From Cambodia to the Soviet Union: What Factors Influence the Probability of Death for Members of Authoritarian Regimes?

Katrin Aug, Leonhard Gruber, Samuel Hashem Zehi, Michaela Preclikova, Dominik Ruso

12/02/2021

Introduction

(Leo)

Model Specification

In this section, we give a short overview on how the model was constructed, as well as brief justifications as to why some variables are included. The variable selection is based on variables of interest, rather than trying to maximize the predictive power of the model. The dummy for the country in which the regime is, or was, located. There might be cultural reasons why countries in Latin America or Asia might differ from countries in Europe. Furthermore, the duration of the regime is included, as it might be the case that regimes that have been in power for longer have an increasing effect on the probability of death for its members, simply due to being longer in power giving more chances to die, either natural or not. Related to this, the demeaned end year of the regime is included, as the possibility of time trends seems plausible. E.g. when regimes were overturned 100 years ago, the population might have been less averse to peaceful transitions. An earlier version of this model included the start year, however, the variance inflation factor (VIF) on the coefficient was relatively large, compared to the others, so it was excluded from the model. End-of-regime two-year average GDP growth is included, as a worse economic situation might lead to a more desperate population, which in turn might lead to increased propensity of a more violent approach to overturning the current regime. Lastly, all other variables are included simply out of interest, not due to an assumption on the sign and size of the partial correlations with the outcome variable.

Results and Interpretation

(Michaela)

- insignificant coefficient on economists due to only 3% of the sample being economists, and approx. 10% are military members. Economists appear to have a *clearer* effect compared to military, but still neither effect is significant
- 2Y growth, tenure, regime end (deviation from the mean end-year) seem like the largest drivers, all three have larger variations (not binary variables)
- $Pr(\text{death}_{Hitler} = 1 \mid \mathbf{x}_{Hitler}) = 11.76\%$, so if we observe an infinite amount of Hitlers across identical universes, then only 11.76% of them would be predicted to die during/at the end of their regimes (maybe keep this part for the presentation rather than the handout)
- $\Pr(\text{death}_{Goebbles} = 1 \mid \mathbf{x}_{Goebbles}) = 10.86\%$
- still need to find 2-3 suitable candidates for calculating the predicted probabilites (maybe Pol Pot?)

(Katrin and Dominik)

Table 1: Logistic Regression Results

	Dependent variable:		Dependent variable:
	Death Dummy		Death Dummy
Europe Dummy	-1.060	Regime Duration	-0.002
	(0.575)		(0.012)
Female Dummy	-15.560	Age at Regime Start	0.010
	(723.003)		(0.014)
Tenure in Regime	0.035	$2Y GDP Growth^1$	-0.206
	(0.014)		(0.055)
Economist Dummy	-0.433	Military Dummy	-0.157
	(0.756)		(0.467)
Regime End	0.057	Constant	-2.073
	(0.021)		(0.842)
Observations	721	Log Likelihood	-245.020
McFadden R ²	0.091		

Note: Standard errors of coefficients in round brackets.

Model Diagnostics and Issues

Correlation between the variables leads to inflated standard errors on the respective coefficients, this multiplicative term on the standard errors is the VIF, where the standard errors are now defined by

$$\sigma_{\hat{\beta}_i}^2 = n^{-1} \left[\frac{1}{1 - \rho_{\mathbf{X}_i, \mathbf{X}_i}^2} \right] \frac{\sigma_{\epsilon}^2}{\sigma_{\mathbf{X}_i}^2}.$$

None of the coefficients exhibit a VIF value that seems to lead to any larger concerns, using a critical value of 10 on the determination for problematic imperfect multicollinearity. However, any factor larger than one may be an issue in weak models, such as is the case here. As is denoted in Table 1, the McFadden R² is 0.091, so the model appears to have some explanatory power. To put this in further context, the hit-rate of the model, using a cutoff value of 0.5, is 88.07%, compared to a hit-rate of 87.66% when simply guessing the most likely outcome of not dying. One issue with such a model is, per definition, that external validity is not given, as we pre-select for being part of an authoritarian regime. Furthermore, the inclusion of variables specific for the regime, such as the duration, don't allow for out-of-sample validation methods, only allowing for validation and calibration based on random sub-samples of this particular dataset.

