РЯБКОВА Елена Леонидовна

ОПТИМИЗАЦИЯ АНТИБИОТИКОТЕРАПИИ НОЗОКОМИАЛЬНЫХ ИНФЕКЦИЙ, ВЫЗВАННЫХ *KLEBSIELLA PNEUMONIAE*, В СТАЦИОНАРАХ РОССИИ

14.00.25 – фармакология, клиническая фармакология

Автореферат диссертации на соискание ученой степени кандидата медицинских наук Работа выполнена в ГОУ ВПО «Смоленская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию»

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Доктор медицинских наук, доцент Решедько Галина Константиновна

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

Доктор медицинских наук, профессор Сидоренко Сергей Владимирович Доктор медицинских наук, профессор Ушкалова Елена Андреевна

ВЕДУЩАЯ ОРГАНИЗАЦИЯ:

ГОУ ВПО «Волгоградский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию»

Защита диссертации состоится " 26 " июня 2006 г. в 13 часов на заседании диссертационного совета Д 208.097.02 ГОУ ВПО «Смоленская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию» (214019, г. Смоленск, ул. Крупской, д. 28).

С диссертацией можно ознакомиться в библиотеке Смоленской государственной медицинской академии.

Автореферат разослан "<u>25</u>" <u>мая</u> 2006 г.

Ученый секретарь диссертационного совета, доктор медицинских наук, профессор

Яйленко А.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Нозокомиальные инфекции остаются наиболее частым типом осложнений, развивающихся у госпитализированных пациентов [Р. Gastmeier, 2004]. Нозокомиальные инфекции ухудшают прогноз, увеличивают длительность госпитализации и стоимость лечения, снижают эффективность антибактериальной терапии, способствуют распространению в стационаре резистентных штаммов.

Пациенты, находящиеся на стационарном лечении, подвержены риску развития нозокомиальных инфекций в 4–15% случаев в результате колонизации госпитальной микрофлорой [А. Ronald, 2001]. Основную группу риска по развитию нозокомиальных инфекций составляют пациенты отделений реанимации и интенсивной терапии (ОРИТ): в ОРИТ развивается от 20% [J.L. Vincent, 1995; P. Stone, 2002] до 45% [L.G. Donowitz, 1982] всех нозокомиальных инфекций стационара.

В настоящее время достоверно показано, что неадекватная антибактериальная терапия нозокомиальных инфекций приводит к увеличению летальности, по сравнению с теми случаями, когда выбор антибактериального препарата соответствовал профилю резистентности возбудителя инфекции [М.Н. Kollef, 1999; Е.Н. Ibrahim, 2000]. Данный факт подчеркивает несомненную актуальность проблемы резистентности нозокомиальных возбудителей и выдвигает повышенные требования к выбору препаратов для эмпирической терапии данных инфекций, который должен быть основан на знании структуры возбудителей, вовлеченных в развитие нозокомиальных инфекций и их антибиотикорезистентности как на локальном, так и на национальном уровнях.

Несмотря на наблюдающееся в последние десятилетия возрастание роли грамположительных возбудителей и грибов в этиологии нозокомиальных инфекций, до 50% нозокомиальных инфекций в ОРИТ вызываются грамотрицательными возбудителями [J. Stephen, 2002]. *Klebsiella pneumoniae* является одним из ведущих возбудителей нозокомиальных инфекций вызывая от 2 до 20% всех нозокомиальных инфекций [R. Podschun, 1998]. В структуре нозокомиальных инфекций, вызванных грамотрицательными микроорганизмами,

частота выделения *К. pneumoniae* составляет 14-15% [М. Neuhauser e.a., 2003; Л.С. Страчунский и соавт., 2002]. Возрастающая резистентность *К. pneumoniae* к антибиотикам представляет собой наиболее серьезную проблему антибактериальной терапии нозокомиальных инфекций, вызванных данным возбудителем. Одним из основных клинически значимых механизмов антимикробной резистентности *К. pneumoniae* является выработка β-лактамаз расширенного спектра.

Для рационального использования антибактериальных препаратов при нозокомиальных инфекциях, вызванных *К. pneumoniae*, у пациентов, находящихся на стационарном лечении, необходимы национальные и локальные данные о фармакодинамических параметрах антибиотиков в отношении данного возбудителя. Проведение комплексного исследования в различных регионах России, направленного на определение места *К. pneumoniae* в структуре грамотрицательных нозокомиальных возбудителей, получение современных данных о фармакодинамических параметрах антибиотиков в отношении нозокомиальных клебсиелл, позволит разработать подходы для оптимизации использования антибактериальных препаратов при терапии нозокомиальных инфекций, вызванных *К. pneumoniae*.

Цель исследования

Обосновать рациональный выбор антибактериальных препаратов для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, в стационарах России, с учетом данных о фармакодинамических характеристиках антибиотиков.

