Appl. No. 10/815,742 Doc. Ref.: AL3

.⑩ 日本国特許庁(JP)

①特許出願公開

昭61 - 107434 砂公開特許公報(A)

@Int_Cl.4

識別記号

庁内整理番号

@公開 昭和61年(1986)5月26日

9/38 G 06 F

12/08

C-7361-5B 8219-5B

審査請求 未請求 発明の数 1 (全7頁)

公発明の名称 デーク処理装置

> 创特 顧 昭59-227773

頤 昭59(1984)10月31日 砂出

国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中 明 谷 ぴ発 者

央研究所内

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 明 者 内 亨 砂発

央研究所内

株式会社日立製作所 包出 額 人 ①出 佣

東京都千代田区神田駿河台4丁目6番地

日立マイクロコンピユ

小平市上水本町1479番地 ータエンジニアリング

株式会社

②代 理 人

弁理士 高橋 明夫 外1名

最終頁に続く

発明の名称 データ処理数図

特許政東の類問

1. プログラム及びデータを格納する主記憶もし くは主記位とその写しを保持するキヤツシュ記 娘を有し、プログラムを構成する複数の命令を 同時に処理し、概念的に先行する命令の処理結 泉を使用するもしくは処理結果に依存する命令 の処理をは先行命令の処理結果を特たずして予 選により開始するデータ処理装置において、渡 算結果を主記憶に格納するストア命令を予測し て処理する場合には該予測の正否が判定される まではストア命令が予測状態であることを表示 する手段と、該ストア命令の演算結果及びその ストアアドレスを予測の正否が判定されるまで 保持しておくストアデータ保持手段と、予測が 正しかつた場合は上記予測状態表示手段による 表示を非予測状態に変更すると供に上記ストア データ保持手段により保持されている内容を用 いて演算結果の主記憶あるいはキヤツシユ記憶 への書き込みを行う制御手段と、予測が誤つて いた場合は上記ストアデータ保持手段により保 粋されている予測の誤つたストア命令のデータ を無効化する制御手段とを有することを特徴と するデータ処理袋質。

- 2. 上記ストア命令の予測は、先行する命令の復 算結果の予測であることを特徴とする第1項記 載のデータ処理装置:
- 3. 上記ストア命令予測は、分岐命令の分岐判定 結果の予測であることを特徴とする第1項記載 のデータ処理装置。
- 4. 上記ストア命令の予測は、分岐命令の分岐先 命令列データの予測であることを特徴とする第 1 項記載のデータ処理装置。

発明の詳細な説明

(発明の利用分野)

本発明はデイジタルコンピュータに係り、特に 概念的に先行する命令の実行が終了しないうちに その結果等を予測しながら後続の命令を並列に実 行することで高速化を図るデータ処理装置におけ るストア処理方式に関する。

(発明の背景)

従来より、汎用大型デイジタルコンピュータにおいては、高速化のためにパイプライン方式や並列処理方式のような、複数の命令を同時に処理するのが一般的となつている。この例としては、日経エレクトロニクス「汎用コンピュータ」p.251~263 "IBM 3033プロセツサの内部設計とパフオーマンズ"で挙げられているIBM 3033, "An Efficient Algorithm for Exploiting Nultiple Arithmetic Units", IBM Journal Jan, 1967 で挙げられているIBM 360/91がある。

3033では高速化のために、分岐命令の処理においては、分岐判定が下る前に後続の命令の処理を開始するために、分岐が成立か不成立かの予測を立て、分岐判定が下るまでは後続命令を予測状態のまま処理する方式をとつている。

一方、360/91では高速化のために独立に 命令の演算を行える演算器を複数設け、入力オペ ランドが描い次第、概念的に後の命令であつても

(発明の目的)

1

本発明の目的は予測処理方式と並列演算方式を 供に採用しているデータ処理被置において上記使 来技術の問題点のない、すなわち、予測中のスト ア命令による認つた主記憶器を込みによる復元動 作がなく、また誤つた主記憶の内容を依CPUや チヤネルから読み出されることのない、高速な命 令処理方式を提供することにある。

(発明の祭要)

