Lokalisierung

- Einleitung
 Problemstellung, Varianten,
 Sensorik, Umgebungskarten, Verfahren
- Koppelnavigation
 Idee, Navigationsgleichungen,
 Fehlerfortpflanzung
- Laterationsverfahren
- Lokalisierung mit einem Kalman-Filter
 Idee, Algorithmus für linearen und erweiterten Kalmanfilter,
 Beispiele, Selbstlokalisierung mit einem Kalmanfilter
- Monte-Carlo-Lokalisierung
 Idee, Algorithmus, Beispiele

Allgemeine Problemstellung

- Roboter bewegt sich in der Umgebung (Steuerbefehle bekannt)
- Roboter nimmt seine Umgebung mit seiner Sensorik wahr.
- Evtl. Umgebungskarte verfügbar.
- Ziel: schätze die Position des Roboters x_k = (x, y, θ) zu jedem Zeitpunkt t_k in einem globalen Koordinatensystem (in der Umgebung fixiert).

Varianten

Lokale Selbstlokalisierung

- Die initiale Position des Roboters ist ungefähr bekannt.
- Ziel ist es, die Position neu zu berechnen, sobald sich der Roboter bewegt (position tracking).

Globale Selbstlokalisierung

- Die initiale Position des Roboters ist nicht bekannt.
- Ziel ist es, die Position aufgrund von Roboterbewegungen und neuen Sensordaten zu finden.
- Schwieriger als lokale Selbstlokalisierung.
- Als zusätzliche Problemstellung kann dazukommen, dass der Roboter während der Lokalisierungsphase willkürlich an eine andere Position platziert werden kann (kidnapped robot problem)

Sensorik

Propriozeptive Sensoren

Sensor	Einsatz	
Radsensor	Messung der Drehzahl von Rädern zur Bewegungsschätzung.	
Drehgeber	Messung der Winkel bei Lenkeinschlag und Armgelenken.	
Beschleunigungssensor	unigungssensor Zur Bewegungsschätzung.	
Gyroskop	oskop Messung von Drehraten zur Bewegungsschätzung.	
Kompass	Messung der Orientierung zur Bewegungsschätzung.	

Exteriozeptive Sensoren

Sensor	Einsatz
Kamera	Lokalisierung, Bewegungsschätzung, Objekterkennung.
RGBD-Kamera	Kamera mit Tiefeninformation. Lokalisierung, Bewegungsschätzung, Objekterkennung, Hinderniserkennung.
Laser	Lokalisierung, Bewegungsschätzung, Objekterkennung, Hinderniserkennung.
Radar	Hinderniserkennung.
GPS	Lokalisierung bei Outdoor-Anwendungen.

2D-Laser-Scanner

- Entfernungsmesser durch Laufzeitmessung eines reflektierten Laserstrahls
- Durch drehenden Spiegel wird Entfernung in verschiedene Richtungen gemessen
- Typ. Scanbereich: 180° 270°
- Typ. Winkelauflösung: 0.25°, 0.5° oder 1°

Messprinzip
Bilder von www.sick.com

Sick LMS 100

Winkelauflösung: 0.25° / 0.5°

Scanbereich: 270°

Scanfrequenz 25/50 Hz

Reichweite: 18 m

Metrische und topologische Karten

- Metrische Karten sind in einem KS eingezeichnet
- Topologische Karten beschreiben Nachbarschaftbeziehungen von relevanten Orten (Raum, Tür, Flur, ...) in der Umgebung als Graph

Gitterbasierte Karten

- Belegtheitsgitter
 schwarz = belegt, weiss = frei, grau = unbekannt.
- Je nach Auflösung sehr detailliert und speicheraufwendig.
- Typisches Ergebnis bei autonomer Kartenerstellung.
- Oft verwendet bei Planungs- und Navigationsverfahren.

Linienbasierte Karten

- Vektorgraphik.
- Wenig speicheraufwendig.
- Autonome Erstellung aufwendig.

Punktbasierte Karten

- Karte besteht aus einer Menge von Hindernispunkten.
- Wenig speicheraufwendig.
- Typisches Ergebnis bei autonomer Kartenerstellung.
- Hier: aus Laserscans zusammengesetzt (Scan Map).

Übersicht über Lokalisierungsverfahren

Verfahren	Lokalisierungs- variante	Lokalisierungs- genauigkeit	Typische Sensorik	Umgebungs- karte
Laterations- verfahren	lokal und global	sehr genau	Abstands- sensor	Landmarken
Koppel- navigation	lokal	Drift	Odometrie	nein
Kalman-Filter	lokal	sehr genau	Odometrie + Abstands- sensor	ja
Partikel-Filter	lokal und global	genau	Odometrie + Abstands- sensor	ja

Lokalisierung

Einleitung

Problemstellung, Varianten, Sensorik, Umgebungskarten, Verfahren

- Koppelnavigation Idee, Navigationsgleichungen, Fehlerfortpflanzung
- Laterationsverfahren
- Lokalisierung mit einem Kalman-Filter
 Idee, Algorithmus für linearen und erweiterten Kalmanfilter,
 Beispiele, Selbstlokalisierung mit einem Kalmanfilter
- Monte-Carlo-Lokalisierung
 Idee, Algorithmus, Beispiele

Idee der Koppelnavigation

• Schätze die neue Pose \mathbf{x}_{k+1} aufgrund der alten Pose \mathbf{x}_k , der zurückgelegten Strecke d und der Richtungsänderung δ .

- kommt aus der Seefahrt; engl. dead reckoning.
- Die Messung des zurückgelegten Wegs wird auch Odometrie genannt.
 Odometrie = Hodometrie = hodos (griech. Weg) + metron (griech. Maß).
- Bei Radfahrzeugen lässt sich die Odometrie einfach über Messung der Radumdrehungen durchführen.
- Eine Richtungsänderung kann auch über Radumdrehungen gemessen werden.

