Miniaturized chip mode with holding body, esp. chip with standard chip card design

Patent number:

DE19826428

Publication date:

1999-12-23

Inventor:

KOBER HORST [DE]; BIRK WILHELM [DE]; FLAIG

JOERG [DE]

Applicant:

FREUDENBERG CARL FA [DE];; SIEMENS AG [DE];;

POINT TEC GMBH [DE]

Classification:

- international:

G06K19/077; H05K1/18

- european:

G06K19/077

Application number: DE19981026428 19980616 Priority number(s): DE19981026428 19980616

Abstract of DE19826428

The miniaturized chip module (1) can be replaceably inserted in a predefined position in an aperture (3) in a standard field for the chip module in a holding body or chip card body (1). The chip module can be fitted with an integrated antenna coil and can have encapsulation on its underside

Data supplied from the esp@cenet database - Worldwide

Offenlegungsschrift DE 198 26 428 A 1

(5) Int. CI.⁶: **G** 06 **K** 19/077

H 05 K 1/18

DEUTSCHES
PATENT- UND
MARKENAMT

- ② Aktenzeichen: 198 26 428.3
 ② Anmeldetag: 16. 6. 98
- (3) Offenlegungstag: 23. 12. 99

(7) Anmelder:

Fa. Carl Freudenberg, 69469 Weinheim, DE; Siemens AG, 80333 München, DE; Point Tec GmbH, 85737 Ismaning, DE ② Erfinder:

Kober, Horst, 69469 Weinheim, DE; Birk, Wilhelm, 85737 Ismaning, DE; Flaig, Jörg, 82041 Oberhaching, DE

56 Entgegenhaltungen:

DE 196 50 048 A1 DE 196 46 717 A1 196 37 215 A1 DE DE 196 26 791 A1 DE 43 44 297 A1 DE 43 11 493 A1 295 04 542 U1 DE 295 03 249 U1 DE ΕP 07 02 325 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Chipmodul mit Aufnahmekörper
- Chipmodul mit Aufnahmekörper, insbesondere mit Chipkartenkörper genormter Bauart, wobei der Chipmodul (2, 4, 22, 44, 58) in miniaturisierter Ausführung in vorgegebener Position auswechselbar in eine im Normfeld für das Chipmodul (2, 4, 22, 44, 58) im Aufnahmekörper bzw. Chipkartenkörper (1, 5, 40, 50) vorhandene Ausnehmung (3, 6, 17, 20, 57) einsetzbar ist.

Beschreibung

Technisches Gebiet

Die Erfindung betrifft einen Chipmodul mit Aufnahmekörper, insbesondere mit Chipkartenkörper genormter Bauart.

Stand der Technik

Chipmodule mit Chipkartenkörper sind weit verbreitet. Sie dienen als Telefon-, Krankenkassen- und Bankkarten. Vom grundsätzlichen Aufbau her bestehen sie aus einem Kartenkörper im Scheckkartenformat und einem darin eingebrachten Chipmodul mit außenliegendem Kontaktfeld. Der Datentransfer und die Energieversorgung des Chipmoduls erfolgt über das Kontaktfeld mit Schreib- und Lesegeräten den sogenannten Terminals. Diese Terminals sind auf die genormten Datensätze, Dimensionen und Kontaktanordnungen der kontaktbehafteten Chipmodule abgestimmt.

Daneben sind kontaktlose Chipkarten bekannt, bei denen die Datenübertragung und die Energieversorgung des Chipmoduls über eine integrierte Antenne erfolgt, die über Funk mit einem Terminal der ebenfalls mit einer Antenne ausgestattet ist in Wechselwirkung tritt. Die kontaktlose Chipkarte 25 muß für Transaktionen nur in die Nähe des Terminals gebracht werden. Sie wird nicht in das Terminal gesteckt, so daß die äußeren Abmessungen der kontaktlosen Chipkarte unkritisch sind bezüglich der Nutzung eines Terminals. Kontaktlose Chipkarten lassen sich deshalb so klein gestal- 30 ten, daß sie in Uhrengehäuse oder Schlüsselanhänger eingebracht werden können und so jederzeit verfügbar sind. In diesen Ausführungsformen werden sie bereits als elektronischer Schlüssel, Berechtigungsnachweis oder elektronischer Eintrittskarte benutzt. Von Nachteil ist hier, daß es fürkon- 35 taktlose Chipkarten bisher nur wenige Terminals gibt und daß sie nicht als Bankkarte zugelassen sind. Bisher können nur normgerechte und kontaktbehaftete, Chipkarten als Bankkarte oder elektronische Geldbörse eingesetzt werden.

