# Introduction to Machine Learning

Machine Learning for Process Engineers Workshop

Stellenbosch University

March 2022

# Recent interest in machine learning

Developments in ML have been spurred by:

Computational resources

(and computation as a service)

2010: Jaguar at  $1.75 \times 10^{15}$  FLOPS

2021: Fugaka at  $442 \times 10^{15}$  FLOPS

Massive data repositories

e.g., ImageNet containing

>14 million annotated images

• Deep learning

ability to analyse inputs consisting of thousands (millions) of features, e.g., 512x512 pixels > 260k features







### Recent interest in machine learning

... and developments in ML have spurred:

- Industry interest
- Data awareness
- Development of effective data ecosystems















# Overwhelmingly large toolbox

Support vector machine

Partial least

squares

Gaussian Mixture Model

Actorcritic

Markov Chain Monte Carlo



SARSA

O PyTorch

regression

Independent component analysis



Long-short term memory neural network

PCA

Kernel

Linear Discriminant Analysis

Q-learning

N

DBSCA

Random forests



K-nearest neighbours

Dynamic

Bayesian

network

Gaussian process regression

Spectral clustering

Ridge

regression

Variational autoencoder



LASSO



Probabilistic matrix factorization

Bayesian linear regression

# Provide exposure to fundamentals of machine learning methods to enable effective independent learning

- The bias-variance trade-off
- Estimating model accuracy
- Improving model performance using
  - Regularisation
  - Dimensionality reduction (feature extraction)

# Provide exposure to fundamentals of machine learning methods to enable effective independent learning

- Focus on linear regression for supervised learning
- Introduce elementary unsupervised learning through principal component analysis
- Provide a brief overview of state-of-the-art methods in ML



CRISP-DM: Cross-industry standard process for data mining

• Effective deployment of data-based methods requires investment in each phase of the data mining process

• Hands-on workshop will focus on modelling, but remaining factors must not be neglected

By Kenneth Jensen - Own work based on: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerCRISPDM.pdf (Figure 1), CC BY-SA 3.0, <a href="https://commons.wikimedia.org/w/index.php?curid=24930610">https://commons.wikimedia.org/w/index.php?curid=24930610</a>

- NOT a zero-to-Deep Learning course (although we can discuss the benefits of Deep Learning as questions come up)
- NOT a tutorial on ML / Data Science software or libraries (although we can mention useful and popular ones)
- NOT an all-encompassing overview of ML (although we hope that the workshop enables you to engage with the field)
- IT IS a workshop: please ask questions and help us learn together!

### Resources



• An Introduction to Statistical Learning (2<sup>nd</sup> ed. 2021)

James, Witten, Hastie, Tibshirani

Free: https://www.statlearning.com/



• Elements of Statistical Learning (2<sup>nd</sup> ed. 2009)

\*\*Hastie, Tibshirani, Friedman\*

\*Free: https://web.stanford.edu/~hastie/ElemStatLearn/



• Machine Learning: A First Course for Engineers and Scientists (in press)

Lindholm, Wahlström, Lindsten, Schön

Free: https://smlbook.org/



• Mathworks Self-Paced courses
Free (w/ license): https://matlabacademy.mathworks.com/#ai

### Resources

- Pattern Recognition and Machine Learning (1st ed., 2006) Bishop Not free, but beautiful: <a href="https://link.springer.com/book/9780387310732">https://link.springer.com/book/9780387310732</a>
- Reinforcement Learning: and introduction ( $2^{nd}$  ed. 2018)

  Sutton, BartoFree, focus on reinforcement learning: <a href="http://www.incompleteideas.net/book/the-book-2nd.html">http://www.incompleteideas.net/book/the-book-2nd.html</a>
- Probabilistic Machine Learning: An Introduction (2022) *Murphy* \*Free: <a href="https://probml.github.io/pml-book/book1.html">https://probml.github.io/pml-book/book1.html</a>



- Mathematics for Machine Learning(2020)

  Deisenroth, Faisal, Ong
  - \*Free, introduction to underlying mathematics: <a href="https://mml-book.com/">https://mml-book.com/</a>
- Foundations of Machine Learning (2<sup>nd</sup> ed. 2018) *Mohri, Rostamizadeh, Talwalkar* 
  - \*Free, introduction to underlying mathematics: <a href="https://cs.nyu.edu/~mohri/mlbook/">https://cs.nyu.edu/~mohri/mlbook/</a>

<sup>\*</sup> I have not read these books myself, but they are recommended by Lindholm et al. (smlbook.org)

### Resources

#### https://github.com/tmlouw/ML-for-Process-Engineers

| 0 | tmlouw Delete README.md     |                                               | c52adef 12 minutes ago 🐧 7 commits |
|---|-----------------------------|-----------------------------------------------|------------------------------------|
|   | MATLAB for content creation | Added all files from CCA2021 (MATLAB and PPT) | 13 hours ago                       |
|   | MATLAB for distribution     | Completed all workshop components in Python   | 14 minutes ago                     |
|   | PPT slides                  | Added all files from CCA2021 (MATLAB and PPT) | 13 hours ago                       |
|   | Python                      | Delete README.md                              | 12 minutes ago                     |
|   | .gitignore                  | Added all files from CCA2021 (MATLAB and PPT) | 13 hours ago                       |
|   | LICENSE                     | Initial commit                                | 13 hours ago                       |
|   | README.md                   | Initial commit                                | 13 hours ago                       |