Wiederholung Differentialantrieb

- Durch Radsensoren lassen sich die Geschwindigkeiten der beiden Räder v_I, v_R messen.
- Aus v_L, v_R und der Achslänge l können v und ω unmittelbar hergeleitet werden.

$$v = \frac{v_R + v_L}{2}$$

$$W = \frac{v_R - v_L}{l}$$

Koppelnavigation für Radfahrzeuge (1)

- Annahme: aktuelle Geschwindigkeit v und Winkelgeschwindigkeit ω sind bekannt (entweder als Messwert oder als Steuerbefehl) und sind im aktuellen Zeitabschnitt T (z.B. T = 0.01 sec) konstant.
- Damit: Roboter fährt einen Kreisbogen mit bekanntem Radius und bekannter Länge.
- Hier: Differentialantrieb.
 Ackermann- und Mecanumantrieb werden analog behandelt.

Pose zum Zeitpunkt t_k:

$$\mathbf{x}_k = (x, y, \theta)$$

Pose zum Zeitpunkt t_{k+1}:

$$\boldsymbol{x}_{k+1} = (x', y', \theta')$$

Koppelnavigation für Radfahrzeuge (2)

Pose zum Zeitpunkt t_k:

$$\mathbf{x}_k = (x, y, \theta)$$

Pose zum Zeitpunkt t_{k+1}:

$$\boldsymbol{x}_{k+1} = (x', y', \theta')$$

• <u>Approximation:</u> Roboter fährt im Zeitschritt T in Richtung $\theta + \omega T/2$ (halbe Richtungsänderung) die Strecke νT :

$$x' = x + vT * \cos(\theta + \omega T/2)$$

$$y' = y + vT * \sin(\theta + \omega T/2)$$

$$\theta' = \theta + \omega T$$

Bemerkungen

In der Literatur wird der Term $\omega T/2$ oft weggelassen. Die Approximation ist dann weniger genau:

$$x' = x + vT * \cos(\theta)$$
$$y' = y + vT * \sin(\theta)$$
$$\theta' = \theta + \omega T$$

- Die Kreisbewegung kann auch exakt berechnet werden. Die Approximation wird dadurch genauer:
 - aus v, ω wird der Radius r der Kreisbewegung berechnet.
 - aus alter Pose x, y, θ und Radius r lässt sich ICR bestimmen.
 - aus ICR, θ' und Radius r lässt sich neue Position x', y' bestimmen.

Fehlerfortpflanzung bei Koppelnavigation (1)

- Es soll nun untersucht werden, wie sich eine normalverteilte Unsicherheit in der Position des Roboters und im Steuerbefehl in eine Unsicherheit des Folgezustands fortpflanzt.
- Es wird von den vereinfachten Koppelnavigationsgleichungen von S. 5-23 ausgegangen.

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \\ \theta_k \end{pmatrix} + \begin{pmatrix} T\cos\theta_k & 0 \\ T\sin\theta_k & 0 \\ 0 & T \end{pmatrix} \begin{pmatrix} v_k \\ \omega_k \end{pmatrix} \\
\underbrace{x_k} \\ f(\mathbf{x}_k, \mathbf{u}_k)$$

$$N(\mathbf{x}_k, S_{\mathbf{x}_k})$$
 $N(\mathbf{u}_k, S_{\mathbf{u}_k})$
 $N(\mathbf{x}_{k+1}, S_{\mathbf{x}_{k+1}})$
 $N(\mathbf{x}_{k+1}, S_{\mathbf{x}_{k+1}})$

Fehlerfortpflanzung bei Koppelnavigation (2)

Aus Kapitel 4 folgt:

$$\begin{split} & \boldsymbol{\Sigma}_{\boldsymbol{x}_{k+1}} = \mathbf{F} \boldsymbol{\Sigma}_{\boldsymbol{x} \boldsymbol{u}_k} \mathbf{F}^T \\ & \boldsymbol{F} = \frac{\mathscr{T}}{\mathscr{T}(\mathbf{x}_k, \mathbf{u}_k)} (\mathbf{x}_k, \mathbf{u}_k) \end{split} \qquad \text{Jacobi-Matrix} \\ & \boldsymbol{\Sigma}_{\mathbf{x} \boldsymbol{u}_k} = \underbrace{\begin{pmatrix} \boldsymbol{\Sigma}_{\mathbf{x}_k} & \mathbf{0}_{3*2} \\ \mathbf{0}_{2*3} & \boldsymbol{\Sigma}_{\mathbf{u}_k} \end{pmatrix}}_{\boldsymbol{\Sigma}_{\mathbf{u}_k}} & \boldsymbol{\nabla}_{\mathbf{u}_k} & \boldsymbol{\nabla}_{\mathbf{v}_k} & \boldsymbol{\nabla}_{\mathbf{v}_k$$

Formel lässt sich umschreiben in:

$$\Sigma_{x_{k+1}} = \mathbf{F}_{x_k} \Sigma_{x_k} \mathbf{F}_{x_k}^T + \mathbf{F}_{u_k} \Sigma_{u_k} \mathbf{F}_{u_k}^T$$

$$\mathbf{F}_{\mathbf{x}_k} = \frac{\partial}{\partial \mathbf{x}_k} (\mathbf{x}_k)$$

$$\mathbf{F}_{\mathbf{u}_k} = \frac{\partial}{\partial \mathbf{u}_k} (\mathbf{u}_k)$$

$$\mathbf{F} = (\mathbf{F}_{\mathbf{x}_k} \mathbf{F}_{\mathbf{u}_k})$$
Teile der Jacobi-Matrix \mathbf{F}

$$\mathbf{F} = (\mathbf{F}_{\mathbf{x}_k} \mathbf{F}_{\mathbf{u}_k})$$

Berechnung der Jacobi-Matrizen

Koppelnavigation:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \\ \theta_k \end{pmatrix} + \begin{pmatrix} T\cos\theta_k & 0 \\ T\sin\theta_k & 0 \\ 0 & T \end{pmatrix} \begin{pmatrix} v_k \\ \omega_k \end{pmatrix} \\
\underbrace{x_k} \\ f(\mathbf{x}_k, \mathbf{u}_k)$$

