

From: Tim Analisis dan Kajian UMT

Subject: Probabilitas dalam Pengambilan Keputusan

Date: 23 Juni 2025

Analisis & Kajian

Halaman ini berisi pembahasan mengenai penerapan matematika dalam menyelesaikan masalah dunia nyata. Kami mengkaji berbagai fenomena dari sudut pandang matematis, termasuk dalam bidang ekonomi, sains, dan kehidupan sehari-hari. Topik kali ini mengeksplorasi bagaimana **probabilitas** menjadi alat penting dalam proses **pengambilan keputusan yang rasional**.

Mengapa Probabilitas Penting?

Dalam dunia nyata, kita sering dihadapkan pada ketidakpastian:

- Apakah akan hujan besok?
- Apakah suatu produk akan laku di pasar?
- Apakah seorang pasien akan merespons suatu pengobatan?

Probabilitas memberi kita cara untuk *mengukur ketidakpastian* dan membuat keputusan berdasarkan informasi terbaik yang tersedia.

Dasar Probabilitas

Probabilitas suatu kejadian A ditulis sebagai:

$$P(A) = \frac{\text{jumlah kejadian yang diinginkan}}{\text{jumlah kemungkinan total}}$$

Nilainya antara 0 dan 1.

1

Apa artinya? P(A) = 0.7 berarti ada kemungkinan 70% bahwa kejadian A akan terjadi.

Mengapa ini penting? Karena ini menjadi dasar untuk memprediksi dan memutuskan di bawah ketidakpastian.

Contoh Kasus: Keputusan Bisnis

Situasi: Seorang pengusaha sedang mempertimbangkan untuk meluncurkan produk baru. Berdasarkan survei pasar:

• Peluang sukses: P(S) = 0.6

• Peluang gagal: P(G) = 0.4

Jika sukses, keuntungan: \$100 juta.

Jika gagal, kerugian: \$30 juta.

Ekspektasi matematis:

$$E = P(S) \times 100 - P(G) \times 30 = 0.6 \times 100 - 0.4 \times 30 = 60 - 12 = 48$$

Apa maksudnya? Nilai E=48 juta artinya secara rata-rata, keputusan ini diharapkan menghasilkan keuntungan sebesar 48 juta rupiah. Ini bukan jaminan bahwa keuntungan pasti terjadi, tetapi jika keputusan ini diambil berulang kali dalam konteks serupa, maka secara statistik, rata-rata keuntungan dari semua keputusan itu adalah 48 juta per kasus.

Mengapa penting? Karena ini membantu pengusaha membuat keputusan berdasarkan angka yang memperhitungkan baik peluang maupun dampak hasil.

Refleksi Tambahan: Mengapa Kalau Diulang Bisa Tetap Untung?

Ketika P(untung) > P(rugi), maka secara matematis hasil jangka panjang akan tetap untung, meskipun mungkin ada kerugian di beberapa percobaan.

Contoh: Jika keputusan ini diulang 10 kali:

• Sekitar 6 kali sukses: $6 \times 100 = 600$ juta

• Sekitar 4 kali gagal: $4 \times 30 = 120$ juta rugi

Maka total untung bersih: 600 - 120 = 480 juta, atau rata-rata 48 juta per keputusan.

Inilah kekuatan nilai harapan matematis (ekspektasi)—bukan untuk memprediksi satu hasil tunggal, tapi memberikan perkiraan kuat tentang hasil rata-rata jika percobaan dilakukan berulang kali.

Hukum Bilangan Besar: Jika kita mengulang eksperimen cukup sering, hasil rataratanya akan mendekati ekspektasi matematis.

Catatan: Ekspektasi Matematis dalam Keputusan

Konsep ini disebut juga "nilai harapan".

Dalam dunia nyata, konsep ini digunakan di bidang:

• Ekonomi: analisis risiko investasi

• Asuransi: menentukan premi

• Teknik: manajemen proyek dan keandalan sistem

Probabilitas Bersyarat dan Informasi Tambahan

Pertanyaan: Bagaimana jika kita memiliki informasi baru?

Gunakan: Probabilitas bersyarat

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Makna: Peluang A terjadi dengan syarat B sudah terjadi.

Contoh: Peluang seseorang membeli produk dengan syarat mereka sudah melihat iklan.

Catatan:

Dalam bidang teknik atau statistik eksperimental, probabilitas sering diukur dari **frekuensi relatif** pada data uji coba. Misalnya, dalam simulasi Monte Carlo, probabilitas diperkirakan dari proporsi hasil percobaan yang menguntungkan.

Kesimpulan

Probabilitas membantu kita membuat keputusan yang lebih cerdas dalam situasi tak pasti. Ia memberi kerangka kuantitatif untuk menimbang risiko dan peluang.

Refleksi UMT

"Probabilitas bukan sekadar angka—tetapi cara berpikir sistematis di tengah ketidakpastian."

UMT mendorong pemahaman mendalam: tidak hanya menghitung peluang, tetapi mengerti mengapa kita membutuhkannya, bagaimana menggunakannya, dan kapan ia paling relevan.