Francisco Poggi (Mannheim)

European Workshop on Market Design June, 2025

- Setting: (multiple) senders hold private information, and a receiver must take an action.
- Governing how information flows is a powerful tool to shape outcomes.
 - Communication Protocol (mechanism): who speaks when, what messages are allowed, how these messages are processed, aggregated, etc.
- However, off-protocol communication may undermine the effectiveness of the protocol.
- Question: how can we design communication protocols that are robust to off-protocol communication?

- **Setting**: (multiple) senders hold private information, and a receiver must take an action.
- Governing how information flows is a powerful tool to shape outcomes.
 - Communication Protocol (mechanism): who speaks when, what messages are allowed, how these messages are processed, aggregated, etc.
- However, off-protocol communication may undermine the effectiveness of the protocol.
- Question: how can we design communication protocols that are robust to off-protocol communication?

- **Setting**: (multiple) senders hold private information, and a receiver must take an action.
- Governing how information flows is a powerful tool to shape outcomes.
 - Communication Protocol (mechanism): who speaks when, what messages are allowed, how these messages are processed, aggregated, etc.
- However, off-protocol communication may undermine the effectiveness of the protocol.
- Question: how can we design communication protocols that are robust to off-protocol communication?

- Setting: (multiple) senders hold private information, and a receiver must take an action.
- Governing how information flows is a powerful tool to shape outcomes.
 - Communication Protocol (mechanism): who speaks when, what messages are allowed, how these messages are processed, aggregated, etc.
- However, off-protocol communication may undermine the effectiveness of the protocol.
- Question: how can we design communication protocols that are robust to off-protocol communication?

- We define a property of communication protocols that captures robustness to off-protocol communication.
 - This concept is closely related to neologism-proofness in cheap talk games.
- Discuss properties of this concept (existence, revelation principle, etc.)
- Apply it to the problem of eliciting expert information when experts have career concerns.
 - To induce efficient information revelation, protocol must be anonymous.
 - But this anonymity, may generate incentives for sabotage with off-protocol communication.
 - A robust protocol partially reveals information about expertise

- We define a property of communication protocols that captures robustness to off-protocol communication.
 - This concept is closely related to neologism-proofness in cheap talk games.
- Discuss properties of this concept (existence, revelation principle, etc.)
- Apply it to the problem of eliciting expert information when experts have career concerns.
 - To induce efficient information revelation, protocol must be anonymous.
 - But this anonymity, may generate incentives for sabotage with off-protocol communication.
 - A robust protocol partially reveals information about expertise

- We define a property of communication protocols that captures robustness to off-protocol communication.
 - This concept is closely related to neologism-proofness in cheap talk games.
- Discuss properties of this concept (existence, revelation principle, etc.)
- Apply it to the problem of eliciting expert information when experts have career concerns.
 - To induce efficient information revelation, protocol must be anonymous.
 - But this anonymity, may generate incentives for sabotage with off-protocol communication.
 - A robust protocol partially reveals information about expertise

- We define a property of communication protocols that captures robustness to off-protocol communication.
 - This concept is closely related to neologism-proofness in cheap talk games.
- Discuss properties of this concept (existence, revelation principle, etc.)
- Apply it to the problem of eliciting expert information when experts have career concerns.
 - To induce efficient information revelation, protocol must be anonymous.
 - But this anonymity, may generate incentives for sabotage with off-protocol communication.
 - A robust protocol partially reveals information about expertise.

Example 1

- Single Sender observes state $\theta \in \{L, R\}$ uniform.
- Receiver must choose an action $a \in \{I, r, safe\}$.

Payoff matrix

Action	$\theta = L$	$\theta = R$
1	(3,3)	(0,0)
r	(0,0)	(3,3)
safe	(2, 2)	(2,2)

- Cheap talk: Two equilibria, informative and babbling.
- Protocol: partial revelation can be induced.
 - E.g.: Sender reports θ and Receiver observes a signal of the report with 2/3 precision.
- Neologism: "The state is left."

