Estudo de Caso Sistema de Caixa Automático

Curso de Especialização — DEINF - UFMA

Desenvolvimento Orientado a Objetos

Prof. Geraldo Braz Junior

Referências:

Notas de Aula Ulrich Schiel Notas de Aula Ariadne

Receita de bolo

Utilizar os conceitos de Processo Unificado

- Objetivo:
 - Modelar um sofware de teste (caixa automátivo)
 - Descobrir como aplicar UML como linguagem de modelagem
 - Descobrir como aplica PU junto com UML

Ciclo de Vida PU

Concepção -> Requisitos

Obtenção de Requisitos

- Artefatos (produtos a serem gerados)
 - Requisitos
 - Modelo de Contexto
 - Modelo de Casos de Uso
 - Atores
 - Quem vai utilizar de alguma maneira o sistema
 - Casos de Usos
 - Funcionalidades Percebidas do Sistema

Obtenção de Requisitos

- Passos:
 - 1. Listar potenciais requisitos
 - 2. Entender o contexto do sistema
 - 3. Capturar requisitos funcionais
 - 4. Capturar requisitos não funcionais

Requisitos e Descrição (i)

- O sistema de caixa automático permite que clientes realizem saques e verifiquem seus saldos, de acordo com as seguintes regras de negócios:
 - 1. Quando uma conta é criada no banco, o seu saldo é maior que zero.
 - 2. Um cliente pode possuir várias contas no banco.
 - 3. O cliente acessa uma conta através do terminal de um caixa eletrônico do seu banco.
 - 4. Antes de executar qualquer operação da conta, o cliente deve fornecer o número da sua conta e a senha referente a mesma.

Requisitos e Descrição (ii)

- 5. Para a realização do saque, o cliente utiliza um terminal para solicitar um valor numérico de dinheiro.
- 6. O cliente pode sacar qualquer quantia do caixa, desde que a mesma seja igual ou inferior ao saldo disponível.
- 7. Vale a política do banco de que uma conta não aceita uma operação de saque quando a conta está com o saldo zerado. O dinheiro é liberado no dispensador de notas do caixa e debitado do saldo da conta.
- 8. Além de possuir o dinheiro disponível na conta, em uma operação de saque, a quantidade de dinheiro disponível no caixa eletrônico deve ser maior ou igual à quantia solicitada pelo cliente.

Requisitos e Descrição (iii)

- 9. Se o saldo de uma conta é zerado durante uma operação de saque, a conta deve se tornar inativa.
- 10. Os clientes que vão operar o caixa eletrônico devem estar devidamente cadastrados no banco e suas contas devem estar ativas.
- 11. Cada conta tem associado um número e uma senha.
- 12. Além disso, cada conta é associada a um cliente do banco, que possui informações como nome, RG, CPF, etc.

Requisitos e Descrição (iv)

- 13. As informações adicionais sobre as contas e seus clientes estão armazenadas em um Cadastro de Contas do Banco que interage com o Sistema de Caixa Automático.
- 14. Qualquer cliente cadastrado no banco pode efetuar depósitos em uma conta, quer a conta esteja ativa, quer ela esteja inativa.
- 15. Caso a conta esteja inativa e após o depósito seu saldo fique maior que zero, a conte deve ser reativada.

Modelo de Contexto (caso de uso nivel 0)

powered by astah*

Descrição

A1) encontrar os atores e use-cases

- encontrar os atores
- encontrar e descrever cada use-case
- descrever o Modelo *Use-Case* como um todo
- A2) Priorizar *Use-Cases* (visão arquitetural)

Modelo de Casos de Uso

Caso de Uso: Consultar Saldo

Breve Descrição: O cliente, já autenticado, escolhe a opção "Consultar Saldo" e o sistema apresenta o seu saldo.

Atores: Cliente, Cadastro de Contas do Banco.

