ROBOTICS WORKSHOP

DAY 1

- Logistics
 - Workshop Structure
 - Content Overview
 - Resources: (Our repo, pybullet user manual, Kevin lynch's video)
- Introductory Talk
 - o Robotics: as we know it (an intro)
 - o Simulations, why, what and how?
 - o Key differences between:
 - hardware -> sim
 - sim -> hardware
- Getting Started in Pybullet
 - o URDF's
 - Types of joints
 - o Demo: Making a simple two-link mechanism and loading it inside pybullet Show how to simulate as well.
 - Robot Coordinates
 - o Task Space
 - o Joint/Configuration Space
 - Base position, orientation (explain rpy, mention quaternion exists, but no need to explain)

DAY 2

- Controlling the/any Robot
 - o types of control over types of joints
 - o pos, vel, and torque control
 - revolute and prismatic joints

- Simple Robot Kinematics
 - o Forward Kinematics (explain with 2R link and trigonometry)
 - o Inverse Kinematics (explain with 2R link and trigonometry)
 - Demo: So, a 2R Link manipulator in actions(I) with trigonometric IK 2) with inbuilt IK)

DAY 3

- A brief intro to dynamic parameters of the simulation
 - changeDynamicsInfo()
 - Demo: show how the simulation responds to these changes (like block sliding vs friction, a ball bouncing vs restitutions or how a husky reacts to these changes)
- Robot Control
 - o Open Loop vs Closed Loop
 - o P control
 - o PD control
 - o PID control
 - Demo: show a line (line segment) follower in action (with base orientation and not image data, will explain more clearly in a meet)

FINAL TASK

 $f \square$ Implementation of **PID** controller for a robot