

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

ESCUELA DE POSGRADO

MAESTRÍA EN ESTADÍSTICA

ACTIVIDAD 2 ALGEBRA LINEAL

MATEMATICA AVANZADA

AUTOR:

Br. KEVIN HEBERTH HAQUEHUA APAZA

DOCENTE:

Dr. EDISON MARCAVILLACA NIÑO DE GUZMAN

CUSCO - PERÚ

ENERO - 2025

1. Problema

Demuestre que S es un subespacio de \mathbb{R}^3 , donde

$$S = \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \ \alpha, \beta \in \mathbb{R} \right\}.$$

1.1. Solución

Para demostrar que S es un subespacio vectorial de \mathbb{R}^3 , comprobemos que cumpla la siguiente definición

Definición. Espacio vectorial en \mathbb{R}^n

Un conjunto S no vacío de \mathbb{R}^n , es llamado un espacio vectorial en \mathbb{R}^n si verifica las siguientes condiciones

- i) Para $\mathbf{x}, \mathbf{y} \in S$, entonces $\mathbf{x} + \mathbf{y} \in S$
- ii) Para $\alpha \in \mathbb{R}$, $\mathbf{x} \in S$, entonces $\alpha \mathbf{x} \in S$

1.1.1. Primera condición

Sean $\mathbf{x}, \mathbf{y} \in S$, expresados de la siguiente manera:

$$\mathbf{x} = \alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{y} = \alpha_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix},$$

Donde $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, realizemos la siguiente operación $\mathbf{x} + \mathbf{y}$ el cual debe pertenecer a S

2

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} 1 \\ \alpha_1 \\ 2 \\ 3 \end{pmatrix} + \beta_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{pmatrix} \alpha_2 \\ 2 \\ 3 \end{bmatrix} + \beta_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

En esta parte se puede agrupar los vectores $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ como términos comúnes

$$\mathbf{x} + \mathbf{y} = (\alpha_1 + \alpha_2) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (\beta_1 + \beta_2) \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Se sabe que si $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ entonces $\alpha_1 + \alpha_2 \in \mathbb{R}$, de igual forma $\beta_1 + \beta_2 \in \mathbb{R}$, entonces se cumple que $\mathbf{x} + \mathbf{y} \in S$

1.1.2. Segunda condición

Sea $x \in S$, esto es

$$\mathbf{x} = \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \alpha, \beta \in \mathbb{R}$$

Multipliquemos por un escalar $\gamma \in \mathbb{R}$:

$$\gamma \mathbf{x} = \gamma \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$$

$$\gamma \mathbf{x} = \gamma \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \gamma \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Se sabe que si $\alpha, \beta, \gamma \in \mathbb{R}$ entonces $\alpha \gamma \in \mathbb{R}$, de igual forma $\beta \gamma \in \mathbb{R}$, entonces se cumple que $\gamma \mathbf{x} \in S$

CONCLUSIÓN: S es un subespacio vectorial de \mathbb{R}^3

2. Problema

Considere el siguiente conjunto de vectores en \mathbb{R}^3 :

$$X = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Demuestre que uno de los dos vectores

$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

pertenece a gen(X), mientras que el otro no.

Encuentre un número real de λ tal que

$$\begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} \in gen(X)$$

2.1. Solución

Para demostrar que uno de los $\mathbf{u}, \mathbf{v} \in gen(X)$ se debe cumplir la siguiente definición

Definición. Espacio generado por los vectores

El conjunto de todas las posibles combinaciones lineales de v_1, v_2, \dots, v_r es llamado espacio generado gen(X) por v_1, \dots, v_n si

$$gen(v_1, \dots, v_n) = \{\alpha_1 v_1 + \dots + \alpha_r v_r / \alpha_i \in \mathbb{R}, i = 1, \dots, r\}$$

2.1.1. Para el vector u

Se debe cumplir la siguiente combinación lineal

$$\mathbf{u} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Reemplanzado por el vector u se tiene la siguiente igualdad

$$\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = -1 \tag{1}$$

$$\alpha_2 = 2 \tag{2}$$

$$-\alpha_1 + \alpha_2 = 1 \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 2$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = -1$$

$$\alpha_1 - 2(2) = -1$$

$$\alpha_1 = 3$$

Se observa que $\alpha_1 = 3$, y cumple la igualdad en **u**, ahora reemplazemos $\alpha_1 = 3$ y $\alpha_2 = 2$ en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = 1$$

 $-(3) + (2) = -1 \neq 1$

Se observa que no cumple la igualdad.

