EE101: Op Amp circuits (Part 4)

M. B. Patil mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Half-wave rectifier

Consider a diode rectifier:

Half-wave rectifier

Consider a diode rectifier:

If $V_i \gg V_D$, the diode drop can be ignored.

However, if V_i is small, e.g., $V_i=0.2\sin\omega t\ V$, then the circuit does not rectify, and $V_o(t)=0\ V$.

Half-wave rectifier

Consider a diode rectifier:

If $V_i \gg V_D$, the diode drop can be ignored.

However, if V_i is small, e.g., $V_i=0.2\sin\omega t\ V$, then the circuit does not rectify, and $V_o(t)=0\ V$.

Precision rectifier circuits overcome this drawback.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

Further,
$$V_+ - V_- = rac{V_{o1}}{A_V} = rac{V_o + 0.7\,V}{A_V} pprox 0\,V o V_o = V_i$$
 .

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

Further,
$$V_+ - V_- = \frac{V_{o1}}{A_V} = \frac{V_o + 0.7 \, V}{A_V} \approx 0 \, V \rightarrow V_o = V_i$$
.

This situation arises only if $i_D>0$ (since the diode can only conduct in the forward direction), i.e., $V_o>0 \rightarrow V_i=V_o>0$ V.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

Further,
$$V_+ - V_- = \frac{V_{o1}}{A_V} = \frac{V_o + 0.7 \, V}{A_V} \approx 0 \, V \rightarrow V_o = V_i$$
.

This situation arises only if $i_D>0$ (since the diode can only conduct in the forward direction), i.e., $V_o>0 \rightarrow V_i=V_o>0$ V.

(ii) D is not conducting $\rightarrow V_o = 0 \ V$.

(ii) D is not conducting $\rightarrow V_o = 0 V$.

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

(ii) D is not conducting $\rightarrow V_o = 0 V$.

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0 \ V$. Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to -Vsat.

(ii) D is not conducting $\rightarrow V_o = 0 V$.

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0 \ V$. Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to -Vsat.

* The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).

* The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).

- * The circuit is called a "superdiode" (i.e., a diode with zero $V_{\rm on}$).
- * Note that the Op Amp needs to come out of saturation when V_i changes from negative to positive values. This is a relatively slow process, and it limits the speed of this circuit.

- * The circuit is called a "superdiode" (i.e., a diode with zero $V_{\rm on}$).
- * Note that the Op Amp needs to come out of saturation when V_i changes from negative to positive values. This is a relatively slow process, and it limits the speed of this circuit.

SEQUEL file: precision_half_wave_1.sqproj

(i)
$$D_1$$
 conducts: $V_- = V_+ = 0~V$, $V_{o1} = -V_{D1} \approx -0.7~V$.

(i) D_1 conducts: $V_- = V_+ = 0 \ V$, $V_{o1} = -V_{D1} \approx -0.7 \ V$. D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0 \ V$.

(i) D_1 conducts: $V_- = V_+ = 0~V$, $V_{o1} = -V_{D1} \approx -0.7~V$. D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0~V$.

(i) D_1 conducts: $V_-=V_+=0~V$, $V_{o1}=-V_{D1}\approx -0.7~V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). \rightarrow $i_{R2}=0,\ V_o=V_-=0\ V$.

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 \ V$.

- (i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.
 - D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2}=0,\ V_o=V_-=0\ V$.
 - $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.
- (ii) D_1 is off; this will happen when $V_i < 0 \ V$.

- (i) D_1 conducts: $V_-=V_+=0~V$, $V_{o1}=-V_{D1}pprox -0.7~V$.
 - D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2}=0,\ V_o=V_-=0\ V$.

 $i_{R1}=i_{D1}$ which can only be positive $\Rightarrow V_i>0$ V .

(ii) D_1 is off; this will happen when $V_i < 0 \ V$.

In this case, D_2 conducts and closes the feedback loop through R_2 .

- (i) D_1 conducts: $V_- = V_+ = 0 \ V$, $V_{o1} = -V_{D1} \approx -0.7 \ V$.
 - D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0$ V.

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 V$.

In this case, D_2 conducts and closes the feedback loop through R_2 .

$$V_o = V_- + i_{R2}R_2 = 0 + \left(\frac{0 - V_i}{R_1}\right)R_2 = -\frac{R_2}{R_1}V_i$$
.

* Note that the Op Amp does not enter saturation since a feedback path is available for $V_i > 0$ V and $V_i < 0$ V.

* Note that the Op Amp does not enter saturation since a feedback path is available for $V_i > 0$ V and $V_i < 0$ V.

SEQUEL file: precision_half_wave.sqproj

The diodes are now reversed.

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

SEQUEL file: precision_half_wave_2.sqproj

AM demodulation using a peak detector

AM demodulation using a peak detector

 $* \ \ \ \text{charging through superdiode, discharging through resistor}$

AM demodulation using a peak detector

- * charging through superdiode, discharging through resistor
- $\boldsymbol{\ast}$ The time constant (RC) needs to be carefully selected.

AM demodulation using a peak detector

- * charging through superdiode, discharging through resistor
- * The time constant (RC) needs to be carefully selected. SEQUEL file: super_diode.sqproj

Full-wave precision rectifier

Full-wave precision rectifier

(SEQUEL file: precision_full_wave.sqproj)

Full-wave precision rectifier

(SEQUEL file: precision_full_wave.sqproj)

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

For D to turn on, $V_A = V_{\sf on} \approx 0.7 \ V \rightarrow V \equiv V_{\sf break} = \frac{R}{R'} \left(V_0 + V_{\sf on} \right) + V_{\sf on}$.

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

For D to turn on, $V_A = V_{\sf on} \approx 0.7 \, V \rightarrow V \equiv V_{\sf break} = \frac{R}{R'} \left(V_0 + V_{\sf on} \right) + V_{\sf on} \, .$

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

For D to turn on, $V_A = V_{\text{on}} \approx 0.7 V \rightarrow V \equiv V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$.

$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R} \right] + (\text{constant})$$

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

For D to turn on, $V_A = V_{\text{on}} \approx 0.7 V \rightarrow V \equiv V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$

When D is on,

$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R} \right] + (\text{constant})$$

i.e.,
$$V = (R_0 \parallel R) i + (constant)$$
.

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}.$$

For D to turn on, $V_A = V_{\sf on} \approx 0.7 \ V \rightarrow V \equiv V_{\sf break} = \frac{R}{R'} \left(V_0 + V_{\sf on} \right) + V_{\sf on} \, .$

When D is on,

$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R} \right] + (\text{constant})$$

i.e.,
$$V = (R_0 \parallel R) i + (constant)$$
.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor. SEQUEL file: ee101_wave_shaper.sqproj

Wave shaping with diodes: spectrum

Wave shaping with diodes: spectrum

