Model and Cost Function

Let's take an example of a sample dataset which contains the housing prices in a particular city.

This is an example of:

- Supervised Learning: Given the "correct answer" for each example in the dataset
- Regression Problem: Objective is to predict real-valued output

Size in ft ² (x)	Price in \$100 (y)
2104 (x ⁽¹⁾)	460 (y ⁽¹⁾)
1416 (x ⁽²⁾)	232 (y ⁽²⁾)
1534 (x ⁽³⁾)	315 (y ⁽³⁾)
852 (x ⁽⁴⁾)	178 (y ⁽⁴⁾)

Notation:

- m: Number of training examples
- x's: "Input" Variable
- y's: "Output" Variable
- (x, y): Single Training Example
- (x⁽ⁱ⁾, y⁽ⁱ⁾): i^(th) Training Example

What is Hypothesis?

It maps from input features to output variables. It can be represented as

$$h_{ heta}(x) = heta_0 + heta_1 x$$

The shorthand notation for the above equation is

$$h(x) = \theta_0 + \theta_1 x$$

Here, $heta_0$ and $heta_1$ are the parameters

The black line represents the Hypothesis. This model is called **Univariate Linear Regression** or *Linear Regression with One Variable*. Below are some of the examples for certain values of the parameters θ_0 and θ_1 .

Choosing the Values of θ_0 and θ_1

- Choose $heta_0$ and $heta_1$ so that $h_{ heta}(x)$ is close to y for our training examples
- Formulation:

$$minimize_{ heta_0 heta_1}rac{1}{2m}\sum_{i=1}^m (h_{ heta}(x^{(i)})-y^{(i)})^2$$

Where,

$$ullet h_ heta(x^{(i)}) = heta_0 + heta_1 x^{(i)}$$

- $\circ m = \text{Number of training examples}$
- Cost Function (Squared Error Function):

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

• Therefore, in Linear Regression, the goal is:

$$minimize_{ heta_0 heta_1}J(heta_0, heta_1)$$

Note: There are other cost functions that work pretty well, but the Squared Error Cost function is the one most commonly used for *Regression* problems

Cost Function Intuition 1

Let's have a simplified version of the cost function, where the hypothesis is (assuming $heta_0=0$):

$$h_{\theta}(x) = \theta_1 x$$

We have the Cost Function,

$$J(heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

And our goal is:

$$minimize_{\theta_1}J(\theta_1)$$

When $\theta_1=1$:

$$egin{aligned} J(heta_1) &= rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 \ &= rac{1}{2m} \sum_{i=1}^m (heta_1 x^{(i)} - y^{(i)})^2 \ &= rac{1}{2*3} [(1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2] \ &= rac{1}{6} (0^2 + 0^2 + 0^2) \ &= 0 \end{aligned}$$

When $heta_1=0.5$:

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2*3} [(0.5*1 - 1)^2 + (0.5*2 - 2)^2 + (0.5*3 - 3)^2]$$

$$= \frac{1}{2*3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2]$$

$$= \frac{1}{2*3} [0.5^2 + 1^2 + 1.5^2]$$

$$= \frac{1}{6} * 3.5$$

$$= 0.58$$

When $heta_1=0$:

$$egin{aligned} J(heta_1) &= rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 \ &= rac{1}{2m} \sum_{i=1}^m (heta_1 x^{(i)} - y^{(i)})^2 \ &= rac{1}{2*3} [(0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2] \ &= rac{1}{2*3} [(1^2 + 2^2 + 3^2] \ &= rac{1}{6}*14 \ &= 2.3 \end{aligned}$$

Plot for $J(\theta_1)$ as a function of parameter θ_1 :

The value that minimizes $J(heta_1)$ here is $J(heta_1)=1$ for this particular dataset

Cost Function Intuition 2

Problem Formulation:

Hypothesis:

$$h_{ heta}(x) = heta_0 + heta_1 x$$

Parameters: θ_0, θ_1

Cost Function:

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

And our goal is:

$$minimize_{ heta_0, heta_1}J(heta_0, heta_1)$$

Let's make a random hypothesis on a training set of housing prices:

Here,

 $\theta_0 = 50$

 $\theta_1 = 0.06$

 $h_{\theta}(x) = 50 + 0.06x$

Plot for $J(\theta_1)$ as a function of parameter θ_1 and θ_1 :

Example 1:

Selected point (cost) will have $heta_0=800$ and $heta_1=-0.15$, which isn't a good fit for the data

Example 2:

Selected point (cost) will have $heta_0=360$ and $heta_1=0$, which isn't a good fit for the data

Example 3:

Selected point (cost) will have $heta_0=500$ and $heta_1=0$, which isn't a good fit for the data

Example 4:

Selected point (cost) will have $\theta_0=250$ and $\theta_1=0.15$, which looks like a good fit for the data, even though it's not quite at the minimum