南京航空航天大学

第1页(共6页)

二〇二二~二〇二三学年 第二学期《大学物理I(1)、IA(1)》

考试试题

考试日期: 2023 年 6 月 28 日 试卷类型: B 试卷代号: 班号 学号 姓名 题号 总分 得分

本题分数		30
得	分	

选择题(每小题3分)

1、以下几种说法,哪些是正确的?

- (A)质点作圆周运动,它的加速度一定与速度垂直;
- (B)质点作任意曲线运动,它的加速度一定与速度不垂直;
- (C)质点作任意曲线运动,若某一时刻法向加速度为零,则切向加速度也为零;
- (D)质点运动时, 其切向加速度和法向加速度始终为零, 则该质点必定作匀速直线运动。
- 2、关于力距有以下几种说法:
 - (1)内力矩不会改变刚体对某个定轴的角动量;
 - (2)作用力和反作用力对同一轴的力矩之和必为零;
- (3)质量相等形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等。

在上述说法中:

- (A)只有(2)是正确的; (B)(1)、(2)是正确的;
- (C)(2)、(3)是正确的;
- (D)(1)、(2)、(3)都是正确的。
- 3、对于同时性,下列说法哪一个是正确的:
 - (A) 对某观察者来说发生在同一地点,同一时刻的两事件,对其它一切观察者来说两事件发生 在不同地点、不同时刻;

- (B) 有两事件,在某惯性系发生于同一时刻、不同地点,它们在任何其它惯性系中也是发生于同一时刻、不同地点;
- (C) 有两事件,在某惯性系发生于同一时刻、不同地点,它们在任何其它相对运动的惯性系中是发生于不同时刻、不同地点。
- (D)有两事件,在某惯性系发生于同一时刻、不同地点,它们在任何其它惯性系中是发生于不同时刻、同一地点。
- 4、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n,单位体积内的气体分子的总平动动能(E_{κ}/V),单位体积内的气体质量 ρ ,分别有如下关系:
 - (A) n 不同, (AK/V)不同, p 不同;
 - (B) n 不同, (Eκ/V)不同, ρ相同;
 - (C) n 相同, (E_K/V) 相同, ρ 不同;
 - (D) n 相同, (E_K/V) 相同, ρ 相同.

5、一容器内装有 N_1 个单原子理想气体分子和 N_2 个刚性双原子理想气体分子,当该系统处在温度为T的平衡态时,其内能为

(A)
$$(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT);$$

(B)
$$\frac{1}{2}(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT);$$

(C)
$$N_1 \frac{3}{2} kT + N_2 \frac{5}{2} kT$$
;

(D)
$$N_1 \frac{5}{2} kT + N_2 \frac{3}{2} kT$$
.

- (A) 系统的内能一定增加;
- (B) 系统的内能一定减少;
- (C) 系统的内能一定保持不变;
- (D) 系统的内能可能增加,也可能减少或保持不变.

(共6页)

7、如图所示, 一个未带电的空腔导体球壳, 内半径为 R, 在腔内离 球心的距离为 d 处(d<R)固定一点电荷+q,用导线把球壳接地后,再 把地线撤去, 选无穷远处为零电势点, 则球心处的电势为

(B)
$$\frac{q}{4\pi\varepsilon_0 d}$$
;

(C)
$$\frac{q}{4\pi\varepsilon_0 R}$$
;

8、如图平行板电容器的极板面积为 S, 间距为 d, 对此电容器充电 之后,拆去电源,再插入相对介电常数为 ε_r ,厚度为d/2的均匀电 介质板,设插入介质前,两极板间的电场为 E_0 ,插入介质后,介质 内、外的电场分别为 E_1 和 E_2 ,则: E_1/E_0 , E_2/E_0 分别为

(C)
$$\frac{1}{\varepsilon_r}$$
, $\frac{1}{\varepsilon_r}$;

(B)
$$\frac{1}{\varepsilon_r}$$
, 1; (D) 1, $\frac{1}{\varepsilon_r}$.

