## **Problem 1:**

$$f(x) = (T_i - T_s) \cdot erf\left(\frac{x}{2\sqrt{\alpha \cdot t}}\right) + T_s$$

5

-10

-15

0.0

0.2

0.4

0.6

0.8

1.0

```
| bisection method:
| iteration: 1 | curr_root = 0.75 |
| iteration: 2 | curr_root = 0.625 |
| iteration: 3 | curr_root = 0.6875 |
| iteration: 4 | curr_root = 0.6875 |
| iteration: 5 | curr_root = 0.6796875 |
| iteration: 6 | curr_root = 0.6796875 |
| iteration: 7 | curr_root = 0.6796875 |
| iteration: 8 | curr_root = 0.6778125 |
| iteration: 9 | curr_root = 0.677734375 |
| iteration: 10 | curr_root = 0.6767578125 |
| iteration: 11 | curr_root = 0.6767578125 |
| iteration: 12 | curr_root = 0.676769183125 |
| iteration: 13 | curr_root = 0.67694091796875 |
| iteration: 14 | curr_root = 0.67694091796875 |
| iteration: 15 | curr_root = 0.67694091796875 |
| iteration: 16 | curr_root = 0.6769599145564875 |
| iteration: 17 | curr_root = 0.676959914550781 |
| iteration: 18 | curr_root = 0.67696189880817109 |
| iteration: 19 | curr_root = 0.6769618948087109 |
| iteration: 19 | curr_root = 0.6769618948087109 |
| iteration: 20 | curr_root = 0.67696189480837109 |
| iteration: 21 | curr_root = 0.67696189880837109 |
| iteration: 22 | curr_root = 0.6769618980013885 |
| iteration: 23 | curr_root = 0.67696185408013885 |
| iteration: 24 | curr_root = 0.67696185408013885 |
| iteration: 25 | curr_root = 0.676961855962872 |
| iteration: 26 | curr_root = 0.676961855082872 |
| iteration: 27 | curr_root = 0.676961855825517 |
| iteration: 28 | curr_root = 0.676961855825517 |
| iteration: 30 | curr_root = 0.67696185449473 |
| iteration: 31 | curr_root = 0.67696185449473 |
| iteration: 32 | curr_root = 0.67696185449473 |
| iteration: 33 | curr_root = 0.676961854489330 |
| iteration: 34 | curr_root = 0.67696185448933 |
| iteration: 35 | curr_root = 0.67696185438553 |
| iteration: 36 | curr_root = 0.676961854489833 |
| iteration: 37 | curr_root = 0.676961854489330 |
| iteration: 38 | curr_root = 0.676961854489330 |
| iteration: 39 | curr_root = 0.676961854489330 |
| iteration: 40 | curr_root = 0.676961854489330 |
| iteration: 41 | curr_root = 0.6769618544813086 |
| iteration: 42 | curr_root = 0.6769618544813086 |
| iteration: 43 | curr_ro
```

the approximate root is 0.6769618544819309 f(root) = -1.1368683772161603e-13

# (c):

# newton's method:

initial guess at x=0.01 meters Found solution after 4 iterations. the approximate root is 0.6769618544819365f(root) = -5.329070518200751e-15

initial guess at x=1 meters
Found solution after 4 iterations.
the approximate root is 0.6769618544819366
f(root) = 0.0

#### **Problem 4:**

```
lambda x: np.exp(3 * x)
        + 27 * x**4 * np.exp(x)
        - 9 * x**2 * np.exp(2 * x)
        lambda x: 3 * np.exp(3 * x)
        + (-18 * x**2 - 18 * x) * np.exp(2 * x)
        + (27 * x**4 + 108 * x**3) * np.exp(x)
         - 162 * x**5
 DDf = (
      lambda x: 9 * np.exp(3 * x)
+ (-36 * x**2 - 72 * x - 18) * np.exp(2 * x)
+ (27 * x**4 + 216 * x**3 + 324 * x**2) * np.exp(x)
        - 810 * x**4
tol = 1e-13
x0 = 3
 m = 3
                                                                                                                                                                 (i):
newton's method with initial guess at x=3
print("(i): \newton's method with initial guess at x=3\n")
[astar1, iter1] = newton(f, Df, x0, tol, max_iter=1000)
print("the approximate root is", astar1)
print("f(root) =", f(astar1))
                                                                                                                                                                 Found solution after 39 iterations. the approximate root is 3.7330596890832597 f(root) = 0.0  
Order of convergence evaluated with alpha = 1: [0.50757867 0.74893505 0.73290845 0.71833404 0.70574058 0.69540162 0.6873103 0.65124106 0.67685341 0.67378749 0.67172564 0.67042018 0.66969935 0.66946391 0.66946278 0.670429345 0.67170752 0.67382757 0.67074891 0.68190559 0.68898273 0.08555116 0.71340202 0.7266279 0.73656509 0.80890729 0.94654482 0.72319919 0.57718158 45.44962427 0.65812179 0.65390651 0.64732316 0.63656239 0.61948291 0.58897791 0.53735942 0.47459956 0.
print("order of convergence evaluated with alpha = 1:")
print(orderOfConvergence(astar1, iter1, 1))
print("(ii):\nmodified newton's method from class x0=3:\n")
 \begin{array}{l} mu = lambda \ x: \ f(x) \ / \ Df(x) \\ Dmu = lambda \ x: \ (Df(x) \ * \ Df(x) \ - \ f(x) \ * \ DDf(x)) \ / \ (Df(x) \ ** \ 2) \\ \end{array} 
[astar2, iter2] = newton(mu, Dmu, x0, tol, max_iter=1000) print("the approximate root is", astar2)
                                                                                                                                                                  (ii):
modified newton's method from class x0=3:
print("f(root) =", f(astar2))
print("order of convergence evaluated with alpha = 2:")
print(orderOfConvergence(astar2, iter2, 2))
                                                                                                                                                                  Found solution after 6 iterations.
the approximate root is 3.733078868957922
f(root) = 0.0
order of convergence evaluated with alpha = 2:
[1.10037411 1.07697453 1.02581073 0.96211941 0.92750855 0.
print("\n")
g = lambda x: x - m * f(x) / Df(x)
[astar3, _, iter3] = fixedpt(g, x0, tol, Nmax=1000)
print("Found solution after", len(iter3), "iterations.")
print("the approximate root is", astar3)
                                                                                                                                                                 (iii): modified newton's (fixed point) method from (2) x0=3 and m=3:
                                                                                                                                                                 Found solution after 10 iterations. the approximate root is 3.7330791332651536 f(root) = 0.0 order of convergence evaluated with alpha = 2: [4.88523303 0.26108624 0.33601366 0.45114718 0.61916366 0.80643188 0.90761802 0.
 print("f(root) =", f(astar3))
 print("order of convergence evaluated with alpha = 2:")
 print(orderOfConvergence(astar3, iter3[:-1], 2))
print("\n")
```

