GDB_DataReview ArcMap Toolbox Tutorials

Air Force Civil Engineering Center (AFCEC) Geospatial Integration Office (GIO) 2018-05-03

Contents

1	Overview	1
2	Join Fields and Calculate	2
3	Calculate Feature RPSUIDs from Overlapping Polygons	6
4	Find Duplicate Geometry	12
5	Delete Duplicate Features	18
6	Check and/or Repair Geometries	21
7	Standardized Address Field	26
8	Standardized Road Prefix, Name, and Suffix	29
9	Search for Missing and Indeterminant Data	34
10	Summarise Indeterminant/Missing Data Tables	41
11	Batch Export Metadata	47
12	Batch Import Metadata	50

Overview

This document gives an overview of how to use the GDB_DataReview ArcMap Toolbox.

The GDB_DataReview ArcMap Toolbox provides numerous Python script tools to expedite the review of geodatabases in comparison with a template geodatabase model. This toolbox was developed to aid Air Force (AF) installations in maintaining geospatial data in compliance with the the current Air Force Data Model (GeoBase 3.1.0.1) developed under the AF GeoBase mission. This data model is based upon the Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE) SDSFIE-V 3.1 Gold model, which complies with the Department of Defense Instruction (DoDI) 8130.01, Installation Geospatial Information and Service (IGI&S), while also providing some flexibility within the program to aid the AF mission. As part of the IGI&S program, this toolbox also aids in standardizing methods to adhere to the Fiscal Year 2017 CIP data call required by DoDI 8130.01.

The GDB_DataReview Toolbox provides methods to:

- Update feature class data using both tabular and spatial joins,
- Find duplicate geometries, delete duplicate features, and check/repair feature geometries,
- Standardize road prefixes, names and suffixes or building addresses,
- Search for and summarize indeterminant and missing data in a geodatabase when compared with a template geodatabase
- Batch exporting and importing geodatabase metadata

Join Fields and Calculate

2.1 Overview

The ArcGIS Python Script Tool "Join Fields and Calculate" may be used to update the destination values in a target feature layer field with the values in another table's fields using a common key (join). This script will perform similarly as if you joined a table to a feature class to calculate a certain field based on another field in the joined table.

2.2 Parameters

The tool has 8 parameters:

- 1. Transfer_From (data type: Table View) Which table are do you want to transfer data from? This parameter must be the path to a table(e.g.: Comma-separated Values (.csv) file, Excel Workbook (.xlsx) Sheet, Esri geodatabase table, etc.). This table will act as 'source' data.
- 2. Using_Join_Field (data type: Field) From the source table, which field should be used to joinwith another feature class' attributes? This will provide the 'key' to transfer data from the source table to the target table.
- 3. Source_Field (data type: Field) From the source table, which field's data do you want to transfer to the target table? This field's data will be updated in the target feature class that have matching fields.
- 4. **Destination_Feature (data type: Feature Layer or Feature Class)** Which feature class do you want to transfer data to? This parameter must be the path to a Esri Feature Class or Feature Layer. This table will act as 'target' data source.
- 5. **Destination_Join_Field (data type: Field)** From the target table, which field should be used to joinwith another feature class' attributes? This will provide the 'key' to transfer data from the source table to the target table.
- 6. **Destination_Field (data type: Field)** From the target table, which field's data do you want to transfer from the source table? This field's data will be updated from the source table that have matching fields using the join fields provided.
- 7. Where_Clause (data type: String) How should the source values be filtered? Default is "IS NOT NULL", otherwise you will overwrite the target features will null values.

8. Remove_Leading_Zeros (data type: Boolean) - Do you want to remove leading zeros from the Source Join Field prior to 'joining' the tables?

2.3 How to Use

2.3.1 Begin by opening the toolbox

Navigate to the location of the script tool, then right-click the 'Join Fields and Calculate' script tool to open (Fig. 2.1).

Figure 2.1: Opening the Tool

2.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to transfer the RPUID attributes (source field) from the 'RPSUID_and_RPUID.csv' table (transfer from) using the 'FacilityNumber' join field (Using_Join_Field) to the Building_A feature layer's (Destinate Feature) 'realPropertyUniqueID' field (Destination_Field) using the 'buildingNumber' field (Destination_Join_Field) (Fig. 2).

We also keep the default value in the 'Where Clause' parameter of 'IS NOT NULL,' in order to transfer RPUID from the source table where RPUIDs are not null, **otherwise you may overwrite the target** features will null values (Fig. 2).

We noticed that the 'buildingNumber' field has some leading zeros that we want to remove the beginning of the values, so we click the "Remove Leading Zeros" toggle (Fig. 2.2).

Figure 2.2: Tool parameters

Alternatively, you may also run this tool in 'batch' for multiple features in a geodatabase or geodatabases (Fig. 2.3).

Figure 2.3: Running a tool in batch

You may also get more information for the tool and each tool parameter by clicking the 'Tool Help' button at the bottom of the tool dialog box.

2.3.3 Run the Tool and View Results

Open the destinate Feature Class and view the update destination field values (Fig. 2.4, Fig. 2.5).

	realPropertyUniqueID	buildingNumber	dex
exi	521354	4002	99999
exi	1074312	4003	99999
exi	05002	5002	99999
exi	1019979	5010	99999
exi	523801	6001	99999
exi	523803	6004	99999
exi	523805	6010	99999
exi	523807	6012	99999
exi	523808	6013	99999
ТВ	523809	6020	99999
exi	523810	6030	99999
exi	OFF_BASE	N/A	99999
exi	OFF_BASE	N/A	99999
exi	OFF BASE	N/A	99999

Figure 2.4: Attribues before running the tool

	buildingNumber	realPropertyUniqueID	Т
99	5002	05002	exis
199	5010	1019979	exis
199	4003	1074312	exis
199	TBD	23853	OBS
199	TBD	23854	OBS
199	4002	521354	exis
199	6001	523801	exis
199	6004	523803	exis
199	6010	523805	exis
199	6012	523807	exis
199	6013	523808	exis
199	6020	523809	TBD
199	6030	523810	exis
199	TBD	NO_RP_RECORD	OBS
199	TBD	NO_RP_RECORD	TBD
PP	N/A	NO RP RECORD	evis

Figure 2.5: Attributes after running the tool

Calculate Feature RPSUIDs from Overlapping Polygons

3.1 Overview

This tool utilizes spatial joins to update field values in the target Feature Classes field to equal the source Feature Class fields in a source geodatabase. Using 'wildcard' fitlers, this tool allows users to update particular target Feature Datasets, Feature Classes, and Fields. For the purposes of this tool within the scope of the CIP Data Review task, target Fields are, by default, any fields that begin with "realPropertySiteUnique," in order to udpate RPSUID fields called either "realPropertySiteUniqueIdentifier" or "realPropertySiteUniqueID"; however, this tool could be extended to any number of source/target Feature Class/Field values.

