03. 6. 2004

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2003年11月21日

出 願 番 号 Application Number:

[ST. 10/C]:

特願2003-392917

[JP2003-392917]

REC'D 2 4 JUN 2004

WIPO

PCT

出 願 人 Applicant(s): シャープ株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月21日



今井原

BEST AVAILABLE COPY

特許願 【書類名】 03103884 【整理番号】

平成15年11月21日 【提出日】 特許庁長官殿 【あて先】 G09G 3/36 【国際特許分類】 G02F 1/133

【発明者】

大阪府大阪市阿倍野区長池町22番22号 【住所又は居所】

シャープ株式会社内

藤根 俊之 【氏名】

【発明者】

大阪府大阪市阿倍野区長池町22番22号 【住所又は居所】

シャープ株式会社内

菊地 雄二 【氏名】

【発明者】

大阪府大阪市阿倍野区長池町22番22号 【住所又は居所】

シャープ株式会社内

長田 俊彦 【氏名】

【発明者】

大阪府大阪市阿倍野区長池町22番22号 【住所又は居所】

シャープ株式会社内

吉井 隆司 【氏名】

【特許出願人】

000005049 【識別番号】

シャープ株式会社 【氏名又は名称】 06-6621-1221 【電話番号】

【代理人】

【識別番号】 100097113

【弁理士】

堀 城之 【氏名又は名称】 【先の出願に基づく優先権主張】

特願2003-85260 【出願番号】 平成15年 3月26日 【出願日】

【手数料の表示】

【予納台帳番号】 044587 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 0313755 【包括委任状番号】

# 【書類名】特許請求の範囲

## 【請求項1】

少なくとも1垂直表示期間前の画像データと現垂直表示期間の画像データとの比較を行 い、該比較結果に基づいて、液晶表示パネルへ供給する画像データを強調変換することに より、前記液晶表示パネルの光学応答特性を補償する液晶表示装置であって、

入力画像データの垂直周波数から第1の映像信号であるか第2の映像信号であるかの信 号種別を検出する信号種別検出手段と、

前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように 、前記画像データの強調変換を行う強調変換手段とを備え、

前記信号種別検出手段による検出結果に応じて、前記強調変換手段における前記画像デ ータに対する強調変換度合いを可変制御することを特徴とする液晶表示装置。

#### 【請求項2】

現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変 換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記信号種別検出手段による検出結果に応じて、異な る係数を乗算する乗算部とを有する

ことを特徴とする請求項1に記載の液晶表示装置。

#### 【請求項3】

前記乗算部における係数は、前記入力画像データが第2の映像信号である場合、前記入 力画像データが第1の映像信号である場合に比べて小さくなるように設定されていること を特徴とする請求項2に記載の液晶表示装置。

【請求項4】 前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリと、

前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリとを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメ モリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施 す演算部を有する

ことを特徴とする請求項1に記載の液晶表示装置。

## 【請求項5】

前記強調変換パラメータは、前記入力画像データが第1の映像信号である場合に読み出 されるものに比べて、前記入力画像データが第2の映像信号である場合に読み出されるも のが小さい値であることを特徴とする請求項4に記載の液晶表示装置。

#### 【請求項6】

さらに、装置内温度を検出する温度検出手段を備え、

前記強調変換手段は、前記温度検出手段による検出結果に基づき、前記画像データに対 する強調変換度合いを可変する

ことを特徴とする請求項1に記載の液晶表示装置。

現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変 換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記信号種別検出手段による検出結果と前記温度検出 手段の検出結果とに応じて、異なる係数を乗算する乗算部とを有する

ことを特徴とする請求項6に記載の液晶表示装置。

#### 【請求項8】

前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、

前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリとを備え、

前記強調変換手段は、

前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記温度検出手段の検出結果に応じて異なる係数を乗 算する乗算部とを有する

ことを特徴とする請求項6に記載の液晶表示装置。

#### 【請求項9】

前記入力画像データが第1の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される 強調変換パラメータが格納されたテーブルメモリと、

前記入力画像データが第2の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される 強調変換パラメータが格納されたテーブルメモリとを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果と前記温度検出手段の検出 結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて 、前記画像データに強調演算を施す演算部を有する

ことを特徴とする請求項6に記載の液晶表示装置。

#### 【請求項10】

複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画 像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果によって定められた切換温度と前記温度検出手段の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有する

ことを特徴とする請求項6に記載の液晶表示装置。

#### 【請求項11】

前記強調変換パラメータの切り換え選択を制御する制御手段を備え、

前記制御手段は、

前記温度検出手段により検出された温度データに対して、前記入力画像データの信号種 別毎に定められた所定の演算を施す演算部と、

前記演算部により演算が施された温度データと、予め決められた所定の閾値温度データとを比較する閾値判別部と、

前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する 切換制御信号を生成する制御信号出力部とを有する

ことを特徴とする請求項10に記載の液晶表示装置。

#### 【請求項12】

前記強調変換パラメータの切り換え選択を制御する制御手段を備え、

前記制御手段は、

前記温度検出手段により検出された温度データと、前記入力画像データの信号種別毎に 決められた所定の閾値温度データとを比較する閾値判別部と、

前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する 切換制御信号を生成する制御信号出力部とを有する ことを特徴とする請求項10に記載の液晶表示装置。

## 【請求項13】

少なくとも1垂直表示期間前の画像データと現垂直表示期間の画像データとの比較を行 い、該比較結果に基づいて、液晶表示パネルへ供給する画像データを強調変換することに より、前記液晶表示パネルの光学応答特性を補償する液晶表示制御方法であって、

入力画像データの垂直周波数から第1の映像信号であるか第2の映像信号であるかの信 号種別を検出する工程と、

前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように 、前記画像データの強調変換を行う工程とを有し、

前記信号種別の検出結果に応じて、前記強調変換における前記画像データに対する強調 変換度合いを可変制御することを特徴とする液晶表示制御方法。

現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変 換パラメータが格納されたテーブルメモリを参照する工程と、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記信号種別の検出結果に応じて、異なる係数を乗 算する工程とを有する

ことを特徴とする請求項13に記載の液晶表示制御方法。

#### 【請求項15】

前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリを参照する工程と、

前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリを参照する工程と、

前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換 パラメータを用いて、前記画像データに強調演算を施す工程とを有する

ことを特徴とする請求項13に記載の液晶表示制御方法。

## 【請求項16】

装置内温度を検出する工程と、

前記装置内温度の検出結果に基づき、前記画像データに対する強調変換度合いを可変す る工程とを有する

ことを特徴とする請求項13に記載の液晶表示制御方法。

## 【請求項17】

現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変 換パラメータが格納されたテーブルメモリを参照する工程と、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記信号種別の検出結果と前記装置内温度の検出結 果とに応じて、異なる係数を乗算する工程とを有する

ことを特徴とする請求項16に記載の液晶表示制御方法。

前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリを参照する工程と、

前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像デ ータと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納された テーブルメモリを参照する工程と、

前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換 パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記装置内温度の検出結果に応じて異なる係数を乗

## 算する工程とを有する

ことを特徴とする請求項16に記載の液晶表示制御方法。

## 【請求項19】

前記入力画像データが第1の映像信号である場合に参照する、複数の装置内温度毎に対 応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される 強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記入力画像データが第2の映像信号である場合に参照する、複数の装置内温度毎に対 応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される 強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、前記テーブルメモリ から読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工 程とを有する

ことを特徴とする請求項16に記載の液晶表示制御方法。

## 【請求項20】

複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画 像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工 程と、

前記信号種別の検出結果によって定められた切換温度と前記装置内温度の検出結果との 比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用い て、前記画像データに強調演算を施す工程とを有する

ことを特徴とする請求項16に記載の液晶表示制御方法。

#### 【請求項21】

前記装置内温度の検出結果である温度データに対して、前記入力画像データの信号種別 毎に定められた所定の演算を施す工程と、

前記演算が施された温度データと、予め決められた所定の閾値温度データとを比較する 工程と、

前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を 生成する工程とを有する

ことを特徴とする請求項20に記載の液晶表示制御方法。

#### 【請求項22】

前記装置内温度の検出結果である温度データと、前記入力画像データの信号種別毎に決 められた所定の閾値温度データとを比較する工程と、

前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を 生成する工程とを有する

ことを特徴とする請求項20に記載の液晶表示制御方法。

## 【書類名】明細書

【発明の名称】液晶表示装置

## 【技術分野】

## [0001]

本発明は、液晶表示パネルを用いて画像を表示する液晶表示装置に関し、特に液晶表示 パネルの光学応答特性を改善することができる液晶表示装置に関するものである。

## 【背景技術】

#### [0002]

近来、パーソナルコンピュータやテレビジョン受信機などの軽量化、薄形化によってデ ィスプレイ装置も軽量化、薄形化が要求されており、このような要求に従って陰極線管( CRT) の代わりに液晶表示装置 (LCD) のようなフラットパネル型ディスプレイが開 発されている。

#### [0003]

LCDは二つの基板の間に注入されている異方性誘電率を有する液晶層に電界を印加し この電界の強さを調節して基板を透過する光の量を調節することによって所望の映像信 号を得る表示装置である。このようなLCDは携帯の簡便なフラットパネル型ディスプレ イのうちの代表的なものであり、この中でも薄膜トランジスタ (TFT) をスイッチング 素子として用いたTFT LCDが主に用いられている。

#### [0004]

最近は、LCDがコンピュータのディスプレイ装置だけでなくテレビジョン受信機のデ ィスプレイ装置として広く用いられるため、動画像を具現する必要が増加してきた。しか しながら、従来のLCDは応答速度が遅いために動画像を具現するのは難しいという短所 があった。

## [0005]

このような液晶の応答速度の問題を改善するために、1フレーム前の入力映像信号と現 フレームの入力映像信号の組み合わせに応じて、予め決められた現フレームの入力映像信 号に対する階調電圧より高い (オーバーシュートされた) 駆動電圧或いはより低い (アン ダーシュートされた) 駆動電圧を液晶表示パネルに供給する液晶駆動方法が知られている (たとえば特許文献1)。以下、本願明細書においては、この駆動方式をオーバーシュー ト(OS)駆動と定義する。

## [0006]

また、液晶の応答速度は温度依存性が非常に大きいことが知られており、液晶表示パネ ルの温度が変化しても、これに対応して表示品位を損なうことなく、常に階調変化の応答 速度を最適な状態に制御する液晶パネル駆動装置が、たとえば特許文献2に記載されてい

#### [0007]

このように、使用環境温度に応じて、液晶表示パネルの光学応答特性を補償すべくオー バーシュート駆動を行うものについて、図15乃至図19とともに説明する。ここで、図 15は従来の液晶表示装置の要部構成を示すブロック図、図16はOSテーブルメモリの 内容例を示す説明図、図17は制御CPUの概略構成を示す機能ブロック図、図18は装 置内温度と参照テーブルメモリとの関係を示す説明図、図19は液晶に加える電圧と液晶 の応答との関係を示す説明図である。

#### [0008]

図15において、1a~1dは入力画像データの1フレーム期間前後における階調遷移 に応じたOSパラメータ (強調変換パラメータ) を、装置内温度毎に対応して格納してい るOSテーブルメモリ(ROM)、15は入力画像データを1フレーム分記憶するフレー ムメモリ(FM)、14Hはこれから表示するM番目のフレームの入力画像データ(Curr ent Data) と、フレームメモリ15に保存されたM-1番目のフレームの入力画像データ (Previous Data)とを比較し、該比較結果(階調遷移)に対応するOSパラメータをOS テーブルメモリ (ROM) 1a~1dのいずれかより読み出して、このOSパラメータに



#### [0009]

また、16は強調変換部14日からの強調変換データに基づいて、液晶表示パネル17 のゲートドライバ18及びソースドライバ19に液晶駆動信号を出力する液晶コントロー ラ、20は当該装置内の温度を検出するための温度センサ、12Hは温度センサ20で検 出された装置内温度に応じて、OSテーブルメモリ(ROM)1a~1dのいずれかを選 択参照して、画像データの強調変換に用いるOSパラメータを切り換えるための切換制御 信号を強調変換部14Hに出力する制御CPUである。

