Lab2 Part1.md 2024-12-11

RC Circuit measurement

Jiarui Huang(黄家睿) 202283890036

Lab content

- 1. Set the voltage output from the function (signal generator) to be approximately 2V. (Use CRO)
- 2. Set the frequency of the function generator to 1 kHz (Use CRO)
- 3. Choose appropriate R and C values for the circuit.
- 4. Measure and record the peak values of VS, VR and VC in table 1.
- 5. Measure and record the time lag tR and tC, with the total voltage as a reference value, in table 1. Note whether this value is positive or negative.
- 6. Repeat the measurements at a frequency of 5 kHz and record the values in table 1.

Theory

An RC circuit is a basic circuit unit composed of a resistor R and a capacitor C, used for signal processing, filtering, time delay, etc.

1.Time Constant au

The time constant describes the dynamic response of an RC circuit and is defined as: au=R imes C

2. Cutoff Frequency f_c

For an RC filter, the cutoff frequency is the frequency where the circuit starts to significantly attenuate the signal, defined as:

$$f_c = rac{1}{2\pi RC}$$

Low-pass filter: $f \leq f_c$ will pass through, while signals with $f \geq f_c$ will be attenuated. High-pass filter: $f \geq f_c$ will pass through, while signals with $f \leq f_c$ will be attenuated.

3.Impedance

In AC circuits, the total impedance of an RC circuit is the combination of the resistance R and the capacitive reactance X_C :

$$Z_T = Z_R + Z_C = R \angle 0\omega + X_C \angle -90\omega = R - jX_C$$

4. Voltage-Related Parameters

4.1Power Supply Voltage \$V_S

Lab2 Part1.md 2024-12-11

This is the input voltage provided to the circuit, typically supplied by a signal generator or a DC power source. V_S is a known external parameter. V_s is a known external parameter.

4.2 Voltage Across the Resistor V_R

According to Ohm's law, the voltage across the resistor is:

$$V_R = I \cdot R$$

where *I* is the current in the circuit and *R* is the resistance.

4.3 Voltage Across the Capacitor V_{C}

The voltage across the capacitor depends on its charging or discharging state: During charging:

$$V_C(t) = V_S \cdot (1 - e^{rac{-t}{ au}})$$

During discharging:

$$V_C(t) = V_c 0 \cdot e^{rac{-t}{ au}}$$

Here, $\tau = R \cdot C$ is the time constant, and $v_C 0$ is the initial voltage.

Time Period T and Frequency f

If the circuit uses an AC power source, the time period and frequency are determined by the input signal: Time Period:

$$T = \frac{1}{f}$$

Frequency:

$$f=rac{1}{T}$$

The input signal can be a sine wave, square wave, or other waveforms, with its frequency set by the signal generator.

Circiut Diagram

Lab2_Part1.md 2024-12-11

Lab2_Part1.md 2024-12-11

Data Table

$V_S(V)$	$V_R(V)$	$V_C(V)$	$ au_R$	$ au_C$	T(ms)	f(Hz)
2V	1.26V	2V	0.1ms	0.1ms	1ms	1kHz
2V	605mV	2V	0.1ms	0.1ms	0.2ms	5kHz