FIT5187-S1_2018 Lecture 11 Future Generation of Mobile Networks and Devices

Learning outcomes

- 1. Describe the integration of 5G heterogeneous mobile networks
- 2. Apply the software radio and software defined network to future mobile networks
- 3. Acquire data via heterogeneous IoT devices
- 4. Analyse the future generation of network security

A framework for coexistence of Wifi and Lifi

Reference:

[1] Moussa Ayyash, Hany Elgala, Abdallah Khreishah, Volker Jungnickel, Thomas Little, Sihua Shao, Michael Rahaim, Dominic Schulz, Jonas Hilt, and Ronald Freundes "Coexistence of WiFi and LiFi Toward 5G: Concepts, Opportunities, and Challenges."

Figure 1. The proposed Li+WiFi HetNet.

Figure 2. The SU-SVD-MIMO concept can be used to avoid interference and maintain target illumination. The SVD is used to decompose the MIMO channel into parallel SISO sub-channels, enabling interference-free spatial multiplexing. At the receiver, and after estimating the channel, the information needed to pre-process and post-process the signals at the transmitter and receiver, respectively, and the illumination set point (room brightness) is available on the feedback channel, to extract the parallel SISO channels.

Figure 3. The LiFi transceivers.

Figure 4. Vertical and horizontal distance between LiFi transceivers.

Figure 5. Configurations of the a) hybrid system, and b) the aggregated system.

Figure 6. a) throughput vs. distance; b) throughput vs. blockage duration.

Integration of SDN and SDR for 5G

Hsin-Hung Cho, Chin-Feng Lai, Timothy K. Shih, Han Chieh Chao, IEEE Access, vol. 2, 2014.

FIGURE 1. The difference between 4G and 5G.

FIGURE 2. The software wireless support multi-layer control.

FIGURE 3. The software radio.

FIGURE 4. SDN supports MAC layer to the application layer.

FIGURE 5. SDN architecture.

FIGURE 6. Hybrid architecture of SDN and SDR.

S1_18 LT11 - 5G and beyond network and technology

TABLE 1. Simulation parameters.

Parameters	Values		
Number of evaluated spectrums	4		
Download frequency	2140(MHz)		
UpLink frequency	1950(MHz)		
Bandwidth	60(MHz)		
Number of evaluated devices	10~100		
Interference parameter	1~10		

FIGURE 8. Relationship between spectrum and bandwidth utilization rate.

FIGURE 9. Relationship between spectrum and bandwidth utilization rate.

S1_18 LT11 - 5G and beyond network and technology

FIGURE 10. Relationship between spectrum and bandwidth utilization rate.

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Figure 11. Relationship between spectrum and bandwidth utilisation rate

Wireless IoT technologies – future outlook

Internet of Things: Making the most of the Second digital Revolution - UK Government

Planning for support of IoT – By 2020, 25 to 50 billions of devices will connect to internet

"As more customers understand the IoT and its ready resources, they'll want to exploit them." — Survey Respondent

Internet of Things Ecosystem

S1_18 LT11 - 5G and beyond network and technology

Internet of things paradigm as a result of the convergence of different visions

Operationalising IoT for reverse supply chain

Figure 1 Generic integrated forward and reverse supply chain

Source: Adapted from Blackburn et al. (2004)

SOA based middleware architecture

Table 1Comparison between RFID systems, wireless sensor networks, and RFID sensor networks,

	Processing	Sensing	Communication	Range (m)	Power	Lifetime	Size	Standard
RFID	No	No	Asymmetric	10	Harvested	Indefinite	Very small	ISO18000
WSN	Yes	Yes	Peer-to-peer	100	Battery	<3 years	Small	IEEE 802,15,4
RSN	Yes	Yes	Asymmetric	3	Harvested	Indefinite	Small	None

IOT Applications Domains and relevant scenarios

Table 2 Open research issues,

Open issue	Brief description of the cause	Details in
Standards	There are several standardization efforts but they are not integrated in a comprehensive framework	Section 5,1
Mobility support	There are several proposals for object addressing but none for mobility support in the IoT scenario, where scalability and adaptability to heterogeneous technologies represent crucial problems	Section 5,2
Naming	Object Name Servers (ONS) are needed to map a reference to a description of a specific object and the related identifier, and vice versa	Section 5.2
Transport protocol	Existing transport protocols fail in the IoT scenarios since their connection setup and congestion control mechanisms may be useless; furthermore, they require excessive buffering to be implemented in objects	Section 5.2
Traffic characterization and QoS support	The IoT will generate data traffic with patterns that are expected to be significantly different from those observed in the current Internet. Accordingly, it will also be necessary to define new QoS requirements and support schemes	Section 5,2
Authentication	Authentication is difficult in the IoT as it requires appropriate authentication infrastructures that will not be available in IoT scenarios. Furthermore, things have scarce resources when compared to current communication and computing devices. Also man-in-the-middle attack is a serious problem	Section 5,3
Data integrity	This is usually ensured by protecting data with passwords. However, the password lengths supported by IoT technologies are in most cases too short to provide strong levels of protection	Section 5,3
Privacy	A lot of private information about a person can be collected without the person being aware. Control on the diffusion of all such information is impossible with current techniques	Section 5,3
Digital forgetting	All the information collected about a person by the IoT may be retained indefinitely as the cost of storage decreases. Also data mining techniques can be used to easily retrieve any information even after several years	Section 5.3

