Appendix A

Appendix A should be considered as one table. However, due to limit space the table is broken down into three separate tables. The "Paper #"column binds the data points to the given paper. Further, above each of the table are few abbreviations explained to read the table.

Not available = N/A

No direct information. Assumed the authors = N/I

Pa- per#	Article title	Author(s)	Year	Source title	Category	Research group size	Project partners	Dura- tion	Budget	Fund ing	Output	Application domain	Primary Knowledge Base
1	CyberGate: A Design Framework and System for Text Analysis of Computer-Mediated Communication	Abbasi, Ahmed; Chen, Hsinchun	2008	MISQ	Medium	N/I	no project partners mentioned neither for analysis nor for evalu- ation	N/A	N/A	N/A	5 artifacts (including software prototype)	Computer-mediated communication systems	Communications research
2	Making Sense of Technology Trends in the In- formation Tech- nology Landscape: A Design Science Approach	Adomavicius, Gediminas; Bockstedt, Jesse C. ;Gupta, Alok ;Kauffman, Robert J.	2008	MISQ	Small	N/I	Two case studies (but without project part- ners) plus semi-struc- tured interview with 12 IT industry experts	N/A	N/A	N/A	4 artifacts (no software prototype)	Information technology management (in partic- ular information tech- nology investment de- cisions) (Examples: Digital mu- sic & Wi-Fi Technology)	IT Investment
3	Process Gramma as a Tool for Busi- ness process De- sign	Lee, Jintae; Wyner, George M.;Pentland, Brian T.	2008	MISQ	Small	N/I	no project partners mentioned neither for analysis nor for evalu- ation	N/A	N/A	N/A	4 artifacts (including software prototype)	Business process design (example: sales pro- cess)	Grammar-based design
4	The Design The- ory Nexus	Pries-Heje, Jan; Richard Baskerville	2008	MISQ	Medium to large	N/I	Several, the number of companies is rather unclear. At one point the text says four larger organizations in the financial sector, then it talks of three additional companies	3 years	USD 5 mil.	Cli- ents and uni- ver- sity	4 artifacts (no software prototype just spread- sheet tool)	Decision making processes for wicked problems (examples: - choice of alternative change management approaches - user involvement approaches)	Multiple criteria decision making of wicked prob- lems
5			2008 MISQ Small N/I		N/I		N/A	N/A	N/A			Conceptual mod- elling	

	Using cognitive principles to guide classification in information systems modelling	Parsons, Jeffrey ;Wand, Yair					No information, evaluation took place with 10 modelling and domain experts from different organisations				3 artifacts (no software prototype)	Systems modelling / Software engineering (Model for characterizing what may be considered useful classes in a given context based on the inferences that can be drawn from membership in a class. e.g. for requirement specifications for IT systems.)	
6	Knowing What a User Likes: A De- sign Science Ap- proach to Inter- faces that Auto- matically Adapt to Culture	Reinecke, Katharina; Bernstein, Abraham	2013	MISQ	Medium	N/I	No partners mentioned. However, survey participants are recruited at University of Bangkok, National University of Rwanda and University of Zürich.	N/A	N/A	N/A	7 (5) arti- facts (includ- ing software prototype)	Webpage design and user interfaces (example: to-do list web application)	Cultural classification
7	Bridging the gap between decision- making and emerging big data sources: An appli- cation of a model- based framework to disaster man- agement in Brazil	Horita, Flávio E.A.; de Albuquerque, João Porto; Marchezini, Victor ; Mendiondo, Eduardo M.	2017	DSS	Medium	N/I	National Center for Disaster Risk Manage- ment in Brazil	Data collec- tion in Jan and Feb 2016	N/A	N/A	4 artifacts (no software prototype)	Natural Disaster Man- agement in Brazil	Business Process Management
8	Counterfeit prod- uct detection: Bridging the gap between design science and be- havioural science in information systems research	Wimmer, Hayden; Yoon, Victoria Y.	2017	DSS	Medium	N/I	No information; evaluation through Amazon M Turk, 283 data observations. Don't know if data obs. equals number of participants	N/A	N/A	N/A	7 artifacts (including software prototype)	E-commerce platforms (example: Amazon)	Online product authentication

9	A permissioned blockchain-based implementation of LMSR predic- tion markets	Carvalho, Arthur	2019	DSS	Small	N/I	No information, evaluation just covered the technical functionality but not usefulness	N/A	N/A	N/A	2 main arti- facts with several sub- components (including software prototype)	Prediction markets	Blockchain Tech- nology

I=Infrastructure-level, S=System-level, U=Usage-level, AD=Application domain, KB=Knowledge base

