Formulários e Definições de Cálculo

Daniel Vartanian

August 22, 2022

Contents

ı	Fo	rmulários	1
1	Pré	Cálculo	1
2	Cálc	culo Univariado	1
	2.1	Limites	1
	2.2	Derivadas	2
	2.3	Funções Financeiras/Administrativas	4
	2.4	Elasticidade - Função Oferta e Demanda	4
	2.5	Estudo de Funções Univariadas	5
	2.6	Integrais	6
3	Cálc	culo Multivariado	8
	3.1	O Espaço n-Dimensional (\mathbb{R}^n)	8
	3.2	Derivadas	14
	3.3	Funções Financeiras/Administrativas	15
	3.4	Integrais (f)	15
	3.5	Estudo de Funções de 2 Variáveis	16
11	Pı	ré-Cálculo	17
4	Nún	neros Irracionais e Constantes Naturais	17
5	Pro	dutos Notáveis	17
6	Progressões 1		
7	Loga	aritmos	17
8	Trigonometria 1		

Ш	C	Cálculo Univariado	17
9	Fund	ção Polinomial	17
	9.1	Definição	17
	9.2	Função do 1º Grau	18
	9.3	Equação Quadrática (Fórmula de Bhaskara)	18
		9.3.1 Discriminante da equação quadrática	18
		9.3.2 Sentido da parábola	18
10	Fund	ção Modular de um Número Real	19
11	Limi	ites	19
	11.1	Sucessões ou Sequências [4]	19
	11.2	Convergência de Sucessões [4]	19
	11.3	Limite de Funções [4]	19
	11.4	Propriedades Operatórias [5] [8]	19
	11.5	Formas Indeterminadas [4]	21
	11.6	Limites Infinitos [4]	21
	11.7	Limites nos Extremos do Domínio [4]	21
	11.8	Continuidade de uma Função [4]	21
	11.9	Assíntotas Verticais e Horizontais [4]	21
	11.10	OLimite Exponencial Fundamental [4]	21
12	Deri	ivadas	21
13	Apli	cações de Derivadas	21
14	Inte	grais (∫)	21
	14.1	Integral Indefinida [4]	21
		14.1.1 Definição [4]	21
		14.1.2 Funções Elementares [4]	21
		14.1.3 Propriedades Operatórias [4]	22

	14.2	Integral Definida [4]	23
		14.2.1 Definição [4]	23
		14.2.2 Teorema Fundamental do Cálculo [4]	23
		14.2.3 Propriedades Operatórias [3]	24
	14.3	Integral Imprópria [3]	24
		14.3.1 Definição [3]	24
IV		'álaula Multivariada	24
ıv	C	Cálculo Multivariado	24
15	O E	spaço n-Dimensional (\mathbb{R}^n)	24
	15.1	O Espaço Bidimensional [4]	24
	15.2	Relações em \mathbb{R}^2 [4]	25
	15.3	Equação do Círculo [9]	26
	15.4	Distância entre Dois Pontos em \mathbb{R}^2 [4]	27
	15.5	O Espaço Tridimensional [4]	27
	15.6	Relações em \mathbb{R}^3 [4]	28
	15.7	Equação do Plano em \mathbb{R}^3 [4]	29
	15.8	Distância entre Dois Pontos em \mathbb{R}^3 [4]	29
	15.9	O Conjunto \mathbb{R}^n [4]	30
	15.10	OBola Aberta [4]	30
	15.1	1Ponto Interior [4]	31
	15.12	2Conjunto Aberto [4]	32
	15.13	3Pontos de Fronteira de um Conjunto [4]	32
	15.14	4Planos Coordenados [2]	33
16	Fun	ções de Duas Variáveis	34
	16.1	Definição [4]	34
		A Função de Cobb-Douglas [4]	
	16.3	Gráficos de Funções de Duas Variáveis [4]	35
	16.4	Curvas de Nível [4]	36

		16.4.1 Curvas de Isoproduto ou Isoquantas de Produção [4]	37	
	16.5	Limite e Continuidade [4]	38	
		16.5.1 Teorema 1 [4]	38	
		16.5.2 Teorema 2 [4]	39	
17 Derivadas para Funções de Duas Variáveis				
	17.1	Derivadas Parciais [4]	40	
	17.2	Função Derivada Parcial [4]	42	
	17.3	Diferencial de uma Função - Derivada/Diferencial Total [4]	42	
		17.3.1 Teorema [4]	44	
	17.4	Função Composta - Regra da Cadeia [4]	45	
		17.4.1 Teorema - Regra da Cadeia [4]	45	
	17.5	Funções Definidas Implicitamente [4]	46	
	17.6	Funções Homogêneas - Teorema de Euler [4]	46	
	17.7	Derivadas Parciais de Segunda Ordem [4]	46	
	17.8	Integrais Duplas [4]	46	
		17.8.1 Integral Dupla [4]	47	
18	Máx	imos e Mínimos para Funções de Duas Variáveis	52	
	18.1	Definições [4]	52	
	18.2	Critérios para Identificação de Pontos de Máximo ou Mínimo [4]	57	
	18.3	Uma Aplicação: Ajuste de Retas pelo Método dos Mínimos Quadrados [4]	58	
	18.4	Análise dos Pontos de Fronteira [4]	58	
	18.5	Máximos e Mínimos Condicionados [4]	66	
		18.5.1 Método da Substituição [4]	66	
		18.5.2 Método dos Multiplicadores de Lagrange [4]	66	
19	Fun	ções de Três ou Mais Variáveis	66	
20	Mat	rizes e Determinantes	66	
21	Siste	emas de Equações	66	

References 67

Part I

Formulários

- 1 Pré Cálculo
- 2 Cálculo Univariado

2.1 Limites

Continuidade num Ponto	Teorema do Confronto
$\lim_{x\to b^+}f(x)=\lim_{x\to b^-}=f(b)$	se $g(x) \ge f(x) \le h(x)$,
$x \rightarrow b^+$, $x \rightarrow b^-$	$\lim_{x\to a} g(x) = \lim_{x\to a} h(x) = \lim_{x\to a} f(x) = L$

Limites nos Extremos

$$\lim_{x \to \infty} (2x^3 + 4x^2 - 5x + 9) = \lim_{x \to \infty} 2x^3 \left(1 + \frac{2}{x} - \frac{5}{2x^2} + \frac{9}{2x^3} \right) =$$

$$\lim_{x\to\infty} 2x^3$$

Propriedades Operatórias

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}, \text{ desde que }\lim_{x\to a}g(x)\neq 0$$

$$\lim_{x o a}f(x)^n=\left(\lim_{x o a}f(x)
ight)^n$$
, desde que $n\in\mathbb{N}^*$

$$\lim_{x\to a} \sqrt[\eta]{f(x)} = \sqrt[\eta]{\lim_{x\to a} f(x)},$$

desde que $n \in \mathbb{N}^*$ e f(x) > 0 (se $f(x) \leq 0$ n é ímpar)

$$\lim_{x \to a} (\ln f(x)) = \ln \left[\lim_{x \to a} f(x) \right]$$
, desde que $\lim_{x \to a} f(x) > 0$

$$\lim_{x \to a} \sin(f(x)) = \sin\left(\lim_{x \to a} f(x)\right)$$

$$\lim_{x\to a}e^{f(x)}=e^{\lim_{x\to a}f(x)}$$

2.2 Derivadas

Derivada por Definição

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Equação Reduzida da Reta

$$y = mx + n$$
 $m = \frac{\Delta f}{\Delta x} \approx f'(x)$ $y - y_0 = m(x - x_0)$

Funções Elementares

$$f(x)=c \qquad f'(x)=0$$

$$f(x) = x^n$$
 $f'(x) = n \times x^{n-1}$, $(x > 0)$

$$f(x) = \ln x$$
 $f'(x) = \frac{1}{x}$, $(x > 0)$

$$f(x) = \sin x$$
 $f'(x) = \cos x$, $(x \in \mathbb{R})$

$$f(x) = \cos x$$
 $f'(x) = \sin x$, $(x \in \mathbb{R})$

Propriedades Operatórias

$$f(x) = k \times g(x)$$
 $f'(x) = k \times g'(x)$, $k = \text{constante}$

$$f(x) = u(x) \pm v(x) \qquad f'(x) = u'(x) \pm v'(x)$$

$$f(x) = u(x) \times v(x)$$
 $f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$

$$f(x) = \frac{u(x)}{v(x)}$$
 $f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{[v(x)]^2}$

$$f(x) = \frac{1}{v} \qquad f'(x) = \frac{v'}{v^2}$$

Funções Especiais (Composta - Regra da Cadeia, Exponencial, Exponencial Geral

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \times g'(x)$$

$$f(x)=a^{x}$$
 $f'(x)=a^{x} imes \ln a$, $orall x\in \mathbb{R}\mid a>0$ e $a
eq 1$

$$f(x) = u(x)^{v(x)} \implies f(x) = x^x$$

$$\ln f(x) = x \times \ln x$$
 , $(\log_a M^{\alpha} = \alpha \times \log_a M)$

$$\frac{1}{f(x)} \times f'(x) = 1 \times \ln x + x \times \frac{1}{x}$$

$$f'(x) = f(x) \times [\ln x + 1] \implies f'(x) = x^x \times [\ln x + 1]$$

Diferencial de uma Função

$$d\!f = f'(x_0) imes \Delta x$$
 $d\!f pprox \Delta f$ para pequenos valores de Δx

Derivadas de 2^a, 3^a, ... Ordem

$$f'(x) f''(x) f'''(x) f^{(4)}(x)$$

2.3 Funções Financeiras/Administrativas

$$R(P ou Q) = P \times Q$$
 $L(P ou Q) = R(PouQ) - C(PouQ)$

$$C_{mg}(x) = C'(x)$$
 $R_{mg}(x) = R'(x)$ normalmente $\Delta x = 1$

Prop. Marginal a Consumir(C)
$$o p_{mg}^c = C'(y)$$
 $y = \text{renda disponível}$

Prop. Marginal a Poupar(S)
$$ightarrow p_{mg}^c = S'(y)$$
 $y = ext{renda disponível}$

Produtividade Marginal
$$ightarrow P_{mg}(x) = P'(x)$$

2.4 Elasticidade - Função Oferta e Demanda

Função Demanda
$$\rightarrow \frac{dx}{dp} < 0$$
 Função Oferta $\rightarrow \frac{dx}{dp} > 0$

Ponto de Equilíbrio $ightarrow p_d = p_o$

$$\frac{\Delta p}{p_0}$$
 = variação percentual no preço

$$\frac{\Delta x}{x_0}$$
 = variação percentual na quantidade

$$e = \left| \frac{\lim_{\Delta p \to 0} \frac{\Delta x}{x_0}}{\frac{\Delta p}{p_0}} \right| = \frac{p_0}{x_0} \times \left| \lim_{\Delta p \to 0} \frac{\Delta x}{\Delta p} \right| = \frac{p_0}{x_0} \times \left| \frac{dx}{dp} \right|$$

e>1 o elástica 0< e>1 o inelástica e=1 o elasticidade unitária *Não se aplica em elasticidade cruzada.

