Poweranalyse für experimentelle Designs in R

Workshop auf der Nachwuchstagung der GEBF 2024

Sophie E. StallaschQuantitative Methoden in den Bildungswissenschaften

⊠ stallasch@uni-potsdam.de

Ablauf des Workshops

☎ ~ 20 Min.

KONZEPTUELLE GRUNDLAGEN

Das «Was» und «Warum» der statistischen Power(analyse)

७ ~ 40 Min.

TEIL I: EINFACHE (NICHT-HIERARCHISCHE) EIN-EBENEN-DESIGNS

Poweranalysen für individuell-randomisierte Studien

<u>€</u> ~ 10 Min.

PAUSE

② ~ 70 Min.

TEIL II: KOMPLEXERE MEHREBENEN-DESIGNS

Poweranalysen für cluster-randomisierte Studien

② ~ 10 Min.

FRAGEN & DISKUSSION

Workshop-Website

https://sophiestallasch.github.io/2024-workshop-GEBF-power

Poweranalyse für experimentelle Designs in R

Konzeptuelle Grundlagen

Interventionseffekt: "Signal-Rauschen"-Verhältnis

Was ist statistische Power?

Wahrscheinlichkeit, einen Effekt zu finden, wenn dieser in der Population existiert.

"Teststärke [engl. statistical power], [FSE], die Teststärke eines stat. Tests (Signifikanztest) ist die Wahrscheinlichkeit 1-β eines signifikanten Testergebnisses bei Gültigkeit der Alternativhypothese (H1)."

Erdfelder E. (2022). Teststärke. In M. A. Wirtz (Hrsg.), *Dorsch. Lexikon der Psychologie*. https://dorsch.hogrefe.com/stichwort/teststaerke

Statistische Schlussfolgerungen

Fehler 1. Art und Fehler 2. Art

	Population	
Test/Schlussfolgerung	Effekt existiert $(\mu_0 \neq \mu_1)$ H_0 falsch	Effekt existiert nicht $(\mu_0 = \mu_1)$ H_0 wahr
Effekt signifikant $(p < \alpha)$ H_0 verwerfen	√ 1 – β (Power)	X Fehler 1. Art α "false positive"
Effekt nicht signifikant $(p \ge \alpha)$ H_0 beibehalten	X Fehler 2. Art β "false negative"	√ 1 – α

 μ_0 ... Populationsmittelwert unter H_0 (Kontrollgruppe)

 μ_0 ... Populationsmittelwert unter H_1 (Interventionsgruppe)

Die wichtigsten Determinanten

α-LEVEL (SIGNIFIKANZNIVEAU)

Je größer α , desto höher die Power. (\rightarrow Einseitiger Test mehr Power als zweiseitiger.)

Die wichtigsten Determinanten

 α -LEVEL (SIGNIFIKANZNIVEAU)

STICHPROBENGRÖßE

Je größer α , desto höher die Power. (\rightarrow Einseitiger Test mehr Power als zweiseitiger.)

Je größer N, desto höher die Power.

Die wichtigsten Determinanten

 α -LEVEL (SIGNIFIKANZNIVEAU) STICHPROBENGRÖßE

EFFEKTGRÖßE

Je größer α , desto höher die Power. (\rightarrow Einseitiger Test mehr Power als zweiseitiger.)

Je größer *N*, desto höher die Power.

Je größer *d*, desto höher die Power.

Die wichtigsten Determinanten

 α -LEVEL (SIGNIFIKANZNIVEAU) Je größer α , desto höher die Power. (\Rightarrow Einseitiger Test mehr Power als zweiseitiger.)

STICHPROBENGRÖßE Je größer *N*, desto höher die Power.

EFFEKTGRÖßE Je größer *d*, desto höher die Power.

https://rpsychologist.com/d3/nhst/

Kleinstmöglich auffindbare (standardisierte) Effektgröße

Minimum Detectable Effect Size (MDES; Bloom, 1995, 2005)

MDES: Mehrfaches des SEs des Interventionseffektes = Maß für die Schätzgenauigkeit

(Mindestens) 6 gute Gründe, eine Poweranalyse (a priori) durchzuführen

Vermeidung von sowohl unter- als auch überpowerten Studien

AUSSAGEKRÄFTIGE BEFUNDE

Informativ mit Blick auf ein bestimmtes inferenzstatistisches Ziel (Hedberg, 2018; Lakens, 2022)

→ Figure 3 (p. 164) in "Rigorous Large-Scale Educational RCTs Are Often Uninformative: Should We Be Concerned?" by H. Lortie-Forgues and M. Inglis, 2019, *Educational Researcher, 48*(3), 158–166 (https://doi.org/10.3102/0013189X19832850). Copyright 2019 by AERA.