- n+1 players: Receiver (i=0) and n Senders (i=1,...,n).
- Senders have a private type $\theta_i \in \Theta_i$.
 - $\theta = (\theta_1, ..., \theta_n)$ is drawn from $\mu \in \Delta(\Theta)$.
- Receiver chooses action $a \in A$
- For every player i, the final payoff is given by

$$\pi_i: A \times \Theta \to \mathbb{R}$$

- Timing
 - Senders observe their private type.
 - Communication
 - Receiver takes action
 - Payoffs are realized

4

- n+1 players: Receiver (i=0) and n Senders (i=1,...,n).
- Senders have a private type $\theta_i \in \Theta_i$.
 - $\theta = (\theta_1, ..., \theta_n)$ is drawn from $\mu \in \Delta(\Theta)$.
- Receiver chooses action $a \in A$.
- For every player i, the final payoff is given by

$$\pi_i: A \times \Theta \to \mathbb{R}$$

- Timing
 - Senders observe their private type
 - Communication
 - Receiver takes action
 - Payoffs are realized.

4

- n+1 players: Receiver (i=0) and n Senders (i=1,...,n).
- Senders have a private type $\theta_i \in \Theta_i$.
 - $\theta = (\theta_1, ..., \theta_n)$ is drawn from $\mu \in \Delta(\Theta)$.
- Receiver chooses action $a \in A$.
- For every player i, the final payoff is given by

$$\pi_i: A \times \Theta \to \mathbb{R}$$

- Timing
 - Senders observe their private type
 - Communication
 - Receiver takes action
 - Payoffs are realized.

- n+1 players: Receiver (i=0) and n Senders (i=1,...,n).
- Senders have a private type $\theta_i \in \Theta_i$.
 - $\theta = (\theta_1, ..., \theta_n)$ is drawn from $\mu \in \Delta(\Theta)$.
- Receiver chooses action $a \in A$.
- For every player i, the final payoff is given by

$$\pi_i: A \times \Theta \to \mathbb{R}$$

- Timing:
 - Senders observe their private type
 - Communication
 - Receiver takes action
 - Payoffs are realized.

4

- n+1 players: Receiver (i=0) and n Senders (i=1,...,n).
- Senders have a private type $\theta_i \in \Theta_i$.
 - $\theta = (\theta_1, ..., \theta_n)$ is drawn from $\mu \in \Delta(\Theta)$.
- Receiver chooses action $a \in A$.
- For every player i, the final payoff is given by

$$\pi_i: A \times \Theta \to \mathbb{R}$$

- Timing:
 - Senders observe their private type.
 - Communication
 - Receiver takes action.
 - Payoffs are realized.

4

Protocols

Communication Protocol

A protocol $(\{M_i\}_{i=0}^N, \tau)$ is a set of messages for each agent and a function $\tau: M_1 \times M_2 ... \times M_N \to \Delta(M_0)$.

- The interpretation is that senders 1, ..., N simultaneously submit a message $m_i \in M_i$ to a black box that sends the receiver a message in M_0 according to $\tau(m_1, m_1, ..., m_N)$.
- A direct revelation protocol (DRP) is a communication protocol with $M_0 = A$ and $M_i = \Theta_i$ for i = 1, ..., N.
- We use $\Gamma:\Theta o\Delta(A)$ to denote DRP

Protocols

Communication Protocol

A protocol $(\{M_i\}_{i=0}^N, \tau)$ is a set of messages for each agent and a function $\tau: M_1 \times M_2 ... \times M_N \to \Delta(M_0)$.

- The interpretation is that senders 1, ..., N simultaneously submit a message $m_i \in M_i$ to a black box that sends the receiver a message in M_0 according to $\tau(m_1, m_1, ..., m_N)$.
- A direct revelation protocol (DRP) is a communication protocol with $M_0 = A$ and $M_i = \Theta_i$ for i = 1, ..., N.
- We use $\Gamma:\Theta o\Delta(A)$ to denote DRP

Protocols

Communication Protocol

A protocol $(\{M_i\}_{i=0}^N, \tau)$ is a set of messages for each agent and a function $\tau: M_1 \times M_2 ... \times M_N \to \Delta(M_0)$.

