Klasyfikacja obiektów gwiezdnych na podstawie charakterystyki spektralnej

Michał Klemens, 266883 Politechnika Wrocławska Informatyka Stosowana 5 Czerwiec, 2023

I. WSTEP

Kategoryzacja gwiazd, galaktyk i kwazarów na podstawie ich właściwości spektralnych jest kluczowym pojęciem w astronomii. Dzieląc gwiazdy na różne kategorie w oparciu o czynniki takie jak ich temperatura, jasność i skład chemiczny, możemy uzyskać wgląd w ich właściwości fizyczne i etapy ewolucji. Wczesne próby katalogowania gwiazd i ich położenia na niebie doprowadziły do odkrycia, że są one częścią naszej własnej galaktyki, a gdy teleskopy stały się bardziej zaawansowane, ustalono, że istnieją inne galaktyki, takie jak Andromeda, co zapoczątkowało dalsze badania. Aby lepiej zrozumieć raport należy zapoznać się z opisem każdej z klas:

• Gwiazda, jej życie rozpoczyna się od grawitacyjnego zapadnięcia się mgławicy gazowej składającej się głównie z wodoru, helu i śladowych ilości cięższych pierwiastków. Jej całkowita masa jest głównym czynnikiem determinującym jej ewolucję i ostateczny los. Gwiazda świeci przez większość swojego aktywnego życia dzięki termojądrowej fuzji wodoru w hel w swoim jądrze. Proces ten uwalnia energię, która przemierza wnętrze gwiazdy i promieniuje w przestrzeń kosmiczną. Pod koniec życia gwiazdy jej jądro staje się gwiezdną pozostałością: białym karłem, gwiazdą neutronową lub - jeśli jest wystarczająco masywna - czarną dziurą.

Fig. 1. Słońce, najbliższa Ziemi gwiazda. [1]

 Galaktyka to układ gwiazd, pozostałości gwiezdnych, gazu międzygwiezdnego, pyłu i ciemnej materii powiązanych ze sobą grawitacyjnie. Większość masy w typowej galaktyce ma postać ciemnej materii, a tylko kilka procent tej masy jest widoczne w postaci gwiazd i mgławic. Ponadto w centrach galaktyk często spotykane są supermasywne czarne dziury.

Fig. 2. NGC 4414, typowa galaktyka spiralna w konstelacji Coma Berenices [2]

• Kwazar to niezwykle jasne aktywne jądro galaktyczne. Emisja światła z kwazaru jest powodowana przez supermasywną czarną dziurę o masie od milionów do dziesiątek miliardów mas Słońca, otoczoną gazowym dyskiem akrecyjnym. Gaz w dysku opadający w kierunku czarnej dziury nagrzewa się z powodu tarcia i uwalnia energię w postaci promieniowania elektromagnetycznego. Energia promieniowania kwazarów jest ogromna; najpotężniejsze kwazary mają jasność tysiące razy większą niż galaktyki takie jak Droga Mleczna.

Fig. 3. Impresja artystyczna pokazująca, jak mógł wyglądać ULAS J1120+0641, bardzo odległy kwazar zasilany przez czarną dziurę o masie dwa miliardy razy większej niż masa Słońca. [3]

II. DANE I ICH PRZYGOTOWANIE

Dane składają się ze 100 000 obserwacji przestrzeni kosmicznej wykonanych przez SDSS (Sloan Digital Sky Survey). Każda obserwacja jest opisana przez 17 kolumn cech i 1

kolumnę klasy, która identyfikuje ją jako gwiazdę, galaktykę lub kwazar. Lista cech:

- obj_ID identyfikator obiektu to unikalna wartość, która identyfikuje obiekt w katalogu obrazów używanym przez archiwum danych Sloan Digital Sky Survey (SDSS),
- alpha rektascensja w epoce J2000, jedna ze współrzędnych astronomicznych, określających położenie ciała niebieskiego na sferze niebieskiej,
- delta deklinacja w epoce J2000, jedna ze współrzędnych astronomicznych, określających położenie ciała niebieskiego na sferze niebieskiej,
- u, g, r, i, z to filtry fotometryczne używane w systemie SDSS do pomiaru ilości światła z obiektów w różnych zakresach długości fal. Każdy filtr odpowiada innemu kolorowi światła, przy czym u to zakres ultrafioletu, g zieleni, r czerwieni, i bliskiej podczerwieni, a z podczerwieni,
- run_ID numer przebiegu służy do identyfikacji konkretnego skanu nieba wykonanego przez SDSS. Każdy skan obejmuje określony obszar nieba i ma przypisany unikalny numer przebiegu,
- rerun_ID numer ponownego uruchomienia służy do określenia sposobu przetwarzania obrazu
- cam_col kolumna kamery służy do identyfikacji linii skanowania w przebiegu. Każdy skan jest podzielony na wiele kolumn kamer, aby objąć większy obszar nieba,
- field_ID numer pola służy do identyfikacji każdego pola w skanowaniu, które jest mniejszym obszarem w kolumnie kamery,
- spec_obj_ID unikalny identyfikator używany dla obiektów spektroskopii optycznej. Oznacza to, że dwie różne obserwacje z tym samym identyfikatorem spec_obj_ID muszą dzielić klasę wyjściową, którą jest galaktyka, gwiazda lub kwazar,
- class klasa obiektu, przypisana mu na podstawie jego charakterystyki spektralnej. Może być to galaktyka, gwiazda lub kwazar,
- redshift wartość przesunięcia ku czerwieni opiera się na wzroście długości fali światła emitowanego przez obiekt z powodu jego ruchu od lub w kierunku obserwatora,
- plate identyfikator płytki identyfikuje każdą płytkę używaną w badaniu spektroskopowym SDSS. Każda płytka zawiera wiele włókien, które zbierają światło z różnych obiektów.
- MJD zmodyfikowana data juliańska, używana do wskazania, kiedy dany fragment danych SDSS został pobrany.
- fiber_ID identyfikator włókna, który identyfikuje włókno, które skierowało światło na płaszczyznę ogniskową w każdej obserwacji.

Raport skupia się na analizie charakterystyki spektralnej. Zatem można odrzucić wszystkie cechy pełniące rolę identyfikatora. To znaczy: run_ID, rerun_ID, field_ID, spec_obj_ID, fiber_ID, a także plate i cam_col. Dodatkowo data wykonania obserwacji MJD oraz cechy: deklinacja

(**delta**) i rektascensja (**alpha**), które stanowią o położeniu obiektu na mapie nieba, również można odrzucić.

Pozostałe cechy stanowią o charakterystyce spektralnej obiektu (**u**, **g**, **r**, **i**, **z** oraz **redshift**) i to własnie one będą wykorzystywane w rozwiązaniu problemu klasyfikacji.

III. ANALIZA EKSPLORACYJNA

Analizując dane można zauważyć znaczącą dysproporcję w liczebności poszczególnych klas. Zbiór zawiera 59445 galaktyk (ang. galaxy), 18961 kwazarów (ang. quasar) oraz 21594 gwiazd (ang. star), co ilustruje poniższy wykres.

Fig. 4. Wykres liczebności każdej klasy obiektu w zbiorze danych

Jako ciekawostkę można przedstawić również mapę nieba, obrazującą położenie każdego badanego obiektu na niebie.

Fig. 5. Mapa nieba wraz z zaznaczonymi na niej wszystkimi obiektami w zbiorze danych.

Korelacje cech z klasą obiektu przedstawione są w tabeli (Table I). Jak widać największą korelację z klasą obiektu mają cechy **redshift** (0,536) oraz **i** (0,284). Można zauważyć, że cechy będące identyfikatorami w większości mają znikomą korelację z klasą obiektu. Co również przemawia za odrzuceniem owych cech ze zbioru. Należy dodać, że cecha **rerun_ID** w całym zbiorze przyjmuje tylko jedną wartość, dlatego nie jest ujęta w tabeli.

Wykrywanie wartości odstających zostało przeprowadzone przy użyciu metody rozstępu międzykwartylowego (ang. interquantile range, IQR). Metoda ta polega na obliczeniu pierwszego (QI) oraz trzeciego (Q3) kwartyla, a także wspomnianego wcześniej rozstępu, którego wzór wygląda następująco: IQR = Q3 - Q1. Wartości odstające są definiowane jako

Cecha	Korelacja
field_ID	-0,038
u	-0,017
g	0,005
run_ID	0,000
obj_ID	0,000
alpha	0,004
cam_col	0,014
Z	0,017
fiber_ID	0,032
delta	0,056
r	0,150
MJD	0,207
spec_obj_ID	0,215
plate	0,215
i	0,284
redshift	0,536
TABL	ΕI

KORELACJA CECH Z KLASĄ OBIEKTU

obserwacje, które spadają poniżej Q1-1,5IQR lub powyżej Q3+1,5IQR.

