Pogrammation Lineaire: Methode de Simplexe

A.Belcaid

ENSA-Safi

April 5, 2022

Forme Standard

2 Solutions Basiques

Methode Simplexe

4 Tableaux

Introduction

- Etude algorithmique de la resolution d'un Programme Lineaire (LP).
- L'algorithme de reference est l'algorithme de Simplexe.
 - Develope par George Dantzig en 1947.
 - Point de depart de toutel a recherche operationnelle.
 - Existe dans la ma majorite des solveurs payants.
- Methode generale.
 - Introduction de la forme standard d'un LP.
 - Etude de la methode Simplexe pour LP.

Points extremes

• Tout d'abord on introduit la notion de Point extreme:

Points extremes

• Tout d'abord on introduit la notion de Point extreme:

Definition

Pour un ensemble $S \subset \mathbb{R}^n$, un point x est dit **extreme** s'il ne peut pas etre ecrit comme **combinaison convexe** de deux autres pointes. On ne peut pas trouver deux points $x_1, x_2 \in S$ et $\lambda \in (0,1)$ tel que

$$x = \lambda x_1 + (1 - \lambda)x_2$$

Points extremes

• Tout d'abord on introduit la notion de Point extreme:

Definition

Pour un ensemble $S \subset \mathbb{R}^n$, un point x est dit **extreme** s'il ne peut pas etre ecrit comme **combinaison convexe** de deux autres pointes. On ne peut pas trouver deux points $x_1, x_2 \in S$ et $\lambda \in (0,1)$ tel que

$$x = \lambda x_1 + (1 - \lambda)x_2$$

<u>A.Belcaid</u> 4/38

Optimalite et points extremes

• Pour chaque LP, on a la propriete suivante:

Proposition

Pour chaque LP, s'il existe un solution optimale, alors il y as forcement un **point extreme optimal**.

<u>A.Belcaid</u> 5/38

Optimalite et points extremes

• Pour chaque LP, on a la propriete suivante:

Proposition

Pour chaque LP, s'il existe un solution optimale, alors il y as forcement un **point extreme optimal**.

- Attention, ceci ne peut pas dire que si une solution est optimale, alors c'est un point extreme.
- Cette propriete constitue le noyau de la methode de simplexe.

Forme standard

• Premierement, on definit la forme standard:

Definition

Un LP est dans la forme standard si:

- Tous les second membres sont positifs.
- Tous les variables de decision sont positifs.
- Toutes les contraintes sont des egalites.
- Un second membre est la valeur b qui intervient dans des contraintes de type:

$$q(x) \leq b$$
 $q(x) \geq b$ $q(x) = b$

• On n'as pas de restriction sur la fonction objective.

- Se debarasser des second membre negatifs:
 - Si un second membre est negatif, changer des leux membres.
 - Exemple:

$$2x_1 + 3x_2 \leqslant -4$$

est equivalent a

- Se debarasser des second membre negatifs:
 - Si un second membre est negatif, changer des leux membres.
 - Exemple:

$$2x_1 + 3x_2 \leqslant -4$$

est equivalent a

$$-2x_1-3x_2\geqslant 4$$

- Variables de decision non negatives
 - Si x est **non positive**, la remplacer par -x.

$$2x_1 + 3x_2 \leqslant 4$$
 , $x \leqslant 0$ \iff $-2x_1 + 3x_2 \leqslant 4$, $x_1 \geqslant 0$

- Se debarasser des second membre negatifs:
 - Si un second membre est negatif, changer des leux membres.
 - Exemple:

$$2x_1 + 3x_2 \leqslant -4$$

est equivalent a

$$-2x_1 - 3x_2 \geqslant 4$$

- Variables de decision non negatives
 - Si x est **non positive**, la remplacer par -x.

$$2x_1 + 3x_2 \leqslant 4$$
 , $x \leqslant 0$ \iff $-2x_1 + 3x_2 \leqslant 4$, $x_1 \geqslant 0$

• Si x est libre, la remplacer par x' - x'', ou $x', x'' \ge 0$

- Se debarasser des second membre negatifs:
 - Si un second membre est negatif, changer des leux membres.
 - Exemple:

$$2x_1 + 3x_2 \leqslant -4$$

est equivalent a

$$-2x_1 - 3x_2 \geqslant 4$$

- Variables de decision non negatives
 - Si x est **non positive**, la remplacer par -x.

$$2x_1+3x_2\leqslant 4 \text{ , } x\leqslant 0 \quad \iff \quad -2x_1+3x_2\leqslant 4 \text{ , } x_1\geqslant 0$$

• Si x est libre, la remplacer par x' - x'', ou x', $x'' \ge 0$

$$2x_{1}+3x_{2}\leqslant4\text{ , }x_{1}\text{ libre }\iff\quad2x^{'}-2x^{''}+3x_{2}\leqslant4\text{ , }x^{'}\geqslant0\text{ , }x^{''}\geqslant0$$

- Contraintes Egalite
 - On ajoute alors des variables d'ecart

$$2x_1 + 3x_2 \leqslant 4 \iff 2x_1 + 3x_2 + x_3 = 4, x_3 \geqslant 0;$$

- Contraintes Egalite
 - On ajoute alors des variables d'ecart

$$2x_1 + 3x_2 \leqslant 4 \iff 2x_1 + 3x_2 + x_3 = 4, x_3 \geqslant 0;$$

De meme pour une inegalite ≥.

$$2x_1 + 3x_2 \geqslant 4 \iff 2x_1 + 3x_2 - x_3 = 4, x_3 \geqslant 0$$

- Pratiquement, une variable d'ecart mesure la difference entre les deux membres.
- La fonction objective peut etre min ou max.

- Contraintes Egalite
 - On ajoute alors des variables d'ecart

$$2x_1 + 3x_2 \le 4 \iff 2x_1 + 3x_2 + x_3 = 4, x_3 \ge 0;$$

De meme pour une inegalite ≥.

$$2x_1 + 3x_2 \ge 4 \iff 2x_1 + 3x_2 - x_3 = 4$$
, $x_1 \ge 0$

- Pratiquement, une variable d'ecart mesure la difference entre les deux membres.
- La fonction objective peut etre min ou max.

title

Pour un probleme standard, on doit chercher maintenant que les points extremes!!!

• On considere le LP avec m contraintes et n variables

$$\begin{cases} & \min \quad C^{\mathsf{T}} x \\ & \text{s.t.} \quad Ax = b \\ & x \geqslant 0. \end{cases}$$
 (1)

- ullet On va assumer que le rang $(\mathbf{A})=\mathfrak{m}^1.$
- Ceci implique que $m \le n$. Le probleme avec n = m est **trivial**. Ainsi on suppose que m < n.

¹Toutesles lignes de A sont independents

• Le systeme Ax = b, possede plus de colonnes que des lignes.

- $\bullet \ \ \text{Le systeme } Ax=b \text{, possede plus de colonnes que des lignes}.$
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

<u>A.Belcaid</u> 10/38

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

 \bigcirc Possedent n-m qui sont **nuls**.

<u>A.Belcaid</u> 10/38

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- ① Possedent n m qui sont nuls.
- ② Verifie l'equation Ax = b.

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- ① Possedent n m qui sont nuls.
- ② Verifie l'equation Ax = b.

<u>A.Belcaid</u> 10/38

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- ① Possedent n m qui sont nuls.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- \bigcirc Possedent n-m qui sont **nuls**.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m variables restants sont dit variables de base.

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- \bigcirc Possedent n-m qui sont **nuls**.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m variables restants sont dit variables de base.
 - La base est formee par les m variables de base.

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- ① Possedent n m qui sont nuls.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m. variables restants sont dit variables de base.
 - La base est formee par les m variables de base.
 - Ils forment une matrice $m \times m$ reguliere qu'on note A_B . dit

- lacktriangle Le systeme Ax=b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- ① Possedent n m qui sont nuls.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m. variables restants sont dit variables de base.
 - La base est formee par les m variables de base.
 - Ils forment une matrice $m \times m$ reguliere qu'on note A_B . dit

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- \bigcirc Possedent n-m qui sont **nuls**.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m. variables restants sont dit variables de base.
 - La base est formee par les m variables de base.
 - Ils forment une matrice $m \times m$ reguliere qu'on note A_B . dit
 - On note alors $x_b \in \mathbb{R}^m$ et $x_N \in \mathbb{R}^{n-m}$, les variables de base (hors base).

- Le systeme Ax = b, possede plus de colonnes que des lignes.
 - Ainsi, on peut selectionner des colonnes pour former la alertsolution basique.

Definition

Une solution basique a un probleme LP standard eest une solution qui:

- \bigcirc Possedent n-m qui sont **nuls**.
- ② Verifie l'equation Ax = b.
 - Les n m variables qui sont nuls sont appeles variables hors base.
 - Les m. variables restants sont dit variables de base.
 - La base est formee par les m variables de base.
 - Ils forment une matrice $m \times m$ reguliere qu'on note A_B . dit
 - On note alors $x_b \in \mathbb{R}^m$ et $x_N \in \mathbb{R}^{n-m}$, les variables de base (hors base).
 - On a alors $x_n = 0$ et $x_b = A_B^{-1}b$.

On considere le probleme LP

$$\begin{cases} & \min \quad 6x_1 + 8x_2 \\ & \text{s.t.} \quad x_1 + 2x_2 \leqslant 6 \\ & 2x_1 + x_2 \leqslant 6 \\ & xi \geqslant 0 \ \forall i = 1, 2 \end{cases}$$

On considere le probleme LP

$$\left\{ \begin{array}{ll} \text{min} & 6x_1 + 8x_2 \\ \text{s.t.} & x_1 + 2x_2 \leqslant 6 \\ & 2x_1 + x_2 \leqslant 6 \\ & xi \geqslant 0 \ \forall i = 1,2 \end{array} \right.$$

• Il as pour forme standard:

$$\begin{cases} & \text{min} \quad 6x_1 + 8x_2 \\ & \text{s.t.} \quad x_1 + 2x_2 + x_3 = 6 \\ & \quad 2x_1 + x_2 + x_4 = 6 \\ & \quad xi \geqslant 0 \ \forall i = 1, \dots, 4 \end{cases}$$

 \bullet Dans cet exemple standard, $\mathfrak{m}=2$ et $\mathfrak{n}=4.$

- $\bullet \ \, \text{Dans cet exemple standard, } m=2 \text{ et } n=4. \\$
 - $\bullet \ \ \text{On as alors} \ n-m=2 \ \text{variables hors base}.$

- $\bullet \ \, \text{Dans cet exemple standard, } m=2 \text{ et } n=4. \\$
 - ullet On as alors n-m=2 variables hors base.
 - $\bullet \ \ \mathsf{Et} \ m = \mathsf{2} \ \mathsf{variables} \ \mathsf{de} \ \mathsf{base}.$

<u>A.Belcaid</u> 12/38

- \bullet Dans cet exemple standard, m=2 et n=4.
 - On as alors n m = 2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.

- Dans cet exemple standard, m = 2 et n = 4.
 - On as alors n m = 2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.
 - Determiner un ensemble m de variables qui vont former la base B.

- Dans cet exemple standard, m = 2 et n = 4.
 - On as alors n m = 2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.
 - Determiner un ensemble m de variables qui vont former la base B.
 - Metter les variables hors base a zero: $x_N = 0$.

- Dans cet exemple standard, m = 2 et n = 4.
 - ullet On as alors n-m=2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.
 - Determiner un ensemble m de variables qui vont former la base B.
 - Metter les variables hors base a zero: $x_N = 0$.
 - Resoudre le systeme de taille \mathfrak{m} , qui est $A_Bx_B=b$ pour les variables de base.

- Dans cet exemple standard, m = 2 et n = 4.
 - On as alors n m = 2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.
 - Determiner un ensemble m de variables qui vont former la base B.
 - Metter les variables hors base a zero: $x_N = 0$.
 - Resoudre le systeme de taille \mathfrak{m} , qui est $A_B x_B = \mathfrak{b}$ pour les variables de base.
 - Les variables restants seront les variables hors base N.

- Dans cet exemple standard, m = 2 et n = 4.
 - On as alors n m = 2 variables hors base.
 - Et m = 2 variables de base.
- Les etapes pour obtenir la solution de base.
 - Determiner un ensemble m de variables qui vont former la base B.
 - Metter les variables hors base a zero: $x_N = 0$.
 - Resoudre le systeme de taille \mathfrak{m} , qui est $A_B x_B = \mathfrak{b}$ pour les variables de base.
 - Les variables restants seront les variables hors base N.
- Pour note exemple, chaque systeme sera de taille 2.

Les deux inegatlites sont:

• On essaie $B = (x_1, x_2)$ et $N = (x_3, x_4)$:

<u>A.Belcaid</u> 13/38

Les deux inegatlites sont:

• On essaie $B = (x_1, x_2)$ et $N = (x_3, x_4)$:

La solution est $(x_1,x_2)=(2,2)$. Ainsi la solution qui correspond a cette base B est $(x_1,x_2,x_3,x_4)=(2,2,0,0)$.

• On essaie alors une autre base $B = (x_2, x_3)$ et $N = (x_1, x_4)$:

Les deux inegatlites sont:

• On essaie $B = (x_1, x_2)$ et $N = (x_3, x_4)$:

La solution est $(x_1, x_2) = (2, 2)$. Ainsi la solution qui correspond a cette base B est $(x_1, x_2, x_3, x_4) = (2, 2, 0, 0)$.

• On essaie alors une autre base $B = (x_2, x_3)$ et $N = (x_1, x_4)$:

qui correspond as la solution $(x_1, x_2, x_3, x_4) = (0, 6, -6, 0)$.

- En general, on soit choisir \mathfrak{m} parmi un ensemble de \mathfrak{n} variables. Ainsi on a $\mathbb{C}^n_{\mathfrak{m}}$ bases a choisir.
- Pour notre exemple, on as alors $C_2^4 = 6$ bases.
- On peut examiner toutes les bases, on trouve alors:

В	χ_1	χ_2	x ₃	x ₄
(x_1, x_2)	2	2	0	0
(x_1, x_3)	3	0	3	0
(x_1, x_4)	6	0	0	-6
(x_2, x_3)	0	6	-6	0
(x_2, x_4)	0	3	0	3
(x_3, x_4)	0	0	6	6

Solution Basique realisable

• On doit filtrer les solutions realisables parmi les solutions de base.

On appelle ces solutions, des solutions de bases realisables.

<u>A.Belcaid</u> 15/38

Solution Basique realisable

- On doit **filtrer** les solutions realisables parmi les solutions de base.
 - Par definition, les solutions de base verifient Ax = b.
- On appelle ces solutions, des solutions de bases realisables.

Definition

Une solution de base realisable d'un probleme LP est une solution de base dont toutes les variables sont non negatives.

В	x_1	x_2	χ_3	χ_4
(x_1, x_2)	2	2	0	0
(x_1, x_3)	3	0	3	0
(x_1, x_4)	6	0	0	-6
(x_2, x_3)	0	6	-6	0
(x_2, x_4)	0	3	0	3
(x_3, x_4)	0	0	6	6

Solution Basique realisable

- On doit **filtrer** les solutions realisables parmi les solutions de base.
 - Par definition, les solutions de base verifient Ax = b.
 - Ainsi pour qu'ils soient realisable, ils doivent verifier $x \leq 0$.
- On appelle ces solutions, des solutions de bases realisables.

Definition

Une solution de base realisable d'un probleme LP est une solution de base dont toutes les variables sont non negatives.

В	x_1	x_2	χ_3	χ_4
(x_1, x_2)	2	2	0	0
(x_1, x_3)	3	0	3	0
(x_1, x_4)	6	0	0	-6
(x_2, x_3)	0	6	-6	0
(x_2, x_4)	0	3	0	3
(x_3, x_4)	0	0	6	6

Relation Solution Base realisable et points extreme

 Pourqu'oi les Solution de base realisable (SBR) sont imporants? Ils sont juste des points extremes!.

Theoreme

Pour un LP standard, un point extreme est une solution ssi c'est une solution de base realisable de cet LP.

L'implication directe est:

Theoreme

Pour un LP standard, s'il accepte une solution optimale, alors il y as forcement une solution de base realisable.

• Il y as un **isomorphisme** entre les SBR et les points extremes.

В	SBR?	Point	x_1	x_2	x_3	χ_4
(x_1, x_2)	Oui	A	2	2	0	0
(x_1, x_3)	Oui	B	3	0	3	0
(x_1, x_4)	No	C	6	0	0	-6
(x_2, x_3)	No	D	0	6	-6	0
(x_2, x_4)	Oui	E	0	3	0	3
(x_3, x_4)	Oui	F	0	0	6	6

Resolution de la forme standard

- Pour chercher une solution opitmale:
 - Au lieu de chercher toutes les points extremes, on cherche dans les SBR.
 - Pourquoi' un point extreme est une notion geometrique, alors que les SBR sont algebriques².
- Pour chercher la meilleure solution SBR, on se deplace entre les solutions adjacents:

Definition

Deux bases sont **adjacents** si elle differe seulement en une seule variale de base. Ainsi deux SBR sont adjacents si leurs bases sont adjacents.

• On montre ceci par une illustration:

²peuvent etre programmes facilement

Solution de base Adjacents

- Une pair de SBR adjacents correspendent a une deux points extremes adjacents. (i.e.) deux point dans la meme frontiere
- Passer entre ces deux solutions consiste a ce deplacer dans cette frontiere.

В	Point	x_1	x_2	x ₃	χ ₄
(x_1, x_2)	Α	2	2	0	0
(x_1, x_3)	В	3	0	3	0
(x_2, x_4)	Е	0	3	0	3
(x_3, x_4)	F	0	0	6	6

<u>A.Belcaid</u> 19/38

• Avec tous ces concepts, comment chercher la meilleure SBR?

- Avec tous ces concepts, comment chercher la meilleure SBR?
- Dans chaque SBR, se deplacer dans une solution ajdacentes qui doit etre meilleure!

- Avec tous ces **concepts**, comment chercher la meilleure SBR?
- Dans chaque SBR, se deplacer dans une solution ajdacentes qui doit etre meilleure!
 - Dans le voisinage de cette SBR, il doit avoir une direction pour ameliorer l'bojectif.

- Avec tous ces **concepts**, comment chercher la meilleure SBR?
- Dans chaque SBR, se deplacer dans une solution ajdacentes qui doit etre meilleure!
 - Dans le voisinage de cette SBR, il doit avoir une direction pour ameliorer l'bojectif.
 - En cas contraire, c'est une solution optimal.

- Avec tous ces **concepts**, comment chercher la meilleure SBR?
- Dans chaque SBR, se deplacer dans une solution ajdacentes qui doit etre meilleure!
 - Dans le voisinage de cette SBR, il doit avoir une direction pour ameliorer l'bojectif.
 - En cas contraire, c'est une solution optimal.
- Prochaine section, introduit la methode de simplexe qui regroupe toutes ces idees.

Idee simplexe

- Variables Entrante/Sortante
 - Choisir une variable hors base, qui doit entrer.³.
 - Augmenter la valeur de cette variable (entrante).
 - Tant que cette variables augmente, nous identifions la variable de base qui decroit et on s'arrette quand elle touche a 0.
 - Cette variable devient alors hors base.
- On continue a changer la base, jusqu'as trouver une base optimale.

