第7章脉冲电路 Pulse Circuits

- § 7.1 555 定时器
- § 7.2 施密特触发器
- § 7.3 单稳态触发器
- § 7.4 多谐振荡器

作用在电路中短暂的电压或电流信号叫做脉冲信号 pulse

参数:

脉宽 (T_{w}) : 半高宽(脉冲最大值一半时的宽度)

幅度(V_m): 电压变化最大幅度

周期(T):两相邻脉冲间间隔

频率
$$(f): f = 1/T$$

占空比(
$$q$$
): $q = \frac{T_w}{T}$ 一个脉冲中有效的脉冲比; 高电平占的比例

§ 7.1 555定时器

与非门基本 RS-FF

比较器

$$+ \ge - C = 1$$

 $+ < - C = 0$

$\overline{S} \overline{R}$	Q \bar{Q}	FF state
0 0 0 1 1 0 1 1	1 1 1 0 0 1 保持	SR $0 \rightarrow 1$ 不定 Set (1) $S \neq R$ Reset (0) $Q = R$ No- change

555 定时 器功能

 $V_{\rm co}$ 悬空 不起作用

$\overline{R}_{\mathrm{D}}$	TH (6)	TR (2)	\overline{R} (C ₁	\overline{S} (C ₂)	Q (3) Q	T 状态 (7)
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	0	OFF (open)
		$> \frac{1}{3}V_{\rm CC}$			1N	C 0	NC
1	$> \frac{2}{3} V_{\rm CC}$	$> \frac{1}{3} V_{\rm CC}$	0	1	0	1	ON (GND)
0	Ф	Ф	Φ		0	1	ON (GND)

555 定时器管脚图

$$\begin{cases} \textcircled{1} & V_{2} < \frac{1}{3}V_{cc}, \ V_{6} < \frac{2}{3}V_{cc}, \ Q = 1 \ \overline{Q} = 0 \ \mathbf{T} \ \text{截止} \\ \textcircled{2} & V_{2} > \frac{1}{3}V_{cc}, \ V_{6} > \frac{2}{3}V_{cc}, \ Q = 0 \ \overline{Q} = 1 \ \mathbf{T} \ \text{导通} \\ \textcircled{3} & V_{2} > \frac{1}{3}V_{cc}, \ V_{6} < \frac{2}{3}V_{cc}, \ \mathbf{Q} \ \text{保持} \end{cases}$$

若用 V_{CO} , V_6 : V_{CO} 为参考电压

V2: ½ VCO 为参考电压

§ 7.2 施密特触发器 Schmitt Trigger

(1) 双稳态

$$\begin{cases} Q = 1, Q = \overline{0} \\ Q = 0, Q = \overline{1} \end{cases}$$

(2) 滯后

输入电压增大和减小过程中,输出翻转 电平不同.

> 回差 滞后 **△**V

回差电压

$$\Delta V = V_{T^+} - V_{T^-}$$

符号

7.2.1 由555定时器构成的施密特触发器 Schmitt Trigger

工作原理 设输入为三角形波形

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \quad V_{\rm 2}, V_{\rm 6} < 1/3 \ V_{\rm CC}$$
 $Q = 1$

$$V_{\rm i} \uparrow$$
, $V_{\rm 2} > 1/3 \ V_{\rm CC}$, $V_{\rm 6} < 2/3 \ V_{\rm CC}$

Q 保持

$$V_{\rm i} \ge 2/3 \ V_{\rm CC}, \ V_{2}, V_{6} > 2/3 \ V_{\rm CC}$$

 $Q = 0$

$$V_{\rm i} \downarrow$$
, 1/3 $V_{\rm CC} \leq V_{\rm i} \leq 2/3 V_{\rm CC}$

Q 保持

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \ V_{2}, V_{6} < 1/3 \ V_{\rm CC},$$
 $Q = 1$

结果

- 1) 三角波 →矩形波
- 2) 滞后

回差电压
$$\Delta V = V_{T+} - V_{T-} = \frac{2}{3}V_{cc} - \frac{1}{3}V_{cc} = \frac{1}{3}V_{cc}$$

3) 555 定时器分压电阻形成的滞后

7.2.2 与非门构成的施密特触发器 (略)

7.2.3 集成施密特触发器

74LS132是由4个独立的两输入与非门构成的TTL集成施密特触发器.

