Banach Wessenstian GAN * NeurIPS 2018

Sheng-Je Huang

Institute of Communications Engineering National Chiao Tung University, Hsinchu

Feburary 20, 2019

^{*}Jonas Adler, KTH-Royal institute of Technology Research and Physics Sebastian Lunz, University of Cambridge

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Introduction

- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Introduction

- Extend WGAN implemented via a **gradient penalty** (GP) term to any separable complete normed space.
- Efficiently implemented BWGAN by replacing the ℓ^2 norm into **dual norm**.
- Give theoretically grounded heuristics for the choice of regularization parameters.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Generative adversarial networks

- GANs perform generative modeling by learning a map $G: Z \to B$ from a low-dimensional **latent space** Z to **image space** B, mapping a fixed noise distribution \mathbb{P}_Z to a distribution of generated images \mathbb{P}_G .
- ullet The famous **minimax** game between generator G and critic D

$$\min_{G} \max_{D} \mathbb{E}_{X \sim \mathbb{P}_r}[\log(D(x))] + \mathbb{E}_{Z \sim \mathbb{P}_Z}[\log(1 - D(G_{\Theta}(Z)))]. \tag{1}$$

• Using **Jensen-Shannon divergence** as distance measure between the dirstirbutions \mathbb{P}_G and \mathbb{P}_r .

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Wasserstein metrics (1/2)

- To overcome undesirable behavior of the JSD in the presence of **singular measures**, using the Wasserstein metric to quantify the distance between the distributions \mathbb{P}_G and \mathbb{P}_r .
- The Wasserstein distance provide **meaningful gradients** to the gernerator even when the measures are mutually singular.
- The Wasserstein-p, $p \ge 1$, distance is defined as

$$\operatorname{Wass}_{p}(\mathbb{P}_{G}, \mathbb{P}_{r}) := \left(\inf_{\pi \in \Pi(\mathbb{P}_{G}, \mathbb{P}_{r})} \mathbb{E}_{(X_{1}, X_{2}) \sim \pi} d_{B}(X_{1}, X_{2})^{p}\right)^{1/p} \tag{2}$$

Wasserstein metrics (2/2)

- The infimum is highly intractable.
- The **Kantorovich-Rubinstein duality** provides a way of more efficiently computing the Wasserstein-1 distance.

$$\operatorname{Wass}_{p}(\mathbb{P}_{G}, \mathbb{P}_{r}) = \sup_{\operatorname{Lip}(f) \leq 1} \mathbb{E}_{X \sim \mathbb{P}_{G}} f(X) - \mathbb{E}_{X \sim \mathbb{P}_{r}} f(X)$$
 (3)

- The supremum is taken over all Lipschitz continuous functions $f: B \to \mathbb{R}$ with Lipschitz constant equal or less than one.
- If we consider γ -Lipschitz with a function $f: B \to \mathbb{R}$, we can get

$$|f(x) - f(y)| \le \gamma d_B(x, y).$$

Wasserstein metrics

Figure 1: These plots show $\rho(\mathbb{P}_{\theta}, \mathbb{P}_{0})$ as a function of θ when ρ is the EM distance (left plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Wasserstein GAN

- Implementing GANs with the Wasserstein metric requires to approximate the supremum in (3) with a neural network.
- Original WGAN ¹ using **weight clipping** to statisfy the Lipschitz constraint.
- However weight clipping in WGAN leads to optimization difficulties, and that even when optimization succeeds the resulting critic can have a pathological value surface.