Paper #	Artifact #	Artifact name/description	Artifact type	Level1	Level2	Level3	I	S	U	AD	КВ
1	1	Design framework for CMC text analysis systems (Fig. 1. CyberGate System Design)	Model		1			1			1
	2	CyberGate System (software prototype)	Instantiation	1					1	1	
	3	Visualizations (write prints (a), parallel coordinates (b), radar charts(c) MDS plots (d))	Instantiation	1					1	1	
	4	Write prints Process (Fig. 6.)	Method		1			1			1
	5	Ink Blots process (Fig. 7.)	Method		1			1			1
2	1	Model for representing relationships between IT components, products, and infrastructure (Tab. 1., Fig. 1. & 2.)	Model		1			1			1
	2	Method for identifying and representing patterns of technology evolution (Tab. 3.)	Method		1			1	1		1
	3	Patterns of digital music technology evolution (Fig. 3.) and Digital music technology graph-based state diagram (Fig. 4.)	Instantiation	1				1		1	
	4	State Diagram for 802.11b and 802.11g generations and WPA1 and WPA2 generations (Fig. 9 & 10:)	Instantiation	1				1		1	
3	1	Method 1: Building a Process Grammar	Method		1			1			1
	2	Method 2: Using / exploring a Process Grammar for Process Design	Method		1			1			1
	3	Gramma editor (Fig. 1. and 2.)	Instantiation	1					1	1	
	4	Process explorer	Instantiation	1					1	1	
4	1	General method for constructing a design theory nexus	Method		1			1	1		1
•	2	General design theory nexus (Fig. 2.) (including goals, environment, alternative design theories, design solutions)	Model		1			1	1		1
	3	Design theory nexus instantiation / tool (spreadsheet)	Instantiation	1			1	1	1	1	
	4	Figure 4. The Strategic Change Nexus Design Theory	Instantiation	1				1		1	
5	1	Model of good classification structures	Model		1		1	1		1	1
	2	Classification principles to develop and formalize a model and rules for constructing good classes (method for constructing structures)	Method		1		1	1		1	1
	3	Partial Conceptual Schema following Classification Rules (Fig. 2)	Instantiation	1			1			1	
6	1	Cultural user model ontology (Fig. 2) (artifact 1)	Model		1			1	1		1
-	2	Algorithm to approximate a person's cultural background (Eq. 1 -2) (artifact 2)	Method		1			1	_		1
	3	User interface adaptation rules (artifact 3)	Method		1			1		1	1

	4	MOCCA's adaptation possibilities (Tab. 3.)	Instantiation	1			1		1	
	5	User interface adaptation ontology (Fig. A1.) (artifact 4)	Model		1		1			1
	6	Web application prototype for a culturally adaptive system (artifact 5)	Instantiation	1				1	1	
	7	Technical Implementation of MOCCA (Fig. B1.)	Model		1	1			1	
7	1	Extended model and notation (oDMN+ metamodel) (Fig. 2.)	Model		1		1			1
	2	Modeling process (Fig.3)	Method		1		1		1	1
	3	Instantiation for a procurement process (Fig. 1.)	Instantiation	1			1		1	
	4	Instantiation for a disaster management (Fig. 5 6.)	Instantiation	1			1		1	
8	1	Online counterfeit detection score (OnCDS) consisting of five components	Instantiation	1			1		1	
	2	Behavioral research model / PLS-SEM (Fig. 1. & 5.)	Model		1			1		1
	3	OnCDS system architecture (Fig. 2.)	Model		1		1		1	
	4	Conceptualization of counterfeit score (Eq. 1 -4)	Construct		1		1			1
	5	Browser add-on	Instantiation	1				1	1	
	6	Conceptualization of counterfeit score display (Fig. 4.)	Model		1			1	1	
9	1	Prediction Market Model	Model		1		1		1	
	1a	Business network model for LMSR (Fig. 2.)	Construct		1	1			1	
	1b	Permission rules (Fig. 35.)	Construct		1	1			1	
	1c	Java script code for the transactions (Appendix)	Method		1		1		1	
	2a	Hyperledger Composer playground (Fig. 6. & 13 14.)	Instantiation	1				1	1	
	2b	BNA files	Instantiation	1		1	1		1	
	2c	JSON data files (Fig. 7-12.)	Instantiation	1		1			1	
10	1	Regulatory Focus Discovery (Fig. 1.)	Method		1		1	1	1	1
	2	Review intensity variable	Construct		1		1		1	1

I=Infrastructure-level, S=System-level, U=Usage-level, RQ=Research question

		Applic	ation domai	in (1,y,z)					search ques	tion (x,y,Z)		Research questions				
Pa-	Arti-						RQ 1	RQ 2	RQ3	RQ 4	General RQ	RQ 1	RQ 2	RQ 3	RQ 4	
per#	fact #	(1,1,z)				(2,2,z)		(x,y,1)	(x,y,2)	(x,y,3)	(x,y,4)					

