

Consolidación de Tecnologías de la Información y las Comunicaciones.

Régimen de Dictado (Cuatrimestral - 2018)

Ing. Gabriel E. Arellano

Índice de Contenidos

	1
Consolidación de Tecnologías de la Información y las Comunicaciones.	1
Datos de la Asignatura	3
Fundamentación de la materia	4
Objetivos y/o Propósitos	4
Programa sintético	4
Programa analítico	5
Metodología de enseñanza-aprendizaje	5
Evaluación	6
Seguimiento, orientación y apoyo a los alumnos	6
Integración con otras materias	7
Bibliografía	8
Recursos Didácticos	9
Cronograma de clases	10

Datos de la Asignatura

Carrera: Ingeniería en Sistemas de Información

Asignatura: Consolidación de Tecnologías de la Información y las Comunicaciones.

Código: K955Q

Docente Responsable: Ing. Gabriel E. Arellano

Cargo y situación: Profesor Adjunto Ordinario con Dedicación Exclusiva

Área: Computación

Bloque Curricular: Tecnología Aplicada

Carácter: Electiva

Régimen de Dictado: Cuatrimestral **Horas:** 3 horas semanales al año.

Composición del Equipo Docente

Profesor:

Apellido y nombre: Gabriel E. Arellano

Título de grado: Ingeniero en Sistemas de Información

Título de posgrado: -

Cargo docente: Profesor Adjunto Ordinario

Auxiliar:

Apellido y nombre: Luis Emilio Farabello

Título de grado: Ingeniero en Sistemas de Información

Título de posgrado: -

Cargo docente: Auxiliar de T.P. Interino

Fundamentación de la materia

Objetivos y/o Propósitos

Capacitar al alumno en el análisis, diseño e implementación de infraestructura que soporte el funcionamiento de los sistemas de información, utilizando tecnologías de virtualización que permitan consolidar los servidores, el almacenamiento y las comunicaciones de la organización.

Se desea que al aprobar la materia, el alumno:

- 1. Esté familiarizado con las tecnologías empleadas en la consolidación de servidores.
- 2. Pueda estructurar conceptualmente la infraestructura de base para el funcionamiento de los sistemas de información.
- 3. Pueda analizar las infraestructuras existentes, plantear mejoras utilizando conceptos de consolidación y proyectar la utilización de plataformas de Cloud Computing dentro de una organización.
- 4. Cuente con las herramientas conceptuales que le permitan encontrar las herramientas necesarias para plantear soluciones de infraestructura que se incorporen a los sistemas de información.

Programa sintético

A continuación se enuncia el programa sintético de la materia:

"Problemas de los Centros de Cómputo. Tecnologías de Consolidación de Servidores: Emulación, Virtualización, Paravirtualización y Máquinas Virtuales de Proceso. Tecnologías de Consolidación de Almacenamiento y Redes: NAS/SAN, VLAN, VPN. Construyendo y Administrando una Infraestructura Virtualizada. Cloud Computing: Nubes Privadas, Nubes Públicas, Cuestiones de Seguridad y Governance en Nubes Públicas."

Programa analítico

Aquí se detalla el programa analítico de la cátedra:

Unidad 1: Introducción a la Consolidación de TICs

Problemas de los Centros de Cómputo. Consolidación de Servidores. Tipos de Consolidación de Servidores. Consolidación de Almacenamiento y Redes. Tecnologías de Consolidación de Almacenamiento y Redes. La Virtualización en el Centro de Cómputo. Ventajas y Desventajas de la Virtualización como Herramienta de Consolidación.

Unidad 2: Tecnologías de Consolidación de Servidores

Tecnologías de Virtualización de Escritorio y de Servidores. Casos de Estudio: VirtualBox, KVM+QEmu. Paravirtualización y Máquinas Virtuales de Proceso: Casos de Estudio: LxC, Docker.

Unidad 3: Tecnologías de Consolidación de Almacenamiento y Redes

Tecnologías de Consolidación de Almacenamiento. Network-Attached Storage (SAN). Storage Area Network (SAN). Caso de Estudio: FreeNAS. Tecnologías de Consolidación de Redes. VLANs. VPN. Caso de Estudio: OpenVPN. Construyendo y Administrando una Infraestructura Virtualizada: Casos de Estudio: Proxmox VE, Kubernetes.