³doit etre non nulle

Methode Simplexe

On va appliquer les notions algebrique de la methode de Simplexe.
 Soit l'LP

$$\begin{cases} & \text{min} \quad 6x_1 + 8x_2 \\ & \text{s.t.} \quad x_1 + 2x_2 \leqslant 6 \\ & \quad 2x_1 + x_2 \leqslant 6 \\ & \quad xi \geqslant 0 \ \forall i = 1, 2 \end{cases}$$

Methode Simplexe

On va appliquer les notions algebrique de la methode de Simplexe.
 Soit l'LP

$$\begin{cases} & \text{min} \quad 6x_1 + 8x_2 \\ & \text{s.t.} \quad x_1 + 2x_2 \leqslant 6 \\ & 2x_1 + x_2 \leqslant 6 \\ & xi \geqslant 0 \ \forall i = 1, 2 \end{cases}$$

• Il as pour forme standard:

$$\begin{cases} & \text{min} \quad 6x_1 + 8x_2 \\ & \text{s.t.} \quad x_1 + 2x_2 + x_3 = 6 \\ & 2x_1 + x_2 + x_4 = 6 \\ & xi \geqslant 0 \ \forall i = 1, \dots, 4 \end{cases}$$

Systeme des inegalites

- On doit suivre l'evoluton de la fonction objective.
 - On cherche a ameliorer toujours cette solution.
 - On denote $z = 2x_1 + 3x_2$ la valeur de la fonction objective.
 - Cette valeur est appelle La valeur z.
- On doit garder dans l'esprit qu'on
 - Chercher a maximiser z.
 - Tous les variables (sauf z) sont non negatives.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On remarque que $z = 2x_1 + 3x_2$ est exprimee comme $z 2x_1 3x_2 = 0$.
- On appelle cette contrainte la contrainte 0.

• Tout d'abord, on doit choisir une solution de base realisable.

- Tout d'abord, on doit choisir une solution de base realisable.
- Si on investit le systeme on pourra prendre:

- Tout d'abord, on doit choisir une solution de base realisable.
- Si on investit le systeme on pourra prendre:

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

• Avec ce choix on obtient une matrice identite $A_B = I$.

- Tout d'abord, on doit choisir une solution de base realisable.
- Si on investit le systeme on pourra prendre:

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- Avec ce choix on obtient une matrice identite $A_B = I$.
- Ainsi on trouve que

$$x_b = A_b^{-1}b = Ib = b \geqslant 0$$

.

• On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - On peut choisir alors x_1 .

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - ullet On peut choisir alors x_1 .
- Une question importante: Quand est ce qu'on s'arrete?

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - ullet On peut choisir alors x_1 .
- Une question importante: Quand est ce qu'on s'arrete?
 - $(0,0,6,8) \to (1,0,5,6) \to (2,0,4,4) \to \dots \text{ On remarque que } x_2 \text{ est toujours nulle.}$

Amelioration de la solution.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - On peut choisir alors x_1 .
- Une question importante: Quand est ce qu'on s'arrete?
 - (0,0,6,8) \rightarrow (1,0,5,6) \rightarrow (2,0,4,4) \rightarrow On remarque que x_2 est toujours nulle.
 - ② On s'arrete a (4,0,2,0) quand x_4 s'annulle.

Amelioration de la solution.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - On peut choisir alors x_1 .
- Une question importante: Quand est ce qu'on s'arrete?
 - (0,0,6,8) \rightarrow (1,0,5,6) \rightarrow (2,0,4,4) \rightarrow On remarque que x_2 est toujours nulle.
 - ② On s'arrete a (4,0,2,0) quand x_4 s'annulle.
 - Ceci est indique par le deuxieme membre

$$\frac{8}{2}<\frac{6}{1}$$

Amelioration de la solution.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On commence avec une la solutionj $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.
- On doit se deplacer maintenant, on doit choisir une variable qui entre, x_1 ou x_2 ?
 - La contrainte 0, nous dit que les deux peuvent entrer car ils vont augmenter la valeur de z.
 - On peut choisir alors x₁.
- Une question importante: Quand est ce qu'on s'arrete?
 - (0,0,6,8) \rightarrow (1,0,5,6) \rightarrow (2,0,4,4) \rightarrow On remarque que x_2 est toujours nulle.
 - ② On s'arrete a (4,0,2,0) quand x_4 s'annulle.
 - Ceci est indique par le deuxieme membre

$$\frac{8}{2}<\frac{6}{1}$$

Ainsi on se deplace vers $x^2 = (4, 0, 2, 0)$ avec $z_2 = 8$.

• On veut ameliorer $x^2 = (4, 0, 2, 0)$.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- lacktriangle On remarque quand x_2 augmente et x_4 reste nulle, on as:

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x_2 a 8.(x_1 s'annulle).

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x_2 a $8.(x_1$ s'annulle).
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 0$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x_2 a $8.(x_1 \text{ s'annulle})$.
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?
- Selon la deuxieme contrainte, quand x_2 augmente par 1 et x_4 reste nul alors x_1 decroit par $\frac{1}{2}$.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x₂ a 8.(x₁ s'annulle).
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?
- Selon la deuxieme contrainte, quand x_2 augmente par 1 et x_4 reste nul alors x_1 decroit par $\frac{1}{2}$.
 - Ainsi Selon la premiere contrainte, quand x₂ augmente par 1 et x₁ diminue par ½, x₃ doit decroitre par ½

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x₂ a 8.(x₁ s'annulle).
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?
- Selon la deuxieme contrainte, quand x_2 augmente par 1 et x_4 reste nul alors x_1 decroit par $\frac{1}{2}$.
 - Ainsi Selon la premiere contrainte, quand x₂ augmente par 1 et x₁ diminue par ½, x₃ doit decroitre par ½.
 - Ainsi, x_2 peut augmenter a $\frac{4}{3}$.

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x₂ a 8.(x₁ s'annulle).
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?
- Selon la deuxieme contrainte, quand x_2 augmente par 1 et x_4 reste nul alors x_1 decroit par $\frac{1}{2}$.
 - Ainsi Selon la premiere contrainte, quand x₂ augmente par 1 et x₁ diminue par ½, x₃ doit decroitre par ½.
 - Ainsi, x_2 peut augmenter a $\frac{4}{3}$.
 - On atteint $(\frac{10}{3}, \frac{4}{3}, 0, 0)$.

