Course Project

Predict 422 Section 56 Winter 2016 Joshua Peng

Predict 422 Course Project Joshua Peng

Hyperlinks

- 1. Introduction
- 2. Exploring and Preparing Data
- 3. Building Classification Models
- 4. Selecting the Best Classification Model
- 5. Building Prediction Models
- 6. Selecting the Best Prediction Model
- 7. Conclusion
 Appendix: R Code

1. Introduction

A charitable organization wishes to develop a machine learning model to improve the costeffectiveness of their direct marketing campaigns to previous donors. According to their recent mailing records, the typical overall response rate is 10%. Out of those who respond (donate) to the mailing, the average donation is \$14.50. Each mailing costs \$2.00 to produce and send; the mailing includes a gift of personalized address labels and assortment of cards and envelopes. It is not cost-effective to mail everyone because the expected profit from each mailing is $14.50 \times 0.10 - 2 = -\0.55 . I will develop a classification model using data from the most recent campaign that can effectively capture likely donors so that the expected net profit is maximized.

The entire charity dataset consists of 3984 training observations, 2018 validation observations, and 2007 test observations. Weighted sampling has been used, over-representing the responders so that the training and validation samples have approximately equal numbers of donors and non-donors. The response rate in the test sample has the more typical 10% response rate. I will build a prediction model to predict expected gift amounts from donors. The data for the prediction model will consist of the records for donors only.

2. Exploring and Preparing Data

Examining Variable Type

I begin by examining the Data Dictionary provided in the Course Project introduction document to see what kind of variables are included in the data. Based on the quick preview of the data and the description below, I can also determine the variable type. There are 2 response variables: DONR and DAMT, which have several missing observations and an index variable, ID. All of the missing data are in the test sets as indicated by the PART variable which I will have to fill in with predicted values. These 4 non-predictor variables are highlighted in yellow in the table below in order to distinguish them from the other (predictor) variables. When the data is initially loaded in, all of the remaining predictor variables are quantitative variables of "int" type (integer values) except for agif which is "num" (decimal values). The region variables (REG1, REG2, REG3, and REG4), HOME, GENF, DONR are dummy (indicator) variables. Region may have been a 5 class categorical variable which has now been converted to 4 dummy variables with REG5 serving as the reference. In addition to the dummy variables, 2 of the int type variables, can be utilized as categorical variables: HINC and WRAT. I will need to examine the data distribution of these variables to see if they will be better utilized as categorical variables.

Variable	Туре	Description
ID	Index	Index of observations
REG1, REG2, REG3, REG4	Binary Categorical	Region (There are five geographic regions; only four are needed for analysis since if a potential donor falls into none of the four he or she must be in the other region. Inclusion of all five indicator variables would be redundant and cause some modeling techniques to fail. A "1" indicates the potential donor belongs to this region.)
HOME	Binary Categorical	(1 = homeowner, 0 = not a homeowner)
CHLD	Continuous	Number of children
HINC	Continuous/ Categorical	Household income (7 categories)
GENF	Binary Categorical	Gender (0 = Male, 1 = Female)
WRAT	Continuous/ Categorical	Wealth Rating (Wealth rating uses median family income and population statistics from each area to index relative wealth within each state. The segments are denoted 0-9, with 9 being the highest wealth group and 0 being the lowest.)
AVHV	Continuous	Average Home Value in potential donor's neighborhood in \$ thousands

INCM	Continuous	Median Family Income in potential donor's neighborhood in \$ thousands			
INCA	Continuous	Average Family Income in potential donor's neighborhood in \$ thousands			
PLOW	Continuous	Percent categorized as "low income" in potential donor's neighborhood			
NPRO	Continuous	Lifetime number of promotions received to date			
TGIF	Continuous	Dollar amount of lifetime gifts to date			
LGIF	Continuous	Dollar amount of largest gift to date			
RGIF	Continuous	Dollar amount of most recent gift			
TDON	Continuous	Number of months since last donation			
TLAG	Continuous	Number of months between first and second gift			
AGIF	Continuous	Average dollar amount of gifts to date			
DONR	Binary Categorical	Classification Response Variable (1 = Donor, 0 = Non-donor)			
DAMT	Continuous	Response Variable: Donation Amount in dollars			
PART	Categorical	Indicates whether the observation is part of the training (train), test (test),			
		or validation (valid) set			

Examining Variables

In this next section, I will examine the histograms of the continuous variables and the frequency tables of the categorical variables.

REGx (all 5 Region variables)

By taking the sum of each REGx variable, I find the instances for each of the 5 geographical regions (displayed in the following table). I also find the correlation coefficient of each REGx variable with DONR in the training set. Region 2 (REG2) has the most instances and the highest correlation with DONR.

Region	# Instances	Correlation with DONR
Region 1	1605	0.05645603
Region 2	2555	0.2470784
Region 3	1071	-0.1043229
Region 4	1117	-0.1262810
Region 5	1661	-0.1548909

CHLD

The CHLD histogram is zero inflated. The highest count is for 2 children followed by 0 children. Even without the zero inflation, the histogram would appear positively skewed with a long right tail.

HINC

The HINC histogram appears evenly distributed except with a strong singular central spike at 4 which is also its median and mode. This spike makes the distribution highly kurtotic. The Anderson-Darling test for normality p-value < 2.2e16 meaning that the HINC histogram does not resemble a normal distribution.

WRAT

The WRAT histogram is extremely negatively skewed. The distribution gradually increasing from 1 to 7 but then jumps up at 8 and drops slightly at 9. The highest frequency wealth group is 8 which is also its median and mode.

AVHV

The AVHV histogram is positively skewed with a long right tail. The median is 169 and the mean is 182.6, which are both close to the highest bin with the peak.

INCM

The INCM histogram is positively skewed with a long right tail. The median is 38 and the mean is 43.47, which are contained in the highest bin with the peak.

INCA

The INCA histogram is positively skewed with a long right tail. The median is 169 and the mean is 182.6, which are both contained in the highest bin with the peak.

PLOW

The PLOW histogram is shaped like a poisson distribution that decays from left to right. The histogram is zero inflated with a long right tail extending out to a maximum of 87.

NPRO

The NPRO histogram sharply increases from its first to second bin then after the peak gradually descends with a longer right tail. The Anderson-Darling test for normality p-value < 2.2e16 meaning that the HINC histogram does not resemble a normal distribution.

0 50 100 150

Histogram of npro

TGIF

The TGIF histogram is shaped like a poisson distribution that decays from left to right. The histogram has a long right tail extending out to a maximum of 2057.

LGIF

The LGIF histogram is shaped like a poisson distribution that decays from left to right. The histogram has a long right tail extending out to a maximum of 681.

RGIF

The RGIF histogram is shaped like a poisson distribution that decays from left to right. The histogram has a long right tail extending out to a maximum of 173.

TDON

The TDON histogram is sharply jump up at 12 and stays relatively flat between 13 to 24, and sharply drops at 22. The median is 18 and the mean is 18.86 and both are contained on the top of plateau. The right tail extends out to 40. TDON may the variable closest to resembling a normal distribution, however the Anderson-Darling test for normality p-value < 2.2e16 meaning that the HINC histogram does not resemble a normal distribution.

TLAG

The TLAG histogram sharply jumps up at 4 and then resembles a poisson distribution that decays with a long right tail that extends out to 34.

AGIF

The AGIF histogram sharply jumps up at 5 (the mode is 5.31) and then resembles a poisson distribution that decays with a long right tail that extends out to 72.27.

Frequency 1500 1500

Histogram of agif

40

agif

60

Adding New Variables

There were 11 continuous variable histograms that were positively skewed (AVHV, INCM, INCA, PLOW, NPRO, TGIF, LGIF, RGIF, TDON, TLAG, and AGIF) and 1 continuous variable histogram that was negatively skewed (WRAT). The square root and natural logarithm transforms can help fix the positively skewed distributions to appear more normal, while the square (to power of 2) or cube (to the power of 3) transforms can adjust negatively skewed distributions to appear more normal. Data points zero or less are undefined when I take the natural logarithm, so I set these values to zero for the natural logarithm transformed variables. Since CHLD was zero inflated, I create CHLD0 as an indicator variable set to 1 when CHLD0 = 0 and set to 0 otherwise. I know that REG5 is an implied reference point for all of the REGx (region) variables, but in order to actually include it into as an automated variable selection input variable, I need to explicitly add the variable. The following table indicates all of the new variables that I added to the charity data set.

Natural Logarithm	Square Root	Square	Cube	Indicator
Transform	Transform	Transform	Transform	Variables
LN_CHLD	SR_CHLD	HINC2	HINC3	CHLD0
LN_AVHV	SR_AVHV	WRAT2	WRAT3	REG5
LN_INCM	SR_INCM			
LN_INCA	SR_INCA			
LN_PLOW	SR_PLOW			
LN_NPRO	SR_NPRO			
LN_TGIF	SR_TGIF			
LN_LGIF	SR_LGIF			
LN_RGIF	SR_RGIF			
LN_TDON	SR_TDON			
LN_TLAG	SR_TLAG			
LN_AGIF	SR_AGIF			

Preparing Data

Prior to building models, I have to choose between standardizing the data and then splitting up the data into training, test, and validation sets or splitting up the data and then standardizing the data. There are disadvantages to both sequences. When you perform standardization after splitting the data set, you are additionally testing the separation of the means and variances of the variables of each subset. When you perform standardization before before splitting the data set, you will be polluting your validation and test samples by incorporating information from the means and variances of the training set. For this project, I will generate a set of models for both sequences.

First, I divide up the data into training, test, and validation sets. The PART variable indicates which set each observation is assigned. The entire charity dataset consists of 3984 training observations, 2018 validation observations, and 2007 test observations. Next, I take the mean and standard deviation of all variables for all sets in order to standardize all variable data to have zero mean and unit standard deviation. I then create a separate dataframe for each set to classify DONR and a separate dataframe for each set to predict DAMT. Second, I perform standardization for the whole data set so that all variable data has zero mean and unit standard deviation. Then, I split up the data into training, test and validation sets. Both sequences end up with the following data variables.

Data set	# Obs	# Var	Purpose
data.train	3984	55	Unstandardized training set
data.train.std.c	3984	52	To classify DONR
data.train.std.y	1995	52	To predict DAMT
data.valid	2018	55	Unstandardized validation set

data.valid.std.c	2018	52	To classify DONR
data.valid.std.y	999	52	To predict DAMT
data.test	2007	55	Unstandardized test set
data.test.std	2007	51	Standardized test set with missing
			response variable observations

3. Building Classification Models

The next step is to find the best subset of variables to use when building models. The original data set included 24 variables with 2 response variables, 1 index variable, and 1 data set specification variable (PART). Thus, there were only 20 predictor variables in the original charity data set. Even though the variable set has expanded to 51 predictor variables, I still expect the best model to have the same number of variables as the original data set or less.

First, I run an automated variable selection procedure on the training data set with the function REGSUBSETS in the LEAPS package with the "exhaustive search" method to find the best 20 variables out of the total 51 variables (including the newly added variables) for classifying DONR. The following plot is a graphical representation of the best models with 1 through 20 variables, where black colored squares indicate that the particular variable was included in that model. The y-axis orders the models by Adjusted R-Squared values. This figure indicates that the model with 20 variables has the highest Adjusted R-Squared value.

I do not immediately assume that the model with 20 variables has the best performing subset of variables. There are many redundant variables that may add unwanted multicollinearity problems such as the original variable and their transformed variant. Even if multicollinearity issues do not arise, it will be better to go with a more parsimonious model rather than a more complex model if performance is similar. More complex models will tend to perform well on the training set but perform worse on the test set due to overfitting. The following table shows the variables that appear more than once in different forms in the REGSUBSETS best model.

Redundant Variables				
CHLD	CHLD SR_CHLD			
HINC	HINC2			
WRAT2				
TGIF	LN_TGIF			
TLAG	LN_TLAG	SR_TLAG		
LN_TDON	SR_TDON			

In order to trim the subset even more, I choose the variant that appears the most frequently and more than twice in the above graphical representation of the automated variable selection procedure. If multiple variants of the same variable appear in many of the 20 models, then each will be added to this new trimmed subset. The result is the following trimmed subset of 12 variables. I've included the default subset of all original 20 predictor variables (plus HINC2 and LN_AVHV added into the given code) and the variable selection subset of 20 variables with this trimmed subset.

Default original set (DO)	Variable selection subset (VS)	Trimmed subset (TS)	
REG1	REG1	REG1	
REG2	REG2	REG2	
REG3	HOME	HOME	

REG4	CHLD	SR_CHLD
HOME	HINC	HINC
CHLD	INCA	HINC2
HINC	TGIF	WRAT2
HINC2	TLAG	WRAT3
GENF	WRAT2	LN_TGIF
WRAT	WRAT3	SR_TDON
LN_AVHV	HINC2	SR_TLAG
INCM	LN_INCM	LN_INCM
INCA	LN_TGIF	
PLOW	LN_LGIF	
NPRO	LN_TDON	
TGIF	LN_TLAG	
LGIF	LN_AGIF	
RGIF	SR_CHLD	
TDON	SR_TDON	
TLAG	SR_TLAG	
AGIF		

Model Building Procedure

I will calculate profit for a particular classification model applied to the validation data. Each donor donates \$14.50 on average and each mailing costs \$2.00. Therefore, in order to find an ordered profit function (ordered from most likely donor to least likely), I will calculate the posterior probabilities for the validation dataset. Next, I will sort DONR in order of the posterior probabilities from highest to lowest. Then, I will calculate the cumulative sum of (14.5 x DONR – 2) as I go down the list. After that, I will find the maximum of this profit function. Lastly, I will create a classification table (or confusion matrix) to visualize the results. I will repeat this 5 step process for each subsequent model. As classification tables may be arranged or formatted differently, the following table indicates the format for my classification tables.

	Actual			
Predicted	0 1			
0	True Negatives	False Negatives		
1	False Positives	True Positives		

Please note that when I compare the model results below I do not mention Models e through f because for the most part they are exactly the same as their models a through c counterparts.

Classification Model 1: Logistic Regression

The first method I will apply is classic Logistic Regression with each subset of variables of the standardized training set to classify DONR and test the model's performance on the standardized validation set. Logistic Regression will serve as a good starting point and standard for model comparison. The following table shows the classification table for all 6 Logistic Regression classification models. Models 1a, 1b, and 1c are built on the training where splitting was performed before standardization. Model 1b performs the best with the highest true positives and true negatives and the lowest false positives and false negatives.

Classification Model 1a: DO subset		Classification Model 1b: VS subset		Classification Model 1c: TS subset	
Splitting Before Standardization		Splitting Before Standardization		Splitting Before Standardization	
709	18	752	12	677	5
310	981	267	987	342	994

Classification Model 1d: DO subset		Classification Model 1e: VS subset		Classification Model 1f: TS subset	
Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
709	18	752	12	677	5
310	981	267	987	342	994

Classification Model 2: Linear Discriminant Analysis

Next, I perform Linear Discriminant Analysis (LDA) with each subset of variables of the standardized training set to classify DONR and test its performance on the standardized validation set. LDA is not normally used with qualitative predictors however at this stage the model building process, however the goal is to ultimately to find good predictive models. Model 2b performed the best with the most true positives plus true negatives and least false positives plus false negatives.