直ちに演算を始めるという方式をとつている。

さてより一層の高速化を図るためには、これら 予測処理方式と並列演算方式の両方を採用するこ とが望ましいが、この場合次のような問題が生ず る。すなわち、予測状態でストア命令の処理を行 い結果を主記憶に書き込んだ後で実は予測が誤っ ていたことが判明する、というケースが起るとす ると、2つの理由で好ましくない。第1の理由は、 結局譲ストア命令は実行してはいけなかつたわけ であるから、主記憶の内容をその書き込みの前の 状態に復元する必要が生ずるため、このための制 御論理を設ける必要が生じ、またこの復元のため の余分な時間ロスが生じるため高速化を妨げる可 飽性があることである。また第2の理由は、主記 憶を複数のCPU(中央処理袋籠) やチヤネルが 共有する場合、上記のストア命令が誤つて書き込 んだ結果を、該CPUが主記憶の復元を完了する 前に他のCPUやチヤネルが読み出してしまう可 館性があるが、これは多くの場合許されないこと である.

令をキヤンセルし、予測が正しければ主記憶に書 ま込みを行う。

(発明の実施例)

以下本発明の実施例を説明する。説明の都合上 IBMのシステム370アーキテクチャに基づく マシンを前提とする。

メントをそれぞれ示す。

第3回は、本発明を適用したデータ処理接觸の全体構成の機略図である。1及び2はCPU。3はプログラム及びデータを特納する主記値とその制御を行う主記値装配(以下MSと略記する)、4はチヤネルであり、入出力数量5とHSとの間のデータ伝送を制御する。CPU1、2、チヤネル4は、いずれもHS3と接続されており、それぞれま記憶に対して統み出しと参会込みを行う。

とストアパツフア制御団路10が設けられている。

第4回は、上記CPU1がMS3上に置かれた
第2回の命令列を処理した時の概略のタイムチヤートである。検험はマシンサイクルを単位とした時間を表わし、縦軸は命令処理を行う各論理ユニット/論理回路である。本タイムチヤートでは、 今論理ユニット/論理回路において各命令の処理が行われている時間帯を、譲命令のニーモニックを矩形で囲むことにより表している。またIU6にてAD命令の解説の始まる時刻からST命令によるMS3への答を込みの終了時刻までを、順にC、、C、、…、C。と呼ぶことにする。

C、にてAD命令の解疏、オペランド読み出しが行われ、C。からC。の間、複算器E。にて複算が行われる。本タイムチャートでは示していないがC。にて結果を浮動小数点レジスタにまた条件コードをPSWに書き込む。またBC命令はC。にて解疏が行われ、C。にて複算器E。にセットアップされるが、先行するAD命令の処理が完了していないため、AD命令が設定する条件コードを

CPU-1の内部は命令制御ユニント(以下I Uと略す)6、演算ユニット(以下EUと略す) 7、記憶制御ユニット(以下SCUと略す)8から成る。

IU6はSCU8に対して命令銃み出し要求を 発行しSCU8経由で読み出された命令を解読し オペランド読み出し要求を再びSCU8に発行す る。彼み出されたオペランドはSCU8及びIU 6経由にてEU7に送出される。IU6によつて オペランドと伴に命令の解説情報がEU7に渡さ れると、EU7では複数値設けられている演算器 EO、E1、…のうち吹いているものにこれをセ ツトアツブし演算を行う。命令がストア命令であ る場合は、演算器はSCU8に対してストア要求 を飛行し、ストアデータ,アドレス情報を送出す る。SCU8はIU6からの命令銃み出し、オペ ランド読み出しEU7からのストア要求を受け付 け、必要ならアドレス要換を行い、HS3に対し てこれらの主記性参原を行う。SCU8には通常 の制御回路の他に本発明によるストアパソフア9

用いて行うべき分岐判定ができず、従つてC、ま で保留される。C。にてAD命令の条件コードが 設定されるので同サイクルにおいてBC命令の分 岐判定が行われる。本例においては分岐不成立で あつたものとする。一方ST命令はC。において 解読を行う。本来C。ではBC命令の分岐判定が 下つていないため、ST命令を実行すべきか否か 決定できないが、BC命令は分岐不成立になると いう予測のもとにST命令の処理を開始する。 ST命令はC。にて演算器E。にセツトアツブされ、 C。にてストアデータやアドレス情報がストアバ ツフアに一時的に格前される。この時この S T 命 合が予閱状態であることを示す予測フラグをセツ トする。一方C。にてBC命合の分岐判定が下る が、本例では上述のように分岐不成立であるため、 予捌が正しかつたことが判明する。ゆえに、スト アパツファ内に格納されていた該ST.命令の予測 フラグをリセントしさらにストアデータを、アド レス情報に従つてC、にて主記像に書き込む。仮