Table 3

Characteristics of the most relevant standardization activities,

Standard	Objective	Status	Comm, range (m)	Data rate (kbps)	Unitary cost (\$)		
Standardization activities discussed in this section							
EPCglobal	Integration of RFID technology into the electronic product code (EPC) framework, which allows for sharing of information related to products	Advanced	~1	$\sim \! 10^2$	~0,01		
GRIFS	European Coordinated Action aimed at defining RFID standards supporting the transition from localized RFID applications to the Internet of Things	Ongoing	~1	$\sim \! 10^2$	~0,01		
M2M	Definition of cost-effective solutions for machine-to-machine (M2M) communications, which should allow the related market to take off	Ongoing	N.S.	N.S.	N,S,		
6LoWPAN	Integration of low-power IEEE 802.15.4 devices into IPv6 networks	Ongoing	10-100	$\sim \! 10^2$	~1		
ROLL	Definition of routing protocols for heterogeneous low-power and lossy networks	Ongoing	N.S.	N.S.	N.S.		
Other relevant standardization activities							
NFC	Definition of a set of protocols for low range and bidirectional communications	Advanced	$\sim \! 10^{-2}$	Up to 424	~0.1		
Wireless Hart	Definition of protocols for self-organizing, self-healing and mesh architectures over IEEE 802.15.4 devices	Advanced	10-100	$\sim 10^2$	~1		
ZigBee	Enabling reliable, cost-effective, low-power, wirelessly networked, monitoring and control products	Advanced	10-100	$\sim 10^2$	~1		

Encapsulation of RFID message into an IPv6 packet

Man in the middle of attack (or proxy attack)

Security and privacy of IoT –Authentication & data integrity

Extremely vulnerable to attack due to

- 1. Mostly unattended components
- 2. Most of communication are wireless eavesdropping simple
- 3. Use low energy component –hard to implement complex

Gartner (2014) study of IoT

Intelligent Transport System: connected vehicles, cloud computing and Internet of Things

Antonio J., Ibanez G., Zeadally S. and Contreras-Castillo, J. Integration Challenges of Intelligent Transportation Systems with Connected Vehicles, Cloud Computing, and Internet of Things Technologies, IEEE wireless Communications, Dec 2015, pp. 122-128.

Figure 1. a) Future trends of intelligent transportation systems; b) impact of emerging technologies on ITS.

Figure 2. Wireless vehicular networking scenarios.

Figure 3. Vehicular Cloud architecture.

Five Guidelines on Cloud Computing

- 1. Hybrid cloud computing is the definitive model.
- 2. Focus on "as-a-strategy"—software (SaaS), infrastructure (IaaS), and platform (PaaS).
- 3. Network and data security are key; security must be built into the architecture.
- 4. Bi-modal IT is dead; the world is increasingly agile.
- 5. It is better to fail forward, than to stagnate not trying.

Deploying next generation cyber security

VMWare white paper (Feb 2018) - Rethinking security strategy to meet next-generation security challenges

Micro-segmentation is a new cybersecurity solution for SME. There are three steps in developing an effective micro-segmentation process.

- Step 1 Determine the network flow in entire enterprise
- Step 2 Identify patterns and relationships in the traffic
- Step 3 Create and apply the policy model (e.g. apply one micro-segmentation at a time.

Tips and tricks for a successful micro-segmentation deployment

- 1. Utilize Application Rule Manager (e.g. VMware' ARM)
- 2. Maps out security group
- 3. Develop consistent naming conventions for security groups
- 4. Build a cross-functional team to support microsegmentation development

Architecture and design patterns Examples of architecture patterns

- 1. Authentication architecture
- 2. Authorisation frameworks
- 3. Cloud-based system architecture
- 4. Mobile application architectures
- 5. Microservices-based architecture
- 6. Containerization

Key benefits of patterns

- 1. Consistency and reliability
- 2. Efficiency
- 3. Commonly understood taxonomy

Pattern-based threat modelling approach – a solution to enable scalability

Step 1- Identify commonly recurring patterns in applications

Figure 1: Pattern-based approach to threat modeling

Step 2 – Create and maintain a pattern catalogue

Pattern catalogue contains the following information

- Pattern name
- Pattern description
- Threat modelling template associated with the pattern
- Applicability criteria

Step 3 – Establish threat modelling templates

- Threat Name
- Threat description
 - Threat agents, assets, trust zones, etc.
 - A set of mitigating controls for each control
 - > security requirements
 - design guidance

Step 3 – Establish threat modelling templates

- Threat Name
- Threat description
 - Threat agents, assets, trust zones, etc.
 - A set of mitigating controls for each control
 - > Security requirements
 - Design guidance
 - Development guidance
 - > Testing guidance

Figure 2: Threat modeling template

Improve threat modelling process

- 1. Decompose an application and identify patterns in the application architecture
- 2. Use pattern-based template to arrive at a set of threats that must be considered during threat modelling process
- 3. Prioritize and prune the set of threats using organisation's risk framework when present, and using the applicability criteria in the template
- 4. Finalise the list of threats that must be considered for the analysis

Sample threat model template for message queue pattern

Assets

A01: Messages

A02: Queue definitions

A03: User profiles

A04: Policy decision data

A05: Application configuration data

to access queuing system

Required controls

C01: Encryption of messages

C02: Integrity control on messages

C03: Queuing subsystem authentication

control

C04: Database access control

C05: Message store access control

C06: Configuration data access control

Attack vectors

AV01: Read/modify/tamper with messages in transit

AV02: Read messages in the message store

AV03: Modify messages in the message store

AV04: Unauthorized users publish messages

AV05: Unauthorized users receive messages

AV06: Unauthorized access to the queuing system's

administrative interface

AV07: Compromised queuing system authentication credentials

AV08: Denial-of-service attack on the queuing system