Jacobi-Matrizen:

$$\mathbf{F}_{\mathbf{x}_{k}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{k}} = \begin{pmatrix} 1 & 0 & -Tv_{k}\sin\theta_{k} \\ 0 & 1 & Tv_{k}\cos\theta_{k} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{F}_{\mathbf{u}_{k}} = \frac{\partial f}{\partial \mathbf{u}_{k}} = \begin{pmatrix} T \cos \theta_{k} & 0 \\ T \sin \theta_{k} & 0 \\ 0 & T \end{pmatrix}$$

Fehlerfortpflanzung:

$$\Sigma_{\mathbf{x}_{k+1}} = \mathbf{F}_{\mathbf{x}_k} \Sigma_{\mathbf{x}_k} \mathbf{F}_{\mathbf{x}_k}^T + \mathbf{F}_{\mathbf{u}_k} \Sigma_{\mathbf{u}_k} \mathbf{F}_{\mathbf{u}_k}^T$$

Unsicherheit des Steuerbefehls

- Der Steuerbefehl $\mathbf{u} = (v, \omega)$ ergibt sich aus der Messung der Geschwindigkeit des linken und des rechten Rads und der Achslänge l.
- Für die Ungenauigkeit gibt es verschiedene Ursachen.

Unterschiedliche Raddurchmesser

Unebenheiten

Untergrund

Auflagepunkt nicht genau in Radmitte, daher ist auch / fehlerbehaftet

Fehlermodell für Steuerbefehl (1)

 Die Geschwindigkeitsmessung besteht im wesentlichen aus der Messung der im k-ten Zeitintervall zurückgelegten Strecke d_k. Hierbei ist der Fehler:

$$S_{d_k}^2 = k_d * d_k$$

- Dabei ist k_d eine Konstante und beschreibt, welche Fehler (Varianz) bei der Messung von 1 Meter gemacht wird (z.B. k_d = (0.05m)²/1m). k_d kann durch eine statistische Untersuchung ermittelt werden.
- Für die Fehler der Geschwindigkeit $v_k = d_k/T$ ergibt sich dann:

$$S_{v_k}^2 = \frac{1}{T^2} * S_{d_k}^2$$
$$= \frac{k_d}{T^2} * d_k$$
$$= \frac{k_d}{T} * v_k$$

Fehlermodell für Steuerbefehl (2)

Eine ähnliche Überlegung für die Winkelgeschwindigkeit ω führt auf:

$$S_{W_k}^2 = \frac{k_q}{T} * W_k$$

- Dabei ist k_θ eine Konstante, die angibt, welcher Fehler (Varianz) bei einer 360-Drehung gemacht wird (z.B. (5 Grad)²/360 Grad).
- Zusätzlich gehen wir von einer weiteren Dreh-Fehler (Drift) aus, der von der zurückgelegten Strecke abhängt:

$$\sigma_{\omega_k}^2 = \frac{k_{\text{Drift}}}{T} * v_k$$

 Dabei ist k_{Drift} eine Konstante, die angibt, welcher Winkelgeschwindigkeitsfehler (Varianz) bei einer 1 Meter langen Fahrt gemacht wird (z.B. (2 Grad)²/1m).

Fehlermodell für Steuerbefehl (3)

 Wir gehen davon aus, dass die Fehler bei der Geschwindigkeit und der Winkelgeschwindigkeit nicht korreliert sind und erhalten damit:

$$\Sigma_{\mathbf{u}_k} = \begin{pmatrix} \sigma_{v_k}^2 & 0 \\ 0 & \sigma_{\omega_k}^2 \end{pmatrix}$$

$$\sigma_{v_k}^2 = \frac{k_{\rm d}}{T} * v_k$$

$$\sigma_{\omega_k}^2 = \frac{k_{\theta}}{T} * \omega_k + \frac{k_{\text{Drift}}}{T} * v_k$$

Beachte: bei negativer Winkelgeschwindigkeit (Rechtskurve) bzw.
 negativer Geschwindigkeit (Rückwärtsfahrt) sind Beträge zu nehmen.

Simulation

- tatsächliche Strecke in schwarz
- Kreisfahrt mit konstanter
 Geschwindigkeit v = 1 m/sec
 und ω = 24 Grad/sec.
- mit Koppelnavigation geschätzte Strecke in rot, mit Kovarianzen in blau
- Abtastintervall T = 0.1 sec und n = 140 Zeitschritte.
- Fehlermodell:
 - $k_d = (0.02m)^2/1m$
 - $k_{\theta} = (5 \text{ Grad})^2/360 \text{ Grad}$
 - $k_{Drift} = (2 \text{ Grad})^2 / 1 \text{ m}$

Einheiten in m

Lokalisierung

- Einleitung
 - Problemstellung, Varianten, Sensorik, Umgebungskarten, Verfahren
- Koppelnavigation
 Idee, Navigationsgleichungen,
 Fehlerfortpflanzung
- Laterationsverfahren
- Lokalisierung mit einem Kalman-Filter
 Idee, Algorithmus für linearen und erweiterten Kalmanfilter,
 Beispiele, Selbstlokalisierung mit einem Kalmanfilter
- Monte-Carlo-Lokalisierung
 Idee, Algorithmus, Beispiele

