

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P72469A
Publications Code WST03_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Overtion					
Question Number	Scheme				
1 (a)	You wou	ou would assign an average rank between the tied ranks B1			
(b)	Rank for total tournaments 1 3 4 6 8 9 2 5 10 7				
	$\sum d^2 = 0 + 1 + 1 + 4 + 9 + 9 + 25 + 9 + 1 + 9 = 68$				
	" _ 1	6×'68'	dM1		
	$r_s = 1 - \frac{6 \times '68'}{10(10^2 - 1)}$				
	= 0.587	,	A1		
	0.507		(4)		
(c)	$H_0: \rho =$	$0, H_1: \rho > 0$	B1		
` ′	Critical V	Value = 0.5636 or CR 0.5636	B1		
	Reject H ₀	or significant or lies in the critical region	dM1		
	There is s	sufficient evidence of a positive correlation between rank and total tournaments won	A1		
			(4)		
(d)	2.5% and	$r_s = 0.6485$ or CR 0.6485	B1		
			(1)		
		Notes for an appropriate explanation of how to deal with tied ranks. Ignore any comments	Total 10		
(a)	B 1	PMCC Do not allow add 0.5 to both ranks	regarding		
(b)	M1	attempt to rank total tournaments (at least four correct) Condone reversed ranks			
	finding the difference between players rank and each of their total tournaments ranks and				
	M1	evaluating $\sum d^2$ May be implied by 68			
	dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (you will need to check their $\sum d^2$ if				
		no value shown)			
	A1	awrt 0.588 Allow $\frac{97}{165}$			
()	both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ and H ₁ If r_s is negative.				
(c)	B 1	in part (b) then allow $H_1: \rho < 0$			
	B1	critical value of 0.5636 If r_s is negative in part (b) then allow -0.5636			
		dependent on 2 nd B1. A correct statement ft their part (b) and their CV– no context n	eeded but do		
	not allow contradicting non contextual comments. This may be implied by conclusion.				
	A1	correct conclusion which is rejecting H ₀ , which must mention rank and total tourna hypotheses is A0.			
		NB If they have used H_1 : $\rho < 0$ then the maximum they can score is B1B1dM1A0			
(d)	B 1	for 2.5% and a correct critical value of 0.6485			

Question		Scheme	Marks				
Number							
2 (a)	$\overline{x} = \left[\frac{7690}{100}\right] = 76.9$						
	$s_x^2 = \frac{669.24}{99} = 6.76$						
			(3)				
(b)	$H_0: \mu_x =$	$= \mu_{y} \qquad \qquad \mathrm{H}_{1}: \mu_{x} \neq \mu_{y}$	B1				
	$Z = \frac{"76.9" - 75.9}{\sqrt{\frac{"6.76"}{100} + \frac{2.2^2}{80}}} = 2.793$ awrt ± 2.79 M1						
	2 tailed cr	itical value $z = \pm 2.5758$	B1				
		/Significant/In the critical region	M1				
		ufficient evidence to suggest that the mean <u>water temperature</u> after 4 hours for different to brand <u>B</u>	A1ft				
(c)	(It is roose	onebla) since both semples are (reasonably) large	(7) B1				
(c)	(It is reasonable) since both samples are (reasonably) large						
	Notes						
(a)	B 1	for 76.9					
	M1	for use of $\frac{1}{n-1}\sum (x-\overline{x})^2$ oe					
	A1						
(b)	B1	for both hypotheses correct. Must be attached to H_0 and H_1 Allow equivalent hypotheses. Must be in terms of μ Allow any letter for the subscripts					
	M1	M1 for a correct method to find the standard error. Follow through their values from (a)					
	M1 an attempt at $\pm \frac{a-b}{\sqrt{\frac{c}{100} + \frac{d^2}{80}}}$ with at least 3 of a, b, c or d correct.						
	A1 awrt ± 2.79						
	B1 $z = \operatorname{awrt} \pm 2.5758 \operatorname{seen}$ (Allow $z = \operatorname{awrt} \pm 2.3263 \operatorname{if}$ a one tailed test is used)						
	M1	a correct statement consistent with their CV and Z value – need not be contextual but do not					
	A1ft	This mark is dependent on the 2^{nd} M mark being awarded. A correct contextual state CV and their Z value					
(c)	B1	a correct explanation, which makes reference to both samples. e.g. Do not allow the large enough	sample is				

