# Fundamentals of Electric Circuits By Alexander-Sadiku

Chapter 1
Basic Concepts

#### Basic Concepts - Chapter 1

- > Electric Circuit.
- > Systems of Units.
- > Electric Charge.
- > Current.
- ➤ Voltage.
- Power and Energy.
- Circuit Elements.

#### **Electrical Circuit**

An electric circuit is an interconnection of electrical elements.

#### A Basic Circuit

All electric circuits have three main parts

- 1. A source of energy
- 2. A closed path
- 3. A device which uses the energy

If ANY part of the circuit is open the device will not work!



# System of Units (1)

#### Six basic units

| Quantity                  | Basic unit | Symbol |
|---------------------------|------------|--------|
| Length                    | meter      | m      |
| Mass                      | kilogram   | Kg     |
| Time                      | second     | S      |
| Electric current          | ampere     | A      |
| Thermodynamic temperature | kelvin     | K      |
| <b>Luminous intensity</b> | candela    | cd     |

# System of Units (2)

#### The derived units commonly used in electric circuit theory

| Quantity                                                                                                                                                | Unit                                                                     | Symbol                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| electric charge electric potential resistance conductance inductance capacitance frequency force energy, work power magnetic flux magnetic flux density | coulomb volt ohm siemens henry farad hertz newton joule watt weber tesla | C<br>V<br>Ω<br>S<br>H<br>F<br>Hz<br>N<br>J<br>W<br>Wb |

| Factor                                                                                            | Prefix                                                          | Symbol                          |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|
| 10° 106 103 10 <sup>-2</sup> 10 <sup>-3</sup> 10 <sup>-6</sup> 10 <sup>-9</sup> 10 <sup>-12</sup> | giga<br>mega<br>kilo<br>centi<br>milli<br>micro<br>nano<br>pico | G<br>M<br>k<br>c<br>m<br>µ<br>n |

Decimal multiples and submultiples of SI units

#### **Electric Charges**

- Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- The charge e on one electron is negative and equal in magnitude to  $1.602 \times 10^{-19}$  C which is called as electronic charge. The charges that occur in nature are integral multiples of the electronic charge.
- Law of conservation of charge
- Mobility

#### Current (1)

- Electric current i = dq/dt. The unit of ampere can be derived as 1 A = 1C/s.
- A direct current (dc) is a current that remains constant with time.
- An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction)

# Current (2)

The direction of current flow



Positive ions

Negative ions

#### Voltage

• Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V).

- Mathematically,  $v_{ab} = dw/dq \eqno(volt)$ 
  - w is energy in joules (J) and q is charge in coulomb (C).
- Electric voltage, v<sub>ab,</sub> is always across the circuit element or between two points in a circuit.
  - $v_{ab} > 0$  means the potential of a is higher than potential of b.
  - $v_{ab}$  < 0 means the potential of a is lower than potential of b.

## Power and Energy (1)

- Power is the time rate of expending or absorbing energy, measured in watts (W).
- Mathematical expression:

absorbing power

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$$



10

## Power and Energy (2)

The law of conservation of energy

$$\sum p = 0$$

- Energy is the capacity to do work, measured in joules (J).
- Mathematical expression  $w = \int_{t_0}^t p dt = \int_{t_0}^t vidt$

#### Circuit Elements (1)

#### **Active Elements**

#### **Passive Elements**





- A dependent source is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources.

## Circuit Elements (2)

#### **Example 2**

Obtain the voltage v in the branch shown in Figure 2.1.1P for  $i_2 = 1$ A.



## Circuit Elements (3)

#### **Solution**

Voltage v is the sum of the current-independent 10-V source and the current-dependent voltage source  $v_x$ .

Note that the factor 15 multiplying the control current carries the units  $\Omega$ .

Therefore, 
$$v = 10 + v_x = 10 + 15(1) = 25 \text{ V}$$