Module G12 : Probabilités de base.

Examen 1^{re} session : durée deux heures.

Documents autorisés: polycopié et notes personnelles de cours, liste des lois usuelles.

Lundi 18 décembre 2006.

Exercice 1. Soit $(U_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi uniforme sur [0,1]; U_1 a pour densité $x \longmapsto \mathbf{1}_{[0,1](x)}$ et pour fonction de répartition $F(t) = t \, \mathbf{1}_{[0,1]}(t) + \mathbf{1}_{[1,+\infty[}(t).$

1. On note, pour tout $n \geq 1$,

$$Y_n = (U_n)^n$$
, $V_n = \sup\{Y_k : 1 \le k \le n\}$, $W_n = \sup\{Y_{2^k} : 1 \le k \le n\}$, $h_n = \sum_{k=1}^n \frac{1}{k}$

et $V = \sup \{Y_k : k \ge 1\}, W = \sup \{Y_{2^k} : k \ge 1\}.$ On rappelle que $h_n \sim \ln n$.

- (a) Déterminer, pour tout $n \geq 1$, la fonction de répartition F_n de Y_n .
- (b) Calculer, pour tout $n \geq 1$, les fonctions de répartition, H_n et G_n , de V_n et W_n .
- (c) Soit t un réel. Comparer les événements $\{V \leq t\}$ et $\cap_{n\geq 1} \{V_n \leq t\}$.

En déduire que V=1 presque sûrement.

- (d) Montrer que W suit la loi uniforme sur [0, 1].
- (e) Montrer que la suite de terme général $(1 V_n) \ln n$ converge en loi vers T de loi exponentielle de paramètre 1.
- 2. Soit $\psi:[0,1] \longrightarrow [0,1]$ une fonction borélienne. On note

$$I = \int_0^1 \psi(x) \, dx, \qquad X_n = \mathbf{1}_{\{U_{2n-1} < \psi(U_{2n})\}} = \begin{cases} 1, & \text{si } U_{2n-1} < \psi(U_{2n}) \\ 0, & \text{sinon} \end{cases}, \quad n \ge 1.$$

(a) Montrer que la suite de terme général

$$I_n = \frac{1}{n} \left(\psi(U_1) + \ldots + \psi(U_n) \right)$$

converge presque sûrement et préciser sa limite.

- (b) Montrer que les variables $(X_n)_{n\geq 1}$ sont indépendantes et identiquement distribuées.
- (c) Déterminer la loi de X_1 et en déduire que la suite de terme général

$$\overline{X}_n = \frac{1}{n} \left(X_1 + \ldots + X_n \right)$$

converge presque sûrement; préciser la limite.

(d) Comparer $\mathbb{V}(\psi(U_1))$ et $\mathbb{V}(X_1)$. Quelle approximation de I vous semble la meilleure?

1

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées, de carré intégrable telle que $\mathbb{E}[X_1] = 0$, $\mathbb{V}(X_1) = 1$. On note, pour tout $n \geq 1$,

$$Y_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n X_k, \qquad Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^{2n} X_k$$

et on désigne par ψ_n la fonction caractéristique de Y_n et par φ celle de X_1 .

- 1. Justifier la convergence en loi de la suite $(Y_n)_{n\geq 1}$ vers une variable aléatoire Y dont on précisera la loi.
- 2. (a) Exprimer la fonction caractéristique de $Z_n Y_n$ à l'aide de ψ_n . Que vaut ψ_n en fonction de φ ?
- (b) Montrer que la suite de terme général $(Y_n, Z_n Y_n)$ converge en loi vers (Y, G) où Y et G sont indépendantes et identiquement distribuées.
 - (c) En déduire que $((Y_n, Z_n))_{n>1}$ converge en loi vers (Y, Z) dont on explicitera la loi.

Exercice 3. Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes à valeurs dans $[0, +\infty[$. On note, pour tout $n\geq 1, Z_n=\frac{Y_n}{1+Y_n}$ et on désigne par A l'événement

$$A = \left\{ \omega \in \Omega : \sum_{k \ge 1} Y_k(\omega) < +\infty \right\}.$$

On considère également $(c_n)_{n\geq 1}$ une suite de réels positifs et $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées à valeurs dans $[0, +\infty[$ telle que X_1 a pour densité $x \longmapsto \frac{1}{x^2} \mathbf{1}_{x\geq 1}$; on note B l'événement

$$B = \left\{ \omega \in \Omega : \sum_{k>1} c_k X_k(\omega) < +\infty \right\}.$$

- 1. Quelles valeurs peuvent prendre $\mathbb{P}(A)$ et $\mathbb{P}(B)$?
- 2. (a) Calculer, pour tout $k \geq 1$, $\mathbb{P}(c_k X_k \geq 1)$.
 - (b) En déduire que si $\sum_{k\geq 1} c_k = +\infty$, $\mathbb{P}(\limsup\{c_n X_n \geq 1\}) = 1$ et $\mathbb{P}(B) = 0$.
- 3. (a) Montrer que si $\sum_{k\geq 1} \mathbb{E}[Z_k] < +\infty$ alors $\mathbb{P}(A) = 1$.
 - (b) Montrer que si $\sum_{k\geq 1}\mathbb{E}[Z_k]=+\infty,$ la suite de terme général

$$\frac{\sum_{k=1}^{n} Z_k}{\sum_{k=1}^{n} \mathbb{E}[Z_k]}$$

converge vers 1 dans L^2 .

En déduire que dans ce cas $\mathbb{P}(A) = 0$.

4. Donner une condition nécessaire et suffisante pour que $\mathbb{P}(B) = 1$.