1) Capture an IP packet on Wireshark, what is the value of each of the header fields. Explain why the value is what it is.

Internet Protocol Version 4 (IPv4)

- Version: 4
 - This indicates that the packet is using IPv4.
- Header Length: 20 bytes (0101)
 - The length of the header is (5 * 4) 20 bytes .
- **Differentiated Services Field**: 0x00 (DSCP: CS0, Not-ECT)
 - o Default DSCP value, indicating best-effort service.
- Total Length: 203
 - o The total length of the IP packet, including header and data, is 203 bytes.
- **Identification**: 0x5b64 (23396)
 - o Unique identifier for the packet used in reassembly of fragmented packets.
- Flags: 0x0 (Don't fragment)
 - o Indicates fragmentation control. 0x0 means no fragmentation.
- Fragment Offset: 0
 - The position of the fragment in the original packet. 0 indicates it's not fragmented.
- Time to Live (TTL): 1
 - The packet can only make 1 more hop before being discarded. Often set low for multicast packets.
- Protocol: UDP (17)

- o The encapsulated protocol is UDP.
- Header Checksum: 0xabd8 (validation disabled)
 - o Used for error-checking the header.
- Source Address: 192.168.1.67
 - o The IP address of the device sending the packet.
- Destination Address: 239.255.255.250
 - o The IP address of the device receiving the packet.
- 2) On Leetcode, find a problem that can be solved with Dijkstra's Algorithm.

					Page	-
Hence, the	e sharte	st Doth	from	pertex	A to	F 50
	1020	-) 2 -> s) E	-> ·E]		18
10	2010				N. N. S.	
Y 3 8 2) 1	Jan 12		<i>*</i>			
	1 1	1				

3) On Leetcode, find a problem that can be solved with Bellman-Ford Algorithm and solve it.

Page No.
Date: / /

3rd Iteration:

shortest path:

$$G - 3$$