: $\pm 3~\mu V$ to ± 1000 volts dc end scale in 18 zero center ranges.

Accuracy: $\pm (2\% \text{ of end scale } +0.1 \mu\text{V}).$

Limits of Zero Control: $\pm 15 \mu V$.

Input Resistance:

3 μ V to 3 mV ranges: 100 k Ω (infinite when nulled).

10 mV to 30 mV ranges: 1 M Ω (infinite when nulled).

100 mV to 300 mV ranges: 10 $M\Omega$ (infinite when nulled).

1 volt to 1000 volt ranges: 100 M Ω

Internal Bucking Voltage: $\pm 120\%$ end scale, 3 μV through 300 mV range.

Response Time: 95% of final reading within 3 sec on the 3 μ V range. 95% of final reading within 1 sec on the 10 μ V to 1000 V ranges.

Superimposed AC Rejection: Ac voltages 60 Hz and above: 80 db greater than end scale--affects reading less than 2%. Peak ac voltage not to exceed max overload voltage.

Drift: $< 0.5 \,\mu\text{V/day}$ after 30 minutes warmup. T.C. $< 0.05 \,\mu\text{V/}^{\circ}\text{C}$ from 0° to $+50^{\circ}\text{C}$.

Noise*: $< 0.3 \mu V$ peak-to-peak.

* Peak-to-peak noise is less than 0.3 μ V 95% of the time since the noise amplitude approximates a Gaussian distribution where the standard deviation (which is also the rms value) = 0.075 μ V.

AMPLIFIER

Gain: 110 db maximum at recorder output terminals.
Gain depends on range.

Output: 0 to ± 1 volt at 1 mA max for end scale reading. Output level is adjustable for convenience when used with recorders.

Output Impedance: Depends on setting of output level control. < 35 ohms when output level is set to maximum.

Noise: 0.01 Hz to 5 Hz: Same as voltmeter (referred to input). > 5 Hz: rms noise < 10 mV (referred to output).

DC AMMETER

Current Ranges: ± 30 pA, ± 100 pA, ± 300 pA, ± 1 nA, ± 3 nA, ± 10 nA and ± 30 nA.

Accuracy: $\pm (3\% \text{ of end scale } + 1 \text{ pA}).$

GENERAL

Overload Voltages: 50 Vdc max, 3 μ V to 3 mV ranges; 500 Vdc max, 10 mV to 300 mV ranges; 1200 Vdc max on 1 volt range and above.

Overload Recovery Time: Meter indicates within 3 seconds for a 10⁶ overload.

Input Terminals: Positive and negative terminals are solid copper, gold flashed.

Input Isolation: > 10¹⁰ ohms shunted by 250 pF. May be operated up to 500 Vdc or 350 Vac (rms) above ground.

Operating Temperature: 0° to $+50^{\circ}$ C. Storage Temperature: -40° C to $+60^{\circ}$ C.

Power Source: 4 internal rechargeable batteries (furnished). Thirty hour operation per recharge. The 419A may be operated during recharge from ac line. 115 or 230 V $\pm 10\%$, 50 to 1000 Hz, approximately 3 watts.

Dimensions: Standard -hp- 1/2 module; 6" high, 7-3/4" wide, 8" deep (152 x 197 x 203 mm).

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This section contains general information about the Model 419A DC Null Voltmeter (Figure 1-1). Included are Specifications, Description and Purpose, Instrument Identification, Accessory Equipment Supplied, and Accessory Equipment Available.

1-3. SPECIFICATIONS.

1-4. Table 1-1 contains the specifications for the Model 419A.

1-5. DESCRIPTION AND PURPOSE.

- 1-6. The Model 419A is housed in a standard -hp-1/2 module case. A rechargeable battery power supply allows operation independent of ac line. Range and function switching is accomplished by front panel controls.
- 1-7. The Model 419A provides 18 end scale dc voltage ranges in a 1, 3, 10 sequence from 3 microvolts to 1000 volts. The Model 419A also provides 7 end scale dc current ranges from 30 picoamps to 30 nanoamps. An internal bucking supply allows voltages up to 300 millivolts to be measured with infinite input impedance. The input impedance for the higher ranges is 100 $\mathrm{M}\Omega$.
- 1-8. Recorder output terminals are provided on the rear panel. The voltage available is proportional to the meter deflection and is adjustable from 0 to 1 volt at full scale.

1-9. INSTRUMENT/MANUAL IDENTIFICATION.

1-10. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 419A described in this manual

1-11. ACCESSORY EQUIPMENT SUPPLIED.

1-12. The accessory equipment supplied with each Model 419A is listed and described in Table 1-2.

Table 1-2. Accessory Equipment Supplied

IDENTIFICATION NUMBER	QUANTITY	DESCRIPTION	
8120-0078	1	Power Cord	
00419-90002	1	Operating and Service Manual	

1-13. ACCESSORY EQUIPMENT AVAILABLE.

1-14. The accessory equipment available is listed in Table 1-3. For further information, contact your local -hp-Sales and Service Office. (See Appendix B for office locations.)

Table 1-3. Accessory Equipment Available

IDENTIFICATION NUMBER	DESCRIPTION
5060-0630	22-Pin Printed Circuit Board Extender
11000A	Dual Banana Plugs to Dual Banana Plugs (44'')
11002A	Dual Banana Plugs to Alli- gator Clips (60'')
11003A	Dual Banana Plugs to Probe and Alligator Clip (60'')

Model 419A Section II

SECTION II

2-1. INTRODUCTION.

2-2. This section contains information and instructions necessary for the installation and shipping of the Model 419A DC Null Voltmeter. Included are initial inspection procedures, power and grounding requirements, installation information, and instructions for repackaging for shipment.

2-3. INITIAL INSPECTION.

2-4. This instrument was carefully inspected both mechanically and electrically before shipment. It should be physically free of mars or scratches and in perfect electrical order upon receipt. To confirm this, the instrument should be inspected for physical damage in transit. Also check for supplied accessories, and test the electrical performance of the instrument using the procedure outlined in Paragraph 5-5. If there is damage or deficiency, see the warranty on the inside front cover of this manual.

2-5. POWER REQUIREMENTS.

2-6. The Battery Power Supply in the Model 419A can be charged from any source of 115 or 230 volts ($\pm 10\%$), at 50 to 1000 Hz. With the instrument disconnected from the ac power source, move the slide switch (located on the rear panel) until the desired line voltage appears. Power Dissipation is approximately 3 watts.

2-7. GROUNDING REQUIREMENTS.

- 2-8. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. This instrument is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground wire.
- 2-9. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

2-10. INSTALLATION.

2-11. The Model 419A is fully transistorized; therefore, no special cooling is required. However, the instrument should not be operated where the ambient temperature exceeds 50°C (122°F).

2-12. BENCH MOUNTING.

2-13. The Model 419A is shipped with plastic feet and tilt stand in place, ready for use as a bench instrument.

2-14. RACK MOUNTING.

2-15. The Model 419A may be rack mounted by using an Adapter Frame (-hp- Part No. 5060-0797). The 01779-2

adapter frame is a rack frame that accepts any combination of submodular units. It can be rack mounted only. For additional information, address inquiries to your -hp- Sales and Service Office. (See Appendix B for office locations.)

2-16. COMBINATION MOUNTING.

2-17. The Model 419A may be mounted in combination with other submodular units by using a Combining Case (-hp- Models 1051A and 1052A). The Combining Case is a full-module unit which accepts various combinations of submodular units. Being a full-module unit, it can be bench or rack mounted and is analogous to any full-module instrument.

2-18. REPACKAGING FOR SHIPMENT.

2-19. The following paragraphs contain a general guide for repackaging of the instrument for shipment. Refer to Paragraph 2-20 if the original container is to be used; 2-21 if it is not. If you have any questions, contact your local -hp- Sales and Service Office. (See Appendix B for office locations.)

NOTE

If the instrument is to be shipped to Hewlett-Packard for service or repair, attach a tag to the instrument identifying the owner and indicating the service or repair to be accomplished; include the model number and full serial number of the instrument. In any correspondence, identify the instrument by model number, serial number, and serial number prefix.

- 2-20. If original container is to be used, proceed as follows:
 - a. Place instrument in original container. If original container is not available, one can be purchased from your nearest -hp- Sales and Service Office.
 - b. Ensure that container is well sealed with strong tape or metal bands.
- 2-21. If original container is not to be used, proceed as follows:
 - a. Wrap instrument in heavy paper or plastic before placing in an inner container.
 - Place packing material around all sides of instrument and protect panel face with cardboard strips.
 - c. Place instrument and inner container in a heavy carton or wooden box and seal with strong tape or metal bands.
 - d. Mark shipping container with "DELICATE INSTRUMENT," "FRAGILE" etc.

Section III Model 419A

Figure 3-1. Front and Rear Panel Controls, Indicators, and Connectors

SECTION III OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. The Model 419A functions as a dc voltmeter with full (end) scale ranges from 3 μV to 1000 V. An internal bucking supply allows essentially infinite input impedance to be achieved on the 3 μV to 300 mV ranges. The Model 419A can also measure low level dc currents with full (end) scale ranges from 30 pA to 30 nA. This section describes the operating procedures and presents some applications for the Model 419A.

3-3. CONTROLS, INDICATORS AND CONNECTORS.

3-4. Each operating control, indicator and connector located on the Model 419A is identified in Figure 3-1. The description of each component is keyed to the illustration of that component which is included within the figure.

3-5. OPERATING INSTRUCTIONS.

3-6. The Model 419A may be operated on its internal battery power supply or from an ac line. The instrument operates on its internal batteries whenever the ac power cable is removed from the ac power connector. Line operation occurs automatically whenever the power cable is connected to the power connector.

MORE	
 NOTE	

Best isolation characteristics and freedom from ground loop problems results when the 419A is operated on its internal battery supply.

3-7. TURN-ON PROCEDURE (BATTERY OPERATION).

 NOTE

Disconnect the power cable from the power receptacle for battery operation.

a. Depress BAT. TEST pushbutton; if meter does not indicate within BAT limits, perform battery charging procedure (Paragraph 3-13).

 NOTE-	
MOIE-	

When the 419A is received or after a period of storage (especially at high temperatures), the batteries may require changing. Erratic and inaccurate operation may result if the instrument is operated on weak batteries.

b. Set RANGE switch to 1 V.

- c. Depress ZERO pushbutton. If meter does not indicate zero, perform the meter zero adjustments (Paragraphs 5-31 thru 5-36).
- d. Zero meter on 3 μV range with ZERO control. Periodically recheck setting of ZERO control on the 3 μV range.

3-8. TURN-ON PROCEDURE (AC LINE OPERATION).

 a. Set line voltage two-position slide switch (rear panel) to correct position for available line voltage.

DAMAGE TO INSTRUMENT MAY RESULT IF LINE VOLTAGE SWITCH IS SET INCORRECTLY.

- b. Connect ac power connector to the line using the ac power cable supplied.
- c. Set RANGE switch to 1 V.
- d. Depress ZERO pushbutton. If meter does not indicate zero, perform meter zero adjustments (Paragraphs 5-31 thru 5-36).
- e. Zero meter on 3 μ V range with ZERO control. Periodically recheck setting of zero control on the 3 μ V range.

3-9. DC VOLTAGE MEASUREMENTS.

- a. Turn on the Model 419A and zero it according to the steps in Paragraph 3-7 (battery operation) or Paragraph 3-8 (AC Line Operation). Allow at least ten minutes warmup time if low voltages (below 1 mV) are to be measured.
- b. Connect test leads to + and INPUT terminals. (See Table 1-3 for a list of test leads available.)
- c. Set RANGE switch to range nearest above input voltage. If in doubt, start on the 1000 V range and downrange as necessary.

ECAUTION 3

TO PREVENT DAMAGE TO THE MODEL 419A, DO NOT EXCEED THE FOLLOWING OVERLOAD LIMITS.

RANGE	MAXIMUM INPUT VOLTAGE
3 μV to 3 mV	50 Vdc
10 mV to 300 mV	500 Vdc
1 V to 1000 V	1200 V dc

d. Connect test leads to voltage to be measured.

ECAUTION

DO NOT FLOAT MODEL 419A - IN-PUT TERMINAL MORE THAN \pm 500 VDC FROM GROUND ($\frac{1}{2}$).

e. Depress VM/AM pushbutton. Read value of input voltage on meter scale.

--- NOTE-----

If input voltage is 300 mV or less, infinite input impedance may be obtained by proceeding with steps f thru h.

- f. Depress SET NULL pushbutton.
- g. Rotate NULL control until meter indicates exactly zero.

NULL control gives both coarse and fine adjustment. Rotate control until pointer is slightly down scale from zero; then reverse direction to obtain fine adjustment.

h. Depress READ NULL pushbutton. Read value of input voltage on meter.

3-10. DC CURRENT MEASUREMENTS.

- a. Turn on and zero the Model 419A according to the steps in Paragraph 3-7 (Battery Operation) or 3-8 (AC Line Operation). Allow at least ten minutes warmup time if low value currents (below 10 nA) are to be measured.
- b. Connect test leads to + and INPUT terminals.
- c. Set RANGE to range nearest above current to be measured. If in doubt, start on 300 nA position and reduce as necessary.
- d. Connect test leads in series with current to be measured.
- e. Depress VM/AM pushbutton. Read value of input current on meter scale.

3-11. Amplifier Output.

3-12. The rear panel OUTPUT terminals provide a dc voltage which is proportional to meter deflection. The LEVEL control adjusts the maximum value of output voltage. With the LEVEL control turned fully cw, the voltage varies from 0 to ± 1 Vdc into a 1 k Ω load. Polarity of the voltage depends upon polarity of the meter deflection.

3-13. Battery Charging Procedure.

3-14. The batteries are automatically trickle charged whenever the Model 419A is connected to an ac powerline and the ZERO, VM/AM, SET NULL or READ NULL pushbutton is depressed. The instrument may be used while trickle charging occurs except when the batteries have been almost completely discharged. Under this condition the Model 419A may not operate properly and the batteries should be at least partially recharged before using the instrument. Generally, 72 hours of trickle charging will restore the batteries to their fully charged state; however, the batteries may be trickle charged indefinitely without damage.

3-15. The batteries may be fast charged by connecting the Model 419A to an ac powerline and depressing the FAST CHG. pushbutton. The instrument cannot be used to make measurements while fast charging the batteries. The batteries should reach full charge in approximately 15 hours.

3-16. To obtain maximum battery life, the following points should be observed.

- a. Do not allow the batteries to discharge below the BAT limits on the meter scale.
- b. Use fast charge only when necessary.
- c. Charge the batteries in moderate temperatures (80°F $\pm\,10^{\circ}F$, $27^{\circ}C\,\pm\,5.$ $6^{\circ}C)$ whenever possible.
- d. Do not store the instrument at temperatures above 122°F (50°C) or below -40°F (-20°C).

3-17. APPLICATIONS.

3-18. In addition to straightforward dc voltage and current measurements, the Model 419A has a number of applications. Several of these are presented in the following paragraphs.

3-19. Measuring Leakage.

3-20. By using the Model 419A as a sensitive dc ammeter, very high resistance leakage paths in insulating materials can be detected and measured. Leakage is observed by connecting the output of a dc power supply across the insulating material and placing the Model 419A in series with one of the power supply leads. By noting the current flow on the Model 419A, the leakage resistance can be calculated from the formula:

$$R_{\text{(leakage)}} = \frac{E_{\text{(power supply)}}}{I_{\text{(419A)}}}$$

Example:

Assume the leakage between 2 points (A and B) in a standards laboratory oil bath is to be measured. A 100 V power supply and the 419A are connected as shown in Figure 3-2.

