Rozdział 1

Odległości na przestrzeni ciągów znaków

1.1. Podstawowe definicje

CZY TO JAKO CIĄGŁY TEKST CZY WSZYSTKO PISAĆ W DEFINICJI???

Niech $\Sigma = \{\Sigma_i\}$ będzie skończonym uporządkowanym alfabetem o wielkości $|\Sigma|$. Napisem nazywamy skończony ciąg znaków z Σ . Zbiór wszystkich napisów o długości n nad Σ jest oznaczony przez Σ^n , podczas gdy przez $\Sigma^* = \bigcup_{n=1}^{\infty} \Sigma^n$ rozumiemy zbiór wszystkich napisów utworzonych ze znaków z Σ [1].

O ile nie podano inaczej, używamy zmiennych $s,\ t,\ u,\ v,\ w,\ x,\ y$ jako oznaczenie napisów oraz $a,\ b,\ c$ do oznaczenia napisów jednoznakowych albo po prostu znaków. Pusty napis jest oznaczany przez ε . Przez |s|, dla każdego napisu $s\in\Sigma^*$, rozumiemy jego długość, czyli liczbę znaków w napisie. Ciąg zmiennych oznaczających napisy i/lub znaki oznaczają ich złączenie [1].

Poprzez s_i rozumiemy i-ty znak z napisu s, dla każdego $i \in \{1, ..., |s|\}$. Podciąg kolejnych przylegających do siebie znaków z napisu nazywamy podnapisem. Podnapisem napisu s, który zaczyna się od i-tego znaku, a kończy na j-tym znaku, oznaczamy przez $s_{i:j}$, tj. $s_{i:j} = s_i s_{i+1} ... s_j$ dla i < j. Zakładamy również, że jeśli j < i, to $s_{i:j} = \varepsilon$ [1, 7].

Załóżmy, że napis s jest resprezentacją złączenia trzech, być może pustych, podnapisów w, x i y, tj. s=wxy. Wówczas podnapis w nazywamy prefiksem, natomiast podnapis y – sufiksem [1].

Podnapis złożony z kolejnych znaków napisu, o ustalonej długości q jest nazywany q-gramem. q-gramy o q równym jeden, dwa lub trzy mają specjalne nazwy: unigram, bigram i trigram. Jeśli q > |s|, to q-gramy napisu s są napisami pustymi [1].

Przykład 1.1. Niech Σ będzie alfabetem złożonym z 26 małych liter alfabetu łacińskiego oraz niech s= ela. Wówczas mamy $|s|=3,\ s\in\Sigma^3$ oraz $s\in\Sigma$. Co więcej, mamy $s_1=$ e,

 $s_2 = 1$, $s_3 = a$. Podnapis 1 : 2 napisu s to $s_{1:2} = el$. W napisie tym mamy do czynienia jedynie z q-gramami o q równym jeden, dwa oraz trzy: e, 1, a; el, 1a oraz ela odpowiednio.

1.2. Odległości na napisach oparte na operacjach edycyjnych

HISTORIA ODLEGLOSCI EDYCYJNYCH?

Odległość edycyjna ED(s,t) pomiędzy dwoma napisami s i t to minimalna liczba operacji edycyjnych potrzebna do przetworzenia s w t (i ∞ , gdy taki ciąg nie istnieje) [4]. Ścisłą odległością edycyjną nazywamy minimalną liczbę nie nakładających się operacji edycyjnych, które pozwalają przekształcić jeden napis w drugi, i które nie przekształcają dwa razy tego samego podnapisu [1].

Napis może zostać przetworzony w drugi poprzez ciąg przekształceń jego podnapisów. Ten ciąg nazywany jest ścieżką edycyjną (śladem edycji?), podczas gdy przekształcenia są nazywane bazowymi operacjami edycyjnymi. Bazowe operacje edycyjne, które polegają na mapowaniu napisu s w napis t, są oznaczane przez $s \to t$. Zbiór wszystkich bazowych operacji edycyjnych oznaczamy przez \mathbb{B} [1].