Laterationsverfahren

- Messe Entfernung d_i zu Landmarken l_i mit bekannten Positionen
- Berechne daraus Position x_R (ohne Orientierung) des Roboters R.
- Bei 2D-Position: 2 Landmarken mit Entfernungsmessungen
- Bei 3D-Position: 3 Landmarken mit Entfernungsmessungen

Algorithmus für 2D-Lateration

Gleichungssystem mit unbekannter Roboterposition $\mathbf{x}_R = (x_R, y_R)$ und bekannten Landmarkenpositionen $(x_1, y_1), (x_2, y_2).$

$$(x_1 - x_R)^2 + (y_1 - y_R)^2 - d_1^2 = 0$$

$$(x_2 - x_R)^2 + (y_2 - y_R)^2 - d_2^2 = 0$$

- Iteratives Verfahren statt explizites Auflösen der Gleichungen.
- Fasse Gleichungssystem auf als Nullstellenproblem: finde $\mathbf{x}_R = (x_R, y_R)$, so dass Gleichungen erfüllt sind.
- Wende dazu Newton-Verfahren an.
- Problem: Es gibt i.a. 2 Nullstellen (Kreise schneiden sich an 2 Stellen).
 Starte daher das Verfahren in der Nähe der Roboterposition.

Least-Square-Verfahren bei mehr als 2 Landmarken

 Bei mehr als 2 Landmarken überbestimmtes Gleichungssystem.

$$(x_1 - x_R)^2 + (y_1 - y_R)^2 - d_1^2 = 0$$

$$(x_2 - x_R)^2 + (y_2 - y_R)^2 - d_2^2 = 0$$

$$(x_3 - x_R)^2 + (y_3 - y_R)^2 - d_3^2 = 0$$
...

- I.a. keine Lösung, da sich Kreise nicht in einem Punkt schneiden.
- Least-Square-Ansatz: finde Roboterposition $\mathbf{x}_R = (x_R, y_R)$, so dass Summe der Fehler-Quadrate SSE minimal wird:

$$SSE = \sum_{i} [(x_i - x_R)^2 + (y_i - y_R)^2 - d_i^2]^2$$

Probleme bei ungünstiger Geometrie

- Bei ungünstiger Geometrie (z.B. 2 Landmarken mit kleinem Schnittwinkel der Kreise) ist die Mehrdeutigkeit schwer auflösbar.
- Außerdem sind die Entfernungsmessungen fehlerbehaftet, so dass sich ein großer Lokalisierungsfehler ergeben kann.
- Abhilfe: Sensordaten bei sich bewegendem Roboter integrieren.
 Genau das leisten Kalman- und Partikelfilter (später).

Lokalisierung

- Einleitung
 Problemstellung Varian
 - Problemstellung, Varianten, Sensorik, Umgebungskarten, Verfahren
- Koppelnavigation
 Idee, Navigationsgleichungen,
 Fehlerfortpflanzung
- Laterationsverfahren
- Lokalisierung mit einem Kalman-Filter
 Idee, Algorithmus für linearen und erweiterten Kalmanfilter,
 Beispiele, Selbstlokalisierung mit einem Kalmanfilter
- Monte-Carlo-Lokalisierung
 Idee, Algorithmus, Beispiele

Ziel des Kalman-Filters

- Die Koppelnavigation liefert eine Schätzung der Position.
 Die Schätzung driftet jedoch sehr stark.
- Es liegt nun nahe, zusätzlich Sensorwerte (z.B. Abstandswerte zu Landmarken) zu verwenden, um die Positionsschätzung zu verbessern.
- Die Integration von Sensorwerten kann mit einem Kalmanfilter erreicht werden.
- Der Kalmanfilter berechnet aufgrund von Steuerdaten, Messdaten und einer alten Schätzung des Systemzustands einen neuen verbesserten Schätzwert.

 \mathbf{u}_k Steuerdaten

 \mathbf{Z}_k Sensordaten

 $\hat{\mathbf{x}}_k$ Schätzung des Systemzustands

Funktionsweise des Kalman-Filters

- \mathbf{u}_k Steuerdaten
- \mathbf{Z}_k Sensordaten
- \mathbf{X}_k Systemzustand
- v Systemrauschen
- w Messrauschen

- $\hat{\mathbf{x}}_{k}$ Schätzung des Systemzustands zum Zeitpunkt t $_{\mathbf{k}}$
- $\hat{\mathbf{x}}_{k+1}^{-}$ Vorhersage des Systemzustands zum Zeitpunkt \mathbf{t}_{k+1} (Messwert noch nicht berücksichtigt!)
- $\hat{\mathbf{z}}_{k+1}$ Schätzung des Messwerts aufgrund des vorhergesagten Systemzustands
- $\hat{\mathbf{x}}_{k+1}$ Neuer Schätzwert des Systemzustands zum Zeitpunkt \mathbf{t}_{k+1}

Lineares System- und Messmodell

 Das lineare Systemmodell ist mit einem normalverteilten und mittelwertfreien Systemrauschen v_k versehen.

