$12a_{1130} \ (K12a_{1130})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{62} - u^{61} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 62 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{62} - u^{61} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^4 - 3u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^9 - 6u^7 + 11u^5 - 6u^3 + u \\ u^9 - 5u^7 + 7u^5 - 2u^3 + u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u^{18} + 11u^{16} - 48u^{14} + 105u^{12} - 121u^{10} + 75u^8 - 30u^6 + 8u^4 - u^2 + 1 \\ -u^{18} + 10u^{16} - 39u^{14} + 74u^{12} - 71u^{10} + 38u^8 - 18u^6 + 4u^4 - u^2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^3 + 2u \\ u^5 - 3u^3 + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} - 10u^{15} + 39u^{13} - 74u^{11} + 71u^9 - 38u^7 + 18u^5 - 4u^3 + u \\ -u^{19} + 11u^{17} - 48u^{15} + 105u^{13} - 121u^{11} + 75u^9 - 30u^7 + 8u^5 - u^3 + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{32} - 19u^{30} + \dots - 2u^2 + 1 \\ u^{32} - 18u^{30} + \dots + 12u^8 - 2u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u^{54} + 31u^{52} + \dots - 2u^2 + 1 \\ u^{56} - 32u^{54} + \dots + 6u^4 - 2u^2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{59} + 136u^{57} + \cdots 4u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{62} - 17u^{61} + \dots + 1847u - 113$
c_2, c_3, c_7 c_8	$u^{62} + u^{61} + \dots - u + 1$
C4	$u^{62} - u^{61} + \dots + 15u + 1$
c_5, c_6, c_{11}	$u^{62} + u^{61} + \dots - u + 1$
<i>C</i> 9	$u^{62} - 5u^{61} + \dots + 640u + 304$
c_{10}, c_{12}	$u^{62} - 3u^{61} + \dots + 55u - 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{62} - 11y^{61} + \dots - 256449y + 12769$
$c_2, c_3, c_7 \ c_8$	$y^{62} - 71y^{61} + \dots - y + 1$
c_4	$y^{62} + y^{61} + \dots + 127y + 1$
c_5, c_6, c_{11}	$y^{62} - 51y^{61} + \dots - y + 1$
<i>c</i> ₉	$y^{62} + 25y^{61} + \dots - 2665888y + 92416$
c_{10}, c_{12}	$y^{62} + 41y^{61} + \dots - 2233y + 81$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.708768 + 0.494433I	-0.01088 + 11.34630I	1.00889 - 9.72117I
u = -0.708768 - 0.494433I	-0.01088 - 11.34630I	1.00889 + 9.72117I
u = 0.712691 + 0.482290I	-4.59207 - 7.20372I	-3.76784 + 7.81893I
u = 0.712691 - 0.482290I	-4.59207 + 7.20372I	-3.76784 - 7.81893I
u = 0.821977 + 0.248060I	-1.60870 + 5.02300I	-2.11818 - 2.33854I
u = 0.821977 - 0.248060I	-1.60870 - 5.02300I	-2.11818 + 2.33854I
u = -0.717017 + 0.462468I	-1.49252 + 3.04670I	-0.95105 - 4.03685I
u = -0.717017 - 0.462468I	-1.49252 - 3.04670I	-0.95105 + 4.03685I
u = -0.804271 + 0.274945I	-5.95144 - 0.93191I	-6.82947 - 0.41510I
u = -0.804271 - 0.274945I	-5.95144 + 0.93191I	-6.82947 + 0.41510I
u = 0.786850 + 0.308644I	-2.51765 - 3.16231I	-3.19226 + 4.63064I
u = 0.786850 - 0.308644I	-2.51765 + 3.16231I	-3.19226 - 4.63064I
u = 0.645614 + 0.481542I	5.40192 - 4.93284I	5.98347 + 6.95967I
u = 0.645614 - 0.481542I	5.40192 + 4.93284I	5.98347 - 6.95967I
u = -0.661871 + 0.431665I	-0.37286 + 3.82050I	0.80971 - 8.83279I
u = -0.661871 - 0.431665I	-0.37286 - 3.82050I	0.80971 + 8.83279I
u = 0.620723 + 0.337292I	-1.08571 - 1.06603I	-2.60164 + 1.01884I
