

PATENT

Certificate of Mailing by "Express Mail"
"Express Mail" Mailing No. EU972811728US Date of Deposit: August 20, 2003
I hereby certify that this paper or fee is being deposited with the United States Postal Service
"Express Mail Post Office to Addressee" under 37 C.F.R. 1.10 on the date indicated above and
is addressed to Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Margaret A. Connor

(Typed or Printed Name of Person Mailing Paper or Fee)

Margaret A. Connor

(Signature of Person Mailing Paper or Fee)

*SOLANUM BULBOCASTANUM LATE BLIGHT
RESISTANCE GENE AND USE THEREOF*

Teruko Osumi
William R. Belknap
David R. Rockhold
Mary M. MacCree

Docket No. 0155.02
Osumi et al.

PATENT

**SOLANUM BULBOCASTANUM LATE BLIGHT RESISTANCE
GENE AND USE THEREOF**

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/407,100, filed August 29, 2002. The disclosure of said provisional application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention is directed to pathogen resistance in plants. More particularly, the invention is directed to identification and use of a gene that provides resistance to late blight disease. Even more particularly, the invention is directed to a *Solanum bulbocastanum* late blight resistance gene, nucleic acid molecules encoding polypeptides which confer resistance to late blight, and methods of using the gene, including expression in plant cells to confer or enhance a plant's resistance to late blight.

2. Description of the Art

[0003] On a worldwide basis, late blight, caused by the fungus *Phytophthora infestans*, is the most important of potato diseases. Worldwide losses due to potato late blight are estimated to be about \$3 billion annually. Conservatively, *P. infestans* costs the potato industry in the United States \$200 to \$400 million annually.

[0004] Currently, late blight is controlled by application of fungicides. The cost of chemical control in the U.S., now applied in essentially all potato producing regions, is approximately \$100-\$200 per acre. Given that approximately 1.2 million acres are planted to potatoes annually in the U.S., the control costs alone are significant. In addition, in many years storage losses due to this pathogen are in the same range as the cost of control.

PATENT

[0005] In the U.S., the recent migration from Mexico of highly aggressive and virulent new forms of *P. infestans* poses a serious threat to all potato producing regions. In particular, the presence of A2 mating type and fungicide resistant forms in field populations of the fungus limits producers' options in control practices.

[0006] *P. infestans* also causes late blight in other crops, including tomato, eggplant, and other solanaceous species. The new, aggressive strains of *P. infestans* also represent a serious threat to commercial tomato production.

[0007] Identification of a late blight resistance gene and development of transgenic plants resistant to *P. infestans*, is important goal in plant research to reduce crop losses and to reduce the need for fungicide application and costs of chemical control.

[0008] A wide variety of genetic loci that confer resistance to pathogens have been identified in plant species. These resistance loci often encode dominant resistance genes, or R genes. The R genes confer either vertical race-specific or horizontal nonspecific resistance to a pathogen (Plank, 1968). Vertical resistance is based upon an induced hypersensitive response in which the pathogen infection is contained by localized host cell death at infection sites. The mechanism for vertical resistance has been proposed to involve activation of the cell death response when a specific plant receptor (the R gene product) interacts with an elicitor produced by a corresponding Avr gene in the invading pathogen (Flor, 1971).

Pathogen races are defined by distinct Avr gene profiles and resistance results from the interaction between specific R gene and Avr gene products (the gene for gene interaction).

[0009] In contrast to vertical resistance, horizontal resistance generally involves multiple plant genes and provides a general, stable, pathogen resistance in a race-nonspecific manner. Horizontal resistance is not correlated with the hypersensitive response, involving instead limiting pathogen spread in the host. *Solanum bulbocastanum* contains a dominant R gene locus which confers horizontal resistance to *P. infestans* when introgressed into the cultivated potato (Naess *et al.*, 2000; Naess *et al.*, 2001).

PATENT

[0010] Map-based cloning has been employed to identify a variety of R genes from crop plants (Ballvora *et al.*, 2002; Brueggeman *et al.*, 2002; Dixon *et al.*, 1996; Feuillet *et al.*, 1997; Lagudah *et al.*, 1997; Ori *et al.*, 1997; Yoshimura *et al.*, 1998).

SUMMARY OF THE INVENTION

[0011] We have now isolated a gene from the wild potato species *Solanum bulbocastanum* which confers horizontal resistance to *Phytophthora infestans*, the fungal pathogen that causes late blight disease. cDNA and genomic DNA sequences of the *Solanum bulbocastanum* late blight resistance gene, hereinafter denoted as *Sbul1*, are specifically exemplified herein (SEQ ID NO:1 and 3, respectively). The deduced amino acid sequence is shown in SEQ ID NO:2 and 4. The resistance protein is in the class of Nucleotide Binding Site-Leucine-Rich Repeat Proteins (NBS-LRRP), and the gene in *S. bulbocastanum* is flanked by related NBS-LRRP gene sequences.

[0012] DNA encoding the resistance protein has been introduced into potato plants and confers resistance to *P. infestans*. A comparison of the deduced amino acid sequence of *Sbul1*, which confers late blight resistance in transgenic plants, and the deduced amino acid sequence encoded by the *S. bulbocastanum* gene denoted herein as *Sbul2*, which does not confer resistance, reveals 101 differences between the two proteins over 989 residues, or 90% identity. A comparison of the nucleic acid sequences of *Sbul1* and *Sbul2* reveals 221 differences between the two genes over 3174 bp of coding sequence, or 93% identity.

[0013] Accordingly, the invention is directed to nucleic acid molecules encoding a pathogen resistance gene, the gene being characterized in that it encodes the amino acid sequence shown in SEQ ID NO:4, or an amino acid sequence showing greater than about 90% sequence identity with SEQ ID NO:4 and which encodes a polypeptide having ability to confer or enhance a plant's resistance to late blight. Exemplary nucleic acid molecules include the exemplified cDNA and genomic DNA sequences and nucleic acid sequences

PATENT

having greater than about 93% sequence identity with the coding domain of the exemplified sequences and which confer or enhance a plant's resistance to late blight.

[0014] The invention is also directed to recombinant nucleic acid molecules containing the sequences encoding the polypeptides which confer late blight resistance, including, for example, recombinant vectors, such as cloning, expression or transformation vectors.

[0015] Another aspect of the invention is the provision of cells which are transformed by the vectors or DNA sequences of the invention.

[0016] Methods of using the sequences are also encompassed by the invention. A particular use of the invention is the provision of plants or plant cells transformed with one or more nucleic acid sequences encoding a polypeptide which confers late blight resistance to provide plants having resistance to *P. infestans*, or to provide plants having enhanced resistance to *P. infestans* or related plant pathogens. Such plants include, for example, solanaceous plants. Prominent food crops are in the *Solanaceae* family. These include potato (*Solanum tuberosum*); tomato (*Lysopersicon*, e.g., *L. lycopersicum* and *L. esculentum*); pepper (*Capsicum*); eggplant (*Solanum melongena*). Most preferably, in the practice of the invention, the solanaceous plant is potato.

[0017] As described below, the locus containing the resistance gene was characterized by map-based cloning and chromosome walking using a *S. bulbocastanum* Bacterial Artificial Chromosome (BAC) library. The actual resistance gene was isolated using Polymerase Chain Reaction (PCR) as the allele of the locus which contains the gene was not represented in the library. Chimeric transgenes constructed with *Sbu1* transcribed from a potato ubiquitin (*Ubi3*) promoter were introduced into a susceptible potato variety. Greenhouse tests confirmed that transgenic potato clones containing these transgenes are resistant to late blight.

[0018] Accordingly, it is an object of the invention to provide nucleic acid sequences encoding polypeptides that confer late blight resistance; isolated polypeptides having this

PATENT

activity; recombinant nucleic acid molecules including expression vectors encoding the polypeptides; and cells harboring the recombinant nucleic acid molecules or expression vectors.

[0019] It is also an object of the invention to provide transformation vectors comprising a recombinant molecule, which vectors are effective for stably introducing the recombinant molecule into a plant.

[0020] It is also an object of the invention to provide methods of producing and using polypeptides conferring late blight resistance.

[0021] It is another object of the invention to provide transgenic plants having resistance to late blight or related pathogen, wherein the resistance is a result of expression of a recombinant nucleic acid molecule of the invention. An important aspect is the conferral of horizontal resistance to late blight, thereby providing general rather than race-specific control of the pathogen.

[0022] A further aspect of the invention is the provision of oligonucleotide probes capable of detecting a late blight resistance gene or functional equivalents thereof and the use of the probes to isolate nucleic acid sequences encoding a late blight resistance polypeptide or functional equivalent thereof.

[0023] A major impact of this invention on agriculture will be in controlling *P. infestans* in potatoes. The introduction of the resistance gene into cultivated potatoes would be expected to significantly reduce costs of chemical control, as well as providing a novel method for controlling fungicide resistant pathogen populations.

[0024] An additional application of this invention is controlling late blight in other solanaceous plants, for example, tomato production. The new, aggressive strains of *P. infestans* also represent a serious threat to commercial tomato production. Introduction of this resistance gene into tomato will result in significant savings in chemical control of the pathogen in this commodity.

PATENT

[0025] Other objects and advantages of the invention will become readily apparent from the ensuing description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] FIG. 1 shows the genetic map of the *S. bulbocastanum* late blight resistance gene locus. The approximate position of the locus is indicated by R. The positions of several RFLP markers relative to this locus are indicated. The relative positions of AFLP markers flanking the R gene are indicated.

[0027] FIG. 2 shows the assembly of an approximately 600 kb contig on *S. bulbocastanum* anchored by a BAC clone hybridizing to the RFLP marker CD60. BAC C29 was cloned by hybridization of filters to the labeled RFLP marker. BAC end-sequence analysis allowed design of specific primer pairs for both ends of the insert (F and R indicate forward and reverse). For each walk subsets of the BAC library were pooled and screened by PCR using these specific primers. BAC end-sequence analysis also revealed the position of members of a family of nucleotide binding site-leucine-rich repeat proteins (NBS-LRRP) indicated.

[0028] FIG. 3 shows the structure of the *S. bulbocastanum* chromosome 8 NBS-LRRP domain linked to late blight resistance. The domain contains six complete and three partial NBS-LRRP coding sequences. Only two of the six complete genes on the BAC contig, *Sbul2* and *Sbul3*, were found to encode uninterrupted open reading frames. The remaining four NBS-LRRP genes are interrupted by frame shift mutations (NBS Sal 37-1 and *Sbul1*) or stop codons (NBS Sal 37-3 and NBS 24K).

[0029] FIG. 4 shows the structure of the *Sbul1* transgenes. *Sbul1* genomic (SEQ ID NO:3) and cDNA (SEQ ID NO:1) sequences were fused to promoter and terminator sequences from the potato *Ubi3* gene (Garbarino *et al.*, 1994a; Garbarino *et al.*, 1994b).

[0030] FIG. 5 shows transgenic potatoes expressing *Sbul1* genomic and cDNA transgenes have improved resistance to *P. infestans* US8. Detached leaves of greenhouse-grown

PATENT

transgenic and control plants were inoculated with *P. infestans* and incubated for four days. Lesion size determined computationally (Bioquant Systems).

[0031] FIG. 6 shows a comparison of the deduced amino acid sequences of *Sbul1*, which confers late blight resistance in transgenic plants, and *Sbul2* which does not. Comparison reveals 101 differences between the two proteins over 989 residues, or 90% identity.

[0032] FIG. 7 shows a comparison of the nucleic acid sequences of *Sbul1*, which confers late blight resistance in transgenic plants, and *Sbul2* which does not. Comparison reveals 221 differences between the two genes over 3174 bp of coding sequence, or 93% identity

[0033] FIG. 8 shows potato lines transformed with the *Sbul1* genomic transgene have enhanced resistance to *P. infestans* US8 in intact plant assays.

BRIEF DESCRIPTION OF THE SEQUENCES

[0034] SEQ ID NO:1 shows the cDNA sequence of the *Solanum bulbocastanum* late blight resistance gene *Sbul1*. Sequence feature information: *Solanum bulbocastanum* *Sbul1* cDNA sequence: nucleotide 1 to 3193; coding region: nucleotide 52 to 3018; translation initiation codon: nucleotide 52 to 54; translation termination codon: nucleotide 3016 to 3018.

[0035] SEQ ID NO:2 shows the amino acid sequence encoded by SEQ ID NO:1.

[0036] SEQ ID NO:3 shows the DNA sequence of the active *Sbul1* gene, a PCR product using template DNA from a late blight-resistant back cross 3 potato line containing *S. bulbocastanum* DNA. The sequence contains a 412 bp intron. Sequence feature information: *Solanum bulbocastanum* genomic *Sbul1* sequence: nucleotide 1 to 3595; coding region: first coding domain : nucleotide 57 to 487; second coding domain: nucleotide 900 to 3435, wherein the 5' end of the second domain is linked to the 3' end of the first domain; intron: nucleotide 488 to 899; translation initiation codon: nucleotide 57 to 59; translation termination codon: nucleotide 3433 to 3435.

[0037] SEQ ID NO:4 shows the amino acid sequence encoded by SEQ ID NO:3.

PATENT

[0038] SEQ ID NO:5 shows the DNA sequence of the *Sbul2* gene. Sequence feature information: *Solanum bulbocastanum* genomic *Sbul2* sequence: nucleotide 1 to 3347; coding region: first coding domain: nucleotide 57 to 509; second coding domain: nucleotide 789 to 3347, wherein the 5' end of the second domain is linked to the 3' end of the first domain; intron: nucleotide 510 to 788; translation initiation codon: nucleotide 57 to 59; translation termination codon: nucleotide 3345 to 3347.

[0039] SEQ ID NO:6 shows the amino acid sequence encoded by SEQ ID NO:5.

[0040] SEQ ID NO:7 shows the DNA sequence of the *Sbul3* gene. Sequence feature information: *Solanum bulbocastanum* genomic *Sbul3* sequence: nucleotide 1 to 3222; coding region: first coding domain : nucleotide 58 to 528; second coding domain: nucleotide 691 to 3222, wherein the 5' end of the second domain is linked to the 3' end of the first domain; intron: nucleotide 529 to 690; translation initiation codon: nucleotide 58 to 60; translation termination codon: nucleotide 3220 to 3222.

[0041] SEQ ID NO:8 shows the amino acid sequence encoded by SEQ ID NO:7.

[0042] SEQ ID NO:9 shows the sequence of the chimeric *Ubi3/Sbul1* genomic transgene. Sequence feature information: *Ubi3-Solanum bulbocastanum* genomic *Sbul1-Ubi3* sequence: nucleotide 1 to 5028; Potato *Ubi3* promoter: nucleotide 1 to 953; *Solanum bulbocastanum* genomic *Sbul1* gene: nucleotide 973 to 4566; coding region: first coding domain : nucleotide 1029 to 1459; second coding domain: nucleotide 1872 to 4407, wherein the 5' end of the second domain is linked to the 3' end of the first domain; intron: nucleotide 1460 to 1871; translation initiation codon: nucleotide 1029 to 1031; translation termination codon: nucleotide 4405 to 4407.

[0043] SEQ ID NO:10 shows the amino acid sequence encoded by SEQ ID NO:9.

DEFINITIONS

[0044] Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs.

PATENT

The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton, *et al.*, DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY (2d ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walker ed., 1988); THE GLOSSARY OF GENETICS, 5TH ED., Rieger, R., *et al.* (eds.), Springer Verlag (1991); and Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY (1991). References providing standard molecular biological procedures include Sambrook *et al.* (1989) *Molecular Cloning*, second edition, Cold Spring Harbor Laboratory, Plainview, NY; *DNA Cloning*, Vols. I and II, IRL Press, Oxford, UK; and Hames and Higgins (eds.) (1985) *Nucleic Acid Hybridization*, IRL Press, Oxford, UK. References related to the manipulation and transformation of plant tissue include Kung and Arntzen (eds.) (1989) *Plant Biotechnology*, Butterworths, Stoneham, MA; R. A. Dixon (ed.) (1985) *Plant Cell Culture: A Practical Approach*, IRL Press, Oxford, UK; Schuler and Zielinski (1989) *Methods in Plant Molecular Biology*, Academic Press, San Diego, CA; Weissbach and Weissbach (eds.) (1988) Academic Press, San Diego, CA; I. Potrykus (1991) *Ann. Rev. Plant Physiol. Plant Mol. Biol.* 42:205; Weising *et al.* (1988) *Annu. Rev. Genet.* 22:421; van Wordragen *et al.* (1992) *Plant Mol. Biol. Rep.* 19:12; Davey *et al.* (1989) *Plant Mol. Biol.* 13:273; Walden and Schell (1990) *Eur. J. Biochem.* 192:563; Joersbo and Brunstedt (1991) *Physiol. Plant.* 81:256 and references cited in those references. The references cited in the list of References attached below also provides a description of the terms used herein. The following U.S. patents are incorporated herein by reference: U.S. Patents Nos. 5,589,339; 6,084,156; 6,225,527; 6,287,865; 6225,532; 6,287,865; 6,100,449; and published application PCT/US00/23802 (WO 01/16353). All references cited in the present application are expressly incorporated by reference herein.

DETAILED DESCRIPTION OF THE INVENTION

[0045] We have now cloned a horizontal late blight resistance gene from *S. bulbocastanum*. As described below, the resistance gene *Sbull* was isolated by map-based cloning. In this technique the locus that confers resistance is mapped relative to amplified fragment length

PATENT

polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers that are linked to the resistance gene. Four markers that appeared to be most closely linked to the resistance gene were used to probe a *S. bulbocastanum* genomic bacterial artificial chromosome (BAC) library and hybridizing BAC clones identified. The resistance locus was obtained by chromosome walking from an original anchor clone. The resistance gene was identified by introduction of candidate genes from the locus into transgenic potato and screening for late blight resistance.

[0046] The present invention is directed to isolated nucleic acid sequences derived from a *S. bulbocastanum* gene which encode polypeptides which confer horizontal late blight resistance. The specifically exemplified nucleic acid sequences include the *Sb1l* cDNA sequence (SEQ ID NO:1) and the DNA sequence of the active *Sb1l* gene, a PCR product using template DNA from a late blight-resistant back cross 3 potato line containing *S. bulbocastanum* DNA (SEQ ID NO:3). The latter sequence contains a 412 bp intron. SEQ ID NO:4 shows the deduced amino acid sequence of the *Sb1l* gene product. The invention encompasses nucleic acid sequences which have greater than about 93% sequence identity with the coding domain of the exemplified sequences and encode a polypeptide which confers or enhances a plant's resistance to late blight. More preferably, the nucleic acid sequences have about 95% sequence identity with the coding domain of the exemplified sequences and encode a polypeptide which confers or enhances a plant's resistance to late blight. For purposes of the present invention, the degree of identity between two nucleic acid sequences is determined any method known in the art, for example by the Clustal method (Thompson *et al.* 1994), using ClustalW 1.7 or 1.8 (<http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html>). Further, nucleic acid sequences which hybridize under high stringency conditions with the coding region of the DNA sequence of SEQ ID NO:1 or 3 and which encode a polypeptide having the activity defined above, are also encompassed by the present invention.

PATENT

[0047] The invention is directed to nucleic acid molecules encoding the amino acid sequence of SEQ ID NO:4, or an amino acid sequence showing greater than about 90% sequence identity with SEQ ID NO:4 and which encodes a polypeptide having ability to confer or enhance a plant's resistance to late blight. More preferably, the encoded amino acid sequence has at least about 95%, and most preferably at least about 97% sequence identity with SEQ ID NO:4 and has the activity defined above. For purposes of the present invention, the degree of identity between two amino acids is determined any method known in the art, for example, by the FASTA/FASTP method of Pearson (1990), using ALIGN (<http://dot.imgen.bcm.tmc.edu:9331/seq-search/alignment.html>), with the BLOSUM50 or PAM250 scoring matrix.

[0048] Preferably, the polypeptides of the present invention comprise an amino acid sequence of SEQ ID NO:4 or an amino acid sequence showing greater than about 90% sequence identity with SEQ ID NO:4 and which encodes a polypeptide having ability to confer or enhance a plant's resistance to late blight.

[0049] The degeneracy of the genetic code is well known to the art; therefore, synonymous coding sequences with one or more codon substitutions can be readily determined by one of ordinary skill in the art. Synonymous coding sequences vary from the exemplified coding sequences but encode proteins of the same amino acid sequences as those specifically provided herein. Examples of conservative substitutions are within the groups of basic amino acids (such as arginine, lysine and histidine), acidic amino acids (such as glutamic acid and aspartic acid), polar amino acids (such as glutamine and asparagine), hydrophobic amino acids (such as leucine isoleucine and valine), aromatic amino acids (such as phenylalanine, tryptophan and tyrosine), and small amino acids (such as glycine, alanine, serine, threonine and methionine). Amino acid substitutions which do not generally alter the specific activity are known in the art as described, for example, by H. Neurath and R. L. Hill, 1979, *In, The Proteins*, Academic Press, New York. The most commonly occurring exchanges are Ala/Ser,

PATENT

Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, and Asp/Gly as well as these in reverse.

[0050] The present invention also relates to recombinant expression vectors comprising a nucleic acid sequence of the present invention, a promoter, and transcriptional and translational stop signals.

[0051] The present invention also relates to recombinant host cells, comprising a nucleic acid sequence of the invention, which are advantageously used in the recombinant production of the polypeptides. Preparation of transformed host cells and cloning methods are described by U.S. Patent No. 5,374,540, which is incorporated herein by reference.

[0052] Preparation of Transgenic Plants: The transgenic plant or plant cell expressing an RNA transcript or polypeptide of the present invention may be constructed in accordance with methods known in the art. In brief, the plant or plant cell is constructed by incorporating one or more expression constructs encoding a polypeptide of the present invention into the plant host genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.

[0053] As discussed above, a particular use of the invention is the provision of plants or plant cells transformed with a DNA sequence encoding an amino acid sequence which confers resistance to late blight or related pathogens.

[0054] Another use of the invention is as probes and primers capable of detecting a late blight resistance gene or functional equivalent thereof in fungi of the genus *Phytophthora*. Using the nucleic acid sequences of the invention facilitates the isolation of homologous genes from hosts to obtain genes which protect host cells, including fungi and plants against other fungal pathogens.

EXAMPLES

[0055] The following examples are intended only to further illustrate the invention and are not intended to limit the scope of the invention.

PATENT

Map-based cloning of the *S. bulbocastanum* late blight resistance gene (*Sbul1*)

[0056] *S. bulbocastanum* DNA was introgressed into potato by somatic fusion at the University of Wisconsin (Naess *et al.*, 2001). Fertile progeny were then back crossed to potato. The position of the *S. bulbocastanum* late blight resistance gene locus was mapped using a back-cross 3 population segregating for *P. infestans* resistance using a combination of AFLP (Vos *et al.*, 1995) and RFLP techniques. The late blight resistance locus maps to chromosome 8 (Naess *et al.*, 2001). The segregating population was subjected to AFLP mapping, exhaustion of the commercially available primer/enzyme sets resulted in identification of over 400 polymorphic bands. RFLP mapping was also employed, the population was screened with a variety of chromosome 8 markers. The relative positions of the AFLP and RFLP markers closest to the *Sbul1* locus are shown in FIG. 1. The clustering of these markers, together with the failure of AFLP to generate a marker within the flanking RFLP probes (CD60 and TG261) suggested that the resistance locus is located in an area of chromosome 8 with high rates of recombination resulting in very different genetic and physical maps. This interpretation suggested that additional mapping was unnecessary, and four RFLP markers (TG282, TG505, CD60, PPOIII) were selected to probe a *S. bulbocastanum* BAC library (Song *et al.*, 2000).

Identification of Candidate *Sbul1* genes.

[0057] BAC clones corresponding to each of the four RFLP markers were isolated and used to anchor PCR-based chromosome walking (FIG. 1). BAC end-sequences were used to generate specific primer pairs for screening of pooled BAC clones by PCR (Cai *et al.*, 1995). The assembly of an approximately 600 kb contig proximal to the CD60 RFLP marker on *S. bulbocastanum* chromosome 8 is shown in FIG. 2. Computational (BLAST) alignment of the end sequences of BAC isolates C29F2F2R1 and C29F2F2R2 with the available database (Altschul *et al.*, 1990) indicated the presence of sequences encoding nucleotide binding site-leucine-rich repeat proteins (NBS-LRRPs) similar to previously identified R genes (Ballvora *et al.*, 2002; Lagudah *et al.*, 1997; Simons *et al.*, 1998; Yoshimura *et al.*, 1998). Primers

PATENT

specific to the NBS-LRRP locus on the contig in FIG. 2 were employed in PCR screening of genomic DNA from the original population segregating for late blight resistance, and this locus was found to be linked to the resistance phenotype.

[0058] An approximately 75 kb region containing six complete NBS-LRRP genes was characterized. As shown in FIG. 3, four of the six complete genes were found to represent pseudogenes, with coding sequences interrupted by either frame shift mutations or stop codons. These data suggested that late blight resistance at this locus was associated with *Sbul2* and/or *Sbul3* expression.

Identification of the *Sbul1* late blight resistance gene.

[0059] Experiments to determine the efficacy of either *Sbul2* or *Sbul3* (FIG. 3) in conferring late blight resistance were based on mobilization of these genes plus at least 3 kb of 5' and 3' flanking sequence into susceptible potatoes by *Agrobacterium*-mediated transformation. *Sbul2* or *Sbul3* and flanking sequences were mobilized into a binary transformation vector pCGN1547 (McBride *et al.*, 1990). These binary vector constructs were used to introduce the *Sbul2* or *Sbul3* genes into potato varieties Lenape (Akeley *et al.*, 1968) and Atlantic (Webb *et al.*, 1978) by a standard transformation/selection protocol (Snyder *et al.*, 1993). Transgenic potato plants containing either the *Sbul2* or *Sbul3* genes were screened for resistance to late blight by detached leaf assay (Trognitz *et al.*, 1995). Neither the *Sbul2* or *Sbul3* genes conferred resistance to *P. infestans*.

[0060] The similarity of the NBS-LRRPs on the *S. bulbocastanum* contig (FIG. 3) to known disease resistance genes is significant. A BLAST database search (Altschul *et al.*, 1990) using the deduced amino acid sequence of *Sbul2* returns seven putative resistance genes from *Arabidopsis* at the highest identity ($P(N) < 10^{-120}$) followed by the *I2* *Fusarium oxysporum* resistance gene from tomato (Simons *et al.*, 1998) ($P(N) < 10^{-108}$). In addition, this PCR probes from this locus indicate linkage to the resistance gene in the segregating population. It therefore appeared possible that one or more of the four pseudogenes present

PATENT

on the *S. bulbocastanum* contig (FIG. 3) represented an inactive allele of a gene active on the other chromosome of this diploid species. Specific primers were prepared to the *Sbul1*, *Sbul2*, and *Sbul3* genes on the locus, and RACE (Rapid Amplification of cDNA Ends)-PCR was employed to amplify potential mRNAs from polyA⁺ RNA prepared from *P. infestans*-infected *S. bulbocastanum* leaves. Messenger RNA products corresponding to *Sbul1*, *Sbul2* and *Sbul3* were amplified. This suggested that active *Sbul1* was heterozygous in *S. bulbocastanum*, with one allele active and the other interrupted by a frame shift mutation (Helgeson *et al.*, 1988). PCR amplification of *Sbul1* using genomic DNA from a late blight-resistant BC3 line as a template generated an amplified product encoding a mRNA essentially identical to the *Sbul1* cDNA (SEQ ID NO:3).

[0061] The DNA sequence of the active *Sbul1* cDNA is shown in SEQ ID NO:1. The deduced amino acid sequence is shown in SEQ ID NO:2. The DNA sequence of active *Sbul1* gene, a PCR product from *S. bulbocastanum*-containing potato genomic DNA, containing a 412 bp intron is shown in SEQ ID NO:3. The deduced amino acid sequence of the *Sbul1* gene product is shown in SEQ ID NO:4. The DNA sequence of the *Sbul2* gene is shown in SEQ ID NO:5, and the deduced *Sbul2* amino acid sequence is shown in SEQ ID NO:6. The DNA sequence of the *Sbul3* gene is shown in SEQ ID NO:7, and the deduced *Sbul3* amino acid sequence is shown in SEQ ID NO:8.

Expression of *Sbul1* in transgenic plants

[0062] In order to express *Sbul1* in transgenic plants two chimeric transgenes were constructed. Transcription of the *Sbul1* gene is directed from the potato *Ubi3* promoter, which will result in constitutive moderate-level expression (Garbarino *et al.*, 1994a; Garbarino *et al.*, 1994b). The *Ubi3* polyadenylation signal was fused to the 3' end of each sequence (FIG. 4).

[0063] The sequence of the genomic chimeric transgene is shown in SEQ ID NO:9. The transgenes shown in FIG. 4 were mobilized into the binary transformation vector pBINPLUS-

PATENT

ARS. This vector is a version of the pBINPLUS vector (Van Engelen *et al.*, 1995) modified in our laboratory by replacement of selectable marker transcriptional control sequences (CaMV35S promoter, NOS terminator) with a promoter and terminator derived from the potato *Ubi3* gene (Garbarino *et al.*, 1994a). These binary vector constructs were used to introduce the transgenes into potato varieties Lenape (Akeley *et al.*, 1968) and Atlantic (Webb *et al.*, 1978) by a standard transformation/selection protocol (Snyder *et al.*, 1993). Transgenic potato plants were screened for resistance to late blight by detached leaf assay (Tognitz *et al.*, 1995).

Greenhouse assay of late blight resistance of transgenic potatoes expressing *Sbul1* transgenes

[0064] To assay for late blight resistance fully developed leaves from greenhouse-grown plants were detached. Inocula were obtained from two-week-old cultures of *P. infestans* (strain US8, Florida isolate) grown on rye agar. Inoculations were made by placing a 10ul droplet of a sporangial suspension (4×10^4 ml) that had been incubated at 8° C for 2.5 hours (to liberate zoospores) on both sides of the midrib of the abaxial surface. The inoculated leaflets were placed in petri dishes containing moistened filter paper to maintain 100% relative humidity. Inoculated material was incubated for 1 day at 15°C in darkness, then for four days at 15°C, 16-hour/day photoperiod ($400 E^{-m^2} S^{-1}$). A computer-driven image analysis system (Bioquant IV, R and M Biometrics, Nashville, TN) was used to obtain measurements of lesions. The lesion diameter was determined by projecting the whole leaves onto a grid lining the Bioquant Digitizing Pad. The digitizing pad was coupled with an IBM PC and measurements were generated using Bioquant Systems software.

[0065] As shown in FIG. 5, both the *Sbul1* genomic and cDNA transgenes conferred resistance to *P. infestans* in transgenic potatoes. As shown in FIG. 6, the deduced amino acid sequence of the *Sbul2* gene, which does not confer resistance, has 90% identity to the *Sbul1* deduced amino acid sequence. As shown in FIG. 7, the nucleic acid sequences of the *Sbul1* and *Sbul2* coding domains are 93% identical.

PATENT

[0066] The data presented in FIG. 5 shows that *Sbu1*, when introduced into susceptible potato varieties, is capable of conferring resistance to late blight. While the *Sbu2* and *Sbu3* genes do not, individually, confer a resistant phenotype, this does not preclude a role for these gene products in enhancing *Sbu1*-mediated resistance originating from this locus.

Whole-plant glasshouse test of late blight resistance of potato plants transformed with *Sbu1*.

[0067] To assay for late blight resistance, transgenic and control tubers were planted in 6 inch pots and grown 16 hr light and 8 hr dark photoperiod using high pressure sodium lamps as supplemental lighting. Transgenic lines used in these experiments contained the genomic *Sbu1* transgene (SEQ ID NO:9). Inocula were obtained from cultures of *P. infestans* (strain MD-02-pet-1 an A2, US-8 genotype) grown in lima bean media in the dark at room temperature. After two weeks of incubation, the plates were flooded 2x with sterile water and scraped lightly using an L-shaped glass or plastic rod to collect sporangia. The liquid from the plates were filtered into a 1 liter glass beaker using two layers of cheesecloth. The total volume was roughly estimated and sporangia was counted using a hemacytometer. Using sterile water, the volume of the inoculum was adjusted that gave a final count of 5,000 sporangia/ml. The inoculum was transferred into a sprayer (approximately 2 ml/sec) and incubated at 4°C for 1 hour followed by room temperature incubation for 30 minutes.

[0068] The whole-plant glasshouse test described by Stewart et al. (1983) was used to determine which of the plants were resistant to *P. infestans*. Plants of each clone in flower bud were inoculated with *P. infestans*. Each plant was scored daily using Malcolmson's scoring scale of increasing resistance (Cruickshank et al., 1982) starting 7 days after inoculation, and plants of each clone compared. As shown in FIG. 8, two of the transgenic lines exhibited no infection 24 days after inoculation, six additional transgenic lines had intermediate levels of resistance.

PATENT

Description of Plasmids

[0069] The plasmid pBT1596 consists of the *Sb11* genomic transgene shown in SEQ ID NO:9 inserted into the multiple cloning site of the binary transformation vector pBINPLUS-ARS. The plasmid pBT1593 consists of the *Sb11* cDNA sequence (SEQ ID NO:1) inserted between the potato *Ubi3* promoter and terminator sequences indicated in SEQ ID NO:9 in the multiple cloning site of the binary transformation vector pBINPLUS-ARS.

Statement of Deposit

[0070] The plasmids were introduced into the host *Escherichia coli* DH5 α and the transformed *Escherichia coli* strains were deposited August 18, 2003 under terms of the Budapest Treaty with Agricultural Research Service Culture Collection (NRRL) National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 USA and given the following accession numbers:

<u>Plasmid</u>	<u>Accession No.</u>	<u>SEQ ID NO</u>
pBT1596	NRRL B-30685	SEQ ID NO:9
pBT1593	NRRL B-30686	SEQ ID NO:1

[0071] It is understood that the foregoing detailed description is given merely by way of illustration and that modification and variations may be made within, without departing from the spirit and scope of the invention. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.

PATENT

References

- Akeley, R.V., Mills, W.R., Cunningham, C.E., and Watts, J. 1968. Lenape: a new potato variety high in solids and chipping quality. *American Potato Journal* 45: 142-151.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215: 403-410.
- Ballvora, A., Ercolano, M.R., Weiss, J., Meksem, K., Bormann, C.A., Oberhagemann, P., Salamini, F., and Gebhardt, C. 2002. The R1 gene for potato resistance to late blight (*Phytophthora infestans*) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. *Plant J* 30: 361-371.
- Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A. 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. *Proc Natl Acad Sci U S A* 99: 9328-9333.
- Cai, L., Taylor, J.F., Wing, R.A., Gallagher, D.S., Woo, S.S., and Davis, S.K. 1995. Construction and characterization of a bovine bacterial artificial chromosome library. *Genomics* 29: 413-425.
- Cruickshank, G., Stewart, H.E., Wastie, R.L. 1982. An illustrated assessment key for foliage blight of potatoes. *Potato Research* 25, 213-214.
- Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K., and Jones, J.D. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. *Cell* 84: 451-459.
- Feuillet, C., Schachermayr, G., and Keller, B. 1997. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. *Plant J* 11: 45-52.
- Flor, H.H. 1971. Current status of the gene-for-gene concept. *Annual Reviews of Phytopathology* 9: 275-296.

PATENT

- Garbarino, J.E., and Belknap, W.R. 1994a. Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. *Plant Mol Biol* 24: 119-127.
- Garbarino, J.E., and Belknap, W.R. 1994b. Use of ubiquitin promoters for transgene expression in potato. In W. D. Park [ed.], Molecular and Cellular Biology of the Potato, Second Edition, 173-185. CAB International, Wallingford, UK.
- Helgeson, J.P., Pohlman, J.D., Austin, S., Haberlach, G.T., Wielgus, S.M., Ronis, D., Zambolim, L., Tooley, P., McGrath, J.M., James, R.V., and Stevenson, W.R. 1988. Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. *Theor Appl Genet* 96: 738-742.
- Lagudah, E.S., Moullet, O., and Appels, R. 1997. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. *Genome* 40: 659-665.
- McBride, K.E., and Summerfelt, K.R. 1990. Improved binary vectors for *Agrobacterium*-mediated plant transformation. *Plant Mol Biol* 14: 269-276.
- Naess, S.K., Bradeen, J.M., Wielgus, S.M., Haberlach, G.T., McGrath, J.M., and Helgeson, J.P. 2000. Resistance to late blight in Solanum bulbocastanum is mapped to Chromosome 8. *Theo Appl Genet* 101.
- Naess, S.K., Bradeen, J.M., Wielgus, S.M., Haberlach, G.T., McGrath, J.M., and Helgeson, J.P. 2001. Analysis of the introgression of Solanum bulbocastanum DNA into potato breeding lines. *Mol Genet Genomics* 265: 694-704.
- Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D., and Fluhr, R. 1997. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. *Plant Cell* 9: 521-532.
- Pearson, W.R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. *Methods Enzymology* 183:63-98.

PATENT

- Plank, J.E.v.d. 1968. *Disease resistance in plants*. Academic, New York.
- Simons, G., Groenendijk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaard, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both, M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M., and Vos, P. 1998. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. *Plant Cell* 10: 1055-1068.
- Snyder, G.W., and Belknap, W.R. 1993. A modified method for routine *Agrobacterium*-mediated transformation of *in vitro* grown potato microtubers. *Plant Cell Reports* 12: 324-327.
- Song, J., Dong, F., and Jiang, J. 2000. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. *Genome* 43: 199-204.
- Stewart, H.E., Flavelle, P.H., McCalmont, D.C., Wastie, R.L.. 1983. Correlation between glasshouse and field tests for resistance to foliage blight caused by *Phytophthora infestans*. *Potato Research* 26, 41.
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. *Nucl Acids Res* 22: 4673-4680.
- Trognitz, B.R., Chacón, G., Pinedo, H., and M., E. 1995. Screening for R genes causing race-specific resistance to late blight in wild potato species. *Am Potato J* 72: 662-670.
- van Engelen, F.A., Molthoff, J.W., Conner, A.J., Nap, J.P., Pereira, A., and Stiekema, W.J. 1995. pBINPLUS - an Improved Plant Transformation Vector Based On pBIN19. *Transgenic Research* 4: 288-290.
- Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., and Kuiper, M. 1995. AFLP: a new technique for DNA fingerprinting. *Nucleic Acids Res* 23: 4407-4414.

PATENT

- Webb, R.E., Wilson, D.R., Shumaker, J.R., Graves, B., Henninger, M.R., Watts, J., Frank, J.A., and Murphy, H.J. 1978. "Atlantic": A new potato variety with high solids, good processing quality, and resistance to pests. *Amer Potato J* 55: 141-146.
- Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N., and Sasaki, T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. *Proc Natl Acad Sci U S A* 95: 1663-1668.

SEQUENCE LISTING

<110> Oosumi et al., Teruko
<120> Solanum Bulbocastanum Late Blight Resistance Gene and Use Thereof
<130> 0155.02
<150> 60/407,100
<151> 2002-08-29
<160> 10
<170> PatentIn version 3.2
<210> 1
<211> 3193
<212> DNA
<213> Solanum bulbocastanum

<220>
<221> CDS
<222> (52)..(3018)

<400> 1
atcttacttc atttcaaaaa atatacgattc attgcgtact cacaatactc t atg gct 57
Met Ala
1

gaa gct ttc ctt caa gtt ctg tta gac aat ctg act tgt ttc atc caa 105
Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Cys Phe Ile Gln
5 10 15

ggg gaa ctt gga ttg att ctt ggt ttt aag gat gag ttc gaa aag ctt 153
Gly Glu Leu Gly Leu Ile Leu Gly Phe Lys Asp Glu Phe Glu Lys Leu
20 25 30

caa agc acg ttt act aca atc caa gct gtg cta gaa gat gct cag aag 201
Gln Ser Thr Phe Thr Ile Gln Ala Val Leu Glu Asp Ala Gln Lys
35 40 45 50

aag caa ttg aag gac aag gca ata gaa aat tgg ttg cag aaa ctc aat 249
Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys Leu Asn
55 60 65

gct gct gca tat gag gct gat gac atc ttg gac gaa tgt aaa act gag 297
Ala Ala Ala Tyr Glu Ala Asp Asp Ile Leu Asp Glu Cys Lys Thr Glu
70 75 80

gca cca att aga cag aag aac aaa tat ggg tgt tat cat cca aac 345
Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys Tyr His Pro Asn
85 90 95

gtt atc act ttt cgt cac aag att ggg aaa agg atg aaa aag att atg 393
Val Ile Thr Phe Arg His Lys Ile Gly Lys Arg Met Lys Lys Ile Met
100 105 110

gag aaa cta gat gta att gca gcg gaa cga att aag ttt cat ttg gat 441
Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys Phe His Leu Asp
115 120 125 130

gaa agg act ata gag aga caa gtt gct aca cgc caa aca ggt ttt gtt Glu Arg Thr Ile Glu Arg Gln Val Ala Thr Arg Gln Thr Gly Phe Val 135 140 145	489
ttg aat gaa cca caa gtt tat gga aga gac aaa gaa aag gac gag ata Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu Ile 150 155 160	537
gtg aaa atc ctg ata aac aat gtt agc aat gcc caa aca ctt cca gtc Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr Leu Pro Val 165 170 175	585
ctc cca ata ctt ggt atg ggg gga cta gga aag acg act ctt gcc caa Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ala Gln 180 185 190	633
atg gtc ttc aat gat cag aga gta att gag cat ttc cat ccc aaa ata Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His Pro Lys Ile 195 200 205 210	681
tgg att tgt gtc tcg gaa gat ttt aat gag aag agg ttg ata aag gaa Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile Lys Glu 215 220 225	729
att gta gaa tct att gaa gaa aag tca ctt ggt ggc atg gac ttg gct Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met Asp Leu Ala 230 235 240	777
cca ctt caa aag aag ctt cgg gac ttg ctg aat gga aaa aaa tat ttg Pro Leu Gln Lys Lys Ile Arg Asp Leu Leu Asn Gly Lys Lys Tyr Leu 245 250 255	825
ctc gtc tta gat gat gtt tgg aat gaa gat caa gat aag tgg gct aag Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys Trp Ala Lys 260 265 270	873
tta aga caa gtc ttg aag gtt gga gca agt ggc gct tct gtt cta acc Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val Leu Thr 275 280 285 290	921
act act cgt ctt gaa aag gtt gga tca att atg gga aca ttg caa cca Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu Gln Pro 295 300 305	969
tat gaa ttg tca aat ttg tct caa gaa gat tgt tgg ttg ttg ttc atg Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu Phe Met 310 315 320	1017
caa cgt gca ttt ggg cac caa gaa ata aat ctt aat ctt gtg gct Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn Leu Val Ala 325 330 335	1065
atc gga aag gag att gtg aaa aaa tgt ggt ggt gtg cct cta gca gct Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala Ala 340 345 350	1113
aaa act ctt gga ggt att ttg cgc ttt aag aga gaa gaa aga cag tgg Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg Gln Trp 355 360 365 370	1161

gaa cat gtg aga gat agt gag att tgg aaa ttg cct caa gaa gaa agt Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu Glu Ser 375 380 385	1209
tct att ctg cct gcc ctg aga ctt agt tac cat cac ctt cca ctt gat Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro Leu Asp 390 395 400	1257
ttg aga caa tgc ttt aca tat tgt gca gta ttc cca aag gat acc gaa Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys Asp Thr Glu 405 410 415	1305
atg gaa aag gga aat cta atc tct ctc tgg atg gca cat ggt ttt att Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His Gly Phe Ile 420 425 430	1353
tta tcg aaa gga aac ttg gag cta gag aat gta ggt aat gaa gta tgg Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn Glu Val Trp 435 440 445 450	1401
aat gaa tta tac ttg agg tct ttc ttc caa gag att gaa gtt aaa tct Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val Lys Ser 455 460 465	1449
ggt caa act tat ttc aag atg cat gat ctc att cat gat ctg gca aca Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala Thr 470 475 480	1497
tct cta ttt tcg gca agc aca tca agc agc aat atc cga gaa ata att Ser Leu Phe Ser Ala Ser Thr Ser Ser Asn Ile Arg Glu Ile Ile 485 490 495	1545
gta gaa aat tac ata cat atg atg tcc att ggt ttc act aaa gtg gta Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr Lys Val Val 500 505 510	1593
tct tct tac tct ctt tcc cac ttg cag aag ttt gtc tcg ttg agg gtg Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser Leu Arg Val 515 520 525 530	1641
ctt aat cta agt gac ata aaa ctt aag cag tta ccg tct tcc att gga Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser Ser Ile Gly 535 540 545	1689
gat cta gta cat tta aga tac cta aac ttg tct ggc aat act agt att Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn Thr Ser Ile 550 555 560	1737
cgt agt ctt cca aac cag tta tgc aag ctt caa aat ctg cag act ctt Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu Gln Thr Leu 565 570 575	1785
gat cta cat ggc tgt cat tca ctt tgt ttg cca aaa gaa aca agc Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys Glu Thr Ser 580 585 590	1833
aaa ctt ggt agt ctt cga aat ctt tta ctt gat ggt tgc tat gga ttg Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Gly Cys Tyr Gly Leu 595 600 605 610	1881
act tgt atg cca cca agg ata gga tct ttg aca tgc ctt aag act cta	1929

Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr Leu			
615	620	625	
agt aga ttt gtg gtg gga att cag aag aaa agt tgt caa ctt ggt gaa			1977
Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln Leu Gly Glu			
630	635	640	
tta cga aac ctg aat ctc tat ggc tca att gaa atc acg cat ctt gag			2025
Leu Arg Asn Leu Asn Tyr Gly Ser Ile Glu Ile Thr His Leu Glu			
645	650	655	
aga gtg aag aat gat atg gat gca aaa gaa gcc aat tta tct gca aaa			2073
Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser Ala Lys			
660	665	670	
gaa aat ctg cat tct tta agc atg aaa tgg gat gac gat gaa cgt cca			2121
Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp Glu Arg Pro			
675	680	685	690
cgt ata tat gaa tca gaa aaa gtt gaa gtg ctt gaa gct ctc aaa cca			2169
Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala Leu Lys Pro			
695	700	705	
cac tcc aat ctg act tgt tta aca atc agg ggc ttc aga gga atc cgt			2217
His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg Gly Ile Arg			
710	715	720	
ctc cca gac tgg atg aat cac tca gtt ttg aaa aat gtt gtc tct att			2265
Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val Ser Ile			
725	730	735	
gaa atc atc agt tgc aaa aac tgc tca tgc tta cca ccc ttt ggt gag			2313
Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe Gly Glu			
740	745	750	
ctg cct tgt cta aaa agt cta gag ttg tgg agg ggg tct gcg gaa gtg			2361
Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser Ala Glu Val			
755	760	765	770
gag tat gtt gat tct gga ttc cct aca aga aga agg ttt cca tct ctg			2409
Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro Ser Leu			
775	780	785	
aga aaa ctt aat ata cgc gaa ttt ggt aat ctg aaa gga ttg ctg aaa			2457
Arg Lys Leu Asn Ile Arg Glu Phe Gly Asn Leu Lys Gly Leu Leu Lys			
790	795	800	
aag gaa gga gaa gag caa tgc cct gtg ctt gaa gag ata gag att aaa			2505
Lys Glu Gly Glu Gln Cys Pro Val Leu Glu Ile Glu Ile Lys			
805	810	815	
tgt tgc cct atg ttt gtt att cca acc ctt tct tct gtc aag aaa ttg			2553
Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Lys Lys Leu			
820	825	830	
gta gtt agt ggg gac aag tca gat gca ata ggt ttc agt tcc ata tct			2601
Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser Ser Ile Ser			
835	840	845	850
aat ctc atg gct ctt act tcc ctc caa att cgc tat aac aaa gaa gat			2649
Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn Lys Glu Asp			

855	860	865	
gct tca ctc cca gaa gag atg ttc aaa agc ctt gca aat ctc aaa tac Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu Lys Tyr 870	875	880	2697
ttg aat atc tct ttt tac ttc aat ctt aaa gag ctg cct acc agc ctg Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro Thr Ser Leu 885	890	895	2745
gct agt ctc aat gct ttg aag cat ctg gaa att cat agt tgt tat gca Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser Cys Tyr Ala 900	905	910	2793
cta gag agt ctc ccc gag gaa ggt gtg aaa ggt tta att tca ctc aca Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile Ser Leu Thr 915	920	925	2841
cag tta tcc ata aca tac tgt gaa atg cta caa tgt tta ccg gag gga Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu Pro Glu Gly 935	940	945	2889
ttg cag cac cta aca gcc ctc aca aat tta tca gtt gag ttt tgt cca Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu Phe Cys Pro 950	955	960	2937
aca ctg gcc aag cg ^g tgt gag aag gga ata gga gaa gac tgg tac aaa Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp Tyr Lys 965	970	975	2985
att gct cac att cct cgt gtg ttt att tat tag tattccaat tagatgtaat Ile Ala His Ile Pro Arg Val Phe Ile Tyr 980	985		3038
tttctgattt tc ^t tttgaa acaaatcaac tatttgtaag atctatttgt attataacttg attttcttg ggtctgtaac aataaatatt tgaaatttt catattaaga ttcagaatta gtcttagt caaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaa			3098 3158 3193
<210> 2			
<211> 988			
<212> PRT			
<213> Solanum bulbocastanum			
<400> 2			
Met Ala Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Cys Phe 1	5	10	15
Ile Gln Gly Glu Leu Gly Leu Ile Leu Gly Phe Lys Asp Glu Phe Glu 20	25	30	
Lys Leu Gln Ser Thr Phe Thr Thr Ile Gln Ala Val Leu Glu Asp Ala 35	40	45	
Gln Lys Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys			

50

55

60

Leu Asn Ala Ala Ala Tyr Glu Ala Asp Asp Ile Leu Asp Glu Cys Lys
65 70 75 80

Thr Glu Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys Tyr His
85 90 95

Pro Asn Val Ile Thr Phe Arg His Lys Ile Gly Lys Arg Met Lys Lys
100 105 110

Ile Met Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys Phe His
115 120 125

Leu Asp Glu Arg Thr Ile Glu Arg Gln Val Ala Thr Arg Gln Thr Gly
130 135 140

Phe Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp
145 150 155 160

Glu Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr Leu
165 170 175

Pro Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu
180 185 190

Ala Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His Pro
195 200 205

Lys Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile
210 215 220

Lys Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met Asp
225 230 235 240

Leu Ala Pro Leu Gln Lys Lys Leu Arg Asp Leu Leu Asn Gly Lys Lys
245 250 255

Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys Trp
260 265 270

Ala Lys Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val
275 280 285

Leu Thr Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu
290 295 300

Gln Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu
305 310 315 320

Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn Leu
325 330 335

Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu
340 345 350

Ala Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg
355 360 365

Gln Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu
370 375 380

Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro
385 390 395 400

Leu Asp Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys Asp
405 410 415

Thr Glu Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His Gly
420 425 430

Phe Ile Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn Glu
435 440 445

Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val
450 455 460

Lys Ser Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
465 470 475 480

Ala Thr Ser Leu Phe Ser Ala Ser Thr Ser Ser Ser Asn Ile Arg Glu
485 490 495

Ile Ile Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr Lys
500 505 510

Val Val Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser Leu
515 520 525

Arg Val Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser Ser
530 535 540

Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn Thr
545 550 555 560

Ser Ile Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu Gln
565 570 575

Thr Leu Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys Glu
580 585 590

Thr Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Gly Cys Tyr
595 600 605

Gly Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys
610 615 620

Thr Leu Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln Leu
625 630 635 640

Gly Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Glu Ile Thr His
645 650 655

Leu Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser
660 665 670

Ala Lys Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp Glu
675 680 685

Arg Pro Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala Leu
690 695 700

Lys Pro His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg Gly
705 710 715 720

Ile Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val
725 730 735

Ser Ile Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe
740 745 750

Gly Glu Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser Ala
755 760 765

Glu Val Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro
770 775 780

Ser Leu Arg Lys Leu Asn Ile Arg Glu Phe Gly Asn Leu Lys Gly Leu
785 790 795 800

Leu Lys Lys Glu Gly Glu Glu Gln Cys Pro Val Leu Glu Glu Ile Glu
805 810 815

Ile Lys Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Lys
820 825 830

Lys Leu Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser Ser
835 840 845

Ile Ser Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn Lys
850 855 860

Glu Asp Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu
865 870 875 880

Lys Tyr Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro Thr
885 890 895

Ser Leu Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser Cys
900 905 910

Tyr Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile Ser
915 920 925

Leu Thr Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu Pro
930 935 940

Glu Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu Phe
945 950 955 960

Cys Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp
965 970 975

Tyr Lys Ile Ala His Ile Pro Arg Val Phe Ile Tyr
980 985

<210> 3
<211> 3595
<212> DNA
<213> Solanum bulbocastanum

<220>
<221> CDS
<222> (57) .. (487)

<223> Sbul1 protein

<220>

<221> Intron

<222> (488) .. (899)

<220>

<221> CDS

<222> (900) .. (3432)

<400> 3

ccaacatctt	acttcatttc	aaaaaatata	gattcattgc	gtactcacaa	tactct	atg	59
						Met	
						1	
gct gaa	gct ttc	ctt caa	gtt ctg	tta gac	aat ctg	act tgt	ttc atc
Ala Glu	Ala Phe	Leu Gln	Val Leu	Leu Asp	Asn Leu	Thr Cys	Phe Ile
5			10			15	
caa ggg	gaa ctt	gga ttg	att ctt	ggt ttt	aag gat	gag ttc	gaa aag
Gln Gly	Glu Leu	Gly Leu	Ile Leu	Gly Phe	Lys Asp	Glu Phe	Glu Lys
20			25			30	
ctt caa	agc acg	ttt act	aca atc	caa gct	gtg cta	gaa gat	gct cag
Leu Gln	Ser Thr	Phe Thr	Thr Ile	Gln Ala	Val Leu	Glu Asp	Ala Gln
35			40			45	
aag aag	caa ttg	aag gac	aag gca	ata gaa	aat tgg	ttg cag	aaa ctc
Lys Lys	Gln Leu	Lys Asp	Lys Ala	Ile Glu	Asn Trp	Leu Gln	Lys Leu
50			55			60	
aat gct	gct gca	tat gag	gct gat	gac atc	ttg gac	gaa tgt	aaa act
Asn Ala	Ala Ala	Tyr Glu	Ala Asp	Asp Ile	Leu Asp	Glu Cys	Lys Thr
70			75			80	
gag gca	cca att	aga cag	aag aac	aaa tat	ggg tgt	tat cat	cca
Glu Ala	Pro Ile	Arg Gln	Lys Lys	Asn Lys	Tyr Gly	Cys Tyr	His Pro
85			90			95	
aac gtt	atc act	ttt cgt	cac aag	att ggg	aaa agg	atg aaa	aag att
Asn Val	Ile Thr	Phe Arg	His Lys	Ile Gly	Lys Arg	Met Lys	Lys Ile
100			105			110	
atg gag	aaa cta	gat gta	att gca	gcg gaa	cga att	aag ttt	cat ttg
Met Glu	Lys Leu	Asp Val	Ile Ala	Ala Glu	Arg Ile	Lys Phe	His Leu
115			120			125	
gat gaa	agg act	ata gag	aga caa	gtt gct	aca cgc	caa aca	gg
Asp Glu	Arg Thr	Ile Glu	Arg Gln	Val Ala	Thr Arg	Gln Thr	Gly
130			135			140	
tgctcatctt	agatattttt	ctgaaaaaac	agctttatat	catcaaattc	atgtgtgtt		547
tggaaattcg	tctaattctaa	atgttcgtct	caagtctaa	tagataagt	gatccagctt		607
tggatttatt	aatctatttag	ctaaatctgt	ttagtgaagt	tttaacata	tataacacctca		667
gataaatcca	tagctactc	ataggattag	gataggcccc	caagtctaaa	tgacaggata		727
aagccagagt	tgttttagct	cttataaatt	aacaatgata	ataatgtcaa	ttcaaaaaag		787

tgcattttt taatggaaa tatttctgct gcttcgtcaag cttatcatttgc tctttttact	847
gtgcaaaattt ctactttgtta ttttgctga ctcctaccga gcttggggcca gg t ttt Phe 145	903
gtt ttg aat gaa cca caa gtt tat gga aga gac aaa gaa aag gac gag Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu 150 155 160	951
ata gtg aaa atc ctg ata aac aat gtt agc aat gcc caa aca ctt cca Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr Leu Pro 165 170 175	999
gtc ctc cca ata ctt ggt atg ggg gga cta gga aag acg act ctt gcc Val Leu Pro Ile Leu Gly Met Gly Leu Gly Lys Thr Thr Leu Ala 180 185 190	1047
caa atg gtc ttc aat gat cag aga gta att gag cat ttc cat ccc aaa Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His Pro Lys 195 200 205	1095
ata tgg att tgt gtc tcg gaa gat ttt aat gag aag agg ttg ata aag Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile Lys 210 215 220 225	1143
gaa att gta gaa tct att gaa gaa aag tca ctt ggt ggc atg gac ttg Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met Asp Leu 230 235 240	1191
gct cca ctt caa aag aag ctt cgg gac ttg ctg aat gga aaa aaa tat Ala Pro Leu Gln Lys Leu Arg Asp Leu Leu Asn Gly Lys Lys Tyr 245 250 255	1239
ttg ctc gtc tta gat gat gtt tgg aat gaa gat caa gat aag tgg gct Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys Trp Ala 260 265 270	1287
aag tta aga caa gtc ttg aag gtt gga gca agt ggc gct tct gtt cta Lys Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val Leu 275 280 285	1335
acc act act cgt ctt gaa aag gtt gga tca att atg gga aca ttg caa Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu Gln 290 295 300 305	1383
cca tat gaa ttg tca aat ttg tct caa gaa gat tgt tgg ttg ttg ttc Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu Phe 310 315 320	1431
atg caa cgt gca ttt ggg cac caa gaa gaa ata aat ctt aat ctt gtg Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn Leu Val 325 330 335	1479
gct atc gga aag gag att gtg aaa aaa tgt ggt ggt gtg cct cta gca Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala 340 345 350	1527
gct aaa act ctt gga ggt att ttg cgc ttt aag aga gaa gaa aga cag Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg Gln 355 360 365	1575

tgg gaa cat gtg aga gat agt gag att tgg aaa ttg cct caa gaa gaa Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu Glu 370 375 380 385	1623
agt tct att ctg cct gcc ctg aga ctt agt tac cat cac ctt cca ctt Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro Leu 390 395 400	1671
gat ttg aga caa tgc ttt aca tat tgt gca gta ttc cca aag gat acc Asp Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys Asp Thr 405 410 415	1719
gaa atg gaa aag gga aat cta atc tct ctc tgg atg gca cat ggt ttt Glu Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His Gly Phe 420 425 430	1767
att tta tcg aaa gga aac ttg gag cta gag aat gta ggt aat gaa gta Ile Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn Glu Val 435 440 445	1815
tgg aat gaa tta tac ttg agg tct ttc caa gag att gaa gtt aaa Trp Asn Glu Leu Tyr Leu Arg Ser Phe Gln Glu Ile Glu Val Lys 450 455 460 465	1863
tct ggt caa act tat ttc aag atg cat gat ctc att cat gat ctg gca Ser Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala 470 475 480	1911
aca tct cta ttt tcg gca agc aca tca agc agc aat atc cga gaa ata Thr Ser Leu Phe Ser Ala Ser Thr Ser Ser Asn Ile Arg Glu Ile 485 490 495	1959
att gta gaa aat tac ata cat atg atg tcc att ggt ttc act aaa gtg Ile Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr Lys Val 500 505 510	2007
gta tct tct tac tct ctt tcc cac ttg cag aag ttt gtc tcg ttg agg Val Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser Leu Arg 515 520 525	2055
gtg ctt aat cta agt gac ata aaa ctt aag cag tta ccg tct tcc att Val Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser Ser Ile 530 535 540 545	2103
gga gat cta gta cat tta aga tac cta aac ttg tct ggc aat act agt Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn Thr Ser 550 555 560	2151
att cgt agt ctt cca aac cag tta tgc aag ctt caa aat ctg cag act Ile Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu Gln Thr 565 570 575	2199
ctt gat cta cat ggc tgt cat tca ctt tgt ttg cca aaa gaa aca Leu Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys Glu Thr 580 585 590	2247
agc aaa ctt ggt agt ctt cga aat ctt tta ctt gat ggt tgc tat gga Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Gly Cys Tyr Gly 595 600 605	2295

ttg act tgt atg cca cca agg ata gga tct ttg aca tgc ctt aag act Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr 610 615 620 625	2343
cta agt aga ttt gtg gtg gga att cag aag aaa agt tgt caa ctt ggt Leu Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln Leu Gly 630 635 640	2391
gaa tta cga aac ctg aat ctc tat ggc tca att gaa atc acg cat ctt Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Glu Ile Thr His Leu 645 650 655	2439
gag aga gtg aag aat gat atg gat gca aaa gaa gcc aat tta tct gca Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser Ala 660 665 670	2487
aaa gaa aat ctg cat tct tta agc atg aaa tgg gat gac gat gaa cgt Lys Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp Glu Arg 675 680 685	2535
cca cgt ata tat gaa tca gaa aaa gtt gaa gtg ctt gaa gct ctc aaa Pro Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala Leu Lys 690 695 700 705	2583
cca cac tcc aat ctg act tgt tta aca atc agg ggc ttc aga gga atc Pro His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg Gly Ile 710 715 720	2631
cgt ctc cca gac tgg atg aat cac tca gtt ttg aaa aat gtt gtc tct Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val Ser 725 730 735	2679
att gaa atc atc agt tgc aaa aac tgc tca tgc tta cca ccc ttt ggt Ile Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe Gly 740 745 750	2727
gag ctg cct tgt cta aaa agt cta gag tta tgg agg ggg tct gcg gaa Glu Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser Ala Glu 755 760 765	2775
gtg gag tat gtt gat tct gga ttc cct aca aga aga agg ttt cca tct Val Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro Ser 770 775 780 785	2823
ctg aga aaa ctt aat ata cgc gaa ttt gat aat ctg aaa gga ttg ctg Leu Arg Lys Leu Asn Ile Arg Glu Phe Asp Asn Leu Lys Gly Leu Leu 790 795 800	2871
aaa aag gaa gga gaa gag caa tgc cct gtg ctt gaa gag ata gag att Lys Lys Glu Gly Glu Glu Gln Cys Pro Val Leu Glu Glu Ile Glu Ile 805 810 815	2919
aaa tgt tgc cct atg ttt gtt att cca acc ctt tct tct gtc aag aaa Lys Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Lys Lys 820 825 830	2967
ttg gta gtt agt ggg gac aag tca gat gca ata ggt ttc agt tcc ata Leu Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser Ser Ile 835 840 845	3015
tct aat ctc atg gct ctt act tcc ctc caa att cgc tat aac aaa gaa	3063

Ser Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn Lys Glu			
850	855	860	865
gat gct tca ctc cca gaa gag atg ttc aaa agc ctt gca aat ctc aaa			3111
Asp Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu Lys			
870	875	880	
tac ttg aat atc tct ttt tac ttc aat ctt aaa gag ctg cct acc agc			3159
Tyr Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro Thr Ser			
885	890	895	
ctg gct agt ctc aat gct ttg aag cat ctg gaa att cat agt tgt tat			3207
Leu Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser Cys Tyr			
900	905	910	
gca cta gag agt ctc ccc gag gaa ggt gtg aaa ggt tta att tca ctc			3255
Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile Ser Leu			
915	920	925	
aca cag tta tcc ata aca tac tgt gaa atg cta caa tgt tta ccg gag			3303
Thr Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu Pro Glu			
930	935	940	945
gga ttg cag cac cta aca gcc ctc aca aat tta tca gtt gag ttt tgt			3351
Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu Phe Cys			
950	955	960	
cca aca ctg gcc aag cgg tgt gag aag gga ata gga gaa gac tgg tac			3399
Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp Tyr			
965	970	975	
aaa att gct cac att cct cgt gtg ttt att tat tagtattccc aatttagatgt			3452
Lys Ile Ala His Ile Pro Arg Val Phe Ile Tyr			
980	985		
aattttctga ttttcttttg gaaacaaatc aactatttgt aagatctatt tgtattatac			3512
ttgatttttc ttgggtctgt aacaataaat atttgaattt tttcatatta agattcagaa			3572
ttagtcttat agctaacggt atc			3595
<210> 4			
<211> 988			
<212> PRT			
<213> Solanum bulbocastanum			
<400> 4			
Met Ala Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Cys Phe			
1	5	10	15
Ile Gln Gly Glu Leu Gly Leu Ile Leu Gly Phe Lys Asp Glu Phe Glu			
20	25	30	
Lys Leu Gln Ser Thr Phe Thr Thr Ile Gln Ala Val Leu Glu Asp Ala			
35	40	45	

Gln Lys Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys
50 55 60

Leu Asn Ala Ala Ala Tyr Glu Ala Asp Asp Ile Leu Asp Glu Cys Lys
65 70 75 80

Thr Glu Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys Tyr His
85 90 95

Pro Asn Val Ile Thr Phe Arg His Lys Ile Gly Lys Arg Met Lys Lys
100 105 110

Ile Met Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys Phe His
115 120 125

Leu Asp Glu Arg Thr Ile Glu Arg Gln Val Ala Thr Arg Gln Thr Gly
130 135 140

Phe Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp
145 150 155 160

Glu Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr Leu
165 170 175

Pro Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu
180 185 190

Ala Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His Pro
195 200 205

Lys Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile
210 215 220

Lys Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met Asp
225 230 235 240

Leu Ala Pro Leu Gln Lys Lys Leu Arg Asp Leu Leu Asn Gly Lys Lys
245 250 255

Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys Trp
260 265 270

Ala Lys Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val
275 280 285

Leu Thr Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu

290

295

300

Gln Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu
305 310 315 320

Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn Leu
325 330 335

Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu
340 345 350

Ala Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg
355 360 365

Gln Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu
370 375 380

Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro
385 390 395 400

Leu Asp Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys Asp
405 410 415

Thr Glu Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His Gly
420 425 430

Phe Ile Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn Glu
435 440 445

Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val
450 455 460

Lys Ser Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
465 470 475 480

Ala Thr Ser Leu Phe Ser Ala Ser Thr Ser Ser Ser Asn Ile Arg Glu
485 490 495

Ile Ile Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr Lys
500 505 510

Val Val Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser Leu
515 520 525

Arg Val Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser Ser
530 535 540

Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn Thr
545 550 555 560

Ser Ile Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu Gln
565 570 575

Thr Leu Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys Glu
580 585 590

Thr Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Leu Asp Gly Cys Tyr
595 600 605

Gly Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys
610 615 620

Thr Leu Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln Leu
625 630 635 640

Gly Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Glu Ile Thr His
645 650 655

Leu Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser
660 665 670

Ala Lys Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp Glu
675 680 685

Arg Pro Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala Leu
690 695 700

Lys Pro His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg Gly
705 710 715 720

Ile Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val
725 730 735

Ser Ile Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe
740 745 750

Gly Glu Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser Ala
755 760 765

Glu Val Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro
770 775 780

Ser Leu Arg Lys Leu Asn Ile Arg Glu Phe Asp Asn Leu Lys Gly Leu
785 790 795 800

Leu Lys Lys Glu Gly Glu Glu Gln Cys Pro Val Leu Glu Glu Ile Glu
805 810 815

Ile Lys Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Lys
820 825 830

Lys Leu Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser Ser
835 840 845

Ile Ser Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn Lys
850 855 860

Glu Asp Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu
865 870 875 880

Lys Tyr Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro Thr
885 890 895

Ser Leu Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser Cys
900 905 910

Tyr Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile Ser
915 920 925

Leu Thr Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu Pro
930 935 940

Glu Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu Phe
945 950 955 960

Cys Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp
965 970 975

Tyr Lys Ile Ala His Ile Pro Arg Val Phe Ile Tyr
980 985

<210> 5
<211> 3347
<212> DNA
<213> Solanum bulbocastanum

<220>
<221> CDS

<222> (57) .. (509)

<220>

<221> Intron

<222> (510) .. (788)

<220>

<221> CDS

<222> (789) .. (3344)

<400> 5

ccaacatctt	acttcatttc	aaaaaatata	gattcattgc	tccctcacaa	tactct	atg	59
						Met	
						1	
gct gaa	gct ttc	ctt caa	gtt ctg	tta gac	aat ctg	act tgt	ttc atc
Ala Glu	Ala Phe	Leu Gln	Val Val	Leu Leu	Asp Asn	Leu Thr	Cys Phe Ile
5	10					15	
caa ggg	gaa gtt	gga ttg	att ctt	ggt ttt	aag gat	gag ttc	gaa aag
Gln Gly	Glu Val	Gly Leu	Ile Leu	Gly Phe	Lys Asp	Glu Phe	Glu Lys
20	25					30	
ctt caa	agc aca	ttt act	aca atc	caa gct	gtg cta	gaa gat	gct cag
Leu Gln	Ser Thr	Phe Thr	Thr Ile	Gln Ala	Val Leu	Glu Asp	Ala Gln
35	40					45	
aag aag	caa ttg	aag gac	aag gca	ata gaa	aat tgg	ttg cag	aaa ctc
Lys Lys	Gln Leu	Lys Asp	Lys Ala	Ile Glu	Asn Trp	Leu Gln	Lys Leu
50	55					60	65
aat gct	gct gta	tat gaa	gct gac	gac atc	ttg gac	gaa tgt	aaa act
Asn Ala	Ala Val	Tyr Glu	Ala Asp	Asp Ile	Leu Asp	Glu Cys	Lys Thr
70	75					80	
gag gca	cca att	aga cag	aag aac	aaa tat	ggg tgt	tat cat	cca
Glu Ala	Pro Ile	Arg Gln	Lys Lys	Asn Lys	Tyr Gly	Cys Tyr	His Pro
85	90					95	
aac gtt	atc gct	ttc cgt	cac aag	att ggg	aaa agg	atg aaa	aag att
Asn Val	Ile Ala	Phe Arg	His Lys	Ile Gly	Lys Arg	Met Lys	Ile
100	105					110	
atg gag	aaa cta	gat gta	att gca	gcg gaa	cga att	aag ttt	cat ttg
Met Glu	Lys Leu	Asp Val	Ile Ala	Ala Glu	Arg Ile	Lys Phe	His Leu
115	120					125	
gct gaa	agg act	aca gag	aga caa	gtt gct	aca cgc	caa aca	ggg gct
Ala Glu	Arg Thr	Thr Glu	Arg Gln	Val Ala	Thr Arg	Gln Thr	Gly Ala
130	135					140	145
cat ctt	aga tat	ttt tct	aaaaaacag	ctttatatca	tgaaattcat		539
His Leu	Arg Tyr	Phe Ser					
150							
gtgtgtttgg	gatTTTCT	aatctaaatg	ttgtctcaag	tctaagtaga	taagtggatc		599
cagatttgga	tatattaata	tattatctaa	atttgtttcg	tgaaattttt	aacagataaa		659
gcctgagttg	tttagacat	tataaattaa	caatgataat	aatgtgaatt	caaaaaagtg		719

cattatgtct gctgcttctc aagcttatca ttgtctcttt atttgcaaa attcttcttc	779
gtttttttg ctg act cct act gag ctt gga cca ggt ttt gtt tta aat gaa Leu Thr Pro Thr Glu Leu Gly Pro Gly Phe Val Leu Asn Glu 155 160 165	830
cca caa gtt tat gga aga gac aaa gaa aag gat gag ata gtg aaa atc Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu Ile Val Lys Ile 170 175 180	878
ctg ata aac att gtt agc gat gcc caa aca ctt tca gtc ctc cca ata Leu Ile Asn Ile Val Ser Asp Ala Gln Thr Leu Ser Val Leu Pro Ile 185 190 195	926
ctt ggt atg ggg gga tta gga aag acg aca ctt gcc caa atg gtc ttc Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ala Gln Met Val Phe 200 205 210	974
aat gat cag aga gta att gag cat ttc ctt ccc aaa ata tgg att tgt Asn Asp Gln Arg Val Ile Glu His Phe Leu Pro Lys Ile Trp Ile Cys 215 220 225	1022
gtc tcg gaa gat ttt aat gag aag agg ttg ata aag gaa att gta gaa Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile Lys Glu Ile Val Glu 230 235 240 245	1070
tct att gaa gaa aag tca ctt ggt gac atg gac ttg gct cca ctt caa Ser Ile Glu Glu Lys Ser Leu Gly Asp Met Asp Leu Ala Pro Leu Gln 250 255 260	1118
aag aag ctt cag gac ttg ctg aat gga aaa aaa tat ttg ctt gtc tta Lys Lys Leu Gln Asp Leu Leu Asn Gly Lys Lys Tyr Leu Leu Val Leu 265 270 275	1166
gat gat att tgg aat gaa gatcaa gat aag tgg gct aag tta cga gaa Asp Asp Ile Trp Asn Glu Asp Gln Asp Lys Trp Ala Lys Leu Arg Glu 280 285 290	1214
gtg ttg aag gtt gga gca agt ggt gct tct atc cta acc act act cgt Val Leu Lys Val Gly Ala Ser Gly Ala Ser Ile Leu Thr Thr Thr Arg 295 300 305	1262
ctt gaa aag gtt gga tca att atg caa act ttg caa cca tat gaa ttg Leu Glu Lys Val Gly Ser Ile Met Gln Thr Leu Gln Pro Tyr Glu Leu 310 315 320 325	1310
tca aac ttg tgt caa gaa gat tgc tgg ttg ttc atg caa cgt gca Ser Asn Leu Cys Gln Glu Asp Cys Trp Leu Leu Phe Met Gln Arg Ala 330 335 340	1358
ttt ggg cac caa gaa gaa ata aat cat aat ctt gtg gct atc gga aag Phe Gly His Gln Glu Glu Ile Asn His Asn Leu Val Ala Ile Gly Lys 345 350 355	1406
gag ata gtg aaa aaa tgt ggt ggt gtg cct cta gca gct aaa act ctt Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala Ala Lys Thr Leu 360 365 370	1454
gga ggt att ttg cga ttc aag aga caa gaa aga cag tgg gaa cat gtg Gly Gly Ile Leu Arg Phe Lys Arg Gln Glu Arg Gln Trp Glu His Val 375 380 385	1502

aga gat agt gag att tgg aaa ttg cct caa gaa gaa agt tct att ctg Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu Glu Ser Ser Ile Leu 390 395 400 405	1550
ccg gcc ctg aaa ctt agt tac cat cat ctt cca ctt gat ttg aga caa Pro Ala Leu Lys Leu Ser Tyr His His Leu Pro Leu Asp Leu Arg Gln 410 415 420	1598
tgc ttt tca tat tgt gca gta ttc cca aag gat acc aaa atg gaa aag Cys Phe Ser Tyr Cys Ala Val Phe Pro Lys Asp Thr Lys Met Glu Lys 425 430 435	1646
gaa aat cta atc tct ctc tgg atg gca cat ggt ttt ctt tta tcg aaa Glu Asn Leu Ile Ser Leu Trp Met Ala His Gly Phe Leu Leu Ser Lys 440 445 450	1694
gga aac ttg gag cta gag gat gta ggt aat gaa gta tgg aat gaa tta Gly Asn Leu Glu Leu Glu Asp Val Gly Asn Glu Val Trp Asn Glu Leu 455 460 465	1742
tac ttg agg tct ttc caa gag att gaa gtt aca tat ggt aaa act Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val Thr Tyr Gly Lys Thr 470 475 480 485	1790
tat ttc aag atg cat gat ctc atc cat gat ttg gct aca tct cta ttt Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala Thr Ser Leu Phe 490 495 500	1838
tcg gca agc gca tca agc aac aat atc cgt gaa ata aat gta aaa ggt Ser Ala Ser Ala Ser Ser Asn Asn Ile Arg Glu Ile Asn Val Lys Gly 505 510 515	1886
tac cca cat atg atg tcg att ggc ttt gca aaa gtg gtg tct ttt tac Tyr Pro His Met Met Ser Ile Gly Phe Ala Lys Val Val Ser Phe Tyr 520 525 530	1934
tct cgt tct cac ttc caa aag ttt gtc tcg tta agg gtg ctt aat cta Ser Arg Ser His Phe Gln Lys Phe Val Ser Leu Arg Val Leu Asn Leu 535 540 545	1982
agt aac tta gaa ctc aag cag tta cca tct tca att ggg gat cta gta Ser Asn Leu Glu Leu Lys Gln Leu Pro Ser Ser Ile Gly Asp Leu Val 550 555 560 565	2030
cat tta aga tac cta aac ttg tct gac aat aat aga att cgt agt ctt His Leu Arg Tyr Leu Asn Leu Ser Asp Asn Asn Arg Ile Arg Ser Leu 570 575 580	2078
ccc aag cag tta tgc aag ctt caa aat ctg cag act ctt gat cta cgt Pro Lys Gln Leu Cys Lys Leu Gln Asn Leu Gln Thr Leu Asp Leu Arg 585 590 595	2126
tgt tgc tac aga ctt tct tgt ttg cca aaa gaa aca agc aaa ctt ggt Cys Cys Tyr Arg Leu Ser Cys Leu Pro Lys Glu Thr Ser Lys Leu Gly 600 605 610	2174
agt ctc cga aat ctt tta ctt gat cgt tgc cat gga ttg act tgt atg Ser Leu Arg Asn Leu Leu Asp Arg Cys His Gly Leu Thr Cys Met 615 620 625	2222

cca cca agg ata gga tca ttg aca tgc ctt aag act cta gat cgc ttt Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr Leu Asp Arg Phe 630 635 640 645	2270
gca atg gga agg gag aaa agt cct caa att ggt gaa tta cga aac ctg Ala Met Gly Arg Glu Lys Ser Pro Gln Ile Gly Glu Leu Arg Asn Leu 650 655 660	2318
aat ctc tat ggc tca att tca atc acg cat ctt gag aga gtg aag aat Asn Leu Tyr Gly Ser Ile Ser Ile Thr His Leu Glu Arg Val Lys Asn 665 670 675	2366
gat atg gat gca aaa gaa gcc aat tta tct tca aaa gaa aat ctg cat Asp Met Asp Ala Lys Glu Ala Asn Leu Ser Ser Lys Glu Asn Leu His 680 685 690	2414
tct tta agt atg ata tgg gat gaa gat gaa cgt cca cat aga tat gaa Ser Leu Ser Met Ile Trp Asp Glu Asp Glu Arg Pro His Arg Tyr Glu 695 700 705	2462
tca gaa gat gtt gaa gtg ctt gaa gcc ctc aaa cca cac tcc aat ctg Ser Glu Asp Val Glu Val Leu Glu Ala Leu Lys Pro His Ser Asn Leu 710 715 720 725	2510
act tgt tta aca att att ggc ttc aga gga atc cgt ctc cca gac tgg Thr Cys Leu Thr Ile Ile Gly Phe Arg Gly Ile Arg Leu Pro Asp Trp 730 735 740	2558
atg aat cac tca gtt ttg aaa aat gtt gtc tct ctt gaa atc agc gat Met Asn His Ser Val Leu Lys Asn Val Val Ser Leu Glu Ile Ser Asp 745 750 755	2606
tgc aaa aac tgc tca tgc tta cca ccc ttt ggt gaa ctg cct tgt cta Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe Gly Glu Leu Pro Cys Leu 760 765 770	2654
aat agt cta cag tta tgg agt ggg tct gca gaa gtg gag tat att gat Asn Ser Leu Gln Leu Trp Ser Gly Ser Ala Glu Val Glu Tyr Ile Asp 775 780 785	2702
tct gga ttc cct aca aga aga agg ttt cca tct ctg aga aaa ctt att Ser Gly Phe Pro Thr Arg Arg Phe Pro Ser Leu Arg Lys Leu Ile 790 795 800 805	2750
ata ggc gaa ttt gat aat ctg aaa gga ttg gtg aaa aag gaa gga gaa Ile Gly Glu Phe Asp Asn Leu Lys Gly Leu Val Lys Lys Glu Gly Glu 810 815 820	2798
gag caa ttc cct gtg ctt gaa gag atg gag att aac tgg tgc cct atg Glu Gln Phe Pro Val Leu Glu Met Glu Ile Asn Trp Cys Pro Met 825 830 835	2846
ttt gtt att ccg acc ctt tct tct gtc aac aaa ttg gta gtt agt ggg Phe Val Ile Pro Thr Leu Ser Ser Val Asn Lys Leu Val Val Ser Gly 840 845 850	2894
gaa gag tca gat gca ata ggc ttc agt tcc ata tct aat ctc agg gct Glu Glu Ser Asp Ala Ile Gly Phe Ser Ser Ile Ser Asn Leu Arg Ala 855 860 865	2942
ctt act tct ctc aat att agc tat aac tct gaa gct act tca ctc cca	2990

Leu Thr Ser Leu Asn Ile Ser Tyr Asn Ser Glu Ala Thr Ser Leu Pro			
870	875	880	885
gaa gag atg ttc aaa agc ctt gca aat cta aaa tac ttg aat atc tat			3038
Glu Glu Met Phe Lys Ser Leu Ala Asn Leu Lys Tyr Leu Asn Ile Tyr			
890	895	900	
tac ttc aag aat ctc aaa gag ctg cct acc aac ctg gct agt ctt aat			3086
Tyr Phe Lys Asn Leu Lys Glu Leu Pro Thr Asn Leu Ala Ser Leu Asn			
905	910	915	
gct ttg aag aat ctg gaa att gaa agt tgt tat gca cta gag agt ctc			3134
Ala Leu Lys Asn Leu Glu Ile Glu Ser Cys Tyr Ala Leu Glu Ser Leu			
920	925	930	
ccc gag gaa ggt gtg aaa ggt tta act tca ctt aca caa tta tcc ata			3182
Pro Glu Glu Gly Val Lys Gly Leu Thr Ser Leu Thr Gln Leu Ser Ile			
935	940	945	
aca tac tgc acg atg cta caa tgt tta tcg gag gga ttg cag cac cta			3230
Thr Tyr Cys Thr Met Leu Gln Cys Leu Ser Glu Gly Leu Gln His Leu			
950	955	960	965
aca gcc ctc aca aat tta tca gtt agg gat tgt cca aca ctg gcc aag			3278
Thr Ala Leu Thr Asn Leu Ser Val Arg Asp Cys Pro Thr Leu Ala Lys			
970	975	980	
cga tgt gag aag gga ata gga gaa gac tgg tac aaa att gct cac att			3326
Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp Tyr Lys Ile Ala His Ile			
985	990	995	
cct gat gtg ttt atc cgt taa			3347
Pro Asp Val Phe Ile Arg			
1000			

<210> 6
<211> 1003
<212> PRT
<213> Solanum bulbocastanum

<400> 6

Met Ala Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Cys Phe
1 5 10 15

Ile Gln Gly Glu Val Gly Leu Ile Leu Gly Phe Lys Asp Glu Phe Glu
20 25 30

Lys Leu Gln Ser Thr Phe Thr Ile Gln Ala Val Leu Glu Asp Ala
35 40 45

Gln Lys Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys
50 55 60

Leu Asn Ala Ala Val Tyr Glu Ala Asp Asp Ile Leu Asp Glu Cys Lys
65 70 75 80

Thr Glu Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys Tyr His
85 90 95

Pro Asn Val Ile Ala Phe Arg His Lys Ile Gly Lys Arg Met Lys Lys
100 105 110

Ile Met Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys Phe His
115 120 125

Leu Ala Glu Arg Thr Thr Glu Arg Gln Val Ala Thr Arg Gln Thr Gly
130 135 140

Ala His Leu Arg Tyr Phe Ser Leu Thr Pro Thr Glu Leu Gly Pro Gly
145 150 155 160

Phe Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp
165 170 175

Glu Ile Val Lys Ile Leu Ile Asn Ile Val Ser Asp Ala Gln Thr Leu
180 185 190

Ser Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu
195 200 205

Ala Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe Leu Pro
210 215 220

Lys Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile
225 230 235 240

Lys Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Asp Met Asp
245 250 255

Leu Ala Pro Leu Gln Lys Lys Leu Gln Asp Leu Leu Asn Gly Lys Lys
260 265 270

Tyr Leu Leu Val Leu Asp Asp Ile Trp Asn Glu Asp Gln Asp Lys Trp
275 280 285

Ala Lys Leu Arg Glu Val Leu Lys Val Gly Ala Ser Gly Ala Ser Ile
290 295 300

Leu Thr Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gln Thr Leu
305 310 315 320

Gln Pro Tyr Glu Leu Ser Asn Leu Cys Gln Glu Asp Cys Trp Leu Leu
325 330 335

Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn His Asn Leu
340 345 350

Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu
355 360 365

Ala Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Gln Glu Arg
370 375 380

Gln Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu
385 390 395 400

Glu Ser Ser Ile Leu Pro Ala Leu Lys Leu Ser Tyr His His Leu Pro
405 410 415

Leu Asp Leu Arg Gln Cys Phe Ser Tyr Cys Ala Val Phe Pro Lys Asp
420 425 430

Thr Lys Met Glu Lys Glu Asn Leu Ile Ser Leu Trp Met Ala His Gly
435 440 445

Phe Leu Leu Ser Lys Gly Asn Leu Glu Leu Glu Asp Val Gly Asn Glu
450 455 460

Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val
465 470 475 480

Thr Tyr Gly Lys Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
485 490 495

Ala Thr Ser Leu Phe Ser Ala Ser Ala Ser Ser Asn Asn Ile Arg Glu
500 505 510

Ile Asn Val Lys Gly Tyr Pro His Met Met Ser Ile Gly Phe Ala Lys
515 520 525

Val Val Ser Phe Tyr Ser Arg Ser His Phe Gln Lys Phe Val Ser Leu
530 535 540

Arg Val Leu Asn Leu Ser Asn Leu Glu Leu Lys Gln Leu Pro Ser Ser
545 550 555 560

Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Asp Asn Asn
565 570 575

Arg Ile Arg Ser Leu Pro Lys Gln Leu Cys Lys Leu Gln Asn Leu Gln
580 585 590

Thr Leu Asp Leu Arg Cys Cys Tyr Arg Leu Ser Cys Leu Pro Lys Glu
595 600 605

Thr Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Arg Cys His
610 615 620

Gly Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys
625 630 635 640

Thr Leu Asp Arg Phe Ala Met Gly Arg Glu Lys Ser Pro Gln Ile Gly
645 650 655

Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Ser Ile Thr His Leu
660 665 670

Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser Ser
675 680 685

Lys Glu Asn Leu His Ser Leu Ser Met Ile Trp Asp Glu Asp Glu Arg
690 695 700

Pro His Arg Tyr Glu Ser Glu Asp Val Glu Val Leu Glu Ala Leu Lys
705 710 715 720

Pro His Ser Asn Leu Thr Cys Leu Thr Ile Ile Gly Phe Arg Gly Ile
725 730 735

Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val Ser
740 745 750

Leu Glu Ile Ser Asp Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe Gly
755 760 765

Glu Leu Pro Cys Leu Asn Ser Leu Gln Leu Trp Ser Gly Ser Ala Glu
770 775 780

Val Glu Tyr Ile Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro Ser
785 790 795 800

Leu Arg Lys Leu Ile Ile Gly Glu Phe Asp Asn Leu Lys Gly Leu Val

805

810

815

Lys Lys Glu Gly Glu Glu Gln Phe Pro Val Leu Glu Glu Met Glu Ile
820 825 830

Asn Trp Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Asn Lys
835 840 845

Leu Val Val Ser Gly Glu Glu Ser Asp Ala Ile Gly Phe Ser Ser Ile
850 855 860

Ser Asn Leu Arg Ala Leu Thr Ser Leu Asn Ile Ser Tyr Asn Ser Glu
865 870 875 880

Ala Thr Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu Lys
885 890 895

Tyr Leu Asn Ile Tyr Tyr Phe Lys Asn Leu Lys Glu Leu Pro Thr Asn
900 905 910

Leu Ala Ser Leu Asn Ala Leu Lys Asn Leu Glu Ile Glu Ser Cys Tyr
915 920 925

Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Thr Ser Leu
930 935 940

Thr Gln Leu Ser Ile Thr Tyr Cys Thr Met Leu Gln Cys Leu Ser Glu
945 950 955 960

Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Arg Asp Cys
965 970 975

Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp Tyr
980 985 990

Lys Ile Ala His Ile Pro Asp Val Phe Ile Arg
995 1000

<210> 7
<211> 3222
<212> DNA
<213> Solanum Bulbocastanum

<220>
<221> CDS
<222> (58) .. (528)

<220>
 <221> Intron
 <222> (529)..(690)

<220>
 <221> CDS
 <222> (691)..(3219)

<400> 7
 aaatcagtc a cttaatctg tttcaattaa cttttgtgtt acagtgaatt ccaacat 57
 atg gct gaa gct ttc ctt caa gtt ctg cta ggc aat atc act tct ttc 105
 Met Ala Glu Ala Phe Leu Gln Val Leu Leu Gly Asn Ile Thr Ser Phe
 1 5 10 15

atc caa ggg gaa ctt gta ttg ctt ttc ggt ttt gaa aac gac ttc aga 153
 Ile Gln Gly Glu Leu Val Leu Leu Phe Gly Phe Glu Asn Asp Phe Arg
 20 25 30

aag ctt tca agc aca ttt tct acg atc caa ctt gtg ctt gaa gat gct 201
 Lys Leu Ser Ser Thr Phe Ser Thr Ile Gln Leu Val Leu Glu Asp Ala
 35 40 45

tca gag aag caa ctg aag gac aag gca ata gag aat tgg ttg cag aaa 249
 Ser Glu Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys
 50 55 60

ctc aat ttt gct gca tat gaa gtc gat gac atc ttg gat gaa tgt aaa 297
 Leu Asn Phe Ala Ala Tyr Glu Val Asp Asp Ile Leu Asp Glu Cys Lys
 65 70 75 80

aat gag gca gca aga ttc aat cag tcc tta tta ggg tat att cat cca 345
 Asn Glu Ala Ala Arg Phe Asn Gln Ser Leu Leu Gly Tyr Ile His Pro
 85 90 95

aag atc atc att ttt cgt tac aag ctc gga aaa aga atg aaa aga atg 393
 Lys Ile Ile Ile Phe Arg Tyr Lys Leu Gly Lys Arg Met Lys Arg Met
 100 105 110

atg gag aaa cta gat gca att gct gac gaa aga agg aag ttt cat ttg 441
 Met Glu Lys Leu Asp Ala Ile Ala Asp Glu Arg Arg Lys Phe His Leu
 115 120 125

cgt gca aag att gtc gag aaa caa gct tct aaa cgt gaa aca ggt gct 489
 Arg Ala Lys Ile Val Glu Lys Gln Ala Ser Lys Arg Glu Thr Gly Ala
 130 135 140

cat ctt aaa ctg tgt tta gcc aag tac tta cta ata gct tagtttata 538
 His Leu Lys Leu Cys Leu Ala Lys Tyr Leu Leu Ile Ala
 145 150 155

ttcatctttt ttagttacc agattctata catgtttgtt ccatgtcagc ctttccttgt 598

gtcttttgtt tttgcaaaaaa tcttcttata ttctgtctga ctcccttttag tgagcttgaa 658

tttaataaaaa ttgtgtttcg cattgcttgtt ga aca ggt ttt gtt tta gca gag 711
 Thr Gly Phe Val Leu Ala Glu
 160

cca aaa gtt tat gga agg gac aaa gag aag gat gag atg gtg aaa atc 759
 Pro Lys Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu Met Val Lys Ile

165	170	175	180	
ttg ata aac agt gtt aat gcc caa gaa cta tta gtg ctc cca ata Leu Ile Asn Ser Val Ser Asn Ala Gln Glu Leu Leu Val Leu Pro Ile 185	190	195		807
ctt ggt atg ggg gga cta gga aag aca aca ctt gcc caa atg att ttt Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ala Gln Met Ile Phe 200	205	210		855
aat gat cag agc gtg act gca cat ttc aat cta aag ata tgg gtt tgt Asn Asp Gln Ser Val Thr Ala His Phe Asn Leu Lys Ile Trp Val Cys 215	220	225		903
gtc tca gat gat ttt gat gag aag agg ttg ata aag gca att gta gaa Val Ser Asp Asp Phe Asp Glu Lys Arg Leu Ile Lys Ala Ile Val Glu 230	235	240		951
tct att gaa aga agg cca ctt ggt gac ata gac ttg gct ccc ctc cag Ser Ile Glu Arg Arg Pro Leu Gly Asp Ile Asp Leu Ala Pro Leu Gln 245	250	255	260	999
aag aag ctt cag gag ttg ttg aat gga aaa aga tac ttt ctt gtt tta Lys Lys Leu Gln Glu Leu Leu Asn Gly Lys Arg Tyr Phe Leu Val Leu 265	270	275		1047
gat gat gtt tgg aat gaa gat caa gaa aag tgg gct aag ata aaa gca Asp Asp Val Trp Asn Glu Asp Gln Glu Lys Trp Ala Lys Ile Lys Ala 280	285	290		1095
gtc tta aag gtt gga gca caa ggt tct tct att cta gcc act act cgt Val Leu Lys Val Gly Ala Gln Gly Ser Ser Ile Leu Ala Thr Thr Arg 295	300	305		1143
ctt gaa agg gtc gga tca att atg gga act tgg caa cca tat cag tta Leu Glu Arg Val Gly Ser Ile Met Gly Thr Trp Gln Pro Tyr Gln Leu 310	315	320		1191
tca att ttg tct cca gaa tat tgt tgg ttg ttc aag caa cgt gca Ser Ile Leu Ser Pro Glu Tyr Cys Trp Leu Leu Phe Lys Gln Arg Ala 325	330	335	340	1239
ttt ggc cac caa acg gaa aca aat cct gcc ctt gtg ggg att gga aaa Phe Gly His Gln Thr Glu Thr Asn Pro Ala Leu Val Gly Ile Gly Lys 345	350	355		1287
gag att gtg aag aaa tgt ggg ggt gtg cct cta gca gcc aag act ctt Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala Ala Lys Thr Leu 360	365	370		1335
gga ggt ctt tta cgc ttc aag aga gaa gaa agt gaa tgg gaa cat gtg Gly Gly Leu Leu Arg Phe Lys Arg Glu Glu Ser Glu Trp Glu His Val 375	380	385		1383
aaa gat agt gag att tgg aat tta cct caa gat gaa aat tct gtt ttg Lys Asp Ser Glu Ile Trp Asn Leu Pro Gln Asp Glu Asn Ser Val Leu 390	395	400		1431
cct tcc ctg agg ctg agt tat cat cac ctt cca ctt aat ttg aga caa Pro Ser Leu Arg Leu Ser Tyr His His Leu Pro Leu Asn Leu Arg Gln 405	410	415	420	1479

tgt ttt gca tat tgt gcg gta ttc cca aag gac acc aaa ata gaa aag Cys Phe Ala Tyr Cys Ala Val Phe Pro Lys Asp Thr Lys Ile Glu Lys 425 430 435	1527
gaa tat ctc atc act ctc tgg atg gca cat ggt ttt ctt tta tca aaa Glu Tyr Leu Ile Thr Leu Trp Met Ala His Gly Phe Leu Leu Ser Lys 440 445 450	1575
gaa aat tca gag cta gag gat gtg ggt aat gaa gta tgg aaa gaa tta Glu Asn Ser Glu Leu Glu Asp Val Gly Asn Glu Val Trp Lys Glu Leu 455 460 465	1623
tac ttg agg tct ttc caa gag gtc gaa gaa tat aaa ttt ggt aat Tyr Leu Arg Ser Phe Phe Gln Glu Val Glu Tyr Lys Phe Gly Asn 470 475 480	1671
act tat ttc aag atg cat gat ctc atc cac gat ttg gct aca tct ctg Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala Thr Ser Leu 485 490 495 500	1719
ttc tca aca aac aca agg agc agc aaa att cgt caa ata aga gta gca Phe Ser Thr Asn Thr Arg Ser Ser Lys Ile Arg Gln Ile Arg Val Ala 505 510 515	1767
cag aaa aat aca att cct att ggt ttt gct gaa gtg gtg cct tct tat Gln Lys Asn Thr Ile Pro Ile Gly Phe Ala Glu Val Val Pro Ser Tyr 520 525 530	1815
tct cct tta atc ttt aaa agg ttt gtc tcg cta agg gtt ctt gat atg Ser Pro Leu Ile Phe Lys Arg Phe Val Ser Leu Arg Val Leu Asp Met 535 540 545	1863
aaa ttt tca aag ttt gat cag tta tca tct tcc atc gga gat cta ata Lys Phe Ser Lys Phe Asp Gln Leu Ser Ser Ile Gly Asp Leu Ile 550 555 560	1911
cat tta agg ttg ttg aac ttg cgt ggc agt agc att cgt agc ctt cca His Leu Arg Leu Leu Asn Leu Arg Gly Ser Ser Ile Arg Ser Leu Pro 565 570 575 580	1959
aag agg tta tgc aag cttcaa aat ctg cag aca ctt gat ata tca tgt Lys Arg Leu Cys Lys Leu Gln Asn Leu Gln Thr Leu Asp Ile Ser Cys 585 590 595	2007
tgt ttc tca ctt tct tat att cca aaa caa ata agt aaa tta agt agt Cys Phe Ser Leu Ser Tyr Ile Pro Lys Gln Ile Ser Lys Leu Ser Ser 600 605 610	2055
ctt aga aat ctt gtg ttc agt ggt tgt caa ata act tct atg cca cca Leu Arg Asn Leu Val Phe Ser Gly Cys Gln Ile Thr Ser Met Pro Pro 615 620 625	2103
aga ata gga tca ttg aca tgc ctt aag act cta gat tac ttt att gtc Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr Leu Asp Tyr Phe Ile Val 630 635 640	2151
ggc gag agg aaa ggt tat caa ctt ggt gaa cta cggt aat cta agc cta Gly Glu Arg Lys Gly Tyr Gln Leu Gly Glu Leu Arg Asn Leu Ser Leu 645 650 655 660	2199

cat ggt tca ctt tca atc tca cat ctt gag aga gtg aag agt gaa acg His Gly Ser Leu Ser Ile Ser His Leu Glu Arg Val Lys Ser Glu Thr 665 670 675	2247
gat gca aaa gaa gct aat tta tct acc aaa caa aaa ttg tac aat tta Asp Ala Lys Glu Ala Asn Leu Ser Thr Lys Gln Lys Leu Tyr Asn Leu 680 685 690	2295
tgc atg agt tgg gat att agg cca tat gga tat gaa tca gaa aac aat Cys Met Ser Trp Asp Ile Arg Pro Tyr Gly Tyr Glu Ser Glu Asn Asn 695 700 705	2343
ttg gat gaa aaa gtg ctt gaa gcc ctc aga cca cac tcc aac ctg aaa Leu Asp Glu Lys Val Leu Glu Ala Leu Arg Pro His Ser Asn Leu Lys 710 715 720	2391
tca cta aag ctc att ggc ttc aga ggt ttt cat ttt cca aat tgg atg Ser Leu Lys Leu Ile Gly Phe Arg Gly Phe His Phe Pro Asn Trp Met 725 730 735 740	2439
aac gct tcg gtt ttg aaa aat gtc gtc tct att gaa att gaa tgt gaa Asn Ala Ser Val Leu Lys Asn Val Val Ser Ile Glu Ile Glu Cys Glu 745 750 755	2487
aac tgc tgg cgt tta cca cca ttt gga gag ctg cct tgt cta gaa agt Asn Cys Trp Arg Leu Pro Pro Phe Gly Glu Leu Pro Cys Leu Glu Ser 760 765 770	2535
cta aag tta tac aac gga tct gcg gag gtg gag tat att gaa gag gat Leu Lys Leu Tyr Asn Gly Ser Ala Glu Val Glu Tyr Ile Glu Glu Asp 775 780 785	2583
gat ggt cat tcc aca tta aag ttc cca tac ttg aaa cga ctt gct att Asp Gly His Ser Thr Leu Lys Phe Pro Tyr Leu Lys Arg Leu Ala Ile 790 795 800	2631
gaa aga ttt cca aat ctg aaa gga ctg ctg aga agt gaa gga gaa gag Glu Arg Phe Pro Asn Leu Lys Gly Leu Leu Arg Ser Glu Gly Glu Glu 805 810 815 820	2679
aaa ttc tcc atg ctt gaa gaa atg gaa att tgg cat tgc cct atg ttt Lys Phe Ser Met Leu Glu Met Glu Ile Trp His Cys Pro Met Phe 825 830 835	2727
gtt ttt cca gca ttc tct gtc acg aaa ttg gat gtc tgg ggg gaa Val Phe Pro Ala Phe Ser Ser Val Thr Lys Leu Asp Val Trp Gly Glu 840 845 850	2775
ata gat gca gca agt ctt agc tcc ata tct aag ctt acc act ctt acg Ile Asp Ala Ala Ser Leu Ser Ile Ser Lys Leu Thr Thr Leu Thr 855 860 865	2823
tct ctc tct att gat cat aac ttt gaa gca aca act ctc cca gaa gag Ser Leu Ser Ile Asp His Asn Phe Glu Ala Thr Thr Leu Pro Glu Glu 870 875 880	2871
atg ttc aaa cgc ctt gta aat ctt gag tcc ttg agc att ata tac ttc Met Phe Lys Arg Leu Val Asn Leu Glu Ser Leu Ser Ile Ile Tyr Phe 885 890 895 900	2919
aaa aaa ctc aga gag ttg cca agc agc ctg gct agc ctc aat gct ttg	2967

Lys Lys Leu Arg Glu Leu Pro Ser Ser Leu Ala Ser Leu Asn Ala Leu			
905	910	915	
aag tgt cta aaa att cat tat tgt tac gca cta gag agt ctc ccc gaa			3015
Lys Cys Leu Lys Ile His Tyr Cys Tyr Ala Leu Glu Ser Leu Pro Glu			
920	925	930	
caa ggg atg gaa ggg tta act tca ctc acc gac tta tat gtt caa aac			3063
Gln Gly Met Glu Gly Leu Thr Ser Leu Thr Asp Leu Tyr Val Gln Asn			
935	940	945	
tgt gag atg cta aaa tgt tta cct gag gga ttg cag cac cta aga gcc			3111
Cys Glu Met Leu Lys Cys Leu Pro Glu Gly Leu Gln His Leu Arg Ala			
950	955	960	
ctc act agt tta caa att tat ggc tgt cca gca ttg aaa aag cgg tgt			3159
Leu Thr Ser Leu Gln Ile Tyr Gly Cys Pro Ala Leu Lys Lys Arg Cys			
965	970	975	980
gcg aag ggg ata gga gag gac tgg cac aaa att gct cac att cct aat			3207
Ala Lys Gly Ile Gly Glu Asp Trp His Lys Ile Ala His Ile Pro Asn			
985	990	995	
gta gat att tgt tag			3222
Val Asp Ile Cys			
1000			

<210> 8
<211> 1000
<212> PRT
<213> Solanum Bulbocastanum

<400> 8

Met Ala Glu Ala Phe Leu Gln Val Leu Leu Gly Asn Ile Thr Ser Phe
1 5 10 15

Ile Gln Gly Glu Leu Val Leu Leu Phe Gly Phe Glu Asn Asp Phe Arg
20 25 30

Lys Leu Ser Ser Thr Phe Ser Thr Ile Gln Leu Val Leu Glu Asp Ala
35 40 45

Ser Glu Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys
50 55 60

Leu Asn Phe Ala Ala Tyr Glu Val Asp Asp Ile Leu Asp Glu Cys Lys
65 70 75 80

Asn Glu Ala Ala Arg Phe Asn Gln Ser Leu Leu Gly Tyr Ile His Pro
85 90 95

Lys Ile Ile Ile Phe Arg Tyr Lys Leu Gly Lys Arg Met Lys Arg Met
100 105 110

Met Glu Lys Leu Asp Ala Ile Ala Asp Glu Arg Arg Lys Phe His Leu
115 120 125

Arg Ala Lys Ile Val Glu Lys Gln Ala Ser Lys Arg Glu Thr Gly Ala
130 135 140

His Leu Lys Leu Cys Leu Ala Lys Tyr Leu Leu Ile Ala Thr Gly Phe
145 150 155 160

Val Leu Ala Glu Pro Lys Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu
165 170 175

Met Val Lys Ile Leu Ile Asn Ser Val Ser Asn Ala Gln Glu Leu Leu
180 185 190

Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ala
195 200 205

Gln Met Ile Phe Asn Asp Gln Ser Val Thr Ala His Phe Asn Leu Lys
210 215 220

Ile Trp Val Cys Val Ser Asp Asp Phe Asp Glu Lys Arg Leu Ile Lys
225 230 235 240

Ala Ile Val Glu Ser Ile Glu Arg Arg Pro Leu Gly Asp Ile Asp Leu
245 250 255

Ala Pro Leu Gln Lys Leu Gln Glu Leu Leu Asn Gly Lys Arg Tyr
260 265 270

Phe Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Glu Lys Trp Ala
275 280 285

Lys Ile Lys Ala Val Leu Lys Val Gly Ala Gln Gly Ser Ser Ile Leu
290 295 300

Ala Thr Thr Arg Leu Glu Arg Val Gly Ser Ile Met Gly Thr Trp Gln
305 310 315 320

Pro Tyr Gln Leu Ser Ile Leu Ser Pro Glu Tyr Cys Trp Leu Leu Phe
325 330 335

Lys Gln Arg Ala Phe Gly His Gln Thr Glu Thr Asn Pro Ala Leu Val
340 345 350

Gly Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala
355 360 365

Ala Lys Thr Leu Gly Gly Leu Leu Arg Phe Lys Arg Glu Glu Ser Glu
370 375 380

Trp Glu His Val Lys Asp Ser Glu Ile Trp Asn Leu Pro Gln Asp Glu
385 390 395 400

Asn Ser Val Leu Pro Ser Leu Arg Leu Ser Tyr His His Leu Pro Leu
405 410 415

Asn Leu Arg Gln Cys Phe Ala Tyr Cys Ala Val Phe Pro Lys Asp Thr
420 425 430

Lys Ile Glu Lys Glu Tyr Leu Ile Thr Leu Trp Met Ala His Gly Phe
435 440 445

Leu Leu Ser Lys Glu Asn Ser Glu Leu Glu Asp Val Gly Asn Glu Val
450 455 460

Trp Lys Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Val Glu Glu Tyr
465 470 475 480

Lys Phe Gly Asn Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
485 490 495

Ala Thr Ser Leu Phe Ser Thr Asn Thr Arg Ser Ser Lys Ile Arg Gln
500 505 510

Ile Arg Val Ala Gln Lys Asn Thr Ile Pro Ile Gly Phe Ala Glu Val
515 520 525

Val Pro Ser Tyr Ser Pro Leu Ile Phe Lys Arg Phe Val Ser Leu Arg
530 535 540

Val Leu Asp Met Lys Phe Ser Lys Phe Asp Gln Leu Ser Ser Ser Ile
545 550 555 560

Gly Asp Leu Ile His Leu Arg Leu Leu Asn Leu Arg Gly Ser Ser Ile
565 570 575

Arg Ser Leu Pro Lys Arg Leu Cys Lys Leu Gln Asn Leu Gln Thr Leu
580 585 590

Asp Ile Ser Cys Cys Phe Ser Leu Ser Tyr Ile Pro Lys Gln Ile Ser
595 600 605

Lys Leu Ser Ser Leu Arg Asn Leu Val Phe Ser Gly Cys Gln Ile Thr
610 615 620

Ser Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr Leu Asp
625 630 635 640

Tyr Phe Ile Val Gly Glu Arg Lys Gly Tyr Gln Leu Gly Glu Leu Arg
645 650 655

Asn Leu Ser Leu His Gly Ser Leu Ser Ile Ser His Leu Glu Arg Val
660 665 670

Lys Ser Glu Thr Asp Ala Lys Glu Ala Asn Leu Ser Thr Lys Gln Lys
675 680 685

Leu Tyr Asn Leu Cys Met Ser Trp Asp Ile Arg Pro Tyr Gly Tyr Glu
690 695 700

Ser Glu Asn Asn Leu Asp Glu Lys Val Leu Glu Ala Leu Arg Pro His
705 710 715 720

Ser Asn Leu Lys Ser Leu Lys Leu Ile Gly Phe Arg Gly Phe His Phe
725 730 735

Pro Asn Trp Met Asn Ala Ser Val Leu Lys Asn Val Val Ser Ile Glu
740 745 750

Ile Glu Cys Glu Asn Cys Trp Arg Leu Pro Pro Phe Gly Glu Leu Pro
755 760 765

Cys Leu Glu Ser Leu Lys Leu Tyr Asn Gly Ser Ala Glu Val Glu Tyr
770 775 780

Ile Glu Glu Asp Asp Gly His Ser Thr Leu Lys Phe Pro Tyr Leu Lys
785 790 795 800

Arg Leu Ala Ile Glu Arg Phe Pro Asn Leu Lys Gly Leu Leu Arg Ser
805 810 815

Glu Gly Glu Glu Lys Phe Ser Met Leu Glu Glu Met Glu Ile Trp His
820 825 830

Cys Pro Met Phe Val Phe Pro Ala Phe Ser Ser Val Thr Lys Leu Asp

835

840

845

Val Trp Gly Glu Ile Asp Ala Ala Ser Leu Ser Ser Ile Ser Lys Leu
850 855 860

Thr Thr Leu Thr Ser Leu Ser Ile Asp His Asn Phe Glu Ala Thr Thr
865 870 875 880

Leu Pro Glu Glu Met Phe Lys Arg Leu Val Asn Leu Glu Ser Leu Ser
885 890 895

Ile Ile Tyr Phe Lys Lys Leu Arg Glu Leu Pro Ser Ser Leu Ala Ser
900 905 910

Leu Asn Ala Leu Lys Cys Leu Lys Ile His Tyr Cys Tyr Ala Leu Glu
915 920 925

Ser Leu Pro Glu Gln Gly Met Glu Gly Leu Thr Ser Leu Thr Asp Leu
930 935 940

Tyr Val Gln Asn Cys Glu Met Leu Lys Cys Leu Pro Glu Gly Leu Gln
945 950 955 960

His Leu Arg Ala Leu Thr Ser Leu Gln Ile Tyr Gly Cys Pro Ala Leu
965 970 975

Lys Lys Arg Cys Ala Lys Gly Ile Gly Glu Asp Trp His Lys Ile Ala
980 985 990

His Ile Pro Asn Val Asp Ile Cys
995 1000

<210> 9
<211> 5028
<212> DNA
<213> Solanum bulbocastanum

<220>
<221> promoter
<222> (1)..(953)
<223> Potato Ubi3 promoter

<220>
<221> gene
<222> (973)..(4566)
<223> Solanum bulbocastanum genomic Sbull

<220>
<221> CDS

cag aaa ctc aat gct gca tat gag gct gat gac atc ttg gac gaa Gln Lys Leu Asn Ala Ala Ala Tyr Glu Ala Asp Asp Ile Leu Asp Glu 65 70 75	1262
tgt aaa act gag gca cca att aga cag aag aac aaa tat ggg tgt Cys Lys Thr Glu Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys 80 85 90	1310
tat cat cca aac gtt atc act ttt cgt cac aag att ggg aaa agg atg Tyr His Pro Asn Val Ile Thr Phe Arg His Lys Ile Gly Lys Arg Met 95 100 105 110	1358
aaa aag att atg gag aaa cta gat gta att gca gcg gaa cga att aag Lys Lys Ile Met Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys 115 120 125	1406
ttt cat ttg gat gaa agg act ata gag aga caa gtt gct aca cgc caa Phe His Leu Asp Glu Arg Thr Ile Glu Arg Gln Val Ala Thr Arg Gln 130 135 140	1454
aca gg tgctcatctt agatattttt ctgaaaaaac agctttatat catcaaattc Thr Gly	1509
atgtgtgttt tggaattcg tctaattctaa atgttcgtct caagtctaag tagataagt gatccagctt tggattttatt aatctatttag ctaaatctgt ttagtgaagt ttttaacata tataacctca gataaatcca tagcttactc ataggattag gataggcccc caagtctaaa tgacaggata aagccagagt tgtttagct cttataaatt aacaatgata ataatgtgaa ttcaaaaaag tgcatttttt taatttgaaa tatttctgct gcttctcaag cttatcattg tcttttact gtgcaaaatt ctactttgta ttttgctga ctcctaccga gcttgggccca gg t ttt gtt ttg aat gaa cca caa gtt tat gga aga gac aaa gaa aag Phe Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys 145 150 155	1569 1629 1689 1749 1809 1869 1917 1965
gac gag ata gtg aaa atc ctg ata aac aat gtt agc aat gcc caa aca Asp Glu Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr 160 165 170 175	2013
ctt cca gtc ctc cca ata ctt ggt atg ggg gga cta gga aag acg act Leu Pro Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr 180 185 190	2061
ctt gcc caa atg gtc ttc aat gat cag aga gta att gag cat ttc cat Leu Ala Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His 195 200 205	2109
ccc aaa ata tgg att tgt gtc tcg gaa gat ttt aat gag aag agg ttg Pro Lys Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu 210 215 220	2157
ata aag gaa att gta gaa tct att gaa gaa aag tca ctt ggt ggc atg Ile Lys Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met 225 230 235	2205

Asp Leu Ala Pro Leu Gln Lys Lys Leu Arg Asp Leu Leu Asn Gly Lys			
240	245	250	255
aaa tat ttg ctc gtc tta gat gat gtt tgg aat gaa gat caa gat aag			2253
Lys Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys			
260	265	270	
tgg gct aag tta aga caa gtc ttg aag gtt gga gca agt ggc gct tct			2301
Trp Ala Lys Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser			
275	280	285	
gtt cta acc act act cgt ctt gaa aag gtt gga tca att atg gga aca			2349
Val Leu Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr			
290	295	300	
ttg caa cca tat gaa ttg tca aat ttg tct caa gaa gat tgt tgg ttg			2397
Leu Gln Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu			
305	310	315	
ttg ttc atg caa cgt gca ttt ggg cac caa gaa gaa ata aat ctt aat			2445
Leu Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn			
320	325	330	335
ctt gtg gct atc gga aag gag att gtg aaa aaa tgt ggt ggt gtg cct			2493
Leu Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro			
340	345	350	
cta gca gct aaa act ctt gga ggt att ttg cgc ttt aag aga gaa gaa			2541
Leu Ala Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu			
355	360	365	
aga cag tgg gaa cat gtg aga gat agt gag att tgg aaa ttg cct caa			2589
Arg Gln Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln			
370	375	380	
gaa gaa agt tct att ctg cct gcc ctg aga ctt agt tac cat cac ctt			2637
Glu Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu			
385	390	395	
cca ctt gat ttg aga caa tgc ttt aca tat tgt gca gta ttc cca aag			2685
Pro Leu Asp Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys			
400	405	410	415
gat acc gaa atg gaa aag gga aat cta atc tct ctc tgg atg gca cat			2733
Asp Thr Glu Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His			
420	425	430	
ggt ttt att tta tcg aaa gga aac ttg gag cta gag aat gta ggt aat			2781
Gly Phe Ile Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn			
435	440	445	
gaa gta tgg aat gaa tta tac ttg agg tct ttc ttc caa gag att gaa			2829
Glu Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu			
450	455	460	
gtt aaa tct ggt caa act tat ttc aag atg cat gat ctc att cat gat			2877
Val Lys Ser Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp			
465	470	475	
ctg gca aca tct cta ttt tcg gca agc aca tca agc agc aat atc cga			2925
Leu Ala Thr Ser Leu Phe Ser Ala Ser Thr Ser Ser Asn Ile Arg			

480	485	490	495	
gaa ata att gta gaa aat tac ata cat atg atg tcc att ggt ttc act Glu Ile Ile Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr 500	505	510		2973
aaa gtg gta tct tct tac ctt tcc cac ttg cag aag ttt gtc tcg Lys Val Val Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser 515	520	525		3021
ttg agg gtg ctt aat cta agt gac ata aaa ctt aag cag tta ccg tct Leu Arg Val Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser 530	535	540		3069
tcc att gga gat cta gta cat tta aga tac cta aac ttg tct ggc aat Ser Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn 545	550	555		3117
act agt att cgt agt ctt cca aac cag tta tgc aag ctt caa aat ctg Thr Ser Ile Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu 560	565	570	575	3165
cag act ctt gat cta cat ggc tgt cat tca ctt tgt ttg cca aaa Gln Thr Leu Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys 580	585	590		3213
gaa aca agc aaa ctt ggt agt ctt cga aat ctt tta ctt gat ggt tgc Glu Thr Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Gly Cys 595	600	605		3261
tat gga ttg act tgt atg cca cca agg ata gga tct ttg aca tgc ctt Tyr Gly Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu 610	615	620		3309
aag act cta agt aga ttt gtg gtg gga att cag aag aaa agt tgt caa Lys Thr Leu Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln 625	630	635		3357
ctt ggt gaa tta cga aac ctg aat ctc tat ggc tca att gaa atc acg Leu Gly Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Glu Ile Thr 640	645	650	655	3405
cat ctt gag aga gtg aag aat gat atg gat gca aaa gaa gcc aat tta His Leu Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu 660	665	670		3453
tct gca aaa gaa aat ctg cat tct tta agc atg aaa tgg gat gac gat Ser Ala Lys Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp 675	680	685		3501
gaa cgt cca cgt ata tat gaa tca gaa aaa gtt gaa gtg ctt gaa gct Glu Arg Pro Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala 690	695	700		3549
ctc aaa cca cac tcc aat ctg act tgt tta aca atc agg ggc ttc aga Leu Lys Pro His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg 705	710	715		3597
gga atc cgt ctc cca gac tgg atg aat cac tca gtt ttg aaa aat gtt Gly Ile Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val 720	725	730	735	3645

gtc tct att gaa atc atc agt tgc aaa aac tgc tca tgc tta cca ccc Val Ser Ile Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro 740 . . 745 . . 750	3693
ttt ggt gag ctg cct tgt cta aaa agt cta gag tta tgg agg ggg tct Phe Gly Glu Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser 755 . . 760 . . 765	3741
gcg gaa gtg gag tat gtt gat tct gga ttc cct aca aga aga agg ttt Ala Glu Val Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe 770 . . 775 . . 780	3789
cca tct ctg aga aaa ctt aat ata cgc gaa ttt gat aat ctg aaa gga Pro Ser Leu Arg Lys Leu Asn Ile Arg Glu Phe Asp Asn Leu Lys Gly 785 . . 790 . . 795	3837
ttg ctg aaa aag gaa gga gaa gag caa tgc cct gtg ctt gaa gag ata Leu Leu Lys Lys Glu Gly Glu Glu Gln Cys Pro Val Leu Glu Glu Ile 800 . . 805 . . 810 . . 815	3885
gag att aaa tgt tgc cct atg ttt gtt att cca acc ctt tct tct gtc Glu Ile Lys Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val 820 . . 825 . . 830	3933
aag aaa ttg gta gtt agt ggg gac aag tca gat gca ata ggt ttc agt Lys Lys Leu Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser 835 . . 840 . . 845	3981
tcc ata tct aat ctc atg gct ctt act tcc ctc caa att cgc tat aac Ser Ile Ser Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn 850 . . 855 . . 860	4029
aaa gaa gat gct tca ctc cca gaa gag atg ttc aaa agc ctt gca aat Lys Glu Asp Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn 865 . . 870 . . 875	4077
ctc aaa tac ttg aat atc tct ttt tac ttc aat ctt aaa gag ctg cct Leu Lys Tyr Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro 880 . . 885 . . 890 . . 895	4125
acc agc ctg gct agt ctc aat gct ttg aag cat ctg gaa att cat agt Thr Ser Leu Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser 900 . . 905 . . 910	4173
tgt tat gca cta gag agt ctc ccc gag gaa ggt gtg aaa ggt tta att Cys Tyr Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile 915 . . 920 . . 925	4221
tca ctc aca cag tta tcc ata aca tac tgt gaa atg cta caa tgt tta Ser Leu Thr Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu 930 . . 935 . . 940	4269
ccg gag gga ttg cag cac cta aca gcc ctc aca aat tta tca gtt gag Pro Glu Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu 945 . . 950 . . 955	4317
ttt tgt cca aca ctg gcc aag cgg tgt gag aag gga ata gga gaa gac Phe Cys Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp 960 . . 965 . . 970 . . 975	4365

tgg tac aaa att gct cac att cct cgt gtg ttt att tat tagtattccc Trp Tyr Lys Ile Ala His Ile Pro Arg Val Phe Ile Tyr	4414
980	985
aatttagatgt aattttctga ttttcttttg gaaacaaaatc aactatttgt aagatctatt	4474
tgtattatac ttgatttttc ttgggtctgt aacaataaat atttcaaattt tttcatatta	4534
agattcagaa ttagtcttat agctaaccgt atcgggtacc gagctcgaat tcggcttgat	4594
ccaaattttg atttaatgt ttagcaaattg tcctatcagt tttctcttt tgtcgaacgg	4654
taatttagag tttttttgc tatatggatt ttcgttttg atgtatgtga caaccctcgg	4714
gattgttcat ttatttcaaa actaagagtt ttgcatttatt gttctcgatc atttggata	4774
tcaatcttag ttttatatct tttcttagttc tctacgtttt aaatgttcaa cacactagca	4834
atttggctgc agcgtatggaa ttatggaaact atcaagtctg tggatcgat aaatatgctt	4894
ctcaggaatt tgagatttta cagtcattat gtcattggg ttgagtataa tataaaaaaa	4954
aaatagtaaa tttaagcaat aatgttaggt gctatgtgtc tgtcgagact attggccggc	5014
ctcaagccga attc	5028

<210> 10
<211> 988
<212> PRT
<213> Solanum bulbocastanum

<400> 10

Met Ala Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Cys Phe
1 5 10 15

Ile Gln Gly Glu Leu Gly Leu Ile Leu Gly Phe Lys Asp Glu Phe Glu
20 25 30

Lys Leu Gln Ser Thr Phe Thr Thr Ile Gln Ala Val Leu Glu Asp Ala
35 40 45

Gln Lys Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys
50 55 60

Leu Asn Ala Ala Ala Tyr Glu Ala Asp Asp Ile Leu Asp Glu Cys Lys
65 70 75 80

Thr Glu Ala Pro Ile Arg Gln Lys Lys Asn Lys Tyr Gly Cys Tyr His
85 90 95

Pro Asn Val Ile Thr Phe Arg His Lys Ile Gly Lys Arg Met Lys Lys
100 105 110

Ile Met Glu Lys Leu Asp Val Ile Ala Ala Glu Arg Ile Lys Phe His
115 120 125

Leu Asp Glu Arg Thr Ile Glu Arg Gln Val Ala Thr Arg Gln Thr Gly
130 135 140

Phe Val Leu Asn Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp
145 150 155 160

Glu Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asn Ala Gln Thr Leu
165 170 175

Pro Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu
180 185 190

Ala Gln Met Val Phe Asn Asp Gln Arg Val Ile Glu His Phe His Pro
195 200 205

Lys Ile Trp Ile Cys Val Ser Glu Asp Phe Asn Glu Lys Arg Leu Ile
210 215 220

Lys Glu Ile Val Glu Ser Ile Glu Glu Lys Ser Leu Gly Gly Met Asp
225 230 235 240

Leu Ala Pro Leu Gln Lys Lys Leu Arg Asp Leu Leu Asn Gly Lys Lys
245 250 255

Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Asp Lys Trp
260 265 270

Ala Lys Leu Arg Gln Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val
275 280 285

Leu Thr Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu
290 295 300

Gln Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu
305 310 315 320

Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Leu Asn Leu
325 330 335

Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu
340 345 350

Ala Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg
355 360 365

Gln Trp Glu His Val Arg Asp Ser Glu Ile Trp Lys Leu Pro Gln Glu
370 375 380

Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro
385 390 395 400

Leu Asp Leu Arg Gln Cys Phe Thr Tyr Cys Ala Val Phe Pro Lys Asp
405 410 415

Thr Glu Met Glu Lys Gly Asn Leu Ile Ser Leu Trp Met Ala His Gly
420 425 430

Phe Ile Leu Ser Lys Gly Asn Leu Glu Leu Glu Asn Val Gly Asn Glu
435 440 445

Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val
450 455 460

Lys Ser Gly Gln Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
465 470 475 480

Ala Thr Ser Leu Phe Ser Ala Ser Thr Ser Ser Ser Asn Ile Arg Glu
485 490 495

Ile Ile Val Glu Asn Tyr Ile His Met Met Ser Ile Gly Phe Thr Lys
500 505 510

Val Val Ser Ser Tyr Ser Leu Ser His Leu Gln Lys Phe Val Ser Leu
515 520 525

Arg Val Leu Asn Leu Ser Asp Ile Lys Leu Lys Gln Leu Pro Ser Ser
530 535 540

Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Ser Gly Asn Thr
545 550 555 560

Ser Ile Arg Ser Leu Pro Asn Gln Leu Cys Lys Leu Gln Asn Leu Gln
565 570 575

Thr Leu Asp Leu His Gly Cys His Ser Leu Cys Cys Leu Pro Lys Glu
580 585 590

Thr Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Leu Asp Gly Cys Tyr

595 600 605

Gly Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys
610 615 620

Thr Leu Ser Arg Phe Val Val Gly Ile Gln Lys Lys Ser Cys Gln Leu
625 630 635 640

Gly Glu Leu Arg Asn Leu Asn Leu Tyr Gly Ser Ile Glu Ile Thr His
645 650 655

Leu Glu Arg Val Lys Asn Asp Met Asp Ala Lys Glu Ala Asn Leu Ser
660 665 670

Ala Lys Glu Asn Leu His Ser Leu Ser Met Lys Trp Asp Asp Asp Glu
675 680 685

Arg Pro Arg Ile Tyr Glu Ser Glu Lys Val Glu Val Leu Glu Ala Leu
690 695 700

Lys Pro His Ser Asn Leu Thr Cys Leu Thr Ile Arg Gly Phe Arg Gly
705 710 715 720

Ile Arg Leu Pro Asp Trp Met Asn His Ser Val Leu Lys Asn Val Val
725 730 735

Ser Ile Glu Ile Ile Ser Cys Lys Asn Cys Ser Cys Leu Pro Pro Phe
740 745 750

Gly Glu Leu Pro Cys Leu Lys Ser Leu Glu Leu Trp Arg Gly Ser Ala
755 760 765

Glu Val Glu Tyr Val Asp Ser Gly Phe Pro Thr Arg Arg Arg Phe Pro
770 775 780

Ser Leu Arg Lys Leu Asn Ile Arg Glu Phe Asp Asn Leu Lys Gly Leu
785 790 795 800

Leu Lys Lys Glu Gly Glu Glu Gln Cys Pro Val Leu Glu Glu Ile Glu
805 810 815

Ile Lys Cys Cys Pro Met Phe Val Ile Pro Thr Leu Ser Ser Val Lys
820 825 830

Lys Leu Val Val Ser Gly Asp Lys Ser Asp Ala Ile Gly Phe Ser Ser
835 840 845

Ile Ser Asn Leu Met Ala Leu Thr Ser Leu Gln Ile Arg Tyr Asn Lys
850 855 860

Glu Asp Ala Ser Leu Pro Glu Glu Met Phe Lys Ser Leu Ala Asn Leu
865 870 875 880

Lys Tyr Leu Asn Ile Ser Phe Tyr Phe Asn Leu Lys Glu Leu Pro Thr
885 890 895

Ser Leu Ala Ser Leu Asn Ala Leu Lys His Leu Glu Ile His Ser Cys
900 905 910

Tyr Ala Leu Glu Ser Leu Pro Glu Glu Gly Val Lys Gly Leu Ile Ser
915 920 925

Leu Thr Gln Leu Ser Ile Thr Tyr Cys Glu Met Leu Gln Cys Leu Pro
930 935 940

Glu Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu Ser Val Glu Phe
945 950 955 960

Cys Pro Thr Leu Ala Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp
965 970 975

Tyr Lys Ile Ala His Ile Pro Arg Val Phe Ile Tyr
980 985