Задачи исследования

- 1. Обследовать пациентов с нозокомиальными инфекциями, вызванными грамотрицательными возбудителями, в ОРИТ стационаров различных регионов России для выявления распространенности нозокомиальных инфекций, вызванных *К. pneumoniae*.
- 2. Получить данные по фармакодинамической активности антибиотиков в отношении нозокомиальных *K. pneumoniae*.

- 3. Определить распространенность продуцентов β-лактамаз расширенного спектра среди нозокомиальных штаммов *K. pneumoniae*.
- 4. Определить фармакодинамические параметры антибиотиков в отношении *К. pneumoniae*, продуцирующих β-лактамазы расширенного спектра.
- 5. Разработать рекомендации по выбору антибиотиков для терапии нозокомиальных инфекций, вызванных *К. pneumoniae* на основании полученных данных по фармакодинамической активности антибиотиков и распространенности продуцентов β-лактамаз расширенного спектра.

Научная новизна

- 1. Впервые проведено исследование антимикробной резистентности нозокомиальных штаммов *К. pneumoniae*, выделенных в ОРИТ 29 стационаров различных регионов России.
- 2. Получены данные о фармакодинамических параметрах 21 антибиотика в отношении нозокомиальных штаммов *K. pneumoniae*.
- 3. Получены данные о распространенности штаммов, продуцирующих β-лактамазы расширенного спектра, среди нозокомиальных штаммов *K. pneumoniae*.

Практическая ценность работы

- 1. На основании изучения фармакодинамических параметров выявлены наиболее активные антибиотики для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, в ОРИТ стационаров России.
- 2. С учетом полученных данных о распространенности *К. pneumoniae*, продуцирующих β-лактамазы расширенного спектра, выявлена необходимость обязательного тестирования всех нозокомиальных штаммов *К. pneumoniae* на предмет продукции β-лактамаз расширенного спектра.
- 3. Разработаны предложения по оптимизации выбора антибиотиков для терапии инфекций, вызванных *К. pneumoniae*, в ОРИТ стационаров России.

Внедрение результатов работы в практику

Практические рекомендации, разработанные в диссертации, используются в работе СОКБ и микробиологической лаборатории НИИ антимикробной химиотерапии, г. Смоленск. Основные положения работы излагаются на лекциях и семинарах при проведении занятий со студентами, интернами и врачами на кафедре клинической фармакологии Смоленской государственной медицинской академии, на конференциях и семинарах Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ).

Основные положения, выносимые на защиту

- 1. *К. pneumoniae* является одним из основных грамотрицательных возбудителей нозокомиальных инфекций в ОРИТ стационаров России.
- 2. Штаммы *К. pneumoniae*, вызывающие нозокомиальные инфекции в ОРИТ стационаров России, характеризуются высоким уровнем резистентности к цефалоспоринам III-IV поколений, ингибиторо-защищенным пенициллинам, аминогликозидам, фторхинолонам, ко-тримоксазолу.
- 3. Для нозокомиальных штаммов *К. pneumoniae*, выделенных в ОРИТ, характерна высокая распространенность продукции β-лактамаз расширенного спектра.
- 4. Карбапенемы являются максимально активными в отношении нозокомиальных *К. pneumoniae*.
- 5. Выявлены отличия фармакодинамических параметров антибиотиков в отношении нозокомиальных *К. pneumoniae* в ОРИТ различных стационаров России.
- 6. Выбор антибиотиков для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, необходимо осуществлять на основании локальных данных о фармакодинамических параметров антибиотиков и распространенности штаммов, продуцирующих β-лактамаз расширенного спектра.

Апробация работы

Результаты исследования представлены на XIV Европейском конгрессе по клинической микробиологии и инфекционным заболеваниям (Прага, 2004 г.), на XII Российском национальном конгрессе «Человек и лекарство» (Москва, 2005 г.), конференции молодых ученых СГМА (Смоленск, 2005 г.), VII Международной конференции МАКМАХ/ESCMID (Москва, 2005), XIII Российском национальном конгрессе "Человек и лекарство" (Москва, 2006 г.), VII Европейском конгрессе по химиотерапии и инфекциям (Флоренция, 2005 г.), 45 Междисциплинарной конференции по антимикробным препаратам и химиотерапии (Вашингтон, 2005 г.), 16 Европейском конгрессе по клинической микробиологии и инфекционным болезням (Ницца, 2006 г.), совместном заседании кафедр клинической фармакологии, фармакологии, микробиологии, терапии ФПК и ППС, урологии, эндокринологии, факультетской хирургии и НИИ антимикробной химиотерапии Смоленской государственной медицинской академии (2006 г.).

Публикации

По материалам диссертации опубликовано 15 научных работ, из них 7 – в зарубежной печати, 7 - в центральной печати, 1 - в местной печати.

