

### **BP233XJ Application Guide**

#### **Contents**



- ◆ BP23XX Products
- ◆ Typical Design
- Basic Principle
- Suggestions for Design Tool
- Design Considerations
- ◆ BP233XJ&BP23XX Replacement Guide

### BP23XX Products description

上海晶丰明源半导体有限公司 Bright Power Semiconductor

### Products description:



# BP23XX Products descriptio 上海晶丰明源半导体有限公司 Bright Power Semiconductor

|                                                     | BP23XX                                                | BP233XJ                                                                                                                |
|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Spec change                                         | Max on time:20us                                      | Max on time:30us                                                                                                       |
| Improved performance                                | When thermal fold back triggers ,it well have flicker | Improved ,it has no flicker if it has thermal fold back                                                                |
| Improved performance                                | OVP is easily be triggered ,leading to flicker        | With 100PF in parallel with FB resistor, the application with be anti-humidity, high temp and less sensitive to layout |
| Application Notices (application parameters         | If original                                           | Recommend to have 100PF capacitor in parallel with FB resistors                                                        |
| needs to be checked if replace BP233X with BP233XJ) | If original                                           | Recommend to have 1mA dummy load                                                                                       |
| 51 233/01                                           | If original                                           | Recommend to have VCC capacitor be 2.2uF                                                                               |

### **Typical Design**





|         | Package | BV/V | Rds(on)/Ω |
|---------|---------|------|-----------|
| BP2335J | SOP8    | 550  | 6         |
| BP2336J | SOP8    | 500  | 3         |
| BP2338J | SOP8    | 600  | 2         |
| BP2339J | SOP8    | /    | /         |

- If more power, invite BP2339J. The controller; external drive MOS, can push more power.
- FB add 100pF with chip optimized to enhance the anti-jamming capability.

#### **Operation**



#### BP233XJ family feature:

- 1. Utilizes floating ground buck structure
- 2. Constant Ton to achieve high power factor
- 3. Fast start up and power supply with HV JFET
- 4. critical conduction mode operation
- 5. The average current sampling
- 6. Internal LED open protection/short protection
- 7. Internal Thermal Regulation Function



#### **Operation**





- Constant Ton PFC control with line compensation
- Operates in Critical Conduction Mode, the inductor current is sensed during the whole switching cycle and limited cycle by cycle.
  - COMP compensation ensure constant control and line regulation 。







#### **Suggestion for Design Tool**

key parameters

The minimum system working frequency: suggested that selection in the 40~50KHz (Lowest operating frequency appears in full the minimum input voltage at peak), The operating frequency is too high PF value will deteriorate, low operating frequencies will require greater or more of the transformer primary side of the transformer to ensure that the number of turns of unsaturated to ensure at the minimum input voltage do not exceed the maximum on-time 30uS<sub>o</sub>

Fsw\_min: >40kHz, Ton\_max<30us @ Vin\_min

**The maximum magnetic flux density:** suggested that selection <0.3T, Because the system will reach the maximum peak current at the lowest input voltage peaks and, in some extreme applications can increase the Bm, get a better price

Bmax<0.3T



#### **COMP Pin Design**

- Put C\_COMP close to the COMP Pin and short trace in Layout.
- Typical value for C\_COMP is 1uF to getting better startup.
   Too larger C\_COMP, the start ability will be weaker, the power factor will be better.

for LTHD requirements, RC can be increased control loop compensation.



#### VCC Pin Design

• Power supply with HV JFET, Higher operation frequency need more supply.



- VCC\_Clamp at 12V;
- The more larger C\_VCC, the more littler input voltage;
- VCC capacitor should not exceed 4.7uf (including 4.7uf), recommended 2.2uf;

VCC capacitor can not select more than 4.7uf reasons: In steady state operation, the VCC capacitor greater than or equal 4.7uF, JFET in to VCC capacitor charging time will be longer, giving VCC capacitor charging time, the instantaneous power consumption of the chip will increase,

Cause fever becomes large chip, chip thermal regulation causes the output current is reduced when the JFET after the end of charging, reduce heat chip, chip thermal regulation of the output current. So when JFET charge to VCC, the output current will cause fluctuations, When this frequency fluctuation less than 100Hz (equivalent to the VCC capacitor charging frequencies), and enters the human visual range, you will see lights flashing or jitter. Reduce the VCC capacitor, the output current rippled frequency (VCC charging frequency) is greater than 100Hz, the human eye can not see the flashing lights or the phenomenon of jitter.

