Informatik II Skript

Steffen Lindner

June 21, 2015

Contents

1	Einführung - 14.04.15	3
2	Ausdrücke, Defines, usw 16.04.2015	4
3	Signaturen, Testfälle - 21.04.15	5
4	Substitutionsmodell, Fallunterscheidung - 23.04.15	7
5	One-of Signatur - 28.04.15	9
6	Zusammengesetzte Daten - 30.04.15	10
7	Fortsetzung zusammengesetzte Daten - 05.05.15	13
8	Gemischte Daten - 07.05.15	14
9	Parametrisch polymorphe Funktionen - 12.05.15	16
10	Listen - 12.05.15	18
11	Listenprozeduren - 19.05.2015	19
12	Rekursion auf Listen - 21.05.15	21
13	Endrekursive Prozeduren - 09.06.2015	23
14	Induktive Definitionen - 11.06.2015	2 5
15	Prozeduran höherer Ordnung (high-order procedures) - 16.06.2015 und 18.06.2015	26

Einführung - 14.04.15

Scheme: Ausdrücke, Auswertung und Abstraktion

Dr.Racket: Definitionsfenster (oberer Bereich), Interaktionsfenster (unterer Bereich)

Die Anwendung von Funktionen wird in Scheme ausschließlich in Präfixnotation durchgeführt.

Beispiele

Mathematik	Scheme
44-2	(- 44 2)
f(x,y)	(f x y)
$\sqrt{81}$	(sqrt 81)
9^{2}	(expt 9 2)
3!	(! 3)

Allgemein: (< function > < arg1 > < arg2 > ...)

(+ 40 2) und (odd? 42) sind Beispiele für Ausdrücke, die bei Auswertung einen Wert liefern. (Notation: ⋄→)

 $(+40\ 2) \rightsquigarrow 42 (\rightsquigarrow = Auswertng / Reduktion / Evalutation)$

$$(odd? 42) \leadsto #f$$

 $_('')_-/"$ (Bilder) (Image)

Interaktionsfenster: Read \rightarrow Eval \rightarrow Print \rightarrow Read ... (Read-Eval-Print-Loop aka. REPL)

Literale stehen für einen konstanten Wert (auch konstante) und sind nicht weiter reduzierbar.

Literal:

```
#t, #f (true, false, Wahrheitswerte) (boolean)
"abc", "x", " " (Zeichenkette) (String)
0 1904 42 -2 (ganze Zahlen) (Integer)
0.42 3.1415 (Fließkommazahl) (Reel)
1/2, 3/4 (rationale Zahl) (Rational)
```

Ausdrücke, Defines, usw. - 16.04.2015

Auswertung <u>zusammengesetzter Ausdrücke</u> in mehreren Schritten (steps), von "innen nach außen" bis keine Reduktion mehr möglich ist.

$$(+ (+ 20\ 20)\ (+ 1\ 1)) \rightsquigarrow (+ 40\ (+ 1\ 1) \rightsquigarrow (+ 40\ 2) \rightsquigarrow 42$$

Achtung: Scheme rundet bei Arithmetik mit Fließkommazahlen (interne Darstellung ist binär).

Bsp.: Auswertung des zusammengesetzten Ausdrucks 0.7 + (1/2)/0.25 - 0.6/0.3

Arithmetik mit rationalen Zahlen ist exakt.

Ein Wert kann an einen Namen (auch Identifier) gebunden werden, durch

(define
$$\langle id \rangle \langle e \rangle$$
) ($\langle id \rangle$ Identifier, $\langle e \rangle$ Expression)

Erlaubt konsistente Wiederverwendung und dient der Selbstdokumentation von Programmen.

Achtung: Dies ist eine sogenannte Spezifikation und kein Ausdruck. Insbesodnere besitzt diese Spezialform keinen Wert, sondern einen Effekt: Name < id > wird an den Wert von < e > gebunden.

