Review of last time:

Theorem: Rao - Blackwell

Let $\hat{\Theta}$ is inhiased for T(0) and W is a sufficient stat for O then if $f = f(w) = \mathbb{E}\left[\hat{\Theta} \middle| W\right]$ (Rao-Blackwellization)

- $OE[Y] = T(\theta)$
- (2) $Var(\varphi) \leq Var(\hat{\theta})$
- (3) P is a steetistic (it doent depend on O).

Theorem: UMVUES one Unique

proof by contaction

assume we have 2 UMVUES W, and Wz

of T(0). Assure flut W, 7 W2.

Censula: $W_3 = \frac{1}{2}(W_1 + W_2)$

notice: E[W3] = = [W,] + = E[W2]

Su W₃ is unbiased for
$$T(0)$$

Also: $Var(W_3) = Var(\frac{1}{2}W_1 + \frac{1}{2}W_2)$
 $= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2)$
 $= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2)$
 $= \frac{1}{4}Var(W_1) Var(W_2)$
 $= \frac{1}{4}Var(W_1) Var(W_2)$
 $= \frac{1}{4}Var(W_1) Var(W_2)$
 $= \frac{1}{4}Var(W_1) Var(W_2)$

Var(W_3) $\leq \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2)$

Sine W_1 and W_2 are both $WMVUUZS$ then

 $Var(W_1) = Var(W_2)$
 $Var(W_1) = Var(W_2)$

Lecture Notes Page

however: 0 1

$$T(\theta) = E[W_1] = a + b E[W_2]$$
 $T(\theta)$

So $a = 0$ od $b = 1$

i.e. $[W_1 = W_2]$

Theorem: Lehman-Scheffe technical from Left $[W = W(X)]$ be a (complete) sufficient statistic for θ and left $\hat{\theta}$ be an unbiased extinated for $T(\theta)$ that depends an $[W]$ and $[W]$ through $[W]$ $[W]$ is the universe for $[W]$.

Basically: If $[W]$ can form an inbiased ext. for $[W]$ and $[W]$ a sufficient

Lecture Notes Page 4

Stat W-it is the UMVUE.

Ex, Xn iid N(µ, 03) known un known Q: what & the UMVUF for u? (hint:x) Use Cohmann-Scheffe

Find SS for M

N = X is sufficient for M 2) Evess a funtion of W Hut is Uhbrased for U Ô=X=W then E[ê]= en (3) here X is the UMVUE. Ex. let T(M)=M2. (1) SS for M: W=X Suff. for M 2) Euress a fu of W whose expertation is $u^2 = 7(\mu)$. $\frac{\text{try}}{X}$: $\frac{1}{X}$?

$$E[X^{2}] = Var(X) + E[X]^{2}.$$

$$= \frac{6^{2}}{N} + \mu^{2}$$

$$Var(\hat{\theta}) = \frac{1}{N} = \frac{6^{2}}{N} + \mu^{2} - \frac{6^{2}}{N} = \frac{1}{N}$$

$$= \frac{6^{2}}{N} + \mu^{2} - \frac{6^{2}}{N} = \mu^{2}$$

$$(3) hence, $\hat{\theta} = X^{2} - \frac{6^{2}}{N} + \mu^{2}$

$$= \frac{6^{2}}{N} + \mu^{2} - \frac{6^{2}}{N} = \mu^{2}$$

$$(3) hence, $\hat{\theta} = X^{2} - \frac{6^{2}}{N} + \mu^{2}$

$$= \frac{6^{2}}{N} + \mu^{2} - \frac{6^{2}}{N} = \mu^{2}$$

$$= \frac{6^{2}}{N} + \mu^{2} + \mu^{2} + \mu^{2}$$

$$= \frac{6^{2}}{N} + \mu^{2} + \mu^{2} + \mu^{2} + \mu^{2}$$

$$= \frac{6^{2}}{N} + \mu^{2} + \mu^{2} + \mu^{2} + \mu^{2}$$

$$= \frac{6^{2}}{N} + \mu^{2} + \mu^{2}$$$$$$

Pao-Blackwell says

If
$$Y(w) = E[V|W]$$

Then $Y(w) = V(w)$

Effective $Y(w) = V(w)$

Thus

 $Y(w) = Y(w) = Y(w)$

Thus

 $Y(w) = Y(w) = Y(w)$

This is five $Y(w) = Y(w)$

This is five $Y(w) = Y(w)$

This is $Y(w) = Y(w)$

The $Y(w)$

Th

Takeavan Messace

, fa T(0)

Takeaway Message for TCO)
How to find UMVUE w/ Lehman-Scheffe (1) Final a sufficient start W for O 2) Find a fer Q(W) so that E(OCW)]= T(O) -> (i) Gruss & Da) so that E[ê] = T(0) -> (ii) De Rav-Blackevell → Find cmy instassed est for TCO)

(cell it V) > let 0 = E[v/w] the convet Revisit Kn ild N(4,52) Known wont the UMVat for u2. lets on Ras-Blackwell:

For
$$m \neq n$$

$$E[X_n X_m] = E[X_n] E[X_m]$$

$$= M \cdot M = M^2$$
So lef $V = X_n X_m$

$$2) Rac - Volackwellinge Using $W = X$

$$\hat{\theta} = E[V|W]$$

$$= E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m} E[X_n X_m | X]$$

$$= N(N-1) \sum_{n \neq m}$$$$

So	0	is flue	UWV	IUF.	for	0.	