

KISSsoft Release 2019 A—

KISSsoft Hochschullizenz Duale Hochschule Baden-Wuerttemberg Heidenheim

Datei -

206000.000

Name : Welle-Test

Geändert von: langohra.tmb18am: 09.10.2019 um: 14:08:13

Wichtiger Hinweis: Bei der Berechnung sind Warnungen aufgetreten:

1-> Welle 'Welle 1':

Die Summe der Drehmomente ist ungleich null.

 $\Delta T = 239.936 \text{ Nm}$

Berechnung von Wellen, Achsen und Trägern

Eingabedaten

Koordinatensystem Welle: siehe Bild W-002

Bezeichnung Welle 1

Zeichnung

Elastizitätsmodul (N/mm²)

 Startposition (mm)
 0.000

 Länge (mm)
 395.000

 Drehzahl (1/min)
 80.00

Drehrichtung: im Uhrzeigersinn

Werkstoff 42 CrMo 4 (1)

 Poissonzahl nu
 0.300

 Dichte (kg/m³)
 7830.000

 Wärmeausdehnungskoeffizient (10^-6/K)
 11.500

 Temperatur (°C)
 20.000

 Gewicht der Welle (kg)
 3.887

Hinweis: Gewicht gilt für die Welle ohne Berücksichtigung der Zahnräder

Gewicht der Welle, inklusive Zusatzmassen (kg)

Massenträgheitsmoment (kg*mm²)

Schwungmoment GD2 (Nm²)

0.031

Die Gewichtskraft wird nicht berücksichtigt

Zahnräder mit Steifigkeit nach ISO

Schubverformungen werden berücksichtigt

Schubkorrekturfaktor 1.100

Der Druckwinkel von Wälzlagern wird berücksichtigt

Toleranzlage: Mittelwert

Referenztemperatur (°C) 20.000

7

KISSsoft

Abbildung: Lasteinleitungen

Wellendefinition (Welle 1)

Aussenkontur

Zylinder(Zylinder)		0.000 mm 395.000 mm
Durchmesser (mm)	[d]	40.0000
Länge (mm)	[1]	395.0000
Rauhigkeit (µm)	[Rz]	32.0000

Kräfte

Art des Kraftelements		Seilscheibe/Keilriemen		
Bezeichnung im Modell		Seilscheibe/Keilrie	emen	
Position auf Welle (mm)	[y _{local}]	375.0000		
Position im globalen System (mm)	[y _{global}]	375.0000		
Richtung des Seilzuges (°)		135.0000		
Scheibendurchmesser (mm)		184.0000		
Länge der Krafteinleitung (mm)		0.0000		
Leistung (kW)		2.0101	getrieben (Antrieb)	
Drehmoment (Nm)		239.9360		
Axialkraft (N)		0.0000		
Querkraft X (N)		-1844.1345		
Querkraft Z (N)		1844.1345		
Biegemoment X (Nm)		0.0000		
Biegemoment Z (Nm)		0.0000		
Summe der Seilzugkräfte (N)		2608.0000		
Art des Kraftelements		Zentrische Last		
Bezeichnung im Modell		Fs1		

KISSsoft

Position auf Welle (mm)	[y _{local}]	165	5.0000
Position im globalen System (mm)	[y _{global}]	165	5.0000
Länge der Krafteinleitung (mm)		(0.0000
Leistung (kW)		(0.0000
Drehmoment (Nm)			0.0000
Axialkraft (N)			0.0000
Querkraft X (N)			0.0000
Querkraft Z (N)			0.0000
Biegemoment X (Nm) Biegemoment Z (Nm)			0.0000
Art des Kraftelements		Zentrische	∍ Last
Bezeichnung im Modell	f. 1	Fs2	- 0000
Position auf Welle (mm)	[y _{local}]		5.0000
Position im globalen System (mm)	[y _{global}]		5.0000
Länge der Krafteinleitung (mm) Leistung (kW)			0.0000
Drehmoment (Nm)			0.0000
Axialkraft (N)			0.0000
Querkraft X (N)			0.0000
Querkraft Z (N)			0.0000
Biegemoment X (Nm)			0.0000
Biegemoment Z (Nm)		(0.0000
Lager			
Bezeichnung im Modell		WälzlagerA	
Lager Typ		SKF 21308 E	
Lager Bauform		Pendelrollenlager SKF Explorer	
Lager Position (mm)	[y _{lokal}]	20	0.000
Lager Position (mm)	[y _{global}]	20	0.000
Befestigung Aussenring		Loslager	
Innendurchmesser (mm)	[d]	40	0.000
Aussendurchmesser (mm)	[D]		0.000
Breite (mm)	[b]		3.000
Eckradius (mm)	[r]		1.500
Statische Tragzahl (kN)	[C ₀]		3.000
Dynamische Tragzahl (kN)	[C]		7.000
Tragzahl Ermüdung (kN)	[C _u]	1	1.800
Werte für die approximierte Geometrie		,	2 000
Dynamische Tragzahl (kN) Statische Tragzahl (kN)	[C _{theo}] [C _{0theo}]		0.000
Korrekturfaktor Dynamische Tragzahl	[f _C]		1.000
Korrekturfaktor Statische Tragzahl	[f _{C0}]		1.000
Bezeichnung im Modell		 WälzlagerB	
Lager Typ		SKF 21308 E	
Lager Bauform		Pendelrollenlager SKF Explorer	
Lager Position (mm)	[y _{lokal}]		0.000
Lager Position (mm)	[y _{global}]		0.000
Befestigung Aussenring	<u>-</u>	Loslager	
Innendurchmesser (mm)	[d]		0.000
Aussendurchmesser (mm)	[D]	90	0.000
Proito (mm)	[h]	01	2 000

