Association Rule Mining

Dr. Faisal Kamiran

Sequence Data

Sequence Database:

Object	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Dr. Faisal Kamiran

Information Technology University of The Punjab

Formal Definition of a Sequence

A sequence is an ordered list of elements (transactions)

$$S = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

□ A sequence $\langle a_1 a_2 ... a_n \rangle$ is contained in another sequence $\langle b_1 b_2 ... b_m \rangle$ (m ≥ n) if there exist integers $i_1 \langle i_2 \langle ... \langle i_n \text{ such that } a_1 \subseteq b_{i1}, a_2 \subseteq b_{i1}, ..., a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup

Task:

Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- □ Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

How many k-subsequences can be extracted from a given n-sequence?

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Object	Timestamp	Events
А	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Minsup = 50%

< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%

Extracting Sequential Patterns

- □ Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

$$\langle \{i_1\} \rangle, \langle \{i_2\} \rangle, \langle \{i_3\} \rangle, \dots, \langle \{i_n\} \rangle$$

Candidate 2-subsequences:

$$<\{i_1, i_2\}>, <\{i_1, i_3\}>, ..., <\{i_1\} \{i_1\}>, <\{i_1\} \{i_2\}>, ..., <\{i_{n-1}\} \{i_n\}>$$

Candidate 3-subsequences:

$$\langle \{i_1, i_2, i_3\} \rangle$$
, $\langle \{i_1, i_2, i_4\} \rangle$, ..., $\langle \{i_1, i_2\} \{i_1\} \rangle$, $\langle \{i_1, i_2\} \{i_2\} \rangle$, ..., $\langle \{i_1\} \{i_1, i_2\} \rangle$, $\langle \{i_1\} \{i_1\} \{i_2\} \rangle$, ...

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

Step 2:

Repeat until no new frequent sequences are found

Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

– Candidate Pruning:

◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences

Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

Candidate Elimination:

◆ Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <\(i_1\)> and <\(i_2\)> will produce two candidate 2-sequences: <\(i_1\) \{i_2\}> and <\(i_1\) i₂\>>
- □ General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - ◆ The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element in w₁
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

Candidate Generation Examples

- Merging the sequences $w_1 = <\{1\} \{2\ 3\} \{4\}> \text{ and } w_2 = <\{2\ 3\} \{4\ 5\}>$ will produce the candidate sequence $<\{1\} \{2\ 3\} \{4\ 5\}>$ because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\}\{2\}\{3\}>$ and $w_2 = <\{1\}\{2,5\}>$

GSP Example

Frequent 3-sequences

< {1} {2} {3} >
< {1} {2 5} >
< {1} {5} {3} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

Candidate Generation

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints (I)

x_q: max-gap

n_g: min-gap

$$x_g = 2, n_g = 0$$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Timing Constraints (I)

- Maxgap = 3
- □ Mingap = 1

Data Sequence, s	Sequential Pattern, t	maxgap	mingap
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {3} {6} >		
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {6} {8} >		
$<\{1,3\} \{3,4\} \{4\} \{5\} \{6,7\} \{8\} >$	$<\{1,3\}\ \{6\}>$		
$\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ >	< {1} {3} {8} >		

Timing Constraints (I)

- □ Maxgap = 3
- □ Mingap = 1

Data Sequence, s	Sequential Pattern, t	maxgap	mingap
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {3} {6} >	Pass	Pass
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {6} {8} >	Pass	Fail
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	$<\{1,3\}\ \{6\}>$	Fail	Pass
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {1} {3} {8} >	Fail	Fail

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Clustering

Dr. Faisal Kamiran

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

Reduce the size of large data sets

What is not Cluster Analysis?

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- In non-exclusive clusterings, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - Cluster of widely different sizes, shapes, and densities

Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Types of Clusters: Well-Separated

Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

.

2 Overlapping Circles

Types of Clusters: Objective Function

Clusters Defined by an Objective Function

- Finds clusters that minimize or maximize an objective function.
- Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering