Chapter 1: Introduction to Algorithms

Part II

Contents

- Algorithms (Part I)
- Mathematical preliminaries
 - Order of growth (Part I)
 - Summation
 - Recurrence
- Proof of correctness (Part III)
- Analysis of sorting algorithms (Part IV)

Mathematical preliminaries: Summation and recurrence

Arithmetic series:

A sequence of numbers with a fixed difference between consecutive numbers

Examples:

1, 2, 3, 4, ...

0, 2, 4, 6, ...

To sum an arithmetic series, multiply the length of the series by the average of the first and the last numbers.

$$1 + 2 + 3 + 4 + 5 = 5 \times (\frac{1+5}{2}) = 15$$

$$2+4+6+8=4\times(\frac{2+8}{2})=20$$

$$\sum_{i=1}^{n} i = n(\frac{n+1}{2})$$

Linearity:

For any real number c and any finite sequences $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$

$$\sum_{k=1}^{n} (c.a_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

We can exploit the linearity property to manipulate summations incorporating asymptotic notation. For example,

$$\sum_{k=1}^{n} \theta(f(k)) = \theta\left(\sum_{k=1}^{n} f(k)\right)$$

Geometric series:

A series with a constant ratio between successive terms.

Examples

2, 4, 8, 16, ...

1/2, 1/4, 1/8, ...

Geometric series:

A series with a constant ratio between successive terms.

Examples

2, 4, 8, 16, ...

1/2, 1/4, 1/8, ...

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

When the summation is infinite and |x| < 1

$$\sum_{j=0}^{\infty} x^j = \frac{1}{1-x}.$$

Basic idea behind Selection sort:

- Given a list of data to be sorted,
 - Select the smallest item and place it in a sorted list
 - Repeat until all of the data are sorted

Selection Sort

The list at any moment is divided into two sublists, sorted and unsorted, which are divided by an imaginary wall

Steps:

- 1. Select the smallest element from the unsorted sublist and exchange it with the element at the beginning of the unsorted data
- 2. Repeat Step 1 until there is no element in the unsorted sublist

Each time we move one element from the unsorted sublist to the sorted sublist, we say that we have completed one **sort pass**. Therefore, a list of n elements need n-1 passes to completely rearrange the data

Selection sort

Selection sort

SelectionSort (A) // An unordered array A of size n. Assuming the index of elements starts from 1.

```
for (i = 1 \text{ to } n-1)
        m = i
3.
        for (j = i + 1 \text{ to } n) // Find the minimum element in the unsorted sublist
            if (A[j] < A[m])
5.
               m = j
6.
             endif
 7.
        endfor
8.
        temp = A[i]
       A[i] = A[m]
10.
        A[m] = temp
      endfor
```

Let's assume each execution of the i^{th} line takes time c_i , where c_i is a constant.

		cost	times
1.	for (i = 1 to n-1)	c1	
2.	m = i	c2	
3.	for $(j = i + 1 \text{ to } n)$	с3	
4.	if (A[j] < A[m])	c4	
5.	m = j	c5	
6.	temp = A[i]	c6	
7.	A[i] = A[m]	c7	
8.	A[m] = temp	с8	

		cost	times
1.	for (i = 1 to n-1)	c1	$\sum_{i=1}^{n} 1 = n$
2.	m = i	c2	$\sum_{i=1}^{n-1} 1 = n-1$
3.	for (j = i + 1 to n)	c3	$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n+1} 1 = \frac{(n-1)(n+2)}{2}$
4.	if (A[j] < A[m])	c4	$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 = \frac{n(n-1)}{2}$
5.	m = j	c5	Min. 0 times, max. ? times
6.	temp = A[i]	c6	n-1
7.	A[i] = A[m]	c7	n-1
8.	A[m] = temp	с8	n-1

The running time of the algorithm is the sum of running times for each statement executed.

