

planetmath.org

Math for the people, by the people.

Stone-Weierstrass theorem (complex version)

 ${\bf Canonical\ name} \quad {\bf Stone Weierstrass Theorem complex Version}$

Date of creation 2013-03-22 18:02:31 Last modified on 2013-03-22 18:02:31 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Theorem Classification msc 46J10

Theorem - Let X be a compact space and C(X) the algebra of continuous functions $X \longrightarrow \mathbb{C}$ endowed with the sup norm $\|\cdot\|_{\infty}$. Let \mathcal{A} be a subalgebra of C(X) for which the following conditions hold:

- 1. $\forall x, y \in X, x \neq y, \exists f \in \mathcal{A} : f(x) \neq f(y)$, i.e. \mathcal{A} separates points
- 2. $1 \in \mathcal{A}$, i.e. \mathcal{A} contains all constant functions
- 3. If $f \in \mathcal{A}$ then $\overline{f} \in \mathcal{A}$, i.e. \mathcal{A} is a http://planetmath.org/InvolutaryRingself-adjoint subalgebra of C(X)

Then \mathcal{A} is dense in C(X).

Proof: The proof follows easily from the real version of this theorem (see the http://planetmath.org/StoneWeierstrassTheoremparent entry).

Let \mathcal{R} be the set of the real parts of elements $f \in \mathcal{A}$, i.e.

$$\mathcal{R} := \{ \operatorname{Re}(f) : f \in \mathcal{A} \}$$

It is clear that \mathcal{R} contains (it is in fact equal) to the set of the imaginary parts of elements of \mathcal{A} . This can be seen just by multiplying any function $f \in \mathcal{A}$ by -i.

We can see that $\mathcal{R} \subseteq \mathcal{A}$. In fact, $\text{Re}(f) = \frac{f + \overline{f}}{2}$ and by condition 3 this element belongs to \mathcal{A} .

Moreover, \mathcal{R} is a subalgebra of \mathcal{A} . In fact, since \mathcal{A} is an algebra, the product of two elements Re(f), Re(g) of \mathcal{R} gives an element of \mathcal{A} . But since Re(f).Re(g) is a real valued function, it must belong to \mathcal{R} . The same can be said about sums and products by real scalars.

Let us now see that \mathcal{R} separates points. Since \mathcal{A} separates points, for every $x \neq y$ in X there is a function $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. But this implies that $\text{Re}(f(x)) \neq \text{Re}(f(y))$ or $\text{Im}(f(x)) \neq \text{Im}(f(y))$, hence there is a function in \mathcal{R} that separates x and y.

Of course, \mathcal{R} contains the constant function 1.

Hence, we can apply the real version of the Stone-Weierstrass theorem to conclude that every real valued function in X can be uniformly approximated by elements of \mathcal{R} .

Let us now see that \mathcal{A} is dense in C(X). Let $f \in C(X)$. By the previous observation, both Re(f) and Im(f) are the uniform limits of sequences $\{g_n\}$ and $\{h_n\}$ in \mathcal{R} . Hence,

$$||f - (g_n + ih_n)||_{\infty} \le ||\operatorname{Re}(f) - g_n||_{\infty} + ||\operatorname{Im}(f) - h_n||_{\infty} \longrightarrow 0$$

Of course, the sequence $\{g_n + ih_n\}$ is in \mathcal{A} . Hence, \mathcal{A} is dense in C(X).