色度测量原理

MacAdam椭圆定义了CIE色度图上的颜色区域,这些区域是人眼无法区分的CIE配色函数(这里显示的椭圆是其实际尺寸的10倍)。

色域描绘了数字显示器可再现的RGB限制。

配色函数

计算刺激色的CIE色坐标:

对于以 $P(\lambda)$ 表示的光谱功率分布(SPD),XYZ三色刺激值计算如下:

 $X = \int P(\lambda)\bar{x} (\lambda) d\lambda$ $Y = \int P(\lambda)\bar{y} (\lambda) d\lambda$ $Z = \int P(\lambda)\bar{z} (\lambda) d\lambda$

CIE 1931	CIE 1976	
$x = \frac{X}{X + Y + Z}$	$u' = \frac{4X}{X + 15Y + 3Z}$	
$y = \frac{Y}{X + Y + Z}$	$v' = \frac{9Y}{X + 15Y + 3Z}$	

测量单位: 亮度测量

亮度测量与 辐射测量比较	亮度测量 人类视觉感知		辐射测量 所有辐射
总光输出	光通量 流明(Im) 1 Im = 1 cd * 1 sr		辐射通量 瓦特 (W)
定向光	发光强度 烛光 (cd) 1 cd = 1 lm/sr		辐射强度 W/sr
表面入射光	照 勒克斯 1 lx = 1 lm/m²	度 英尺-烛光 (fc) 1 fc = 1 lm/ft²	福照度 W/m²
亮度	亮度 cd/m² 1 cd/m² = 1 nit 英尺-朗伯(fL) 1 fL = 1/π * cd/ft²		辐射率 W/sr * m²

cd = 烛光

sr = 球面度

Im = 流明

W = 瓦特

fc = 英尺-烛光

fL = 英尺-朗伯

光谱功率分布

每种光源由其独特的**光谱功率分布 (SPD)** 定义, 其是光源在可见电磁波谱中的每种波长下发射的 辐射功率(瓦特)。

人类明视觉反应

人眼对可见电磁波谱中不同光波长的灵敏度并不相 同。**人类明视觉反应**的灵敏度以标准明视觉观察者 的CIE 1931光度函数表示 (与 \bar{y} 配色曲线对齐) ,峰 值在555纳米左右。因此,绿色波长对人眼而言通常 是最明亮的。

波长 λ (nm)