10 www.bpsemi.com



#### FB Pin parameters design(Important!)

- R\_L for FB is typical 3K to avoid interruptions;
- Set V\_FB about 1V during normal operation, keep margin for OVP and Vo\_min(FB OVP threshold is 1.6V).
- R\_H could stand with BV voltage as result of two 1206 package.
- Add 100pF on FB pin to avoid interruption.





#### FB Pin Layout Design(Put all three resistors close to the FB pin.)

- FB upper arm connection foil between the two resistors must be short.
- FB node between the two resistors and down close to the FB Pin, The point takes away from the switching node, to prevent interference,
- If it is double-sided board, FB sampling end do not go to any top line



Recommendations for improvement







#### CS Pin Design

• CS connection GND Pin too long to be as short as possible resistance line, connected to the IC output will lead to deterioration of the current regulation





#### Drain/GND Pin Design

• Copper area of Drain give clearance space under Pin7. Too much copper on Drain weak the EMI but helpful a lot on thermal dissipation.

• In PCB Library, the package for SOP8 should at least remove Pin7, better as well as

Pin6 to extend the safety space.





**Thermal regulation** when IC into thermal regulation ,the IC will adjust the COMP voltage to reduce output current, and at the same time ,the IC will adjust the Toff to reduce frequency ,ensure that output current will not decline too large to flicker when IC enter the thermal regulation.

#### **Suggestions:**

Key consideration when designing the IC temperature to prevent premature entry into the thermal regulation:

- 1. Reduce working frequency can decline the IC temperature:
- 2. Appropriate increase in PCB chip Drain / CS pin copper area to enhance the cooling effect;









#### For India and Brazil

- More safety margin requested.
- 2.5kV surge.



For India and Brazil

#### 2.5KV scheme schematic:





#### For India and Brazil

2.5KV test results:

With BP2335J, for example.

|     |       | BP2335J 2.5KV |        |
|-----|-------|---------------|--------|
| NO. | surge | + 90°         | - 270° |
|     | 1kV   | PASS          | PASS   |
|     | 1.5kV | PASS          | PASS   |
| #1  | 2kV   | PASS          | PASS   |
|     | 2.5kV | PASS          | PASS   |
|     | 2.6kV | PASS          | PASS   |
|     | 1kV   | PASS          | PASS   |
|     | 1.5kV | PASS          | PASS   |
| #2  | 2kV   | PASS          | PASS   |
| #2  | 2.5kV | PASS          | PASS   |
|     | 2.6kV | PASS          | PASS   |
|     | 3kV   | PASS          | PASS   |
|     | 1.5kV | PASS          | PASS   |
|     | 2kV   | PASS          | PASS   |
| #3  | 2.5kV | PASS          | PASS   |
|     | 2.6kV | PASS          | PASS   |
|     | 3kV   | PASS          | PASS   |



# BP233XJ &BP23XX Replacement Guide



#### **BP233XJ &BP233X** replace schematic





#### **BP233XJ &BP233X** replace schematic





#### After Replacement

• Output current is consistent (with BP2335J comparison test as an example)





#### After replacement

Same load regulation







#### After replacement

• Same system efficiency





#### After replacement

• Systems PF, THD is a little low (BP2335J and BP2335 comparative data)







#### After replacement

• Systems PF, THD is a little low (BP2335J and BP2325AJ comparative data)







#### After replacement

• Thermal regulation

BP233XJ based on the current temperature curve improvement, BP233XJ slow decline in the current version when entering the thermal regulation Improved ,it has no flicker if it has thermal fold back .





#### Replacement consideration

• The reason of BP233XJ Systems PF, THD is a little low

BP233XJ version Tonmax about 30us, and BP233X / BP232XAJ Tonmax version of 20,Tonmaxrelative increase, Increase The gain of the whole system (COMP voltage decreases also can achieve the same output changes); Because the system of compensation main pole unchanged (Determined by the COMP current and COMP capacitance), The phase margin will be worse (Equivalent to increase system bandwidth, the 100 hz frequency ripple suppression of variation), so BP233XJ version of PF/THD relative BP233X and BP232XAJ is less。

Improvement Strategy: 1. Increase COMP capacitance

- 2. The COMP pin can plus RC compensation
- 3. Reduce system working frequency (increase on time)