## [0010]

ここで、OSテーブルメモリ(ROM)1a~1dに格納されているOSパラメータL EVEL1~LEVEL4は、それぞれ基準温度T1、T2、T3、T4 (T1<T2< T3<T4) の環境下における、液晶表示パネル17の光学応答特性の実測値から予め得 られるものであり、それぞれの強調変換度合いはLEVEL1>LEVEL2>LEVE L3>LEVEL4の関係となっている。

#### [0011]

なお、たとえば表示信号レベル数すなわち表示データ数が8ビットの256階調である 場合、OSテーブルメモリ(ROM) $1a\sim1$ dには、256の全ての階調に対するOS パラメータ(実測値)を持っていてもよいが、たとえば図16に示すように、32階調毎 の9つの代表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、そ の他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように 構成することで、OSテーブルメモリ(ROM)の記憶容量を抑制することができる。

### [0012]

また、制御CPU12Hは、図17に示すように、温度センサ20による温度検出デー タを、予め決められた所定の閾値温度データ値Th1, Th2, Th3と比較する閾値判 別部12aと、該閾値判別部12aによる比較結果に応じて、OSテーブルメモリ(RO M) la~ldのいずれかを選択し、OSパラメータLEVEL1~LEVEL4を切り 換えるための切換制御信号を生成して出力する制御信号出力部12bとを有している。

ここでは、たとえば図18に示すように、温度センサ20で検出された装置内温度が切 換閾値温度Th1 (=15℃) 以下であれば、制御CPU12 Hは強調変換部14 Hに対 し、OSテーブルメモリ(ROM)1aを選択して参照するように指示する。これによっ て、強調変換部14HはOSテーブルメモリ (ROM) 1aに格納されているOSパラメ ータLEVEL1を用いて、入力画像データの強調変換処理を行う。

#### [0014]

また、温度センサ20で検出された装置内温度が切換閾値温度Th1(=15℃)より 大きく且つ切換閾値温度Th2 (=25℃)以下であれば、制御CPU12Hは強調変換 部14Hに対し、OSテーブルメモリ(ROM)1bを選択して参照するように指示する 。これによって、強調変換部14HはOSテーブルメモリ(ROM)1bに格納されてい る強調変換パラメータLEVEL2を用いて、入力画像データの強調変換処理を行う。

さらに、温度センサ20で検出された装置内温度が切換閾値温度Th2(=25℃)よ り大きく且つ切換閾値温度Th3 (=35℃)以下であれば、制御CPU12Hは強調変 換部14Hに対し、OSテーブルメモリ (ROM) 1cを選択して参照するように指示す る。これによって、強調変換部14HはOSテーブルメモリ(ROM)1cに格納されて いる強調変換パラメータLEVEL3を用いて、入力画像データの強調変換処理を行う。

#### [0016]

そしてまた、温度センサ20で検出された装置内温度が切換閾値温度Th3(=35℃ ) より大きければ、制御CPU12Hは強調変換部14Hに対し、OSテーブルメモリ ( ROM) 1 dを選択して参照するように指示する。これによって、強調変換部14 HはO



#### [0017]

一般的に液晶表示パネルにおいては、ある中間調から別の中間調に変更させる時間は長 く、また低温時の入力信号に対する追従性が極端に悪くなり、応答時間が増大するため、 中間調を1フレーム期間(たとえば60Hzのプログレッシブスキャンの場合は16.7 msec)内に表示することができず、残像が発生するだけでなく、中間調を正しく表示 することができないという課題があったが、上述のオーバーシュート駆動回路を用いて、 予め決められた1フレーム表示期間経過後に液晶表示パネル17が入力画像データの定め る目標階調輝度へ到達するように、入力画像データの階調レベルを階調遷移方向へ強調変 換することにより、図19に示すように、目標の中間調を短時間(1フレーム期間内)で 表示することが可能となる。

【特許文献1】特開平4-365094号公報

【特許文献2】特開平4-318516号公報

## 【発明の開示】

【発明が解決しようとする課題】

## [0018]

ところで、上述したオーバーシュート駆動方法においては、予め決められた1垂直表示 期間経過後に液晶表示パネルが入力画像データの定める目標階調輝度へ到達するように、 入力画像データの階調レベルを階調遷移方向へ強調変換するものであり、同一条件であっ ても入力画像データの垂直周波数(垂直表示周期)が異なると、1垂直表示期間経過後に 液晶が到達する階調輝度も異なってしまうため、オーバーシュート駆動を正しく動作させ ることができない。

## [0019]

たとえば、現在のテレビジョン放送には、垂直周波数が60Hz(走査線525本)で あるNTSC方式と、垂直周波数が50Hz(走査線625本)であるPAL方式、SE CAM方式とがあり、これら複数の放送方式のテレビジョン信号を受信して表示すること が可能なマルチテレビジョン受像機が開発されているが、上述した従来の液晶表示装置を このようなマルチテレビジョン受像機に適用した場合、オーバーシュート駆動を正しく動 作させることができず、フレーム間データの誤差が拡大して、本来の入力画像データには ない映像ノイズを作り出すことになり、表示画像の画質を劣化させてしまうという問題が あった。

#### [0020]

解決しようとする問題点は、入力画像データの放送方式(垂直周波数)が異なるにもか かわらず、該入力画像データに対して同一の強調変換処理を施すと、フレーム間データの 誤差が拡大して、本来の入力画像データにはない映像ノイズが生じて画質劣化を招く可能 性がある点である。

# 【課題を解決するための手段】

#### [0021]

請求項1の液晶表示装置は、少なくとも1垂直表示期間前の画像データと現垂直表示期 間の画像データとの比較を行い、該比較結果に基づいて、液晶表示パネルへ供給する画像 データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶表 示装置であって、入力画像データの垂直周波数から第1の映像信号であるか第2の映像信 号であるかの信号種別を検出する信号種別検出手段と、前記液晶表示パネルが所定期間内 において前記画像データの定める透過率となるように、前記画像データの強調変換を行う 強調変換手段とを備え、前記信号種別検出手段による検出結果に応じて、前記強調変換手 段における前記画像データに対する強調変換度合いを可変制御することを特徴とする。

請求項2の液晶表示装置は、現垂直表示期間の画像データと1垂直表示期間前の画像デ ータとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調 変換手段は、前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部 と、前記演算部の出力データに対し、前記信号種別検出手段による検出結果に応じて、異 なる係数を乗算する乗算部とを有することを特徴とする。

請求項3の液晶表示装置は、前記乗算部における係数は、前記入力画像データが第2の映像信号である場合、前記入力画像データが第1の映像信号である場合に比べて小さくなるように設定されていることを特徴とする。

請求項4の液晶表示装置は、前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有するとを特徴とする。

請求項5の液晶表示装置は、前記強調変換パラメータは、前記入力画像データが第1の映像信号である場合に読み出されるものに比べて、前記入力画像データが第2の映像信号である場合に読み出されるものが小さい値であることを特徴とする。

請求項6の液晶表示装置は、さらに、装置内温度を検出する温度検出手段を備え、前記 強調変換手段は、前記温度検出手段による検出結果に基づき、前記画像データに対する強 調変換度合いを可変することを特徴とする。

請求項7の液晶表示装置は、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調変換手段は、前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、前記演算部の出力データに対し、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、異なる係数を乗算する乗算部とを有することを特徴とする

請求項8の液晶表示装置は、前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記温度検出手段の検出結果に応じて異なる係数を乗算する乗算部とを有することを特徴とする。

請求項9の液晶表示装置は、前記入力画像データが第1の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする。

請求項10の液晶表示装置は、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調変換手段は、前記信号種別検出手段による検出結果によって定められた切換温度と前記温度検出手段の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする。

請求項11の液晶表示装置は、前記強調変換パラメータの切り換え選択を制御する制御

手段を備え、前記制御手段は、前記温度検出手段により検出された温度データに対して、前記入力画像データの信号種別毎に定められた所定の演算を施す演算部と、前記演算部により演算が施された温度データと、予め決められた所定の閾値温度データとを比較する閾値判別部と、前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする。

請求項12の液晶表示装置は、前記強調変換パラメータの切り換え選択を制御する制御手段を備え、前記制御手段は、前記温度検出手段により検出された温度データと、前記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する閾値判別部と、前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする。

請求項13の液晶表示制御方法は、少なくとも1垂直表示期間前の画像データと現垂直表示期間の画像データとの比較を行い、該比較結果に基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶表示制御方法であって、入力画像データの垂直周波数から第1の映像信号であるか第2の映像信号であるかの信号種別を検出する工程と、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う工程とを有し、前記信号種別の検出結果に応じて、前記強調変換における前記画像データに対する強調変換度合いを可変制御することを特徴とする。

請求項14の液晶表示制御方法は、現垂直表示期間の画像データと1垂直表示期間前の 画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する 工程と、前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、前 記演算による出力データに対し、前記信号種別の検出結果に応じて、異なる係数を乗算す る工程とを有することを特徴とする。

請求項15の液晶表示制御方法は、前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする。

請求項16の液晶表示制御方法は、装置内温度を検出する工程と、前記装置内温度の検出結果に基づき、前記画像データに対する強調変換度合いを可変する工程とを有することを特徴とする。

請求項17の液晶表示制御方法は、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、異なる係数を乗算する工程とを有することを特徴とする。

請求項18の液晶表示制御方法は、前記入力画像データが第1の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記入力画像データが第2の映像信号である場合に参照する、現垂直表示期間の画像データと1垂直表示期間の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、前記演算による出力データに対し、前記装置内温度の検出結果に応じて異なる係数を乗算する工程とを有することを特徴とする。

請求項19の液晶表示制御方法は、前記入力画像データが第1の映像信号である場合に 参照する、複数の装置内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期 間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参 照する工程と、前記入力画像データが第2の映像信号である場合に参照する、複数の装置 内温度毎に対応して、現垂直表示期間の画像データと1垂直表示期間前の画像データとか ら指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信 号種別の検出結果と前記装置内温度の検出結果とに応じて、前記テーブルメモリから読み 出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有 することを特徴とする。

請求項20の液晶表示制御方法は、複数の装置内温度毎に対応して、現垂直表示期間の 画像データと1垂直表示期間前の画像データとから指定される強調変換パラメータが格納 されたテーブルメモリを参照する工程と、前記信号種別の検出結果によって定められた切 換温度と前記装置内温度の検出結果との比較結果に応じて、前記テーブルメモリから読み 出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有 することを特徴とする。

請求項21の液晶表示制御方法は、前記装置内温度の検出結果である温度データに対し て、前記入力画像データの信号種別毎に定められた所定の演算を施す工程と、前記演算が 施された温度データと、予め決められた所定の閾値温度データとを比較する工程と、前記 比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成す る工程とを有することを特徴とする。

請求項22の液晶表示制御方法は、前記装置内温度の検出結果である温度データと、前 記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する工程と、 前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生 成する工程とを有することを特徴とする。

本発明の液晶表示装置は、信号種別検出手段により入力画像データが第1の映像信号で あるか第2の映像信号であるかの信号種別(垂直周波数)を検出し、その検出した信号種 別に応じて入力画像データの強調変換を行う。その際、信号種別の検出結果に応じて、強 調変換手段における入力画像データに対する強調変換度合いを可変制御し、入力画像デー タが第1の映像信号である場合に比べて、フレーム周期が長い第2の映像信号の入力画像 データに対する強調変換度合いを小さくする。従って、いずれの放送方式(垂直周波数) による入力画像データに対しても、常に液晶表示パネルが所定期間内において該入力画像 データの定める透過率となるように、該入力画像データの強調変換を行うことが可能とな り、高画質の画像表示を実現することができる。

## 【発明の効果】

#### [0022]

本発明の液晶表示装置は、複数の異なる放送方式(垂直周波数)の入力画像データに対 し、常に適切な強調変換データを求めて、液晶表示パネルに供給することが可能となり、 どのような放送方式の画像データを表示する場合であっても、高画質の画像表示を実現す ることができる。