Figure 3-2. Leakage Measurement

Assume the 419A indicates 10 pA. The leakage of the oil can then be calculated.

$$R_{\text{(leakage)}} = \frac{E_{\text{(power supply)}}}{I_{\text{(419A)}}}$$

$$R_{\text{(leakage)}} = \frac{100 \text{ V}}{10 \text{ pA}}$$

$$R_{\text{(leakage)}} = 10^{13} \Omega$$

$$R_{\text{(leakage)}} = 10^{7} \text{ M}\Omega$$

3-21. Calibrating A Voltage Source.

3-22. The Model 419A can serve as a very sensitive and accurate null detector. These features can be especially useful when matching the output of an adjustable voltage source to a reference standard. The adjustable voltage source and the reference standard are connected in series opposition with the Model 419A in series with one of the leads. The adjustable voltage source is then adjusted for a null indication on the Model 419A.

Example:

Assume the output of a dc standard (-hp- Model 741B) is to be matched to the output of a 1 V transfer standard (-hp- Model 735A). These instruments and the Model 419A are connected as shown in Figure 3-3.

The reference standard and the adjustable voltage source are both set for a 1 V output. The Model 419A indicates any deviations between the two outputs. By making internal adjustments affecting the output of the voltage source until null is reached on the Model 419A's 3 $\mu \rm V$ range, the output of the adjustable voltage source is very accurately matched to the reference standard.

3-23. Measuring and Recording Drift.

3-24. The rear panel OUTPUT terminals provide a dc voltage (0 to ± 1 V) proportional to meter deflection. This output can be used to record the drift of a dc voltage source when that source is compared to a very stable reference voltage.

Example:

Assume that the drift of a 10 V power supply is to be observed and recorded. The power supply, Model 419A, stable voltage source (-hp- Model 740B) and a strip chart recorder (-hp- Sanborn Model 7701A) are connected as shown in Figure 3-4.

Figure 3-3. Calibrating A DC Standard

Section III Model 419A

Figure 3-4. Measuring Power Supply Drift

The output of the stable voltage source or the power supply is adjusted until the Model 419A indicates null. The voltage range used on the Model 419A depends on how much drift is anticipated from the power supply. If the power supply output drifts 8 mV over a period of time, the Model 419A will indicate this

variation (on the $10\,\mathrm{mV}$ range) and supply the strip chart recorder with a voltage that changes from 0 to 0.8 V over the same period. In this case, the drift is amplified by a factor of 100. Gains as high as 333,000 (on the 3 $\mu\mathrm{V}$ range) are available when the Model 419A is used on the lower ranges.

Section IV Model 419A

Figure 4-1. Model 419A Block Dia.

01779 -2

Model 419A Section IV

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. This section contains the theory of operation of the Model 419A DC Null Voltmeter.

4-3. GENERAL DESCRIPTION.

- 4-4. The Model 419A functions as a dc voltmeter, a dc null voltmeter and a dc ammeter. When used as a dc voltmeter, the Model 419A provides end scale ranges from 3 μV to 1000 V with an input resistance of 100 k Ω to 100 M Ω , depending on the range selected. When used as a dc null voltmeter, end scale ranges from 3 μV to 300 mV are provided with infinite input resistance. End scale ranges from 30 pA to 30 nA are provided in the ammeter function with a constant 100 k Ω input resistance.
- 4-5. When used as an ammeter, circuit operation is identical to the voltmeter mode of operation. Current values are derived from the voltage drop across the constant 100 k Ω input resistance on the 30 pA (3 μ V) to 30 nA (3 mV) ranges.
- 4-6. A dc voltage being measured with the Model 419A is applied to the Input Attenuator through the + and INPUT terminals, located on the front panel. In the dc voltmeter and ammeter modes, the input is applied to the input attenuator through S1R26. In the dc null voltmeter mode, the output of the Bucking Supply is applied to S1R26 in series opposition to the input dc voltage. The difference between the Bucking Supply output and the input dc voltage is applied to the Input Attenuator. Table 4-1 lists the attenuation factors provided by the Input Attenuator for all ranges.

- 4-7. The dc output of the Input Attenuator is modulated by the Modulator. The Modulator is comprised of two photocells which are alternately illuminated by two neon lamps. The output of the modulator is a square wave whose amplitude is proportional to the difference between the amplitudes of the input dc voltage and the feedback.
- 4-8. The square wave output of the modulator is amplified by the AC Amplifier. The AC Amplifier is a six-stage, high gain amplifier. Its output is applied to the Demodulator. The Demodulator output is a dc level whose amplitude is proportional to the amplitude of the square wave. The Demodulator output is applied to the DC Amplifier, a three-stage voltage and power amplifier.
- 4-9. The forward gain provided by the AC and DC Amplifiers for each range is listed in Table 4-1. The output of the DC Amplifier (approximately 1 Vdc for end scale meter deflection) is applied to M1 and is also available at the OUTPUT + and terminals.
- 4-10. The Feedback Control circuit is ganged to the Input Attenuator by the RANGE switch S1. The feedback provided by the Feedback Control circuit is listed in Table 4-1. Algebraic addition of attenuation factor, forward gain and feedback gives the closed loop gain. The closed loop gain provides 18 end scale ranges in 10 dB steps.

4-11. DETAILED DESCRIPTION.

4-12. BUCKING SUPPLY (See Figure 6-3).

4-13. Do input voltages up to 200 mV may be measured in either the do voltmeter mode or the null voltmeter

	Table 4-1. Model 419A Attenuation and Gain Characteristics						
RANGE	ATTENUATION FACTOR	FORWARD GAIN	FEEDBACK	CLOSED LOOP GAIN			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 dB 3 0 dB 10 0 dB 39 0 dB 100 0 dB 300 0 dB 100 0 dB 300 0 dB 100 0 dB 300 - 20 dB 100 - 20 dB 300 - 40 dB 100 - 40 dB 100 - 60 dB 100 - 60 dB 300 - 80 dB 100	+150 dB +150 dB +150 dB +150 dB +130 dB +130 dB +120 dB	-40 dB -50 dB -60 dB -70 dB -60 dB -70 dB -70 dB -60 dB -70 dB -60 dB -70 dB -60 dB -70 dB -60 dB	+110 dB +100 dB + 90 dB + 80 dB + 70 dB + 60 dB + 50 dB + 40 dB + 30 dB + 20 dB + 10 dB 0 dB - 10 dB - 20 dB			
30 V 100 V 300 V 1000 V	- 80 dB אָשִּ -100 dB אַי -100 dB אָשָּ -120 dB	+120 dB +120 dB +120 dB +120 dB	-70 dB -60 dB -70 dB -60 dB	- 30 dB - 40 dB - 50 dB - 60 dB			
1 1000 4	-120 dB [#/#	F120 ab	-00 ab	l cc ab			

Table 4-1. Model 419A Attenuation and Gain Characteristics

01779-2 4-1

Section IV Model 419A

mode. In the dc voltmeter mode, the input voltage is applied to the Input Attenuator through the + and - INPUT terminals and through S1R26. In the null voltmeter mode, the input is applied in the same manner, but is opposed by the bucking voltage applied to S1R26.

4-14. When the SET NULL Pushbutton is depressed, the BT5 voltage is applied through R4 and R5 and the voltage divider network (S1R1 thru S1R11) to S1R26. The difference between the input voltage and the bucking voltage is indicated on the Meter M1. The bucking voltage is then adjusted through the use of course and fine NULL controls (R4 and R5) until a null is indicated on the Meter. When the READ NULL Pushbutton is depressed, the input voltage is disconnected and the polarity of the bucking voltage is reversed. The value of the bucking voltage (equal to input voltage) is indicated on the Meter M1.

4-15. INPUT ATTENUATOR.

4-16. All voltages and currents to be measured are applied to the input attenuator, which is a resistive divider consisting of S1R20 to S1R25 and R3. The attenuation factor depends upon the position of the RANGE switch. The attenuator is divided into two separate networks to provide the proper impedance levels for filter capacitors A3C2 and A3C3. (Table 4-1 lists the attenuation factors for all ranges.)

4-17. INPUT FILTER.

4-18. L1 and L2, and A3C2 and A3C3 filter superimposed ac noise from the input signal.

4-19. MODULATOR/DEMODULATOR.

- 4-20. The modulator/demodulator is a photo-conductive chopper. It consists of a neon oscillator with two neon bulbs and four photocells mounted in one assembly. The photocells have an extremely high resistance when not illuminated, and a very low resistance when illuminated.
- 4-21. Assume that A3V1 is illuminated and A3V2 is not. The resistance of A3V2 will be many times greater than the resistance of A3V1. The voltage across A3V2 (input voltage) will be applied through A3C4 to the base of Q1. The oscillator will then switch off the bulb illuminating A3V1, and switch on a bulb which illuminates A3V2. A3V1 now has the greatest resistance, and A3V2 is a virtual short to the feedback which is coupled to Q1. The modulator provides a square wave output proportional to the difference between the dc input and dc feedback signals. The square wave frequency will depend upon the switching frequency of the neon oscillator.
- 4-22. The demodulator is operated by the neon oscillator in the same manner. It provides a dc output proportional to the amplitude of the square wave input.

4-23. AC AMPLIFIER.

4-24. Amplification of the square wave output from the modulator is provided by a six stage direct-coupled amplifier. Dc feedback from the base of Q4 to the base

- of Q1 provides bias stabilization. Ac feedback from the emitter of Q3 to the emitter of Q1 is used to vary the gain of Q1 thru Q3. This is accomplished by varying the amount of feedback to Q1, due to the position of the RANGE Switch. In the 3 μ V to 1 mV range, resistor R7 is shorted out, decreasing the negative feedback applied to Q1.
- 4-25. Feedback from the emitters of Q6 and Q7 is also controlled to vary the gain of Q4 thru Q7. In the 3 μ V to 100 μ V range resistor R16 is shorted out, decreasing the negative feedback applied to Q4. Capacitors A3C4 and A4C9 couple the ac input and output and block the dc bias voltages.

4-26. DC AMPLIFIER.

- 4-27. The output of the demodulator is applied to a four stage voltage and power amplifier. Q9 provides temperature compensation for the circuit. When Q8 and Q9 increase conduction due to a rise in temperature, the emitter to base voltage of Q4 decreases, which decreases the Q8 forward bias. This maintains Q8 conduction at a constant level.
- 4-28. The final stage of amplification is a complimentary symmetry amplifier consisting of Q12, Q13, CR13 and CR14. The diodes bias the transistors at a constant idling state, with no input signal applied. When an input is applied, the transistor responds immediately with an output. The input does not have to reach a certain amplitude to cause conduction in the transistors, since they are already at an idling condition.
- 4-29. The output of the dc amplifier will be 1 V for end scale input on all ranges. An output is also applied to the + and OUTPUT terminals J5 and J6. Adjustable resistor R2 provides control of the recorder output from 0 to ± 1 volt end scale. Diode network CR5 to CR12 protects the amplifier circuit from an overload.

4-30. METER CIRCUIT.

- 4-31. The meter is a current driven device which utilizes a taut band movement. A 1 volt output of the dc amplifier provides end scale needle deflection on all ranges. During FAST CHARGE and off (positions 1 and 2 of Function Switch S2), the meter is protected from transient voltages by a short across it. During the BATTERY TEST mode (position 3 of Function Switch S2), resistor S2R1 provides the amplifier load, because the meter is disconnected from the amplifier circuit.
- 4-32. Resistors R41 to R44 provide for calibration of the meter. The resistors are connected in parallel with the meter as a function of the RANGE switch setting.

4-33. FEEDBACK CONTROL.

4-34. Control of feedback is accomplished through a deck of the RANGE switch. The amount of feedback depends upon the position of the RANGE switch. The closed loop gain of the amplifier may be determined by subtracting the feedback from the forward gain. The feedback provided for each range is listed in Table 4-1.

4-2 01779-2

Model 419A Section IV

4-35. POWER SUPPLY AND NEON DRIVER

(Figure 6-4).

- 4-36. The power source for the 419A is four recharge-able batteries, which supply a +13 V and a -13 V output. The 419A may also be operated from line voltage, which will trickle-charge the batteries during operation.
- 4-37. The line input may be either 115 V or 230 V from 50 to 1000 Hz. The input is rectified by CR1 thru CR4 and applied to series regulator Q1.
- 4-38. Zener diode CR5 supplies a constant reference to the base of Q1. The emitter of Q1 is referenced to the voltage across R2 or R3. If the output current increases, Q1 will conduct less, due to less emitter to base bias. This will decrease the output current. If either output decreases, Q1 will conduct harder, increasing the output current.
- 4-39. The neon driver consists of a series regulator circuit, a blocking oscillator, and a neon circuit. Transistor Q5 and zener diode CR9 provide a constant reference to series regulator Q4. The frequency of the blocking oscillator is controlled by varying the voltage across C3. This is accomplished through adjustable resistor R9, which controls the bias on the base of Q4.
- 4-40. Due to inherent characteristics, either Q2 or Q3 will conduct harder when power is applied. Assume that Q2 conducts more than Q3. As Q2 conducts, a negative going signal is coupled through T2 to the base

- of Q3. This causes Q3 to cut off completely. At the same time, a positive going signal is coupled to the base of Q2, causing it to conduct more. While Q2 is conducting, a negative output will be coupled to the neon circuit.
- 4-41. When T2 becomes saturated, the positive signal is removed from the base of Q2, and it cuts off. At the same time, the negative signal is removed from the base of Q3, allowing it to start conducting. As Q3 conducts, a negative going signal is applied to the base of Q2, holding it cut off, and a positive going signal is applied to the base of Q3. Q3 continues to conduct, causing a positive output to be coupled to the neon circuit. This will continue until T2 becomes saturated, and starts the cycle over again.
- 4-42. The output of the oscillator is coupled through T2 to the neon circuit. When an input is applied to the circuit, due to inherent resistance characteristics, either DS1 or DS2 will light, depending upon which has the least resistance.
- 4-43. Assume that DS1 lights when the input is applied to T2. Capacitor C1 charges until the oscillator switches the input, and DS1 goes off. When the oscillator switches again, the charge on C1 insures that DS2 fires, and DS1 stays off. This cycle continues with DS1 and the DS2 firing, as long as there is an output from the oscillator. CR1 and CR2 prevent the capacitor from discharging through R1 and R2.

Section V Model 419A

Table 5-1. Test Equipment Required

INSTRUMENT TYPE	REQUIRED CHARACTERISTICS	RECOMMENDED MODEL
Voltmeter Calibrator	DC Voltage Range: 0.3 mV to 300 V Accuracy: ±0.2%	-hp- Model 738BR Voltmeter Calibrator
Strip Chart Recorder	Voltage Range: 1 Vdc Speed: 50 mm/sec Frequency Response: 5 Hz	Sanborn Model 7701A Strip Chart Recorder
Oscillator	Output Freq: 60 Hz Output Voltage: 0.5 V rms	-hp- Model 208A Oscillator
Oscilloscope	Horizontal Sensitivity: 2 ms/cm Vertical Sensitivity: 50 mV/cm Frequency Response: 100 kHz	-hp- Model 130C Oscilloscop
Electronic Counter	Counting Range: 300 to 400 pps Accuracy: ±1 count	-hp- Model 5211A Electronic Counter
DC Voltmeter	Voltage Range: 30 Vdc Accuracy: ±2%	-hp- Model 427A Voltmeter
Capacitor	$0.1~\mu\mathrm{F}~\pm20\%~10~\mathrm{Vac}$	-hp- Part No. 0170-0085
Resistors	100 $\Omega \pm 0.1\%$ 1/8 W ww 600 $\Omega \pm 1\%$ 1/8 W comp M 10 $k\Omega \pm 0.25\%$ 1/8 W met flm 100 $k\Omega \pm 0.25\%$ 1/8 W met flm 900 $k\Omega \pm 0.5\%$ 1/2 W met flm 1 $M\Omega \pm 0.1\%$ 1/8 W ww 9 $M\Omega \pm 0.5\%$ 1/2 W met flm	-hp- Part No. 0811-0398 -hp- Part No. 0684-10312 -hp- Part No. 0698-3193 -hp- Part No. 0698-4057 -hp- Part No. 0698-5488 -hp- Part No. 0811-0473 -hp- Part No. 0698-5443

Figure 5-1. Voltmeter Accuracy Performance Test Setup

Model 419A Section V

SECTION V MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains the information necessary for maintenance of the Model 419A DC Null Voltmeter. Included are performance tests, repair procedures, adjustment and calibration procedures, and trouble-shooting procedures.