に上記BC命令の分岐判定により、予測が誤つて

いたとすると、この場合は、ストアパツファ内の 該ST命令をキヤンセルする。このようにするこ とで、演算個 E, は C。にて空き状態にすることが でき、後統命令の演算に使用可能となり、他の演 算額が使用である時には命令処理の高速化に役立

次に第5回、第6回を用いてストアバンフア及びストアバンファ制御回路の構成を脱弱する。

まず第5回はストアパツフアの構成を示す。 501~502はm+1個のストアデータレジストアアドレスレジスタである。演算ニント ツトにてST命令が実行されると、演算ニント より信号線503を介してストア要求信号を介 が発行され、同時に信号線504,505を介 で演算ユニントから送られてくるストアデレスを501~502のいずれスタの レジストアアドレスを501~502のいずれスタの レジストアアドレスを501~502のいずれスタの 体納するかは、ストアパンフア制御回路104ンタ 格納するかは、ストアパンファックを 格納するかは、ストアパンファックであり、ストアで示される。507はセレクタであり、スト

REQ。~REQ。を受けとり、このうちオフであるものの中から1つを選択しその番号をストアパツファの入力ポインタIPとして信号線506に出力する。信号線506はストアパツファタ及びストアパツファ状態制御回路601に送出てストアパツファ状態制御回路にREQ信号が送出る。EU7(第3回)から信号線503を介してストアパツファ状態制御回路にREQ信号が送出されると、入力ポインタIPで示される番号の領を入力ポインタIPで示される予測状態信号Pの値を入力ポインタIPで示される予測状態信号Pの値としてセツトする。

607はストアパッフア出力制御回路である。607は601から信号線605を介してREQ。を、また信号線608を介してP。~P。を受けとり、このうち予測フラグがオフでかつ要求フラグがオンであるレジスタの番号をストアパッフアの出力ポインタOPとして信号線508に出力する。信号線508は、ストアパッフア9及びストアパッフアが鑑制御回路601に

アパッファ出力制御回路より信号級508を介して送られてくる出力ポインタOPで示される番号のストアデータレジスタ及びストアアドレスレジスタの内容を選択し、これを信号級509を介して主記憶聴戦に送出する。

第6回はストアパンファ製御回路10の構成を示す。601はストアパンファ状態制御回路であり、上述した501~502のm+1個のレジスタ対応して、ストア要求が予測状態か否がを示す予測フラグ602~603とを存する。すなわち、602に対応ストアメが存ることを示す要求が予測状態で処理であることを示す更なが、該ストア要求が予測状態で処理してストア要求が高ったを示すが限しているST命令によるものであることを示すが関する。また603はm命のレジスタに対応する要求フラグREQ。と予節フラグP。である。

604はストアパツフア入力制御団路である。 604は601から借号45605を介して *i* :

送出される。また実際に予測フラグがオフでかつ要求フラグがオンであるレジスタが存在した場合は、607はMS3(第3回)に対するストア要求信号NREQを発行する。NREQは信号線609を介して、3及び601に送出される。607がNREQを発行した時、601はOPで示される番号の要求フラグ及び予測フラグを0にリセントする。

特開昭61-107434 (5)

るものを全て'O'にリセントする。関時にP。 ~ P。も全て'O'にリセントする。こうすることにより、ストアパンファ内の、実は実行してはいけなかったストア要求はキヤンセルされたことになる。

またSCU8からMS3に信号線609,509 を介して送出される信号NREQ,ストアデータ,ストアアドレスに対するMS-3の構成とこれらを

に書き込みが行われることがないため、他 C P U やチヤンネルからこの予測の製つたストア命令の結果が見えてしまうことも妨げるため、この点について I B M システム370アーキテクチヤ等の仕様を守ることも可能である。