2.5 Estudo de Funções Univariadas

Pontos críticos o f'(x) = 0 ou $f'(x) = \sharp$ ou indefinido

Ponto de Mínimo (convexidade \cup) o $f''(x) > 0 \ \forall x \in]a$, b[

Ponto de Máximo (concavidade \cap) \rightarrow $f''(x) < 0 \ \forall x \in]a,b[$

Ponto de Inflexão $\rightarrow f''(x) = 0 \ \forall x \in]a, b[$

Estudo Completo de uma Função

- (1) Determinação do domínio;
- (2) Determinação das intersecções com os eixos, quando possível;
- (3) Determinação dos intervalos de crescimento e decrescimento e de possíveis pontos de máximo e mínimo;
- (4) Determinação dos intervalos em que a função é côncava para cima ou para baixo e de possíveis pontos de inflexão;
- (5) Determinação dos limites nos extremos do domínio e de possíveis assíntotas;
- (6) Determinação dos limites laterais nos pontos de descontinuidades (quando houver e possíveis assíntotas).

2.6 Integrais

Integral Indefinida

$$\int g(x)dx = f(x) + c$$

Funções Elementares

$$\int x^n dx = rac{x^{n+1}}{n+1} + c$$
 , $orall n \in \mathbb{Z} \mid n
eq -1$
$$\int rac{1}{x} dx = \ln(-x) + c$$

$$\int x^a \ dx = rac{x^{\alpha+1}}{lpha+1} + c$$
 , $(lpha
eq -1) \ (x > 0))$

 $\int \cos x dx = \sin x + c$, pois a derivada de $\sin x$ é $\cos x$

 $\int \sin x dx = -\cos x + c$, pois a derivada de $-\cos x$ é $\sin x$

 $\int e^x dx = e^x + c$, pois a derivada de e^x é e^x

$$\int rac{1}{1+x^2} \, dx = \arctan x + c$$
 , pois a derivada de $\arctan x$ é $rac{1}{1+x^2}$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + c \, \, ,$$

pois a derivada de $\arcsin x$ é $\dfrac{1}{\sqrt{1-x^2}}$, para -1 < x < 1

Propriedades Operatórias

$$\int [f_1(x) \pm f_2(x)] dx = \int f_1(x) dx \pm \int f_2(x) dx$$
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

Integral Definida

$$\int_{a}^{b} f(x) dx = g(b) - g(a) = \lim_{x \to b^{-}} [g(x)] - \lim_{x \to a^{+}} [g(x)]$$

$$A = \text{Área sob o gráfico}$$
 $A = \int_a^b f(x) \ dx$ $A = -\int_a^b f(x) \ dx$

Propriedades Operatórias

$$\int_{a}^{b} f(x) dx = F(a) - F(a) = 0$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Integral Imprópria

$$\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{b} f(x) \ dx \ , \ (a < c < b)$$

3 Cálculo Multivariado

3.1 O Espaço n-Dimensional (\mathbb{R}^n)

Equações em \mathbb{R}^2 (linha) e \mathbb{R}^3 (plano)

Para \mathbb{R}^2

ax + by + c = 0 (com a e b reais e a e b não nulos simultaneamente)

Para \mathbb{R}^3

ax + by + cz + d = 0 (com a, b, c, d reais e a, b, c não nulos simultaneamente)

Equação do Círculo

$$(x-a)^2 + (y-b)^2 = r^2$$

Distância entre dois Pontos

Para
$$\mathbb{R}^2$$
 $d(P_1,P_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ Para \mathbb{R}^3 $d(P_1,P_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$ Para \mathbb{R}^n $d(P_1,P_2)=\sqrt{(y_1-x_1)^2+(y_2-x_2)^2+\cdots+(y_n-x_n)^2}$

Planos Coordenados

Quádricas

Quádrica Degenerada (plano)

$$ax + by + cz = 0$$

Esfera (caso particular do elipsóide)

$$ax^2 + by^2 + cz^2 = k$$

Elipsóide

$$ax^2+by^2+cz^2=k$$
 , $(a
eq b ext{ ou } b
eq c ext{ ou } a
eq c)$

Hiperbolóide

$$ax^2 + by^2 - cz^2 = k$$

Cone

$$ax^2 + by^2 - cz^2 = 0$$

Parabolóide

$$ax^2 + ay^2 = cz$$

Parabolóide Elíptico

$$ax^2 + by^2 = cz$$

Parabolóide Hiperbólico ou Sela

$$ax^2 - by^2 = cz$$

Cilindro

$$ax^2 - by^2 + dx + ey = k$$

3.2 Derivadas

Derivadas Parciais

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y = \lim_{\Delta y \to 0} \frac{\Delta f}{\Delta y}$$

Diferencial de uma Função

$$df = f_x \times \Delta x + f_y \times \Delta y$$

Função Composta - Regra da Cadeia

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \times \frac{dx}{dt} + \frac{\partial f}{\partial y} \times \frac{dy}{dt}$$

Derivadas Parciais de Segunda Ordem

Derivada de fx em relação a x f_{xx} ou $\frac{\partial^2 f}{\partial x^2}$ Derivada de fx em relação a y f_{xy} ou $\frac{\partial^2 f}{\partial y \partial x}$ Derivada de fy em relação a x f_{yx} ou $\frac{\partial^2 f}{\partial x \partial y}$ Derivada de fy em relação a y f_{yy} ou $\frac{\partial^2 f}{\partial x \partial y}$

3.3 Funções Financeiras/Administrativas

Função de Cobb-Douglas

$$P = f(L, K) = A \times K^{\alpha} \times L^{1-\alpha}$$

3.4 Integrais (∫)

Integrais Parciais

Integral parcial em relação a x $\int f(x,y)dx$

Integral parcial em relação a y $\int f(x, y)dy$

Integrais Duplas

$$A(x) = \int_{c}^{d} f(x, y) dy \qquad V = \int_{a}^{b} A(x) dx$$

$$B(y) = \int_{a}^{b} f(x, y) dx$$
 $V = \int_{c}^{d} B(y) dy$

$$\iint_D f(x,y) dx dy = \int_a^b \left[\int_c^d f(x,y) dx \right] dy$$
$$\iint_D f(x,y) dy dx = \int_c^d \left[\int_a^b f(x,y) dy \right] dx$$

3.5 Estudo de Funções de 2 Variáveis

Pontos Críticos

$$fx(x_0, y_0) = 0$$
 e $fy(x_0, y_0) = 0$

Pontos de Máximo ou Mínimo

$$H(x_0, y_0) = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

 $H(x_0,y_0)>0$ e $f_{xx}(x_0,y_0)<0$, $ig(x_0,y_0ig)$ será ponto de máximo de f

 $H(x_0,y_0)>0$ e $f_{xx}(x_0,y_0)>0$, $\left(x_0,y_0
ight)$ será ponto de mínimo de f

 $H(x_0,y_0)<0$, $ig(x_0,y_0ig)$ será ponto de sela de f

Máximos e Mínimos Condicionados

Método dos Multiplicadores de Lagrange

Não se aplica se
$$\dfrac{\partial \Phi}{\partial x}(x_0,y_0)=0$$
 e $\dfrac{\partial \Phi}{\partial y}(x_0,y_0)=0$

$$F(x, y, \lambda) = f(x, y) - \lambda \times \Phi(x, y)$$

$$\frac{\partial F}{\partial x} = 0 \qquad \frac{\partial F}{\partial y} = 0 \qquad \frac{\partial F}{\partial \lambda} = 0$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lambda \times \frac{\partial \Phi}{\partial x}(x_0, y_0) \qquad \frac{\partial f}{\partial y}(x_0, y_0) = \lambda \times \frac{\partial \Phi}{\partial y}(x_0, y_0)$$
$$\frac{\partial f}{\partial x} = \lambda \times \frac{\partial \Phi}{\partial x} \qquad \frac{\partial f}{\partial y} = \lambda \times \frac{\partial \Phi}{\partial y} \qquad \Phi(x, y) = 0$$

Part II

Pré-Cálculo

- 4 Números Irracionais e Constantes Naturais
- 5 Produtos Notáveis
- 6 Progressões
- 7 Logaritmos
- 8 Trigonometria

Part III

Cálculo Univariado

- 9 Função Polinomial
- 9.1 Definição

Uma função polinomial $f:\mathbb{R} \to \mathbb{R}$ de grau n é uma função da forma

$$y = f'(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

onde

n é o grau do polinômio;

 $a_n, a_{n-1}, \ldots, a_3, a_2, a_1, a_0$ são constantes reais $a_n \neq 0$;

x é a variável independente;

y = f(x) é a variável dependente;

9.2 Função do 1º Grau

$$y = ax + b$$

onde a = m é o coeficiente angular e b o coeficiente linear.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

9.3 Equação Quadrática (Fórmula de Bhaskara)

$$ax^2 + bx + c = 0$$

onde

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

9.3.1 Discriminante da equação quadrática

$$\Delta = b^2 - 4ac$$

Se $\Delta > 0$ a equação tem duas raízes reais e distintas

Se $\Delta=0$ a equação tem duas raízes reais e iguais (tecnicamente chamada de raiz dupla), ou popularmente "uma única raiz".

Se $\Delta < 0$ a equação não possui qualquer raiz real.

9.3.2 Sentido da parábola

Caso a > 0 a parábola terá o aspecto de côncava para baixo (ou somente côncava).

Caso a < 0 a parábola terá aspecto de côncava para cima (ou convexa).

