Intro

Assessments:

- AE1 Prototype Design & Evaluation (20%)
 - o Team Project
 - o Description and Deadlines:
 - Usability evaluation (5%) 15 Oct
 - Design & prototype (5%) 29 Oct
 - Evaluation plan (5%) 5 Nov
 - Evaluation report (5%) 12 Nov
- AE2 HCI experiment data analysis
 - o Individual Project
 - Stats & Visualisations from real-world data set 3 Dec
 - Submit PDF of Jupyter notebook
- Exam (60%)

Course:

- Readings are essential to succeed in course
- Ability to articulate and defend ideas needed
 - Concepts and terms are crucial to effectively communicate

Examinable:

- All assigned readings as listed on Moodle
- All text of lecture slides

Not examinable:

• Links provided in lecture slides labelled as "For reference"

Week 2

Reading

Consistency

- About pleasing others by giving them what they understand and can rely on
- Establishing
 - o Setting and maintaining expectation by using elements people are familiar with
- Interpretation factors:
 - Other screens seen in other apps
 - Other screens seen in the same app
 - o Location, situation
 - o Age, background, experience
- Build consistency by anticipating expectations
- Types
 - o Internal (in app)

External (similar to other apps)

Lecture: HCI History and Visual Usability

HCI:

 Information Security, Speech-language pathology, Computer science, Economics & Human factors, Engineering, Design, Sociology & Social psychology, Ethnography, Cognitive science, Psychology

Iterative Cycle of Human-Centred Design

- Observation
 - o Understand problems
- Idea generation
 - o Draw on knowledge, conventions
 - Be creative, question everything, break conventions if with compelling reasons
- Prototyping
 - Paper/low-tech is often quickest way, and less risk of becoming 'attached' to specific ideas
- Evaluation
 - Many possible methods

Typing Study Case

- General Stats & Info
 - ~3.2 hours a day, typing
 - o ~51.56 wpm
 - "Fast" typists ~89.56 wpm
 - "Fast" typists make fewer errors
 - "Fast" typists use both hands more effectively
- Metrics for evaluating typing:
 - o Performance measures
 - wpm
 - uncorrected error rate

- error corrections
- keystrokes per character
- inter-key interval
- keypress duration
- Error metrics
 - Substitution error rate
 - omission error rate
 - insertion error rate
- Rollover
 - o Rollover typing previous key is not released before the following key is entered
 - On average, users perform rollover for 25% of keystrokes (SD=17%), and this has a high correlation with performance (r = .73, p < 0.001)
 - Fast typists perform rollover for 40-70% of keystrokes
 - o Idea:
 - Encourage more rollover on soft keyboards, might see faster typing speeds
 - Design a soft keyboard that employs haptic feedback to train and encourage rollover typing behaviours

Designing Interactive Systems

- What is your idea?
- Why do you think it will work?
- Where is the proof?
- Collecting data from potential users
 - Can provide insights, but must be collected in a valid and theoretically sound way

History of HCI

- Tied to history of Computing
 - o Colossus (1940s) Bletchley Park code breaking
 - o Programming via punched cards
- Initial computers in research labs, took up full rooms
 - Only ever operated on by specialists/engineers/the people who built them
- As technology progressed, got smaller/more affordable, started appearing in workplaces and homes
 - o A need for 'real' people to be able to operate them
 - Thoughts of human efficiency/task completion times/error rates
- A need for a new discipline to study these issues
- Start of HCI
 - Thought of as beginning in early 1980s
 - Conferences began
 - Influential textbooks
 - Emergence of the GUI
 - Trying to create an ... psychology of HCI
 - Based on knowledge of human psychology
 - Perception
 - Cognition
 - Motor function

- For many in software design communities, first exposure to psychology basis
- Engineering-style theories to give approximate calculations of how efficiently humans would interact
- Graphical User Interfaces
 - Xerox Star 1981
 - First GUI computer released
 - Bit-mapped display
 - WIMP, WYSIWYG
 - Desktop metaphor
 - Yet not a commercial success
 - Very expensive; network terminal, not 'personal' computer
 - Apple Macintosh 1984
 - Brought GUI to a wider audience
- Broadening of HCI topics
 - ~1980s: early research often looking at efficiency
 - Measure speed and accuracy
 - Lab-based studies
 - Formal experiments
 - ~1990s: field started to broaden, alongside importance of Internet
 - Emails, Web: topics related to communication
 - ~2000s: mobile/portable computing
 - Real world studies 'in the wild'
 - New technologies: sensors, wearable, XR
 - Study social, emotional, cultural issues
 - "Older" forms of research haven't gone away
- Broadening methods
 - Technology pushed progress here too
 - Eye-tracking studies, EEG, ...
 - Large-scale studies, users' own devices
 - From early studies that timed tasks/counted errors
 - Brought in new techniques more from sociology than psychology
 - Ethnography
 - Interviews
 - Case studies
- 3 Waves:
 - First Wave: Psychology and Perception
 - Second Wave: Organisational and Process-Oriented
 - o Third Wave: Social and Ubiquitous

Visual Usability

- "Visual communication of any kind, whether persuasive or informative [...] should be seen as
 the embodiment of form and function: the integration of the beautiful and the useful." –
 Paul Rand, A Designer's Art, p. 3
- The Things You See Around You Today Are Not There by Random Chance

- The interfaces familiar with us may seem easy to design, but are the result of many attempts and many failed designs
- Multidisciplinary challenges
 - Graphic design alone doesn't help teach us how to create complex IS
 - Usability alone might not teach us how to create the best experiences
- A complex interface might need to convey many messages
 - Should provide order, patterns to help people process info and derive meaning
- Visual Usability
 - Designs grounded in principles of aesthetics and understanding of people
 - We should be able to design and defend a design based on heuristics and best practices

Consistency

- Establishing consistency means setting and maintaining expectations
- External
 - Consistency with other similar apps
 - If designing an interface for online shopping, it should be similar to the established look/feel of existing interfaces

Internal

- Consistency within different parts of an app
- If designing an interface for online banking, all the views need consistency
- Internal/External can sometimes clash
 - e.g., suite of apps from same company. Should they primarily look and feel like each other or should each one meet the conventions of that type of app?
- Types:

Layout

- Screens showing similar info should have all elements positioned the same way
- Spatial relationships should remain consistent

Typography

• Use fonts, weights, and sizes meaningfully and consistently

Colour

 Use colour to establish and maintain consistency – typically means establishing a defined colour scheme

Imagery

 Charts, logos, videos, photography, icons, backgrounds, an anything else that isn't typography

Breaking

- Can break the rules to make a point/highlight something
- e.g., make one piece of content bigger than others if it's the most important/where you want to guide the eye
- Don't change more than 2 aspects of a single item

Hierarchy

- Visual hierarchy is used to communicate structural relationships, and relative importance
- More important items need more "visual weight"

- Understanding behaviour of gaze is important when deciding how to effectively give important elements more visual weight
- Use position, size, colour, groupings, contrast, control types to represent priorities
- Make sure people notice what they need to based on identified user priorities
- Start with black and white wireframes only vary size and positions

Layout

- Screen size
 - The screen gives the frame within which the entire interface sits
 - Core layout principles might apply to all screen sizes main thing is how elements relate to each other, so layout can flex
- Position
 - Does the relative position of elements communicate structure?
 - Might need to balance lots of relationships
- White Space
 - Absence of content is equally important, for example, the sparse design on a Google landing page
 - Trick to create dense but appealing screens is white space to group and establish hierarchy
- Grid
 - Align items relative to (invisible) horizontal and vertical lines
- Proximity, Scale, and Alignment
 - Proximity
 - Is the relative placement of items arbitrary or meaningful?
 - Scale
 - Is the relative size of elements arbitrary or meaningful?
 - Alignment
 - Is the alignment consistent and used to represent the hierarchy?
- Colour
 - Powerful way of attracting the eye
 - Can create emotional response
 - Enhance usability and appeal
 - Aid understanding by creating connections between related items
 - Choices
 - Can be cultural associations
 - Specific UI conventions
 - e.g., red for error messages (or only if critical)
 - Shouldn't convey anything crucial through colour alone
 - Visually impaired/colour-blind users
 - Properties
 - Hue is a categorical description of the perceived colour
 - red, yellow, green, cyan, blue, violet, magenta, purple
 - Saturation is the purity of colour compared to grey
 - When fully saturated, the 'purest' form of the hue
 - Saturated colours can draw the eye more
 - Brightness relative amount of light

