Normal Distributions and Hypothesis Testing

1:: Characteristics of the Normal Distribution

What shape is it? What parameters does it have?

3:: Finding unknown means/standard deviations.

In Wales, 30% of people have a height above 1.6m. Given the mean height is 1.4m and heights are normally distributed, determine the standard deviation of heights.

2:: Finding probabilities on a standard normal curve.

"Given that IQ is distributed as $X \sim N(100,15^2)$, determine the probability that a randomly chosen person has an IQ above 130."

4:: Binomial → Normal Approximations

How would I approximate $X \sim B(10,0.4)$ using a Normal distribution? Under what conditions can we make such an approximation?

5:: Hypothesis Testing

What does it look like?

The following shows what the probability distribution might look like for a random variable X, if X is the height of a randomly chosen person.

We can set the mean μ and the standard deviation σ of the Normal Distribution. If a random variable X is normally distributed, then we write

$$X \sim N(\mu, \sigma^2)$$

$$\times \sim N(\mu, \sigma^2)$$

Normal Distribution Facts

For a Normal Distribution to be used, the variable has to be:

continuous

To find P(170 < X < 190) we could: find the area between these values.

With a discrete variable, all the probabilities had to add up to 1.

For a continuous variable, similarly: the area under the probability graph has to be 1.

Side Notes: You might therefore wonder what the y-axis actually is. It is **probability density**, i.e. "the probability per unit cm". This is analogous to frequency density with histograms, where the y-value is frequency density area under the graph gives frequency. We use f(x) rather than p(x), to indicate probability density.

The histogram above is for a quantity which is approximately normally distributed.

The 68-95-99.7 rule is a shorthand used to remember the percentage of data that is within 1, 2 and 3 standard deviations from the mean respectively.

You need to memorise this!

1

 $\approx 68\%$ of data is within one standard deviation of the mean. $\approx 95\%$ of data is within two standard deviations of the mean. $\approx 99.7\%$ of data is within three standard deviations of the mean.

For practical purposes we consider all data to lie within $\mu \pm 5\sigma$

Only one in 1.7 million values fall outside $\mu \pm 5\sigma$. CERN used a "5 sigma level of significance" to ensure the data suggesting existence of the Higgs Boson wasn't by chance: this is a 1 in 3.5 million chance (if we consider just one tail).

The diameters of a rivet produced by a particular machine, X mm, is modelled as $X \sim N(8,0.2^2)$. Find:

- P(X > 8)
- b) P(7.8 < X < 8.2)

Tip: Draw a diagram!

$$P(X > 8) = 0.5$$

a)
$$P(X > 8) = 0.5$$

b) $P(7.8 < X < 8.2) = 0.68$

$$0) p(x > 8.2) = 1 - 0.34 - 0.5
= 0.16
= 0.16
8.2$$

$$= 0.1$$

IQ ("Intelligence Quotient") for a given population is, by definition, distributed using $X \sim N(100(15)^2)$. Find:

- a) P(70 < X < 130)
- b) P(X > 115)

Tip: Draw a diagram!

Your Turn

- 4 The armspans of a group of Year 5 pupils, Xcm, are modelled as $X \sim N(120, 16)$.
 - a State the proportion of pupils that have an armspan between 116 cm and 124 cm.
 - b State the proportion of pupils that have an armspan between 112 cm and 128 cm.

- a) 0.68
 - 6) 0,95
- 5 The lengths of a colony of adders, Ycm, are modelled as $Y \sim N(100, \sigma^2)$. If 68% of the adders have a length between 93 cm and 107 cm, find σ^2 .

7 The masses of the pigs, $M \, \text{kg}$, on a farm are modelled as $M \sim N(\mu, \sigma^2)$. If 84% of the pigs weigh more than 52 kg and 97.5% of the pigs weigh more than 47.5 kg, find μ and σ^2 .

