On noncommutative graphs and Poulin's STABILIZER FORMALISM

DHEERAN E. WIGGINS and ROY ARAIZA

DEPARTMENT OF MATHEMATICS University of Illinois

March 29, 2025

OVERVIEW

- 1 Quantum Information
- 2 (Operator) Quantum Error Correction
- **3** Winter Spaces
- 4 Final Remarks

Quantum Information

The contemporary mathematical paradigm for quantum mechanics can be summarized via four axioms.

CATEGORICAL SETTING

Ouantum Information

To clarify our setting, we define a category Hilb_ℂ with

- *objects*: complex Hilbert spaces ($\mathbb{C} \curvearrowright \mathcal{H}, +, \langle -, \rangle$)
- *morphisms*: bounded operators $\text{Hom}_{\text{Hilb}_{\mathbb{C}}}(\mathcal{H}, \mathcal{K}) = \mathbb{B}(\mathcal{H} : \mathcal{K})$

We take $Hilb_{\mathbb{C}}$ to be a "symmetric monoidal, semiadditive †-category." Effectively, this means we can take

- tensor products $\mathcal{H} \otimes \mathcal{K}$
- direct sums $\mathcal{H} \oplus \mathcal{K}$
- adjoints $\mathcal{H} \mapsto \mathcal{H}^{\dagger}$

in the natural ways.

STATE SPACE AXIOM

Axiom I: State Space

Any quantum system *Q* is represented by a complex Hilbert space $\mathcal{H}^Q \in \mathsf{Hilb}_\mathbb{C}$, called the state space. States of the system are represented by unit-trace, positive semi-definite operators acting on \mathcal{H} , called density operators $\mathcal{D}(\mathcal{H}) \subseteq \mathbb{B}(\mathcal{H})$.

MULTIPLE SYSTEM AXIOM

Axiom II: Multiple System

Any pair of quantum systems *A* and *B* can be represented as a joint system AB via the tensor product in Hilb_C:

$$\mathcal{H}^{AB} := \mathcal{H}^A \otimes \mathcal{H}^B.$$

System Evolution Axiom

Axiom III: System Evolution

A quantum system *Q* undergoing closed evolution is described by a unitary transformation on the state space \mathcal{H}^Q .

Remember, a unitary $U \in \mathbb{B}(\mathcal{H}^Q)$ means $UU^{\dagger} = U^{\dagger}U = I^Q$.

MEASUREMENT AXIOM

Axiom IV: Measurement

Every measurement of a finite dimensional quantum system is described by a set of orthogonal projectors $\{P_i\}_{i=1}^r$ such that $\sum_{i=1}^r P_i = I^Q$. If ρ is the state of Q prior to measurement, then with probability $\mathbb{P}(i) = \operatorname{tr}(P_i \rho)$, the post-measurement state is

$$\rho_i = \frac{P_i \rho P_i}{\mathbb{P}(i)}.$$

QUANTUM AXIOMS VISUALIZED

Quantum Information

Pauli Group

We call Hilbert spaces $\mathcal{H} \simeq \mathbb{C}^2$ qubits.

Pauli Group

The Pauli group $\mathcal P$ is the nonabelian matrix group generated by

$$X:=\begin{pmatrix}0&1\\1&0\end{pmatrix},\quad Y:=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\quad Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\in \mathbb{M}_2(\mathbb{C}).$$

There is a natural action of \mathcal{P} on a qubit \mathcal{H} .

The *n*-qubit Pauli group \mathcal{P}_n is

$$\mathcal{P}_n := \left\{ i^d \bigotimes_{k=1}^n \Sigma_{(k)} : d \in \mathbb{F}_4 \text{ and } \Sigma_{(k)} \in \mathcal{P} \right\} \hookrightarrow \mathrm{GL}_{2^n}(\mathbb{C}).$$

Denote a 1-local action of $\Sigma \in \mathcal{P}$ on qubit j of $\mathcal{H} \simeq \bigotimes_{i} \mathbb{C}^{2}$ by

$$\Sigma_j := I_2 \otimes I_2 \otimes \cdots \underbrace{\otimes \Sigma \otimes}_{j \text{ th position}} \cdots \otimes I_2.$$

Then,

$$\mathcal{P}_n = \langle i I_j, X_j, Z_j : 1 \leq j \leq n \rangle$$

If $\mathcal{H} \simeq (\mathbb{C}^2)^{\otimes n}$, then $\Sigma_j \in \mathcal{P}_n$ and $\mathcal{P}_n \curvearrowright \mathcal{H}$.

Error Correction

We model quantum errors as quantum channels.

- (i) A superoperator is a linear map $\mathcal{E} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{K})$.
- (ii) A *quantum channel* & is a superoperator which is completely positive and trace-preserving.

That is, $\mathcal{E} \otimes id_k \geq 0$ for all k and $tr(\mathcal{E}\rho) = tr(\rho)$.

