

Learning to Forecast and Refine Residual Motion for Image-to-Video Generation

Yu Tian¹ Long Zhao¹ ¹ Rutgers University

Mubbasir Kapadia¹ **Dimitris Metaxas**¹ ² Binghamton University

Motivation

We consider the problem of image-to-video translation, where a system receives one or more images as the input and translates it into a video containing realistic motions of a single object. We target at conditional motion forecasting and realistic long-term video generation.

Applications

- 2) Human Motion Forecasting

Challenges

- 1) Facial Expression Retargeting 1) Preserve the identity consistency
 - 2) Forecast conditional long-term motion
 - 3) Maintain video coherence in pixel level

Contributions

- 1) A novel two-stage generative framework
- 2) Investigate learning residual motion
- Introduce dense connections for decoders

Framework

A two-stage generative framework

- Videos are (a) generated from conditions and then (b) refined.
- Three components: a condition generator, motion forecasting network and motion refinement network.

Stage 1: Motion Forecasting Network

- Motion disentangle, dense layers for decoders
- 1) Generate motion guided by domain knowledge
- 2) Preserve the object identity
- 3) Ensure motion structures
- Face: 3D Morphable Model Pose: 2D Joints + LSTM

Stage 2: Motion Refinement Network

- Learning for video refinement
- 1) Refine videos with 3D convolutional networks
- 2) Model refinements in the residual space
- 3) Produce temporally coherent motions

Experiments

Evaluation on Facial Expression Retargeting

Methods	ACD-I	ACD-C
MCNet	0.545	0.322
Villegas et al.	0.683	0.130
MoCoGAN	0.291	0.205
Ours	0.184	0.107

Methods	Preference (%)
Ours / MCNet	84.2 / 15.8
Ours / Villegas et al.	74.6 / 25.4
Ours / MoCoGAN	62.5 / 37.5

Table 1. Video generation quality comparison.

Table 2. Average user preference score (%).

Evaluation on Human Pose Forecasting

Methods	MSE	MSE (LSTM)	
VGAN	0.047	-	
Mathieu et al.	0.041	-	
Villegas et al.	0.030	0.025	
Ours	0.023	0.011	

Settings	ACD-I	ACD-C	MSE
G_M (Dense), G_R	0.459	0.155	0.027
G_M (Dense), G_R	0.252	0.140	0.014
G_M (Dense), G_R	0.184	0.107	0.011

Table 3. MSE score on Penn Action Database.

Table 4. Quantitative results of ablation study.

References

[MCNet] "Decomposing motion and content for natural video sequence prediction". ICLR'17. [Villegas et al.] "Learning to generate long-term future via hierarchical prediction". ICML'17. [MoCoGAN] "MoCoGAN: Decomposing Motion and Content for Video Generation". CVPR'18. [Mathieu et al.] "Deep multi-scale video prediction beyond mean square error". ICLR'16. [VGAN] "Generating videos with scene dynamics". NIPS'16.