7210 Review

Duncan Wilkie

5 December 2022

Problem 1. If $x^2 = 1$ for all $x \in G$, then G is Abelian.

Proof. Take
$$a, b \in G$$
. $x^2 = 1 \Leftrightarrow x = x^{-1} \Rightarrow 1 = (ab)^2 = abab = aba^{-1}b^{-1} \Leftrightarrow ab = ba$.

Problem 2. Any finite group G of even order contains an element of order 2.

Proof. Consider the set A of all self-inverse elements in G. Its complement must be of even cardinality, since every element of it has a distinct inverse, so the set can be gathered into distinct inverse pairs. Accordingly, |A| is even. This means there exists a non-identity element that's self-inverse, which is necessarily of order 2.

Problem 3. If n = 2k is even and $n \ge 4$, then $z = r^k$ is an element of order 2 which commutes with all elements of D_{2n} . Also, z is the only nonidentity element which commutes with all elements of D_{2n} .

Proof. This is a boring computation using the presentation $\langle s, r \mid s^2 = 1, r^n = 1, sr = r^{-1}s \rangle$.

Problem 4. If n is odd and n > 3, the identity is the only element of D_{2n} that commutes with all other elements.

Proof. This is a boring computation using the presentation $\langle s,r \mid s^2=1, r^n=1, sr=r^{-1}s \rangle$.

Problem 5. Let p be a prime. An element σ has order p in S_n iff its cycle decomposition is a product of commuting p-cycles. There exist composite numbers for which this doesn't hold.

$$\square$$

Problem 6. For all $\sigma \in S_n$, $|\sigma|$ is the least common multiple l of the lengths of the cycles in its cycle decomposition.

Problem 7. *If p is prime,* $|GL_2(\mathbb{F}_p)| = p^4 - p^3 - p^2 + p$.

Problem 8. For any group G, the map from G to itself defined by $f: g \mapsto g^2$ is a homomorphism iff G is Abelian.

Proof.

$$(ab)^2 = f(ab) = f(a)f(b) = a^2b^2 \Leftrightarrow abab = a^2b^2 \Leftrightarrow ba = ab$$

Problem 9. Let G be a finite group which possesses an automorphism σ such that $\sigma(g) = g$ iff g = 1. If σ^2 is the identity map from G to G, prove that G is Abelian.

Proof.

$$\sigma(\sigma(a)) = a \Leftrightarrow \sigma(a) = \sigma^{-1}(a)$$

Problem 10. *If* $H \circlearrowright A$, show that the relation \sim on A defined by

$$a \sim b \Leftrightarrow \exists h \in H : a = hb$$

is an equivalence relation.

Problem 11. A group G with n = |G| > 2 cannot have a subgroup H with |H| = n - 1.

Problem 12. If G is an Abelian group, then $G_T = \{g \in G \mid |G| < \infty\} \le G$. Give a counterexample when G is not Abelian.

Problem 13. Prove that $SL_2(\mathbb{F}_3)$ is the subgroup of $GL_2(\mathbb{F}_3)$ generated by $r=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and

$$s = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Problem 14. A group H is called finitely generated if $H = \langle A \rangle$ for some finite set A. Every finite group is finitely generated, \mathbb{Z} is finitely generated, and every finitely generated subgroup of the additive group \mathbb{Q} is cyclic.

Problem 15. A subgroup N of a group G is normal iff $gNg^{-1} \subseteq N$ for all $g \in G$.

Problem 16. *If* G *is a group such that* G/Z(G) *is cyclic, then* G *is Abelian.*

Problem 17. Let G be a group. Then $N = \langle x^{-1}y^{-1}xy \mid x, y \in G \rangle$ is a normal subgroup of G and G/N is Abelian.

Problem 18. If p is prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.

Problem 19. If N is a normal subgroup of the finite group G and |N| and |G:N| are relatively prime then N is the unique subgroup of G of order |N|.

Problem 20. \mathbb{Q} has no proper subgroups of finite index, as does \mathbb{Q}/\mathbb{Z} .

Problem 21. If H is a normal subgroup of G of prime index p then for all $K \leq G$ either $K \leq H$ or G = HK and $|K: K \cap H| = p$.

Problem 22. For a finite group G, the following are equivalent:

- 1. *G* is solvable
- 2. G has a chain of subgroups $1 = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_s = G$ such that H_{i+1}/H_i is always cyclic
- 3. all composition factors of G are of prime order
- 4. G has a chain of subgroups $1 = N_0 \le N_1 \le \cdots \le N_t = G$ such that each N_i is a normal subgroup of G and N_{i+1}/N_i is always Abelian.

