Méthodes non-linéaires : Polynômes, modèles par morceaux, splines et GAM

Nicolas Verzelen, Joseph Salmon

INRA / Université de Montpellier

Méthodes non-linéaires

<u>En pratique</u> : modèle linéaire pas toujours bien adapté, mais souvent l'hypothèse linéaire est raisonnable

Alternatives :

- polynômes (paramétrique)
- ► fonctions en escalier (paramétrique)
- splines (paramétrique)
- ► régression locale (non-paramétrique)
- modèles additifs généralisés (non-paramétrique)

Flexibilité et interprétabilité!

Modèle polynomial

Observations : y_1, \ldots, y_n

Variables explicatives : x_1, \ldots, x_n

Modèle polynomiale (degré
$$D$$
) : $y_i \approx \beta_0^\star + \sum_{d=1}^D \beta_d^\star x_i^d$

 ${\sf Mod\`ele\ matriciel}\ :\qquad {\bf y} = X{\boldsymbol \beta}^\star + {\boldsymbol \varepsilon}$

$$\mathsf{avec} \; X = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^D \\ 1 & x_2 & x_2^2 & \dots & x_2^D \\ 1 & x_3 & x_3^2 & \dots & x_3^D \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^D \end{pmatrix} \; : \; \; \mathsf{matrice} \; \mathsf{de} \; \mathbf{Vandermonde}$$

où
$$X_{i,j} = x_i^{j-1}$$
 et $\boldsymbol{\beta}^{\star} = (\beta_0^{\star}, \dots, \beta_D^{\star})^{\top} \in \mathbb{R}^{D+1}$

Rem: D+1 paramètres pour un polynôme de degré D

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Régression polynomiale : en pratique

- ightharpoonup créer des variables à partir de $x:x^2,x^3,\ldots,x^D$
- utiliser une méthode linéaire (e.g., OLS dans sklearn)
- ► <u>Incertitude</u> : estimation de la variance / intervalles de confiance identiques au cas du modèle linéaire
- choix de paramètre par validation croisée

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Régression polynomiale : + et -

Avantages

- flexibilité pour de faible degrés
- ▶ utile en estimation non-paramétrique (1) (2)

Inconvénients

- les polynômes sont des fonctions globales (non localisées)
- effet de bord et oscillations (mauvaise prédiction en dehors de la gamme de valeurs observées)
- le nombre de paramètres à estimer augmente vite avec le degré (et la dimension)

^{(1).} P. J. GREEN et B. W. SILVERMAN. *Nonparametric regression and generalized linear models*. T. 58. Monographs on Statistics and Applied Probability. A roughness penalty approach. London: Chapman & Hall, 1994, p. xii+182.

^{(2).} J. FAN et I. GIJBELS. Local polynomial modelling and its applications. T. 66. Monographs on Statistics and Applied Probability. London: Chapman & Hall, 1996, p. xvi+341.

Plusieurs covariables : p = 2 et D = 2

Considérerons le cas $x_i \in \mathbb{R}^2$: $x_i = [a_i, b_i]$. Un polynôme d'ordre 2 requiert de fixer :

$$[1, a_i, b_i, a_i^2, a_i b_i, b_i^2]$$

Termes $a_i b_i$: interactions entre première et seconde variable

Modélisation compacte :

$$y_i = \theta_0 + \theta^\top x_i + \frac{1}{2} x_i^\top \Theta x_i + \varepsilon_i$$
$$y_i = \theta_0 + \sum_{j=1}^p \theta_j x_{i,p} + \frac{1}{2} \sum_{1 \le j \le k \le p} \Theta_{j,k} x_{i,j} x_{i,k} + \varepsilon_i$$

où Θ est une matrice (symétrique) $p \times p$

Plusieurs covariables : p = 2 et D = 3

Considérerons le cas $x_i \in \mathbb{R}^2$: $x_i = [a_i, b_i]$. Un polynôme d'ordre 3 requiert de fixer :

$$[1, a_i, b_i, a_i^2, a_i b_i, b_i^2, a_i^3, a_i^2 b_i, a_i b_i^2, b_i^3]$$

Modélisation compacte :

$$y_{i} = \theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,p} + \frac{1}{2} \sum_{1 \leq j \leq k \leq p} \Theta_{j,k} \cdot x_{i,j} x_{i,k}$$
$$+ \frac{1}{6} \sum_{1 \leq j \leq k \leq \ell \leq p} \Theta_{j,k,\ell} \cdot x_{i,j} x_{i,k} x_{i,\ell} + \varepsilon_{i}$$

où Θ est une matrice (symétrique) $p \times p$, et Θ est un tenseur (symétrique) $p \times p \times p$

