Verifiable Delay Functions from Isogenies and Pairings

Luca De Feo

joint work with J. Burdges, S. Masson, C. Petit, A. Sanso

Université Paris Saclay - UVSQ, France

July 13, 2019, SIAM AG, Bern

Slides online at https://defeo.lu/docet

Tired of *SIDH?

Tired of *SIDH?

Enough quantum FUD?

Tired of *SIDH?

Enough quantum FUD?

Ready for a new buzzword?

Distributed lottery

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_b)$.

Distributed lottery

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_b)$.

Fixes

Make the hash function slooooooooooooooooooo;

Distributed lottery

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_b)$.

Fixes

- Make the hash function **sloooooooooooooooooooo**;
- Make it possible to verify $w = H(s_A, \ldots, s_b)$ fast.

Wanted

```
Function (family) f: X \to Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - ightharpoonup on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Wanted

```
Function (family) f: X \to Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - \triangleright on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Wanted

Function (family) $f: X \to Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - lacktriangle even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Wanted

Function (family) $f: X \to Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - \triangleright on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You're probably wrong!

Sequentiality

Ideal functionality:

$$y = f(x) = \underbrace{H(H(\cdots(H(x))))}_{T \text{ times}}$$

- Sequential assuming hash output "unpredictability",
- but how do you verify?

VDFs from groups of unknown order

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification (Wesolowski 2019, Pietrzak 2019)

VDFs from groups of unknown order

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification (Wesolowski 2019, Pietrzak 2019)

Aha!

Isogeny <3 Pairing

Let $\phi: E \to E'$, let $P \in E[N]$ and $Q \in E'[N]$. Then

$$e_N(P,\hat{\phi}(Q))=e_N(\phi(P),Q)$$

$$egin{aligned} X_1 imes X_2 & \stackrel{\phi imes 1}{\longrightarrow} X_1 imes X_2 \ 1 imes \hat{\phi} igg| & igg| e_N \ X_1 imes X_2 & \stackrel{e_N}{\longrightarrow} \mathbb{F}_{p^k} \end{aligned}$$

Isogeny <3 Pairing

Let $\phi: E o E'$, let $P \in E[N]$ and $Q \in E'[N]$. Then

$$e_N(P,\hat{\phi}(Q))=e_N(\phi(P),Q)$$

$$egin{aligned} X_1 imes X_2 & \stackrel{\phi imes 1}{\longrightarrow} X_1 imes X_2 \ 1 imes \hat{\phi} & igg| & igg| e_N \ X_1 imes X_2 & \stackrel{e_N}{\longrightarrow} \mathbb{F}_{p^k} \end{aligned}$$

Idea #1

Use the equation for a BLS-like signature scheme: US patent 8,250,367 (Broker, Charles, Lauter).

Isogeny VDF

Assume $\deg \phi = 2^T$

$$e_N(\phi(P),\phi(Q))=e_N(P,Q)^{2^T}$$

Right side: known group structure: $2^T \rightarrow 2^T \mod p^k - 1$;

Left side: can evaluate ϕ in less than T steps?

Isogeny VDF (\mathbb{F}_p -version)

Setup

- ullet Pairing friendly supersingular curve E/\mathbb{F}_p
- Isogeny $\phi: E o E'$ of degree 2^T ,
- ullet Point $P\in E[(N,\pi-1)]$, image $\phi(P)$.

Evaluation

Input: random $Q \in E'[(N, \pi + 1)]$,

Output: $\hat{\phi}(Q)$.

Verification

$$e_N(P,\hat{\phi}(Q)) \stackrel{?}{=} e_N(\phi(P),Q).$$

Isogeny VDF (\mathbb{F}_p -version)

Trusted Setup

- Pairing friendly supersingular curve E/\mathbb{F}_p with unknown endomorphism ring!!!
- ullet Isogeny $\phi: E
 ightarrow E'$ of degree 2^T ,
- ullet Point $P\in E[(N,\pi-1)]$, image $\phi(P)$.

Evaluation

Input: random $Q \in E'[(N,\pi+1)]$,

Output: $\hat{\phi}(Q)$.

Verification

$$e_N(P,\hat{\phi}(Q)) \stackrel{?}{=} e_N(\phi(P),Q).$$

Sequentiality?

$$x \longmapsto x^2$$

$$x \longmapsto x \frac{x \alpha_i - 1}{x - \alpha_i}$$

No speedup? Even with unlimited parallelism? Really?

See Bernstein, Sorenson. Modular exponentiation via the explicit Chinese remainder theorem.