Question Number		Scheme	Marks		
3 (a)	26.624	$\left \frac{+28.976}{2} \right = 27.8$	B1		
	L		(1)		
(b)		$\frac{\sigma}{\sqrt{25}} = 26.624 = 2 \times 1.96 \times \frac{\sigma}{\sqrt{25}} \text{or} 26.624 = 27.8 - 1.96 \times \frac{\sigma}{\sqrt{25}}$ $\frac{\sigma}{\sqrt{25}} = 27.8 + 1.96 \times \frac{\sigma}{\sqrt{25}}$	M1 B1		
	$\sigma = 3 *$	V 20	A1* cso		
			(3)		
(c)	$2 \times z \times \sqrt{\int}$	$\frac{3}{25} = 2.1$ So $z = 1.75$	M1 A1		
	P(Z > '1)	(.75') = P(Z < -'1.75') = 1 - '0.9599' = '0.0401'	M1 A1ft		
	Confidence	ce level = $100 \times (1 - 2 \times 0.0401) = 91.98\%$	M1 A1		
			(6)		
(d)	2×1.96×	$<\frac{3}{\sqrt{n}}<1.5$	M1		
	$2 \times 1.96 \times \frac{3}{\sqrt{n}} < 1.5$ $\sqrt{n} > \frac{6 \times 1.96}{1.5}$				
	\sqrt{n} > awrt 7.84 So $n = 62$				
			(4)		
		Notes	Total 14		
(a)	B1	for 27.8			
(b)	M1	for $28.976 - 26.624 = 2 \times z$ value $\times \frac{\sigma}{\sqrt{25}}$ or $26.624 = '27.8' - z$ value $\times \frac{\sigma}{\sqrt{25}}$ or $28.976 = '27.8' - z$ value $\times \frac{\sigma}{\sqrt{25}}$ where $1.5 < z < 2.4$			
	B1	awrt 1.96			
	A1* cso	answer is given so no incorrect working must be seen			
(c)	3 21				
	A1	for $z = 1.75$			
	M1	for $1 - p$, where p is a probability			
	A1ft	for 0.0401 or ft their z value (Allow 0.04)			
	M1	for $100 \times (1 - 2 \times 0.0401)$ ft their P(Z < -1.75)			
		A1 awrt 92.0 (allow 92)			
(d)	M1	for $2 \times z$ value $\times \frac{3}{\sqrt{n}} < 1.5$ oe z value must either be correct or consistent with p	part (b)		
		Allow \leq or = Condone > or \geq			
	dM1	Dependent on previous M mark. Correct rearrangement to get $\sqrt{n} > \dots$ or $n > \dots$ or	e		
	A 1	Allow \geqslant or = Condone $<$ or \leqslant			
	A1	awrt 7.84 may be implied by awrt 61.5			
	A1	for $n = 62$			

