Perfectoid signature and an application to étale fundamental groups

Hanlin Cai¹, Seungsu Lee¹, Linquan Ma² Karl Schwede¹, Kevin Tucker,³

¹University of Utah ²Purdue University ³University of Illinois at Chicago

Northwestern University May 2023

Based on arXiv:2209.04046

Detecting singularities

Let (R, \mathfrak{m}) be a Noetherian local ring.

Theorem (Kunz)

In char. p > 0, F Frobenius

R is regular

 $\Leftrightarrow F_*R = R^{1/p}$ fflat R-module

 $\Leftrightarrow R_{perf} = colim_e F_*^e R$ fflat R-module.

Detecting singularities part 2

Since mixed characteristic conference:

Theorem (Bhatt-Iyengar-Ma)

In mixed characteristic (0, p),

R is regular

 \Leftrightarrow there is $R \to B$ with B perfectoid, fflat / R.

(also an almost fflat version)

Instead of detecting sings, measure them.

Measuring singularities in char *p*

Suppose $(R, \mathfrak{m}, k = k^p)$ is complete Noetherian local domain characteristic p > 0, dim R = d.

If R is regular, $F_*^e R = R^{1/p^e}$ is free over R of rank p^{ed} .

#gens
$$R^{1/p^e}$$
 = length($R^{1/p^e}/\mathfrak{m}R^{1/p^e}$) = p^{ed} .

Do an example! (on a board)

If R^{1/p^e} is not free, then since it is free of rank p^{ed} at generic point, we see:

$$\#\operatorname{gens} R^{1/p^e} = \operatorname{length}(R^{1/p^e}/\mathfrak{m}R^{1/p^e}) > p^{ed}.$$

Hilbert-Kunz multiplicity

Definition (Kunz, Monsky)

If $J \subseteq R$ is \mathfrak{m} -primary, *Hilbert-Kunz mulitiplicity*

$$e_{HK}(J,R) = \lim_{e o \infty} rac{\operatorname{length}(R^{1/p^e}/JR^{1/p^e})}{p^{ed}}.$$

If R is regular & $J = \mathfrak{m}$, $e_{HK}(R) := e_{HK}(\mathfrak{m}, R) = 1$.

If *R* not regular & $J = \mathfrak{m}$, $e_{HK}(R) > 1$. (Watanabe-Yoshida)

Bigger $e_{HK}(R)$ means MORE singular R.

 $e_{HK}(R)$ can be irrational (Brenner).

Measuring singularities in char *p* part 2

Suppose $(R, \mathfrak{m}, k = k^p)$ is complete Noetherian local domain characteristic p > 0, dim R = d.

Write

$$R^{1/p^e}=R^{\oplus a_e}\oplus M_e$$
 M_e no free R -summands $a_e=\operatorname{length} R/I_e,$ $I_e:=\{x\in R\mid R\xrightarrow{1\mapsto x^{1/p^e}}R^{1/p^e} ext{ does not split}\}$

(Sketch why, on a board!)

F-signature

You can ask what percentage of R^{1/p^e} is free, asymptotically.

Definition (Smith-Van den Bergh, Huneke-Leuschke, Tucker)

F-signature is defined

$$s(R) := \lim_{e \to \infty} \frac{a_e}{p^{ed}}.$$

The "fraction" of R^{1/p^e} that is *free*, asymptotically.

$$0 \le s(R) \le 1$$
.

Smaller s(R) means MORE singular R.

$$R \text{ regular} \Leftrightarrow s(R) = 1 \text{ (Watanabe-Yoshida)}$$

Examples

Example (ADE surface singularities)

For surface singularities, p > 5.

type	equation	s(R)	$e_{HK}(R)$
$\overline{(A_n)}$	$xy+z^{n+1}$	$\frac{1}{n+1}$	2 - s(R)
(D_n)	$x^2 + yz^2 + y^{n-1}$	$\frac{1}{4(n-2)}$	2 - s(R)
(E_6)	$x^2 + y^3 + z^4$	1 24	2 - s(R)
(E_7)	$x^2 + y^3 + yz^3$	1 48	2 - s(R)
(E_8)	$x^2+y^3+z^5$	120	2 - s(R)

 $e_{HK} = 2 - s(R)$ since mult. 2 hypersurface (only mult. 2)

A more *interesting* example

Example (Monsky)

 $k = \overline{k}$ char 2.

$$R = k[x, y, z]/((\lambda^2 + \lambda)x^2y^2 + z^4 + xyz^2 + (x^3 + y^3)z)$$

then $e_{HK}(R) = 3 + 4^{-m}$ where $m = [\mathbb{F}_2(\lambda) : \mathbb{F}_2]$.

