EXAMINATION DATA SHEET FOR TECHNICAL SCIENCES

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Standard pressure	p_θ	1,01 × 10⁵ Pa
Standard temperature	T ⁰	273 K
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck's constant	h	6,63 × 10 ⁻³⁴ J·s

TABLE 2 FORMULAE

$$\begin{split} E_{\text{cell}}^{\theta} &= E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} \end{split}$$

IEB Copyright © 2021 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE OF ELEMENTS

	1	2	3	4	5	6	7 KEY	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H					tomic umber	1	2,1 -	Electr Symb	ronega ool	ntivity							He
2	3 1,0 Li 7	Be 9			Approx atomic			/e					5 2,0 B 10,8	C	N	O	F 19	Ne 20
3	11 0,9 Na 23 19 0,8	Mg 24,3	21 1,3			24 1,6		26 1,8	27 4 0	20 40	29 1,9	20 16	13 1,5 A£ 27	14 1,8 Si 28 32 1,8	15 2,1 P 31 33 2,0	S	Cℓ 35,5	Ar 40
4	K 39 37 0,8	Ca	Sc 45	Ti 48	V 51	C r	Mn 55	Fe 56 44 2,2	Co 59	Ni 59	Cu	Zn 65,4	Ga	Ge 72,6	As 75	Se 79	Br 80	Kr 84
5	Rb 85,5 55 0,7	Sr 88 56 0,9	Y 89	Zr 91 72 1,6	Nb 93	Mo 96 74	Tc 99 75	Ru 101 76	Rh 103	Pd 106	Ag	Cd 112	115 81 1,8	Sn 119	Sb 121 83 1,9	Te	 127	Xe 131
6	Cs 133 87 0,7	Ba 137,3 88 0,9	La	Hf 178,5	Ta	W 184	Re	Os 190	ir 192	Pt 195	Au 197	Hg 200,6	Tℓ 204,4	Pb 207	Bi 209	Po	At	Rn
7	Fr	Ra	Ac		58	59	60	61	62	63	64	65	66	67	68	69	70	71
					Ce 140	Pr 141	Nd 144	Pm	Sm 150	Eu 152	Gd	Tb	Dy 163	Ho 165	Er 167	Tm 169	Yb 173	Lu 175
					90 Th 232	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

TABLE 4A STANDARD REDUCTION POTENTIALS

	Half	Ε ^θ (V)			
	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87	
	Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81	
	$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+ 1,77	
	MnO + 8H ⁻ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51	
	$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cl-	+ 1,36	
	Cr ₂ O + 14H ⁺ + 6e ⁻		_	+ 1,33	
	$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons		+ 1,23	
	$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23	
	Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20	
	$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07	
	NO + 4H+ + 3e-	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96	
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\hat{\ell})$	+ 0,85	
	Ag+ + e ⁻	\rightleftharpoons	Ag	+ 0,80	
	NO + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80	
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77	
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68	
	I ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54	
	Cu+ + e-	\rightleftharpoons	Cu	+ 0,52	
	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+ 0,45	
ncreasing oxidising ability	$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+ 0,40	
	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34	
	SO + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17	
	Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺	+ 0,16	
jdi	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15	
ŏ	S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+ 0,14	
ng	2H+ + 2e-	=	H ₂ (g)	0,00	
ısi	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06	
rea	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13	
nc	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14	
_	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27	
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28	
	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40	
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41	
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44	
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74	
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76	
	2H ₂ O + 2e ⁻	\rightleftharpoons	H2(g) + 2OH ⁻	- 0,83	
	Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91	
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,81	
	$Al^{3+} + 3e^{-}$	\rightleftharpoons	Αl	- 1,66	
	Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36	
	Na+ + e-	\rightleftharpoons	Na	- 2,71	
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87	
	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89 - 2,90	
	Ba ²⁺ + 2e ⁻				
	Cs+ + e-	\rightleftharpoons	Cs	- 2,92	
	K+ + e-	\rightleftharpoons	K	- 2,93	
	Li+ + e ⁻	=	Li	- 3,05	

