Московский физико-технический институт

Лабораторная работа

Исследование эффекта Комптона

выполнил студент 653 группы ФФКЭ Веловатый Даниил

Цель работы 1

- 1. Исследование энергетического спектра у-квантов, рассеянных на графите, с помощью сцинтилляционного спектрометра
- 2. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния
- 3. Определение энергии покоя частиц, на которых происходит комптоновское рассеяние

2 В работе используются:

- источник излучения
- графитовая мишень
- сцинтилляционный счётчик
- ФЭУ
- 9BM

3 Теоретические положения

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим. Он интерпретируется как результат упругого соударения двух частиц - γ -кванта и свободного электрона.

Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 , где $\gamma = (1\beta^2)^{1/2}$, $\beta = v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс рассеянного излучения — $\propto \omega_1$. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот к длинам волн, получаем изменение длины рассеянного излучения

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta), \tag{1}$$

где $\Lambda_k = \frac{h}{mc} = 2.42\dot{1}0^{-10}$ см - комптоновская длина волны электрона. Основной целью работы является проверка соотношения (1). Преобразуем его от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta,\tag{2}$$

где $\varepsilon_0 = E_0/(mc^2)$ - энергия γ -квантов, падающих на рассеиватель (в единицах mc^2), $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяния на угол θ , m - масса электрона.

4 Экспериментальная установка

Источником излучения служит $^{137}\mathrm{Cs}(1)$, испускающий γ -кванты с энергией 662 кэВ. Узкий пучок после коллиматора попадает на графитовую мишень (2). Кванты, испытавшие комптоновское рассеяния в мишени, регистрируются сцинтилляционным счетчиком и проходят на ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Штанга с измерительным блоком может вращаться относительно мишени.

Рис. 1: Блок-схема установки по изучению рассеяния γ -квантов

Рис. 2: Блок-схема измерительного комплекса

5 Ход работы

- 1. Подготовим установку к работе. Снимем спектры при углах от 0° до 120° , результаты занесём в таблицу 1.
- 2. Проведём калибровку прибора, сняв спектры цезия $^{137}\mathrm{Cs}$ и европия $^{152}\mathrm{Eu}$ с известными пиками излучения:

$^{137}{\rm Cs}$:	канал 835	$662 \ кэВ$
$^{152}\mathrm{Eu}$:	канал 479	341 кэВ
$^{152}\mathrm{Eu}$:	канал 178	$123 \ кэВ$

Калибровочный график представлен на рисунке 3.

Рис. 3: Калибровочный график для перехода от номера канала к значению энергии

3. В соответствии с калибровочным графиком пересчитаем значения энергии. Построим графики зависимости $1/N = f(1-\cos\theta)$ и $1/E = f(1-\cos\theta)$ (рисунки 4 и 5 соответственно)

Таблица 1: Зависимость номера канала и энергии излучения от угла наблюдения

Угол, °	0	10	20	30	40	50	60	70	80	90	100	110	120
Номер	941	971	888	735	679	604	522	459	411	365	332	307	302
канала													
Энергия,	806,4	833,2	759,1	622,5	572,4	505,5	432,2	376,0	333,1	292,0	262,6	240,3	235,8
кэВ													

Рис. 4: График зависимости $1/N = f(1-\cos\theta)$

Рис. 5: График зависимости $1/E = f(1-\cos\theta)$

Изменим в формуле (2) энергию фотона на номер канала:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{3}$$

С учётом связи между Е и N:

$$mc^2(\frac{1}{E(90)} - \frac{1}{E(0)}) = 1$$
 (4)

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(90)}{N(0) - N(90)},$$
 (5)

где $E_{\gamma}=662$ кэВ - энергия налетающего кванта. Теперь используя графики на рисунках 4 и 5 определим энергию покоя частицы, на которой происходит комптоновское рассеяние.

Пересечение прямой с осью ординат определяет N(0) и E(0), с прямой $\cos \theta = 0$ - значение $N(\theta)$ и $E(\theta)$.

$$N(0)=917.43$$
 $N(90)=373.13$ $E(0)=806.45$ кэВ $E(90)=297.61$ кэВ По графику каналов: $mc^2=662\frac{373.13}{917.43-373.13}=453.81$ кэВ По графику энергий: $mc^2=(\frac{1}{297.61}-\frac{1}{806.45})^{-1}=471.68$ кэВ

Теоретическое значение энергии покоя электрона составляет 511 кэВ.

6 Вывод

В ходе работы был измерен энергетический спектр γ -квантов, рассеянных на графите. Экспериментально был проверен эффект Комптона и правильность теоретических соотношений зависимости энергии рассеяния от угла наблюдения. Также в ходе работы была двумя способами (по графику спектров в единицах каналов и по откалиброванному по энергиям графику) определена с хорошей точностью энергия покоя электрона:

По каналам: $mc^2 = 453.81$ кэВ По энергиям: $mc^2 = 471.68$ кэВ Теоретическое значение: $mc^2 = 511$ кэВ