

Duração: 90 minutos. Prova com consulta de formulário, em folha A4, e uso de dispositivo de cálculo, apenas para fazer contas e não para consultar apontamentos, exames anteriores ou formulários. O dispositivo não pode estar ligado à rede e só pode executar um programa de cada vez. Use $g = 9.8 \text{ m/s}^2$.

Li e compreendi o texto acima:

1. (6 valores) Um objeto com massa de 500 gramas desloca-se ao longo de uma trajetória conhecida. A força resultante sobre o objeto é conservativa e a expressão para a energia potencial total é (unidades SI):

$$U = 4 s^2 - 8 s + 20$$

Onde s é a posição na trajetória. (a) Escreva as equações de evolução do sistema. (b) Determine a matriz jacobiana do sistema. Se num instante inicial o objeto se encontrar em s = 0, com velocidade de valor $v = 4\sqrt{3}$ m/s, começará a oscilar; determine: (c) o valor máximo da velocidade nessa oscilação e (d) os valores mínimo e máximo de s nessa oscilação.

PERGUNTAS. Respostas certas, 1 valor, erradas, −0.25, em branco, 0. Indique as respostas neste enunciado e não na folha de exame.

2. Numa partícula que se desloca no plano xy atua unicamente uma força conservativa. Em coordenadas polares $r \in \theta$, as expressões da energia cinética e da energia potencial da partícula são:

E_c = $\frac{m}{2}(r^2\dot{\theta}^2 + \dot{r}^2)$ $U = k r^5$

onde m é a massa da partícula e k uma constante. Determine a equação de movimento para r

- (A) $r\dot{\theta}^2 \frac{5kr^4}{m}$ (B) $r^2\dot{\theta}^2 + \frac{5kr^4}{m}$ (C) $r\dot{\theta} + \frac{5kr^4}{m}$
- **(D)** $r\ddot{\theta} + \frac{5kr^4}{m}$
- (E) $r^2 \dot{\theta}^2 \frac{5 k r^4}{m}$

Resposta:

- 3. A projeção x da aceleração duma partícula aumenta em função do tempo, de acordo com a expressão $a_x = 8 t$ (unidades SI). No instante t=0 a projeção x da velocidade é nula e a componente da posição é x = 2 m. Determine a projeção x da posição em t = 4 s.
 - (A) 541.5 m
- (C) 218.3 m
- (E) 87.3 m

- (**B**) 43.7 m
- (**D**) 262.0 m

Resposta:

- 4. Duas esferas homogéneas idênticas, cada uma com raio R e massa m, estão coladas uma à outra. O momento de inércia de cada esfera rodando à volta dum eixo que passa pelo seu centro é $2 m R^2/5$. Encontre a expressão do momento de inércia do sistema das duas esferas, rodando à volta de um eixo que passa pelo centro de uma das esferas e é perpendicular ao segmento entre os centros das esferas.

 - (A) $\frac{14}{5} mR^2$ (C) $\frac{24}{5} mR^2$ (E) $\frac{18}{5} mR^2$ (B) $\frac{9}{5} mR^2$ (D) $\frac{22}{5} mR^2$

Resposta:

5. A figura mostra o retrato de fase, no espaço de fase (s, v), dum sistema mecânico com força resultante conservativa. Qual dos gráficos na lista poderá representar a força tangencial resultante, F, em função de s?

(A)

(**B**)

(C)

