Homework 4

So Young Choi

October 4, 2016

1. Prove that there are no positive integer solutions to the equation $x^2 - y^2 = 1$

We can rewrite the statement as such: $\forall x, y \in \mathbb{Z}^+, x^2 - y^2 \neq 1$.

For the sake of contradiction let $\forall x, y \in Z^+, x^2 - y^2 = 1$. Then the equation can be rewritten as (x-y)(x+y) = 1. Because both x and y are positive integers, (x-y) is an integer and (x+y) is a positive integer. Therefore, for the multiple to be 1, both (x+y) = (x-y) = 1. However there is a contradiction. the value of the sum of two positive integer is at least 2. $x+y \ge 2$

Therefore, the statement is true.

2. Use the Well-Ordering Principle to prove that any integer greater than or equal to 8 can be represented as the sum of integer multiples of 3 and 5.

We can rewrite the statement as: $n \in \mathbb{Z}, n \geq 8, n = 3a + 5b \ (a, b \in \mathbb{Z})$

For the sake of contradiction the statement is false. Then there exists a set of counter examples, $X \neq \emptyset$, and the least element being, $x \in X$.

 $x \neq 8$ because when n = 8, a = 1, b = 1. Also, $x \neq 9$, because when n = 9, a = 3, b = 0. So, x > 9.

 $(x-1) \not\in X$, and $(x-2) \not\in X$.

Let $(x-2) = 3a_1 + 5b_1$. If $x = 3a_1 + 5b_1 + 2$. This can be re written as $x = 3(a_1 - 1) + 5b_1 + 2 + 3 = 3(a_1 - 1) + 5(b_1 + 1)$

But then there is a contradiction, $x \notin X$. X has no least element. Therefore, $X = \emptyset$. Then, statement is true $\forall n \geq 8, n \in \mathbb{N}$

3. Use the Well-Ordering Principle to prove that $n! > 2^n$ for all natural numbers $n \ge 4$

For the sake of contradiction suppose that the statement is false. Then there exists a set of counter examples, $X \neq \emptyset$. Let the least element of the set be $x \in X$.

 $x \neq 4$. 4! = 24, $2^4 = 16$. Then, x > 4.

(x-1)! > 2(x-1). Then $(x-1)! > 2^x \times \frac{1}{2}$. So, $2(x-1)! > 2^x$.

Since x > 4, $x! > 2(x - 1)! > 2^x$. There is a contradiction.

 $x \notin X$. X has no least element. Therefore, $X = \emptyset$. Then, statement is true $\forall (n \geq 4) \in \mathbb{N}$

4. Use the Well-Ordering Principle to prove that $n! \leq n^n$ for all positive integers n

For the sake of contradiction suppose that the statement is false. Then there exists a set of counter examples, $X \neq \emptyset$. Let the least element of the set be $x \in X$.

Then,
$$x \neq 1$$
. $1! = 1^1$. So, $x > 1$.

Since
$$x - 1$$
 is not in X , $(x - 1)! \le (x - 1)^{(x - 1)}$.

$$(x-1)!(x) \le (x-1)^{(x-1)}(x) \le x^{\overline{x}}.$$

Then there is a contradiction. $x \notin X$. X has no least element. Therefore, $X = \emptyset$. Then, statement is true $\forall n \in \mathbb{Z}^+$

5. Use the Well-Ordering Principle to prove that $\sum_{i=0}^{n} i^3 = (\frac{n(n+1)}{2})^2$

For the sake of contradiction suppose that the statement is false. Then there exists a set of counter examples, $X \neq \emptyset$. Let the least element of the set be $x \in X$.

$$x \neq 0$$
. $0^3 = 0^2 = 0$. Then, $x > 0$.

$$x-1$$
 is not in X. $\sum_{i=0}^{x-1} i^3 = (\frac{(x-1)x}{2})^2$.

$$\sum_{i=0}^{x-1} i^3 + x^3 = \left(\frac{(x-1)x}{2}\right)^2 + x^3$$

sts a set of counter examples,
$$X \neq \emptyset$$
. Let the least element of $x \neq 0$. $0^3 = 0^2 = 0$. Then, $x > 0$. $x - 1$ is not in X . $\sum_{i=0}^{x-1} i^3 = (\frac{(x-1)x}{2})^2$. $\sum_{i=0}^{x-1} i^3 + x^3 = (\frac{(x-1)x}{2})^2 + x^3 = \frac{((x-1)^2)(x^2) + 4x^3}{4} = \frac{((x^2 - 2x + 1 + 4x)(x^2)}{4} = \frac{((x+1)^2)(x^2)}{4} = (\frac{((x+1)x)^2}{2})^2$. Then there is a contradiction $x \notin X$. X has no least element

Then there is a contradiction. $x \notin X$. X has no least element.