[b]

23.000

Breite (mm)

Eckradius (mm)	[r]	1.500
Statische Tragzahl (kN)	[C ₀]	108.000
Dynamische Tragzahl (kN)	[C]	107.000
Tragzahl Ermüdung (kN)	[C _u]	11.800
Werte für die approximierte Geometrie:		
Dynamische Tragzahl (kN)	$[C_{theo}]$	0.000
Statische Tragzahl (kN)	[C _{0theo}]	0.000
Korrekturfaktor Dynamische Tragzahl	[f _C]	1.000
Korrekturfaktor Statische Tragzahl	[f _{C0}]	1.000

Resultate

Welle

Maximale Durchbiegung (µm)	157.975
Position des Maximums (mm)	395.000
Massenschwerpunkt (mm)	197.500
Summe der axialen Belastung (N)	0.000
Verdrehung unter Drehmoment (°)	0.259

Lager

Ausfallwahrscheinlichkeit	[n]	10.00	%		
Axialspiel	[II]	10.00	/0	10.00	μm
Schmierstoff	Öl: ISO-VG 220			10.00	μιιι
Schmierstoff - Betriebstemperatur	[T _B]			20.00	°C
Wälzlager klassisch (Druckwinkel berück:				20.00	O
Walziager Massisch (Bruckwinker beruck	sionigen)				
Welle 'Welle 1' Wälzlager 'WälzlagerA'					
Position (Y-Koordinate)	[y]	20.00	mm		
Dynamisch äquivalente Belastung	[P]	2.94	kN		
Äquivalente Belastung	[P ₀]			2.94	kN
Faktor für Ausfallwahrscheinlichkeit	[a₁]			1.000	
Ergebnisse nach ISO 281:					
Lastverhältnis	[C/P]			36.365	
Betriebsviskosität	[v]			912.866	mm²/s
Bezugsviskosität	[V ₁]			0.000	mm²/s
Viskositätsverhältnis	[ĸ]			0.000	
Verunreinigungsbeiwert	[e _c]			0.500	
Nominelle Lagerlebensdauer	[L _{nh}]		> 1	000000	h
Statischer Sicherheitsfaktor	[S ₀]			36.70	
Lagarraaktionskraft	[Ev]	-2.913	kN		
Lagerreaktionskraft Lagerreaktionskraft	[Fx]		kN		
•	[Fy]	0.000 0.413	kN kN		
Lagerreaktionskraft	[Fz]				
Lagerreaktionskraft	[Fr]	2.942	kN (171.92°)		
Ölstand	[H]	0.000	mm	0.007	Nico
Rollreibungsmoment	[M _{rr}]			0.207	Nm
Gleitreibungsmoment	[M _{sl}]			0.022	Nm
Reibungsmoment Dichtungen	[M _{seal}]			0.000	Nm