Problem 23. Write a composition series for A_4 and deduce that A_4 is solvable.

Problem 24. Let Q_8 be the quaternion group of order 8. Q_8 is isomorphic to a subgroup of S_8 , but not to any subgroup of S_n for $n \le 7$.

Problem 25. If $H \leq G$ has finite index n then there is a normal subgroup K of G with $K \leq H$ and $|G:K| \leq n!$

Problem 26. Every non-Abelian group of order 6 has a non-normal subgroup of order 2. Classify groups of order 6.

Problem 27. No finite group G of composite order n with the property that G has a subgroup of order k for each positive integer k dividing n is simple.

Problem 28. *If the center of* G *is of index* n*, then every conjugacy class has at most* n *elements.*

Problem 29. Find all finite groups with exactly 2 conjugacy classes.

Problem 30. Let A be a nonempty set and let X be any subset of S_A . Let

$$F(X) = \{ a \in A \mid \sigma(a) = a \text{ for all } \sigma \in X \}$$

be the set of elements fixed by X. Correspondingly, M(X) = A - F(X) are the elements moved by X. Let $D = \{\sigma \in S_A \mid |M(\sigma)| < \infty\}$. Then D is a normal subgroup of S_A .

Problem 31. Let p be a prime and let G be a group of order p^{α} . Then G has a subgroup of order p^{β} for every β with $0 \le \beta \le \alpha$.

Problem 32. All groups of order 56 have a normal Sylow p-subgroup for some prime p dividing their order.

Problem 33 (D&F 7.1.30). Let $A = \mathbb{Z} \times \mathbb{Z} \times \cdots$ be the direct product of copies of \mathbb{Z} indexed by the positive integers (so A is a ring under componentwise addition and multiplication) and let R be the ring of all group homomorphisms from A to itself with addition pointwise and multiplication defined as function composition. Let ϕ be the element of R defined by $\phi(a_1, a_2, a_3, \ldots) = (a_2, a_3, \ldots)$. Let ψ be the element of R defined by $\psi(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, a_3, \ldots)$

- 1. Prove that $\phi \psi$ is the identity of R but $\psi \phi$ is not the identity of R (i.e. ψ is a right, but not a left, inverse for ϕ).
- 2. Exhibit infinitely many right inverses for ϕ .
- 3. Find a nonzero element π in R such that $\phi \pi = 0$ but $\pi \phi \neq 0$.
- 4. Prove that there is no nonzero element $\lambda \in R$ such that $\lambda \phi = 0$ (i.e. ϕ is a left zero divisor but not a right zero divisor).

Problem 34 (D&F 7.3.29). Let R be a commutative ring. Recall that an element $x \in R$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove that the set of nilpotent elements from an ideal—called the nilradical of R and denoted $\eta(R)$.

Problem 35 (D&F 7.3.33). Assume R is commutative. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be an element of the polynomial ring R[x].

1. Prove that p(x) is a unit in R[x] iff a_0 is a unit and a_1, a_2, \ldots, a_n are nilpotent in R.

2. Prove that p(x) is nilpotent in R[x] iff a_0, a_1, \ldots, a_n are nilpotent elements of R.

Problem 36 (D&F 7.4.15). Let $x^2 + x + 1$ be an element of the polynomial ring $E = \mathbb{F}_2[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{F}_2[x]/(x^2 + x + 1)$.

- 1. Prove that \overline{E} has 4 elements: $\overline{0}$, $\overline{1}$, \overline{x} , and $\overline{x+1}$.
- 2. Write out the 4×4 addition table for \overline{E} and deduce that the additive group \overline{E} is isomorphic to the Klein 4-group.
- 3. Write out the 4×4 multiplication table for \overline{E} and prove that \overline{E}^{\times} is isomorphic to Z_3 . Deduce that \overline{E} is a field.

Problem 37 (D&F 7.4.27). *Let* R *be a commutative ring with* $1 \neq 0$. *Prove that if* a *is a nilpotent element of* R *then* 1 - ab *is a unit for all* $b \in R$.

