

Python与金融数据挖掘(12)

文欣秀

wenxinxiu@ecust.edu.cn

Python应用领域

科学计算: Numpy、SciPy...

数据分析: Pandas、Matplotlib...

机器学习: Scikit-Learn、Keras...

深度学习: Pytorch、Mindspore...

. . .

177 172

Pandas读CSV文档并存储部分数据

import pandas as pd

data=pd. read_csv('client.csv', index_col=0)

| solid line | solid lin

result=data. head()

result. to_csv("part.csv")

	Α	В	С	D	E
1	No.	Gender	Age	Height	Weight
2	202201	male	20	170	70
3	202202	male	22	180	71
4	202203	male	21	180	62
5	202204	male	20	177	72
6	202205	male	20	172	64

Pandas读EXCEL文档并存储部分数据

>>> pip install openpyxl #安装第三方库

import pandas as pd

	A	В	C	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	21	female	21	165	45	Shanghai	93	1200
3	22	female	19	167	42	HuBei	89	800
4	23	male	21	169	80	GanSu	93	900
5	24	female	21	160	49	HeBei	59	1100
6	25	female	21	162	54	GanSu	68	1300
7	26	male	21	181	77	SiChuan	62	800
8	27	female	21	162	49	ShanDong	65	950
9	28	female	22	160	52	ShanXi	73	800
10	29	female	20	161	51	GuangXi	80	1250
11	30	female	20	168	52	JiangSu	98	700

data=pd.read_excel("info.xlsx","Group1",index_col=0)

result=data.tail(3)

result.to_excel("analysis.xlsx")

	A	В	С	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	28	female	22	160	52	ShanXi	73	800
3	29	female	20	161	51	GuangXi	80	1250
4	30	female	20	168	52	JiangSu	98	700

Pandas读EXCEL文档并存储部分数据

import pandas as pd

data=pd.read_excel("info.xlsx","Group1",index_col=0)

result=data. sample() #任意取1条

print(result)

result=data. sample(5) #任意取5条

print(result)

	A	В	C	D	E	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	21	female	21	165	45	Shanghai	93	1200
3	22	female	19	167	42	HuBei	89	800
4	23	male	21	169	80	GanSu	93	900
5	24	female	21	160	49	HeBei	59	1100
6	25	female	21	162	54	GanSu	68	1300
7	26	male	21	181	77	SiChuan	62	800
8	27	female	21	162	49	ShanDong	65	950
9	28	female	22	160	52	ShanXi	73	800
10	29	female	20	161	51	GuangXi	80	1250
11	30	female	20	168	52	JiangSu	98	700

性别 年龄 身高 体重 省份 成绩 月生活费序号

序号		别名	丰龄	身高	高 体重		省份	成绩	月生活费
23	male				GanSu				
29	female	20	161	51	GuangXi	80	1250		
22	female	19	167	42	HuBei	89	800		
25	female	21	162	54	GanSu	68	1300		
28	female	22	160	52	ShanXi	73	800		

Pandas常用统计函数

函数	描述
df.mean()	计算样本数据的算术平均值
df.value_counts()	统计频数
df.describe()	返回基本统计量和分位数
df.corr(sr)	df与sr的相关系数
df.count() df.sum()	统计每列(或行)数据的个数或总和
df.max()、df.min()	最大值和最小值
df.idxmax()、 df.idxmin()	最大值、最小值对应的索引
df.qantile()	计算给定的四分位数
df.var(), df.std()	计算方差、标准差
df.mode()	计算众数
df.cov()	计算协方差矩阵

股价相关性分析

```
Correlation between Close and Open: 0.6185131598503488
import pandas as pd
import tushare as ts
                        |r|<0.4为低相关; 0.4=<|r|<0.7为中等相关, |r|>=0.7为高相关
ts.set_token('XXX')
pro = ts. pro_api()
df=pro.daily(ts_code='601398.SH', start_date='20250301',end_date='20250331')
correlation = df['close'].corr(df['open'])
print(f'Correlation between Close and Open: {correlation}')
```


股价相关性分析

```
high
                                                                   close
                                                           \perp ow
                                     open
import pandas as pd
                                           0.777229
                                                      0.835987
                                                                0.618513
                                 1.000000
                          open
                                 0.777229
                          high
                                           1. 000000
                                                      0. 790285
                                                                0.890275
import tushare as ts
                                 0.835987
                                                                0.786927
                          1ow
                                           0. 790285
                                                      1. 000000
                                           0.890275
                                                      0.786927
                                                                1.000000
                          close
                                 0.618513
ts.set_token('XXX')
pro = ts. pro_api()
df=pro.daily(ts_code='601398.SH', start_date='20250301',end_date='20250331')
correlation = df[['open','high','low','close']].corr()
print(f'{correlation}')
```


