I've done the math enough to know the dangers of our second guessing. Doomed to crumble unless we grow, and strengthen our communication.

 \sim From "Schism," by Tool.

Uniform Noise, Quadratic Loss. Set $L(x) = \frac{1}{2}x^2$. Fix $\bar{\epsilon} \in (0,1)$, and $I \in C^1[0,1]$. As they will appear frequently, put $I_0(s,t) := \int_s^t \iota(r)dr$, and $I_1(s,t) := \int_s^t r\iota(r)dr$. Actions are maps from received messages to actions: $\tilde{m} \mapsto a(\tilde{m})$. Messages are maps from states to sent messages: $q \mapsto m(q)$. We consider strictly increasing, piecewise twice continuously differentiable action and message functions. Formally, define

$$\mathcal{A} := \{ \alpha \in D^2[-\bar{\epsilon}, 1 + \bar{\epsilon}] \mid \text{for all } q \in [-\bar{\epsilon}, 1 + \bar{\epsilon}], \ \alpha'(q) > 0, \text{ and } \alpha(q) \in (0, 1) \}, \text{ and} \qquad (1)$$

$$\mathcal{M} := \{ \mu \in D^2[0,1] \mid \text{for all } q \in [0,1], \ \mu(0) = 0, \mu(1) = 1, \mu'(q) > 0, \text{ and } \mu(q) \in [0,1] \}.$$
 (2)

to be the sets of admissable action and message functions respectively. Note that the receiver's action has domain $[-\bar{\epsilon}, 1+\bar{\epsilon}]$. The sender's message has codomain [0,1], but it is corrupted by noise. Although a *sent* message may be no smaller than zero, and no larger than one, a *received* message may be as small as $-\bar{\epsilon}$, or as large as $1+\bar{\epsilon}$. The receiver must choose an action in [0,1] for messages less than zero or greater than one. The sender has ex-ante payoffs $S: \mathcal{A} \times \mathcal{M} \to \mathbb{R}$ given by

$$S(a,m) = \frac{1}{2\bar{\epsilon}} \int_{-\bar{\epsilon}}^{\bar{\epsilon}} I(q) L(a(m(q) + e) - q) g(q) de$$
 (3)

Beliefs. Let $g(q \mid \tilde{m})$ denote the receiver's beliefs. Put $\tilde{m} = m(q) + e$, where $e \sim U[0, 1]$. Define the upper and lower limits to be

$$\overline{q}(\tilde{m}) = m^{-1}(\min{\{\tilde{m} + \bar{\epsilon}, 1\}}), \text{ and}$$
 (4)

$$q(\tilde{m}) = m^{-1}(\max\{\tilde{m} - \bar{\epsilon}, 0\}) \tag{5}$$

respectively. Now $\tilde{m}|q \sim U[m(q) - \bar{\epsilon}, m(q) + \bar{\epsilon}]$. By Baye's Law,

$$g(q|\tilde{m}) = \frac{f(\tilde{m}|q)}{\int_0^1 f(\tilde{m}|t)g(t)dt} = \frac{\frac{1}{2\bar{\epsilon}} \mathbf{1}_{m(q) - \bar{\epsilon} \le \tilde{m} \le m(q) + \bar{\epsilon}}}{\int_0^1 \frac{1}{2\bar{\epsilon}} \mathbf{1}_{\underline{q}(\tilde{m}) \le t \le \overline{q}(\tilde{m})} dt} = \frac{\mathbf{1}_{\underline{q}(\tilde{m}) \le q \le \overline{q}(\tilde{m})}}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})}$$
(6)

The sender has ex-ante payoffs $R: \mathcal{A} \times \mathcal{M} \to \mathbb{R}$ given by

$$R(a, m, \tilde{m}) = \int_0^1 I(q)L(a(\tilde{m}) - q)g(q|\tilde{m})dq.$$
 (7)

