M2 AIC - Optimization

Indicator-Based Evolutionary Algorithm - IEBA

Contributors:

Amal Targhi
Fella Belkham
Mahmut Cavdar
NGO HO Anh Khoa
VU Trong Bach

Plan

- Introduction: Multiobjective Optimisation & EA
- MOEA's
- Adaptative IBEA
- IEBA's steps (Implementation)
- Test & Results
- Comparaison
- Conclusion

Evolutionary Algorithms

EA for Multiobjective optimization

Evolutionary Algorithms (EAs) have earned popularity in solving MOPs thanks to two reasons:

- (1) EAs are able to find multiple non-dominated solutions, which portrays a trade-off among objectives, in a single simulation run.
- (2) EAs are insensitive to the shape of the objective functions such as nonconvexity, discontinuity, multimodality, non-uniformity of the search space,

MOEA

- Solutions lie on the Pareto set
- Solutions are diverse enough

→ Conflict

- Need another performance measure
- Metrics : convergence, spread, both

MOEAs - Pareto-Based Ranking

FIGURE 10.7 Illustration of fitness computation for MOGA in a biobjective minimization problem. The rank of a given individual corresponds with 1 plus the number of individuals by which it is dominated. Nondominated individuals have rank 1. The number by each individual is their rank.

 f(2) has greater priority than f(1)

- Multiobjective ranking with goal values (minimization).
- f(2) has the same priority as f(1)

Adaptative IBEA 1/3

Principle

- Start from a random of initial solutions
- Use the dominance relationships based on a quality indicator for calculate the fitness
- Conclude Pareto Approximative sets

Adaptative IBEA 2/3

Hyper-Volume Indicator

- Define indicators which are able to evaluate a set of solutions and optimize them during the search.
- Binary indicator → compare 2 individuals (domination relationships)
- i(x,y) is the volume of space dominated by y and not dominated by x

Adaptative IBEA 3/3

Fitness Assignment

- A Population represents a sample of the decision space and Fitness assignment try to rank the population members according to their usefulness regarding the optimal goal [Eckart Zitzler and Simon Künzli].
- Define a binary indicator which allows to compare two solutions
- Compare x against every solution in P using indicator I to compute x fitness
- loss in quality

IBEA Steps

Step 1 - Initialization

Step 4 - Mating selection

Step 2 - Fitness assignment

Step 5 - Variation

Step 3: Environmental selection

Step 6: Termination

IBEA Steps - Initialization

Alpha population size

Generate Array F = fun(P)
with two objectives to calculate
Pareto set

IBEA Steps - Fitness assignment

- Calculate fitness values of individuals in P.
- Fitness value is calculated by using.
- HyperVolume Indicator with sub-function "indicator value(x1, x2, reference point Z)".
- Reference Point Z(2,2)

OUTPUT

Fitness values of each individual Hypervolume indicator values Maximum absolute indicator value C

IBEA Steps - Fitness assignment

1. Scale each objective value f_i in the interval [0; 1]

$$f_i'(x) = \frac{f_i(x) - lb_i}{ub_i - lb_i} \qquad \begin{cases} lb_i = min_{x \in P} f_i(x) \\ ub_i = max_{x \in P} f_i(x) \end{cases}$$

$$F(x^1) = \sum_{x^2 \in P \text{ without } x^2} -e^{-I(X^1, X^2)/(c.k)}$$

2. Sub-Function: Indicator value

IBEA Steps - Environmental selection

Remove individuals having smallest fitness value until Alpha-Value individuals chosen

Update the fitness value of the remaining individuals for all $x \in P$:

OUTPUT

The population - the best individuals New Fitness values New HyperVolume indicator values

IBEA Steps - Mating selection

Selects randomly two individuals for binary tournament Where the individual with the best fitness value is placed in the temporary mating pool P' until Alpha-Value individuals are chosen.