If λ transcendental, $e_{HK}(R)=3$. Otherwise it's >3 (depends on degree of λ/\mathbb{F}_p).

le, this is a family over $\operatorname{Spec} k[\lambda]$. Then very general fiber is least singular. Lack of semi-continuity.

Positive signature and motivation

Theorem (Aberbach-Leuschke)

 $s(R) > 0 \Leftrightarrow R$ is strongly F-regular.

- Whatever strong F-regularity is, you can define it as above.
- strong *F*-regular is char. p > 0 analog of klt sings/ \mathbb{C} .
- Expect s(R) > 0 means R behaves like klt sings.

There was conj. (Kollár), $|\pi_1(\partial B \cap X_{\text{nonsing}})| < \infty$, B small ball around klt singularity $x \in X/\mathbb{C}$.

Theorem (Braun, Xu-Zhuang, cf. Xu, Bhatt-Gabber-Olsson)

 $|\pi_1(\partial B \cap X_{\text{nonsing}})| \le d^d/\widehat{\text{vol}}(x,X)$ (norm. vol., cf. Li-Liu-Xu, etc)

An application

• If $(R, \mathfrak{m}, k) \subseteq (S, \mathfrak{n}, l)$ finite split étale-in-codim.=1, then:

$$s(R) \cdot [K(S) : K(R)] = s(S) \cdot [I : k].$$

(Say a word about the proof, on a board!)

Corollary (Carvajal-Rojas - S. - Tucker)

If
$$(R, \mathfrak{m}, k = \overline{k})$$
 is strongly F-regular, then

$$|\pi_1^{\acute{e}t}((\operatorname{Spec}\widehat{R})_{\operatorname{nonsing}})| \leq 1/s(R).$$

Mixed characteristic

Our goal, $(R = \widehat{R}, \mathfrak{m}, k = k^p)$ mixed characteristic.

- Find analog of $e_{HK}(J, R)$.
- Find analog of s(R).
- Prove analogous results from char p > 0.
- Conclude étale fun. group. $(k = \overline{k})$ for "nice" R

$$|\pi_1^{\text{\'et}}((\operatorname{Spec} R)_{\operatorname{nonsing}})| \leq 1/s(R) < \infty.$$

No Frobenius! (or resolution of singularities).

An idea! Instead of R^{1/p^e} , maybe we can use R_{perf} in char. p > 0.

.... then in mixed char. use perfectoidization (Bhatt-Scholze).

Normalized length

Recall normalized length (Faltings, cf. Gabber-Ramero).

$$A = k[\![x_1, \dots, x_n]\!]$$
 OR $A = W(k)[\![p = x_1, x_2, \dots, x_n]\!]$ Consider: $A \to A_e := A[x_1^{1/p^e}, \dots, x_d^{1/p^e}]$ $(e = \infty \text{ ok, but } p\text{-complete}).$

(Write A_{∞} defin on board, completed)

- M is an A_{∞} -mod., $\mathfrak{m}^N \cdot M = 0$. Define $\lambda_{\infty}(M)$.
- If M'' f.p. $M'' = M''_e \otimes_{A_e} A_{\infty}$,

$$\lambda_{\infty}(M'') = \operatorname{length}(M''_e)/p^{ed}.$$

- If M' f.g, $\lambda_{\infty}(M') = \inf_{M'' \to M'} \lambda_{\infty}(M'')$.
- In general $\lambda_{\infty}(M) = \sup_{M' \hookrightarrow M} \lambda_{\infty}(M')$.