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{v}_k$$
$$\mathbf{v}_k \sim N(\mathbf{0}, S_{\mathbf{v}})$$

• Wir gehen davon aus, dass das Systemrauschen im wesentlichen von einem verrauschten Steuerbefehl \mathbf{u} mit Kovarianz $\Sigma_{\mathbf{u}}$ verursacht wird:

$$S_{\mathbf{v}} = \mathbf{B} S_{\mathbf{u}} \mathbf{B}^T$$

• Das lineare Messmodell beschreibt, wie sich Messwerte aus dem Systemzustand ergeben. Auch hier ist das Messmodel mit einem normalverteilten und mittelwertfreien Messrauschen \mathbf{w}_k versehen.

$$\mathbf{z}_k = \mathbf{C}\mathbf{x}_k + \mathbf{w}_k$$
$$\mathbf{w}_k \sim N(\mathbf{0}, \mathbf{S}_{\mathbf{z}})$$

Algorithmus für linearen Kalman-Filter

KalmanFilter($\hat{\mathbf{x}}_{k}, \mathbf{u}_{k}, \mathbf{z}_{k+1}$):

1. Vorhersage:

$$\mathbf{\hat{x}}_{k+1}^{-} = \mathbf{A}\mathbf{\hat{x}}_{k} + \mathbf{B}\mathbf{u}_{k}$$

$$S_{k+1}^{-} = \mathbf{A} S_k \mathbf{A}^{T} + \mathbf{B} S_{\mathbf{u}} \mathbf{B}^{T}$$

Korrektur:

$$\hat{\mathbf{z}}_{k+1} = \mathbf{C}\hat{\mathbf{x}}_{k+1}^{-}$$

6.
$$\mathbf{K} = S_{k+1}^{-} \mathbf{C}^{T} (\mathbf{C} S_{k+1}^{-} \mathbf{C}^{T} + S_{\mathbf{z}})^{-1}$$

6.
$$\mathbf{K} = S_{k+1}^{-} \mathbf{C}^{T} (\mathbf{C} S_{k+1}^{-} \mathbf{C}^{T} + S_{\mathbf{z}})^{-1}$$
7.
$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1}^{-} + \mathbf{K} (\mathbf{z}_{k+1} - \hat{\mathbf{z}}_{k+1})$$

8.
$$S_{k+1} = (\mathbf{I} - \mathbf{KC})S_{k+1}^{-}$$

return $\hat{\mathbf{X}}_{k+1}$

Neuer Systemzustand $\hat{\mathbf{x}}_{k+1}^-$ mit Kovarianz $S_{k+1}^$ wird vorhergesagt.

Aus dem vorhergesagten Systemzustand $\hat{\mathbf{x}}_{k+1}^{-}$ wird ein erwarteter Messwert $\hat{\mathbf{z}}_{k+1}$ berechnet

Mithilfe des Kalman-Gain K wird der vorhergesagte Systemzustand korrigiert.

Liegt in einem Zeitschritt kein Messwert vor, dann entfällt der Korrekturschritt, und es gilt:

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1}^{-}$$

$$S_{k+1} = S_{k+1}^{-}$$

Beispiel: Fusionierung von zwei Messwerten

 Roboter ist stationär (bewegt sich nicht) und misst mit zwei unterschiedlichen Sensoren seine Position (= Abstand zur Wand).

Systemmodell: stationärer Roboter ohne Steuerbefehl und Rauschen:

$$x_{k+1} = x_k$$

Messmodell

$$\mathbf{z}_{k} = \mathbf{z}_{1} \ddot{0} \quad \text{210} \\ \mathbf{z}_{2} \dot{0} = \mathbf{z}_{1} \dot{x}_{k} + \mathbf{w}_{k}$$

Anwendung des Kalmanfilters

Beispiel: bewegtes Fahrzeug (1)

 Roboter wird horizontal beschleunigt mit Steuerbefehl a.

Systemzustand besteht aus Position und Geschwindigkeit:

$$\mathbf{x}_{k} = \mathbf{\mathcal{E}}_{k} \mathbf{\mathcal{X}}_{k} \ddot{\mathbf{0}}$$

Steuervektor ist die Beschleunigung a:

$$u_k = a$$

Systemmodell

$$\underbrace{\begin{pmatrix} x_{k+1} \\ v_{k+1} \end{pmatrix}}_{\mathbf{x}_{k+1}} = \underbrace{\begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_k \\ v_k \end{pmatrix}}_{\mathbf{x}_k} + \underbrace{\begin{pmatrix} 0 \\ T \end{pmatrix}}_{\mathbf{u}_k} \underbrace{\begin{pmatrix} x_k \\ y_k \end{pmatrix}}_{\mathbf{B}}$$

Beispiel: bewegtes Fahrzeug (2)

 Roboter misst über Abstandssensor direkt seine Position.

Messmodell

$$z_k = \underbrace{\left(1 \quad 0\right)}_{\mathbf{C}} \underbrace{\left(\begin{matrix} x_k \\ v_k \end{matrix}\right)}_{\mathbf{x}_k}$$

Simulation des Kalmanfilters (1)

Simulation des Kalmanfilters (2)

Positionsgenauigkeit

Geschwindigkeitsgenauigkeit

Geschwindigkeitsfehler mit Korrektur in jedem Zeitschritt in [m/sec].

Man beachte, dass im gegebenen System nur Positions- und keine Geschwindigkeitsmessungen durchgeführt werden.

Geschwindigkeitssfehler ohne Korrekturschritt [m/sec]

t [sec]

Nicht-lineares System- und Messmodell

System- und Messmodell sind nun nicht-linear:

$$\mathbf{x}_{k+1} = g(\mathbf{x}_k, \mathbf{u}_k) + \mathbf{v}_k \qquad \mathbf{v}_k \sim N(\mathbf{0}, S_{\mathbf{v}})$$
$$\mathbf{z}_k = h(\mathbf{x}_k) + \mathbf{w}_k \qquad \mathbf{w}_k \sim N(\mathbf{0}, S_{\mathbf{z}})$$

• Wir gehen davon aus, dass das Systemrauschen $\mathbf{v_k}$ im wesentlichen von einem verrauschten Steuerbefehl $\mathbf{u_k}$ mit Kovarianz $\Sigma_{\mathbf{u}}$ verursacht wird.