Question		Scheme	Marks				
Number							
4 (a)	[Continuous] uniform on the interval [0, 7]						
(b)	mean = 3.	5	B1 (1)				
(0)							
	standard o	$deviation = \sqrt{\frac{(7-0)^2}{12}}$	M1				
		,					
		$=\frac{7}{\sqrt{12}}=2.0207$ awrt 2.02	A1				
		$\sqrt{12}$	111				
			(3)				
(c)	By the CI	LT $\overline{T} \square N \left(3.5, \frac{49}{552}\right)$	M1				
(-)		(552)					
	$\begin{bmatrix} P(3.4.7.2.6) & P(3.4-3.5) & 3.6-3.5 \end{bmatrix} \begin{bmatrix} P(0.34.7.2.6.24) \end{bmatrix}$						
	1 (3.4 <)	$(1 < 3.0) = 1$ $\frac{1}{11} = \frac{1}{49} = \frac{1}{11} = \frac{1}$	M1 A1				
	$P(3.4 < \overline{T} < 3.6) = P \left(\frac{3.4 - "3.5"}{"\sqrt{\frac{49}{552}}"} < Z < \frac{3.6 - "3.5"}{"\sqrt{\frac{49}{552}}"} \right) = \left[P(-0.34 < Z < 0.34) \right]$						
	= 0.6331 - (1 - 0.6331) (Calculator gives 0.6314)						
	= 0.2662 (Calculator gives 0.2628) awrt 0.263 to 0.266						
(1)							
(d)	Large/ inc	dependent/ random sample allows use of CLT	B1 (1)				
	Notes						
		For the correct distribution stated (need uniform and correct interval) Allow U[0, 7] A	Total 10 A fully				
	7.4	$\begin{bmatrix} 1 & 0 & r & 7 \end{bmatrix}$					
(a)	B1 correct pdf implies B1 e.g. $f(x) = \begin{cases} \frac{1}{7} & 0, x, 7 \\ 0 & \text{otherwise} \end{cases}$						
		0 otherwise					
(b)	B1	For 3.5					
	M1	For a correct method for finding the standard deviation					
	A1 awrt 2.02 (Allow $\frac{7}{\sqrt{12}}$ or $\frac{7\sqrt{3}}{6}$ oe)						
		For writing or using $N\left(3.5, \frac{49}{552}\right)$ oe Allow $N\left(3.5, \frac{2.02^2}{46}\right)$ or ft from part (b) e.	g. if Po(7)				
(c)	M1						
		given in part (a) allow $N\left(7, \frac{7}{46}\right)$					
	M1 For standardising using either 3.4 or 3.6 and their mean and standard deviation						
	A1	For a fully correct expression for either 3.4 or 3.6. May be implied by \pm awrt 0.34					
	M1 For $p - (1-p)$ or $2(p-0.5)$ oe						
	A1 awrt 0.263 to 0.266						
(d)	B1	Any suitable assumption					

Question Number	Scheme Marks						
5 (a)	It is not a	It is not a statistic as it involves <u>unknown</u> [population parameters] B1					
	(1)						
(b)	An estima	An estimator for μ is unbiased if its <u>expected</u> value is equal to μ B1 (1)					
	1						
(c)	$E(U_1) = 3E(X_1) - 2E(X_2)$ or $E(U_2) = \frac{1}{4}(E(X_1) + 3E(X_2))$						
	$E(U_1) =$	$3\mu - 2\mu = \mu$ (therefore unbiased)	Alcso				
	$E(U_2) =$	$\frac{1}{4}(\mu + 3\mu) = \mu \text{ (therefore unbiased)}$	Alcso				
(d)	$Var(U_1)$	$= 9Var(X_1) + 4Var(X_2) \text{ or } Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$	(3) M1				
	$\left[\operatorname{Var}(U_1) \right]$	$=$ $\left[13\sigma^2\right]$	A1				
	$[\operatorname{Var}(U_2) =] \frac{5}{8} \sigma^2$						
	As Var(l	U_1) > Var(U_2) U_2 is the most efficient estimator for μ	A1				
		Notes	Total 9				
(a)	B1	for a correct explanation, must include unknown					
(b)	B1	for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0					
(c)	M1	for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$					
	A1cso for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts						
	A1cso	for a correct solution for $\mathrm{E}(U_2)$ with no incorrect working seen Condone missing notation.					
	Condone missing subscripts						
(d)	M1	for use of $a^2 \text{Var}(X_1) + b^2 \text{Var}(X_2)$					
	A1	Allow $9\sigma^2 + 4\sigma^2$					
	A1	1 , 9 , 5 ,					
		A1 for U_2 with a correct reason					
	A1						
	A1						

