ÔN THI TOÁN RỜI RẠC CUỐI KỲ

CÂU 1: Cho hàm Boole
$$f$$
 theo các biến x, y, z và t có dạng đa thức
$$f(x, y, z, t) = (x \overline{z} \vee \overline{x} \ \overline{y} \vee \overline{x} \ y \ z) \overline{t} \vee t \ (\overline{y} \vee x \ y) = x \overline{z} \ \overline{t} \vee \overline{x} \ \overline{y} \ \overline{t} \vee \overline{x} \ y \ z \overline{t} \vee \overline{y} \ t \vee x \ y \ t$$

- a) Vẽ biểu đồ S = Kar(f) và xác định các tế bào lớn của S.
- b) Tìm công thức đa thức tối tiểu của f. Từ đó vẽ một mạng các cổng tổng hợp f.

<u>GIÅI</u>

a)
$$S = Kar(f) = K(x\overline{z}\overline{t}) (+) \cup K(\overline{x}\overline{y}\overline{t}) (-) \cup K(\overline{x}yz\overline{t}) (\wedge) \cup K(\overline{y}t) (\vee) \cup K(xyt) (o)$$

$$S = Kar(f)$$

Các tế bào lớn của S là $T_1 = \overline{x} \ \overline{y}$, $T_2 = x t$, $T_3 = \overline{y} t$, $T_4 = x \overline{z}$, $T_5 = \overline{y} \overline{z}$ và $T_6 = \overline{x} z \overline{t}$.

b) Thực hiện thuật toán, ta có được 3 phép bao phủ cho S = Kar(f):

$$T_1$$
 (tối tiểu)

 \uparrow
 $T_2 \rightarrow T_4 \rightarrow T_6 \rightarrow T_3 \rightarrow T_1$ (chưa tối tiểu)

 \downarrow
 T_5 (tối tiểu)

Ta có 3 phép phủ cho S = Kar(f) là

$$S = T_2 \cup T_4 \cup T_6 \cup T_1 \ (1), S = T_2 \cup T_4 \cup T_6 \cup T_3 \cup T_1 \ (2) \ va \ S = T_2 \cup T_4 \cup T_6 \cup T_3 \cup T_5 \ (3).$$

Phép phủ (2) chưa tối tiểu [vì dư T_3 so với (1)]. Như vậy có hai phép phủ tối tiểu cho S = Kar(f) là

(1) và (3). Từ (1) và (3), ta có

 $f(x, y, z, t) = x \ t \lor x \ \overline{z} \lor \overline{x} \ z \ \overline{t} \lor \overline{x} \ \overline{y}$ (nhận vì đơn giản hơn công thức dưới) [tự vẽ mạng các cổng cho f]. $f(x, y, z, t) = x \ t \lor x \ \overline{z} \lor \overline{x} \ z \ \overline{t} \lor \overline{y} \ t \lor \overline{y} \ \overline{z}$ (bị loại vì phức tạp hơn công thức trên).

CÂU 2: Cho hàm Boole f theo các biến x, y, z và t có dạng đa thức

$$f(x, y, z, t) = (x \overline{z} \vee \overline{x} \overline{z} \vee \overline{x} \overline{y} z) t \vee \overline{t} (\overline{x} \overline{y} z \vee y \overline{z} \vee \overline{x} y z)$$
$$= x \overline{z} t \vee \overline{x} \overline{z} t \vee \overline{x} \overline{y} z t \vee \overline{x} \overline{y} z \overline{t} \vee y \overline{z} \overline{t} \vee \overline{x} y z \overline{t}.$$

- a) Vẽ biểu đồ S = Kar(f) và xác định các tế bào lớn của S.
- b) Tìm các công thức đa thức tối tiểu của f. Từ đó vẽ một mạng các cổng tổng hợp f.

