Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 9 B

Lösungshinweise

In Aufgabe 1 auf Präsenzblatt 9 A haben wir den Begriff des Unterraums eines Vektorraums eingeführt. Wir erinnern uns: Eine Teilmenge $U\subseteq V$ eines \mathbb{K} -Vektorraums V heißt $Unterraum\ von\ V$, falls U mit den von V kommenden Verknüpfungen + und \cdot selbst zu einem Vektorraum wird, oder äquivalent, falls die folgenden drei Bedingungen erfüllt sind:

(i)
$$\mathbf{0} \in U$$
 (ii) $\mathbf{v}, \mathbf{w} \in U \implies \mathbf{v} + \mathbf{w} \in U$ (iii) $\mathbf{v} \in U, \alpha \in \mathbb{K} \implies \alpha \cdot \mathbf{v} \in U$

Aufgabe 1: Es seien \mathbb{K} ein Körper, V ein \mathbb{K} -Vektorraum und U_1, U_2 Unterräume von V.

- (a) Zeigen Sie, dass die Menge $U_1 \cap U_2$ ein Unterraum von V ist.
- (b) Finden Sie ein Beispiel für V, U_1 und U_2 , sodass $U_1 \cup U_2$ kein Unterraum von V ist.

Lösung:

- (a) Wir zeigen die Behauptung, indem wir die eingangs formulierten Kriterien für einen Unterraum nachweisen:
 - Da U_1 und U_2 Unterräume sind, haben wir $\mathbf{0} \in U_1$ und $\mathbf{0} \in U_2$. Deshalb gilt auch $\mathbf{0} \in U_1 \cap U_2$.
 - Es seien $\mathbf{v}, \mathbf{w} \in U_1 \cap U_2$. Es gilt dann $\mathbf{v} \in U_1$ und $\mathbf{w} \in U_1$ und damit, weil U_1 ein Unterraum ist, $\mathbf{v} + \mathbf{w} \in U_1$. Genauso gilt $\mathbf{v} \in U_2$ und $\mathbf{w} \in U_2$ und damit, weil U_2 ebenfalls ein Unterraum ist, $\mathbf{v} + \mathbf{w} \in U_2$. Zusammenfassend haben wir also $\mathbf{v} + \mathbf{w} \in U_1 \cap U_2$.
 - Es seien $\mathbf{v} \in U_1 \cap U_2$ und $\alpha \in \mathbb{K}$. Dann gilt $\mathbf{v} \in U_1$ und damit $\alpha \cdot \mathbf{v} \in U_1$, da U_1 ein Unterraum ist. Genauso gilt $\mathbf{v} \in U_2$ und damit $\alpha \cdot \mathbf{v} \in U_2$, da U_2 ein Unterraum ist. Also ist $\alpha \cdot \mathbf{v} \in U_1 \cap U_2$.
- (b) Es seien $V = \mathbb{R}^2$, $U_1 = \text{Spann}(\mathbf{e}^{(1)})$ und $U_2 = \text{Spann}(\mathbf{e}^{(2)})$. Dann gilt

$$\mathbf{e}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in U_1 \subseteq U_1 \cup U_2 \quad \text{und} \quad \mathbf{e}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in U_2 \subseteq U_1 \cup U_2,$$

aber

$$\mathbf{e}^{(1)} + \mathbf{e}^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \not\in U_1 \cup U_2.$$

Daher verletzt $U_1 \cup U_2$ die Bedingung (ii) der eingangs formulierten Charakterisierung von Unterräumen, stellt also keinen Unterraum von V dar.

Aufgabe 2: Es sei V ein Vektorraum über dem Grundkörper \mathbb{K} . Sind n beliebige Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)} \in V$ gegeben, so definieren wir ihre *lineare Hülle* durch

$$\operatorname{Spann}(\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(n)}) := \left\{ \sum_{j=1}^{n} \lambda_{j} \mathbf{v}^{(j)} \mid \lambda_{1},\ldots,\lambda_{n} \in \mathbb{K} \right\}.$$

Zeigen Sie:

- (a) Spann($\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$) ist ein Unterraum von V. (Spann($\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$) wird deshalb auch der $von \ \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$ aufgespannte Unterraum von V genannt.)
- (b) Sind $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$ linear unabhängig, so ist dim Spann $(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}) = n$.

