Математическая логика и теория алгоритмов

Сергей Григорян

2 октября 2024 г.

Содержание

1	Лекция 4	3
	1.1 Системы связок	Ş
2 Лекция 5		6
	2.1 Логический вывод	8

1 Лекция 4

1.1 Системы связок

Бывают двух типов:

• Полные (все ф-ции выразимы)

$$\begin{array}{ll} {\bf \Pi pимер.} & - \left\{ \neg, \wedge, \vee, \rightarrow \right\} \\ \\ - \left\{ \neg, \wedge \right\} \\ \\ - \left\{ 1, \oplus, \wedge \right\} \\ \\ - \left\{ 1, \oplus, \wedge \right\} \\ \\ - \left\{ \rightarrow, 0 \right\} \\ \\ {\it Доказательство.} \ \neg p = p \rightarrow 0 \\ \\ p \lor q = \neg p \rightarrow q \end{array} \ \Box$$

- Неполные
 - $\{\rightarrow, \land, \lor\}$ сохраняют 1
 - $\{ \land, \oplus \}$ сохраняют 0
 - $-\{\wedge,\vee,0,1\}$ монотонность
 - $\{\neg, maj_3\}$ самодвойственные $(f(\neg \overline{p}) = \neg f(\overline{p}); \overline{p} = (p_1, p_2, \dots, p_n))$ Иными словами, $f = f^* \colon f^*(p_1, p_2, \dots, p_n) = \neg f(\neg p_1, \neg p_2, \dots, \neg p_n)$

Пример.

$$\wedge^* = \vee, \vee^* = \wedge \\
\neg(\neg p \wedge \neg q) = p \vee q \\
\oplus^* = \leftrightarrow \\
\neg(\neg p \oplus \neg q) = \neg(p \oplus q) = (p \leftrightarrow q) \\
h(p_1, p_2, \dots, p_n) = f(g_1(p_1, \dots, p_n), g_2(p_1, \dots, p_n), \dots, g_n(p_1, \dots, p_n)) \\
h(\neg p_1, \dots, \neg p_n) = f(g_1(\neg p_1, \dots, \neg p_2), \dots, g_n(\neg p_1, \dots, \neg p_n)) \\
h(\neg p_1, \dots, \neg p_n) = f(\neg g_1(p_1, \dots, p_n), \dots, \neg g_n(p_1, \dots, p_n)) \\
h(\neg p_1, \dots, \neg p_n) = \neg f(g_1(p_1, \dots, p_n), \dots, g_n(p_1, \dots, p_n)) = \neg h(p_1, \dots, p_n)$$

— $\{\,\oplus,1\,\}$ - Линейные (Афинные) - ф-ции, задающиеся линейными мн-нами Жегалкина

Теорема 1.1 (Критерий Поста). Система связок полна \iff она не является подмн-вом ни одного из 5-ти классов:

- P_0 coxp. 0
- P_1 coxp. 1
- M монотонные
- \bullet D(S) самодвойственные
- \bullet L линейные

⇔ система содержит некот. ф-цию (ф-ции):

$$f_0 \not\in P_0, f_1 \not\in P_1, g \not\in M, h \not\in D, R \not\in L$$

Доказательство.

Шаг 1

$$f_0(0,0,\ldots,0) = 1,$$
 (т. к. f_0 не сохр. 0)
$$f_0(1,1,\ldots,1) = \begin{bmatrix} 0 \Rightarrow f_0(p,p,p,\ldots,p) = \neg p \\ 1 \Rightarrow f_0(p,p,p,\ldots,p) = 1 \end{bmatrix}$$

Шаг 2

$$f_1(1,\ldots,1) = 0$$

$$f_1(0,\ldots,0) = \begin{cases} 0 \Rightarrow f_1(p,\ldots,p) = 0 \\ 1 \Rightarrow f_1(p,\ldots,p) = \neg p \end{cases}$$