- Contrast
 - Warm-Cool Contrast
 - warm red, orange, yellow
 - cool purple, blue, green
 - Complementary Contrast
 - orange-blue, yellow-purple, red-green
- o Hierarchy of Colour
 - Primary, Secondary

Week 3

Lab 1 Feedback

Observations:

- Most people used Excel
 - Encouraged options: Jupyter/matplotlib/seaborn
- Many possibilities for what to plot
- Don't use the same axis for different units

Lecture: Human Perception and Capability

Studying the Human

- HCI Human-Computer Interaction
- Early HCI work took findings/approaches from Psychology to apply interactions with computers
 - o Perception
 - o Cognition
 - Motor function
- Used to guide sys dev
- Continue to measure, refine, experiment

Time Scale of Human Action

Scale (sec)	Time Units	System	World (theory)
10 ⁷	Months		
10 ⁶	Weeks		SOCIAL BAND
10 ⁵	Days		BAND
10 ⁴	Hours	Task	DATIONAL .
10 ³	10 min	Task	RATIONAL BAND
10 ²	Minutes	Task	BAND
10 ¹	10 sec	Unit task	
10 ⁰	1 sec	Operations	COGNITIVE BAND
10 ⁻¹	100 ms	Deliberate act	BAND
10 ⁻²	10 ms	Neural circuit	5101 001011
10 ⁻³	1 ms	Neuron	BIOLOGICAL BAND
10 ⁻⁴	100 μs	Organelle	2.445

• Bands:

- Social Band
 - Days, weeks, months
 - Activities such as workplace habits, social networking, online dating, privacy
 - Require development of social bonds or establishing norms/standards
 - Ex: study on how people develop relationships in online dating https://dl.acm.org/citation.cfm?id=2702417
 - Interviews with members of the community
 - Participation/observation in active forums
 - Qualitative methods dominate
 - Although often opportunity for mixed methods studies/data analytics
- Rational Band
 - Minutes or hours
 - Tasks, like web site use, user search strategies, OS navigation
 - User must experience and interface and make decisions about their next actions
 - Ex: user search behaviour https://dl.acm.org/citation.cfm?id=2124322
 - How often do users "branch" their search results?
 - How many "branches" do users generate during a typical search?
 - Why do users establish a new "branch"?
- Cognitive Band
 - 100 milliseconds to 10 seconds
 - Pointing devices, selection techniques, text entry, gestural input
 - Times based on reaction times and biomechanical properties
 - Ex: multitouch rotation gestures

https://dl.acm.org/citation.cfm?id=2481423

- Does the angle of rotation impact performance?
- Do users pivot from the thumb or rotate multiple touchpoints?
- Does the starting angle impact performance?
- Biological Band
 - Less relevant for most HCI research/practice

Model of HCI

FIGURE 2.2

Human factors view of the human operator in a work environment.

Human Senses

- Purely physiological (perception involves brain processing)
- Vision

- 0
- Biology:
 - Light passes through the lens
 - The lens focuses light into an image projected into the retina
 - The retina converts visible light into neurological signals
 - The centre of the retina, the fovea, processes details
- Properties:
 - Frequency of visible light
 - Intensity
 - Eye light sensitivity varies by wavelength
 - Fixations and Saccades
 - Fixations process detail while the eyes are still
 - Saccades rapid movements (30-120 ms) of the eyes to a new position

Hearing

- Sounds are perceived from cyclic fluctuation of pressure
 - Typically, in air
- Loudness
 - Subjective perception of sound pressure level
- o Pitch
 - Subjective perception of frequency
- o Timbre
 - Harmonic structure to be described as richness/brightness
- o Envelope
 - Changes in the subjective properties over time
- Touch
 - Touch / haptic
 - Through vibration, air, and ultrasound
 - https://dl.acm.org/citation.cfm?id=2663280
 - Temperature
 - https://dl.acm.org/citation.cfm?id=1979316
 - o Pain
 - Try to avoid in HCI
 - o Proprioception
 - The ability to sense the position of your body and limbs

- Smell
 - Olfaction
 - The ability to perceive odours
 - HCI has explored scent through scent 'cubes'
 - fans that disperse scent, and pressurised delivery systems
 - Olfoto: tagging photos with smells vs text
 - https://dl.acm.org/doi/abs/10.1145/1124772.1124869
- Taste
 - o Chemical reception of sweet, salty, umami, bitter, and sour
 - TastyFloats
 - Levitate food onto user's tongue
 - https://dl.acm.org/citation.cfm?id=3134123
- Multi-sense interactions
 - o https://dl.acm.org/citation.cfm?id=3134123

Human Responses

- Limbs
 - o Input for systems is primarily achieved by moving the limbs in 3D space
 - Typing, using a mouse, using a trackpad
 - Use limbs to generate a signal that is interpreted as input
- Voice
 - Speech recognition has come a long way, but we still face challenges of segmentation (separating intended input, like talking to somebody else), recovery from errors, and information throughput
- Eyes
 - Selection based in Gaze is a common approach in VR, and becoming more common in less instrumented environments as well
 - For example, consider common phone unlocking techniques
 - Most info probably also coming in through vision, so eyes doing double tasks

Human Brain

- Perception
 - First stage of processing in the brain
 - Associations and meanings take shape
 - Just Noticeable Difference
 - Below what threshold can humans no longer perceive difference?
 - Ambiguity
 - Illusions work when our perception fills the gaps in ambiguous stimuli
 - Ponzo lines demonstrate how our depth perception changes how we look at 2 black lines
 - There are illusions that can trick our visual, aural, and haptic senses
- Cognition
 - Human process of conscious intellectual activity
 - Thinking, reasoning, deciding
- Memory
 - Ability to store, retain, and recall information
 - o Short term memory capacity: 7 ± 2

- Has often been used to guide UI design, e.g., number menu items
 - Might be misunderstanding the original intent
 - Shorter menus probably still good!

Human Performance

- Speed Accuracy Trade-off tasks completed faster are more error-prone
 - o People often prioritise speed or accuracy differently based on context
- Most of early HCI measured this, but still important and studied today
- e.g., performance with various input devices
 - Also augment overall human performance, e.g., find answers to questions with visualisation tool vs looking at raw numbers
- Reaction Time
 - o Different sensory modalities have different reaction times
 - 150ms audio
 - 200ms visual
 - 300ms smell
 - 700ms pain
 - Visual search is another example of reaction which includes more complex cognition than simply responding to stimuli
- Skilled Behaviour
 - In most tasks beyond simple responses, human performance can increase with practice
 - o Can involve training sensor and motor or mental skills, can involve both
- Attention
 - Task requires attention When task performance degrades while performed simultaneously with another
 - Divided attention concentrating/performing more than one task at a time
 - Typically, this will degrade performance, which is not an option in safetycritical contexts like driving
 - Focused attention attending to 1 task to the exclusion of all others
 - The ability to ignore external events not always possible or feasible
 - In a noisy room, you might be able to have a conversation but are likely to be distracted
 - Sensory modalities are often thought of as channels, but not so simple in practice

Human Error

- Error a discrete event in a task where the outcome is incorrect or deviates from the desired outcome
- In practice, this of coarse measure of error provides a limited understanding
 - Consider the Key Stroke dataset "error" isn't reported
- Often trying to measure something more complicated than % of errors

Week 4

Lecture: Quantitative Methods

Methodology – the way an experiment is designed and carried out

• Sound methodology is critical to allow us to understand what is really going on (signal) in a noisy and messy world (noise)

Reasons to care:

- Will help run studies in 3rd year group projects and 4th year dissertation
- Helpful for publishing scientific papers testing hypotheses
- Need to know how data was collected to handle it
- Critical thinking

Validity

- Internal
 - Is effect observed due to varied condition(s)?
- External
 - Are experimental results generalisable to other people/situations?
 - Sampling
 - Realistic conditions
- Often tension between internal vs external: one at expense of other?