Объём и структура диссертации

Диссертация изложена на 157 страницах машинописного текста и состоит из введения, обзора литературы, материалов и методов исследования, результатов и обсуждения собственных исследований, заключения, выводов, практических рекомендаций, списка литературы, который включает 32 отечественных и 138 иностранных источника. Материалы иллюстрированы 25 таблицами, 42 рисунками, содержат 1 приложение.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

В исследование включались пациенты ОРИТ стационаров из различных регионов России с нозокомиальными инфекциями, вызванными грамотрица-

тельными возбудителями. Микроорганизмы одного вида, повторно выделенные у одного пациента, из дальнейшего анализа исключались. На каждый штамм заполнялась специально разработанная индивидуальная регистрационная карта. Выделенные штаммы грамотрицательных возбудителей передавались в центральную лабораторию (НИИ антимикробной химиотерапии Смоленской государственной медицинской академии), где проводилась их реидентификация. По результатам реидентификации в исследование отбирались штаммы *К. pneumoniae*.

До определения чувствительности к антибиотиками чистые культуры *К. pneumoniae* хранились в триптиказо-соевом бульоне с добавлением 10% глицерина в морозильной камере при температуре –70°C.

Определение чувствительности *K. pneumoniae* к антибиотикам проводили в соответствии с рекомендациями Национального комитета по клиническим и лабораторным стандартам США (NCCLS, 2004) и Методическими указаниями по определению чувствительности микроорганизмов к антибактериальным препаратам (МУК 4.2.1890-04. 2004). При тестировании использовали двойные серийные разведения в агаре Мюллера-Хинтон II (Becton Dickinson, США) химически чистых субстанций. Определялись минимальные подавляющие концентрации амикацина, амоксициллина/клавуланата, ампициллина, гентамицина, имипенема, ко-тримоксазола, левофлоксацина, меропенема, пиперациллина, пиперациллина/тазобактама, тикарциллина/клавуланата, цефепима, цефоперазона, цефоперазона/сульбактама, цефотаксима, цефотаксима/клавуланата, цефтриаксона, цефтазидима, цефтазидима/клавуланата, ципрофлоксацина, эртапенема. Для интерпретации результатов определения чувствительности к цефоперазону/сульбактаму использовали критерии цефоперазона. Контроль качества определения чувствительности производили с использованием референтных штаммов Американской коллекции типовых культур (ATCC) E. coli ATCC 25922[®] и E. coli ATCC 35218[®].

Определение продукции штаммами *К. pneumoniae* β-лактамаз расширенного спектра (БЛРС) проводилось на основании сравнения МПК цефотаксима, цефотаксима/клавуланата, и цефтазидима, цефтазидима/клавуланата. При снижении МПК цефотаксима или цефтазидима не менее чем в 8 раз (на 3

последовательных двукратных разведения) в присутствии ингибитора, в сравнении со значениями МПК соответствующих цефалоспоринов без ингибитора, штамм расценивался как продуцент БЛРС. Кроме этого для выявления продуцентов БЛРС использовался метод двойных дисков с применением дисков с амоксициллином/клавуланатом (20/10 мкг), цефотаксимом (30 мкг) и цефтазидимом (30 мкг). Продукция БЛРС определялась при увеличении зоны подавления роста вокруг диска с цефалоспорином ІІІ поколения напротив диска с клавуланатом. Штамм *К. pneumoniae* считался продуцентом БЛРС, если были получены положительные результаты при использовании хотя бы одного из двух данных методов.

Все полученные в ходе исследования данные вносились в базу данных, созданную в СУБД Access 2000, методом двойного ввода с последующей верификацией введенной информации. Обработка данных и анализ результатов исследования были проведены с использованием программ Excel (Microsoft, США) и M-Lab (НИИАХ, Смоленск).

Результаты собственных исследований

В период 2002-2004 гг. проведено обследование пациентов, находившихся в 33 ОРИТ стационаров из 22 городов различных регионов России: Владивосток, Волгоград, Воронеж, Екатеринбург (2 стационара), Иркутск, Казань, Краснодар (2 стационара), Красноярск (2 стационара), Москва (8 стационаров), Новосибирск, Омск, Пермь, Санкт-Петербург (2 стационара), Смоленск, Ставрополь, Тольятти, Томск, Тюмень, Уфа, Челябинск, Якутск, Ярославль.

Пациенты включались в исследование при наличии клинически и лабораторно подтверждённых нозокомиальных инфекций различной локализации (инфекций дыхательных путей, интраабдоминальных инфекций, инфекций кожи и мягких тканей, инфекций мочевыводящих путей, инфекций кровотока и других), вызванных грамотрицательными микроорганизмами.

Было обследовано 2296 пациентов с нозокомиальными инфекциями, вызванными грамотрицательными возбудителями. От данных пациентов были выделены 3042 штамма грамотрицательных микроорганизмов, в том числе

420 штаммов *К. pneumoniae* (рис. 1), которые были выделены от 420 пациентов с нозокомиальными инфекциями в 29 из 33 ОРИТ. Среди этих пациентов было 305 взрослых пациентов (211 мужчин и 94 женщины) и 115 детей (75 мальчиков и 40 девочек).

