Prednáška 3 - Regulárne výrazy, vlastnosti regulárnych jazykov

Ing. Viliam Hromada, PhD.

C-510 Ústav informatiky a matematiky FEI STU

viliam.hromada@stuba.sk

KA vs. RegGram

 Množina regulárnych jazykov (t.j. tých, ktoré su generovateľné regulárnymi gramatikami) je rovná množine jazykov rozpoznateľných konečnými automatmi.

Veta

Nech G = (N, T, P, S) je regulárna gramatika. Potom existuje nedeterministický konečný automat $M = (Q, T, \delta, q_0, F)$ taký, že L(M) = L(G).

- Množina stavov Q bude tvorená množinou neterminálov N gramatiky a novým stavom {q_f} takým, že q_f ∉ N (t.j. Q = N ∪ {q_f}).
- Vstupná abeceda automatu je rovná terminálom gramatiky.
- Začiatočný stav automatu q_0 bude začiatočný neterminál gramatiky, t.j. $q_0 = S$.
- Množina akceptujúcich stavov F:

$$F = \begin{cases} \{S, q_f\} & \text{ak } S \to \varepsilon \in F \\ \{q_f\} & \text{inak.} \end{cases}$$

- Prechodová funkcia δ :
 - ak $B \rightarrow a \in P$, potom $q_f \in \delta(B, a)$;
 - ak $B \rightarrow aC \in P$, potom $C \in \delta(B, a)$.

- Množina stavov Q bude tvorená množinou neterminálov N gramatiky a novým stavom {q_f} takým, že q_f ∉ N (t.j. Q = N ∪ {q_f}).
- Vstupná abeceda automatu je rovná terminálom gramatiky.
- Začiatočný stav automatu q_0 bude začiatočný neterminál gramatiky, t.j. $q_0 = S$.
- Množina akceptujúcich stavov F:

$$F = \begin{cases} \{S, q_f\} & \text{ak } S \to \varepsilon \in F \\ \{q_f\} & \text{inak.} \end{cases}$$

- Prechodová funkcia δ :
 - ak $B \rightarrow a \in P$, potom $q_t \in \delta(B, a)$;
 - ak $B \rightarrow aC \in P$, potom $C \in \delta(B, a)$.

- Množina stavov Q bude tvorená množinou neterminálov N gramatiky a novým stavom {q_f} takým, že q_f ∉ N (t.j. Q = N ∪ {q_f}).
- Vstupná abeceda automatu je rovná terminálom gramatiky.
- Začiatočný stav automatu q_0 bude začiatočný neterminál gramatiky, t.j. $q_0 = S$.
- Množina akceptujúcich stavov F:

$$F = \begin{cases} \{S, q_f\} & \text{ak } S \to \varepsilon \in F \\ \{q_f\} & \text{inak.} \end{cases}$$

- Prechodová funkcia δ :
 - ak $B \rightarrow a \in P$, potom $g_t \in \delta(B, a)$;
 - ak $B \rightarrow aC \in P$, potom $C \in \delta(B, a)$.

- Množina stavov Q bude tvorená množinou neterminálov N gramatiky a novým stavom {q_f} takým, že q_f ∉ N (t.j. Q = N ∪ {q_f}).
- Vstupná abeceda automatu je rovná terminálom gramatiky.
- Začiatočný stav automatu q_0 bude začiatočný neterminál gramatiky, t.j. $q_0 = S$.
- Množina akceptujúcich stavov F:

$$F = \begin{cases} \{S, q_f\} & \text{ak } S \to \varepsilon \in F \\ \{q_f\} & \text{inak.} \end{cases}$$

- Prechodová funkcia δ :
 - ak $B \rightarrow a \in P$, potom $q_t \in \delta(B, a)$;
 - ak $B \rightarrow aC \in P$, potom $C \in \delta(B, a)$.

- Množina stavov Q bude tvorená množinou neterminálov N gramatiky a novým stavom {q_f} takým, že q_f ∉ N (t.j. Q = N ∪ {q_f}).
- Vstupná abeceda automatu je rovná terminálom gramatiky.
- Začiatočný stav automatu q_0 bude začiatočný neterminál gramatiky, t.j. $q_0 = S$.
- Množina akceptujúcich stavov F:

$$F = egin{cases} \{S, q_f\} & ext{ak } S
ightarrow arepsilon \in P \ \{q_f\} & ext{inak}. \end{cases}$$

- Prechodová funkcia δ:
 - ak $B \rightarrow a \in P$, potom $q_f \in \delta(B, a)$;
 - ak $B \to aC \in P$, potom $C \in \delta(B, a)$.