Bazowe operacje edycyjne są zazwyczaj ograniczone do:

- usunięcie znaku: 1 $\rightarrow \varepsilon$, tj. usunięcie litery 1 , np. ela \rightarrow ea,
- wstawienie znaku: $\varepsilon \to k$, tj. wstawienie litery k, np. ela \to elka,
- zamiana znaku: $e \rightarrow a$, tj. zamiana litery e na a, np. ala \rightarrow ela,
- \bullet transpozycja: el \to le, tj. przestawienie dwóch przylegających liter e i 1, np. ela \to lea.

Własność 1.1. Zakładamy, że \mathbb{B} spełnia następujące własności [1]:

- $je\acute{s}li\ s \to t \in \mathbb{B}$, to odwrotna operacja $t \to s$ również należy do \mathbb{B} ;
- $a \to a \in \mathbb{B}$ (operacja identycznościowa dla jednego znaku należy do \mathbb{B});
- ullet zbiór $\Bbb B$ jest zupełny: dla dwóch dowolnych napisów s i t, istnieje ślad edycji, który przekształca s w t.

Zauważmy, że zbiór B nie musi być skończony.

Podobieństwo dwóch napisów może być wyrażone jako długość scieżki edycyjnej, dzięki której jeden napis zostaje przekształcony w drugi:

Definicja 1.1. Mając dany zbiór bazowych operacji edycyjnych, odległość edycyjna ED(s,t) jest równa długości najkrótszej ścieżki edycyjnej, która przekształca napis s w napis t. Najkrótsza ścieżka, która przekształca napis s w napis t jest nazywana optymalną ścieżką edycyjną [1].

Przykładowe odległości edycyjne: Hamminga, najdłuższego wspólnego podnapisu (longest common substring), Levenshteina, optymalnego dopasowania napisów (optimal string alignment), Damareu-Levenshteina.

Przykład 1.2. JAKIŚ PRZYKŁĄD SCIEZKI I OPTYMALNEJ SCIEZKI.

Odległość edycyjna może być również zostać uogólniona na minimalny koszt, dzięki któremu przekształcamy jeden napis w drugi. Można to zrobić na dwa sposoby. Po pierwsze, bazowe operacje edycyjne mogą mieć przydzielone koszty (wagi) $\delta(a \to b)$ [8], dając na przykład transpozycji mniejszy koszt niż operacji wstawienia znaku. Dalej, można rozszerzyć funkcję kosztu

$$\delta$$
 na ścieżkę edycyjną $E = a_1 \to b_1, a_2 \to b_2, \dots, a_{E|} \to b_{|E|}$ poprzez $\delta(E) = \sum_{i=1}^{|E|} \delta(a_i \to b_i)$ [1].

Odtąd poprzez odległość między napisem s a napisem t będzie rozumiany minimalny koszt ze wszystkich możliwych ścieżek przekształcających s w t. Odległości zdefiniowane w ten sposób zazwyczaj są nazwyane uogólnionymi odległościami edycyjnymi.

Po drugie, zbiór operacji edycyjnych $\mathbb B$ może zostać rozszerzony o ważone zamiany (substytucje) (pod)napisów, zamiast operacji edycyjnych wykonywanych na pojedynczych znakach [6]. Odległości zdefiniowane w ten sposób zazwyczaj są nazwyane rozszerzonymi odległościami edycyjnymi. Przykładowo, $\mathbb B$ może zawierać operację $x \to ks$ o koszcie jednostkowym. Wówczas rozszerzona odległość pomiędzy napisami xero i ksero wynosi jeden, podczas gdy standardowa odległość wyniosłaby dwa (NIE WIEM CZY NIE TRZEBA TU COŚ WIECEJ POWIEDZIEC, NP, PODAC DEFINICJI ODLEGLOSCI JAK TO JEST W BOYTSOVIE) [1].

Definicja 1.2. Mając dany zbiór bazowych operacji edycyjnych $\mathbb B$ oraz funkcję δ , która nadaje koszt wszystkim bazowym operacjom edycyjnym z $\mathbb B$, ogólna(?) odległość edycyjna pomiędzy napisami s i t jest zdefiniowana jako minimalny koszt ścieżki edycyjnej, która przekształca s w t [1].

