AMENDMENTS TO THE CLAIMS

Listing of claims:

1. (Currently Amended) A field effect transistor comprising:

a source;

a drain;

a gate;

at least one carbon nanotube on the gate; and

a dielectric layer that coats the gate; and

at least one carbon nanotube disposed at least partially in said dielectric layer, said a portion of the at least one carbon nanotube, wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer, and wherein the exposed portion is having a portion which is functionalized with at least one indicator molecule that is exposed from the dielectric layer, the at least one carbon nanotube being on the gate for transmitting charge from the at least one indicator molecule to the gate.

- 2. (Original) The field effect transistor of claim 1, wherein the at least one carbon nanotube is a single-walled carbon nanotube.
- 3. (Original) The field effect transistor of claim 1, wherein the dielectric layer comprises silica.
- 4. (Original) The field effect transistor of claim 1, wherein the dielectric layer coats the source and the drain.
- 5. (Original) The field effect transistor of claim 1, wherein the indicator molecule is a DNA oligo.

62406 v2/1789 09703 2

- 6. (Original) The field effect transistor of claim 5, wherein the DNA oligo is specific for a DNA sequence.
- 7. (Original) The field effect transistor of claim 1, wherein the indicator molecule is a polypeptide.
- 8. (Original) The field effect transistor of claim 1, wherein the field effect transistor is a biochem-FET.
- 9. (Currently Amended) A method for making a transistor, comprising:
- (A) providing a field effect transistor comprising a source, a gate, and a drain, wherein at least one nanotube is on the gate;
 - (B) coating the at least one nanotube and the gate with a dielectric layer;
- (C) etching a portion of the at least one nanotubedielectric layer to provide an exposed nanotube portion; and
- (D) functionalizing the exposed nanotube portion so that the at least one carbon nanotube is effective to transmit charge from the functionalized nanotube portion to the gate.
- 10. (Original) The method of claim 9, wherein the transistor is a biochem-FET.
- 11. (Original) The method of claim 9, wherein step (A) further comprises growing the at least one nanotube to provide the at least one nanotube on the gate.
- 12. (Original) The method of claim 9, wherein step (A) further comprises attaching the at least one nanotube to the gate to provide the at least one nanotube on the gate.
- 13. (Original) The method of claim 9, wherein step (B) is accomplished by liquid phase deposition.
- 14. (Original) The method of claim 9, wherein step (B) further comprises coating the source and the drain.

62406 v2/1789.09703

- 15. (Original) The method of claim 9, wherein the dielectric layer comprises silica.
- 16. (Original) The method of claim 9, wherein step (C) is accomplished by HF.
- 17. (Original) The method of claim 9, wherein step (D) is accomplished by chemical functionalization.
- 18. (Original) The method of claim 17, wherein chemical functionalization comprises hydroxylation.
- 19. (Original) The method of claim 9, wherein functionalizing the exposed nanotube portion of step (D) comprises attaching at least one indicator molecule to the exposed nanotube portion.
- 20. (Original) The method of claim 19, wherein the at least one indicator molecule is chemically sensitive and interacts with at least one target molecule.
- 21. (Original) The method of claim 19, wherein the indicator molecule comprises a DNA oligo.
- 22. (Original) The method of claim 21, wherein the DNA oligo is specific for a target molecule comprising a DNA sequence.
- 23. (Original) The method of claim 19, wherein the indicator molecule comprises a polypeptide.
- 24. (Currently Amended) A biochem-FET, comprising:
 - a FET having a gate;
 - at least one carbon nanotube on the gate; and
 - a dielectric layer that coats the gate; and a portion of the
- at least one carbon nanotube <u>disposed at least partially in said dielectric layer, said at</u> least one carbon nanotube having a portion which is functionalized with <u>at least one indicator</u>

62406 v2/1789.09703 4

molecule that is exposed from the dielectric layer, wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer; and

at least one indicator molecule on the exposed portion the at least one carbon nanotube being on the gate for transmitting charge from the at least one indicator molecule to the gate.

- 25. (Original) The biochem-FET of claim 24, wherein the at least one carbon nanotube is a single-walled carbon nanotube.
- 26. (Original) The biochem-FET of claim 24, wherein the dielectric layer comprises silica.
- 27. (Original) The biochem-FET of claim 24, wherein the at least one indicator molecule comprises a DNA oligo.
- 28. (Original) The biochem-FET of claim 27, wherein the DNA oligo is specific for a target molecule comprising a DNA sequence.
- 29. (Original) The biochem-FET of claim 24, wherein the at least one indicator molecule comprises a polypeptide.
- 30. (Currently Amended) A biochem-FET array, comprising:
 - a plurality of biochem-FETs wherein each biochem-FET comprises
 - a FET having a gate;
 - at least one carbon nanotube on the gate;
 - a dielectric layer that coats the gate; and a portion of the
- at least one carbon nanotube; wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer; and

at least one indicator molecule on the exposed portion; and

62406 v2/1789.09703 5

- nanotube having a portion which is functionalized with at least one indicator molecule that is exposed from the dielectric layer, the at least one carbon nanotube being on the gate for transmitting charge from the at least one indicator molecule to the gate.
- 31. (Original) The biochem-FET array of claim 30, wherein the at least one carbon nanotube is a single-walled carbon nanotube.
- 32. (Original) The biochem-FET array of claim 30, wherein the dielectric layer comprises silica.
- 33. (Original) The biochem-FET array of claim 30, wherein the at least one indicator molecule comprises a DNA oligo.
- 34. (Original) The biochem-FET array of claim 33, wherein the DNA oligo is specific for a target molecule comprising a DNA sequence.
- 35. (Original) The biochem-FET array of claim 30, wherein the at least one indicator molecule comprises a polypeptide.
- 36. (Original) The biochem-FET array of claim 30, wherein the substrate comprises silicon.

62406 v2/1789.09703