(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 30.01.2002 Bulletin 2002/05

(21) Application number: 00906622.6

(22) Date of filing: 02.03.2000

(51) Int CI.7: **C07C 233/85**, C07C 323/62, C07C 311/21, C07C 317/44, C07D 409/12, C07D 333/38, C07D 295/02, C07D 333/36, C07D 417/00, C07D 513/00, A61K 31/196, A61K 31/381, A61K 31/40, A61K 31/404, A61K 31/426, A61K 31/4025, A61K 31/435, A61K 31/4188

(86) International application number: PCT/JP00/01223

(87) International publication number: WO 00/53573 (14.09.2000 Gazette 2000/37)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 10.03.1999 JP 6272199

(71) Applicant: SHIONOGI & CO., LTD. Osaka-shi, Osaka 541-0045 (JP)

(72) Inventors:

HONMA, Tsunetoshi, Shionogi & Co., Ltd.
 Osaka-shi, Osaka 553-0002 (JP)

HIRAMATSU, Yoshiharu, Shionogi & Co., Ltd.
 Osaka-shi, Osaka 553-0002 (JP)

 ARIMURA, Akinori, Shionogi & Co., Ltd. Toyonaka-shi, Osaka 561-0825 (JP)

(74) Representative:

Baverstock, Michael George Douglas et al BOULT WADE TENNANT, Verulam Gardens 70 Gray's Inn Road London WC1X 8BT (GB)

- (54) MEDICINAL COMPOSITIONS WITH 2.2.1] AND 3.1.1] BICYCLOSKELETON ANTAGONISTIC TO BOTH OF PGD 2?/TXA 2? RECEPTORS
- (57) The present invention provides novel compounds having a dual antagonistic activity against thromboxane A_2 receptor and prostaglandin D_2 receptor and pharmaceutical compositions comprising them.

 A compound of the formula (I):

wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOR₂ or -CH=CH-CH₂-CH₂-CH₂-COOR²; R² is hydrogen or alkyl; m is

0 or 1; p is 0 or 1; X^1 and X^3 each is independently optionally substituted aryl or optionally substituted heteroaryl; X^2 is a bond, $-CH_2$ -, -S-, $-SO_2$ -, $-CH_2$ -O-, -O- $-CH_2$ -, $-CH_2$ -S-, -S- $-CH_2$ -, or the like; X^4 is $-CH_2$ -, $-CH_2$ -, $-CH_2$ -, -C(=O)-, or the like, have a dual antagonistic activity against both a thromboxane A_2 receptor and a prostaglandin D_2 receptor.

Description

Technical Field

[0001] The present invention relates to a compound having a [2.2.1] or [3.1.1] bicyclic skeleton and a pharmaceutical composition comprising the same having a dual antagonistic activity against PGD₂/TXA₂ receptors.

Background Art

20

25

30

35

40

45

[0002] Some compounds similar to those of the present invention having a [2.2.1] or [3.1.1] bicyclic skeleton have been described as thromboxane A₂ (TXA₂) antagonists in the Japanese Patent Publication (Kokoku) No. 53295/1991. TXA₂ is known to possess various activities such as platelet aggregation, thrombogenesis, contraction of airway smooth muscle, advance of respiratory anaphylaxis and the like. The TXA₂ antagonists have, therefore, been considered to be useful as anti-thrombotic agents, anti-vasoconstrictor, anti-respiratory contractile agents as well as medicines for treating myocardial infarction or asthma. The TXA₂ antagonists can be used for treating or improving conditions of diseases such as arteriosclerosis, myocardial infarction, acute myocardial ischemia angina, cardiovascular shock or preventing unexpected death and the like.

[0003] Further, other compounds similar to those of the present invention having a [2.2.1] or [3.1.1] bicyclic skeleton have been described as prostaglandin D2 (PGD₂) antagonists in WO97/00853. PGD₂ is a prostanoid released from mast cells in which it is produced through PGG2 and PGH2 from arachidonic acid by the action of cyclooxygenase activated by immunological or unimmunological stimulation.

[0004] PGD₂ can cause strong contraction of smooth muscle of bronchus to lead to bronchial asthma, and dilate the peripheral vessels to cause an anaphylactic shook in a systemic allergic state.

[0005] Accordingly, PGD₂ antagonists are useful for the improvement of conditions caused by excessive production of PGD₂, particularly as medicines for treating diseases involved with mast cell dysfunction, for example, systemic mastocytosis and disorder of systemic mast cell activation as well as tracheal contraction, allergic rhinitis, allergic conjunctivitis, urticaria, itching, atopic dermatitis, alimentary allergy, ischemic reperfusion injury, cerebrovascular disorder, and inflammation.

[0006] As shown above, PGD₂ receptor antagonists have a quite different character from that of TXA₂ receptor antagonists in the site and mechanism of action and indications thereof.

[0007] On the other hand, a compound having a dual antagonistic activity against both a TXA₂ receptor and a PGD₂ receptor can be useful as therapeutic agents for various diseases caused by TXA₂ or PGD₂.

[0008] For example, in the case of bronchial asthma, it is known that TXA₂ cause potent tracheal contraction and respiratory anaphylaxis and PGD₂ effects infiltration of eosionophils. From these comprehension, TXA₂ and PGD₂ are thought to be one of causative substances of the pathopoiesis and advance of asthma, thus the dual antagonistic compounds are expected to be more potent agents for treating asthma than ever known antagonists.

[0009] Further, in the case of allergic rhinitis, it is recognized that TXA₂ and PGD₂ cause the swelling of nasal mucosa through the aggravation of vascular permeability, and PGD₂ induces the nasal blockage through the enlargement of vascular volume. Therefore, the dual antagonistic compounds are expected to be more potent agents for treating nasal blockage than ever known antagonists.

[0010] These diseases and condition thereof might be treated by administering both a TXA₂ receptor antagonist and a PGD₂ receptor antagonist at the same time, for example, in combination therapy or as a mixture thereof. But the administration of two or more agents often causes some problems due to the difference of their metabolic rate. For example, when the antagonists are different from each other in the time to reach a maximum blood concentration or the duration of action, they do not always efficiently exhibit each receptor antagonistic effect at the same time, failing to give a desired additive or synergic effect.

[0011] It has therefore been desired to develop medicines having a dual antagonistic activity against TXA₂/PGD₂ receptors, which exhibit new excellent therapeutic effects and can be used for many indications.

50 Disclosure of Invention

[0012] The present inventors have studied intensively to develop a pharmaceutical composition having a dual antagonistic activity against TXA₂/PGD₂ receptors and found out new compounds and pharmaceutical compositions comprising them.

55 [0013] The present invention provides:

(1) a pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors which comprises a compound of the formula (I):

(1)

 $(CH_2)_m - N - C - X^1$ $(CH_2)_m - N - X$

wherein

15

20

Y

is

25

30

35

40

50

The contract of the contract o

R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOR² or -CH=CH-CH₂-CH₂-CH₂-COOR²;

R² is hydrogen or alkyl;

m is 0 or 1;

p is 0 or 1, provided that when p = 0, X^1 is not bonded to X^3 via X^4 ;

X¹ and X³ are independently optionally substituted aryl or optionally substituted heteroaryl;

 X^2 is a single bond, $-CH_2$ -, $-CH_2$ - $-CH_2$ -, -C(=O)-, -O-, -S-, -SO-, $-SO_2$ -, -NH-, $-N(CH_3)$ -, -C(=N- $-CH_3)$ -, -N=N-, $-CH_2$ -, -(C=O)--NH-, -NH-, -

 X^4 is $-CH_2$ -, $-CH_2$ -CH₂-, -C(=O)-, -SO-, -SO-, -SO-, -(C=O)-NH-, -NH-(C=O)-, -CH-NH-, -NH-CH₂-, -CH-O-, -O-CH₂-, -CH-S-, -S-CH₂-, -CH-SO₂-, -SO-NH- or -NH-SO₂-, a prodrug, a pharmaceutically acceptable salt or a hydrate thereof,

- (2) the pharmaceutical composition having a dual antagonistic activity against PGD2/TXA2 receptors according to the above (1) wherein at least one of X¹ and X³ is optionally substituted heteroaryl,
 - (3) the pharmaceutical composition having a dual antagonistic activity against PGD_2/TXA_2 receptors according to the above (1) or (2) wherein R^1 is CH_2 - $CH=CH-CH_2$ - CH_2 - CH_2 -COOH, m is 0 and p is 0,
 - (4) the pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors according to any one of the above (1) to (3) which is used for asthma,
 - (5) the pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors according to any one of the above (1) to (3) which is used for nasal blockage,
 - (6) use of the compound according to any one of the above (1) to (3) for manufacturing a pharmaceutical composition for asthma or nasal blockage,
- (7) a method for treating asthma or nasal blockage which comprises administering the compound according to any one of the above (1) to (3),
 - (8) a compound of the formula (I):

5
$$(CH_2)_m - N - C$$
 $(CH_2)_m - N - C$
 $(CH_2)_m$

wherein

15

is

20

40

45

50

55

R² is hydrogen or alkyl;

35 m is 0 or 1;

p is 0 or 1, provided that when p = 0, X^1 is not bonded to X^3 via X^4 ;

X¹ and X³ are independently optionally substituted aryl or optionally substituted heteroaryl;

 $X^2 \text{ is a single bond, } -CH_2-, -CH_2-CH_2-, -C(=O)-, -O-, -S-, -SO-, -SO_2-, -NH-, -N(CH_3)-, -C(=N-O-CH_3)-, -N=N-, -CH=CH-, -(C=O)-NH-, -NH-(C=O)-, -CH_2-NH-, -NH-CH_2-, -CH_2-O-, -O-CH_2-, -CH_2-S-, -S-CH_2-, -CH_2-SO_2-, -SO_2-CH_2-, -SO_2-NH- or -NH-SO_2-;$

X⁴ is -CH₂-, -CH₂-CH₂-, -C(=O)-, -SO-, -SO₂-, -(C=O)-NH-, -NH-(C=O)-, -CH₂-NH-, -NH-CH₂-, -CH₂-O-, -O-CH₂-, -CH₂-S-, -S-CH₂-, -CH₂-SO₂-, -SO₂-CH₂-, -SO₂-NH- or -NH-SO₂-;

provided that when

Y

is

a compound wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOR², R² is hydrogen or methyl, m is 0, p is 0, X¹ is phenyl optionally substituted with methoxy, X² is a bond, -O-, -CH₂-, -C(=O)-NH-, -S- or -N=N-, and X³ is phenyl optionally substituted with hydroxy, acetoxy or methoxy, and a compound wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-COOH, m is 1, p is 0, X¹ is phenyl, X² is -N=N-, and X³ is phenyl, are excluded, and when

Y

is

5

10

15

20

25

30

35

40

45

50

55

 R^1 is $-CH_2-CH=CH-CH_2-CH_2-CH_2-COOR^2$, R^2 is hydrogen or methyl, m is 0, and p is 0, a compound wherein X^1 is phenyl optionally substituted with methyl or methoxy, X^2 is a single bond, $-CH_2-CH_2-$, -C(=O)-, -NH-, -O-, -S-, -SO-, $-SO_2-$, -CH=CH-, -N=N-, -C(=O)-NH- or -NH-C(=O)-, and X^3 is phenyl optionally substituted with methyl, hydroxy, acetoxy, methoxy, ethoxy, isopropoxy, dimethylamino, hydroxymethyl, methoxymethyl or carboxy, a compound wherein X^1 is phenyl, X^2 is a single bond, $-CH_2-$ or -CH=CH-, and X^3 is imidazolyl, thienyl, pyridyl or tetrazolyl optionally substituted with methyl or phenyl, and a compound wherein X^1 is benzothienyl, isoxazolyl or thienyl optionally substituted with methyl, X^2 is a single bond or -S-, and X^3 is phenyl optionally substituted with methoxy or methyl, are excluded, a prodrug, a pharmaceutically acceptable salt, a hydrate thereof,

(9) the compound according to the above (8) wherein at least one of X^1 and X^3 is optionally substituted heteroaryl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof,

(10) the compound according to the above (8) wherein X^1 and X^3 each is independently optionally substituted heteroaryl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof,

(11) the compound according to the above (8) wherein at least one of X^1 and X^3 is optionally substituted thienyl or optionally substituted benzothienyl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof, (12) the compound according to any one of the above (8) to (11) wherein X^2 is a single bond, $-CH_2$ -, -S-, $-SO_2$ -, $-CH_2$ -O-, -O- $-CH_2$ -, $-CH_2$ -S- or -S- $-CH_2$ -, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof,

(13) the compound according to any one of the above (8) to (12) wherein R^1 is $-CH_2$ - CH_2 -CH

(14) a pharmaceutical composition which comprises a compound according to any one of the above (8) to (13),

(15) a pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors which comprises a compound according to any one of the above (8) to (13),

(16) the pharmaceutical composition according to the above (14) or (15), which is used for asthma, and

(17) the pharmaceutical composition according to the above (14) or (15), which is used for nasal blockage.

Best Mode for Carrying Out the Invention

5

10

15

20

25

30

35

40

45

50

55

[0014] A compound of the present invention is characterized in that

- (A) a bicyclic ring represented by the Y ring of the above formula (I) is [2.2.1] or [3.1.1] skeleton,
- (B) an ω chain attached to the bicyclic ring, a group represented by the formula:

 $-(CH_2)_m - N - C - (X^1) - (X^2)_m - N - C - (X^1)_m - (X^2)_m - (X^3)_m - (X^4)_m - (X^4)_m$

of the above formula (I), includes -NH-CO-, and X^1 and X^3 each is independently optionally substituted heteroaryl,

(C) X¹ and X³ bond via X², and the like

[0015] A more preferred embodiment is a compound of the formula (I) wherein

(1) at least one of X^1 and X^3 is optionally substituted heteroaryl,

(2) X¹ and X³ each is independently optionally substituted heteroaryl,

(3) at least one of X¹ and X³ is optionally substituted thienyl or optionally substituted benzothienyl,

(4) R1 is -CH2-CH=CH-CH2-CH2-CH2-COOH, m is 0 and p is 0,

(5) X² is a bond, -CH₂-, -S-, -SO₂-, -CH₂-O-, -O-CH₂-, -CH₂-S- or -S-CH₂-,

(6) R1 is -CH=CH-CH2-CH2-CH2-COOH and m is 1, or

(7) p is 0.

[0016] The term "heteroaryl" includes a 5- to 7-membered aromatic heterocycle containing one or more oxygen atom, sulfur atom and/or nitrogen atom in the ring, or such an aromatic heterocycle as fused with one or more carbocycle or other aromatic heterocycle, which has a bond at any substitutable. Any one of aromatic heterocycle and aromatic carbocycle may have a bond. "Heteroaryl" may have a bond at a nitrogen atom as well as a carbon atom of aromatic heterocycle or aromatic carbocycle. Examples of "heteroaryl" include pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyrazolyl (e.g., 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl), imidazolyl (e.g., 1-imidazolyl, 2-imidazolyl, 4-imidazolyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), indolyl (e.g., 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), carbazolyl (e.g., 1-carbazolyl, 2-carbazolyl, 3-carbazolyl, 4-carbazolyl, 9-carbazolyl), benzimidazolyl (e.g., 1-benzimidazolyl, 2-benzimidazolyl, 4-benzimidazolyl, 5-benzimidazolyl), indazolyl (e.g., 1-indazolyl, 2-indazolyl, 3-indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl), quinolyl (e.g., 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl), isoquinolyl (e.g., 1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, 8-isoquinolyl), furyl (e.g., 2-furyl, 3-furyl), benzofuryl (e.g., 2-benzofuryl, 3-benzofuryl, 4-benzofuryl, 5-benzofuryl, 6-benzofuryl, 7-benzofuryl), thienyl (e.g., 2-thienyl, 3-thienyl), benzothienyl (e.g., benzo[b]thiophen-2-yl, benzo[b]thiophen-3-yl, benzo[b] thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl), dibenzothienyl (e.g., 2-dibenzothienyl, 3-dibenzothienyl), dibenzofuryl (e.g., 2-dibenzofuryl, 3-dibenzofuryl), naphthothienyl (e.g., naphtho[2,3-b]thiophen-2-yl, naphtho[2,3-b]thiophen-3-yl, naphtho[1.2-b]thiophen-2-yl, naphtho[1.2-b]thiophen-3-yl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), thiazolyl (e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), isothiazolyl (e.g., 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl), imidazothiazolyl (e.g., imidazo [2.1-b]thiazol-2-yl, imidazo[2.1-b]thiazol-3-yl), benzoisoxazolyl (e.g., benzo[d]isoxazol-3-yl), benzothiazolyl (e.g., benzo[d]thiazol-2-yl) or the like.

[0017] "Aromatic carbocycle or other aromatic heterocycle" which may fuse the above "heteroaryl" includes 5- to 7-membered aromatic cycle which may contains one or more oxygen atom, sulfur atom and/or nitrogen atom in the ring, or such a aromatic ring as fused with one or more other aromatic rings.

[0018] "Aryl" includes mono aromatic carbocyclyl (e.g., phenyl) or fused aromatic heterocyclyl (e.g., 1-naphthyl,

2-naphthyl, 1-anthryl, 9-anthryl, 1-phenanthryl, 10-phenanthryl).

5

35

40

45

[0019] "Aryl" or "heteroaryl" may be fused 4- to 7-membered cycloalkane or 4-to 7-membered non-aromatic heterocycle. Examples of cycloalkane include cyclobutane, cyclopentane, cyclohexane, cycloheptane. Examples of non-aromatic heterocycle includes pyrrolidine, piperazine, oxorane, 1,3-dioxorane, 1,4-dioxane, thiorane, or the like. "cycloalkane" or "non-aromatic heterocycle" may be fused with aromatic carbocycle or aromatic heterocycle. Examples of aryl or heteroaryl fused with 4- to 7-membered cycloalkane or 4-to 7-membered non-aromatic heterocycle are illustrated below.

[0020] Examples of the substituent on "optionally substituted aryl" or "optionally substituted heteroaryl" include a group of the formula: -Z¹-Z² wherein Z¹ is a single bond, -O-, -S-, -NH-, -NH-C(=O)-, -NH-C(=O)-O-, -NH-SO₂-, -C (=O)-, -O-C(=O)-, -C(=O)-O-, or -SO₂-; and Z² is alkyl, haloalkyl, alkenyl, alkynyl, aryl optionally substituted alkyl or halogen, heteroaryl optionally substituted with alkyl or halogen, arylalkyl optionally substituted with alkyl or halogen, carboxy, halogen (F, Cl, Br, I), hydroxyalkyl, hydroxy, nitro, cyano, mercapto, thioformyl, thioacetyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, sulfino, sulfo, sulfamoyl, sulfoamino, optionally substituted amino, optionally substituted aminoalkyl, hydroxyamino, carbamoyl, hydorazino. One to three substituents may be at any suitable position on the above aryl or heteroaryl.

[0021] "Alkyl" includes a straight or branched C1 to C8 alkyl group or a C3 to C8 cycloalkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cycloheptyl or the like.

[0022] "Haloalkyl" includes a straight or branched C1 to C8 alkyl or C3 to C8 cycloalkyl group substituted with one or more halogen, for example, chloromethyl, fluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 1,1-difluoroethyl, trichloromethyl, 2,2,2-trichloroethyl, 1,1-dichloroethyl or the like.

[0023] "Alkenyl" includes a straight or branched C2 to C8 alkenyl or C3 to C8 cycloalkenyl group having one or more double bonds, for example, vinyl, 1-propenyl, 2-propenyl, isopropenyl, 2-cyclobuten-1-yl, 2-cyclopenten-1-yl, 3-cyclopenten-1-yl, 2-cyclohexen-1-yl or the like.

[0024] "Alkynyl" includes a straight or branched C2 to C8 alkynyl or C3 to C8 cycloalkynl group having one or more triple bonds, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl or the like.

[0025] "Halogen" means fluoro, chloro, bromo, iodo.

[0026] "Alkyl", "aryl" and "heteroaryl" used in the term "arylalkyl" or "heteroarylalkyl" have the same meaning of the above "alkyl", "aryl" and "heteroaryl".

[0027] "Hydroxy alkyl" includes the above "alkyl" substituted with one or two hydroxy, for example, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, 1,2-dihydroxy-n-propyl or the like.

[0028] Examples of the substituent of "optionally substituted amino" or "optionally substituted amino alkyl" include the above "alkyl", the above "arylalkyl", the above "arylalkyl", the above "heteroaryl", the above "heteroarylalkyl" or the like.

They may be mono- or di-substituted with these substituents. When the substituent is alkyl, alkyl may form a ring together with a nitrogen atom of an amino group.

[0029] Example of "optionally substituted amino" includes amino, dimethylamino, methylethylamino, diethylamino, pyrrolidino, piperidino, phenylmethylamino, isopropylamino, diisopropylamino or the like.

[0030] Examples of "optionally substituted aminoalkyl" include dimethylaminomethyl, methylethylaminomethyl, diethylaminomethyl, pyrrolidinomethyl, piperidinomethyl, phenylmethylaminomethyl, isopropylaminomethyl, diisopropylaminomethyl or the like.

[0031] "A pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors" means a pharmaceutical composition comprising a compound having at least one compound of the formula (I) having an antagonistic activity against both a PGD₂ receptor and a TXA₂ receptor.

[0032] The present invention includes a method for treating asthma or nasal blockage which comprises administering a compound of the formula (I) and use of a compound of the formula (I) for manufacturing a medicine for asthma or nasal blockage.

[0033] A compound of the present invention can be any of the following stereo isomers of [2.2.1] and [3.1.1] bicyclic skeleton.

20

10

15

25 includes

(ω chain) (α chain) (α chain) (α chain) (α chain)

, (α chain), (α chain), (α chain), (ω chain)

 ω chain)

ω chain)

40

35

45

 $(\alpha \text{ chain}),$

includes

55

5

$$(\omega \text{ chain})$$
 $(\omega \text{ chain})$
 $(\omega \text{ chain})$

Selection of the select

includes

15

20

40

45

50

55

25 um (w chain) _{aum}(ω chain) ω chain) ω chain) "" (α chain), ₹a chain). "m(α chain), $(\alpha \text{ chain}),$ 30 _{umi}(ω chain) umm(ω chain) (ω chain) (w chain) """ α chain), or α chain), $(\alpha \text{ chain}),$ *35* $\forall \alpha$ chain)

[0034] In these stereo isomers, the most preferable is a compound having the skeleton of the formula:

$$(\alpha \text{ chain})$$
 or $(\alpha \text{ chain})$

[0035] " α chain" means a group represented by the formula:-R¹, and " ω chain" means a group represented by the formula:

[0036] The present invention includes all stereo isomers of them and the optional mixtures thereof. Namely, the bond binding to the bicyclic ring is in R configuration or S configuration, and all of the stereo isomers (diastereomer, epimer, enantiomer and the like), racemates, and optional mixture thereof are included in the present invention.

[0037] Moreover, the α chain of the compound of the present invention can be in Z configuration or E configuration, thus a compound having any of the configurations and the mixture thereof are included in the present invention.

[0038] A prodrug of a compound of the formula (I) is a derivative of the compound of the present invention having a group which can be decomposed chemically or metabolically, and such prodrug is converted to a pharmaceutically active compound of the present invention by means of solvolysis or by placing the compound in vivo under a physiological condition. Method for the selection and process of an appropriate prodrug derivative are described in the literature such as Design of Prodrugs, Elsevier, Amsterdam 1985.

[0039] When the compound of the formula (I) has a carboxyl group, an ester derivative prepared by reacting a basal acid compound with a suitable alcohol or an amide derivative prepared by reacting a basal acid compound with a suitable amine is exemplified as a prodrug. A particularly preferred ester derivative as an prodrug is an optionally substituted alkyl ester derivative (e.g., methyl ester, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, isobutyl ester, tert-butyl ester, morpholinoethyl ester), an arylalkyl ester derivative (e.g., benzyl ester, phenethyl ester, benzhydryl ester), or the like. A particularly preferred amide derivative as a prodrug is alkyl amide derivative (e.g., N-methyl amide, N-(n-propyl)amide, N-isopropyl amide, N-(n-butyl)amide, N-isobutyl amide, N-(tert-butyl)amide), aryl alkyl amide (e.g., N-benzyl amide, N-phenethyl amide, benzhydryl amide), or the like.

[0040] When the compound of the formula (I) has a hydroxy group, an acyloxy derivative prepared by reacting with a suitable acyl halide (e.g., acid chloride, halogenated acid) or a suitable acid anhydride (e.g., mixed acid anhydride) is exemplified as a prodrug. A particularly preferred acyloxy derivative as a prodrug is a derivative substituted with optionally substituted alkylcarbonyloxy (e.g., -OCOC₂H₅, -OCO(tert-Bu), -OCOC₁₅H₃₁,-OCOCH₂CH₂COONa, -OCOCH(NH₂)CH₃, -OCOCH₂N(CH₃)₂-), optionally substituted arylcarbonyloxy (e.g., -OCO(m-COONa-Ph) or the like. [0041] When the compound of the formula (I) has an amino group, an amide derivative prepared by reacting with a suitable acid halide or a suitable acid anhydride is exemplified as a prodrug. A particularly preferred amide derivative as a prodrug is a derivative substituted with optionally substituted alkylcarbonyl (e.g., -NHCO(CH₂)₂₀CH₃, -NHCOCH (NH₂)CH₃) or the like.

[0042] Examples of a salt of the compound of the formula (I) or its prodrug include alkali metal salts such as lithium salts, sodium salts or potassium salts, alkaline-earth metal salts such as calcium salts, salts with organic bases such as tromethamine, trimethylamine, triethylamine, 2-aminobutane, tert-butylamine, diisopropylethylamine, n-butylmethylamine, cyclohexylamine, dicyclohexylamine, N-isopropylcyclohexylamine, furfurylamine, benzylamine, methylbenzylamine, dibenzylamine, N,N-dimethylbenzylamine, 2-chlorobenzylamine, 4-methoxybenzylamine, 1-naphthylene methylamine, diphenylbenzylamine, triphenylamine, 1-naphthylamine, 1-aminoanthorathene, 2-aminoanthorathene, dehydroabiethylamine, N-methylmorpholine, pyridine), basic amino acid salts such as arginine salts or lysine salts.

[0043] A hydrate means a hydrate of the compound of the formula (I), its prodrug or its pharmaceutically acceptable salt, for example, monohydrate, dihydrate or the like.

[0044] General processes for the preparation of the compounds of the formula (I) are illustrated as follows.

wherein

5

10

15

20

25

30

35

40

is

10

15

20

25

30

35

40

45

50

55

5

R¹ is -CH₂-CH=CH-CH₂-CH₂-COOR² or -CH=CH-CH₂-CH₂-COOR²;

R² is hydrogen or alkyl;

m is 0 or 1;

p is 0 or 1, provided that when p is 0, X^1 is not bonded to X^3 via X^4 ;

X¹ and X³ each is independently optionally substituted aryl or optionally substituted heteroaryl;

 $X^2 \text{ is a bond, } -\text{CH}_2\text{--}, -\text{CH}_2\text{--}\text{CH}_2\text{--}, -\text{C}(=\text{O})\text{--}, -\text{O}\text{--}, -\text{SO}\text{--}, -\text{SO}\text{--}, -\text{NH}\text{--}, -\text{N}(\text{CH}_3)\text{--}, -\text{C}(=\text{N-O-CH}_3)\text{--}, -\text{N=N--}, -\text{CH=CH--}, -\text{C}(=\text{O})\text{--}, -\text{NH}\text{--}(\text{C}=\text{O})\text{--}, -\text{CH}_2\text{--}, -\text{CH}_$

 X^4 is $-CH_2$ -, $-CH_2$ -CH₂-, -C(=O)-, -SO-, -SO2-, -(C=O)-NH-, -NH-(C=O)-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -, $-CH_2$ -S-, -S-CH₂-, $-CH_2$ -SO₂-, -SO2-NH- or -NH-SO₂-.

[0045] As shown in the above process, the compound of the formula (I) can be prepared by reacting a carboxylic acid of the formula (M-2) or its reactive derivative with an amino compound of the formula (M-1).

[0046] In this process, the starting compound (M-1) wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOMe, m is 0, Y is [2.2.1]bicyclic skeleton, 7-(3-amino-bicyclo[2.2.1]hept-2-yl)-5-heptenoic acid methyl ester is described in the Japanese Patent Publication (Kokoku) No. 79060/1993. The other starting compounds can be prepared in accordance with methods as described in the above publication.

[0047] When p is 0, the carboxylic acid of the formula (M-2) can be prepared by reacting a carboxylic acid having X^1 or its reactive derivative with a compound having X^3 . A person ordinary skilled in the art can carry out such a reaction by selecting the kinds of reactions and their conditions depending on the kind of X^2 .

[0048] The reactive derivatives of carboxylic acid of the formula (M-2) mean the corresponding acid halides (e.g., chloride, bromide, iodide), acid anhydrides (e.g., mixed acid anhydride with formic acid or acetic acid), active esters (e.g., succinimide ester), and the like, and include acylating agents used for the usual acylation of amino group.

[0049] For example, an acid halide is obtained by reacting the compound (M-2) with a thionyl halide (e.g., thionyl chloride), phosphorous halide (e.g., phosphorous trichloride, phosphorous pentachloride), oxalyl halide (e.g., oxalyl chloride), and the like, in accordance with known methods as described in the literatures (e.g., Shin-Jikken-Kagaku-Koza, Vol. 14, 1787 (1978); Synthesis 852-854 (1986); Shin-Jikken-Kagaku-Koza Vol. 22, 115 (1992)).

[0050] The reaction can be conducted under a condition generally used for the acylation of amino group. For example, in the case of condensation with the acid halide, the reaction is carried out in a solvent such as an ether solvent (e.g., diethyl ether, tetrahydrofuran, dioxane), benzene solvent (e.g., benzene, toluene, xylene), halogenated hydrocarbon solvent (e.g., dichloromethane, dichloroethane, chloroform) as well as ethyl acetate, dimethylformamide, dimethyl sulfoxide, acetonitrile, or the like, if necessary, in the presence of a base (e.g., organic base such as triethylamine, pyridine, N,N-dimethylaminopyridine, N-methylmorpholine; inorganic base such as sodium hydroxide, potassium hydroxide, potassium carbonate, or the like) under cooling, at room temperature, or under heating, preferably at a temperature ranging from -20 °C to ice-cooling temperature, or from a room temperature to a refluxing temperature of the reaction system, for a period of several min to several hr, preferably for 0.5 hr to 24 hr, particularly, for 1 hr to 12 hr.

[0051] In the case of using the carboxylic acid (M-2) in a free form without converting into the reactive derivatives, the reaction is conducted in the presence of a condensing agent (e.g., dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-methylaminopropyl)carbodiimide, N, N'-carbonyldiimidazole) usually used in the condensation reaction of amine and carboxylic acid.

[0052] When "optionally substituted aryl" or "optionally substituted heteroaryl" in X¹ or X³ of the compound of the formula (M-2) is substituted with a hydroxy group or an amino group, such a compound can be used after protection

by acetyl group or the like in accordance with the well known method.

5

10

15

20

25

30

35

40

50

[0053] In the reaction of the other reactive derivatives or free acid (M-2) with the amine (M-1), the reaction conditions are determined according to the property of each reactive derivative or free acid, in accordance with a known method. The reaction product can be purified in accordance with a conventional purification, such as the extraction with a solvent, chromatography, recrystallization, and the like.

[0054] When p is 0, a group of the formula: -NHCO- X^1 - X^2 - X^3 of the compound (I) can be introduced by reacting a carboxylic acid of the formula: X^3 - X^2 - X^1 -COOH (M-2) or its reactive derivative with amine (M-1), or by reacting a carboxylic acid having X^1 or its reactive derivatives with amine (M-1) and reacting the obtained compound with a compound having X^3 .

[0055] In case of the introduction of a substituent(s) into the "optionally substituted aryl" or "optionally substituted heteroaryl", the change of the functional group can be performed before or after reacting a carboxylic acid or its reactive derivative thereof (M-2) with the amine (M-1). For example, the compound having an aromatic heterocycle substituted with a nitro group can be prepared through the nitration of the compound with a nitrating acid. Moreover, the compound having an aromatic heterocycle substituted with an amino group can be prepared through the reduction of the aboveobtained compound with tin in the presence of hydrochloride. Moreover, the compound having an aromatic heterocycle substituted with hydroxy group can be prepared through the diazonization of the above-obtained compound and the hydrolysis with alkali. On the other hand, the compound having an aromatic heterocycle substituted with an alkoxy group can be prepared through the reaction of the diazonium derivative with alcohol. The compound having an aromatic heterocycle substituted with halogen can be prepared through Sandmeyer reaction, the reaction of the diazonium derivative with a copper salt (e.g., CuCl2, CuBr2). The compound having an aromatic heterocycle substituted with halogen can be also prepared through the direct reaction of the compound having an aromatic heterocycle with chlorine and the like. Using the above-mentioned methods appropriately, halogen can be introduced into a desired position(s). The group of alkyl, alkenyl or acyl group can be directly introduced into an aromatic heterocycle through Friedel Crafts reaction with alkylating agent, an alkenylating agent, or an acylating agent, respectively, in the presence of anhydrous aluminum chloride.

[0056] The objective compound (I) of the present invention can be converted into a corresponding ester derivative, if desired. For example, the ester derivative can be prepared by esterification of a carboxylic acid in accordance with a known method.

[0057] When using the compound (I) of the present invention in treatment, it can be formulated into ordinary formulations for oral and parenteral administration. A pharmaceutical composition containing the compound (I) of the present invention can be in the form for oral and parenteral administration. Specifically, it can be formulated into formulations for oral administration such as tablets, capsules, granules, powders, syrup, and the like; or those for parenteral administration such as injectable solution or suspension for intravenous, intramuscular, or subcutaneous injection, inhalant, eye drops, nasal drops, suppositories, or percutaneous formulations such as ointment.

[0058] In preparing the formulations, carriers, excipients, solvents, and bases known to one having ordinary skill in the art may be used. In case of tablets, they are prepared by compressing or formulating an active ingredient together with auxiliary components. Examples of usable auxiliary components include pharmaceutically acceptable excipients such as binders (e.g., cornstarch), fillers (e.g., lactose, microcrystalline cellulose), disintegrants (e.g., starch sodium glycolate) or lubricants (e.g., magnesium stearate). Tablets may be coated appropriately. In case of liquid formulations such as syrups, solutions, or suspensions, they may contain suspending agents (e.g., methyl cellulose), emulsifiers (e.g., lecithin), preservatives, and the like. In case of injectable formulations, it may be in the form of solution, suspension, or oily or aqueous emulsion, which may contain suspension-stabilizing agents or dispersing agent, and the like. In case of an inhalant, it is formulated into a liquid formulation applicable to an inhalar. In case of eye drops, it is formulated into a solution or a suspension.

[0059] Especially, in case of a nasal drug for treating nasal blockage, it can be used as a solution or suspension prepared by a conventional formulating method, or administered as a powder formulated using a powdering agent (e. g., hydroxypropyl cellulose, carbopole) into the nasal cavity. Alternatively, it can be used as an aerosol filled into a special container together with a solvent of low boiling point.

[0060] Although an appropriate dosage of the compound (I) varies depending on the administration route, age, body weight, sex, or conditions of the patient, and the kind of drug(s) used together, if any, and should be determined by the physician in the end, in the case of oral administration, the daily dosage can generally be between 0.01 - 100 mg, preferably 0.01 - 10 mg, more preferably 0.01 - 1 mg, per kg body weight. In case of parenteral administration, the daily dosage can generally be between 0.001 - 100 mg, preferably 0.001 - 1 mg, more preferably 0.001 - 0.1 mg, per kg body weight. The daily dosage can be administered in 1 - 4 divisions.

[0061] The following examples are provided to further illustrate the present invention and are not to be construed as limiting the scope.

Example 1

Preparation of (5Z)-7-{(1R,2S,3S,4S)-3-[5-(pyrrol-1-ylsulfonyl)-thiophen-2-ylcarbonylamino]-bicyclo[2.2.1]hept-2-yl}-5-heptenoic acid (I-1b)

[0062]

5

(Step 1)

25

30

35

40

45

50

55

[0063] To a solution of 251 mg (1.0 mmol) of (5Z)-7-[(1R,2S,3S,4S)-3-aminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid methyl ester (1) in 4 ml of tetrahydrofuran were added 257 mg (1.0 mmol) of 5 -(pyrrol-1-ylsulfonyl)-thiophen-2-carboxylic acid and 13.5mg (0.1 mmol) of 1-hydroxybenzotriazole. Under ice-cooling, 186mg (1.2mmol) of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide was added thereto. The mixture was warmed to room temperature and stirred at 25 °C for 16 h. The mixture was diluted with water and extracted with toluene. The organic layer was washed with dilute hydrochloric acid and water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was chromatographed on silica gel (toluene/ethyl acetate = 6 : 1) to give 412 mg of (5Z)-7-{(1R,2S,3S,4S)-3-[5-(pyrrol-1-ylsulfonyl)-thiophen-2-ylcarbonylamino]-bicyclo[2.2.1]hept-2-yl}-5-heptenoic acid methyl ester (I-1a). Yield 83.9 %. Colorless oil.

300MHz 1 H-NMR(CDCl₃) δ : 1.08 (1H, m), 1.16-1.32 (2H, m), 1.56-1.73 (4H, m), 1.98-2.13 (5H, m), 2.31 (2H, t, J=7.2Hz), 2.56 (1H, m), 3.63 (3H, s), 3.79 (1H, m), 5.30-5.45 (2H, m), 6.28 (1H, d, J=7.5Hz), 6.33 and 7.16 (each 2H, each t, each J=2.1Hz), 7.40 and 7.57 (each 1H, each d, each J=3.9Hz).

