Social Network Analysis: Node and Graph Level Statistics Part 1

EPIC - SNA, Columbia University

Zack W Almquist

June 13th, 2018

University of Minnesota

Graph Level Indicies

References and Places for More Information

Introduction to classic Social Network Metrics (Positional or Node-level indices)

- Node-level index: a real- valued function of a graph and a vertex
 - Purely structural NLIs depend only on unlabeled graph properties
 - I.e., $f(v,G) \rightarrow \Re$
 - Invariant to node relabeling
 - Covariate-based NLIs use both structural and covariate properties
 - I.e., $f(v, G, X) \rightarrow \Re$
 - Not labeling invariant

- Primary uses:
 - Quantify properties of individual positions
 - Describe local neighborhood
- Several common families:
 - Centrality
 - Ego-net structure
 - Alter covariate indices
- Centrality is the most prominent, and our focus today/lecture

Centrality

- Returning to the core question: how do individual <u>positions</u> vary?
- One manner in which positions vary is the extent to which they are "central" in the network
 - Important concern of social scientists (and junior high school students)
- Many distinct concepts
 - No one way to be central in a network many different kinds of centrality!
 - Different types of centrality aid/hinder different kinds of actions
 - Being highly central in one respect doesn't always mean being central in other respects (although the measures generally correlate)

Types of Centrality Measures

- One attempted classification by Koschutzki et al. (2005):
 - Reach: Centrality based on ability of ego to reach other vertices
 - Degree, closeness
 - Flow Mediation: Centrality based on quantity/weight of walks passing through ego
 - Stress, betweenness
 - Vitality: Centrality based on effect of removing ego from the network
 - Flow betweenness (oddly), cutpoint status
 - <u>Feedback</u>: Centrality of ego defined as a recursive function of alter centralities
 - Eigenvector centrality, Bonacich Power

Degree

- Degree: number of direct ties
 - Overall activity or extent of involvement in relation
 - High degree positions are influential, but also may be subject to a great deal of influence from others
- Formulas:
 - Degree (undirected):

$$d(i,Y) = \sum_{j=1}^{N} Y_{ij}$$

Indegree: $d_i(i, Y) = \sum_{j=1}^N Y_{ji}$ Outdegree: $d_o(i, Y) = \sum_{j=1}^N Y_{ij}$

Review: Shortest Paths

- A shortest path from *i* to *j* is called an *i*, *j* geodesic
 - Can have more than one (but all same length, obviously)
 - The length of an i, j geodesic is called the geodesic distance from i to j

	1	2	3	4	5
1	0.00	2.00	1.00	2.00	2.00
2	2.00	0.00	1.00	1.00	2.00
3	1.00	1.00	0.00	1.00	1.00
4	2.00	1.00	1.00	0.00	2.00
5	2.00	2.00	1.00	2.00	0.00

Betweenness

- Betweenness: tendency of ego to reside on shortest paths between third parties
 - Quantifies extent to which position serves as a bridge
 - High betweenness positions are associated with "broker" or "gatekeeper" roles; may be able to "firewall" information flow
- Formula

$$b(i, Y) = \sum_{j \neq i} \sum_{k \neq l} \frac{g'(j, k, l)}{g(j, k)}$$

Where g(j, k) is the number of j, k geodesics, g'(j, k, i) is the number of j, k geodesics including i

Closeness

- Closeness: ratio of minimum distance to other nodes to observed distance to other nodes
 - Extent to which position has short paths to other positions
 - High closeness positions can quickly distribute information, but may have limited direct influence
 - Limitation: not useful on disconnected graphs (may need to symmetrize directed graphs, too)
- Formula

$$c(i, Y) = \frac{N-1}{\sum_{j=1}^{N} D(i, j)}$$

Where D(I,j) is the distance from i to j

 $\begin{array}{ll} \text{Carter Butts. Social Network Methods. University of California, Irvine.} & 10 \end{array}$

Classic Centrality Measures Compared

Top 3 by Degree

- 1: Node 3
- 2: Nodes 4 and 6
 - 3: Nodes 2 and 5

Top 3 by Closeness

- 1: Nodes 4 and 6
- 2: Nodes 3 and 8
- 3: Nodes 2 and 5

Top 3 by Betweenness

- 1: Node 8
- 2: Nodes 4 and 6
- 3: Node 9

Carter Butts. Social Network Methods. University of California, Irvine.

