		_
	Advanced Methods for Supervised Interval Variable Selection	
	interval variable defeation	
	1 Postial Locat Courses Postucation	
	1. Partial Least Squares Regression	
	2. LAR/LASSO	
	1	
1		J
		_
	Objectives	
	Objectives	
	– Describe LAR / LASSO.	
	– Explain how to use LAR / LASSO in SAS.	
	 Discuss advantages and disadvantages with this variable selection method. 	
	variable selection metriou.	
2	2	
_		
	145/14000]
	LAR / LASSO	
	Target used or not?Used	
	Original or constructed variables as output?	
	Original variables	

Use of the LARS

- LARS can be used for two main tasks:
 - Variable selection
 - Model-fitting and prediction

4

LARS Used for Variable Selection

- The coefficients for the potential input variables are continuously grown from zero to the final coefficient estimate.
- The input variables with 0 as the coefficient would be rejected.

5

Available Algorithms

- The following algorithms are available:
 - Least Angle Regression (LAR)
 - Least Absolute Shrinkage and Selection Operator (LASSO)
 - Adaptive LASSO
 - None -- Ordinary least squares regression
 - Others forward, backward, stepwise, and elasticnet

Least Angle Regression: Basics

- Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004)
- · Least angle regression
 - As in forward selection, a sequence of regression models is produced.
 - In each step, one parameter is added to the model.
 - The complete model (all parameters entered into the model) corresponds to the full least squares solution.
 - Complexity of the model can be optimized on validation data.

7

Least Angle Regression: Algorithm

- First: Zero coefficients and zero predicted response.
- Find the input variable with highest correlation with the target (least angle with...).
- A step is taken in the direction of this input variable.
 This creates a residual vector now considered the response.
- Determination of step length:
 - Some other input variable has the same correlation with the residual vector as the first variable does with the response.

8

Least Angle Regression: Algorithm

- The predicted response moves in the equiangular direction of these two input variables.
 - Movement until a third input variable has the same correlation with the residual as the two input variables now already in the model.
- A new step direction is determined:
 - Equiangular between the three input variables in the model.
- The predicted response moves again.
- Process continues until all input variables are in the model.

Least Angle Regression Geometrically

- Two covariates (predictors) x_1 and x_2 and the space $L(x_1,x_2)$ that is spanned by them
- μ = E(Y | X)

10

Least Angle Regression Geometrically

- Three covariates (predictors) $x_1,\,x_2$ and x_3 and the space $L(x_1$, $x_2,\,x_3)$ that is spanned by them

11

Least Angle Regression: Mathematics

Preliminaries:

- $\sum_{i=1}^{n} y_i = 0, \quad \sum_{i=1}^{n} x_{ij} = 0, \quad and \quad \sum_{i=1}^{n} x_{ij}^2 = 1, \quad for \quad j = 1, ..., p$
- $-\mu = E(Y|X)$, \hat{u} is the estimated μ
- Current correlations: $c(\hat{\mathbf{u}}) = X^T(Y \hat{\mathbf{u}})$
- The absolute correlations are related to the angles of the current residuals with Xj 's
- Cosine of the angle between two vectors vs. Correlation between two variables

$$cos(a,b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}$$

$$\rho_{X,Y} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

13

Least Angle Regression: Mathematics

The Equiangular Vectors:

- Let $\ensuremath{\mathcal{A}}$ be the set of indices corresponding to covariates in the current model
- **Let** $X_{\mathcal{A}} = [\cdots s_j X_j \cdots]_{j \in \mathcal{A}}$, where $s_j = \pm 1$
- $-U_A = X_A w_A$: the unit vector making equal angles (<90°) with the columns of X_A
- $-X_A^T U_A = A_A 1_A$ and $||U_A|| = 1$, where A_A is a constant.
- Then $w_A = A_A G_A^{-1} 1_A$ and $A_A = (1_A^\top G_A^{-1} 1_A)^{-1/2}$ where $G_A = X_A^\top X_A$

