Devoir à la maison n° 04

À rendre le 06 octobre

I. Nombres de Catalan

On pose $C_0 = 1$ et l'on définit par récurrence, pour tout $n \in \mathbb{N}$, $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$.

- 1) Calculer C_1, C_2, C_3, C_4 et C_5 .
- 2) Montrer par récurrence simple que, pour tout $n \in \mathbb{N}$, $C_n \geqslant 2^{n-1}$.
- 3) Montrer par récurrence (forte ou multiple, à vous de choisir) que, pour tout $n \in \mathbb{N}$, $C_n \geqslant 3^{n-2}$.
- 4) Tenter de montrer par une récurrence similaire à celle de 3) que pour tout $n \in \mathbb{N}$, $C_n \geqslant 4^{n-2}$. À quel endroit ceci échoue-t-il?

II. Système linéaire et puissances de matrice

On introduit les matrices

$$A = \begin{pmatrix} -4 & 1 & 8 \\ -5 & 1 & 11 \\ -1 & 0 & 3 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} .$$

- 1) Soit $Y=\begin{pmatrix} t\\u\\v \end{pmatrix}\in \mathcal{M}_{3,1}(\mathbb{R}).$ Résoudre en X le système PX=Y.
- 2) En déduire que P est inversible ainsi que l'expression 1 de P^{-1} .
- 3) Calculer $N = P \times A \times P^{-1}$.
- 4) Calculer N^2 , N^3 et en déduire une expression de N^n , pour tout entier naturel n.
- 5) En déduire une expression de A^n , pour tout entier naturel n.
- **6)** La matrice A est-elle inversible?

— FIN —

^{1.} La suite de l'exercice dépend de cette réponse, il vous est fortement conseillé de vérifier votre calcul d'inverse.