Definition: Group Homomorphism

Group Homomorphism

A group homomorphism is a function between two Group structures that preserves the group Binary Operation.

Formal Definition

Let (G,\cdot) and (H,*) be groups. A function $f:G\to H$ is a group homomorphism if:

$$f(a \cdot b) = f(a) * f(b)$$

for all $a, b \in G$.

Properties

For any group homomorphism $f: G \to H$:

- 1. Identity preservation: $f(e_G) = e_H$ where e_G and e_H are the identity elements 2. Inverse preservation: $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$
- 3. Subgroup preservation: If $K \leq G$, then $f(K) \leq H$

Special Types

- Monomorphism: An injective homomorphism
- Epimorphism: A surjective homomorphism
- Isomorphism: A bijective homomorphism
- Endomorphism: A homomorphism from a group to itself
- Automorphism: A bijective endomorphism

Dependency Graph

Local dependency graph