Symmetric matrices — Tutorial — 1

Mathematics, SCAN 2ND year, 2023–2024 — Last update: April 12, 2024

Bilinear symmetric / quadratic form from their matrix

For each of the following square matrices, provide the expressions of the bilinear symmetric form φ_i and of the quadratic form q_i , the matrix of which, in the canonical basis of \mathbb{R}^n , is A.

$$1. \ A_1 \ = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}.$$

$$2. \ A_2 = \begin{pmatrix} 0 & 1 & 3 \\ 1 & -2 & 4 \\ 3 & 4 & 0 \end{pmatrix}.$$

$$2. \ A_2 = \begin{pmatrix} 0 & 1 & 3 \\ 1 & -2 & 4 \\ 3 & 4 & 0 \end{pmatrix}.$$

$$3. \ A_3 = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & -3 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}.$$

Polar form and change of basis

Let us consider the function $q: \mathbb{R}^3 \to \mathbb{R}$ defined as: $q(x,y,z) = 4x^2 + 2y^2 + z^2 + 2xz - 2yz$.

- 1. Check that q is a quadratic form on \mathbb{R}^3 , and provide its matrix in the canonical basis of \mathbb{R}^3 .
- 2. Check that the three vectors u = (1, -1, -2), v = (0, 1, 1) and w = (0, 0, 1) define a basis of \mathbb{R}^3 , and provide, by two different methods, the matrix of q in this basis.
- 3. Is the polar form of q an inner product?

Quadratic form on a space of polynomials and its matrix in bases We consider the map $\varphi : \mathbb{R}_3[X] \to \mathbb{R}_3[X]$, defined as:

$$\varphi(P,Q) = P(0)Q(0) + \int_0^1 P'(x)Q'(x) \, dx \, .$$

- 1. Prove that φ is an inner product on $\mathbb{R}_3[X]$.
- 2. Let us denote by the vector subspace of $\mathbb{R}_3[X]$ spanned by the polynomials 1 and X, and let us consider a basis \mathcal{B} of $\mathbb{R}_3[X]$, of the form $\mathcal{B} = (1, X, Q, R)$, where Q and R belong to F^{\perp} .
 - a) Explain why such a basis indeed exists.
 - b) What can you say about the matrix $[\varphi]_{\mathcal{B}}$? (provide as much information as possible).
 - c) Provide all the bases \mathcal{B} of this form, with $\deg(Q) = 2$ and $\deg(R) = 3$ and

$$[\varphi]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}.$$

3×3 symmetric matrix

Let us consider the matrix $A = \begin{pmatrix} 6 & 4 & 5 \\ 4 & 6 & 5 \\ 5 & 5 & 5 \end{pmatrix}$.

- 1. a) What is the rank of A. Deduce from this rank one eigenvalue of A, and its multiplicity.
 - b) Show that 2 is an eigenvalue of A.
 - c) Find the remaining eigenvalue of A.
- 2. Compute the characteristic polynomial of A, and recover its eigenvalues.
- 3. Provide a basis of eigenvectors of A, and diagonalize A in an orthonormal basis.
- 4. Is A the matrix of an inner product?

Exercise 5. 3×3 symmetric matrix, 2

Let us consider the matrix $A = \begin{pmatrix} 7 & 2 & -2 \\ 2 & 4 & -1 \\ -2 & -1 & 4 \end{pmatrix}$.

- 1. Compute the eigenvalues of A, and diagonalize A in an orthonormal basis.
- 2. Is A the matrix of an inner product?

Exercise 6. 3×3 symmetric matrix, 3

Let us consider the matrix $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$.

- 1. Compute the eigenvalues of A, and diagonalize A in an orthonormal basis (let us denote by \mathcal{B} this orthonormal basis, and by $\mathcal{B}_{\operatorname{can}}$ the canonical basis of \mathbb{R}^3).
- 2. Let us denote by φ the symmetric bilinear form on \mathbb{R}^3 with matrix A in the basis \mathcal{B}_{can} . Is this bilinear form an inner product?
- 3. Is \mathcal{B} orthogonal/orthonormal for φ ?
- 4. Provide a basis \mathcal{B}' which is orthonormal for φ and orthogonal for the canonical dot product of \mathbb{R}^3 .

Exercise 7. Matrix, rank, and signature of a quadratic form

For each of the following quadratic forms on \mathbb{R}^n , provide its matrix in the canonical basis of \mathbb{R}^n , its signature, and its rank, and say whether the corresponding polar form is, or not, an inner product.

1.
$$n = 2$$
, $q(x) = x_1 x_2$

4.
$$n = 3$$
, $q(x) = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$

2.
$$n = 2$$
, $q(x) = 9x_1^2 + 2x_1x_2 - x_2^2$

5.
$$n = 3$$
, $q(x) = 2x_1^2 + 6x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_1x_3$

3.
$$n = 3$$
, $q(x) = x_1^2 - x_2^2 - x_1 x_3$

$$6 x_2 x_3$$

2