머신러닝 개요

Lecture 8: Convolution Neural Networks

College of Information and Electronic Engineering

Kyung Hee University

Prof. Wonha Kim

(wonha@khu.ac.kr)

Contents

- 1. Convolution
 - Receptive field
 - Convolution for Network
- 2. Advantage of Convolution Neural Net (CNN)
- 3. CNN Forward computing—Toy Example
- 4. CNN Training
 - Backward propagation
 - Toy Example
- 5. Exemplary Applications of CNN
- 6. Prevailing CNNS
 - Image Net Large-Scale Visual Recognition Challenges (ILSVRC)
 - AlexNet, VGGNet, Google Net, ResNet
 - Current Status

Convolution for Network (1/8): Receptive field

- Human visual neuron responds to stimuli in a receptive field (= restricted local region).
- Human visual perception responds to local information (not individual pixels)
- Statistically, the pixels are correlated with neighbor pixels.

1-D Convolution

• 2-D Convolution

s(j	$s(j,i) = z \circledast u = \sum_{y=-(h-1)/2}^{(h-1)/2} \sum_{x=-(h-1)/2}^{(h-1)/2} z(j+y,i+x)u(y,x)$																
	0	1	2	3	4	5	6	7		F	e	at	ur	e	Ma	ap	
0	2	2	2	2	2	1	1	1		-	-	-	-	-	-	-	-
1	2	2	2	2	2	1	1	1	Kernel	-	0	0	0	-3	-3	0	-
2	2	2	2	2	2	1	1	1		-	0	0	0	-3	-3	0	-
3	2	2	2	2	2	1	1	1	-1 0 1 -1 0 1	-	0	7	7	-2	-2	0	-
4	2	2	2	9	9	9	9	9		-	0	14	14	-1	-1	0	-
5	2	2	2	9	9	9	9	9	-1 0 1	-	Ō	21	21	0	0	0	-
6	2	2	2	9	9	9	9	9		-	0	21	21	0	0	0	-
7	2	2	2	9	9	9	9	9		-	-	-	-	-	-	-	-

Convolution for Network (2/8): 2-D convolution

2D- Convolution

- Pixel value at
$$(i,j)$$
: $I(i,j)$

- Pixel value at (i,j) :
$$I(i,j)$$

- Convolution window (Filter): $\mathbf{W} = \begin{bmatrix} W[-M,-N] & \dots & W[-M,N] \\ & \vdots & & \\ & \dots & W[0,0] & \dots \\ & \vdots & & \\ & W[M,-N] & \dots & W[M,N] \end{bmatrix}$

- Multi-channel (M-channel) convolution : $z(i,j) = \sum_{i=1}^{n} \{I^{i}[i-m,j-n] \circledast W^{i}[m,n]\}$

Repeated for every pixel

value

2	-D	inp	ut					
3	2	1	5					
5	1	2	1					
1	2	3	0	(*				
0	2	1	2					
(4x4)								

3	2	1	5	3 × 1+ 2 × 1+ 1 × 1
5	1	2	1	3 × 1+ 2 × 1+ 1 × 1 + 5 × 1+ 1 × 1+ 2 × 1
1	2	3	0	+ 1 × 1+ 2 × 1+ 3 × 1
0	2	1	2	= 20

:	_				
	3	2	1	5	5 × 1+ 1 × 1+ 2 × 1
	5	1	2	1	+ 1 × 1+ 2 × 1+ 3 ×
	1	2	3	0	+ 0 × 1+ 2 × 1+ 1 ×
	0	2	1	2	= 17

3	2	1	5	
5	1	2	1	
1	2	3	0	
0	2	1	2	=

0		•		- 1/	ZU	17
					17	14
3	2	1	5		(2	
5	1	2	1		(2)	(2)
1	2	3	0			
)	1		1			

Convolution for Network (3/8): Zero padding/ Bias

Padding extends an image with zeros: Compensating the input size reduction at boundaries.

Bias Addition

Convolution for network (4/8): Multi-kernel structure

- Different kernels extract different features
- In actual applications, 10~100 kernels are used.
- **Example : Edge detection**
- Vertical edge extraction: $\begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$, Horizontal edge extraction: $\begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

Convolution for Network (5/8): Stride

- Stride defines interval of convolution. When stride is k, convolution is performed at every k sample. In case of image, feature map is down sized to $1/k^2$.
 - Stride K=2

2-D data (ex images)

Feature map is down-sampled.