Príklad: Gramatika
$$G = (\{S, A, B\}, \{+, -, 0, 1, 2, ..., 9\}, P, S).$$

 $S \to +A \mid -A \mid 1B \mid 2B \mid ... \mid 0 \mid 1 \mid ... \mid 9$
 $A \to 1B \mid 2B \mid ... \mid 0 \mid 1 \mid ... \mid 9$
 $B \to 0B \mid 1B \mid ... \mid 0 \mid 1 \mid ... \mid 9$

Hľadaný NKA M:

	δ	+ -	0	1 9
	S	{ <i>A</i> }	$\{q_f\}$	$\{B,q_f\}$
ĺ	Α	Ø	$\{q_f\}$	$\{B,q_f\}$
ĺ	В	Ø	$\{B,q_f\}$	$\{B,q_f\}$
ĺ	q_f	Ø	Ø	Ø

$$\begin{aligned} &Q = \{S, A, B, q_f\} \\ &T = \{+, -, 0, 1, ..., 9\} \\ &q_0 = S \\ &F = \{q_f\} \end{aligned}$$

V gramatike viem odvodiť:

$$S \Rightarrow -A \Rightarrow -1B \Rightarrow -12B \Rightarrow -123$$

t.j. slovo -123 patrí do jazyka generovaného gramatikou, $-123 \in L(G)$, a teda by sa malo dať akceptovať automatom:

$$(S,-123)\vdash (A,123)\vdash (B,23)\vdash (B,3)\vdash (q_f,\varepsilon)$$

t.j. naozaj, -123 ∈ L(M).

Z NKA vytvoriť DKA je už len triviálna úloha.

Veta

Nech $M = (Q, T, \delta, q_0, F)$ je DKA. Potom existuje taká regulárna gramatika G = (N, T, P, S), že L(G) = L(M).

- Množina neterminálov gramatiky bude totožná s množinou stavov, t.j. N = Q.
- Množina terminálov gramatiky bude totožná so vstupnou abecedou DKA.
- Začiatočný symbol gramatiky bude totožný so začiatočným stavom DKA, t.j. $S=q_0$.
- Množina pravidiel P:
 - ak $\delta(q_i, a) = q_i$, potom $q_i \rightarrow aq_i \in P$,
 - ak $\delta(q_i, a) = q_f, q_f \in F$, potom $q_i \to a \in P$,
 - ak $q_0 \in F$, potom $q_0 \to \varepsilon \in P$.

- Množina neterminálov gramatiky bude totožná s množinou stavov, t.j. N = Q.
- Množina terminálov gramatiky bude totožná so vstupnou abecedou DKA.
- Začiatočný symbol gramatiky bude totožný so začiatočným stavom DKA, t.j. $S=q_0$.
- Množina pravidiel P:
 - ak $\delta(q_i, a) = q_i$, potom $q_i \rightarrow aq_i \in P$,
 - ak $\delta(q_i, a) = q_f, q_f \in F$, potom $q_i \to a \in P$,
 - ak $q_0 \in F$, potom $q_0 \to \varepsilon \in P$.

- Množina neterminálov gramatiky bude totožná s množinou stavov, t.j. N = Q.
- Množina terminálov gramatiky bude totožná so vstupnou abecedou DKA.
- Začiatočný symbol gramatiky bude totožný so začiatočným stavom DKA, t.j. S = q₀.
- Množina pravidiel P:
 - ak $\delta(q_i, a) = q_i$, potom $q_i \to aq_i \in P$,
 - ak $\delta(q_i, a) = q_f, q_f \in F$, potom $q_i \to a \in P$,
 - ak $q_0 \in F$, potom $q_0 \to \varepsilon \in P$.

- Množina neterminálov gramatiky bude totožná s množinou stavov, t.j. N = Q.
- Množina terminálov gramatiky bude totožná so vstupnou abecedou DKA.
- Začiatočný symbol gramatiky bude totožný so začiatočným stavom DKA, t.j. S = q₀.
- Množina pravidiel P:
 - ak $\delta(q_i, a) = q_i$, potom $q_i \to aq_i \in P$,
 - ak $\delta(q_i, a) = q_f, q_f \in F$, potom $q_i \to a \in P$,
 - ak $q_0 \in F$, potom $q_0 \to \varepsilon \in P$.

- Množina neterminálov gramatiky bude totožná s množinou stavov, t.j. N = Q.
- Množina terminálov gramatiky bude totožná so vstupnou abecedou DKA.
- Začiatočný symbol gramatiky bude totožný so začiatočným stavom DKA, t.j. S = q₀.
- Množina pravidiel P:
 - ak $\delta(q_i, a) = q_i$, potom $q_i \rightarrow aq_i \in P$,
 - ak $\delta(q_i, a) = q_f, q_f \in F$, potom $q_i \to a \in P$,
 - ak $q_0 \in F$, potom $q_0 \to \varepsilon \in P$.

Príklad: Je daný automat (prechodovým diagramom):

Gramatika G:

$$N = \{q_0, q_1, q_2, q_3\}$$

$$T = \{0, 1\}$$

$$S=q_0$$

P obsahuje pravidlá:

•
$$q_0 \to 0q_2 \mid 1q_1$$

•
$$q_1 \to 0 q_0 \mid 1 q_3 \mid 0 \text{ (lebo } q_0 \in F)$$

•
$$q_2 \to 0 q_3 \mid 1 q_0 \mid 1 \text{ (lebo } q_0 \in F)$$

•
$$q_3 \to 0q_1 \mid 1q_2$$

Automat napríklad akceptuje slovo 0110:

$$(q_0,0110) \vdash (q_2,110) \vdash (q_0,10) \vdash (q_1,0) \vdash (q_0,\varepsilon),$$

keďže $q_0 \in F$, tak 0110 $\in L(M)$ a teda by ho gramatika mala vedieť vygenerovať:

$$q_0 \Rightarrow 0q_2 \Rightarrow 01q_0 \Rightarrow 011q_1 \Rightarrow 0110,$$

t.j.
$$0110 \in L(G)$$
.

