

Recommender Systems

Recap: Classes of learning Problems

Supervised Learning

Data: (*x*,*y*)

Goal: Learn function to map

x **→** *y*

Unsupervised Learning

Data: *x x is data, No labels*

Goal: Learn Learn underlying structure

This thing is like the other thing

What is Reinforcement Learning?

Problems involving an **agent** interacting with an **environment** which provides (numeric) reward signals.

Data: State-action pairs

Goal: Learn how to take actions in order to maximize reward

Eat this thing because it will keep you alive.

Classical RL

Agents interact with their environment through a sequence of **observations**, **actions** and **rewards**.

RL taxonomy

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Classical RL

Reward: feedback that measures the success of failure of the agent's action

Total Reward (Return)
$$\sum_{i=t}^{\infty} r_i = r_t + r_{t+1} \dots + r_{t+n} + \dots$$

Classical RL

Total Reward (Return)
$$\sum_{i=t}^{\infty} r_i = r_t + r_{t+1} \dots + r_{t+n} + \dots$$

$$R_{t} = \sum_{i=t}^{\infty} \gamma^{i} r_{i} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$$

 γ : discount factor ; $0 < \gamma < 1$, designed to make future rewards worth less

Policy

What is the probability that an agent will select a specific action in a given state?

- If an agent follows policy Π at time t, then Π (a|s) is the probability that $A_t = a$ if $S_t = s$.
- This means that, at time t, under policy Π , the probability of taking action a in state s is Π (a|s).

Note that, for each state $s \in S$, Π is a probability distribution over $a \in A(s)$

How do we measure the quality of actions?

Q-function

$$Q(\mathbf{s_t}, \mathbf{a_t}) = \mathbb{E}[R_t | \mathbf{s_t}, \mathbf{a_t}]$$

Q-function captures the **expected total future reward** an agent in state can receive by executing a certain action **a**_t

How useful is a given action in gaining some future reward.

- Good actions result high Q value
- Bad actions result low Q value

Q-function

 The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geqslant 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

- The maximum sum of rewards r_t discounted by γ at each time step t, achievable by a policy $\Pi = p(a|s)$.
- The agent operates based on a policy
 □ to approximate Q-values (state-action pairs) that maximize a future reward.

This is done by enforcing the **Bellman equation**:

Bellman equation:

$$Q^{*}(s,a) = \mathbb{E}_{s^{'} \sim \varepsilon} \left[r + \gamma \max_{a^{'}} \underline{Q^{*}(s^{'},a^{'})} | s,a \right]$$

Given any state-action pair (s, a) the maximum cumulative reward achieved is the sum of the reward for that pair **r** plus the value of the next state we end up with, s'.

The value at state s' is going to be the maximum over actions a' at $Q^*(s',a')$.

- The objective of RL is to find an optimal policy in a sense that the expected return over all successive time steps is the maximum achievable.
- This can be done by learning the optimal Q-values for each state-action pairs.

Q-Learning

Q-Learning

The lizard wants to eat as many crickets as possible in the least amount of time without stumbling across a bird, which will, itself, eat the lizard.

 States determined by individual tiles and where the agent is at a given time

Q-Learning

At the beginning the lizard has no idea of how good any action is at any given state

de la constant de la	

		<u>Actions</u>			
		Left	Right	Up	Down
	1 cricket	0	0	0	0
States	Empty 1	0	0	0	0
	Empty 2	0	0	0	0
	Empty 3	0	0	0	0
	Bird	0	0	0	0
	Empty 4	0	0	0	0
	Empty 5	0	0	0	0
	Empty 6	0	X+10	0	0
	5 crickets	0	0	0	0

Q-table

Q-Learning (Exploration Vs Exploitation)

Exploration: the act of exploring the environment in order to find out information about it.

Exploitation: making use of the information that is already known about the environment in order to maximize the return. **Q-table look up**.

if random_num > epsilon:
choose action via exploitation
else:
choose action via exploration

Greedy **Epsilon** strategy

Q-Learning (Updating Q-table)

- To update the Q-value We use the bellman equation
- We want to make the Q(s,a) for any state action pair as close as possible to the right hand side of the Bellman equation.
- The formula to calculate new O-values:

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}$$

Q-Learning (Updating Q-table)

discount rate $\gamma = 0.99$ learning rate C = 0.7

$$egin{aligned} arrho^{\,new\,\, ext{value}} & (s,a) = (1-lpha) \, arrho_{\, ext{old value}} + lpha \, \left(R_{t+1} + \gamma \max_{a'} arrho_{\,(s',\,a')}
ight) \ &= (1-0.7) \, (0) + 0.7 \, \left(-1 + 0.99 \, \left(\max_{a'} arrho_{\,(s',\,a')}
ight)
ight) \ &= (1-0.7) \, (0) + 0.7 \, (-1 + 0.99 \, (0)) \ &= 0 + 0.7 \, (-1) \ &= -0.7 \end{aligned}$$

		Actions			
		Left	Right	Up	Down
	1 cricket	0	0	0	0
<u>States</u>	Empty 1	0	0	0	0
	Empty 2	0	0	0	0
	Empty 3	0	0	0	0
	Bird	0	0	0	0
	Empty 4	0	0	0	0
	Empty 5	0	X-0.7	0	0
	Empty 6	0	0	0	0
	5 crickets	0	0	0	0

= $\max(Q(\text{empty6}, \text{left}), Q(\text{empty6}, \text{right}), Q(\text{empty6}, \text{up}), Q(\text{empty6}, \text{down}))$ = $\max(0,0,0,0)$ = 0

Learning: Refine Q table by approximating the optimal Q-values

Q-Table				Actions		
		Action 1	Action 2		Action n-1	Action n
	State 1	0.789112	0.745642		0.212485	0.256545
	State 2	5.123455	5.11565		5.156545	4.155612
States		***		***		
	State n-1	2.156454	2.15567	***	2.144423	2.454658
	State n	6.156212	6.154556		6.145441	6.44444

• Initially the agent will do a bit of *exploration*. It selects random values. Over time when it reaches rewards it will slowly learn to exploit those rewards for future action.

