Course Code:	Subject Title: Operations Research	
	Year and Semester: IV Year I Semester	

COURSE OBJECTIVES:

- 1. To understand the basics of linear programming, transportation, queueing, sequencing of jobs, replacement, inventory and simulation problems.
- 2. To apply linear programming, transportation and assignment models to solve real life problems.
- 3. To apply Sequencing, queueing, Game and Replacement theories to solve problems.
- 4. Apply knowledge of inventory control and simulation to solve practical industrial problems.

COURSE OUTCOMES: Students will be able to:

SN	OUTCOME	Cognitive Levels as per Bloom's Taxonomy	Weightage (%)
CO1	The understand the basics of linear programming, transportation, queueing, sequencing of jobs, replacement, inventory, and simulation problems {Understand level, KL2}	L1, L2	20
CO2	To apply linear programming, transportation, and assignment models to solve real life problems. {Apply level, KL3}	L1, L2, L3	20
CO3	To apply queuing and sequencing theories to solve real life problems. {Apply level, KL3}	L1, L2, L3	20
CO4	To Recognize and solve queuing and game theory problems. {Apply level, KL3}	L1, L2, L3	20
CO5	The Model the project management problems through CPM and PERT. {Apply level, KL3 }	L1, L2, L3,	20

WEIGHTAGE OF BLOOM'S LEGENDS & PERCENTAGEOF QUESTIONS IN EXAMINATIONS:

L1 (Remembering) = 30- 40%, L2 (Understanding)= 30 - 40%, L3 (Applying) = 10-20 %, L4 (Analysing) = 10 - 20%, Easy (%) = 15%-20%, Average (%)= 60% - 70%, Difficult (%)= 15% - 20% TOTAL = L1 + L2 + L3 + L4 = 100%(on an average about 2minutes per mark)

Note: This specification weightage in above shall be treated as a general guideline for students, teachers and paper setters. The actual distribution of marks in the question paper may vary slightly.

DETAILED SYLLABUS:

UNIT-1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

INTRODUCTION TO OPERATIONS RESEARCH: History, definition, operations research models, phases of implementing operations research in practice, applications.

LINEAR PROGRAMMING: Introduction, formulation, graphical solution, simplex method, Big M and two-phase methods, duality principle.

UNIT-II: Understanding Harmony in the Human Being - Harmony in Myself!

TRANSPORTATION: Introduction to the problem, LP formulation of a transportation problem. Basic feasible solution by north-west corner method, Vogel's approximation method, least cost method.

ASSIGNMENT: One to one assignment problem, optimal solutions, unbalanced assignment matrix, travelling salesman problem, maximization in A.P.

UNIT-III: Understanding Harmony in the Family and Society- Harmony in Human Relationship

QUEUING THEORY: Introduction, Kendall's notation, classification of queuing models, single server and multi-server models, Poisson arrival, exponential service, infinite population.

SEQUENCING: Introduction, assumptions, processing n-jobs through two machines, n-jobs through three machines, and graphic solution for processing 2 jobs through n machines with different order of sequence.

UNIT-IV: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

GAME THEORY: Introduction, game with pure strategies, game with mixed strategies, dominance principle, graphical method for 2xn and mx2 games. **REPLACEMENT THEORY:** Introduction, replacement of items that deteriorate with time - value of money unchanging and changing, simple probabilistic model for replacement of items that fail completely.

UNIT-V: Implications of the above Holistic Understanding of Harmony on Professional Ethics

NETWORK ANALYSIS: Project planning, scheduling, and controlling – tools for project management – critical path method – Programme evaluation and review technique (PERT) – cost analysis and crashing – resource levelling – updating.

TEXTBOOKS:

- 1. Operations Research, by S.D. Sharma, Kedarnath & Ramnath publications (15th edition), 2013.
- 2.Introduction to Operations Research, by Taha, Pearson Education, New Delhi, (8th edition), 2008.

REFERENCEBOOKS:

- 1. Operations Research, (4th edition) by A.M. Natarajan, P. Balasubramani, A. Tamilarasi, Pearson Education, New Delhi, 2009.
- 2. Operations Research, (2nd edition) by R. Panner Selvam, 2009, PHI Publications, Noida.
- 3. Operations Research, (2nd edition) by Wagner, 2007, PHI Publications, Noida
- 4. Operation Research, (4th edition) by J.K. Sharma, 2009, Macmillan publishers, India Ltd. New Delhi.

MICRO-SYLLABUS:

Unit	Module	Micro content
1		History and Definition.
	Introduction to	operations research models
		phases of implementing operations research in

	Operations Research	practice	
		Applications of Operations research	
		Introduction, formulation	
		graphical solution	
		simplex method,	
		Big M	
	I ingar Programming	two-phase methods	
	Linear Programming	duality principle	
		Understanding the harmony of I with the Body:	
		Sanyam and Health; correct appraisal of	
		Physical needs, meaning of Prosperity in detail	
		Programs to ensure Sanyam and Health.	
Unit	Module	Microcontent	
		Introduction to the problem	
		LP formulation of a transportation problem.	
		Basic feasible solution by north-west corner	
	Transportation	method	
		Basic feasible solution by Vogel's	
2		approximation method	
_		Basic feasible solution by least cost method.	
		One to one assignment problem,	
	Assignment	optimal solutions	
		unbalanced assignment matrix	
		travelling salesman problem	
		maximization in A.P.	
Unit	Module	Microcontent	
		Introduction	
	Queuing Theory	Kendall's notation	
		classification of queuing models	
		single server and multi-server models	
		Poisson arrival	
3		exponential service	
		infinite population Introduction, assumptions	
		•	
	Sequencing	Processing n jobs through two machines	
		Processing n-jobs through three machines graphic solution for processing 2 jobs through n	
		machines with different order of sequence	
Unit	Module	Microcontent	
Circ	Wibuut	Introduction	
		game with pure strategies	
4	Game Theory	game with mixed strategies	
		dominance principle	
		graphical method for 2xn games	
		graphical method for mx2 games	
		Introduction	
	Renlacement Theory	replacement of items that deteriorate with time -	
	Replacement Theory	value of money unchanging	
		value of money unchanging	

		replacement of items that deteriorate with time - value of money changing	
		simple probabilistic model for replacement of items that fail completely	
Unit	Module	Microcontent	
5	Network Analysis	Project planning	
		scheduling and controlling	
		tools for project management	
		critical path method	
		Programme evaluation and review technique (PERT)	
		cost analysis and crashing	
		resource leveling and updating	