CHAPTER 4

COUNTING AND THE PIGEONHOLE PRINCIPLE

HOMEWORK

- Again, all homework is from the Exercises
 - No problems are from the Review Exercises
- Section 4.1 (p. 170), #5, 17-20, 28-30, 34-37, 42-46, 60, 62
- Section 4.2 (p. 182), #10-14, 25-29, 31-34, 58-62
- Section 4.4 (p. 194), #11-17, 30-33
- Section 4.5 (p. 204), #1-5, 22-26, 42-45
- Section 4.6 (p. 210), #1-3, 7-9, 15-17, 22-24
- Section 4.7 (p. 215), #1, 3-5, 10-11
- Section 4.8 (p. 219), #I-I0

COUNTING

- Counting can mean finding the number of things in a set
 - The set can be a regular set containing generic objects
 - Or it can contain objects constructed using a rule
 - For example, it can be the power set of a given set
- · Counting can also mean finding the number of ways something can happen
 - For example, given an 8-bit byte, how many different 0,1 patterns are there?

COUNTING TECHNIQUES

- The idea of counting is to use shortcuts to count things
- For example
 - Suppose you have 20 rows of objects
 - There are 29 objects in a row
 - Someone asks how many objects there are in total
 - You can count the 580 objects: 1, 2, 3, ...
 - You will soon tire of this
 - We seek shortcuts

THERE'S COUNTING AND THEN THERE'S COUNTING

- When we say "counting", we don't mean listing all the objects and counting them
- We mean finding a pattern and using it to tell the number of objects
- This chapter then, will be a search for patterns that "count" the number of objects
- The pattern for the example is this
 - We notice that all rows contain the same number of object (29 objects)
 - We also notice that there are 20 rows
 - We also know we can multiply 29 x 20 to get the total number of objects
 - This is the kind of pattern we are looking for

PATTERNS

- So, in this chapter
 - -BE ON THE LOOKOUT FOR PATTERNS
- Every problem in the chapter will use some kind of pattern
- It's your job to find the pattern
- Keep this in mind as we read the chapter

ANOTHER EXAMPLE

- How many three-letter strings can be made from the letters A, B, C?
 - Sometimes people say "word" instead of "string"
 - Be careful! A "word" may not be an actual word!
- You can start to count them:
 - AAA, BBB, ABA, CAA, ...
 - This gets tedious after a while
- You start over, listing the strings in order
- Your new list might look something like this
 - AAA, AAB, AAC, ABA, ABB, ABC, ACA, ACB, ACC, ...
 - The list is getting too long, and you still haven't listed all strings

FINDING THAT PATTERN

- · We look at the changing letters in the string
 - We look at individual positions
 - We notice that there are three letters for the first position, three for the second, and three for the third
 - We see that there are two-letter strings on the left, followed by a single letter
- This then gives us the pattern
 - The number of three-letter strings is 3 x the number of two-letter strings
- We notice that the two-letter strings follow the same pattern:
 - A two-letter string is a single letter followed by another single letter
 - So the number of two letter strings must be 3 x the number of one-letter strings
 - There are 3 single letters

THE PATTERN

- Putting this all together, we discover that
 - The number of three-letter strings is 3x3x3, or 27
- You probably have known this counting technique for a long time

THE PATTERN-A TREE APPROACH

- We again try to find a pattern in how we list the strings
- One idea is to draw a tree
- Notes about trees:
 - Trees are "sideways"
 - They can also be upside down
 - The root (a real technical word) is on the left
 - The branches (another real technical word!) spread out to the right
 - The leaves (yet another real technical word) are the ends
- The point of drawing a tree is to count the number of leaves

THE TREE

USING THAT TREE

- Remember, the point of the tree was to determine the number of three-letter strings
- From the tree we can see that there are $3 \times 3 \times 3$, or 27three-letter strings
- Probability students will probably recognize trees
- I have often used trees to sort out difficult problems
- You should get comfortable with them too
- Can we use these ideas to answer this question:
 - What if we don't allow duplicate letters?

A FIRST KEY SHORTCUT-THE MULTIPLICATION PRINCIPLE

- Both of these problems use what is called the Multiplication Principle
- If an activity can be broken down into parts, and
 - The first part can be done in n₁ ways, and
 - The second part can be done in n₂ ways, and
 - The third part can be done in n₃ ways, and, ..., until
 - The kth part can be done in n_k ways
- Then
 - The activity can be done in $n_1 n_2 n_3 ... n_k$ ways

A SECOND KEY SHORTCUT-THE ADDITION PRINCIPLE

- Suppose there are pairwise disjoint sets X₁, X₂, ..., X_k
- Suppose X_i has n_i items
- Then
- The number of elements that can be selected from X_1 or X_2 or ... or X_n is $n_1 + n_2 + ... + n_k$
- It's important that the sets be pairwise disjoint
- Notice that $n_1 + n_2 + ... + n_k$ is just the cardinality of the union of the sets

AN EXAMPLE OF THE ADDITION PRINCIPLE

- A die is shaped like a cube or a box
- It has the numbers I to 6 on it
- We will roll two dice
 - Dice is the plural of die
- Example I: How many ways we can get a 2 or a 3 or a 4 using two dice?

ANOTHER EXAMPLE OF THE ADDITION PRINCIPLE

- It's important that the sets be pairwise disjoint
- Example 2: How many ways we can get an even total or a total smaller than 6 using a pair of dice?
- If the sets are not pairwise disjoint, we will count some things multiple times
- We just subtract out all of those extra numbers
- The usual way of writing this for two sets X an Y is

$$| X \cup Y| = |X| + |Y| - |X \cap Y|$$

• The formula is much harder for more than two sets

HOMEWORK

- You should now be able to complete the homework from Section 4.1
- Section 4.1 (p. 170), #5, 17-20, 28-30, 34-37, 42-46, 60, 62