- 1. Increase COMP capacitance
- Increase COMP capacitance

265

0.754

0.758

0.757

Under different comp capacitance BP2335J contrast BP2325AJ/BP2335 PF 。

| Input       | F                        | BP2325AJ The | C_COMP is 1  | .uF     | Input            | BP2335J The C_COMP is 1uF |             |              |         |
|-------------|--------------------------|--------------|--------------|---------|------------------|---------------------------|-------------|--------------|---------|
| voltage (V) | age (1) 1# 2# 3# average | average      | voltage (V)  | 1#      | 2#               | 3#                        | average     |              |         |
| 90          | 0.97                     | 0.97         | 0.97         | 0.970   | 90               | 0.964                     | 0.965       | 0.965        | 0.965   |
| 110         | 0.975                    | 0.975        | 0.975        | 0.975   | 110              | 0.968                     | 0.97        | 0.97         | 0.969   |
| 132         | 0.967                    | 0.967        | 0.968        | 0.967   | 132              | 0.962                     | 0.963       | 0.962        | 0.962   |
| 176         | 0.924                    | 0.924        | 0.926        | 0.925   | 176              | 0.915                     | 0.916       | 0.918        | 0.916   |
| 220         | 0.854                    | 0.853        | 0.856        | 0.854   | 220              | 0.84                      | 0.839       | 0.841        | 0.840   |
| 265         | 0.775                    | 0.774        | 0.776        | 0.775   | 265              | 0.758                     | 0.757       | 0.761        | 0.759   |
| Input       |                          | BP2335 The ( | C_COMP is 1u | F       | Input<br>voltage | ВР                        | 2335J The C | _COMP is 2.2 | uF      |
| voltage (V) | 1#                       | 2#           | 3#           | average | (V)              | 1#                        | 2#          | 3#           | average |
| 90          | 0.969                    | 0.969        | 0.97         | 0.969   | 90               | 0.968                     | 0.968       | 0.968        | 0.968   |
| 110         | 0.973                    | 0.974        | 0.973        | 0.973   | 110              | 0.974                     | 0.974       | 0.974        | 0.974   |
| 132         | 0.964                    | 0.965        | 0.965        | 0.965   | 132              | 0.97                      | 0.97        | 0.969        | 0.970   |
| 176         | 0.916                    | 0.92         | 0.919        | 0.918   | 176              | 0.933                     | 0.932       | 0.933        | 0.933   |
| 220         | 0.837                    | 0.845        | 0.842        | 0.841   | 220              | 0.866                     | 0.863       | 0.864        | 0.864   |

0.756

265

0.785

0.783

0.787

0.785



#### Replacement consideration

• The choice of COMP capacitance

Under different comp capacitance BP2335J contrast BP2325AJ/BP2335 PF and THD.

Comp capacitance can significantly increase PF, reduce THD system.





#### Increasing COMP capacitance, then start time longer

COMP capacitance increases easy to cause the change of the startup time, the greater the capacitance the slower startup time



1uf C\_COMP the BP2335J startup time is 94.05us

2.2uf C\_COMP the BP2335J startup time is 169.58us



#### 2. The COMP pin can plus RC compensation

LTHD Plan: The following plan BP2336J, for example

Before optimization principle diagram:



| Vin (V) | lo (mA) | Vo (V) | Pin (W) | η (%) | PF    | THD (%) |
|---------|---------|--------|---------|-------|-------|---------|
| 90      | 198     | 51.4   | 11.46   | 88.81 | 0.963 | 27.2    |
| 110     | 198     | 51.3   | 11.33   | 89.65 | 0.976 | 20.8    |
| 132     | 198     | 51.1   | 11.24   | 90.02 | 0.979 | 17.9    |
| 176     | 198     | 51     | 11.21   | 90.08 | 0.965 | 19.5    |
| 220     | 198     | 51     | 11.27   | 89.60 | 0.938 | 23.6    |
| 265     | 198     | 51     | 11.37   | 88.81 | 0.898 | 28      |



| Vin (V) | lo (mA) | Vo (V) | Pin (W) | η (%) | PF    | THD (%) |
|---------|---------|--------|---------|-------|-------|---------|
| 90      | 198     | 51.3   | 11.41   | 89.02 | 0.963 | 27.4    |
| 110     | 198     | 51.3   | 11.29   | 89.97 | 0.98  | 19.7    |
| 132     | 198     | 51     | 11.21   | 90.08 | 0.985 | 16.3    |
| 176     | 198     | 51     | 11.22   | 90.00 | 0.988 | 12.3    |
| 220     | 198     | 51.1   | 11.33   | 89.30 | 0.987 | 11.2    |
| 265     | 198     | 51     | 11.49   | 87.89 | 0.976 | 16.5    |



