

UNIVERSIDAD DE LOS ANDES

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE SISTEMAS Y COMPUTACIÓN

Modelado, Simulación y Optimización

Profesor

Germán Montoya O. ga.montoya44@uniandes.edu.co

LABORATORIO 1 Introducción a la herramienta de modelado matemático GAMS

OBJETIVOS GENERALES

- Conocer los pasos básicos de la herramienta GAMS para compilar y ejecutar un modelo de optimización.
- Visualizar los parámetros y los resultados arrojados al ejecutar un modelo de optimización.
- Interpretar adecuadamente un problema, definiendo su función objetivo y restricciones de manera apropiada.
- Una vez definido el modelo matemático que representa un problema, implementarlo computacionalmente en GAMS.

EJERCICIO 1

De 5 artículos que podría llevar en mi mochila, desearía incluir los objetos más valiosos sin sobrepasar un peso máximo de 10kg. Tener en cuenta el valor y peso de cada uno de los artículos descritos a continuación:

Valor de los artículos: 12, 5, 9, 6 y 4 respectivamente.

Peso de los artículos: 9, 2, 2, 1 y 3 respectivamente

Implemente en GAMS un modelo matemático **GENÉRICO** que resuelva el caso descrito.

ENTREGABLE: el código fuente *.gms.

EJERCICIO 2

Suponga que usted es líder del departamento de IT y posee a cargo cuatro empleados que deben completar cuatro trabajos en el menor tiempo posible. Cada empleado debe ser asignado para completar un único trabajo y cada trabajo solo puede ser asignado a un empleado. El tiempo requerido por cada empleado para que complete cada trabajo se muestra en la siguiente figura:

Empleado	Trabajo 1 (horas)	Trabajo 2 (horas)	Trabajo 3 (horas)	Trabajo 4 (horas)
1	14	5	8	7
2	2	12	6	5
3	7	8	3	9
4	2	4	6	10

Implemente en GAMS un modelo matemático **GENÉRICO** que asigne los empleados a los trabajos, permitiendo desarrollar los trabajos en el menor tiempo posible.

ENTREGABLE: el código fuente *.gms.

EJERCICIO 3

Un sistema de multiprocesamiento consta de una cantidad m de procesadores de los cuales se requieren transmitir cierto número de procesos hasta otra cantidad n de procesadores para luego ser almacenados en memoria. Suponga que el costo por transmitir un proceso desde un procesador i hasta un procesador j es c_{ij} . Adicionalmente, asuma que la oferta de procesos desde un procesador i es a_i y que la demanda de procesos desde un procesador j es b_j . De acuerdo a la anterior información, debe encontrarse la cantidad de procesos que deben ser transportados desde un procesador i hasta un procesador j de manera que el costo total de transporte sea mínimo.

Tener en cuenta los siguientes parámetros:

Número de procesadores origen: 3 Número de procesadores destino: 4

Cantidad de procesos a suministrar por los procesadores origen 1, 2 y 3: 300, 500 y 200 respectivamente.

Cantidad de procesos demandada por los procesadores destino 1, 2, 3 y 4: 200, 300, 100 y 400 respectivamente.

Costos:

Del procesador origen 1 a los procesadores destino 1, 2, 3 y 4: 8, 6, 10 y 9 respectivamente.

Del procesador origen 2 a los procesadores destino 1, 2, 3 y 4: 9, 12, 13 y 7 respectivamente.

Del procesador origen 3 a los procesadores destino 1, 2, 3 y 4: 14, 9, 16 y 5 respectivamente.

Implemente en GAMS el modelo matemático **GENERICO** que resuelva el caso descrito.

ENTREGABLE: el código fuente *.gms.

ENTREGABLES

Las actividades solicitadas deben ser entregadas por el estudiante teniendo en cuenta las siguientes consideraciones:

- El informe a entregar consiste en lo indicado en los entregables de cada ejercicio.
- Plazo de entrega: 1 semana después de la última sesión del laboratorio.