Using normalized length

Theorem (Cai-Lee-Ma-S.-Tucker)

If $(R, \mathfrak{m}, k = k^p)$ complete Noeth. local domain char. p > 0Fix $A \subseteq R$ Noether norm. (Cohen). Then

$$e_{HK}(J,R) = \lambda_{\infty}(R_{\mathsf{perf}}/JR_{\mathsf{perf}})$$
 and

$$s(R) = \lambda_{\infty}(R_{\mathsf{perf}}/I_{\infty})$$

where $I_{\infty} = \{x \in R_{\mathsf{perf}} \mid R \xrightarrow{1 \mapsto x} R_{\mathsf{perf}} \text{ not split}\}.$

Note
$$I_{\infty} = \bigcup_{e} I_{e}^{1/p^{e}}$$
.

Mixed characteristic definition

 $(R, \mathfrak{m}, k = k^p)$ mixed char. complete Noetherian domain.

- Fix $A := W(k)[x_2, ..., x_d] \subseteq R$.
- Let $R_{\mathsf{perfd}}^{\underline{\mathsf{x}}} := (R \otimes_{\mathcal{A}} A_{\infty})_{\mathsf{perfd}}$ (Bhatt-Scholze).
- Note $R_{\rm perfd}^{\underline{x}}$ is a ring, an A_{∞} -module. Can take normalized length of A_{∞} -mods as before.

Definition

$$\begin{array}{l} \textit{Perfectoid Hilbert-Kunz: } e^{\underline{x}}_{\mathsf{perfd}}(J,R) := \lambda_{\infty}(R^{\underline{x}}_{\mathsf{perfd}}/JR^{\underline{x}}_{\mathsf{perfd}}). \\ \\ \textit{Perfectoid signature: } s^{\underline{x}}_{\mathsf{perfd}}(R) := \lambda_{\infty}(R^{\underline{x}}_{\mathsf{perfd}}/I_{\infty}), \\ \\ \mathsf{where } I_{\infty} = \{x \in R^{\underline{x}}_{\mathsf{perfd}} \mid R \xrightarrow{1 \mapsto \mathsf{x}} R^{\underline{x}}_{\mathsf{perfd}} \ \textit{not split}\}. \end{array}$$

Agrees with char. p > 0 definitions. (Write on board!)

Properties of perfectoid Hilbert-Kunz

Theorem (CLM_T)

- $e_{\text{perfd}}^{\underline{x}}(R) := e_{\text{perfd}}^{\underline{x}}(\mathfrak{m}, R) \geq 1$.
- $e_{perfd}(R) = 1 \Leftrightarrow R$ is regular.
- If $J = (f_1, \dots, f_d)$, $\sqrt{J} = \mathfrak{m}$ (param. ideal), then $e_{\text{perfd}}^{\underline{X}}(J) = e(J, R)$ (Hilbert-Samuel multiplicity).
- If $I \subseteq J \mathfrak{m}$ -primary then

$$e^{\underline{X}}_{\mathsf{perfd}}(I,R) = e^{\underline{X}}_{\mathsf{perfd}}(J,R) \quad \Leftrightarrow \quad \mathit{IB} = \mathit{JB}$$

for some perfectoid BCM (Big Cohen-Macaulay) B. (Exist by André, Gabber. Note $\widehat{\mathbb{R}^+}$ is one such by Bhatt.)

 $e_{perfd}(R)$ bigger means R is more singular.

Questions

Questions

- independent of $A \subseteq R$, $\underline{x} = x_2, \dots x_d$?
- semi-continuity Zariski topology? Even:

$$e_{\mathsf{perfd}}(R) \geq e_{\mathsf{perfd}}(\widehat{R_Q})$$

$$s_{\mathsf{perfd}}(R) \leq s_{\mathsf{perfd}}(\widehat{R_Q}).$$

• fflat ascent? (Lech)

$$(R,\mathfrak{m}) \xrightarrow{\mathsf{fflat}} (S,\mathfrak{n})$$

$$e_{\mathsf{perfd}}(R) \leq e_{\mathsf{perfd}}(S)$$
?

"Nice" rings, BCM-regularity

Definition

R is weakly BCM-regular if $R \hookrightarrow B$ splits/pure for every perfectoid BCM (Big Cohen-Macaulay) B.

R is *BCM-regular* if it is also \mathbb{Q} -Gorenstein (ie, hypersurface) For pair $(R, \Delta \geq 0)$ *BCM-regular* makes sense (log \mathbb{Q} -Gor.).

