

Lahore University of Management Sciences

MATH 3010 - Advanced Calculus

(Tentative)

Spring 2023-2024

Instructor	Waqas Ali Azhar
Room No.	9-9B30
Office Hours	TBA
Email	waqas.azhar@lums.edu.pk
Telephone	TBA
Secretary/TA	TBA
TA Office Hours	TBA
Course URL (if any)	TBA

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 min
Recitation/Lab (per week)	Nbr of Lec(s) Per Week		Duration	
Tutorial (per week)	Nbr of Lec(s) Per Week		Duration	

Course Distribution	Course Distribution	
Core	For Math Major	
Elective		
Open for Student Category	All students	
Close for Student Category	None	

COURSE DESCRIPTION

In this course we will study Real-valued functions of several variables, Vector-valued functions of several variables, Linear Transformations and Matrices; Continuity and Differentiability of Transformations; Inverse function theorem and Implicit function theorem, differential forms, integration of forms and stokes' theorem.

COURSE PREREQUISITE(S)	
	MATH 102 OR MATH 205

COURSE OBJECTIVES
The objective of this course is to understand the basic facts about R^n, vector valued function with several
variables, their limits, continuous functions and differentiation.
It shows the utility of abstract concepts and teaches an understanding and construction of proofs what they have
studied in calculus II.

Learning Outcomes

The students would be able to apply the theory they have learnt in this course to the relevant subsequent advance courses they will pursue during their further studies.

Grading Breakup and Policy(tentative)

Assignment(s): 10%

Quiz(s): 20% (every alternate week) Midterm Examination: 30% Final Examination: 40 %

Lahore University of Management Sciences

Examination De	ramination Detail	
Midterm	Yes/No: Yes	
Exam		
	Yes/No: Yes Exam Specifications:	
Final Exam	Exam Specifications:	

Week/ Lecture/ Module	Topics	Readings	Objectives/Applications
	Function on Euclidean Space R^n	[S] Chapter 1	Norms, properties of subsets of R^n, functions on R^n and continuity
1-3	Norm and Inner products, subset of Euclidean space and Function of continuity		
	Partial Derivatives and the Differential	[S] Chapter 2	Partial derivatives, directional derivatives of function in n variables, implicit functions and explicit functions
4-8	Derivatives, Inverse functions and Implicit function Theorems		
	Differential forms on the Euclidean Space R^n	[Sj] Chapter 2 and 3	Differential forms and pull backs
9-12	Tangent Spaces, Vector Fields, Elementary Properties, Exterior derivatives, closed and exact form, div, curl and grad; Pulling back forms		
	Integration of 1-forms	[Sj] Chapter 4	Integration
13-16	Definition and elementary properties of Integration Integration of Exact 1-form, The global angle function and the winding number	-	
	Integration and Stokes' theorem	[Sj] Chapter 5	Integration
17-20	Integration of forms over chains, The boundary of a chain, Cycles and boundaries, Stokes' theorem		
24.22	Manifolds	[Sj] Chapter 6	Manifolds
21-22	The definition, The regular value theorem		
23-24	Differential Forms on Manifolds	[Sj] Chapter 7	Multilinear Algebra
23-24	Definition and review of multilinear algebra		
25-26	Volume forms	[Sj] Chapter 8	Differential forms and integration
23-20	n-Dimensional volume in R^n Orientations		
	Integration and Stokes' theorem for manifolds	[Sj] Chapter 9	Integration and stokes theorem
27-28	Manifolds with boundary, Integration over orientable manifolds, Gauss and Stokes		

Textbook(s)/Supplementary Readings

[S] Calculus on Manifolds by M. Spivak and Benjamin Cummings (1965).

[Sj]Manifolds and Differential forms by Sjamaar, Reyer "Lecture Notes, Cornell University, (http://www.math.cornell.edu/sjamaar/) (2001). [Ed] Advanced Calculus: a differential forms approach by Harold M. Edwards, Springer Science & Business Media, 2013.