轴的分量是:

(B)
$$-(\mu_0/4\pi)Iy dl/(x^2+y^2+z^2)^{3/2}$$
;

(C)
$$-(\mu_0/4\pi)Ix dl/(x^2+y^2+z^2)^{3/2}$$
;

(D)
$$-(\mu_0/4\pi)Iy dl/(x^2+y^2+z^2)$$
.

(A)
$$\Phi_{21} = 2\Phi_{12}$$
;

(B)
$$\Phi_{21} = \frac{1}{2} \Phi_{12};$$

(C)
$$\Phi_{21} = \Phi_{12}$$
;

(D)
$$\Phi_{21} > \Phi_{12}$$
.

(共6页)
18、在点电荷+q的电场中,放金属导体球,球心到点电荷的距离为力,则导体球上感应电荷在
球心处产生的电场强度 \bar{E} =(设 \bar{r} 的方向由点电荷指向导体球的球心)
R 19、在 xoy 面上倒扣着的半径为 R 的半球面上电荷均匀分布,面电荷密度为 σ ,A 点的坐标为 $(0,R/2)$,B 点的坐标为 $(3R/2,0)$,则 A、B 两点间的电势差 ΔU_{AB} =
20、两个同心圆线圈,大圆半径为 R ,通有电流 I_1 ;小圆半径为 r ,通有电流 I_2 ,
方向如图. 若 《 R 大线圈在小线圈处产生的磁场近似为均匀磁场), 当它们 [I ₂ O F] 处在同一平面内时小线圈所受磁力矩的大小为
21、如图所示,在磁感应强度大小为B的均匀磁场中,导线 OM=MN=a, × × ×
OM与MN的夹角为120°, OMN整体可以绕O点在垂直于磁场的平
面内逆时针转动,转动角速度为(a),则 ON 间的电动势大小
为 本资源免费共享 收集网 nuaa store × × × /×
ZW WIZV. X X X X
本题分数 37 得 分 三、计算题
22、 (本题 8 分) (普适气体常量 R= 8.31 J · mol · K ·)
1 mol 单原子分子理想气体的循环过程如 $T-V$ 图所示,其中 c 点的温度为 T_c =600 K, ca 平行于 V
轴,bc 垂直于 V 轴,ab 延长线过原点,试求: (1) ab、bc、ca 各个过程系统吸收的热量; (2) 经一循环过程系统所作的净功;
(3) 循环的效率. (In2=0.693)
$V(10^{-3}\text{m}^3)$
0=1275 L 22 2.49316 Pax
- 12.43×10 × 1×10 - = = = = = = = = = = = = = = = = = =

选择是公:

3.C 4.C 5.C 6.D 9.B 10.B 7.B 8.B

确切是例

3. 3 91050 5. RT - 4TE 7 9.

11. 3 BWa2

W2=0 Qv= 4E = Cv 0T = 2×8.3| ×300=3739.5J AE3=0 Q3=RTa In Va = 1,12 RTa = 3455.3J Op=-Ca+T=-2×8.31×300 = -6232.5J 16 - To > To = 16 To = = x 600 = 300 K (2) W= 03+QV+DP = 963J (1) 日子上学压进程 : 海湖

(3) 1= m/ = 3739.5+3455.3 = 13.4%

2、解

根据高斯定理

球内电场强度 日1:

球外电场强度后:

球心 0.5. 电势:

Vo = SE. dr + SR Ezdr

= TEERS Sordy + FITED PO 12 dr

= 30 30R

球外延球心,火处电势心:

Vr = SoEzdr = 41EOr

A = 9Ur-900

E = - A = 900-90r

山)石盆、场外布为以外和南沟图心、省了一圈圈圆 don= 3.43 = BdS = uni bdr (2) 在推盐面上即一完度为山 标面户 On = would Fact = would be 地方: 系言·di = B.2 Inr= WoNL 出升: B.2111-0 15:0 由安格和路定律:

$$(2)$$
 (1)
 (1)
 (1)
 (2)
 (1)
 (1)
 (1)
 (2)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (3)
 (4)
 (5)
 (5)
 (5)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)