The COMP pin can plus RC compensation

for THD to under 20% meet the requirements if The COMP pin can plus RC compensation



#### About the COMP plus compensation problems:

Our laboratory for high pressure, high temperature and high humidity not found the problem; But detailed FAE confirmed, because of High voltage THD RC compensation, and in wet environment, there will be a rising power phenomenon.

Strategy: Parallel resistance to partial pressure on Vbus, at that moment, from Vbus voltage to the COMP become low, thus making the voltage on Vbus is not due to the high pressure leakage directly to the COMP.

Test data and some schematic diagram:

| Vin (V) | lo (mA) | Vo (V) | Pin (W) | η (%) | PF    | THD (%) |
|---------|---------|--------|---------|-------|-------|---------|
| 90      | 199     | 51.5   | 11.54   | 88.81 | 0.963 | 27.4    |
| 110     | 199     | 51.3   | 11.39   | 89.63 | 0.979 | 19.9    |
| 132     | 199     | 51.1   | 11.33   | 89.75 | 0.985 | 16.1    |
| 176     | 199     | 51     | 11.31   | 89.73 | 0.987 | 13.1    |
| 220     | 199     | 50.9   | 11.44   | 88.54 | 0.983 | 13.5    |
| 265     | 199     | 50.8   | 11.62   | 87.00 | 0.969 | 20      |



**Compensation to improve the circuit part** 



- 3. Reduce system working frequency (increase on time)
- Reduce the influence of the working frequency of PF/THD system





Under the different inductor, the big inductor, the system working frequency will be reduced, the PF/THD improved. So, reduce the system working frequency can improve PF and THD.



• The PF influence of Reduce working frequency (the following data is BP2338J, as an example)

| ıc            |                    | BP2338J PF (1mH) |        |        |        |        |           |  |
|---------------|--------------------|------------------|--------|--------|--------|--------|-----------|--|
| IC            | 90Vac              | 110Vac           | 132Vac | 176Vac | 220Vac | 265Vac | load (V)  |  |
| BP2338J-1#    | 0.883              | 0.938            | 0.962  | 0.979  | 0.976  | 0.969  | 80        |  |
| BP2338J-2#    | 0.883              | 0.938            | 0.963  | 0.979  | 0.976  | 0.968  | 80        |  |
| BP2338J-3#    | 0.894              | 0.938            | 0.958  | 0.973  | 0.973  | 0.963  | 80        |  |
| BP2338J PF    | 0.887              | 0.938            | 0.961  | 0.977  | 0.975  | 0.067  | 90        |  |
| average value | 0.887              | 0.938            | 0.961  | 0.977  | 0.975  | 0.967  | 80        |  |
| 10            | BP2338J PF (0.8mH) |                  |        |        |        |        | load (\/) |  |
| IC            | 90Vac              | 110Vac           | 132Vac | 176Vac | 220Vac | 265Vac | load (V)  |  |
| BP2338J-1#    | 0.879              | 0.935            | 0.961  | 0.974  | 0.971  | 0.963  | 80        |  |
| BP2338J-2#    | 0.883              | 0.935            | 0.962  | 0.976  | 0.974  | 0.965  | 80        |  |
| BP2338J-3#    | 0.879              | 0.937            | 0.961  | 0.974  | 0.973  | 0.962  | 80        |  |
| BP2338AJ PF   | 0.000              | 0.026            | 0.061  | 0.075  | 0.072  | 0.062  | 00        |  |
| average value | 0.880              | 0.936            | 0.961  | 0.975  | 0.973  | 0.963  | 80        |  |

| IC                         | BP2338 PF (0.8mH) |        |        |        |        |        |          |
|----------------------------|-------------------|--------|--------|--------|--------|--------|----------|
| IC                         | 90Vac             | 110Vac | 132Vac | 176Vac | 220Vac | 265Vac | load (V) |
| BP2338-1#                  | 0.887             | 0.940  | 0.963  | 0.977  | 0.976  | 0.966  | 80       |
| BP2338-2#                  | 0.887             | 0.940  | 0.962  | 0.977  | 0.976  | 0.966  | 80       |
| BP2338-3#                  | 0.887             | 0.939  | 0.961  | 0.977  | 0.976  | 0.967  | 80       |
| BP2338 PF<br>average value | 0.887             | 0.940  | 0.962  | 0.977  | 0.976  | 0.966  | 80       |



#### Replacement consideration

• The THD influence of Reduce working frequency (the following data is BP2338J, as an example)

| IC                       |               | BP.                    | 2338J THD              | (%) (1mH               | 1)                     |                | load ()() |
|--------------------------|---------------|------------------------|------------------------|------------------------|------------------------|----------------|-----------|
| IC IC                    | 90Vac         | 110Vac                 | 132Vac                 | 176Vac                 | 220Vac                 | 265Vac         | load (V)  |
| BP2338J-1#               | 56.7          | 36.0                   | 27.4                   | 18.5                   | 17.8                   | 18.7           | 80        |
| BP2338J-2#               | 51.8          | 36.0                   | 26.9                   | 18.8                   | 18.0                   | 18.9           | 80        |
| BP2338J-3#               | 48.4          | 34.3                   | 27.2                   | 18.6                   | 18.0                   | 18.2           | 80        |
| BP2338J THD              | E2 2          | 25.4                   | 27.2                   | 18.6                   | 17.0                   | 18.6           | 00        |
| average value            | 52.3          | 35.4                   | 21.2                   | 10.0                   | 17.9                   | 18.0           | 80        |
|                          |               |                        |                        |                        |                        |                |           |
| IC                       |               | BP2                    | 338J THD               | (%) (0.8m              | H)                     |                | load (\/) |
| IC                       | 90Vac         | BP2<br>110Vac          | 338J THD<br>132Vac     | (%) (0.8m<br>176Vac    | H)<br>220Vac           | 265Vac         | load (V)  |
| IC<br>BP2338J-1#         | 90Vac<br>53.1 | 1                      | 1                      | , ,                    | ·                      | 265Vac<br>20.2 | load (V)  |
|                          |               | 110Vac                 | 132Vac                 | 176Vac                 | 220Vac                 |                | ` ′       |
| BP2338J-1#               | 53.1          | 110Vac<br>36.7         | 132Vac<br>27.3         | 176Vac<br>20.5         | 220Vac<br>19.2         | 20.2           | 80        |
| BP2338J-1#<br>BP2338J-2# | 53.1<br>51.9  | 110Vac<br>36.7<br>37.1 | 132Vac<br>27.3<br>27.6 | 176Vac<br>20.5<br>19.5 | 220Vac<br>19.2<br>18.3 | 20.2<br>19.5   | 80        |

| IC                       |       | load (V) |        |        |        |        |          |  |
|--------------------------|-------|----------|--------|--------|--------|--------|----------|--|
| IC                       | 90Vac | 110Vac   | 132Vac | 176Vac | 220Vac | 265Vac | load (V) |  |
| BP2338-1#                | 50.3  | 35.5     | 27.0   | 19.0   | 18.0   | 18.7   | 80       |  |
| BP2338-2#                | 50.7  | 35.2     | 27.1   | 19.1   | 17.8   | 18.9   | 80       |  |
| BP2338-3#                | 50.6  | 35.8     | 28.0   | 19.4   | 18.4   | 19.0   | 80       |  |
| BP2338 THD average value | 50.53 | 35.50    | 27.37  | 19.17  | 18.07  | 18.87  | 80       |  |



#### After replacement

• At the Room Temperature (C\_VCC is 2.2uf)