Stride=2

Example with Stride K=2

	7				_						
3	2	1	0	5					-		
5	1	2	3	1		2	0	1		20	4.0
1	2	3	2	0	*	1	1	0	=	20	16
0	2	1	1	2		0	2	1			
1	3	2	0	4							

3	2	1	0	5					1	
5	1	2	3	1		2	0	1		20 16
1	2	3	2	0	*	1	1	0	=	20 10 15 12
0	2	1	1	2		0	2	1		13 12
1	3	2	0	4						

Convolution for network (6/8): Tensor Convolution

Tensor Convolution

Convolution for Network (7/8): Pooling

- Pooling: Reducing feature dimension
- Max pooling (Pooling size: 2x2, Pooling stride: 2)

- Average pooling (Pooling size: 2x2, Pooling stride: 2)

- Pooling & Convolution
- Convolution changes channel (feature map) number

 Pooling does not changes channel (feature map) number

Convolution for network (8/8): Block Presenting

Typical CNN structure

Example: MNIST recognition

Advantages of Convolution Neural Network (1/2)

Convolutional Network

- Advantages of CNN
- Good for lattice (image and speech) data: Translation equivalent.
- Receptive field well reflects human visual system. So, CNN outperforms the conventional neural network (NN)
- Variable size input data can be processed.
- Less memory for parameters than conventional neural network(NN).
- Less calculation and faster convergence than conventional neural network(NN).

Network

Advantage of Convolution Neural Network (2/2)

- Weight sharing
- Kernel is weight
- All nodes use the same kernel.
- Number of weights is same as kernel size.
- The complexity of model is greatly reduced.

- Parallel and Distributed structure
- Each node can be calculated independently. So it's a parallel structure.
- Nodes affect the whole nodes through passing layers. So, it is distributed structure.
- Good for GPU architectures.

Example -Detecting image direction (1/3)

- Detecting image direction (More sophisticated example)
- 4x4 gray scale image, 4-directions
- Label 4 directions with binary feature vector
- Convolution : size = (3x3), stride = 1
- Pooling: Max pooling, size = (2x2), stride = 2
- Activation Function : Relu, Soft-max

0.1 | 0.2 | 0.9 | 0.8

(4x4)

Example: Detecting image direction (2/3)

- 1st Layer (=Convolution Layer)
- Padding : zero-padding,
- Convolution : size = (3x3), stride = 1
- Pooling: max pooling, size = (2x2), stride = 2

X-	pa	dd	lin	g
	_ ~			=

0	0	0	0	0	0
0	0.1	0.0	0.9	0.9	0
0	0.3	0.2	1.0	0.9	0
0	0.0	0.1	0.8	1.0	0
0	0.1	0.2	0.9	0.8	0
0	0	0	0	0	0

(6x6)

V_{3x3}^1	b_{1x}^1

-0.38	-0.80	0.07	0.02
-0.34	-0.43	0.98	(1x1)
-0.62	-0.29	-0.94	, ,
	•		

2							
0	0	0	0				
0	0.06	0	0				
0	0	0	0				
0.18	0.76	0	0				
(4x4)							

71

- Summation of matrix and scalar
- Change scalar to the same size matrix

Example: Detecting image direction (3/3)

- 2nd Layer (=Fully connected Layer)
- All nodes are interconnected.
- So, it is called as "Fully connected layer".

Backward Propagation of CNN (1/8)

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial w} = ? \qquad \frac{\partial f}{\partial z} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial z} = ? \quad b = \frac{\partial f}{\partial a}$$

$$\left\{ \frac{\partial f}{\partial w_{pq}} \right\} = \left\{ \frac{\partial f}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial w_{pq}} \right\} \quad \left\{ \frac{\partial f}{\partial z_{kl}} \right\} = \left\{ \frac{\partial f}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial z_{kl}} \right\} \quad \{b\} = ?$$

$$a_{ij} = \sum_{p=0}^{L-1} \sum_{q=0}^{L-1} w_{pq} \cdot z_{(i+p-L/2)(j+q-L/2)} = w_{00} \cdot z_{(i-L/2)(j-L/2)} + w_{01} \cdot z_{(i-L/2)(j-L/2+1)}$$

$$\cdots + w_{\left(\frac{L}{2}\frac{L}{2}\right)} \cdot z_{ij} + \cdots + w_{(L-1)(L-1)} \cdot z_{(i+L/2-1)(j+L/2-1)}$$