Reibungsmoment Dichtungen nach SKF-Ha	auntkatalog 17000)/1 FN·2018	R hestimmt		
Reibungsmoment Strömungsverluste	[M _{drag}]	,, , LI4.2010	Doomining	0.000	Nm
Reibungsmoment	[M _{loss}]			0.229	Nm
Verlustleistung	[P _{loss}]			1.918	W
Das Reibungsmoment wird nach Angaben		alog 2018 b	erechnet.		
Es wird immer mit einem Beiwert für Zusätz		-			
Lagerverschiebung	[u _x]	p.o. 01.0 9		18.534	μm
Lagerverschiebung	[u _y]			0.000	μm
Lagerverschiebung	[u _z]			-2.836	μm
Lagerverschiebung	[u _r]			18.750	μm (-8.7°)
Lagerneigung	[r _x]			-0.145	mrad (-0.5')
Lagerneigung	[r _y]			0.241	mrad (0.83')
Lagerneigung	[r _z]			-1.175	mrad (-4.04')
Lagerneigung	[r _r]			1.184	mrad (4.07')
	[-1]				
Welle 'Welle 1' Wälzlager 'WälzlagerB'					
Position (Y-Koordinate)	[y]	310.00	mm		
Dynamisch äquivalente Belastung	[P]	2.27	kN		
Äquivalente Belastung	[P₀]			2.27	kN
Faktor für Ausfallwahrscheinlichkeit	[a₁]			1.000	
	[1]				
Ergebnisse nach ISO 281:					
Lastverhältnis	[C/P]			47.127	
Betriebsviskosität	[v]			912.866	mm²/s
Bezugsviskosität	[V ₁]			0.000	mm²/s
Viskositätsverhältnis	[ĸ]			0.000	
Verunreinigungsbeiwert	[e _c]			0.500	
Nominelle Lagerlebensdauer	$[L_nh]$			> 1000000	h
Statischer Sicherheitsfaktor	[S ₀]			47.57	
Lagerreaktionskraft	[Fx]	-0.242	kN		
Lagerreaktionskraft	[Fy]	0.000	kN		
Lagerreaktionskraft	[Fz]	-2.257	kN		
Lagerreaktionskraft	[Fr]	2.270	kN (-96.	13°\	
Ölstand	ני יו [H]	0.000	mm	13)	
Rollreibungsmoment		0.000	111111	0.180	Nm
· ·	[M _{rr}]			0.160	Nm
Gleitreibungsmoment Reibungsmoment Dichtungen	[M _{sl}]			0.013	Nm
Reibungsmoment Dichtungen nach SKF-Ha	[M _{seal}]	V/1 ENI-2019	hootimmt	0.000	INIII
Reibungsmoment Strömungsverluste	[M _{drag}]	// I LIN.2010	Desimili	0.000	Nm
Reibungsmoment	[M _{loss}]			0.000	Nm
Verlustleistung	[P _{loss}]			1.638	W
Das Reibungsmoment wird nach Angaben		alog 2018 h	orachnat	1.030	VV
Es wird immer mit einem Beiwert für Zusätz		_			
Lagerverschiebung		μυι–υ. 13 g	erecrinet.	1.246	μm
Lagerverschiebung	[u _x]			-0.000	μm
Lagerverschiebung	[u _z]			18.709	μm
Lagerverschiebung	[u _r]			18.750	μm (86.19°)
Lagerneigung	[ur] [r _x]			0.526	mrad (1.81')
Lagerneigung	[r _y]			3.735	mrad (1.81)
Lagerneigung	[r _z]			1.527	mrad (5.25')
Lagerneigung				1.615	mrad (5.55')
Lagernergung	[r _r]			1.013	iiiau (3.33)
Schädigung (%), bezogen auf die Soll-Lebe	ensdauer II regi] (20000.00	00)		
Lastfall B1 B2		, , 2000.00	,		
1 2.00 2.00					

Σ 2.00 2.00

Ausnutzung (%), bezogen auf die Soll-Lebensdauer [Lreq] (20000.000 B1 B2 30.92 30.92

Hinweis: Ausnutzung = $(Lreq/Lh)^{(1/k)}$ Kugellager: k = 3, Rollenlager: k = 10/3

B1 : WälzlagerAB2 : WälzlagerB

Abbildung: Verformung (Biegelinien etc.) (Beliebige Ebene 151.9386285 124)

Nennspannungen, ohne Berücksichtigung der Spannungskonzentrationen GEH(von Mises): $sigV = ((sigB+sigZ,D)^2 + 3*(tauT+tauS)^2)^1/2$ SSH(Tresca): $sigV = ((sigB-sigZ,D)^2 + 4*(tauT+tauS)^2)^1/2$

Abbildung: Vergleichsspannung

Ende Protokoll Zeilen: 273