(Step 2)

[0064] To a solution of 350mg (0.713mmol) of (5Z)-7-{(1R,2S,3S,4S)-3-[5-(pyrrol-1-ylsulfonyl)thiophen-2-ylcarbonylamino]-bicyclo[2.2.1]hept-2-yl}-5-heptenoic acid methyl ester (I-1a) in 1 ml of methanol and 0.5 ml of tetrahydrofuran was added under ice-cooling 0.5 ml (2.0 mmol) of 4N sodium hydroxide. The mixture was warmed to room temperature and stirred at 25 °C for 2 h. The reaction mixture was diluted with water and washed with ether. The aqueous layer was acidified with 0.5 ml of 5N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate/hexane (3 : 4) to give 234 mg of (5Z)-7-{(1R,2S,3S,4S)-3-[5-(pyrrol-1-ylsulfonyl)-thiophen-2-ylcarbonylamino]-bicyclo[2.2.1]hept-2-yl}-5-heptenoic acid (I-1b) as needles. Yield 68.8 %. Mp. 113-114 °C. 300MHz ¹H-NMR(CDCl3) δ : 1.09(1H, m), 1.17-1.32(2H, m), 1.34-1.52(2H, m), 1.56-1.75(4H, m), 2.00-2.18(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 5.31-5.43(2H, m), 6.22(1H, d, J=6.0Hz), 6.35 and 7.17(each 2H, each t, each J=2.1Hz), 7.37 and 7.56(each 1H, each d, each J=3.9Hz). IR(Nujol): 3369, 3143, 3124, 3068, 2678, 1710, 1626, 1593, 1374, 1200, 1171 cm $^{-1}$. $[\alpha]_D^{26.5}+75.5\pm1.2^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₅S₂)

Calcd. (%): C, 57.96; H, 5.92; N, 5.88; S, 13.45 Found (%): C, 57.99; H, 5.88; N, 5.66; S, 13.50

Example 2

Preparation of (5Z)-7-[(1S,2R,3R,4R)-3-(4-biphenyl)carbonylamino-bicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-2b)

[0065]

5

15 NH₂ CF₃COOH Step 1 NH (I-2a)

Step 2 NH (I-2b)

(Step 1)

25

30

35

40

45

50

55

[0066] Methyl (5Z)-7-[(1S,2R,3R,4R)-3-aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate trifluoroacetate (2) (232 mg, 0.636 mmol), which was prepared by the method described in Reference Example 4 of the Japanese Patent Publication (Kokoku) No. 79060/1993, was dissolved in methylene chloride (5 ml). To the solution were added triethylamine (0.279 ml, 2.00 mmol) and 4-biphenylcarbonyl chloride under ice-cooling and stirred for 7 h at the same temperature. The reaction mixture was purified by column chromatography on silica gel (ethyl acetate/hexane (1:4)) to yield methyl (5Z)-7-[(1S, 2R, 3R, 4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate(I-2b) (221 mg, 0.512 mmol).

(Step 2)

[0067] The compound (I-2a) (190 mg, 0.440 mmol) was dissolved in methanol (6 ml). To the solution was added 1 N KOH (1.10 ml, 1.10 mmol) under ice-cooling and stirred for 15 h at room temperature. The reaction mixture was concentrated in vacuo. The residue, after the addition of water (20 ml) and 1 N HCI (2 ml), was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane (1:1) containing 0.3% acetic acid) to yield (5Z)-7-[(1S, 2R,3R,4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-2b) (172 mg, 0.412 mmol). Yield 94%.

Example 3

Preparation of Sodium (5Z)-7-[(1R,2R,3S,5S)-2-(4-phenylthio)benzoylamino-10-nominan-3-yl]-5-heptenoate (II-1c)

5 [0068]

Br
$$COOH$$

SH $Step 1$

Step 1

Step 2

Step 2

Step 4

Step 4

Step 4

Step 4

Step 4

Step 4

Step 1

Step 3

(Step 1)

35

40

[0069] A mixture of 4.06 g (37 mmol) of thiophenol (3), 7.07 g (35 mmol) of 4-bromobenzoic acid (4), and 2,67 g (18.7 mmol) of copper oxide in 18 ml of quinoline was stirred under nitrogen gas at 190 °C for 1 h. The reaction mixture, cooled at 110 °C was added to 52 ml of 6N hydrochloric acid. The resulting precipitate was washed with 6N hydrochloric acid and water and recrystallized from ethyl acetate/hexane to yield 4.28g of the compound (5). Mp. 178-179°C. Yield 53%.

 1 H-NMR(CDCl₃) δ :7.21(2H,d,J=8.7Hz), 7.40-7.42(3H,m),7.50-7.53(2H,m),7.95(2H,d,J=8.7Hz). IR(Nujol):3523, 3062, 3007, 2884, 2670, 2549, 1730, 1690, 1595, 1561, 1491 cm⁻¹

[0070] This preparation was carried out according to D. Hands, H. Marley, S. J. Skittrall and S. HB. Wright, J. Heterocyclic Chem., 23, 1333 (1986).

(Step2)

[0071] To a solution of 1.83 g (6.56 mmol) of methyl (5Z)-7-[(1R,2R,35,5S)-2-amino-10-norpinan-3-yl]-5-heptenoate (6) in 3 ml of tetrahydrofuran were added 1.51 g (6.56 mmol) of 4-phenylthiobenzoic acid (5), 88 mg of 1-hydroxy benzotriazole and 1.32 g (8.53 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The mixture was allowed to stand at room temperature over night. The reaction mixture was diluted by diluted hydrochloric acid and extracted with toluene. The organic layer was washed with water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The obtained residue was purified by column chromatography on silica gel (ethyl acetate/hexane (1:1)) to yield 3.181 g of the compound (II-1a) as oil. Yield: 98.4 %.
[α]_D²²+61.8° (c=1.00,CH₃OH) Elemental Analysis (C₃₀H₃₇NO₃S)

Calcd.(%):C,73.28;H,7.59;N,2.85;S,6.52

Found(%):C,73.02;H,7.63;N,2.91;S,6.53

 $^{1}\text{H-NMR}(\text{CDCl}_{3}) \ \delta: 0.96(1\text{H,d,J}=10.5\text{Hz}), \ 1.10 \ \text{and} \ 1.22(\text{each3H,eachs}), \ 1.49-1.73(3\text{H,m}), 1.83-2.45(11\text{H,m}), 3.62(3\text{H,s}), 4.27(1\text{H,m}), 5.32-5.49(2\text{H,m}), 6.19(1\text{H,d,J}=8.1\text{Hz}), 7.26(2\text{H,d,J}=8.4\text{Hz}), 7.34-7.46(5\text{H,m}), 7.62(2\text{H,d,J}=8.4\text{Hz})$

⁵ IR(CHCl₃):3453,3030,3015,2924,2870,1730,1652,1595,1583,1557,1513,1480cm⁻¹

(Step 3)

10

25

[0072] To a solution of 3.181 g (6.47 mmol) of the compound (II-1a) in 32 ml of methanol was added 5.7 ml (22.6 mmol) of 4N sodium hydroxide. The mixture was stirred at 45 °C for 4.5 h. The mixture was neutralized with 1N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to yield 3.113 g of the compound (II-1b) as a colorless amorphous. Yield 99.5%.

 $[\alpha]_D^{22}+61.0^{\circ}$ (c=1.01, CH₃OH)

Elemental Analysis (C₂₉H₃₅NO₃S·0.1H₂O)

Calcd.(%):C,72.65;H,7.48;N,2.92;S,6.69

Found(%):C,72.50;H,7.45;N,3.19;S,6.69

 $^{1}\text{H-NMR}(\text{CDCl}_{3}) \ \delta: 0.96(1\text{H,d,J}=10.2\text{Hz}), 1.10 \text{and} \ 1.22(\text{each3H,each s}), 1.51-1.79(3\text{H,m}), \ 1.83-2.44(11\text{H,m}), 4.26(1\text{H,m}), 5.33-5.49(2\text{H,m}), 6.21(1\text{H,d,J}=8.7\text{Hz}), 7.25(2\text{H,d,J}=9.0\text{Hz}), 7.34-7.47(5\text{H,m}), 7.60(2\text{H,d,J}=9.0\text{Hz})$

²⁰ IR(CHCl₃):3453,3062,3029,3014,2925,2870,1739,1708,1651,1595,1583,1557,15 15,1481cm⁻¹

(Step 4)

[0073] To a solution of 3.113 g (6.5 mmol) of the above obtained compound (II-1b) in 30 ml of methanol was added 6.2 ml of 1 N sodium hydroxide. The mixture was concentrated under reduced pressure. The residue was dissolved in a small amount of ethyl acetate and mixed with hexane. The insoluble product was dissolved in 60 ml of water and freeze-dried to yield 3.138 g of the compound (II-1c) as a colorless amorphous. Yield 96.4 %. $[\alpha]_D^{23}+47.0^\circ$ (c=1.00,CH₃OH)

Elemental Analysis (C₂₉H₃₄NO₃SNa·H₂O)

30 Calcd.(%):C,67.29;H,7.01;N,2.71;S,6.19,Na,4.44

Found(%):C,67.17;H,7.00;N,2.75;S,6.29;Na,4.35

¹H-NMR(CD₃OD) δ:0.964(1H,d,J=9.9Hz),1.13 and 1.22(each3H,eachs),1.54-1.69(3H,m),1.94-2.39(11H,m),4.12(1H,bs),5.38-5.49(2H,m),7.25(1H,d,J=8.4Hz),7.36-7.46(5H,m),7.68(2H,d,J=8.4Hz) IR(KBr):3435,3058,2985,2921,2867, 1635,1595,1562,1522,1482,1439,1412cm⁻¹

[0074] The structure and physical property of the compound prepared in accordance with the above examples are shown below.

40

45

50

Table 1

	Comp. N	No. R	Comp. No.	R
10	I-3	SOH	I-13	S SO2NH-
15	I-4	-{_}-s-{_}-och₃	I-14	S SO ₂ N
20	1-5	S-CD-OCH3	I-15	SO2.N
25	I6	-\(\bar{\}\)	I-16	SO ₂ -N CH ₃
30	I-7	-SO ₂ NHT-	I-17	SO ₂ -N
35	I-8	S NSO ₂	I-18	SO ₂ -N
40	I- 9	SNCO-(S)	I-19	
45	I-10	$ SO_2 \cdot N$	I-20	SO ₂ -N
50	I-11	S	I-21	SO ₂ .N CH ₂ OH
<i>55</i>	I-12	-\(\)-NHSO ₂ -\(\)	I-22	SO ₂ ·N·S]

Table 2

	Comp. No.	R	Comp. No.	R
10	I-23	CON-S	1-33	SO ₂ ·N
15	I-24	SO ₂ -N	I-34	O SO2 N
20	1-25	SSS	I-35	T _S N
25	I-26	SO ₂ S	1-36	√s√s ()
30	I-27	CO·N-(N)	I-37	s so ₂
35	I-28	STS	I-38	NHCO-
40	I-29	SO ₂	I-39	NHSO ₂
45	I-30	ON	I-40	s
50	I-31		I-41	S
55	I-32	SO ₂ NH-	I-42	s

Table 3

	Comp. No.	R	Comp. No. R
10	I-43	S	I-53 SO_2-N
15	I-44	CH ₃	I-54 SO ₂ -N
20	I-45	S OCH ₃	I-55 CH ₃
25	I-46	S	I-56 S NHCO-
30	I-47	s so ₂ s	I-57 S NHSO ₂
35	I-48	T _S N	I-58. CH ₃ SO ₂ ·N
40	I-49	T _s N)	I-59 S S S
45	I-50	SO ₂ -	I-60 ————————————————————————————————————
50	I-51	SO ₂ COCH ₃	I-61 SO
55	I-52	S	I-62 SO ₂ ·N

Table 4

	Comp. N	Jo. R	Comp. No.	R
10	I-63	H ₃ C N S NHCO	I-73	S CONH COCH3
15	I-64	H ₃ C N S NHSO ₂	I-74	SN
20	I-65	H ₃ C N N	I-75	ss
25	I-6 6	SSS	I-76	SO ₂ S
30	I-67	SO ₂ S	1-77	SCONHS
35	1-68	S SO ₂ NH S	I-78	S SO ₂ -N HOH ₂ C
40	I-69	SO ₂ NH S	1-79	T _s s
45	I-70	SCONH	1-80	S SO ₂ S
50	I-71	S CONH F	I-81	SSS CH3
<i>55</i>	I-72	S CONH ()-OCH3	I-82	S SO ₂ S CH ₃

Table 5

	Comp. No.	R	Comp. No.	R
10	1-83	S'SSS	I-93	s
15	I-84		1-94	N _S S O ₂
20	I-85	S	1-95	N" N
25	I-8 6	C F	I-96	sss
30	I-87	S	I-97	S S S S
35	I-88	S	I-98	s
40	I -8 9		I-99	s
45	1-90		I-100	SS SCH3
50	I-91	S _N S	I-101	S S CH ₃
55	I-92	N _S O ₂	I-102	s

Table 6

	Comp. No	• R	Comp. No.	R
10	I-103	S	I-113	S S CH ₃
15	I-104	S S S	I-114	S S CH ₃
20	I-105	S S S	I-115	S S COCH3
25	I-106	S S S	I-116	S S OCH3
30	I-107	ssss o	I-117	S S OH
35	I-108	S S CH ₃	I-118	√s s COH
40	I-109	S	I-119	S OCH3
45	I-110	S S NOCH3	I-120	SOH
50	I-111	TSN D	I-121	SOAC
55	I-112	S N CH ₃	I-122	SSS

Table 7

	Comp. No.	R	Comp. No.	R
10	I-123		I-133	S
15	I-124	S H	I-134	s
20	I-125	S CH ₃	I-135	J _S J _S
25	I-126	S OCH ₃	I-136	
30	I-127	S C ₂ H ₅	I-137	S
35	I-128	S CH ₃	I-138	S
40	I-129	S CH ₃	I-139	S
45	I-130	CH ₃	I-140	S
50	I-131	SCH ₃	I-141	S
<i>55</i>	I-132	S CH ₃	I-142	S

Table 8

	Comp. No.	R	Comp. No.	R
10	I-143	S	I-153	CH ₃
15	I-144	SIF	I-154	F
20	I-145	SOH	I-155	S CF ₃
25	I-146	T _S O O O	I-156	
30	I-147	OCH ₃	I-157	
35	I-148	s	I-158	OCH ₃
40	I-149	S CH ₃	I-159	SOH
45	I-150	S	I-160	
50	I-151	s	I-161	S
55	I-152	S F	I-162	S

Table 9

	Comp. No.	R	Comp. No.	R
10	I-163	S	I-173	
15	I-164	s	1-174	Br
20	I-165	s	I-175	S
25	I-166	s	1-176	s
30	I-167	s	I-177	S
35	I-168	S	I-178	S CH ₃
40	1-169	S	I-179	S
45	I-17 0	S	I-180	
50	I-171	SCH ₃	1-181	S OCH3
55	I-172	SO ₂ CH ₃	I-182	S

Table 10

	Comp. No.	R	Comp. No.	R
10	I-183	SOH	I-193	S
15	I-184		I-194	SH ₃ C CH ₃
20	I-185	S	I-195	S CF ₃
25	I-186		I-196	S OCH3
30			1-197	
35	I-188		I-198	S
40	I-189		I-199	Is Is
45	I-190	Js Co	1-200	T _S
50	I-191	T _S F	I-201	SOH
55	I-192	CF ₃	1-202	SOH

Table 11

	Comp. No.	R	Comp. No.	R
10	1-203	S	I-213	S NO CH3
15	1-204	S NCH ₃	I-214	OCH ₃
20	I-205	CH ₃	I-215	S OCH3
25	I-206	F	I-216	
30	I-207		I-217	
35	1-208	S	1-218	S OCH ₃ OCH ₃
40	I-209	S N CH ₃	I-219	S CH ₃
45	I-210	S CH ₃ N CH ₃	J-22 0	OCH ₃ OCH ₃ OCH ₃
50	I-211	J _S J _O O	I-221	
55	I-212	OCH ₃	1-222	NHCOCH ₃

Table 12

10	Comp. No.	R	Comp. No.	R
10	I-223	√S NHSO₂CH₃	1-233	SOH
15	1-224	s	I-234	CH ₃ CH ₃ CH ₃ OCH ₃
20	I-225	S	I-235	S CH ₃ CCH ₃
25	1-226	S CH ₃ OCH ₃	1-236	S OCH ₃
30	1-227	NHCOCH ₃	I-237	
35	1-228	NHSO ₂ CH ₃	1-238	S OCH3
40	I-229	S	I-239	SOH
45	I-230	S	I-240	S
50	I-231	CH ₃ CH ₃ OCH ₃	I-241	S CH ₃
<i>55</i>	I-232	S	I-242	S OCH3

Table 13

	Comp. No.	R	Comp. No.	R
10	I-243	SOH	1-253	S S
15	I-244	SOF	I-254	S
20	I-245	S CH ₃	I-255	SSS
25	I-24 6	S NO	I-256	S S CH₃
30	I-247	S OCH3	I-257	SCI
35	I-248	SOH		s
40	I-249	T _S NO	I-259	S
45	I-250	S CH ₃	I-260	S
50	I-251	S CI	I-261	NS NS
55	I-252	S S	1-262	S S S

Table 14

	Comp. No.	R	Comp. No.	R
10	I-263	SIN	I-273	S S S CH ₃
15	1-264	SUN	I-274	
20	I-265	S	I-275	SOH
25	1-266	S	I-27 6	SOH
30	I-267		I-277	SOH
35	I-268	S	1-278	S
40	1-269	S F	1-279	S.N.
45	I-270	H ₃ C S S N O ₂ CH ₃	I-280	O ₂ CH ₃ S.N
50	I-271	S S CH ₃	I-281	J _S J _S O)
<i>55</i>	I-272	S S S N O O O O O O O O O O O O O O O O	I-282	S

Table 15

	Comp. No.	R	Comp. No.	R
10	I-283	S S	I-289	CH ₃
15	I-284	S	I-290	
20	I-285	CH ₃	I-291	S
25	I-286	SOH	I-292	s
30	I-287	S	I-293	
35	I-288	S	I-294	

Table 16

	Comp. N	o. R	Comp. No.	R
10	11-2	SNSO2	П-12	N
15	II-3	SNCO-()	П-13	
20	II-4	S	II-14	S SO2-N
25	П-5	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	II-15	S SO ₂ -N
30	II-6	-SO ₂ NH-	П-16	SO ₂ -N CH ₂ OH
35	II-7	-\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	П-17	SO ₂ -N
40	II-8	$-$ SO ₂ - N_{-}	п-18	S S S S
45	11-9	Ts	П-19	N _S S O ₂
50	П-10	SO _{2-N}	II-20	N _S O ₂
55	II-11	-()-SO ₂ -N CH ₃	II-21	\s\s\s\s\

Table 17

	Comp. No.	R	Comp. No.	R
10	II-22	S S CH ₃	П-32	S S
15	II-23	S S CH ₃	П-33	S
20	11-24	N _S F O ₂	П-34	S S-N O ₂
25	II-25	N _S O ₂ OCH ₃	П-35	s s s
30	II-26	N S N S N S N S N S N S N S N S N S N S	II-36	S S CH ₃
35	II-27	S	П-37	S OCH ₃
40	II-28	S	П-38	SOH
45	II-29	S S CH3	п-39	SOAc
50	II-30	S S CH ₃ O ₂	П-40	S S S O 2
55	II-31	T _S	II-41	S S CH ₃

Table 18

	Comp. No.	R	Comp. No.	R
10	II-42	S S CH ₃	П-51	S CH ₃
15	II-43	S S OCH3	II-52	S CH ₃
20	II-44	S S OCH3	II-53	S S CH ₃
25	II-45	S S OH	II-54	S S CH ₃
30	II-46	√s S OH	II-55	s
35		S OCH3	П-56	S
40	II-48	SN CH ₃	П-57	
45	II-49	S CH ₃	П-58	J _S J _O
50	п-50	√s √s	П-59	
55			П-60	SOO

Table 19

Table 20

Table 21

40	Comp. No.	R	Comp. No.	R
10	II-101	T _S CO	II-111	S
15	II-102	T _S C _F	II-112	SOH
20	II-103	S CF ₃	II-113	SOH
25	II-104	SCI	II-114	S N
30	II-105	H ₃ C CH ₃	II-115	S NCH ₃
35	II-106	S CF ₃	II-116	
40	II-107	Br	П-117	F
45	II-108		II-118	
50	II-109	S	II-119	S
55	II-110	S	11-120	S N CH3

Table 22

	Comp. No.	F	₹	Comp. No.	R
10	П-121	\[\s\		II-131	S
15	П-122	\(\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OCH ₃	II-132	NHCOCH ₃
20	П-123	S	yO CH₃	II-133	NHSO ₂ CH ₃
25	П-124	\\\s\	OCH ₃	II-134	S
30	П-125	S	S OCH ₃	II-135	T _S O
35	П-126	\\s\		H-136	S CH ₃
40	П-127			II-137	NHCOCH ₃
45	II-128	S	OCH ₃ OCH ₃ OCH ₃	II-138	NHSO₂CH₃
50	п-129	Js	CH ₃	П-139	S
55	П-130	\s\	OCH ₃ OCH ₃	П-140	S

Table 23

	Comp. No.	R	Comp. No.	R
10	II-141	S CH ₃ OCH ₃	II-151	S OCH3
15	II-142	S	II-152	SOH
20	II-143	S C ₂ H ₅	II-153	SOF
25	II -144	S CH ₃ CCH ₃	II-154	S CH ₃
30	II-145	S OCH ₃	II-155	SNO
35	II-146		II-156	S NO OCH3
40	II-147	S OCH3	II-157	S NO OH
45	II-148	SOH	II-158	S NO F
50	II-149	S F	II-159	S CH ₃
<i>55</i>	II-150	CH ₃	11-160	S S CI
55				

Table 24

	Comp. No.	R	Comp. No.	R
10	II-161	s	II-171	√s Ns S
15	II-162	S S OCH3	II-172	S
20	II-163	S	II-173	J _S IIN
25	11-164	S S	II-174	S
30	II-165	CH ₃	II-175	S
<i>35</i>	II-166	SISCI	II-176	J _S C _O
	II-167	S	II-177	
40	II-168	S	II-178	S F
45	II-169	S	II-179	H ₃ C S S N O ₂ CH ₃
50	II-170	N-J	II-180	S S N CH ₃ O ₂ CH ₃

Table 25

Table 26

5

10

15

20

25

45

NHCO-R COOH

Comp. No. R Comp. No. R

II-201

II-202

II-204

II-204

Comp. No. R

II-204

II-204

II-204

Table 27

NHCO-R COOH

30	Comp. No.	R	Comp. No.	R
35	III-1	S S·N O ₂	ш-3	S S S S
40	III-2	S S S S S S S S S S S S S S S S S S S	Ш-4	S S·N O ₂

Table 28

Comp. No. R Comp. No. R $IV-1 \qquad \begin{array}{c} S \\ S \\ O_2 \end{array}$ $IV-2 \qquad \begin{array}{c} S \\ S \\ O_2 \end{array}$

Comp. No.

R

Table 29

15

20

25

30

35

Table 30

Comp. No. R

VI-1 S

55

50

Physical property

Compound I-3

[0075] 300MHz ¹H-NMR(CDCl₃-CD₃OD) δ: 1.23(1H, m), 1.28-1.32(2H, m), 1.44-1.53(2H, m), 1.57-1.74(4H, m), 2.03-2.14(5H, m), 2.32(2H, t, J=7.2Hz), 2.56(1H, m), 3.82(1H, m), 5.33-5.47(2H, m), 6.80(1H, m), 7.09-7.12(2H, m), 7.22(1H, t, J=8.1Hz), 7.63 and 7.86(each 1H, each d, each J=8.1Hz).

IR(CHCl₃): 3593 3442, 3111, 1710, 1644, 1519, 1449 cm⁻¹.

 $[\alpha]_D^{25}$ +77.6±1.2° (c=1.010, MeOH)

10 Elemental Analysis (C₂₅H₂₉NO₄S·0.2H₂O)

Calcd.(%): C, 67.76; H, 6.69; N, 3.16; S, 7.23

Found(%): C, 67.64; H, 6.77; N, 3.17; S, 7.18

Compound 1-4

15

[0076] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.17-1.32(2H, m), 1.40-1.50(2H, m), 1.56-1.80(4H, m), 2.00-2.22 (5H, m), 2.33(2H, t, J=7.2Hz), 2.53(1H, m), 3.84(3H, s), 3.85(1H, m), 5.29-5.42(2H, m), 6.18(1H, d, J=6.9Hz), 6.93, 7.10, 7.44 and 7.59(each 2H, each d-like).

IR(CHCl3): 3516, 3448, 1708, 1650, 1594, 1514, 1494, 1483, 1288, 1248, 1032 cm⁻¹.

 $[\alpha]_D^{26} + 82.8 \pm 1.2^{\circ} \text{ (c=1.000, MeOH)}$

Elemental Analysis (C28H33NO4S-0.2H2O)

Calcd.(%): C, 69.59; H, 6.97; N, 2.90; S, 6.64

Found(%): C, 69.69; H, 6.93; N, 3.20; S, 6.57

25 Compound I-5

[0077] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.16-1.32(2H, m), 1.36-1.50(2H, m), 1.54-1.80(4H, m), 2.00-2.22 (5H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.82(1H, m), 3.83(3H, s), 5.29-5.42(2H, m), 6.14(1H, d, J=7.2Hz), 6.92 (2H, d-like),

30 7.20-7.30(2H, m), 7.41-7.51(4H, m).

[0078] IR(CHCl₃): 3509, 3444, 2666, 1708, 1654, 1592, 1570, 1510, 1494, 1468, 1288, 1247, 1082 cm⁻¹. $[\alpha]_D^{26} + 58.4 \pm 1.4^{\circ}$ (c=0.704, MeOH)

Elemental Analysis (C₂₈H₃₃NO₄S·0.2H₂O)

Only 1/0/1/ O 00 50 11 0 07 N 0 00 C 0 0

Calcd.(%): C, 69.59; H, 6.97; N, 2.90; S, 6.64

35 Found(%): C, 69.55; H, 6.93; N, 3.03; S, 6.57

Compound I-6

[0079] 300MHz 1 H-NMR(CDCl₃) δ : 1.11(1H, m), 1.20-1.34(2H, m), 1.42-1.52(2H, m), 1.56-1.78(4H, m), 2.00-2.23 (5H, m), 2.35(2H, t, J=7.2Hz), 2.57(1H, m), 3.89(1H, m), 5.31-5.45(2H, m), 6.30(1H, d, J=7.2Hz), 6.37 and 7.12(each 2H, each 2H, each J=2.1Hz), 7.42 and 7.83(each 2H, each d-like).

IR(CHCl₃): 3518, 3448, 2662, 1708, 1653, 1609, 1499, 1334 cm⁻¹.

 $[\alpha]_D^{23} + 94.9 \pm 1.3^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis (C₂₅H₃₀N₂O₃·0.1H₂O)

45 Calcd.(%): C, 73.54; H, 7.45; N, 6.86

Found(%): C, 73.43; H, 7.46; N, 7.01

Compound I-7

[0080] 300MHz ¹H-NMR(CDCl₃) δ : 1.12-1.76(9H, m), 1.96-2.24(5H, m), 2.33(2H, t, J=7.2Hz), 2.53(1H, m), 3.86(1H, m), 5.30-5.47(2H, m), 6.60(1H, d, J=6.9Hz), 7.05-7.23(5H, m), 7.55(1H, brs), 7.67 and 7.74(each 2H, each d, each J=8.7Hz). IR(CHCl₃): 3516, 3439, 3368, 1708, 1653, 1600, 1519, 1496, 1487, 1401, 1347, 1165 cm⁻¹. [α]_D²⁵+69.9±1.1° (c=1.019, MeOH)

Elemental Analysis (C₂₇H₃₄N₂O₅S·0.1H₂O)

55 Calcd.(%): C, 64.80; H, 6.89; N, 5.60; S, 6.41

Found(%): C, 64.73; H, 6.56; N, 5.74; S, 6.41

Compound I-8

[0081] 300MHz ¹H-NMR(CDCl₃) δ : 1.19-1.27(3H, m), 1.35-1.43(2H, m), 1.55-1.80(4H, m), 1.90-2.08(3H, m), 2.11-2.21(2H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.74(1H, m), 5.29-5.48(2H, m), 6.44(1H, d, J=6.9Hz), 7.15(1H, d, J=1.5Hz), 7.46(2H, t, J=7.8Hz), 7.57(1H, m), 7.60(1H, d, J=1.5Hz), 7.76-7.78(2H, m), 7.89(1H, s).

IR(CHCl₃): 3440, 3360, 3107, 1708, 1637, 1518, 1448, 1329, 1163 cm⁻¹.

 $[\alpha]_D^{20}+55.5\pm1.0^{\circ}$ (c=1.003, MeOH)

Elemental Analysis ($C_{25}H_{30}N_2O_5S_2\cdot 0.2H_2O$)

Calcd.(%): C, 59.31; H, 6.05; N, 5.53; S, 12.67

10 Found(%): C, 59.19; H, 6.12; N, 5.66; S, 12.50

Compound I-9

[0082] mp.193-194°C

300MHz 1 H-NMR(d₆-DMSO) δ: 1.18-1.59(9H, m), 1.93(1H, d, J=2.4Hz), 1.99-2.07(4H, m), 2.21(2H, t, J=7.2Hz), 2.36 (1H, m), 5.30-5.40(2H; m), 7.25(1H, d, J=1.5Hz), 7.54-7.63(3H, m), 7.69(1H, d, J=1.5Hz), 7.99-8.02(3H, m), 11.6(1H, s), 12.00(1H, brs).

IR(Nujol): 3367, 3221, 3186, 3091, 3055, 2654, 1711, 1631, 1566, 1541, 1321 cm⁻¹.

 $[\alpha]_D^{21}$ +74.6±1.1° (c=1.006, MeOH)

20 Elemental Analysis (C₂₆H₃₀N₂O₄S)

Calcd.(%): C, 66.93; H, 6.48; N, 6.00; S, 6.87

Found(%): C, 66.76; H, 6.44; N, 5.88; S, 6.76

Compound I-10

25

5

[0083] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.18-1.34(2H, m), 1.40-1.50(2H, m), 1.56-1.77(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 5.31-5.54(2H, m), 6.26(1H, d, J=7.8Hz), 6.31 and 7.14(each 2H, each t, each J=2.1Hz), 7.84 and 7.88(each 2H, each d, each J=8.4Hz).

 $IR(CHCl_3): 3515, 3441, 3144, 2669, 1708, 1662, 1515, 1486, 1455, 1376 \ cm^{-1}. \ [\alpha]_D^{22} + 77.4 \pm 1.2^{\circ} \ (c=1.004, MeOH)$

Elemental Analysis (C₂₅H₃₀N₂O₅S·0.2H₂O)

Calcd.(%): C, 63.32; H, 6.46; N, 6.91; S, 6.76

Found(%): C, 63.23; H, 6.49; N, 5.88; S, 6.67

Compound I-11

35

[0084] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.29(2H, m), 1.42-1.46(2H, m), 1.56-1.79(4H, m), 2.03-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 4.12(2H, s), 5.29-5.43(2H, m), 6.04(1H, d, J=7.5Hz), 7.09 (1H, d, J=1.5Hz), 7.22-7.34(5H, m), 7.67(1H, d, J=1.5Hz).

IR(CHCl₃): 3517, 3446, 2669, 1708, 1647, 1549, 1508, 1454 cm⁻¹. $[\alpha]_D^{21.5}$ +68.8±1.1° (c=1.016, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S-0.1H₂O)

Calcd.(%): C, 71.07; H, 7.16; N, 3.19; S, 7.30

Found(%): C, 71.05; H, 7.11; N, 3.38; S, 7.33

Compound I-12

45

[0085] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.10-1.30(2H, m), 1.40-1.46(2H, m), 1.56-1.77(4H, m), 2.00-2.22 (5H, m), 2.33(2H, t, J=7.2Hz), 2.52(1H, m), 3.83(1H, m), 5.28-5.42(2H, m), 6.26(1H, d, J=6.9Hz), 7.15 and 7.63(each 2H, each d, each J=8.7Hz), 7.53(1H, m), 7.78-7.82(2H, m).

IR(CHCl₃): 3515, 3446, 3371, 3138, 1708, 1648, 1610, 1496, 1163 cm⁻¹.

 $[\alpha]_D^{22.5}+66.5\pm1.1^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₇H₃₄N₂O₅S·0.4H₂O)

Calcd.(%): C, 64.11; H, 6.93; N, 5.54; S, 6.34

Found(%): C, 64.05; H, 6.63; N, 5.56; S, 6.12

55 Compound I-13

[0086] 300MHz ¹H-NMR(CDCl₃) δ : 1.19-1.31(3H, m), 1.36-1.44(2H, m), 1.55-1.78(4H, m), 1.85-2.02(2H, m), 2.05 (1H, m), 2.13-2.47(4H, m), 2.57(1H, m), 3.71(1H, m), 5.31-5.54(2H, m), 6.53(1H, d, J=6.9Hz), 7.14-7.32(5H, m), 7.47

(1H, br), 8.05 and 8.13(each 1H, each d, each J=1.5Hz). IR(CHCl₃): 3509, 3360, 3262, 1709, 1649, 1542, 1496, 1349, 1160 cm⁻¹. $[\alpha]_D^{23} + 59.1 \pm 1.1^\circ \text{ (c=1.001, MeOH)}$ Elemental Analysis (C₂₅H₃₀N₂O₅S₂·0.2H₂O) Calcd.(%): C, 59.31; H, 6.05; N, 5.53; S, 12.67 Found(%): C, 59.17; H, 6.01; N, 5.49; S, 12.37

Compound I-14

[0087] 300MHz ¹H-NMR(CDCl₃) δ: 1.18-1.32(3H, m), 1.38-1.47(2H, m), 1.55-1.78(4H, m), 1.90-2.08(3H, m), 2.15-2.31(2H, m), 2.32-2.49(2H, m), 2.59(1H, m), 3.74(1H, m), 5.33-5.53(2H, m), 6.35 and 7.17(each 2H, each t, each J=2.4Hz), 6.47(1H, d, J=6.3Hz), 8.21 and 8.22(each 1H, each d, each J=1.5Hz). IR(CHCl₃): 3506, 3412, 3144, 3107, 1727, 1709, 1656, 1540, 1504, 1456, 1382, 1166 cm⁻¹.

 $[\alpha]_D^{23}+63.8\pm1.0^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₅S₂·0.2H₂O) Calcd.(%): C, 57.53; H, 5.96; N, 5.83; S, 13.35 Found(%): C, 57.44; H, 5.96; N, 6.00; S, 13.35

Compound I-15

20

35

45

50

55

5

[0088] mp.128-130°C

300MHz 1 H-NMR(CDCl₃) δ : 1.16-1.34(3H, m), 1.40-1.81(6H, m), 2.37(2H, t, J=7.2Hz), 2.57(1H, m), 3.89(1H, m), 5.35-5.51(2H, m), 6.37 and 7.20(each 2H, each d, each J=2.4Hz), 7.23(1H, d, J=8.7Hz).

IR(Nujol): 3371, 3097, 2662, 1716, 1703, 1671, 1652, 1530, 1367, 1361, 1187, 1162 cm⁻¹.

 $[\alpha]_D^{25}+47.5\pm0.9^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₅S₂)

Calcd.(%): C, 57.96; H, 5.92; N, 5.88; S, 13.45

Found(%): C, 58.05; H, 5.91; N, 5.83; S, 13.38

30 Compound I-16

[0089] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.20.1.32(2H, m), 1.42-1.47(2H, m), 1.58-1.75(4H, m), 2.01(3H, d, J=1.2Hz), 2.00-2.16(5H, m), 2.35(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 5.31-5.44(2H, m), 6.14(1H, dd, J=1.5 and 3.0Hz), 6.29(1H, d, J=7.5Hz), 6.86(1H, m), 7.04(1H, t, J=3.0Hz), 7.84(4H, s). IR(CHCl₃): 3517, 3441, 2667, 1708, 1661, 1515, 1485, 1375, 1260, 1178 cm⁻¹. [α]_D²⁵+73.8±1.1° (c=1.001, MeOH)

Elemental Analysis (C₂₆H₃₂N₂O₅S·0.1H₂O)

Calcd.(%): C, 64.20; H, 6.67; N, 5.76; S, 6.59

Found(%): C, 64.14; H, 6.65; N, 5.85; S, 6.86

40 Compound I-17

[0090] 300MHz ¹H-NMR(CDCl₃) δ : 1.20-1.31(3H, m), 1.40-1.47(2H, m), 1.57-1.80(4H, m), 2.00-2.30(5H, m), 2.37 (2H, t, J=6.9Hz), 2.60(1H, m), 3.84(1H, m), 5.32-5.50(2H, m), 6.32(2H, t, J=2.4Hz), 6.63(1H, d, J=6.6Hz), 7.16(2H, t, J=2.4Hz), 7.55(1H, t, J=8.0Hz), 7.89(1H, m), 8.06(1H, d, J=7.8Hz), 8,30(1H, t, J=1.7Hz). IR(CHCl₃): 3394, 3145, 1726, 1709, 1659, 1374 cm⁻¹.

 $[\alpha]_D^{25}+60.3\pm1.0^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₅H₃₀N₂O₅S·0.2H₂O)

Calcd.(%): C, 63.32; H, 6.46; N, 5.91; S, 6.76

Found(%): C, 63.39; H, 6.50; N, 6.16; S, 6.80

Compound I-18

[0091] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.20-1.32(2H, m), 1.45(2H, t, J=6.9Hz), 1.58-1.74(4H, m), 2.04-2.16 (5H, m), 2.28(3H, s), 2.35(2H, t, J=6.9Hz), 2.55(1H, m), 3.87(1H, m), 5.31-5.44(2H, m), 5.96(1H, m), 6.18(1H, t, J=3.3Hz), 6.32(1H, d, J=7.5Hz), 7.25(1H, dd, J=1.8 and 3.3Hz), 7.78 and 7.85(each 2H, each d, each J=8.7Hz). IR(CHCl₃): 3514, 3441, 1708, 1661, 1515, 1487, 1368, 1164 cm⁻¹. [α]_D²⁵+74.0±1.1° (c=1.004, MeOH)

Elemental Analysis ($C_{26}H_{32}N_2O_5S\cdot 0.2H_2O$)

Calcd.(%): C, 63.96; H, 6.69; N, 5.74; S, 6.57 Found(%): C, 63.97; H, 6.69; N, 5.98; S, 6.54

Compound I-19

5

[0092] 300MHz ¹H-NMR(CDCl₃) b: 1.07(1H, m), 1.18-1.31(2H, m), 1.41-1.49(2H, m), 1.56-1.76(4H, m), 2.00-2.21 (5H, m), 2.34(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 5.09(2H, s), 5.29-5.43(2H, m), 6.19(2H, t, J=2.1Hz), 6.25(1H, d, J=7.5Hz), 6.67(2H, t, J=2.1Hz), 7.13 and 7.70(each 2H, each d, each J=8.4Hz). IR(CHCl₃): 3517, 3446, 3103, 2667, 1708, 1653, 1523, 1497 cm⁻¹. [α]_D²⁵+57.7±1.0° (c=1.010, MeOH)

10 Elemental Analysis $(C_{26}H_{32}N_2O_3)$

Calcd.(%): C, 73.63; H, 7.70; N, 6.60

Found(%): C, 73.72; H, 7.77; N, 6.76

Compound I-20

15

[0093] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.15-1.30(2H, m), 1.36-1.45(2H, m), 1.55-1.72(4H, m), 2.00-2.14 (5H, m), 2.32(2H, t, J=7.2Hz), 2.51(1H, m), 3.82(1H, m), 5.28-5.42(2H, m), 6.22(2H, d, J=7.5Hz), 6.68(1H, d, J=3.6Hz), 7.22-7.34(2H, m), 7.52-7.55(2H, m), 7.76 and 7.88(each 2H, each d, each J=8.7Hz), 7.97(1H, d, J=8.1Hz). IR(CHCl₃): 3510, 3480, 3440, 3145, 3117, 1708, 1661, 1516, 1485, 1445, 1377, 1130 cm⁻¹.