Erweiterter Kalman-Filter (EKF)

- Linearisiere g und h mit Hilfe ihrer Jacobi-Matrizen
- Benutze Jacobi-Matrizen zur Berechnung der Kovarianzen (wie in Kap. 4)

Linearisierung von g, wobei G die Jacobi-Matrix von g ist:

$$g(\mathbf{x}) \gg G(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}}) + g(\hat{\mathbf{x}})$$

Algorithmus für erweiterten Kalman-Filter

KalmanFilter($\hat{\mathbf{x}}_{k}, \mathbf{u}_{k}, \mathbf{z}_{k+1}$):

1. Vorhersage:

$$\mathbf{\hat{x}}_{k+1}^{-} = g(\hat{\mathbf{x}}_k, \mathbf{u}_k)$$

3.
$$S_{k+1}^{-} = \mathbf{G}_{\mathbf{x}} S_{k} \mathbf{G}_{\mathbf{x}}^{T} + \mathbf{G}_{\mathbf{u}} S_{\mathbf{u}} \mathbf{G}_{\mathbf{u}}^{T}$$

4. Korrektur:

5.
$$\hat{\mathbf{z}}_{k+1} = h(\hat{\mathbf{x}}_{k+1})$$

6.
$$\mathbf{K} = S_{k+1}^{-} \mathbf{H}^{T} (\mathbf{H} S_{k+1}^{-} \mathbf{H}^{T} + S_{\mathbf{z}})^{-1}$$

7.
$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1} + \mathbf{K}(\mathbf{z}_{k+1} - \hat{\mathbf{z}}_{k+1})$$

8.
$$S_{k+1} = (\mathbf{I} - \mathbf{KH}) S_{k+1}^{-}$$

9. return
$$\hat{\mathbf{x}}_{k+1}$$

 G_x , G_u und H sind Jacobi-Matrizen:

$$\mathbf{G}_{\mathbf{x}} = \frac{\P g}{\P \mathbf{x}_{k}} (\hat{\mathbf{x}}_{k}, \mathbf{u}_{k})$$

$$\mathbf{G}_{\mathbf{u}} = \frac{\P g}{\P \mathbf{u}_k} (\hat{\mathbf{x}}_k, \mathbf{u}_k)$$

$$\mathbf{H} = \frac{\P h}{\P \mathbf{x}_k} (\hat{\mathbf{x}}_{k+1}^-)$$

Selbstlokalisierung mit Landmarken

- Roboter benutzt zur Selbstlokalisierung Abstands- und Orientierungsmessungen zu Landmarken.
- Positionen der beiden
 Landmarken sind bekannt:
 (x₁₁, y₁₁) und (x₁₂, y₁₂)

Systemmodell

- Der Roboter wird zum Zeitpunkt t_k mit dem Steuerbefehl u_k bewegt.
- Steuerbefehl besteht aus Geschwindigkeit v_k und Winkelgeschwindigkeit ω_k .
- Der Systemzustand (x_k,y_k,θ_k)
 beschreibt die Position
 des Roboters zum Zeitpunkt t_k.

$$\underbrace{\begin{pmatrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{pmatrix}}_{\mathbf{x}_{k+1}} = \underbrace{\begin{pmatrix} x_k + Tv_k \cos \theta_k \\ y_k + Tv_k \sin \theta_k \\ \theta_k + T\omega_k \end{pmatrix}}_{g(\mathbf{x}_k, \mathbf{u}_k)}$$

$$\operatorname{mit} \mathbf{u}_{k} = \begin{pmatrix} v_{k} \\ \omega_{k} \end{pmatrix} \quad \operatorname{und} \Sigma_{u} = \begin{pmatrix} \sigma_{v}^{2} & 0 \\ 0 & \sigma_{\omega}^{2} \end{pmatrix}$$

Messmodell

$$\begin{pmatrix} d_1 \\ \alpha_1 \\ d_2 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} \sqrt{(x_k - x_{\ell 1})^2 + (y_k - y_{\ell 1})^2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\$$

Beispielfahrt mit einer Landmarke

- Die gepunktete Linie ist die tatsächliche Wegstrecke.
- Die σ-Ellipsen und die Dreiecke stellen die geschätze Lage bzw.
 Orientierung dar.
- Das Kreuz ist die Landmarke. Die Sterne geben die gemessene Position der Landmarke an. Es ist deutlich das Messrauschen zu sehen.
- Die Anwendung kann auf n Landmarken erweitert werden. Zusätzlich kann noch das Problem der Zuordnung der Messdaten zu den Landmarken-Nummern dazukommen. (siehe auch [Choset et al])

Lokalisierung

- EinleitungProblemstellung, Varianten,
 - Sensorik, Umgebungskarten, Verfahren
- Koppelnavigation
 Idee, Navigationsgleichungen,
 Fehlerfortpflanzung
- Laterationsverfahren
- Lokalisierung mit einem Kalman-Filter
 Idee, Algorithmus für linearen und erweiterten Kalmanfilter,
 Beispiele, Selbstlokalisierung mit einem Kalmanfilter
- Monte-Carlo-Lokalisierung
 Idee, Algorithmus, Beispiele

Idee

Positionsschätzung wird durch ein Menge von Partikeln (vertikale Striche) dargestellt.

- (a) Keine Information über die Anfangsposition; Partikel sind über alle x-Werte zufällig verteilt.
- (b) Gewichtung:Durch eine Sensormessung z werden die Gewichte (Strichhöhe) verändert.
- (c) Resampling: Aus der Partikelmenge werden zufällig aber entsprechend ihrem Gewicht Partikeln gezogen.
 - Anschließend wird der Steuerbefehl (Bewegung) u integriert.
- (d) erneute Gewichtung mit neuem Sensorwert
- (e) erneutes Resampling und Integrierung des Steuerbefehls

Landmarkenbasiertes Verfahren (1)

- Sensor misst zur j-ten Landmarke Entfernung r_j und relative Orientierung φ_i.
- Dabei wird ein normalverteilter Fehler angenommen:
 - err_r ~ $N(0,\sigma_r^2)$
 - $err_{\phi} \sim N(0, \sigma_{\phi}^2)$
- Es kann auch nur Entfernung oder Orientierung gemessen werden.

