Mathematics 2016 (Delhi) Term II

Ans.

[3]

Note: Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. How many terms of the A.P. 27, 24, 21, ... should be taken so that their sum is zero? [2]

Solution: Given, A.P. is 27, 24, 21, ...

We have,
$$a = 27$$
, $d = 24 - 27 = 21 - 24 = -3$

Now, $S_n = 0$

Therefore,

$$S_n = \frac{n}{2} [2a + (n-1)d] = 0$$

$$\Rightarrow \frac{n}{2} [2 (27) + (n-1) (-3)] = 0$$

$$\Rightarrow \qquad 54 - 3n + 3 = 0$$

$$\Rightarrow \qquad 57 - 3n = 0$$

$$\Rightarrow$$
 3 $n = 57$

$$3n = 37$$

$$n = 19$$

Hence, the no. of terms are 19

SECTION - C

18. Solve for x:

$$\frac{x+1}{x+1} + \frac{x-2}{x+2} = 4 - \frac{2x+3}{x-2}; x \neq 1, -2, 2$$

Solution: We have,
$$\frac{x+1}{x-1} + \frac{x-2}{x+2} = 4 - \frac{2x+3}{x-2}$$
;
 $\frac{(x+1)(x+2)+(x-2)(x-1)}{(x-1)(x+2)} = \frac{4(x-2)-(2x+3)}{x-2}$
 $\frac{(x-2)[x^2+x+2x+2+x^2-2x-x+2]}{2x-3} = \frac{[4x-8-2x-3](x^2+x-2)}{2x-3}$
 $\frac{(x-2)(2x^2+4)}{2x^3+4x-4x^2-8} = \frac{2x^3+2x^2-4x-11x^2-11x+22}{2x^3+4x-4x^2-8} = \frac{2x^3+2x^2-4x-11x^2-11x+22}{2x^2+2x-2}$
 $\frac{(x-2)(2x^2+4)}{2x^3+2x-2} = \frac{(x-2)-(2x+3)}{(x-2)(2x+3)}$
 $\frac{(x-2)(2x^2+4)}{2x^3+2x-2} = \frac{(x-2)-(2x+3)}{(x-2)(2x+3)}$
 $\frac{(x-2)(2x+3)}{(x^2+x-2)} = \frac{(x-2)-(2x+3)}{x-2}$
 $\frac{(x-2)(2x+3)}{(x^2+x-2)} = \frac{(x-2)-(2x+3)}{x-2}$
 $\frac{(x-2)(2x+3)}{(x-2)(2x+3)} = \frac{(x-2)-(2x+3)}{x-2}$
 $\frac{(x-2)(2x+3)}{(x-2)} = \frac{(x-2)-(2x+3)}{x-2}$
 $\frac{(x-2)(2$

- 19. Two different dice are thrown together. Find the probability of:
 - (i) getting a number greater than 3 on each die
 - (ii) getting a total of 6 or 7 of the numbers on two

Solution: Total outcomes = $\{(1, 1), (1, 2), (1, 3), (1, 4)$ (1,5), (1,6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

:.

- (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
- (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
- (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
- (6, 1), (6, 2), (6, 3) (6, 4), (6, 5), (6, 6)}
- \Rightarrow Total no. of outcomes = 36
- (i) Let E_1 be the event of getting a number greater than 3 on each die.

Favourable outcomes = $\{(4, 4), (4, 5), (4, 6), (5, 4), (4, 6), (5, 4), (5, 4), (4, 6), (5, 4), (5, 4), (6, 6$ (5,5), (5,6), (6,4), (6,5), (6,6)

No. of favourable outcomes = 9

$$P(E_1) = \frac{9}{96} = \frac{1}{4}$$
 Ans.

(ii) Let E_2 be the event of getting a total of 6 or 7 of the numbers on two dice.

Favourable outcomes = $\{(1, 5), (2, 4), (3, 3), (4, 2$ (5, 1), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

 \Rightarrow No. of favourable outcomes = 11

$$P(E_2) = \frac{11}{36}$$
 Ans.

A right circular cone of radius 3 cm, has a curved surface area of 47.1 cm². Find the volume of the cone. (use $\pi = 3.14$) Solution: Given, radius of right circular cone = 3 cm and, curved surface area = 47.1 cm^2

$$\pi rl = 47.1$$

$$l = \frac{47.1}{3.14 \times 3} = 5 \text{ cm}$$

$$\therefore \qquad h = \sqrt{l^2 - r^2}$$

$$= \sqrt{(5)^2 - (3)^2}$$

$$= \sqrt{25 - 9} = 4 \text{ cm}$$
Now, Volume of cone = $\frac{1}{3} \pi r^2 h$

$$= \frac{1}{3} \times 3.14 \times 3 \times 3 \times 4$$

$$= 37.68 \text{ cm}^3$$
Ans.