Aby toho nebolo málo, tak regulárne jazyky okrem gramatík a automatov vieme popísať aj inak.

Definícia

- 1. Ø je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre a ∈ T je regulárny výraz popisujúci jazyk {a}.
- 4. Ak R_1 a R_2 sú regulárne výrazy popisujúce jazyky R_1 a R_2 , potom $(R_1 \mid R_2)$ je regulárny výraz popisujúci jazyk $R_1 \cup R_2$ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre a ∈ T je regulárny výraz popisujúci jazyk {a}.
- 4. Ak R_1 a R_2 sú regulárne výrazy popisujúce jazyky R_1 a R_2 , potom $(R_1 \mid R_2)$ je regulárny výraz popisujúci jazyk $R_1 \cup R_2$ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre a ∈ T je regulárny výraz popisujúci jazyk {a}.
- 4. Ak R_1 a R_2 sú regulárne výrazy popisujúce jazyky R_1 a R_2 , potom $(R_1 \mid R_2)$ je regulárny výraz popisujúci jazyk $R_1 \cup R_2$ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre $a \in T$ je regulárny výraz popisujúci jazyk $\{a\}$.
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁ | R₂) je regulárny výraz popisujúci jazyk R₁ ∪ R₂ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre $a \in T$ je regulárny výraz popisujúci jazyk $\{a\}$.
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁ | R₂) je regulárny výraz popisujúci jazyk R₁ ∪ R₂ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre $a \in T$ je regulárny výraz popisujúci jazyk $\{a\}$.
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁ | R₂) je regulárny výraz popisujúci jazyk R₁ ∪ R₂ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre $a \in T$ je regulárny výraz popisujúci jazyk $\{a\}$.
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁ | R₂) je regulárny výraz popisujúci jazyk R₁ ∪ R₂ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- 6. Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Definícia

- 1. ∅ je regulárny výraz popisujúci prázdny jazyk,
- 2. ε je regulárny výraz popisujúci jazyk $\{\varepsilon\}$,
- 3. a, pre $a \in T$ je regulárny výraz popisujúci jazyk $\{a\}$.
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁ | R₂) je regulárny výraz popisujúci jazyk R₁ ∪ R₂ (zjednotenie).
- Ak R₁ a R₂ sú regulárne výrazy popisujúce jazyky R₁ a R₂, potom (R₁R₂) je regulárny výraz popisujúci jazyk R₁R₂ (zreťazenie).
- 6. Ak R je regulárny výraz popisujúci jazyk R, potom (R*) je regulárny výraz popisujúci iteráciu R* jazyka R.
- 7. iné regulárne výrazy ako tie, zostrojené podľa bodov 1-6, neexistujú.

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce obsahujúce begin ako podreťazec

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce obsahujúce begin ako podreťazec

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = { begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s
- $((\varepsilon + -)(0)((1 + ... + 9)(0 + 1 + ... + 9)^*))$ celočíselné
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce obsahujúce begin ako podreťazec

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce obsahujúce begin ako podreťazec

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce

Príklad: Nech $T = \{0, 1, ..., 9, a, b, ..., z\}$. Potom možné regulárne výrazy:

- $(0 | 1) = \{0, 1\}$
- $(1(0^*)1) = \{11, 101, 1001, ...\}$
- $((10)(0 \mid 1)^*) = \{10w \mid w \in \{0,1\}^*\}$
- ((begin) | (end)) = {begin, end}
- ((0 | 1 | ... | 9)(0 | 1 | ... | 9)*) celočíselné konštanty s prípadnými bezvýznamnými nulami zľava, bez znamienka
- $((\varepsilon \mid + \mid -)(0 \mid ((1 \mid ... \mid 9)(0 \mid 1 \mid ... \mid 9)^*)))$ celočíselné konštanty bez/so znamienkom, bez bezvýznamných núl zľava
- ((a | ... | z)*(begin)(a | ... | z)*) všetky textové reťazce obsahujúce begin ako podreťazec

Regulárne výrazy ⇒ NKA

Veta

Nech R je regulárny výraz popisujúci nejaký jazyk. Potom existuje nedeterministický konečný automat M taký, že L(M) = R.

Dôkaz - \emptyset , ε , a

Stačí ukázať, že pre prvých 6 bodov z definície vieme vždy zostrojiť príslušný automat:

Výraz ∅:

Výraz ε:

Výraz a:

Dôkaz - $R_1 | R_2, R_1 R_2, R^*$

Príklad: Zostrojte NKA rozpoznávajúci jazyk popísaný regulárnym výrazom $((10)(0 \mid 1)^*)$.

Postupne budeme konštruovať konečné automaty podľa konštrukcií z predchádzajúcich slajdov.

Konečný automat pre jazyk 0:

Konečný automat pre jazyk 1:

Konečný automat pre jazyk 10 (t.j. "zreťazenie" 2 už existujúcich automatov).

Konečný automat pre jazyk 0 | 1 (t.j. "zjednotenie" 2 už existujúcich automatov).

Konečný automat pre jazyk $(0 \mid 1)^*$ (t.j. "iterácia" už existujúceho automatu).

Konečný automat pre jazyk $(10)(0 \mid 1)^*$ (t.j. zreťazenie automatov pre 10 a $(0 \mid 1)^*$.