Lösung:

- (a) Wir verifizieren, dass $U := \operatorname{Spann}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ die eingangs formulierten charakterisierenden Eigenschaften eines Unterraums besitzt:
 - Es gilt $\mathbf{0} \in U$, da $\mathbf{0} = 0 \cdot \mathbf{v}^{(1)} + \dots + 0 \cdot \mathbf{v}^{(n)}$ (d. h. $\lambda_1 = \dots = \lambda_n = 0 \in \mathbb{K}$).
 - Sind Vektoren $\mathbf{v}, \mathbf{w} \in U$ gegeben, so finden wir $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ und $\mu_1, \dots, \mu_n \in \mathbb{K}$, sodass

$$\mathbf{v} = \lambda_1 \mathbf{v}^{(1)} + \dots + \lambda_n \mathbf{v}^{(n)}$$
 und $\mathbf{w} = \mu_1 \mathbf{v}^{(1)} + \dots + \mu_n \mathbf{v}^{(n)}$

gemäß der Definition von U als die lineare Hülle der Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$. Folglich haben wir

$$\mathbf{v} + \mathbf{w} = (\lambda_1 + \mu_1)\mathbf{v}^{(1)} + \dots + (\lambda_n + \mu_n)\mathbf{v}^{(n)},$$

womit wir sehen, dass $\mathbf{v} + \mathbf{w} \in U$.

• Sind $\mathbf{v} \in U$ und $\alpha \in \mathbb{K}$ gegeben, dann finden wir $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, sodass

$$\mathbf{v} = \lambda_1 \mathbf{v}^{(1)} + \dots + \lambda_n \mathbf{v}^{(n)}.$$

Deshalb haben wir

$$\alpha \cdot \mathbf{v} = (\alpha \lambda_1) \mathbf{v}^{(1)} + \dots + (\alpha \lambda_n) \mathbf{v}^{(n)}$$

und somit $\alpha \cdot \mathbf{v} \in U$.

Damit ist U ein Unterraum von V.

(b) Die Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$ seien linear unabhängig. Unter dieser Voraussetzung zeigen wir, dass $(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ eine Basis von $U = \operatorname{Spann}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ darstellt. Hierzu erinnern wir uns, dass unter einer Basis eines Vektorraums ein System linear unabhängiger Vektoren verstanden wird, das maximale Größe besitzt. Da die Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$ als linear unabhängig vorausgesetzt sind, bleibt zu zeigen, dass wir dieses System durch keinen weiteren Vektor $\mathbf{v} \in U$ ergänzen können, sodass auch das ergänzte System $(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}, \mathbf{v})$ aus linear unabhängigen Vektoren besteht. Dies sehen wir wie folgt: Wie geben uns $\mathbf{v} \in U$ beliebig vor. Definitionsgemäß gibt es dann $\lambda_1, \dots, \lambda_n \in \mathbb{K}$, sodass $\mathbf{v} = \lambda_1 \mathbf{v}^{(1)} + \dots + \lambda_n \mathbf{v}^{(n)}$. Dies können wir umschreiben als

$$\lambda_1 \mathbf{v}^{(1)} + \dots + \lambda_n \mathbf{v}^{(n)} + (-1)\mathbf{v} = \mathbf{0},$$

d. h. es gibt eine Linearkombination der Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}, \mathbf{v}$, die den Nullvektor $\mathbf{0}$ darstellt und die nicht-trivial ist in dem Sinne, dass es mindestens einen von $0 \in \mathbb{K}$ verschiedenen Koeffizienten gibt (nämlich den von \mathbf{v}). Deshalb sind die Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}, \mathbf{v}$ für kein $\mathbf{v} \in U$ linear unabhängig. Folglich ist $(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ ein maximal großes System linear unabhängiger Vektoren, also eine Basis von U. Dies zeigt insbesondere, dass dim Spann $(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}) = n$ wie behauptet.