10 Função Modular de um Número Real

$$|x| = x$$
, se $x >= 0$
ou
 $|x| = -x$, se $x < 0$

e.g.
$$2 \cdot |3| = 2 \cdot (3) = 6$$

e.g. $|-4| + |-2| = -(-4) + [-(-2)] = 4 + 2 = 6$

11 Limites

- 11.1 Sucessões ou Sequências [4]
- 11.2 Convergência de Sucessões [4]
- 11.3 Limite de Funções [4]
- 11.4 Propriedades Operatórias [5] [8]

As propriedades operatórias permitem achar os limites de somas, diferenças, produtos, quocientes e outros mais de funções elementares.

Para funções f e g com limites para $x \to a$, $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} g(x) = M$, desde que $(L, M \neq \infty)$, temos:

$$\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)$$

Exemplo: $\lim_{x \to 1} [x^2 + 3x^3] = \lim_{x \to 1} x^2 + \lim_{x \to 1} 3x^3 = 1 + 3 = 4$;

$$\lim_{x\to a}[f(x)\times g(x)]=\lim_{x\to a}f(x)\times \lim_{x\to a}g(x)$$

Exemplo: $\lim_{x \to \pi} [3x^3 \times \cos x] = \lim_{x \to \pi} 3x^3 \times \lim_{x \to \pi} \cos x = 3\pi^3 \times \cos \pi = 3\pi^3 \times (-1) = -3\pi^3$:

(P3)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, desde que $\lim_{x \to a} g(x) \neq 0$

Exemplo:
$$\lim_{x \to 0} \frac{\cos x}{x^2 + 1} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} x^2 + 1} = \frac{\cos 0}{0^2 + 1} = \frac{1}{1} = 1$$
;

(P4)
$$\lim_{x \to a} f(x)^n = \left(\lim_{x \to a} f(x)\right)^n$$
, desde que $n \in \mathbb{N}^*$

Exemplo:
$$\lim_{x\to 1} (x^2+3)^2 = \left[\lim_{x\to 1} (x^2+3)^2\right] = (1+3)^2 = 16$$
;

(P5)
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$
, desde que $n\in\mathbb{N}^*$ e $f(x)>0$ (se $f(x)\leq 0$ n é ímpar)

Exemplo:
$$\lim_{x\to 2} \sqrt{x^3 + x^2 - 1} = \sqrt{\lim_{x\to 2} x^3 + x^2 - 1} = \sqrt{2^3 + 2^2 - 1} = \sqrt{11}$$
;

(P6)
$$\lim_{x \to a} (\ln f(x)) = \ln \left[\lim_{x \to a} f(x) \right]$$
, desde que $\lim_{x \to a} f(x) > 0$

Exemplo:
$$\lim_{x \to e} (\ln x^2) = \ln \left[\lim_{x \to e} x^2 \right] = \ln e^2 = 2 \ln e = 2 \times 1 = 2$$
;

$$\lim_{x\to a}\sin(f(x))=\sin\left(\lim_{x\to a}f(x)\right)$$

Exemplo:
$$\lim_{x\to 1} \sin(x^2 + 3x) = \sin\left[\lim_{x\to 1} (x^2 + 3x)\right] = \sin 4$$
;

(P8)
$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}$$

Exemplo:
$$\lim_{x \to 1} e^{x^2 + 3x} = e^{\lim_{x \to 1} x^2 + 3x} = e^4$$
.

- 11.5 Formas Indeterminadas [4]
- 11.6 Limites Infinitos [4]
- 11.7 Limites nos Extremos do Domínio [4]
- 11.8 Continuidade de uma Função [4]
- 11.9 Assíntotas Verticais e Horizontais [4]
- 11.10 Limite Exponencial Fundamental [4]
- 12 Derivadas
- 13 Aplicações de Derivadas
- 14 Integrais ()
- 14.1 Integral Indefinida [4]
- 14.1.1 Definição [4]

Chamamos de integral indefinida de g(x) e indicamos pelo símbolo $\int g(x) dx$ a uma primitiva qualquer de g(x) adicionada a uma constante arbitrária c. Assim:

$$\int g(x)dx = f(x) + c ,$$

em que $f(x)^1$ é uma primitiva de g(x) , ou seja, f'(x)=g(x) [4]

14.1.2 Funções Elementares [4]

Podemos obter as integrais indefinidas das principais funções, que decorrem imediatamente das respectivas regras de derivação:

¹Lucchesi [3] utiliza a notação F(x) para representar funções primitivas.

(a) Se
$$n$$
 é inteiro e diferente de -1 , então $\int x^n dx = \dfrac{x^{n+1}}{n+1} + c$, pois a derivada de $\dfrac{x^{n+1}}{n+1}$ é x^n .

(b)
$$\int \frac{1}{x} dx = \ln x + c$$
 , para $x > 0$, pois a derivada de $\ln x$ é $\frac{1}{x}$.

observemos que se x < 0 , $\int \frac{1}{x} dx = \ln(-x) + c$. Assim, de modo geral, podemos escrever:

$$\int \frac{1}{x} dx = \ln|x| + c.$$

(c) Para qualquer real
$$lpha
eq -1$$
 , $\int x^a \; dx = rac{x^{lpha+1}}{lpha+1} + c$. $\; (x>0)$

(d)
$$\int \cos x dx = \sin x + c$$
 , pois a derivada de $\sin x$ é $\cos x$.

(e)
$$\int \sin x dx = -\cos x + c$$
 , pois a derivada de $-\cos x$ é $\sin x$.

(f)
$$\int e^{x} dx = e^{x} + c$$
 , pois a derivada de e^{x} é e^{x} .

(g)
$$\int rac{1}{1+x^2} \ dx = rctan \, x + c$$
 , pois a derivada de $rctan \, x$ é $rac{1}{1+x^2}$.

(h)
$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + c$$
 , pois a derivada de $\arcsin x$ é $\frac{1}{\sqrt{1-x^2}}$, para $-1 < x < 1$.

14.1.3 Propriedades Operatórias [4]

(P1)
$$\int [f_1(x) + f_2(x)] dx = \int f_1(x) dx + \int f_2(x) dx$$
;

(P2)
$$\int [f_1(x) - f_2(x)] dx = \int f_1(x) dx - \int f_2(x) dx$$
;

(P3)
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$
.

14.2 Integral Definida [4]

14.2.1 Definição [4]

Seja f(x) uma função e g(x) uma de suas primitivas. Portanto, $\int f(x) \ dx = g(x) + c$.

Definimos a integral definida de f(x) entre os limites a e b como a diferença g(b) - g(a), e indicamos simbolicamente

$$\int_{a}^{b} f(x) dx = g(b) - g(a) = \lim_{x \to b^{-}} [g(x)] - \lim_{x \to a^{+}} [g(x)]$$

A diferença g(b) - g(a) também costuma ser indicada pelo símbolo $[g(x)]_a^b$.

14.2.2 Teorema Fundamental do Cálculo [4]

O significado geométrico da integral definida é dado a seguir.

Seja f(x) uma função **contínua e não negativa** definida num intervalo [a, b]. A integral definida $\int_a^b f(x) \ dx$ representa a área da região compreendida entre o gráfico de f(x), o eixo x e as verticais que passam por a e b.

Assim, indicado por A a área destacada da Figura 7.1, teremos:

$$A = \int_a^b f(x) \ dx$$

(...) Caso f(x) seja negativa no intervalo [a,b], a área A da região delimitada pelo gráfico de f(x), eixo x, e pelas verticais que passam por a e por b é dada por:

$$A = -\int_a^b f(x) \ dx$$

14.2.3 Propriedades Operatórias [3]

(P1)
$$\int_{a}^{a} f(x) dx = F(a) - F(a) = 0$$

(P2)
$$\int_a^b f(x) \ dx = - \int_b^a f(x) \ dx$$

(P3)
$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$
 , sendo $a < c < b$.

14.3 Integral Imprópria [3]

14.3.1 Definição [3]

Quando as hipóteses do teorema fundamental do cálculo falharem, aplicamos a integral imprópria.

Caso 1: Intervalo de integração aberto (e.g. [a, b]).

Caso 2: Descontinuidade da função (e.g. $D = \mathbb{R} - (0)$).

Usa-se a propriedade da integral definida:

(P3)
$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$
 , sendo $a < c < b$.

Exemplo:

$$\int_{-1}^{1} \frac{1}{x^2} dx \longrightarrow D = \mathbb{R} - (0)$$

$$\int_{-1}^{1} \frac{1}{x^2} dx = \lim_{z \to 0^{-}} \int_{-1}^{z} \frac{1}{x^2} dx + \lim_{z \to 0^{+}} \int_{z}^{1} \frac{1}{x^2} dx$$

Part IV

Cálculo Multivariado

15 O Espaço n-Dimensional (\mathbb{R}^n)

15.1 O Espaço Bidimensional [4]

"Seja $\mathbb R$ o conjunto dos números reais. O conjunto formado por todos os pares ordenados de reais é chamado **espaço bidimensional** e é indicado por $\mathbb R \times \mathbb R$ ou simplesmente $\mathbb R^2$ ":

$$\mathbb{R}^2 = \{(a, b) \mid a \in \mathbb{R} \in b \in \mathbb{R}\}$$

"Geometricamente, um elemento (a, b) de \mathbb{R}^2 pode ser representado no plano cartesiano por um ponto de abscissa a e ordenada b".

15.2 Relações em \mathbb{R}^2 [4]

"Chama-se relação binária, ou simplesmente relação no \mathbb{R}^2 , a todo conjunto de \mathbb{R}^2 ".

"Exemplo 8.2. Seja $A=\{(x,y)\in\mathbb{R}^2|y=2x+1\}$. A representação geométrica do conjunto A é uma reta"

"Exemplo 8.3. Considerando $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$, a representação geométrica do conjunto C é um círculo de centro na origem e raio 2 (Figura 8.4)".

Figura 8.4: Representação geométrica da relação dada por $x^2 + y^2 \le 4$.

Observação

Lembremos que, se tivermos no plano cartesiano a representação gráfica de uma função y = f(x), os pontos que estão "acima" do gráfico satisfazem a relação y > f(x).

