

Universidade do Minho

Escola de Engenharia

Grupo 5:

José Gomes a93083

Diogo Cerqueira a93108

Rui Cunha a93093

Francisco Martins a93079

Luís Oliveira a89380

Especificação da Fase C

MIETI

Projeto Integrador em Telecomunicações e Informática 2022/2023

Índice

Lis	Lista de figuras						
Lis	sta de	tabela	S		iv		
1	Enq	uadram	ento e	Motivação	1		
2	Esp	ecificaç	ão da F	ase C	2		
	2.1	Requis	itos e fur	ncionalidades do sistema	2		
	2.2	Testes	a realiza	ar sobre o link ótico	2		
	2.3	Requis	itos e fur	ncionalidades do UI da aplicação (PC)	2		
	2.4	Mecan	ismo de	controlo de erros	3		
	2.5	Protoco	olo de co	omunicação entre aplicação (PC) e a placa ESP32	4		
3	Feri	ramenta	as		6		
	3.1	Hardwa	are		6		
		3.1.1	ESP32	2-DevKitC-32D	7		
		3.1.2	Oscilos	scópio	8		
		3.1.3	Compo	onentes	8		
			a)	Semicondutores	8		
			b)	Condensadores	9		
			c)	Integrados	10		
			d)	Propriedades elétricas dos componentes	11		
	3.2	Softwa	re		12		
4	Plar	nificaçã	o do pr	ojeto	13		
5	Con	clusão			14		
Re	ferên	ıcias Bil	bliográf	iicas	15		

Lista de figuras

Arquitetura final do sistema	1
Fluxograma do protocolo porta série (emissor)	4
Fluxograma do protocolo porta série (recetor)	5
Propriedades elétricas dos componentes.	11
Planeamento temporal da Fase C	13

Lista de tabelas

Hardware necessário para a implementação da Fase C	6
Caraterísticas da placa ESP32-DevKit-32D	7
Tabela dos Semicondutores	8
Tabela dos Condensadores	9
Tabela dos circuitos integrados	0
Software necessário para a implementação da Fase C	2

Acrónimos

LED Light Emitting Diode

WIFI Wireless Fidelity

BLE Bluetooth Low Energy

ISP Internet Service Provider

1 Enquadramento e Motivação

O relatório de especificação da fase C está inserido no âmbito da Unidade Curricular de Projeto Integrador em Telecomunicações e Informática.

Serve o presente relatório como introdução e especificação dos critérios de *hardware* e de *software* a serem implementados na fase C, em junção com a apresentação e planeamento temporal das tarefas convenientes à sua construção.

O relatório referido será iniciado com as especificações impostas pela fase C, nomeadamente:

- Arquitetura final do sistema.
- Requisitos e funcionalidades do sistema.
- Especificação dos testes a realizar sobre o link ótico.
- Requisitos e funcionalidades da aplicação (PC) de interface com o utilizador.
- Protocolo de comunicação entre aplicação (PC) e a placa ESP32.
- Identificação do material necessário.
- Planificação temporal.

Após a abordagem dos tópicos referidos, o relatório terminará com uma conclusão.

A estrutura do sistema a implementar encontra-se ilustrada pela figura 1.1. Através da visualização da figura referida, a comunicação será estabelecida com recurso a um *link* óptico (seta amarela), que será gerado pela lâmpada LED (*Light Emitting Diode*). Posteriormente, o *link* óptico será detetado pelo fotodetetor, que é um componente intrínseco ao recetor, que transformará a informação presente no *link* óptico num sinal elétrico. De seguida, uma aplicação, a executar num PC, recebe e apresenta a informação difundida através do canal ótico.

Figura 1.1: Arquitetura final do sistema.

2 Especificação da Fase C

2.1 Requisitos e funcionalidades do sistema

O principal requisito do sistema é a transmissão de informação entre dois PCs sobre um *link* ótico.

