

STT5PF20V

P-CHANNEL 20V - 0.065Ω - 5A SOT23-6L 2.5V-DRIVE STripFETTM II POWER MOSFET

TYPE	TYPE V _{DSS}		I _D
STT5PF20V	20 V	< 0.080 Ω (@4.5V) < 0.10 Ω (@2.5V)	5 A

- TYPICAL $R_{DS}(on) = 0.065\Omega$ (@4.5V)
- TYPICAL $R_{DS}(on) = 0.085\Omega$ (@2.5V)
- ULTRA LOW THRESHOLD GATE DRIVE (2.5V)
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance.

APPLICATIONS

- MOBILE PHONE APPLICATIONS
- DC-DC CONVERTERS
- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STT5PF20V	STPN	SOT23-6L	TAPE & REEL

October 2003 1/8

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	20	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	20	V
V _{GS}	Gate- source Voltage	± 8	V
I _D	Drain Current (continuous) at T _C = 25°C	5	Α
I _D	Drain Current (continuous) at T _C = 100°C	3.1	А
I _{DM} (•)	Drain Current (pulsed)	20	Α
P _{TOT}	Total Dissipation at T _C = 25°C	1.6	W

(•) Pulse width limited by safe operating area
Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

THERMAL DATA

Rth	nj-amb	Thermal Resistance Junction-ambient Max	78	°C/W
	Tj	Max. Operating Junction Temperature	150	°C
	T _{stg}	Storage Temperature	-55 tr. 150	°C

ELECTRICAL CHARACTERISTICS (TJ = 25 °C UNLESS OTHER WISE SPECIFIED)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu I$, $V_{G3} = 0$	20			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, T_C = 125 °C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 8V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(ti})	Cate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	0.45			V
R _D (;(or,)	Static Drain-source On	V _{GS} = 4.5V, I _D = 2.5 A		0.065	0.080	Ω
75	Resistance	$V_{GS} = 2.5V, I_D = 2.5 A$		0.085	0.10	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V , I _D = 2.5 A		6.6		S
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0$		412		pF
Coss	Output Capacitance			179		pF
C _{rss}	Reverse Transfer Capacitance			42.5		pF

47/₀ 2/8

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 10 V, I _D = 2.5 A		11		ns
t _r	Rise Time	$R_G = 4.7\Omega \text{ V}_{GS} = 2.5 \text{ V}$ (see test circuit, Figure 1)		47		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 10 \text{ V}, I_D = 5 \text{ A},$ $V_{GS} = 2.5 \text{V}$ (see test circuit, Figure 2)		4.5 0.73 1.75		nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-Delay Time Fall Time	$V_{DD} = 10 \text{ V}, I_D = 2.5 \text{ A},$ $R_G = 4.7\Omega, V_{GS} = 2.5 \text{ V}$		38 20	7	ns
		(see test circuit, Figure 1)				

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions N.n.		Typ.	Max.	Unit
I _{SD}	Source-drain Current		0.		5	Α
I _{SDM}	Source-drain Current (pulsed)	101			20	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 5 A, V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 5$ A, di/c't = 100 Vµs, $V_{DD} = 16$ V, 1 = 150°C (see test circuit, Figure 3)		32 12.8 0.8		ns nC A
Obsole	: Pulse duration = 300 μs, duty cycle 1					

47/

Safe Operating Area

Transconductance

Thermal Impedence Junction-PCB

Transfer Characteristics

Static Drain-source On Resistance

A7/, 4/8

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized Gate Thereshold Voltage vs Temp.

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

A7/,

Fig. 1: Switching Times Test Circuit For Resistive Load

Fig. 2: Gate Charge test Circuit

Fig. 3: Test Circuit For Diode Recovery Behaviour

6/8

TSOP-6 MECHANICAL DATA

DIM.		mm mils				
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	0.90		1.45	0.035		0.057
A1	0.00		0.15	0.000		0.006
A2	0.90		1.30	0.035		0.051
b	0.25		0.50	0.010		0.C2u
С	0.09		0.20	0.004	~C	0.008
D	2.80		3.10	0.110	010	0.122
Е	2.60		3.00	0.102		0.118
E1	1.50		1.75	0.028		0.069
L	0.35		0.55	0.014		0.022
е		0.95	Up.		0.037	_
e1		1.90			0.075	

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477. 8/8