- The interpretation is that senders 1, ..., N simultaneously submit a message $m_i \in M_i$ to a black box that sends the receiver a message in M_0 according to $\tau(m_1, m_1, ..., m_N)$.
- A direct revelation protocol (DRP) is a communication protocol with $M_0 = A$ and $M_i = \Theta_i$ for i = 1, ..., N.
- We use $\Gamma:\Theta\to\Delta(A)$ to denote DRP.

5

Direct Revelation Mechanisms

Following Myerson (1982), we define obedience and truthfulness:

Obedience

DRP Γ is *obedient* if the Receiver finds it optimal to follow the recommendation, assuming truthful reporting.

Truthful

A DRP Γ is *truthful* if reporting truthfully is a BNE, assuming obedience.

• **Revelation Principle** [Myerson (1982)]: it is without loss to focus on truthful and obedient direct revelation protocols.

- We now turn to analyzing off-protocol communication.
 - Fix a protocol $(\{M_i\}, \tau)$.
 - Let $P_i := \Theta_i \times M_i$.
- A confession for Sender i is a tuple (T, τ) where
 - $T \subseteq P_i$
 - $\tau: M_0 \to \Delta(A)$ is a suggested transformation.
- Fix an equilibrium. A confession is *credible* iff, given the strategy of

 i,
 - the transformation τ is only profitable for type-message combinations in T (strictly for some).
 - transformation τ is a best response, conditional on every $t \in T$.

Definition

- We now turn to analyzing off-protocol communication.
 - Fix a protocol $(\{M_i\}, \tau)$.
 - Let $P_i := \Theta_i \times M_i$.
- A *confession* for Sender i is a tuple (T, τ) where
 - $T \subseteq P_i$
 - $\tau: M_0 \to \Delta(A)$ is a suggested transformation.
- Fix an equilibrium. A confession is *credible* iff, given the strategy of

 -i,
 - the transformation τ is only profitable for type-message combinations in T (strictly for some).
 - transformation τ is a best response, conditional on every $t \in T$.

Definition

- We now turn to analyzing off-protocol communication.
 - Fix a protocol $(\{M_i\}, \tau)$.
 - Let $P_i := \Theta_i \times M_i$.
- A confession for Sender i is a tuple (T, τ) where
 - $T \subseteq P_i$
 - $\tau: M_0 \to \Delta(A)$ is a suggested transformation.
- Fix an equilibrium. A confession is *credible* iff, given the strategy of

 i,
 - the transformation τ is only profitable for type-message combinations in T (strictly for some).
 - transformation τ is a best response, conditional on every $t \in T$.

Definition

- We now turn to analyzing off-protocol communication.
 - Fix a protocol $(\{M_i\}, \tau)$.
 - Let $P_i := \Theta_i \times M_i$.
- A confession for Sender i is a tuple (T, τ) where
 - $T \subseteq P_i$
 - $\tau: M_0 \to \Delta(A)$ is a suggested transformation.
- Fix an equilibrium. A confession is *credible* iff, given the strategy of

 i,
 - the transformation τ is only profitable for type-message combinations in T (strictly for some).
 - transformation τ is a best response, conditional on every $t \in T$.

Definition

- We now turn to analyzing off-protocol communication.
 - Fix a protocol $(\{M_i\}, \tau)$.
 - Let $P_i := \Theta_i \times M_i$.
- A confession for Sender i is a tuple (T, τ) where
 - $T \subseteq P_i$
 - $\tau: M_0 \to \Delta(A)$ is a suggested transformation.
- Fix an equilibrium. A confession is *credible* iff, given the strategy of

 i,
 - the transformation τ is only profitable for type-message combinations in T (strictly for some).
 - transformation τ is a best response, conditional on every $t \in T$.