Next, we change the order of integration, first integrating with respect to q, then integrating with respect to \tilde{m} . Proceeding with the change of variables, we obtain

$$J(a,m) = \int_{-\bar{\epsilon}}^{1+\bar{\epsilon}} \int_{\underline{q}(\tilde{m})}^{\overline{q}(\tilde{m})} I(q) L(a(\tilde{m}) - q) dq d\tilde{m}. \tag{8}$$

We have omitted the density of the noise, as it is constant, and therefore does not affect the equilibrium message and action functions. The sender and receiver's problem is to choose $(a,m) \in \mathcal{A} \times \mathcal{M}$, which minimizes J(a,m). Partition [0,1] into the subsets $\{0\}$, $\mathcal{R}_1 := (0,\bar{\epsilon})$, $\mathcal{R}_2 := [\bar{\epsilon}, 1 - \bar{\epsilon}]$, $\mathcal{R}_3 := (1 - \bar{\epsilon}, 1)$, and $\{1\}$. We first show that there exists a unique solution to the sender and receiver's problem. We then show that steepness of the message function is increasing with the importance of getting the message right.

Lemma 1. Given an action $a \in A$, the sender's optimal message is.

Proof. Suppose that $(a, m) \in \mathcal{A} \times \mathcal{M}$ is a solution to the sender and receiver's problem. We proceed by enumerating the conditions that must be met by a pair (a, m), and that (a, m) is unique among them. If the received message is $-\bar{\epsilon}$, then the sent message was 0 a.s., and hence the state of the world is also 0. Therefore, it is optimal for the receiver to play 0. If the received message is $1 + \bar{\epsilon}$, then the sent message was 1 a.s., and hence the state of the world is also 1. Therefore, it is optimal for the receiver to play 1. We have established that $a(-\bar{\epsilon}) = 0$, and $a(1 + \bar{\epsilon}) = 1$. (a, m) must satisfy the first-order condition with respect to m:

$$0 = \int_{-\bar{\epsilon}}^{\epsilon} L'(a(m+e) - q)a'(m+e)de = L(a(m+\bar{\epsilon}) - q) - L(a(m-\bar{\epsilon}) - q). \tag{9}$$

Since L is even, there are two solutions: $a(m+\bar{\epsilon}) = a(m-\bar{\epsilon})$, and $a(m+\bar{\epsilon})-q = -(a(m-\bar{\epsilon})-q)$. The first implies that a is constant, and hence $a \notin \mathcal{A}$, which contradicts our assumption that $a \in \mathcal{A}$. Let $F : [0,1]^2 \to \mathbb{R}$ be given by

$$F(q,m) = a(m+\bar{\epsilon}) + a(m-\bar{\epsilon}) - 2q. \tag{10}$$

Note that the domain of the last argument is [0,1], and not \mathcal{M} . Now

$$F_m(q,m) = a'(m+\bar{\epsilon}) + a'(m-\bar{\epsilon}) > 0. \tag{11}$$

Lastly, observe that $m' = -(F_m)^{-1}F_q > 0$. The first-order condition with respect to a, requires a change of coordinates. Figure 1 illustrates this change in the order of integration. (a, m) must satisfy the first-order condition with respect to a:

$$0 = \int_{q(\tilde{m})}^{\overline{q}(\tilde{m})} I(q) L'(a-q) dq \implies a(\tilde{m}) = \frac{I_1(\overline{q}(\tilde{m}), \underline{q}(\tilde{m}))}{I_0(\overline{q}(\tilde{m}), \underline{q}(\tilde{m}))}$$
(12)

Observe that

$$2q = \frac{I_1(\overline{q}(m(q) + \overline{\epsilon}), \underline{q}(m(q) + \overline{\epsilon}))}{I_0(\overline{q}(m(q) + \overline{\epsilon}), q(m(q) + \overline{\epsilon}))} - \frac{I_1(\overline{q}(m(q) - \overline{\epsilon}), \underline{q}(m(q) - \overline{\epsilon}))}{I_0(\overline{q}(m(q) - \overline{\epsilon}), q(m(q) - \overline{\epsilon}))}$$
(13)

$$= \frac{I_1(m^{-1}(\min\{m(q) + 2\bar{\epsilon}, 1\}), q)}{I_0(m^{-1}(\min\{m(q) + 2\bar{\epsilon}, 1\}), q)} - \frac{I_1(q, m^{-1}(\max\{m(q) - 2\bar{\epsilon}, 0\}))}{I_0(q, m^{-1}(\max\{m(q) - 2\bar{\epsilon}, 0\}))}$$
(14)