Ethics

- Often borrow from psychology research
- Informed consent
 - Nature of research
 - Methodology
 - Risks/benefits
 - o Right not to participate or to withdraw
 - o Right to anonymity and confidentiality
- Issues in HCI work can involve recruitment of vulnerable groups (e.g., when investigating
 assistive technology), or deception that might be involved during a study

Independent Variables (Factors)

- Experiments with independent variables are often called factorial experiments
- Naturally occurring (age) or directly manipulated by experimenter
- Characteristics
 - o e.g., of computer interface (input device, feedback modality, display size)
 - o e.g., of participants (gender, handedness, expertise)
- Circumstances
 - o e.g., background noise, room lighting
- Levels: each test condition (mouse, trackpad) are levels of independent variable (input device)

Dependent Variables

- Any observable, measurable behaviour
 - typing speed, eye movements, 'negative facial expressions', 'read text events', how to respond to questionnaire

Effect numbers

- More IVs -> more comparisons
 - Increase rapidly
- Limit IVs to 1-3

Control Variables

- Not under investigation, but might influence participant behaviour (DVs)
 - keyboard angle, chair height, display size
- Experimenters control these variables to prevent their influence by setting up their study in a controlled environment and recruiting with strict inclusion/exclusion criteria
 - o e.g., right-handed only, experienced users only
- Increases internal validity but reduces external

Random Variables

- Often better to allow some variables to vary randomly to generalise results
 - o e.g., height, hand/finger size, social disposition
- Each study will require judgment about the trade off between control and allowing random variation
 - e.g., using questionnaire of motion sickness and recruiting only those under a threshold
 - In a study investigating the acceptability of 2 in-car interaction techniques for the general population
 - In a study comparing the use of a VR headset in a moving vehicle with different VR conditions to mediate sickness level

Confounding Variables

- A circumstance/condition will change systematically with the independent variable
 - e.g., practice, different types of measurements for levels of the IV, prior experience with an interface (e.g., when comparing Google to anything)
- Such variables are confounding because they prevent the possibility of a cause-and-effect relationship being inferred from the results. Need to be controlled for

Participants

- To correctly assume that research results apply to people other than those recruited:
 - o Recruit people from the population you want to **investigate**
 - o Recruit **enough** participants
- Recruitment methods
 - o Ideal = participants drawn at random from a population
 - In practice = convenience sampling
- How many?
 - More is better

- Balance between representation and practical nature, sometimes ethical considerations
- Practical: Not much time to recruit (e.g., in a student project), population difficult to access, more testing delays product going to market
- Ethical: Study puts participants under burden; continuing study beyond necessary delays useful intervention/technique that can improve access
- Central Limit Theorem
 - As sample size increases to >=30, it becomes approximately normally distributed
- Within/Between subjects
 - Within-subjects (repeated measures) (preferred in HCI)
 - All participants use both sides of experiments, then compare average difference in performance
 - Between-subjects
 - Split the participants in 2 groups, compare performance of each group
- Order Effects
 - Interference between test conditions
 - Learning effects
 - People's performance improves as the study goes on, this makes it hard to know if observed differences are due to the IV or confounding variable (learning)
 - Fatigue effects
 - Possible that people get worse due to tiredness/loss of interest
- Counterbalancing
 - Balance the order in which participants do each level
 - Latin square n x n table that allows conceptualisation (and generating) of counterbalanced conditions
 - Assign users to groups. Each group gets different orders of conditions
 - Ensure equal number of people in each group
 - Use Latin squares to ensure that each condition in a text entry experiment is presented first for each group

- Necessary only when order effects are confounding variables
- Group size matters when order effect is an IV in the study
- Randomisation
 - When Latin Squares become needlessly complicated/impractical, randomisation mitigates order effects

Longitudinal studies

- Investigate learning effects over time
- Important considering the ubiquity of technology use in everyday life

- Crossover
 - o In the case of a new product, it may be that performance on the traditional system will start off better, but that this crosses over after long term use

Running the Experiments

- Pilot study before running it
 - o Technical issues, no one can understand task instructions, takes too long to finish
- Use consent forms
- Be consistent
 - Neutral manner, use a script if needed
- Be aware of bias

Week 5

Lecture: Surveys, Focus Groups, Qualitative Methods

Surveys

- In general:
 - Allow researchers, designers, and devs to capture high-level info about user experiences, attitudes, and perceptions
 - Paper/phone/email/website
 - o Low cost, fast, broad reach
 - A well-designed and analysed survey can provide useful insights; a poorly designed and analysed survey is noise (and waste of time for researchers and respondents)
- As a Topic of Research
 - Population sampling
 - Optimisation of data collection
 - e.g., return rates
 - o Reduction of biases in questions
 - Question order effects
 - Computer vs paper-based
 - Study (1983) found less socially desirable responses & longer open-ended responses in digital survey
 - Tourangeau's 4 cognitive steps to survey responses (1984)
 - Comprehension of the question, instructions, and answer options
 - Retrieval of specific memories to aid with answering the question
 - Judgement of the retrieved info and its applicability to the question
 - Mapping of judgement onto the answer options
- Good for:
 - Attitudes
 - o Intent
 - Task Success
 - o UX Feedback
 - User Characteristics
 - Interactions with Technologies

- Awareness
- Comparisons
- Can survey regularly to assess changes over time
- Bad for:
 - Precise Behaviours
 - Log data can often give more accurate info
 - Not infallible: log data can fail to record, might need to stream back data over unreliable network connection, might record someone else using the device, etc
 - Underlying Motivations
 - Usability Evaluations
- Pitfalls
 - Surveys need to consider experimental design and confounding factors
 - Common issue ask about multiple dependent variables in a single question
 - e.g., One a scale of 1 to 5, rate how usability and enjoyable your experience was
 - Low completion rates
 - Repetitive questions, poor usability, poor design
 - Noisy data from bad question design
 - Vague/ambiguous questions provide noisy data
 - Biased Questions
- How to develop a good survey:
 - Research Goals
 - Articulate goal, identify user constructs (factors)
 - Only crucial constructs: too many makes the survey too long, might increase drop-out rate
 - Cognitive pretesting: are respondents interpreting constructs as intended?
 - Test: think aloud with a few users
 - Population and Sampling
 - As in labs, survey respondents need to be recruited from the target population
 - To ensure intended population is represented, might develop inclusion criteria
 - e.g., only respondents with >20 hours of gameplay in a game
 - Questionnaire Design
 - Open-ended Questions Free response text
 - Use when:
 - o impossible to determine all possible answers in advance
 - list of options would be unusably long
 - o capturing numerical data (can always be grouped later)
 - o qualitative aspects of user experience
 - Closed-ended Questions Predefined answers
 - Use when there are small number of possible answers
 - Using rating scales (Likert scale: Agree to Disagree) and ordinal data
 - Unipolar construct: 0 to extreme amount
 - o Importance, usefulness

- Labels: "Not at all", "Slightly", "Moderately", "Very",
 "Extremely" shown to be semantically equidistant
- Bipolar construct: Extreme negative to extreme positive
 - Ease of use (difficult to easy), visual appeal, ...
 - Labels: "Extremely", "Moderately", "Slightly", "Neither nor",
 "Slightly", "Moderately", "Extremely"
- Can have single/multiple choice, ranking, rating
- Implications on how to analyse the data and what kind of statistics can be completed
- Measurement error: deviation of answers from true values on the measures
 - Can come from respondent
 - Lack of motivation
 - Lack of comprehension
 - o Lies
 - Can come from instrument
 - Working/design flaws
 - o Technical/interaction flaws
 - No opportunities for clarification
 - Usually only deploy once
 - Can't revise halfway through, then consider all results when respondents have answered slightly different questions
- Bias
- Each question must be carefully checked for bias
 - A bias introduced in 1 question can even affect subsequent ones
- 5 types:
 - Satisficing (Tiring out)
 - Surveys require focus, motivation, and/or cognitive load
 - Respondents don't put in effort => fail to follow >=1 of Tourangeau's 4 cognitive steps
 - Weak: might pick answer that's OK but not optimal
 - Strong: pick answer completely randomly
 - Avoid options such as "no opinion" or "n/a" if you want to force a choice
 - Can avoid by offering even number of possible responses on scale
 - Avoid repetitive questions that use the same scale ('straight-lining')
 - Avoid overly long questionnaires
 - Communicate importance of survey to increase motivation
 - 'Trap' questions
 - Acquiescence
 - Respondents more likely to agree than disagree
 - Avoid yes/no questions, phrase questions neutrally
 - Social Desirability

- Responses given because the respondent thinks it will be looked upon favourably
- e.g., on a scale of 1-5, how important is climate change research

Response Order

- Respondents being more likely to choose responses at the beginning or end
- Primacy/recency effects
- Categorical answers should be presented in a random order
- Rating scales (positive->negative, negative->positive) can be counterbalanced (give one to half, other to other half)

o Question Order

- Same as experimental design, order effects should be mitigated where order effects may occur
- Might keep demographic questions in the same order at the beginning of a survey, but randomise the remaining questions
- If randomisation doesn't apply, organise by:
 - starting with more general questions and finishing with specific questions
 - starting with easy questions and finishing with difficult questions – limit amount of dropout
 - starting with most important questions limit impact of dropout