 ε

Ďalší príklad

Nájdite minimálny DKA, ktorý akceptuje jazyk popísaný regulárnym výrazom: $(01|10)^*(\varepsilon|0|1)$. Najprv skonštruujeme NKA, ktorý rozpoznáva daný regulárny výraz... Začneme s elementárnymi KA pre 0 a 1.

Z nich zreťazením dostávame 2 NKA - prvý pre 01 a druhý pre 10:

Zjednotením NKA pre 01 a NKA pre 10 vznikne NKA pre (01|10):

Iteráciou NKA pre (01|10) vznikne NKA pre (01|10)*:

Ďalej potrebujeme zostrojiť NKA pre (ε |0|1). Tri elementárne NKA, pre ε , 0, 1 sú nasledovné:

Ich zjednotením dostávame NKA pre ε |0|1:

Na záver z NKA pre $(01|10)^*$ a z NKA pre $\varepsilon|0|1$ ich zreťazením dostávame výsledný NKA pre $(01|10)^*(\varepsilon|0|1)$

Následne automat podrobíme determinizácii. Najprv však pomenujme stavy (teraz je v princípe jedno, ako).

Ekvivalentný deterministický automat vyzerá nasledovne:

Po preznačení stavov a doplnení na úplný automat (pridáme pascu - stav q₅), dostávame:

Následne automat podrobíme minimalizácii a dostaneme tak najmenší DKA akceptujúci jazyk popísaný regulárnym výrazom $(01|10)^*(\varepsilon|0|1)$.

A teda výsledný úplný minimálny DKA rozpoznávajúci jazyk popísaný regulárnym výrazom $(01|10)^*(\varepsilon|0|1)$ je:

DKA ⇒ regulárny výraz

Veta

Nech M je deterministický konečný automat. Potom existuje regulárny výraz R popisujúci taký jazyk, že L(M) = R.

Neformálny dôkaz

- Grafická reprezentácia DKA/NKA sa niekedy nazýva aj prechodový diagram.
- V tomto dôkaze využijeme tzv. zovšeobecnený prechodový diagram. Je to prechodový diagram, ktorého hrany sú ohodnotené regulárnymi výrazmi, nie len jednoduchými symbolmi.

$$L = a^*(a|b)c^*$$

Hrany v zovšeobecnenom prechodovom diagrame, ktoré majú spoločný začiatok a spoločný koniec, možno nahradiť jednou hranou, ktorej regulárny výraz bude zjednotením regulárnych výrazov pôvodných hrán.

Odstránenie stavu q zo zovšeobecneného prechodového diagramu, pričom sa zachová jazyk.

Ak bol zovšeobecnený prechodový diagram vytvorený z DKA s 1 akceptačným stavom a odstránime všetky stavy, ktoré nie sú počiatočné alebo akceptačné, dostaneme nasledovnú situáciu (kde r_1 , r_2 , r_3 , r_4 sú nejaké regulárne výrazy):

$$L = r_1^* r_2 (r_4 \mid (r_3 r_1^* r_2))^*$$

- 1. Je daný DKA s 1 akceptačným stavom.
- Vytvoríme z neho zovšeobecnený prechodový diagram. Hrany so spoločným začiatkom a spoločným koncom nahradíme novou hranou (viď. slajd č. 38).
- Odstránime neakceptačné a nepočiatočné stavy podľa slajdu č.39.
- Intepretujeme jazyk výsledného zovšeobecneného prechodového diagramu s 2 stavmi podľa vzoru zo slajdu č. 40.

- Ak má pôvodný DKA viacero akceptačných stavov, tak do prechodového diagramu doplníme nový akceptačný stav, pričom do neho z každého pôvodného akceptačného stavu vedieme hranu ohodnotenú regulárnym výrazom ε.
- Zároveň každý pôvodný akceptačný stav zmeníme na neakceptačný stav.
- Podobne, ak je v pôvodnom DKA počiatočný stav q₀
 zároveň aj akceptačným, tak do prechodového diagramu
 doplníme nový akceptačný stav a zo stavu q₀ doň vedieme
 prechod na ε. Zároveň zmeníme q₀ na neakceptačný.
- V konečnom dôsledku dostávame teda popis pôvodného DKA pomocou regulárneho výrazu.

Príklad: Popíšte DKA pomocou regulárneho výrazu

Zovšeobecnený prechodový diagram (doplnený o nový akceptačný stav q_f).

Odstránime q₂:

Odstránime q₄:

Vzťah KA a regulárnych gramatík

Odstránime q₁:

Odstránime q₃:

Znovu zjednotíme hrany, ktoré majú spoločný začiatok a spoločný koniec:

Výsledný jazyk sa teda dá popísať regulárnym výrazom: $(ba)^*((a(a|b)(a|b)^*)|(bba^*))$

Iné poradie odstraňovania stavov môže viesť k inému tvaru regulárneho výrazu. Jazyk je však stále ten istý!

Príklad na párny počet písmen a

Akým regulárnym jazykom sa dá popísať jazyk $L=\{w\mid w\in\{a,b\}^*,\sharp_a(w)\equiv 0 \bmod 2\}$? $\sharp_a(w)$ znamená počet písmen a v slove w.

Ak príslušný DKA je:

Tak ak z neho urobíme regulárny výraz, nájdeme odpoveď na našu otázku...

Podľa pokynov najprv pridáme nový akceptačný stav q_f a z q_0 doň vedieme ε -hranu a zároveň z q_0 spravíme neakceptačný stav.