Increasing reducing ability

TABLE 4B STANDARD REDUCTION POTENTIALS

	Half	-reaction	ons	Ε ^θ (V)
	Li+ + e-	=	Li	-3,05
	K+ + e-	\rightleftharpoons	K	-2,93
	Cs+ + e-	\rightleftharpoons	Cs	-2,92
	Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	-2,90
	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
	Na+ + e-	\rightleftharpoons	Na	-2 ,71
	$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	-2 ,36
	Al ³⁻ + 3e ⁻	\rightleftharpoons	Αl	-1,66
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
	Cr ²⁺ + 2e ⁻	<u>`</u>	Cr	-0,91
	2H ₂ O + 2e ⁻	<u>+</u>	H ₂ (g) + 2OH ⁻	-0,83
	$Zn^{2+} + 2e^{-}$	<u>+</u>	Zn	-0,76
	Cr ³⁺ + 3e ⁻	<u>`</u>	Cr	-0,74
	Fe ²⁺ + 2e ⁻	-	Fe	-0,44
	Cr ³⁺ + e ⁻	-	Cr ²⁺	_0,44 _0,41
	Cd ²⁺ + 2e ⁻	-	Cd	-0,40
	Co ²⁺ + 2e ⁻	=	Co	-0, 4 0 -0,28
	Ni ²⁺ + 2e ⁻	-	Ni	-0,26 -0,27
τ <u>ς</u>	Sn ²⁺ + 2e ⁻	-	Sn	-0,2 <i>1</i> -0,14
ability	Pb ²⁺ + 2e ⁻	-	Pb	_0,1 4 _0,13
g	Fe ³⁺ + 3e ⁻	-	Fe	_0,13 _0,06
Ğ	2H ⁺ + 2e ⁻	+		0,00
oxidising	S + 2H ⁺ + 2e ⁻	~	H₂(g) H₂S(g)	+0,14
Ž	Sn ⁴⁺ + 2e ⁻	-	Sn ²⁺	+0,14
	Cu ²⁺ + e ⁻	-	Cu ⁺	+0,13
ncreasing	SO + 4H ⁺ + 2e ⁻	-	SO ₂ (g) + 2H ₂ O	+0,10
)as	Cu ²⁺ + 2e ⁻		Cu	+0,17
ະ	$2H_2O + O_2 + 4e^-$	=	40H ⁻	+0,40
⊆	$SO_2 + 4H^+ + 4e^-$		S + 2H ₂ O	· ·
	Cu ⁺ + e ⁻	 	Cu	+0,45 + 0,52
	I ₂ + 2e ⁻	=	2l ⁻	
		=		+0,54
	O ₂ (g) + 2H ⁺ + 2e ⁻ Fe ³⁺ + e ⁻	 	H ₂ O ₂ Fe ²⁺	+0,68 +0,77
	NO + 2H ⁺ + e ⁻	-		+0,77
	$Ag^{+} + e^{-}$	-	NO ₂ (g) + H ₂ O Ag	+0,80
	Hg ²⁺ + 2e ⁻		Ag Hg(ℓ)	+0,85
	NO + 4H ⁺ + 3e ⁻	=	• ,	+0,65
	$Br_2(\ell) + 2e^-$	=	NO(g) + 2H₂O 2Br⁻	1
	$Pt^{2+} + e^{-}$	=	261 Pt	+1,07
	MnO ₂ + 4H ⁺ + 2e ⁻	=		+1,20
		 	Mn ²⁺ + 2H ₂ O	+1,23
	$O_2(g) + 4H^+ + 4e^-$	 	2H ₂ O	+1,23
	$Cr_2O + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+1,33
	$C\ell_2(g) + 2e^-$,	2Cl-	+1,36
	MnO + 8H+ + 5e-	,	$Mn^{2+} + 4H_2O$	+1,51
	$H_2O_2 + 2H^+ + 2e^-$,	2H ₂ O	+1,77
	$Co^{3+} + e^{-}$,	Co ²⁺	+1,81
(© 2	F ₂ (g) + 2e ⁻	=	2F-	+2,87