Este sistema deve conter dois componentes essenciais, um emissor que transmita informação atráves do LED, e um recetor que seja capaz de receber essa informação e mostrar ao utilizador. A comunicação série entre os dois PCs e os respectivos microcontrolador da placa ESP32 deve ser feita utilizando um cabo USB.

2.2 Testes a realizar sobre o link ótico

De forma a avaliar o sucesso da implementação, o grupo decidiu efetuar diversos testes, cujos nos quais são variados vários parâmetros importantes. Os parâmetros variados serão:

• **Distância** entre o emissor e o recetor:

Ao variar a distância, espera-se que com o aumento desta, a intensidade do sinal recebido seja cada vez menor. Também será testado o alcance do link ótico.

• Ruído:

Será colocado ruído no sinal emitido. Este ruído será implementado da seguinte forma: será apontado para o recetor uma fonte luminosa (lanterna) de forma a perceber se o recetor consegue filtrar essa luminosidade.

Obstáculos:

Serão colocados obstáculos (por exemplo, uma folha de papel branca) entre o emissor e o recetor, de forma a perceber de que forma estes irão influenciar a receção do link ótico.

2.3 Requisitos e funcionalidades do UI da aplicação (PC)

Para que o ambiente gráfico tivesse o aspeto que pretendíamos, escolhemos usar a biblioteca "**JavaFX**" [1], pela fácil usabilidade e experiência prévia de uso na mesma. Esta biblioteca permite criar interfaces

gráficas, animações, efeitos e gráficos com um menor nível de dificuldade, utilizando a linguagem de programação *Java*.

2.4 Mecanismo de controlo de erros

De maneira a completar a tarefa da Fase C, o grupo decidiu implementar Hamming codes para a deteção e correção de erros. Este mecanismo será ao nível das placas ESP32.

Os códigos de Hamming são uma família de códigos de correção de erros lineares usados para a deteção e correção de erros na transmissão de dados. O seu funcionamento consiste na adição de bits de paridade extras a um bloco de dados que está a ser transmitido, os bits são escolhidos de tal maneira que eles possam detetar e corrigir erros de um único bit no bloco de dados.

2.5 Protocolo de comunicação entre aplicação (PC) e a placa ESP32

O protocolo de comunicação entre o PC e a placa ESP32 foi implementado com recurso à linguagem de programação *Java*. Dentro do domínio da linguagem referida, foi utilizada a biblioteca "**jssc**" [2] que serviu de base à implementação do protocolo referido. Essa biblioteca proporciona um conjunto de recursos, nomeadamente, classes e métodos que permitem a comunicação com as portas série. Os recursos dessa biblioteca enquadram-se nas categorias seguintes:

- Listagem das portas: Listam as portas série aptas para comunicar.
- Escrita da informação: Escrita da informação na porta série.
- Leitura da informação: Leitura da informação proveniente da porta série.

A figura 2.2 ilustra o fluxograma, do lado do emissor, relativo ao funcionamento do protocolo de comunicação entre o PC e a placa ESP32.

Figura 2.2: Fluxograma do protocolo porta série (emissor).

A figura 2.5 ilustra o fluxograma, do lado do recetor, inerente ao funcionamento do protocolo de comunicação entre o PC e a placa ESP32.

Figura 2.3: Fluxograma do protocolo porta série (recetor).

3 Ferramentas

Neste trabalho, iremos apresentar as ferramentas que serão utilizadas. A escolha das ferramentas adequadas é fundamental para garantir a eficiência e a qualidade do projeto desenvolvido. Para isso, serão abordadas diversas ferramentas, suas funcionalidades e características, a fim de oferecer um panorama amplo e completo do projeto.

3.1 Hardware

A tabela seguinte apresenta parte do hardware necessário ao desenvolvimento da fase C.

Tabela 3.1: Hardware necessário para a implementação da Fase C.

