Data Preprocessing for the VQI TEVAR Dataset

Jennifer Ci, Thu Vu, Lily Hanyi Wang

Datasets Merging

Compare the data from July 2021 and September 2021. Keep the most updated ones.

There are 6 rows from LTF July data missing in September dataset. And also 6 missing from the PROC dataset.

Variables that exists in both LTF and PROC datasets are: PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS. Merge by these variables.

In the long term followup dataset, the variables used in this project are: PATIENTID, DEAD, PROC_SURVIVALDAYS, LTF_NUM_REINT

Initially, there are in total 25211 objectives in the dataset.

Exclusion criteria:

- PRESENTATION: exclude rupture patients
- PATHOLOGY: exclude groups with pathology: 4 = trauma, 8 = Aortic Thrombus,9 = Other,10 = Aorto-esophageal Fistula,11 = Aorto-bronchial Fistula
- URGENCY: exclude rupture. (elective is the same as asymptomatic)
- PROXZONE_DISEASE: exclude 0 and 1
- DISTZONE_DISEASE: exclude 0
- PROXZONE_DISEASE < DISTZONE_DISEASE: disease starting point should be earlier than ending point. 35 wrong data points with distal zone < proximal zone are excluded.

After exclsion, there are in total 15424 objectives in the final TEVAR dataset. 1995 participants have more than one records in this dataset.

Data Cleaning

Patient demographic and co-morbidities

- Comorbidity history variables: changed to Yes/No scale.
- PREOP_CREAT: merge PREOP_CREAT with retired R_CR_PRESENT (mg/dL)

Operative variables

- PATHOLOGY: merge levels PAU and IMH
- URGENCY: duplicate with PRESENTATION and doesn't make sense, but leave it there.
- extent: type of TAAA based on certain criteria calculated by PROXZONE_DISEASE and DISTZONE DISEASE.
- ILIACDEV_END: from merging ILIACDEV_END_R, ILIACDEV_END_L

- ACCESS: from merging ACCESS_R, ACCESS_L: Percutaneous if both are Percutaneous, Open o.w.
- DEV_GTYPE: merge DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE: If one device is 'Custom' or 'Physician modified', classified to this instead of 'Standard'

Filter FBVAR patients based on having at least one branch, re-leveled as following.

- lrenal: re-leveled BRANCH_LRENAL_TRT, retired version R_LT_RENAL ignored.
- rrenal: re-leveled BRANCH_RRENAL_TRT, retired version R_RT_RENAL ignored.
- $sma: re-leveled BRANCH_SMA_TRT, retired version R_SMA ignored.$
- celiac: re-leveled BRANCH_CELIAC_TRT, retired version R_CELIAC ignored.
- lsub: re-leveled BRANCH_LSUB_TRT, retired version R_L_SUBCLAV ignored.

Current levels: $0 = \text{None}, 1 = \text{Purposely covered}, 2 = \text{Unintentionally covered}, 3 = \text{Occluded} - \text{coil}, 4 = \text{Occluded} - \text{plug}, 5 = \text{Occluded} - \text{open}, 6 = \text{Stent}, 7 = \text{Stent-graft}, 8 = \text{Chimney}, 9 = \text{Scallop}, 10 = \text{Stented} \cdot \text{Scallop}, 11 = \text{Fenestration}, 12 = \text{Stented-fen}, 13 = \text{Fen branch}, 14 = \text{Side-arm branch}, 15 = \text{Surgical bypass}, 16 = \text{Thromboembolectomy}, 17 = \text{Iliac Device}$

ignore some retired variables without current version

- R_DISTATTZONE: Distal Attachment Zone
- R_GDPROXIMAL: Graft Diameter Proximal
- R_GRFTCONFIG: Graft Configuration
- R PRATTZONE: Prox. Attachment Zone

Among the whole dataset, we filtered out 3510 FBVAR patients for our study.

Outcomes

- POSTOP_LOS: changed into binary, more than a week or not.
- Create POSTOP_AH: Combine POSTOP_AH, POSTOP_MI,POSTOP_DYSRHYTHMIA for post-procedure abnormal heart disease
- Create BRANCH_POST: BRANCH_XXX_POST changed to Yes/No scale. Then combine BRANCH_LSUB_POST, BRANCH_CELIAC_POST, BRANCH_SMA_POST, BRANCH_RRENAL_POST, BRANCH_LRENAL_POST, BRANCH_RCOMILI_POST, BRANCH_LCOMILI_POST

update some variables with current version

- R_ENDOLEAK_AT_COMPLETION => LEAKATCOM_XXX variables. Only use LEAKATCOMP_NONE. Ignore others or have a brief look
- R_POSTOP_HEMATOMA => ACCESS_HEMATOMA_R, ACCESS_HEMATOMA_L; R_POSTOP_SITEOCC => ACCESS_OCCLUSION_R, ACCESS_OCCLUSION_L. Merge hematoma and occlusion, create new variable: ACCESS_COMPLICATION
- R_POSTOP_SSI => ACCESS_INFECTION_R, ACCESS_INFECTION_L Merge left and right, create new variable: ACCESS_INFECTION