Mating Pool P' Alpha-Value Size

OUTPUT

Population with the best individual with replacements

IBEA Steps - Variation

IBEA Steps - Variation

We compared two methods

Cycle Crossover

Line Crossover

Swap Mutation

Gaussian Mutation

IBEA Steps - Recombinaison

Line Crossover

Selects randomly $a \in [-0.25, 1.5]$

Selects randomly two parents from P'

$$X_i^{C_i} = X_i^{P_1} * a_i + X_i^{P_2} * (1 - a_i)$$

Pchildren

IBEA Steps – Gaussian Mutation

We add to each vector entry of the individual a randomly produced number from a Gaussian distribution with mean equal to zero.

In this case, the variance of the distribution is a parameters, which is also the case for the swapping possibility.

IBEA Steps - Termination

non dominated selection

Tests & Results

Cases

Population size : α ,maximum number of generation : N ,mutation rate = μ

* Population Size:

- $-\alpha = 150$, N=100, $\mu = 0.1$
- $-\alpha = 200$, N=100 , $\mu = 0.1$

* Max. Num. Generation

- $-\alpha = 80$, N=100 , $\mu = 0.1$
- $-\alpha = 80$, N=150 , $\mu = 0.1$

* Mutation Rate

- $-\alpha = 80$, N=50 , $\mu = 0.05$
- $-\alpha = 80$, N=50 , $\mu = 0.1$

Tests & Results

Cases

Population size : α ,maximum number of generation : N ,mutation rate = μ

* Population Size:

$$-\alpha=150\;,\;N=100\;,\;\mu=0.1\\ -\alpha=200\;,\;N=100\;,\;\mu=0.1\\ -\alpha=80\;,\;N=100\;,\;\mu=0.1\\ -\alpha=80\;,\;N=100\;,\;\mu=0.1\\ -\alpha=80\;,\;N=150\;,\;\mu=0.1\\ -\alpha=80\;,\;N=150\;,\;\mu=0.1$$

* Mutation Rate

-
$$\alpha$$
=80 , N=50 , μ =0.05 - α =80 , N=50 , μ =0.1

VS

Hyper-Volume Indicator Based Evolutionary (HV IBEA)

- NSGA-II

- Random Search

- NSGA-II: Non-dominated Sorting Genetic Algorithm II (2002).
- Random Search: Optimization method not requiring the problem optimized gradient.
- Empirical cumulative distribution function (ECDF) Graph:
 - Y-axis: Faction/Percentage of problems solved.
 - X-axis: Budget/Maximal runtime observed.

- ECDFs per function and dimension
- All Functions/Groups with two dimensions:

- ECDFs per function and dimension
- All Functions/Groups with higher dimensions:

- ECDFs per function and dimension
- - HV-IEBA: Proportion of problems solved within 10⁵ 2 Dimensions:

	Separable	Moderate	III-Conditioned	Multi- Modal	Weakly- Structured
Separable	≈ 0.61	≈ 0.65	≈ 0.54	≈ 0.42	≈ 0.62
Moderate		≈ 0.58	≈ 0.5	≈ 0.38	≈ 0.58
III-Conditioned			≈ 0.5	≈ 0.4	≈ 0.48
Multi-Modal				≈ 0.3	≈ 0.46
Weakly-Structure					≈ 0.57

- ECDFs per function and dimension
- Two Dimensions: Separable Moderate Conditioning Group:

- ECDFs per function and dimension
- HV-IBEA has the similar levels with NSGA-II and RS: f2 and f13.

Separable - Unimodal - 2D

Separable - Moderate Conditioning - 2D

- ECDFs per function and dimension
- HV-IBEA has the similar levels with NSGA-II and RS: f14.

Separable - III-Conditioned Function - 2D

Separable - III-Conditioned Function - 3D

ECDFs per function and dimension

- HV-IBEA has the high levels: f18 and f26.

Separable - Weakly Structured - 2D

Moderate - Weakly Structured - 2D

- NSGA-II and Random Search have the better results.
- However, in cases of Separable, Unimodal, Moderate Conditioning and Weakly Structure, HV IBEA has the remarkable proportions.

Conclusion

- The algorithm proposed define the optimization goal in term of an indicator which will be used in fitness calculation.
- The indicator used is a hyper-volume indicator: is a space volume representing the domination relationship of individuals.
- Problem with IBEA HV approach is execution time. It requires high-level computational capacity.
- The algorithm give better results when the COCO budget is very high.