Indeed, we have $\epsilon_i \alpha_i = 0$ for i = 1, ..., p and $\xi_j \beta_j = 0$ for j = 1, ..., q. Also, if $\lambda_i > 0$, then corresponding constraint is active, and similarly if $\mu_j > 0$. Since $\lambda_i + \alpha_i = K$, it follows that $\epsilon_i \alpha_i = 0$ iff $\epsilon_i (K - \lambda_i) = 0$, and since $\mu_j + \beta_j = K$, we have $\xi_j \beta_j = 0$ iff $\xi_j (K - \mu_j) = 0$. Thus if $\epsilon_i > 0$, then $\lambda_i = K$, and if $\xi_j > 0$, then $\mu_j = K$. Consequently, if $\lambda_i < K$, then $\epsilon_i = 0$ and u_i is correctly classified, and similarly if $\mu_j < K$, then $\xi_j = 0$ and v_j is correctly classified.

We have a classification of the points u_i and v_j in terms of λ and μ obtained from the classification given in Section 54.1 by replacing δ with 1. Since it is so similar, it is omitted. Let us simply recall that the vectors u_i on the blue margin and the vectors v_j on the red margin are called *support vectors*; these are the vectors u_i for which $w^{\top}u_i - b - 1 = 0$ (which implies $\epsilon_i = 0$), and the vectors v_j for which $w^{\top}v_j - b + 1 = 0$ (which implies $\xi_j = 0$). Those support vectors u_i such that $\lambda_i = 0$ and those support vectors such that $\mu_j = 0$ are called exceptional support vectors.

We also have the following classification of the points u_i and v_j terms of ϵ_i (or ξ_j) obtained by replacing δ with 1.

(1) If $\epsilon_i > 0$, then by complementary slackness $\lambda_i = K$, so the *i*th equation is active and by (2) above,

$$w^{\top}u_i - b - 1 = -\epsilon_i.$$

Since $\epsilon_i > 0$, the point u_i is within the open half space bounded by the blue margin hyperplane $H_{w,b+1}$ and containing the separating hyperplane $H_{w,b}$; if $\epsilon_i \leq 1$, then u_i is classified correctly, and if $\epsilon_i > 1$, then u_i is misclassified.

Similarly, if $\xi_j > 0$, then v_j is within the open half space bounded by the red margin hyperplane $H_{w,b-1}$ and containing the separating hyperplane $H_{w,b}$; if $\xi_j \leq 1$, then v_j is classified correctly, and if $\xi_j > 1$, then v_j is misclassified.

(2) If $\epsilon_i = 0$, then the point u_i is correctly classified. If $\lambda_i = 0$, then by (3) above, u_i is in the closed half space on the blue side bounded by the blue margin hyperplane $H_{w,b+\eta}$. If $\lambda_i > 0$, then by (1) and (2) above, the point u_i is on the blue margin.

Similarly, if $\xi_j = 0$, then the point v_j is correctly classified. If $\mu_j = 0$, then v_j is in the closed half space on the red side bounded by the red margin hyperplane $H_{w,b-\eta}$, and if $\mu_j > 0$, then the point v_j is on the red margin. See Figure 54.5 (3).

Vectors u_i for which $\lambda_i = K$ and vectors v_j such that $\xi_j = K$ are said to fail the margin.

It is shown in Section 54.4 how the dual program is solved using ADMM from Section 52.6. If the primal problem is solvable, this yields solutions for λ and μ .

Remark: The hard margin Problem (SVM_{h2}) corresponds to the special case of Problem (SVM_{s2}) in which $\epsilon = 0$, $\xi = 0$, and $K = +\infty$. Indeed, in Problem (SVM_{h2}) the terms