lopological Preliminaries:
Defination: Acallection A family T of subsect of a set X is Called a topology in X if T
Contains the void set of and set X, the Union of every offe of its
Subfamilies, and the intersection of every one of its finite subfamilies.
The pair (X, Y) is called a topological space.
> X is called the topological space (where Y is understood)
The X is called the topological space (where Y is understood) A set X for which the topological space Y has been specified is called (topological, space)
(1) -d
The almost of any Subcontection of the
(2) The union of the elements of any finite subcollection of Misin M.
* Topological space is an ordered pair (X, Y) [(Consistin of set X) and (a topology on set X)]ie Y (X, Y) where Yis defined on set (X)
If x is a topological space with topology ? Using this we say that: Subset of (x) = U We say that if U Belongs to Collection of P Subset of X: "U" open ruts. Such that & and X are Both open
T= { \$\phi_{\{1\}}\{1\}_{\}}\{\}\\\\\\\\\\\\\\\\\\
opensets
(r-) of (1) 126 21.213771 co
(X 2) Topological space = \$1.24=11
Discrete topology: If xis a set :-> X = {1,2,3} = Entire set
Discrete topology: If xis a set :- 7 X = {1,2,3} = Entire set Let set x = {a, 2,63} + then collection Let set x = {a, 2,63} + then collection Discrete topology(Y) X is a topology fing at that belongs to Y is an open set ie \$\phi_{\{1\}_{\}_{\}_{\}_{\}_{\}_{\}_{\}_{\}_{\}_{
In this topology (7) of all subsets of Inthis topology thay at the
Discrete Ly 2) - 7 View plant an oben set le bisilista
= { \$, }as, { bs, }es on x; Similarly: Trival topology: (Indiscrete)
c = c = c = c
[Collection Consisting of Xap
$\{a,b,c\}$ $\{a,b,c\}$ $\{a,b,c\}$