第四章 整数规划

- ▶整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □ 割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

整数(线性)规划的一般形式

$$\max(\min)z = \sum_{j=1}^{n} c_j x_j$$

S.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{i}$$
 $(i = 1, \dots, m)$

$$x_{j} \ge 0 \qquad (j = 1, \dots, m)$$

 x_i 中部分或全部取整数

整数规划的分类

1. 纯整数规划: x_i 全部取整数的线性规划。

2. 混合整数规划: x_j 部分取整数的线性规划。

3.0-1型整数规划: x_j 只能取0或1的线性规划。

整数变量的原因

1. 物理原因: 人数

2. 建模原因: 逻辑变量

例1: 背包问题

背包可再装入8单位重量,10单位体积物品

物品	名称	重量	体积	价值
1	书	5	2	20
2	摄像机	3	1	30
3	枕头	1	4	10
4	休闲食品	2	3	18
5	衣服	4	5	15

例2数学模型

解: x_i 为是否带第i种物品

$$max z = 20x_1 + 30x_2 + 10x_3 + 18x_4 + 15x_5$$

S.t.
$$\begin{cases} 5x_1 + 3x_2 + x_3 + 2x_4 + 4x_5 \le 8 \\ 2x_1 + x_2 + 4x_3 + 3x_4 + 5x_5 \le 10 \end{cases}$$
$$x_i + 3x_0 + 3x_4 + 5x_5 \le 10$$

例2: 选址问题

 A_i : 可建仓库地点,容量 a_i ,投资费用 b_i ,建2个

 B_j : 商店,需求 d_j (j=1...4)

 c_{ii} : 仓库 i 到商店 j 的单位运费

问:选择适当地点建仓库,在满足商店需求条件下,总费用最小。

$$\min z = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + \sum_{i=1}^{3} b_{i} y_{i}$$

S.t.
$$y_1 + y_2 + y_3 = 2$$

 $x_{11} + x_{21} = d_1$ 需求
 $x_{12} + x_{22} + x_{32} = d_2$
 $x_{23} + x_{33} = d_3$
 $x_{14} + x_{24} + x_{34} = d_4$
 $x_{11} + x_{12} + x_{14} \le a_1 y_1$
 $x_{21} + x_{22} + x_{23} + x_{24} \le a_2 y_2$
 $x_{32} + x_{33} + x_{34} \le a_3 y_3$
 $y_i = 0$ 或1, $x_{ij} \ge 0$

例3: 互斥约束问题

	货物	体积(米³/箱)		重量(百公斤/箱)		利润(-	千元/箱)
-	甲	5	6	2	3	20	
	Z	4	5	5	6	10	
-	运输限制	24	45	13	10		

火车、轮船

例3: 原来的模型

解:设 x_1 , x_2 为甲、乙两货物各托运箱数

$$max Z = 20 x_1 + 10x_2$$

S.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24 \\ 2x_1 + 5X_2 \le 13 \end{cases} \begin{cases} 5x_1 + 4x_2 \le 45 \\ 2x_1 + 5x_2 \le 10 \end{cases}$$
$$x_1, x_2 \ge 0 \qquad x_1, x_2 \ge 0$$
$$x_1, x_2 > 0 \qquad x_1, x_2 > 0$$
$$x_1, x_2 > 0 \qquad x_1, x_2 > 0$$

$$max z=20x_1 + 10x_2$$

s.t. $\begin{cases} 5x_1+4x_2 \le 24+M(1-y) \text{ } \\ 2x_1+5x_2 \le 13+M(1-y) \end{cases}$
 $\begin{cases} 6x_1+5x_2 \le 45+M \text{ } y \text{ } \end{cases}$ 轮船 $\begin{cases} 3x_1+6x_2 \le 10+M y \\ x_1,x_2 \ge 0 \text{ } \end{cases}$ 整数 $y \Rightarrow 0 \Rightarrow 1$ $M>0$ (充分大) $y=1$: 火车 $y=0$: 船

一般情况

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \le b_i \quad (i=1,...,p)$$

互相排斥p个约束,只有q个起作用

$$\begin{cases} a_{il}x_1 + \dots + a_{in}x_n \leq b_i + y_i M & (i=1,\dots,p) \\ y_1 + \dots + y_p = p-q \\ y_i 为 0 或 1 & M>0, 充分大 \end{cases}$$

第四章 整数规划

- > 整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

整数规划的解的特点

整数规划求解的直接思路

1. 穷举法:

枚举范围太大, 0-1型问题有2n种组合

2. 松弛法:

松弛问题: 放松原规划问题的整数条件所得到的新规划问题。

整数规划的解的特点

整数规划的思路

思路:

- 1. 缩小枚举法的寻优范围。
- 2. 缩小松弛问题的寻优范围。

第四章 整数规划

- ▶整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - ■割平面法
 - □ 分枝定界法
- ▶ 0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

割平面法

■ 思路:构造切割可行域问题的割平面,把整数最优解变为切割后松弛问题的顶点。

■ 割平面的代数形式:有效不等式。

■ 有效不等式: 所有的整数可行解都满足的不等式

割平面思路图示

割平面法解题的标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad (i = 1, \dots, m)$$

$$x_{j} \ge 0 \qquad (j = 1, \dots, n)$$

 x_j 、 a_{ij} 、 b_i 全部取整数

问题:上述假设是否具有一般性?

注意问题

注意:

当 a_{ii} 不是整数时,可乘以某一个倍数化为整数。

目的:

使所有的松弛变量、人工变量均为整数。

例4

$$\max z = x_1 + x_2$$

s.t.
$$-x_1 + x_2 \le 1$$

 $3x_1 + x_2 \le 4$

$$x_1, x_2 \ge 0$$

 x_1, x_2 均为整数

对应的标准松弛问题

max
$$z=x_1+x_2$$

s.t. $-x_1+x_2+x_3=1$
 $3x_1+x_2+x_4=4$
 $x_1, x_2, x_3, x_4 \ge 0$

最终单纯形表

			1	1	0	0
C_B	基	b	x_1	$\boldsymbol{x_2}$	x_3	x_4
1	x_2	7/4	0	1	3/4	1/4
1	x_1	3/4	1	0	-1/4	1/4
	$\sigma_{\!j}$		0	0	-1/2	-1/2

图示

割平面构造的原理

割平面的构造方法很多,

最简单的是利用解的整数特点,例如

如果 $x \le b \Rightarrow x \le [b]$

Gormory割平面的构造

例如,上例中,有:

$$x_1 - \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{4}$$

将系数和常数项分解为一个整数和一个非负的真分数之和。即:

$$-\frac{1}{4} = -1 + \frac{3}{4}$$

割平面的构造例

将所有的真分数系数项移到左边,常数项和整数系数项移到右边,可以得到:

$$x_1 - x_3 = \frac{3}{4} - \left(\frac{3}{4}x_3 + \frac{1}{4}x_4\right) \le 0$$

$$-\left(\frac{3}{4}x_3 + \frac{1}{4}x_4\right) \le -\frac{3}{4}$$

标准化

将割平面化作标准形式,加入单纯形表中,构成新的松弛问题1:

$$-\frac{3}{4}x_3 - \frac{1}{4}x_4 + x_5 = -\frac{3}{4}$$

松弛问题1

			1	1	0	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
1	x_2	7/4	0	1	3/4	1/4	0
1	x_1	3/4	1	0	-1/4	-1/4	0
0	x_5	-3/4	0	0	-3/4	-1/4	1
	$\sigma_{\!j}$		0	0	-1/2	-1/2	0

 $b_3 < 0$,用对偶单纯形法解得:

			1	1	0	0	0
C_B	基	b	\boldsymbol{x}_1	$\boldsymbol{x_2}$	x_3	x_4	x_5
1	x_2	1	0	1	0	0	0
1	\boldsymbol{x}_1	1	1	0	0	1/3	-1/3
0	x_3	1	0	0	1	1/3	-4/3
	$\sigma_{\!j}$		0	0	0	-1/3	-2/3

割平面约束

将
$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 4 - 3x_1 - x_2$

代入割平面:
$$-\left(\frac{3}{4}x_3 + \frac{1}{4}x_4\right) \le -\frac{3}{4}$$

$$\Rightarrow \frac{3}{4}(1+x_1-x_2)+\frac{1}{4}(4-3x_1-x_2)\geq \frac{3}{4}$$

$$x_2 \leq 1$$

割平面图示

第四章 整数规划

- ▶整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □ 割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

分枝定界法

思路:

- 1) 分枝:将原问题转化为子问题;
- 2) 定界:确定界限减少搜索范围。

例6

max
$$Z=40x_1 + 90x_2$$

s.t. $9x_1+7x_2 \le 56$
 $7x_1+20x_2 \le 70$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \ge 0$

