A Continuity condition, 62 Continuity of inner product, 12 Addition, rules for, for vectors, 2 Continuous spectrum, 127 Addition Theorem for the Hankel Convergence, 12–13, 31–32 function, 165 Cauchy, 12 Adjoint boundary conditions, 69 in energy, 31 Adjoint Green's function problem, 57 weak, 32 Adjoint operator, 35, 45, 54 Creeping waves, 233, 242 Alternative representation, 150–51, Cylindrical shell source, 166-68 155–56, 158–59, 164, 166, 171–72, 174–77, 204, 237 D Aperture diffraction, 216–26 Approximate operator equation, 33 Delta function, 45–49 Approximation theory, 18 spectral representation of, 107 transformations, 139-43 Dimension, 5 В Dirichlet boundary condition, 183, 237 Basis, 5 Dirichlet problem, 183 Bessel's equation, 51, 79 Discrete spectrum, 127 Bessel function expansions, 86 Distributions, theory of, 48 Best approximation, 19-24, 42 Domain, 25 Duality, principle of, 178 C Dyadic analysis, 242 Cauchy convergence, 13, 15 E Cauchy-Schwarz-Bunjakowsky inequality, 8-9 Eigenfunction-eigenvalue method. See Cauchy's theorem, 113 spectral representation method Chebyshev polynomials, 41, 226 Eigenfunctions, 99-105 Collinear vectors, 3 improper, 115 Complete normed linear space, 13 Eigenvalues, 99-105 Components of vectors, 2 improper, 115 Electromagnetic boundary value Conjugate adjoint, 70-73 boundary conditions, 70 problems, 181-82 Green's function, 72 aperture diffraction, 216-26 Conjunct, 55 dyadic Green's functions, 242

iris in parallel plate waveguide,	Gram-Schmidt orthogonalization
206–16	process, 16-17, 34
parallel plate waveguide, 198–206	Greatest lower bound, 36
perfectly conducting circular	Green's functions
cylinder, 233–42	dyadic, 242
scattering by perfectly conducting	and spectral representations, 134-35
cylinder, 226–33	Green's function method, 45
SLP1 extension to three dimensions,	delta function, 45-49
182–90	Sturm-Liouville operator theory,
SLP1 in two dimensions, 191–94	50–52
SLP2 and SLP3 extension to three	Sturm-Liouville problem of the first
dimensions, 194–98	kind, 53
Electromagnetic model, 144–46, 146	Sturm-Liouville problem of the
time-harmonic representations,	second kind, 68–77
145–46	Sturm-Liouville problem of the
Electromagnetic sources, 139	third kind, 77–94
cylindrical shell source, 168-72	Green's function problem, 57
delta function transformations,	Green's theorem, 184, 195
139–43	
line source, 153–66	н
point source, 172–77	
sheet current source, 147–52	Hankel function, 156, 159, 226
Energy inner product, 31	addition theorem for, 165
Energy norm, 31	asymptotics for, 86
Euclidean space, 2	Helmholtz equation, 52
Expansion functions, 33	Hilbert-Schmidt operator, 26
_	Hilbert-Schmidt property, 26
F	Hilbert space, 1, 15–19
Formal adjoint, 54	operators in, 24–33
Formally self-adjoint, 55	Homogeneous boundary condition, 53,
Fourier-Bessel transform, 122, 137,	69
171	Hybrid ray-mode formulations, 206
of order one, 170	
Fourier coefficients, 19	l
Fourier sine series, 4	Impedance transform, 131, 243
Fourier transform, 119	-
·	Improper eigenfunction, 115
G	Improper eigenvalue, 115
-	Infimum, 36
Galerkin's method, 34, 35	Inhomogeneous boundary condition,
Galerkin specialization, 36	53
Generalized function, 48	Inhomogeneous Dirichlet boundary
Gram matrix, 23	condition, 183

