Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 27 de gener de 2022

Grup, cognoms i nom: 2,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/6)$.

1 C Siguen els següents 3 nodes d'un arbre de classificació amb mostres pertanyents a 3 classes:

c	1	2	3
$\overline{n_1}$	5/11	4/11	2/11
n_2	4/9	3/9	2/9
n_3	5/9	1/9	3/9

on cada fila indica la probabilitat "a posteriori" de cada classe en el node. Quina de les següents desigualtats és certa?

- A) $\mathcal{I}(n_1) < \mathcal{I}(n_2) < \mathcal{I}(n_3)$
- B) $\mathcal{I}(n_2) < \mathcal{I}(n_1) < \mathcal{I}(n_3)$
- C) $\mathcal{I}(n_3) < \mathcal{I}(n_1) < \mathcal{I}(n_2)$
- D) $\mathcal{I}(n_3) < \mathcal{I}(n_2) < \mathcal{I}(n_1)$

2 B La figura següent mostra una partició de 5 punts bidimensionals en dos clústers, \bullet i \circ :

Si intercanviem de clúster els punts $(1,0)^t$ i $(3,1)^t$, es produeix una variació de la suma d'errors quadràtics (SEQ), $\Delta J = J - J'$ (SEQ després de l'intercanvi menys SEQ abans de l'intercanvi), tal que:

A)
$$\Delta J < -7$$
.

$$\Delta J = 43.7 - 49.2 = -5.5$$

- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.

3 A Siga M un model de Markov de conjunt d'estats $Q = \{1,2,F\}$ i alfabet $\Sigma = \{a,b\}$. Després de l'aplicació d'una iteració de l'algorisme de reestimació per Viterbi, s'ha obtingut la taula de probabilitats de transició entre estats que es mostra a la dreta. A partir de quina taula de freqüències de transició entre estats s'ha obtés?

A	1	2	F
1	$\frac{3}{6}$	$\frac{1}{6}$	$\frac{2}{6}$
2	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{1}{5}$

B)
$$\begin{vmatrix} A & 1 & 2 & F \\ 1 & 3 & 1 & 6 \\ 2 & 2 & 2 & 5 \end{vmatrix}$$

4 D Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$ i alfabet $\Sigma = \{a, b\}$. Donada la cadena x = baa, l'aproximació de Viterbi a $P_M(x)$, $\tilde{P}_M(x)$, s'ha trobat mitjançant l'algorisme de Viterbi:

$$\begin{split} V_{11} &= \pi_1 B_{1b} = 0.3750 \\ V_{21} &= \pi_2 B_{2b} = 0.3000 \\ V_{12} &= \max(V_{11} A_{11} B_{1a}, V_{21} A_{21} B_{1a}) = \max(0.0312, 0.0375) = 0.0375 \\ V_{22} &= \max(V_{11} A_{12} B_{2a}, V_{21} A_{22} B_{2a}) = \max(0.0750, 0.0300) = 0.0750 \\ V_{13} &= \max(V_{12} A_{11} B_{1a}, V_{22} A_{21} B_{1a}) = \max(0.0031, 0.0094) = 0.0094 \\ V_{23} &= \max(V_{12} A_{12} B_{2a}, V_{22} A_{22} B_{2a}) = \max(0.0075, 0.0075) = 0.0075 \\ \tilde{P}(\text{baa}) &= \max(V_{13} A_{1F}, V_{23} A_{2F}) = \max(0.0016, 0.0019) = 0.0019 \end{split}$$

El camí més probable (un dels camins més probables, si hi ha més d'un) mitjançant el qual M genera x és:

- A) 121F
- B) 221 F
- C) 112 F
- D) 2 1 2 F
- 5 C Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error del classificador $c(\mathbf{x})$ donat en la taula, ε :

A)		8	<	0	25	

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.3 0.5	0	1
0 1	0.3 0.3 0.4	0.4	1
1 0	0.2 0.5 0.3	0.5	2
1 1	0.3 0.6 0.1	0.1	1

 $\varepsilon = 0.60$

6 C Donada la següent taula de freqüències conjuntes de les 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
N(A,B,C)	211	140	245	87	39	110	5	163

Quin és el valor de $P(A = 1 \mid B = 1, C = 1)$?

- A) 0.317
- B) 0.163
- C) 0.652
- D) 0.250

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 27 de gener de 2022

Grup, cognoms i nom: 2,

Problema sobre Perceptró

En la taula de l'esquerra es proporciona un conjunt de 3 mostres bidimensionals d'aprenentatge de 3 classes, mentre que en la taula de la dreta es proporciona un conjunt de pesos inicials per cada classe.

\mathbf{n}	x_{n1}	x_{n2}	c_n
1	1	0	1
2	0	0	2
3	-1	0	3

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
w_{c0}	-2	-1	-1
w_{c1}	2	1	-3
w_{c2}	0	0	0

Es demana:

- 1. (1.5 punts) Realitzeu una traça d'execució d'una iteració de l'algorisme Perceptró, amb factor d'aprenentatge $\alpha = 1$, marge $\gamma = 0.1$ utilitzant els pesos inicials proporcionats.
- 2. (0.5 punts) Representeu gràficament les regions de decisió del clasificador resultant, així com les fronteres de decisió necesàries per a la seua representació.

Solució:

1. Una iteració de Perceptró amb 2 mostres mal clasificadas obté els següents pesos finals:

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
w_{c0}	-2	-1	-2
w_{c1}	3	0	-3
w_{c2}	0	0	0

2. La representació gràfica de les tres regions de decisió amb les dues fronteres de decisió involucrades és la següent:

