

MOTEUR A COURANT CONTINU ET CARTE DE PUISSANCE.

DOCUMENTS RESSOURCES

Table des matières

Fiche 1	Présentation Générale	2
Le svst	ème	2
	ge en utilisant Arduino	
	e en utilisant Matlab Simulink	
	Description structurelle et technologique	
	r à courant continu	
Réduct	teur	3
Grande	eurs mécaniques	3
Capteu	ır	3
Shield	de commande moteur	3

Fiche 1 PRESENTATION GENERALE

Le système

- Raccorder le câble USB.
- Raccorder le câble d'alimentation sur le SHIELD MOTEUR.

Pilotage en utilisant Arduino

- En utilisant la document Ressource « Arduino », déployer la carte le fichier MCC_BO.ino.
- Visualiser la console série et l'affichage des données.
- Visualiser les courbes.

Pilotage en utilisant Matlab Simulink

Fiche 2 DESCRIPTION STRUCTURELLE ET TECHNOLOGIQUE

Moteur à courant continu

- Résistance de l'induit : $R_m = 3 \Omega$.
- Inductance de l'induit : $L_m = 4 \text{ mH}$.
- Inertie du motoréducteur ramené à l'arbre moteur (à vérifier) : $J_m = 3 \times 10^{-6} \; \mathrm{kg. \, m^2}$.
- Constante du moteur K = 0.009 V/(rad/s) = 0.009 Nm/A.

Réducteur

Rapport de réduction : 34.

Grandeurs mécaniques

- Coefficient de frottement visqueux en sortie du réducteur f = 0.0014 Nms/rad;
- Couple de frottement statique : -0.027 Nm.

Capteur

• Codeur: 48 tops/tour.

Shield de commande moteur