Por lo tanto $\mathbf{u} \notin gen(X)$

2.1.2. Para el vector v

Se debe cumplir la siguiente combinación lineal

$$\mathbf{v} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

6

Reemplanzado por el vector v se tiene la siguiente igualdad

$$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = -1 \tag{1}$$

$$\alpha_2 = 1 \tag{2}$$

$$-\alpha_1 + \alpha_2 = 1 \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 1$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = -1$$

$$\alpha_1 - 2(1) = -1$$

$$\alpha_1 = 1$$

Se observa que $\alpha_1 = 1$, y cumple la igualdad en **v**, ahora reemplazemos $\alpha_1 = 1$ y $\alpha_2 = 1$ en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = 1$$

$$-(1) + (1) = 0 \neq 1$$

Se observa que no cumple la igualdad.

Por lo tanto $\mathbf{v} \notin gen(X)$

CONCLUSIÓN: Ninguno de los vectores $\mathbf{u}, \mathbf{v} \notin gen(X)$

2.2. Encontrar un número real λ

De igual forma igualamos la combinación lineal e igualamos al vector para hallar el valor de λ Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = 1 \tag{1}$$

$$\alpha_2 = 1 \tag{2}$$

$$-\alpha_1 + \alpha_2 = \lambda \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 1$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = 1$$

$$\alpha_1 - 2(1) = 1$$

$$\alpha_1 = 3$$

Se observa que $\alpha_1 = 3$ y $\alpha_2 = 1$, reemplazemos estos valores en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = \lambda$$

$$-(3) + (1) = \lambda$$

$$\lambda = -2$$

El valor de
$$\lambda$$
 para que el vector $\begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} \in gen(X)$ es -2

CONCLUSIÓN: El número real de λ es -2

3. Problema

Verifique si cada uno de los siguientes conjuntos de vectores son linealmente independientes:

a)

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}.$$

b)

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}.$$

c)

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} \right\}.$$

d)

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ -4 \\ -1 \end{bmatrix} \right\}.$$

3.1. Solución

Para verificar que uno de los conjuntos de vectores son linealmente independientes de la definición de **Independencia lineal** tomamos los siguientes enunciados:

- El conjunto $A = \{v_1, \dots, v_r\}$ de vectores $v_i \in \mathbb{R}^n$, es llamado conjunto linealmente independiente si los vectores v_1, \dots, v_r son linealmente independientes.
- Sea $A = \{v_1, \dots, v_r\} \subset \mathbb{R}^n$ y sea $A = [v_1 \quad v_2 \quad \dots \quad v_r]$ una matriz de orden nxr. A es linealmente independiente $\iff N(A) = \{0\}$

3.1.1. Para a)

Tenemos los siguientes vectores

- $v_1 = (1, 2, 3)$
- $v_2 = (1, 0, -1)$
- $v_3 = (-2, 1, 1)$

y el conjunto $A = \{v_1, v_2, v_3\}$ expresando el conjunto en una matriz quedaría de la siguiente forma

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \Longrightarrow N(A) = \{\mathbf{0}\}?$$

$$N(A) = \{\mathbf{x} \in \mathbb{R}^3 / A\mathbf{x} = \mathbf{0}\}$$

La solución del sistema lineal estaría representado de la siguiente manera:

$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

El cual nos da el siguiente sistema de combinaciones lineales

$$x_1 + x_2 - 2x_3 = 0 (1)$$

$$2x_1 + x_3 = 0 (2)$$

$$3x_1 - x_2 + x_3 = 0 (3)$$

De lo cual en la ecuación (2) se tiene que $x_3 = -2x_1$, si reemplazamos este valor en la ecuación (1) se tiene

$$x_1 + x_2 - 2x_3 = 0$$

$$x_1 + x_2 - 2(-2x_1) = 0$$

$$x_1 + x_2 + 4x_1 = 0$$

$$x_2 = -5x_1$$

4. Problema

Sea A una matriz mxn, y sea $X \subseteq \mathbb{R}^n$ un subconjunto arbitrario de \mathbb{R}^n . La imagen de X bajo la transformación de A se define como el conjunto

$$A(X) = \{A\mathbf{x} : \mathbf{x} \in X\}$$

(a) Demuestre que $A(X) \subseteq C(A)$

(b) Si X es un subespacio de \mathbb{R}^n , pruebe que A(X) es un subespacio de \mathbb{R}^m .

5. Problema

Considere los siguientes vectores en \mathbb{R}^4 :

$$\left\{\begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\end{bmatrix}\right\}.$$
m-Schmidt a estos vectores

Aplique el procedimiento de Gram-Schmidt a estos vectores para obtener una base ortonormal $de \ \mathbb{R}^4.$