(BCM-regular \Rightarrow KLT, = strongly *F*-regular in char p > 0).

Example: log regular \Rightarrow (R, Δ) BCM-regular for some Δ .

Example: $\mathbb{Z}_p[\![x,y,z]\!]/(p^3+x^3+y^3+z^3)$ BCM-regular (p>3).

Example: $\mathbb{Z}_p[[y,z]]/(p^2z-x(x-z)(x+z))$ not BCM-regular.

Properties of perfectoid signature

Detects regularity.

Theorem (CLM_T)

$$0 \le s_{perfd}^{\underline{x}}(R) \le 1$$
.

$$R \text{ is regular } \Leftrightarrow s_{perfd}^{\underline{x}}(R) = 1$$

Detects BCM-regularity.

Theorem (CLM_T)

If $s_{perfd}^{\underline{\chi}}(R) > 0$, then R weakly BCM-regular.

If R (or
$$(R, \Delta)$$
) is BCM-regular, then $s_{perfd}^{\underline{\chi}}(R) > 0$.

$$(\mathbb{Q}$$
-gor. \Rightarrow equiv.)

Transformation rules

Suppose $(R, \mathfrak{m}, k) \subseteq (S, \mathfrak{n}, l)$ finite, étale in codim 1.

Theorem (CLM_T)

$$s_{\mathsf{perfd}}^{\underline{\chi}}(R) \cdot [K(S) : K(R)] = s_{\mathsf{perfd}}^{\underline{\chi}}(S) \cdot [I : k].$$

Transformation rule also works for μ_n -in-1-covers even if p|n (for good choice of A, \underline{x}).

Proof idea.

- assume k = I.
- Extension is gen. free rank [K(S) : K(R)] := r.
- $S_{\text{perfd}}^{\underline{x}}/I_{\infty}^{R}S_{\text{perfd}}^{\underline{x}}\stackrel{g-\text{almost}}{\simeq}S_{\text{perfd}}^{\underline{x}}/I_{\infty}^{\underline{S}}$. So have same normalized length.
- Want to compare $M = S_{\text{perfd}}^{\underline{x}}(R)/I_{\infty}^{R}S_{\text{perfd}}^{\underline{x}}$ and $N = \bigoplus^{r}R_{\text{perfd}}^{\underline{x}}/I_{\infty}^{R}$. Work mod p. $M \to N \to M$.

An example

As a consequence:

Example (ADE surface singularities)

S regular dim 3., p > 5.

$$R = S/f$$
, $\mathfrak{m}_S = (x, y, z)$.

type	f	$s_{perfd}^{X}(R)$	$e_{\text{perfd}}^{X}(R)$
$\overline{(A_n)}$	$xy + z^{n+1}$	1 n+1	2-s(R)
(D_n)	$x^2 + yz^2 + y^{n-1}$	$\frac{1}{4(n-2)}$	2 - s(R)
(E_6)	$x^2+y^3+z^4$	1 24	2 - s(R)
(E_7)	$x^2 + y^3 + yz^3$	1 48	2 - s(R)
(E_8)	$x^2+y^3+z^5$	1 120	2 - s(R)

 $e_{HK} = 2 - s(R)$ since mult. 2 hypersurface (only mult. 2)

For some cases, need careful choice $A \subseteq R$. (Uses Carvajal-Rojas - Ma - Polstra - S. - Tucker).

Application

Theorem (CLM_T)

Suppose $(R, \mathfrak{m}, k = \overline{k})$ complete Noeth. local. Set $U = (\operatorname{Spec} R)_{\operatorname{nonsing}}$. Then

$$|\pi_1^{ extit{\'et}}(U)| \leq 1/s_{ ext{perfd}}^{ extit{X}}(R).$$

In particular, if R is BCM-regular, then it's finite.

Furthermore, for careful choice of A,

$$|CI(R)_{\text{tors}}| \leq 1/s_{\text{perfd}}^{\underline{x}}(R).$$

Hence, R is BCM-regular \Rightarrow torsion in class group is finite.

Other variants, like Greb-Kebekus-Peternell / $\mathbb C$ also work.

Thanks

Thank you for listening!

Thank Bhargav for math we used!