6. A equação de movimento de uma partícula que se desloca no 1: plano $xy \in \vec{a} = 4\vec{r} - 5\vec{v}$, onde $\vec{a} \in 0$ vetor aceleração, $\vec{r} \in 0$ vetor posição e $\vec{v} \in 0$ vetor velocidade. Determine o traço da matriz jacobiana desse sistema.				. O vetor velocidade dum objeto, em função do tempo, é: $\vec{v} = 2t^2 \hat{\imath} + 3e^{-2t} \hat{\jmath}$ (unidades SI). Determine o vetor deslocamento entre $t=1$ e $t=2$.
,		(T) 0		(A) $4.7 \hat{i} + 0.18 \hat{j}$ (D) $0.67 \hat{i} - 0.2 \hat{j}$
(A) 8	(C) −5	(E) 9		(B) $0.67 \hat{i} + 1.3 \hat{j}$ (E) $5.3 \hat{i} - 0.027 \hat{j}$
(B) −10	(D) −18			(C) $5.3 \hat{i} + 1.5 \hat{j}$
Resposta: 7. Qual das equações na lista é equivalente a um sistema dinâ-				Resposta:
7. Qual das equações mico linear?	s na lista e equiv	alente a um sistema dina		. O semáforo na figura, com massa total de 41 kg, está pendu-
(A) $x\ddot{x} + 2x\dot{x} = 7$	(D)	$x\ddot{x} + 4x\dot{x} = 5x^2$		rado no ponto B duma barra homogénea com massa de 2.1
(B) $x\ddot{x} + 3x^2\dot{x} = 8$	x^2 (E)	$\ddot{x} + 3\dot{x} = 2x^2$		kg e comprimento (desde A até B) igual a 1.8 m. O ponto A da barra está ligado a um pino, num suporte fixo num poste
(C) $\ddot{x} + 4 x \dot{x} = 8 x$				vertical, que permite que a barra rode para cima ou para baixo,
Resposta:				enquanto o ponto A permanece fixo. O cabo que liga o poste ao ponto B da barra está na posição horizontal e o ângulo θ é
8. Calcule o raio de curvatura da trajetória dum ponto, num ins-				igual a 25° Determino e valor de tenção no cabo

tante em que o vetor velocidade é $4 \hat{i} + 7 \hat{j}$ e o vetor aceleração $é -5 \hat{i} + 6 \hat{j}$ (unidades SI). (A) 23.82 m (E) 8.45 m (C) 8.88 m

(**B**) 2.95 m

(**D**) 1.1 m

Resposta:

9. Se \vec{a} for um vetor e k um número qualquer, diferente de zero, qual das seguintes conclusões é sempre verdadeira?

(A) O sentido de $k \vec{a}$ é o mesmo de \vec{a} .

(B) O módulo de $k \vec{a}$ é maior que o módulo de \vec{a} .

(C) A direção de $k \vec{a}$ é a mesma de \vec{a} .

(**D**) $k \vec{a}$ é um escalar (igual em qualquer referencial).

(E) O módulo de $k \vec{a}$ é igual a k vezes o módulo de \vec{a} .

Resposta:

10. Um cilindro com massa de 50 gramas pode deslizar ao longo duma haste metálica vertical. O cilindro parte do repouso na posição y = 9 cm, cai livremente e logo comprime a mola de 6 cm até parar. A constante elástica da mola é 61 N/m. No sistema ideal, ignorando o atrito do cilindro com a haste e a resistência do ar, determine o valor mínimo de y quando o cilindro para.

(A) 2.35 cm

(C) 1.94 cm

(E) 2.86 cm

(B) 3.21 cm

(**D**) 3.97 cm

Resposta:

11. Um sistema dinâmico com duas variáveis de estado tem um único ponto de equilíbrio na origem e um ciclo limite. Qual poderá ser a matriz jacobiana do sistema na origem?

Resposta:

igual a 35°. Determine o valor da tensão no cabo.

(A) 742.5 N

(C) 588.5 N

(E) 406.6 N

(**B**) 490.6 N

(**D**) 672.5 N

Resposta:

14. As populações de coelhos (presas) e rapozas (predadores) numa região são bem explicadas pelo seguinte sistema predador-presa:

$$\dot{x} = 2 x y - 800 x$$
 $\dot{y} = 750 y - 3 x y$

Quais deverão ser as populações iniciais de coelhos e rapozas para que as duas populações permaneçam constantes sem oscilar?

(A) 400 rapozas e 250 coelhos.

(B) 800 rapozas e 750 coelhos.

(C) 250 rapozas e 400 coelhos.