u = 0.620723 - 0.337292I	-1.08571 + 1.06603I	-2.60164 - 1.01884I
u = -0.698913	2.99735	1.03130
u = -0.524035 + 0.459452I	3.21307 - 1.54671I	5.20781 - 1.38178I
u = -0.524035 - 0.459452I	3.21307 + 1.54671I	5.20781 + 1.38178I
u = -0.383395 + 0.494306I	3.62071 + 4.90483I	6.55837 - 6.65558I
u = -0.383395 - 0.494306I	3.62071 - 4.90483I	6.55837 + 6.65558I
u = -0.164450 + 0.582453I	1.57732 - 7.67033I	4.62669 + 4.82288I
u = -0.164450 - 0.582453I	1.57732 + 7.67033I	4.62669 - 4.82288I
u = 0.412131 + 0.432363I	-0.75273 - 1.50608I	0.71484 + 5.28376I
u = 0.412131 - 0.432363I	-0.75273 + 1.50608I	0.71484 - 5.28376I
u = 0.147128 + 0.569414I	-2.94806 + 3.60850I	-0.16305 - 2.91417I
u = 0.147128 - 0.569414I	-2.94806 - 3.60850I	-0.16305 + 2.91417I
u = 0.250782 + 0.527668I	6.54621 + 1.43098I	9.71321 - 0.47730I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.250782 - 0.527668I	6.54621 - 1.43098I	9.71321 + 0.47730I
u = -0.116312 + 0.549646I	0.240300 + 0.413797I	2.99515 - 0.89523I
u = -0.116312 - 0.549646I	0.240300 - 0.413797I	2.99515 + 0.89523I
u = -1.45204	1.51065	0
u = 1.47356 + 0.06742I	-2.33707 - 6.71684I	0
u = 1.47356 - 0.06742I	-2.33707 + 6.71684I	0
u = -1.49480 + 0.05903I	-6.95748 + 3.05756I	0
u = -1.49480 - 0.05903I	-6.95748 - 3.05756I	0
u = 1.50087	-4.52108	0
u = -0.202355 + 0.437640I	0.938163 - 0.711468I	6.55301 + 2.55999I
u = -0.202355 - 0.437640I	0.938163 + 0.711468I	6.55301 - 2.55999I
u = 1.54113	-4.36757	0
u = 1.55617 + 0.10084I	-3.77147 - 0.32838I	0
u = 1.55617 - 0.10084I	-3.77147 + 0.32838I	0
u = -1.58656 + 0.13617I	-2.15018 + 7.19293I	0
u = -1.58656 - 0.13617I	-2.15018 - 7.19293I	0
u = -1.58930 + 0.10190I	-8.66644 + 2.71730I	0
u = -1.58930 - 0.10190I	-8.66644 - 2.71730I	0
u = 1.59484 + 0.12216I	-8.05254 - 5.85903I	0
u = 1.59484 - 0.12216I	-8.05254 + 5.85903I	0
u = 1.60793 + 0.14425I	-7.8739 - 13.7323I	0
u = 1.60793 - 0.14425I	-7.8739 + 13.7323I	0
u = -1.60930 + 0.14013I	-12.4821 + 9.5303I	0
u = -1.60930 - 0.14013I	-12.4821 - 9.5303I	0
u = 1.61037 + 0.13371I	-9.41174 - 5.27661I	0
u = 1.61037 - 0.13371I	-9.41174 + 5.27661I	0
u = -1.62295 + 0.08557I	-10.77130 + 4.64558I	0
u = -1.62295 - 0.08557I	-10.77130 - 4.64558I	0
u = 1.62421 + 0.07686I	-14.2631 - 0.3971I	0
u = 1.62421 - 0.07686I	-14.2631 + 0.3971I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.62511 + 0.06931I	-9.97350 - 3.82516I	0
u = -1.62511 - 0.06931I	-9.97350 + 3.82516I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{62} - 17u^{61} + \dots + 1847u - 113$
c_2, c_3, c_7 c_8	$u^{62} + u^{61} + \dots - u + 1$
C ₄	$u^{62} - u^{61} + \dots + 15u + 1$
c_5, c_6, c_{11}	$u^{62} + u^{61} + \dots - u + 1$
<i>c</i> ₉	$u^{62} - 5u^{61} + \dots + 640u + 304$
c_{10}, c_{12}	$u^{62} - 3u^{61} + \dots + 55u - 9$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{62} - 11y^{61} + \dots - 256449y + 12769$
c_2, c_3, c_7 c_8	$y^{62} - 71y^{61} + \dots - y + 1$
c_4	$y^{62} + y^{61} + \dots + 127y + 1$
c_5, c_6, c_{11}	$y^{62} - 51y^{61} + \dots - y + 1$
c_9	$y^{62} + 25y^{61} + \dots - 2665888y + 92416$
c_{10}, c_{12}	$y^{62} + 41y^{61} + \dots - 2233y + 81$