¹Martin Arjovsky, Soumith Chintala, and Leon Boeou. Wasserstein Generative Adversarial Networks. *International Conference on Machine Learning*, *ICML*, 2017

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Improved Wasserstein GAN ²

- **Gradient penalty** as an uncontrollable additional constraint becomes another characterization of 1-Lipschitz functions.
- In particular, they prove that if $B = \mathbb{R}^n, d(x,y)_B = \|x-y\|_2$ we have the gradient characterization

$$f$$
 is 1-Lipschitz $\iff \|\nabla f(x)\|_2 \leq 1$ for all $x \in \mathbb{R}^n$.

ullet Penalty term to the **loss function** of D that takes the form

$$\mathbb{E}_{\widehat{X}} \left(\|\nabla D(\widehat{X})\|_2 - 1 \right)^2 \tag{4}$$

²Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. *Advances in Neural information Processing Systems (NIPS)*, 2017.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Banach spaces (1/3)

- We often choose the ℓ^2 norm as underlying distance measure on **image** space, but many other distance notions are possible that account for more specific image features.
- If a vector space B is equipped with a notion of **length**, a norm $\|\cdot\|_B: B \to \mathbb{R}$, we call it a **normed space**.
- A normed space is called a Banach space if it is complete, that is, Cauchy sequences converge.
- All separable Banach spaces are Polish spaces and we can define Wasserstein metrics on them using the induced metric $d_B(x,y) = ||x-y||_B$.

Banach spaces (2/3)

- For any Banach space B, we can consider the space of all bounded linear functionals $B \to \mathbb{R}$, which we will denote B^* and call the **topological dual** of B.
- Banach space with norm $\|\cdot\|_{B^*}:B^*\to\mathbb{R}$ given by

$$||x^*||_{B^*} = \sup_{x \in B} \frac{x^*(x)}{||x||_B}.$$
 (5)

Banach spaces (3/3)

The set of functions $x:\Omega\to\mathbb{R}$ with **norm**

• L^p -spaces:

$$||x||_{L^p} = \left(\int_{\Omega} x(t)^p dt\right)^{1/p} \tag{6}$$

is a Banach with dual $[L^p]^* = L^q$ where 1/p + 1/q = 1.

Sobolev spaces:

$$||x||_{W^{1,2}} = \left(\int_{\Omega} x(t)^2 + |\nabla x(t)|^2 dt\right)^{1/2} \tag{7}$$

It can rewrite the equation by multiplying with ξ in the Fourier space

$$||x||_{W^{s,p}} = \left(\int_{\Omega} \left(\mathcal{F}^{-1} \left[(1 + |\xi|^2)^{s/2} \mathcal{F} x \right] (t) \right)^p dt \right)^{1/p}.$$
 (8)

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Banach Wasserstein GANs

• In particular, for any Banach space B with norm $\|\cdot\|_B$, we will derive the loss function

$$L = \frac{1}{\gamma} (\mathbb{E}_{X \sim \mathbb{P}_{\theta}} D(X) - \mathbb{E}_{X \sim \mathbb{P}_{r}} D(X)) + \lambda \mathbb{E}_{\hat{X}} \left(\frac{1}{\gamma} \| \partial D(\hat{X}) \|_{B^{*}} - 1 \right)^{2}$$
(9)

where $\lambda, \gamma \in \mathbb{R}$ are **regularization parameters**.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Enforcing the Lipschitz constraint (1/3)

• We require a more **general notion of gradient**: The function f is call $Fr\acute{e}chet\ differentiable$ at $x\in B$ if there is a bounded linear map $\partial f(x):B\to\mathbb{R}$ such that

$$\lim_{\|h\|_B \to 0} \frac{1}{\|h\|_B} |f(x+h) - f(x) - [\partial f(x)](h)| = 0.$$
 (10)

• The gradient $\nabla f(x)$ in \mathbb{R}^n with the standard inner product is connected to the Fréchet derivative via $[\partial f(x)](h) = \nabla f(x) \cdot h$.