Questions to Avoid:

- Broad questions
 - Provide noisy data and confuse respondents
- Leading questions
 - o Influence respondents and add noise/bias to data
- Double-barrelled questions
 - Conflate multiple constructs and make clear conclusions impossible
- Recall questions
 - Self-report from the past is inaccurate and noisy
- Prediction questions
 - Self-prediction is very susceptible to bias
- Existing standards (widely tested, validated, accepted):
 - SUS (System Usability Scale)
 - One of the most commonly used
 - o 10 questions (efficiency, satisfaction), yielding single score
 - NASA TLX (Task Load Index)
 - UEQ (User Experience Questionnaire)
- Review and Testing

- Running a pilot to determine realistic completion times and check bugs/configuration issues/etc are fixed before public launch
 - Minor tweaks to survey configuration can mean all the data collected thus far is invalid/incomparable to data collected moving forward
- o Implementation and Launch
- Data Analysis and Reporting
 - Can learn certain findings, e.g., user attitudes, from interviews, but surveys can get statistically reliable metrics
 - Quantitative and Qualitative analysis possible

• Types:

- Experience Sampling
 - 'Ecological momentary assessment'
 - Regularly fill out several brief questionnaires
 - Daily/several times a day
 - At specific times, and/or by responding to alerts
 - Sampling regularly, don't know participant circumstances => limit burden
 - Closed-ended, fast, few questions
 - Ask about current activities and feelings
 - NOT recall: reduce cognitive biases of memory-based self-report methods
- Intercept Survey
 - Deploy while person is using the technology
 - e.g., popup in an app while in use
 - Real-time data capture minimise issue of imperfect recall
 - Can be triggered by particular behaviour of interest
 - Might be very annoying
 - Design the timing maybe not while using feature, but some time soon after
 - Balance precision of recall/getting in users' way
- o With other methods
 - Combine larger and smaller scale
 - Use a survey
 - Captures high-level info from a broad group of users
 - along with a focus group/lab study/interview study
 - Captures detailed info from a smaller group of users
 - Is data representative or anecdotal? What are the reasons for large-scale trends?
 - Keep a record of all user interactions
 - Then can compare survey responses when user has done X or Y create user groups
 - e.g., impressions of product those who skipped tutorial and those who didn't

Focus Groups

- In general:
 - o Involve bringing together a group of participants for a group discussion

- Can be of various sizes: 3-6 common in HCl, sometimes 6-12+
- Video/audio is recorded and analysed using qualitative methods
- Develop protocol/script
- Can be efficient way of getting many viewpoints
 - o e.g., 4 hour-long groups of 6
 - o Participants can debate issues among themselves
- Cons
 - Shy people
 - Someone monopolising conversation
 - Solution: split group
 - more time for each person to contribute
 - 'Groupthink' and conformity
 - Can be spotted if separate groups give opposite consensuses
- Experience Prototype
 - Prototypes can range in fidelity, but give devs, designers, and potential users handson experience with a prototype
 - Focus on creating an experience, especially during the early stages of design when a fully functional prototype doesn't exist
- Keep/Lose/Change
 - o In groups, facilitating positive, negative, and creative feedback can be achieved
 - After experiencing a prototype/app/demonstration, ask:
 - What would you keep?
 - Lose?
 - Change?
 - Often works best with large printouts of interface views that participants can mark up and annotate with post-its as a group

Week 6

Lecture: Ethnography, Interviews, Qualitative Methods

Ethnography

- Understanding and describing social and cultural scene from insider's perspectives
- Roots in anthropology
 - o Studies of non-Western cultures
 - Attempt to develop deep understandings of unfamiliar civilisations
 - Local people as pursue daily lives in own communities
- Fieldwork
 - In general:
 - Dispassionate observer insufficient engage directly with people in everyday lives
 - First-hand encounters to gain understanding
 - Deeply embedded perspective to get insights otherwise impossible
 - o Being there, observe, ask insightful questions
 - Interviewing: "ethnographer's most important data gathering technique"

- Explain and put into context everything seen/experienced
- Study every word for subcultural connotations
- Document everything seen/heard
 - Notepads, audio, video, photo, survey
 - Analysis at various stages field notes, reports
- Info gathered can be subjective and misleading
 - Cross-check, compare, triangulate before use as a basis of knowledge
- Classical ethnographies might spend 6 months to 2 years on fieldwork or 2 weeks every few months
- Innovation by Chicago School
 - o e.g., urban sociology
 - Local, maybe familiar settings
 - Still based on immersion in context/community/culture
 - Understand how people go about everyday business
 - How organised
 - Standards and norms
- Ethnographic perspectives
 - o Focus on predictable, daily patterns of human thought and behaviour
 - Interpret observed behaviour in culturally relevant context
 - Allow multiple interpretations of data/reality
 - Open-minded approach allow exploration of rich sources of data not mapped out in research design
 - Ethnographer human instrument
 - Senses, thoughts, feelings; very sensitive and perceptive data gathering tool
 - Bias
 - All researchers have bias; make it explicit
 - e.g., choice of what to study is biased. Controlled can focus and limit research effort; uncontrolled can undermine research quality
- In HCl
 - Combination of observation, interviews, participation
 - Computer use as communication/collaboration
 - Use in existing groups (work, education), or purely virtual (forums, communities)
 - Norms and dynamics that might be important to study
 - How systems are used
 - How design affects the way they're used
 - Just understanding
 - Groups, communication, new technologies, etc
 - Different stages of design cycle
 - Early stages to gain deep understanding of system requirements
 - Later stages to gain deep understanding of how a product is being used (particular setting/group), so can redesign to better support users
 - Study combination of range of technologies in a particular setting
 - o Ex: designing a new system in an unfamiliar domain
 - Need to understand system requirements
 - Can be rooted in context of how target users work and interact
 - Organisational concerns

- Work practices
- People's values
- Types of interactions between people
- Don't assume users are 'just like you'
- Could use surveys/interviews instead?
 - Maybe certainly easier and cheaper
 - If early stages and unfamiliar area, don't know what to ask
 - People's descriptions of what they do are often inaccurate
 - Poor at explaining
 - o Misremember
 - Don't realise what they do
 - Bias (e.g., socially acceptable answers)
- Site visits
 - Potentially for days/weeks
 - Observe
 - Interview
 - 'Shadow' them
 - As start to understand how they work and what they need, can begin listing requirements & designing
 - Discuss with potential users for approval or to correct misperceptions
 - Try with different users, possibly in different setting
- Participant Observation for Design Inspiration
 - Participate while observing
- In online communities
 - o ex: Analysed collaborative play in WoW
 - (https://dl.acm.org.citation.cfm?id=1180898)
 - Wanted to know what players were experiencing
 - Make recommendations to improve

Observation Techniques

- Observation
 - o Passive observation of everyday activities without active participation/intervention

Authors performed a lot of gameplay – active participants

- Maybe not integrating into any community just watching public spaces
- Participant (participatory) Observation
 - Combines participation in the lives of those being studies with appropriate professional distance
 - o Forms:
 - Complete participant
 - Become part of community as much as possible
 - May take years
 - Risk losing ability to be detached "going native"
 - Covert observation don't tell community you're a researcher.
 Ethically challenging
 - Complete observer
 - Don't interact directly

- Could also be ethically problematic not as much info gained/help given as possible
- Can integrate quicker into 'own' culture already an 'insider'
 - But if too familiar, can take events for granted and leave important data unrecorded

Ethnography Challenges

- Requires a lot of skills
 - Skills in conversation
 - Data interpretation
 - What to pay attention to
 - Whom to talk to
 - Reconcile contradictory data
- Expensive
 - Often used in 3 contexts:
 - Users not well understood
 - Tasks not well understood
 - Safety-critical systems

Interview Techniques

- Types:
 - Structured Interviews
 - Each participant answers same questions
 - Verbal approximation of questionnaire
 - Maybe appropriate when there's explicit research goals
 - Semi-structured Interviews
 - Each participant answers the same questions, but additional questions and follow-up questions can be added as needed
 - Unstructured Interviews
 - Interview may have little/no set structure
 - Could be tool for early evaluation, where there's no firm idea of specific research questions
- Designing
 - Types of questions:
 - Survey guestions
 - Designed to elicit a broad picture of the participant's experience
 - Good for building rapport and establishing scope
 - Specific questions
 - Designed to gather feedback on specific categories, attributes, and themes
 - Open- and close-ended questions
 - Balance of structures and unstructured responses
 - Many issues (like with surveys)
 - e.g., recall bias if asking about past behaviour, do it soon after
 - Interview (possibly) > survey
 - Probably longer open-ended answers
 - Can ask follow-up questions

