CS486/686: Introduction to Artificial Intelligence Lecture 6b - Decision Trees and Training Strategies

Jesse Hoey & Victor Zhong

School of Computer Science, University of Waterloo

January 27, 2025

Readings: Poole & Mackworth Chap. 7.3-7.3.1, 7.4-7.4.1

Example: User Discussion Board Behaviors

- Consider an application that predicts if a user will read or skip a discussion board article
- User action depends on the following attributes or features of articles:
 - the author of the article is known or unknown to the user
 - the thread is new or a follow up
 - the article's length is long or short
 - the user reads the article at home or at work
- Try to predict, based only on your prior knowledge of threaded discussion boards, what the user's action will be (read or skip) for the following examples:

example	author	thread	length	where read	user's action
t1	unknown	new	long	work	
t2	known	new	short	home	
t3	unknown	follow up	short	work	
t4	unknown	follow up	long	home	
t5	known	follow up	short	home	

Dataset: User Discussion Board Behaviors

After seeing this dataset, Now what is your prediction?

			1		
example	author	thread	length	where read	user's action
e1	known	new	long	home	skips
e2	unknown	new	short	work	reads
e3	unknown	follow up	long	work	skips
e4	known	follow up	long	home	skips
e5	known	new	short	home	reads
e6	known	follow up	long	work	skips
e7	unknown	follow up	short	work	skips
e8	unknown	new	short	work	reads
e9	known	follow up	long	home	skips
e10	known	new	long	work	skips
e11	unknown	follow up	short	home	skips
e12	known	new	long	work	skips
e13	known	follow up	short	home	reads
e14	known	new	short	work	reads
e15	known	new	short	home	reads
e16	known	follow up	short	work	reads
e17	known	new	short	home	reads
e18	unknown	new	short	work	reads
t1	unknown	new	long	work	?
t2	known	new	short	home	?

Example: User Discussion Board Behaviors

It appears the user mostly skips long articles (yellow lines) with two exceptions (green lines)

example	author	thread	length	where read	user's action
e1	known	new	long	home	skips
e2	unknown	new	short	work	reads
e3	unknown	follow up	long	work	skips
e4	known	follow up	long	home	skips
e5	known	new	short	home	reads
е6	known	follow up	long	work	skips
e7	unknown	follow up	short	work	skips
e8	unknown	new	short	work	reads
e9	known	follow up	long	home	skips
e10	known	new	long	work	skips
e11	unknown	follow up	short	home	skips
e12	known	new	long	work	skips
e13	known	follow up	short	home	reads
e14	known	new	short	work	reads
e15	known	new	short	home	reads
e16	known	follow up	short	work	reads
e17	known	new	short	home	reads
e18	unknown	new	short	work	reads
t1	unknown	new	long	work	?
t2	known	new	short	home	?

Learning Decision Trees

Simple, successful technique for supervised learning from discrete data

- Representation is a decision tree
- Bias is towards simple decision trees
- Search through the space of decision trees, from simple decision trees to more complex ones

Decision Trees

- Nodes are input attributes/features
- Branches are labeled with input feature value(s)
- Leaves are predictions for target features (point estimates)
- Can have many branches per node
- Branches can be labeled with multiple feature values

Example Decision Trees

Which decision tree is better for the discussion board example?

Learning a Decision Tree

- Incrementally split the training data
- Recursively solve sub-problems
- Hard part: how to split the data?
- Criteria for a good decision tree (bias):
 - small decision tree
 - good classification (low error on training data)
 - good generalisation (low error on test data)

Decision Tree Learning: Pseudocode

```
//X is input features, Y is output features,
//E is training examples
//output is a decision tree, which is either
    - a point estimate of Y, or
// - of the form \langle X_i, T_1, \dots, T_N \rangle where
   X_i is an input feature and T_1, \ldots, T_N are decision trees
procedure DecisionTreeLearner(X,Y,E)
   if stopping criteria is met then
      return pointEstimate(Y,E)
   else
      select feature X_i \in X
      for each value x_i of X_i do
          E_i = all examples in E where X_i = x_i
          T_i = \text{DecisionTreeLearner}(X \setminus \{X_i\}, Y, E_i)
      end for
      return \langle X_i, T_1, \dots, T_N \rangle
                                         end procedure
```