分枝1

解: 先解(1)的松弛问题

$$x^* = \begin{cases} 4.809 \\ 1.817 \end{cases}$$
 $Z^* = 355.890$, $\bot PZ^*$

选 x_1 分枝

问题(2)
$$\begin{cases} (1) \\ x_1 \le 4 \end{cases}$$
 问题(3) $\begin{cases} (1) \\ x_1 \ge 5 \end{cases}$

分枝2

$$(2)$$
的 $\begin{cases} x_1 = 4 \\ Z = 349.0 \end{cases}$ (3) 的 $\begin{cases} x_1 = 5 \\ x_2 = 1.571 \end{cases}$ 解为 $\begin{cases} x_1 = 5 \\ x_2 = 1.571 \end{cases}$

选(2)继续分枝

问题(4)
$$\begin{cases} (2) \\ x_2 \leq 2 \end{cases}$$

问题(5)
$$\begin{cases} (2) \\ x_2 \geq 3 \end{cases}$$

解

$$(4)$$
的 $\begin{cases} x_1 = 4 \\ x_2 = 2 \end{cases}$ $Z=340$ (5) 的 $\begin{cases} x_1 = 1.428 \\ x_2 = 3 \end{cases}$ 解为 $\begin{cases} x_2 = 3.428 \\ x_2 = 3 \end{cases}$

是否找到最优解?

分枝3

(3) 的解为
$$\begin{cases} x_1 = 5 \\ Z = 341.39 \\ x_2 = 1.571 \end{cases}$$

问题(6)
$$\begin{cases} (3) \\ x_2 \leq 1 \end{cases}$$

问题(7)
$$\begin{cases} (3) \\ x_2 \geq 2 \end{cases}$$

解

$$(6)$$
的 $\begin{cases} x_1 = 5.44 \\ Z = 307.8 \end{cases}$ (7) 的 $\begin{cases} x_1 \\ x_2 = 1 \end{cases}$ 解为 $\begin{cases} x_2 \\ x_2 \end{cases}$ 无解

所以最优解为 (4, 2), z*=340

 $x_1 \leq 4$

(2)	Z
4	349.0
2.1	

v < 2	
$x_2 \ge z$	
_ /	

$$x_2 \ge 3$$

<i>(5)</i>	$oxed{z}$
1.428	327.12
3	J2/•12

$$x_1 \geq 5$$

(3)	$oxed{z}$
5	341.39
1.571	

$$x_2 \leq 1$$

(6)	7
5.444 1	307.76

<i>(7)</i>	
无解	

 $x_2 \ge 2$

分枝定界法的特点

优点:

(1)、可求解混合整数规划;

(2)、思路简单、灵活;

(3)、速度快;

(4)、适合上机。

第四章 整数规划

- > 整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

0-1型整数规划

一般采用隐枚举法:

原则:

- (1)、用试探法,求出一个可行解,以它的目标值作为当前最好值 Z^0
- (2)、增加过滤条件 $Z \ge Z^0$

例6

$$max Z = 3x_1 - 2x_2 + 5x_3$$

$$\begin{cases} x_1 + 2x_2 - x_3 \le 2 & 1 \\ x_1 + 4x_2 + x_3 \le 4 & 2 \\ x_1 + x_2 & \le 3 & 3 \\ -8x_1 + 4x_2 + 8x_3 \le 6 & 4 \\ x_1, x_2, x_3 为 0 或 1 \end{cases}$$

$(x_1 x_2 x_3)$	目标值	Z^0	1	2	3	4	当前最好值
(0,0,0)	0	II	/	/	/	/	0
(0,0,1)	5	\	/	/	/	X	
(0,1,0)	-2	<					
(0,1,1)	3	>	/	X			
(1,0,0)	3	>	/	/	·	/ /	3
(1,0,1)	8	>	/	/	/	/	8
(1,1,0)	1	<					
(1,1,1)	6	\					

最优解 $x^* = (1,0,1)^T$ Z=8

是否还可更快?