Metodę zastosowano dla każdej cechy stanowiącej o charakterystyce spektralnej danej obserwacji. Z jej pomocą odrzucono 8992 obserwacji.

Poniżej przedstawiono również histogramy oraz wykresy skrzypcowe dla dwóch najbardziej skorelowanych z klasą obiektu cech.

Fig. 6. Wykresy słupkowe oraz skrzypcowe dla cech: ${\bf i}$ - lewa kolumna, ${\bf redshift}$ - prawa kolumna.

Można zauważyć, że gwiazdy bardzo mocno wyróżniają się na podstawie samej cechy **redshift**. Ponadto znacząca większość kwazarów ma wyższe wartości tej cechy w porównaniu z resztą klas. Dla cechy **i** rozkład jej wartości w klasie kwazarów najbardziej się wyróżnia z pozostałych.

Do zbalansowania liczebności każdej z klas przyjęto podejście nadpróbkowania (ang. oversampling). Zapewniło to równą liczbę obserwacji każdej z klas, jednocześnie nie powodując

utraty informacji jak w przypadku metody polegającej na usuwaniu danych z klasy większościowej (ang. undersampling).

Skalowanie cech ma kluczowe znaczenie dla niektórych algorytmów uczenia maszynowego, które uwzględniają odległości między obserwacjami. W przypadku SVM, jeśli cechy wejściowe używają różnych skali, to niektóre z nich mogą mieć większy zakres wartości niż inne. Może to sprawić, że SVM położy większy nacisk na cechy o większych skalach, a więc nierównomiernie uwzględnieni poszczególne z nich w procesie uczenia. Poniżej przedstawiono wykresy pudełkowe (ang. box plot) dla każdej z przeskalowanych cech.

Fig. 7. Wykresy pudełkowe (ang. box plot) przeskalowanych cech.

Ostatecznie zbiór danych został podzielony na części treningową (około 140 tys. próbek) oraz testową (około 36 tys. próbek).

IV. KLASYFIKACJA SVM

Klasyfikacja SVM (Support Vector Machine) to jedna z popularnych metod używanych w dziedzinie uczenia maszynowego do rozwiązywania problemów klasyfikacji. Polega na wyznaczeniu hiperpłaszczyzny - czyli granicy rozdzielającej zbiór na różne klasy - poprzez maksymalizacje odległości (marginesu) hiperpłaszczyzny od próbek najbliższych hiperpłaszczyźnie (wektorów nośnych) Do rozwiązania problemu zastosowano jądro RBF (Radial Basis Function), które umożliwia skuteczną klasyfikację nawet w przypadku złożonych danych. Separacja każdej z klas odbyła się na zasadzie jeden kontra jeden (ang. one vs one). Z uwagi na ograniczenia związane z mocą obliczeniową, zastosowano domyślne parametry dla SVM.

Poniżej znajduje się tablica pomyłek (ang. confusion matrix) oraz tabela z metrykami dla opisanego wcześniej modelu.

Klasa	recall	precision	F1	Liczebność
Galaktyka	0.92	0.95	0.94	11731
Gwiazda	0.98	1.00	0.99	11836
Kwazar	0.97	0.92	0.94	11906
Średnia aryt.	0.96	0.96	0.96	35473
TABLE II				

METRYKI DLA MODELU SVM

Fig. 8. Tablica pomyłek dla klasyfikacji z użyciem SVM.

Bazując na tablicy pomyłek jesteśmy w stanie stwierdzić, iż najgorzej model radził sobie z klasyfikacją kwazarów. Ponad tysiąc z nich zostało zaklasyfikowanych jako galaktyki. Natomiast najlepiej wyszła mu klasyfikacja gwiazd - pomylił jedynie dwie gwiazdy klasyfikując je jako galaktyki. To samo możemy odczytać z tabeli metryk (Table II). Ogólna celność (ang. accuracy) czyli stosunek dobrze dokonanych klasyfikacji do ilości wszystkich dokonanych klasyfikacji wynosi 0.96. Co jest bardzo dobrym wynikiem.

V. KLASYFIKACJA RF

Las losowy (Random Forest) to metoda oparta na koncepcji łączenia danych wyjściowych wielu drzew decyzyjnych w celu uzyskania pojedynczego wyniku. Ideą lasu losowego jest tworzenie wielu drzew decyzyjnych na podstawie losowego podzbioru danych oraz losowego wyboru cech dla każdego drzewa. Następnie, las losowy łączy wyniki z tych drzew, wybierając klasę, która jest najczęściej wskazywana przez poszczególne drzewa. Dzięki zastosowaniu wielu drzew, las losowy ma zdolność do radzenia sobie z nieliniowymi zależnościami w danych, a także do redukcji efektu przeuczenia (overfitting) dzięki niskiej korelacji między modelami (drzewami), działającymi w grupie. Wyniki działania algorytmu obrazuje tablica pomyłek (Fig. 9) (ang. confusion matrix) oraz tabela z metrykami (Table III).