Decision Tree Classification/Inference: Pseudocode

```
//X is is input features, Y is output features,
//e is test example
//DT is a decision tree
//output is a prediction of Y for e
procedure ClassifyExample(e,X,Y,DT)
   S \leftarrow DT
   while S is internal node of the form \langle X_i, T_1, \dots, T_N \rangle do
      i \leftarrow X_i(e)
       S \leftarrow T_i
   end while
   return S
end procedure
```

Remaining Issues

- Stopping criteria
- Selection of features
- Point estimate (final return value at leaf)
- Reducing number of branches (partition of domain for N-ary features)

Stopping Criteria

- How do we decide to stop splitting?
- The stopping criteria is related to the final return value
- Depends on what we will need to do
- Possible stopping criteria:
 - No more features
 - Performance on training data is good enough

Feature Selection

- Ideal: choose sequence of features that result in smallest tree
- Actual: myopically split as if only allowed one split, which feature would give best performance?
- Heuristics for best performing feature:
 - Most even split
 - Maximum information gain
 - GINI index
 - ... others domain dependent ...

Good Feature Selection

Bad Feature Selection

- a bit is a binary digit: 0 or 1
- n bits can distinguish 2ⁿ items
- can do better by taking probabilities into account

Example:

Distinguish
$$\{a, b, c, d\}$$
 with $P(a) = 0.5$, $P(b) = 0.25$, $P(c) = P(d) = 0.125$ If we encode

a:00 b:01 c:10: d:11

It uses on average 2 bits

- a bit is a binary digit: 0 or 1
- n bits can distinguish 2ⁿ items
- can do better by taking probabilities into account

Example:

Distinguish
$$\{a, b, c, d\}$$
 with $P(a) = 0.5$, $P(b) = 0.25$, $P(c) = P(d) = 0.125$

If we encode

a:00 b:01 c:10:

c:10: d:11

It uses on average 2 bits

But if we encode

a:0 b:10 c:110

d:111

- a bit is a binary digit: 0 or 1
- n bits can distinguish 2ⁿ items
- can do better by taking probabilities into account

Example:

Distinguish
$$\{a, b, c, d\}$$
 with $P(a) = 0.5$, $P(b) = 0.25$, $P(c) = P(d) = 0.125$

If we encode

a:00 b:01 c:10: d:11

It uses on average 2 bits

But if we encode

b:10 c:110 a:0 d:111

It uses on average $P(a) \times 1 + P(b) \times 2 + P(c) \times 3 + P(d) \times 3 =$ 1.75 bits

- In general, need $-\log_2 P(x)$ bits to encode x
- Each symbol requires on average

$$-\mathbf{P}(\mathbf{x})\log_2\mathbf{P}(\mathbf{x})$$
 bits

• To transmit an entire sequence distributed according to P(x), we need **on average**

$$\sum_{\mathbf{x}} -\mathbf{P}(\mathbf{x}) \log_2 \mathbf{P}(\mathbf{x}) \qquad \text{bits}$$

of information per symbol we wish to transmit

• Information content or entropy of the sequence

Information Gain

Given a set E of N training examples, if the number of examples with output feature $Y = y_i$ is N_i , then

$$P(Y=y_i)=P(y_i)=\frac{N_i}{N}$$

(the point estimate)

Total information content for the set *E* is (assume $\log \equiv \log_2$):

$$I(E) = -\sum_{y_i \in Y} P(y_i) \log P(y_i)$$

So, after splitting E up into E_1 and E_2 (size N_1 , N_2) based on input attribute X_i , the information content

$$I(E_{split}) = \frac{N_1}{N}I(E_1) + \frac{N_2}{N}I(E_2)$$

and we want the X_i that maximises the **information gain**:

$$I(E)-I(E_{split})$$

Information Gain

Information gain is always non-negative

- Intuitively, information gain is the reduction in uncertainty about the output feature Y given the value of a certain input feature X
- Mathematically,

$$IG(E, X) = I(E) - I(E_{split})$$

$$= -\sum_{y \in Y} P(y) \log P(y) - \left(\frac{N_1}{N}I(E_1) + \frac{N_2}{N}I(E_2)\right)$$

