

COMS4040A & COMS7045A Assignment 2 – Report

Marc Marsden 1437889 BDA Hons

May 14, 2020

Introduction

This report compares the performance of CUDA parallel computing and serial computing by applying them to three different mathematical operations. The first section will compare the performance of transposing a matrix. The second section looks at the performances of vector addition with reduction and the final section will analyse the performances on matrix multiplication. The results obtained in this report were achieved by making use of the CUDA Toolkit release 10.1, V10.1.243, running the code on Google Colab, which has the following specs:

• CPU: Intel Xeon @ 2.00GHz with 40MB L3 cache and 1 available core with 2 threads.

• GPU: Nvidia Tesla T4, with 2560 cores, 8.1 TFLOPS Single-Precision, 16GB GDDR6 VRAM.

RAM: 13GBDisk: 34GB

Problem 1: Transposition

This section compares the of transposing a matrix serial version with the global memory version and shared memory version of CUDA parallel programming. In the global kernel, the block size was kept constant at 256 threads and the grid size was calculated as (N*N)\num_threads, where N is the size of the data and num_threads is the block size. For the shared memory kernel a two dimensional grid size and two dimensional block size were used, where the grid size was defined as (N\tile_size,N\tile_size) with tile_size defined as the tile size used. The block size was defined as (tile_size,block_size). Both tile_size and block_size were varied in the performance tests. These were tested using data sizes of 512, 1024, 2048, and 4096. The run-times and throughputs were measured and the speed-ups and throughput ratios, with the serial as the reference, were calculated. The results are tabulated below and the data was plotted for easier comparison. The code for the kernels can be found in the appendix.

Table: Results

Туре	Metric	▼ Values	
Threads = 256			Tune
N = 512			Туре
CPU	Run Time	6.626048 ms	0011
CPU	Speed Up	1.000000x	CPU
CPU	Throughputs	0.039563	CPU
			CPU
GPU(Global)	Run Time	0.197216 ms	
GPU(Global)	Speed Up	33.597923x	GPU(Globa
GPU(Global)	Throughputs	1.3292346 GFLOPS/s	GPU(Globa
GPU(Global)	Throughput Ratio	33.597923	GPU(Globa
			GPU(Globa
GPU (Shared) tile size = 32, block size = 8	Run Time	0.037696 ms	
GPU (Shared) tile size = 32, block size = 8	Speed Up	175.775894x	GPU (Share
GPU (Shared) tile size = 32, block size = 8	Throughputs	6.954160 GFLOPS/s	GPU (Share
GPU (Shared) tile size = 32, block size = 8	Throughput Ratio	175.775895	GPU (Share
	Ŭ .		GPU (Share
could but a coll to ac	Run Time	0.000000	GPU (Share
GPU (Shared) tile size = 32, block size = 16		0.039232 ms	GPU (Share
GPU (Shared) tile size = 32, block size = 16		180.047302x	GPU (Share
GPU (Shared) tile size = 32, block size = 16	Throughputs	6.681892 GFLOPS/s	GPU (Share
GPU (Shared) tile size = 32, block size = 16	Throughput Ratio	180.047301	
GPU (Shared) tile size = 64, block size = 8	Run Time	0.057824 ms	GPU (Share
GPU (Shared) tile size = 64, block size = 8	Speed Up	111.301605x	GPU (Share
GPU (Shared) tile size = 64, block size = 8	Throughputs	4.533481 GFLOPS/s	GPU (Share
GPU (Shared) tile size = 64, block size = 8	Throughput Ratio	111.301601	GPU (Share
GPU (Shareu) the Size = 64, block Size = 8	iniougnput Ratio	111.501001	
GPU (Shared) tile size = 64, block size = 16	Run Time	0.061088 ms	GPU (Share
GPU (Shared) tile size = 64, block size = 16	Speed Up	111.553696x	GPU (Share
GPU (Shared) tile size = 64, block size = 16		4.291252 GFLOPS/s	GPU (Shan
GPU (Shared) tile size = 64, block size = 16	Throughput Ratio	111.553693	GPU (Share
5. 5 (5.16. Ca) the Size = 04, block size = 10	oagripat Natio	111.000000	

