Name: Imisi Raphael Aiyetan Course: Econometrics 512

Problem Set 5

Solution

Problem 1

Question (a):

. * The regular robust standard errors

٠

. xtreg lrpdi lsales, fe vce(robust)

Fixed-effects (within) regression	Number of obs	=	28
Group variable: id	Number of groups	=	7
R-sq: within = 0.0070	Obs per group: mir	=	3
between = 0.4037	avg	=	4.0
overall = 0.0449	max	=	5
	F(1,6)	=	0.40
corr(u_i, Xb) = 0.1999	Prob > F	=	0.5510

(Std. Err. adjusted for **7** clusters in id)

lrpdi	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lsales _cons	.0042463 4.512929	.0067238	0.63 147.25	0.551 0.000	0122061 4.437938	.0206988 4.587921
sigma_u sigma_e rho	.06705105 .0135427 .96080464	(fraction	of varia	nce due t	o u_i)	

```
. * Clustering by i, the of cross-sectional observation
. xtreg lrpdi lsales, fe vce(cluster id)
Fixed-effects (within) regression
                                                Number of obs
                                                                             28
Group variable: id
                                                Number of groups
                                                                              7
                                                                              3
R-sq: within = 0.0070
                                                Obs per group: min =
       between = 0.4037
                                                                avg =
                                                                            4.0
       overall = 0.0449
                                                                              5
                                                                max =
                                                F(1,6)
                                                                           0.40
corr(u_i, Xb) = 0.1999
                                                Prob > F
                                                                         0.5510
                                     (Std. Err. adjusted for 7 clusters in id)
                             Robust
       lrpdi
                    Coef.
                            Std. Err.
                                                P>|t|
                                                           [95% Conf. Interval]
      lsales
                 .0042463
                            .0067238
                                         0.63
                                                0.551
                                                          -.0122061
                                                                       .0206988
       _cons
                 4.512929
                            .0306475
                                       147.25
                                                0.000
                                                           4.437938
                                                                       4.587921
                .06705105
     sigma_u
     sigma_e
                 .0135427
```

Interpretation:

rho

.96080464

Ignoring in fixed effect, we realized that regression for robust standard and when we grouped individuals in cluster the result of the two analyses are the same. By implication, when we account for unknown structure of variation and heteroskedasticity/differences across clusters of observation the results are the same However, the estimated parameter for *Isales* is insignificant for both methods. We present the STATA output in Appendix 1 and 2. Also, the programming codes are shown in Appendix 13.

(fraction of variance due to u_i)

Question (b):

```
. egen lsale_bar = mean(lsales)
. egen lrpdi_bar =mean(lrpdi)
. gen z = lsales - lsale_bar
. gen q = lrpdi - lrpdi_bar
. reg z q
                                               Number of obs = 28
    Source
                SS
                        df
                                MS
                                               F(1, 26) = 1.22
                                               Prob > F = 0.2789
    Model
              .071949325
                         1 .071949325
                                               R-squared = 0.0449
   Residual
             1.52932909
                        26 .05882035
                                               Adj R-squared = 0.0082
     Total 1.60127842
                        27 .059306608
                                               Root MSE
                                         P>|t| [95% Conf. Interval]
                 Coef.
                        Std. Err.
                                 t
         Z
              .7995552
                        .7229344
                                   1.11
                                         0.279
                                                 -.6864578
                                                             2.285568
     _cons
              6.82e-08
                        .0458337
                                   0.00
                                         1.000
                                                 -.0942124
                                                             .0942126
```

```
. egen l_sale_bar = mean(lsales), by(id)
. egen l_rpdi_bar =mean(lrpdi), by(id)
. gen x = lsales - l_sale_bar
. gen y = lrpdi - l_rpdi_bar
. reg y x
      Source
                     SS
                              d f
                                                        Number of obs =
                                                        F( 1,
                                                                  26) =
                                                                           0.18
      Model
                .000026032
                               1 .000026032
                                                        Prob > F
                                                                         0.6711
   Residual
                .003668096
                              26
                                  .000141081
                                                        R-squared
                                                        Adj R-squared = -0.0311
      Total
                .003694129
                                    .00013682
                                                        Root MSE
           у
                    Coef.
                            Std. Err.
                                           t
                                                 P>|t|
                                                           [95% Conf. Interval]
           х
                 .0042463
                            .0098853
                                          0.43
                                                 0.671
                                                          -.0160732
                                                                       0245659
      _cons
                -1.54e-07
                            .0022447
                                        -0.00
                                                 1.000
                                                          -.0046142
                                                                       0046139
```