# 【発明を実施するための最良の形態】

#### [0023]

本発明の液晶表示装置においては、液晶の応答速度を改善するために、入力画像データ に対して上述したオーバーシュート駆動により強調変換処理を施すが、その際、PAL方 式又はSECAM方式(50Hz)の映像信号は、NTSC方式(60Hz)の映像信号 に比べてフレーム周期が長く、これらの画像データに同一の強調変換処理を施すと、1フ レーム期間経過後における液晶表示パネルの到達階調輝度に誤差が生じ、表示画像の画質 が劣化することを防止する。その際、入力画像データがPAL方式又はSECAM方式( 50Hz)の映像信号である場合には、入力画像データがNTSC方式(60Hz)の映 像信号である場合に比べて、画像データに対する強調変換度合いをより小さくする。これ によって、いずれの放送方式の画像データに対しても、液晶表示パネルの光学応答特性を 補償して、残像や尾引きの発生を抑制するとともに、画像データの過度な強調変換による 映像ノイズの発生を防止して高画質の画像表示を行うことが可能となる。ここで、NTS C方式(60Hz)の映像信号を第1の映像信号、PAL方式又はSECAM方式(50 H z) の映像信号を第2の映像信号とする。

## [0024]

## (実施形態1)

図1は本発明の液晶表示装置の実施形態1を説明するための図、図2は図1のOSテー ブルメモリ(ROM)を参照して得られるOSパラメータと、放送方式(垂直周波数)に よって異なる垂直周波数データに応じて与えられる乗算係数とを用いて、液晶表示パネル に供給する強調変換データを求める場合を説明するための図である。なお、以下に説明す る図において、図15と共通する部分には同一符号を付すものとする。また、以下の説明 においては、各実施形態における強調変換部による強調変換が異なるため、それぞれの実 施形態においては符号14A~14Fのいずれかを付している。同様に、各実施形態にお ける制御CPUによる制御も異なるため、それぞれの実施形態では符号12A~12Gの いずれかを付している。

## [0025]

図1に示す実施形態1の液晶表示装置は、液晶表示パネルの光学応答速度を改善するた めに、画像データに対する強調変換処理を施すものであり、その際、入力画像データがP AL方式又はSECAM方式である場合の入力画像データに対する強調変換度合いを、入 力画像データがNTSC方式 (60 Hz) である場合より小さくするものであって、垂直 周波数検出部10、制御CPU12A、強調変換部14A、フレームメモリ15、液晶コ ントローラ16、液晶表示パネル17を備えている。

## [0026]

信号種別検出手段としての垂直周波数検出部10は、入力画像データがNTSC方式( 60Hz)の映像信号であるかPAL方式又はSECAM方式(50Hz)の映像信号で あるかの信号種別を検出する。その際、入力画像データの垂直同期信号からその周波数を 検出してもよいし、たとえば放送方式の識別信号等から間接的に垂直周波数を検出するよ うにしてもよい。

## [0027]

制御手段としての制御CPU12Aは、垂直周波数検出部10によって検出された信号 種別に応じて強調変換部14Aによる強調変換処理を制御する。

## [0028]

強調変換手段としての強調変換部14Aは、制御CPU12Aによる制御により、これ から表示する現フレームの画像データと、フレームメモリ15に格納された1フレーム前 の画像データとを比較し、その比較結果である階調遷移パターンに応じたOSパラメータ (強調変換パラメータ)をOSテーブルメモリ(ROM)13から読み出し、この読み出 したOSパラメータに基づいて、これから表示する現フレームの画像表示に要する強調変 換データ(書込階調データ)を求め、液晶コントローラ16に出力する。

#### [0029]

この場合、図2に示すように、OSテーブルメモリ(ROM)13を参照して得られる OSパラメータと、入力画像データの信号種別(垂直周波数)に応じて与えられる乗算係 数とを用いることで、液晶表示パネル17に供給する強調変換データを求めることができ る。すなわち、演算部14dにより、これから表示するM番目のフレームの入力画像デー タ (Current Data) と、フレームメモリ15に格納されたM-1番目のフレームの入力画 像データ(Previous Data)とを比較し、その比較結果(階調遷移)に対応する(すなわち 、その比較結果により指定される)OSパラメータをOSテーブルメモリ(ROM)13 から読み出し、線形補完等の演算を施すことにより、強調演算データを出力する。

#### [0030]

そして、減算器14aによって現フレームの画像データからその強調演算データを減算 して差分データを求め、乗算器14bによってその差分データに対し制御CPU12Aか らの係数切換制御信号により切り換えられる乗算係数 α1 又は β1 を乗算し、加算器 14 c によってその乗算係数が乗算された差分データを現フレームの画像データに加算し、そ の加算したデータを強調変換データとして液晶コントローラ16に与える。これにより、 異なる垂直周波数の入力画像データに対し、液晶画素が所定期間内において入力画像デー タの定める透過率となるように駆動表示される。ここで、所定期間とは1フレーム画像の 表示期間であり、通常のホールド型表示の場合、1フレーム期間(たとえば60Hzのプ ログレッシブスキャンの場合は16.7msec、50Hzのプログレッシブスキャンの 場合は20.0msec)であり、たとえば1フレーム期間の50%の期間に黒表示を行 う擬似インパルス型表示とした場合には、画像表示期間は1/2フレーム期間 (たとえば 60Hzのプログレッシブスキャンの場合は8.3msec、50Hzのプログレッシブ スキャンの場合は10.0msec)となる。

## [0031]

また、入力画像データがNTSC方式(6 0 H z)の映像信号の場合の乗算係数は α l =1とし、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合の乗算係数は eta1 <1 としている。これにより、入力画像データが $oxed{NTSC方式}$ ( $oxed{60}$ Η z) の映像信号の場合には、乗算係数 α1 (=1) が選択されて、液晶画素が所定期間 内において入力画像データの定める透過率となるように、画像データの強調変換を行うこ とにより、残像や尾引きが発生しない高画質の画像表示が行われる。

## [0032]

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合 は、乗算係数 $\beta$ 1(<1)が選択されて、強調変換度合いをより小さくすることができる 。これにより、PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式 (60Hz)の映像信号に比べてフレーム周期が長いが、液晶画素が所定期間内において 入力画像データの定める透過率となるように、画像データの強調変換を行うことにより、 残像や尾引きが発生しない高画質の画像表示が行われる。すなわち、画像データに対する 過度の強調変換によって本来の入力画像データにはない映像ノイズが発生することを防止 することが可能となる。

# [0033]

なお、OSテーブルメモリ(ROM)13には、表示データ数が8ビットの256階調 である場合、256の全ての階調に対するOSパラメータ(実測値)を持たせてもよいが 、たとえば図16に示したように、32階調毎の9つの代表階調についての9×9のOS パラメータ(実測値)のみを記憶しておき、その他の階調に対する強調変換データは、上 記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ(R OM) 13の記憶容量を抑制することができる。

#### [0034]

フレームメモリ15は、1フレーム分の画像データを格納することができるものであっ て、これから表示される現フレームの画像データに対し、1フレーム前の画像データが格 納されている。液晶コントローラ16は、強調変換部14Aからの強調変換データに基づ き、ゲートドライバ18及びソースドライバ19を駆動し、液晶表示パネル17に対し画 像表示を行わせる。液晶表示パネル17は、上述した非線形素子(スイッチング素子)で あるTFT (Thin Film Transistor) を有し、ゲートドライバ18及びソースドライバ1 9の駆動により画像表示を行う。

#### [0035]

次に、上述した実施形態1での入力画像データの強調変換による液晶表示制御方法につ いて説明する。

## [0036]

まず、入力画像データがあると、垂直周波数検出部10により、NTSC方式(60H z) の映像信号であるかPAL方式又はSECAM方式(50Hz)の映像信号であるか の信号種別が検出される。検出に際しては、上述したように、入力画像データの垂直同期 信号からその周波数を検出してもよいし、たとえば放送方式の識別信号等から間接的に垂 直周波数を検出するようにしてもよい。

#### [0037]

ここで、たとえばNTSC方式 (60 Hz) の映像信号が検出されると、垂直周波数検 出部10から制御CPU12Aに対し、NTSC方式(60Hz)の映像信号を検出した ことが通知される。

#### [0038]

このとき、制御CPU12Aにより強調変換部14Aに対して、入力画像データに対す る強調変換処理が指示される。この場合、上述したように、演算部14dにより、これか ら表示するM番目のフレームの入力画像データ (Current Data) と、フレームメモリ15 に格納されたM-1番目のフレームの入力画像データ(Previous Data)とが比較され、そ の比較結果(階調遷移)に対応するOSパラメータがOSテーブルメモリ(ROM)13 から読み出され、強調演算データが求められる。なお、この強調演算データは、NTSC 方式の画像データに対し、液晶表示パネル17が所定期間内においてこれから表示するM 番目のフレームの入力画像データにより定められる透過率に到達可能なデータである。減 算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像 データとの差分データが求められる。

## [0039]

ここで、制御CPU12AによりNTSC方式(60Hz)の映像信号の場合の乗算係 数  $\alpha$  1 (=1) が選択されるため、乗算器 1 4 b によって減算器 1 4 a による差分データ に対し乗算係数  $\alpha$  1 (=1) が乗算され(すなわち、差分データがそのまま出力され)、 加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力 画像データとが加算され、その加算されたデータが強調変換データとして液晶コントロー ラ16に与えられる(従って、この場合、液晶表示パネル17に供給される強調変換デー タは、演算部14dによる強調演算データと等しい)。これにより、入力画像データがN TSC方式(60Hz)の映像信号の場合には、液晶画素が所定期間内において入力画像 データの定める透過率となるように表示駆動されるので、液晶表示パネル17の光学応答 特性を補償して、残像や尾引きのない高画質の画像表示が行われる。

## [0040]

これに対し、垂直周波数検出部10により、PAL方式又はSECAM方式(50Hz )の映像信号が検出されると、制御CPU12Aにより強調変換部14Aに対して、PA L方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示さ れる。この場合、上述したように、演算部14dにより、これから表示するM番目のフレ ームの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目 のフレームの入力画像データ(Previous Data)とが比較され、その比較結果(階調遷移) に対応するOSパラメータがOSテーブルメモリ(ROM)13から読み出され、強調演 算データが求められる。なお、この強調演算データは、NTSC方式の画像データに対し 、液晶表示パネル17が所定期間内においてこれから表示するM番目のフレームの入力画 像データにより定められる透過率に到達可能なデータである。減算器14aによってその 強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが 求められる。

## [0041]

ここで、制御CPU12AによりPAL方式又はSECAM方式(50Hz)の映像信 号の場合の乗算係数 eta 1 (< 1)が選択されるため、乗算器 14 b によって減算器 14 aによる差分データに対し乗算係数 eta1 が乗算され(すなわち、差分データが低減されて出 力され)、加算器14cによってその乗算されたデータとこれから表示するM番目のフレ ームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶 コントローラ16に与えられる(従って、この場合、液晶表示パネル17に供給される強 調変換データは、演算部14dによる強調演算データより強調変換度合いが小さい)。こ れにより、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合にも、液晶画素が所定期間内において入力画像データの定める透過率となるように表示 駆動されるので、液晶表示パネル17の光学応答特性を補償して、残像や尾引きのない高 画質の画像表示が行われる。

#### [0042]

以上のように、実施形態1では、垂直周波数検出部10によりNTSC方式(60Hz ) の映像信号が検出された場合、強調変換部14Aにより現フレームの入力画像データと 1フレーム前の入力画像データとの比較結果(階調遷移)に対応するOSパラメータをO Sテーブルメモリ(ROM)13から読み出し、その読み出したOSパラメータに基づい て得られた強調演算データを強調変換データとして液晶コントローラ16に出力するよう にしたので、液晶画素が所定期間内において入力画像データの定める透過率となるように 表示駆動することができ、残像や尾引きのない高画質の画像表示を行うことが可能である

#### [0043]

これに対し、垂直周波数検出部10によりPAL方式又はSECAM方式(50Hz) の映像信号が検出された場合、強調変換部14Aにより現フレームの入力画像データと1 フレーム前の入力画像データとの比較結果(階調遷移)に対応するOSパラメータをOS テーブルメモリ(ROM)13から読み出し、その読み出したOSパラメータに基づいて 得られた強調演算データより強調変換度合いを小さくして、強調変換データとして液晶コ ントローラ16に出力するようにしたので、入力画像データの過強調による映像ノイズの 発生を防止しつつ、液晶画素が所定期間内において入力画像データの定める透過率となる ように表示駆動することができ、残像や尾引きのない高画質の画像表示を行うことが可能 である。

