Problem Sets

D. Zack Garza

January 24, 2020

Contents

2	1.3*	:																													1
	1.2	b			•		•	•	 •			•	•				•	•			•		•	•	•	•			•		1
	1.1	a																													1
1	1.1																														1

1 1.1

1.1 a

If $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} for which $\mu \in [\lambda]$. Prove that $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M and that M is the direct sum of finitely many such submodules.

1.2 b

Deduce that the weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 1.3*

Show that $M(\lambda)$ has the following property: for any $M \in \mathcal{O}$,

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda), M) = \operatorname{Hom}_{U(\mathfrak{g})}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_{\lambda}, M\right) \cong \operatorname{Hom}_{U(\mathfrak{b})}\left(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}M\right),$$

where $\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}}$ is the restriction functor.

Hint: use the universal mapping property of tensor products.

Relevant information (?):

 $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$ where $\mathfrak{b} \leq \mathfrak{g}$ is a fixed Borel subalgebra corresponding to a choice of positive roots, and C_{λ} is the 1-dimensional \mathfrak{b} -module defined for any $\lambda \in \mathfrak{h}^{\vee}$ by the fact that $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$ and thus $\mathfrak{n} \curvearrowright \mathfrak{h}$ can be taken to be a trivial action.

The induction functor is given by $\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}(\,\cdot\,) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\,\cdot\,).$ The restriction functor is given by $\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}(\,\cdot\,) = ?$