Ein echtzeitfähiges globales Beleuchtungsmodell basierend auf der Radiocity Methode und Reflectionmapping

Dr. Johannes Riesterer

Ein echtzeitfähiges globales Beleuchtungsmodell Motiviation

Ein echtzeitfähiges globales Beleuchtungsmodell Motiviation

Realismus und Atmosphäre

Echtzeitfähige globale Beleuchtungsmodelle erzeugen Realismus und Atmosphäre in Spielen und virtuellen Realitäten.

Ein echtzeitfähiges globales Beleuchtungsmodell Enlighten von Geomerics

Enlighten - Implementierung eines echtzeitfähigen globalen Beleuchtungsmodells der Firma Geomerics

Vollständige integration

Frostbite 3, Unreal Engine 4, Unity 5. Desktop, Konsolen, Mobile Geräte.

Funktionsweise Radiocity Methode (Indirekte diffuse Reflexionen) Reflection \oplus mapping (Indirekte spiegelnde Finales Bild

Geschichtliches

- \bullet Phong, Cook-Torrance \sim 1974, Radiocity Methode \sim 1984, Reflectionmapping \sim 1974.
- Kombination ∼ 2011, 2015

Reflexionen)

(a) Direkte Beleuchtung

(c) Indirekte Reflexionen

(b) Indirekte diffuse Beleuchtung

(d) Zusammengesetztes Bild

Indirekte diffuse Beleuchtung

Die Rendergleichung in 2-ter Form

$$\underbrace{L_o(x \to \theta)}_{\text{Intensität}} = \underbrace{L_e(x \to \theta)}_{\text{(Emission)}} + \underbrace{\int_{\Omega} \underbrace{f_r(x, \overline{yx}, \theta)}_{\text{(Emission)}} \cdot L_o(y \to \overline{yx}) \cdot G(x, y) dA_y}_{:=L \text{ (Reflektierte Intensität)}}$$

$$G(x,y) := V(x,y) \frac{\cos(\theta_x) \cdot \cos(\theta_y)}{||\overline{yx}||^2}$$

Diffuse Version

$$L(x \to \theta) = L(x), \quad f_r(x, \theta, \overline{yx}) = f(x)$$
 Richtungsunabhängig
$$L_o(x) = L_e(x) - f(x) \cdot \int_{\Omega} L_o(y) \cdot G(x, y) \ dA_y \ .$$

Diffuse Beleuchtung Radiocity Verfahren

Durch den finite Elemente Ansatz erhält man die diskrete diffuse Rendergleichung

$$(F_o)_j = (F_e)_j + f_j \sum_i P_{ji} \cdot (F_e)_i ,$$

mit den Formfaktoren $P_{ji}:=\frac{1}{A_j}\int_{P_j}\int_{P_i}G(x,y)\;dA_y$ und dem Flächeninhalt $A_j:=\int_{P_i}1\;dA_y\;\mathrm{des}\;P_j$ -ten Patches.

Zusammengefasst erhält man das lineare Gleichungssystem

$$P \cdot O = E$$

$$P := (m_{ij}) \text{ mit } m_{ij} = \begin{cases} 1 - f_i \cdot P_{ij} \text{ für } i = j \\ -f_i \cdot P_{ij} \text{ sonst} \end{cases}$$

$$O := \begin{pmatrix} (F_o)_1 \\ \vdots \\ (F_o)_n \end{pmatrix} E := \begin{pmatrix} (F_e)_1 \\ \vdots \\ (F_e)_n \end{pmatrix}$$

Statische Objekte

- P wird für statische Objekte vorberechnet.
- Der Vektor *E* wird in jedem Frame durch das direkte Beleuchtungsmodell bestimmt (sampling).
- Das Gleichungssystem kann sehr effizient n\u00e4herungsweise gel\u00f6st werden.

Bewegte Objekte

- Für dynamische Objekte werde Stichproben, sogenannte Lightprobes, verwendet.
- Lightprobes müssen vom Anwender platziert werden und können bei Berechnung einfach berücksichtigt werden.
- Die Werte der Lightprobes werden via Blendfunktionen im shading der bewegten Objekte verwendet.
- Schattenwurf kann für Bewegte Objekte durch standard Algorithmen wie shadowmap oder einen Shadowray etc. integriert werden.

Indirekte Reflexionen

Reflectionmapping

Indirekte Reflexionen Reflectionmapping

Anwendung

- Platziere Kameras in der Szene, die Cubemaps aufnehmen.
 Diese werden auch als Reflectionprobes bezeichnet.
- Ordne Objekten in der Szene via Blendfunktionen Reflectionprobes zu.
- Definiere wie stark Objekt reflektiert durch entsprechende Berücksichtigung des Farbwertes der Cubemap.
- Reflectionmaps/Cubemaps sind Hardware-Optimiert.
- Cubemaps für statischen Inhalte der Szene können vorberechnet werden.

Dynamische Objekte

Für dynamische Inhalte muss in jedem Frame jede Reflectionprobe neu aufgenommen werden.

Ein echtzeitfähiges globales Beleuchtungsmodell Enlighten von Geomerics

Enlighten - Implementierung eines echtzeitfähigen globalen Beleuchtungsmodells der Firma Geomerics