< Hierarchical Attention Networks for Document Classification >

O Abstract

- 문서 분류를 위한 계층적 어텐션 네트워크를 제안

O Introduction

- 문서는 문장들로 이루어져 있고, 문장은 단어들로 이루어져 있음
- 이 논문에서는 문서를 분류할 때, 문서가 가진 계층적 구조적 특징을 활용하고자 함

O Method

- 문서의 계층적 구조를 어텐션에 적용
- Word Level과 Sentence Level 두 가지 Attention Machanisim을 사용

O Conclusion

- 문맥을 파악해서 단어와 문장을 학습한 결과가 제일 좋은 결과가 나옴
- 어떤 문장이나 단어가 실제로 문서를 분류하는데 영향을 미치는지에 대한 분석이 가능

O Notation

-
$$D = \sum_{i=1}^{L} s_i$$
 , $S = \sum_{t=1}^{T_i} w_{it}$

- A document L has sentences S_i and each sentence contains T_i words.
- w, $t \in [0, T]$: the words in the ith sentence

O Model

Figure 2: Hierarchical Attention Network.

O Dataset

1) Yelp : 서비스 업장 리뷰, 5점 척도

2) IMDB review : 영화 리뷰, 10점 척도

3) Yahoo Answer : 질의 응답 주제 분류하는 데이터 셋, 10개 카테고리

4) Amazon review : 상품 리뷰, 5점 척도

O Model configuration and training

- 1) Document -> sentence로 split
- 2) Tokenize using Stanford's CoreNLP
- 3) 5번 이상 등장한 단어들만 vocabulary에 추가, 아닌 것들은 UNK token으로 처리
- 4) Word embedding W_e : Initialized by using unsupervised word2vec
- 5) Hyperparameter 설정은 Validation set을 통해 조절
- 6) 논문 경험으로는
 - word embedding dimension: 200,
 - GRU dimension : 50 (bidirectional 이므로 100)
 - word / sentence context vector u_w , u_s dimension : 100 (Initialized randomly)
- 7) Mini batch 64, batch는 비슷한 길이의 문장들을 가지고 있는 문서들 끼리

O Result

(1) 다른 방법과 본 논문에서 제안한 구조 비교

	Methods	Yelp'13	Yelp'14	Yelp'15	IMDB	Yahoo Answer	Amazor
Zhang et al., 2015	BoW			58.0	(R)	68.9	54.4
	BoW TFIDF		* 1	59.9		71.0	55.3
	ngrams			56.3	116.5	68.5	54.3
	ngrams TFIDF			54.8		68.5	52.4
	Bag-of-means	2	-	52.5	-	60.5	44.1
Tang et al., 2015	Majority	35.6	36.1	36.9	17.9	*	
	SVM + Unigrams	58.9	60.0	61.1	39.9		
	SVM + Bigrams	57.6	61.6	62.4	40.9		-
	SVM + TextFeatures	59.8	61.8	62.4	40.5		
	SVM + AverageSG	54.3	55.7	56.8	31.9	2	-
	SVM + SSWE	53.5	54.3	55.4	26.2	-	-
Zhang et al., 2015	LSTM	-		58.2	-	70.8	59.4
	CNN-char			62.0		71.2	59.6
	CNN-word	00	**	60.5		71.2	57.6
Tang et al., 2015	Paragraph Vector	57.7	59.2	60.5	34.1		
	CNN-word	59.7	61.0	61.5	37.6		
	Conv-GRNN	63.7	65.5	66.0	42.5		
	LSTM-GRNN	65.1	67.1	67.6	45.3	*	**
This paper	HN-AVE	67.0	69.3	69.9	47.8	75.2	62.9
	HN-MAX	66.9	69.3	70.1	48.2	75.2	62.9
	HN-ATT	68.2	70.5	71.0	49.4	75.8	63.6

Table 2: Document Classification, in percentage

- 결국 문맥을 파악해서 단어와 문장을 학습한 결과가 제일 좋은 결과가 나왔음.
- 계층적 구조에 단순히 average나 max pooling을 하는 것보다 이 논문에서 제안한 Hierarchical Attention Model 이 모든 데이터 셋에서 성능이 좋았음

(2) Attention 가중치 분포

Figure 3: Attention weight distribution of good. (a) — aggregate distribution on the test split; (b)-(f) stratified for reviews with ratings 1-5 respectively. We can see that the weight distribution shifts to higher end as the rating goes higher.

Figure 4: Attention weight distribution of the word bad. The setup is as above: (a) contains the aggregate distribution, while (b)-(f) contain stratifications to reviews with ratings 1-5 respectively. Contrary to before, the word bad is considered important for poor ratings and less so for good ones.

- 모델이 상황에 따른 단어의 중요성을 파악할 수 있는지 확인하기 위해 'good', 'bad' 단어의 attention 가중치 분포를 그림
- 분포에서 x축은 0에서 1까지의 단어에 attention 가중치를 의미
- Good 분포를 보면 별점이 1→5로 갈수록 분포가 왼쪽에서 오른쪽으로 치우침
- Good 분포는 정확히 오른쪽으로 크게 치우치지는 않는 것을 볼 수 있음
- Bad 분포를 보면 별점이 1→5로 갈수록 분포가 중간을 기준으로 왼쪽으로 치우침
- 'Bad' 라는 단어는 낮은 점수라고 판단하는데 더 중요하게 고려됨
- 같은 단어라도 다른 문맥에서 사용되었을 때 Attention Score의 분포가 다름

(3) Attention Score

- 문서의 Class를 분류하는데 있어 중요한 정보를 담고 있는 문장과 단어를 attention score로 직관적으로 확인할 수 있음