Aufgabe 3: In \mathbb{R}^3 seien die Vektoren

$$\mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathbf{v}^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \qquad \mathbf{w}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{w}^{(2)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

gegeben. Wir betrachten die aufgespannten Unterräume

$$U_1 = \operatorname{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)})$$
 und $U_2 = \operatorname{Spann}(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}).$

Bestimmen Sie eine Basis des Unterraums $U_1 \cap U_2$.

Hinweis: Für jedes $\mathbf{x} \in U_1 \cap U_2$ gibt es $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}$, sodass $\mathbf{x} = \lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \mu_1 \mathbf{w}^{(1)} + \mu_2 \mathbf{w}^{(2)}$.

Lösung: Es sei $\mathbf{x} \in U_1 \cap U_2$ gegeben. Weil also sowohl $\mathbf{x} \in U_1$ als auch $\mathbf{x} \in U_2$ gilt, finden wir (wie im Hinweis angegeben) nach Definition von U_1 und U_2 als lineare Hüllen der Vektoren $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$ bzw. $\mathbf{w}^{(1)}, \mathbf{w}^{(2)}$ Koeffizienten $\lambda_1, \lambda_2 \in \mathbb{R}$ und $\mu_1, \mu_2 \in \mathbb{R}$, sodass

$$\mathbf{x} = \lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \mu_1 \mathbf{w}^{(1)} + \mu_2 \mathbf{w}^{(2)}. \tag{1}$$

Es muss also

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \mu_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \mu_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

gelten, was uns zu dem linearen Gleichungssystem

$$\lambda_1 = \mu_1 + \mu_2 \tag{2}$$

$$\lambda_2 = \mu_1 + \mu_2 \tag{3}$$

$$\lambda_1 + \lambda_2 = \mu_2 \tag{4}$$

führt. Aus (2) und (3) folgern wir, dass

$$\lambda_1 = \lambda_2 = \mu_1 + \mu_2,\tag{5}$$

und indem wir dieses Ergebnis in (4) einsetzen, erhalten wir die Gleichung $2(\mu_1 + \mu_2) = \mu_2$; diese ist äquivalent zu

$$\mu_2 = -2\mu_1. (6)$$

Setzen wir nun (6) in (5) ein, so ergibt sich $\lambda_1 = \lambda_2 = -\mu_1$. Wir sehen damit, dass die Lösung $(\lambda_1, \lambda_2, \mu_1, \mu_2)$ des Gleichungssystems (2, 3, 4) von der Form $(-\mu_1, -\mu_1, \mu_1, -2\mu_1)$ sein muss.

Wir überlegen uns nun, was dies für \mathbf{x} bedeutet. Setzen wir die bereits bestimmte Lösung

$$(\lambda_1, \lambda_2, \mu_1, \mu_2) = (-\mu_1, -\mu_1, \mu_1, -2\mu_1)$$

in (1) ein, so ergibt sich

$$\mathbf{x} = \mu_1 \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = (-\mu_1) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = (-\mu_1)\mathbf{u} \quad \text{für} \quad \mathbf{u} := \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix},$$

d. h. $\mathbf{x} \in \text{Spann}(\mathbf{u})$.

Weil $\mathbf{x} \in U_1 \cap U_2$ beliebig vorgegeben war, folgt aus unseren bisherigen Überlegungen, dass $U_1 \cap U_2 \subseteq \operatorname{Spann}(\mathbf{u})$. Umgekehrt wissen wir aber, dass

$$\mathbf{u} = 1 \cdot \mathbf{v}^{(1)} + 1 \cdot \mathbf{v}^{(2)} \in \operatorname{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}) = U_1$$

und

$$\mathbf{u} = (-1) \cdot \mathbf{w}^{(1)} + 2 \cdot \mathbf{w}^{(2)} \in \operatorname{Spann}(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}) = U_2,$$

sodass $\mathbf{u} \in U_1 \cap U_2$ und damit Spann $(\mathbf{u}) \subseteq U_1 \cap U_2$ gelten muss. Folglich haben wir $U_1 \cap U_2 = \operatorname{Spann}(\mathbf{u})$ und \mathbf{u} stellt nach Aufgabe 2 (b) auf diesem Blatt eine Basis von $U_1 \cap U_2$ dar.