- Disadvantage: much more time-consuming
- Running
 - Respect for the context the interviewee is coming from
 - Respect for the interviewee
 - Strategies:
 - Be honest, be yourself
 - Focus on learning from participants
 - Be perceptive, know when to press and when to let go
 - Understand silence and use it
 - Being a good interviewer comes with experience

Key Actors

- In ethnographic setting, "some people are more articulate and culturally sensitive than others"
 - Some users respond better to given ideas, provide more useful feedback, and act as "star users"
- Balance star users/key actors with the dataset
- Over-reliance can be dangerous
 - Cross-check with others to ensure they're providing reliable information

Ethics Checklist [see in lecture]

Analysing Qualitative Data

- Qualitative interviews, focus groups, open-ended questionnaire responses
- Transcribe any audio data
- Familiarise yourself with all data
- Coding:
 - o Deductive
 - A priori codes search for; clear pre-existing questions
 - Inductive
 - Find all the themes in the data
- Inductive approaches:
 - o Thematic analysis
 - Grounded theory
 - No preconceived theories; open mind
 - Theory eventually 'emerges' from the process
- Qualitative Coding loosely separated 'stage ???'
 - o Can verify with multiple coders at various stages
 - o [example in lecture for VR study]
 - 1. Open coding
 - a. Identify distinct pieces of info; assign open code
 - b. In-vivo coding: use participants' own words to define codes
 - c. Size/scope of pieces determined by researcher's interpretive process
 - 2. Axial coding
 - a. Organise open codes into set of concepts/categories
 - b. Think about relationships between concepts
 - c. Don't need to all be same level of specificity, or need even numbers of codes assigned

- 3. Selective coding
 - a. In grounded theory, combing concepts into main theory
 - b. Re-code original transcripts using new concept framework
- Reporting Results
 - o If, e.g., a thematic analysis uncovers 5 main themes
 - 5 subsections, explaining each issue
 - "You can provide participant quotes" [p12]
 - Can relate to a user summary table 1 row per user and info provided on age, level of experience, job, etc
 - Discuss overall findings
 - Put in context of related work reinforce other findings, contradict, expand scope, consider different factors, etc
 - Might lead to implications for future designs

Week 7

Lecture: Analysis Techniques, Statistics

Analysing Data from User Studies

- Providing "descriptive statistics" is the bare minimum
 - o Average, distribution, standard deviation
- Making claims, inferring causal relationships, in terms of a hypothesis test
 - o Have you shown that your product is "better" than existing approaches?

Measurement Scales

- Ratio, Interval, Ordinal, Nominal
 - (sophisticated crude)
- Nominal / categorical
 - o Labels/names
 - Some numbers (without any possible computations), like random IDs
- Ordinal
 - Can put the values in a ranking, but not equally spaced
 - o ex: ordered list of favourite films
 - o Can do < or > comparisons, but not valid to calculate means
- Interval
 - o Equal distances between adjacent values, but no absolute zero
 - o Can compute mean
 - o e.g., Celsius scale
 - Can take mean value of week's temperature, but, e.g., 20°C is not "twice as hot" as 10°C
 - o e.g., Liker scale
 - Sometimes treated as Ordinal. Important to know which if you want to compute means. Treating as Interval OK if options are equally spaced and centred at neutral value
- Ratio

- Do have absolute zero
- Support many calculations
 - add, divide, mean, standard deviation
- o e.g., time, distance, counts of events

Evaluations and Measurements

- Before doing anything, need to plan well and measure the right dependent variable by collecting the right kind of data
- Types of Data
 - Think about data in terms of qualitative vs. quantitative
 - o Think about quantitative data in a spectrum from continuous to discrete

Descriptive Statistics

- Measures of central tendency: Mean, Median, Mode
 - Mean simple to calculate, but also provide little (or potentially misleading) information
 - Typically only useful if normally distributed data
 - Median may differ significantly from the mean, can insight into the "shape" of the data
- Standard deviation describes the spread of the data
 - o Estimate of average difference of values from the mean
 - Empirical Rule
 - 1 std from mean contains 68.2% of values
 - 2 std from mean contains 95.4% of values
 - 3 std from mean contains 99.7% of values
 - With human participants, the data is typically not normal distributed
 - Central Limit Theorem
 - As the sample size approaches infinity, the distribution of sample means will follow a normal distribution regardless of how parent population is distributed
 - Often said for sample size to be > 30 (even smaller for interval data)
 - Applies even to binary data (0 or 1 for completion of a task)
 - Implications
 - Many statistical hypothesis tests (e.g., t-test) assume normal distribution of data
 - If data is non-normally distributed (e.g., skewed), will these tests be invalid?
 - If sample size is large enough, CLT says that the distribution of sample means approximate a normal distribution
 - And so, we use these hypothesis tests!
- Standard Error (www.youtube.com/watch?v=A82brFpdr9g)
 - Example: weighing 5 mice
 - Perpendicular line average (mean) of values measured
 - Parallel line standard deviation on both sides of mean
 - Quantifies how much the data is spread out
 - Doing experiment 5 times in total, each time with 5 different mice
 - Each experiment has its own mean

- Standard error standard deviation of the means
- Use multiple samples, not experiments
 - Estimate = sample std dev / sqrt(sample size)
- Plotting distributions tells you much more than simple values
- t-distribution
 - Can't know from experiments about distributions, means, std deviations of population, only sample
 - Student's t-distribution, t-scores rather than z-scores

Hypothesis Testing

- Null Hypothesis simple hypothesis against the intuitive hypothesis, e.g., mouse and trackpad are the same,
 - o Rejecting the null Hypothesis
- Why is research done this way?
 - Very hard to prove something scientifically
 - o Much easier to disprove
- Consider following statements:
 - Every software project has errors
 - Software projects never have errors
- Probably looking for sufficient evidence (instead of definitive proof)
- What are stats tests testing? How likely is it that 2 samples come from the same distribution?
- Also interested in:
 - O How confident are we that they're different?
 - o By how much are they different?
- Ex: comparing mouse to trackpad
 - Null hypothesis: There is no difference between user performance is using these 2 input devices for an object selection task
 - If we reject the null hypothesis, we can analyse the data to present results arguing for where differences occur and what gains this may have for interaction
- Types:
 - > 1 dependent variable
 - 1/2/more levels -> interval & normal one-way MANOVA
 - 2+ independent variables -> interval & normal multivariate multiple linear regression
 - 1 dependent variable
 - 2 independent variables
 - **Between** relationship between samples
 - Nature of DV:
 - interval & normal -> t-test
 - ordinal or interval -> Mann Whitney test
 - categorical -> Chi-square test
 - Within relationship between samples
 - O Nature of DV:
 - interval & normal -> paired t-test
 - ordinal or interval -> Wilcoxon-Signed Rank test

- categorical -> McNemar test
- >2 IVs
 - Between relationship between samples
 - Nature of DV:
 - interval & normal -> one-way repeated measures ANOVA
 - ordinal/interval -> Kruskal-Wallis
 - Within relationship between samples
 - O Nature of DV:
 - interval & normal -> one-way ANOVA
 - ordinal/interval -> Freidman
 - categorical -> Chi-square test

- Specific:
 - t-test and paired t-test
 - Developed by chemist William Gosset working at Guinness in 1908, quantitatively measuring quality of beers
 - Assumptions:
 - Data follows a normal distribution
 - Data drawn from interval/ratio data
 - Can be completed on dependent (within subjects) datasets with paired t-test, or independent datasets
 - Friedman and Wilcoxon Tests
 - Friedman
 - Participants rate quality of n different wines
 - Null Hypothesis: There is no difference between the wines
 - Wilcoxon
 - Used for pairwise comparison, can provide results describing which wines are rated significantly better than others
 - o Signed comparison: better/worse?
 - Tests for a difference in related samples (within subjects)
 - Used for ordinal data or interval data that is not normally distributed
 - Mann-Whitney and Kruskall-Wallis Tests
 - Kruskall-Wallis like Friedman but for independent samples (between subjects)
 - Mann-Whitney like Wilcoxon, but for independent samples
 - Ex: wines
 - Null hypothesis: Participants are unable to discern the difference between wines
 - Kruskall-Wallis test will say if there is variance across participants (e.g., by grouping participants by experience with wine tasting) and Mann-Whitney will provide pairwise comparisons to compare each group

