

Presentation outline

- Data explanation
 - Data sources main data structure
 - Layers
 - Characteristics
 - Structure
- Static network
 - Basic static network
 - Extensions
- Homophily
 - SDA Model
 - Our model
- Dynamics

Data

- Network data of Amsterdam
- Source: CBS 2019
- Included 4 network layers:
 - Household
 - Family
 - Neighbours
 - Work / School relationships
- Include 240 groups based on person characteristics

Layers

Household

- Household relationships
- Symmetrical
- Include:
 - Partner,
 - · Housemate,
 - Housemate institute

Family

- Family relationships
- Symmetrical
- Include:
 - Aunt/uncle,
 - · co-parent,
 - sister/brother

Neighbours

- 10 closes neighbour households
- Not Symmetrical
- Randomly chosen if multiple neighbours have same distance

Work/School

- Work, school and university relationships
- Not symmetrical
- If more than 100 persons work in the company the 100 geographically closest persons are chosen

Person characteristics

- 240 groups based on person characteristics:
 - Age group: [0-20), [20-30) ... [80-120]
 - Ethnicity: Native, Moroccan, Turkish, Surinamese, Other
 - Education: 1, 2, 3
 - Gender: Man, Woman

Data structure

• 2 different kind of datasets:

1. Agent dataset

2. Connection dataset

Age	Ethnicity	Education	Gender	Amount(n)
[0-20)	Native	1	Man	30829
[50-60)	Moroccan	3	Woman	105

Age Source	Ethnicity Source	Education Source	Gender Source
[0-20)	Native	1	Man
[50-60)	Moroccan	3	Woman

Age Dest	Ethnicity Dest	Education Dest	Gender Dest
[20-30)	Moroccan	1	Man
[0-20)	Moroccan	1	Woman

Amount(n)
600
440

Creation basic static network

- Creating a static network based on datasets
- Basic random network

Algorithm 1 Initializing of social network

```
for row in Connections data frame do
   Source group nodes
   D ← Destination group nodes
   C ← Connections (n)
   while i < C do
      N_S = \text{random.choice}(S)
      N_D = \text{random.choice}(D)
      if N_S \neq N_D And N_D notin links(N_S) then
          Add Directional edge from N_5 to N_D
         if r > U(0, 1) And N_S notin links(N_D) then
             Add Directional edge from N_D to N_S
             if S = D then
                i += 1
             end if
         end if
      end if
      i += 1
   end while
end for
```


Making extensions on the static network

- Adding a scale-free parameter where 1 will give a scale-free network and 0 a normal distributed network (and exponential between 0 and 1)
- Adding neighbourhoods
- Adding Households from household data
- Overlapping the household and family network

Homophily

- Social structure and social networks are related through the fundamental principle of homophily
- Agents that are similar with respect to some significant social features are more likely to be somehow connected than dissimilar agents
- How this idea would be presented in the data

Social Distance Attachment model

•
$$p_{ij} = \frac{1}{1 + [b^{-1}d(x_i, x_j)]^{\alpha}}$$

- p_{ij} is the probability of connection between i and j
- b is the characteristic distance
- d is the distance between i and j
- α is the level of homophily

Using this model to fit the data

•
$$p_{ij} = \frac{a}{1 + [b^{-1}d(x_i, x_j)]^{\alpha}}$$

 a is a free variable which is the maximum probability in the original formula

Redefining the formula

- Formula does not fit all layers
- Rewrite so it can fit all layers
- $p_{ij} = (a + \beta * D_{ij})e^{-\alpha * D_{ij}}$

Weighted function

- Distance of agents are based on different characteristics
- Not all characteristics evenly important (McPherson, Smith-Lovin & Cook 2001)
- Weighted function is introduced to find the characteristic importance

•
$$p_{ij} = \left(a + \beta * \sum_{c}^{n} W_{c} D_{ijc}\right) e^{-\alpha * \sum_{c}^{n} W_{c} D_{ijc}}$$

Results weighted function

Ethnicity

- Family , household & Neighbours → biggest influence
- Work/School → Second highest influence

Age

- Family , household & Neighbours → Medium influence
- Work/School → High influence

Gender

- Family, household → Positive influence
- Work/School, Neighbours → Lowest influence

Education

- Family, household, neighbours → med high influence
- Work/school → Highest influence

Dynamics

An Agent-based approach is used to include the dynamics

- Each person is an agent in the Agent-based model
- Use Static networks as starting point
- Use probability function as for making new connections
- Introducing other dynamics such as death and birth

Agent based model flow chart

Discussion

