Final Project (Group 2)

Group 2

2024-05-04

library(readxl)
library(dplyr)

```
library(ggplot2)
library(tidyr)
data <- read_excel("WHR_2015.xlsx")</pre>
colnames (data)
## [1] "Country"
                                         "Region"
## [3] "Happiness Rank"
                                        "Happiness Score"
## [5] "Standard Error"
                                        "Economy (GDP per Capita)"
## [7] "Family"
                                        "Health (Life Expectancy)"
## [9] "Freedom"
                                         "Trust (Government Corruption)"
## [11] "Generosity"
                                         "Dystopia Residual"
colnames(data) <- c("Country", "Region", "Happiness Score",</pre>
                    "Happiness Rank", "Economy (GDP per Capita",
                    "Health (Life Expectancy)", "Freedom",
                    "Trust (Government Corruption)", "Family", "Generosity",
                    "Dystopia Residual", "Standard Error")
str(data)
## tibble [158 x 12] (S3: tbl_df/tbl/data.frame)
## $ Country
                                   : chr [1:158] "Switzerland" "Iceland" "Denmark" "Norway" ...
## $ Region
                                   : chr [1:158] "Western Europe" "Western Europe" "Western Eu
## $ Happiness Score
                                  : num [1:158] 1 2 3 4 5 6 7 8 9 10 ...
                                   : num [1:158] 7.59 7.56 7.53 7.52 7.43 ...
## $ Happiness Rank
## $ Economy (GDP per Capita
                                  : num [1:158] 0.0341 0.0488 0.0333 0.0388 0.0355 ...
## $ Health (Life Expectancy)
                                   : num [1:158] 1.4 1.3 1.33 1.46 1.33 ...
## $ Freedom
                                   : num [1:158] 1.35 1.4 1.36 1.33 1.32 ...
## $ Trust (Government Corruption): num [1:158] 0.941 0.948 0.875 0.885 0.906 ...
## $ Family
                                   : num [1:158] 0.666 0.629 0.649 0.67 0.633 ...
```

\$ Generosity : num [1:158] 0.42 0.141 0.484 0.365 0.33 ...
\$ Dystopia Residual : num [1:158] 0.297 0.436 0.341 0.347 0.458 ...
\$ Standard Error : num [1:158] 2.52 2.7 2.49 2.47 2.45 ...

head(data)

					Trust		
			Economy		(Govern-		
			(GDP	Health	ment	Dystopia	aStandard
Happine k appiness per			(Life Ex-	Corrup-	Resid-	Er -	
Countringegion	Score	Rank	Capita	pectancy)	Freedom tion)	Famil@enerosityaal	ror
SwitzerWentern Eu- rope	n 1	7.587	0.03411	1.39651	1.34951 0.94143	0.665 5 74197 8 .29678	2.51738
IcelandWestern Eu- rope	n 2	7.561	0.04884	1.30232	1.40223 0.94784	0.628 0 71414 5 .43630	2.70201
Denma W estern Eu- rope	n 3	7.527	0.03328	1.32548	1.36058 0.87464	0.649 8 84835 0 .34139	2.49204
Norwa\Western Eu- rope	n 4	7.522	0.03880	1.45900	1.33095 0.88521	0.669 \(\pi_33 650\(\pha\).34699	2.46531
CanadaNorth Amer- ica	5	7.427	0.03553	1.32629	1.32261 0.90563	0.632 9 73295 0 .45811	2.45176
FinlandWestern Eu- rope	n 6	7.406	0.03140	1.29025	1.31826 0.88911	0.641 69 4137 0 .23351	2.61955

tail(data)

			Economy	Health	Trust (Govern-		
			(GDP	(Life	ment	Dystopia	Standard
	Happind appiness per			Ex-	Corrup-	Resid-	Er -
CountiRegion	Score	Rank	Capita	pectancy)	Freedom tion)	Famil@enerositwal	ror
Afghar Siotath ern Asia	153	3.575	0.03084	0.31982	0.302850.30335	0.234 0 40971 9 .36510	1.95210
RwandSub- Saharan Africa	154	3.465	0.03464	0.22208	0.773700.42864	0.592 01 5519 0 .22628	0.67042
Benin Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.353860.31910	0.484 5 00801 0 .18260	1.63328

					Trust		
			Economy	Health	(Govern-		
			(GDP)	(Life	ment	Dystopi	aStandar
	Happindsappin		ness per	Ex-	Corrup-	Resid-	Er -
Countingegion	Score	Rank	Capita	pectancy)	Freedom tion)	Famil@enerositwal	ror
Syria Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.474890.72193	0.156 8 4890 6 .47179	0.32858
Burun g iib- Saharan Africa	157	2.905	0.08658	0.01530	0.415870.22396	0.118 5 01006 2 .19727	1.83302
Togo Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.139950.28443	0.364 5 31073 0 .16681	1.56726

*Center

```
data %>%
  summarize(center = median(`Happiness Score`, na.rm = TRUE))
```

 $\frac{\text{center}}{79.5}$

```
data %>%
  summarise(mean_happiness_score = mean(`Happiness Score`, na.rm = TRUE))
```

