```
import numpy as np
import pandas as pd
```

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('/content/EVdataset.csv')
df.head()

	Age	City	Gender	Education Level	Occupation	Family Members	Annual Income	Charging Hours	Electric Cars are economical	Charging stations	Convert your car to all electric	Hyb B
0	29	Kolkata	Male	Postgraduate	Working Professional	5	150000	1	Yes	15	Yes	Ну
1	29	Mumbai	Male	Graduate	Working Professional	4	1000000	1	Yes	8	Yes	Ele
2	25	Mumbai	Male	Graduate	Working Professional	4	5000	5	Yes	15	Didn't think about it	Ну
3	25	Bangalore	Male	Graduate	Working Professional	4	750000	1	Don't know	8	Didn't think	Ну

df.shape

(299, 13)

df.describe()

	Age	Family Members	Annual Income	Charging Hours	Charging stations	Next car will be electric car?
count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000
mean	33.066890	3.816054	603812.709030	3.685619	13.026756	4.986622
std	10.390474	0.949890	387815.052751	2.697531	6.631678	2.965091
min	17.000000	2.000000	5000.000000	1.000000	8.000000	1.000000
25%	23.000000	3.000000	150000.000000	2.000000	8.000000	3.000000
50%	31.000000	4.000000	750000.000000	2.000000	8.000000	5.000000
75%	42.000000	4.000000	1000000.000000	5.000000	15.000000	5.000000
max	57.000000	7.000000	1000000.000000	12.000000	30.000000	10.000000

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 299 entries, 0 to 298 Data columns (total 13 columns):

Ducu	columns (cocal is columns):		
#	Column	Non-Null Count	Dtype
0	Age	299 non-null	int64
1	City	299 non-null	object
2	Gender	299 non-null	object
3	Education Level	299 non-null	object
4	Occupation	299 non-null	object
5	Family Members	299 non-null	int64
6	Annual Income	299 non-null	int64
7	Charging Hours	299 non-null	int64
8	Electric Cars are economical	299 non-null	object
9	Charging stations	299 non-null	int64
10	Convert your car to all electric	299 non-null	object
11	Hybrid or Both	299 non-null	object
12	Next car will be electric car?	299 non-null	int64
dtyp	es: int64(6), object(7)		
memo	ry usage: 30.5+ KB		

df.isnull().sum()

Age 0
City 0
Gender 0
Education Level 0
Occupation 0
Family Members 0
Annual Income 0
Charging Hours 0
Electric Cars are economical 0

```
Charging stations
    Convert your car to all electric
                                 0
    Hybrid or Both
                                 0
    Next car will be electric car?
    dtype: int64
df.hist(figsize=(18, 16))
    dtype=object)
                                                                        Family Members
     60
                                                       120
     50
                                                       100
     40
     30
     20
                                                       40
     0 <del>+</del>
15
                      Annual Income
                                                                        Charging Hours
    120
                                                       140
                                                       120
    100
                                                       80
     60
                                                       60
     20
                                                       20
                      0.4
                             0.6
                     Charging stations
                                                                     Next car will be electric car?
    160
                                                       140
    140
    100
     80
                                                       80
     60
     20
```

df['City'].value_counts().plot.bar()

df['Education Level'].value_counts().plot.bar()

df['Occupation'].value_counts().plot.bar()

df['Hybrid or Both'].value_counts().plot.bar()

sns.distplot(df['Annual Income'])

<ipython-input-18-522a83451b3b>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Annual Income'])
<Axes: xlabel='Annual Income', ylabel='Density'>


```
df["Annual Income"].describe()
                  299.000000
     count
               603812.709030
     mean
     std
               387815.052751
     min
                 5000.000000
     25%
               150000.000000
     50%
               750000.000000
              1000000.000000
              1000000.000000
     max
     Name: Annual Income, dtype: float64
df["Annual Income"].describe()
     count
                  299.000000
     mean
               603812.709030
     std
               387815.052751
     min
                 5000.000000
               150000.000000
     50%
               750000.000000
              1000000.000000
              1000000.000000
     max
     Name: Annual Income, dtype: float64
plt.bar(df['Age '], df['Annual Income'])
plt.xlabel('Age')
plt.ylabel('Annual Income')
```



```
df['Hybrid or Both'].unique()
    array(['Hybrid car', 'Electric car'], dtype=object)

df.duplicated().sum()
    θ

PRE_PROCESSING

from sklearn import preprocessing

df['Occupation']=preprocessing.LabelEncoder().fit_transform(df['Occupation'].values.reshape(-1,1))

//usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_label.py:116: DataConversionWarning: A column-vector y was passed wh
```

df

y = column_or_1d(y, warn=True)

