

PRESETTABLE DIVIDE-BY-N COUNTER

- MEDIUM SPEED OPERATION 10 MHz (Typ.) at V_{DD} V_{SS}= 10V
- FULLY STATIC OPERATION
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V. 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4018BEY	
SOP	HCF4018BM1	HCF4018M013TR

DESCRIPTION

The HCF4018B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4018B consist of 5 Johnson counter stages, buffered Q outputs from each stage, and counter preset control gating. CLOCK, RESET, DATA, PRESET ENABLE, and 5 individual JAM inputs are provided. Divide by 10, 8, 6, 4 or 2 counter configuration can be implemented by feeding the Q5, Q4, Q3, Q2, Q1 signals, respectively, back to the data input.

Divide-by-9, 7, 5, or 3 counter configurations can be implemented by the use of a HCF4011B gate package to properly gate the feedback connection to the DATA input. Divide-by-functions greater than 10 can be achieved by use of multiple HCF4018B units. The counter is advanced one count at the positive clock signalstransition. Schmitt trigger action on the clock line permits unlimited clock rise and fall times. A high RESET signal clears the counter to an all-zero condition. A high PRESENT-ENABLE signal allows information on the JAM inputs to preset the counter.

Anti-lock gating is provided to assure the proper counting sequence.

PIN CONNECTION

September 2001 1/11

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
2, 3, 7, 9, 12	JAM1 to JAM5	Jam Inputs
1	DATA	Data Input
4, 5, 6, 11, 13	$\overline{Q1}$ to $\overline{Q5}$	Buffered Outputs
15	RESET	Reset Input
14	CLOCK	Clock Input
10	PRESET ENABLE	Preset Enable Input
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol Pa	Parameter	Vı	v _o		V _{DD}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I_{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mΑ
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		ША
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
CI	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

 $\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25 ^{\circ}\text{C}, \ \ C_{L} = 50 \text{pF}, \ R_{L} = 200 \text{K}\Omega, \ \ t_{f} = t_{f} = 20 \ \text{ns})$

Symbol Parameter	_	Test Condition			Value (*)		
	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL} Propagation Delay Time	5			200	400		
		10			90	180	ns
		15			65	130	
t _{THL} t _{TLH}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	
f _{CL}	Maximum Clock Input	5		3	6		
·CL	Frequency	10		7	14		MHz
		15		8.5	17		
t _W	Minimum Clock Pulse	5		160	80		
	Width	10		70	35		ns
		15		50	25		
t _r , t _f Clock Input Rise or Fall		5			•		
17.1	Time	10		ι	unlimited		μs
		15					
t _{setup}	Data Setup Time Minimum	5		40	20		
•	Clock Inhibit	10		12	6		ns
		15		6	3		
t _H	Data Input Hold-Time	5		140	70		
		10		80	40		ns
		15		60	30		
PRESET ^{(*}	1) or RESET OPERATION						
t _{PLH,} t _{PHL}	Propagation Delay Time	5			275	550	
,	(reset or reset to Q)	10			125	250	ns
		15			90	180	
t _W Preset or Reset Pulse Width	Preset or Reset Pulse	5		160	80		
	Width	10		70	35		ns
		15		50	25		
t _{REM}	Preset or Reset Removal	5		80	40		
	Time	10		30	15	İ	ns
		15		20	10		

^(*) Typical temperature coefficient for all V $_{\rm DD}$ value is 0.3 %/°C. (1) At PRESET ENABLE or JAM inputs

TYPICAL APPLICATION

External connections for divide by 10, 9, 8, 7, 6, 5, 4, 3, 2 operation

DIVIDE BY 10 Q5		
DIVIDE BY 8 Q4	CONNECTED BACK TO "DATA"	NO EXTERNAL COMPONENTS
DIVIDE BY 6 Q3	CONNECTED BACK TO DATA	REQUIRED
DIVIDE BY 4 Q2		
DIVIDE BY 2 Q1	NO CONNECTED	

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•	•		
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (i	max.)				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.