Classification Model 2a: DO subset	Classification Model 2b: VS subset	Classification Model 2c: TS subset
------------------------------------	------------------------------------	------------------------------------

Splitting Before Standardization Splitting Before		Standardization	Splitting Before Standardization		
675	14	719	6	667	5
344	985	300	993	352	994

Classification Model 2d: DO subset Standardization Before Splitting		Classification Model 2e: VS subset Standardization Before Splitting		Classification Model 2f: TS subset Standardization Before Splitting	
675	14	719 6 667		5	
344	985	300	993	352	994

Classification Model 3: Quadratic Discriminant Analysis

Then, I build models with Quadratic Discriminant Analysis with each subset of variables of the standardized training set to classify DONR and test its performance on the standardized validation set.

Classification Model 3a: DO subset		Classification Model 3b: VS subset		Classification Model 3c: TS subset	
Splitting Before	tandardization Splitting Before Standardization		ndardization Splitting Before Standardiza		
610	36	499	16	493	22
409	963	520	983	526	977

Classification Model 3d: DO subset		Classification Model 3e: VS subset		Classification Model 3f: TS subset	
Standardization	ion Before Splitting Standardization Before Splitting		Standardization Before Splittii		
610	36	499	16	493	22
409	963	520	983	526	977

Classification Model 4: K Nearest Neighbors

Next, I build models using the non-parametric K Nearest Neighbors (KNN) method. I can generate 6 KNN models by varying the smoothness parameter k where k = 1 through 6. In order to guarantee reproducibility of results I use set.seed(1). Apparently, this is the only instance when splitting before or after standardization actually affects the results. All of the models perform similarly, however Model 4e performs of the 12 KNN models because it has the highest true positives plus true negatives.

Classification Model 4a: k = 1 Classification		Classification Model 4b: k = 2		Classification Model 4c: k = 3	
Splitting Before Standardization Splitting Before Standardization		Splitting Before Standardization			
784	85	775	100	781	64
235	914	244	899	238	935

Classification I	Model 4d: k = 4	= 4 Classification Model 4e: k = 5		Classification I	Model 4f: k = 6
Splitting Before Standardization Splitting Before Standardization		Splitting Before Standardization			
771	59	771	49	766	51
248	940	248	950	253	948

Classification Model 4g: k = 1		Classification Model 4h: k = 2		Classification Model 4i: k = 3	
Standardization Before Splitting Standardization Before		Before Splitting	Standardization	Before Splitting	
785	88	772	83	782	61
234	911	247	916	237	938

Classification Model 4j: k = 4		Classification Model 4k: k = 5		Classification Model 41: k = 6	
Standardization Before Splitting Standardization Before Splitting		Standardization	Before Splitting		
777	63	767	51	760	50
242	936	252	948	259	949

Classification Model 5: Logistic Regression using GAM with Natural Splines

Following that, I build logistic regression models with natural splines using the GAM package and function. I only apply natural splines to continuous variables (not to any variables that can be considered categorical variables) with 4 degrees of freedom. Model 5b performs horribly compared to the other natural spline logistic regression models. Model 5c performs the best with the most true positives and true negatives and least false positives and false negatives.

Classification Model 5a: DO subset		Classification Model 5b: VS subset		Classification Model 5c: TS subset	
Splitting Before Standardization Splitting Before Standardization		Splitting Before Standardization			
713	14	486	545	764	10
306	985	533	454	255	989

Classification Model 5d: DO subset	Classification Model 5e: VS subset	Classification Model 5f: TS subset

Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
713	14	486	545	764	10
306	985	533	454	255	989

Classification Model 6: Logistic Regression using GAM with Smoothing Splines

After that, I build logistic regression models with smoothing splines using the GAM package and function. I only apply smoothing splines to continuous variables (not to any variables that can be considered categorical variables) with 4 degrees of freedom. All of the smoothing spline logistic regression models perform fairly well. Model 6c performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives.

Classification Model 6a: DO subset Splitting Before Standardization		Classification Mo Splitting Before	del 6b: VS subset Standardization	Classification Model 6c: TS subset Splitting Before Standardization	
659	5	740	7	764	10
360	994	279	992	255	989

Classification Model 6d: DO subset		Classification Mo	Model 6e: VS subset Classification Model 6f: TS		odel 6f: TS subset
Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
659	5	740	7	764	10
360	994	279	992	255	989

Classification Model 7: Logistic Regression using GAM with Local Regression (span = 0.2)

Next, I build logistic regression models with local linear regression smoothing with spans covering 20% of the observations. I only apply local regression smoothing to continuous variables (not to any variables that can be considered categorical variables). Model 7b performs the best with highest true positives plus true negatives and lowest false positives and false negatives.

Classification Model 7a: DO subset Splitting Before Standardization			del 7b: VS subset Standardization	Classification Model 7c: TS subset Splitting Before Standardization	
705	13	786	15	770	8
314	986	233	984	249	991

Classification Model 7d: DO subset		Classification Mo	del 7e: VS subset	Classification Mo	odel 7f: TS subset
Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
705	13	786	15	770	8
314	314 986		984	249	991

Classification Model 8: Logistic Regression using GAM with Local Regression (span = 0.5)

Next, I build logistic regression models with local linear regression smoothing with spans covering 50% of the observations. I only apply local regression smoothing to continuous variables (not to any variables that can be considered categorical variables). Model 8c performs the best with most true positives and true negatives and least false positives and false negatives.

Classification Model 8a: DO subset		Classification Mo	Classification Model 8b: VS subset		del 8c: TS subset
Splitting Before Standardization		Splitting Before Standardization		Splitting Before Standardization	
663	6	737	6	741	6
356	993	282	993	278	993

Classification Model 8d: DO subset					
Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
663	6	737	6	741	6
356	993	282	993	278	993

Classification Model 9: Decision Tree

Now I build a full classification decision tree with all 3 subsets of variables using the tree function in the TREE package. In order to guarantee reproducibility of results, I use set.seed(1). Without any pruning of the decision tree, Model 9b and 9c perform exactly the same and Model 9a performs the best with the most true positives and true negatives and least false positives and false negatives.

Classification Model 9a: DO subset		Classification Mo	del 9b: VS subset	Classification Mo	del 9c: TS subset
Splitting Before Standardization		Splitting Before Standardization		Splitting Before Standardization	
645	37	631	69	631	69
374	962	388	930	388	930

Classification Model 9d: DO subset Standardization Before Splitting		Classification Model 9e: VS subset Standardization Before Splitting		Classification Model 9f: TS subset Standardization Before Splitting	
645	37	631	69	631	69
374	962	388	930	388	930

Classification Model 10: Bagging

Next, I apply bagging to the 3 subsets using the randomForest package in R. Bagging is simply constructing regression trees using bootstrapped training sets, and averaging the resulting predictions. These trees are grown deep, and are not pruned. Hence each individual tree has high variance, but low bias. Bagging is simply a special case of a random forest with m = p (m = number of predictors considered for each tree, p = number of predictors). For bagging, I set the number of trees to 500. In order to guarantee reproducibility of results, I use set.seed(1). Model 10b performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives.

Classification Model 10a: DO subset		Classification Mod	odel 10b: VS subset Classification Model 10c: TS		del 10c: TS subset
Splitting Before Standardization		Splitting Before Standardization		Splitting Before Standardization	
693	14	748	23	693	15
326	985	271	976	326	984

Classification Model 10d: DO subset Standardization Before Splitting		Classification Model 10e: VS subset Standardization Before Splitting		Classification Model 10f: TS subset Standardization Before Splitting	
693	14	710	17	693	15
326	985	309	982	326	984

Classification Model 11: Random Forests

Next, I apply random forests to the 3 subsets using the randomForest package in R. For random forests, m = round(sqrt(p)). In building a random forest, at each split in the tree, the algorithm is not even allowed to consider a majority of the available predictors. In this way, strong and dominant predictors do not have as much influence on the tree structure as they would in bagging when all predictors are considered. For random forests, I set the number of trees to 500. In order to guarantee reproducibility of results, I use set.seed(1). Model 11a performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives. Model 11a also produced most true negatives than any other method used thus far.

Classification Model 11a: DO subset		Classification Model 11b: VS subset		Classification Model 11c: TS subset	
Splitting Before Standardization		Splitting Before Standardization		Splitting Before Standardization	
806	26	744	15	780	20
213	973	275	984	239	979

Classification Model 11d: DO subset		Classification Mod	del 11e: VS subset	Classification Mo	del 11f: TS subset
Standardization Before Splitting		Standardization Before Splitting		Standardization Before Splitting	
804	26	744	15	780	20
215	973	275	984	239	979

Classification Model 12: Boosting

Next, I apply boosting to the 3 subsets using the GBM package in R. Boosting works in a similar way as bagging, except that the trees are grown sequentially: each tree is fit using the residuals from previously grown trees so that learning takes place. The major advantage of boosting is that it is very resistant against overfitting although it can occur very slowly. For boosting, I set the number of trees to 5000. In order to guarantee reproducibility of results, I use set.seed(1). Model 12a performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives. Model 12a ties Model 12a for producing the most true negatives than any other method used thus far.

Classification Model 12a: DO subset Splitting Before Standardization			del 12b: VS subset Standardization	Classification Model 12c: TS subset Splitting Before Standardization			
806	18	764	7	760	6		
213	981	255	992	259	993		

	Classification Model 12d: DO subset Standardization Before Splitting		del 12e: VS subset Before Splitting	Classification Model 12f: TS subset Standardization Before Splitting			
800	18	751	5	760	6		
219	981	268	994	259	993		

After that, I fit a neural network with a single hidden layer of 20 nodes with 100 iterations and decay of 0.001 to the 3 subsets using the NNET package in R. Artificial neural networks are relatively crude electronic networks of neurons based on the neural structure of the brain. They process observations one at a time, and learn by comparing their classification of the observation with the known actual classification of the observation. The errors from the initial classification of the first observation is fed back into the network, and used to modify the network's algorithm for further iterations. In order to guarantee reproducibility of results, I use set.seed(1). Model 13f performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives.

	del 13a: DO subset Standardization		del 13b: VS subset Standardization	Classification Model 13c: TS subset Splitting Before Standardization		
793	90	672	15	823	113	
226	909	347	984	193	886	

Classification Model 13d: DO subset Standardization Before Splitting		Classification Mod Standardization	del 13e: VS subset Before Splitting	Classification Model 13f: TS subset Standardization Before Splitting			
780	71	688	19	808	63		
239	928	331	980	211	936		

Classification Model 14: Support Vector Machine (linear kernel)

After that, I use support vector machine with a linear kernel to the 3 subsets using the E1071 package in R. A support vector machine is a discriminative classifier formally defined by a separating hyperplane. For model 14, the hyperplane is based on a linear kernel. In order to guarantee reproducibility of results, I use set.seed(1). Model 14b performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives.

Classification Mod	lel 14a: DO subset	Classification Mod	del 14b: VS subset	Classification Model 14c: TS subset			
Splitting Before	Standardization	Splitting Before	Standardization	Splitting Before Standardization			
660	14	699	6	649	6		
359	985	320	993	370	993		

Classification Mod	lel 14d: DO subset	Classification Mod	del 14e: VS subset	Classification Model 14f: TS subset			
Standardization	Before Splitting	Standardization	Before Splitting	Standardization Before Splitting			
659	14	695	6	649	6		
360	360 985		993	370	993		

Classification Model 15: Support Vector Machine (radial kernel)

After that, I use support vector machine with a linear kernel to the 3 subsets using the E1071 package in R. For model 15, the hyperplane is based on a radial kernel. In order to guarantee reproducibility of results, I use set.seed(1). Model 15d performs the best with the highest true positives plus true negatives and lowest false positives plus false negatives.

Classification Model 15a: DO subset Splitting Before Standardization		Classification Mod Splitting Before	del 15b: VS subset Standardization	Classification Model 15c: TS subset Splitting Before Standardization			
625	7	653	10	664	10		
394	992	366	989	355	989		

Classification Mod	del 15d: DO subset	Classification Mod	del 15e: VS subset	Classification Model 15f: TS subset			
Standardization	Before Splitting	Standardization	Before Splitting	Standardization Before Splitting			
613	5	648	11	655	10		
406	994	371 988		364	989		

4. Selecting the Best Classification Model

In order to select the best model, I compute a whole host of classification metrics based off of the confusion table values. The following table shows all of the classification that I use and whether the value should be maximized or minimized to indicate a better fit.

Metrics	Goal
Number of True Positives (TP)	Higher
Number of True Negatives (TN)	Higher
Number of False Positives	Lower
Number of False Negatives	Lower
Misclassification Rate (Misclass.Rate)	Lower

Area under the ROC curve (AUC)	Higher
Accuracy	Higher
Sensitivity (or Recall)	Higher
Specificity	Higher
Precision	Higher
Fall out	Lower
False Discovery Rate or False Positive Rate	Lower
(FDR)	
Miss Rate or False Negative Rate	Lower
F Measure (weighted avg of precision and	Higher
recall)	
Matthews correlation coefficient: correlation	Higher
coefficient between the observed and	
predicted binary classifications, values	
between -1 and +1 (MCC)	
Number of Mailings	Higher
Profit	Higher

I scale all of the values to be a proportion of the highest score minus the lowest score for each metric so that I can compare the models against each other. I then calculate the mean value of the scaled scores and then generate a color based heat map to visualize the best model. Here the worst models have values in blue colored cells and the best models have values in red colored cells. The color gradient moves from blue to yellow to red, therefore the best classification model will be most deeply colored red.

As you can see in the color based heat map, the boosting and random forest models performed the best. Model 12a, a boosting (boosted random forest of classification decision trees) model using the default original set of variables with data that was standardized before data splitting, performed the best based on these classification metrics out of all the classification models. With this specific boosting model, I used 5000 trees, a shrinkage parameter of 0.01, and an interaction depth (tree size) of 4.

I am not surprised that boosting generated the best model. It is one of the most powerful methods that we learned this quarter in Predict 422. Boosting, like bagging, is an approach for improving prediction results for various machine learning methods. It particularly well suited to decision trees. Rather than resampling the data, boosting weights on some examples during learning. In boosting, trees are grown sequentially so that each tree is grown using information from previously grown trees. Unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and potentially overfitting, the boosting approach instead learns slowly. By fitting small trees to the residuals, we slowly improve the tree modeling function in areas where it does not perform well. The shrinkage parameter λ slows the process down even further, allowing more and different shaped trees to attack the residuals.

As the Model labels are too small to easily read, here are the models ranked by mean value of scaled scores from best to worst.

