永磁同步电机伺服系统 自抗扰控制研究

徐晨剑1 王维2

{\bar{1}\text{haipingf}, \bar{2}\text{wangwei881116}}@gmail.com

同济大学

电子与信息工程学院,上海

March 7, 2017

目录

绪论

课题背景与研究意义 国内外研究现状 论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设计与实现

伺服运动系统实验与分析

总结与展望

工学硕士毕设答辩

徐晨剑

经沙

课题背景与研究意义

论文主要研究内容

永磁同步电机控制模型

k磁同步电机自抗扰控 問器

伺服运动系统软硬件; 计与实现

伺服运动系统实验与5 析

总结与展望

工学硕士毕设答辩

徐晨剑

绪论

3 课题背景与研究意义

国内外研究现状

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与 析

並結与屈胡

同倫大學

- ▶ 近距离体验云计算魅力
- ▶ 在实战中提高个人能力
- ▶证明自己,回报开源社区
- ▶ 奖品丰厚, ⑤

工学硕士毕设答辩

徐晨剑

绪论

3 课期背景与研究意义

国内外研究现状

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰搭 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与 析

並结与屈蛆

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

▶ 近距离体验云计算魅力

- ▶ 在实战中提高个人能力
- ▶证明自己,回报开源社区
- ▶ 奖品丰厚, ⑤

工学硕士毕设答辩

徐晨剑

绪论

3 课期背景与研究意义

国内外研究现状

论文主要研究内容

NAME OF THE POSITION OF THE PO

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

同服运动系统头短= 析

单独与屈翅

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

▶ 近距离体验云计算魅力

- ▶ 在实战中提高个人能力
- ▶ 证明自己,回报开源社区
- ▶ 奖品丰厚, ⑤

工学硕士毕设答辩

徐晨剑

绪论

3 课期背景与研究意义

国内外研究现状

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与 析

並结与屈蛆

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

▶ 近距离体验云计算魅力

- ▶ 在实战中提高个人能力
- ▶ 证明自己,回报开源社区
- ▶ 奖品丰厚, ©

国内外研究现状

工学硕士毕设答辩

徐晨剑

绪论

運販背景与研究音♡

国内外研究现状

沙宁主亚研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

当社片屋胡

同僚大学 lege of Electronics and

College of Electronics and Information Engineering Tongji University, Shanghai

傅海平, 男

2011 年毕业于华中科技大学,同年进入中国科学院

计算技术研究所,硕士在读,宅,喜静,性格随和,

崇尚开源与自由,典型的 GNU/Linux 控, Vim 重度

患者, 热爱技术与生活。

国内外研究现状

工学硕士毕设答辩

徐晨剑

国内外研究现状

同腳大學

College of Electronics and Information Engineering Tong ji University, Shanghai

傅海平,男 王维,男

2011 年毕业于华中科技大学,同年进入中国科学院

计算技术研究所,硕士在读,宅,喜静,性格随和,

崇尚开源与自由,典型的 GNU/Linux 控, Vim 重度 喜欢音乐、运动、旅游,热爱技术。

患者,热爱技术与生活。

2011 年毕业于华中科技大学,同年进入中国科学院

计算技术研究所,硕士在读,兴趣广泛,性格开朗,

- ▶ OSSC 为阿里云开放存储服务 (OSS) 提供了一套完整易用的 C SDK,并且实现了面向对象的调用方式。
- ▶ OSSC 实现了 OSS 开放接口规范中所描述的所有功能,包括 Bucket, Object, Multipart Upload 和 Group Object 四大类操作。
- ▶ 此外还提供诸如多线程断点上传,支持多种压缩算法的文件(或内存块)上传和下载,文件夹同步等高级特性。
- ▶ OSSC 良好的接口设计能够大大简化其他用户的编程工作, 其他用户可以通过 OSSC 提供的 API 更方便地访问阿里云 开放存储服务。

工学硕士毕设答辩

徐晨剑

绪论

课题背景与研究意义

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

- ▶ OSSC 为阿里云开放存储服务(OSS)提供了一套完整易用的 C SDK,并且实现了面向对象的调用方式。
- ► OSSC 实现了 OSS 开放接口规范中所描述的所有功能,包括 Bucket, Object, Multipart Upload 和 Group Object 四大类操作。
- ▶ 此外还提供诸如多线程断点上传,支持多种压缩算法的文件(或内存块)上传和下载,文件夹同步等高级特性。
- ▶ OSSC 良好的接口设计能够大大简化其他用户的编程工作, 其他用户可以通过 OSSC 提供的 API 更方便地访问阿里云 开放存储服务。

