# Coursera IBM Data Science - Capstone Project: Location Value Calculation for Pharmacies in the City of Zurich

# This Notebook is for Marketing Leaders and Investors of the Pharmacy Business.

#### Introduction

Success for pharmacies depends much on their location. The location is the most important factor for the creation of revenue. Here I try to quantify the location value of pharmacies at the City of Zurich. The location value for is among other factors determined by:

- The locations of competitors like other Pharmacies and stores that also sell Parfumes and Cosmetics.
- The locations of enablers like drugstores and cosmetic stores and luxury stores. Foursquare can help analysing location datas for Zurich, because using it not only provides Coordinates of locations, it also helps to visualize the situation on a map. The report and the tool helps to analyze and to understand the current situation for Pharmacies in the City of Zurich. But is is also a useful for future developments. Where should I open a Pharmacy? Where should I close a Pharmacy. Are there Marketing instruments to make situation better? Should we as a chain cooperate with competitor or even buy them? Should we sell stores of focus on other products we sell beside drugs? And so on. One important basis for decision makers are facts, we can identify with the help of Foursquare.

#### **Audience**

This report is useful for the marketing leaders in Pharmacy chains, for risk managers and for all investors of the Pharmacy business. For leaders and decission makers.

### Description of the used data

Foursquare let me help finding places and informations wich are hard to find manually. But with python, some libraries and the great visualizing tool folio I can present the results to everybody. Also I use request for Foursquare Pharmacies and other locations/stores that have an influence on the Pharmacy revenue. I selected

- Pharmacy
- · Perfume Shop
- Medical Supply Store
- Doctor s Office
- Health Beauty Service
- Drugstore
- Cosmetics Shop

I say that all these locations have an impact on the revenue of a Pharmcy in the city. It would be interesting to talk to experts and identify more criteria with impact on city pharmacies.

```
In [1]: import folium
import json
import requests
import pandas as pd
import math
import matplotlib.pyplot as plt
import pyarrow.feather as feather # pip install pyarrow
import numpy as np
import copy
import time
import random
```

2 of 20

```
In [2]: # Function definitions
        def fnc distance(lat1,lng1,lat2,lng2):
            int lat1 = lat1
            int lng1 = lng1
            int lat2 = lat2
            int_lng2 = lng2
            "distance in meters between two points. Input format is lat1,lng1,lat2,lng2"
                        =6371000
                                                     # radius of Earth in meters
            phi 1
                        =math.radians(int_lat1)
            phi_2
                        =math.radians(int_lat2)
            delta_phi =math.radians(int_lat2-int_lat1)
            delta_lambda=math.radians(int_lng2-int_lng1)
                        =math.sin(delta_phi/2.0)**2+math.cos(phi_1)*math.cos(phi_2)*math.sin(del
                        =2*math.atan2(math.sqrt(a),math.sqrt(1-a))
            return (R*c)
        def fnc_force(dist,sign):
            int_distance = abs(dist) # meters
                        = sign
                                    # +1 or -1
            int_sign
            "calculating the force, here in a linear model. Input is distance in meters, sign is
                         = 400 # shops further away than 400 meters have no (zero) influence on
            int force
                       = (int_reach - int_distance ) / int_reach # (700 minus dist)/700
            if int force <= 0:</pre>
                int force =0
            return (int_force*int_sign)
        def fnc_positionvalueof (lat, lng):
            int lat=lat
            int_lng=lng
            sum_force
                          = 0
            for indB in nearby_venues_dotcolor_fix.index:
                                                                         # all colored objects he
                         = nearby_venues_dotcolor_fix['lat'][indB]
                          = nearby_venues_dotcolor_fix['lng'][indB]
                force
                         = 0
                          = +1
                if nearby_venues_dotcolor_fix['dotcolor'][indB] in ['yellow', 'red']:
                    sign = -1
                distance = fnc_distance(lat, lng, latB, lngB)
                       = fnc_force(distance, sign)
                sum_force = sum_force + force
            return (sum_force)
        def get_category_type(row):
            try:
                categories_list = row['categories']
            except:
                categories_list = row['venue.categories']
            if len(categories_list) == 0:
                return None
            else:
```

```
In [3]: # Definitions:
       min lat
                = 47.355
                          # Below, lower border
                 = 47.385  # Top, upper border
       max lat
                 = 8.515  # Left border
       min_lng
       max_lng = 8.560  # Right border

stp_lat = 0.0002  # 0.001 = 35 seconds, 0.0005 = 1 min, 15 seconds; 0.0003=3 Minutes
       # Calculations:
       cnt_lat = (min_lat + max_lat) /2 # Center Latutude = Average Latitude
       cnt lng
                 = (min_lng + max_lng) /2 # Center Longitude= Average Longitude
       0.0880
                                                                           0.0625
       cal_radius = fnc_distance(cnt_lat,cnt_lng,min_lat,min_lng) # in Meters
       meters_wide= abs(int(round(fnc_distance(min_lat,0,max_lat,0),0))) # in Meters
       meters_high= abs(int(round(fnc_distance(0,min_lng,0,max_lng),0))) # in Meters
       meters_lat = abs(int(round(fnc_distance(cnt_lat,cnt_lng,cnt_lat+1,cnt_lng ),0)))
       meters_lng = abs(int(round(fnc_distance(cnt_lat,cnt_lng,cnt_lat ,cnt_lng+1),0)))
       latlng_prop= meters_lat/meters_lng # 1.476536357359
                                                       # 0.001476536357359112
               = stp_lat * latlng_prop
       stp lng
       grid_lat = fnc_distance (cnt_lat,cnt_lng, cnt_lat+stp_lat ,cnt_lng
                                                                             ) # result i
       grid_lng = fnc_distance (cnt_lat,cnt_lng, cnt_lat ,cnt_lng+stp_lng) # result i
       grid_diff = abs(grid_lat - grid_lng)
       print('The Zurich Rectangle is', meters_wide, 'Meters wide and', meters_high,'Meters hig
       print('1 Latitude has a Length of
print('1 Longitude has a Length of
                                                 :', meters_lat,'Meters')
       print('Grid Difference Lat Lng in Millimeters :', round(grid_diff*1000,3))
                                                 :', round(stp_lat,6))
       print('step stp_lat
       The Zurich Rectangle is 3336 Meters wide and 5004 Meters high.
       1 Latitude has a Length of : 111195 Meters 1 Longitude has a Length of : 75308 Meters
```