Theorem (Kraus Representation)

A superoperator $\mathcal{E}: \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{K})$ is completely positive if and only if there are Kraus operators $\{E_i: \mathcal{H} \to \mathcal{K}\}_{i=1}^r$ such that

$$\mathcal{E}(-) = \sum_{i=1}^{r} E_i(-) E_i^{\dagger}.$$

In particular, every error has Kraus operators.

Some terminology:

- (i) A *codespace* is a subspace $\mathcal{C} \subseteq \mathcal{H}$.
- (ii) Given an error $\mathcal{E}: \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$, we call $\mathcal{R}: \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ a *recovery channel* if for all states $\rho \in \mathcal{D}(\mathcal{C}) \subseteq \mathbb{B}(\mathcal{C})$,

$$(\mathcal{R} \circ \mathcal{E})(\rho) \propto \rho.$$

(iii) An error $\mathcal E$ is *correctable* if a codespace $\mathcal C$ and recovery channel $\mathcal R$ exist.

Theorem (Knill-Laflamme Subspace Condition)

An error $\mathscr E$ with Kraus operators $\{E_i\}_{i=1}^r$ is correctable if and only if the projection $P: \mathscr H \twoheadrightarrow \mathscr C$ onto the codespace admits

$$PE_i^{\dagger}E_jP = \lambda_{ij}P,$$

for all $1 \le i, j \le r$, where $[\lambda_{ij}] \in M_r(\mathbb{C})$ is self-adjoint.

Let \mathcal{S} an abelian subgroup $\langle S_1, \ldots, S_s \rangle \leq \mathcal{P}_n$ without $-I^{\otimes n}$. Then, δ is a stabilizer. We can form a stabilizer codespace

$$\mathcal{C} \equiv \mathcal{C}(\mathcal{S}) := \operatorname{span}_{\mathbb{C}} \left\{ v \in (\mathbb{C}^2)^{\otimes n} : S_j v = v \text{ for all } 1 \leq j \leq s \right\}.$$

Theorem (Stabilizer Formalism)

An error \mathcal{E} with Kraus operators $\{E_i\}_{i=1}^r$ is correctable on $\mathcal{C}(\mathcal{S})$ if and only if for all $1 \le i, j \le r$,

$$E_i^{\dagger} E_j \in \operatorname{span}_{\mathbb{C}} \{ (\mathcal{P}_n \setminus \mathcal{N}_{\mathcal{P}_n}(\mathcal{S})) \cup \mathcal{S} \}.$$

OPERATOR QUANTUM ERROR CORRECTION

Suppose we have a decomposition

$$\mathcal{H}\simeq\underbrace{(\mathcal{H}^A\otimes\mathcal{H}^B)}_{\mathcal{C}}\oplus\mathcal{C}^\perp.$$

Let \mathcal{E} be an error. We call \mathcal{H}^A noiseless if for all $\rho^A \in \mathbb{B}(\mathcal{H}^A)$ and $\rho^{B} \in \mathbb{B}(\mathcal{H}^{B}),$

$$\mathcal{E}(\rho^A \otimes \rho^B) = \rho^A \otimes \tau^B$$

for some $\tau^B \in \mathbb{B}(\mathcal{H}^B)$. Correctability is defined on the A system.

Poulin's Stabilizer Formalism

Form a quotient of $\mathbb{B}(\mathcal{C})$ to define the gauge group \mathcal{G} of operators:

$$\rho \sim \rho' \iff (\exists g \in \mathcal{G}) \big(\rho = g \rho' g^{\dagger} \big)$$

Theorem (Stabilizer Formalism)

Given an error \mathcal{E} on $\mathcal{H} \simeq (\mathcal{H}^A \otimes \mathcal{H}^B) \oplus \mathcal{C}^{\perp}$ with Kraus operators $\{E_i\}_{i=1}^r$, a recovery \mathcal{R} exists if and only if for all $1 \leq i, j \leq r$,

$$E_i^{\dagger} E_j \in \operatorname{span}_{\mathbb{C}} \{ (\mathcal{P}_n \setminus \mathcal{N}_{\mathcal{P}_n}(\mathcal{S})) \cup \mathcal{G} \}.$$

KNILL-LAFLAMME, REFORMULATED

Winter Space/Noncommutative Graph

Let \mathscr{E} be an error channel with Kraus operators $\{E_i\}_{i\in I}$. Then, the *Winter space* (or *noncommutative graph*) of the channel is the space

$$\mathcal{V}_{\mathcal{E}} := \operatorname{span}_{\mathbb{C}} \left\{ E_i^{\dagger} E_j : i, j \in I \right\}.$$

We can rephrase Knill-Laflamme as

$$P \mathcal{V}_{\mathcal{E}} P = \mathbb{C} P$$
,

meaning \mathcal{C} is a codespace if and only if dim $P \mathcal{V}_{\mathcal{E}} P = 1$.

OPERATOR SYSTEMS

An operator system (os) is a subspace $V \subseteq \mathbb{B}(\mathcal{H})$ so that $I \in V$ and $v \in V$ implies $v^{\dagger} \in V$.