5-3. TEST EQUIPMENT.

5-4. The test equipment required for maintenance of the Model 419A is listed in Table 5-1. Equipment having similar characteristics may be substituted for the equipment listed.

5-5. PERFORMANCE TESTS.

5-6. The performance tests presented in this section are front-panel procedures designed to compare the Model 419A with its published specifications (Table 1-1). These tests may be incorporated in periodic maintenance, post repair, and incoming quality control inspection. These tests should be conducted before any attempt is made at instrument calibration.

5-7. VOLTMETER ACCURACY TEST.

5-8. The voltmeter accuracy performance test setup is illustrated in Figure 5-1. A voltmeter calibrator (-hp- Model 738BR), a 100 Ω resistor (-hp- Part No. 0811-0398), and a 1 M Ω resistor (-hp- Part No. 0811-0473) are required for this test.

- a. Connect test setup illustrated in Figure 5-1.
- b. Make control settings indicated in step 1 of Table 5-2; if Model 419A reading is not within tolerances listed, perform Full Scale Calibration procedure (Paragraph 5-37).
- c. Repeat stepb for remaining steps in Table 5-2.

5-9. BUCKING VOLTAGE TEST.

5-10. No external test equipment is required for the bucking voltage performance test.

- a. Depress 419A READ NULL pushbutton; set RANGE to 300 mV.
- b. Rotate NULL control fully clockwise and then fully counterclockwise; if 419A meter does not peg in negative and positive direction, respectively, replace BT5.

Table 5-2. Accuracy Performance Test, Supplemental Data

STEP	VOLTMETER CALIBRATOR DC OUTPUT	POINT OF MEASUREMENT FIGURE 5-1	419A RANGE	419A READING
1	30 mV	А	3 μV	2.84 to 3.16
2	100 mV	A	10 μ V	9.7 to 10.3
3	300 mV	Α	30 μV	29.3 to 30.7
4	1.0 V	A	100 μ V	97.9 to 102.1
5	0.3 mV	B	300 μV	293.9 to 306.1
6	1 mV	В	1 mV	0.98 to 1.02
7	· 3 mV	В	3 mV	2.94 to 3.06
8	10 mV	В	10 mV	9.8 to 10.2
9	30 mV	В	30 mV	29.4 to 30.6
10	100 mV	B Remove	100 mV	98 to 102
11	300 mV	B Atten-	300 mV	2 94 to 3 06
12	1 V	B uator	1 V	0.98 to 1.02
13	3 V	В	3 V	2.94 to 3.06
14	10 V	В	10 V	9.8 to 10.2
15	30 V	В	30 V	29.4 to 30.6
16	100 V	В	100 V	98 to 102
17	300 V	В	300 V	294 to 306
18	300 V	В	1000 V	280 to 320

Section V Model 419A

Figure 5-2. Ammeter Accuracy Test Setup

5-11. AMMETER ACCURACY TEST.

5-12. The ammeter accuracy performance test is illustrated in Figure 5-2. A voltmeter calibrator (-hp-Model 738BR), a 9 M Ω resistor (-hp-Part No. 0698-5443) and a 900 k Ω resistor (-hp-Part No. 0698-5488) are required for this test.

- a. Connect test setup illustrated in Figure 5-2.
- b. Set Model 419A and voltmeter calibrator controls as indicated in step 1 of Table 5-3. If Model 419A reading is not within the listed tolerances, troubleshoot the input attenuator (Paragraph 5-49).

Table 5-3. Ammeter Accuracy Test

STEP	VOLTMETER CALIBRATOR DC OUTPUT	419A RANGE	419A READING
1	.3 mV	30 pA	28.1 to 31.9
2	.001 V	100 pA	96 to 104
3	.003 V	300 pA	290 to 310
4	.01 V	1000 pA	970 to 1030
5	.03 V	3000 pA	2910 to 3090
6	.1 V	10 nA	9.7 to 10.3
7	.3 V	30 nA	29.1 to 30.9

5-13. RESPONSE TIME TEST.

5-14. A strip chart recorder (Sanborn Model 7701A), a voltmeter calibrator (-hp- Model 738BR), a 100 Ω resistor (-hp- Part No. 0811-0398), and a 1 $M\Omega$ resistor (-hp- Part No. 0811-0473) are required for this test.

- a. Connect strip chart recorder to 419A + and -OUTPUT terminals.
- b. Construct test setup illustrated in Figure 5-1; turn voltmeter calibrator dc output off and set for 30 mV output; connect 419A + INPUT terminal to Point A.
- c. Set 419A RANGE switch to 3 $\mu \rm V$ position; depress VM/AM pushbutton.

- d. Start strip chart recorder and turn voltmeter calibrator dc output on; if strip chart recorder does not show OUTPUT at 95% between 2 and 3 seconds, perform Chopper Adjustment (Paragraph 5-33).
- e. Turn voltmeter calibrator dc output off and set for 100 mV output; set 419A RANGE switch to 10 μV position.
- f. Start strip chart recorder and turn voltmeter calibrator dc output on; if strip chart recorder does not show OUTPUT at 95% within 1 second, perform Chopper Adjustment (Paragraph 5-33).

5-15. SUPERIMPOSED AC REJECTION TEST.

5-16. The superimposed ac rejection test setup is illustrated in Figure 5-3. An oscillator (-hp- Model 208A), a 600 Ω resistor (-hp- Part No. 0727-0081), a 10 k Ω -resistor (-hp- Part No. 0684-1031), and a 0.1 μ F capacitor (-hp- Part No. 0170-0085) are required for this test.

- Connect test setup illustrated in Figure 5-3; do not connect oscillator.
- b. Depress 419A SET NULL pushbutton; set NULL control for +9 μ V on 10 μ V range.
- c. Connect oscillator and set its output frequency for 60 Hz; output voltage for 0.5 volts rms. Model 419A reading should not vary more than $\pm\,0.2~\mu\mathrm{V}$ after the initial transient.

5-17. NOISE TEST.

5-18. No external test equipment is required for the noise test.

- a. Short 419A + and INPUT terminals.
- b. Zero 419A in VM function on 3 μ V RANGE.
- c. If noise displayed on 419A meter exceeds 0.3 μ V p-p, perform Chopper Adjustment (Paragraph 5-33).

01779-2

Model 419A Section V

Figure 5-3. Superimposed AC Rejection Performance Test Setup

5-19. INPUT RESISTANCE TEST.

5-20. A Voltmeter Calibrator (-hp- Model 738BR), a $10~\text{k}\Omega$ resistor (-hp- Part No. 0698-3193), a $100~\text{k}\Omega$ resistor (-hp- Part No. 0698-4057), a $1~\text{M}\Omega$ resistor (-hp- Part No. 0757-1054) and a $10~\text{M}\Omega$ resistor (-hp- Part No. 0698-4128) are required for this test.

- a. Connecta 10 k Ω resistor to Model 419A + IN-PUT terminal.
- b. Connect voltmeter calibrator dc output terminals to $10~k\Omega$ resistor and -INPUT terminal on the Model 419A.
- Set Model 419A RANGE to 3 mV; set voltmeter calibrator output to 3 mV (.003 V).
- d. The Model 419A should indicate 2.73 mV which verifies an input resistance of 100 k Ω on the 3 mV range, as given by the following formula:

$$R_{in} = \frac{R_s \times E_m}{E_0 - E_m}$$

where R_{in} is the 419A input resistance, R_{S} is the series resistance, E_{m} is the voltage indicated on the Model 419A meter and E_{O} is the voltmeter calibrator output voltage.

NOTE

The input resistance may vary slightly and a tolerance of $\pm 3\%$ should be allowed.

- e. Replace the $10~k\Omega$ resistor with a $100~k\Omega$ resistor.
- Set Model 419A RANGE to 10 mV; set voltmeter calibrator output to 10 mV (.01 V).
- g. Model 419A should read 9.09 mV which verifies an input resistance of 1 M Ω on the 10 mV range.
- h. Replace the 100 k Ω resistor with a 1 M Ω resistor.

- Set Model 419A RANGE to 100 mV; set voltmeter calibrator output to 100 mV (.1 V).
- j. Model 419A should read 90.9 mV which verifies an input resistance of 10 $M\Omega$ on the 100 mV range.
- k. Replace the 1 $M\Omega$ resistor with a 10 $M\Omega$ resistor.
- Set Model 419A RANGE to 1 V; set voltmeter calibrator output to 1 V.
- m. Model 419A should read 0.909 V which verifies an input resistance of 100 M Ω on the 1V range.

5-21. REPAIR PROCEDURES.

5-22. COVER REMOVAL.

5-23. When it is necessary to repair or adjust the Model 419A, one or more covers will have to be removed. Refer to the following steps for cover removal procedure.

- a. TOP COVER. Remove top cover screws; slide cover to rear and lift to remove.
- SIDE COVERS. Remove four screws from side cover; lift to remove.
- c. BOTTOM COVER. Remove bottom cover screws at rear of cover. Slide cover to rear and remove.

5-24. SERVICING PRINTED CIRCUIT BOARDS.

5-25. The Model 419A has two etched circuit boards. Use caution when removing to avoid damaging mounted components. The assembly and -hp- part number are etched on the interior of the circuit board to identify them. Refer to Section VII for parts replacement and -hp- part number information.

5-26. The etched circuit boards are a plated-through type. The electrical connection between sides of the board is made by a layer of metal plated through the component holes. When working on these boards, observe the following general rules.

- a. To avoid contamination, wear clean lint-free cotton or rubber gloves.
- b. Use a low-heat (25 to 50 watts) small-tip soldering iron and a small diameter rosin core solder.
- c. Circuit components can be removed by placing the soldering iron on the component lead on either side of the board and pulling up on lead. If a component is obviously damaged, clip leads as close to component as possible and then remove. Excess heat can cause the circuit and board to separate or cause damage to the component.
- d. Component lead hole should be cleaned before inserting new lead.
- e. To replace components, shape new leads and insert them in holes. Reheat with iron and add solder as required to insure a good electrical connection.
- Clean excess flux from the connection and adjoining area.
- g. To avoid surface contamination of the printed circuit, clean with weak solution of warm water and mild detergent after repair. Rinse thoroughly with clean water. When completely dry, spray lightly with Krylon (#1302 or equivalent).

5-27. INSTALLATION OF REPLACEMENT NEON SUBASSEMBLY (-hp- Part No. 1990-0214).

- 5-28. Physical alignment and neon selection are critical. When trouble is isolated to the neon subassembly, the complete subassembly should be changed rather than replacing the defective neons.
 - a. Remove the top and side cover on the meter side of the instrument.
 - b. Disconnect the neon subassembly leads from pins on A2 board. (Note location for reconnecting the new leads). Maneuver subassembly cable through the grommet on the inner shield.
 - Remove the two photochopper assembly mounting screws and remove neon subassembly.
 - d. Install new neon subassembly. Note that the rubber grommet on the subassembly is offset toward the top of the instrument.
 - Route the neon subassembly cable through the inner shield and reconnect the cable to the A2 board.
 - f. Replace the side cover and recalibrate the Model 419A as outlined in Paragraph 5-29.

5-29. ADJUSTMENT AND CALIBRATION.

5-30. The following is a complete adjustment and calibration procedure for the Model 419A. These proce-

dures should be conducted only if it has been previously established by Performance Tests (Paragraphs 5-5 to 5-20) that the Model 419A is out of adjustment.

5-31. MECHANICAL ZERO ADJUSTMENT.

5-32. The mechanical zero adjustment is located on the instrument front panel. If the meter pointer does not indicate zero when the instrument power has been off for at least one minute, mechanically zero the meter following the procedure outlined below.

- a. Turn instrument power off; disconnect input signal; remove output cable; and allow one minute for meter pointer to stabilize.
- b. Rotate zero adjustment CW until pointer is to left of zero, moving upscale. Continue until pointer is at zero. If pointer overshoots zero, repeat operation.
- c. When the pointer is exactly at zero, rotate zero adjustment slightly CCW to free it. If the meter pointer moves to the left during this step, repeat steps b and c.

5-33. CHOPPER ADJUSTMENT.

5-34. An Oscilloscope (-hp- Model 130C) and an Electronic Counter (-hp- Model 5211A) are required for the chopper adjustment.

NOTE —	
--------	--

If Serial Prefix of instrument is 514-, refer to Appendix C for chopper adjustment information.

- a. Remove 419A top cover and shield.
- Connect Oscilloscope and Electronic Counter to A2TP2.
- set Oscilloscope for 2 ms/cm horizontal sensitivity and 50 mV/cm vertical sensitivity.
- d. Adjust A2R9 (FREQ.) for Electronic Counter indication of 320 to 340. (This corresponds to chopper rate of 160-170 pps as Electronic Counter also counts smaller pulses.) Adjust A2R5 (NEON CURRENT) for waveform amplitude of 140 to 160 mV. Figure 5-4 shows the chopper waveform.

NOTE -	_
If the Neon Waveform is unstable, an	1
intermittent neon bulb is indicated	
See Paragraph 5-27 for replacement	t

information.

e. If correct waveform is obtained and response time is still not within limits of Paragraph 5-13, A4R26will have to be reselected. If response on 3 μ V range is longer than 3 seconds, the value of A4R26 should be decreased. If response on 3 μ V range is less than 2 seconds,

01779-2

A4R26 should be increased. A4R26 should be between 6.8 k Ω and 15 k Ω with a typical value of 10 k Ω . A4R26 is an Allen-Bradley, composition, 1/4 watt \pm 10%, resistor.

Figure 5-4. Neon Drive Waveform (A2TP2)

5-35. ELECTRICAL ZERO ADJUSTMENT.

5-36. The electrical zero adjustment should be performed when the meter pointer does not indicate zero on the 1 volt range when instrument power has been on for at least one minute. No external equipment is required for this adjustment.

- a. Set 419A controls as follows:
 RANGE 1 V
 ZERO pushbutton Depressed
- b. Remove top cover; adjust A4R14 (1 V ZERO for zero deflection on 419A meter.

5-37. FULL SCALE CALIBRATION.

5-38. The full scale calibration consists of performing the 3 μV , 10 μV , 1 mV, and 1 V adjustments. A Voltmeter Calibrator (-hp- Model 738BR), a 100 Ω Resistor (-hp- Part No. 0811-0398) and a 1 M Ω Resistor (-hp- Part No. 0811-0473) are required for this test.

- a. Connect test setup illustrated in Figure 5-1.
- Remove 419A top cover; depress VM/AMpushbutton.
- c. Set Voltmeter Calibrator for 30 mV output; connect 419A to Point A; adjust A4R41 (3 μ V) for full scale deflection on 3 μ V range.
- d. Set Voltmeter Calibrator for 100 mV output; connect 419A to Point A; adjust A4R42 (10 $\,$ $\mu V)$ for full scale deflection on 10 μV range.

Pomove registive attenuator before

Remove resistive attenuator before performing steps e and f.

e. Set Voltmeter Calibrator for 1 mV output; connect 419A to Point B; adjust A4R43 (1 MV) for full scale deflection on 1 mV range.

f. Set Voltmeter Calibrator for 1 V output; connect 419A to Point B; adjust A4R44 (1 V) for full scale deflection on 1 V range.