	Age	City	Gender	Education Level	Occupation	Family Members	Annual Income	Charging Hours	Electric Cars are economical	Charging stations	Convert your car to all electric	Н
0	29	Kolkata	Male	Postgraduate	2	5	150000	1	Yes	15	Yes	
1	29	Mumbai	Male	Graduate	2	4	1000000	1	Yes	8	Yes	Е
2	25	Mumbai	Male	Graduate	2	4	5000	5	Yes	15	Didn't think about it	
3	25	Bangalore	Male	Graduate	2	4	750000	1	Don't know	8	Didn't think about it	
4	21	Mumbai	Male	Postgraduate	1	4	5000	12	Don't know	15	Didn't think about it	
294	19	Mumbai	Male	Graduate	2	4	750000	1	Yes	8	Yes	

df['Occupation'].unique()

array([2, 1, 0])

df['Education Level']=preprocessing.LabelEncoder().fit_transform(df['Education Level'].values.reshape(-1,1))

 $/usr/local/lib/python 3.10/dist-packages/sklearn/preprocessing/_label.py: 116: \ Data Conversion Warning: A column-vector y was passed when the column-vector is a column-vector of the column-vecto$ y = column_or_1d(y, warn=True)

df

	Age	City	Gender	Education Level	Occupation	Family Members	Annual Income	Charging Hours	Electric Cars are economical	Charging stations	Convert your car to all electric	Hyb E
0	29	Kolkata	Male	3	2	5	150000	1	Yes	15	Yes	Ну
1	29	Mumbai	Male	1	2	4	1000000	1	Yes	8	Yes	Ele
2	25	Mumbai	Male	1	2	4	5000	5	Yes	15	Didn't think about it	Ну
3	25	Bangalore	Male	1	2	4	750000	1	Don't know	8	Didn't think about it	Ну
4	21	Mumbai	Male	3	1	4	5000	12	Don't know	15	Didn't think about it	Ну
294	19	Mumbai	Male	1	2	4	750000	1	Yes	8	Yes	Ну
295	21	Rangalore	Male	1	2	Δ	750000	1	Vac	30	Vac	Ну

df['Education Level'].unique()

array([3, 1, 2, 0])

```
bins=[0,1000000,2000000,3000000,4000000]
group=['Low','Average','High','Very high']
df['Income_bin']=pd.cut(df['Annual Income'],bins,labels=group)
df['Income_bin']
```

- Low 1 Low
- 2 Low 3 Low
- 4 Low

```
294 Low
295 Low
296 Low
297 Low
298 Low
Name: Income_bin, Length: 299, dtype: category
Categories (4, object): ['Low' < 'Average' < 'High' < 'Very high']
```

df

	Age	City	Gender	Education Level	Occupation	Family Members	Annual Income	Charging Hours	Electric Cars are economical	Charging stations	Convert your car to all electric	Hyb B
0	29	Kolkata	Male	3	2	5	150000	1	Yes	15	Yes	Ну
1	29	Mumbai	Male	1	2	4	1000000	1	Yes	8	Yes	Ele
2	25	Mumbai	Male	1	2	4	5000	5	Yes	15	Didn't think about it	Ну
3	25	Bangalore	Male	1	2	4	750000	1	Don't know	8	Didn't think about it	Ну
4	21	Mumbai	Male	3	1	4	5000	12	Don't know	15	Didn't think about it	Ну
294	19	Mumbai	Male	1	2	4	750000	1	Yes	8	Yes	Ну
295	21	Bangalore	Male	1	2	4	750000	1	Yes	30	Yes	Ну
296	23	Panaji, goa	Male	1	2	3	750000	1	Yes	8	Didn't think about it	Ele
297	25	Mumbai	Male	1	2	2	750000	1	Yes	15	Didn't think	Ну

```
df['Income_bin1'].unique()
     array([0], dtype=int8)
df['Annual Income'].describe()
                 299.000000
     count
     mean
               603812.709030
     std
               387815.052751
                 5000.000000
     25%
               150000.000000
     50%
               750000.000000
     75%
              1000000.000000
             1000000.000000
     max
     Name: Annual Income, dtype: float64
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.title('Age and Annual Income')
pic=sns.barplot(x='Age ', y='Income_bin1', data=df,palette='ocean')
```