1	1	0	0	0	0	1	0	1	1	0		How can patterns be detected in	How can CMC	How and	Which	
	2	0	0	1	0	0	0	1	0	0		CMC text messages?	text analysis systems be de-	which text features	visuali- zation	
	3	0	0	1	0	0	0	0	0	1			signed which	should be	tech-	
	4	0	0	0	0	1	0	0	0	1			support various information	select?	niques should	
	5	0	0	0	0	1	0	0	0	1			types found in		be em- ployed?	
													message text?		pioyeur	
2	1	0	0	0	0	1	0	0	1			How can information be struc-	How can the IT	How can in-		
	2	0	0	0	0	1	1	1	0			tured for improving information technology investment decisions	landscape and trends in IT be	formation about the		
	3	0	1	0	0	0	0	1	1			by using tools to aid IT decision	formally identi-	IT land-		
	4	0	1	0	0	0	0	1	1			makers in identifying, analyzing, and predicting trends in the IT landscape?	fied?	scape and trends in IT be visual- ized?		
3	1	0	0	0	0	1	0	1	0			How can process designers be supported to design process	How can pro- cess model al-	How can ir- relevant		
	2	0	0	0	0	1	0	0	1			model alternatives by using pro-	ternatives be	process		
	3	0	0	1	0	0	0	1	0			cess grammars?	generated using process gram-	model vari- ants be fil-		
	4	0	0	1	0	0	0	0	1				mars?	tered out?		
4	1	0	0	0	0	1	1	1	1			How can the design of problem- solving approaches be improved	How can alter- native highly-	How can the fit of al-		
	2	0	0	0	0	1	1	1	0			where a number of highly-dis-	dissimilar com-	ternative		
	3	1	1	1	0	0	0	1	0			similar competing approaches exist?	peting solutions be identified?	approaches be deter-		
	4	0	1	0	0	0	0	1	1					mined?		
5	1	1	1	0	1	1	0	1				How can classifications be made effectively and efficiently?	How can the choice of clas-			
	2	1	1	0	1	1	0	1				_	ses in a collec-			
	3	1	0	0	0	0	0	1					tion be limited to those that are useful?			
6	1	0	0	0	0	1	1	1	0	0	0	How can user interfaces be per- sonalized in a comprehensive	How can a us- er's cultural	How can in- terfaces be	How well can	Can UI prefer-
	2	0	0	0	0	1	0	1	0	0	0	sonalized in a comprehensimanner by taking into account	background be	adapted to	a cultur-	ences
	3	0	1	0	0	1	0	0	1	1	0	user's cultural backgrounds?	analyzed by not just relying on	cater for users of any	ally adap-	be clus-
	4	0	1	0	0	0	0	0	1	1	0		user's location?	national	tive sys-	tered
	5	0	0	0	0	1	0	0	1	1	0			culture, as well as to	tem such as	by cul- ture?
	6	0	0	1	0	0	0	0	1	1	1			users who	MOCCA	

	7	1	0	0	0	0	0	0	0	1	1			have been influenced by several different national cultures?	predict user in- terface prefer- ences by knowing only a person's (ex- tended) national culture?
7	1	0	0	0	0	1	0	1	0	0		How can the decision-makers'	How can data	How can in-	How can
	2	0	1	0	0	1	0	0	0	1		tasks be connected to emerging big data sources?	sources be inte- grated into	formation be ob-	guid- ance be
	3	0	1	0	0	0	0	0	1	1			modelling nota- tions?	tained about con-	pro- vided
	4	0	1	0	0	0	0	0	1	1				ceptual ele- ments from decision- makers of the applica- tion con- text?	for the model- ing of business deci- sions or the rela- tionship be- tween deci- sions and data sources ?
8	1	0	1	0	0	0	0	1	0	0		How can the consumer's deci-	How can CDS be	How can	Does a
	2	0	0	0	0	0	1	0	0	1		sion making process be im-	designed for	CDS be in-	CDS im-
	3	0	1	0	0	0	0	1	0	0		proved by identifying counterfeit goods based on consumer prod-	online market places?	tegrated into con-	prove a con-
	4	0	0	0	0	1	0	1	0	0		uct reviews?		sumer's de- cision mak-	sumers decision
	5	0	0	1	0	0	0	1	0	0				ing pro-	making?
	6	0	0	1	0	0	0	0	1	0		-		cess?	
9	1	0	1	0	0	0	0	0	0	1		How can the availability, security	Why and how	How can	How can
	1a	1	0	0	0	0	0	1	0	0		and privacy problems in LMSR be overcome?	can be a predic- tion market	DSR be used to de-	modern tools to
	1b	1	0	0	0	0	0	1	0	0				velop	model

	1c 2a 2b 2c	0 0 1 1	1 0 1 0	0 1 0 0	0 0 0	0 0 0	0 0 0	1 1 0	0 0 0	0 1 1		model be implemented using permissioned blockchains?	blockchain models?	and evalu- ate per- mis- sioned block- chains be used?	
10	1 2	0	1	1 0	0	0 1	1 0	1			What is the effect of participation in a customer brand community on purchase behavior is contingent on the customer's Regulatory Focus?	Which online brand community participation has a positive impact on the purchase frequency of promotion-focused customers but a negative impact on the purchase frequency of prevention-focused customers?			