August 7, 2025

Definitions

Let $f_n(x) = \sum_{i=0}^n x^i$. Let G_n be the set of all g(x) such that $g(x) = \sum_{i=1}^n a_i x^i$ and $\forall a_i$ if $a_i = 0$ then $a_{i+1} \neq 0$. Let F(n) = the nth Fibonacci number.

Proofs

Theorem 1. let $g(x) = \sum_{i=0}^{n} a_i x^i$ with $a_n = a_0 = 1$ if $(x+1) * g(x) = 2^{n+1} - 1$ then g(x) does not contain two consecutive terms with coefficient zero

Proof. Assume for the sake of contradiction that there exists i such that 0 < j < n, $a_{j-1} = a_j = 0$ and $(x+1)*g(x)=f_{n+1}(x)$. Consider the following:

$$(x+1)*g(x) = x*g(x) + 1*g(x)$$

$$= x*\sum_{i=0}^{n} a_i x^i + 1*\sum_{i=0}^{n} a_i x^i \qquad \text{(substituting in g(x))}$$

$$= \sum_{i=0}^{n} a_i x^{i+1} + \sum_{i=0}^{n} a_i x^i \qquad \text{(multiplying by x in summation)}$$

$$= a_n x^{n+1} + \sum_{i=0}^{n-1} a_i x^{i+1} + \sum_{i=1}^{n} a_i x^i + a_0 \qquad \text{(pulling 0th and (n+1)th terms out of the summation)}$$

$$= a_n x^{n+1} + \sum_{i=1}^{n} a_{i-1} x^i + \sum_{i=1}^{n} a_i x^i + a_0 \qquad \text{(reindexing the first sum } i \leftarrow i+1)$$

$$= a_n x^{n+1} + \sum_{i=1}^{n} (a_{i-1} + a_i) x^i + a_0 \qquad \text{(combining summations)}$$

by the assumption there exist j such that $a_{j-1} + a_j = 0$ contradicting the assumption that (x+1) * g(x) = 0 $f_{n+1}(x)$ because the jth term of (x+1)*g(x)'s coefficient is 0

Theorem 2. $|G_n| = F(n+2)$

Proof. The proof will be by strong induction.

n = 1

- 1. g(x) = 1x
- 2. g(x) = 0x

n = 2

1.
$$g(x) = 1x^2 + x$$

2.
$$g(x) = 0x^2 + x$$

3.
$$g(x) = 1x^2 + 0x$$

The base case holds.

Induction hypothesis:

Assume that $|G_j| = F(j+2)$ for all $j \in \{1, 2, \dots, k\}$ for some k.

Inductive step:

consider a $g(x) \in G_{k+1}$.

Case 1. $a_{k+1} = 1$. In which case the rest of the polynomial can be any polynomial in G_k

Case 2. $a_{k+1} = 0$. which implies the $a_k = 1$. In which case the rest of the polynomial can be any polynomial in G_{k-1} .

Since every polynomial is in G_{k+1} one of these cases $|G_{k+1}| = |G_k| + |G_{k-1}| = F(k+2) + F(k+1)$. And by applying the Induction hypothesis $|G_k| = F(k+2) + F(k+1) = F(k+3)$. Therefore by the Principle of Mathematical Induction $|G_n| = F(n+2)$

(by definition of $f_{n+1}(x)$)

Theorem 3. let $g(x) \in G_{n-1}$. $(x+1)(x^n+g(x)+1)=f_{n+1}(x)$

Proof. let $g(x) = \sum_{i=0}^{n-1} a_i x^i$. such that if $a_i = 0$ then $a_{i+1} \neq 0$ consider the following

$$(x+1)(x^{n}+g(x)+1) = (x+1)x^{n} + (x+1)g(x) + (x+1)$$

$$= x^{n+1} + x^{n} + x(g(x)) + g(x) + x + 1$$

$$= x^{n+1} + x^{n} + \sum_{i=1}^{n-1} a_{i}x^{i+1} + \sum_{i=1}^{n-1} a_{i}x^{i} + x + 1$$

$$= x^{n+1} + x^{n} + \sum_{i=2}^{n} a_{i-1}x^{i} + \sum_{i=1}^{n-1} a_{i}x^{i} + x + 1 \qquad \text{(reindexing 1st sum } i \to i+1)$$

$$= x^{n+1} + x^{n} + a_{n-1}x^{n} + \sum_{i=2}^{n-1} a_{i-1}x^{i} + \sum_{i=2}^{n-1} a_{i}x^{i} + a_{i}x + x + 1 \qquad \text{(matching sum indices)}$$

$$= x^{n+1} + x^{n} + \sum_{i=2}^{n-1} (a_{i-1} + a_{i})x^{i} + x + 1 \qquad \text{(combining sums and simplifying)}$$

$$= x^{n+1} + x^{n} + \sum_{i=2}^{n-1} x^{i} + x + 1 \qquad \text{(Since } (a_{i-1} + a_{i}) = 1)$$

Therefore $(x+1)(x^n + g(x) + 1) = f_{n+1}(x)$.

 $= f_{n+1}(x)$