Chapter 3

Random Networks

Summary

- Random Graphs
- Erdos-Renyi model
- Paths, Connectedness & Density
- Advanced: Configuration Model

Reading

• Chapter 3 of Barabasi's book

Random Graphs

The Erdős-Rényi Random Graph model (ER)

Pál Erdős (1913-1996)

Alfréd Rényi (1921-1970)

"If we do not know anything else than the number **N** of nodes and the number **L** of links, the simplest thing to do is to put the links at random (no correlations)"

[1] P. Erdős and A. Rényi.

On random graphs, I. Publicationes Mathematicae. 1959.

[2] P. Erdős and A. Rényi.

On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960.

Why using Random Graph models?

- Study some properties in a "controlled environment" How does property X behaves when increasing property Y?
- Compare an observed network with a randomized version
 Is observed property X "exceptional", or any similar network with same property Y and Z?
- Explain a given phenomenon
 Such simple mechanism can reproduce property X and Y
- Generate synthetic datasets
 Testing an algorithm on 100 variations of the same network

ER model

(General) Definition.

A random graph is a graph of **N** nodes where each pair of nodes is connected by probability **p**.

The **G(n,L)** definition.

- 1. Take **N** disconnected nodes
- 2. Add L edges uniformly at random

The G(n,p) definition.

- 1. Take N disconnected nodes
- 2. Add an edge between any of the nodes independently with probability **p**

In the G(n,p) variant, the number of edges may vary

Random Graphs

P(L): probability to have exactly **L** links in a network of **N** nodes and probability **p** (binomial distribution)

The maximum number of links in a network of N nodes.

$$P(L) = egin{pmatrix} N \ 2 \ L \end{pmatrix} p^L (1-p)^{rac{N(N-1)}{2}-L}$$

Number of different ways we can choose L links among all potential links.

Reminder (Binomial Coefficient) Number of ways, disregarding order, that k objects can be chosen from among n objects

$$\binom{n}{k} = rac{n!}{k!(n-k)!}$$

<L>: The average number of links in a random graph

<k>: The average degree (and its variance)

$$< L > = \sum_{l=0}^{rac{N(N-1)}{2}} LP(L) = prac{N(N-1)}{2} \qquad < k > = rac{2L}{N} = p(N-1) \ \sigma^2 =
ho(1-
ho)rac{N(N-1)}{2}$$

Degree Distribution

For each node, independent probabilities to take each neighbor => Binomial distribution

probability of having k edges

$$P(k) = inom{N-1}{k}p^k(1-p)^{(N-1)-k}$$

Select k nodes from N-1

probability of missing N-1-k edges

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of <k>.

$$rac{\sigma_k}{< k >} = iggl[rac{1-p}{p} rac{1}{(N-1)} iggr]^{1/2} pprox rac{1}{(N-1)^{1/2}}$$

Characteristics:

$$< k> = p(N-1) \ \sigma_k^2 = p(1-p)(N-1)$$

Visual Simulation

http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/ERRG/DegreeDistribution.html

Degree Distribution

For large N and small k (p,L), we can approximate the degree distribution using a poisson distribution of parameter (mean) $\lambda = \langle k \rangle$

Poisson distribution

$$P(K) = \frac{\lambda^K e^{-K}}{K!}$$

Distribution of degrees

$$P(k) = rac{< k >^k e^{-< k >}}{k!}$$

Standard deviation

$$\sigma = \sqrt{< k>}$$

Exact Result - Binomial distribution

Large N limit - Poisson distribution

Real Networks are not Poisson

Maximum & Minimum Degree

Let's assume $< k > =1,000, N=10^9$.