No caso de termos a representação geométrica de uma circunferência de equação $(x-a)^2+(y-b)^2=r^2$, de centro C(a,b) e raio r, os pontos interiores a ela satisfazem a relação $(x-a)^2+(y-b)^2< r^2$, e os pontos exteriores a ela satisfazem a relação $(x-a)^2+(y-b)^2>r^2$. Uma relação do tipo x>k é representada geometricamente pelos pontos do plano à direita da reta vertical x=k; a relação x<k é representada pelos pontos à esquerda da reta vertical x=k.

15.3 Equação do Círculo [9]

Em um sistema cartesiano bidimensional \mathbb{R}^2 , um círculo com as coordenadas de centro (a, b) e raio r se dá pelo conjunto de todos os pontos (x, y) tal que

$$(x-a)^2 + (y-b)^2 = r^2$$

Esta equação, conhecida como a equação do círculo, segue o teorema de Pitágoras aplicado a qualquer ponto no círculo - como demonstrado no diagrama abaixo, o raio é a hipotenusa de um triângulo reto que tem como catetos |x-a| e |y-b|. Se o círculo está centrado na origem (0,0), a equação se simplifica para

$$x^2 + y^2 = r^2$$

15.4 Distância entre Dois Pontos em \mathbb{R}^2 [4]

"Sejam (x_1, y_1) e (x_2, y_2) dois elementos de \mathbb{R}^2 , representados geometricamente pelos pontos P_1 e P_2 . A distância entre eles é o número

$$d(P_1,P_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
 [Teorema de Pitágoras].

Notemos que a distância representa o comprimento do segmento $\overline{P_1P_2}$ na representação geométrica (Figura 8.7). Quando não houver possibilidade de confusão, a distância é indicada simplesmente por d^{\parallel} .

15.5 O Espaço Tridimensional [4]

Seja $\mathbb R$ o conjunto dos números reais. O conjunto formado por todas as triplas ordenadas de reais é chamado **espaço tridimensional** e é indicado por $\mathbb R \times \mathbb R \times \mathbb R$ ou simplesmente $\mathbb R^3$. Assim:

$$\mathbb{R}^3 = \{(a, b, c) \mid a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}\}$$

Geometricamente, um elemento (a, b, c) pode ser representado por um ponto P de abscissa a, ordenada b e cota c, num sistema de eixos Ox, Oy e Oz perpendiculares dois a dois. A cota c é a distância do ponto P em relação ao plano determinado pelos eixos Ox e Oy, precedida pelo sinal + se o ponto estiver "acima" do plano, e precedida pelo sinal - se estiver "abaixo" desse plano (Figura 8.8).

15.6 Relações em \mathbb{R}^3 [4]

Chama-se relações no \mathbb{R}^3 a todo conjunto do \mathbb{R}^3 .

Exemplo 8.7. Seja $A = \{(x, y, z) \mid x = 0\}$, a representação geométrica de A é o plano determinando pelos eixos Oy e Oz (Figura 8.9)

Exemplo 8.8. Seja $B = \{(x, y, z) \mid z = 2\}$, a representação geométrica desse conjunto é o plano paralelo determinando por Ox e Oy e distante duas unidades do mesmo (Figura 8.10)

Figura 8.10: Representação tridimensional da relação z=2.

15.7 Equação do Plano em \mathbb{R}^3 [4]

Pode se provar que toda relação do \mathbb{R}^3 que satisfaz uma equação do tipo ax+bx+cz+d=0 (com a, b, c, d reais e a, b, c não nulos simultaneamente) tem por representação geométrica um plano no espaço tridimensional. O gráfico **por onde passa** tal plano pode ser obtido por meio de três pontos não alinhados.

15.8 Distância entre Dois Pontos em \mathbb{R}^3 [4]

Sejam (x_1, y_1, z_1) e (x_2, y_2, z_2) dois elementos de \mathbb{R}^3 representados pelos pontos P_1 e P_2 . Chama-se a distância entre eles o número

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 [Teorema de Pitágoras].

Dessa forma, a distância é o comprimento do segmento $\overline{P_1P_2}$ da Figura 8.12.

Figura 8.12: Distância entre dois pontos do R3.

Dedução

Um dos catetos (altura) do triângulo $\overline{P_1BP_2}$ pode ser representado por z_2-z_1 , já o outro cateto é a hipotenusa do triângulo $\overline{AP_1B}$ que é igual a $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$. Logo temos que $d^2=(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2})^2+(z_2-z_1)^2$ o que simplificando fica $d(P_1,P_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$.

15.9 O Conjunto \mathbb{R}^n [4]

Seja \mathbb{R} o conjunto dos números reais. O conjunto formado pelas ênuplas ordenadas (sequências de n elementos) de reais é chamado de espaço n-dimensional e é indicado por \mathbb{R}^n .

Em particular, o conjunto \mathbb{R}^1 é o próprio conjunto dos números reais (representados geometricamente num único eixo). Os elementos de \mathbb{R}^n , pana n>3, não admitem representação geométrica.

Dado dois elementos do \mathbb{R}^n , $P_1(x_1, x_2, \dots, x_n)$ e $P_2(y_1, y_2, \dots, y_n)$ a distância entre eles é o número

$$d(P_1, P_2) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \cdots + (y_n - x_n)^2}$$
 [Teorema de Pitágoras].

15.10 Bola Aberta [4]

Seja C um elemento do R^n e r um número real positivo. Chama-se bola aberta de centro C e raio r ao conjunto dos pontos do R^n cuja distância até C é menor que r. Isto é, a bola aberta

é o conjunto

$$B(C, r) = \{ P \in R^n \mid d(P, C) < r \}.$$

Exemplo 8.11. A bola aberta do \mathbb{R}^2 de centro C(4,4) e raio 1 é o interior do círculo representado na Figura 8.13.

Exemplo 8.12. A bola aberta do \mathbb{R}^3 de centro C(2,3,4) e raio 1 é a região interior da esfera representada na Figura 8.14.

15.11 Ponto Interior [4]

Seja A um subconjunto do R^n ; um elemento P do R^n é chamado ponto interior de A se existir uma bola aberta com centro em P contida em A. Isto é, P é um ponto interior de A se exisitir um real r > 0, tal que $B(P, r) \subset A$.

Exemplo 8.13. Seja $A = \{(x, y) \in \mathbb{R}^2 \mid y \ge 2\}$. O ponto P(4, 4) é interior a A e o ponto P(3, 2) não é interior a A (Figura 8.15).

15.12 Conjunto Aberto [4]

Seja A um subconjunto do \mathbb{R}^n . A é chamado de conjunto aberto se todos os seus pontos são interiores.

Exemplo 8.14. O conjunto $A = \{(x, y) \in \mathbb{R}^2 \mid x > 2\}$ é aberto, pois todos os seus pontos são interiores (Figura 8.16).

15.13 Pontos de Fronteira de um Conjunto [4]

Seja A um subconjunto do \mathbb{R}^n . Um ponto de A que não é interior chama-se ponto de fronteira de A.

Exemplo 8.16. Seja $A = \{(x, y) \in \mathbb{R}^2 \mid y \ge 2\}$. Os pontos da reta y = 2 são pontos de

fronteira de A (Figura 8.18).

15.14 Planos Coordenados [2]

Os três eixos coordenados Ox, Oy e Oz definem três planos perpendiculares entre si. Em xOy temos z como constante (em que O é o ponto $(0,0,z_0)$); em yOz temos x como constante (em que O é o ponto $(x_0,0,0)$); e em xOz temos y como constante (em que O é o ponto $(0,y_0,0)$).

Uma das formas de criar um gráfico de um função em \mathbb{R}^3 é desenhar o cruzamento dos gráficos das funções em xOz e yOz. Exemplo:

16 Funções de Duas Variáveis

16.1 Definição [4]

Seja D um subconjunto do \mathbb{R}^2 . Chama-se função de D em \mathbb{R} toda relação que associa a cada par ordenado (x,y) pertencente a D um único número real indicado por f(x,y). O conjunto D é chamado domínio da função e f(x,y) é chamado de imagem de (x,y) ou valor de f em (x,y).

16.2 A Função de Cobb-Douglas [4]

A função de Cobb-Douglas relaciona a quantidade produzida de algum bem em certo intervalo de tempo com os insumos variáveis necessários a essa produção (trabalho, terra, capital e outros). Um modelo de função de produção muito utilizado foi introduzido pelo economista Paul Douglas e pelo matemático Charles Cobb, ambos norte-americanos, em seus estudos sobre a repartição da renda entre o capital e o trabalho no início do século XX. A expressão da referida função é

$$P = f(L, K) = A \times K^{\alpha} \times L^{1-\alpha}$$

em que

P é a quantidade produzida,

K é o capital empregado,

L é a quantidade de trabalho envolvido.

A constante A depende da tecnologia utilizada e α é um parâmetro que varia de 0 a 1.

16.3 Gráficos de Funções de Duas Variáveis [4]

Vimos, no estudo de funções de uma variável, que seu gráfico era o conjunto

$$\{(x,y)\in\mathbb{R}^2\mid y=f(x)\ \mathrm{e}\ x\in D\}$$
 .

Consequentemente, a representação gráfica era feita no plano cartesiano (Figura 9.2).

Figura 9.2: Representação gráfica de função de uma variável.

De modo totalmente análogo, definimos o gráfico de uma função de duas variáveis. Seja f(x,y) uma função de duas variáveis x e y. O gráfico da função é o conjunto

$$\{(x,y,z)\in\mathbb{R}^3\mid z=f(x,y)\in(x,y)\in D\}$$

Portanto o gráfico de f(x, y) será representado no espaço tridimensional, de tal forma que a cada par (x, y) do domínio corresponda uma cota z = f(x, y), como mostra a Figura 9.3.

Figura 9.3: Gráfico de funções de duas variáveis.

16.4 Curvas de Nível [4]

Devido à dificuldade de desenharmos o gráfico de uma função de duas variáveis, costumamos utilizar a seguinte forma alternativa de representação: obtemos o conjunto dos pontos do domínio que têm a mesma cota c; tais pontos, em geral, formam uma curva que recebe o nome de curva de nível c da função (Figura 9.14)

Assim sendo, atribuindo valores a *c*, obtemos várias curvas de nível, que permitem tirar importantes informações sobre a função.

O método das curvas de nível, além de ser muito utilizado em Economia, é também utilizado em outras áreas, como Engenharia (topografia de terrenos), Geografia e outras.

