

SC1015 Mini-Project

Agarwal Ananya Banerjee Mohor Goenka Shrivardhan (Team 6)

PLAYLIST

- 01 Problem Statement
- 02 Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- 05 Results

Problem Statement

We want to predict what influences the popularity index of a song more - Lyrics or Parameters like its Danceability, Energy, Tempo etc.

Aim of the Problem

We want the artists to know what feature of the song they should focus on more so that they can release more chartbusters.

3:49

PLAYLIST

- 01 Problem Statement
- 02 Data Extraction and Cleaning
- O3 EDA & Pre-Processing
- 04 Models
- 05 Results

Dataset 1 : Source - Kaggle

https://www.kaggle.com/datasets/lehaknarnauli/spotify-datasets?select=tracks.csv

In [4]:	sta	stats_data.head()										
Out[4]:		id	name	popularity	duration_ms	explicit	artists	id_artists	release_date	danceability	energy	key
	0	35iwgR4jXetl318WEWsa1Q	Carve	6	126903	0	['Uli']	['45tlt06Xol0lio4LBEVpls']	1922-02-22	0.645	0.4450	0
	1	021ht4sdgPcrDgSk7JTbKY	Capítulo 2.16 - Banquero Anarquista	0	98200	0	['Fernando Pessoa']	['14jtPCOoNZwquk5wd9DxrY']	1922-06-01	0.695	0.2630	0
	2	07A5yehtSnoedViJAZkNnc	Vivo para Quererte - Remasterizado	0	181640	0	['Ignacio Corsini']	['5LiOoJbxVSAMkBS2fUm3X2']	1922-03-21	0.434	0.1770	1
	3	08FmqUhxtyLTn6pAh6bk45	El Prisionero - Remasterizado	0	176907	0	['Ignacio Corsini']	['5LiOoJbxVSAMkBS2fUm3X2']	1922-03-21	0.321	0.0946	7
	4	08y9GfoqCWfOGsKdwojr5e	Lady of the Evening	0	163080	0	['Dick Haymes']	['3BiJGZsyX9sJchTqcSA7Su']	1922	0.402	0.1580	3
ı												

(586672 X 20)

3:49

Dataset 2: Source - Kaggle

https://www.kaggle.com/datasets/neisse/scrapped-lyrics-from-6-genres?select=lyrics-data.csv

In [14]:	ly	rics.head()				
Out[14]:		ALink	SName	SLink	Lyric	language
	0	/ivete-sangalo/	Arerê	/ivete-sangalo/arere.html	Tudo o que eu quero nessa vida,\nToda vida, \é\	pt
	1	/ivete-sangalo/	Se Eu Não Te Amasse Tanto Assim	/ivete-sangalo/se-eu-nao-te-amasse-tanto-assim	Meu coração\nSem direção\nVoando só por voar\n	pt
	2	/ivete-sangalo/	Céu da Boca	/ivete-sangalo/chupa-toda.html	É de babaixá!\nÉ de balacubaca!\nÉ de babaixá!	pt
	3	/ivete-sangalo/	Quando A Chuva Passar	/ivete-sangalo/quando-a-chuva-passar.html	Quando a chuva passar\n\nPra quê falar\nSe voc	pt
	4	/ivete-sangalo/	Sorte Grande	/ivete-sangalo/sorte-grande.html	A minha sorte grande foi você cair do céu\nMin	pt

(379931X5)

Data Cleaning

Dropping of Duplicate Songs

```
In [8]: stats_data.drop_duplicates(subset='name', inplace=True)
```