Následne odstránime stav q_1 podľa pokynov...

Zjednotíme slučky na stave q_0 :

A teda výsledný regulárny výraz je: $((ab^*a)|b)^*\varepsilon$.

Ďalší príklad

Vezmime DKA zo slajdu č. 35 a nájdime podľa uvedeného postupu ekvivalentný regulárny výraz:

Najprv každý akceptačný stav označíme ako neakceptačný a vedieme ε -hranu do nového akceptačného stavu q_f .

Slučku v $[q_5]$ upravíme, aby obsahovala regulárny výraz.

Odstránime stav $[q_5]$. Keďže to bola pasca, do automatu nepribudnú žiadne hrany označené regulárnym výrazom.

Odstránime stav $[q_1]$. Pribudne 01 slučka v stave $[q_0]$ a hrana 0 z $[q_0]$ do q_f .

Zjednotíme hrany 0 a ε z $[q_0]$ do q_f .

Odstránime stav $[q_3]$, čím vznikne slučka 10 v $[q_0]$ a hrana 1 z $[q_0]$ do q_f .

Zjednotíme slučky v $[q_0]$ a hrany z $[q_0]$ do q_f .

Podľa slajdu č. 40 teda pôvodný DKA akceptuje jazyk: $(01|10)^*(\varepsilon|0|1)$.

A posledný...

Nájdite regulárny výraz pre DKA:

Pridáme q_f ...

Odstránime q₃...

Odstránime q₂...

Odstránime q_1 ...

Zjednotíme hrany so spoločným začiatkom a spoločným koncom...

Odstránime q₄:

aaa*bb*a(bb*a | aaa*bb*a)*ab

Zjednotíme hrany so spoločným začiatkom a spoločným koncom...

(aaa*bb*a(bb*a | aaa*bb*a)*ab)| ab

A teda výsledný regulárny výraz:

 $((aaa^*bb^*a(bb^*a \mid aaa^*bb^*a)^*ab \mid) \mid ab)^*((aaa^*bb^*a(bb^*a \mid aaa^*bb^*a)^*(\varepsilon \mid aaa^*) \mid) \mid aaa^*)$

Zhrnutie

Ukázali sme si, ako sa dá:

- Regulárna gramatika previesť na DKA.
- DKA previesť na regulárnu gramatiku.
- Regulárny výraz previesť na NKA (a ten na DKA).
- Previesť DKA na regulárny výraz.

Záver teda je, že:

 Jazyky, ktoré vieme akceptovať konečnými automatmi sú presne tie, ktoré vieme popísať regulárnymi gramatikami a zároveň presne tie, ktoré vieme popísať regulárnymi výrazmi.

Vlastnosti regulárnych jazykov

- Regulárne jazyky sa teda dajú popísať:
 - Regulárnymi gramatikami.
 - Konečnými automatmi.
 - Regulárnymi výrazmi.
- Aké sú rôzne vlastnosti triedy regulárnych jazykov?

Veta

Nech L_1 a L_2 sú regulárne jazyky. Potom zjednotenie jazykov $L_1 \cup L_2$ je tiež regulárny jazyk.

Veta

Nech L_1 a L_2 sú regulárne jazyky. Potom zreťazenie jazykov L_1L_2 je tiež regulárny jazyk.

Veta

Nech L je regulárny jazyk. Potom iterácia jazyka L* je tież regulárny jazyk.

Všetky tri hore uvedené vety priamo vyplývajú z definície regulárnych výrazov, resp. z konštrukcie NKA, ktorý príslušné výrazy akceptuje.

Veta

Nech L je regulárny jazyk nad abecedou T. Potom doplnok jazyka L^C je regulárny jazyk.

KA akceptujúci L^C získame, ak v **úplnom** automate akceptujúcom L vymeníme akceptujúce stavy za neakceptujúce a naopak.

Veta

Nech L_1 a L_2 sú regulárne jazyky. Potom prienik jazykov $L_1 \cap L_2$ je regulárny jazyk.

Dôkaz: Nech $M_1=(Q_1,T_1,\delta_1,q_{01},F_1)$ a $M_2=(Q_2,T_2,\delta_2,q_{02},F_2)$ sú KA také, že $L(M_1)=L_1,L(M_2)=L_2$. Potom konečný automat M, akceptujúci $L(M)=L_1\cap L_2$ je pätica $M=(Q,T,\delta,q_0,F)$, kde:

- $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \land q_2 \in Q_2\}, Q \subseteq Q_1 \times Q_2$
- $T = T_1 \cap T_2$
- $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- $q_0 = (q_{01}, q_{02})$
- $F = \{(q_1, q_2) \mid q_1 \in F_1 \land q_2 \in F_2\}$

Konečný automat je teda kombináciou M_1 a M_2 a "sleduje", akými cestami sa môžu uberať oba automaty a akceptuje slovo len vtedy, keď by ho akceptoval M_1 a súčasne aj M_2 (teda logicky patrí do $L_1 \cap L_2$).