3.2 Parameters

The tool has 8 parameters:

- 1. **Geodatabase (data type: Workspace/File Geodatabase)** The path to the input geodatabase to update Feature Classes in.
- 2. Source Feature (data type: Feature Class) The path to the source Feature Class, which will be used to update Feature Class fields in target Feature Classes.
- 3. **Source_Field (data type: Field)** The field within the source Feature Class used to update values in target Feature Classes.
- 4. Target Feature Dataset Wildcard (data type: String) Within the input geodatabase, do you want to update only certain Feature Datasets? Use this wildcard to filter input geodatabase Feature Datasets. The Default is '*' for 'All Feature Datasets,' but if you only wanted to update the Feature Classes in the 'Auditory' Feature Dataset, set this parameter to 'Auditory.' Similarly, if you only wanted to update Feature Classes within environmental Feature Datasets, set this parameter to 'environmental*', which will loop through all Feature Classes within Feature Datasets that start with 'environmental.'
- 5. Target Feature Class Wildcard (data type: String) Within the input geodatabase, do you want to update only certain Feature Classes? Use this wildcard to filter input geodatabase Feature Classes to update. The Default is '*' for 'All Feature Classes,' but if you only wanted to update Feature Classes called "roadCenterline_L", set this parameter to 'roadCenterline_L.' Similarly, if you

3.2. PARAMETERS 7

only wanted to update Feature Classes that begin with "road," set this parameter to 'road*', which will loop through all Feature Classes that start with 'road.'

- 6. Target Field Wildcard (data type: String) This parameter is used to filter fields within the target Feature Classes that you want to update with the Source Feature Classes source Field. For the purposes of this tool within the scope of the CIP Data Review, this parameter is automatically set to "realPropertySiteUnique*" in order to 'catch' all RPSUID fields within the SDSFIE 3.101 data model, where certain fields are called "realPropertySiteUniqueIdentifier" and others are called "realPropertySiteUniqueID."
- 7. Overlap Type (data type: String) How do you want to limit the spatial join? By default, this parameter is set to "within," in order to only update target features that are completely within the source features. This parameter may be changed to any of the following values, as specified in the SelectByLocation management tool documentation:
 - INTERSECT —The features in the input layer will be selected if they intersect a selecting feature. This is the default.
 - INTERSECT_3D The features in the input layer will be selected if they intersect a selecting feature in three-dimensional space (x, y, and z).
 - WITHIN_A_DISTANCE —The features in the input layer will be selected if they are within a specified distance of a selecting feature. Specify a distance in the Search Distance parameter.
 - WITHIN_A_DISTANCE_3D —The features in the input layer will be selected if they are within a specified distance of a selecting feature in three-dimensional space. Specify a distance in the Search Distance parameter.
 - WITHIN_A_DISTANCE_GEODESIC —The features in the input layer will be selected if they are within a specified distance of a selecting feature. Distance between features will be calculated using a geodesic method which takes into account the curvature of the earth and correctly deals with data near and across the dateline and poles.
 - CONTAINS —The features in the input layer will be selected if they contain a selecting feature.
 - COMPLETELY_CONTAINS The features in the input layer will be selected if they completely contain a selecting feature.
 - CONTAINS_CLEMENTINI —This spatial relationship yields the same results as COM-PLETELY_CONTAINS with the following exception: if the selecting feature is entirely on the boundary of the input feature (no part is properly inside or outside), the feature will not be selected. Clementini defines the boundary polygon as the line separating inside and outside, the boundary of a line is defined as its end points, and the boundary of a point is always empty.
 - WITHIN —The features in the input layer will be selected if they are within a selecting feature.
 - COMPLETELY_WITHIN The features in the input layer will be selected if they are completely within or contained by a selecting feature.
 - WITHIN_CLEMENTINI The result will be identical to WITHIN with the exception that if the entirety of the feature in the input layer is on the boundary of the feature in the selecting layer, the feature will not be selected. Clementini defines the boundary polygon as the line separating inside and outside, the boundary of a line is defined as its end points, and the boundary of a point is always empty.

- ARE_IDENTICAL_TO The features in the input layer will be selected if they are identical (in geometry) to a selecting feature.
- BOUNDARY_TOUCHES The features in the input layer will be selected if they have a boundary that touches a selecting feature. When the inputs features are lines or polygons, the boundary of the input feature can only touch the boundary of the selecting feature, and no part of the input feature can cross the boundary of the selecting feature.
- SHARE_A_LINE_SEGMENT_WITH The features in the input layer will be selected if they share a line segment with a selecting feature. The input and selecting features must be line or polygon.
- CROSSED_BY_THE_OUTLINE_OF The features in the input layer will be selected if they are crossed by the outline of a selecting feature. The input and selecting features must be lines or polygons. If polygons are used for the input or selecting layer, the polygon's boundary (line) will be used. Lines that cross at a point will be selected, not lines that share a line segment.
- HAVE_THEIR_CENTER_IN The features in the input layer will be selected if their center falls within a selecting feature. The center of the feature is calculated as follows: for polygon and multipoint, the geometry's centroid is used, and for line input, the geometry's midpoint is used.

3.3 How to Use

3.3.1 Begin by opening the toolbox

Navigate to the location of the script tool, then right-click the 'Calculate Feature RPSUIDs from Overlapping Polygon' script tool to open (Fig. 3.1).

Figure 3.1: Opening the toolbox

3.3.2 Fill out the parameters

For this demostration, we want to update missing RPSUID values for 2 features in the Site_P Feature Class using RPSUID values from Site_A features that contain Site_P features 3.2).

Figure 3.2: Missing RPSUID attributes for Site Point featuresl

Next, fill out the parameters for the tool. Here, we want to transfer the RPSUID attributes (Source Field) from the Site A Feature Class in the Cadastre Feature Dataset (Fig. 3.3).

Figure 3.3: Tool parameters

Since we only want to update the Site_P features within the Cadastre Feature Dataset, we change the default value for the Target Feature Dataset Wildcard to "Cadastre," since we know that the Site_P Feature Class is only found within the Cadastre Feature Dataset. Further, we change the default value of the Target Feature Class Wildcard parameters to "Site_P" in order to only update Site_P features within the Cadastre Dataset. Since we know that the RPSUID field names within all Feature Classes in the data model begin with 'realPropertySiteUnique', we can keep the default value for the Target Field Wildcard parameter in order to update the realPropertySiteUniqueID field in Site_P features with with the Source Field in the Source Feature Class.

For the purposes of this demostration, we keep the default value for the Overlap Type parameter to "WITHIN," in order to update the fields that begin with "realPropertySiteUnique" for features that are within each Source Feature Class feature.

You may also get more information for the tool and each tool parameter by clicking the 'Tool Help' button at the bottom of the tool dialog box.

3.4 Run the Tool and View Results

If running the tool with Background Processessing disabled, we can see which RPSUIDs are being updated (Fig. 3.4).

Figure 3.4: Tool parameters

After the tool has run, we see that the 2 Site_P features with missing RPSUID values are updated accordingly 3.5).