Interpretation:

Estimating the fixed effect model using demean approach, we find that the estimated parameter of x and q are different. Although the results for both approaches are insignificant, but it suggests that when the fixed effect model is estimated and we account for difference/heteroskedasticity across group, the results are different. We present the STATA output in Appendix 2 and 3. Also, the programming codes are shown in Appendix 13

Question (C):

. reg lrpdi lsales d2 d3 d4 d5 d6 d7

Source	SS	df	MS	_	Number of obs F(7, 20)	
Model Residual	.108981639 .003564294	7 20	.015568806 .000178215		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9683
Total	.112545933	27	.004168368	1	Root MSE	= .01335
	,					
lrpdi	Coef.	Std. E	≣rr. t	P> t	[95% Conf.	Interval]
lsales	.0050718	.01096	675 0.4	6 0.649	017806	.0279495
d2	.0241732	.00955	558 2.5	3 0.020	.0042403	.0441062
d3	.0675644	.00957	742 7.0	6 0.000	.047593	.0875359
d4	.1227823	.00972	271 12.6	0.000	.1024918	.1430727
d5	.1309612	.00970	047 13. 4	9 0.000	.1107177	.1512048
d6	.1532011	.0096	012 15.9	6 0.000	.1331732	.1732289
d7	.177454	.00959	976 18.4	9 0.000	.1574336	.1974743
_cons	4.412576	.0488	529 90.3	0.000	4.310671	4.514481

reg lrpdi lsales i id

Source	SS	df		MS		Number of obs		28 84.81
Model Residual	.108877836 .003668096	7 20		553977 183405		Prob > F R-squared Adj R-squared	=	0.0000 0.9674 0.9560
Total	.112545933	27	.004	168368		Root MSE	=	.01354
lrpdi	Coef.	Std. E	rr.	t	P> t	[95% Conf.	In	terval]
lsales	.0042463	.0112	271	0.38	0.710	0192646		0277572
id								
2	.024285	.0096	97	2.50	0.021	.0040575		0445125
3	.0676848	.00971	L 6 2	6.97	0.000	.0474172		0879524
4	.1245132	.01043	325	11.94	0.000	.1027514		.146275
5	.1285638	.00955	64	13.45	0.000	.1086295		1484982
6	.1533331	.00974	143	15 74	0.000	.1330068		1736594
7	.1775845	.00974	106	18.23	0.000	.157266	•	1979029
_cons	4.416218	.05019	29	87.98	0.000	4.311518	4	.520919

Interpretation:

The most interesting part of these analyses is that when we account for individual and group effects, lsales has a significant impact on lrpdi. Comparing the two methods, we realize that the estimated parameters of the indicator variables are similar, and they are all significant at 5% level of significance. Therefore, estimating the fixed effect model with individual dummy variables and in clusters, the results are similar and significant. We present the STATA output in Appendix 3 and 4. Also, the programming codes are shown in Appendix 13

How do all of these results compare?

Using different approaches to estimate the fixed effect model, we realize that they generate the same results based on the estimated parameter. However, the most efficient method in this case is the fixed effect regression when we account for individual dummy variables or differences across groups. Note that these results could be as a result of the data we considered in this analysis. Both demean and robust standard errors approach give insignificant results.

Problem 2

\sim	. •		·• \	
()ı	Dection	21	11	١.
v	uestion	a	ш	, .