A 或 B 或 二 者 $< V_{T-}, Y=1;$ 只有当 A 和 B 都 $> V_{T+}, Y=0$ 。

逻辑功能 $Y = \overline{AB}$

一个施密特与非门电路

7.2.4 Schmitt 触发器应用

1) 波形转换

2) 幅度鉴别

用 $V_{CO}:V_{T+}V_{T-}$

注:输出信号的振荡幅度是门电路的高(3.6 V),低(0.1 V) 电平,与 V_{T+} , V_{T-} 无关。

3. 光控路灯开关

工作原理

 \mathcal{L}_{CC} 是, \mathcal{L}_{CC} 是 \mathcal{L}_{CC}

暗, $R_{\rm L}$ 大, $V_{\rm i}$ 小, $V_{\rm i}$ <(1/3 $V_{\rm CC}$),Q=1. 继电器吸合开关,路灯亮.

§ 7.3 单稳态触发器

One-Shots (Monostable Multivibrators)

单稳态触发器

- ①一个稳定状态,一个不稳定状态;
- ② 单稳态触发器通常处于稳定状态,在触发时转到不稳定状态;
- ③ 不稳定状态持续 $T_{\rm W}$ 时间后,自动回到稳定状态.

7.3.1 与非门构成的单稳态触发器 (略)

7.3.2 555 定时器构成的单稳态触发器

R, C 定时元件

找电路的稳定状态:

设
$$Q=0$$
, $\overline{Q}=1$,

放电管 T 导通, 7→地

7,6
$$\to$$
 GND, $(V_6 < \frac{2}{3}V_{CC})$

$$V_{\rm i} = 1, \ (V_2 > \frac{1}{3} V_{\rm CC})$$

Q 保持, **Q=0**

设 Q=1, $\overline{Q}=0$, T 截止, $7 \to \mathcal{H}$ V_{CC} 向 C 充电, V_{C} 升高,

$$\stackrel{\text{def}}{=} V_{\text{C}} > \frac{2}{3} V_{\text{CC}}, \ Q = 0$$

 \overline{Q} =1, 放电管 T 通过

$$V_6 < \frac{2}{3} V_{\rm CC}, V_2 > \frac{1}{3} V_{\rm CC}$$

Q=0 保持

所以,稳定状态为: Q=0

 $V_{\rm CC}$

工作原理

触发前,Q=0 (T导通, 6,7地)

触发瞬间, $V_i < \frac{1}{3} V_{CC}$ Q = 1 $\bar{Q} = 0$,T 截止 (断开),C 充电

充电路径: $V_{CC} \rightarrow R \rightarrow C \rightarrow$ 地

时间常数 $\tau_1 = RC$, C 充电, $V_C \uparrow$

$$\stackrel{\text{def}}{=} V_{\text{C}} > \frac{2}{3} V_{\text{CC}} \left(V_6 > \frac{2}{3} V_{\text{CC}} \right)$$

$$V_{\rm i}$$
回到 1 ($V_{\rm 2} > \frac{1}{3} V_{\rm cc}$)

$$Q=0$$
, $\overline{Q}=1$, T导通(地),

C 放电,路径: $C \rightarrow T \rightarrow \mathbb{H}$

时间常数 $\tau_2 = R_{on}C$,

 R_{on} : T导通电阻 $V_{\text{C}} \downarrow$

暂稳态持续时间 $T_{\rm w}$

$$T_{w} = RC \ln \frac{V_{C}(\infty) - V_{C}(0^{+})}{V_{C}(\infty) - V_{C}(t)}$$

$$= RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = 1.1RC$$

$$T_{\rm W} = 1.1RC$$

 $T_{\rm W}$ 是重要参数,是电容C充电到 $\frac{2}{3}V_{\rm CC}$ 所用时间

FF的恢复时间

$$T_{\rm R} = (3\sim5)R_{\rm on}C = 4R_{\rm on}C$$

: 触发信号最小周期:

$$T = T_w + T_R = 1.1RC + 4R_{on}C$$

 T : resolution 分辨率

触发信号最大工作频率:

$$f = \frac{1}{T}$$

实际触发周期 $T_i: T_i \geq T$

7.3.3 集成单稳态触发器74121

74121 是非重复触发的单稳态触发器,FF进入暂稳态后,不再接收新触发信号,直到 T_{W} 时间后结束。

IEEE 符号:

2, 8, 12, 13 空

输入 (触发):

$$\begin{cases} A_1, A_2$$
 低有效."或" B 高有效, Schmitt, $(A_1 + A_2)B$

CLK正边沿触发

 R_{int} : 内电阻 (不用时悬空)

Cext: 外接电容

 $R_{\rm ext}/C_{\rm ext}$: 共用

* 非数字信号,接R, C

74121 功能表

Inputs			Outputs
A ₁	A ₂	В	$Q \overline{Q}$
0	X	1	0 1
×	0	1	0 1
×	×	0	0 1
1	1	×	0 1
1	1	1	
	1	1	几几
1	\downarrow	1	
0	X	†	几几
X	0	1	

74121

(1) 稳定状态:

3变量 (A_1, A_2, B)

- →8个组合
- 8个状态都是稳定状态
 - (2) 暂稳态
- ① *B* = 1, *A*₁ 和 *A*₂ 至少有 一个为下降沿, 另一个 为高电平. ☐ ② *A*₁ *A*₂ = 0, *B*上升沿 ☐

(3) 定时元件接法

定时元件 R, C

外接
$$\begin{cases} R: RX \sim V_{CC} 之间 \\ C: CX \sim RX 之间 \end{cases}$$

内接
$$RI \sim V_{CC}$$
 (内接电阻) $C: CX$ (外接电容)

74121暂稳态时间 $T_{\rm w}$:

$$T_{\rm w} = 0.7RC$$

7.3.4 单稳态触发器应用

1. 波形转换

把不符合要求的波形整形成 $T_{\rm w}$, $V_{\rm m}$ 都一定的脉冲.

$$T_{\rm w} \sim R$$
, C.

555 定时器单稳态:

触发
$$\left\{ \begin{array}{l} \text{负边沿} \\ < \frac{1}{3} V_{\text{cc}} \end{array} \right.$$

脉冲展宽和变窄

2. 定时

例 2. 楼道照明灯控制电路

定时元件:R,C

TH: 晶闸管

灯亮时间: $T_{\text{W}} = 1.1RC$

工作原理

按 A之前, V_i = 1, Q = 0, 稳态, T_1 截止, $V_e = 0$, TH 开路, 灯不亮;

接 $A, V_i = 0, Q = 1,$ T_1 导通, $V_e > 0$, TH 导通, 灯亮.

3. 用 74121 设计电路, 其输入输出波形如图所示:

分析

在输入和输出间需要一个输出*Q*',其下降沿触发第二个74121.

$$T_{W1} = 100 \times 10^{-6}$$

= $0.7R_1C_1$

$$T_{W2} = 30 \times 10^{-6}$$

= $0.7R_2C_2$

设
$$R_1 = R_2 = 10$$
 kΩ, 求 C_1 , C_2

电路 方法 1

暂稳态

$$\begin{cases} A_1 = A_2 & \mathbf{I} \\ B = 1 \end{cases}$$

方法 2

暂稳态

$$\mathbf{II} \left\{ \begin{array}{l} \mathbf{B} & \boxed{} \\ \mathbf{A_1} \cdot \mathbf{A_2} = \mathbf{0} \end{array} \right.$$

*RI

* CX * RX/CX

121

1 🗸

GND

方法 3

暂稳态

$$0.7C'_1R'_1 = 90 \ \mu s$$

§ 7.4 多谐振荡器

Astable Multivibrators (Oscillators)

产生矩形波的自激振荡器.

