Lec 7: Matrix Decomposition

Ailin Zhang

2022-09-25

Agenda

- Sweep Operator
- Matrix Decomposition (QR)
- Gram-Schmidt Process

Recap: Sweep operator

The sweep operator arises from a close analysis of elimination applied to the equation $\mathbf{X}^{\top}X\beta = \mathbf{X}^{\top}\mathbf{Y}$. For a symmetric matrixA, B = Sweep(A, k) is obtained as follows:

① Divide k^{th} row and k^{th} column by a_{kk} :

$$b_{ik} = a_{ik}/a_{kk}$$
; $b_{kj} = a_{kj}/a_{kk}$

2 Subtract $a_{ik}a_{kj}/a_{kk}$ from the other entries:

$$b_{ij} = a_{ij} - a_{ik} a_{kj} / a_{kk}$$

1 Invert k^{th} diagonal element:

$$b_{kk} = -1/a_{kk}$$

Proposition 1

Proposition

Suppose $V_{p\times m}=U_{p\times m}A_{m\times m}$, and B=Sweep(A,k). Then $\hat{V}=\hat{U}B$, where:

- $\hat{U} = U$ except that its k^{th} column is v_k ;
- $\hat{V} = V$ except that its k^{th} coumn is $-u_k$.

Proposition 1 proof:

By definition $v_{jl} = \sum_i u_{ji} a_{il}$ for all pairs j and l. After sweeping on a_{kk} ,

$$\hat{v}_{jk} = -u_{jk} = -\frac{1}{a_{kk}} \left(v_{jk} - \sum_{i \neq k} u_{ji} a_{ik} \right)$$

$$= \hat{u}_{jk} b_{kk} + \sum_{i \neq k} \hat{u}_{ji} b_{ik} = \sum_{i} \hat{u}_{ji} b_{ik},$$

and for $l \neq k$,

$$\begin{split} \hat{v}_{jl} &= v_{jl} = \sum_{i \neq k} u_{ji} a_{il} + u_{jk} a_{kl} \\ &= \sum_{i \neq k} u_{ji} a_{il} + \left(v_{jk} - \sum_{i \neq k} u_{ji} a_{ik} \right) \frac{a_{kl}}{a_{kk}} \\ &= \sum_{i \neq k} \hat{u}_{ji} b_{il} + \hat{u}_{jk} b_{kl} = \sum_{i} \hat{u}_{ji} b_{il}. \end{split}$$

Thus. $\hat{V} = \hat{U}B$.

Propositions

Proposition (2)

If A is a symmetric invertible matrix and we sweep on each diagonal element of A the result is $B = Sweep(A, 1 : n) = -A^{-1}$

Proposition (3)

If
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and we sweep on each of the diagonal entries of A_{11} , we

get
$$B = \begin{bmatrix} -A_{11}^{-1} & A_{11}^{-1}A_{12} \\ A_{21}A_{11}^{-1} & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{bmatrix}$$

Proposition 4

We construct a matrix $\mathbf{Z} = [\mathbf{XY}]$, and let

$$A = \mathbf{Z}^{\top}\mathbf{Z} = \begin{bmatrix} \mathbf{X}^{\top}\mathbf{X} & \mathbf{X}^{\top}\mathbf{Y} \\ \mathbf{Y}^{\top}\mathbf{X} & \mathbf{Y}^{\top}\mathbf{Y} \end{bmatrix}$$

be the cross-product matrix. Then

$$SWP[1:p]A = \begin{bmatrix} -(\mathbf{X}^{\top}\mathbf{X})^{-1} & (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} \\ \mathbf{Y}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} & \mathbf{Y}^{\top}\mathbf{Y} - \mathbf{Y}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{\operatorname{Var}(\hat{\beta})}{\sigma^2} & \hat{\beta} \\ \hat{\beta}^{\top} & \operatorname{RSS} \end{bmatrix}$$

where $RSS = \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_{\ell_2}^2$ is the residual sum of squares.

Question: What is the time complexity? $\mathcal{O}(p^3)$

Inverse sweep operator

We define the inverse sweep operator as follows: Inv-Sweep(k)

$$\begin{cases} a_{ik} &= -b_{ik}/b_{kk} \\ a_{kj} &= -b_{kj}/b_{kk} \\ a_{kk} &= -1/b_{kk} \\ a_{ij} &= b_{ij} - b_{ik}b_{kj}/b_{kk} \end{cases}$$