✓ Values → Metric --N = 1024--37.513824 ms Run Time Speed Up 1.000000x Throughputs 0.027952 GFLOP/s 0.335008 ms Run Time Speed Up 111.978889x Throughputs Throughput Ratio 3.1300339 GFLOP/s 111.978890 tile size = 32, block size = 8 Run Time tile size = 32, block size = 8 Speed Up tile size = 32, block size = 8 Throughputs 338.621307x 9.465049 GFLOPS/s tile size = 32, block size = 8 Throughput Ratio 338.621307 tile size = 32, block size = 16 Run Time 0.119680 ms 303.236359x tile size = 32, block size = 16 Speed Up tile size = 32, block size = 16 Throughputs 8.761497 GFLOPS/s tile size = 32, block size = 16 Throughput Ratio 303.236357 tile size = 64, block size = 8 Run Time tile size = 64, block size = 8 Speed Up tile size = 64, block size = 8 Throughputs 0.188896 ms 194.022354x 5.551076 GFLOPS/s tile size = 64, block size = 8 Throughput Ratio 194.022353 tile size = 64, block size = 16 Run Time 0.196672 ms tile size = 64, block size = 16 Speed Up tile size = 64, block size = 16 Throughputs 190.643341x 5.331598 GFLOPS/s 190.643348 tile size = 64, block size = 16 Throughput Ratio

Results for Data Size: 512

Type ▼	Metric	Values 🔻
N = 2048		
CPU	Run Time	156.908890 ms
CPU	Speed Up	1.000000x
CPU	Throughputs	0.026731 GFLOP/s
GPU(Global)	Run Time	0.960832 ms
GPU(Global)	Speed Up	163.305222x
GPU(Global)	Throughputs	4.36531212 GFLOP/s
GPU(Global)	Throughput Ratio	163.305231
GPU (Shared) tile size = 32, block size = 8	Run Time	0.398720 ms
GPU (Shared) tile size = 32, block size = 8	Speed Up	393.531525x
GPU (Shared) tile size = 32, block size = 8	Throughputs	10.519422 GFLOPS/s
GPU (Shared) tile size = 32, block size = 8	Throughput Ratio	393.531533
GPU (Shared) tile size = 32, block size = 16	Run Time	0.438848 ms
GPU (Shared) tile size = 32, block size = 16	Speed Up	359.257019x
GPU (Shared) tile size = 32, block size = 16	Throughputs	9.557533 GFLOPS/s
GPU (Shared) tile size = 32, block size = 16	Throughput Ratio	359.257018
GPU (Shared) tile size = 64, block size = 8	Run Time	0.686080 ms
GPU (Shared) tile size = 64, block size = 8	Speed Up	224.582840x
GPU (Shared) tile size = 64, block size = 8	Throughputs	6.113433 GFLOPS/s
GPU (Shared) tile size = 64, block size = 8	Throughput Ratio	224.582840
51 5 (51101 CG) the 5122 - 64, 6100K 5122 - 6	THE GREAT PARTIES	EL HOULD TO
GPU (Shared) tile size = 64, block size = 16	Run Time	0.730304 ms
GPU (Shared) tile size = 64, block size = 16	Speed Up	211.922562x
GPU (Shared) tile size = 64, block size = 16	Throughputs	5.743230 GFLOPS/s
GPU (Shared) tile size = 64, block size = 16	Throughput Ratio	211.922561

Results for Data Size: 2048

Type	Metric 🔻	Values -
N = 4096		
CPU	Run Time	628.179932 ms
CPU	Speed Up	1.000000x
CPU	Throughputs	0.026708 GFLOP/s
GPU(Global)	Run Time	4.675520 ms
GPU(Global)	Speed Up	134.355103x
GPU(Global)	Throughputs	3.58835585 GFLOP/s
GPU(Global)	Throughput Ratio	134.355094
GPU (Shared) tile size = 32, block size = 8	Run Time	1.549792 ms
GPU (Shared) tile size = 32, block size = 8	Speed Up	405.331757x
GPU (Shared) tile size = 32, block size = 8	Throughputs	10.825463 GFLOPS/s
GPU (Shared) tile size = 32, block size = 8	Throughput Ratio	405.331748
GPO (Shared) tile size = 32, block size = 8	Inroughput Katio	405.331748
GPU (Shared) tile size = 32, block size = 16	Run Time	1.721792 ms
GPU (Shared) tile size = 32, block size = 16	Speed Up	355.239441x
GPU (Shared) tile size = 32, block size = 16	Throughputs	9.744044 GFLOPS/s
GPU (Shared) tile size = 32, block size = 16	Throughput Ratio	355.239456
GPU (Shared) tile size = 64, block size = 8	Run Time	2.676192 ms
GPU (Shared) tile size = 64, block size = 8	Speed Up	244.855743x
GPU (Shared) tile size = 64, block size = 8	Throughputs	6.269063 GFLOPS/s
GPU (Shared) tile size = 64, block size = 8	Throughput Ratio	244.855751
GPU (Shared) tile size = 64, block size = 16	Run Time	2.863264 ms
GPU (Shared) tile size = 64, block size = 16	Speed Up	223.012436x
GPU (Shared) tile size = 64, block size = 16	Throughputs	5.859472 GFLOPS/s
GPU (Shared) tile size = 64, block size = 16	Throughput Ratio	223.012447

