```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import warnings
        warnings.simplefilter('ignore')
In [2]: df = pd.read_csv('btc.csv')
        df.head()
Out[2]:
             Timestamp Open High Low
                                          Close Volume
        0 1.325412e+09
                                           4.58
                                                    0.0
                         4.58 4.58 4.58
        1 1.325412e+09
                         4.58 4.58 4.58
                                           4.58
                                                    0.0
        2 1.325412e+09
                         4.58
                               4.58 4.58
                                           4.58
                                                    0.0
        3 1.325412e+09
                         4.58
                               4.58 4.58
                                           4.58
                                                    0.0
        4 1.325412e+09
                         4.58
                              4.58 4.58
                                           4.58
                                                    0.0
In [3]: df['Timestamp'] = pd.to_datetime(df['Timestamp'], unit='s')
In [4]: df = df.set_index('Timestamp')
In [5]: df.head()
Out[5]:
                           Open High Low Close Volume
                Timestamp
        2012-01-01 10:01:00
                                                      0.0
                            4.58
                                 4.58
                                      4.58
                                             4.58
        2012-01-01 10:02:00
                            4.58
                                 4.58 4.58
                                             4.58
                                                      0.0
        2012-01-01 10:03:00
                            4.58
                                 4.58 4.58
                                             4.58
                                                      0.0
        2012-01-01 10:04:00
                            4.58
                                 4.58 4.58
                                             4.58
                                                      0.0
        2012-01-01 10:05:00
                                                      0.0
                           4.58
                                4.58 4.58
                                             4.58
In [6]:
        sns.lineplot(x=df.index, y=df['Close'])
        plt.show()
          100000
           80000
           60000
           40000
           20000
```

In [7]: df.tail()

2022

2024

2026

2020

0

2012

2014

2016

2018

Timestamp

```
2025-05-05 00:44:00 94682.0 94682.0 94682.0 94682.0 0.000000
          2025-05-05 00:45:00
                            94690.0 94746.0 94690.0 94690.0 0.130246
          2025-05-05 00:46:00 94726.0 94738.0 94725.0 94728.0 0.021155
          2025-05-05 00:47:00 94734.0 94756.0 94734.0 94749.0 0.021390
          2025-05-05 00:48:00 94750.0 94750.0 94709.0 94714.0 0.089986
 In [8]:
         # Resample to get day wise data
          df = df.resample('D').first()
 In [9]: df
 Out[9]:
                        Open
                                   High
                                            Low
                                                            Volume
                                                     Close
          Timestamp
          2012-01-01
                          4.58
                                   4.58
                                            4.58
                                                      4.58 0.000000
          2012-01-02
                          4.84
                                   4.84
                                            4.84
                                                      4.84 0.000000
          2012-01-03
                         5.00
                                   5.00
                                            5.00
                                                      5.00 0.000000
          2012-01-04
                         5.29
                                   5.29
                                             5.29
                                                      5.29 0.000000
          2012-01-05
                          5.57
                                   5.57
                                             5.57
                                                      5.57
                                                           0.000000
          2025-05-01 94181.00 94181.00 94141.00 94141.00 0.003797
          2025-05-02 96557.00
                               96609.00 96557.00
                                                 96589.00 0.722763
          2025-05-03 96926.00
                               96926.00
                                        96910.00
                                                  96926.00 0.081145
          2025-05-04 95850.00 95850.00 95848.00 95848.00 0.034849
          2025-05-05 94301.00 94301.00 94239.00 94263.00 0.316384
         4874 rows × 5 columns
In [10]: sns.lineplot(x=df.index, y=df['Close'])
          plt.show()
            100000
             80000
             60000
```

Check for Stationarity

2012

2014

2016

2018

Timestamp

40000

20000

0

Out[7]:

Open

Timestamp

High

Close

Volume

```
In [11]: #Method 1: Rolling Statistics
    rolmean = df['Close'].rolling(window=12).mean()
    rolstd = df['Close'].rolling(window=12).std()

    orig = plt.plot(df['Close'], color='blue', label = 'Original')
    mean =plt.plot(rolmean, color='red', label='Rolling Mean')
    std = plt.plot(rolstd, color='black', label='Rolling Std')
```

2020

2022

2024

2026

```
plt.title('Rolling Mean & Standard Deviation of Daily df')
plt.legend()
plt.show()
```

Rolling Mean & Standard Deviation of Daily df

```
100000 - Original Rolling Mean Rolling Std

80000 - 60000 - 60000 - 20000 - 20000 - 2012 2014 2016 2018 2020 2022 2024 2026
```

```
2012
                           2014
                                    2016
                                             2018
                                                      2020
                                                                2022
                                                                         2024
                                                                                  2026
In [12]: # Method 2: Augumented Dicky Fuller Test
          from statsmodels.tsa.stattools import adfuller
          result = adfuller(df['Close'])
          result[1]
Out[12]: 0.9666444141674304
In [13]: print('P Value:', result[1])
        P Value: 0.9666444141674304
          The Time Series isn't stationary
          Non stationary df to stationary df
In [14]: # Differencing
          diff = df['Close'] - df['Close'].shift(1)
Out[14]: Timestamp
          2012-01-01
                             NaN
          2012-01-02
                            0.26
          2012-01-03
                            0.16
          2012-01-04
                            0.29
          2012-01-05
                            0.28
          2025-05-01
                         -120.00
          2025-05-02
                         2448.00
          2025-05-03
                         337.00
          2025-05-04
                        -1078.00
          2025-05-05
                       -1585.00
          Freq: D, Name: Close, Length: 4874, dtype: float64
In [15]: diff.dropna(inplace=True)
In [16]: result = adfuller(diff)
          print('P-Value of ADF Test:',result[1])
        P-Value of ADF Test: 1.5648270417111684e-16
          you can confidently reject the null hypothesis, indicating that the time series is stationary.
In [17]: # Import autocorrelation and partial autocorrelation functions from statsmodels
```

Plot the autocorrelation function (ACF) for the differenced time series with 40 lags

Plot the partial autocorrelation function (PACF) for the differenced time series with 40 lags

from statsmodels.tsa.stattools import acf,pacf

fig = sm.graphics.tsa.plot acf(diff, lags=40)

fig = sm.graphics.tsa.plot_pacf(diff, lags=40)

import statsmodels.api as sm

Train Test Split

```
In [18]: train_size = int(len(df)*.80)
    train_size

Out[18]: 3899
In [19]: train = diff[:3899]
    test = diff[3899:]
```

ARIMA

```
In [20]: # Import the ARIMA model class from statsmodels time series analysis module
from statsmodels.tsa.arima.model import ARIMA

# Create an ARIMA model with parameters p=1 (autoregressive order),
# d=1 (differencing order), and q=1 (moving average order)
model = ARIMA(diff, order=(1,1,1))
# Fit the ARIMA model to the differenced time series data
# Note: Variable name 'ARIMA' shadows the imported class name, which could be confusing
ARIMA = model.fit()
```

Prediction

```
In [21]: # Generate predictions for the test dataset using the fitted SARIMAX model
# The prediction starts from the first index of test data and ends at the last index
ypred_test = ARIMA.predict(start=test.index[0], end = test.index[-1])
```

```
# Generate predictions for the training dataset using the fitted SARIMAX model
# This helps evaluate how well the model fits the training data
ypred_train = ARIMA.predict(start=train.index[0], end = train.index[-1])
```

Accuracy

```
In [22]: from sklearn.metrics import r2_score
print('Train R2 of ARIMA:',r2_score(train, ypred_train))
print('Test R2 of ARIMA:',r2_score(test, ypred_test))
```