<u>GIÅI</u>

a) $S = Kar(f) = K(x\overline{z}\ t) (+) \cup K(\overline{x}\ \overline{z}\ t) (-) \cup K(\overline{x}\ \overline{y}\ z\ t) (\land) \cup K(\overline{x}\ \overline{y}\ z\ \overline{t}\) (\lor) \cup K(y\overline{z}\ \overline{t}\) (o) \cup K(\overline{x}\ y\ z\ \overline{t}\) (*)$

 T_6

$$S = Kar(f)$$

S có 6 tế bào lớn $T_1 = \overline{z} t$, $T_2 = y \overline{z}$, $T_3 = \overline{x} y \overline{t}$, $T_4 = \overline{x} z \overline{t}$, $T_5 = \overline{x} \overline{y} z$ và $T_6 = \overline{x} \overline{y} t$.

b) S có 4 phép phủ như sau : $S = T_1 \cup T_2 \cup T_5 \cup T_3$ (1), $S = T_1 \cup T_2 \cup T_5 \cup T_4$ (2),

Phép phủ (2) và (3) trùng nhau nên ta chỉ có 3 phép phủ tối tiểu là (1), (2) và

$$T_5 \leftarrow T_4$$
 T_4 (4). Từ (1), (2) và (4), ta có 3 công thức đa thức đơn giản như nhau cho f:

 $f(x, y, z, t) = \overline{z} \ t \vee y \overline{z} \vee \overline{x} \ \overline{y} \ z \vee \overline{x} \ y \overline{t} \ (\text{công thức đa thức tối tiểu của } f \text{ và tự vẽ mạng các cổng})$ $= \overline{z} \ t \vee y \overline{z} \vee \overline{x} \ z \overline{t} \vee \overline{x} \ \overline{y} \ z \ (\text{công thức đa thức tối tiểu của } f)$ $= \overline{z} \ t \vee y \overline{z} \vee \overline{x} \ z \overline{t} \vee \overline{x} \ \overline{y} \ t \ (\text{công thức đa thức tối tiểu của } f).$

CÂU 3: $f(x, y, z, t) = y\overline{t} \lor x\overline{y} \ t \lor \overline{x} \ \overline{t} \lor \overline{z} \ \overline{t} \ (*) = y\overline{t} \lor x\overline{y} \ t \lor \overline{z} \ \overline{t} \lor \overline{x} \ z\overline{t} \ (**)$: (*) don giản hơn (**).

<u>CÂU 4 : Cho T = { 1, 2, 3 } và đặt \forall x, y \in T, x\Re y \Leftrightarrow x+1 \ge y.</u></u>

- a) Xác định tập hợp $L = \{ (x, y) \in T^2 \mid x\Re y \}.$
- b) Xét các tính chất phản xạ, đối xứng, phản xứng và truyền của quan hệ hai ngôi **R**.

<u>GIÅI</u>

- a) $L = \{ (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}.$
- b) \Re phản xạ (1 \Re 1, 2 \Re 2 và 3 \Re 3). \Re không đối xứng (\exists 3, 1 \in T, 3 \Re 1 và 1 $\overline{\Re}$ 3).
- \Re không phản xứng ($\exists 1, 2 \in T$, $1\Re 2$, $2\Re 1$ và $1 \neq 2$). \Re không truyền ($\exists 1, 2, 3 \in T$, $1\Re 2$, $2\Re 3$ và $1\overline{\Re} 3$).

<u>CÂU 5</u>: a) Giải phương trình trên \mathbb{Z}_{14} : $\overline{56} \cdot \overline{x} = \overline{-79}$, $\overline{-532} \cdot \overline{y} = \overline{420}$ và $\overline{275} \cdot \overline{z} = \overline{-347}$.

b) Giải phương trình trên \mathbb{Z}_{32} : $\overline{-404}$. $\overline{y} = \overline{954}$ và $\overline{668}.\overline{x} = \overline{-716}$.

Suy ra nghiệm của phương trình $-4(\overline{z} + \overline{23}) + \overline{339} = \overline{-505}$ trên \mathbb{Z}_{32} .

<u>GIÅI</u>

a) Trên \mathbf{Z}_{14} : $\overline{56}$. $\overline{x} = \overline{-79} \iff \overline{0}$. $\overline{x} = \overline{5} \neq \overline{0}$: phương trình vô nghiệm.

