

$\begin{array}{c} {\bf Type 977~fitting~for~heat~pump}\\ {\bf SI\text{-}GEO\text{-}5\text{-}22} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:02:09 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Diti	
Coemcient	Description	[1 777]
		[kW]
P_{Q_1}	1^{st} condenser polynomial coefficient	2.4845e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	2.9703e+02
P_{Q_3}	3^{st} condenser polynomial coefficient	7.0934e+01
P_{Q_4}	4^{st} condenser polynomial coefficient	-2.8110e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	1.0292e+02
P_{Q_6}	6^{st} condenser polynomial coefficient	-3.6622e+02
P_{COP_1}	1 st COP polynomial coefficient	5.4508e+00
P_{COP_2}	2^{st} COP polynomial coefficient	5.8709e+01
P_{COP_3}	3 st COP polynomial coefficient	6.7296e+00
P_{COP_4}	4 st COP polynomial coefficient	-1.4094e+02
P_{COP_5}	5 st COP polynomial coefficient	-2.9672e+01
P_{COP_6}	6 st COP polynomial coefficient	-1.0217e + 02
\dot{m}_{cond}	4246.00 [kg/h]	
\dot{m}_{evap}	4246.00 [kg/h]	
COP_{nom} (A0W35)	4.42	
$Q_{cond,nom}$ (A0W35)	$25.70 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	$19.88 \ [kW]$	
$W_{comp,nom}$ (A0W35)	5.82 [kW]	
RMS_{COP}	3.90e - 02	
$RMS_{Q_{cond}}$	5.65e - 02	
$RMS_{W_{comp}}$	6.29e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

	- T	COD	COD					***	***	
$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
°C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.73	3.70	1.0	21.63	21.65	0.1	5.79	5.86	1.11
35.00	0.00	4.47	4.50	0.7	25.95	25.90	0.2	5.81	5.76	0.96
35.00	5.00	5.19	5.20	0.2	30.34	30.36	0.0	5.84	5.84	0.11
50.00	-5.00	2.67	2.67	0.2	20.26	20.30	0.2	7.58	7.61	0.37
50.00	0.00	3.29	3.23	1.7	24.39	24.26	0.5	7.42	7.50	1.14
50.00	5.00	3.90	3.83	1.8	28.59	28.55	0.2	7.33	7.45	1.63
45.00	-5.00	3.09	3.11	0.7	20.93	20.98	0.2	6.77	6.74	0.46
45.00	0.00	3.75	3.78	0.8	25.13	25.08	0.2	6.70	6.64	0.98
45.00	5.00	4.40	4.43	0.7	29.40	29.45	0.2	6.68	6.64	0.52
55.00	0.00	2.76	2.80	1.5	23.44	23.44	0.0	8.49	8.36	1.51
55.00	5.00	3.33	3.35	0.4	27.58	27.64	0.2	8.27	8.26	0.16
35.00	10.00	5.91	5.90	0.1	34.80	34.82	0.1	5.89	5.90	0.18
35.00	15.00	6.61	6.58	0.4	39.31	39.27	0.1	5.95	5.97	0.33
50.00	10.00	4.50	4.44	1.5	32.87	32.83	0.1	7.30	7.40	1.39
50.00	15.00	5.10	5.05	1.0	37.21	37.12	0.2	7.30	7.35	0.72
45.00	10.00	5.04	5.08	0.8	33.74	33.83	0.3	6.69	6.65	0.55
45.00	15.00	5.67	5.74	1.1	38.14	38.20	0.2	6.72	6.66	0.95
55.00	10.00	3.90	3.91	0.2	31.79	31.84	0.2	8.16	8.15	0.04
55.00	15.00	4.45	4.48	0.7	36.06	36.05	0.0	8.10	8.05	0.71
Sum				15.4			3.2			13.81
RMS_{COP}	3.90e - 02									
$RMS_{Q_{cond}}$	5.65e - 02									
$RMS_{W_{comp}}$	6.29e - 02									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data