has at least two distinct elements in it.

V 26

$\stackrel{\succeq}{\mathbf{A}}$ Continuity on [a,b]

আমরা জানি যে $f:A\to B$ যদি একটা function হয় তবে f(A) হল image of f. অনেক সময়ে A-র বিভিন্ন ধর্ম f(A)- এর মধ্যেও সংক্রামিত হয়। আমরা এখানে দেখব যে, A যদি একটা closed, bounded interval হয়, আর f(x) হয় continuous, তবে f(A)-ও একটা closed, bounded interval হতে বাধ্য। এই কথাটা পরে নানা কাজে লাগবে।

প্রথমে চট্ করে মনে করে নিই closed, bounded interval-রা কিরকম দেখতে। Interval মানে হল \mathbb{R} -এর "একটানা" কোনো subset, যার মাঝে কোনো ফাঁক নেই, যেমন (0,1) বা [0,1) বা [100,200] বা $(-\infty,3)$ এই রকম।

Exercise 364: এদের মধ্যে একটাই খালি interval, কোনটা? $(i) \{0,1,2\}$ (ii) $(0,1) \cup (1,2)$ (iii) $\{10\}$.

সব interval-ই closed নয়, যেমন $(0,\infty)$ বা (0,1) বা [0,1) এরা কেউ closed নয়। কিছু closed interval-এর উদাহরণ হল $[0,1],(-\infty,4],[0,\infty)$. এদের মধ্যে $(-\infty,4]$ আর $[0,\infty)$ আবার bounded নয়। সুতরাং সব মিলিয়ে দাঁড়ালো— closed, bounded interval-রা দেখতে হয় [a,b]-র মত, যেখানে $a,b\in\mathbb{R}$ এবং a< b.

এবার দেখি continuous function-দের বেলায় এদের image সম্বন্ধে কি বলা যায়। প্রথমে খালি interval-দের নিয়ে কাজ করি (closed, bounded ভূলে গিয়ে)।

Example 85: ধরো A হল যেকোনো একটা interval, যেমন

হতে পারে A=(0,1) বা [0,2] বা $[0,\infty)$. $f:A\to\mathbb{R}$ হল যে কোনো একটা continuous function. তাহলে কি $f(A)=(1,3)\cup(5,7)$ কখনো হতে পারে?

Soln:

না, কারণ $(1,3)\cup (5,7)$ set-টার মধ্যে একটা ফাঁক আছে। এই ফাঁকের দুই দিকে দুটো point নাও set-এর মধ্যে, ধরো 2 আর 6. যদি সত্যিই $f(A)=(1,3)\cup (5,7)$ হত তবে আমরা এমন $a,b\in A$ পেতাম যাতে f(a)=2 আর f(b)=6 হয়। এইবার ফাঁকের মধ্যে যা খুশী একটা point নাও, যেমন 4. তাহলে intermediate value theorem বলছে যে, এমন একটা $c\in (a,b)$ আছে যাতে f(c)=4 হয়। (যেহেতু A একটা interval, সুতরাং $c\in A$ হবেই, তাই f(c)-র defined হওয়া নিয়ে কোনো দুশ্চিয়া নেই।) কিছু সেটা তো হতে পারে না, কারণ $4 \not\in (1,3) \cup (5,7)=f(A)$.

তার মানে intermediate value theorem বলছে যে একটা continuous function-এর domain-এ যদি কোনো ফাঁক না থাকে