股价相关性分析图示

import pandas as pd
import tushare as ts
import matplotlib.pyplot as plt
ts.set_token('XXX')

pro = ts. pro_api()
df=pro.daily(ts_code='601398.SH', start_date='20250301',end_date='20250331')
correlation = df[['open','high','low','close']].corr()
plt.matshow(correlation) #相关矩阵图展示两个不同属性相互影响的程度
plt.show()

股价相关性分析(拓展)

import matplotlib.pyplot as plt

import pandas as pd

import tushare as ts

import numpy as np

plt.rcParams['axes.unicode_minus'] = False #显示负号

ts.set_token('XXX')

pro = ts. pro_api()

df=pro.daily(ts_code='601398.SH',start_date='20250301',end_date='20250331')

correlation = df[['open','high','low','close']].corr()

股价相关性分析(拓展)

```
fig=plt.figure()
ax=fig.add_subplot(111)
cax=ax.matshow(correlation, vmin=-1, vmax=1)
                                                  #相关矩阵图
fig.colorbar(cax)
ticks=np.arange(0,4,1)
names=['open','high','low','close']
ax.set_xticks(ticks); ax.set_yticks(ticks)
ax.set_xticklabels(names); ax.set_yticklabels(names)
plt.show()
```


数据排序

>按索引排序

```
import pandas as pd
data=pd.read_excel("info.xlsx","Group1",index_col=0)
#按行索引降序排序
result1=data.sort_index(ascending=False)
                                                            成绩 月生活费
print(result1)
                                          female 21 162
                                          female 21 162 54
                                          female 21 160 49
                                               169 80
                                               167 42
```

female 21 165 45 Shanghai

股价按索引排序

```
import pandas as pd
import tushare as ts
ts.set_token('XXX')
                                                               0. 04 0. 5857 2580278. 10
                                                               0. 01 0. 1456 2128381. 48
pro = ts. pro_api()
df=pro.daily(ts_code='601398.SH',start_date='20250301',end_date='20250331')
result1=df.sort_index(ascending=False)
print(result1)
```


数据排序

>按值排序

```
import pandas as pd
data=pd.read_excel("info.xlsx","Group1",index_col=0)
result2=data.sort_values(by='成绩', ascending=False)
print(result2)
result3=data.sort_values(by=['身高','体重'], ascending=True)
                                                  成绩 月生活费
print(result3)
```

167 42

male 21 181 77 female 21 160 49

股价按值排序

```
import pandas as pd
import tushare as ts
ts.set_token('XXX')
pro = ts. pro_api()
df=pro.daily(ts_code='601398.SH',start_date='20250301',end_date='20250331')
result2=df.sort_values(by='amount', ascending=False)
print(result2)
```


数据排名

▶排名

```
import pandas as pd
data=pd.read_excel("info.xlsx","Group1",index_col=0)
#对成绩数据降序排名,增加"排名"列,method为并列名次取值
#比如(2,3名成绩相同,min取2,max取3)
data['排名'] = data['成绩'].rank(method='min', ascending=False).astype(int)
                                                成绩 月生活费 排名
print( data )
                                        45 Shanghai 93
```


数据分组

>按列分组

```
import pandas as pd
data=pd.read_excel("info.xlsx","Group1",index_col=0)
result=data.groupby('性别')['年龄'].count() 性别 female 8 male 2 Name: 年龄, dtype: int64
```


	A	В	С	D	Е	F	G	Н
1	ID	Sex	Age	Height	Weight	Province	Score	Cost
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

数据清洗: 对采集的数据进行重新审查和校验的过程, 其目的在于删除重复信息、纠正存在的错误, 保证数据的一致性。

常见问题:

- ▶数据缺失
- > 数据重复
- > 数据不一致

	A	В	С	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male _	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

丢弃缺失值dropna(axis,how,thresh,...)

axis: 0表示按行滤除,1表示按列滤除,默认为axis=0

data. dropna() #每行只要有空值,就将该行删除

data. dropna(axis=1) #每列只要有空值,就将该列删除

import pandas as pd
data=pd.read_excel("info.xlsx","Group2",index_col=0)
data1=data. dropna() #默认按行删除
print(data1)

