Exercises Set 5

Paul Dubois

September 25, 2023

Abstract

Only the questions with a * are compulsory (but do all of them!).

1 Change of Basis

Let $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 and let P be the matrix whose columns are the coordinates of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 with respect to the standard basis. That is,

$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$$

Suppose we have another basis $B' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 and let Q be the matrix whose columns are the coordinates of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 with respect to the standard basis. That is,

$$Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$$

We want to find the change of basis matrix C that allows us to express the coordinates of vectors in B in terms of the coordinates in B'. This can be done using the formula:

$$C = Q^{-1}P$$

To find C:

- 1. Find the inverse of matrix Q, denoted as Q^{-1} .
- 2. Multiply Q^{-1} by P to obtain the change of basis matrix C.

Now, let's calculate C and use it to express the vector \mathbf{v} in terms of the basis

B', where **v** is a vector in \mathbb{R}^3 with coordinates $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ with respect to basis B.

$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

To express ${\bf v}$ in terms of the basis B', we can use the change of basis matrix C as follows:

$$\mathbf{v}' = C\mathbf{v}$$

Find \mathbf{v}' .