 $\overline{-532}.\overline{y} = \overline{420} \iff \overline{0}.\overline{y} = \overline{0}$: phương trình có 14 nghiệm tùy ý trong $\mathbf{Z}_{14}(\overline{y} = \overline{0},\overline{1},...,\overline{13})$.

$$\overline{275}.\overline{z} = \overline{-347} \iff \overline{9}.\overline{z} = \overline{3} \iff \overline{z} = \overline{9}^{-1}.\overline{3} = \overline{11}.\overline{3} = \overline{33} = \overline{5}$$

[nghiệm duy nhất vì (9, 14) = 1 và $\overline{9} \in U(\mathbf{Z}_{14})$].

b) Trên \mathbb{Z}_{32} : $\overline{-404}$. $\overline{y} = \overline{954} \iff \overline{12}$. $\overline{y} = \overline{26} \implies \overline{8}$. $\overline{12}$. $\overline{y} = \overline{8}$. $\overline{26} \implies \overline{96}$. $\overline{y} = \overline{208}$

$$\Rightarrow \overline{0} \cdot \overline{y} = \overline{16} \neq \overline{0}$$
: phương trình vô nghiệm.

[n = 32, a = 12, $\mathbf{d} = (\mathbf{a}, \mathbf{n}) = \mathbf{4}$, n = $\mathbf{4} \times 8 = \mathbf{d}\mathbf{n}$ với $\mathbf{n}' = 8$, b = 26 và $\overline{b : d}$. Nhân $\overline{b'} = \overline{8}$ vào hai vế].

$$\overline{668}.\overline{x} = \overline{-716} \iff \overline{28}.\overline{x} = \overline{20}$$
 (1) [n = 32, a = 28, b = 20, d = (a, n) = 4, n = 4 × 8, a = 4 × 7, b = 4 × 5].

 $\Leftrightarrow \overline{4}.\overline{7}.\overline{x} = \overline{4}.\overline{5} \text{ (trong } \mathbf{Z_{4\times 8})} \text{ dua d\'en } \overline{7}.\overline{X} = \overline{5} \text{ (trong } \mathbf{Z_{8})} \text{ (2)}. \text{ Ta c\'o } (7,8) = 1 \text{ n\'en } \overline{7} \in U(\mathbf{Z_{8}}).$

Do $\overline{7}.\overline{7} = \overline{1}$ nên $\overline{7}^{-1} = \overline{7}$ và (2) có nghiệm duy nhất (trong \mathbb{Z}_8) là $\overline{X} = \overline{7}^{-1}.\overline{5} = \overline{7}.\overline{5} = \overline{35} = \overline{3}$.

Suy ra (1) có 4 nghiệm trong \mathbb{Z}_{32} là $\overline{x} = \overline{3+8j}$ (j = 0, 1, 2, 3), nghĩa là $\overline{x} = \overline{3}$, $\overline{11}$, $\overline{19}$ hoặc $\overline{27}$.

$$-4(\overline{z}+\overline{23})+\overline{339}=\overline{-505} \Leftrightarrow \overline{-4t}=\overline{-505}-\overline{339}=\overline{-844}=\overline{20} \text{ v\'oi } \overline{t}=\overline{z}+\overline{23} \Leftrightarrow \overline{-4.\overline{t}}=\overline{20} \Leftrightarrow$$

 $\Leftrightarrow \overline{28.\overline{t}} = \overline{20} \text{ (3). Áp dụng (1) cho (3), ta có } \overline{t} = \overline{3}, \overline{11}, \overline{19} \text{ và } \overline{27}, \text{ nghĩa là}$ $\overline{z} = \overline{t} - \overline{23} = \overline{-20}, \overline{-12}, \overline{-4} \text{ hoặc } \overline{4}. \text{ Vậy } \overline{z} = \overline{4}, \overline{12}, \overline{20} \text{ hoặc } \overline{28} \text{ trong } \mathbf{Z}_{32}.$

CÂU 6:

 $\forall x, y \in \mathbb{Z}$, đặt $x \Re y \Leftrightarrow \exists k \in \mathbb{Z}, x^2 - y^2 = 8k \ (k \text{ phụ thuộc vào } x \text{ và } y)$

 $\forall x, y \in \mathbb{N}$, đặt $x \gamma y \iff \exists k \in \mathbb{N}, x^2 - y^2 = 8k \ (k \text{ phụ thuộc vào } x \text{ và } y)$

- a) Chứng minh \Re là một quan hệ tương đương trên \mathbf{Z} mà không là quan hệ thứ tự.
- b) Chứng minh γ là một quan hệ thứ tự trên N mà không là quan hệ tương đương.

GIÅI

a) \Re phản xạ vì $\forall x \in \mathbb{Z}$, $\exists 0 \in \mathbb{Z}$, $(x^2 - x^2) = 8.0$ nên $x\Re x$.

$$\Re$$
 đối xứng vì $\forall x, y \in \mathbb{Z}$, $x\Re y \Rightarrow \exists k \in \mathbb{Z}$, $(x^2 - y^2) = 8k \Rightarrow \exists (-k) \in \mathbb{Z}$, $(y^2 - x^2) = 8(-k) \Rightarrow y\Re x$.

$$\Re$$
 truyền vì $\forall x, y, z \in \mathbb{Z}$, $(x\Re y \text{ và } y\Re z) \Rightarrow [\exists k, k' \in \mathbb{Z}, [(x^2 - y^2) = 8k \text{ và } (y^2 - z^2) = 8k'] \Rightarrow$

$$\Rightarrow [\exists (k + k') \in \mathbb{Z}, (x^2 - z^2) = (x^2 - y^2) + (y^2 - z^2) = 8(k + k')] \Rightarrow x\Re z.$$

 \Re không phản xứng vì $\exists 1, (-1) \in \mathbb{Z}, 1\Re(-1), (-1)\Re 1$ và $1 \neq -1$.

[
$$1^2 - (-1)^2 = (-1)^2 - 1^2 = 8.0 \text{ v\'oi } 0 \in \mathbb{Z}$$
].

Vậy \Re là một quan hệ tương đương nhưng không là quan hệ thứ tự trên Z.

b) γ phản xạ vì $\forall x \in \mathbb{N}, \exists 0 \in \mathbb{N}, (x^2 - x^2) = 8.0$ nên $x \gamma x$.

$$\gamma \text{ phản xứng vì } \forall x,y \in \mathbf{N} \text{ , } (x \mathbf{\gamma} \text{ y và } y \mathbf{\gamma} \text{ x}) \\ \Rightarrow [\ \exists \textbf{\textit{k}},\textbf{\textit{k'}} \in \mathbf{N}, (x^2 - y^2) \ = 8\textbf{\textit{k}} \geq 0 \ \text{ và } (y^2 - x^2) \ = 8\textbf{\textit{k'}} \geq 0 \]$$

$$\Rightarrow x^2 - y^2 = 0 \Rightarrow x^2 = y^2 \Rightarrow x = y.$$

$$\gamma$$
 truyền vì $\forall x, y, z \in \mathbb{N}$, $(x \gamma y \ và \ y \gamma z) \Rightarrow [\exists k, k' \in \mathbb{N}, [(x^2 - y^2) = 8k \ và (y^2 - z^2) = 8k'] \Rightarrow$

$$\Rightarrow [\exists (k + k') \in \mathbf{N}, (x^2 - z^2) = (x^2 - y^2) + (y^2 - z^2) = (k + k')] \Rightarrow x \gamma z.$$

 γ không đối xứng vì $\exists 5, 3 \in \mathbb{Z}$, $5 \gamma 3$ và $3 \overline{\gamma} 5$

$$[5^2 - 3^2 = 8.2 \text{ v\'oi } 2 \in \mathbb{N} \text{ v\'a } 3^2 - 5^2 = -16 \neq 8k, \forall k \in \mathbb{N}].$$

Vậy γ là một quan hệ thứ tự nhưng không là một quan hệ tương đương trên N.