Getting normal values from your calculator

IQ is distributed using $X \sim N(100,15^2)$. Find

- (a) P(X < 109)
- (b) $P(X \ge 93)$
- (c) P(110 < X < 120)
- (d) P(X < 80 or X > 106)

Please: draw a diagram!

b) $P(X \ge 93) = P(X > 93)$

$$M=100$$
 $\sigma=15$
a) $P(X<109)=0.7257$

- 3 The random variable $X \sim N(25, 25)$.
 - Find: a P(Y < 20)

- **b** P(18 < Y < 26) **c** P(Y > 23.8)

4 The random variable $X \sim N(18, 10)$.

Find: **a**
$$P(X \ge 20)$$

b
$$P(X < 15)$$

c P(18.4 < X < 18.7)

- **6** The random variable $T \sim N(4.5, 0.4)$.
 - a Find P(T < 4.2).
 - **b** Without further calculation, write down P(T > 4.2).

7 The random variable $Y \sim N(45, 2^2)$. Find:

a P(
$$Y < 41$$
 or $Y > 47$)

a
$$P(Y < 41 \text{ or } Y > 47)$$
 b $P(Y < 44 \text{ or } 46.5 < Y < 47.5)$

3	a	0.1587	b	0.4985	c	0.5948
4	a	0.1587 0.2635	b	0.1714	c	0.0373

ii 0.2525

b Sum is 1, combined probabilities include every

a 0.3176

b 0.6824

a 0.1814

b 0.4295

Using normal probabilities in questions

The criteria for joining Mensa is an IQ of at least 131.

Assuming that IQ has the distribution $X \sim N(100,15^2)$ for a population, determine:

- a) What percentage of people are eligible to join Mensa.
- b) If 30 adults are randomly chosen, the probability that at least 3 of them will be eligible to join.

a)
$$P(X>131) = 0.0194$$

b) Ne can use binomial distribution.
Y is the number of people who can join Mensa $Y \sim B(30, 0.0194)$
 $P(Y \ge 3) = 1 - P(Y \le 2)$
 $= 1 - 0.9799$
 $= 0.0201$

Ex 3B Q8-12

Inverse Normal Distribution

We now know how to use a calculator to value of the variable to obtain a probability. But we might want to do the reverse: given a probability of being in a region, how do we find the value of the boundary?

 $X \sim N(20,3^2)$. Find, correct to two decimal places, the values of a such that:

a.
$$P(X < a) = 0.75$$

b.
$$P(X > a) = 0.4$$

c.
$$P(16 < X < a) = 0.3$$

DRAW A SKETCH!

The 'area' requested by your calculator is the probability $\underline{\mathbf{up to}}$ the value of interest (in this case a)

The graphics calculator is more advanced – you can assign whether the probability tails to the left (up to the value a), to the right (above the value a) or is symmetrically in the centre.

a)
$$P(X < a) = 0.75$$
 0.75
 $a = 22.02$

6) P(x >a) =0.4

c) P(16 L X La) = 0.3

P(X<16) = 0.0912 - 0.3912 a

<u>a=19.17</u>

If the IQ of a population is distributed using $X \sim N(100,15^2)$.

- a. Determine the IQ corresponding to the top 30% of the population.
- b. Determine the interquartile range of IQs.

$$P(x>a) = 0.3$$

 $P(x
 $= 0.7$
 $a = 107.866 = 108$$

$$P(X < U) = 0.75$$

$$U = |10.12$$

$$|QR = |10.12 - 89.88$$

$$= 20.24$$

P(X < L) = 0.25

3×15=10

In general the quartiles of a normal distribution are approximately $\mu \pm \frac{2}{3}\sigma$

 $X \sim N(80,7^2)$. Using your calculator,

- a. determine the a such that P(X > a) = 0.65
- b. determine the b such that P(75 < X < b) = 0.4
- c. determine the c such that P(c < X < 76) = 0.2
- d. determine the interquartile range of X.

c)
$$p(c < x < 76) = 0.2$$

 $p(x < 76) = 0.2839$
 $p(x < c) = 0.2839 - 0.2$
 $p(x < c) = 0.0839$
 $c = 70.34$ Ex 3C

$$P(X < L) = 0.25$$
 $P(X < U) = 0.75$
 $L = 75.29$ $U = 84.72$
 100 $R = U - L = 9.43$