. egen E = max(grant), by(fcode)

. mean (hrsemp) if year==1987 & E==0

Mean estimation

Number of obs = 98

	Mean	Std. Err.	[95% Conf.	Interval]
hrsemp	9.296744	1.663396	5.995363	12.59813

. mean (hrsemp) if year==1988 & E==0

Mean estimation

Number of obs = 96

	Mean	Std. Err.	[95% Conf.	Interval]
hrsemp	9.671083	1.855213	5.98802	13.35415

. mean (hrsemp) if year==1987 & E==1

Mean estimation

Number of obs = 31

	Mean	Std. Err.	[95% Conf.	Interval]
hrsemp	7.591087	3.650933	.1348872	15.04729

. mean (hrsemp) if year==1988 & E==1

Mean estimation

Number of obs = **31**

	Mean	Std. Err.	[95% Conf.	Interval]
hrsemp	35.97834	6.637497	22.42276	49.53392

. ttest hrsemp, by(E)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	194 62	9.481984 21.78471	1.241371 4.172989	17.2903 32.85815	7.033589 13.44031	11.93038
combined	256	12.46155	1.414802	22.63684	9.675366	15.24774
diff		-12.30273	3.217664		-18.63943	-5.966032

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.0001 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.9999

. ttest hrsemp if year==1987, by(E)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	98 31	9.296744 7.591087	1.663396 3.650933	16.46678 20.32753	5.995363 .1348872	12.59813 15.04729
combined	129	8.886858	1.532252	17.40304	5.855035	11.91868
diff		1.705658	3.597038		-5.412231	8.823546

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.6819 Pr(|T| > |t|) = 0.6362 Pr(T > t) = 0.3181

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
0 1	96 31	9.671083 35.97834	1.855213 6.637497	18.1773 36.95602	5.98802 22.42276	13.35415 49.53392		
combined	127	16.09254	2.352765	26.51432	11.43649	20.74859		
diff		-26.30726	4.970328		-36.14415	-16.47036		
	iff < 0) = 0.0000	Pr(Ha: diff != T > t) =	-		iff > 0) = 1.0000		

Interpretation:

It is evident from the result that when considering E=0 for 1987 and 1988 the mean values are quite close. However, for E=1 the mean values are far from each other. This effect could be as a result different number of observations. Similarly, for the diff-in-diff estimation, we find that when considering 1987 the result is insignificant based on the t-test. However, for other estimations, the results are significant at 5% level of significance.

Question a(ii):

. reg hrsemp grant d88 E

Source	SS	df		MS		Number of obs		256
Model Residual	19608.6794 111060.074	3 252		22646 14578		F(3, 252) Prob > F R-squared	=	14.83 0.0000 0.1501 0.1399
Total	130668.753	255	512.4	26483		Adj R-squared Root MSE	=	20.993
hrsemp	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
grant d88 E _cons	28.01292 .374339 -1.705658 9.296744	6.125 3.014 4.325 2.120	608 932	4.57 0.12 -0.39 4.38	0.000 0.901 0.694 0.000	15.94933 -5.562698 -10.22524 5.120321	6 6	40.0765 .311376 .813929 3.47317

Interpretation:

The result shows that grant has significant positive impact on hrsemp. Other variables in this model are insignificant to hrsemp. We present the STATA output in Appendix 5, 6, and 7. Also, the programming codes are shown in Appendix 14

Question a(iii):

. xtreg hrsemp grant d88, fe

	hrsemp	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
corr(ı	u_i, Xb)	= -0.0235			Prob > F	:	= 0.0000
					F(2,123)		= 54.77
	overal ⁻	l = 0.1495				max	= 2
		n = 0.0692				avg	
R−sq:	within	= 0.4711			Obs per g	roup: min	= 1
Group	variable	e: fcode			Number of	groups	= 131
		(within) reg	ression		Number of		= 256

hrsemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
grant d88 _cons	27.87793 .5093233 8.833036	3.129216 1.558337 .9462108	8.91 0.33 9.34	0.000 0.744 0.000	21.68384 -2.57531 6.96007	34.07202 3.593956 10.706
sigma_u sigma_e rho	19.405599 10.683421 .76740875	(fraction (of varia	nce due t	o u_i)	

F test that all u_i=0: F(130, 123) =

6.55

Prob > F = 0.0000

Interpretation:

The result shows that when estimating fixed effect model grant has significant positive impact on hrsemp. Other variables in the model are insignificant to hrsemp. We present the STATA output in Appendix 7. Also, the programming codes are shown in Appendix 14

Do you get the answer in each of these cases? Why or why not?

