

Lecture 10

- Three-Phase Circuits

Single phase vs. Polyphase

- Single-phase power supply
 - For example, two 120V sources with the same phase are connected in series.
 - This allows for appliances to use either 120 or 240V
- Circuits that operate with multiple sources, at the same frequency but *at different phases* are called <u>polyphase</u>.

Outline--Three-Phase Circuits

- Balanced Three-Phase System
 - Balanced sources
 - Balanced loads ←
- Circuit analysis
 - Phase voltage/current
 - Line voltage/current

Balanced Three-Phase Sources

Connecting the Sources

- Three phase voltage sources can be connected by either four or three wire configurations.
 - Four-wire system accomplished using a Y(Wye) connected source.
 - Three-wire configuration accomplished by Delta connected source.

$$\dot{\mathbf{V}}_{an} = V_p \angle 0^{\circ}$$

$$\dot{\mathbf{V}}_{bn} = V_p \angle -120^{\circ}$$

$$\dot{\mathbf{V}}_{cn} = V_p \angle -240^{\circ} = V_p \angle +120^{\circ}$$

$$\dot{V}_{ab} = U_p \angle 0^{\circ}$$

$$\dot{V}_{bc} = U_p \angle -125^{\circ}$$

$$\dot{V}_{ca} = V_p \angle -245^{\circ} = V_p \angle +625^{\circ}$$

Balanced Three-Phase Sources

- Balanced phase voltage are equal in magnitude and are out of phase with each other by 120deg
- It's easy to know $\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} = 0$
- Two sequences for the phases:

Balanced Loads

- A <u>balanced</u> load means the same impedance for each load.
- -- Impedance are equal in magnitude and in phase
- They may also be connected in either Delta or wye
 - For a balanced wye connected load: $Z_1 = Z_2 = Z_3 = Z_Y$
 - For a balanced delta connected load: $Z_a = Z_b = Z_c = Z_\Lambda$

The load impedance per phase for the above configurations can be interchanged.

Source-Load configurations

Source-Load Configurations

Source-Load Configurations (optional)

Load Phase Currents

 \mathbf{I}_a , \mathbf{I}_b , \mathbf{I}_c (same as line currents \mathbf{I}_{L_1} , \mathbf{I}_{L_2} , and \mathbf{I}_{L_3})

Load Phase Voltages V_{aN} , V_{bN} , V_{cN}

Delta-Delta

Load Phase Currents

 $\mathbf{I}_{ab}, \mathbf{I}_{bc}, \mathbf{I}_{ca}$

Load Phase Voltages

 V_{ab} , V_{bc} , V_{ca} (same as source voltages if Z_{TL} is negligible)

Balanced Y-Y connection

- The load impedances Z_Y will be assumed to be balanced.
 - This can be the source Z_s , line Z_l and load Z_L together.

$$\mathbf{Z}_Y = \mathbf{Z}_s + \mathbf{Z}_\ell + \mathbf{Z}_L$$

Assume Zn V. minor value.

$$\frac{\dot{I}_{a} = \frac{\dot{V}_{an}}{2\gamma}}{\ddot{I}_{b} = \frac{\dot{V}_{bn}}{2\gamma}}$$

$$\dot{I}_{c} = \frac{\dot{V}_{cn}}{2\gamma}$$

$$\dot{I}_{\alpha} + \dot{I}_{b} + \dot{I}_{c} + \dot{I}_{n} = 0$$

$$0 + \dot{I}_{n} = 0$$

Phase Voltage & Line-to-Line Voltage

Use the positive sequence:

-120°

• The line to line voltages (or just line voltages in short):

$$\vec{V}_{an}$$
 \vec{J}_{a} \vec{J}_{a} $\vec{J}_{a} = \frac{\vec{V}_{an}}{\vec{Z}_{1}}$

Line Currents

Example

Calculate the line currents.

Lecture 11 18

$$S_{IP} = S_{IP}^{CA} = |\hat{L}_{CA}|^{2} \cdot Z_{CA}$$

$$= |\hat{L}_{CA}|^{2} \cdot Z_{L}$$

$$= 7.39^{2} \times (12 + 127)$$

$$S_{3p} = 3 \times S_{1p} = ----$$