Pré-condição: A conta deve estar ativa e o cliente já deve ter sido autenticado junto ao sistema, através do caso de uso Efetuar Login.

Pós-condição: Estado da conta inalterado.

Requisitos Especiais: nenhum.

<u>Fluxo</u>

Breve Descrição: O cliente, já autenticado, escolhe a opção "Efetuar Saque", informa a quantia desejada e, caso o saldo da conta seja suficiente e o caixa tenha o dinheiro necessário, a quantia é liberada.

Atores: Cliente, Cadastro de Contas do Banco

Pré-condição: O cliente deve estar logado no sistema, através do caso de uso Efetuar Login. Além disso, a conta deve estar ativa e o valor a debitar deve ser maior que zero e não pode ser superior ao saldo da conta nem a quantidade de dinheiro disponível no caixa.

Pós-condição: O valor a ser sacado é subtraído do saldo da conta e do total disponível no caixa eletrônico e a quantia solicitada é fornecida ao cliente.

Requisitos Especiais: nenhum.

<u>Fluxo</u>

Caso de Uso: Efetuar Depósito

Breve Descrição: O cliente, já autenticado, escolhe a opção "Efetuar Depósito", informa a quantia desejada e, a conta que deseja enviar o dinheiro

Atores: Cliente, Cadastro de Contas do Banco

Pré-condição: O cliente deve estar logado no sistema, através do caso de uso Efetuar Login.

Pós-condição: O valor a ser depositado é adicionado ao saldo da conta.

Requisitos Especiais: nenhum.

Caso de Uso: Efetuar Login

Breve Descrição: O cliente deve fornecer o número da conta e senha, essa informações devem ser autenticadas pelo Cadastro de Contas do Banco.

Atores: Cliente, Cadastro de Contas do Banco

Pré-condição: nenhuma

Pós-condição: Após uma autenticação bem realizada, o usuário está apto a operar o sistema do caixa eletrônico

Requisitos Especiais: nenhum.

Ao final dos requisitos

- Realizar uma proposta
 - Estimativa de custos
 - Definir Prioridades aos Requisitos levantados
 - Análisar os Riscos Esperados

Concepção -> Análise

Análise

- Durante a etapa de Concepção, a análise se resume a definição de uma:
 - Descrição Básica da arquitetura de objetos
- Identifica-se:
 - objetos de negócio (pedidos, contas, contratos,..)
 - objetos do mundo real (veículos, máquinas, trajetos,..)
 - eventos básicos (chegada de um pedido, partida de um transporte, ..)
- Esse trabalho deve ser realizado em paralelo a definição de casos de uso para melhor entender o dominio da aplicação

Elaboração

Elaboração - Requisitos

Requisitos

- A3) Detalhar cada *Use-Case*
 - **e**struturar a descrição do *use-case*
 - formalizar a descrição do *use-case* (usar <u>diagramas de atividade</u> <u>ou diagramas de interação</u>)
 - descrever o Modelo *Use-Case* como um todo
- A4) Prototipar as interfaces com o usuário
 - projeto lógico da interface do usuário
 - projeto físico da interface do usuário e protótipo

Caso de Uso: Consultar Saldo

Caso de Uso: Consultar Saldo

Fluxo Básico:

- 1. O cliente escolhe no menu principal do terminal a opção "Consultar Saldo".
- 2. O sistema verifica se o login foi efetuado
- 3. O sistema verifica se a conta está ativa, através do Cadastro de Contas do Banco.
- 4. O sistema obtém o saldo da conta do cliente e o imprime.

Caso de Uso: Consultar Saldo

Fluxo Alternativo 1:

No passo 2 do Fluxo Básico, se o login não foi efetuado, o sistema informa isso ao cliente.

Fluxo Alternativo 2:

No passo 3 do Fluxo Básico, se a conta não estiver ativa, o sistema informa isso ao cliente e avisa que a consulta não pôde ser realizada.

