

Using Deep Learning to Classify Open-text Field Comments in a Panel Study

Catherine Billington, Jiating (Kristin) Chen, Andrew Jannett, Gonzalo Rivero

Government Advances in Statistical Programming Workshop, 11/06/2020

Background

- Field comments from Medical Expenditure Panel Study (MEPS): entered by interviewers into CAPI to request data updates or corrections to the data they collect earlier in the interview.
 - "PID 102 also has AARP as a supplemental insurance."
 - "Ibuprofen 800 mg prescribed for Andy on June 17, 2019."
 - "For Catherine, the employer "Westad" should be spelled "Westat".
 - "Nancy visited Dr. Grace Yang on 2/14/18 (not on 1/17/18)".
- Field comments require costly (and mostly manually) data processing, but they can improve data quality.
- Category: designed to improve processing efficiency. Before entering a comment, interviewers
 are required to select a list of broad categories such as Health Insurance, Employment, or
 Prescribed Medicines

Problem

• Can Machine Learning help to determine the correct comment category?

Data

- ~8,000 data points
- 10 categories
- The proportion is unbalanced

Health Care Events	0.42
Other	0.13
Prescribed Medicines	0.12
Health Insurance	0.11
RU / RU Member	0.10
Employment	0.06
Condition	0.02
RU Member Refusal	0.02
Other Medical Expenses	0.02
Glasses / Contact Lenses	0.01
Name: category, dtype: float	:64

Methodology - method 1: feature extraction, TF-IDF word embeddings and a linear model (in production)

feature extraction

- survey metadata: question number and field name where the comments entered
- **key information** presented in the sentences that could help predict the category: *dollar amounts*; zipcode; phone number; states or cities; date; *age of a person; keywords indicated respondent(s): "R(s)", "respondent(s)", "household(s)", "RU(s)", "PID(s)", "HH", "resp", "pt"; name of a person; insurer; drug; medical provider
- Examples:
 - "PID 102 also has AARP as a supplemental insurance". features: insurer; category:
 Health Insurance
 - "Ibuprofen 800 mg prescribed for Andy on June 17, 2019.". features: drug, category:
 Prescribed Medicines
 - "Nancy visited Dr. Grace Yang on 2/14/18 (not on 1/17/18)". features: medical provider, date; category: Health Care Events

Methodology - method 1: feature extraction, TF-IDF word embeddings and a linear model (in production)

• model: ElasticNet

• performance: 76% accuracy

Can a deep model outperform the linear model in production?

• Deep learning-based Natural Language Processing models provide *pre-training contextual* representations, resulting in substantial accuracy improvements compared to training on a small set of datasets from scratch (Devlin, 2019).

Methodology - method 2: feature extraction, and a Feed Forward Neural Network (FFNN)

Model: "sequential_7"

Layer (type)	Output Shape	Param #
dense_14 (Dense)	multiple	11904
dense_15 (Dense)	multiple	1290

Total params: 13,194 Trainable params: 13,194 Non-trainable params: 0

Methodology - method 2: feature extraction, and a FFNN

- LR = 0.001; BATCH_SIZE = 32; EPOCHS = 30; weighted classes
- Accuracy: 69%

('	precision	recall	f1-score	support\n'
`'\n'	•			• •
' RU / RU Member	0.59	0.22	0.32	190\n'
' RU Member Refusal	0.17	0.66	0.27	32\n'
' Condition	0.29	0.57	0.38	40\n'
' Health Care Events	0.79	0.82	0.80	764\n'
'Glasses / Contact Lenses	0.22	0.35	0.27	17\n'
' Other Medical Expenses	0.27	0.35	0.31	34\n'
' Prescribed Medicines	0.83	0.84	0.83	214\n'
' Employment	0.85	0.88	0.87	136\n'
' Health Insurance	0.80	0.82	0.81	213\n'
' Other	0.54	0.37	0.44	241\n'
'\n'				
' accuracy			0.69	1881\n'
' macro avg	0.53	0.59	0.53	1881\n'
' weighted avg	0.71	0.69	0.68	1881\n')

Methodology - method 3: comments and Bidirectional Transformers for Language Understanding (BERT)

• BERT (Devlin 2019)

• DistilBERT: reduces the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. (Sanh 2019)

Methodology - method 3: comments and DistilBERT

Model: "tf_distil_bert_for_sequence_classification"

Layer (type)	Output Shape	Param #
distilbert (TFDistilBertMain	multiple	66362880
<pre>pre_classifier (Dense)</pre>	multiple	590592
classifier (Dense)	multiple	7690
dropout_19 (Dropout)	multiple	0

Total params: 66,961,162
Trainable params: 66,961,162

Non-trainable params: 0

Methodology - method 3: comments and DistilBERT

- DBERT_MODEL = 'distilbert-base-uncased'; LR = 1e-5; EPOCHS = 10; BATCH_SIZE = 32; weighted classes
- Accuracy: 66%

('	precision	recall	f1-score	support\n'
'\n'	•			
' RU / RU Member	0.39	0.56	0.46	190\n'
' RU Member Refusal	0.55	0.84	0.67	32\n'
' Condition	0.49	0.68	0.57	40\n'
' Health Care Events	0.79	0.68	0.73	764∖n'
'Glasses / Contact Lenses	0.46	0.71	0.56	17\n'
' Other Medical Expenses	0.33	0.50	0.40	34\n'
' Prescribed Medicines	0.83	0.83	0.83	214\n'
' Employment	0.74	0.77	0.76	136\n'
' Health Insurance	0.77	0.81	0.79	213\n'
' Other	0.46	0.36	0.40	241\n'
'\n'				
' accuracy			0.66	1881\n'
' macro avg	0.58	0.67	0.62	1881\n'
' weighted avg	0.68	0.66	0.67	1881\n')

Methodology - Model comparison

- Accuracy:
 - an ElasticNet model trained on extracted features and TF-IDF word embeddings: 76%
 - a FFNN trained on extracted features: 69%
 - DistilBERT for sentence classification trained on comments: 66%
- ElasticNet/FFNN > DistilBERT
 - The key to distinguishing classes among field comments mostly bases on the presence or absence of key information.
 - The knowledge derived better prediction exceeds the context of language itself.
 - Contextual representation doesn't add values in our classification.
- ElasticNet > FFNN
 - The linearity assumption of the extracted features applies better to the structure of our data.

Takeaways

- Superior deep learning models, i.e. BERT, don't always outperform in all kinds of Natural Language Understanding tasks.
- The value of rigorous research, data understanding, and feature engineering shouldn't be underestimated in Natural Language Understanding tasks. In some cases, a simpler model could solve the problem better.

Reference

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108.

Thank You

KristinChen@westat.com