ignore some retired version variables, only use the current version

- R_POSTOP_BOWELISCH <= POSTOP_INTISCH: Bowel Ischemia
- R_LE_ISCH <= POSTOP_LEGEMBO: LE Ischemia
- R_POSTOP_RENAL <= POSTOP_DIALYSIS: change of renal function

record treatment status of the vessels

- NUM_TREATED_BRANCHES: number of treated branches: 4,3,2,1
- NUM_TREATED_RENALS: number of treated renals: 2,1,0
- $\bullet \ \, \mathsf{OCCLUDED_RENAL}, \mathsf{OCCLUDED_SMA}, \mathsf{OCCLUDED_CELIAC}, \mathsf{OCCLUDED_LSUB} \colon \mathrm{whether} \ \mathrm{this} \ \mathrm{vessel} \ \mathrm{is} \ \mathrm{occluded} \ \mathrm{or} \ \mathrm{covered}. \\$

Others

Variables we cleaned but are not needed after discussion goes here.

Volume variables

Store a new dataset for further study

Select the variable related to our study. Give them labels for better-looking tables. Finally store the new dataset as a seperate csv file, so that we could use the cleaned dataset in the future modeling.

Code Appendix

```
knitr::opts chunk$set(echo = FALSE, message = FALSE, warning = FALSE)
library(tidyverse)
library(Hmisc)
library(table1)
library(ggplot2)
## ----- working directories for Lily -----
wd_lily = '/Users/hanyiwang/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_lily = c(
 "../data/TEVAR_International_20210712/TEVAR_International_LTF_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210712/TEVAR_International_PROC_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210901/TEVAR_International_LTF_r12_2_14_20210901.csv",
 "../data/TEVAR International 20210901/TEVAR International PROC r12 2 14 20210901.csv",
 "../data/FBVAR.csv")
## ----- working directories for Jenn -----
wd_jenn = '/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA-main'
path_jenn = c(
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA-main/TEVAR_International_2021071
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA-main/TEVAR_International_2021071
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA-main/TEVAR_International_2021090
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA-main/TEVAR_International_2021090
## ----- read data -----
setwd(wd_lily)
TEVAR_LTF_07 = read.csv(path_lily[1])
TEVAR_PROC_07 = read.csv(path_lily[2])
TEVAR_LTF_09 = read.csv(path_lily[3])
TEVAR_PROC_09 = read.csv(path_lily[4])
#setwd(wd_jenn)
\#TEVAR\_LTF\_07 = read.csv(path\_jenn[1])
#TEVAR_PROC_07 = read.csv(path_jenn[2])
\#TEVAR\_LTF\_09 = read.csv(path\_jenn[3])
#TEVAR_PROC_09 = read.csv(path_jenn[4])
## ----- merge July and September data -----
# find data in LTF July data but not in LTF September data by `PATIENTID`
# add these data points to the September data
TEVAR_LTF <- rbind(TEVAR_LTF_07[! TEVAR_LTF_07$PATIENTID %in% TEVAR_LTF_09$PATIENTID,],
                  TEVAR_LTF_09)
# filter the varaibles in the LTF dataset
TEVAR_LTF <- TEVAR_LTF %>% select(PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS, LTF_NUM_REINT)
# Similar for PROC data
TEVAR_PROC <-rbind(TEVAR_PROC_07[! TEVAR_PROC_07$PATIENTID %in% TEVAR_PROC_09$PATIENTID,],
                  TEVAR PROC 09)
## ----- merge LTF and PROC data-----
# same variables in LTF and PROC data
#colnames(TEVAR PROC)[colnames(TEVAR PROC) %in% colnames(TEVAR LTF)]
```

```
TEVAR <- merge(TEVAR LTF, TEVAR PROC, all = TRUE,
               by=c("PATIENTID","PRIMPROCID","DEAD","PROC_SURVIVALDAYS"))
## ----- exclusion-----
TEVAR = TEVAR %>%
  filter(PRESENTATION !=2) %>%
  filter(PATHOLOGY %in% c(1,2,3,5,6,7)) %>%
 filter(URGENCY %in% c(1,2,3)) %>%
 filter(PROXZONE DISEASE %in% c(2,3,4,5,6,7,8,9)) %>%
  filter(DISTZONE_DISEASE > PROXZONE_DISEASE)
n_occur <- data.frame(table(TEVAR$PATIENTID))</pre>
#n_occur[n_occur$Freq > 1,]%>%n_distinct
## ----- variables cleaning, patient demographic and co-morbidities-----
TEVAR = TEVAR %>%
  mutate(AGECAT = factor(AGECAT, levels = c(1,2,3,4,5,6,7),
                         labels = c('<50','<50','50-59','60-69','70-79','>79','>79'))) %>%
 mutate(URGENCY=factor(URGENCY,levels = c(1,2,3),labels = c('Elective','Urgent','Emergent'))) %%
 mutate(GENDER=factor(GENDER,levels=c(1,2),labels=c('male','female'))) %>%
  mutate(R PREOP AMBUL = factor(R PREOP AMBUL, levels = c(1,2,3,4),
                                labels=c("Amb", "Amb w/ Assistance", "Wheelchair", "Bedridden"))) %>%
  mutate(ETHNICITY = factor(ETHNICITY,levels=c(0,1),
                            labels = c('None Hispanic or Latino','Hispanic or Latino'))) %>%
  mutate(RACE=factor(RACE, levels = c(5,3,2,1,4,6,7),
                     labels = c('White', 'Black or African American', 'Asian',
                                'American Indian or Alaskan Native',
                                'Native Hawaiian or other Pacific Islander', 'More than 1 race',
                                'Unknown/Other'))) %>%
  mutate(TRANSFER=factor(TRANSFER,levels = c(0,1,2),labels = c('No','Hospital','Rehab Unit'))) %%
  mutate(PRIMARYINSURER=factor(PRIMARYINSURER,levels=c(1,2,3,4,5,6),
                               labels = c('Medicare','Medicaid','Commercial', 'Military/VA',
                                          'Non US Insurance', 'Self Pay'))) %>%
  mutate(LIVINGSTATUS=factor(LIVINGSTATUS,levels=c(1,2,3),
                             labels=c('Home','Nursing home','Homeless'))) %>%
  mutate(PREOP_FUNCSTATUS=factor(PREOP_FUNCSTATUS,levels = c(0,1,2,3,4),
                                labels = c('Full','Light work','Self care','Assisted care',
                                            'Bed bound'))) %>%
  mutate(PRIOR_CVD = factor(PRIOR_CVD,levels =c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %%
  mutate(PRIOR_CAD = factor(PRIOR_CAD, levels =c(0,1,2,3,4,5),
                            labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(PRIOR_CHF = factor(PRIOR_CHF,levels =c(0,1,2,3,4),
                            labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(COPD = factor(COPD,levels = c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(DIABETES=factor(DIABETES,levels = c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %%
  mutate(PREOP_DIALYSIS=factor(PREOP_DIALYSIS,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
  mutate(HTN=factor(HTN,levels = c(0,1,2,3),labels = c('No','Yes','Yes',)')) %>%
  mutate(PREOP_SMOKING=factor(PREOP_SMOKING,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
  mutate(PRIOR_CABG = factor(PRIOR_CABG,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %%
  mutate(PRIOR_PCI = factor(PRIOR_PCI,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %>%
  mutate(PRIOR_ANEURREP = factor(PRIOR_ANEURREP,levels =c(0,1,2,3,4,5),
                                 labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(STRESS = factor(STRESS,levels =c(0,1,2,3,4),
```

```
labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(DC\_ASA = factor(DC\_ASA, levels = c(0,1,2,3), labels = c('No', 'Yes', 'No', 'No'))) %>%
  mutate(DC_P2Y = factor(DC_P2Y, levels = c(0,1,2,3,4,5,6,7),
                         labels = c('No','Yes','Yes','Yes','Yes','Yes','No','No'))) %>%
  mutate(DC_STATIN = factor(DC_STATIN,levels = c(0,1,2,3),labels = c('No','Yes','No','No'))) %>%
  ## merge PREOP CREAT, R CR PRESENT
  mutate(PREOP_CREAT = coalesce(PREOP_CREAT,R_CR_PRESENT))
## ----- variables cleaning, operative variables-----
TEVAR = TEVAR %>% mutate(
  PRESENTATION = factor(PRESENTATION, levels = c(0,1), labels = c('Asymptomatic', 'Symptomatic')),
  extent = ifelse((PROXZONE_DISEASE %in% c(2,3)) & DISTZONE_DISEASE<6, 1,</pre>
                  ifelse((PROXZONE_DISEASE %in% c(2,3)) & DISTZONE_DISEASE>=8, 2,
                         ifelse((PROXZONE_DISEASE %in% c(4,5)) & DISTZONE_DISEASE>8, 3,
                                ifelse((PROXZONE_DISEASE <=7)& DISTZONE_DISEASE>=8,4,
                                       ifelse((PROXZONE_DISEASE %in% c(4,5)) & DISTZONE_DISEASE<9, 5,
                                              ifelse( PROXZONE_DISEASE<=8 & DISTZONE_DISEASE>=9, 6,NA))
  mutate(extent = factor(extent,levels=c(1,2,3,4,5,6),
                         labels = c("Type 1 TAAA", "Type 2 TAAA", "Type 3 TAAA", "Type 4 TAAA",
                                    "Type 5 TAAA" , "Juxtarenal AAA"))) %>%
  mutate(PROXZONE_DISEASE=factor(PROXZONE_DISEASE)) %>%
  mutate(DISTZONE DISEASE=
           factor(DISTZONE_DISEASE, levels = c(0:15),
                  labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L','10B','11R','11L','11B')))
TEVAR = TEVAR %>%
  mutate(PATHOLOGY=factor(PATHOLOGY,levels=c(1,2,3,5,6,7),
                          labels = c('Aneurysm', 'Dissection', 'Aneurysm from dissection',
                                     'PAU/IMH', 'PAU/IMH', 'PAU/IMH'))) %>%
  mutate(PRIOR_AORSURG=factor(PRIOR_AORSURG,levels=c(0,1,2,3,4),
                              labels=c('None','Open','Endo','Both','Other'))) %>%
  mutate(PATHOLOGY_ANEURYSM_TYPE=
           factor(PATHOLOGY_ANEURYSM_TYPE,levels = c(1,2,3,4,5),
                  labels = c('Degenerative, fusiform', 'Degenerative, saccular', 'Anastomotic',
                              'Prior trauma', 'Intercostal or visceral patch'))) %>%
  mutate(PATHOLOGY_DISSECT_TYPE=
           factor(PATHOLOGY_DISSECT_TYPE,levels = c(1,2),
                  labels = c('Acute, <= 30 days','Chronic, >30 days'))) %>%
  mutate(GENHIST = factor(GENHIST, levels = c(0,1,2,3,4,5),
                          labels = c('None','Marfans','Ehlers-Danlos','Loeys-Dietz',
                                     'Non-specific', 'Other'))) %>%
  mutate(ANESTHESIA=factor(ANESTHESIA,levels = c(1,2,3),labels = c('Local', 'Regional', 'General')))%%
  mutate(IVUSTEE=factor(IVUSTEE,levels = c(0:5),labels = c('No','IVUS','TEE','Both','No','IVUS')))%%
  ## merge ACCESS L and ACCESS R
  mutate(ACCESS = ifelse(ACCESS_L == 1 & ACCESS_R ==1, 'Percutaneous', 'Open')) %>%
  mutate(ACCESS=factor(ACCESS)) %>%
  mutate(ARMNECK_ACCESS=factor(ARMNECK_ACCESS,levels =c(0,1,2,3),
                                labels = c('No','Yes','Yes','Yes')))%>%
  mutate(AORDEV_NUM=factor(AORDEV_NUM))%>%
  mutate(AORDEV_CMOD=factor(AORDEV_CMOD,levels=c(0,1),labels=c('No','Yes'))) %>%
```

```
mutate(STAGEDAORTRT=factor(STAGEDAORTRT,levels=c(0,1),labels=c('No','Yes'))) %>%
  ## DEV_GTYPE: merge DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE
  mutate(DEV_GTYPE = case_when(DEV1_GTYPE==2|DEV2_GTYPE==2|DEV3_GTYPE==2 ~ 'Custom',
                                DEV1 GTYPE==3|DEV2 GTYPE==3|DEV3 GTYPE==3 ~ 'Physician modified',
                                TRUE ~ 'Standard')) %>%
  mutate(DEV1 GTYPE=factor(DEV1 GTYPE,levels=c(1,2,3),
                           labels=c('Standard','Custom','Physician modified'))) %>%
  mutate(DEV2 GTYPE=factor(DEV2 GTYPE,levels=c(1,2,3),
                           labels=c('Standard','Custom','Physician modified'))) %>%
  mutate(DEV3 GTYPE=factor(DEV3 GTYPE,levels=c(1,2,3),
                           labels=c('Standard','Custom','Physician modified')))
TEVAR = TEVAR %>%
  mutate(ILIACDEV_END_R= factor(ILIACDEV_END_R, levels = c(0,1,2,3),
                               labels = c('None','Common',
                                          'External, Intended', 'External, Unintended'))) %>%
  mutate(ILIACDEV_END_L= factor(ILIACDEV_END_L, levels = c(0,1,2,3),
                               labels = c('None','Common',
                                          'External, Intended', 'External, Unintended'))) %>%
  mutate(BRANCH_STAGED=factor(BRANCH_STAGED,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH_LSUB=factor(BRANCH_LSUB,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH_CELIAC=factor(BRANCH_CELIAC,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH_SMA=factor(BRANCH_SMA,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH_RRENAL=factor(BRANCH_RRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH LRENAL=factor(BRANCH LRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(BRANCH INNO POST=factor(BRANCH INNO POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_LSUB_VERTPAT=
          factor(BRANCH_LSUB_VERTPAT,levels=c(1:7),
                  labels=c('Patent bilat','Patent bilat, L dominant','Patent bilat, R dominant',
                           'Occluded L, patent R', 'Occluded R, patent L', 'Occluded bilat',
                           'Not imaged'))) %>%
  mutate(ANESTHESIA_GEN_TIMEEXT=factor(ANESTHESIA_GEN_TIMEEXT,levels=c(1,2,4,5),
