CSC4200/5200 - COMPUTER NETWORKING

ETHERNET

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

So far...

- We have connected two machines using point to point wires
 - Encoded bits
 - Sent bits as Frames
 - Caught and corrected errors
 - Tuned efficiency and reliability using sliding window
- What happens when there are more than two machines?

Map of Hawaii

wikipedia

AlohaNET

- Connect University of Hawai'i's computers using wireless radio to main campus in Oahu
- Random access to radio channel
 - If you have data, send
 - If you hear someone else, collision! Resend "later"
- Fixed frequency channels
 - Shared medium

Abramson, Norman. "Development of the ALOHANET." IEEE transactions on Information Theory 31.2 (1985): 119-123.

Slotted ALOHA - Problems?

CSMA

- Listen first -
 - If chennel is idle, send
 - If channel is busy, wait and send later
- Propagation delay
 - You may not hear others before it's too late!

Ethernet – Wire as Shared Medium

- Most successful local area networking technology of last 20 years.
- Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Centers (PARC).
- For alohanet the medium was the atmosphere, for ethernet, coax cables

Ethernet – IEEE Standard 802.3

- How to allow many adaptors to send frames over the wire?
 - Access protocol

Ethernet

Ethernet repeater

Ethernet – Random Access

- How to allow many adaptors to send frames over the wire?
 - Random access
 - When you have data send at Full channel rate!
 - No coordination needed.
- If collision happens
 - Detect
 - Recover
 - Retransmit

CSMA/CD - Listen first, talk later!

- CSMA Carrier sense Multiple access
 - Listen if anyone is transmitting
 - Wait until carrier is free, do not interrupt others
 - What is the carrier here?
- CD Collision Detection
 - If you hear anyone while talking, collision, stop!
 - Monitor signal strength at the adapter
 - Higher than normal = collision
- Random wait before retransmitting
 - Why?

CSMA/CD – Ethernet

4) Collision Detection (Back off Algorithmus)

- CS wait until idle
 - Channel idle trasmit
 - Channel busy wait
- CD listen while transmitting
 - No collision: transmission successful
 - Collission: abort, send jam signal (32bit special sequence)
- Wait random time
 - Try again
 - After mth collision,
 t = random(0,2^{m-1}),
 - Wait t*512 bit times before retry,

Ethernet Frame

Ethernet Frame Format

Ethernet Transmitter Algorithm

- An adaptor may begin transmitting at/near the same time
 - Either because both found the line to be idle,
 - Or, both had been waiting for a busy line to become idle.
- Simultaneously transmitted frames collide
- Each sender can detect collisions (CDMA/CS)
 - Detection MUST happen during transmission
 - Each transmits a 32-bit jamming sequence
 - Will minimally send **96** bits (*runt* frame)
 - 64-bit preamble + 32-bit jamming sequence
 - Works if hosts are close to each other
 - Worst case: transmitter may need to send up to **512** bits
 - Every Ethernet frame must be at least 512 bits (64 bytes) long.
 - 14 bytes of header + 46 bytes of data + 4 bytes of CRC

Ethernet Transmitter Algorithm

Worst-case scenario:

(a) A sends a frame at time *t*;

(b) A's frame arrives at B at time t + d;

- (c) B begins transmitting at time t + d, collides with A's frame;
- (d) B's runt (32-bit) frame arrives at A at time t + 2d.

Ethernet Transmitter Algorithm

- Ethernet max length = 2500 meters
- RTT in worst case is 51.2 μ s, which corresponds to the transmission time of 512 bits
- Each ethernet frame MUST be at least 512 bits

Ethernet Frame

Next Steps

- Read Through Chapter 2.6
- Next lecture WiFi, Zigbee, and Bluetooth