Fat Composition Measurements with Smartphone Integration

Team Quadcopter: Marty Alcala, Brandon Bruen, John Bush (JD), Philip Gordon

ECE 4012 L2A: Professor Bhatti

Initial Motivation

BODY MASS INDEX

Height: 5'6"

Weight: 172.9 lbs

BMI: 27.9

BMI score= Overweight

Ideal weight: 115 lbs

http://news.medill.northwestern. edu/chicago/news.aspx? id=221734&print=1

Motivation

(per 100 gran	(per 100 grams of cooked lean meat) BISON				
SPECIES	FAT GRAMS	CALORIES KCAL	CHOLESTEROL MG	IRON MG	
Bison	2.42	143	82	3.42	
Beef Beef	8.09	201	86	2.99	
Pork	9.66	212	86	1.10	
Chicken	2.00	158	86	0.60	
Salmon	12.35	206	63	0.34	

http://www.canadianbison.ca/consumer/Why_Bison/nutrition.htm

Existing Technology

- Dual-Energy X-Ray Absorptiometry
- Hydrostatic Weighing
- Boil testing
- Bioelectrical impedance

Bioelectrical Impedance

Qualitative Goals

- Determine fat percentage using AC small signal analysis
- Combine resistive and reactive measurements for data acquisition
- Upload data to mobile devices using Bluetooth
- Create user friendly application for data management

Specifications

Target Subject	Cuts of Meat
Meat Fat % Accuracy	10-20%
Test Duration	<10 Seconds
Device Weight	<3 lbs
Signal Voltage	3.3 - 5 V
Number of Probes	2 - 4

Design Approach

Arduino Ohm Meter

Regression Model

$$FFM(kg) = 0.7* (Ht^2/R_{body}) + .18*BW - .18*Age + .12*X_{body} - 2.5$$
 [1]

Ht² - Height of the subject squared

R_{body} - Real resistance of subject's body

BW - Bodyweight of subject

Age - Age of subject

X_{body} - Imaginary reactance of subject's body

Mobile App Interface

Display of latest measurement

Measurement in progress

Benchmarking Data Sets

- Temperature
- Meat Type
- Age
- Density
- Combination of types

Benchmarking Method

- 1. Weigh meat
- 2. Run small AC signal test and collect data
- 3. Put meat in water to calculate density
- 4. Boil meat until all fat is collected on top
- 5. Weigh fat and meat again
- 6. Calculate overall fat content
- 7. Add to existing model

Benchmarking Method

Upper and lower limits also need to be added

- Upper limit will be measured through a brick of suet (100% fat)
- Lower limit will be an average of the AC signal test on the post cooked meats

Design Expo

Logistics:

- Impractical for frequent demonstration
- Scheduled times for several demonstrations throughout the expo

Demonstration:

- We will bring meat and store it in a cooler
- Show our product by using our device and accompanying smartphone application

Current Status

Right Now:

 Ready to order parts and begin assembling, programming, and developing model

Anticipated Challenges:

- Data points: accuracy of model is dependent on our testing
- Limits on meat subjects: to much variation between types of animals?

Schedule

- Phase 1: (8/28 9/30)
 - Philip, Brandon: Hardware Development, Baseline Testing, Beginning of Model Development
 - Marty, JD: Arduino Programming, Application Development
- Phase 2: (10/1 10/31)
 - All: Model Development, U/I Improvements
- Phase 3: (11/1 11/21)
 - All: Improvements, Preparing Demonstration

References

- [1] N. Macias. (2007, Aug. 15). Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2020472/#!po=3.12500
- [2] Y. Hui. (2012) Handbook of Meat and Meat Processing, 2nd Edition, Boca Raton
- [3] S. Nielsen. (2003) Food Analysis Vol. 1, New York
- [4] Y. Hui. (2001) Meat Science and Applications. New York