Namen können in Scheme fast beliebig gewählt werden, solange:

- 1. die Zeichen (kommt noch) nicht vorkommen
- 2. der Name nicht einem numerischen Literal gleicht
- 3. kein whitespace (Leerzeichen, Tabulatoren, Return) enthalten ist.

Bsp.: euro \rightarrow us\$

Achtung: Groß-/Kleinschreibung ist in Identifiern nicht relevant.

Eine <u>Lambda-Abstraktion</u> (auch: Funktion, Prozedur) erlaubt die Formulierung von Ausdrücken, die mittels <u>Parametern</u> konkreten Werten abstrahieren:

$$(lambda (< p1 > < p2 > ...) < e >), < e > Rumpf$$

< e > enthälft Vorkommen der Parameter < p1 >, < p2 >...

(lambda ...) ist eine Spezialform. Wert der Lambda-Abstraktion ist # < procedure >

<u>Anwendung</u> (auch: Applikation/Aufruf) der Lambda-Abstraktion führt zur Ersetzung der vorkommenden Parameter im Rumpf durch die angegebenen Argumente:

(lambda (days) (* days (* 155 min-in-a-day))) \leadsto (* 365 (* 155 min-in-a-day)) \leadsto 81468000

In Scheme leitet ein Semikolon einen <u>Kommentar</u>, der bis zum Zeilenende reicht, ein und wird vom System bei der Auswertung ignoriert.

Prozeduren sollten im Programm eine ein-bis zweizeiliger Kurzberschreibung direkt voran gestellt werden.

Signaturen, Testfälle - 21.04.15

Eine <u>Signatur</u> prüft, ob ein Name an einen Wert einer angegebenen Sorte (Typ) gebunden wird. Signaturverletzungen werden protokolliert.

Bereits eingebaute Signaturen:

- natural \mathbb{N}
- \bullet integer \mathbb{Z}
- rational \mathbb{Q}
- real \mathbb{R}
- \bullet number $\mathbb C$
- boolean
- string
- image

(: ...) ist eine Spezialform ohne Wert, aber Effekt: Signaturprüfung

<u>Prozedur-Signaturen</u> spezifizieren sowohl Signaturen für die Parameter p1, p2, ... , pn als auch den Ergebniswert der Prozedur:

$$(< signatur p_1 > ... < signatur p_n > - > < signatur - ergebnis >)$$

Prozedur-Signaturen werden bei jeder Anwendung eine Prozedur auf Verletzung geprüft.

Testfälle dokumentieren das erwartete Ergebnis einer Prozedur für ausgewählte Argumente:

$$(check - expect < e_1 > < e_2 >)$$

Werte Ausruck $\langle e_1 \rangle$ aus und teste, ob der erhaltene Wert der Erwarung (= der Wert von $\langle e_2 \rangle$) entspricht.

Einer Prozedurdefinition sollten Testfälle direkt vorangestellt werden.

Spezialform: Kein Wert, aber Effekt: Testverletzung protokollieren.

Konstruktionsanleitung für Prozeduren

Informatik II Skript - Steffen Lindner

- $\bullet\,$; ... (1) Kurzbeschreibung (1-2 zeiliger Kommentar mit Bezug auf Parameter)
- (: ...) (2) Signatur
- $\bullet \ \mbox{(check-expect ...)} \ \mbox{(3) Testf\"{a}lle}$
- \bullet (define (lambda (...) ...) (4) Prozedur + Rumpf

Top-Down-Entwurf (Programmieren durch "Wunschdenken")

Bsp.: Zeichen Ziffernblatt (Stunden- und Minutenzeiger) zur Uhrzeit H:m auf einer analogen 24h-Uhr

- $\bullet\,$ Minutenzeiger legt 360°/60 pro Minute zurück (360/60 * m)
- Stundenzeiger legt 360°/12 pro Stunde
 zurück (360/12 * h + 360/12 * m/60)

Substitutionsmodell, Fallunterscheidung - 23.04

```
Reduktionsregeln für Scheme (Fallunterscheidug je nach Ausrucksart)
```

Wiederhole, bis keine Reduktion mehr möglich:

```
• Literal (1, "abc", \#t, ...) [eval<sub>lit</sub>]
   1 ~> 1
```

• Identifier id (pi, clock-face, ...) [eval_{id}] $id \rightsquigarrow gebundener Wert$

• Lambd-Abstraktion

```
(lambda ()) \rightsquigarrow (lambda ()) [eval_{\lambda}]
```

- Applikation (f, e1, e2)
 - (1) f, e1, e2 reduziere, erhalte f', e1', e2'
 - -(2)
 - * Operation f' auf e1', e2', ... falls f' primitive Operation (+, *, ...) [apply_{prim}]
 - * Argumentenwert e1', e2', ... Rumpf von f' einsetzen, dann Rumpf reduzieren , falls f' Lambdaabstraktion $[apply_{\lambda}]$

Beispiel: Applikation

```
(+402)
\rightsquigarrow (#< procedure + > 40 2) \rightsquigarrow 42
eval_{lit} (+)
eval_{lit} (40)
eval_{lit}(2) \bullet
(position-minute-hand 30)
→ ((lambda (m) (* degrees-per-minute m)) 30)
\rightsquigarrow (* degrees-per-minute 30)
\rightsquigarrow (* degress-per-minute 30)
\rightsquigarrow (#procedure * > 360/60 30)
```

Bezeichnen (lambda (x) (* x x)) und (lambda (r) (* r r)) die gleiche Prozedur? \Rightarrow Ja!

Achtung: Das hat Einfluss auf das korrekte Einsetzen von Argumenten für Parameter! (s. apply_{λ})

Das bindenen Vorkommen eines Identifiers x kann im Programmtext systematisch bestimmt werden: suche strik von "innen nach außen" bis zum ersten

Informatik II Skript - Steffen Lindner

- \bullet (lambda (x))
- (define x)

(Prinzip der lexikalischen Bindung)

Übliche Notation in der Mathematik: Fallunterscheidung

$$maximum(x_1, x_2) = \begin{cases} x_1, & \text{falls } x_1 \ge x_2 \\ x_2, & \text{sonst} \end{cases}$$

Tests auch (Prädikate) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische primitive Tests:

- $(: = (number \ number \rightarrow boolean))$
- (: < (real real \rightarrow boolean)), auch >, <, \geq
- (: string=? (string string \rightarrow boolean)), auch string>?, string \leq ?
- (: boolean? (boolean boolean \rightarrow boolean))
- (: zero? (number \rightarrow boolean))
- odd?, even?, positive?, negative?, ...

Binäre Fallunterscheidung: if

$$(if < t_1 > < e_1 > < e_2 >)$$

Mathematisch:
$$\begin{cases} e_1, & \text{falls } t_1 \\ e_2, & \text{sonst} \end{cases}$$

One-of Signatur - 28.04.15

Die Signatur one-of lässt genau einen der aufgezählten n Werte zu:

(one-of
$$< e_1 > ... < e_n >$$
)

Reduktion von if:

$$(\text{if } t_1 \ e_1 \ e_2) \leadsto \left\{ \begin{array}{l} < e_1 >, \quad \text{falls t1'} = \# \text{t ; e2 wird niemals ausgewertet} \\ < e_2 >, \quad \text{sonst; e1 wird niemals ausgewertet} \end{array} \right.$$

(1) Reduziere t_1 , erhalte t'_1

Spezialform Fallunterscheidung (conditional expression):

$$(\text{cond } (< t_1 > < e_1 >) \dots (< t_n > < e_n >) (\text{else } < e_{n+1} >)) (\text{else optional})$$

Werte die Tests in der Reihenfolge $t_1, t_2, ..., t_n$ aus. Sobald $t_i \# t$ ergibt werte Zweig e_i aus. e_i ist das Ergebnis der Fallunterscheidung. Wenn $t_n \# f$ liefert, dann liefere

$$\begin{cases} Fehlermeldung, \text{ "cond: alle Tests ergaben $\#$f", falls kein else-Zweig} \\ < e_{n+1}>, \text{ sonst} \end{cases}$$

Reduktion von cond $[eval_{cond}]$

$$(\text{cond } (< t_1 > < e_1 >) (< t_2 > < e_2 >) ...) \leadsto \begin{cases} < e_1 >, & \text{falls t1'} = \#f \\ (cond(< t_2 > < e_2 >) (...)), & \text{sonst} \end{cases}$$

Reduziere t_1 , erhalte t_1 '.

(cond) \leadsto Fehlermeldung "Alle Tests..."

(cond (else
$$\langle e_{n+1} \rangle$$
)) $\rightsquigarrow e_{n+1}$

cond ist "systematischer Zucker"

(auch: abgleitete Form) für eine verschachtelte Anwendung von 'if':

(cond (
$$< t_1 > < e_1 >$$
) ($< t_1 > < e_1 >$) ...))) entspricht (if $< t_1 > < e_1 >$ (if $< t_1 > < e_1 >$ (if...))

Spezialformen 'and' und 'or':

$$(or < t_1 > < t_2 > \dots < t_n >)$$
 entspricht $(if < t_1 > \#t(or < t_2 > \dots))$ (or) $\leadsto \#f$

$$(and < t_1 > \dots < t_n > \rightsquigarrow (if < t_1 > (and < t_2 > \dots < t_n >) \# f)$$

$$(and) \leadsto \# t$$

Zusammengesetzte Daten - 30.04.15

Ein Charakter besteht aus drei Komponenten.

- Name des Charakters (name)
- Handelt es sich um einen Jedi? (jedi?)
- Stärke der Macht (force)
- \rightarrow <u>Datendefinition</u> für zusammengesetzte Daten.

Konkreter Charakter:

Name	"Luke Skywalker"
jedi?	#f
force	25

; Ein Charakter (character) besteht aus

; - Name (name)

; - Jedi-Status (jedi?)

; - Stärke der Macht (force)

(define-records-procedures charakter

make-character

character?

(character-name

character-jedi

character-force))

(make-character n j f) $\leadsto < records >$ (konstruktion)

(character-name $< record > \leadsto$ n (Komponentenzugriff)

(character-jedi? $< record >) \leadsto$ j (Komponentenzugriff)

(character-force < record >) \leadsto f (Komponentenzugriff)

Zusammengesetzte Daten = $\underline{\text{Records}}$ in Scheme.

Record-Definition legt fest:

- Record-Signatur
- Konstruktor (Baut aus Komponenten einen Record)

- Prädikat (liegt Record vor?)
- Liste von Selektoren (lesen jewils eine Komponenten des Records)

Verträge des Konstruktors / der Selektoren für Record-Signatur < t > mit n Komponenten namens $< comp_1 > ... < comp_n >$:

- (: make- $\langle t \rangle$ ($\langle t_1 \rangle ... \langle t_n \rangle \rightarrow \langle t \rangle$))
- $(: < t > < comp_1 > (< t > \rightarrow < t_1 >))$
- ...
- $(: < t > < comp_n > (< t > \rightarrow < t_n >))$

Es gilt für die Strings n, Booleans j und Integer f:

(character-name (make-character n j f)) = n

(analog für den Rest)

Interaktion von Funktionen (algebraische Eigenschaften).

Spezialform check-property:

(check-property
$$\text{(for-all } ((\ < id_1 > < sig_1 > \dots < id_n > < sig_n >)) \\ < e >))$$

< e > bezieht sich auf $< id_1 > ... < id_n >$.

Test erfolgreich, falls < e > für bel. gewählte Bindungen für $< id_1 > ... < id_n >$ immer #t ergibt.

