COMP9313: Big Data Management

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 7.2: Finding Similar Items

Step 3: Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- ❖ LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - ➤ Hash columns of signature matrix *M* to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

• Pick a similarity threshold s (0 < s < 1)

2	1	4	1
1	2	1	2
2	1	2	1

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

Big idea: Hash columns of signature matrix M several times

2	1	4	1
1	2	1	2
2	1	2	1

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition *M* into *b* Bands

Signature matrix *M*

Partition M into Bands

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1
 band
- ❖ Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Hashing Bands

- Regardless of what those columns look like in the other three bands, this pair of columns will be a candidate pair
- Two columns that do not agree in band 1 have three other chances to become a candidate pair; they might be identical in any one of these other bands.

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- ❖ Goal: Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a **candidate pair**: We want them to hash to at **least 1 common bucket** (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C₁, C₂ are *not* similar in all of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

- ❖ Find pairs of \ge s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to **NO common buckets** (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold **s**

LSH Involves a Tradeoff

Pick:

- > The number of Min-Hashes (rows of *M*)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

What 1 Band of 1 Row Gives You

b bands, r rows/band

- The probability that the minhash signatures for the documents agree in any one particular row of the signature matrix is $t(sim(C_1, C_2))$
- Pick any band (r rows)
 - Prob. that all rows in band equal = t
 - Prob. that some row in band unequal = 1 t*
- Prob. that no band identical = $(1 t')^b$
- ❖ Prob. that at least 1 band identical = 1 (1 t')^b

What b Bands of r Rows Gives You

这种band的思想,使得这个判断函数具有很明显的断崖式结果,这就是我们想要的我们希望当相似度低于某个值的时候,被hash到一个桶的概率很低

Example: b = 20, r = 5

- Similarity threshold s
- **❖** Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - > 50 hash-functions (r=5, b=10)

Blue area: False Negative rate Black area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity ≥ s

Distance Measures

- Generalized LSH is based on some kind of "distance" between points.
 - Similar points are "close."
- Example: Jaccard similarity is not a distance; 1 minus Jaccard similarity is.
- d is a distance measure if it is a function from pairs of points to real numbers such that:
 - 1. $d(x,y) \ge 0$.
 - 2. d(x,y) = 0 iff x = y.
 - 3. d(x,y) = d(y,x).
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Some Euclidean Distances

- * L_2 norm: d(x,y) =square root of the sum of the squares of the differences between x and y in each dimension.
 - The most common notion of "distance."
- \leftarrow L₁ norm: sum of the differences in each dimension.
 - Manhattan distance = distance if you had to travel along coordinates only.

7.25 25

Some Non-Euclidean Distances

- Jaccard distance for sets = 1 minus Jaccard similarity.
- Cosine distance for vectors = angle between the vectors.
- Edit distance for strings = number of inserts and deletes to change one string into another.

7.26 26

Cosine Distance

- Think of a point as a vector from the origin [0,0,...,0] to its location.
- Two points' vectors make an angle, whose cosine is the normalized dot-product of the vectors: $p_1.p_2/|p_2||p_1|$.
 - ightharpoonup Example: $p_1 = [1,0,2,-2,0]; p_2 = [0,0,3,0,0].$
 - $p_1.p_2 = 6$; $|p_1| = |p_2| = \sqrt{9} = 3$.
 - $> \cos(\theta) = 6/9; \theta$ is about 48 degrees.

27

Edit Distance

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- \diamond An equivalent definition: d(x,y) = |x| + |y| 2|LCS(x,y)|.
 - LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.
- Example:
 - \rightarrow x = abcde; y = bcduve.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
 - Or, computing edit distance through the LCS, note that LCS(x,y) = bcde.
 - \rightarrow Then: |x| + |y| 2|LCS(x,y)| = 5 + 6 2*4 = 3 = edit distance.

Hash Functions Decide Equality

- There is a subtlety about what a "hash function" is, in the context of LSH families.
- A hash function h really takes two elements x and y, and returns a decision whether x and y are candidates for comparison.
- Example: the family of minhash functions computes minhash values and says "yes" iff they are the same.
- Shorthand: "h(x) = h(y)" means h says "yes" for pair of elements x and y.

