Instituto Militar de Engenharia

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

IME 2022/2023 Discursivo

PROBLEMA 1

O calcário é uma rocha de origem sedimentar constituída predominantemente por carbonato de cálcio. Uma técnica que pode ser utilizada para determinar o teor de carbonato de cálcio em uma amostra de calcário é a volumetria, a qual consiste na determinação da concentração de uma solução A por meio do gasto de uma solução B de concentração conhecida, ocorrendo uma reação química entre A e B. Uma amostra de 1,0 g de calcário foi dissolvida utilizando-se 25,0 mL de uma solução de ácido clorídrico com concentração de 1,0 mol/L. Na sequência, utilizou-se uma solução de hidróxido de sódio com concentração de 0,5 mol/L para neutralizar o excesso de ácido, consumindo-se 17,2 mL da solução.

Considerando que apenas o carbonato de cálcio presente na amostra de calcário reage com o ácido clorídrico, determine:

- a. as equações balanceadas das reações envolvidas no processo;
- a porcentagem mássica de carbonato de cálcio presente na amostra de calcário.

PROBLEMA 2

Uma amostra de 46,8 g de poliestireno foi dissolvida em quantidade suficiente de benzeno para produzir 1,0 L de solução. A pressão osmótica dessa solução foi medida a 300 K e o valor encontrado foi de 7,38 \times 10^{-3} atm.

Calcule o numero médio de unidades monoméricas na cadeia polimérica desta amostra de poliestireno.

PROBLEMA 3

O but-2-enal (aldeído crotônico ou crotonaldeído) é um líquido lacrimogênio usado como precursor de diversos produtos químicos, tais como a vitamina E, o ácido ascórbico e alguns compostos pirimidínicos.

Apresente uma rota química para sintetizar o but-2-enal a partir do carbeto de cálcio

PROBLEMA 4

Uma solução de Na $_2$ SO $_4$ com concentração $1,0 \times 10^{-3}$ mol/L contem, como traçador, o radioisótopo $_{16}^{35}$ S, cujo tempo de meia vida e igual a 88 dias. Uma amostra de $10\,\mathrm{mL}$ dessa solução produz $4,0 \times 10^4$ contagens por minuto em um detector de radiação. Um volume igual de solução de $Pb(NO_3)_2$ com concentração $2,0 \times 10^{-4}$ mol/L é adicionado à solução de Na $_2$ SO $_4$, ocasionando precipitação de $PbSO_4$.

Calcule o numero de contagens por minuto para uma alíquota de 10 mL retirada da solução após a precipitação.

PROBLEMA 5

Um combustível formado por uma mistura equimolar de npropano e 2-metil-propano alimenta a fornalha de uma usina termelétrica, na qual ocorre sua combustão total na presença de ar. Um sensor posicionado na chaminé dessa fornalha detecta a presença de 3% em mol de oxigênio nos gases de exaustão.

Calcule a razão ar/combustível, em proporção mássica, para uma alimentação de 1000 mol/s desse combustível, com a fornalha operando sob essa condição.

PROBLEMA 6

A glicose tem dois estereoisômeros, α e β , que se distinguem pela atividade óptica. A forma α tem poder rotatório específico de 112° e a β de $18,7^{\circ}$. A conversão de uma forma para outra se dá segundo uma reação de primeira ordem reversível:

$$C_6H_{12}O_6(\alpha) \Longrightarrow C_6H_{12}O_6(\beta)$$

Realiza-se, então, uma experiência, na qual um feixe de luz polarizada atravessa um tubo contendo uma solução de glicose. Observa-se a modificação do desvio angular do plano de polarização como mostrado na tabela abaixo:

Tempo, t/min	0	10	100	∞
Ângulo de rotação, θ	112,00°	102,67°	65,35°	56,02°

Sabe-se que o desvio angular da luz polarizada é função linear da conversão do estereoisômero α e que a soma das constantes de reação direta e reversa é 0,015 min $^{-1}$.

Determine:

- a. a conversão específica no instante $t=10\,\text{min}$;
- as constantes de velocidade da reação direta e da reação reversa;
- c. a taxa específica de reação no instante $t=100\,\mathrm{min}$;
- d. a taxa específica de reação no equilíbrio.

PROBLEMA 7

Considere a energia potencial de ligação. Pode-se imaginar um modelo em que a energia de ligação entre as especies seja considerada a própria energia potencial eletrostática.

- a. Esboce, em um único gráfico de energia potencial de ligação versus distância internuclear, as curvas para uma ligação química interatômica (covalente ou iônica) e para uma interação intermolecular.
- Indique o fator crucial que determina a diferença entre as curvas.