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- On veut ameliorer $x^2 = (4, 0, 2, 0)$.
 - Que doit on choisir x_2 ou x_4 . On prend x_2 .
- On remarque quand x_2 augmente et x_4 reste nulle, on as:
 - La deuxieme contrainte limite x₂ a 8.(x₁ s'annulle).
 - Cepdenant dans la premiere contrainte, comment x_1 et x_2 vont changer?
- Selon la deuxieme contrainte, quand x_2 augmente par 1 et x_4 reste nul alors x_1 decroit par $\frac{1}{2}$.
 - Ainsi Selon la premiere contrainte, quand x₂ augmente par 1 et x₁ diminue par ½, x₃ doit decroitre par ³/₂.
 - Ainsi, x_2 peut augmenter a $\frac{4}{3}$.
 - On atteint $(\frac{10}{3}, \frac{4}{3}, 0, 0)$.
- La valeur de $z = \frac{10}{3} \times 2 + \frac{4}{3} \times 3 = \frac{32}{2}$.

A.Belcaid

Remarque

Comment realiser ce type de calcul avec des **milliers** de variables et de contraintes!!!

$$z$$
 - $2x_1$ - $3x_2$ = 0
 x_1 + $2x_2$ + x_3 = 6
 $2x_1$ + x_2 + x_4 = 8

Remarque

Comment realiser ce type de calcul avec des milliers de variables et de contraintes!!!

Une Methode plus simple consiste a:

Remarque

Comment realiser ce type de calcul avec des **milliers** de variables et de contraintes!!!

- Une Methode plus simple consiste a:
 - Restreindre chaque contrainte d'avoir une seule variabble de base.

Remarque

Comment realiser ce type de calcul avec des milliers de variables et de contraintes!!!

- Une Methode plus simple consiste a:
 - Restreindre chaque contrainte d'avoir une seule variabble de base.
 - Limiter la contrainte 0 de n'avoir aucune variable de base.

Remarque

Comment realiser ce type de calcul avec des milliers de variables et de contraintes!!!

$$z - 2x_1 - 3x_2 = 0$$

 $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 8$

- Une Methode plus simple consiste a:
 - Restreindre chaque contrainte d'avoir une seule variabble de base.
 - Limiter la contrainte 0 de n'avoir aucune variable de base.
- Avec un language matriciel:

Remarque

Comment realiser ce type de calcul avec des milliers de variables et de contraintes!!!

$$z$$
 - $2x_1$ - $3x_2$ = 0
 x_1 + $2x_2$ + x_3 = 6
 $2x_1$ + x_2 + x_4 = 8

- Une Methode plus simple consiste a:
 - Restreindre chaque contrainte d'avoir une seule variabble de base.
 - Limiter la contrainte 0 de n'avoir aucune variable de base.
- Avec un language matriciel:
 - On cherche un matrice identite dans les contraintes.

Remarque

Comment realiser ce type de calcul avec des milliers de variables et de contraintes!!!

- Une Methode plus simple consiste a:
 - Restreindre chaque contrainte d'avoir une seule variabble de base.
 - Limiter la contrainte 0 de n'avoir aucune variable de base.
- Avec un language matriciel:
 - On cherche un matrice identite dans les contraintes.
 - On cherche un vecteur null dans la contrainte 0.

On rappelle le systeme initial:

$$z$$
 - 2x₁ - 3x₂ = 0
 x_1 + 2x₂ + x3 = 6
 $2x_1$ + x_2 + x_4 = 8

On commence avec $x^1 = (0,0,6,8)$ et $z_1 = 0$.

On rappelle le systeme initial:

$$z$$
 - $2x_1$ - $3x_2$ = 0
 x_1 + $2x_2$ + x_3 = 6
 $2x_1$ + x_2 + x_4 = 8

On commence avec $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.

 On remarque que pour les colonnes de base (troisieme et quatrieme) on as une matrice identite.

On rappelle le systeme initial:

On commence avec $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.

- On remarque que pour les colonnes de base (troisieme et quatrieme) on as une matrice identite.
- Maintenant on sait que x₁ entre et x₄ sort.

On rappelle le systeme initial:

On commence avec $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.

- On remarque que pour les colonnes de base (troisieme et quatrieme) on as une matrice identite.
- Maintenant on sait que x_1 entre et x_4 sort.
 - La base devient (x_1, x_3) .

On rappelle le systeme initial:

On commence avec $x^1 = (0, 0, 6, 8)$ et $z_1 = 0$.

- On remarque que pour les colonnes de base (troisieme et quatrieme) on as une matrice identite.
- Maintenant on sait que x₁ entre et x₄ sort.
 - La base devient (x_1, x_3) .
 - On doit remetre le systeme sous la forme:

On commence par:

$$z$$
 - $2x_1$ - $3x_2$ = 0 (L0)
 x_1 + $2x_2$ + x_3 = 6 (L1) (2)
 $2x_1$ + x_2 + x_4 = 8 (L2)

On commence par:

$$z - 2x_1 - 3x_2 = 0 (L0)$$

 $x_1 + 2x_2 + x_3 = 6 (L1)$
 $2x_1 + x_2 + x_4 = 8 (L2)$

① On multiplie L2 par $\frac{1}{2}$, on obtient $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.

On commence par:

$$z - 2x_1 - 3x_2 = 0$$
 (L0)
 $x_1 + 2x_2 + x_3 = 6$ (L1)
 $2x_1 + x_2 + x_4 = 8$ (L2)

- ① On multiplie L2 par $\frac{1}{2}$, on obtient $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- ② On remplace (L1) par (L1) + (L2), on obtient $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$

On commence par:

$$z - 2x_1 - 3x_2 = 0$$
 (L0)
 $x_1 + 2x_2 + x_3 = 6$ (L1)
 $2x_1 + x_2 + x_4 = 8$ (L2)

- ① On multiplie L2 par $\frac{1}{2}$, on obtient $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- ② On remplace (L1) par (L1) + (L2), on obtient $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$
- On multiplie (L2) par 1 et l'ajoute a (L0): $z 2x_2 + x_4 = 8$.

