Epreuve écrite

Examen de fin d'études secondaires 2014			
---	--	--	--

Section: B et C

Branche: Chimie

	Numéro	d'ordre	du	candidat	
_					

(QC = question de cours [20] ; ANN = application non numérique [20] ; AN = application numérique [20])

I. Styrène

20 pts (QC15; ANN5)

1. La molécule de styrène (phényléthène) C₆H₅CH=CH₂ est constituée d'un cycle à 6 atomes de carbone. Une chaîne aliphatique insaturée à 2 atomes de carbone est fixée sur le cycle.

Pour les 2 atomes de carbone de la chaîne aliphatique insaturée :

a. Indiquer leur mode d'hybridation ainsi que les deux types de liaisons formées.

QC2

b. Montrer à l'aide d'un schéma annoté la promotion de (des) électron(s).

QC1

- c. Représenter les nuages hybrides ainsi que leur recouvrement et indiquer les caractéristiques géométriques qui en découlent.
- 2. En chauffant du styrène liquide en présence de peroxyde de dibenzoyle, le liquide devient de plus en plus visqueux et finit par se transformer en solide.
- a. Dresser l'équation globale de cette réaction.

QC1

b. Expliquer le rôle joué par le peroxyde de dibenzoyle dans la réaction.

QC2

c. Dresser les équations des différentes étapes du mécanisme réactionnel.

QC3

d. Donner le nom du mécanisme réactionnel.

QC1

- 3. En ajoutant une solution de dibrome dans le tétrachlorométhane à du styrène liquide, on observe la décoloration immédiate du dibrome.
- a. Dresser l'équation et indiquer le type de cette réaction.

ANN₂

 Expliquer brièvement pourquoi le cycle à 6 atomes de carbone du styrène n'est pas affecté par la réaction avec le dibrome.

ANN3

II. Composés oxygénés

18 pts (QC5; ANN9; AN4)

- 1. Comparer les propriétés physiques des alcools, aldéhydes/cétones et des acides carboxyliques. QC5
- Considérons un composé <u>aliphatique chiral</u> de formule brute C₄H₁₀O.
- a. Dresser sa formule semi-développée et indiquer son nom.

ANN2

- Dresser les formules spatiales des deux énantiomères et indiquer leur configuration en nomenclature
 CIP.

 ANN2
- c. Représenter l'énantiomère R en projection de Newman selon l'axe $C_1 \rightarrow C_2$ dans la conformation la plus stable.

 ANN1

Examen de fin d'études secondaires 2014

Section: B et C

Branche: Chimie

Numéro	d'ordi	e du c	candi	dat
		Cuu	- allul	uaı

- 3. Au cours d'une réaction de déshydratation <u>intramoléculaire</u>, 50 mL de butan-1-ol libèrent 8,5 L de but-1-ène gazeux aux c.n.t.p.
- a. Dresser l'équation de la réaction et donner le type de réaction.

ANN₂

b. Calculer le rendement de la réaction sachant que le butan-1-ol a une masse volumique de 0,81 g·cm⁻³.

AN4

c. En réalisant la déshydratation <u>intramoléculaire</u> avec le butan-2-ol, on obtient un produit de réaction qui présente une isomérie de configuration. Dresser les formules spatiales des deux isomères de configuration et indiquer leurs noms.
ANN2

III. Solution d'ammoniac

11 pts (ANN2; AN9)

On dispose d'une solution d'ammoniac de concentration $c_0 = 0,05 \text{ mol} \cdot L^{-1}$. Son pH vaut 10,95.

a. Calculer pour l'ammoniac le degré de dissociation α sans utiliser K_b .

AN₂

b. Comment évolue α si on dilue la solution d'un facteur 1000 ? Justifier brièvement !

ANN₂

- c. Calculer le pH de la solution obtenue par addition de 1 mL d'une solution d'acide chlorhydrique à 37 % en masse ($\rho = 1,19 \text{ g}\cdot\text{cm}^{-3}$) à 1 L d'une solution 0,05 M d'ammoniac.
- d. Quelle masse de chlorure d'ammonium faut-il dissoudre dans 100 cm³ de la solution d'ammoniac 0,05 M pour avoir une solution de pH 8 ?
 AN3

Examen de fin d'études secondaires 2014

Section: B et C

Branche: Chimie

Num	éro	d'	ordr	e du	can	dida	at
NIII	ero	ď	ordr	e du	can	ala	d

IV. Titrage

11 pts (ANN4; AN7)

Afin de déterminer la concentration d'une solution de triéthylamine, on réalise un titrage de 10 cm³ de la solution par HCl 0,5 M. Le graphique représente la variation du pH en fonction du volume de HCl ajouté.

a. Ecrire l'équation de protolyse.