図面の簡単な説明

第1 関は典型的な命令フォーマットを示す図、第2 図は高速化される命令列の例を示す図、第3 図はデータ処理装置の全体構成例を示す図、第4 図は第2 図の命令列を処理した時のタイムチャート、第5 図はストアパッフアの構成図、第6 図はストアパッフア創御図路図である。

3 … 京記僚教観、 7 … 演球ユニシト、 8 … 紀館例 伊ユニシト、 9 … ストアパッファ、 1 0 … ストア パンファ朝御園路、 6 0 1 … ストアパッフア状態 制御同路、 6 0 4 … ストアパッフア入力制御図路、 6 0 7 … ストアパッフア出力制御図路。

代理人 非职士 高榜明(实

受けとつた時の、動作は従来技術と同様であるの で説明を省略する。

なお上記実施例における予測としては、分岐命令の分岐特定だけではなく、次に述べるような各種のものが考えられ、いずれに対しても本発明を適用可能である。すなわち、特公昭54-9456 にあるように、分岐命令における分岐先命令データを予測するもの、特顧昭58-237778 にあるように、レジスタコンフリクトを生じる 2 命令の処理において先行命令の演算結果を予測するものがある。(発明の効果)

本発明によれば、予測処理方式と並列復算方式を供に採用しているデータ処理等処理を完了てもストア命令の演算処理を完了すら、該ストア命令の演算処理を行った演算器がある。した変異に使用可能となるれば予測したの数果がある。しかも本発明によみが行った。这の会会によって主記憶に参奨など、ことを必要達度低下も生じない。さらにはつて主記憶を表現るというというというとない。とも必要を表現であるとない。とも必要を表現であるとない。とも必要を表現であるとない。とも必要を表現であるとない。とも必要を表現であると、これを表現であると、これには、

第1回

特開昭61-107434 (6)

1

第1頁の統き

母発明者 釜田 栄樹 国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中

央研究所内

砂発 明 者 武 内 茂 雄 小平市上水本町1479番地 日立マイクロコンピュータエン

ジニアリング株式会社内

(19) Japan Patent Office (JP)

(11) Publication of Patent Application

Sho 61 - 107434

(12) Publication of Japanese Laid-Open Patent Application (A)

(43) Date of Publication: May 26, 1986

(51) Int. Cl ⁴		Class. Symbol	Internal No.
G 06 F 9/38			$C - 7361 \div 5B$
12/08			8219 – 5B
		Request for Examination: Not requested	
		Number of Inventions	: 1
		W 	(Total of 7 pages in the original)
(54) Title of the Invention: DATA PROCESSOR			CESSOR
	(21) Japanese	Patent Application:	Sho 59 – 227773
	(22) Filing da	ite:	October 31, 1984
(72)	Inventor:	Yoichi SHINTANI	
		Hitachi, Ltd., Center R	Research Institute
		280, Higashikoigakub	o 1-chome, Kokubunji-shi
(72)	Inventor:	Tohru SHONAI	
		Hitachi, Ltd., Center R	Research Institute
		280, Higashikoigakub	o 1-chome, Kokubunji-shi
(71) Applicant: Hitachi, Ltd.		Hitachi, Ltd.	
		6, Kandasurugadai 4-c	chome, Chiyoda-ku, Tokyo
(71)	Applicant:	Hitachi Microcomputer Engineering	
(74)	Agent:	Patent agent: Akio TAKAHASHI and one other	

Japanese Laid-Open Patent Application Sho 61 - 107434

SPECIFICATION

TITLE OF THE INVENTION:

DATA PROCESSOR

SCOPE OF PATENT CLAIMS:

Claim 1

A data processor, wherein, in a data processor that has a cache memory, which maintains a main memory where programs and data are stored, or which maintains a main memory and its copy; and that simultaneously processes multiple instructions comprising the programs; and that starts processing an instruction using the processing results of a conceptually precedent instruction, or depending upon the processing results, without waiting for the processing results of the precedent instruction, it is provided with:

a means where, in the case of processing by predicting a storage instruction, whose operational results are stored in the main memory, it indicates that the storage instruction is in the prediction state until a determination can be made as to whether or not the prediction is correct; a storage data maintaining means that maintains the result of an operation of the storage instruction and its storage address until whether or not the prediction is correct is determined; and

a control means that changes the indication by the prediction state indicating means into a non-prediction state; concurrently, that writes the result of an operation using the contents maintained by the storage data maintaining means, into the main memory or the cache memory in the case that the prediction is correct; and

another control means that invalidates the data of the storage instruction maintained by the storage data maintaining means according to the incorrect prediction, in the case that the prediction is incorrect.

