周二作业 3月3日

雅6.1

1(3). N.y"+y=y"

两侧积分 [1(4-1) dy = 5 景 程 high=hint C, 其中GER

则原方程解为 |1-寸|=e^c|N GER 即 1-寸=C2力 C26R

当为=0 时 少=1 或 y=0 综上所述 原方程的解为 1-g=C2为 C2eR 或y=0

 $2(3) \frac{dx}{x^2 + xy + y^2} = \frac{dy}{2y^2 - xy}$

解. 全y=ux 则dy= x.du+u.dx

 $\frac{u^2 - (u-1)}{u^3 - 3u^3 + 2u} du = \frac{dx}{x}$ 两侧不定积分 $\int \frac{u^3 - (u-1)}{u(u-1)(u-2)} du = \int \frac{1}{x} dx$

得 =lnlu-2)-lnlu-1)+=lnlu|=lnlx|+C, CER

Ln \(\frac{u(u-2)^5}{(1-1)} \right| = \ln x + C_1 CFR

代入 11= 美得 y(y-2x)5=C2 x6(y-x)2 C2ER

$$\frac{dy}{dx} = \frac{x+y+1}{x-y}$$

$$\frac{2y}{x+y+3} = 0$$

$$\frac{2y}{x+y+3} = 0$$

$$\frac{2y}{x-y+1} = 0$$

$$\frac{2y}{x-y+1} = 0$$

$$\frac{dy}{dx} = \frac{x_1 + y_1 + y_2}{x_1 + y_2 + 1}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_1 + v_2}{u_1 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_2 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_1 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_2 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_1 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_2 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_1 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_2 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_1 + v_2}{u_2 - v_2}$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{u_2 + v_2}{u_2 - v_2}$$

即 sut du = dn 两侧视积分得 Jsut du = x+C CER

代入 U= x+2y 得 = (x+2y) - 元 ln(5x+loy+7) =x+C ER

 $\int \frac{1}{5} (1 - \frac{2}{5u^2}) du = \frac{1}{5}u - \frac{2}{35} \ln(3u+7) = 71+C$ CER

 $\frac{2}{5}y - \frac{4}{5}x - \frac{2}{15}\ln(5x+loy+7) = C$ CER

得 $\frac{1-t}{1+t^2} \cdot dt = \frac{1}{u} du$ 两例不定积份 $\int \frac{1-t}{1+t^2} dt = \int \frac{1}{u} du$ arctan t - Iln(1+t2) = ln u+ C CER

$$\frac{dy}{dx} = \frac{2x + 4y + 3}{x + 2y + 1}$$

1発. 文 u= x+2y 則 y= ½ u- ½ x

$$\frac{dy}{dx} = \frac{1}{2} \frac{du}{dx} - \frac{1}{2} = \frac{2u+3}{u+1}$$

$$\frac{dy}{dx} = \frac{2\pi + y}{x + 2y + y}$$

$$\frac{dy}{dx} = \frac{dv}{dx} = \frac{dv}{dx}$$

1).
$$\frac{dy}{dx} = \frac{x+y+3}{x-y+1}$$

$$\frac{x+y+3}{x-y+1}$$

4 (3).
$$y' = \frac{y}{x+y^3}$$

$$\mathbf{A}\mathbf{A}\mathbf{A} = \frac{dy}{dx} = \frac{1}{7}$$

$$\mathbf{Y} = \mathbf{A}\mathbf{A}$$

解. 带= 型 y=0为原方程的解 $y \neq 0$ A $\frac{dx}{dy} = \frac{x}{y} + y^2$ R $\frac{dx}{dy} + (-\frac{1}{y})x = y^2$

两侧同乘 $e^{\int (-\frac{1}{3}) dy} = \frac{1}{y}$ 得 $\frac{d(\frac{1}{3})}{dy} = y$ 即 $d(\frac{3}{3}) = y \cdot dy$ 两侧不定积分 音= ±y²+C CER

即原方程的解为 x= ±y³+Cy CER或 y=0

(b)
$$y-y'\cos x = y^2(1-s)hx)\cos x$$

两侧 同时除以 $y^2(y \neq 0)$ $y^{-2} \frac{dy}{dx} + (-\frac{1}{\cos x})y^{-1} = (\sinh x - 1)$ $\xi u = y^{-1}$ $\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} = -2 \cdot y^{-2} \cdot \frac{dy}{dx}$

 \mathbb{R} $\frac{du}{dx} + \frac{1}{65x} u = 2(1-5ihx)$ 妈问时乘 e lash dx = (1+sihn) cos'x

$$\frac{d\left(u\cdot e^{\int \frac{2}{\cos x}\cdot dx}\right)}{dx} = 2\left(1-\sin x\right)\cdot \frac{\left(1+\sinh x\right)^2}{\left(\cos x\right)}$$

两边积分得 u. (1+sin x)2 = 52(Hsin x)·dx = 2(7-005x) + C

17 $u = \frac{(c+2)(x-(\omega sx))^2(\omega sx}{(1+s)(x)^2}$ R) $y = \frac{1}{u} = \frac{(1+s)(x)^2}{\overline{p}(x-(\omega sx)+C)(\omega sx)}$ $C \in \mathbb{R}$ 易得 y =o 也为方程的解.

