



## GoogLeNet / Inception v1

Developed in the year 2014, in the paper "Going Deeper with Convolutions".



**Christian Szegedy** 



"Going Deeper with Convolutions" - "Inception" Meme



## GoogLeNet / Inception v1

Introduced the concept of "Network within a network".













• 1×1 Conv: Linearly combines multiple input channels into a single output channel.





• 1×1 Conv: Linearly combines multiple input channels into a single output channel.





Addition of a 1×1 convolution before a 5×5 convolution reduces the channel depth of the image.





Addition of a 1×1 convolution before a 3×3 convolution reduces the channel depth of the image.





#### **Max Pooling**





Why is same padding used in Max Pooling?





Why do we apply 1×1 convolution after max pooling?





#### 1×1 Convolution and Concatenation









## **Auxiliary Classifier**





## **Auxiliary Classifier**





## **GoogLeNet / Inception v1**





#### **The Stem Block**





## **Evolution of the Inception Architecture**

Inception-v2 (2015): Replacement of 5×5 convolutions with two sequential 3×3 convolutions to reduce in computational cost.

• Fewer parameters, leading to a more efficient model.

Inception-v3 (2016): Introduction of batch normalization and optimization in filter sizes across layers.

Achieved state-of-the-art performance on ImageNet.

Inception-v4 and Introduction of Residual Connections: Addition of residual connections similar to those in ResNet.

Enhanced efficiency and accuracy on ImageNet.



### **UpNext:** Hands-on with Inception v1



### What Made Inception v1 Good?



#### **Inception v1 Efficiency:**

- Parameters: Only 5 million parameters, compared to VGG16's 138 million.
- 1×1 Convolutions: Reduces dimensionality, allowing for efficient use of resources.



#### **Performance Achievements:**

- ILSVRC 2014: Top-5 error rate of 6.67%, surpassing competitors like VGG16.
- Adaptive Feature Capture: Excels in diverse input scenarios by effectively capturing multi-scale features.



## Limitation of Inception v1



Complexity and Computational Cost due to its deep and wide structure.



The Vanishing Gradients Problem was a common issue in deeper networks.



**Fixed Grid Size Reduction** might not have been optimal for all types of input sizes and shapes.









Inception ResNet-A Block



Inception ResNet-B Block



Inception ResNet-C Block

 Inception-ResNet Modules: Integrates ResNet's residual connections for deeper networks without vanishing gradient issues.











**Reduction A Block** 

**Reduction B Block** 







## **Limitation of Inception v2**



**Parameter Efficiency**: Optimization was necessary to reduce parameters and prevent resource-intensive models.



**Handling Resolutions:** Image sizes increased and adjustments were necessary to maintain performance.



**Scaling Challenges:** Deeper layers didn't always improve performance due to optimization issues.



# Inception v3

• Developed in the year 2015.







The Inception A Block aims to **expand the network's capacity to capture complex patterns**through convolutional operations without much reduction in spacial dimensions.

**Inception A Block** 





**Inception B Block** 

- The Inception B Block aims to reduce spacial dimensions more significantly than Block A.
- It also leverages large strides (1\*7) and asymmetric factorizations to reduce computational costs.





**Inception C Block** 

- The Inception C Block focuses on high level feature extraction and processing.
- It intensifies the use of asymmetric factorizations to maximize efficiency and feature extraction.





 All 3 block use batch normalization and ReLU activation functions after each convolution is complete.





**Reduction B Block** 

- Inception V3 incorporates asymmetric convolutions, enhancing complexity and efficiency.
- V3's convolutions **delicately adjust to spatial characteristics**, optimizing feature map handling.











































## **Inception Block**







## **Inception Block**





## **Inception Block**