1 Longitude has a Length of : 75308 Meters
Latitude per Longitude Meter Proportion: 1.476536357359112
Grid in Meters Latitude : 22.239
Grid in Meters Longitude : 22.239
Grid Difference Lat Lng in Millimeters : 0.021

Grid Difference Lat Lng in Millimeters : 0.021 step stp\_lat : 0.0002 Step stp\_lng : 0.000295

Show a map of Zurich:

In [4]: locationmap = folium.Map(location=[cnt\_lat, cnt\_lng], zoom\_start=13) # a Lower number sh
folium.CircleMarker([min\_lat, max\_lng], popup='<i>Corner</i>', tooltip='Corner Bottom Ri
folium.CircleMarker([max\_lat, max\_lng], popup='<i>Corner</i>', tooltip='Corner Top Right
folium.CircleMarker([min\_lat, min\_lng], popup='<i>Corner</i>', tooltip='Corner Bottom Le
folium.CircleMarker([max\_lat, min\_lng], popup='<i>Corner</i>', tooltip='Corner Top Left'



In [5]: CLIENT\_ID = 'ZIVV2XBGULB4IKC2SFA330T2WXMMAYEUNEMKP5NBZCSWL12U' # your Foursquare ID
CLIENT\_SECRET = 'IAIN50B2CYZ44STUMX0PDCKIMRTJ40X3NUKEPA001U0XSY2M' # your Foursquare Sec
VERSION = '20190425' # Foursquare API version 20190425 20180605

Foursquare access is defined.

Foursquare has maybe 200 sort of locations defined. I select here the important ones for the project and I give them colors:

- Red is for locations with a negative impact on Pharmacies
- Yellow is for Pharmacies
- Green is for locations with a positive impact on Pharmacies

```
In [6]: data = [
                                 a = [
  ['4bf58dd8d48988d10f951735', 'Pharmacy' ,'yellow'],
  ['52f2ab2ebcbc57f1066b8b23', 'Perfume Shop' ,'red' ],
  ['58daa1558bbb0b01f18ec206', 'Medical Supply Store' ,'red' ],
  ['4bf58dd8d48988d177941735', 'Doctor s Office' ,'green' ],
  ['54541900498ea6ccd0202697', 'Health Beauty Service','green' ],
  ['5745c2e4498e11e7bccabdbd', 'Drugstore' ,'green' ],
  ['4bf58dd8d48988d10c951735', 'Cosmetics Shop' ,'green' ],
                       ]
                       # Create the pandas DataFrame
                       df_stores = pd.DataFrame(data, columns = ['categoryId', 'categoryname', 'dotcolor'])
```

#### Out[6]:

|   | categoryld               | categoryname          | dotcolor |
|---|--------------------------|-----------------------|----------|
| 0 | 4bf58dd8d48988d10f951735 | Pharmacy              | yellow   |
| 1 | 52f2ab2ebcbc57f1066b8b23 | Perfume Shop          | red      |
| 2 | 58daa1558bbb0b01f18ec206 | Medical Supply Store  | red      |
| 3 | 4bf58dd8d48988d177941735 | Doctor s Office       | green    |
| 4 | 54541900498ea6ccd0202697 | Health Beauty Service | green    |
| 5 | 5745c2e4498e11e7bccabdbd | Drugstore             | green    |
| 6 | 4bf58dd8d48988d10c951735 | Cosmetics Shop        | green    |