Conclusion

The model cannot capture a lot of the country-specific and time-specific factors which drive the unobserved dependent variable, at least given the data available. Thus, we are somewhat limited in the conclusions we are able to draw from this model. However, within this model, the first of three main drivers of the variation of the death probability, the economic growth rates immediately before the regime falls, which negatively influences the unobserved outcome variable. Secondly, the year in which the regime fell, which has a positive sign on the coefficient, and lastly the tenure of the individual member in their respective regime, which also has a positive coefficient.

¹Two-year GDP growth measured in the last two years of the respective regimes.

Project Code

```
# clear workspace
rm(list = ls())
# load needed libraries
library(readr)
library(pscl)
library(car)
library(pROC)
library(stargazer)
# read dataset
data <- read_csv("C:/Users/samue/Downloads/Studium/Economics (Master - Vienna)/1. Semester/Microeconome
# check if import worked
head(data)
## # A tibble: 6 x 22
   COWCODE STATE REG_START REG_END REG_PARTY REG_REINST ELITE_NAME ELITE_PARTY
      <dbl> <chr> <chr>
                            <chr> <chr>
                                               <chr>
                                                          <chr>
                                                                     <chr>>
## 1
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                          Backe, He~ NSDAP
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                         Blomberg,~ Independent
## 3
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                         Bormann, ~ NSDAP
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                         Darré, Ri~ NSDAP
## 5
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                         Dönitz, K~ NSDAP
        255 Germ~ 30/1/1933 23/5/1~ National~ Cabinet
                                                          Dorpmülle~ NSDAP
## # ... with 14 more variables: ELITE_BIRTHDATE <chr>, ELITE_DEATHDATE <chr>,
      ELITE_FEMALE <dbl>, ELITE_REENTER <chr>, ELITE_REEXIT <chr>,
      ELITE ENTERAGE <chr>, ELITE EXITAGE <chr>, ELITE RETENURE <chr>,
      ELITE_EXITTYPE <chr>, ELITE_EXITFATE <chr>, ELITE_EXITLEADER <chr>,
      ELITE_REPOSITION <chr>, ELITE_OCCUPATION <chr>, EC_GR_2Y <dbl>
head(data$ELITE NAME)
## [1] "Backe, Herbert"
                                     "Blomberg, Werner von"
                                     "Darré, Richard Walther"
## [3] "Bormann, Martin"
## [5] "Dönitz, Karl"
                                     "Dorpmüller, Julius Heinrich"
table(data$ELITE_EXITFATE)
##
                    Execution
##
                                       Exile Incarcerated Incarceration
                            13
##
            N/A No punishment No Punishment
                                                        ΠK
table(data$ELITE EXITTYPE)
##
##
                Assassination
                                                     Death
##
##
                Death- natural
                                       Death - accidental
##
##
        Death - Assassination Death - Automobile accident
##
```

```
##
                 Death - combat
                                              Death - natural
##
                               1
##
                Death - Natural
                                              Death - suicide
##
##
                       Demotion
                                                    Execution
                             253
##
##
                      Expulsion
                                                Regime Change
##
                              87
##
                    Resignation
                                   Ruling Institution Change
##
                             185
                                                            10
# create dummy for death during regime or at end
dim(data); n <- dim(data)[1]</pre>
## [1] 827 22
death1 \leftarrow rep(1,n)
# dummy for first type of death
for(i in 1:n){
  death1[i] <- ifelse(data$ELITE_EXITTYPE[i] != 'Demotion'</pre>
                       && data$ELITE_EXITTYPE[i] != 'Expulsion'
                       && data$ELITE_EXITTYPE[i] != 'Death- natural'
                       && data$ELITE_EXITTYPE[i] != 'Regime Change'
                       && data$ELITE_EXITTYPE[i] != 'Resignation',1,0)}
table(death1)
## death1
## 0 1
## 704 98
# dummy for second type of death
death2 \leftarrow rep(1,n)
for(i in 1:n){
  death2[i] <- ifelse(data$ELITE_EXITFATE[i] == 'Execution',1,0)</pre>
table(death2)
## death2
## 0 1
## 545 13
# merge dummies
a <- which(death2==1)
b <- which(death1==1)
c \leftarrow c(a,b)
death \leftarrow rep(0,n)
death[c] \leftarrow 1
table(death)
## death
## 0 1
## 716 111
# dummy for country being in europe
EUROPE <- rep(0,n)</pre>
for(i in 1:n){
  EUROPE[i] <- ifelse(data$STATE[i] == 'Germany' || data$STATE[i] == 'Poland'</pre>
```

```
|| data$STATE[i] == 'East Germany' || data$STATE[i] == 'Hungary'
                    || data$STATE[i] == 'Norway' || data$STATE[i] == 'Romania'
                    || data$STATE[i] == 'Soviet Union',1,0)
}
table(EUROPE)
## EUROPE
## 0 1
## 209 618
# dummy for military as occumpation outside of regime
MIL \leftarrow rep(0,n)
for(i in 1:n){
  MIL[i] <- ifelse(data$ELITE OCCUPATION[i] == 'Soldier'</pre>
                    || data$ELITE_OCCUPATION[i] == 'State Security'
                    || data$ELITE OCCUPATION[i] == 'Army officer'
                    || data$ELITE_OCCUPATION[i] == 'Naval officer'
                    || data$ELITE_OCCUPATION[i] == 'Military Police officer'
                    || data$ELITE_OCCUPATION[i] == 'Police officer'
                    || data$ELITE_OCCUPATION[i] == 'Air Force Officer'
                    || data$ELITE_OCCUPATION[i] == 'Air Force officer',1,0)
}
table(MIL)
## MIL
## 0
        1
## 714 95
# dummy for economists
ECON \leftarrow rep(0,n)
for(i in 1:n){
  ECON[i] <- ifelse(data$ELITE_OCCUPATION[i] == 'Economist'</pre>
                     || data$ELITE_OCCUPATION[i] == 'economist',1,0)
}
table(ECON)
## ECON
## 0
## 784 25
# create function to extract date from string
substrRight <- function(x, n){</pre>
  substr(x, nchar(x)-n+1, nchar(x))
}
# get regime end year
END <- data$REG END
END <- substrRight(END, 4)</pre>
END <- as.numeric(END)</pre>
table(END)
## END
## 1945 1949 1958 1966 1968 1973 1977 1979 1983 1989 1990 1991 2011 2019
   71
          10
                5
                     4
                                5 12 10
                                              22 223 176 160
# get regime start year
START <- as.numeric(substrRight(data$REG_START, 4))</pre>
```

```
table(START)
## START
## 1922 1933 1942 1944 1945 1947 1948 1949 1955 1957 1963 1966 1969 1971 1973 1975
## 160 51
             20 106 117
                              95 10 129
                                                   5
                                                        4
                                                             5
