Optimization in Machine Learning

Univariate optimization Brent's method

Learning goals

- Quadratic interpolation
- Brent's procedure

Similar to golden ratio procedure but select x_{new} differently: x_{new} as minimum of fitted parabola through

$$(x_{\text{left}}, f_{\text{left}}), (x_{\text{best}}, f_{\text{best}}), (x_{\text{right}}, f_{\text{right}})$$

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x_{hest} . Right: New interval.

Similar to golden ratio procedure but select x_{new} differently: x_{new} as minimum of fitted parabola through

$$(x_{\text{left}}, f_{\text{left}}), (x_{\text{best}}, f_{\text{best}}), (x_{\text{right}}, f_{\text{right}})$$

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x_{best} . Right: New interval.

Similar to golden ratio procedure but select x_{new} differently: x_{new} as minimum of fitted parabola through

$$(x_{\text{left}}, f_{\text{left}}), (x_{\text{best}}, f_{\text{best}}), (x_{\text{right}}, f_{\text{right}})$$

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x_{best} . Right: New interval.

Similar to golden ratio procedure but select x_{new} differently: x_{new} as minimum of fitted parabola through

$$(x_{\text{left}}, f_{\text{left}}), (x_{\text{best}}, f_{\text{best}}), (x_{\text{right}}, f_{\text{right}})$$

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x_{best} . Right: New interval.

Similar to golden ratio procedure but select x_{new} differently: x_{new} as minimum of fitted parabola through

$$(x_{\text{left}}, f_{\text{left}}), (x_{\text{best}}, f_{\text{best}}), (x_{\text{right}}, f_{\text{right}})$$

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x_{hest} . Right: New interval.

QUADRATIC INTERPOLATION COMMENTS

× × ×

- Quadratic interpolation **not robust**. The following may happen:
 - Algorithm suggests same x_{new} in each step
 - x_{new} outside of search interval
 - Parabola degenerates to line and no real minimum exists
- Algorithm must then abort, finding a global minimum is not guaranteed

BRENT'S METHOD

- Brent's algorithm Brent 1973 alternates between golden ratio search and quadratic interpolation as follows:
 - Quadratic interpolation step acceptable if:
 - (i) x_{new} falls within $[x_{\text{left}}, x_{\text{right}}]$
 - (ii) x_{new} sufficiently far away from x_{best}

(Heuristic: Less than half of the movement of step before last)

- Otherwise: proposal via golden ratio
- Benefit: fast convergence (quadratic interpolation), unstable steps stabilized by golden ratio search
- Convergence guaranteed if function f has local min
- Used in R-function optimize()

EXAMPLE: MLE POISSON

- Poisson density: $f(k|\lambda) := \mathbb{P}(x = k) = \frac{\lambda^k \cdot \exp(-\lambda)}{k!}$
- Negative log-likelihood for n samples:

$$-\ell(\lambda, \mathcal{D}) = -\log \prod_{i=1}^n f(x^{(i)}|\lambda) = -\sum_{i=1}^n \log f(x^{(i)}|\lambda)$$

GR and Brent converge to global min at $x^* \approx 1$ But GR needs ≈ 45 iters, Brent only ≈ 15 for same tolerance

