Package 'gamlss.demo'

October 13, 2022

Description Demos for smoothing and gamlss.family distributions.
Title Demos for GAMLSS
LazyLoad yes
Version 4.3-3
Date 2015-07-16
Depends R (>= 2.4.0), rpanel (>= 1.1-1), gamlss.dist, gamlss.tr, tcltk, graphics, stats, grDevices
Suggests MASS
Author Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk , Bob Rigby Rigby@londonmet.ac.uk , Paul Ei ers ers@erasmusmc.nl , Brian Marx \emailto: Brian Warx @LSU.EDU \and Konstantinos Pateras kostas.pateras@gmail.com with contributions from Larisa Kosidou.
Maintainer Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk></d.stasinopoulos@londonmet.ac.uk>
License GPL-2 GPL-3
<pre>URL http://www.gamlss.org/</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-17 00:23:27
R topics documented:
demo.BSplines 2 demo.LocalRegression 3 demo.Locmean 4 demo.NO 5 demoDist 8 demoLpolyS 9 demoPsplines 10 gamlss.demo 11 Locmean 12
Index 15

2 demo.BSplines

demo.BSplines

Demos for smoothing techniques

Description

These are demos for teaching smoothing techniques to students

Usage

```
demo.BSplines()
demo.RandomWalk(y = NULL, ...)
demo.histSmo(y = NULL, ...)
demo.interpolateSmo(y = NULL, w = NULL, ...)
demo.PSplines(y = NULL, x = NULL, ...)
```

Arguments

y for y variable if needed otherwise it is generated

w for weights if needed

x for explanatory variable if needed

... for adding parameters in the plot

Value

An rpanel plot

Author(s)

Paul Eirers <p.eilers@erasmusmc.nl>, Brian Marx <bmarx@LSU.EDU>, and Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). *Statist. Sci*, **11**, 89-121.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

demo.LocalRegression 3

Examples

```
demo.PSplines()
```

demo.LocalRegression Local Regression Smoothing

Description

This function demonstrate some characteristics of local regression Smoothing

Usage

```
demo.LocalRegression(y = NULL, x = NULL, span = 0.5,

position = trunc((n - 1)/2),

deg = 1)

LPOL(y, x, span = 0.5, position = trunc((n - 1)/2),

w = rep(1, length(y)), deg = 1)

WLPOL(y, x, sd = 0.5, position = trunc((n - 1)/2),

w = rep(1, length(y)), deg = 1)
```

Arguments

У	The response variable
х	the explanatory variable
span	The smoothing parameters
sd	The standard deviation of a normal kernel used as smoothing parameter
position	The position of the target values in the x axis
W	weights
deg	The degree of the local polynomial

Details

The function demo.LocalRegression demonstrates some aspects of the Local (unweighed) polynomial regression. The functions LPOL() and WLPOL() produce plots related to unweighed and weighted local polynomial regression respectively.

Value

All function produce plots.

Author(s)

Mikis Stasinopoulos

4 demo.Locmean

References

R Development Core Team (2010) tcltk package, CRAN.

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

See also demoDist, gamlss.demo

Examples

```
demo.LocalRegression()
n <- 100
x <- seq(0, 1, length = n)*1.4
y <- 1.2 + .3*sin(5 * x) + rnorm(n) * 0.2
op <- par(mfrow=c(2,2))
LPOL(y,x, deg=0, position=5)
title("(a) moving average")
LPOL(y,x, deg=1, position=75)
title("(b) linear poly")
WLPOL(y,x, deg=2, position=30)
title("(c) quadratic poly")
WLPOL(y,x, deg=3, position= 50)
title("(b) cubic poly")
par(op)</pre>
```

demo.Locmean

Demos for local polynomial smoothing

Description

Those are four demos to show weighed and unweighed local mean and polynomial smoothing.

