すべてのシミュレーションでの結果 *1

ここでは、深層学習モデルによる熱力学法則の発見の例証のうち、エントロピー増大則、公理 1 (反射律)、公理 5 (分割性と結合性) において、すべてのテストに使用したシミュレーションの結果を載せる.

 $^{^{*1}}$ この文書はクリエイティブ・コモンズ 4.0 表示-非営利-改変禁止 (CC BY-NC-ND 4.0) で提供する.

図 1: エントロピー増大測のすべてのシミュレーションの結果. 横軸に StateLabel を, 縦軸に $\widetilde{S}(X)$ をとったグラフ. 左から 2 列 ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)$ は StateLabel の単調増加関数の傾向がある.

図 2: エントロピー増大測のすべてのシミュレーションの結果. 横軸に StateLabel を, 縦軸に $\widetilde{S}(X)$ をとったグラフ. 左から 2 列 ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)$ は StateLabel の単調増加関数の傾向がある.

図 3: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 4: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 5: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 6: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 7: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 8: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 9: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 10: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 11: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 12: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 13: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 14: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 15: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 16: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, x 軸反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 17: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 18: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 19: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 20: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 21: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 22: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 23: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 24: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, y 軸反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 25: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 26: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 27: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 28: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, $\frac{\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 29: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 30: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, π 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\tilde{S}(X)$ (青実線) および $\tilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\tilde{S}(X)\simeq \tilde{S}(X')$ となっている.

図 31: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=500,1000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 32: 公理 1 のすべてのシミュレーションの結果. 方法①の 15 種類の操作の 1 つである, 時間反転を施した後, $\frac{3\pi}{2}$ 回転を施した場合の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. すべてのケースにおいて $\widetilde{S}(X)\simeq\widetilde{S}(X')$ となっている.

図 33: 公理 1 のすべてのシミュレーションでの,方法②の結果.横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット.X' は X とマクロな状態変数の値が同じになるようにしてシミュレーションをして得た状態である. 左から 2 列ずつがそれぞれ N=500,1000 の結果. $\widetilde{S}(X)\simeq\widetilde{S}(X')$ であることがわかる.

図 34: 公理 1 のすべてのシミュレーションでの, 方法②の結果. 横軸に StateLabel をとったときの, $\widetilde{S}(X)$ (青実線) および $\widetilde{S}(X')$ (赤破線) のプロット. X' は X とマクロな状態変数の値が同じになるようにしてシミュレーションをして得た状態である. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. $\widetilde{S}(X)\simeq\widetilde{S}(X')$ であることがわかる.

図 35: 公理 5 のすべてのシミュレーションの結果. 横軸は StateLabel で、青実線が $\widetilde{S}(X)$ 、赤破線が $\widetilde{S}(tX,(1-t)X)$ である. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. $\widetilde{S}(X)\simeq\widetilde{S}((1-t)X,tX)$ であることがわかる.

図 36: 公理 5 のすべてのシミュレーションの結果. 横軸は StateLabel で、青実線が $\widetilde{S}(X)$ 、赤破線が $\widetilde{S}(tX,(1-t)X)$ である. 左から 2 列ずつがそれぞれ N=1500,2000 の結果. $\widetilde{S}(X)\simeq\widetilde{S}((1-t)X,tX)$ であることがわかる.