A	A	В	С	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性别		 F龄	身高	体重	1	省份	成绩	月生活费
序号 2.0 4.0 6.0 7.0	male male female	22. 0 20. 0 20. 0 21. 0	180. 0 177. 0 179. 0 166. 0	71. 0 72. 0 75. 0	GuangXi LiaoNing YunNan LiaoNing	77. 0	1300. (900. (950. (1200. ()))	/1工而來
8. 0 9. 0 10. 0	female female male	20. 0 20. 0 120. 0	162. 0 162. 0 169. 0	47.0	AnHui AnHui HeiLongJiang	78. 0 78. 0 88. 0	1000. (1000. (1100. ()	

import pandas as pd data=pd. read_excel("info.xlsx","Group2",index_col=0) data1=data. dropna(axis=1) #按列删除 print(data1)

	A	В	С	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

Empty DataFrame

Columns: []

Index: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, nan, 7.0, 8.0, 9.0, 10.0]

丢弃缺失值dropna(axis,how,thresh,...)

how: "all"表示滤除全部值都为NaN的行或列

data. dropna(how='all') #一行中全部为NaN才丢弃该行

import pandas as pd
data=pd.read_excel("info.xlsx","Group2",index_col=0)
data1=data. dropna(how="all") #一行全部为NaN才删
print(data1)

	A	В	С	D	Е	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性别	」		身高	体重	4	介	成绩	月生活费
序号			o						
1.0	male	20.0	170.0	70.0	LiaoNing	NaN	800.		
2. 0	male	22. 0	180. 0	71.0	GuangXi	77.0	1300.		
3. 0	${\tt male}$	NaN	180.0	62. 0	FuJian	57.0	1000.		
4. 0	\mathtt{male}	20.0	177. 0	72. 0	LiaoNing	79.0	900.		
5. 0	\mathtt{male}	20.0	172. 0	NaN	ShanDong	91.0	Na	ιN	
6. 0	${\tt male}$	20.0	179.0	75. 0	YunNan	92.0	950.		
7.0	female	21. 0	166. 0	53. 0	LiaoNing	80.0	1200.	0	
8. 0	female	20.0	162. 0	47.0	AnHui	78.0	1000.	0	
9. 0	female	20.0	162. 0	47.0	AnHui	78.0	1000.	0	
10.0	male	120.0	169. 0	76. 0	HeiLongJiang	88.0	1100.	0	

丢弃缺失值dropna(axis,how,thresh,...)

thresh: 只留下有效数据数大于或等于thresh的行或列

data. dropna(thresh=6) #每行至少6个非空值才保留

import pandas as pd data=pd.read_excel("info.xlsx","Group2",index_col=0) data1=data. dropna(thresh=6) # 每行至少6个非空值才保留 print(data1)

1	A	В	С	D	E	F	G	Н
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

序号	性另	川 左	F龄	身高	体重	1	省份 1	成绩	月生活费
1. 0	male	20.0	170.0	70.0	LiaoNing	NaN	800.	0	
2. 0	\mathtt{male}	22.0	180.0	71.0	GuangXi	77.0	1300.	0	
3. 0	\mathtt{male}	NaN	180.0	62.0	FuJian	57.0	1000.	0	
4. 0	\mathtt{male}	20.0	177.0	72.0	LiaoNing	79.0	900.	0	
6. 0	male	20.0	179.0	75.0	YunNan	92.0	950.	0	
7. 0	female	21.0	166.0	53.0	LiaoNing	80.0	1200.	0	
8. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.	0	
9. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.	0	
10.0	male	120. 0	169. 0	76. 0	HeiLongJiang	88.0	1100.	0	

缺失值填充fillna(value, method,...)

value: 填充值,可以是标量、字典等

data. fillna(0) #用**0**填充

import pandas as pd data=pd. read_excel("info.xlsx","Group2",index_col=0) data1=data. fillna(0) #用0填充 print(data1)

1	A	В	C	D	E	F	G	H
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

->- III	性别	左	F龄	身高	体重	1	省份	成绩	月生活费
序号 1.0	male	20. 0	170. 0	70. 0	LiaoNing	0.0	800.	0	
2. 0	male	22. 0	180. 0	71. 0	GuangXi	77. 0	1300.		
3. 0	male	0.0	180. 0	62. 0	FuJian	57. 0	1000.		
4. 0 5. 0	male male	20. 0 20. 0	177. 0 172. 0	72. 0 0. 0	LiaoNing ShanDong	79. 0 91. 0	900. 0.		
6. 0	male	20. 0	179. 0	75. 0	YunNan	92. 0	950.		
NaN	0	0.0	0.0	0.0	0	0.0	0.		
7. 0	female	21. 0	166. 0	53. 0	LiaoNing	80. 0	1200.		
8. 0	female	20. 0	162. 0	47. 0	AnHui	78. 0	1000.	_	
9. 0 10. 0	female male	20. 0 120. 0	162. 0 169. 0	47. 0 76. 0	AnHui HeiLongJiang	78. 0 88. 0	1000. 1100.		