Model	Rank										
12a	1	12f	13	13c	25	5a	37	2c	49	14f	61
12d	2	13f	14	4c	26	4h	38	13e	50	15e	62
11a	3	12e	15	4k	27	10e	39	1c	51	15a	63
11d	4	2b	16	4j	28	14b	40	1a	52	15c	64
7b	5	8c	17	4f	29	7a	41	13b	53	9a	65
7c	6	6b	18	4d	30	2a	42	8a	54	15d	66
11c	7	8b	19	13d	31	14e	43	6a	55	3a	67
11f	8	11b	20	41	32	4b	44	14a	56	9b	68
12b	9	11e	21	13a	33	10a	45	14d	57	9c	69
5c	10	4i	22	1b	34	10d	46	15f	58	3b	70
6c	11	4e	23	4a	35	10c	47	15b	59	3c	71
12c	12	10b	24	4g	36	10f	48	14c	60	5b	72

977 454 P.	#03- #80 #80 ₽	Q.	7.	Mecises Rate	0.7309 0.4667	0 2058 0 2058 0 2058	0.4545 0.4545	0.4709 0.4709 Negleods	0.65 0.46	Falor	E 22	Mas Rain e oss	0.781 0.4872 emssew	0 529H 0 00 70	Malings agri-	11160.8 4009	Sk Sb
930 930 983:	631 631 490	388	69 69 16	457 457 538	0.7751 0.7751 0.7368	0.7735 0.7735 0.7344	0.9309	0.6192 0.6192 0.4897	0.7058 0.7058 0.854	0.3808 0.3808	0.2944 0.2944 0.346	0.0691 0.0691 0.016	0.8028 0.8028 0.7858	0.5779 0.5779 0.5432	1318 1318 1503	10849 10849 11247.5	De De Str
907	613 610	405 405	36	411 445	0.7983 0.7813	0.7963 0.7795	0.964	0.6016 0.5986	0.71 0.7019	II 3984 II 4014	0.29 0.2981	0 036	0.8287 0.8123	0 6471 0 6025	1400 1372	11613 11219.5	16e 3a
992 992	625 625	394 394 374	37	401 401 411	0.8032 0.8032 0.798	0.8013 0.8013 0.7963	0:983 0:983	0.6133 0.6123 0.633	0.7157 0.7157 0.7201	11.3867 11.3867 0.367	0.2843 0.2843 0.2799	8 007 8 007 0 037	0.8319 0.8319 0.824	0.6537 0.6537 0.6289	1386 1386 1338	11012 11012 11277	1fa 15c De
903 988	648 648	373 371	11	376 382	0.8154 0.8125	0.8137	C 994 C-989	0.6369	0.7285 0.727	11 3631 11 3641	0.2715	8 998 8 911	0.8408 0.838	0 6737 0 6662	1363 1369	11872 h 11808	141 160
988	653 649	386 378	10 T	376 376	0.8154 0.8154	0.8137 0.8137	0.99	0.6408 0.6369	0.7299 0.7285	0.3592 11.3631	0.2701 0,2715	0.01	0.8408 0.8408	0.6715 0.6737	1355 1363	11630.5 11672.5	156 14s
988	659 655	368 364	14	374 374	0.8163 0.8164	0.8147	0.98	0.6477 0.6428	0.7323 0.731	B 3533 B 3572	0.2677	8 014 0 01	0.841	0.671 0.671	1345	11892 S 11634 S	142
993 994 985	663 659 660	350 350	8 5 14	362 365 373	0.8223 0.8209 0.8168	0.8206 0.8191 0.8152	0.994 0.995 0.998	0.6506 0.6467 0.8477	0.7361 0.7341 0.7329	0.3494 0.3533 0.3523	0.2639 0.2659 0.2671	0.000 0.000 0.014	0.8458 6.8449 6.8408	0.6848 0.6828 0.6718	1349 1354 1344	11700.3 11705 11894.8	60 6s 14s
980	675 672	347	14 15	358 362	0 8242 0 8222	0.8226	0.985	0.6624 0.6595	0.7412	0.3376 0.3405	0.2588 0.2607	0.014 0.015	0 8462 0 8446	0.6837	1329	11624.5 11806	1ac 156
980	688 667	331 352	19	350 357	0.8281 0.8248	0.8286 0.8231	G-981 C-985	0.6752 0.6546	0.7475 0.7385	0.3248 0.3654	0.2525 0.2615	0.019	0.8485 0.8478	0.6878 0.6891	1311 1348	11588	(Se Is
584	693 677	326 342	15	341 347	0 8325 0 8297	0.831	G 985	0.6901	0.7511	0.5199 0.3356	0.2489 0.256	D 015	0.8523 0.8514	0.6998 0.697	1310	11848	101 2x
985 984	693 693	328 328 328	14 14 15	340 340 341	0.833 0.833 0.8325	0.8315 0.8315 0.831	0.986 0.985	0.6901 0.6801	0.7513 0.7513 0.7511	0.3199 0.5199 0.5199	0.2497 0.2487 0.2489	8 014 8 014 0 015	0.8528 0.8528 0.8523	0.698 0.698 0.6968	1311 1311 1310	11680.5 11880.5 11848	10a 10d 10s
899	695 775	324 244	100	330 344	0.838	0.8365	0.8900	0.7000	0.754 II.7865	0.518 0.2395	0.246	D 1001	0.8394	0.7099 0.0663	1317	11784 fi 10749.8	(4a 4b
981	705 708	314 310	13	327 328	0.6394 0.6389	0.8375 0.8375	0:987 0:982	0.6919 0.6958	0.7595 0.7599	0.3081	0.2415 0.2401	0.010	0.8578 0.8588	0.7009 0.7059	1300 1291	11642.8	7a 2a
982 993	716 699	305 320	47 15	326 326	0.8399 0.84	0.8385 0.8385	01983 01984	0 6968 0 686	0.7607 0.7563	0.3032 -0.314	0.2393 0.2437	0.617 0.000	0 8576 U 859	D 7079 D 7131	1291 1313	11772.5	100 148
985 918	713 772	305 247	14 83	320 330	0.8428	0.8414 0.8385	0.988 0.9189	0.6997 0.7576	0.763 0.7876	0.3003 0.2424	0.237 6.2124	0.0831	0.8602	0.7141 0.6825	1291 1163	11700.3 10956	5a 49
914 911	784 785	235 234	85 88	320	0.8421 0.8411	0:8414 0:8404	0.9149 0.9119	0.7654 0.7704	0.7956 0.7956	0.2308 0.2298	0.2045 0.2044	0.0851 0.0881	0.851 0.8498	0 6909 0 6885	1149 1145	10955 10919.5	40 4e
908	793 719	228 300	90	316 306	0:8441 0:8498	0.8434	0.9099	0.7782	0.8009	0.2218 0.2944	0.1991	0.0901	0.86 0.8519 0.8868	0.6935	1135	10910.5	12st
940 928 949	771 280 760	248 239 259	59 71 50	307 310 309	0.8488 0.8472 0.8479	0.8479 0.8464 0.8469	0.9499 0.9499	0.7566 0.7655 0.7458	0.7912 II.7952 II.7858	0.2434 II.2345 II.2542	0.2038 0.2048 0.2144	0.0591 0.0711 0.0501	0.859E 0.8569	0.7088 0.703 0.7097	1188 1167 1208	11254 11122 11344.5	4e 13a 4l
938 948	777 766	242 253	63 51	305 304	0.8503	0.8489 0.8494	0.9389	0.762 5 0.7517	0.7693	0.2375 0.2483	0.2054 0.2107	0.0631 0.0511	0.8599 6.8618	0.7094 0.7137	1178 1201	11216	4
935 948	781 767	238 252	64 61	302 303	0.8512 0.8508	0.8503 0.8499	0 9350 0 9489	0.7664 0.7527	0.7971	0.2336 0.2473	0.2029	0.0641 0.0611	0.861	D.7118 D.7145	1173 1200	11211.5 11346	44 48
97n 888	748 825	27.1 196	23	294 309	0.8555 0.8473	0.8543	0.8869	0.7341	0.7827 0.8189	0.2659	0.2173 0.3811	0.029 0.1131	0.8691 0.8515	0.7318 0.6963	1247 1082	10683	106 13c
930 950	782	237 249	61 49	298 297	0.8532	0.6523	0.9009	0./6/4 0./566	0.7900	0:2026 0:2434	0.2017	0.0611 0.049	U.8629 U.8648	0.7161	1175	11251	di de
993 984 984	737 744 744	282 275 275	10 10	288 290 290	0.8576 0.8576	0.8578 0.8563 0.8563	0.884 0.985 0.985	0.7233 0.7301 0.7301	0.7788 0.7816 0.7816	0.2767 0.2699 0.2699	0.2212 0.2184 0.2184	0 000 0 015	0.8734 0.8716 0.8716	0.7435 0.7381 0.7381	1275 1259 1259	11848.8 11750 11750	06 116 110
992	741 740	278 279	Ÿ	284 286	0 860G 0 8696	0.8583		0.7272	0.7813	0.2728	0.2187 0.2195	9.007	0.8748	0.7468 0.7447	1271	11850-5 11842	8c 06
99/i 987	751 752	288 287	± 12	273 279	0.868 0.863	0.8647 0.8617	C-998 C-988	0.737 0.738	0.7876 0.7871	0.263 0.262	0.2124 0.2129	0.005	6 6790 6 8782	0.7581 0.7483	1262 1254	11883 118833	12e 2b
993° 938	760 888	259 211	63	265 274	0.0090	0.8687	0.9389	0.7458	0.7901	0.2642 0.2071	0.2009	0.000	0.8823 0.8723	0.7022 0.7366	1252 1147	11894.1	121 138
989	764 760	255 259	10	265	018699 018699	0.8687 0.8687	0.99	0.7498 0.7458	0.795 0.7931	0.2502 0.2542	0.205	0.01	0.8819	8:7608 0:7622	1244	11888.5 11894.5	6e 12e
980	764 764	255 255	10	262 265	6.8714 9.8699	0.8687		0.7498 0.7498	0.7955	0.2502 0.2502	0.2045	0.01	0.8833 0.8619	0.7643 0:7600	1247	11890	12b
991 970 970	770 780 780	249 239 239	29	257 259 259	0.8738 0.8727 0.8727	0.8726 0.8717 (E8717	0.98	0.7556 0.7655 0.7656	0.7992 0.6038 d.8038	0.2444 0.2345 II.2345	0.2038 0.1962 0.1962	0.02	0.8852 0.8833 0.8832	0.768 0.7619 0.7619	1240 1218 1218	11889.5 11750.5 11750.3	76 11s 11f
984	70t	215	26 15	248 248	0.6782	0.8771	0.985	0.7713	0.8085	0.2287	0.181	0 026	0.8888	0.7752	1217	11732.5	70
981	880 880	213	18 26	297 239	5-6835 0 6820	0.8810	0.982	0.7651	0.8175	0.2149	0.1825	0.018	6.8922 0.8900	0.777	1200 1186	11736.5	120 116
981:	908	213	18	201	0.6860	0.8858	0.982	0.791	0.8216	0.208	0.1790	0.018	010907	0.7680	1194	11808:1	126

Next, I calculate the posterior probabilities for the test data set. Then, I sort DONR in order of the posterior probabilities from highest to lowest. I calculate the cumulative sum of $(14.5 \times DONR - 2)$ while going down the list. Then, I find the maximum of this profit function. Based on Model 12a applied to the test data set, I will mail to the 278 highest posterior probabilities.

Best classification model = Model 12a: Boosting (standardization before splitting)

Classification Model 12a: DO subset Splitting Before Standardization	
806	18
213	981

5. Building Prediction Models

In the following prediction models, I will use data where standardization was performed before splitting and splitting was performed before standardization. Similar to the process with classification models, I will start out this section by identifying the best variable set to predict donation amount in the response variable DAMT. First, I run an automated variable selection procedure on the training data set with the function REGSUBSETS in the LEAPS package with the "exhaustive search" method to find the best 20 variables out of the total 51 variables (including the newly added variables) for predicting DAMT. The following plot is a graphical representation of the best models with 1 through 20 variables, where black colored squares indicate that the particular variable was included in that model. The y-axis orders the models by Adjusted R-Squared values. This figure indicates that the model with 20 variables has the highest Adjusted R-Squared value.

It is very interesting that the other 3 region variables (REG3, REG4, and REG5) that were not selected than when classifying DONR (REG1 and REG2) were selected for predicting DAMT. It may just be a coincidence as the situation is completely different (classifying DONR vs predicting DAMT), so there may be no relationship between the variables selected with REGSUBSETS. There is a noticeable lack of TDON and TLAG variables which appeared in almost all of the classifying DONR subsets. Otherwise, the remaining selected variables are relatively similar to those for the classifying DONR list. Once again, I identify redundant variables in the REGSUBSETS subset in order to choose a more parsimonious and reduced subset.

Redundant Variables		
WRAT	WRAT2	WRAT3
PLOW LN_PLOW		SR_PLOW
LN_INCM	SR_INCM	
LN_LGIF	SR_LGIF	

Only variables that appear in REGSUBSET results more than twice are included in the variable selection subset. Both WRAT and WRAT2 are included in a majority of the subsets, however WRAT3 is only included in 3, so it is eliminated from the trimmed subset. Similarly, PLOW is included in a majority of the subsets, however LN_PLOW and SR_PLOW are only in 4 and 5, respectively, so they are taken out of the trimmed subset. The same reasoning is applied for leaving out SR_INCM and SR_LGIF. Please note that the default original set does not include HINC2, which was included in the set of variables used to classify DONR.

Default original set (DO)	Variable selection subset (VS)	Trimmed subset (TS)
REG1	REG3	REG3
REG2	REG4	REG4
REG3	HOME	REG5
REG4	CHLD	HOME
HOME	HINC	CHLD
CHLD	WRAT	HINC
HINC	PLOW	PLOW
GENF	WRAT2	WRAT
WRAT	WRAT3	WRAT2
LN_AVHV	HINC3	HINC3
INCM	LN_INCM	LN_INCM
INCA	LN_PLOW	LN_LGIF

PLOW	LN_TGIF	LN_TGIF
NPRO	LN_LGIF	LN_RGIF
TGIF	LN_RGIF	LN_AGIF
LGIF	LN_AGIF	
RGIF	SR_INCM	
TDON	SR_PLOW	
TLAG	SR_LGIF	
AGIF	REG5	

In order to compare models I will compute and analyze goodness of fit and model performance metrics including mean squared error (MSE), standard error (Std Error), R Squared value (R2), Adjusted R Squared value (Adj R2), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

Prediction Model 1: OLS Linear Regression

The first method I will apply is classic ordinary least squares regression with each subset of variables of the standardized training set to predict DAMT and test the model's performance on the standardized validation set. Least Squares Regression will serve as a good starting point and standard for model comparison. The following table shows the classification table for all 6 Linear Regression classification models. Models 1a, 1b, and 1c are built on the training where splitting was performed before standardization. Model 1b performs the best with the lowest MSE, lowest Standard Error, highest R Squared, highest Adjusted R Squared, lowest AIC, and lowest BIC

Metrics\Models	Prediction Model 1a: DO subset Splitting Before Standardization	Prediction Model 1b: VS subset Splitting Before Standardization	Prediction Model 1c: TS subset Splitting Before Standardization
MSE	1.867523	1.3547	1.392546
Std Error	0.1696615	0.1501628	0.1520951
R2	0.5722429	0.668497	0.6604173
Adj R2	0.5679089	0.6651383	0.6578434
AIC	6646.579	6138.016	6176.056
BIC	6784.96	6276.396	6282.987

Prediction Model 2: Ridge Regression with GLMNET

The next method I will apply is ridge regression using the GLMNET function which applies a tuning parameter to all estimated coefficients (not including the intercept) shrinking them towards 0 (but never actually equal to 0) as specified by the lambda value (λ). When λ = 0, the penalty term has no effect, and ridge regression will produce the least squares estimates. However, as $\lambda \to \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach 0. I use cross validation to identify the optimal lambda from a grid of 10000 lambda values (between 0 and 10e+10) for each model. I have to specify a random seed first so my results will be reproducible, since the choice of the cross-validation folds is random.

