# Agglomeration and Green Commercial Development Within Cities

Evan Perry

MEA Conference



March 25, 2022

#### **Preview**

## Research Question

Can agglomeration economies help explain why some neighborhoods have more green commercial buildings than others?

- Theory: Build a model to describe how firms choose (1) where to locate, and (2) whether or not to occupy a green building
- Evidence: Test the primary hypothesis of the model empirically—that neighborhoods dense with workers have disproportionately more green commercial real estate

# Why Green Buildings? Why Their Location?

 Green building: energy-efficiency or sustainability certification that shows it has smaller carbon footprint than otherwise comparable buildings

- 30% of US greenhouse gas emissions are tied to buildings (RFF, 2021)
  - ▶ 18% through electricity consumption
  - ▶ 12% directly from buildings (heating/cooking)

• Location may be an effective way to target green building incentives towards the firms who are least likely to make energy-efficient upgrades on their own

## **Agglomeration Economies**

Why do firms locate in dense urban areas?

- "benefits that come when firms and people locate near one another together in cities and industrial clusters" (Glaeser, 2010)
- Labor pooling, knowledge spillovers, proximity to inputs
- Some firms experience higher agglomeration economies than others (Gaubert, 2018)
- Benefits are driven by the density (proximity) of workers

## **Model Overview**

**Environment** City with many neighborhoods that differ only in their # of workers

Agents Firms choose between neighborhoods and green or brown real estate Developers choose how much green and brown real estate to build

Behavior Profit maximizing, others enter/exit competitively

**Equilibrium** Agents indifferent between where they are and anywhere else Labor market and both segments of the real estate market clear

## **Agents**

#### **Firms**

- Choices: What neighborhood? Occupy green or brown real estate?
- Tradeoffs:  $\uparrow$  Productive Location  $\Rightarrow \uparrow$  Wages,  $\uparrow$  Rents
- Heterogeneity:
  - ▶ Agglomeration economies: Benefits from locating in a dense neighborhood
  - Ecological responsiveness: Benefits from green building
- Assume: High agglomeration benefits more often come with high benefits from green building

## **Agents**

#### **Firms**

- Choices: What neighborhood? Occupy green or brown real estate?
- Tradeoffs:  $\uparrow$  Productive Location  $\Rightarrow \uparrow$  Wages,  $\uparrow$  Rents
- Heterogeneity:
  - ▶ Agglomeration economies: Benefits from locating in a dense neighborhood
  - Ecological responsiveness: Benefits from green building
- Assume: High agglomeration benefits more often come with high benefits from green building

## Developer

- Choices: How much green real estate? How much brown real estate?
- Tradeoffs: Some firms willing to pay more green, but green costs more to build

Figure 1: Example with Two Types of Firms



Figure 1: Example with Two Types of Firms



Figure 1: Example with Two Types of Firms



Worker-dense neighborhoods (with high agglomeration benefits) have a higher proportion of green real estate

#### **Data Overview**

Do worker-dense neighborhoods really have a higher proportion of green real estate?

• Use census tracts (neighborhoods) as unit of analysis

- For each neighborhood, collect data on:
  - Green buildings
  - Workers
  - Demographics

Figure 2: Green Buildings per Capita by State



- Registry of Energy Star Certified Buildings and Plants
- Leadership in Energy and Environmental Design (LEED) Program Database

## **Neighborhood Data**

- Census data from the 2019 American Community Survey (ACS)
- Cellphone data from Safegraph
  - Agglomeration is driven by the density of workers, but how many people are employed in a neighborhood?
  - ▶ Safegraph is a private company that collects GPS data on over 20 million cellphones
  - ▶ Worker population: the number of devices located in the census tract during conventional working hours (7:30am to 5:30pm, Monday through Friday) more than any other census tract over the previous 45 days