On commence par:

$$z - 2x_1 - 3x_2 = 0$$
 (L0)
 $x_1 + 2x_2 + x_3 = 6$ (L1)
 $2x_1 + x_2 + x_4 = 8$ (L2)

- ① On multiplie L2 par $\frac{1}{2}$, on obtient $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- ② On remplace (L1) par (L1) + (L2), on obtient $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$
- On multiplie (L2) par 1 et l'ajoute a (L0): $z 2x_2 + x_4 = 8$.
- On obtient alors le systeme:

$$z - 2x_2 + x_4 = 8$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$$
(3)

On commence par:

$$z - 2x_1 - 3x_2 = 0$$
 (L0)
 $x_1 + 2x_2 + x_3 = 6$ (L1)
 $2x_1 + x_2 + x_4 = 8$ (L2)

- ① On multiplie L2 par $\frac{1}{2}$, on obtient $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- ② On remplace (L1) par (L1) + (L2), on obtient $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$
- On multiplie (L2) par 1 et l'ajoute a (L0): $z 2x_2 + x_4 = 8$.
- On obtient alors le systeme:

$$z - 2x_2 + x_4 = 8$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$$
(3)

• Ceci nous as aussi donne la valeur de z = 8 et la solution actuelle $x^2 = (4, 0, 2, 0)$.

Méthode avec un tableau

On peut simplifier la formulation du processus de la méthode de simplexe en utilisant les étapes suivantes:

Formuler le problème dans sa forme standard.

		$c_j\!\to\!$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_B)	Basic Variables B	Basic Variables Value b (= x _B)	<i>x</i> ₁	x_2	Variab 	oles x _n	<i>s</i> ₁	s_2	 S_m
c_{B1}	<i>s</i> ₁	$x_{B1} = b_1$	a ₁₁	a ₁₂		a_{1n}	1	0	 0
c_{B2}	s ₂	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{\mathrm{B}i} x_{\mathrm{B}i}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 0

<u>A.Belcaid</u> 30/38

Méthode avec un tableau

On peut simplifier la formulation du processus de la méthode de simplexe en utilisant les étapes suivantes:

- Formuler le problème dans sa forme standard.
- Choisir une solution initiale

$$x_B = B^{-1}b$$

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_B)	Basic Variables B	Basic Variables Value $b (= x_B)$	<i>x</i> ₁	x_2	Varial 	oles x _n	<i>s</i> ₁	s_2	 s_m
c_{B1}	<i>s</i> ₁	$x_{B1} = b_1$	a ₁₁	a ₁₂		a_{1n}	1	0	 0
c_{B2}	s ₂	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
		•							
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{\mathrm{B}i} x_{\mathrm{B}i}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_{2} - z_{2}$		$c_n - z_n$	0	0	 0

A.Belcaid 30/38

Explication du tableau

• La colonne c_B stocke les coefficients des variables de bases.

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_R)	Basic Variables B	Basic Variables Value b (= x _B)	<i>x</i> ₁	x_2	Varial		<i>s</i> ₁	s_2	 s_m
c_{B1} c_{B2}	s ₁	$x_{B1} = b_1$ $x_{B2} = b_2$	a ₁₁ a ₂₁	a ₁₂ a ₂₂		a_{1n} a_{2n}	1 0	0	 0
	:	· · · · · · · · · · · · · · · · · · ·				· 2n			
C _{Bm}	S _m	$x_{Bm} = b_m$		a_{m2}		a_{mn}	0	. 0	 1
$Z = \sum c_{\mathrm{B}i} x_{\mathrm{B}i}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0		
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 U

A.Belcaid 31/38

Explication du tableau

- La colonne c_B stocke les coefficients des variables de bases.
- La colonne B contient une liste de variables qui sont dans la base.

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient	Basic Variables	Basic Variables Value			Varial				
(c_B)	B B	$b = x_B$	<i>x</i> ₁	<i>x</i> ₂		x _n	<i>s</i> ₁	s ₂	 3 m
c_{B1}	s_1	$x_{B1} = b_1$	a ₁₁	a_{12}		a_{1n}	1	0	 0
c_{B2}	s_2	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
•		•							
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{\mathrm{B}i} x_{\mathrm{B}i}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 0

A.Belcaid 31/38

Explication du tableau

- La colonne c_B stocke les coefficients des variables de bases.
- La colonne B contient une liste de variables qui sont dans la base.
- La colonne x_b stocke la valeur actuelle de la solution de base.

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_B)	Basic Variables B	Basic Variables Value $b (= x_B)$	<i>x</i> ₁	x_2	Variat	oles x _n	<i>s</i> ₁	s_2	 s_m
(CB)	ь								
c_{B1}	s ₁	$x_{B1} = b_1$	a ₁₁	a_{12}		a_{1n}	1	0	 0
c_{B2}	s_2	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{Bi} x_{Bi}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 0

A.Belcaid 31/38

Explication du tableau

- La colonne c_B stocke les coefficients des variables de bases.
- La colonne B contient une liste de variables qui sont dans la base.
- La colonne x_b stocke la valeur actuelle de la solution de base.
- Les coefficients aij représentent les taux de changements.

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_B)	Basic Variables B	Basic Variables Value $b (= x_B)$	<i>x</i> ₁	x_2	Variat	oles x _n	<i>s</i> ₁	s_2	 s_m
(CB)	ь								
c_{B1}	s ₁	$x_{B1} = b_1$	a ₁₁	a_{12}		a_{1n}	1	0	 0
c_{B2}	s_2	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{Bi} x_{Bi}$		$z_j = \sum c_{Bi} x_j$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 0

A.Belcaid 31/38

Explication du tableau

- lacktriangle La colonne c_B stocke les coefficients des variables de bases.
- La colonne B contient une liste de variables qui sont dans la base.
- La colonne x_b stocke la valeur actuelle de la solution de base.
- Les coefficients a_{ij} représentent les taux de changements.
- Les valeurs z_j représentent les gain sur la fonction objective fonction si la variables x_j entre dans la base.

$$z_{j} = \sum c_{B\mathfrak{i}} x_{j}$$

		$c_j \rightarrow$	c_1	c_2		c_n	0	0	 0
Basic Variables Coefficient (c_B)	Basic Variables B	Basic Variables Value b (= x _B)	<i>x</i> ₁	x_2	Varial	oles x _n	<i>s</i> ₁	s ₂	 S_m
c_{B1}	s_1	$x_{B1} = b_1$	a ₁₁	a ₁₂		a_{1n}	1	0	 0
c_{B2}	s_2	$x_{B2} = b_2$	a ₂₁	a_{22}		a_{2n}	0	1	 0
		•							
c_{Bm}	s_m	$x_{Bm} = b_m$	a_{m1}	a_{m2}		a_{mn}	0	0	 1
$Z = \sum c_{\mathrm{B}i} x_{\mathrm{B}i}$		$z_i = \sum c_{Bi} x_i$	0	0		0	0	0	 0
		$c_j - z_j$	$c_1 - z_1$	$c_2 - z_2$		$c_n - z_n$	0	0	 0