Consultar Saldo - Sequencia

Consultar Saldo - Atividades

Caso de Uso: Efetuar Saque

Fluxo Básico:

- 1. O cliente escolhe no menu principal do terminal a opção "Efetuar Saque".
- 2. O sistema verifica se o login foi efetuado.
- 3. O sistema verifica se a conta está ativa, através do Cadastro de Contas do Banco.
- 4. O sistema solicita que o cliente informe a quantia desejada.
- 5. O cliente informa a quantia desejada.
- 6. O sistema verifica se o saldo da conta é suficiente para realizar a transação e, em caso afirmativo, se há dinheiro em quantidade suficiente no caixa.
- 7. O sistema subtrai o valor solicitado do saldo da conta do cliente e do valor disponével no caixa e libera a quantia solicitada, através do dispensador de notas.

Fluxo Alternativo 1:

No passo 2 do Fluxo Básico, se o login não tiver sido efetuado, o sistema informa isso ao cliente.

Fluxo Alternativo 2:

No passo 3 do Fluxo Básico, se a conta não estiver ativa, o sistema avisa isso ao cliente e informa que o saque não pôde ser realizado.

Fluxo Alternativo 3:

No passo 6 do Fluxo Básico, se o valor solicitado for menor que zero ou superior ao saldo da conta ou a quantidade de dinheiro disponível no caixa, o sistema informa que não é possível realizar o saque e o porquê. Em seguida, volta ao passo 4 do Fluxo Básico.

Fluxo Alternativo 4:

Após o passo 7 do Fluxo Básico, se o saldo da conta for menor ou igual a zero, a conta deve ser desativada.

Fluxo Alternativo 5:

No passo 5 do Fluxo Básico, o cliente pode cancelar a operação.

Efetuar Saque - Sequencia

Efetuar Saque - Atividades

Requisitos - Elaboração

A5) Estruturar o modelo Casos de Uso

- identificar funcionalidades comuns (generalizações)
- identificar funcionalidades adicionais ou opcionais (<<extends>>)
- identificar outros relacionamentos entre use-cases
 (<<include>>>, inverso de <<extend>>>)

Modelo de Casos de Uso

Requisitos - Elaboração

- Capturar requisitos não-funcionais
- Usabilidade
 - requisitos de interfaces metáfora, frequência de uso, ..
 - documentação
- Confiabilidade
 - tolerância a falhas.
- Performance
 - tempos de resposta
 - volumes de transações
- Requisitos físicos
 - equipamentos, material, espaços, configurações de rede,
 - software

Concepção -> Análise

Análise

 Os requisitos externos são transformados em um modelo interno preciso e completo para desenvolver o projeto do sistema

MODELO USE-CASE	MODELO DA ANÁLISE
linguagem do usuário	Linguagem do desenvolvedor
Visão externa do sistema	Visão interna do sistema
Estruturado por use-cases	Estruturado por classes
Captura a funcionalidade do sistema	Descreve como realizar a funcionalidade
Usado para o contrato com o cliente	Usado para o desenvolvedor entender o sistema
Pode conter redundâncias, inconsistências, etc.	Deve ser preciso e inambíguo

Análise - Artefatos

EXEMPLO 1. MODELO DA **ANÁLISE** Classe de Interface de fronteira Saque 2. CLASSE DE Classe de Realizar Saque **ANÁLISE** controle Cliente Classe de entidades

Análise - Artefatos

- 3. CONCRETIZAR A REALIZAÇÃO DE UM USE-CASE
 - fluxo de eventos
 - Descrição textual do diagrama de colaboração
 - requisitos especiais
 - Descrição textual de requisitos não-funcionais
- 4. PACOTES DE ANÁLISE
 - Devem ter coesão e fraco acoplamento
 - Candidatos a subsistemas do projeto
 - <u>PACOTE DE SERVIÇOS</u>: é um conjunto de ações coerentes, indivisíveis para uso em vários use-cases
- 5. DESCRIÇÃO DA ARQUITETURA