Рис. 1. Основные грамотрицательные возбудители нозокомиальных инфекций у пациентов ОРИТ российских стационаров.

Частота выделения *К. pneumoniae* среди грамотрицательных микроорганизмов составила 13,8% (420/3042), при этом *К. pneumoniae* явилась третьим по частоте грамотрицательным возбудителем нозокомиальных инфекций (рис. 1) и наиболее частым представителем семейства *Enterobacteriaceae* (30,3%, 420 из 1387 энтеробактерий).

Были выявлены существенные различия в частоте выделения клебсиелл в различных стационарах. Так, *К. pneumoniae* являлись лидирующими грамотрицательными возбудителями в Областной детской клинической больнице, Иркутск (24,5%); Городской клинической больнице №15, Москва (28%); Научном центре сердечно-сосудистой хирургии, Москва (42,6%). Наряду с этим, *К. pneumoniae* были наиболее частыми возбудителями среди представителей семейства *Enterobacteriaceae* в Краевой клинической больнице № 1, Владивосток (37,5% от общего количества энтеробактерий); Областной детской клинической больнице, Иркутск (32,9%); Детской республиканской клинической больнице, Казань (39,6%); Клинической больнице скорой медицинской помощи, Красноярск (52,4%); НИИ нейрохирургии, Москва (57,4%); Городской

клинической больнице № 15, Москва (40%); Научном центре сердечнососудистой хирургии, Москва (69,4%); Областной клинической больнице, Новосибирск (51,4%); Областной клинической больнице, Омск (40,7%); Клинике Военно-полевой хирургии ВМА, Санкт-Петербург (46,8%); Областной клинической больнице, Смоленск (57,1%).

Наиболее часто клебсиеллы выделялись при инфекциях нижних дыхательных путей, инфекциях мочевыводящих путей, интраабдоминальных инфекциях (рис. 2)

Рис. 2. Локализация нозокомиальных инфекций, вызванных *K. pneumoniae*.

Общие результаты определения фармакодинамических параметров антибиотиков в отношении нозокомиальных *K. pneumoniae*

На основании полученных данных определения МПК исследованные штаммы *К. pneumoniae* были распределены на категории чувствительный (Ч), умеренно-резистентный (У), резистентный (Р). К нечувствительным были отнесены умеренно-резистентные и резистентные штаммы (табл. 1).

Нозокомиальные штаммы *К. pneumoniae*, выделенные в российских ОРИТ, отличались высоким уровнем резистентности к ампициллину, пиперациллину, ингибиторозащищенным пенициллинам, цефалоспоринам III-IV поколений: все штаммы были нечувствительны к ампициллину, нечувствительными к пиперациллину являлись 85,9% штаммов, к амоксициллину/клавуланату – 73,8%, к пиперациллину/тазобактаму – 42,4%, к цефалоспо-

ринам III-IV поколений – 57,1% (цефтазидим) - 77,6% (цефоперазон) штаммов. Однако цефоперазон/сульбактам проявлял более высокую активность: нечувствительными к нему были 29,8%, тогда как 70,2% штаммов сохраняли чувствительность.

Таблица 1 Фармакодинамические параметры антибиотиков в отношении нозокомиальных штаммов *K. pneumoniae* (n=420)

Антибиотики	Ч (%)	У (%)	P (%)	МПК ₅₀ , мг/л	МПК ₉₀ , мг/л	Диапазон МПК, мг/л
Амикацин	68,6	8,1	23,3	8	512	0,25-512
Амоксициллин/клавуланат	26,2	34,5	39,3	16	32	1-128
Ампициллин	0,0	0,5	99,5	256	256	16-256
Гентамицин	24,7	1,7	73,6	64	256	0,25-256
Имипенем	100,0	0,0	0,0	0,25	0,5	0,06-4
Ко-тримоксазол	37,6	0,0	62,4	256	256	0,125-256
Левофлоксацин	73,3	5,5	21,2	0,5	16	0,03-64
Меропенем	100,0	0,0	0,0	0,06	0,125	0,06-2
Пиперациллин	14,1	1,4	84,5	256	256	4-256
Пиперациллин/тазобактам	57,6	12,6	29,8	16	256	1-256
Тикарциллин/клавуланат	15,2	5,7	79,1	256	256	1-256
Цефепим	38,6	14,0	47,4	16	256	0,06-256
Цефоперазон	22,4	1,9	75,7	256	256	0,125-256
Цефоперазон/сульбактам	70,2	18,6	11,2	16	64	0,06-128
Цефотаксим	24,3	5,9	69,8	128	256	0,06-256
Цефтазидим	42,9	3,8	53,3	32	256	0,125-256
Цефтриаксон	24,5	5,3	70,2	256	256	0,06-256
Ципрофлоксацин	61,9	7,4	30,7	0,5	32	0,03-128
Эртапенем	97,4	0,9	1,7	0,06	0,5	0,06-16

Результаты исследования продемонстрировали сохранение высокой активности карбапенемов против нозокомиальных *К. pneumoniae*: все штаммы были чувствительны к имипенему и меропенему. Особый интерес представляли результаты определения фармакодинамических характеристик эртапе-

нема, что было проведено впервые в отношении большой выборки нозокомиальных штаммов *К. pneumoniae* в России. Было получено, что к эртапенему нечувствительными являлись только 2,6% штаммов.