Własność 1.2. Zakładamy, że funkcja kosztu $\delta(s \to t)$ ma następujące własności [1]:

- $\delta(s \to t) \in \mathbb{R}$ (koszt operacji jest liczbą rzeczywistą),
- $\delta(s \to t) = \delta(t \to s)$ (symetria),
- $\delta(s \to t) > 0$, $\delta(s \to s) = 0$ i $\delta(s \to t) = 0 \Rightarrow s = t$ (pozytywna określoność ??),
- $\forall \gamma > 0$ zbiór bazowych operacji $\{s \to t \in \mathbb{B} | \delta(s \to t) < \gamma\}$ jest skończony (skończoność podzbioru bazowych operacji, których koszt jest ograniczony z góry).

Zauważmy, że ostatnia własność jest automatycznie spełniona dla skończonego zbioru B.

Twierdzenie 1.3. Z własności 1.1 i 1.2 wynika, że:

- dla każdych dwóch napisów s i t, istnieje ścieżka o minimalnym koszcie, tj. właściwie (prawdziwie, odpowiednio?) zdefiniowana odległość edycyjna z s do t [1],
- ogólna odległość edycyjna z definicji 1.2 jest metryką [8].

Dowód. Żeby udowodnić, że ED(s,t) jest metryką, musimy pokazać, że ED(s,t) istnieje i jest dodatnio określona, symetryczna oraz subaddytywna (tj. spełnia nierówność trójkata).

Z własności 1.2 wynika, że funkcja kosztu jest nieujemna (JA TEGO NIW WIDZE) i że tylko identyczność ma koszt równy zero. Stąd, bez utraty ogólności, możemy rozważyć jedynie takie ścieżki edycyjne, które nie zawierają operacji identycznościowych. Zatem, jeśli s=t, to jedyna optymalna ścieżka (która nie zawiera operacji identycznościowych) jest pusta i ma

zerowy koszt. Jeśli $s \neq t$, z zupełności zbioru bazowych operacji edycyjnych wynika, że istnieje jedna lub więcej ścieżek edycyjnych, które przekształcają s w t. Wszystkie te ścieżki składają się z operacji edycyjnych o ściśle dodatnim koszcie.

Niech γ będzie kosztem ścieżki przekształcającej s w t. Rozważmy zbiór A ścieżek edycyjnych, które przekształcają s w t i których koszt jest ograniczony z góry przez γ . Zbiór A jest niepusty i składa się z operacji edycyjnych o dodatnim koszcie mniejszym niż γ . Zbiór operacji bazowych, których koszt jest ograniczony z góry przez γ jest skończony, co dowodzi, że zbiór A jest również skończony. Ponieważ A jest niepusty i skończony, to ścieżki edycyjne o mininalnym (dodatnim) koszcie istnieją i należą do A. Stąd, ED(s,t)>0 dla $s\neq t$, tj. odległość edycyjna jest dodatnio określona.

Žeby udowodnić symetrię odległości edycyjnej, rozważmy optymalną ścieżkę E, która przekształca s w t, oraz odpowiadającą jej odwrotną ścieżkę E_r , która przekształca t w s. Równość ich kosztów $\delta(E) = \delta(E_r)$ wynika z symetrii funkcji kosztu i symetrii zbioru operacji bazowych \mathbb{B} .

Żeby pokazać subaddytywność, rozważmy optymalną ścieżkę E_1 , która przekształca $s\le t$, optymalną ścieżkę E_2 , która przekształca $t\le u$, oraz złożenie ścieżek E_1E_2 , które przekształca $t\le u$. Z tego, że $\delta(E_1E_2)=\delta(E_1)+\delta(E_2)=ED(s,t)+ED(t,u)$ oraz $\delta(E_1E_2)\geq ED(s,u)$ wynika, że $ED(s,t)+ED(t,u)\geq ED(s,u)$.

Odległość edycyjna jest metryką, nawet gdy funkcja kosztu δ nie jest subaddytywna. Co więcej, ponieważ ciąg nakładających się operacji, które przekształcają s w t, mogą mieć mniejszy koszt niż $\delta(s \to t)$, $\delta(s \to t)$ może być większe niż ED(s,t). Rozważmy, na przykład, następujący alfbet: {a, b, c}, gdzie symetria i brak subaddytywności funkcji δ jest zdefiniowana następująco:

$$\begin{split} \delta(\mathbf{a} \to \mathbf{c}) &= \delta(\mathbf{b} \to \mathbf{c}) = 1 \\ \delta(\mathbf{a} \to \varepsilon) &= \delta(\mathbf{b} \to \varepsilon) = \delta(\mathbf{c} \to \varepsilon) = 2 \\ \delta(\mathbf{a} \to \mathbf{b}) &= 3 \end{split}$$

Można zobaczyć, że $3 = \delta(a \rightarrow b) > \delta(a \rightarrow c) + \delta(c \rightarrow b) = 2$. Stąd optymalna ścieżka edycyjna $(a \rightarrow c), c \rightarrow b)$ przekształca a w b z kosztem równym 2.

