Data Scaling

Age, Salary) Yes $(y_2-y_1)^2+(\chi_2-\chi_1)^2$ (Age yes, Salaryyes)

- Salaty

Dist from Class No

$$\int \left(Age - Age_{No}\right)^2 + \left(Balay - S_{No}\right)^2$$

Distance from class Yes

$$\int (Age - Age_{No})^{2} + (Balay - SNo)^{2} \int (Age - Age_{Yea})^{2} (S - Syes)^{2}$$

$$\int 70^{2} + (4000)^{2}$$

$$\int 80^{2} + (2000)^{2}$$

Age: 20-90 years

Salaty: \$ 1000 - \$ 5000

 $(90-20)^{2}$

(5000 - 1000)²

1	Age	Salary	Should we s	rve	project
	ථා	looo	No		
	30	1200	Yes		
	50	4000	Yes		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	60	4050	No		Min
					ے ر

Data Scaling

Min Max Scaling Scaling

Min-Max Iscalet [0, 1]

X scaled =
$$\frac{\text{Xi} - \min(x)}{\max(x) - \min(x)}$$

Age scaled = $\frac{\text{Agei} - \min(Age)}{\text{Max}(S) - \min(S)}$

max (Age) - nir(Age)

$$\frac{\min(x) - \min(x)}{\max - \min} = 0$$

Standard Scaling / Normalisation

Valiance =
$$\mathcal{E}\left(\frac{x_i - x}{x_i}\right)^2$$
 Mean: \mathcal{A}
 $\mathcal{E}[x]$
 \mathcal{R}

Vatiance =
$$E[(X - E[X])^2]$$

= $E[X^2 - 2 \times E[X] + E[X]^2]$
= $E[X^2] - 2E[X]E[X] + E[X]^2$
= $E[X^2] - E[X]^2$

Standard Deviation = Variance

Data Splitting

7 input 7 train-input

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	Falce	Yes
Sunny	Cool	Normal	True	No
Overoact	Cool	Normal	True	Yes
Rainy	Mild	High	Falce	No
Rainy	Cool	Normal	Falce	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Soutput

> train_output

P test-output.

Lelst, in Put

predn

LINEAR REGRESSION

Experience (x)

Slope > intercept

ŷ = M X + C

j nout m } weights 2) Optimal weights. Randomly initialize m' and c' values. Step 1: Calculate Cost, etros Step 2: actual y output Cost = $(y-y)^{\alpha}$ $(m\cdot 2+c-5)^2$ 7 mo. of instances

Gradient Descent Algorithm

$$m'=m-\sqrt{2Cost}$$

$$C' = C - \propto \partial Cost$$

X: learning-rate

0.2

0.001

$$\hat{y} = f(x) = mx + C$$

$$Cost = \int (\hat{y} - \hat{y})^2$$

Gradient Descent

$$m' = m - \alpha \frac{\partial \cos t}{\partial m}$$

$$C'=C-A$$
 alost

$$\frac{\partial Cost}{\partial m} = \frac{\partial Cost}{\partial f} \cdot \frac{\partial f}{\partial m}$$

$$\frac{\partial Cost}{\partial c} = \frac{\partial Cost}{\partial f} \cdot \frac{\partial f}{\partial c}$$

$$df = \frac{\partial Cost}{\partial f} = \frac{1}{2n} (\hat{y} - \hat{y})^2$$

$$= \frac{1}{n} (\hat{y} - \hat{y}) \cdot \frac{1}{n} (\hat{y} - \hat{y})$$

$$= \frac{1}{n} (\hat{y} - \hat{y}) \cdot \frac{1}{n} (\hat{y} - \hat{y})$$

$$dy = \hat{y} - y$$

 $\frac{\partial f}{\partial m} = \frac{\partial f}{\partial m} = \frac{\partial (mx + c)}{\partial m} = \infty$

 $\frac{\partial c}{\partial c} = \frac{\partial \dot{y}}{\partial c} = \frac{\partial (mx + c)}{\partial c} = 1$

 $m'=m-\alpha\frac{\hat{y}-\hat{y}}{n}$

 $C' = C - \propto \frac{\hat{y} - \hat{y}}{n}.1$