WEALTH TAXATION VERSUS CAPITAL INCOME TAXATION

Mehmet Ayaz

University of Munich

Jan 22, 2020 Public Economics Workshop

Introduction Motivation

Taxing the flow vs. taxing the stock

- In capital income tax regime: $a_i + ra_i \cdot (1 \tau_k)$
- In wealth tax regime: $(1+r)a_i \cdot (1-\tau_a)$

$$\implies \tau_a = \frac{r\tau_k}{1+r}$$

But!

The equivalence depends on homogeneous return rates.

Introduction Simple example

	Capital In	come Tax	Wealth Tax		
	Fred	Mike	Fred	Mike	
	$r_F=0.2$	$r_M=0$	$r_F=0.2$	$r_M=0$	
Wealth	€1000	€1000	€1000	€1000	
Income	€200	€0	€200	€0	
Tax rate	$\tau_k = \frac{\in 5}{\in 20}$	$\frac{0}{00} = 25\%$	$\tau_a = \frac{\in 50}{\in 220}$	$\frac{0}{100} = 2.3\%$	
Tax liability	€50	€0	€27	€23	
Net return	15%	0%	17.3%	-2.3%	
Wealth ratio	$\frac{\text{€}1150}{\text{€}1000} = 1.15$		$\frac{\text{€}1173}{\text{€}977} = 1.20$		

Introduction Research questions

- 1 What are the effects of a small change in capital income tax rate or wealth tax rate in a general equilibrium setting?
- What happens if a government decides to completely switch the way it taxes capital?

Outline

Introduction

Model

Incidence of taxes

Numerical simulation

Model Demographics

Overlapping generations model with 2 periods

- Young supply one unit of labor inelastically.
 - Labor productivity, θ_i
- Old produce differentiated intermediate goods.
 - ullet Entrepreneurial productivity, z_i

Lifetime utility: $u(c_1) + \beta u(c_2)$

Model Production

Intermediate production ...

- uses capital;
- depends on entrepreneurial productivity.

$$x_i = z_i k^{\gamma}$$

Quality capital:
$$Q = \left(\int_{\mathcal{I}} x_i^\mu di\right)^{1/\mu}$$

Final production ...

- uses quality capital and labor;
- is competitive.

$$Y = Q^{\alpha} L^{1-\alpha}$$

Model Bond market

Intra-period borrowing and lending

- Lending by less productive
- Borrowing by more productive

Endogenous interest rate

$$\int_{\mathcal{I}} k_i(r) di = \int_{\mathcal{I}} a_i(r) di$$

Model Equilibrium

Individuals make two decisions:

- Portfolio choice
- 2 Savings choice

An equilibrium is reached when ...

- individuals maximize their lifetime utility;
- final good market clears;
- bond market clears.

Incidence of taxes General equilibrium

Integral equations

Incidence of taxes Solution

Proposition

If the cross elasticities are small enough, the changes in individual behavior in response to a small change in tax rates are given by

$$d\widehat{a}(i) = \sum_{n=0}^{\infty} d\widehat{a_n}(i)$$
 $d\widehat{x}(i) = \sum_{n=0}^{\infty} d\widehat{x_n}(i)$

- \blacksquare $d\widehat{a_0}(i)$ and $d\widehat{x_0}(i)$ are partial equilibrium effects.
- Further terms correspond to a longer channel.

▶ Illustration

Numerical simulation Aggregate outcomes

 A revenue neutral switch from capital income taxation to wealth taxation

▶ Parameters

		Baseline	Experiment
Wealth tax	$ au_a$	_	19.9%
Capital income tax	$ au_{k}$	25.0%	_
Total savings	A	0.060	0.060
Quality capital	Q	0.080	0.079

Numerical simulation Welfare(I)

Figure: Change in welfare along labor productivity

Numerical simulation Welfare(II)

Figure: Change in welfare along entrepreneurial productivity

Conclusion

- Capital income taxation is not the only way of taxing capital.
- Replacing capital income taxation with wealth taxation increases inequality.
- Borrowing constraints are crucial in determining efficiency gains of wealth taxation.

Incidence of taxes Integral equations

$$\begin{split} \boldsymbol{d} \widehat{\boldsymbol{a}}(\boldsymbol{i}) &= \varepsilon_{a,1-\tau_a}(\boldsymbol{i}) \boldsymbol{d} (\widehat{1-\tau_a}) \\ &+ \xi_{a,A}(\boldsymbol{i}) \int_{\mathcal{I}} \frac{\boldsymbol{a}(\boldsymbol{i}')}{A} \boldsymbol{d} \widehat{\boldsymbol{a}}(\boldsymbol{i}') \boldsymbol{d} \boldsymbol{i}' + \xi_{a,Q}(\boldsymbol{i}) \int_{\mathcal{I}} \left(\frac{\boldsymbol{x}(\boldsymbol{i}')}{Q} \right)^{\mu} \boldsymbol{d} \widehat{\boldsymbol{x}}(\boldsymbol{i}') \boldsymbol{d} \boldsymbol{i}' \end{split}$$

$$\begin{split} \boldsymbol{d}\widehat{\boldsymbol{x}}(\boldsymbol{i}) &= \varepsilon_{\boldsymbol{x},1-\tau_a}(\boldsymbol{i}) \boldsymbol{d}(\widehat{1-\tau_a}) \\ &+ \xi_{\boldsymbol{x},A}(\boldsymbol{i}) \int_{\mathcal{I}} \frac{\boldsymbol{a}(\boldsymbol{i}')}{A} \boldsymbol{d}\widehat{\boldsymbol{a}}(\boldsymbol{i}') \boldsymbol{d}\boldsymbol{i}' + \xi_{\boldsymbol{x},Q}(\boldsymbol{i}) \int_{\mathcal{I}} \left(\frac{\boldsymbol{x}(\boldsymbol{i}')}{Q}\right)^{\mu} \boldsymbol{d}\widehat{\boldsymbol{x}}(\boldsymbol{i}') \boldsymbol{d}\boldsymbol{i}' \end{split}$$

■ Back

Incidence of taxes Higher order effects

Numerical simulation Parameters

Parameter		Value
Quality capital share in final production	α	0.40*
Elasticity of intermediate production	γ	0.88^\dagger
Curvature parameter of quality capital	μ	0.90^{*}
Discount rate	β	0.87^\dagger
Elasticity of intertemporal substitution	σ	0.66^{\dagger}
Labor income tax rate	$ au_l$	$22.4\%^{\ddagger}$
Capital income tax rate	$ au_{m{k}}$	$25.0\%^{\ddagger}$

^{*}Guvenen et al. (2018), †Cagetti and De Nardi (2006), ‡McDaniel (2007)