Table 1: Summary Statistics

|                                            | Full Sample |        |         | $\geq 1$ Green Building |        | No Green Buildings |        |
|--------------------------------------------|-------------|--------|---------|-------------------------|--------|--------------------|--------|
|                                            | Mean        | Median | StnDev  | Mean                    | Median | Mean               | Median |
| Green Commercial Real Estate               |             |        |         |                         |        |                    |        |
| Green Comm. Buildings                      | 1           | 0      | 3       | 3                       | 1      | 0                  | 0      |
| Green Comm. Real Estate (ft <sup>2</sup> ) | 131,266     | 0      | 893,299 | 422,467                 | 96,786 | 0                  | 0      |
| Cellphone Data                             |             |        |         |                         |        |                    |        |
| Worker Population                          | 3,042       | 2,130  | 3,135   | 4,813                   | 3,662  | 2,243              | 1,734  |
| Worker Density (workers/mi <sup>2</sup> )  | 6,029       | 3,069  | 13,089  | 8,385                   | 3,965  | 4,967              | 2,723  |
| Residents                                  |             |        |         |                         |        |                    |        |
| Residential Population                     | 4,248       | 4,040  | 1,931   | 4,546                   | 4,334  | 4,113              | 3,904  |
| Median Household Income                    | 67,913      | 60,136 | 36,238  | 72,400                  | 64,495 | 65,894             | 58,054 |
| Median Age of Residents                    | 38          | 37     | 7       | 37                      | 37     | 38                 | 37     |
| Proportion White                           | 0.619       | 0.689  | 0.265   | 0.654                   | 0.710  | 0.603              | 0.674  |
| Proportion Black                           | 0.191       | 0.078  | 0.254   | 0.156                   | 0.071  | 0.207              | 0.082  |
| No. of Observations                        | 35,853      |        |         | 11, 140                 |        | 24,713             |        |

## **Empirical Model**

For Neighborhood i in City k,

$$\log(GRE_{ik}) = \alpha + \beta \log(N_{ik}) + \gamma \mathbf{X}_{ik} + \sum_{k=1}^{K} \left[ \delta_k \log\left(\frac{N_{ik}}{\ell_{ik}}\right) c_k \right] + \varepsilon_{ik}$$
 (1)

GRE Green Real Estate (ft.<sup>2</sup>)

N Worker Population

X Vector of Neighborhood Covariates

 $rac{N}{\ell}$  Worker Density

 $c_k$  Dummy variable for City k

If the predicted relationships holds, then  $\delta_k > 0$ .

Table 2: Estimation of Equation (1)

|                                                           | Log [ Green Real Estate $(ft^2)$ ] |                         |                         |                         |  |  |
|-----------------------------------------------------------|------------------------------------|-------------------------|-------------------------|-------------------------|--|--|
|                                                           | ≥ 20 Tra                           | cts per City            | ≥ 40 Tracts per City    |                         |  |  |
|                                                           | (1)                                | (2)                     | (3)                     | (4)                     |  |  |
| Log Worker Population                                     | 0.961**<br>(0.028)                 | 0.941**<br>(0.033)      | 0.972**<br>(0.030)      | 0.947**<br>(0.035)      |  |  |
| Log Median Resident Age                                   |                                    | -1.500**<br>(0.136)     |                         | -1.552**<br>(0.145)     |  |  |
| Log Income per Capita                                     |                                    | 0.898**<br>(0.073)      |                         | 0.935**<br>(0.077)      |  |  |
| Log Worker Density – City                                 | ✓                                  | ✓                       | ✓                       | ✓                       |  |  |
| Observations<br>R <sup>2</sup><br>Adjusted R <sup>2</sup> | 9,495<br>0.191<br>0.183            | 8,064<br>0.229<br>0.220 | 8,550<br>0.186<br>0.180 | 7,271<br>0.227<br>0.221 |  |  |

Notes:

<sup>\*\*</sup>Sig. at the 1% level; \*Sign. at the 5% level

Figure 3: Distribution of  $\widehat{\delta}$  in Cities with  $\geq$  20 Tracts



Figure 4: Distribution of  $\widehat{\delta}$  in Cities with  $\geq$  40 Tracts



## **Takeaways & Policy Implications**

• In the model, firms that prefer to "go green" also prefer to locate in worker-dense neighborhoods