I build a string with all the interesting Foursquare Id's:

```
In [7]: # Creating an empty Dataframe with column names only
        venues_total = pd.DataFrame(columns=['name', 'address', 'city', 'categories', 'lat', 'lr
```

I build the URL and use the string from above.

```
In [8]: LIMIT = 999
                             # limit of number of venues returned by Foursquare API
                   = abs(round(cal radius + 2000,0)) # define radius
        radius
                   = "https://api.foursquare.com/v2/venues/explore?"
        url = url + '&client id=' + CLIENT ID
        url = url + '&client secret='+ CLIENT SECRET
        url = url + '&v='
                                 + VERSION
        url = url + '&11='
                                     + str(cnt lat) +','+ str(cnt lng)
        url = url + '&radius='
        url = url + '&radius=' + str(radius)
url = url + '&limit=' + str(LIMIT)
        # url = url + '&categoryId=' + categoryId
        url
        for index, row in df_stores.iterrows():
            time.sleep((random.random()*1))
            url_send = url + '&categoryId='
                                             + row['categoryId']
            dic_results = requests.get(url_send).json() # This basically returns a Python dicti
                                                      # dict_keys(['meta', 'response'])
            #results.keys()
            venues = dic_results['response']['groups'][0]['items']
            nearby_venues = pd.json_normalize(venues)
            # nearby_venues.head()
            # filter columns
            filtered_columns = ['venue.name', 'venue.location.address','venue.location.city', 'v
            nearby_venues = nearby_venues.loc[:, filtered_columns]
            # filter the category for each row
            nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1)
            # clean columns
            nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns]
            print(len(nearby_venues['name'])) # must be smaller than 50
            # venues_total = venues_total + nearby_venues
            venues_total = venues_total.append(nearby_venues, ignore_index=True)
```

In [9]: # nearby\_venues.head(100)

### Out[9]:

|     | name                       | address                 | city   | categories              | lat       | Ing      |
|-----|----------------------------|-------------------------|--------|-------------------------|-----------|----------|
| 0   | Bahnhof Apotheke           | Bahnhofplatz 15         | Zürich | Pharmacy                | 47.377142 | 8.539919 |
| 1   | Bellevue Apotheke          | Theaterstrasse 14       | Zürich | Pharmacy                | 47.366755 | 8.545925 |
| 2   | Victoria Apotheke          | Bahnhofstr. 71          | Zürich | Pharmacy                | 47.374796 | 8.538618 |
| 3   | Rosen Apotheke             | Niederdorfstrasse 11    | Zürich | Pharmacy                | 47.373329 | 8.543857 |
| 4   | Sun Store Apotheke         | Löwenstrasse 31-35      | Zürich | Pharmacy                | 47.375423 | 8.536251 |
|     |                            |                         |        |                         |           |          |
| 131 | qosms Body & Soul Spa      | Röschibachstrasse 71    | Zürich | Health & Beauty Service | 47.393456 | 8.528175 |
| 132 | exurbe cosmetics           | Zollikerstrasse 249     | Zürich | Cosmetics Shop          | 47.347696 | 8.566541 |
| 133 | SEPHORA ZURICH LETZI       | Baslerstrasse 50        | Zürich | Perfume Shop            | 47.386464 | 8.499441 |
| 134 | Health Beauty Lifestyle AG | Schaffhauserstrasse 276 | Zürich | Cosmetics Shop          | 47.404640 | 8.548776 |
| 135 | Silendi Cosmetic           | Limmattalstrasse 130    | Zürich | Cosmetics Shop          | 47.400486 | 8.503647 |

136 rows × 6 columns

Do not read this. I just try to understand the JSON Data structure.

referralld e-0-4b8ff66ef964a520926c33e3-0 reasons.count 0 reasons.items [{'summary': 'This spot is popular', 'type': '... venue.id 4b8ff66ef964a520926c33e3 venue.name Bahnhof Apotheke venue.location.address Bahnhofplatz 15 venue.location.lat 47.3771 venue.location.lng 8.53992 venue.location.labeledLatLngs [{'label': 'display', 'lat': 47.37714158545192... venue.location.distance 278 venue.location.postalCode 8001 venue.location.cc CH venue.location.city Zürich venue.location.state Zürich venue.location.country Schweiz venue.location.formattedAddress [Bahnhofplatz 15, 8001 Zürich, Schweiz] venue.categories [{'id': '4bf58dd8d48988d10f951735', 'name': 'P... venue.photos.count 0 venue.photos.groups [] venue.venuePage.id NaN venue.location.crossStreet NaN Name: 0, dtype: object Bahnhof Apotheke [{'id': '4bf58dd8d48988d10f951735', 'name': 'Pharmacy', 'pluralName': 'Pharmacies', 'shortName': 'Pharmacy', 'icon': {'prefix': 'https://ss3.4sqi.net/img/categories v2/shops/pharmacy ', 'suffix': '.png'}, 'primary': True}]