При анализе фармакодинамических параметров аминогликозидов в отношении нозокомиальных клебсиелл обращает на себя внимание высокая частота резистентности к гентамицину (75,2%) и также сравнительно невысокая активность амикацина (31,4% нечувствительных штаммов).

Нечувствительными к ципрофлоксацину являлись 38,1% штаммов, в то же время левофлоксацин проявлял несколько более высокую активность по сравнению с ципрофлоксацином: нечувствительными к данному антибиотику были 26,7% штаммов. При этом МПК $_{50}$ для фторхинолонов составила 0,5 мг/л, а МПК $_{90}$ составляла 16 мг/л для левофлоксацина, 32 мг/л – для ципрофлоксацина.

Низкая активность цефалоспоринов III-IV поколений позволила предположить высокую частоту БЛРС-продуцентов среди исследованных штаммов. При использовании фенотипических методов, продукция БЛРС была выявлена у 342 штаммов (81,4%) (рис. 3).

Рис. 3. Продукция БЛРС нозокомиальными штаммами *K. pneumoniae*.

При изучении распространенности БЛРС-продуцентов в ОРИТ различных стационаров наблюдалась следующая тенденция: в стационарах с высокой частотой инфекций, вызванных *К. pneumoniae*, отмечалась высокая частота продукции БЛРС - более 60% (табл.2).

Таблица 2 Распространенность *К. pneumoniae*, продуцирующих БЛРС, в российских ОРИТ.

Город	Стационар	% БЛРС+ <i>K. pneumoniae</i> (кол-во БЛРС+ <i>K. pneumoniae</i> /кол-во <i>K. pneumoniae</i>)				
Владивосток	ККБ №1	100% (12/12)				
Воронеж	ГКБ №10	-* (3/4)				
Екатеринбург	ГКБ №40	-* (6/7)				
Екатеринбург	ОДКБ	-* (5/7)				
Иркутск	ОДКБ	92% (23/25)				
Казань	ДРКБ	71,4% (21/15)				
Краснодар	ККБ	-* (2/3)				
Краснодар	ГКБ №2	80,9% (17/21)				
Красноярск	КБСМП	90,9% (30/33)				
Красноярск	ККБ	-* (2/2)				
Москва	ГВКГ	-* (6/7)				
Москва	нии нх	88,8% (24/27)				
Москва	ГКБ №15	78,5% (22/28)				
Москва	Центр хирургии	-* (2/6)				
Москва	Онкоцентр	-* (0/3)				
Москва	MMA	-* (0/3)				
Москва	ДГКБ №9	-* (3/4)				
Москва	НЦ ССХ	97,6% (42/43)				
Новосибирск	ОКБ	78,9% (15/19)				
Омск	ОКБ	95,8% (23/24)				
Пермь	ГКБ №6	-* (1/5)				
Санкт-Петербург	BMA	82,7% (24/29)				
Смоленск	ОКБ	91,6% (33/36)				
Ставрополь	ДККБ	-* (2/3)				
Тольятти	ГКБ №5	-* (0/6)				
Томск	ОКБ	64,2% (9/14)				
Тюмень	ГКБ №2	-* (6/10)				
Челябинск	ГКБ №6	-* (0/1)				
Якутск	PБ №2	88,2% (15/17)				

^{* -} процент не определялся в связи с малым количеством исследованных штаммов

В связи с высокой распространенностью БЛРС-продуцирующих клебсиелл в изученных ОРИТ (64,2-100%), были определены фармакодинамические параметры антибиотиков в отношении данной категории штаммов.

Фармакодинамические параметры антибиотиков в отношении штаммов *К. pneumoniae*, продуцирующих β-лактамазы расширенного спектра

При исследовании фармакодинамических параметров антибиотиков в отношении БЛРС-продуцирующих нозокомиальных штаммов клебсиелл, было получено, что карбапенемы проявляли максимальную активность: к имипенему и меропенему сохраняли чувствительность все штаммы *К. pneumoniae*, продуцирующие БЛРС, к эртапенему были нечувствительны 3,2% штаммов (табл. 3).

Таблица 3 Фармакодинамические параметры антибиотиков в отношении штаммов *K. pneumoniae*, продуцирующих БЛРС (n=342).