Definition

Back to Example 1

Payoff matrix

Action	$\theta = L$	$\theta = R$
1	(3,3)	(0,0)
r	(0,0)	(3,3)
safe	(2, 2)	(2,2)

- Consider the protocol with 2/3 precision.
- Credible confession: $(\{(A, A), (A, B)\}, \tau)$ where $\tau(\hat{a}) = A$.
- The only protocols that are neologism-proof are perfectly revealing.

Example 2: No Neologism Proof Cheap-Talk Equilibrium

- Single Sender observes state $\theta \in \{L, R\}$ uniform.
- Receiver must choose an action $a \in \{l, r, \text{safe}\}$. Same payoffs as Example 1.

Sender's payoff

Action	$\theta = L$	$\theta = R$
1	2	1
r	-1	0
safe	0	2

- There is no cheap talk equilibrium that is neologism proof.
- However, we can construct a neologism-proof protocol.

General Results

Revelation Principle

Everything that can be implemented with a protocol that is N-P, can be implemented with a Direct Protocol that is Obedient, Truthful, and N-P.

Existence

Whenever there is a N-P Cheap Talk Equilibrium, there is a N-P Protocol.

• Any cheap talk communication can be replicated within the protocol.

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals
 s_i ∈ {Left, Right}.
- Expertise of the experts:
 - Good expert: Signal matches the state with probability $q_H > 1/2$.
 - **Bad expert**: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must
 - take an action: a₀ ∈ {Left, Right}
 - nominate one of the experts for a promotion: $m \in \{1, 2\}$

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals $s_i \in \{\text{Left}, \text{Right}\}.$
- Expertise of the experts:
 - Good expert: Signal matches the state with probability $q_H > 1/2$.
 - Bad expert: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must
 - take an action: a₀ ∈ {Left, Right}
 - nominate one of the experts for a promotion: $m \in \{1,2\}$

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals
 s_i ∈ {Left, Right}.
- Expertise of the experts:
 - **Good expert**: Signal matches the state with probability $q_H > 1/2$.
 - Bad expert: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert.
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must
 - take an action: $a_0 \in \{\text{Left}, \text{Right}\}$
 - nominate one of the experts for a promotion: m ∈ {1,2}.

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals
 s_i ∈ {Left, Right}.
- Expertise of the experts:
 - **Good expert**: Signal matches the state with probability $q_H > 1/2$.
 - Bad expert: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert.
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must:
 - take an action: $a_0 \in \{\text{Left}, \text{Right}\}$
 - nominate one of the experts for a promotion: $m \in \{1, 2\}$

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals
 s_i ∈ {Left, Right}.
- Expertise of the experts:
 - Good expert: Signal matches the state with probability $q_H > 1/2$.
 - Bad expert: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert.
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must:
 - take an action: $a_0 \in \{\text{Left}, \text{Right}\}$
 - nominate one of the experts for a promotion: $m \in \{1, 2\}$

- Payoff-relevant state: $\omega \in \{\text{Left}, \text{Right}\}.$
- Two senders (experts) observe conditionally independent signals
 s_i ∈ {Left, Right}.
- Expertise of the experts:
 - Good expert: Signal matches the state with probability $q_H > 1/2$.
 - Bad expert: Signal matches the state with probability $q_L \in (1/2, q_H)$.
 - There is exactly one good expert.
 - The identity e ∈ {1,2} of the good expert is unknown to the receiver.
 - Ex-ante identical probabilities.
- The Receiver must:
 - take an action: $a_0 \in \{\text{Left}, \text{Right}\}$
 - nominate one of the experts for a promotion: $m \in \{1, 2\}$.