 $[\alpha]_D^{25}+65.9\pm1.1^{\circ}$ (c=1.010, MeOH)

Elemental Analysis (C₂₉H₃₂N₂O₅S·0.3H₂O)

Calcd.(%): C, 66.21; H, 6.25; N, 5.33; S,6.10

Found(%): C, 66.34; H, 6.30; N, 5.63; S,5.84

25 Compound I-21

[0094] 300MHz ¹H-NMR(CDCl₃) δ : 1.13(1H, m), 1.20-1.31(2H, m), 1.44(2H, t, J=6.8Hz), 1.59-1.72(4H, m), 2.03-2.20 (5H, m), 2.32(2H, t, J=7.2Hz), 2.54(1H, m), 3.83(1H, m), 4.62(2H, s), 5.31-5.45(2H, m), 6.25-6.26(2H, m), 6.57(1H, d, J=7.2Hz), 7.25(1H, m), 7.81(4H, s).

IR(CHCl₃): 3581, 3518, 3440, 3149, 1708, 1660, 1517, 1486, 1371, 1150 cm⁻¹. $[\alpha]_D^{27}$ +72.2±1.1° (c=1.007, MeOH) Elemental Analysis (C₂₅H₃₂N₂O₆S)

Calcd.(%): C, 62.38; H, 6.44; N, 5.60; S,6.40

Found(%): C, 62.17; H, 6.52; N, 5.71; S,6.40

35 Compound I-22

[0095] 300MHz ¹H-NMR(d₆-DMSO) δ : 1.18-1.33(3H, m), 1.43-1.60(6H, m), 1.92-2.30(5H, m), 2.20(2H, t, J=7.5Hz), 2.38(1H, m), 3.67(1H, m), 5.30-5.36(2H, m), 6.85(1H, d, J=4.8Hz), 7.27(1H, d, J=4.8Hz), 7.86 and 7.94(each 2H, each d, each J=8.7Hz), 8.37(1H, d, J=6.9Hz).

40 IR(KBr): 3360, 3151, 3103, 1707, 1635, 1569, 1530, 1328, 1284, 1140 cm⁻¹. [α]_D²⁷+67.4±1.1° (c=1.007, DMSO)

Elemental Analysis (C₂₄H₂₉N₃O₅S₂·0.3H₂O)

Calcd.(%): C, 56.62; H, 5.86; N, 8.24; S,12.60

Found(%): C, 56.74; H, 5.96; N, 8.30; S,12.31

45 Compound I-23

[0096] mp.231-232°C

300MHz 1 H-NMR(d₆-DMSO) δ : 1.19-1.61(9H, m), 1.95-2.08(5H, m), 2.21(2H, t, J=7.2Hz), 2.40(1H, m), 3.71(1H, m), 5.34-5.37(2H, m), 7.31 and 7.59(each 1H, each d, each J=3.6Hz), 7.98 and 8.16(each 2H, each d, each J=8.7Hz), 8.41(1H, d, J=7.2Hz).

IR(KBr): 3336, 3185, 2541, 1675, 1631, 1548, 1324, 1295, 1163 cm⁻¹. $[\alpha]_D^{27}$ +84.5±1.3° (c=1.000, DMSO) Elemental Analysis ($C_{24}H_{29}N_3O_4S$)

Calcd.(%): C, 64.22; H, 6.25; N, 8.99; S,6.86

Found(%): C, 64.13; H, 6.10; N, 8.92; S,7.08

55

50

Compound I-24

[0097] 300MHz ¹H-NMR(CDCl₃) δ : 1.14(1H, m), 1.22-1.35(2H, m), 1.44-1.53(2H, m), 1.58-1.78(4H, m), 2.02-2.28

(5H, m), 2.36(2H, t, J=7.2Hz), 2.58(1H, m), 3.87(1H, m), 5.15-5.48(2H, m), 6.29 and 7.18(each 2H, each t, J=2.4Hz), 6.38(1H, d, J=7.2Hz), 7.77(1H, dd, J=1.8 and 8.7Hz), 7.82(1H, s), 7.91(1H, d, J=8.7Hz), 8.34(1H, d, J=1.8Hz). $IR(CHCl_3)$: 3512, 3441, 3423, 3144, 2670, 1708, 1530, 1501, 1374, 1164 cm⁻¹. [α]_D²⁶+96.1±1.4° (c=1.006, MeOH) Elemental Analysis (C₂₇H₃₀N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 61.16; H, 5.78; N, 5.28; S, 12.09 5 Found(%): C, 61.17; H, 5.74; N, 5.35; S, 12.12

Compound I-25

[0098] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.17-1.31(2H, m), 1.39-1.48(2H, m), 1.56-1.77(4H, m), 1.99-2.20 10 (5H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.84(1H, m), 5.29-5.42(2H, m), 6.20(1H, d, J=7.2Hz), 7.10-7.17(3H, m), 7.32(1H, dd, J=1.2 and 3.6Hz), 7.54(1H, dd, J=1.2 and 5.4Hz), 7.60-7.64(2H, m). IR(CHCl₃): 3518, 3447, 2669, 1708, 1651, 1596, 1515, 1483 cm⁻¹.

 $[\alpha]_D^{26}$ +84.7±1.2° (c=1.003, MeOH)

Elemental Analysis (C₂₅H₂₉NO₃S₂·0.1H₂O)

Calcd.(%): C, 65.64; H, 6.43; N, 3.06; S, 14.02

Found(%): C, 65.58; H, 6.41; N, 3.10; S, 13.82

Compound I-26

20

[0099] 300MHz ¹H-NMR(CDCl₃) δ :1.13(1H, m), 1.20-1.33(2H, m), 1.41-1.50(2H, m), 1.56-1.77(4H, m), 2.00-2.21 (5H, m), 2.37(2H, t, J=7.2Hz), 2.55(1H, m), 3.87(1H, m), 5.31-5.45(2H, m), 6.48(1H, d, J=7.2Hz), 7.10(1H, dd, J=3.9) and 5.1Hz), 7.68(1H, dd, J=1.2 and 5.1Hz), 7.69(1H, dd, J=1.2 and 3.9Hz), 7.84-7.88 and 7.95-7.99(each 2H, each m). IR(CHCl₃): 3518, 3441, 3382, 1708, 1659, 1515, 1329, 1158 cm⁻¹.

 $[\alpha]_D^{26} + 75.7 \pm 1.2^{\circ} \text{ (c=1.000, MeOH)}$ 25

Elemental Analysis (C₂₅H₂₉NO₅S₂)

Calcd.(%): C, 61.58; H, 5.99; N, 2.87; S, 13.15

Found(%): C, 61.36; H, 6.05; N, 2.91; S, 13.13

Compound I-27 30

[0100] mp.213-215°C

300MHz ¹H-NMR(d₆-DMSO) δ : 1.18-1.61(9H, m), 1.95-2.10(5H, m), 2.21(2H, t, J=7.5Hz), 2.40(1H, m), 3.71(1H, m), 5.33-5.38(2H, m), 7.19(1H, m), 7.87(1H, m), 7.96 and 8.10(each 2H, each d, each J=8.2Hz), 8.21(1H, d, J=8.6Hz), 8.40(1H, m), 10.92(1H, s), 12.05(1H, brs).

IR(Nujol): 3337, 3249, 3205, 3132, 2524, 1678, 1632, 1545, 1433, 1305 cm⁻¹. $[\alpha]_D^{23}$ +85.2±2.5° (c=0.505, MeOH) Elemental Analysis (C₂₇H₃₁N₃O₄·0.3H₂O)

Calcd.(%): C, 69.72; H, 6.80; N, 9.03

Found(%): C, 69.76; H, 6.75; N, 8.76

40

45

35

Compound I-28

[0101] 300MHz ¹H-NMR(CDCl₃) δ :1.07(1H, m), 1.18-1.32(2H, m), 1.40-1.50(2H, m), 1.56-1.78(4H, m), 2.00-2.21 (5H, m), 2.34(2H, t, J=7.2Hz), 2.54(1H, m), 3.85(1H, m), 5.29-5.42(2H, m), 6.17(1H, d, J=6.9Hz), 7.07(1H, dd, J=1.2 and 5.1Hz), 7.15(2H, dJ=8.7Hz), 7.43(1H, dd, J=3.0 and 5.1Hz), 7.51(1H, dd, J=1.2 and 3.0Hz), 7.62(2H, d, J=8.7Hz). $IR(CHCl_3): 3510, 3447, 3110, 2666, 1708, 1651, 1596, 1515, 1482 cm⁻¹. [<math>\alpha$]_D²⁷+85.9±1.3° (c=1.007, MeOH) Elemental Analysis (C₂₅H₂₉NO₃S₂)

Calcd.(%): C, 65.90; H, 6.42; N, 3.07; S, 14.07

Found(%): C, 65.60; H, 6.36; N, 3.36; S, 13.86

50

Compound I-29

[0102] mp.123-125°C

300MHz 1 H-NMR(CDCl₃) δ : 1.12(1H, m), 1.18-1.34(2H, m), 1.42-1.50(2H, m), 1.56-1.78(4H, m), 2.02-2.21(5H, m), 2.35(2H, t, J=7.2Hz), 2.55(1H, m), 3.88(1H, m), 5.31-5.45(2H, m), 6.42(1H, d, J=6.0Hz), 7.31(1H, d, J=5.1Hz), 7.40 55 (1H, dd, J=3.0 and 5.1Hz), 7.87 and 7.96(each 2H, each d, each J=8.7Hz), 8.11(1H, d, J=3.0Hz). IR(Nujol): 3286, 3108, 2671, 1701, 1641, 1546, 1327, 1156 cm⁻¹. $[\alpha]_D^{27}$ +75.3±1.2° (c=1.004, MeOH)

Elemental Analysis (C₂₅H₂₉NO₅S₂) Calcd.(%): C, 61.58; H, 5.99; N, 2.87; S, 13.15 Found(%): C, 61.39; H, 5.94; N, 3.02; S, 12.99

Compound I-30 5

> **[0103]** 300MHz ¹H-NMR(CDCl3) δ : 1.12(1H, m), 1.23-1.34(2H, m), 1.43-1.52(2H, m), 1.58-1.79(4H, m), 2.02-2.24 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.87(1H, m), 5.32-5.45(2H, m), 6.11(1H, d, J=3.6Hz), 6.28(1H, d, J=7.5Hz), 6.35 and 7.09(each 2H, each t, each J=2.1Hz), 7.16(1H, d, J=3.6Hz).

IR(CHCl₃): 3512, 3438, 3142, 1741, 1709, 1653, 1623, 1564, 1508 cm⁻¹. 10

 $[\alpha]_D^{25}$ +102.4±1.4° (c=1.006, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₄·0.2H₂O)

Calcd.(%): C, 69.05; H, 7.15; N, 7.00

Found(%): C, 69.12; H, 7.10; N, 6.95

15

20

Compound I-31

[0104] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.08-1.28(2H, m), 1.41-1.46(2H, m), 1.55-1.78(4H, m), 1.99-2.16 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.81(1H, m), 4.13(2H, s), 5.29-5.42(2H, m), 5.96(1H, d, J=8.1Hz), 6.77 (1H, ddd, J=0.9, 0.9 and 3.9Hz), 7.20-7.35(5H, m), 7.37(1H, d, J=3.9Hz).

IR(CHCl₃): 3511, 3445, 2670, 1708, 1642, 1544, 1507, 1455 cm⁻¹.

 $[\alpha]_D^{26}+67.1\pm1.1^{\circ}$ (c=1.015, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S)

Calcd.(%): C, 71.36; H, 7.14; N, 3.20; S, 7.33

Found(%): C, 71.19; H, 7.16; N, 3.34; S, 7.26 25

Compound I-32

[0105] 300MHz ¹H-NMR(CDCl₃) δ : 1.22-1.85(9H, m), 1.95-2.53(7H, m), 2.66(1H, m), 3.84(1H, m), 5.37-5.60(2H, m), 6.79(1H, d, J=6.0Hz), 7.01-7.17(5H, m), 7.83(1H, dd, J=1.5 and 8.7Hz), 7.53(1H, d, J=8.7Hz), 7.89(1H, s), 8.35 30 (1H, s), 8.83(1H, d, J=1.5Hz).

IR(CHCl₃): 3509, 3437, 3364, 3209, 1710, 1634, 1495, 1344, 1158 cm⁻¹.

 $[\alpha]_D^{26}$ +36.6±0.8° (c=1.005, MeOH)

Elemental Analysis (C₂₉H₃₂N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 62.61; H, 5.87; N, 5.04; S, 11.53 35

Found(%): C, 62.53; H, 5.87; N, 5.21; S, 11.42

Compound I-33

[0106] 300MHz ¹H-NMR(CDCl₃) δ : 1.13(1H, m), 1.20-1.37(2H, m), 1.46-1.56(2H, m), 1.60-1.80(4H, m), 2.02-2.28 40 (5H, m), 2.38(2H, t, J=7.2Hz), 2.64(1H, m), 3.94(1H, m), 5.35.5.50(2H, m), 6.21(1H, d, J=7.2Hz), 6.28 and 7.21(each 2H, each t, each J=2.4Hz), 7.81(1H, dd, J=1.8 and 8.7Hz), 7.91(1H, d, J=8.7Hz), 7.99(1H, s), 8.97(1H, d, J=1.8Hz). IR(CHCl₃): 3513, 3438, 3144, 3096, 1708, 1656, 1518, 1374 cm⁻¹. $[\alpha]_D^{26}$ +40.1±0.8° (c=1.010, MeOH) Elemental Analysis (C₂₇H₃₀N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 61.16; H, 5.78; N, 5.28; S,12.09 45

Found(%): C, 61.16; H, 5.76; N, 5.43; S, 12.05

Compound I-34

[0107] 300MHz ¹H-NMR(CDCl₃) δ : 1.18-1.35(3H, m), 1.40-1.48(2H, m), 1.57-1.79(4H, m), 1.99-2.21(5H, m), 2.37 50 (2H, t, J=7.2Hz), 2.50(1H, m), 3.80(1H, m), 5.32-5.47(2H, m), 6.38(2H, t, J=2.4Hz), 6.54(1H, d, J=7.5Hz), 7.12 and 7.13(each 1H, each d, each J=3.6Hz), 7.20(2H, t, J=2.4Hz).

IR(CHCl₃): 3512, 3433, 3144, 2686, 1708, 1669, 1591, 1528, 1475, 1457, 1394 cm⁻¹.

 $[\alpha]_D^{26}$ +74.3±1.1° (c=1.007, MeOH) 55

Elemental Analysis (C₂₃H₂₈N₂O₅S)

Calcd.(%): C, 59.98; H, 6.13; N, 6.08; S, 6.96

Found(%): C, 59.71; H, 6.22; N, 6.10; S, 7.02

Compound I-35

[0108] mp. 102-103°C

300MHz 1 H-NMR(CDCl $_3$) δ : 1.05(1H, m), 1.18-1.30(2H, m), 1.38-1.48(2H, m), 1.55-1.78(4H, m), 1.99-2.19(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 5.20(2H, d, J=0.9Hz), 5.30-5.42(2H, m), 5.99(1H, d, J=7.2Hz), 6.20 and 6.71 (each 2H, each t, each J=2.1Hz), 6.86(1H, td, J=0.9 and 3.9Hz), 7.37(1H, d, J=3.9Hz).

IR(Nujol): 3393, 3093, 6064, 2669, 1704, 1616, 1523, 1522 cm⁻¹.

 $[\alpha]_D^{26}$ +71.1±1.1° (c=1.005, MeOH)

Elemental Analysis (C₂₄H₃₀N₂O₃S)

10 Calcd.(%): C, 67.58; H, 7.09; N, 6.57; S, 7.52

Found(%): C, 67.45; H, 7.09; N, 6.58; S, 7.67

Compound I-36

[0109] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.18.1.31(2H, m), 1.40-1.48(2H, m), 1.56-1.78(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.82(1H, m), 5.31-5.43(2H, m), 6.02(1H, d, J=7.2Hz), 7.15 and 7.44 (each 1H, each d, each J=3.9Hz), 7.20-7.33(5H, m).

IR(CHCl₃): 3511, 3444, 3426, 3031, 2665, 1708, 1646, 1530, 1499, 1477, 1421, 1318 cm⁻¹.

 $[\alpha]_D^{26}$ +74.8±1.1° (c=1.004, MeOH)

20 Elemental Analysis (C₂₅H₂₉NO₃S₂)

Calcd.(%): C, 65.90; H, 6.42; N, 3.07; S, 14.07

Found(%): C, 65.61; H, 6.40; N, 3.19; S, 14.18

Compound I-37

25

40

[0110] 300MHz ¹H-NMR(CDCl₃) δ :1.09(1H, m), 1.17-1.31(2H, m), 1.38-1.47(2H, m), 1.54-1.74(4H, m), 2.00-2.17 (5H, m), 2.34(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 5.30-5.43(2H, m), 6.27(1H, d, J=7.2Hz), 7.41(1H, d, J=4.2Hz), 7.51-7.64(4H, m), 7.98(2H, m).

IR(CHCl₃): 3515, 3442, 3366, 1708, 1656, 1530, 1504, 1327, 1156 cm⁻¹.

 α_{D}^{26} α_{D}^{26} α_{D}^{26} α_{D}^{26} α_{D}^{26} α_{D}^{26} α_{D}^{26} α_{D}^{26}

Elemental Analysis (C₂₅H₂₉NO₅S₂·0.2H₂O)

Calcd.(%): C, 61.13; H, 6.03; N, 2.85; S, 13.05

Found(%): C, 60.94; H, 6.02; N, 2.86; S, 13.12

35 Compound I-38

[0111] mp.163-165°C

300MHz 1 H-NMR(CDCl₃) δ : 1.24-1.43(3H, m), 1.52-1.87(8H, m), 2.10(1H, d, J=3.0Hz), 2.30-2.55(4H, m), 2.71(1H, m), 3.66(1H, m), 5.38 and 5.63(each 1H, each m), 7.13(1H, d, J=1.5Hz), 7.34(1H, d, J=5.4Hz), 7.49-7.60(3H, m), 7.86-7.89(2H, m), 8.49(1H, s), 8.69(1H, d, J=1.5Hz).

IR(KBr): 3367, 3261, 3090, 1726, 1645, 1618, 1589, 1577, 1535, 1513, 1426, 1396, 1289, 1197 cm⁻¹.

 $[\alpha]_D^{23}$ +84.5±1.2° (c=1.006, MeOH)

Elemental Analysis (C₂₆H₃₀N₂O₄S)

Calcd.(%): C, 66.93; H, 6.48; N, 6.00; S, 6.87

45 Found(%): C, 66.97; H, 6.36; N, 6.01; S, 6.89

Compound I-39

[0112] 300MHz 1 H-NMR(CDCl₃) δ : 1.25-1.80(9H, m), 1.87-2.05(3H, m), 2.14-2.29(2H, m), 2.37(2H, t, J=6.9Hz), 2.57 (1H, m), 3.73(1H, m), 5.35 and 5.49(each 1H, each m), 6.71(1H, d, J=6.6Hz), 6.87(1H, d, J=1.5Hz), 7.43-7.48(2H, m), 7.56(1H, m), 7.63(1H s), 7.64((1H, j, J=1.5Hz), 7.73-7.76(2H, m).

IR(CHCl₃): 3510, 3379, 3247, 3108, 1709, 1637, 1556, 1516, 1448, 1365, 1319, 1161 cm⁻¹.

 $[\alpha]_D^{23}$ +61.1±1.0° (c=1.004, MeOH)

Elemental Analysis (C₂₅H₃₀N₂O₅S₂·0.2H₂O)

⁵⁵ Calcd.(%): C, 59.31; H, 6.05; N, 5.53; S, 12.67

Found(%): C, 59.38; H, 6.11; N, 5.75; S, 12.41

Compound I-40

5

[0113] 300MHz ¹H-NMR(CDCl₃) δ : 1.11(1H, m), 1.24-1.31(2H, m), 1.44-1.52(2H, m), 1.60-1.79(4H, m), 2.00-2.21 (5H, m), 2.37(2H, t, J=7.2Hz), 2.56(1H, m), 3.86(1H, m), 5.32-5.46(2H, m), 6.11(1H, d, J=7.8Hz), 7.25 and 7.49(each 1H, each d, each J=4.2Hz), 7.30-7.43(3H, m), 7.60-7.63(2H, m).

IR(CHCl₃): 3510, 3445, 3428, 1739, 1708, 1643, 1540, 1510, 1491, 1454 cm⁻¹.

 $[\alpha]_D^{35} + 88.0 \pm 1.3^{\circ} \text{ (c=1.012, MeOH)}$

Elemental Analysis (C₂₅H₂₉NO₃S-0.2H₂O)

Calcd.(%): C, 70.29; H, 6.94; N, 3.28; S, 7.51

10 Found(%): C, 70.35; H, 7.01; N, 3.59; S, 7.46

Compound I-41

[0114] 300MHz ¹H-NMR(CDCl₃) δ : 1.13(1H, m), 1.22-1.32(2H, m), 1.46-1.51(2H, m), 1.60-1.76(4H, m), 2.04-2.17 (5H, m), 2.36(2H, t, J=7.2Hz), 2.57(1H, m), 3.86(1H, m), 5.32-5.46(2H, m), 6.30(1H, d, J=8.4Hz), 7.48-7.65(5H, m), 7.84-7.88(2H, m). IR(CHCl₃): 3511, 3443, 3425, 1708, 1643, 1529, 1506, 1448 cm⁻¹. [α]_D²⁵+92.4±1.3° (c=1.000, MeOH)

Elemental Analysis (C₂₆H₂₉NO₄S₂·0.2H₂O)

Calcd.(%): C, 68.61; H, 6.51; N, 3.08; S, 7.04

20 Found(%): C, 68.55; H, 6.52; N, 3.13; S, 7.03

Compound I-42

[0115] 300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.27-1.31(2H, m), 1.49(2H, brs), 1.59-1.80(4H, m), 2.00-2.20(5H, m), 2.36(2H, t, J=7.2Hz), 2.55(1H, m), 3.85(1H, m), 5.31-5.45(2H, m), 6.14(1H, d, J=7.2Hz), 7.13(1H, d, J=3.9Hz), 7.30(1H, dd, J=1.2 and 5.1Hz), 7.36(1H, dd, J=3.0 and 5.1Hz), 7.45-7.46(2H, m).

 $IR(CHCl_3): 3511, 3445, 3428, 3109, 1708, 1642, 1523, 1499, 1456 \ cm^{-1}. \ [\alpha]_D^{25} + 82.9 \pm 1.2^{\circ} \ (c=1.006, MeOH)$

Elemental Analysis (C₂₃H₂₇NO₃S₂·0.1H₂O)

Calcd.(%): C, 64.04; H, 6.36; N, 3.25; S, 14.86

30 Found(%): C, 63.99; H, 6.52; N, 3.23; S, 14.85

Compound I-43

[0116] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.22-1.31(2H, m), 1.46-1.51(2H, m), 1.60-1.80(4H, m), 2.03-2.22 (5H, m), 2.37(2H, t, J=7.2Hz), 2.55(1H, m), 3.85(1H, m), 5.32-5.45(2H, m), 6.07(1H, d, J=7.5Hz), 7.04(1H, dd, J=3.6 and 5.4Hz), 7.11(1H, d, J=3.9Hz), 7.24(1H, dd, J=1.2 and 3.6Hz), 7.28(1H, dd, J=1.2 and 5.4Hz), 7.42(1H, d J=3.9Hz). IR(CHCl₃): 3511, 3445, 3428, 3113, 3073, 2667, 1708, 1643, 1521, 1498, 1455 cm⁻¹. [α]_D²⁵+89.5±1.3° (c=1.005, MeOH)

Elemental Analysis (C₂₃H₂₇NO₃S₂·0.1H₂O)

40 Calcd.(%): C, 64.04; H, 6.36; N, 3.25; S, 14.86

Found(%): C, 63.93; H, 6.39; N, 3.46; S, 14.61

Compound I-44

45 **[0117]** mp.146-147°C

300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.24-1.31(2H, m), 1.46-1.51(2H, m), 1.61-1.82(4H, m), 2.00-2.24(5H, m), 2.37(2H, t, J=7.2Hz), 2.37(3H, s), 2.56(1H, m), 3.85(1H, m), 5.31-5.45(2H, m), 6.06(1H, d, J=6.9Hz), 7.20 and 7.51 (each 2H, each d, each J=9.0Hz), 7.21 and 7.48(each 1H, each d, each J=3.9Hz). IR(CHCl₃): 3517, 3445, 3428, 1740, 1708, 1642, 1542, 1518, 1498, 1451 cm⁻¹. [α]_D²⁶+89.3±1.3° (c=1.009, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S)

Calcd.(%): C, 71.36; H, 7.14; N, 3.20; S, 7.33

Found(%): C, 71.51; H, 7.10; N, 3.20; S, 7.33

Compound I-45

[**0118**] mp.110-116°C

55

300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.24-1.31(2H, m), 1.46-1.51(2H, m), 1.61-1.83(4H, m), 2.00-2.25(5H, m), 2.37(2H, t, J=7.2Hz), 2.56(1H, m), 3.84(3H, s), 3.85(1H, m), 5.31-5.45(2H, m), 6.04(1H, d, J=7.5Hz), 6.93 and 7.55

(each 2H, each d, each J=8.7Hz), 7.15 and 7.46(each 2H, each d, each J=4.2Hz). IR(CHCl₃): 3515, 3445, 3428, 1740, 1708, 1640, 1608, 1541, 1499, 1453, 1178 cm⁻¹.

 $[\alpha]_D^{26} + 88.0 \pm 1.3^{\circ} \text{ (c=1.010, MeOH)}$

Elemental Analysis (C₂₆H₃₁NO₄S)

5 Calcd.(%): C, 68.85; H, 6.89; N, 3.09; S, 7.07

Found(%): C, 68.87; H, 6.82; N, 3.11; S, 7.19

Compound I-46

10 **[0119]** mp.124-125°C

300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.24-1.32(2H, m), 1.46-1.51(2H, m), 1.61-1.82(4H, m), 2.00-2.24(5H, m), 2.37(2H, t, J=7.2Hz), 2.56(1H, m), 3.85(1H, m), 5.32-5.45(2H, m), 6.06(1H, d, J=7.2Hz), 7.10(2H, t, J=8.7Hz), 6.19 and 7.47(each 1H, each d, each J=3.6Hz), 7.56-5.60(2H, m).

IR(CHCl₃): 3516, 3445, 3428, 2672, 1740, 1708, 1643, 1542, 1519, 1498, 1452 cm⁻¹.

 $[\alpha]_D^{26} + 83.3 \pm 1.2^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis (C₂₅H₂₈FNO₃S)

Calcd.(%): C, 68.00; H, 6.39; N, 3.17; F, 4.30; S, 7.26

Found(%): C, 67.90; H, 6.34; N, 3.25; F, 4.31; S, 7.20

20 Compound I-47

25

30

[0120] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.18-1.32(2H, m), 1.38-1.48(2H, m), 1.56-1.76(4H, m), 2.00-2.18 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.81(1H, m), 5.31-5.43(2H, m), 6.32(1H, d, J=7.5Hz), 7.11(1H, dd, J=3.9 and 5.1Hz), 7.42 and 7.62(each 1H, each d, each J=3.9Hz), 7.70(1H, dd, J=1.5 and 5.1Hz), 7.74(1H, dd, J=1.5 and 3.9Hz).

 $IR(CHCl_3): 3516, 3442, 3378, 1708, 1655, 1530, 1504, 1336, 1153 \text{ cm}^{-1}. \ [\alpha]_D^{25} + 74.3 \pm 1.1^{\circ} \ (c=1.000, MeOH)$

Elemental Analysis (C₂₃H₂₇NO₅S₃·0.1H₂O)

Calcd.(%): C, 55.76; H, 5.53; N, 2.83; S, 19.41

Found(%): C, 55.49; H, 5.64; N, 3.09; S, 19.32

Compound I-48

[0121] mp.112-115°C

300MHz 1 H-NMR(CDCl₃) δ : 1.13-1.30(3H, m), 1.34-1.45(2H, m), 1.50-1.82(4H, m), 1.94-2.27(5H, m), 2.34(2H, t, J=7.2Hz), 2.56(1H, m), 3.74(1H, m), 5.22(2H, s), 5.31-5.50(2H, m), 6.64(1H, d, J=6.6Hz), 6.84(1H, d, J=3.9Hz), 6.93 and 7.05(each 1H, each s), 7.47(1H, d, J=3.9Hz), 7.66(1H, s).

IR(Nujol): 3339, 3102, 2464, 1691, 1635, 1622, 1551, 1288 cm⁻¹.

 $[\alpha]_D^{25}$ +71.2±1.1° (c=1.005, MeOH)

Elemental Analysis (C₂₃H₂₉N₃O₃S)

40 Calcd.(%): C, 64.61; H, 6.84; N, 9.83; S, 7.50

Found(%): C, 64.54; H, 6.85; N, 9.78; S, 7.42

Compound I-49

[0122] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.16-1.30(2H, m), 1.38-1.47(2H, m), 1.54-1.77(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.52(1H, m), 3.79(1H, m), 5.30-5.42(2H, m), 5.47(2H, s), 6.16(1H, d, J=6.9Hz), 6.30 (1H, t, J=2.1Hz), 6.94 and 7.41(each 1H, each d, each J=3.6Hz), 7.47 and 7.57(each 1H, each d, each J=2.1Hz). IR(CHCl₃): 3510, 3444, 3426, 1709, 1646, 1546, 1512 cm⁻¹.

 $[\alpha]_D^{25}+68.6\pm1.1^{\circ}$ (c=1.011, MeOH)

Elemental Analysis ($C_{23}H_{29}N_3O_3S\cdot 0.1H_2O$)

Calcd.(%): C, 64.34; H, 6.85; N, 9.79; S, 7.47

Found(%): C, 64.10; H, 6.93; N, 9.90; S, 7.52

Compound I-50

55

[0123] mp.126-128°C

300MHz 1 H-NMR(CDCl₃) δ : 1.12(1H, m), 1.18-1.33(2H, m), 1.40-1.50(2H, m), 1.55-1.78(4H, m), 2.00.2.21(5H, m), 2.54(1H, m), 3.87(1H, m), 5.30-5.44(2H, m), 6.43(1H, d, J=6.6Hz), 7.48-7.62(3H, m), 7.83-7.95(5H, m).

```
IR(Nujol): 3284, 3058, 2669, 1701, 1641, 1546, 1326, 1294, 1160 cm<sup>-1</sup>. [\alpha]_D^{25}+77.2±1.2° (c=1.007, MeOH)
Elemental Analysis (C<sub>27</sub>H<sub>31</sub>NO<sub>5</sub>S)
Calcd.(%): C, 67.34; H, 6.49; N, 2.91; S, 6.66
Found(%): C, 67.20; H, 6.38; N, 2.88; S, 6.58
Compound I-51
[0124] mp.103-107°C
300MHz ^{1}H-NMR(CDCl<sub>3</sub>) \delta: 1.14(1H, m), 1.18-1.33(2H, m), 1.40-1.50(2H, m), 1.54-1.77(4H, m), 2.00-2.20(5H, m),
2.34(2H, t, J=7.2Hz), 2.54(1H, m), 3.85(3H, s), 3.86(1H, m), 5.30-5.45(2H, m), 6.48(1H, d, J=6.9Hz), 6.96(2H, m),
7.81-7.91(6H, m).
IR(Nujol): 3273, 3067, 2669, 1702, 1639, 1560, 1548, 1323, 1301, 1274, 1156 cm<sup>-1</sup>.
[\alpha]_D^{25}+75.4±1.2° (c=1.002, MeOH)
Elemental Analysis (C<sub>28</sub>H<sub>33</sub>NO<sub>6</sub>S)
Calcd.(%): C, 65.73; H, 6.50; N, 2.74; S, 6.27
Found(%): C, 65.50; H, 6.46; N, 2.82; S, 6.25
Compound I-52
[0125] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.17(1H, m), 1.26-1.34(2H, m), 1.47-1.53(2H, m), 1.60-1.76(4H, m), 2.04-2.21
(5H, m), 2.36(2H, t, J=7.2Hz), 2.60(1H, m), 3.91(1H, m), 5.32-5.47(2H, m), 6.46(1H, d, J=8.4Hz), 7.17(1H, dd, J=3.9
and 5.1Hz), 7.61(1H, dd, J=1.2 and 3.9Hz), 7.76(1H, dd, J=1.2 and 5.1Hz), 7.87(4H, s-like). IR(CHCl<sub>3</sub>): 3518, 3444,
2663, 1708, 1638, 1517, 1494, 1414 cm<sup>-1</sup>. [\alpha]_D^{25}+86.6±1.3° (c=1.008, MeOH)
Elemental Analysis (C<sub>26</sub>H<sub>29</sub>NO<sub>4</sub>S)
Calcd.(%): C, 69.15; H, 6.47; N, 3.10; S, 7.10
Found(%): C, 68.86; H, 6.70; N, 3.15; S, 6.95
Compound I-53
[0126] mp.144-145°C
300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.20-2.54(16H, m), 2.62(1H, m), 3.69(3H, s), 5.35-5.56(2H, m), 6.36 and 7.17(each 2H,
each t, each J=2.4Hz), 6.66(1H, d, J=6.3Hz), 8.05 and 8.07(each 1H, each d, each J=1.5Hz).
IR(Nujol): 3509, 3406, 3146, 3110, 1728, 1708, 1653, 1535, 1375, 1189, 1166 cm<sup>-1</sup>.
[\alpha]_D^{25}+67.9\pm1.1^{\circ} (c=1.007, MeOH)
Elemental Analysis (C<sub>23</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub>)
Calcd.(%): C, 57.96; H, 5.92; N, 5.88; S, 13.45
Found(%): C, 58.19; H, 5.95; N, 5.75; S, 13.09
Compound I-54
[0127] 300\text{MHz} <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.22-2.57(16H, m), 2.68(1H, m), 3.66(3H, s), 5.37-5.63(2H, m), 6.20, 6.35, 6.74
and 6.87(each 2H, each t, each J=2.4Hz), 6.92(1H, d, J=5.4Hz), 8.27(1H, s).
IR(CHCl3): 3402, 3143, 3108, 1725, 1710, 1650, 1516, 1375 cm<sup>-1</sup>. [\alpha]_D^{26}+70.0±1.1° (c=1.006, MeOH)
Elemental Analysis (C27H31N3O5S2·0.3H2O)
Calcd.(%): C, 59.28; H, 5.82; N, 7.68; S, 11.72
Found(%): C, 59.28; H, 5.77; N, 5.58; S, 11.68
Compound I-55
```

[0128] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.18-1.31(2H, m), 1.40-1.45(2H, m), 1.57-1.74(4H, m), 2.00-2.10 (5H, m), 2.35(2H, t, J=7.2Hz), 2.38(3H, s), 2.52(1H, m), 3.80(1H, m), 5.31-5.43(2H, m), 5.99(1H, m), 6.20(1H, t, J=3.3Hz), 6.30(1H, d, J=6.9Hz), 7.18(1H, dd, J=1.8 and 3.3Hz), 7.40 and 7.53(each 1H, each d, each J=3.9Hz). IR(CHCl₃): 3513, 3442, 3149, 3100, 1708, 1657, 1530, 1504, 1375, 1183, 1161 cm⁻¹. [α]_D²⁷+70.3±1.5° ° (c=0.730, MeOH)

Elemental Analysis (C₂₄H₃₀N₂O₅S₂·0.4H₂O)
 Calcd.(%): C, 57.90; H, 6.24; N, 5.63; S, 12.88
 Found(%): C, 58.08; H, 6.28; N, 5.77; S, 12.54

5

15

20

25

30

35

40

Compound I-56

5

[0129] 300MHz ¹H-NMR(d₆-DMSO) δ : 1.06-1.59(9H, m), 1.93-2.07(5H, m), 2.21(2H, t, J=7,2Hz), 2.35(1H, m), 3.65 (1H, m), 5.30-5.41(2H, m), 6.90 and 7.69(each 1H, each d, each J=4.2Hz), 7.55-7.64(3H, m), 7.99-8.04(3H, m), 11.73 (1H, s), 12.01(1H, brs).

IR(KBr): 3562, 1708, 1616, 1564, 1523, 1454, 1295 cm⁻¹.

 $[\alpha]_D^{27}$ +71.2±1.1° (c=1.000, MeOH)

Elemental Analysis (C₂₆H₃₀N₂O₄S·0.2H₂O)

Calcd.(%): C, 66.42; H, 6.52; N, 5.96; S, 6.82

10 Found(%): C, 66.43; H, 6.32; N, 6.17; S, 6.75

Compound I-57

[0130] 300MHz 1 H-NMR(d₆-DMSO) δ : 1.05-1.56(9H, m), 1.91-2.05(5H, m), 2.19(2H, t, J=7.2Hz), 2.29(1H, m), 3.56 (1H, m), 5.28-5.38(2H, m), 6.54 and 7.56(each 1H, each d, each J=4.2Hz), 7.59-7.62(3H, m), 7.76-7.79(2H, m), 8.06 (1H, d, J=6.9Hz), 11.10(1H, s), 11.99(1H, brs).

IR(KBr): 3384, 3084, 1707, 1616, 1553, 1523, 1459, 1350, 1322, 1161 cm⁻¹. $[\alpha]_D^{27}$ +62.4±1.0° (c=1.005, MeOH) Elemental Analysis ($C_{25}H_{30}N_2O_5S_2\cdot0.2H_2O$)

Calcd.(%): C, 59.31; H, 6.05; N, 5.53; S, 12.66

20 Found(%): C, 59.36; H, 5.75; N, 5.55; S, 12.38

Compound I-58

[0131] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.17-1.33(2H, m), 1.36-1.50(2H, m), 1.54-1.75(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.45(3H, s), 2.52(1H, m), 3.80(1H, m), 5.31-5.43(2H, m), 6.12(1H, d, J=7.5Hz), 6.32 and 7.18(each 2H, each t, each J=2.4Hz), 7.22(1H, s).

