

Généralités sur les fonctions Le 24 septembre 2015 - 2 heures

Calculatrices, documents, smartphones et objets connectés en tout genre non autorisés. L'énoncé contient une annexe de deux pages à rendre. Si vous ne la rendez pas, précisez-le sur la copie.

Représentation graphique d'une fonction

On considère la fonction $f : \mathbf{R} \to \mathbf{R}$ définie par :

$$f(x) = \frac{|x^2 - 3x - 4| - |x^2 + 3x - 4|}{6}.$$

- \mathfrak{d} Étudier la parité de la fonction f. En déduire un intervalle d'étude I sur lequel étudier f, puis expliquer comment obtenir la courbe \mathcal{C}_f sur **R** entier.
- **2** Déterminer, en fonction de x, le signe de $x^2 3x 4$ et $x^2 + 3x 4$.
- **3** Avec ce qui précède, simplifier l'expression de f(x) pour $x \in I$.
- **4 -** Tracer le graphe de la fonction f sur la feuille annexe jointe au sujet.
- **5** Résoudre l'équation f(x) = 0.

Étude d'une fonction П

Répondre sur la feuille annexe jointe au sujet On considère les fonctions f et g définies par $f(x) = \ln \frac{3 - x^2}{2 - x}$ et $g(x) = \ln x$. On note \mathscr{C}_f et \mathscr{C}_g leurs courbes représentatives.

- **1** Déterminer l'ensemble de définition D de la fonction f.
- **2 -** La fonction *f* est-elle paire? impaire? Justifier.
- **3** Déterminer les points où la fonction f s'annule.
- **4 -** Déterminer les limites de la fonction f aux bornes de son ensemble de définition.
- **5** Justifier que la fonction f est dérivable sur D, et vérifier que

$$\forall x \in D \quad f'(x) = \frac{x^2 - 4x + 3}{(3 - x^2)(2 - x)}$$

On fera apparaître explicitement les calculs sur la copie.

- **6** Étudier le signe de f'(x) et donner le résultat dans un tableau de variations.
- **7** Pour quels réels x la différence f(x) g(x) est-elle définie? Étudier, en fonction de $x \in D$, le
- signe de cette différence. Que peut-on en déduire concernant les courbes \mathscr{C}_f et \mathscr{C}_g ?

 8 Montrer que $f(x) g(x) \underset{x \to +\infty}{\longrightarrow} 0$. Que peut-on en déduire concernant les courbes \mathscr{C}_f et \mathscr{C}_g ?
- **9 -** À l'aide des éléments précédents, tracer les courbes \mathscr{C}_f et \mathscr{C}_g sur la feuille annexe jointe au sujet. Données: $\sqrt{3} \simeq 1,73$; $\ln(2) \simeq 0,69$; $\ln(6) \simeq 1,8$.

Informatique Ш

Soit T_c une température exprimée en degrés Celsius, et T_f la même température exprimée en degrés Fahrenheit. On a la formule de conversion bien connue : $T_c = \frac{5}{9}(T_f - 32)$.

Écrire une fonction celsius (fahr) qui reçoit une température fahr, exprimée en degrés Fahrenheit, et renvoie la même température, exprimée en degrés Celsius.

Généralités sur les fonctions Le 24 septembre 2015 - 2 heures

Script de la fonction de l'exercice III

```
1 | # -*- coding: utf-8 -*-
2
3
   Created on Thu Sep 24 8:00:00 2015
5
                                                   (Indiquez votre nom)
6
7
   Script de l'exercice 3 : fonction celsius
   Entrée : fahr (température en Farenheit)
8
9
   Sortie : ..... (température en Celsius)
10
11
12
13
14
15
16
17
18
19
20
21
22
```

Généralités sur les fonctions Le 24 septembre 2015 - 2 heures

I - Graphe de la fonction \boldsymbol{f}

II - Graphe des fonctions f et g