(Mindestens) 6 gute Gründe, eine Poweranalyse (a priori) durchzuführen

Vermeidung von sowohl unter- als auch überpowerten Studien

AUSSAGEKRÄFTIGE BEFUNDE

Informativ mit Blick auf ein bestimmtes inferenzstatistisches Ziel (Hedberg, 2018; Lakens, 2022)

KORREKTE BEFUNDE

Größe und Richtung des Effekts (Gelman & Carlin, 2014; Ioannidis, 2005, 2008; Sims et al., 2022)

→ Figure 2 (p. 644) in "Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors" by A. Gelman and J. Carlin, 2014, *Perspectives on Psychological Science*, *9*(6), 641–651 (https://doi.org/10.1177/1745691614551642). Copyright 2014 by the author(s).

(Mindestens) 6 gute Gründe, eine Poweranalyse (a priori) durchzuführen

Vermeidung von sowohl unter- als auch überpowerten Studien

AUSSAGEKRÄFTIGE BEFUNDE

Informativ mit Blick auf ein bestimmtes inferenzstatistisches Ziel (Hedberg, 2018; Lakens, 2022)

KORREKTE BEFUNDE

Größe und Richtung des Effekts (Gelman & Carlin, 2014; Ioannidis, 2005, 2008; Sims et al., 2022)

REPRODUZIERBARKEIT & REPLIZIERBARKEIT

(Open Science Collaboration, 2015)

→ Figure 1 (p. 610) in "At What Sample Size Do Correlations Stabilize?" by F. D. Schönbrodt and M. Perugini, 2013, *Journal of Research in Personality, 47,* 609–612 (http://dx.doi.org/10.1016/j.jrp.2013.05.009). Copyright 2013 by Elsevier Inc.

(Mindestens) 6 gute Gründe, eine Poweranalyse (a priori) durchzuführen

Vermeidung von sowohl unter- als auch überpowerten Studien

AUSSAGEKRÄFTIGE BEFUNDE

Informativ mit Blick auf ein bestimmtes inferenzstatistisches Ziel (Hedberg, 2018; Lakens, 2022)

KORREKTE BEFUNDE

Größe und Richtung des Effekts (Gelman & Carlin, 2014; Ioannidis, 2005, 2008; Sims et al., 2022)

REPRODUZIERBARKEIT & REPLIZIERBARKEIT

(Open Science Collaboration, 2015)

RESSOURCENSCHONUNG

Finanziell, materiell, personell (Bausell & Li, 2002; Halpern et al., 2002; Lenth, 2001)

FORSCHUNGSANTRÄGE

(Education Endowment Foundation, 2022; German Research Foundation, 2022; Institute of Education Sciences, 2023)

STANDARDS GUTER WISSENSCHAFTLICHER PRAXIS

"basic expectations for quantitative research reporting" (JARS-Quant; American Psychological Association, 2020, p. 77)

Poweranalyse

Outputs

Poweranalyse

Outputs

Poweranalyse

Outputs

Die Effektgröße – "Der problematische Parameter"

Rationalen zur Identifikation der *MDES* (Bloom, 2006; Brunner et al., 2018; Schochet, 2008)

ÖKONOMISCH / KOSTEN-NUTZEN

Welcher Effekt wiegt die Kosten der Intervention auf?

→ Kosten der Intervention müssen a priori abgeschätzt werden

PROGRAMMATISCH

Welcher Effekt ist erreichbar gegeben des Kontexts der Interventionsstudie?

→ Orientierung an vorheriger Forschung möglich, ABER Vergleichbarkeit muss geprüft werden

POLITISCH

Welcher Effekt genügt den (politischen) Entscheidungsträgern?

→ Empirisch etablierte Benchmarks werden benötigt

Benchmarks für leistungsbezogene Interventionseffekte

Journal of Research on Educational Effectiveness

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uree20

Empirical Benchmarks to Interpret Intervention Effects on Student Achievement in Elementary and Secondary School: Meta-Analytic Results from Germany

Martin Brunner, Sophie E. Stallasch & Oliver Lüdtke

Poweranalyse für experimentelle Designs in R

Teil I: Ein-Ebenen-Designs

Randomisierte Interventionsstudien: Ein-Ebenen-Design

Icons von <u>icons8</u>.

https://sophiestallasch.github.io/2024-workshop-GEBF-power

HANDS-ON!

Teil I: Ein-Ebenen-Designs

Poweranalyse für experimentelle Designs in R

Teil II: Mehrebenen-Designs

Randomisierte Interventionsstudien

Stichprobe Individuell-randomisierte Studie Intervention Kontrolle

Ein-Ebenen-Design

Mehrebenen-Design

Icons von <u>icons8</u>.

Randomisierte Interventionsstudien

Stichprobe Individuell-randomisierte Studie Intervention Kontrolle

Ein-Ebenen-Design

Mehrebenen-Design

STATISTISCHE POWER Wahrscheinlichkeit, einen Effekt zu finden, wenn dieser in der Population existiert SCHÄTZGENAUIGKEIT Standardfehler des Interventionseffekts STICHPROBENGRÖßE

Designparameter

Designparameter

Designparameter

https://sophiestallasch.github.io/2024-workshop-GEBF-power

HANDS-ON!