- Each test produces a *p* value (the probability that the samples come from the same distribution) and a test statistic
 - o Can choose a target for p; often say p<0.05 means statistically significant
 - Test statistics are interpreted differently for each test
- Most tests would also be presented with an effect size
 - o Ranges from 0 to 1 and describes how "visible" the effect is
- Reference: www.statisticsdonewrong.com

Errors in Statistical Testing

- Type 1: False Positive
- Type 2: False Negative

Hypothesis testing errors

Week 8

Lecture: Theories of HCI and Models of Interaction

Creating charts (practically)

- Tutorials on Moodle for Matplotlib and Seaborn
 - o Matplotlib "tries to make easy things easy and hard things possible"
 - Seaborn tries to make a well-defined set of hard things easy
 - Not always 'well-defined' for your needs
- Plotly is an option (maybe too complicated)
- Often good strategy to browse galleries

Theories of HCI

Reading: The Design of Everyday Things by Don Norman

Products should not need instruction manual

• e.g., Push/Pull on doors

Affordance

- Possible interactions between people and environment
- The relationship between physical object and person
 - Not a property of an object
 - o Objects convey important info about how people could interact with them

- Presence of affordance jointly determined by object's properties and person with capabilities that determine how it could be used
 - A chair affords sitting
 - A chair affords lifting to some people

Anti-Affordance

- Prevention of interaction
- e.g., glass (might make people think path is free and bump into glass)
- To be effective, affordance and anti-affordances must be discoverable
 - o If it can't be perceived, need to signal its presence with a signifier
 - Signifier
 - Communicate behaviour
 - Image/text/sound/...
 - Make an affordance apparent
 - Deliberate
 - o e.g., labels
 - Emergent
 - o e.g., Paths worn onto ground
 - o e.g., Queues of people

John H Williamson: Shoogle – Physical Affordances in a Digital Interaction

• Keys in a pocket. The user carries the phone in a pocket while walking. Motion from the gait of the user is sensed by the accelerometers. As messages arrives, objects begin jangling around in the user's pocket, in a manner similar to loose change/keys

Knowing what to do

- How can you make unfamiliar situations feel familiar?
 - Knowledge in the world
 - Perceived affordances, controls & their actions
 - Knowledge in our heads
 - Experience,
 - Conceptual models,
 - Constraints
 - Physical rely on properties of the physical world
 - e.g., can only insert the correct way (USB-A, bank cards)
 - Cultural rely on socially learned behaviours
 - e.g., Moodle relies on roles that make sense to us because we know how a course is run
 - Semantic rely on intrinsic meaning
 - e.g., When added all items to buy, look for control for checkout screen
 - Logical rely on trial and reasoning
 - e.g., An online form won't submit. Even if it doesn't highlight required fields, we can scan through and see if we left one empty – that one's probably the problem
 - Imposing these constraints prevents errors and guides users towards correct/desired/useful behaviour

- Guiding Interaction
 - Forcing Functions Preventing action until certain requirements are met
 - Interlocks Requiring actions to occur in sequence
 - e.g., web app doesn't offer functionality until logged in
 - Lock ins Keeps an action active, preventing action from stopping
 - e.g., Gmail checks if an attachment is attached before sending email (if attachment mentioned)
 - Lock Outs Prevents an action from occurring (typically in safety context)
 - e.g., Operators of x-ray machine cannot enter dangerous values, fire safety gate in front of basement entrance (for people not to go down in fire emergency)
 - o Where?
 - ex: ATMs [in lecture]
 - o Forcing Functions and Usability
 - Balance error prevention with frustration

Convention

- Design consistency is virtuous
 - Lessons learned from one system transfer to others
- If can't put knowledge in the design, put it into a cultural constraint
- Standardisation
 - Maybe a last resort; when no other solution seems possible, at least do everything the same way
- vs Progress
 - People don't like change
 - New learning is required
 - Which is 'better' design is irrelevant the change is upsetting
 - Better to be consistent if new way is only slightly better than old?
 - If change to a new system, everyone has to change mixed systems confusing
 - o Standards simplify life, but can hinder future development

Modelling Interaction

State machines can be used to model interaction

FIGURE 7.9

Buxton's three-state model for graphical input.

(Adapted from Buxton,

(mouse, raising and dragging)

Fitts' Law

- Model to predict the speed of people's movements
 - o One of few 'Laws' in HCI
 - Very widely used, proven to hold on many forms of interaction devices
- Paul Fitts, 1954
 - Psychologist, work predates HCI
- in HCl
 - Most used form adapted for HCI by Scott MacKenzie
 - Ease to acquire a target function of size of and distance to target
 - o Equation:

$$MT = a + b \cdot log_2 \left(\frac{D}{W} + 1\right)$$

- MT time to complete a movement
- D distance from start point to target
- W width of target (how accurate you need to be on arrival)
 - Measured on axis of motion
 - Pragmatically, often measured using the minimum of width, height
- a & b constants determined by cognition, hand-eye coordination, often different for different device type
 - Out of control in terms of designing on-screen positioning within interfaces
- ID index of task difficulty (in bits) (non-constant part everything in log2, including)
- IP = $\frac{ID}{MT}$. IP index of performance/throughput (in bits per sec)
- Purposes
 - Many hundreds of studies have confirmed Fitts' Law holds with different devices, input methods (e.g., mouse vs trackpad vs touchscreen)
 - o Can be used in:
 - Predicting movement time (if a and b are known)
 - Comparing 2 devices (by comparing their IP values)

- Guiding design choices
 - e.g., login button big and close to end of input, right click window shouldn't be too big
 - Easiest places to reach
 - o Easiest place: where we are right now
 - Right-click menu pop-up in place
 - Screen edge can't overshoot, don't have to be accurate
 - Effectively a target of infinite width in a pointerbased interface
 - Corners are especially good
 - e.g., MacOS menus always bound to top
 - Have to decide when to make use of this behaviour, e.g., Windows X close button (don't always want to close, sometimes irreversible action)

Week 9

Lecture: Large-Scale Studies

A/B Testing (web experiments/...)

- Randomly split traffic among different app versions
 - A/Control: usually current live version
 - o B/Treatment: new idea
- Collect metrics and analyse
- Any design has huge impact on conversion rates
- Examples:
 - Amazon Shopping cart recommendations
 - Seemed unlikely, but wildly successful
 - Microsoft
 - MSN Real Estate
 - Office Online
- Experimentation > theory because data > intuition
- Ramp-Up
 - To detect an effect, you need to expose a certain number of users to the treatment (based on power calculations)
 - Fastest way to achieve exposure run equal-probability variants
 - e.g., 50/50 for A/B
 - But that's too risky
 - o Ramp-up start low, do simple analyses, increase until equal
- Advantages
 - o Tests for **causal** relationships, not just correlations
 - o Reduces effect of external factors
 - e.g., history/seasonality impact both A and B in the same way
 - Overcome poor intuition, especially with novel ideas
 - Less data => stronger the opinions

- Get data through experimentation
- Disadvantages
 - Organisation has to agree on OEC (Overall Evaluation Criterion)
 - Hard, but provides clear direction and project alignment
 - Quantitative metrics may not explain why a treatment is better/worse
 - => May not help designers solve problems/know where to go in next design iteration
 - Primacy effect
 - Changing app/site may degrade UX (temporarily) even if design is better
 - Multiple experiments
 - Statistical variance increases, making it harder to get statistically significant results
 - Consistency, contamination
 - Assignment to A/B usually cookie-based, but people may use multiple machines/erase cookies
 - Hard to do proper randomisation

Large-Scale Mobile HCI Studies

- Mobile HCI studies in many forms:
 - o e.g., text entry, gestures, AR, usage studies, privacy
- Quantitative analysis
 - o e.g., time taken to complete task/error rates
- Qualitative analysis
 - o e.g., interviews, ethnography, opinions of experience
- Into the wild
 - Early/'traditional' experiments all done in lab
 - Easy to observe, control, eliminate confounding variables
 - Possibly unrepresentative of technology's eventual intended context of use
 - o More recent studies performed in more realistic settings
 - o Forms:
 - Direct observation
 - Videos, interviews
 - Often still using evaluator-supplied hardware
 - Challenge of Space & Duration Trials
 - The longer and requiring more space, the more difficult to exercise experimental control
- Research via app stores
 - Put software to study on app stores
 - o Benefits:
 - Participants using own devices
 - Already experts with hardware => no training
 - No extra device to carry, already with them always
 - No fixed end date
 - Potentially very large number of users, globally
 - Chosen to use app => more representative (?)
 - Drawbacks:
 - Don't meet users