A.Belcaid 31/38

Exemple

Pour mieux comprendre ce tableau, on va considérer le problème suivant:

$$\left\{ \begin{array}{ll} \text{max} & 3x_1+5x_2+4x_3\\ \text{s.t} & 2x_1+3x_2\leqslant 8\\ & 2x_2+5x_3\leqslant 10\\ & 3x1+2x_2+4x_4\leqslant 15\\ & x_1,x_2,x_3\geqslant 0 \end{array} \right.$$

<u>A.Belcaid</u> 32/38

Exemple

• Pour mieux comprendre ce tableau, on va considérer le problème suivant:

$$\left\{ \begin{array}{ll} \text{max} & 3x_1 + 5x_2 + 4x_3 \\ \text{s.t} & 2x_1 + 3x_2 \leqslant 8 \\ & 2x_2 + 5x_3 \leqslant 10 \\ & 3x1 + 2x_2 + 4x_4 \leqslant 15 \\ & x_1, x_2, x_3 \geqslant 0 \end{array} \right.$$

		$c_j \rightarrow$	3	3	4	U	U	0
Basic Variables Coefficient c_B	Basic Variables B	Basic Variables Value $b (= x_B)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃
0	s_1	8	2	3	0	1	0	0
0	s_2	10	0	2	5	0	1	0
0	s_3	15	3	2	4	0	0	1
Z = 0		z_{j}	0	0	0	0	0	0
		$c_j - z_j$	3	5	4	0	0	0

A.Belcaid 32/38

Test d'optimalite On calcule l'expression

$$c_{j}-z_{j}=c_{j}-\sum_{i}c_{Bi}x_{j}$$

<u>A.Belcaid</u> 33/38

Test d'optimalite On calcule l'expression

$$c_{\mathfrak{j}}-z_{\mathfrak{j}}=c_{\mathfrak{j}}-\sum_{\mathfrak{i}}c_{B\mathfrak{i}}x_{\mathfrak{j}}$$

Optimalité

<u>A.Belcaid</u> 33/38

Test d'optimalite On calcule l'expression

$$c_{j}-z_{j}=c_{j}-\sum_{i}c_{Bi}x_{j}$$

Optimalité

① Si tous les $c_j - z_j \leqslant 0$, alors la solution obtenue est optimale.

<u>A.Belcaid</u> 33/38

Test d'optimalite On calcule l'expression

$$c_{j}-z_{j}=c_{j}-\sum_{i}c_{Bi}x_{j}$$

Optimalité

- ① Si tous les $c_j z_j \leq 0$, alors la solution obtenue est optimale.
- ② Si on trouve une colonne $c_j-z_j>0$ tel que tous les coefficients $a_{i\,k}<0$. Alors le problème est **non borné**.

A.Belcaid 33/38

Test d'optimalite On calcule l'expression

$$c_{j}-z_{j}=c_{j}-\sum_{i}c_{Bi}x_{j}$$

Optimalité

- ① Si tous les $c_j z_j \leq 0$, alors la solution obtenue est optimale.
- ② Si on trouve une colonne $c_j-z_j>0$ tel que tous les coefficients $\alpha_{i\,k}<0$. Alors le problème est **non borné**.
- ⑤ Finalement, si pour une colonne $c_j z_j > 0$ et qui contient un coefficient positive ($a_{ik} > 0$. Alors la solution peut être **amelioree**.

A.Belcaid 33/38

Variable entrante

Pour décider la variable entrante, on choisit simpelement celle avec le plus grande participation:

$$c_k - z_k = \max\left\{(c_j - z_j) \mid ; c_j - z_j > 0\right\}.$$

A.Belcaid 34/38

Variable entrante

Pour décider la variable entrante, on choisit simpelement celle avec le plus grande participation:

$$c_k - z_k = \max\left\{(c_j - z_j) \mid ; c_j - z_j > 0\right\}.$$

		$c_j \rightarrow$	3	5	4	0	0	0
Basic Variables Coefficient c_B	Basic Variables B	$\begin{aligned} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} \ (= \textit{\textbf{x}}_{\textit{\textbf{B}}} \) \end{aligned}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>s</i> ₂	s ₃
0 0 0	s_1 s_2 s_3	8 10 15	2 0 3	3 2 2	0 5 4	1 0 0	0 1 0	0 0 1
Z = 0		$c_j^{z_j}$ $c_j - z_j$	0 3	0 5 ↑	0 4	0	0	0

Cette colonne est appelle colonne pivot.

A.Belcaid 34/38

Variable Sortante

Variable sortante:

A.Belcaid 35/38

Variable sortante:

Variable sortante

Pour déterminer la variable sortante, on divise chaque élément b_i par le coefficient non nul de la colonne pivot.

$$\frac{x_{Br}}{\alpha_{rj}} = \min \left\{ \frac{x_{Bi}}{\alpha_{rj}} \mid \alpha_{rj} > 0 \right\}$$

Ce rapport est appelé rapport d'échange.

La ligne de cette variable est appelle ligne pivot.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{array}{c} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} \left(=\textit{\textbf{x}}_{\textit{\textbf{B}}}\right) \end{array}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x_B/x_2
0	s_1	8	2	3	0	1	0	0	8/3 →
0	s_2	10	0	2	5	0	1	0	10/2
0	s_3	15	3	2	4	0	0	1	15/2
Z = 0		z_j	0	0	0	0	0	0	
		$c_j - z_j$	3	5 ↑	4	0	0	0	

A.Belcaid 35/38

La dernière étape consiste adapter les coefficients du pivot.

Dans la ligne pivot, le coefficient du pivot doit être 0.

Ceci peut être réalise par la méthode de substitution de Gauss.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{aligned} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} (= \textit{\textbf{x}}_{\textit{\textbf{B}}}) \end{aligned}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x _B /x ₂
0	s_1	8	2	3	0	1	0	0	8/3 →
0	s ₂	10	0	2	5	0	1	0	10/2
0	s_3	15	3	2	4	0	0	1	15/2
Z = 0		z_j	0	0	0	0	0	0	
		$c_j - z_j$	3	5	4	0	0	0	
				1					

<u>A.Belcaid</u> 36/38

La dernière étape consiste adapter les coefficients du pivot.

- Dans la ligne pivot, le coefficient du pivot doit être 0.
- 2 Dans les autres lignes, le coefficient doit être null.