$$T(n) = c_1 \cdot n + (c_2 + c_6 + c_7 + c_8)(n-1) + c_3 \frac{(n-1)(n+2)}{2} + (c_4 + c_5) \frac{n(n-1)}{2}$$

$$= \left(\frac{c_3 + c_4 + c_5}{2}\right) n^2 + \left(c_1 + c_2 + c_3 - \left(\frac{c_4 + c_5}{2}\right) + c_6 + c_7 + c_8\right) n - (c_2 + c_3 + c_6 + c_7 + c_8)$$

$$= a \cdot n^2 + b \cdot n + c \text{ for constants } a, b, \text{ and } c$$

When the list is already sorted in ascending order

$$T(n) = c_1 \cdot n + (c_2 + c_6 + c_7 + c_8)(n-1) + c_3 \frac{(n-1)(n+2)}{2} + c_4 \frac{n(n-1)}{2}$$

$$= \left(\frac{c_3 + c_4}{2}\right) n^2 + \left(c_1 + c_2 + c_3 - \frac{c_4}{2} + c_6 + c_7 + c_8\right) n - (c_2 + c_3 + c_6 + c_7 + c_8)$$

$$= a \cdot n^2 + b \cdot n + c \text{ for constants } a, b, \text{ and } c$$

Time complexity of selection sort = ?

Merge sort

Merge sort uses divide-and-conquer strategy

- The original problem is partitioned into simpler sub-problems, each subproblem is considered independently.
- Subdivision continues until sub problems obtained are simple.

Steps:

- 1. **Divide**: partition the list into two roughly equal parts, S1 and S2, called the left and the right sublists
- 2. Conquer: recursively sort S1 and S2
- 3. **Combine**: merge the sorted sublists.

Merge sort

Sort the elements in the subarray A[p..r]

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Merge sort

Sort the elements in the subarray A[p..r]

Merge-Sort(A, p, r)

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)


```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 n_2 = r - q
   let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
 4 for i = 1 to n_1
 5 L[i] = A[p+i-1]
 6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
 9 R[n_2 + 1] = \infty
10 i = 1
11 i = 1
    for k = p to r
13
        if L[i] < R[j]
14
            A[k] = L[i]
15
           i = i + 1
16 else A[k] = R[j]
17
            j = j + 1
```


Merged sorted list

```
MERGE(A, p, q, r)
    n_1 = q - p + 1
    n_2 = r - q
                                                              divide
    let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
    for i = 1 to n_1
        L[i] = A[p+i-1]
                                                              divide
                                                                       p,q r
                                                                              p,q r
                                                                                      p,q r
                                                                                              p,q r
    for j = 1 to n_2
         R[j] = A[q+j]
                                                              divide
    L[n_1+1]=\infty
    R[n_2+1]=\infty
10 i = 1
                                                              merge
11
    i = 1
    for k = p to r
12
13
         if L[i] \leq R[j]
                                                              merge
             A[k] = L[i]
14
15
             i = i + 1
                                                              merge
         else A[k] = R[j]
16
17
             j = j + 1
                                      Time complexity = ?
```

Recurrence

When an algorithm contains a recursive call to itself, we can often describe its running time by a **recurrence equation** or **recurrence**.

A recurrence describes the overall running time on a problem of size n in terms of the running time on smaller inputs.

Recurrence

A recurrence for the running time, T(n), (on a problem of size n) of a divide-and-conquer algorithm would be:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

where,

- a is the number of subproblems at the division of the problem,
- each subproblem is 1/b the size of the original,
- D(n) is the time to divide the problem into the subproblems, and
- C(n) is the time to combine the solutions to the subproblems into the solution to the original problem

Analysis of merge sort

(For simplification) Let's assume the original problem size is a power of 2.

- Each divide step yields two subsequences of size exactly n/2.
- Merge sort on just one element takes constant time.
- When we have n>1 elements, we break down the running time as follows.
 - Divide: Takes constant time. $D(n) = \Theta(1)$
 - \circ Conquer: We recursively solve two subproblems, each of size n/2. That is, a = 2, b = 2.
 - \circ Combine: Merge procedure on an n-element subarray takes time $\Theta(n)$.

Analysis of merge sort

The recurrence for the worst-case running time of merge sort is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

$$\Theta(n) + \Theta(1) = \Theta(n + 1) = \Theta(n)$$

which can be rewritten as

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

where the constant c represents the time required to solve problems of size 1 as well as the time per array element of the divide and combine steps

Solving recurrences

- 1. Recursion-tree method
- 2. Substitution method
- 3. Master method

The recurrence-tree method

This method converts the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.

Example:

The recurrence for the worst-case running time of merge sort is

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

T(n)

We expand this into an equivalent tree representing the recurrence.

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

We expand this into an equivalent tree representing the recurrence.

