SIMPLIFIED HYBRID MODEL UNIT-8

## SIMPLIFIED HYBRID MODEL

In most practical cases it is appropriate to obtain approximate values of  $A_V$ ,  $A_i$  etc rather than calculating exact values. How the circuit can be modified without greatly reducing the accuracy. Fig. 4 shows the CE amplifier equivalent circuit in terms of h-parameters Since 1 /  $h_{oe}$  in parallel with  $R_L$  is approximately equal to  $R_L$  if 1 /  $h_{oe} >> R_L$  then  $h_{oe}$  may be neglected. Under these conditions.

$$I_c = h_{fe} I_B$$
.

$$h_{re} \ v_c = h_{re} \ I_c \ R_L = h_{re} \ h_{fe} \ I_b \ R_L$$
 .



Fig. 4

Since  $h_{fe}h_{re} \gg 0.01$ , this voltage may be neglected in comparison with  $h_{ic}$   $I_b$  drop across  $h_{ie}$  provided  $R_L$  is not very large. If load resistance  $R_L$  is small than hoe and  $h_{re}$  can be neglected.

$$\begin{split} A_I &= -\frac{h_{fe}}{1 + h_{oe} \ R_L} \quad \approx - h_{fe} \\ R_i &= h_{ie} \\ A_{ij} &= \frac{A_I \ R_L}{R_i} = -\frac{h_{fe} \ R_L}{h_{io}} \end{split}$$

Output impedence seems to be infinite. When  $V_s=0$ , and an external voltage is applied at the output we fined  $I_b=0$ ,  $I_C=0$ . True value depends upon  $R_S$  and lies between 40 K and 80K.

## K.CHIRANJEEVI,ECE,GMRIT

SIMPLIFIED HYBRID MODEL UNIT-8

On the same lines, the calculations for CC and CB can be done.

## **CE** amplifier with an emitter resistor:

The voltage gain of a CE stage depends upon  $h_{fe}$ . This transistor parameter depends upon temperature, aging and the operating point. Moreover,  $h_{fe}$  may vary widely from device to device, even for same type of transistor. To stabilize voltage gain A  $_V$  of each stage, it should be independent of  $h_{fe}$ . A simple and effective way is to connect an emitter resistor  $R_e$  as shown in fig. 5. The resistor provides negative feedback and provide stabilization.



Fig. 5

An approximate analysis of the circuit can be made using the simplified model.

Current gain 
$$A_i = \frac{I_L}{I_b} = -\frac{I_C}{I_b} = -\frac{h_{fe} I_b}{I_b}$$
$$= -h_{fe}$$

It is unaffected by the addition of  $R_{\rm C}$ .

Input resistance is given by

$$\begin{aligned} R_{i} &= \frac{V_{i}}{I_{b}} \\ &= \frac{h_{ie} I_{b} + (1 + h_{fe}) I_{b} R_{e}}{I_{b}} \\ &= h_{ie} = (1 + h_{fe}) R_{e} \end{aligned}$$

The input resistance increases by  $(1+h_{\rm fe})R_{\rm e}$ 

$$A_v = \frac{A_i R_L}{R_i} = \frac{-h_{\text{fe}} \ R_L}{h_{ie} + (1 + h_{fe}) R_e}$$

Clearly, the addition of Re reduces the voltage gain.

If 
$$(1+h_{\rm fe})R_{\rm e} >> h_{\rm ie}$$
 and  $h_{\rm fe} >> 1$ 

then

$$A_{v} = \frac{-h_{fe} R_{L}}{(1+h_{fe})R_{e}} \approx -\frac{R_{L}}{R_{e}}$$

Subject to above approximation  $A_{V}$  is completely stable. The output resistance is infinite for the approximate model.