Interaktion von Selektor und Konstruktor:

```
(check-property

(for-all ((n string)

(j booleans)

(f integer))

(string=? (character-name (make-character n j f)) n )))
```

Beispiel: Die Summe zweier natürlicher Zahlen ist mindestens so groß wie jede dieser Zahlen: $\forall x_1, x_2 \in \mathbb{N} : x_1 + x_2 \ge \max x_1, x_2$

```
(check-property

(for-all ((x_1 natural)

(x_2 natural))

(\geq (+ x_1 x_2) (\max x_1 x_2))))
```

Konstruktion von Funktionen, die zusammengesetzte Daten konsumieren:

• Welche Record-Komponenten sind relevant für Funktionen?

```
→ Schablone: 
; könnte Charakter e ein Sith-Lord sein? 
(: sith? (character → boolean)) 
(define sith? 
(lambda (e) ... (character-jedi? c) ... (character-force c) ... ))
```

Konstrukton von Funktionen, die zusammengesetzte Daten konstruieren:

 $\bullet\,$ Der Konstruktor $\underline{\text{muss}}$ aufgerufen werden.

Fortsetzung zusammengesetzte Daten - 05.05.1

Gemischte Daten - 07.05.15

Geocoding: Übersetzte eine Ortsangabe mittels des Google Maps Geocoding API (Application Programming Interface) in eine Position auf der Erdkugel.

```
(: geocoder (string \rightarrow (mixed geocode geocode-error)))
```

Ein Geocode besteht aus:

- Adresse (address) (string)
- Ortsangabe (loc) (location)
- Nordostecke (northeast) (location)
- Südwestecke (southwest) (location)
- Typ (type) (string)
- Genauigkeit (accuracy) (string)

(: geocode-address (geocode \rightarrow string)) ...

Ein geocode-error besteht aus:

- Fehlerart (level) (one-of "TCP" "HTTP" "JSON" "API")
- Fehlermeldung (message) (string)

Teachpack: geocoder.rkt

Gemischte Daten Die Signatur

$$(mixed < t1 > ... < t_n >)$$

ist gültig für jeden Wert, der mindestens eine der Signatur $< t_1 > ... < t_n >$ erfüllt.

Beispiel: Datendefinition:

Eine Antwort des Geocoders ist entweder

- ein Geocode (geocode) <u>oder</u>
- eine Fehlermeldung (geocode-error)

```
Beispiel (eingebaute Funktion string \rightarrow number):
(: string\rightarrownumber (string \rightarrow (mixed number (onfe of #f))))
(string\rightarrownumber "42") \rightsquigarrow 42
```

 $(string \rightarrow number "foo") \leadsto #f$

Erinnerung:

Das Prädikat < t >? einer Signatur < t > unterscheidet Werte der Signatur < t > von <u>allen anderen</u> Werten:

 $(: < t > ? (any \rightarrow boolean))$

Auch Prädikafür eingebaute Signaturen:

- number?
- complex?
- real?
- rational?
- integer?
- natural?
- string?
- boolean?

Prozeduren die gemische Daten der Signaturen $< t_1 > ... < t_n >$ konsumieren:

Konstruktionsanleitung:

$$(: < f > ((mixed < t_1 > ... < t_n > \to ...))$$

(define < f > (lambda (x) (cond ((< t_1 >? x) ...) ... (< t_n >? x)...))))

Mittels $\underline{\text{let}}$ lassen sich Werte an $\underline{\text{lokale Namen}}$ binden:

$$(\text{let } ((< id_1 > < e_1 >) \dots (< id_n > < e_n >)) < e >)$$

Die Ausdrücke $< e_1 > ... < e_n >$ werden <u>parallel</u> ausgewertet $\rightarrow < id_1 > ... < id_n >$ können in < e > (<u>und nur hier</u>) verwendet werden. Der Wert let-Ausdruck ist der Wert von < e >.

Achtung: 'let' ist verfügbar ab Sprachebene "DMdA".