The results show that when we account for dummy variable for being a firm that receives treatment the estimated parameters of grant are close to the one in the fixed effect regression and they both significant. Generally, the results from two approaches are the same. The reason for this result is that the fixed effect model is exactly the same with the regression model since q_i and E_i are considered to be dummy variables in the two model.

Question 2b(i):

. xtreg hrsemp t, fe

Fixed-effects (within) regression Group variable: fcode	Number of obs Number of groups		390 135
R-sq: within = 0.0872 between = 0.0117 overall = 0.0301	Obs per group: min avg max	=	1 2.9 3
corr(u_i, Xb) = -0.0164		= =	24.27 0.0000

hrsemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t _cons	5.825537 3.241778	1.182386 2.566541	4.93 1.26	0.000 0.208	3.497008 -1.812633	8.154066 8.296189
sigma_u sigma_e rho	20.071123 18.973517 .52808937	(fraction o	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(134, 254) = 3.27 Prob > F = 0.0000

. predict hrsemp_res

(option xb assumed; fitted values)

. xtreg grant t, fe

Fixed-effects (within) regression Group variable: fcode	Number of obs Number of groups	=	390 135
<pre>R-sq: within = 0.0774 between = 0.0253 overall = 0.0564</pre>		in = /g = ax =	1 2.9 3
corr(u_i, Xb) = -0.0251	F(1,254) Prob > F	=	21.31 0.0000

grant	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t _cons	.1087379 0675878	.0235548	4.62 -1.32	0.000 0.187	.0623502 1682789	.1551255 .0331034
sigma_u sigma_e rho	.17032656 .37797988 .16878723	(fraction	of varia	nce due [.]	to u_i)	

F test that all $u_i=0$: F(134, 254) = 0.57 Prob > F = 0.9998

. predict grant_res

(option xb assumed; fitted values)

. xtreg d88 t, fe

Fixed-effects (within) regression Number of obs = 390 Number of groups = Group variable: fcode 135 R-sq: within = 0.0000Obs per group: min = 1 between = 0.3217avg = 2.9 overall = **0.0001** max = 3 F(1,254) = 0.00 Prob > F $corr(u_i, Xb) = 0.0568$ 0.9569

d88	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t _cons	0019417 .3295494	.0358725 .0778666	-0.05 4.23	0.957 0.000	0725872 .1762031	.0687037
sigma_u sigma_e rho	.08343789 .57563965 .02057762	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(134, 254) = 0.03 Prob > F = 1.0000

•

. predict d88_res

overall =

(option xb assumed; fitted values)

. xtreg E t, fe

note: t omitted because of collinearity

max =

3

E	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t _cons	0 .474359	(omitted)				
sigma_u sigma_e rho	.50074571 0 1	(fraction o	of varian	ce due t	o u_i)	

F test that all $u_i=0$: F(134, 254) = . Prob > F = .

. predict E_res

(option xb assumed; fitted values)

Question 2b(ii)

```
. reg hrsemp_res grant_res d88_res E_res
note: d88_res omitted because of collinearity
note: E_res omitted because of collinearity
```

Source	SS	df		MS		Number of obs		390
Model Residual	8923.22499 0	1 388	8923	.22499		F(1, 388) Prob > F R-squared Adj R-squared	=	1.0000 1.0000
Total	8923.22499	389	22.9	388817		Root MSE	=	0
hrsemp_res	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
grant_res d88_res E_res _cons	53.57414 0 0 6.862733	(omitt						

Interpretation:

Generally, the result shows that when we considering firm-specific variables and trend for the three years, the most important residual is the one coming from grant. However, other residuals are not important to the firm. In conclusion, estimating fixed effect model using this approach is inefficient. We present the STATA output in Appendix 8,9,10,11, and 12. Also, the programming codes are shown in Appendix 14.