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

We expand this into an equivalent tree representing the recurrence.

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

T(n) = Total cost represented by the tree = number of levels x cn = (lg n + 1) cn

 $= \operatorname{cn} \operatorname{lg} \operatorname{n} + \operatorname{cn}$

 $T(n) = \Theta(n \lg n)$

In this method, we guess a bound and then use mathematical induction to prove out guess correct.

- Make a guess and then prove the guess inductively (prove by induction).
- If the guess could not be proven correct, make a new guess and prove it correct inductively.

Let's say we have the following recurrence and we want to determine an upper bound on it

$$T(n) = \begin{cases} 7T(\frac{n}{7}) + n & \text{for } n > 1\\ 1 & \text{for } n = 1 \end{cases}$$

Let's guess that the solution is $T(n) \leq cn$ (i.e., T(n) = O(n)).

We start by assuming that it holds for all positive m < n, in particular m = n/7. That is

$$T(\frac{n}{7}) \le \frac{cn}{7}$$

We start by assuming that it holds for all positive m < n, in particular m = n/7. That is

$$T(\frac{n}{7}) \le \frac{cn}{7}$$

This yields

$$T(n) \le 7(\frac{cn}{7}) + n$$

Or
$$T(n) \leq (c+1)n$$

Unfortunately, we could not prove $T(n) \leq cn$

So, let's make a new guess, $T(n) \le n \log_7(7n)$ to get the base case of n = 1 right.

We assume this holds true inductively for m < n, in particular m = n / 7

$$T(\frac{n}{7}) \le \frac{n}{7}\log_7(7\frac{n}{7}) = \frac{n}{7}\log_7 n$$

Then we get

$$T(n) \le 7 \left[\frac{n}{7} \log_7 n \right] + n$$

$$= n \log_7 n + n$$

$$= n(\log_7 n + 1)$$

$$= n(\log_7 7n)$$

$$T(n) \le n(\log_7 7n)$$
 That verifies our guess.

The master method provides a "cookbook" method for solving recurrences of the form

$$T(n) = a \ T(\frac{n}{h}) + f(n)$$

where $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

The master theorem (simpler version)

The recurrence $T(n)=a \ T(\frac{n}{b})+cn^k$ where a, b, c, and k are all constants, solves to

$$T(n) \in \theta(n^k) \text{ if } a < b^k$$
 $T(n) \in \theta(n^k \lg n) \text{ if } a = b^k$
 $T(n) \in \theta(n^{\log_b a}) \text{ if } a > b^k$

Example:

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

$$T(n) \in \theta(n^k) \text{ if } a < b^k$$

 $T(n) \in \theta(n^k \lg n) \text{ if } a = b^k$
 $T(n) \in \theta(n^{\log_b a}) \text{ if } a > b^k$

Here,
$$a = 2, b = 2, k = 1$$

$$b^k = 2^1 = 2 = a$$

So, it follows from the case $a = b^k$ of the master theorem that

$$T(n) \in \theta(n^k \lg n) = \theta(n \lg n)$$

Exercise:

$$T(n) = 8T(\frac{n}{2}) + 1000n^2$$

$$T(n) \in \theta(n^k) \text{ if } a < b^k$$

 $T(n) \in \theta(n^k \lg n) \text{ if } a = b^k$
 $T(n) \in \theta(n^{\log_b a}) \text{ if } a > b^k$

Example:

$$T(n) = 8T(\frac{n}{2}) + 1000n^2$$

Here,
$$a = 8, b = 2, k = 2$$

$$b^k = 2^2 = 4 < a$$

So, it follows from the case $a > b^k$ of the master theorem that

$$T(n) \in \theta(n^{\log_b a}) = \theta(n^{\log_2 8}) = \theta(n^3)$$

 $T(n) \in \theta(n^k) \text{ if } a < b^k$ $T(n) \in \theta(n^k \lg n) \text{ if } a = b^k$ $T(n) \in \theta(n^{\log_b a}) \text{ if } a > b^k$

Exercise:

$$T(n) = 2T(\frac{n}{2}) + n^2$$

$$T(n) \in \theta(n^k) \text{ if } a < b^k$$

$$T(n) \in \theta(n^k \lg n) \text{ if } a = b^k$$

$$T(n) \in \theta(n^{\log_b a}) \text{ if } a > b^k$$