1.1

Let V be a pre-Hilbert space. Use $0 \le \langle \alpha x + \beta y, \alpha x + \beta y \rangle$ for $\alpha, \beta \in \mathbb{R}$ and $x, y \in V$ to prove the Cauchy–Schwarz inequality.

SOLUTION:

1.2

Let V be a normed space with norm $\|\cdot\|: V \to \mathbb{R}$. Show that V is a pre-Hilbert space and that the norm comes from an inner product $\langle \cdot, \cdot \rangle: V \times V \to \mathbb{R}$ if and only if the parallelogram equality

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2, \quad x, y \in V$$

holds, and that in this case the inner product satisfies

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \quad x, y \in V.$$

1.3

Let V be a pre-Hilbert space. Show that the norm induced by the inner product satisfies ||x+y|| < 2 for all $x \neq y \in V$ with ||x|| = ||y|| = 1.

SOLUTION: We know that $\langle \star, \star \rangle^{\frac{1}{2}} = \| \star \|$. By ex. 1.2 this implies the internal product can be expressed in

1.4

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite and let $C \in \mathbb{R}^{n \times m}$. Show:

- 1. the matrix $C^{\top}AC$ is positive semi-definite,
- 2. $\operatorname{rank}(C^{\top}AC) = \operatorname{rank}(C)$,
- 3. the matrix $C^{\top}AC$ is positive definite if and only if rank(C) = m.

1.5

Show that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite if and only if it is of the form $A = BB^{\top}$ with an invertible matrix $B \in \mathbb{R}^{n \times n}$.

1.6

Let $A, B, C \in \mathbb{R}^{2 \times 2}$ with C = AB. Let

$$p = (a_{11} + a_{22})(b_{11} + b_{22}), \quad q = (a_{21} + a_{22})b_{11},$$

$$r = a_{11}(b_{12} - b_{22}), \quad s = a_{22}(b_{21} - b_{11}),$$

$$t = (a_{11} + a_{12})b_{22}, \quad u = (a_{21} - a_{11})(b_{11} + b_{12}),$$

$$v = (a_{12} - a_{22})(b_{21} + b_{22}).$$

Show that the elements of C can then be computed via

$$c_{11} = p + s - t + v$$
, $c_{12} = r + t$,
 $c_{21} = q + s$, $c_{22} = p + r - q + u$.

Compare the number of multiplications and additions for this method with the number of multiplications and additions for the standard method of multiplying two 2×2 matrices.

Finally, show that if the above method is recursively applied to matrices $A, B \in \mathbb{R}^{n \times n}$ with $n = 2^k$, then the method requires 7^k multiplications and $6 \cdot 7^k - 6 \cdot 2^{2k}$ additions and subtractions.