Parellel Computing in R

from parallel to foreach and future

Chao Cheng

School of Statistics and Management
Shanghai University of Finance and Economics, China

November 25, 2022

Outline

- 1 Parallel Computation in R
 - Introduction
 - The Parallel package
 - Advanced topics
 - Easy parallel computation
 - Other stuff

Introduction

A toy example

- $01 + 2 + \cdots + 100$
- Compute the sum of a vector

Abstraction

- The whole job can be break into small parts and they can be done independently of each other.
- Map + Reduce

Useful cases

- Simulation
- Bootstrap, MCMC and cross validation, etc.
- Elementwisely update an vector in ADMM algorithm (Parallel in C++)

Basic paralle computation for simulation

- Start multiple R sessions
- Preparation: load necessary packages, etc.
- Run simulation scripts, possibly according to session ID.
- Collect and summary the results by hand.

Abstraction

- Create workers
- Prepare workers
- Run script in parallel and collect the results.

The parallel package

- It's derived from snow and multicore packages.
- Useful reference:
 - Parallel R. (This book is a bit old.)
 - parallel's documentations.
 - parallel's vignettes.

A simple template


```
library(parallel)
# use all the cores of this machine
cls <- makeCluster(detectCores())</pre>
# initializing workers
clusterEvalQ(cls, fun)
# pass VARLIST from master to all the workers
clusterExport(cls, VARLIST)
# split full index of all tasks to workers
idx_split <- clusterSplit(cls, idx_full)</pre>
# carry out the task parFUNCTION parallely
res <- parLapply(cls, idx_split, parFUNCTION)</pre>
# stop workers
stopCluster(cls)
```

A simple example


```
library (parallel)
a <- rnorm(12)
slow function <- function(invec) {</pre>
   ... # a slow function
cls <- makeCluster(4)
ind seq <- clusterSplit(cls, a)
clusterExport(cls, varlist = "slow_function")
res_par <- parSapply(cls, ind_seq, slow_function)</pre>
res <- sum(res_par)</pre>
```



```
a <- rnorm(100)
```

PSOCK

```
cls <- makeCluster(4) # default type is PSOCK</pre>
```

FORK

```
cls <- makeCluster(4, type = "FORK") # NOT available on Windows
parSapply(cls=1:10 function(id){</pre>
```

```
parSapply(cls, 1 : 10, function(id){
    return(a[id])
})
```


Figure 1: PSOCK connects to remote server

Figure 2: PSOCK (via future/parallely) connects to remote server

4日 × 4周 × 4 至 × 4 至 ×

Figure 3: Memory consumption of FORK, part 1

401471431433

Figure 4: Memory consumption of FORK, part 2

401471431433

PSOCK

- Pros:
 - Use socket connection, a general approach.
 - All system, locally or remotely with suitable setup such as MPI
- Cons:
 - Might be hard to configure.
 - Manually transport the data.

FORK

- Pros: use FORK mechanism, no worry about variable transportation.
- Cons: Only for one machine, not available on Windows.

Rabbit hole 2: Parallel random number generation


```
[.1]
                 [.2]
                            [.3]
                                        [.4]
           0.90577746 -0.2007189
                                                                     [.1]
                                                                                 [.2]
                                                                                             [.3]
                                                                                                         [.4]
-0.2812603 -0.12137209 -0.5616048
                                  2.1205495
                                                               0.01874617 0.01874617 0.01874617
-1.4523742 -0.82587203 -1.0321580
                                                              -0.18425254 -0.18425254 -0.18425254 -0.18425254
0.2909059
           0.60436821
                       0.1179803 -1.4674607
                                                         [3.] -1.37133055 -1.37133055 -1.37133055 -1.37133055
0.5116825 2.42765426 -1.3673113 1.5117072
                                                              -0.59916772 -0.59916772 -0.59916772 -0.59916772
-1.7666148
           0.50982495
                       0.5123056
                                  0.3701816
                                                               0.29454513
                                                                           0.29454513
                                                                                       0.29454513
 0.5683548
           0.55647039
                       1.1734904
                                  0.7364532
                                                               0.38979430
                                                                           0.38979430 0.38979430
                                                                                                  0.38979430
0.6602347 -0.09715067 -1.3660750
                                  1.1635798
                                                         [7.] -1.20807618 -1.20807618 -1.20807618 -1.20807618
 0.1688014 -0.47356787 -1.5571017
                                  0.4500263
                                                         [8.] -0.36367602 -0.36367602 -0.36367602 -0.36367602
1.0467846 0.07022752 0.6334269 -0.5432841
                                                         [9.] -1.62667268 -1.62667268 -1.62667268 -1.62667268
```

(a) No control on PSOCK

(b) Same seed on FORK

401471431433

Rabbit hole 2: Parallel random number generation

- Manually use set.seed() on every worker. not recommended
- Use 'L'Ecuyer-CMRG' multiple RNG stream.
 - 1 RNGkind ("L'Ecuyer-CMRG") on your main session.
 - 2 set.seed() on your main session.
 - 3 clusterSetupRNGstream() to set your workers' seed.

Rabbit hole 3: Variable transportation

- Explicit functions and variables will always be transported.
- FORK will copy the main session at creation.
- Others should be taken care of by hand.
- Additional configuration of clusterExport when nested in a function call.