|                   |                                        |                     | After Temperature stability |                                                    |                     |                                                      |  |  |  |  |
|-------------------|----------------------------------------|---------------------|-----------------------------|----------------------------------------------------|---------------------|------------------------------------------------------|--|--|--|--|
| Input Voltage (V) | Environment<br>temperature (°C)        | BP2335J             | BP2335                      | BP2335J and<br>BP2335<br>temperature<br>difference | BP2325AJ            | BP2335J and<br>BP2325AJ<br>temperature<br>difference |  |  |  |  |
|                   |                                        | IC Temperature (°C) | IC Temperature (°C)         |                                                    | IC Temperature (°C) |                                                      |  |  |  |  |
| 90                | 28                                     | 77. 5               | 73. 8                       |                                                    | 77. 2               |                                                      |  |  |  |  |
| Rising temperatur | re device△T (°C)                       | 49. 5               | 45. 8                       | -3.7                                               | 48. 2               | -1.3                                                 |  |  |  |  |
| 176               | 28                                     | 70                  | 71. 2                       |                                                    | 68                  |                                                      |  |  |  |  |
| Rising temperatur | re device△T (°C)                       | 42                  | 43. 2                       | 1.2                                                | 40                  | -2                                                   |  |  |  |  |
| 220               | 28                                     | 73. 5               | 75. 8                       |                                                    | 70                  |                                                      |  |  |  |  |
| Rising temperatur | e device $\triangle$ T ( $^{\circ}$ C) | 45. 5               | 47.8                        | 2.3                                                | 42                  | -3.5                                                 |  |  |  |  |
| 265               | 27                                     | 78                  | 81. 5                       |                                                    | 74. 2               |                                                      |  |  |  |  |
| Rising temperatur | re device△T (°C)                       | 51                  | 54. 5                       | 3.5                                                | 46. 2               | -4.8                                                 |  |  |  |  |
| 300               | 29                                     | 90. 2               | 93. 9                       |                                                    | 81. 1               |                                                      |  |  |  |  |
| Rising temperatur | re device△T (°C)                       | 61. 2               | 64. 9                       | 3.7                                                | 51. 1               | -10.1                                                |  |  |  |  |



#### Replacement consideration

• The choices of C\_VCC

Compare with BP233X, C\_VCC recommended less than 4.7uf;

1、When enter thermal regulation, the BP233XJ into DCM mode, the IC will adjusted Toff according to the temperature of the IC. if the VCC capacitor is too big,JFET to recharge cycle longer VCC。 That frequency about 100HZ, When enter thermal regulation, due to JFET fever caused output current in the VCC to charge and discharge cycle fluctuations, we can see the flicker clearly.





#### Replacement consideration

- The choice of C\_VCC
- VCC capacitor should not exceed 4.7uf (including 4.7uf), recommended 2.2uf; VCC capacitor can not select more than 4.7uf reasons: In steady state operation, the VCC capacitor greater than or equal 4.7uF, JFET in to VCC capacitor charging time will be longer, giving VCC capacitor charging time, the instantaneous power consumption of the chip will increase,

Cause fever becomes large chip, chip thermal regulation causes the output current is reduced when the JFET after the end of charging, reduce heat chip, chip thermal regulation of the output current. So when JFET charge to VCC, the output current will cause fluctuations, When this frequency fluctuation less than 100Hz (equivalent to the VCC capacitor charging frequencies), and enters the human visual range, you will see lights flashing or jitter. Reduce the VCC capacitor, the output current rippled frequency (VCC charging frequency) is greater than 100Hz, the human eye can not see the flashing lights or the phenomenon of jitter.



#### Replacement consideration

- OVP
- 1. Compare with BP232XAJ, FB anti-interference enhancement (must be 100pF capacitor resistor in parallel with FB), Without 100pF capacitor with FB, if BP233X add interference on FB, that will be flicker.
- 2. The whole lamp test IC after be affected with damp, high temperature and high pressure test, the BP233XJ has not been flicker.

|            | Open circuit protection voltage (V)                                              |        |        |        |        |        |  |
|------------|----------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--|
| IC         | FB without interference, with 100pf capacitor OVP calculated value is Vovp=64.3V |        |        |        |        |        |  |
|            | 90Vac                                                                            | 110Vac | 132Vac | 176Vac | 220Vac | 265Vac |  |
| BP2335J-1# | 75                                                                               | 74. 1  | 73. 7  | 73. 7  | 69. 5  | 66. 6  |  |
| BP2335J-2# | 77                                                                               | 75.8   | 74. 1  | 71.6   | 69. 1  | 69. 1  |  |
| BP2335J-3# | 80. 4                                                                            | 78.7   | 76. 2  | 76.6   | 72.5   | 71. 2  |  |