## [0044]

#### (実施形態2)

図3は入力画像データがNTSC方式(60Hz)の映像信号である場合に、画像デー タの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ (ROM) と、入 力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に、画 像データの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ(ROM) とを個別に設けた場合の実施形態2を示す図である。なお、以下に説明する図において、 図1と共通する部分には同一符号を付し重複する説明を省略する。

#### [0045]

図3に示す液晶表示装置では、入力画像データがNTSC方式 (60Hz) の映像信号 である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL 方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモ リ (ROM) 13bとを備え、垂直周波数検出部10により検出された入力画像データの 信号種別(垂直周波数)に応じてOSテーブルメモリ(ROM)13a,13bのいずれ かを切り換え参照して、画像データの強調変換処理を行うようにしている。

#### [0046]

また、OSテーブルメモリ(ROM)13b内のOSパラメータは、OSテーブルメモ リ(ROM)13a内のOSパラメータより小さい値である。これは、上述したように、 PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式(60Hz)の 映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズの発生を防止す るためである。

## [0047]

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブ ルメモリ (ROM) 13a, 13bに格納しているが、単一のOSテーブルメモリ (RO M) の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12 Bからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより 、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

## [0048]

このような構成では、上述したように、垂直周波数検出部10により、たとえばNTS C方式(60Hz)の映像信号が検出されると、垂直周波数検出部10から制御CPU1 2 Bに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。

#### [0049]

このとき、制御CPU12Bにより強調変換手段としての強調変換部14Bに対して、 入力画像データに対する強調変換処理が指示される。この場合、強調変換部14Bは、こ れから表示するM番目のフレームの入力画像データ (Current Data) と、フレームメモリ 15に格納されたM-1番目のフレームの入力画像データ(Previous Data)との比較結果 (階調遷移) に対応する (すなわち、その比較結果により指定される) OSパラメータを 、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテー ブルメモリ(ROM)13aから読み出し、このOSパラメータを用いて線形補完等の演 算を施すことで、液晶コントローラ16に出力する強調変換データが求められる。なお、 この強調変換データは、液晶表示パネル17が所定期間内においてこれから表示するM番 目のフレームの入力画像データにより定められる透過率に到達可能なデータである。

### [0050]

これにより、入力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶 画素が所定期間内において入力画像データの定める透過率となるように表示駆動されるの で、液晶表示パネル17の光学応答特性を補償して、残像や尾引きのない高画質の画像表 示が行われる。

#### [0051]

これに対し、垂直周波数検出部10により、PAL方式又はSECAM方式(50Hz ) の映像信号が検出されると、制御CPU12Bにより強調変換部14Bに対して、PA L方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示さ れる。この場合、強調変換部14Bは、これから表示するM番目のフレームの入力画像デ ータ (Current Data) と、フレームメモリ15に格納されたM-1番目のフレームの入力 画像データ(Previous Data)との比較結果(階調遷移)に対応する(すなわち、その比較 結果により指定される)OSパラメータを、入力画像データがPAL方式又はSECAM 方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13b から読み出し、このOSパラメータを用いて線形補完等の演算を施すことで、液晶コント ローラ16に出力する強調変換データが求められる。なお、この強調変換データは、入力 画像データがNTSC方式の映像信号である場合に、OSテーブルメモリ (ROM) 13 a を参照して求められた強調変換データに比べて、その強調変換度合いが小さくなってい る。

## [0052]

これにより、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号 の場合には、液晶表示パネル17の光学応答特性を補償して、残像や尾引きの発生を抑え つつ、本来の入力画像データにはない映像ノイズが強調されて目立つことによる画質劣化 を抑えることができ、高画質の画像表示を行うことが可能となる。

#### [0053]

このように、実施形態 2 では、入力画像データがNTSC方式(60Hz)の映像信号 である場合に用いるOSパラメータが格納されたOSテーブルメモリ(ROM)13aと 、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に 用いるOSパラメータが格納されたOSテーブルメモリ(ROM)13bとを備え、OS テーブルメモリ (ROM) 13b内のOSパラメータを、OSテーブルメモリ (ROM) 13 a内のOSパラメータより小さい値とし、検出された信号種別に応じてOSテーブル メモリ(ROM)13a,13bのいずれかより読み出されたOSパラメータを用いて強 調変換データを求めるようにしたので、入力画像データの信号種別に応じた適切な強調変 換処理を画像データに施すことができる。

#### [0054]

#### (実施形態3)

図4は図1の構成に温度センサを追加し、OSテーブルメモリ (ROM) 13を参照し て得られるOSパラメータと、入力画像データの信号種別(垂直周波数)及び装置内温度 に応じた乗算係数を用いて、画像データに対する強調変換処理を行わせる場合の実施形態 3を示す図である。

図4に示す液晶表示装置では、OSテーブルメモリ(ROM)13に、上記同様に、入 力画像データがNTSC方式 (60 Hz) の映像信号の場合に最適化されたOSパラメー タ (強調変換パラメータ) が格納されており、信号種別検出手段としての垂直周波数検出 部10による信号種別検出データと温度検出手段としての温度センサ20による温度検出 データとに応じた後述の乗算係数  $\alpha$   $1\sim \alpha$  4 、  $\beta$   $1\sim \beta$  4 を用いて入力画像データに対す る強調変換を行わせるようにしている。

## [0056]

ここで、OSテーブルメモリ (ROM) 13には、上述したように、表示データ数が8 ビットの256階調である場合、256の全ての階調に対するOSパラメータ(実測値) を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調に ついての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調に対する 強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、〇 Sテーブルメモリ (ROM) 13の記憶容量を抑制することができる。

#### [0057]

本実施形態の強調変換部14Cは、図2と同様の構成により実現され、OSテーブルメ モリ(ROM)13から読み出されたOSパラメータと、信号種別及び液晶表示パネル1 7の温度に応じた乗算係数  $\alpha$   $1\sim \alpha$  4 、  $\beta$   $1\sim \beta$  4 とを用いて、液晶表示パネル 1 7 の温 度依存特性を含む光学応答特性を補償するための強調変換データを求めて、液晶コントロ ーラ16に出力することができる。ここで、入力画像データがNTSC方式(60Hz) の映像信号の場合の乗算係数は  $\alpha$   $1\sim \alpha$  4 とし、入力画像データが P A L 方式又は S E CAM方式(50Hz)の映像信号の場合の乗算係数は $\beta1\sim\beta4$ とする。ただし、 $\beta1<$  $\alpha$  1 、  $\beta$  2 <  $\alpha$  2 、  $\beta$  3 <  $\alpha$  3 、  $\beta$  4 <  $\alpha$  4 である。

## [0058]

すなわち、温度センサ20からの温度検出データを、たとえば15℃以下、15℃より 大きく25℃以下、25℃より大きく35℃以下、35℃より大きい場合の4段階の温度 範囲に分けて、入力画像データがNTSC方式(60Hz)の映像信号であるとき、たと えば装置内温度が 1 5 ℃以下である場合は乗算係数 a 1 (> a 2) 、 1 5 ℃より大きく 2 5℃以下である場合は乗算係数α2(>α3)、25℃より大きく35℃以下である場合 は乗算係数 α 3 (> α 4) 、 3 5 ℃より大きい場合は乗算係数 α 4 (= 1)とし、入力画 像データがPAL方式又はSECAM方式(50Hz)の映像信号であるとき、たとえば 装置内温度が15℃以下である場合は乗算係数β1(>β2)、15℃より大きく25℃ 以下である場合は乗算係数  $\beta$  2 (>  $\beta$  3)、 2 5  $\mathbb{C}$  より大きく 3 5  $\mathbb{C}$  以下である場合は乗 算係数  $\beta$  3 (>  $\beta$  4 )、3 5  $\mathbb{C}$  より大きい場合は乗算係数  $\beta$  4 (< 1 )とするものについ て説明するが、乗算係数  $\alpha$  1 -  $\alpha$  4 、  $\beta$  1 -  $\beta$  4 は 3 段階以下或いは 5 段階以上の温度範 囲に対応したものとしてもよいことは言うまでもない。

なお、これらの乗算係数  $\alpha$   $1\sim\alpha$  4 、  $\beta$   $1\sim\beta$  4 は、液晶表示パネル 1 7 の光学応答特 性の実測値から予め得られたものである。これにより、入力画像データがPAL方式又は SECAM方式(50Hz)の映像信号の場合は、NTSC方式(60Hz)の映像信号 の場合よりも小さな強調変換度合いで画像データの強調変換制御を行うことができ、液晶 表示パネル17の光学応答特性(温度依存特性を含む)を補償して、残像や尾引きの発生 を抑えつつ、過強調によって映像ノイズが生成されることによる画質劣化を抑えることが できる。

#### [0060]

また、温度センサ20は、その本来の目的から液晶表示パネル17内に設けることが望 ましいが、これは構造上困難であるため、液晶表示パネル17にできる限り近い場所に設 置すればよい。また、温度センサ20は、1個に限らず複数個とし、液晶表示パネル17 の各部位に対応して配置させるようにしてもよい。複数の温度センサ20を設けた場合に



### [0061]

このような構成では、上述したように、垂直周波数検出部10によりたとえばNTSC 方式 (60Hz) の映像信号が検出されると、垂直周波数検出部10から制御СРU12 Cに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。

## [0062]

このとき、制御CPU12Cにより強調変換手段としての強調変換部14Cに対して、 入力画像データに対する強調変換処理が指示される。この場合、上述したように、演算部 14dにより、これから表示するM番目のフレームの入力画像データ (Current Data) と 、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ(Previous Da ta)とが比較され、その比較結果(階調遷移)に対応する(すなわち、その比較結果によ り指定される)OSパラメータがOSテーブルメモリ(ROM)13から読み出されて強 調演算データが求められる。そして、減算器14aによってその強調演算データとこれか ら表示するM番目のフレームの入力画像データとの差分データが求められる。

#### [0063]

このとき、制御CPU12Cには温度センサ20からの温度検出データが取り込まれて おり、制御CPU12Cによりその温度検出データに応じた乗算係数α1~α4のいずれ かが切り換え選択される。ここで、温度検出データがたとえば15℃以下である場合は乗 算係数α1(>α2)となり、15℃より大きく25℃以下である場合は乗算係数α2( > α 3) となり、25℃より大きく35℃以下である場合は乗算係数α3 (> α 4) とな り、35℃より大きい場合は乗算係数α4 (=1) となる。

#### [0064]

温度検出データに応じて、これらの乗算係数α1~α4のいずれかが制御CPU12С により切り換えられると、乗算器14bにより前記差分データに対していずれかの乗算係 数  $\alpha$   $1\sim \alpha$  4 が乗算され、加算器 1 4 c によってその乗算されたデータとこれから表示す るM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換デ ータとして液晶コントローラ16に与えられる。これにより、入力画像データがNTSC 方式 (60Hz) の映像信号の場合には、液晶表示パネル17の温度が変化しても、液晶 表示パネル17の光学応答特性(温度依存特性を含む)を補償して、残像や尾引きのない 高画質の画像表示が行われる。

#### [0065]

これに対し、垂直周波数検出部10により、PAL方式又はSECAM方式(50Hz ) の映像信号が検出されると、制御CPU12Cにより強調変換部14Cに対して、PA L方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示さ れる。この場合、上述したように、演算部14dにより、これから表示するM番目のフレ ームの入力画像データ(Current Data)と、フレームメモリ15に格納されたMー1番目 のフレームの入力画像データ(Previous Data)とが比較され、その比較結果(階調遷移) に対応する(すなわち、その比較結果により指定される)OSパラメータがOSテーブル メモリ (ROM) 13から読み出されて強調演算データが求められる。そして、減算器1 4 aによってその強調演算データとこれから表示するM番目のフレームの入力画像データ との差分データが求められる。

#### [0066]

このとき、制御CPU12Cには温度センサ20からの温度検出データが取り込まれて おり、制御CPU12Cによりその温度検出データに応じた乗算係数β1~β4のいずれ かが切り換え選択される。ここで、温度検出データがたとえば15℃以下である場合は乗 算係数  $\beta$  1  $(>\beta$  2) となり、1 5  $\mathbb{C}$  より大きく 2 5  $\mathbb{C}$  以下である場合は乗算係数  $\beta$  2 ( $> \beta$  3) となり、25  $\mathbb{C}$  より大きく 35  $\mathbb{C}$  以下である場合は乗算係数  $\beta$  3  $(> \beta$  4) とな り、35℃より大きい場合は乗算係数β4(<1)となる。

