Notes on cubical models of type theory

Steve Awodey

May 16, 2014

Roughly following the paper of Bezem, Coquand, and Huber [?] ,and reformulating things in functorial style.

1 Some cube categories

We consider three different cube categories, to be used as index categories for cubical sets:

- 1. \mathbb{C} the (classical) cube category: the free monoidal category on an interval.
- 2. \mathbb{C}_s the symmetric cube category: the free symmetric monoidal category on an interval.
- 3. \mathbb{C}_c the cartesian cube category: the free finite product category on an interval.

1.1 The classical cube category \mathbb{C}

(Cf. Jardine [?, ?].) The *objects* are the sets of binary n-tuples:

$$I^n = \{ \langle d_1, ..., d_n \rangle \mid d_i = 0, 1 \}$$

where

$$I = \{0, 1\}$$

and we let $I^0 = \{*\}.$

The arrows

$$f: I^n \longrightarrow I^m$$

are those functions generated by compositions of the following primitive ones:

- face maps $\alpha_i^d: I^n \longrightarrow I^{n+1}$, taking $\langle d_1, ..., d_n \rangle$ to $\langle d_1, ..., d_{(i)}, ..., d_n \rangle$, with a new digit d = 0, 1 inserted as the i^{th} coordinate. There are 2(n+1) such maps.
- degeneracies $\beta_i: I^n \longrightarrow I^{n-1}$, taking $\langle d_1, ..., d_n \rangle$ to $\langle d_1, ..., \hat{d}_i, ..., d_n \rangle$, omitting the i^{th} coordinate. There are n such maps.

Note that the order of the d_i 's does not change.

Remarks

1. It can be shown that every map factors as:

where $\alpha: I^k \to I^m$ is a composite of faces, and $\beta: I^n \longrightarrow I^k$ is a composite of degeneracies. Using this, it can be shown that \mathbb{C} is the free monoidal category on an *interval*: an object I equipped with maps:

$$1 \xrightarrow{\top} I \xrightarrow{!} 1$$

satisfying $! \circ \top = id_1 = ! \circ \bot$, where 1 is the monoidal unit.

- 2. The presheaf category $\mathsf{cSet} = \mathsf{Set}^{\mathbb{C}^\mathsf{op}}$ of *cubical sets* has the same homotopy theory as the classical simplicial sets $\mathsf{sSet} = \mathsf{Set}^{\Delta^\mathsf{op}}$, in the sense that the two are Quillen equivalent.
- 3. The objects I^n are *not* the *n*-fold cartesian products of the interval I, either in the site \mathbb{C} or as presheaves. Rather, there is a monoidal product \otimes on cSet extending that on \mathbb{C} , such that $I^m \otimes I^n \cong I^{m+n}$. Similarly, the geometric realization functor to topological spaces

$$R: \mathsf{cSet} \longrightarrow \mathsf{Top}$$

does not in general preserve cartesian products, but instead takes tensor products in cSet to cartesian ones in Top,

$$R(X \otimes Y) \cong R(X) \times R(Y)$$
.

1.2 The symmetric cube category \mathbb{C}_s

(Cf. Grandis [?].) As before, the *objects* are the sets of binary n-tuples:

$$1 = I^0, I, ..., I^n$$

The arrows

$$f: I^n \longrightarrow I^m$$

are still functions generated by compositions of primitive ones, including the faces and degeneracies as before, but now also including the primitive:

• permutations $\sigma_i: I^n \longrightarrow I^n$, swapping d_i and d_{i+1} .

For each I^n there are n-1 such maps. Of course, for any permutation $\sigma \in S_n$ one can define a corresponding $\sigma : I^n \longrightarrow I^n$ taking $\langle d_1, ..., d_n \rangle$ to $\langle d_{\sigma(1)}, ..., d_{\sigma(n)} \rangle$ as a suitable composite of σ_i 's.

