Dynamic Mass of Photons and Its Implications for Nonlocality in the T0 Model

Johann Pascher

March 25, 2025

Zusammenfassung

This work examines the implications of assigning a dynamic, frequency-dependent effective mass to photons within the framework of the T0 model of time-mass duality, which postulates absolute time and variable mass. By assuming $m_{\gamma} = \omega$ in natural units, an energy-dependent intrinsic time is introduced, influencing nonlocality and causality. The theory builds on the T0 model's framework and is supported by experimental predictions consistent with its principles.

Inhaltsverzeichnis

1	Introduction	2
2	Natural Units as the Foundation 2.1 Definition of Natural Units	2 2 2
3	Time Models in Quantum Mechanics 3.1 Limitations of the Standard Model	2 2 2 2
4	Unification in the T0 Model	3
5		3 3 3
6	Experimental Verification	3
7	Physics Beyond the Speed of Light	4
8	Conclusion	4

1 Introduction

This work analyzes the implications of a dynamic, frequency-dependent effective mass for photons within the T0 model of quantum mechanics, which assumes absolute time and variable mass [1]. The concept extends the model's intrinsic time framework to explore nonlocality and causality.

2 Natural Units as the Foundation

2.1 Definition of Natural Units

Theorem 2.1 (Natural Units). With $\hbar = c = G = 1$:

$$[L] = [E^{-1}] \tag{1}$$

$$[T] = [E^{-1}] (2)$$

$$[M] = [E] \tag{3}$$

2.2 Significance for Mass-Energy Equivalence

In the T0 model, mass is dynamic $(T(x) = \frac{\hbar}{mc^2})$. For photons, an effective mass is proposed:

$$m_{\gamma} = \omega \tag{4}$$

where ω is the angular frequency, consistent with $E = \hbar \omega$ in natural units $(\hbar = 1)$.

3 Time Models in Quantum Mechanics

3.1 Limitations of the Standard Model

The standard Schrödinger equation assumes a universal time:

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi \tag{5}$$

3.2 The T0 Model with Absolute Time

In the T0 model, energy is linked to a constant intrinsic time T_0 :

$$E = \frac{\hbar}{T_0} \tag{6}$$

For massive particles, $T(x) = \frac{\hbar}{mc^2}$.

3.3 Extension for Photons

For photons, this extends to an energy-dependent intrinsic time:

$$T(x) = \frac{\hbar}{m_{\gamma}c^2} = \frac{1}{\omega} \tag{7}$$

This remains consistent with $m_{\gamma} = \omega$ (since $\hbar = c = 1$).

4 Unification in the T0 Model

To unify massive particles and photons:

$$T(x) = \frac{\hbar}{\max(mc^2, \omega)} \tag{8}$$

For massive particles, mc^2 dominates; for photons, ω .

5 Implications for Nonlocality and Entanglement

5.1 Energy-Dependent Correlations

The energy-dependent T(x) leads to time delays in entangled systems:

• Delay: $\left| \frac{1}{\omega_1} - \frac{1}{\omega_2} \right|$

This suggests that nonlocality emerges from intrinsic time differences, akin to the energy loss mechanism of redshift in the T0 model [2].

5.2 $\beta_{\rm T}$ in the T0 Model

In the T0 model, wavelength-dependent redshift is described by the parameter $\beta_{\rm T}$, with $\beta_{\rm T}^{\rm SI} \approx 0.008$ in SI units and $\beta_{\rm T}^{\rm nat} = 1$ in natural units [3]. These values are equivalent, reflecting the same physical reality, with conversion via the characteristic length scale r_0 [4]. The derivation of $\beta_{\rm T}$ is well-established in the T0 model, and the choice between $\beta_{\rm T}^{\rm SI}$ and $\beta_{\rm T}^{\rm nat}$ depends solely on the unit system, without uncertainty in the theoretical foundation.

Abbildung 1: Energy-dependent intrinsic time for photons in the T0 model.

6 Experimental Verification

- Frequency-dependent Bell tests to measure time delays in entanglement.
- Spectroscopic redshift measurements to validate wavelength-dependent redshift with $\beta_{\rm T}$.

7 Physics Beyond the Speed of Light

A hypothetical modified dispersion relation in the T0 model:

$$E^{2} = (m_{\gamma}c^{2})^{2} + (pc)^{2} + \alpha_{c}p^{4}c^{2}/E_{P}^{2}$$
(9)

where α_c is a coupling constant and E_P is the Planck energy, could explain the behavior of high-energy photons and be tested via cosmic ray measurements.

8 Conclusion

The dynamic effective mass of photons in the T0 model offers a novel view of nonlocality as an emergent phenomenon driven by energy-dependent intrinsic time, enhancing the explanatory power of the model.

Literatur

- [1] Pascher, J. (2025). Mass Variation in Galaxies: An Analysis in the T0 Model with Emergent Gravitation. March 30, 2025.
- [2] Pascher, J. (2025). Compensatory and Additive Effects: An Analysis of Measurement Differences Between the T0 Model and the ΛCDM Standard Model. April 2, 2025.
- [3] Pascher, J. (2025). Time-Mass Duality Theory (T0 Model): Derivation of Parameters κ , α , and β . April 4, 2025.
- [4] Pascher, J. (2025). Adjustment of Temperature Units in Natural Units and CMB Measurements. April 2, 2025.
- [5] Einstein, A. (1905). On the Electrodynamics of Moving Bodies. Annalen der Physik, 322(10), 891-921.
- [6] Planck, M. (1901). On the Law of Energy Distribution in the Normal Spectrum. Annalen der Physik, 309(3), 553-563.
- [7] Bell, J. S. (1964). On the Einstein-Podolsky-Rosen Paradox. Physics, 1(3), 195-200.
- [8] Feynman, R. P. (1985). *QED: The Strange Theory of Light and Matter*. Princeton University Press.