$$\begin{split} I &= \frac{Q}{t} & a(t) = a_{\textit{final}} - \left(a_{\textit{final}} - a_{\textit{butial}}\right) e^{\frac{t}{t}} & V_{r(p-p)} = \frac{I_L T}{C} \\ G &= \frac{1}{R} & \Delta P_{\textit{dib}} = 10 \log \left(\frac{P_2}{P_1}\right) & V_{\textit{DC(fil)}} = V_p - \frac{V_{r(p-p)}}{2} \\ V &= IR \\ P &= \frac{W}{t} & \Delta P_{\textit{dib}} = 20 \log \left(\frac{V_2}{V_1}\right) & V_{r(p-p)} \approx \frac{V_p T}{R_L C} \\ P &= IV = \frac{V^2}{R} = I^2 R & f_c = \frac{1}{2\pi RC} & 1.25 = V_{\textit{out}} \frac{R_1}{R_1 + R_2} \\ P &= \frac{P_{\textit{uocful}}}{P_{\textit{botal}}} \times 100\% & X_C = \frac{-j}{2\pi f C} & RR = 20 \log \left(\frac{V_{\textit{r(in)}}}{V_{\textit{r(out)}}}\right) \\ V_{R_1} &= V_s \left(\frac{R_1}{R_1 + R_2}\right) & f_c = \frac{1}{2\pi L/R} & I_E = I_c + I_B \\ A_{L_1} &= I_T \left(\frac{R_2}{R_1 + R_2}\right) & f_o = \frac{1}{2\pi \sqrt{LC}} & \beta = \frac{I_C}{I_E} \\ A_{RMSS (sim)} &= \frac{|A_p|}{\sqrt{2}} & V_s = \frac{n_s}{n_p} & \beta = \frac{\alpha}{\beta + 1} \\ A_{RMSS (sim)} &= \frac{A_p}{\sqrt{2}} & V_s = \frac{n_s}{n_p} & \beta = \frac{\alpha}{1 - \alpha} \\ I &= C \frac{\Delta Q}{\Delta V} & I_s = \frac{n_p}{n_s} & A_v = \frac{V_{\textit{out}}}{V_{\textit{in}}} \\ I &= C \frac{\Delta Q}{\Delta V} & I_s = \frac{n_p}{n_s} & A_v = \frac{V_{\textit{out}}}{V_{\textit{in}}} \\ I &= C \frac{\Delta V}{\Delta I} & e_{\textit{max}} = 2n^2 & r_{\textit{in}} = R_L \frac{V_{\textit{oc}} - V_o}{V_o} \\ V &= RC & V_D C(HWR) &= \frac{V_p}{\pi} & I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{\textit{Gostiff}}}\right)^2 \\ V_{L} &= L \frac{dI}{dt} & V_{RMS(HWR)} &= \frac{|V_p|}{I_D} \\ V_{L} &= L \frac{I}{R} & V_{RMS(FWR)} &= \frac{|V_p|}{I_D} \\ V_{RMS(FWR)} &= \frac{|V_p|}{I_D} & V_{RMS(FWR)} \end{aligned}$$

For properly designed amplifiers only:	$A_{vCS} = \frac{v_{oCS}}{v_{iCS}}$	$V_{out} = -R_f \left(\frac{V_{in1}}{R_{i1}} + \frac{V_{in2}}{R_{i2}} + \frac{V_{in3}}{R_{i3}} + \dots \right)$
$V_E = \frac{V_{CC}}{10}$	$A_{vDS} = \frac{v_{oDS}}{(v_{i2} - v_{i1})}$	$V_{step} = \frac{V_{range}}{2^n - 1}$
$V_{CE} = \frac{V_{CC}}{2}$ $R_{B2} = 10R_E$	$CMRR_{dB} = 20\log\left(\frac{A_{vDS}}{A_{vCS}}\right)$	$V_{step} = rac{V_{ref}}{2^n}$
$R_{E1} \ge \left \frac{R_C}{2V_{CC}} \right $	$A_{v} = -\frac{R_{f}}{R_{i}}$	$V_{out}(t) = \frac{1}{R_i C} \int_0^t v_i(t) dt$ $v_{out} = R_f C \frac{dV_{in}}{dt}$
$A_{vo} \approx -\frac{R_C}{R_{E1}}$	$A_{v} = \frac{R_f}{R_i} + 1$	$v_{out} = K_f C \frac{1}{dt}$ $f_c = \frac{1}{2\pi R \cdot C}$
$r_{in} \approx (\beta R_{E1}) R_{B1} R_{B2}$ $r_{out} = R_C$	$\beta = \frac{R_i}{R_f + R_i}$	1
$V_E = \frac{V_{CC}}{2}$	$A_{_{\scriptscriptstyle V}} = \frac{A_{_{\scriptscriptstyle Vol}}}{1 + A_{_{\scriptscriptstyle Vol}} \beta}$	$f_c = \frac{1}{2\pi R_i C}$
$R_{B2} = 10R_E$	$r_{in} = (1 + A_{vol}\beta)r_{id}$	$A_{\nu} = 3 - 2\zeta$
$A_{vo} \approx +1$ $r_{in} \approx R_{B1} \parallel R_{B2}$	$r_{out} = \frac{r_o}{1 + A_{vol}\beta}$	$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$
$r_{out} \approx \left \frac{R_E}{20V_{CC}} \right $	$A_{v} = 1 - \frac{A_{vol}}{1 + A_{vol}\beta}$	$f_c = \frac{1}{2\pi RC}$
20v _{cc}	$r_{in} = R_i \parallel \left[\left(1 + A_{vol} \beta \right) r_{id} \right]$ GRP	$v_o = \frac{R_f}{R_i} \left(V_{in+} - V_{in-} \right)$
	$BW = \frac{GBP}{A_{v}}$	$A_{v} = \frac{2R}{R_{c}} + 1$
	$BW_{circuit} = BW_{stage} \sqrt{2^{\frac{1}{n}} - 1}$	$v_o = A_v \left(V_{in+} - V_{in-} \right) + V_{off}$
	$f_{PBW} = \frac{SR}{2\pi V_p}$	

n	Normalized Butterworth Polynomial	Stage Gains
1	s+1	(x)
2	$s^2 + 1.414s + 1$	(1.586)
3	$(s+1)(s^2+s+1)$	(x)(2.000)
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$	(2.235)(1.152)
5	$(s+1)(s^2+0.618s+1)(s^2+1.618s+1)$	(x)(2.382)(1.382)
6	$(s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1)$	(2.482)(1.586)(1.068)

Typical Component Values

Typical Component Values				
5%	10%	20%		
10	10	10		
11				
12	12			
13				
15	15	15		
16				
18	18			
20				
22	22	22		
24				
27	27			
30				
33	33	33		
36				
39	39			
43				
47	47	47		
51				
56	56			
62				
68	68	68		
75				
82	82			
91				

(This page intentionally blank)