The GLMNET package does not provide R Squared, Adjusted R Squared, AIC, or BIC values. The reason for this is that standard errors are not very meaningful for strongly biased estimates that arise from penalized estimation methods. Penalized estimation is a procedure that reduces the variance of estimators by introducing substantial bias. The bias of each estimator is therefore a major component of its mean squared error, whereas its variance may contribute only a small part.

Unfortunately, in most applications of penalized regression it is impossible to obtain a sufficiently precise estimate of the bias. Any bootstrap-based calculations can only give an assessment of the variance of the estimates. Reliable estimates of the bias are only available if reliable unbiased estimates are available, which is typically not the case in situations in which penalized estimates are used. Reporting a standard error of a penalized estimate therefore tells only part of the story. It can give a mistaken impression of great precision, completely ignoring the inaccuracy caused by the bias. Model 2b performs the best with the lowest MSE and lowest Standard Error.

Metrics\Models	Prediction Model 2a: DO subset	Prediction Model 2b: VS subset	Prediction Model 2c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.868898	1.363563	1.420405
Std Error	0.1703007	0.151085	0.1545045
λ	0.0399264	0.01	0.01

The next method I will apply is the lasso using the GLMNET function which applies a tuning parameter to all estimated coefficients (not including the intercept) shrinking them towards 0 (where some actually equal to 0) as specified by the lambda value (λ). When λ = 0, the penalty term has no effect, and the lasso will produce the least squares estimates. However, as $\lambda \to \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach and may equal 0. Therefore, the difference between ridge regression and the lasso are that some coefficient estimates are forced to be exactly equal to zero when the tuning parameter λ is sufficiently large. I use cross validation to identify the optimal lambda from a grid of 100 lambda values for each model. I have to specify a random seed first so my results will be reproducible, since the choice of the cross-validation folds is random. In the chart below, I list the lambda value and the number of coefficient estimates set exactly to 0. Model 3b performs the best with the lowest MSE and lowest Standard Error.

Metrics\Models	Prediction Model 3a: DO subset	Prediction Model 3b: VS subset	Prediction Model 3c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.861808	1.412496	1.462396
Std Error	0.1694304	0.1537956	0.1566224
λ	0.01	0.66832615	0.01
Num β= 0	1	2	0

Prediction Model 4: Principal Components Regression

Now, I add models built using Principal Components Regression. The result of running a Principal Components Regression model is a table of variance explained for each number of principal components included. I compute the ten-fold cross-validation error for each possible value of number of PCs used. I have to specify a random seed first so my results will be reproducible, since the choice of the cross-validation folds is random. The cross validation score which is reported as root mean squared error is computed for each number of PCs. I report the smallest cross validation error when all PCs are included in the model along with the mean square error and standard error. Model 4b performs the best with the lowest MSE and lowest Standard Error.

Metrics\Models	Prediction Model 4a: DO subset	Prediction Model 4b: VS subset	Prediction Model 4c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	2.272426	1.981271	2.02648
Std Error	0.1924591	0.183062	0.1807794
CV Error	1.286	1.132	1.142

Prediction Model 5: Partial Least Squares

Now, I add models built using Partial Least Squares which works similar to Principal Components Regression. The result of running a Partial Least Squares model is a table of variance explained for each number of principal components included. I compute the tenfold cross-validation error for each possible value of number of PCs used. I have to specify a random seed first so my results will be reproducible, since the choice of the cross-validation folds is random. The cross validation score which is reported as root mean squared error is computed for each number of PCs. I report the smallest cross validation error when all PCs are included in the model along with the mean square error and standard error. Model 5b performs the best with the lowest MSE and lowest Standard Error.

Metrics\Models	Prediction Model 5a: DO subset	Prediction Model 5b: VS subset	Prediction Model 5c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.891649	1.455105	1.51345
Std Error	0.1712315	0.1548187	0.157661
CV Error	1.286	1.132	1.142

Prediction Model 6: Least Squares Regression using GAM with Natural Splines

Following that, I build logistic regression models with natural splines using the GAM package and function. I only apply natural splines to continuous variables (not to any variables that can be considered categorical variables) with 4 degrees of freedom. Model 6b performs horribly compared to the other natural spline least squares regression models. Here GAM does not provide R Squared or Adjusted R Squared values. Here Model 6b produces a very high error rate about 10 times as much as the other models. Model 6c performs the best with the lowest MSE and lowest Standard Error.

Metrics\Models	Prediction Model 6a: DO subset	Prediction Model 6b: VS subset	Prediction Model 6c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.679664	11.97154	1.399422
Std Error	0.14687	0.547503	0.1391948
AIC	6303.19	6142.199	6140.123

BIC	6649.142	6469.281	6360.274
	00.012.2	0.00.202	0000.27

Prediction Model 7: Least Squares Regression with Smoothing Splines

Following that, I build logistic regression models with smoothing splines using the GAM package and function. I only apply smoothing splines to continuous variables (not to any variables that can be considered categorical variables) with 4 degrees of freedom. Model 6b performs horribly compared to the other smoothing spline least squares regression models. Here GAM does not provide R Squared or Adjusted R Squared values. Here Model 6b produces a very high error rate about 10 times as much as the other models. Here Model 7a performs the best with the lowest MSE, however Model 7c has the lowest Standard Error, AIC, and BIC

Metrics\Models	Prediction Model 7a: DO subset	Prediction Model 7b: VS subset	Prediction Model 7c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.1569567	1.346153	1.335262
Std Error	0.1595578	0.1501249	0.1487894
AIC	6326.331	6148.189	6129.225
BIC	6464.712	6286.569	6236.156

Prediction Model 8: Least Squares Regression using GAM with Local Regression (span = 0.2)

Next, I build least squares regression models with local linear regression smoothing with spans covering 20% of the observations. I only apply local regression smoothing to continuous variables (not to any variables that can be considered categorical variables). Model 8c performs the best with the lowest MSE, Standard Error, AIC, and BIC.

Metrics\Models	Prediction Model 8: DO subset	Prediction Model 8b: VS subset	Prediction Model 8c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	2.208205	1.341621	1.334256
Std Error	0.6697493	0.1463981	0.1458805
AIC	6351.096	6229.713	6154.597
BIC	6489.477	6368.094	6261.528

Prediction Model 9: Least Squares Regression using GAM with Local Regression (span = 0.5)

Next, I build least squares regression models with local linear regression smoothing with spans covering 50% of the observations. I only apply local regression smoothing to continuous variables (not to any variables that can be considered categorical variables). Model 9c performs the best with the lowest MSE, Standard Error, AIC, and BIC.

Metrics\Models	Prediction Model 9a: DO subset	Prediction Model 9b: VS subset	Prediction Model 9c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.625461	1.345475	1.341848
Std Error	0.1700076	0.1492391	0.1484047
AIC	6334.956	6155.241	6132.99
BIC	6473.337	6293.622	6239.921

Prediction Model 10: Regression Tree

Now I build a full regression decision tree with all 3 subsets of variables using the tree function in the TREE package. Regression trees are very similar to classification trees. Instead of stratifying data into regions based on class proportions, it stratifies data by cutoff thresholds. In order to guarantee reproducibility of results, I use set.seed(1). Without any pruning of the decision tree, Models 10a, 10b, and 10c all perform exactly the same.

Metrics\Models	Prediction Model 10a: DO subset	Prediction Model 10b: VS subset	Prediction Model 10c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	2.241075	2.241075	2.241075
Std Error	0.1920681	0.1920681	0.1920681
Deviance	1.917	1.917	1.917

Prediction Model 11: Bagging

Next, I apply bagging to the 3 subsets using the randomForest package in R. For bagging, I set the number of trees to 500. In order to guarantee reproducibility of results, I use set.seed(1). I post the highest R Squared value out of all 500 trees generated. Model 11b performs the best with lowest MSE, Standard Error, and second highest highest R Squared (just slightly less than of Model 11c).

Matrice\ Models	Prediction Model 11a: DO subset	Prediction Model 11h: VS subset	Prediction Model 11c: TS subset
IVIETTICS (IVIOLEIS	Frediction Model IIa. DO Subset	FIEURION NOUGH TID. VO SUDSEL	Frediction Model IIC. 13 3003Et

	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.70452	1.680767	1.690726
Std Error	0.1746157	0.1700015	0.1717354
Highest R2	0.6026312	0.6069172	0.607098

Metrics\Models	Prediction Model 11d: DO subset	Prediction Model 11e: VS subset	Prediction Model 11f: TS subset
	Standardization Before Splitting	Standardization Before Splitting	Standardization Before Splitting
MSE	1.706585	1.681794	1.691131
Std Error	0.1748117	0.1701418	0.1717578
Highest R2	0.6015721	0.6066416	0.6063775

Prediction Model 12: Random Forests

Next, I apply random forests to the 3 subsets using the randomForest package in R. For random forests, I set m = round(sqrt(p)) and the number of trees to 500. In order to guarantee reproducibility of results, I use set.seed(1). I post the highest R Squared value out of all 500 trees generated. Model 12c performs the best with the lowest MSE, lowest Standard Error, and highest R Squared value than any previous prediction model I've built.

Metrics\Models	Prediction Model 12a: DO subset Splitting Before Standardization	Prediction Model 12b: VS subset Splitting Before Standardization	Prediction Model 12c: TS subset Splitting Before Standardization
MSE	1.66794	1.632706	1.609385
Std Error	0.1733482	0.1732356	0.1702943
Highest R2	0.604422	0.6152546	0.6217699

Metrics\Models	Prediction Model 12d: DO subset	Prediction Model 12e: VS subset	Prediction Model 12f: TS subset
	Standardization Before Splitting	Standardization Before Splitting	Standardization Before Splitting
MSE	1.670802	1.6341	1.610562
Std Error	0.1735235	0.1733228	0.1704411
Highest R2	0.6039727	0.6151073	0.6213717

Prediction Model 13: Boosting

Last, I apply boosting to the 3 subsets using the GBM package in R. For boosting, I set the number of trees to 5000. GBM does not provide any R Squared or Adjusted R Squared values. In order to guarantee reproducibility of results, I use set.seed(1). Model 13a performs the best

Metrics\Models	Prediction Model 913: DO subset	Prediction Model 13b: VS subset	Prediction Model 13c: TS subset
	Splitting Before Standardization	Splitting Before Standardization	Splitting Before Standardization
MSE	1.437068	1.432977	1.432369
Std Error	0.1622368	0.1623572	0.1628687

Metrics\Models	Prediction Model 13d: DO subset	Prediction Model 13e: VS subset	Prediction Model 13f: TS subset
	Standardization Before Splitting	Standardization Before Splitting	Standardization Before Splitting
MSE	1.442785	1.431097	1.430536
Std Error	0.1633923	0.1623848	0.162481

6. Selecting the Best Prediction Model

Similar to the process for choosing the best classification model, I also use a color based heat map to compare prediction models and select the model with the highest scaled mean value of scores which should appear as the top of the heat map and the most deeply red colored. For some methods and models, it was not meaningful to report AIC, BIC, R Squared, or Adjusted R Squared values so I compare models based on mean squared error (MSE) and standardized error (Std Error).

I am slightly surprised that GAMs with natural splines, smoothing splines, and local regression outperformed the tree based methods. Decision trees and random forests may not perform very well when all of the data is numeric. I believe that parametric methods based on least squares regression work well when there are unseen but present relationships between the response variables and predictor variables that can be modeled with a regression equation. However, in this situation for predicting DAMT, the GAM approach to nonparametric regression produces better fitting models than the parametric approaches. Some of the most powerful nonparametric methods we learned this quarter in Predict 422 are least squares regression with GAM using splines.

MSE Std Error

As you can see in the color based heat map, the least squares regression models using a generalized additive model with natural splines, smoothing splines, and local regression performed the best. Model 6c, a least squares regression model using GAM with natural splines using the trimmed subset of variables with data that was standardized before data splitting, performed the best based on mean squared error and standardized error metrics (common for all out of all the prediction models. With this specific GAM with natural splines, I used 4 knots for all continuous variables based on default settings (automatically placed according to percentiles).

Best prediction model = Model 6c: Boosting (standardization before splitting)

Metrics\Models	Prediction Model 6c: TS subset Splitting Before Standardization
MSE	1.399422
Std Error	0.1391948
AIC	6140.123

BIC	6360.274

Finally, I save the predicted DONR and DAMT values for the test set in a CSV file entitled "JP.csv". The column named "chat" contains all the predicted DONR values (0 = not donor, 1 = donor) and the column named "yhat" contains all the predicted DAMT values or donation amounts.

7. Conclusion

A charitable organization wishes to develop a machine learning model to improve the cost-effectiveness of their direct marketing campaigns to previous donors. In this course project, I developed a classification model using data from the most recent campaign to effectively capture likely donors so that the expected net profit is maximized. I also developed a prediction model to predict donation amounts for donors (consisting of the records for donors only).

I explored the data and analyzed the shape of the histogram of continuous variables. I added variable transformations based on the particular skewness of the variables including square root, natural logarithm, square, and cube transforms. I standardized the data both before and after splitting the data into training, test, and validation sets and then build many models based on various methods we covered in this quarter in Predict 422. For classification models, I used logistic regression, linear discriminant analysis, quadratic discriminant analysis, k nearest neighbors, logistic regression using GAM with natural splines, logistic regression using GAM with smoothing splines, logistic regression using GAM with local regression smoothing (span = 0.2, 0.5), decision tree, bagging, random forests, boosting, artificial neural networks, and support vector machines (linear and radial kernels). For prediction models, I used least squares regression, ridge regression, the lasso, principal components regression, least squares regression using GAM with natural splines, least squares regression using GAM with smoothing splines, least squares regression using GAM with local regression smoothing (span = 0.2, 0.5), decision tree, bagging, random forests, and boosting. The best classification model and method was boosting (5000 trees, interaction depth = 4, shrinkage parameter = 0.01) and the best prediction model and method was least squares regression using GAM with natural splines (4 knots). I should always pursue the simplest model to predict or explain dependent variables, but sometimes data does not cooperate and the search for good models leads to very complex, data-driven, nonparametric models as it did for the charity data set. However, sometimes the most powerful and complex models do not significantly outperform simpler models, and in these cases, it may be preferable to choose the parsimonious model for practicality, interpretation, and implementation reasons. Although they perform very well and can be very accurate, decision trees and random forests can take a very long time to train. The best methods for generating classification models are not always the best methods for generate prediction models.

I am grateful for the opportunity to have learned so many new and powerful machine learning algorithms and methods for analytical modeling. This project was a wonderful way to utilize and apply everything we learned about different methods of building models on a real world data set.