Représentation de tenseur 1D

Cas vectoriel

Représentation de tenseur 2D

Cas matriciel

Représentation de tenseur 3D

Cas tensoriel

Autre familles de fonctions utilisée

- Polynômes, dictionnaire de fonction : x^1, x^2, \dots, x^D cf. sklearn.preprocessing.PolynomialFeatures
- ▶ fonctions en escalier : $\mathbb{1}_{\{x>t_1\}}, \dots, \mathbb{1}_{\{x>t_K\}}$ cf. pandas.cut

Choix du nombre de parties

Choix du nombre de parties

Fonctions en escalier (suite)

- Crée une suite de variables binaires représentant chaque groupe
- Le choix des points de rupture ou des **nœuds** peut être problématique.
 - Pour créer des non-linéarité, des alternatives plus lisses sont possibles, par exemple des **splines**

Splines (: cerces)

Définition:

Un **spline** f est une fonction polynomiale par morceaux sur un intervalle $[a,b], f:[a,b] \to \mathbb{R}$, composé de n sous-intervalles $[x_{i-1},x_i]$ avec $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. La restriction de f sur chaque intervalle $[x_{i-1},x_i]$ est un polynôme $P_i:[x_{i-1},x_i]\to \mathbb{R}$, ainsi $f(x)=P_1(x), \quad x_0 \le t < x_1$ $f(x)=P_2(x), \quad x_1 \le t < x_2$

$$f(x) = P_i(x), \quad x_{n-1} \le t \le x_n.$$

Le plus haut degré des polynômes P_i est appelé l'ordre du spline f, et les x_i sont appelé les nœuds (\mathbb{R} : knots)

Rem: les plus populaires sont les splines (cubiques) d'ordre 3 Rem: on privilégie des splines lisses : C^0 , C^1 , C^2 , etc.

statistiques

▶ computer vision, cf. courbes de Bézier dans Inkscape et autres logiciels de dessin vectoriel

- statistiques
- ▶ computer vision, cf. courbes de Bézier dans Inkscape et autres logiciels de dessin vectoriel
- analyse numérique

- statistiques
- computer vision, cf. courbes de Bézier dans Inkscape et autres logiciels de dessin vectoriel
- ▶ analyse numérique
- etc.

- statistiques
- computer vision, cf. courbes de Bézier dans Inkscape et autres logiciels de dessin vectoriel
- analyse numérique
- etc.

Algorithmes

Approches standards pour ajuster des splines quand on observe des points (x_i,y_i) pour $i=1,\ldots,n$: chercher le spline avec courbure minimum, *i.e.*, résoudre :

$$\hat{f} \stackrel{\Delta}{=} SP_{\lambda}(\mathbf{y}) \in \underset{f \text{ est un spline}}{\arg\min} \left(\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \int_{a}^{b} |f''(t)|^2 dt \right)$$

 $\underline{\text{Fait}}$: la solution est atteinte pour un spline cubique, et peut être obtenue par un moindre carré régularisé, avec $\Omega \in \mathbb{R}^{n \times n}$

$$\underset{q}{\operatorname{arg\,min}} \|\mathbf{y} - g\|^2 + \lambda g^{\top} \Omega g$$

voir détails dans Ch. 2, Green and Silverman (1994)

Note : avec cette régularisation les splines ont pour nœuds les x_i

Visual

Choix du paramètre de lissage

On peut utiliser la Validation Croisée (CV) pour choisir le niveau de lissage

Choix du paramètre de lissage

On peut utiliser la Validation Croisée (CV) pour choisir le niveau de lissage

MSE Spline = 0.2498 vs. MSE Polynomials = 2.1899

Modèles additifs pour la régression

Avec les des fonctions réelles, *i.e.*,
$$f_j:\mathbb{R}\to\mathbb{R}$$
, le modèle s'écrit
$$y_i=\sum_{j=1}^p f_j(x_{i,j})+\varepsilon_i\quad \text{ou}\quad \mathbf{y}=\sum_{j=1}^p f_j(\mathbf{x}_j)+\varepsilon$$

avec la convention
$$f_j(\mathbf{x}_j) = \begin{pmatrix} f_j(x_{1,j}) \\ \vdots \\ f_j(x_{n,j}) \end{pmatrix}$$
 avec $\mathbf{x}_j = \begin{pmatrix} x_{1,j} \\ \vdots \\ x_{n,j} \end{pmatrix}$

Rem: potentiellement un des f_i encode la variable constante

Rem: GAM (Generalized Additive Models): extension aux modèles linéaires généralisés, e.g., régression logistique,

$$g(y_i) = \sum_{j=1}^p f_j(x_{i,j})$$
, avec g une fonction

Input :
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$$
, $\mathbf{y} \in \mathbb{R}^n$

