Math 442 Homework 1 Solutions

1. We'll prove this by weak induction.

Base case: $2^8 = 256 \ge 256 = 4^4$.

Induction step: Now assume the result is true for n = k, that is, $2^{2k} \ge k^4$. For n = k + 1

$$(k+1)^4 = k^4 + 4k^3 + 6k^2 + (4k+1) \le k^4 + k^4 + k^4 + k^4 = 4k^4 \le 2^2(2^{2k}) = 2^{2(k+1)}$$

since $k \geq 4$, and the result follows by induction.

2. We'll prove this by weak induction.

Base case: For n = 1, clearly x - y divides x - y.

Induction step: Now assume the result is true for n = k, that is, x - y divides $x^k - y^k$. For n = k + 1

$$x^{k+1} - y^{k+1} = x^{k+1} - xy^k + xy^k - y^{k+1}$$
$$= x(x^k - y^k) + (x - y)y^k.$$

By the induction assumption x - y divides the RHS so also divides the LHS, and the result follows by induction.

3. We'll prove this by weak induction.

Base case: n = 1 and 9 divides 4 + 5.

Induction step: Now assume the result is true for n = k, that is, 9 divides $4^k + 5^k$. For n = k + 2 (since n must stay odd)

$$4^{k+2} + 5^{k+2} = 16(4^k + 5^k) + 9.5^k.$$

By the induction assumption 9 divides the RHS and so also the LHS. The result now follows by induction.

4. We'll prove this by weak induction.

Note for n = 1 that $\{1, 2\}$ contains the square 1. Now we start our induction at n = 2 for convenience.

Base case: For $n = 2, \{2, 3, 4\}$ contains the square 4.

Induction step: Now assume the result is true for n = k, that is, the set $\{k, k + 1, \dots, 2k\}$ contains a square.

For n = k + 1 consider the set $\{k + 1, \dots, 2k + 2\}$. By the induction assumption if any of $\{k + 1, \dots, 2k\}$ is a square then we are done.

If not then the induction assumption implies that k is a square, say $k = l^2$. Hence

$$(l+1)^2 = l^2 + 2l + 1 = k + 2l + 1$$

but $2l+1 \le k+1$ since $k \ge 2$ so $(l+1)^2 \in \{k+1,\ldots,2k+2\}$. Thus a square always lies in $\{k+1,\ldots,2k+2\}$ and the result follows by induction.

5. First we'll gather some data: c(1) = 1, c(2) = 2, c(3) = 4, c(4) = 8. From this we get the following.

We have that $c(n) = 2^{n-1}$ for all $n \ge 1$.

Proof. We'll prove this by weak induction.

Base case: n = 1 and $c(1) = 1 = 2^0$.

Induction step: Now assume the result is true for n=k. For n=k+1 note that we can create every composition of k+1 from a composition $a+b+\cdots+c$ of k, by either $a+b+\cdots+c+1$ or $a+b+\cdots+(c+1)$. So

$$c(k+1) = 2.c(k) = 2.2^{k-1} = 2^k$$

where we use the induction assumption for the second equality, and the result follows by induction. \Box