                                       labels=c('In OR','<12 hrs','12-24 hrs','>24 hrs'))) %>%
  mutate(POSTOP_SPINALDRAIN=factor(POSTOP_SPINALDRAIN,levels=c(0,1,2,3),
                                   labels=c('No','Yes','Yes','Yes')))
## ----- BRANCH TRT filtering-----
TEVAR<-TEVAR %>%
  mutate(lrenal = ifelse(BRANCH_LRENAL_TRT %in% c(0,6,7), 0,
                         ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                       ifelse(BRANCH LRENAL TRT == 8, 3, NA)))),
         rrenal = ifelse(BRANCH_RRENAL_TRT %in% c(0,6,7), 0,
                         ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                       ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
         sma = ifelse(BRANCH_SMA_TRT %in% c(0,6,7), 0,
                      ifelse(BRANCH_SMA_TRT %in% c(9,10,11,12,13,14), 1,
                             ifelse(BRANCH_SMA_TRT %in% c(1,2,3,4), 2,
                                    ifelse(BRANCH_SMA_TRT == 8,3,NA)))),
         celiac = ifelse(BRANCH_CELIAC_TRT %in% c(0,6,7), 0,
                         ifelse(BRANCH_CELIAC_TRT %in% c(9,10,11,12,13,14), 1,
```

```
ifelse(BRANCH_CELIAC_TRT %in% c(1,2,3,4), 2,
                                      ifelse(BRANCH_CELIAC_TRT == 8,3,NA)))),
         lsub = ifelse(BRANCH_LSUB_TRT %in% c(0,6,7), 0,
                      ifelse(BRANCH_LSUB_TRT %in% c(9,10,11,12,13,14), 1,
                             ifelse(BRANCH_LSUB_TRT %in% c(1,2,3,4), 2,
                                    ifelse(BRANCH_LSUB_TRT == 8,3,NA)))))
## ----- FBVAR filtering-----
TEVAR = TEVAR %>%
  filter(lrenal == 1 | rrenal== 1 | sma== 1 | celiac== 1 | lsub== 1)
## ----- vessel treatment status -----
TEVAR = TEVAR %>%
  mutate(TREATED_LRENAL=case_when(lrenal==1|lrenal==3 ~ TRUE, TRUE~FALSE)) %%
  mutate(TREATED_RRENAL=case_when(rrenal==1|rrenal==3 ~ TRUE, TRUE~FALSE)) %>%
  mutate(TREATED_SMA=case_when(sma==1|sma==3 ~ TRUE, TRUE~FALSE)) %>%
  mutate(TREATED_CELIAC=case_when(celiac==1|celiac==3 ~ TRUE, TRUE~FALSE)) %>%
  mutate(TREATED_LSUB=case_when(1sub==1|lsub==3 ~ TRUE, TRUE~FALSE)) %>%
##### Number of treated branches: 4,3,2,1
  mutate(NUM_TREATED_BRANCHES =
          TREATED LRENAL+TREATED RRENAL+TREATED SMA+TREATED CELIAC) %>%
  mutate(NUM_TREATED_BRANCHES=factor(NUM_TREATED_BRANCHES)) %>%
##### Number of treated renals: 2,1,0
  mutate(NUM TREATED RENALS = TREATED LRENAL+TREATED RRENAL) %>%
  mutate(NUM_TREATED_RENALS=factor(NUM_TREATED_RENALS)) %>%
##### RENAL occluded/covered: yes or no
  mutate(OCCLUDED_RENAL = case_when(lrenal == 2 | rrenal == 2 ~ TRUE, TRUE ~ FALSE)) %>%
##### SMA occluded/covered: yes or no
  mutate(OCCLUDED_SMA = case_when(sma == 2 ~ TRUE, TRUE ~ FALSE)) %>%
##### CELIAC occluded/covered: yes or no
  mutate(OCCLUDED_CELIAC = case_when(celiac == 2 ~ TRUE, TRUE ~ FALSE)) %>%
##### LSUB occluded/covered: yes or no
  mutate(OCCLUDED_LSUB = case_when(lsub == 2 ~ TRUE,TRUE ~ FALSE))
## ----- set BRANCHES labels-----
TEVAR = TEVAR %>%
  mutate(lrenal=factor(lrenal,levels=c(0,1,2,3),
                       labels=c('None','Scallop/Fen/Branch',
                                'Occluded/Covered', 'Chimney'))) %>%
  mutate(rrenal=factor(rrenal,levels=c(0,1,2,3),
                      labels=c('None','Scallop/Fen/Branch',
                                'Occluded/Covered', 'Chimney'))) %>%
  mutate(sma=factor(sma,levels=c(0,1,2,3),
                      labels=c('None','Scallop/Fen/Branch',
                                'Occluded/Covered', 'Chimney'))) %>%
  mutate(celiac=factor(celiac,levels=c(0,1,2,3),
                       labels=c('None','Scallop/Fen/Branch',
                                'Occluded/Covered', 'Chimney'))) %>%
```

```
mutate(lsub=factor(lsub,levels=c(0,1,2,3),
                       labels=c('None','Scallop/Fen/Branch',
                                'Occluded/Covered', 'Chimney')))
## ----- variables cleaning, outcomes-----
TEVAR = TEVAR %>%
  mutate(DEAD=factor(DEAD,levels=c(0,1),labels = c(FALSE,TRUE))) %>%
  mutate(POSTOP LOS = case when(POSTOP LOS>7 ~ '> 7',
                               TRUE ~ '<= 7')) %>%
