The points marked for each exercise give an indication of the relative importance. All answers must be justified.

Ex. 1 — (2 points) Let $F(w) = \frac{1}{n} \sum_{i=1}^{n} f(w,i)$, be the function we want to minimize. To this purpose, we have considered the following general iterative algorithm

$$w_{k+1} = w_k - \alpha_k g(w_k, \xi_k),$$

where ξ_k denotes in general a subset of the indices $\{1, 2, \dots n\}$.

- 1. How is α_k called?
- 2. What are ξ_k and the function g(.) for the stochastic gradient?
- 3. For the mini-batch?
- 4. For the full-gradient?

Ex. 2 — (3 points) Consider the following assumptions:

- 1) the function $F: \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and L-smooth,
- 2) the sequence of iterates $\{w_k\}$ is contained in an open set over which F(.) is bounded below by a scalar F_{inf} ,
- 3) there exist scalar $\mu_G \ge \mu \ge 0$ such that, for all $k \in \mathbb{N}$,

$$\nabla F(w_k)^T \mathbb{E}_{\xi_k}[g(w_k, \xi_k)] \ge \mu ||\nabla F(w_k)||^2$$

and

$$||\mathbb{E}_{\xi_k}[g(w_k, \xi_k)]|| \le \mu_G ||\nabla F(w_k)||,$$

4) there exist scalars $M \geq 0$ and $M_G \geq 0$ such that, for all $k \in \mathbb{N}$,

$$\mathbb{E}_{\xi_k}[||g(w_k, \xi_k)||^2] \le M + M_G||\nabla F(w_k)||^2.$$

In class we proved:

Lemma The iterates of the algorithm in Exercise 1 satisfy the following inequality for all $k \in \mathbb{N}$

$$E_{\xi_k}[F(w_{k+1})] - F(w_k) \le -\alpha_k \left(\mu - \frac{1}{2}\alpha_k L M_G\right) ||\nabla F(w_k)||^2 + \frac{1}{2}\alpha_k^2 L M.$$

- 1. What does the lemma imply?
- 2. How do the different quantities $(\alpha_k, L, M, ...)$ affect the result? Is it what you expect from their definition?

Ex. 3 — (2 points)

- 1. Write the equations of a gradient method using momentum.
- 2. Write the equations of a gradient method using Nesterov momentum.

Ex. 4 — (2 points) What does it mean that an optimization problem is ill-conditioned?

Ex. 5 — (3 points) Describe two tricks of the trade one can use to speed up ML training.

Ex. 6 — (2 points) What is data parallelism? And model parallelism?

Ex. 7 — (2 points) Are MapReduce-based frameworks like Hadoop and Spark suited for ML?

Ex. 8 — (3 points) Are second-order methods used for neural network training? Why?

Ex. 9 — (2 points) What are consensus-based optimization methods? How do they differ from the traditional parameter server?