$$\int \frac{\sqrt{x^2 - 25}}{x} \, dx$$

Solution

Let $x = 5 \sec \theta$ with θ in quadrants I or III. So, $dx = 5 \sec \theta \tan \theta \, d\theta$ and we use $\sec \theta = \frac{x}{5}$ to draw a right triangle with x as the hypotenuse side and 5 as the adjacent side. The side opposite to θ is $\sqrt{x^2 - 25}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{x^2 - 25}}{5}$. Based on this equation, we will use $5 \tan \theta = \sqrt{x^2 - 25}$ if it is helpful. Since $\cos \theta = \frac{5}{x}$, we will use $x = \frac{5}{\cos \theta} = 5 \sec \theta$ if it is helpful.

So

$$\int \frac{\sqrt{x^2 - 25}}{x} dx = \int \frac{5 \tan \theta}{5 \sec \theta} 5 \sec \theta \tan \theta d\theta$$

$$= 5 \int \tan^2 \theta d\theta$$

$$= 5 \int (\sec^2 \theta - 1) d\theta$$

$$= 5 [\tan \theta - \theta] + C$$

$$= 5 \left[\frac{\sqrt{x^2 - 25}}{5} - \sec^{-1} \frac{x}{5} \right] + C$$