Definicja 1.3. Odległością Hamminga [2] na Σ^* nazywamy:

$$d_{hamming}(s,t) = \begin{cases} \sum_{i=1}^{|s|} [1 - \delta(s_i, t_i)], & gdy \ |s| = |t|, \\ \infty, & w \ przeciwnym \ przypadku, \end{cases}$$

gdzie

$$\delta(s_i, t_i) = \begin{cases} 1, & gdy \ s_i = t_i, \\ 0, & w \ przeciwnym \ przypadku. \end{cases}$$

Łatwo zauważyć, że odległość Hamminga spełnia definicję metryki. Intuicyjnie rzecz biorąc odległość Hamminga zlicza liczbę indeksów, na których dwa napisy mają różny znak. Odległość ta przyjmuje wartości ze zbioru $\{0,\ldots,|s|\}$, gdy |s|=|t|, natomiast jest równa nieskończoności, gdy napisy mają różne długości.

[PIĘKNY RYSUNEK??]

Przykład 1.3. Odległość Hamminga między słowami koza i foka wynosi $d_{hamming}(koza, foka) = 2$, natomiast między słowami koza i foczka wynosi ona $d_{hamming}(koza, foczka) = \infty$.

Definicja 1.4. Odległością najdłuższego wspólnego podnapisu 5 nazywamy:

$$d_{lcs}(s,t) = \left\{ \begin{array}{ll} 0, & gdy \; s = t = \varepsilon, \\ d_{lcs}(s_{1:|s|-1}, t_{1:|t|-1}), & gdy \; s_{|s|} = t_{|t|}, \\ 1 + min\{d_{lcs}(s_{1:|s|-1}, t), d_{lcs}(s, t_{1:|t|-1})\}, & w \; przeciwnym \; przypadku, \end{array} \right.$$

Odległość najdłuższego wspólnego podnapisu również spełnia definicję metryki. Przyjmuje wartości ze zbioru $\{0,|s|+|t|\}$, przy czym maksimum jest osiągane, gdy s i t nie mają ani jednego wspólnego znaku. Odległość ta zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi.

Przykład 1.4. Odległość najdłuższego wspólnego podnapisu między słowami koza i foka wynosi: $d_{lsc}(\text{koza}, \text{foka}) = 4$, bo koza $\xrightarrow{us. \ k}$ oza $\xrightarrow{us. \ z}$ oa $\xrightarrow{wst. \ f}$ foa $\xrightarrow{wst. \ k}$ foka.

Powyższy przykład pokazuje, że w ogólności nie ma unikalnej najkrótszej drogi transformacji jednego napisu w drugi, gdyż można zamienić kolejność usuwania (lub wstawiania) znaków i również uzyskać odlegość równą 4.

Jak sugeruje nazwa, odległość najdłuższego wspólnego podnapisu, ma też inną interpretację. Poprzez wyrażenie najdłuższy wspólny podnapis rozumiemy najdłuższy ciąg utworzony przez sparowanie znaków z s i t nie zmieniając ich porządku. Wówczas odległość ta jest rozumiana jako liczba niesparowanych znaków z obu napisów. W powyższym przykładzie może to być zwizualizowane następująco:

[PIĘKNY RYSUNEK??]

Jak widać na rysunku, litery |k|, |z|, |f| i |k| pozostają bez pary, dając odległość równą 4.