14

Least Angle Regression: Mathematics

Current Correlations

- $\hat{c} = X^{\top}(Y \hat{\mu}_{\mathcal{A}})$
- ▶ Let $\hat{C} = \max_i \{|\hat{c}_i|\}$.
- ▶ Let $a = X^T U_A$.
- ► Consider $\mu(\gamma) = \hat{\mu}_{\mathcal{A}} + \gamma U_{\mathcal{A}}$. Then $c_j(\gamma) = X_j^\top (Y \mu(\gamma)) = \hat{c}_j \gamma a_j$.
- ▶ For $j \in A$, $|c_j(\gamma)| = \hat{C} \gamma A_A$.

Least Absolute Shrinkage and Selection Operator (LASSO)

- A constrained form of ordinary least squares is used:
 - The sum of the absolute values of the regression coefficients must be smaller than a certain value.
- The LASSO coefficients β =(β_1 , β_2 , β_3 , ..., β_p) are the solution to

Minimize
$$\|y - X\beta\|^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le t$$

 A quadratic programming algorithm is used to compute the coefficients

16

LASSO vs. Ridge Regression

- Ridge regression also shrinks the regression coefficients by imposing a penalty on their size.
- The Ridge coefficients $\beta \text{=}(\beta_1,\,\beta_2,\,\beta_3,\,...,\,\beta_p)$ are the solution to

Minimize
$$\|y - X\beta\|^2$$

subject to
$$\sum_{i=1}^{p} \beta_j^2 \le t$$

- Which is equivalent to

17

Ridge Regression Shrinkage (Mathematics)

– The SVD of X has the form:

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

- Dimensions:
 - U is N-by-p orthogonal matrix, with columns spanning the column space of X
 - V is p-by-p orthogonal matrix, with columns spanning the row space of X
 - D is p-by-p diagonal matrix, with diagonal entries $d_1 \ge d_2 \ge ... \ge d_p \ge 0$ called the singular values of X

Ridge Regression Shrinkage (Mathematics)

- Using the SVD of X we can re-write the OLS solutions

$$\mathbf{X}\hat{eta}^{\mathrm{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

= $\mathbf{U}\mathbf{U}^T\mathbf{y}$,

and the ridge solutions:

$$\begin{split} \mathbf{X}\hat{\beta}^{\mathrm{ridge}} &=& \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y} \\ &=& \mathbf{U} \ \mathbf{D}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1}\mathbf{D} \ \mathbf{U}^T\mathbf{y} \\ &=& \sum_{j=1}^p \mathbf{u} \sqrt{\frac{d_j^2}{d_j^2 + \lambda} \mathbf{U}_j^T\mathbf{y}}, \end{split}$$
 the shrinkage

19

LASSO vs. Ridge Regression

- The change to the penalty function is subtle, but has a dramatic impact on the resulting estimator.
- Like ridge regression, penalizing the absolute values of the coefficients introduces shrinkage towards zero.
- However, unlike ridge regression, some of the coefficients are shrunken all the way to zero; such solutions, with multiple values that are identically zero, are said to be sparse.
- The penalty thereby performs a sort of continuous variable selection
- The resuting estimator was thus named the lasso, for "Least Absolute Shrinkage and Selection Operator

20

Ridge Regression Shrinkage (Example) $\frac{df(\lambda) = tr[\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T]}{df(\lambda)} = tr(\mathbf{H}_{\lambda}) \\ = \sum_{j=1}^p \frac{d_j^2}{d_j^2 + \lambda}.$ Reference: T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

LASSO Shrinkage (Example)

Shrinkage factor $S = \frac{1}{\sum_{j=1}^{p} |\hat{\beta}_j|}$ Reference: T. Hastie, Tibshirani, and J. Friedman, The Elements of Statistical Learning.