Ceci peut être réalise par la méthode de **substitution de Gauss**.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{aligned} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} (= \textit{\textbf{x}}_{\textit{\textbf{B}}}) \end{aligned}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x _B /x ₂
0	s_1	8	2	3	0	1	0	0	8/3 →
0	s_2	10	0	2	5	0	1	0	10/2
0	s ₃	15	3	2	4	0	0	1	15/2
Z = 0		z_i	0	0	0	0	0	0	
		$c_j - z_j$	3	5 ↑	4	0	0	0	

A.Belcaid 36/38

La dernière étape consiste adapter les coefficients du pivot.

- Dans la ligne pivot, le coefficient du pivot doit être 0.
- 2 Dans les autres lignes, le coefficient doit être null.

Ceci peut être réalise par la méthode de substitution de Gauss.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{array}{c} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} \left(= \textit{\textbf{x}}_{\textit{\textbf{B}}} \right) \end{array}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x _B /x ₂
0	s_1	8	2	3	0	1	0	0	8/3 →
0	s_2	10	0	2	5	0	1	0	10/2
0	s ₃	15	3	2	4	0	0	1	15/2
Z = 0		z_i	0	0	0	0	0	0	
		$c_j - z_j$	3	5	4	0	0	0	
				T					

<u>A.Belcaid</u> 36/38

La dernière étape consiste adapter les coefficients du pivot.

- Dans la ligne pivot, le coefficient du pivot doit être 0.
- 2 Dans les autres lignes, le coefficient doit être null.

Ceci peut être réalise par la méthode de substitution de Gauss.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{array}{c} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} \left(= \textit{\textbf{x}}_{\textit{\textbf{B}}} \right) \end{array}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x _B /x ₂
0	s ₁	8	2	3	0	1	0	0	8/3 →
0	s_2	10	0	2	5	0	1	0	10/2
0	s_3	15	3	2	4	0	0	1	15/2
Z = 0		z_i	0	0	0	0	0	0	
		$c_j - z_j$	3	5 ↑	4	0	0	0	

$$R_2 = R_2 - 2R_1$$

A.Belcaid 36/38

La dernière étape consiste adapter les coefficients du pivot.

- Dans la ligne pivot, le coefficient du pivot doit être 0.
- Dans les autres lignes, le coefficient doit être null.

Ceci peut être réalise par la méthode de substitution de Gauss.

		$c_j \rightarrow$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	$\begin{array}{c} \textit{Basic Variables} \\ \textit{Value} \\ \textit{\textbf{b}} \left(= \textit{\textbf{x}}_{\textit{\textbf{B}}} \right) \end{array}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	<i>s</i> ₃	Min Ratio x _B /x ₂
0	s_1	8	2	3	0	1	0	0	8/3 →
0	s_2	10	0	2	5	0	1	0	10/2
0	s ₃	15	3	2	4	0	0	1	15/2
Z = 0		z_i	0	0	0	0	0	0	
		$c_j - z_j$	3	5	4	0	0	0	
				T					

- $R_2 = R_2 2R_1$
- $R_3 = R_3 2R_1$

A.Belcaid 36/38

Nouvelle solution

Question

Calculer le résultat de ce changement, puis repreniez les **étapes précédentes** pour la nouvelle solution.

A.Belcaid 37/38

Nouvelle solution

Question

Calculer le résultat de ce changement, puis repreniez les **étapes précédentes** pour la nouvelle solution.

A.Belcaid 37/38

Question

Calculer le résultat de ce changement, puis repreniez les **étapes précédentes** pour la nouvelle solution.

		$c_j \to$	3	5	4	0	0	0	
Basics Variables Coefficient c_B	Basic Variables B	Basic Variables Value b (= x _B)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	s ₃	Min Ratio x_B/x_3
5	x_2	8/3	2/3	1	0	1/3	0	0	_
0	s_2	14/3	- 4/3	0	(5)	- 2/3	1	0	(14/3)/5 →
0	s_3	29/3	5/3	0	4	- 2/3	0	1	(29/3)/4
Z = 40/3		z_j	10/3	5	0	5/3	0	0	
		$c_j - z_j$	- 1/3	0	4	- 5/3	0	0	
					1				

Figure: Iteration 1 du simplexe

A.Belcaid 37/38

Deux dernières itérations

		$c_j \to$	3	5	4	0	0	0	
Basic Variables Coefficient c_B	Basic Variables B	Basic Variables Value b (= x _B)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	s_2	s ₃	Min Ratio x_B/x_1
5	x_2	8/3	2/3	1	0	1/3	0	0	(8/3)/(2/3) = 4
4	x_3	14/15	- 4/15	0	1	- 2/15	1/5	0	-
0	s ₃	89/15	41/15	0	0	2/15	- 4/5	1	(89/15)/(41/15) = 2.17 →
Z = 256/15		z_j	34/15	5	4	17/15	4/5	0	
		$c_j - z_j$	11/15 ↑	0	0	- 17/15	- 4/5	0	

Figure: Iteration 2 du simplexe

A.Belcaid 38/38

Deux dernières itérations

		$c_j \to$	3	5	4	0	θ	0	
Basic Variables Coefficient	Basic Variables	Basic Variables Value	x_1	x_2	<i>x</i> ₃	s_1	s_2	s ₃	Min Ratio
c_B	variables B	$b = x_B$							x_B/x_1
5	x_2	8/3	2/3	1	0	1/3	0	0	(8/3)/(2/3) = 4
4	x_3	14/15	- 4/15	0	1	- 2/15	1/5	0	-
0	s ₃	89/15	41/15	0	0	2/15	- 4/5	1	(89/15)/(41/15) = 2.17 →
Z = 256/15		z_j	34/15	5	4	17/15	4/5	0	
		$c_j - z_j$	11/15	0	0	- 17/15	- 4/5	0	
			1						

Figure: Iteration 2 du simplexe

		$c_j \to$	3	5	4	0	0	0
Basic Variables Coefficient c_B	Basic Variables B	$\begin{array}{c} \textit{Basic Variables} \\ \textit{Value} \\ \textit{b} \ (= x_{\textit{B}}) \end{array}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	s ₂	s ₃
5	x ₂	50/41	0	1	0	15/41	8/41	- 10/41
4	x3	62/41	0	0	1	- 6/41	5/41	4/41
3	x_1	89/41	1	0	0	- 2/41	- 12/41	15/41
Z = 765/41		z_{j}	3	5	4	45/41	24/41	11/41
		$c_j - z_j$	0	0	0	- 45/41	- 24/41	- 11/41

Figure: Iteration 3 du simplexe (finale)

A.Belcaid 38/38