Экономический факультет. Заочное отделение. Задачи для тренировки (весна 2009)

1 Подсчет элементарных вероятностей

- 1. На игральной кости может выпасть от 1 до 12 очков с равной вероятностью. Пусть X_1 и X_2 результаты двух независимых бросаний кости. Найти $P(X_1>X_2)$.
- 2. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Пирамидку бросают 7 раз. С какой вероятностью единица выпадет ровно трижды ?
- 3. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Пирамидку бросают 9 раз. С какой вероятностью единица выпадет ровно пять раз ?
- 4. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Пирамидку бросают 6 раз. С какой вероятностью единица и двойка выпадут каждая по 3 раза?

2 Условные вероятности и независимость

- 5. На игральной кости (икосаэдре) может выпасть от 1 до 20 очков с равной вероятностью. Пусть X_1 и X_2 результаты двух независимых бросаний кости, $S = X_1 + X_2$. Рассмотрим события $A = \{S \text{ делится на 3}\}$ и $B = \{S < 4\}$. Найти $P\{A|B\}$.
- 6. На игральной кости (додекаэдре) может выпасть от 1 до 12 очков с равной вероятностью. Пусть X_1 и X_2 результаты двух независимых бросаний кости, $S=X_1+X_2$. Рассмотрим события $A=\{S$ делится на $7\}$ и $B=\{S>20\}$. Найти $P\{A|B\}$.
- 7. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Бросают независимо друг от друга пирамидку и обычный кубик. Найти вероятность того, что на пирамидке выпадет нечетное число очков при условии, что общее число очков не превзойдет 4.
- 8. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Играют в следующую игру Сначала бросают пирамидку, а затем бросают обычный кубик столько раз, сколько очков выпало на пирамидке. С какой вероятностью на кубике при всех бросках выпадет шестерка?

3 Случайные величины

- 9. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Случайная величина S равна сумме очков, выпавших при двух независимых бросаниях. Записать распределение S в табличном виде.
- 10. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Случайная величина S равна сумме очков, выпавших при шести независимых бросаниях. Найти ES и DS.
- 11. На игральном октаэдре может выпасть от 1 до 8 очков с равной вероятностью. Случайная величина S равна сумме очков, выпавших при шести независимых бросаниях. Найти DS.
- 12. На игральной кости может выпасть от 1 до 12 очков с равной вероятностью. Пусть X_1 и X_2 результаты двух независимых бросаний кости. Найти $D(X_1-X_2)$.
- 13. На игральной пирамидке может выпасть от 1 до 4 очков с равной вероятностью. Бросают независимо друг от друга пирамидку и обычный кубик. Случайная величина R равна разности выпавших очков. Найти DR.
- 14. Страховая премия (стоимость полиса) для недельного тура по Европе составляет 5 долларов. Вероятность несчастного случая 0.0001. Сумма, выплачиваемая туристу при несчастном случае 30 000 долларов. Найти математическое ожидание и дисперсию дохода страховой компании от продажи одного страхового полиса.

4 Стандартные распределения

- 15. Случайная величина Y имеет распределение Пуассона, EY=2. Найдите вероятность P(Y=1).
- 16. Случайные величины X_1, X_2, X_3 независимы и имеют распределение Бернулли с параметром p=1/4. С какой вероятностью будет $X_1+X_2+X_3=3$?
- 17. Случайная величина Y имеет биномиальное распределение B(n,p) с параметрами n=3, p=1/2. Рассматривая Y как число успехов в серии трех испытаний, найдите вероятность P(Y=2).
- 18. Время восстановления зрения у больных после операции по замене хрусталика является показательно распределенной случайной величиной с математическим ожиданием 3 дня. Какова вероятность, что у всех трех больных, находящихся в одной палате, зрение восстановится за пер-

вые три дня?

- 19. Случайная величина Z имеет стандартное нормальное распределение. Найдите вероятность P(|Z| < 1).
- 20. Случайная величина U имеет равномерное распределение на неизвестном интервале [a,b]. При этом математическое ожидание EU=1.5 и дисперсия DU=0.75. Найдите a и b.

5 Закон больших чисел и центральная предельная теорема

- 21. Пусть величины X_1, \ldots, X_n независимы и имеют показательное распределение с параметром a=2, . Каков приближенный вид распределения случайной величины $S_n=X_1+\cdots+X_n$, если n=100 ? Какая из вероятностей больше: $P(S_n<1.1\cdot n)$ или $P(S_n>1.1\cdot n)$?
- 22. В футбольном турнире за победу в матче начисляется 3 очка, за ничью 1 очко, за поражение ноль. Команда "Севзапдорморстрой" должна провести в турнире 30 матчей, результаты которых независимы, а вероятности победы и поражения в любом матче равны соответственно 0.3 и 0.2. С какой вероятностью эта команда наберет более половины очков от максимально возможного результата?
- 23. Ежедневное число автомобильных аварий в Ерюпинске пуассоновская случайная величина, причем в день в среднем происходит 1 авария. Начальник Ерюпинской ГИБДД хочет уехать в отпуск так, чтобы в его отсутствие с вероятностью 0.9 произошло не более 30 аварий. На сколько дней он может уехать?

6 Элементы математической статистики

24. Построить доверительный интервал для математического ожидания нормальной выборки

$$X_1=6.8;\ X_2=6.4;\ X_3=7.6;\ X_4=5.4;\ X_5=8.2;$$

$$X_6 = 5.2; \ X_7 = 4.2; \ X_8 = 8.4; \ X_9 = 6.8; \ X_{10} = 10.4.$$

с уровнем доверительной вероятности $0.95\,\mathrm{np}$ и известной дисперсии, равной 4.4.

25. При выборочной проверке партии кинескопов было выявлено семь штук с недостаточной яркостью изображения из проверенных N. Построить доверительный интервал уровня доверительной вероятности 0.95

для доли кинескопов с этим дефектом во всей партии, если а) N=40 или б) N=120.

26. Проверить, соответствуют ли данные о еженедельных потерях рабочего времени (невыходах на работу) закону Пуассона с параметром a=0.5. Принять уровень значимости $\alpha=0.05$. При расчетах закона Пуассона можно считать, что $e^{0.5}=1.65$.

Число невыходов за неделю	0	1	2	>2
Число наблюдений (недель)	20	8	1	1

27. Проверить, имеется ли зависимость между образованием и доходами по следующим данным социологического обследования. Уровень значимости 0.95.

Образование	Среднее	Ср.техническое	Высшее
Низкая ЗПЛ	61	40	50
Высокая ЗПЛ	18	42	85

28. Построить точечные оценки обоих параметров нормального закона и доверительный интервал (уровень доверительной вероятности 0.95) для математического ожидания по следующей выборке

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}
4.2	4.8	4.4	4.1	5.1	5.3	4.6	5	4	3