$\iiint \left(\frac{1}{6}\left(-4t_{3}^{2}\mathcal{A}^{\alpha_{1}}_{\alpha}\mathcal{A}^{\theta_{1}}_{\theta}+6\mathcal{A}^{\alpha\beta\chi}\right) \sigma_{\alpha\beta\chi}+6f^{\alpha\beta}_{\alpha}\tau_{(\Delta+\mathcal{K})_{\alpha\beta}}+8t_{3}^{2}\mathcal{A}^{\theta_{1}}_{\alpha}\partial_{f}^{\alpha_{1}}-15r_{3}^{2}\partial_{\beta}\mathcal{A}^{\theta_{1}}_{\theta}\partial_{f}^{\alpha_{1}}\mathcal{A}^{\theta_{2}}_{\alpha}+9r_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{f}\mathcal{A}^{\theta_{1}}_{\alpha}-8t_{3}^{2}\mathcal{A}^{\theta_{1}}_{\alpha}\partial_{f}\mathcal{A}^{\theta_{2}}_{\alpha}+4t_{3}^{2}\right)$ $=\partial_{i}f^{\theta}_{\theta}\partial_{f}^{i}f^{\alpha}_{\alpha}+9r_{3}^{2}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{1}}\partial_{\theta}\mathcal{A}^{\theta_{1}}_{\beta}-18r_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\theta_{1}}_{\beta}-15r_{3}^{2}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{1}}\partial_{\theta}\mathcal{A}^{\theta_{1}}_{\beta}+30r_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\theta_{1}}_{\beta}+4t_{3}^{2}\partial_{i}f^{\alpha_{1}}\partial_{\theta}f^{\alpha_{1}}_{\alpha}-8t_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}-18r_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}-15r_{3}^{2}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+30r_{3}^{2}\partial_{f}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{i}f^{\alpha_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{i}f^{\alpha_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{i}f^{\alpha_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{i}f^{\alpha_{1}}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+30r_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+30r_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+4t_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-24r_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+4t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-24r_{3}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+4t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-4r_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+4t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-24r_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+4t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-24r_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}+2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}_{\beta}-2t_{2}^{2}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}$

PSALTer results panel

 $^{1^{-}}\sigma^{\parallel}_{\alpha}$

 $\frac{1}{3}k^2r$

 $\frac{3 k^2 r_{.} + 6 k^4 r_{.}}{3}$

 $3(k+2k^3)^2 r.t.$

 $i \sqrt{2} \left(9 k^2 r_3 - 4 t_3 \right)$

 $3kr_{.}+6k^{3}r_{.}$

 $2(9 k^2 r_3 - 4 t_3)$

24

 $\frac{3\sqrt{2}}{(3+k^2)^2t}$

 $^{1^{-}}\sigma^{\parallel}$ †

 $\stackrel{1^{-}}{\cdot} \sigma^{\perp} \uparrow^{\alpha}$

 $^{1^{-}}\tau^{\parallel}\uparrow^{\alpha}$

 $(3+k^2)^2 t$, $(3+k^2)^2 t$

 ${\stackrel{\scriptscriptstyle{0^{-}}}{\cdot}}\sigma^{\parallel}$ †

			3 3	$3 k (1+2 k^2)^{-1} r. t.$	$3(1+2k^2)^{-1}r_1t_3$	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$ _{\alpha\beta}$	2 , $\sigma^{\parallel}_{\alpha\beta\chi}$	_
					$\frac{2^+}{\cdot}\sigma^{\parallel}$ † $^{\alpha\beta}$	$3 - \frac{2}{3 k^2 r_{\bullet}}$	0	0	
					$2^{+}_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	
					$^{2^{-}}\sigma^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0	
Source co	nstrain	†c							
<u>Jource</u> co	<u> </u>	<u> </u>							
Spin-parity form	Covariant form						M	Multiplicities	
⁰ • τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$						1	1	
$-2 i k \cdot \sigma^{\parallel} + 0 \cdot \tau^{\parallel} = 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$						1	1	
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$						3	3	
1 _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$						3	3	
$i k \frac{1^+}{\cdot} \sigma^{\parallel}^{\alpha\beta} + \frac{1^+}{\cdot} \tau^{\parallel}^{\alpha\beta} = 0$		$\frac{\partial^{\beta} \tau \left(\Delta + \mathcal{K}\right)^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \beta} + \partial^{\gamma} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \alpha}}{2} + \partial^{\gamma} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \alpha} + \partial^$		•			3		
		$\partial_{\chi}\partial^{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta+\mathcal{K}\right)^{\beta\alpha} +$							
$1^+_{\bullet}\sigma^{\parallel}^{\alpha\beta} = 1^+_{\bullet}\sigma^{\perp}^{\alpha\beta}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi}$						3	3	
$2^{-}\sigma^{\parallel}^{\alpha\beta\chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3$	$\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta} + 2 \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta}$	$\frac{1}{1} + 4 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta}$	$+2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2$	$\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} +$		5	. 7	

 $4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\ \eta^{\beta\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta} + 3\ \eta^{\alpha\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\ \eta^{\beta\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = 0$

 $2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\,\eta^{\alpha\chi}\,\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta} + 3\,\eta^{\beta\chi}\,\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\,\eta^{\alpha\chi}\,\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\delta}$

 $4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\ (\Delta+\mathcal{K})^{\chi\delta} = 0$

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\beta\chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\alpha\chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\chi\alpha} + 2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau\ (\Delta+\mathcal{K})^{\chi}$

<u>Massive</u> <u>spectrum</u>

Total expected gauge generators:

 $2^+_{\bullet} \tau^{\parallel} \alpha^{\beta} = 0$

(There are no massless particles)

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

r. < 0 && t. > 0 2 2

(Not yet implemented in PSALTer)

<u>Validity</u> <u>assumptions</u>