0.1 Hypothesis Test

1. Step I (Specify hypotheses)

 $H_0: \beta_1 = 0$ which is a specific hypothesis

 $H_A: \beta_1 > 0$ however, is a general hypothesis.

2. Step II (Test statistics)

Estimated value $\hat{\beta}_1$.

And under H_0 , $E[\beta_1|H_0]$ is 0.

So the

$$\frac{\hat{\beta}_1 - E[\beta_1 | H_0]}{\hat{se}(\hat{\beta}_1)} \sim t_{n-2}$$

is the standardized test statistics, where

$$\hat{se}(\hat{\beta_1}) = \sqrt{\frac{\hat{\sigma}^2}{s_{xx}}} = \frac{\hat{\sigma}}{\sqrt{s_{xx}}}$$

3. Step III (Decision rule)

Reject H_0 at $\alpha = 0.05$ if observed test statistic $> t_{n-2=136,0.95} = 1.66$

Note that $0.95 = 1 - \alpha$

4. Step IV (Calculations)

Observed test statistic

$$t = \frac{\hat{\beta}_1 - 0}{\hat{se}(\hat{\beta}_1)} = \frac{0.007045 - 0}{\sqrt{\frac{\hat{\sigma}^2}{\hat{s}_{xx}}}} = \frac{0.007045}{\sqrt{0.0259/218994.5}} = 20.48$$

5. Step V (Conclusion)

As $20.48 \gg 1.66$, reject H_0 in favour of H_A and conclude $\beta_1 > 0$.

So the slope of the linear regression model relating average temperature anomalies(?) to year (time) is significantly positive \implies temperatures have been increasing over time!

Finally, ew need to assess the analysis and the results

- Is the data we used the best available to address the research question? (issue of the science)
- Is the model a good fit?

 (is the model not only appropriate, but also useful?)

$$R^2 = \frac{SS_{Regression}}{SS_{Total}} = 75.5\%$$

is the coefficient of determination.

Just a summary measure! better answer is look at the assumptions underlying the model and check if they are satisfied.

Check the residual plots (here that means we still have a caveat!

- (!) Linear models just address association (correlation), they do not necessarily reflect causation (no measure of possible causal factors in these data).
- (!) Also this analysis does not necessarily rule out alternative explanations.

Like time series (seasonal trend maybe?)

In summary, model and analysis are indicative of a positive (association), an increase in global av. temp over time, but the research question is wider than that and we need to do further research (more data, more analysis).