SECTION - D

28. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are 60° and 30° respectively. Find the height of the tower.

Solution: Let length of tower is h

In $\triangle ABD$

$$\tan 60^{\circ} = \frac{h}{4}$$
 ...(i)

In $\triangle ABC$

$$\tan 30^\circ = \frac{h}{9}$$

$$\cot (90^\circ - 30^\circ) = \frac{h}{9}$$

$$\cot 60^\circ = \frac{h}{9} \qquad \dots(ii)$$

Multiplying eq. (i) and (ii), we get

$$\tan 60^{\circ}.\cot 60^{\circ} = \frac{h}{4} \times \frac{h}{9}$$

$$1 = \frac{h^2}{36}$$

$$h = 6 \text{ m}$$

Note: In this question, it has not been specified whether two points from tower are taken in same or opposite side we have taken these points on the same side of tower.

480 | Mathematics 2016 (Delhi) Term II

29. Construct a triangle ABC in which BC = 6 cm, AB =5 cm and $\angle ABC = 60^{\circ}$.

Then construct another triangle whose sides are $\frac{3}{4}$

times the corresponding sides of $\triangle ABC$. [4]

Solution: Steps of Construction—

- (i) Draw a line segment BC = 6 cm.
- (ii) Construct $\angle XBC = 60^{\circ}$
- (iii) With B as centre and radius equal to 5 cm draw an arc which intersect XB at A.
- (iv) Join AC. Thus, \triangle ABC is obtained.

(v) Draw D on BC such that
$$BD = \frac{3}{4} BC = \left(\frac{3}{4} \times 6\right)$$

$$cm = \frac{9}{2} cm = 4.5 cm$$

(vi) Draw DE || CA, cutting BA at E.

Then, \triangle BDE is the required triangle similar to \triangle ABC such that each side of \triangle BDE is $\frac{3}{4}$ times the corresponding side of \triangle ABC.

30. The perimeter of a right triangle is 60 cm. It hypotenuse is 25 cm. Find the area of the triangl.

Solution: Given, the perimeter of right tria

and hypotenuse = 25 cm

$$AB + BC + 25 = 60$$
∴
$$AB + BC = 35$$
Now, by pythagoras theorem,
$$(AC)^2 = (AB)^2 + (BC)^2$$

$$(25)^{2} = (AB)^{2} + (BC)^{2}$$

$$AB^{2} + BC^{2} = 625$$

$$(11)$$

we, know that,
$$(a + b)^2 = a^2 + b^2 + 2ab$$

then, $(AB + BC)^2 = (AB)^2 + (BC)^2 + 2AB \cdot BC$
 $(35)^2 = 625 + 2AB \cdot BC$

$$2AB \cdot BC = 1225 - 625$$

$$2AB \cdot BC = 600$$

$$\therefore AB \cdot BC = 300$$

$$\therefore \text{ Area of } \triangle ABC = \frac{1}{2} \times AB \times BC$$

$$= \frac{1}{2} \times 300 = 150 \text{ cm}^2 \text{ Ans.}$$

31. A thief, after committing a theft, runs at a uniform speed of 50 m/ minute. After 2 minutes, a policeman runs to catch him. He goes 60 m in first minute and increases his speed by 5 m/minute every succeeding minute. After how many minutes, the policeman will catch the thief?

Solution: Let total time be *n* minutes

Since policeman runs after two minutes he will catch the thief in (n-2) minutes.

al distance covered by thief = $50 \text{ m/min} \times n \text{ min}$ (50 n) m

Now, total distance covered by the policeman = (60) $+ (60 + 5) + (60 + 5 + 5) + \dots + (n-2)$ terms i.e., $60 + 65 + 70 + \dots + (n-2)$ terms

$$S_{n-2} = \frac{n-2}{2} [2 \times 60 + (n-3) 5]$$

$$\Rightarrow \frac{n-2}{2} [120 + (n-3) 5] = 50n$$

$$\Rightarrow n-2 (120 + 5n - 15) = 100n$$

$$\Rightarrow 120n - 240 + 5n^2 - 10n - 15n + 30 = 100n$$

$$\Rightarrow 5n^2 - 5n - 210 = 0$$

$$\Rightarrow \qquad n^2 - n - 42 = 0$$

$$\Rightarrow n^2 - (7 - 6) n - 42 = 0$$

\Rightarrow n^2 - 7n + 6n - 42 = 0

$$\Rightarrow \qquad n(n-7)+6(n-7)=0$$

$$\Rightarrow n(n-7) + 6(n-7) = 0$$

$$\Rightarrow (n+6)(n-7) = 0$$

$$n = 7$$
 or $n = -6$ (neglect)
Hence, policeman will catch the thief in $(7-2)^{i.e.,5}$

minutes. Ans.