Let $\mathcal{T}: C^2[0,1] \to C^2[0,1]$ be given by

$$[\mathcal{T}\ell](\tilde{m}) = \frac{1}{2} \left(\frac{I_1(\ell(\min\{\tilde{m} + 2\bar{\epsilon}, 1\}), \ell(\tilde{m}))}{I_0(\ell(\min\{\tilde{m} + 2\bar{\epsilon}, 1\}), \ell(\tilde{m}))} + \frac{I_1(\ell(\tilde{m}), \ell(\max\{\tilde{m} - 2\bar{\epsilon}, 0\}))}{I_0(\ell(\tilde{m}), \ell(\max\{\tilde{m} - 2\bar{\epsilon}, 0\}))} \right). \tag{15}$$

Example: $I \equiv 1$. $I_1(s,t)/I_0(s,t) = (s+t)/2$, which implies that

$$2\ell(\tilde{m}) = \ell(\min\{\tilde{m} + 2\bar{\epsilon}, 1\}) + \ell(\max\{\tilde{m} - 2\bar{\epsilon}, 0\}). \tag{16}$$

There are three cases:

- 1. $\tilde{m} \in (0, 2\bar{\epsilon})$: $\ell(x) = 2^{x/2\bar{\epsilon}}$.
- 2. $\tilde{m} \in (2\bar{\epsilon}, 1 2\bar{\epsilon})$: $\ell(x) = x$.
- 3. $\tilde{m} \in (1 2\bar{\epsilon}, 1)$:

$$\ell(x) = 1 + \frac{2\bar{\epsilon}}{\log(2)} \left(2^{-\frac{1}{2\bar{\epsilon}}} - 2^{-\frac{x}{2\bar{\epsilon}}} \right) \tag{17}$$

Lemma 2. Given a message $m \in \mathcal{M}$, the receiver's optimal action is.

Proposition 1. There is a unique equilibrium $(a, m) \in \mathcal{A} \times \mathcal{M}$.

Next, we show that. We assume that the zeros of I' are isolated: for each $q_0 \in [0, 1]$ satisfying $I'(q_0) = 0$, there is a neighborhood \mathcal{U} of q such that for all $q \in \mathcal{U} \setminus \{q_0\}$, $I'(q) \neq 0$. If I is analytic, then its zeros are isolated.

Corollary 1. The steepness of the message function is increasing with the importance.

Proof. Let $(a, m) \in \mathcal{A} \times \mathcal{M}$ be the unique solution of the sender and receiver's problem. Choose $q \in (0, 1)$ at which $I'(q) \neq 0$ (so long as I is non-constant, there is at least one such q). Let F be as in the proof of Proposition ??. Since $m' = -(F_m)^{-1}F_q$, $F_{qq} = 0$, $F_{mm} > 0$, and $F_{qm} = 0$, we have that

$$m'' = -(F_m)^{-2}((F_{qq} + F_{qm}m')F_m - F_q(F_{mq} + F_{mm}m')) = (F_m)^{-2}F_qF_{mm}m' > 0.$$
 (18)

By the inverse function theorem, I inverts on \mathcal{U} . We conclude that,

$$\frac{dm'}{dI} = \frac{dm'}{da} \frac{dq}{dI} > 0 \tag{19}$$

as desired.

Figure 1: The Region of Integration. The solid line is m(q), the upper dashed line is $m(q) + \bar{\epsilon}$, and the lower dashed line is $m(q) - \bar{\epsilon}$. The shaded area is the region of integration.