Result 6.2. (Independent-tests)

(1) 王智冠 $\overline{X}_1 \sim N_p(\mu_1, \frac{\Sigma}{n_1})$, $\overline{X}_2 \sim N_p(\mu_2, \frac{\Sigma}{n_2})$ of $\overline{X}_1 \perp X_2$, $\overline{X}_1 - \overline{X}_2 \sim N_p(\mu_1 - \mu_2, \Sigma(\frac{1}{n_1} + \frac{1}{n_2}))$ 한편, $(n_1 - 1)S_1 \sim W$ ishart, $(n_1 - 1, \Sigma)$, $(n_2 - 1)S_2 \sim W$ ishart, $(n_2 - 1, \Sigma)$

(2) $(n_1-1)S_1 + (n_2-1)S_2 \sim \text{Wishart}_p(n_1+n_2-2, \Sigma) \circ \text{let}.$ $\overline{X}_1 - \overline{X}_2 \sim N_p(M_1-M_2, \Sigma(\frac{1}{n_1}+\frac{1}{n_2})) \circ |\Sigma_1, (\overline{X}_1-\overline{X}_2)\bot\{n_1-1)S_1+(n_2-1)S_2}$ $\text{The first Hotelling's } T^2 = \{(\overline{X}_1-\overline{X}_2)-(M_1-M_2)\}^T(\frac{1}{n_1}+\frac{1}{n_2})S_p^{-1}\{(\overline{X}_1-\overline{X}_2)-(M_1-M_2)\},$ $S_p = \frac{(n_1-1)S_1+(n_2-1)S_2}{n_1+n_2-2} \text{ or } T^2 \sim \frac{(n_1+n_2-2)p}{n_1+n_2-p-1} \Gamma_{P_1}n_1+n_2-p-1} \circ |\varepsilon|.$

Result 6.3.

6.2. 尺型数

6.3. R 卫二 智

6.4. R 3c &

6.5. 尺型型

6.6. $X_2 := \begin{pmatrix} 3 & 3 \\ 1 & 6 \\ 2 & 3 \end{pmatrix}$ $\hat{X}_2 := \begin{pmatrix} 1 & -1 \\ -1 & 2 \\ 0 & -1 \end{pmatrix}$ $\hat{X}_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (a) $X_3 := \begin{pmatrix} 2 & 3 \\ 5 & 1 \\ \frac{3}{2} & 3 \end{pmatrix}$ $\hat{X}_3 := \begin{pmatrix} -1 & 1 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$ $\hat{X}_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $S_2 = \frac{1}{2} \hat{X}_2^T \hat{X}_2 = \begin{pmatrix} 1 & -3/2 \\ -3/2 & 3 \end{pmatrix}$ $S_3 = \begin{pmatrix} 2 & -4/3 \\ -4/3 & 4/3 \end{pmatrix}$ $S_{pooled} = \frac{1}{5} (2S_2 + 3S_3) = \begin{pmatrix} 8/5 & -7/5 \\ -7/5 & 2 \end{pmatrix}$

(b) $T^2 = (2-3 + -2) \left(\frac{7}{12} S_{pooled}\right)^2 \left(\frac{2-3}{4-2}\right) = \frac{|20}{31} < 45$. R 3 could 4 45 yet $\frac{202}{31}$ Ho $\frac{125}{31}$.

(C) \mathcal{M}_{1} - \mathcal{M}_{31} \in (2-3) \pm 6.450/4/ \approx (-8.52, 5.48) \mathcal{M}_{2} - \mathcal{M}_{2} \in (4-2) \pm 7.245688 \approx (-5.76, 9.24)

6.7. H₀: $\mathcal{L}_1 = \mathcal{L}_2 = 1$ 가건강 시행시 검정통계용 16 > 6 = 임계값이으로 귀위선 기강. 선정경합: $Sp'(\overline{X}_1 - \overline{X}_2) = \begin{pmatrix} 0.0017 \\ 0.0026 \end{pmatrix}$ 6.13.

(a) (1st variable)

(b)
$$\begin{pmatrix} 6 & 4 & 8 & 2 \\ 3 & -3 & 4 & -4 \end{pmatrix} = \text{mean} + \text{FI eff} + \text{F2 eff} + \text{err}$$

 $= \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 4 & 4 \\ -1 & -1 & -1 & -1 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 4 & -3 \\ 1 & -2 & 4 & -3 \end{pmatrix}$
 $= \begin{pmatrix} 0 & 1 & -1 & 0 \\ 2 & -1 & 0 & -1 \end{pmatrix}$ $S_{\text{fot}} = 220$ $S_{\text{F2}} = 90$
 $S_{\text{mean}} = 12$ $S_{\text{Res}} = 14$

6.14.
(a) (1st variable)
(14 6 8 16