Figure 3.5: Updated attributes after running the tool

Find Duplicate Geometry

4.1 Overview

The Find Duplicate Geometry tool allows users to search an entire geodatabase's Feature Classes within Feature Datasets for features with duplicate geometries. This tool loops through each Feature Dataset's Feature Class features and searches for duplicate geometries. All features with duplicate geometries are written to the output .csv file, as specified, and describes the Feature Dataset and Feature Class with duplicate geometries, the OBJECTIDs of the duplicate geometries, and a summary, which gives the count of duplicate geometries spread over unique geometries, Further, this tool creates layer files for each Feature Class' duplicate features, allowing users to edit their geodatabase directory from a temporary, filtered layer of only duplicate features to be evaluated further.

4.2 Parameters

The tool has 5 parameters:

- 1. **Input_Geodatabase (data type: Workspace)** This parameter must be the path of the input geodatabase to search Feature Datasets' Feature Class features for duplicate geometries.
 - 2. XY_Tolerance (data type: String) The XY_Tolerance parameter will be applied to each vertex when evaluating if there is an identical vertex in another entity, and must be input in the same units as the the source geodatabase's coordinate reference system (CRS).
 - 3. **Z_Tolerance** (data type: String) The Z_Tolerance parameter will be applied to each vertex when evaluating if there is an identical vertex in another entity with regard to elevation, and must be input in the same units as the the source geodatabase's coordinate reference system (CRS).
 - 4. Output_CSV (data type: File) The path to the output Duplicate_Geometry_Summary .xlsx/.csv file.
 - Output_Layers_Directory (data type: Folder) The path to the directory/folder to store layer files with duplicate geometries.

4.3 How to Use

4.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Find Duplicate Geometry' script tool to open (Fig. 4.1).

Figure 4.1: Opening the Find Duplicate Geometries tool

4.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to search all Feature Classes within Feature Datasets in the Example.gdb for duplicate geometries using the default XY Tolerance and Z Tolerance values of '0' (Fig. 4.2). We specify that we want the Duplicate Geometry Summary to be written to a Comma-separated Values (.csv) file called 'test.csv.' Further, we specify that we want all the duplicate Feature Class feature layers to be saved to the Output Layers Directory 'layer.'

Figure 4.2: Find Duplicate Geometries parameters

4.4 Run the Tool and View Results

While the tool runs (with Background Processing disabled), we can see the messages from the tool, showing how many duplicate features are found for each Feature Class (Fig. 4.3).

Figure 4.3: Find Duplicate Geometries parameters

After the tool has run, we can open the output .csv we specified in the tool parameters to examine which Feature Classes have duplicated geometries . For example, we find that the EnvRestorSampLoc_P Feature Class within the environmentalRestoration Feature Dataset has 17 total duplicates spread across 7 unique geometries (Fig. 4.4).

BJECTID	FEATUREDATASET	FEATURECLASS	DUPLICATEIDS	SUMMARY
1	Auditory	MilFlightTrack_L	3, 36, 37, 38	4 duplicates across 2 features.
2	DEMOLISHED	Building_A_31	1281, 1283	2 duplicates across 1 features.
3	DEMOLISHED	eUGPrimary_L_31	1281, 1284	2 duplicates across 1 features.
4	DEMOLISHED	AirfieldSurface_A_31	322, 326	2 duplicates across 1 features.
5	environmentalNaturalResources	SpeciesPoint_P	3849, 6830	2 duplicates across 1 features.
6	environmentalRestoration	EnvRestorSampLoc_P	19, 156, 187, 237, 247, 257, 295, 321	17 duplicates across 7 features.
7	environmentalStorageTanks	StorageTank_P	9, 10	2 duplicates across 1 features.
8	GeneralMisc	MonitoringLoc_P	9, 10, 12, 61, 62, 66	6 duplicates across 3 features.
9	GeneralMisc	Sign_P	1061, 1102, 1168, 1169	4 duplicates across 2 features.
10	NonSDS	Grids_PLSS	2508, 23255, 47507, 54312, 72411, 7	8 duplicates across 4 features.
11	NonSDS	PlanningDTA	57, 66, 142, 155	4 duplicates across 2 features.
12	NonSDS	RealProperty_Slab_A	76, 168, 242, 411, 424, 468, 563, 573	12 duplicates across 6 features.
40	NCDC		AF AC	7 d

Figure 4.4: Find Duplicate Geometries parameters

Navigating to the output layer directory we specified in the tool, we find layer files with duplicate features for each Feature Class (Fig. 4.5).

Figure 4.5: Find Duplicate Geometries parameters

After pulling in the _dupeGeom_EnvRestorSampLoc_P layer file, we can zoom to a feature and select the features at that location to examine the duplicate features at that location (Fig. 4.6).

Figure 4.6: The features with duplicated geometries

Then, we can view the Attribute Table for the selected features to examine which feature we should amend or delete (Fig. 4.7). Here, we find that the attributes are exactly the same for the first duplicated geometry, and so we should probably delete one of these features. Editing the layer files directly will update the associated Feature Classes in the original geodatabase.

19 GJKZ_GJKZ00010000346		longitude	latitude	sdsMetadataID	sdsFeatureDescription	sdsFeatureName	sdsID	envRestorationSampleIDPK	OBJECTID *
295 GJKZ_GJKZ00010000621 <null> MMW_2447-1 SD-37 Microwell 99999</null>	999 <null></null>	99999	99999	Microwell	SD-37	MMW_2447-1	<null></null>	GJKZ_GJKZ00010000346	19
	999 <null></null>	99999	99999	Microwell	SD-37	MMW_2447-1	<null></null>	GJKZ_GJKZ00010000621	295
<									

Figure 4.7: Attributes of duplicated features

we can pull in the layer files created for each Feature Class to manually inspect the duplicated features to determine if/which features should be amended or deleted.

Delete Duplicate Features

5.1 Overview

The Find Duplicate Features tool allows users to search an entire geodatabase's Feature Classes for duplicated features. This tool loops through each Feature Dataset's Feature Class features and searches for duplicate features, not including geometry.

By default, this tool does not consider compare attributes in across any fields that are 'OID', 'Guid', 'GlobalID', 'Blob', or 'Raster' field types. Furthmore, the following fields are ignored in searching for duplicate features, by default (not case sensitive): 'LAST_EDITED_DATE', 'LAST_EDITED_USER', 'CREATED_USER', 'CREATED_DATE'.

5.2 Parameters

The tool has 3 parameters:

- 1. **Input_Geodatabase (data type: Workspace)** This parameter must be the path of the input geodatabase to search Feature Datasets' Feature Class features for duplicate features.
- 2. **XY_Tolerance** (data type: String) The XY_Tolerance parameter will be applied to each vertex when evaluating if there is an identical vertex in another entity, and must be input in the same units as the the source geodatabase's coordinate reference system (CRS).
- 3. **Z_Tolerance** (data type: String) The Z_Tolerance parameter will be applied to each vertex when evaluating if there is an identical vertex in another entity with regard to elevation, and must be input in the same units as the the source geodatabase's coordinate reference system (CRS).

5.3 How to Use

5.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Find Duplicate Features' script tool to open (Fig. 5.1).

Figure 5.1: Opening the Delete Duplicate Features tool

5.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to search all Feature Classes within Feature Datasets in the Example.gdb for duplicate features (Fig. 5.2). We specify that we want to keep the default XY Tolerance and Z Tolerance parameters to zero, though this could be increased to allow duplicate geometry checks to be more lenient.