                                              9
                                                                12
                                                                      16
                                                                           12
## 1976 1979 1992 2010
## 13
          9
               6
# take care of regimes that have not ended
END <- ifelse(is.na(END),2020,END)</pre>
table(END)
## END
## 1945 1949 1958 1966 1968 1973 1977 1979 1983 1989 1990 1991 2011 2019 2020
                          9
                                             22 223 176 160
   71
         10
              5
                  4
                               5
                                 12
                                       10
                                                                       6 110
# variable for regime duration
DURATION <- END-START
table(DURATION)
## DURATION
   1 3
               7 8 12 13 17 27 41 43 44 45 49 69 71
## 19 24 19 18 12 51
                           9 12
                                    6 69 95 117 140 16 160 60
# standardize regime start year
mean(START)
## [1] 1945.261
START <- START-mean(START)
mean (END)
## [1] 1988.707
END <- END - mean(END)
#View(data)
# make data numeric for the model
death <- as.numeric(death)</pre>
ELITE_FEMALE <- as.numeric(data$ELITE_FEMALE)</pre>
ELITE_ENTERAGE <- as.numeric(data$ELITE_ENTERAGE)</pre>
ELITE_RETENURE <- as.numeric(data$ELITE_RETENURE)</pre>
EC_GR_2Y <- as.numeric(data$EC_GR_2Y)</pre>
# create dataset only based on relevant variables
data0 <- cbind(data$ELITE NAME, death, EUROPE, START, DURATION, ELITE FEMALE,</pre>
               ELITE_ENTERAGE,ELITE_RETENURE,EC_GR_2Y,ECON,MIL,END)
data <- cbind(death,EUROPE,START,DURATION,ELITE_FEMALE,ELITE_ENTERAGE,</pre>
              ELITE_RETENURE, EC_GR_2Y, ECON, MIL, END)
# get vectors for specific people:
hitler <- c(1, data[21, -c(1,3)])
# check if person is correct
data0[21,8] == data[21,7]
```

```
## ELITE_RETENURE
##
            TRUF.
goebbles <-c(1, data[13, -c(1,3)])
# check dimenstion for later calculations
length(hitler)
## [1] 10
t(rep(1,length(hitler)))%*%hitler
           [,1]
## [1,] 12.99564
data <- as.data.frame(data)
data0 <- as.data.frame(data0)</pre>
data0 <- na.exclude(data0)</pre>
#View(data0)
# remove NAs
data <- na.exclude(data)
#View(data)
# logit model
model1 <- glm(death ~ EUROPE+START+DURATION+ELITE_FEMALE+ELITE_ENTERAGE
             +ELITE_RETENURE+EC_GR_2Y+ECON+MIL,
   family = binomial(link = 'logit'), data=data)
summary(model1)
##
## Call:
## glm(formula = death ~ EUROPE + START + DURATION + ELITE FEMALE +
      ELITE_ENTERAGE + ELITE_RETENURE + EC_GR_2Y + ECON + MIL,
##
      family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
                   Median
##
      Min
                                3Q
               1Q
                                        Max
## -1.1440 -0.5687 -0.4116 -0.3107
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
                 -4.54890 1.12984 -4.026 5.67e-05 ***
## (Intercept)
                 -1.06026 0.57492 -1.844 0.065157 .
## EUROPE
## START
                  ## DURATION
                  ## ELITE_FEMALE -15.55979 723.00312 -0.022 0.982830
                          0.01389 0.732 0.464133
## ELITE_ENTERAGE 0.01017
## ELITE_RETENURE 0.03543 0.01424 2.488 0.012839 *
## EC GR 2Y
              -0.20591 0.05481 -3.756 0.000172 ***
## ECON
                 -0.43318 0.75572 -0.573 0.566505
## MIL
                 -0.15738
                            0.46691 -0.337 0.736062
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 538.91 on 720 degrees of freedom
## Residual deviance: 490.04 on 711 degrees of freedom
## AIC: 510.04
## Number of Fisher Scoring iterations: 16
# pseudo R2s
pR2(model1)
## fitting null model for pseudo-r2
                                       G2
            11h
                     llhNull
                                               McFadden
                                                                r2ML
## -245.01964860 -269.45408398
                               48.86887076
                                             0.09068126
                                                          0.06553331
           r2CU
##
##
     0.12448740
# variance inflation factors
vif(model1)
##
          EUROPE
                         START
                                    DURATION ELITE FEMALE ELITE ENTERAGE
##
        3.543817
                     11.733995
                                    5.790912
                                                   1.000000
                                                                 1.219254
## ELITE_RETENURE
                                        ECON
                                                        MTT.
                      EC_GR_2Y
        1.151339
                      4.189975
                                     1.011020
                                                   1.394974
# cor(data) shows correlations across all variables
cor(EUROPE,START)
## [1] -0.7091193
# model without START
model2 <- glm(death ~ EUROPE+DURATION+ELITE_FEMALE+ELITE_ENTERAGE+ELITE_RETENURE
             +EC_GR_2Y+ECON+MIL+END,
   family = binomial(link = 'logit'), data = data)
summary(model2)
##
## Call:
## glm(formula = death ~ EUROPE + DURATION + ELITE_FEMALE + ELITE_ENTERAGE +
      ELITE_RETENURE + EC_GR_2Y + ECON + MIL + END, family = binomial(link = "logit"),
      data = data)
##
## Deviance Residuals:
      Min
               10 Median
                                30
                                        Max
## -1.1440 -0.5687 -0.4116 -0.3107
                                      2.9320
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 -2.073215  0.841672  -2.463  0.013770 *
## EUROPE
                 -1.060259
                             0.574921 -1.844 0.065157 .
## DURATION
                  ## ELITE_FEMALE -15.559791 723.003116 -0.022 0.982830
## ELITE ENTERAGE 0.010169 0.013891 0.732 0.464133
## ELITE_RETENURE 0.035427 0.014238 2.488 0.012839 *
                 ## EC GR 2Y
## ECON
                 -0.433185 0.755722 -0.573 0.566505
```

```
0.466913 -0.337 0.736062
## MIL
                   -0.157384
## END
                   0.056983
                               0.021486
                                          2.652 0.007998 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 538.91 on 720 degrees of freedom
##
## Residual deviance: 490.04 on 711 degrees of freedom
## AIC: 510.04
##
## Number of Fisher Scoring iterations: 16
pR2(model2)
## fitting null model for pseudo-r2
                                          G2
            11h
                       llhNull
                                                  McFadden
                                                                    r2ML
## -245.01964860 -269.45408398
                                 48.86887076
                                                0.09068126
                                                              0.06553331
##
            r2CU
##
      0.12448740
roc(data$death,predict.glm(model2,type='response'),plot=TRUE)
```