Usage

```
demo.Locmean(y = NULL, x = NULL, ...)
demo.Locpoly(y = NULL, x = NULL, ...)
demo.WLocpoly(y = NULL, x = NULL, ...)
demo.WLocmean(y = NULL, x = NULL, ...)
```

demo.NO 5

Arguments

y the response variable. If null it generates its own data

x explanatory variable

... for extra argument in the plot

Value

It produces an rpanel plot

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). *Statist. Sci*, **11**, 89-121.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
demo.PSplines
```

Examples

demo.Locmean()

demo.NO

Demos for different gamlss.family distributions

Description

The demo functions for showning the gamlss.family distributions. The functions use the package Rpanel.

6 demo.NO

Usage

```
demo.NO()
demo.LO()
demo.NO.LO()
demo.GU()
demo.RG()
demo.exGAUS()
demo.PE()
demo.PE.NO()
demo.TF()
demo.TF.NO()
demo.EGB2()
demo.GT()
demo.JSU()
demo.JSUo()
demo.NET()
demo.SHASH()
demo.SEP1()
demo.SEP2()
demo.SEP3()
demo.SEP4()
demo.ST1()
demo.ST2()
demo.ST3()
demo.ST4()
demo.ST5()
demo.EXP()
demo.GA()
demo.LOGNO()
demo.NO.LOGNO()
demo.IG()
demo.WEI()
demo.WEI2()
demo.WEI3()
demo.BCCG()
demo.GG()
demo.GIG()
demo.ZAGA()
demo.ZAIG()
demo.BCT()
demo.BCPE()
demo.GB2()
demo.EGB2()
demo.BE()
demo.BEo()
demo.GB1()
demo.GT()
demo.BB()
```

demo.NO 7

```
demo.BEINF()
demo.BEINF0()
demo.BEINF1()
demo.BI()
demo.DEL()
demo.LG()
demo.NBI()
demo.NBII()
demo.PO()
demo.SICHEL()
demo.ZABI()
demo.ZAGA()
demo.ZALG()
demo.ZAP()
demo.ZIBI()
demo.ZIP()
demo.ZIP2()
demo.BCCG()
demo.GG()
demo.PIG()
demo.ZABB()
demo.ZIBB()
demo.ZANBI()
demo.ZINBI()
demo.ZIPIG()
demo.NOtr()
demo.GAtr()
demo.YULE()
demo.WARING()
demo.GEOM()
demo.IGAMMA()
demo.PARETO2()
demo.PARETO2o()
demo.SHASHo()
demo.SHASHo2()
demo.LOGITNO()
demo.LOGNO2()
demo.SN1()
demo.SN2()
demo.SST()
demo.TF2()
demo.DPO()
```

Value

An rpanel plot

8 demoDist

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk> with contribution from Larisa Kosidou.

References

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Examples

demo.NO()

demoDist

Interface for demonstrating the gamlss.family distributions

Description

The function demoDist is an tcltk interface for plotting all the available gamlss.family distributions.

Usage

demoDist()

Value

It creates a tcltk menu

Author(s)

Konstantinos Pateras <kostas.pateras@gmail.com>

demoLpolyS 9

References

R Development Core Team (2010) tcltk package, CRAN.

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Examples

do not run
demoDist()

demoLpolyS

Demo for local polynomial fits

Description

It starts the gamlss local plynomial demos demos. It is an tcltk interface for using the local polynolial demos.

Usage

demoLpolyS()

Value

It creates a tcltk menu

Author(s)

Konstantinos Pateras <kostas.pateras@gmail.com>

References

R Development Core Team (2010) tcltk package, CRAN.

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

10 demoPsplines

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

See also demoDist, gamlss.demo,

Examples

demoLpolyS()

demoPsplines

Interface for demonstrating the P-splines and other smoothers

Description

The function demoPsplines is an tcltk interface for P. Eilers and B. Marx demos for P-splines.

Usage

demoPsplines()

Value

Create an tcltk menu

Author(s)

Konstantinos Pateras <kostas.pateras@gmail.com>

References

R Development Core Team (2010) tcltk package, CRAN.

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

See also demoDist, ~~~

gamlss.demo 11

Examples

```
demoPsplines()
```

gamlss.demo

The demo for gamlss distributions and smoothing

Description

It starts the gamlss demos. It is an tcltk interface for using the gamlss demos.

Usage

```
gamlss.demo()
```

Value

It creates a tcltk menu

Author(s)

Konstantinos Pateras <kostas.pateras@gmail.com>

References

R Development Core Team (2010) tcltk package, CRAN.

Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
See also demoDist, gamlss.demo,
```

Examples

```
gamlss.demo()
```

12 Locmean

- 1	OC	m۵	าก
_ L	JUL.	ш	all

Functions to fit local regression

Description

There are four function here to illustrate the fitting of local regressions. i) Locmean, which uses local means within a symmetric local window, ii) Locpoly, which uses a local polynomial fit within a symmetric local window. iii) WLocmean, which uses a Gaussian kernel and iv) WLocpoly, which uses local polynomials weighted by a Gaussian kernel