  mutate(AORDEV_TECHSUCC=factor(AORDEV_TECHSUCC,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(CONVTOOPEN=factor(CONVTOOPEN,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(LEAKATCOMP_NONE=factor(LEAKATCOMP_NONE,levels=c(0,1),labels = c('No','Yes'))) %>%
  mutate(POSTOP_VASO=factor(POSTOP_VASO,levels=c(0,1,2,3),labels=c('No','Yes','Yes'))) %>%
  mutate(POSTOP_COMPLICATIONS=factor(POSTOP_COMPLICATIONS,levels=c(0,1),labels=c('No','Yes'))) %%
  # ACCESS COMPLICATION
  mutate (ACCESS_COMPLICATION=
            case_when(ACCESS_HEMATOMA_R!=0 | ACCESS_HEMATOMA_L!=0 |
                        ACCESS_OCCLUSION_R !=0 | ACCESS_OCCLUSION_L !=0 ~ "Yes",
                      ACCESS_HEMATOMA_R==0 & ACCESS_HEMATOMA_L==0 &
                        ACCESS_OCCLUSION_R ==0 & ACCESS_OCCLUSION_L ==0 ~ "No")) %>%
  ## POSTOP_AH: merge POSTOP_MI,POSTOP_DYSRHYTHMIA,POSTOP CHF
  mutate(POSTOP_MI=factor(POSTOP_MI,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %>%
  mutate(POSTOP DYSRHYTHMIA=factor(POSTOP DYSRHYTHMIA,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(POSTOP_CHF=factor(POSTOP_CHF,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(POSTOP AH=case when(
   POSTOP MI=='Yes'|POSTOP DYSRHYTHMIA=='Yes'|POSTOP CHF=='Yes' ~ "Yes",
   POSTOP MI=='No'|POSTOP DYSRHYTHMIA=='No'|POSTOP CHF=='No' ~ "No")) %>%
  mutate(POSTOP_CEREBROSX = case_when(POSTOP_CEREBROSX >0 ~ 'Yes',
                                      POSTOP CEREBROSX == 0 ~ 'No')) %>%
  mutate(POSTOP_RESPIRATORY=factor(POSTOP_RESPIRATORY,levels = c(0:3),
                                   labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_DIALYSIS=factor(POSTOP_DIALYSIS,levels = c(0:2),
                                labels = c('No','Yes','Yes'))) %>%
  mutate(POSTOP_ARMEMBO=factor(POSTOP_ARMEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGEMBO=factor(POSTOP_LEGEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGCOMPART=factor(POSTOP_LEGCOMPART,levels = c(0:4),
                                  labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_RENALISCH=factor(POSTOP_RENALISCH,levels = c(0:3),
                                labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(POSTOP SPINAL ISCHEMIA=factor(POSTOP SPINAL ISCHEMIA,levels = c(0:2),
                                       labels = c('No', 'Yes', 'Yes'))) %>%
  ## RETX R RTOR: merge RETX, R RTOR
  mutate(RETX=factor(RETX,levels = c(0:2),labels = c('No','Yes','Yes'))) %>%
  mutate(R_RTOR=factor(R_RTOR,levels = c(0:5),labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate (RETX_R_RTOR=case_when(RETX=="Yes" | R_RTOR=="Yes" ~ "Yes",
                                RETX=="No" & R_RTOR=="No" ~ "No",
                                RETX=="No"&is.na(R_RTOR) ~ "No",
                                R_RTOR=="No"&is.na(RETX) ~ "No",
                                is.na(R_RTOR) & is.na(RETX) ~ NA_character_)) %>%
  mutate(DC_STATUS=factor(DC_STATUS,levels = c(1:6),
```

```
labels = c('Home','Rehab Unit','Nursing Home',
                                      'Dead', 'Other Hospital', 'Homeless'))) %>%
 ## BRANCH_XXX_POST
 mutate(BRANCH_LSUB_POST=factor(BRANCH_LSUB_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH_CELIAC_POST=factor(BRANCH_CELIAC_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH SMA POST=factor(BRANCH SMA POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH_RRENAL_POST=factor(BRANCH_RRENAL_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH_LRENAL_POST=factor(BRANCH_LRENAL_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH_RCOMILI_POST=factor(BRANCH_RCOMILI_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 mutate(BRANCH_LCOMILI_POST=factor(BRANCH_LCOMILI_POST,levels=c(1,2,3),
                                  labels=c('No','Yes','Yes'))) %>%
 ## BRANCH_POST: merge BRANCH_XXX_POST
 mutate(BRANCH_POST=case_when(BRANCH_LSUB_POST=="Yes"|BRANCH_CELIAC_POST=="Yes"|BRANCH_SMA_POST=="Yes"
\# TEVAR = TEVAR \%>\%
#
    mutate(R\_PREOP\_AMBUL = factor(R\_PREOP\_AMBUL, levels = c(1,2,3,4),
                                   labels=c("Amb", "Amb w/ Assistance", "Wheelchair", "Bedridden"))) %>%
#
#
   mutate(SURGYEAR=factor(SURGYEAR)) %>%