'let' ist syntaktischer Zucker.

$$(\text{let } ((< id_1 > < e_1 >) \dots (< id_n > < e_n >)) < e >)$$

 \leftrightarrow

 $((lambda (< id_1 > ... < id_n >) < e >) < e_1 > ... < e_n >)$

Parametrisch polymorphe Funktionen - 12.05.1

```
Abstand zwier geografischer Positionen l_1, l_2 auf der Erdkugel in km (lat, lng jeweils in Radian):
\operatorname{dist}(l_1, \, l_2) = \operatorname{Erdradius} \text{ in } \operatorname{km} \cdot \operatorname{acos}(\operatorname{cos}(l_1.\operatorname{lat}) \cdot \operatorname{cos}(l_1.\operatorname{lng}) \cdot \operatorname{cos}(l_2.\operatorname{lat}) \cdot \operatorname{cos}(l_2.\operatorname{lng}) + \operatorname{cos}(l_1.\operatorname{lat}) \cdot \operatorname{sin}(l_1.\operatorname{lng}) \cdot \operatorname{cos}(l_2.\operatorname{lat}) \cdot \operatorname{cos}(l_2.
\sin(l_2.\ln g) + \sin(l_1.\ln t) \cdot \sin(l_2.\ln t)
Parametrisch polymorphe Funktionen
Beobachtung: Manche Prozeduren arbeiten unabhängig von den Signaturen ihrer Argumente: parametrisch polymophe Prozduren
(gr.: vielgestaltig). Nutze Signaturvariablen: %a, %b, ...
Beispiel:
; Identität
(: id (\%a \to \%a))
(define id (lambda (x) x))
; Konstante Funktion (ignoriert zweites Argument)
(: const (\%a \%b \rightarrow \%a))
(define cost (lambda (x y) x))
; Projection (ein Argument auswählen)
(: proj ((one-of 1 2) \%a \%b \rightarrow (mixed \%a \%b)))
(define proj (lambda (i x1 x_2) (cond ((= i 1) x_1) ((= i 2) x_2))))
Eine polymorphe Signatur steht für alle Signaturen in denen die Signaturvariablen durch konkrete Signaturen ersetz werden.
Beispiel:
Wenn eine Prozedur (number %a %b \rightarrow %a) erfüllt, dann auch :
(number string boolean \rightarrow string)
(number boolean natural \rightarrow boolean)
(number number number \rightarrow number)
; Ein polymorphes Paar (pair) besteht aus
; - erster Komponente (first)
; - zweiter Komponente (rest)
```

; wobei die Komponenten bel. Signaturen besitzen

make-pair

pair?

(first rest))

(pair-of $< t_1 > < t_2 >$) ist eine Signatur für Paare, deren erste bzw. zweite Komponente die Signaturen $< t_1 >$ bzw. $< t_2 >$ erfüllen

 \rightarrow pair-of: Signatur mit (zwei) Signatur
parametern

(: make-par (%a %b \rightarrow (pair-of %a %b)))

(: pair? (any \rightarrow boolean))

(: first ((pair-of %a %b) \rightarrow %a))

(: rest ((pair-of %a %b) \rightarrow %b))

Listen - 12.05.15

Eine <u>Liste</u> von werten der Signatur $\langle t \rangle$ (list-of $\langle t \rangle$) ist entweder:

- leer (Signatur empty-list) oder
- ullet ein Paar (Signatur pair-of) aus einem Wert der Signatur < t > und einer Liste von Werten der Signatur < t >

```
(define list-of (lambda (t) (signature (mixed empty-list (pair-of t (list-of t))))))
```

Signatur empty-list bereits in Racket vordefiniert. Ebenfalls vordefiniert:

- (: empty empty-list)
- (: empty? (any \rightarrow boolean))

Operationen auf Listen

• Konstruktoren:

```
(: empty empty-list) ; leere Liste 
 (: make-pair (%a (list-of %a) \rightarrow (list-of %a)))
```

• Prädikate:

```
(: empty? (any \rightarrow boolean)); leer Liste?
(: pair? (any \rightarrow boolean)); nicht-leere Liste?
```

• Selektoren:

```
(: first ((list-of %a) \rightarrow %a)) ; Kopfelement
(: rest (list-of %a) \rightarrow (list-of %a))) ; Restliste
```

Listenprozeduren - 19.05.2015

Prozeduren, die Listen konsumieren

```
Konstruktionsanleitung befolgen!
```

Beispiel:

```
; Summe der Zeichen der Liste xs
```

 $(: list-sum (list-of number) \rightarrow number)$

(check-expect (list-sum empty) 0)

(check-expect (list-sum one-to-four) 10)

Schablone (gemische + zusammengesetzte Daten)

(define list-sum

(rest xs) mit Signatur (list-of number) ist selbst wieder eine kürzere Liste von Zahlen.