We can derive the max and min degrees as follows:

$$N[1-P(k_{
m max})]pprox 1$$

$$egin{aligned} \mathrm{I}-P(k_{\mathrm{max}}) &= 1-\mathrm{e}^{-< k>} \sum_{k=0}^{k_{\mathrm{max}}} rac{\langle k
angle^k}{k!} = &\mathrm{e}^{-< k>} \sum_{k=k_{\mathrm{max}}+1}^{\infty} rac{\langle k
angle^k}{k!} pprox &\mathrm{e}^{-< k>} rac{\langle k
angle \langle k
angle^{k_{\mathrm{max}}}}{(k_{\mathrm{max}}+1)!} \ &\mathrm{k_{\mathrm{max}}} = 1{,}185 \end{aligned}$$

$$NP(k_{\min}) \approx 1$$

$$P(k_{ ext{min}}) = e^{-(k)} \sum_{k=0}^{k_{ ext{min}}} rac{\langle m{k}
angle^k}{m{k}!}$$

$$k_{min} = 816$$

$$<\mathrm{K}>\pm\sigma_{k} \quad \sigma_{k}=< k>^{1/2} \ \sigma_{k}=31.62$$

No Outliers in a Random Society!

The most connected individual has degree k_{max} ~ 1,185

The least connected individual has degree $k_{min} \sim 816$

The probability to find an individual with degree k>2,000 is 10^{-27} .

Hence the chance of finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually nonexistent in a random society.

- A random society would consist of mainly average individuals, with everyone with roughly the same number of friends.
- It would lack outliers, individuals that are either highly popular or recluse.

Facing Reality: Degree distribution of real networks

Clustering & Distance

Clustering in Random Graphs

For fixed average degree, **C** is decreasing as **N** goes large

- Low clustering coefficient
- It is vanishing with the system size

Reminder (clustering coeff.)

$$C_i \equiv rac{2n_i}{k_i(k_i-1)}$$

where $\mathbf{n}_{\mathbf{i}}$ is the number of links between the neighbours of node \mathbf{i}

We know that
$$p = \frac{\langle k \rangle}{n-1}$$

thus,

$$C_i = rac{2 < k >}{n-1} rac{k_i(k_i-1)}{2} rac{1}{k_i(k_i-1)} = rac{< k >}{n-1} = p$$

Clustering

ER Graphs vs Real-World

ER

Expected Small Clustering Coefficient

$$C_i \equiv rac{1}{N} < k > = p$$

Real-World Networks _____

Network	Size	$\langle k \rangle$	1	Crand	С	C_{rand}	Reference	
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001	Yook et al., 2001a, Pastor-Satorras et al., 2001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al., 2001	
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	
Words, synonyms	22 311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	

Distance in Random Graphs

Low Clustering coefficient

→ Random graphs tend to have a tree-like topology with almost constant node degrees.

nr. of first neighbors: $N(u)_1 = < k >$

nr. of second neighbors: $N(u)_2 = < k >^2$

nr. of neighbours at distance d: $N(u)_d = < k >^d$

Intuition: At which distance are all nodes reached?

$$n = < k >^d \Rightarrow \log_{< k >} n = d \Rightarrow d = rac{\log n}{\log < k >}$$

Diameter, avg. distance is O(log n)

Distance

ER Graphs vs Real-World

ER

Logarithmically short distance among nodes

$$d = \frac{\log n}{\log \langle k \rangle}$$

Real-World Networks -

Network	Size	$\langle k \rangle$	l	Crand	С	C_{rand}	Reference	
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18 - 0.3	0.001	Yook et al., 2001a,	
							Pastor-Satorras et al., 2001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al., 2001	
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	
Words, synonyms	22 311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	

Connected Components

Random Graphs

Connected Components

Network structure goes through a transition. How and when does this transition happen?

Structural (percolation) phase transition at <k> = 1 (or equivalently when p=1/N)

Network Regimes

Subcritical (<k> < 1, p < p_c=1/N)

No giant component;

 $\hbox{N-L isolated clusters, cluster size distribution is exponential;}\\$

The largest cluster is a tree, its size ~ ln N.

Supercritical ($\langle k \rangle > 1, p \rangle p_c = 1/N$)

Unique giant component: NG~ (p-p_c)N;

GC has loops:

Cluster size distribution: exponential.

Critical ($\langle k \rangle = 1, p = p_c = 1/N$)

Unique giant component: NG~ N^{2/3}

Contains a vanishing fraction of all nodes, NG/N~N $^{\text{-}1/3}$

Small components are trees, GC has loops.