Usage

```
Locmean(y, x = seq(1, length(y)), w = rep(1, length(y)), span = 0.5)

Locpoly(y, x = seq(1, length(y)), w = rep(1, length(y)), span = 0.5, order = 1)

WLocmean(y, x = seq(1, length(y)), w = rep(1, length(y)), lambda = 0.5)

WLocpoly(y, x = seq(1, length(y)), w = rep(1, length(y)), lambda = 0.5, order = 1)
```

Arguments

У	the response variable
x	the x-variable
W	prior weights

span the side of the local window compare as a proportion to the total number of

observations

lambda the smoothing parameter for the Gaussian kernel

order the order of the polynomial

Details

Those functions can be used for illustration of the basic concepts of smoothing using small data sets. Do not use them with large data because are computationally inefficient.

Value

The functions return a locW object with values

fitted.values	the fitted valus
residuals	the residuals
edf	the effective degrees of freedom
rss	the residual sum of squares

lambda the smoothing parametery the y variablex the x variable

w the prior weights

Locmean 13

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/)

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

loess, ksmooth

Examples

```
library(MASS)
data(mcycle)
# local means
m0<-Locmean(mcycle$accel, mcycle$times, span=.1)
m1<-Locmean(mcycle$accel, mcycle$times, span=.2)
m2<-Locmean(mcycle$accel, mcycle$times, span=.3)</pre>
span <- c("span=0.1", "span=0.2", "span=0.3")
plot(accel~times, data=mcycle,main="local mean")
lines(fitted(m0)~mcycle$times, col=1, lty=1)
lines(fitted(m1)~mcycle$times, col=2, lty=2)
lines(fitted(m2)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
       lty = 1:3, cex = .8, y.intersp = 1)
# kernel estimation
k0<-WLocmean(mcycle$accel, mcycle$times, lambda=1)</pre>
k1<-WLocmean(mcycle$accel, mcycle$times, lambda=2)</pre>
k2<-WLocmean(mcycle$accel, mcycle$times, lambda=3)</pre>
lambda <- c("lambda=1", "lambda=2", "lambda=3")</pre>
plot(accel~times, data=mcycle,main="Gaussian kernel fit")
lines(fitted(k0)~mcycle$times, col=1, lty=1)
lines(fitted(k1)~mcycle$times, col=2, lty=2)
lines(fitted(k2)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = lambda, col = 1:3,
       lty = 1:3, cex = .8, y.intersp = 1)
# local polymials
11<-Locpoly(mcycle$accel, mcycle$times, span=.1)
12<-Locpoly(mcycle$accel, mcycle$times, span=.2)
13<-Locpoly(mcycle$accel, mcycle$times, span=.3)
span <- c("span=0.1", "span=0.2", "span=0.3")</pre>
```

14 Locmean

```
plot(accel~times, data=mcycle,main="local linear fit")
lines(fitted(l1)~mcycle$times, col=1, lty=1)
lines(fitted(12)~mcycle$times, col=2, lty=2)
lines(fitted(12)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
       lty = 1:3, cex = .8, y.intersp = 1)
# weighted local polynomials
lw1<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=1)</pre>
lw2<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=2)</pre>
lw3<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=3)</pre>
span <- c("linear", "quadratic", "cubic")</pre>
plot(accel~times, data=mcycle,main="Weighted local linear, quadratic and cubic fits")
lines(fitted(lw1)~mcycle$times, col=1, lty=1)
lines(fitted(lw2)~mcycle$times, col=2, lty=2)
lines(fitted(lw3)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
       lty = 1:3, cex = .8, y.intersp = 1)
```