Exemplo 9.9. Seja a função $f(x,y) = x^2 + y^2$. As curvas de nível c = 1, c = 2 e c = 4 são:

$$c=1\Rightarrow x^2+y^2=1$$
 (circunferência de centro $(0,0)$ e raio 1), $c=2\Rightarrow x^2+y^2=2$ (circunferência de centro $(0,0)$ e raio $\sqrt{2}$), $c=3\Rightarrow x^2+y^2=4$ (circunferência de centro $(0,0)$ e raio 2).

Essas curvas de nível aparecem na Figura 9.15.

Frequentemente, a representação das curvas de nível é feita desenhando-se apenas os eixos 0x e 0y, como na Figura 9.16.

16.4.1 Curvas de Isoproduto ou Isoquantas de Produção [4]

Consideremos a função de produção $P=L^{0,5}\times K^{0,5}$, em que L representa o trabalho envolvido e K, o capital.

As cuvas de nível c=1 e c=2 são:

$$c=1\Rightarrow L^{0,5} imes \mathcal{K}^{0,5}=1\Rightarrow L=rac{1}{\mathcal{K}},$$
 $c=2\Rightarrow L^{0,5} imes \mathcal{K}^{0,5}=2\Rightarrow L=rac{4}{\mathcal{K}}$.

A representação dessas curvas de nível comparece na Figura 9.17. Cada curva de nível fornece

os pares (K, L) para os quais a produção é constante, sendo a primeira com produção igual a 1 e a segunda igual a 2. Em Economia, essas curvas de nível são denominadas **curvas de isoproduto** ou **isoquantas de produção**.

16.5 Limite e Continuidade [4]

As noções de limite e continuidade para funções de duas variáveis são análogas às que foram vistas para funções de uma variável.

Intuitivamente falando, o limite de f(x, y) quando (x, y) tende ao ponto (x_0, y_0) é o número L (se existir) do qual se aproxima f(x, y) quando (x, y) se aproxima de (x_0, y_0) , por qualquer caminho, sem no entanto ficar igual a (x_0, y_0) .

Indicamos essa ideia da seguinte forma:

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L.$$

Caso L seja igual a $f(x_0, y_0)$, dizemos que f é contínua em (x_0, y_0) ; caso contrário, f é dita descontínua em (x_0, y_0) .

16.5.1 Teorema 1 [4]

São contínuas em todos os pontos de seu domínio as funções:

(a) Polinomiais nas variáveis $x \in y$;

(b) Racionais nas variáveis $x \in y$.

Assim, de acordo com o Teorema 1, são contínuas por exemplo, as funções:

$$f(x,y) = x^2 + y^2 - xy, \forall x, y \text{ (polinomial)},$$

$$f(x,y) = x^3y^2 - xy + y^3 + 6, \forall x, y \text{ (polinomial)},$$

$$f(x,y) = \frac{x^2 + y^2}{xy - 1}, \forall x, y \text{ tais que } xy \neq 1 \text{ (racional)}.$$

16.5.2 Teorema 2 [4]

Se f(x,y) e g(x,y) são contínuas em (x_0,y_0) , então serão também contínuas em (x_0,y_0) as funções:

(a)
$$f(x, y) + g(x, y)$$

(b)
$$f(x, y) - g(x, y)$$

(c)
$$k \times f(x, y)$$
 $(k \in \mathbb{R})$

(d)
$$f(x, y) \times g(x, y)$$

(e)
$$\frac{f(x,y)}{g(x,y)}$$
 $(g(x_0,y_0) \neq 0)$

(f)
$$a^{f(x,y)}$$
 $(a > 0)$

(g)
$$\log f(x, y)$$
 $(f(x_0, y_0) > 0)$

(h)
$$\cos f(x, y)$$

(i)
$$\sin f(x, y)$$

De acordo com os teoremas vistos, são contínuas em todos os pontos de seu domínio, por exemplo, as funções:

$$f(x,y) = x^2 + y^2 - 2xy^3$$
,

$$f(x,y) = \frac{x+y}{x-y},$$

$$f(x,y) = 2^{x-y^2},$$

$$f(x, y) = 2^{x-y^2}$$

$$f(x,y) = \ln(x+y) ,$$

$$f(x,y) = \sin(x^2 + y) ,$$

$$f(x,y)=x^2+e^x.$$

17 Derivadas para Funções de Duas Variáveis

17.1 Derivadas Parciais [4]

Consideremos um ponto (x_0, y_0) ; se mantivermos y constante no valor y_0 e variarmos x do valor x_0 para o valor $x_0 + \Delta x$, a função $f(x_0, y_0)$ dependerá apenas da variável x.

Seja

$$\Delta f = f(x_0 + \Delta x, y_0) - f(x_0, y_0).$$

À razão

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

chamamos de taxa média de variação de f em relação a x.

Observemos que:

- (a) $\frac{\Delta f}{\Delta x}$ depende do ponto de partida (x_0, y_0) ;
- (b) $\frac{\Delta f}{\Delta x}$ depende da variação Δx .

Ao limite (se existir e for um número real) de $\frac{\Delta f}{\Delta x}$, quando Δx tende a 0, denominamos derivada parcial de f no ponto (x_0, y_0) , em relação a x. Indicamos a tal derivada parcial por um dos símbolos:

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 ou $f_x(x_0, y_0)$.

Assim,

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

O símbolo $\frac{\partial f}{\partial x}$ (lê-se del f, del x) foi introduzido por Lagrange (Joseph Louis Lagrange, 1736-1813, matemático nascido na Itália, mas que viveu a maior parte da vida na França).

Analogamente, se mantivermos x constante no valor x_0 e variarmos y do valor y_0 para o valor $y_0 + \Delta y$, f dependerá apenas da variável y.

Seja

$$\Delta f = f(x_0, y_0 + \Delta y) - f(x_0, y_0).$$

À razão

$$\frac{\Delta f}{\Delta y} = \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$

chamamos de taxa média de variação de f em relação a y.

Ao limite (se existir e for um número real) de $\frac{\Delta f}{\Delta y}$ quando Δy tente a 0, denominamos derivada parcial de f no ponto (x_0, y_0) , em relação a y. Indicamos tal derivada parcial por um dos símbolos:

$$\frac{\partial f}{\partial y}(x_0, y_0)$$
 ou $f_y(x_0, y_0)$.

O símbolo
$$\frac{\partial f}{\partial v}$$
 (lê-se del f , del y).

Assim,

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{\Delta f}{\Delta y}$$

Exemplo 10.1. Seja
$$f(x,y) = 2x + 3y$$
. Calculemos $\frac{\partial f}{\partial x}(4,5)$ e $\frac{\partial f}{\partial y}(4,5)$.

Temos:

$$\frac{\partial f}{\partial x}(4,5) = \lim_{\Delta x \to 0} \frac{f(4 + \Delta x, 5) - f(4,5)}{\Delta x}$$

$$\frac{\partial f}{\partial x}(4,5) = \lim_{\Delta x \to 0} \frac{2(4 + \Delta x) + 3 \times 5 - 2 \times 4 + 3 \times 5}{\Delta x}$$

$$\frac{\partial f}{\partial x}(4,5) = \lim_{\Delta x \to 0} \frac{2 \times \Delta x}{\Delta x} = 2$$

Analogamente,

$$\frac{\partial f}{\partial y}(4,5) = \lim_{\Delta y \to 0} \frac{f(4,5 + \Delta y) - f(4,5)}{\Delta y}$$

$$\frac{\partial f}{\partial y}(4,5) = \lim_{\Delta y \to 0} \frac{2 \times 4 + 3 \times (5 + \Delta y) - 2 \times 4 + 3 \times 5}{\Delta y}$$

$$\frac{\partial f}{\partial y}(4,5) = \lim_{\Delta y \to 0} \frac{3 \times \Delta y}{\Delta y} = 3$$

17.2 Função Derivada Parcial [4]

Se calcularmos f_x e f_y num ponto genérico (x, y), obteremos duas funções de x e y; a função $f_x(x, y)$ é chamada função derivada parcial de f em relação a x (ou, simplesmente, **derivada** parcial de f em relação a x). A função $f_y(x, y)$ é chamada função derivada parcial de f em relação a f0 (ou, simplesmente, **derivada** parcial de f0 em relação a f0. As derivadas parciais também podem ser indicadas por

$$f_x$$
 ou $\frac{\partial f}{\partial x}$ ou f_y ou $\frac{\partial f}{\partial y}$.

Para o cálculo de f_x e f_y , podemos aplicar as regras de derivação estudadas em funções de uma variável, desde que:

- (a) no cálculo de f_x consideremos y como constante;
- (b) no cálculo de f_y consideremos x como constante.

17.3 Diferencial de uma Função - Derivada/Diferencial Total [4]

Consideremos a função dada por $f(x, y) = 2x^2 + 3x^2$, e calculemos a variação Δf sofrida pela função quando x e y sofrem variações Δx e Δy a partir do ponto (x_0, y_0) .

Temos:

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

$$\Delta f = 2(x_0 + \Delta x)^2 + 3(y_0 + \Delta y)^2 - (2x_0^2 + 3y_0^2)$$

$$\Delta f = 2(x_0^2 + 2x_0\Delta x + \Delta x^2) + 3(y_0^2 + 2y_0\Delta y + \Delta y^2) - 2x_0^2 - 3y_0^2$$

$$\Delta f = 4x_0\Delta x + 6y_0\Delta y + 2\Delta x^2 + 3\Delta y^2.$$

Por exemplo, se $x_0=5$, $y_0=6$ e $\Delta x=\Delta y=0$, 01, teremos:

$$\Delta f = 4 \times (5) \times 0,01 + 6 \times (6) \times 0,01 + 2(0,01)^2 + 3(0,01)^2$$

 $\Delta f = 0,2 + 0,36 + 0,0002 + 0,0003$.

Como as parcelas 0,0002 e 0,0003 são desprezíveis comparadas com 0,02 e 0,36, podemos dizer que

$$\Delta f \cong 0, 2 + 0, 36 = 0, 56$$
.

Voltando à expressão de Δf , notamos que:

•
$$4x_0 = \frac{\partial f}{\partial x}(x_0, y_0) \in 6y_0 = \frac{\partial f}{\partial y}(x_0, y_0)$$

• Os termos $2\Delta x^2 + 3\Delta y^2$ são desprezíveis quando comparados com $4x_0\Delta x + 6y_0\Delta y$, desde que Δx e Δy sejam próximos de zero;

•
$$\Delta f \cong \frac{\partial f}{\partial x}(x_0, y_0) \times \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \times \Delta y$$
.

