Tese de Church

Diante do fato demonstrado de que a máquina de Turing não tem o seu poder computacional ampliado através de qualquer alteração estrutural (vide resumo anterior). Isto é, tornar a fita duplamente infinita, aumentar o número de fitas, de cabeçotes, criar uma máquina nãodeterminística, nada aumenta o poder computacional da máquina de Turing conforme foi concebida.

Diante da existência de modelos computacionais distintos, como:

- Máquina de Turing
- Máquina de Post
- Funções recursivas
- Cálculo-λ

Diante da demonstração de que os modelos são equivalentes em seu poder computacional.

Enfim, todos estes fatos nos levam a considerar que todos os modelos de computação são equivalentes (não apenas os estudados até então) e enunciar a <u>Tese de</u> Church:

"As máquinas de Turing são versões formais de algoritmos, e assim sendo, nenhum procedimento computacional será considerado um algoritmo se não puder ser representado como uma máquina de Turing."

Quando se utiliza a Tese de Church, e isso é usual em computação, pode-se demonstrar a equivalência entre um modelo computacional qualquer e a máquina de Turing apenas simulando no modelo a máquina de Turing.

Computação por Gramáticas

Pode-se utilizar gramáticas como dispositivos geradores de linguagens, mas também como dispositivos computacionais. Desta maneira, as gramáticas podem ser vistas como computadores de funções, desde que tais funções sejam de e para cadeias. Para isso, pode-se usar a Tese de Church.

<u>Lema</u>: Seja M= (K, Σ, δ, s) uma máquina de Turing qualquer. Então existe uma gramática G tal que para quaisquer configurações (q, u, a, v), (q', u', a', v') de M,

 $(q, u, a, v) \vdash_{M}^{*} (q', u', a', v') \Leftrightarrow [uqav] \Rightarrow_{G}^{*} [u'q'a'v'].$ Onde, [e] são símbolos não presentes em K ou Σ , e assume-se que K e Σ são disjuntos.

Demonstra-se representando cada configuração como uma cadeia de símbolos, na qual o estado é um símbolo não-terminal de G, e separa o símbolo sob o cabeçote da cadeia à esquerda deste. Os símbolos [e] inseridos servem para indicar o final dos símbolos na fita, isto é, à direita de] só há símbolos "#". Produzindo uma representação em forma de regra de produção para cada movimento da máquina de Turing a ser simulada, obtém-se o efeito desejado. $G=(K \cup \{[,],h,S\}, \Sigma, P, S)$.

Funções Computáveis por Gramática

A partir do Lema anterior pode-se definir uma função gramaticamente computável.

Def.: Sejam Σ_0 e Σ_1 alfabetos que não contêm #, e seja f uma função de ${\Sigma_0}^*$ para ${\Sigma_1}^*$. Então f será computável por gramática se e somente se houver uma gramática G=(V,T,P,S), onde Σ_0 , $\Sigma_1\subseteq T$, e houver cadeias $x,y,x',y'\in (V\cup T)^*$, tais que para qualquer $u\in {\Sigma_0}^*$, $v\in {\Sigma_1}^*$, $f(u)=v\Leftrightarrow xuy\Rightarrow_G^*x'vy'$. A definição para funções numéricas é semelhante à da Máquina de Turing. Observa-se que x,y,x',y' são marcadores associados à gramática G, assim a computação só terá efeito dentro dos marcadores.

<u>Teorema</u>: Toda função Turing-computável é gramaticalmente-computável.

Demonstra-se a partir de uma máquina de Turing qualquer M=(K, Σ , δ , s), para a qual $f(u)=v \Leftrightarrow (s,\#u\#) \vdash_M^* (h,\#v\#)$. Aplica-se o Lema anterior para obter G, e faz-se x=x'="[#", y="s#]", y'="h#]".

Funções u-Recursivas

Definem-se as funções recursivas primitivas e, a partir destas e de minimização ilimitada sobre funções regulares de Kleene, definem-se as funções u-recursivas.

Faz-se um paralelo com cálculo- λ , fundamento das linguagens funcionais como Scheme.