^{*}Contato: contato@gpbraun.com, (21)99848-4949

PROBLEMA 8

Uma corrente elétrica constante atravessa duas células eletrolíticas ligadas em serie, sendo que a primeira contem uma solução aquosa de sulfato cúprico e a segunda produz hidrogênio no catodo e oxigênio no anodo.

Considerando essas informações e sabendo que o gás hidrogênio tem solubilidade desprezível em água:

- a. escreva as semirreações e a reação global da eletrólise do sulfato cúprico em meio aquoso, envolvendo o fluxo de elétrons;
- b. determine o tempo, em minutos, necessário para o depósito de 0,254 g de cobre, quando se faz passar uma corrente de 2,0 A na solução da primeira célula eletroquímica;
- c. calcule o pH da solução resultante do borbulhamento do hidrogênio gasoso, produzido no catodo da segunda célula, em 200 mL de uma solução aquosa de NaOH 0,1 mol/L, a 298 K.

PROBLEMA 9

Seja a reação genérica balanceada:

$$A(g) + 2B(g) \Longrightarrow C(g) + D(l)$$

Considere que: as solubilidades das especies químicas no líquido formado sao desprezíveis; os gases se comportam idealmente; e as propriedades termodinâmicas a 1,0 atm e 30 °C sao as dadas abaixo.

	A(g)	B(g)	C(g)	D(1)
$\Delta H_f^{\circ} / \frac{kJ}{mol}$	-394	-47,0	-334	-286
$\Delta G_{\mathrm{f}}^{\circ}/rac{\mathrm{k}J}{\mathrm{mol}}$	-394	-16,0	-197	-237

Determine para essa reação:

- a. a expressão da constante de equilíbrio com base nas concentrações, K_c ;
- b. o valor da constante de equilíbrio com base nas pressões parciais, K_P, a 30 °C e 1 atm;
- c. a variação de entalpia a $30\,^{\circ}\text{C}$ e 1 atm, estabelecendo se a reação exotérmica ou endotérmica;
- d. o valor da constante de equilíbrio K_P , a 13 $^{\circ}$ C e 1 atm, com base na equação de Van't Hoff.

PROBLEMA 10

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

c. Cl
$$H$$
 e H e

IME 2021/2022 Discursivo

PROBLEMA 11

Considere a reação entre acetato de etila e hidróxido de sódio em meio aquoso com sendo irreversível. Uma forma simples de estudar a cinética dessa reação é acompanhar, com o uso de um condutivímetro, a condutividade do meio reacional, dada pelo inverso da resistividade e geralmente denotada por k, em S cm $^{-1}$. Tal condutividade é relacionada, quantitativamente, à concentração das espécies iônicas, Na $^+$, OH $^-$ e acetato, em solução, cujas condutividades molares, em S L cm $^{-1}$ mol $^{-1}$, serão denotadas aqui, respectivamente, por $\lambda_{\rm Na}{}^+$, $\lambda_{\rm OH}{}^-$ e $\lambda_{\rm AcO}{}^-$. A condutividade de um meio e dada, portanto, pela soma dos produtos entre a concentração de cada espécie iônica e sua correspondente condutividade.

Foi preparada uma mistura contendo, inicialmente, c_0 mol L^{-1} de hidróxido de sódio e acetato de etila em ligeiro excesso. Determine uma expressão para a concentração do íon acetato em função de k, λ_{Na^+} , λ_{OH} e λ_{ACO} e c_0 .

PROBLEMA 12

Uma célula eletrolítica dotada de eletrodos de platina é preenchida com 1 L de uma solução 4 mol $\rm L^{-1}$ de NaCl puro em água bidestilada. Em seguida, faz-se percorrer pela mesma, por 5 horas 21 minutos e 40 segundos, uma corrente de 5 A, ocorrendo desprendimento de cloro e hidrogênio. Decorrido o tempo mencionado, a corrente é desligada e a solução remanescente é evaporada, obtendo-se um resíduo sólido.

Calcule a massa do resíduo sólido.

PROBLEMA 13

Sob determinadas condições, a água pode ser super-resfriada, ou seja, permanecer no estado líquido em temperaturas inferiores ao seu ponto de congelamento, em uma situação termodinamicamente instável. Considere um processo em que 5 mol de água super-resfriada a $-10\,^{\circ}\mathrm{C}$ e 1,0 atm sejam convertidos em gelo à mesma temperatura.

Determine a variação de entropia:

- a. do sistema;
- b. na vizinhança; e
- c. do universo.