Darstellung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, eine Kompatibilität zwischen den miniaturisierten Chipmodulen und den kontaktbehafteten normgerechten Chipkarten für bestehende Terminals herzustellen. Außerdem soll der Einsatzbereich der Chipmodule vergrößert werden.

Die Lösung der gestellten Aufgabe wird bei einem Chipmodul der eingangs genannten Gattung erfindungsgemäß dadurch erreicht, daß der Chipmodul in miniaturisierter 50 Ausführung in vorgegebener Position auswechselbar in eine im Normfeld für das Chipmodul im Aufnahmekörper bzw. Chipkartenkörper vorhandene Ausnehmung druckknopfartig einsetzbar ist. Der an sich bekannte Aufnahmekörper bzw. Chipkartenkörper wird folglich mit einer Ausnehmung ausgestattet, in die das miniaturisierte Chipmodul eingedrückt, beziehungsweise wieder herausgedrückt werden kann. Mit eingesetztem Chipmodul ist der Chipkartenkörper als Bankkarte und der Gleichen verwendbar. Nimmt man das Chipmodul aus dem Chipkartenkörper so kann er beispielsweise wieder als elektronischer Schlüssel oder elektronische Eintrittskarte in einem Aufnahmekörper verwendet werden. Mit nur einem Chipmodul können somit verschiedene Einrichtungen bestückt werden. Außerdem ist es möglich, den Aufnahmekörper bzw. Chipkartenkörper mit ver- 65 schiedenen Chipmodulen zu versehen.

In bevorzugter Ausführungsform ist das Chipmodul mit einer integrierten Antennenspule ausgestattet. Dabei kann es auf seiner Unterseite mit einer Verkapselung versehen sein. In vielen Fällen ist es jedoch auch günstig, wenn das Chipmodul von einem in die Ausnehmung passenden Insert eingefaßt ist. Diese Ausführungsformen sind besonders dann geeignet, wenn das Chipmodul im eingesetzten Zustand auf seiner Unterseite weitgehend geschützt sein soll.

Es ist aber auch möglich die Antennenspule in den Insert zu verlegen. Schließlich ist es denkbar, daß der Aufnahmebzw. Chipkartenkörper eine Antennenspule hat, die über 10 Verbindungskontakte an den Chipmodul anschließbar ist. Je nach Anwendungsgebiet stehen dem Fachmann hier verschiedene Ausführungsformen zur Verfügung.

Der Chipmodul, die Modulverkapselung und/oder der Insert werden mit Ausformungen versehen, die mit Anschluß15 ausformungen in der Ausnehmung des Aufnahmebzw.
Chipkartenkörpers korrespondieren und formschlüssige
Einrastverbindungen bilden. Dabei sind die Einrastverbindungen bei einem Chipkartenkörper so ausgestaltet, daß sie
den Chipmodul so ausrichten, daß das Außenkontaktfeld
20 des Chipmoduls bündig zur Chipkartenkörperoberfläche
liegt. Dies ist wichtig für die Funktion der Karte.

Um das Einbringen des Chipmoduls in den Aufnahmebzw. Chipkartenkörper zu erleichtern, wird zumindest eine der Ausformungen am Körper, Chipmodul, der Modulverkapselung oder dem Insert aus einem elastomeren Werkstoff hergestellt. Eine für viele Fälle sehr brauchbare Ausführung ergibt sich dann, wenn die Ausnehmung des Aufnahmebzw. Chipkartenkörpers mit einem Einsatz aus elastomerem Werkstoff versehen ist.

Zur Fixierung der Position des Chipmoduls erhält die Ausnehmung eine Kontur, die mit der Kontur des Chipmoduls, seiner Verkapselung beziehungsweise Inserts übereinstimmt. Hierdurch wird einer Verdrehung des Chipmoduls beim Einsetzen entgegengewirkt.

Die Ausnehmung, insbesondere im Chipkartenkörper, kann mit einem Boden abgeschlossen sein. Hierzu kann beispielsweise die untere Decklage des Chipkartenkörpers dienen. In vielen Fällen ist es jedoch günstig, wenn die Ausnehmung eine den Chipkartenkörper durchdringende Öffnung ist, die von beiden Seiten der Chipkarte zugänglich ist.