ANN1

- b. Déterminer graphiquement le point d'équivalence et calculer la concentration de la solution de triéthylamine.

 ANN1+AN1
- c. Vérifier par le calcul le pH à l'équivalence.

AN3

d. Vérifier par le calcul le pH initial.

AN₃

e. En l'absence de pH-mètre on aurait pu effectuer ce dosage en utilisant un indicateur coloré. Parmi les trois indicateurs, lequel choisiriez-vous ? Justifier la réponse ! ANN2

Indicateur coloré	рКа
vert de bromocrésol	4,7
bleu de bromothymol	7,1
phénolphtaléine	9,4

TABLEAU PERIODIQUE DES ELEMENTS

	=		He		01	Ne		0	Ar		m	ż		ທັ	×e		7	Ru							
	<u></u>	4,0	I	7	20,2	Z	10	39,9	4	9	83,8	_			_	54	(222)		88			\dashv			
					19,0	ш	6	35,5	ū	17	79,9	፵	35	126,9	-	53	(210)	At	85						
cipaux					16,0	0	8	32,1	S	16	0,67	Se	34	127,6	Te	52	(508)	9 0	84						
groupes principaux	>				14,0	Z	7	31,0	۵	15	74,9	As	33	121,8	Sb	51	209,0	<u></u>	83						
grou	2				12,0	O	9	28,1	S	14	72,6	ge	32	118,7	Sn	50	207,2	Pb	82						
	≡				10,8	8	2	27,0	A	13	2'69	Ва	31	114,8	In	49	204,4	F	81						
										=	65,4	Zu	30	112,4	2	48	200,6	Hg	80						
										_	63,5	C	29	107,9	Ag	47	197,0	Au	79						
											58,7	Z	28	106,4	Pd	46	165,1	굽	78	(281)	Ds	110			
								aires		III/	58,9	ပိ	27	102,9	Rh	45	192,2	i	77	(268)	Σţ	109			
								groupes secondaires			55,8	P	26	101,1	Ru	44	190,2	Os	9/	(569)	HS	108			
								groupes			54,9	Σ	25	(26)	٦ _C	43	186,2	Re	75	(564)	Bh	107			
													5	52,0	Ö	24	62,6	M	42	183,9	3	74	(592)	Sg	106
										>	50,9	>	23	92,9	q	41	180,9	La	73	(262)	Dp	105			
												≥	47,9	F	22	91,2	Zr	40	178,5	Ŧ	72	(261)	Rf	104	
xnı	_	_								≡	45,0	Sc	21	88,9	>	39	138,9	P	57	227,0	Ac	89			
groupes principaux	=				0.6	Be	4	24.3	Mg	12	40,1	Ca	20	87,6	Ş	38	137,3	Ba	56	226,0	Ra	88			
groupes	-	1.0	I		6.9		6	3.0	•	11	39,1	¥	19	85,5	Rb	37	132,9	CS	55	(223)	Ŧ	87			
0,	_	Ì	-	1		^			m			4			2			9			7				

0,0	<u>ت</u>		(9)		_	
175	P	71	(25		103	
173,0	Y p		(259)	2	102	
168,9	TH	69	(258)	Md	101	
167,3	Щ	89		Fm		
164,9	H	29	(254)	Es	66	
32,5	Dy	~		Ç	98	
158,9	Gd Tb	65	(247)	B¥	26	
157,3	P _D	64		CH	96	
152,0	Eu	63		Am	95	
150,4	Sm	62	(244)	Pu	94	
(145)	Pm	61	237,0	dN	93	
144,2	PN	09	238,0	-	92	
140,9	P	59	231,0	Pa	91	
140,1	Ce	58	232,0	¥	06	
	lanthanides			actinides		

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO ₃	ClO ₃	an. chlorate	-1,00
ac. trichloroéthanoïque	CCI ₃ COOH	CCl ₃ COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	[TI(H ₂ O) ₆] ³⁺	[TI(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO ⁻	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl ₂ COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ ⁻	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH ₂ FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH ₂ ClCOOH	CH₂CICOO⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH ₂ BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	[V(H ₂ O) ₆] ³⁺	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN ⁻	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO-	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH ₃ CH ₂ COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH ₃ OH ⁺	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	$CO_2 + H_2O$	HCO ₃	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ ⁻	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	ClO	an. hypochlorite	7,55
cat. hexaqua cadmium	[Cd(H ₂ O) ₆] ²⁺	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	$[Zn(H_2O)_6]^{2+}$	[Zn(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	$(C_2H_5)_3NH^+$	$(C_2H_5)_3N$	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	$(C_2H_5)_2NH$	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)