THE CHAIN RULE §4.1

THEOREM 36.1 (CHAIN RULE): Suppose q is differentiable at s and f is differentiable at q(s). Then $f \circ g$ is differentiable at s and

$$(f \circ g)'(s) = f'(g(s))g'(s).$$

- (1) Use the chain rule to compute the derivative of $\sqrt{3x^2 + 13}$.
- (2) Given that the derivative of $\sin(x)$ at x = r is $\cos(r)$, and reusing any earlier computations, compute the derivative of the function

$$j(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

at any real number x = r.

- (3) Proof of Chain Rule:
 - (a) In the setting of the statement, set r = g(s) and define

$$d(y) = \begin{cases} \frac{f(y) - f(r)}{y - r} & \text{if } y \neq r \\ f'(r) & \text{if } y = r. \end{cases}$$

Show that d is continuous at y = r.

(b) Show that if $x \neq s$, then

$$\frac{f(g(x)) - f(g(s))}{x - s} = d(g(x)) \cdot \frac{g(x) - g(s)}{x - s}.$$

Note: You might have to consider separately the cases with $g(x) \neq r$ and g(x) = r.

- (c) Use the fact that a composition of continuous functions (at the suitable inputs) is continuous to compute $\lim_{x\to s}d(g(x))$. (d) Compute $\lim_{x\to s}$ on both sides of (b). Use your computation to deduce the Chain Rule.