Die Dicke des Chipmoduls mit oder ohne Verkapselung beziehungsweise Insert wird kleiner oder gleich der Chipkartendicke gewählt. Die Dicke bestimmt sich unter anderem auch dadurch, daß die Ausnehmung mit einem Boden abgeschlossene ist oder nicht.

Bei einem Chipmodul mit von außen zugänglichem Kontaktfeld ist vorgesehen; daß die Einrastverbindungen den Chipmodul so ausrichten, daß das Außenkontaktfeld des Chipmoduls bündig zur Chipkartenkörperoberfläche liegt.

Bei einem Chipkartenkörper aus einer Oberschicht, Mittelschicht und Bodenschicht ist die Mittelschicht im Bereich der Ausnehmung mit die Ausschlußausformung bildenden Befestigungslippen versehen, welche in eine Hinterschneidung an der Modulverkapselung beziehungsweise des Inserts greifen. Die Befestigungslippen lassen sich bei der Herstellung der Chipkarte in günstiger Weise anbringen.

Schließlich ist es möglich, den Chipkartenkörper mit wenigstens einem weiteren Chipmodul zu versehen, der auswechselbar oder ortsfest mit dem Chipkartenkörper verbunden werden kann. Hierdurch erhält der Chipkartenkörper eine Multifunktion und kann für die unterschiedlichsten Zwecke eingesetzt werden.

Kurzbeschreibung der Zeichnungen

Anhand mehrerer, in der Zeichnung dargestellter Ausführungsbeispiele wird die Erfindung näher erläutert.

Es zeigen:

DE 198 26 428 A 1

Fig. 1 den prinzipiellen Aufbau von Chipkartenkörper und Chipmodul,

Fig. 2 einen Chipmodul in einem miniaturisierten Chipkartenkörper,

Fig. 3 einen Längsschnitt durch den Chipkartenkörper 5 nach Fig. 2,

Fig. 4 einen Chipkartenkörper mit einem Insert,

Fig. 5 vergrößert einen Längsschnitt durch den Chipkartenkörper nach Fig. 4,

Fig. 6 einen Chipkartenkörper mit zwei Chipmodulen 10 und

Fig. 7 einen Chipmodul eingesetzt in ein Uhrgehäuse.

Ausführung der Erfindung

In der Fig. 1 ist ein genormter Chipkartenkörper 1 in der Draufsicht gezeigt, in den das miniaturisierte Chipmodul 2 auswechselbar in Richtung auf die Chipkartenkörperebene zu eingesetzt ist. Für das Chipmodul 2 ist die Ausnehmung 3 vorgesehen, die sich im nicht näher bezeichneten Normfeld 20 für das Chipmodul 2 befindet.

Die Fig. 2 zeigt ein Chipmodul 4, daß in den ebenfalls miniaturisierten Chipkartenkörper 5 eingefügt ist. Hierfür ist, wie auch aus der Fig. 3 ersichtlich, der Chipkartenkörper 5 mit der Öffnung 6 versehen, die sich in der oberen Deckschicht 7 des Chipkartenkörpers 5 befindet. Zur Unterstützung der Positionierung des Chipmoduls 4 in der Öffnung 6 ist sowohl die Öffnung 6 als auch das Modulsubstrat 8 in der oberen rechten Ecke 9 abgeschrägt. Das Chipmodul 4 kann folglich nur in der gezeigten Lage in die Öffnung 6 eingesetzt werden.

Das Chipmodul 4 ist mit dem Kontaktfeld 10 ausgestattet, daß mit seiner Oberfläche bündig zur Chipkartenkörperoberfläche 11 verläuft.

Auf seiner Unterseite ist der Chipmodul 4 mit einer Verkapselung 12 versehen. Die Verkapselung 12 hat einen nach unten vorstehenden Rand 13 und eine kegelförmig verlaufende Hinterschneidung 14, so daß sie, mit dem Rand 13 in den Chipkartenkörper 5 eingesetzt, hinter die Lippe 15 des Chipkartenkörpers 5 greift. Die Lippe 15 wird von der Mittelschicht 16 des Chipkartenkörpers 5 gebildet und stellt in der Öffnung 17 des Chipkartenkörpers 5 einen umlaufenden Rand dar. Wie auf der Fig. 3 gezeigt, ist die Öffnung 17 durchgehend und die Verkapselung 12 bildet den unteren Abschluß für die Öffnung 17. Die Verkapselung 12 reicht nicht völlig bis an die Abschlußfläche der Öffnung 17. heran und kann deshalb leicht mit der Daumenfläche ertastet werden, wenn das Chipmodul 4 aus der Öffnung 17 herausgedrückt werden soll.