O resultado que acabamos de ver não é um caso isolado, mas vale para a grande maioria das funções, isto é, a variação sofrida por f(x,y) quando variamos simultaneamente x e y de valores pequenos Δx e Δy é aproximadamente igual a $\frac{\partial f}{\partial x}(x_0,y_0) \times \Delta x + \frac{\partial f}{\partial y}(x_0,y_0) \times \Delta y$. Esse exemplo preliminar nos leva à seguinte definição.

Seja f uma função com duas variáveis e seja (x_0, y_0) um ponto de seu domínio. Seja Δf a variação sofrida por f(x, y) ao passarmos do ponto (x_0, y_0) para o ponto $(x_0 + \Delta x, y_0 + \Delta y)$. Isto é,

$$\Delta f = (x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$
.

Dizemos que f é **diferenciável no ponto** (x_0, y_0) se Δf puder ser escrita sob a forma

$$\Delta f = \frac{\partial f}{\partial x}(x_0, y_0) \times \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \times \Delta y + \Delta x \times h_1(\Delta x, \Delta y) + \Delta y \times h_2(\Delta x, \Delta y),$$

em que as funções h_1 e h_2 têm limites iguais a zero quando $(\Delta x, \Delta y)$ tende a (0,0).

A parcela $\frac{\partial f}{\partial x}(x_0, y_0) \times \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \times \Delta y$ é chamada diferencial de f e é indicada por df, no caso de f ser diferenciável.

$$df = \frac{\partial f}{\partial x}(x_0, y_0) \times \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \times \Delta y$$

Voltando ao exemplo inicial, vimos que

$$\Delta f = 4x_0 \Delta x + 6y_0 \Delta y + 2\Delta x^2 + 3\Delta y^2.$$

Assim, como

$$4x_0=\frac{\partial f}{\partial x}(x_0,y_0),$$

$$6y_0 = \frac{\partial f}{\partial v}(x_0, y_0).$$

 $h_1(\Delta x, \Delta y) = 2\Delta x$ e $h_2(\Delta x, \Delta y) = 3\Delta y$, ambas com limites nulos quando $(\Delta x, \Delta y)$ tendem a (0,0), concluímos que f é diferenciável num ponto genérico (x_0, y_0) .

17.3.1 Teorema [4]

Seria bastante trabalho termos que verificar pela definição se uma função é ou não diferenciável, para podermos calcular a diferencial como resultado aproximado de Δf . Felizmente, existe um teorema que nos fornece condições facilmente verificáveis para vermos se função é diferenciável. Seu enunciado é o seguinte:

Seja f uma função com duas variáveis. Se as derivadas $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas num conjunto aberto A, então f é diferenciável em todos os pontos de A.

Exemplo. A função $f(x,y)=2x^2+4y^3$ é diferenciável em todos os pontos de \mathbb{R}^2 , pois as derivadas parciais $\frac{\partial f}{\partial x}=4x$ e $\frac{\partial f}{\partial y}=12y^2$ são contínuas em \mathbb{R}^2 . A diferencial de f num ponto genérico (x,y) vale

$$df = 4x \times \Delta x + 12y^2 \times \Delta y$$

Exemplo. A função $f(x,y) = \frac{2x}{x-y}$ com domínio $D = \{(x,y) \in \mathbb{R}^2 \mid x \neq y\}$ é diferenciável em D, pois as derivadas parciais $\frac{\partial f}{\partial x} = \frac{-2x}{(x-y)^2}$ e $\frac{\partial f}{\partial y} = \frac{2x}{(x-y)^2}$ são contínuas em D. A diferencial de f num ponto genérico (x,y) vale

$$df = \frac{-2x}{(x-y)^2} \times \Delta x + \frac{2x}{(x-y)^2} \times \Delta y$$
.

17.4 Função Composta - Regra da Cadeia [4]

Consideremos uma função de produção $P(x, y) = 6x^{0.5} \times y^{0.5}$ em que x e y são as quantidades de dois insumos, capital e trabalho, e P, a quantidade produzida de um produto.

Suponhamos que o capital x cresça com o tempo t, de acordo com a relação x=0,16t, e o trabalho cresça de acordo com a relação y=0,09t.

Se quisermos expressar a produção em função do tempo, temos que substituir x=0,16t e y=0,09t na relação $P(x,y)=6x^{0,5}\times y^{0,5}$. Procedendo dessa forma teremos:

$$P(t) = 6(0, 16t)^{0.5} \times (0, 09t)^{0.5} = 0,72t$$
.

À função de t, dada por P(t)=0, 72t, chamamos de função composta de P com x e y.

A derivada da função composta dada por P(t) = 0, 72t em relação a t é imediata (função de uma variável):

$$P'(t) = \frac{dP}{dt} = 0,72.$$

Isso é, a taxa de crescimento do produto em relação ao tempo é 0, 72.

De modo geral, a derivada da função composta pode ser obtida facilmente por mera substituição e derivação da função de uma variável, como vimos no exemplo. Entretanto, existe um fórmula alternativa de cálculo da derivada da função composta, conhecida como regra da cadeira, que veremos a seguir.

17.4.1 Teorema - Regra da Cadeia [4]

Seja f uma função de duas variáveis x e y, diferenciável num ponto (x_0, y_0) do domínio, e sejam as funções dadas por x(t) e y(t) diferenciáveis em t_0 , de modo que $x(t_0) = x_0$ e $y(t_0) = y_0$. Então a função F composta de f com x e y é tal que:

$$\frac{dF}{dt}(t_0) = \frac{\partial f}{\partial x}(x_0, y_0) \times \frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(x_0, y_0) \times \frac{dy}{dt}(t_0).$$

ou abreviadamente

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \times \frac{dx}{dt} + \frac{\partial f}{\partial y} \times \frac{dy}{dt}$$

17.5 Funções Definidas Implicitamente [4]

17.6 Funções Homogêneas - Teorema de Euler [4]

17.7 Derivadas Parciais de Segunda Ordem [4]

Seja uma função de duas variáveis x e y, fx e fy suas derivadas parciais. Se calcularmos as derivadas parciais de fx e fy, obteremos quatro funções chamadas derivadas parciais de segunda ordem. São elas:

- (a) derivada de fx em relação a x, indicada por fxx ou $\frac{\partial^2 f}{\partial x^2}$;
- (b) derivada de fx em relação a y, indicada por fxy ou $\frac{\partial^2 f}{\partial y \partial x}$;
- (c) derivada de fy em relação a x, indicada por fyx ou $\frac{\partial^2 f}{\partial x \partial y}$;
- (d) derivada de fy em relação a y, indicada por fyy ou $\frac{\partial^2 f}{\partial y^2}$;

É importante observar que fxy e fyx deverão **sempre** ter iguais valores, caso contrário pode ter ocorrido algum erro nos cálculos [3].

17.8 Integrais Duplas [4]

Consideremos uma função de duas variáveis f(x, y) e suponhamos que a derivada parcial em relação a x, seja f(x, y) = 6xy.

Mantendo y como constante e integrando essa derivada parcial em relação a x, obtemos a função f(x,y):

$$\int fx(x,y)dx = \int 6xydx = 3x^2y + c(y) .$$

Assim

$$f(x,y)=3x^2y+c(y).$$

A integral calculada é chamada integral parcial a relação a x. A constante de integração c(y) é função de y, pois y é mantido constante na integração parcial em relação a x.

Caso quiséssemos calcular a integral definida de fx(x, y), com limites de integração entre 0 e 2y, teríamos:

$$\int_{0}^{2y} fx(x,y)dx = \int_{0}^{2y} 6xydx = [3x^{2}y]_{0}^{2y} = 3(2y)^{2}y - 0 = 12y^{3}.$$

Analogamente, se em uma função f(x,y) conhecêssemos a derivada parcial em relação a y, fy(x,y) = 2x + y, o cálculo de f(x,y) seria feito pela integral parcial em relação a y, ou seja:

$$f(x,y) = \int fy(x,y)dy = \int (2x+y)dy = 2xy + \frac{y^2}{2} + c(x)$$

em que c(x) é uma constante que depende de x. Caso estivéssemos calculando a integral parcial definida, em relação a y, entre os limites 1 e x, teríamos:

$$\int_{1}^{x} (2x+y)dy = \left[2xy + \frac{y^{2}}{2}\right]_{1}^{x} = 2x(x) + \frac{x^{2}}{2} - \left(2x \times 1 + \frac{1^{2}}{2}\right) = \frac{5}{2}x^{2} - 2x - \frac{1}{2}.$$

17.8.1 Integral Dupla [4]

Figura 10.4: Função definida no domínio D.

Consideremos uma função f(x, y) não negativa, definida no domínio D constituído do retângulo dado pelas inequações $a \le x \le b$ e $c \le y \le d$ (Figura 10.4).

a d y

Ao calcularmos a integral parcial (em relação a y) A(x), entre c e d, estaremos mantendo x constante. Assim, A(x) representará a área da secção do gráfico da função, perpendicular ao

eixo x, num ponto genérico entre a e b. Isto é, $A(x) = \int_{c}^{d} f(x, y) dy$ (Figura 10.5).

O produto A(x)dx representa o volume do sólido de área A(x) e espessura dx. Assim, a integral de A(x) em relação a x representará o volume do sólido sob o gráfico de f(x, y), acima do domínio D.