Definicja 1.5. Uoqólnioną odległością Levenshteina [3] na Σ^* nazywamy:

$$d_{lv}(s,t) = \left\{ \begin{array}{ll} 0, & gdy \; s = t = \varepsilon, \\ \min \{ & d_{lv}(s,t_{1:|t|-1}) + w_1, \\ & d_{lv}(s_{1:|s|-1},t) + w_2, \\ & d_{lv}(s_{1:|s|-1},t_{1:|t|-1}) + [1 - \delta(s_{|s|},t_{|t|})]w_3 \\ & \}, & w \; przeciwnym \; przypadku, \end{array} \right.$$

 $gdzie \ w_1, w_2 \ i \ w_3 \ to \ niezerowe \ liczby \ rzeczywiste, \ oznaczające \ kary \ za \ usunięcie, \ wstawienie \ oraz \ zamiane \ znaku.$

Odległość ta zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego napisu w drugi. Gdy za wagi przyjmie się 1 mamy do czynienia ze zwykłą odległością Levenshteina, np. $d_{lv}(\mathtt{koza},\mathtt{foka}) = 2$, bo koza $\frac{zm.\ k\ na\ f}{1}$ foza $\frac{zm.\ z\ na\ k}{1}$ foka. Powyższy przykład ilustruje, że dodatkowa elastyczność w porównaniu do odległości najdłuższego wspólnego podnapisu, daje mniejszą wartość odległości między napisami, jako że potrzebujemy jedynie dwóch zamian znaków [7].

Gdy za wagi przyjmiemy np. (0.1, 1, 0.3), to $d_{lv}(koza, foka) = 0.6$, bo koza $\xrightarrow{zm. \ k \ na \ f}$ foza $\xrightarrow{zm. \ z \ na \ k}$ foka.

Uogólniona odległość Levenshteina spełnia definicję metryki, gdy $w_1 = w_2$. W przeciwnym przypadku nie spełnia ona założenia o symetrii, tj. podpunktu ?? definicji ??. Jednakowoż, symetria zostaje zachowana przy jednoczesnej zamianie s i t oraz w_1 i w_2 , jako że liczba usunięć znaków przy przetwarzaniu napisu s w napis t jest równa liczbie wstawień znaków przy przetwarzaniu napisu t w napis s [7]. Dobrze obrazuje to następujący przykład.

Przykład 1.5. Przyjmijmy za $(w_1, w_2, w_3) = (0.1, 1, 0.3)$. Wówczas uogólniona odległość Levenshteina dla napisów koza i foczka wynosi:

$$d_{lv}(\text{koza}, \text{foczka}) = 0.5, \tag{1.1}$$

bo

koza
$$\xrightarrow[0.3]{zm.\ k\ na\ f}$$
 foza $\xrightarrow[0.1]{wst.c}$ focza $\xrightarrow[0.1]{wst.k}$ foczka,

natomiast

$$d_{lv}(\texttt{foczka}, \texttt{koza}) = 2.3, \tag{1.2}$$

bo

$$\texttt{foczka} \xrightarrow[0.3]{\textit{zm. } f \ na \ k} \texttt{koczka} \xrightarrow[1]{\textit{us.} c} \texttt{kozka} \xrightarrow[1]{\textit{us.} k} \texttt{koza}.$$

Gdy za wagi (w_1, w_2, w_3) przyjmiemy (1, 0.1, 0.3), to uogólniona odległość Levenshteina wynosi:

$$d_{lv}(koza, foczka) = 2.3,$$

bo

koza
$$\xrightarrow[0.3]{zm.\ k\ na\ f}$$
 foza $\xrightarrow[1]{wst.\ c}$ focza $\xrightarrow[1]{wst.\ k}$ foczka,

czyli analogicznie, jak w przypadku 1.2. Natomiast

$$d_{lv}(foczka, koza) = 0.5,$$

bo

$$\texttt{foczka} \xrightarrow[0.3]{zm. \ f \ na \ k} \texttt{koczka} \xrightarrow[0.1]{us. c|} kozka \xrightarrow[0.1]{us. \ k} \texttt{koza},$$

czyli analogicznie, jak w przypadku 1.1.