zero padding:

$$z_{kl} = 0$$
 for $-\frac{L}{2} < k < 0, (N-1) < k < N + \frac{L}{2}, -\frac{L}{2} < l < 0, (M-1) < l < M + \frac{L}{2}$

$$\begin{split} \frac{\partial a_{ij}}{\partial w_{pq}} &= \begin{cases} z_{(i+p-L/2)(j+p-L/2)} & \text{for } 0 \leq p, \ q \leq (L-1) \\ 0 & \text{otherwise} \end{cases} \\ \frac{\partial a_{ij}}{\partial z_{kl}} &= \\ \begin{cases} w_{(k-i-L/2)(l-j-L/2)} & \text{for } i-\frac{L}{2} \leq k \leq (i+\frac{L}{2}-1), \ j-\frac{L}{2} \leq l \leq (j+\frac{L}{2}-1) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

CNN Backward Propagation (2/8): $\frac{\partial f}{\partial w}$

$$\begin{split} \frac{\partial f}{\partial w_{pq}} &= \frac{\partial f}{\partial \mathbf{a}} \cdot \frac{\partial \mathbf{a}}{\partial w_{pq}} = \frac{\partial f}{\partial a_{00}} \cdot \frac{\partial a_{00}}{\partial w_{pq}} \cdot \dots + \frac{\partial f}{\partial a_{ij}} \cdot \frac{\partial a_{ij}}{\partial w_{pq}} \cdot \dots + \frac{\partial f}{\partial a_{(N-1)(M-1)}} \cdot \frac{\partial a_{(N-1)(M-1)}}{\partial w_{pq}} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \frac{\partial f}{\partial a_{ij}} \cdot \frac{\partial a_{ij}}{\partial w_{pq}} \\ &= \begin{cases} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \frac{\partial f}{\partial a_{ij}} \cdot z_{(i+p-\frac{L}{2})(j+p-\frac{L}{2})} & \text{for } 0 \leq p, \ q \leq (L-1) \\ 0 & \text{otherwise} \end{cases} = \frac{\partial f}{\partial \mathbf{a}} \circledast \mathbf{z}^{pq} \end{split}$$

Backward Propagation of CNN (3/8) : $\frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial z_{kl}} = \frac{\partial f}{\partial \mathbf{a}} \cdot \frac{\partial \mathbf{a}}{\partial z_{kl}} = \frac{\partial f}{\partial a_{00}} \cdot \frac{\partial a_{00}}{\partial z_{kl}} \cdot \dots + \frac{\partial f}{\partial a_{ij}} \cdot \frac{\partial a_{ij}}{\partial z_{kl}} \cdot \dots + \frac{\partial f}{\partial a_{(N-1)(M-1)}} \cdot \frac{\partial a_{(N-1)(M-1)}}{\partial z_{kl}} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \frac{\partial f}{\partial a_{ij}} \cdot \frac{\partial a_{ij}}{\partial z_{kl}} \\
= \begin{cases}
\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \frac{\partial f}{\partial a_{ij}} \cdot w_{(k-i+\frac{L}{2})(l-j+\frac{L}{2})} & \text{for } i - \frac{L}{2} \le k \le (i+\frac{L}{2}-1), \quad j - \frac{L}{2} \le l \le (j+\frac{L}{2}-1) \\
0 & \text{otherwise}
\end{cases} = \frac{\partial f}{\partial \mathbf{a}} \cdot \mathbf{w}^{\text{rotate}}$$

Backward Propagation of CNN (4/8)

- Backward Propagation of Convolution Layer
- Convolution Layer with bias term

- In two-dimension,

$$\frac{\partial f}{\partial b} = \sum_{i,j} \frac{\partial f}{\partial a_{i,j}} \qquad b = b - \eta \frac{\partial f}{\partial b}$$

- Backward Propagation of Pooling Layer
- Pooling(size : 2x2, stride : 2)

 $\frac{\partial f}{\partial \boldsymbol{a}}$ ∂f $\overline{\partial z_{01}}$ ∂z_{00} $\overline{\partial z_{01}}$ ∂z_{00} ∂f $\overline{\partial z_{00}} \quad \overline{\partial z_{01}}$ ∂z_{00} ∂z_{01} ∂z_{00} ∂f ∂z_{10} ∂z_{10} ∂z_{11} Max ∂f **Pooling** $\overline{\partial} z_{11}$ (n/2xn/2)(nxn)

