Connectionist Computing COMP 30230/41390

Gianluca Pollastri

office: E0.95, Science East.

email: gianluca.pollastri@ucd.ie

Credits

- Geoffrey Hinton, University of Toronto.
 - borrowed some of his slides for "Neural Networks" and "Computation in Neural Networks" courses.

- slides from his CS4018.
- Paolo Frasconi, University of Florence.
 - slides from tutorial on Machine Learning for structured domains.

Lecture notes on Brightspace

- Strictly confidential...
- Slim PDF version will be uploaded later, typically the same day as the lecture.
- If there is demand, I can upload onto Brightspace last year's narrated slides.. (should be very similar to this year's material)

Connectionist Computing COMP 30230

Books

- No book covers large fractions of this course.
- Parts of chapters 4, 6, (7), 13 of Tom Mitchell's "Machine Learning"
- Parts of chapter V of Mackay's "Information Theory, Inference, and Learning Algorithms", available online at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

 Chapter 20 of Russell and Norvig's "Artificial Intelligence: A Modern Approach", also available at:

http://aima.cs.berkeley.edu/newchap20.pdf

More materials later...

Marking

- 3 landmark papers to read, and submit a 10-line summary on Brightspace about: each worth 6-7%
- a connectionist model to build and play with on some sets, write a report: 30%
- Final Exam in the RDS (50%)

Programming assignment

- Implement a Multi-Layer Perceptron, test it.
- The description on Brightspace.

- Submit through Brightspace code and test results by <u>Dector</u> the 5th at 23:59, any time zone of your choice (Baker Island?).
- 30% of the overall mark
- One third of a grade down every day late, that is: if you deserve an A and you're 1 day late you get an A-, 2 days late a B+, etc.

MLP applications: handwritten digit recognition

- "Hand-written digit recognition with a back-propagation network", Le Cun et al. 1990
- Multi-layer perceptron applied to handwritten digits.
- Relatively little non-connectionist preprocessing: digits split, centred, normalised.

preprocessing

 Enough to obtain digits in this format, each one is a 16x16 greyscale image:

```
1410119134857868U32264141
8663597202992997225100467
0130844145910106154061036
3110641110304752620011799
6689120%47885571314279554
60601773018711299108991709
8401097075973319720155190
561075518255108503047520439401
```

deep network

4 hidden layers:

Connectionist Computing COMP 30230

Results

- After 30 epochs the error on the training set was 1.1% and the squared error 0.017.
- On the test set: 3.4% and 0.024
- To get 1% error: 5.7% rejection (9% on just handwritten)
- A lot of these were actually caused by preprocessing. Some of those that weren't, were ambiguous even to humans.

Invariances

- In Le Cun's paper we saw translation invariance was introduced into the network by weight sharing.
- Teaching neural networks invariances is a general problem.

The invariance problem

- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - deformation, contrast, lighting, rate
- We are so good at this that it's hard to appreciate how difficult it is.
 - It's one of the main difficulties in making computers perceive.
 - We still don't have generally accepted solutions.

Invariances: using features

- Instead of representing an object directly, extract whatever-invariant features first.
- For instance, if we want roto-translational invariance, represent an object by the distances between parts instead of xyz coordinates.

example

What features?

 Some features do not affect the information content of an instance (e.g. distance map vs. xyz coordinates).

 Some features, while informative, might involve some information loss.

Cost of features

- All features have to be designed.
- This process may range from completely trivial to years-long and involving the consultation of experts and significant costs.

Invariances: normalisation

- For instance put a box around an object, then scale it to a fixed size: same as preprocessing digits in Le Cun et al.
- Eliminates degrees of freedom.
- Not always trivial how to choose the box.

Invariances: brute force

- We can tackle invariances by:
 - constraining network weights
 - using features
 - normalising
- But computer scientists should be lazy and impatient. Wouldn't it be great if we could let the network do all the job?
- Brute force: to create invariance to trasformation X, for each example generate a lot of new other examples by applying X to it. Then train a large network on a fast computer.