7.29 29

LSH Families Defined

- Suppose we have a space S of points with a distance measure d.
- A family **H** of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for any x and y in S:
 - 1. If $d(x,y) \le d_1$, then the probability over all h in H, that h(x) = h(y) is at least p_1 .
 - If $d(x,y) \ge d_2$, then the probability over all h in H, that h(x) = h(y) is at most p_2 .

LS Families: Illustration

7.31 31

Example: LS Family – (2)

For Jaccard similarity, minhashing gives us a $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any $d_1 < d_2$.

Part 2: Exact Approach to Finding Similar Items

Set-Similarity Join

Finding pairs of records with a **similarity** on their join attributes > t

Set-Similarity Join

Given two collections of records R and S, a similarity function sim(., .), and a threshold τ, the set similarity join between R and S, is to find all record pairs r (from R) and s (from S), such that sim(r, s) >= τ.

id	set	$\overline{\mathbf{id}}$	set
	$\{e_1, e_4, e_5, e_6\}$	_	$\{e_1, e_4, e_6\}$
r_2	$\{e_2,e_3,e_6\}$	s_2	$\{e_2,e_5,e_6\}$
r_3	$\{e_4, e_5, e_6\}$	s_3	$\{e_3, e_5\}$
	(a) \mathcal{R} sets		(b) S sets

- Given the above example, and set τ=0.5, the results are: (r1, s1) (similarity 0.75), (r2, s2) (similarity 0.5), (r3, s1) (similarity 0.5), (r3, s2) (similarity 0.5).
- LSH can solve this problem approximately.

Application: Record linkage

Table R

Star

Keanu Reeves

Samuel Jackson

Schwarzenegger

...

Table S

Star

Keanu Reeves

Samuel L. Jackson

Schwarzenegger

...

Two-step Solution

A Naïve Solution

- \diamond Map: <23, (a,b,c)> \rightarrow (a, 23), (b, 23), (c, 23)
- Reduce: (a,23),(a,29),(a,50), ... → Verify each pair (23, 29), (23, 50), (29, 50)

- Too much data to transfer
- Too many pairs to verify

Solving frequency skew: prefix filtering

Sort tokens by frequency (ascending)

Prefix of a set: least frequent tokens

Prefixes of similar sets should share tokens

Prefix filtering: example

Record 1

Record 2

- Each set has 5 tokens
- "Similar": they share at least 4 tokens
- Prefix length: 2

Hadoop Solution: Overview

Stage 1: Order tokens by frequency

Stage 2: Finding "similar" id pairs (verification)

Stage 3: remove duplicates

Stage 1: Sort tokens by frequency

Compute token frequencies

MapReduce phase 1

Sort them

MapReduce phase 2

Stage 2: Find "similar" id pairs

Partition using prefixes

Verify similarity

Compute the Length of Shared Tokens

- ❖ Jaccard Similarity: $sim(r, s) = |r \cap s|/|r \cup s|$
- ♦ If sim(r, s) >= τ, I = |r ∩ s| >= |r ∪ s| * τ >= max(|r|, |s|) * τ
- Given a record r, you can compute the prefix length as p = |r| I + 1
- r and s is a candidate pair, they must share at least one token in the first (|r| - I + 1) tokens
- Given a record r = (A, B, C, D) and p = 2, the mapper emits (A, r) and (B, r)

Stage 3: Remove Duplicates

RID1 RID2 Sim.		
1	21	0.5
1	21	0.5
2	11	0.5
2	11	0.5

More Optimization Strategies

- Project 3: Do it using Spark on Google Dataproc
- It is your job to design more optimization strategies. The faster the better!
- Thinking:
 - How to compute the prefix length of a single record when processing it?
 - How to pass the sorted list to each worker?
 - Is it necessary to generate duplicate pairs?

References

Chapter 3 of Mining of Massive Datasets.

End of Chapter 7.2