pic.set_xticklabels(pic.get_xticklabels(),rotation=90,ha='right')

df['Income_bin1']=df['Income_bin'].cat.codes

```
[Text(0, 0, '17'),
    Text(1, 0, '18'),
    Text(2, 0, '19'),
    Text(3, 0, '20'),
    Text(5, 0, '22'),
    Text(6, 0, '23'),
    Text(7, 0, '24'),
    Text(10, 0, '25'),
    Text(11, 0, '26'),
    Text(11, 0, '28'),
    Text(12, 0, '29'),
    Text(13, 0, '30'),
    Text(14, 0, '31'),
    Text(15, 0, '33'),
    Text(17, 0, '36'),
    Text(19, 0, '36'),
    Text(19, 0, '38'),
    Text(19, 0, '38'),
    Text(20, 0, '39'),
    Text(21, 0, '40'),
    Text(22, 0, '41'),
    Text(25, 0, '47'),
    Text(26, 0, '48'),
    Text(27, 0, '49'),
    Text(28, 0, '51'),
    Text(31, 0, '55'),
    Text(31, 0, '55'),
    Text(32, 0, '57')]
```

Age and Annual Income

```
0.04 -
0.02 -
10 0.00 -
```

```
x1 = df.loc[:,['Age ', 'Annual Income']].values
from sklearn.cluster import KMeans
wcss= []
for k in range(1,11):
    kmeans= KMeans(n_clusters=k, init='k-means++')
    kmeans.fit(x1)
    wcss.append(kmeans.inertia_)
plt.figure(figsize=(12,6))
plt.grid()
plt.plot(range(1,11),wcss,linewidth=2,color='red',marker='8')
plt.xlabel('K Value')
plt.ylabel('WCSS')
plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
       warnings.warn(
         le13
kmeans = KMeans(n_clusters=3)
label = kmeans.fit predict(x1)
print(label)
     .
0 2 2 0 0 0 0 2 0 0 0 2 2 1 1 2 0 0 2 2 0 0 0 1 1 0 0 2 2 1 1 2 2 2 0 0 2
      \begin{smallmatrix} 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 2 & 2 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 2 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\ \end{smallmatrix}
      0\; 2\; 2\; 2\; 0\; 0\; 0\; 0\; 2\; 2\; 0\; 0\; 0\; 0\; 2\; 2\; 0\; 0\; 0\; 2\; 2\; 1\; 1\; 2\; 0\; 0\; 2\; 2\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 2\; 2\; 1
      1\; 2\; 2\; 2\; 0\; 0\; 2\; 2\; 1\; 2\; 1\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 2\; 1\; 1\; 2\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 2\; 1\; 0\; 1\; 1\; 0\; 0
      0 0 2]
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
       warnings.warn(
print(kmeans.cluster_centers_)
     [[3.24080000e+01 7.50000000e+05]
      [3.29450549e+01 4.16483516e+04]
      [3.41927711e+01 1.00000000e+06]]
plt.scatter(x1[:,0],x1[:,1],c=kmeans.labels_,cmap='rainbow')
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],color='black')
plt.title('Customer Clusters')
plt.xlabel('Age ')
plt.ylabel('Annual Income')
```



```
kmeans = KMeans(n_clusters=4)
label = kmeans.fit_predict(x1)
print(label)
     [3 0 1 2 1 3 2 2 2 2 0 1 0 2 2 1 2 3 1 0 1 0 2 0 1 2 1 1 2 2 2 0 0 0 2 2 2
     2 0 0 2 2 2 2 0 2 2 2 0 0 1 1 0 2 2 0 0 2 2 2 3 1 2 2 0 0 3 3 0 0 0 2 2 0
     0 1 0 1 2 2 2 2 1 1 3 1 0 1 3 0 1 1 1 1 2 2 2 0 1 2 1 3 2 2 2 2 0 1 0 2 2
     0 2 2 0 0 2 2 2 3 1 2 2 0 0 3 3 0 0 0 2 2 0 0 1 0 1 2 2 2 2 1 1 3 1 0 1 3
     0 1 1 1 1 2 2 2 0 1 2 1 3 2 2 2 2 0 1 0 2 2 1 2 3 1 0 1 0 2 0 1 2 1 1 2 2
     2 0 0 0 2 2 2 2 0 0 2 2 2 2 0 2 2 2 0 0 1 1 0 2 2 0 0 2 2 2 3 1 2 2 0 0 3
     3 0 0 0 2 2 0 0 1 0 1 2 2 2 2 1 1 3 1 0 1 3 0 1 1 1 1 2 2 2 0 1 2 1 3 2 2
     2 2 01
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
      warnings.warn(
print(kmeans.cluster_centers_)
    [[3.41927711e+01 1.00000000e+06]
      [3.29558824e+01 5.00000000e+03]
     [3.24080000e+01 7.50000000e+05]
      [3.29130435e+01 1.50000000e+05]]
plt.scatter(x1[:,0],x1[:,1],c=kmeans.labels_,cmap='rainbow')
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],color='black')
plt.title('Customer Clusters')
plt.xlabel('Age ')
plt.ylabel('Price')
plt.show()
```



```
x2 = df.loc[:,['Age ', 'Education Level']].values
from sklearn.cluster import KMeans
wcss= []
for k in range(1,11):
    kmeans= KMeans(n_clusters=k, init='k-means++')
    kmeans.fit(x2)
    wcss.append(kmeans.inertia_)
plt.figure(figsize=(12,6))
plt.grid()
plt.plot(range(1,11),wcss,linewidth=2,color='red',marker='8')
plt.xlabel('K Value')
plt.ylabel('WCSS')
plt.show()
```