缺失值填充fillna(value, method,...)

value: 填充值,可以是标量、字典等

data. fillna({'年龄': data['年龄'].mean(), '性别': 'male'})

import pandas as pd data=pd.read_excel("info.xlsx","Group2",index_col=0) data1=data. fillna({'年龄': data['年龄'].mean(), '性别': 'male'}) print(data1)

1	A	В	C	D	E	F	G	H
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性另	[] 左	F龄	身高	体重	1	分)	龙绩	月生活费
序号 1.0	male	20, 000000	170. 0	70. 0	LiaoNing	NaN	800. 0		
2. 0	male	22. 000000	180.0	71. 0	GuangXi	77.0	1300.0		
3. 0 4. 0	male male	31. 444444 20. 000000	180. 0 177. 0	62. 0 72. 0	FuJian LiaoNing	57. 0 79. 0	1000. 0		
5. 0	male	20. 000000	172. 0	NaN	ShanDong	91. 0	NaN		
6. 0 NaN	male male	20. 000000 31. 444444	179.0 NaN	75. 0 NaN	YunNan NaN	92.0 NaN	950. 0 NaN		
7. 0	female	21. 000000	166. 0	53. 0	LiaoNing	80. 0	1200. 0		
8. 0	female	20. 000000	162. 0	47.0	AnHui	78. 0	1000.0		
9. 0 10. 0	female male	20. 000000 120. 000000	162. 0 169. 0	47. 0 76. 0	AnHui HeiLongJiang	78. 0 88. 0	1000. 0 1100. 0		

缺失值填充ffill()、bfill()

data. ffill() #在列方向上以上一个值替换

data. bfill() #在列方向上以下一个值替换

import pandas as pd data=pd. read_excel("info.xlsx","Group2",index_col=0) data1=data. ffill() #在列方向上以上一个值替换 print(data1)

4	A	В	C	D	E	F	G	H
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性另	·] 左	F龄	身高	体重	1	省份 成绩	月生活费
序号								
1.0	${\tt male}$	20.0	170.0	70.0	LiaoNing	NaN	800.0	
2. 0	${\tt male}$	22.0	180.0	71.0	GuangXi	77.0	1300.0	
3. 0	male	22.0	180.0	62. 0	FuJian	57.0	1000.0	
4. 0	male	20.0	177.0	72.0	LiaoNing	79.0	900.0	
5. 0	\mathtt{male}	20.0	172.0	72.0	ShanDong	91.0	900.0	
6. 0	\mathtt{male}	20.0	179.0	75.0	YunNan	92.0	950.0	
NaN	male	20.0	179.0	75.0	YunNan	92.0	950.0	
7. 0	female	21.0	166.0	53.0	LiaoNing	80.0	1200.0	
8. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.0	
9. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.0	
10.0	male	120.0	169. 0	76.0	HeiLongJiang	88.0	1100.0	

值替换replace(to_replace, value, ...)

to_replace: 将被替代的值

value: 替换为的值

data['年龄']=data['年龄'].replace(120,20) #将年龄120替换为20

import pandas as pd data=pd. read_excel("info.xlsx","Group2",index_col=0) data['年龄']=data['年龄'].replace(120,20)#将年龄120替换为20 print(data)

-4	A	В	C	D	E	F	G	H
1	序号	性别	年龄	身高	体重	省份	成绩	月生活物
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性另	川 左	F龄	身高	体重	4	省份 成绩	月生活费
序号 1.0								
	\mathtt{male}	20.0	170.0	70.0	LiaoNing	NaN	800.0	
2. 0	\mathtt{male}	22.0	180.0	71.0	GuangXi	77.0	1300.0	
3. 0	\mathtt{male}	NaN	180.0	62. 0	FuJian	57.0	1000.0	
4. 0	\mathtt{male}	20.0	177.0	72.0	LiaoNing	79.0	900.0	
5. 0	male	20.0	172.0	NaN	ShanDong	91.0	NaN	
6. 0	\mathtt{male}	20.0	179.0	75.0	YunNan	92.0	950.0	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
7. 0	female	21.0	166.0	53.0	LiaoNing	80.0	1200.0	
8. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.0	
9. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.0	
10.0	male	20.0	169.0	76.0	HeiLongJiang	88.0	1100.0	