How many frameworks can one developer maintains?

There are so many different parallel backends:

- snow
- multicore
- parallel
- MPI
- Redis
- Hadoop
- Spark
- Slurm
- ..

How to support them? How to maintain code?

Foreach

foreach defines a simple but powerful framework for map/reduce parallel computation.

Package author/code writer

Decide which part of code can run in parallel.

End user

Decide how to run in parallel based on their available resources.

foreach is syntactically structured in the form of a for loop. But actually it works like -apply functions.

Foreach


```
library (foreach)
# library(doParallel)
# registerDoParallel()
a <- 10
foreach(i = 1 : 12, j = 12 : 1, .combine = rbind) %dopar%{
    Sys.sleep(0.5)
    # print will be dropped when run in parallel
    print(paste("i = ", i, ", j = ", j, sep = ""))
    # 'a' is passed automatically
    data.frame(i, i, a)
```


future and future.apply

- future provides a simple and uniform way of evaluating R expressions asynchronously using various resources available to the user.
- future.apply provides worry-free parallel alternatives to base-R "apply" functions.

```
library(future.apply) # default plan is sequential
# plan(cluster)
x <- rnorm(16)
future_lapply(1 : 5, function(id){
    print(paste("id = ", id, sep = "")) # normal print kept
    Sys.sleep(0.5)
    sum(x[1 : id])
})</pre>
```


future

- Asynchronous computation. Not constrained by a for-loop or apply syntax.
- Available extensions:
 - future.apply
 - doFuture: backends for foreach, BiocParallel and plyr.
 - furrr

future

library(future)


```
plan(cluster)
x <- future({
   x < -matrix(rnorm(10 ^ 6), nrow = 10 ^ 3)
    for(i in 1 : 5) {
        print(paste("i = ", i))
        res <- eigen(x)
   return (res)
ext{R}, seed = T) # not block the main session
resolved(x) # check whether the future is resolved
a <- rnorm(10) # we can do other stuff at the main session
```

Chao Cheng (SUFE) ChinaR 2022 Toggle Clock Reset Crono

Personal suggestions

- Nested parallel is NOT recommended. At least it should be done with careful configuration.
- future.apply VS foreach
 - Familiar with foreach: just use the doFuture backends.
 - New to parallel: future.apply is a good start point for your code.
 - future backend will relay the printed messages.
 - Performance in parallel are close, so-called.
 - Performance for sequential are slower than for-loop.

I want progress bars

- RcppProgress allows to display a progress bar in the R console for long running computations taking place in c++ code, supports OpenMP.
- pbapply is a lightweight package that adds progress bar to vectorized R functions ('*apply'). It supports several parallel backends.
- progress shows ASCII progress bars.
- progressr provides a minimal API for reporting progress updates in R.
 - Developer is responsible for providing progress updates.
 - End user decides if, when, and how progress should be presented.

progressr


```
library(progressr)
slow sum <- function(x) {</pre>
    p <- progressr::progressor(along = x)</pre>
    S11m <- ∩
    for (kk in seg along(x)) {
        Sys.sleep(0.5)
        sum <- sum + x[kk]
        p(message = sprintf("Added %g", x[kk]))
    sum
# handlers("default")  # default handler is "txtprogressbar"
with_progress(y <- slow_sum(1:10))</pre>
handlers("progress")
with progress(y <- slow sum(1:10))
```


Profiling 2 futures with 2 workers

```
plan(cluster, workers = 2)
fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)</pre>
```


Figure 6: Profile parallel code

26/33

Figure source at https://www.jottr.org/2022/06/23/future-user2022-slides/


```
remotes::install_github(
    "git@github.com:HenrikBengtsson/future.git",
    ref = "9875992", force = TRUE)
```

```
event
                     type parent
          create overhead <NA> 2.614021e-03 secs
          launch overhead <NA> 8.135939e-02 secs
       getWorker overhead launch 1.218319e-04 secs
     eraseWorker overhead launch 7.087874e-02 secs
4 attachPackages overhead launch 4.148483e-05 secs
5 exportGlobals overhead launch 8,690357e-04 secs
           event
                     type parent
                                         duration
          create overhead <NA> 2.676725e-03 secs
          launch overhead <NA> 4.583597e-03 secs
       getWorker overhead launch 1.337528e-04 secs
     eraseWorker overhead launch 4.656315e-04 secs
4 attachPackages overhead launch 3.361702e-05 secs
5 exportGlobals overhead launch 6.408691e-04 secs
```


Chao Cheng (SUFE) ChinaR 2022 Toggle Clock Reset Crono 27/33


```
library(future)
n worker <- 3
n < -6
plan(cluster, workers = n_worker)
slow <- function(x) {</pre>
    Sys.sleep(x / 5)
    return(x)
tmp <- capture journals({</pre>
    fs <- lapply(1 : n, function(x) future(slow(x)))
    vs <- value(fs)</pre>
```


time

Parallel is NOT all you need

How about we use $\frac{(1+n)\times n}{2}$?

Acknowledgement

Parallel computing with R using foreach, future, and other packages

BRYAN LEWIS

Future: Simple Async, Parallel & Distributed Processing in R - What's Next?

HENRIK BENGTSSON