5-39. BATTERY TEST CALIBRATION.

5-40. A DC Voltmeter (-hp- Model 427A) is required for the battery test calibration.

_____NOTE _____

Batteries must be fully charged before performing this procedure. (See Paragraph 3-13).

- a. Remove 419A top cover and shield.
- b. Connect DC Voltmeter across BT1 thru BT4. If DC Voltmeter indicates less than 26 V, recharge battery power supply in accordance with Paragraph 3-13. If DC Voltmeter indicates at least 26 V, proceed to step c.
- c. Depress Model 419A BAT TEST Pushbutton; adjust A4R25 (BAT TEST CAL) for Model 419A Meter reading (0-3 scale) equal to DC Voltmeter reading in step b.

5-41. TROUBLESHOOTING.

5-42. This section contains information designed to assist in the isolation of malfunctions. These checks should be undertaken only after it has been established that the trouble cannot be eliminated by the Adjustment and Calibration Procedures, Paragraph 5-29.

WO LE		NOTE-	
-------	--	-------	--

The 419A operates erratically when the charge on the batteries is marginal. Since the exact capacity of the Nickel Cadmium batteries cannot be determined by voltage measurements, it is advisable to charge the batteries before troubleshooting.

5-43. NO RESPONSE TO INPUT.

5-44. If the meter does not respond to input (usually accompanied by a constant offset near full scale after meter has been on for one or two minutes), proceed as follows:

- a. If one neon is bad, all the pulses at A2TP2 will be the same amplitude. If the blocking oscillator is bad, there will be no pulses at A2TP2.
- b. Check for approximately 8 volts do at the emitter of Q4 to isolate between the blocking oscillator and its voltage regulator.
- c. If the neon waveform at A2TP2 is correct, the trouble is in the amplifier.

Model 419A

5-45. POSITIVE OR NEGATIVE FOLDOVER.

5-46. Foldover is when the meter needle pegs and then returns on scale when the input is overloaded.

- a. If positive foldover occurs, check A4Q12 for low gain.
- b. If negative foldover occurs, check for low gain in A4Q13 and for a leaky A4C8 or C12.

5-47. EXCESSIVE NOISE.

Section V

5-48. If the 419A meter noise is in excess of 0.3 μV peak-to-peak, proceed as follows:

- a. Check the batteries for low charge.
- b. Check the chopper frequency in accordance with Paragraph 5-33. Misadjustment of chopper frequency or drive or a misfiring neon bulb will cause noise.
- c. Clean the pin connectors on the A4 board with a fiberglass brush or typewriter eraser and ensure they are making good connections.
- d. Check the transistors in the AC Amplifier for noise (A4Q1 or Q2 most probable).

5-49. TROUBLESHOOTING THE INPUT ATTENUATOR.

5-50. If trouble is suspected in the input attenuator or feedback divider, proceed as follows:

- a. Rotate the range switch through all positions several times to clean the switch contacts.
- b. Check the $90\,M\Omega$ resistor (S1R3) for dust accumulation; clean if necessary.
- c. If trouble persists, carefully check the input attenuator and feedback divider resistors.

 NOTE	

Parallel paths exist for several of the resistors. Before replacing a suspected resistor, unsolder one lead and check the resistor again.

5-51. REPLACEMENT OF FACTORY SELECTED COMPONENTS.

5-52. Certain components within the Model 419A are individually selected in order to compensate for slightly varying circuit parameters. These components are identified by an asterisk (*) on the schematic diagrams and a typical value is shown. The following paragraphs describe the function of the factory selected components and give replacement instructions.

5-53. A4R26*.

5-54. A4R26* is factory selected to provide proper amplifier response time. Response time can be evaluated by performing the Response Time Test (Paragraph 5-13). A4R26* should be replaced only if response time cannot be corrected by performing the chopper adjustment procedure (Paragraphs 5-33). Paragraph 5-34 step e gives specific replacement instructions.

5-55. A4R47*.

5-56. A4R47* is factory selected to provide approximately 1.1 Vdc at the rear panel OUTPUT terminals into a 1 k Ω load with the LEVEL control turned fully cw and a full scale input applied to the INPUT terminals. Once A4R47*has been selected at the factory, there should be no reason to change its value unless one of the output transistors A4Q12 and A4Q13 or one of the diodes A4CR13 and A4CR14 is replaced. Factory values of A4R47* range from 16 k Ω to 20 k Ω with a typical value of 18 k Ω . A4R47* is an Allen-Bradley composition $\pm 5\%$ 1/2 watt resistor. If the value of A4R47* must be changed, proceed as follows:

- a. Apply a 1 Vdc input to the Model 419A, INPUT terminals (1 V range).
- b. Connect a 1 $k\Omega$ load across the rear panel OUTPUT terminals.
- c. Turn LEVEL control fully cw.
- d. Measure the voltage across the load. If the voltage is less than 1.0 Vdc, increase the value of A4R47*; if the voltage is greater than 1.15 Vdc, reduce the value of A4R47*.
- e. After replacing A4R47*, perform the Full Scale Calibration procedure (Paragraph 5-37).

Model 419A Section VI

SECTION VI CIRCUIT DIAGRAMS

6-1. INTRODUCTION.

6-2. This section contains the circuit diagrams necessary for the operation and maintenance of the Model 419A DC Null Voltmeter. Included are schematic and component location diagrams.

6-3. SCHEMATIC DIAGRAMS.

6-4. The electrical configuration of the 419A is shown on the schematic diagrams. Individual schematics

are provided for the metering circuit and the power supply circuit.

6-5. COMPONENT LOCATION DIAGRAMS.

6-6. The physical configuration of the 419A is shown on the component location diagrams. Each component is identified by reference designation.

Section VI Model 419A

Figure 6-1. Model 419A, Component Location Diagram

Figure 6-2. Range Switch S1, Component Location Diagram

Model 419A Section VI

Figure 6-3. Amplifier and Amplifier Switching Schematic and Component Location Diagrams

01779-2

6-3/6-4

- NOTES -

- 1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION.
- 2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED.

RESISTANCE IN OHMS

CAPACITANCE IN MICROFARADS

3. \(\precedef \) DENOTES POWER LINE (CHASSIS) GROUND.

DENOTES POWER SUPPLY COMMON.

- DENOTES ASSEMBLY.

— DENOTES SUBASSEMBLY.

DENOTES COMPONENTS NOT MOUNTED ON ASSEMBLY.

- DENOTES REAR PANEL MARKING.
- DENOTES SCREWDRIVER ADJUST.
- 7. 924, DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDENTIFIES BASE COLOR, SECOND NUMBER IDENTIFIES WIDER STRIP, THIRD NUMBER IDENTIFIES NARROWER STRIP. (e.g. \924/ = WHITE, RED, YELLOW.)

WIRE	COLOR
0	BLK
1	BRN
2	RED
3	ORN
4	YEL
5	GRN
6	BLU
7	VIO
8	GY
9	WHT

8. INDIVIDUAL COMPONENTS ON A3A1 ARE NOT SEPARATELY REPLACEABLE. SEE PARAGRAPH 5-27.

Model 419A Section VI

Figure 6-4. Power Supply and Neon Driver, Schematic and Component Location Diagrams

01779 - 2

SECTION VII REPLACEABLE PARTS

7-1. INTRODUCTION.

- 7-2. This section contains information for ordering replacement parts. Table 7-1 lists parts in alphameric order of their reference designators and indicates the description, -hp-part number of each part, together with any applicable notes, and provides the following:
 - a. Total quantity used in the instrument (TQ column). The total quantity of a part is given the first time the part number appears.
 - b. Description of the part. (See list of abbreviations below.)
 - Typical manufacturer of the part in a fivedigit code. (See Appendix Afor list of manufacturers.)
 - d. Manufacturer's part number.

7-3. Miscellaneous parts are listed at the end of Table 7-1.

7-4. ORDERING INFORMATION.

7-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See Appendix B for list of office locations.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and scrial numbers.

7-6. NON-LISTED PARTS.

- 7-7. To obtain a part that is not listed, include:
 - a. Instrument model number.
 - b. Instrument serial number.
 - c. Description of the part.
 - d. Function and location of the part.

DESIGNATORS

A B B C C C C D L D S E	= assembly = motor = battery = capacitor = diode = delay line = lamp = misc electronic part	F FL HR J K L M MC	= fuse = filter = heater = jack = relay = inductor = meter = microcircuit	MP P Q QCR R RT S	= mechanical part = plug = transistor = transistor-diode = resistor = thermistor - switch = transformer	TC V W X XDS XF Z	<pre>= thermocouple = vacuum tube, neon bulb, photocell, etc. = cable = socket = lampholder = fuseholder = network</pre>
			ABBF	REVIATIO	· · · · · · · · · · · · · · · · · · ·		
Ag Al A	= silver = aluminum = ampere (s)	ID impg incd	inside diameterimpregnatedincandescent	ns nsr	= nanosecond (s) = 10 ⁻⁹ seconds = not separately replace-	sl SPDT	<pre>= slide = single-pole double- throw</pre>
Au	= gold	ins	= insulation (ed)		able	SPST	= single-pole single- throw
C cer coef com	= capacitor = ceramic = coefficient = common	kΩ kHz L	= kilohm (s) = 10 ⁺³ ohms = kilohertz = 10 ⁺³ hertz = inductor	Ω obd OD	= ohm (s) = order by description = outside diameter	Ta TC TiO ₂	= tantalum = temperature coefficient = titanium dioxide
comp	= composition = connection	lin log	= linear taper = logarithmic taper	р pc	= peak = printed circuit	tog tol	= toggle = tolerance
dep DPDT	= deposited = double-pole double- throw	m	= milli = 10 ⁻³	pF	= picofarad (s) = 10 ⁻¹² farads	trim TSTR	= trimmer = transistor
DPST	<pre>= double-pole single- throw</pre>	mA MHz	= milliampere (s) = 10 ⁻³ amperes = megahertz = 10 ⁺⁶ hertz	piv p/o pos	<pre>= peak inverse voltage = part of = position (s)</pre>	V vacw	<pre>= volt (s) = alternating current working voltage</pre>
elect encap	= electrolytic = encapsulated	$egin{array}{l} M\Omega \ met \ flm \ mfr \end{array}$	= megohm-(s) = 10 ⁺⁶ ohms = metal film = manufacturer	poly pot p-p	= polystyrene = potentiometer = peak-to-peak	var vdcw	= variable = direct current working voltage
F FET fxd	= farad (s) = field effect transistor = fixed	mtg mV μ	= mounting = millivolt (s) = 10 ⁻³ volts = micro = 10 ⁻⁶	ppm prec	= parts per million = precision (temperature coefficient, long term	w w/	= watt (s) = with
GaAs GHz	= gallium arsenide = gigahertz = 10 ⁺⁹ hertz	μ V my	= microvolt (s) = 10 ⁻⁶ volts = Mylar R		stability, and/or tol- erance)	wiv w/o ww	= working inverse voltage= without= wirewound
gd Ge grd	= guard (ed) = germanium = ground (ed)	nA NC Ne	= nanoampere (s) = 10 ⁻⁹ amperes = normally closed = neon	R Rh rms rot	= resistor = rhodium = root-mean-square = rotary	*	= optimum value selected at factory, average value shown (part may be omitted)
H Hg Hz	= henry (ies) = mercury = hertz (cycle (s) per second)	NO NPO	= normally open = negative positive zero (zero temperature co- efficient)	Se sect Si	= selenium = section (s) = silicon	**	= no standard type num- ber assigned (selected or special type)

REV E

Table 7-1. Replaceable Parts

			ole 7-1. Replaceable Parts	,		
REFERENCE DESIGNATOR	-hp- PART NO.	TQ	DESCRIPTION	MFR.	MFR. PART	NO.
A1 A2 A2C1 A2C2 A2C3	00419-66502 0180-0149 0150-0093 0180-0059	1 1 1 1	Not Assigned Assembly: Power Supply C: fxd Al elect 65 μF +100% -10% 60 vdcw C: fxd 0.01 μF +80% -20% 100 vdcw C: fxd elect 10 μF +100% -10% 25 vdcw	56289 91418 56289	Type 30D TA 30D106G025	obd obd
A2C4	0160-0161	1	C: fxd 0.01 μ F \pm 10%	56289	BB4 192P10392	
A2CR1 thru	1901-0025	2	Diode: Si 100 mA at +1 V 100 piV 12 pF	93332	D3072	
A2CR4 A2CR5 A2CR6 thru A2CR8	1902-0048 1901-0025	1	Diode: breakdown 6.81 V $\pm 5\%$ Diode: Si 100 mA at +1 V 100 piV 12 pF	07910 93332	CD35658 D3072	
A2CR8 A2CR9	1902-0563	1	Diode: breakdown 100 μ A 22.1 V ±2%	04713	SZ11327	
A2Q1 thru A2Q3	1854-0039	3	Transistor: NPN Si 2N3053	86684	2N3053	
A2Q4 A2Q5	1854-0033 1853-0010	9 4	Transistor: NPN Si 2N3391 Transistor: PNP Si**	24446 04713	2N3391 SM4713	
A2R1 A2R2 A2R3 A2R4 A2R5	0687-1511 0686-7515 0687-5611 0687-3331 2100-1410	1 1 1 1 5	R: fxd comp 150 $\Omega \pm 10\%$ 1/2 W R: fxd comp 750 $\Omega \pm 5\%$ 1/2 W R: fxd comp 560 $\Omega \pm 10\%$ 1/2 W R: fxd comp 33 k $\Omega \pm 10\%$ 1/2 W R: fxd comp 30 k $\Omega \pm 30\%$ 1/8 W	01121 01121 01121 01121 71450	EB1511 EB7515 EB5611 EB3331 XQS-200	obd
A2R6 A2R7, A2R8 A2R9 A2R10 A2R11 A2R12	0687-4731 0686-5105 2100-0362 0687-4721 0687-1051 0687-4741	1 1 1 2 1	R: fxd comp 47 k Ω ± 10% 1/2 W R: fxd comp 51 Ω ± 5% 1/2 W R: var lin 100 k Ω ± 30% 1/8 W R: fxd comp 4700 Ω ± 10% 1/2 W R: fxd comp 1 M Ω ± 10% 1/2 W R: fxd comp 470 k Ω ± 10% 1/2 W	01121 01121 71450 01121 01121 01121	EB4731 EB5105 XQS-200 EB4721 EB1051 EB4741	obd
A2T1 A2T2	9100-0172 9100-1319	1 1	Transformer: power Transformer: neon driver	28480 28480	9100-0172 9100-1319	
A3	00419-63001	1	Assembly: Photochopper	28480	00419-63001	
A3A1	1990-0214	1	Subassembly: Neon Driver	28480	1990-0214	
A3C1 A3C2 A3C3 A3C4	0160-0859 0170-0064 0160-2446	2 1 1	Not Assigned C: fxd my die 1.0 μ F $\pm 10\%$ 50 vdcw C: fxd my die 0.47 μ F $\pm 10\%$ 100 vdcw C: fxd poly die 0.1 μ F $\pm 20\%$ 200 vdcw	56289 56289 84411	148P -148P4791 863 UW	obd
A3CR1, A3CR2 A3CR3, A3CR4	1901-0156	2	Not Assigned Diode: Si 50 mA at 1 Vdc 20 piV	01281	PS5553	
A3R1, A3R2 A3R3	0811-1505	2	Not Assigned R: fxd prec ww 100 Ω ±0.1% 1/2 W	01686	E-20	obd
A3V1 thru A3V4	00419-63001		Photocells: part of A3 (not separately replaceable)	28480	00419-63001	
A4	00419-66504	1	Assembly: amplifier	28480	00419-66504	
A4C1	0180-0224	3	C: fxd Al elect 10 $\mu \mathrm{F}$ +75% -10% 15 vdcw	56289	30D106G015	
A4C2	0180-0060	1	C: fxd elect 200 $\mu\mathrm{F}$ +100% -10% 3 vdcw	56289	BA4 30D207G003	
A4C3	0150-0069	2	C: fxd cer die 0.001 μ F +100% -20% 500 vdcw	72982	DC4 #801-010X5G	
A4C4	0180-0100	1	C: fxd Ta die 4.7 μ F $\pm 10\%$ 35 vdcw	56289	0102Z 150D475X903	
A4C5	0150-0069		C: fxd cer die 0.001 $\mu \mathrm{F}$ +100% -20% 500 vdcw	72982	5B2 #801-010X5G 0102Z	
ATCU	0130-0009			72982		