IR(CHCl₃): 3316, 3442, 3145, 2668, 1708, 1657, 1545, 1509, 1455, 1375, 1190, 1165, 1057 cm⁻¹.

 $[\alpha]_D^{26}$ +75.8±1.2° (c=1.002, MeOH)

Elemental Analysis (C₂₄H₃₀N₂O₅S₂·0.1H₂O)

Calcd.(%): C, 58.54; H, 6.18; N, 5.69; S, 13.02

Found(%): C, 58.35; H, 6.29; N, 6.74; S, 12.92

Compound I-59

[0132] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.16-1.30(2H, m), 1.38-1.48(2H, m), 1.53-1.79(4H, m), 1.98-2.17 (5H, m), 2.34(2H, t, J=7.2Hz), 2.50(1H, m), 3.79(1H, m), 5.30-5.42(2H, m), 6.00(1H, d, J=7.5Hz), 7.01(1H, dd, J=3.6 and 5.4Hz), 7.03(1H, d, J=3.9Hz), 7.29(1H, dd, J=1.2 and 3.6Hz), 7.33(1H, d, J=3.9) 7.43(1H, dd, J=1.2 and 5.4Hz). IR(CHCl₃): 3517, 3444, 3426, 2670, 1708, 1645, 1530, 1499, 1421, 1318 cm⁻¹. [α]_D²⁶+70.8±1.1° (c=1.018, MeOH)

40 Elemental Analysis (C₂₃H₂₇NO₃S₃)

Calcd.(%): C, 59.84; H, 5.89; N, 3.03; S, 20.84

Found(%): C, 59.73; H, 5.99; N, 3.15; S, 20.70

Compound I-60

45

[0133] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.17-1.32(2H, m), 1.40-1.50(2H, m), 1.56-1.80(4H, m), 1.99-2.21 (5H, m), 2.34(2H, t, J=7.2Hz), 2.54(1H, m), 3.85(1H, m), 5.29-5.42(2H, m), 6.20(1H, d, J=6.9Hz), 7.23-7.45(7H, m), 7.55(2H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3447, 2667, 1708, 1651, 1596, 1514, 1481 cm⁻¹.

 $[\alpha]_D^{26} + 89.1 \pm 1.3^{\circ} \text{ (c=1.006, MeOH)}$

Elemental Analysis (C₂₇H₃₁NO₃S·0.2H₂O)

Calcd.(%): C, 71.56; H, 6.98; N, 3.09; S, 7.07

Found(%): C, 71.39; H, 6.97; N, 3.16; S, 6.94

55 Compound I-61

[0134] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.31(2H, m), 1.41-1.50(2H, m), 1.55-1.80(4H, m), 1.99-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 5.31-5.43(2H, m), 5.97(1H, d, J=6.6Hz), 6.45(1H, d, J=4.2Hz),

7.11-7.20(3H, m), 7.28(1H, d, J=4.2Hz), 7.33-7.40(2H, m). IR(CHCl₃): 3515, 3445, 3427, 2667, 1740, 1708, 1640, 1506, 1475 cm⁻¹. $[\alpha]_D^{27}$ +71.3±1.1° (c=1.002, MeOH)

Elemental Analysis ($C_{25}H_{29}NO_4S$)

5 Calcd.(%): C, 68.31; H, 6.65; N, 3.19; S, 7.29

Found(%): C, 68.41; H, 6.87; N, 3.22; S, 7.35

Compound I-62

[0135] 300MHz ¹H-NMR(CDCl₃) δ : 1.14(1H, m), 1.20-1.35(2H, m), 1.42-1.54(2H, m), 1.57-1.77(4H, m), 2.00-2.23 (5H, m), 2.35(2H, t, J=7.2Hz), 2.58(1H, m), 3.88(1H, m), 5.32-5.46(2H, m), 6.31 and 7.19(each 2H, each t, each J=2.4Hz), 6.33(1H, d, J=7.5Hz), 7.77(1H, dd, J=1.8 and 8.4Hz), 7.77(1H, s), 7.87(1H, d, J=8.4Hz), 8.38(1H, d, J=1.8Hz).

IR(CHCl₃): 3514, 3442, 3422, 3144, 2670, 1708, 1654, 1525, 1375, 1193, 1171 cm⁻¹.

 $[\alpha]_D^{26} + 89.8 \pm 1.3^{\circ} \circ (c=1.000, MeOH)$

Elemental Analysis (C₂₇H₃₀N₂O₅S₂)

Calcd.(%): C, 61.58; H, 5.74; N, 5.32; S, 12.17

Found(%): C, 61.42; H, 5.86; N, 5.57; S, 11.98

20 Compound I-63

[0136] mp.180-181°C

300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.22-1.30(2H, m), 1.41-1.46(2H, m), 1.59-1.82(4H, m), 1.94-2.16(3H, m), 2.25-2.37(2H, m), 2.42(2H, t, J=6.9Hz), 2.52(1H, m), 2.52(3H, s), 3.79(1H, m), 5.41-5.59(2H, m), 5.73(1H, d, J=6.6Hz), 2.42(2H, t, J=6.9Hz), 2.52(3H, s), 3.79(1H, m), 5.41-5.59(2H, m), 5.73(1H, d, J=6.6Hz), 3.73(2H, m), 3.73

25 7.48-7.53(2H, m), 7.60(1H, m), 8.07-8.10(2H, m).

IR(Nujol): 3372, 3173, 3053, 2544, 1690, 1672, 1632, 1559, 1496, 1362, 1317 cm⁻¹.

 $[\alpha]_D^{28} + 77.7 \pm 1.2^{\circ} \text{ (c=1.007, MeOH)}$

Elemental Analysis (C₂₆H₃₁N₃O₄S)

Calcd.(%): C, 64.84; H, 6.49; N, 8.72; S, 6.66

30 Found(%): C, 64.66; H, 6.31; N, 8.73; S, 6.65

Compound I-64

[0137] 300MHz ¹H-NMR(d₆-DMSO) δ : 1.07(1H, m), 1.28-1.58(8H, m), 1.91-2.08(5H, m), 2.20(2H, t, J=7.2Hz), 2.31 (3H, s), 2.32(1H, s), 3.96(1H, m), 5.28-540(2H, m), 7.52-7.62(3H, m), 7.80-7.83(2H, m), 7.94(1H, d, J=6.9Hz). IR(Nujol): 3316, 3161, 3106, 2677, 1709, 1629, 1531, 1284, 1142 cm⁻¹.

 $[\alpha]_D^{27}$ +76.2±1.2° (c=1.002, MeOH)

Elemental Analysis (C₂₅H₃₁N₃O₅S₂·0.1H₂O)

Calcd.(%): C, 57.80; H, 6.05; N, 8.09; S, 12.34

40 Found(%): C, 57.59; H, 6.15; N, 8.10; S, 12.57

Compound I-65

[0138] 300MHz 1 H-NMR(CDCl₃) δ : 1.28-1.31(2H, m), 1.47(2H, brs), 1.56-1.84(4H, m), 1.94-2.30(5H, m), 2.39(2H, t, J=6.9Hz), 2.62(1H, s), 2.63(3H, s), 3.77(1H, m), 5.35-5.67(2H, m), 6.42(1H, d, J=6.3Hz), 7.29-7.43(3H, m), 7.46(1H, s), 7.72(2H, d, J=7.2Hz).

IR(CHCl₃): 3517, 3421, 3350, 3150, 2538, 1708, 1651, 1590, 1512, 1474, 1442, 1164 cm⁻¹.

 $[\alpha]_D^{28}$ +100.8±1.4° (c=1.002, MeOH)

Elemental Analysis (C₂₇H₃₁N₃O₃S·0.5H₂O)

50 Calcd.(%): C, 66.64; H, 6.63; N, 8.63; S, 6.59

Found(%): C, 66.55; H, 6.59; N, 8.68; S, 6.76

Compound I-66

[0139] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.19-1.33(2H, m), 1.42-1.50(2H, m), 1.58-1.79(4H, m), 2.01-2.22 (5H, m), 2.35(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 4.37(2H, s), 5.30-5.43(2H, m), 6.19(1H, d, J=7.5Hz), 6.90 (1H, dd, J=3.6 and 5.1Hz), 6.93(1H, m), 7.17(1H, dd, J=1.2 and 5.1Hz), 7.33 and 7.65(each 2H, each d, J=8.4Hz). IR(CHCl₃): 3518, 3447, 2665, 1708, 1651, 1596, 1515, 1484 cm⁻¹. [α]_D²⁶+82.4±1.4° (c=0.900, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S₂·0.1H₂O) Calcd.(%): C, 66.24; H, 6.67; N, 2.97; S, 13.60 Found(%): C, 66.14; H, 6.72; N, 2.96; S, 13.53

5 Compound I-67

[0140] 300MHz ¹H-NMR(CDCl₃) δ : 1.16(1H, m), 1.21-1.34(2H, m), 1.43-1.52(2H, m), 1.57-1.76(4H, m), 2.04-2.22 (5H, m), 2.35(2H, t, J=7.2Hz), 2.56(1H, m), 3.89(1H, m), 4.53(2H, s), 5.33-5.48(2H, m), 6.58(1H, d, J=6.9Hz), 6.83 (1H, dd, J=1.2 and 3.9Hz), 6.93(1H, dd, J=3.9 and 5.1Hz), 7.28(1H, dd, J=1.2 and 5.1Hz), 7.65 and 7.81(each 2H, each d, J=8.4Hz).

IR(CHCl₃): 3518, 3442, 3373, 2666, 1708, 1658, 1516, 1483, 1323, 1153 m⁻¹.

 $[\alpha]D^{26}+69.6\pm1.1^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₂₆H₃₁NO₅S₂·0.5H₂O)

Calcd.(%): C, 61.15; H, 6.32; N, 2.74; S, 12.56

15 Found(%): C, 66.16; H, 6.25; N, 2.90; S, 12.57

Compound I-68

[0141] 300MHz 1 H-NMR(CDCl₃) δ : 1.13(1H, m), 1.20-1.32(2H, m), 1.38-1.50(2H, m), 1.54-1.77(4H, m), 1.98-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.80(1H, m), 5.31-5.46(2H, m), 6.47(1H, d, J=7.5Hz), 6.87(1H, dd, J=1,5 and 3.6Hz), 6.84(1H, dd, J=3.6 and 5.4Hz), 7.03(1H, dd, J=1.5 and 5.4Hz), 7.33 and 7.38(each 1H, each d, each J=3.9Hz), 7.90(1H, br).

IR(CHCl₃): 3510, 3440, 3358, 3109, 1708, 1647, 1533, 1505, 1364, 1331, 1161 cm⁻¹.

 $[\alpha]_{436}^{29+151.3\pm1.9^{\circ}}$ (c=1.010, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₅S₃·0.1H₂O)

Calcd.(%): C, 54.12; H, 5.57; N, 5.49; S, 18.84

Found(%): C, 53.84; H, 5.46; N, 5.38; S, 18.62

Compound I-69

30

10

[0142] 300MHz ¹H-NMR(CDCl₃) δ : 1.20(1H, m), 1.26-1.38(2H, m), 1.42-1.52(2H, m), 1.57-1.76(4H, m), 2.00-2.24 (5H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.88(1H, m), 5.31-5.49(2H, m), 6.63(1H, dd, J=1.2 and 3.9Hz), 6.69(1H, d, J=7.5Hz), 6.77(1H, dd, J=3.9 and 5.4Hz), 6.98(1H, dd, J=1.2 and 5.4Hz), 7.66 and 7.76(each 2H, each d, each J=8.4Hz).

35 IR(CHCl₃): 3509, 3439, 3363, 3111, 1707, 1651, 1520, 1328, 1167 cm⁻¹.

 $[\alpha]_{436}^{29}+155.7\pm2.0^{\circ}$ (c=1.003, MeOH)

Elemental Analysis ($C_{25}H_{30}N_2O_5S_3\cdot 0.3H_2O$)

Calcd.(%): C, 59.10; H, 6.07; N, 5.51; S, 12.62

Found(%): C, 59.00; H, 5.95; N, 5.51; S, 12.46

.

40

Compound I-70

[0143] mp.187-188°C

300MHz 1 H-NMR(d₆-DMSO) δ : 1.16.1.62(9H, m), 1.90-2.14(5H, m), 2.21(2H, t, J=7.2Hz), 2.38(1H, m), 3.66(1H, m), 5.27-5.41(2H, m), 7.10-7.15(1H, m), 7.34-7.39(2H, m), 7.42-7.75(2H, m), 7.91 and 7.99(each 1H, each d, each J=3.9Hz), 8.04(1H, d, J=6.6Hz), 10.32(1H, s), 12.02(1H, s).

IR(Nujol): 3316, 3075, 2678, 1704, 1635, 1614, 1544, 1323 cm⁻¹.

 $[\alpha]_D^{28} + 83.3 \pm 1.2^{\circ} \text{ (c=1.003, MeOH)}$

Elemental Analysis (C₂₆H₃₀N₂O₄S)

50 Calcd.(%): C, 66.93; H, 6.48; N, 6.00; S, 6.87

Found(%): C, 67.04; H, 6.45; N, 5.98; S, 6.96

Compound I-71

55 **[0144]** mp.192-194°C

300MHz 1 H-NMR(d₆-DMSO) δ : 1.16-1.62(9H, m), 1.90-2.14(5H, m), 2.21(2H, t, J=7.2Hz), 2.37(1H, m), 3.65(1H, m), 5.29-5.41(2H, m), 7,18.7.24(2H, m), 7.33-7.78(2H, m), 7.91 and 7.97(each 1H, each d, each J=3.9Hz), 8.04(1H, d, J=6.9Hz), 10.38(1H, s), 12.01(1H, s).

IR(Nujol): 3322, 3278, 3150, 3098, 3077, 2678, 1704, 1635, 1615, 1546, 1521, 1508, 1322 cm⁻¹. [α]_D²⁸+83.3±1.2° (c=1.000, MeOH) Elemental Analysis (C₂₆H₂₉FN₂O₄S) Calcd.(%): C, 64.44; H, 6.03; N, 5.78; F, 3.92; S, 6.62 Found(%): C, 64.36; H, 6.00; N, 5.81; F, 3.94; S, 6.46

Compound I-72

[0145] mp.192-193°C

300MHz 1 H-NMR(d₆-DMSO) δ: 1.16-1.62(9H, m), 1.92-2.14(5H, m), 2.21(2H, t, J=7.2Hz), 2.37(1H, m), 3.66(1H, m), 3.75(3H, s), 5.30-5.41(2H, m), 6.94 and 7.63(each 2H, each d-like), 7.89 and 7.94(each 1H, each d, each J=3.9Hz), 8.38(1H, d, J=6.9Hz), 10.21(1H, s), 12.01(1H, s).

IR(Nujol): 3316, 3075, 2678, 1704, 1635, 1614, 1544, 1323 cm⁻¹.

 $[\alpha]_D^{27}$ +81.6±1.2° (c=1.000, MeOH)

¹⁵ Elemental Analysis (C₂₇H₃₂N₂O₅S)

Calcd.(%): C, 65.30; H, 6.49; N, 5.64; S, 6.46

Found(%): C, 65.19; H, 6.49; N, 5.45; S, 6.31

Compound I-73

20

5

[0146] 300MHz ¹H-NMR(CDCl₃) δ : 1.14(1H, m), 1.18-1.32(2H, m), 1.40-1.78(6H, m), 1.94-2.20(5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 3.81(6H, s), 3.82(3H, s), 5.30-5.44(2H, m), 6.56(1H, d, J=7.2Hz), 6.97(2H, s), 7.47 and 7.58(each 1H, each d, each J=3.9Hz), 8.43(1H, s).

IR(CHCl₃): 3515, 3438, 3317, 1708, 1650, 1607, 1537, 1508, 1454, 1412, 1131 cm⁻¹.

 $[\alpha]_D^{27} + 75.8 \pm 1.2^{\circ} \text{ (c=1.009, MeOH)}$

Elemental Analysis (C₂₉H₃₆N₂O₇S·0.4H₂O)

Calcd.(%): C, 61.77; H, 6.58; N, 4.97; S, 5.69

Found(%): C, 61.74; H, 6.64; N, 4.89; S, 5.89

30 Compound I-74

[0147] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.20-1.33(2H, m), 1.43-1.52(2H, m), 1.57-1.78(4H, m), 2.00-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 5.32-5.45(2H, m), 6.09(1H, d, J=6.9Hz), 6.32 and 7.00(each 2H, each t, each J=2.1Hz), 6.81 and 7.34(each 1H, each d, each J=3.9Hz).

35 IR(CHCl₃): 3515, 3445, 3109, 2678, 1740, 1708, 1642, 1507, 1489 cm⁻¹.

 $[\alpha]_D^{26} + 83.5 \pm 1.2^{\circ} \text{ (c=1.007, MeOH)}$

Elemental Analysis (C₂₃H₂₈N₂O₃S)

Calcd.(%): C, 66.96; H, 6.84; N, 6.79; S, 7.77

Found(%): C, 66.66; H, 6.74; N, 6.74; S, 7.61

40

45

Compound I-75

[0148] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.20-1.32(2H, m), 1.39-1.49(2H, m), 1.57-1.66(4H, m), 2.01-2.22 (5H, m), 2.35(2H, t, J=7.2Hz), 2.56(1H, m), 3.88(1H, m), 3.95(2H, s), 5.30-5.44(2H, m), 6.27(1H, d, J=7.5Hz), 6.89-6.91 (2H, m), 7.32(1H, dd, J=2.4 and 3.9Hz), 7.19 and 7.66(each 2H, each d, J=8.4Hz).

IR(CHCl₃): 3516, 3447, 2670, 1708, 1651, 1523, 1496 m⁻¹.

 $[\alpha]_D^{26}+71.8\pm1.1^{\circ}$ (c=1.016, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S₂·0.1H₂O)

Calcd.(%): C, 66.24; H, 6.67; N, 2.97; S, 13.60

50 Found(%): C, 66.36; H, 6.67; N, 3.27; S, 13.62

Compound I-76

[0149] mp.135-136°C

300MHz 1 H-NMR(CDCl₃) δ: 1.12(1H, m), 1.22-1.33(2H, m), 1.43-1.51(2H, m), 1.59-1.78(4H, m), 2.03-2.22(5H, m), 2.35(2H, t, J=7.2Hz), 2.56(1H, m), 3.87(1H, m), 4.44(2H, s), 5.31-5.45(2H, m), 6.30(1H, d, J=7.2Hz), 7.08(1H, dd, J=3.9 and 5.1Hz), 7.23(2H, d, J=8.4Hz), 7.40(1H, dd, J=1.5 and 3.9Hz), 7.69-7.71(3H, m). IR(CHCl₃): 3516, 3445, 3096, 2665, 1708, 1655, 1523, 1496, 1403, 1327, 1152, 1127 m⁻¹.

$$\begin{split} &[\alpha]_D^{26} + 65.0 \pm 1.1^\circ \text{ (c=1.000, MeOH)} \\ &\text{Elemental Analysis (C$_{26}$H$_{31}$NO$_5$S$_2$\cdot 0.2H_2$O)} \\ &\text{Calcd.(\%): C, 61.81; H, 6.26; N, 2.77; S, 12.69} \\ &\text{Found(\%): C, 61.76; H, 6.20; N, 2.90; S, 12.57} \end{split}$$

5

Compound I-77

[0150] mp.215-217°C

300MHz ¹H-NMR(d₆-DMSO) δ: 1.16-1.62(9H, m), 1.90-2.14(5H, m), 2.21(2H, t, J=7.2Hz), 2.38(1H, m), 3.66(1H, m), 5.29-5.41(2H, m), 6.91-6.94(2H, m), 7.05(1H, dd, J=2.4 and 4.2Hz), 7.93 and 7.96(each 1H, each d, each J=4.2Hz), 8.43(1H, d, J=6.6Hz), 10.67(1H, br), 12.01(1H, br).

IR(Nujol): 3315, 3222, 3097, 3049, 2672, 1705, 1621, 1548, 1504, 1311 cm⁻¹. $[\alpha]_D^{27}$ +88.2±1.3° (c=1.009, MeOH) Elemental Analysis ($C_{24}H_{28}N_2O_4S_2$)

Calcd.(%): C, 60.99; H, 5.97; N, 5.93; S, 13.57

15 Found(%): C, 60.94; H, 5.74; N, 5.91; S, 13.61

Compound I-78

[0151] $300 \text{MHz}^{1}\text{H-NMR}(\text{CDCl}_{3}) \delta$: 1.09(1H, m), 1.18-1.31(2H, m), 1.40.1.47(2H, m), 1.57-1.73(4H, m), 2.00-2.12 (5H, m), 2.31(2H, t, J=7.2Hz), 2.56(1H, m), 3.79(1H, m), 4.70(2H, s), 5.30-5.45(2H, m), 6.26-6.30(2H, m), 6.34(1H, d, J=6.9Hz), 7.22(1H, dd, J=1.8 and 3.3Hz), 7.41 and 7.62(each 1H, each d, each J=4.2Hz). IR(CHCl₃): 3589, 3516, 3441, 3355, 3100, 1708, 1656, 1530, 1504, 1377, 1180, 1147 cm⁻¹. [α]_D^{26.5}+70.8±1.1° (c=1.009, MeOH)

Elemental Analysis ($C_{24}H_{30}N_2O_6S_2 \cdot 0.2H_2O$)

²⁵ Calcd.(%): C, 56.50; H, 6.01; N, 5.49; S, 12.57

Found(%): C, 56.43; H, 6.02; N, 5.61; S, 12.47

Compound I-79

[0152] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.16-1.30(2H, m), 1.38-1.50(2H, m), 1.54-1.77(4H, m), 1.98-2.18 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 5.30-5.42(2H, m), 6.03(1H, d, J=7.2Hz), 7.04-7.06(2H, m), 7.32-7.35(2H, m), 7.37(1H, d, J=3.6Hz).

IR(CHCl₃): 3509, 3444, 3426, 3110, 2667, 1708, 1645, 1530, 1499, 1421 cm⁻¹. $[\alpha]_D^{26.5}+69.5\pm1.1^{\circ}$ (c=1.001, MeOH)

Elemental Analysis (C₂₃H₂₇NO₃S₃·0.1H₂O)

Calcd.(%): C, 59.61; H, 5.92; N, 3.02; S, 20.76

Found(%): C, 59.66; H, 5.90; N, 3.15; S, 20.52

Compound I-80

40

[0153] 300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.17-1.32(2H, m), 1.38-1.48(2H, m), 1.54-1.77(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.81(1H, m), 5.31-5.43(2H, m), 6.31(1H, d, J=7.2Hz), 7.37-7.44(3H, m), 7.61(1H, d, J=3.9Hz), 8.15(1H, dd, J=1.2 and 3.0Hz).

IR(CHCl₃): 3517, 3441, 3371, 3114, 1708, 1655, 1530, 1504, 1331, 1152 cm⁻¹.

 $[\alpha]_D^{26.5}+73.9\pm1.1^{\circ} (c=1.001, MeOH)$

Elemental Analysis (C₂₃H₂₇NO₅S₃·0.3H₂O)

Calcd.(%): C, 55.35; H, 5.57; N, 2.81; S, 19.28

Found(%): C, 55.47; H, 5.50; N, 2.80; S, 19.09

50 Compound I-81

[0154] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.16-1.30(2H, m), 1.38-1.48(2H, m), 1.54-1.77(4H, m), 1.98-2.17 (5H, m), 2.34(2H, t, J=7.2Hz), 2.46(3H, d, J=0.9Hz), 2.50(1H, m), 3.79(1H, m), 5.29-5.41(2H, m), 5,99(1H, d, J=7.2Hz), 6.67(1H, m), 6.99, 7.10 and 7.32(each 1H, each d, each J=3.9Hz).

⁵⁵ IR(CHCl₃): 3517, 3445, 3426, 2668, 1708, 1644, 1530, 1499, 1420, cm⁻¹.

 $[\alpha]_D^{26.5}+66.1\pm1.1^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₄H₂₉NO₃S₃·0.1H₂O)

Calcd.(%): C, 60.37; H, 6.16; N, 2.93; S, 20.15

Found(%): C, 60.21; H, 6.10; N, 2.90; S, 20.45

Compound I-82

[0155] 300MHz 1 H-NMR(CDCl₃) δ : 1.11(1H, m), 1.18-1.32(2H, m), 1.38-1.50(2H, m), 1.54-1.74(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(4H, d and m, J=0.6Hz), 3.80(1H, m), 5.31-5.43(2H, m), 6.34(1H, d, J=6.6Hz), 6.77 (1H, m), 7.41, 7.55 and 7.58(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3511, 3442, 3373, 3096, 1708, 1655, 1530, 1504, 1436, 1335, 1152 cm⁻¹.

 $[\alpha]_D^{26.5} + 73.0 \pm 1.1^{\circ} (c=1.002, MeOH)$

10 Elemental Analysis ($C_{24}H_{29}NO_5S_3\cdot 0.3H_2O$)

Calcd.(%): C, 56.18; H, 5.81; N, 2.73; S, 18.75

Found(%): C, 56.26; H, 5.74; N, 2.65; S, 18.50

Compound I-83

15

35

[0156] 300MHz ¹H-NMR(CDCl₃) δ : 1.17(1H, m), 1.24-1.36(2H, m), 1.37-1.82(6H, m), 2.01-2.23(5H, m), 2.36(2H, t, J=7.2Hz), 2.51(1H, m), 3.83(1H, m), 5.31-5.45(2H, m), 7.17(1H, dd, J=3.9 and 5.4Hz), 7.36(1H, d, J=7.8Hz), 7.47(1H, dd, J=1.5 and 3.9Hz), 7.66(1H, dd, J=1.5 and 5.4Hz).

IR(CHCl₃): 3514, 3404, 3121, 1709, 1657, 1544, 1488, 1425 cm⁻¹.

 $[\alpha]_D^{25} + 73.2 \pm 2.2^{\circ} \text{ (c=0.518, MeOH)}$

Elemental Analysis (C₂₂H₂₆N₂O₃S₃·0.2H₂O)

Calcd.(%): C, 56.67; H, 5.71; N, 6.01; S, 20.63

Found(%): C, 56.55; H, 5.71; N, 6.03; S, 20.93

25 Compound I-84

[0157] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.20-1.32(2H, m), 1.43-1.48(2H, m), 1.57-1.82(4H, m), 2.02(1H, d, J=3.3Hz), 2.00-2.20(5H, m), 2.35(2H, t, J=7.2Hz), 2.55(1H, m), 3.86(1H, m), 4.01(2H, s), 5.29-5.43(2H, m), 6.17(1H, d, J=7.2Hz), 7.16-7.31(7H, m), 7.67(2H, d, J=8.1Hz).

³⁰ IR(CHCl₃): 3517, 3447, 2669, 1708, 1651, 1523, 1495 cm⁻¹.

 $[\alpha]_D^{25}$ +77.9±1.2° (c=1.016, MeOH)

Elemental Analysis (C₂₈H₃₃NO₃)

Calcd.(%): C, 77.93; H, 7.71; N, 3.25

Found(%): C, 77.65; H, 7.93; N, 3.32

Compound I-85

[0158] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.21-1.31(2H, m), 1.44-1.49(2H, m), 1.58-1.82(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.56(1H, m), 3.87(1H, m), 4.19(2H, s), 5.30-5.43(2H, m), 6.19(1H, d, J=7.2Hz), 6.80 (1H, m), 6.93(1H, dd, J=2.6 and 5.1Hz), 7.16(1H, dd, J=1.5 and 5.1Hz), 7.30 and 8.69(each 2H, each d, each J=8.1Hz). IR(CHCl₃): 3510, 3446, 2664, 1708, 1651, 1523, 1496 cm⁻¹.

 $[\alpha]_D^{25}+73.2\pm1.1^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S)

Calcd.(%): C, 71.36; H, 7.14; N, 3.20; S, 7.33

45 Found(%): C, 71.48; H, 7.05; N, 3.29; S, 7.13

Compound I-86

[0159] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.31(2H, m), 1.43-1.48(2H, m), 1.58-1.81(4H, m), 2.00-2.17 (5H, m), 2.34(2H, t, J=7.2Hz), 2.55(1H, m), 3.87(1H, m), 3.98(2H, s), 5.30-5.43(2H, m), 6.19(1H, d, J=7.2Hz), 6.93-7.00 (2H, m), 7.09-7.13(2H, m), 7.22 and 7.70(each 2H, each d, each J=8.4Hz).

IR(CHCl₃): 3516, 3447, 2664, 1709, 1651, 1612, 1522, 1509, 1496, cm⁻¹.

 $[\alpha]_D^{25}$ +71.6±1.1° (c=1.019, MeOH)

Elemental Analysis (C₂₈H₃₂FNO₃)

55 Calcd.(%): C, 74.81; H, 7.17; N, 3.12; F, 4.23

Found(%): C, 74.66; H, 7.19; N, 3.13; F, 4.10

Compound I-87

[0160] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.20-1.31(2H, m), 1.44-1.49(2H, m), 1.58-1.82(4H, m), 2.00-2.22 (5H, m), 2.35(2H, t, J=7.2Hz), 2.56(1H, m), 3.87(1H, m), 4.02(2H, s), 5.30-5.43(2H, m), 6.18(1H, d, J=7.2Hz), 6.88 (1H, dd, J=1.5 and 4.8Hz), 6.92(1H, m), 7.25-7.28(3H, m), 7.68(2H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3446, 2668, 1709, 1651, 1612, 1523, 1496 cm⁻¹.

 $[\alpha]_D^{25}$ +72.7±1.1° (c=1.014, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S·0.1H₂O)

Calcd.(%): C, 71.07; H, 7.16; N, 3.18; S, 7.30

10 Found(%): C, 70.90; H, 7.08; N, 3.21; S, 7.46

Compound I-88

[0161] mp.103-105°C

300MHz 1 H-NMR(CDCl₃) δ: 1.05(1H, m), 1.19-1.29(2H, m), 1.42-1.47(2H, m), 1.58-1.81(4H, m), 2.00-2.15(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 4.16(2H, s), 5.30-5.43(2H, m), 5.97(1H, d, J=7.5Hz), 6.79(1H, dt, J=0.9 and 3.9Hz), 6.96(1H, dd, J=1.5 and 4.8Hz), 7.05(1H, m), 7.28(1H, dd, J=3.0 and 4.8Hz), 7.37(1H, d, J=3.9Hz). IR(CHCl₃): 3516, 3445, 3427, 2670, 1708, 1642, 1544, 1507 cm⁻¹.

 $[\alpha]_D^{25}+67.3\pm1.1^{\circ}$ (c=1.002, MeOH)

20 Elemental Analysis (C₂₄H₂₉NO₃S₂⋅0.3H₂O)

Calcd.(%): C, 64.20; H, 6.64; N, 3.12; S, 14.28

Found(%): C, 64.29; H, 6.49; N, 3.10; S, 14.11

Compound I-89

25

5

[0162] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.20-1.29(2H, m), 1.40-1.49(2H, m), 1.56-1.89(4H, m), 2.00-2.25 (5H, m), 2.32-2.38(2H, m), 2.51(1H, m), 3.80(1H, m), 5.04(2H, s), 5.27-5.41(2H, m), 5.90(1H, d, J=6.6Hz), 6.38(1H, m), 6.63(1H, t, J=2.4Hz), 7.14-7.17(2H, m), 7.29-7.35(4H, m).

IR(CHCl₃): 3510, 3448, 2663, 1736, 1709, 1636, 1555, 1497 cm⁻¹. $[\alpha]_D^{25}$ +60.8±1.0° (c=1.003, MeOH)

Elemental Analysis (C₂₆H₃₂N₂O₃·0.3H₂O)

Calcd.(%): C, 73.62; H, 7.70; N, 6.60

Found(%): C, 73.68; H, 7.62; N, 6.73

Compound I-90

35

[0163] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.20-1.29(2H, m), 1.40-1.48(2H, m), 1.56-1.87(4H, m), 2.00-2.24 (5H, m), 2.32-2.38(2H, m), 2.50(1H, m), 3.80(1H, m), 5.19(2H, s), 5.27-5.41(2H, m), 5.90(1H, d, J=7.5Hz), 6.37(1H, dd, J=2.1 and 3.0Hz), 6.67(1H, t, J=2.4Hz), 6.95-6.98(2H, m), 7.27(1H, dd, J=1.8 and 4.5Hz), 7.31(1H, dd, J=1.8 and 2.1Hz).

40 IR(CHCl₃): 3513, 3448, 2661, 1709, 1637, 1555, 1497 cm⁻¹.

 $[\alpha]_D^{25}$ +59.4±1.0° (c=1.011, MeOH)

Elemental Analysis (C₂₄H₃₀N₂O₃S·0.2H₂O)

Calcd.(%): C, 67.01; H, 7.12; N, 6.51; S, 7.45

Found(%): C, 67.07; H, 7.03; N, 6.62; S, 7.55

45

50

Compound I-91

[0164] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.23-1.26(2H, m), 1.39-1.48(2H, m), 1.57-1.82(4H, m), 2.00-2.16 (5H, m), 2.34(2H, t, J=7.2Hz), 2.50(1H, m), 3.82(1H, m), 5.03(2H, s), 5.27-5.42(2H, m), 5.98(1H, brs), 6.40(1H, m), 6.91(1H, dd, J=1.2 and 4.8Hz), 7.08(1H, brs), 7.28-7.31(2H, m).

 $IR(CHCl_3): 3516, 3448, 3108, 2663, 1736, 1709, 1636, 1555, 1497 cm⁻¹. [<math>\alpha$]_D²⁵+59.8±1.0° (c=1.008, MeOH)

Elemental Analysis (C₂₄H₃₀N₂O₃S·0.2H₂O)

Calcd.(%): C, 67.01; H, 7.12; N, 6.51; S, 7.45

Found(%): C, 67.26; H, 7.06; N, 6.61; S, 7.55

55

Compound I-92

[0165] 300MHz 1 H-NMR(CDCl₃) δ : 1.08(1H, m), 1.18-1.28(2H, m), 1.38-1.43(2H, m), 1.54-1.78(4H, m), 1.96-2.23

(5H, m), 2.36(2H, dt, J=1.8 and 6.9Hz), 2.52(1H, m), 3.77(1H, m), 5.30-5.45(2H, m), 6.07(1H, d, J=6.9Hz), 6.58(1H, dd, J=1.5 and 3.3Hz), 7.14(1H, dd, J=2.1 and 3.3Hz), 7.51-7.57(2H, m), 7.65(1H, m), 7.77(1H, t, J=2.1Hz), 7.88-7.92 (2H, m).

IR(CHCl₃): 3510, 3444, 3144, 1732, 1708, 1651, 1570, 1509, 1382, 1176 cm⁻¹.

 $[\alpha]_D^{24}+55.9\pm0.9^{\circ} \text{ (c=1.013, MeOH)}$

Elemental Analysis (C₂5H₃₀N₂O₅S-0.3H₂O)

Calcd.(%): C, 63.08; H, 6.48; N, 5.88; S, 6.74

Found(%): C, 63.24; H, 6.27; N, 6.03; S, 6.74

10 Compound I-93

[0166] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.29(2H, m), 1.39-1.47(2H, m), 1.56-1.78(4H, m), 1.98-2.18 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.33(2H, s), 5.29-5.42(2H, m), 6.03(1H, d, J=7.5Hz), 6.84 (1H, d, J=3.9Hz), 6.90(1H, m), 6.95(1H, dd, J=3.6 and 5.1Hz), 7.19(1H, dd, J=1.2 and 5.1Hz), 7.38(1H, d, J=3.9Hz).

IR(CHCl₃): 3510, 3554, 3427, 1708, 1643, 1544, 1507 m⁻¹. $[\alpha]_D^{27}$ +70.1±1.1° (c=1.010, MeOH)

Elemental Analysis (C₂₄H₂₉NO₃S₂·0.1H₂O)

Calcd.(%): C, 64.72; H, 6.61; N, 3.14; S, 14.40

Found(%): C, 64.83; H, 6.60; N, 3.31; S, 14.46

20

25

15

Compound I-94

[0167] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.20-1.27(2H, m), 1.40-1.44(2H, m), 1.56-1.78(4H, m), 2.00-2.19 (5H, m), 2.36(2H, d, 7.2Hz), 2.51(1H, m), 3.78(1H, m), 5.30-5.44(2H, m), 6.13(1H, d, J=6.9Hz), 6.59(1H, dd, J=1.5 and 3.3Hz), 7.10(1H, dd, J=3.6 and 5.1Hz), 7.16(1H, dd, J=2.1 and 3.3Hz), 7.69-7.76(3H, m).

 $IR(CHCl_3): 3510, 3444, 3143, 1708, 1651, 1571, 1508, 1387, 1179 \text{ cm}^{-1}. \ [\alpha]_D^{24} + 56.0 \pm 1.0^{\circ} \ (c=1.005, MeOH)$

Elemental Analysis (C₂₃H₂₈N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 57.53; H, 5.96; N, 5.83; S, 13.35

Found(%): C, 57.54; H, 6.07; N, 5.93; S, 12.91

30

35

Compound I-95

[0168] 300MHz ¹H-NMR(CDCl₃) δ : 1.16(1H, m), 1.26-1.37(2H, m), 1.40-1.81(6H, m), 2.04-2.25(5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.87(1H, m), 5.32-5.46(2H, m), 6.37(2H, t, J=2.1Hz), 7.31(1H, d, J=7.5Hz), 7.33(2H, t, J=2.1Hz), 7.82(1H, m).

IR(CHCl₃): 3512, 3408, 3127, 1708, 1658, 1540, 1525, 1493, 1341 m⁻¹.

 $[\alpha]_D^{25} + 88.2 \pm 1.3^{\circ} \text{ (c=1.003, MeOH)}$

Elemental Analysis (C₂₂H₂₇N₃O₃S·0.1H₂O)

Calcd.(%): C, 63.62; H, 6.60; N, 10.12; S, 7.72

40 Found(%): C, 63.72; H, 6.45; N, 9.99; S, 7.75

Compound I-96

[0169] 300MHz ¹H-NMR(CDCl₃) δ: 1.07(1H, m), 1.18-1.30(2H, m), 1.39-1.48(2H, m), 1.57-1.78(4H, m), 2.01-2.22 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 5.30-5.43(2H, m), 6.11(1H, m), 6.98(1H, dd, J=3.6 and 5.4Hz), 7.24(1H, dd, J=1.2 and 3.6Hz), 7.38(1H, dd, J=1.2 and 5.4Hz), 7.43(1H, d, J=1.5Hz), 7.85(1H, d, J=1.5Hz).

