CS 373: Theory of Computation

Manoj Prabhakaran

Mahesh Viswanathan

Fall 2008

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
 - i.e., the universe of regular languages is *closed* under these operations

Closure Properties

Definition 1. Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \dots L_n$$
 regular $\implies L = \operatorname{op}(L_1, L_2, \dots L_n)$ is regular

Example 2. Regular languages are closed under

- "halving", i.e., L regular $\implies \frac{1}{2}L$ regular.
- "reversing", i.e., L regular $\implies L^{\text{rev}}$ regular.

Operations from Regular Expressions

Proposition 3. Regular Languages are closed under \cup , \circ and * .

Proof. (Summarizing previous arguments.)

- L_1, L_2 regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
 - $\implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2 \text{ regular.}$
 - $\implies L_1 \circ L_2 = L(R_1 \circ R_2) \implies L_1 \circ L_2 \text{ regular.}$
 - $\implies L_1^* = L(R_1^*) \implies L_1^* \text{ regular.}$

Closure Under Complementation

Proposition 4. Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof. • If L is regular, then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that L = L(M).

• Then, $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (i.e., switch accept and non-accept states) accepts \overline{L} .

What happens if M (above) was an NFA?

Closure under \cap

Proposition 5. Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof. Observe that $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular

• Hence,
$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$
 is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $\bullet \ \ Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)

What happens if M_1 and M_2 where NFAs? Still works! Set $\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a)$.

An Example

Homomorphism

Definition 6. A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$
- For each $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.
- A homomorphism h maps a string $a \in \Sigma^*$ to a string in Δ^* by mapping each character of a to a string $h(a) \in \Delta^*$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^*$, h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example 7. $h: \{0,1\} \rightarrow \{a,b\}^*$ where h(0) = ab and h(1) = ba. Then h(0011) = ababbaba

Homomorphism as an Operation on Languages

Definition 8. Given a homomorphism $h: \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example 9. Let $L = \{0^n 1^n \mid n \ge 0\}$ and h(0) = ab and h(1) = ba. Then $h(L) = \{(ab)^n (ba)^n \mid n \ge 0\}$ Exercise: $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$. $h(L_1 \circ L_2) = h(L_1) \circ h(L_2)$, and $h(L^*) = h(L)^*$. Closure under Homomorphism

Proposition 10. Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof. We will use the representation of regular languages in terms of $regular\ expressions$ to argue this.

- Define homomorphism as an operation on regular expressions
- Show that L(h(R)) = h(L(R))
- Let R be such that L = L(R). Let R' = h(R). Then h(L) = L(R').

Homomorphism as an Operation on Regular Expressions

Definition 11. For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Example 12. If $R = (0 \cup 1)^*001(0 \cup 1)^*$ and h(0) = ab and h(1) = bc then $h(R) = (ab \cup bc)^*ababbc(ab \cup bc)^*$

Formally h(R) is defined inductively as follows.

$$h(\emptyset) = \emptyset \qquad h(R_1R_2) = h(R_1)h(R_2)$$

$$h(\epsilon) = \epsilon \qquad h(R_1 \cup R_2) = h(R_2) \cup h(R_2)$$

$$h(a) = h(a) \qquad h(R^*) = (h(R))^*$$

Proof of Claim

Claim

For any regular expression R, L(h(R)) = h(L(R)).

Proof. By induction on the number of operations in R

- Base Cases: If $R = \epsilon$ or \emptyset then h(R) = R and h(L(R)) = L(R) and so claim holds. If R = a then $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.
- Induction Step: Let $R = R_1 \cup R_2$. Then $h(R) = h(R_1) \cup h(R_2)$. Further $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$. By induction hypothesis, $h(L(R_i)) = L(h(R_i))$ and so $h(L(R)) = L(h(R_1) \cup h(R_2))$

Other cases $(R = R_1 R_2 \text{ and } R = R_1^*) \text{ similar.}$

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

• No! Consider $L = \{0^n 1^n \mid n \ge 0\}$ and h(0) = a and $h(1) = \epsilon$. Then $h(L) = a^*$.

Applying a homomorphism can "simplify" a non-regular language into a regular language.

