代数幾何学

Fefr

2025年8月25日

目次

第1章	代数多様体	1
1.1	アフィン空間	1
1.2	アフィン空間内の代数的集合	2

まえがき

本書は古典的な代数幾何について論ずる. 主に [?] を参考にするつもりである.

第1章 代数多様体

この章では代数幾何の対象である"代数多様体 (algebraic variety)"を定義する.

1.1 アフィン空間

アフィン空間を復習する.

定義 1.1.1. A を空でない集合. V を \mathbf{C} 上の有限次元ベクトル空間とする. 次の条件を満たす写像の族 $\{T_v: \mathbf{A} \to \mathbf{A}: v \in V\}$ が与えられているとき、組 (\mathbf{A}, V) あるいは単に \mathbf{A} をアフィン空間という.

- 1. 任意の $v, w \in V$ に対して, $T_{v+w} = T_v \circ T_w$ が成り立つ.
- 2. 任意の $P,Q \in \mathbf{A}$ に対して、ただ一つの $v \in V$ が存在して、 $T_v(P) = Q$ となる.

定義 1.1.2. アフィン空間 A の次元はそれに伴うベクトル空間 V の次元 $\dim V$ で定める.

次は容易にわかる.

命題 1.1.3. (A, V) をアフィン空間とすると、次が成り立つ.

- $1.0 \in V$ に対応する写像 T_0 は恒等写像 1_A である.
- 2. 任意の $v \in V$ に対して、 T_v は全単射.

定義 1.1.4. 定義の 2 の v を \overrightarrow{PQ} とかく¹. また, $T_v(P)$ を P+v とかく².

命題 1.1.5. (A, V) をアフィン空間とすると、任意の $P, Q, R \in A$ に対して、次が成り立つ.

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

$$R = P + (\overrightarrow{PQ} + \overrightarrow{QR})$$

となる. 一方, $R=P+\overrightarrow{PR}$ であるから, $\overrightarrow{PR}=\overrightarrow{PQ}+\overrightarrow{QR}$ が従う.

有限次元ベクトル空間 V に座標系 $V \stackrel{\cong}{\longrightarrow} {\bf C}^n$ を入れるように,アフィン空間にも座標系を入れることができる.

定義 1.1.6. A をアフィン空間とし,A の点 O と V の基底 $\{e_1,\cdots,e_n\}$ をとる.A の任意の点 P に対して, $\overrightarrow{OP} \in V$ が定まり,V の基底を用いて, $\overrightarrow{OP} = \sum_i P_i e_i$ とできる.このときの対応

$$\mathbf{A} \to \mathbf{C}^n$$

$$P \mapsto (P_1, \cdots, P_n)$$

を A の (アフィン) 座標系といい, $(O; e_1, \dots, e_n)$ とかく³.

 $^{^{1}}$ 従って,-v に対応するのは \overrightarrow{QP} である.

 $^{^2}$ イメージは T_v は v だけ平行移動を行う写像である.

 $^{^3}$ アフィン座標系 $X: {f A} o {f C}^n$ は各 i 成分への射影 π_i と合成し $X_i:=\pi_i\circ X: {f A} o {f C}$ が定義できることに注意する.

注意 1.1.7. 座標系を導入することで n 次元アフィン空間 $\mathbf A$ の点は $\mathbf C^n$ の点と一対一に対応する. 従って、誤解のおそれがない場合 $\mathbf C^n$ を n 次元アフィン空間ということがある.

命題 1.1.8. アフィン空間 **A** に対して,二つの異なる座標系 $(O; e_1, \cdots, e_n)$, $(O'; e'_1, \cdots, e'_n)$ が与えられたとする.このとき,ある $A \in GL(n, \mathbb{C})$ と $b \in \mathbb{C}^n$ が存在して,任意の $P \in A$ に対して,

$$\begin{pmatrix} P_1' \\ \vdots \\ P_n' \end{pmatrix} = A \begin{pmatrix} P_1 \\ \vdots \\ P_n \end{pmatrix} + b$$

が成り立つ.

Proof. 証明はベクトル空間における基底変換の議論と同様である.

定義 1.1.9. 先程の命題における変換 P' = AP + b をアフィン変換という.

1.2 アフィン空間内の代数的集合

ここで, 可微分多様体の定義を思い出すと, それは

 ${f C}$ 上の n 次元アフィン空間を ${f A}$ (または次元を明示して ${f A}^n$) とかく.一組のアフィン座標 X_1,\cdots,X_n をとると, ${f A}$ の点 p は座標 $(X_1(p),\cdots,X_n(p))$ で表される.

定義 1.2.1. $f: \mathbf{A} \to \mathbf{C}$ がアフィン関数とは、多項式 $F(X_1, \dots, X_n)$ があって、すべての $p \in \mathbf{A}$ に対して、

$$f(p) = F(X_1(p), \cdots, X_n(p))$$

となってるいるときを言う.アフィン関数という概念はアフィン座標の取り方によらず定まり,アフィン空間 $\mathbf A$ 上のアフィン関数全体 $\mathbf C[\mathbf A]$ は $\mathbf C$ 上の可換環をなす.

索引

ァ

アフィン関数, 2 アフィン空間, 1 アフィン座標系, 1 アフィン変換, 2