Uma abordagem para análise 00

Modelagem Estática

Identificando Classes de Análise

- As especificações dos casos de uso fornecem as informações necessárias.
- Primeiro identifica-se os conceitos, dentro do domínio do problema, que são relevantes para o sistema que se pretende construir.
 - Esses conceitos se tranformam posteriormente em classes de análise.
 - Em seguida pode-se fazer uma análise textual da descrição do problema e das especificações dos casos de uso para complementar as classes relevantes para o sistema
- Importante: o diagrama de classes de análise é uma descrição de coisas no domínio do problema do mundo real, não no do projeto de software!

Caso de Uso Consultar Saldo (objetos)

Breve Descrição: O <u>cliente</u>, já autenticado, escolhe a opção "Consultar Saldo" e o sistema apresenta o seu <u>saldo</u>.

Atores: Cliente, Cadastro de Contas do Banco.

Pré-condição: A conta deve estar ativa e o cliente já deve ter sido autenticado junto ao sistema, através do caso de uso Efetuar Login.

Pós-condição: Estado da conta inalterado.

Requisitos Especiais: nenhum.

Caso de Uso Consultar Saldo (objetos)

Fluxo Básico:

- 1. O cliente escolhe no menu principal do <u>terminal</u> a opção "Consultar Saldo".
- 2. O sistema verifica se o <u>login</u> foi efetuado
- 3. O sistema verifica se a conta está ativa, através do Cadastro de Contas do Banco.
- 4. O sistema obtém o saldo da conta do cliente e o imprime.

Caso de Uso Consultar Saldo (objetos)

Fluxo Alternativo 1:

No passo 2 do Fluxo Básico, se o <u>login</u> não foi efetuado, o sistema informa isso ao cliente.

Fluxo Alternativo 2:

No passo 3 do Fluxo Básico, se a conta não estiver ativa, o sistema informa isso ao cliente e avisa que a <u>consulta</u> não pôde ser realizada.

Breve Descrição: O cliente, já autenticado, escolhe a opção "Efetuar Saque", informa a <u>quantia desejada</u> e, caso o saldo da conta seja suficiente e o <u>caixa</u> tenha o <u>dinheiro</u> necessário, a <u>quantia</u> é liberada.

Atores: Cliente, Cadastro de Contas do Banco

Pré-condição: O cliente deve estar logado no sistema, através do caso de uso Efetuar Login. Além disso, a conta deve estar ativa e o valor a debitar deve ser maior que zero e não pode ser superior ao saldo da conta nem a quantidade de dinheiro disponível no caixa.

Pós-condição: O <u>valor a ser sacado</u> é subtraído do saldo da conta e do total disponível no <u>caixa eletrônico</u> e a <u>quantia solicitada</u> é fornecida ao cliente.

Requisitos Especiais: nenhum.

Fluxo

Caso de Uso: Efetuar Saque

Fluxo Básico:

- 1. O cliente escolhe no menu principal do terminal a opção "Efetuar Saque".
- 2. O sistema verifica se o login foi efetuado.
- 3. O sistema verifica se a conta está ativa, através do Cadastro de Contas do Banco.
- 4. O sistema solicita que o cliente informe a quantia desejada.
- 5. O cliente informa a quantia desejada.
- 6. O sistema verifica se o saldo da conta é suficiente para realizar a transação e, em caso afirmativo, se há dinheiro em quantidade suficiente no caixa.
- 7. O sistema subtrai o <u>valor solicitado</u> do <u>saldo da conta do cliente</u> e do valor disponével no caixa e libera a <u>quantia solicitada</u>, através do dispensador de notas.

Fluxo Alternativo 1:

No passo 2 do Fluxo Básico, se o login não tiver sido efetuado, o sistema informa isso ao cliente.

