ILINet Backfill:

Descriptive Analysis, Effects on Forecasts, and Approaches to Mitigation

Evan L. RayMount Holyoke College
21 August 2019

Outline and Work Discussed

- 1. Origins and descriptive analysis of backfill
 - Work from: CDC, Delphi Group (Logan Brooks, Roni Rosenfeld), FluSight Network, LANL (Dave Osthus)
- 2. Effects on forecast skill
 - Work from: Delphi Group, FluSight Network, Reich Lab (Casey Gibson)
- 3. Approaches to addressing
 - A. without external data
 - Work from: Delphi Group (Logan Brooks, Roni Rosenfeld), Reich Lab (Casey Gibson)
 - B. with external data (e.g., digital surveillance)
 - Work from: Delphi Group (David Farrow, Ryan Tibshirani), LANL (Dave Osthus), Machine Intelligence Lab (Fred Lu, Mauricio Santillana), Shaman Group (Sasikiran Kandula, Jeffrey Shaman)

Full citations on last slide

Sun	Mon	Tue	Wed	Thu	Fri	Sat
Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor
		Health Care Providers Report to CDC			Initial ILINet Report	

Sun	Mon	Tue	Wed	Thu	Fri	Sat
Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor
		Health Care Providers Report to CDC			Initial ILINet Report	
		Additional or Revised Records			Revised ILINet Report	

Sun	Mon	Tue	Wed	Thu	Fri	Sat
Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor	Sick People Visit Doctor
		Health Care Providers Report to CDC			Initial ILINet Report	
		Additional or Revised Records			Revised ILINet Report	
		Additional or Revised			Revised ILINet Report	
		Records				

Reporting for Epidemic Week 201140, HHS Region ____

Reporting for Epidemic Week 201140, HHS Region ___

Prevalence and Severity of Backfill

Distributon of Initial Reporting Errors All HHS Regions, 2003/2004 through 2018/2019

- Approximately 33% of initial reports are later revised by more than ± 0.1
- 3% are revised by more than ± 0.5
- 0.4% are revised by more than ± 1

Backfill Fairly Consistent Across Regions, Occurs Most Within about 10 Weeks

Initial Reporting Errors Slightly Smaller in Recent Seasons

Distributon of Initial Reporting Errors All HHS Regions

More Variability in Absolute Revisions Near Middle of Season

Distributon of Initial Reporting Errors (Difference) All HHS Regions, 2003/2004 through 2015/2016

Relative Revisions More Consistent

Distributon of Initial Reporting Errors (Ratio) All HHS Regions, 2003/2004 through 2015/2016

Initial Report Bias Larger in Middle of Season, Reduced in Recent Seasons

Smoothed Estimates of Bias of Initial Report, by Season Week

Brooks et al. (2018): Large Effect on Forecast Skill for Seasonal Targets

Relevance to Seasonal Targets

Determining Season Onset Epidemic Week 2016–05, HHS Region 4

FluSight Network (Reich et al., 2019): Larger Effect on Forecast Skill for Larger Revisions

- "[T]here was an average change in forecast score of -0.29 (95% CI: -0.39, -0.19) when the first observed wILI measurement was between 2.5 and 3.5 percentage points lower than the final observed value, adjusting for model, week of year, and target."
- For a model with mean score of -1 (pretty good), this corresponds to a reduction of about 0.1 in probability assigned to the eventually observed outcome (or its neighbors).

- 1. Estimate the distribution of reporting revisions based on past seasons
 - May be conditional on region, week of season, # of reporting providers ...

- 1. Estimate the distribution of reporting revisions based on past seasons
 - May be conditional on region, week of season, # of reporting providers ...
- 2. Estimate/impute final wILI in current season by adjusting early reports

- 1. Estimate the distribution of reporting revisions based on past seasons
 - May be conditional on region, week of season, # of reporting providers ...
- 2. Estimate/impute final wILI in current season by adjusting early reports
- 3. Use estimated final wILI as inputs to forecasting

- 1. Estimate the distribution of reporting revisions based on past seasons
 - May be conditional on region, week of season, # of reporting providers ...
- 2. Estimate/impute final wILI in current season by adjusting early reports
- 3. Use estimated final wILI as inputs to forecasting
- We might sample many possible values for final wILI and repeat steps 2-3

Basic Idea:

- 1. Estimate the distribution of reporting revisions based on past seasons
 - May be conditional on region, week of season, # of reporting providers ...
- 2. Estimate/impute final wILI in current season by adjusting early reports
- 3. Use estimated final wILI as inputs to forecasting
- We might sample many possible values for final wILI and repeat steps 1-3

Examples in context of flu:

- Brooks et al. (2018)
- Work in progress by Casey Gibson

Examples in other contexts:

- Bastos et al. (2019) dengue, ARI
- Höhle and an der Heiden (2014) E. coli 25

Connection to "Nowcasting"

Connection to "Nowcasting"

Bars represent uncertainty in observed wILI

Adding in External Data

Represent external data sources observed in "real time" such as Twitter, Google search, or virology testing data from private companies

Brooks et al. (2018): Backcasting and Nowcasting Are Helpful

Osthus et al. (2018): Nowcasting is Helpful (all Models do Backcasting)

- Figure from Osthus et al. (2018)
- Additional examples in references: Brooks et al. (2018), Kandula et al. (2017), Kandula and Shaman (2019), Lu et al. (2019)

Summary

- Backfill is inevitable, but seems to be improving in recent seasons
- Backfill can have substantial impacts on forecast skill, especially for seasonal targets
- Statistical approaches to accounting for backfill can help, but don't get us all the way to the forecast skill we would have in the absence of backfill
- Additionally, nowcasting with external data can be helpful.

References

- 1. Bastos LS, Economou T, Gomes MFC, Villela DAM, Coelho FC, Cruz OG, Stoner O, Bailey T, Codeço CT. A modelling approach for correcting reporting delays in disease surveillance data. *Statistics in Medicine*. 2019; 1-15.
- 2. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. *PLOS Computational Biology*. 2018; 14(6): e1006134.
- 3. Farrow DC, Jahja M, Rosenfeld R, Tibshirani RJ. Kalman filter, sensor fusion, and constrained regression: Equivalences and insights. arXiv. 2019; 1905.11436.
- 4. Höhle M, an der Heiden, M. Bayesian Nowcasting during the STEC O104:H4 Outbreak in Germany, 2011. *Biometrics*. 2014; 70, 993-1002.
- 5. Kandula S, Hsu D, Shaman J. Subregional Nowcasts of Seasonal Influenza Using Search Trends. *J Med Internet Res.* 2017;19(11):e370.
- Kandula S and Shaman J. Reappraising the utility of Google Flu Trends. PLOS Computational Biology. 2019; 15(8):e1007258.
- 7. Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. *Nature Communications*. 2019; 10(147).
- 8. Osthus D, Daughton AR, Priedhorsky R. Even a good flu forecasting model can benefit from internet-based nowcasts, but those benefits are limited. *PLOS Computational Biology*. 2019; 15(2): e1006599.
- 9. Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, Osthus D, Ray EL, Tushar A, Yamana TK, Biggerstaff M, Johansson MA, Rosenfeld R, Shaman J. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. *Proceedings of the National Academy of Sciences*. 2019; 116(8), 3146-3154.
- 10. Unpublished work in progress by Casey Gibson (University of Massachusetts)