plt.show()

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
     warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n in
     warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
     warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
     warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
     warnings.warn(
       30000
       25000
       20000
     WCSS
      15000
       10000
       5000
kmeans = KMeans(n clusters=3)
label = kmeans.fit_predict(x2)
print(label)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
     warnings.warn(
    0\; 2\; 0\; 2\; 2\; 1\; 2\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 2\; 0\; 2\; 2\; 2\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 2\; 1\; 1
     0 0 0]
   4
print(kmeans.cluster_centers_)
    [[23.90540541 1.57432432]
     [47.42666667 1.56
     [36.73684211 1.61842105]]
\verb|plt.scatter(x2[:,0],x2[:,1],c=kmeans.labels\_,cmap='rainbow')|\\
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],color='black')
plt.title('Customer Clusters')
plt.xlabel('Annual Income')
plt.vlabel('Price')
```


df.head(5)

	Age	City	Gender	Education Level	Occupation	Family Members	Annual Income	Charging Hours	Electric Cars are economical	Charging stations	Convert your car to all electric	Hybri c Bot
0	29	Kolkata	Male	3	2	5	150000	1	Yes	15	Yes	Hybr ca
1	29	Mumbai	Male	1	2	4	1000000	1	Yes	8	Yes	Electr ca
2	25	Mumbai	Male	1	2	4	5000	5	Yes	15	Didn't think about it	Hybr ca
3	25	Bangalore	Male	1	2	4	750000	1	Don't know	8	Didn't think about it	Hybr ca
											Didn't	I Is de a

df1 = df.drop(columns=['Income_bin', 'Charging Hours' ,'Charging stations','Income_bin1','Hybrid or Both','Occupation','Gender', 'Educati

df1.head()

	Age	Annual Income
0	29	150000
1	29	1000000
2	25	5000
3	25	750000
4	21	5000

```
x5 = df1.iloc[:,0:]
wcss= []
for k in range(1,11):
    kmeans= KMeans(n_clusters=k, init='k-means++')
    kmeans.fit(x5)
    wcss.append(kmeans.inertia_)
plt.figure(figsize=(12,6))
plt.grid()
plt.plot(range(1,11),wcss,linewidth=2,color='red',marker='8')
plt.xlabel('K Value')
plt.ylabel('WCSS')
plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_in
  warnings.warn(
      1e13
```


kmeans = KMeans(n_clusters=3)
label = kmeans.fit_predict(x5)
print(label)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(

print(kmeans.cluster_centers_)

```
[[3.24080000e+01 7.50000000e+05]
[3.29450549e+01 4.16483516e+04]
[3.41927711e+01 1.00000000e+06]]
```