

Inductive Detection of Unseen Malicious Hosts in Large Temporal Graphs with Self-Supervised Graph Learning

Networks can be naturally represented as graphs

Networks can be naturally represented as graphs

Nodes are identified by IP addresses

Networks can be naturally represented as graphs

Nodes are identified by IP addresses

Edges are identified by network flows

Networks can be naturally represented as graphs

Nodes are identified by IP addresses

Edges are identified by network flows

Networks can be naturally represented as graphs

Nodes are identified by IP addresses

Edges are identified by network flows

Some attacks we may want to detect:

- Lateral movements
- DDoS
- Bruteforce
- Botnets
- Man-in-the-middle
- Credential stealing

Network attack detection: challenges

- Labels are expensive to get. In practice, no labels are used for training, these techniques are preferred:
 - Semi-supervised learning (only benign labels)
 - Self-supervised learning (SSL)
- The size of the graphs quickly becomes large
 - The DARPA OpTC contains more than 17 billion events for only 9 days of data
- The datasets are extremely imbalanced
 - The DARPA OpTC contains 0.0000828% malicious edges after pre-processing
 - Maintaining a high precision with this imbalance is a real challenge

State-of-the-art approaches: EULER [1]

- The whole graph is divided into **graph snapshots** (e.g. 30 min graphs)
- **Duplicate edges are merged** into a single with the number of edges as attribute
- A **GNN encoder** computes node embeddings in parallel on multiple workers
- Node embeddings are passed into an **RNN** which captures the temporal features of nodes
- An edge score is computed by doing the inner product of the embedding between any two connected nodes

[1] Euler: Detecting Network Lateral Movement via Scalable Temporal Link Prediction, S&P 2023

State-of-the-art approaches: ARGUS [2]

- Same approach as EULER with some modifications
- A different loss function, more suited for anomaly detection
- A more performant decoder, but only applicable in transductive settings
- Uses some flow features as edge attributes
- The overall precision is better than EULER (~10x less false positives)

What models like EULER and ARGUS do:

- Train a model on some nodes (i.e. users)
- Do inference to predict if one of these nodes has attacked

This learning paradigm is known as **transductive learning**

What models like EULER and ARGUS don't:

- Train a model on some nodes (i.e. users)
- Do inference to predict if another node unseen during training has attacked

This learning paradigm is known as **inductive learning**

Research problem

In other terms, existing techniques fail to generalize to nodes not seen during training

However, new users may frequently get into the network (new users connecting to an enterprise network, a Wi-Fi hotspot, ...)

A solution that enables the detection of unseen hosts while maintaining a decent detection performance is still missing

Research problem

Current works face 3 main challenges:

- transductivity: only applicable to hosts seen during training
- false alarms: the number of false positives is still too high
- discriminative power: some attack patterns (true positives) are still missed

Proposition

- In response to these challenges, we propose TAO, a method for the detection of unseen hosts via inductive learning
- The model is divided into **4 steps**

Figure 1: The overall architecture of TAO comprises four key components: (i) Generation of multiple dataset views through temporal snapshot shifting for pre-training, providing diverse temporal perspectives. T_r and T_e refer to the number of snapshots in the original train set and test set, respectively; (ii) Calculation of temporal node embeddings via an inductive MPNN encoder supplemented by an RNN, with subsequent extraction of edge embeddings; (iii) Loss computation employing two techniques: Autoencoder-based edge embeddings reconstruction and edge existence likelihood determination via Inner Product with negative sampling; (iv) Computation of anomalous scores from edge losses and anomaly thresholding.

- The k shifted datasets are used to pre-train the model as a pretraining step (typically 1 epoch)
- Then, the actual training with the unshifted dataset begins for n epochs

Figure 2: Illustrative example of temporal snapshot shifting, or temporal-based snapshot augmentation. Multiple random offsets ε are applied to the beginning dataset timestamp to generate augmented contiguous temporal snapshots. S_i represents a temporal graph snapshot at timeframe i, whereas T is the number of snapshots in the original dataset when $\varepsilon = 0$. t represents time and t_0 is the dataset starting timestamp.

Spatio-temporal encoding

- The goal here is to capture the usual patterns (habits) of users
- A **GNN encoder** captures the spatial behaviors from the graph
- An RNN captures the temporal behaviors
- The overall encoder is trained on **benign data only** (semi-supervised)

Spatio-temporal encoding

- Our encoder is made of 3 types of layers
 - Attention layer
 - Isomorphism layer
 - Recurrent layer

Spatio-temporal encoding: attention layer

- Inspired from Graph Attention Network (GAT)
- Learns attention coefficients for all nodes' neighbors
- Attention has some nice inductive properties
- The attention learns for some nodes can be easily transferred to unseen nodes
 Modified GAT layer

$$\operatorname{att}_{uv} = \operatorname{LeakyReLU}\left(\mathbf{a}_{src}^{\top}\mathbf{h}_{u} + \mathbf{a}_{dst}^{\top}\mathbf{h}_{v} + \mathbf{a}_{edge}^{\top}\mathbf{W}_{edge}\mathbf{e}_{uv}\right). \tag{2}$$

$$\alpha_{uv} = \frac{\exp(\operatorname{att}_{uv})}{\sum_{k \in N(u)} \exp(\operatorname{att}_{vk})},$$
(3)

$$\mathbf{h}_{u} = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{v \in N(u)} \alpha_{uv}^{k} \mathbf{W}^{k} \mathbf{h}_{v} \right), \tag{4}$$

Spatio-temporal encoding: isomorphism layer

- Inspired from Graph Isomorphism Network (GIN)
- Can differentiate between isomorphic graphs
- Good to capture complex patterns using the sum aggregation of neighbors

Original GIN layer

$$\mathbf{h}_{u}^{(k)} = MLP^{(k)} \left((1 + \varepsilon^{(k)}) \cdot \mathbf{h}_{u}^{(k-1)} + \sum_{v \in N(u)} \mathbf{h}_{v}^{(k-1)} \right), \quad (5)$$

Modified layer

$$\mathbf{h}_{u}^{(k)} = \mathbf{h}_{u}^{(k-1)} + \sum_{v \in N(u)} \sigma \left(\mathbf{W}_{d}^{(k)} \phi \left(\mathbf{h}_{v}^{(k-1)}, w_{uv} \right) \right). \tag{6}$$

$$\phi(\mathbf{h}_{\nu}, w_{u,\nu}) = w_{u\nu} \cdot \mathbf{h}_{\nu}. \tag{7}$$

Spatio-temporal encoding: recurrent layer

- We use either a GRU or LSTM layer on top of node embeddings
- Before this layer, node embeddings capture spatial behaviors of users
- After this layer, node embeddings also capture their temporal behaviors

$$\mathbf{h}_{u} = \text{RNN}(\mathbf{h}_{u}). \tag{8}$$

Spatio-temporal encoding: edge embeddings

- Once we have the node embeddings, we want to create edge embeddings for malicious edge detection (like lateral movements or malicious authentications)
- We simply concatenate node embeddings from all connected nodes
- + a residual connection with the edge features

$$g_{uv} = \sigma(\mathbf{W}_g[\mathbf{h}_u, \mathbf{h}_v, e_{uv}]), \qquad (10)$$

$$\mathbf{h}_{uv} = \left[\mathbf{h}_{u}, \mathbf{h}_{v}, g_{uv} \cdot e_{uv} \right], \tag{9}$$

Spatio-temporal encoding: architecture

We get this final encoder architecture, with a 128 embedding size

	Layer	Shape
1	Attention Layer 1	(n_dim, 128)
2	Attention Layer 2	(128, 128)
3	Isomorphism Layer	(128, 128)
4	Recurrent Layer	(128, 64)
5	Edge Encoding	$(128, 128 + e_dim), (128 + e_dim, 64)$

Decoding

- We use a **hybrid self-supervised loss** to train the encoder
- Contrastive-based loss + Reconstruction-based loss

Decoding: Contrastive-based loss

- Inspired from Graph Autoencoder
- We calculate the probability of an edge between 2 nodes using the inner product of the 2 node embeddings
- For each edge that exists in the original graph, we want a score near 1
- For each edge that doesn't exist in the original graph, we want a score near 0
- This is done via optimizing the Binary Cross Entropy (BCE)
- Negative sampling is used to craft edges that doesn't exist (negative edges)

Inner product
$$\mathcal{L}_{c} = -\frac{1}{|E^{+}|} \sum_{(u,v) \in E^{+}} \log(P(u,v))$$

$$-\frac{1}{|E^{-}|} \sum_{(u,v) \in E^{-}} \log(1 - P(u,v)),$$
(12)

Decoding: Reconstruction-based loss

- Inspired from Autoencoder
- Here, we simply want to reconstruct the edge embeddings
 - Low reconstruction error => benign edge
 - High reconstruction error => suspicious edge
- Trained on only benign edges, we aim to detect suspicious edges during inference

Autoencoder

$$\mathbf{\hat{h}}_{uv} = AE(MLP(\mathbf{h}_{uv})), \qquad (13)$$

MSE

$$\mathcal{L}_r = \frac{1}{|E|} \sum_{(u,v) \in E} \left(\mathbf{h}_u - \hat{\mathbf{h}}_u \right)^2, \tag{14}$$

Evaluation: datasets

- We use 2 real-world enterprise network datasets for evaluation
- LANL and DARPA OpTC

Evaluation: features

- On OpTC, we used protocol and port number counts as edge features
- On LANL, we used the success/failure of the authentication and the one-hot encoding of the user type
- One-hot encoded vectors are used as node features

Figure 5: Edge features leveraged by TAO on the OpTC dataset.

Evaluation: experiments

To evaluate the effectiveness of models in inductive settings, we propose
 3 inductive experiments

Table 6: Description of the inductive experiments.

Experiment	Description
Exp1	30% of the hosts are randomly excluded from the training network graphs, ensuring that all malicious nodes are not included.
Exp2	30% of the hosts are randomly excluded from the training network graphs, including all malicious nodes.
Ехр3	Follows the same protocol as Exp2, but removes 50% of hosts.

Evaluation: baselines

- We compared TAO against:
 - EULER (SOTA network-based attack detection method with GNNs)
 - GraphSAGE (most known GNN model for inductive tasks)
- We couldn't evaluate ARGUS (another SOTA model) as the code wasn't available at this time

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 5: Inductive experiment results on OpTC.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP					
	GraphSAGE									
Exp1	0.5354	83.05	68.21	0.0002	2e-6					
Exp2	0.6442	83.05	37.31	0.0004	2e-6					
Exp3	0.8909	83.05	15.02	0.001	1e-5					
		1	EULER							
Exp1	0.8387	83.05	16.28	0.0009	5e-6					
Exp2	0.7262	83.05	33.86	0.0005	3e-6					
Exp3	0.7576	83.05	30.01	0.0005	3e-6					
			TAO							
Exp1	0.9998	86.44	0.0074	2.08	0.249					
Exp2	0.9999	83.05	0.0072	2.05	0.271					
Exp3	0.9999	83.05	0.0276	0.54	0.268					

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	phSAGE		
Exp1	0.9504	83.89	2.281	0.64	0.035
Exp2	0.9744	83.77	1.688	0.87	0.018
Exp3	0.9858	83.89	0.666	2.21	0.086
		1	EULER		
Exp1	0.9695	83.89	1.3550	1.08	0.176
Exp2	0.9816	83.77	0.7874	1.19	0.161
Exp3	0.9881	83.89	0.6758	2.18	0.138
			TAO		
Exp1	0.9920	83.89	0.0853	14.81	0.143
Exp2	0.9947	83.77	0.0621	19.29	0.264
Exp3	0.9918	83.89	0.1202	10.50	0.168

Table 5: Inductive experiment results on OpTC.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP			
	GraphSAGE							
Exp1	0.5354	83.05	68.21	0.0002	2e-6			
Exp2	0.6442	83.05	37.31	0.0004	2e-6			
ЕхрЗ	0.8909	83.05	15.02	0.001	1e-5			
		1	EULER					
Exp1	0.8387	83.05	16.28	0.0009	5e-6			
Exp2	0.7262	83.05	33.86	0.0005	3e-6			
Exp3	0.7576	83.05	30.01	0.0005	3e-6			
			TAO					
Exp1	0.9998	86.44	0.0074	2.08	0.249			
Exp2	0.9999	83.05	0.0072	2.05	0.271			
Ехр3	0.9999	83.05	0.0276	0.54	0.268			

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1 Exp2 Exp3	0.9504 0.9744 0.9858	83.89 83.77 83.89	2.281 1.688 0.666	0.64 0.87 2.21	0.035 0.018 0.086
		1	EULER		
Exp1 Exp2 Exp3	0.9695 0.9816 0.9881	83.89 83.77 83.89	1.3550 0.7874 0.6758	1.08 1.19 2.18	0.176 0.161 0.138
			TAO		
Exp1 Exp2 Exp3	0.9920 0.9947 0.9918	83.89 83.77 83.89	0.0853 0.0621 0.1202	14.81 19.29 10.50	0.143 0.264 0.168

Table 5: Inductive experiment results on OpTC.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gra	aphSAGE		
Exp1	0.5354	83.05	68.21	0.0002	2e-6
Exp2	0.6442	83.05	37.31	0.0004	2e-6
Exp3	0.8909	83.05	15.02	0.001	1e-5
		EULER			
Exp1	0.8387	83.05	16.28	0.0009	5e-6
Exp2	0.7262	83.05	33.86	0.0005	3e-6
Exp3	0.7576	83.05	30.01	0.0005	3e-6
			TAO		
Exp1	0.9998	86.44	0.0074	2.08	0.249
Exp2	0.9999	83.05	0.0072	2.05	0.271
Exp3	0.9999	83.05	0.0276	0.54	0.268

Table 4: Inductive experiment results on LANL.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1 Exp2 Exp3	0.9504 0.9744 0.9858	83.89 83.77 83.89	2.281 1.688 0.666	0.64 0.87 2.21	0.035 0.018 0.086
		1	EULER		
Exp1 Exp2 Exp3	0.9695 0.9816 0.9881	83.89 83.77 83.89	1.3550 0.7874 0.6758	1.08 1.19 2.18	0.176 0.161 0.138
			TAO		
Exp1 Exp2 Exp3	0.9920 0.9947 0.9918	83.89 83.77 83.89	0.0853 0.0621 0.1202	14.81 19.29 10.50	0.143 0.264 0.168

Table 5: Inductive experiment results on OpTC.

Exp	AUC	TPR (%)	FPR (%)	Precision (%)	AP
		Gr	aphSAGE		
Exp1	0.5354	83.05	68.21	0.0002	2e-6
Exp2	0.6442	83.05	37.31	0.0004	2e-6
Exp3	0.8909	83.05	15.02	0.001	1e-5
		1	EULER		
Exp1	0.8387	83.05	16.28	0.0009	5e-6
Exp2	0.7262	83.05	33.86	0.0005	3e-6
ЕхрЗ	0.7576	83.05	30.01	0.0005	3e-6
			TAO		
Exp1	0.9998	86.44	0.0074	2.08	0.249
Exp2	0.9999	83.05	0.0072	2.05	0.271
Exp3	0.9999	83.05	0.0276	0.54	0.268

- To reduce false positives, we tried the **node detection** task
- We also reduced the recall upper bound

		Edge Detec	tion	Host Detection			
Exp	TPR (%)	FPR (%)	Precision (%)	TPR (%)	FPR (%)	Precision (%)	
			OpTC				
Exp1	gp1 42.4 0.0003		18.2	66.6	0.0000	100.0	
Exp2	42.4	0.0003	18.2	66.6	0.0000	100.0	
Ехр3	42.4	0.0003	18.9	66.6	0.0008	66.7	
			LANL				
Exp1	Exp1 56.5 0.040		19.5	74.6	0.017	6.1	
Exp2	42.2	0.030	19.7	67.8	0.012	7.3	
Ехр3	46.4	0.051	14.2	60.7	0.024	3.8	

- To reduce false positives, we tried the **node detection** task
- We also reduced the recall upper bound

		Edge Detec	tion	Host Detection				
Exp	TPR (%)	FPR (%)	Precision (%)	TPR (%)	FPR (%)	Precision (%)		
			OpTC					
Exp1	42.4	0.0003	18.2	66.6	0.0000	100.0		
Exp2	42.4	0.0003	18.2	66.6	0.0000	100.0		
Ехр3	42.4	0.0003	18.9	66.6	0.0008	66.7		
			LANL					
Exp1	56.5	0.040	19.5	74.6	0.017	6.1		
Exp2	42.2	0.030	19.7	67.8	0.012	7.3		
Exp3	46.4	0.051	14.2	60.7	0.024	3.8		

Table 7: Experimental results of host detection with low FPR

- To reduce false positives, we tried the **node detection** task
- We also reduced the recall upper bound

	l	Edge Detec	tion	Host Detection				
Exp	TPR (%)	FPR (%)	Precision (%)	TPR (%)	FPR (%)	Precision (%)		
			OpTC					
Exp1	42.4	0.0003	18.2	66.6	0.0000	100.0		
Exp2	42.4	0.0003	18.2	66.6	0.0000	100.0		
Ехр3	42.4	0.0003	18.9	66.6	0.0008	66.7		
			LANL					
Exp1	56.5	0.040	19.5	74.6	0.017	6.1		
Exp2	42.2	0.030	19.7	67.8	0.012	7.3		
Ехр3	46.4	0.051	14.2	60.7	0.024	3.8		

Evaluation: ablation study

On LANL, Temporal Snapshot Shifting successfully improves precision on

inductive tasks

However, on OpTC it doesn't

Figure 4: Precision of TAO on LANL (Exp2), with respect to K, the number of preprocessing datasets generated with temporal snapshot shifting.

Evaluation: ablation study (LANL)

Table 13: Ablation Study of TAO on LANL.										
Encoder	Decoder	Pretraining	RNN	AUC	TPR (%)	FPR (%)	Precision (%)	AP		
Exp1										
×	✓	✓	✓	0.993	83.89	0.129	10.35	0.097		
✓	×	✓	✓	0.7675	83.89	49.86	0.03	0.001		
✓	✓	×	✓	0.9899	83.89	0.124	10.68	0.192		
✓	√	✓	×	0.9212	83.89	0.894	1.63	0.051		
✓	✓	✓	✓	0.9920	83.89	0.085	14.81	0.143		
				Exp2						
×	✓	✓	✓	0.992	83.77	0.108	12.13	0.203		
✓	×	✓	✓	0.7714	83.77	46.93	0.032	0.001		
✓	✓	×	✓	0.9943	83.77	0.101	12.83	0.198		
✓	✓	✓	×	0.9734	83.77	0.775	1.89	0.032		
✓	✓	✓	✓	0.9947	83.77	0.062	19.29	0.264		
Exp3										
×	√	✓	✓	0.9952	83.89	0.13	10.24	0.083		
✓	×	✓	✓	0.7632	83.89	46.19	0.03	0.001		
✓	✓	×	✓	0.9917	83.89	0.319	4.52	0.103		
✓	✓	✓	×	0.9738	83.89	0.867	1.71	0.026		
✓	✓	✓	✓	0.9918	83.89	0.120	10.50	0.168		

Evaluation: ablation study (OPTC)

Table 14: Ablation Study of TAO on OpTC.										
Encoder	Decoder	Pretraining	RNN	AUC	TPR (%)	FPR (%)	Precision (%)	AP		
Exp1										
×	✓	✓	✓	0.9997	83.05	0.005	2.70	0.071		
✓	×	✓	✓	0.9993	83.05	0.147	0.10	0.306		
✓	✓	×	V	0.9991	83.05	0.156	0.09	0.271		
✓	✓	✓	×	0.9998	84.75	0.026	0.57	0.426		
✓	✓	✓	✓	0.9998	86.44	0.007	2.08	0.249		
				Exp2						
×	✓	✓	✓	0.9987	83.05	0.220	0.07	0.123		
✓	×	✓	✓	0.9994	83.05	0.042	0.01	0.306		
✓	✓	×	✓	0.9995	83.05	0.022	0.70	0.247		
✓	✓	✓	×	0.9993	83.05	0.015	0.96	0.108		
✓	✓	✓	✓	0.9999	83.05	0.007	2.05	0.271		
Exp3										
×	✓	✓	√	0.9942	83.05	1.087	0.01	0.060		
✓	×	✓	✓	0.9992	83.05	0.192	0.01	0.261		
✓	✓	×	✓	0.9991	83.05	0.156	0.01	0.272		
✓	✓	✓	×	0.9997	84.75	0.020	0.77	0.108		
✓	✓	✓	✓	0.9999	83.05	0.028	0.54	0.268		

Future work

- Substitute the one-hot encoded node features by actual inductive features
- Find a better thresholding method than the AUC-ROC + upper bound recall
- Deeper analysis on how reducing the FPR

Bonus: nice explainability graphs

Bonus: nice explainability graphs

Figure 7: Examples of explainability graphs generated on OpTC. Due to the large degree of nodes in OpTC, only 15% of benign edges are kept for the clarity of graph visualizations.

The End

Any questions?