Backward Propagation of CNN (5/8): Example

- Detecting image direction (More sophisticated example)
- 4x4 gray scale image, 4-directions
- Label 4 directions with binary feature vector
- Convolution : size = (3x3), stride = 1
- Pooling: Max pooling, size = (2x2), stride = 2
- Activation Function : Relu, Soft-max
- Learning Rate : $\eta = 0.5$

 0.0
 0.1
 0.8
 1.0

 0.1
 0.2
 0.9
 0.8

Backward Propagation of CNN (6/8): Example

2nd Layer (Fully Connected Layer)

Backward Propagation of CNN (7/8): Example

1st Layer (Convolution Layer)

Relu

 $\frac{\partial f}{\partial \mathbf{Z}^1}$

0.1	0.0	0.9	0.9
0.3	0.2	1.0	0.9
0.0	0.1	0.8	1.0
0.1	0.2	0.9	0.8

$$\frac{\partial f}{\partial \boldsymbol{a}^{1}} = \frac{\partial f}{\partial \boldsymbol{z}^{1}} \circ (\boldsymbol{a}^{1} > 0) = \begin{bmatrix} 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.59 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ -0.09 & -0.09 & 0.00 & 0.00 \end{bmatrix}$$

∂f

	-0.59	-0.59	0.53	0.53
$\frac{\partial f}{\partial f}$ –	-0.59	-0.59	0.53	0.53
$\overline{\partial z^1}$ –	-0.09	-0.09	0.79	0.79
	-0.09	-0.09	0.79	0.79

Pooling

0.53				_
0.53	4024	-0.59	0.53	
0.79	4 x A	-0.09	0.79	
0.79				

-0.59

-0.09

0.53 0.79 -0.59

-0.09 | 0.79

0.53

W_{3x3}^{1}						
-0.80	0.37					
-0.36	1.32					
-0.26	-0.70					
	-0.80 -0.36					

	W_{3x}^1	:3	
	-0.80		
-0.34	-0.43	0.98	-n
-0.62	-0.29	-0.94	- 1

	ô	$\overline{a^1}$			
<	0.00	0.00	0.00	0.00	
	0.00	-0.59	0.00	0.00	l.
	0.00	0.00	0.00	0.00	(
	-0.09	-0.09	0.00	0.00	

0.9
0.9
1.0
0.8
(

V-chifting

 a^{1}

 $\frac{\partial f}{\partial \boldsymbol{a^1}}$

$$\begin{vmatrix}
b_{1x1}^{1} & b_{1x1}^{1} \\
0.40 & = 0.02
\end{vmatrix} - \eta \times \sum \frac{\partial f}{\partial \mathbf{a}^{1}}$$

$$0.02 - 0.5 \times (-0.59 - 0.09 - 0.09)$$

Backward Propagation of CNN (8/8): Example

Training: 7 iteration

Prediction(y)

Iteration	1	2	3	4	5	6	7	t
Predic- tion	0.23 0.29 0.14 0.34	0.03 0.50 0.07 0.40	0.00 0.97 0.01 0.02	0.00 0.98 0.00 0.02	0.00 0.98 0.00 0.01	0.00 0.99 0.00 0.01	0.00 0.99 0.00 0.01	0 1 0

Loss Decreasing

Applications of CNN (1/3): Auto-encoder/decoder

- The aim is to learn a representation for a set of data.
- In auto-encoder, y = g(f(x)) where f: encoder, g: decoder, y = x or x'.
- In under-complete, the representation feature map is smaller than input map.
- In over-complete, the representation feature map is larger than input map.
 - Under-complete

• Over-complete

Ex) Image compression(under-complete)

Applications of CNN (2/3): Face recognition

Deep Learning learns layers of features

Applications of CNN (3/3): Speech Recognition

Speech Recognition

Abdel-Hamid, Ossama, et al. "Convolutional neural networks for speech recognition." IEEE/ACM Transactions on audio, speech, and language processing 22.10(2014): 1533-1545.