工学硕士毕设答辩

徐晨剑

绪论

课题背景与研究意义 国由外研究现代

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

- ▶ OSSC 为阿里云开放存储服务(OSS)提供了一套完整易用的 C SDK,并且实现了面向对象的调用方式。
- ▶ OSSC 实现了 OSS 开放接口规范中所描述的所有功能,包括 Bucket, Object, Multipart Upload 和 Group Object 四大类操作。
- ▶ 此外还提供诸如多线程断点上传,支持多种压缩算法的文件(或内存块)上传和下载,文件夹同步等高级特性。
- ▶ OSSC 良好的接口设计能够大大简化其他用户的编程工作, 其他用户可以通过 OSSC 提供的 API 更方便地访问阿里云 开放存储服务。

工学硕士毕设答辩

徐晨剑

绪论

课题背景与研究意义 国内外研究现状

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

- ▶ OSSC 为阿里云开放存储服务 (OSS) 提供了一套完整易用的 C SDK, 并且实现了面向对象的调用方式。
- ▶ OSSC 实现了 OSS 开放接口规范中所描述的所有功能,包括 Bucket, Object, Multipart Upload 和 Group Object 四大类操作。
- ▶ 此外还提供诸如多线程断点上传,支持多种压缩算法的文件(或内存块)上传和下载,文件夹同步等高级特性。
- ▶ OSSC 良好的接口设计能够大大简化其他用户的编程工作, 其他用户可以通过 OSSC 提供的 API 更方便地访问阿里云 开放存储服务。

工学硕士毕设答辩

徐晨剑

绪论

课题背景与研究意义

论文主要研究内容

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

目录

绪论

永磁同步电机控制模型

永磁同步电机数学模型 空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控制器

伺服运动系统软硬件设计与实现

伺服运动系统实验与分析

总结与展望

工学硕士毕设答辩

徐晨剑

绪论

6 永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制

永磁同步电机伺服控制

k磁同步电机自抗扰控 引器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

总结与展望

工学硕士毕设答辩

徐晨剑

20170

永磁同步电机控制模型

永磁同步电机数学模型

它间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

总结与展望

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

工学硕士毕设答辩

徐晨剑

绪化

永磁局集由机控制模型

永磁同步电机数学模型

空间矢量脉宽调制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件i

伺服运动系统实验与公 析

总结与展现

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

- 1. Bucket 操作
- 2. Object 操作
- 3. Multipart Upload 操作
- 4. Object Group 操作

工学硕士毕设答辩

徐晨剑

绪论

永磁局集由机控制構刑

永磁同步电机数学模型

空间矢量脉宽调制

永磁同步电机自抗扰控

伺服运动系统软硬件i

伺服运动系统实验与公 析

总结与展现

同臉大學

College of Electronics and Information Engineering Tongji University, Shanghai

- 1. Bucket 操作
- 2. Object 操作
- 3. Multipart Upload 操作
- 4. Object Group 操作

工学硕士毕设答辩

徐晨剑

2011

永磁同非由机控制模型

永磁同步电机数学模型

空间矢量脉宽调制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件i

伺服运动系统实验与公 析

总结与展现

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

- 1. Bucket 操作
- 2. Object 操作
- 3. Multipart Upload 操作
- 4. Object Group 操作

工学硕士毕设答辩

徐晨剑

绪论

永磁同步由机控制模型

永磁同步电机数学模型

che districte that the constitution

永磁同步电机伺服控制

永磁同步电机自抗扰控 剧器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展现

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

- 1. Bucket 操作
- 2. Object 操作
- 3. Multipart Upload 操作
- 4. Object Group 操作

工学硕士毕设答辩

徐晨剑

角化

永磁同非由机控制模刑

永磁同步电机数学模型

至回失量脒嵬调制

永磁同步电机自抗扰**搭** 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

访问阿里云开放存储服务的入口"类"是 oss_client_t,与此对应的所有函数均以 client_前缀开头,并且第一个参数都是指向 client 结构的指针。例如:

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

访问阿里云开放存储服务的入口"类"是 oss_client_t,与此对应的所有函数均以 client_前缀开头,并且第一个参数都是指向 client 结构的指针。例如:

- ▶ 设置 Bucket 权限:
- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);

工学硕士毕设答辩

徐晨剑

28110

永磁同步电机控制模型

永磁同步电机数学模型

主向人並亦见何明 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

College of Electronics and Information Engineering Tongji University, Shanghai

访问阿里云开放存储服务的入口"类"是 oss_client_t,与此对应的所有函数均以 client_前缀开头,并且第一个参数都是指向 client 结构的指针。例如:

- ▶ 设置 Bucket 权限:
- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);

