Homework 4 Solutions

Section 8:

12. Find the orbit of 1 under the permutation

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}.$$

Solution.

$$\tau(1) = 2$$
 $\tau(2) = 4$
 $\tau(4) = 3$
 $\tau(3) = 1$

The orbit of 1 under τ is $\{1, 2, 3, 4\}$.

42. Let A be a set and B a subset of A. Determine whether $\{\sigma \in S_n \mid \sigma[B] \subseteq B\}$ is sure to be a subgroup of S_A under the induced operation, where $\sigma[B] = \{\sigma(x) \mid x \in B\}$.

Solution. No, the set needn't be a subgroup under the induced operation. Consider the counterexample with $A=\mathbb{R}$ and $B=\mathbb{Z}$. $\sigma(x)=2x$ defines a permutation $\sigma\in S_{\mathbb{R}}$, with inverse $\sigma^{-1}(x)=\frac{x}{2}$. $\sigma[\mathbb{Z}]\subseteq\mathbb{Z}$, so σ is in the given set, but clearly σ^{-1} is not, since (for instance) $1\in\mathbb{Z}$, but $\sigma^{-1}(1)=\frac{1}{2}\notin\mathbb{Z}$.

46. Show that S_n is nonabelian for $n \geq 3$.

Proof. Given $n \geq 3$, consider the permutations $\sigma, \tau \in S_n$ given by

$$\sigma(k) = \begin{cases} 1 & \text{if } k = 2\\ 2 & \text{if } k = 1\\ k & \text{else} \end{cases} \quad \psi(k) = \begin{cases} 2 & \text{if } k = 3\\ 3 & \text{if } k = 2\\ k & \text{else} \end{cases}$$

for $k \in \{1, 2, ..., n\}$. (Note that σ and τ are clearly permutations, since $\sigma^2 = \tau^2 = \iota$. In fact, these are the cycles (1, 2) and (2, 3) of Section 9.) Then

$$(\sigma\tau)(1) = \sigma(\tau(1)) = \sigma(1) = 2 \neq 3 = \tau(2) = \tau(\sigma(1)) = (\tau\sigma)(1).$$

Hence $\sigma \tau \neq \tau \sigma$ and therefore S_n is nonabelian.

Section 9:

9. Compute (1,2)(4,7,8)(2,1)(7,2,8,1,5). Solution. (1,2)(4,7,8)(2,1)(7,2,8,1,5) = (1,5,8)(2,4,7)

12. Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix}$ as a product of disjoint cycles and then as a product of transpositions.

Solution.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix} = (1, 3, 4, 7, 8, 6, 5, 2) = (1, 2)(1, 5)(1, 6)(1, 8)(1, 7)(1, 4)(1, 3)$$

29. Show that for every subgroup H of S_n for $n \geq 2$, either all the permutations in H are even or exactly half of them are even.

Proof. Let H be a subgroup of S_n for some $n \geq 2$. If all elements of H are even, then we are done, so suppose not all elements of H are even. Then there exists some odd $\sigma \in H$. Consider $\lambda_{\sigma}: H \to H, \tau \mapsto \sigma \tau$, which we showed in class is a permutation of H.

Let A be the set of even permutations in H and B the set of odd permutations in H. Given $\tau \in A$, τ is even and σ is odd, so $\sigma \tau$ is odd. Hence $\lambda_{\sigma}(A) \subseteq B$. Similarly, $\lambda_{\sigma}(B) \subseteq A$. Since λ_{σ} is injective, this implies $|A| \leq |B|$ and $|B| \leq |A|$, i.e. |A| = |B|. Since $A \cup B = H$ and $A \cap B = \emptyset$, we have |H| = |A| + |B| = 2|A| and so $|A| = \frac{|H|}{2}$.

- Therefore half the permutations in H are even.
- 33. Consider S_n for a fixed $n \geq 2$ and let σ be a fixed odd permutation. Show that every odd permutation in S_n is a product of σ and some permutation in A_n .

Proof. Note that, since σ is odd, so is σ^{-1} (as discussed in class). Let $\tau \in S_n$ be an odd permutation. Then, since both σ^{-1} and τ are odd, it must be that $\sigma^{-1}\tau$ is even, i.e. $\sigma^{-1}\tau \in A_n$. Then $\tau = \sigma(\sigma^{-1}\tau)$ and so τ is a product of σ and a permutation in A_n .

34. Show that $(1, 2, ..., m)^2$ is a cycle if m is odd.

Proof. Suppose m is odd. Then m = 2k + 1 for some $k \in \mathbb{Z}^+$ and we may explicitly compute:

$$(1, 2, \dots, m)^2 = (1, 2, \dots, 2k + 1)^2$$

= $(1, 3, 5, \dots, 2k + 1, 2, 4, 6, \dots, 2k).$

Therefore $(1, 2, ..., m)^2$ is a cycle if m is odd.