Claim 2

The data processor according to Claim 1, wherein, the prediction of the storage instruction is the prediction of the results of the operation of the precedent instruction.

Claim 3

The data processor according to Claim 1, wherein, the prediction of the storage instruction is a prediction of a branch decision result of a branch instruction.

Japanese Laid-Open Patent Application Sho 61 - 107434

Claim 4

The data processor according to Claim 1, wherein, the prediction of the storage instruction

is a prediction of a branch target instruction array data of a branch instruction.

Detailed Description of the Invention:

[Application Field of the Invention]

The present invention relates to a digital computer, and particularly relates to a storage processing method in a data processor for the purpose of increasing the processing speed, where before the completion of the execution of a precedent instruction, the results are generally conceptually predicted; and simultaneously, successive instructions are executed

[Background of the Invention]

in parallel.

Conventionally, in a general-purpose large-sized digital computer, for the purpose of increasing the processing speed, it has become common to simultaneously process

multiple instructions, such as a pipeline method or a parallel processing method. As this example, there are the IBM 3033, which is mentioned in the "Internal Design and Performance of IBM 3033 Processor", "General-purpose Computer", Nikkei Electronics, p. 251 – 263, and the IBM 360/91, which is mentioned in "An Efficient Algorithm for Exploiting Multiple Arithmetic Units", IBM Journal, Jan. 1967. In the [IBM] 3033, for the purpose of increasing the processing speed, in the processing of a branch instruction, it has adopted a method where in order to start processing of successive instructions before a decision about a branch is made, whether or not the branch is realized is predicted, and the successive instructions are processed in the prediction state until the branch decision is made.

In the meantime, in the [IBM] 360/91, a method is adopted where multiple computing elements that can independently perform instruction operations are established for the purpose of increasing the processing speed, and as soon as input operands are gathered, even if it is a conceptually successive instruction, the operation immediately is started.

In order to accomplish an even higher speed, it is desirable to adopt both the prediction processing method and the parallel operation method. However, in this case, the following

problems occur. In other words, in a case where the processing of a storage instruction is performed in the prediction state, and after the results have been written into main memory, if it turns out that the prediction is actually wrong, it is not preferable for two reasons. The 1st reason is because the storage instruction should not have been executed, so it becomes necessary to restore the contents of the main memory to the state existent before writing was performed. Therefore, it is necessary to establish a control logic, and there is a possibility where it may prevent increasing the processing speed because an extra time loss is generated due to the restoration. The 2nd reason is because, in the case that multiple CPUs (central processing units) and channels share the main memory, there is a possibility that results which have been improperly written by the above-mentioned storage instruction, may be read out by another CPU or channel before the CPU completes the restoration of the main memory. However, this is not allowed in many cases.

[Objective of the Invention]

The objective of the present invention is to provide a high-speed instruction processing method where in a data processor, where both the prediction processing method and the parallel operation method have been adopted, there is no problem such as that of the prior

art. In other words, any restoration operation due to improper writing into the main memory by a storage instruction during the prediction state is not required, and any wrong content in the main memory will not be read out by other CPUs and channels.

[Summary of the Invention]

In the present invention, one or more storage buffers are established to maintain data and address information to be stored, and a state flag that indicates whether or not the processing of the storage instruction is in the prediction state is provided to each storage buffer. In processing the storage instruction, the processing is continued to the operation stage based upon the parallel operation method, regardless of whether or not it is in the prediction state. However, in the stage of writing into the main memory, writing into the main memory is not performed until the prediction state is resolved, and data generally are maintained in the storage buffer. At the point at which the prediction state is resolved, if the prediction is incorrect, the storage instruction within the storage buffer is cancelled, and if the prediction is correct, writing into the main memory is performed.