工学硕士毕设答辩

徐晨剑

会论

J-785日止由初秋相ば刑

永磁同步电机数学模型

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同為大學 College of Electronics and

Information Engineering
Tongji University, Shanghai

client_ 函数簇出错信息处理

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);
- ► client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后,出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why() 获取具体 (human-readable) 出错信息。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

总结与展望

同僚大学

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket name, const char *acl, unsigned short *retcode);
- ► client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后,出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why() 获取具体 (human-readable) 出错信息。

工学硕士毕设答辩

徐晨剑

绪论

永磁局張由和控制權刑

永磁同步电机数学模型

空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);
- ► client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后,出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why() 获取具体 (human-readable) 出错信息。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);
- ► client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后,出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why() 获取具体 (human-readable) 出错信息。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket_name, const char *acl, unsigned short *retcode);
- ► client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后,出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why() 获取具体 (human-readable) 出错信息。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

client 函数簇出错信息处理

- void client_set_bucket_acl(oss_client_t *client, const char *bucket name, const char *acl, unsigned short *retcode);
- ▶ client_ 函数簇中的每个函数的最后一个参数是 unsigned short * 类型。
- ▶ 如果不需要获取出错信息,可以向该参数传递 NULL
- ▶ 否则需要传递一个 unsigned short 类型存储单元地址。
- ▶ 函数返回后, 出错信息保存在 retcode 指向的内存单元中。
- ▶ 最后调用 oss_why()¹ 获取具体 (human-readable) 出错 信息。
- 10.1.6 新增,旧版本为 oss_get_error_message_from_retcode()

工学硕士毕设答辩

徐晨剑

永磁同步电机物学模型

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

同服运动系统软硬件设 十与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

OSSC 在 Ubuntu 12.04 上开发,我们测试了 OSSC 在不同 Linux 操作系统发行版的稳定性,以下是 OSSC 经过测试操作系统:

OSSC 在 Ubuntu 12.04 上开发,我们测试了 OSSC 在不同 Linux 操作系统发行版的稳定性,以下是 OSSC 经过测试操作系统:

▶ Ubuntu 12.04, 11.10, 11.04, 10.10, 10.04

工学硕士毕设答辩 徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉窦调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

OSSC 在 Ubuntu 12.04 上开发,我们测试了 OSSC 在不同 Linux 操作系统发行版的稳定性,以下是 OSSC 经过测试操作系统:

- ▶ Ubuntu 12.04, 11.10, 11.04, 10.10, 10.04
- ▶ CentOS 5.5

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

水磁同步电机数字模

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

OSSC 在 Ubuntu 12.04 上开发,我们测试了 OSSC 在不同 Linux 操作系统发行版的稳定性,以下是 OSSC 经过测试操作系统:

- ▶ Ubuntu 12.04, 11.10, 11.04, 10.10, 10.04
- ▶ CentOS 5.5
- ▶ Fedora 15, 16, 17

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

水燃回步电机数字模

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

OSSC 在 Ubuntu 12.04 上开发,我们测试了 OSSC 在不同 Linux 操作系统发行版的稳定性,以下是 OSSC 经过测试操作系统:

- ▶ Ubuntu 12.04, 11.10, 11.04, 10.10, 10.04
- ▶ CentOS 5.5
- ▶ Fedora 15, 16, 17
- ▶ openSUSE 12.2

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

空间矢量脉宽调制

永磁同步电机自抗扰挡

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

总结与展望

同濟大學

编译与安装

OSSC 基于 CMake 构建,并依赖 CURL 库进行 HTTP 请求操作,此外不依赖其他第三方库,因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

空间矢量脉密调制

2.1-17-(2.2.1-36-1-114

永磁同步电机自抗扰控

伺服运动系统软硬件设

伺服运动系统实验与分 析

总结与展望

编译与安装

OSSC 基于 CMake 构建,并依赖 CURL 库进行 HTTP 请求操作,此外不依赖其他第三方库,因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

▶ 安装 CURL, http://curl.haxx.se/download.html

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

空间矢量脉宽调制

-turnification and an entire doubt

永磁同步电机自抗扰控 ^{制器}

司服运动系统软硬件设 +与空印

伺服运动系统实验与分 析

总结与展望

同濟大學

编译与安装

OSSC 基于 CMake 构建,并依赖 CURL 库进行 HTTP 请求操作,此外不依赖其他第三方库,因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

- ▶ 安装 CURL, http://curl.haxx.se/download.html
- ▶ 下载 OSSC 源码并解压, 进入到 build 目录, 执行 cmake ../.