I add the colors to the results.

```
In [10]: List = []
         for index, row in venues_total.iterrows():
             #print (row )
             #category = row["venue.categories"][0]['name']
             category = row['categories']
             if "Pharmacy" in category:
                 dotcolor ='yellow'
             elif 'Cosmetics Shop' in category:
                 dotcolor ='red'
             elif 'Perfume Shop' in category:
                 dotcolor ='red'
             else:
                 dotcolor ='green'
             #print (dotcolor,'\t' ,category)
             List.append(dotcolor)
             #print ('Done')
```

Then I add the newly created List with colors (dotcolor) as Column to the Dataframe. Again:

- yellow for pharmacie
- green for positive influence:
- red for negative influence: Perfume Shop, Cosmetics Shop

In [12]: # Add column
 nearby\_venues\_dotcolor = venues\_total
 nearby\_venues\_dotcolor['dotcolor'] = List
 nearby\_venues\_dotcolor\_fix = nearby\_venues\_dotcolor.apply(copy.deepcopy)

## Out[12]:

|     | name                          | address                    | city   | categories                 | lat       | Ing      | dotcolor |
|-----|-------------------------------|----------------------------|--------|----------------------------|-----------|----------|----------|
| 0   | Bahnhof Apotheke              | Bahnhofplatz 15            | Zürich | Pharmacy                   | 47.377142 | 8.539919 | yellow   |
| 1   | Bellevue Apotheke             | Theaterstrasse 14          | Zürich | Pharmacy                   | 47.366755 | 8.545925 | yellow   |
| 2   | Victoria Apotheke             | Bahnhofstr. 71             | Zürich | Pharmacy                   | 47.374796 | 8.538618 | yellow   |
| 3   | Rosen Apotheke                | Niederdorfstrasse 11       | Zürich | Pharmacy                   | 47.373329 | 8.543857 | yellow   |
| 4   | Sun Store Apotheke            | Löwenstrasse 31-35         | Zürich | Pharmacy                   | 47.375423 | 8.536251 | yellow   |
|     |                               |                            |        |                            |           |          |          |
| 131 | qosms Body & Soul<br>Spa      | Röschibachstrasse 71       | Zürich | Health & Beauty<br>Service | 47.393456 | 8.528175 | green    |
| 132 | exurbe cosmetics              | Zollikerstrasse 249        | Zürich | Cosmetics Shop             | 47.347696 | 8.566541 | red      |
| 133 | SEPHORA ZURICH<br>LETZI       | Baslerstrasse 50           | Zürich | Perfume Shop               | 47.386464 | 8.499441 | red      |
| 134 | Health Beauty Lifestyle<br>AG | Schaffhauserstrasse<br>276 | Zürich | Cosmetics Shop             | 47.404640 | 8.548776 | red      |
| 135 | Silendi Cosmetic              | Limmattalstrasse 130       | Zürich | Cosmetics Shop             | 47.400486 | 8.503647 | red      |

136 rows × 7 columns

```
In [13]: print('number of rows in dataframe nearby_venues_dotcolor including dublicates:', nearby nearby_venues_dotcolor_fix.to_excel(r'nearby_venues_dotcolor1.xlsx', index = False)
    nearby_venues_dotcolor_fix.drop_duplicates(keep='first',inplace=True) # keep='first'
    print('number of rows in dataframe nearby_venues_dotcolor without dublicates:', nearby_venues_dotcolor_fix.to_excel(r'nearby_venues_dotcolor2.xlsx', index = False)
```

number of rows in dataframe nearby\_venues\_dotcolor including dublicates: 136 number of rows in dataframe nearby\_venues\_dotcolor without dublicates: 131

```
In [14]: # save as file pyarrow needs numpy
# pip install pyarrow
import pyarrow.feather as feather
feather.write_feather(nearby_venues_dotcolor_fix, 'C:\\Users\\x\\Desktop\\projects\\Cour
# nearby_venues_dotcolor.to_csv("C:\\Users\\x\\Desktop\\projects\\Coursera_Capstone\\scr
```

In [15]:

Out[15]:

|     | name                       | address                 | city   | categories     | lat       | Ing      | dotcolor |
|-----|----------------------------|-------------------------|--------|----------------|-----------|----------|----------|
| 0   | Bahnhof Apotheke           | Bahnhofplatz 15         | Zürich | Pharmacy       | 47.377142 | 8.539919 | yellow   |
| 1   | Bellevue Apotheke          | Theaterstrasse 14       | Zürich | Pharmacy       | 47.366755 | 8.545925 | yellow   |
| 2   | Victoria Apotheke          | Bahnhofstr. 71          | Zürich | Pharmacy       | 47.374796 | 8.538618 | yellow   |
| 3   | Rosen Apotheke             | Niederdorfstrasse 11    | Zürich | Pharmacy       | 47.373329 | 8.543857 | yellow   |
| 4   | Sun Store Apotheke         | Löwenstrasse 31-35      | Zürich | Pharmacy       | 47.375423 | 8.536251 | yellow   |
|     |                            |                         |        |                |           | ***      |          |
| 129 | J.brand cosmetics gmbh     | Seefeldstrasse 204      | Zürich | Cosmetics Shop | 47.353518 | 8.558353 | red      |
| 130 | Swiss Dental Center        | Heinrichstrasse 239     | Zürich | Cosmetics Shop | 47.389165 | 8.521518 | red      |
| 132 | exurbe cosmetics           | Zollikerstrasse 249     | Zürich | Cosmetics Shop | 47.347696 | 8.566541 | red      |
| 134 | Health Beauty Lifestyle AG | Schaffhauserstrasse 276 | Zürich | Cosmetics Shop | 47.404640 | 8.548776 | red      |
| 135 | Silendi Cosmetic           | Limmattalstrasse 130    | Zürich | Cosmetics Shop | 47.400486 | 8.503647 | red      |

131 rows × 7 columns

```
In [16]: # .drop(['B', 'C'], axis=1)
         for col in nearby_venues_dotcolor_fix.columns:
            print(col)
         #nearby_venues_dotcolor.drop(columns=['venue.id', 'referralId', 'reasons.count'], axis=1
```

name address city categories lat lng dotcolor

Here I create the Map of Zurich with the colored locations:

10.08.2020 16:33 10 of 20

```
In [17]: # for lat, lng, label in result['Latitude'], result['Longitude'], result['Neighbourhood'
# label = folium.Popup(label, parse_html=True)
for ind in nearby_venues_dotcolor_fix.index:

    popupname = nearby_venues_dotcolor_fix['categories'][ind] +' '+ nearby_venues_dotcol

    folium.CircleMarker(
        [nearby_venues_dotcolor_fix['lat'][ind], nearby_venues_dotcolor_fix['lng'][ind]]
        radius=5,
        popup=popupname,
        color=nearby_venues_dotcolor_fix['dotcolor'][ind],
        fill=False,
        fill_color=nearby_venues_dotcolor_fix['dotcolor'][ind],
        fill_opacity=0,
        parse_html=False).add_to(locationmap)

folium.CircleMarker([min_lat, max_lng], popup='<i>Corner</i>', tooltip='Corner Bottom Ri
folium.CircleMarker([max_lat, max_lng], popup='<i>Corner</i>', tooltip='Corner Top Right
folium.CircleMarker([min_lat, min_lng], popup='<i>Corner</i>', tooltip='Corner Bottom Le
folium.CircleMarker([max_lat, min_lng], popup='<i>Corner</i>', tooltip='Corner Top Left'
```

Out[17]:



Calculate the distance between two lon/lat coordnate pairs

For each pharmacy (yellow dot), we calculate distances to other points. We us Newtons Law to calculate the force out of the distance. Here, force can be negative, eg. for close competitors or positive for enables like doctor offices. For each pharmacy we calculate the sum of forces.

```
In [18]: |list = []
        for ind1 in nearby_venues_dotcolor_fix.index:
                   = nearby_venues_dotcolor_fix['lat'][ind1]
                   = nearby_venues_dotcolor_fix['lng'][ind1]
           sum force=0
           for ind2 in nearby_venues_dotcolor_fix.index:
               lat2 = nearby_venues_dotcolor_fix['lat'][ind2]
               lng2 = nearby_venues_dotcolor_fix['lng'][ind2]
               sign = 0
               nearby_venues_dotcolor_fix['dotcolor'][ind2] == 'red':
                  sign = -1
               elif nearby_venues_dotcolor_fix['dotcolor'][ind2] == 'yellow':
                                                                                # Othe
                  sign = -1
               else:
                  sign = +1
               distance = fnc_distance(lat1,lng1,lat2,lng2)
               force = fnc_force(distance, sign)
               sum_force = sum_force + force
           list.append(sum_force)
        nearby_venues_dotcolor_fix['force'] = list
        print ('Done')
```

Done

Now we have an enhanced table with a force column.