## [0067]

温度検出データに応じて、これらの乗算係数  $\beta$   $1 \sim \beta$  4 のいずれかが制御 C P U 1 2 Cにより切り換えられると、乗算器14bにより前記差分データに対していずれかの乗算係 数 eta  $1\simeta$  4 が乗算され、加算器 1 4 c によってその乗算されたデータとこれから表示す るM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換デ ータとして液晶コントローラ16に与えられる。

#### [0068]

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合には、 $\beta$  1 <  $\alpha$  1、 $\beta$  2 <  $\alpha$  2、 $\beta$  3 <  $\alpha$  3、 $\beta$  4 <  $\alpha$  4 であるため、液晶表示パネル 17の温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を含む)を 補償して、残像や尾引きの発生を抑えつつ、画像データに対する過度な強調変換による映 像ノイズの発生を防止することができ、髙品位な画像表示が行われる。

#### [0069]

このように、実施形態3では、温度センサ20による温度検出データに応じた、入力画 像データがNTSC方式(60Hz)の映像信号の場合の乗算係数α1~α4と、PAL 方式又はSECAM方式(50Hz)の映像信号の場合の乗算係数β1~β4とを用いて 、画像データに対する強調変換度合いを可変制御するようにしたので、入力画像データの 信号種別及び装置内温度に応じた適切な強調変換処理を画像データに施すことが可能とな り、高画質の画像表示を行わせることができる。

#### [0070]

## (実施形態4)

図5は図4のOSテーブルメモリ(ROM)を入力画像データがNTSC方式(60H z)の映像信号である場合に参照する、画像データの強調変換に用いるOSパラメータが 格納されたOSテーブルメモリ(ROM)と、入力画像データがPAL方式又はSECA M方式(50Hz)の映像信号である場合に参照する、画像データの強調変換に用いるO Sパラメータが格納されたOSテーブルメモリ(ROM)とを個別に設けた構成とし、装 置内温度に応じた乗算係数を用いて画像データに対する強調変換度合いを可変する場合の 実施形態4を示す図、図6は図5のOSテーブルメモリ(ROM)を参照して得られるO Sパラメータと温度センサによる温度検出データに応じた乗算係数とを用いて強調変換デ ータを求める場合を説明するための図である。

#### [0071]

図5に示す液晶表示装置では、入力画像データがNTSC方式(60Hz)の映像信号 である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL 方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモ リ (ROM) 13bとを備え、検出されたNTSC方式 (60Hz) の映像信号、PAL 方式又はSECAM方式 (50Hz) の映像信号に応じてOSテーブルメモリ (ROM) 13a, 13bのいずれかを切り換え参照するとともに、温度センサ20による温度検出 データに応じた後述の乗算係数  $\alpha$   $1\sim \alpha$  4 を用いて入力画像データに対する強調変換を行 わせるようにしている。

## [0072]

また、OSテーブルメモリ(ROM)13b内のOSパラメータは、OSテーブルメモ リ (ROM) 13a内のOSパラメータより小さい値である。これは、上述したように、 PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式(60Hz)の 映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズの発生を防止す るために、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合には、画像データに対するは強調変換度合いを、入力画像データがNTSC方式(60 Hz)の映像信号の場合よりも小さくする必要があるためである。

#### [0073]

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブ ルメモリ(ROM)13a,13bに格納しているが、単一のOSテーブルメモリ(RO M) の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12 Dからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより 、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

## [0074]

また、OSテーブルメモリ(ROM)13a,13bには、上述したように、表示デー タ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ( 実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代 表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調 に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成するこ とで、OSテーブルメモリ(ROM)13の記憶容量を抑制することができる。

## [0075]

本実施形態の強調変換部14Dは、図2と同様の構成により実現され、入力信号種別( 垂直周波数) に応じてOSテーブルメモリ (ROM) 13a, 13bのいずれかから読み 出されたOSパラメータと、液晶表示パネル17の温度に応じた乗算係数はα1~α4と を用いて、液晶表示パネル17の温度依存特性を含む光学応答特性を補償するための強調 変換データを求めて、液晶コントローラ16に出力することができる。

#### [0076]

すなわち、温度センサ20からの温度検出データを、たとえば15℃以下、15℃より 大きく25℃以下、25℃より大きく35℃以下、35℃より大きい場合の4段階の温度 範囲に分けて、たとえば装置内温度が15℃以下である場合は乗算係数α1 (>α2)、 15 ℃より大きく25 ℃以下である場合は乗算係数 $\alpha$  2 (>  $\alpha$  3)、25 ℃より大きく35℃以下である場合は乗算係数α3(>α4)、35℃より大きい場合は乗算係数α4( = 1)とするものについて説明するが、乗算係数は3段階以下或いは5段階以上の温度範 囲に対応したものとしてもよいことは言うまでもない。

## [0077]

なお、これらの乗算係数  $\alpha$   $1\sim\alpha$  4 は、液晶表示パネル 1 7 の光学応答特性の実測値か ら予め得られたものである。これにより、入力画像データがPAL方式又はSECAM方 式(50Hz)の映像信号の場合は、NTSC方式(60Hz)の映像信号の場合よりも 小さな強調変換度合いで画像データの強調変換制御を行うことができ、過度な強調変換に よる映像ノイズの発生を防止しつつ、液晶表示パネル17の光学応答特性(温度依存特性 を含む)を補償して、残像や尾引きのない高品位な画像表示が行われる。

## [0078]

また、温度センサ20は、その本来の目的から液晶表示パネル17内に設けることが望 ましいが、これは構造上困難であるため、液晶表示パネル17にできる限り近い場所に設 置すればよい。また、温度センサ20は、1個に限らず複数個とし、液晶表示パネル17 の各部位に対応して配置させるようにしてもよい。複数の温度センサ20を設けた場合に は、それぞれの温度センサ20からの検出結果を平均した値を温度検出データとして用い てもよいし、変化の大きいいずれかの温度センサ20からの検出結果を温度検出データと して用いてもよい。

#### [0079]

このような構成では、上述したように、垂直周波数検出部10によりたとえばNTSC 方式 (60Hz) の映像信号が検出されると、垂直周波数検出部10から制御CPU12 Dに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。このとき 、制御CPU12により強調変換手段としての強調変換部14Dに対して、入力画像デー 夕に対する強調変換処理が指示される。この場合、図6に示すように、制御CPU12D からのパラメータ切換制御信号によりOSテーブルメモリ (ROM) 13aを参照するよ うに指示される。そして、演算部14dにより、これから表示するM番目のフレームの入 力画像データ (Current Data) と、フレームメモリ15に格納されたM-1番目のフレー ムの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すなわち、 その比較結果により指定される) OSパラメータがOSテーブルメモリ (ROM) 13a

から読み出されて強調演算データが求められる。そして、減算器14aによってその強調 演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求め られる。

#### [0080]

このとき、制御CPU12Dには温度センサ20からの温度検出データが取り込まれて おり、制御СРU12Dによりその温度検出データに応じた乗算係数α1~α4のいずれ かを切り換え選択するための係数切換制御信号が強調変換部14Dに与えられる。ここで 、温度検出データがたとえば15℃以下である場合は乗算係数 a 1 (> a 2) となり、1 5  $\mathbb{C}$  より大きく25  $\mathbb{C}$ 以下である場合は乗算係数  $\alpha$  2 (>  $\alpha$  3) となり、25  $\mathbb{C}$  より大き く35℃以下である場合は乗算係数α3(>α4)となり、35℃より大きい場合は乗算 係数α4 (=1)となる。

#### [0081]

温度検出データに応じて、これらの乗算係数 α 1 ~ α 4 のいずれかが制御CPU12D からの係数切換制御信号により切り換えられると、乗算器14bにより前記差分データに 対していずれかの乗算係数  $\alpha$   $1 \sim \alpha$  4 が乗算され、加算器 1 4 c によってその乗算された データとこれから表示するM番目のフレームの入力画像データとが加算され、その加算さ れたデータが強調変換データとして液晶コントローラ16に与えられる。これにより、入 力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶表示パネル17の 温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を含む)を補償し て、残像や尾引きのない高画質の画像表示が行われる。

#### [0082]

これに対し、垂直周波数検出部10により、PAL方式又はSECAM方式(50Hz ) の映像信号が検出されると、制御CPU12Dにより強調変換部14Dに対して、PA L方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示さ れる。この場合、制御CPU12Dからのパラメータ切換制御信号によりOSテーブルメ モリ (ROM) 13bを参照するように指示される。そして、演算部14dにより、これ から表示するM番目のフレームの入力画像データ (Current Data) と、フレームメモリ1 5に格納されたM-1番目のフレームの入力画像データ(Previous Data)との比較結果( 階調遷移)に対応する(すなわち、その比較結果により指定される)OSパラメータがO Sテーブルメモリ (ROM) 13 bから読み出されて強調演算データが求められる。そし て、減算器14aによってその強調演算データとこれから表示するM番目のフレームの入 力画像データとの差分データが求められる。

#### [0083]

このとき、制御CPU12Dには温度センサ20からの温度検出データが取り込まれて おり、制御СРU12 Dからはその温度検出データに応じた乗算係数α1~α4のいずれ かを切り換え選択するための係数切換制御信号が強調変換部14Dに与えられる。ここで 、温度検出データがたとえば15℃以下である場合は乗算係数 a 1 (> a 2 )となり、1 5 ℃より大きく25 ℃以下である場合は乗算係数 $\alpha2$  ( $>\alpha3$ ) となり、25 ℃より大き く35℃以下である場合は乗算係数α3(>α4)となり、35℃より大きい場合は乗算 係数α4 (=1) となる。

#### [0084]

温度検出データに応じてこれらの乗算係数 α 1 ~ α 4 のいずれかが制御 C P U 1 2 D か らの係数切換制御信号により切り換えられると、乗算器14 b により前記差分データに対 していずれかの乗算係数  $\alpha$   $1\sim \alpha$  4 が乗算され、加算器 1 4 c によってその乗算されたデ ータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算され たデータが強調変換データとして液晶コントローラ16に与えられる。

#### [0085]

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合には、上述したように、OSテーブルメモリ(ROM)13b内のOSパラメータがO Sテーブルメモリ (ROM) 13a内のOSパラメータより小さい値であるため、液晶表 示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を 含む)を補償して、残像や尾引きの発生を抑えつつ、画像データに対する過度な強調変換 によって映像ノイズが発生することを防止して、高画質の画像表示が行われる。

## [0086]

このように、実施形態 4 では、入力画像データがNTSC方式 (6 0 Hz)の映像信号 である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL 方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモ リ (ROM) 13bとを備え、前記検出されたNTSC方式(60Hz)の映像信号、P A L 方式又はSECAM方式(50Hz)の映像信号に応じてOSテーブルメモリ(RO M) 13a, 13bのいずれかから読み出されたOSパラメータを用いるとともに、温度 センサ20による温度検出データに応じた乗算係数α1~α4を用いて入力画像データに 対する強調変換度合いを可変制御するようにしたので、入力画像データの信号種別及び装 置内温度に応じた適切な強調変換処理を画像データに施すことが可能となり、高画質の画 像表示を行わせることができる。

## [0087]

## (実施形態5)

図7は入力画像データがNTSC方式 (60Hz)の映像信号である場合に参照する、 複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブルメモリ( ROM)と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号で ある場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメータが格納された OSテーブルメモリ (ROM) とを個別に設けた構成とした場合の実施形態5を示す図、 図8は図7の制御CPUの詳細を説明するための図、図9は図7のOSテーブルメモリ( ROM)を入力画像データの信号種別及び装置内温度に応じて切り換え選択する動作を説 明するための図である。

### [0088]

図7に示すように、実施形態5では、入力画像データがNTSC方式(60Hz)の映 像信号である場合に参照するOSテーブルメモリ (ROM) 131~134と、入力画像 データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するO NTSC方式(60Hz)の映像信号であるか、PAL方式(50Hz)又はSECAM 方式 (50Hz) の映像信号であるかの信号種別を検出し、その信号種別と温度センサ2 0からの温度検出データによって得られる装置内温度とに応じて、OSテーブルメモリ( ROM)131~138のいずれかを切り換え参照し、画像データに対する強調変換処理 を行うようにしている。