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

编译与安装

OSSC 基于 CMake 构建, 并依赖 CURL 库进行 HTTP 请求操作, 此外不依赖其他第三方库, 因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

- ▶ 安装 CURL, http://curl.haxx.se/download.html
- ▶ 下载 OSSC 源码并解压,进入到 build 目录,执行 cmake ../.
- ▶ 编译和安装 make && make install

工学硕士毕设答辩 徐晨剑

绪论

永磁同步电机控制模型

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 剧器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

编译与安装

OSSC 基于 CMake 构建, 并依赖 CURL 库进行 HTTP 请求操作, 此外不依赖其他第三方库, 因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

- ▶ 安装 CURL, http://curl.haxx.se/download.html
- ▶ 下载 OSSC 源码并解压,进入到 build 目录,执行 cmake ../.
- ▶ 编译和安装 make && make install
- ▶ OSSC 默认安装在/usr/local 目录下,可以如下指定安装 路径:

工学硕士毕设答辩 徐晨剑

绪论

永磁同步电机控制模型

空间矢量脉宽调制

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

编译与安装

OSSC 基于 CMake 构建,并依赖 CURL 库进行 HTTP 请求操作,此外不依赖其他第三方库,因此你只需要确保你的系统中安装了 CMake 和 CURL 库。

- ▶ 安装 CURL, http://curl.haxx.se/download.html
- ▶ 下载 OSSC 源码并解压,进入到 build 目录,执行 cmake ../.
- ▶ 编译和安装 make && make install
- ▶ OSSC 默认安装在/usr/local 目录下,可以如下指定安装路径:
- ► cmake -DCMAKE_INSTALL_PREFIX = /your-path ../.

工学硕士毕设答辩 徐晨剑

经论

永磁同步电机控制模型

空间矢量脉宽调制

永磁同步电机自抗扰控

同服运动系统软硬件设

伺服运动系统实验与分 析

总结与展望

同濟大學

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

水燃用罗电机双子模3

永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

同服运动系统软硬件设

伺服运动系统实验与5 析

总结与展望

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

OSSC 为开发者提供了丰富的文档和大量的示例

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

12 永磁同步电机伺服控制

永磁同步电机自抗扰控 □器

司服运动系统软硬件记

伺服运动系统实验与分 析

总结与展望

同僚大学

College of Electronics and Information Engineering Tongji University, Shanghai

OSSC 为开发者提供了丰富的文档和大量的示例

▶ OSSC 的开发者文档位于 doc/html 中,强烈建议开发者首 先与读相关页面,加深对 OSSC 的理解。

OSSC 为开发者提供了丰富的文档和大量的示例

- ▶ OSSC 的开发者文档位于 doc/html 中,强烈建议开发者首先与读相关页面,加深对 OSSC 的理解。
- ► OSSC 目前提供的开发者手册包括《OSSC 介绍》,《OSSC 安装步骤》,《OSSC 编码规范》,《OSSC 实现原理》,《高级模块 Extra 库》,《API 使用示例》以及由 Doxygen 生成的 API 索引。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

12 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同僚大学

OSSC 为开发者提供了丰富的文档和大量的示例

- ▶ OSSC 的开发者文档位于 doc/html 中,强烈建议开发者首 先与读相关页面,加深对 OSSC 的理解。
- ▶ OSSC 目前提供的开发者手册包括《OSSC 介绍》,《OSSC 安装步骤》,《OSSC 编码规范》,《OSSC 实现原理》,《高 级模块 Extra 库》,《API 使用示例》以及由 Doxygen 生成的 API 索引。
- ► 示例代码位于 example 目录中,默认情况下,编译 OSSC 会为各个示例生成可执行文件,可执行文件位于 build/example 目录中。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机数学模型