Model 419A Section VII

Table 7-1. Replaceable Parts (Cont'd)

		Tan	ble 7-1. Replaceable Parts (Cont'd)	1	
REFERENCE DESIGNATOR	-hp- PART NO.	TQ	DESCRIPTION	MFR.	MFR. PART NO.
A4C6, A4C7	0180-0224		C: fxd Al elect 10 μ F +75% -10% 15 vdcw	56289	30D106G015 BA4
A4C8	0180-0061	2	C: fxd elect 100 μ F +100% -10% 15 vdcw	56289	30D107G015 DD4
A4C9 A4C10	0160-0859 0180-0100	1	C: fxd my die 1.0 μ F \pm 10% 50 vdcw C: fxd Ta die 4.7 μ F \pm 10% 35 vdcw	56289 56289	148P obd 150D475X9035
A4C11	0180-0155	1	C: fxd Ta elect 2.2 μ F ±20% 20 vdcw	56289	B2 150D225X0020 AZ
A4C12	0180-0061		C: fxd elect 100 μ F +100% -10% 15 vdcw	5 62 89	30D107G015 DD4
A4C13 A4C14, A4C15	0160-0932 0180-0228	1 2	C: fxd my die 4 μ F $\pm 20\%$ 30 vdcw C: fxd Ta elect 22 μ F $\pm 10\%$ 15 vdcw	56289 56289	Type 148P 150D226X9015
A4C16	0180-0393	1	C: fxd Ta elect 39 μ F $\pm 10\%$ 10 vdcw	56289	B2-DYS 150D396X9010 B2-DYS
A4C17	0180-0228		C: fxd Ta elect 22 μ F $\pm 10\%$ 15 vdcw	56289	150D226X9015 B2-DYS
A4CR1 thru A4CR16	1901-0025		Diode: Si 100 mA at +1 V 100 piV 12 pF	93332	D3072
A4Q1, A4Q2 A4Q3 A4Q4 A4Q5 A4Q6	1854-0226 1854-0033 1853-0010 1854-0033 1853-0010	2	Transistor: NPN Si Transistor: NPN Si 2N3391 Transistor: PNP Si** Transistor: NPN Si 2N3391 Transistor: PNP Si**	56289 24446 04713 24446 04713	TN-56 2N3391 SM4713 2N3391 SM4713
A4Q7 thru	1854-0033		Transistor: NPN Si 2N3391	24446	2N3391
A4Q10 A4Q11 A4Q12 A4Q13	1853-0010 1854-0033 1853-0010		Transistor: PNP Si** Tránsistor: NPN Si 2N3391 Transistor: PNP Si**	04713 24446 04713	SM4713 2N3391 SM4713
A4R1 A4R2 A4R3 A4R4 A4R5	0757-0374 0757-0129 0687-1241 0687-1041 0687-5601	2 1 3 5 1	R: fxd prec met flm $475 \text{ k}\Omega \pm 1\% \ 1/2 \text{ W}$ R: fxd prec met flm $178 \text{ k}\Omega \pm 1\% \ 1/2 \text{ W}$ R: fxd comp $120 \text{ k}\Omega \pm 10\% \ 1/2 \text{ W}$ R: fxd comp $100 \text{ k}\Omega \pm 10\% \ 1/2 \text{ W}$ R: fxd comp $56 \text{ k}\Omega \pm 10\% \ 1/2 \text{ W}$	19701 19701 01121 01121 01121	MF7C T-O obd MF7C T-O obd EB1241 EB1041 EB5601
A4R6 A4R7 A4R8 A4R9 A4R10	0687-5621 0687-1211 0757-0374 0687-4751 0687-4721	1 1 1	R: fxd comp 5600 $\Omega \pm 10\%$ 1/2 W R: fxd comp 120 $\Omega \pm 10\%$ 1/2 W R: fxd prec met flm 475 k $\Omega \pm 1\%$ 1/2 W R: fxd comp 4.7 M $\Omega \pm 10\%$ 1/2 W R: fxd comp 4700 $\Omega \pm 10\%$ 1/2 W	01121 01121 19701 01121 01121	EB 5621 EB 1211 MF7C T-O obd EB 4751 EB 4721
A4R11 A4R12, A4R13 A4R14 A4R15 A4R16	0687-2251 0687-5631 2100-1410 0687-1031 0687-1041	1 2 4	R: fxd comp 2.2 M Ω ± 10% 1/2 W R: fxd comp 56 k Ω ± 10% 1/2 W R: var lin 20 k Ω ± 30% 1/8 W R: fxd comp 10 k Ω ± 10% 1/2 W R: fxd comp 100 k Ω ± 10% 1/2 W	01121 01121 71450 01121 01121	EB2251 EB5631 XQS-200 obd EB1031 EB1041
A4R17 A4R18 A4R19 A4R20 A4R21	0687-1241 0687-1031 0687-1021 0687-1041 0687-2231	4	R: fxd comp 120 k Ω ± 10% 1/2 W R: fxd comp 10 k Ω ± 10% 1/2 W R: fxd comp 1000 Ω ± 10% 1/2 W R: fxd comp 1000 k Ω ± 10% 1/2 W R: fxd comp 100 k Ω ± 10% 1/2 W R: fxd comp 22 k Ω ± 10% 1/2 W	01121 01121 01121 01121 01121	EB1241 EB1031 EB1021 EB1041 EB2231
A4R22 A4R23 thru A4R25	0687-1241 0687-1021		R: fxd comp 120 k Ω ± 10% 1/2 W R: fxd comp 1000 Ω ± 10% 1/2 W	01121 01121	EB1241 EB1021
A4R26* A4R27 A4R28	0687-1051 0687-2231		See Paragraph 5-53 R: fxd comp 1 M Ω ± 10% 1/2 W R: fxd comp 22 k Ω ± 10% 1/2 W	01121 01121	EB1051 EB2231

Section VII Model 419A

Table 7-1. Replaceable Parts (Cont'd)

				ole 1-1. Replaceable Parts (Cont. d)			
REFERENCE DESIGNATOR	-hp- PART NO.	,	ΤQ	DESCRIPTION	MFR.	MFR. PART NO	Э.
A4R29	0687-2221	ļ	7	R: fxd comp 2200 $\Omega \pm 10\% \ 1/2 \ W$	01121	EB2221	
A4R30	0687-4741			R: fxd comp 470 k $\Omega \pm 10\%$ 1/2 W	01121	EB4741	
A4R31 thru	0687-2241		3	R: fxd comp 220 k $\Omega \pm 10\%$ 1/2 W	01121	EB2241	
A4R33				AT 1			
A4R34 thru A4R36	0687-2221			R: fxd comp 2200 $\Omega \pm 10\%$ 1/2 W	01121	EB2221	
A4R37	0687-1041			R: fxd comp 100 k $\Omega \pm 10\%$ 1/2 W	01121	EB1041	
A4R38	0687-3951		2	R: fxd comp 3.9 M $\Omega \pm 10\%$ 1/2 W	01121	EB3951	
A4R39	0687-1031	ļ		R: fxd comp $10 \text{ k}\Omega \pm 10\% \text{ 1/2 W}$	01121	EB1031	
A4R40	0687-1011	.		R: fxd comp 100 $\Omega \pm 10\%$ 1/2 W	01121	EB1011	- 1
A4R41 thru	2100-1795			R: var comp lin 250 k Ω ±20% 1/8 W	71450	QS 200	
A4R44							
A4R45	2100-1470		1	R: var lin 500 k $\Omega \pm 30\%$ 1/10 W	71450	XQS-200 c	bd
A4R46	0687-3941	. 1	1	R: fxd comp 390 k $\Omega \pm 10\%$ 1/2 W	01121	EB3941	
A4R47*				See Paragraph 5-55			
A4R48	0687-6831		1	R: fxd comp $68 \text{ k}\Omega \pm 10\% \text{ 1/2 W}$	01121	EB 6831	
A4R49	0687-2221			R: fxd comp 2200 $\Omega \pm 10\%$ 1/2 W	01121	EB2221	
A4R50	0687-1031			R: fxd comp 10 k $\Omega \pm 10\%$ 1/2 W	01121	EB1031	
A4R51	0687-2221			R: fxd comp 2200 $\Omega \pm 10\%$ 1/2 W	01121	EB2221	
BT1 thru BT4	1420-0015		4	Battery: rechargeable nickel cadmium 6.25 V	61637	Y-5201	
BT5	1420-0004		1	Battery: mercury 1.34 V cylindrical	09569	316469	
DS1	2140-0008		1	Lamp: glow type NE-2 neon	28480	2140-0008	
F1	2110-0027		1	Fuse: cartridge 1/8 amp 250 V	75915	312.125	
J1	1251-0148		1	Connector: ac power cord receptacle	0000U	H-1061-2	
J2	5080-1278		1	Binding Post: red with solder turret (+ INPUT)	28480	5080-1278	
	0340-0159		2	Insulator Cup: binding post	28480	0340-0159	
	0340-0100		2	Insulator Spacer: binding post	28480	0340-0100	
1	00419-21701		2	Guard: binding post, threaded	28480	00419-21701	
J3	5080-1277		•	Binding Post: black with solder turret (- INPUT)	28480	5080-1277	
	0340-0159			Insulator Cup: binding post	28480	0340-0159	
	0340-0100			Insulator Spacer: binding post	28480	0340-0100	
	00419-21701			Guard: binding post, threaded	28480	00419-21701]
J4	1510-0011		3	Binding Post: black with solder turret $(\frac{1}{2})$	28480	1510-0011	
,,,	0340-0099		1	Insulator: binding post	28480	0340-0099	
J5	1510-0010		1	Binding Post: red with solder turret (+ OUTPUT)	28480	1510-0010	
J6	1510-0011			Binding Post: black with solder turret (- OUTPUT)	28480	1510-0011	
J7	1510-0011			Binding Post: black with solder turret (♣)	28480	1510-0011	
{	0340-0086		1	Insulator: binding post, dual	28480	0340-0086	
	0340-0091		1	Insulator: binding post, triple	28480	0340-0091	
L1, L2	9100-1318		1	Inductor: input	28480	9100-1318	
M1	1120-0312		1	Meter	28480	1120-0312	
R1	2100-1557		1	R: var prec ww 10 turn 100 k Ω ± 5% 2 W	12697	Series 62 CM 33147	
R2	2100-2200		1	R: var lin 20 k Ω ±20% 1/3 W	71450	Series 45	
R3	0698-3463		1	R: fxd prec c flm 90 M Ω ± 1% 2 W	03888		obd
R4, R5	2100-2199		2	R: var comp 2 sect lin tandem ganged 1500 Ω and 5000 $\Omega \pm 20\%$	12697	Series 53M	
R6, R7	0687-2221			R: fxd comp 2200 $\Omega \pm 10\%$ 1/2 W	01121	EB2221	
R8	0687-1041			R: fxd comp 100 k $\Omega \pm 10\%$ 1/2 W	01121	EB1041	
R9	0687-2721		1	R: fxd comp 2700 $\Omega \pm 10\% \ 1/2 \ W$	01121	EB2721	
	L	<u></u> _			1	1	

Table 7-1. Replaceable Parts (Cont'd)

				ple 7-1. Replaceable Parts (Cont'd)			
REFERENCE DESIGNATOR	-hp- PART NO.		ТQ	DESCRIPTION	MFR.	MFR. PART NO	١.
S1	00419-61901		1	Switch Assembly: range		00419-61901	
S1R1 S1R2 S1R3 S1R4 S1R5	0683-6845 0684-2241 0684-6831 0684-2231 0683-1255	·	1 1 1 1	R: fxd comp 680 k Ω ± 5% 1/4 W R: fxd 220 k Ω ± 10% 1/4 W R: fxd comp 68 k Ω ± 10% 1/4 W R: fxd comp 22 k Ω ± 10% 1/4 W R: fxd comp 1.2 M Ω ± 5% 1/4 W	01121 01121 01121 01121 01121	CB6845 CB2241 CB6831 CB2231 CB1255	
S1R6 S1R7 S1R8 S1R9 S1R10	0684-3941 0683-1245 0683-3935 0684-1231 0684-3321		1 1 1 1	R: fxd comp 390 k Ω ± 10% 1/4 W R: fxd comp 120 k Ω ± 5% 1/4 W R: fxd comp 39 k Ω ± 5% 1/4 W R: fxd comp 12 k Ω ± 10% 1/4 W R: fxd comp 3300 Ω ± 10% 1/4 W	01121 01121 01121 01121 01121	CB3941 CB1245 CB3935 CB1231 EB3321	
S1R11 S1R12 S1R13 S1R14 S1R15	0687-1031 0811-1505 0698-3373 0698-3372 0698-3371		1 1 1	R: fxd 10 k Ω ± 10% 1/2 W R: fxd prec ww 100 Ω ±0.1% 1/2 W R: fxd met flm 140 k Ω ±0.25% 1/4 W R: fxd prec met flm 40 k Ω ±0.25% 1/4 W R: fxd prec met flm 14 k Ω ±0.25% 1/4 W	01121 01686 19701 19701 19701	MF6C T-O of MF6C T-O	bd bd bd bd
S1R16 S1R17 S1R18 S1R19 S1R20	0698-3370 0698-3369 0811-1506 0686-3051 0698-3363		1 1 1 1	R: fxd prec met flm 4000 $\Omega \pm 0.25\%$ 1/4 W R: fxd prec met flm 1400 $\Omega \pm 0.25\%$ 1/4 W R: fxd prec ww 400 $\Omega \pm 0.1\%$ 1/4 W R: fxd 3.0 M $\Omega \pm 5\%$ 1/2 W R: fxd prec c flm 100 $\Omega \pm 0.5\%$ 1/2 W	19701 19701 01686 01121 94459	MF6C T-O o E-20 o EB3055	bd bd bd
S1R21 S1R22 S1R23 S1R24 S1R25	0698-3364 0698-3365 0698-3366 0698-3367 0698-3368		1 1 1 1	R: fxd prec c flm 900 Ω ±0.5% 1/2 W R: fxd prec c flm 9000 Ω ±0.5% 1/2 W R: fxd prec c flm 90 k Ω ±0.5% 1/2 W R: fxd prec c flm 90 k Ω ±0.5% 1/2 W R: fxd prec c flm 906 k Ω ±0.5% 1/2 W R: fxd prec c flm 9.06 M Ω ±0.5% 1 W	94459 94459 94459 94459 91637	CVS of CVS of CVS	bd bd bd bd bd
S1R26 S1R27	0686-1025 0687-1531		1 1	R: fxd comp 1000 Ω \pm 5% 1/2 W R: fxd comp 15 k Ω \pm 10% 1/2 W	01121 01121	EB 102 5 EB 1531	
S2	3101-0803		1	Switch: pushbutton function	76854	o'	bd
S3	3101-0033		1	Switch: slide DPDT non-shorting 0.5 amp 125 Vdc 3 amp 125 Vac	42190	4633	
W1	8120-0078		1	Cable Assembly: power	70903	KH-4147	
				MISCELLANEOUS	*		
	1251-0172	* .	1	Connector: 22 ribbon type contacts	07233	250-22-30- 210	
	5000-0716 5000-0702 5060-0717		1 2 1	Cover: bottom 7 x 8 Cover: side 6 x 8 Cover: top 7 x 8	28480 28480 28480	5000-0716 5000-0702 5060-0717	
	241A-44A 5060-0728 5040-4524 5040-0615 1400-0084		1 1 1 1	Foot Assembly: half module Foot Assembly: half module (front) Holder: battery (BT1 thru BT4) Holder: battery phenolic base (BT5) Holder: fuse extractor post type	28480 28480 28480 28480 74915	241A-44A 5060-0728 5040-4524 5040-0615 342014	
	00419-04301		1	Insert: RANGE	28480	00419-04301	
	0370-0121 0370-0137		7 2	Knob: pushbutton rectangular gray plastic Knob: round 5/8" diam black (ZERO and	28480 28480	0370-0121 0370-0137	
	0370-0112		1	NULL) Knob: skirted bar 3/4" diam black (RANGE)	28480	0370-0112	
	5000-3217 5000-3216		1 1	Label: pushbutton BAT. TEST Label: pushbutton FAST CHG.	28480 28480	5000-3217 5000-3216	