<u>CÂU 7:</u> Cho $S = \{3, 6, 7, 10, 12, 14\}.$

 $\forall x, y \in S$, đặt $x \Re y \iff \exists k \in \mathbb{Z}, x^2 - y^2 = 5k \ (k \text{ phụ thuộc vào } x \text{ và } y).$

- a) Chứng minh \Re là một quan hệ tương đương trên S mà không phải là quan hệ thứ tự.
- b) Viết các lớp tương đương do \Re phân hoạch trên S.

<u>GIÅI</u>

a) Làm tương tự như phần a) của CÂU 6.

b)
$$\overline{10} = \{10\}$$
, $\overline{6} = \{6, 14\}$ (vì $14^2 - 6^2 = 196 - 36 = 160 = 5 \times 32$ nên $14 \Re 6$) và $\overline{3} = \{3, 7, 12\}$ (vì $12^2 - 7^2 = 144 - 49 = 95 = 5 \times 19$ và $7^2 - 3^2 = 49 - 9 = 40 = 5 \times 8$ nên $12 \Re 7$ và $7 \Re 3$).

<u>CÂU 8 :</u> Cho $S = \{ 3, 4, 10, 12, 16, 24, 32, 48, 96, 480 \}$. Xét quan hệ thứ tự : trên S như sau: $\forall x, y \in S$, $x : y \Leftrightarrow x$ là một bội số của y

Vẽ sơ đồ Hasse cho (S, :) và tìm các phần tử cực tiểu (tối tiểu), cực đại (tối đại), nếu có. Cho biết : là thứ tự *toàn phần* hay *bán phần* ? Tại sao ?

<u>GIÅI</u>

 $min(S, \vdots) = 480$. Các phần tử tối đại là 3, 4 và 10.

: là thứ tự bán phần trên S vì $3, 4 \in S$ có $\overline{3:4}$ và $\overline{4:3}$.

<u>CÂU 9 :</u> Cho $T = \{ 2, 4, 6, 10, 12, 20, 24, 48, 60, 80, 120, 240 \}$ và quan hệ thứ tự |

trên T như sau : $\forall x, y \in T$, $x \mid y \Leftrightarrow x$ là một ước số của y.

Vẽ sơ đồ Hasse cho (T, |) và tìm min, max, các phần tử tối tiểu và tối đại (nếu có). Cho biết | là thứ tự toàn phần hay bán phần? Tại sao?

 $\min(T, |) = 2$ và $\max(T, |) = 240$. | là thứ tự bán phần trên T vì $4, 6 \in T$ có $\overline{4|6}$ và $\overline{6|4}$.

<u>CÂU 10 :</u> Ω là một quan hệ tương đương trên $T = \{ \alpha, \beta, \gamma, \delta, \epsilon, \phi, \psi, \theta \}$ và Ω phân hoạch T thành 4 lớp tương đương là $\{ \delta \}, \{ \beta, \epsilon \}, \{ \gamma, \psi \}$ và $\{ \alpha, \phi, \theta \}$. Liệt kê tập hợp $\Omega = \{ (u, v) \in T^2 \mid u \Omega \mid v \}$. Ω có phải là một quan hệ thứ tự trên T không ? Tại sao ?

<u>GIÅI</u>

$$\mathbf{\Omega} = \{ (\mathbf{\delta}, \mathbf{\delta}), (\boldsymbol{\beta}, \boldsymbol{\beta}), (\boldsymbol{\epsilon}, \boldsymbol{\epsilon}), (\boldsymbol{\beta}, \boldsymbol{\epsilon}), (\boldsymbol{\epsilon}, \boldsymbol{\beta}), (\boldsymbol{\gamma}, \boldsymbol{\gamma}), (\boldsymbol{\psi}, \boldsymbol{\psi}), (\boldsymbol{\gamma}, \boldsymbol{\psi}), (\boldsymbol{\psi}, \boldsymbol{\gamma}), (\boldsymbol{\alpha}, \boldsymbol{\alpha}), (\boldsymbol{\varphi}, \boldsymbol{\varphi}), (\boldsymbol{\theta}, \boldsymbol{\theta}), (\boldsymbol{\alpha}, \boldsymbol{\varphi}), (\boldsymbol{\varphi}, \boldsymbol{\alpha}), (\boldsymbol{\alpha}, \boldsymbol{\theta}), (\boldsymbol{\theta}, \boldsymbol{\alpha}), (\boldsymbol{\varphi}, \boldsymbol{\varphi}), (\boldsymbol{\theta}, \boldsymbol{\varphi}) \}.$$