Príklad: Nech $M_1=(\{q_{01},q_{11}\},\{0,1\},\delta_1,q_{01},\{q_{11}\})$ a $M_2=(\{q_{02},q_{12},q_{22}\},\{0,1,2\},\delta_2,q_{02},\{q_{22}\})$, kde prechodové tabuľky:

	δ_{1}	0	1
	<i>q</i> ₀₁	<i>q</i> ₁₁	-
	<i>q</i> ₁₁	<i>q</i> ₁₁	<i>q</i> ₁₁
_			

δ_2	0	1	2
<i>q</i> ₀₂	<i>q</i> ₁₂	q ₂₂	q ₂₂
<i>q</i> ₁₂	<i>q</i> ₁₂	q ₂₂	<i>q</i> ₁₂
q ₂₂	<i>q</i> ₁₂	q ₂₂	<i>q</i> ₁₂

Riešenie:

δ	0	1
(q_{01},q_{02})	(q_{11}, q_{12})	-
(q_{11}, q_{12})	(q_{11}, q_{12})	(q_{11}, q_{22})
(q_{11}, q_{22})	(q_{11}, q_{12})	(q_{11}, q_{22})

Pumpovacia lema

Veta

Nech L je (nekonečný) regulárny jazyk. Potom existuje prirodzené číslo p (tzv. pumpovacia dĺžka) také, že všetky slová $w \in L$, ktorých dĺžka $|w| \ge p$, možno vyjadriť v tvare w = xyz, pričom:

- 1. pre každé $i \geq 0 : xy^iz \in L$;
- 2. $|x| \ge 0, |z| \ge 0$
- 3. $|y| \ge 1$;
- 4. $|xy| \le p$.

Pumpovacia lema (resp. jej **obmena**) sa využíva pri dokazovaní toho, že daný nekonečný jazyk **nie je** regulárny. Pre konečné jazyky nemá zmysel čokoľvek dokazovať, tie sú regulárne automaticky!

Dôkaz PL: Majme nekonečný regulárny jazyk L. Teda existuje konečný automat $M=(Q,T,\delta,q_0,F)$, ktorý ho rozpoznáva, L(M)=L. Nech p je počet stavov automatu, p=|Q| a $w\in L$ slovo z jazyka, ktoré $|w|\geq p$. Keďže w je z jazyka, musí platiť:

$$(q_0, w) \vdash^* (q_f, \varepsilon), q_f \in F.$$

Ak automat má p stavov, tak celý výpočet má minimálne p+1 konfigurácií, niektorý zo stavov sa musel opakovať. Označme q prvý stav, ktorý sa vo výpočte zopakuje. Navyše si rozdeľme w na 3 podreťazce x, y, z, w = xyz tak, že:

$$\underbrace{(q_0, xyz) \vdash ... \vdash (q, yz) \vdash ... (q, z) \vdash (q_f, \varepsilon)}_{(1)}$$

Časť x prevedie výpočet zo stavu q_0 do opakujúceho stavu q (1), časť y prevedie výpočet zo stavu q späť do stavu q (2) a časť z prevedie výpočet do akceptujúceho stavu q_f . Čo je zaujímavé, tak teoreticky by sa dali vytvoriť aj nasledujúce akceptujúce výpočty:

$$\underbrace{(q_0, xz) \vdash ... \vdash (q, z) \vdash (q_f, \varepsilon)}_{(1)}$$

$$\underbrace{(q_0, xyyz) \vdash ... \vdash (q, \underbrace{yyz) \vdash ... (q, \underbrace{yz) \vdash ... (q, \underbrace{z) \vdash (q_f, \varepsilon)}}_{(2)}}_{(3)}$$

T.j. ak je automat v stave q a na vstupe je nespracovaná časť z, na konci výpočtu skončí v akceptujúcej konfigurácii. Podobne akceptuje aj xz, kde x dostane automat zo stavu q_0 do q. Keďže y dostane automat zo stavu q späť do stavu q, aj y^2, y^3, \ldots dostanú automat z q do q.

DKA teda akceptuje nielen xyz, ale aj xy^iz , $i \ge 0$.

Keďže časť (2), kde dôjde k zopakovaniu stavu q obsahuje minimálne 1 krok výpočtu, tak $|y| \ge 1$.

Keďže q je prvý stav, ktorý sa vo výpočte zopakuje, tak $|xy| \leq p$, pretože k prvému zopakovaniu stavu môže prísť najneskôr po p krokoch výpočtu (lebo automat má p stavov).

Ako použiť PL pre regulárne jazyky

- Pumpovacia lema pre regulárne jazyky sa používa na dôkaz toho, že nejaký jazyk nie je regulárny.
- Veta má tvar implikácie, t.j. ak ukážem, že pre nekonečný jazyk platí, že sa nedá pumpovať, tak ukážem, že jazyk nie je regulárny.
- Ako teda použiť PL pre jazyk L?

- Dôkaz sporom je daný nekonečný jazyk a predpokladajme, že je regulárny.
- 2. Nech p je kladné číslo. Vezmeme slovo w z jazyka L, ktoré má aspoň p symbolov, t.j. $|w| \ge p$.
- 3. Uvažujeme **všetky možné** rozklady slova w na 3 časti x, y, z v tomto poradí, t.j. w = xyz, kde $|x| \ge 0, |y| \ge 1, |xy| \le p$.
- 4. Pre každý takýto rozklad ukážeme, že existuje také číslo i, že xyⁱz ∉ L, t.j. ak časť y zväčším i-krát, výsledok nebude patriť do jazyka L. (t.j. nedá sa pumpovať).
- 5. Ak sa mi také *i* podarí nájsť, dochádza k sporu s predpokladom, a teda jazyk *L* nemôže byť regulárny.

$$a^ib^i, i \in \{1, 2, 3, ...\}$$

Príklad: Dokážte, že $L = \{a^i b^i \mid i \in \{1, 2, ...\}\}$ nie je regulárny jazyk.