Figure 5.2: Delete Duplicate Features parameters

5.3.3 Run the Tool and View Results

While the tool runs (with Background Processing disabled), we can see the messages from the tool, which displays how many duplicate features will be deleted across each feature class, if applicable (Fig. 5.3). Here, we see that 102 duplicates were found in the MilFlightTrack_L feature class across 51 unique features, indicating that each of the 51 features may have been duplicated once (51 x 2 = 102).

Figure 5.3: Delete Duplicate Features messages

Check and/or Repair Geometries

6.1 Overview

The Check and/or Repair Geometries tool allows users to search an entire geodatabase's Feature Classes for geometry problems. This tool loops through each Feature Dataset's Feature Class features and searches for geometry problems, including null geometry, self intersections, duplicate vertexes, and more.

If geometry problems exists, an output table is created containing the following fields: CLASS, FEATURE_ID, and PROBLEM. The feature classes which contain geometry problems are then repaired.

After the repair is conducted, the subset of feature classes with repaired geometry problems are checked again for geometry problems to confirm their repair. Another output table is generated for the subset of feature classes. An empty output table confirms the geometry problems were correctly repaired.

6.2 Parameters

The tool has 2 parameters:

- 1. **Input_Geodatabase (data type: Workspace)** This parameter must be the path of the input geodatabase to search Feature Datasets' Feature Class features for duplicate features.
- 2. Installation_Review_Geodatabase (data type: Workspace) This parameter should be the path of the Installation Review Geodatabase to compile all CIP processing outputs in a single location.

6.3 How to Use

6.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Check and/or Repair Geometry' script tool to open (Fig. 6.1).

Figure 6.1: Opening the Delete Duplicate Features tool

6.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to search all Feature Classes within Feature Datasets in the Example.gdb for duplicate features (Fig. 6.2). Last, we specify where we want to output the resulting tables, prefereably in an Installation Review geodatabase specifically for holding CIP processing results.

Figure 6.2: Delete Duplicate Features parameters

6.3.3 Run the Tool and View Results

While the tool runs (with Background Processing disabled), we can see the messages from the tool, which displays the following: how many feature classes are being checked for geometry problems, how many geometry problems that were found, where the output results are found, how many and which feature classes will be processed to repair geometry problems, how many feature classes are being re-checked for geometry errors, and how many geometry problems were found after the re-check (Fig. 6.3).

Figure 6.3: Delete Duplicate Features messages

Here, we see that 16 geometry problems were found in the Yaeger CIP geodatabase across 10 different feature classes, with each listed. A re-check was conducted on the 10 feature classes and then 0 geometry problems were found (Fig. 6.4).

Figure 6.4: Delete Duplicate Features messages

Standardized Address Field

7.1 Overview

The Standardize Address Field tool allows users to standardize 1 address field in a feature class. This tool works by searching the address field within the input feature class, then replaces any street prefixes (e.g.: North, north, East, West) with a standard prefix abbreviation (i.e.: "N", "S", "E", and "W"), while all suffixes (e.g.: AVE, Avenue, Street) are reformatted to standard USPS suffixes.

7.2 Parameters

The tool has 2 parameters:

- 1. **Feature Class (data type: Feature Class)** The path to the Feature Class with the address field to standardize.
 - 2. Field (data type: Field) The address field in the Feature Class to be standardized.

7.3 How to Use

7.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Find Duplicate Features' script tool to open (Fig. 7.1).

Figure 7.1: Opening the Delete Duplicate Features tool

7.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to update the buildingAddress field in the Building_A Feature Class in the Example.gdb (Fig. 7.2) because we notice none standardized addresses in the field (Fig. 7.3).

Figure 7.2: Delete Duplicate Features parameters

oryCode	buildingAddress	bu
	1234 ABC Lane	1994
	4321 West ABC Ln	0
	1234 W. ABC LANE	1994
	1234 west Abc LN	1993
4221	<null></null>	19900
4221	<null></null>	19840
4221	<null></null>	19840

Figure 7.3: Delete Duplicate Features parameters

7.3.3 Run the Tool and View Results

After the tool has run, we can see that the building address values have been appropriately standardized (Fig. 7.4).

,	buildingAddress	
	4321 W ABC LN	0
	1234 W ABC LN	19
	1234 W ABC LN	19
	1234 ABC LN	19
21	<null></null>	19

Figure 7.4: Delete Duplicate Features messages

Standardized Road Prefix, Name, and Suffix

8.1 Overview

The purpose of this tool is to standardize the 3 field (road prefix, road name, and road suffix) values within a feature class. This tool works by first searching the ROADNAME field within that feature class, then removes any prefixes or suffixes within the field and moves them to the appropriate field. For all prefixes and suffixes found, the prefixes are reformatted to "N", "S", "E", and "W." For all suffixes found, the suffixes are reformatted to standard USPS suffixes.

8.2 Parameters

The tool has 4 parameters:

- 1. Road Feature Class (data type: Feature Class) This parameter must be the path to the Feature Class that has the 3 road fields to be standardized.
- 2. **Prefix Field (data type: Field)** The field within the feature class that has or should have road prefixes.
- 3. Name Field (data type: Field) The field within the feature class that has road names.
- 4. Suffix Field (data type: Field) The field within the feature class that has or should have road suffixes.

8.3 How to Use

8.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Standardize 3 Address Fields' script tool to open (Fig. 8.1).

Figure 8.1: Opening the Delete Duplicate Features tool

8.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to update the road prefix, road name, and road suffix fields in the RoadCenterline_L feature class (Fig. 8.2). The fields can be derived directly from the Feature Class by using the drop-down menu.

Figure 8.2: Opening the Delete Duplicate Features tool

8.4 Run the Tool and View Results

Before running the tool, we see that, indeed, the road prefixes and road suffixes are incorrectly populated inside the road name field Open the destinate Feature Class and view the update destination field values (Fig. 8.3).

roadPrefix	roadName	roadSuffix	T
TBD	Sikorsky Rd	TBD)
TBD	Perimeter Rd	TBD)
TBD	Hansell Ave	TBD	3
TBD	Obstacle Rd	TBD)
TBD	Cuba Rd	TBD	у
TBD	Richmond Rd	TBD	у
TBD	Graham Rd	TBD	у
TBD	Gate 35 Rd	TBD	у
TBD	Bong St	TBD	у
TBD	Vermont Ave	TBD	у
TBD	Colorado Ave	TBD	у
TBD	El Paso Ave	TBD	у
TBD	Twining Ave	TBD	у
TBD	Marsh Rd	TBD	у
TBD	Nebraska Ave	TBD	у
TBD	O'Malley Ave	TBD	у
TBD	Mitchell Dr	TBD	у
TBD	Seattle Ave	TBD	у
TBD	Graham Rd	TBD	n
TBD	Delaware Ave	TBD	у
TBD	Ft. Wright Oval	TBD	у
TOO		TOO	+