A esse volume damos o nome de integral dupla de f(x, y) no domínio D. Dessa forma, indicando por V o volume do referido sólido, teremos

$$V=\int\limits_{a}^{b}A(x)dx.$$

Simbolizando a integral dupla por $\int \int_D f(x,y) dx dy$, podemos escrever:

$$ID f(x,y)dxdy = \int_a^b \left[\int_c^d f(x,y)dy\right] dx.$$

Poderíamos também ter calculado a área de uma secção perpendicular ao eixo y, B(y), da seguinte forma

$$B(y) = \int_{a}^{b} f(x, y) dx ,$$

e em seguida calculado o volume do sólido sob o gráfico da função e acima do domínio D por

$$V = \int_{c}^{d} B(y) dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy.$$

Exemplo. Consideremos a função f(x,y) = x + y, definida no domínio D dado pelas inequações $0 \le x \le 5$ e $0 \le y \le 3$ e calculemos a integral dupla $\iint_D f(x,y) dx dy$, ou seja, o volume V do sólido sob o gráfico da função e acima de D.

a) Primeiro modo

$$A(x) = \int_{0}^{3} (x+y) dy = \left[xy + \frac{y^{2}}{2} \right]_{0}^{3} = 3x + \frac{9}{2},$$

$$V = \int_{0}^{5} \left(3x + \frac{9}{2} \right) dx = \left[\frac{3x^{2}}{2} + \frac{9}{2}x \right]_{0}^{5} = \frac{75}{2} + \frac{45}{2} = 60.$$

b) Segundo modo

$$B(y) = \int_{0}^{5} (x+y)dx = \left[\frac{x^{2}}{2} + xy\right]_{0}^{5} = \frac{25}{2} + 5y,$$

$$V = \int_{0}^{3} \left(\frac{25}{2} + 5y\right)dy = \left[\frac{25y}{2} + \frac{5y^{2}}{2}\right]_{0}^{3} = \frac{75}{2} + \frac{45}{2} = 60.$$

Uma outra situação que ocorre no cálculo da integral dupla é aquela em que o domínio D da função é dado por

$$a \le x \le b$$

е

$$y_1(x) \le y \le y_2(x)$$

Veja a Figura 10.6.

Figura 10.6: Domínio de uma função definida por duas funções de x e duas constantes.

O 1º passo para o cálculo da integral dupla consiste em acha a área A(x) de uma secção do gráfico perpendicular ao eixo x, $A(x) = \int\limits_{y_1(x)}^{y_2(x)} f(x,y) dy$ (Figura 10.7).

No 2^o passo, o volume sob o gráfico e acima do domínio D, é dado por

$$V=\int\limits_{a}^{b}A(x)dx.$$

Portanto, a integral dupla de f(x, y) em D é dada por

$$\iint_D f(x,y)dxdy = \int_a^b \left[\int_{y_1(x)}^{y_2(x)} f(x,y)dy \right] dx.$$

Exemplo. Seja f(x, y) = 1 e D a região dada pelas inequações $0 \le x \le 1$ e $x^2 \le y \le x$. Calculemos o volume sólido sob o gráfico da função acima de D.

A região D é dada pela Figura 10.8.

Figura 10.8: Domínio da função do Exemplo 10.18.

Temos

$$A(x) = \int_{x^2}^{x} 1 dy = [y]_{x^2}^{x} = x - x^2,$$

$$V = \int_{0}^{1} (x - x^2) dx = \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

Uma terceira situação que ocorre no cálculo da integral dupla é aquela em que o domínio D de f(x,y) é dado por

$$c \le y \le d$$

е

$$x_1(y) \leq x \leq x_2(y)$$

Veja a Figura 10.9

O 1º passo para calcular a integral dupla consiste em achar a área B(y) de uma secção do gráfico da função perpendicular ao eixo y. Isto é

$$B(y) = \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$
 (Figura 10.10).

O 2^o passo consiste em calcular o volume sob o gráfico de f(x,y) e acima D, por meio da integral

$$V=\int_{c}^{d}f(x,y)dy.$$

Portanto, a integral dupla de f(x, y) em D é dada por

$$\iint_D f(x,y)dxdy = \int_c^d \left[\int_{x_1(y)}^{x_2(y)} f(x,y)dx \right] dy.$$

Exemplo. Consideremos a função f(x, y) = x + y e calculemos a integral dupla $\iint_D f(x, y) dx dy$, em que a região D é dada por

$$1 \le y \le 2$$

е

$$y \le x \le 3y$$
.

Temos

$$B(y) = \int_{y}^{3y} (x+y)dx = \left[\frac{x^2}{2} + xy\right]_{y}^{3y} = \frac{9y^2}{2} + 3y^2 - \frac{y^2}{2} - y^2 = 6y^2,$$

$$V = \int_{1}^{2} 6y^2 dy = [2y^3]^2 - 1 = 2 \times (8) - 2 \times (1) = 14.$$

Portanto, a integral dupla procurada vale 14.

Observações

- a) De modo geral, se o domínio D não puder ser expresso de acordo com as situações descritas, então subdividimos o domínio em partes tais que cada uma se enquadre nos casos dados.
- b) Nos casos estudados, consideramos $f(x,y) \ge 0$; caso tenhamos $f(x,y) \le 0$, então $-f(x,y) \ge 0$. Assim, a integral dupla da função será o oposto do volume do sólido compreendido entre D e o gráfico da função.

18 Máximos e Mínimos para Funções de Duas Variáveis

18.1 Definições [4]

Uma importante aplicação do estudo das derivadas parciais é a otimização de funções. Otimizar uma função significa encontrar seu ponto de máximo ou de mínimo. Assim, determinar a máx-

ima produção de um firma com um dado orçamento constitui um problema de maximização; entre possíveis combinações de insumos, aquela que nos permite obter certo nível de produção, a custo mínimo, consiste em resolver um problema de minimização. Vamos tornar mais precisas essas ideias, com algumas definições.

Seja f uma função de duas variáveis x e y. Dizemos que um ponto (x_0, y_0) do domínio D é um ponto de máximo relativo de f, ou simplesmente **ponto de máximo**, se existir uma bola aberta de centro (x_0, y_0) e raio r, tal que, para todo ponto P(x, y) do domínio situado no interior dessa bola aberta, tenhamos

$$f(x,y) \leq f(x_0,y_0)$$

[Lembre-se que f(x, y) = z, logo estamos trabalhando com uma bola aberta de centro (x_0, y_0) e raio r no plano xOy].

Ao número $f(x_0, y_0)$ damos o nome de valor máximo de f (Figura 11.1).

Analogamente, dizemos que um ponto (x_0, y_0) do domínio D é um ponto de mínimo relativo de f, ou simplesmente **ponto de mínimo**, se existir uma bola aberta de centro (x_0, y_0) e raio r, tal que, para todo ponto P(x, y) do domínio situado no interior dessa bola aberta de centro (x_0, y_0) e raio r, tal que, para todo ponto P(x, y) do domínio situado no interior dessa bola aberta, tenhamos

$$f(x,y) \geq f(x_0,y_0) .$$

Ao número $f(x_0, y_0)$ damos o nome de valor mínimo de f (Figura 11.2).

Seja f um função de duas variáveis x e y. Dizemos que um ponto (x_0, y_0) do domínio D é um ponto de **máximo global (ou absoluto)** de f se, para todo ponto P(x, y) do domínio tivermos

$$f(x,y) \leq f(x_0,y_0) .$$

Analogamente, dizemos que um ponto (x_0, y_0) do domínio D é um ponto de **mínimo global** (ou absoluto) de f se, para todo ponto P(x, y) do domínio, tivermos

$$f(x,y) \geq f(x_0,y_0) .$$

A descoberta de um ponto de máximo ou de mínimo exige, na maioria dos casos, o conhecimento do gráfico de f, o que, conforme vimos, não é um problema fácil.

Entretanto, existem teoremas que nos auxiliam nesse sentido, e que passaremos a estudar.

Teorema 11.1 [4]

Seja f uma função com duas variáveis x e y e seja (x_0, y_0) um ponto interior ao domínio. Se (x_0, y_0) for um ponto de máximo ou de mínimo de f e se existirem derivadas parciais fx e fy, então

$$fx(x_0, y_0) = 0$$
 e $fy(x_0, y_0) = 0$.

Demonstração

Suponhamos que (x_0, y_0) seja um ponto de máximo. Existe a bola aberta de centro (x_0, y_0) e raio r, no interior do domínio D, cujos pontos (x, y) são tais que $f(x, y) \leq f(x_0, y_0)$ (Figura 11.3).

Consideremos os pontos dessa bola para os quais $y=y_0$. Então $f(x,y_0)$ será função somente de x. Mas, como $f(x,y_0) \leq f(x_0,y_0)$ para $x_0-r < x < x_0+r$, segue-se que a função $f(x,y_0)$ de uma variável tem um ponto de máximo em (x_0,y_0) e, consequentemente, $fx(x_0,y_0)=0$. Analogamente, se considerarmos os pontos da bola aberta para os quais $x=x_0$, então $f(x_0,y)$ será só função de y. Mas, como $f(x_0,y) \leq f(x_0,y_0)$ para $y_0-r < y < y_0+r$, segue-se que a função $f(x_0,y)$, de uma variável, tem um ponto máximo em (x_0,y_0) e, consequentemente $fy(x_0,y_0)=0$.

Em resumo, se (x_0, y_0) for ponto de máximo, então $fx(x_0, y_0) = 0$ e $fy(x_0, y_0) = 0$. Os pontos que anulam simultaneamente as derivadas parciais fx e fy são chamados **pontos** críticos de f.

Observações

Antes de prosseguirmos, cumpre salientarmos algumas considerações bastante importantes em tudo que segue.

(i) O Teorema não nos garante a existência de pontos de máximo ou de mínimo, mas sim **possíveis [candidatos] pontos de máximo ou mínimo**. Assim, pode ocorrer de termos $fx(x_0, y_0) = 0$ e $fy(x_0, y_0) = 0$ sem que (x_0, y_0) seja ponto de máximo ou mínimo.

Um exemplo desse fato é o da função f(x, y) = xy, em que fx = y e fy = x; o ponto crítico é (0, 0).

Assim, se tomarmos uma bola aberta de centro (0,0) e raio r, teremos:

- a) para os pontos dessa bola aberta situados no interior do primeiro e terceiro quadrantes, f(x,y)=xy>0, pois x e y têm o mesmo sinal;
- b) para os pontos dessa bola aberta situados no interior do segundo e quarto quadrantes f(x, y) = xy < 0, pois x e y têm sinais contrários.

Logo

(0,0) não é ponto de máximo nem de mínimo.

Verifica-se que o gráfico dessa função tem o aspecto de uma *seladecavalo*. O ponto (0,0) é chamado de **ponto de sela** (Figura 11.4).

Figura 11.4: O ponto (0, 0) é chamado ponto de sela.

3D plot:

Contour plot:

1.0

0.5

0.5

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

De um modo geral, todo ponto crítico (x_0, y_0) que não é de máximo nem de mínimo é chamado ponto de sela.