#
   mutate(PRIOR AORSURG OPENLOC1=factor(PRIOR AORSURG OPENLOC1,
#
                                         levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
   mutate(PRIOR AORSURG OPENLOC2=factor(PRIOR AORSURG OPENLOC2,
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
#
   mutate(PRIOR_AORSURG_OPENLOC3=factor(PRIOR_AORSURG_OPENLOC3,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
    mutate(PRIOR_AORSURG_OPENLOC4=factor(PRIOR_AORSURG_OPENLOC4,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
    mutate(PRIOR_AORSURG_ENDOLOC1=factor(PRIOR_AORSURG_ENDOLOC1,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
    mutate(PRIOR_AORSURG_ENDOLOC2=factor(PRIOR_AORSURG_ENDOLOC2,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
   mutate(PRIOR_AORSURG_ENDOLOC3=factor(PRIOR_AORSURG_ENDOLOC3,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
   mutate(PRIOR_AORSURG_ENDOLOC4=factor(PRIOR_AORSURG_ENDOLOC4,
#
                                           levels=c(0,1), labels=c('No', 'Yes'))) %>%
#
   mutate(ARMNECK_ACCESS_LOC=factor(ARMNECK_ACCESS_LOC, levels =c(1:7),
#
                                   labels = c('Right arm', 'Left arm', 'Right axillary',
#
                                              'Left axillary', 'Right carotid',
#
                                             'Left carotid', 'Multiple'))) %>%
#
   ## retired branch variables
#
    mutate(R_CELIAC=factor(R_CELIAC, levels=c(0:9),
#
                            labels=c('Patent, no intervention', 'Chronically Occluded',
#
                                     'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
#
                                     'Fen/scallop Only', 'Stented-fen',
#
                                     'Fenestrated Stentgraft Branch (Branched TEVAR)',
#
                                     'Side-arm Stent-graft Branch'))) %>%
   mutate(R_LT_RENAL=factor(R_LT_RENAL, levels=c(0:9),
```

```
labels=c('Patent, no intervention','Chronically Occluded',
                                                                                                   'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
#
#
                                                                                                  'Fen/scallop Only', 'Stented-fen',
                                                                                                  'Fenestrated Stentgraft Branch (Branched TEVAR)',
#
#
                                                                                                  'Side-arm Stent-graft Branch'))) %>%
#
          mutate(R_RT_RENAL=factor(R_RT_RENAL, levels=c(0:9),
#
                                                                          labels=c('Patent, no intervention','Chronically Occluded',
#
                                                                                                  'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
#
                                                                                                  'Fen/scallop Only', 'Stented-fen',
#
                                                                                                  'Fenestrated Stentgraft Branch (Branched TEVAR)',
#
                                                                                                  'Side-arm Stent-graft Branch'))) %>%
#
         mutate(R\_SMA=factor(R\_SMA, levels=c(0:9),
                                                                          labels=c('Patent, no intervention','Chronically Occluded',
#
#
                                                                                                  'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
#
                                                                                                  'Fen/scallop Only', 'Stented-fen',
#
                                                                                                  'Fenestrated Stentgraft Branch (Branched TEVAR)',
#
                                                                                                  'Side-arm Stent-graft Branch')))