Figure 8.3: Opening the Delete Duplicate Features tool

After running the tool, we can see that the prefixes and suffixes have been populated in the correct fields, and have also been standardized to match USPS standards (Fig. 8.4).

roadPrefix	roadName	roadSuffix
TBD	Wyoming	AVE
TBD	Wisconsin	AVE
TBD	Wilton	RD
TBD	Wildlife	RD
TBD	Wildlife	RD
TBD	Wildlife	RD
TBD	Westover	ST
TBD	Weston	RD
TBD	Washington	AVE
TBD	Washington	AVE
TBD	Walnut	ST
TBD	Wainwright	BLVD
TBD	Virginia	AVE
TBD	Vet	RD
TBD	Vet	RD
TBD	Vet	RD

Figure 8.4: Opening the Delete Duplicate Features tool

Search for Missing and Indeterminant Data

9.1 Overview

Search a 'source' geodatabase for indeterminate data from feature dataset/feature class combinations in a target geodatabase. First, searches for missing feature datasets in target geodatabase not in source geodatabase. Then, searches for feature classes in 'x' feature dataset. Then, for each feature class in the source geodatabase, this tool searches for 'indeterminate' values in each field. Indeterminate values, here, means any null, to be determined (TBD), or 'other' values.

This tool creates 4 output tables, each prepended with the name of the Model_Geodatabase (e.g.: If your 'model' geodatabase called 'CIP', the tables will be called (CIP_MissingFDS, CIP_Missing_FCs, CIP MissingFields, and CIP MissingData). These tables include:

- [modelGeodatabaseName]_MissingFDS Gives a list of Feature Datasets within the target geodatabase that are not included in the source geodatabase.
- [modelGeodatabaseName]_MissingFCs Gives a list of Feature Classes for each Feature Dataset within the target geodatabase that are not included in the source geodatabase.
- [modelGeodatabaseName]_MissingFields Gives a list of Fields for each Feature Dataset/Feature Class combination within the target geodatabase that are not included in the source geodatabase.
- [modelGeodatabaseName]_MissingData For each Feature Dataset/Feature Class combination in both the target and source geodatabase, this table gives an overview of missing attributes for each field in the source geodatabase's Feature Class.
 - For Fields in each of the source geodatabase's Feature Classes, this table highlights fields not included in the target geodatabase's Feature Class under the 'FIELD_NONSDS' column (e.g.: 'FIELD_NONSDS' = F when fields are included in both geodatabases, and 'FIELD_NONSDS' = T when the field exists in the source geodatabase for said Feature Class, but not the target geodatabase's Feature Class).
 - This table then lists whether or not the feature class is empty (i.e.: EMPTY FC = T or F).
 - Then, for each field, the MissingData table gives a count of Null¹, 'TBD'², and 'Other'³ features,

²TBD values include: "tbd", "TBD", "To be determined", "Tbd", 99999, "99999"

³Other values include: "Other", "other", "OTHER", "88888", 88888

9.2. PARAMETERS 35

- further giving the counts of each value in 'NULL_VALUE_COUNTS', 'TBD_VALUE_COUNTS', and 'OTHER_VALUE_COUNTS' fields.
- The sum of the Null, TBD, and Other features are populated in the 'TOTAL_INDT_COUNT' (i.e.: Total indeterminant feature count), with the 'TOTAL_DET_COUNT' column giving the total number of features with 'determinated' values (i.e.: not indeterminant values).

- The POP_VALS column lists the count of all unique populated values for each field, while the INC_POP_VALS column lists any field values that are not included in the field's domain.

9.2 Parameters

The tool has 2 parameters:

- 1. Source Geodatabase (data type: Workspace/File Geodatabase) The path to the file geodatabase to be searched for indeterminant/missing data.
- 2. Target Geodatabase (data type: Workspace/File Geodatabase) The path to the file geodatabase with which the source geodatabase will be compared against.

9.3 How to Use

9.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Search for Indeterminant Data' script tool to open (Fig. 9.1).

Figure 9.1: Opening the Delete Duplicate Features tool

9.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to compare the 'Example.gdb' against the 'CIP.gdb' (Fig. 9.2). The fields can be derived directly from the Feature Class by using the drop-down menu.

Figure 9.2: Opening the Delete Duplicate Features tool

9.4 Run the Tool and View Results

While we run the tool, we can see view the messages of the tool, giving a listing of the fields being searched for indeterminant data with the counts of indeterminant values (Fig. 9.3).

Figure 9.3: Opening the Delete Duplicate Features tool

After the tool has run, we can inspect the output tables within the 'Example.gdb' geodatabase (Fig. 9.4). Opening the CIP_MissingFDS table, we see that the Example geodatabase have no missing Feature Datasets 9.5).

Figure 9.4: Opening the Delete Duplicate Features tool

Figure 9.5: Opening the Delete Duplicate Features tool

Examining the MissingFCs table, we see that the Example geodatabase has one Feature Class, RoadSeg_L from the Transportation Feature Dataset, missing when compared with the CIP geodatabase 9.6).

ı	OBJECTID *	FC_MISSING	FDS	INSTALLATION
•	1 Roa	dSeg_L	Transportation	Example

Figure 9.6: Opening the Delete Duplicate Features tool

We can look at the MissingFLD table to see which fields are missing from each Feature Class from the target geodatabase that are included in the source geodatabase 9.7).

JECTID *	FDS	FC	FIELD_MISSING	INSTALLATION
1	Auditory	NoiseZone_A	SHAPE	Example
2	Auditory	NoiseZone_A	CREATEDATE	Example
3	Auditory	NoiseZone_A	CREATOR	Example
4	Auditory	NoiseZone_A	EDITOR	Example
5	Auditory	NoiseZone A	DATEEDITED	Example
6	Cadastre	Installation A	SHAPE	Example
7	Cadastre	Installation_A	CREATEDATE	Example
8	Cadastre	Installation_A	CREATOR	Example
9	Cadastre	Installation_A	EDITOR	Example
10	Cadastre	Installation_A	DATEEDITED	Example
11	Cadastre	LandParcel A	SHAPE	Example
12	Cadastre	LandParcel_A	CREATEDATE	Example
13	Cadastre	LandParcel A	CREATOR	Example
14	Cadastre	LandParcel A	EDITOR	Example
15	Cadastre	LandParcel A	DATEEDITED	Example
16	Cadastre	Outgrant_A	SHAPE	Example
	Cadastre	Outgrant_A	CREATEDATE	Example
18	Cadastre	Outgrant_A	CREATOR	Example
	Cadastre	Outgrant_A	EDITOR	Example
20	Cadastre	Outgrant_A	DATEEDITED	Example
	Cadastre	Site_A	SHAPE	Example
1,000	Cadastre	Site_A	CREATEDATE	Example
- 1111	Cadastre	Site_A	CREATOR	Example
	Cadastre	Site_A	EDITOR	Example
	Cadastre	Site_A	DATEEDITED	Example
	Cadastre	Site_P	SHAPE	Example
	Cadastre	Site_P	CREATEDATE	Example
	Cadastre	Site_P	CREATOR	Example
	Cadastre	Site P	EDITOR	Example
	Cadastre	Site_P	DATEEDITED	Example
	environmentalCulturalResources	HistoricDistrict A	SHAPE	Example
	environmentalCulturalResources	HistoricDistrict_A	CREATEDATE	Example
	environmentalCulturalResources	HistoricDistrict A	CREATOR	Example
	environmentalCulturalResources	HistoricDistrict_A	EDITOR	Example
	environmentalCulturalResources	HistoricDistrict A	DATEEDITED	Example
	environmentalNaturalResources	Wetland_A	SHAPE	Example
	environmentalNaturalResources	Wetland_A	CREATEDATE	Example
	environmentalNaturalResources	Wetland A	CREATOR	Example
	environmentalNaturalResources	Wetland_A	EDITOR	Example
	environmentalNaturalResources	Wetland A	DATEEDITED	Example
	environmentalRestoration	EnvRemediationSite A	SHAPE	Example
	environmentalRestoration	EnvRemediationSite A	CREATEDATE	Example
	environmentalRestoration	EnvRemediationSite A	CREATOR	Example
	environmentalRestoration	EnvRemediationSite A	EDITOR	Example
	environmentalRestoration	EnvRemediationSite_A	DATEEDITED	Example
	RealProperty	Building A	SHAPE	Example
	RealProperty	Building_A Building_A	REALPROPERTYUNIQUEID	Example
	RealProperty	Building_A Building_A	CREATEDATE	Example
	RealProperty		CREATOR	
49	RealProperty	Building_A	CREATOR	Example