[10]

Encontramos um problema semelhante com qualquer plano horizontal em xOz. Planos horizontais não têm um único ponto de máximo ou de mínimo, pois qualquer ponto pode ser considerado máximo e mínimo ao mesmo tempo $f(x, y) = f(x_0, y_0)$.

(ii) O Teorema só se aplica a pontos interiores do domínio. Assim, os pontos que anulam as derivadas parciais fx e fy só podem ser pontos de máximo ou mínimo do interior do domínio. A análise dos pontos de fronteira deve ser feita à parte, como veremos a seguir.

18.2 Critérios para Identificação de Pontos de Máximo ou Mínimo[4]

O Teorema 11.1 permitiu-nos determinar os possíveis pontos de máximo ou de mínimo no interior do domínio, sem, contudo, identificá-los. O Teorema 11.2, que veremos a seguir, permitirá esta identificação. Sua demonstração poderá ser vista, por exemplo, em Leithold (1977).

Teorema 11.2 [4]

Seja f uma função de duas variáveis x e y, contínua, com derivadas parciais até segunda ordem contínuas. Seja (x_0, y_0) um ponto crítico de f. Chamemos o determinante

$$H(x_0, y_0) = \begin{vmatrix} fxx(x_0, y_0) & fxy(x_0, y_0) \\ fyx(x_0, y_0) & fyy(x_0, y_0) \end{vmatrix}$$

de Hessiano (H) (em homenagem ao matemático alemão Ludwig Otto Hesse, 1811-1874) de f no ponto (x_0 , y_0). Se:

- (a) $H(x_0,y_0)>0$ e $fxx(x_0,y_0)<0$, então $\left(x_0,y_0\right)$ será ponto de máximo de f,
- (b) $H(x_0, y_0) > 0$ e $f \times x(x_0, y_0) > 0$, então (x_0, y_0) será ponto de mínimo de f,
- (c) $H(x_0, y_0) > 0$, então (x_0, y_0) será ponto de sela de f.

18.3 Uma Aplicação: Ajuste de Retas pelo Método dos Mínimos Quadrados [4]

18.4 Análise dos Pontos de Fronteira [4]

Até agora, vimos como encontrar máximos e mínimos de funções analisando apenas os pontos interiores ao domínio (pois os teoremas dados só se aplicam a esses pontos). A análise dos pontos de fronteira (quando existem) terá que ser feita sem o auxílio destes teoremas. Uma das formas usadas para abordar tais situações é por meio das curvas de nível da função a ser otimizada. Os exemplos esclarecerão este tipo de abordagem.

Exemplo. Consideremos a função f dada por f(x, y) = 2x + y, definida no domínio D dado pelas inequações

 $x \ge 0$,

 $y \ge 0$,

 $x + y \le 7$.

a) Em primeiro lugar, notemos que o conjunto D é constituído pela reunião do triângulo da Figura 11.9 com sua parte interna. A fronteira do domínio é constituída dos lados \overline{AB} , \overline{BC} e \overline{AC} .

b) A função f(x,y)=2x+y admite como curvas de nível o feixe de paralelas à reta 2x+y=0, pois qualquer curva de nível c tem por equação a reta 2x+y=c, que é paralela à 2x+y=0 qualquer que seja c.

Eis algumas curvas de nível. Seus gráficos comparecem na Figura 11.10:

$$c = 1 \rightarrow 2x + y = 1$$
$$c = 2 \rightarrow 2x + y = 2$$

$$c=3\rightarrow 2x+y=3$$
.

Figura 11.10: Curvas de nível da função f(x, y) = 2x + y.

Notemos, nesse exemplo, que, quanto mais a reta se distancia da origem, maior é o valor de c.

c) Como todos os pontos (x, y) da curva de nível c produzem um valor constante para f(x,y), o ponto da curva de maior nível que intercepta D é o ponto de máximo de f; no caso do exemplo em questão, tal ponto é B(7,0). A curva de menor nível que intercepta D é o ponto de mínimo de f; no caso, tal ponto é A(0,0) (Figura 11.11).

Figura 11.11: O ponto B é de máximo e o A é de mínimo, no Exemplo 11.10.

- d) O ponto (0,0) é o ponto de mínimo absoluto e (7,0) é o ponto de máximo absoluto de f.
- e) Entre os pontos interiores a D, não existem pontos de máximo ou mínimo, pois as derivadas parciais nunca se anulam (fx = 2 e fy = 1).

É intuitivo perceber, nesse exemplo, que os pontos de máximo ou mínimo estão nos vértices do triângulo. Assim, por simples inspeção do valor de f nos pontos A, B e C, poderíamos descobrir os pontos de máximo e mínimo. De fato,

$$f(x, y) = 2x + y,$$

 $A(0, 0) \rightarrow f(0, 0) = 2 \times 0 + 0 = 0,$
 $B(7, 0) \rightarrow f(7, 0) = 2 \times 7 + 0 = 14,$
 $C(0, 7) \rightarrow f(0, 7) = 2 \times 0 + 7 = 7,$

e, portanto, A(0,0) é o ponto de mínimo e B(7,0) é o ponto de máximo de f.

Exemplo. Consideremos a função dada por f(x, y) = x + y, definida no domínio D determinado pelas inequações

$$x \ge 0$$
, $y \ge 0$,

$$2x + y \ge 10$$
,

$$x+2y\geq 10.$$

a) O conjunto D é formado pelos pontos da região indicada na Figura 11.12.

Figura 11.12: Domínio da função do Exemplo 11.11.

Os pontos A, B e C têm coordenadas (0,10), $\left(\frac{10}{3},\frac{10}{3}\right)$ e (10,0) respectivamente; o ponto B é a intersecção das retas 2x+y=10 e x+2y=10.

Os pontos de fronteira do domínio são aqueles dos segmentos \overline{AB} e \overline{BC} , bem como os das semi-retas, \overline{AP} e \overline{CQ} .

b) A função f(x, y) = x + y admite como curvas de nível o feixe de retas paralelas à reta x + y = 0.

Eis algumas curvas de nível e seus respectivos gráficos (Figura 11.13):

$$c=1\rightarrow x+y=1$$

$$c=2\rightarrow x+y=2$$

$$c = 3 \rightarrow x + y = 3$$

c) O ponto de mínimo de f é o ponto da curva de menor nível que intercepta D. Assim, o ponto de mínimo é o ponto $B\left(\frac{10}{3},\frac{10}{3}\right)$ (Figura 11.14).

d) A função f não tem ponto de máximo em D, pois não existe curva de maior nível de f que intercepte D (Figura 11.15).

Exemplo. Consideremos a função dada por f(x, y) = x + y e domínio D determinado pelas inequações

 $x \ge 0$,

 $y \ge 0$,

 $x + y \le 3$.

a) O conjunto D é constituído pela região triangular da Figura 11.16. Os vértices do triângulo são $A(0,0),\ B(3,0)$ e C(0,3).

b) A função dada admite como curvas de nível o feixe de paralelas à reta x+y=0 (Figura 11.17).

c) Todos os pontos do segmento \overline{BC} são pontos de máximo, pois a reta determinada por \overline{BC} tem o mesmo coeficiente angular que o feixe de paralelas (-1). O ponto de mínimo de f é o ponto A(0,0) (Figura 11.18).

Exemplo. Determine o ponto de máximo e mínimo da função f(x,y)=x+y no domínio dado por $D=\{(x,y)\in\mathbb{R}\mid x^2+y^2\leq 1\}.$

O domínio da função é o círculo de centro na origem e raio 1 (Figura 11.19).

As curvas de nível da função são as retas do feixe de paralelas x+y=c (Figura 11.20).

Portanto, os pontos de máximo e de mínimo são os pontos de tangência de x+y=c com a circunferência $x^2+y^2=1$ (Figura 11.21).

Figura 11.19

Figura 11.20

Figura 11.21

Assim sendo, devemos impor que o sistemas de equações

$$\begin{cases} x + y = c & (11.1) \\ x^2 + y^2 = 1 & (11.2) \end{cases}$$

tenha solução única.

De (11.1) temos y = c - x. Substituindo em (11.2), teremos:

$$2x^2 - 2cx + c^2 - 1 = 0 \quad (11.3)$$

Para que (11.3) tenha uma única raiz, seu discriminante (Δ) deve ser nula. Assim:

$$\Delta = 4c^2 - 8(c^2 - 1) = -4c^2 + 8 = 0 \implies c = \sqrt{2} \text{ ou } c = -\sqrt{2}$$

É evidente que para $c=\sqrt{2}$ teremos um ponto de máximo e para $c=-\sqrt{2}$ teremos um ponto de mínimo.

Para
$$c=\sqrt{2}$$
 a equação (11.3) fica igual a $2x^2-2\sqrt{2}x+1=0$, cuja raiz é $x=\frac{\sqrt{2}}{2}$.

O valor de y é dado pela equação (11.1), isto é: $y=\sqrt{2}-\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$. Portanto o ponto de máximo é $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

Para $c=-\sqrt{2}$ concluímos de modo análogo que o ponto de mínimo é $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.

- 18.5 Máximos e Mínimos Condicionados [4]
- 18.5.1 Método da Substituição [4]
- 18.5.2 Método dos Multiplicadores de Lagrange [4]
- 19 Funções de Três ou Mais Variáveis
- 20 Matrizes e Determinantes
- 21 Sistemas de Equações

References

- [1] DESMOS. Disponível em: https://www.desmos.com/>.
- [2] GOOGLE IMAGENS. Disponível em: https://images.google.com.br/.
- [3] LUCCHESI, Andrea
- [4] MORETTIN, Pedro A; HAZZAN, Samuel; BUSSAB, Wilton de O. Cálculo funções de uma e várias variáveis. 1 ed. São Paulo: Saraiva, 2003.
- [5] SÓ MATEMÁTICA. Disponível em: http://www.somatematica.com.br/>..
- [6] SYMBOLAB. Disponível em: https://www.symbolab.com/>.
- [7] UNIVERSIDADE FEDERAL DE MINAS GERAIS. Disponível em: http://www.mat.ufmg.br/>.
- [8] VENTURA, Marcelo F.
- [9] WIKIPEDIA. Disponível em: https://www.wikipedia.org/.
- [10] WOLFRAMALPHA. Disponível em: http://www.wolframalpha.com/>.