Results for Data Size: 512

Results for Data Size: 4096

Graphs

Graph Showing Data Size vs Run-time

Graph Showing Data Size vs Speed-up

Graph Showing Data Size vs Throughputs

Problem 2: Vector Addition

This section compares the serial version of vector addition with the shared memory version, and the global memory version of CUDA parallel programming. In the shared and global kernel, the block size was varied between 256 and 512 threads and used as the value for tile size for the shared memory. The grid size was calculated as N\num_threads, where N is the size of the data and num_threads is the block size. These were tested using data sizes of 8192, 32768, 65536, 1048596, and 4194304. The run-times and throughputs were measured and the speed-ups and throughput ratios, with the serial as the reference, were calculated. The results are tabulated below and the data was plotted for easier comparison. The code for the kernels can be found in the appendix.

Table: Results

Kernel	▼ Metric ▼	Values -	Kernel ▼	Metric	Values ▼
N = 8192			N = 32768		
CPU	Run Time	0.024576 ms	CPU	Run Time	0.119328 ms
CPU	Speed Up	1x	CPU	Speed Up	1.000000x
CPU	Throughputs	0.333333 GFLOP/s	CPU	Throughputs	0.274604 GFLOP/s
Number of threads = 256			Number of threads = 256		
GPU(Shared) Tile Size = 256	Run Time	0.038816 ms	GPU(Shared) Tile Size = 256	Run Time	0.162400 ms
GPU(Shared) Tile Size = 256	Speed Up	0.633141x	GPU(Shared) Tile Size = 256	Speed Up	0.734778x
GPU(Shared) Tile Size = 256	Throughputs	0.211047 GFLOP/s	GPU(Shared) Tile Size = 256	Throughputs	0.201773 GFLOP/s
GPU(Shared) Tile Size = 256	Ratio of Throughputs	0.633141	GPU(Shared) Tile Size = 256	Ratio of Throughputs	0.734778
GPU(Global)	Run Time	0.027648 ms	GPU(Global)	Run Time	0.081728 ms
GPU(Global)	Speed Up	0.888889x	GPU(Global)	Speed Up	1.460063x
GPU(Global)	Throughputs	0.296296 GFLOP/s	GPU(Global)	Throughputs	0.400940 GFLOP/s
GPU(Global)	Ratio of Throughputs	0.888889	GPU(Global)	Ratio of Throughputs	1.460063
Number of threads = 512			Number of threads = 512		
GPU(Shared) Tile Size = 512	Run Time	0.040896 ms	GPU(Shared) Tile Size = 512	Run Time	0.191616 ms
GPU(Shared) Tile Size = 512	Speed Up	0.574335x	GPU(Shared) Tile Size = 512	Speed Up	0.575818x
GPU(Shared) Tile Size = 512	Throughputs	0.200313 GFLOP/s	GPU(Shared) Tile Size = 512	Throughputs	0.171009 GFLOP/s
GPU(Shared) Tile Size = 512	Ratio of Throughputs	0.574335	GPU(Shared) Tile Size = 512	Ratio of Throughputs	0.575818
GPU(Global)	Run Time	0.036704 ms	GPU(Global)	Run Time	0.068768 ms
GPU(Global)	Speed Up	0.639930x	GPU(Global)	Speed Up	1.604467x
GPU(Global)	Throughputs	0.223191 GFLOP/s	GPU(Global)	Throughputs	0.476501 GFLOP/s
GPU(Global)	Ratio of Throughputs	0.639930	GPU(Global)	Ratio of Throughputs	1.604467