 Empirical results fit with this finding: low worker-density neighborhoods have a smaller proportions of green commercial real estate

 Suggests public policy supporting green commercial development locally may be more effective when targeted towards low worker-density areas

## References

- **Allcott, Hunt and Michael Greenstone**, "Is there an energy efficiency gap?," *Journal of Economic Perspectives*, 2012, *26* (1), 3–28.
- **Bansal, Pratima and Kendall Roth**, "Why companies go green: A model of ecological responsiveness," *Academy of Management Journal*, 2000, 43 (4), 717–736.
- **Braun, Thomas and Sven Bienert**, "Is green (still) a matter of prime? Stylized facts about the location of commercial green buildings," *Journal of Sustainable Real Estate*, 2015, 7 (1), 160–182.
- **Eichholtz, Piet, Nils Kok, and John M Quigley**, "Ecological responsiveness and corporate real estate," *Business & Society*, 2016, *55* (3), 330–360.
- **Gaubert, Cecile**, "Firm sorting and agglomeration," *American Economic Review*, 2018, *108* (11), 3117–53.
- Glaeser, Edward L, Agglomeration economics, University of Chicago Press, 2010.
- RFF, "US carbon emissions at a glance," Federal Climate Policy Toolkit, 2021.

#### Firm's Problem

$$\max_{L,R,d,N} \{\pi(L,R,d,N)\} = \max_{L,R,d,N} \left\{ A L^{\beta} R^{\gamma} \bar{K}^{1-\beta-\gamma} - WL - p_d R - k_{ij} \right\}$$

- L: Labor
- R: Real Estate
- K: Capital
- W: Market Wage
- p<sub>d</sub>: Price of Real Estate with design d
- d: Green or Brown,  $d \in \{g, b\}$

where 
$$A = A \psi(\alpha_i, N) \lambda(d, \theta_i)$$

## **Developer's Problem**

$$\max_{h_g,h_b,\ell_g,\ell_b} p_g h_g \ell_g - c_g h_g^\delta \ell_g + p_b h_b \ell_b - c_b h_b^\delta \ell_b - p_\ell \bar{\ell} \quad \text{ s.t. } \quad \bar{\ell} = \ell_g + \ell_b$$

- h: Height
- ℓ: Land
- c: Cost parameter
- p: Price of Real Estate

## **Energy Star Certified Building Classifications**



Percentage of Energy Star Buildings

## **LEED Certified Building Classifications**



Table 3: Estimation with Log + 1

|                             | Log [ Green Real Estate ( ${ m ft}^2)$ $+1$ ] |                     |                      |                     |  |  |  |
|-----------------------------|-----------------------------------------------|---------------------|----------------------|---------------------|--|--|--|
|                             | ≥ 20 Tra                                      | cts per City        | ≥ 40 Tracts per City |                     |  |  |  |
|                             | (1)                                           | (2)                 | (3)                  | (4)                 |  |  |  |
| Log Worker Population       | 3.221**<br>(0.038)                            | 3.138**<br>(0.045)  | 3.225**<br>(0.039)   | 3.138**<br>(0.046)  |  |  |  |
| Log Median Resident Age     |                                               | -2.501**<br>(0.198) |                      | -2.634**<br>(0.205) |  |  |  |
| Log Income per Capita       |                                               | 2.221**<br>(0.113)  |                      | 2.312**<br>(0.115)  |  |  |  |
| :                           |                                               | :                   |                      | :                   |  |  |  |
| Log Worker Density – City   | $\checkmark$                                  | ✓                   | $\checkmark$         | ✓                   |  |  |  |
| Observations R <sup>2</sup> | 33,691<br>0.262                               | 28,100<br>0.296     | 31,714<br>0.259      | 26,376<br>0.295     |  |  |  |
| Adjusted R <sup>2</sup>     | 0.258                                         | 0.291               | 0.256                | 0.292               |  |  |  |

Notes:

\*\*Sig. at the 1% level; \*Sig. at the 5% level

## **Estimation Results**