[Embodiments of the Invention]

An embodiment of the present invention is explained next. For the convenience of explanation, the machine [example] is based on the IBM system 370 architecture.

Fig. 1 shows typical instruction formats. Fig. 1 (a) is the format of a floating point add instruction AD or a storage instruction ST, and the OP part indicates the contents of the operation; R₁ indicates a register number where a 1st operand of the instruction is stored; X₂, B₂ and D₂ indicate an index register number, a pace register number and a displacement for the purpose of forming a 2nd operand address, respectively. Fig. 1 (b) is the format of a Branch-on-Condition instruction (hereafter abbreviated as BC), and OP indicates that it is a BC instruction. Part M₁ indicates a mask that indicates a value for a condition code to realize a branch; and X₂, B₂ and D₂ indicate an index register number, a pace register number and displacement for the purpose of forming the branch target address, respectively.

Fig. 2 is an arrangement in the main memory of an instruction array where high-speed processing is realizable in a data processor using the present invention. The 1st instruction

is an AD instruction, in relation to which a condition code is established based on the results of the operation. The 2nd instruction is a BC instruction for making a decision as to whether or not the branch is realized according to the value of the condition code. The 3rd instruction is an ST instruction executed in the case that the branch in the BC instruction is not realized. The ST instruction does not have any dependency with the BC and AD instructions regarding data, except for a point where whether or not the ST instruction is executed is determined according to the branch decision of the BC instruction, where the value for the operand register is ascertained sufficiently in advance.

Fig. 3 is an outline of the entire construction of the data processor where the present invention has been adopted. Symbols '1' and '2' are CPUs; '3' is a main memory where programs and data are stored and a main memory device where its control is performed (hereafter, abbreviated as 'MS'); '4' is a channel, which controls data transmission between an input/output device 5 and the HS [3][sic]. The CPUs 1 & 2 and the channel 4 are connected to the HS 3[sic], respectively, and each of them writes and reads out to/from the main memory.

The interior of the CPU 1 is comprised of an instruction control unit (hereafter abbreviated as 'IU') 6, an operational unit (abbreviated as 'EU') 7 and a memory control unit (hereafter, abbreviated as 'SCU') 8.

The IU 6 issues an instruction read-out request to the SCU 8, decodes the read-out instruction via the SCU 8; and issues an operand read-out request to the SCU 8 again. The read-out operand is transmitted to the EU 7 via the SCU 8 and the IU 6. When the IU 6 passes the decoded information of the instruction along with the operand to the EU 7, it is set up in an available computing element among established multiple elements E0, E1, ..., and the operation is performed. In the case that the instruction is a storage instruction, the computing element issues a storage request to the SCU 8, and the storage data and the address information are transmitted. The SCU 8 reads out the instruction from the IU 6, reads out its operand, receives the storage instruction, and, the address conversion is performed if necessary, and then, these main memory references are performed to the HS 3[sic]. Other than a normal control circuit, a storage buffer 9 and a storage buffer control circuit 10 according to the present invention are established in the SCU 8.

Fig. 4 is an outlined time chart when the instruction array in Fig. 2, where the above-mentioned CPU 1 is placed on the MS 3, is processed. The horizontal axis indicates the time by unit of machine cycle, and the vertical axis indicates each logical unit/logic circuit. In the present chart, the time zone when each instruction is processed in each logical unit/logical circuit is expressed by surrounding a mnemonic of the instruction with a rectangular box. Further, in the IU 6, from the time for starting to decode the AD instruction to the time for completing to write into the MS 3 by the ST instruction is referred to as C₁, C₂, ..., C_{fillegible,l}, in respective order.

Decoding the AD instruction and reading-out of the operand are performed during the C₁, and an operation is performed at the computing element E₀ during C₂ through C₅.

Although not shown in the present time chart, the results are written into the floating point register and a condition code is written into the PSW during the C_{fillegible}. Further, the BC instruction is decoded during C₂, and is set up to the computing element E₁ during C₃.