12 永磁同步电机伺服控制

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同濟大學

开发者手册

工学硕士毕设答辩

徐晨剑

安心

k磁同步电机控

< 磁同步电机数学模型

永磁同步电机伺服控制

磁同步电机自抗抗

伺服运动系统转 计与实现

伺服运动系统实验与 析

总结与展望

同濟大學 College of Electronics and

Information Engineering
Tongji University, Shanghai

目录

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

自抗扰控制器理论 永磁同步电机自抗扰控制 永磁同步电机自抗扰控制仿真 测试与文档

伺服运动系统软硬件设计与实现

伺服运动系统实验与分析

总结与展望

工学硕士毕设答辩

徐晨剑

44分

永磁同步电机控制模型

14 永磁同步电机自抗扰控制器

自抗扰控制器理论

永磁同步电机自抗扰控制

水燃用少电机日机机区 真

测试与文档

伺服运动系统软硬件设 计与实现

同服运动系统实验与分 版

总结与展望

同濟大學

自抗扰控制器理论

工学硕士毕设答辩

徐晨剑

OSSC 内置了多线程断点续传的功能²

自抗批控制器理论

测试与文档

同臉大學

²目前多线程只支持 Pthread, 所以为了不影响跨平台性, 我们将该功能集成到 ossextra 包中, 在你的程序中需要设置链接参数 -lossextra

自抗扰控制器理论

OSSC 内置了多线程断点续传的功能²

工学硕士毕设答辩

徐晨剑

绪论

H 10

走球日止由机械相线用

永磁同步电机自抗扰搭

制器 自抗批控制器理论

ET DEDECTE BY BEINE

永盛同步电机自抗扰控制(真

测试与文档

司服运动系统软硬件记

月刊头观 白町に油乏研究(4)14-15-1

总结与展望

同僚大学

²目前多线程只支持 Pthread, 所以为了不影响跨平台性, 我们将该功能集成到 ossextra 包中, 在你的程序中需要设置链接参数 -lossextra

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

16 自抗扰控制器理论

永磁同步电机自抗扰控制 永磁同步电机自抗扰控制优

测试与文档

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

总结与展望

同臉大學

College of Electronics and Information Engineering

- ▶ OSSC 实现了一个简洁的线程池,池中默认线程数目为 4。
- ► 多线程上传过程中主线程会在当前目录下创建一个文件夹, 用于保存 Upload ID 和已成功上传文件块的元信息,上传成 功后该文件夹将被删除。
- ▶ 如果某次上传过程被中断,再次启动上传时不会重复上传 先前已成功上传的文件块。

工学硕士毕设答辩 徐晨剑

ARNA

永磁同步由机控制模型

永磁同步电机自抗扰控 制器

16 自抗扰控制器理论

永磁同步电机自抗扰控制 永磁同步电机自抗扰控制(直

测试与文档

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

总结与展望

同條大學 College of Electronics and Information Engineering

Tongji University Shanghai

. .

- ▶ OSSC 实现了一个简洁的线程池,池中默认线程数目为 4。
- ▶ 多线程上传过程中主线程会在当前目录下创建一个文件夹, 用于保存 Upload ID 和已成功上传文件块的元信息,上传成 功后该文件夹将被删除。
- ▶ 如果某次上传过程被中断,再次启动上传时不会重复上传 先前已成功上传的文件块。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

16 自抗扰控制器理论

永磁同步电机自抗扰控制 永磁同步电机自抗扰控制促 真

测试与文档

伺服运动系统软硬件设 计与实现

伺服运动系统实验与5 析

並結与屈蛆

同廳大學

College of Electronics and Information Engineering

- ▶ OSSC 实现了一个简洁的线程池,池中默认线程数目为 4。
- ► 多线程上传过程中主线程会在当前目录下创建一个文件夹, 用于保存 Upload ID 和已成功上传文件块的元信息,上传成 功后该文件夹将被删除。
- ▶ 如果某次上传过程被中断,再次启动上传时不会重复上传 先前已成功上传的文件块。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

6 自抗扰控制器理论

永磁同步电机自抗扰控制仿 真

测试与文档

伺服运动系统软硬件设 计与实现

伺服运动系统实验与**分**

单结与屈组

同僚大学

College of Electronics and Information Engineering

- ▶ OSSC 实现了一个简洁的线程池,池中默认线程数目为 4。
- ▶ 多线程上传过程中主线程会在当前目录下创建一个文件夹, 用于保存 Upload ID 和已成功上传文件块的元信息,上传成 功后该文件夹将被删除。
- ▶ 如果某次上传过程被中断,再次启动上传时不会重复上传 先前已成功上传的文件块。

永磁同步电机自抗扰控制

OSSC 为阿里云存储设计了一套可扩展的压缩文件格式,最多支持 256 种压缩算法,开发者可以实现自己的压缩方式,目前内置 LZ4, LZO 两种压缩算法。

为什么设计一套支持多种压缩算法的文件格式?

工学硕士毕设答辩

徐晨剑

绪论

永磁同共由机控制構刑

永磁同步电机自抗扰控

自抗扰控制器理论

7 永磁同步电机自抗扰控制

永磁同步电机自抗扰控制仿

测试与文档

伺服运动系统软硬件设

计与实现

.

总结与展望

同濟大學

永磁同步电机自抗扰控制

OSSC 为阿里云存储设计了一套可扩展的压缩文件格式,最多支持 256 种压缩算法,开发者可以实现自己的压缩方式,目前内置 LZ4, LZO 两种压缩算法。

为什么设计一套支持多种压缩算法的文件格式?