Imagem	Designação	Descrição
	ESP32-DevKitC-32D	2 placas: uma para a implementação do sistema emissor e outra para o recetor
	Cabos USB	Cabos responsáveis pela conexão entre o PC e a placa ESP32
250000000000000000000000000000000000000	Computadores	Desenvolvimento de código e relatórios
	Breadboards	Interface de conexão entre os circuitos

3.1.1 ESP32-DevKitC-32D

O ESP32 é um modulo genérico de WiFi (*Wireless Fidelity*), *Bluetooth* e BLE (*Bluetooth Low Energy*), que possibilita uma grande variedade de aplicações como por exemplo redes de sensores de baixa potência, descodificação de MP3 e codificação de voz.

A tabela 2 apresenta as caracteristicas da placa em questão.

Tabela 3.2: Caraterísticas da placa ESP32-DevKit-32D..

Módulo	ESP32-DevKit-32D					
SPI flash	32 Mbits, 3.3 V					
Core	ESP32-D0WD					
Crystal	40 MHz (apenas para a funcionalidade					
	do WiFi e do <i>Bluetooth</i>)					
Antena	Conector U.FL (que precisa de estar					
	conectado a uma antena IPEX externa)					
Dimensões (Unidade: mm)	(18.00±0.10) × (19.20±0.10) ×					
	(3.20±0.10)					

O Bluetooth, o BLE e o WiFi são diferentes tipos de comunicação, que são suportados pelo ESP32. A utilização do WiFi proporciona um grande alcance físico e conexão direta com a internet através de um ISP (*Internet Service Provider*).

A *sleep current* (corrente caraterística, quando a placa opera em modo *standby*) da placa é inferior a 5 microamperes, o que torna este componente ideal para sistemas eletrónicos alimentados por baterias.

O *chip* da placa suporta uma taxa de transmissão até 150 Mbps e 20 dBm de potência de saída de antena para proporcionar o melhor alcance físico possível.

3.1.2 Osciloscópio

Um osciloscópio é um instrumento de medição eletrónico utilizado para visualizar e analisar sinais elétricos, como corrente elétrica e tensão elétrica, ao longo do tempo. É capaz de capturar sinais elétricos de diferentes formas de onda e exibir essas formas em um ecrã para análise. Este é composto por um circuito de entrada que recebe o sinal elétrico a ser medido, um circuito de amplificação para amplificar o sinal, um sistema de controlo para ajustar a exibição do sinal na tela e um ecrã para apresentar os dados aos utilizadores. Nesta fase o osciloscópio será utilizado para medir as formas de onda nos pontos relevantes dos circuitos emissor e recetor durante os testes efetuados.

Nos testes iniciais ao *link* óptico, o osciloscópio será utilizado na geração de uma onda quadrada, com a mesma amplitude fornecida pela GPIO. Ainda no contexto da onda quadrada, as formas de onda da mesma serão registadas fotograficamente.

3.1.3 Componentes

As próximas tabelas contêm os componentes que serão utilizados nesta fase e a quantidade de componentes eletrónicos necessária.

a) Semicondutores

Os semicondutores são materiais que têm uma condutividade elétrica intermediária entre condutores e isolantes.

Eles têm a capacidade de controlar o fluxo de elétrons num circuito, o que os torna um componente fundamental na eletrônica moderna.

A tabela 3.3 apresenta os semicondutores exigidos.

Tabela 3.3: Tabela dos Semicondutores.

Componente	Quantidade
2N2222A	2
1N4148	6
PL-51P3C	2
PL-53F3BT	2
BS170	2

b) Condensadores

Os condensadores são dispositivos elétricos que são utilizados em circuitos eletrónicos para armazenar energia elétrica. Eles são compostos por dois condutores separados por um material isolante, chamado de dielétrico.

A capacidade de armazenar energia elétrica do condensador é medida em farads (F) e depende do tamanho físico do condensador, da distância entre os condutores e do tipo de dielétrico utilizado. Eles são amplamente utilizados porque são capazes de armazenar energia elétrica de forma eficiente e libertá-la rapidamente quando necessário.