Results for Data Size: 8192 Results for Data Size: 32768

Results for Data Size: 65536 Results for Data Size: 1048576

Kernel	w	Metric	*	Values
N = 4194304				
CPU		Run Time		12.392448 ms
CPU		Speed Up		1.000000x
СРИ		Throughputs		0.338456 GFLOP/s
Number of threads = 256				
GPU(Shared) Tile Size = 256		Run Time		3.837856 ms
GPU(Shared) Tile Size = 256		Speed Up		3.229003x
GPU(Shared) Tile Size = 256		Throughputs		1.092877 GFLOP/s
GPU(Shared) Tile Size = 256		Ratio of Throughput	s	3.229003
GPU(Global)		Run Time		3.658400 ms
GPU(Global)		Speed Up		3.38739x
GPU(Global)		Throughputs		1.146486 GFLOP/s
GPU(Global)		Ratio of Throughput	5	3.387396
Number of threads = 512				
GPU(Shared) Tile Size = 512		Run Time		3.721056 ms
GPU(Shared) Tile Size = 512		Speed Up		3.742585x
GPU(Shared) Tile Size = 512		Throughputs		1.127181 GFLOP/s
GPU(Shared) Tile Size = 512		Ratio of Throughput	S	3.742585
GPU(Global)		Run Time		4.762496 ms
GPU(Global)		Speed Up		2.924174x
GPU(Global)		Throughputs		0.880694 GFLOP/s
GPU(Global)		Ratio of Throughput	s	2.924174

Results for Data Size: 4194304

Graphs

Graph Showing Data Size vs Run-time (256 Threads) Graph Showing Data Size vs Run-time (512 Threads)

Graph Showing Data Size vs Speed-up (256 Threads) Graph Showing Data Size vs Speed-up (512 Threads)

Graph Showing Data Size vs Throughputs (256 Graph Showing Data Size vs Throughputs (512 Threads)

Problem 3: Matrix Multiplication

This section compares the serial version of matrix multiplication with the shared memory implementation of CUDA parallel programming. For the shared memory kernel a two dimensional grid size and two dimensional block size were used, where the grid size was defined as (N\tile_size,N\tile_size) with tile_size defined as the tile size used and N as the data size. The block size was defined as (tile_size,block_size). Tile_size was varied in the performance tests with the values of 8, 16, and 32. These were tested using data sizes of 512, 1024, 2048, and 4096. The run-times and throughputs were measured and the speed-ups and throughput ratios, with the serial as the reference, were calculated. The results are tabulated below and the data was plotted for easier comparison. The code for the kernels can be found in the appendix.

Table: Results

Results for Data Size: 512 Results for Data Size: 2048

Type ▼	Metric	Values ▼	Type ▼	Metric ▼	Values
N = 2048			N = 4096		
CPU	Run Time	117587.585938 ms	CPU	Run Time	2113389.750000 ms
CPU	Speed Up	1.000000x	CPU	Speed Up	1.000000x
CPU	Throughputs	0.000000035 GFLOP/s	CPU	Throughputs	0.000000004 GFLOP/s
GPU(Shared) Tile Size = 8	Run Time	16.960833 ms	GPU(Shared) Tile Size = 8	Run Time	126.661598 ms
GPU(Shared) Tile Size = 8	Speed Up	6785.554199x	GPU(Shared) Tile Size = 8	Speed Up	21374.867188x
GPU(Shared) Tile Size = 8	Throughputs	0.000241 GFLOP/s	GPU(Shared) Tile Size = 8	Throughputs	0.000065 GFLOP/s
GPU(Shared) Tile Size = 8	Ratio of Throughputs	6785.554309	GPU(Shared) Tile Size = 8	Ratio of Throughputs	21374.866701
GPU(Shared) Tile Size = 16	Run Time	90.507683 ms	GPU(Shared) Tile Size = 16	Run Time	631.837830 ms
GPU(Shared) Tile Size = 16	Speed Up	1299.200073x	GPU(Shared) Tile Size = 16	Speed Up	3344.829346x
GPU(Shared) Tile Size = 16	Throughputs	0.000045 GFLOP/s	GPU(Shared) Tile Size = 16	Throughputs	0.000013 GFLOP/s
GPU(Shared) Tile Size = 16	Ratio of Throughputs	1299.200089	GPU(Shared) Tile Size = 16	Ratio of Throughputs	3429.11173
GPU(Shared) Tile Size = 32	Run Time	68.837181 ms	GPU(Shared) Tile Size = 32	Run Time	487.460663 ms
GPU(Shared) Tile Size = 32	Speed Up	1723.890381x	GPU(Shared) Tile Size = 32	Speed Up	4484.222656x
GPU(Shared) Tile Size = 32	Throughputs	0.000060 GFLOP/s	GPU(Shared) Tile Size = 32	Throughputs	0.000017 GFLOP/s
GPU(Shared) Tile Size = 32	Ratio of Throughputs	1723.890489	GPU(Shared) Tile Size = 32	Ratio of Throughputs	4484.223036