Figure 9.7: Opening the Delete Duplicate Features tool

Figure 9.8: Opening the Delete Duplicate Features tool

Chapter 10

Summarise Indeterminant/Missing Data Tables

10.1 Overview

This tool takes the 4 tables created with the Search for Missing and Indeterminant Data tool and creates an outbook Excel Workbook which includes the following sheets:

- 1. **Summary_by_FC** gives the counts and percentages of 'Other', 'Null', and 'TBD' cells by Feature Class, as well as the total counts and percentages of indeterminate (Other + Null + TBD) and determinate cells (not Other, Null, or TBD),
- 2. **Summary_by_Field** gives the same statistics as the Summary_by_FC sheet, but broken down further by Feature Class Fields,
- 3. **Empty Feature Classes** gives the standard Feature Classes in the comparison geodatabase not included in the input geodatabase(i.e.: Feature Classes included in comparison geodatabases)
- 4. Indeterminate_Overview, gives :
 - The total count of feature classes that are empty
 - The total number of standard feature classes that are empty
 - The source geodatabase installation name
 - The total number of missing feature classes
 - The total number of missing feature datasets
 - The total number of empty fields from empty feature classes
 - The total number of empty fields from non-empty feature classes.

10.2 Parameters

The inputs required for this tool to work are the 4 output tables created with the "Search for Indeterminate Data" script tool from one comparison geodatabase (**repeat:** ensure these are all from the same comparison geodatabase [i.e.: [comparison GDB] is the same across all four input tables]):

- comparisonGDBname_MissingFDS Table (data type: GDB Table) The path to the MissingFDS table created with the Search for Missing and Indeterminant Data tool for one 'target' geodatabase.
- 2. comparisonGDBname_MissingFCs (data type: GDB Table) The path to the MissingFCs table created with the Search for Missing and Indeterminant Data tool for one 'target' geodatabase.

- 3. comparisonGDBname_MissingFields (data type: GDB Table) The path to the Missing-Fields table created with the Search for Missing and Indeterminant Data tool for one 'target' geodatabase
- 4. comparisonGDBname_MissingData (data type: GDB Table) The path to the MissingData table created with the Search for Missing and Indeterminant Data tool for one 'target' geodatabase.
- 5. Output Excel File' (data type: .xlsx file) The path to the output Excel Workbook to save the summary sheets to.

10.3 Disclaimer

This script tool requires a few non-standard ArcGIS 10.x Python modules: numpy and pandas. To install these modules for use in ArcGIS, you can download and install the modules using the commands "pip install pandas" and "pip install numpy."

To do this, follow these instructions:

- 1. Press the windows key on your keyboard
- 2. Type "cmd" to open the command prompt window
- 3. Set your working directory as your ArcGIS Python scripts directory. This is typically located at "C:/Python27/ArcGIS[versionNumber]/Scripts. Do this by typing 'cd C:/Python27/ArcGIS[versionNumber]/Scripts' and clicking enter). Replace [versionNumber] with you ArcGIS version number (e.g.: if you are running ArcMap10.6, input: "C:/Python27/ArcGIS10.6/Scripts"
- 4. Type 'pip install numpy' and press enter, then type 'pip install pandas' and press enter. If all goes well, you will have these modules successfully installed for use in ArcGIS' Python distribution

10.4 How to Use

10.4.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Summarise Indeterminant Data Tables' script tool to open (Fig. 10.1).

10.4. HOW TO USE 43

Figure 10.1: Opening the DSummarise Indeterminant Data Tables tool

10.4.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to summarise the Indeterminant Data Tables created in the Example.gdb that was created when comparing against the CIP geodatabase. Again, be sure that these input tables all derive from the same target geodatabase!

Figure 10.2: Setting the parameters for the Summarise Indeterminant Data Tables tool

10.5 Run the Tool and View Results

While we run the tool, we can see view the messages of the tool (Fig. 10.3).

Figure 10.3: Opening the Delete Duplicate Features tool

After the tool has run, we can open the output Excel Workbook we specified to see the 4 output sheets: Summary_by_FC, Summary_by_Field, Empty Feature Classes, and Indeterminate_Overview (Fig. 10.4).

Figure 10.4: Opening the Delete Duplicate Features tool

Viewing the Summary_by_FC sheets gives us a comprehensive overview of the counts and percentages of

indeterminant Attribute Table cells by indeterminant data type (i.e.: Null, TBD, and Other) (Fig. 10.5).