Problem 38 (D&F 7.4.30). Let I be an ideal of the commutative ring R and define

$$\mathcal{R}(I) = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}$$

called the radical of I. Prove that $\mathcal{R}(I)$ is an ideal containing I and that $\mathcal{R}(I)/I$ is the nilradical of the quotient ring R/I, i.e. $\mathcal{R}/I = \eta(R/I)$.

Problem 39 (D&F 7.4.37). *Prove that a subset* X *of* [0,1] *is a Zariski closed set iff it is closed in the usual sense as a subset of* \mathbb{R} .

Problem 40 (D&F 7.5.2). Let R be an integral domain and let D be a nonempty subset of R that is closed under multiplication. Prove that the ring of fractions $D^{-1}R$ is isomorphic to a subring of the quotient field of R (hence is also an integral domain).

Problem 41 (D&F 8.1.3). Let R be a Euclidean domain. Let m be the minimum integer in the set of norms of nonzero elements of R. Prove that every nonzero element of norm m is a unit. Deduce that a nonzero element of norm zero (if such an element exists) is a unit.

Problem 42 (D&F 8.1.7). *Find a generator of the ideal* (85, 1+13i) *in* $\mathbb{Z}[i]$, *i.e. a greatest common divisor for 85 and* 1+13i, *by the Euclidean algorithm. Do the same for the ideal* (47-13i, 53+56i).

Problem 43 (D&F 8.1.10). Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$

Problem 44 (D&F 8.3.1). Let $G = \mathbb{Q}^{\times}$ be the multiplicative group of nonzero rational numbers. If $\alpha = p/q \in G$, where p and q are relatively prime integers, let $\varphi : G \to G$ be the map which interchanges the primes 2 and 3 in the prime power factorizations of p and q (so, for example, $\varphi(2^43^{11}5^113^2) = 3^42^{11}5^113^2$, $\varphi(3/16) = \varphi(3/2^4) = 2/3^4 = 2/81$, and φ is the identity on all rational numbers with numerators and denominators relatively prime to 2 and 3).

- 1. Prove that φ is a group isomorphism.
- 2. Prove that there are infinitely many isomorphisms of the group G to itself.
- 3. Prove that none of the isomorphisms above can be extended to an isomorphism of the **ring** \mathbb{Q} to itself. In fact, prove that the identity map is the only ring isomorphism of \mathbb{Q} .

Problem 45 (D&F 8.3.5). Let $R = \mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3.

- 1. Prove that 2, $\sqrt{-n}$, and $1 + \sqrt{-n}$ are irreducible in R.
- 2. Prove that R is not a U.F.D. Conclude that the quadratic integer ring O is not a U.F.D. for $D \equiv 2, 3 \pmod{4}$, D < -3 (so also not Euclidean and not a P.I.D.).
- 3. Give an explicit ideal in R that is not principal.

Problem 46 (D&F 8.3.10a). Let R be an integral domain and let $N: R \to \mathbb{Z}^+ \cup \{0\}$ be a norm on R. The ring R is Euclidean with respect to N if for any $a, b \in R$ with $b \neq 0$, there exist elements q and r in R with

$$a = qb + r$$
 with $r = 0$ or $N(r) < N(b)$.

Suppose now that this condition is weakened, namely that for any $a, b \in R$ with $b \neq 0$, there exist elements q, q' and r, r' in R with

$$a = qb + r, b = q'r + r'$$
 with $r' = 0$ or $N(r') < N(b)$,

i.e., the remainder after two divisions is smaller. Call such a domain a **2-stage Euclidean domain**. Prove that iterating the divisions in a 2-stage Euclidean domain produces a greatest common divisor of a and b which is a linear combination of a and b. Conclude that every finitely generated ideal of a 2-stage Euclidean domain is principal.

Problem 47 (D&F 8.3.11). Prove that R is a P.I.D iff R is a U.F.D. that is also a Bezout domain, that is, a domain in which every ideal generated by two elements is principal.

Problem 48 (D&F 9.3.3). Let F be a field. Prove that the set R of polynomials in F[x] whose coefficient of x is equal to 0 is a subring of F[x] and that R is not a U.F.D.

Problem 49 (D&F 9.3.4). *Let* $R = \mathbb{Z} + x\mathbb{Q}[x] \subseteq \mathbb{Q}[x]$ *be the set of polynomials in* x *with rational coefficients whose constant term is an integer.*

- 1. Prove that R is an integral domain and its units are ± 1 .
- 2. Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 . Prove that these irreducibles are prime in R.
- 3. Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a U.F.D.
- 4. Show x is not prime in R and describe the quotient ring R/(x).

