Calcul de $T_{3,6}(q_4, q_5, q_6)$

Du MGD, il vient :

Aucun calcul à effectuer

Calcul de $T_{3,6}(q_1, q_2, q_3) - 1$

$$T_{16} = T_{10}(q_1)T_{06}(x) = \begin{pmatrix} c_1t_{11} + s_1t_{21} & \times & c_1t_{13} + s_1t_{23} & c_1t_{14} + s_1t_{24} \\ -s_1t_{11} + c_1t_{21} & \times & -s_1t_{13} + c_1t_{23} & -s_1t_{14} + c_1t_{24} \\ \hline t_{31} & \times & t_{33} & t_{34} \end{pmatrix}$$

$$T_{26} = \begin{pmatrix} c_2(c_1t_{11} + s_1t_{21}) + s_2t_{31} & \times & c_2(c_1t_{13} + s_1t_{23}) + s_2t_{33} & c_2(c_1t_{14} + s_1t_{24}) + s_2t_{34} \\ -s_2(c_1t_{11} + s_1t_{21}) + c_2t_{31} & \times & -s_2(c_1t_{13} + s_1t_{23}) + c_2t_{33} & -s_2(c_1t_{14} + s_1t_{24}) + c_2t_{34} \\ s_1t_{11} - c_1t_{21} & \times & s_1t_{13} - c_1t_{23} & s_1t_{14} - c_1t_{24} \end{pmatrix}$$

Calcul de $T_{3,6}(q_1, q_2, q_3) - 2$

$$T_{36} = \begin{pmatrix} c_2(c_1t_{11} + s_1t_{21}) + s_2t_{31} & \times & c_2(c_1t_{13} + s_1t_{23}) + s_2t_{33} & c_2(c_1t_{14} + s_1t_{24}) + s_2t_{34} \\ s_1t_{11} - c_1t_{21} & \times & s_1t_{13} - c_1t_{23} & s_1t_{14} - c_1t_{24} \\ s_2(c_1t_{11} + s_1t_{21}) - c_2t_{31} & \times & s_2(c_1t_{13} + s_1t_{23}) - c_2t_{33} & s_2(c_1t_{14} + s_1t_{24}) - c_2t_{34} - q_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Ecriture du système non linéaire

Principe: Identifier les deux matrices suivantes:

$$T_{36} = \begin{pmatrix} c_4 c_5 c_6 - s_4 s_6 & \times & c_4 s_5 & 0 \\ s_4 c_5 c_6 + c_4 s_6 & \times & s_4 s_5 & 0 \\ -s_5 c_6 & \times & c_5 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{36} = \begin{pmatrix} c_2(c_1t_{11} + s_1t_{21}) + s_2t_{31} & \times & c_2(c_1t_{13} + s_1t_{23}) + s_2t_{33} & c_2(c_1t_{14} + s_1t_{24}) + s_2t_{34} \\ s_1t_{11} - c_1t_{21} & \times & s_1t_{13} - c_1t_{23} & s_1t_{14} - c_1t_{24} \\ s_2(c_1t_{11} + s_1t_{21}) - c_2t_{31} & \times & s_2(c_1t_{13} + s_1t_{23}) - c_2t_{33} & s_2(c_1t_{14} + s_1t_{24}) - c_2t_{34} - q_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Système non linéaire à résoudre

3 inconnues q_1 , q_2 , q_3

3 inconnues q_4 , q_5 , q_6

Système non linéaire à résoudre

Singularité géométrique sur q1

- \triangleright O₆ est sur Δ_1
- ➤ Il existe une infinité de solutions pour q₁
- \triangleright q₁ arbitraire

Singularité géométrique sur q₂

Singularité géométrique sur q₅

Si $sin(q_5) = 0$:

- Impossible de déterminer séparément q₄ et q₆
- \triangleright Il faut fixer q_4 et déduire q_6 ou inversement

Algorithme de calcul d'un MGI pour le robot RRPRRR

```
\epsilon_5^*.q_4 + q_8 = ATAN2(A_5, \epsilon_5^*.A_1) (singularite geom)
                                                                                                                                                                                                                                    q<sub>1</sub> indetermine → choisir q<sub>1</sub> (singularite)
                                                                                                                                                                                                                                                                                                                                                                                                                                            92 indetermine → choisir q2 (singularite)
                                                                                                    Calcul du MGI : \underline{q} = (q_1, q_2, q_3, q_4, q_5, q_6)^t
                          Lecture des valeurs de la situation \underline{X}
                                                Choix du MIG : lecture de «1, 62, 63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A_1 = c2 (c1.t_{11} + s1.t_{21}) + s2.t_{31}

A_2 = c2 (c1.t_{13} + s1.t_{23}) + s2.t_{33}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A_6 = s2.(c1.t_{13} + s1.t_{23}) - c2.t_{23}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A_5 = s2.(c1.t_{11} + s1.t_{21}) - c2.t_{31}
                                                                                                                                                    Calcul de la matrice T_{0,6} = [t_{ij}]
                                                                                                                                                                                                                                                                                     s1 = \frac{t_F}{t_F}

c1 = \frac{t_F}{t_F}

q_1 = ATAN2(s1, c1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             s2 = \frac{s_1}{s_2}

c2 = \frac{s_2}{s_2}

q_2 = ATAN2(s2, c2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         86 = -A_1.84 + A_3.04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    q_4 = ATAN2(s4, c4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             c6 = -\frac{d_3}{s_3^2}

q_8 = ATAN2(s6, c6)
                                                                                                                                                                                    D = -\epsilon_1 \cdot \sqrt{t_{14}^2 + t_{24}^2}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                q_8 = ATAN2(s5, c5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A_3 = s1.t_{11} - c1.t_{21}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      A_4 = s1.t_{13} - c1.t_{23}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                q_3 = s2.D - c2.t_{34}
                                                                                                                                                                                                                                                                                                                                                                                         F = \sqrt{D^2 + t_{34}^2}
si F = 0 alors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       s5 = \epsilon_s \cdot \sqrt{1 - c6^2}
                                                                                                                                                                                                             si D = 0 alors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             si s5 = 0 alors

| \epsilon_5^* = c5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     8
= 8
의 등
등 등
Entrées:
                                                                                                                                                                                                                                                                   sinon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        sinon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         smon
                                                                                Sorties:
                                                                                                                                                                                                                                                                                                                                                                   E E
                                                                                                                                  début
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Ē
```

Bilan des 4 configurations pour la figure de référence

ϵ_1	$\boldsymbol{\epsilon}_2$	q_1	q_2	q_3	q_5	$\varepsilon_2 q_4 + q_6$
1	1	- π/2	- π/2	q _{3 fig}	0	$q_4 + q_6 = \pm \pi$
1	-1	- π/2	π/2	- q _{3 fig}	± π	$q_6 - q_4 =$
-1	1	π/2	π/2	q _{3 fig}	0	$q_4 + q_6 = 0$
-1	-1	π/2	- π/2	- q _{3 fig}	± π	$q_6 - q_4 = 0$

Arbre des solutions : Nombre de MGI

