Problem (Problem 1): A subset $A \subseteq \mathbb{R}^n$ is said to have *measure zero* if, for all $\varepsilon > 0$, the set A can be covered by open balls of total volume at most ε . Prove that a countable subset of \mathbb{R}^n has measure zero, and that the standard middle-thirds cantor set in $[0,1] \subseteq \mathbb{R}$ has measure zero.

Solution: Let A be countable, and let $\{a_k\}_{k\geqslant 1}$ be an enumeration of the points in A. Let $\epsilon > 0$. Let c_n be the constant dependent on n such that the volume of $U(x,r) = c_n r^n$. For each k, define

$$r_k = \left(\frac{1}{2^k c_n} \varepsilon\right)^{1/n}.$$

Then, we see that the family $\{U(a_k, r_k)\}_{k=1}^{\infty}$ has total volume no more than ε , seeing as if all the open balls are disjoint, their union has total volume ε . Thus, countable subsets of \mathbb{R}^n have measure zero.

If $C \subseteq [0,1]$ is the traditional middle-thirds Cantor set, then we calculate the measure of its complement by taking

$$\frac{1}{3} \sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k = \frac{1}{3} \frac{1}{1 - \left(\frac{2}{3}\right)}$$
$$= 1,$$

meaning that the Cantor set has measure zero.

Problem (Problem 2): Prove that if $A \subseteq U \subseteq \mathbb{R}^n$ has measure zero (with U open), and $f: U \to \mathbb{R}^n$ is smooth, show that f(A) has measure zero.

Solution: Let $f: U \to \mathbb{R}^n$ be smooth. Then, f is locally Lipschitz, as f' is continuous, hence attains a supremum on compact subsets. In particular, for any $a \in A$, we see that there is r > 0 such that $U(a,r) \subseteq U$, meaning f has a Lipschitz constant C_a such that $|f(x) - f(y)| \le C_a|x - y|$. In particular, we may show that f(A) has measure zero if $f(A \cap U(a,r))$ has measure zero.

Since A has measure zero, so too does $A \cap U(\alpha, r)$, so that we may cover $A \cap U(\alpha, r)$ by a countable (since \mathbb{R}^n is a second countable space) $\{U(x_k, r_k)\}_{k\geqslant 1}$ with $\mathfrak{m}(\bigcup_{k=1}^\infty U(x_k, r_k)) < \varepsilon$ for any $\varepsilon > 0$. Then, since f is Lipschitz on $A \cap U(\alpha, r)$, we have that

$$\begin{split} f(A \cap U(\alpha,r)) &\subseteq f \Biggl(\bigcup_{k=1}^{\infty} U(x_k,r_k) \Biggr) \\ &\subseteq \bigcup_{k=1}^{\infty} U(x_k,r_k) \\ &\subseteq \bigcup_{k=1}^{\infty} U(f(x_k),C_{\alpha}r_k), \end{split}$$

meaning that

$$\begin{split} m(f(A \cap U(\alpha,r))) & \leq m \left(\bigcup_{k=1}^{\infty} U(f(x-k), C_{\alpha}r_k) \right) \\ & = C_{\alpha}^{n} \varepsilon. \end{split}$$

Since C_{α} is a constant and n is fixed, we thus have that $m(f(A \cap U(\alpha, r))) = 0$, meaning that m(f(A)) = 0.

Problem (Problem 3): In this exercise, we will prove Sard's Theorem. Let $U \subseteq \mathbb{R}^m$ be open, and let $f: U \to \mathbb{R}^n$ be C^{∞} . Let $A \subseteq U$ be the set of points where Df has rank less than n. Then, f(A) has measure zero in \mathbb{R}^n . Note that it need not be the case that A itself have measure zero.

We will let A_i be the set of points in U where all partial derivatives up to degree i vanish.

- (a) Prove that $f(A \setminus A_1)$ has measure zero.
- (b) Prove that $f(A_k \setminus A_{k+1})$ has measure zero for all $k \ge 1$.
- (c) Prove that $f(A_k)$ has measure zero for $k \gg 0$.

Solution:

(a) Let $x \notin A_1$, so that some partial derivative does not vanish at x. Letting $f = (f_1, \dots, f_n)$, by some rearrangement, we may assume that $\frac{\partial f_1}{\partial x_1} \neq 0$. Let $h(x) = (f_1(x), x_2, ..., x_m)$. Since h consists of identity coordinate maps and f_1 , which has nonzero partial derivative with respect to x_1 , the inverse function theorem means that h: $\mathbb{R}^m \to \mathbb{R}^m$ is a local diffeomorphism.

Let
$$g = f \circ h^{-1} : \mathbb{R}^m \to \mathbb{R}^n$$
. By chain rule, we see that $Dg = Df \circ (Dh)^{-1}$.

Problem (Problem 5): Prove that $SL_2(\mathbb{R})$, the 2 × 2 real matrices of determinant one, is diffeomorphic to $\mathbb{R}^2 \times \mathbb{S}^1$.

Solution: We consider the action of $SL_2(\mathbb{R})$ on the upper half-plane of \mathbb{C} , $\mathbb{H} = \{z \mid Im(z) > 0\}$, given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d}.$$

In particular, if z = x + iy with y > 0, then

In particular, this is a fractional linear transformation on $\mathbb C$ that is an automorphism of $\mathbb H$, so by composing these fractional linear transformations, we can see that $SL_2(\mathbb{R})$ acting on \mathbb{H} via this map is a group action.

This action is transitive, since for any $x + iy \in \mathbb{H}$, we may map $i \mapsto x + iy$ by using the transformation

$$\frac{ai + b}{ci + d} = i$$

which via multiplication and matching parts gives

$$a = cx + dy$$
$$b = xd - yc$$

so by multiplying and back-substituting, we get

$$c^2 + d^2 = \frac{1}{y}.$$

By guessing that c = 0, we get

$$d = \frac{1}{\sqrt{y}}$$

$$a = \sqrt{y}$$

$$b = \frac{x}{\sqrt{y}}.$$

Now, to understand the stabilizer of some $z \in \mathbb{H}$, we only need to understand the stabilizer of i. For this, we see that

$$\frac{ai + b}{ci + d} = i$$

$$ai + b = di - c$$

so

$$a = d$$
 $b = -c$

and by back-substituting into the determinant, we get

$$a^2 + c^2 = 1,$$

so the stabilizer of i is all matrices of the form

$$R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Thus, by orbit-stabilizer, $\mathbb{H} \cong SL_2(\mathbb{R})/P$, where P is the group of rotation matrices and the action is left-multiplication. In particular, since every rotation matrix corresponds one-to-one with an element of $S^1 \subseteq \mathbb{C}$, given by

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \mapsto e^{i\theta},$$

we find that $\mathbb{H} \cong SL_2(\mathbb{R})/S^1$, or that $\mathbb{H} \times S^1 \cong SL_2(\mathbb{R})$.