PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-245845

(43)Date of publication of application: 01.11.1991

(51)Int.Cl.

B01J 23/74 B01D 53/36

B01D 53/36

(21)Application number : 02-040833

(71)Applicant : ALPHA CREST:KK

FUNAYAMA GOJI

(22)Date of filing:

21.02.1990

(72)Inventor: TAMAURA YUTAKA

(54) ACTIVATED MAGNETITE CATALYST AND ITS PREPARATION

(57)Abstract:

PURPOSE: To enhance the reducing capacity to various oxide compounds by removing a part of oxygen from the fixed crystal lattice of a specific iron oxide particle by heating the particle to specific temp. to form an activated magnetite catalyst.

CONSTITUTION: A Fe3O4+x particle formed by partially or perfectly oxidizing Fe3O4 or a γ-Fe2O3 particle is used as a starting raw material and this starting raw material is heated to 200 - 400°C to remove a part of oxygen from the crystal lattice of the particle to form an activated magnetite catalyst. The activated magnetite catalyst being oxygen depleted magnetite acts as a strong reducing agent reducing C(+4), H(+1) by new type reaction not carried out heretofore and can be especially utilized as the removal technique of NOx being the main cause of atmospheric pollution.

19日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報(A) 平3-245845

®Int. Cl. 5

識別記号

庁内整理番号

砂公開 平成3年(1991)11月1日

B 01 J B 01 D 23/74 53/36

301 102 8017-4G

8616-4D 8616-4D

審査請求 未請求 請求項の数 2 (全6頁)

69発明の名称

活性化マグネタイト触媒及びその製造方法

20特 願 平2-40833

29出 願 平2(1990)2月21日

@発 明 者

浦 玉

裕

神奈川県横浜市港南区日野6-11-13-105

顋 人 创出 株式会社アルフアクレ

東京都港区東麻布1丁目7番10号

スト

70出 顋 人

船山

司

東京都目黒区冼足2丁目13番19号

70代 理 人 弁理士 菅 野 中

明 細

1. 発明の名称

活性化マグネタイト触媒及びその製造方法

2. 特許請求の範囲

(1) 鉄酸化物粒子を出発原料とする活性化マグネ タイトであって、

鉄酸化物粒子は、Fe.O.又はFe.O.を一部酸化若 しくは完全に酸化されたFe,O...あるいはy-Fe, 0.であり、

鉄酸化物粒子の固体結晶格子から一部の酸素が 除去されていることを特徴とする活性化マグネタ イト触媒。

(2) Fe,0,又はFe,0,を一部酸化若しくは完全に酸 化されたFe,0,+,あるいはγ-Fe,0,粒子を200℃~ 400 ℃の下で粒子の結晶格子より一部の酸素を除 去する処理を行うことを特徴とする活性化マグネ タイト触媒の製造方法。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は酸化化合物の還元に用いる活性化マグ

ネタイト触媒及びその製造方法に関する。

〔従来の技術〕

マグネタイトは化学量齢的にはFe_0.で表わさ れるスピネル型の複合鉄酸化物であり、Fe*+Fe*+ 。(0°~)、のイオン組成となっている。このFe**イ オンが一部酸化されることによってプラスの電荷 が増大すると、これに伴い電気的中性を保持する ため、O"-イオンがスピネル型結晶に組み込まれ、 結果的にFe,0、+xで表わされるマグネタイト(整 化を受けているという意味で酸化マグネタイトと いう)になる。このように酸素イオンが結晶中に 増えるので、その分カチオン(Fe**もしくはFe**) の占める結晶中の格子点が空乏となる。これをカ チオン格子欠陥という。このようにカチオン欠陥 マグネタイトが形成されることになるが、実際に このような鉄酸化物が形成されることはよく知ら れている。この酸化マグネタイトは、酸化反応を 触媒するのみで還元反応の触媒能はなく、鉄酸化 物の触媒としての利用に限度があった。

[発明が解決しようとする課題]

これに対し、Fe.O.のFe**イオンが選元された 場合を考えてみるこの時には、Fe'*→Fe'*となり、 プラスの健樹が減少するので、マグネタイトは電 気的中性を保つために、酸素イオン(O'*)を放出 すると考えられる。結果的にFe,O.-。の式で表わ されるマグネタイト(酸素が不足しているのでこ れを酸素欠陥マグネタイトと表現する)が得られ るのではないかと考えられる。しかし、現在まで に知られている無平衡反応においては、このよう な酸素欠陥のマグネタイトの存在は知られておら ず、600 ℃付近においては、一定の酸素分圧で、 Fe.O.とFeとの二相に分離し、また、それより高 選においては、Fe.O.とFeOとの二相に分離するこ とが知られている。Fe,0、は酸素欠陥に対して優 めて不安定であり、それよりもより安定なFeなFe 0相に移転するものと考えられる。

