Programming, Problem Solving, and Algorithms

CPSC 203, 2024 W2 (January – April 2025) Ian M. Mitchell Lecture 08B

Everyone needs a Tim Horton

Every address in Vancouver has a nearest TH.

Partition Vancouver into regions so that points are in the same region if they have the same nearest TH.

Voronoi Diagrams

Given a (finite) set of "centers" c_1 , c_2 , ... c_k , a Voronoi region, R_j consists of the set of points nearer to center c_{j_i} than to any other center.

Together, the R_j regions compose the Voronoi Diagram of a plane.

The applications of this structure go far beyond our coffee fix!!

Forest Canopy

 If trees all grow at the same time

http://revistas.inia.es/index.php/fs/article/view/8021/2913

More examples...

Too good not to share:

https://www.khanacademy.org/partner-content/pixar/pattern/dino/v/patterns2_new

Yet more examples...

Robotics -- Path planning in the presence of obstacles

Zoology -- Model and analyze the territories of animals

Astronomy -- Identify clusters of stars and clusters of galaxies

Biology, Ecology, Forestry -- Model and analyze plant competition

Cartography -- Piece together satellite photographs into large "mosaic" maps

Geography -- Analyzing patterns of urban settlements

Marketing -- Model market of US metropolitan areas;

Metallurgy -- Modelling "grain growth" in metal films

Meteorology -- Estimate regional rainfall averages, given data at discrete rain gauges

Physiology -- Analysis of capillary distribution in cross-sections of muscle tissue to compute oxygen transport ("Capillary domains")

Anthropology and Archeology -- Identify regions under the influence of different neolithic clans, chiefdoms, ceremonial centers, or hill forts.

Crystallography and Chemistry -- Study chemical properties of metallic sodium); Modelling alloy structures as sphere packings ("Domain of an atom")

Geology -- Estimation of ore reserves in a deposit using info obtained from bore holes; modelling crack patterns in basalt due to contraction on cooling

Distance between pixels

Find the distance between two pixel locations:

Distance between pixels

Given a point and two centers, determine which is the nearest center...

Design an Algorithm

Pointillism

A Sunday on La Grande Jatte, Georges Seurat

The Idea...

- 1) Select a subset of points from the original image.
- 2) Use those points, with their colors, as centers in a new image of the same size.
- 3) Build the voronoi diagram in the new image, using the ctr colors from the original image.

The quality of the new imag	
depends on	

Planning

Point:

Color:

Center:

Centers:

Image:

Planning

Data flow:

1)

2)

3)

4)

Demo and Analysis

How much work is done? Let n denote the size of the image, n = width * height

- 1) Read image:
- 2) Choose centers:
- 3) Build new image:
- 4) Write out new image:

Can we do better?

The running time of the original algorithm: ______

What would be better? _____

Orchestrate a fill from each center, growing out at the same rate.

Each pixel is processed exactly once, not once per center as before.

This means we can have lots of centers!