(D) 0 rapozas e 250 coelhos.

(E) 400 rapozas e 0 coelhos.

Resposta:

15. A inclinação do plano inclinado na figura é $\theta = 32^{\circ}$ em relação à horizontal. O bloco 1 tem massa $m_1 = 1$ kg e coeficiente de atrito cinético com o plano inclinado igual a 0.3. O bloco 2 tem massa $m_2 = 2$ kg e coeficiente de atrito cinético com o plano inclinado igual a 0.4. Determine a aceleração dos blocos.

(A) 1.3 m/s^2

(C) 0.5 m/s^2

(E) 3.0 m/s^2

(B) 3.8 m/s^2

(D) 2.1 m/s^2

Resposta:

Regente: Jaime Villate

Resolução do exame de 20 de julho de 2020

Problema 1. (a) Mostra-se a a resolução por três métodos diferentes. (i) Mecânica newtoniana:

$$a = \frac{F}{m} = -2 \int U \, \mathrm{d}s = 16 - 16 \, s$$

E as equações de evolução são:

$$\dot{s} = v$$
 $\dot{v} = 16 - 16 s$

(ii) Mecânica lagrangiana:

$$E_{\rm c} = \frac{m\,v^2}{2} = \frac{v^2}{4}$$

Equação de Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial v} \right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = \frac{\dot{v}}{2} + 8s - 8 = 0 \quad \Longrightarrow \quad \dot{v} = 16 - 16s$$

Essa é uma das equações de movimento. A outra é a definição de v: $\dot{s} = v$.

(*i*) *Mecânica hamiltoniana*: A função hamiltoniana de uma partícula com um único grau de liberdade e força resultante conservativa é a energia mecânica por unidade de massa:

$$H = \frac{v^2}{2} + \frac{U}{m} = \frac{v^2}{2} + 8s^2 - 16s + 40$$

E as equações de movimento são as equações de Hamilton:

$$\dot{s} = \frac{\partial H}{\partial v} = v$$
 $\dot{v} = -\frac{\partial H}{\partial s} = 16 - 16 s$

(b) Derivando os dois lados direitos das equações de evolução, em ordem a s e a v, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ -16 & 0 \end{bmatrix}$$

Observe-se que se trata de um sistema linear, com um único ponto de equilíbrio, neste caso um centro, já que a energia potencial quadrática corresponde a um oscilador harmónico simples.

(c) A energia mecânica, constante, é igual à soma das energias cinética e potencial no instante inicial:

$$E_{\rm m} = \frac{v_0^2}{4} + U(0) = 12 + 20 = 32 \,\mathrm{J}$$

O valor da velocidade e, portanto, a energia cinética, será máxima quando a energia potencial for mínima. U tem um mínimo no ponto de equilíbrio do sistema, onde $\dot{v} = 0$, ou seja, s = 1. Como tal,

$$\frac{v_{\text{máx}}^2}{4} + U(1) = 32 \implies v_{\text{máx}} = \sqrt{4(32 - 16)} = 8 \frac{\text{m}}{\text{s}}$$

(*d*) Os valores máximo e mínimo de *s* são os *pontos de retorno*, onde a velocidade e a energia cinética são nulas, ou seja, $E_{\rm m} - U = 0$. Como tal,

$$12-4s^2+8s=0 \implies s^2-2s-3=(s-3)(s+1)=0$$

O valor mínimo da posição na trajetória é $s_{\min} = -1$ m, e o valor máximo $s_{\max} = 3$ m (Também é possível traçar a curva de evolução usando o programa *plotdf*, e determinar as respostas das alíneas c e d com precisão).

Perguntas

2. A

5. C

8. C

11. C

14. C

3. E

6. B

9. C

12. A

15. D

4. C

7. D

10. E

13. C

Critérios de avaliação

Problema

• Cada alínea vale 1.5 valores. Se usar o método gráfico para resolver as alíneas c e d, deverá ficar claro qual foi o gráfico que traçou e o erro na medição dos valores não poderá ser muito elevado.