Invariances: brute force

- For example, translate and rotate a digit in a lot of different ways and train a large network to recognise it.
- It generally works well, if the transformations aren't too large: do approximate (easy) normalisation first.

Brute force and Deep Learning

- Incidentally, using brute force often also involves adding layers that can tackle a less processed input.
- This is in many ways one of the defining elements of Deep Learning, though it's been done plenty of times before Deep Learning was named.

A matter of depth

Connectionist Computing COMP 30230

Summary: invariances

- Often as tough a problem as learning after invariances are tackled.
- Possible solutions:
 - network design
 - features
 - normalisation
 - brute force

Problems with squared error

- So far, for gradient descent, we used:
 - Error: squared
 - Output function: linear or sigmoid (binary won't work)
- There are tricky problems with squared error. For instance if the desired output is 1 and the actual output is very close to 0 there is almost no gradient.

Problems with squared error

These are the deltas:

$$\delta_j^{(o)} = (t_j - y_j) f'(z_j^{(o)})$$

And these are f and f':

$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

$$f'(x) = \frac{1}{2 + e^{-x} + e^x}$$

Connectionist Computing COMP 30230

Alternatives: softmax and relative entropy

$$f(z_i) = softmax(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$E = -\sum t_j log y_j$$

- Non-local non linearity.
- Outputs add up to 1 (can be interpreted as the probability of the output given the input).

Gradient descent with softmax

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \left(-\sum_{k} t_{k} log y_{k} \right) =$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} \frac{\partial y_{k}}{\partial w_{ji}} =$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} \frac{\partial}{\partial w_{ji}} \frac{e^{z_{k}}}{\sum_{v} e^{z_{v}}} =$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} \frac{e^{z_{k}} \frac{\partial z_{k}}{\partial w_{ji}} \sum_{v} e^{z_{v}} - e^{z_{k}} \sum_{v} e^{z_{v}} \frac{\partial z_{v}}{\partial w_{ji}}}{(\sum_{v} e^{z_{v}})^{2}} =$$
?

derivative of the activation

• If I define:

$$d(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

Then:

$$\frac{\partial z_v}{\partial w_{ji}} = d(v - j)x_i$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} \frac{e^{z_{k}} \frac{\partial z_{k}}{\partial w_{ji}} \sum_{v} e^{z_{v}} - e^{z_{k}} \sum_{v} e^{z_{v}} \frac{\partial z_{v}}{\partial w_{ji}}}{(\sum_{v} e^{z_{v}})^{2}} =$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} \frac{e^{z_{k}} d(k-j)x_{i}}{\sum_{v} e^{z_{v}}} + \sum_{k} \frac{t_{k}}{y_{k}} \frac{e^{z_{k}} \sum_{v} e^{z_{v}} d(v-j)x_{i}}{(\sum_{v} e^{z_{v}})^{2}} =$$

$$-\sum_{k} \frac{t_{k}}{y_{k}} y_{k} d(k-j)x_{i} + \sum_{k} \frac{t_{k}}{y_{k}} \frac{e^{z_{k}} e^{z_{j}} x_{i}}{(\sum_{v} e^{z_{v}})^{2}} =$$

$$-t_{j}x_{i} + \sum_{k} \frac{t_{k}}{y_{k}} y_{k} y_{j} x_{i} =$$

$$-t_{j}x_{i} + y_{j}x_{i} \sum_{k} t_{k} =$$

$$(y_{j} - t_{j})x_{i}$$

Gradient descent with softmax

 No f'(): the steepness of the cost function balances the flatness of the output nonlinearity.

$$\frac{\partial E}{\partial w_{ji}} = (y_j - t_j)x_i$$

More squashing functions

ReLU

Smooth ReLU

 Also: Leaky ReLU, parametric ReLU, ..

Deep Learning