Algorithm: Rétro-ajustement d'un modèle additif

Input : $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n$

Initialize : $f_1 \equiv 0, \dots, f_p \equiv 0$ and $\mathbf{r} = \mathbf{y}$ (residual)

Algorithm: Rétro-ajustement d'un modèle additif

Input : $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$, $\mathbf{y} \in \mathbb{R}^n$

Initialize : $f_1 \equiv 0, \dots, f_p \equiv 0$ and $\mathbf{r} = \mathbf{y}$ (residual)

while not converged do

```
Input : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \mathbf{y} \in \mathbb{R}^n
Initialize : f_1 \equiv 0, \dots, f_p \equiv 0 and \mathbf{r} = \mathbf{y} (residual) while not converged do
```

$$\quad \text{for } j=1,\dots,p \text{ do}$$

```
\begin{array}{ll} \textbf{Input} & : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n \\ \textbf{Initialize} : f_1 \equiv 0, \dots, f_p \equiv 0 \ \text{and} \ \mathbf{r} = \mathbf{y} \ \text{(residual)} \\ \textbf{while} \ \textit{not converged do} \\ & | \ \mathbf{for} \ j = 1, \dots, p \ \mathbf{do} \\ & | \ \mathbf{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j)) \end{array}
```

```
\begin{aligned} & \text{Input} \quad : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n \\ & \text{Initialize} : f_1 \equiv 0, \dots, f_p \equiv 0 \ \text{and} \ \mathbf{r} = \mathbf{y} \ \text{(residual)} \\ & \text{while not converged do} \\ & \text{for} \ j = 1, \dots, p \ \text{do} \\ & & \text{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j)) \\ & & \text{f}_j \leftarrow SP_{\lambda_j}(\mathbf{r}) \end{aligned} \qquad \qquad \text{// Partial residual update} \\ & \text{f}_j \leftarrow SP_{\lambda_j}(\mathbf{r}) \qquad \qquad \text{// update with spline (param. $\lambda_j$)} \end{aligned}
```

```
 \begin{array}{ll} \textbf{Input} & : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n \\ \textbf{Initialize} : f_1 \equiv 0, \dots, f_p \equiv 0 \ \text{and} \ \mathbf{r} = \mathbf{y} \ \text{(residual)} \\ \textbf{while} \ \textit{not converged do} \\ & | \ \textbf{for} \ j = 1, \dots, p \ \textbf{do} \\ & | \ \mathbf{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j)) & \text{ // Partial residual update} \\ & | \ f_j \leftarrow SP_{\lambda_j}(\mathbf{r}) & \text{ // update with spline (param. $\lambda_j$)} \\ & | \ \mathbf{r} \leftarrow \mathbf{r} - f_j(\mathbf{x}_j)) & \text{ // Partial residual un-update} \\ \end{array}
```

Algorithm: Rétro-ajustement d'un modèle additif

Rem: Rétro-ajustement = descente par coordonnée

GAM en action

où
$${f y}=f({f x})+arepsilon$$
 avec $f({f x})=f_1(x_1)+f_2(x_2)+f_3(x_3)$ et
$$f_1(x)=\cos(3x)$$

$$f_2(x)=x^3$$

$$f_3(x)=3\log(1+|x|)$$

GAM en action

où
$${f y}=f({f x})+arepsilon$$
 avec $f({f x})=f_1(x_1)+f_2(x_2)+f_3(x_3)$ et
$$f_1(x)=\cos(3x)$$

$$f_2(x)=x^3$$

$$f_3(x)=3\log(1+|x|)$$

Avantages et inconvénients des GAM

Avantages

- peut modéliser des effets non-linéaire automatiquement
- interprétation possible : fonctions 1D (visualisables!)
- peut s'étendre au cas d'interactions d'ordre plus élevées (p petit)

Inconvénients

- Critère d'arrêt pas si simple (non-convexe)
- ► Calibrage difficile : au moins un paramètre par variable

Plus de détails sur les GAM:

- ► Vidéo: https://vimeo.com/125940125
- ► Livre : Hastie and Tibshirani (1990)

Plus de détails sur les GAM:

► Vidéo: https://vimeo.com/125940125

► Livre : Hastie and Tibshirani (1990)

References I

- FAN, J. et I. GIJBELS. Local polynomial modelling and its applications. T. 66. Monographs on Statistics and Applied Probability. London: Chapman & Hall, 1996, p. xvi+341.
- GREEN, P. J. et B. W. SILVERMAN. *Nonparametric regression and generalized linear models*. T. 58. Monographs on Statistics and Applied Probability. A roughness penalty approach. London: Chapman & Hall, 1994, p. xii+182.
- HASTIE, T. J. et R. J. TIBSHIRANI. Generalized additive models. T. 43. CRC press, 1990.