- Can't directly observe users
- Qualitative data?
- Internal vs external validity
- Additional ethical challenges?
- Ex Hungry Yoshi
 - Game using Wi-Fi access points as game resource
 - Investigating use of app stores in running mobile HCI trials
 - > 300,000 downloads
 - Global user base
 - Only have locations from those users who agree to supply it
 - Data logging
 - Recorded ("logged") ingo on use while apps are running
 - Data Visualisations
 - Qualitative evaluation
 - Questionnaires
 - Answers with radio buttons/typed
 - o Tasks, like become FB friend
 - o 19% responded
 - Server-side, so instant updates
 - Paid telephone interviews
- Ex Hit It!
 - Android game: touch objects on screen
 - Found that touch positions are skewed
 - Could create function that shifts touch input to compensate
 - Updated game to use compensation
 - Error reduced by 7.8%

Large-Scale Trials: Difficulties

- Verification of user info
 - o Are people telling truth?
 - Age, gender, opinions, etc
- Trial software installed on large variety of devices
 - o Android
 - o OS, CPU, screen sizes, etc
 - Potential confounding variables
- Collecting qualitative data is difficult
 - Very short questionnaire answers
 - o Solution: Phone / online calls?
 - Most users probably don't speak language
 - Time zones
- Mass of quantitative data; harder to get qualitative
 - What, not why

Potential solution: Hybrid Methodology

- Hybrid approach: combining 'mass participation' and local deployments
- Concurrent large-scale and small-scale studies
- App released to general public and local users recruited via poster adverts

- Some aspects of trial best suited to each group
- More solid ethical practice
- Ex: Predictor
 - World Cup Predictor app
 - o Released 1 week before football World Cup
 - => 11 locally-recruited users
 - => 10,806 through app store
- Benefits
 - Use the Small to Explain the Large
 - o Use the Large to Verify the Small
 - If a system is trialled among small group of locally recruited participants,
 - Do results generalise to population at large?
 - 'Outlier' users
 - o Are there users showing unusual behaviour?
 - They could skew results of study
 - Experimenter effects
 - Subtle conscious/unconscious cues an experimenter gives participants
 - Could affect users' performance in the trial
 - Less likely in large-scale trial?
 - o User interaction with evaluators generally far lower
 - Ex: looking at 1 feature of app head-to-head challenge
 - Local users
 - Head-to-head uptake: 73%
 - o Average number of H2Hs by those using: 5.2
 - Global users:
 - o Head-to-head uptake: 0.8%
 - Average number of H2Hs by those using: 1.5
 - Local trial alone would have led to misleading results

Ethical Challenges of Large-Scale Trials

- Capturing a lot of info on people
- Never meet participants
- Informed consent
- No opportunity to **debrief** participants
 - o Can't tell the last time a user will launch the app
- Solution: Terms & Conditions page
 - Page often shown on first launch
 - o Provides info on experiment
 - About authors
 - About study
 - About info captured and reasons
 - Often have to be explicitly agreed to before using app
 - Opt-out mechanisms
 - Multiple languages

Hybrid Approach: Levels of Engagement

- Problem:
 - All participants agree to same T&Cs
 - But difference in confidence with which researchers have gained informed consent
 - Ease of deception
 - Inability to debrief
- Solution:
 - Framework of levels of engagement
 - Local users: studied in detail
 - Remote users: looked at aggregate data
 - Types of questions asked
 - Ability to converse sensitively at a distance
 - Compromise: getting useful info, but not exploiting users as a resource just because they tick T&Cs

Ethical Challenges in Detail

- Informed Consent
 - O Do people know what we're doing?
 - That the app is part of University research?
 - The purpose of experiment?
 - What info is being recorded?
 - What we do with this info?
 - How to opt out?
 - Solution: T&Cs
 - State purpose of study URL to project site
 - All logging explained and must be explicitly agreed to before app usage
 - Store/transmit data securely
 - Email address opt out at any time on request have all collected data destroyed
 - Multiple languages
 - Disadvantages:
 - No one reads it
 - o ex: Hungry Yoshi studies
 - Did you read T&Cs?
 - In-app questionnaire: out of 1226 responses, yes was 20%, no was 80%
 - Telephone interviews: out of 11 responses, yes was 0, no was 11
 - Opening
 - 2% opened
 - None spend >60 secs reading the 842 words

Researching Ethics

- Interpreting existing guidelines to cover large-scale mobile HCI
 - Human trials in Psychology: BPS & APA
 - Autonomy, Dignity, Self-Determination
 - Concern for Others' Welfare
 - Social Responsibility

- Scientific Value, Integrity, Competence
- Internet-Mediated Research
- o General Guidelines
 - Restrict age of users where stores allow
 - Graphics, icon sets, descriptive language
 - T&Cs in store description AND in-app
 - Historic log data not on externally visible server
 - Privacy-preserving data publishing techniques
- Framework categorising trials based on participant 'risk'
 - 2 dimensions of participant 'risk':
 - Anonymous vs identifiable
 - User expectation of app's data access

4 Quadrants

AE: Anonymous, Expected **AU**: Unexpected, anonymous

IE: Identifiable, expected
IU: Identifiable, unexpected

AE

0

- e.g., aggregate download/usage stats
- e.g., logging data that is integral to app usage, but cannot be used to identify user
- Generally low risk
- Advice:
 - General guidelines sufficient (T&Cs, etc)
- AU
- e.g., a game looking at 'unnecessary' data: how many contacts, contents of media in library
- Advice:
 - Pop-ups to gain explicit consent for each new data type captured
 - Mobile Oss now incorporate this
- IE
- e.g., location-sharing apps, social media apps
- Advice:
 - Provide functionality to browse data and delete specific parts
 - Effectively allowing 'opt out' at any time
- IU
- e.g., a game looking at 'unnecessary' data that could identify user,
 e.g., location
- Highest risk
- Advice:

- Actively interrupt users to show them examples of recorded data
- Interruptions
 - Alternative to T&Cs (since they're never read)
 - Visual representation of log data
 - Delayed presentation of info
 - Personalised with user's own data
 - User Study: Yoshi
 - 1007 users; between-groups design
 - Hash function on device's unique ID to randomly assign to a condition
 - Some shown map, some shown text only
 - Further Results
 - More concerned users stopped using the app around twice as quickly
 - Difference of showing the map more pronounced for non-English speakers
 - Also looked at age, gender: no significant differences
 - Discussion
 - Look beyond current common practice of T&Cs
 - Majority of users seem relaxed
 - Small number of concerned users, who we should be going further to support
 - Personalised visual representations of data
 - More users reported concern
 - Stopped using the app sooner
- Advice for how to run each type of trial in ethically sound manner
- Experiments on new ethical procedures

Discussion beyond Yoshi study:

- Can be extended to many forms of data
- Collect data only locally on device for a short period at start
- Interrupt user with visual depiction of their own data
 - o If they agree to participation, upload all collected so far and keep logging
 - o If they disagree, destroy collected data without it ever leaving the device
- Should be more engagement of users generally
 - Ethics as active area of research (not just box to tick)

Week 10

Lecture: Information Visualisation

Definition

- To visualise
 - o "To form a mental image/vision of ..."
 - Not just immediate perception, but fitting what's seen and interacted with into a mental model... and so updating that model
- Information Visualisation
 - "The use of computer-supported, interactive, visual representations of data to amplify cognition"
 - Reading in Information Visualization: Using ???

