UPPSALA UNIVERSITET Matematiska institutionen Rostyslav Kozhan

Prov i matematik Ordinära differentialekvationer I 1MA032, 2016-03-23

Time: 8.00 – 13.00. Tools allowed: only materials for writing. Please provide full explanations and calculations in order to get full credit. The exam consists of **8 problems** of **10 points** each for a total of **80 points**. For grades 3,4, and 5, one should obtain 36, 50, and 64 points, respectively. Good luck and have fun!

- 1. (a) (2 points) Differential equation $\frac{d^2y}{dt^2} ty = e^{2t} \sin t$ is
 - (i) linear;
 - (ii) non-linear.
 - (b) (2 points) Complete the definition: the <u>order</u> of the ordinary differential equation is defined to be equal to
 - (i) the number of arbitrary constants that appear in the general solution;
 - (ii) the order of the highest derivative that appears in the equation;
 - (iii) the number of independent variables that appear in the equation;
 - (iv) the number of dependent variables that appear in the equation.
 - (c) (2 point) Complete the definition: the <u>Wronskian</u> of two functions $y_1(t)$ and $y_2(t)$ is defined to be...
 - (d) (2 points) Suppose $y_1(t)$ and $y_2(t)$ solve the homogeneous equation

$$y'' + p(t)y' + q(t)y = 0,$$

and $y_3(t)$ and $y_4(t)$ solve the non-homogeneous problem

$$y'' + p(t)y' + q(t)y = g(t).$$

Which of the following functions also solve the above <u>homogeneous</u> equation:

- (i) $y_1(t) + 2016y_2(t)$ YES NO
- (ii) $y_3(t) + y_4(t)$ YES NO
- (iii) $17y_1(t) 13y_2(t) + 3y_3(t) 3y_4(t)$ YES NO
- (iv) $(p(0) + q(0) + g(0))y_1(t)$ YES NO
- (e) (2 points) Consider the ODE P(x)y'' + Q(x)y' + R(x)y = 0. Complete the definition: a point x_0 is called a singular point of this ODE if...

Continuation on the next page

- **2.** (a) (2 point) Complete the definition: Suppose \vec{x}^0 is a critical point of a differential system. If for any $\epsilon>0$ there is a $\delta>0$ such that every solution $\vec{x}=\vec{\phi}(t)$ which satisfies $||\vec{\phi}(0)-\vec{x}^0||<\delta$ must also satisfy $||\vec{\phi}(t)-\vec{x}^0||<\epsilon$ for all t>0, then \vec{x}^0 is called
 - (i) stable;
 - (ii) asymptotically stable;
 - (iii) unstable;
 - (iv) continuous;
 - (v) unreasonable.
- (b) (2 points) Suppose $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and let t be a real number. What is $\exp(At)$? ignore part (c) as it wasn't part(c) (3 points) Prove that zeros of functions $\cos(3x)$ and $\sin(3x) + 2016\cos(3x)$ of our course are distinct and occur alternately (Hint: Sturm separation theorem).
 - (d) (3 points) Find equations of trajectories of the autonomous system

$$\frac{dx}{dt} = y -\infty < t < \infty.$$

$$\frac{dy}{dt} = 2xy$$

3. (a) (8 points) Find the solution of the initial value problem

$$xy'(x) + 4y(x) = x^2$$
, $y(-1) = 7/6$

- (b) (2 points) Determine the interval of existence of this solution.
- **4.** (a) (5 points) Find the general solution of the ODE

$$y''(x) - 2y'(x) + 5y(x) = 0, \quad -\infty < x < \infty$$

(b) (5 points) Find the general solution of the ODE

$$y''(x) - 2y'(x) + 5y(x) = 3\cos x, \quad -\infty < x < \infty,$$

5. (10 points) Consider the initial value problem

$$(x+2)y''(x) - y(x) = x^2$$

 $y(-1) = -1$
 $y'(-1) = 2$

Seek power series solutions of this ODE about $x_0 = -1$. Find the first four coefficients explicitly, and find the recurrence relation for the rest of the coefficients.

Continuation on the next page

6. (a) (5 points) Find the general solution of the system

$$x' = x + y$$

 $y' = 2x$ $-\infty < t < \infty$.

- (b) (5 points) Classify (by the portrait type and stability type) (0,0) as a critical point of this system. Make a sketch of the phase portrait.
- 7. (a) (7 points) Consider the system

$$x' = x^2 + y y' = x - y$$

$$-\infty < t < \infty.$$

Find and classify (by the portrait type and stability type) all the critical points of this non-linear system. Justify your conclusions carefully.

- (b) (3 points) Does there exist a periodic solution (x(t), y(t)) of the system that satisfies x(t) > 0 and y(t) > 0 for all t?
- **8.** (a) (2 points) Complete the definition: Let V be a function defined on some domain D containing the origin. Then V(x,y) is called negative definite if...
 - (b) (8 points) Show that (0,0) is an asymptotically stable critical point of the system

$$x' = -x^3 + 2xy$$

$$y' = -x^6 - 3y.$$

(try to) HAVE FUN and GOOD LUCK!:)