TAC workings

HST Proposal Review

- Director of STScI is the formal allocating official
- Director relies on peer-review recommendations made by the Telescope Allocation Committee (TAC) (chairs of topical panels + TAC chair)
- Proposals are reviewed by topical panels (~14) that cover relatively broad scientific areas
- Panels: 9-11 members (small / medium), mainly from US institutions, 20% from ESA or other
- 25-30% of reviewers participated previously

JWST Cycle 1

JWST TAC logistics

- TAC meeting took place virtually on February 16-19 (10 Galactic panels), February 23-26 (8 Extragalactic panels) & March 1-4 2021 (Executive Committee 2 TAC co-chairs)
 - ~200 astronomers from the community
 - 12 observers from NASA Project, ESA, CSA
 - Each panel supported by STScI staff members as panel support scientists and levelers
 - ~100 STScI staff in support science policies, panel support staff, IT, instrumentation, scheduling, levelers
 - Multiple orientation sessions for STScI support staff, TAC Chairs & TAC panel members
 - Presentations all available on Jdox https://jwst-docs.stsci.edu/jwst-opportunities-and-policies/james-webb-space-telescope-science-policies-group-and-review-information/orientation-materials
- Each TAC panel had a dedicated bluejeans link and associated slack channel
 - Additional slack channels for observers, levelers, PSS, SPG, TAC co-chairs & others
- All proposals receive feedback on strengths and weaknesses
 - Extended deadline for completing comments (March 5 for panels, March 13 for exec Committee)

Round 1: Triage

- 1. Outstanding; project must be done (if technically feasible).
- 2. Very Good; should be done (if technically feasible).
- 3. Good; worth doing if time permits.
- 4. Fair; lowest priority for implementation.
- 5. Unsatisfactory; not recommended for implementation.
- Preliminary rankings are no longer provided to the panels in advance of deliberations. Only used for triage.

Proposals for Triage

Lowest 40% of panel/TAC proposals are marked for triage based on preliminary grades from panelists

Why do we do this?

- Time constraints
 - $-80 \, \underline{\text{proposals}(@.15)} \, \text{mins} = 1200 \, \text{mins} = 20 \, \text{hours}$
 - $-48 \underline{\text{proposals}@15} \text{ mins} = 720 \text{ mins} = 12 \text{ hours}$
- Optimization & efficiency
 - Spend time discussing the best proposals
 - Avoid discussing proposals that are very unlikely to be approved
- Fairness
 - Triaged proposals can be resurrected by **non-conflicted** panelists but...
 - Previously triaged proposals have rarely been approved

Responsibilities for Everyone & Grading:

1) Read all proposals in your panel. Spend NO MORE than 15 minutes per proposal

The point is that in a real TAC situation you will need to read many (>70) proposals and won't have time to go through each in detail.

HST

You can use one decimal place

For each assigned proposal you must submit a grade under EACH of the 3 categories In-field Out-of-field Suitability

Grade	Impact within the sub-field	Out-of-field impact	Suitability
1	Potential for transformative results.	Transformative implications for one or more other subfields.	Science goals can only be achieved by observational or theoretical analysis of HST data.
2	Potential for major advancement.	Major implications for one or more other sub-fields.	Analysis of HST data offers major advantages over data from other facilities.
3	Potential for moderate advancement.	Some implications for one or more other sub-fields.	Analysis of HST data offers some advantages over data from other facilities.
4	Potential for minor advancement.	Minor impacts on other sub-fields.	Analysis of HST data offers minor advantages over data from other facilities.
5	Limited potential for advancing the field.	Little or no impact for other sub-fields.	Analysis of HST data offers little or no advantage over other facilities or the advantages of analysing HST data are unclear.

- 1) Summarize the main goals of your assigned proposals
- - what are they trying to do:
- what is the problem they are trying to solve?
- Why does that problem matter?
- what is the solution/proposal)?
- What are the data products?

•

- 2) Summarize your opinion of the proposal under two headings:
- · What are the strengths?
- What are the weaknesses?

Examples:

- - Is the HST/facility usage justified?
- - Are the Data products clear?
- - Are the data products important to the subfield? broadly?
- - Are the science goals clear and well motivated?
- - what is confusing?
- - is it well-written?
- - will it impact the field? (will the results be useful to the community)
- - are the goals reasonable/do-able?