Im vorliegenden Fall ist das Chipmodul 4 mit einer Antennenspule 18 versehen, die auf dem oberen Rand der Lippe 15 zum Anliegen kommt. Die Öffnung 17 nimmt die gesamte Höhe der unteren Deckschicht 19 ein.

Der Chipkartenkörper 5 ist besonders für einen auswechselbaren Einsatz in einem Uhrgehäuse geeignet.

In der Fig. 4 ist ein Chipkartenkörper 1 mit dem prinzipiellen Aufbau des Chipkartenkörpers 1 aus Fig. 1 gezeigt. In eine durchgehende Öffnung 20 im Chipkartenkörper 1 ist das Insert 21 eingesetzt, daß in seiner Mitte einen Chipmodul 22 hat. Das Chipmodul 22 ist mit dem Außenkontaktfeld 60 23 versehen. Das im wesentlichen eine runde Form aufweisende Insert 21 ist am unteren Rand 24 abgeschrägt, damit es in die an gleicher Stelle ebenfalls abgeschrägte Kontur der Öffnung 20 paßt. Es wird angemerkt, daß auch jede andere geometrische Form verwendet werden kann, z. B. auch 65 bereits existierende Formen von Chipmodulen.

Wie aus der Fig. 5 ersichtlich, besteht das Insert 21 aus einer Oberschicht 25 dessen Oberstäche 26 bündig mit der

Oberfläche der Kontakte 23 und der Oberfläche 27 des Chipkartenkörpers 1 verläuft. Desweiteren ist eine Mittelschicht 28 vorgesehen, welche die Antennenspule 29 aufnimmt. An die Mittelschicht 28 schließt eine Bodenschicht 30 an, welche die Öffnung 20 auf ihrer Unterseite bündig mit der Unterseite 31 des Chipkartenkörpers 1 abschließt.

An die Antennenspule 29 ist über die Kontaktstellen 32 das Chipmodul 22 angeschlossen.

Der Innenrand 33 der Öffnung 20 ist mit einem Einsatz 34 versehen, der aus einem elastomeren Werkstoff besteht, und nach innen in die Öffnung 20 gerichtet, eine Befestigungslippe 35 bildet. Diese Lippe 35 ist umlaufend in der gesamten Öffnung 20. Das Insert 21 ist mit der umlaufenden Nut 36 versehen, in welche die Befestigungslippe 35 formschlüssig eingreift.

In der Fig. 6 ist eine besondere Ausführungsform der vorliegenden Erfindung gezeigt, bei der der Chipkartenkörper 40 mit einer Antennenspule 41 versehen, ist, die über Verbindungskontakte 42, 43 an den Chipmodul 44 angeschlossen sind. Außerdem ist der Chipkartenkörper 40 mit einem weiteren Chipmodul 45 versehen, so, daß eine Multifunktionskarte entsteht. Je nach Bedarf kann das Chipmodul 44 beziehungsweise das Chipmodul 45 fest oder auswechselbar mit dem Chipkartenkörper 40 verbunden sein.

In der Fig. 7 ist im Schnitt halbseitig der Aufbau einer Uhr 50 als Aufnahmekörper für ein Chipmodul gezeigt. Die Uhr 50 besteht aus einem Gehäuse 51, das auf seiner Oberseite mit einem Uhrglas 52 abgedeckt ist. Im Gehäuse 51 befinden sich der Werkring 53, eine Zwischenplatte 54 und ein Kunststoffziffernblatt 55. Auf der Unterseite des Gehäuses 51 ist ein Zwischenboden 56 eingeklipst, der eine Tasche 57 für einen auswechselbaren Chipmodul 58 hat. Gehalten wird der Chipmodul 58 durch einen transparenten Unterboden 59. Der Chipmodul 58 ist auswechselbar eingesetzt. Hierfür kann der in gleicher Weise wie der Zwischenboden 56 mit einer Wulst 60 versehene und dadurch einklipsbare Unterboden 59 abgenommen und ein neuer Chipmodul eingesetzt werden. Auf diese Weise können unterschiedliche Chipmodule vom Benutzer der Uhr in die Uhr eingebracht 40 bzw. ausgetauscht werden.

