Lecture 4. Into to Neural Networks

Michael Vasilkovsky

Who am I?

Lecture plan

- Examples of NN usage
- Biological motivation
- Mathematical modelling
- Fully connected NNs
- Activation functions
- Loss functions and backprop
- Gradient descent
- Optimization
- Weight initialization

Once upon a time...

2006

Computer vision = 60%0.6 12 = 0.00217

2014

Completed • Swag • 215 teams

Dogs vs. Cats

Wed 25 Sep 2013 - Sat 1 Feb 2014 (8 months ago)

Dashboard ▼

Private Leaderboard - Dogs vs. Cats

This competition has completed. This leaderboard reflects the final standings.

See someone

#	Δ1w	Team Name * in the money	Score @	Entries	Last Submission UTC (Best - Las
1	-	Pierre Sermanet *	0.98914	5	Sat, 01 Feb 2014 21:43:19 (-
2	↑26	orchid *	0.98309	17	Sat, 01 Feb 2014 23:52:30
3	-	Owen	0.98171	15	Sat, 01 Feb 2014 17:04:40 (-
4	new	Paul Covington	0.98171	3	Sat, 01 Feb 2014 23:05:20
5	13	Maxim Milakov	0.98137	24	Sat, 01 Feb 2014 18:20:58

$$0.989^{12} = 0.875$$

2014

Microsoft Research

Search Mi

Our re	esearch	Connections	S Care	eers	About us			
All	Downloads	Events	Groups	News	People	Proiects	Publications	

ASIRRA

After 8 years of operation, Asirra is shutting down effective October 1, 2014. Thank you to all of our users!

Problem statement

What we see

What a computer sees

Enough motivation!

Neuron model

Our brain

- 100 billion neurons
- average neuron is connected to 1000-10000 other neurons
- 100 trillion synapses
- 10-25% is in visual cortex

Mathematical model

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Multilayer perceptron

$$a = L(x), x \in \mathbb{R}^m, a \in \mathbb{R}^n$$

$$a_i = \sigma \left(\sum_j w_{ij} x_j + b_i \right)$$

$$a = \sigma(Wx + b), b \in \mathbb{R}^n$$

Hint, don't look there!

$$\begin{bmatrix} 3 & 2 & 0 \\ 0 & 4 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 18 \\ 13 \\ 9 \end{bmatrix}$$

$$x \qquad y$$

Multiclass case

Recap: Gradient decent

- We want to minimize f(x)
- Initialize x_0
- For each x_n do...
- Compute gradient (derivative) $f'(x_n)$
- Make a step:

$$x_{n+1} = x_n - \alpha f'(x_n)$$

$$w_n = w_{n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w}(X, y, w_{n-1})$$

Backprop

$$x \to f \to y, \ y = f(x, w)$$

$$\frac{\partial L}{\partial y} \text{ is known}$$

$$\frac{\partial L}{\partial x} = ?, \ \frac{\partial L}{\partial w} = ?$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial f}{\partial x}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial w} = \frac{\partial L}{\partial y} \frac{\partial f}{\partial w}$$

$$y = Wx \Rightarrow \frac{\partial L}{\partial x} = W^T \frac{\partial L}{\partial y}$$

Vanishing gradients

Variations of stochastic gradient descent (SGD)

- Compute gradient using only a subsample of a smaller size (called batch size)
- It accelerates convergence because the algorithm usually converges in approximately the same number of steps
- Use always this method, never compute gradient by the entire sample

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Momentum — экспоненциальное скользящее среднее градиента по $\approx \frac{1}{1-\gamma}$ последним итерациям [Б.Т.Поляк, 1964]:

$$v := \gamma v + \eta \mathcal{L}'_i(w)$$
$$w := w - v$$

NAG (Nesterov's accelerated gradient) — стохастический градиент с импульсом Нестерова [1983]:

$$v := \gamma v + \eta \mathcal{L}'_i(w - \gamma v)$$
$$w := w - v$$

RMSProp (running mean square) — адаптация скорости изменения весов, скользящим средним по $\approx \frac{1}{1-\alpha}$ итерациям:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)$$

 $w := w - \eta \mathcal{L}'_i(w) \oslash (\sqrt{G} + \varepsilon)$

где \odot и \oslash — покординатное умножение и деление векторов.

AdaDelta (adaptive learning rate) — двойная нормировка приращений весов, после которой можно брать $\eta=1$:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_{i}(w) \odot \mathcal{L}'_{i}(w)$$

$$\delta := \mathcal{L}'_{i}(w) \odot \frac{\sqrt{\Delta} + \varepsilon}{\sqrt{G} + \varepsilon}$$

$$\Delta := \alpha \Delta + (1 - \alpha) \delta \odot \delta$$

$$w := w - \eta \delta$$

Adam (adaptive momentum) = импульс + RMSProp:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w)$$
 $\hat{v} := v(1 - \gamma^k)^{-1}$
 $G := \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)$ $\hat{G} := G(1 - \alpha^k)^{-1}$
 $w := w - \eta \hat{v} \oslash (\sqrt{\hat{G}} + \varepsilon)$

Калибровка \hat{v} , \hat{G} увеличивает v, G на первых итерациях, где k — номер итерации; $\gamma=0.9$, $\alpha=0.999$, $\varepsilon=10^{-8}$

Nadam (Nesterov-accelerated adaptive momentum): те же формулы для v, \hat{v} , G, \hat{G} ,

$$w := w - \eta \left(\gamma \hat{v} + \frac{1-\gamma}{1-\gamma^k} \mathscr{L}'_i(w) \right) \oslash \left(\sqrt{\hat{G}} + \varepsilon \right)$$