Application: Payoffs

- Experts and DM want the action to match the state.
- The expert that is promoted obtains a bonus *B*.
- The DM prefers to promote the good expert.

$$\pi_0 = 1_{\{a=\omega\}} + C \cdot 1_{\{m=e\}}$$

 $\pi_i = 1_{\{a=\omega\}} + B \cdot 1_{\{m=i\}}$

Application: Payoffs

- Experts and DM want the action to match the state.
- The expert that is promoted obtains a bonus B.
- The DM prefers to promote the good expert.

$$\pi_0 = 1_{\{a=\omega\}} + C \cdot 1_{\{m=e\}}$$
 $\pi_i = 1_{\{a=\omega\}} + B \cdot 1_{\{m=i\}}$

Communication Design to Match the State

- Optimal action given experts' information: s_{θ} .
 - Probability of matching the state with optimal action: q_H .
- Is it possible to have a communication protocol that implements this action?

- DRP
 - experts report their information $\hat{\theta}_i = (\hat{e}_i, \hat{s}_i)$
 - the protocol recommends an action $\hat{a}=(\hat{a}_0,\hat{m})$

Communication Design to Match the State

- Optimal action given experts' information: s_{θ} .
 - Probability of matching the state with optimal action: q_H .
- Is it possible to have a communication protocol that implements this action?

- DRP:
 - experts report their information $\hat{\theta}_i = (\hat{e}_i, \hat{s}_i)$
 - the protocol recommends an action $\hat{a}=(\hat{a}_0,\hat{m})$

Communication Design to Match the State

- Optimal action given experts' information: s_{θ} .
 - Probability of matching the state with optimal action: q_H .
- Is it possible to have a communication protocol that implements this action?

DRP:

- experts report their information $\hat{\theta}_i = (\hat{e}_i, \hat{s}_i)$
- the protocol recommends an action $\hat{a} = (\hat{a}_0, \hat{m})$.

• Consider the following family of DRP:

- If the reports coincide on identity of the good expert, i.e., $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}$
 - protocol recommends action $\hat{s}_{\hat{\theta}}$.
 - protocol recommends to promote $\hat{\theta}$ with probability $g \geq 1/2$.
- If reports do not coincide, protocol recommends
 - An action equal to the reported signals when these coincide.
 - a random action when reported signals don't coincide.
 - a (uniformly) random promotion.
- Let p_L be the probability of matching the state when signals are aggregated with the same weight. The bad expert reports truthfully if

$$q_H + (1-g) \cdot B \ge p_L + \frac{1}{2} \cdot B$$
 \Rightarrow $g \le \frac{1}{2} + \frac{q_H - p_L}{B}$

- Consider the following family of DRP:
 - If the reports coincide on identity of the good expert, i.e., $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}$,
 - protocol recommends action $\hat{s}_{\hat{\theta}}$.
 - protocol recommends to promote $\hat{\theta}$ with probability $g \geq 1/2$.
 - If reports do not coincide, protocol recommends
 - An action equal to the reported signals when these coincide.
 - a random action when reported signals don't coincide.
 - a (uniformly) random promotion.
- Let p_L be the probability of matching the state when signals are aggregated with the same weight. The bad expert reports truthfully if

$$q_H + (1-g) \cdot B \ge p_L + \frac{1}{2} \cdot B$$
 \Rightarrow $g \le \frac{1}{2} + \frac{q_H - p_L}{B}$

- Consider the following family of DRP:
 - If the reports coincide on identity of the good expert, i.e., $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}$,
 - protocol recommends action $\hat{s}_{\hat{\theta}}$.
 - protocol recommends to promote $\hat{\theta}$ with probability $g \geq 1/2$.
 - If reports do not coincide, protocol recommends
 - An action equal to the reported signals when these coincide.
 - a random action when reported signals don't coincide.
 - a (uniformly) random promotion.
- Let p_L be the probability of matching the state when signals are aggregated with the same weight. The bad expert reports truthfully if

$$q_H + (1-g) \cdot B \ge p_L + \frac{1}{2} \cdot B$$
 \Rightarrow $g \le \frac{1}{2} + \frac{q_H - p_L}{B}$