综上所述方程的解为 y=0 或 $y=\frac{(1+sin n)^2}{(1+sin n)^2}$ $C \in \mathbb{R}$

CER

$$5cn$$
 $y'+ = sinx y(\pi) = 1$
解 $dx + 1$ $y = sinx y$ 对应的线性不次方程为 $x + 1$ $y = 0$
考虑 $x > 0$ 的 两侧同时乘 $e^{\int \frac{1}{x} dx} = x$ 得 $d(xy) = 0$
两侧积分得 $xy = C$ CER . $PP y = \frac{C}{x}$ CER $Qy' + \frac{1}{x} = \frac{sinx}{x}$ 的解为 $y = \frac{C(x)}{x}$

则
$$y = \frac{-\cos x + C}{x}$$
 又因为 $y_{(n)} = \frac{-\cos n + C}{n} = 1$ 得 $C = 1 + \pi$ 则原方程的解为 $y = \frac{-\cos n - 1 + \pi}{x}$

代入 u= x-y 即 - cot(空) = x+C CER 原方程的解为 - cot(空) = x+C CER

当 cos u + 1 时 du | -cosu = dx 两侧不定积分 得-cot(生) = x+ C CER

8.
$$f(x) = -\frac{3}{2} f(x) = 3$$

$$y \neq 0 \text{ B}$$

$$y \neq 0 \text{ B}$$

$$y \neq 0 \text{ B}$$

$$12(4)$$
, $y''+(y')^2=2e^{-y}$

$$\overrightarrow{AP} \cdot \Delta P = y' \quad \overrightarrow{D} \quad y'' = \frac{dP}{dx} = \frac{dP}{dy} \cdot \frac{dy}{dx} = P \cdot \frac{dP}{dy}$$

$$\Delta P = y'$$
 则 $y'' = \frac{dy}{dx} = \frac{dy}{dx} - P' dy$ 原方程可化为 $P = \frac{dy}{dy} + P^2 = 2e^{-y}$

即
$$\frac{dt}{dy} + 2t = 4e^{-y}$$
 两侧同时乘 e^{2y} 得 $\frac{d(t \cdot e^{2y})}{dy} = 4e^{y}$

两侧同时乘e^y 得
$$\frac{a(te)}{dy} = 4e^y$$

两侧不定积分
$$t \cdot e^{2y} = \int 4e^y \, dy + C_1 = 4e^y + C_1 \quad CER$$

$$t = 4e^{-y} + C_1 e^{-2y} \quad D \quad y' = P = \sqrt{t} = \sqrt{4e^{-y} + C_1 e^{-2y}} \quad CER$$

$$P \quad \frac{dy}{\sqrt{4e^y + C_2 e^{-2y}}} = d\pi \quad 两侧 不定积$$
 $\int \frac{de^y}{\sqrt{4e^y + C_1}} = \pi + C_2 \quad C_2 \in R$

|3(1)
$$y'' = \frac{y'}{x} + \frac{x'}{y'}$$
 $y_{(1)} = 1$ $y'_{(1)} = 0$

| $AF: \quad y'' \cdot y' - \frac{1}{x}(y')^2 = x^2$

| $S = (y')^2 \quad P' = 2y' \cdot y'' \quad Q'$

 $P y' = \sqrt{2x^3 - 2x^2}$

Y(1)=1 得 C2=1

リ= 近(カー1) き+ 近(カー1) き+1

解:
$$y'' \cdot y' - \frac{1}{x}(y')^2 = x^2$$

解.
$$y'', y' - \frac{1}{2}(y')^2 = \pi^2$$

.=
$$\eta^2$$

d () = 2 两侧积分 於 = 2x + C,

两侧船分 $y = \frac{2E}{5}(x-1)^{\frac{5}{2}} + \frac{3E}{3}(x-1)^{\frac{3}{2}} + C_3$ Cack

P= 2x3+Gx2 : yíw=0 得 P(1)=0 C1=-2

周四作业 胡胡

习题 6.2

1. (2). $y'' \sin^2 x = 2y$ $y_1 = \omega t x$ $y'' - \frac{2}{\sin^2 x} y = 0 \quad \text{if } p(x) = 0 \quad \int_{\pi_0}^{\pi} p(t) dt = 0$ $y_2 = y_1 \cdot \int \frac{1}{y_1^2} e^{\int_{\pi_0}^{\pi} p(t) dt} dx = \omega t x \int tan^2 x dx$ $= \omega t x \left(tan x - x + C \right) \quad C \in \mathbb{R}$