##

```
## Call:
## roc.default(response = data$death, predictor = predict.glm(model2, type = "response"), plot = TR
## Data: predict.glm(model2, type = "response") in 632 controls (data$death 0) < 89 cases (data$death 1
## Area under the curve: 0.712
vif(model2)
##
                        DURATION ELITE_FEMALE ELITE_ENTERAGE ELITE_RETENURE
           EUROPE
##
         3.543817
                        3.966153
                                       1.000000 1.219254
                                                                     1.151339
        EC GR 2Y
                            ECON
##
                                            MIL
                                                           END
                        1.011020
                                                      8.011559
                                       1.394974
##
         4.189975
# get hit rate of the model with a 0.5 cutoff
cutoff \leftarrow 0.5
# get predicted probabilities
latent_pred <- predict.glm(model2,type = 'response')</pre>
# get binary result from the cutoff
latent_bin <- ifelse(latent_pred >= cutoff,1,0)
# hitrate
mean(latent_bin==data$death)
## [1] 0.8807212
# percentage by just guessing more likely outcome
1-mean(data$death)
## [1] 0.8765603
# maximal predicted probability
max(latent_pred)
## [1] 0.5301167
densityPlot(latent_pred, ylab = 'Density',
            xlab = 'Predicted Probability',
            main = 'Density Plot of Latent Probability of Death')
```