Problem 50 (D&F 9.4.1). Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_p denotes the finite field $\mathbb{Z}/p\mathbb{Z}$, p a prime

- 1. $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
- 2. $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
- 3. $x^4 + 1$ in $\mathbb{F}_5[x]$.

4.
$$x^4 + 10x^2 + 1$$
 in $\mathbb{Z}[x]$.

Problem 51 (D&F 10.1.8). An element m of the R-module M is called a **torsion element** if rm = 0 for some nonzero element $r \in R$. The set of torsion elements is denoted

$$Tor(M) = \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \}$$

- 1. Prove that if R is an integral domain then Tor(M) is a submodule of M (called the **torsion** submodule of M).
- 2. Give an example of a ring R and an R-module M such that Tor(M) is not a submodule.
- 3. Show that if R has zero divisors then every nonzero R-module has torsion elements.

Problem 52 (D&F 10.1.15). *If* M *is a finite Abelian group then* M *is naturally a* \mathbb{Z} -module. Can this action be extended to make M into a \mathbb{Q} -module?

Problem 53 (D&F 10.2.6). $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$.

Problem 54 (D&F 10.3.2). Assume R is commutative. Prove that $R^n \cong R^m$ iff n = m, i.e. two free R-modules of finite rank are isomorphic iff they have the same rank.

Problem 55 (D&F 10.3.9). An R-module M is called **irreducible** if $M \neq 0$ and if 0 and M are the only submodules of M. Show that M is irreducible iff $M \neq 0$ and M is a cyclic module with any nonzero element as a generator. Determine all the irreducible \mathbb{Z} -modules.

Problem 56 (D&F 12.1.2). Let M be a module over the integral domain R.

- Suppose that M has rank n and that x_1, x_2, \ldots, x_n is any maximal set of linearly independent elements of M. Let $N = Rx_1 + \cdots Rx_n$ be the submodule generated by x_1, x_2, \ldots, x_n . Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module (equivalently, the elements x_1, \ldots, x_n are linearly independent and for any $y \in M$ there is a nonzero element $r \in R$ such that ry can be written as a linear combination $r_1x_1 + \cdots + r_nx_n$ of the x_i).
- Prove conversely that if M contains a submodule N that is free of rank n (i.e., $N \cong R^n$) such that the quotient M/N is a torsion R-module then M has rank n.

Problem 57 (D&F 12.1.4). Let R be an integral domain, let M be an R-module, and let N be a submodule of M. Suppose M has rank n, N has rank r, and the quotient M/N has rank s. Prove that n = r + s.

Problem 58 (D&F 12.1.6). *Show that if* R *is an integral domain and* M *is any non-principal ideal of* R *then* M *is torsion-free of rank* 1 *but is not a free* R-module.

Problem 59 (D&F 12.1.11). Let R be a P.I.D., let a be a nonzero element of R and let M = R/(a). For any prime p of R prove that

$$p^{k-1}M/p^kM\cong \begin{cases} R/(p) & \text{if } k\leq n\\ 0 & \text{if } k>n, \end{cases}$$

where n is the power of p dividing a in R.

Problem 60 (D&F 12.3.19). Prove that all $n \times n$ matrices with characteristic polynomial f(x) are similar iff f(x) has no repeated factors in its unique factorization over F[x].

Problem 61 (D&F 12.3.21). Show that if $A^2 = A$ then A is similar to a diagonal matrix which has only 0's and 1's along the diagonal.

Problem 62 (D&F 13.1.1). Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Problem 63 (D&F 13.5.6). Prove that $x^{p^n-1}-1=\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}(x-\alpha)$. Conclude that $\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}\alpha=(-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p=2 and -1 if p is odd. For p odd and n=1 derive Wilson's Theorem: $(p-1)!\equiv -1\pmod{p}$

Problem 64 (D&F 13.5.8). *Prove that* $f(x)^p = f(x^p)$ *for any polynomial* $f(x) \in \mathbb{F}_p[x]$.

Problem 65 (D&F 13.5.9). Show that the binomial coefficient $\binom{pn}{pi}$ is the coefficient of x^{pi} in the expansion of $(1+x)^{pn}$. Working over \mathbb{F}_p show that this is the coefficient of $(x^p)^i$ in $(1+x^p)^n$ and hence prove that $\binom{pn}{pi} \equiv \binom{n}{i} \pmod{p}$.