Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 1 de octubre de 2023

CONTENIDO

1.	Introducción	3
2.	Marco teorico	3
3.	Primera Parte 3.1. Circuito	4
4.	Segunda Parte4.1. Circuito4.2. Procedimiento4.3. Simulación4.4. Experimental	5 5 6 7
5.	Tercer Parte	7
6.	Conclusión	7

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de las resistencias en función del datasheet del UJT.
- 2. Abrir el interruptor L1 y cerrar el interruptor L2.
- 3. Variar la V_E desde 0-30V y medir la corriente I_E .
- 4. Completar la tabla propuesta modificándola si fuera necesario.
- 5. Graficar la curva $I_E = f(V_E)$ con los datos relevados de la tabla.
- 6. Abrir el interruptor L2 y cerrar el interruptor L1.
- 7. Variar la VCC desde 0-30V y medir la corriente IB.
- 8. Completar la tabla propuesta modificándola si fuera necesario.

3.3. Simulación

3.4. Experimental

V_E	I_E
0	0
2	0
4	0
6	0
8	0
10	0
12	0
14	0
16	0
18	0
20	0
22	0
24	0
26	0
28	0
30	0
	'

V_{CC}	V_B	I_B
0	0	0
2	0	0
4	0	0
6	0	0
8	0	0
10	0	0
12	0	0
14	0	0
16	0	0
18	0	0
20	0	0
22	0	0
24	0	0
26	0	0
28	0	0
30	0	0

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

- 1. Armar el circuito.
- 2. Medir y graficar la señal en OUT1
- 3. Medir y graficar la señal en OUT2

Fecha: 2023-10-01

Cátedra: XXXX (XRX)

4. Variar el potenciómetro y observar el efecto sobre la OUT1 y la OUT2

4.3. Simulación

4.4. Experimental

5. Tercer Parte

Parametro	Valor
η	
R_{BBO}	
$V_{EB1(SAT)}$	
$V_{(BR)B1E}$	
P_D	
I_J	

6. Conclusión

Página 7 de 7