Grado en Ingeniería de Comunicaciones Móviles y Espaciales Grado en Ingeniería Telemática

Notación

- \hat{S}_{MMSE} : Estimador de mínimo error cuadrático medio.
- \hat{S}_{MAP} : Estimador de máximo a posteriori.
- $\widehat{S}_{\mathrm{ML}}$: Estimador de máxima verosimilitud.
- 1. Para la estimación del parámetro determinista $s \ge 0$, se dispone de la siguiente observación:

$$X = \sqrt{s} \cdot R$$

donde R es una variable aleatoria gaussiana de media 0 y varianza igual a v.

- (a) Obténgase el estimador de máxima verosimilitud de s a la vista de X, \hat{s}_{ML} .
- (b) Determínese el sesgo del estimador \hat{s}_{ML} .
- (c) Razone cómo variará la varianza del estimador, calculado en el apartado b), si el valor de \boldsymbol{v} aumenta o disminuye.

Solution:

- (a) $\widehat{s}_{\mathrm{ML}} = \frac{X^2}{v}$.
- (b) El estimador es insesgado.
- (c) Si 0 < v < 1, la varianza del estimador aumenta.

Si v > 1, la varianza del estimador disminuye.

2. Las variables aleatorias S y X se distribuyen conjuntamente según la función de densidad de probabilidad:

$$p_{X,S}(x,s) = \begin{cases} 2sx, & 0 \le s \le 2x, & 0 \le x \le 1 \\ & \text{en otro caso} \end{cases}$$

- (a) Determínese el estimador de error cuadrático medio mínimo de S a la vista de $X,\,\widehat{S}_{\mathrm{MMSE}}.$
- (b) Establézcase el estimador de máximo a posteriori de S a la vista de X, \widehat{S}_{MAP} .
- (c) Supuesto que se restringe la forma del estimador a cuadrático en X, establézcase la expresión del estimador $\hat{S}_q=wX^2$ que minimiza el coste cuadrático.

Solution:

- (a) $\widehat{S}_{\text{MMSE}} = \frac{4}{3}X$
- (b) $\widehat{S}_{MAP} = 2X$
- (c) $\hat{S}_q = \frac{32}{21}X^2$