Devoir surveillé nº 3

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

Pour tout $n \in \mathbb{N}$ et tout $x \in [-1, 1]$, on pose $T_n(x) = \cos(n \arccos(x))$.

- 1. Donner des expressions $T_0(x)$, $T_1(x)$ et $T_2(x)$ valables pour tout $x \in [-1, 1]$ sous la forme de polynômes.
- 2. Soit $n \in \mathbb{N}$. Calculer $T_n(0)$, $T_n(1)$ et $T_n(-1)$. On distinguera des cas suivant les valeurs de n.
- **3.** a. Montrer que pour tout $x \in [-1, 1]$, $\arccos(-x) = \pi \arccos(x)$.
 - **b.** Déterminer une relation entre $T_n(x)$ et $T_n(-x)$ valable pour tout $x \in [-1,1]$. Qu'en déduit-on sur la parité de T_n ?
- **4.** a. Soit $n \in \mathbb{N}$. Pour $t \in \mathbb{R}$, on pose $g_n(t) = T_n(\cos(t)) \cos(nt)$. Que vaut g_n sur $[0, \pi]$?
 - **b.** En déduire que $T_n(\cos(t)) = \cos(nt)$ pour tout $t \in \mathbb{R}$.
- 5. Soit $(\mathfrak{m},\mathfrak{n})\in\mathbb{N}^2$. Montrer que $T_\mathfrak{m}\circ T_\mathfrak{n}(x)=T_\mathfrak{mn}(x)$ pour tout $x\in[-1,1].$
- **6.** a. Soit $n \in \mathbb{N}$. Montrer que pour tout $t \in \mathbb{R}$,

$$T_{n+2}(\cos(t)) - 2\cos(t)T_{n+1}(\cos(t)) + T_n(\cos(t)) = 0$$

En déduire que pour tout $x\in [-1,1],\, T_{n+2}(x)-2xT_{n+1}(x)+T_n(x)=0.$

- **b.** En déduire des expressions de $T_3(x)$ et $T_4(x)$ valables pour tout $x \in [-1, 1]$ sous la forme de polynômes.
- 7. a. Justifier que T_n est de classe C^{∞} sur [-1,1] pour tout $n \in \mathbb{N}$.
 - **b.** Soit $n \in \mathbb{N}$. Montrer que pour tout $t \in \mathbb{R}$,

$$\sin^2(t) T_n''(\cos t) - \cos(t) T_n'(\cos(t)) + n^2 T_n(\cos(t)) = 0$$

En déduire que pour tout $x \in [-1, 1]$

$$(1-x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0$$

- 8. a. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $T_n(x) = 0$ admet n solutions distinctes que l'on explicitera.
 - b. Soit $n \in \mathbb{N}^*$. Déterminer les réels de [-1,1] en lesquels T_n admet ses extrema.
- **9.** Soit $n \in \mathbb{N}$. Montrer que pour tout $x \in [-1, 1]$

$$T_n(x) = \frac{1}{2} \left[\left(x + i\sqrt{1 - x^2} \right)^n + \left(x - i\sqrt{1 - x^2} \right)^n \right]$$

EXERCICE 2.

On définit la suite (F_n) par $F_0 = 1$, $F_1 = 1$ et $F_{n+2} = F_n + F_{n+1}$ pour tout $n \in \mathbb{N}$.

1. Montrer que la suite (F_n) est positive.

- $\textbf{2.} \ \, \text{Montrer que la suite } (F_n) \ \, \text{est croissante}. \\ \quad \text{En particulier, } F_n > 0 \ \, \text{pour tout } n \in \mathbb{N} \ \, \text{de sorte que l'on peut poser } G_n = \arctan\left(\frac{1}{F_n}\right) \ \, \text{pour tout } n \in \mathbb{N}.$
- 3. Montrer que $F_nF_{n+2} = F_{n+1}^2 + (-1)^n$ pour tout $n \in \mathbb{N}$.
- $\textbf{4.} \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ F_{2n+1} = \frac{F_{2n+2}F_{2n+3}-1}{F_{2n+2}+F_{2n+3}} \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}.$
- 5. En déduire que $G_{2n+1}=G_{2n+2}+G_{2n+3}$ pour tout $n\in\mathbb{N}.$
- **6.** En déduire que pour pour tout entier $n \in \mathbb{N}^*$,

$$G_{2n+1} + \sum_{k=1}^{n} G_{2k} = \frac{\pi}{4}$$

EXERCICE 3.*

Soit f définie par $f(x) = x - th(x) \ln(ch(x))$.

- 1. Montrer que f est définie sur \mathbb{R} .
- 2. Montrer que f est une fonction impaire.
- 3. Montrer que l'équation ch(x) = e n'admet qu'une seule solution positive. On notera a cette solution. On ne demande pas de la calculer.
- **4.** Montrer que si $|x| < \alpha$, $\ln(\operatorname{ch}(x)) < 1$ et que si $|x| > \alpha$, $\ln(\operatorname{ch}(x)) > 1$.
- 5. Justifier que f est dérivable sur \mathbb{R} et calculer sa dérivée.
- 6. Étudier les variations de f sur \mathbb{R} . On ne demande pas les limites de f en $-\infty$ et en $+\infty$ dans cette question.
- 7. Montrer que $\ln(\operatorname{ch}(x)) = x \ln(2) + \ln(1 + e^{-2x})$ pour tout $x \in \mathbb{R}$.
- 8. Montrer que $\lim_{x \to +\infty} x(1 \operatorname{th}(x)) = 0$.
- 9. Déduire des deux questions précédentes les limites de f en $+\infty$ et en $-\infty$.
- 10. Tracer la courbe représentative de f. On fera figurer les asymptotes et tangentes horizontales éventuelles. On donne $a \approx 1,66$, $f(a) \approx 0,73$ et $\ln(2) \approx 0,69$.

EXERCICE 4.

On pose pour $z \in \mathbb{C}$, $f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$.

- 1. Pour quels nombres complexes z, f(z) est-il défini?
- 2. Résoudre dans $\mathbb C$ l'équation f(z)=0.
- 3. Montrer que $\begin{cases} |\operatorname{Im} z| < \frac{\pi}{2} \\ |f(z)| < 1 \end{cases} \iff |\operatorname{Im} z| < \frac{\pi}{4}.$
- 4. On pose $\Delta = \left\{ z \in \mathbb{C} \mid |\operatorname{Im} z| < \frac{\pi}{4} \right\}$ et $U = \{ z \in \mathbb{C} \mid |z| < 1 \}$. Vérifier que $f(\Delta) \subset U$.
- 5. Soit $Z \in \mathbb{C} \setminus \mathbb{R}_-$. Montrer que l'équation $e^z = Z$ d'inconnue z admet une unique solution telle que $\operatorname{Im}(z) \in]-\pi,\pi[$.
- **6.** Soit $u \in U$. Montrer que $\frac{1+u}{1-u} \notin \mathbb{R}_{-}$.
- 7. Montrer que l'application f induit une bijection de Δ sur U.