Appendix: R Code

```
# PREDICT 422 Practical Machine Learning
  Course Project
  Winter 2016
 Joshua Peng
# OBJECTIVE: A charitable organization wishes to develop a machine learning
 model to improve the cost-effectiveness of their direct marketing campaigns
# to previous donors.
# 1) Develop a classification model using data from the most recent campaign that
# can effectively capture likely donors so that the expected net profit is maximized.
# 2) Develop a prediction model to predict donation amounts for donors - the data
# for this will consist of the records for donors only.
# Load the data
charity <- read.csv("charity.csv") # load the "charity.csv" file</pre>
attach (charity)
# Identify Variables with Missing Values
colnames(charity)[colSums(is.na(charity)) > 0]
# Adding in reference reg5 to analyze correlations
sum(req1)
sum(reg2)
sum(rea3)
sum(reg4)
8009-(1605+2555+1071+1117)
reg5 = rep(0,nrow(charity))
for(i in 1:nrow(charity))
  if (reg1[i]==0 && reg2[i]==0 && reg3[i]==0 && reg4[i]==0) {reg5[i]=1}}
```

```
charity$reg5 = reg5
charity.train <- charity[charity$part=="train",]</pre>
rm(charity.train)
# Analyzing REGx
library('corrplot') #package corrplot
regx cor = cor(charity.train[,c(2:5,25,22)])
corrplot(regx cor, method = "number") #plot matrix
# normality tests
library(nortest)
ad.test(hinc)
ad.test(npro)
ad.test(tdon)
# descriptive summary of variables
library(modeest)
summary (charity)
mfv(hinc)[1]
mfv(wrat)[1]
mfv(avhv)[1]
mfv(tlag)[1]
mfv(agif)[1]
# histograms
hist(reg1) # dichotomous
hist(reg2) # dichotomous
hist(reg3) # dichotomous
hist(reg4) # dichotomous
hist(home) # dichotomous
hist(chld) # zero inflated
hist(hinc) # median spike
hist(genf) # dichotomous
hist(wrat) # left skewed
hist(avhv) # right skewed
hist(incm) # right skewed
hist(inca) # right skewed
hist(plow) # right skewed, poisson
hist(npro) # right skewed
hist(tgif) # right skewed, poisson
hist(lgif) # right skewed, poisson
hist(rgif) # right skewed, poisson
hist(tdon) # slightly right skewed
hist(tlag) # right skewed
hist(agif) # right skewed
# predictor transformations
charitv$wrat2 = wrat^2
charity$wrat3 = wrat^3
charity$hinc2 = hinc^2
charity$hinc3 = hinc^3
charity$ln chld = log(chld)
charity$ln avhv = log(avhv)
charity$ln_incm = log(incm)
charity$ln inca = log(inca)
charity$ln_plow = log(plow)
charity$1n npro = log(npro)
charity$ln tgif = log(tgif)
charity$ln lgif = log(lgif)
charity$ln_rgif = log(rgif)
charity$1n_tdon = log(tdon)
charity$ln_tlag = log(tlag)
charity$ln_agif = log(agif)
charity$sr_chld = sqrt(chld)
charity$sr_avhv = sqrt(avhv)
charity$sr incm = sqrt(incm)
charity$sr inca = sqrt(inca)
charity$sr_plow = sqrt(plow)
charity$sr npro = sqrt(npro)
charity$sr_tgif = sqrt(tgif)
charity$sr lgif = sqrt(lgif)
charity$sr rgif = sqrt(rgif)
charity$sr_tdon = sqrt(tdon)
charity\$sr\_tlag = sqrt(tlag)
charity$sr_agif = sqrt(agif)
chld0 = rep(0, nrow(charity))
plow0 = rep(0, nrow(charity))
reg5 = rep(0,nrow(charity))
for(i in 1:nrow(charity)) {
if(chld[i]==0) {chld0[i]=1}
if(plow[i]==0) {plow0[i]=1}
if(reg1[i]==0 && reg2[i]==0 && reg3[i]==0 && reg4[i]==0) {reg5[i]=1}}
charity$reg5 = reg5
charity$chld0 = chld0
charity$plow0 = plow0
charity$ln plow[charity$ln plow <= 0] = 0</pre>
charity$1n chld[charity$1n chld \leftarrow 0] = 0
attach(charity)
```

histograms after data transformations

```
hist(hinc2)
hist(hinc3)
hist(wrat2)
hist(wrat3)
hist(ln chld)
hist(ln avhv)
hist(ln incm)
hist(ln inca)
hist(ln plow)
hist(ln npro)
hist(ln tgif)
hist(ln lgif)
hist(ln rgif)
hist(ln tdon)
hist(ln tlag)
hist(ln agif)
hist(sr chld)
hist(sr avhv)
hist(sr incm)
hist(sr inca)
hist(sr plow)
hist(sr npro)
hist(sr tgif)
hist(sr lgif)
hist(sr rgif)
hist(sr tdon)
hist(sr tlag)
hist(sr agif)
# Set up data for analysis (initial steps)
data.train <- charity[charity$part=="train",]</pre>
x.train <- data.train[,c(2:21, 25:55)]
c.train <- data.train[,22] # donr</pre>
n.train.c <- length(c.train) # 3984
y.train <- data.train[c.train==1,23] # damt for observations with donr=1
n.train.y <- length(y.train) # 1995
data.valid <- charity[charity$part=="valid",]</pre>
x.valid <- data.valid[,c(2:21, 25:55)]</pre>
c.valid <- data.valid[,22] # donr</pre>
n.valid.c <- length(c.valid) # 2018
y.valid <- data.valid[c.valid==1,23] # damt for observations with donr=1
n.valid.y <- length(y.valid) # 999</pre>
data.test <- charity[charity$part=="test",]</pre>
n.test <- dim(data.test)[1] # 2007
x.test <- data.test[,c(2:21, 25:55)]</pre>
# Set up data for analysis (data splitting before standardization)
rm(data.train.std.y, data.train.std.c, data.valid.std.y, data.valid.std.c, data.test.std)
x.train.mean <- apply(x.train, 2, mean)</pre>
x.train.sd <- apply(x.train, 2, sd)</pre>
x.train.std < -t((t(x.train)-x.train.mean)/x.train.sd) # standardize to have zero mean and unit sd
apply(x.train.std, 2, mean) # check zero mean
apply(x.train.std, 2, sd) # check unit sd
data.train.std.c <- data.frame(x.train.std, donr=c.train) # to classify donr
data.train.std.y <- data.frame(x.train.std[c.train==1,], damt=y.train) # to predict damt when donr=1
x.valid.std <- t((t(x.valid)-x.train.mean)/x.train.sd) # standardize using training mean and sd
data.test.std <- data.frame(x.test.std)
# Set up data for analysis (Data splitting after standardization)
rm(data.train.std.v, data.train.std.c, data.valid.std.v, data.valid.std.c, data.test.std)
x.charity = charity[,c(2:21, 25:55)]
c.charity = charity[,22] # donr
n.charity.c = length(c.charity) # 8009
y.charity = charity[c.charity==1,23] # damt for observations with donr=1
n.charity.y = length(y.charity) # 5001
x.charity.mean = apply(x.charity, 2, mean)
x.charity.sd = apply(x.charity, 2, sd)
 \text{x.charity.std} = \text{t((t(x.charity)-x.charity.mean)/x.charity.sd)} \ \# \ \text{standardize to have zero mean and unit sd} 
apply(x.charity.std, 2, mean) \# check zero mean
apply(x.charity.std, 2, sd) # check unit sd
\texttt{data.charity.std.c} = \texttt{data.frame(x.charity.std, donr=c.charity, part=charity\$part)} \ \# \ \texttt{to classify donr}
data.charity.std.y = data.frame(x.charity.std[c.charity==1,], damt=y.charity) # to predict damt when donr=1
data.charity.std.y0 = data.frame(x.charity.std, part=charity$part) # add in part
data.charity.std.y1 = data.frame(data.charity.std.y0[c.charity==1,], damt=y.charity) # to predict damt when donr=1
i.train.c = which(data.charity.std.c$part=="train")
i.train.y = which(data.charity.std.y1$part=="train")
i.valid.c = which(data.charity.std.c$part=="valid")
i.valid.y = which(data.charity.std.y1$part=="valid")
i.test = which(charity$part=="test")
data.train.std.c = data.charity.std.c[i.train.c,]
data.train.std.y = data.charity.std.y[i.train.y,]
data.valid.std.c = data.charity.std.c[i.valid.c,]
data.valid.std.y = data.charity.std.y[i.valid.y,]
data.train.std.c$part = NULL
data.train.std.y$part = NULL
data.valid.std.c$part = NULL
data.valid.std.y$part = NULL
```

```
##### CLASSIFICATION MODELING ######
library(MASS)
library(leaps)
library (gam)
library(ROCR)
library(AUC)
vs1 = regsubsets(donr ~ ., data = data.train.std.c, nvmax = 20)
plot(vs1, scale="adjr2")
# Logistic Regression
# M1c: Trimmed subset of 12 variables
model.log2 = glm(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                   ln incm + ln tgif + sr tdon + sr tlag, data.train.std.c, family=binomial("logit"))
# M1b: Best 20 variable model from regsubsets
model.log2 = glm(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 + wrat3 + hinc2 + ln incm + ln tgif + ln lgif + ln tdon + ln tlag +
                    ln_agif + sr_chld + sr_tdon + sr tlag, data.train.std.c, family=binomial("logit"))
# Mla: Default Original subset
model.log2 <- glm(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                  ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                  data.train.std.c, family=binomial("logit"))
##### My Logistic Regression Model
post.valid.log2 <- predict(model.log2, data.valid.std.c, type="response") # n.valid post probs
profit.log2 <- cumsum(14.5*c.valid[order(post.valid.log2, decreasing=T)]-2)
plot(profit.log2) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.log2) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.log2)) # report number of mailings and maximum profit
cutoff.log2 <- sort(post.valid.log2, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.log2 <- ifelse(post.valid.log2>cutoff.log2, 1, 0) # mail to everyone above the cutoff
table(chat.valid.log2, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library (ROCR)
pred <- prediction(chat.valid.log2, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
#####
model.log1 <- glm(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +</pre>
                  In adv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif, data.train.std.c, family=binomial("logit"))
post.valid.log1 <- predict(model.log1, data.valid.std.c, type="response") # n.valid post probs
# calculate ordered profit function using average donation = $14.50 and mailing cost = $2
profit.log1 <- cumsum(14.5*c.valid[order(post.valid.log1, decreasing=T)]-2)</pre>
plot(profit.log1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.log1) # number of mailings that maximizes profits
\texttt{c(n.mail.valid, max(profit.log1))} \ \texttt{\# report number of mailings and maximum profit}
# 1291.0 11642.5
cutoff.log1 <- sort(post.valid.log1, decreasing=T) [n.mail.valid+1] # set cutoff based on n.mail.valid</pre>
chat.valid.log1 <- ifelse(post.valid.log1>cutoff.log1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.log1, c.valid) # classification table
                c.valid
#chat.valid.log1 0 1
               0 709 18
               1 310 981
# check n.mail.valid = 310+981 = 1291
# check profit = 14.5*981-2*1291 = 11642.5
# Results
# n.mail Profit Model
# 1329 11624.5 LDA1
# 1291 11642.5 Log1
# Linear Discriminant Analysis
# M2c: Trimmed subset of 12 variables
model.lda2 = lda(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                   ln_incm + ln_tgif + sr_tdon + sr_tlag, data.train.std.c)
# M2b: Best 20 variable model from regsubsets
# M2a: Default Original subset

model.lda2 <- lda(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                  ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                  data.train.std.c) # include additional terms on the fly using I()
##### My Linear Discriminant Analysis
post.valid.lda2 <- predict(model.lda2, data.valid.std.c)$posterior[,2] # n.valid.c post probs
profit.lda2 <- cumsum(14.5*c.valid[order(post.valid.lda2, decreasing=T)]-2)</pre>
plot(profit.lda2) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.lda2) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.lda2)) # report number of mailings and maximum profit
cutoff.lda2 <- sort(post.valid.lda2, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.lda2 <- ifelse(post.valid.lda2>cutoff.lda2, 1, 0) # mail to everyone above the cutoff
```