不妨全 c=0 则 y2=1-x·cotx

原方程的解为 Y=C1·cotx + C2(1-x·cotx) C1 C2 ER

2 (2) $xy'' - (1+x)y' + y = 0 \quad x \neq 0$

解. 观察得到 y;=e*为该齐次方程的一个特解 y"-(1+f)y'+fy=o 全 Pon)=-1-f

「xo Pt) dt = - (x-xo) - ln 素 不妨を xo=1

 $y_2 = y_1 \cdot \int \frac{1}{y_1^2} e^{x_1 + \ln x} dx = e^{x_1} \cdot \int x \cdot e^{-x_1 - 1} dx$

 $=e^{\pi}\cdot(-e^{-\pi-1}+C)$ CER

不妨全 C=0 则 y = - 3+1

原方程的解为 $y = C_1 \cdot e^{x} - C_2 \cdot \frac{21}{e}$ $C_1, C_2 \in \mathbb{R}$

3 (1+3²)
$$y'' + 2\lambda y' - 6x^2 - 2 = 0$$
 $y_1 = 5^2$ 解 $y'' + \frac{2\lambda}{1+3^2}y' = \frac{6x-2}{1+3^2}$ 对应的齐次方程为 $y'' + \frac{2\lambda}{1+3^2}y' = 0$ 易得 $y_{=1}$ 为 $y'' + \frac{2\lambda}{1+3^2}y' = 0$ 易得 $y_{=1}$ 为

y'= 21+ C1

y(-1) = 1+C1 - 14. C2 = 0

 $g'(y) = -2 + \frac{C_1}{2} = 0$

得 G=IL-1 C2=4

即特解为 y= x2+(n-)+4 arctanx

对应的乔尔万维为
$$g + \frac{1}{HN^2}g = 0$$
 易得 $g = 1$ 为万维工作种
 $f = \frac{2h}{hN^2}$
 $\int_{n_0}^{n} P(t) dt = \int_{n_0}^{n} \frac{2t}{Ht^2} dt = \ln(HN^2) - \ln(HN^2)$ 不妨全 $f = 0$
 $f = f = f = f = 0$
 $f = f = f = f = f = f = 0$
不妨全 $f = 0$

$$\int_{x_0}^{x_0} P(t) dt = \int_{x_0}^{x_0} \frac{2t}{1+t^2} dt = \ln(1+x^2) - \ln(1+x_0^2)$$
 不妨全 $x_0 = 0$
 $y_3 = y_2 \cdot \int_{y_2}^{1} e^{\int_{x_0}^{x_0} P(t) dt} dx = \int \frac{1}{x^2+1} dx = \arctan x + C$
不妨全 $C = 0$

则原方程的解为 $y = y_1 + c_1 y_2 + c_2 y_3 = x^2 + c_1 + c_2 \cdot \arctan x = c_1 \cdot c_2 \in \mathbb{R}$

42)
$$y'' + 2y' + 2y = 0$$

解 $2y = e^{2\pi}$ 別 $\chi^2 e^{2\pi} + 2e^{2\pi} + 2e^{2\pi} = 0$
其特征方程为 $\chi^2 + 2\chi + 2 = 0$ 无实根
复数根为 $\chi_1 = -1 + i$ $\chi_2 = -1 - i$ 即 $d = -1$ 月 $e^{2\pi} = e^{(-1+i)\cdot n} = e^{-n} (\cos n + i \cdot \sin n)$
 $e^{2\pi n} = e^{(-1+i)\cdot n} = e^{-n} (\cos n + i \cdot \sin n)$
方程的通解为 $y = (C_1 \cos n + C_2 \sin n) \cdot e^{-n}$ $C_1, C_2 \in \mathbb{R}$
5(2) $y'' - 6y' + 9y = (n+1)e^{2\pi}$ 求一个特解.
解. 对应的奇欠方程为 $y'' - 6y' + 9y = 0$ 全 $y = e^{2\pi n}$
 $\chi^2 e^{2y} - 6\chi e^{2y} + 9e^{2y} = 0$
其特征方程为 $\chi^2 - 6\chi + 9 = 0$ 得 $\chi = 3$

所 双应的引入N产的 g - 6y + 19 = 0 至 $g = e^{3y} - 6 \lambda e^{3y} + 9 e^{3y} = 0$ 其特征方程为 $\lambda^2 - 6 \lambda + 9 = 0$ 得入=3 见 齐次方程的解为 $y' = e^{3n} \cdot (C_1 x + C_2) \cdot C_1, C_2 \in \mathbb{R}$ 经原方程的一个特解 $y_0 = C_1(x) \cdot \lambda e^{3n} + C_2(x) \cdot e^{3n}$