本発明者は、酸素欠陥マグネタイトを製造する 方法を見出し、また、この酸素欠陥マグネタイト がCO., H.O. NO, NO. などの酸化ガスを選元する 強力な還元物質であることを発見した。

は、Fe.0.又はFe.0、を一部酸化若しくは完全に酸化されたFe.0.・・・あるいは γ − Fe.0。を出発原料とし、酸素を除去することにより得られる。合成に際し、最も重要な点は、処理温度200~400℃の範囲内で酸素を除去することである。温度がごこの範囲より低い場合には、酸素の引き抜きに時間を要するので実用的ではなく、400℃以上にあっては酸素欠陥マグネタイトが得られず、α − Fe(α − 鋏)の金属鉄が一部生成するようになる。 つまり、酸素欠陥マグネタイトは、準安定な相としてのみ存在し得るのであり、従来の研究においては時間との関係で600℃以上での実験が行われており、そのために600℃付近で準安定に存在し得る酸素欠陥マグネタイトが発見されなかったものと考えられる。

処理温度が200℃~400℃の間であれば、比較的 速い速度で酸素が除去され、また生成する酸素欠 陥マグネタイト(Pe.0.-_a)が安定に存在し得る。 一例として300℃を選びまた酸素を引き抜く反応 として水素を用い、水を生成する反応を用いた機 したがって、本発明の目的は上記知見に基づいてCO., H,O, NO, NO。などを含む各種酸化化合物の還元触媒に有効な活性化マグネタイト触媒及びその製造方法を提供することにある。

[課題を解決するための手段]

上記目的を達成するため、本発明による活性化 マグネタイト触媒においては、鉄酸化物粒子を出 発原料とする活性化マグネタイトであって、

鉄酸化物粒子は、Fe.O.又はFe.O.を一部酸化若 しくは完全に酸化されたFe.O.・・あるいは γ \sim Fe.O. であり、

鉄酸化物粒子の固体結晶格子から一部の酸素が 除去されているものである。本発明による活性化 マグネタイト触媒は、Fe.0.又はFe.0.を一部酸化 若しくは完全に酸化されたFe.0.→*あるいはγー Fe.0.粒子を200℃~400℃の下で粒子の結晶格子 より一部の酸素を除去する処理を行う製造方法に よって得られる。

〔原理·作用〕

本発明による酸素欠陥マグネタイト(Fe.O.-x)

合について述べる。

第一鉄イオンの水酸化物をpHIIで酸化して得ら れるマグネタイト粒子(0.1~0.2m)を300℃でH. 気 流中に4時間放置した。この時、得られたX線回 折特性を第1図に示す。αFeの相はみられず、ス ピネル型化合物のピークのみがみられ、マグネタ イト粒子がスピネル型構造を保持していることが 分かる。このピークの位置(角度)から求めたスピ ネル型化合物の格子定数は0.8408nmで化学量論的 なマグネタイトFe.O.の格子定数0.8396nmよりも かなり大きくなっていた。またこの水器処理マグ ネタイトの化学組成は、Fe_{*}O_{*-x}(x = 0, 25)であっ た。こにように水素処理したマグネタイトは、酸 素欠陥のスピネル型構造をとっているものと推定 される。この水素処理マグネタイトは、空気中、 室風の下で比較的安定である。しかし、100 ℃以 上では酸化されFe.O.、もしくはFe.O.+xの鉄酸化 物となる。

また、水湊処理マグネタイトを400 ℃で窒素気 流中に3時間放置すると、水素処理マグネタイト の一部が α - Feに変化することが X 線回折測定の 結果から明らかとなった。このように本発明で得 られた水素処理マグネタイト (= 酸素欠陥マグネ タイト) は450 ℃以上では α - Feに変化する。す なわち、300 ℃付近において、草安定な相として 存在し得る新規物質であることが見出された。

酸素欠陥マグネタイトをCO., H,O, NO, NO., C Oと反応させると、いずれも、

 $CO_{\bullet} \rightarrow C + 2(0^{\circ})$

H.O→H.+ (O'-)

 $NO \rightarrow N_* + (O'^-)$

 $NO_1 \rightarrow N_1 + 2(0)^{-1}$

CO →C + (O'-)

の反応によって酸化ガスの酸素イオン(〇°-)はそのまま酸素欠陥でマグネタイトの格子中に組み込まれ、C(+4), H(+1), N(+4, +2)はいずれもC(0), H.(0), N.(0)にまで還元される。この還元力は、〇°-イオンがマグネタイト中に取り込まれた際、電気的中性を保つために電子が放出されることに起因すると考えられる。

0.) を処理することによっても得ることができる。 [実施例]

以下に本発明の実施例を示す。

(実施例1)