Sweep and Stepwise Regression

Suppose we "start with" the regression $y=X_1\beta_1+\epsilon$ and we want to expand this to $y=X_1\beta_1+X_2\beta_2+\epsilon$, for a new regressor X_2 . If we sweep

$$A = \begin{bmatrix} X_1^T \\ X_2^T \\ Y^T \end{bmatrix} \begin{bmatrix} X_1 & X_2 & Y = \end{bmatrix} \begin{bmatrix} X_1^T X_1 & X_1^T X_2 & X_1^T Y \\ X_2^T X_1 & X_2^T X_2 & X_2^T Y \\ Y^T X_1 & Y^T X_2 & Y^T Y \end{bmatrix}$$

on the diagonal entries corresponding to X_1 we get

$$\begin{bmatrix} -\left(X_{1}^{T}X_{1}\right)^{-1} & \hat{\beta}_{X_{2}|X_{1}} & \hat{\beta}_{Y|X_{1}} \\ \hat{\beta}_{X_{2}|X_{1}}^{T} & \left\|X_{2} - \hat{X}_{2}\right\|^{2} & \left(X_{2} - \hat{X}_{2}\right)^{T} (Y - \hat{Y}) \\ \hat{\beta}_{Y|X_{1}}^{T} & \left(Y - \hat{Y}\right)^{T} \left(X_{2} - \hat{X}_{2}\right) & \left\|Y - \hat{Y}\right\|^{2} \end{bmatrix}$$

Sweep and Stepwise Regression

If we now further sweep on the diagonal entries corresponding to X_2 we have "added" X_2 to the regression:

$$\left[-\left[\left(\begin{array}{c} X_1^T \\ X_2^T \end{array} \right) \left(\begin{array}{cc} X_1 & X_2 \end{array} \right) \right]^{-1} & \hat{\beta}_{Y|X_1X_2} \\ & \hat{\beta}_{Y|X_1X_2}^T & \|Y - \hat{Y}\|^2 \end{array} \right]$$

where now $\hat{\beta}_{Y|X_1X_2}$ and \hat{Y} are for regression on X_1X_2 .

If we want to address $Y=X_2\beta_2+\epsilon$, we could apply the inverse sweep operator on X1 to remove X1 from the regression

Other Application of sweep operator

Perform sweep operator on multivariate normal distribution $x \sim \mathcal{N}(\mu, \Omega)$

$$\begin{bmatrix} \Omega & x - \mu \\ x^t - \mu^t & 0 \end{bmatrix}$$

If we sweep on Ω , we get the quadratic form $-(x-\mu)^t\Omega^{-1}(x-\mu)$ in the lower right block of the swept matrix.

If we partition X as $(Y^t, Z^t)^t$ and sweep on the upper left block of

$$\begin{pmatrix} \Omega_Y & \Omega_{YZ} & \mu_Y - y \\ \Omega_{ZY} & \Omega_Z & \mu_Z \\ \mu_Y^t - y^t & \mu_Z^t & 0 \end{pmatrix},$$

then the conditional mean $\mathrm{E}(Z\mid Y=y)=\mu_Z+\Omega_{ZY}\Omega_Y^{-1}\left(y-\mu_Y\right)$ and conditional variance $\mathrm{Var}(Z\mid Y=y)=\Omega_Z-\Omega_{ZY}\Omega_Y^{-1}\Omega_{YZ}$ are immediately available.

Why Sweep Operator?

- Efficient for computing the central statistics used in multiple regression
 - Start from a square correlation or covariance matrix.
 - Compute multiple correlation, residual variance, regression slopes, and standard errors of slopes, plus some other
- An efficient way to compute a whole series of regressions, as in stepwise regression.
- Orawback) If it is applied many times to the same matrix, rounding error can accumulate.

Matrix Decomposition

QR decomposition decomposes a matrix \mathbf{X} into a product $\mathbf{X} = QR$ where Q is an orthogonal matrix and R is an upper triangular matrix. It does not require the computation of the cross-product matrix such as $\mathbf{X}^{\top}\mathbf{X}$.

Let $Q=(q_1,q_2,\ldots,q_n)$ be an orthogonal matrix, $Q^\top Q=QQ^\top=I$, then Q forms an orthogonal basis:

- (1) For each vector q_i , $||q_i|| = 1$.
- (2) For any two different vectors q_i and q_j , $\langle q_i,q_j\rangle=0$, i.e., $q_i\perp q_j$.

For any vector v, we have

- (1) Analysis: $u_i = \langle v, q_i \rangle = q_i^\top v$ is the coordinate of v on the axis q_i , for i = 1, ..., n, i.e., $u = Q^\top v$.
- (2) Synthesis: $v = \sum_{i=1}^{n} q_i u_i = Qu$.

From (1) and (2), Q and Q^{\top} are inverse of each other.

Gram-Schmidt Process

Sketch it!

Ailin Zhang

Lec 7: Matrix Decomposition

Projection Matrix

In Gram-Schmidt, we can treat each vector q_j as a product of projection of A_j , where the projection matrix is $P_j = I - Q_{j-1}Q_{j-1}^T$ and it satisfies the following:

- $P^2 = P$
- 2 I P is also a projection matrix

$$Q_{j} = \begin{bmatrix} | & | & | & | \\ q_{1} & q_{2} & \cdots & q_{j} \\ | & | & & | \end{bmatrix}$$

$$q_{1} = \frac{P_{1}a_{1}}{||P_{1}a_{1}||}$$

$$q_{2} = \frac{P_{2}a_{2}}{||P_{2}a_{2}||}$$

$$\vdots$$