Unidad 4: Cloud Computing

Definiendo Cloud Computing . Nubes Privadas. Caso de Estudio: OpenStack. Nubes Públicas. Caso de Estudio: Google App Engine. Cuestiones de Seguridad y Governance en Nubes Públicas.

Metodología de enseñanza-aprendizaje

Se utilizará la enseñanza mediante la presentación de los conceptos teóricos (utilizando presentaciones, pizarra y demostraciones) y a continuación la resolución de prácticas de laboratorio a fin de que los estudiantes apliquen los conocimientos presentados estimulándolos a resolverlos de la forma más eficaz y eficiente.

Evaluación

Para evaluar el desempeño y grado de cumplimiento de los objetivos por parte de los alumnos se emplearán diversos mecanismos, entre ellos: prácticas de laboratorio (exigiendo la entrega de informes), proyecto final de práctica, participación en clase y en las actividades aúlicas.

El alumno deberá presentar durante la cursada una propuesta de proyecto final, con la aprobación de la citada propuesta, con nota igual o superior a 4, accederá a la regularización de la materia.

En caso de que el alumno presente y defienda el informe del citado proyecto con una nota igual o superior a 7 antes del cierre de las notas del ciclo lectivo podrá acceder a la promoción directa de la asignatura.

En caso de que el alumno no defienda el proyecto antes del cierre del ciclo lectivo o en la defensa obtenga una nota inferior a 7, quedará regular y deberá defender el proyecto en una mesa de examen final.

Seguimiento, orientación y apoyo a los alumnos

Se establece un día de la semana para que los alumnos realicen consultas presenciales extra-clase, en el cual el docente a cargo de la cátedra estará a disposición de los alumnos para evacuar dudas sobre aspectos teóricos o prácticos de la asignatura:

Miércoles: 17 a 19 hs. Oficina 35.

Además se brindan diversos mecanismos no presenciales para brindar apoyo a los alumnos:

- Contacto a través de la página Facebook de la cátedra.
- Los alumnos además cuentan con las cuentas de correo electrónico de los docentes para ponerse en contacto y realizar consultas.

Integración con otras materias

La cátedra se integra al resto de las materias de la carrera como se detalla en la presente sección.

Integración vertical

La cátedra toma elementos de las siguientes asignaturas:

- K9515 Arquitectura de Computadoras
- K952A Sistemas Operativos
- K9537 Redes de Información

La cátedra contribuye elementos a las siguientes asignaturas:

K955G - Desarrollo de Aplicaciones Cliente-Servidor

Por lo cual, para cursar la materia es recomendable:

Tener Aprobadas:

- K952A Sistemas Operativos
- K951E Inglés II

Tener Regularizadas:

K9537 - Redes de Información

Y, para aprobar/promover la materia sería recomendable:

Tener Aprobadas:

K9537 - Redes de Información

Integración horizontal

La integra horizontalmente con las siguientes asignaturas:

- K955J Seguridad en Sistemas de Información
- K955G Proyecto Final (Integradora)

Bibliografía

Obligatoria:

"QEMU, Kernel-based Virtual Machine (KVM), Xen & libvirt"

R. Warnke, T. Ritzau.

Editorial Books on Demand GmbH, Norderstedt. Edición 2010.

ISBN: 978-3-8370-0876-0.

Disponible en formato Wiki en: http://qemu-buch.de

Disponible para descarga en: https://scribd.com/doc/81876926

"The Docker Book"

James Turnbull.

Version: v17.03.0. Edición 2017.

Disponible en: https://github.com/TechBookHunter/Free-Docker-Books

"Introduction to Storage Area Networks"

Tate, Beck, Ibarra, Kumaravel, Miklas

IBM Redbooks publications. 9na. Edición (2017).

ISBN: 978-0738442884.

Disponible en: http://www.redbooks.ibm.com/redbooks/pdfs/sg245470.pdf

"Exploring Cloud Computing"

Michael Wittig and Andreas Wittig. Editorial Manning. Edición 2017.

ISBN 978-1617294877.

Disponible en: https://www.manning.com/books/exploring-cloud-computing

Recomendada:

"The Best Damn Server Virtualization Book Period"

Rogier Dittner, David Rule Jr.

Editorial Syngress Publishing, Inc. (2007).

ISBN: 978-1-59749-217-1

"Virtual Machines: Versatile Platforms for Systems and Processess"

J. Smith, R. Nair.

Editorial Morgan Kaufman, Edición 2005.

ISBN: 978-1558609105.

