Recursion

From Iterative to Recursive

Iterative algorithms Solution in Terminate iteration iIteration i + 1Make one step of progress

Recursive algorithms

Outline

Recursion trees

- Towers of Hanoi
 - Simplify and Delegate!
- Mergesort
 - Divide and Qonquer

Outline

Recursion trees

- Towers of Hanoi
 - Simplify and Delegate!
- Mergesort
 - Divide and Qonquer

Learning objectives:

You are able to

- Explain the recursive approach to algorithm design, i.e., simplify and delegate.
- Describe and analyze recursive algorithms for the Towers of Hanoi problem and sorting

Recursion Trees

Recursion Trees

Crucial:

- 1) The problem setting does not change same algorithm works
- 2) Subproblem is strictly easier
- 3) Combining subsolutions is easy

Recursion Trees

Outline

Recursion trees

- Towers of Hanoi
 - Simplify and Delegate!
- Mergesort
 - Divide and conquer

Three towers

First tower has *n* discs.
The discs are stacked
from largest to smallest

Task:

Move discs to the last tower. Move one disc at a time. A disc is not allowed to be on top of a smaller disc.

The case of two discs

The case of two discs

Hanoi(4):

- 1. Hanoi(3, middle)
- 2. Move(left, right)
- 3. Hanoi(3, right)

Hanoi(3):

- 1. Hanoi(2, middle)
- 2. Move(left, right)
- 3. Hanoi(2, right)

Towers(n, src, dest, tmp) If (n = 1)

Move(src, dest)

Else

Towers(n-1, src, tmp, dest)

Move(src, dest)

Towers(n-1, tmp, dest, src)

Correctness:

Clearly, the algorithm works correctly if n = 1.

In the other cases, it works correctly if the case of n-1 is correct.

Induction!

Runtime:

Two recursive calls in each recursion "level" and n-1 recursion levels.

Think of the recursion tree.

Towers of Hanoi – Recursion Tree

Depth of the tree is $\Omega(n)$

Towers of Hanoi – Recursion Tree

Two recursive calls to the lower level

Runtime:

Denote cost for k discs by T(k).

We get the recurrence

$$T(k) = 2 \cdot T(k-1) + 1$$

Call black box twice

Runtime:

Denote cost for k discs by T(k).

We get the recurrence

$$T(k) = 2 \cdot T(k-1) + 1$$

Call black box twice

Solve recurrence:

$$T(n) = 2^{n-1} \cdot T(1) - 1$$

= $O(2^n)$

Towers of Hanoi – Recurrence

Base case:

$$T(1) = 1$$

Base case:

$$T(1) = 1$$

Inductive hypothesis:

$$T(i) \le 2^i - 1$$

Recurrence:

$$T(k) = 2 \cdot T(k-1) + 1$$

Base case:

$$T(1)=1$$

Inductive hypothesis:

$$T(i) \le 2^i - 1$$

Recurrence:

$$T(k) = 2 \cdot T(k-1) + 1$$

Inductive step:

$$T(i + 1) = 2 \cdot T(i) + 1$$

 $\leq 2 \cdot (2^{i} - 1) + 1 = 2^{i+1} - 2 + 1$
 $= 2^{i+1} - 1$

Base case:

$$T(1) = 1$$

Inductive hypothesis:

$$T(i) \le 2^i - 1$$

Recurrence:

$$T(k) = 2 \cdot T(k-1) + 1$$

Inductive step:

$$T(i + 1) = 2 \cdot T(i) + 1$$

 $\leq 2 \cdot (2^{i} - 1) + 1 = 2^{i+1} - 2 + 1$
 $= 2^{i+1} - 1$

Base case:

$$T(1) = 1$$

Inductive hypothesis:

$$T(i) \le 2^i - 1$$

Recurrence:

$$T(k) = 2 \cdot T(k-1) + 1$$

Inductive step:

$$T(i + 1) = 2 \cdot T(i) + 1$$

 $\leq 2 \cdot (2^{i} - 1) + 1 = 2^{i+1} - 2 + 1$
 $= 2^{i+1} - 1$

Base case:

$$T(1) = 1$$

Inductive hypothesis:

$$T(i) \le 2^i - 1$$

Recurrence:

$$T(k) = 2 \cdot T(k-1) + 1$$

Inductive step:

$$T(i + 1) = 2 \cdot T(i) + 1$$

 $\leq 2 \cdot (2^{i} - 1) + 1 = 2^{i+1} - 2 + 1$
 $= 2^{i+1} - 1$

By induction:

$$T(n) = O(2^n)$$

Outline

Recursion trees

- Towers of Hanoi
 - Delegate!
- Mergesort
 - Divide and conquer

Sorting

Input:

An array A[n] of n integers.

Output:

An array B[n] such that B contains the entries of A[n] in an ascending order.

Sorting

Input:

An array A[n] of n integers.

Index

Value

0	1	2	3	4	5	6	7	8
10	2	5	0	11	65	4	2	9

Output:

An array B[n] such that B contains the entries of A[n] in an ascending order.

0	1	2	3	4	5	6	7	8
0	2	2	4	5	9	10	11	65

Sorting

Input:

An array A[n] of n integers.

Index	0	1	2	3	4	5	6	7	8
Value	10	2	5	0	11	65	4	2	9

Output:

An array B[n] such that Bcontains the entries of A[n]in an ascending order.

0	1	2	3	4	5	6	7	8
0	2	2	4	5	9	10	11	65

For any $0 \le i < n$ and i < j < n, it holds that $B[i] \leq B[j]$

Idea:

Idea:

Combining two sorted arrays is easy.

Runtime:

Linear in the length of the longer array

Mergesort: Correctness

Merge:

Need to show that two sorted arrays A and A' of length k are merged into a sorted array B.

Induction:

In the first iteration, we add the smaller of A[0] and A'[0] to B[0]. This settles the base case of the induction.

In iteration i, we compare the first remaining elements of A and A'. Since A and A' are ordered, these are the smallest in the respective arrays. Since B[i-1] gets assigned the smaller one, array B now contains the i smallest elements of arrays A and A'.

Observation:

There are $O(\log_2 n)$ levels of recursion

Observation:

Sorting an array with O(1) elements takes O(1) time

Length:

Divide and conquer:

- Divide into easy subproblems
- 2) Combine into a solution to the original problem

Length:

Observation:

There are $O(\log_2 n)$ levels of recursion

Observation:

Sorting the lowest level takes $O(1) \cdot n = O(n)$ time

Lemma:

At most O(n) comparisons per level

Argument:

After each comparison, one element is added to the array (of the corresponding layer)

Runtime:

 $O(n \log n)$

O(k) comparisons

Lemma:

At most O(n) comparisons per level

Argument:

Sum of length of lists in each level is n. In each comparison, one element is added to some list in the higher level

O(k) comparisons

Lemma:

At most O(n) comparisons per level

Argument:

Sum of length of lists in each level is n. In each comparison, one element is added to some list in the higher level

O(k) comparisons

Lemma:

At most O(n) comparisons per level

Argument:

Sum of length of lists in each level is n. In each comparison, one element is added to some list in the higher level

Observation:

There are $O(\log_2 n)$ levels of recursion

Observation:

Sorting the lowest level takes $O(1) \cdot n = O(n)$ time

Lemma:

At most O(n) comparisons per level

Observation:

There are $O(\log_2 n)$ levels of recursion

Observation:

Sorting the lowest level takes $O(1) \cdot n = O(n)$ time

Lemma:

At most O(n) comparisons per level

Runtime:

 $O(n \log n)$

Observation:

There are $O(\log_2 n)$ levels of recursion

Observation:

Sorting the lowest level takes $O(1) \cdot n = O(n)$ time

Lemma:

At most O(n) comparisons per level

Runtime:

 $O(n \log n)$

Master theorem:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) = O(n \log n)$$

Plug $a \coloneqq 2, b \coloneqq 2, k \coloneqq 0$

Wrap-up