PROBLEMA 14

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas da energia de ionização em função do número atômico. Com relação à esses elementos.

- a. esboce qualitativamente o gráfico da energia de ionização em função do número atômico; e
- b. explique esses desvios de forma sucinta, baseado na estrutura eletrônica e no preenchimento dos orbitais atômicos.

PROBLEMA 15

Suponha um sólido metálico formado por um único elemento que apresenta uma estrutura de empacotamento cúbica de corpo centrado à pressão atmosférica. Ao ser comprimido, esse sólido adota uma estrutura cúbica de face centrada.

Considerando os átomos como esferas rígidas, calcule a razão entre as densidades do sólido antes e depois da compressão.

PROBLEMA 16

PROBLEMA 17

PROBLEMA 18

PROBLEMA 19

PROBLEMA 20

IME 2020/2021 Discursivo

PROBLEMA 21

Considere a reação entre acetato de etila e hidróxido de sódio em meio aquoso com sendo irreversível. Uma forma simples de estudar a cinética dessa reação é acompanhar, com o uso de um condutivímetro, a condutividade do meio reacional, dada pelo inverso da resistividade e geralmente denotada por k, em S cm $^{-1}$. Tal condutividade é relacionada, quantitativamente, à concentração das espécies iônicas, Na $^+$, OH $^-$ e acetato, em solução, cujas condutividades molares, em S L cm $^{-1}$ mol $^{-1}$, serão denotadas aqui, respectivamente, por $\lambda_{\rm Na}{}^+$, $\lambda_{\rm OH}{}^-$ e $\lambda_{\rm AcO}{}^-$. A condutividade de um meio e dada, portanto, pela soma dos produtos entre a concentração de cada espécie iônica e sua correspondente condutividade.

Foi preparada uma mistura contendo, inicialmente, c_0 mol L^{-1} de hidróxido de sódio e acetato de etila em ligeiro excesso. Determine uma expressão para a concentração do íon acetato em função de k, λ_{Na^+} , λ_{OH} – e λ_{AcO} – e c_0 .

PROBLEMA 22

Uma célula eletrolítica dotada de eletrodos de platina é preenchida com 1 L de uma solução 4 mol $\rm L^{-1}$ de NaCl puro em água bidestilada. Em seguida, faz-se percorrer pela mesma, por 5 horas 21 minutos e 40 segundos, uma corrente de 5 A, ocorrendo desprendimento de cloro e hidrogênio. Decorrido o tempo mencionado, a corrente é desligada e a solução remanescente é evaporada, obtendo-se um resíduo sólido.

Calcule a massa do resíduo sólido.

PROBLEMA 23

Sob determinadas condições, a água pode ser super-resfriada, ou seja, permanecer no estado líquido em temperaturas inferiores ao seu ponto de congelamento, em uma situação termodinamicamente instável. Considere um processo em que 5 mol de água super-resfriada a $-10\,^{\circ}\mathrm{C}$ e 1,0 atm sejam convertidos em gelo à mesma temperatura.

Determine a variação de entropia:

- a. do sistema;
- b. na vizinhança; e
- c. do universo.

PROBLEMA 24

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas da energia de ionização em função do número atômico. Com relação à esses elementos.

- a. esboce qualitativamente o gráfico da energia de ionização em função do número atômico; e
- b. explique esses desvios de forma sucinta, baseado na estrutura eletrônica e no preenchimento dos orbitais atômicos.

PROBLEMA 25

Suponha um sólido metálico formado por um único elemento que apresenta uma estrutura de empacotamento cúbica de corpo centrado à pressão atmosférica. Ao ser comprimido, esse sólido adota uma estrutura cúbica de face centrada.

Considerando os átomos como esferas rígidas, calcule a razão entre as densidades do sólido antes e depois da compressão.

PROBLEMA 26

PROBLEMA 27

PROBLEMA 28

PROBLEMA 29

PROBLEMA 30

IME 2019/2020 Discursivo

PROBLEMA 31

Considere a reação entre acetato de etila e hidróxido de sódio em meio aquoso com sendo irreversível. Uma forma simples de estudar a cinética dessa reação é acompanhar, com o uso de um condutivímetro, a condutividade do meio reacional, dada pelo inverso da resistividade e geralmente denotada por k, em S cm $^{-1}$. Tal condutividade é relacionada, quantitativamente, à concentração das espécies iônicas, Na $^+$, OH $^-$ e acetato, em solução, cujas condutividades molares, em S L cm $^{-1}$ mol $^{-1}$, serão denotadas aqui, respectivamente, por $\lambda_{\rm Na}^+$, $\lambda_{\rm OH}^-$ e $\lambda_{\rm AcO}^-$. A condutividade de um meio e dada, portanto, pela soma dos produtos entre a concentração de cada espécie iônica e sua correspondente condutividade.

