Continuous-time Markov Chain: Poisson Process 3

SIDNEY CHAPMAN

ANDREY KOLMOGOROV

Superposition property

The sum of two independent Poisson processes is a Poisson process. We first proof the following theorem for Poisson RVs.

Theorem: Suppose X_1 and X_2 are independent Poisson random variables with parameters λ_1 and λ_2 respectively. Let $Y = X_1 + X_2$ then $Y \sim Poi(\lambda_1 + \lambda_2)$.

Proof: Given $X_1 \sim Poi(\lambda_1)$ and $X_2 \sim Poi(\lambda_2)$

Then,
$$M \subseteq X \subseteq X$$

$$M_{X_1}(s) = Ee^{sX_1} = \sum_{R} e^{sR} e^{sX_1} = e^{\lambda_1(e^s - 1)}$$

$$= e^{\lambda_1(e^s - 1)}$$

Superposition property...

Similarly,

$$M_{X_2}(s) = e^{\lambda_2(e^s - 1)}$$
 $SX_1 SX_2$
 $M_Y(s) = Ee^{s(X_1 + X_2)} = Ee^{s(X_1 + X_2)}$ $SX_2 SX_3$
 $= Ee^{s(X_1 + X_2)} = Ee^{s(X_1 + X_2)}$ $SX_2 SX_3$
 $= e^{\lambda_1(e^s - 1)}e^{\lambda_2(e^s - 1)}$

$$\therefore M_Y(s) = e^{(\lambda_1 + \lambda_2)(e^s - 1)}$$

which is the MGF of a Poisson random variable with parameter $(\lambda_1 + \lambda_2)$

$$\therefore Y \sim Poi(\lambda_1 + \lambda_2)$$

Superposition property...

Using the above theorem we can prove the following property of Poisson processes.

Suppose $N_1(t)$ and $N_2(t)$ are independent Poisson processes with rates λ_1 and λ_2 respectively. Then $N(t) = N_1(t) + N_2(t)$ is a Poisson process with a rate $\lambda_1 + \lambda_2$.

Example A petrol pump serves on the average 30 cars and 20 trucks per hour. Assuming the Poisson model, find the probability that during a period of 5 minutes n vehicles come to the station.

Solution: We have
$$\lambda_1 = \frac{1}{2}$$
 and $\lambda_2 = \frac{1}{3}$ $\lambda_3 = \frac{1}{3}$ $\lambda_4 + \lambda_2 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ $\lambda_1 + \lambda_2 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$

Nonhomogeneous Poisson process

A nonhomogeneous Poisson process allows for the arrival rate $\lambda(t)$ to be a function of time. Such an assumption is valid in many practical cases. Following are the postulates:

- (i) N(0)=0 with probability 1.
- (ii) N(t) is an independent increment process.

(iii)
$$P(N(t+\Delta t) - N(t) = 1) = \lambda(t)\Delta t + o(\Delta t)$$

(iv)
$$P(N(t+\Delta t)-N(t) \ge 2) = Xo(\Delta t)$$

Using these postulates, we can derive that

$$P(N(t) = n) = \frac{(m(t))^n e^{-m(t)}}{n!}$$

where
$$m(t) = \int_{0}^{t} \lambda(u) du$$

We have,

$$m(t) = \int_{0}^{t} \lambda(u) du$$
 is the

When $\lambda(t) = \lambda$, then we get homogeneous Poisson process.

We can show that

$$EN(t) = m(t)$$

 $var(N(t)) = m(t)$

Example: For a nonhomogenous Poisson process the rate is given by

$$\lambda(t) = \begin{cases} 10, & \text{if } t \in (0, 0.5], (11.5]... \\ 2, & \text{if } t \in (0.5, 1], (1.52].. \end{cases}$$

Find
$$E(N(1))$$
 If the 10the event occur at t=0.45, find $P(W_{11} > 0.75)$
 $m(4) = \int_{A(1)}^{A(1)} \int_{A(2)}^{A(1)} \int_{A(3)}^{A(3)} \int_{A(3)}^$

Compound Poisson Process

Let X_i s be iid random variables and $Y(t) = \sum_{i=1}^{N(t)} X_i$, where N(t) is a

homogeneous Poisson process which is independent of each of X_i s. The process $\{Y(t)\}$ is called a *compound Poisson process*.

For example, suppose customers arrive at a departmental store with a Poisson rate λ . Each customer i spends some amount of money X_i independently of others and the amount for each customer is assumed to be of identical distribution (say uniform). The the money earned by the stores in the time interval (0, t] is a compound Poisson process.

We can find EY(t) and Var(Y(t)) using the properties of conditional expectations $\stackrel{\frown}{=}$

We have

$$Y(t) = \sum_{i=1}^{N(t)} X_i$$

$$E(Y(t) \mid N(t) = n) = E\left[\sum_{i=1}^{n} X_i\right]$$

$$=\sum_{i=1}^{n} EX_{i}$$

$$= nEX_1$$

$$\therefore EY(t) = EE(Y(t) / N(t)) = \sum_{n=0}^{\infty} \frac{nEX_1 e^{-\lambda t} (\lambda t)^n}{n!}$$
$$= EX_1 \cdot \lambda t$$

van(4) = E Van(41x) + Van(641x

Now

$$Var(Y(t) | N(t) = n) = var \left[\sum_{i=1}^{n} X_{i} \right]$$

$$= \sum_{i=1}^{n} \operatorname{var}(X_{i})$$

$$= n \operatorname{var} X_{1}$$

$$= n \operatorname{var} X_{1}$$

Thr variance of $\{Y(t)\}$ is given as

$$Var(Y(t)) = E(var(Y(t) | N(t) + var(E(Y(t) | N(t))))$$

$$= EN(t) var(X_1) + var(N(t)EX_1)$$

$$= \lambda t var(X_1) + \lambda t (EX_1)^2$$

$$= \lambda t EX_1^2$$

Customers arrive at a departmental store in a Poisson manner at rate of 10 customers per hour. Each customer spends uniformly between Rs. 400 -Rs 2000 independently of other customer. What is the average income of the store in a two-hour interval? What is the variance of the total income?