Антибиотики	Ч, (%)	У, (%)	P, (%)	МПК ₅₀ , мг/л	МПК ₉₀ , мг/л	Диапазон МПК, мг/л
Амикацин	61,4	9,9	28,7	16	512	0,5-512
Амоксициллин/клавуланат	12,3	40,9	46,8	16	64	4-64
Гентамицин	10,5	1,8	87,7	128	256	0,25-256
Имипенем	100,0	0,0	0,0	0,25	0,5	0,125-4
Ко-тримоксазол	26,9	0,0	73,1	256	256	0,125-256
Левофлоксацин	69,9	6,4	23,7	0,5	16	0,03-64
Меропенем	100,0	0,0	0,0	0,06	0,125	0,06-2
Пиперациллин/тазобактам	49,4	15,2	35,4	32	256	2-256
Тикарциллин/клавуланат	0,6	5,5	93,9	256	256	16-256
Цефоперазон/сульбактам	64,3	22,8	12,9	1	64	0,03-128
Ципрофлоксацин	56,1	9,1	34,8	0,125	0,5	0,06-16
Эртапенем	96,8	1,2	2,0	1	64	0,03-128

В связи с тем, что использование карбапенемов должно быть ограничено с целью сохранения их как препаратов резерва, представляет особую значимость исследование активности антибиотиков других групп в отношении БЛРС-продуцирующих *К. pneumoniae*.

БЛРС-продуцирующие штаммы клебсиелл характеризовались низкой чувствительностью к гентамицину (89,5% нечувствительных штаммов), амоксициллину/клавуланату (87,7% нечувствительных штаммов), ко-тримоксазолу (73,1% нечувствительных штаммов), пиперациллину/тазобактаму (50,6% нечувствительных штаммов) (табл. 3, рис. 4). В то же время, левофлоксацин, цефоперазон/сульбактам, амикацин, ципрофлоксацин проявляли более высокую активность: нечувствительными к данным антибиотикам являлись от 30,1 до 43,9% штаммов. В связи с этим, особый интерес представляли фармакодинамические параметры данных антибиотиков в различных центрах.

Было получено, что цефоперазон/сульбактам сохранял высокую активность в отношении БЛРС-продуцирующих клебсиелл, выделенных в НИИ нейрохирургии им. Н.Н. Бурденко, Смоленской областной клинической больнице, Городской клинической больнице №15, Москва (рис. 4).

Рис. 4. Количество нечувствительных к цефоперазону/сульбактаму штаммов *К. pneumoniae*, продуцирующих БЛРС, в ОРИТ стационаров России.

К амикацину были чувствительны все БЛРС-продуценты, выделенные в Казанской детской республиканской больнице, Омской областной клинической больнице, Якутской республиканской больнице. Также высокая активность амикацина отмечалась в НИИ нейрохирургии (рис. 5).

Рис. 5. Количество нечувствительных к амикацину штаммов *K. pneumoniae*, продуцирующих БЛРС, в ОРИТ стационаров России.

Рис. 6. Количество нечувствительных к ципрофлоксацину штаммов *К. pneumoniae*, продуцирующих БЛРС, в ОРИТ стационаров России.

У ципрофлоксацина отмечена высокая активность против БЛРСпродуцирующих клебсиелл, выделенных в Иркутской областной детской клинической больнице, Смоленской областной клинической больнице и Казанской республиканской детской клинической больнице (рис. 6). Однако с учетом детского профиля стационаров в Иркутске и Казани, применение ципрофлоксацина может быть рекомендовано только для терапии жизнеугрожающих инфекций, вызванных *К. pneumoniae*.

Рис. 7. Количество нечувствительных к левофлоксацину штаммов *К. pneumoniae*, продуцирующих БЛРС, в ОРИТ стационаров России.

Левофлоксацин демонстрировал высокую активность в отношении БЛРС-продуцирующих *К. pneumoniae*, выделенных в Омской областной клинической больнице, Научном центре сердечно-сосудистой хирургии, Иркутской областной детской клинической больнице, Смоленской областной клинической больнице, Казанской республиканской детской клинической больнице (рис. 7). Однако детский профиль стационаров в Иркутске и Казани накладывает ограничение на использование левофлоксацина только для терапии жизнеугрожающих инфекций, вызванных *К. pneumoniae*.

Таким образом, в ОРИТ российских стационаров выявлены отличия фармакодинамических параметров цефоперазона/сульбактама, амикацина, ципрофлоксацина, левофлоксацина в отношении БЛРС-продуцирующих *К. pneumoniae*.

