Konrad Schönleber

BLATT 1

# Repetitorium Theoretische Elektrodynamik, WS 07/08

#### 1.1 (Ergänzungen zur Vorlesung)

a) Zeigen Sie die Gültigkeit der 1.Maxwellschen Gleichung. Benutzen Sie dazu den experimentell gefundenen Ausdruck für das elektrische Feld einer Punktladung im Ursprung:

$$\vec{E}(\vec{x}) = \frac{q}{4\pi\epsilon_0} \frac{1}{|\vec{x}|^2}$$

b) Zeigen Sie die Gültigkeit der 4.Maxwellschen Gleichung. Verwenden Sie hierzu das experimentell gefundene Ampèrsche Gesetz:

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I$$

- c) Zeigen Sie unter Verwendung der Maxwellgleichungen die Gültigkeit der Kontinuitätsgleichung.
- d) Zeigen Sie, dass das magnetische Moment die Form wie in der Vorlesung angegeben annimmt am Beispiel eines stromdurchflossenen Kreisringes.

(Hinweis: 
$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{x}}{r^2}$$
)

# ${\bf 1.2}~(\vec{E}\text{-}~{\rm und}~\vec{B}\text{-}{\rm Felder}~{\rm verschiedener}~{\rm Ladungsverteilungen})$

- a) Berechnen Sie das Elektrische Feld, sowie das Potential einer Vollkugel mir Radius R in den beiden Fällen:
- i) Einer leitenden Kugel mit Gesamtladung Q
- ii) Einer radialen Ladungsverteilung  $\rho(r) = \rho_0 e^{r/a}$  (mit beliebigeer Längeneinheit a)
- b) Berechnen Sie das elektrische bzw. magnetische Feld sowie die entsprechenden Potentiale für eine unendlich langes Koaxialkabel mit den Radien a<br/>
  b:
- i) Wenn der Innenleiter von einem Strom  $I_0$  durchflossen wird
- ii) Wenn Innen- bzw. Außenleiter von den Strömen  $I_0$  bzw.  $-I_0$  durchflossen werden
- iii) Wenn der Innenleiter mit einer konstanten Längenladungsdichte  $\lambda$  geladen ist
- iv) Wenn Innen- bzw. Außenleiter mit den Längenladungsdichten  $\lambda$  bzw.  $-\lambda$  geladen sind

# 1.3 (Spiegelladung)

Betrachten Sie folgende Anordnung.



- a) Verwenden Sie die Methode der Spiegelladung um die Greensche Funktion zu finden
- b) Berechnen Sie ds Monopol- ,Dipol- und Quadrupolmoment
- c) Wie sieht das elektrische Feld aus? Welche Kraft wirkt auf die Ladung

# 1.4 (Potential an einer Ecke)

Nun betrachten wir die Anordnung aus 1.5 umgekehrt:



- a) Das Potential im Leiter sei auf 0 festgelegt, berchnen Sie mit Hilfe eines Separations-ansatzes das Potential außerhalb des Leiters
- b) Bestimmen Sie das Verhalten des Potentials in der Nähe der Ecke. Wie verhält sich die elektrische Feldstärke nahe an der Ecke?

(Der Laplaceoperator hat in Zylinderkoordinaten die Form:  $\frac{1}{\rho}\partial_{\rho}\left(\rho\partial_{\rho}\right) + \frac{1}{\rho^{2}}\partial_{\phi}^{2} + \partial_{z}^{2}$ )

### 1.5 (Dipolfelder)

Berechnen Sie die Felder elektrischer und magnetischer Punktdipole und bestimmen Sie daraus die Energie eines Punktdipols im Dipolfeld eines 2. Punktdipols mit entgegengesetztem Dipolmoment im Abstand r.

# 1.6 (Quadratur des Kreises)

Betrachten Sie einen Draht der Länge L, der von einem Strom I durchflossen wird und berechnen Sie für folgende Anordnungen das Magnetfeld auf der z-Achse:

- a) Der Draht ist zu einem Kreis gebogen (Biot-Savartsches Gesetz)
- b) Der Draht ist zu einem Quadrat gebogen (Randeffekte heben sich auf und müssen nicht berücksichtigt werden)