Definicja 1.6. Odległościa optymalnego dopasowania napisów $na \Sigma^*$ nazywamy:

$$d_{osa}(s,t) = \begin{cases} 0, & gdy \ s = t = \varepsilon, \\ min \{ \\ d_{osa}(s,t_{1:|t|-1}) + w_1, \\ d_{osa}(s_{1:|s|-1},t) + w_2, \\ d_{osa}(s_{1:|s|-1},t_{1:|t|-1}) + [1 - \delta(s_{|s|},t_{|t|})]w_3 \\ d_{osa}(s_{1:|s|-2},t_{1:|t|-2}) + w_4, \ gdy \ s_{|s|} = t_{|t|-1}, s_{|s|-1} = t_{|t|} \\ \}, & w \ przeciwnym \ przypadku, \end{cases}$$

 $gdzie \ w_1, w_2, \ w_3 \ iw_4 \ to \ niezerowe \ liczby \ rzeczywiste, \ oznaczające \ kary \ za \ odpowiednio \ usunięcie, \ wstawienie, \ zamianę \ oraz \ transpozycję \ znaków.$

Odległość optymalnego dopasowania napisów jest bezpośrednim rozszerzeniem odległości Levenshteina, która zlicza również liczbę transpozycji przylegających znaków, potrzebnych do przetworzenia jednego napisu w drugi. W przeciwieństwie do wcześniej zaprezentowanych odległości, nie spełnia ona nierówności trójkąta, tj. podpunktu ?? z definicji ?? [7]:

$$2 = d_{osa}(ba, ab) + d_{osa}(ab, acb) \le d_{osa}(ba, acb) = 3,$$

gdyż

$$ba \xrightarrow{transp. b \ i \ a} ab + ab \xrightarrow{wst.c} acb,$$

natomiast

ba
$$\xrightarrow{us. b}$$
 a $\xrightarrow{wst. c}$ ac $\xrightarrow{ust. b}$ acb.

W ostatnim przykładzie, zmniejszenie odległości poprzez zamianę liter |a| i |b|, a następnie wstwienie litery |c| spowodowałoby dwukrotne przekształcenie tego samego podnapisu. Z tego powodu odległość optymalnego dopasowania napisów bywa również nazywana ścistą odległością Damerau-Levenshteina i jest często mylona z właściwą odległością Damerau-Levenshteina. Ta ostatnia pozwala na przekształcanie tego samego podnapisu wielokrotnie i jest metryką w rozumieniu definicjij ??, ale nie spełnia założenia o nie przekształcaniu wielokrotnie tego samego podnapisu [7].

[MIARA DAMERAU-LEVENSHTEINA??? WTEDY ZMIENIC DEFINICJE O NIEPRZE-RABIANIU 2 RAZY TEGO SAMEGO PODNAPISU]

W przypadku odległości Levenshteina i odległości optymalnego dopasowania napisów, maksymalna odległość między napisami s i t wynosi $max\{|s|,|t|\}$. Jednakowoż, gdy liczba dopuszczalnych operacji edycyjnych rośnie, to liczba dopuszczalnych ścieżek między napisami wzrasta, co pozwala ewentualnie zmiejszyć odległość między napisami. Dlatego relację między zaprezentowanymi powyżej odległościami można podsumować następująco [7]:

$$\infty \ge |s| \ge d_{hamming}(s,t)$$

$$|s| + |t| \ge d_{lcs}(s,t)$$

$$\max\{|s|,|t|\}$$

$$\ge d_{lv}(s,t) \ge d_{osa}(s,t) \ge 0.$$

Literatura

- [1] Leonid Boytsov. Indexing methods for approximate dictionary searching: Comparative analysis. J. Exp. Algorithmics, 16:1.1:1.1-1.1:1.91, Maj 2011.
- [2] R. W. Hamming. Error Detecting and Error Correcting Codes. *Bell System Technical Journal*, 29:147–160, 1950.
- [3] V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. *Problems of Information Transmission*, 1:8–17, 1965.
- [4] G. Navarro. A guided tour to approximate string matching. *ACM Computing Surveys*, 33(1):31–88, 2001.
- [5] Saul B. Needleman, Christian D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology*, 48(3):443–453, Marzec 1970.
- [6] Esko Ukkonen. Algorithms for approximate string matching. *Inf. Control*, 64(1-3):100–118, Marzec 1985.
- [7] Mark P. J. van der Loo. The stringdist Package for Approximate String Matching. *The R Journal*, 6:111–122, 2014.
- [8] Robert A. Wagner, Michael J. Fischer. The string-to-string correction problem. *Journal* of the ACM, 21(1):168–173, January 1974.