Dispense sull'analisi delle componenti principali Principal Component Analysis, PCA

Giorgio Marrubini e Camillo Melzi

Indice

			5			
1 Dati multidimensionali						
	1.1	Rappresentazione matriciale e geometrica	7			
	1.2	Trasformazione delle variabili: centratura e standardizzazione	8			
Bi	Bibliografia					

4 INDICE

6 INDICE

Capitolo 1

Dati multidimensionali

1.1 Rappresentazione matriciale e geometrica

Tabella 1.1: Rappresentazione matriciale

Indiv.	X_1	X_2	 X_p
1	x_{11}	x_{12}	 x_{1p}
2	x_{21}	x_{22}	 x_{2p}
m	x_{m1}	x_{m2}	 x_{mp}

1.2 Trasformazione delle variabili: centratura e standardizzazione

Indichiamo con $\bar{x_1}, \ldots, \bar{x_p}$ le medie delle variabili X_1, \ldots, X_p , cioè le p medie delle p colonne della Tabella 1.1, e con $\sigma_1^2, \ldots, \sigma_p^2$ le rispettive varianze. Il vettore $\bar{x} = (\bar{x_1}, \ldots, \bar{x_p})$ viene chiamato **baricentro**.

Centratura: semplice traslazione del baricentro nell'origine

$$x'_{ij} = x_{ij} - \bar{x_j} \tag{1.1}$$

- non perdo informazione sulla distanza tra i punti (la geometria della nuvola di punti rimane invariata)
- perdo solo informazione sul baricentro
- semplifica formule e conti (da ora in poi useremo sempre dati centrati)

Standardizzazione: questa trasformazione porta ogni variabile ad avere varianza 1 (in generale questa trasformazione viene fatta insieme alla centratura)

$$x'_{ij} = \frac{x_{ij} - \bar{x_j}}{\sigma_j} \tag{1.2}$$

- questa trasformazione rende le variabili degli scalari (numeri puri)
- questa trasformazione è necessaria quando si vogliono confrontare variabili con differenti unità di misura (le variabili devono essere omogenee per essere confrontabili)
- tutte le variabili hanno lo stesso "peso"
- cambia la distanza (la geometria) tra i punti. E' una dilatazione o contrazione.

Si veda la seguente figura per una rappresentazione grafica di dati centarti e scalati per una matrice di dati di 2 variabili

0 0