pcaGoPromoter version 0.99.6

Morten Hansen

December 12, 2011

1 Introduction

This R package provides functions to ease the analysis of Affymetrix DNA micro arrays by principal component analysis with annotation by GO terms and possible transcription factors.

2 Requirements

R version 2.10.0 or higher

```
> source("http://bioconductor.org/biocLite.R")
> biocLite("pcaGoPromoter")
```

Rgraphviz from Bioconductor is needed to draw Gene Ontology tree:

> biocLite("Rgraphviz")

Note: Graphviz needs to be installed on the computer for Rgraphviz to work. See Rgraphviz README for installation.

3 Example

3.1 Load the library

> library("pcaGoPromoter")

3.2 Read in data set serumStimulation

- > library("serumStimulation")
- > data(serumStimulation)

The serumStimulation data set has been created from 13 CEL files - 5 controls, 5 serum stimulated with inhibitor and 3 serum stimulated without inhibitor. They are read with ReadAffy(), normalized with rma() and the expression data extracted with exprs(). All of these function are part of the affy package.

The arrays are most likely grouped in some sort of way. Create a factor vector to indicate the groups:

- [1] control control control control serumInhib
- [7] serumInhib serumInhib serumInhib serumOnly serumOnly

[13] serumOnly

Levels: control serumInhib serumOnly

3.3 Make PCA informative plot

This function "does-it-all". It will make a PCA plot and annotate the axis will GO terms and possible community function factors.

> pcaInfoPlot(exprsData=serumStimulation,groups=groups)

3.4 Principal component analysis (PCA)

> pcaOutput <- pca(serumStimulation)</pre>

> plot(pcaOutput, groups=groups)

PCA plot of 1. and 2. principal component

Proportion of variance is noted along the axis. In this case there are 3 groups in the data set - control, serumInhib and serumOnly. There is a clear separation of the groups along the 1. principal component (X-axis). The 2. principal component shown a difference between the controls and the serum stimulated.

3.5 Get loadings from PCA

We would like to have the first 1365 probe ids (2,5%) from 2. principal component in the negative (serum stimulated) direction.

> loadsNegPC2 <- getRankedProbeIds(pcaOutput, pc=2, decreasing=FALSE)[1:1365]

3.6 Create Gene Ontology tree from loadings

Note: In this step you will be asked to install the necessary data packages.

- > GOtreeOutput <- GOtree(input = loadsNegPC2)</pre>
- > plot(GOtreeOutput,legendPosition = "bottomright")

Gene Ontology tree, biological processes

Output to PDF file is advised. This can be done by coping output to a PDF file:

> dev.copy2pdf(file="GOtree.pdf")

Function ' $\operatorname{GOtree}()$ ' also outputs a list of GO terms order by p-value.

> head(GOtreeOutput\$sigGOs,n=10)

	GOid	genesInTerm	totalGe	nesInTerm	pValue
832	GO:0016070	185		2293	0.00933016
216	GO:0006139	248		3274	0.01017163
609	GO:0008152	444		6328	0.01017163
1494	GO:0044237	412		5809	0.01017163
385	GO:0006807	271		3664	0.01127019
1265	GO:0034641	266		3602	0.01222764
268	GD:0006366	81		887	0.01263727
257	GO:0006351	140		1729	0.01292306
1851	GO:0051252	133		1645	0.01847564
729	GO:0010467	188		2485	0.02772260
					GOterm
832			RNA	metabolio	process
216	nucleobase-	-containing	compound	metabolio	process
609				metabolio	process
1494			cellular	metabolio	process
385		nitrogen	compound	metabolio	process
1265	cellula	ar nitrogen	compound	metabolio	process

```
268 transcription from RNA polymerase II promoter
257 transcription, DNA-dependent
1851 regulation of RNA metabolic process
729 gene expression
```

3.7 Get list of possible transcription factors

To get possible transcription factors, use function primo() function.

```
> TFtable <- primo( loadsNegPC2 )
> head(TFtable$overRepresented)
```

	id	${\tt baseId}$	${\tt pwmLength}$	gene	pValue
1	9326	MA0098	6	ETS1	1.07190e-08
2	10235	PB0113	17	E2F3_2	7.92025e-08
3	9308	MA0080	6	SPI1	1.49450e-05
4	10234	PB0112	17	E2F2_2	1.17852e-04
5	10321	PB0199	14	Zfp161_2	1.58631e-04
6	10217	PB0095	16	Zfp161_1	4.11949e-04

The output shows you which possible transcription factors (genes) the supplied probes have in common.

3.8 Get a list of probe ids for a specific transcription factor

```
> probeIds <- primoHits( loadsNegPC2 , id = 9343 )
> head(probeIds)

[1] "NM_001121" "NM_016824" "NM_001114380" "NM_002209" "NM_003342"
[6] "NM_006403"
```