Além disso, os condensadores são componentes passivos, o que significa que eles não requerem energia externa para funcionar. Estes podem ser polarizados ou não polarizados, dependendo da sua construção e aplicação. Os condensadores polarizados têm um terminal positivo e um negativo e só podem ser ligados em circuitos elétricos de uma forma específica. Já os condensadores não polarizados não têm polaridade e podem ser ligados em circuitos elétricos de qualquer forma.

Tabela 3.4: Tabela dos Condensadores.

Componente	Quantidade
10p	1
47p	1
1n	1
4,7n	1
10n	1
47n	1
100n	1
22u	2

c) Integrados

Os circuitos integrados (também conhecidos como *chips*) são dispositivos eletrónicos que contêm vários componentes eletrónicos (tais como transistores, diodos e resistores) incorporados. Eles são amplamente utilizados no ramo da eletrónica pois permitem a construção de circuitos complexos em um espaço reduzido.

Em junção com as propriedades descritas, estes proporcionam uma maior confiabilidade e eficiência em comparação com a construção de circuitos, que usufruem de componentes discretos.

Tabela 3.5: Tabela dos circuitos integrados.

Componente	Quantidade
NE555 (<i>Timer</i>)	1
7400 (Portas AND)	2
7408 (Inversores)	2
7486 (XORs)	1
74166 (Shift-Register)	1
A741 (AmpOp)	1
TL084 (Quad AmpOp)	1

d) Propriedades elétricas dos componentes

A figura 3.5 apresenta as propriedades elétricas dos transístores, dos amplificadores operacionais e do díodo, em especial, os valores de tensão e corrente suportados.

			Tensão (V)		Corrente (A)			
			Minima	Tipica	Maxima	Minima	Tipica	Maxima
	L-51P3C	Coletor-emissor						
Fototransistor		Emissor-coletor	5					
		Coletor				0.1m	0.5m	
Infra-Red Emitting Diode	PL-53F3BT			1.2	1.5			50m
Tonosístos	2N2222A	Coletor-emissor			0.3			
Transistor		Emissor-coletor		0.6	1.2			
		Coletor						800m
	TL084 A741	Vcc			18			
Amnon		Vi			15			
Ampop		Vcc			22		·	
		Vi			15			

Figura 3.4: Propriedades elétricas dos componentes.

3.2 Software

A tabela 3.6 contém o software necessário à implementação da fase C.

Tabela 3.6: Software necessário para a implementação da Fase C.

Símbolo	Designação	Função
∞	Arduino IDE	Programação utilizando a linguagem C++ do módulo Arduino
6	Overleaf	Editor de LaTeX assente na <i>cloud</i>
facebook	Facebook	Comunicação entre os membros do grupo
	IntelliJ	Programação utilizando a linguagem Java da aplicação

4 Planificação do projeto

Para garantir consistência, linearidade e para que se cumpra todos os objetivos é necessário recorrer a um planeamento bem estruturado. O planeamento do projeto encontra-se ilustrado pelo diagrama de Gantt, representado pela figura 4.6..

Figura 4.5: Planeamento temporal da Fase C

5 Conclusões

Concluída a especificação da presente fase, na opinião do grupo, espera-se desta fase um nível de complexidade modesta, especialmente na fase de implementação do controlo de erros para recuperar tramas perdidas/corrompidas, visto que se ambiciona desde o início, eficiência e modularidade para que o resto do projeto corra de forma esperada.

Assim sendo, o grupo acredita que o planeamento apresentado irá resultar numa aplicação eficaz do hardware e do software, para que se demonstre adequadamente os conhecimentos a adquirir no decorrer da Unidade Curricular.

Referências Bibliográficas

- [1] OpenJDK. Java library for ui design. URL https://github.com/openjdk/jfx.
- [2] Java Native. Java library for talking to serial ports (with added build support for maven, cmake, msvc).

 URL https://github.com/java-native/jssc.