InfoVis in general

- Forming mental model to gain insight
- 'Offloading' cognition
 - Reduce load on working memory
 - o Using recognition rather than recall
 - o e.g., analogous to long multiplication in head
 - Much easier if you can write notes (workings)
- What it isn't:
 - Scientific visualisation and cartography
 - Usually physical data about objects & spaces
 - Based on inherent/'natural' dimensions
- About abstract data
 - O How best to present a data set?
 - Type of data?
 - Column types Numerical? Ordinal? Dates?
 - Who's analysing it?
 - What are they looking for?
 - Who's looking at it?
 - Correlations, clusters, outliers
- vs Information Retrieval
 - o IR: Absolutes
 - Maximum, average, exact query match
 - Formalised, suited for a command language
 - Info Visualisation: Relatives
 - Overview, trends, patterns
 - Distributions and outliers, 'sense'
 - Difficult to formalise
 - Suited for interaction, browsing and exploration
 - Built up over time via successive interactions
- Been about for 30 years

Examples

- Earlier e.g., London underground
 - o Harry Beck, 1933
 - 'Circuit board' design
 - Abstraction
 - Aid clarity
 - Still used today

Key Principles

- Abstraction
 - o Replace many objects by one representative object
- Start with overview -> Support zooming & filtering -> Only then show details on demand
- Direct Manipulation
 - o Objects output on screen take input too
- Dynamic Queries
 - o e.g., move a slider up and down, linked graph changes too
- Immediate Feedback
 - o GUI interaction triggers response straight away
- Linking & Brushing
 - Views linked so that selections match in all
- Focus & Context
 - Show key objects in detail, but in the setting of the wider data set
- Animate transitions and change of focus
 - Don't jump so harshly that context is lost
- Output is input
 - o Anything one can use to show data can be used to select data too
- Colour with care
 - o Be aware of colour blindness, (non)linear perception, visual overload

Representation

- Data encoded by:
 - Location
 - Spatial location on display conveys value
 - e.g., X-Y plots
 - e.g., scatterplot
 - Can encode 2/3 variables this way
 - o Size
- Size of points represent value
- Can run out of room very quickly
 - Occlusion: big points hide smaller ones
- Negative values?
- Colour
 - Colour Scales: many to choose from
 - Careful: RGB is a non-linear colour system
 - e.g., 100/100/100 is not twice as bright as 50/50/50
 - Stick to a small simple palette: use highlight colours cautiously
 - Use a perceptually linear colour scale
 - Minimum size at which visible

- Perceptually linear colour scales
 - Arrays of RGB values scaled to better fit with average human perception
 - Colour at index 100 generally perceived as 2x as bright as at 50
 - More limited range: may have to avoid the many dark values at low indices

Shape

- 'Glyphs' are used to visually represent multiple dimensions of data by combining them into a single pictorial representation
- Ex (most famous): Chernoff Faces

- Usually need the legend to understand them
- Texture
 - Easy to tell difference, e.g., Tweed & Silk
 - The finer the texture, the closer we have to be to the graph to understand it
- Ranking Visual Attributes
 - -> Increased accuracy for quantitative data (1984) ->
 - Colour -> Size -> Angle, Slope -> Length -> Position
 - o Guideline:
 - Map more important data attributes to more accurate visual attributes

Focus & Context (Principle)

- Show detail as well as 'big picture'
- e.g., Maximise usage of available screen real estate
 - Overview & detail
 - Area of detail and (usually smaller in screen size) overview covering larger area of data
 - Separate views (big map and mini map in corner showing big map in context)
 - Can often interact with both
 - Distortions
 - e.g., blurring, fisheye
 - Single view of the data
 - Focus in high-detail, surroundings much less
 - Normal vision involves perspective (things further away gradually get smaller)

- Fisheyes exaggerate the same effect
- But still use smoothly increasing distortion
- Example metric:
 - DOI (b|a) = API(b) D(a,b)
 - o DOI (b|a) degree of interest in point b, given current focus

a

- API(b) a priori importance of b
- o D(a,b) distance from a to b
- 'Information suppression' function
- General idea applicable in 1D, 2D, etc

Sheiderman's Taxonomy:

- 7 types of data
 - o 1D data
 - e.g., single column of numbers/text
 - List with scroll bar
 - People often only look at top of list
 - Can't easily see/move further down
 - But how to explore a long list/column?
 - InfoVis techniques
 - Distortions
 - Edit Wear and Read Wear
 - 'Wear marks' show pattern of where file has been most used
 - Rectangles can show where each person is currently working
 - Showing accumulated history of use
 - Worn by use, like well-thumbed book pages, paths in grass, old stone steps
 - Can extend well-known representations
 - o e.g., fit into simple scroll bar
 - or fit into newer designs
 - Experiment applying fisheye effect to 1D data
 - Fisheye list faster to use than traditional for drag & drop tasks
 - No difference for selection tasks
 - Error rates same
 - Users preferred fisheye
 - Temporal Data
 - Has time attribute
 - Very common: records, logs, databases
 - Can 'stack' dimensions, sharing time axis
 - Can use 1D techniques (e.g., fisheye, distortion)
 - Ex: Ebb and Flow of Movies (in nytimes)
 - Ex: timeline slider
 - 'playback' or can query specific times
 - See pattern across country
 - But: hard to compare temporally distant data
 - No overview over time
 - Pattern detection more difficult

- See everything external cognition
- o Memory internal cognition
- o 2D Data
 - Scatterplots plot x vs y
 - Ex: maps (geographical data)
 - Techniques: fisheye, focus & context
- o 3D Data
 - Appeal to the '3D is natural' idea
 - Often think of the world as a 3D shape
 - But don't treat it that way
 - e.g., how wide is a city? How high?
 - e.g., can only see surfaces of most objects
 - Often invites occlusion problems
 - Nearby objects block distant ones
 - e.g., can only see one half of a sphere
 - 2D vs 3D: easy to use vs aesthetically pleasing
- Hierarchical Data
 - Trees difficult to handle
 - Basic problem fan-out to many objects (can't show all tree in detail at the same time)
 - Hard to show many objects and lots of structure at the same time
 - Can't avoid having to move around and explore
 - Focus & context, fisheye
 - e.g., hyperbolic tree
 - Debate over glitz vs utility
 - Experiments and design continue
 - Alternative: tree maps: convert tree to rectangles
 - Area proportional to, e.g., node size
 - Split space horizontally and vertically in turn
 - ex: SpaceSniffer, WinDirStat, Disk Inventory X
- Graph Data
 - Nodes and edges
 - Aesthetics. 'Appealing' layout
 - Subjective?
 - Generally accepted desirable properties:
 - o Minimise edge crossings
 - o Uniform edge lengths
 - Evenly spaced nodes
 - Symmetry
 - Even more difficult to handle than trees
 - Links can go anywhere: may be no regular order/structure
 - Optimisation algorithm
 - e.g., find positions that minimise edge length & crossings
 - Closely related to algorithms for multidimensional data
 - Sometimes better to make simpler
 - Reduce to simpler type, e.g., tree: choose root, lift up, cut off/hide excess links

- Multidimensional Data
 - Cleveland and McGill: humans best equipped to make judgements when data is encoded by position
 - Strategies for visualising:
 - Non-orthogonal display of dimensions, e.g., Parallel Coordinates

- Each object a single polygonal line
 - Intersects each 'axis' at appropriate value
- See patterns, clusters, etc
 - 'Iris' data set: 150 objects, 3 natural clusters
- o Good for correlations, if adjacent
 - Might need to rearrange dimensions
- o Hard to follow a single object's line left to right
 - Worse with bigger datasets
 - Interactive controls can help
 - Mouse-over to highlight a single line
- Numerous Paired Combinations, e.g., Scatterplot Matrix

- x-y scatterplots of every pair of dimensions
- Good for seeing correlations in pairs of dimensions
 - Position irrelevant
- Duplication in grid: can just show 'triangle' either side of diagonal
- Screen space requirement rises quadratically with dimensionality

0

- d dimensions
- No overview of all the data
- Interaction can make more powerful
 - Brushing and Linking
 - Linking together multiple views, so that 'brushing' a selection in one view colours matching objects in other views

- Dimensional reduction to create single scatterplot, e.g., Force-Directed Placement
 - Single Plot Visualisation
 - Create single scatterplot showing overall structure of data
 - Compare objects: rows of the spreadsheet
 - Treat inter-object similarity as highdimensional distance
 - Find a low-dimensional layout that retains as much of the relative distances between objects as possible
 - Similar objects close together in the layout, and dissimilar objects far apart
 - General approach often called Dimensional Reduction / Multidimensional Scaling (MDS)
 - Matrix methods (e.g., PCA) spring models
 - 'Reduce dimensionality' to 2D/3D
 - Force-based models
 - 'Spring model' to position objects
 - Consider a spring between each pair of objects
 - Ideal relaxed length of spring proportional to difference between objects
 - i.e., if A & B are similar, C more different: AB short, BC long, AC long
 - Start from random positions (some springs too stretched, others too squashed)
 - The springs then iteratively push and pull objects until the layout reaches equilibrium
 - Strengths:
 - Scatterplot layout positions show global relationships
 - Neighbours on layout are usually high-D neighbours
 - Weaknesses:
 - All dimensions are combined in 2D layout
 - Not for exploring individual dimensions, unlike other techniques

- Can be very slow often O(n^3) overall
 - May be unable to lay out large/complex datasets, e.g., many millions
- Ex: JavaScript library for visualisation on the Web
 - o HTML, SVG, DOM manipulation
- Ex: https://bl.ocks.org
- Ex: bservable Jupyter-style notebooks