- 1. Dôkaz sporom Predpokladajme, že jazyk je regulárny. Potom nech *p* je číslo, o ktorom hovorí PL.
- 2. Uvažujme slovo a^pb^p . Toto slovo patrí do jazyka a zároveň $|a^pb^p|=2p\geq p$.
- 3. Rozdeľme toto slovo na 3 časti x, y, z. Keďže podľa vety $|xy| \le p$, tak xy bude tvorené len znakmi a (lebo tých je presne p), a teda

$$x = a^{r}, y = a^{s}, z = a^{p-r-s}, r \ge 0, s \ge 1, r+s \le p.$$

- 4. Ak vezmeme napr i=2, tak dostaneme slovo $xy^2z=a^ra^{2s}a^{p-r-s}b^p=a^{p+s}b^p$. Keďže y má dĺžku aspoň 1, tak v slove xy^2z sa nachádza určite aspoň o 1 a viac, ako b.
- 5. **SPOR**, pretože xy^2z nepatrí do jazyka, a teda a^ib^i nie je regulárny.

ww^R - nesprávny prístup

Príklad: Dokážte, že $L = \{ww^R \mid w \in \{a, b\}^*\}$ nie je regulárny jazyk.

- 1. Dôkaz sporom Predpokladajme, že jazyk je regulárny. Potom nech *p* je číslo, o ktorom hovorí PL.
- 2. Uvažujme slovo $a^p a^p$. Toto slovo patrí do jazyka a zároveň $|a^p a^p| = 2p \ge p$.
- 3. Podľa PL sa takéto slovo dá rozdeliť na 3 časti x, y, z, t.j $x = a^r, y = a^s, z = a^{2p-r-s}, r \ge 0, s \ge 1, r+s \le p$, pre všetky prípustné voľby r a s.
- 4. Ak chceme ukázať, že jazyk nie je regulárny, potrebujeme nájsť $i \ge 0$, že $xy^iz \not\in L$ pre všetky prípustné x, y, z.
- 5. **To sa nám nepodarí!** Pretože pre každú voľbu i sa vždy dá nájsť rozklad x, y, z, že $xy^iz \in L$.
- Príslušný jazyk naozaj regulárny nie je. Presvedčíme sa o tom tak, že v kroku 2. zvolíme iné slovo.

ww^R - správny prístup

Príklad: Dokážte, že $L = \{ww^R \mid w \in \{a, b\}^*\}$ nie je regulárny jazyk.

- 1. Dôkaz sporom Predpokladajme, že jazyk je regulárny. Potom nech *p* je číslo, o ktorom hovorí PL.
- 2. Uvažujme slovo $a^pb^pb^pa^p$. Toto slovo patrí do jazyka a zároveň $|a^pb^pb^pa^p|=4p\geq p$.
- 3. Podľa PL sa takéto slovo dá rozdeliť na 3 časti x, y, z, t.j $x = a^r, y = a^s, z = a^{p-r-s}b^pb^pa^p, r \ge 0, s \ge 1, r+s \le p.$
- 4. Nech i = 0. Keďže |y| ≥ 1, tak slovo xy⁰z = xz = a^r a^{p-r-s}b^pb^pa^p = a^{p-s}b^pb^pa^p. Čiže oproti slovu v kroku 2 tam chýba **minimálne jedno** a medzi prvými a-čkami. A takéto slovo a^{p-s}b^pb^pa^p sa **určite nedá** rozdeliť na 2 časti, ktoré sú vzájomne opačné, t.j. nikdy nebude patriť do jazyka L!
- 5. Tým dostávame **SPOR s predpokladom** a teda jazyk $L = \{ww^R \mid w \in \{a, b\}^*\}$ nie je regulárny.

$$b^m a^n, m \ge n; m, n \in \{0, 1, 2, ...\}$$

Príklad: Dokážte, že jazyk

 $L = \{b^m a^n, m \ge n; m, n \in \{0, 1, 2, ...\}\}$ nie je regulárny.

- 1. Nech *p* je nejaké kladné číslo a predpokladáme, že *L* je regulárny.
- 2. Nech $w = b^p a^p$. Určite platí $w \in L$ a taktiež $|w| \ge p$.
- 3. Všetky možné rozklady na slová x, y, z sú: $x = b^r, y = b^s, z = b^{p-r-s}a^p, r \ge 0, s \ge 1, r+s \le p.$
- 4. Nech i=0. Potom $xy^0z=xz=b^{p-s}a^p$. A keďže $s\geq 1$, tak v slove xy^0z je **menej** b, než a, a teda slovo **nepatrí** do jazyka L.
- 5. Preto jazyk *L* nie je regulárny.
- 6. **POZOR!!!** Každá iná voľba i než 0, t.j. i = 2, 3, 4, ... by nedokázala nič, pretože by nafukovala b-čka a teda by slová xy^iz patrili do jazyka!

aⁿ,n-prvočíslo

Príklad: Dokážte, že jazyk $L = \{a^n \mid n \text{ je prvočíslo }\}$ nie je regulárny.