Landmarkenbasiertes Verfahren (2)

 Um das Gewicht w_i des Partikels i zu bestimmen, wird ermittelt wie wahrscheinlich die Sensorwerte an der Partikelposition x[i] = (x,y,θ) sind:

```
\begin{split} p &= 1; \\ \text{for all Sensorwerte } z_j = (r_j, \, \varphi_j) \, \, \text{do} \\ \text{rechne für Partikelposition } \mathbf{x}[i] &= (x,y,\theta) \\ \text{erwartete Entfernung } r_j^* \, \text{und relative} \\ \text{Orientierung } \varphi_j^* \, \text{zur j-ten Landmarke aus;} \\ p &= p * N(0,\sigma_r^2)(r_j - r_j^*) * N(0,\sigma_\varphi^2)(\varphi_j - \varphi_j^*) \; ; \\ \text{return p;} \end{split}
```


Messmodell (1)

Es muss geprüft werden, wie gut die Sensorwerte z_{k+1}
 zur Partikel-Position x_{k+1}[i] in einer Umgebungskarte m passen.

Sensorwerte z_{k+1} (z.B Laser-Scan)

Wahrscheinlichkeit für jede Position $x_{k+1}[i]$, dass dort Laser-Scan z_{k+1} gemessen wurde. Je dunkler, desdo wahrscheinlicher.

Strahlenmodell

- Laser misst strahlenförmig Abstände z = d₁,d₂, ..., d_n zu den nächsten Hindernissen.
- Es wird die Wahrscheinlichkeit p geschätzt, dass an der Partikelposition (x[i],y[i],θ[i]) diese Abstandsmessungen beobachtet werden.

Beobachtete Abstandsmessungen $z_t = z_1, z_2, ..., z_n$

Likelihoodfield (1)

- Für eine Lasermessung $z = d_1, d_2, ..., d_n$ und eine Partikelposition $(x[i],y[i],\theta[i])$ werden Hindernispunkte $(x_{z1}, y_{z1}), ..., (x_{zn}, y_{zn})$ im globalen Koordinatensystem berechnet.
- Es wird die Wahrscheinlichkeit p geschätzt, dass an der Partikelposition (x[i],y[i],θ[i]) die Lasermessung beobachtet wird, indem berechnet wird, wie nah die Hindernispunkte von tatsächlichen Hindernissen in der Umgebungskarte entfernt sind.

```
\begin{array}{l} p=1;\\ \\ \text{for } k=1 \text{ to n do} \\ \\ \\ \text{berechne aus lokalen Polarkoordinaten } (d_k,\phi_k) \text{ globale Koordinaten } (x_{zk},\,y_{zk});\\ \\ \\ \text{dist} = \text{Abstand von } (x_{zk},\,y_{zk}) \text{ zum nächstgelegenen Hindernispunkt in m;}\\ \\ \\ p=p * N(0,\sigma^2)(\text{dist});\\ \\ \text{end}\\ \\ \\ \text{return } p; \end{array}
```

Likelihoodfield (2)

- Der Abstand dist von (x_{zk}, y_{zk}) zum nächstgelegenen Hindernispunkt läßt sich vorab berechnen.
- Damit wird der Algorithmus (auf Kosten von Speicherplatz!) wesentlich beschleunigt.

Links:

Umgebungskarte m.

Rechts:

im Voraus berechnetes Likelihood-Field. Je dunkler desdo unwahrscheinlicher ist es, dort ein Hindernispunkt zu beobachten.

Messmodell (2)

- Es gibt in der Literatur zahlreiche Verfahren, wovon einige hier kurz behandelt werden.
- Wir wollen davon ausgehen, dass außer beim Landmarkenbasiertem Verfahren die Sensordaten aus einem Laser-Scan bestehen.

Karte	Verfahren
Menge von Landmarken	Landmarkenbasiertes Verfahren
Metrische Karte	Strahlenmodell
Metrische Karte	Likelihood-Field

Resampling mit Roulette-Rad-Verfahren

- Aus der Partikelmenge {x[1], x[2], .., x[M]} mit Gewichten w₁,..., w_M sollen M Partikeln zufällig entsprechend ihrem Gewicht gezogen werden.
- Bilde dazu M Intervalle (gelbe Streifen im Roulette-Rad):

$$I_{1} = [0, w_{1}]$$

$$I_{2} = [w_{1}, w_{1}+w_{2}]$$
...
$$I_{M} = [w_{1}+...+w_{M-1}, w_{1}+...+w_{M}]$$

- Führe folgende Schritte M-mal aus:
 - Generiere gleichverteilte Zufallszahl z aus [0, w₁+...+w_M] (drehe Roulette-Rad);
 - Ermittle Intervall I_{n,} in dem z liegt mit binärer Suche;
 - Wähle Partikel x[n];
- Beachte: ein Partikel kann mehrfach ausgewählt werden.
- Laufzeit: O(M log(M)).

Resampling mit Speichenrad-Verfahren

- Aus der Partikelmenge {x[1], x[2], .., x[M]}
 mit Gewichten w₁,..., w_M sollen M Partikeln zufällig entsprechend ihrem Gewicht gezogen werden.
- Ordne Gewichte w₁,..., w_M auf einer kreisförmigen Skala an.
 Es sei W = w₁ +... + w_M die Gewichtsumme.
- Bilde ein Speichenrad mit M Speichen und einem Speichenabstand von d = W/M.
- Drehe 1. Speiche auf einen zufälligen Wert r ∈ [0, d].
- Wähle jeden Partikel x[i] aus, auf dessen Gewicht w[i] eine Speiche zeigt.
 Zeigen mehrere Speichen auf einen Partikel, dann wird der Partikel mehrfach ausgewählt.
- Laufzeit: O(M).