去掉重复值drop_duplicates()

data. drop_duplicates() #去掉重复的数据

import pandas as pd data=pd. read_excel("info.xlsx","Group2",index_col=0) data1=data. drop_duplicates() #去掉重复的数据 print(data1)

-4	A	В	C	D	E	F	G	H
1	序号	性别	年龄	身高	体重	省份	成绩	月生活费
2	1	male	20	170	70	LiaoNing		800
3	2	male	22	180	71	GuangXi	77	1300
4	3	male		180	62	FuJian	57	1000
5	4	male	20	177	72	LiaoNing	79	900
6	5	male	20	172		ShanDong	91	
7	6	male	20	179	75	YunNan	92	950
8								
9	7	female	21	166	53	LiaoNing	80	1200
10	8	female	20	162	47	AnHui	78	1000
11	9	female	20	162	47	AnHui	78	1000
12	10	male	120	169	76	HeiLongJiang	88	1100

	性别]	 F龄	身高	体重	1	省份	成绩	月生活费
序号									
1. 0	\mathtt{male}	20.0	170.0	70.0	LiaoNing	NaN	800. ()	
2. 0	\mathtt{male}	22.0	180.0	71.0	GuangXi	77.0	1300. ()	
3. 0	\mathtt{male}	NaN	180.0	62.0	FuJian	57.0	1000.0)	
4. 0	\mathtt{male}	20.0	177.0	72.0	LiaoNing	79.0	900. ()	
5. 0	\mathtt{male}	20.0	172.0	NaN	ShanDong	91.0	Nal	V	
6. 0	\mathtt{male}	20.0	179.0	75.0	YunNan	92.0	950. ()	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal	V	
7. 0	female	21.0	166.0	53.0	LiaoNing	80.0	1200. ()	
8. 0	female	20.0	162.0	47.0	AnHui	78.0	1000.0)	
10.0	male	120.0	169.0	76. 0	HeiLongJiang	88.0	1100.0)	

import pandas as pd
import tushare as ts
from tkinter import *
from sqlalchemy import create_engine
import matplotlib.pyplot as plt

df = pd.DataFrame()

def gs_stock():

global df

ts.set_token('XXX')

#换成自己的token

pro = ts. pro_api() #初始化

#获取股票代码为'601398.SH'(中国工商银行)的历史行情

df=pro.daily(ts_code='601398.SH', start_date='20250301',

end_date='20250331')

print(df)

def gs_save():

global df

#创建 SQLAlchemy 引擎

engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test')

#写入 MySQL (如果表不存在,会自动创建)

df.to_sql(name="stock", # 表名

con=engine, #数据库连接

index=False, #不写入 DataFrame 的索引

if_exists="replace") # 如果表存在,则替换

print("DataFrame 已成功写入 MySQL!")

def gs_analyse():

```
#创建 SQLAlchemy 引擎
```

engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test')

#使用pandas的read_sql_table函数读取整个表的数据

data = pd.read_sql_table('stock', engine)

date=pd.to_datetime(data["trade_date"]).dt.day


```
plt.xlim(0,35)
plt.title("中国工商银行三月股价分析")
plt.xlabel("日期")
plt.ylabel("股价")
plt.rcParams['font.sans-serif']=['SimHei']
plt.plot(date,data["open"],"r-o",label="open price")
plt.plot(date,data["close"],"b-.*",label="close price")
plt.plot(date,data["high"],"g--^",label="high price")
plt.plot(date,data["low"],"y:s",label="low price")
plt.legend()
plt.show()
```



```
root=Tk()
root.title("中国工商银行数据获取")
                                                 获取数据
                                                 存入数据
root.geometry("300x200")
                                                 数据分析
one=Button(root,text='获取数据',width=20,
                 height=2,command=gs_stock)
one.place(x=70,y=30)
two=Button(root,text='存入数据',width=20,
                 height=2,command=gs_save)
two.place(x=70,y=100)
third=Button(root,text='数据分析',width=20,
                 height=2,command= gs_analyse)
third.place(x=70,y=130)
root.mainloop()
```


谢谢