Table 7-1. Replaceable Parts (Cont'd)

Table 7-1. Replaceable Parts (Cont'd)						
REFERENCE DESIGNATOR	-hp- PART NO.		ΤQ	DESCRIPTION	MFR.	MFR. PART NO.
	5000-0251 5000-3213 5000-3214 5000-3345 5000-3215		1 1 1 1	Label: pushbutton OFF Label: pushbutton READ NULL Label: pushbutton SET NULL Label: pushbutton VM/AM Label: pushbutton ZERO	28480 28480 28480 28480 28480	5000-0251 5000-3213 5000-3214 5000-3345 5000-3215
	00419-90002		1	Manual: Operating and Service	28480	00419-90002
	00419-00201 00419-00202		1 1	Panel: front Panel: rear	28480 28480	00419-00201 00419-00202
	00419-00606 00419-00601 00419-00602 00419-00604 00419-00603 00419-00605		1 1 1 1 1	Shield: bottom Shield: front Shield: rear Shield: side left Shield: side right Shield: top	28480 28480 .28480 28480 28480 28480	00419-00606 00419-00601 00419-00602 00419-00604 00419-00603 00419-00605
	1490-0032		1	Stand: half module tilt stainless steel rod	91260	obd
				-		
	13					
	·					

APPENDIX CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 handbooks.

Code No.	Manufacturer Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Cade No.	Manufacturer Address
	U.S.A. Common Any supplier of U.S.	07115	Corning Glass Works			General Radio Co.	West Concord, Mass.	73293	Hughes Products Division of
	McCoy Electronics Mount Holly Springs, Pa.			Bradford, Pa.		Gries Reproducer Corp.	New Rochelle, N.Y.	73445	Hughes Aircraft Co. Newport Beach, Calif. Amnerex Electronic Co. Div. of North
00213	Sage Electronics Corp. Rochester, N. Y.	07126 07137		sadena, Calif. eapolis. Minn.		Grobet File Co. of America,	Inc. Carlstadt, N.J. Lancaster. Pa.	/3445	American Phillips Co., Inc. Hicksville, N.Y.
	Humidail Co. Colton, Calif. Westrex Corp. New York, N.Y.	07137		eapous, minn.		Hamilton Watch Co. Hewlett-Packard Co.	Palo Alto, Calif.	73490	Beckman Helipot Corp. So. Pasadena, Calif.
00333	Garlock Packing Co.,	0/130	Electronic Tube Div.	Elmira, N.Y.		G. E. Receiving Tube Dept.	Owenshore, Ky.		Bradley Semiconductor Corp. Hamden, Conn.
00373	Electronic Products Div. Camden, N.J.	07149	Filmohm Corp. Ne	w York, N. Y.		Lectrohm Inc.	Chicago, III.		Carling Electric, Inc. Hartford, Conn.
00656	Aerovox Corp. New Bedford, Mass.	07233	Cinch-Graphik Co. City of Is	idustry, Calif.		Stanwyck Corp. Hawkes	bury, Ontario, Canada	73682	George K. Garrett Co., Inc. Philadelphia, Pa.
00779	Amp, Inc. Harrisburg, Pa.	07261	Aynet Corp. Los A	ngeles, Calif.	37942	P.R. Mallory & Co., Inc.	Indianapolis, Ind.		Federal Screw Prod. Co. Chicago, III.
00781	Aircraft Radio Corp. Boonton, N.J.	07263	Fairchild Semiconductor Corp.			Mechanical Industries Prod.			Fischer Special Mfg. Co. Cincinnati, Ohio
00815	Northern Engineering Laboratories, Inc.	^****		n View, Calif.		Miniature Precision Bearings			The General Industries Co. Elyria, Chio
	Burlington, Wis.	07322		eapolis, Minn. Ingeles, Calif.		Muter Co.	Chicago, III.		Goshen Stamping & Tool Co. Goshen, Ind. JFD Electronics Corp. Brooklyn, N. Y.
00853	Sangamo Electric Company, Ordill Division (Capacitors) Marion, III.	07700		ringfield, N.J.		C.A. Norgren Co. Ohmite Mfg. Co.	Englewood, Colo. Skakie, III.		Jennings Radio Mig. Co. San Jose, Calif.
00866	Goe Engineering Co. Los Angeles, Calif.			vthorne, Calif.		Polarcid Corp.	Cambridge, Mass.		Signalite Inc. Neptune, N.J.
00891			Rheem Semiconductor Corp. Mountai			Precision Thermometer and	Gumbriago, maour	74455	J.H. Winns, and Sons Winchester, Mass.
01121	Allen Bradley Co. Milwaukee, Wis.	07966				Inst. Co.	Philadelphia, Pa.		Industrial Condenser Corp. Chicago, III.
	Litton Industries, Inc. Beverly Hills, Calif.			io Alto, Calif.		Raytheon Company	Lexington, Mass.	74868	R.F. Products Division of Amphenol-
01281	TRW Semiconductors Inc. Lawndale, Calif.	07980 08145		Boonton, N.J.	52090	Rowan Controller Co.	Baltimore, Md.	74970	Borg Electronics Corp. Danbury, Conn. E.F. Johnson Co. Waseca, Minn.
01295	Texas Instruments, Inc. Transistor Products Div. Dallas, Texas			ingeles, Calif. Pomona, Calif.	63,743	Ward Leonard Electric	Mt. Vernon, N.Y.		International Resistance Co. Philadelphia, Pa.
01349	The Alliance Mfg. Co. Alliance, Ohio		Burgess Battery Co.			Shallcross Mfg. Co. Simoson Electric Co.	Selma, N.C. Chicago, III.		Jones, Howard B., Division
01561	Chassi-Trak Corp. Indianapolis, Ind.	00000	Niagara Falls, On	tario. Canada.		Sonotone Corp.	Elmsford, N.Y.		of Cinch Mfg. Corp. Chicago, III.
01589	Pacific Relays, Inc. Van Nuys, Calif.	08717		Burbank, Calif.		Sorenson & Co., Inc.	So. Norwalk, Conn.	75378	James Knights Co. Sandwich, III.
01930	Amerock Corp Rockford, III.	08718		Phoenix, Ariz.		Spaulding Fibre Co., Inc.	Tonawanda, N.Y.		Kuika Electric Corporation Mt. Vernon, N.Y.
	Pulse Engineering Co. Santa Clara, Calif.	08792				Sprague Electric Co.	North Adams, Mass.		Lenz Electric Mfg. Co. Chicago, III.
02114	Ferroxcube Corp. of America Saugerties, N.Y.			Lowell, Mass.	59446	Telex, Inc.	St. Paul, Minn.		Littlefuse Inc. Des Plaines, III.
02286	Cole Mfg. Co. Palo Alto, Calif.			ianapolis, Ind. a Mesa, Calif.	59730	Thomas & Betts Co.	Elizabeth 1, N.J.		Lord Mfg. Co. Erie, Pa. C.W. Marwedel San Francisco, Calif.
02660 02735	Amphenol-Borg Electronics Corp. Chicago, III. Radio Corp. of America, Semiconductor	09134		louston, Texas		Tripplett Electrical Inc.	Bluffton, Ohio		Micamold Electronic Mfg. Corp. Brooklyn, N.Y.
02/33	and Materials Div. Somerville, N. J.		Atohm Electronics Sun	Valley, Calif.	61775	Union Switch and Signal, Di		76487	James Millen Mfg. Co., Inc. Malden, Mass.
02771	Vocaline Co. of America, Inc.		Electro Assemblies, Inc.	Chicago, III.	62119	Westinghouse Air Brake (Universal Electric Co.	Owosso, Mich.		J. W. Miller Co. Los Angeles, Calif.
	Old Saybrook, Conn.	09569			0,110	Ward-Leonard Electric Co.	Mt. Vernon, N.Y.	76530	Monadnock Mills San Leandro, Calif.
02777	Hopkins Engineering Co. San Fernando, Calif.			ntario, Canada	64959	Western Electric Co., Inc.	New York, N.Y.		Mueller Electric Co. Cleveland, Ohio.
03508	G.E. Semiconductor Products Dept. Syracuse, N.Y.			terbury, Conn.	55092	Weston Inst. Div. of Daystr			Oak Manufacturing Co. Crystal Lake, III.
03705	Apex Machine & Tool Co. Dayton, Ohio	10214	General Transistor Western Corp.	0.00		Wittek Manufacturing Co.	Chicago 23, III.	77068	Bendix Pacific Division of
03797 03877	Cidema Corp. El Monte, Calif. Transitron Electronic Corp. Wakefield, Mass.	10413		Angeles, Calif. erkeley, Calif.		Wollensak Optical Co,	Rochester, N.Y.	77075	Bendix Corp. No. Hollywood, Calif. Pacific Metals Co. San Francisco, Calif.
03877	Pyrofilm Resistor Co. Morristown, N.J.	10646	Carborundum Co. Niaga	ra Falls, N.Y.	70276	Allen Mfg. Co. Allied Control Co., Inc.	Hartford, Conn. New York, N.Y.	77221	Phaostran Instrument and
03954	Air Marine Motors, Inc. Los Angeles, Calif.		CTS of Berne, Inc.	Berne, Ind.	70309	Alimetal Screw Prod. Co.,	new ruik, n. i.	****	Electronic Co. South Pasadena, Calif.
04009	Arrow, Hart and Hegeman Elect. Co.	11237			70313	Attimetal Scient Foot Co.,	Garden City, N.Y.	77250	Phoeli Mfg. Co. Chicago, III.
	Hartford, Conn.			sadena, Calif.	70485	Atlantic India Rubber Works		77252	Philadelphia Steel and Wire Corp.
	Taurus Corp. Lambertville, N. J.			ilo Alto, Calif.		Amperite Co., Inc.	New York, N.Y.	*****	Philadelphia, Pa.
04062 04222	Elmenco Products Co. New York, N.Y.		Duncan Electronic, Inc. Sa General Instrument Corporation	nta Ana, Calif,		Beiden Mfg. Co.	Chicago, III.	77342	Potter and Brumfield, Div. of American Machine and Foundry Princeton, Ind.
04222	Hi-Q Division of Aerovox Myrtle Beach, S.C. Elgin National Watch Co.,	11711	Semiconductor Division	Newark, N.J.	70998	Bird Electronic Corp.	Cleveland, Ohio	77630	
04230	Electronics Division Burbank, Calif.	11717		na Park, Calif.		Birnbach Radio Co.	New York, N.Y.	77638	Radio Receptor Co., Inc. Brooklyn, N.Y.
04354	Precision Paper Tube Co. Chicago, III.	11870	Melahs inc Pa	ilo Alto, Calif. Camden, N. J.	/1041	Boston Gear Works Div. of Murray Co. of Texas	Quincy, Mass.	77764	Resistance Products Co. Harrisburg, Pa.
04404	Dymec Division of Hewlett-Packard Co.	12136	Philadelphia Handle Co.		71218		Cleveland, Ohio	77969	Rubbercraft Corp. of Calif. Torrance, Calif.
	Palo Alto, Calif.		Clarostat Mfg. Co.	Dover, N.H.		Camloc Fastener Corp.	Paramus, N.J.	78189	Shakeproof Division of Illinois
04651	Sylvania Electric Prods., Inc.	12859		Tokyo, Japan	71313	Allen D. Cardwell Electron	ic		Tool Works Elgin, III.
04713	Electronic Tube Div. Mountain View, Calif. Motorola, Inc., Semiconductor Prod. Div.	12930	l Delta Semiconductor Inc. Newpor l Thermolloy	t Beach, Calif. Dallas, Texas		Prod. Corp.	Plainville, Conn.	78283 78290	Signal Indicator Corp. New York, N.Y. Struthers-Dunn Inc. Pitman, N.J.
04713	Phoenix, Arizona	13396		nover, Germany	71400	Bussmann Fuse Div. of McC	Graw- St. Louis, Mo.		Thompson-Bremer & Co. Chicago, III.
04732	Filtron Co., Inc., Western Div. Culver City, Calif.	13835		s City, Kansas	71.496	Edison Co. Chicago Condenser Corp.	St. Louis, Mo. Chicago, III.	78471	Tilley Mfg. Co. San Francisco, Calif.
04773	Automatic Electric Co. Northlake, 111.	14099		ry Park, Calif.		CTS Corp.	Elkhart, Ind.	78488	
04777	Automatic Electric Sales Corp. Northlake, III.	14193		Monica, Calif.		Cannon Flectric Co.	Los Angeles, Calif.		Standard Thomson Corp. Waltham, Mass.
04796	Sequoia Wire & Cable Co. Redwood City, Calif.	14298		shohocken, Pa.	71471	Cinema Engineering Co.	Burbank, Calif.	78553	Tinnerman Products, Inc. Cleveland, Ohio
04811 04870	Precision Coil Spring Co. El Monte, Calif. P. M. Motor Company Chicago 44, III.	14655 14960		an Jose, Calif.	71482	C. P. Clare & Co.	Chicago, III.	78790	Transformer Engineers Pasadena, Calif.
	Twentieth Century Plastics, Inc.			Brooklyn, N.Y.	71590	Centralab Div. of Globe Uni		78947	Ucinite Co. Newtonville, Mass. Veeder Root, Inc. Hartford, Conn.
20000	Los Angeles, Calif.	15291	. Adjustable Bushing Co. N. Ho	llywood, Calif.	71616	Commercial Plastics Co.	Milwaukee, Wis. Chicago, III,		Wenco Mfg. Co. Chicago, III.
05277	Westinghouse Electric Corp.,	15772	Twentieth Century		71700	The Cornish Wire Co.	New York, N.Y.		Continental-Wirt Electronics Corp.
	Semi-Conductor Dept. Youngwood, Pa.			ta Clara, Calif.		Chicago Miniature Lamp Wo			Philadelphia, Pa.
05347	Ultronix, Inc. San Mateo, Calif.	15909 16037		ivingston, N.J. ce Pine, N. C.	71753				Zierick Mfg. Corp. New Rochelle, N.Y.
05593 05616	Illumitronic Engineering Co. Sunnyvale, Calif. Cosmo Plastic	16352		Lodi. N. J.			West Orange, N.J.	80031	
03010	(c'o Electrical Spec. Co.) Cleveland, Ohio		De Jur-Amsco Corporation	200., 11. 21		Cinch Mfg. Corp.	Chicago, III,	80120	Clock Co. Morristown, N.J. Schnitzer Alloy Products Elizabeth, N.J.
05624	Barber Colman Co. Rockford, III.	10000	Land Jalan	d City 1, N.Y.		Dow Corning Corp.	Midland, Mich.	80130	
05728		16758	Delco Radio Div. of G.M. Corp.	Kokomo, Ind.		Eitel-McCullough, Inc. Electro Motive Mfg. Co., In	San Bruno, Calif.	80131	Electronic Industries Association. Any brand
	Roslyn Heights, Long Island, N.Y.	17109		ga Park, Calif.	12136	Electro motive mig. Co., ii	Willimantic, Conn.		tube meeting EIA standards Washington, D. C.
05729	Metropolitan Telecommunications Corp.	17474	Tranex Company Mounta	in View, Calif.	71707	Coto Coil Co., Inc.	Providence, R.I.	80207	Unimax Switch, Div. of
05783	Metro Cap. Division Brooklyn, N.Y. Stewart Engineering Co. Santa Cruz. Calif.	18486		es Plaines, III. t. Kisco, N.Y.	72354	John E. Fast & Co.	Chicago, III.		W.L. Maxson Corp. Wallingford, Conn.
05/83				ilmington, Del.		Dialight Corp.	Brooklyn, N.Y.	80223	
05004	The Bassick Co. Bridgeport, Conn.	19315		mg.con, Dul.		General Ceramics Corp.	Keasbey, N.J.		Oxford Electric Corp. Chicago, Ul. Bourns Laboratories, Inc. Riverside, Calif.
06175	Bausch and Lomb Optical Co. Rochester, N.Y.		Bendix Aviation Corp.	Feterboro, N.J.	72699		Noak M	80294 80411	
	E.T.A. Products Co. of America Chicago, III.	1950	Thomas A. Edison Industries,		70750	Semiconductor Div. Girard-Hopkins	Newark, N.J. Oakland, Calif.	00111	Fulton Controls Co. Columbus 16, Ohio
06475	Western Devices, Inc. Inglewood, Calif.		Div. of McGraw-Edison Co. Wes			Drake Mfg. Co.	Chicago, III.		All Star Products Inc. Defiance, Ohio
06540		19701		msas City, Mo.		Hugh H. Eby Inc.	Philadelphia, Pa.		Avery Adhesive Label Corp. Monrovia, Calif.
00000	A Hardware Co. Inc. New Rochelle, N. Y.	20183		iladelphïa, Pa. lew York, N.Y.	72928	Gudeman Co.	Chicago, III.		Hammerlund Co., Inc. New York, N.Y.
00333	Beede Electrical Instrument Co., Inc. Penacook, N.H.	21520		o. Chicago, III.	72964	Robert M. Hadley Co.	Los Angeles, Calif.	80640 81030	Stevens, Arnold, Co., Inc. Boston, Mass. International Instruments, Inc.
06751	U. S. Semcor Division of Nuclear Corp.	2133		Britain, Conn.		Erie Resistor Corp.	Erie, Pa.	01030	New Haven, Conn.
	of America Phoenix, Arizona	21964	Fed. Telephone and Radio Corp.	Clifton, N.J.	73061	Hansen Mfg. Co., Inc. H.M. Harper Co.	Princeton, Ind. Chicago, III.	81073	Grayhill Co. LaGrange, III.
	Torrington Mfg. Co., West Div. Van Nuys, Calif.			enectady, N.Y.		Helipot Div. of Beckman	omeago, 11).	81095	Triad Transformer Corp. Venice, Calif.
07088	Kelvin Electric Co. Van Nuys, Calif.	24455	G.E., Lamp Division Nela Park, (Jeveland, Ohio	13130	Instruments, Inc.	Fullerton, Calif.	81312	Winchester Electronics Co., inc. Norwalk, Conn.
							,		