## **Problem 5:**

Note: using tolerance 10^-3
# of iterations too large otherwise

newton's method with initial guess at x=2:

Found solution after 6 iterations.
the approximate root is 1.134730528343629
f(root) = 6.573836771295305e-05

secant method with x0=2 and x1=1:
root found after 48 iterations.
the approximate root is 1.1346359946857905

| table with e         | rrors:             |            |                |
|----------------------|--------------------|------------|----------------|
| Error wi             | th newtons method: | Error with | secant method: |
| 0                    | 0.865269           |            | 0.118507       |
| 1                    | 0.545898           |            | 0.103961       |
| 2                    | 0.296008           |            | 0.090919       |
| 3                    | 0.120240           |            | 0.079289       |
| 4                    | 0.026808           |            | 0.068969       |
| 5                    | 0.001623           |            | 0.059853       |
| 5<br>6               | 0.000000           |            | 0.051833       |
| 7                    | 0.000000           |            | 0.044805       |
| 8                    | 0.000000           |            | 0.038665       |
| 9                    | 0.000000           |            | 0.033317       |
| 10                   | 0.000000           |            | 0.028671       |
| 11                   | 0.000000           |            | 0.024645       |
| 12                   | 0.000000           |            | 0.021162       |
| 13                   | 0.000000           |            | 0.018154       |
| 14                   | 0.000000           |            | 0.015561       |
| 15                   | 0.000000           |            | 0.013328       |
| 16                   | 0.000000           |            | 0.011407       |
| 17                   | 0.000000           |            | 0.009757       |
| 18                   | 0.000000           |            | 0.003737       |
| 19                   | 0.000000           |            | 0.007125       |
| 20                   | 0.000000           |            | 0.006084       |
| 21                   | 0.000000           |            | 0.005191       |
| 22                   | 0.000000           |            | 0.004426       |
| 23                   | 0.000000           |            | 0.003772       |
| 24                   | 0.000000           |            | 0.003772       |
| 25                   | 0.000000           |            | 0.002732       |
| 26                   | 0.000000           |            | 0.002732       |
| 27                   | 0.000000           |            | 0.001972       |
| 28                   | 0.000000           |            | 0.001572       |
| 29                   | 0.000000           |            | 0.001416       |
| 30                   | 0.000000           |            | 0.001410       |
| 31                   | 0.000000           |            | 0.001010       |
| 32                   | 0.000000           |            | 0.000850       |
| 33                   | 0.000000           |            | 0.000713       |
| 34                   | 0.000000           |            | 0.000596       |
| 35                   | 0.000000           |            | 0.000497       |
| 36                   | 0.000000           |            | 0.000497       |
| 30<br>37             | 0.000000           |            | 0.000338       |
| 38                   | 0.000000           |            | 0.000276       |
| 39                   | 0.000000           |            | 0.000270       |
| 40                   | 0.000000           |            | 0.000178       |
| 41                   | 0.000000           |            | 0.000178       |
| 41                   | 0.000000           |            | 0.000139       |
| 42                   | 0.000000           |            | 0.000105       |
| 43<br>44             | 0.000000           |            | 0.000077       |
| 4 <del>4</del><br>45 | 0.000000           |            | 0.000033       |
| 45<br>46             | 0.000000           |            | 0.000033       |
| 46<br>47             | 0.000000           |            | 0.000015       |
| 4/                   | 0.000000           |            | 0.000000       |



f(root) = -0.0009065966333561271