Prevailing CNNS (1/9): Image Net Large-Scale Visual Recognition Challenge(ILSVRC)

- Image Net Large-Scale Visual Recognition Challenge(ILSVRC)
 - ImageNet DB: Via internet, collect $500 \sim 1000$ images for 20,000 categories via the Internet.
 - Human labels via Amazon MTurk. (14 million labeled images, 20k classes.)
 - Challenge by classification, detection and positioning for 1000 categories. Error rate is confirmed by the 1st and 5st error rates.
 - Training images: 1.2 million, Valid images: 50,000, Test images: 150,000
 - By revealing structure and weights, the winning CNN becomes a widely used standard neural network.

Prevailing CNNS (2/9): AlexNet (by Alex Krizhevsky)

- 5 CNN layers+3 FC (fully connected) layers
- Node distribution at 8 layers: 290400-186624-64896-43264-4096-4096-1000
- Weights: 2x10⁶ at CNN layers and 6.5x107
- FC layers have 30 times more parameters. Future CNNs were developed to reduce parameters of FC layers
- Parallel processing by GPU
- ReLu, Regularization, Data Augmentation (2048 times), Dropout
- Reduce 2~3% error rate via Ensemble method

Prevailing CNNS (3/9): VGG-16/19 (by Oxford University)

- Network architecture is simple. So, it is considered as a basic CNN architecture and frequently used.
- Small kernel size: 3x3, Convolution layer: $8\sim16$ (more deep layers than AlexNet).
 - ⇒ More layers with small kernels produce better performances.
- VGG-16: 16 Conv layers [3 x (56x56x256) + 3 x (28x28x512) + 3 x (14x14x512)] + 3 FC layers
- VGG-19: 19 Conv layers [4 x (56x56x256) + 4 x (28x28x512) + 4 x (14x14x512)] + 3 FC layers

Prevailing CNNS (4/9): 1x1 Kernel

- Network in Network (NIN) [Lin 2014]
- Reducing dimension :

Ex: $8x(m*n) \Rightarrow 4x(m*n)$ (using four 8*1*1 kernels)

2.2*0.6 + 4.0*0.8 +0.6*0.4 + 1.2*0.1+0.0*0.0+2.3*0.2 +0.0*(-1.0)+0.2*1.0 =5.54

- With non-linear activation functions (ex: ReLU), more distinct, discriminative feature maps can be generated.
- VGGNet tried to use, bud did not use. GoogLeNet positively adopts 1x1 kernels.

Prevailing CNNS (5/9): GoogLe Net (1/2)

-Inception Module: NIN

Prevailing CNNS (6/9): GoogLe Net (2/2)

- 9 inception modules
- 27 layers: 22 layers having parameters + 5 layers without parameters
- 1 fully connected layer: 1 million parameters (1% of VGGNet)

Prevailing CNNS (7/9): ResNet -(by Microsoft-China) (1/2)

- Convolution Network : $\mathbf{F}(\mathbf{x}) = \mathbf{\tau}(\mathbf{x} \circledast \mathbf{w}_1) \circledast \mathbf{w}_2 + \mathbf{y} = \mathbf{\tau}(\mathbf{F}(\mathbf{x}))$
- Residual Network : $\mathbf{F}(\mathbf{x}) = \mathbf{\tau}(\mathbf{x} \circledast \mathbf{w}_1) \circledast \mathbf{w}_2 + \mathbf{y} = \mathbf{\tau}(\mathbf{F}(\mathbf{x}) + \mathbf{x}) \times \mathbf{short} \, \mathbf{cut}$

Short-cut(or skip connection)

Through short-cut, some information skip hidden layers

-Its short-cut (or skip connection) solves vanishing gradient problem at Deep Neural Network.

Back propagate Gradient : $\frac{\partial \mathcal{E}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \frac{\partial \mathbf{x}_L}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \frac{\partial}{\partial \mathbf{x}_l} \sum_{i=l}^{L-1} \mathbf{F}(\mathbf{x}_i)$ As layer deepens, more likely to be 0. => Vanishing momentum.

Residual Gradient : $\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=1}^{L-1} \mathbf{F}(\mathbf{x}_{i}) \right)$ Almost zero possibility to be -1. => Prevent vanishing momentum.

Prevailing CNNS (8/9): ResNet (2/2)

- Due to short-cut, the network layer number can be 152.
- 3*3 Kernels are used. (same as in VGGNet)
- Not use FC. Use global average pooling. (Not same as in VGGNet)
- Use batch normalization, Not use dropout (Not same as in VGGNet)
- Example: 3*3 kernel, 34 layers

Prevailing CNNS (9/9): Current Status

Classification challenge

Person

Car