6. RECURSION

Hengfeng Wei (魏恒峰)
hfwei@nju.edu.cn

Review

Functions

Function Definition

Function Declaration

Arrays as Parameters

Pass by Value

Overview

Recursive Functions (Recursion)

A function that calls itself (main-re.c).

(1) Thinking like a Computer Scientist

Solving a task by first solving its smaller subtasks

(1) Thinking like a Computer Scientist

You want to solve a task and suppose you have the Mirror.

The Mirror can solve the smaller task for you magically.

(1) Thinking like a Computer Scientist

- What is a smaller task? (*****)
- How to solve the task given the solution to the smaller one? (★ ★ ★)
- What is the smallest task? (★)

Thinking Recursively

It will be a looooooooooo way to go to master RECURSION!!!

(2) Thinking like a Computer

min-re.c sum-re.c fib-re.c gcd-re.c bsearch-re.c

Min (min-re.c)

Min (min-re.c)

```
Min(3, 5, 2, 7) = min(7, Min(3, 5, 2))
               = \min(7, \min(2, \min(3, 5)))
               = \min(7, \min(2, \min(5, \min(3))))
               = \min(7, \min(2, \min(5, 3)))
               = \min(7, \min(2, 3))
               = \min(7, 2)
               =2
```

Sum (sum-re.c)

Sum (sum-re.c)

$$Sum(1, 3, 5, 7) = 7 + Sum(1, 3, 5)$$

$$= 7 + (5 + Sum(1, 3))$$

$$= 7 + (5 + (3 + Sum(1)))$$

$$= 7 + (5 + (3 + 1))$$

$$= 7 + (5 + 4)$$

$$= 7 + 9$$

$$= 16$$

Fibonacci Sequence (fib-re.c)

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2} \quad (n > 1)$$

Greatest Common Divisor (gcd-re.c)

 $\gcd(a,b)=\gcd(b,a\ \%\ b)$

Binary Search (bsearch-re.c)

MergeSort (mergesort.c)

MergeSort (mergesort.c)

6 5 3 1 8 7 2 4