(list-sum (rest xs)) erzielt Fortschritt!.

Konstruktionsanleitung für Prozeduren ¡f¿, die Liste xs konsumiert.

$$(: < f > ((list-of < t_1 >) \rightarrow < t_2 >))$$

(define < f >

(pair? xs) ... (first xs) ...
$$(< f > (rest xs))$$
 ...)))

Neue Sprachebene "Macht der Abstraktion"

- $\bullet\,$ Signatur (list-of % a) eingebaut
- Neuer syntaktischer Zucker:

$$(list < e_1 > < e_2 > ... < e_n >)$$

• Ausgabeformat für nicht leere Liste:

$$\# < list \ x_1 \ x_2 ... \ x_n >$$

Füge Listen xs, ys zusammen (concatenation):

Beobachtung:

• Die Lnge von xs bestimmt die Anzahl der rekusriven Aufrufe von cat

 $\bullet\,$ Auf ys werden niemals Selektoren angewandt

Rekursion auf Listen - 21.05.15

Generierung aller natürlichen Zahlen (vgl. gemische Daten). Eine natürliche Zahl (natuarl) ist entweder:

```
• die 0 (zero)
```

• der Nachfolger (succ) einer natürlichen Zahl.

```
Konstruktoren
(: zero natural)
(define zero 0)
(: succ (natural \rightarrow natural))
(define succ (lambda (n) (+ n 1)))
Vorgängerfunktion (pred), definiert für n > 0:
(: pred (natural \rightarrow natural))
(define pred
(lambda (n) (- n 1)))
Bedinge algebraische Eigenschaften (s. check-property):
(\Rightarrow  < t >)
Nur wenn \langle p \rangle \Rightarrow \#t, wird Ausdruck \langle t \rangle ausgewertet und getestet ob \langle t \rangle \Rightarrow \#t.
Beispiel:
Fakultätsfunktion n! (n \in \mathbb{N})
0! = 1
n! = n \cdot (n-1)!
Konstruktionsanleitung für gem. Daten:
; Berechne n!
(: factorial (natural \rightarrow natural))
( define factorial
(lambda (n)
(\text{cond } ((= \text{n } 0) \ 1) \ ((> \text{n } 0) \ (\cdot \text{ n } (\text{factorial } (- \text{n } 1))))))
```

Beobachtung:

Informatik II Skript - Steffen Lindner

- Im letzten Zweig ist $n>0 \Rightarrow$ pred anwendbar
- (< f > (- n 1)) hat die Signatur < t >

$\underline{\text{Satz}}$

Eine Prozedur, die nach der Konstruktionsanleitung für Listen oder natürliche Zahlen konstruiert ist, <u>terminiert immer</u> (= liefert immer ein Ergebnis).

 $\underline{\text{Beweis:}}$ in Kürze

Die Größe eines Ausdrucks ist proportional zum Platzverbrauch des Reduktionsprozesses im Rechner

 \Rightarrow Wenn mäglich, erzeugte Reduktionsprozesse, die konstanten Platzverbrauch - unabhängig vom Eingabeparametern - benötigen.

Endrekursive Prozeduren - 09.06.2015

Idee für die Multiplikation:

Führe Multiplikation sofort aus. Schleife das Zwischenergebnis (akkumulierendes Argument) durch die Berechnung. Am Ende enthält Akkumulator das Ergebnis.

Ein Berechnungsprozess ist iterativ, falls seine Größe konstant bleibt.

Damit:

- factorial nicht iterativ
- fac-worker iterativ

Wieso ist fac-worker iterativ?