Question		Scheme Marks			
Number	$M \square N(80,100)$ $W \square N(69,25)$				
6 (a)	$X = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + W_1 + W_2 + W_3$				
		$\frac{1}{687,675}$	771 1772 1773	M1 A1	
	· ·			1411 741	
	P(X > 7)	$700) = P\left(Z > \frac{700 - 687}{\sqrt{675}}\right) = P(Z)$	Z > 0.500)	M1	
		(=1-0.6915) = 0.3085 (Ca	lculator gives 0.3084)	A1	
				(4)	
(b)	Let $Y = N$	Number of men in the lift	21/02 122		
			N(80x,100x)	M1	
	$P(Y > 700) = P\left(Z > \frac{700 - 80x}{10\sqrt{x}}\right) < 0.025$			M1	
	$\frac{700 - 80x}{10\sqrt{x}} > 1.96$			B1	
	$80x + 19.6\sqrt{x} - 700[< 0]$ $6400x^2 - 112384.16x + 490000[> 0]$			M1	
	Solving leading to $\sqrt{x} < 2.838$ Solving leading to $x < 8.05$			M1	
	So $c = 8$ (people)			A1	
				(6)	
(a)	B1	for gotting up normal distribution	Notes	Total 10	
(a)		for setting up normal distribution			
	B1	for a correct variance (675) or f	• • •		
	M1	for standardising with 700, 687 and their standard deviation			
	A1	for answer between 0.308 – 0.309			
(b)	M1	for setting up normal distribution with mean $80x$ and variance $100x$ (may be implied by use of $sd = 10\sqrt{x}$) Allow any letter			
	M1	for standardising with 700, their mean and their standard deviation (if not stated then these must be correct)			
	B1	for an equation or inequality set = to 1.96 (Allow -1.96)			
	M1	for a correct 3TQ ft their mean and standard deviation			
	for an attempt to solve their 3TQ with either $\sqrt{x} <$ or $x <$ Allow = instead of < Cond or \ge If the answer is incorrect then we must see use of the quadratic formula/completing the square (Allow one error)				
	A1	cao			

Question Number	Scheme				Marks	
	H_0 : The	I_0 : The observed distribution can be modelled by a discrete uniform distribution I_0				
7 (a)	H_1 : The	observed distribution ca	annot be modelled by	a discrete uniform distribution	(1)	
	Observ	yad Evnoatad	$(O-E)^2$	O^2		
	Observ	ved Expected	E	$\frac{O^2}{E}$		
	$x + \epsilon$	x	36	$(x+6)^2$		
			x	x	_	
	x-8	3 x	64	$\frac{(x-8)^2}{}$		
			X	$(x+8)^2$	-	
	x + 8	8 x	$\frac{64}{x}$			
(bi)			25	$\frac{x}{(x-5)^2}$	B1 M1	
	x-5	x	<u> </u>			
	x + 2	1 r	16	$\frac{x}{\left(x+4\right)^2}$		
	X + 2	4 x	x	x		
	x-5	x	<u>25</u>	$\frac{\left(x-5\right)^2}{}$		
			X	x	-	
	Total =	$= 6x \qquad \text{Total} = 6x$	$Total = \frac{230}{x}$	$Total = \frac{6x^2 + 230}{x}$		
	$X^2 = \sum$	$\frac{(O-E)^2}{F}$ or $\sum \frac{O^2}{F}$	$-6x$; $\frac{230}{}$	or $\frac{6x^2 + 230}{-6x}$	M1 ; A1	
		$\frac{E}{=5}$; $c_{5}^{2}(0.05) =$	<i>λ</i>	Λ	B1 ; B1	
	Do not rej	ject H_0 if $\frac{230}{x}$, '11.070	or ${x}$	-6x ,, '11.070'	M1	
4.00		7768 So $x = 21$	126		A1 (8)	
(bii)	Hence the	e die was rolled "21" \times 6	o = 126 times		M1 A1 (2)	
			Notes		Total 11	
(a)	B1	for both hypotheses co		the die is not biased H_1 : the G	die is biased	
(bi)	B1	for expected frequency				
	M1	M1 for one correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ ft their expected frequency				
	M1 for an attempt at X^2 ft their values (At least 4 of these need to be seen and added)					
	A1					
	B1 for $v = 6 - 1 = 5$ May be implied by a correct critical value					
	B1 for a correct critical value ft their DOF (NB common error is $v = 4$ so $c_4^2(0.05) = 9.488$) M1 for either $\frac{230}{x}$, their CV or $\frac{6x^2 + 230}{x} - 6x$, their CV Allow < rather than ,,					
	A1 for $x = 21$ provided the previous M mark has been awarded					
(bii)	M1	M1 for their 21×6 Allow $6 \times x$ or the answer to $6 \times$ their value for x				
	A1	cao				