Fluxo Alternativo 2:

No passo 3 do Fluxo Básico, se a conta não estiver ativa, o sistema avisa isso ao cliente e informa que o saque não pôde ser realizado.

Fluxo Alternativo 3:

No passo 6 do Fluxo Básico, se o <u>valor solicitado</u> for menor que zero ou superior ao saldo da conta ou a <u>quantidade de</u> <u>dinheiro disponível no caixa</u>, o sistema informa que não é possível realizar o <u>saque</u> e o porquê. Em seguida, volta ao passo 4 do Fluxo Básico.

Fluxo Alternativo 4:

Após o passo 7 do Fluxo Básico, se o <u>saldo da conta</u> for menor ou igual a zero, a conta deve ser desativada.

Fluxo Alternativo 5:

No passo 5 do Fluxo Básico, o cliente pode cancelar a operação.

- Caso de Uso Consultar Saldo
 - Saldo
 - Terminal
 - Saldo da conta
 - Login
 - Consulta
 - Quantia de dinheiro disponível em caixa

- Caso de Uso Efetuar Saque
- Caixa
- Dinheiro
- Quantia
- Valor a debitar
- Quantia de dinheiro disponível em caixa
- Valor a ser sacado
- Quantia solicitada
- Quantia desejada
- Transação

- Caso de uso Efetuar Login
- Caixa eletrônico
- Cliente
- Número da conta
- Senha
- Acesso
- Sistema
- Cadastro de Contas do Banco

- Opção
- Menu Principal
- Conta
- Banco
- Estado da conta
- Criptografia
- Operação
- Estado do Caixa eletrônico

- Caso de uso Efetuar Depósito
- Valor a depositar
- Valor a ser depositado
- Valor depositado
- Estado da conta
- Quantia informada pelo cliente
- Conta destino do depósito

Refinar a Lista de Classes

- Classes Redundantes: quando duas palavras significam a mesma coisa, escolha a palavra mais significativa.
- Classes Irrelevantes: aquelas classes que não estão diretamente relacionadas com o problema.
- Atributos: alguns atributos podem ser descritos por substantivos.
- Operações: alguns substantivos podem ser operações.
- **Papéis**: nomes de papéis são de fato nomes de processos dinâmicos ao invés de classes propriamente ditas.
- Construções de Implementações: qualquer coisa que faça referência a estruturas de dados, etc.

Classes Candidatas Eliminadas

- Classes redundantes:
 - Valor a ser depositado, Valor depositado e Quantia informada pelo cliente: equivalentes a Valor a depositar.
 - Caixa: idêntica a classe Caixa eletrônico.
 - Valor a ser sacado, Quantia desejada, Quantia solicitada, Quantia: equivalentes a Valor a debitar.
 - Saldo da conta, Saldo da conta do cliente: equivalentes a Saldo.
 - Operação e Opção: equivalente a Transação.
 - Conta destino do depósito: equivalente a Número da conta.

Classes Candidatas Eliminadas (ii)

- Classes Irrelevantes:
 - Número da conta: atributo da classe Conta.
 - Senha: atributo da classe Conta.
 - Estado do caixa: termo genérico para os atributos da classe Caixa eletrônico.
 - Quantidade de dinheiro disponível no caixa: atributo da classe Caixa eletrônico.
 - Estado da conta: termo genérico para os atributos da classe Conta.
 - Saldo: atributo da classe Conta.

Classes Candidatas Eliminadas (iii)

- Classes Vagas:
 - Acesso
 - Menu Principal
 - Criptografia
 - Login
 - Consulta
 - Valor a debitar
 - Valor a depositar

Lista revisada de classes

- CaixaEletrônico
- Cliente (diferente do ATOR "dados do cliente")
- Sistema
- Cadastro de Contas do Banco (ATOR)
- Conta
- Banco
- Terminal
- Transação
- Atualizar dicionário de dados!

