Coordinate System

Debanjan Koley

16 July, 2024

Important results

1 Common 2D coordinate systems

1.1 Cartesian coordinate system

- Position, $\vec{r} = x\hat{i} + y\hat{j}$
- Velocity, $\vec{\boldsymbol{v}} = \dot{x}\hat{\boldsymbol{i}} + \dot{y}\hat{\boldsymbol{j}}$
- Accelaration, $\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$
- Kinetic energy = $\frac{1}{2}m(\vec{\boldsymbol{v}}\cdot\vec{\boldsymbol{v}})=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)$

1.2 Polar coordinate system

- Position, $\vec{r} = r\hat{r}$ where, $\hat{r} = cos\theta\hat{i} + sin\theta\hat{j}$,
- Velocity, $\vec{\boldsymbol{v}} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\boldsymbol{\theta}}\hat{\boldsymbol{\theta}}$ where, $\hat{\boldsymbol{\theta}} = -sin\theta\hat{\boldsymbol{i}} + cos\theta\hat{\boldsymbol{j}}$
- Accelaration, $\vec{a}=(\ddot{r}-r\dot{\theta}^2)\hat{r}+(r\ddot{\theta}+2\dot{r}\dot{\theta})\hat{\theta}$
- Kinetic energy = $\frac{1}{2}m(\vec{\pmb{v}}\cdot\vec{\pmb{v}})=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)$