Máquinas de Turing Universais

Pode-se definir uma codificação padrão para um alfabeto infinito contável e um conjunto de estados infinito contável em termos de cadeias de símbolos. Aceita-se, dessa forma, que qualquer máquina de Turing pode ter seus estados e símbolos codificados dentro do padrão. Assim tem-se os seguintes conjuntos:

$$K_{\infty} = \{q_1, q_2, ...\} e \Sigma_{\infty} = \{a_1, a_2, ...\},$$

De tal maneira que para toda máquina de Turing o conjunto de estados seja um subconjunto finito de K_{∞} , e o alfabeto da fita seja um subconjunto finito de Σ_{∞} . Adota-se a seguinte correspondência entre os símbolos componentes de uma máquina de Turing e cadeias sobre o alfabeto $\{I\}$.

σ	λ (σ) I ⁱ⁺¹
q _i h	I^{i+1}
h	I
L R	I
R	II
a_{i}	I^{i+2}

Esta escolha elimina a possibilidade de haver dois elementos do mesmo conjunto representados da mesma forma.

Usa-se um outro símbolo ("c") para configurar a completamente a máquina, assim o alfabeto de representação será {c, I}. Portanto, cada símbolo e cada estado de uma máquina de Turing M=(K, Σ , δ , s) podem ser representados, e cada elemento da função de transição de uma máquina de Turing também pode, da seguinte maneira: seja δ (q, a)=(p, b), onde q e p \in K $_{\infty}$ \cup {h}, a \in Σ_{∞} , e b \in Σ_{∞} \cup {L, R}, então cada elemento será representado por k. ℓ cadeias S_{pr} ="cw1cw2cw3cw4c", (1 \leq p \leq k, 1 \leq r \leq ℓ) onde w1= λ (q), w2= λ (a), w3= λ (p) e w4= λ (b). Faça-se S_0 = λ (s) e defina-se a função de codificação ρ (M)=c S_0 c $S_{11}S_{12}$... S_{kf} c.

A máquina de Turing Universal opera sobre o alfabeto $\{c, I, \#\}$, e recebe em sua fita a codificação $\rho(M)$ seguida da codificação $\rho(w)$. A operação da máquina de Turing Universal então é bastante simples, simula a execução de M a partir de s, acompanhando a função de

transição e o símbolo encontrado na fita. Observe-se que mesmo que w contenha símbolos #, p(w) não possui #.

Assim define-se a máquina de Turing Universal U como:

 $U=(K_U, \Sigma_U, \delta_U, s_U)$, tal que para toda máquina de Turing $M=(K, \Sigma, \delta, s)$ e para toda cadeia $w \in \Sigma^*$,

- 1. Se (h, uav) é uma configuração de parada de M tal que (s, #w#) \bigsqcup_{M}^{*} (h, uav), então (s_U, # ρ (M) ρ (w)#) \bigsqcup_{U}^{*} (h, # ρ (uav)#)
- 2. Se $(s_U, \#\rho(M)\rho(w)\#) \vdash_U^* (h, u'\underline{a'}v')$ é uma configuração de parada de U, então a'=#, v'=\varepsilon, u'=\psi\rho(uav), para algum u, a, v tais que $(h, u\underline{a}v)$ seja uma configuração de parada de M, e que $(s, \#w\#) \vdash_M^* (h, u\underline{a}v)$.

Esta máquina define o padrão de computação usual, qualquer dispositivo computacional pode ser representado por uma máquina de Turing Universal, e cada máquina de Turing construída representa um algoritmo, um programa para a máquina Universal.

Computabilidade e Decidibilidade

Se há problemas não-resolvíveis por máquinas de Turing, então, pela Tese de Church, estes não podem ser resolvidos por algoritmos de qualquer tipo. Esta conclusão motiva o estudo e a identificação dos problemas solucionáveis. Partindo do conceito de decidibilidade para máquinas de Turing pode-se chegar a conclusões importantes.

<u>Teorema</u>: Toda Linguagem Turing-decidível é Turing-aceitável.

