程式編譯完使用時將 argv[1]環境變數帶入要輸入的 raw 檔案,就會自動輸出 Q1-Q5(Bonus)的結果 raw 檔案。

因為 Q1-Q4 使用的 DCT&IDCT 與 Q5 的 Block-DCT&Block-IDCT 演算法相同,差別只在 Block 大小,因此 Q1-Q4 使用 Block Size 64x64 進行計算,而 Q5 則使用 Block Size 8x8 運算,只要設定 DCT&IDCT Function 第三個參數即可。

程式執行硬體環境:

1. Q1&Q2

Name	Lena64	pepper64	baboon64	gra1	gra2
Origin Image	S.			•	
2D- DCT					
Time	1.14205s	1.1372s	1.16301s	1.1667s	1.19388s
2D- IDCT	A.			•	
Time	1.21806s	1.16037s	1.15805s	1.19827s	1.23471s
PSNR	MSE = 0				
1D- DCT					
Time	0.013858s	0.014021s	0.013914s	0.013486s	0.015114s
1D- IDCT				E	
Time	0.013918s	0.017057s	0.015691s	0.01414s	0.013935s
PSNR	MSE = 0				

Name	wildcard	triangle	circle1	circle2	Circle3
Origin Image	\mathbb{X}				
2D- DCT		Manage of the second			
Time	1.14736s	1.15209s	1.13428s	1.14153s	1.16579s
2D- IDCT	\mathbb{X}				
Time	1.19901s	1.18947s	1.16016s	1.18848s	1.17925s
PSNR	MSE = 0	MSE = 0	MSE = 0	MSE = 0	MSE = 0
1D- DCT		Manage and the second			
Time	0.01503s	0.013118s	0.0138s	0.015453s	0.013674s
1D- IDCT	\mathbb{X}				
Time	0.014527s	0.014479s	0.014913s	0.015861s	0.014949s
PSNR	MSE = 0	MSE = 0	MSE = 0	MSE = 0	MSE = 0

首先在上表可以發現 2D 的 DCT&IDCT 相較於 1D 慢,因為 2D 所需的運算量為 64*64*64*64 = 16777216 次,1D 只需要 64*64*64*2 = 524288

次,相差 32 倍的運算量。其次可以發現 MSE 的差值接近等於 0,扣除浮點數誤差,可以發現其 DCT&IDCT 轉換結果與原圖相同。對於較複雜的圖片,可以發現使用 DCT 轉為頻域空間時可以很有效的將高低頻分離。

2. Q3-Q4

Name	Lena64	Pepper64	Baboom64	Gra1	Gra2
Origin Image	A				
Dead Zone	0~0	0~0	0~0	0~0	0~0
Truncate (dc,ac)	(0,3)	(0,3)	(0,3)	(0,6)	(0,5)
Quantizati on	A			М	
Required Bits	32767	32767	32767	32767	32767
PSNR	36.1585dB	36.172dB	36.1448dB	32.5046dB	46.2638dB
Dead Zone	-7~7	-7~7	-7~7	-7~7	-7~7
Truncate (dc,ac)	(0,3)	(0,3)	(0,3)	(0,6)	(0,5)
Quantizati on	51			F	
Required Bits	2007	2239	847	31	39
PSNR	24.3112dB	24.0379dB	25.5966	26.4092dB	39.8252dB

Name	wildcard	triangle	Circle1	Circle2	Circle3
Origin Image	\mathbb{X}				
Dead Zone	0~0	0~0	0~0	0~0	0~0
Truncate (dc,ac)	(0,4)	(0,6)	(0,5)	(0,5)	(0,4)
Quantizati on	\mathbb{X}				
Required Bits	32767	32767	32767	32767	32767
PSNR	32.5945dB	24.7378dB	25.8255dB	25.7357dB	31.0865dB
Dead Zone	-7~7	-7~7	-7~7	-7~7	-7~7
Truncate (dc,ac)	(0,4)	(0,6)	(0,5)	(0,5)	(0,4)
Quantizati on	X			4	
Required Bits	2135	183	423	231	2479
PSNR	23.3774dB	18.4531dB	16.9585	19.2867dB	17.7563dB

可以發現上表大多沒有 Dead Zone 的 Quantization 對於圖片還原後的改變 PSNR 都是在 30dB 以上, 而有 Dead Zone 則會在 20dB~30dB 左右品質會下 降但是 Required Bits 會變少很多,其次會發現若

是圖片本身頻率分佈均勻,則 Required Bits 則較少,因為與 DCT 轉換為頻域的方式有關。

3. Q5

Nam e	Lena64	Pepper64	Baboon64	Gra1	Gra2
Origi n Imag e				r	
2D- DCT					
Time	0.016258s	0.017584s	0.014807s	0.016681s	0.018181s
2D- IDCT				•	
Time	0.016632s	0.017191s	0.016661s	0.017275s	0.017762s
PSNR	MSE = 0				
1D- DCT					
Time	0.001765s	0.0017s	0.001953s	0.002101s	0.001694s
1D- IDCT				М	
Time	0.001866s	0.00189s	0.001978s	0.001701s	0.001917s
PSNR	MSE = 0				

Nam e	wildcard	triangle	Circle1	Circle2	Circle3
Origi n Imag	\times				
2D- DCT					
Time	0.017657s	0.018502s	0.015195s	0.015392s	0.015521s
2D- IDCT	\mathbb{X}				
Time	0.019152s	0.017392s	0.017506s	0.01659s	0.017336s
PSNR	MSE = 0	MSE = 0	MSE = 0	MSE = 0	MSE = 0
1D- DCT					
Time	0.002056s	0.001661s	0.001707s	0.001661s	0.001864s
1D- IDCT	\times				
Time	0.001841s	0.001665s	0.001821s	0.001662s	0.001662s
PSNR	MSE = 0	MSE = 0	MSE = 0	MSE = 0	MSE = 0

與 1.Q1&Q2 的圖表相比,使用 Block Size 8x8 速度 會比直接 Block Size 64x64 快,以 2D-DCT&IDCT 為

例,64x64 要運算 64*64*64*64 = 16777216 次, 而 8x8 則只要 8*8*8*8*8*8 = 262144 次,相差 64 倍,而若是 1D-DCT&IDCT 更是只要 1ms 左右的運 算,因此 8x8 相較於 64x64 能夠有更好的執行時 間與效率。