```
Sample space S := \text{set of all possible outcomes}
Event A := Measurable subset of S
0 \le P(A) \le 1
```

$$0 \le P(A) \le 1$$

$$P(S) = 1, P(\emptyset) = 0$$

For countable (A_n) , $P(\cup A_n) = \sum P(A_n)$

 $P(A^c) = 1 - P(A)$

 $P(A) = P(A \cap B) + P(A \cap B^c)$

 $A \subseteq B \implies P(A) \le P(B)$

If countable (A_n) partition S,

 $P(B) = \sum P(A_i \cap B) = \sum P(A_i) P(B|A_i)$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 $P(\cup A_n) \leq \sum_{P(A \cap B)} P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(A|B) = \frac{P(A)}{P(B)} P(B|A)$

For countable (A_n) , independent := For any subcollection, $P(\cap A_n) = \prod P(A_n)$

Define $(A_n) \nearrow A := \cup A_n = A, A_i \subseteq A_{i+1}$

Continuity: If $(A_n) \nearrow A$, then $\lim_{n \to \infty} P(A_n) = P(A)$

Random variable := "any" function from S to \mathbb{R}

Distribution of random variable is the collection of all probabilities of events in \mathbb{R}

Discrete random variable $X := \sum_{x \in \mathbb{R}} P(X = x) = 1$

Probability function $p_X(x) := P(X = x)$

Discrete Law of Total Pr.: $P(B) = \sum_i p_X(x_i) P(B|X = x_i)$ Continuous random variable X := P(X = x) = 0 for all x

Density function $f: \mathbb{R} \to \mathbb{R} := f \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$

Absolute continuous := Has density f s.t. $P(a \le X \le b) = \int_a^b f(x) dx$

Cumulative distribution function (cdf) := $F_X(x) = P(X \le x)$

 $\lim_{x \to -\infty} F_X(x) = 0, \lim_{x \to \infty} F_X(x) = 1, F_X \text{ incr., } F_X(x) \in [0, 1]$ Discrete: $F_X(x) = \sum_{t \le x} p_X(t)$

Continuous: $F_X(x) = \int_{-\infty}^x f(t)dt$ F always right continuous but left continuous depending on f(x)

 $F_X(x) = \int_{-\infty}^x f(t) dt, F_X'(x) = f(x)$

If
$$Y \sim N(-8,4)$$
, then $P(Y \le -5) = P((Y+8)/2 \le (-5+8)/2) = \Phi(\frac{3}{2})$

Discrete: If
$$Y(s) = h(X(s))$$
, then $P(Y = y) = P(h(X) = y) = \sum_{x:h(x)=y} P(X = x)$

Absolute Continuous: If Y(s) = h(X(s)) and X has density f_X , then if h differentiable and stric. monot., with inverse, then Y also abs. conti., and $f_Y(y) = f_X(h^{-1}(y))/|h'(h^{-1}(y))|$

Joint cdf := $F_{X,Y}(x,y) = P(X \le x, Y \le y)$

$$P(a \le X \le b, c \le Y \le d) = F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

Joint probability (discrete) := $p_{X,Y}(x,y) = P(X = x, Y = y)$

Marginal distribution of $X := p_X(x) = \sum_y p_{X,Y}(x,y)$

Joint absolutely continuous := exists $f_{X,Y}$ s.t. $P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$

Marginal: $P(a \le X \le b) = \int_a^b \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx$

Conditional distribution: $p_{X|Y}(x|y) = \frac{P(X=x|Y=y)}{P(Y=y)}$

Conditional density: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

Independent: For any events $A, B, P(A \cap B) = P(A) P(B)$

 $F_{X,Y}(x,y) = F_X(x)F_Y(y)$

Discrete: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

Expected value := $E(X) = \sum_{x} x p_X(x)$ or $\int_{-\infty}^{\infty} x f_X(x) dx$

E(aX = bY) = a E(X) + b E(Y)

 $P(X \le Y) = 1 \implies E(X) \le E(Y)$

For independent $X, Y, E(XY) = E(X) E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx dy$

Let μ_X be E(X)

Variance := $Var(X) = E((X - \mu_X)^2) = E(X^2) - 2\mu_X E(X) + \mu_X^2 = E(X^2) - E(X)^2$

Standard Deviation := $Sd(X) = \sqrt{Var(X)}$

Covariance := $Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$

If Cov(X,Y) > 0, then X,Y positively correlated

If Cov(X, Y) < 0, then X, Y negatively correlated

Correlation := $Corr(X, Y) = \frac{Cov(X, Y)}{Sd(X) Sd(Y)}$

Correlation is only defined for non-constant functions

 (X_n) converges in probability to $Y := \forall \epsilon > 0, P(|X_n - Y| > \epsilon) \to 0$

 (X_n) converges almost surely (a.s.) to $Y := P(X_n \to Y) = 1$

SLLN: For any sequence (X_n) iid each with μ . If $M_n = \frac{1}{n} \sum_{i=1}^n X_i$, then $M_n \to \mu$ a.s.

CLT: Probabilities of Z_n converge to those of $Z \sim N(0,1)$, where $Z_n = \frac{M_n - \mu}{\sigma/\sqrt{n}}$ and M_n is the sample mean of n iid X_i with μ and σ^2

$$Z_n = (1/nS_n - \mu)/(\sqrt{\sigma^2/n})$$

Now, we know $\lim_{n\to\infty} P(\frac{1/nS_n-\mu}{\sqrt{\sigma^2/n}} \le z) = \Phi(z)$

Distributions 1

Geometric sum: $\sum_{k=0}^{n} ar^k = a \frac{1-r^{n+1}}{1-r}$

Geometric distribution: Z is the number of misses before the first score

Random Variable	PMF/PDF	Expectation	Variance	Transform
Discrete Uniform over $[a, b]$	$p_X(k) = \begin{cases} \frac{1}{b-a+1}, & \text{if } k = a, a+1,, b\\ 0, & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{e^{\operatorname{s} a}(e^{\operatorname{s} (b-a+1)}-1)}{(b-a+1)(e^{\operatorname{s}}-1)}$
Bernoulli with Parameter p	$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ 1 - p, & \text{if } k = 0 \end{cases}$	p	p(1 - p)	$1-p+pe^s$
Binomial with Parameters p and n	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1,, n$	np	np(1-p)	$(1 - p + pe^s)^n$
Geometric with Parameter p	$p_X(k) = (1-p)^{k-1}p, k = 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^s}{1-(1-p)e^s}$
Poisson with Parameter λ	$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \dots$	λ	λ	$e^{\lambda(e^s-1)}$
Continuous Uniform over $[a, b]$	$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b\\ 0, & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{\mathrm{s}b}-e^{\mathrm{s}a}}{s(b-a)}$
Exponential with Parameter λ	$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - s}$, $(s < \lambda)$
Normal with Parameters μ and $\sigma^2 > 0$	$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{(\frac{\sigma^2 s^2}{2} + \mu s)}$