Enforcing the Lipschitz constraint (2/3)

• Lemma 1 Assume $f: B \to \mathbb{R}$ is Fréchet differentiable. Then f is γ -Lipschitz if and only if

$$\|\partial f(x)\|_{B^*} \le \gamma \quad \forall x \in B. \tag{11}$$

ullet According to the **Lemma 1**, we can get the γ -Lipschitz contraints

$$|f(x) - f(y)| \le \gamma ||x - y||_B$$

Enforcing the Lipschitz constraint (3/3)

• Gradient norm penalization requires characterizing the dual B^* of B. In a **finite dimension**, there is an linear continuous bijection $\iota : \mathbb{R}^n \to B$ given by

$$\iota(x)_i = x_i. \tag{12}$$

- We can write $f = g \circ \iota$ where $g : \mathbb{R}^n \to \mathbb{R}$ and we can get $\partial f(x) = \iota^*(\partial g(\iota(x)))$ by the **chain rule**. $(\iota^* : \mathbb{R}^n \to B^*)$ is the adjoint of ι .)
- The derivative in **finite dimensional Banach spaces** can be done using standard automatic differentiation libraries.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Regularization parameter (1/2)

• Regularization term:

$$\lambda \mathbb{E}_{\hat{X}} \left(\frac{1}{\gamma} \| \partial D(\hat{X}) \|_{B^*} - 1 \right)^2.$$

- In order to avoid having to hand-tune parameters for every choice of norm, author derive some heuristic parameter choice rules.
- Assuming that G is the zero-generator and symmetry of \mathbb{P}_r , the D will be decided by a single constant $f(x) = c||x||_B$. We can form the optimization problem

$$\min_{c \in \mathbb{R}} \mathbb{E}_{X \sim \mathbb{P}_r} \left[-\frac{c||X||_B}{\gamma} + \frac{\lambda(c - \gamma)^2}{\gamma^2} \right].$$

Regularization parameter (2/2)

• By solving optimization problem, we can obtain

$$c = \gamma \left(1 + \frac{\mathbb{E}_{X \sim \mathbb{P}_r} ||X||_B}{2\lambda} \right).$$

• Since the norm has Lipschitz constant 1, we want $c \approx \gamma$. To has a small relative error, we get the heuristic rule

$$\lambda \approx \mathbb{E}_{X \sim \mathbb{P}_r} ||X||_B.$$

- Assuming λ was appropriately chosen, we find in general (by lemma 1) $\|\partial D(x)\|_{B^*} \approx \gamma$. We want to enforce $\|x\|_{B^*} \approx \|\partial D(x)\|_{B^*}$, hence $\gamma \approx \|x\|_{B^*}$.
- We pick the expected values as a representative, we can finally obtain the heuristic

$$\gamma \approx \mathbb{E}_{X \sim \mathbb{P}_r} ||X||_{B^*}.$$

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Figure 1: Generated CIFAR-10 samples for some L^p spaces.

• A high image quality corresponds to **low** FID scores.

Figure 2: FID scores for BWGAN on CIFAR-10.

• A high image quality corresponds to **high** Inception scores.

Figure 3: Inception scores for BWGAN on CIFAR-10.

Method	Inception Score
DCGAN [16]	$6.16 \pm .07$
EBGAN [21]	$7.07 \pm .10$
WGAN-GP [7]	$7.86 \pm .07$
CT GAN [20]	$8.12 \pm .12$
SNGAN [14]	$8.22 \pm .05$
$W^{-\frac{3}{2},2}$ -BWGAN	$8.26 \pm .07$
$L^{10} ext{-}BWGAN$	$8.31 \pm .07$
Progressive GAN [9]	$8.80 \pm .05$

Figure 4: Inception scores on CIFAR-10.

• Different norm are suitable for different dataset.

Figure 5: FID scores for BWGAN on CelebA.

- Introduction
- Background
 - Generative adversarial networks
 - Wasserstein metrics
 - Wasserstein GAN
 - Improved Wasserstein GAN
 - Banach spaces
- Banach Wasserstein GANs
 - Enforcing the Lipschitz constraint
 - Regularization parameter
- Computational results
- Conclusion

Conclusion

- This paper analyzed the dependence of WGANs on the notion of distance between images.
- Showed how choosing distances other than the ℓ^2 metric can be used to make WGANs focus on **particular image features** of interest.
- Generalize of WGANs with gradient norm penalization to Banach spaces, allowing to easily implement WGANs for a wide range of underlying norms on images.
- This work was motivated by images, the theory is general and can be applied to data in **any normed space**.