Classic Centrality Measures Compared

Carter Butts. Social Network Methods. University of California, Irvine.

Relatedness of Centrality Indices

- Centrality indices are strongly correlated in practice
- Simple example: total degree versus "complex" NLIs
 - Squared correlations for sample UCINET data sets
 - Some diversity, but usually accounts for majority of variance
 - Theoretical insight: if you can capture degree, you can capture many other aspects of social position

Carter Butts. Social Network Methods. University California, Irvine.

Relating NLIs to Vertex Covariates

- Common question: are NLIs related to non-structural covariates?
 - Centrality to power or influence
 - Constraint to advancement
 - Diversity to attainment

Carter Butts. Social Network Methods. University California, Irvine.

"Linear" Permutation Tests

- Simple, nonparametric test of association between vectors
 - Sometimes called "linear" or "vector" permutation test (or monte carlo test)
 - Tests marginal association against exchangeability null (independence conditional on marginal distributions)
- Null interpretation: "musical chairs" model
 - If we randomly switched the positions of people in the network (leaving structure as-is), what is the chance of observing a similar degree of association?

- Monte Carlo procedure:
 - Let $x_{obs} = (f(v_1, G), \dots, f(v_N, G))$ be the observed NLI vector, w/covariate vector y
 - Let $t_{obs} = s(x_{obs}, y)$
 - For i in $1, \ldots, n$
 - Let $x^{(0)}$ be a random permutation of x_{obs}
 - Let $t^{(i)} = s(x^{(i),y})$
- Estimated p-values:
 - One-seided
 - $\Pr(t^{(i)} \leq t_{obs}) \approx \sum_{i} I(t^{(i)} \leq t_{obs})/n$
 - $\Pr(t^{(i)} \geq t_{obs}) \approx \sum_{i} I(t^{(i)} \geq t_{obs})/n$
 - Two-sided
 - $\Pr(|t^{(i)}| \ge |t_{obs}|) \approx \sum_{i} I(|t^{(i)}| \ge |t_{obs}|)/n$

Understanding the Null Model

We Ask: "Is the observed relationship extreme compared to what we would expect to see, if assignment to positions were independent of the covariate?"

Carter Butts. Social Network Methods. University of California, Irvine.

Texas SAR EMON Example

- Question: do organizations in constant communication w/many alters end up more/less prominent in the decision-making process?
 - Measure (s): correlation of decision rank score (y) with degree in confirmed "continuous communication" network (x_{obs})
 - Null: no relationship between degree and decision making
 - Alternative: decision making has linear marginal relationship w/degree

Results

• $t_{obs} = 0.86$; $\Pr(|t^{(i)} \ge |t_{obs}|) \approx 3e - 5$

Carter Butts. Social Network Methods. University California, Irvine.

NLIs as Covariates

- NLIs can also be used as covariates (e.g., in regression analyses)
 - Modeling assumption: position properties predict properties of those who hold them
 - Conditioning on NLI values, so dependence doesn't matter (if no error in G)
 - NLIs as dependent variables are much more problematic; we'll revisit this problem when we discuss ERGs

- Things to keep in mind....
 - Make sure that your theory really posits a direct relationship w/the NLI
 - NLI distributions could be quite skewed or irregular; be sure this makes sense (e.g., via analysis of residuals)
 - Multiple NLIs may be strongly correlated; may not be able to distinguish among related measures in practice

Graph Level Indicies

Graph-Level Properties

- Earlier, we discussed the notion of node-level indices (mainly centrality)
 - Dealt with position of the individual within the network
- Today, we will focus on properties at the graph level
 - Graph-level index: $f(v, G) \rightarrow \Re$
 - Describes aggregate features of structure as a whole
- Provide complementary insight into social structure
 - Node-level properties tell you who's where, but graph-level properties provide the broader context

Review Density

- Density: fraction of possible edges which are present
 - Probability that a given graph edge is in the graph
- Formulas:

undirected <- rgraph(10, mode = "graph")

- Undirected: $\delta = \frac{2\sum_{i=1}^{N}\sum_{j=i}^{N}Y_{ij}}{N(N-1)}$ Directed: $\delta = \frac{2\sum_{i=1}^{N}\sum_{j=1}^{N}Y_{ij}}{N(N-1)}$