Foi preparada uma mistura contendo, inicialmente, c_0 mol L^{-1} de hidróxido de sódio e acetato de etila em ligeiro excesso. Determine uma expressão para a concentração do íon acetato em função de k, λ_{Na^+} , λ_{OH^-} e λ_{AcO^-} e c_0 .

PROBLEMA 32

Uma célula eletrolítica dotada de eletrodos de platina é preenchida com 1 L de uma solução 4 mol $\rm L^{-1}$ de NaCl puro em água bidestilada. Em seguida, faz-se percorrer pela mesma, por 5 horas 21 minutos e 40 segundos, uma corrente de 5 A, ocorrendo desprendimento de cloro e hidrogênio. Decorrido o tempo mencionado, a corrente é desligada e a solução remanescente é evaporada, obtendo-se um resíduo sólido.

Calcule a massa do resíduo sólido.

PROBLEMA 33

Sob determinadas condições, a água pode ser super-resfriada, ou seja, permanecer no estado líquido em temperaturas inferiores ao seu ponto de congelamento, em uma situação termodinamicamente instável. Considere um processo em que 5 mol de água super-resfriada a $-10\,^{\circ}\mathrm{C}$ e 1,0 atm sejam convertidos em gelo à mesma temperatura.

Determine a variação de entropia:

- a. do sistema;
- b. na vizinhança; e
- c. do universo.

PROBLEMA 34

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas da energia de ionização em função do número atômico. Com relação à esses elementos.

- a. esboce qualitativamente o gráfico da energia de ionização em função do número atômico; e
- b. explique esses desvios de forma sucinta, baseado na estrutura eletrônica e no preenchimento dos orbitais atômicos.

PROBLEMA 35

Suponha um sólido metálico formado por um único elemento que apresenta uma estrutura de empacotamento cúbica de corpo centrado à pressão atmosférica. Ao ser comprimido, esse sólido adota uma estrutura cúbica de face centrada.

Considerando os átomos como esferas rígidas, calcule a razão entre as densidades do sólido antes e depois da compressão.

PROBLEMA 36

PROBLEMA 37

PROBLEMA 38

PROBLEMA 39

PROBLEMA 40

Gabarito

IME 2022/2023 Discursivo

- $\begin{array}{ll} \textbf{1.} & \textbf{a.} & \text{CaCO}_3(s) + 2 \, \text{HCl} \, (aq) \longrightarrow \text{CaCl}_2(aq) + \text{CO}_2(g) + \text{H}_2\text{O} \, (l) \, \text{e} \\ & & \text{HCl} \, (aq) + \text{NaOH} \, (aq) \longrightarrow \text{NaCl} \, (aq) + \text{H}_2\text{O} \, (l) \end{array}$
 - b. 82%
- **2.** 1500

- 3. Síntese.
- 4. $1,7 \times 10^4$
- **5.** 18,28
- **6.** a. 10%
 - b. $k_{direta} = 0,009 \, min^{-1} \, e \, k_{inversa} = 0,006 \, min^{-1}$
 - c. $1.5 \times 10^{-3} \, \text{min}^{-1}$
 - d. 0
- 7. a. Esboço.
 - As ligações covalentes e iônicas possuem maior energia de dissociação.
- 8. a. $Cu^{2+}(aq) + H_2O(1) \longrightarrow Cu(s) + \frac{1}{2}O_2(g) + 2H^+(aq)$
 - b. 6,4 min
 - c. 13,0
- **9.** a. $K_c = \frac{1}{[A][B]^2}$
 - b. 27
 - c. $-132 \, \text{kJ} \, \text{mol}^{-1}$
 - d. 729
- 10. a. Representações diferentes de um mesmo composto.
 - b. Isômeros constitucionais.
 - c. Diastereoisômeros.
 - d. Enantiômeros.
 - e. Enantiômeros.

IME 2021/2022 Discursivo

- L1. -
- 12. -
- 13. -
- 14. -
- 15. -
- 17. -
- 18. -
- 19. -
- 20. -

IME 2020/2021 Discursivo

- 21. -
- 22. -
- 23. -
- 24. -
- 25. -
- 26. -
- 27. *-*28. *-*
- 29. -
- 30. -

IME 2019/2020 Discursivo

- 31. -
- 32. -
- 33. -
- 34 -
- ··
- 36. -
- 37. -
- **37.** -
- 39. -
- 40. -