Demonstra-se construindo a máquina de Turing de aceitação, a partir de uma máquina de decisão.

<u>Teorema</u>: Se L é uma Linguagem Turing-decidível então o seu complemento \overline{L} também é Turing-decidível. Demonstra-se construindo a máquina de Turing a partir de uma máquina de decisão para L.

As perguntas que estão sem resposta são:

- 1. Toda linguagem Turing-aceitável é Turing-decidível?
- 2. O complemento de uma linguagem Turing-aceitável é Turing-aceitável?

Se houvesse uma máquina de Turing capaz de "descobrir" a saída de uma máquina de Turing M qualquer, então toda linguagem Turing-aceitável seria Turing-decidível. Então pode-se resumir esta constatação na seguinte linguagem $K_0=\{\rho(M)\rho(w): M \text{ aceita } w\}$. Se K_0 for Turing-decidível por alguma máquina M_0 , então toda linguagem Turing-aceitável será Turing-decidível.

Se K_0 é Turing-decidível, então K_1 ={ $\rho(M)$: M aceita $\rho(M)$ } também o é, e a máquina de Turing M_1 que a decide é composta de uma máquina de codificação, que codifica e copia a cadeia recebida w em $\rho(w)$, e passa o controle para a máquina M_0 .

Assim o resultado final de M_0 será Y se e somente se:

- a) $w \in \rho(M)$, e
- b) M aceita w, isto é, $\rho(M)$;

que é a definição de K_1 . Entretanto se K_1 é Turing-decidível, então seu complemento também o é:

 $\overline{K}_1 = \{w \in \{I, c\}^*: w \text{ não \'e a codificação de uma máquina de Turing M, ou w=<math>\rho(M)$ para alguma máquina de Turing M que não aceita entrada $\rho(M)\}$.

Entretanto \overline{K}_1 não é sequer Turing-aceitável, porque se o fosse haveria uma máquina de Turing M^* que a aceita. Pela definição de \overline{K}_1 , $\rho(M^*) \in \overline{K}_1$ se e somente se M^* não aceita $\rho(M^*)$. Mas M^* deve aceitar \overline{K}_1 , assim $\rho(M^*) \in \overline{K}_1$ se e somente se M^* aceita $\rho(M^*)$. Portanto M^* aceita $\rho(M^*)$ se e somente se M^* não aceita $\rho(M^*)$, o que é absurdo, logo deve ter havido erro na hipótese sobre M^* , que não deve existir. Logo tem-se:

<u>Teorema</u>: Nem toda linguagem Turing-aceitável é Turing-decidível.

<u>Teorema</u>: Os complementos de algumas linguagens Turing-aceitáveis não são Turing-aceitáveis.

Este é o problema da parada da máquina de Turing (K_0) , através dele sabe-se que há problemas que não admitem solução algorítmica. Tais problemas são chamados não-solucionáveis. Por outro lado, um problema é dito solucionável se existe um algoritmo que o resolve, isto é, se há um procedimento de decisão para ele.

<u>Teorema</u>: Uma linguagem é Turing-decidível se e somente se tanto ela quanto o seu complemento são Turing-aceitáveis.

<u>Teorema</u>: Uma linguagem é Turing-aceitável se e somente se ela é a linguagem de saída de alguma máquina de Turing.

<u>Definição</u>: Uma Linguagem é dita Turing-enumerável se e somente se existe uma máquina de Turing que enumera suas cadeias.

<u>Teorema</u>: Uma linguagem é Turing-aceitável se e somente se ela é Turing-enumerável.

Problemas não Resolvíveis sobre MT

Teorema: Os problemas a seguir são não-solucionáveis:

- a) Dada uma máquina de Turing M e uma cadeia de entrada w, M pára com a entrada w?
- b) Para uma específica máquina M, dada uma cadeia de entrada w, M pára com a entrada w?
- c) Dada uma máquina de Turing M, M pára com a fita de entrada vazia?
- d) Dada uma máquina de Turing M, há alguma cadeia de entrada com a qual M pára?
- e) Dada uma máquina de Turing M, M pára com toda cadeia de entrada?
- f) Dadas duas máquinas de Turing M₁ e M₂, elas param com as mesmas cadeias de entrada?
- g) Dada uma máquina de Turing M, a linguagem que M aceita é regular? É livre de contexto? É Turing-decidível?