Inhomogeneous Neumann boundary	M
condition, 183 Initial conditions, 54	Maxwell's curl equations, 156
Inner product space, 7	Maxwell's equations, 147
inner product space, /	Method of Least Squares, 36
J	Method of Moments (MOM), 33–36, 216
Jump condition, 62	Mixed problem, 183 Modal coefficients, 104
K	Multiplication, rules for, for vectors, 2
Kantorovich-Lebedev operator, 162-63	N
Kantorovich-Lebedev transform, 126,	Natural modes, 104
137, 165–66	Neumann problem, 183
kth-order impedance transform, 131	Neumann's number, 103-4
,	Nonnegative operator, 30
L	Nonself-adjoint Green's function
Laplacian operator, 195	problem, 64, 74
Least squares, method of, 36	Nonself-adjoint operators, 128
Lebesgue theory, 16	Nonsymmetric Green's function case,
Legendre polynomials, 18	Normed linear space, 10–15
Legendre's equation, 52	Norm induced by the inner product, 10
Limit circle, 78	Norm mudecu by the inner product, 10
Limit condition, 82	0
Limit point, 78	
Linear analysis, 1	Operator, 25
best approximation, 19–24	bounded, 25
Hilbert space, 15–19	continuous, 27
inner product space, 7–10	differential, 28
linear space, 1–7	Hilbert-Schmidt, 26
method of moments, 33–36	in Hilbert space, 24–33 right shift, 25
normed linear space, 10–15	Orthogonal complement, 21
operators in Hilbert space, 24–33	Orthogonal vectors, 9
proof of projection theorem, 36–38	Orthonormalized Legendre functions,
Linear combination, 3	40
Linear dependence, 3, 4	Orthonormal set, 4, 9
Linear independence, 3, 4	, , , , , , , , , , , , , , , , , , ,
Linear manifold, 16	P
Linear space, 1–7	B 11.1
normed, 10–15	Parallel plate waveguide, 198–206
Line source, 153–66	iris in, 206–16
Loss tangent, 149	Parallel vectors, 3

Perfectly conducting circular cylinder,	Singular point, 77
233–42	SLP1. See Sturm-Liouville Problem of
Periodic boundary conditions, 54	the First Kind
Point source, 172–77	SLP2. See Sturm-Liouville Problem of
Positive apparatus 30	the Second Kind
Positive operator, 30 Projection, 21, 36	SLP3. See Sturm-Liouville Problem of the Third Kind
Projection theorem, 21	Snell's law of reflection, 226
proof of, 36–38	Spatial Fourier transform pair, 158
Proper Riemann sheet, 112, 129	Spectral representation method,
Proper orthogonal set, 9	99–105
Pulse function, 46	eigenfunctions and eigenvalues, 99–105
R	Green's functions and spectral
n	representations, 134–35
Range, 25	spectral representations for SLP3,
Rational numbers, 13	111
Rayleigh-Ritz method, 35, 36	spectral representations for SLP1 and
Ray representations, 206	SLP2, 106–11
Real inner product space, 7	Spectral representations
Rectangular box, 187–90	of delta function, 107
Rectangular cylinder, 191–94	for SLP1, 106–11
Residue theorem, 106	for SLP2, 106–11
Riemann sheet, 112	for SLP3, 111–34
Right shift operator, 25	Spherical Bessel equation, 88
Ring source, 168–72	Spherical Bessel function, 88
	Spherical Hankel function, 88
S	Spherical Neumann function, 88
Scattering by perfectly conducting	Sturm-Liouville form, 50
cylinder, 226–33	Sturm-Liouville operator, 45, 50
Self-adjoint Green's function problem,	Sturm-Liouville operator theory, 50-52
65, 74	Sturm-Liouville Problem of the First
Self-adjoint operator, 56	Kind (SLP1), 53–67
formally, 56	extension to three dimensions,
Self-adjoint property, 75	182–90
Set	spectral representations for, 106–11
orthonormal, 4, 9	in two dimensions, 191–94
proper, 9	Sturm-Liouville Problem of the Second
Shadow region, 242	Kind (SLP2), 68–77
Sheet current source, 147–52	extension to three dimensions,
Simple medium, 146	194–98 spectral representations for, 106–11
Simple medium, 140	spectral representations for, 100-11

Sturm-Liouville Problem of the Third Kind (SLP3), 77–94 extension to three dimensions, 194–98	U
	Unitary space, 3 Unmixed conditions, 54
spectral representations for, 111–34 Symbolic equality, 48	V
Symmetric Green's function case, 197–98	Vectors, 1 components of, 2
Symmetric operator, 30	orthogonal, 9 rules for addition among, 2
Т	rules for multiplication of, 2
Three dimensions SLP1 extension to, 182–90	w
SLP2 extension to, 194–98	Weighting functions, 33 Weyl's theorem, 78 Weyl theory, 88
SLP3 extension to, 194-98	
Time-harmonic representations,	
143–44	Z
Transpose of a matrix, 23	
Two dimensions, SLP1 in, 191–94	Zeroth-order impedance transform, 131

Zeroth-order impedance transform, 131