# In [19]:

### Out[19]:

|       | name                          | address                    | city   | categories        | lat       | Ing      | dotcolor | force     |
|-------|-------------------------------|----------------------------|--------|-------------------|-----------|----------|----------|-----------|
| 0     | Bahnhof Apotheke              | Bahnhofplatz 15            | Zürich | Pharmacy          | 47.377142 | 8.539919 | yellow   | -6.562144 |
| 1     | Bellevue Apotheke             | Theaterstrasse 14          | Zürich | Pharmacy          | 47.366755 | 8.545925 | yellow   | -1.100178 |
| 2     | Victoria Apotheke             | Bahnhofstr. 71             | Zürich | Pharmacy          | 47.374796 | 8.538618 | yellow   | -3.957979 |
| 3     | Rosen Apotheke                | Niederdorfstrasse 11       | Zürich | Pharmacy          | 47.373329 | 8.543857 | yellow   | -1.180184 |
| 4     | Sun Store<br>Apotheke         | Löwenstrasse 31-35         | Zürich | Pharmacy          | 47.375423 | 8.536251 | yellow   | -3.864038 |
|       |                               |                            |        |                   |           |          |          |           |
| 129   | J.brand cosmetics gmbh        | Seefeldstrasse 204         | Zürich | Cosmetics<br>Shop | 47.353518 | 8.558353 | red      | -1.000000 |
| 130   | Swiss Dental<br>Center        | Heinrichstrasse 239        | Zürich | Cosmetics<br>Shop | 47.389165 | 8.521518 | red      | -1.388125 |
| 132   | exurbe cosmetics              | Zollikerstrasse 249        | Zürich | Cosmetics<br>Shop | 47.347696 | 8.566541 | red      | -1.000000 |
| 134   | Health Beauty<br>Lifestyle AG | Schaffhauserstrasse<br>276 | Zürich | Cosmetics<br>Shop | 47.404640 | 8.548776 | red      | -1.000000 |
| 135   | Silendi Cosmetic              | Limmattalstrasse 130       | Zürich | Cosmetics<br>Shop | 47.400486 | 8.503647 | red      | 1.000000  |
| 131 r | ows × 8 columns               |                            |        |                   |           |          |          |           |

In [20]: # Copy Table

We are only intersted in the location value of pharmacies. We sort the pharmacies so that the pharmacies with the best force are at the top.

```
In [21]: # Eliminate red and green
  indexNames = nearby_venues_sorted[ nearby_venues_sorted['dotcolor'] == 'red'  ].index
  nearby_venues_sorted.drop(indexNames , inplace=True)

indexNames = nearby_venues_sorted[ nearby_venues_sorted['dotcolor'] == 'green' ].index
  nearby_venues_sorted.drop(indexNames , inplace=True)
```

```
In [22]: # Sort yellow (Rest)
```

In [23]: nearby\_venues\_sorted = nearby\_venues\_sorted.sort\_values(by ='force', ascending=False)

Out[23]:

|    | name                                          | address                                       | city   | categories | lat       | Ing      | dotcolor | force     |
|----|-----------------------------------------------|-----------------------------------------------|--------|------------|-----------|----------|----------|-----------|
| 17 | TopPharm Apotheke<br>& Drogerie<br>Höschgasse | Höschgasse 50                                 | Zürich | Pharmacy   | 47.357833 | 8.554642 | yellow   | 1.400480  |
| 10 | Dr. Andres Apotheke<br>Stadelhofen            | Goethestrasse 22                              | Zürich | Pharmacy   | 47.366116 | 8.548078 | yellow   | 1.127280  |
| 8  | Berg-Apotheke                                 | NaN                                           | Zürich | Pharmacy   | 47.373271 | 8.529176 | yellow   | 0.318340  |
| 13 | Anrig Drogerie<br>Naturathek                  | Forchstrasse 26                               | Zürich | Pharmacy   | 47.363991 | 8.556103 | yellow   | -0.135609 |
| 9  | Topwell Apotheke-<br>Drogerie                 | Tessinerplatz 10                              | Zürich | Pharmacy   | 47.364583 | 8.531195 | yellow   | -0.301005 |
| 19 | Apotheke<br>Schaffhauserplatz                 | Seminarstrasse 1                              | Zürich | Pharmacy   | 47.391778 | 8.538677 | yellow   | -0.309384 |
| 20 | Vision hair                                   | Nordstrasse 89                                | Zürich | Pharmacy   | 47.388483 | 8.535689 | yellow   | -0.790753 |
| 12 | DROPA Apotheke &<br>Post Hottingen            | Freiestrasse 55, Beim<br>Hottingerplatz       | Zürich | Pharmacy   | 47.369764 | 8.555808 | yellow   | -1.000000 |
| 94 | Drogama Apotheke<br>Drogerie                  | NaN                                           | Zürich | Pharmacy   | 47.370014 | 8.508480 | yellow   | -1.000000 |
| 21 | Wehntal Apotheke                              | NaN                                           | NaN    | Pharmacy   | 47.403184 | 8.536066 | yellow   | -1.000000 |
| 16 | Bären-Apotheke                                | Kalkbreitestrasse 131                         | Zürich | Pharmacy   | 47.370567 | 8.514387 | yellow   | -1.000000 |
| 95 | Neumarkt Apotheke<br>Drogerie                 | Altstetterstrasse 145,<br>Neumarkt Altstetten | Zürich | Pharmacy   | 47.388364 | 8.487370 | yellow   | -1.000000 |
| 1  | Bellevue Apotheke                             | Theaterstrasse 14                             | Zürich | Pharmacy   | 47.366755 | 8.545925 | yellow   | -1.100178 |
| 11 | TopPharm<br>Leonhards-Apotheke                | Stampfenbachstrasse 7                         | Zürich | Pharmacy   | 47.377046 | 8.543790 | yellow   | -1.149204 |
| 3  | Rosen Apotheke                                | Niederdorfstrasse 11                          | Zürich | Pharmacy   | 47.373329 | 8.543857 | yellow   | -1.180184 |
| 15 | Coop Vitality                                 | Kalanderplatz 1                               | Zürich | Pharmacy   | 47.358388 | 8.523170 | yellow   | -1.334641 |
| 18 | apodoc                                        | NaN                                           | NaN    | Pharmacy   | 47.387632 | 8.519185 | yellow   | -1.388125 |
| 5  | Odeon Apotheke                                | Limmatquai 2,<br>Bellevueplatz                | Zürich | Pharmacy   | 47.367740 | 8.545305 | yellow   | -1.798875 |
| 93 | DROPA Drogerie<br>Apotheke<br>Limmatplatz     | Limmatplatz 7                                 | Zürich | Pharmacy   | 47.385119 | 8.531566 | yellow   | -1.886747 |
| 14 | TopPharm<br>Limmatplatz<br>Apotheke           | Limmatstrasse 119                             | Zürich | Pharmacy   | 47.383865 | 8.532567 | yellow   | -1.933191 |
| 4  | Sun Store Apotheke                            | Löwenstrasse 31-35                            | Zürich | Pharmacy   | 47.375423 | 8.536251 | yellow   | -3.864038 |
| 2  | Victoria Apotheke                             | Bahnhofstr. 71                                | Zürich | Pharmacy   | 47.374796 | 8.538618 | yellow   | -3.957979 |
| 0  | Bahnhof Apotheke                              | Bahnhofplatz 15                               | Zürich | Pharmacy   | 47.377142 | 8.539919 | yellow   | -6.562144 |
| 6  | Coop Vitality Zürich<br>Bahnhofstrasse        | Bahnhofstrasse 81                             | Zürich | Pharmacy   | 47.375954 | 8.539052 | yellow   | -7.323256 |
| 7  | Amavita Apotheke                              | Bahnhofstrasse 108                            | Zürich | Pharmacy   | 47.376265 | 8.539795 | yellow   | -7.367706 |

```
In [24]: # Replace NaN by ''
         nearby_venues_sorted.address = nearby_venues_sorted.address.fillna('NA') # https://foru
         labels = nearby_venues_sorted['name'] .tolist() # Labels must be unique for creating a b
         force = nearby venues sorted['force'].tolist()
         temp =0
         for i in labels:
             print (temp+1,'\t', i)
             labels[temp] = temp+1 #
             #labels[temp] = i[:10] # i[:2];
             #print (temp+1,'\t', labels[temp], '\t', i)
             temp = temp + 1
         # draw barchart
         width
                = 0.8
         fig, ax = plt.subplots()
         ax.bar(labels, force, width )
         ax.set_ylabel('Score')
         ax.set_title('Location Force by Pharmacies')
         plt.show()
         1
                  TopPharm Apotheke & Drogerie Höschgasse
```

```
2
         Dr. Andres Apotheke Stadelhofen
3
         Berg-Apotheke
4
         Anrig Drogerie Naturathek
5
         Topwell Apotheke-Drogerie
6
         Apotheke Schaffhauserplatz
7
         Vision hair
8
         DROPA Apotheke & Post Hottingen
9
         Drogama Apotheke Drogerie
10
         Wehntal Apotheke
11
         Bären-Apotheke
12
         Neumarkt Apotheke Drogerie
13
         Bellevue Apotheke
14
         TopPharm Leonhards-Apotheke
15
         Rosen Apotheke
16
         Coop Vitality
17
         apodoc
18
         Odeon Apotheke
19
         DROPA Drogerie Apotheke Limmatplatz
20
         TopPharm Limmatplatz Apotheke
         Sun Store Apotheke
21
22
         Victoria Apotheke
23
         Bahnhof Apotheke
24
         Coop Vitality Zürich Bahnhofstrasse
25
         Amavita Apotheke
```



In [25]:

The following calculation may take 6 Minutes, 30 Seconds

```
In [26]: data length
                               = 0
        data high
                               = 0
        folium tooltip
                               = 'Click me!'
        filename excel dfr matrix = 'dfr matrix.xlsx'
        dic_matrix = {'data_high':[], 'data_length':[], 'lat':[], 'lng':[], 'myforce':[], 'googl
        dfr_matrix = pd.DataFrame(dic_matrix)
        m = folium.Map(
           location =[cnt_lat, cnt_lng],
           zoom_start=12,
        lng = min_lng
        while lng <= max_lng:</pre>
           lat
                    = min_lat
           data_high = 0
           while lat <= max_lat:</pre>
               myforce
                            = fnc_positionvalueof(lat,lng)
               if myforce <-2:</pre>
                  mvforce =-2
               matrix_googlemaps = str(lat) + ', ' + str(lng) # 47.367296, 8.544618 Google Form
               matrix_new_row = {
                         'data high'
                                           :data_high
                         'data_length'
                                           :data_length
                         'lat'
                                           :round(lat,4)
                         'lng'
                                           :round(lng,4)
                         'myforce'
                                           :myforce
                         'googlemaps'
                                           :matrix_googlemaps }
               dfr_matrix = dfr_matrix.append(matrix_new_row, ignore_index=True)
               folium.CircleMarker([lat, lng], popup='<i>I am here</i>', tooltip=folium_tooltip
                          = lat+stp_lat
                         = data_high + 1
               data_high
                      = lng+stp_lng
           data_length = data_length + 1
        dfr_matrix.to_excel(r'dfr_matrix.xlsx', index = False)
        #folium.Marker([max_lat, min_lng], popup='<i>Corner</i>', tooltip='Top Left'
        #folium.Marker([max_lat, max_lng], popup='<i>Corner</i>', tooltip='Top Right'
        #folium.Marker([min_lat, min_lng], popup='<i>Corner</i>', tooltip='Bottom Left' ).add_to
        #folium.Marker([min_lat, max_lng], popup='<i>Corner</i>', tooltip='Bottom Right').add_to
        m
```

Out[26]:



#### Out[27]:

| Ing     | 8.5150 | 8.5153 | 8.5156    | 8.5159    | 8.5162    | 8.5165    | 8.5168    | 8.5171    | 8.5174    | 8.5177    |
|---------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| lat     |        |        |           |           |           |           |           |           |           |           |
| 47.3850 | 0.0    | 0.0    | -0.003501 | -0.040363 | -0.075352 | -0.108248 | -0.138809 | -0.166780 | -0.191891 | -0.213869 |
| 47.3848 | 0.0    | 0.0    | 0.000000  | 0.000000  | -0.030759 | -0.062089 | -0.091097 | -0.117555 | -0.141225 | -0.161873 |
| 47.3846 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | -0.014955 | -0.042534 | -0.067613 | -0.089983 | -0.109443 |
| 47.3844 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | -0.017063 | -0.038258 | -0.056649 |
| 47.3842 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | -0.003551 |
|         |        |        |           |           |           |           |           |           |           |           |
| 47.3558 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | -0.018967 | -0.042989 |
| 47.3556 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  |
| 47.3554 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  |
| 47.3552 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  |
| 47.3550 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  |

151 rows × 153 columns



```
import seaborn as sns
#import numpy as np
plt.rcParams['figure.figsize'] = (20.0, 10.0)
plt.rcParams['font.family'] = "serif"
```

#### Out[29]:

| Ing     | 8.5150 | 8.5153 | 8.5156    | 8.5159    | 8.5162    | 8.5165    | 8.5168    | 8.5171    | 8.5174    | 8.5177    |
|---------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| lat     |        |        |           |           |           |           |           |           |           |           |
| 47.3850 | 0.0    | 0.0    | -0.003501 | -0.040363 | -0.075352 | -0.108248 | -0.138809 | -0.166780 | -0.191891 | -0.213869 |
| 47.3848 | 0.0    | 0.0    | 0.000000  | 0.000000  | -0.030759 | -0.062089 | -0.091097 | -0.117555 | -0.141225 | -0.161873 |
| 47.3846 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | -0.014955 | -0.042534 | -0.067613 | -0.089983 | -0.109443 |
| 47.3844 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | -0.017063 | -0.038258 | -0.056649 |
| 47.3842 | 0.0    | 0.0    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | -0.003551 |

5 rows × 153 columns

Out[30]: Text(502.000000000001, 0.5, 'Latitude')



Out[31]: Text(502.000000000001, 0.5, 'Latitude')



```
In [32]: # Finalize
         plt.rcParams['font.size'] = 12
         bg_{color} = (0.88, 0.85, 0.95)
         plt.rcParams['figure.facecolor'] = bg_color
         plt.rcParams['axes.facecolor'] = bg_color
         fig, ax = plt.subplots(1)
         p = sns.heatmap(df2,
                          robust=True,
                          cmap='RdYlGn',
                          annot=False,
                          fmt=".1f",
                          annot_kws={'size':12},
                          square=True,
         plt.xlabel('Longitude')
         plt.ylabel('Latitude')
         #ax.set_ylim((0,15))
```

Out[32]: Text(5, 12.3, 'Heat Map for opening new Pharmacies at Zurich')

