(Recap) Milner's "let polymorphism"

The context Γ maps variables to polymorphic types

$$\forall a_1,\ldots,a_k \ \tau$$

with explicit quantification over $k \ge 0$ type variables.

$$\frac{1}{\Gamma \vdash x : \tau[a_1, \ldots, a_k := \tau_1, \ldots, \tau_k]} \Gamma(x) = \forall a_1, \ldots, a_k \tau$$

$$\frac{\Gamma, \, x \colon \tau_1 \vdash e_1 \colon \tau_1 \qquad \Gamma, \, x \colon \forall a_1, \dots, a_k \ \tau_1 \vdash e_2 \colon \tau_2}{\Gamma \vdash \mathtt{let} \ x = e_1 \ \mathtt{in} \ e_2 \colon \tau_2} \, \big(\star \big)$$

(*) a_1, \ldots, a_k must not occur as *free type variables* in Γ (i.e., every occurrence of any of a_1, \ldots, a_k in Γ must be bound by some \forall).

Polymorphic type inference algorithm

We separate type variables into polymorphic type variables a_0, a_1, a_2, \ldots and monomorphic type variables b_0, b_1, b_2, \ldots

Given (Γ, e) as input, the algorithm returns (θ_0, τ_0) as output such that $\Gamma\theta_0 \vdash e : \tau_0$. (Here Γ may contain both polymorphic and monomorphic type variables, but θ_0 and τ_0 contain only monomorphic type variables.)

The algorithm proceeds recursively on the structure of *e*:

$$\underline{x}$$
: Let $\tau = \Gamma(x)$.

Let τ^m be obtained from τ by replacing every polymorphic type variable in τ with a fresh monomorphic type variable.

Return ([], τ^m).

<u>let $x = e_1$ in e_2 </u>: Let b be a fresh monomorphic type variable

Compute (θ_1, τ_1) for $((\Gamma, x : b), e_1)$.

Let θ_1' be the most general unifier of τ_1 and $b\theta_1$.

Consider $au_1' = au_1 heta_1'$ and $\Gamma' = \Gamma heta_1 heta_1'$

Let τ_1^p be obtained from τ_1' by replacing every monomorphic type variable in τ_1' that does not occur in Γ' into a distinct polymorphic type variable.

Compute (θ_2, τ_2) for $((\Gamma \theta_1 \theta'_1, x : \tau_1^p), e_2)$.

Return $(\theta_1\theta_1'\theta_2\upharpoonright_{\Gamma}, \tau_2)$.

e₁ e₂: Compute (θ_1, τ_1) for (Γ, e_1) . Next compute (θ_2, τ_2) for $(\Gamma \theta_1, e_2)$. Let b be a fresh monomorphic type variable. Let θ_3 be the most general unifier of $\tau_1 \theta_2$ and $\tau_2 \to b$. Return $(\theta_1 \theta_2 \theta_3 \upharpoonright_{\Gamma}, b \theta_3)$.

 $\underline{\lambda \times . e_0}$: Let b be a fresh monomorphic type variable. Compute (θ, τ) for $((\Gamma, x : b), e_0)$. Return $(\theta \upharpoonright_{\Gamma}, (b \theta) \to \tau)$.

Example data type declarations

Expressions associated with data types

Data type declaration:

data
$$F a_1 \ldots a_k = C_1 \tau_{11} \ldots \tau_{1n_1} \mid \ldots \mid C_m \tau_{m1} \ldots \tau_{mn_m}$$

Constructor expressions:

$$C_1 \ldots C_m$$

Associated case expression:

case
$$e$$
 of C_1 x_{11} ... $x_{1n_1} \rightarrow e_1$; ... ; C_m x_{m1} ... $x_{mn_m} \rightarrow e_m$

Big-step operational rules

$$\left(\text{ data } F \ a_1 \ \dots a_k \ = \ C_1 \ \tau_{11} \ \dots \tau_{1n_1} \ | \ \dots \ | \ C_m \ \tau_{m1} \ \dots \tau_{mn_m} \right)$$

$$\frac{e \Rightarrow C_i e_1 \dots e_{n-1}}{e e_n \Rightarrow C_i e_1 \dots e_n} (n \le n_i)$$

$$e \Rightarrow C_i \ e'_1 \dots e'_{n_i} \qquad e_i[x_{i1}, \dots, x_{in_i} := e'_1, \dots, e'_{n_i}] \Rightarrow v$$

case e of $C_1 x_{11} \dots x_{1n_1} \to e_1$; ... ; $C_m x_{m1} \dots x_{mn_m} \to e_m \;\; \Rightarrow \;\; v$

Typing rules

$$\left(\text{ data } F \ a_1 \ \dots a_k \ = \ C_1 \ \tau_{11} \ \dots \tau_{1n_1} \ | \ \dots \ | \ C_m \ \tau_{m1} \ \dots \tau_{mn_m} \right)$$

$$\overline{ \Gamma \vdash C_i : \tau_{i1} \theta \to \dots \to \tau_{in_i} \theta \to F \sigma_1 \dots \sigma_k }$$

$$\Gamma \vdash e : F\sigma_1 \dots \sigma_k$$

$$\Gamma, x_{11} : \tau_{11} \theta, \dots, x_{1n_1} : \tau_{1n_1} \theta \vdash e_1 : \tau \qquad \Gamma, x_{m1} : \tau_{m1} \theta, \dots, x_{mn_m} : \tau_{mn_m} \theta \vdash e_m : \tau$$

$$\Gamma \vdash (\texttt{case } e \texttt{ of } C_1 \ x_{11} \ \dots \ x_{1n_1} \texttt{ -> } e_1 \ ; \ \dots \ ; \ C_m \ x_{m1} \ \dots \ x_{mn_m} \texttt{ -> } e_m) : \tau$$

In both rules θ is the substitution $[a_1, \ldots, a_k := \sigma_1 \ldots \sigma_k]$.