Results for Data Size: 512 Results for Data Size: 4096

Graphs

Graph Showing Data Size vs Run-time

Graph Showing Data Size vs Speed-up

Graph Showing Data Size vs Throughputs

Appendix

Kernels for Transposition

```
1 __global__ void glob_gpuTranspose(float* arr, float* out)
2 {
      int row, col, t;
3
      unsigned int i = threadIdx.x + blockIdx.x*blockDim.x;
      if (i < (N*N))</pre>
5
6
          row = i/N;
7
          col = i % N;
8
          t = col*N + row;
9
          out[t] = arr[i];
10
      }
11
12 }
```

Listing 1: Global Memory Kernel

```
__global__ void share_gpuTranspose(float* arr, float* out)
2 {
       __shared__ float tile[tile_size][tile_size];
3
       unsigned int row = threadIdx.x + blockIdx.x*tile_size;
5
6
       unsigned int col = threadIdx.y + blockIdx.y*tile_size;
8
       for (int i = 0; i < tile_size; i += block_size)</pre>
9
            if ((row < N*N) && (col < N*N))</pre>
10
11
            tile[threadIdx.y+i][threadIdx.x] = arr[(col+i)*N + row];
12
       __syncthreads();
13
       row = blockIdx.y*tile_size + threadIdx.x;
15
       col = blockIdx.x*tile_size + threadIdx.y;
       for (int i = 0; i < tile_size; i += block_size)</pre>
19
20
            if ((row < N*N) && (col < N*N))</pre>
21
            \operatorname{out}[(\operatorname{col} + i) * \mathbb{N} + \operatorname{row}] = \operatorname{tile}[\operatorname{threadIdx.x}][\operatorname{threadIdx.y} + i];
22
       }
23
24 }
```

Listing 2: Shared Memory Kernel

Kernels for Vector Addition

```
__global__ void share_VecAdd(float* arr_in, float* arr_out)
      __shared__ float sVec[num_threads];
3
      unsigned int i = threadIdx.x + blockIdx.x*blockDim.x;
      //Loading shared memory
      if (i < N)
8
9
      sVec[threadIdx.x] = arr_in[i];
10
11
      __syncthreads();
12
      //reduction in shared mem
14
      for(unsigned int j = blockDim.x/2; j > 0; j >>= 1)
15
16
17
          if (threadIdx.x < j)</pre>
18
               sVec[threadIdx.x] += sVec[threadIdx.x + j];
19
20
          __syncthreads();
21
22
23
      if (threadIdx.x == 0)
24
      {
25
          atomicAdd(arr_out,sVec[threadIdx.x]);
26
```

Listing 3: Shared Memory Kernel

```
__global__ void glob_VecAdd(float* arr_in, float* arr_out)
2 {
4
      unsigned int i = threadIdx.x + blockIdx.x*blockDim.x;
      for(unsigned int j = blockDim.x/2; j > 0; j = j/2)
6
          if (threadIdx.x < j)</pre>
8
9
          {
               arr_in[i] += arr_in[i + j];
10
11
          __syncthreads();
12
      }
13
      if (threadIdx.x == 0)
14
15
          atomicAdd(arr_out,arr_in[i]);
16
17
      }
```

Listing 4: Global Memory Kernel

Kernels for Matrix Multiplication

```
__global__ void matrixMul(float* a, float* b, float* c)
2 {
      __shared__ float a_s[tile_size][tile_size];
3
      __shared__ float b_s[tile_size][tile_size];
4
      int row = threadIdx.y + blockIdx.y*tile_size;
      int col = threadIdx.x + blockIdx.x*tile_size;
      float sum_value = 0;
          for (int i = 0; i < N/tile_size; i++)</pre>
12
               a_s[threadIdx.y][threadIdx.x] = a[row*N + (i*tile_size + threadIdx.x)];
13
              b_s[threadIdx.y][threadIdx.x] = b[col + (i*tile_size + threadIdx.y)*N];
14
               __syncthreads();
15
17
              for (int j = 0; j < tile_size; j++)</pre>
18
                   sum_value += a_s[threadIdx.y][j]*b_s[j][threadIdx.x];
19
20
           __syncthreads();
21
22
23
      c[row*N+col] = sum_value;
24 }
void checkCUDAError(const char *msg)
27
28
      cudaError_t err = cudaGetLastError();
      if( cudaSuccess != err) {
29
          fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString( err) );
          exit(EXIT_FAILURE);
31
32
33 }
```

Listing 5: Shared Memory Kernel