R Code

```
directed <- rgraph(10, mode = "digraph")
gden(undirected, mode = "graph")
[1] 0.4222222
gden(directed, mode = "digraph")
```

[1] 0.5222222

Size, Density, and Mean Degree

- Important fact: size, density, and mean degree are intrinsically related
 - Formally, $d_m = \delta(N-1)$ [I.e., mean degree = density times size-1]
 - Also, $\delta = d_m/(N-1)$ [I.e., density = mean degree over size-1]
- Simple fact, with non-obvious implications
 - If mean degree fixed, density falls with 1/group size
 - To maintain density, have to increase degree linearly, but actors can only support so many ties!
 - Thus, growing networks become increasingly sparse over time
 - Durkheim, Parsons, etc: modern social order depends on/produces norms of generalized exchange, since only tiny fraction of person can be directly related

Illustration: Mean Degree Constancy and Density Decline

```
library(ggplot2)
library(gridExtra)
library(gridExtra)
library(networkdata)
data(addhealth)
data <- data.frame(size = sapply(addhealth, network.size), density = sapply(addhealth, gden))
data$meandegree <- data$density * (data$size - 1)

p1 <- ggplot(data, aes(size, density)) + geom_point() + geom_smooth()
p2 <- ggplot(data, aes(size, meandegree)) + geom_point() + geom_smooth()
grid.arrange(p1, p2, ncol = 1)</pre>
```


Beyond Density: the Dyad Census

- Dyad census: a count of the number of mutual, asymmetric and null dyads in a network
 - Mutual: (i,j) and (j,i)
 - Asymmetric: (i,j) or (j,i), but not both
 - Null: neither (i, j) nor (j, i)
 - Traditionally written as (M, A, N)
- Used as "building block"
 - M + A + N = Number of dyads
 - 2M + A = Number of edges
 - (M + A/2)/(M + A + N) Density

Reciprocity

- Reciprocity: tendency for relations to be symmetric
- Several notions:
 - Dyadic: probability that any given dyad is symmetric (mutual or null)

$$\frac{M+N}{M+A+N}$$

 Edgewise: probability that any given edge is reciprocated

$$\frac{2M}{2M+A}$$

	Mut	Asym	Null
1	19.00	64.00	22.00

Reachability

- Reachability graph
 - Digraph, R, based on G such that (i, j) is an edge in R iff there exists an i, j path in G
 - If G is undirected or fully reciprocal, R will also be fully reciprocal
 - Intuitively, an edge in R connects vertices which are connected in G
 - Strong components of G
 (including cycles) form cliques
 in R

Hierarchy

- Hierarchy: tendency for structures to be asymmetric
- As with reciprocity, many notions; for instance...
 - Dyadic Hierarchy: 1- (Dyadic Reciprocity)
 - Intuition: extent to which dyads are asymmetric
 - Krackhard Hierarchy: 1 M/(M + A) in Reachability Graph
 - Intuition: for pairs which are in a contact, what fraction are asymmetric?

Reciprocity

0.15	Krackhardt

0.83

Centralization

- Centralization: extent to which centrality is concentrated on a single vertex
- Definition dut to Freeman (1979):

$$C(G) = \sum_{i=1}^{N} \left(\max_{v} c(v, G) - c(i, G) \right)$$

- Defined for any centrality measure
- Often used with degree, betweenness, closeness, etc.
- Most centralized structure usually star network
 - True for most centrality measures

RAHUUHH INCLWUIK

Random Network

Centralization Versus Hierarchy

- Aren't centralization and hierarchy the same thing?
- No! Two very different ideas:
 - Hierarchy: asymmetry in interaction
 - Centralization: inequality in centrality
- Can have centralized mutual structures, hierarchical decentralized structures

Centralization and Team Performance

 Bavelas, Leavitt and others studied work teams with four structural forms:

- Performance generally highest in centralized groups
 - Star, "Y" took least time, made fewest errors, used fewest messages
- Satisfaction generally highest in decentralized groups
 - Circle>Chain>"Y">Star (but central persons had fun!)
- A lesson: optimal performance \neq optimal satisfaction ...

References and Places for More

Information

References and Places for More Information i

Graph Level Indicies

References and Places for More Information