An ample sample

SAMPLING IN PYTHON

James Chapman
Content Developer, DataCamp

Sample size is number of rows

len(coffee_ratings.sample(n=300))

len(coffee_ratings.sample(frac=0.25))

300

334

Various sample sizes

```
coffee_ratings['total_cup_points'].mean()
```

82.15120328849028

```
coffee_ratings.sample(n=10)['total_cup_points'].mean()
```

83.027

```
coffee_ratings.sample(n=100)['total_cup_points'].mean()
```

82.4897

```
coffee_ratings.sample(n=1000)['total_cup_points'].mean()
```

82.1186

Relative errors

Population parameter:

```
population_mean = coffee_ratings['total_cup_points'].mean()
```

Point estimate:

```
sample_mean = coffee_ratings.sample(n=sample_size)['total_cup_points'].mean()
```

Relative error as a percentage:

```
rel_error_pct = 100 * abs(population_mean-sample_mean) / population_mean
```

Relative error vs. sample size

Properties:

- Really noise, particularly for small samples
- Amplitude is initially steep, then flattens
- Relative error decreases to zero (when the sample size = population)

Let's practice!

SAMPLING IN PYTHON

Baby back dist-ribution

SAMPLING IN PYTHON

James Chapman
Content Developer, DataCamp

Same code, different answer

```
coffee_ratings.sample(n=30)['total_cup_points'].mean()
```

coffee_ratings.sample(n=30)['total_cup_points'].mean()

82.5306666666668

81.97566666666667

```
coffee_ratings.sample(n=30)['total_cup_points'].mean()
```

coffee_ratings.sample(n=30)['total_cup_points'].mean()

82.68

81.675

Same code, 1000 times

```
mean_cup_points_1000 = []
for i in range(1000):
    mean_cup_points_1000.append(
        coffee_ratings.sample(n=30)['total_cup_points'].mean()
    )
print(mean_cup_points_1000)
```

```
[82.119333333333, 82.5530000000001, 82.0726666666668, 81.769666666667, ...
82.7416666666666, 82.4503333333335, 81.771999999999, 82.8163333333333]
```

Distribution of sample means for size 30

```
import matplotlib.pyplot as plt
plt.hist(mean_cup_points_1000, bins=30)
plt.show()
```

A *sampling distribution* is a distribution of replicates of point estimates.

Different sample sizes

Sample size: 6

80

82

84

Sample size: 150

78

20

Let's practice!

SAMPLING IN PYTHON

Be our guess, put our samples to the test

SAMPLING IN PYTHON

James Chapman
Content Developer, DataCamp

4 dice


```
dice = expand_grid(
    {'die1': [1, 2, 3, 4, 5, 6],
     'die2': [1, 2, 3, 4, 5, 6],
     'die3': [1, 2, 3, 4, 5, 6],
     'die4': [1, 2, 3, 4, 5, 6]
}
```

```
die1 die2 die3 die4
          1
                   3
3
                   4
                   5
1291
          6
      6
          6
                   3
1292 6
1293 6
          6
               6
                   4
1294
          6
                   5
          6
1295
      6
               6
                   6
[1296 rows x 4 columns]
```

Mean roll

```
die1 die2 die3 die4 mean_roll
                                    1.00
                                    1.25
         1
                           3
                                    1.50
3
                                    1.75
                           4
         1
               1
                           5
                                    2.00
                                     . . .
1291
         6
                                    5.00
               6
                     6
                           2
1292
         6
               6
                           3
                                    5.25
                     6
1293
         6
               6
                                    5.50
                     6
                           4
1294
               6
                     6
                           5
                                    5.75
1295
         6
               6
                     6
                           6
                                    6.00
[1296 rows x 5 columns]
```

Exact sampling distribution

```
dice['mean_roll'] = dice['mean_roll'].astype('category')
dice['mean_roll'].value_counts(sort=False).plot(kind="bar")
```


The number of outcomes increases fast

```
n_dice = list(range(1, 101))
n_outcomes = []
for n in n_dice:
    n_outcomes.append(6**n)

outcomes = pd.DataFrame(
    {"n_dice": n_dice,
    "n_outcomes": n_outcomes})
```


Simulating the mean of four dice rolls

```
import numpy as np

np.random.choice(list(range(1, 7)), size=4, replace=True).mean()
```

Simulating the mean of four dice rolls

```
import numpy as np
sample_means_1000 = []
for i in range(1000):
    sample_means_1000.append(
         np.random.choice(list(range(1, 7)), size=4, replace=True).mean()
    )
print(sample_means_1000)
```

```
[3.25, 3.25, 1.75, 2.0, 2.0, 1.0, 1.0, 2.75, 2.75, 2.5, 3.0, 2.0, 2.75, ...
1.25, 2.0, 2.5, 2.5, 3.75, 1.5, 1.75, 2.25, 2.0, 1.5, 3.25, 3.0, 3.5]
```

Approximate sampling distribution

plt.hist(sample_means_1000, bins=20)

Let's practice!

SAMPLING IN PYTHON

Err on the side of Gaussian

SAMPLING IN PYTHON

James Chapman
Content Developer, DataCamp

Sampling distribution of mean cup points

Sample size: 5

Sample size: 80

Sample size: 20

Sample size: 320

Consequences of the central limit theorem

Averages of independent samples have approximately normal distributions.

As the sample size increases,

- The distribution of the averages gets closer to being normally distributed
- The width of the sampling distribution gets *narrower*

Population & sampling distribution means

coffee_ratings['total_cup_points'].mean()

82.15120328849028

Use np.mean() on each approximate sampling distribution:

Sample size	Mean sample mean
5	82.18420719999999
20	82.1558634
80	82.14510154999999
320	82.154017925

Population & sampling distribution standard deviations

```
coffee_ratings['total_cup_points'].std(ddof=0)
```

2.685858187306438

- Specify ddof=0 when calling .std() on populations
- Specify ddof=1 when calling np.std() on samples or sampling distributions

Sample size	Std dev sample mean
5	1.1886358227738543
20	0.5940321141669805
80	0.2934024263916487
320	0.13095083089190876

Population mean over square root sample size

Sample size	Std dev sample mean	Calculation	Result
5	1.1886358227738543	2.685858187306438 / sqrt(5)	1.201
20	0.5940321141669805	2.685858187306438 / sqrt(20)	0.601
80	0.2934024263916487	2.685858187306438 / sqrt(80)	0.300
320	0.13095083089190876	2.685858187306438 / sqrt(320)	0.150

Standard error

- Standard deviation of the sampling distribution
- Important tool in understanding sampling variability

Let's practice!

SAMPLING IN PYTHON