Der rekursive Aufruf ersetzt den aktuell reduzierten Ausdruck vollständig. Es gibt keinen Kontext (ungebundenen Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet".

Kontekt des rekursiven Aufrufs in

- factorial : (* n [])
- fac-worker : keiner

Ein Prozeduraufruf ist <u>endrekursiv</u> (tail call), wenn er keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduraufrufe beinhalten, heißen selber endrekursiv.

Endrekursive Prozeduren generieren iterative Berechnungsprozesse.

Beobachtung:

```
(cat (list 1000 ... 2) (list 1)
```

Informatik II Skript - Steffen Lindner

Aufrufe von make-pair: 1000 + 999 +998 + ... + 1

 \Rightarrow Quadratischer Aufwand

Konstruiere iterative listenumkehr (backwards)

Berechnung von (backwards (list 1 2 3))

```
(: backwards-worker ((list-of %a) (lsit-of %a) \rightarrow (list-of %a)))
```

Mittels $\underline{\mathrm{letrec}}$ lassen sich Werte an lokale Namen binden:

Die Ausdrücke $e_1, ... e_n$ und e dürfen sich auf die Namen von $< id_1 > ... < id_n >$ beziehen.

Induktive Definitionen - 11.06.2015

Konstruktive Definition der natürlichen Zahlen \mathbb{N} :

<u>Def.:</u> (Peano-Axiome)

- (P1) $0 \in \mathbb{N}$ (Null)
- (P2) $\forall n \in \mathbb{N} : succ(n) \in \mathbb{N} \text{ (Nachfolger)}$
- (P3) $\forall n \in \mathbb{N} : succ(n) \neq 0$
- (P4) $\forall m, n \in \mathbb{N} : succ(m) = succ(n) \Rightarrow m = n$
 - (P3) und (P4) $\Rightarrow \mathbb{N}$ ist induktiv definiert.
- (P5) Induktionsaxiom

Für jede Menge $M \subseteq \mathbb{N}$ mit $0 \in M$ und $\forall n : n \in M \Rightarrow succ(n) \in M$, gilt $M = \mathbb{N}$

- N enhält nicht mehr als die durch 0 und die durch succ() generierten Elemente
- Nichts sonst ist in \mathbb{N}

Beschweisschema der vollständigen Induktion:

Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$:

```
(: P (natural -> boolean))
```

Ziel: $\forall n \in \mathbb{N} : P(n)$

Definiere $M = \{n \in \mathbb{N} | P(n)\} \subseteq \mathbb{N}$

Induktionsaxiom:

Falls $0 \in M$

und $\forall n (n \in M \Rightarrow succ(n) \in M)$

 $\mathrm{dann}\ M=\mathbb{N}$

Prozeduren höherer Ordnung (high-order procedures) - 16.06.2015 und 18.06.2015

Wert des Parameters p? ist Prozedur

Higher-order procedures (H.O.P)

- (a) akzeptieren Prozeduren als Parameter und/oder
- (b) liefern Prozeduren als Ergebnis

H.O.P vermeiden Duplizierung von Code und führen zu kompakteren Programmen, verbesserter Lesbarkeit, verbesserter Wartbarkeit

Allgemeinere Transformation von Listen: <u>Listenfaltung</u> (list-folding), Idee: Ersetze die Listenkonstruktoren make-pair und empty systematisch:

```
• (foldr z c xs) wirkt als Spine Transformer
```

```
- \ \mathrm{empty} \rightsquigarrow z
```

- make-pair \rightsquigarrow c

```
\bullet Eingabe: Liste (list-of %a)
```

```
• Ausgabe: Im allg. <u>keine</u> Liste mehr (etwa %b)
```

Beispiel Summe:

```
(: sum ((list-of number) -> number))
(define sum
   (lambda (xs)
        (foldr 0 + xs)))
```

Beispiel Länge einer Liste durch Listenreduktion:

```
(foldr 0 c xs)  \label{eq:condition}  \mbox{mit } c = (lambda \ (x \ r) \ (+ \ 1 \ r))
```