data.test.std = x.charity.std[i.test,]

```
table(chat.valid.lda2, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.lda2, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
model.lda1 \leftarrow lda(donr \sim reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + chld + hinc + I(hinc^2) + reg3 + reg4 + home + reg3 + reg4 + home + reg3 + reg4 + home + reg4 + home + reg4 + home + reg5 + reg5
                           ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                           data.train.std.c) # include additional terms on the fly using I()
# Note: strictly speaking, LDA should not be used with qualitative predictors,
# but in practice it often is if the goal is simply to find a good predictive model
post.valid.lda1 <- predict(model.lda1, data.valid.std.c)$posterior[,2] # n.valid.c post probs</pre>
\# calculate ordered profit function using average donation = $14.50 and mailing cost = $2
profit.lda1 <- cumsum(14.5*c.valid[order(post.valid.lda1, decreasing=T)]-2)</pre>
plot(profit.ldal) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.ldal) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.ldal)) # report number of mailings and maximum profit
# 1329.0 11624.5
cutoff.lda1 <- sort(post.valid.lda1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.lda1 <- ifelse(post.valid.lda1>cutoff.lda1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.lda1, c.valid) # classification table
                       c.valid
#chat.valid.lda1 0 1
                     0 675
                      1 344 985
# check n.mail.valid = 344+985 = 1329
# check profit = 14.5*985-2*1329 = 11624.5
# Quadratic Discriminant Analysis
# M3c: Trimmed subset of 12 variables
model.qda2 = qda(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                           ln incm + ln tgif + sr tdon + sr tlag, data.train.std.c)
# M3b: Best 20 variable model from regsubsets
model.qda2 = qda(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 + wrat3 + hinc2 + ln incm + ln tgif + ln lgif + ln tdon + ln tlag +
                            ln_agif + sr_chld + sr_tdon + sr_tlag, data.train.std.c)
# M3a: Default Original subset
model.qda2 <- qda(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                           ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                           data.train.std.c) # include additional terms on the fly using I()
profit.qda2 <- cumsum(14.5*c.valid[order(post.valid.qda2, decreasing=T)]-2)</pre>
plot(profit.gda2) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.qda2) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.qda2)) # report number of mailings and maximum profit
cutoff.qda2 <- sort(post.valid.qda2, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.qda2 <- ifelse(post.valid.qda2>cutoff.qda2, 1, 0) # mail to everyone above the cutoff
table(chat.valid.qda2, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.qda2, c.valid)
perf <- performance(pred, "tpr", "fpr")
auc.perf = performance(pred, measure = "auc")</pre>
auc.perf@y.values
plot(perf)
#####
# K Nearest Neighbors
library(class)
set.seed(1)
model.knn1=knn(data.train.std.c,data.valid.std.c,c.train,k=1)
set.seed(1)
model.knn1=knn(data.train.std.c,data.valid.std.c,c.train,k=2)
set.seed(1)
model.knn1=knn(data.train.std.c,data.valid.std.c,c.train,k=3)
set seed(1)
model.knn1=knn(data.train.std.c,data.valid.std.c,c.train,k=4)
set.seed(1)
model.knn1=knn(data.train.std.c,data.valid.std.c,c.train,k=5)
set.seed(1)
model.knn1=knn(data.train.std.c.data.valid.std.c.c.train.k=6)
post.valid.knn1 <- as.integer(as.character(model.knn1))</pre>
profit.knn1 <- cumsum(14.5*c.valid[order(post.valid.knn1, decreasing=T)]-2)</pre>
plot(profit.knn1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.knn1) # number of mailings that maximizes profits
\texttt{c(n.mail.valid, max(profit.knn1))} \ \ \texttt{\# report number of mailings and maximum profit}
cutoff.knn1 <- sort(post.valid.knn1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid</pre>
chat.valid.knn1 <- ifelse(post.valid.knn1>cutoff.knn1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.knn1, c.valid) # classification table ## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library (ROCR)
pred <- prediction(chat.valid.knn1, c.valid)</pre>
perf <- performance(pred,"tpr","fpr")</pre>
```

```
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Logistic Regression using GAM with Natural Splines
library(gam)
# M5c: Trimmed subset of 12 variables
model.ns1 = gam(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                                     ns(ln incm, 4) + ns(ln tgif, 4) + ns(sr tdon, 4) + ns(sr tlag, 4),
                                      data.train.std.c, family=binomial("logit"))
# M5b: Best 20 variable model from regsubsets
model.ns1 = gam(donr ~ reg1 + reg2 + home + chld + hinc + ns(inca,4) + ns(tgif,4) + ns(tlag,4) + wrat2 +
                                            wrat3 + hinc2 + ns(ln incm, 4) + ns(ln tgif, 4) + ns(ln lgif, 4) + ns(ln tdon, 4) +
                                            rs(ln_tlag,4) + ns(ln_agif,4) + sr_chld + ns(sr_tdon,4) + ns(sr_tlag,4),
data.train.std.c, family=binomial("logit"))
# M5a: Default Original subset
model.ns1 \leftarrow gam(donr \sim reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home 
                                           ns(ln avhv,4) + ns(incm,4) + ns(inca,4) + ns(plow,4) + ns(npro,4) + ns(tgif,4) +
                                           ns(lgif,4) + ns(rgif,4) + ns(tdon,4) + ns(tlag,4) + ns(agif,4),
                                           data.train.std.c, family=binomial("logit"))
post.valid.ns1 <- predict(model.ns1, data.valid.std.c, type="response") # n.valid post probs
profit.ns1 <- cumsum(14.5*c.valid[order(post.valid.ns1, decreasing=T)]-2)
plot(profit.ns1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.ns1) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.ns1)) # report number of mailings and maximum profit
cutoff.ns1 <- sort(post.valid.ns1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.ns1 <- ifelse(post.valid.ns1>cutoff.ns1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.ns1, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library (ROCR)
pred <- prediction(chat.valid.nsl, c.valid)
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Logistic Regression using GAM with Smoothing Splines
library (gam)
# M6c: Trimmed subset of 12 variables
model.ss1 = gam(donr ~ req1 + req2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                                     s(ln_incm,4) + s(ln_tgif,4) + s(sr_tdon,4) + s(sr_tlag,4),
data.train.std.c, family=binomial("logit"))
# M6b: Best 20 variable model from regsubsets
model.ssl = gam(donr \sim reg1 + reg2 + home + chld + hinc + s(inca,4) + s(tgif,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tgif,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tgif,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tgif,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tgif,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + s(tlag,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + s(inca,4) + wrat2 + home + chld + hinc + home + home
                                      wrat3 + hinc2 + s(ln incm,4) + s(ln tgif,4) + s(ln lgif,4) + s(ln tdon,4) + s(ln tlag,4) + s(ln_agif,4) + sr_chld + s(sr_tdon,4) + s(sr_tlag,4),
                                      data.train.std.c, family=binomial("logit"))
# M6a: Default Original subset
model.ss1 <- gam(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                                         s(ln avhv, 4) + s(incm, 4) + s(inca, 4) + s(plow, 4) + s(pro, 4) + s(tgif, 4) +
                                        s(lgif,4) + s(rgif,4) + s(tdon,4) + s(tdag,4) + s(agif,4), data.train.std.c, family=binomial("logit"))
post.valid.ss1 <- predict(model.ss1, data.valid.std.c, type="response") # n.valid post probs</pre>
profit.ss1 <- cumsum(14.5*c.valid[order(post.valid.ss1, decreasing=T)]-2)</pre>
plot(profit.ss1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.ss1) # number of mailings that maximizes profits
\texttt{c(n.mail.valid, max(profit.ss1))} \ \texttt{\# report number of mailings and maximum profit}
table(chat.valid.ss1, c.valid) # classification table ## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.ssl, c.valid)
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Logistic Regression using GAM with Local Regression Smoothing (span=0.2)
library(gam)
# M7c: Trimmed subset of 12 variables
model.lo1 = gam(donr ~ reg1 + reg2 + home + sr_chld + hinc + hinc2 + wrat2 + wrat3 + lo(ln_incm,span=0.2) + lo(ln_tgif,span=0.2) + lo(sr_tdon,span=0.2) + lo(sr_tlag,span=0.2),
                                      data.train.std.c, family=binomial("logit"))
# M7b: Best 20 variable model from regsubsets
lo(ln_igif,span=0.2) + lo(ln_tdon,span=0.2) + lo(ln_tlag,span=0.2) + lo(ln_agif,span=0.2) +
                                           \operatorname{sr} \operatorname{chld} + \operatorname{lo}(\operatorname{sr} \operatorname{tdon}, \operatorname{span}=0.\overline{2}) + \operatorname{lo}(\operatorname{sr} \operatorname{tlag}, \operatorname{span}=0.\overline{2}),
                                           data.train.std.c, family=binomial("logit"))
# M7a: Default Original subset
model.lo1 \leftarrow gam(donr \sim reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home 
                                         lo(ln avhv,span=0.2) + lo(incm,span=0.2) + lo(inca,span=0.2) + lo(plow,span=0.2) +
                                         lo(npro,span=0.2) + lo(tgif,span=0.2) + lo(lgif,span=0.2) + lo(rgif,span=0.2) + lo(tdon,span=0.2) + lo(tdon,span=0.2) + lo(tdon,span=0.2) + lo(tag,span=0.2) + lo(agif,span=0.2),
                                         data.train.std.c, family=binomial("logit"))
post.valid.lo1 <- predict(model.lo1, data.valid.std.c, type="response") # n.valid post probs
```

```
profit.lo1 <- cumsum(14.5*c.valid[order(post.valid.lo1, decreasing=T)]-2)</pre>
plot(profit.lo1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.lol) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.lol)) # report number of mailings and maximum profit
cutoff.lo1 <- sort(post.valid.lo1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.lo1 <- ifelse(post.valid.lo1>cutoff.lo1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.lo1, c.valid) # classification table
 ## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.lo1, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Logistic Regression using GAM with Local Regression Smoothing (span=0.5)
library(gam)
# M8c: Trimmed subset of 12 variables
model.1o2 = gam(donr ~ reg1 + reg2 + home + sr_chld + hinc + hinc2 + wrat2 + wrat3 + lo(ln incm,span=0.5) + lo(ln tgif,span=0.5) + lo(sr tdon,span=0.5) + lo(sr tlag,span=0.5),
                            data.train.std.c, family=binomial("logit"))
# M8b: Best 20 variable model from regsubsets
model.lo2 = gam(donr ~ reg1 + reg2 + home + chld + hinc + lo(inca,span=0.5) + lo(tgif,span=0.5) +
                            lo(tlag,span=0.5) + wrat2 + wrat3 + hinc2 + lo(ln incm,span=0.5) + lo(ln tgif,span=0.5) +
                            lo(ln lgif,span=0.5) + lo(ln tdon,span=0.5) + lo(ln tlag,span=0.5) + lo(ln agif,span=0.5) +
                            sr chld + lo(sr tdon, span=0.5) + lo(sr tlag, span=0.5),
                            data.train.std.c, family=binomial("logit"))
# M8a: Default Original subset
model.lo2 <- gam(donr ~ req1 + req2 + req3 + req4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                             lo(ln avhv, span=0.5) + lo(incm, span=0.5) + lo(inca, span=0.5) + lo(plow, span=0.5) +
                              lo(npro, span=0.5) + lo(tqif, span=0.5) + lo(lqif, span=0.5) + lo(rqif, span=0.5) +
                             lo(tdon, span=0.5) + lo(tlag, span=0.5) + lo(agif, span=0.5),
                             data.train.std.c, family=binomial("logit"))
post.valid.lo2 <- predict(model.lo2, data.valid.std.c, type="response") # n.valid post probs
profit.lo2 <- cumsum(14.5*c.valid[order(post.valid.lo2, decreasing=T)]-2)</pre>
plot(profit.lo2) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.lo2) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.lo2)) # report number of mailings and maximum profit
cutoff.lo2 <- sort(post.valid.lo2, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.lo2 <- ifelse(post.valid.lo2>cutoff.lo2, 1, 0) # mail to everyone above the cutoff
table(chat.valid.lo2, c.valid) # classification table
 ## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library (ROCR)
pred <- prediction(chat.valid.lo2, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Decision Tree
library(tree)
# M9c: Trimmed subset of 12 variables
set.seed(1)
model.trl = tree(donr ~ reg1 + reg2 + home + sr_chld + hinc + hinc2 + wrat2 + wrat3 +
                             ln incm + ln_tgif + sr_tdon + sr_tlag, data=data.train.std.c)
 # M9b: Best 20 variable model from regsubsets
set.seed(1)
model.tr1 = tree(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                             wrat3 + hinc2 + ln_incm + ln_tgif + ln_lgif + ln_tdon + ln_tlag +
ln_agif + sr_chld + sr_tdon + sr_tlag, data=data.train.std.c)
# M9a: Default Original subset
set.seed(1)
model.tr1 <- tree(donr ~ req1 + req2 + req3 + req4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                               ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                               data=data.train.std.c) # include additional terms on the fly using I()
post.valid.tr1 <- predict(model.tr1, data.valid.std.c) # n.valid post probs
profit.tr1 <- cumsum(14.5*c.valid[order(post.valid.tr1, decreasing=T)]-2)</pre>
plot(profit.trl) # see how profits change as more mailings are made
\verb|n.mail.valid| <- which.max(profit.tr1)| # number of mailings that maximizes profits
c(n.mail.valid, max(profit.trl))  # report number of mailings and maximum profit cutoff.trl <- sort(post.valid.trl, decreasing=T)[n.mail.valid+1]  # set cutoff based on n.mail.valid
chat.valid.tr1 <- ifelse(post.valid.tr1>cutoff.tr1, 1, 0) # mail to everyone above the cutoff
\verb|table| (chat.valid.tr1, c.valid) # classification table| \\
 ## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.tr1, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Bagging
library(randomForest)
# M10c: Trimmed subset of 12 variables
set.seed(1)
\verb|model.bag1| = \verb|randomForest| (\verb|donr ~ reg1 + reg2 + \verb|home + sr_chld + \verb|hinc + hinc2 + wrat2 + wrat3 + reg2 + reg2 + reg2 + reg3 + reg3
                             ln_incm + ln_tgif + sr_tdon + sr_tlag, data=data.train.std.c,
mtry=12, ntree=500, importance=T)
```

```
# M10b: Best 20 variable model from regsubsets
set.seed(1)
model.bag1 = randomForest(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                            wrat3 + hinc2 + ln incm + ln tgif + ln lgif + ln tdon + ln tlag +
                            ln agif + sr chld + sr tdon + sr tlag, data=data.train.std.c,
                            mtry=20, ntree=500, importance=T)
# M10a: Default Original subset
set.seed(1)
model.bag1 = randomForest(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                          ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                           data=data.train.std.c, mtry=21, ntree=500, importance=T)
post.valid.bag1 <- predict(model.bag1, data.valid.std.c) # n.valid post probs</pre>
profit.bag1 <- cumsum(14.5*c.valid[order(post.valid.bag1, decreasing=T)]-2)</pre>
plot(profit.baq1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.bag1) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.bag1)) # report number of mailings and maximum profit
cutoff.bag1 <- sort(post.valid.bag1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.bag1 <- ifelse(post.valid.bag1>cutoff.bag1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.bag1, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.bag1, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Random Forests
library(randomForest)
# M11c: Trimmed subset of 12 variables
set.seed(1)
model.rf1 = randomForest(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                                       ln incm + ln tgif + sr tdon + sr tlag, data=data.train.std.c,
                                       mtry=3, ntree=500, importance=T)