Density Plot of Latent Probability of Death


```
# check coefficient vector lengths
length(model2$coefficients);length(hitler)
## [1] 10
## [1] 10
# check vectors for matching variables
hitler
##
                           EUROPE
                                        DURATION
                                                    ELITE_FEMALE ELITE_ENTERAGE
##
          1.00000
                          1.00000
                                        12.00000
                                                         0.00000
                                                                        43.80822
## ELITE_RETENURE
                         EC_GR_2Y
                                            ECON
                                                             MIL
                                                                             END
                                                         0.00000
         12.25479
                        -13.36000
                                         0.00000
                                                                       -43.70738
model2$coefficients
##
      (Intercept)
                           EUROPE
                                        DURATION
                                                    ELITE FEMALE ELITE ENTERAGE
##
     -2.073214543
                    -1.060258788
                                    -0.001833297
                                                   -15.559790990
                                                                     0.010168763
## ELITE RETENURE
                         EC_GR_2Y
                                            ECON
                                                             MIL
                                                                             END
      0.035427232
                    -0.205906013
                                    -0.433184552
                                                    -0.157384010
                                                                     0.056982796
# get probabilities
Pr_hitler <- 1/(1+exp(-t(model2$coefficients)%*%(hitler)))</pre>
Pr_hitler
```

[,1]

##

```
## [1,] 0.1175843
Pr_goebbles <- 1/(1+exp(-t(model2$coefficients)%*%(goebbles)))</pre>
Pr_goebbles
##
             [,1]
## [1,] 0.1086048
# verify that the model would predict wrongly
latent bin[21] == data$death[21]
##
      21
## FALSE
latent_bin[13] ==data$death[13]
##
      13
## FALSE
# Get the predicted probabilities for Hitler, Goebbels, someone from
# SE Asia (no external war), Stalin (communist).
# check for percentage of economists and military
mean(na.omit(data$ECON)); mean(na.omit(data$MIL))
## [1] 0.03467406
## [1] 0.1054092
mean(na.omit(data$death))
## [1] 0.1234397
```

References

Abarca, Alejandro, and Surayabi Ramırez. 2018. "A Farewell to Arms: The Long Run Developmental Effects of Costa Rica's Army Abolishment." https://odd.ucr.ac.cr/sites/default/files/Papers/A-farewell-to-arms.pdf.

Basu, Swati, Saul Estrin, and Jan Svejnar. 2005. "Employment Determination in Enterprises Under Communism and in Transition: Evidence from Central Europe." $ILR\ Review\ 58\ (3)$: 353–69. https://doi.org/10.1177/001979390505800303.

Harrison, Mark, ed. 1998. *The Economics of World War Ii: An Overview*. The Economics of World War Ii: Six Great Powers in International Comparison. Cambridge University Press.

"World Economic Survey: Current Trends and Policies in the World Economy." 1989. New York, USA. https://www.un.org/en/development/desa/policy/wess/wess_archive/searchable_archive/1989wes.pdf.