IR(CHCl₃): 3510, 3445, 3108, 1708, 1650, 1535, 1498 m⁻¹.

 $[\alpha]_D^{25}$ +70.7±1.1° (c=1.004, MeOH)

Elemental Analysis (C₂₃H₂₇NO₃S₃·0.3H₂O)

50 Calcd.(%): C, 59.15; H, 5.96; N, 3.00; S, 20.60

Found(%): C, 59.06; H, 5.66; N, 3.07; S, 20.87

Compound I-97

[0170] 300MHz ¹H-NMR(CDCl₃) δ: 1.20-2.52(16H, m), 2.61(1H, m), 3.72(1H, m), 5.34-5.55(2H, m), 6.66(1H, d, J=6.3Hz), 71.2(1H, m), 7.71(1H, m), 7.75(1H, m), 8.29(1H, m), 8.37(1H, brs). IR(CHCl₃): 3512, 3405, 3096, 1726, 1710, 1653, 1542, 1505, 1402, 1329, 1152 m⁻¹. [α]_D²⁵+65.4±1.1° (c=1.005, MeOH)

Elemental Analysis (C₂₃H₂₇NO₅S₃·0.2H₂O) Calcd.(%): C, 55.55; H, 5.55; N, 2.82; S, 19.35 Found(%): C, 55.47; H, 5.54; N, 3.09; S, 19.21

5 Compound I-98

10

[0171] mp.103-104°C

300MHz 1 H-NMR(CDCl₃) δ : 1.09(1H, m), 1.23-1.31(2H, m), 1.45-1.50(2H, m), 1.60-1.80(4H, m), 2.00-2.23(5H, m), 2.37(2H, t, J=7.2Hz), 2.55(1H, m), 3.85(1H, m), 5.31-5.45(2H, m), 6.05(1H, d, J=7.5Hz), 6.98 and 7.04(each 1H, each d, each J=16.2Hz), 6.97(1H, d, J=3.9Hz), 7.25-7.33(3H, m), 7.41(1H, d, J=3.9Hz).

IR(CHCl₃): 3511, 3445, 3428, 2665, 1708, 1641, 1538, 1519, 1499 cm⁻¹.

 $[\alpha]_D^{24}$ +77.8±1.2° (c=1.007, MeOH)

Elemental Analysis (C₂₅H₂₉NO₃S₂·0.25AcOEt)

Calcd.(%): C, 65.38; H, 6.54; N, 2.93; S, 13.43

15 Found(%): C, 65.64; H, 6.62; N, 2.95; S, 13.26

Compound I-99

[0172] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.20-1.30(2H, m), 1.41-1.46(2H, m), 1.59-1.80(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 5.30-5.43(2H, m), 5.94(1H, d, J=6.9Hz), 6.57(2H, s), 6.94 (1H, d, J=3.9Hz), 7.03(1H, dd, J=1.5 and 4.5Hz), 7.29(1H, s), 7.30(1H, m), 7.34(1H, d, J=3.9Hz).

IR(CHCl₃): 3511, 3445, 3427, 2670, 1708, 1642, 1536, 1518, 1500 cm⁻¹.

 $[\alpha]_D^{24}+62.8\pm1.0^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₂₅H₂₉NO₃S₂·0.2AcOEt)

²⁵ Calcd.(%): C, 65.48; H, 6.52; N, 2.96; S, 13.55

Found(%): C, 65.36; H, 6.47; N, 2.13; S, 13.58

Compound I-100

[0173] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.17-1.32(2H, m), 1.38-1.50(2H, m), 1.56-1.80(4H, m), 1.98-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.44(3H, d, J=0.9Hz), 2.52(1H, m), 3.80(1H, m), 5.30-5.43(2H, m), 5.99(1H, d, J=7.5Hz), 5.99(1H, d, J=7.5Hz), 6.70(1H, m), 7.03(1H, d, J=3.9Hz), 7.10(1H, d, J=1.5Hz), 7.36(1H, d, J=3.9Hz). IR(CHCl₃): 3510, 3445, 3426, 2671, 1708, 1644, 1530, 1499, 1420, 1318 cm⁻¹.

 $[\alpha]_D^{25}$ +69.1±1.1° (c=1.018, MeOH)

Elemental Analysis (C₂₄H₂₉NO₃S₃)

Calcd.(%): C, 60.60; H, 6.14; N, 2.94; S, 20.22

Found(%): C, 60.49; H, 6.26; N, 2.98; S, 20.25

Compound I-101

40

55

[0174] 300MHz 1 H-NMR(CDCl₃) δ : 1.10(1H, m), 1.18-1.32(2H, m), 1.38-1.50(2H, m), 1.54-1.77(4H, m), 2,00-2.20 (5H, m), 2.36(2H, t, J=7.2Hz), 2.47(3H, d, J=0.9Hz), 2.53(1H, m), 3.81(1H, m), 5.31-5.44(2H, m), 6.30(1H, d, J=7.2Hz), 7.03(1H, m), 7.42 and 7.59(each 1H, each d, each J=3.9Hz), 7.90(1H, d, J=1.5Hz).

IR(CHCl₃): 3517, 3441, 3370, 3115, 2671, 1708. 1655, 1530, 1504, 1442, 1328, 1156, 1142 cm⁻¹.

 $[\alpha]_D^{24} + 71.6 \pm 1.1^{\circ} \text{ (c=1.018, MeOH)}$

Elemental Analysis (C₂₄H₂₉NO₅S₃·0.2H₂O)

Calcd.(%): C, 56.38; H, 5.80; N, 2.74; S, 18.81

Found(%): C, 56.28; H, 5.74; N, 2.79; S, 18.92

50 Compound I-102

[0175] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.21-1.28(2H, m), 1.42.1.47(2H, m), 1.57-1.74(4H, m), 2.00-2.18 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.82(1H, m), 5.30-5.43(2H, m), 6.15(1H, d, J=7.5Hz), 6.51 and 6.68(each 1H, each d, J=11.7Hz), 6.98(1H, dd, J=3.6 and 5.1Hz), 7.06(1H, dd, J=0.9 and 3.9Hz), 7.13(1H, dt, J=0.9 and 3.6Hz), 7.25(1H, dd, J=0.9 and 5.1Hz), 7.41(1H, d, J=3.9Hz).

IR(CHCl₃): 3510, 3445, 3427, 2665, 1708, 1643, 1535, 1501 cm⁻¹.

 $[\alpha]_D^{24}+68.6\pm1.1^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₅H₂₉NO₃S₂·0.2H₂O)

Calcd.(%): C, 65.45; H, 6.45; N, 3.05; S, 13.98 Found(%): C, 65.44; H, 6.37; N, 3.28; S, 13.82

Compound I-103

5

10

20

[0176] mp. 107-108°C

300MHz 1 H-NMR(CDCl₃) δ : 1.09(1H, m), 1.26-1.32(2H, m), 1.45-1.50(2H, m), 1.60-1.81(4H, m), 2.01-2.23(5H, m), 2.37(2H, t, J=7.2Hz), 2.55(1H, m), 3.84(1H, m), 5.31-5.45(2H, m), 6.03(1H, d, J=7.5Hz), 6.97 and 7.14(each 1H, each d, J=15.9Hz), 6.97(1H, d, J=3.9Hz), 7.01(1H, dd, J=3.6 and 5.4Hz), 7.08(1H, d, J=3.6Hz), 7.23(1H, d, J=5.4Hz), 7.40 (1H, d, J=3.9Hz).

IR(CHCl₃): 3517, 3445, 3428, 2670, 1708, 1641, 1536, 1518, 1500 cm⁻¹.

 $[\alpha]_D^{24}+85.0\pm1.2^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂₅H₂₉NO₃S₂·0.15AcOEt)

Calcd.(%): C, 65.58; H, 6.49; N, 2.99; S, 13.68

15 Found(%): C, 65.88; H, 6.74; N, 2.98; S, 13.35

Compound I-104

[0177] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.30(2H, m), 1.42-1.50(2H, m), 1.57-1.79(4H, m), 2.01-2.24 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.82(1H, m), 4.10(sH, s), 5.31-5.44(2H, m), 6.03(1H, d, J=7.2Hz), 6.70(1H, d, J=3.6Hz), 6.95(1H, dd, J=3.6 and 5.4Hz), 7.03(1H, dd, J=1.5 and 3.6Hz), 7.30(1H, d, J=3.6Hz), 7.36(1H, dd, J=1.5 and 5.4Hz).

IR(CHCl₃): 3518, 3445, 3427, 1708, 1644, 1542, 1507 cm⁻¹.

 $[\alpha]_D^{24.5}+65.0\pm1.0^{\circ}$ (c=1.008, MeOH)

Elemental Analysis ($C_{24}H_{29}NO_3S_3\cdot0.4H_2O$)

Calcd.(%): C, 59.69; H, 6.22; N, 2.90; S, 19.92

Found(%): C, 59.40; H, 5.98; N, 2.95; S, 20.06

Compound I-105

30

[0178] 300MHz ¹H-NMR(CDCl₃) δ : 1.11(1H, m), 1.21-1.31(2H, m), 1.42-1.49(2H, m), 1.58-1.76(4H, m), 2.01-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.81(1H, m), 4.60(sH, s), 5.32-5.45(2H, m), 6.18(1H, d, J=7.2Hz), 6.91(1H, d, J=3.9Hz), 7.12(1H, dd, J=3.9 and 5.1Hz), 7.40(1H, d, J=3.9Hz), 7.52(1H, dd, J=1.2 and 3.9Hz), 7.72(1H, dd, J=1.2 and 5.1Hz).

IR(CHCl₃): 3517, 3444, 3425, 3097, 1708, 1648, 1524, 1508, 1402, 1328, 1147 cm⁻¹.

 $[\alpha]_D^{24.5}+61.5\pm1.0^{\circ}$ (c=1.008, MeOH)

Elemental Analysis ($C_{24}H_{29}NO_5S_2\cdot 0.4H_2O$)

Calcd.(%): C, 55.98; H, 5.83; N, 2.72; S, 18.68

Found(%): C, 55.77; H, 5.71; N, 2.84; S, 18.73

40

35

Compound I-106

[0179] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.31(2H, m), 1.41-1.49(2H, m), 1.57-1.78(4H, m), 2.00-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.81(1H, m), 4.23(sH, s), 5.31-5.44(2H, m), 6.00(1H, d, J=7.2Hz), 6.82(1H, m), 6.88(1H, dd, J=3.6 and 5.1Hz), 6.92(1H, d, J=3.6Hz), 7.21(1H, dd, J=1.2 and 5.1Hz), 7.33(1H, d, J=3.6Hz). IR(CHCl₃): 3514, 3444, 3427, 2665, 1709, 1645, 1529, 1498, 1421, 1317 cm⁻¹. [α]_D²⁴+67.1±1.1° (c=1.006, MeOH) Elemental Analysis ($C_{24}H_{29}NO_3S_3\cdot0.1H_2O$)

Calcd.(%): C, 60.37; H, 6.16; N, 2.90; S, 20.15

Found(%): C, 60.46; H, 6.14; N, 2.96; S, 20.02

50

55

Compound I-107

[0180] 300MHz ¹H-NMR(CDCl₃) δ : 1.09-1.32(3H, m), 1.38-1.48(2H, m), 1.53-1.79(4H, m), 1.96-2.20(5H, m), 2.34 (2H, t, J=7.2Hz), 2.54(4H, d and m, J=0.6Hz), 3.79(1H, m), 5.30-5.45(2H, m), 6.48 and 6.51(total 1H, each d, J=7.8 and 7.5Hz), 7.12(1H, dd, J=3.9 and 5.1Hz), 7.42 and 7.43(total 1H, each d, each J=3.9Hz), 7.52 and 7.53(total 1H, each d, each J=3.9Hz), 7.58(1H, m), 7.69(1H, dd, J=1.2 and 5.1Hz).

IR(CHCl₃): 3509, 3443, 3425, 3092, 2666, 1708, 1650, 1532, 1503, 1403, 1322 cm⁻¹.

 $[\alpha]_D^{23}$ +70.4±1.1° (c=1.007, MeOH)

Elemental Analysis (C₂₃H₂₇NO₄S₃·0.4H₂O) Calcd.(%): C, 56.97; H, 5.78; N, 2.89; S, 19.84 Found(%): C, 57.03; H, 5.67; N, 3.19; S, 19.73

5 Compound I-108

10

15

[0181] 300MHz ¹H-NMR(CDCl₃) δ : 1.09-1.32(3H, m), 1.39-1.50(2H, m), 1.54-1.77(4H, m), 1.97-2.20(5H, m), 2.35 (2H, t, J=7.2Hz), 2.52 and 2.53(total 3H, each s), 2.54(1H, m), 3.79(1H, m), 5.31-5.45(2H, m), 6.43 and 6.47(total 1H, each d, J=7.5 and 6.6Hz), 6.76(1H, m), 7.39(1H, t-like), 7.40(1H, dd, J=2.1 and 3.6Hz), 7.52(1H, dd, J=2.1 and 4.2Hz). IR(CHCl₃): 3510, 3443, 3425, 3092, 1708, 1650, 1531, 1503, 1437, 1237 cm⁻¹.

 $[\alpha]_D^{23}+68.6\pm1.1^{\circ}$ (c=1.011, MeOH)

Elemental Analysis (C₂₄H₂₉NO₄S₃·0.2H₂O)

Calcd.(%): C, 58.20; H, 5.98; N, 2.83; S, 19.42

Found(%): C, 58.18; H, 5.67; N, 2.90; S, 19.11

Compound I-109

[0182] 300MHz ¹H-NMR(CDCl₃) δ : 1.13(1H, m), 1.21-1.34(2H, m), 1.45-1.52(2H, m), 1.59-1.78(4H, m), 2.03-2.23 (5H, m), 2.37(2H, t, J=7.2Hz), 2.58(1H, m), 3.86(1H, m), 5.32-5.46(2H, m), 6.28(1H, d, J=6.6Hz), 7.20(1H, dd, J=3.9 and 5.1Hz), 7.59(1H, d, J=3.9Hz), 7.75(1H, dd, J=1.2 and 5.1Hz), 7.81(1H, d, J=3.9Hz), 7.92(1H, dd, J=1.2 and 3.9Hz). IR(CHCl₃): 3518, 3442, 3425, 3109, 1709, 1651, 1622, 1529, 1508, 1442, 1414, 1356, 1286, 1267 cm⁻¹. [α]_D²³+89.2±1.3° (c=1.002, MeOH)

Elemental Analysis (C₂₄H₂₇NO₄S₂·0.2H₂O)

Calcd.(%): C, 62.50; H, 5.99; N, 3.04; S, 13.90

²⁵ Found(%): C, 62.63; H, 6.07; N, 2.97; S, 13.60

Compound I-110

[0183] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.22-1.33(2H, m), 1.44-1.52(2H, m), 1.59-1.79(4H, m), 2.03-2.24 (5H, m), 2.37(2H, t, J=7.2Hz), 2.57(1H, m), 3.87(1H, m), 4.14(3H, s), 5.32-5.47(2H, m), 6.14(1H, d, J=7.5Hz), 7.08 (1H, dd, J=3.9 and 5.4Hz), 7.27(1H, dd, J=1.2 and 3.9Hz), 7.39(1H, dd, J=1.2 and 5.4Hz), 7.41(1H, d, J=3.9Hz), 7.49 (1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3444, 3425, 2665, 1709, 1649, 1529, 1498, 1049 cm⁻¹.

 $[a]_D^{24}+73.3\pm1.1^{\circ} (c=1.003, MeOH)$

Elemental Analysis ($C_{25}H_{30}N_2O_4S_2\cdot 0.6H_2O$)

Calcd.(%): C, 60.36; H, 6.32; N, 5.63; S, 12.89

Found(%): C, 60.30; H, 6.14; N, 5.84; S, 12.95

Compound I-111

40

[0184] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.19-1.30(2H, m), 1.40-1.50(2H, m), 1.55-1.82(4H, m), 1.98-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 3.83(1H, m), 5.30-5.44(2H, m), 5.96(1H, d, J=7.5Hz), 6.43(1H, br), 6.52 (1H, d, J=3.9Hz), 6.90(1H, m), 7.08-7.11(2H, m), 7.26-7.32(3H, m).

IR(CHCl₃): 3514, 3444, 3419, 1739, 1709, 1633, 1601, 1500, 1456 cm⁻¹.

 $[\alpha]_D^{22} + 86.6 \pm 1.3^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis (C₂₅H₃₀N₂O₃S-0.1H₂O)

Calcd.(%): C, 68.18; H, 6.91; N, 6.36; S, 7.28

Found(%): C, 68.11; H, 6.95; N, 6.43; S, 7.31

50 Compound I-112

[0185] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.30(2H, m), 1.39-1.48(2H, m), 1.54-1.83(4H, m), 1.98-2.21 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.38(3H, s), 3.80(1H, m), 5.29-5.42(2H, m), 5.82(1H, d, J=6.0Hz), 6,15 (1H, d, J=4.2Hz), 7.11-7.39(6H, m).

⁵⁵ IR(CHCl₃): 3514, 3446, 3425, 1741, 1709, 1628, 1597, 1477, 1415 cm⁻¹.

 $[\alpha]_D^{22}+83.2\pm1.2^{\circ}$ (c=1.001, MeOH)

Elemental Analysis (C₂₆H₃₂N₂O₃S)

Calcd.(%): C, 69.00; H, 7.13; N, 6.19; S, 7.08

Found(%): C, 68.74; H, 7.08; N, 6.15; S, 7.01

Compound I-113

[0186] 300MHz ¹H-NMR(CDCl₃) δ: 1.07(1H, m), 1.18-1.31(2H, m), 1.40-1.49(2H, m), 1.55-1.75(4H, m), 1.99-2.16 (5H, m), 2.31(3H, s), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 5.31-5.43(2H, m), 6.06(1H, d, J=7.5Hz), 7.03-7.20 (5H, m), 7.44(1H, d, J=3.9Hz).

 $IR(CHCl_3): 3516, 3444, 3425, 2671, 1709, 1647, 1529, 1498, 1421, 1317 \, cm^{-1}. \, [\alpha]_D^{23} + 70.2 \pm 1.1^{\circ} \, (c=1.001, MeOH) \\ Elemental Analysis (C_{26}H_{31}NO_3S_2)$

10 Calcd.(%): C, 66.49; H, 6.65; N, 2.98; S, 13.65

Found(%): C, 66.34; H, 6.74; N, 2.94; S, 13.78

Compound I-114

15 **[0187]** mp.114-116°C

300MHz 1 H-NMR(CDCl₃) δ : 1.09(1H, m), 1.18-1.32(2H, m), 1.37-1.47(2H, m), 1.55-1.75(4H, m), 2.00-2.18(5H, m), 2.35(2H, t, J=7.2Hz), 2.42(3H, s), 2.52(1H, m), 3.80(1H, m), 5.30-5.43(2H, m), 6.23(1H, d, J=7.5Hz), 7.41(3H, m), 7.59 (1H, d, J=3.9Hz), 7.78(2H, m).

IR(CHCl₃): 3514, 3442, 3371, 2669, 1707, 1655, 1529, 1504, 1329, 1151 cm⁻¹, $[\alpha]_D^{23}$ +72.4±1,1° (c=1.004, MeOH) Elemental Analysis (C₂₆H₃₁NO₅S₂)

Calcd.(%): C, 62.25; H, 6.23; N, 2.79; S, 12.78

Found(%): C, 61.83; H, 6.39; N, 2.73; S, 12.78

Compound I-115

25

40

20

[0188] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.18-1.31(2H, m), 1.40-1.50(2H, m), 1.56-1.78(4H, m), 1.99-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 3.77(3H, s), 3.82(1H, m), 5.31-5.43(2H, m), 6.06(1H, d, J=7.2Hz), 6.74-6.89 (3H, m), 7.16-7.23(2H, m), 7.45(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3444, 3425, 2665, 1709, 1647, 1591, 1529, 1498, 1477, 1423 cm⁻¹.

 $[\alpha]_D^{23}+68.7\pm1.1^{\circ} (c=1.014, MeOH)$

Elemental Analysis (C₂₆H₃₁NO₄S₂)

Calcd.(%): C, 64.30; H, 6.43; N, 2.88; S, 13.20

Found(%): C, 64.04; H, 6.56; N, 2.87; S, 13.43

35 Compound I-116

[0189] mp.67-70°C

300MHz 1 H-NMR(CDCl₃) δ : 1.09(1H, m), 1.17-1.32(2H, m), 1.39-1.47(2H, m), 1.55-1.75(4H, m), 2.00-2.20(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 3.86(3H, s), 5.30-5.43(2H, m), 6.26(1H, d, J=7.2Hz), 7.12(1H, m), 7.40-7.47(2H, m), 7.55(1H, m), 7.59(1H, d, J=3.9Hz).

IR(CHCl₃): 3514, 3442, 3373, 1707, 1655, 1599, 1529, 1504, 1481, 1327, 1151 cm⁻¹.

 $[\alpha]_D^{23}$ +70.0±1.1° (c=1.008, MeOH)

Elemental Analysis (C₂₆H₃₁NO₆S₂·0.7H₂O)

Calcd.(%): C, 58.89; H, 6.16; N, 2.64; S, 12.09

45 Found(%): C, 58.87; H, 6.15; N, 2.74; S, 12.10

Compound I-117

[0190] 300MHz 1 H-NMR(CDCl₃) δ : 1.10-1.32(3H, m), 1.37-1.46(2H, m), 1.55-1.73(4H, m), 1.94-2.18(5H, m), 2.34 (2H, t, J=7.2Hz), 2.55(1H, m), 3.78(1H, m), 5.29-5.45(2H, m), 6.56(1H, d, J=6.6Hz), 7.09(1H, m), 7.37(1H, t, J=8.1Hz), 7.45(1H, d, J=3.9Hz), 7.47-7.53(2H, m), 7.55(1H, d, J=3.9Hz).

IR(KBr): 3365, 3095, 1707, 1628, 1543, 1448, 1306, 1147 cm⁻¹.

 $[\alpha]_D^{23}+70.8\pm1.1^{\circ} \text{ (c=1.003, MeOH)}$

Elemental Analysis (C₂₅H₂₉NO₆S₂·0.3H₂O)

55 Calcd.(%): C, 58.99; H, 5.86; N, 2.75; S, 12.60

Found(%): C, 58.85; H, 5.85; N, 2.67; S, 12.77

Compound I-118

[0191] mp. 133-134°C

300MHz 1 H-NMR(CDCl₃) δ : 1.08(1H, m), 1.18-1.32(2H, m), 1.40-1.49(2H, m), 1.55-1.78(4H, m), 1.96-2.24(5H, m), 2.34(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 5.31-5.46(2H, m), 6.14(1H, d, J=6.6Hz), 6.71(2H, m), 6.86(1H, m), 7.14(2H, m), 7.42(1H, d, J=3.9Hz).

IR(Nujol): 3336, 3091, 2656, 1703, 1603, 1581, 1545 cm⁻¹.

 $[\alpha]_D^{23} + 73.2 \pm 1.1^{\circ} \text{ (c=1.007, MeOH)}$

Elemental Analysis (C₂₅H₂₉NO₄S₂)

10 Calcd.(%): C, 63.67; H, 6.20; N, 2.97; S, 13.60

Found(%): C, 63.78; H, 6.17; N, 3.10; S, 13.73

Compound I-119

[0192] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.17-1.30(2H, m), 1.38-1.48(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.79(3H, s), 3.81(1H, m), 4.10(2H, s), 5.29-5.42(2H, m), 5.97(1H, d, J=7.5Hz), 6.77-6.84(4H, m), 7.23(2H, m), 7.37(1H, d, J=3.9Hz).

IR(CHCl₃): 3514, 3446, 3427, 1741, 1709, 1641, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{22}+64.3\pm1.0^{\circ}$ (c=1.005, MeOH)

20 Elemental Analysis (C₂₇H₃₃NO₄S·0.1H₂O)

Calcd.(%): C, 69.08; H, 7.13; N, 2.98; S, 6.83

Found(%): C, 69.03; H, 7.25; N, 3.06; S, 7.00

Compound I-120

25

[0193] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.16-1.28(2H, m), 1.36-1.46(2H, m), 1.52-1.78(4H, m), 1.96-2.17 (5H, m), 2.32(2H, t, J=7.2Hz), 2.50(1H, m), 3.80(1H, m), 4.02(2H, s), 5.28-5.42(2H, m), 6.16(1H, d, J=7.5Hz), 6.72-6.77 (4H, m), 7.14(1H, m), 7.36(1H, d, J=3.9Hz).

IR(CHCl₃): 3595, 3423, 3207, 1707, 1635, 1599, 1545, 1508, 1456 cm⁻¹.

 $(\alpha)_{D}^{23}+66.8\pm1.1^{\circ} (c=1.009, MeOH)$

Elemental Analysis (C₂₆H₃₁NO₄S·0.4H₂O)

Calcd.(%): C, 67.77; H, 6.96; N, 3.04; S, 6.96

Found(%): C, 67.83; H, 6.92; N, 3.18; S, 7.14

35 Compound I-121

[0194] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.31(2H, m), 1.40-1.48(2H, m), 1.55-1.82(4H, m), 1.98-2.22 (5H, m), 2.29(3H, s), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.80(1H, m), 4.14(2H, s), 5.29-5.43(2H, m), 5.97(1H, d, J=7.5Hz), 6.78(1H,m), 6.94-7.00(2H, m), 7.10(1H, m), 7.33(1H, m), 7.36(1H, d, J=3.9Hz).

40 IR(CHCl₃): 3514, 3446, 3427, 2669, 1763, 1745, 1709, 1643, 1545, 1506, 1371 cm⁻¹.

 $[\alpha]_D^{23}+61.3\pm1.0^{\circ}$ (c=1.019, MeOH)

Elemental Analysis (C₂₈H₃₃NO₅S·0.1H₂O)

Calcd.(%): C, 67.61; H, 6.73; N, 2.82; S, 6.45

Found(%): C, 67.52; H, 6.77; N, 2.99; S, 6.48

45

50

Compound 1-122

[0195] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.30(2H, m), 1.40-1.48(2H, m), 1.56-1.76(4H, m), 1.99-2.17 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.25(2H, s), 5.30-5.43(2H, m), 6.00(1H, d, J=7.5Hz), 6.81 (1H, d, J=3.9Hz), 7.20-7.36(6H, m).

IR(CHCl₃): 3516, 3446, 3427, 2667, 1709, 1643, 1543, 1506 cm⁻¹.

 $[\alpha]_D^{23}+65.0\pm1.0^{\circ}$ (c=1.008, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S₂·0.1H₂O)

Calcd.(%): C, 66.24; H, 6.67; N, 2.97; S, 13.60

55 Found(%): C, 66.14; H, 6.63; N, 3.05; S, 13.49

Compound I-123

5

20

35

55

[0196] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.20-1.32(2H, m), 1.40-1.50(2H, m), 1.56-1.80(4H, m), 2.00-2.20 (5H, m), 2.36(2H, t, J=7.2Hz), 2.54(1H, m), 3.84(1H, m), 5.20(2H, s), 5.31-5.44(2H, m), 6.06(1H, d, J=7.5Hz), 6.94-7.05 (4H, m), 7.27-7.33(2H, m), 7.42(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3444, 3427, 2669, 1709, 1645, 1599, 1545, 1508, 1497 cm⁻¹.

 $[\alpha]_D^{24}+65.4\pm1.1^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₂₆H₃₁NO₄S-0.2H₂O)

Calcd.(%): C, 68.30; H, 6.92; N, 3.06; S, 7.01

10 Found(%): C, 68.32; H, 6.83; N, 3.08; S, 6.99

Compound I-124

[0197] 300MHz ¹H-NMR(CDCl₃) δ: 1.06(1H, m), 1.18-1.32(2H, m), 1.40-1.50(2H, m), 1.55-1.80(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.51(2H, d, J=0.9Hz), 5.30-5.43(2H, m), 6.01(1H, d, J=7.5Hz), 6.65-6.97(3H, m), 6.96(1H, d, J=3.9Hz), 7.16-7.21(1H, m), 7.41(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3444, 3427, 1709, 1643, 1603, 1545, 1504, 1309, 1260 cm⁻¹.

 $[\alpha]_D^{22}+65.7\pm1.0^{\circ}$ (c=1.014, MeOH)

Elemental Analysis (C₂₆H₃₂N₂O₃S·0.2H₂O)

Calcd.(%): C, 68.45; H, 7.16; N, 6.14; S, 7.03

Found(%): C, 68.43; H, 7.18; N, 6.27; S, 6.94

Compound I-125

[0198] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.27(2H, m), 1.40-1.45(2H, m), 1.56-1.77(4H, m), 2.00-2.13 (5H, m), 2.28(3H, s), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.80(1H, m), 4.12(2H, s), 5.29-5.41(2H, m), 5.98(1H, d, J=7.2Hz), 6.69(1H, d, J=3.6Hz), 7.18(4H, s), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3518, 3446, 3426, 1741, 1709, 1641, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{22.5}+66.8\pm1.1^{\circ}$ (c=1.003, MeOH)

30 Elemental Analysis (C₂₇H₃₃NO₃S·H₂O)

Calcd.(%): C, 69.05; H, 7.51; N, 2.98; S, 6.83

Found(%): C, 69.07; H, 7.11; N, 3.23; S, 7.04

Compound 1-126

[0199] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.17-1.28(2H, m), 1.41-1.46(2H, m), 1.55-1.77(4H, m), 2.00-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 4.12(2H, s), 5.29-5.41(2H, m), 5.91(1H, d, J=7.2Hz), 6.77 (1H, d, J=3.3Hz), 6.86-6.90(2H, m), 7.15(1H, dd, J=1.8 and 7.5Hz), 7.20-7.26(1H, m), 7.34(1H, d, J=3.6Hz). IR(CHCl₃): 3519, 3446, 3427, 2669, 1741, 1709, 1641, 1543, 1504, 1458, 1248 cm⁻¹.

40 $[\alpha]_D^{22.5}+64.2\pm1.0^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₂₇H₃₃NO₄S·0.1H₂O)

Calcd.(%): C, 69.08; H, 7.13; N, 2.98; S, 6.83

Found(%): C, 68.97; H, 6.90; N, 3.09; S, 6.77

45 Compound I-127

[0200] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18(3H, t, J=7.7Hz), 1.15-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.80 (4H, m), 2.00-2.15(5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, s), 2.64(2H, q, J=7.7Hz), 3.80(1H, m), 4.16(2H, s), 5.29-5.41 (2H, m), 5.91(1H, d, J=7.5Hz), 6.69(1H, d, J=3.6Hz), 7.16-7.25(4H, m), 7.35(1H, d, J=3.6Hz).

⁵⁰ IR(CHCl₃) 3516, 3447, 3427, 2669, 1709, 1641, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{21}$ +65.8±1.1° (c=1.011, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S·0.2H₂O)

Calcd.(%): C, 71.67; H, 7.60; N, 2.98; S, 6.83

Found(%): C, 71.83; H, 7.49; N, 3.12; S, 6.89

Compound I-128

[0201] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.80(4H, m), 2.00-2.20

(5H, m), 2.24 and 2.31(each 3H, each s), 2.35(2H, t, J=7.4Hz), 2.51(1H, s), 3.80(1H, m), 4.19(2H, s), 5.29-5.41(2H, m), 5.91(1H, d, J=7.2Hz), 6.70(1H, d, J=3.6Hz), 6.99(1H, d, J=7.5Hz), 7.00(1H, s), 7.07(1H, d, J=7.5Hz), 7.35(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3446, 3426, 1741, 1709, 1641, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{21}+65.2\pm1.0^{\circ} \text{ (c=1.014, MeOH)}$

Elemental Analysis (C₂₈H₃₅NO₃S·0.2H₂O)

Calcd.(%): C, 71.67; H, 7.60; N, 2.98; S, 6.83

Found(%): C, 71.53; H, 7.49; N, 3.31; S, 6.90

10 Compound I-129

[0202] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.29(2H, m), 1.42-1.47(2H, m), 1.56-1.78(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.5Hz), 2.43(3H, s), 2.52(1H, s), 3.81(1H, m), 4.24(2H, s), 5.30-5.42(2H, m), 5.97(1H, d, J=7.5Hz), 6.57(1H, m), 6.67(1H, d, J=3.3Hz), 6.83(1H, d, J=3.9Hz), 7.37(1H, d, J=3.9Hz).

¹⁵ IR(CHCl₃): 3514, 3446, 3427, 1709, 1643, 1545, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{22}+67.1\pm1.1^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₅H₃₁NO₃S₂)

Calcd.(%): C, 65.61; H, 6.83; N, 3.06; S, 14.01

Found(%): C, 65.42; H, 6.76; N, 3.20; S, 13.73

20

25

Compound I-130

[0203] 300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.41-1.45(2H, m), 1.55-1.78(4H, m), 1.99-2.16 (5H, m), 2.34(2H, t, J=7.2Hz), 2.38(3H, s), 2.51(1H, m), 3.80(1H, m), 4.09(2H, s), 5.29-5.41(2H, m), 5.96(1H, d, J=6.9Hz), 6.76(1H, d, J=3.6Hz), 7.12(4H, s), 7.37(1H, d, J=3.6Hz).

IR(CHCl₃): 3510, 3446, 3427, 1741, 1709, 1641, 1543, 1508, 1458 cm⁻¹.

 $[\alpha]_D^{22}+67.0\pm1.1^{\circ}$ (c=1.014, MeOH)

Elemental Analysis (C₂₇H₃₃NO₃S)

Calcd.(%): C, 71.81; H, 7.36; N, 3.10; S, 7.10

30 Found(%): C, 71.53; H, 7.24; N, 3.21; S, 7.36

Compound I-131

[0204] 300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.41-1.46(2H, m), 1.56-1.78(4H, m), 1.99-2.19 (5H, m), 2.33(3H, s), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.09(2H, s), 5.29-5.42(2H, m), 5.96(1H, d, J=7.2Hz), 6.77(1H, d, J=3.6Hz), 7.02-7.07(3H, m), 7.21(1H, m), 7.37(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1641, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{23}$ +66.1±1.1° (c=1.006, MeOH)

Elemental Analysis (C₂₇H₃₃NO₃S·0.2H₂O)

40 Calcd.(%): C, 71.24; H, 7.40; N, 3.08; S, 7.04

Found(%): C, 71.26; H, 7.20; N, 3.19; S, 7.12

Compound I-132

[0205] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.19-1.30(2H, m), 1.41-1.49(2H, m), 1.57-1.78(4H, m), 2.00-2.21 (5H, m), 2.30(3H, s), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.25(2H, s), 5.30-5.43(2H, m), 6.01(1H, d, J=6.9Hz), 6.82(1H, d, J=3.9Hz), 7.02(1H, m), 7.10-7.19(3H, m), 7.31(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3446, 3427, 2671, 1739, 1709, 1643, 1543, 1506, 1475, 1456 cm⁻¹.

 $[\alpha]_D^{23}+63.2\pm1.0^{\circ}$ (c=1.007, MeOH)

50 Elemental Analysis (C₂₇H₃₃NO₃S₂·0.2H₂O)

Calcd.(%): C, 66,55; H, 6.91; N, 2.87; S, 13.16

Found(%): C, 66.44; H, 6.87; N, 2.99; S, 13.11

Compound I-133

55

[0206] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.20-1.30(2H, m), 1.45-1.51(2H, m), 1.56-1.82(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 4.16(2H, s), 5.30-5.43(2H, m), 5.98(1H, d, J=7.2Hz), 6.13 (1H, dd, J=3.3 and 0.9Hz), 6.32(1H, dd, J=3.3 and 1.8Hz), 6.84(1H, d, J=3.6Hz), 7.35(1H, dd, J=1.8 and 0.9Hz), 7.37

(1H, d, J=3.6Hz).

IR(CHCl₃): 3512, 3446, 3427, 2669, 1709, 1643, 1545, 1506 cm⁻¹. $[\alpha]_D^{22}$ +69.6±1.1° (c=1.015, MeOH)

Elemental Analysis (C₂₄H₂₉NO₄S·0.2H₂O)

Calcd.(%): C, 66.86; H, 6.87; N, 3.25; S, 7.44

5 Found(%): C, 66.75; H, 6.63; N, 3.32; S, 7.50

Compound I-134

[0207] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.29(2H, m), 1.45-1.60(2H, m), 1.61-1.80(4H, m), 2.00-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 3.96(2H, s), 5.29-5.42(2H, m), 5.96(1H, d, J=6.9Hz), 6.30 (1H, m), 6.80(1H, m), 7.32(1H, m), 7.35-7.39(2H, m).

IR(CHCl₃) 3516, 3446, 3427, 2663, 1709, 1643, 1545, 1506 cm⁻¹.

 $[\alpha]_D^{21}$ +70.2±1.1° (c=1.007, MeOH)

Elemental Analysis (C₂₄H₂₉NO₄S)

⁵ Calcd.(%): C, 67.42; H, 6.84; N, 3.28; S, 7.50

Found(%): C, 67.13; H, 6.57; N, 3.40; S, 7.40

Compound I-135

[0208] 300MHz ¹H-NMR(CDCl₃) δ: 1.06(1H, m), 1.20-1.29(2H, m), 1.42-1.47(2H, m), 1.58-1.82(4H, m), 2.00-2.15 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.41(2H, s), 5.29-5.41(2H, m), 5.96(1H, d, J=7.2Hz), 6.91 (1H, d, J=3.6Hz), 7.11(1H, s), 7.25-7.35(3H, m), 7.39(1H, d, J=3.6Hz), 7.76(1H, d, J=7.8Hz).

IR(CHCl₃): 3510, 3444, 3427, 2667, 1709, 1643, 1543, 1508 cm⁻¹.

 $[\alpha]_D^{24}+66.5\pm1.1^{\circ}$ (c=1.012, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.5_{H2}O)

Calcd.(%): C, 66.90; H, 6.42; N, 2.79; S, 12.76

Found(%): C, 66.99; H, 6.12; N, 2.81; S, 12.48

Compound I-136

30

[0209] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.20-1.42(2H, m), 1.44-1.49(2H, m), 1.55-1.80(4H, m), 2.00-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.30(2H, s), 5.29-5.41(2H, m), 5.98(1H, d, J=7.8Hz), 6.51 (1H, d, J=0.6Hz), 6.92(1H, d, J=3.9Hz), 7.17-7.25(2H, m), 7.38-7.51(3H, m).