В	C	D	E	F	G	Н	1	J	K	i i	M	N
INSTALLATIO	FDS	FC =	OTHER_PCT -	TBD_PCT ~	NULL_PCT ~	OTHER_CNT -	TBD_CNT -	NULL_CNT -	DETERMINED_PCT -	UNDETERMINED_PCT -	DETERMINED_CNT -	UNDETERMINED_CNT ~
Example	Auditory	NoiseZone_A	0	0	61.36363636	0	0	675	38.63636364	61.36363636	425	675
Example	Cadastre	Installation_A	0	9.302325581	20.93023256	0	4	9	69.76744186	30.23255814	30	13
Example	Cadastre	LandParcel_A	0.218000623	0	39.45811274	14	0	2534	60.32388664	39.67611336	3874	2548
Example	Cadastre	Outgrant_A	0	0	39.64646465	0	0	157	60.35353535	39.64646465	239	157
Example	Cadastre	Site_A	0	0	30.5555556	0	0	121	69.4444444	30.5555556	275	121
Example	Cadastre	Site_P	0	0	37.14285714	0	0	143	62.85714286	37.14285714	242	143
Example	MilitaryRangeTraining	ImpactArea_A				0	0	0			0	0
Example	MilitaryRangeTraining	MilQuantityDistCombinedArc_A				0	0	0			0	0
Example	MilitaryRangeTraining	MilRange_A	0	0	47.43589744	0	0	222	52.56410256	47.43589744	246	222
Example	MilitaryRangeTraining	MilTrainingLoc_A	0	1.203208556	42.9144385	0	9	321	55.88235294	44.11764706	418	330
Example	Pavements	PavementBranch_A	2.050919378	0	51.71751869	406	0	10238	46.23156193	53.76843807	9152	10644
Example	Pavements	PavementSection_A	0.042225168	0.003927923	60.80620612	43	4	61922	39.14764079	60.85235921	39866	61969
Example	Planning	AirAccidentZone_A	0	11.11111111	44.4444444	0	32	128	44.4444444	55.5555556	128	160
Example	Planning	LandUse_A	0.091168091	0	56.17094017	8	0	4929	43.73789174	56.26210826	3838	4937
Example	RealProperty	Building_A	4.396282102	5.050438307	23.94828422	1996	2293	10873	66.60499537	33.39500463	30240	15162
Example	RealProperty	Tower_P	0	23.80952381	33.33333333	0	10	14	42.85714286	57.14285714	18	24
Example	Recreation	GolfCourse_A				0	0	0			0	0
Example	Recreation	RecArea_A	2.203856749	3.03030303	38.29201102	8	11	139	56.4738292	43.5261708	205	158
Example	Security	AccessControl_L	0	5.870674986	33.39478162	0	414	2355	60.73454339	39.26545661	4283	2769
Example	Security	AccessControl_P	0	6.936316695	30.36144578	0	403	1764	62.70223752	37.29776248	3643	2167
Example	Security	Fence_L	0	3.417366947	51.75070028	0	1464	22170	44.83193277	55.16806723	19206	23634
Example	Transportation	Bridge_A	2	26	44	2	26	44	28	72	28	72
Example	Transportation	Bridge_L				0	0	0			0	0
Example	Transportation	RailSegment_L	0	16.32653061	55.10204082	0	104	351	28.57142857	71.42857143	182	455
Example	Transportation	RailTrack_L	0	2.076606521	56.97689142	0	656	17999	40.94650206	59.05349794	12935	18655
Example	Transportation	RoadCenterline_L	0	10.1017112	46.9259724	0	3784	17578	42.9723164	57.0276836	16097	21362
Example	Transportation	RoadPath_L				0	0	0			0	0
Example	Transportation	VehicleParking_A	0.008324546	7.045341029	42.87973805	3	2539	15453	50.06659637	49.93340363	18043	17995
Example	WaterWays	DocksAndWharfs_A	0	5.405405405	45.94594595	0	8	68	48.64864865	51.35135135	72	76
Example	environmentalCulturalResources	HistoricDistrict_A				0	0	0			0	0
Example	environmentalNaturalResources	Wetland_A	0	8.676067372	52.31100666	0	443	2671	39.01292597	60.98707403	1992	3114
Example	environmentalRestoration	EnvRemediationSite_A	0	0	60	0	0	2040	40	60	1360	2040

Figure 10.5: Opening the Delete Duplicate Features tool

The Summary_by_Field provides provides a breaks down of the Summary_by_FC table by field (Fig. 10.6).

В	C	D	E	F	G	н	1	J	K	L	М	N	0
INSTALLATION *	FDS	▼ FC	▼ FIELD ▼	OTHER_PC -	TBD_PC ~	NULL_PC ~	OTHER_CN >	TBD_CN ×	NULL_CN ~	DETERMINED_PC >	UNDETERMINED_PC >	DETERMINED_CN >	UNDETERMINED_CN -
Example	Auditory	NoiseZone_A	AREASIZE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	AREASIZEUOM	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	DATACOLLECTION	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	DATASOURCE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	DATASTEWARD	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	DURATION	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	ENDTIME	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	LATITUDE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	LONGITUDE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	MEDIALINK	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	METANOTES	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	MGRSCENTROID	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	NARRATIVE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	NOISEMETRIC	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	NOISESOURCETYPE	0	0	80	0	0	20	20	80	5	20
Example	Auditory	NoiseZone_A	OWNER	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	PERIMETERSIZE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	PERIMETERSIZEUOM	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	RECURRENCE	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	SCENARIO	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	SDSFEATUREDESCRIPTION	0	0	92	0	0	23	8	92	2	23
Example	Auditory	NoiseZone_A	SDSFEATURENAME	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	SDSID	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	SDSMETADATAID	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	STARTTIME	0	0	100	0	0	25	0	100	0	25
Example	Auditory	NoiseZone_A	STUDYTYPE	0	0	80	0	0	20	20	80	5	20
Example	Auditory	NoiseZone_A	TARGETDATE	0	0	100	0	0	25	0	100	0	25
Evample	Auditon	MairaZana A	70NELADEL	n	n	40	n	n	10	50	40	10	10

Figure 10.6: Opening the Delete Duplicate Features tool

The Empty Feature Classes sheet provides a listing of the Feature Classes included in the Example.gdb that are empty, as well as the empty fields from those empty feature classes (Fig. 10.7).

В	С		D	E		
FDS	FC	~	INSTALLATIO	TOTAL_EMPTY_FIELD ▼		
MilitaryRangeTraining	ImpactArea_A		Example	35		
MilitaryRangeTraining	MilQuantityDistCombine	dArc_A	Example	36		
Recreation	GolfCourse_A		Example	35		
Transportation	Bridge_L		Example	52		
Transportation	RoadPath_L		Example	36		
environmentalCulturalResources	HistoricDistrict_A		Example	39		

Figure 10.7: Opening the Delete Duplicate Features tool

Lastly, the Indeterminate_Overview sheet provides a general overview of missing and indeterminant data at a geodatabase level (Fig. 10.8).

Figure 10.8: Opening the Delete Duplicate Features tool

Chapter 11

Batch Export Metadata

11.1 Overview

This tool provides an automated method to export metadata for each Feature Dataset and Feature Class (within Feature Datasets) in the input geodatabase, by exporting each item's metadata to an .xml file to an output directory, as specified. This tool allows you to specify a metadata translator, by defaulting using one of ArcGIS standard translators "ARCGIS2FGDC.xml" (typically located at "C:/Program Files (x86)/ArcGIS/Desktop10.6/Metadata/Translator", but you may specify any translator. If the source metadata is a Feature Dataset, the output .xml file is named after the Feature Dataset. Alternatively, the output .xml metadata for Feature Classes are exported with the Feature Dataset name prepended before the Feature Class name.

These output .xml files can easily be edited in batch using the Batch Metadata Modifier Tool developed out of the University of Idaho's Interactive Numeric & Spatial Information Data Engine (INSIDE) geospatial data clearinghouse.

11.2 Parameters

The tool has 3 parameters:

- 1. Input Geodatabase (data type: Workspace/File Geodatabase) The input geodatabase to export Feature Dataset/Feature Class metadata from.
- 2. **Metadata Translator (data type: .xml file)** The metadata translator to be used to create output .xml metadata files.
- 3. Output Directory (data type: Folder) The folder within which to write output .xml metadata files.

