AS.180.102 (04): Elements of Microeconomics Chapter 15 - Firms in Competitive Markets

Kieran Allsop

November 1, 2024

Look ahead

- Problem Set 4 due Sunday Nov 10th
- Midterm 2 is in just under two weeks on Thursday Nov 14th
 - ▶ Please send me questions and come to office hours if you're unsure on any of the material!

Outline

Main Takeaway

Competitive firms are **price takers** and have extremely limited market power making the competitive market the simpler place to start

Market Characteristics

- Competitive markets have distinct characteristics
 - 1 The market has many buyers and many sellers
 - The sellers are producing identical (or almost identical) goods
 - There are no (or very limited) barriers to entry or exit
 - All producers are price takers
- What do these characteristics mean for producers' average revenue?

Revenues

$$TR = P \cdot Q$$

$$AR = \frac{TR}{Q} = \frac{P \cdot Q}{Q} = P$$

$$MR = rac{\Delta TR}{\Delta Q} = rac{PQ_2 - PQ_1}{Q_2 - Q_1} = rac{P(Q_2 - Q_1)}{(Q_2 - Q_1)} = P$$

Therefore P = MR = AR

Profit Maximization

Fill in the following table

Quantity	TC	TR	Profit	MC	MR
0	3	0			
1	5	6			
2	8	12			
3	12	18			
4	17	24			
5	23	30			
6	30	36			
7	38	42			

Profit Maximization

Fill in the following table

Quantity	TC	TR	Profit	MC	MR
0	3	0	-3	3	6
1	5	6	1	2	6
2	8	12	4	3	6
3	12	18	6	4	6
4	17	24	7	5	6
5	23	30	7	6	6
6	30	36	6	7	6
7	38	42	4	8	6

Note that profit is maximized when MC = MR. Why does this make intuitive sense?

Profit Maximization

• You are a producer of eggs in a perfectly competitive market. The price of a carton of eggs in the market is \$8.

Quantity	TC	TR	AR	ATC	MC	MR
1	9	8				
2	10	16				
3	12	24				
4	15	32				
5	19	40				
6	27	48				
7	42	56				

• You are a producer of eggs in a perfectly competitive market. The price of a carton of eggs in the market is \$8.

Quantity	TC	TR	AR	ATC	MC	MR
1	9	8	8	9	9	8
2	10	16	8	5	1	8
3	12	24	8	4	2	8
4	15	32	8	3.75	3	8
5	19	40	8	3.8	4	8
6	27	48	8	4.5	8	8
7	42	56	8	6	15	8

• What is the market quantity?

• You are a producer of eggs in a perfectly competitive market. The price of a carton of eggs in the market is \$8.

Producing away from equilibrium

- You are still a seller in the egg market and the market price for eggs is still \$8.
 - Let's assume that you want to sell your eggs at \$9. Intuitively, why is this not possible?

Short-run versus Long-run

- In the short run we are stuck with our fixed cost regardless of the quantity we produce
- In the long run, we can choose not to pay the fixed cost if we do not want to participate in the market

- In the short run we are stuck with our fixed cost regardless of the quantity we produce
- In the long run, we can choose not to pay the fixed cost if we do not want to participate in the market
- Our fixed cost to fix bikes at our bike shop is \$100. It costs \$20 to fix the first bike and \$30 to fix the second bike. The market price for bike fixes is \$35.
 - Is profit positive or negative if we fix these two bikes?

- In the short run we are stuck with our fixed cost regardless of the quantity we produce
- In the long run, we can choose not to pay the fixed cost if we do not want to participate in the market
- Our fixed cost to fix bikes at our bike shop is \$100. It costs \$20 to fix the first bike and \$30 to fix the second bike. The market price for bike fixes is \$35.
 - Is profit positive or negative if we fix these two bikes?
 - ★ Negative (TR=70, TC=20+30+100=150, $\pi = 70 150 = -80$)
 - Will we still fix these two bikes?

Short-run versus Long-run

- We require our total revenue to cover our variable costs to operate in the short run. Otherwise we shut down.
 - ightharpoonup Shut down if TVC > TR
 - ► Shut down if $\frac{TVC}{Q} > \frac{TR}{Q}$ ► Shut down if AVC > P
- Note in previous example:
 - P = \$35
 - $\rightarrow AVC = \frac{\$20 + \$30}{2} = \25

Assume that the market for pumpkins is perfectly competitive and you are a pumpkin producer. You have a fixed cost of \$10 and the total variable cost to produce a given quantity of pumpkins is given below.

- The market price for pumpkins in the fall is \$5 while the market price for pumpkins in the spring is \$3. Using the numbers given to you, explain mathematically why you will produce pumpkins in the fall but you will shut down and not produce pumpkins in the spring.
- We need to work out AVC and the quantity we will produce given price

Quantity				4	5	6	7
TVC	6	8	11 3.7 3	16	24	36	56
AVC	6	4	3.7	4	4.8	6	8
MC	6	2	3	5	8	12	20

• If P = 5 in the fall, we produce what quantity? Will we shut down or not?

Quantity					5		•
TVC	6	8	11	16	24 4.8 8	36	56
AVC	6	4	3.7	4	4.8	6	8
MC	6	2	3	5	8	12	20

- If P=5 in the fall, we produce what quantity? Will we shut down or not?
 - **4**
 - ► No shutdown as *P* > *AVC*
- If P = 3 in the spring, we produce what quantity? Will we shut down or not?

Quantity	1	2	3	4	5	6	7
TVC	6	8	11	16	24	36	56
AVC	6	4	3.7	4	4.8	6	8
MC	6	2	3	5	8	12	20

- If P=5 in the fall, we produce what quantity? Will we shut down or not?
 - **4**
 - ► No shutdown as P > AVC
- If P=3 in the spring, we produce what quantity? Will we shut down or not?
 - **▶** 3
 - ► Shut down because *P* < *AVC*