Inverse Homomorphism

Definition 13. Given homomorphism $h: \Sigma^* \to \Delta^*$ and $L \subseteq \Delta^*$, $h^{-1}(L) = \{w \in \Sigma^* \mid h(w) \in L\}$ $h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Example 14. Let $\Sigma = \{a, b\}$, and $\Delta = \{0, 1\}$. Let $L = (00 \cup 1)^*$ and h(a) = 01 and h(b) = 10.

- $h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$? $(1001)^* \subsetneq L$

Note: In general $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition 15. Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof. We will use the representation of regular languages in terms of DFA to argue this. Given a DFA M recognizing L, construct an DFA M' that accepts $h^{-1}(L)$

• Intuition: On input w M' will run M on h(w) and accept if M does.

Closure under Inverse Homomorphism

• Intuition: On input w M' will run M on h(w) and accept if M does.

Example 16. $L = L((00 \cup 1)^*)$. h(a) = 01, h(b) = 10.

Closure under Inverse Homomorphism

Formal Construction

- Let $M=(Q,\Delta,\delta,q_0,F)$ accept $L\subseteq \Delta^*$ and let $h:\Sigma^*\to \Delta^*$ be a homomorphism
- Define $M' = (Q', \Sigma, \delta', q'_0, F')$, where
 - -Q'=Q
 - $q_0' = q_0$
 - -F'=F, and
 - $\ \delta'(q,a) = q' \ \textit{where} \ q \xrightarrow{h(a)}_{M} q'; \ M' \ \text{on input} \ a \ \text{simulates} \ M \ \text{on} \ h(a)$
- M' accepts $h^{-1}(L)$

• Because $\forall q, q', w. \ q \xrightarrow{w}_{M'} q'$ if and only if $q \xrightarrow{h(w)}_{M} q'$ (exercise: show by induction on |w|)

Application: Proving Non-Regularity

Problem 17. Show that $L = \{a^nba^n \mid n \ge 0\}$ is not regular

Proof. Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K = \{0^n 1^n \mid n \ge 0\}$ ("reduction")

More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K. Then, since K is not regular, L cannot be regular.

Application: Proving Non-Regularity

Using Closure Properties

Proof (contd). To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

• Consider homomorphism $h_1: \{a, b, c\}^* \to \{a, b, c\}^*$ defined as $h_1(a) = a$, $h_1(b) = b$, $h_1(c) = a$.

$$- L_1 = h_1^{-1}(L) = \{(a \cup c)^n b (a \cup c)^n \mid n \ge 0\}$$

- Let regular language $L' = L(a^*bc^*)$. $L_2 = L_1 \cap L' = \{a^nbc^n \mid n \geq 0\}$
- Homomorphism $h_2: \{a,b,c\}^* \to \{0,1\}^*$ is defined as $h_2(a) = 0$, $h_2(b) = \epsilon$, and $h_2(c) = 1$.

$$- L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = K$$

• Now if L is regular then so are L_1, L_2, L_3 , and K. But K is not regular, and so L is not regular.

Application: Proving Regularity

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA. Consider

 $L = \{w \mid M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w\}$

Is L regular?

Note that M does not necessarily accept all strings in $L; L \subseteq L(M)$.

By applying a series of regularity preserving operations to L(M) we will construct L, thus showing that L is regular

Application: Proving Regularity

Computations: Valid and Invalid

- Consider an alphabet Δ consisting of [paq] where $p, q \in Q$, $a \in \Sigma$ and $\delta(p, a) = q$. So symbols of Δ represent transitions of M.
- Let $h: \Delta \to \Sigma^*$ be a homomorphism such that h([paq]) = a
- $L_1 = h^{-1}(L(M))$; L_1 contains strings of L(M) where each symbol is associated with a pair of states that represent some transition
 - Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M
- We will first remove all the strings from L_1 that correspond to invalid computations, and then remove those that do not visit every state at least once.

Application: Proving Regularity

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \cdots \cup [q_0 a_k q_k])\Delta^*)$$

 $([q_0a_1q_1], \dots [q_0a_kq_k])$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\sum_{q \neq r} [paq][rbs])\Delta^*)$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

• The second state of the last symbol must be in F. This holds trivially for strings in L_3 because we started out with only the strings that were accepted by M

Application: Proving Regularity

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

$$L = h(L_4)$$

 \bullet Hence, L is regular.

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

- \bullet Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_1, L_2, \ldots L_k$ through regularity preserving operations
- Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- ullet Inverse Homomorphism

(And several other operations...)