Quick review of the class

Central concepts in Statistics

Population parameters vs. sample statistics

π, μ, σ, ρ, β

Descriptive statistics: exploring the shadows

Describing structured data

		transactionid "	date_sold *	make_bought *	price_bought *	zip_bought "	mileage_bought *
	1	16966151	2014-09-27	Acura	30892.00	21043	40
To the second	2	16914863	2014-09-27	Toyota	25566.00	15108	297
	3	15977620	2014-07-31	Nissan	34300.00	8753	0
	4	18666685	2015-01-27	Subaru	30059.00	7446	10
	5	14383133	2014-04-27	Honda	32508.00	97027	21
	6	18196788	2014-12-18	Toyota	10819.66	95117	55246
	7	15722278	2014-07-24	Audi	59630.00	90401	143

Categorical data

Quantitative data

Proportion p

Center: Mean \bar{x} , median

Spread: Standard deviation (s), IQR

Relationships between 2 quantitative variables

Relationship between cigarettes sold and cancer deaths

Correlation:

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Regression:

$$\hat{y} = a + b \cdot x$$

Statistical inference: Confidence Intervals and Hypothesis Tests

π, μ, σ, ρ, β

Confidence Intervals

A **confidence interval** is an interval <u>computed by a method</u> that will contain the *parameter* a specified percent of times

The **confidence level** is the percent of all intervals that contain the parameter

Computational methods for CIs: The Bootstrap

95% Confidence Intervals

When a bootstrap distribution for a sample statistic is approximately normal, we can estimate a 95% confidence interval using:

Statistic $\pm 2 \cdot SE^*$

Where SE* is the standard error estimated using the bootstrap

Hypothesis test logic

We start with a claim about a population parameter

This claim implies we should get a certain distribution of statistics

If our observed statistic is highly unlikely, we reject the claim

One test to rule them all

There is only one <u>hypothesis test!</u>

Just follow the 5 hypothesis tests steps!

Type of parameter

Simulation method

A single proportion π

Comparing 2 or more means μ_1 , μ_2 , μ_k

Correlation and regression ρ , β

```
do_it(10000) * {...}
```

Type of parameter

A single proportion π

Comparing 2 or more means μ_1 , μ_2 , μ_k Correlation and regression ρ , β

do_it(10000) * {...}

Simulation method

Coin flipping

Combine and reassign
Shuffle one of the columns

Type of parameter

A single proportion π

Comparing 2 or more means μ_1 , μ_2 , μ_k

Correlation and regression ρ, β

Simulation method

Coin flipping

Combine and reassign

Shuffle one of the columns

	5	3	2		7			8
6		1	5					2
2			9	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	ø	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

Type of parameter

A single proportion π

Comparing 2 or more means μ_1 , μ_2 , μ_k

Correlation and regression ρ , β

do_it(10000) * {...}

Simulation method

Coin flipping

Combine and reassign

Shuffle one of the columns

	Calories	Carbohydrates
AppleJacks	117	27
Boo Berry	118	27
Cap'n Crunch	144	31
Cinnamon Toast Crunch	169	32

Parametric methods for hypothesis tests

There is only one <u>hypothesis test!</u>!

Just follow the ~5 hypothesis tests steps!

Type of parameter

Null distribution

One or two proportions π_1 , π_2

One or two means, regression μ_1 , μ_2 , β

More than 2 proportions π_1 , π_2 , π_3

More than 2 means μ_1 , μ_2 , μ_k

Type of parameter

One or two proportions π_1 , π_2

One or two means, regression μ_1 , μ_2 , β

More than 2 proportions π_1 , π_2 , π_3

More than 2 means μ_1 , μ_2 , μ_k

Null distribution

Normal distribution (z-test)

t-distribution (t-test)

 χ^2 -distribution (χ^2 -test)

$$\hat{p} \pm z^* \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$z = \frac{\hat{p} - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

Type of parameter

One or two proportions π_1 , π_2

One or two means, regression μ_1 , μ_2 , β

More than 2 proportions π_1 , π_2 , π_3

More than 2 means μ_1 , μ_2 , μ_k

Null distribution

Normal distribution (z-test)

t-distribution (t-test)

 χ^2 -distribution (χ^2 -test)

$$(\overline{x_1} - \overline{x_2}) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Type of parameter

One or two proportions π_1 , π_2

One or two means, regression μ_1 , μ_2 , β

More than 2 proportions π_1 , π_2 , π_3

More than 2 means μ_1 , μ_2 , μ_k

Null distribution

Normal distribution (z-test)

t-distribution (t-test)

 χ^2 -distribution (χ^2 -test)

$$\chi^{2} = \sum_{i=1}^{n} \frac{(Observed_{i} - Expected_{i})^{2}}{Expected_{i}}$$

Type of parameter

One or two proportions π_1 , π_2

One or two means, regression μ_1 , μ_2 , β

More than 2 proportions π_1 , π_2 , π_3

More than 2 means μ_1 , μ_2 , μ_k

Null distribution

Normal distribution (z-test)

t-distribution (t-test)

 χ^2 -distribution (χ^2 -test)

$$F = \frac{\text{between-group variability}}{\text{within-group variability}}$$

$$= \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

Two theories of hypothesis testing

Significance testing

- Fisher
- P-value as strength of evidence

Hypothesis testing

- Neyman and Pearson
- Make a formal decision to reject or not reject (p-value $< \alpha$)

Neyman-Pearson Type I and Type II Errors

	Reject H ₀	Do not reject H ₀
H ₀ is true	Type I error (α) (false positive)	No error
H _A is true (H _o is false)	No error	Type II error (β) (false negative)

Problems with the NP hypothesis tests

<u>Problem 1</u>: we are interested in the results of a specific experiment, not whether we are right most of the time

- E.g., 95% of these statements are true:
 - Calcium is good for your heart, Paul is psychic, Buzz and Doris can communicate, ...

Problem 2: Arbitrary thresholds for alpha levels

• P-value = 0.051, we don't reject H_0 ?

<u>Problem 3</u>: running many tests can give rise to a high number of type 1 errors

Next steps in Statistics

Probability and Statistical theory (S&DS 238, 240, 241, 242)

Parametric probability models and theory

Data Science (S&DS 123, 230, 262)

Learn more advanced ways to visualize and manipulate data in R and Python

Linear models class (S&DS 312; Stats2 at other schools)

- Multiple regression
- Learn more advanced forms of ANOVA (multi-way/repeated measures)

Machine Learning (S&DS 355, 363, 365)

Algorithms for making predictions

Many more advanced classes!

One last question...

What was the worst joke of the semester?