Identificar/Refinar Relacionamentos

- As classes identificadas até o momento devem ser analisadas com o intuito de identificar as associações e os relacionamentos de agregação/decomposição e de generalização/especialização entre elas
- A classe Sistema representa o sistema como um todo e, desta forma, todas as outras classes podem ser consideradas partes dela
- Para simplificar a representação do modelo, a classe Sistema pode ser substituída por um pacote que contenha todas as classes que compõem o sistema

Agregações Encontradas

- Um Banco possui uma ou mais Contas
- Um Banco contém vários clientes (DadosCliente)
- Um Banco possui vários Caixas Eletrônico
- Um Caixa Eletrônico possui um Terminal
- Um cliente (DadosCliente) pode possuir várias Contas
- Em um terminal podem ser realizadas várias transações

Agregações Encontradas

Identificar Atributos

Identificar/Refinar Classes (MVC)

- Classificar as classes em (Fronteira, Controle e Entidade)
- Identificar novas classes (Fronteira e Controle)

- Novas Classes:
 - Fronteira Cadastro Contas (interagir com o ator Cadastro de contas)
 - ControladorCaixa (controla a lógica interna do caixa eletrônico)

Classes do Sistema

- CaixaEletronico << entity >>
- Conta << entity >>
- Banco << entity >>
- Terminal << boundary >>
- DadosCliente << entity >>
- Transacao << entity>>
- FronteiraCadastroContas << boundary >>
- ControladorCaixa << control >>
- Atualizar Dicionário de Dados

Identificar/Refinar relacionamentos

 Adicionar as associações com as novas classes do modelo MVC, obedecendo a relação:

Diagrama de Classes de Análise (sem operações)

Modelagem Dinâmica

Modelagem Dinâmica

- Identifica e modela os aspectos do sistema de software que podem mudar durante a sua execução, devido a ocorrência de eventos.
- Foco no comportamento que o sistema deve apresentar.
- Usa os diagramas dinâmicos da UML (sequência, colaboração, estados).
- Especifica uma versão inicial das interfaces públicas das classes de análise.
- Sub-etapa de Análise OO Foco no domínio do problema!

Eventos

- Ocorrências dignas de nota relativas ao sistema e envolvendo algum tipo de troca de informação.
- O evento não é a informação trocada e sim o fato de alguma informação ter sido trocada.
- O tipo de evento mais comum encontrado durante a análise é a interação entre um <u>ator e o sistema</u>.
 - Outros tipos também são possíveis.
- Modelamos o comportamento do sistema através de eventos e das ações executadas em resposta a eles.

Atividades Modelagem Dinâmica

Identificar Eventos do Sistema

- Deve ser realizada uma nova análise textual nas especificações dos casos de uso, prestando-se atenção aos pontos nos quais trocas de informação ocorrem.
- Normalmente, esses pontos estão associados a verbos.
- Informações relevantes: verbos e os contextos nos quais aparecem.

Caso de uso Efetuar Login (i)

Caso de Uso: Efetuar Login

Fluxo Básico:

- 1. O cliente solicita a opção de "Efetuar Login" no sistema.
- 2. O sistema pede que o cliente informe o número da conta.
- 3. O cliente fornece o número da conta.
- 4. O sistema pede que o cliente informe a sua senha.
- 5. O cliente fornece a senha.
- 6. O sistema <u>verifica se a conta é válida</u> e <u>se a senha está correta</u>, através do Cadastro de Contas do Banco. Em caso positivo, o sistema <u>atualiza o estado do caixa eletrônico com as informações de login</u>.
- 7. O sistema <u>exibe no terminal o menu de opções que o cliente pode</u> <u>acessar.</u>

Caso de uso Efetuar Login (ii)

Fluxo Alternativo 1:

No passo 6 do Fluxo Básico, se a conta fornecida não existir ou se a senha estiver errada, o sistema <u>informa que alguma das</u> <u>informações fornecidas está incorreta e que não é possível autenticar o cliente</u>. Em seguida, volta ao passo 2 do Fluxo Básico.