- Consider the following family of DRP:
 - If the reports coincide on identity of the good expert, i.e., $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}$,
 - protocol recommends action $\hat{s}_{\hat{\theta}}$.
 - protocol recommends to promote $\hat{\theta}$ with probability $g \geq 1/2$.
 - If reports do not coincide, protocol recommends
 - An action equal to the reported signals when these coincide.
 - a random action when reported signals don't coincide.
 - a (uniformly) random promotion.
- Let p_L be the probability of matching the state when signals are aggregated with the same weight. The bad expert reports truthfully if

$$q_H + (1 - g) \cdot B \ge p_L + \frac{1}{2} \cdot B$$
 \Rightarrow $g \le \frac{1}{2} + \frac{q_H - p_L}{B}$

Consider the following deviation of the good expert i which obtains $s_i = \text{Left}$.

- Instead of sending report (*i*, Left), he sends (*i*, Right).
- He approaches the DM and says:
 - "I am the good expert and gave an incorrect report, thus you should not follow the recommended action from the mechanism.
 - You should instead do the opposite of what the mechanism
 recommends.
 - By the way, there is no way that the bad expert benefits from you switching the action, so you should trust that I'm the good expert
 - Therefore, you should give me that promotion'

Consider the following deviation of the good expert i which obtains $s_i = \text{Left}$.

- Instead of sending report (*i*, Left), he sends (*i*, Right).
- He approaches the DM and says:
 - "I am the good expert and gave an incorrect report, thus you should not follow the recommended action from the mechanism.
 - You should instead do the opposite of what the mechanism recommends.
 - By the way, there is no way that the bad expert benefits from you switching the action, so you should trust that I'm the good expert.
 - Therefore, you should give me that promotion"

• Is it beneficial for the good expert? YES.

$$q_H + B$$
 vs $q_H + g \cdot B$

Is it be beneficial for the bad expert? Depends.

$$(1-p)+B$$
 vs $q_H+(1-g)\cdot B$

- <u>p</u>: minimum probability of having the mechanism recommend the correct action that can be induced by the bad expert.
- Beneficial iff $g > \frac{q_H (1 \underline{p})}{B}$

• Is it beneficial for the good expert? **YES.**

$$q_H + B$$
 vs $q_H + g \cdot B$

• Is it be beneficial for the bad expert? **Depends.**

$$(1-p)+B$$
 vs $q_H+(1-g)\cdot B$

- \underline{p} : minimum probability of having the mechanism recommend the correct action that can be induced by the bad expert.
- Beneficial iff $g > \frac{q_H (1 \underline{p})}{B}$

When can the DM take optimal actions

Proposition

The optimal recommendation can be implemented with a NP mechanism iff the career concerns are not too high:

$$B \leq 2 \cdot (p_L - (1 - \underline{p})).$$

We just need that it exists a g small enough so that bad expert
want to report his expertise truthfully, but high enough so that bad
expert would like to sabotage the mechanism.

$$\frac{q_H - (1 - \underline{p})}{B} > \frac{1}{2} + \frac{q_H - p_L}{B}$$

When can the DM take optimal actions

Proposition

The optimal recommendation can be implemented with a NP mechanism iff the career concerns are not too high:

$$B \leq 2 \cdot (p_L - (1 - \underline{p})).$$

We just need that it exists a g small enough so that bad expert
want to report his expertise truthfully, but high enough so that bad
expert would like to sabotage the mechanism.

$$\frac{q_H - (1 - \underline{p})}{B} > \frac{1}{2} + \frac{q_H - p_L}{B}$$

Conclusion

- When mechanism participants have a common language, mechanism designers have to account for the incentives to confess deviations.
- We study the problem of designing communication protocols to elicit experts' information when
 - Experts have career concerns.
 - Experts share a common language with the DM and can communicate outside of the mechanism.
- We find that
 - To induce an optimal action, a mechanism must aggregate the
 experts' recommendations, and not promote the good expert too
 often. However, good experts have incentives to sabotage the
 mechanism in an attempt to signal their type.
 - When career concerns are sufficiently high, it is not possible to implement the optimal action in a way that is robust to off-protocol communication.