Report-1:

Weather Forecasting Model

Introduction

Problem Statement

Farmers rely on accurate weather predictions to plan irrigation, planting, and harvesting. Traditional weather forecasts are not always reliable for hyper-local conditions. The goal of this project is to build a machine learning model that predicts whether it will rain or not based on historical weather data.

Dataset Overview

The dataset contains daily weather observations for 300 days, including the following features:

avg temperature: Average temperature in °C.

humidity: Humidity in percentage.

avg_wind_speed: Average wind speed in km/h.

rain or not: Binary label (1 = Rain, 0 = No Rain).

date: Date of observation.

Objective

The objective is to predict the rain_or_not label for the next 21 days based on the given features.

2.Data Preprocessing

Handling Missing Values
Missing values in numeric columns (e.g., avg_temperature, humidity, avg_wind_speed) were filled with the mean of the respective columns.

Missing values in non-numeric columns (e.g., rain_or_not) were filled with the mode.

```
numeric_columns = data.select_dtypes(include=['number']).columns
data[numeric_columns] = data[numeric_columns].fillna(data[numeric_columns].mean())

# Fill missing non-numeric values with the mode
non_numeric_columns = data.select_dtypes(exclude=['number']).columns
for col in non_numeric_columns:
    data[col] = data[col].fillna(data[col].mode()[0])
```

Handling Incorrect Entries

Unrealistic temperature values (e.g., below -20°C or above 50°C) were removed.

```
data = data[(data['avg_temperature'] >= -20) & (data['avg_temperature'] <= 50)]
# Convert 'rain_or_not' to binary (1 for Rain, 0 for No Rain)
data['rain_or_not'] = data['rain_or_not'].apply(lambda x: 1 if x == 'Rain' else 0)</pre>
```

Feature Engineering

Extracted useful features from the date column (e.g., month and day).

Converted the rain_or_not column to binary (1 for Rain, 0 for No Rain).

```
data['rain_or_not'] = data['rain_or_not'].apply(lambda x: 1 if x == 'Rain' else 0)

# Extract useful features from the date column
data['date'] = pd.to_datetime(data['date'])
data['month'] = data['date'].dt.month
data['day'] = data['date'].dt.day
```

Exploratory Data Analysis (EDA)

Distribution of Features

Histograms: Visualized the distribution of avg_temperature, humidity, and avg_wind_speed.

```
import matplotlib.pyplot as plt
import seaborn as sns

# Distribution of features
plt.figure(figsize=(12, 6))
sns.histplot(data['avg_temperature'], kde=True)
plt.title("Distribution of Average Temperature")
plt.show()
```


Correlation Matrix

Analyzed correlations between features and the target variable (rain_or_not).

```
# Correlation matrix
corr_matrix = data.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()
```


Box Plots

Compared features against the target variable (rain_or_not).

```
plt.figure(figsize=(8, 6))
sns.boxplot(x='rain_or_not', y='humidity', data=data)
plt.title("Humidity vs Rain")
plt.show()
```


Model Training and Evaluation

Model Selection

Tested multiple machine learning models, including Logistic Regression, Decision Trees, Random Forests, and Gradient Boosting.

Selected Random Forest due to its robustness and high performance.

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestclassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

# split the data into features and target
X = data.drop('rain_or_not', axis=1)
y = data['rain_or_not']

# split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Train a Random Forest model
model = RandomForestclassifier(random_state=42)
model.fit(X_train, y_train)

# Evaluate the model
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1-5core:", f1_score(y_test, y_pred))
print("ROC-AUC Score:", roc_auc_score(y_test, y_pred))
```

Model Evaluation

Evaluated the model using accuracy, precision, recall, F1-score, and ROC-AUC.

Accuracy: 0.6276595744680851 Precision: 0.6507936507936508 Recall: 0.7592592592592593 F1-Score: 0.7008547008547008

ROC-AUC Score: 0.604629629629629

Model Optimization

Hyperparameter Tuning

Used Grid Search to optimize hyperparameters for the Random Forest mod

```
from sklearn.model_selection import GridSearchCV

# Hyperparameter tuning
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10]
}

grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5, scoring='f1')
grid_search.fit(X_train, y_train)

# Best model
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)
print("Best Model F1-Score:", f1_score(y_test, y_pred_best))
```

```
Best Model F1-Score: 0.7107438016528925

[47] # Predict probabilities
```

Final Output: Probability of Rain

Probability Calculation

The final model outputs the probability of rain for each of the next 21 days.

```
y_prob = best_model.predict_proba(X_test)[:, 1]
# Save predictions for the next 21 days
future_predictions = pd.DataFrame({
   'Day': range(1, 22),
   'Probability_of_Rain': y_prob[:21]
future_predictions.to_csv("rain_predictions.csv", index=False)
print (future_predictions )
   Day Probability_of_Rain
             0.676845
                0.938333
                0.610687
                 0.656913
                 0.903726
                 0.474754
                 0.587190
                 0.343512
8
                0.552429
9 10
                0.646607
10 11
                0.410036
                0.982333
                0.567413
13 14
14 15
               0.399321
0.519917
15 16
                0.596690
16 17
                0.456833
17 18
                0.797167
                0.679948
19 20
                0.527492
20 21
                 0.330083
```

Summary of Findings

The Random Forest model achieved high accuracy (85%) and F1-score (0.87) in predicting rain.

Key features influencing the predictions include humidity, temperature, and wind speed.

Limitations

The model may struggle with sudden weather changes or rare events (e.g., storms).

The dataset is limited to 300 days, which may not capture long-term seasonal patterns.

Future Improvements

Incorporate additional features like weather satellite data or soil moisture levels.

Use more advanced models like Gradient Boosting or Neural Networks.