

12

Atomic Physics

Some Important Points

Impact parameter: Perpendicular distance of initial velocity vector of α -particles from the centre of the nucleus.

$$b = \frac{1}{4\pi\epsilon_o} \frac{Ze^2 \cot \theta/2}{\left(\frac{1}{2}mu^2\right)}$$

Distance of closest approach: Distance of a point from nucleus at which α -particle is nearest to the centre of nucleus.

$$r_o = \frac{1}{4\pi\epsilon_o} \frac{2Ze^2}{\left(\frac{1}{2}mu^2\right)}$$

Bohr radius: First orbit of hydrogen atom, called Bohr radius (a_0) .

Ground state: Lowest state of atom, called the ground state, is the state in which electron revolves in the orbit of smallest radius, the Bohr radius, a_0 .

Ionization energy: Minimum energy required to free an electron from the ground state of hydrogen atom is called the ionization energy.

BOHR'S MODEL

Postulates

(a)
$$\frac{q^2}{4\pi\epsilon_0 r^2} = \frac{mv^2}{r}$$

(b)
$$mvr = \frac{nh}{2\pi}$$

(c)
$$E_i - E_f = hv = \frac{hc}{\lambda}$$

 $\mbox{Radius of nth orbit, } r_{\mbox{\tiny n}} = \frac{\epsilon_{\mbox{\tiny 0}} h^2 n^2}{\pi m e^2 Z} \Longrightarrow r_{\mbox{\tiny n}} \alpha \frac{n^2}{Z}$

Orbital speed, $v_n = \frac{nh}{2\pi mr_n} = \frac{Ze^2}{2\epsilon_o hn} \Rightarrow v_n \alpha \frac{Z}{n}$

Energy of n^{th} orbit, $E_{_n} = -\frac{me^4Z^2}{8\epsilon_0^2h^2n^2} \Rightarrow E_{_n}\alpha\frac{Z^2}{n^2}$

Note: Total energy of the e⁻ in an atom is negative, that implies it is bound.

Total Energy = -Kinetic Energy

Potential Energy = $2 \times \text{Total Energy}$

Spectral Series

$$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

where, R = Rydberg's constant, $R = \frac{me^4}{8\epsilon_0^2 h^3 c} = 1.09 \times 10^7 \, m^{-1}$

- (i) $n_1 = 1$, $n_2 = 2$, 3, ... for Lyman series (UV region)
- (ii) $n_1 = 2$, $n_2 = 3$, 4, ... for Balmer series (visible region)
- (iii) $n_1 = 3$, $n_2 = 4$, 5, ... for Paschen series (Infra-red region)
- (iv) $n_1 = 4$, $n_2 = 5$, 6, ... for Brackett series (Infra-red region)
- (v) $n_1 = 5$, $n_2 = 6$, 7, ... for Pfund series (Infra-red region)