Index

```
* distribution
                                                   demo. IG (demo. NO), 5
    demo.NO, 5
                                                   demo.IGAMMA (demo.NO), 5
    demoDist, 8
                                                   demo.interpolateSmo (demo.BSplines), 2
* regression
                                                   demo.JSU (demo.NO), 5
    demo.BSplines, 2
                                                   demo. JSUo (demo. NO), 5
    demo.LocalRegression, 3
                                                   demo.LG (demo.NO), 5
    demo.Locmean, 4
                                                   demo.LO (demo.NO), 5
    demo.NO.5
                                                   demo.LocalRegression, 3
    demoDist, 8
                                                   demo.Locmean, 4
    demoLpolyS, 9
                                                   demo.Locpoly (demo.Locmean), 4
    demoPsplines, 10
                                                   demo.LOGITNO (demo.NO), 5
    gamlss.demo, 11
                                                   demo.LOGNO (demo.NO), 5
    Locmean, 12
                                                   demo.LOGNO2 (demo.NO), 5
                                                   demo.NBI (demo.NO), 5
demo.BB (demo.NO), 5
                                                   demo.NBII (demo.NO), 5
demo.BCCG (demo.NO), 5
                                                   demo.NET (demo.NO), 5
demo.BCPE (demo.NO), 5
                                                   demo.NO, 5
demo.BCT (demo.NO), 5
                                                   demo.NOtr (demo.NO), 5
demo.BE (demo.NO), 5
                                                   demo. PARETO2 (demo. NO), 5
demo.BEINF (demo.NO), 5
                                                   demo.PARETO2o (demo.NO), 5
demo.BEINF0 (demo.NO), 5
                                                   demo.PE (demo.NO), 5
demo.BEINF1 (demo.NO), 5
                                                   demo.PIG (demo.NO), 5
demo.BEo (demo.NO), 5
                                                   demo.PO (demo.NO), 5
demo.BI (demo.NO), 5
                                                   demo.PSplines, 5
demo.BSplines, 2
                                                   demo.PSplines (demo.BSplines), 2
demo.DEL (demo.NO), 5
                                                   demo.RandomWalk (demo.BSplines), 2
demo. DPO (demo. NO), 5
                                                   demo.RG (demo.NO), 5
demo.EGB2 (demo.NO), 5
                                                   demo. SEP1 (demo. NO), 5
demo.exGAUS (demo.NO), 5
                                                   demo. SEP2 (demo. NO), 5
demo. EXP (demo. NO), 5
                                                   demo. SEP3 (demo. NO), 5
demo. GA (demo. NO), 5
                                                   demo. SEP4 (demo. NO), 5
demo.GAtr (demo.NO), 5
                                                   demo. SHASH (demo. NO), 5
demo.GB1 (demo.NO), 5
                                                   demo. SHASHo (demo. NO), 5
demo. GB2 (demo. NO), 5
                                                   demo.SHASHo2 (demo.NO), 5
demo.GEOM (demo.NO), 5
                                                   demo.SICHEL (demo.NO), 5
demo.GG (demo.NO), 5
                                                   demo. SN1 (demo. NO), 5
demo.GIG (demo.NO), 5
demo.GT (demo.NO), 5
                                                   demo. SN2 (demo. NO), 5
demo. GU (demo. NO), 5
                                                   demo.SST (demo.NO), 5
demo.histSmo (demo.BSplines), 2
                                                   demo. ST1 (demo. NO), 5
```

16 INDEX

```
demo.ST2 (demo.NO), 5
demo. ST3 (demo. NO), 5
demo.ST4 (demo.NO), 5
demo. ST5 (demo. NO), 5
demo.TF (demo.NO), 5
demo.TF2 (demo.NO), 5
demo.WARING (demo.NO), 5
demo.WEI (demo.NO), 5
demo.WEI2 (demo.NO), 5
demo.WEI3 (demo.NO), 5
demo.WLocmean (demo.Locmean), 4
demo.WLocpoly (demo.Locmean), 4
demo. YULE (demo. NO), 5
demo.ZABB (demo.NO), 5
demo.ZABI (demo.NO), 5
demo.ZAGA (demo.NO), 5
demo.ZAIG (demo.NO), 5
demo.ZALG (demo.NO), 5
demo.ZANBI (demo.NO), 5
demo.ZAP (demo.NO), 5
demo.ZIBB (demo.NO), 5
demo.ZIBI (demo.NO), 5
demo.ZINBI (demo.NO), 5
demo.ZIP (demo.NO), 5
demo.ZIP2 (demo.NO), 5
demo.ZIPIG (demo.NO), 5
demoDist, 4, 8, 10, 11
demoLpolyS, 9
demoPsplines, 10
gamlss.demo, 4, 10, 11, 11
ksmooth, 13
Locmean, 12
Locpoly (Locmean), 12
loess, 13
LPOL (demo.LocalRegression), 3
WLocmean (Locmean), 12
WLocpoly (Locmean), 12
WLPOL (demo.LocalRegression), 3
```