工学硕士毕设答辩

徐晨剑

绪论

小磁局非由机控制横刑

永磁同步电机自抗扰控

自抗扰控制器理论

永磁同步电机自抗扰控制

小型目中申和自由非常制度

测试与文档

同服运动系统软硬件设

计与实现

Ť

总结与展望

同僚大学

永磁同步电机自抗扰控制

工学硕士毕设答辩

徐晨剑

OSSC 为阿里云存储设计了一套可扩展的压缩文件格式,最多支持 256 种压缩算法,开发者可以实现自己的压缩方式,目前内置 LZ4, LZO 两种压缩算法。

为什么设计一套支持多种压缩算法的文件格式?

不同的压缩算法压缩比和压缩速率不同,压缩比越大,可能压缩速率越低,但是压缩后的文件更小,更适合网络传输;相反,压缩速率越快,可能压缩效果不是非常出色,但是可以近实时压缩。

绪论

永磁同張由和控制模型

永磁同步电机自抗扰控

自抗扰控制器理论

永磁同步电机自抗扰控制

永磁同步电机自抗扰控制仿

测试与文档

伺服运动系统软硬件

计与实现

用版运列系统头短与: 「

总结与展望

同僚大学

| Block Length |


```
+---+---+
|"0"|"S"|"S"|"C"| V | A | F | L |
                         "OSSC": Magic Number;
+---+---+
                              V: Compressed File Version, Current Version 0x1
        MD5 [00-07]
                              A: Compression Algorithm, 0x1(LZ4), 0x2(LZ0), ...
                              F: Flag, 0x1: Integrity Check, ...
+---+---+
                              L: Header Length, Max Value 255
        MD5 [08-15]
+---+---+ Optional: Optional Header, Not Used In Version 0x1
     Optional(4 Bytes)
+---+---+---+---+
| Block Length |
+----+
                          X(Compressed Data Block 1)
     Compressed Data
+------
| Block Length |
+----+
                          X(Compressed Data Block 2)
     Compressed Data
Compressed
         Data
                          X(Compressed Data Block 3 ~ (n - 1))
        Blocks.
```

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰打

自抗扰控制器理

永磁同步电机自抗扰控制

7 水磁问步电机日机机控制

测试与文档

利服运动系统软硬件设 十与实现

伺服运动系统实验与分 析

总结与展望

同臉大學

OSSC 文件压缩、解压缩 API

工学硕士毕设答辩

徐晨剑

44分

永磁同步电机控制模型

永磁同步电机自抗扰控

自抗扰控制器理

19 永磁同步电机自抗扰控制

永磁同步电机自抗扰控制仿 真

测试与文档

同服运动系统软硬件记

伺服运动系统实验与分

首独片屋胡

同僚大学

OSSC 文件压缩、解压缩 API

```
extern void
oss_compress_file(
        const char *infile,
        const char *outfile,
        char algorithm, char flag, int level);
```

```
void
```

```
oss_decompress_file(
        const char *infile,
        const char *outfile);
```

工学硕士毕设答辩

徐晨剑

永磁同步电机自抗批控制

测试与文档

同僚大學

OSSC 实时压缩上传 API

```
oss_put_object_result_t *
client_put_compressed_object_from_file(
    oss_client_t *client,
    const char *bucket_name,
    const char *key,
    oss_object_metadata_t *metadata,
    void *input, char algorithm,
    char flag, char level,
    unsigned short *retcode);
```

工学硕士毕设答辩

徐晨剑

4830

永磁同步电机控制模型

永磁同步电机自抗扰控

自抗扰控制

20 永磁同步电机自抗扰控制

永磁同步电机自抗扰控制仿

测试与文档

伺服运动系统软硬件设

伺服运动系统实验与分

MAT E RE

总结与展望

同僚大学

OSSC 实时解压缩下载 API

工学硕士毕设答辩

徐晨剑

4830

永磁同步由机控制模型

永磁同步电机自抗扰搭

自抗批控制器

21 永磁同步电机自抗扰控制

永磁同步电机自抗扰控制仿 市

测试与文档

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分

总结与展望

同濟大學

永磁同步电机自抗扰控制仿真

OSSC 同时还内置了文件夹同步功能

工学硕士毕设答辩

徐晨剑

永磁同步电机自抗批控制仿

测试与文档

同濟大學

永磁同步电机自抗扰控制仿真

OSSC 同时还内置了文件夹同步功能

文件夹同步上传

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控

自抗扰控制器理论

2 永磁同步电机自抗批控制仿

测试与文档

服运动系统软硬件设

计与实现

总结与展望

同僚大学

永磁同步电机自抗扰控制仿真

OSSC 同时还内置了文件夹同步功能

文件夹同步上传

文件夹同步下载

工学硕士毕设答辩

徐晨剑

绪论

永磁同步由机控制模型

永磁同步电机自抗扰控

自抗扰控制器理论

) 永磁同步电机自抗扰控制仿

测试与文档

伺服运动系统软硬件设

计与实现

总结与展望

同僚大学

文件夹同步功能实现原理

- ▶ 首先获取指定 Bucket 中的所有 Object 元信息。
- ▶ 对于同步上传,为了避免重复上传,首先检验本地文件夹中的文件 ETag,如果发现远程 Bucket 也存在该文件,则该文件不上传。
- ▶ 对于同步下载也采取相同的策略,首先检验本地文件夹中的文件 ETag,如果发现该文件已经存在,则该文件不下载。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

