10.506.955

03-11-03 PCT/JP03/02840

日本国特許庁

JAPAN PATENT OFFICE

11.03.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 3月12日

REC'D 0 5 MAY 2003

WIPO PCT

出 願 番 号

Application Number:

特願2002-066809

[ST.10/C]:

[JP2002-066809]

出 願 人 Applicant(s):

武田薬品工業株式会社

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 4月15日

特許庁長官 Commissioner, Japan Patent Office

特2002-066809

【書類名】 特許願

【整理番号】 B02070

【提出日】 平成14年 3月12日

【あて先】 特許庁長官殿

【国際特許分類】 C07C233/00

C07C 13/271

C07C233/58

【発明者】

【住所又は居所】 大阪府高槻市宮之川原1丁目11番1号

【氏名】 多和田 紘之

【発明者】

【住所又は居所】 兵庫県宝塚市山本丸橋2丁目11番地の5

【氏名】 池本 朋己

【発明者】

【住所又は居所】 兵庫県伊丹市南鈴原3丁目151番地

【氏名】 西口 敦子

【発明者】

【住所又は居所】 奈良県香芝市今泉1214番地旭ケ丘区画整理地内11

7.1-7

【氏名】 伊藤 達也

【特許出願人】

【識別番号】 000002934

【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】 100114041

【弁理士】

【氏名又は名称】 高橋 秀一

【手数料の表示】

【予納台帳番号】 005142

特2002-066809

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

9909276

【プルーフの要否】

要

【書類名】明細書

【発明の名称】光学活性スルホキシド誘導体の製造法

【特許請求の範囲】

【請求項1】式:

【化1】

$$H_{\mu}N \longrightarrow A \qquad CH_{\frac{1}{2}} \uparrow_{CH_{\frac{1}{2}}} \uparrow_{D} \qquad (11)$$

【化2]

(式中、 R^3 は置換されていてもよい5または6員環を示し、 R^4 は水素原子、置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基またはハロゲン原子を示し、 R^5 は水素原子、置換されていてもよい炭化水素基、置換されていてもよいスルホニル基、エステル

化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式:

【化3】

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

【請求項2】式:

【化4】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい方香族基を、 \mathbf{R}^6 はメチル、フェニル、 $\mathbf{4}$ $\mathbf{-}$ \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{y} \mathbf{z} \mathbf{z}

【化5】

(式中、R⁷は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物と式:

【化6】

$$R^{\epsilon} \xrightarrow{R^{\epsilon}} COCH$$
 (111)

(式中、 R^3 は置換されていてもよい5または6員環を示し、 R^4 は水素原子、置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基またはハロゲン原子を示し、 R^5 は水素原子、置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいスルホニル基、エステル化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式:

【化7】

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

【請求項3】式:

【化8】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシルキル基またはハロゲン原子、ハロゲン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3の整数を、 \mathbf{p} は $\mathbf{0}$ ない $\mathbf{0}$ 2の整数を示し、 \mathbf{x}^1 4は不斉中心を示す。)で表される光学活性化合物またはその塩。

【請求項4】式:

【化9】

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されてい

てもよい芳香族基を、 R^6 はメチル、フェニル、4-メチルフェニルまたは $\alpha-$ ナルチルを、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示し、 $*^1$ および $*^2$ はそれぞれ不斉中心を示す。)で表される光学活性化合物または式:

【化10】

(式中、R⁷は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物を複分解反応に付すことを特徴とする式:

【化11】

$$H_{N} = A$$

$$COL_{\frac{1}{2}} \cdot n$$

$$(11)$$

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

【請求項5】式:

【化12】

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよ

く、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 \mathbf{R}^6 はメチル、フェニル、 $\mathbf{4}$ ーメチルフェニルまたは $\mathbf{\alpha}$ ーナルチルを、ベンゼン環Aはハロゲン原子、ハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3 の整数を、 \mathbf{p} は $\mathbf{0}$ ない $\mathbf{0}$ 2 の整数を示し、 $\mathbf{*}^1$ および $\mathbf{*}^2$ 4 それぞれ不斉中心を示す。)で表される光学活性化合物または式:

【化13】

(式中、 R^7 は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物。

【請求項6】式:

【化14】

$$H_2N$$
 A
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 $CH_$

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アル

コキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を式:

【化15】

(式中、 R^6 はメチル、フェニル、4-メチルフェニルまたは $\alpha-$ ナルチルを、 $*^2$ は不斉中心を示す。) で表される光学活性化合物または式:

【化16】

(式中、R⁷は水素原子、塩素原子または二トロ基を、他の記号は前記と同意義を示す。)で表される光学活性な酸で光学分割することを特徴とする式:

【化17】

$$\begin{array}{c|c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

(式中、 $*^1$ は不斉中心を示し、他の記号は前記と同意義である。) または式: 【化 1 8】

$$H^{N} = \left(\begin{array}{c} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{4} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}$$

(式中、*¹は不斉中心を示し、他の記号は前記と同意義である。)で表される 光学活性化合物の製造法。

【請求項7】式:

【化19】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3の整数を、 \mathbf{p} は $\mathbf{0}$ ない $\mathbf{0}$ 2の整数を示す。)で表される化合物またはその塩を式:

【化20】

$$\begin{array}{cccc}
R^{\bullet} & & & & \\
0 & & & & \\
0 & & & & \\
R^{\bullet} & & & & \\
\end{array}$$
(XI Ia)

(式中、 R^6 はメチル、フェニル、4-メチルフェニルまたは $\alpha-$ ナルチルを、 $*^2$ は不斉中心を示す。) で表される光学活性化合物または式:

【化21】

で表される軸不斉に関して光学活性な酸の存在下に酸化することを特徴とする式

【化22】

$$H_{z}N \longrightarrow A \qquad \qquad \begin{pmatrix} Q & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

(式中、*¹は不斉中心を示し、他の記号は前記と同意義である。)で表される 光学活性化合物またはその塩の製造法。

【請求項8】式:

【作23】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよいだ $\mathbf{1}_{-4}$ アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3 の整数を示す。)で表される化合物またはその塩。

【請求項9】式:

【化24】

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ、シアノ、置換されて

いてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 \mathbf{R}^{8} は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアラルキル基、一〇 \mathbf{R}^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基を示す)を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で

【化25】

$$H_2N$$
 A
 CH_2
 CH_2
 CH_2
 CH_3
 CH_4
 CH_2
 CH_4
 CH_4
 CH_5
 $CH_$

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造法。

【請求項10】式:

【化26】

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていても

よい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を酸化することを特徴とする式:

【化27】

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造 法。

【請求項11】式:

【化28】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 \mathbf{R}^8 は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアラルキル基、一〇 \mathbf{R}^{10}

 $(R^{10}$ は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基を示す)を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ない03の整数を、pは0ない02の整数を示す。)で表される化合物またはその塩。

【請求項12】式:

【化29】

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 \mathbf{R}^8 は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアラルキル基、一〇 \mathbf{R}^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアラルキル基を示す)を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を酸化することを特徴とする式:

【化30】

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造 法。

【請求項13】式:

【化31】

$$R^{\bullet} \xrightarrow{NH} A S \left(CH_{\frac{1}{2}}\right)_{\Pi} \xrightarrow{R^{1}} \left(R^{2}\right)_{p} \qquad (VII)$$

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい水酸基、置換されていてもよいチオール基を形成していてもよいスルカニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 \mathbf{R}^8 は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアシルキル基、一〇 \mathbf{R}^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリールがン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基まで置換されていてもよいベンゼン環を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3の整数を、 \mathbf{p} は $\mathbf{0}$ ない $\mathbf{0}$ 2の整数を示す。)で表される化合物またはその塩。

【請求項14】式:

【化32】

(式中、 R^5 は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアラルキル基、 $-OR^{10}$ (R^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基を示す)を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を示す。)で表される化合物またはその塩と式:

【化33】

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル、置換されていてもよいカルボキシル基または置換されていてもよいアシル、置換されていてもよいアリール)で表される基を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩とを反応させることを特徴とする式:

【化34】

$$R^{0} \longrightarrow NH \longrightarrow A \longrightarrow CCH_{\frac{1}{2}} \longrightarrow CH_{\frac{1}{2}} \longrightarrow CH^{\frac{1}{2}} \longrightarrow C$$

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造法。

【化35】

【請求項16】式:

【化36】

(式中、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を示す。)で表される化合物またはその塩と式:

【化37】

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換さ

れていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、Yはハロゲンまたは式: $-OSO_2-R^9$ (式中、 R^9 は低級アルキル、置換されていてもよいアリール)で表される基を、 R^9 は低級アルキル、置換されていてもよいアリール)で表される基を、 R^9 は低の整数を、 R^9 はのないしるの整数を示す。)で表される化合物またはその塩とを反応させることを特徴とする式:

【化38】

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、CCR5拮抗作用を有する光学活性スルホキシド誘導体またはその塩の工業的に有利な製造法に関する。

[0002]

【従来技術】

従来、光学活性スルホキド誘導体の製造法としては、特殊な場合を除いて、キラルカラムによる分離が一般的であるが、この方法においてはSMB (Simulate d moving bed) などの特殊な装置が必要であり工業的には十分満足されるものではない。

[0003]

【発明が解決しようとする課題】

分子内にアミノ基を有する光学活性スルホキド誘導体を、ラセミ化やPummerer 転位等の副反応を伴わないアシル化による、光学活性スルホキド誘導体またはその塩の工業的に有利な製造法を提供するものである。

[0004]

【課題を解決するための手段】

本発明者らは、CCR5拮抗作用を有する光学活性スルホキシド誘導体または その塩の製造法につき、鋭意検討した結果、ラセミ化やPummerer転位等の副反応 を伴うことなく、工業的に有利な製造法を見出した。

すなわち本発明は、

(1) 式:

【化39】

$$H_{\underline{N}} = \left(\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} R^{1} \\ R^{2} \end{array} \right)_{p} \qquad (11)$$

(式中、 \mathbf{R}^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 \mathbf{R}^2 は水素原子、ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルキル基またはハロゲン原子で置換されていてもよい \mathbf{C}_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、 \mathbf{n} は $\mathbf{0}$ ない $\mathbf{0}$ 3の整数を示し、*は不斉中心を示す。)で表される光学活性化合物またはその塩と式:

【化40】

$$R^{\frac{1}{2}} \times \frac{R^{\frac{1}{6}}}{(CH_{\frac{1}{6}})_m}$$
 (III)

(式中、R³は置換されていてもよい5または6員環を示し、R⁴は水素原子、置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基またはハロゲン原子を示し、R⁵は水素原子、置換されていてもよい炭化水素基、置換されていてもよい炭化水素基、置換されていてもよいスルホニル基、エステル化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式:

【化41】

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法、

[0005]

(2) 式:

【化42】

(式中、 R^6 はメチル、フェニル、4-メチルフェニルまたは $\alpha-$ ナルチルを示し、 $*^2$ は不斉中心を、他の記号は前記と同意義を示す。) で表される光学活性 化合物または式:

【化43】

(式中、 R^7 は水素原子、3, 5-ジクロロまたは3, 5-ジニトロを示し、他の記号は前記と同意義である。)で表される光学活性化合物と式(III)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式(I)で表される光学活性化合物またはその塩の製造法、

- (3)式(II)で表される光学活性化合物またはその塩、
- (4)式(XIa)または式(XIb)で表される光学活性化合物を複分解反応 に付すことを特徴とする式(II)で表される光学活性化合物またはその塩の製 造法、
- (5)式(XIa)または式(XIb)で表される光学活性化合物、
- (6) 式:

【化44】

$$H_{2}N \longrightarrow A \qquad (1X)$$

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩を式: 【化45】

$$\begin{array}{c}
R^{\frac{1}{2}} & \xrightarrow{\text{cooh}} \\
0 & \xrightarrow{\text{cooh}} \\
R^{\frac{1}{2}} & \xrightarrow{\text{cooh}}
\end{array}$$
(XIIa)

(式中、各記号はは前記と同意義である。) または式:

【化46】

(式中、各記号は前記と同意義を示す。)で表される光学活性な酸で光学分割することを特徴とする式(XIa)または式(XIb)で表される光学活性化合物の製造法、

(7)式:

【化47】

$$H_{\mu}N$$
 A
 S
 COL_{μ}
 COL_{μ}

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩を式(XIIa)または式:

【化48】

で表される軸不斉に関して光学活性な酸の存在下に酸化することを特徴とする式 (II) で表される光学活性化合物またはその塩の製造法、

(8)式(IX)で表される化合物またはその塩、

[0006]

(9) 式:

【化49】

(式中、 R^8 は水素原子、置換されていてもよい低級アルキル基、置換されていてよいアリール基、置換されていてもよいアラルキル基、 $-OR^{10}$ (R^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換され

ていてもよいアラルキル基を示す)を、その他の各記号は前記と同意義を示す。

-) で表される化合物またはその塩を脱保護反応に付すことを特徴とする式 (IX
-) で表される化合物またはその塩の製造法、
 - (10)式(X)で表される化合物またはその塩を酸化することを特徴とする式
 - (IX)で表される化合物またはその塩の製造法、
 - (11) 式(VIII)で表される化合物またはその塩、
 - (12)式:

【化50】

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩を酸化することを特徴とする式 (VIII)で表される化合物またはその塩の製造法、

(13)式(VII)で表される化合物またはその塩、

(14)式:

【化51】

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩と式: 【化52】

$$Y \leftarrow CH_{\frac{1}{2}} \cap \left(\frac{R^2}{N} \right), \quad (V1)$$

(式中、Yはハロゲンまたは式:-OSO₂-R⁹ (式中、R⁹は低級アルキル、 置換されていてもよいアリール)で表される基を示し、他の記号は前記と同意義 を示す。)で表される化合物またはその塩とを反応させることを特徴とする式(VII)で表される化合物またはその塩の製造法、

(15)式(X)で表される化合物またはその塩、および

(16) 式:

【化53】

(式中、環Aは前記と同意義を示す。)で表される化合物またはその塩と式(VI)で表される化合物またはその塩とを反応させることを特徴とする式(X)で表される化合物またはその塩の製造法、に関する。

[0007]

環Aの置換基であるハロゲン原子としては、たとえばフッ素、塩素、臭素などが、ハロゲン原子で置換されていてもよい C_{1-4} アルキル基としてはたとえばメチル、エチル、トリフルオロメチル、トリフルオロエチルなどが、およびハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基としては、たとえばメトキシ、エトキシ、プロポキシ、トリフルオロメトキシ、トリフルオロエトキシなどが挙げられる。

R¹で示される置換されていてもよい脂肪族炭化水素基としては、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアルキニル、置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニルなどが挙げられる。

 低級 (C_{1-6}) アルケニルが、該置換されていてもよいアルキニルにおけるアル キニルとしては、たとえば直鎖状または分枝状で1ないし5個の二重結合を有す る炭素数2ないし10のアルケニル、例えばエチニル、プロピニル、ブチニル、 イソブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、 デシニルなどの C_{1-10} アルキニル、好ましくは低級(C_{1-6})アルキニルが、 それぞれ挙げられる。該置換されていてもよいアルキル、置換されていてもよい アルケニル、置換されていてもよいアルキニルにおける置換基としては、ハロゲ ン (例、フッ素, 塩素、臭素、ヨウ素など)、ニトロ、シアノ、置換されていて もよい水酸基(例、水酸基、 C_{1-4} アルコキシなど)、置換されていてもよいチオ ール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミ ノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、ピロリ ジン、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミ ダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化さ れていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニ ル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、ジС $_{1-4}$ アルキルカルバモ イルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エ トキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシ など)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、 メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキ シエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノ イル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メ タンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては 、1ないし3個が好ましい。^

該置換されていてもよいシクロアルキルにおけるシクロアルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられ、該置換されていてもよいシクロアルキニルにおけるシクロアルケニルとしては、例えば、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘセニル、シクロヘプテニルなどの C_{3-7} シクロアルケニルなどが挙げられる。該置換されていてもよいシク

ロアルキルおよび置換されていてもよいシクロアルキニルにおける置換基として は、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸 基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、 \mathfrak{VC}_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モ ルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状 アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例 、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキ ルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていて もよいC₁₋₄アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ト , リフルオロメトキシ、トリフルオロエトキシなど) 、ハロゲン化されていてもよ NC_{1-A} アルコキシ $-C_{1-A}$ アルコキシ(例、メトキシメトキシ、メトキシエトキ シ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシ エトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニル など)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニル など)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

[0008]

 R^1 で示される置換されていてもよい芳香族基における芳香族基としては、フェニル、ピリジル、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、オキサゾリル、イソチアゾリル、イソキサゾリル、テトラゾリル、ピラジニル、ピリミジニル、ピリダジニル、トリアゾリル等の5または6員の同素または複素環芳香族基、ベンゾフラン、インドール、ベンゾチオフェン、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイミダゾール、キノリン、イソキノリン、キノキサリン、フタラジン、キナゾリン、シンノリン、イミダゾピリジンなどの縮環複素環芳香族基などが挙げられる。これらの芳香族基の置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、デトラヒドロピロール、ピペラジン、

ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R¹で示される「置換されていてもよい芳香環」の「芳香環」が有していても よい「置換基」としては、とりわけ、ハロゲン原子、ハロゲン化または低級(C_1 $_{-4}$)アルコキシ化されていてもよい低級($\mathrm{C}_{\mathrm{1-4}}$)アルキル(例、メチル、エチル 、t-ブチル、トリフルオロメチル、メトキシメチル、エトキシメチル、プロポ キシメチル、ブトキシメチル、メトキシエチル、エトキシエチル、プロポキシエ チル、ブトキシエチルなど)、水酸基またはシアノ基で置換されていてもよい低 級 (C_{1-4}) アルキル (例、ヒドロキシ C_{1-4} アルキル、シアノ C_{1-4} アルキルなど)、エステル化またはアミド化されていてもよいカルボキシル基で置換されてい てもよい低級(C_{1-4})アルキル(例、カルボキシル C_{1-4} アルキル、 C_{1-4} アルコ キシカルボニル C_{1-4} アルキル、カルバモイル C_{1-4} アルキル、モノ C_{1-4} アルキ ・ルカルバモイル \mathbf{C}_{1-4} アルキル、ジ \mathbf{C}_{1-4} アルキルカルバモイル \mathbf{C}_{1-4} アルキル、 ピロリジノカルボニル C_{1-4} アルキル、ピペリジノカルボニル C_{1-4} アルキル、モ ルホリノカルボニル C_{1-4} アルキル、チオモルホリノカルボニル C_{1-4} アルキルな ど)、ハロゲン化または低級(C_{1-4})アルコキシ化されていてもよい低級(C_{1-4} **)アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、t-ブトキシ** 、トリフルオロメトキシ、メトキシメトキシ、エトキシメトキシ、プロポキシメ トキシ、ブトキシメトキシ、メトキシエトキシ、エトキシエトキシ、プロポキシ エトキシ、ブトキシエトキシ、メトキシプロポキシ、エトキシプロポキシ、プロ ポキシプロポキシ、ブトキシプロポキシなど)、ハロゲン(例、フッ素、塩素な ど)、ニトロ、シアノ、1または2個の低級(C_{1-4})アルキルなどが好ましく、ハロゲン化されていてもよい低級(C_{1-4})アルキルがさらに好ましい。

[0009]

 R^2 で示される「置換されていてもよいアルキル」、「置換されていてもよいシクロアルキル」および「置換されていてもよい芳香族基」は R^1 で示されるそれらの定義と同様である。

 R^2 で示される置換されていてもよい水酸基における置換基としては、(1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、S e C - ブチル、C + C - ブチル、C - C

- (2) 置換されていてもよく、ヘテロ原子を含有していてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキル;テトラヒドロフラニル、テトラヒドロチエニル、ピロリジニル、ピラゾリジニル、ピペリジル、ピペラジニル、モルホリニル、チオモルホリニル、テトラヒドロピラニル、テトラヒドロチオピラニルなどの1または2個のヘテロ原子を含有する飽和の5または6員複素環基など (好ましくはテトラヒドロピラニルなど);などが挙げられる);
- (3) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好ましくは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (5) 置換されていてもよいアラルキル(例えば、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);
- (6) ホルミルまたは置換されていてもよいアシル(例えば、炭素数2ないし4のアルカノイル(例、アセチル、プロピオニル、ブチリル、イソブチリルなど) 、炭素数1ないし4のアルキルスルホニル(例、メタンスルホニル、エタンスル

ホニルなど) などが挙げられる);

(7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる);

などの置換基が挙げられ、上記した(1)置換されていてもよいアルキル、(2) 置換されていてもよいシクロアルキル、(3)置換されていてもよいアルケニ ル、(4)置換されていてもよいシクロアルケニル、(5)置換されていてもよ いアラルキル、(6)置換されていてもよいアシル、および(7)置換されてい てもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素, 塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチ オール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいア ミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テト **ラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピ** ロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化また はアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコ キシカルボニル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、ジС $_{1-4}$ アル キルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル(例、ト リフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-6} アルコキシ (例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメ トキシ、トリフルオロエトキシなど;好ましくはハロゲン化されていてもよいC $_{1-4}$ アルコキシ)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニル など)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニル など)、置換されていてもよい5または6員の芳香族複素環〔例、フラン、チオ フェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イ ソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジ ン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選 ばれた1または2種のヘテロ原子1-4個を含有する5または6員の芳香族複素 環など;該複素環が有していてもよい置換基としては、ハロゲン(例、フッ素, 塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、 カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオ

ロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。」などが挙げられ、置換基の数としては、1ないし3

[0010]

R²で示される置換されていてもよいチオール基における置換基としては、上記した「置換されていてもよい水酸基における置換基」と同様なものが挙げられるが、なかでも

- (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) 置換されていてもよいアラルキル(例えば、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);
- (4) 置換されていてもよいアリール(例えば、フェニル、ナフチルなど)が挙げられる)などが好ましく、上記した(1)置換されていてもよいアルキル、(2)置換されていてもよいシクロアルキル、(3)置換されていてもよいアラルキル、および(4)置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の

環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基 (例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、トリフルオロエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

[0011]

 R^2 で示される置換されていてもよいアミノ基の置換基としては、上記した「置換されていてもよい水酸基」における置換基と同様な置換基を1または2個有していてもよいアミノ基などが挙げられるが、なかでも(1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好ましくは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (5) ホルミルまたは置換されていてもよいアシル(例えば、炭素数2ないし4 のアルカノイル(例、アセチル、プロピオニル、ブチリル、イソブチリルなど)

- 、炭素数1ないし4のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられる) ;
- (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などが好ましく、

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよい シクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されてい てもよいシクロアルケニル、 (5) 置換されていてもよいアシル、および (6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されて いてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されて いてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキル アミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモ ルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エ ステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、 $\mathrm{SC}_{1 ext{-}4}$ アルキルカルバモイルなど)、ハロゲン化されていてもよい $\mathrm{C}_{1 ext{-}4}$ アルコ キシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ 、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ -C₁₋₄アルコキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエト キシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、 ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アル キルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げら れ、置換基の数としては、1ないし3個が好ましい。

[0012]

R²で示される置換されていてもよいアミノ基は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を

有していてもよく、かかる置換基としては、ハロゲン(例、フッ素、塩素、臭素 、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例 、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピ ロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イ ミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化 されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシカルボ ニル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、ジС $_{1-4}$ アルキルカルバ モイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、 エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキ シなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例 、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメト キシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカ ノイル (例、アセチル、プロピオニルなど)、C₁₋₄アルキルスルホニル (例、 メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数として は、1-3個が好ましい。

 R^2 で示される置換されていてもよいアシルとしては、

(1) 水素、

- (2)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (4)置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、2-ペンテニル、3-ヘキセニルなど炭素数 2 ないし 1 0 のアルケニル、好ましくは低級(C_{2-6})アルケニルなどが挙げられる);

(5) 置換されていてもよいシクロアルケニル (例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);

[0013]

(6) 置換されていてもよい5または6員の単環の芳香族基(例えば、フェニル 、ピリジルなどが挙げられる)などがカルボニル基またはスルホニル基と結合し たもの(例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イ ソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロ ブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シ クロヘプタンカルボニル、クロトニル、2-シクロヘキセンカルボニル、ベンゾ イル、ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上 記した(2)置換されていてもよいアルキル、(3)置換されていてもよいシク ロアルキル、(4) 置換されていてもよいアルケニル、(5) 置換されていても よいシクロアルケニル、および(6)置換されていてもよい5または6員の単環 の芳香族基が有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、 臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール 基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒド ロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール 、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミ ド化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシカ ルボニル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、ジС $_{1-4}$ アルキルカ ルバモイルなど)、ハロゲン化されていてもよいC₁₋₄アルコキシ(例、メトキ シ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエ トキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロ メトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} ア ルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数と

しては、1ないし3個が好ましい。

 R^2 で示されるエステル化されていてもよいカルボキシル基としては、(1) 水素、

- (2) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (4)置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好ましくは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);

[0014]

- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (6) 置換されていてもよいアリール(例えば、フェニル、ナフチルなど)などがカルボニルオキシ基と結合したもの、好ましくはカルボキシル、低級(C_{1-6})アルコキシカルボニル、アリールオキシカルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、フェノキシカルボニル、ナフトキシカルボニルなど)などが挙げられ、上記した(2)置換されていてもよいアルキル、(3)置換されていてもよいシクロアルキル、(4)置換されていてもよいアルケニル、(5)置換されていてもよいシクロアルケニル、および(6)置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキル

アミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロメトキシエトキン、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし3 個が好ましい。

[0015]

R²としてはとりわけ、ハロゲン原子、シアノ、水酸基、ニトロ、エステル化 またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} ア ルコキシカルボニル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、 ${}^{\circ}$ С $_{1-4}$ アルキルカルバモイル、ピロリジノカルボニル、ピペリジノカルボニル、モルホ リノカルボニル、チオモルホリノカルボニルなど)、ハロゲン化または低級(C_1 $_{-4}$)アルコキシ化されていてもよい低級($^{
m C}_{1-4}$)アルキル(例、メチル、エチル 、t-ブチル、トリフルオロメチル、メトキシメチル、エトキシメチル、プロポ キシメチル、ブトキシメチル、メトキシエチル、エトキシエチル、プロポキシエ チル、ブトキシエチルなど)、水酸基またはシアノ基で置換されていてもよい低 級(C_{1-4})アルキル(例、ヒドロキシ C_{1-4} アルキル、シアノ C_{1-4} アルキルなど)、エステル化またはアミド化されていてもよいカルボキシル基で置換されてい てもよい低級(C_{1-4})アルキル(例、カルボキシル C_{1-4} アルキル、 C_{1-4} アルコ キシカルボニル C_{1-4} アルキル、カルバモイル C_{1-4} アルキル、モノ C_{1-4} アルキ ルカルパモイル C_{1-4} アルキル、ジ C_{1-4} アルキルカルバモイル C_{1-4} アルキル、 ピロリジノカルボニル \mathbf{C}_{1-4} アルキル、ピペリジノカルボニル \mathbf{C}_{1-4} アルキル、モ ルホリノカルボニル C_{1-4} アルキル、チオモルホリノカルボニル C_{1-4} アルキルな ど)、ハロゲン化または低級(C_{1-4})アルコキシ化されていてもよい低級(C_{1-4})アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、t-ブトキシ、トリフルオロメトキシ、メトキシメトキシ、エトキシメトキシ、プロポキシメトキシ、ブトキシメトキシ、メトキシエトキシ、エトキシエトキシ、プロポキシエトキシ、ブトキシエトキシ、メトキシプロポキシ、エトキシプロポキシ、プロポキシでは、カロボキシでは、 C_{1-4})アルキル、ホルミルまたは低級(C_{2-4})アルカノイルで置換されていてもよいアミノ(例、アミノ、メチルアミノ、ジメチルアミノ、ホルミルアミノ、アセチルアミノなど)、5または6員の環状アミノ基(例、1-ピロリジニル、1-ピペラジニル、1-ピペリジニル、4-モルホリノ、4-チオモルホリノ、1-イミダゾリル、1-ピペリビルに扱どのなどが挙げられる。1+10円ではないてもよいなど)などが挙げられる。1+10円ではないてもよいてもよい低級(1+10円ではなど)などが挙げられる。1+10円ではないてもよい低級(1+10円のよりではないのがころに特に好ましい。

R³で示される「置換されていてもよい5または6員環基」の「5または6員 環」としては、ベンゼンなどの6員の芳香族炭化水素、シクロペンタン、シクロ ヘキサン、シクロペンテン、シクロヘキセン、シクロペンタンジエン、シクロヘ キサンジエンなどの5または6員の脂肪族炭化水素、フラン、チオフェン、ピロ ール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール 、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジ ン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1また は2種のヘテロ原子1ないし4個を含有する5または6員の芳香族複素環、テト ラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチオラン、ピロ リジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン 、ピペリジン、ピペラジン、オキサジン、オキサジアジン、チアジン、チアジア ジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピラン、テトラヒド ロチオピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2 種のヘテロ原子1ないし4個を含有する5または6員の非芳香族複素環などから 水素原子1個を除いて形成される基などが挙げられるが、なかでも、「5または 6 員環」としては、ベンゼン、フラン、チオフェン、ピリジン、シクロペンタン

、シクロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、テトラヒドロピラン (好ましくは、6員環) などが好ましく、とりわけベンゼンが好ましい。

[0016]

R³で示される「置換されていてもよい5または6員環基」の「5または6員環」が有していてもよい「置換基」としては、例えば、ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基、置換されていてもよい芳香族基などが用いられる。

R³の置換基としてのハロゲンの例としては、フッ素、塩素、臭素、ヨウ素などが挙げられ、とりわけフッ素および塩素が好ましい。

 ${
m R}^3$ の置換基としての置換されていてもよいアルキルにおけるアルキルとしては、直鎖状または分枝状の炭素数 1 ないし 1 0 のアルキル、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの ${
m C}_{1-10}$ アルキル、好ましくは低級(${
m C}_{1-6}$)アルキルが挙げられる。該置換されていてもよいアルキルにおける置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 ${
m C}_{1-4}$ アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ ${
m C}_{1-4}$ アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの ${
m 5}$ または ${
m 6}$ 負の、カルボキシル、 ${
m C}_{1-4}$ アルキルカルボキシル基(例、カルボキシル、 ${
m C}_{1-4}$ アルキルカルボモイル、ジ ${
m C}_{1-4}$ アルキルカルバモイル、ジ ${
m C}_{1-4}$ アルキルカルバモイルなど)、ハロゲン化されていてもよい ${
m C}_{1}$

メトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし3 個が好ましい。

[0017]

R³の置換基としての置換されていてもよいシクロアルキルにおけるシクロア ルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シ クロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる。 該置換されていてもよいシクロアルキルにおける置換基としては、ハロゲン(例 、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されてい てもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されてい てもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルア ミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモル ホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エス テル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、C $_{1-4}$ アルコキシカルボニル、カルバモイル、モノС $_{1-4}$ アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキ シ (例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、 トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキ シ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホ ルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキ ルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ 、置換基の数としては、1ないし3個が好ましい。

R³の置換基としての置換されていてもよい水酸基における置換基としては、

(1) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチ

ル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの \mathbf{C}_{1-10} アルキル、好ましくは低級(\mathbf{C}_{1-6})アルキルなどが挙げられる);

- (2) 置換されていてもよく、ヘテロ原子を含有していてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキル;テトラヒドロフラニル、テトラヒドロチエニル、ピロリジニル、ピラゾリジニル、ピペリジル、ピペラジニル、モルホリニル、チオモルホリニル、テトラヒドロピラニル、テトラヒドロチオピラニルなどの1または2個のヘテロ原子を含有する飽和の5または6員複素環基など (好ましくはテトラヒドロピラニルなど);などが挙げられる);
- (3)置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、2-ペンテニル、3-ヘキセニルなど炭素数 <math>2 ないし1 0 のアルケニル、好ましくは低級(C_{2-6})アルケニルなどが挙げられる);
- (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);

[0018]

- (5) 置換されていてもよいアラルキル(例えば、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);
- (6) ホルミルまたは置換されていてもよいアシル(例えば、炭素数2ないし4のアルカノイル(例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数1ないし4のアルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる);
- (7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などの置換基が挙げられ、

上記した(1) 置換されていてもよいアルキル、(2) 置換されていてもよいシクロアルキル、(3) 置換されていてもよいアルケニル、(4) 置換されていてもよいシクロアルケニル、(5) 置換されていてもよいアラルキル、(6) 置換されていてもよいアシル、および(7) 置換されていてもよいアリールが有して

いてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など) 、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラ ジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなど の5または6員の環状アミノなど)、エステル化またはアミド化されていてもよ いカルボキシル基 (例、カルボキシル、C₁₋₄アルコキシカルボニル、カルバモ イル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、 ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル 、エチルなど)、ハロゲン化されていてもよいC₁₋₆アルコキシ(例、メトキシ 、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエト キシなど;好ましくはハロゲン化されていてもよい C_{1-4} アルコキシ)、ホルミ ル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルス ルホニル(例、メタンスルホニル、エタンスルホニルなど)、置換されていても よい5または6員の芳香族複素環〔例、フラン、チオフェン、ピロール、イミダ ゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキサゾ ール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾ ールなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2種のヘテ 口原子1ないし4個を含有する5または6員の芳香族複素環など;該複素環が有 していてもよい置換基としては、ハロゲン(例、フッ素,塩素、臭素、ヨウ素な ど)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロ ゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エ チルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エ トキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシ など)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)な どが挙げられ、置換基の数としては、1ないし3個が好ましい。〕などが挙げら れ、置換基の数としては、1ないし3個が好ましい。

[0019]

 R^3 の置換基としての置換されていてもよいチオール基における置換基としては、上記した「 R^1 の置換基としての置換されていてもよい水酸基における置換基」と同様なものが挙げられるが、なかでも

- (1) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) 置換されていてもよいアラルキル(例えば、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);
- (4) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど) が挙 げられる) などが好ましく、

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよいシクロアルキル、(3)置換されていてもよいアラルキル、および(4)置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシ、トトリストキシ、メトキシエトキシ、エトキシエトキシ、ト

リフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

[0020]

 R^3 の置換基としての置換されていてもよいアミノ基の置換基としては、上記した「 R^1 の置換基としての置換されていてもよい水酸基における置換基」と同様な置換基を1または2個有していてもよいアミノ基などが挙げられるが、なかでも(1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

- (2)置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好まし くは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (5) ホルミルまたは置換されていてもよいアシル(例えば、炭素数2ないし4のアルカノイル(例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数1ないし4のアルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる);
- (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げ られる) などが好ましく、

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよい

シクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されてい てもよいシクロアルケニル、(5)置換されていてもよいアシル、および(6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されて いてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されて いてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキル アミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモ ルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エ ステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、 ${rak {\it iC}}_{1-4}$ アルキルカルバモイルなど)、ハロゲン化されていてもよい ${rak {\it C}}_{1-4}$ アルコ キシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ 、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ -C₁₋₄アルコキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエト キシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、 ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アル キルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げら れ、置換基の数としては、1ないし3個が好ましい。

[0021]

また、 R^3 の置換基としての置換されていてもよいアミノ基は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、

ピロール、イミダゾールなどの 5 または 6 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし3 個が好ましい。

 R^3 の置換基としての置換されていてもよいアシルとしては、

(1) 水素、

- (2)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの \mathbf{C}_{3-7} シクロアルキルなどが挙げられる);
- (4) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好ましくは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (6) 置換されていてもよい5または6員の単環の芳香族基(例えば、フェニル 、ピリジルなどが挙げられる)などがカルボニル基またはスルホニル基と結合し

たもの (例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イ ソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロ ブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シ クロヘプタンカルボニル、クロトニル、2-シクロヘキセンカルボニル、ベンゾ イル、ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上 記した(2)置換されていてもよいアルキル、(3)置換されていてもよいシク ロアルキル、(4)置換されていてもよいアルケニル、(5)置換されていても よいシクロアルケニル、および(6)置換されていてもよい5または6員の単環 の芳香族基が有していてもよい置換基としては、ハロゲン(例、フッ素,塩素、 臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール 基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒド ロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール 、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミ ド化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシカ ルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカ ルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキ シ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエ トキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロ メトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} ア ルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数と しては、1ないし3個が好ましい。

[0022]

 R^3 の置換基としてのエステル化されていてもよいカルボキシル基としては、

- (1) 水素、
- (2) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチ

- ル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (4) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル、好ましくは低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど) など がカルボニルオキシ基と結合したもの、好ましくはカルボキシル、低級(C_{1-6}) アルコキシカルボニル、アリールオキシカルボニル (例、メトキシカルボニル 、エトキシカルボニル、プロポキシカルボニル、フェノキシカルボニル、ナフト キシカルボニルなど)などが挙げられ、上記した(2)置換されていてもよいア ルキル、(3)置換されていてもよいシクロアルキル、(4)置換されていても よいアルケニル、(5)置換されていてもよいシクロアルケニル、および(6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されて いてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されて いてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキル アミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモ ルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エ ステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、 ${\it id}$ C $_{1-4}$ アルキルカルバモイルなど)、ハロゲン化されていてもよいC $_{1-4}$ アルコ キシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ

、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ $-C_{1-4}$ アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

[0023]

R³の置換基としての置換されていてもよい芳香族基における芳香族基として は、フェニル、ピリジル、フリル、チエニル、ピロリル、イミダゾリル、ピラゾ リル、チアゾリル、オキサゾリル、イソチアゾリル、イソキサゾリル、テトラゾ リル、ピラジニル、ピリミジニル、ピリダジニル、トリアゾリル等の5または6 **員の同素または複素環芳香族基、ベンゾフラン、インドール、ベンゾチオフェン** 、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイミダゾール 、キノリン、イソキノリン、キノキサリン、フタラジン、キナゾリン、シンノリ ン、イミダゾピリジンなどの縮環複素環芳香族基などが挙げられる。これらの芳 香族基の置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、 ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、C $_{1-4}$ アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ $_{1}$ $_{-4}$ アルキルアミノ、ジ \mathbf{C}_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジ ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5または6員の環状アミノなど)、エステル化またはアミド化されていてもよい カルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイ ル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハ ロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、 エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、 エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキ シなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど) 、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の数としては、1ないし3個が好ましい。

かかる R^3 の置換基は、1ないし4個(好ましくは、1または2個)同一また は異なって環のいずれの位置に置換していてもよい。また、R³で示される「置 換されていてもよい5または6員環」の「5または6員環」が2個以上の置換基 を有する場合、これらのうち、2個の置換基が互いに結合して、例えば、低級(C_{1-6})アルキレン(例、トリメチレン、テトラメチレンなど)、低級(C_{1-6}) アルキレンオキシ(例、 $-CH_2-O-CH_2-$ 、 $-O-CH_2-CH_2-$ 、 $-O-CH_2 _3$)(CH $_3$)-CH $_2$ -CH $_2$ -など)、低級(C $_{1-6}$)アルキレンチオ(例、-CH $_{2}$ -S-CH₂- $_{1}$ -S-CH₂-CH₂- $_{2}$ -CH₂-CH₂-CH₂-CH₂-S $-CH_{2}-CH_{2}-CH_{2}-CH_{2}-$, $-S-C(CH_{3})(CH_{3})-CH_{2}-CH_{2}-$ ど)、低級(C_{1-6})アルキレンジオキシ(例、 $-O-CH_2-O-$ 、-O-CH $_2$ -С $_2$ -О $_3$ -С $_4$ $_2$ -С $_4$ $_2$ -С $_4$ $_2$ -О $_4$ $_2$ +О $_5$ +С $_5$ +С $_6$ +С $_1$ +С $_1$ +С $_2$ +С $_3$ +С $_4$ +С $_4$ +С $_5$ キレンジチオ (例、 $-S-CH_2-S-$ 、 $-S-CH_2-CH_2-S-$ 、 $-S-CH_2-CH_2-S-$ 、 $-S-CH_2-S -S-CH_2-S -S-CH_2 -S-CH_2-$ - $H_2-CH_2-CH_2-S-$ など)、オキシ低級(C_{1-6})アルキレンアミノ(例、 $-O-CH_2-NH-$ 、 $-O-CH_2-CH_2-NH-$ など)、オキシ低級(C_{1-6}) アルキレンチオ (例、 $-O-CH_2-S-$ 、 $-O-CH_2-CH_2-S-$ など) 、低級(C_{1-6})アルキレンアミノ(例、 $-NH-CH_2-CH_2-$ 、-NH-C $H_2-CH_2-CH_2-$ など)、低級(C_{1-6})アルキレンジアミノ(例、-NH- CH_2-NH- 、 $-NH-CH_2-CH_2-NH-$ など)、チア低級(C_{1-6})アル キレンアミノ (例、 $-S-CH_2-NH-$ 、 $-S-CH_2-CH_2-NH-$ など) 、低級 (C_{9-8}) アルケニレン(例、 $-CH_9-CH=CH-$ 、 $-CH_9-CH_2-$ CH=CH-、 $-CH_2-CH=CH-CH_2-$ など)、低級(C_{4-6})アルカジ エニレン(例、-CH=CH-CH-など)などを形成していてもよい。

[0024]

さらに、R³の置換基2個が互いに結合して形成する2価の基は、R³で示される「置換されていてもよい5または6員環」の「5または6員環」が有していてもよい「置換基」と同様な置換基(ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよ

く、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化またはアミド化されていてもよいカルボキシル基、置換されていてもよい芳香族基など)を1ないし3個有していてもよい。

 R^3 で示される「置換されていてもよい5または6員環基」の「5または6員 環」が有していてもよい「置換基」としては、とりわけ、ハロゲン化または低級 (C_{1-4}) アルコキシ化されていてもよい低級(C_{1-4})アルキル(例、メチル、エ チル、t-ブチル、トリフルオロメチル、メトキシメチル、エトキシメチル、プ ロポキシメチル、ブトキシメチル、メトキシエチル、エトキシエチル、プロポキ シエチル、ブトキシエチルなど)、ハロゲン化または低級(C_{1-4})アルコキシ化 されていてもよい低級(C_{1-4})アルコキシ(例、メトキシ、エトキシ、プロポキ シ、ブトキシ、t-ブトキシ、トリフルオロメトキシ、メトキシメトキシ、エト キシメトキシ、プロポキシメトキシ、ブトキシメトキシ、メトキシエトキシ、エ トキシエトキシ、プロポキシエトキシ、ブトキシエトキシ、メトキシプロポキシ 、エトキシプロポキシ、プロポキシプロポキシ、ブトキシプロポキシなど)、ハ ロゲン (例、フッ素、塩素など)、ニトロ、シアノ、1または2個の低級(C_{1-} $_{4}$) アルキル、ホルミルまたは低級(C_{2-4})アルカノイルで置換されていてもよ いアミノ(例、アミノ、メチルアミノ、ジメチルアミノ、ホルミルアミノ、アセ チルアミノなど)、5または6員の環状アミノ基(例、1-ピロリジニル、1-ピペラジニル、1-ピペリジニル、4-モルホリノ、4-チオモルホリノ、1-イミダゾリル、4-テトラヒドロピラニルなど)などが挙げられる。

Xで示される「直鎖部分を構成する原子数が1ないし4個である2価の基」としては、例えば、 $-(CH_2)_{a'}$ -[a'] は1ないし4の整数(好ましくは1または2の整数)を示す]、 $-(CH_2)_{b'}$ $-X^1$ -[b'] は0ないし3の整数(好ましくは0または1の整数)を示し、 X^1 は置換されていてもよいイミノ基(例、低級(C_{1-6})アルキル、低級(C_{3-7})シクロアルキル、ホルミル、低級(C_{2-7})アルカノイル、低級(C_{1-6})アルコキシーカルボニルなどで置換されていてもよいイミノ基など)、カルボニル基、酸素原子または酸化されていてもよい硫黄原子(例、 $-S(O)_m$ -(mは0ないし2の整数を示す)など)を示す]、

-CH=CH-、 $-C\equiv C-$ 、-CO-NH-、 $-SO_2-NH-$ などが挙げられる。これらの基が縮合環と結合するのは、左右何れの結合手であってもよいが、右側の結合手を介して縮合環と結合するのが好ましい。

[0025]

Xとしては、結合手、-(C H_2) $_{b'}$ - O - [b' は 0 , 1 または 2 の整数(好ましくは 0 または 1 の整数)を示す] 、- C \equiv C - などが好ましく、結合手が さらに好ましい。

上記 R^4 で示される「置換されていてもよい低級アルキル基」の低級アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプロピル、ブチル、イソプロピル、ブチル、イソプロピル、ブチル、インチル、ネオペンチル、ヘキシルなどの C_{1-6} アルキルなどが挙げられる。

上記 \mathbf{R}^4 で示される「置換されていてもよい低級アルコキシ基」の低級アルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシなどの \mathbf{C}_{1-6} アルコキシが挙げられる。

該「置換されていてもよい低級アルキル基」および「置換されていてもよい低級アルコキシ基」が有していてもよい置換基としては、例えば、ハロゲン(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ、モノ(低級アルキル)アミノ、ジ(低級アルキル)アミノ、低級アルカノイルなどが挙げられる。

該モノ(低級アルキル)アミノおよびジ(低級アルキル)アミノが有する低級アルキルとしては、例えば、上記の \mathbf{R}^4 で示される「置換されていてもよい低級アルキル基」の低級アルキル基と同様のものがあげられる。

該低級アルカノイルとしては、例えば、アセチル、プロピオニル、ブチリル、イソブチリル、など \mathbf{C}_{2-6} アルカノイルが挙げられる。

[0026]

上記R⁴で示される「ハロゲン原子」のとしては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

なかでも、 R^4 としては、置換されていてもよい低級 C_{1-6} アルキル基、ハロゲン原子が好ましく、とりわけ置換されていてもよいメチル基、ハロゲン原子が好ましい。

 R^5 で示される「置換されていてもよい炭化水素基」の「炭化水素基」としては、例えば、

- (1) アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s e c ブチル、t e r t ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキル、さらに好ましくは低級(C_{1-4})アルキルなどが挙げられる);
- (2) シクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) アルケニル (例えば、アリル(allyl)、クロチル、2-ペンテニル、3-ペンテニルなどの炭素数 <math>2 ないし 1 0 のアルケニル、好ましくは低級(C_{2-6}) アルケニルなどが挙げられる);
- (4) シクロアルケニル(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアルケニルなどが挙げられる);
- (5) アルキニル(例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ペンチニル、3-ヘキシニルなどの炭素数 2 ないし 1 0 のアルキニル、好ましくは低級(C_{2-6})アルキニルなどが挙げられる);
 - (6) アラルキル(例えば、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);
 - (7) アリール (例えば、フェニル、ナフチルなどが挙げられる);
- (8) シクロアルキルーアルキル (例えば、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロヘプチルメチルなどの C_{3-7} シクロアルキルー C_{1-4} アルキルなどが挙げられる);などが挙げられ、上記した(1)アルキル、(2)シクロアルキル、(3)アルケニル、(4)シクロアルケニル、(5)アルキニル、(6)アラルキル、(7)アリールおよび(8)シクロアルキルーアルキルが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、

水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオ など)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミ ノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン 、 モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5 または 6 員の 環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基 (例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} ア ルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されて いてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、 ハロゲン化されていてもよい C_{1-A} アルコキシ(例、メトキシ、エトキシ、プロ ポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 C_{1-} $_4$ アルキレンジオキシ(例、 $_0$ O-CH $_2$ O-、 $_0$ O-CH $_2$ -CH $_2$ -O-など)、置換されていてもよいスルホンアミド〔例、置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒド ロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール 、イミダゾールなどの5または6員の環状アミノなど)が一S〇2-に結合して 形成される基など]、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオ ニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホ ニルなど)、置換されていてもよい複素環基などが挙げられ、置換基の数として は、1ないし3個が好ましい。

[0027]

R⁵で示される「置換されていてもよい複素環基」としては、芳香族複素環または非芳香族複素環から1個の水素原子を取り除いて形成される基などが挙げられる。該芳香族複素環としては、例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾール、オキサジアゾール、チアジアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2種のヘテロ原子1ないし4個を含有する5または6員の芳香族複素環などが挙げられ、該非芳香族複素環としては、例えば、テトラヒドロフラン、テトラヒドロチオフェン、ジオキソラン、ジチオラン、オキサ

チオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、ピペリジン、ピペラジン、オキサジン、オキサジアジン、チアジン、チアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2種のヘテロ原子1ないし4個を含有する5または6員の非芳香族複素環および前記芳香族複素環の一部または全部の結合が飽和の結合である非芳香族複素環など(好ましくは、ピラゾール、チアゾール、オキサゾール、テトラゾールなどの芳香族複素環ンが挙げられる。

 R^5 で示される「置換されていてもよいスルホニル基」の置換基としては、 R^3 の置換基として述べた置換されていてもよいチオール基における置換基と同様なものが挙げられる。

 R^5 で示される「エステル化されていてもよいカルボキシル基」および「置換されていてもよいアシル基」としては、 R^3 の置換基として述べたでそれらと同様なものが挙げられる。

 R^5 の好ましい態様としては、水素原子、置換されていてもよい炭化水素基、置換されていてもよいアシル基などが挙げられ、 C_{1-6} アルキル、 C_{1-4} アルキルスルホニル、ホルミル、 C_{2-5} アルカノイルなどがより好ましく、 C_{1-4} アルキル、ホルミル、 C_{2-5} アルカノイルなどがさらに好ましく、とりわけ、プロピルまたはイソブチルが好ましい。

Yで示されるハロゲンとしては、たとえば、塩素原子、臭素原子などが挙げられる。Yで示される $-OSO_2-R^9$ において R^9 で示される低級アルキルとしてはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、t.-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1, 1-ジメチルブチル、2, 2-ジメチルブチル、3, 3-ジメチルブチル、2-エチルブチルなど C_{1-6} アルキルが挙げられる。 R^9 で示される置換されていてもよいアリールにおけるアリールとしては、たとえばフェニル、ナフチルなどが挙げられ、置換されていてもよいアリールにおける置換基としては、たとえば C_{1-6} アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、tert.-ブチル、ペンチルな

ど)、 C_{1-6} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec.-ブトキシ、tert-ブトキシ等)、ハロゲン原子(例、塩素、臭素、ヨー素、フッ素等)、ニトロ基、シアノ基などが挙げられる。式 $-OSO_2-R^9$ で示される基の好ましい例としては、メタンスルホニルオキシ、p-トルエンスルホニルオキシなどが挙げられる。

[0028]

mは1ないし5の整数であるが、2ないし4が好ましい。

nはOないし3の整数であるが、Oまたは1が好ましい。

 $*^1$ および $*^2$ はそれぞれ $*^1$ または $*^2$ の付された原子が不斉原子であることを意味する。

 R^6 はメチル、フェニル、4ーメチルフェニルまたは α ーナルチルを示す。 R^7 は 塩素原子またはニトロ基を示す。

R⁸で示される置換されていてもよい低級アルキル基における低級アルキルとしては例えば、メチル、エチル、プロピルなどのC₁₋₄アルキルなどが、置換されていてもよい低級アルキル基における低級アルキル基の置換基としては例えば、ハロゲン(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ、モノ(低級アルキル)アミノ、ジ(低級アルキル)アミノ、低級アルカノイルなどが挙げられる。

R⁸で示される置換されていてよいアリール基におけるアリール基としては、たとえばフェニル、ナフチルなど炭素数 6 ないし10のものが挙げられ、置換されていてよいアリール基におけるアリール基の置換基としては、たとえばハロゲン(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ、モノ(低級アルキル)アミノ、ジ(低級アルキル)アミノ、低級アルカノイルなどが挙げられる。R⁸で示される置換されていてもよいアラルキル基におけるアラルキル基としては、たとえばベンジル、フェネチルなど炭素数 7 ないし10のものがあげられ、置換されていてもよいアラルキル基におけるアラルキル基の置換基としては、たとえばハロゲン(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ、モノ(低級アルキル)アミノ、ジ(低級アルキル)アミノ、低級アルカノイルなどが挙げられる。

 R^8 で示される $-OR^{10}$ 中、 R^{10} で示される置換されていてもよい低級アルキル基、置換されていてもよいアリール基および置換されていてもよいアラルキル基としては、 R^8 で示される置換されていてもよい低級アルキル基、置換されていてもよいアリール基および置換されていてもよいアラルキル基と同様なものがそれぞれ挙げられる。

[0029]

つぎに本発明の各反応工程について説明する。

なお、以下において、式 (I)、 (II)、 (III)、 (IV)、 (V)、 (VI)、(VII)、(VIII)、(IX)、(X)、(XIa) および(X Ib)で表される化合物は塩を形成することができる。該塩としては、例えば無 機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または酸 性アミノ酸との塩などが挙げられる。無機塩基との塩の好適な例としては、例え ばナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウ ム塩などのアルカリ土類金属塩;ならびにアルミニウム塩、アンモニウム塩など が挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、 トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミ ン、トリエタノールアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチ レンジアミンなどとの塩が挙げられる。無機酸との塩の好適な例としては、例え ば塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。有機酸との 塩の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュ ウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸 、ベンゼンスルホン酸、p-トルエンスルホン酸などとの塩が挙げられる。塩基性 アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチンな どとの塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えばアスパラ ギン酸、グルタミン酸などとの塩が挙げられる。

このようにして得られる化合物(I)は、公知の分離精製手段例えば濃縮、減圧 濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製 することができる。

以下、式(I)で表される化合物およびその塩を単に化合物(I)という。同様

これらの化合物は、各工程において反応後、通常の分離生成手段により 単離することができるが、単離することなくつぎの反応に供してもよい。

【化54】

[0030]

工程1

化合物 (IV) とたとえばアシル化剤 (例、酸クロリド、酸ブロミド、混合酸無水物、活性エステルなど) とを反応させることにより化合物 (V) を製造することができる。この反応は適宜の溶媒中で行われる。該溶媒としてはたとえば芳香族

炭化水素類(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例、ジオ キサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、エステル類(例 、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、ケトン類(例、 アセトン、2ーブタノン、2ーペンタノン、3ーペンタノン、2ーヘキサノン、 3-ヘキサノン、メチルイソブチルケトン等)、第三級アミン類(例、ピリジン など)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メ チルピロリドン (NMP)、ハロゲン化炭化水素類(例、クロロホルム、ジクロロ メタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタンなど)など、および これらの混合溶媒があげられる。アシル化剤の使用量は化合物(IV)に対し1~ 5 モル当量程度が好ましい。また、本反応は塩基の存在下に反応を行ってもよい 。このような塩基としては、アルカリ金属塩(例、水酸化カリウム、水酸化ナト リウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウ ム等)、アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロピル エチルアミン、N-メチルモルホリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン (DBU) 、1,4-ジアザビシクロ[2,2,2]オクタン (DABCO) 等)、芳香族アミン類(例、N, N-ジメチルアミノピリジン、N, N-ジエ チルアミノピリジン、ピリジン、4-ジメチルアミノピリジン、ピコリン、キノ リン等)等が挙げられる。本反応は通常-20℃~200℃、好ましくは約-1 0℃~150℃で行われる。

工程2

化合物(V)と化合物(VI)とを反応させることにより化合物(VII)を製造することができる。反応は適宜の溶媒中で行われる。該溶媒としては例えば芳香族炭化水素類(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec.-ブタノール、tert.-ブタノールなど)、エステル類(例、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、ケトン類(例、アセトン、2ーブタノン、2ーペンタノン、3ーペンタノン、2ーヘキサノン、3ーペキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチル

ホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP) 、ハロゲン化炭化水素類(例、クロロホルム、ジクロロメタン、1,2-ジクロロエ タン、1,1,2,2-テトラクロロエタンなど)、水およびこれらの混合溶媒があげら れる。本反応は塩基の存在下に反応を行ってもよい。このような塩基としては、 アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸 ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、金属水素化物(例、 水素化カリウム、水素化ナトリウム、水素化カルシウムなど)、アミン類(例、 トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、Nーメチ ルモルホリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) 、 1, 4 -ジアザビシクロ[2, 2, 2]オクタン (DABCO) 等)、芳香族アミン 類(例、N,N-ジメチルアミノピリジン、N,N-ジエチルアミノピリジン、 ピリジン、4-ジメチルアミノピリジン、ピコリン、キノリン等)等が挙げられ る。化合物 (VI) の使用量は化合物 (V) に対して1~5モル当量、好ましく は $1\sim3$ モル当量である。また、塩基の使用量は化合物(V)に対して $1\sim5$ モ ル当量程度が好ましい。本反応は通常-20℃~200℃、好ましくは約-10 **℃~**150℃で行われる。

[0031]

工程3

化合物 (VII) を酸化することにより化合物 (VIII) を製造することができる。反応は適宜の溶媒中で行われる。該溶媒としては例えば炭化水素類 (例、ベンゼン、トルエン、キシレンなど)、エーテル類 (例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール類 (例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec.-ブタノール、tert.-ブタノールなど)、エステル類 (例、酢酸エチルなど)、ニトリル類 (例、アセトニトリルなど)、ケトン類 (例、アセトン、2ーブタノン、2ーペンタノン、3ーペンタノン、2ーヘキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン (NMP)、ハロゲン化炭化水素類 (例、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テト

ラクロロエタンなど)、有機カルボン酸類(例、ぎ酸、酢酸など)およびこれら の混合溶媒があげられる。用いる酸化剤としては、例えば、過酸化水素、過ギ酸 、過酢酸、過トリフルオロ酢酸、過安息香酸、m-クロロ過安息香酸、モノペル オキシフタル酸等の有機過酸類、クメンハイドロパーオキシド、Nーブロモアセ トアミド、Nーブロモこはく酸イミド、Nークロロこはく酸イミド等のNーハロ カルボン酸アミド類、次亜塩素酸tert.-ブチル、二酸化マンガン、オルト過ヨウ・ 素酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム等の過ヨウ酸塩類が 用いられる。また、本反応は酸触媒の存在下に行ってもよい。このような酸触媒 としては、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素 酸等の鉱酸類が用いられる。また、金属触媒としては例えば、酸化バナジウム、 酸化バナジウムアセチルアセテート、酸化マンガン、塩化モリブデン、塩化タン グステンなどが用いられる。酸化剤の使用量は反応条件によって異なるが、通常 、化合物(VII)に対して、1~100モル当量、好ましくは1~20モル当 量である。反応温度は、-50~200℃、好ましくは-30~150℃である 。酸または金属触媒の使用量はVIIに対して1/1000~100モル当量、 好ましくは1/500~50モル当量である。

[0032]

工程4

化合物(VIII)を脱保護反応に付すことにより化合物(IX)を製造することができる。脱保護の手段としては加水分解、加水素分解などが挙げられる。加水分解は通常溶媒中、酸または塩基の存在下に行われる。該溶媒としては例えばエーテル類(例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソプタノール、sec.-ブタノール、tert.-ブタノールなど)、ケトン類(例、アセトン、2ーブタノン、2ーペンタノン、3ーペンタノン、2ーペキサノン、3ーペキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、およびこれらの混合溶媒があげられる。酸を用いる場合は、例えば、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素

酸等の鉱酸類が挙げられる。塩基を用いる場合は、アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム等)が挙げられる。酸または塩基の使用量は、化合物(VIII)に対して0.01~200モル当量、好ましくは0.1~100モル当量である。反応温度は-20~200℃、好ましくは-10~100℃である。

加水素分解反応は通常溶媒中、触媒の存在下に行われる。該溶媒としては例えば 、芳香族炭化水素(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例 、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど) 、エステル 類(例、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、第三級ア ミン類(例、ピリジンなど)、アルコール類(例、メタノール、エタノール、プ ロパノール、イソプロパノール、ブタノール、イソブタノール、sec.-ブタノー ル、tert.-ブタノールなど)、ケトン類(例、アセトン、2ーブタノン(MEK)、メチルイソブチルケトン(MIBK)など)N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、ハロゲン化炭化 水素類 (例、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テ トラクロロエタンなど)など、水およびこれらの混合溶媒などが用いられる。触 媒としては、例えば、塩化パラジウム、パラジウム黒、パラジウム炭素などのパ ラジウム類、酸化白金、白金黒、白金炭素などの白金類、ロジウム炭素などのロ ジウム類、ラネーニッケル、ラネーコバルトなどが用いられる。水素源としては 、水素、ギ酸、ギ酸アンモニウム、イソプロピルアルコールなどが用いられる。 反応温度は−70~200℃、好ましくは0~100℃である。反応圧力は0~ 10MPa好ましくは0~5MPaである。触媒の使用量はVIIIに対して1/1 0000~100モル当量、好ましくは1/1000~50モル当量である。本 加水素分解反応は必要により酸または塩基を加えてもよい。該酸としては、ぎ酸 、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素酸等の鉱酸類な ど、塩基としては、アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、 炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、 アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルア ミン、Nーメチルモルホリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)等)、 芳香族アミン類(例、N,N-ジメチルアミノピリジン、N,N-ジエチルアミノピリジン、ピリジン、4-ジメチルアミノピリジン、ピコリン、キノリン等)などが用いられる。

[0033]

工程5

化合物 (IX) と式 (XIIa) または (XIIb) で表される光学活性な酸を 用いて、ジアステレオマー塩として光学分割する。ジアステレオマー塩の製造工 程では、反応は適宜の溶媒中で行われる。該溶媒としては例えばベンゼン、トル エン、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン(THF) 、ジメトキシエタンなどのエーテル類、メタノール、エタノール、プロパノール 、イソプロパノール、ブタノール、イソブタノール、sec.-ブタノール、tert.-ブタノール等のアルコール類、酢酸エチル、アセトニトリル、ケトン類(例、ア セトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、3 - ヘキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホルムア ミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、水、ク ロロホルム、ジクロロメダン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタ ンおよびこれらの混合溶媒があげられる。用いられる酸性光学分割剤としては、 例えば、酒石酸およびその誘導体[ジアシル酒石酸(ジアセチル酒石酸、ジベンゾ イル酒石酸、ジ-p-トルオイル酒石酸、ジ-1-ナフトイル酒石酸等)等]、アミノ酸 (ピログルタル酸、アスパラギン酸、a-フェニルグリシン等)およびその誘導体 [N -アシルアミノ酸(N-アセチルロイシン、N-アセチルバリン、N - (3, 5 - ジニ トロ) ベンゾイルフェニルグリシン等)、環状リン酸誘導体(2,2'-(1,1'-ビナ フチル)リン酸、4-フェニル-2-ヒドロキシ-5,5-ジメチル-1,3,2-ジオキサホスホ リナン-2-オキシド等)等の(+)あるいは(-)-リン酸類が挙げられる。用いる光学 分割剤は、好ましくはジベンゾイル酒石酸、ジ-p-トルオイル酒石酸、ジ-1-ナフ トイル酒石酸、N-(3,5-ジニトロ)ベンゾイルフェニルグリシンでありそ の使用量は、化合物 (IX) に対して0.1~10モル当量、好ましくは0.5

~5モル当量である。反応温度は-20~200℃、好ましくは-10~100℃である。

工程6

化合物 (IV) と化合物 (VI) と反応させることにより化合物 (X) を製造することができる。本反応は工程2と同様の反応条件を採用することができる。

[0034]

工程7

化合物(X)から化合物(II)へ導く反応は、化合物(X)に式(XIIa) または式(XIIc)で表される光学活性な酸の 存在下に酸化剤を反応させる ことにより行われる。この反応は適宜の溶媒中で行われる。該溶媒としては例え ばベンゼン、トルエン、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒ ドロフラン(THF)、ジメトキシエタンなどのエーテル類、メタノール、エタノー ル、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec.-ブ タノール、tert.-ブタノール等のアルコール類、酢酸エチル、アセトニトリル、 ケトン類(例、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2 **−ヘキサノン、3−ヘキサノン、メチルイソブチルケトン等)、ピリジン、N,N−** ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリド ン (NMP)、水、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2 -テトラクロロエタン、有機カルボン酸類(例、ぎ酸、酢酸など)およびこれら の混合溶媒があげられる。用いる酸化剤としては、例えば、過酸化水素、過ギ酸 、過酢酸、過トリフルオロ酢酸、過安息香酸、m-クロロ過安息香酸、モノペル オキシフタル酸等の有機過酸類、クメンハイドロパーオキシド、Nーブロモアセ トアミド、Nープロモこはく酸イミド、Nークロロこはく酸イミド等のNーハロ カルボン酸アミド類、次亜塩素酸tert.-ブチル、二酸化マンガン、オルト過ヨウ 素酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム等の過ヨウ酸塩類が 用いられる。また、本反応は酸触媒の存在下に行ってもよい。該酸触媒としては 、酒石酸誘導体[ジアシル酒石酸(ジベンゾイル酒石酸、ジ-p-トルオイル酒石酸 、ジ-1-ナフトイル酒石酸等)等]、環状リン酸誘導体(2,2'-(1,1'-ビナフチル) リン酸、4-フェニル-2-ヒドロキシ-5,5-ジメチル-1,3,2-ジオキサホスホリナン- 2-オキシド等)等の(+)あるいは(-)-リン酸類が挙げられる。好ましくはジベンゾイル酒石酸、ジ-p-トルオイル酒石酸、ジ-1-ナフトイル酒石酸、2,2'-(1,1'-ビナフチル)リン酸が用いられる。光学活性な酸の使用量は、化合物(X)1モルに対して、0.5~10モル当量、好ましくは0.5~5モル当量である。酸化剤の使用量は、化合物(X)1モルに対して、1~100モル当量、好ましくは1~50モル当量である。また、酸の使用量は化合物(X)1モルに対して、0.1~10モル当量、好ましくは0.5~5モル当量である。反応温度は-50~200℃、好ましくは-30~50℃である。

工程8

化合物 (X) を酸化することにより化合物 (IX) を製造する。本反応は工程 3 と同様の反応条件を採用することができる。

[0035]

工程9

化合物(XI)の複分解反応は適宜の溶媒中、酸または塩基と接触させることに より行われる。該溶媒としては例えばベンゼン、トルエン、キシレンなどの芳香 族炭化水素、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなどの エーテル類、メタノール、エタノール、プロパノール、イソプロパノール、ブタ ノール、イソブタノール、sec.-ブタノール、tert.-ブタノール等のアルコール 類、酢酸エチル、アセトニトリル、ピリジン、ケトン類(例、アセトン、2-ブ タノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、3-ヘキサノン、 メチルイソブチルケトン等)、N,N-ジメチルホルムアミド(DMF)、ジメチルスル ホキシド(DMSO)、N-メチルピロリドン(NMP)、水、クロロホルム、ジクロロメ タン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタンおよびこれらの混合溶 媒があげられる。該酸としては、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸 、硫酸、硝酸、過塩素酸等の鉱酸類など、塩基としては、アルカリ金属塩(例、 水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素 カリウム、炭酸水素ナトリウム等)、アミン類(例、トリメチルアミン、トリエ チルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、1, 8-ジ アザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[[0036]

工程10

化合物 (II) と化合物 (III) またはその反応性誘導体とを反応させることに より化合物(I)を製造することができる。本反応は通常、溶媒中で行われるが 反応を阻害しない限りいかなる溶媒を用いてもよく、例えばベンゼン、トルエン 、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン(THF)、ジ メトキシエタンなどのエーテル類、酢酸エチル、アセトニトリル、ケトン類(例 、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン 、3-ヘキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホル ムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMS 0)、N-メチルピロリドン (NMP)、クロロホルム、ジクロロメタン、1,2-ジクロ ロエタン、1,1,2,2-テトラクロロエタンおよびこれらの混合溶媒があげられる。 該反応性誘導体は、式 (III) で表される化合物のカルボキシル基における反 応性誘導体を意味する。該反応性誘導体としては例えば酸クロリド、酸ブロミド 、混合酸無水物、活性エステル等ペプチドの分野でよく知られているものがその まま当てはめられる。また、これら反応性誘導体を使用する場合には、塩基の存 在下に反応を行ってもよい。このような塩基としては、アルカリ金属塩(例、水 酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カ リウム、炭酸水素ナトリウム等)、アミン類(例、トリメチルアミン、トリエチ ルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、1,8-ジア ザビシクロ[5.4.0] -7 - ウンデセン (DBU) 、1,4 - ジアザビシクロ[2 , 2, 2']オクタン (DABCO) 等)、芳香族アミン類 (例、N, N-ジメチルアミ **ノピリジン、N,N-ジエチルアミノピリジン、ピリジン、4-ジメチルアミノ** ピリジン、ピコリン、キノリン等) 等が挙げられる。これら塩基の使用量は化合 物 (III) またはその反応性誘導体に対して1~5モル当量程度が好ましい。また、化合物 (III) またはその反応性誘導体の使用量は化合物 (II) に対し1~5モル当量程度が好ましい。本反応は通常−20℃~150℃、好ましくは約−10℃~100℃で行われる。反応時間は1~100時間程度である。なお、この反応において原料として用いる化合物 (III) はWO01−17947 (特願2001−151741対応) に記載の方法に準じて製造することができる。

[0037]

【発明の実施の形態】

以下に実施例、参考例、実験例を挙げて本発明をさらに詳細に説明するが、本 発明はこれに限定されるものではない。

[0038]

【実施例】

実施例1

2, 2, 2-トリフルオロ-N-(4- { [(1-プロピル-1 H-イミダゾール-5-イル) メチル] チオ $\}$ フェニル) アセトアミド

トリエチルアミン (27.9mL)を、0~10℃で4-アミノベンゼンチオール (12.5g)のTHF (180ml)溶液に滴下した。続いて、トリフルオロ酢酸無水物 (28.2ml)を、0~10℃で滴下加し、同温度で0.5時間撹拌した。反応液に市水 (30mL)を加え、室温で0.5時間撹拌した。20w/w%食塩水 (30ml)を加えて、分液した。水層を酢酸エチル (180ml)で抽出し、有機層をあわせ、市水 (30ml)を加えた。これに炭酸水素ナトリウムを加え、約pH9に調製した。分液後、有機層を市水30mL)で洗浄後、有機層を濃縮した。析出した結晶にn-ヘキサン (120ml)を加え、室温で17時間撹拌後、結晶をろ取し、結晶をn-ヘキサン (20ml)で洗浄した。結晶を減圧乾燥して、白色結晶の2,2,2-トリフルオローN-(4-メルカプトフェニル)アセトアミド (26.1g)を得た。

 1 H-NMR (CDC1₃, 300MHz) δ : 3. 45 (1H, s), 7. 18 (2H, d, J=9.4Hz), 7. 51 (2H, d, J=9.4Hz), 9.

97 (1H, brs)

窒素雰囲気下、トリエチルアミン(29.0ml)を、氷冷しながら0~10℃で上記で得られた2,2,2ートリフルオローNー(4ーメルカプトフェニル)アセトアミド(24.8g)のメタノール(99ml)溶液に滴下した。続いて、5ー(クロロメチル)ー1ープロピルー1Hーイミダゾール塩酸塩(20.4g)の蒸留水(21ml)溶液を0~20℃で滴下し、20~30℃で0.5時間撹拌した。反応液に酢酸エチル(200mL)を加え分液し、続いて7w/w%炭酸水素ナトリウム水(50ml)、市水(50ml)で洗浄た後、有機層を濃縮した。析出した結晶にIPE(250ml)を加え加熱還流下で0.5時間撹拌後、室温に放冷して3時間撹拌した。析出した結晶を3取し、結晶をIPE(20ml)で洗浄した。結晶を減圧乾燥して、白色結晶の標題化合物(23.8g、4ーアミノベンゼンチオール量より計算して収率73%)を得た。

融点 82-84℃

元素分析($C_{15}H_{16}N_3OSF_3$ ・0. $5H_2O$ として

計算値 C;51.13, H;4.86, N;11.92

実測値 C;51.41, H;4.55, N;11.75

 1 H-NMR (CDC1₃, 300MHz) δ : 0. 99 (3H, t, J=7. 4 Hz), 1. 67 (1H, brs), 1. 82-1. 94 (2H, m), 3. 7 7 (2H, t, J=6. 6Hz), 3. 99 (2H, s), 6. 67 (1H, s), 6. 96-7. 31 (2H, m), 7. 47 (1H, m), 7. 51-7. 59 (2H, m)

IR (KBr, cm⁻¹): 1704, 1504, 1247, 1195, 1160, 1145, 1108

実施例2

2, 2, 2-トリフルオロ-N-(4-{[(1-プロピル-1H-イミダゾール-5-イル)メチル]チオ}フェニル)アセトアミド(one-pot反応)窒素雰囲気下、トリエチルアミン(27.9ml)を、0~10℃で4-アミノベンゼンチオール(12.5g)のTHF(180ml)溶液に滴下した。続いて、トリフルオロ酢酸無水物(28.2ml)を、0~10℃で滴下し、同温

度で1時間撹拌した。反応液に市水(30m1)を加え、室温で1時間撹拌した。0~10℃で、トリエチルアミン(41.8ml)を滴下加えた。続いて、5-(クロロメチル)-1-プロピル-1H-イミダゾール塩酸塩(19.5g)の蒸留水(19ml)溶液を0~20℃で滴下し、同条件で1時間撹拌した。反応液に酢酸エチル(120ml)を加え分液し、続いて7w/w%炭酸水素ナトリウム水(60ml)、市水(60ml)で洗浄した後、有機層を濃縮した。濃縮物にIPE(150ml)を加え20~30℃で2時間撹拌した。析出した結晶を濾取し、結晶をIPE(20ml)で洗浄した。結晶を減圧乾燥して、白色結晶の標題化合物(33.1g、4-アミノベンゼンチオール量より計算して収率96%)を得た。

実施例3

 $4 - \{ [(1 - \mathcal{I} \square \mathcal{U} \mathcal{U} - 1 \, \mathbf{H} - \mathcal{I} = \mathcal{I} \, \mathcal{I} \, \mathcal{U} - 1 \, \mathbf{H} - \mathcal{I} = \mathcal{I} \, \mathcal{U} \, \mathcal{$

20~30℃で、30 W/W%過酸化水素水(16.4g)を2,2,2ートリフルオローNー(4ー{[(1ープロピルー1Hーイミダゾールー5ーイル)メチル]チオ}フェニル)アセトアミド(33.1g)の酢酸(49.7m1)溶液に加え、同温度で3時間撹拌した。反応液に酢酸エチル(330m1)を加えた後、これに0~10℃でチオ硫酸ナトリウム5水和物(35.9g)、6N水酸化ナトリウム水(144.6m1)を滴下加え、同温度で、0.5時間撹拌した。THF(330mL)を加え分液し、再度水層より酢酸エチル/THF(160m1/160m1)で抽出した。有機層をあわせて、10 W/W%食塩水(80mL x2)で洗浄後、有機層を濃縮した。メタノール(330m1)を加え溶解し、再度濃縮した。

濃縮物をメタノール (198.6ml) に溶解し、室温で炭酸カリウム (40.0g) の水 (99.3ml) 溶液を加えた。50℃に加温し、2.5時間撹拌した。20~30℃に冷却後分液し、水層より酢酸エチル (330ml) で抽出した。有機層をあわせて、20 w/w%食塩水 (100ml) で洗浄後、有機層に無水硫酸マグネシウム (5g) と活性炭 (3g) を加え、20~30℃で0.5時間撹拌した。固形分を濾去し、酢酸エチル (64ml) で洗浄し、有機層を

濃縮した。濃縮物に酢酸エチル(160mL)を加え再度濃縮した。濃縮物に酢酸エチル(132mL)を加え、50℃で1時間撹拌後、20~30℃に放冷し同温度で1時間撹拌した。析出した結晶を濾取し、酢酸エチル(33ml)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(18.5g、収率73%)を得た。

融点 143℃ (分解)

 1 H-NMR (CDC1₃, 300MHz) δ : 0. 90 (3H, t, J=7. 4 Hz), 1. 68-1. 78 (2H, m), 3. 74 (2H, t, J=6. 5Hz), 3. 95-4. 08 (4H, m), 6. 60 (1H, s), 6. 69 (2H, d, J=6. 8Hz), 7. 17 (2H, d, J=6. 8Hz), 7. 43 (1H, s)

IR (KBr, cm⁻¹):3397, 3334, 3216, 1650, 1596, 1419, 1018

[0039]

実施例4

 $4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミン(one-pot反応)$

20~30℃で、30 w/w%過酸化水素水 (35.4g)を2,2,2-トリフルオロ-N-(4-{[(1-プロピル-1H-イミダゾール-5-イル)メチル]チオ}フェニル)アセトアミド (71.5g)の酢酸 (107.3m1)溶液に加え、同温度で3時間撹拌した。メタノール (429mL)を加え、これに0~10℃でチオ硫酸ナトリウム5水和物 (77.4g)、6N水酸化ナトリウム水 (312.2m1)を滴下加え、同温度で、1時間撹拌した。続いて炭酸カリウム (86.2g)を加え、50℃に加温し、3時間撹拌した。20~30℃に冷却後分液し、水層より酢酸エチル (710m1)で抽出した。有機層を、20 w/w%食塩水 (200m1)で洗浄後、有機層に無水硫酸マグネシウム (10g)と活性炭 (7.1g)を加え、20~30℃で0.5時間撹拌した。固形分を濾去し、酢酸エチル (200m1)で洗浄し、有機層を濃縮した。濃縮物に酢酸エチル (358m1)を加え、50℃で2時間撹拌後、20~30℃に

放冷し同温度で1時間撹拌した。析出した結晶を3取し、酢酸エチル(72ml)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(36.3g、収率66%)を得た。

実施例5

 $4 - \{ [(1 - \mathcal{I} \square \mathcal{U} \mathcal{U} - 1 \, \mathbf{H} - \mathcal{I} + \mathcal{I} \, \mathcal{I} \, \mathcal{U} - \mathbf{I} \, \mathbf{H} - \mathbf{I} \, \mathbf{H} - \mathbf{I} \, \mathbf{H} - \mathbf{I} \, \mathbf{I} \, \mathbf{H} - \mathbf{I} \, \mathbf{I} \,$

5- (クロロメチル) -1-プロピル-1H-イミダゾール塩酸塩(10.7g) の蒸留水(6m1) 溶液を、10~30℃で4-アミノベンゼンチオール(6.3g) とトリエチルアミン(15.3m1) のIPA(25.2m1) 混合液に滴下し、同条件で1時間撹拌した。市水(20m1) を加え、酢酸エチル(50m1x2) で抽出した。有機層を20w/w%食塩水(20m1)で洗浄後、濃縮した。

濃縮物を酢酸(1 2. 6 m 1)に溶解し、3 0 w / w %過酸化水素水(8. 5 g)を20~30℃で加え、同温度で2時間撹拌した。これに0~10℃でチオ硫酸ナトリウム5水和物(9. 3 g)、6 N 水酸化ナトリウム水(3 6 m 1)を滴下し、同温度で、1時間撹拌した。酢酸エチル/IPA(4 / 1、180 m 1)で抽出し、有機層を20 w / w %食塩水(30 m L)で洗浄後、有機層に無水硫酸ナトリウムと活性炭(0. 6 g)を加え、20~30℃で1時間撹拌した。固形分を濾去し、酢酸エチル(10 m L)で洗浄し、有機層を濃縮した。濃縮物にIPA(18 m 1)を加え溶解し20~30℃で0. 5時間撹拌した。続いて、n - ヘプタン(36 m 1)を加え20~30℃で1時間撹拌した。析出した結晶を濾取し、IPA / n - ヘプタン(4 m L / 2 m 1)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(10.2 g、収率73%)を得た。

[0040]

実施例 6

 $4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミン (one-pot反応)$

5-(クロロメチル)-1-プロピル-1H-イミダゾール塩酸塩(<math>0.78g)の蒸留水(0.5m1)溶液を、10~30Cで4-アミノベンゼンチオー

ル (0.46g)とトリエチルアミン (1.1ml)のメタノール (2ml)混合液に滴下加え、同条件で1時間撹拌した。続いて酢酸 (1ml)と30w/w%過酸化水素水 (0.62g)を20~30℃で加え、同温度で17時間撹拌した。これに0~10℃で亜硫酸ナトリウム (0.69g)、6N水酸化ナトリウム水 (3ml)を滴下加え、同温度で、1時間撹拌した。酢酸エチル/IPAで抽出し、有機層を20w/w%食塩水で洗浄後、有機層に無水硫酸ナトリウムと活性炭 (40mg)を加え、20~30℃で1時間撹拌した。固形分を濾去し、酢酸エチル (10ml)で洗浄し、有機層を濃縮した。濃縮物に酢酸エチル (4ml)を加え溶解し20~30℃で1時間撹拌した。析出した結晶を濾取し、酢酸エチル (2ml)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物 (0.73g、収率71%)を得た。

実施例7

(一) ー4ー [[(1ープロピルー1 Hーイミダゾールー5ーイル) メチル]スルフィニル] フェニルアミン(2S,3S)ージ(1ーナフトイル) 酒石酸塩4ー [[(1ープロピルー1ーHーイミダゾールー5ーイル) メチル] スルフィニル] フェニルアミンのラセミ体50 mgと(2S,3S)ージ(1ーナフトイル) 酒石酸1水和物 45.2 mgをメタノール (1.0ml) に溶解し、室温下で一晩撹拌した。析出物をろ過し、56.2 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は88 % deであった。この結晶55 mgをエタノール(1.5ml)中で0.5時間加熱還流後、室温で一晩撹拌した。析出物をろ過し、48.1mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は95%deであった。この結晶47 mgをメタノール(2ml)、水(1ml)中で0.5時間加熱還流後、室温で一晩撹拌した。析出物をろ過し、41.8 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は95%deであった。日PLC分析の結果、ジアステレオマー過剰率は99% deであった。

比旋光度; $[\alpha]^{27}_{D} = -45.5$ (c=0.2MeOH)

融点;178℃(分解)

元素分析値 C₁₃H₁₇N₃OS・C₂₆H₁₈O₈として

計算值:C;64.90,H;4.89,N;5.84,S;4.44,

実施例8

- (一) -4-{ [(1-プロピルー1Hーイミダゾールー5ーイル)メチル]スルフィニル}フェニルアミンのラセミ体200 mgと(2S,3S)ージ(1ーナフトイル)酒石酸1水和物 180.8 mgを酢酸エチル(1.5m1)、メタノール(4m1)中で約0.5時間加熱還流し、そのまま室温下で静置した。析出物をろ過し、223.6 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は92% deであった。この結晶223 mgをメタノール(13m1)中で0.5時間加熱還流後、室温で一晩撹拌した。析出物をろ過し、188.1 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は99%deであった。この結晶187mgを飽和重曹水 5 m1、水 5 m1中で複分解し、クロロホルム約15 m1で3回抽出した。クロロホルム層を無水硫酸マグネシウムで乾燥後、濃縮乾固して62.4 mgの結晶を得た。(収率31%)HPLC分析の結果、鏡像異性体過剰率は99% eeであった。

 H^{1} -NMR (DMSO-d₆) δ ; 0. 78-0. 82 (3 H, t, J=7. 3 Hz), 1. 58-1. 67 (2 H, m), 3. 72-3. 76 (2 H, t, J=7. 0 Hz), 4. 05-4. 14 (2 H, m), 5. 71 (2 H, s), 6. 54 (1 H, s), 6. 61-6. 63 (2 H, d, J=7. 6 Hz), 7. 14-7. 16 (2 H, d, J=7. 6 Hz), 7. 59 (1 H, s) 融点; 137-138°C

実施例9

(一) $-4-\{[(1-プロピルー1H-イミダゾールー5-イル)メチル]ス$ ルフィニル $\}$ フェニルアミン ・ジーp-トルオイルー] 一酒石酸塩・1 水和物 (2S,3S)-2,3-ピス[(4-メチルベンゾイル) オキシ] ブタンジカルボン酸(15.1g) と $4-\{[(1-プロピルー1H-イミダゾール-5$

ーイル)メチル]スルフィニル}フェニルアミン(10.3g)の1,2ージメトキシエタン(90m1)混合液に水(90m1)を滴下加え、室温で一晩撹拌した。析出した結晶を濾取し、50 v / v %含水1,2ージメトキシエタン(30m1)で洗浄し、減圧乾燥した。結晶を50 v / v %含水アセトニトリル(84m1)に70℃で加熱溶解し、同温度を保持しながら水(42m1)を加えた。室温に放冷後、室温で一晩、続いて0℃で1時間撹拌した。析出した結晶を濾取し、0℃に冷却した75%含水アセトニトリル(30mL)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(10.9g、収率41.6%、99.6%de)を得た。

融点 134-136℃

元素分析(C₃₃H₃₅N₃O₉S・1H₂Oとして)

理論値 C; 59. 36, H; 5. 59, N; 6. 29, S; 4. 80

分析値 C:59.26, H;5.67, N;6.18, S;4.77

[0042]

実施例10

- (一) $-4-\{[(1-プロピルー1H-イミダゾールー5-イル)メチル]ス ルフィニル<math>\}$ フェニルアミン
- (一) -4- { [(1-プロピルー1H-イミダゾールー5ーイル) メチル] スルフィニル} フェニルアミン・ジーpートルオイルーDー酒石酸塩・1水和物(5g)に3N塩酸(10m1) および酢酸エチル(20m1) を加えて抽出した。水層に6N水酸化ナトリウム水溶液(5m1) を加えてpH約9とし、種晶を加えて結晶化させた。室温下撹拌後結晶をろ取し、白色粉末として標題化合物を得た(1.88g、95.4%)。

実施例11

(一) -4-[[(1-プロピルー1-H-イミダゾールー5-イル) メチル] スルフィニル] フェニルアミンと (R) -N-(3,5-ジニトロベンゾイル) フェニルグリシン塩

4-[[(1-プロピル-1-H-イミダゾール-5-イル) メチル] スルフィニル] フェニルアミンのラセミ体<math>50 mgと (R)-N-(3,5-ジニトロ

ベンゾイル)フェニルグリシン 65.6 mgをメタノール 1.0 mlに溶解し、室温下で一晩静置した。析出物をろ過し、57.9 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は51 % deであった。この結晶57 mgをエタノール 1.5 mlに溶解し、室温で一晩静置した。析出物をろ過し、27.9 mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は80 % deであった。

実施例12

5- (クロロメチル) -1-プロピル-1H-イミダゾール塩酸塩(3.9 g) の水(2.5 m1) 溶液を-15~-10℃で滴下し、同温度で1時間撹拌した。イソプロパノールを減圧留去した後、メチルイソブチルケトン(25 m1)を加え、有機層を水で洗浄した。有機層に活性炭(0.1 g)を加え室温で10分撹拌した。有機層を濃縮しメチルイソブチルケトン(30 m1)に溶解した。別にジーpートルオイルー(D)ー酒石酸(7.7 g)をトルエン(90 m1)、メチルイソブチルケトン(60 m1)混液に溶解し、水(3.6 m1)を加えた。ついで上述のメチルイソブチルケトン溶液を2時間かけてゆっくり滴下した。1時間撹拌した後、30%過酸化水素水(6.8 g)を加え、室温で24時間撹拌した。メタノール(30 m1)を加え、50℃で8時間撹拌した。水(30 m1)を加え室温で5時間撹拌した。析出した結晶をろ取し、水(30 m1)で洗浄して、表題化合物を得た(7.1 g、53%)。

[0043]

実施例13

(-) -7-[4-(2-プトキシエトキシ) 7x=n -1-Ayプチル-N $-(4-{[(1-プロピル-1H-Aミダゾール-5-Aル)メチル]スルフィニル} 7x=n) -2, 3-ジヒドロ-1H-1-ベンゾアゼピン-4-カル$

ボキシアミド

(一) -4- { [(1-プロピルー1H-イミダゾールー5-イル)メチル] スルフィニル} フェニルアミン・ジーpートルオイルーDー酒石酸塩・1水和物(5g)5gに1N塩酸(25ml)および酢酸エチル(15ml)を加えて逆抽出した。水層に25%炭酸カリウム水溶液(25ml)を加え(pH 9)、酢酸エチルーIPA(4:1)25mLで3回抽出した。有機層を飽和食塩水(25ml)で洗浄後硫酸マグネシムで乾燥後溶媒を留去し、(一)-4- { [(1-プロピルー1H-イミダゾールー5-イル)メチル] スルフィニル}フェニルアミンを得た。

別に7-[4-(2-ブトキシエトキシ) フェニル] -1-イソブチル-2, 3- ジヒドロ-1 H-1-ベンゾアゼピン<math>-4- カルボン酸(2.56 g)のT H F (7.5 m 1) 溶液にDMF 1 滴加え、室温下オキザリルクロリド(0.5 6 m 1)を滴下し、1 時間撹拌し酸クロリドを調製した。

 1 H-NMR (CDC1 $_3$, 300MHz) δ ; 標題化合物: tert-ブチル メチルエーテル=1:0.94; 標題化合物: 0.84-0.97 (12H, m), 1.28-1.42 (2H, m), 1.53-1.75 (4H, m)2

. 02-2. 11 (1H, m), 2. 88-2. 94 (2H, m), 3. 17-3. 21 (2H, m), 3. 33-3. 37 (2H, m), 3. 53 (2H, t, J=6.6Hz), 3. 71-3. 81 (4H, m), 3. 95-4. 10 (2H, m), 4. 13-4. 16 (2H, m), 6. 55 (1H, s), 6. 9 0-6. 98 (3H, m), 7. 32 (2H, d, J=8.7Hz), 7. 43 -7. 47 (5H, m), 7. 75 (2H, d, J=8.7Hz), 8. 32 (1H, s), NHは未検出. tert-ブチルメチルエーテル: 1. 19 (9H, s), 3. 21 (3H, s).

[0044]

実施例14

(-) -7-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-N $-(4-{[(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニル) -2, 3-ジヒドロ-1H-1-ベンゾアゼピン-4-カルボキシアミド$

7-[4-(2-プトキシエトキシ) フェニル] -1-イソプチルー2, 3-ジヒドロ-1H-1-ベンプアゼピンー4-カルボン酸(2.56g)のTHF(8m1)溶液にDMF1滴加え、氷冷下オキザリルクロリド(0.56m1)を滴下し、1時間撹拌して酸クロリドを調製した。

(一) ー4ー { [(1ープロピルー1 Hーイミダゾールー5ーイル) メチル] スルフィニル} フェニルアミンのTHF(18m1) 溶液にジイソプロピルエチルアミン(3.5m1)を加え、上記酸クロリド溶液を10℃以下で滴下し、2時間撹拌した。水(15m1)を加え、酢酸エチルで抽出した。有機層を10%酢酸水溶液、飽和重曹水、10%食塩水で順次洗浄後、塩基性シリカゲル(4g)、活性炭(0.4g)、硫酸ナトリウム(2g)を加え10分撹拌後ろ過し、溶媒を留去した。残渣に酢酸イソプロピル(15m1)を加えて40℃で撹拌溶解し室温下14時間撹拌した。ヘプタン15m1を加えて室温下1時間撹拌後氷冷した。結晶をろ取し、標題化合物の酢酸イソプロピル溶媒和物(2.93g)を得た。ついで酢酸イソプロピル(10m1)を加え、40℃で溶解後室温下4時間、氷冷下1時間撹拌した。結晶をろ取し、酢酸イソプロピル(15m1)で洗

浄後減圧乾燥し、黄色粉末として標題化合物の酢酸イソプロピル溶媒和物(2.8g、77.1%)を得た。

¹H-NMR (CDC1₃, 300MHz) δ; 標題化合物:酢酸イソプロピル =1:0.80; 標題化合物: 0.84-0.97 (12H, m), 1.2 8-1.42 (2H, m), 1.53-1.75 (4H, m) 2.02-2.1 1 (1H, m), 2.88-2.94 (2H, m), 3.17-3.21 (2H, m), 3.33-3.37 (2H, m), 3.53 (2H, t, J=6.6Hz), 3.71-3.81 (4H, m), 3.95-4.10 (2H, m), 4.13-4.16 (2H, m), 6.55 (1H, s), 6.90-6.98 (3H, m), 7.32 (2H, d, J=8.7Hz), 7.43-7.47 (5H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, s), 6.90-6.98 (3H, m), 7.75 (2H, d, J=8.7Hz), 8.32 (1H, m), 8.90-6.98 (1H, m).

[0045]

実施例15

8- [4-(2-ブトキシエトキシ)フェニル] -1-イソブチル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸(986mg)をテトラヒドロフラン(3m1)に溶解しジメチルホルムアミドを1滴加えた。ついで氷冷下にオキサリルクロリド(0.2m1, 2.29mmo1)滴下し氷冷下80分攪拌した。

 、減圧濃縮した。トルエンを加え減圧濃縮した。アセトニトリルを加え減圧濃縮した。残留物をアセトニトリル(7m1)とアセトン(7m1)に溶解しメタンスルホン酸(209mg)滴下して、種晶を加え室温で100分間攪拌した。ついでアセトンーアセトニトリル(1:1、5m1)追加した。室温で一晩攪拌後、氷冷下に2.5時間攪拌し、析出した結晶をろ取し、氷冷したアセトン(9m1)で洗浄した。40℃で減圧乾燥して表題化合物を黄色結晶として得た(1.51g、87%)。

 1 H-NMR (300MHz, DMSO-d₆, δ): 0. 78-0. 96 (12 H, m), 1. 25-1. 40 (2H, m), 1. 41-1. 51 (4H, m), 1. 65-1. 85 (2H, m), 2. 05-2. 15 (1H, m), 2. 30 (3H, s), 2. 35-2. 50 (2H, m), 3. 05-3. 15 (2H, m), 3. 30-3. 55 (4H, m), 3. 65-3. 70 (2H, m), 3. 90-4. 05 (2H, m), 4. 05-4. 10 (2H, m), 4. 30 (1H, d, J=14. 73Hz), 4. 65 (1H, d, J=14. 73Hz), 6. 85 (1H, d, J=8. 97Hz), 6. 97 (1H, d, J=8. 79Hz), 7. 17 (1H, s), 7. 35-7. 75 (6H, m), 7. 92 (2H, d, J=8. 79Hz), 9. 08 (1H, s), 10. 15 (1H, s).

元素分析値 C₄₁H₅₂N₄O₄S・CH₄SO₃として

計算值: C, 63.61; H, 7.12; N, 7.06; S, 8.09

実測値: C, 63.65; H, 7.23; N, 7.05; S, 8.08

[0046]

実施例16

(-) -8-[4-(2-プトキシエトキシ) 7ェニル] -1-イソプチル-N $-(4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニル) -1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボキシアミド$

8 - [4 - (2 - プトキシエトキシ) フェニル] - 1 - イソブチルー1, 2, 3

, 4-テトラヒドロー1-ベンゾアゾシンー5-カルボン酸(5 g)のテトラヒドロフラン(15 m l) 溶液にジメチルホルムアミド 1 滴を加え、氷冷下オキザリルクロリド(1.1 m l) を滴下し、1時間撹拌した。

実施例17

(一) $-4-\{[(1-プロピルー1H-イミダゾールー5-イル)メチル]スルフィニル<math>\}$ フェニルアミン ・ ジーp-トルオイルーD-酒石酸塩 ・ 1水和物(S)-IASO・D-PTTA・+120

ジーpートルオイルーDー酒石酸(1.9 g)のトルエン(15 ml)とメチルイソブチルケトン(30 ml)溶液に4ー { [(1ープロピルー1 Hーイミダゾールー5ーイル) メチル] チオ} フェニルアミン(1.2g)のメチルイソブチルケトン(15 ml)溶液を加えた。次いで30%過酸化水素水(1.7 g)を加え、室温で3週間撹拌した。析出した結晶を適取した。得られた結晶を恒量になるまで乾燥し標題化合物を2.9g(収率87%,82.7% de)を得た。結晶をアセトニトリル/水 (9 ml/9 ml) に加え、60℃で0.5時間撹拌し水(9 ml)を滴下した。同温度で0.5時間、室温で1時間、氷冷

下で1時間撹拌した。析出した結晶を濾取し、氷冷したアセトニトリル/水 (4ml /2 ml) で洗浄した。得られた結晶を恒量になるまで乾燥し標題化合物を得た (2.4 g, 収率72%, 98.1% de)。

実施例18

(+) $-4-\{[(1-プロピル-1H-イミダゾール-5-イル)メチル]スルフィニル<math>\}$ フェニルアミン

4-{[(1-プロピル-1 H-イミダゾール-5-イル)メチル]チオ}フェニルアミン(0.99 g)と(R)-(-)-リン酸水素 1,1'-ビナフチルー2,2'-ジイル(0.14 g)の塩化メチレン(5 m1)混合液に30%過酸化水素水(0.14g)を加え、室温で6時間撹拌した。反応液を一部サンプリングして高速液体クロマトグラフィー(HPLC)にて分析を行った。変換率52%、光学純度35.0%ee。

HPLC条件

カラム: Chiralcel (Daicel) OD

移動相: ヘキサンーエタノール(85:15)

流速: 1 m l / min ·

温度:35℃

(+) -体: 2 1 min, (-)-体: 2 7 min 【0047】

【発明の効果】

本発明によれば、CCR5拮抗作用を有する光学活性スルホキシド誘導体または中間体を、ラセミ化やPummerer転位等の副反応を伴うことなく製造することができ、特に、工程7は光学活性な酸の存在下に不斉酸化することによって、光学活性な(II)の製造が可能であり工業的に有利である。

【要約】

【課題】CCR5拮抗作用を有する光学活性スルホキシド誘導体または中間体を、ラセミ化やPummerer転位等の副反応を伴うことなく製造する方法の提供。

【解決手段】下記式辞のとおり、化合物(II)と化合物(III)を反応させて、化合物(I)を製造する。

【化1】

(式中、 R^1 は水素、脂肪族炭化水素基または芳香族基を、 R^2 はハロゲン、ニトロ、シアノ、アルキル、シクロアルキル、水酸基、チオール、アミノ、アシル、カルボキシルまたは芳香族基を、 R^3 は5または6員環を、 R^4 は水素、アルキル、アルコキシまたはハロゲンを、 R^5 は水素、炭化水素基、複素環基、スルホニル、カルボキシルまたはアシルを、環Aは置換されていてもよいベンゼン環を、Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を、mは1ないし5の整数を、nは0ないし3の整数を、pは0ないし2の整数を示し、 $*^1$ は不斉中心を示す。)で表される光学活性化合物の製造法。

【選択図】なし

特2002-066809

【書類名】 手続補正書

【提出日】 平成14年 4月10日

【あて先】 特許庁長官 殿

【事件の表示】

【出願番号】 特願2002-66809

【整理番号】 B02070

【補正をする者】

【識別番号】 000002934

【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】 100114041

【弁理士】

【氏名又は名称】 高橋 秀一

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 発明者

【補正方法】 変更

【補正の内容】

【発明者】

【住所又は居所】 大阪府高槻市宮之川原1丁目11番1号

【氏名】 多和田 紘之

【発明者】

【住所又は居所】 兵庫県宝塚市山本丸橋2丁目11番地の5

【氏名】 池本 朋己

【発明者】

【住所又は居所】 兵庫県伊丹市南鈴原3丁目151番地

【氏名】 西口 敦子

【発明者】

【住所又は居所】 奈良県香芝市今泉1214番地旭ケ丘区画整理地内11

7.1-7

【氏名】

伊藤 達也

【発明者】

【住所又は居所】

兵庫県神戸市西区美穂が丘4丁目2番地の3

【氏名】

安達 万里

【プルーフの要否】 要

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住 所

大阪府大阪市中央区道修町四丁目1番1号

氏 名

武田薬品工業株式会社