Reg. No	7

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Fifth Semester

18ECC204J - DIGITAL SIGNAL PROCESSING

(For the candidates admitted during the academic year 2018-19 to 2021-22)

OPEN BOOK EXAMINATION

	OLDIADOOK	EMAMMATION	0	~ 4 *	+17	
Note		* Jāyi r Lev	18 ECC 3	204	JU	
i	 i. Specific approved THREE text books (Printed or ii. Handwritten class notes (certified by the faculty handwritten) 	photocopy) recommended to andling the course / Head of	or the course f the Departr	nent).		
	e: 3 Hours	deline, i de la Mercy i en en en Contrar	, i=i 'tig	Max.	Mark	s: 100
i.	Answer FIVE Q	uestions		Mark	s RI	СО
S 16	(Question No. 3 is co			12		
	 a. A digital communication link carries binary-c input signal x_a(t)=3cos600πt + 2cos1800πt The link is operated at 10,000 bits/s, and each different voltage levels. What are the sampling What is the Nyquist rate for the signal x_a(t)? W 	h input sample is quantize frequency and the folding	d into 1024	18-	3 .	1
	discrete-time signal x(n)? [12 Marks]					
ij	M. An analog electrocardiogram (ECG) signal con What is the Nyquist rate for this signal? Suppose samples/s, what is the highest frequency that sampling rate? [6 Marks]	e we sample this signal at a	rate of 250	6	3	
بننر ۱۰	2.000	'?) Phase overlapping) Spectral overlapping		1	1	1
iii.	(0) 4 2 4 5 5 5 5	resented as) 1.76+6.02b) 3.76+6.02b	9 ,	1	1	1 .
بغر 2	a. Obtain the direct form I and direct form II real	ization for the following sy	stem [12	18	3	2
i).	Marks] $y(n) = \frac{5}{8}y(n-1) - \frac{1}{16}y(n-2) + x(n) + \frac{3}{4}x(n-1)$	$-1)+\frac{1}{8}x(n-2)$, 14 pr			
ii).	b. The DFT of a sequence $x(n)$ that has $N=2^m$ can Algorithm A computes the DFT by direct eval Algorithm B implements DIT-FFT and takes 57 shortest sequence N such that Algorithm B runs fa	an be calculated using two luation and takes N^2 second V $\log_2 N$ seconds to run.	nds to run. What is the	6	3	2
• ii,	If $X(k)$ is the DFT of a sequence $x(n)$ then DFT of $(A) (1/2)[X(k)+X^*(N-k)]$ (B)			1	2	2
iii.		3,4,4,3,2,1} is		1	2	2
3 y.	A. Compute the 8-point DFT of the sequence x(r FFT algorithm. Defend that X(k) and X(N-k) are	$n=n+1$ for $0 \le n \le 7$ by using	g the DIT- ne obtained	18	4	2
ii)	DFT coefficients. [12 Marks] No. Perform the circular convolution of the two a series {1,2,3,4} using the concentric circle method. [6 Marks]	sequences $x_1(n) = \{2, 1, 2, 1\}$		6	4	2
مينز	Select the value of twiddle factor $\mathbf{W_8}^3$	Police Control		1	1	2
•	(A) 1 (B)	0.707+j0.707	K 182			

(D)-j

28NF5-18ECC204J

(C) -0.707-j0.707

Page 1 of 2