## [0089]

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号であ る場合に参照するOSテーブルメモリ(ROM)135~138内のOSパラメータは、 入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブ ルメモリ(ROM)131~134内のOSパラメータより小さい値である。これは、上 述したように、PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式 (60Hz) の映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズ の発生を防止するために、入力画像データがPAL方式又はSECAM方式(50Hz) の映像信号の場合には、画像データに対する強調変換度合いを、入力画像データがNTS C方式(60Hz)の映像信号の場合よりも小さくする必要があるためである。

## [0090]

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブ ルメモリ(ROM)131~138に格納しているが、単一のOSテーブルメモリ(RO M) の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12 Eからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより 、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

#### [0091]

また、OSテーブルメモリ(ROM)131~138には、上述したように、表示デー タ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ( 実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代 表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調 に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成するこ とで、OSテーブルメモリ(ROM)131~138の記憶容量を抑制することができる

#### [0092]

さらに、温度センサ20は、その本来の目的から液晶表示パネル17内に設けることが 望ましいが、これは構造上困難であるため、液晶表示パネル17にできる限り近い場所に 設置すればよい。また、温度センサ20は、1個に限らず複数個とし、液晶表示パネル1 7の各部位に対応して配置させるようにしてもよい。複数の温度センサ20を設けた場合 には、それぞれの温度センサ20からの検出結果を平均した値を温度検出データとして用 いてもよいし、変化の大きいいずれかの温度センサ20からの検出結果を温度検出データ として用いてもよい。

## [0093]

ここで、各OSテーブルメモリ (ROM) 131~138は、図9に示すように、温度 センサ20からの温度検出データに応じて切り換えて参照されるようになっている。ここ では、装置内温度がたとえば15℃以下、15℃より大きく25℃以下、25℃より大き く35℃以下、35℃より大きい場合の4段階の温度範囲に対応させて、各OSテーブル メモリ (ROM) 131~138を設けた構成としているが、3段階以下或いは5段階以 上の温度範囲に対応したOSパラメータを用意してもよいことは言うまでもない。

#### [0094]

このような温度センサ20の温度検出データに応じて各OSテーブルメモリ(ROM) 131~138を切り換え選択を指示する制御CPU12Eの構成を、図8により説明す る。すなわち、制御手段としての制御CPU12Eは、閾値判別部12a、制御信号出力 部12cを有している。

## [0095]

閾値判別部12aは、温度センサ20からの温度検出データを受け取ると、たとえば予 め決められた所定の切換温度(閾値温度)Th1、Th2、Th3とを比較する。ここで は、切換温度(閾値温度) Th 1、Th 2、Th 3 はたとえば15℃、25℃、35℃で あり、装置内温度が15℃以下であるか、15℃より大きく25℃以下であるか、25℃ より大きく35℃以下であるか、35℃より大きいかの判別結果を出力する。

## [0096]

制御信号出力部12cは、垂直周波数検出部10によるNTSC方式(60Hz)の映 像信号、PAL方式又はSECAM方式(50Hz)の映像信号のいずれかの信号種別の 検出結果と、閾値判別部12 a による判別結果とに応じた切換制御信号を出力する。すな わち、垂直周波数検出部10からの信号種別の検出結果と閾値判別部12aによる判別結 果とを受け取ると、その信号種別と温度検出データとに応じて、OSテーブルメモリ(R OM) 131~138のいずれを参照させるかを切換制御信号で指示する。

## [0097]

この場合、制御信号出力部12cは、たとえば入力画像データがNTSC方式(60H z) の場合「0」、PAL方式又はSECAM方式 (50Hz) の場合「1」とする識別 データと、たとえば温度センサ20からの温度検出データが15℃以下の場合「00」、 15℃より大きく25℃以下の場合「01」、25℃より大きく35℃以下の場合「10 」、35℃より大きい場合「11」とする識別データとを組み合わせることにより、3ビ ットの切換制御信号で8個の各OSテーブルメモリ(ROM)131~138のいずれを 参照して、画像データの強調変換を行うかの指示を行うことができる。

#### [0098]

このような構成では、上述したように、垂直周波数検出部10によりたとえばNTSC 方式 (60Hz) の映像信号が検出されると、垂直周波数検出部10から制御CPU12 Eに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。このとき 、制御CPU12Eにより強調変換手段としての強調変換部14Eに対して、入力画像デ ータに対する強調変換処理が指示される。この場合、閾値判別部12aからの温度検出デ ータが15℃以下であるか、15℃より大きく25℃以下であるか、25℃より大きく3 5℃以下であるか、35℃より大きいかの判別結果に応じて、制御信号出力部12cによ り、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテ ーブルメモリ(ROM)131~134のいずれかを選択指示するための切換制御信号が 出力される。

## [0099]

ここで、温度センサ20からの温度検出データがたとえば15℃以下である場合、OS テーブルメモリ(ROM)131を参照するように指示され、15℃より大きく25℃以 下である場合、OSテーブルメモリ(ROM)132を参照するように指示され、25℃ より大きく35℃以下である場合、OSテーブルメモリ(ROM)133を参照するよう に指示され、35℃より大きい場合、OSテーブルメモリ(ROM)134を参照するよ うに指示される。

#### [0100]

そして、その指示を受けた強調変換部14Eにより、これから表示するM番目のフレー ムの入力画像データ (Current Data) と、フレームメモリ15に格納されたM-1番目の フレームの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すな わち、その比較結果により指定される)OSパラメータが、前記選択指示されたOSテー ブルメモリ(ROM)131~134のいずれかから読み出され、その読み出されたOS パラメータに基づいて強調変換データが求められ、液晶コントローラ16に与えられる。 これにより、入力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶表 示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を 含む)を補償して、残像や尾引きのない高画質の画像表示が行われる。

#### [0101]

これに対し、垂直周波数検出部10により、PAL方式又はSECAM方式(50Hz )の映像信号が検出されると、制御CPU12EによりPAL方式又はSECAM方式( 50Hz)の入力画像データに対する強調変換処理が指示される。この場合、上述したよ うに、閾値判別部12aからの温度検出データが15℃以下であるか、15℃より大きく 25℃以下であるか、25℃より大きく35℃以下であるか、35℃より大きいかの判別 結果に応じて、制御信号出力部12cにより、入力画像データがPAL方式又はSECA M方式( $50 \, \mathrm{Hz}$ )の映像信号である場合に参照するOSテーブルメモリ(ROM)135~138のいずれかを選択指示するための切換制御信号が出力される。

#### [0102]

ここで、温度センサ20からの温度検出データがたとえば15℃以下である場合、OS テーブルメモリ(ROM)135を参照するように指示され、15℃より大きく25℃以 下である場合、OSテーブルメモリ(ROM)136を参照するように指示され、25℃ より大きく35℃以下である場合、OSテーブルメモリ(ROM)137を参照するよう に指示され、35℃より大きい場合、OSテーブルメモリ(ROM)138を参照するよ うに指示される。

### [0103]

そして、その指示を受けた強調変換部14Eにより、これから表示するM番目のフレー ムの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目の フレームの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すな わち、その比較結果により指定される)OSパラメータが、選択指示されたOSテーブル メモリ(ROM)135~138のいずれかから読み出され、その読み出されたOSパラ メータに基づいて強調変換データが求められ、液晶コントローラ16に与えられる。

## [0 1 0 4]

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合には、上述したように、OSテーブルメモリ(ROM)135~138内のOSパラメ ータが、対応するOSテーブルメモリ(ROM)131~134内のOSパラメータより 小さい値であるため、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光 学応答特性(温度依存特性を含む)を補償して、残像や尾引きの発生を抑えつつ、画像デ ータに対する過度な強調変換によって映像ノイズが発生することを防止して、高画質の画 像表示が行われる。

## [0105]

このように、実施形態 5 では、入力画像データがNTSC方式(6 0 Hz)の映像信号 である場合に参照する、温度センサ20からの温度検出データに応じた複数のOSテーブ ルメモリ(ROM)131~134と、入力画像データがPAL方式又はSECAM方式 (50Hz) の映像信号である場合に参照する、温度センサ20からの温度検出データに 応じた複数のOSテーブルメモリ (ROM) 135~138とを設け、入力画像データが NTSC方式(60Hz)の映像信号であるか、PAL方式又はSECAM方式(50H z)の映像信号であるかの信号種別と、温度センサ20からの温度検出データによって得 られる装置内温度とに応じて、OSテーブルメモリ (ROM) 131~138のいずれか を切り換え参照し、画像データに対する強調変換を行うようにしたので、信号種別及び装 置内温度に対応した適切な強調変換処理を画像データに施すことが可能となり、高画質の 画像表示を行わせることができる。

## [0106]

## (実施形態6)

図10は入力画像データがNTSC方式(60Hz)の映像信号である場合とPAL方 式又はSECAM方式(50Hz)の映像信号である場合とでOSパラメータを共用した 場合の実施形態6を示す図、図11は図10の制御CPUの詳細を示す図、図12は図1 0のOSテーブルメモリ (ROM) を入力画像データの信号種別及び装置内温度に応じて "切り換え選択する動作を説明するための図である。

#### [0107]

図10に示すように、実施形態6では、図7に示したOSテーブルメモリ (ROM) 1 31~138のうち、たとえば入力画像データがNTSC方式(60Hz)の映像信号で ある場合に参照する4個のOSテーブルメモリ(ROM)131~134を、入力画像デ ータがPAL方式又はSECAM方式(50Hz)の映像信号である場合にも参照できる ようにし、垂直周波数検出部10による信号種別及び温度センサ20による装置内温度に 応じて、OSテーブルメモリ (ROM) 131~134のいずれかを切り換え参照し、画 像データに対する強調変換処理を行うようにしている。

#### [0108]

このように、入力画像データの信号種別及び装置内温度の検出データに応じて、参照す るOSテーブルメモリ(ROM)131~134の切り換え制御を行う制御CPU12F は、図11に示す構成となっている。すなわち、制御CPU12Fは、閾値判別部12a 、制御信号出力部12b、信号種別演算式格納部12e、演算部12fを有している。

#### [0109]

閾値判別部12aは、演算部12fにより演算が施された温度データと、予め決められ た所定の切換温度(閾値温度)Th1,Th2,Th3とを比較する。ここで、Th1, Th2, Th3は、たとえば15℃、25℃、35℃である。制御信号出力部12bは、 閾値判別部12aによる比較結果に応じて、強調変換手段としての強調変換部14Fに対 しいずれのOSテーブルメモリ (ROM) 131~134を選択して参照させるかを指示 するための切換制御信号を生成する。

#### [0110]

信号種別演算式格納部12eには、入力画像データの信号種別毎に決められた所定値を 、温度センサ20による温度検出データに対して加減算する等の演算式が格納されている 。演算部12 f は、垂直周波数検出部10により検出された信号種別のデータに応じ、信 号種別演算式格納部12 e から読み出された演算式を用いて、温度センサ20による温度 検出データに補正演算を施す。

#### [0111]

このような構成では、たとえば図12に示すように、入力画像データがNTSC方式( 60Hz)の映像信号である場合、温度センサ20で検出された装置内温度が切換温度T h 1 (=15℃)以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテー ブルメモリ(ROM)131を選択して参照するように指示する。これによって、強調変 換部14FはOSテーブルメモリ(ROM)131に格納されているOSパラメータを用 いて、入力画像データの強調変換処理を行う。

#### [0112]

また、温度センサ20で検出された装置内温度が切換温度Th1 (=15℃) より大き く且つ切換温度Th2(=25℃)以下であれば、制御CPU12Fは強調変換部14F に対し、OSテーブルメモリ (ROM) 132を選択して参照するように指示する。これ によって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているO Sパラメータを用いて、入力画像データの強調変換処理を行う。

#### [0113]

さらに、温度センサ20で検出された装置内温度が切換温度Th2(=25℃)より大 きく且つ切換温度Th3 (=35℃)以下であれば、制御CPU12Fは強調変換部14 Fに対し、OSテーブルメモリ(ROM)133を選択して参照するように指示する。こ れによって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されている OSパラメータを用いて、入力画像データの強調変換処理を行う。

