5.9 Higher-Order Equations and Systems of Differential Equations

More realistic applications often require solving systems of differential equations (of possibly higher order)

Systems of First-Order IVPs

Def. An nth order system of first-order IVPs has the form

(*)
$$\begin{cases} u_j'(t) = f_j(t, u_1, u_2, ... u_m) & j = 1, 2, ... m \\ u_j(a) = a_j \end{cases}$$

By introducing m-dimensional vector function $\vec{u}(t) = [u_1(t), u_2(t), ... u_m(t)]^T : [a,b] \rightarrow \mathbb{R}^m$,

we can write the IVP in matrix form as

$$\vec{u}'(t) = F(t, \vec{u})$$
 $te(a, b)$

$$\vec{u}(a) = \alpha$$
where $F(t, \vec{u}) = \begin{bmatrix} f_{i}(t, \vec{u}) \\ f_{i}(t, \vec{u}) \\ \vdots \\ f_{m}(t, \vec{u}) \end{bmatrix} : [a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

The system is called

- linear if F(t, ū) = A(t)ū+B(t)

-homogeneous if B(t)=0

tinhomogeneous if B(t) \$0

- nonlinear otherwise

Def. The function $f(t, u_1, u_2, ... u_m)$ defined on the set $\Omega = [a,b] \times \mathbb{R}^m = \{(t, u_1, u_2, ... u_m) \mid a \le t \le b, -\infty < u_j < \infty, j = 1, 2, ... m\}$ is said to be Lipschitz in $(u_1, u_2, ... u_m)$ on Ω if there exists constant L>0 s.t. $|f(t, u_1, u_2, ... u_m) - f(t, z_1, z_2, ... z_m)| \le L \sum_{j=1}^{\infty} |u_i - z_i| = L ||\tilde{u} - \tilde{z}||$ for all $(t, u_1, u_2, ... u_m)$ and $(t, z_1, z_2, ... z_m)$ in Ω .

Rmk. By MUT, we can show:

if 1) partial derivatives $\frac{\partial t}{\partial u_j}$ continuous in Ω 2) $\left|\frac{\partial f(t, u_i, ... u_m)}{\partial u_j}\right| \le L$

for each j=1,2,...m and all $(t,u_1,u_2,...u_m)$ in Ω , then f is Lipschitz in $(u_1,u_2,...u_m)$ on Ω with constant L.

Thm. 5.12 (Well-posedness of First-Order IVPs)

Let $\Omega = [a,b] \times \mathbb{R}^m$ and $f_j(t,u_1,u_2,...u_m)$ be continuous and Lipschitz continuous in \tilde{u} on Ω .

Then the IVP (*) has a unique solution $u_1, u_2, ... u_m$ for a \(\pm \) \(\pm \)

Rmk. The hypothesis about Lipschitz continuity, i.e. $|f_{j}(t,\vec{u}) - f_{j}(t,\vec{z})| \leq L_{j} ||\vec{u} - \vec{z}|| \;, \quad j=1,2,...m$ implies that $||F(t,\vec{u}) - F(t,\vec{z})|| \leq (m \cdot m_{j} x L_{j}) \cdot ||\vec{u} - \vec{z}|| \;.$ Moreover, the norm $||\cdot|||_{1}$ can be replaced by any norm $||\cdot|||_{1}$ in $||R^{m}||_{2}$ so that $||F(t,\vec{u}) - F(t,\vec{z})|| \leq L||\vec{u} - \vec{z}|| \;.$

Rmk. All numerical methods we've seen thus far for solving a single IVP, e.g. one-step methods, can be generalized to solve (*) by replacing the scalar w with the vector w.

Ex. Let h=0.5. Apply Euler's method to solve $\begin{cases} u_1'=u_2, & u_2'=-u_1 & 0 \le t \le 1 \\ u_1(0)=1, & u_2(0)=0 \end{cases}$ Sol. Let $\vec{u}(t)=\begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$, and $\vec{F}(t,\vec{u})=\begin{bmatrix} u_2 \\ -u_1 \end{bmatrix}$. Then $\vec{w}_0=\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ \vec{w}_1 $\vec{w}_0+\vec{h}\vec{F}(t,\vec{w}_0)$ \vdots $\vec{w}_{k+1}=\vec{w}_k+\vec{h}\vec{F}(t,\vec{w}_k)$

High-Order DES

Idea: can turn into system of first-order IVPs Let $u_j(t) = y^{(j-i)}(t)$, j = 1, 2, ... m

Then we can convert (**) into

$$\begin{bmatrix} u_1' = u_2 \\ u_2' = u_3 \\ \vdots \\ u_{m-1}' = u_m \\ u_m' = f(t, u_1, u_2, \dots u_{m-1}) \end{bmatrix}$$

$$S.t. \quad \vec{u}(\alpha) = \vec{\alpha} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix}$$

$$u' = F(t, \vec{u})$$

OR: (an write (**) as

$$u_{j}'(t) = y^{(j)}(t) = u_{j+1}(t), \quad j=1, ... m-1$$

 $u_{m}'(t) = y^{(m)}(t) = f(t, y, y^{1}, ... y^{(m-1)})$

with initial condition $u_j(a)=d_j$, j=1,...m-1