Dropping of N/A values

```
In [9]: stats_data.dropna(inplace=True)
```


Data Cleaning

Raw Data

Cleaned Data

```
In [5]: stats data.info()
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 586672 entries, 0 to 586671
              Data columns (total 20 columns):
                   Column
                                     Non-Null Count
                                                       Dtype
                   id
                                     586672 non-null object
                                     586601 non-null
                   name
                                                      obiect
                                     586672 non-null
                   popularity
                                                       int64
                   duration ms
                                     586672 non-null
                                                      int64
                   explicit
                                     586672 non-null
                                                       int64
                   artists
                                     586672 non-null
                                                      obiect
                                     586672 non-null
                   id artists
                                                      obiect
                   release date
                                     586672 non-null
                                                      object
                                     586672 non-null float64
                   danceability
                                      586672 non-null float64
                   energy
                                     586672 non-null int64
               10
                   kev
                                     586672 non-null float64
                   loudness
               12
                   mode
                                     586672 non-null int64
                                     586672 non-null float64
                   speechiness
                   acousticness
                                     586672 non-null float64
                   instrumentalness
                                     586672 non-null float64
                                     586672 non-null float64
                   liveness
                   valence
                                     586672 non-null float64
                   tempo
                                     586672 non-null float64
                                     586672 non-null int64
                   time signature
              dtypes: float64(9), int64(6), object(5)
              memory usage: 89.5+ MB
The 15th Planet
```

```
In [10]: stats_data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 446474 entries, 0 to 586670
         Data columns (total 20 columns):
              Column
                                Non-Null Count
                                                 Dtype
              id
                                446474 non-null
                                                 object
              name
                                446474 non-null
                                                 object
                                446474 non-null
              popularity
                                                 int64
                                446474 non-null int64
              duration ms
                                446474 non-null int64
              explicit
              artists
                                446474 non-null
                                                 object
                                446474 non-null
              id artists
                                                 obiect
              release date
                                446474 non-null
                                                 object
              danceability
                                446474 non-null
                                                 float64
                                446474 non-null float64
              energy
                                446474 non-null int64
              kev
          11
                                446474 non-null float64
              loudness
          12
              mode
                                446474 non-null int64
              speechiness
                                446474 non-null float64
              acousticness
                                446474 non-null float64
                                446474 non-null float64
              instrumentalness
              liveness
                                446474 non-null float64
              valence
                                446474 non-null float64
                                446474 non-null float64
              tempo
                                446474 non-null int64
              time signature
         dtypes: float64(9), int64(6), object(5)
         memory usage: 71.5+ MB
```

Data Cleaning

Dropping of Duplicate Songs

```
In [17]: lyrics.drop_duplicates(subset='SName', inplace=True)
```

Dropping of N/A values

```
In [16]: lyrics.dropna(inplace=True)
```

Renaming of Sname to name

```
In [18]: #Renaming the column 'SName' to 'name' to match the column name in the stats_data dataframe
lyrics.rename(columns={'SName':'name'}, inplace=True)
```


Data Merging

```
In [19]: merged = pd.merge(stats_data, lyrics, on='name')
```

```
In [21]: merged.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 41921 entries, 0 to 41920
         Data columns (total 24 columns):
              Column
                                Non-Null Count Dtvpe
              id
                                41921 non-null object
                                41921 non-null object
              name
              popularity
                                41921 non-null int64
                                41921 non-null int64
              duration ms
              explicit
                                41921 non-null int64
              artists
                                41921 non-null object
              id artists
                                41921 non-null object
              release date
                                41921 non-null object
              danceability
                                41921 non-null float64
              energy
                                41921 non-null float64
          10
              kev
                                41921 non-null int64
              loudness
                                41921 non-null float64
              mode
                                41921 non-null int64
              speechiness
                                41921 non-null float64
              acousticness
                                41921 non-null float64
              instrumentalness
                                41921 non-null float64
              liveness
                                41921 non-null float64
              valence
                                41921 non-null float64
              tempo
                                41921 non-null float64
              time_signature
                                41921 non-null int64
              ALink
                                41921 non-null object
              SLink
                                41921 non-null object
              Lyric
                                41921 non-null object
                                41921 non-null object
              language
         dtypes: float64(9), int64(6), object(9)
         memory usage: 8.0+ MB
```

Shape: (41921X23)

М

0

PLAYLIST

- 01 Problem Statement
- Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- 05 Results

Data Preprocessing (NLP

- 1) Conversion of characters to lowercase
- This has been done for consistency while processing.
- 2) Stopwords Removal:
 - Removal of all non-alphabetic characters and whitespace
 - Removed because they do not carry much meaning.

hijklmn opgrstu vwxyz

> Apple)[){_+\.-/685)_ Orange1):>3._{26\$5/_8 Pear'.@1\$-+|8]92.3_

TextStrings

Watermelon~}][]6'\\$#8~]\^ James]0=_8*4@\$~]'"^3 Apple4,;|4?[-4!9&8?^

Pear)5`09*]=4#^+_{9 Orange%^-)*_|7<\~]|(8

Peach~5{80"'1&<[(>[? Melon+@64625.]307[)7 Chern(08#5]\7=[[=#\2

Cherry08#5!)7=,[[=#>2

3) Stemming:

- Process of reducing a word to its base form by removing its affixes.
- Normalizes words and improves natural language processing tasks.