"Learning FreeNAS"

Garv Sims.

Editorial PACKT Publishing. Edición 2008.

ISBN: 9781847194688.

Recursos Didácticos

A continuación enumeraremos los recursos didácticos empleados por la cátedra para fortalecer el aprendizaje significativo de los alumnos.

Presentaciones

En temáticas que se beneficien de la utilización de diapositivas, se emplearán presentaciones con ayuda de cañón.

Guías de Laboratorio

Para poder realizar una exploración empírica de los conceptos desarrollados en el aula se emplean un conjunto de guías prácticas a ser desarrolladas en el Laboratorio de Ingeniería en Sistemas de Información de la Facultad.

Las actividades de laboratorio propuestas por la cátedra son las siguientes:

- VirtualBox: Virtualización de Escritorio empleando VirtualBox.
- VboxManage: Uso de VirtualBox en servidores.
- KVM+QEmu: Virtualización de Servidores usando KVM+QEmu.
- Vagrant: Creación y administración de máquinas virtuales para desarrollo utilizando vagrant.
- LXC: Virtualización de containers LxC en GNU/Linux.
- Docker: Máquinas virtuales de aplicación con Docker.
- Administración de configuraciones: probar herramientas de provisionamiento de maquinas virtuales y containers. Se analizarán: Chef, Puppet, Ansible y Salt.
- FreeNAS: Montar y utilizar un disco iSCSI en un equipo con GNU/Linux.
- Proxmox V.E.: Implementar y administrar una infraestructura virtualizada utilizando Proxmox V.E.
- FreeNAS: Correr una máquina virtual o un container almacenado en el NAS.
- Orquestación de containers: Uso de Kubernetes para administrar un cluster de containers.
- Google App Engine: Desplegar y correr una aplicación utilizando los servicios de Google App Engine.

Cronograma de clases

Semana	Temas
1	Presentación de la Materia. Problemas de los Centros de Cómputo. Introducción a la consolidación de Servidores, Almacenamiento y Redes. La Virtualización en el Centro de Cómputo. Práctica: Virtualización de Escritorio empleando VirtualBox
2	Ventajas y Desventajas de la Virtualización como Herramienta de Consolidación. Tecnologías de Virtualización de Escritorio. Caso de Estudio: VirtualBox. Práctica: Utilizando VirtualBox en servidores (VboxManage). Práctica: Redes con VirtualBox.
3	Tecnologías de Virtualización de Servidores. Caso de Estudio: KVM+QEmu. Práctica: Virtualización de Servidores usando KVM+QEmu.
4	Maquinas virtuales para desarrolladores de aplicaciones. Práctica: Uso de Vagrant.
5	Paravirtualización y Máquinas Virtuales de Proceso: Caso de Estudio: LxC. Práctica: Virtualización de containers LxC en GNU/Linux.
6	Máquinas Virtuales de Proceso: Caso de Estudio: Docker. Práctica: Containers Docker. Práctica: Uso de Docker compose.
7	Herramientas de provisionamiento de máquinas virtuales y containers. Práctica: Provisionando máquinas virtuales con Ansible. Práctica: Provisionando containers Docker utilizando Puppet.
8	Herramientas de orquestación de máquinas virtuales y containers. Práctica: Docker Machine y Docker Swarm.
9	Construyendo y Administrando una Infraestructura Virtualizada. Caso de Estudio: Proxmox VE. Práctica: Proxmox VE.
10	Construyendo y Administrando una Infraestructura Virtualizada. Caso de Estudio: Kubernetes. Practica: Kubernetes.
11	Tecnologías de Consolidación de Almacenamiento. Network-Attached Storage (SAN). Storage Area Network (SAN). Caso de Estudio: FreeNAS. Práctica: Montar y utilizar un disco iSCSI en un equipo con GNU/Linux. Práctica: Correr una máquina virtual o un container almacenado en el NAS. Tecnologías de Consolidación de Redes. VLANs. VPN.
12	Definiendo Cloud Computing . Nubes Privadas. Caso de Estudio: OpenStack.
13	Nubes Públicas. Caso de Estudio: Google App Engine.
14	Caso de Estudio: Google App Engine. Práctica: Desplegar y correr una aplicación en Google App Engine.
15	Cuestiones de Seguridad y Governance en Nubes Públicas. Práctica: Desplegar y correr una aplicación en Google App Engine.
16	Discusión de Propuestas de Trabajo Final.