35. Following the line of thought opened by Exercise 34, complete the following with a condition involving n and r so that the resulting statement is a theorem:

If σ is a cycle of length n, then σ^r is also a cycle if and only if...

Solution. ... gcd(n,r) = 1.

Additional Exercise:

1. Let f be a group isomorphism of S_3 with itself. Prove that there exists some $\sigma \in S_3$ such that $f(\tau) = \sigma \tau \sigma^{-1}$ for all $\tau \in S_3$ (that is, σ does not depend on τ).

Proof. Set $\operatorname{Aut}(S_3) = \{\phi : S_3 \to S_3 \mid \phi \text{ is a group isomorphism}\}$ and, given $\sigma \in S_3$, define $c_{\sigma} : S_3 \to S_3$ by $c_{\sigma}(\tau) = \sigma \tau \sigma^{-1}$. We will show that $\operatorname{Aut}(S_3) = \{c_{\sigma} \mid \sigma \in S_3\}$ and therefore $f = c_{\sigma}$ for some $\sigma \in S_3$.

First, we note that c_{σ} is indeed a group isomorphism for each $\sigma \in S_3$. It is easy to check that $c_{\sigma} \circ c_{\sigma^{-1}} = \mathrm{id}_{S_3} = c_{\sigma^{-1}} \circ c_{\sigma}$ for each $\sigma \in S_3$. Hence each c_{σ} is bijective. Also, for $\sigma, \tau, \rho \in S_3$, we have

$$c_{\sigma}(\tau \rho) = \sigma \tau \rho \sigma^{-1} = \sigma \tau \sigma^{-1} \sigma \rho \sigma^{-1} = c_{\sigma}(\tau) c_{\sigma}(\rho),$$

showing that c_{σ} is a group isomorphism for each $\sigma \in S_3$, and hence $\{c_{\sigma} \mid \sigma \in S_3\} \subseteq \operatorname{Aut}(S_3)$.

Furthermore, if $\sigma, \tau, \rho \in S_3$ and $c_{\sigma}(\tau) = c_{\rho}(\tau)$, then $\sigma \tau \sigma^{-1} = \rho \tau \rho^{-1}$. Multiplying on the left by σ^{-1} and on the right by ρ , we have $\tau \sigma^{-1} \rho = \sigma^{-1} \rho \tau$. But since τ was arbitrary, this implies that $\sigma^{-1} \rho$ commutes with every element of S_3 . Exercise 47 from Section 8 stated that ι was the only element of S_3 for which this is true, so it must be that $\sigma^{-1} \rho = \iota$, i.e. $\rho = \sigma$. Hence the c_{σ} are all distinct, i.e. $|\{c_{\sigma} \mid \sigma \in S_3\}| = |S_3| = 6$.

Now, if $\tau \in S_3$ is a transposition and $\phi: S_3 \to S_3$ is an isomorphism, then $\phi(\tau)^2 = \phi(\tau^2) = \phi(\iota) = \iota$. Since $\phi(\iota) = \iota$ and ϕ is injective, $\phi(\tau) \neq \iota$. It is easily checked that the transpositions are the only non-identity elements of S_3 which square to ι . Therefore $\phi(\tau)$ must be a transposition and so ϕ permutes the transpositions in S_3 . Now, we have

$$\phi(\iota) = \iota$$

$$\phi((1,2,3)) = \phi((1,3)(1,2)) = \phi((1,3))\phi((1,2))$$

$$\phi((1,3,2)) = \phi((1,2)(1,3)) = \phi((1,2))\phi((1,3)),$$

so ϕ is completely determined by where it sends the transpositions. Together, these observations yield an *injective* map $\operatorname{Aut}(S_3) \hookrightarrow S_{\{\text{transpositions in } S_3\}}$. Since there are 6 permutations of the 3-element set $\{\text{transpositions in } S_3\}$, we have

$$|\operatorname{Aut}(S_3)| \le |S_{\{\text{transpositions in } S_3\}}| = 6.$$

But now we have shown that

$$6 = |\{c_{\sigma} \mid \sigma \in S_3\}| \le |\operatorname{Aut}(S_3)| \le 6.$$

Therefore $\{c_{\sigma} \mid \sigma \in S_3\} = \operatorname{Aut}(S_3)$, as desired. It follows that $f \in \{c_{\sigma} \mid \sigma \in S_3\}$ and so there exists some $\sigma \in S_3$ such that $f(\tau) = c_{\sigma}(\tau) = \sigma \tau \sigma^{-1}$ for all $\tau \in S_3$.

[Note: This statement can be restated more simply by saying, "All automorphisms of S_3 are inner." As you may guess, automorphisms of S_3 are simply isomorphisms from S_3 to itself. *Inner* automorphisms are those obtained by *conjugation*, that is, our c_{σ} 's.

This simpler statement generalizes to "For $n \in \mathbb{Z}^+ \setminus \{6\}$, all automorphisms of S_n are inner." However, the proof does not so easily generalize. Can you see what is different in the general case?]