Выводы

- 1. К. pneumoniae является одним из основных грамотрицательных возбудителей нозокомиальных инфекций в ОРИТ российских стационаров (третий по частоте возбудитель грамотрицательных нозокомиальных инфекций, доля в структуре грамотрицательных возбудителей - 13,8%) и наиболее частым представителем семейства Enterobacteriaceae (30,3% нозокомиальных энтеробактерий). В ряде среди стационаров К. pneumoniae являлись превалирующими грамотрицательными возбудителями, составляя от 24,5 до 43,6% в структуре грамотрицательных возбудителей, а также наиболее частым представителем семейства Enterobacteriaceae, составляя 32,9-69,4% в структуре нозокомиальных энтеробактерий.
- 2. Наиболее оптимальными фармакодинамическими параметрами в отношении нозокомиальных *К. pneumoniae* характеризовались карбапенемы: чувствительность к имипенему и меропенему составила 100%, к эртапенему 97,4% при значениях МПК₅₀ и МПК₉₀ имипенема 0,25 и 0,5 мг/л, меропенема 0,06 и 0,125 мг/л, эртапенема 0,06 и 0,5 мг/л, соответственно.
- 3. Нозокомиальные штаммы *К. pneumoniae* в стационарах России отличаются высоким уровнем резистентности к пенициллинам (ампициллину 99,5%, пиперациллину 85,9%), ингибиторозащищенным пенициллинам (амоксициллину/клавуланату 73,8%, пиперациллину/тазобактаму 42,4%, тикарциллину/клавуланату 84,8%) цефалоспоринам III-IV поколений (цефотаксиму 75,7%, цефтриаксону 75,5%, цефоперазону 77,6%, цефтазидиму 57,1%, цефепиму 61,4%), аминогликозидам (амикацину 31,4%, гентамицину 75,3%), фторхинолонам (ципрофлоксацину 38,1%, левофлоксацину 26,7%).
- 4. Нозокомиальные штаммы *К. pneumoniae* в стационарах России характеризуются высокой частотой продукции β-лактамаз расширенного спектра (81,4%), которая варьирует от 64,2% (Областная клиническая больница, Томск) до 100% (Краевая клиническая больница, Владивосток).

- 5. Штаммы *К. pneumoniae*, вырабатывающие β-лактамазы расширенного спектра, проявляют высокую частоту перекрестной резистентности к ингибиторозащищенным β-лактамам (амоксициллину/клавуланату 87,7%, пиперациллину/тазобактаму 50,6%, цефоперазону/сульбактаму 35,7%), ассоциированной резистентности к фторхинолонам (ципрофлоксацину 43,9%, левофлоксацину 30,1%), аминогликозидам (гентамицину 89,5%, амикацину 38,6%).
- 6. Для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, в стационарах России препаратами выбора являются карбапенемы (имипенем, меропенем, эртапенем). Амикацин, левофлоксацин, ципрофлоксацин, цефоперазон/сульбактам могут быть рекомендованы для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, только на основании результатов определения чувствительности.

Практические рекомендации

- 1. В связи с высоким распространением БЛРС среди нозокомиальных штаммов *К. pneumoniae*, все нозокомиальные штаммы *К. pneumoniae* необходимо исследовать на предмет продукции БЛРС.
- 2. Рекомендации по терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, должны быть основаны на локальных данных по резистентности этого возбудителя и распространенности штаммов, продуцирующих БЛРС.
- 3. Препаратами выбора в стационарах с высокой распространенностью штаммов *К. pneumoniae*, продуцирующих БЛРС, являются карбапенемы.
- 4. Препаратами выбора в стационарах с низкой распространенностью штаммов *К. pneumoniae*, продуцирующих БЛРС, наряду с карбапенемами являются амоксициллин/клавуланат пиперациллин/тазобактам, цефалоспорины III-IV поколения (цефотаксим, цефтриаксон, цефоперазон, цефтазидим, цефепим), цефоперазон/сульбактам, амикацин, гентамицин, ципрофлоксацин, левофлоксацин.

- 5. Препаратами выбора для терапии нозокомиальных инфекций, вызванных *К. pneumoniae*, до получения результатов чувствительности являются:
 - в Областной детской клинической больнице, Иркутск; Городской клинической больнице № 2, Краснодар; Клинической больнице скорой медицинской помощи, Красноярск; Городской клинической больнице № 15, Москва; Областной клинической больнице, Новосибирск; Клинике военно-полевой хирургии Военно-медицинской академии, Санкт-Петербург карбапенемы;
 - Детской краевой клинической больнице, Казань; Республиканской больнице, Якутск амикацин, карбапенемы;
 - НИИ нейрохирургии им. Н.Н. Бурденко, Москва цефоперазон/сульбактам, амикацин, карбапенемы;
 - Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева левофлоксацин, карбапенемы;
 - Областной клинической больнице, Омск амикацин, левофлоксацин, карбапенемы;
 - Областная клиническая больница, Смоленск цефоперазон/сульбактам, ципрофлоксацин, левофлоксацин, карбапенемы.

