MLDS HW2-1

TAs ntu.mldsta@gmail.com

Outline

- Timeline
- Task Descriptions
- Q&A

Timeline

Two Parts in HW2

- (2-1) Video caption generation
 - Sequence-to-sequence model
 - Training Tips
- (2-2) Chat-bot

Schedule

- 3/30:
 - Release HW2-1
- 4/13:
 - o Release HW2-2
- 4/27:
 - Midterm
 - o HW1 上台分享
- 5/4:
 - All HW2 due (including HW2-1, HW2-2)

Task Descriptions

HW2-1: Video caption generation

- Introduction
- Sequence-to-sequence model
- Training Tips
 - Attention
 - Schedule Sampling
 - Beamsearch
- How to reach the baseline?

HW2-1: Video caption generation

- Introduction
- Sequence-to-sequence model
- Training Tips
 - Attention
 - Schedule Sampling
 - Beamsearch
- How to reach the baseline?

HW2-1 Introduction

- Video Caption Generation
 - a. Input : A short video
 - b. Output: The corresponding caption that depicts the video

- There are several difficulties including:
 - a. Different attributes of video (object, action)
 - b. Variable length of I/O

(In this task, video features will be provided)

HW2-1 Sequence-to-sequence 1/5

Two recurrent neural networks (RNNs)
 an encoder that processes the input
 a decoder that generates the output

HW2-1 Sequence-to-sequence 2/5

Data preprocess:

- Dictionary most frequently word or min count
- other tokens:<PAD>, <BOS>, <EOS>, <UNK>
 - <PAD> : Pad the sentencen to the same length
 - <BOS> : Begin of sentence, a sign to generate the output sentence.
 - <EOS> : End of sentence, a sign of the end of the output sentence.
 - <UNK> : Use this token when the word isn't in the dictionary or just ignore the unknown word.

HW2-1 Sequence-to-sequence 3/5

• Text Input:

reference

- One-hot Vector encoding

 (1-to-N coding, N is the size of the vocabulary in dictionary)
- o e.g.
 - neural = [0, 0, 0, ..., 1, 0, 0, ..., 0, 0, 0]
 - network = [0, 0, 0, ..., 0, 0, 1, ..., 0, 0, 0]

• LSTM unit:

cell output than project to a vocabulary-size vector

HW2-1 Sequence-to-sequence - S2VT 4/5

Sequence-to-Sequence Based Model: S2VT

Refer to the following paper for detailed info:

http://www.cs.utexas.edu/users/ml/papers/venugopalan.iccv15.pdf

HW2-1 Sequence-to-sequence - S2VT 5/5

- Sequence-to-Sequence Based Model: S2VT
 - Two layer LSTM structure

HW2-1 Training Tips - Attention 1/3

- Attention on encoder hidden states :
 - Allow model to peek at different sections of inputs at each decoding time step

HW2-1 Training Tips - Schedule Sampling 2/3

- Schedule Sampling:
 - To solve "exposure bias" problem,
 When training, we feed (groundtruth) or (last time step's output) as input at odds

https://arxiv.org/abs/1506.03099

HW2-1 Training Tips - Beam search 3/3

- Beam search:
 - keep a fixed number of paths

Demo: http://dbs.cloudcv.org/captioning

HW2-1 How to reach the baseline? 1/2

- Evaluation: BLEU@1
 - Precision = correct words / candidate length

where c = candidate length, r = reference length

- BLEU@1 = BP * Precision
- o e.g.:

Ground Truth : a man is mowing a lawn

Prediction : a man is riding a man on a woman is riding a

motorcycle

BLEU: 1 * 4/13 = 0.308

o <u>paper</u>

HW2-1 How to reach the baseline? 2/2

- Baseline: BLEU@1 = 0.65 (Captions Avg.)
- baseline model:

- Training Epoch = 200
- LSTM dimension = 256
- Learning rate = 0.001
- vocab size = min count > 3