Problemas não Resolvíveis sobre Gramáticas

Teorema: Os problemas abaixo são não-solucionáveis:

- a) Para uma gramática arbitrária dada G e uma cadeia w, determinar se $w \in L(G)$.
- b) Para uma específica gramática G_0 e uma cadeia w, determinar se $w \in L(G_0)$.
- c) Dadas duas gramáticas arbitrárias G_1 e G_2 , determinar se $L(G_1)=L(G_2)$.
- d) Para uma gramática arbitrária G, determinar se $L(G)=\emptyset$.

Problemas não Resolvíveis para GLC

<u>Teorema</u>: Os problemas a seguir são não-solucionáveis:

- a) Dadas duas gramáticas livres de contexto G_1 e G_2 , determinar se $L(G_1) \cap L(G_2) = \emptyset$.
- b) Para uma gramática livre de contexto G, determinar se G é ambígua.

Complexidade Computacional

O conceito de complexidade está diretamente associado à realidade objetiva, isto é, à prática da computação em dispositivos reais. Há problemas que, apesar de solucionáveis, têm uma *complexidade* em tempo tão elevada que torna impraticável a sua implementação computacional.

<u>Definição</u>: Decidibilidade em tempo. Seja T: $\mathbb{N} \to \mathbb{N}$ uma função numérica, e $L \subseteq {\Sigma_0}^*$ uma linguagem, e $M=(K, \Sigma, \delta, s)$ uma máquina de Turing com k fitas e com $\Sigma_0 \subseteq \Sigma$. Diz-se que M decide L em tempo T se sempre que $w \in L$, $(s, \#w\#,\#, ...,\#) |_{M}^t$ $(h, \#\psi\#,\#, ...,\#)$ para algum $t \le T(|w|)$;

e sempre que $w \notin L$ (s, $\#w\underline{\#,\#}$, ..., $\underline{\#}$) \vdash_M^t (h, $\#\underline{\#,\#}$, ..., $\underline{\#}$) para algum $t \le T(|w|)$;

Diz-se que L é decidível em tempo T se há algum k>0 e alguma máquina de Turing com k fitas que decide L em tempo T. A classe de todas as linguagens decidíveis em tempo T é denotada por TIME(T).

Assim adota-se como limite para o número de passos da máquina de Turing por uma função do comprimento da entrada. Assim não há função T tal que o T(n) < 2n + 4 para algum $n \ge 0$ (já que é necessário percorrer a cadeia de entrada, apagá-la, e escrever \mathbf{Y} ou \mathbf{N}).

Encontrar um limite superior para a função T pode não ser trivial. Entretanto o objetivo da teoria da complexidade computacional é escolher, dentre as várias possíveis máquinas de Turing para decidir uma dada linguagem, aquela capaz de terminar em T passos, onde T é o menor possível, ou, se não for possível, fornecer uma demonstração rigorosa da impossibilidade de uma máquina tão rápida.

Taxa de crescimento de funções

A questão mais relevante a respeito da complexidade computacional é a taxa de crescimento no tempo, os valores constantes podem ser aproximados sempre do menor possível (usando para isso uma máquina de Turing com mais fitas).

<u>Definição</u>: Sejam f e g funções de \mathbb{N} para \mathbb{N} . Escreve-se f=O(g) se e somente se há uma constante c > 0 e um inteiro $n_0 \in \mathbb{N}$ tal que: $f(n) \le c.g(n)$, para todo $n \ge n_0$.

<u>Teorema</u>: Seja $f(n) = \sum_{j=0}^{d} a_j n^j$ um polinômio e r > 1. Então $f = O(r^n)$.