11.3 How to Use

11.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Batch Export Metadata to Directory' script tool to open (Fig. 11.1).

Figure 11.1: Opening the Delete Duplicate Features tool

11.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to export metadata for all Feature Datasets and all Feature Classes (within those Feature Datasets) within the Example.gdb geodatabase using the default ARCGIS2FGDC metadata translator that comes with ArcGIS to a new directory called 'metadata' (Fig. 11.2).

Figure 11.2: Opening the Delete Duplicate Features tool

11.4 Run the Tool and View Results

After running the tool, we can view the output metadata files inside the output directory specified (Fig. 11.3). For Feature Classes, the output .xml files has the associated Feature Dataset name prepended to the filename, while Feature Dataset metadata file is simply the name of the Feature Dataset.

Nan	ne	Date modified	Туре	Size
	Auditory	5/3/2018 10:28 AM	XML Document	1 KB
	Auditory_MilFlightTrack_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_A	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_P	5/3/2018 10:29 AM	XML Document	5 KB
	Auditory_NoiseIncident_P	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseReceiver_P	5/3/2018 10:29 AM	XML Document	5 KB
	Auditory_NoiseSource_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseSource_P	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseZone_A	5/3/2018 10:29 AM	XML Document	7 KB
	Auditory_NoiseZone_L	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre	5/3/2018 10:29 AM	XML Document	1 KB
	Cadastre_Disposal_A	5/3/2018 10:29 AM	XML Document	7 KB
	Cadastre_DisposalRODParcel_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_DoDFormerlyUsedDefense_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_DoDFormerlyUsedDefense_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_ExternalPropertyInterest_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_ExternalPropertyInterest_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_Installation_A	5/3/2018 10:29 AM	XML Document	7 KB
	Cadastre_Installation_P	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_LandParcel_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_Outgrant_A	5/3/2018 10:29 AM	XML Document	6 KB
9	Cadastre_Outgrant_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_Site_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_Site_P	5/3/2018 10:29 AM	XML Document	5 KB
	DEMOLISHED	5/3/2018 10:30 AM	XML Document	1 KB
	DEMOLISHED_AccessControl_L_31	5/3/2018 10:31 AM	XML Document	6 KB
	DEMOLISHED_AccessControl_P_31	5/3/2018 10:32 AM	XML Document	5 KB
	DEMOLISHED_AirfieldLighting_P_31	5/3/2018 10:32 AM	XML Document	8 KB
	DEMOLISHED_AirfieldObs_P_31	5/3/2018 10:31 AM	XML Document	8 KB
	DEMOLISHED_AirfieldSurface_A_31	5/3/2018 10:32 AM	XML Document	6 KB
9	DEMOLISHED Building A 31	5/3/2018 10:31 AM	XML Document	7 KB

Figure 11.3: Opening the Delete Duplicate Features tool

Chapter 12

Batch Import Metadata

12.1 Overview

This tool provides an automated method to import metadata for each Feature Dataset and Feature Class (within Feature Datasets) in the input geodatabase, following the output .xml file naming convention created with the Batch Export Metadata tool. This tool allows you to specify a metadata translator, by defaulting using one of ArcGIS standard translators "ARCGIS2FGDC.xml" (typically located at "C:/Program Files (x86)/ArcGIS/Desktop10.6/Metadata/Translator", but you may specify any translator. If the source metadata is a Feature Dataset, the output .xml file is named after the Feature Dataset. Alternatively, the output .xml metadata for Feature Classes are exported with the Feature Dataset name prepended before the Feature Class name.

12.2 Parameters

The tool has 3 parameters:

- 1. Input Geodatabase (data type: Workspace/File Geodatabase) The input geodatabase to export Feature Dataset/Feature Class metadata from.
- 2. **Metadata Translator (data type: .xml file)** The metadata translator to be used to create output .xml metadata files.
- 3. Output Directory (data type: Folder) The folder within which to write output .xml metadata files.

12.3 How to Use

12.3.1 Begin by opening the toolbox

Navigate to the location of the script toolbox, then right-click the 'Batch Export Metadata to Directory' script tool to open (Fig. 12.1).

12.3. HOW TO USE 51

Figure 12.1: Opening the Delete Duplicate Features tool

12.3.2 Fill out the parameters

Next, fill out the parameters for the tool. Here, we want to export metadata for all Feature Datasets and all Feature Classes (within those Feature Datasets) within the Example.gdb geodatabase using the default ARCGIS2FGDC metadata translator that comes with ArcGIS to a new directory called 'metadata' (Fig. 12.2).

Figure 12.2: Opening the Delete Duplicate Features tool

12.4 Run the Tool and View Results

After running the tool, we can view the output metadata files inside the output directory specified (Fig. 12.3). For Feature Classes, the output .xml files has the associated Feature Dataset name prepended to the filename, while Feature Dataset metadata file is simply the name of the Feature Dataset.

	Name	Date modified	Туре	Size
	Auditory	5/3/2018 10:28 AM	XML Document	1 KB
	Auditory_MilFlightTrack_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_A	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseAbatementFeature_P	5/3/2018 10:29 AM	XML Document	5 KB
	Auditory_NoiseIncident_P	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseReceiver_P	5/3/2018 10:29 AM	XML Document	5 KB
	Auditory_NoiseSource_L	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseSource_P	5/3/2018 10:29 AM	XML Document	6 KB
	Auditory_NoiseZone_A	5/3/2018 10:29 AM	XML Document	7 KB
	Auditory_NoiseZone_L	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre	5/3/2018 10:29 AM	XML Document	1 KB
	Cadastre_Disposal_A	5/3/2018 10:29 AM	XML Document	7 KB
	Cadastre_DisposalRODParcel_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_DoDFormerlyUsedDefense_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_DoDFormerlyUsedDefense_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_ExternalPropertyInterest_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_ExternalPropertyInterest_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_Installation_A	5/3/2018 10:29 AM	XML Document	7 KB
	Cadastre_Installation_P	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_LandParcel_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_Outgrant_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_Outgrant_P	5/3/2018 10:29 AM	XML Document	5 KB
	Cadastre_Site_A	5/3/2018 10:29 AM	XML Document	6 KB
	Cadastre_Site_P	5/3/2018 10:29 AM	XML Document	5 KB
	DEMOLISHED	5/3/2018 10:30 AM	XML Document	1 KB
	DEMOLISHED_AccessControl_L_31	5/3/2018 10:31 AM	XML Document	6 KB
	DEMOLISHED_AccessControl_P_31	5/3/2018 10:32 AM	XML Document	5 KB
	DEMOLISHED_AirfieldLighting_P_31	5/3/2018 10:32 AM	XML Document	8 KB
	DEMOLISHED_AirfieldObs_P_31	5/3/2018 10:31 AM	XML Document	8 KB
-	DEMOLISHED_AirfieldSurface_A_31	5/3/2018 10:32 AM	XML Document	6 KB
19	DEMOLISHED Building A 31	5/3/2018 10:31 AM	XML Document	7 KB

Figure 12.3: Opening the Delete Duplicate Features tool