Patentansprüche

- 1. Chipmodul mit Aufnahmekörper, insbesondere mit Chipkartenkörper genormter Bauart, dadurch gekennzeichnet, daß der Chipmodul (2, 4, 22, 44, 58) in miniaturisierter Ausführung in vorgegebener Position auswechselbar in eine im Normfeld für das Chipmodul (2, 4, 22, 44, 58) im Aufnahmekörper bzw. Chipkartenkörper (1, 5, 40, 50) vorhandene Ausnehmung (3, 6, 17, 20, 57) einsetzbar ist.
- 2. Chipmodul nach Anspruch 1, dadurch gekennzeichnet, daß der Chipmodul (4) mit einer integrierten Antennenspule (18) ausgestattet ist.
- 3. Chipmodul nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Chipmodul (4) auf seiner Unterseite mit einer Verkapselung (12) versehen ist.
- Chipmodul nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Chipmodul (22) von einem in die Ausnehmung (20) passenden Insert (21) eingefaßt ist.
- 5. Chipmodul nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Insert (21) des Moduls mit einer Antennenspule (29) versehen ist.
- Chipmodul nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Aufnahmekörper bzw. Chipkartenkörper (40) eine Antennenspule (41) hat,

die über Verbindungskontakte (42, 43) an den Chipmodul (44) anschließbar ist.

- 7. Chipmodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Chipmodul (4), die Modulverkapselung (12) und/oder das Insert (21) mit Ausformungen (13, 14, 36) versehen sind, die mit Anschlußausformungen (15, 35) in der Ausnehmung (17, 20) des Aufnahme- bzw. Chipkartenkörpers (1, 5) korrespondieren und formschlüssige Einrastverbindungen bilden
- 8. Chipmodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zumindest eine der Ausformungen am Aufnahme- bzw. Chipkartenkörper (1, 5), am Chipmodul (2, 4, 22), an der Modulverkapselung (12) oder dem Insert (21) aus einem elastomeren Werkstoff besteht.
- 9. Chipmodul nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Ausnehmung (20) des Chipkartenkörpers (1) mit einem Einsatz (34) aus elastomerem Werkstoff versehen ist.
- Chipmodul nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Position des Chipmoduls (2, 4, 22) im Aufnahmekörper bzw. Chipkartenkörper (1, 5, 40) durch die Kontur der Ausnehmung (6, 20, 24) und des Chipmoduls, seiner Verkapselung (12) 25 beziehungsweise des Inserts (21) vorbestimmt ist.
- 11. Chipmodul mit Chipkartenkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Ausnehmung (3) eine den Chipkartenkörper (1, 5, 40) durchdringende Öffnung (17, 20) ist.
- 12. Chipmodul mit Chipkartenkörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Dicke des Chipmoduls (4, 22) ohne oder mit Verkapselung (12) beziehungsweise Insert (21) kleiner oder gleich der Chipkartendicke (d) ist.
- 13. Chipmodul mit von außen zugänglichem Kontaktfeld nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Einrastverbindungen den Chipmodul (2, 4, 22) so ausrichten, daß das Außenkontaktfeld (10, 23) des Chipmoduls (4, 22, 44, 45) bündig zur 40 Chipkartenkörperoberfläche (11, 27) liegt.
- 14. Chipmodul nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß bei einem Chipmodul (5) aus einer Oberschicht (7), Mittelschicht (16) und Bodenschicht (19) die Mittelschicht (16) im Bereich der 45 Ausnehmung (17) mit die Anschlußausformung bildenden Befestigungslippe (15) versehen ist, welche in eine Hinterschneidung (14) an der Modulverkapselung (12), beziehungsweise des Inserts (21) greift.
- 15. Chipmodul mit Chipkartenkörper nach einem der 50 Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Chipkartenkörper (40) mit wenigstens einem weiteren Chipmodul (45) versehen ist, der auswechselbar oder ortsfest mit dem Chipkartenkörper (40) verbunden ist.

Hierzu 7 Seite(n) Zeichnungen

55

- Leerseite -

H COS

1

49

4.9.4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.