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

What is the problem with this?

Not scalable: we must compute Q(s, a) for every state-action pair. Computationally expensive to compute for the entire state space, perhaps infeasible.

Solution: Use function approximator to estimate the value of Q(s, a),

Neural Network → Deep Q-learning

Forward pass: loss function tries to Minimise the error of the bellman equation.

Backward pass: gradient update with respect to the Q-function parameters θ .

$$Q(s,a;\theta) \approx Q^*(s,a)$$

The optimal policy $\Pi^*(s) = argmax Q(s,a)$

DeepMind <u>Human-level control through deep reinforcement learning</u>

Limitations of Q-learning

 Can not handle continuous action spaces: limited to scenarios where we can define the action space in discrete and small pieces

Limitations of Q-learning

 Policy is deterministically computed from the Q function by maximising the reward : can not learn stochastic policies.

$$\Pi^*(s) = argmax Q(s,a)$$

Value Learning

- Find Q(s, a)
- a = argmax Q(s,a)

Policy Learning

- Find π (s)
- Sample $\alpha \sim \pi$ (s)

Learning a policy can be much simpler

DQN: Approximate Q-function then use it to infer the optimal policy, $\pi(s)$.

Policy gradient: directly optimise the policy, $\pi(s)$.

Policy gradient: Handle continuous action spaces.

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright +

forward movement

AlphaGo versus Lee Sedol

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Continuous control with deep reinforcement learning

Actor critic method works well when we have both an **infinite input space** and infinite output space

Actor approximates policy p(a|s)

Critic approximates Q-values

Quite natural in the human's world Child as an actor and parent as a Critic.

Actor approximates policy p(a|s)

Critic approximates Q-values

• Quite natural in the human's world **Child as an actor** and **parent as a Critic**.

Deep Reinforcement Learning

- Multi-Agent Actor-Critic for Mixed Cooperative Competitive Environments
- Emergent Tool Use From Multi-Agent Autocurricula

The problem of recommending the best items to a user is not only a prediction problem, but a **sequential decision problem.**

- RL is able to handle the **dynamics** of **sequential user-system interaction** by adjusting actions according to continuous feedback received from the environment.
- RL is able to take into account the **long-term user engagement** with the system.

• Although having user ratings is beneficial, RL, by nature, **does not need user** ratings and optimizes its policy by sequentially interacting with the environment.

Multi-armed bandits

Origin

Problem: Which slot machine should we play at each turn.

Multi-armed bandits

Example Problem: Which ad should be presented?

Answer: present ad with high payoff

payoff = ClickThroughRate X payment

- ClickThroughRate probability that the user clicks on ad
- Payment: €€ payed by the advertiser

In which order should we present the ads to maximize revenue?

Multi-armed bandits

1. Explore Only

2. Exploit only

3. E- greedy

In which order should we present the ads to maximize revenue?

Formulating a RecSys Problem

- > Smart system environment *env*,
- ➤ **Personalisation** is a function of a social component **S** of a system.
- \triangleright Personaliser(X_{pa});
- \triangleright User(U)
- ightharpoonup Crowd(Cr): direct influence
- \triangleright Context elements(Cx): indirect influence

$$Pa^{cpss} = f(u, \times_{pa}, cr, cx, env)$$

Cobotic Production system: Smart Workshop

CPSS

- Cobot (CPSS) &
- Worker

- Team of workers: Engineers/maintenance technicians
- Computers, machines, sensors, actuators, etc. (CPS)

RECOMMENDER SYSTEMS

Formulating a RecSys Problem

Personalisation in exhibition areas for a user *u* can be formalised as a function of

- •The user \boldsymbol{u} , \longrightarrow Worker \boldsymbol{w}
- •The personaliser X_{pa} , Cobot cb
- •The crowd *Cr*, Team of workers *tw*
- •The context elements *cx*
- •The Smart environment *env* Smart workshop *ws*

$$pa = f(u, \times_{pa}, cr, cx, env)$$
 $pa^{Exhib} = g(w, cb, tw, ws)$

RECOMMENDER SYSTEMS

Formulating a RecSys Problem

Personalisation in exhibition areas for a user *u* can be formalised as a function of

- The user u, \longrightarrow Visitor vs
- •The personaliser X_{pa} , \longrightarrow Mobile guide mg
- •The crowd *Cr*, Crowd of other Visitors *cr*^{vis}
- •The context elements *cx*
- •The Smart environment env \longrightarrow Exhibition area ex

$$pa = f(u, \times_{pa}, cr, cx, env)$$
 $pa^{Exhib} = g(vs, mg, cr^{vis}, ex)$

RECOMMENDER SYSTEMS

Reinforcement Learning for RecSys

Hands-on

- OpenAl gym: a toolkit for developing and comparing reinforcement learning algorithms. https://gym.openai.com/
- Stable Baselines3 (SB3): a set of reliable implementations of reinforcement learning algorithms in PyTorch.
 https://stable-baselines3.readthedocs.io/en/master/
- Multi armed bandits
 <u>https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-imple</u>

 mentation-5399ef67b24b