00015-39 Revised: February, 1965 From: FSC. Handbook Supplements
H4-1 Dated DECEMBER 1964
H4-2 Dated MARCH 1962

APPENDIX CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

Code No.	Manufacturer Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
•••										
81349	Military Specification			Francisco, Calif.		G. V. Controls	Livingston, N. J.	98220		Pasadena, Calif.
81415	Wilkor Products, Inc. Cleveland, Ohio	85660		ew Haven, Conn.	93983	Insuline-Van Norman Ind., I		98278		o. Pasadena, Calif.
81453	Raytheon Mfg. Co., Industrial Components	85911	Seamless Rubber Co.	Chicago, III.		Electronic Division	Manchester, N.H.	98291		Mamaroneck, N.Y.
	Div., Industr. Tube Operations Newton, Mass.	86197		ton Heights, Pa.		General Cable Corp.	Bayonne, N.J.	98405		edwood City, Calif.
81483	International Rectifier Corp. El Segundo, Calif.	86579	Precision Rubber Products Corp.	Dayton, Ohio	94144	Raytheon Mfg. Co., Industr		98731		Minneapolis, Minn.
81541	The Airpax Products Co. Cambridge, Mass.	86584	Radio Corp. of America, RCA			Div., Receiving Tube Op		98821	North Hills Electric Co.	Mineola, N.Y.
81860	Barry Controls, Inc. Watertown, Mass.		Electron Tube Div.	Harrison, N.J.	94145	Raytheon Mfg. Co., Semico		98925	Clevite Transistor Prod.	
	Carter Parts Co. Skokie, III.	8/216	Philco Corporation (Lansdale			California Street Plant	Newton, Mass.		Div. of Clevite Corp.	Waltham, Mass.
82142	Jeffers Electronics Division of		Division)	Lansdale, Pa.	94148	Scientific Radio Products, I		98978	International Electronic	
	Speer Carbon Co. Du Bois, Pa.	87473	Western Fibrous Glass Products C				Loveland, Colo.		Research Corp.	Burbank, Calif.
	Allen B. DuMont Labs, Inc. Clifton, N.J.			Francisco, Calif.		Tung-Sol Electric, Inc.	Newark, N.J.		Columbia Technical Corp.	New York, N.Y.
82209	Maguire Industries, Inc. Greenwich, Conn.	87664	Van Waters & Rogers Inc.	Scattle, Wash.	94197	Curtiss-Wright Corp.,		99313		Palo Alto, Calif.
82219	Sylvania Electric Prod. Inc.	87930		Providence, R. I.		Electronics Div.	East Paterson, N.J.	99515	Marshall Industries, Electron	
	Electronic Tube Div. Emporium, Pa.	88140	Cutler-Hammer, Inc.	Lincoln, III.		Southco Div. of S. Chester			Products Division	Pasadena, Calif.
	Astron Co. East Newark, N.J.	88220	Gould-National Batteries, Inc.	St. Paul, Minn.	94310	Tru Ohm Prod. Div. of Mode		99707	Control Switch Division, Contro	
82389	Switchcraft, Inc. Chicago, III.	88698	General Mills, Inc.	Buffalo, N.Y.		Engineering and Mfg. Co			of America	El Segundo, Calif.
82547	Metals and Controls, Inc., Div. of	89231	Graybar Electric Co.	Oakland, Calif.		Wire Cloth Products Inc.	Chicago, III.	99800		East Aurora, N.Y.
	Texas Instruments, Inc.,	89462		Cambridge, Mass.	94682	Worcester Pressed Aluminum		99848		Indianapolis, Ind.
	Spencer Prods. Attleboro, Mass.	89473	General Electric Distributing Corp				Worcester, Mass.	99934	,,	Boston, Mass.
82866	Research Products Corp. Madison, Wis.			henectady, N.Y.	95023	Philbrick Researchers, Inc.		99942	Hoffman Semiconductor Div. of	
82877	Rotron Manufacturing Co., Inc. Woodstock, N.Y.	89636	Carter Parts Div. of Economy Bale			Allies Products Corp.	Miami, Fla.		Hoffman Electronics Corp.	Evanston, III.
82893	Vector Electronic Co. Glendale, Calif.			Chicago, III.	95238	Continental Connector Corp.		99957	Technology Instrument Corp	
83053	Western Washer Mfr. Co. Los Angeles, Calif.	89665	United Transformer Co.	Chicago, III.	95263	Leecraft Mfg. Co., Inc.	New York, N.Y.		of Calif. Ne	ewbury Park, Calif.
83058	Carr Fastener Co. Cambridge, Mass.	90179	U.S. Rubber Co., Mechanical		95264	Lerco Electronics, Inc.	Burbank, Calif.	THE	FOLLOWING HIS MENBORS	
83086	New Hampshire Ball Bearing, Inc.		Goods Div.	Passaic, N.J.		National Coil Co.	Sheridan, Wyo.		FOLLOWING H-P VENDORS	
	Peterborough, N.H.	90970		Francisco, Calif.		Vitramon, Inc.	Bridgeport, Conn.		ASSIGNED IN THE LATEST S	
83125	Pyramid Electric Co. Darlington, S.C.	91260		Francisco, Calif.		Gordas Corp.	Bloomfield, N.J.		FEDERAL SUPPLY CODE	FOR MANUFAC-
83148	Electro Cords Co. Los Angeles, Calif.		Miller Dial & Nameplate Co.	El Monte, Calif.	95354	Methode Mfg. Co.	Chicago, III.	TUKE	RS HANDBOOK.	
83186	Victory Engineering Corp. Springfield, N. J.		Radio Materials Co.	Chicago, III.		Dage Electric Co., Inc.	Franklin, Ind.	10000	W	
83298	Bendix Corp., Red Bank Div. Red Bank, N.J.			Attleboro, Mass.		Weckesser Co.	Chicago, III.	10000	Winchester Electronics, Inc.	
83315	Hubbell Corp. Mundelein, III.	91637		Columbus, Nebr.		Huggins Laboratories	Sunnyvale, Calif.			anta Monica, Calif.
83330	Smith, Herman H., Inc. Brooklyn, N.Y.			Philadelphia, Pa.		Hi-Q Division of Aerovox	Olean, N.Y.			os Angeles, Calif.
83385	Central Screw Co. Chicago, III.	91737		Wakefield, Mass.	96256	Thordarson-Meissner Div. o		UUUUM	Western Coil Div. of Automatic	
83501	Gavitt Wire and Cable Co.,			wood City, Calif.		Maguire Industries, Inc.	Mt. Carmel, III.			edwood City, Calif.
	Div. of Amerace Corp. Brookfield, Mass.	91929	Minneapolis-Honeywell Regulator			Solar Manufacturing Co.	Los Angeles, Calif.		Ty-Car Mfg. Co., Inc.	Holliston, Mass.
83594	Burroughs Corp.,	01001	Microswitch Div.	Freeport, III.		Carlton Screw Co.	Chicago, III.		Willow Leather Products Corp.	Newark, N.J.
	Electronic Tube Div. Plainfield, N.J.	92180	Nahm-Bros. Spring Co. Tru-Connector Corp.	Oakland, Calif.		Microwave Associates, Inc.			British Radio Electronics Ltd.	
83740	Eveready Battery New York, N.Y.	92196	Universal Metal Prod., Inc. Basse	Peabody, Mass.	96501	Excel Transformer Co.	Oakland, Calif.	000AB		England
83777	Model Eng. and Mfg., Inc. Huntington, Ind.	92367				Industrial Retaining Ring Co			Indiana General Corp., Elect.	
83821	Loyd Scruggs Co. Festus, Mo.	92607		Rochester, N.Y.	97539	Automatic and Precision Mfg		000BB	Precision Instrument Component	
84171	Arco Electronis, Inc. New York, N.Y.			Tarrytown, N.Y.	03000	000 51	Yonkers, N.Y.	000111	B.11. E. A.B. 11.	Van Nuys, Calif.
84396	A. J. Glesener Co., Inc. San Francisco, Calif.	33332	Sylvania Electric Prod. Inc., Semiconductor Div.	Wahire Hana	3/366	CBS Electronics,	D 11		Rubber Eng. & Development	Hayward, Calif.
84411	Good All Electric Mfg. Co. Ogallala, Neb.	93369		Woburn, Mass.	07070	Div. of C.B.S., Inc.	Danvers, Mass.			San Jose 27, Calif.
84970	Sarkes Tarzian, Inc. Bloomington, Ind.	93369	Robbins and Myers, Inc. Stevens Mfg. Co., Inc.	New York, N.Y. Mansfield, Ohio		Reon Resistor Corp. Axel Brothers Inc.	Yonkers, N.Y.		Cooltron	Cakland, Calif.
85454	Boonton Molding Company Boonton, N.J.			Monmouth, N. J.		Rubber Teck, Inc.	Jamaica, N.Y.		Control of Elgin Watch Co. California Eastern Lab.	Burbank, Calif.
854/1	A.B. Boyd Co, San Francisco, Calif.	33700	nonces y, contact the. Full	monavout, H. J.	30133	NUODEL TECK, INC.	Gardena, Calif.			Burlingame, Calif. eles 45, Calif.

From: FSC. Handbook Supplements H4-1 Dated DECEMBER 1964 H4-2 Dated MARCH 1962

SALES AND SERVICE OFFICES UNITED STATES and CANADA

ALABAMA Huntsville, 35802 2003 Byrd Spring Rd. S.W. (205) 881-4591 TWX: 510-579-2204

ALASKA

Bellevue, Wash. 98004 11656 N.E. 8th Street (206) 454-3971 TWX: 910-443-2303

ARIZONA Scottsdale, 85251 3009 No. Scottsdale Rd. (602) 945-7601 TWX: 602-949-0111

Tucson, 85716 232 So. Tucson Blvd. (602) 623-2564 TWX: 602-792-2759

CALIFORNIA

North Hollywood, 91604 3939 Lankershim Blvd. (213) 877-1282 and 766-3811 TWX: 910-499-2170

Sacramento, 95821 2591 Carlsbad Ave. (916) 482-1463 TWX: 916-444-8683

San Diego, 92106 1055 Shafter Street (714) 223-8103 TWX: 714-276-4263

Palo Alto, 94303 1101 Embarcadero Rd. (415) 327-6500 TWX: 910-373-1280

COLORADO

Englewood, 80110 7965 East Prentice (303) 771-3455 TWX: 910-935-0705

CONNECTICUT

Middletown, 06457 589 Saybrook Rd. (203) 346-6611 TWX: 710-428-2036

FLORIDA

Miami, 33125 2907 Northwest 7th St. (305) 635-6461

Orlando, 32803 621 Commonwealth Ave. (305) 425-5541 TWX: 305-841-2568

St. Petersburg, 33708 410-150th Ave., Madeira Beach (813) 391-0211 and 391-1829 TWX: 813-391-0666

GEORGIA

Atlanta, 30305 3110 Maple Drive, N.E. (404) 233-1141 TWX: 810-751-3283

HAWAII

North Hollywood, Calif. 91604 3939 Lankershim Blvd. (213) 877-1282 TWX: 910-499-2170

ILLINOIS

Skokie, 60076 5500 Howard Street (312) 677-0400 TWX: 910-223-3613

INDIANA Indianapolis, 46205 3919 Meadows Dr. (317) 546-4891 TWX: 317-635-4300

LOUISIANA

(504) 522-4359

MARYLAND

Baltimore, 21207 6660 Security Blvd. (301) 944-5400 TWX: 710-862-0850

Rockville, 20852 12303 Twinbrook Pkwy. (301) 427-7560 TWX: 710-828-9684

MASSACHUSETTS Burlington, 01803 Middlesex Turnpike (617) 272-9000 TWX: 710-332-0382

MICHIGAN Southfield, 48076 24315 Northwestern Hwy. (313) 353-9100 TWX: 313-357-4425

MINNESOTA

St. Paul, 55114 2459 University Ave. (612) 646-7881 TWX: 910-563-3734

MISSOURI

Kansas City, 64114 9208 Wyoming Place (816) 333-2445 TWX: 910-771-2087

St. Louis, 63144 2812 South Brentwood Blvd. (314) 644-0220 TWX: 910-760-1670

NEW JERSEY

Eatontown, 07724 (201) 747-1060

Englewood, 07631 391 Grand Avenue (201) 567-3933 TWX: 510-230-9709 **NEW MEXICO**