|             | Open circuit protection voltage (V)                                           |                              |                              |                                                 |                              |                |  |
|-------------|-------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------|------------------------------|----------------|--|
| IC          | FB with interference ,with 100pf capacitor OVP calculated value is Vovp=64.3V |                              |                              |                                                 |                              |                |  |
|             | 90Vac                                                                         | 110Vac                       | 132Vac                       | 176Vac                                          | 220Vac                       | 265Vac         |  |
| BP2335J-1#  | 98.7                                                                          | 80.4                         | 75                           | 73. 7                                           | 70.8                         | 67. 5          |  |
| BP2335J-2#  | 98. 7                                                                         | 78. 7                        | 76. 2                        | 73. 3                                           | 69. 1                        | 68. 3          |  |
| BP2335.J-3# | 100                                                                           | 79. 5                        | 77. 9                        | 76. 2                                           | 71.6                         | 71. 2          |  |
|             |                                                                               |                              |                              |                                                 |                              |                |  |
|             |                                                                               | O                            | pen circuit protect          |                                                 |                              |                |  |
| IC          | FB withou                                                                     | O<br>at interference, w      |                              | ion voltage (V)                                 |                              |                |  |
|             | FB withou                                                                     |                              |                              | ion voltage (V)                                 |                              |                |  |
|             |                                                                               | ıt interference 🔻 v          | vithout 100pf capa           | ion voltage(V)<br>citor OVP calcula             | ated value is Vovp           | =64.3V         |  |
| IC          | 90Vac                                                                         | at interference, w<br>110Vac | vithout 100pf capa<br>132Vac | ion voltage (V)<br>acitor OVP calcula<br>176Vac | ated value is Vovp<br>220Vac | <b>265</b> Vac |  |



#### Replacement consideration

#### OVP

Compare with BP233X, OVP will change with the input voltage, input low voltage, high OVP, When FB side add interference, low voltage input, OVP will follow input voltage; The input voltage increases, OVP gradually returned to normal.

**Reason:** When input voltage is low, input and output difference is small, the peak current is very small, demagnetization time is lesser, at this time that cloud not detection OVP, so when output is open, the V\_OVP will be following with input voltage; with input voltage rising, The V\_OVP will gradually returned to normal.

**Improvement:** maybe we can increase dummy load current.

$$\frac{R_{FBL}}{R_{FBL} + R_{FBH}} = \frac{1.6V}{V_{OVP}}$$



#### Replacement consideration

• The same surge ( The following data in BP2335J, as an example ) the surge of cool MOS is poor.

| (one pi+one $10\Omega$ fuse resistance) |       |             |          |            |          |  |  |
|-----------------------------------------|-------|-------------|----------|------------|----------|--|--|
| NO.                                     | surge | BP2335J Vds | BP2335J  | BP2335 Vds | BP2335   |  |  |
| #1                                      | 250V  | 656V        | PASS     |            | PASS     |  |  |
|                                         | 300V  | 681V        | PASS     |            | PASS     |  |  |
|                                         | 350V  | 687V        | PASS     | 687V       | PASS     |  |  |
|                                         | 400V  | 712V        | PASS     | 712V       | PASS     |  |  |
|                                         | 450V  | 731V        | PASS     | 725V       | PASS     |  |  |
|                                         | 500V  | 756V        | PASS     |            |          |  |  |
|                                         | 550V  | 768V        | PASS     | 743V       | PASS     |  |  |
|                                         | 600V  | 762         | 1stFail  | 406V       | 1stFail  |  |  |
| #2                                      | 300V  | 668V        | PASS     |            | PASS     |  |  |
|                                         | 350V  | 693V        | PASS     | 687V       | PASS     |  |  |
|                                         | 400V  | 712V        | PASS     | 706V       | PASS     |  |  |
|                                         | 450V  | 731V        | PASS     | 725V       | PASS     |  |  |
|                                         | 500V  | 743V        | PASS     | 750V       | PASS     |  |  |
|                                         | 550V  | 762V        | PASS     | 762V       | PASS     |  |  |
|                                         | 600V  | 762V        | 1st Fail | 750V       | 1st Fail |  |  |
| #3                                      | 300V  | 668V        | PASS     |            |          |  |  |
|                                         | 350V  | 693V        | PASS     | 681V       | PASS     |  |  |
|                                         | 400V  | 712V        | PASS     | 706V       | PASS     |  |  |
|                                         | 450V  | 737V        | PASS     | 731V       | PASS     |  |  |
|                                         | 500V  | 750V        | PASS     | 743V       | PASS     |  |  |
|                                         | 550V  | 768V        | 1st Fail | 762V       | PASS     |  |  |
|                                         | 600V  |             |          | 758V       | 1st Fail |  |  |



#### Replacement consideration

The same EMI

The following data is BP2338J ,as an example (input voltage is 220V, output is 80V220mA, inductance 0.8mH):