そしてまた、温度センサ 2 0 で検出された装置内温度が切換温度 T h 3 (= 3 5 ℃) よ り大きければ、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(RO M) 134を選択して参照するように指示する。これによって、強調変換部14FはOS テーブルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像デ ータの強調変換処理を行う。

#### [0115]

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である 場合は、上述したように、過度な強調変換による映像ノイズの発生を防止するために、入 力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合におけ る画像データの強調変換度合いを、入力画像データがNTSC方式(60Hz)の映像信 号である場合より小さくする必要がある。そのため、その強調変換の度合いを補正するた めに、演算部12fでは信号種別演算式格納部12eより読み出された演算式を用いて、 温度センサ20による温度検出データに対し所定の演算(ここでは、たとえば5℃分を加 算)を施した上で、閾値判別部12aに出力する。なお、ここでの加算は、5℃に限らず 、4℃以下又は6℃以上であってもよく、液晶表示パネル17の光学応答特性に応じて任\_ 意に設定すればよい。

#### [0116]

これによって、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信 号である場合、温度センサ20で検出された装置内温度が10℃以下であれば、制御CP U12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)131を選択して参 照するように指示する。これによって、強調変換部14FはOSテーブルメモリ (ROM ) 131に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行 う。

#### [0117]

また、温度センサ20で検出された装置内温度が10℃より大きく且つ20℃以下であ れば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13 2を選択して参照するように指示する。これによって、強調変換部14Fは0Sテーブル メモリ(ROM)132に格納されているOSパラメータを用いて、入力画像データの強 調変換処理を行う。

## [0118]

さらに、温度センサ20で検出された装置内温度が20℃より大きく且つ30℃以下で あれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)1 33を選択して参照するように指示する。これによって、強調変換部14FはOSテーブ ルメモリ(ROM)133に格納されているOSパラメータを用いて、入力画像データの 強調変換処理を行う。

## [0119]

そしてまた、温度センサ20で検出された装置内温度が30℃より大きければ、制御C PU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 134を選択して 参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(RO M) 134に格納されているOSパラメータを用いて、入力画像データの強調変換処理を 行う。

#### [0120]

このように、実施形態6では、温度センサ20による温度検出データに所定の演算を施 した上で、予め決められた所定の切換温度Th1、Th2、Th3と比較し、OSパラメ ータを切り換えるための切換制御信号を生成している。すなわち、入力画像データがNT SC方式(60Hz)の映像信号である場合と、入力画像データがPAL方式又はSEC AM方式(50Hz)の映像信号である場合とで、参照するOSテーブルメモリ(ROM ) 131~134を参照する際の切換温度(装置内温度)を適宜可変するようにしたので 、いずれの信号種別(垂直周波数)の入力画像データに対しても、OSテーブルメモリ( ROM) 131~134を共用して強調変換処理を施すことが可能であり、入力画像デー タがNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz) の映像信号のいずれであっても、OSテーブルメモリ(ROM)を別個に設ける場合に比 べ、'メモリの記憶容量を抑制することができる。

## [0121]

また、同一温度条件下において、入力画像データがPAL方式又はSECAM方式 (5 0 H z) の映像信号である場合には、入力画像データがNTSC方式 (6 0 H z) の映像 信号である場合に用いるOSパラメータより小さい値のOSパラメータを用いて、画像デ ータの強調変換を行うことが可能となるため、PAL方式又はSECAM方式(50Hz ) の映像信号の場合、画像データに対する過度な強調変換によって映像ノイズが発生する ことにより画質が劣化することを防止することができる。

## [0122]

なお、各温度範囲に対応した複数のOSパラメータを、それぞれ個別に設けられたOS テーブルメモリ(ROM)131~134に格納しているが、単一のOSテーブルメモリ (ROM) の異なるテーブル領域に格納しておき、制御CPU12Fからの切換制御信号 に応じて、参照するテーブル領域を適応的に切り換えることにより、OSパラメータを切 換選択して、強調変換データを求めるように構成してもよいことは言うまでもない。

## [0123]

また、OSテーブルメモリ(ROM)131~134には、上述したように、表示デー タ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ( 実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代 表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調 に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成するこ とで、OSテーブルメモリ(ROM)131~134の記憶容量を抑制することができる

#### [0124]

#### (実施形態7)

図13は図10の制御CPUとして別の構成を備えた場合の実施形態7を示す図である

## [0125]

実施形態7における制御CPU12Gは、図13に示すように、入力画像データの信号 種別毎に決められた所定の切換温度(閾値温度)のデータが格納されている信号種別閾値 温度データ格納部12iと、入力画像データの信号種別に応じて、信号種別閾値温度デー タ格納部12iから読み出された切換温度Th1,Th2,Th3と、温度センサ20に よる温度検出データとを比較する閾値判別部12jと、この閾値判別部12jによる比較 結果に応じ、強調変換部14Fに対してOSテーブルメモリ(ROM)131~134の いずれかを選択して参照させるための切換制御信号を生成する制御信号出力部12bとを 有している。

### [0126]

このような構成では、入力画像データがNTSC方式(60Hz)の映像信号である場 合は、温度センサ20で検出された装置内温度が切換温度Th1(=15℃)以下であれ ば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ (ROM) 131 を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメ モリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの強調 変換処理を行う。

## [0127]

また、温度センサ20で検出された装置内温度が切換温度Th1 (=15℃)より大き く且つ切換温度Th2(=25℃)以下であれば、制御CPU12Gは強調変換部14F に対し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これ によって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているO Sパラメータを用いて、入力画像データの強調変換処理を行う。

#### [0128]

さらに、温度センサ20で検出された装置内温度が切換温度Th2(=25℃)より大 きく且つ切換温度Th3 (=35℃)以下であれば、制御CPU12Gは強調変換部14 Fに対し、OSテーブルメモリ (ROM) 133を選択して参照するように指示する。こ れによって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されている OSパラメータを用いて、入力画像データの強調変換処理を行う。

#### [0129]

そしてまた、温度センサ20で検出された装置内温度が切換温度Th3(=35℃)よ り大きければ、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(RO M) 134を選択して参照するように指示する。これによって、強調変換部14FはOS テーブルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像デ ータの強調変換処理を行う。

#### [0130]

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である 場合は、上述したように、過度な強調変換による映像ノイズの発生を防止するために、同 一条件下における画像データの強調変換度合いを、入力画像データがNTSC方式(60 Hz) の映像信号である場合より小さくする必要がある。そのため、その強調変換の度合 いを補正するために、入力画像データがPAL方式又はSECAM方式(50Hz)の映 像信号である場合は、閾値判別部12jでは信号種別閾値温度データ格納部12iより読 み出された切換温度Th'1 (<Th1), Th'2 (<Th2), Th'3 (<Th3 ) を用いて、温度センサ20による温度検出データの比較判別を行い、その結果を制御信 号出力部12bに出力する。

#### [0131]

これによって、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信 号である場合は、温度センサ 2 0 で検出された装置内温度が T h  $^{\prime}$  1 (=10  $^{\circ}$ ) 以下で あれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)1 31を選択して参照するように指示する。これによって、強調変換部14FはOSテーブ ルメモリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの 強調変換処理を行う。

#### [0 1 3 2]

また、温度センサ20で検出された装置内温度がTh'1 (=10℃)より大きく且つ 切換温度Th'2 (=20℃) 以下であれば、制御CPU12Gは強調変換部14Fに対 し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これによ って、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているOSパ ラメータを用いて、入力画像データの強調変換処理を行う。

## [0133]

さらに、温度センサ20で検出された装置内温度がTh'2 (=20℃)より大きく且 つ切換温度Th'3 (=30℃) 以下であれば、制御CPU12Gは強調変換部14Fに 対し、OSテーブルメモリ (ROM) 133を選択して参照するように指示する。これに よって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されているOS パラメータを用いて、入力画像データの強調変換処理を行う。

## [0134]

そしてまた、温度センサ20で検出された装置内温度がTh'3 (=30℃)より大き ければ、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)1 34を選択して参照するように指示する。これによって、強調変換部14FはOSテーブ ルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像データの 強調変換処理を行う。

#### [0135]

このように、実施形態7では、入力画像データの信号種別毎に定められた切換温度(閾 値温度)を用いて温度センサ20による温度検出データの比較判別を行うことにより、参 照すべきOSテーブルメモリ(ROM)131~134を選択させるための切換制御信号 を生成している。すなわち、入力画像データがNTSC方式(60Hz)の映像信号であ る場合と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号であ る場合とで、OSテーブルメモリ(ROM)131~134を切り換え選択する切換温度 (装置内温度) を適宜可変するようにしたので、いずれの信号種別の入力画像データに対 しても、OSテーブルメモリ(ROM)131~134を共用して強調変換処理を施すこ とが可能であり、NTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式 (50Hz) の映像信号のいずれであっても、OSテーブルメモリ (ROM) を別個に設 ける場合に比べ、メモリの記憶容量を抑制することができる。

### [0136]

また、同一温度条件下において、入力画像データがPAL方式又はSECAM方式(5 0 H z) の映像信号である場合には、入力画像データがNTSC方式 (6 0 H z) の映像 信号である場合に用いるOSパラメータより小さい値のOSパラメータを用いて、画像デ ータの強調変換を行うことが可能となるため、画像データに対する過度な強調変換によっ て映像ノイズが発生することにより画質が劣化することを防止することができる。

## [0137]

#### (実施形態8)

図14は入力画像データがNTSC方式(60Hz)の映像信号の場合とPAL方式又 はSECAM方式(50Hz)の映像信号の場合とで、一部のOSパラメータのみを共用 した場合の実施形態8を示す図である。

#### [0138]

図14に示すように、実施形態8では、入力画像データがNTSC方式(60Hz)の 映像信号である場合、PAL方式又はSECAM方式(50Hz)の映像信号である場合 のいずれにおいても共用されるOSテーブルメモリ(ROM)13c~13eに加えて、 入力画像データがNTSC方式 (60Hz) の映像信号である場合に参照するOSテーブ ルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50H z) の映像信号である場合に参照するOSテーブルメモリ (ROM) 13bとを設け、こ れらOSテーブルメモリ(ROM)13a~13eを、入力信号種別毎に定められる切換 温度に従って切り換え参照し、画像データに強調変換を施す構成としている。

ここで、それぞれの専用のOSテーブルメモリ(ROM)13a,13bについては、 たとえば常温より大きい場合において、画像データの強調変換に用いるOSパラメータが 格納されている。また、OSテーブルメモリ(ROM)13a~13eを、信号種別毎に 定められる切換温度に従って切り換え参照させる場合、図11(又は図13)で説明した 制御CPU12F(又は12G)からの切換制御信号によって行わせることができる。

#### [0140]

このような構成では、入力画像データがNTSC方式(60Hz)の映像信号である場 合、温度センサ20で検出された装置内温度が15℃以下であれば、制御CPU12Fは 強調変換部14Fに対し、OSテーブルメモリ(ROM)13cを選択して参照するよう に指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13cに 格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

また、温度センサ20で検出された装置内温度が15℃より大きく且つ25℃以下であ れば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 13 dを選択して参照するように指示する。これによって、強調変換部14FはOSテーブル メモリ (ROM) 13dに格納されているOSパラメータを用いて、入力画像データの強 調変換処理を行う。

#### [0142]

さらに、温度センサ20で検出された装置内温度が25℃より大きく且つ35℃以下で あれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 1 3 e を選択して参照するように指示する。これによって、強調変換部14FはOSテーブ ルメモリ(ROM)13eに格納されているOSパラメータを用いて、入力画像データの 強調変換処理を行う。

## [0143]

そしてまた、温度センサ20で検出された装置内温度が35℃より大きければ、制御C PU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 13aを選択して 参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(RO M) 13aに格納されているOSパラメータを用いて、入力画像データの強調変換処理を 行う。

## [0144]

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である 場合は、温度センサ20で検出された装置内温度が10℃以下であれば、制御CPU12 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM) 13cを選択して参照する ように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13 c に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

## [0145]

また、温度センサ20で検出された装置内温度が10℃より大きく且つ20℃以下であ れば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 13 dを選択して参照するように指示する。これによって、強調変換部14FはOSテーブル メモリ(ROM)13dに格納されているOSパラメータを用いて、入力画像データの強 調変換処理を行う。

