Domain Generalization using Causal Matching

Shruti Tople ² Amit Sharma ¹ Divyat Mahajan ¹ ¹Microsoft Research, India ²Microsoft Research, UK

Paper Github

Domain Generalization: Introduction

- Domain Generalization (DG) aims to learn a single classifier that generalizes well to data from unseen domains/ distributions
- Training data: $\{(d_i, \mathbf{x}_i, y_i)\}_{i=1}^n \sim (D_m, \mathcal{X}, \mathcal{Y})^n$ where $d_i \in D_m$ and $D_m \subset \mathcal{D}$ is a set of m domains
- Covariate Shift Assumption: $p_i(y|x) = p_i(y|x)$ for any two domains d_i, d_j
- We identify the right conditions to learn invariant representations for DG and propose a novel approach to satisfy them in practical scenarios

Training Domains

Test Domains

Rotation Angles: 0, 90

Rotation Angles: 15, 30, 45, 60, 76

Causal View of Domain Generalization

Figure 1:General SCM for DG task. Observed variables are shaded; dashed arrows denote correlated nodes. Object has a dotted outline since it may not be observed.

- Object (0) can be interpreted as the base person where the Domain (D) corresponds to different views that lead to creation of an image (X) for that person (O)
- Domains can be interpreted as interventions: For each observed x_i^d , there are a set of counterfactual inputs $x_i^{d'}$ where $d \neq d$, but both correspond to the (possibly unobserved) same object (O)

Invariance Condition from SCM

Constraints using d-separation on the SCM for DG

- $X_C \perp \!\!\! \perp D|O$ and $X_C \not \!\! \perp \!\!\! \perp O$ (Invariance Condition)
- $Y \perp \!\!\! \perp D \mid X_C$ (Generalizable Classifier based on Invariant Representation)

Identification of invariant representation X_C : ERM-PerfMatch

- In general X_C is unobserved and there could be multiple choices for X_C that might lead to sub optimal classifier (Eg: X_C as constant function)
- We propose the following loss function (ERM-PerfMatch) to recover optimal X_C (Proof in the paper: Theorem 1)

$$f_{\text{perfectmatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) \tag{1}$$

Comparison with prior works on invariant representation

- Domain Invariant Representation proposes $X_C \perp \!\!\! \perp D$
- Class Conditional Domain Invariant Representation proposes $X_C \perp \!\!\! \perp D | Y_{true}$

Both the conditions are incorrect due to the path through object (O) between X_C and D in the SCM for DG (Proof in the paper: Corollary 1)

Satisfying Invariance Condition with Observational Data

- Equation (1) relies on the object information (O) which is known in self-collected datasets only and a perfect counterfactual might not always exist in real-life datasets
- Goal is to learn a matching $\Omega: \mathcal{X} \times \mathcal{X} \to \{0,1\}$ such that pairs having $\Omega(\mathbf{x}, \mathbf{x}') = 1$ have low difference in \mathbf{x}_c and \mathbf{x}'_c .

Class Conditional Approximation: ERM-RandMatch

• Randomly match pairs across domains from the same class Ω_Y (Proof in the paper: Theorem 2)

$$f_{\texttt{randommatch}} = \arg\min_{h,\Phi} \sum_{d=1}^m L_d(h(\Phi(X)),Y) + \lambda \sum_{\Omega_Y(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}),\Phi(\mathbf{x}_k^{(d')}))$$

Contrastive Learning: MatchDG

 Optimise the following contrastive learning loss with positive matches as same class, different domains pairs and negative matches as different class pairs $\exp\left(\sin(\Phi(\mathbf{x}_j),\Phi(\mathbf{x}_k))/\tau\right)$

$$l(\mathbf{x}_{j}, \mathbf{x}_{k}) = -\log \frac{\exp(\sin(\Phi(\mathbf{x}_{j}), \Phi(\mathbf{x}_{k}))/\tau)}{\exp(\sin(\Phi(\mathbf{x}_{j}), \Phi(\mathbf{x}_{k}))/\tau) + \sum_{i=0, y_{i} \neq y_{j}}^{b} \exp(\sin(\Phi(\mathbf{x}_{j}), \Phi(\mathbf{x}_{i}))/\tau)}$$
(3)

MatchDG: Proposed Algorithm

- Learn the matching function Ω by minimizing loss in Eq (3) in Phase 1 and then minimize loss in Eq (2]) with the learn matching function
- In Phase 1, the positive matches initialized with random match (Ω_Y) and updated periodically based on nearest same-class pairs in the representation space

Algorithm 1: MatchDG

Input: Dataset $(d_i, x_i, y_i)_{i=1}^n$ from m domains, τ , t

Output: Function $f: \mathcal{X} \to \mathcal{Y}$

Create random match pairs Ω_Y .

Build a n * m data matrix \mathcal{M} .

Phase I. while notconverged do

- for $batch \sim \mathcal{M}$ do
- Minimize contrastive loss (3).
- **if** *epoch* % *t* ==0 **then**
- Update match pairs using Φ_{epoch} .

Phase 2. Compute matching based on Φ . Minimize the loss (2) to obtain f.

Results

Table 1:Accuracy for Rotated MNIST & Fashion-MNIST datasets on target domains of 0° and 90°.

Dataset	Source	ERM	MASF	CSD	ERM-RandMatch	MatchDG	ERM-PerfMatch
Rotated MNIST	15, 30, 45, 60, 75	96.5 (0.15)	93 (0.2)	94.7 (0.2)	97.5 (0.17)	97.5 (0.36)	98.5 (0.08)
	30, 45, 60	80.6 (2.9)	69.4 (1.32)	89.1 (0.004)	82.8 (2.3)	88.9 (2.01)	93.6 (0.53)
	30, 45	64.0 (2.28)	60.8 (1.53)	77.2 (0.04)	69.7 (2.93)	79.3 (4.2)	84.2 (2.33)
Rotated Fashion MNIST	15, 30, 45, 60, 75	78.5 (1.15)	72.4 (2.9)	78.9 (0.7)	80.5 (0.97)	83.5 (1.16)	85.1 (0.97)
	30, 45, 60	33.9 (1.04)	25.7 (1.73)	27.8 (0.01)	35.5 (1.07)	51.7 (2.08)	61.04 (1.33)
	30, 45	21.85 (0.93)	20.8 (1.26)	20.2 (0.01)	23.9 (0.93)	36.6 (2.17)	42.0 (2.42)

Table 2:Accuracy results on the PACS dataset trained with Resnet-18.

Test Domain	ERM	MASF	JiGen	CSD	ERM-RandMatch	MatchDG
Photo	95.37 (0.37)	94.99 (0.09)	96.03	95.45	95.59 (0.07)	95.7 (0.52)
Art Painting	75.79 (1.38)	80.29 (0.18)	79.42	79.79	78.58 (0.56)	77.9 (0.61)
Cartoon	77.82 (0.39)	77.17 (0.08)	75.25	75.04	80.02 (1.01)	78.8 (0.29)
Sketch	69.75 (0.58)	71.69 (0.22)	71.35	72.46	76.03 (1.34)	76.3 (0.92)
Average	79.69	81.04	80.41	80.69	82.56	82.03