22

Ridge Shrinkage vs. LASSO Shrinkage (Example)

Ridge Shrinkage vs. Lasso Shrinkage (Example)

Fidge James Spi James

23

24

Adaptive LASSO

- This is a modification of the LASSO algorithm.
- The basics are the same but weights are applied to the parameters in the LASSO constraint.
- A weight vector is defined as

$$w = \frac{1}{|\hat{\beta}|^{\gamma}}$$
, with $\gamma \ge 0$

 $-\hat{\beta}$ is an estimate of the parameters.

Adaptive LASSO

— The adaptive LASSO coefficients $\beta \text{=}(\beta_1,\,\beta_2,\,\beta_3,\,...,\,\beta_p)$ are the solution to

Minimize $\|y - X\beta\|^2$

subject to
$$\sum_{j=1}^{p} |w_j \beta_j| \le t$$

25

Model Selection

- Two issues are important in the model selection:
 - How many steps should be processed?

Path Stopping Criterion Maximum Steps
Maximum Steps 200

– From which of the steps should the model be selected?

Model Selection Criterion | SBC

26

From Which of the Steps Should the Model Be Selected?

– How can we select the best model from the sequence of constructed models?

28

From Which of the Steps Should the Model Be Selected?

- The available model selection criteria include
 - SBC Schwarts Bayesian information criterion
 - BIC Bayesian information criterion
 - AIC Akaike information criterion
 - AICC -- Corrected Akaike's information criterion
 - CP Cp statistic, explained in Regression class
 - Validation explained in DM I class
 - Cross Validation explained in PLS slides
 - ADJRSQ, CVEX, PRESS

29

Performance Assessment: Loss Function

- Typical choices for quantitative response Y:
 - $L(Y, \hat{f}(X)) = \begin{cases} (Y \hat{f}(X))^2 & \text{(squared error)} \\ |Y \hat{f}(X)| & \text{(absolute error)} \end{cases}$
- Typical choices for categorical response G:

$$L(G, \hat{G}(X)) = I(G \neq \hat{G}(X))$$
 (0-1 loss)
$$L(G, \hat{p}(X)) = -2\sum_{k=0}^{K} I(G = k) \log \hat{p}_{k}$$

$$= -2\log \hat{p}_G(X) \qquad \text{(log-likelihood)}$$

In-sample and Extra-sample Error

 In-sample error is the average prediction error, conditioned on the training sample s. It is obtained when new responses are observed for the training set features.

$$Err_{in} = \frac{1}{N} \sum_{i=1}^{N} Err(x_i) = \frac{1}{N} \sum_{i=1}^{N} E_y E_{Y^{New}} L(Y_i^{New}, \hat{f}(x_i)).$$

 Extra-sample error is the average prediction error when both features and responses are new (no conditioning on the training set).

31

In-sample Error

 For squared error, 0-1, and other loss function, it can be shown generally that

$$Err_{in} = E_{y}(\overline{err}) + \frac{2}{N} \sum_{i=1}^{N} Cov(\hat{y}_{i}, y_{i}).$$

- Can be simplified as $Err_{ts}=E_y(\overline{err})+2\cdot\frac{d}{N}\sigma_{\varepsilon}^{\ 2}$ for the model $Y=f(X)+\varepsilon$ by a linear fit with d inputs.

32

Model Selection Criteria

- C_p statistic (when d free parameters are fitted under squared error loss):

$$C_p = \overline{err} + 2 \cdot \frac{d}{N} \hat{\sigma}_{\varepsilon}^2$$

where $\overline{err} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$ is the training error rate.

- C_p estimates the in-sample error.

