Line-Segment Intersection

When d1 & d2 have opposite signs, and d3 & d4 have opposite signs, there is an intersection.

$$d3 = (p3-p1) \times (p2-p1) > 0$$
 (clockwise)

d1 & d3 have the same size, so there is no intersection

$$d3 = (p3-p1) \times (p2-p1) > 0$$
 (clockwise)

$$d4= (p4-p1) \times (p2-p1) < 0$$
(counterclockwise)

Intersecting but end/start point on segment

d1 =(p1-p3) x (p4-p3) == 0 **d3** = (p3-p1) x (p2-p1) == 0 **d2** = (p2-p3) x (p4-p3) == 0

 $d4 = (p4-p1) \times (p2-p1) < 0$

(counterclockwise)

Collinear but not intersecting

d1 =(p1-p3) x (p4-p3) ==
$$0$$

(no intersection) - needs additional check to sure p1 lies between p3 and p4