# M11b: Best 20 variable model from regsubsets
set.seed(1)
model.rf1 = randomForest(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                                       wrat3 + hinc2 + ln incm + ln tgif + ln lgif + ln tdon + ln tlag +
                                       In agif + sr chld + sr tdon + sr tlag, data=data.train.std.c, mtry=4, ntree=500, importance=T)
# Mlla: Default Original subset
set.seed(1)
model.rf1 <- randomForest(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat +
                                         In avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif, data=data.train.std.c, mtry=5, ntree=500, importance=T)
post.valid.rf1 <- predict(model.rf1, data.valid.std.c) # n.valid post probs
profit.rf1 <- cumsum(14.5*c.valid[order(post.valid.rf1, decreasing=T)]-2)</pre>
plot(profit.rf1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.rf1) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.rfl)) # report number of mailings and maximum profit
cutoff.rfl <- sort(post.valid.rfl, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.rf1 <- ifelse(post.valid.rf1>cutoff.rf1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.rf1, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.rf1, c.valid)
perf <- performance(pred,"tpr","fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@v.values
plot(perf)
# Boosting
library(gbm)
# M12c: Trimmed subset of 12 variables
set.seed(1)
interaction.depth=4,shrinkage=0.01,verbose=F)
# M12b: Best 20 variable model from regsubsets
set.seed(1)
model.boo1 = qbm(donr ~ req1 + req2 + home + chld + hinc + inca + tqif + tlaq + wrat2 +
                                      wrat3 + hinc2 + ln_incm + ln_tgif + ln_lgif + ln_tdon + ln_tlag +
                                     ln_agif + sr_chld + sr_tdon + sr_tlag, data=data.train.std.c,
distribution="gaussian", n.trees=5000,
                                      interaction.depth=4, shrinkage=0.01, verbose=F)
# M12a: Default Original subset
set.seed(1)
model.bool \leftarrow gbm(donr \sim reg1 + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg2 + reg3 + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + chld + hinc + I(hinc^2) + genf + wrat + reg4 + home + reg
                                       ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
data=data.train.std.c, distribution="gaussian", n.trees=5000,
                                       interaction.depth=4,shrinkage=0.01,verbose=F)
post.valid.boo1 <- predict(model.boo1, data.valid.std.c, n.trees=5000) # n.valid post probs</pre>
profit.boo1 <- cumsum(14.5*c.valid[order(post.valid.boo1, decreasing=T)]-2)</pre>
plot(profit.bool) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.bool) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.bool)) # report number of mailings and maximum profit
```

```
cutoff.boo1 <- sort(post.valid.boo1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid</pre>
chat.valid.bool <- ifelse(post.valid.bool>cutoff.bool, 1, 0) # mail to everyone above the cutoff
table(chat.valid.bool, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.bool, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Artificial Neural Network
library(nnet)
"In agif", "sr_chld", "sr_tdon", "sr_tlag")

xa_vars = c("reg1", "reg2", "reg3", "reg4", "home", "chld", "hinc", "hinc2", "genf", "wrat",
             "In avhv", "incm", "inca", "plow", "npro", "tgif", "lgif", "rgif", "tdon",
            "tlag", "agif")
xc1 = data.train.std.c[,xc vars]
xb1 = data.train.std.c[,xb vars]
xa1 = data.train.std.c[,xa vars]
xvc1 = data.valid.std.c[,xc vars]
xvb1 = data.valid.std.c[,xb vars]
xva1 = data.valid.std.c[,xa vars]
# M12c: Trimmed subset of 12 variables
set.seed(1)
model.nn1 = nnet(donr ~ req1 + req2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                    ln incm + ln tgif + sr tdon + sr tlag,
                    data=data.train.std.c, size=20, maxit=100, decay=.001)
newdata=xvc1
# M12b: Best 20 variable model from regsubsets
set.seed(1)
model.nn1 = nnet(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                     wrat3 + hinc2 + ln incm + ln tgif + ln lgif + ln tdon + ln tlag +
                     ln agif + sr chld + sr tdon + sr tlag,
                     data=data.train.std.c, size=20, maxit=100, decay=.001)
newdata=xvb1
# M12a: Default Original subset
set.seed(1)
model.nn1 <- nnet(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + hinc2 + genf + wrat +</pre>
                      ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                      data=data.train.std.c, size=20, maxit=100, decay=.001)
newdata=xva1
post.valid.nn1 <- predict(model.nn1, newdata) # n.valid post probs</pre>
profit.nn1 <- cumsum(14.5*c.valid[order(post.valid.nn1, decreasing=T)]-2)
plot(profit.nn1) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.nn1) # number of mailings that maximizes profits
\texttt{c(n.mail.valid, max(profit.nn1))} \ \texttt{\# report number of mailings and maximum profit}
cutoff.nn1 <- sort(post.valid.nn1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.nn1 <- ifelse(post.valid.nn1>cutoff.nn1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.nn1, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library (ROCR)
pred <- prediction(chat.valid.nn1, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Support Vector Machines (Linear kernel)
library(e1071)
# M12c: Trimmed subset of 12 variables
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                 ln incm + ln tgif + sr tdon + sr tlag,
data=data.train.std.c, kernel="linear", cost=0.1, scale=FALSE)
# M12b: Best 20 variable model from regsubsets
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                   wrat3 + hinc2 + ln_incm + ln_tgif + ln_lgif + ln_tdon + ln_tlag +
ln_agif + sr_chld + sr_tdon + sr_tlag,
data=data.train.std.c, kernel="linear", cost=0.1, scale=FALSE)
# M12a: Default Original subset
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + hinc2 + genf + wrat +
              ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif, data=data.train.std.c, kernel="linear", cost=0.1, scale=FALSE)
post.valid.svm1 <- predict(model.svm1, data.valid.std.c) # n.valid post probs</pre>
profit.svm1 <- cumsum(14.5*c.valid[order(post.valid.svm1, decreasing=T)]-2)</pre>
plot(profit.svml) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.svml) # number of mailings that maximizes profits
\verb|c(n.mail.valid, max(profit.svm1))| # report number of mailings and maximum profit|
```

```
chat.valid.svm1 <- ifelse(post.valid.svm1>cutoff.svm1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.svml, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.svml, c.valid)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
# Support Vector Machines (Radial Kernel)
library(e1071)
# M12c: Trimmed subset of 12 variables
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + home + sr chld + hinc + hinc2 + wrat2 + wrat3 +
                            ln incm + ln tgif + sr tdon + sr tlag,
                         data=data.train.std.c, kernel="radial", cost=0.1, scale=FALSE)
# M12b: Best 20 variable model from regsubsets
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + home + chld + hinc + inca + tgif + tlag + wrat2 +
                              wrat3 + hinc2 + ln incm + ln_tgif + ln_lgif + ln_tdon + ln_tlag +
                              ln agif + sr_chld + sr_tdon + sr_tlag,
                           data=data.train.std.c, kernel="radial", cost=0.1, scale=FALSE)
# M12a: Default Original subset
set.seed(1)
model.svm1 = svm(donr ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + hinc2 + genf + wrat +
                         ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
data=data.train.std.c, kernel="radial", cost=0.1, scale=FALSE)
post.valid.svm1 <- predict(model.svm1, data.valid.std.c) # n.valid post probs</pre>
profit.svm1 <- cumsum(14.5*c.valid[order(post.valid.svm1, decreasing=T)]-2)</pre>
plot(profit.svml) # see how profits change as more mailings are made
n.mail.valid <- which.max(profit.svml) # number of mailings that maximizes profits
c(n.mail.valid, max(profit.svml)) # report number of mailings and maximum profit
cutoff.svm1 <- sort(post.valid.svm1, decreasing=T)[n.mail.valid+1] # set cutoff based on n.mail.valid
chat.valid.svm1 <- ifelse(post.valid.svm1>cutoff.svm1, 1, 0) # mail to everyone above the cutoff
table(chat.valid.svm1, c.valid) # classification table
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
pred <- prediction(chat.valid.svm1, c.valid)
perf <- performance(pred, "tpr", "fpr")</pre>
auc.perf = performance(pred, measure = "auc")
auc.perf@y.values
plot(perf)
model.best.c = model.boo1 # model 12a
profit.best.c = profit.bool
# select best model to have maximum profit in the validation sample
post.test <- predict(model.best.c, data.test.std, n.tree = 5000) # post probs for test data
# Oversampling adjustment for calculating number of mailings for test set
n.mail.valid <- which.max(profit.best.c)</pre>
tr.rate <- .1 # typical response rate is .1
vr.rate <- .5 # whereas validation response rate is .5
adj.test.1 <- (n.mail.valid/n.valid.c)/(vr.rate/tr.rate) # adjustment for mail yes
adj.test.0 <- ((n.valid.c-n.mail.valid)/n.valid.c)/((1-vr.rate)/(1-tr.rate)) # adjustment for mail no
adj.test <- adj.test.1/(adj.test.1+adj.test.0) # scale into a proportion</pre>
\verb|chat.test| <- ifelse(post.test>cutoff.test, 1, 0) # mail to everyone above the cutoff|
table (chat.test)
       0
# 1676 331
# based on this model we'll mail to the 331 highest posterior probabilities
##### PREDICTION MODELING ######
library(leaps)
library(stats)
vs2 = regsubsets(damt ~ ., data = data.train.std.y, really.big = T, nvmax = 20)
plot(vs2, scale="adjr2")
# Least Squares Regression
# M1c: Trimmed subset of 15 variables
model.ls1 = lm(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                      hinc3 + ln_incm + ln_lgif + ln_tgif + ln_rgif + ln_agif,
                      data.train.std.v)
# M1b: Best 20 variable model from regsubsets
 \begin{tabular}{ll} model.ls1 = lm(damt \sim reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 + wrat3 + hinc3 + ln_incm + ln_plow + ln_tgif + ln_lgif + ln_rgif + l
                     ln_agif + sr_incm + sr_plow + sr_lgif, data.train.std.y)
# Mla: Default Original subset
model.ls1 <- lm(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +
                       ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                       data.train.std.v)
pred.valid.ls1 <- predict(model.ls1, newdata = data.valid.std.y) # validation predictions</pre>
mean((y.valid - pred.valid.ls1)^2) # mean prediction error
# 1.867523
```

```
sd((y.valid - pred.valid.ls1)^2)/sqrt(n.valid.y) # std error
  # 0.1696615
 summary(model.ls1)$r.squared
 summary (model.ls1) $adj.r.squared
 AIC (model.ls1)
 AIC (model.ls1, k=8.290042) # for BIC, k=ln (#obs in training set)
 # Ridge Regression
 library(glmnet)
grid=10^seg(10,-2,length=10000)
 v = as.matrix(data.train.std.v$damt)
 xc vars = c("req3", "req4", "req5", "home", "chld", "hinc", "plow", "wrat", "wrat2",
 "hinc3", "ln incm", "ln lgif", "ln tgif", "ln rgif", "ln rgif", "ln agif")

xb_vars = c("reg3", "reg4", "reg5", "home", "chld", "hinc", "plow", "wrat", "wrat2"
"wrat3", "hinc3", "ln incm", "ln plow", "ln tgif", "ln lgif", "ln rgif",

"ln agif", "sr incm", "sr plow", "sr lgif")

xa_vars = c("reg1", "reg2", "reg3", "reg4", "home", "chld", "hinc", "genf", "wrat",
                                       "ln avhv", "incm", "inca", "plow", "npro", "tgif", "lgif", "rgif", "tdon",
                                      "tlag", "agif")
 xc = as.matrix(data.train.std.v)[,xc vars]
 xb = as.matrix(data.train.std.v)[,xb vars]
 xa = as.matrix(data.train.std.y)[,xa vars]
 xvc = as.matrix(data.valid.std.y)[,xc vars]
 xvb = as.matrix(data.valid.std.y)[,xb vars]
 xva = as.matrix(data.valid.std.y)[,xa vars]
 # M2c: Trimmed subset of 15 variables
 set.seed(1)
 cv.out = cv.glmnet(xc,y,alpha=0,lambda=grid)
 bestlam = cv.out$lambda.min
 newdata = xvc
model.rr1 = glmnet(xc,y,alpha=0,lambda=bestlam, standardize=FALSE)
 # M2b: Best 20 variable model from regsubsets
 set.seed(1)
 cv.out = cv.glmnet(xb,y,alpha=0,lambda=grid, standardize=FALSE)
 bestlam = cv.out$lambda.min
 newdata = xvb
model.rr1 = glmnet(xb,y,alpha=0,lambda=bestlam, standardize=FALSE)
 # M2a: Default Original subset
 set.seed(1)
 cv.out = cv.glmnet(xa,y,alpha=0,lambda=grid)
 bestlam = cv.out$lambda.min
 newdata = xva
model.rr1 = glmnet(xa,y,alpha=0,lambda=bestlam, standardize=FALSE)
\label{eq:pred_valid_rr1} $$\operatorname{pred}(\operatorname{model.rr1}, \operatorname{newx=newdata}, \operatorname{s=bestlam}) $$\#$ validation $\operatorname{pred}(\operatorname{valid} - \operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2) $$\#$ mean $\operatorname{pred}(\operatorname{valid}.\operatorname{rr1})^2 $$\#$ mean $\operatorname{pred}(\operatorname{
 sd((y.valid - pred.valid.rr1)^2)/sqrt(n.valid.y) # std error
bestlam
 # Lasso
 library(glmnet)
grid=10^seq(10,-2,length=10000)
 v = as.matrix(data.train.std.v$damt)
 xc vars = c("reg3", "reg4", "reg5", "home", "chld", "hinc", "plow", "wrat", "wrat2",
"hino3", 'leg4', 'leg5', 'home', 'chld', 'hinc', 'plow', 'what , 'what' , "what' , "what' , "what' , "what' , "what' , "what' , "hino3", "ln rgif", "ln rg
"ln avhv", "incm", "inca", "plow", "npro", "tgif", "lgif", "rgif", "tdon",
                                      "tlag", "agif")
 xc = as.matrix(data.train.std.y)[,xc_vars]
 xb = as.matrix(data.train.std.y)[,xb vars]
 xa = as.matrix(data.train.std.y)[,xa vars]
 xvc = as.matrix(data.valid.std.y)[,xc_vars]
 xvb = as.matrix(data.valid.std.y)[,xb_vars]
 xva = as.matrix(data.valid.std.y)[,xa vars]
 # M3c: Trimmed subset of 15 variables
 set.seed(1)
 cv.out = cv.glmnet(xc,v,alpha=1,lambda=grid)
 bestlam = cv.out$lambda.min
 newdata = xvc
 model.las1 = glmnet(xc,y,alpha=1,lambda=bestlam, standardize=FALSE)
 # M3b: Best 20 variable model from regsubsets
 set seed(1)
 cv.out = cv.glmnet(xb,y,alpha=1,lambda=grid, standardize=FALSE)
 bestlam = cv.out$lambda.min
 newdata = xvb
model.las1 = glmnet(xb,y,alpha=1,lambda=bestlam, standardize=FALSE)
 # M3a: Default Original subset
 set.seed(1)
cv.out = cv.glmnet(xa,y,alpha=1,lambda=grid)
bestlam = cv.out$lambda.min
 newdata = xva
model.las1 = glmnet(xa,y,alpha=1,lambda=bestlam, standardize=FALSE)
```

```
pred.valid.las1 = predict(model.las1, newx=newdata, alpha=1, s=bestlam) # validation predictions
mean((y.valid - pred.valid.las1)^2) # mean prediction error
sd((y.valid - pred.valid.las1)^2)/sqrt(n.valid.y) # std error
bestlam
lasso.coef = predict(model.las1, newx=newdata, s=bestlam, alpha=1, type="coefficients")
lasso.coef
# Principal Components Regression
# M4c: Trimmed subset of 15 variables
library(pls)
set.seed(1)
model.pcr1 = pcr(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                hinc3 + ln incm + ln_lgif + ln_tgif + ln_rgif + ln_agif,
                data=data.train.std.y, validation ="CV", scale = F)
# M4b: Best 20 variable model from regsubsets
set.seed(1)
model.pcr1 = pcr(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                wrat3 + hinc3 + ln_incm + ln_plow + ln_tgif + ln_lgif + ln_rgif +
                ln_agif + sr_incm + sr_plow + sr_lgif, data=data.train.std.y,
validation = "CV", scale = F)
# M4a: Default Original subset
set.seed(1)
model.pcr1 <- pcr(damt ~ req1 + req2 + req3 + req4 + home + chld + hinc + genf + wrat +</pre>
                 ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                 data=data.train.std.y, validation="CV", scale = F)
pred.valid.pcr1 <- predict(model.pcr1, newdata = data.valid.std.y) # validation predictions</pre>
mean((y.valid - pred.valid.pcr1)^2) # mean prediction error
sd((y.valid - pred.valid.pcr1)^2)/sqrt(n.valid.y) # std error
summary (model.pcr1)
# Partial Least Squares
# M5c: Trimmed subset of 15 variables
set.seed(1)
model.pls1 = plsr(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                 hinc3 + ln incm + ln lgif + ln tgif + ln rgif + ln aqif,
                 data=data.train.std.y, validation ="CV", scale = F)
# M5b: Best 20 variable model from regsubsets
set.seed(1)
ln_agif + sr_incm + sr_plow + sr_lgif, data=data.train.std.y,
validation = "CV", scale = F)
# M5a: Default Original subset
set.seed(1)
