20E 20E

Formal Languages & Automata Theory/CS-3003/CSE&IT/V/2015

Mid-Semester Examination School of Computer Engineering KIIT University, Bhubaneswar.

Time: 2 hours

Full Marks: 25

(Answer any five questions including question number 1.)

1. Write true or false, and justify your answer briefly.

[5]

- (i) Let A be a DFA that accepts all nonempty strings of even length over the alphabet $\{a,b,c,d\}$, then the DFA A has at least 3 states
- (ii) Let L and M be languages such that both L and $L \cup M$ are regular. Then M is also regular
- (iii) The regular expressions $(a+b)^*b(a+b)^*+a^*$ and $(b+ab+a)^*$ are equivalent
- (iv) Two DFA are equivalent if they have the same number of states
- (v) A language L is regular if \overline{L} is a finite set.
- 2. (a) Let L be the language of all binary strings that contain 000 or 111 as a substring [2.5]
 - (i) Design an NFA that accepts L
 - (ii) Design a DFA that accepts L
 - (b) Covert the following NFA to an equivalent DFA:

[2.5]

[2.5]

δ	λ	a	b	С
$\rightarrow A$	B	B	Φ	Φ
B	Φ	Φ	C	$\{B,E\}$
C	Φ	Φ	Φ	D
D	F	Φ	Φ	D
E	Φ	Φ	D	Φ
*F	Φ	Φ	Φ	Φ

- 3. (a) Write regular expressions for the following languages over the alphabet $\{a,b\}$
 - (i) The set of all strings not ending with ab
 - (ii) $\{w : |w| \neq 3\}$
 - (iii) The set of all strings starting with ba and ending with ab
 - (iv) The set of all strings of length at least four with b in the second position and a in the fourth position
 - (v) $\{a^m b^n : m \ge 4, n \le 3\}$

- (b) Let $\Sigma = \{a, b\}$, and L be the language of all strings starting and ending with [2.5] different symbols. That is, start symbol of each string is different from its end symbol
 - (i) Design an NFA that accepts L.
 - (ii) Design a DFA that accepts L.
- 4. (a) State the pumping lemma for regular languages. Prove that the language $L=\{0^n1^{n+1}:n\geq 1\} \text{ is not regular}.$
 - (b) Let L and M be regular languages. Show that the languages $L \cup M$ and LM are regular. [2.5]
- 5. (a) Convert the following DFA to a regular expression using the state-elimination technique. [2.5]

δ	a	b
$\rightarrow p$	q	r
q	s	r
r	q	s
* 8	s	s

(b) Convert the following regular expressions to NFA

[2.5]

- (i) abb(a+b)*b
- (ii) $ab(ab)^*(a+b)aa$
- 6. (a) Construct minimum-state DFA equivalent to the following DFA

[2.5]

δ	0	1
$\rightarrow A$	В	F
B	A	F
C	G	A
D	H	В
E	A	G
*F	H	C
*G	A	D
*H	A	C
		4

(b) Prove the following

[2.5]

- (i) Indistinguishability is a transitive relation
- (ii) Distinguishability is not a transitive relation.