Список научных работ, опубликованных по материалам диссертации

- 1. Резистентность нозокомиальных штаммов *К. pneumoniae* к аминогликозидам в детских стационарах России. // Сборник, посвященный 35-летию педиатрического факультета СГМА. Смоленск, 2001 г. С. 35. (Соавт. Суина 3.М.)
- 2. Резистентность основных грамотрицательных возбудителей нозокомиальных инфекций к современным антибиотикам в Смоленской областной клинической больнице. // Клиническая микробиология антимикробная химиотерапия. 2001. Том 3. Приложение 1. С. 33. (Соавт. Решедько Г.К., Стецюк О.У., Кречикова О.И., Осипова В.В., Бублеева Л.П.).
- 3. Results of Russian country-wide surveillance of antimicrobial resistance of nosocomial gram-negative bacteria (NGNB) from 28 Intensive Care Units

- (ICUs). // Proceedings of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, USA. 2001. P. 113, abst. 67. (Coauthors: Stratchounski L., Reshedko G., Stetsiouk O., Kretchikova O.).
- 4. Рекомендации по оптимизации антимикробной терапии нозокомиальных инфекций, вызванных грамотрицательными бактериями в отделениях реанимации и интенсивной терапии. // Клиническая микробиология антимикробная химиотерапия. 2002. Том 4. С. 379-390. (Соавт. Страчунский Л.С., Решедько Г.К., Стецюк О.У., Кречикова О.И., Суина З.М., Андреева А.С. и др.).
- 5. Сравнительная активность цефепима и других антибиотиков в отношении нозокомиальных грамотрицательных возбудителей инфекций в России. // Клиническая микробиология и антимикробная химиотерапия. 2003. Том 5. С. 259-274. (Соавт. Страчунский Л.С., Решедько Г.К., Эйдельштейн М.В., Стецюк О.У., Андреева А.С., исследовательская группа РОСНЕТ).
- 6. Comparative results of a 7-year surveillance programme for nosocomial Gram-negative pathogens prevalence in Russian ICUs. // Proceedings of the 14th European Congress of Clinical Microbiology and Infectious Diseases, Prague, Czech Republic. 2004. P. 594, abst. R2066. (Co-authors: Stratchounski L., Reshedko G.).
- 7. Структура и резистентность к антибиотикам основных грамотрицательных возбудителей нозокомиальных инфекций в отделении реанимации и интенсивной терапии Смоленской областной клинической больницы в 2002-04 гг. // Тезисы XII Российского национального конгресса «Человек и лекарство». М., 2005 г. С. 529. (Соавт. Решедько Г.К., Кречикова О.И., Сухорукова М.В., Иванчик Н.В., Эйдельштейн И.А., Павлюков Р.А.).
- 8. Динамика антимикробной резистентности нозокомиальных штаммов *К. pneumoniae* в ОРИТ России. // Клиническая микробиология и антимикробная химиотерапия. – 2005.– Том 7. – Приложение 1. – С. 51. (Соавт. Решедько Г.К., Кречикова О.И., Сухорукова М.В., Иванчик Н.В., Эйдельштейн И.А., Павлюков Р.А.).
- 9. Antimicrobial resistance among nosocomial *Klebsiella pneumoniae* from Russian Intensive Care Units. // Proceedings of the 45th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA. 2005. –

- P. 167, abst. E-800. (Co-authors: Reshedko G., Kretchikova O., Sukhorukova M., Edelstein M., RosNet Group).
- Antimicrobial resistance in gram-negative pathogens isolated from patients with nosocomial lower respiratory tract infections in intensive care units. // Proceedings of the 7th European Congress of Chemotherapy and Infection, Florence, Italy. 2005. P. 46, abst. 089. (Co-authors: Reshedko G., Rosnet Group).
- Rapid country-wide dissemination of nosocomial CTX-M-14-b-lactamase-producing strains in Russia. // Proceedings of the 45th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA. 2005. P. 114, abst. C2-766 (Co-authors: Stepanova M., Edelstein M., Stratchounski L.).
- 12. Activity of different antimicrobials against nosocomial cefotaxime-resistant *Klebsiella pneumoniae*. // Proceedings of the 16th European Congress of Clinical Microbiology and Infectious Diseases, Nice, France. 2006. Abst. R2023 (Co-authors: Reshedko G., Khaykina E.).
- Current state of gram-negative hospital-acquired urinary tract infections in Russian intensive care units: pathogens and their resistance phenotypes. // Proceedings of the 16th European Congress of Clinical Microbiology and Infectious Diseases. – Nice, France 2006. – Abst. P1632 (Co-authors: Reshedko G., Khaykina E.).
- 14. Тенденции антимикробной резистентности нозокомиальных штаммов *К. pneumoniae* в России. // Тезисы XIII Российского национального конгресса «Человек и лекарство». – М., 2006 г. - С.446-447. (Соавт. Решедько Г.К.).
- 15. Нозокомиальные инфекции кожи и мягких тканей: структура грамотрицательных возбудителей и их резистентность к антибиотикам. // Клиническая микробиология и антимикробная химиотерапия. 2006. Том 7. № 2. Приложение 1. С. 34-35. (Соавт. Решедько Г.К., Привольнев В.В.).