Model Selection Criteria

— AIC (Akaike information criterion), a more generally applicable estimate of the in-sample error when a log-likelihood loss function is used (when $N \to \infty$):

$$-2E[\log \Pr_{\hat{\theta}}(Y)] \approx -\frac{2}{N} E(\sum_{i=1}^{N} \log \Pr_{\hat{\theta}}(y_i)) + 2\frac{d}{N}$$
$$= -\frac{2}{N} \cdot \log lik + 2\frac{d}{N} = \frac{AlC}{N}$$

- General form: $AIC = -2 \cdot (\log lik) + 2 \cdot d$.
- Choose the model giving smallest AIC over the set of models considered

34

Model Selection Criteria

- BIC (Bayesian information criterion) is motivated from Bayesian point of view.
- BIC tends to penalize complex models more heavily, giving preference to simpler models in selection
- Its general form is:

$$BIC = -2 \cdot (\log lik) + (\log N) \cdot d.$$

35

Bayesian Model Selection

- Suppose we have candidate models $M_m, m = 1,...,M$
- with corresponding model parameters θ_m .
- Prior distribution: $Pr(\theta_m \mid M_m), m = 1,...,M$.
- Posterior probability:

$$Pr(M_m \mid Z) \propto Pr(M_m) \cdot Pr(Z \mid M_m).$$

- Compare two models via posterior odds:

$$\frac{\Pr(M_{\scriptscriptstyle m} \mid Z)}{\Pr(M_{\scriptscriptstyle l} \mid Z)} = \frac{\Pr(M_{\scriptscriptstyle m})}{\Pr(M_{\scriptscriptstyle l})} \cdot \frac{\Pr(Z \mid M_{\scriptscriptstyle m})}{\Pr(Z \mid M_{\scriptscriptstyle l})}$$

- The second factor on the RHS is called the Bayes factor and describes the contribution of the data towards posterior odds.

Bayesian Approach Continued

- Unless strong evidence to the contrary, we typically assume that prior over models is uniform (non-informative prior).
- Using Laplace approximation, one can establish a simple (but approximate) relationship between posterior model probability and the BIC.
- Lower BIC implies higher posterior probability of the model.
 Use of BIC as model selection criterion is thus justified.

37

37

AIC or BIC?

- BIC is asymptotically consistent as a selection criterion. That
 means, given a family of models including the true model, the
 probability that BIC will select the correct one approaches one
 as the sample size becomes large.
- AIC does not have the above property. Instead, it tends to choose more complex models as $N \to \infty$.
- For small or moderate samples, BIC often chooses models that are too simple, because of its heavy penalty on complexity.

38

38

LAR / LASSO: Pros

- Variable selection and model fitting integrated in the same node
- Computationally efficient
- Original variables as output

40

40

LAR / LASSO: Cons

- Difficult to know at which step to stop the modeling process.
- Mathematically challenging to understand.
- Degrees of freedom used in the LASSO algorithm are not mathematically justified, but works in practice.

41

41

LAR / LASSO: Degrees of Freedom

- Df of an fitted vector ŷ as

$$\mathrm{df}(\hat{\mathbf{y}}) = \frac{1}{\sigma^2} \sum_{i=1}^{N} \mathrm{Cov}(\hat{y}_i, y_i).$$

- $\mbox{Cov}(\hat{\mbox{\scriptsize y}},\mbox{\scriptsize y})$ refers to the sampling covariance
- After the kth step of the LAR procedure, the effective degrees of freedom of the fit vector is exactly k.
- For the lasso, at any stage $df(\hat{y})$ approximately equals the number of predictors in the model.
- A detailed study of the degrees of freedom for the lasso may be found in Zou et al. (2007).

LAR / LASSO for Variable Selection

- This demonstration illustrates how to use the LARS to perform variable selection.
- Variations of the LARS node/procedure are shown.

43

Consider a simulated example with two correlated inputs X1 and X2, with correlation p. We assume that the true regression coefficients are β_1 = 4 and β_2 = 2.

A full study: Frank and Friedman (1993). These authors conclude that for minimizing the prediction error, ridge regression is generally preferable to variable subset selection, PC regression, and PLS