$$\begin{split} \frac{N_1}{N}I(E_1) + \frac{N_2}{N}I(E_2) &= -\frac{N_1}{N}\left(\sum_{y \in Y} P(y|x=1)\log P(y|x=1)\right) \\ &- \frac{N_2}{N}\left(\sum_{y \in Y} P(y|x=2)\log P(y|x=2)\right) \end{split}$$

$$\begin{split} \frac{N_1}{N}I(E_1) + \frac{N_2}{N}I(E_2) &= -\frac{N_1}{N}\left(\sum_{y \in Y} P(y|x=1)\log P(y|x=1)\right) \\ &- \frac{N_2}{N}\left(\sum_{y \in Y} P(y|x=2)\log P(y|x=2)\right) \\ &= -\sum_{y \in Y} P(x=1)P(y|x=1)\log P(y|x=1) \\ &- \sum_{y \in Y} P(x=2)P(y|x=2)\log P(y|x=2) \end{split}$$

$$\begin{split} \frac{N_1}{N}I(E_1) + \frac{N_2}{N}I(E_2) &= -\frac{N_1}{N}\left(\sum_{y \in Y}P(y|x=1)\log P(y|x=1)\right) \\ &- \frac{N_2}{N}\left(\sum_{y \in Y}P(y|x=2)\log P(y|x=2)\right) \\ &= -\sum_{y \in Y}P(x=1)P(y|x=1)\log P(y|x=1) \\ &- \sum_{y \in Y}P(x=2)P(y|x=2)\log P(y|x=2) \\ &= -\sum_{x \in X, y \in Y}P(x,y)\log \frac{P(x,y)}{P(x)} \end{split}$$

Jensen's inequality: for a convex function f(x), $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x]) - \log(\cdot)$ is a convex function, so

$$IG(E, X) = I(E) - I(E_{split})$$

$$= -\sum_{y \in Y} P(y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

Jensen's inequality: for a convex function f(x), $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x]) - \log(\cdot)$ is a convex function, so

$$IG(E, X) = I(E) - I(E_{split})$$

$$= -\sum_{y \in Y} P(y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

$$= -\sum_{x \in X, y \in Y} P(x, y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

Jensen's inequality: for a convex function f(x), $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x]) - \log(\cdot)$ is a convex function, so

$$IG(E, X) = I(E) - I(E_{split})$$

$$= -\sum_{y \in Y} P(y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

$$= -\sum_{x \in X, y \in Y} P(x, y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

$$= -\sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x)P(y)}{P(x, y)}$$

Jensen's inequality: for a convex function f(x), $\mathbb{E}[f(x)] \geq f(\mathbb{E}[x]) - \log(\cdot)$ is a convex function, so

$$IG(E, X) = I(E) - I(E_{split})$$

$$= -\sum_{y \in Y} P(y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

$$= -\sum_{x \in X, y \in Y} P(x, y) \log P(y) + \sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x, y)}{P(x)}$$

$$= -\sum_{x \in X, y \in Y} P(x, y) \log \frac{P(x)P(y)}{P(x, y)}$$

$$\geq -\log \left(\sum_{x \in X, y \in Y} P(x, y) \frac{P(x)P(y)}{P(x, y)}\right) = 0$$

Example: User Discussion Board Behaviors

Build a decision tree for this dataset, using information gain to split, then make predictions

example	author	thread	length	where read	user's action
e1	known	new	long	home	skips
e2	unknown	new	short	work	reads
e3	unknown	follow up	long	work	skips
e4	known	follow up	long	home	skips
e5	known	new	short	home	reads
e6	known	follow up	long	work	skips
e7	unknown	follow up	short	work	skips
e8	unknown	new	short	work	reads
e9	known	follow up	long	home	skips
e10	known	new	long	work	skips
e11	unknown	follow up	short	home	skips
e12	known	new	long	work	skips
e13	known	follow up	short	home	reads
e14	known	new	short	work	reads
e15	known	new	short	home	reads
e16	known	follow up	short	work	reads
e17	known	new	short	home	reads
e18	unknown	new	short	work	reads

(see lect06-handout-dtexample.pdf)

Final Return Value

- Point estimate of Y (output features) over all examples
- Point estimate is just a prediction of target features
 - mean value,
 - median value,
 - most likely classification,
 - etc.

e.g.

$$P(Y=y_i)=\frac{N_i}{N}$$

where

- N_i is the number of training samples at the leaf with $Y = Y_i$
- *N* is the total number of training samples at the leaf.