### [0146]

さらに、温度センサ20で検出された装置内温度が20℃より大きく且つ30℃以下で あれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ (ROM) 1 3 e を選択して参照するように指示する。これによって、強調変換部14FはOSテーブ ルメモリ(ROM)13eに格納されているOSパラメータを用いて、入力画像データの 強調変換処理を行う。

## [0147]

そしてまた、温度センサ20で検出された装置内温度が30℃より大きければ、制御C PU12Fは強調変換部14Fに対し、OSテープルメモリ (ROM) 13bを選択して 参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(RO M) 13bに格納されているOSパラメータを用いて、入力画像データの強調変換処理を 行う。

#### [0148]

このように、実施形態8では、入力画像データがNTSC方式(60Hz)の映像信号 、PAL方式又はSECAM方式(50Hz)の映像信号である場合のそれぞれに対して 共用するOSテーブルメモリ (ROM) 13c~13eに加えて、入力画像データがNT SC方式 (60 Hz) の映像信号の場合に参照する専用のOSテーブルメモリ (ROM) 13 aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場 合に参照する専用のOSテーブルメモリ(ROM)13bとを設け、これらOSテーブル メモリ (ROM) 13a~13eを、入力信号種別毎に定められる切換温度(装置内温度 ) に応じて切り換え参照し、画像データに対する強調変換を施す構成としたので、OSテ ーブルメモリ (ROM) 13c~13eを共用して適切な強調変換処理を施すことが可能 となる。

なお、各信号種別及び各温度範囲に対応した複数のOSパラメータを、それぞれ個別に 設けられたOSテーブルメモリ(ROM)13a~13eに格納しているが、単一のOS テーブルメモリ(ROM)の異なるテーブル領域に格納しておき、制御CPU12F(又 は12G)からの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えるこ とにより、強調変換パラメータを切換選択して、強調変換データを求めるように構成して もよい。

## [0150]

また、OSテーブルメモリ(ROM)13a~13eには、上述したように、表示デー タ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ( 実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代 表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調 に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成するこ とで、OSテーブルメモリ(ROM)13a~13eの記憶容量を抑制することができる

# 【産業上の利用可能性】

液晶表示パネルを用いて画像表示を行う液晶表示装置であればよく、また、このような 表示装置を搭載しているパーソナルコンピュータ、テレビジョン受信機等の身近な機器に 限らず、計測機器、医療機器、産業機器全般等にも適用可能である。

## 【図面の簡単な説明】

## [0152]

【図1】本発明の液晶表示装置の実施形態1を説明するための図である。

【図2】図1のOSテーブルメモリ(ROM)を参照して得られるOSパラメータと 垂直周波数データに応じて与えられる乗算係数とを用いて液晶表示パネルに供給する 強調変換データを求める場合を説明するための図である。

【図3】入力画像データがNTSC方式(60Hz)の映像信号である場合に参照す るOSパラメータが格納されたOSテーブルメモリ(ROM)と、入力画像データが PAL方式又はSECAM方式(50Hz)の映像信号である場合に参照する、OS パラメータが格納されたOSテーブルメモリ(ROM)とを個別に設けた場合の実施 形態2を示す図である。

【図4】図1の構成に温度センサを追加し、OSテーブルメモリ(ROM)を参照し て得られるOSパラメータと、入力画像データの信号種別及び装置内温度に応じた乗 算係数を用いて、画像データに対する強調変換処理を行わせる場合の実施形態3を示 す図である。

【図5】図4のOSテーブルメモリ(ROM)を入力画像データがNTSC方式(6 O H z ) の映像信号である場合に参照するOSパラメータが格納されたOSテーブル メモリ (ROM) と、入力画像データがPAL方式又はSECAM方式 (50Hz) の映像信号である場合に参照するOSパラメータが格納されたOSテーブルメモリ( ROM)とを個別に設けた構成とし、装置内温度に応じた乗算係数を用いて画像デー タに対する強調変換度合いを可変する場合の実施形態4を示す図である。

【図6】図5のOSテーブルメモリ(ROM)を参照して得られるOSパラメータと 温度センサによる温度検出データに応じた乗算係数とを用いて強調変換データを求め る場合を説明するための図である。

【図7】入力画像データがNTSC方式(60Hz)の映像信号である場合に参照す る、複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブル メモリ (ROM) と、入力画像データがPAL方式又はSECAM方式 (50Hz) の映像信号である場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメ ータが格納されたOSテーブルメモリ(ROM)とを個別に設けた構成とした場合の 実施形態5を示す図である。

【図8】図7の制御CPUの詳細を説明するための図である。

【図9】図7のOSテーブルメモリ(ROM)を入力画像データの信号種別及び装置 内温度に応じて切り換え選択する動作を説明するための図である。

【図10】入力画像データがNTSC方式(60Hz)の映像信号である場合とPA L方式又はSECAM方式(50Hz)の映像信号である場合とでOSパラメータを 共用した場合の実施形態6を示す図である。

【図11】図10の制御CPUの詳細を示す図である。

【図12】図10のOSテーブルメモリ(ROM)を入力画像データの信号種別及び 装置内温度に応じて切り換え選択する動作を説明するための図である。

【図13】図10の制御CPUとして別の構成を備えた場合の実施形態7を示す図で ある。

【図14】入力画像データがNTSC方式(60Hz)の映像信号の場合とPAL方 式又はSECAM方式(50Hz)の映像信号の場合とで、一部のOSパラメータの みを共用した場合の実施形態8を示す図である。

【図15】従来の液晶表示装置の一構成例を示す図である。

【図16】図15のOSテーブルメモリ(ROM)に格納されているOSパラメータ の一例を示す図である。

【図17】図15の制御CPUの一構成例を示す図である。

【図18】図15のOSテーブルメモリ(ROM)を装置内温度に応じて切り換え選 択する動作を説明するための図である。

【図19】図15の液晶表示装置におけるオーバーシュート駆動を説明するための図 である。

# 【符号の説明】

[0153]

- 10 垂直周波数検出部(信号種別検出手段)
- 12A~12G 制御CPU(制御手段)
- 12a 閾値判別部
- 12b,12c 制御信号出力部
- 12e 信号種別演算式格納部
- 12f 演算部
- 12 i 信号種別閾値温度データ格納部
- 12j 閾値判別部
- 13, 13a~13e, 131~138 OSテーブルメモリ (ROM)

- 14A~14F 強調変換部(強調変換手段)
- 15 フレームメモリ
- 16 液晶コントローラ
- 17 液晶表示パネル
- . 20 温度センサ (温度検出手段)

# 【書類名】図面 【図1】























# 【図7】







【図9】

入力画像データがPAL方式(50Hz) 又はSECAM方式(50Hz)の 映像信号の場合に参照されるOSテーブルメモリ

135 Sテーブルメモリ 136 138 137 Sテーブルメモリ Sテーブルメモリ 08テーブルメモリ 0 0 温度検出データ 切換温度 25 °C 15 °C 35 °C 131 08テーブルメモリ 132 Sテーブルメモリ 133 134 Sテーブルメモリ 08テーブルメモリ 0 0

入力画像データがNTSC方式(60Hz)の映像信号の場合に参照されるOSテーブルメモリ













【図12】





【図13】









【図15】





【図16】

|          | ŀ                | 255                                                             | 255                                                                                                | 255                                                                                                                                                | 255                                                                                                                   | 255                                                                                                                                                                                                                           | 255                                                                                                                                                                                                                                                                             | 255                                                                                                                                                                                                                                                                                                                  | 255                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 224      | 242              | 240                                                             | 234                                                                                                | 232                                                                                                                                                | 232                                                                                                                   | 229                                                                                                                                                                                                                           | 227                                                                                                                                                                                                                                                                             | 224                                                                                                                                                                                                                                                                                                                  | 215                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 192      | 230              | 226                                                             | 506                                                                                                | 204                                                                                                                                                | 201                                                                                                                   | 196                                                                                                                                                                                                                           | 192                                                                                                                                                                                                                                                                             | 186                                                                                                                                                                                                                                                                                                                  | 181                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 160      | 214              | 206                                                             | 182                                                                                                | 175                                                                                                                                                | 167                                                                                                                   | 160                                                                                                                                                                                                                           | 152                                                                                                                                                                                                                                                                             | 139                                                                                                                                                                                                                                                                                                                  | 136                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 128      | 194              | 183                                                             | 150                                                                                                | 140                                                                                                                                                | 128                                                                                                                   | 117                                                                                                                                                                                                                           | 105                                                                                                                                                                                                                                                                             | 85                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 96       | 165              | 159                                                             | 110                                                                                                | 96                                                                                                                                                 | 81                                                                                                                    | 99                                                                                                                                                                                                                            | 99                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                   | 44                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 64       | 118              | 120                                                             | 64                                                                                                 | 48                                                                                                                                                 | 43                                                                                                                    | 35                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32       | 51               | 32                                                              | 12                                                                                                 | 0                                                                                                                                                  | 0                                                                                                                     | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0        | 0                | 0                                                               | 0                                                                                                  | 0                                                                                                                                                  | 0                                                                                                                     | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 0                | 32                                                              | 64                                                                                                 | 96                                                                                                                                                 | 128                                                                                                                   | 160                                                                                                                                                                                                                           | 192                                                                                                                                                                                                                                                                             | 224                                                                                                                                                                                                                                                                                                                  | 255                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u> </u> |                  |                                                                 |                                                                                                    |                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 32 64 96 128 160 | 0   32   64   96   128   160     0   51   118   165   194   214 | 0   32   64   96   128   160     0   51   118   165   194   214     0   32   120   159   183   206 | 0   32   64   96   128   160     0   0   51   118   165   194   214     32   0   32   120   159   183   206     64   0   12   64   110   150   182 | 0 32 64 96 128 160   0 0 51 118 165 194 214   32 0 32 120 159 183 206   64 0 12 64 110 150 182   96 0 0 48 96 140 175 | 0   32   64   96   128   160     0   0   51   118   165   194   214     32   0   32   120   159   183   206     64   0   12   64   110   150   182     96   0   0   48   96   140   175     128   0   0   43   81   128   167 | 0   32   64   96   128   160     0   0   51   118   165   194   214   214     32   0   32   120   159   183   206   36     64   0   12   64   110   150   182   36     96   0   0   48   96   140   175     128   0   0   43   81   128   167     160   0   35   66   117   160 | 0   32   64   96   128   160     0   0   51   118   165   194   214   2     32   0   32   120   159   183   206   3     64   0   12   64   110   150   182   3     96   0   0   48   96   140   175   3     128   0   0   43   81   128   167     160   0   35   66   117   160     192   0   0   2   56   105   152 | 0   32   64   96   128   160   1     0   51   118   165   194   214   2     0   32   120   159   183   206   2     0   12   64   110   150   182   2     0   0   48   96   140   175   2     0   0   43   81   128   167   2     0   0   35   66   117   160   2     0   0   2   56   105   152   2     0   0   2   56   105   152   2     0   0   0   2   56   105   152   3     0   0   0   0   50   85   139   139 |







【図18】





【図19】





【書類名】要約書

【要約】

液晶表示パネルの光学応答特性を補償するように、入力画像データに対する強 【課題】 調変換を行うとともに、PAL方式又はSECAM方式(50Hz)の画像データに対す る過度な強調変換による映像ノイズの発生を防止することで、高画質の画像表示を行う。

【解決手段】 垂直周波数検出部10によりPAL方式又はSECAM方式(50Hz) の映像信号が検出されると、その入力画像データに対し、NTSC方式(60Hz)の場 合より小さい強調変換度合いで強調変換処理を行うことによって、液晶の応答速度を改善 しつつ、過強調による映像ノイズの発生を防止して、画質劣化を抑制する。

【選択図】



特願2003-392917

## 出願人履歴情報

識別番号

[000005049]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日

[理由] 新規登録

大阪府大阪市阿倍野区長池町22番22号

シャープ株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS                                           |
|---------------------------------------------------------|
| $\square$ image cut off at top, bottom or sides         |
| ☐ FADED TEXT OR DRAWING                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| GRAY SCALE DOCUMENTS                                    |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ other:                                                |

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.