model.pls1 <- plsr(damt ~ req1 + req2 + req3 + req4 + home + chld + hinc + genf + wrat +</pre>
                   ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                   data=data.train.std.y, validation="CV", scale = F)
pred.valid.pls1 <- predict(model.pls1, newdata = data.valid.std.y) # validation predictions
mean((y.valid - pred.valid.pls1)^2) # mean prediction error
sd((y.valid - pred.valid.pls1)^2)/sqrt(n.valid.y) # std error
summary (model.pls1)
# Least Squares Regression using GAM with Natural Splines
library(gam)
# M6c: Trimmed subset of 12 variables
model.ns1 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + ns(plow,4) + wrat + wrat2 +
               hinc3 + ns(ln_incm, 4) + ns(ln_lgif, 4) + ns(ln_tgif, 4) + ns(ln_rgif, 4) + ns(ln_agif, 4),
               data.train.std.y, family=gaussian("identity"))
# M6b: Best 20 variable model from regsubsets
model.ns1 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + ns(plow,4) + wrat + wrat2 +
                 wrat3 + hinc3 + ns(ln_incm, 4) + ns(ln_plow, 4) + ns(ln_tgif, 4) +
                 ns(ln lgif,4) + ns(ln rgif,4) + ns(ln agif,4) + ns(sr incm,4) + ns(sr plow,4) + ns(sr lgif,4),
                 data.train.std.y, family=gaussian("identity"))
# M6a: Default Original subset
model.ns1 <- gam(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +</pre>
                  ns(ln avhv, 4) + ns(incm, 4) + ns(inca, 4) + ns(plow, 4) + ns(npro, 4) + ns(tgif, 4) +
                  sd((y.valid - pred.valid.ns1)^2)/sqrt(n.valid.y) # std error
AIC (model.ns1)
AIC(model.ns1, k=8.290042) # for BIC, k=ln(#obs in training set)
# Least Squares Regression using GAM with Smoothing Splines
library(gam)
# M7c: Trimmed subset of 12 variables
model.ss1 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + s(plow,4) + wrat + wrat2 +
               data.train.std.y, family=gaussian("identity"))
# M7b: Best 20 variable model from regsubsets
model.ss1 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + s(plow,4) + wrat + wrat2 +
                 wrat3 + hinc3 + s(ln_incm,4) + s(ln_plow,4) + s(ln_tgif,4) +
```

```
s(ln lgif, 4) + s(ln rgif, 4) + s(ln agif, 4) + s(sr incm, 4) +
                          s(sr plow, 4) + s(sr lgif, 4),
                          data.train.std.y, family=gaussian("identity"))
 # M7a: Default Original subset
model.ss1 <- gam(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +
                            s(ln avhv, 4) + s(incm, 4) + s(inca, 4) + s(plow, 4) + s(ppro, 4) + s(tqif, 4) +
                            s(lgif,4) + s(rgif,4) + s(tdon,4) + s(tlag,4) + s(agif,4),
                            data.train.std.y, family=gaussian("identity"))
pred.valid.ss1 <- predict(model.ss1, newdata = data.valid.std.y) # validation predictions</pre>
mean((y.valid - pred.valid.ss1)^2) # mean prediction error
sd((y.valid - pred.valid.ss1)^2)/sqrt(n.valid.y) # std error
AIC(model.ss1)
AIC(model.ss1, k=8.290042) # for BIC, k=ln(#obs in training set)
# Least Squares Regression using GAM with Local Regression Smoothing (span=0.2)
library(gam)
# M8c: Trimmed subset of 12 variables
\verb|model.lo1| = \verb|gam|(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + lo(plow, span=0.2) + wrat + wrat2 + lo(plow, span=0.2) + wrat2 + wrat3 + wrat4 + wrat4 + lo(plow, span=0.2) + wrat4 + wrat4 + wrat4 + wrat4 + lo(plow, span=0.2) + wrat4 
                          hinc3 + lo(ln incm, span=0.2) + lo(ln lqif, span=0.2) + lo(ln tqif, span=0.2) +
                          lo(ln rgif, span=0.2) + lo(ln agif, span=0.2),
                          data.train.std.y, family=gaussian("identity"))
# M8b: Best 20 variable model from regsubsets
model.lo1 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + lo(plow, span=0.2) + wrat + wrat2 +
                          wrat3 + hinc3 + lo(ln incm, span=0.2) + lo(ln plow, span=0.2) + lo(ln tgif, span=0.2) +
                          lo(ln lgif, span=0.2) + lo(ln rgif, span=0.2) + lo(sr incm, span=0.2) + lo(sr plow, span=0.2) + lo(sr lgif, span=0.2),
                          data.train.std.y, family=gaussian("identity"))
# M8a: Default Original subset
model.lo1 <- gam(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +
                            lo(ln avhv, span=0.2) + lo(incm, span=0.2) + lo(inca, span=0.2) +
                            lo(plow, span=0.2) + lo(npro, span=0.2) + lo(tgif, span=0.2) +
                            lo(lgif, span=0.2) + lo(rgif, span=0.2) + lo(tdon, span=0.2) +
                            lo(tlag, span=0.2) + lo(agif, span=0.2),
                            data.train.std.y, family=gaussian("identity"))
pred.valid.lo1 <- predict(model.lo1, newdata = data.valid.std.y) # validation predictions
mean((y.valid - pred.valid.lo1)^2) # mean prediction error sd((y.valid - pred.valid.lo1)^2)/sqrt(n.valid.y) # std error
AIC (model.lo1)
AIC(model.lo1, k=8.290042) # for BIC, k=ln(#obs in training set)
 # Least Squares Regression using GAM with Local Regression Smoothing (span=0.5)
library(gam)
# M9c: Trimmed subset of 12 variables
model.lo2 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + lo(plow,span=0.5) + wrat + wrat2 +
                          hinc3 + lo(ln_incm, span=0.5) + lo(ln_lgif, span=0.5) + lo(ln_tgif, span=0.5) +
                           lo(ln rgif, span=0.5) + lo(ln agif, span=0.5),
                          data.train.std.y, family=gaussian("identity"))
# M9b: Best 20 variable model from regsubsets
model.lo2 = gam(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + lo(plow, span=0.5) + wrat + wrat2 +
                          wrat3 + hinc3 + lo(ln incm, span=0.5) + lo(ln plow, span=0.5) + lo(ln tgif, span=0.5) +
                          lo(ln lgif,span=0.5) + lo(ln rgif,span=0.5) + lo(ln agif,span=0.5) + lo(sr incm,span=0.5) + lo(sr_plow,span=0.5) + lo(sr_lgif,span=0.5),
                          data.train.std.y, family=gaussian("identity"))
# M9a: Default Original subset
model.lo2 <- gam(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +</pre>
                            lo(ln avhv, span=0.5) + lo(incm, span=0.5) + lo(inca, span=0.5) +
                            lo(plow, span=0.5) + lo(npro, span=0.5) + lo(tgif, span=0.5) +
                            lo(lgif, span=0.5) + lo(rgif, span=0.5) + lo(tdon, span=0.5) +
                            lo(tlag, span=0.5) + lo(agif, span=0.5),
                            data.train.std.y, family=gaussian("identity"))
pred.valid.lo2 <- predict(model.lo2, newdata = data.valid.std.y) # validation predictions
mean((y.valid - pred.valid.lo2)^2) # mean prediction error
sd((y.valid - pred.valid.lo2)^2)/sqrt(n.valid.y) # std error
AIC (model.lo2)
AIC(model.lo2, k=8.290042) # for BIC, k=ln(\#obs\ in\ training\ set)
# Decision Tree
library(tree)
# M10c. Trimmed subset of 12 variables
set.seed(1)
data=data.train.std.y)
# M10b: Best 20 variable model from regsubsets
set.seed(1)
# M10a: Default Original subset
set.seed(1)
model.tr1 <- tree(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +</pre>
                          ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
data=data.train.std.y) # include additional terms on the fly using I()
mean((y.valid - pred.valid.tr1)^2) # mean prediction error
sd((y.valid - pred.valid.tr1)^2)/sqrt(n.valid.y) # std error
```

```
summary(model.tr1)
# Bagging
library(randomForest)
# M11c: Trimmed subset of 12 variables
set.seed(1)
model.bag1 = randomForest(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                  hinc3 + ln incm + ln lgif + ln tgif + ln rgif + ln agif,
                  data=data.train.std.y, mtry=15, ntree=500, importance=T)
# M11b: Best 20 variable model from regsubsets
set.seed(1)
model.bag1 = randomForest(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                  wrat3 + hinc3 + ln incm + ln plow + ln tgif + ln lgif + ln rgif +
                  ln agif + sr incm + sr plow + sr lgif, data=data.train.std.y,
                  mtry=20, ntree=500, importance=T)
# M11a: Default Original subset
set.seed(1)
model.bag1 <- randomForest(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +</pre>
                   ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                   data=data.train.std.y, mtry=20, ntree=500, importance=T)
pred.valid.baq1 <- predict(model.baq1, newdata = data.valid.std.y) # validation predictions</pre>
mean((y.valid - pred.valid.bag1)^2) # mean prediction error
sd((y.valid - pred.valid.bag1)^2)/sgrt(n.valid.y) # std error
max(model.bag1$rsg)
# Random Forests
library(randomForest)
# M12c: Trimmed subset of 12 variables
set.seed(1)
model.rf1 = randomForest(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                          hinc3 + ln incm + ln lgif + ln tgif + ln rgif + ln agif,
                          data=data.train.std.y, mtry=4, ntree=500, importance=T)
# M12b: Best 20 variable model from regsubsets
set.seed(1)
model.rf1 = randomForest(damt ~ req3 + req4 + req5 + home + chld + hinc + plow + wrat + wrat2 +
                           wrat3 + hinc3 + ln_incm + ln_plow + ln_tgif + ln_lgif + ln_rgif +
                          ln agif + sr incm + sr plow + sr lgif, data=data.train.std.y,
mtry=4, ntree=500, importance=T)
# M12a: Default Original subset
set.seed(1)
model.rfl <- randomForest(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +
                            ln avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
                           data=data.train.std.y, mtry=4, ntree=500, importance=T)
pred.valid.rf1 <- predict(model.rf1, newdata = data.valid.std.y) # validation predictions</pre>
mean((v.valid - pred.valid.rf1)^2) # mean prediction error
sd((y.valid - pred.valid.rf1)^2)/sqrt(n.valid.y) # std error
max(model.rf1$rsq)
# Boosting
library(gbm)
# M13c: Trimmed subset of 12 variables
set.seed(1)
model.boo1 = gbm(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
                 hinc3 + ln_incm + ln_lgif + ln_tgif + ln_rgif + ln_agif, data=data.train.std.y,
                  distribution="gaussian", n.trees=5000,
                  interaction.depth=4, shrinkage=0.01, verbose=F)
# M13b: Best 20 variable model from regsubsets
set.seed(1)
              gbm(damt ~ reg3 + reg4 + reg5 + home + chld + hinc + plow + wrat + wrat2 +
model.boo1 =
                   wrat3 + hinc3 + ln_incm + ln_plow + ln_tgif + ln_lgif + ln_rgif + ln_agif + sr_incm + sr_plow + sr_lgif, data=data.train.std.y,
                   distribution="gaussian", n.trees=5000, interaction.depth=4,shrinkage=0.01,verbose=F)
# M13a: Default Original subset
set.seed(1)
model.boo1 <- gbm(damt ~ reg1 + reg2 + reg3 + reg4 + home + chld + hinc + genf + wrat +</pre>
                    ln_avhv + incm + inca + plow + npro + tgif + lgif + rgif + tdon + tlag + agif,
data=data.train.std.y, distribution="gaussian", n.trees=5000,
                    interaction.depth=4,shrinkage=0.01,verbose=F)
pred.valid.boo1 <- predict(model.boo1, newdata = data.valid.std.y, n.trees=5000) # validation predictions</pre>
mean((y.valid - pred.valid.boo1)^2) # mean prediction error
sd((y.valid - pred.valid.boo1)^2)/sqrt(n.valid.y) # std error
# Colormap for classification models
library(gplots)
library (RColorBrewer)
d1 = read.csv("classmap2.csv", row.names = 1, header=T)
d2 = read.csv("classactual2.csv", row.names = 1, header=T)
rownames = rownames(d1)
#d1 = d1[, -c(16, 17)]
\#d2 = d2[,-c(16,17)]
d1 = as.matrix(d1)
d2 = as.matrix(d2)
# creates a own color palette from blue to red
my_palette <- colorRampPalette(c("blue","yellow","red"))(n = 299)</pre>
# (optional) defines the color breaks manually for a "skewed" color transition
```

```
col breaks = c(seq(0,0.799,length=100), # for blue
                             seq(0.80,0.929,length=100), # for yellow
seq(0.93,1.0,length=100)) # for red
 # creates a 5 x 5 inch image
                                                        # create PNG for the heat map
png("classheatmap.png",
        width = 11*300,
                                                      # 5 x 300 pixels
        height = 17*300,
        res = 300,
                                                   # 300 pixels per inch
        pointsize = 10)
                                                     # smaller font size
heatmap.2(d1,
                     cellnote = d2,
                                                                 # same data set for cell labels
                     main = "Classification Metrics", # heat map title
                    notecol="black",  # change font color of cell labels to black density.info="none", # turns off density plot inside color legend
                   density.info="none", # turns off density plot inside color legend trace="none", # turns off trace lines inside the heat map margins =c(10,8), # widens margins around plot col=my_palette, # use on color palette defined earlier breaks=col_breaks, # enable color transition at specified limits dendrogram="none", # only draw a row dendrogram # turn off column clustering
                     Rowv=FALSE,
                                                               # turn off row clustering
                     keysize=25,
                     lmat=rbind(c(2),c(3),c(1),c(4)),
                     lhei=c(5,5,18,0),
                     lwid=c(1))
dev.off()
# Colormap for prediction models
library(gplots)
library (RColorBrewer)
d3 = read.csv("predmap.csv", row.names = 1, header=T)
d4 = read.csv("predactual.csv", row.names = 1, header=T)
rownames = rownames(d3)
d3 = as.matrix(d3)
d4 = as.matrix(d4)
# creates a own color palette from blue to red
my palette <- colorRampPalette(c("red", "yellow", "blue")) (n = 299)</pre>
# (optional) defines the color breaks manually for a "skewed" color transition
col breaks = c(seq(0,0.03,length=100),  # for red seq(0.031,0.08,length=100),  # for yellow seq(0.081,1.0,length=100))  # for blue
# creates a 5 x 5 inch image
png("predheatmap.png",
                                                      # create PNG for the heat map
        width = 2.2*300,
                                                        # 5 x 300 pixels
        height = 14*300,
                                                    # 300 pixels per inch
        res = 300,
                                                   # smaller font size
        pointsize = 9)
heatmap.2 (d3,
                    cellnote = d4,
                                                                 # same data set for cell labels
                    main = "Classification Metrics", # heat map title
notecol="black", # change font color of cell labels to black
density.info="none", # turns off density plot inside color legend
trace="none", # turns off trace lines inside the heat map
                                                             # turns orr density plot inside color legend
# turns off trace lines inside the heat map
# widens margins around plot
# use on color palette defined earlier
# enable color transition at specified limits
# only draw a row dendrogram
# turn off colors and the colors are all t
                     margins =c(12,10),
                    col=my_palette,
                     breaks=col breaks,
                    dendrogram="none",
                     Colv=FALSE,
                                                                # turn off column clustering
                                                                 # turn off row clustering
                     Rowv=FALSE.
                     kevsize=25.
                     lmat=rbind(c(2),c(3),c(1),c(4)),
                     lhei=c(5,5,18,0),
                     1 \text{wid=c}(1)
dev.off()
# select model.ls2 since it has minimum mean prediction error in the validation sample
model.best.y = model.ns1
vhat.test <- predict(model.best.y, newdata = data.test.std) # test predictions</pre>
 # FINAL RESULTS
# Save final results for both classification and regression
length(chat.test) # check length = 2007
length(yhat.test) # check length = 2007
chat.test[1:10] # check this consists of 0s and 1s
yhat.test[1:10] # check this consists of plausible predictions of damt
ip <- data.frame(chat=chat.test, yhat=yhat.test) # data frame with two variables: chat and yhat
write.csv(ip, file="JP.csv", row.names=FALSE) # use your initials for the file name
 # submit the csv file in Angel for evaluation based on actual test donr and damt values
```