 $\boldsymbol{\Omega} \ \, \text{không phải là một quan hệ thứ tự trên} \ \, T \ \, \text{vì} \ \, \exists \beta, \, \epsilon \in T, \, \beta \, \boldsymbol{\Omega} \, \epsilon, \, \epsilon \, \boldsymbol{\Omega} \, \beta \ \, \text{và} \, \, \beta \neq \epsilon.$

<u>CÂU 11 :</u> Σ là tập hợp các tam giác cân trên mặt phẳng và \sim là quan hệ đồng dạng trên Σ .

Chứng minh \sim là một quan hệ tương đương nhưng không phải là quan hệ thứ tự trên Σ .

<u>GIÅI</u>

Hai tam giác cân đồng dạng khi và chỉ khi góc ở đỉnh cân của chúng bằng nhau.

 Σ phản xạ [$\forall \alpha \in \Sigma$ (α có góc ở đỉnh cân là Â), Â = Â nên $\alpha \sim \alpha$].

 $\Sigma \text{ dối xứng } [\forall \alpha, \beta \in \Sigma (\alpha \text{ và } \beta \text{ có góc ở đỉnh cân lần lượt là Â và \hat{B}}), \alpha \sim \beta \Rightarrow \hat{A} = \hat{B} \Rightarrow \hat{B} = \hat{A}$ nên $\beta \sim \alpha$].

Σ truyền [$\forall \alpha, \beta, \gamma \in \Sigma (\alpha, \beta \text{ và } \gamma \text{ có góc ở đỉnh cân lần lượt là Â, \hat{B} và \hat{C}}),$ $\begin{cases} \alpha \sim \beta \\ \beta \sim \gamma \end{cases} \Rightarrow (\hat{A} = \hat{B} \text{ và } \hat{B} = \hat{C}) \Rightarrow (\hat{A} = \hat{C}) \Rightarrow (\alpha \sim \gamma)].$

 Σ không phản xứng (hai tam giác đều δ và ϵ với cạnh lần lượt là 1 và 2 thỏa $\delta \sim \epsilon$, $\epsilon \sim \delta$, $\delta \neq \epsilon$).

Do đó \sim là một quan hệ tương đương nhưng không phải là quan hệ thứ tư trên Σ .

Đặt $\Omega = \{A, B, C, D, E, F, G, H, I, J\}$. Trên Ω , ta có hai quan hệ thứ tự $\subset và \supset$.

Vẽ sơ đồ Hasse cho (Ω, \subset) và (Ω, \supset) . Sau đó tìm min, max, các phần tử tối tiểu và tối đại của chúng (nếu có). \subset và \supset là thứ tự *toàn phần* hay *bán phần* trên Ω ? Tại sao?

<u>GIÁI</u>

 $min(\Omega, \subset) = A$. Tối đại là I và J.

 $\max(\Omega, \subset) = A$. Tối tiểu là I và J.

 \subset và \supset đều là các thứ tự *bán phần* trên Ω vì $\exists B, C \in \Omega, B \not\subset C$ và $C \not\subset B$.