 $IR(CHCl_3)$: 3514, 3444, 3427, 2669, 1709, 1643, 1545, 1508, 1454 cm⁻¹. $[\alpha]_D^{23}+63.8\pm1.0^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₈H₃₁NO₄S·0.3H₂O)

Calcd.(%): C, 69.62; H, 6.59; N, 2.90; S, 6.64

Found(%): C, 69.51; H, 6.52; N, 2.92; S, 6.63

Compound I-137

40

[0210] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.29(2H, m), 1.40-1.48(2H, m), 1.55-1.78(4H, m), 1.98-2.18 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.81(1H, m), 4.17(2H, s), 5.29-5.42(2H, m), 5.98(1H, d, J=7.5Hz), 6.81 (1H, d, J=3.6Hz), 7.29-7.46(6H, m), 7.52-7.60(4H, m).

IR(CHCl₃): 3510, 3446, 3427, 1741, 1709, 1643, 1543, 1506, 1489 cm⁻¹.

 $[\alpha]_D^{23}+59.4\pm1.0^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₂H₃₅NO₃S·0.2H₂O)

Calcd.(%): C, 74.30; H, 6.90; N, 2.71; S, 6.20

Found(%): C, 74.24; H, 6.78; N, 2.97; S, 6.16

50 Compound I-138

[0211] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.17-1.29(2H, m), 1.39-1.47(2H, m), 1.54-1.76(4H, m), 1.97-2.38 (5H, m), 2.33(2H, t, J=7.5Hz), 2.51(1H, m), 3.80(1H, m), 4.19(2H, s), 5.28-5.41(2H, m), 5.98(1H, d, J=7.5Hz), 6.79 (1H, d, J=3.6Hz), 7.21(1H, d, J=7.8Hz), 7.31-7.49(7H, m), 7.56(2H, m).

⁵⁵ IR(CHCl₃): 3512, 3446, 3427, 2669, 1741, 1709, 1643, 1543, 1506, 1479, 1456 cm⁻¹.

 $[\alpha]_D^{24}+59.2\pm1.0^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₃₂H₃₅NO₃S·0.2H₂O)

Calcd.(%): C, 74.30; H, 6.90; N, 2.71; S, 6.20

Found(%): C, 74.26; H, 6.92; N, 3.00; S, 6.20

Compound 1-139

[0212] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.17-1.32(2H, m), 1.43-1.48(2H, m), 1.58-1.80(4H, m), 2.02-2.24 (5H, m), 2.34(2H, t, J=7.2Hz), 2.58(1H, s), 3.91(1H, m), 4.11(2H, s), 5.30-5.44(2H, m), 6.11(1H, d, J=7.2Hz), 7.18-7.30 (6H, m), 7.75(1H, d, J=8.4Hz), 7.86(1H, s), 8.16(1H, s).

IR(CHCl₃): 3516, 3430, 2665, 1741, 1709, 1651, 1513, 1494, 1454, 1435 cm⁻¹.

 $[\alpha]_D^{24}+45.6\pm0.9^{\circ}$ (c=1.004, MeOH)

10 Elemental Analysis (C₃₀H₃₃NO₃S·0.1H₂O)

Calcd.(%): C, 73.62; H, 6.84; N, 2.86; S, 6.55

Found(%): C, 73.57; H, 6.71; N, 3.07; S, 6.30

Compound I-140

15

30

[0213] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.20-1.32(2H, m), 1.46-1.51(2H, m), 1.58-1.78(4H, m), 2.02-2.24 (5H, m), 2.35(2H, t, J=7.4Hz), 2.60(1H, s), 3.92(1H, m), 4.10(2H, s), 5.32-5.46(2H, m), 6.14(1H, d, J=7.2Hz), 7.19-7.32 (6H, m), 7.64(1H, s), 7.81(1H, s), 8.20(1H, d, J=8.4Hz).

IR(CHCl₃): 3516, 3438, 2669, 1709, 1651, 1516, 1494, 1406 cm⁻¹.

 $[\alpha]_D^{24}+53.0\pm0.9^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₃₀H₃₃NO₃S)

Calcd.(%): C, 73.89; H, 6.82; N, 2.87; S, 6.58

Found(%): C, 73.57; H, 7.05; N, 3.08; S, 6.63

25 Compound I-141

[0214] mp.54-56°C

300MHz 1 H-NMR(CDCl₃) δ : 0.97(1H, m), 1.10-1.43(4H, m), 1.53-1.72(4H, m), 1.97-2.15(5H, m), 2.31(2H, t, J=7.4Hz), 2.45(1H, s), 3.83(1H, m), 4.39 and 4.52(each 1H, each d, J=16.5Hz), 5.25-5.40(2H, m), 5.98(1H, d, J=7.5Hz), 7.00-7.31 (7H, m), 7.57(1H, s), 7.73(1H, d, J=7.5Hz).

IR(CHCl₃): 3514, 3433, 2671, 1709, 1655, 1512, 1454 cm⁻¹.

 $[\alpha]_D^{25}$ +76.7±1.2° (c=1.005, MeOH)

Elemental Analysis (C₃₀H₃₃NO₃S-0.1H₂O)

Calcd.(%): C, 73.62; H, 6.84; N, 2.86; S, 6.55

35 Found(%): C, 73.45; H, 6.91; N, 3.21; S, 6.34

Compound I-142

[**0215**] mp.118-119°C

300MHz 1 H-NMR(CDCl₃) δ: 1.07(1H, m), 1.20-1.27(2H, m), 1.42-1.46(2H, m), 1.55-1.73(4H, m), 1.99-2.12(5H, m), 2.33(2H, t, J=7.5Hz), 2.52(1H, s), 3.82(1H, m),3.93(2H, s), 5.29-5.42(2H, m), 6.10(1H, d, J=7.2Hz), 7.05(1H, d, J=0.9Hz), 7.16-7.32(6H, m).

IR(CHCl₃): 3516, 3444, 3429, 2669, 1739, 1709, 1665, 1549, 1508, 1454 cm⁻¹.

 $[\alpha]_D^{24} + 72.7 \pm 0.1.1^{\circ} (c=1.001, MeOH)$

Elemental Analysis (C₂₆H₃₁NO₃S)

Calcd.(%): C, 71.36; H, 7.14; N, 3.20; S, 7.33

Found(%): C, 71.31; H, 7.27; N, 3.36; S, 7.31

Compound I-143

50

[0216] 300MHz ¹H-NMR(CDCl₃) δ : 1.09(1H, m), 1.19-1.32(2H, m), 1.46-1.51(2H, m), 1.58-1.78(4H, m), 2.02-2.24 (5H, m), 2.35(2H, t, J=7.2Hz), 2.60(1H, s), 3.92(1H, m), 4.24(2H, s), 5.32-5.47(2H, m), 6.14(1H, d, J=7.5Hz), 7.18-7.30 (6H, m), 7.43(1H, t, J=7.8Hz), 7.83(1H, s), 8.17(1H, d, J=7.8Hz).

IR(CHCl₃): 3516, 3438, 2671, 1709, 1651, 1518, 1495, 1454 cm⁻¹.

 $[\alpha]_D^{25}+62.8\pm1.0^{\circ} (c=1.011, MeOH)$

Elemental Analysis (C₃₀H₃₃NO₃S·0.1H₂O)

Calcd.(%): C, 73.62; H, 6.84; N, 2.86; S, 6.55

Found(%): C, 73.52; H, 6.87; N, 3.13; S, 6.47

Compound I-144

[0217] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.23-1.29(2H, m), 1.41-1.49(2H, m), 1.58-1.77(4H, m), 2.00-2.21 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.05(2H, s), 5.12(2H, s), 5.29-5.42(2H, m), 5.94(1H, d, J=7.8Hz), 6.76(1H, d, J=3.9Hz), 6.90-6.98(3H, m), 7.32-7.45(6H, m).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1643, 1543, 1510, 1456, 1273 cm⁻¹.

 $[\alpha]_D^{23}$ +53.7±0.9° (c=1.006, MeOH)

Elemental Analysis (C₃₃H₃₆FNO₄S-0.2H₂O)

Calcd.(%): C, 70.11; H, 6.49; N, 2.48; S, 5.67; F,3.36

10 Found(%): C, 70.00; H, 6.44; N, 2.50; S, 5.75; F,3.32

Compound I-145

[0218] mp.136-137°C

 5 300MHz 1 H-NMR(CDCl₃) δ: 1.06(1H, m), 1.23-1.29(2H, m), 1.41-1.49(2H, m), 1.58-1.77(4H, m), 2.00-2.21(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.78(1H, m), 4.05(2H, s), 5.29-5.42(2H, m), 5.93(1H, d, J=10.8Hz), 6.77(1H, d, J=3.6Hz), 6.88-6.98(3H, m), 7.36(1H, d, J=3.6Hz).

IR(Nujol): 3377, 3101, 2752, 1703, 1618, 1601, 1550, 1518 cm⁻¹.

 $[\alpha]_D^{23}+64.2\pm1.0^{\circ}$ (c=1.009, MeOH)

20 Elemental Analysis (C₂₆H₃₀FNO₄S)

Calcd.(%): C, 66.23; H, 6.41; N, 2.97; S, 6.80; F, 4.03

Found(%): C, 66.15; H, 6.38; N, 2.94; S, 6.76; F, 3.94

Compound I-146

25

35

5

[0219] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.20-1.29(2H, m), 1.41-1.46(2H, m), 1.61-1.81(4H, m), 2.00-2.16 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.79(1H, m), 4.03(2H, s), 5.08(2H, s), 5.29-5.40(2H, m), 5.63(1H, brs), 5.93(1H, d, J=7.5Hz), 6.70(1H, dd, J=2.1 and 8.4Hz), 6.77(1H, d, J=3.9Hz), 6.83(1H, d, J=5.7Hz). 6.86(1H, d, J=8.4Hz), 7.36-7.41(6H, m).

³⁰ IR(CHCl₃): 3539, 3446, 3425, 1741, 1709, 1641, 1543, 1508, 1475, 1273 cm⁻¹.

 $[\alpha]_D^{23}$ +53.8±0.9° (c=1.003, MeOH)

Elemental Analysis (C₃₃H₃₇NO₅S·0.5H₂O)

Calcd.(%): C, 69.69; H, 6.73; N, 2.46; S, 5.64

Found(%): C, 69.68; H, 6.85; N, 2.68; S, 5.76

Compound I-147

[0220] mp. 150-151°C

300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.20-1.29(2H, m), 1.41-1.46(2H, m), 1.58-1.79(4H, m), 2.00-2.16(5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.79(1H, m), 3.86(3H, s), 4.06(2H, s), 5.29-5.41(2H, m), 5.56(1H, brs), 5.93(1H, d, J=8.4Hz), 6.72-6.77(3H, m), 6.87(1H, d, J=8.1Hz), 7.37(1H, d, J=3.6Hz).

IR(Nujol): 3452, 3361, 3130, 1743, 1707, 1620, 1599, 1550, 1522, 1286 cm⁻¹.

 $[\alpha]_D^{23}+62.6\pm1.0^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₇H₃₃NO₅S)

45 Calcd.(%): C, 67.05; H, 6.88; N, 2.90; S, 6.63

Found(%): C, 67.20; H, 7.04; N, 2.98; S, 6.58

Compound I-148

[0221] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.31(2H, m), 1.41-1.50(2H, m), 1.56-1.81(4H, m), 1.99-2.21 (5H, m), 2.35(2H, t, J=7.2Hz), 2.53(1H, m), 2.95-3.00(2H,m), 3.10-3.15(2H, m),3.83(1H, m), 5.31-5.44(2H, m), 6.02 (1H, d, J=7.2Hz), 6.70(1H, d, J=3.9Hz), 7.15-7.32(5H, m), 7.33(1H, d, J=3.9Hz).

IR(CHCl₃): 3510, 3446, 3429, 2671, 1741, 1709, 1641, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{23}+68.4\pm1.1^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₇H₃₃NO₃S·0.1H₂O)

Calcd.(%): C, 71.52; H, 7.38; N, 3.09; S, 7.07

Found(%): C, 71.35; H, 7.37; N, 3.19; S, 7.19

Compound I-149

5

[0222] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.32(2H, m), 1.41-1.50(2H, m), 1.56-1.81(4H, m), 1.99-2.23 (5H, m), 2.36(2H, t, J=7.2Hz), 2.43(3H, s), 2.53(1H, m), 3.05-3.19(4H, m), 3.83(1H, m), 5.31-5.44(2H, m), 6.00(1H, d, J=6.9Hz), 6.23-6.56(2H, m), 6.75 and 7.34(each 1H, each d, each J=3.6Hz).

IR(CHCl₃): 3510, 3446, 3429, 2669, 1709, 1641, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{23}$ +64.6±1.0° (c=1.014, MeOH)

Elemental Analysis (C₂₆H₃₃NO₃S₂·0.1H₂O)

Calcd.(%): C, 65.96; H, 7.07; N, 2.96; S, 13.54

10 Found(%): C, 65.87; H, 7.03; N, 3.02; S, 13.50

Compound I-150

[0223] 300MHz ¹H-NMR(CDCl₃) 6: 1.07(1H, m), 1.19-1.31(2H, m), 1.41-1.50(2H, m), 1.56-1.80(4H, m), 1.99-2.20 (5H, m), 2.35(2H, t, J=7.5Hz), 2.53(1H, m), 3.18(3H, s), 3.83(1H, m), 5.31-5.44(2H, m), 6.05(1H, d, J=7.2Hz), 6.741H, d, J=3.6Hz), 6.79(1H, m), 6.91(1H, dd, J=3.6 and 5.4Hz), 7.13(1H, dd, J=1.2 and 5.4Hz), 7.34(1H, d, J=3.6Hz). IR(CHCl₃): 3516, 34446, 3429, 2669, 1709, 1641, 1543, 1506 cm⁻¹.

 $[\alpha]_D^{24}$ +66.1±1.0° (c=1.019, MeOH)

Elemental Analysis (C₂₅H₃₁NO₃S₂)

20 Calcd.(%): C, 65.61; H, 6.83; N, 3.06; S, 14.01

Found(%): C, 65.47; H, 6.89; N, 3.12; S,13.82

Compound I-151

[0224] 300MHz ¹H-NMR(CDCl₃) 6: 1.09(1H, m), 1.20-1.32(2H, m), 1.42-1.51(2H, m), 1.57-1.81(4H, m), 2.00-2.22 (5H, m), 2.33(2H, t, J=7.5Hz), 2.56(1H, m), 2.99-3.05(2H, m), 3.11-3.17(2H, m), 3.88(1H, m), 5.30-5.44(2H, m), 6.22 (1H, d, J=7.2Hz), 6.74(1H, m), 6.89(1H, dd, J=3.3 and 5.1Hz), 7.11(1H, dd, J=1.2 and 5.1Hz), 7.23 and 7.67(each 2H, each d, each J=8.1Hz).

IR(CHCl₃): 3516, 3448, 2665, 1709, 1651, 1523, 1496 cm⁻¹.

 $[\alpha]_D^{24}+71.8\pm1.1^\circ \text{ (c=1.009, MeOH)}$

Elemental Analysis (C₂₇H₃₃NO₃S)

Calcd.(%): C, 71.81; H, 7.37; N, 3.10; S, 7.10

Found(%): C, 71.68; H, 7.40; N, 3.18; S, 6.96

35 Compound I-152

[0225] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.31(2H, m), 1.42-1.50(2H, m), 1.56-1.81(4H, m), 2.00-2.21 (5H, m), 2.36(2H, t, J=7.2Hz), 2.53(1H, m), 2.92-2.97(2H, m), 3.07-3.12(2H, m), 3.83(1H, m), 5.31-5.44(2H, m), 5.99 (1H, d, J=7.2Hz), 6.68(1H, d, J=3.6Hz), 6.92-7.00(2H, m), 7.08-7.15(2H, m), 7.32(1H, d, J=3.6Hz).

40 IR(CHCl₃): 3516, 3446, 3429, 1741, 1709, 1641, 1543, 1510, 1458 cm⁻¹.

 $[\alpha]_D^{23}+64.1\pm1.0^{\circ}$ (c=1.012, MeOH)

Elemental Analysis (C₂₇H₃₂FNO₃S)

Calcd.(%): C, 69.06; H, 6.87; N, 2.98; S, 6.83; F, 4.05

Found(%): C, 68.92; H, 6.90; N, 3.03; S, 6.81; F, 4.02

45

50

Compound I-153

[0226] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.19-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.78(4H, m), 2.00-2.19 (5H, m), 2.29(6H, s), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.05(2H, s), 5.29-5.42(2H, m), 5.96(1H, d, J=7.5Hz), 6.77(1H, td, J=0.9 and 3.6Hz), 6.85(2H, s), 6.88(1H, s), 7.37(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1641, 1606, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{23}+64.6\pm1.0^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S·0.1H₂O)

Calcd.(%): C, 71.94; H, 7.59; N, 3.00; S, 6.86

55 Found(%): C, 71.87; H, 7.52; N, 3.31; S, 6.94

Compound I-154

5

[0227] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.78(4H, m), 2.00-2.19 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.10(2H, s), 5.29-5.42(2H, m), 5.98(1H, d, J=7.2Hz), 6.75 (1H, td, J=0.9 and 3.9Hz), 6.97-7.03(2H, m), 7.17-7.22(2H, m), 7.36(1H, d, J=3.9Hz).

IR(CHCl₃): 3512, 3446, 3427, 1741, 1709, 1643, 1543, 1508 cm⁻¹.

 $[\alpha]_D^{24}+66.1\pm1.1^{\circ}$ (c=1.008, MeOH)

Elemental Analysis (C₂₆H₃₀FNO₃S)

Calcd.(%): C, 68.54; H, 6.64; N, 3.07; S, 7.04; F,4.17

10 Found(%): C, 68.41; H, 6.70; N, 3.19; S, 6.90; F,3.98

Compound I-155

[0228] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.19-1.29(2H, m), 1.42-1.46(2H, m), 1.58-1.78(4H, m), 2.00-2.17 (5H, m), 2.35(2H, t, J=7.5Hz), 2.52(1H, m), 3.81(1H, m), 4.19(2H, s), 5.29-5.42(2H, m), 5.97(1H, d, J=7.8Hz), 6.75 (1H, td, J=0.9 and 3.6Hz), 7.34-7.37(3H, m), 7.56-7.59(2H, m).

IR(CHCl₃): 3512, 3444, 3427, 1741, 1709, 1643, 1543, 1506, 1325, 1167, 1130, 1066 cm⁻¹.

 $[\alpha]_D^{24}+60.3\pm1.0^{\circ} (c=1.001, MeOH)$

Elemental Analysis (C₂₇H₃₀F₃NO₃S)

20 Calcd.(%): C, 64.14; H, 5.98; N, 2.77; S, 6.34; F,11.27

Found(%): C, 64.16; H, 6.04; N, 3.02; S, 6.19; F,11.17

Compound I-156

25 **[0229]** mp.66-70°C

300MHz 1 H-NMR(CDCl₃) δ : 1.11(1H, m), 1.22-1.30(2H, m), 1.43-1.50(2H, m), 1.60-1.78(4H, m), 2.03-2.22(5H, m), 2.36(2H, t, J=7.5Hz), 2.54(1H, m), 3.87(1H, m), 4.08(2H, s), 5.31-5.45(2H, m), 6.21(1H, d, J=7.2Hz), 7.18-7.32(6H, m), 7.60(1H, d, J=0.9Hz), 7.70(1H, d, J=0.6Hz), 7,74(1H, d, J=8.lHz).

IR(KBr): 3338, 1707, 1616, 1556, 1537 cm⁻¹.

 $(\alpha)_{D}^{23} + 97.2 \pm 1.4^{\circ} \text{ (c=1.016, MeOH)}$

Elemental Analysis (C₃₀H₃₃NO₃S·0.3H₂O)

Calcd.(%): C, 73.08; H, 6.87; N, 2.84; S, 6.50

Found(%): C, 73.19; H, 7.11; N, 2.98; S, 6.32

35 Compound I-157

[0230] 300MHz ¹H-NMR(CDCl₃) δ : 1.03(1H, m), 1.17-1.29(2H, m), 1.38-1.47(2H, m), 1.55-1.76(4H, m), 1.97-2.18 (5H, m), 2.33(2H, t, J=7.5Hz), 2.50(1H, m), 3.80(1H, m), 4.29(2H, s), 5.28-5.40(2H, m), 5.94(1H, d, J=7.5Hz), 6.81 (1H, d, J=3.9Hz), 7.32-7.39(2H, m), 7.42-7.50(2H, m), 7.69(1H, s), 7.77-7.83(3H, m).

40 IR(CHCl₃): 3516, 3446, 3427, 2665, 1739, 1709, 1643, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{23}+62.8\pm1.0^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₃₀H₃₂NO₃S·0.2H₂O)

Calcd.(%): C, 73.35; H, 6.85; N, 2.85; S, 6.53

Found(%): C, 73.36; H, 6.84; N, 3.19; S, 6.55

Compound I-158

45

50

[0231] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.20-1.32(2H, m), 1.42-1.50(2H, m), 1.57-1.84(4H, m), 2.00-2.23 (5H, m), 2.36(2H, t, J=7.5Hz), 2.53(1H, m), 2.95-3.00(2H, m), 3.06-3.12(2H, m), 3.82(1H, m),3.83(3H, s), 5.30-5.43 (2H, m), 5.95(1H, d, J=6.9Hz), 6.73(1H, d, J=3.6Hz), 6.84-6.89(2H, m), 7.09(1H, dd, J=1.5 and 7.5Hz), 7.34(1H, d, J=3.6Hz).

IR(Nujol): 3367, 3221, 3186, 3091, 3055, 2654, 1711, 1631, 1566, 1541, 1321 cm⁻¹.

 $[\alpha]_D^{25}$ +61.3±1.0° (c=1.003, MeOH)

Elemental Analysis (C₂₈H₃₅NO₄S)

55 Calcd.(%): C, 69.82; H, 7.32; N, 2.91; S, 6.66

Found(%): C, 69.93; H, 7.48; N, 3.09; S, 6.54

Compound I-159

[0232] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.18-1.30(2H, m), 1.40-1.50(2H, m), 1.54-1.78(4H, m), 1.98-2.21 (5H, m), 2.33(2H, t, J=7.2Hz), 2.53(1H, m), 2.94-3.03(2H, m), 3.06-3.15(2H, m), 3.83(1H, m), 5.29-5.43(2H, m), 6.12 (1H, d, J=7.5Hz), 6.72(1H, d, J=3.6Hz), 6.77-6.83(2H, m), 7.04-7.08(2H, m), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3599, 3444, 3425, 3195, 1709, 1635, 1543, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{25}+64.8\pm1.0^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₇H₃₃NO₄S·0.2H₂O)

Calcd.(%): C, 68.82; H, 7.14; N, 2.97; S, 6.80

10 Found(%): C, 68.81; H, 7.10; N, 3.03; S, 6.88

Compound I-160

[0233] mp.139-141°C

300MHz 1 H-NMR(CDCl₃) δ: 1.12(1H, m), 1.25-1.31(2H, m), 1.45-1.51(2H, m), 1.60-1.78(4H, m), 2.02-2.22(5H, m), 2.35(2H, t, J=7.5Hz), 2.57(1H, m), 3.87(1H, m), 4.09(2H, s), 5.31-5.45(2H, m), 6.22(1H, d, J=7.2Hz), 7.19-7.33(6H, m), 7.63(1H, m), 7.71(1H, d, J=8.7Hz), 7,73(1H, s).

IR(KBr): 3338, 1705, 1616, 1560, 1537 cm⁻¹.

 $[\alpha]_D^{26}$ +92.1±1.3° (c=1.006, MeOH)

20 Elemental Analysis (C₃₀H₃3NO₃S)

Calcd.(%): C, 73.89; H, 6.82; N, 2.87; S, 6.58

Found(%): C, 73.69; H, 6.75; N, 2.91; S, 6.58

Compound I-161

25

40

5

[0234] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.25-1.31(2H, m), 1.47-1.51(2H, m), 1.60-1.76(4H, m), 2.03-2.20 (5H, m), 2.36(2H, t, J=7.2Hz), 2.57(1H, m), 3.87(1H, m), 4.08(2H, s), 5.31-5.45(2H, m), 6.22(1H, d, J=7.5Hz), 6.90 (1H, dd, J=1.2 and 4.8Hz), 6.93(1H, m), 7.25-7.29(2H, m), 7.61 and 7.71(each 1H, each s), 7.75(1H, d, J=8.4Hz). IR(CHCl₃): 3512, 3444, 3423, 2671, 1709, 1649, 1531, 1502 cm⁻¹.

 $[\alpha]_D^{25} + 96.1 \pm 1.4^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis ($C_{26}H_{31}NO_3S_2$)

Calcd.(%): C, 68.12; H, 6.33; N, 2.84; S, 12.99

Found(%): C, 67.89; H, 6.32; N, 2.88; S, 12.88

35 Compound I-162

[0235] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.24-1.31(2H, m), 1.45-1.51(2H, m), 1.60-1.78(4H, m), 2.03-2.22 (5H, m), 2.36(2H, t, J=7.2Hz), 2.57(1H, m), 3.87(1H, m), 4.25(2H, s), 5.31-5.45(2H, m), 6.25(1H, d, J=7.2Hz), 6.81 (1H, m), 6.93(1H, dd, J=3.3 and 5.4Hz), 7.15(1H, dd, J=1.5 and 5.4Hz), 7.31(1H, dd, J=1.5 and 8.1Hz), 7.65 and 7.71 (each 1H, each s), 7.76(1H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3444, 3423, 1741, 1709, 1649, 1531, 1502 cm⁻¹.

 $[\alpha]_D^{25}$ +98.5±1.4° (c=1.007, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.1H₂O)

Calcd.(%): C, 67.87; H, 6.35; N, 2.83; S, 12.94

45 Found(%): C, 67.83; H, 6.29; N, 3.00; S, 12.99

Compound I-163

[0236] mp.114-115 °C

300MHz 1 H-NMR(CDCl₃) δ : 1.09(1H, m), 1.20-1.30(2H, m), 1.40-1.49(2H, m), 1.55-1.77(4H, m), 1.99-2.19(5H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.83(1H, m), 4.12(2H, s), 5.30-5.43(2H, m), 6.14(1H, d, J=7.5Hz), 6.81 and 6.93 (each 1H, each m), 7.14-7.17(2H, m), 7.37(1H, d, J=1.8Hz).

IR(CHCl₃): 3516, 3444, 3428, 2671, 1709, 1645, 1550, 1508, 1435 cm⁻¹.

 $[\alpha]_D^{25}$ +71.6±1.1° (c=1.002, MeOH)

55 Elemental Analysis (C₂₄H₂₉NO₃S₂·0.1H₂O)

Calcd.(%): C, 64.72; H, 6.61; N, 3.14; S, 14.40

Found(%): C, 64.50; H, 6.54; N, 3.24; S, 14.45

Compound I-164

5

[0237] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.20-1.31(2H, m), 1.41-1.49(2H, m), 1.56-1.77(4H, m), 1.99-2.19 (5H, m), 2.34(2H, t, J=7.2Hz), 2.53(1H, m), 3.83(1H, m), 3.94(2H, s), 5.30-5.43(2H, m), 6.08(1H, d, J=6.9Hz), 6.91 and 6.95(each 1H, each m), 7.08(1H, d, J=1.5Hz), 7.27(1H, m), 7.34(1H, d, J=1.5Hz).

IR(CHCl₃): 3512. 3444, 3429, 1739, 1709, 1644, 1550, 1508 cm⁻¹.

 $[\alpha]_D^{25}+69.7\pm1.1^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₄H₂₉NO₃S₂·0.2H₂O)

Calcd.(%): C, 64.45; H, 6.63; N, 3.13; S, 14.34

10 Found(%): C, 64.37; H, 6.49; N, 3.16; S, 14.41

Compound I-165

[0238] 300MHz 1 H-NMR(CDCl₃) δ : 1.08(1H, m), 1.19-1.31(2H, m), 1.41-1.51(2H, m), 1.55-1.74(4H, m), 1.99-2.16 (5H, m), 2.34(2H, t, J=7.2Hz), 2.63(1H, m), 3.73(2H, s), 3.83(1H, m), 5.30-5.42(2H, m), 6.15(1H, d, J=6.6Hz), 6.25, 7.10 and 7.24(each 1H, each s), 7.35-7.38(2H, m).

IR(CHCl₃): 3510. 3444, 3429, 2669, 1709, 1645, 1550, 1508 cm⁻¹.

 $[\alpha]_D^{25}$ +71.6±1.1° (c=1.008, MeOH)

Elemental Analysis (C₂₄H₂₉NO₄S·0.2H₂O)

20 Calcd.(%): C, 66.85; H, 6.78; N, 3.25; S, 7.44

Found(%): C, 66.94; H, 6.81; N, 3.26; S, 7.38

Compound I-166

[0239] 300MHz ¹H-NMR(CDCl₃) δ : 1.02(1H, m), 1.15-1.27(2H, m), 1.36-1.45(2H, m), 1.53-1.76(4H, m), 1.96-2.14 (5H, m), 2.32(2H, t, J=7.2Hz), 2.49(1H, m), 3.78(1H, m), 4.58(2H, s), 5.27-5.39(2H, m), 5.92(1H, d, J=7.2Hz), 6.73 and 7.32(each 1H, each d, each J=3.9Hz), 7.37-7.51(4H, m), 7.80(1H, d, J=7.5Hz), 7.87 and 7.97(each 1H, each m). IR(CHCl₃): 3516, 3446, 3427, 2669, 1739, 1709, 1641, 1543, 1508, 1458 cm⁻¹. [α]_D^{25.5}+62.8±1.0° (c=1.012, MeOH)

Elemental Analysis (C₃₀H₃₃NO₃S·0.1H₂O)

Calcd.(%): C, 73.62; H, 6.84; N, 2.86; S, 6.55

Found(%): C, 73.35; H, 6.54; N, 3.06; S, 6.51

Compound I-167

35

45

50

[0240] mp.129-130°C

300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.16-1.28(2H, m), 1.38-1.46(2H, m), 1.54-1.73(4H, m), 1.97-2.15(5H, m), 2.31(2H, t, J=7.2Hz), 2.51(1H, m), 3.81(1H, m), 4.37(2H, s), 5.28-5.41(2H, m), 6.04(1H, d, J=7.5Hz), 6.97(1H, s), 7.30-7.50(5H, m), 7.77(1H, d, J=8.1Hz), 7.86 and 7.94(each 1H, each m).

40 IR(CHCl₃): 3514, 3444, 3427, 1739, 1709, 1645, 1549, 1508 cm⁻¹.

 $[\alpha]_D^{24}$ +59.4±1.0° (c=1.011, MeOH)

Elemental Analysis (C₃₀H₃₃NO₃S)

Calcd.(%): C, 73.89; H, 6.82; N, 2.87; S, 6.58

Found(%): C, 73.85; H, 6.90; N, 2.85; S, 6.81

Compound I-168

[0241] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.21-1.33(2H, m), 1.47-1.52(2H, m), 1.59-1.80(4H, m), 2.04-2.27 (5H, m), 2.36(2H, t, J=7.5Hz), 2.61(1H, m), 3.93(1H, m), 4.42(2H, s), 5.33-5.47(2H, m), 6.13(1H, d, J=7.5Hz), 6.88 (1H, m), 6.92(1H, m), 7.15(1H, dd, J=1.2 and 5.1Hz), 7.28(1H, d, J=7.5Hz), 7.43(1H, d, J=8.1Hz), 7.84(1H, s), 8.20 (1H, d, J=8.1Hz).

IR(CHCl₃): 3512, 3438, 1709, 1651, 1518, 1495 cm⁻¹.

 $[\alpha]_D^{25}+61.6\pm1.0^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂)

55 Calcd.(%): C, 68.12; H, 6.33; N, 2.84; S, 12.99

Found(%): C, 67.83; H, 6.28; N, 2.96; S, 12.76

Compound I-169

[0242] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.22-1.32(2H, m), 1.46-1.51(2H, m), 1.58-1.76(4H, m), 2.02-2.24 (5H, m), 2.35(2H, t, J=7.2Hz), 2.60(1H, m), 3.92(1H, m), 4.23(2H, s), 5.32-5.47(2H, m), 6.18(1H, d, J=8.1Hz), 6.92 (1H, dd, J=1.2 and 4.8Hz), 7.01(1H, m), 7.20-7.25(2H, m), 7.41(1H, t, J=8.1Hz), 7.84(1H, s), 8.18(1H, d, J=7.5Hz). IR(CHCl₃): 3510, 3438, 2667, 1709, 1651, 1518, 1495 cm⁻¹.

 $[\alpha]_D^{25}$ +61.3±1.0° (c=1.006, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂)

Calcd.(%): C, 68.12; H, 6.33; N, 2.84; S, 12.99

10 Found(%): C, 67.94; H, 6.30; N, 2.97; S, 12.87

Compound I-170

[0243] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.21-1.33(2H, m), 1.47-1.52(2H, m), 1.59-1.79(4H, m), 2.03-2.27 (5H, m), 2.36(2H, t, J=7.5Hz), 2.61(1H, m), 3.93(1H, m), 4.03(2H, s), 5.33-5.48(2H, m), 6.15(1H, d, J=7.2Hz), 7.23 (1H, d, J=7.2Hz), 7.29(1H, m), 7.35(1H, t, J=1.5Hz), 7.42(1H, t, J=7.8Hz), 7.85(1H, s), 8.18(1H, d, J=7.8Hz). IR(CHCl₃): 3518, 3438, 2663, 1739, 1709, 1651, 1518, 1496 cm⁻¹. [α]_D²⁵+60.3±1.0° (c=1.002, MeOH) Elemental Analysis ($C_{28}H_{31}NO_4S$ -0.1H₂O)

Calcd.(%): C, 70.15; H, 6.56; N, 2.92; S, 6.69

20 Found(%): C, 70.03; H, 6.49; N, 2.92; S, 6.69

Compound I-171

[0244] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.28(2H, m), 1.41-1.46(2H, m), 1.56-1.79(4H, m), 2.00-2.15 (5H, m), 2.34(2H, t, J=7.2Hz), 2.45(3H, s), 2.50(1H, m), 3.80(1H, m), 4.25(2H, s), 5.29-5.42(2H, m), 5,95(1H, d, J=7.5Hz), 6.78(1H, d, J=3.6Hz), 7.11-7.27(4H, m), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3512, 3446, 3427, 2669, 1739, 1709, 1643, 1543, 1506 cm⁻¹.

 $[\alpha]_D^{23.5}+62.8\pm1.0^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₂₇H₃₃NO₃S₂)

30 Calcd.(%): C, 67.05; H, 6.88; N, 2.90; S, 13.26

Found(%): C, 66.94; H, 7.05; N, 3.00; S, 13.14

Compound I-172

[0245] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.29(2H, m), 1.41-1.46(2H, m), 1.57-1.78(4H, m), 2.01-2.19 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 2.90(3H, s), 3.80(1H, m), 4.68(2H, s), 5.29-5.43(2H, m), 6.02(1H, d, J=7.5Hz), 6.84(1H, td, J=0.9 and 3.9Hz), 7.37(1H,d, J=3.9Hz), 7.42-7.51(2H, m), 7,62(1H, dt, J=1.5 and 7.5Hz), 8.08 (1H, dd, J=1.5 and 7.5Hz).

IR(CHCl₃): 3518, 3444, 3427, 1709, 1643, 1543, 1508, 1311, 1153 cm⁻¹.

40 $[\alpha]_D^{23.5}+59.3\pm1.0^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₂₇H₃₃NO₅S₂·0.2H₂O)

Calcd.(%): C, 62.45; H, 6.48; N, 2.70; S, 12.35

Found(%): C, 62.47; H, 6.60; N, 2.73; S, 12.36

45 Compound I-173

[0246] 300MHz ¹H-NMR(CDCl₃) δ : 1.13(1H, m), 1.23-1.36(2H, m), 1.43-1.80(6H, m), 2.03-2.24(5H, m), 2.36(2H, t, J=7.2Hz), 2.60(1H, m), 3.91(1H, m), 3.93(2H, s), 5.31-5.46(2H, m), 6.31(1H, d, J=7.2Hz), 7.32-7.42(2H, m), 7.57(1H, d, J=6.9Hz), 7.73-7.82(3H, m), 7.94(1H, s).

IR(CHCl₃): 3516, 3446, 2665, 1709, 1649, 1616, 1514, 1481, 1468 cm⁻¹. $[\alpha]_D^{24}$ +100.7±1.4° (c=1.008, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃·0.2H₂O)

Calcd.(%): C, 77.64; H, 7.31; N, 3.23

Found(%): C, 77.64; H, 7.57; N, 3.29

55 Compound I-174

[0247] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.19-1.28(2H, m), 1.40-1.47(2H, m), 1.57-1.78(4H, m), 1.99-2.18 (5H, m), 2.35(2H, t, J=7.4Hz), 2.51(1H, s), 3.21(2H, t, J=8.7Hz), 3.81(1H, m), 4.01(2H, s), 4.58(2H, t, J=8.7Hz),

5.29-5.42(2H, m), 6.02(1H, d, J=7.5Hz), 6.80(1H, d, J=3.9Hz), 7.06(1H, d, J=1.8Hz), 7.18(1H, d, J=1.8Hz), 7.36(1H, d, J=3.9Hz).

IR(CHCl₃): 3512, 3446, 3427, 2669, 1709, 1641, 1543, 1506, 1477, 1460, 1173 cm⁻¹.

 $[\alpha]_D^{26}$ +53.8±0.9° (c=1.007, MeOH)

Elemental Analysis (C₂₆H₃₂BrNO₄S·0.1H₂O)

Calcd.(%): C, 60.02; H, 5.79; Br, 14.26; N, 2.50; S, 5.72

Found(%): C, 59.87; H, 5.68; Br, 14.13; N, 2.59; S, 5.71

Compound I-175

10

5

[0248] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.23-1.31(2H, m), 1.44-1.51(2H, m), 1.60-1.78(4H, m), 2.03-2.28 (5H, m), 2.36(2H, t, J=7.4Hz), 2.56(1H, s), 3.87(1H, m), 4.21(2H, s), 5.31-5.45(2H, m), 6.21(1H, d, J=7.2Hz), 7.18-7.37 (7H, m), 7.70(1H, d, J=7.2Hz), 7.80(1H, s).

IR(CHCl₃): 3514, 3444, 3423, 2667, 1709, 1649, 1537, 1502, 1454 cm⁻¹.