1) 两个稳定状态 $\begin{cases} Q = 0, \ \overline{Q} = 1 \\ Q = 1, \ \overline{Q} = 0 \end{cases}$

符号:

2) 无触发信号

3) 输出: 周期性的从一个暂稳态 转到另一个暂稳态

许多电路可以组成多谐振荡器,如 TTL逻辑门,施密特触发器,石英晶体,555 定时器等。

利用RC电路中电容的充放电来改变电平的高低。

7.4.1 555 定时器构成的多谐振荡器

2,6 端相连

定时元件: R_1, R_2, C

利用放电管(7端)和电容充放电改变电压

工作原理: 开关闭合前, $V_{\rm C}=0$

电源开, $V_{\rm C}=0$ 电容上电压不能跳变

Q = 1 ($V_i < 1/3 V_{CC}$) Q = 0, T 截止 (7 断开)

C: 充电 充电路径: $V_{CC} \rightarrow R_1 \rightarrow R_2 \rightarrow C \rightarrow \mathbb{H}$

充电时间常数 $\tau_1 = (R_1 + R_2)C$

 $V_{\rm C}$ ↑, $1/3~V_{\rm CC}$ < $V_{\rm C}$ < $2/3~V_{\rm CC}$ Q: 保持

两个暂稳态持续时间 T_1, T_2 :

高电平时间:

$$T_{1} = \tau_{1} \ln \frac{V_{C}(\infty) - V_{C}(0^{+})}{V_{C}(\infty) - V_{C}(T_{1})} = (R_{1} + R_{2})C \ln \frac{V_{CC} - \frac{1}{3}V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}} = 0.7(R_{1} + R_{2})C$$

低电平时间:

$$T_2 = \tau_2 \ln \frac{V_C(\infty) - V_C(0^+)}{V_C(\infty) - V_C(T_2)} = R_2 C \ln \frac{0 - \frac{2}{3} V_{CC}}{0 - \frac{1}{3} V_{CC}} = \mathbf{0.7} \ \mathbf{R_2} \mathbf{C}$$

振荡周期
$$T$$
: $T = T_1 + T_2 = 0.7(R_1 + 2R_2)C$

频率
$$f$$
: $f = \frac{1}{T}$

占空比:
$$q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} > \frac{1}{2}$$

占空比可调的多谐振荡器

充放电原理相同, 充放电回路不同 当 $V_0 = 1$, T截止 (7 断开),

C: 充电,充电路径:

$$V_{CC} \rightarrow R_A \rightarrow D_1 \rightarrow C \rightarrow$$
¹

时间常数: $\tau_1 = R_A C$

$$V_{\mathbf{C}} \uparrow V_{C} \ge \frac{2}{3} V_{CC} V_{\mathbf{0}}(\mathbf{Q}) = \mathbf{0},$$

T 导通, C: 放电

放电路径:

$$C \rightarrow R_B \rightarrow D_2 \rightarrow T \rightarrow$$
¹

时间常数: $\tau_2 = R_B C$

两个暂稳态时间

$$\begin{cases}
T_H = 0.7R_A C \\
T_L = 0.7R_B C
\end{cases}$$

周期

$$T = T_{\rm H} + T_{\rm L} = 0.7(R_{\rm A} + R_{\rm B})C$$

占空比

$$q = \frac{T_H}{T} = \frac{R_A}{R_A + R_B}$$

当
$$R_A = R_B$$
 $q = \frac{1}{2}$ 方波

7.4.3 石英晶体振荡器

实际工作中,经常需要一个稳定的频率.

方法: 石英晶体振荡器

电抗一频率特性

当电压频率为**f**₀时, 其电抗最小 符号

将石英晶体接入多谐振荡器,频率为f₀的电压信号最容易通过,其他频率信号经过石英晶体时被衰减。

振荡器的工作频率一定等 于石英晶体的振荡频率 f_0 振荡频率取决于石英晶体的固有谐振频率 f_0 ,而不是电阻和电容.

石英晶体振荡频率 外形尺寸

电路 石英晶体 C_2 G_1 G_2 R_{F1} R_{F2}

7.4.4 Schmitt-FF构成的多谐振荡器

施密特触发器滞后:

回差电压

$$\Delta V = V_{\mathrm{T}^+} - V_{\mathrm{T}^-}$$

将Schmitt-FF反向输出端经 RC 积分回路接入输入端,利用输入电压在 V_{T+} 与 V_{T-} 之间往复变化,在输出端得到矩形脉冲。

工作原理:

初始, $V_{\rm C} = 0$, $V_{\rm i}$ 低, $V_{\rm O}$ 高.

充电: $V_0 \rightarrow R \rightarrow C$.

当 $V_i = V_{T+}$, V_O 跳变到低.

放电: $C \rightarrow R$. 当 $V_i = V_{T-}$, V_O 跳变到高.