Train R2 of ARIMA: 0.0017093504412294402 Test R2 of ARIMA: 0.002968757425722557

SARIMAX

```
In [23]: # Import the SARIMAX model from statsmodels for time series analysis
    from statsmodels.tsa.statespace.sarimax import SARIMAX

# Create a SARIMAX model with parameters:
# - diff: the differenced time series data
# - seasonal_order=(1,1,1,12): specifies SARIMA components
# - P=1: seasonal autoregressive order
# - D=1: seasonal difference order
# - Q=1: seasonal moving average order
# - s=12: seasonal period (monthly seasonality)
model = SARIMAX(diff, seasonal_order=(1,1,1,12))

# Fit the model to the data and store the results
# Note: Variable name 'SARIMAX' overwrites the imported class name, which could cause issues
SARIMAX = model.fit()
```

Prediction

```
In [24]: # Generate predictions for the test dataset using the fitted SARIMAX model
    # The prediction starts from the first index of test data and ends at the last index
    ypred_test = SARIMAX.predict(start=test.index[0], end=test.index[-1])

# Generate predictions for the training dataset using the fitted SARIMAX model
    # This helps evaluate how well the model fits the training data
    ypred_train = SARIMAX.predict(start=train.index[0], end=train.index[-1])
```

Accuracy

```
In [25]: from sklearn.metrics import r2_score

print('Train R2 of SARIMAX Model:',r2_score(train, ypred_train))
print('Test R2 of SARIMAX Model:',r2_score(test, ypred_test))
```

Train R2 of SARIMAX Model: 0.0019919158104985124 Test R2 of SARIMAX Model: 0.0036107985699792566

LSTM

Scaled the Data

```
In [26]: # Import MinMaxScaler from sklearn's preprocessing module
from sklearn.preprocessing import MinMaxScaler

# Create a MinMaxScaler object to scale features to a range between 0 and 1
scaler = MinMaxScaler()
# Apply the scaler to the dataframe: first fit the scaler to the data, then transform it
# This scales all numerical features to the range [0,1]
scaled_data = scaler.fit_transform(df)
```

Create Sequences

```
Returns:
       X: Array of input sequences, shape (n samples, seq length, n features)
       y: Array of target values, shape (n samples,)
   X, y = [], []
    for i in range(len(data) - seq_length):
       # Create a sequence of length seq length starting at position i
       X.append(data[i:i + seq length])
        # Target is the value at position i + seq length in the target column
       y.append(data[i + seq_length][target_col_index])
    return np.array(X), np.array(y)
# Set sequence length to 3 years of daily data (365*3 = 1095 \text{ days})
seq_length = 1095 # Using 1095 == 3 years to predict the next one
# Get the index of the 'Close' price column in the dataframe
target col index = df.columns.get loc('Close') # We predicting the 'Close' price
# Generate input sequences (X) and target values (y) for the model
X, y = create sequences(scaled data, seq length, target col index)
```

Train Test Split

```
In [28]: #80% 20% Split
split_index = int(0.8 *len(X))

X_train, X_test = X[:split_index], X[split_index:]
y_train, y_test = y[:split_index], y[split_index:]
```