Remarks

1. It can be shown that now every map factors as:

$$\begin{array}{c|c}
I^n & \xrightarrow{f} & I^m \\
\beta \downarrow & & \uparrow \alpha \\
I^k & \xrightarrow{\sim} & I^k
\end{array}$$

where $\alpha: I^k \to I^m$ is a (composite) face, $\sigma: I^k \xrightarrow{\sim} I^k$ is a (composite) permutation, and $\beta: I^n \longrightarrow I^k$ is a (composite) degeneracy. Using this, it can be shown that \mathbb{C}_s is the free *symmetric* monoidal category on an interval.

- 2. The presheaf category $\mathsf{csSet} = \mathsf{Set}^{\mathbb{C}_s^\mathsf{op}}$ of symmetric cubical sets again has the same homotopy theory as simplicial sets.
- 3. The objects I^n are again n-fold tensor products of the interval I, but not cartesian products, either in the site \mathbb{C}_s or in csSet. And again, the geometric realization functor from csSet to topological spaces does not preserve cartesian products, but instead takes tensor products to cartesian ones. Relatedly, there is a functor $\mathsf{Hom}(X,-)$, right adjoint to the tensor $X \otimes (-)$, which is not an exponential.

Covariant presentation

(Cf. Bezem, Coquand, and Huber [?], Pitts [?].) There is a dual presentation of the symmetric site \mathbb{C}_s . Let the category \mathcal{C} have as *objects* the finite sets

$$[n] = \{1, ..., n\}$$

and write

$$[n]^+ = [n] \cup \{\top, \bot\} = \{\top, 1, ..., n, \bot\}.$$

The arrows

$$f:[n] \longrightarrow [m]$$

in \mathcal{C} are all functions $f:[n] \longrightarrow [m]^+$ satisfying the following partial injectivity condition:

$$f(i) = f(j) \implies (i = j \text{ or } f(i) = \top = f(j) \text{ or } f(i) = \bot = f(j))$$

In other words, f is injective on the preimage of $[m] \subseteq [m]^+$,

$$\uparrow \qquad \qquad \downarrow [m] \\
\downarrow [n] \qquad \qquad \downarrow [m]^+$$

Identity and composition are just as in the Kleisli-category of the monad $X \mapsto X^+$. Specifically, id : $[n] \longrightarrow [n]$ is the inclusion $[n] \hookrightarrow [n]^+$, and $g \circ f : [n] \longrightarrow [m] \longrightarrow [k]$ is $\overline{g} \circ f$, where

$$\overline{g}:[m]^+ \longrightarrow [k]^+$$

is the unique (\top, \bot) -preserving extension of g, as indicated in the following.

One can show easily that this category C (called the category of "names and substitutions" in \cite{G}) is dual to the category of symmetric cubes,

$$\mathcal{C}\cong\mathbb{C}_s^{\mathrm{op}}$$

and so we have an alternate presentation of the symmetric cubical sets as *covariant* functors,

$$\mathsf{scSet} = \mathsf{Set}^{\mathbb{C}^{\mathrm{op}}_s} \cong \mathsf{Set}^{\mathcal{C}}.$$

1.3 The cartesian cube category \mathbb{C}_c

As a modification of the foregoing, we consider a notion of *cartesian cubical* sets. The objects of \mathbb{C}_c are again the sets of binary n-tuples:

$$1 = I^0, I, ..., I^n$$

The arrows of \mathbb{C}_c ,

$$f: I^n \longrightarrow I^m$$

are still functions generated by compositions of primitive ones, including the faces, degeneracies, and permutations, but now also including the primitive

• diagonal maps $\delta_i: I^n \longrightarrow I^{n+1}$, which double the i^{th} coordinate:

$$\langle d_1, ..., d_n \rangle \mapsto \langle d_1, ..., d_i, d_i, ..., d_n \rangle.$$

Proposition 1. \mathbb{C}_c is the free category with finite products and an interval,

$$1 \xrightarrow{\top} I \xrightarrow{!} 1.$$

Proof. The free category with finite products and an interval is the classifying category for the algebraic theory consisting of the two constants $\{\top, \bot\}$, which can be described as follows (see [?]):

objects: finite lists $[x_1, ..., x_n]$ of distinct variables,

arrows: $f:[x_1,...,x_n] \longrightarrow [x_1,...,x_m]$ are (equivalence classes of) m-tuples

$$f = \langle f_1, ..., f_m \rangle$$

of terms in context,

$$x_1,...,x_n \vdash f_i$$
.

But in this simple theory, the only such terms are the variables $x_1, ..., x_n$ themselves and the constants $\{\top, \bot\}$, and the equivalence relation is trivial, since there are no equations. Thus an arrow is just an m-tuple of arbitrary elements taken from the set $\{x_1, ..., x_n, \top, \bot\}$. The identity arrow is the list of variables $\langle x_1, ..., x_n \rangle$, and composition is by the usual substitution of terms for variables. But this is evidently just another description of the category \mathbb{C}_c .

In more detail, each of the primitive kinds of maps α_i^d , β_i , σ_i , δ_i can clearly be presented in this form, e.g. $\alpha_i^d = \langle x_1, ..., d'_{(i)}, ..., x_n \rangle$, where $d' = \top, \bot$, respectively, when d = 1, 0. Conversely, an m-tuple $(e_1, ..., e_m)$ of elements

from the set $\{x_1,...,x_n, \top, \bot\}$ determines a map $\epsilon: I^n \longrightarrow I^m$ in \mathbb{C}_c as follows: beginning with a binary n-tuple $(d_1,...d_n)$, first apply degeneracies β_i corresponding to each x_i not occurring in $(e_1,...,e_m)$; next apply a permutation σ that reorders the terms d_j in accordance with the order of the non-constant terms e_j appearing in $(e_1,...,e_m)$; apply suitable δ 's to duplicate coordinates appearing more than once; and finally use α 's to insert the required constants.

Corollary 2. The cartesian cube category \mathbb{C}_c is equivalent to a non-full subcategory of Cat (respectively Pos) on the objects $I^n = I \times ... \times I$, where $I = (0 \le 1)$ is the 2-element poset.

Proof. Each of the maps α_i^d , β_i , σ_i , δ_i is monotone, and these are all distinct as monotone maps. To see that this is not full, observe that every monotone $f: I^n \longrightarrow I^m$ is an m-tuple of monotone $f_i: I^n \longrightarrow I$, each of which coming from \mathbb{C}_c is either a projection or a constant. But the map $f: I^2 \longrightarrow I$ with f(1,1)=1, and f(d,d')=0 otherwise, is neither.

Note that the non-monotone "negation" map $n: I \longrightarrow I$, with n(0) = 1 and n(1) = 0, is also not in \mathbb{C}_c .

Covariant presentation

As a classifying category for an algebraic theory, the category \mathbb{C}_c of cartesian cubes also has a covariant presentation by Lawvere duality, namely as the opposite of the full subcategory of finitely-generated, free algebras $\mathsf{Alg}_{\mathrm{fg}}$. In this case, the algebras are simply bipointed sets (A, a_0, a_1) , and the free ones are the strictly bipointed sets $a_0 \neq a_1$. Thus $\mathsf{Alg}_{\mathrm{fg}}$ consists of the finite, strictly bipointed sets and all bipointed maps between them. Specifically, let the objects of \mathbb{B} be the sets $[n] = \{1, ..., n\}$, and the arrows,

$$f:[m] \longrightarrow [n]$$
,

be arbitrary, $\{\top, \bot\}$ -preserving maps $[m]^+ \longrightarrow [n]^+$, where as before $[n]^+ = [n] \cup \{\top, \bot\}$. Then clearly $\mathbb{B} = \mathsf{Alg}_{\mathrm{fg}}$, and we know by Lawvere duality that

$$\mathbb{C}_c \cong \mathbb{B}^{\mathrm{op}},$$

as can be read off from the foregoing descrition of the arrows in \mathbb{C}_c as "m-tuples of arbitrary elements taken from the set $\{x_1, ..., x_n, \top, \bot\}$ ".

As a full subcategory of free algebras, the category \mathbb{B} can also be described as the Kleisli category of the monad $[n] \mapsto [n]^+$. Thus we arrive at the covariant description \mathcal{C} of the symmetric cubes, but without the partial injectivitity condition, which is violated by (the duals of) the diagonal maps.

2 Hypercubical sets

Definition 3. We may refer to the objects of the cartesian cube category \mathbb{C}_c as hypercubes and write $\mathbb{H} = \mathbb{C}_c$ for the category of hypercubes. The objects may be taken to be finite sets of the form

$$[n] = \{x_1, ..., x_n\},\$$

regarded as coordinate axes, and the arrows,

$$f: [n] \longrightarrow [m],$$

are then taken to be m-tuples of elements drawn from the set

$$[n]^+ = \{0, x_1, ..., x_n, 1\},\$$

regarded as formal terms representing composites of faces, degeneracies, permutations, and diagonals (alternately, the arrows are arbitrary bipointed maps $[m]^+ \longrightarrow [n]^+$).

The category \mathcal{H} of hypercubical sets is the category of presheaves on \mathbb{H} ,

$$\mathcal{H} = \mathsf{Set}^{\mathbb{H}^{\mathrm{op}}}.$$

It is generated by the representable presheaves y([n]), which will be written

$$I^n = y([n])$$

and called the *standard n-cubes*. In particular, the standard 1-cube is I = y([1]), and the standard 0-cube is $I^0 = y([0]) = 1$. For any hypercubical set $X : \mathbb{H}^{\text{op}} \longrightarrow \mathsf{Set}$, we shall write $X_n = X([n])$ and call this the *set of n-cubes in X*. For these, we have the usual Yoneda correspondence:

$$(c \in X_n) \cong (c : I^n \longrightarrow X).$$

In particular $I_m^n = \mathbb{H}([m], [n])$ is the set of m-cubes in the standard n-cube.

Proposition 4. We now have $I^n \times I^m \cong I^{n+m}$, in virtue of the preservation of products by the Yoneda embedding.

Proposition 5. The category \mathcal{H} of hypercubical sets is the classifying topos for bipointed objects.

Proposition 6. The geometric realization functor to topological spaces

$$R: \mathcal{H} \longrightarrow \mathsf{Top}$$

preserves cartesian products, $R(X \times Y) \cong R(X) \times R(Y)$.

Proposition 7. Since $\mathbb{H} \hookrightarrow \mathsf{Cat}$ is a subcategory, the nerve functor

$$N: \mathsf{Cat} \longrightarrow \mathcal{H}$$

can be defined as usual by:

$$N(\mathbb{C})_n = \mathsf{Cat}(I^n, \mathbb{C}).$$

However, we do not expect the nerve to be full and faithful.

Proposition 8. For any hypercubical set X, the exponential $X^{\rm I}$ can be calculated as:

$$X^{\mathrm{I}}(n) \cong X(n+1).$$

Proof.

$$X^{\mathrm{I}}(n) \cong \mathrm{hom}(y[n], X^{\mathrm{I}}) \cong \mathrm{hom}(\mathrm{I}^n, X^{\mathrm{I}}) \cong \mathrm{hom}(\mathrm{I}^n \times \mathrm{I}, X)$$

 $\cong \mathrm{hom}(\mathrm{I}^{n+1}, X) \cong \mathrm{hom}(y[n+1], X) \cong X(n+1).$

Proposition 9. $I^{I} \cong I+1$.

Proposition 10. The functor $X \mapsto X^{I}$ has a right adjoint.

Example. The cubical set P of polynomials (over the integers, say), is defined by:

$$P_n = \{p(x_1, ..., x_n) \mid \text{polynomials in at most } x_1, x_n\}$$

with the evident maps $P_m \longrightarrow P_n$ for each function $[m] \longrightarrow [n]$.

This is a ring object in the category of cubical sets, and the interval I = y[1] embeds into P. The same is true for any algebraic theory \mathbb{T} with two constants, such as boolean algebras: there is a cubical \mathbb{T} -algebra A and a monic $I \mapsto A$.

Let $\mathbb{C}[I] = \mathbb{H}$ be the cube category, classifying intervals, and $\mathbb{C}[\mathbb{T}]$ the classifying category for \mathbb{T} -algebras. There is an interval J in $\mathbb{C}_{\mathbb{T}}$ consisting of the generic \mathbb{T} -algebra and its two constants. This J has a classifying functor $J: \mathbb{C}_{\mathbb{I}} \longrightarrow \mathbb{C}_{\mathbb{T}}$, inducing functors on presheaves

$$J_!\dashv J^*\dashv J_*:\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}_{\mathtt{I}}}\!\longrightarrow\!\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}_{\mathbb{T}}}$$

as usual, where $J_! \circ \mathsf{y}_{\mathbb{C}_{\mathrm{I}}} = \ \mathsf{y}_{\mathbb{C}_{\mathbb{T}}} \circ J$, with y the respective Yoneda embeddings.

We can calculate:

$$J^{*}J_{!}(I)([n]) = J^{*}J_{!}(Y[1])([n])$$

$$= J^{*}Y(J[1])([n]) = Y(J[1])(J[n])$$

$$= \mathbb{C}_{\mathbb{T}}(J[n], J[1]) = \mathbb{T} - \text{Alg}(J[1], J[n])$$

$$= \mathbb{T} - \text{Alg}(F(1), F(n)) = |F(n)|,$$
(1)

where F(n) is the free T-algebra on n generators. So in the case of polynomials we indeed have

$$P = J^* J_!(I).$$

The unit of the adjunction $I \longrightarrow J^*J_!(I)$ is faithful, since J itself is faithful and therefore the left adjoint $J_!$ is faithful. P is a ring in $\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}_{\mathbb{I}}}$ since $J_!(I)$ is a ring in $\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}_{\mathbb{I}}}$ and J^* is left exact.

A closely related example is the cubical set of "boolean polynomials",

$$B_n = \{\varphi(p_1, ..., p_n) \mid \text{propositional formulas in at most } p_1, ..., p_n\}$$

which is the free boolean algeba 2^n .

Questions

- 1. According to Grothedieck [?], the category \mathbb{H} is a test category, and so the category $\mathcal{H} = \mathsf{Set}^{\mathbb{H}^{op}}$ has the same homotopy theory as simplicial sets. Prove this.
- 2. Want to know what a "hypercubical ω -groupoid" (i.e. a fibrant object) should be. Are the usual box-filling conditions sufficient to define this? Is there another characterization involving the new diagonal maps?
- 3. The hypercubical sets \mathcal{H} is perhaps a good setting in which to compare the globular, simplicial, and type-theoretic notions of ω -groupoid.
- 4. What is a hypercubical $(\infty, 1)$ -category (in analogy to the simplicial notion of quasicategory)? Does the type theory give rise to one?

References

[1] S. Awodey and M.A. Warren. Homotopy theoretic models of identity types. *Math. Proc. Camb. Phil. Soc.*, 146, 45–55, 2009.

- [2] B. van den Berg and R. Garner. Topological and Simplicial Models of Identity Types. *ACM Transactions on Computational Logic*, 13:1, 2012.
- [3] P. Dybjer. "Internal Type Theory." LNCS 1158, 120–134, 1996.
- [4] N. Gambino and J. Kock, "Polynomial functors and polynomial monads" *Math. Proc. Cambridge Phil. Soc.* 154, 153–192, 2013.

[5]

- [6] Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program, Institute for Advanced Study, 2013. http://homotopytypetheory.org/book
- [7] C. Kapulkin, P. LeFanu Lumsdaine and V. Voevodsky, The Simplicial Model of Univalent Foundations. *In preparation*, 2013.