第四章 整数规划

- ▶整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □ 割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

指派问题

Assignment Problem: 任务指派

作以下假设:

$$x_{ij} = \begin{cases} 1 & \text{指派第i个人完成第j项工作} \\ 0 & \text{不指派第i个人作第j项工作} \end{cases}$$

 $c_{ij}>0$: 指派第i个人完成第j项工作的代价,

如:费用、成本、时间等

指派问题标准形式

$$\min z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{每个人有且只有一项工作}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{每项工作有且只有一个人}$$

$$x_{ij} = 0 或 1 \qquad i, j = 1, 2, ..., n;$$

是特殊的运输问题

s.t.

匈牙利算法

指派问题最优解的性质:

若将指派问题的系数矩阵 $\mathbf{C}=(c_{ij})_{\mathbf{n}\times\mathbf{n}}$ 的某行或某列减去一个常数,得到的新的系数矩阵 \mathbf{C}' ,则对应的两个指派问题具有相同的最优解。

方法:

变换系数矩阵 \mathbb{C} ,找到n个位于不同行、不同列的零元素,则对应的指派最优。

例7

$$C = \begin{bmatrix} 12 & 7 & 9 & 7 & 9 \\ 8 & 9 & 6 & 6 & 6 \\ 7 & 17 & 12 & 14 & 9 \\ 15 & 14 & 6 & 6 & 10 \\ 4 & 10 & 7 & 10 & 9 \end{bmatrix}$$
行变换
$$\begin{bmatrix} 5 & 0 & 2 & 0 & 2 \\ 2 & 3 & 0 & 0 & 0 \\ 0 & 10 & 5 & 7 & 2 \\ 9 & 8 & 0 & 0 & 4 \\ 0 & 6 & 3 & 6 & 5 \end{bmatrix}$$

例7

```
\begin{bmatrix} 5 & 0 & 2 & 0 & 2 \\ 2 & 3 & 0 & 0 & 0 \\ 0 & 10 & 5 & 7 & 2 \\ 9 & 8 & 0 & 0 & 4 \\ 0 & 6 & 3 & 6 & 5 \end{bmatrix}
\xrightarrow{\text{列交换}}
\begin{bmatrix} 5 & 0 & 2 & 0 & 2 \\ 2 & 3 & 0 & 0 & 0 \\ 0 & 10 & 5 & 7 & 2 \\ 9 & 8 & 0 & 0 & 4 \\ 0 & 6 & 3 & 6 & 5 \end{bmatrix}
```

独立零元素

```
    5
    0
    2
    0
    2

    2
    3
    0
    0
    0

    0
    10
    5
    7
    2

    9
    8
    0
    0
    4

    0
    6
    3
    6
    5
```

独立零元素

位于不同行、不同列的零元素,称为独立零元素。

定理(D.Konig):系数矩阵C中独立零元素的个数最多等于能覆盖所有零元素的最少直线数。

最少直线选取法

1)标记一组元素个数最多的独立零元素

2) 标记没有独立零元素所在行

3)标记打【行中所有非独立零元素所在列

4)标记打 / 列中所有独立零元素所在行

$$\begin{bmatrix} 5 & 0 & 2 & 0 & 2 \\ 2 & 3 & 0 & 0 & 0 \\ 0 & 10 & 5 & 7 & 2 \\ 9 & 8 & 0 & 0 & 4 \\ 0 & 6 & 3 & 6 & 5 \end{bmatrix}$$

重复3)、4)直到不能再标记为止。

5) 未打 \/ 的行与打 \/ 的列标上直线

独立零元素构建

4)将未被覆盖元素中的最小元素变换为0

第四章 整数规划

- > 整数规划问题及数学模型
- ▶整数规划问题的特点与解法
 - □ 割平面法
 - □ 分枝定界法
- ▶0-1型整数规划
 - □ 隐枚举法
 - □指派问题
- ▶应用举例

典型的整数规划问题

- ▶旅行商问题(Traveling Salesman Problem)
- ▶生产调度问题(Production Scheduling Problem)
- ▶ 0-1背包问题(Knapsack Problem)
- ➤ 装箱问题(Bin Packing Problem)
- ➤ 图着色问题(Graph Coloring Problem)
- ▶ 聚类问题(Clustering Problem)

计算复杂性理论

- P问题: 可在多项式时间复杂度内得到最优解的问题。
- NP(Non-deterministic Polynomial)问题:可在不确定的多项式时间复杂度内验证一个解是否可行的问题。
- NP-hard(NPH)问题: 所有NP问题的求解都可在多项式时间复杂 度内归约成的问题, 也更难求解。
- NP-complete(NPC)问题: NP-hard问题中为NP的问题。