Idea: Treba ukázať, že pre ľubovoľné číslo p vždy existuje také slovo w z jazyka (t.j. zložené z prvočíselne-veľa a-čok, ktorých je aspoň p), pre ktorého všetky prípustné rozklady x, y, z platí, že vždy existuje také číslo i, že xy^iz nepatrí do jazyka. Táto úloha je náročnejšia než predchádzajúce, pretože je potrebné vhodne zvoliť slovo w a navyše je potrebné vhodne zvoliť exponent i, pretože pre nedbanlivo zvolené i sa väčšinou dá ukázať, že rozklad x, y, z sa pumpovať dá. Preto je potrebné zvoliť i tak, aby **nebolo pochýb o tom**, že xy^iz nepatrí do jazyka, t.j. že dĺžka $|xy^iz|$ je zložené číslo.

aⁿ,n-prvočíslo

- 1. Nech *p* je kladné celé číslo a predpokladajme, že *L* je regulárny.
- 2. Nech $w = a^N$, kde N je prvočíslo také, že N > p + 1.
- 3. Rozklady w = xyz sú: $x = a^r, y = a^s, z = a^{N-r-s}, r \ge 0, s \ge 1, r+s \le p$.
- 4. Nech i = |x| + |z|. Potom slovo xy^iz má dĺžku $|xy^iz| = |x| + i|y| + |z| = |x| + (|x| + |z|)|y| + |z| = (|x| + |z|)(1 + |y|)$, t.j. súčin 2 čísiel. Keďže oba činitele sú väčšie ako 1, tak tento súčin **nemôže byť prvočíslo**, slovo xy^iz nepatrí do jazyka L a teda jazyk **nie je regulárny**.

an,n-prvočíslo

Zdôvodnenie:

- Súčin (|x| + |z|)(1 + |y|) je určite zložené číslo vtedy, ak sú oba činitele aspoň 2. A to sú, pretože:
 - (1 + |y|) je určite aspoň 2, pretože $|y| \ge 1$.
 - (|x|+|z|): keď že $|x|\geq 0$, musíme ukázať, že $|z|\geq 2$. A to je pravda kvôli voľ be slova $w=a^N$ tak, že N>p+1, lebo $N\geq p+2$ a keď že $|xy|\leq p$ a $|xyz|\geq p+2$, tak z toho $|z|\geq 2$.
- Nech by bol teda rozklad slova w na tri časti x, y, z akýkoľ vek prípustný, vždy nájdeme takú voľbu i podľa dĺžky segmentov x, z tak, že i = |x| + |z|, že dĺžka slova xyⁱz je zložené číslo, a teda nepatrí do jazyka L, lebo tam patria len také slová, ktorých dĺžka je prvočíslo.

an,n-zložené číslo

- Podobne by sa dalo ukázať, že ani jazyk
 L = {aⁿ | n je zložené číslo } nie je regulárny.
- Oveľa jednoduchšie je však využiť vlastnosť regulárnych jazykov spomínanú na slajde č. 73, ktorá vraví, že ak je jazyk regulárny, tak jeho doplnok je tiež regulárny.
- Obmena tvrdenia, ktorá je rovnako pravdivá, hovorí, že ak jazyk nie je regulárny, tak ani jeho doplnok nie je regulárny.
- A keďže doplnok jazyka L = {aⁿ | n je zložené číslo } je práve jazyk L = {aⁿ | n je prvočíslo }, o ktorom sme pred chvíľou dokázali, že nie je regulárny, tak potom ani náš daný jazyk L = {aⁿ | n je zložené číslo } nie je regulárny.

$$a^{n^2}, n \in \{1, 2, 3, ...\}$$

Príklad: Dokážte, že jazyk $L = \{a^{n^2}, n \in \{1, 2, 3, ...\}\}$ nie je regulárny.

- Nech p je kladné celé číslo a L je regulárny.
- 2. Nech $w = a^{p^2}$.
- 3. Rozklady w = xyz sú $x = a^r, y = a^s, z = a^{p^2 r s}, r \ge 0, s \ge 1, r + s \le p.$
- 4. Nech i=2. Potom slovo $xy^2z=a^ra^{2s}a^{p^2-r-s}=a^{p^2+s}$. Aby xy^2z nepatrilo do jazyka, musí platiť, že p^2+s nie je druhá mocnina nejakého čísla.

$$a^{n^2}, n \in \{1, 2, 3, ...\}$$

- 4. Je $p^2 + s$ druhá mocnina nejakého čísla?
 - Určite $p^2 < p^2 + s$, keďže $s \ge 1$.
 - Ak p^2 je druhá mocnina nejakého čísla, tak ďalšia v poradí bude $(p+1)^2 = p^2 + 2p + 1$
 - Avšak $p^2 + s < p^2 + 2p + 1$, pretože $1 \le s \le p$ a $p \ge 1$.
 - To znamená, že p² + s nemôže byť druhá mocnina žiadneho čísla, pretože najbližšie druhé mocniny sú p² a p² + 2p + 1 a všetky hodnoty p² + s ležia striktne medzi nimi.
- 5. Preto pre i = 2 slovo xy^2z nepatrí do jazyka L a jazyk L teda **nie je regulárny.**

Použitá literatúra

Dedera, Ľ: Počítačové jazyky a ich spracovanie.

Linz, P.: An Introduction to Formal Languages and Automata.

Molnár, L'.: Gramatiky a jazyky.

