Recitation 1.1: Vector Spaces

TA: Nate Clause

• A *vector space* V over a field \mathbb{F} consists of a set of elements, called *vectors* and two operations:

Definition

A *vector space* over a field $\mathbb F$ is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb F \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

• (associativity of addition) For all $u, v, w \in V$, u + (v + w) = (u + v) + w.

Definition

A *vector space* over a field $\mathbb F$ is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb F \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

- (associativity of addition) For all $u, v, w \in V$, u + (v + w) = (u + v) + w.
- (commutativity of addition) For all $u, v \in V$, u + v = v + u.

Definition

A *vector space* over a field $\mathbb F$ is a set V, along with operations $+: V \times V \to V$ given by $(u,v) \mapsto u+v$ and $\cdot: \mathbb F \times V \to V$ given by $(c,v) \mapsto c \cdot v$, satisfying:

- (associativity of addition) For all $u, v, w \in V$, u + (v + w) = (u + v) + w.
- (commutativity of addition) For all $u, v \in V$, u + v = v + u.
- (additive identity) $\exists 0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$.

Definition

A *vector space* over a field $\mathbb F$ is a set V, along with operations $+: V \times V \to V$ given by $(u,v) \mapsto u + v$ and $\cdot: \mathbb F \times V \to V$ given by $(c,v) \mapsto c \cdot v$, satisfying:

- (associativity of addition) For all $u, v, w \in V$, u + (v + w) = (u + v) + w.
- (commutativity of addition) For all $u, v \in V$, u + v = v + u.
- (additive identity) $\exists 0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$.
- (additive inverse) For all $v \in V$, $\exists (-v) \in V$ such that v + (-v) = 0.

Definition

A *vector space* over a field \mathbb{F} is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb{F} \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

• For all $a, b \in \mathbb{F}$ and $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$.

Definition

A *vector space* over a field \mathbb{F} is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb{F} \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

- For all $a, b \in \mathbb{F}$ and $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$.
- (multiplicative identity) $1 \in \mathbb{F}$ has $1 \cdot v = v$ for all $v \in V$.

Definition

A *vector space* over a field \mathbb{F} is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb{F} \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

- For all $a, b \in \mathbb{F}$ and $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$.
- (multiplicative identity) $1 \in \mathbb{F}$ has $1 \cdot v = v$ for all $v \in V$.
- (multiplication distributes over vector addition) For all $a \in \mathbb{F}$ and $u, v \in V$:

$$a \cdot (u + v) = a \cdot u + a \cdot v$$

Definition

A *vector space* over a field \mathbb{F} is a set V, along with operations $+: V \times V \to V$ given by $(u, v) \mapsto u + v$ and $\cdot: \mathbb{F} \times V \to V$ given by $(c, v) \mapsto c \cdot v$, satisfying:

- For all $a,b \in \mathbb{F}$ and $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$.
- (multiplicative identity) $1 \in \mathbb{F}$ has $1 \cdot v = v$ for all $v \in V$.
- (multiplication distributes over vector addition) For all $a \in \mathbb{F}$ and $u, v \in V$:

$$a \cdot (u + v) = a \cdot u + a \cdot v$$

• (multiplication distributes over field addition) For all $a,b\in\mathbb{F}$ and $v\in V$:

$$(a+b) \cdot v = a \cdot v + b \cdot v$$

Vector Space Examples

Common examples of vector spaces include:

1.) $V = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$, +, · usual addition and multiplication of real numbers.

Vector Space Examples

Common examples of vector spaces include:

- 1.) $V = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$, +, · usual addition and multiplication of real numbers.
- 2.) $V = \mathbb{R}^n$, $\mathbb{F} = \mathbb{R}$, + and \cdot defined by:

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) := (u_1 + v_1, \ldots, u_n + v_n)$$

 $c \cdot (v_1, \ldots, v_n) := (c \cdot v_1, \ldots, c \cdot v_n)$

Vector Space Examples

Common examples of vector spaces include:

- 1.) $V = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$, +, · usual addition and multiplication of real numbers.
- 2.) $V = \mathbb{R}^n$, $\mathbb{F} = \mathbb{R}$, + and \cdot defined by:

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) := (u_1 + v_1, \ldots, u_n + v_n)$$

 $c \cdot (v_1, \ldots, v_n) := (c \cdot v_1, \ldots, c \cdot v_n)$

- 3.) Fix a field \mathbb{F} , $V = \mathbb{F}^n$, with + and \cdot defined coordinate-wise as in 2.)
 - Common field: \mathbb{Z}_2 , also denote $\mathbb{Z}/2\mathbb{Z}$. Set is $\{0,1\}$ and operations are addition modulo 2 and multiplication modulo 2.

Direct Sums

Definition

Let V, W be vector spaces over a field \mathbb{F} . The (external) direct sum $V \oplus W$, is a vector space with set $V \times W := \{(v, w) \mid v \in V, w \in W\}$, and operations:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

 $c \cdot (v_1, w_1) = (c \cdot v_1, c \cdot w_1)$

Direct Sums

Definition

Let V, W be vector spaces over a field \mathbb{F} . The (external) direct sum $V \oplus W$, is a vector space with set $V \times W := \{(v, w) \mid v \in V, w \in W\}$, and operations:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

 $c \cdot (v_1, w_1) = (c \cdot v_1, c \cdot w_1)$

• Example: for \mathbb{F} a field, \mathbb{F}^n is a vector space, with $\mathbb{F}^n = \bigoplus_{i=1}^n \mathbb{F}$.

Definition

A *basis* B of a vector space V over a field \mathbb{F} is a subset $B \subseteq V$ satisfying the following:

1.) Linear independence: for every finite subset $\{v_1, \ldots, v_n\} \subseteq B$, if $c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$ for some $c_1, c_2, \ldots, c_n \in \mathbb{F}$, then $c_1 = c_2 = \ldots = c_n = 0$.

Definition

A *basis* B of a vector space V over a field \mathbb{F} is a subset $B\subseteq V$ satisfying the following:

- 1.) Linear independence: for every finite subset $\{v_1, \ldots, v_n\} \subseteq B$, if $c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$ for some $c_1, c_2, \ldots, c_n \in \mathbb{F}$, then $c_1 = c_2 = \ldots = c_n = 0$.
- 2.) Spanning: for every $v \in V$, there exists $c_1, c_2, \ldots, c_n \in \mathbb{F}$ and $v_1, v_2, \ldots, v_n \in B$ such that $v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$.

Definition

A *basis* B of a vector space V over a field \mathbb{F} is a subset $B\subseteq V$ satisfying the following:

- 1.) Linear independence: for every finite subset $\{v_1, \ldots, v_n\} \subseteq B$, if $c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$ for some $c_1, c_2, \ldots, c_n \in \mathbb{F}$, then $c_1 = c_2 = \ldots = c_n = 0$.
- 2.) Spanning: for every $v \in V$, there exists $c_1, c_2, \ldots, c_n \in \mathbb{F}$ and $v_1, v_2, \ldots, v_n \in B$ such that $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$.

Standard example: if $V = \mathbb{F}^n$, then $\{(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)\}$ is a basis for V. We denote by e_i the basis element with 1 in coordinate i.

Definition

A *basis* B of a vector space V over a field \mathbb{F} is a subset $B \subseteq V$ satisfying the following:

- 1.) Linear independence: for every finite subset $\{v_1, \ldots, v_n\} \subseteq B$, if $c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$ for some $c_1, c_2, \ldots, c_n \in \mathbb{F}$, then $c_1 = c_2 = \ldots = c_n = 0$.
- 2.) Spanning: for every $v \in V$, there exists $c_1, c_2, \ldots, c_n \in \mathbb{F}$ and $v_1, v_2, \ldots, v_n \in B$ such that $v = c_1v_1 + c_2v_2 + \ldots + c_nv_n$.

Standard example: if $V = \mathbb{F}^n$, then $\{(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)\}$ is a basis for V. We denote by e_i the basis element with 1 in coordinate i. If V has a basis B with n elements, then we say V is an n-dimensional vector space.

Linear Subspace

Definition

A subset W of a vector space V over $\mathbb F$ is a *linear subspace* if W with the operations of V restricted to W is a vector space over $\mathbb F$. Equivalently, $W\subseteq V$ is a linear subspace if for all $a,b\in \mathbb F$ and $u,v\in W$, $au+bv\in W$.

Linear Subspace

Definition

A subset W of a vector space V over $\mathbb F$ is a *linear subspace* if W with the operations of V restricted to W is a vector space over $\mathbb F$. Equivalently, $W\subseteq V$ is a linear subspace if for all $a,b\in\mathbb F$ and $u,v\in W$, $au+bv\in W$.

Examples:

• If $m \le n$, then \mathbb{R}^m can be viewed as a linear subspace of \mathbb{R}^n by embedding $(v_1, \ldots, v_m) \mapsto (v_1, \ldots, v_m, 0, \ldots, 0)$.

Linear Subspace

Definition

A subset W of a vector space V over $\mathbb F$ is a *linear subspace* if W with the operations of V restricted to W is a vector space over $\mathbb F$. Equivalently, $W\subseteq V$ is a linear subspace if for all $a,b\in\mathbb F$ and $u,v\in W$, $au+bv\in W$.

Examples:

- If $m \le n$, then \mathbb{R}^m can be viewed as a linear subspace of \mathbb{R}^n by embedding $(v_1, \ldots, v_m) \mapsto (v_1, \ldots, v_m, 0, \ldots, 0)$.
- For $W = \{w_1, \dots, w_n\} \subset V$, define

$$\operatorname{span}(W) := \left\{ \sum_{i=1}^n c_i w_i \mid c_i \in \mathbb{F} \right\}.$$

 $\operatorname{span}(W)$ is a linear subspace of V.