#
# ## ----- DEV_PROXZONE and DEV_DISTZONE filtering-----
# TEVAR<-TEVAR %>%
         mutate(distal_seal= DEV1_DISTZONE, prox_seal= DEV1_PROXZONE)
# for (i in 1:nrow(TEVAR)){
         if ((!(is.na(TEVAR$DEV2_DISTZONE[i])) & (!is.na(TEVAR$DEV2_DISTZONE[i]>TEVAR$DEV1_DISTZONE[i]))&
                       (TEVAR$DEV2 DISTZONE[i]>TEVAR$DEV1 DISTZONE[i]))) {
#
               TEVAR$distal seal[i] = TEVAR$DEV2 DISTZONE[i]}
#
#
          else if((is.na(TEVAR$DEV1 DISTZONE[i])) & (!(is.na(TEVAR$DEV2 DISTZONE[i])))){
                       TEVAR$distal_seal[i] = TEVAR$DEV2_DISTZONE[i]}
#
#
          if ((!(is.na(TEVAR$DEV3_DISTZONE[i])) & (!is.na(TEVAR$DEV3_DISTZONE[i]>TEVAR$DEV2_DISTZONE[i]))&
#
                       (TEVAR$DEV3_DISTZONE[i]>TEVAR$DEV2_DISTZONE[i]))) {
#
               TEVAR$distal_seal[i] = TEVAR$DEV3_DISTZONE[i]}
          if ((!(is.na(TEVAR$DEV4_DISTZONE[i])) & (!is.na(TEVAR$DEV4_DISTZONE[i]>TEVAR$DEV3_DISTZONE[i]))&
#
                       (TEVAR$DEV4_DISTZONE[i]>TEVAR$DEV3_DISTZONE[i]))) {
#
#
                TEVAR$distal_seal[i] = TEVAR$DEV4_DISTZONE[i]}
          if \ ((!(is.na(TEVAR\$DEV5\_DISTZONE[i])) \ \&\& \ (!is.na(TEVAR\$DEV5\_DISTZONE[i])) \&\& \ (!is.na(TEVAR\$DEV5\_DI
#
#
                       (TEVAR$DEV5_DISTZONE[i]>TEVAR$DEV4_DISTZONE[i]))) {
#
                TEVAR$distal_seal[i] = TEVAR$DEV5_DISTZONE[i]}
          if ((!(is.na(TEVAR$DEV6_DISTZONE[i])) & (!is.na(TEVAR$DEV6_DISTZONE[i]>TEVAR$DEV5_DISTZONE[i]))&
#
#
                       (TEVAR$DEV6_DISTZONE[i]>TEVAR$DEV5_DISTZONE[i]))) {
#
                TEVAR$distal_seal[i] = TEVAR$DEV6_DISTZONE[i]}
#
         }
# for (i in 1:nrow(TEVAR)){
         if ((!(is.na(TEVAR$DEV2 PROXZONE[i])) & (!is.na(TEVAR$DEV2 PROXZONE[i]<TEVAR$DEV1 PROXZONE[i]))&
#
                       (TEVAR$DEV2 PROXZONE[i] < TEVAR$DEV1 PROXZONE[i]))) {
               TEVAR$prox_seal[i] = TEVAR$DEV2_PROXZONE[i]}
#
          else \ if((is.na(TEVAR\$DEV1\_PROXZONE[i])) \ \& \ (!(is.na(TEVAR\$DEV2\_PROXZONE[i])))) \{ in (is.na(TEVAR\$DEV3\_PROXZONE[i])) \} \} 
#
#
                       TEVAR$prox_seal[i] = TEVAR$DEV2_PROXZONE[i]}
#
          if ((!(is.na(TEVAR$DEV3_PROXZONE[i])) & (!is.na(TEVAR$DEV3_PROXZONE[i]<TEVAR$DEV2_PROXZONE[i]))&
#
                       (TEVAR$DEV3_PROXZONE[i] < TEVAR$DEV2_PROXZONE[i]))) {
#
                TEVAR$prox_seal[i] = TEVAR$DEV3_PROXZONE[i]
          if \ ((!(is.na(TEVAR\$DEV4\_PROXZONE[i])) \ \&\& \ (!is.na(TEVAR\$DEV4\_PROXZONE[i] < TEVAR\$DEV3\_PROXZONE[i])) \ \&\& \ (!is.na(TEVAR\$DEV4\_PROXZONE[i]) \ \&\& \ (!is.na(TEVAR\$DEV4\_PROXZONE[i])) \ \&\& \ (!is.na(TEVAR
#
                       (TEVAR$DEV4_PROXZONE[i]<TEVAR$DEV3_PROXZONE[i]))) {
```

```
#
     TEVAR$prox_seal[i] = TEVAR$DEV4_PROXZONE[i]}
   if ((!(is.na(TEVAR$DEV5_PROXZONE[i])) & (!is.na(TEVAR$DEV5_PROXZONE[i]<TEVAR$DEV4_PROXZONE[i]))&
#
#
         (TEVAR$DEV5_PROXZONE[i] < TEVAR$DEV4_PROXZONE[i]))) {
#
      TEVAR$prox_seal[i] = TEVAR$DEV5_PROXZONE[i]}
#
  if ((!(is.na(TEVAR$DEV6_PROXZONE[i])) & (!is.na(TEVAR$DEV6_PROXZONE[i]<TEVAR$DEV5_PROXZONE[i]))&
#
         (TEVAR$DEV6_PROXZONE[i] < TEVAR$DEV5_PROXZONE[i]))) {
#
      TEVAR$prox_seal[i] = TEVAR$DEV6_PROXZONE[i]}
# }
#
## ----- variables cleaning, volume variables-----
TEVAR = TEVAR %>%
 mutate(REGIONID=factor(REGIONID)) %>%
 mutate(CENTERID=factor(CENTERID)) %>%
 mutate(PHYSICIANID=factor(PHYSICIANID))
## -----variables selection-----
FBVAR = TEVAR %>% select(
 PRESENTATION,
 # Patient demographic and co-morbidities
 AGE, AGECAT, GENDER, ETHNICITY, RACE, TRANSFER, PRIMARYINSURER, LIVINGSTATUS, PREOP_FUNCSTATUS, PRIOR
 # Operative Variables
 PRIOR_AORSURG, PATHOLOGY, PREOP_MAXAAADIA, URGENCY, PATHOLOGY_ANEURYSM_TYPE, PATHOLOGY_DISSECT_TYPE,
 DEAD, PROC_SURVIVALDAYS, LTF_NUM_REINT,TOTAL_LOS, POSTOP_LOS, AORDEV_TECHSUCC, CONVTOOPEN, LEAKATCOMP
 NUM TREATED BRANCHES, NUM TREATED RENALS, OCCLUDED RENAL, OCCLUDED SMA, OCCLUDED CELIAC, OCCLUDED LSUB,
 # Volume variables,
 REGIONID, CENTERID, PHYSICIANID)
## ----- store as new dataset 'FBVAR' to ensure easier access for modelling-----
write.csv(FBVAR,path_lily[5])
#write.csv(FBVAR, path_jenn[5])
```