Theoretische Informatik 1 Übung Blatt 8

Aufgabe 8.1

$\mathbf{a})$										
	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
q_o		X_0	X_2	X_1	X_0	X_0	X_1	X_2	X_0	X_2
$\overline{q_1}$			X_0	X_0			X_0	X_0		X_0
$\overline{q_2}$				X_1	X_0	X_0	X_1	X_2	X_0	X_2
$\overline{q_3}$					X_0	X_0	X_1	X_1	X_0	$\overline{X_1}$
$\overline{q_4}$							X_0	X_0	X_1	X_0
$\overline{q_5}$							X_0	X_0		X_0
$\overline{q_6}$								X_1	X_0	X_1
$\overline{q_7}$									X_0	$\overline{X_1}$
$\overline{q_8}$										X_0
$\overline{a_{\alpha}}$										

Tupel:

$$A2 = (\{q_0, q_2, q_3, q_6, q_7, q_9, q_{1458}\}, \{a, b\}, \delta, q_0, \{q_{1458}\})$$

Aufgabe 8.2

```
b) i) L_{01} = \{0^n 1^n | n \in \mathbb{N}\} \text{ ist nicht regulär (Beweis Vorlesung slide2.5 Folie 24)}  L_1 := \{w_1 w_2 | (\exists n \in \mathbb{N}. w_1 = 0^n) \land (\exists n \in \mathbb{N}. w_2 = 1^n) \}  Es gilt L_1 \cap L(0^* \circ 1^*) = L_{01} \notin L_3, also L_1 \notin L_3 ii) L_2 := \{(0^k 2^l 1^m | k, l, m \in \mathbb{N} \land l < 5 \land m = 3k + 1) \}  h : \{0, 1, 2\}^* \to \{0, 1\}^*  h(0) \to 0, \ h(1) \to 1, \ h(2) \to \epsilon  h(L_2) = h(L(0^k 2^l 1^m))  = h(L(0^k) \circ L(2^l) \circ L(1^m))  = h(\{0^k\}) \circ h(\{2^l\}) \circ h(\{1^m\})  = h(\{0\}^k) \circ h(\{2\}^l) \circ h(\{1\}^m)  = \{0\}^k \circ \{1\}^m  = \{0^k 1^m | k, m \in \mathbb{N} \land m = 3k + 1) \}
```

Beweis mit Pumping-Lemma: Sei $n \in \mathbb{N}$ beliebig.

```
Unser Wort sei 0^n 1^{(3n+1)}.
Dann ist x = 0^i, y = 0^j und z = 0^{(n-i-j)} 1^{(3n+1)}.
Nehmen wir y^k und k=0.
Dann ist das Wort nicht in der Sprache, denn: (w = 0^{(n-j)} 1^{(3n+1)} \notin L_2).
```

c) Sei $L_i = \{0^i 1^i\}$, somit besteht die Sprache L_i aus dem Wort 0..0 1..1 (also i-mal 0, dann i-mal 1).

Nun sei die Vereinigung aller Sprachen mit $i \in \mathbb{N}$ die Sprache L_{01} (also die Sprache $0^n 1^n$). Welche bekannterweise nicht regulär ist.

Aufgabe 8.3

```
L := \{ww^R\} ist regulär, g.d.w. \Sigma^*/L endlich ist bzw. L := \{ww^R\} ist nicht regulär, g.d.w. \Sigma^*/L = \infty
```

Äquivalenzklassen

```
[\epsilon]_L = \{u \in \{a,b\}^* | u \sim_L \epsilon\} = \{\epsilon\}
[a]_L = \{u | \forall w.uw \in L \Leftrightarrow aw \in L\}
= \{u | \forall w.uw \in L \Leftrightarrow \exists v \in L.w = va\} = \{a\}
[b]_L = \{u | \forall w.uw \in L \Leftrightarrow bw \in L\}
= \{u | \forall w.uw \in L \Leftrightarrow \exists v \in L.w = vb\} = \{b\}
[aa]_L = \dots = \{u | \forall w.uw \in L \Leftrightarrow \exists v \in L.w = vaa\} = \{aa\}
[ab]_L = \dots = \{u | \forall w.uw \in L \forall \exists v \in L.w = vba\} = \{ab\}
\vdots
```

Es gibt unendlich viele Klassen in $\{a, b\}^*/L$. Somit ist die Sprache nicht regulär.