Slide 5-Matrices Algebra II MAT2040 Linear Algebra

SSE, CUHK(SZ)

Example 5.1

(1)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Then

$$AB = \begin{bmatrix} A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, A \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$BA = \begin{bmatrix} B \begin{bmatrix} 0 \\ 0 \end{bmatrix}, B \begin{bmatrix} 1 \\ 0 \end{bmatrix} B \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Remark

- (1) AB = O does not implies that A = O or B = O.
- (2) $AB \neq BA$.

Definition 5.2 (**Diagonal Matrix**) The square matrix $A = (a_{ij})_{n \times n}$ is called a diagonal matrix if $a_{ij} = 0$ whenever $i \neq j$. A is denoted by $A = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$. In particular, $I = I_n = \operatorname{diag}(1, 1, \dots, 1)$ is the **identity matrix** of size n.

Example 5.3

$$\operatorname{diag}(1,2,-5,3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Property 5.4 (Multiplication of Identity Matrix)

$$AI_n = I_n A = A, \quad \forall A \in \mathbb{R}^{n \times n}$$

Remark

- 1. if $A \in \mathbb{R}^{m \times n}$, then $I_m A = A$ and $AI_n = A$.
- 2. if $\mathbf{x} \in \mathbb{R}^{n \times 1}$, then $I_n \mathbf{x} = \mathbf{x}$.
- 3. let $A = (a_{ij})_{m \times n}$, then $AO_{n \times l} = O_{m \times l}$ and $O_{k \times m}A = O_{k \times n}$.

Definition 5.5 (Transpose of Matrix) Let $A = (a_{ij})_{m \times n}$, then the transpose of A is the matrix $B = (b_{ji})_{n \times m}$, where $b_{ji} = a_{ij} (i = 1, \dots, m, j = 1, \dots, n)$. Notation: $B = A^T$. Suppose that

$$A = \begin{bmatrix} \vec{\mathbf{a}}_1 \\ \vec{\mathbf{a}}_2 \\ \vdots \\ \vec{\mathbf{a}}_m \end{bmatrix}$$

Then,

$$A^T = \begin{bmatrix} \vec{a}_1^T, \ \vec{a}_2^T, \ \dots, \ \vec{a}_m^T \end{bmatrix}$$

Example 5.6

$$A = \begin{bmatrix} 3 & 1 \\ -2 & 0 \\ 4 & -1 \end{bmatrix}, \quad A^T = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 0 & -1 \end{bmatrix}$$

Property 5.7 (Matrix transpose) Let $A, B \in \mathbb{R}^{m \times n}$, $\alpha \in \mathbb{R}$, then

(1)
$$(A+B)^T = A^T + B^T$$
.

(2)
$$(\alpha A)^T = \alpha A^T$$
.

(3) $(A^T)^T = A$.

Proof. Only show (1), other are exercises.

(1)
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$$
.

$$(j, i)$$
-entry of A^T is a_{ij} , (j, i) -entry of B^T is b_{ij} , (i, j) -entry of $A + B$ is $a_{ij} + b_{ij}$ (j, i) -entry of $(A + B)^T$ is $a_{ij} + b_{ij}$ The (j, i) -entry of $(A + B)^T$ is $a_{ij} + b_{ij}$

The (j, i)-entry of $(A + B)^T$ is $a_{ij} + b_{ij}$, and the (j, i)-entry of $A^T + B^T$ is $a_{ij} + b_{ij}$.

Property 5.8 (The transpose for the product of Matrices) Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times l}$, then $(AB)^T = B^T A^T$.

Proof. $A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times l}$. The (i, j)-entry of AB is $\sum_{k=1}^{n} a_{ik} b_{kj}$, and the (j, i)-entry of $(AB)^T$ is $\sum_{k=1}^{n} a_{ik} b_{kj}$.

(j,k)-entry of B^T is b_{kj} , and (k,i)-entry of A^T is a_{ik} , and (j,i)-entry of B^TA^T is $\sum_{k=1}^n b_{kj}a_{ik} = \sum_{k=1}^n a_{ik}b_{kj}$.

Thus, (j, i)-entry of $(AB)^T$ and B^TA^T are the same.

Example 5.9

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$$
$$AB = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$$

thus

$$(AB)^{T} = \begin{bmatrix} 3 & -7 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} -1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix} = [3, -7]$$

Thus

$$(AB)^T = B^T A^T$$

Definition 5.10 (Symmetric Matrix) If a matrix A satisfies $A = A^T$, we call A is symmetric.

Example 5.11

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 1 \end{bmatrix}$$

Remark 1. Symmetric matrix must be a square matrix. (Suppose $A \in \mathbb{R}^{m \times n}$, then A^T is a $n \times m$ matrix, $A = A^T$ implies that m = n)

Remark 2. Note that the entries of a symmetric matrix A are symmetric across the diagonal line.