However, processing the precedent AD instruction has not yet been completed, so the branch decision which should be performed using the condition code established by the AD instruction, cannot be made, and it is deferred until C₅. The condition code of the AD instruction is established during C₆, so the branch decision of the BC instruction is

performed during this cycle. In the present embodiment, it is presumed that branching is not realized. In the meantime, the ST instruction is decoded during C₃. Originally, the branch decision of the BC instruction is not made during C₃, so whether or not the ST instruction is executed cannot be determined. However, processing the ST instruction is started based upon the prediction where the branch of the BC instruction is not realized. The ST instruction is set up in the computing element E₂ during C₄, and the storage data and the address information are temporarily stored in the storage buffer during C₅. On this occasion, a prediction flag indicating the ST instruction to be in the prediction state is set. In the meantime, the branch decision of the BC instruction is made during C₆. As described above, branching is not in the present embodiment, so the prediction is correct. Therefore, the prediction flag of the ST instruction stored within the storage buffer, is reset. In addition, the storage data is written into the main memory during C₇ based on the address information. If the prediction is assumed to be incorrect according to the branch decision of the BC instruction, the ST instruction within the storage buffer is cancelled. The operation enables the computing element E1 to become vacant during C5, making it usable for the operation of successive instructions. Therefore, when other computing elements are in use, it is helpful for increasing the speed of instruction processing.

The construction of the storage buffer and the storage buffer control circuit are explained hereafter, with reference to Fig. 5 and Fig. 6.

At first, Fig. 5 shows the construction of the storage buffer. Symbols '501' through '502' are (m+1) units of the storage data registers and the storage address registers, respectively. When the ST instruction is executed in an operational unit, a storage request signal REQ is issued from the operational unit via a signal line 503. Simultaneously, the storage data and storage address transmitted from the operational unit via signal lines 504 and 505, are stored in either of registers 501 through 502. In this case, information about in which number of register the storage data and the storage address are stored is indicated with an input pointer IP transmitted from the storage buffer control circuit 10 via signal line 506.

The symbol '507' is a selector which selects the contents of the storage data register and the storage address register in the number indicated by an output pointer OP, which is transmitted from a storage buffer output control circuit via signal line 508, and then transmitted to the main memory device via signal line 509.

Fig. 6 shows the construction of the storage buffer control circuit 10. Symbol '601' is a storage buffer state control circuit, equipped with prediction flags 602 through 603 that

indicate whether the storage request is in the prediction state, by corresponding to the (m+1) units of registers 501 through 502. In other words, '602' is a request flag REQ, which indicates that there is a storage request corresponding to No. 0 register within the storage buffer, and is also a prediction flag P₀ which indicates that the storage request corresponds to the ST instruction being processed in the prediction state of the storage request. Further, symbol '603' is a request flag REQ_m and a prediction flag P_m corresponding to the No. *m* register.

Symbol '604' is a storage buffer input control circuit which receives the REQ₀ through the REQ_m from the [storage buffer state control circuit] 601 via a signal line 605. It selects one from these requests that are in the OFF state, and the number is transmitted to the signal line 506 as the input point IP of the storage buffer. The signal line 506 is sent to the storage buffer 9 and the storage buffer state control circuit 601. When an REQ signal is transmitted to the storage buffer state control circuit [601] from the EU 7 (Fig. 3) via the signal line 503, the request flag of the number indicated by the input point IP, is simultaneously set to '1', and the value for the prediction state signal P transmitted from the EU 7 via the signal line 606, is set as the value for the prediction flag indicated by the input point IP.

Symbol '607' is a storage buffer output storage circuit which receives the REQ₀ through REQ_m from the [storage buffer state control circuit] 601 via the signal line 605, and receives P₀ through P_m via the signal line 608, and register number(s), where the prediction flag is in the OFF state and the request flag is in the ON state are transmitted to the signal line 508 as the output point OP of the storage buffer. The signal line 508 is sent to the storage buffer 9 and the storage buffer state control circuit 601. Further, where a register for which the prediction flag is in the OFF state and the request flag is in the ON state, actually exists, the [storage buffer output control circuit] 607 issues a storage request signal MREQ to the MS 3 (Fig. 3). The [storage request signal] MREQ is transmitted to the [MS] 3 and the [storage buffer state control circuit] 601 via a signal line 609. When the [storage buffer output control unit] 607 issues the [storage request signal] MREQ, the [storage buffer state control circuit] 601 resets the request flag(s) and the prediction flag(s) of the number(s), which are indicated with the OP, to '0'.