电路振荡

高、低电平时间:

$$T_1 = RC \ln \frac{V_{OH} - V_{T-}}{V_{OH} - V_{T+}} = 0.7RC$$
 $T_2 = RC \ln \frac{V_{OL} - V_{T+}}{V_{OL} - V_{T-}} = 0.7RC$

 $T_1 = T_2 = 0.7RC$ 方波,占空比不可调

占空比可调振荡器

电路

工作原理: 设 V_0 = 高电平,

C 充电 $V_0 \rightarrow R_1 \rightarrow D_1 \rightarrow C \rightarrow$ 地

$$C$$
 放电: $C \rightarrow D_2 \rightarrow R_2$

$$V_{i} \downarrow \qquad \qquad \stackrel{\text{def}}{=} V_{T} = V_{T}$$

$$V_{0}$$
 = 高电平, C 放电

$$V_{\rm i}$$
 \ \ \

输出矩形波

高电平时间 T_1 :

$$T_1 = 0.7 R_1 C$$

$$T_2 = 0.7 R_2 C$$

周期
$$T$$
: $T = T_1 + T_2 = 0.7(R_1 + R_2)C$

占空比
$$q = \frac{T_1}{T} = \frac{R_1}{R_1 + R_2}$$

例: 已知右图电路中 Schmitt-FF 为CMOS 电路 CC40106, $V_D = 12 \text{ V}$, $R_I = R_2 = 20 \text{ k}\Omega$, $C = 0.01 \mu\text{F}$, 试求该电路的振荡周期T.

周期
$$T: T = T_1 + T_2 = 0.7(R_1 + R_2)C$$

= $0.7 \times (2 \times 20 \times 10^3) \times 0.01 \times 10^{-6}$
= 280μs

7.4.5 多谐振荡器应用

例 1. 用555定时器设计一个每隔2 s振荡3 s的多谐振 荡器, 其振荡频率为200 Hz, q=1/2, 电容取10 μF.

分析:两个振荡器

I:振荡 3 s,停2 s II:频率: 200 Hz $q = \frac{1}{2}$

两个振荡器:

用555定时器的 4 脚复位端来控制 II 是否工作

$$\begin{cases} \overline{R}_D = 1, & \text{II} \text{ 工作} \\ \overline{R}_D = 0, & \text{II} 清 0, \end{cases}$$
 $\begin{cases} \overline{R}_D = 1/2, \text{用不可调类型}; \\ \overline{R}_D = 1/2, \text{用占空比可调型} \end{cases}$

$$Q_1 = 0$$
, $\overline{R}_D = 0$ **II** 停止, $V_0 = Q_2 = 0$

电路参数:

振荡器 I:已知

$$\begin{cases}
T = 3 + 2 = 5 \text{ s} \\
q = \frac{3}{5} \quad C_1 = 10 \mu\text{F}
\end{cases} \begin{cases}
f = 200 \text{ Hz}, T = \frac{1}{f} = \frac{1}{200} = 0.005 \text{ s} \\
q = \frac{1}{2} \quad C_2 = 10 \mu\text{F}
\end{cases}$$

$$T = 0.7(R_1 + 2R_2)C_1 = 5 \text{ s} \\
q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} = \frac{3}{5}
\end{cases} \begin{cases}
T = 0.7(R_A + R_B)C_2 = 0.005 \text{ s} \\
q = \frac{R_A}{R_A + R_B} = \frac{1}{2}
\end{cases} \begin{cases}
R_A = R_B
\end{cases}$$

$$5 = 0.7(R_1 + 4R_1) \times 10 \times 10^{-6} \quad 1.4R_A = \frac{0.005}{10 \times 10^{-6}} = 500$$

$$\begin{cases}
R_1 = 143 \quad K\Omega \\
R_2 = 286 \quad K\Omega
\end{cases} \qquad R_A = R_B = 357 \quad \Omega$$

例 2. 两相时钟产生电路及工作波形。

电路

多谐振荡器 $\rightarrow CLK$ T'-FF $\rightarrow Q$ (CLK 下降沿)

$$CLK_1 = CLK \cdot Q$$

$$CLK_2 = CLK \cdot \overline{Q}$$

工作波形