Exercise

For any $m \times n$ matrix A, show that A^TA and AA^T are two symmetric matrices.

Definition 5.12 (Skew-symmetric Matrix) If a matrix A satisfies $A^T = -A$, we call A is skew-symmetric or anti-symmetric.

Example 5.13

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 4 & 5 \\ -4 & 0 & 6 \\ -5 & -6 & 0 \end{bmatrix}$$

Property 5.14 Any square matrix can be written as a sum of a symmetric matrix and a skew-symmetric matrix.

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

Example 5.15 Consider the following linear system

$$-7x_1 - 6x_2 - 12x_3 = -33,$$

$$5x_1 + 5x_2 + 7x_3 = 24,$$

$$x_1 + 4x_3 = 5.$$

It can be represented as

$$A\mathbf{x} = \mathbf{b}$$
,

where

$$A = \begin{bmatrix} -7 & -6 & -12 \\ 5 & 5 & 7 \\ 1 & 0 & 4 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -33 \\ 24 \\ 5 \end{bmatrix}$$

Now define

$$B = \begin{bmatrix} -10 & -12 & -9 \\ \frac{13}{2} & 8 & \frac{11}{2} \\ \frac{5}{2} & 3 & \frac{5}{2} \end{bmatrix}$$

One can check that

$$BA = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3$$

Apply this to solve the equation

$$\mathbf{x} = I_3 \mathbf{x} = BA\mathbf{x} = B\mathbf{b} = \begin{bmatrix} -10 & -12 & -9 \\ \frac{13}{2} & 8 & \frac{11}{2} \\ \frac{5}{2} & 3 & \frac{5}{2} \end{bmatrix} \begin{bmatrix} -33 \\ 24 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$$

Definition 5.16 (Invertible Matrix) Let $A, B \in \mathbb{R}^{n \times n}$ be such that

$$AB = BA = I_n$$

then A is invertible and B is the inverse of A. We shall write $B = A^{-1}$.

Remark. (1) For a linear system $A\mathbf{x} = \mathbf{b}$ with $A_{n \times n}$. If A is invertible, then the system has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$. $A^{-1}A\mathbf{x} = I_n\mathbf{x} = A^{-1}\mathbf{b}$, this gives $\mathbf{x} = A^{-1}\mathbf{b}$.

(2) **Invertible matrices** are sometimes called **nonsingular** or **nondegenerate matrices**. On the other hand, square matrices that are **not invertible** are also called **singular** or **degenerate**.

Question:

For any $A \in \mathbb{R}^{n \times n}$, does there exist B, s.t. $BA = AB = I_n$?

Example 5.17

(1) Let

$$A = \left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array} \right]$$

then

$$\left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array}\right] \left[\begin{array}{cc} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{array}\right] = \left[\begin{array}{cc} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,

$$A^{-1} = \left[\begin{array}{cc} \frac{1}{3} & 0\\ 0 & \frac{1}{4} \end{array} \right]$$

(2) Let

$$A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right]$$

Suppose

$$B = \left[\begin{array}{cc} w & x \\ y & z \end{array} \right] = A^{-1},$$

then

$$\left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

But

$$\left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} 2w + y & 2x + z \\ 0 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

In this case,

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$
 is not invertible.

Remark

- (1) The diagonal matrix $A = diag(a_{11}, a_{22}, \dots, a_{nn})$ is invertible if and only if all $a_{ii} \neq 0, i = 1, \dots, n$, and $A^{-1} = diag(a_{11}^{-1}, a_{22}^{-1}, \dots, a_{nn}^{-1})$.
- (2) Not all square matrices are invertible.

Theorem 5.18 (Matrix inverse is unique) Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Proof. Let B, C be the inverse of A, thus, AB = BA = I, AC = CA = I. Then B = BI = BAC = IC = C

Property 5.19 (Matrix Inverse of a Matrix Transpose) Suppose A is an invertible matrix. Then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof.
$$A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I$$
 and $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.

Property 5.20 (Matrix Inverse of a Scalar Multiple) Suppose A is an invertible matrix and α is a nonzero scalar. Then αA is invertible and $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$.

Proof. $(\alpha A)(\frac{1}{\alpha}A^{-1}) = AA^{-1} = I$, and $(\frac{1}{\alpha}A^{-1})(\alpha A) = A^{-1}A = I$.

Property 5.21 (Matrix Inverse of a Matrix Inverse) Suppose A is an invertible matrix. Then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

Proof. By definition, $AA^{-1} = A^{-1}A = I$, thus $(A^{-1})^{-1} = A$.

Theorem 5.22 (Matrix Inverse of Matrices Product) Suppose A and B are invertible matrices of size n, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Proof. By assumption, A^{-1} and B^{-1} exist. Thus,

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I.$$

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I.$$

Hence, $(AB)^{-1} = B^{-1}A^{-1}$.

Remark. $(A + B)^{-1} \neq A^{-1} + B^{-1}$, can you find an counterexample?