In the meantime, when the storage buffer state control unit 601 receives a branch decision signal BJ transmitted from the EU 7 via a signal line 610, if the branch prediction is correct; in other words, in the present embodiment, if the BJ indicates that branching is not realized, P_0 through P_m are all reset to '0'. With this operation, storage request(s) where, because the

request flag is in the ON state but the prediction flag is also in the ON state, the MREQ cannot be issued, can be issued since the prediction flag becomes in the OFF state. Then, writing is performed into the MS [3]. Further, when the BJ signal is received, if the branch prediction is incorrect, requests where the correspondent prediction flags are in the ON state among REQ₀ through REQ_m are all reset to '0'. Simultaneously, P₀ through P_m are also all reset to '0'. With this operation, the storage request within the storage buffer, which should not have been actually executed, should be cancelled.

The signals REQ, the storage data, the storage addresses and the [branch decision signal] BJ transmitted from the operational unit to the memory control unit SCL 8 via the signal lines 503, 504, 505 and 610, can be easily formed using prior art technology, so the explanation is omitted. Further, the signal P on the signal line 606 is, for example, formed as follows. In other words, in the case that the instruction setup from the instruction control unit 6 to the EU 7 is the same as in the conceptual execution sequence of the instruction, a value for a flip-flop such that when a branch instruction is set up to the EU 7, and simultaneously, '1' is set, and, when the branch decision is made, simultaneously, '0' is set, can be considered as the signal P.

Further, the construction of the MS 3 relative to the signal MREQ, the storage data and the storage address transmitted from the SCU 8 to the MS 3 via the signal lines 609 and 509, and operation when these are received are similar to those in the prior art, so the explanation shall be omitted.

Furthermore, as a prediction in the above-mentioned embodiment, not only the branch decision of the branch instruction but also the various below-mentioned ones can be considered, to which the present invention is also applicable. In other words, one predicts a branch target instruction data in a branch instruction, as mentioned in Japanese Patent Publication Sho 54 – 9456, and there is another predicts the result of the operation of a precedent instruction in the processing of two instructions where a register conflict may occur, as it is mentioned in Japanese Patent Application Sho 58 – 237778.

According to the present invention, in a data processor where both the prediction processing method and the parallel operation method are adopted, operational processing of the storage instruction is completed even if in the prediction state, and a computing element, which has performed the operational processing of the storage instruction,

[Efficacy of the Invention]

becomes usable for the operational processing of another instruction. Hence, it is efficient for increasing the processing speed. Further, according to the present invention, writing into a main memory is never performed by an instruction in the prediction state, so a restoration operation is not required. Therefore, no processing speed reduction occurs. In addition, writing is never performed in error, so it prevents other CPUs or channels from reading out the results of storage instructions where its prediction is incorrect. Concerning this point, it is generally possible to keep the specifications, such as those of the IBM System 370 architecture..

Japanese Laid-Open Patent Application Sho 61 - 107434

BRIEF DESCRIPTION OF DRAWINGS:

Fig. 1 is a diagram that shows typical instruction formats;

Fig. 2 is a diagram that shows an example of an instruction array where the increase of the

processing speed is realized;

Fig. 3 is a diagram that shows the entire construction example of the data processor;

Fig. 4 is a time chart when the instruction array in Fig. 2 is processed;

Fig. 5 is a block diagram of the storage buffer; and Fig. 6 is a storage buffer control circuit

diagram.

3 ... main memory device, 7 ... operational unit, 8 ... memory control unit, 9 ... storage

buffer, 10 ... storage buffer control circuit, 601 ... storage buffer state control circuit, 604

... storage buffer input control circuit, 607 ... storage buffer output control circuit.

Agent: Patent applicant: Akio TAKAHASHI [seal]

- 19 -

FIG. 1

FIG. 2
Instruction array

Continuation from the 1st page:

(72) Inventor: Eiki KAMATA

Hitachi, Ltd., Center Research Institute

280, Higashikoigakubo 1-chome, Kokubunji-shi

(72) Inventor: Shigeo TAKEUCHI

Hitachi Microcomputer Engineering

1479, Josuihoncho, Kodaira-shi

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.