Exercizio Statistica: 10/05/2019

Consideriamo en esperimento aleatorio che consiste nel lancio di due dadi non equilibrati. In particolare la funzione di probabilità di massa Px, y (xig) - dove X (w) \equiv \{1,..., 6} vappresenta il primo dado e Y (w) \equiv \{1,..., 6} il secondo dado - \equiv riportata in tabella:

			1	2	3	4	5	6	
		1	0.0044	0.0104	0.0048	0.0104	0.0032	0.0068	0.04
	r	2	0.0077	0.0182	0.0084	0.0182	0 0056	0.0119	10.0
		3	0.0418	0.0988	0.0456	0.0988	0.0304	0.0646	0.38
	-	4	0.022	0,0052	0.0024	0.0052	0.0016	0.0034	0.02
	-	5	0.0231	0.0546	0.0252	0.0946	0-0168	0.0357	0.21
		6	0.0308	0,0728	0 0 336	0.0728	0.0224	0.0476	0.28
morginale (+ 1: Y	4	0,11	0.26	0.12	0.26	0.08	0,17	1

Come al solito, sulle righe abbiamo la variabile X e sulle colonne la variabile Y.

1- Determinare la probabilità che sul primo dado esca un numero pari.

$$Pr("sul primo dado esce un numero pari") = $Pr(X=2) + Pr(X=4) + Pr(X=6)$
= $0.7 + 0.2 + 0.28$
= $0.37$$$

2- Determinare la probabilita che sul secondo dado non escano 5 04.

$$Pr("non esce 4 0 5") = 1 - (Pr("esce 4") + Pr("esce 5"))$$

$$= 1 - (0.26 + 0.08)$$

$$= 1 - (0.34)$$

$$= 0.66$$

# E	1	2	3	4	5	6	
1	0.09	0.04	0.04	0.09	0.4	0.04	
2	60.0	0.07	60.07	0.07	60.0	0.07	
3	0.38	0.38	0.38	0.38	0.38	0,38	
9	002	50.0	0.02	002	0,02	50.0	15
5	0.21	0.21	0.21	0.21	0.21	0-21	
6	0.28	0.28	0.18	0-28	0.28	0.28	
	1	1	1	1	1	1	

3-Depo aver determinato la fonzione di probabilità condizionata di p×14 (x1y=5).

Determinare Pr(X≥4/Y=5)

$$P_{V}(X \ge 4|Y=5) = P_{V}(X=4|Y=5) + P_{V}(X=5|Y=5) + W(X=6|Y=5)$$

$$= 0.02 + 0.21 + 0.28$$

$$= 0.51$$

4 - Calcolare il valore atteso condizionato IE(XIY=4)

$$E(X|Y=4) = \sum_{x \in R_X} X \cdot p_{X|Y}(x) = 4$$

$$= (1 \cdot 0.04) + (2 \cdot 0.07) + (3 \cdot 0.38) + (4 \cdot 0.02) + (5 \cdot 0.24) + (6 \cdot 0.28)$$

$$= 0.04 + 0.14 + 1.14 + 0.08 + 1.06 + 1.68$$

$$= 4.13$$

Visto the le due variabili sano stocasticamente indipendenti, cioè p_{xiy} (xiy) = $p_x(x) \cdot p_y(y)$ $\forall (x_iy)$, ho che IE(X|Y=4)=IE(X) in quanto tette le funzioni condizionate hanno lo stesso valore, che porta ad avere uno stesso valore atteso per ogni valore.

	1	2	3	4	5	6	
1	0.11	0.26	0 12	0.26	80.0	0.17	1
2	011	0.26	0.12	0.26	80.0	0.17	1
3	0.11	0.76	0.12	0.76	80.0	0.17	1
4	0.41	0.26	0.12	0.26	0.08	0.17	1
5	0.11	0.26	0.12	0.26	0.08	0.17	4
6	0.11	0.76	0.12	0.76	0,08	0.17	1
*							

5-Determinare la varianza condizionata War (YIX=4)

virgetta a ?

$$V_{\text{av}}(Y|X=4) = IE(Y^2|X=4) - IE[(Y|X=4)^2]$$

$$= 14.51 - (3.45)^2$$

$$= 14.51 - 11.9025 = 2.6075$$

$$E(Y|X=4) = \sum_{y \in R_Y} y - p_{Y|X}(y|X)$$

$$= (1 \cdot 0.11) + (2 \cdot 0.26) + (3 \cdot 0.12) + (4 \cdot 0.26) + (5 \cdot 0.08) + (6 \cdot 0.14)$$

$$= 0.11 + 0.52 + 0.36 + 1.04 + 0.4 + 1.02$$

$$= 3.46$$

$$\mathbb{E}(Y^{2}|X=4) = \int_{\mathbb{R}^{2}} \mathbb{Y}^{2} \cdot P_{Y}|X(Y|X)$$

$$= (1^{2} \cdot 0.41) + (2^{2} \cdot 0.26) + (3^{2} \cdot 0.42) + (4^{2} \cdot 0.26) + (5^{2} \cdot 0.08) + (6^{2} \cdot 0.14)$$

$$= (1 \cdot 0.41) + (4 \cdot 0.26) + (9 \cdot 0.42) + (16 \cdot 0.26) + (26 \cdot 0.08) + (36 \cdot 0.14)$$

$$= 0.41 + 1.04 + 1.08 + 4.16 + 2 + 6.12$$

$$= 14.51$$

Grazie all'indipendenza stocastica, tra le due variabili, si ha che War (YIX=4) = Var(Y).