Computer Science & Engineering Department I. I. T. Kharagpur

Principles of Programming Languages: CS40032 Elective

Assignment – 2: λ -Calculus

Marks: 20

Assign Date: 18th January, 2021 Submit Date: 23:55, 22nd January, 2021

- 1. Reduce the following λ -expressions. Show every step of α -, β -, η and δ reductions. [2 * 7 = 14]
 - (a) $(\lambda z. z) (\lambda y. y y) (\lambda x. x a)$
 - (b) $(\lambda z. z) (\lambda z. z z) (\lambda z. z y)$
 - (c) $(\lambda x. \ \lambda y. \ x \ y \ y) \ (\lambda a. \ a) \ b$
 - (d) $(\lambda x. \lambda y. x y y) (\lambda y. y) y$
 - (e) $(\lambda x. x x) (\lambda y. y x) z$
 - (f) $(\lambda x. (\lambda y. (x y)) y) z$
 - (g) $(((\lambda x. (\lambda y. (x y)) (\lambda y. y)) w)$
- 2. Solve the following using Y combinator

[2+4=6]

(a) Write the recursive definition for TriProduct where TriProduct(n) can be defined as

$$TriProduct(n) = n^* (TriProduct(n-1) if n > 3 + TriProduct(n-2) + TriProduct(n-3)),$$

 $= 5, if n = 3$
 $= 2, if n = 2$
 $= 1 if n = 1$

Using Y combinator, encode the above recursive definition of TriProduct as λ -expressions

(b) Reduce TriProduct 4. Show every step of β - and δ - reductions. You may skip α -reduction steps with a mention of the step.