Fluxo Alternativo 2:

Nos passos 3 e 5 do Fluxo Básico, o cliente <u>pode cancelar a operação</u>.

Eventos Identificados

- De responsabilidade do Sistema
 - Verificar se a conta é válida.
 - Verificar se a senha está correta.
 - Atualizar o estado do caixa eletrônico com as informações de login
 - Verificar se o login foi efetuado.
 - Verificar se a conta está ativa.
 - Obter o saldo da conta.
 - Verificar se o cliente tem saldo suficiente para realizar a transação.

Eventos Identificados

- De responsabilidade do Sistema
 - Verificar se há dinheiro em quantidade suficiente no caixa.
 - Subtrair o valor solicitado do saldo da conta do cliente.
 - Desativar a conta.
 - Adicionar o valor depositado ao saldo da conta.
 - Verificar se a conta deve ser reativada.
 - Reativar a conta.

Construir Diagramas de Sequência

- Baseado nos eventos encontrados. Cada evento pode corresponder a um ou mais fluxos no diagrama de sequência.
- Deve-se ter em mente as classes descobertas na análise estática, pois é a partir da interação dos seus objetos que as funcionalidades são implementadas

Diagrama de Classes de Análise

Sequência - Consultar Saldo

Sequencia - Efetuar Saque

Diagrama de Comunicação

- Centraliza a representação dos eventos dos diagramas de sequência
- Explicita as associações entre as classes e facilita a identificação das operações

Comunicação Saque/Consulta

Identificação das Operações

- Cada evento recebido pode ser
 - Uma operação que a classe deve oferecer
 - O retorno de uma operação executada

Diagrama de Classes final de Análise

Estados da Classe Conta

Elaboração ->Projeto

Projeto

- Adquirir uma compreensão de aspectos de requisitos não funcionais e restrições sobre *linguagens de programação*, sistemas operacionais, SGBDs, aspectos de distribuição, etc.
- Criar informações suficientes para a implementação, descrevendo subsistemas, interfaces e classes.
- Estar apto a dividir a tarefa de implementação em equipes
- Determinar mais cedo as interfaces entre os subsistemas
- Criar um modelo que possibilite uma implementação que preencha as estruturas definidas sem altera-las

Projeto

MODELO DE ANÁLISE MODELO DE PROJETO

conceitual físico

Genérico (c.r. projeto) específico

3 tipos de classes Depende da implementação

Menos formal Mais formal

Mais rápido (1/5 do projeto Mais demorado (5 x análise)

Poucos níveis Muitos níveis

Menos dinamica Mais dinâmica, foco na

sequencia

Não se mantém no ciclo Se mantém em todo ciclo

Projeto - Artefatos

- 1. Modelo de Projeto
 - hierarquia de subsistemas contendo classe de projeto, projetos de use-cases e interfaces
- 2. Classes de Projeto
 - na linguagem de programação da implementação
 - visibilidade dos atributos (ex. publico, protegido, privado)
 - generalizações e herança;
 - associações e agregações e atributos
 - métodos em pseudo-código

Projeto - Artefatos

- 3. Realização dos Casos de Uso
 - Diagrama de classes
 - Diagrama de interações (diagramas de sequência)
 - Fluxo de eventos (textual)
 - Requisitos de implementação

Projeto - Artefatos

- 4. Subsistema de Projeto
 - (pacotes de análise, componentes, produtos de software, sistemas existentes) SUBSISTEMAS DE SERVIÇO
- 5. Interface (separa funcionalidade de implementação)
- 6. Arquitetura (VISÃO DO PROJETO)
 - (1. Subsistemas, interfaces e dependências
 - 2. Classes chave, classes ativas
 - 3. Realização de use-cases centrais ao sistema
- 7. Modelo de Distribuição (Diagrama de componentes)
- 8. Arquitetura (VISÃO DO MODELO DE DISTRIBUIÇÃO) (Diagrama de Implantação)

Projeto - Arquitetura

A1) Identificar nós e suas configurações

- determinar os nós envolvidos e suas característica
- determinar os tipos de conexões entre os nós
- verificar necessidades de processamentos redundantes, backups, etc.