自抗扰控制器理论

永磁同步电机自抗扰控制

) 永磁同步电机自抗扰控制仿 真

测试与文档

伺服运动系统软硬件设 计与实现

司服运动系统实验与分 折

总结与展望

同僚大学

文件夹同步功能实现原理

- ▶ 首先获取指定 Bucket 中的所有 Object 元信息。
- ▶ 对于同步上传,为了避免重复上传,首先检验本地文件夹中的文件 ETag,如果发现远程 Bucket 也存在该文件,则该文件不上传。
- ▶ 对于同步下载也采取相同的策略,首先检验本地文件夹中的文件 ETag,如果发现该文件已经存在,则该文件不下载。

工学硕士毕设答辩

徐晨剑

经论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

自抗扰控制器理论

永磁同步电机自抗扰控制

) 永磁同步电机自抗扰控制仿 真

测试与文档

伺服运动系统软硬件设 计与实现

司服运动系统实验与分 ff

总结与展望

同僚大学

文件夹同步功能实现原理

- ▶ 首先获取指定 Bucket 中的所有 Object 元信息。
- ▶ 对于同步上传,为了避免重复上传,首先检验本地文件夹中的文件 ETag,如果发现远程 Bucket 也存在该文件,则该文件不上传。
- ▶ 对于同步下载也采取相同的策略,首先检验本地文件夹中的文件 ETag,如果发现该文件已经存在,则该文件不下载。

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

自抗扰控制器理论

永磁同步电机自抗扰控制

) 永磁同步电机自抗扰控制仿 真

测试与文档

伺服运动系统软硬件设

何服运动系统实验与分

쓰스타드교레

总结与展望

同濟大學

文件夹同步功能实现原理

- ▶ 首先获取指定 Bucket 中的所有 Object 元信息。
- ▶ 对于同步上传,为了避免重复上传,首先检验本地文件夹中的文件 ETag,如果发现远程 Bucket 也存在该文件,则该文件不上传。
- ► 对于同步下载也采取相同的策略,首先检验本地文件夹中的文件 ETag,如果发现该文件已经存在,则该文件不下载。

工学硕士毕设答辩

徐晨剑

绪论

永磁同共由机控制構刑

永磁同步电机自抗扰控 制器

自抗扰控制器理论

永磁同步电机目抗扰控制 永磁同步电机自抗扰控制仿

) 永磁同步电机自抗扰控制仿 真

测试与文档

伺服运动系统软硬件设 计与实现

司服运动系统实验与 F

总结与展望

同僚大学

测试与文档

所有的测试用例均使用 Valgrind 检测,确保无内存错误和 多线程竞争。

OSSC 高级特性也提供了完善的文档,详细内容可参考 OSSC 手册 (doc/html 相关页面)

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

自抗扰控制器理论

永磁同步电机自抗扰控制位

测试与文档

伺服运动系统软硬件设 计与实现

同服运动系统实验与分

首任七届祖

总结与展望

同濟大學

测试与文档

所有的测试用例均使用 Valgrind 检测,确保无内存错误和 多线程竞争。

OSSC 高级特性也提供了完善的文档,详细内容可参考 OSSC 手册 (doc/html 相关页面)

工学硕士毕设答辩

徐晨剑

测试与文档

同僚大學

目录

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设计与实现 伺服运动系统硬件设计与实现 伺服运动系统程序设计与实现

伺服运动系统实验与分析

总结与展望

工学硕士毕设答辩

徐晨剑

4830

永磁同步电机控制模型

永磁同步电机自抗扰控制器

25 伺服运动系统软硬件设 计与实现

何服运动系统硬件设计与实

何服运动系统程序设计与3 现

伺服运动系统实验与5 析

总结与展望

同僚大学

- ▶ Bug 无小事,如果您发现了 OSS C SDK 的 Bug,我们非常 欢迎您提交 Bug 信息, 我们也会尽快对此进行修复。
- ▶ 同样地,我们会持续对 OSS C SDK 进行维护和升级,如果 您对 OSS C SDK 有新的想法,或者愿意帮助我们改进它, 我们也希望听到您的声音。
- ▶ 另外, 如果您希望获取源码, 或者演示文档的 LATEX 源码, 请:

工学硕士毕设答辩

徐晨剑

伺服运动系统硬件设计与实

- ▶ Bug 无小事,如果您发现了 OSS C SDK 的 Bug,我们非常欢迎您提交 Bug 信息,我们也会尽快对此进行修复。
- ▶ 同样地,我们会持续对 OSS C SDK 进行维护和升级,如果 您对 OSS C SDK 有新的想法,或者愿意帮助我们改进它, 我们也希望听到您的声音。
- ► 另外,如果您希望获取源码,或者演示文档的 LATEX 源码,请:

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控

伺服运动系统软硬件设 计与实现

| | 何服运动系统硬件设计与实

何服运动系统硬件设计与头 现

何服运动系统程序设计与9 现

伺服运动系统实验与分

总结与展望

同濟大學

- ▶ Bug 无小事,如果您发现了 OSS C SDK 的 Bug,我们非常欢迎您提交 Bug 信息,我们也会尽快对此进行修复。
- ▶ 同样地,我们会持续对 OSS C SDK 进行维护和升级,如果 您对 OSS C SDK 有新的想法,或者愿意帮助我们改进它, 我们也希望听到您的声音。
- ► 另外,如果您希望获取源码,或者演示文档的 LATEX 源码,请:

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控

伺服运动系统软硬件设 计与实现

可服运动系统硬件设计与实 和

何服运动系统程序设计与实

现

伺服运动系统实验与分 析

总结与展望

同濟大學

- ▶ Bug 无小事,如果您发现了 OSS C SDK 的 Bug,我们非常欢迎您提交 Bug 信息,我们也会尽快对此进行修复。
- ▶ 同样地,我们会持续对 OSS C SDK 进行维护和升级,如果 您对 OSS C SDK 有新的想法,或者愿意帮助我们改进它,我们也希望听到您的声音。
- ► 另外,如果您希望获取源码,或者演示文档的 LATEX 源码,请:
- ► Fork Me On GitHub:

http://github.com/forhappy/OSSC

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设 计与实现

一 何服运动系统硬件设计与实

何服运动系统程序设计与3

刊版/29/永统任厅设计与3 现

伺服运动系统实验与分 析

总结与展望

同濟大學

伺服运动系统程序设计与实现

徐晨剑1 王维2

{1haipingf, 2wangwei881116}@gmail.com

http://www.cnblogs.com/haippy

地址: 北京市海淀区中关村科学院南路 6号

邮编: 100190

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰搭 制器

伺服运动系统软硬件设 计与实现

伺服运动系统硬件设计与3 型

27 何服运动系统程序设计与实 现

> 伺服运动系统实验与分 析

总结与展望

同僚大学

亲,欢迎提问!

工学硕士毕设答辩

徐晨剑

绪详

永磁同步电机控制模型

永磁同步电机自抗扰指 制器

伺服运动系统软硬件i 计与实现

何服运动系统硬件设计与 现

| 何服运动系统程序设计与实现

伺服运动系统实验与分 析

总结与展望

目录

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设计与实现

伺服运动系统实验与分析 速度测试 位置测试

总结与展望

工学硕士毕设答辩

徐晨剑

4830

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 社与实现

29 伺服运动系统实验与分

速度测试

27 WESTER 12

结与展望

同僚大学

速度测试

工学硕士毕设答辩

徐晨剑

结论

永磁同步电机控制模型

永磁同步电机自抗扰抖

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分

存驱制法

.....

位置测试

工学硕士毕设答辩

徐晨剑

结论

北端日半由却於割構刑

永磁同步电机自抗扰挡

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

100.00130014

位置测试

目录

绪论

永磁同步电机控制模型

永磁同步电机自抗扰控制器

伺服运动系统软硬件设计与实现

伺服运动系统实验与分析

总结与展望

全文总结 未来工作展望 工学硕士毕设答辩

徐晨剑

结论

永磁同步电机控制模型

永磁同步电机自抗扰控 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与分 析

32 总结与展望

全文总结

未来工作展望

同濟大學

全文总结

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰抖

伺服运动系统软硬件设 计与实现

伺服运动系统实验与: 析

总结与展望

3 全文总结

主人必知

N水上IF原呈

未来工作展望

工学硕士毕设答辩

徐晨剑

绪论

永磁同步电机控制模型

永磁同步电机自抗扰哲 制器

伺服运动系统软硬件设 计与实现

伺服运动系统实验与: 析

总结与展望

全文总结

未来工作展望