 $\frac{\text{mean_happiness_score}}{79.49367}$

```
## Economy (GDP per Capita) Family
## 0.910245 1.029510

## Health (Life Expectancy) Trust (Government Corruption)

## Generosity
## 0.216130
```

```
library(readxl)
library(dplyr)
library(tidyr)
library(ggplot2)
happiness_data <- read_excel("WHR_2015.xlsx")</pre>
```

```
happiness_long <- happiness_data %>%
  pivot_longer(
    cols = c(`Economy (GDP per Capita)`, Family, `Health (Life Expectancy)`, `Trust (Government names_to = "Variable",
    values_to = "Value"
)
```

Impact of Various Factors on Happiness Score

Factors Influencing Happiness

• The boxplot for the economy shows a high median, but family has the highest.

```
theme(axis.text.x = element_text(angle = 10, hjust = 0.65, vjust = 1),
    legend.position = "none")
```

Impact of Various Factors on Happiness Score

Factors

• Family has the highest median of 1.029510 and Economy had 0.910245. Both are located in the high portion compared to other factors.

library(reshape2)

```
##
## Attaching package: 'reshape2'

## The following object is masked from 'package:tidyr':
##
## smiths

data_selected <- data %>%
    select(`Happiness Score`, `Economy (GDP per Capita)`, Family, `Trust (Government Corruption)
```

cor_matrix <- cor(data_selected, use = "complete.obs")</pre>

- Red shows the strongest positive correlation, blue shows the strongest negative correlation, and white shows no relationship close to 0.
- Most Influential: Economy (GDP per Capita), closely followed by Family and Health.
- Moderately Influential: Trust (Government Corruption).
- Least Influential: Generosity.

library(corrplot)

corrplot 0.92 loaded

- Happiness Score and Economics: Correlation coefficient 0.78
- Happiness Score and Health: Correlation coefficient 0.72
- Happiness Score and Family: Correlation coefficient 0.74
- Happiness Score and Trust: Correlation coefficient 0.4
- Happiness Score and Generosity: Correlation coefficient 0.18

```
library(readxl)
library(ggplot2)

data <- read_excel("WHR_2015.xlsx")

data <- data[, c("Economy (GDP per Capita)", "Family", "Health (Life Expectancy)", "Trust (Gov.)

data <- na.omit(data)

ggplot(data, aes(x = `Economy (GDP per Capita)`, y = `Happiness Score`)) +
    geom_bin2d() +
    scale_fill_gradient(low = "white", high = "blue") +
    labs(title = "Relationship between Economy (GDP per Capita) and Happiness Score")</pre>
```

Relationship between Economy (GDP per Capita) and Ha


```
ggplot(data, aes(x = Family, y = `Happiness Score`)) +
  geom_bin2d() +
  scale_fill_gradient(low = "white", high = "blue") +
  labs(title = "Relationship between Family and Happiness Score")
```

Relationship between Family and Happiness Score


```
ggplot(data, aes(x = `Health (Life Expectancy)`, y = `Happiness Score`)) +
  geom_bin2d() +
  scale_fill_gradient(low = "white", high = "blue") +
  labs(title = "Relationship between Health (Life Expectancy) and Happiness Score")
```

Relationship between Health (Life Expectancy) and Happi


```
ggplot(data, aes(x = `Trust (Government Corruption)`, y = `Happiness Score`)) +
  geom_bin2d() +
  scale_fill_gradient(low = "white", high = "blue") +
  labs(title = "Relationship between Trust (Government Corruption) and Happiness Score")
```

Relationship between Trust (Government Corruption) and


```
ggplot(data, aes(x = Generosity, y = `Happiness Score`)) +
  geom_bin2d() +
  scale_fill_gradient(low = "white", high = "blue") +
  labs(title = "Relationship between Generosity and Happiness Score")
```

Relationship between Generosity and Happiness Score


```
data <- read_excel("WHR_2015.xlsx")</pre>
medians <- data %>%
  summarise(
    Economy = median(`Economy (GDP per Capita)`, na.rm = TRUE),
    Family = median(Family, na.rm = TRUE),
    Health = median(`Health (Life Expectancy)`, na.rm = TRUE),
    Trust = median(`Trust (Government Corruption)`, na.rm = TRUE),
    Generosity = median(Generosity, na.rm = TRUE)
  )
total <- sum(medians)</pre>
medians <- medians / total * 100
pie_data <- data.frame(</pre>
  variable = names(medians),
  value = as.numeric(medians),
  label = sprintf("%.1f%%", as.numeric(medians))
ggplot(pie_data, aes(x = "", y = value, fill = variable)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar(theta = "y") +
  theme void() +
  labs(title = "Contribution of Various Factors to Happiness Score") +
  geom_text(aes(label = label), position = position_stack(vjust = 0.5), size = 3)
```

Contribution of Various Factors to Happiness Score

• The size of each sector is calculated based on the median value of each variable relative to the total sum of medians. Family variable occupies the largest sector, indicating it has the most significant impact on happiness scores, contributing 34.8% of the total.