Therefore, $X = \emptyset$. Then, statement is true $\forall n \in \mathbb{N}$

6. Use induction to prove that $\sum_{i=0}^{n} i^3 = (\frac{n(n+1)}{2})^2$

The least element of $n \in \mathbb{N}$ is n = 0. The statement is true for when n = 0. $\sum_{i=0}^{0} i^3 = 0, \text{ and } \left(\frac{0(0+1)}{2}\right)^2 = 0$

Then assume that the statement is true for $k \in \mathbb{N}$. Then, $\sum_{i=0}^{k} i^3 = (\frac{k(k+1)}{2})^2$.

$$\sum_{i=0}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4} = \frac{(k^{2} + 4(k+1))(k+1)^{2}}{4} = \frac{(k+2)^{2}(k+1)^{2}}{4}$$

 $\begin{array}{l} \sum_{i=0}^{k+1} i^3 = (\frac{k(k+1)}{2})^2 + (k+1)^3 \\ = \frac{k^2(k+1)^2 + 4(k+1)^3}{4} = \frac{(k^2 + 4(k+1))(k+1)^2}{4} = \frac{(k+2)^2(k+1)^2}{4} \\ \text{Therefore by the Principle of Mathematical Induction, } \forall n \in \mathbb{N} \text{ the statement is true.} \end{array}$

7. Using induction, prove that for all positive integers $n, \frac{5}{4}8^n + 3^{3n-1}$ is divisible by 19.

Let
$$P(n) = \frac{5}{4}8^n + 3^{3n-1}$$
.

Then the statement can be rewritten as; $\forall n \in \mathbb{Z}^+, 19 | P(n)$ For all $n \in \mathbb{Z}^+$ the least element is 1. When $n=1, \frac{5}{4}8^1+3^2=19$ Therefore the statement is true.

Let for some $k \in \mathbb{Z}+$ be true of the statement. $19|(\frac{5}{4}8^k + 3^{3k-1})$. Then $\frac{5}{4}8^{k+1} + 3^{3(k+1)-1} = \frac{5}{4}8^k \times 8 + 3^{3k-1} \times 27$ $= \frac{5}{4}8^k \times 8 + 3^{3k-1} \times (8+19) = (\frac{5}{4}8^k + 3^{3k-1})8 + 19 \times 3^{3k-1}$

Then
$$\frac{5}{4}8^{k+1} + 3^{3(k+1)-1} = \frac{5}{4}8^k \times 8 + 3^{3k-1} \times 27$$

$$= \frac{5}{4}8^{k} \times 8 + 3^{3k-1} \times (8+19) = (\frac{5}{4}8^{k} + 3^{3k-1})8 + 19 \times 3^{3k-1}$$

Therefore when 19|P(k) then 19|P(k+1). By the Principle of Mathematical Induction, $\forall n \in \mathbb{Z}^+$, 19|P(n).

8. Prove that every integer $n \ge 1$ can be expressed as the sum of distinct terms in the Fibonacci sequence.

Fibonacci series is a series of numbers in which each number is the sum of the two preceding numbers. When n = 1, then n can be expressed as n = 0 + 1. Let some number $F_k \leq k \leq F_{k+1}$ be true to the statement, and the statement is true for all numbers less than F_k . $k - F_k \leq F_{k-1}$. But because any number less or equal to F_k can be expressed as the sum of distinct terms of the Fibonacci sequence, $k - F_k$ can also be expressed as the sum of Fibonacci sequence. Therefore the statement is true.

9. Use induction to show that for any natural number $n \ge 1$, given pairs, $(a_1, b_1), (a_2, b_2), \cdots (a_n, b_n)$ of integer numbers, there exist integer numbers c and d such that $((a_1)^2 + (b_1)^2)((a_2)^2 + (b_2)^2) \cdots ((a_n)^2 + (b_n)^2) = c^2 + d^2$.

When n=1, for any $a, b \in \mathbb{N}$, let $(a_1, b_1) = (a, b)$, the statement is true. When n=2, let $a, b, e, f \in \mathbb{N}$, the statement is true.

Then
$$(a^2 + b^2)(e^2 + f^2) = ae^2 + af^2 + be^2 + bf^2 = (ae^2 + bf^2) + (af^2 + be^2) + 2abef - 2abef = (ae + bf)^2 + (af - be)^2 = c^2 + d^2$$

For some
$$n = k$$
, $((a_1)^2 + (b_1)^2)((a_2)^2 + (b_2)^2) \cdots ((a_k)^2 + (b_k)^2) = c^2 + d^2$.

Then when n = k+1, $(c^2+d^2)((a_{k+1})^2+(b_{k+1})^2) = (ca_{k+1}+db_{k+1})^2+(cb_{k+1}-da_{k+1})^2$. So it is also true.

By the Principle of Mathematical Induction, the statement is true for all $n \geq 1, n \in \mathbb{N}$.

10. You are planning a dinner party with at least twelve guests. You have tables that sit 4-5 people, and you need to assign your guests to tables. Use induction to prove that $n \ge 12$ people can be split up into groups such that each group has exactly 4 or 5 members.

We can rewrite the statement as such: when $n \ge 12, n \in \mathbb{N}, n = 4a + 5b$ for some a and b that is a natural number.

When n = 12 then the statement is true, 12 = 4(3) + 5(0).

Lets assume that for n = k the statement is true.

When $a \neq 0$; k = 4a + 5b. Then 4a + 5b + 1 = 4(a - 1) + 5b + 4 + 1 = 4(a - 1) + 5(b + 1) = 4(a - 1) + 5(a + 1) = 4(a + 1) + 5(a

When a = 0; k = 5b. Then 5b + 1 = 5(b - 3) + 15 + 1 = 5(b - 3) + 4(4) = k + 1.

Because $n \ge 12$ for when a = 0, $b \ge 3$ and so $(b - 3) \in \mathbb{N}$.

Therefore by the Principle of mathematical induction the statement is true.