Simulações limitadas em tempo

<u>Teorema</u>: Suponha que uma linguagem L é decidida por uma máquina de Turing M_1 com uma fita duplamente infinita em tempo T_1 . Então L é decidida por uma máquina de Turing padrão M_2 , com uma fita, em tempo T_2 , onde para todo $n \in \mathbb{N}$, $T_2(n)=6T_1(n)+3n+8$.

<u>Teorema</u>: Suponha que uma linguagem L é decidida por uma máquina de Turing M_1 com k fitas em tempo T_1 . Então L é decidida por uma máquina de Turing padrão M_2 , com uma fita, em tempo T_2 , onde, $T_2(n) = 4T_1(n)^2 + (4n + 4k + 3)T_1(n) + 5n + 15$.

Corolário: Se L é decidida por uma máquina de Turing com k fitas em tempo T, então L é decidida em tempo T'=O(T²) por uma máquina de Turing com uma fita.

Classes Pe NP

<u>Definição</u>: Define-se \mathcal{P} (decidíveis em tempo polinomial) como a classe de linguagens:

 $\mathcal{P} = \bigcup \{ \text{TIME}(\mathbf{n}^{d}) : d > 0 \}.$

A classe \mathcal{P} coincide com a classe de problemas que podem ser resolvidos realisticamente por computadores.

<u>Definição</u>: Seja T: $\mathbb{N} \to \mathbb{N}$ uma função numérica, e $L \subseteq \Sigma_0^*$ uma linguagem, e $M=(K, \Sigma, \Delta, s)$ uma máquina de Turing não determinística. Diz-se que M aceita L em tempo não determinístico T se para todo $w \in \Sigma_0^*$, $w \in L$ se e somente se $(s, \#w\#) \upharpoonright_M^t (h, v\underline{\sigma}u)$ para algum $v, u \in \Sigma^*$, $\sigma \in \Sigma$, e $t \leq T(|w|)$. Diz-se que L é aceitável em tempo não determinístico T se há uma máquina de Turing não determinística que aceita L em tempo não determinístico T. A classe de linguagens aceitáveis em

tempo não determinístico T é denotada por NTIME(T). Define-se $\mathcal{NP} = \bigcup \{ \text{NTIME}(n^d) : d > 0 \}.$

Uma computação é considerada infinita se necessita de mais de T(|w|) passos para uma entrada w.

<u>Teorema</u>: \mathcal{NP} ⊆ \cup {TIME(r^{n^d}): r, d > 0}.

Classe NQ-Completo

<u>Definição</u>: Sejam Σ e Δ alfabetos. Uma função $f: \Sigma^* \to \Delta^*$ é dita computável em tempo T por uma máquina de Turing determinística com k fitas M=(K, Σ ', δ , s) se e somente se para todo $x \in \Sigma^*$,

(s, #x #, #, ..., #) \vdash_{M}^{t} (h, #f(x) #, #, ..., #), para algum $t \le T(|x|)$. Diz-se que f é computável em tempo T se existe alguma máquina de Turing M que computa f em tempo T. Diz-se que que f é computável em tempo polinomial se existe um polinômio T tal que f seja computável em tempo T.

<u>Definição</u>: Sejam as linguagens $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$. Uma função computável em tempo polinomial τ : $\Sigma_1^* \to \Sigma_2^*$ é chamada de uma transformação em tempo polinomial de L_1 para L_2 se e somente se para cada $x \in \Sigma_1^*$, é verdadeiro: $x \in L_1$ se e somente se $\tau(x) \in L_2$.

<u>Definição</u>: Uma linguagem L é dita \mathcal{NP} -completa se e somente se $L \in \mathfrak{NP}$, e para toda linguagem $L' \in \mathfrak{NP}$, há uma transformação polinomial de L' para L.

<u>Teorema</u>: Seja L uma linguagem \mathcal{NP} -completa. Então \mathcal{P} = \mathcal{NP} se e somente se L $\in \mathcal{P}$.

Problemas NP-Completos:

- Programação Linear Inteira
- Ciclo Hamiltoniano
- Caixeiro Viaiante

Lida-se com esses problemas através de algoritmos de aproximação.