$f_1 \backslash f_0$	「	1
_	шаг 4	$0 = \neg 1$
0	$1 = \neg 0$	шаг 3

 $0, 1, \neg \rightarrow \text{mar } 5$

<u>Шаг 3</u> $0, 1, g \notin M \mapsto \neg$

Пример.

$$\neg p = (p \to 0)$$
$$\neg p = (p \oplus 1)$$
$$\neg p = exact_{1,3}(0, 1, p)$$

Определение 1.1. Монотонная ф-ция - ф-ция, т. ч.:

$$\forall p_1, q_1, \dots, p_n, q_n \colon (\forall i \colon (p_i \le q_i) \to f(p_1, \dots, p_n) \le f(q_1, \dots, q_n))$$

 \Rightarrow ф-ция **немонот.** \iff :

$$\exists p_1, q_1, \dots, p_n, q_n (\forall i : (p_i \le q_i) \to g(p_1, \dots, p_n) = 1 \land g(q_1, \dots, q_n) = 0)$$

<u>Лемма</u> 1.2. g немонотонна \Rightarrow

$$\exists i, \exists (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n):$$

$$g(a_1, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_n) = 1 \land g(a_1, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n) = 0$$

Тогда
$$\neg p = g(a_1, \dots, a_{i-1}, p, a_{i+1}, \dots, a_n)$$

 $\underline{\coprod \text{lag }4} \ \neg, h \not\in D \mapsto 0, 1$

$$h \not\in D \Rightarrow \exists (a_1, \dots, a_n)$$

 $h(a_1, \dots, a_n) = h(\neg a_1, \dots, \neg a_n)$

Пример.

$$\neg, \oplus \Rightarrow p \oplus \neg p = 1$$

$$\neg, \wedge \Rightarrow p \wedge \neg p = 0$$

Общий подход:

$$h(0, 1, 1, 0, 1, 0) = h(1, 0, 0, 1, 0, 1) = 1$$

$$\Rightarrow h(\neg p, p, p, \neg p, p, \neg p) = 1, p = \overline{0, 1}$$

<u>Шаг 5</u>

$$\neg$$
, 0, 1, $k \notin L$

Б. О. О. в мн-не Жегалкина ф-ции k есть слагаемое с x_1x_2

$$k(x_1, ..., x_n) = x_1 x_2 \cdot A(x_3, ..., x_n) \oplus x_1 \cdot B(x_3, ..., x_n) \oplus x_2 \cdot C(x_3, ..., x_n) + D(x_3, ..., x_n)$$

Мн-н
$$A$$
 непустой $\Rightarrow \exists (a_3,\ldots,a_n)\colon A(a_3,\ldots,a_n)=1$
Тогда $k(x_1,x_2,a_3,\ldots,a_n)=x_1x_2\oplus x_1\cdot B\oplus x_2\cdot C\oplus D$

Использование орицания позволяет менять 1

$$-B=C=0\Rightarrow$$
 выразили $x_1,x_2,$ т. е. \wedge . \wedge , $\neg\mapsto$ ВСЁ

$$-B = C = 1 \Rightarrow x_1 \oplus x_2 \oplus x_1 x_2$$
, T. e. \vee . \vee , $\neg \mapsto BC\ddot{E}$

$$-B=0, C=1 \Rightarrow 1 \oplus x_1 \oplus x_1x_2, \text{ T. e. } \rightarrow, \neg \mapsto BC\ddot{E}$$

2 Лекция 5

Пропозициональные ф-лы:

- Всегда = 1 Тавтологии Выполнимые
- ullet М. Б. =0 и =1 Опровержимые Выполнимые
- ullet Всегда =0 Опровержимые Противоречия

"Важные" тавтологии (Логические законы):

1) Закон непротиворечия:

$$\neg(A \land \neg A)$$

2) Закон двойного отрицания:

$$\neg \neg A \leftrightarrow A$$

3) Закон исключённого третьего:

$$A \vee \neg A$$

<u>Пример</u>. Неконструктивное док-во с использованием закона исключённого третьего:

Теорема 2.1. $\exists x,y \colon x \notin Q, y \notin Q, x^y \in Q$

Доказательство. Рассм. выр-е: $(\sqrt{2})^{\sqrt{2}}$:

- 1) Оно $\in Q \Rightarrow$ нашли пример
- 2) Оно $\not\in Q \Rightarrow x = (\sqrt{2})^{\sqrt{2}}, y = \sqrt{2}$:

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$$

4) Контрапозиция:

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

5) Законы Де Моргана:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

$$\neg(A \vee B) \leftrightarrow (\neg A \wedge \neg B)$$

Задача о выполнимости условий: даны ф-лы $\phi_1,\phi_2,\dots,\phi_n$

Вопрос: могут ли они все быть одновременно истинны?

Это эквив. вопросу о выполнимости:

$$\phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_n$$

Пример. Превращение мат. задачи в задачу выполнимости: 1976г. - з-ча 4 красок решена комп. перебором. Вершина графа $v\mapsto 2$ бита. (p_v,q_v) - (область на карте) u,v - соседний области \Rightarrow условие на отличие цветов:

$$(p_u \neq p_v) \lor (q_u \neq q_v)$$

2.1 Логический вывод

Определение 2.1. Логический вывод - п-ть формул, в кот. каждая фла либо является аксиомой, либо получается из более ранних по одному из правилу вывода.

Замечание.

$$(A \rightarrow (B \rightarrow C))$$
 - сл-ие из 2 посылок

Схемы аскиом (Аксиомы - рез-т подстановки конкретных ф-л вместо A,B,C)

- 1) $A \rightarrow (B \rightarrow A)$
- 2) $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- 3) $(A \wedge B) \rightarrow A$
- 4) $(A \wedge B) \rightarrow B$
- 5) $A \to (B \to (A \land B))$
- 6) $A \rightarrow (A \lor B)$
- 7) $B \to (A \lor B)$
- 8) $(A \to C) \to ((B \to C) \to (A \lor B) \to C)$ "Разбор случаев"
- 9) $\neg A \rightarrow (A \rightarrow B)$
- 10) $(A \to B) \to ((A \to \neg B) \to \neg A)$ "Рассуждение от противного"
- 11) $A \vee \neg A$

Правило вывода: modus ponens:

$$A \qquad A \to B$$

Теорема 2.2 (О корректности). A - выводима $\Rightarrow A$ - тавтология

Доказательство. Акс. 1-11 - тавтологии.

$$\begin{cases} A \text{ - тавтология} \\ A \to B \text{ - тавтология} \end{cases} \Rightarrow B \text{ - тавтология}$$

Теорема 2.3 (О полноте). A - тавтология $\Rightarrow A$ - выводима

Обозначение.

 $\vdash A$ - A выводима

 $\models A$ - A тавтология

Пример. $\vdash (A \lor B) \to (B \lor A)$

- 1) $A \rightarrow (B \vee A) a\kappa c$. 7
- 2) $B \rightarrow (B \vee A)$ $a\kappa c.$ 6
- 3) $(A \rightarrow (B \lor A)) \rightarrow ((B \rightarrow (B \lor A)) \rightarrow ((A \lor B) \rightarrow (B \lor A)))$ arc. 8
- 4) $(B \to (B \lor A)) \to ((A \lor B) \to (B \lor A))$ modus ponens 1, 3
- 5) $(A \lor B) \to (B \lor A)$ modus ponens 2, 4

Пример. $\vdash (A \to A)$ - Закон тождества.

- 1) $A \rightarrow ((A \rightarrow A) \rightarrow A)$ arc. 1
- 2) $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$ arc. 2
- 3) $(A \to (A \to A)) \to (A \to A)$ modus ponens 1, 2
- 4) $A \rightarrow (A \rightarrow A)$ $a\kappa c.$ 1
- 5) $A \rightarrow A$ modus ponens 4, 3