 $C_1(x)$ $C_2(x)$: 為足 $\begin{cases} C_1(x) \cdot x \cdot e^{3x} + C_2(x) \cdot e^{3x} = 0 \\ C_1(x) \cdot e^{3x} \cdot (1+3x) + C_2(x) \cdot 3e^{3x} = (x+1)e^{2x} \end{cases}$

 $(\stackrel{?}{f}C_1(x)) = \frac{n+1}{e^n} \qquad C_2(n) = -\frac{n(n+1)}{e^n}$

两侧不定积分 CION = - (1+2)e-1+Ci CIN = -1-31-3 + Cz1

不妨令
$$C_1'=C_2'=0$$
 $C_1(N)=-(N+2)e^{-N}$ $C_2=-(n^2+3N+3)e^{-N}$ $Y_0(N)=-N(N+2)e^{2N}-(N^2+3N+3)e^{2N}$ 即原方程的解为 $Y=C_1:Ne^{3N}+C_2e^{3N}-N(N+2)e^{2N}-(N^2+3N+3)e^{2N}$ $C_1:C_2\in N$ $全 C_1=C_2=0$,原方程一个特解为 $Y=-N(N+2)e^{2N}-(N^2+3N+3)e^{2N}$ 7 证明在区间 1 上任何线性相关的两个函数 $Y_1(N)$, $Y_2(N)$ 它们的 Wronski 行列式 恒为零。 证明: $Y_1(N)$, $Y_2(N)$ 在区间 1 上线性相关 列存在 $Y_1(N)$, $Y_2(N)$ 在区间 $Y_1(N)$, $Y_2(N)$ 包入 包入 零。

两侧 求导得 $C_1 y_1'(x_1) + C_2 y_2'(x_2) = 0$ $W(x_1) = \begin{vmatrix} y_1(x_1) & y_2(x_2) \\ y_1'(x_1) & y_2'(x_2) \end{vmatrix} = y_1(x_1) \cdot y_2'(x_2) - y_1'(x_1) y_2(x_2)$

C1,4, (7) + C2 42 (8) =0

代入Win = - 은 yin yin - [- 은 xin ·yin] =0
即在区间 L 上任何线性相关的两径,数yin yin 的 Wronski 行列式 恒为零 8. 证明下列两个函数在区间 (0,2)上是线性无关的 但Wronski 行列式·恒为0.

$$y_{1}(x) = \begin{cases} (x-y^{2}, 0 \le x \le 1; & y_{2}(x) = \begin{cases} 0, 0 \le x \le 1 \end{cases}$$

证明: 假设存在 C, C2ER 且 C, C2不全为零

カモ(0,1)日子 y(1x)>0 y2(x)=0 月 此日 C1=0 C2 #0且C2ER 76(1,2) 日 y 15)=0 y 15)>0 別 比財 C, +0 且CER C=0

即不存在 C, C2 ER 且 C, C2 不全为零 使得 C, y,10) + C2/y210) =0 假设不成立,即分的,从的在(0,2)上线性无关

$$y_1(x) = \begin{cases} 2(x-1), & 0 \le x \le 1 \\ 0, & 1 < x \le 2 \end{cases}$$
 $y_2(x) = \begin{cases} 0, & 0 \le x \le 1 \\ 2(x-1), & 1 < x \le 2 \end{cases}$

 $W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1(x) & y_2(x) \end{vmatrix} = y_1(x) y_2(x) - y_1(x) y_{21}(x) = 0 - 0 = 0$ $Y(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1(x) & y_2(x) \end{vmatrix}$ 即在区间(0,2)上 y.m. y.m的 Wronski行列式恒为零

9(2)
$$\pi''' - 2\pi' + \pi' - 2\pi = 0$$

解: $2u = \pi' - 2\pi$ 別 $u'' + u = 0$
其特征方程为 $\pi^2 + 1 = 0$ 得 $\pi_1 = i$ $\pi_2 = -i$
则 $u = c_1 \cos t + c_2 \sin t$ $c_1 c_2 \in \mathbb{R}$

$$\pi' - 2\pi = c_1 \cos t + c_2 \sin t$$
 两侧同时乘 e^{-2t}

$$\frac{d(\pi e^{-2t})}{dt} = (c_1 \cos t + c_2 \sin t)e^{-2t}$$
两侧积分 $\pi \cdot e^{-2t} = C_3 \sin t e^{-2t} + C_4 \cos t e^{-2t} + C_5$ $C_3, C_4, C_5 \in \mathbb{R}$
则质方程解为: $\pi = C_3 \cdot \sinh t + C_4 \cos t + C_5 e^{2t}$ $C_3, C_4, C_5 \in \mathbb{R}$