第2図において、0.9grのFe.0.粒子Iを磁性ポード2に入れ、この磁性ボード2を反応管3内に収容し、電気炉4中で300 ℃に加熱しつつ反応管3の出口倒弁5を開き、5時間にわたってマグネタイトとH,を接触させた。Fe.0.粒子を水素ガスで活性化した後、入口側弁6を切替え、100%CO。ガスを送入し、出口側弁5を閉じ、そのまま300℃に5時間保った。この5時間の間のCO。ガス是と、Fe.0.粒子上に堆析した炭素量との経時的変化を測定して第3図(a)の結果を得た。図に明らかなとおり、4時間経過後にはCO。は殆ど残存せず、100%近い分解効率が得られた。

また、反応初期にはCOが僅かに析出されたが、 2時間後には完全に消失し、金期間を通じて CH。 は析出されなかった。

比較のため、活性化処理を行わないFe.O.粒子

[発明の効果]

以上のように本発明による酸素欠陥マグネタイトによれば従来にない新しい型の反応によってC(+4), H(+1)を還元する強力な還元剤として作用させることができ、この一連の反応によって、いずれも反応後にマグネタイトは通常の化学量験的なFe.0.スピネル型化合物に戻されるため好ましいクローズトサイクルをもたらす。

特に、CO。の分解は、排ガス中の二酸化炭素系の除去技術として、またNOやNO。,COの分解は大気 汚染の元凶であるNO。の除去技術として利用でき るように、H,O の分解は、水素ガスの発生技術と して利用できる。

また、本発明によるマグネタイトの活性化法としては、水素によって〇° **イオンをマグネタイト中から引き抜く反応のほか、10 ** Torr, 真空中で300 ℃で5時間処理を行うことによっても同様の結果を得ることができる。

さらに、水溶液中において、リチウムホロハイドライドなどの還元在を用いてマグネタイト(Fe.

を用いて同様にCO。の処理を行った結果を第3図(b)に示す。図に明らかなとおり、全期間にわたり CO。ガス量には殆ど変化が認められなかった。以上を比較してFe。O、粒子に活性化処理を施し、これを触媒としてCO。の反応処理を行うことが如何に重要であるかが分かる。

(実施例2)

第一鉄イオンをpH 9~10,65℃で空気酸化して得られるマグネタイト(0.1~0.2 μm)の粉末(0.8 g)を磁性ボードに入れ、これを石英管(2 cm,30 cm 長)中に置き、300℃、10~ Torrに減圧し、3時間放置してマグネタイトを活性化した。その後、石英管中に水を40 mg注入して気化させ、管内をほぼ1 a t mに保った。その後、管内の水素ガス組成をガスクロマトグラフにより測定したところ、水素ガスは5分後に5%,20分後に13%,40分後に約30%と増大し、ほぼ2時間後には、ほとんどの水が水素ガスに変化した。

(実施例3)

マグネタイト粒子(0.8g)を300℃で水乗ガスで

1時間反応させて活性化させ、その後、真空ポンプによって水素ガスを除去し、実施例 2 と同様に水を40mg注入して分解させたところ、実施例 2 とほぼ同様の結果が得られた。

(実施例4)

第4図において、3.0gのFe.0.粒子1を反応管3内に充填し、この反応管3を電気炉4中で350℃に加熱し反応管3の出口側弁5を関き、入口側よりH.ガスを流入して5時間にわたってH.を接触させた。Fe.0.粒子1をH.で活性化した後、入口側弁2を切り換え、N.ガスを1時間送入し、反応管3内のH.ガスを完全に除去した。次に、温度350℃に保ちながら821ppm NO_x(NO+NO_x)ガス1000cc (概準状態)を反応管3内に20cc/分で送入し、反応管3の出口側からでるガスをテトラパックで捕猟し、NO_x(NO+NO_x)ガスの濃度の分析を行った。その結果NO_x(NO+NO_x)ガスは検出されず100%近い効率で除去することができた。なお、NO_x(NO+NO_x)ガスの測定には、無機ガス用直続式検知管(NO用,NO+NO_x用)及びザルツマン法を用いた。

(実施例5)

水冷ディーゼルエンジン排気量1000cc, 3 気筒から生じる排ガス中のNO_x(NO+NO_x)ガスを除去するためにこの方法を適用した。すなわち排ガスを直接100gの活性化Fe,O.に通じたところ、30分間にわたって排ガス中のNO_x(NO+NO_x)ガスが全く検出されなかった。

4. 図面の簡単な説明

第1図は本発明による活性化マグネタイトのX 緑回折特性を示す図、第2図は実施例1に用いた 実験装置を示す図、第3図(a)は水素活性化マグ ネタイトを用いた炭酸ガス量の変化を示す図、第 3図(b)は比較のため、活性化しないマグネタイトを用いて処理した炭酸ガス量の変化を示す図、 第4図は実施例4に用いた実験装置を示す図である。

1 ··· Fe. 0. 粒子

3 … 反応管

特許出願人 株式会社アルファクレスト 同 上 船 山 剛 町

代理人 弁理士 菅野

第1図

第3図

第 3 図

第 4 図