## Lecture -16 Magnetic Effect of Electric Circuit



#### **Topics**

- Magnetic flux
- Flux density
- Reluctance
- Permeance
- Magnetic effect of electric circuit



#### Objectives

At the end of this lecture, student will be able to:

- Define magnetic flux, flux density and reluctance
- Explain Right hand thumb Rule and cork screw rule
- Analyze Series Magnetic Circuits
- Derive relation between the magnetic and electric circuits



#### Magnetic Flux

 Total number of lines of force existing in a magnetic field is called magnetic flux. The unit of flux is called weber and flux is denoted by (Ø).

#### 1 weber = 10<sup>8</sup> lines of force

 Magnetic flux (Φm), is the amount of magnetic field (also called "magnetic flux density") passing through a surface (such as a conducting coil).

SI Unit - weber (Wb)

CGS unit - maxwell.



### Parameters for Magnetic Circuits

| Parameters                     | Symbols      | Formulas                                    | Units                       |
|--------------------------------|--------------|---------------------------------------------|-----------------------------|
| Magnetic Flux<br>Density       | В            | $B = \frac{\phi}{A}$                        | Wb/m^2 or tesla             |
| Magnetic Field<br>Strength     | Н            | $H = \frac{NI}{l}$                          | AT/m                        |
| Absolute<br>Permeability       | μ            | $\mu = \frac{B}{H}$                         | H/m                         |
| Permeability of Free Space     | $\mu_{_0}$   | -                                           | 4Π× <b>10</b> <sup>-7</sup> |
| Relative<br>Permeability       | $\mu_{_{r}}$ | $\mu = \mu_0 \mu_r$                         | H/m                         |
| Magnetomotive<br>Force (M.M.F) | F            | NI                                          | Ampere-turns                |
| Reluctance                     | S            | $S = \frac{l}{\mu a}$ $S = \frac{NI}{\phi}$ | AT/Wb or A/Wb               |
| Permeance                      | Р            | P=1/S                                       | Wb/AT or Wb/A               |



# Magnetic Effect of an Electric Current (Electromagnets)

 When a coil or a conductor carries current, it produces the magnetic flux around it. Then it starts behaving as a magnet. Such a current carrying conductor is called an electromagnet



Electromagnet due to straight Current Carrying Conductor

Electromagnet due to Circular Current Carrying Conductor



### Magnetic Field due to Straight Conductor

- When a straight conductor carries a current, it produces
  a magnetic field all along its length. The lines of force
  are in the form of concentric circle in the planes right
  angles to the conductor.
- When current is going into the plane of the paper 'cross'
- Current is coming out of the plane of the paper 'dot'







(b) Current out of the paper



#### Magnetic Circuits

$$\varphi = \frac{NI}{\frac{l}{\mu_0 \mu_r a}}$$

$$\Phi = \frac{M.M.F}{Relluctance} = \frac{F}{S}$$

where, NI = Magetomotive Force m.m.f in AT

$$S = \frac{l}{\mu_0 \mu_r a} = \text{Reluctance offered by the magnetic path}$$

• The expression of the flux is very much similar to expression for current in electric circuit.  $I = \frac{E.M.F}{Posistance}$ 

so that Current is analogous to Flux

E.M.F is analogous to M.M.F

Resistance is analogous to Reluctance



#### Series Magnetic Circuit

- Magnetic circuit is composed of various magnetic materials of different permeability's of different lengths and of different cross sectional area.
   Such a circuit is called composite magnetic circuit
- When such parts are connected one after the other the circuit is called series magnetic circuit





### Series Magnetic Circuit

Total ST= S1+S2+S3 = 
$$\frac{l1}{\mu_1 a_1} + \frac{l_2}{\mu_2 a_2} + \frac{l_3}{\mu_3 a_3}$$

Total 
$$\phi = \frac{Total \ m.m.f}{Total \ Reluctance} = \frac{NI}{S_T} = \frac{NI}{S_1 + S_2 + S_3}$$

$$NI = S_T \emptyset = (S_1 + S_2 + S_3) \varphi$$
$$NI = S_1 \emptyset + S_2 \emptyset + S_3 \emptyset$$

$$(m.m.f)T = (m.m.f)1 + (m.m.f)2 + (m.m.f)3$$

The total m.m.f can be expressed as

$$(m.m.f)T = H_1l_1 + H_2l_2 + H_3l_3$$

Where 
$$H_1 = \frac{B_1}{\mu_1}$$
,  $H_2 = \frac{B_2}{\mu_2}$ ,  $H_3 = \frac{B_3}{\mu_3}$ 



#### Series Magnetic Circuit with Air Gap

- Total m.m.f = NI AT
- Total Reluctance ST = Si+Sg
   Where Si = Reluctance of iron path
   Sg= Reluctance of air gap

$$S_T = S_i + S_g$$

 $S_i$  = Reluctance of iron path

$$S_i = \frac{l_i}{\mu a_i}$$
$$S_g = \frac{l_g}{\mu_0 a_i}$$



Total m.m.f = m.m.f for iron + m.m.f for air gap

$$NI = S_i \emptyset + S_g \emptyset$$
 AT for ring



#### Summary

- The total number of lines of force existing in a magnetic field is called magnetic flux. The unit of flux is called weber and flux is denoted by (Ø)
- When a coil or a conductor carries current, it produces the magnetic flux around it. Then it starts behaving as a magnet. Such a current carrying conductor is called an electromagnet
- Current is going into the plane of the paper 'cross'
- Current is coming out of the plane of the paper 'dot'

•
$$\Phi$$
=  $\frac{M.M.F}{Relluctance} = \frac{F}{S}$ 

 Composite magnetic circuits are connected one after the other is called series magnetic circuit