THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE Undergraduate Research Opportunities Consortium

Optical Characterization of Gallium Arsenide Quantum Dots

Author Names: Casey A. Timms, Chloe I. Marzano, John R. Schaibley (University of Arizona) Sadhvikas J. Addamane (Sandia National Laboratories)

Program Affiliation: The University of Arizona, UROC Summer Research Institute Program

Background Conduction Band

- An excitation laser can be used to move a two-level system to an excited state.
- When this occurs, an electron-hole pair is formed.
- The electron occupies the conduction band, and the hole occupies the valence band.
- The system quickly decays back to the ground state releasing its stored energy as a photon.
- Photons formed in this way are called exciton emissions.
- An important first step for optical characterization of quantum dots is photoluminescence spectroscopy (PL).

Conduction Band

Valence Band

Gallium Arsenide (GaAs) Quantum

Dots are semiconductor devices

made using GaAs and Aluminum

The band gap difference between

low-energy, trapped electron states.

- These states are similar to two-level

systems allowing for the creation of

the AlGasAs and GaAs creates

single photons.

Gallium Arsenide (AlGaAs).

- This technique measures the energies of emitted photons, and allows us to select suitable samples for future measurements.

Optical Setup 633 nm Laser

- Samples were held at 9 K in a helium cryostat and were excited by a red (633 nm) laser.
- The laser was passed through a 700 nm short pass filter before reaching and exciting the sample.
- The excitation signal and reflected laser were directed by a beam splitter through a 650 nm long pass filter, which blocked the reflected laser light.
- The signal passed through the filter and into a spectrometer, which used a charge coupled device (CCD) camera to measure the emission energies.

Emission Peaks

- Photoluminescence data was collected from several quantum dots across two samples: sample 8 and sample 9.
- Exciton emissions were identified as high intensity peaks, labeled X. Lower intensity peaks correspond to charged exciton emissions.
- Sample 8 had exciton emissions with an average energy of 1.6323 \pm 0.0032 eV, and Sample 9 had exciton emissions with an average energy of 1.6267 \pm 0.0016 eV.

Device Design

- 500 nm of AlGaAs, made up of 0.7 Aluminium (Al) and 0.3 Gallium (Ga), was grown on a GaAs substrate and capped by a 5 nm layer of GaAs.
- A 140 nm AlGaAs layer, made up of 0.4 Al and 0.6 Ga, was grown on the GaAs cap.
- Al droplets were deposited on the device, and Arsenic (As) droplets were sprayed onto the Al.
- As a result, small holes, called nanoholes were drilled. These nanoholes were filled with a 5 nm top layer of GaAs, creating GaAs quantum dots.
- Varying growth conditions changed the energies of photons emitted by the quantum dots.
- All samples were fabricated at Sandia National Laboratories by Sadhvikas Addamane

Photoluminescence Spectrum From Single Quantum Dot

- A photoluminescence spectrum taken from a single quantum dot.
- The high intensity peak centered at 1.64 eV corresponds to the quantum well created by the 5 nm GaAs layer.
- The lower intensity peaks with lower energy are emissions from the quantum dot.

Conclusions

- Sample 9 hosted quantum dots whose exciton emissions had significantly lower energy than those of sample 8.
- This means that the emissions from quantum dots on sample 9 are separated from the high intensity quantum well.
- Therefore, future measurements should be performed on these quantum dots.

Future Directions

- The immediate next step is to perform an antibunching measurements on quantum dots from sample 9 to determine if these quantum dots emit a single photon per excitation cycle.
- These measurements employ a similar optical setup to photoluminescence measurements, but after reaching the spectrometer, emissions from quantum dots are split into two time correlated single photon detectors.
- If the probability of both detectors firing at the same time is measured to be 0, then these quantum dots are single photon emitters.
- After antibunching measurements are successfully performed, we can move to measuring other optical phenomena such as Rabi oscillations or the Hong-Oh-Mandel effect.

 633 nm Laser

Acknowledgements

- John Schaibley, Ph.D.:Research Mentor
- Chloe Marzano; Sadhvikas Addamane, Ph.D.: Project Collaborators
- Pritam Bangal, M.S.; Sean Driskill; Trevor Stanfill: Lab Staff
- Tianna MacMeans: Program Coordinator
- Leah Callovini, M.S.; Melinda Struyk, M.A.: Instructors
- Kirsten Limesand, Ph.D.: Dean of the Graduate College
- Frans Tax, Ph.D.: Associate Dean of Student Affairs and Diversity & Inclusion
- Donna Treloar, M.A.: UROC Director