Using a Priority Queue to Learn the DT

- The "vanilla" version we saw grows all branches for a node
- But there might be some branches that are more worthwhile to expand
- Idea: sort the leaves using a priority queue ranked by how much information can be gained with the best feature at that leaf
- Always expand the leaf at the top of the queue

Priority Queue (PQ) Decision Tree: Pseudocode V1

procedure DecisionTreeLearner(X,Y,E)

Start PQ with a single node (index 0) with

- whole data set $E_0 \equiv E$,
- the point estimate for E_0 , y_0 ,
- the best next feature to split E_0 on, X_0 and
- the amount of information gain ΔI_0 if E_0 split on X_0 .
- add node 0 to PQ

Repeat until a stopping criteria is reached:

- find leaf (index i) with highest information gain (head of PQ)
 - \rightarrow leaf *i* is the next split to do.
- Split the data at that leaf (E_i) according to the Best-Feature X_i
 - \rightarrow two datasets E_i + and E_i -
- Add 2 children to node i, one with E_i + and one with E_i -
- for each new child: compute and store in the child nodes:
 - point estimate,
 - best next feature to split on (of all the remaining features), and
 - information gain for that split
- add child nodes to PQ by information gain

Decision tree learning: pseudocode V2

```
procedure DecisionTreeLearner(X,Y,E)
DT = pointEstimate(Y, E) = initial decision tree
\{X', \Delta I\} \leftarrow \text{best feature and Information Gain value for } E
PQ \leftarrow \{DT, E, X', \Delta I\} = \text{priority queue of leaves ranked by } \Delta I
while stopping criteria is not met do:
      \{S_{\ell}, E_{\ell}, X_{\ell}, \Delta I_{\ell}\} \leftarrow \text{leaf at the head of } PQ
       for each value x_i of X_\ell do
          E_i = all examples in E_\ell where X_\ell = x_i
          \{X_i, \Delta I_i\} = best feature and value for E_i
          T_i \leftarrow pointEstimate(Y, E_i)
          insert \{T_i, E_i, X_i, \Delta I_i\} into PQ according to \Delta I_i
       end for
       S_{\ell} \leftarrow < X_{\ell}, T_1, \ldots, T_N >
end while
return DT
end procedure
```

Sometimes the decision tree is **too good** at classifying the training data, and will **not generalize** very well

This often occurs when there is not much data

Attributes: bad weather (W), I burnt my toast (T), my train is late (L)

Training data:

W , T , L ;

true, true, true;

false, false, false;

false, false, false;

true, false, false;

best decision tree (info gain):

Decision tree predicts the train based on burnt toast

Sometimes the decision tree is **too good** at classifying the training data, and will **not generalize** very well

This often occurs when there is not much data

Attributes: bad weather (W), I burnt my toast (T), my train is late (L)

Training data:

```
W , T , L ;
true, true, true;
false, false, false;
false, false, false;
true, false, false;
true, false, true;
false,false, false;
true, true, true;
```

true, false, true;

false, true, false:

best decision tree (info gain):

Decision tree predicts the train based on the weather

Some methods to avoid overfitting

- Regularization: e.g. Prefer small decision trees over big ones, so add a 'complexity' penalty to the stopping criteria - stop early
- Pseudocounts: add some data based on prior knowledge
- Cross validation

Test set errors caused by:

- Bias: the error due to the algorithm finding an imperfect model
 - representation bias: model is too simple
 - search bias: not enough search
- Variance: the error due to lack of data
- Noise: the error due to the data depending on features not modeled or because the process generating the data is inherently stochastic.
- Bias-variance trade-off:
 - Complicated model, not enough data (low bias, high variance)
 - Simple model, lots of data (high bias, low variance)
- see handout lect06-handout-biasvariance.pdf

- Capacity of a model is its ability to fit a wide variety of functions
- Capacity is like the inverse of bias a high capacity model has low bias and vice-versa

Cross Validation

Cross Validation

- Split training data into a training and a validation set
- Use the validation set as a "pretend" test set
- Optimise the decision maker to perform well on the validation set, not the training set
- Can do this multiple times with different validation sets

Next

• Uncertainty (Poole & Mackworth Chapter 9)