- AdamOptimizer
- Training time = 72 mins, using 960 TX

Data & format

- Dataset:
 - MSVD
 - 1450 videos for training
 - 100 videos for testing
- Format:
 - <u>Download</u> MLDS_hw2_1_data.tar.gz (4/9 update)

```
MLDS_hw2_1_data

— testing_data
— feat
— video
— training_data
— feat
— video
— bleu_eval.py
— sample_output_testset.txt
— testing_id.txt
— testing_label.json
— training_id.txt
— training_label.json
```

Submission & Rules

- Please implement one seq-to-seq model (or it's variant) to fulfill the task
- Extra dataset is allowed to use.
- Allow package:
 - o python 3.6
 - TensorFlow r1.6 ONLY (CUDA 9.0)
 - PyTorch 0.3 / torchvision
 - Keras 2.0.7 (TensorFlow backend only)
 - MXNet 1.1.0, CNTK 2.4
 - matplotlib, Python Standard Library
 - If you want to use other packages, please ask TAs for permission first!
 - new allowed package:

Submission & Rules

- Deadline: 2018/5/4 23:59 (GMT+8)
- Upload code and report of HW2-1, HW2-2 to Github in different directory.
- For HW2-1:
 - Your github must have directory hw2/hw2_1/, and there should be:
 - (1) report.pdf (2) your_seq2seq_model (3) hw2_seq2seq.sh
 - **(4)** model_seq2seq.py (training code should include)
 - If your model are too big for github, upload to a cloud space and write it in your script to download the model.
 - Please write shell script "hw2_seq2seq.sh" to run your code and follow the script usage below:
 - ./hw2_seq2seq.sh \$1 \$2
 - \$1: the data directory, \$2: test data output filename (format:.txt)
 - Example ./hw2_seq2seq.sh testing_data/ sample_output_testset.txt
 Your script should be done within 10 mins excluding model donwloading.
 - Please do not upload any dataset to Github (include external dataset).

Grading Policy

- HW2-1:15%
 - Baseline (4%):
 - BLEU@1 = 0.65 (Captions Avg.)
 - TAs review (4%):
 - Grammar score (2%)
 - Relative score (2%)
 - Report (7%)
- HW2-2:10%
- 分工表:0.5%
- 上台分享:1%
- 上台分享前三名:1%

Grading Policy - Report (7%)

- Do not exceed 4 pages and written in Chinese.
- Model description (3%)
 - Describe your seq2seq model
- How to improve your performance (3%)
 - (e.g. Attention, Schedule Sampling, Beamsearch...)
 - Write down the method that makes you outstanding (1%)
 - Why do you use it (1%)
 - Analysis and compare your model without the method. (1%)
- Experimental results and settings (1%)
 - parameter tuning, schedual sampling ... etc
- README: please specify library and the corresponding version in README

Grading Policy - NOTICE

Late submission (link):

- Please fill the late submission form first only if you will submit
 HW late.
- Please push your code before you fill the form
- There will be 25% penalty per day for late submission, so you get
 0% after four days

• Bug:

- You will get 0% in Baseline and TAs review if the required script has bug.
- If the error is due to the format issue, please come to fix the bug at the announced time, or you will get 10% penalty afterwards.

Q&A

ntu.mldsta@gmail.com

Q1: 請問助教會跑training的程式嗎?

A:不會。我們所規定的十分鐘只包含testing。除非我們認為有必要就會請你們來跑training的code。

Q2: 有推薦上傳model的平台嗎?

A: dropbox, google drive都是大家常用的平台。不過推薦大家可以使用gitlab,操作方法與github類似,但是可以上傳大容量的檔案。

p.s. github 單一檔案上傳上限為100MB, 若超過50MB則會出現警告, 但依舊能上傳。也可參考網路上的教學 (ref)。

Q3: test set 的答案怎麼一起給了?

A:因為沒有Kaggle,方便大家validation 和測準確率,因此也給大家testset 的答案。

Q4: data 裡的feature是怎麼抽的呢?

A:pretrain在ILSVRC的VGG19。

80*4096維的feature, 是指每個影片抽80個frame, 每個frame有4096維feature。

Q5: Average bleu score 是怎麼算的呢?

A:對於每個影片,你的答案會對他的所有的字幕算bleu score。 將所有影片的分數取平均後,就是你的總bleu score。

p.s. 詳細演算法請見 bleu_eval.py