Klasa	recall	precision	F1	Liczebność
Galaktyka	1.00	0.98	0.99	11731
Gwiazda	1.00	1.00	1.00	11836
Kwazar	0.98	1.00	0.99	11906
Średnia aryt.	0.99	0.99	0.99	35473
		TABLE III		

METRYKI DLA MODELU RF

Model lasu losowego najgorzej radził sobie z klasyfikacją galaktyk, najczęściej oznaczał je jako kwazary. Jednak całościowo model wypadł bardzo dobrze, klasyfikując z celnością (ang. accuracy) na poziomie 0.99.

Fig. 9. Tablica pomyłek dla klasyfikacji z użyciem RF.

VI. WNIOSKI

Oba modele, SVM (Support Vector Machine) i RF (Random Forest), osiągnęły znakomite rezultaty w zadaniu klasyfikacji obiektów gwiezdnych. W celu dalszej poprawy wyników, można byłoby zastosować metodę strojenia hiperparametrów, na przykład za pomocą GridSearchCV. Niemniej jednak, obecnie modele radzą sobie już bardzo dobrze. Na podstawie analizy charakterystyki spektralnej, były w stanie poprawnie sklasyfikować odpowiednio 96% (SVM) i 99% (RF) obiektów. Pozostałe metryki takie jak recall, precision oraz F1 również prezentują się bardzo dobrze.

Wyniki wskazują, że Random Forest był najlepszym klasyfikatorem spośród rozpatrywanych w tym konkretnym problemie. Różnica między algorytmami była niewielka, wynosząca około 3%.

APPENDIX

Pierwotnie ten raport miał być zorientowany wokół rankingu chińskich uniwersytetów [4] i poruszać problem przewidywania wyniku rankingowego danego uniwersytetu na podstawie jego danych oraz danych ekonomicznych z regionu, w którym się znajdował. Ranking uniwersytetów obejmuje 590 instytucji z całych Chin. Każda z nich miała być oceniana na podstawie następujących cech:

- region,
- rok założenia,
- liczba studentów,
- liczba studentów z zagranicy,
- liczba magistrantów i doktorantów,
- liczba magistrantów i doktorantów z zagranicy,

Dodatkowo dane miały zostać wzbogacone o dane ekonomiczne z regionu instytucji. Były to między innymi:

- wskaźnik bezrobocia,
- produkt regionalny brutto,
- · wskaźnik śmiertelności,
- liczbę placówek edukacji wyższej,
- liczebność populacji wiejskiej oraz miejskiej,
- fundusze przeznaczane na edukacje.

Jednak po ekstrakcji danych okazało się, że jedynie około 25% uniwersytetów ma dane dla każdej cechy. Natomiast pozostałe 75% ma braki dla niektórych z nich. Dokładniej opisuje to tabela (Table IV).

Liczba cech z danymi	Liczba uniwersytetów	
0	6	
1	434	
4	1	
6	4	
7	145	
TABLE IV		

UNIWERSYTETY I LICZBA CECH Z NIEPUSTĄ WARTOŚCIĄ

Dodatkowo, nie odnaleziono żadnych innych źródeł danych, które mogłyby służyć jako uzupełnienie brakujących informacji. Natomiast manualne przeszukiwanie stron każdego z 445 uniwersytetów w poszukiwaniu tych danych byłoby uciążliwym i mało efektywnym podejściem, zważywszy na fakt, że nie wszystkie instytucje udostępniały takie informacje publicznie, a niektóre oferowały jedynie przybliżone wartości dla określonych cech.

Zdecydowano zaniechać dalszej analizy i eksploracji problemu, ponieważ tak niewielka liczba uniwersytetów z pełnymi danymi nie byłaby w stanie skutecznie rozwiązać tego problemu.

REFERENCES

- [1] NASA/SDO, "The sun by the atmospheric imaging assembly of nasa's solar dynamics observatory," 2011.
 [2] The Hubble Heritage Team", "Ngc 4414," 1999.
 [3] M. Kornmesser, "eso1122a," 2011.

- [4] shanghairanking.com/rankings/bcur/202311