LSTM Model

```
In [29]: # Import necessary Keras modules for building the model
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import LSTM, Dense, Dropout
         # Create a Sequential model for time series prediction
         model = Sequential([
             # First LSTM layer with 64 units, returning sequences for stacking LSTM layers
             # Input shape must match the training data dimensions (timesteps, features)
             LSTM(64, return sequences=True, input shape=(X train.shape[1], X train.shape[2])),
             # Add dropout to prevent overfitting (20% of neurons will be randomly ignored during training)
             Dropout (0.2),
             # Second LSTM layer with 64 units, not returning sequences as it's the last LSTM layer
             LSTM(64).
             # Another dropout layer to further prevent overfitting
             Dropout (0,2).
             # Output layer with a single neuron for regression prediction
             Dense(1)
         ])
         # Configure the model training process
         # Using Adam optimizer and mean squared error loss function for regression
         model.compile(optimizer='adam', loss='mean_squared_error')
         # Train the model for 20 epochs with batches of 64 samples
         # Validate performance on test data during training
         model.fit(X\_train, y\_train, epochs=20, batch\_size=64, validation\_data=(X test, y test))
```

```
Epoch 1/20
        48/48
                                  - 35s 667ms/step - loss: 0.0129 - val_loss: 0.0018
        Epoch 2/20
        48/48
                                  - 30s 625ms/step - loss: 5.9500e-04 - val_loss: 0.0021
        Epoch 3/20
        48/48
                                  - 31s 638ms/step - loss: 5.7513e-04 - val loss: 0.0023
        Epoch 4/20
        48/48
                                  - 32s 665ms/step - loss: 5.2455e-04 - val loss: 0.0021
        Epoch 5/20
        48/48 -
                                  - 31s 642ms/step - loss: 4.7252e-04 - val_loss: 9.2768e-04
        Epoch 6/20
        48/48
                                  - 40s 628ms/step - loss: 4.9781e-04 - val_loss: 0.0016
        Epoch 7/20
        48/48
                                  - 42s 639ms/step - loss: 4.2488e-04 - val loss: 0.0060
        Epoch 8/20
                                  - 30s 634ms/step - loss: 5.0407e-04 - val_loss: 0.0038
        48/48
        Epoch 9/20
        48/48 -
                                  - 31s 648ms/step - loss: 4.5813e-04 - val_loss: 0.0021
        Epoch 10/20
        48/48
                                  - 32s 660ms/step - loss: 4.5229e-04 - val_loss: 6.7442e-04
        Epoch 11/20
                                  - 31s 647ms/step - loss: 4.6899e-04 - val_loss: 0.0033
        48/48
        Epoch 12/20
        48/48
                                  - 31s 643ms/step - loss: 4.9131e-04 - val_loss: 0.0013
        Epoch 13/20
                                  - 31s 647ms/step - loss: 3.6317e-04 - val_loss: 0.0013
        48/48
        Epoch 14/20
                                  - 31s 644ms/step - loss: 3.5005e-04 - val_loss: 0.0025
        48/48
        Epoch 15/20
        48/48
                                  - 31s 653ms/step - loss: 3.8459e-04 - val_loss: 0.0036
        Epoch 16/20
                                  - 31s 646ms/step - loss: 3.8114e-04 - val_loss: 8.0161e-04
        48/48
        Epoch 17/20
        48/48 -
                                  - 31s 652ms/step - loss: 3.1704e-04 - val_loss: 8.0218e-04
        Epoch 18/20
                                  - 31s 650ms/step - loss: 3.4170e-04 - val loss: 7.2785e-04
        48/48
        Epoch 19/20
        48/48
                                  - 31s 654ms/step - loss: 4.0446e-04 - val_loss: 0.0010
        Epoch 20/20
        48/48
                                  - 31s 645ms/step - loss: 3.4178e-04 - val_loss: 5.9494e-04
Out[29]: <keras.src.callbacks.history.History at 0x2205b033350>
```

Prediction

Ploting - Actual Close Price vs Predicted Close Price

```
In [32]: # Actual
    actual_pad = np.zeros((y_test.shape[0], scaled_data.shape[1]))
    actual_pad[:, target_col_index] = y_test
    actual_prices = scaler.inverse_transform(actual_pad)[:, target_col_index]

# Step 8: Plot
    plt.figure(figsize=(12,6))
    plt.plot(actual_prices, label='Actual Close Price')
    plt.plot(predicted_prices, label='Predicted Close Price')
    plt.legend()
    plt.title('Bitcoin Price Prediction using LSTM')
    plt.show()
```



```
In [33]: from sklearn.metrics import mean_absolute_error
```

```
In [34]: from sklearn.metrics import mean_squared_error
         rmse = np.sqrt(mean squared error(actual prices, predicted prices))
         print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
```

Root Mean Squared Error (RMSE): 2589.94

```
In [35]: from sklearn.metrics import r2_score
         print('Accuracy:',r2_score(actual_prices, predicted_prices))
```

Accuracy: 0.9888232674056162

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js