Using Loop Analysis Method:

1. Find current in all branches of the circuit given below:

2. Find current through 10 Ω resistance branch of the circuit given below:

3. Find voltage V₁ in the circuit given below:

4. Calculate current through 5 Ω resistance branch in the following circuit:

5. Find voltage across A & B terminals in the network given below:

6. Find current lx in the network given below:

Find current in 4Ω resistance branch of the network given below:

8. In the given circuit calculate current through 5 Ω resistance branch:

Using Nodal Analysis Method:

3. Find node voltages V_A , V_B and current through 2 Ω resistance branch in the circuit given:

10. Find the potentials of node 1,2 and 3 in the circuit given below:

11/Find current through 0 25 \(\Omega \) resistance branch in the given circuit:

12. Find node voltages V₁, V₂, and V₃. Also find current through 5 Ω resistance branch in the circuit given below:

13. Find Node voltages VA and VB in given circuit:

14. Determine the current in 4 Ω resistance branch in the given circuit:

sing Superposition Theorem:

15. Calculate voltage across 5 12 resistance in the given circuit:

16. Calculate voltage across 10 Ω and current through 0.6 Ω resistance branch in the circuit given below:

17. Find current through 2 Ω resistance branch in the given circuit:

18. Determine current in all branches of the network given below:

Using Thevenin's Theorem:

19. Find current through 5 Ω resistance branch:

20. Find current through 4 Ω resistance branch:

21. Find current through load resistance branch:

22. Find current through 12 Ω resistance branch:

23. Find current through 10 \$2 resistance branch:

Using Norton's Theorem:

24. Find current through 5 Ω resistance branch:

25. Develop Norton's equivalent circuit across A & B of the circuit given below:

26. Develop Norton's equivalent circuit across A & B of the circuit given below:

27. Find current through 2.17 resistance branch:

28. Find current through 5 Ω resistance branch:

Using Maximum Power Transfer Theorem:

29. In the circuit given below, calculate the value of load resistance R_L that is required to transfer Maximum Power from source to load. Also find maximum power transferred across load:

30. In the circuit given below, calculate the value of load resistance R_L that is required to transfer Maximum Power from source to load. Also find maximum power transferred across load:

31. In the circuit given below, calculate the value of load resistance R_L that is to be connected across X and Y terminals to transfer Maximum Power from source to load. Also find maximum power transferred across load:

32. In the circuit given below, calculate the value of load resistance R_L that is to be connected across A and B terminals to transfer Maximum Power from source to load. Also find maximum power transferred across load:

33. In the circuit given below, calculate the value of resistance which can replace 6 Ω resistance branch to transfer Maximum Power from source to resistance. Also find maximum power transferred across load:

ANSWERS

1.
$$I(1\Omega) = 5/3A$$
, $I(2\Omega) = 10/3A$, $I(2\Omega) = 3A$, $I(3\Omega) = 2A$

2. 0.158A

- 3. 10.72V
- 4. 0A

- 5. 9.72V 6. 2.82A 7. 0.752A

- 8. 0A 9. $V_A = 22.2V$, $V_B = 17.1V$, 2.55A 10. 7V, 5V, 6.5V

- 11 0 460 A 12 W = 10 05W W = 11 58W W = -9 40W 3 68A
- 13. $V_A = 9.21 \text{ V}, V_B = 11.2 \text{ V}$ 14. 0.625A 15. 2.5 V 16. 56.89 V, 25.33 A

- 17. 1.707A
- **18.** I $(10\Omega) = 1.33$ A, I $(5\Omega) = 2$ A, I $(5\Omega) = 0.667$ A
- 19. 1.37A
- 20. 3.33A 21. 0.2A 22. 2.7A 23. 0.032A

- 24. 3.436A

- 25. $8A, 4\Omega$ 26. $13.33A, 6\Omega$ 27. 0.645A 28. 1.37A

- 29. 2.43Ω, 5.25W **30.** 25Ω, 1806.25W
- **31.** 1Ω, 25W **32.** 2Ω, 18W

53. 1.47Ω, 22.81W

RAR = ?