4) Tokenization:

- Process of breaking down a text into individual words or phrases, known as tokens.
- Facilitates NLP tasks like text analysis.

PLAYLIST

- 01 Problem Statement
- Data Extraction and Cleaning
- O3 EDA & Pre-Processing
- 04 Models
- 05 Results

Exploratory Data Analysis

Scatterplots to show correlation between popularity and other variables visually

Very poor negative Correlation

Fairly positive Correlation

Boxplot for popularity against categorical variables

KDE and Histogram of Popularity Index

PLAYLIST

- 01 Problem Statement
- **02** Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- **05** Results

Train-test data split 80:20

Sequential Neural Network

```
In [9]: Model1 = Sequential()

Model1.add(Dense(32, activation='relu', input_dim=X_train.shape[1]))
Model1.add(Dense(16, activation='relu'))
Model1.add(Dense(8, activation='relu'))
Model1.add(Dense(1, activation='linear'))
```

Layer	1st	2nd	3rd	4th
Node	32 with ReLU	16 with ReLU	8 with ReLU	1 with Linear Activation Function

Supervised Learning Approach

Random Forest

In [17]: regressor = RandomForestRegressor(n_estimators = 100)
 regressor.fit(X_train, y_train)
Out[17]: RandomForestRegressor()

- Trained on randomly selected subset of the training data
- N_estimators specifies the number of decision trees to include in random forest

Linear Regression

```
In [16]: # Create the regression model
model = LinearRegression()
```

- Finds best-fitting straight line relationship between feature and target
- One of the simplest models
- Supervised Learning Approach

↑ HOME

TABLE OF CONTENTS

- (Þ) PLAYLIST
 - 01 Problem Statement
 - **02** Data Extraction and Cleaning
 - 03 EDA &
 Pre-Processing
 - 04 Models
 - 05 Results

Train-test data split 80:20

LSTM Model

```
# Build the model
embedding_dim = 100
model = Sequential()
model.add(Embedding(vocab_size, embedding_dim, input_length=max_len))
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(Bidirectional(LSTM(32)))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='linear'))
```

Layer	1st	2nd	3rd	4th	5th	6th
Node	Embedding layer	LSTM layer with 64 units	LSTM layer with 32 units	64 units with ReLu	Dropout layer	1 unit Linear Activation

2:54

Linear Regression

```
In [14]: # Train the model|
model = LinearRegression()
model.fit(X_train_tf, y_train)
```

 Finds best-fitting straight line relationship between lyrics and target.

PLAYLIST

- O1 Problem
 Statement
- Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- 05 Results

Results

PLAYLIST

- 01 Problem Statement
- 02 Data Extraction and Cleaning
- O3 EDA & Pre-Processing
- 04 Models
- 05 Results

1) Statistical Data

Neural Network

```
In [14]: mean_absolute_error(Y_test, predictions)
Out[14]: 0.1270828745284773
In [15]: mean_squared_error(Y_test, predictions)
Out[15]: 0.026014470953904592
```


Random Forest

```
In [20]: mean_absolute_error(y_test, y_pred)
Out[20]: 12.249478552971576
In [21]: np.sqrt(mean_squared_error(y_test, y_pred))
Out[21]: 15.53119581526538
```


Regression

```
# Evaluate the model's performance
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("Mean Squared Error: ", mse)
print("R^2 Score: ", r2)

Mean Squared Error: 261.71944091809377
R^2 Score: 0.22851661153184266
```


3:49

PLAYLIST

- O1 Problem
 Statement
- Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- 05 Results

2) Lyrics

LSTM

```
In [14]: # Calculate Mean Absolute Error
mae = mean_absolute_error(y_test, y_pred)
print(f'Mean Absolute Error: {mae}')

Mean Absolute Error: 0.16926953782466247

In [16]: #Calculate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

Mean Squared Error: 0.04508657011284038
```


Regression

```
In [14]: mean_squared_error(predictions, y_test)
Out[14]: 10.760397233843237
```


3:49

PLAYLIST

- 01 Problem Statement
- Data Extraction and Cleaning
- 03 EDA &
 Pre-Processing
- 04 Models
- 05 Results

Inference


```
In [15]: mean_squared_error(Y_test, predictions)
Out[15]: 0.026014470953904592
```

Statistical data

```
In [16]: #Calculate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

Mean Squared Error: 0.04508657011284038
```

Lyrics

PLAYLIST

- 01 Problem Statement
- Data Extraction and Cleaning
- O3 EDA &
 Pre-Processing
- 04 Models
- 05 Results

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