Teil II: Mehrebenen-Designs

Poweranalyse für experimentelle Designs in R

Fragen & Diskussion

Referenzen

- American Psychological Association (Ed.). (2020). *Publication manual of the American Psychological Association* (7th ed.). American Psychological Association.
- Bausell, R. B., & Li, Y.-F. (2002). Power analysis for experimental research: A practical guide for the biological, medical and social sciences. Cambridge University Press. https://doi.org/10.1017/CBO9780511541933
- Bloom, H. S. (1995). Minimum detectable effects: A simple way to report the statistical power of experimental designs. *Evaluation Review*, 19(5), 547–556. https://doi.org/10.1177/0193841X9501900504
- Bloom, H. S. (2005). Randomizing groups to evaluate place-based programs. In H. S. Bloom (Ed.), *Learning More From Social Experiments. Evolving analytic approaches* (pp. 115–172). Russell Sage Foundation.
- Bloom, H. S. (2006). The core analytics of randomized experiments for social research. MDRC Working Papers on Research Methodology. http://www.mdrc.org/sites/default/files/full_533.pdf
- Brunner, M., Keller, U., Wenger, M., Fischbach, A., & Lüdtke, O. (2018). Between-school variation in students' achievement, motivation, affect, and learning strategies: Results from 81 countries for planning group-randomized trials in education. *Journal of Research on Educational Effectiveness*, 11(3), 452–478. https://doi.org/10.1080/19345747.2017.1375584
- Brunner, M., Stallasch, S. E., & Lüdtke, O. (2023). Empirical benchmarks to interpret intervention effects on student achievement in elementary and secondary school: Meta-analytic results from Germany. *Journal of Research on Educational Effectiveness*, 1–39. https://doi.org/10.1080/19345747.2023.2175753
- Education Endowment Foundation. (2022). Statistical analysis guidance for EEF evaluations. https://d2tic4wvo1iusb.cloudfront.net/production/documents/evaluation/evaluation-design/EEF-Analysis-Guidance-Website-Version-2022.14.11.pdf?v=1698086955

Referenzen

- Erdfelder E. (2022). Teststärke. In M. A. Wirtz (Hrsg.), Dorsch. Lexikon der Psychologie. https://dorsch.hogrefe.com/stichwort/teststaerke
- Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing Type S (sign) and Type M (magnitude) errors. *Perspectives on Psychological Science*, *9*(6), 641–651. https://doi.org/10.1177/1745691614551642
- German Research Foundation (Ed.). (2022). Proposal preparation instructions. Project proposals. https://www.dfg.de/formulare/54_01/54_01_en.pdf
- Halpern, S. D., Karlawish, J. H. T., & Berlin, J. A. (2002). The continuing unethical conduct of underpowered clinical trials. *JAMA*, 288(3), 358. https://doi.org/10.1001/jama.288.3.358
- Hedberg, E. C. (2018). Introduction to power analysis: Two-group studies. SAGE Publications, Inc. https://doi.org/10.4135/9781506343105
- Institute of Education Sciences. (2023). *Education research grants program. Request for applications*. (ALN: 84.305A). https://ies.ed.gov/funding/pdf/2021 84305A.pdf
- Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124
- Ioannidis, J. P. A. (2008). Why Most Discovered True Associations Are Inflated. *Epidemiology*, 19(5), 640–648. https://doi.org/10.1097/EDE.0b013e31818131e7
- Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8(1), 1–28. https://doi.org/10.1525/collabra.33267
- Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. *The American Statistician*, *55*(3), 187–193. https://doi.org/10.1198/000313001317098149
- Lortie-Forgues, H., & Inglis, M. (2019). Rigorous large-scale educational RCTs are often uninformative: Should we be concerned? *Educational Researcher*, 48(3), 158–166. https://doi.org/10.3102/0013189X19832850

Referenzen

- Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. *Science*, *349*(6251), aac4716. https://doi.org/10.1126/science.aac4716
- Schochet, P. Z. (2008). Statistical power for random assignment evaluations of education programs. *Journal of Educational and Behavioral Statistics*, 33(1), 62–87. https://doi.org/10.3102/1076998607302714
- Schönbrodt, F.D., & Perugini, M. (2013). At what sample size do correlations stabilize? *Journal of Research in Personality, 47,* 609–612. http://dx.doi.org/10.1016/j.jrp.2013.05.009
- Sims, S., Anders, J., Inglis, M., & Lortie-Forgues, H. (2022). Quantifying "promising trials bias" in randomized controlled trials in education. *Journal of Research on Educational Effectiveness*, *16*(4), 1–18. https://doi.org/10.1080/19345747.2022.2090470