Connected $(\langle k \rangle > \ln N, p \rangle (\ln N)/N)$

Only one cluster: NG=N;

GC is dense;

Cluster size distribution: None.

Real Network are Supercritical

Network	N	L	(k)	(d)	d _{max}	InN/In (k)
Internet	192,244	609,066	6.34	6.98	26	6.58
www	325,729	1,497,134	4.60	11.27	93	8.31
Power Grid	4,941	6,594	2.67	18.99	46	8.66
Mobile-Phone Calls	36,595	91,826	2.51	11.72	39	11.42

Summarizing...

Random Networks in a Nutshell

Degree Distribution

(Poisson for large N)

Clustering

(vanishing for large size)

 $p_k = rac{\langle k
angle^k}{k!} e^{-\langle k
angle}$

 $C_i = rac{< k>}{n-1} = p$

 $\mathcal{O}(\log n)$ More on distances in Chapter 4!

Path length

(distance with logarithmic relation to nodes)

 Network
 Degree Distribution
 Path Length
 Clustering Coefficient

 Real-world networks
 Broad
 Short
 Large

 ER graphs
 Poissonian
 Short
 Small

ER model is **not** capturing the properties of any real system but it serves as a reference system for any other network model

Advanced Topic:

Configuration Model

Problem

The ER Random Graph model has a Poisson degree distribution

- Most real-world networks have heavy-tailed degree distributions
- We need to generate networks which have pre-determined degrees or degree distribution, but they are maximally random otherwise
- The observed properties (clustering coefficient, etc.) might be due only to the difference in degree distribution

Configuration Model

How many observed patterns are driven by the degrees alone?

Random Graphs with specified degrees:

Based on an observed network

Defined as $G(n, \vec{k})$ here $\vec{k} = \{k_i\}$ degree sequence on n nodes, with k_i being the degree of node i

Sampled from an ad-hoc degree distributions

Delta/Dirac function, Poisson, Scale-free

Global condition to satisfy (even degree sum):

$$\sum_i k_i mod 2 = 0$$

each edge has to have ending nodes

Configuration model

Molloy-Reed

Theory

Original idea:

- 1. Given a degree sequence $\vec{k} = \{k_1, k_2, \dots, k_n\}$
- 2. Assign to each node $i \in V$ k_i ubs
- 3. Select random pairs of unmatched stubs and connect them
- 4. Repeat 3 while there are unmatched stubs

Such process produces a configuration model that preserves the input degree sequence, allowing:

- multi-links,
- self-links

Configuration model

Molloy-Reed

Practice

An effective algorithm

- 1. Take an array \vec{v} with length 2m and fill it with ki indices of each node $i \in V$
- 2. Make a random permutation of the array $\,ec{v}\,$
- 3. Read the content of the array as ordered pairs

Configuration model

Properties

Clustering coefficient

(independent from network size)

t from network size)
$$C = rac{1}{n} rac{\langle k
angle^3}{}$$

Degree distribution

(of a randomly selected node's neighbor)

Average Degree

(of a randomly selected node's neighbor)

$$C=rac{1}{n}rac{\left[\langle k
angle^2-\langle k
angle
ight]^2}{\langle k
angle^3}$$

$$p_{ ext{neighb},k} = rac{k}{2m} n p_k = rac{k p_k}{\langle k
angle}$$

$$\langle k_{
m neighb}
angle = \sum_k k p_{
m neighb,k} = rac{\left\langle k^2
ight
angle}{\left\langle k
ight
angle}$$

Network	Degree Distribution	Path Length	Clustering Coefficient	
Real-world networks	Broad	Short	Large	
ER graphs	Poissonian	Short	Small	
Configuration model	Custom, can be broad	Short	Small	

Chapter 3

Conclusion

Take Away Messages

- 1. ER model generates random graphs
- 2. In ER different values of *p* reflects different network regimes
- Configuration models allow the generation of random graphs having heterogeneous degree distributions

Suggested Readings

Chapter 3 of Barabasi's book

What's Next

Chapter 4: It's a Small World!

Notebook

Chapter 3: Random Networks https://github.com/sna-unipi/SNA_lectures_notebooks