A2) Identificar subsistemas e suas interfaces

- subsistemas da aplicação
- identificar middleware (SO, SGBD, software de comunicação, pacotes GUI, distribuição, etc.)
- definir dependências entre os subsistemas
- identificar as interfaces entre os subsistemas

Projeto - Arquitetura

A3) Identificar classes de projeto significativas

- a partir das classes de análise
- classes ativas (requisitos de concorrência, performance, inicialização, distribuição, prevenção de deadlocks)

A4) outros requisitos de projeto

 (persistência, transparência de distribuição, segurança, recuperação de erros, gerência de transações)

Projeto - Classe

A1) Definir uma classe de projeto

- a partir de <u>classes de fronteira</u> : depende da linguagem
- <u>classes de entidades</u> persistentes podem produzir tabelas relacionais
- <u>classes de controle</u> podem gerar várias classes de projeto (distribuição) ou serem encapsuladas em classes de entidades

A2) Definir operações

- realizar as responsabilidades da classe
- requisitos especiais (e.g. acesso ao banco de dados)
- atender às necessidades das interfaces da classe

A3) Definir atributos

- considerar os atributos da análise
- os tipos dos atributos são determinados pela linguagem de programação valores de atributos usados por vários objetos devem ser transformados em objetos

Projeto - Classe

A4) Identificar associações e agregações

- dependendo da linguagem, transformá-los em relacionamentos
- tentar transformar cardinalidades, papéis, etc. em atributos ou em novas classes para realizar a associação
- analise a navegabilidade pelas associações

A5) Identificar generalizações

A6) Descrever métodos

• realização de operações por pseudo-código, diagramas de atividades, linguagem natural,..

A7) Descrever estados

• diagrama de estados

Projeto - Subsistema

- 1. Rever as dependências entre subsistemas
- 2. Rever as interfaces
- 3. Rever o conteúdo

Elaboração -> Implementação

Implementação

- 1. MODELO DA IMPLEMENTAÇÃO
- 2. COMPONENTE
- 3. SUBSISTEMA DE IMPLEMENTAÇÃO
- 4. INTERFACE
- 5. ARQUITETURA (visão da implementação)
- 6. PLANO DE INTEGRAÇÃO

Implementação

- MODELO DA IMPLEMENTAÇÃO
 - É uma hierarquia de subsistemas de implementação contendo componentes e interfaces
- COMPONENTE
 - É UM PACOTE CONTENDO ELEMENTOS DO PROJETO
 - Diagrama de Componentes

```
<<executable>> (programa executável)
```

- <<file>> (arquivo contendo código fonte ou dados)
- <(biblioteca estática ou dinâmica)
- <<table>> (tabela do banco de dados)
- <<document>> (um documento)

Implementação

• SUBSISTEMAS DE IMPLEMENTAÇÃO

um package em Java um project em Visual Basic um diretório de C++

INTERFACES

Implementam as interfaces do projeto

• ARQUITETURA (visão da implementação)

Decomposição em subsistemas, compostos de interfaces e componentes e Componentes chave

PLANO DE INTEGRAÇÃO

Primeira versão executável: testes localizados de integração para facilitar a detecção de erros:=>versão final

Elaboração -> Teste

Teste

- Planejar os testes em cada iteração, tanto os testes de integração quanto os testes de sistema
- preparar casos de teste, criar procedimentos de teste e procedimentos executáveis
- Realizar os testes e analisar os resultados

Teste - Artefatos

- Modelo de Teste
- Casos de Teste

Ciclo de Vida PU