Albuquerque, 87108 6501 Lomas Blvd., N.E. (505) 255-5586 TWX: 910-989-1655

Las Cruces, 88001 114 S. Water Street (505) 526-2486 TWX: 910-983-0550

NEW YORK

New York, 10021 236 East 75th Street (212) 879-2023 TWX: 710-581-4376

Rochester, 14623 39 Saginaw Drive (716) 473-9500 TWX: 510-253-5981

Poughkeepsie, 12601 82 Washington Street (914) 454-7330 TWX: 914-452-7425

Syracuse, 13211 5858 East Molloy Rd. (315) 454-2486 TWX: 710-541-0482

Endicott, 13764 1219 Campville Rd. (607) 754-0050 TWX: 510-252-0890

NORTH CAROLINA

High Point, 27262 1923 N. Main Street (919) 882-6873 TWX: 510-926-1516

OHIO

Cleveland, 44129 5579 Pearl Road (216) 884-9209 TWX: 216-888-0715

Dayton, 45409 1250 W. Dorothy Lane (513) 298-0351 TWX: 513-944-0090

OKLAHOMA

Oklahoma City (405) 235-7062

PENNSYLVANIA Camp Hill (717) 737-6791

West Conshohocken, 19428 144 Elizabeth Street (215) 248-1600 and 828-6200 TWX: 518-660-8715

Monroeville, 15146 Monroe Complex Building 2 Suite 2 Moss Side Blvd. (412) 271-5227 TWX: 710-797-3650 **TEXAS**

Dallas, 75209 P.O. Box 7166, 3605 Inwood Rd. (214) 357-1881 TWX: 910-861-4081

Houston, 77027 P.O. Box 22813, 4242 Richmond Ave. (713) 667-2407 TWX: 713-571-1353

UTAH

Salt Lake City, 84115 1482 Major St. (801) 486-8166 TWX: 801-521-2604

VIRGINIA

Richmond, 23230 2112 Spencer Road (703) 282-5451 TWX: 710-956-0157

WASHINGTON

Bellevue, 98004-11656 N.E. 8th St. (206) 454-3971 TWX: 910-443-2303

GOVERNMENT **CONTRACTING OFFICE**

San Antonio, Texas 78226 Hewlett-Packard Contract Marketing Division 225 Billy Mitchell Road (512) 434-4171 TWX: 512-571-0955

CANADA

Montreal, Quebec Hewlett-Packard (Canada) Ltd. 8270 Mayrand Street (514) 735-2273 TWX: 610-421-3484 Telex: 01-2819

Ottawa, Ontario Hewlett-Packard (Canada) Ltd. 1762 Carling Avenue (613) 722-4223 TWX: 610-562-1952

Toronto, Ontario Hewlett-Packard (Canada) Ltd. 1415 Lawrence Avenue West (416) 249-9196 TWX: 610-492-2382

Vancouver B.C. Hewlett-Packard (Canada) Ltd. 2184 W. Broadway (604) 738-7520 TWX: 610-922-5059

SALES AND SERVICE OFFICES INTERNATIONAL - Electronic Equipment

ARGENTINA

Mauricio A. Suarez Telecommunicaciones Carlos Calvo 224 **Buenos Aires** Tel. (30-6312) (34-9087)

AUSTRALIA Sample Electronics (Vic) Pty., Ltd. 9-11 Cremorne Street Richmond E.1, Victoria Tel. 42-4757

Sample Electronics (N.S.W.) Pty, Ltd. 4 Grose Street Glebe, New South Wales Tel. 69-6338

AUSTRIA Unilabor H.m.b.H. Wissenschaftliche Instrumente Rummelhardtgasse 6/3 P.O. Box 33, Vienna IX/71

BELGIUM Hewlett-Packard Benelux S.A. 20-24 rue de l'Hopital Brussels Tel. 11 22 20

Ciental Importacao e Comercio Ltda. Rua des Eliseu Guilherme, 62 Tel. 70-2318

CHILE

Hector Calcagni Casilla 13942 Santiago Tel. 6.42.26

DENMARK

Tage Olsen A/S Ronnegade 1 Copenhagen 0 Tel. 29 48 00

FINLAND

INTO O/Y Meritullinkatu 11 P.O. Box 153 Helsinki Tel. 6 11 33

FRANCE Hewlett-Packard France 150 Boulevard Massena Tel. 707 97 19

Hewlett-Packard France 2 rue Tete d'Or Lyon, 6 - Rhone Tel. 52 35 66

GERMANY

Hewlett-Packard Vertriebs-GmbH Kurhessenstrasse 95 Frankfurt a. Main Tel. 52 00 36

Hewlett-Packard Vertriebs-GmbH Reginfriedstrasse 13, Munich 9 Tel. 49 51 21

Hewlett-Packard Vertriebs-GmbH Beim Strohhause 26/28 Hamburg 1 Tel. 24 05 51

Hewlett-Packard Vertriebs-GmbH (Technisches Buro) Herrenberger Strasse 110 Böblingen, Wurttemberg

Hewlett-Packard Vertriebs-GmbH Lietzenburger Strasse 30 1 Berlin W 30 Tel. 24 86 36

Hewlett-Packard Vertriebs-GmbH Achenbachstrasse 15 4 Dusseldorf 1, Tel. 68 52 58

GREECE

K. Karayannis Klaftmonos Square Athens 124 Tel. 230 301

INDIA
The Scientific Instrument Co., Ld. 6, Tej Bahadur Sapru Road Allahabad 1 Tel. 2451

The Scientific Instrument Co., Ld. 240, Dr. Dadabhai Naoroji Road Bombay 1 Tel. 26-2642

The Scientific Instrument Co., Ld. 11 Esplanade East, Calcutta 1 Tel. 23-4129

The Scientific Instrument Co., Ld. 30 Mount Road, Madras 1 Tel. 86339

The Scientific Instrument Co., Ld. B-7, Ajmeri Gate Extn. New Delhi 1 Tel. 271053

IRAN

Telecom, Ltd. P.O. Box 1812 Tel. 43850, 48111

Electronics & Engineering Ltd. Division of Motorola Israel Ltd. 16, Kremenetski Street, Tel-Aviv Tel. 35021

Hewlett-Packard Italiana S.p.A. Viale Lunigiana 46, Milan Tel. 69 15 84

Hewlett-Packard Italiana S.p.A. Palazzo Italia Piazza Marconi 25, Rome-Eur Tel. 591 2544

JAPAN

Yokogawa-Hewlett-Packard Ltd. # 59, 1-chome Yoyogi Shibuya-ku Tokyo, Tel. 370-2281

Yokogawa-Hewlett-Packard Ltd. #8, Umeda Kita-ku, Osaka City Tel. 313-0091

Yokogawa-Hewlett-Packard Ltd. Himeikedori Chigusa-ku, Nagoya City Tel. 751-8545

KOREA
American Trading Co., Korea, Ltd. Seoul P.O. Box 1103 112-35 Sokong-Dong Jung-ku, Seoul Tel. 3.7049, 3.7613

LEBANON Constantin E. Macridis Clemenceau Street Clemenceau Center Beirut Tel. 220846

NETHERLANDS

Hewlett-Packard Benelux, N.V. 23 Burg, Roellstraat Amsterdam, W. Tel. (020) 13 28 98

NEW ZEALAND

Sample Electronics (N.Z.) Ltd. 8 Matipo Street Onehunga S.E. 5, Auckland Tel. 565-361

NORWAY

Morgenstierne & Co. A/S Ingeniofirma 6 Wessels Gate, Oslo Tel. 20 16 35

PAKISTAN

Mushko & Company, Ltd. Oosman Chambers Victoria Road Karachi 3, West Pakistan Tel. 54601

Mushko & Company, Ltd. Zirat Chambers 31, Jinnah Avenue Dacca, East Pakistan Tel. 80058

PANAMA

Electronico Balboa, S.A. P.O. Box 4929 Panama City Tel. 3-0833

PERU

Fernando Ezeta B Av. Petit Thouars 4719 Mira Flores, Lima Tel. 5-0346

PORTUGAL Telectra

Rua Rodrigo da Fonseca 103 P.O. Box 2531, Lisbon 1 Tel. 68 60 72

PUERTO RICO

San Juan Electronics, Inc. Ponce de Leon No. 150, Stop 3 Pta. de Tierra Sta., San Juan Tel. 725-3342

SPAIN

Ataio Ingenieros Enrique Laretta 12 Madrid, 16 Tel. 235 43 44-5

SOUTH AFRICA F.H. Flanter & Co. (Pty.), Ltd.

Rosella House Buitencingle Street Cape Town Tel. 3-3817

F.H. Flanter & Co.,(Pty.), Ltd. P.O. Box 200, Bramley 775 Pretoria Main Road Wynberg, Transvaal Tel. 40-6871

SWEDEN

HP Instrument AB Centralvagen 28 Solna Centrum Tel. 08-83 08 30

HP Instrument AB Box 4028 Indunagatan 28A MoIndal 4 Tel. 27 68 00

SWITZERLAND

Max Paul Frey Wankdorffeldstrasse 66 Tel. (031) 42 00 78

TAIWAN

Hwa Sheng Electronic Co., Ltd. P.O. Box 1558 21 Nanking West Road Taipei Tel. 46076, 45936

TURKEY
Telekom Engineering Bureau P.O. Box 376 - Galata Istanbul Tel. 49 40 40

UNITED KINGDOM Hewlett-Packard Ltd.

Dallas Road Bedford, England Tel. 68052

VENEZUELA

Citec, C.A. Edif. Arisan-Of. No. 4 Avda. Francisco de Miranda Chacaito Caracas Tel. 71.88.05

YUGOSLAVIA

Belram S.A. 83 Avenue des Mimosas Brussels 15. Belgium Tel. 35 29 58

For Sales and Service Assistance in Areas Not Listed Contact:

EUROPE

Hewlett-Packard, S.A. 54 Route des Acacias Geneva, Switzerland Tel. (022) 42.81.50

ELSEWHERE

Hewlett-Packard 1501 Page Mill Road Palo Alto, California 94304, U.S.A. Tel. (415) 326-7000 Instrument Serial Prefix

Make Manual Changes

MODEL 419A

DC NULL VOLTMETER

Manual Serial Prefixed: 707-hp-Part No. 00419-90002

This manual backdating sheet makes this manual applicable to earlier instruments. Instrument-component values that differ from those in the manual, yet are not listed in the backdating sheet, should be replaced using the part number given in the manual.

Instrument Serial Prefix

Make Manual Changes

646-	1
532-0401 and above	1, 2
532-0400 and below	1, 2, 3
514-	1, 2, 3, 4
CHANGE 1	Figures 6-1 and 6-3: Substitute Figures C-1 and C-2 for the ones in Figures 6-1 and 6-3.
	Table 7-1: Change all "A4" reference designators to "A1." Change -hp- Part No. of A1 to 00419-66504. Change A1C13 to -hp- Part No. 0180-0022, C: fxd, elect 3.9 μ F 35 vdcw. Delete A1C14 thru A1C17. Change "A1CR1 thru A1CR16" to "A1CR1 thru A1CR14." Change "A1R38 to -hp- Part No. 0686-3055, R: fxd comp 3 M Ω $\pm 5\%$ 1/2 W. Change A1R41 thru A1R44 to -hp- Part No. 2100-1410, R: var lin 20 k Ω $\pm 30\%$ 1/8 W. Change A1R48 to -hp- Part No. 0687-6821, R: fxd comp 6.8 k Ω $\pm 10\%$ 1/2 W. Delete A1R50 and A1R51. Add C1, -hp- Part No. 0180-0283, C: fxd Al elect 60 μ F $\pm 75\%$ $\pm 10\%$ 10 vdcw.
CHANGE 2	Table 7-1: Change J2 to -hp- Part No. 1510-0010. Change J3 to -hp- Part No. 1510-0011. Change J5 to -hp- Part No. 1510-0026. Change J6 to -hp- Part No. 1510-0027.
CHANGE 3	Figure 6-3: Change A1R26* (10 K) to A1R26* (22 K). Move A1R26 between A1CR3 and 4 and Q8 Base. Delete C10 (3.7 μ F) in emitter of Q12 and Q13. Add C10 (20 μ F) between A1-13 and \checkmark . Short R40 (100 Ω) in base of A1Q10. Add R40 (39 k Ω) between A1C13 and A1R39.
	Table 7-1: Change A1C10 to C: fxd Al elect 20 μ F +75% -10% 25 vdcw; -hp- Part No. 0180-0045. Change A1R26* to R: fxd 22 K \pm 10% 1/2 W; -hp- Part No. 0687-1031. Change A1R40 to R: fxd 39 K \pm 10% 1/2 W; -hp- Part No. 0687-3931.

MANUAL BACKDATING CHANGES

CHANGE 4

Change Paragraph 5-34 steps d and e as follows:

- d. A2R12, CHOPPER CURRENT, affects both the chopper frequency and current. Adjust A2R12 for waveshape shown in Figure 5-3 with peak amplitude of 140 to 160 mV and frequency of 320 to 340 pps (this corresponds to chopper rate of 160 to 170 pps as counter also counts smaller pulses).
- e. . . . A1R26 should be between 10 K $\!\Omega$ and 39 K $\!\Omega$ with a typical value of 22 K $\!\Omega$.

Figure 6-4:

Substitute Figure C-3 and C-4 for the ones in Figure 6-4.

Table 7-1:

- Change A2Q1 to -hp- Part No. 1854-0039, Transistor: NPN, Si, 2N3053
- Change A2Q2, A2Q3 to -hp- Part No. 1854-0033, Transistor: NPN, Si, 2N2925
- Change A2Q4, A2Q5 to -hp- Part No. 1854-0039, Transistor: NPN, Si, 2N3053
- Change A2R1 to -hp- Part No. 0687-5611, R: fxd, comp, 560 ohms $\pm\,10\%,\ 1/2\ w$
- Change A2R2 to -hp- Part No. 0687-6811, R: fxd, comp, 680 ohms $\pm 10\%$, 1/2 w
- Change A2R3 to -hp- Part No. 0687-3331, R: fxd, comp, 33 K ohms $\pm\,10\%,\ 1/2\ \mathrm{w}$
- Change A2R4 to -hp- Part No. 0687-3321, R: fxd, comp, 3300 ohms $\pm\,10\%,\ 1/2\ \mathrm{w}$
- ±10%, 1/2 w Change A2R5 to -hp- Part No. 0687-6801, R: fxd, comp, 68 ohms
- $\pm 10\%$, 1/2 w Change A2R6 to -hp- Part No. 0687-2731, R: fxd, comp, 27 K ohms $\pm 10\%$, 1/2 w
- Change A2R7 to -hp- Part No. 0687-4731, R: fxd, comp, 47 K ohms $\pm 10\%$, 1/2 w
- Change A2R8, A2R9 to -hp- Part No. 0687-4701, R: fxd, comp, 47 ohms $\pm\,10\%,\ 1/2\ w$
- Change A2R10 to -hp- Part No. 0687-1511, R: fxd, comp, 150 ohms $\pm 10\%$, 1/2 w
- Change A2R11 to -hp- Part No. 0687-3341, R: fxd, comp, 330 K ohms $\pm 10\%$, 1/2 w
- Change A2R12 to -hp- Part No. 2100-0227, R: var, ww, 20 ohms $\pm 10\%$, 1-1/2 w
- Change A2T1 to -hp- Part No. 9100-0172, Transformer: power
- Change A2T2 to -hp- Part No. 9100-1314, Transformer: neon driver

Figure C-1. Model 419A, Component Location Diagram (Serials Prefixed 514-, 532-, 646-)

Part of Figure C2. A1 Amplifier (00419-66501) (Serials Prefixed 514-, 532-, 646-)

Figure C-2. Amplifier and Amplifier Switching, Schematic and Component Location Diagrams (Serial Prefixed 514-, 532-, 646-)

Model 419A

Figure C-3. Neon Driver (Serials Prefixed 514-)