CÂU 13: Cho các số nguyên a và b. Cần quan tâm các vấn đề sau:

- * Dùng thuật chia Euclide để tìm d=(a,b) và tìm $r,s\in \mathbf{Z}$ thỏa d=ra+sb.
 - Suy ra e = [a, b] và dạng tối giản của $\frac{a}{b}$ rồi tìm $u, v \in \mathbb{Z}$ thỏa $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$.
- * Phân tích nguyên tố a và b để:
 - Tìm d = (a, b), e = [a, b] và dạng tối giản của $\frac{a}{b}$.
 - Xét tính nguyên tố cùng nhau của a và b.
 - Mô tả và tính số lượng các ước số nguyên (các ước số nguyên âm hoặc dương) của a.
 - Cho số nguyên dương b. Mô tả và tính số lượng các ước số nguyên (các ước số nguyên âm hoặc dương) của a sao cho các ước số này phải chia hết cho b.

<u>CÂU 14:</u>

a) Tính tổng $S_n = \sum_{k=0}^n (k+1)(k+2)(-2)^k$ theo $n \ge 0$. Ta có hệ thức đệ qui cấp 1 không thuần nhất

$$S_o = (0+1)(0+2)(-2)^o = 2 \ \text{và} \ S_n = S_{n-1} + (n+1)(n+2)(-2)^n, \ \forall n \geq 1 \ (\ \lambda = 1 \neq \alpha = -2 \).$$

b) Tính tổng $T_n = \sum_{k=1}^{n} (2k-1).3^k$ theo $n \ge 1$. Ta có hệ thức đệ qui cấp 1 không thuần nhất

$$T_1 = (2.1 - 1)3^1 = 3$$
 và $T_n = T_{n-1} + (2n-1)3^n$, $\forall n \ge 2$ ($\lambda = 1 \ne \alpha = 3$).

c) Tính tổng $U_n = \sum_{k=2}^{n} (k^3 - 2k^2 + 4k)$ theo $n \ge 2$. Ta có hệ thức đệ qui cấp 1 không thuần nhất

$$U_2 = (2^3 - 2.2^2 + 4.2) = 8$$
 và $U_n = U_{n-1} + (n^3 - 2n^2 + 4n), \forall n \ge 3 \ (\lambda = 1 = \alpha).$

d)
$$a_0 = -7$$
 và $a_{n+1} = -4a_n - 2(-4)^{n+1}(n-2)$, $\forall n \ge 0$ ($\lambda = -4 = \alpha$).

e)
$$a_1 = -13$$
, $a_2 = 50$ và $a_{n+2} = -7a_{n+1} - 10a_n + (40n - 1).3^n$, $\forall n \ge 1$ [$f(\alpha) \ne 0$].

f)
$$a_0 = 3$$
, $a_1 = -5$ và $a_n = 2a_{n-1} + 3a_{n-2} + 8(-1)^{n+1}$, $\forall n \ge 2$ [$f(\alpha) = 0 \ne f'(\alpha)$].

g)
$$a_2 = -28$$
, $a_3 = -149$ và $a_{n+1} = 2a_n - a_{n-1} - 12n^2 - 24n + 4$, $\forall n \ge 3$ [$f(\alpha) = 0 = f'(\alpha)$].

<u>CÂU 15:</u> Giả sử vào tháng 1 năm 2024 dân số nước X là 100 triệu người. Sau mỗi năm, dân số nước X được tính lại như sau : lấy 110% của dân số năm trước (do dân số tăng tự nhiên) cộng thêm với 100.000 người nước ngoài đến nước X định cư hàng năm. Hỏi đến năm 2044 dân số của nước X là bao nhiêu?

<u>GIÅI</u>

 $\forall n \geq 2024, \, \text{đặt} \ \ \, a_n = \text{dân số nước} \ \, X \ \, \text{vào năm thứ} \ \, n \, (\text{đơn vị triệu người}).$

Khi đó $a_{2024} = 100$ và $a_{n+1} = \frac{11}{10}a_n + 0,1$, $\forall n \ge 2024$. Đây là hệ thức đệ qui cấp 1 không thuần nhất với $\lambda = 11/10$ và $0,1 = \varphi_o(n)\alpha^n$ với $\varphi_o(n) = 1$ và $\alpha = 1$. Giải hệ thức này để tìm trực tiếp a_n ($n \ge 2024$).

Từ đó tính ra a₂₀₄₄.