Diversität der Partikelmenge

- Wünschenswert ist eine gewisse Streuung der Partikelmenge (Diversität).
 Im Idealfall ist die Partikelmenge normalverteilt um die tatsächliche Pose.
- Falls sich der Roboter im Extremfall über viele Schritte nicht bewegt
 (d.h. keine Integration eines Steuerbefehls) und darüberhinaus die Gewichte je Partikel
 immer ähnlich bleiben, dann tendiert das Roulette-Verfahren dazu, mit M Kopien des
 gleichen Partikels zu enden.
 - Die Posenvarianz der Partikel wird 0. D.h. die Diversität verschwindet komplett. Die Wahrscheinlichkeit eines Lokalisierungsfehlers ist jedoch sehr groß.
- Das Speichenrad-Verfahren behält dagegen eher die Diversität bei.
 Haben alle Partikel das gleiche Gewicht, dann bleibt die Partikelmenge unverändert.
- Die Diversität lässt sich auch durch eine Verringerung der Resampling-Frequenz erhalten.
 - Es wird nur in jedem N-ten Schritt ein Resampling durchgeführt. In den Zwischenschritten werden die Partikeln zwar gewichtet, jedoch werden die Gewichte je Partikel nur aufmultipliziert. Das Resampling wird über das Gewichtsprodukt durchgeführt. Die Steuerbefehle werden dagegen in jedem Schritt integriert.
 - Ein guter Indikator, um festzustellen, ob ein Resampling durchgeführt werden soll, ist die Gewichtsvarianz. Nur bei hoher Gewichtsvarianz sollte ein Resampling durchgeführt werden.

Bewegungsmodell

- Die Funktion sampleMotionModell addiert zunächst zum Steuerbefehl \mathbf{u}_k einen zufällig generierten Rauschterm mit der Varianz $\Sigma_{\mathbf{u}}$
- Auf den verrauschten Steuerbefehl $\tilde{\mathbf{u}}_k$ und einem Partikel $\mathbf{x}_k[i]$ wird dann die Funktion f des Bewegungsmodells angewendet:

$$\mathbf{x}_{k+1}[i] = f(\mathbf{x}_k[i], \ \tilde{\mathbf{u}}_k)$$

Das Bewegunsgmodell f ist üblicherweise eines der Koppelnavigationsmodelle.

unterschiedliche $\mathbf{x}_{k+1}[i]$

Das Bewegungsmodell f wurde auf ein Partikel $\mathbf{x}_k[i]$ mit unterschiedlichen zufällig generierten Steuerbefehlen $\tilde{\mathbf{u}}_k$ angewendet.

Monte-Carlo-Lokalisierung (MCL)

```
Algorithm MCL(\chi_k, u_k, z_{k+1})
                                                         Positionsschätzung dargestellt
    \chi_{\mathbf{k}} = \chi_{\mathbf{k}} = \emptyset;
                                                        durch Partikelmenge
                                                        \chi_k = \{x_k[1], x_k[2], ..., x_k[M]\}.
    Integration des Steuerbefehls uk und
    Gewichtung mit Sensorwert z_{k+1}:
                                                                   Bewegungsmodell:
    for i = 1 to M do
                                                                   Hier wird auf Partikel x<sub>k</sub>[i]
        x_{k+1}[i] = sampleMotionModel(u_k, x_k[i]);
                                                                   ein zufällig generierter
        w_i = measurementModel(z_{k+1}, x_{k+1}[i], m);
                                                                   Steuerbefehl angewendet.
        \chi_{k+1}' = \chi_{k+1}' \cup \{(\chi_{k+1}[i], w_i)\};
    endfor
                                                                   Messmodell:
                                                                   Hier wird geprüft, wie gut die
    Resampling:
                                                                   gemessenen Sensorwerte z_{k+1} zur
    \chi_{k+1} = \emptyset;
                                                                   Position x_{k+1}[i] in einer
    for i = 1 to M do
                                                                   Umgebungskarte (map) m passen.
        ziehe i zufällig mit Wahrscheinlichkeit wi;
        \chi_{k+1} = \chi_{k+1} \cup \{X_{k+1}[i]\};
    endfor
                                        Neue Positionsschätzung
return \chi_{k+1};
```

Beispiel (1)

Beispiel (2)

Beispiel (3)

Beispiel (4)

Beispiel (5)

Beispiel (6)

Beispiel (7)

Beispiel (8)

Beispiel (9)

Beispiel (10)

Beispiel (11)

Beispiel (12)

Beispiel (1)

- Aibo und Robo-Soccer
- 6 Landmarken am Spielfeldrand; farblich gekennzeichnet

- Bewegungsmodell auf 5-Bein-Antrieb angepasst.
- Sensormodell auf Landmarkenerkennung angepasst.
 Sensorwert z_t besteht aus Richtung, Abstand und Landmarkennummer. Sensordaten durch Kamera.

Beispiel (2)

(c) Partikelwolken

zu unterschiedlichen Zeitpunkten. Jeweils vor und nach Resampling.

Durchgezogene Line:

tatsächlicher Weg

Gepunktete Linie:

über Odometrie gemessener Weg

Gestrichelte Linie:

über MCL ermittelter Weg

- (a) gibt an welche Landmarke zu den einzelnen Zeitpunkten erkannt wird.
- (b) Kovarianzen zu den Partikelwolken aus (a)

