Computation and Visualization for Analytics

Spring 2021

Week 6.2

Visualizing

Relationships

Chord Diagram

Parallel Coordinates Plot Variable

Data			
	Variable A	Variable B	Variable C
Item 1	50	100	2.0
Item 2	30	115	0.5

Scatter Plot

Types of Relationships

Association, dependence, correlation

- In everyday language, dependence, association and correlation are used interchangeably*
- Association is synonymous with dependence and is different from correlation*
- Association is a very general relationship: one variable provides information about another*
- Correlation is more specific: two variables are correlated when they display an increasing or decreasing trend*

Association, correlation

Figure 1 | Correlation is a type of association and measures increasing or decreasing trends quantified using correlation coefficients. (a) Scatter plots of associated (but not correlated), non-associated and correlated variables. In the lower association example, variance in y is increasing with x. (b) The Pearson correlation coefficient (r, black) measures linear trends, and the Spearman correlation coefficient (s, red) measures increasing or decreasing trends. (c) Very different data sets may have similar r values. Descriptors such as curvature or the presence of outliers can be more specific.

Pearson Correlation Coefficient

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$
 (Eq.3)

where:

n is sample size

 x_i, y_i are the individual sample points indexed with i

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$
 (the sample mean); and analogously for $ar{y}$

Visual Correlation

Correlation Strength: Positive Negative Null Weak Strong None Exponential **U-Shaped** Linear