Experimental Physics 3 - Em-Waves, Optics, Quantum mechanics

Lecture 25

Some dates in January and February

Мо	Tu	We	Th	Fr	Sa	Su
						1
2	3	4	5	6	7	8
9	10	11	12 Submission sheet 11	13	14	15
16	17	18	19 Submission mock exam	20	21	22
23	24	25	26 Submission sheet 12	27	28	29
30	31 Last Tuesday seminar	1	2 Last Thursday seminar Last lecture	3		

Exam: February 20, 2023, 9 am - 12 pm, 1 (one) DIN A4 page lettered

Re-exam: March 27, 2023, 9 am - 12 pm

The Bohr model

Bohr model - line spectra

Bohr model - line spectra due to absorption and emission

$$E_{\rm n} = -Ry*\frac{Z^2}{n^2}$$

$$r_0 = \frac{a_0}{Z}n^2$$

$$E_{\rm min} = -Ry*$$

$$r_{\rm min} = a_0$$

$$E_{k} - E_{i} = Ry*Z^{2} \left(\frac{1}{i^{2}} - \frac{1}{k^{2}}\right)$$
$$= \hbar \cdot \omega$$

Bohr model - stable electron radius

The Schrödinger equation

Schrödinger equation

Classical mechanics

- Conservation of energy
- Prospective conditions by Newton's law

$$E_{kin} + E_{pot} = E$$

$$T + V = E$$

$$\frac{1}{2}mv^{2} + E_{pot} = E$$

$$\frac{p^{2}}{2m} + E_{pot} = E$$

Quantum mechanics

- Conservation of energy
- Prospective conditions by Schrödinger equation
- Physical variables become "operators"
- Observables are operator eigenvalues

$$H\psi = E\psi$$
$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi + E_{\text{pot}}\psi = E\psi$$

Schrödinger equation - potential barrier $0 < E < E_0$

Schrödinger equation - potential barrier $0 < E_0 < E$

Schrödinger equation - potential barrier $E_0 < 0 < E$

Schrödinger equation - potential barrier $E_0 < 0 < E$

Schrödinger equation - potential barrier $0 < E < E_0$

Schrödinger equation - quantum tunnelling