Theorem (Duan 09)

A subspace $V \subseteq \mathbb{B}(\mathcal{H})$ is a noncommutative graph $V_{\mathcal{E}}$ for some channel \mathcal{E} if and only if it is an os.

Winter Spaces ဂဂ္ဂဇ္ဂဂ္ဂဂ္ဂ

RECOVERING GOTTESMAN'S FORMALISM

Theorem (Araiza et al. 24)

Let $G \subseteq \mathcal{P}_n$ be an abelian subgroup so that $-I^{\otimes n} \notin G$ and $M_0 \in \mathbb{M}_{2^n}(\mathbb{C})$. Let

$$\mathcal{V}_{M_0} := \operatorname{span}\{gM_0g : g \in G\}$$

be the noncommutative graph. Then,

$$\operatorname{span}\{\mathcal{V}_{M_0}: M_0 \text{ makes } \mathcal{V}_{M_0} \text{ os}\} = \operatorname{span}\{(\mathcal{P}_n \setminus \mathcal{N}_{\mathcal{P}_n}(G)) \cup I^{\otimes n}\}.$$

Winter Spaces ဂဂဂ္ဂဂ္ဂဂ

RECOVERING POULIN'S FORMALISM

Let $\mathcal{G} \subseteq \mathcal{P}_n$ be the gauge subgroup, in the sense of Poulin, associated to a noise channel \mathcal{E} and $M_0 \in M_{2^n}(\mathbb{C})$. Then,

$$\operatorname{span}\{\mathcal{V}_{M_0}: M_0 \text{ makes } \mathcal{V}_{M_0} \text{ os}\} = \operatorname{span}\{(\mathcal{P}_n \setminus \mathcal{Z}_{\mathcal{P}_n}(\mathcal{G})) \cup I^{\otimes n}\}.$$

Winter Spaces

Sketch of Proof

Poulin deduces an explicit set of generators

$$\mathscr{G} \simeq \langle i, Z_1, \ldots, Z_s, X_{s+1}, Z_{s+1}, \ldots, X_{s+r}, Z_{s+r} \rangle$$
.

- Write M₀ in the Pauli basis.
- Form an indicator function Ξ which outputs 1 if the \mathscr{G} -elements commute with the basis elements in M_0 's Pauli expansion, and -1 otherwise.
- Separate the sum into the $\mathcal{Z}_{\mathcal{P}_n}(\mathcal{G})$ and $\mathcal{P}_n \setminus \mathcal{Z}_{\mathcal{P}_n}(\mathcal{G})$ cases.
- Pick coefficients to get V_{M_0} to be unital.
- Span over C to get the result.

Heisenberg-Weyl Group

We may wish to generalize \mathcal{P}_n to act on n-qudits $(\mathbb{C}^d)^{\otimes n}$. Define $\mathcal{P}_{d,n}$ to be $\langle \sqrt{\omega}I_i, X_i, Z_i : 1 \leq i \leq n \rangle$, where

"shift"
$$X: \sum_{k \in \mathbb{Z}/d} e_k e_k^{\dagger} \mapsto \sum_{k \in \mathbb{Z}/d} e_{k+1} e_k^{\dagger},$$

"clock"
$$Z: \sum_{k \in \mathbb{Z}/d} e_k e_k^{\dagger} \mapsto \sum_{k \in \mathbb{Z}/d} \omega^k e_k e_k^{\dagger},$$

 ω is the dth root of unity, and e_k is the kth standard basis vector.

FULL GENERALITY

Replacing \mathcal{P}_n with $\mathcal{P}_{d,n}$, taking the analogue of \mathcal{G} , and finding $M_0 \in M_{d^n}(\mathbb{C})$, the same characterization of Poulin's stabilizer formalism via Winter spaces holds.

I would like to thank my advisor *Roy Araiza* and my collaborators Jihong Cai, Tushar Mohan, Yefei Zhang, Peixue Wu, and the Spring 2024 IML Winter Spaces group.

I also thank the organizers of the Rose-Hulman Undergraduate Mathematics Conference for the opportunity to present some neat mathematics.

References I

Roy Araiza, Jihong Cai, Yushan Chen, Abraham Holtermann, Chieh Hsu, Tushar Mohan, Peixue Wu, and Zeyuan Yu. A note on the stabilizer formalism via noncommutative graphs. *Quantum Inf. Process.*, 23(3):Paper No. 84, 14, 2024.

Runyao Duan, Simone Severini, and Andreas Winter. Zero-error communication via quantum channels, noncommutative graphs, and a quantum lovász number. *IEEE Transactions on Information Theory*, 59(2):1164–1174, 2013.

Runyao Duan.

Super-activation of zero-error capacity of noisy quantum channels, 2009.

References II

Daniel Gottesman.

Stabilizer Codes and Quantum Error Correction, 1997.

David W. Kribs, Raymond Laflamme, David Poulin, and Maia Lesosky.

Operator Quantum Error Correction, 2006.

David Poulin.

 $Stabilizer\ Formalism\ for\ Operator\ Quantum\ Error\ Correction.$

Phys. Rev. Lett., 95:230504, Dec 2005.