 $[\alpha]_D^{25} + 78.2 \pm 1.2^{\circ} \text{ (c=1.002, MeOH)}$

Elemental Analysis (C₃₀H₃3BrNO₃S-0.1H₂O)

Calcd.(%): C, 73.62; H, 6.84; N, 2.86; S, 6.55

Found(%): C, 73.49; H, 6.88; N, 2.89; S, 6.57

20 Compound I-176

[0249] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.23-1.32(2H, m), 1.44-1.51(2H, m), 1.61-1.78(4H, m), 2.03-2.28 (5H, m), 2.36(2H, t, J=7.4Hz), 2.57(1H, s), 3.88(1H, m),4.21(2H, s), 5.31-5.45(2H, m), 6.22(1H, d, J=7.2Hz), 6.94(1H, dd, J=1.5 and 4.8Hz), 7.04(1H, m), 7.21-7.25(2H, m), 7.35(1H, dd, J=7.2 and 7.8Hz), 7.71(1H, d, J=7.2Hz), 7.80(1H, s). IR(CHCl₃): 3512, 3444, 3423, 2669, 1709, 1647, 1539, 1504 cm⁻¹.

 $[\alpha]_D^{25}$ +77.1±1.2° (c=1.002, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.2H₂O)

Calcd.(%): C, 67.63; H, 6.36; N, 2.82; S, 12.90

Found(%): C, 67.57; H, 6.34; N, 2.97; S, 12.98

30

35

25

Compound I-177

[0250] 300MHz ¹H-NMR(CDCl₃) δ : 1.12(1H, m), 1.25-1.32(2H, m), 1.44-1.51(2H, m), 1.60-1.78(4H, m), 2.03-2.28 (5H, m), 2.31(3H, s), 2.36(2H, t, J=7.2Hz), 2.56(1H, s), 3.87(1H, m), 4.17(2H, s), 5.31-5.45(2H, m), 6.22(1H, d, J=7.2Hz), 7.09 and 7.15(each 2H, each d, J=8.1Hz), 7.19(1H, d, J=7.2Hz), 7.34(1H, dd, J=7.2 and 7.8Hz), 7.69(1H, d, J=7.8Hz), 7.79(1H, s).

IR(CHCl₃): 3510, 3444, 3423, 2669, 1709, 1647, 1537, 1504 cm⁻¹.

 $[\alpha]_D^{25}$ +75.9±1.2° (c=1.004, MeOH)

Elemental Analysis (C₃₁H₃₅NO₃S)

40 Calcd.(%): C, 74.22; H, 7.03; N, 2.79; S, 6.39

Found(%): C, 73.93; H, 7.13; N, 2.91; S, 6.38

Compound I-178

[0251] 300MHz 1 H-NMR(CDCl $_{3}$) δ : 1.13(1H, m), 1.24-1.31(2H, m), 1.44-1.51(2H, m), 1.60-1.77(4H, m), 2.03-2.22 (5H, m), 2.36(2H, t, J=7.2Hz), 2.56(1H, s), 3.88(1H, m), 4.39(2H, s), 5.31-5.45(2H, m), 6.26(1H, d, J=7.2Hz), 6.90-6.94 (2H, m), 7.16(1H, dd, J=1.5 and 5.1Hz), 7.27(1H, d, J=7.5Hz), 7.36(1H, t, J=7.5Hz), 7.71(1H, d, J=7.6Hz), 7.80(1H, s). IR(CHCl $_{3}$): 3510, 3444, 3423, 2667, 1709, 1649, 1537, 1504 cm $^{-1}$.

 $[\alpha]_D^{25}$ +76.6±1.2° (c=1.003, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂)

Calcd.(%): C, 68.12; H, 6.33; N, 2.84; S, 12.99

Found(%): C, 67.83; H, 6.45; N, 3.04; S, 13.03

Compound I-179

55

[0252] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.39-1.47(2H, m), 1.56-1.78(4H, m), 1.98-2.18 (5H, m), 2.34(2H, t, J=7.2Hz), 2.50(1H, m), 3.80(1H, m), 4.08(2H, s), 5.29-5.41(2H, m), 5.95(1H, d, J=7.2Hz), 6.53 (1H, d, J=3.6Hz), 7.23-7.41(10H, m).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1641, 1543, 1506, 1479, 1456 cm⁻¹. [α]_D^{24.5}+57.6±1.0° (c=1.007, MeOH) Elemental Analysis (C₃₂H₃₅NO₃S·0.2H₂O) Calcd.(%): C, 74.30; H, 6.90; N, 2.71; S, 6.20 Found(%): C, 74.24; H, 6.89; N, 2.88; S, 6.47

Compound I-180

5

[0253] 300MHz ¹H-NMR(CDCl₃) δ : 1.17(1H, m), 1.24-1.35(2H, m), 1.48-1.55(2H, m), 1.61-1.79(4H, m), 2.06-2.26 (5H, m), 2.37(2H, t, J=7.2Hz), 2.61(1H, m), 3.90(1H, m), 5.33-5.48(2H, m), 6.44(1H, d, J=7.2Hz), 7.31(1H, m), 7.47-7.65 (5H, m), 7.90(1H, s).

 $IR(CHCl_3): 3516, 3440, 1714, 1655, 1604, 1514, 1473, 1446 cm⁻¹. [<math>\alpha$]_D²⁵+92.1±1.3° (c=1.001, MeOH)

Elemental Analysis (C₂₈H₂₉NO₄·0.3H₂O)

Calcd.(%): C, 74.91; H, 6.65; N, 3.12

15 Found(%): C, 74.81; H, 6.51; N, 3.29

Compound I-181

[0254] 300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.41-1.46(2H, m), 1.55-1.77(4H, m), 1.99-2.16 (5H, m), 2.34(2H, t, J=7.4Hz), 2.51(1H, s), 3.79(3H, s), 3.80(1H, m), 4.08(2H, s), 5.29-5.42(2H, m), 5.97(1H, d, J=7.2Hz), 6.75(1H, d, J=3.9Hz), 6.85 and 7.15(each 2H, each d, J=8.4Hz), 7.37(1H, d, J=3.9Hz).

IR(CHCl₃): 3518, 3446, 3427, 1741, 1709, 1641, 1612, 1543, 1510, 1458 cm⁻¹.

 $[\alpha]_D^{25}+63.6\pm1.0^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₇H₃₃NO₄S·0.2H₂O)

²⁵ Calcd.(%): C, 68.88; H, 7.14; N, 2.97; S, 6.80

Found(%): C, 68.92; H, 7.02; N, 3.12; S, 6.96

Compound I-182

[0255] 300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.27(2H, m), 1.40-1.45(2H, m), 1.59-1.78(4H, m), 1.99-2.14 (5H, m), 2.34(2H, t, J=7.4Hz), 2.51(1H, s), 3.80(1H, m),4.37(2H, s), 5.29-5.41(2H, m), 5.97(1H, d, J=7.2Hz), 6.82(1H, d, J=3.6Hz), 7.20(1H, s), 7.34-7.37(3H, m), 7.69(1H, m), 7.86(1H, m).

IR(CHCl₃): 3512, 3444, 3427, 2669, 1709, 1643, 1543, 1508, 1458, 1431 cm⁻¹.

 $[\alpha]_D^{25}$ +60.7±1.0° (c=1.008, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.3H₂O)

Calcd.(%): C, 67.39; H, 6.38; N, 2.81; S, 12.85

Found(%): C, 67.44; H, 6.30; N, 3.15; S, 12.81

Compound I-183

40

[0256] 300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.26(2H, m), 1.39-1.44(2H, m), 1.54-1.75(4H, m), 1.99-2.15 (5H, m), 2.32(2H, t, J=7.4Hz), 2.50(1H, s), 3.80(1H, m),4.12(2H, s), 5.28-5.42(2H, m), 6.05(1H, d, J=7.5Hz), 6.78(1H, d, J=3.9Hz), 6.82-6.87(2H, m), 7.07-7.14(2H, m), 7.35(1H, d, J=3.9Hz).

IR(CHCl₃): 3508, 3444, 3197, 1707, 1635, 1543, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{25}+64.7\pm1.0^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₆H₃₁NO₄S·0.2H₂O)

Calcd.(%): C, 68.30; H, 6.92; N, 3.06; S, 7.01

Found(%): C, 68.21; H, 6.96; N, 3.09; S, 6.93

50 Compound I-184

[0257] 300MHz ¹H-NMR(CDCl₃) δ : 1.15(1H, m), 1.26-1.35(2H, m), 1.47-1.56(2H, m), 1.62-1.82(4H, m), 2.05-2.26 (5H, m), 2.37(2H, t, J=7.2Hz), 2.61(1H, m), 3.92(1H, m), 3.93(2H, s), 5.32-5.47(2H, m), 6.34(1H, d, J=6.9Hz), 7.31-7.43 (2H, m), 7.53-7.59(2H, m), 7.67(1H, m), 7.5(1H, d, J=6.9Hz), 8.17(1H, s).

⁵⁵ IR(CHCl₃): 3514, 3444, 2667, 1709, 1651, 1572, 1516, 1481, 1452 cm⁻¹.

 $[\alpha]_D^{24} + 81.2 \pm 1.2^{\circ} \text{ (c=1.002, MeOH)}$

Elemental Analysis (C₂₈H₃₁NO₃·0.2H₂O)

Calcd.(%): C, 77.64; H, 7.31; N, 3.23

Found(%): C, 77.59; H, 7.15; N, 3.44

Compound I-185

[0258] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.21-1.28(2H, m), 1.41-1.46(2H, m), 1.58-1.78(4H, m), 2.00-2.16 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.79(1H, m), 4.16(2H, s), 5.31-5.40(2H, m), 5.93(1H, d, J=7.8Hz), 6.80 (1H, d, J=3.6Hz), 7.03-7.12(2H, m), 7.20-7.28(2H, m), 7.35(1H, d, J=3.6Hz).

IR(CHCl₃): 3518, 3444, 3427, 1741, 1709, 1643, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{24}+56.2\pm0.9^{\circ}$ (c=1.03, CHCl₃)

10 Elemental Analysis (C₂₆H₃₀FNO₃S-0.4H₂O)

Calcd.(%): C, 67.48; H, 6.71; N, 3.03; S, 6.93; F, 4.11

Found(%): C, 67.49; H, 6.72; N, 3.09; S, 6.93; F, 4.11

Compound I-186

15

35

[0259] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.19-1.29(2H, m), 1.41-1.46(2H, m), 1.58-1.82(4H, m), 2.00-2.16 (5H, m), 2.34(2H, t, J=7.4Hz), 2.51(1H, s), 3.80(1H, m), 4.17(2H, s), 5.08(2H, s), 5.28-5.41(2H, m), 5.90(1H, d, J=7.5Hz), 6.76(1H, d, J=3.9Hz), 6.90-6.95(2H, m), 7.18-7.25(2H, m), 7.31-7.38(6H, m).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1641, 1601, 1543, 1502, 1454 cm⁻¹.

 $[\alpha]_D^{24} + 53.9 \pm 0.9^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis (C₃₃H₃₇NO₄S)

Calcd.(%): C, 72.90; H, 6.86; N, 2.58; S, 5.90

Found(%): C, 72.64; H, 6.92; N, 2.52; S, 5.74

25 Compound I-187

[0260] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.41-1.46(2H, m), 1.57-1.78(4H, m), 1.99-2.15 (5H, m), 2.34(2H, t, J=7.4Hz), 2.51(1H, s), 3.80(1H, m), 4.16(2H, s), 4.54-4.57(2H, m), 5.24-5.41(4H, m), 5.94(1H, d, J=7.5Hz), 6.04(1H, m), 6.79(1H, d, J=3.9Hz), 6.85-6.93(2H, m), 7.15-7.24(2H, m), 7.34(1H, d, J=3.9Hz).

³⁰ IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1641, 1543, 1506, 1477 cm⁻¹.

 $[\alpha]_D^{24}$ +59.0±1.0° (c=1.007, MeOH)

Elemental Analysis (C₂₉H₃₅NO₄S·0.2H₂O)

Calcd.(%): C, 70.05; H, 7.18; N, 2.82; S, 6.45

Found(%): C, 69.97; H, 7.16; N, 2.80; S, 6.52

Compound I-188

[0261] mp.84-85°C

300MHz 1 H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.81(4H, m), 2.00-2.17(5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, s), 3.80(1H, m),4.07(2H, s), 5.05(2H, s), 5.29-5.42(2H, m), 5.93(1H, d, J=7.5Hz), 6.75 (1H, d, J=3.9Hz), 6.92 and 7.15(each 2H, each d, J=8.7Hz), 7.31-7.44(6H, d, m).

IR(CHCl₃): 3521, 3446, 3427, 1741, 1709, 1643, 1612, 1543, 1510, 1456 cm⁻¹.

 $[\alpha]_D^{24}+56.1\pm1.0^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₃₃H₃₇NO₄S)

45 Calcd.(%): C, 72.90; H, 6.86; N, 2.58; S, 5.90

Found(%): C, 72.78; H, 6.88; N, 2.74; S, 5.84

Compound I-189

[0262] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.19-1.29(2H, m), 1.41-1.46(2H, m), 1.56-1.79(4H, m), 2.00-2.15 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, s), 3.80(1H, m),4.07(2H, s), 4.51-4.53(2H, m), 5.26-5.44(4H, m), 5.94(1H, d, J=7.5Hz), 6.05(1H, m), 6.76(1H, d, J=3.9Hz), 6.87 and 7.14(each 2H, each d, J=8.7Hz), 7.36(1H, d, J=3.9Hz). IR(CHCl₃): 3512, 3446, 3427, 1741, 1709, 1643, 1612, 1543, 1508, 1458 cm⁻¹. [α]_D²⁴+61.6±1.0° (c=1.004, MeOH)

Elemental Analysis (C₂₉H₃₅NO₄S·0.4H₂O)

Calcd.(%): C, 69.54; H, 7.20; N, 2.78; S, 6.40

Found(%): C, 69.47; H, 7.22; N, 2.84; S, 6.51

Compound I-190

5

[0263] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.32(2H, m), 1.39-1.48(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.81(1H, m), 4.04(2H, s), 5.29-5.42(2H, m), 5.93(1H, d, J=7.5Hz), 6.68-6.78 (2H, m), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3517, 3446, 3427, 1741, 1709, 1643, 1543, 1504, 1489, 1444, 1250, 1041 cm⁻¹.

 $[\alpha]_D^{24}$ +59.4±1.0° (c=1.011, MeOH)

Elemental Analysis (C₂₇H₃₁NO₅S)

Calcd.(%): C, 67.34; H, 6.49; N, 2.91; S, 6.66

10 Found(%): C, 67.27; H, 6.45; N, 3.04; S, 6.63

Compound I-191

[0264] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.32(2H, m), 1.39-1.48(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.12(2H, s), 5.30-5.42(2H, m), 6.04(1H, d, J=7.2Hz), 6.77 (1H, d, J=3.6Hz), 6.89-7.04(3H, m), 7.28(1H, m), 7.38(1H, d, J=3.6Hz).

IR(CHCl₃): 3518, 3446, 3427, 1739, 1709, 1643, 1545, 1506 cm⁻¹.

 $[\alpha]_D^{25}+62.6\pm1.0^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂₆H₃₀FNO₃S)

20 Calcd.(%): C, 68.54; H, 6.64; N, 3.07; S, 7.04; F,4.17

Found(%): C, 68.25; H, 6.37; N, 3.19; S, 7.12; F,4.12

Compound I-192

[0265] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.32(2H, m), 1.40-1.48(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.35(2H, t, J=7.5Hz), 2.52(1H, m), 3.81(1H, m), 4.19(2H, s), 5.30-5.42(2H, m), 5.99(1H, d, J=7.2Hz), 6.78 and 7.37(each 1H, each d, each J=3.6Hz), 7.40-7.54(4H, m).

IR(CHCl₃): 3516, 3446, 3427, 1740, 1709, 1643, 1545, 1506, 1450, 1330, 1167, 1130, 1074 cm⁻¹.

 $[\alpha]_D^{25}+55.4\pm0.9^{\circ}$ (c=1.029, MeOH)

Elemental Analysis (C₂₇H₃₀F₃NO₃S)

Calcd.(%): C, 64.14; H, 5.98; N, 2.77; S, 6.34; F,11.27

Found(%): C, 63.95; H, 5.99; N, 2.90; S, 6.36; F,10.98

Compound I-193

35

55

[0266] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.24-1.28(2H, m), 1.42-1.46(2H, m), 1.58-1.79(4H, m), 2.01-2.21 (5H, m), 2.35(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 4.26(2H, s), 5.33-5.38(2H, m), 5.94(1H, d, J=7.2Hz), 6.79 (1H, d, J=3.9Hz), 7.21-7.28(3H, m), 7.35-7.40(2H, m).

IR(CHCl₃): 3518, 3446, 3427, 1743, 1709, 1643, 1543, 1506 cm⁻¹.

 $[\alpha]_D^{25}+55.5\pm0.9^{\circ}$ (c=1.06, CHCl₃)

Elemental Analysis (C₂₆H₃₀ClNO₃S·0.3H₂O)

Calcd.(%): C, 65.41; H, 6.46; N, 2.93; S, 6.72; CI, 7.43

Found(%): C, 65.41; H, 6.40; N, 3.08; S, 6.75; Cl, 7.31

45 Compound I-194

[0267] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.28(2H, m), 1.39-1.46(2H, m), 1.56-1.78(4H, m), 1.98-2.16 (5H, m), 2.30(6H, s), 2.34(2H, t, J=7.2Hz), 2.50(1H, m), 3.80(1H, m), 4.16(2H, s), 5.28-5.41(2H, m), 5.93(1H, d, J=6.9Hz), 6.78(1H, d, J=3.9Hz), 7.03-7.14(3H, m), 7.77(1H, d, J=3.9Hz).

⁵⁰ IR(CHCl₃): 3516, 3446, 3427, 2669, 1709, 1641, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{24}+66.6\pm1.0^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂8H₃₅NO₃S·0.2H₂O)

Calcd.(%): C, 71.67; H, 7.60; N, 2.98; S, 6.83

Found(%): C, 71.71; H, 7.54; N, 3.15; S, 6.81

Compound I-195

[0268] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.22-1.28(2H, m), 1.42-1.47(2H, m), 1.59-1.78(4H, m), 2.01-2.17

(5H, m), 2.36(2H, t, J=7.2Hz), 2.50(1H, m), 3.82(1H, m), 4.32(2H, s), 5.35-5.37(2H, m), 5.94(1H, d, J=6.9Hz), 6.76 (1H, d, J=3.9Hz), 7.33-7.39(3H, m), 7.50 (1H, m), 7.69(1H, d, J=3.9Hz).

IR(CHCl₃): 3316, 3446, 3427, 1743, 1709, 1643, 1543, 1506, 1456, 1163, 1126 cm⁻¹.

 $[\alpha]_D^{25}+54.5\pm1.0^{\circ}$ (c=1.00, CHCl₃)

⁵ Elemental Analysis (C₂₇H₃₀F₃NO₃S·0.2H₂O)

Calcd.(%): C, 63.93; H, 6.02; N, 2.75; S, 6.30

Found(%): C, 63.92; H, 5.85; N, 2.94; S, 6.38

Compound I-196

10

25

[0269] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.22-1.28(2H, m), 1.42-1.46(2H, m), 1.58-1.80(4H, m), 2.01-2.21 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 3.88(3H, s), 4.06(2H, s), 5.33-5.38(2H, m), 5.94(1H, d, J=10.2Hz), 6.70(1H, d, J=3.6Hz), 6.87-6.97(3H, m), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3517, 3446, 3427, 2673, 1741, 1709, 1643, 1543, 1516, 1274 1030 cm⁻¹.

 $[\alpha]_D^{25} + 54.2 \pm 0.9^{\circ} (c=1.00, CHCl_3)$

Elemental Analysis (C₂₇H₃₂FNO₄S·0.3H₂O)

Calcd.(%): C, 66.04; H, 6.69; N, 2.85; S, 6.53; F, 3.87

Found(%): C, 66.16; H, 6.61; N, 2.82; S, 6.34; F, 3.66

20 Compound I-197

[0270] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.27(2H, m), 1.41-1.45(2H, m), 1.56-1.77(4H, m), 1.98-2.13 (5H, m), 2.34(2H, t, J=7.5Hz), 2.50(1H, s), 3.21(2H, t, J=8.7Hz), 3.80(1H, m), 4.07(2H, s), 4.57(2H, t, J=8.7Hz), 5.29-5.41(2H, m), 6.00(1H, d, J=7.5Hz), 6.79(1H, d, J=3.6Hz), 6.79(1H, dd, J=7.2Hz), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3446, 3427, 2669, 1739, 1709, 1641, 1543, 1506, 1477, 1456, 1441 cm⁻¹.

 $[\alpha]_D^{25}$ +61.1±1.0° (c=1.004, MeOH)

Elemental Analysis (C₂₈H₃₃NO₄S·0.2H₂O)

Calcd.(%): C, 69.60; H, 6.97; N, 2.90; S, 6.63

30 Found(%): C, 69.68; H, 6.89; N, 3.19; S, 6.65

Compound I-198

[0271] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.18-1.27(2H, m), 1.40-1.46(2H, m), 1.56-1.76(4H, m), 1.98-2.13 (5H, m), 2.33(2H, t, J=7.5Hz), 2.50(1H, s), 3.21(2H, t, J=8.7Hz), 3.80(1H, m), 4.24(2H, s), 5.28-5.40(2H, m), 5.97(1H, d, J=7.2Hz), 6.79(1H, d, J=3.6Hz), 7.22(1H, dd, J=1.2 and 8.1Hz), 7.29(1H, d, J=5.4Hz), 7.38(1H, d,J=3.6Hz), 7.44 (1H, d, J=5.4Hz), 7.68(1H, d, J=1.2Hz), 7.81(1H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1643, 1543, 1506, 1547 cm⁻¹.

 $[\alpha]_D^{25}$ +62.0±1.0° (c=1.000, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.2H₂O)

Calcd.(%): C, 67.63; H, 6.36; N, 2.82; S, 12.90

Found(%): C, 67.55; H, 6.28; N, 2.97; S, 12.90

Compound I-199

45

[0272] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.17-1.27(2H, m), 1.40-1.45(2H, m), 1.54-1.77(4H, m), 1.98-2.15 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, s), 3.80(1H, m),4.25(2H, s), 5.28-5.41(2H, m), 5.97(1H, d, J=7.2Hz), 6.79(1H, d, J=3.9Hz), 7.24(1H, dd, J=1.5 and 8.1Hz), 7.30(1H, d, J=5.4Hz), 7.38(1H, d, J=3.6Hz), 7.41(1H, d, J=5.4Hz), 7.73 (1H, m), 7.76(1H, d, J=8.1Hz).

⁵⁰ IR(CHCl₃): 3516, 3447, 3427, 1741, 1709, 1643, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{25}$ +62.1±1.0° (c=1.008, MeOH)

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.3H₂O)

Calcd.(%): C, 67.39; H, 6.38; N, 2.81; S, 12.85

Found(%): C, 67.42; H, 6.29; N, 2.99; S, 12.94

55

Compound I-200

[0273] 300MHz 1 H-NMR(CDCl₃) δ : 1.03(1H, m), 1.16-1.22(2H, m), 1.39-1.44(2H, m), 1.53-1.76(4H, m), 1.97-2.14

(5H, m), 2.33(2H, t, J=7.5Hz), 2.49(1H, s), 3.79(1H, m),4.39(2H, s), 5.28-5.40(2H, m), 5.98(1H, d, J=7.5Hz), 6.86(1H, d, J=3.9Hz), 7.21(1H, d, J=6.9Hz), 7.35(1H, dd, J=6.9 and 8.1Hz), 7.36(1H, d, J=5.4Hz), 7.36(1H, d, J=3.9Hz), 7.42 (1H, d, J=5.4Hz), 7.74(1H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1643, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{25}+58.4\pm1.0^{\circ} \text{ (c=1.003, MeOH)}$

Elemental Analysis (C₂₈H₃₁NO₃S₂·0.2_{H2}O)

Calcd.(%): C, 67.63; H, 6.36; N, 2.82; S, 12.90

Found(%): C, 67.62; H, 6.27; N, 3.09; S, 12.92

10 Compound I-201

[0274] 300MHz 1 H-NMR(CDCl₃+CD₃OD) δ : 1.08(1H, m), 1.22-1.28(2H, m), 1.41-1.46(2H, m), 1.55-1.71(4H, m), 2.01-2.10(5H, m), 2.29(2H, t, J=7.4Hz), 2.51(1H, s), 3.77(1H, m), 4.29(2H, s), 5.34-5.40(2H, m), 6.80(1H, d, J=3.9Hz), 6.93(1H, dd, J=1.8 and 8.7Hz), 7.10(1H, d, J=1.8Hz), 7.22(1H, s), 7.36(1H, d, J=3.9Hz), 7.65(1H, d, J=8.7Hz).

⁵ IR(CHCl₃): 3508, 3423, 3236, 1709, 1633, 1601, 1545, 1510, 1441 cm⁻¹.

 $[\alpha]_D^{25}$ +57.5±1.0° (c=1.006, MeOH)

Elemental Analysis (C₂₈H₃₁NO₄S₂·0.5H₂O)

Calcd.(%): C, 64.84; H, 6.21; N, 2.70; S, 12.36

Found(%): C, 67.57; H, 6.20; N, 2.93; S, 12.38

Compound I-202

20

25

[0275] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.24-1.28(2H, m), 1.41-1.48(2H, m), 1.58-1.79(4H, m), 2.02-2.22 (5H, m), 2.33(2H, t, J=7.5Hz), 2.51(1H, m), 3.78(1H, m), 4.25(2H, s), 4.70(2H, s), 5.31-5.42(2H, m), 6.00(1H, d, J=7.2Hz), 6.74(1H, d, J=3.6Hz), 7.24-7.42(5H, m).

IR(CHCl₃): 3518, 3444, 3427, 1709, 1643, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{26}$ +51.9±0.9° (c=1.04, CHCl3)

Elemental Analysis (C₂₇H₃₃FNO₄S·0.7H₂O)

Calcd.(%): C, 67.53; H, 7.22; N, 2.92; S, 6.02

30 Found(%): C, 67.92; H, 7.13; N, 2.88; S, 6.11

Compound I-203

[0276] 300MHz ¹H-NMR(CDCl₃) δ: 1.02(1H, m), 1.22-1.28(2H, m), 1.40-1.42(2H, m), 1.57-1.72(4H, m), 1.82-1.85 (4H, m), 2.01-2.13(5H, m), 2.27(2H, t, J=7.5Hz), 2.49(1H, m), 2.71-2.73(4H, m), 3.67(1H, d, J=13.2Hz), 3.76(1H, m), 3.83(1H, d, J=13.2Hz), 4.26(1H, d, J=16.5Hz), 4.34(1H, d, J=16.5Hz), 5.33-5.45(2H, m), 6.04(1H, d, J=7.2Hz), 6.70 (1H, d, J=3.6Hz), 7.16-7.33(4H, m), 7.43((1H, d, J=3.6Hz).

IR(CHCl₃): 3518, 3446, 3424, 2472, 1707, 1643, 1545, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{26}+41.9\pm0.8^{\circ} (c=1.03, CHCl_3)$

Elemental Analysis (C₃₁H₄₀N₂O₃S·0.6H₂O)

Calcd.(%): C, 70.05; H, 7.81; N, 5.27; S, 6.03

Found(%): C, 70.01; H, 7.81; N, 5.18; S, 5.86

Compound I-204

45

[0277] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.22-1.29(2H, m), 1.41-1.46(2H, m), 1.58-1.72(4H, m), 2.03-2.17 (5H, m), 2.31(2H, t, J=7.2Hz), 2.51(1H, m), 2.60(6H, s), 3.79(1H, m), 3.94(1H, d, J=13.2Hz), 3.99(1H, d, J=13.2Hz), 4.39(2H,s), 5.30-5.44(2H, m), 6.01(1H, d, J=7.2Hz), 6.72(1H, d, J=3.9Hz), 7.26-7.40(4H, m), 7.56(1H, d, J=7.2Hz). IR(CHCl₃): 3519, 3444, 3425, 2455, 1753, 1712, 1643, 1545, 1508, 1458 cm⁻¹.

 $[\alpha]_D^{26}+41.2\pm0.8^{\circ}$ (c=1.02, CHCl₃)

Elemental Analysis (C₂₉H₃₈N₂O₃S·1.7H₂O·0.2CHCl₃)

Calcd.(%): C, 63.86; H, 7.63; N, 5.10; S, 5.84; CI, 3.87

Found(%): C, 63.88; H, 7.51; N, 4.94; S, 5.63; Cl, 4.22

55 Compound 1-205

[0278] 300MHz ¹H-NMR(CDCl₃) δ : 1.14(1H, m), 1.24-1.36(2H, m), 1.45-1.54(2H, m), 1.60-1.79(4H, m), 2.03-2.26 (5H, m), 2.36(2H, t, J=7.5Hz), 2.58(1H, m), 3.19-3.26(4H, m), 3.89(1H, m), 5.32-5.45(2H, m), 6.33(1H, d, J=6.3Hz),

7.24(1H, d, J=7.2Hz), 7.34 and 7.46(each 1H, each m), 7.61(1H, dd, J=1.5 and 8.4Hz), 7.68(1H, d, J=1.5Hz), 7.98-8.04 (2H, m).

IR(CHCl₃): 3518, 3444, 2667, 1709, 1649, 1597, 1514, 1483, 1450, 1294 cm⁻¹.

 $[\alpha]_D^{25}$ +78.7±1.2° (c=1.003, MeOH)

5 Elemental Analysis (C₃0H₃₃NO₄)

Calcd.(%): C, 75.54; H, 7.10; N, 2.94

Found(%): C, 75.62; H, 7.05; N, 2.94

Compound I-206

10

[0279] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.22-1.36(2H, m), 1.40-1.52(2H, m), 1.56-1.81(4H, m), 2.00-2.24 (5H, m), 2.35(2H, t, J=7.2Hz), 2.50(1H, m), 3.84(1H, m), 3.99(2H, s), 5.30-5.43(2H, m), 6.05(1H, d, J=3.3Hz), 6.29 (1H, d, J=7.8Hz), 6.99-7.05(3H, m), 7.17-7.22(2H, m).

IR(CHCl₃): 3512, 3435, 1739, 1709, 1653, 1606, 1549, 1510 cm⁻¹.

 $[\alpha]_{D}^{26}+71.0\pm1.1^{\circ} (c=1.005, MeOH)$

Elemental Analysis (C₂₆H₃₀FNO₄)

Calcd.(%): C, 71.05; H, 6.88; N, 3.19; F,4.32

Found(%): C, 70.78; H, 6.97; N, 3.30; F, 4.27

20 Compound I-207

[0280] 300MHz ¹H-NMR(CDCl₃) δ : 1.10(1H, m), 1.22-1.34(2H, m), 1.40-1.50(2H, m), 1.56-1.81(4H, m), 2.00-2.24 (5H, m), 2.35(2H, t, J=7.2Hz), 2.50(1H, m), 3.84(1H, m), 4.02(2H, s), 5.30-5.43(2H, m), 6.07(1H, d, J=3.3Hz), 6.30 (1H, d, J=7.5Hz), 7.02(1H, d, J=3.3Hz), 7.22-7.36(5H, m).

²⁵ IR(CHCl₃): 3516, 3435, 2669, 1709, 1651, 1606, 1547, 1498 cm⁻¹.

 $[\alpha]_D^{24} + 76.5 \pm 1.2^{\circ} \text{ (c=1.005, MeOH)}$

Elemental Analysis (C₂₆H₃₁FNO₄·0.1H₂O)

Calcd.(%): C, 73.77; H, 7.43; N, 3.31

Found(%): C, 73.63; H, 7.27; N, 3.42

30

Compound I-208

[0281] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.16-1.26(2H, m), 1.39-1.44(2H, m), 1.55-1.76(4H, m), 1.98-2.18 (5H, m), 2.33(2H, t, J=7.2Hz), 2.50(1H, s), 3.79(1H, m),4.42(2H, s), 5.28-5.40(2H, m), 5.98(1H, d, J=6.9Hz), 6.78(1H, d, J=2.1Hz), 6.84(1H, d, J=3.6Hz), 7.12-7.21(2H, m), 7.36(1H, d, J=3.6Hz), 7.50(1H, dd, J=1.5 and 7.5Hz), 7.63(1H, d, 2.1Hz).

IR(CHCl₃): 3516, 3446, 3427, 2665, 1741, 1709, 1643, 1523, 1506, 1458, 1427 cm⁻¹.

 $[\alpha]_D^{25}+63.4\pm1.0^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₈H₃₁NO₄S·0.2H₂O)

40 Calcd.(%): C, 69.89; H, 6.58; N, 2.91; S, 6.66

Found(%): C, 69.68; H, 6.48; N, 3.10; S, 6.62

Compound I-209

[0282] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.22-1.29(2H, m), 1.42-1.47(2H, m), 1.59-1.82(4H, m), 2.01-2.20 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 2.94(3H,s), 3.81(1H, m), 4.19(2H, s), 4.44(2H, s), 5.31-5.38(2H, m), 5.35 (1H,d, J=7.2Hz), 6.63-6.72(4H, m), 7.16-7.25(6H, m), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3444, 3427, 1741, 1709, 1643, 1599, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{26}+50.8\pm0.9^{\circ}$ (c=1.04, CHCl₃)

Elemental Analysis ($C_{34}H_{40}N_2O_3S\cdot 0.7H_2O$)

Calcd.(%): C, 71.72; H, 7.33; N, 4.92; S, 5.63

Found(%): C, 71.81; H, 7.29; N, 4.81; S, 5.54

Compound I-210

55

[0283] 300MHz ¹H-NMR(CDCl₃) δ : 1.14-1.68(11H, m), 1.91-2.16(9H, m), 2.21(2H, t, J=7.2Hz), 2.57(1H, m), 2.98 (1H, m), 3.71(1H, m), 3.89(2H, s), 4.28(1H, d, J=16.5Hz), 4.30(1H, d, J=16.5Hz), 5.28-5.50(3H, m), 6.56(1H, m), 6.75 (1H, m), 7.20-7.33(2H, m), 7.49-7.55(2H, m).

IR(CHCl₃): 3518, 3425, 1753, 1711, 1641, 1545, 1508, 1456 cm⁻¹. $[\alpha]_D^{26}$ +35.6±0.7° (c=1.03, CHCl₃)

Compound I-211

5

[0284] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.17-1.28(2H, m), 1.39-1.46(2H, m), 1.54-1.78(4H, m), 1.98-2.19 (5H, m), 2.33(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 4.29(2H, s), 5.28-5.40(2H, m), 5.95(1H, d, J=7.2Hz), 6.82 (1H, d, J=3.6Hz), 7.23(1H, dd, J=1.5 and 8.1Hz), 7.30-7.47(4H, m), 7.65(1H, d, J=8.1Hz), 7.89(1H, d, J=7.8Hz), 7.93 (1H, dd, J=1.5 and 7.8Hz).

¹⁰ IR(CHCl₃): 3510, 3446, 3427, 2671, 1739, 1709, 1641, 1545, 1506, 1458, 1427 cm⁻¹.

 $[\alpha]_D^{24}+60.2\pm1.0^{\circ} (c=1.006, MeOH)$

Elemental Analysis (C₃₂H₃₃NO₄S·0.2H₂O)

Calcd.(%): C, 72.34; H, 6.34; N, 2.64; S, 6.04

Found(%): C, 72.28; H, 6.25; N, 2.72; S, 5.93

15

20

Compound I-212

[0285] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.30(2H, m), 1.38-1.47(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.78(3H, s), 3.80(1H, m), 3.86(3H, s), 4.15(2H, s), 5.29-5.42(2H, m), 5.93 (1H, d, J=7.5Hz), 6.78-6.85(3H, m), 7.01(1H, t, J=8.1Hz), 7.36(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3446, 3425, 2667, 1739, 1709, 1641, 1543, 1506, 1481, 1273, 1076 cm⁻¹.

 $[\alpha]_D^{25}+60.8\pm1.0^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₈H₃₅NO₅S·0.1H₂O)

Calcd.(%): C, 67.33; H, 7.10; N, 2.80; S, 6.42

²⁵ Found(%): C, 67.21; H, 7.08; N, 2.92; S, 6.45

Compound I-213

[0286] 300MHz 1 H-NMR(CDCl₃) δ : 1.08(1H, m), 1.19-1.30(2H, m), 1.42-1.47(2H, m), 1.58-1.78(4H, m), 2.01-2.16 (5H, m), 2.38(2H, t, J=7.2Hz), 2.39(3H, s), 2.53(1H, s),3.82(1H, m), 4.15(2H, s), 5.31-5.44(2H, m), 5.87(1H, s), 6.05 (1H, d, J=7.2Hz), 6.86(1H, d, J=3.9Hz), 7.38(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3444, 3427, 2669, 1709, 1643, 1608, 1545, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{25}+64.3\pm1.0^{\circ}$ (c=1.012, MeOH)

Elemental Analysis ($C_{24}H_{30}N_2O_4S\cdot 0.2H_2O$)

35 Calcd.(%): C, 64.61; H, 6.87; N, 6.28; S, 7.19

Found(%): C, 64.70; H, 6.84; N, 6.34; S, 7.27

Compound I-214

[0287] 300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.19-1.28(2H, m), 1.41-1.46(2H, m), 1.58-1.79(4H, m), 2.00-2.15 (5H, m), 2.33-2.37(5H, m), 2.51(1H, s), 3.81-3.82(4H,m), 4.08(2H, s), 5.29-5.42(2H, m), 5.93(1H, d, J=6.9Hz), 6.70 (1H, s), 6.72(1H, d, J=7.8Hz), 6.77(1H, d, J=3.6Hz), 7.04(1H, d, J=7.8Hz), 7.34(1H, d, J=3.6Hz). IR(CHCl₃): 3516, 3446, 3427, 2669, 1741, 1709, 1641, 1614, 1583, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{25}+58.9\pm1.0^{\circ}$ (c=1.012, MeOH)

Elemental Analysis (C₂₈H₃₅NO₄S·0.2H₂O)

Calcd.(%): C, 69.31; H, 7.35; N, 2.89; S, 6.61

Found(%): C, 69.21; H, 7.35; N, 3.03; S, 6.65

Compound I-215

50

55

45

[0288] mp.128-129°C

300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.19-1.28(2H, m), 1.41-1.46(2H, m), 1.56-1.79(4H, m), 2.00-2.15(5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, s), 3.80(1H, m), 3.84(3H, s), 4.33(2H, s), 5.29-5.42(2H, m), 5.94(1H, d, J=6.9Hz), 6.83 (1H, d, J=3.6Hz), 7.01(1H, dd, J=2.7 and 9.0Hz), 7.11(1H, d, J=2.7Hz), 7.21(1H, s), 7.36(1H, d, J=3.6Hz), 7.72(1H, d, J=9.0Hz).

IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1643, 1601, 1543, 1506, 1458, 1427 cm⁻¹.

 $[\alpha]_D^{25}+55.7\pm1.0^{\circ}$ (c=1.008, MeOH)

Elemental Analysis (C₂₉H₃₃NO₄S₂)

Calcd.(%): C, 66.51; H, 6.35; N, 2.67; S, 12.25 Found(%): C, 66.41; H, 6.30; N, 2.96; S, 12.15

Compound I-216

5

IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1643, 1543, 1506, 1456 cm⁻¹.

 $[\alpha]_D^{25}+56.7\pm1.0^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₃₃H₃₅NO₃S·0.1H₂O)

Calcd.(%): C, 75.14; H, 6.73; N, 2.66; S, 6.08

Found(%): C, 75.14; H, 6.80; N, 2.74; S, 5.83

15 Compound I-217

[0290] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.19-1.32(2H, m), 1.40-1.48(2H, m), 1.56-1.78(4H, m), 2.00-2.21 (5H, m), 2.34(2H, t, J=7.5Hz), 2.54(1H, m), 3.13-3.24(4H, m), 3.85(1H, m), 4.13(2H, s), 5.28-5.42(2H, m), 6,17(1H, d, J=7.2Hz), 7.06-7.17(4H, m), 7.22(1H, d, J=7.8Hz), 7.44(1H, dd, J=1.8 and 7.8Hz), 7.53(1H, d, J=1.8Hz).

IR(CHCl₃): 3518, 3446, 1739, 1709, 1651, 1570, 1518, 1491, 1456 cm⁻¹.

 $[\alpha]_D^{25}+73.3\pm1.1^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₃₀H₃₅NO₃·0.2H₂O)

Calcd.(%): C, 78.13; H, 7.44; N, 3.04

Found(%): C, 78.25; H, 7.76; N, 3.29

25

30

20

Compound I-218

[0291] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.30(2H, m), 1.39-1.48(2H, m), 1.54-1.81(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 3.82, 3.85 and 3.87(each 3H, each s), 4.07(2H, s), 5.29-5.42 (2H, m), 5.94(1H, d, J=7.5Hz), 6.62(1H, d, J=8.7Hz), 6.76(1H, d, J=3.6Hz), 6.85(1H, d, J=8.7Hz), 7.35(1H, d, J=3.6Hz). IR(CHCl₃): 3514, 3446, 3427, 1739, 1709, 1641, 1603, 1543, 1495, 1468, 1277, 1259, 1097 cm⁻¹. [α]_D²⁶+54.8±1.0° (c=1.013, MeOH)

Elemental Analysis (C₂₉H₃₇NO₆S-0.2H₂O)

Calcd.(%): C, 65.56; H, 7.10; N, 2.64; S, 6.04

35 Found(%): C, 65.54; H, 6.96; N, 2.74; S, 5.98

Compound I-219

[0292] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.17-1.30(2H, m), 1.38-1.48(2H, m), 1.54-1.81(4H, m), 1.98-2.16 (5H, m), 2.17 and 2.29(each 3H, each s), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.80(1H, m), 4.14(2H, s), 5.29-5.41(2H, m), 5.93(1H, d, J=7.5Hz), 6.68(1H, td, J=0.9 and 3.6Hz), 7.35(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3446, 3427, 2669, 1739, 1709, 1641, 1543, 1506, 1458 cm⁻¹.

 $[\alpha]_D^{26}+66.9\pm1.1^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S)

45 Calcd.(%): C, 72.22; H, 7.58; N, 3.01; S, 6.89

Found(%): C, 71.93; H, 7.58; N, 3.12; S, 6.74

Compound I-220

50 **[0293]** mp.131-133°C

300MHz 1 H-NMR(CDCl₃) δ : 1.06(1H, m), 1.18-1.31(2H, m), 1.40-1.48(2H, m), 1.56-1.82(4H, m), 2.00-2.21(5H, m), 2.35(2H, t, J=7.5Hz), 2.52(1H, m), 3.82(1H, m), 3.83(3H, s), 3.84(6H, s), 4.07(2H, s), 5.30-5.42(2H, m), 5.95(1H, d, J=7.5Hz), 6.45(2H, s), 6.79(1H, d, J=3.6Hz), 7.36(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3446, 3427, 1739, 1709, 1643, 1593, 1543, 1506, 1462, 1421, 1331, 1240, 1130 cm⁻¹.

 $[\alpha]_D^{24} + 57.5 \pm 1.0^{\circ} \text{ (c=1.007, MeOH)}$

Elemental Analysis (C₂₉H₃₇NO₆S)

Calcd.(%): C, 66.01; H, 7.07; N, 2.65; S, 6.08

Found(%): C, 65.84; H, 6.93; N, 2.71; S, 6.06

Compound I-221

5

20

[0294] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.17-1.30(2H, m), 1.39-1.48(2H, m), 1.54-1.80(4H, m), 1.98-2.20 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.08(2H, s), 5.29-5.42(2H, m), 5.95(2H, s), 5.98(1H, d, J=7.5Hz), 6.68-6.80(4H, m), 7.35(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3446, 3427, 1741, 1709, 1641, 1543, 1504, 1460, 1252, 1063 cm⁻¹.

 $[\alpha]_D^{24}+62.7\pm1.0^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₇H₃₁NO₅S)

Calcd.(%): C, 67.34; H, 6.49; N, 2.91; S, 6.66

10 Found(%): C, 67.12; H, 6.37; N, 2.98; S, 6.55

Compound I-222

[0295] 300MHz ¹H-NMR(CDCl₃) δ : 1.08(1H, m), 1.24-1.28(2H, m), 1.41-1.45(2H, m), 1.56-1.78(4H, m), 1.97-2.20 (5H, m), 2.14(3H, s), 2.33(2H, t, J=7.2Hz), 2.51(1H, m), 3.77(1H, m), 4.06(2H, s), 5.28-5.42(2H, m), 6.16(1H, d, J=7.2Hz), 6.74(1H, d, J=3.6Hz), 6.96(1H, d, J=7.5Hz), 7.24(1H, t, J=8.7Hz), 7.35-7.38(3H, m), 7.74(1H, br s). IR(KBr): 3309, 1707, 1672, 1614, 1547, 1523, 1489, 1441, 1371, 1319 cm⁻¹. [α]_D²⁶+57.7±1.0° (c=1.012, MeOH)

Elemental Analysis (C₂₈H₃₄N₂O₄S·0.4H₂O)

Calcd.(%): C, 67.01; H, 6.99; N, 5.58; S, 6.39

Found(%): C, 66.98; H, 6.72; N, 5.47; S, 6.27

Compound I-223

[0296] 300MHz 1 H-NMR(CDCl₃) δ : 1.05(1H, m), 1.22-1.28(2H, m), 1.42-1.46(2H, m), 1.55-1.75(4H, m), 2.02-2.22 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 2.99(3H, s), 3.81(1H, m), 4.11(2H, s), 5.29-5.45(2H, m), 6.04(1H, d, J=7.2Hz), 6.78 (1H, d, J=3.6Hz), 7.04-7.06(2H, m), 7.16(1H, m), 7.25(1H, br s), 7.29(1H, t, J=7.8Hz), 7.36 (1H, d, J=3.6Hz).

IR(CHCl₃): 3512, 3444, 3427, 3371, 1709, 1639, 1608, 1545, 1508, 1475, 1458, 1389, 1335, 1151 cm⁻¹.

 $[\alpha]_D^{24}+55.0\pm1.0^{\circ} (c=1.003, MeOH)$

Elemental Analysis (C₂₇H₃₄N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 60.69; H, 6.49; N, 5.24; S, 12.00

Found(%): C, 60.70; H, 6.44; N, 5.15; S, 11.56

35 Compound I-224

[0297] 300MHz 1 H-NMR(CDCl₃) δ : 1.07(1H, m), 1.22-1.28(2H, m), 1.42-1.53(2H, m), 1.57-1.74(4H, m), 2.00-2.24 (5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.81(1H, m), 4.33(2H, s), 5.29-5.42(2H, m), 5.98(1H, d, J=7.8Hz), 6.86, 6.88 and 7.14(each 1H, each d, each J=3.6Hz), 7.22-7.37(4H, m), 7.53-7.56(2H, m). Compound I-225

300MHz 1 H-NMR(CDCl₃) δ: 1.05(1H, m), 1.17-1.30(2H, m), 1.39-1.48(2H, m), 1.54-1.81(4H, m), 1.98-2.20(5H, m), 2.35(2H, t, J=7.5Hz), 2.51(1H, m), 3.81(1H, m), 4.08(2H, s), 4.23-4.30(4H, m), 5.29-5.42(2H, m). 5.95(1H, d, J=7.2Hz), 6.71-6.80(4H, m), 7.34(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3446, 3427, 1739, 1709, 1641, 1603, 1543, 1506, 1475, 1456, 1284, 1090 cm⁻¹. [α]_D^{24.5}+58.9±1.0° (c=1.013, MeOH)

Elemental Analysis (C₂₈H₃₃NO₅S)

Calcd.(%): C, 67.85; H, 6.71; N, 2.83; S, 6.47

Found(%): C, 68.01; H, 6.72; N, 2.97; S, 6.50

Compound I-226

50

[0298] 300MHz ¹H-NMR(CDCl₃) δ : 1.05(1H, m), 1.18-1.30(2H, m), 1.38-1.47(2H, m), 1.54-1.81(4H, m), 1.98-2.20 (5H, m), 2.31(3H, s), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 3.70(3H, s), 3.80(1H, m), 4.16(2H, s), 5.29-5.42(2H, m), 5.95 (1H, d, J=7.2Hz), 6.78(1H, d, J=3.6Hz), 6.96-7.11(3H, m), 7.37(1H, d, J=3.6Hz). IR(CHCl₃): 3514, 3446, 3427, 2669, 1709, 1641, 1543, 1506, 1473, 1458, 1259, 1011 cm⁻¹.

 $[\alpha]_D^{24}+62.7\pm1.0^{\circ} \text{ (c=1.009, MeOH)}$

Elemental Analysis (C₂₈H₃₅NO₄S)

Calcd.(%): C, 69.82; H, 7.32; N, 2.91; S, 6.66

Found(%): C, 69.55; H, 7.27; N, 3.09; S, 6.55

Compound I-227

5

20

40

[0299] 300MHz ¹H-NMR(CDCl₃) δ : 1.07(1H, m), 1.24-1.28(2H, m), 1.41-1.46(2H, m), 1.56-1.79(4H, m), 2.00-2.17 (5H, m), 2.16(3H, s), 2.33(2H, t, J=7.5Hz), 2.51(1H, m), 3.79(1H, m), 4.08(2H, s), 5.28-5.42(2H, m), 6.05(1H, d, J=7.5Hz), 6.75(1H, d, J=3.6Hz), 7.16(2H, d, J=8.1Hz), 7.37(1H, d, J=3.6Hz), 7.43(2H, d, J=8.1Hz), 7.53(1H, br s). IR(CHCl₃): 3512, 3437, 1707, 1639, 1543, 1516, 1410 cm⁻¹.

 $[\alpha]_D^{24.5}+60.7\pm1.0^{\circ}$ (c=1.012, MeOH)

Elemental Analysis (C₂₈H₃₄N₂O₄S·0.5H₂O)

Calcd.(%): C, 67.77; H, 7.00; N, 5.56; S, 6.37

10 Found(%): C, 66.84; H, 6.91; N, 5.56; S, 6.26

Compound I-228

[0300] 300MHz ¹H-NMR(CDCl₃) δ : 1.06(1H, m), 1.22-1.29(2H, m), 1.41-1.46(2H, m), 1.58-1.76(4H, m), 2.01-2.17 (5H, m), 2.34(2H, t, J=7.5Hz), 2.51(1H, m), 2.99(3H, s), 3.80(1H, m), 4.11(2H, s), 5.29-5.43(2H, m), 6.01(1H, d, J=7.5Hz), 6.78(1H, d, J=3.6Hz), 6.86(1H, br s), 7.17-7.23(4H, m), 7.36(1H, d, J=3.6Hz). IR(CHCl₃): 3510, 3444, 3427, 3371, 1709, 1639, 1543, 1510, 1456, 1389, 1338, 1155 cm⁻¹.

 $[\alpha]_D^{24.5}+56.5\pm1.0^{\circ}$ (c=0.953, MeOH)

Elemental Analysis (C₂₇H₃₄N2O₅S₂·0.1H₂O)

Calcd.(%): C, 60.90; H, 6.47; N, 5.26; S, 12.04

Found(%): C, 61.06; H, 6.45; N, 5.29; S, 11.52

Compound I-229

25 **[0301]** mp.103-105°C

300MHz 1 H-NMR(CDCl₃) δ : 1.02(1H, m), 1.15-1.27(2H, m), 1.37-1.45(2H, m), 1.53-1.77(4H, m), 1.96-2.18(5H, m), 2.33(2H, t, J=7.5Hz), 2.49(1H, m), 3,79(1H, m), 4.40(2H, s), 5.27-5.39(2H, m), 5.94(1H, d, J=7.8Hz), 6.89(1H, d, J=3.9Hz), 7.32-7.37(2H, m), 7.43-7.48(3H, m), 7.84(1H, m), 8.08(1H, d, J=6.9Hz), 8.15(1H, m).

IR(CHCl₃): 3514, 3444, 3427, 2667, 1739, 1709, 1643, 1543, 1506, 1458, 1444 cm⁻¹.

 $[\alpha]_{D}^{24.5}+58.9\pm1.0^{\circ} \text{ (c=1.006, MeOH)}$

Elemental Analysis ($C_{32}H_{33}NO_3S_2$)

Calcd.(%): C, 70.68; H, 6.12; N, 2.58; S, 11.79

Found(%): C, 70.52; H, 6.11; N, 2.67; S, 11.72

35 Compound I-230

[0302] mp.86-87°C

300MHz 1 H-NMR(CDCl₃) δ : 1.02(1H, m), 1.16-1.28(2H, m), 1.37-1.45(2H, m), 1.54-1.77(4H, m), 1.97-2.17(5H, m), 2.32(2H, t, J=7.5Hz), 2.49(1H, m), 3.78(1H, m), 3.79 and 4.26(each 2H, each s), 5.27-5.39(2H, m), 5.93(1H, d, J=7.2Hz), 6.78(1H, d, J=3.9Hz), 7.18(1H, d, J=7.2Hz), 7.29(1H, m), 7.34-7.40(3H, m), 7.52(1H, d, J=7.2Hz), 7.72(1H, d, J=7.5Hz), 7.78(1H, d, J=7.2Hz).

IR(CHCl₃): 3514, 3446, 3427, 2669, 1709, 1641, 1543, 1506, 1456 cm⁻¹. $[\alpha]_D^{24.5}$ +59.2±1.0° (c=1.006, MeOH) Elemental Analysis (C₃₃H₃₅NO₃S)

Calcd.(%): C, 75.40; H, 6.71; N, 2.66; S, 6.10

45 Found(%): C, 75.33; H, 6.73; N, 2.75; S, 6.06

Compound I-231

[0303] 300MHz ¹H-NMR(CDCl₃) δ : 1.04(1H, m), 1.16-1.30(2H, m), 1.38-1.46(2H, m), 1.54-1.81(4H, m), 1.98-2.16 (5H, m), 2.21 and 2.50(each 3H, each s), 2.34(2H, t, J=7.2Hz), 2.51(1H, m), 3.66(3H, s), 3.80(1H, m), 4.13(2H, s), 5.29-5.42(2H, m), 5.93(1H, d, J=6.9Hz), 6.78(1H, d, J=3.6Hz), 6.89 and 6.96(each 1H, each d, each J=7.5Hz), 7.36 (1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3446, 3425, 2669, 1709, 1641, 1545, 1506, 1458, 1263, 1084, 1009 cm⁻¹. $[\alpha]_D^{24}+61.8\pm1.0^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₉H₃₇NO₄S·0.2H₂O)

Calcd.(%): C, 69.76; H, 7.55; N, 2.81; S, 6.42

Found(%): C, 69.80; H, 7.59; N, 2.97; S, 6.34

Compound I-232

[0304] 300MHz ¹H-NMR(CDCl₃) δ 1.02(1H, m), 1.16-1.27(2H, m), 1.37-1.45(2H, m), 1.53-1.77(4H, m), 1.96-2.15 (5H, m), 2.33(2H, t, J=7.5Hz), 2.50(1H, m), 3.79(1H, m), 4.50(2H, s), 5.27-5.40(2H, m), 5.94(1H, d, J=7.5Hz), 6.88 (1H, d, J=3.9Hz), 7.29-7.38(4H, m), 7.47(1H, m), 7.58(1H, d, J=8.4Hz), 7.86(1H, m), 7.95(1H, d, J=7.8Hz).

IR(CHCl₃) 3512, 3444, 3427, 2669, 1739, 1708, 1641, 1543, 1506, 1475, 1452, 1423 cm⁻¹.

 $[\alpha]_D^{24}$ +58.5±1.0° (c=1.006, MeOH)

Elemental Analysis (C₃₂H₃₃NO₄S-0.2H₂O)

Calcd.(%): C, 72.34; H, 6.34; N, 2.64; S, 6.04

10 Found(%): C, 72.36; H, 6.16; N, 2.72; S, 5.94

Compound I-233

[0305] mp.125-126°C

300MHz 1 H-NMR(CDCl₃) δ: 1.05(1H, m), 1.18-1.28(2H, m), 1.41-1.45(2H, m), 1.57-1.78(4H, m), 2.00-2.20(5H, m), 2.33(2H, t, J=7.4Hz), 2.51(1H, s), 3.80(1H, m),4.05(2H, s), 5.28-5.42(2H, m), 5.98(1H, d, J=6.6Hz), 6.76(1H, d, J=3.6Hz), 6.80 and 7.09(each 2H, each d, J=8.4Hz), 7.37(1H, d, J=3.6Hz).

IR(KBr): 3354, 3132, 2688, 1703, 1616, 1599, 1549, 1514, 1458, 1250 cm⁻¹.

 $[\alpha]_D^{25}+67.7\pm1.1^{\circ}$ (c=1.001, MeOH)

20 Elemental Analysis (C₂₆H₃₁NO₄S)

Calcd.(%): C, 68.85; H, 6.89; N, 3.09; S, 7.07

Found(%): C, 69.12; H, 6.95; N, 3.10; S, 7.12

Compound II-2

25

5

[0306] 300MHz ¹H-NMR(CDCl₃) δ : 0.89(1H, d, J=10.2Hz), 1.05 and 1.19(each 3H, each s), 1.50-2.44(14H, m), 4.15 (1H, m), 5.31-5.50(2H, m), 6.31(1H, d, J=8.1Hz), 7.00(1H, d, J=1.8Hz), 7.42-7.47(2H, m), 7.54(1H, d, J=1.8Hz), 7.66 (1H, m), 7.76-7.79(2H, m), 8.29(1H, s).

 $IR(CHCl_3): 3509, 3446, 3360, 3108, 1708, 1639, 1515, 1448, 1330, 1164 \text{ cm}^{-1}. \ [\alpha]_D^{20} + 39.0 \pm 0.8^{\circ} \ (c=1.006, MeOH)$

30 Elemental Analysis (C₂₇H₃₄N2O₅S₂·0.2H₂O)

Calcd.(%): C, 60.09; H, 6.54; N, 5.19; S,11.88

Found(%): C, 60.07; H, 6.48; N, 5.31; S,11.92

Compound II-3

35

[0307] 300MHz ¹H-NMR(CDCl₃) δ : 0.73(1H, d, J=10.2Hz), 1.06 and 1.16(each 3H, each s), 1.43-2.36(14H, m), 4.07 (1H, m), 5.28-5.49(2H, m), 6.37(1H, d, J=8.7Hz), 7.28 and 7.33(each 1H, each d, each J=1.8Hz), 7.38-7.43(2H, m), 7.50(1H, m), 7.96-7.99(2H, m).

IR(CHCl₃): 3440, 3254, 3096, 3062, 1708, 1643, 1560, 1530, 1298 cm⁻¹.

 $[\alpha]_D^{20}+49.0\pm0.9^{\circ}$ (c=1.008, MeOH)

Elemental Analysis (C₂₈H₃₄N₂O₄S·0.4H₂O)

Calcd.(%): C, 67.01; H, 6.99; N, 5.58; S,6.39

Found(%): C, 66.96; H, 7.04; N, 5.67; S,6.32

45 Compound II-4

[0308] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 4.12 (2H, s), 4.22(1H, m), 5.33-5.49(2H, m), 6.06(1H, d, J=8.7Hz), 7.04(1H, d, J=1.2Hz), 7.22-7.34(2H, m), 7.63(1H, d, J=1.2Hz). IR(CHCl₃): 3517, 3451, 3087, 3065, 2670, 1708, 1708, 1647, 1549, 1508 cm⁻¹.

 $[\alpha]_D^{21.5}+41.9\pm0.8^{\circ}$ (c=1.015, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S)

Calcd.(%): C, 72.22; H, 7.58; N, 3.01; S,6.89

Found(%): C, 72.07; H, 7.57; N, 3.21; S,6.77

55 Compound II-5

[0309] 300MHz ¹H-NMR(CDCl₃) δ : 0.98(1H, d, J=10.2Hz), 1.14 and 1.24(each 3H, each s), 1.54-2.48(14H, m), 4.30 (1H, m), 5.35-5.52(2H, m), 6.26(1H, d, J=8.7Hz), 6.38 and 7.13 (each 2H, each t, J=2.1Hz), 7.44 and 7.79(each 2H,

each d, each J=8.4Hz). IR(CHCl₃): 3453, 2662, 1739, 1708, 1652, 1609, 1500, 1333 cm⁻¹. [α]_D²²+65.2±1.1° (c=1.006, MeOH) Elemental Analysis (C₂₇H₃₄N₂O₃·0.3H₂O)

Calcd.(%): C, 73.71; H, 7.93; N, 6.37
 Found(%): C, 73.85; H, 7.88; N, 6.37

Compound II-6

[0310] 300MHz 1 H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.10 and 1.22(each 3H, each s), 1.52-2.42(1411, m), 4.25 (1H, m), 5.34-5.51(2H, m), 6.35(1H, d, J=8.7Hz), 7.07-7.15(3H, m), 7.21-7.26(2H, m), 7.73 and 7.77(each 2H, each d, each J=8.7Hz).

IR(CHCl₃): 3518, 3446, 3365, 3249, 2673, 1709, 1655, 1516, 1348, 1167 cm⁻¹. $[\alpha]_D^{21.5}$ +56.1±0.9° (c=1.000, MeOH)

Elemental Analysis (C₂₉H₃₆N₂O₅S·0.6H₂O)

Calcd.(%): C, 65.05; H, 7.00; N, 5.23; S, 5.99

Found(%): C, 65.07; H, 6.94; N, 5.37; S, 6.03

Compound II-7

20

[0311] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.44(14H, m), 4.24 (1H, m), 5.32-5.48(2H, m), 6.24(1H, d, J=8.7Hz), 7.17 and 7.60(each 2H, each d, each J=8.7Hz), 7.41-7.46(2H, m), 7.54(1H, m), 7.80-7.84(2H, m).

IR(CHCl₃): 3510, 3451, 3371, 3139, 1709, 1647, 1609, 1496, 1163 cm⁻¹.

 $[\alpha]_D^{22.5}+47.1\pm0.9^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₉H₃₆N₂O₅S·0.4H₂O)

Calcd.(%): C, 65.49; H, 6.97; N, 5.27; S, 6.03

Found(%): C, 65.51; H, 6.87; N, 5.39; S, 5.89

30 Compound II-8

[0312] 300MHz ¹H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s), 1.52-2.44(14H, m), 4.26 (1H, m), 5.33-5.49(2H, m), 6.26(1H, d, J=8.4Hz), 6.31 and 7.15(each 2H, each t, each J=2.1Hz), 7.81 and 7.89(each 2H, each d, each J=8.4Hz).

35 IR(CHCl₃): 3514, 3446, 3144, 1708, 1663, 1514, 1377, 1173 cm⁻¹.

 $[\alpha]_D^{22}+64.1\pm0.9^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₇H₃₄N₂O₅S·0.2H₂O)

Calcd.(%): C, 64.57; H, 6.90; N, 5.58; S, 6.38

Found(%): C, 64.50; H, 6.97; N, 5.71; S, 6.28

40

Compound II-9

[0313] mp.156-157°C

300MHz 1 H-NMR(CDCl₃) δ : 1.00(1H, d, J=10.2Hz), 1.17 and 1.25(each 3H, each s), 1.57-2.51(14H, m), 4.31(1H, m), 5.34-5.54(2H, m), 6.37(1H, d, J=9.3Hz), 7.33-7.47(3H, m), 7.61(1H, s), 7.64(1H, m), 7.70-7.73(2H, m), 7.87(1H, d, J=8.4Hz), 8.15(1H, d, J=1.2Hz).

IR(CHCl₃): 3518, 3452, 1741, 1709, 1649, 1510 cm⁻¹.

 $[\alpha]_D^{23}+67.2\pm2.1^{\circ}$ (c=0.503, MeOH)

Elemental Analysis (C₃₁H₃₅NO₃S·0.1H₂O)

50 Calcd.(%): C, 73.95; H, 7.05; N, 2.78; S, 6.37

Found(%): C, 73.94; H, 7.08; N, 3.04; S, 6.53

Compound II-10

[0314] 300MHz 1 H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.5Hz), 1.11 and 1.23(each 3H, each s), 1.54-2.49(14H, m), 4.25 (1H, m), 5.35-5.56(2H, m), 6.33(2H, t, J=2.4Hz), 6.56(1H, d, J=7.8Hz), 7.17(2H, t, J=2.4Hz), 7.58(1H, t, J=7.8Hz), 7.93 (1H, m), 8.04(1H, d, J=7.8Hz), 8.24(1H, m).

IR(CHCl₃): 3513, 3389, 3144, 2669, 1726, 1709, 1659, 1515, 1470, 1455, 1375 cm⁻¹.

$$\begin{split} &[\alpha]_D^{25} + 54.0 \pm 0.9^\circ \text{ (c=1.008, MeOH)} \\ &\text{Elemental Analysis (C$_{27}$H$_{34}$N$_2$O$_5$S\cdot0.2H_2O)} \\ &\text{Calcd.(\%): C, 64.46; H, 6.90; N, 5.53; S,6.38} \\ &\text{Found(\%): C, 64.45; H, 6.89; N, 5.75; S,6.42} \end{split}$$

5

10

Compound II-11

[0315] 300MHz 1 H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.2Hz), 1.10 and 1.23(each 3H, each s), 1.52-2.42(14H, m), 2.29 (3H, t), 4.26(1H, m), 5.35-5.49(2H, m), 5.96(1H, brs), 6.19(1H, t, J=3.2Hz), 6.26(1H, d, J=8.1Hz), 7.25(1H, m), 7.81 (4H, s). IR(CHCl₃): 3511, 3446, 3152, 1708, 1662, 1514, 1485, 1368, 1164 cm⁻¹.

 $[\alpha]_D^{27}$ +59.4±1.0° (c=1.006, MeOH)

Elemental Analysis (C₂₈H₃₆N₂O₅S)

Calcd.(%): C, 65.60; H, 7.08; N, 5.46; S,6.25

Found(%): C, 65.41; H, 7.00; N, 5.67; S,6.24

15

20

Compound II-12

[0316] 300MHz ¹H-NMR(CDCl₃) δ : 0.97(1H, d, J=10.5Hz), 1.03 and 1.22(each 3H, each s), 1.452-2.46(14H, m), 4.26(1H, m), 5.33.5.50(2H, m), 6.20(2H, t, J=2.1Hz), 6.22(1H, d, J=8.1Hz), 6.68(2H, t, J=2.1Hz), 7.15 and 7.67(each 2H, each d, each J=8.1Hz).

IR(CHCl₃): 3511, 3452, 3103, 2666, 1709, 1652, 1523, 1496 cm⁻¹.

 $[\alpha]_D^{23}$ +57.7±1.0° (c=1.010, MeOH)

Elemental Analysis (C₂₈H₃₆N₂O₃·0.1H₂O)

Calcd.(%): C, 74.67; H, 8.10; N, 6.22

25 Found(%): C, 74.69; H, 8.21; N, 6.38

Compound II-13

[0317] 300MHz ¹H-NMR(CDCl3) δ : 0.94(1H, d, J=10.2Hz), 1.06 and 1.20(each 3H, each s), 1.49-2.40(14H, m), 4.21 (1H, m), 5.31-5.45(2H, m), 6.19(1H, d, J=8.4Hz), 6.88(1H, d, J=3.6Hz), 7.22-7.35(2H, m), 7.52-7.55(2H, m), 7.74 and 7.91(each 2H, each d, each J=8.4Hz), 7.98(1H, d, J=8.4Hz).

 $IR(CHCl_3): 3481, 3440, 3145, 3116, 2661, 1709, 1660, 1516, 1485, 1446, 1377, 1261, 1178, 1130 \ cm^{-1}.$

 $[\alpha]_D^{26}+56.6\pm1.0^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₃₁H₃₆N₂O₅S·0.1H₂O)

35 Calcd.(%): C, 67.64; H, 6.63; N, 5.09; S, 5.82

Found(%): C, 67.68; H, 6.72; N, 5.35; S, 5.73

Compound II-14

[0318] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.53-2.47(14H, m), 4.17 (1H, m), 5.35-5.55(2H, m), 6.35 and 7.17(each 2H, each t, each J=2.1Hz), 6.38(1H, d, J=8.7Hz), 8.09 and 8.17(each 1H, each d, each J=1.5Hz).

IR(CHCl₃): 3510, 3409, 3144, 3107, 1727, 1709, 1657, 1538, 1503, 1456, 1387, 1166 cm⁻¹. [α]_D^{26.5}+46.1±0.9° (c=1.005, MeOH)

Elemental Analysis ($C_{25}H_{32}N_2O_5S_2\cdot 0.2H_2O$)

Calcd.(%): C, 59.08; H, 6.43; N, 5.51; S, 12.62

Found(%): C, 59.10; H, 6.45; N, 5.69; S, 12.58

Compound II-15

50

[0319] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 4.20 (1H, m), 5,35-5.47(2H, m), 6.16(1H, d, J=8.7Hz), 6.33 and 7.16(each 2H, each t, each J=2.4Hz), 7.30 and 7.56(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3515, 3446, 3144, 3100, 1708, 1658, 1529, 1504, 1456, 1385, 1167 cm⁻¹.

 $[\alpha]_D^{26.5}+54.1\pm0.9^{\circ} (c=1.004, MeOH)$

Elemental Analysis ($C_{25}H_{32}N_2O_5S_2\cdot 0.2H_2O$)

Calcd.(%): C, 59.08; H, 6.43; N, 5.51; S, 12.62

Found(%): C, 59.12; H, 6.36; N, 5.57; S, 12.59

Compound II-16

[0320] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.52-2.45(14H, m), 4.24 (1H, m), 4.63(2H, s), 5.34-5.50(2H, m), 6.25-6.27(2H, m), 6.40(1H, d, J=8.4Hz), 7.25(1H, dd, J=1.8 and 3.0Hz), 7.80 and 7.85(each 2H, each d, each J=8.7Hz).

IR(CHCl₃): 3581, 3518, 3445, 3149, 2666, 1709, 1661, 1515, 1472, 1371, 1182, 1150 cm⁻¹.

 $[\alpha]_D^{27}$ +58.1±1.0° (c=1.007, MeOH)

Elemental Analysis (C₂₈H₃₆N₂O₆S)

Calcd.(%): C, 63.61; H, 6.86; N, 5.30; S, 6.07

10 Found(%): C, 63.50; H, 6.84; N, 5.44; S, 5.89

Compound II-17

[0321] mp.119-121°C

300MHz 1 H-NMR(CDCl₃) δ: 0.97(1H, d, J=10.2Hz), 1.11 and 1.24(each 3H, each s), 1.53-2.49(14H, m), 4.29(1H, m), 5.39-5.57(2H, m), 6.37 and 7.22(each 2H, each t, each J=2.1Hz), 7.13(1H, d, J=8.4Hz), 7.50 and 7.93(each 1H, each d, each J=3.9Hz).

IR(Nujol): 3365, 3145, 3100, 1739, 1621, 1548, 1405, 1367, 1187 cm⁻¹.

 $[\alpha]_D^{26.5}+45.5\pm0.8^{\circ}$ (c=1.012, MeOH)

20 Elemental Analysis (C₂₅H₃₂N₂O₅S₂)

Calcd.(%): C, 59.74; H, 6.02; N, 5.57; S, 12.76

Found(%): C, 59.56; H, 6.33; N, 5.64; S, 12.76

Compound II-18

25

40

5

[0322] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 4.21 (1H, m), 5.34-5.48(2H, m), 6.21(1H, d, J=8.4Hz), 7.36 and 7.63(each 1H, each d, each J=3.9Hz), 7.70(1H, dd, J=1.5 and 5.1Hz), 7.75(1H, dd, J=1.5 and 3.9Hz).

IR(CHCl₃): 3516, 3446, 3097, 1708, 1656, 1529, 1504, 1337, 1153 cm⁻¹.

 $[\alpha]_D^{25}+54.1\pm0.9^{\circ} \text{ (c=1.000, MeOH)}$

Elemental Analysis (C₂₅H₃₁NO₅S₃)

Calcd.(%): C, 57.56; H, 5.99; N, 2.68; S, 18.44

Found(%): C, 57.33; H, 5.95; N, 2.68; S, 18.38

35 Compound II-19

[0323] mp.132-133°C

300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.54-2.44(14H, m), 4.19(1H, m), 5.33-5.50(2H, m), 6.03(1H, d, J=8.7Hz), 6.52(1H, dd, J=1.5 and 3.3Hz), 7.11(1H, dd, J=3.9 and 4.8Hz), 7.17(1H, dd, J=2.1 and 3.3Hz), 7.70-7.72(2H, m), 7.74(1H, dd, J=1.5 and 3.9Hz).

IR(CHCl₃): 3510, 3448, 3143, 3099, 1733, 1708, 1650, 1572, 1507, 1473, 1387, 1179 cm⁻¹.

 $[\alpha]_D^{24}$ +39.1±0.8° (c=1.003, MeOH)

Elemental Analysis (C₂₅H₃₂N₂O₅S₂)

Calcd.(%): C, 59.50; H, 6.39; N, 5.55; S, 12.71

45 Found(%): C, 59.49; H, 6.46; N, 5.47; S, 12.70

Compound II-20

[0324] mp.165-166°C

300MHz 1 H-NMR(CDCl₃) δ: 0.93(1H, d, J=10.2Hz), 1.08 and 1.20(each 3H, each s), 1.50-2.45(14H, m), 4.17(1H, m), 5.33-5.51(2H, m), 6.04(1H, d, J=8.4Hz), 6.51(1H, dd, J=1.5 and 3.3Hz), 7.15(1H, dd, J=2.4 and 3.3Hz), 7.52-7.57(2H, m), 7.65(1H, m), 7.74(1H, dd, J=1.8 and 2.1Hz), 7.89-7.93(1H, m).

IR(CHCl₃): 3510, 3449, 3144, 1733, 1708, 1650, 1570, 1507, 1384, 1185, 1176 cm⁻¹.

 $[\alpha]_D^{24}+33.8\pm0.7^{\circ}$ (c=1.011, MeOH)

55 Elemental Analysis (C₂₇H₃₄N₂O₅S)

Calcd.(%): C, 65.04; H, 6.87; N, 5.62; S, 6.43

Found(%): C, 64.95; H, 6.68; N, 5.69; S, 6.40

Compound II-21

5

[0325] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.07 and 1.21(each 3H, each s), 1.49-2.41(14H, m), 4.19 (1H, m), 5.33-5.47(2H, m), 5.99(1H, d, J=8.7Hz), 7.01(1H, dd, J=3.6 and 5.4Hz), 7.04 and 7.28(each 1H, each d, each J=3.6Hz), 7.29(1H, dd, J=1.2 and 3.6Hz), 7.43(1H, dd, J=1.2 and 5.4Hz).

IR(CHCl₃): 3518, 3449, 3430, 2672, 1708, 1646, 1530, 1500, 1421 cm⁻¹.

 $[\alpha]_D^{25.5}+45.9\pm0.9^{\circ}$ (c=1.010, MeOH)

Elemental Analysis (C₂₅H₃₁NO₃S₃)

Calcd.(%): C, 61.32; H, 6.38; N, 2.86; S, 19.64

Found(%): C, 61.17; H, 6.42; N, 3.00; S, 19.80 10

Compound II-22

[0326] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.07 and 1.21(each 3H, each s), 1.49-2.41(14H, m), 2.46 (3H, d, J=1.2Hz), 4.18(1H, m), 5.33-5.47(2H, m), 5.99(1H, d, J=8.4Hz), 6.66(1H, m), 6.99(1H, d, J=3.9Hz), 7.10(1H, 15 d, J=3.3Hz), 7.26(1H, d, J=3.9Hz).

IR(CHCl₃): 3509, 3449, 2671, 1708, 1645, 1530, 1500, 1420 cm⁻¹.

 $[\alpha]_D^{25.5}+43.5\pm0.8^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₆H₃₃NO₃S₃)

Calcd.(%): C, 61.99; H, 6.60; N, 2.78; S, 19.10 20

Found(%): C, 61.77; H, 6.68; N, 2.83; S, 18.91

Compound II-23

25 [**0327**] mp.118-120°C

300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.51-2.42(14H, m), 2.53(3H, d, J=0.9Hz), 4.20(1H, m), 5.35-5.48(2H, m), 6.17(1H, d, J=8.7Hz), 6.77(1H, m), 7.34(1H, d, J=3.9Hz), 7.57(1H, d, J=3.6Hz), 7.60(1H, d, J=3.9Hz).

IR(Nujol): 3399, 3082, 1733, 1613, 1543, 1328, 1318, 1151 cm⁻¹.

 $[\alpha]_D^{25.5}+54.0\pm0.9^{\circ}$ (c=1.012, MeOH)

Elemental Analysis (C₂₆H₃₃NO₅S₃)

Calcd.(%): C, 58.29; H, 6.21; N, 2.61; S, 17.95

Found(%): C, 58.08; H, 6.18; N, 2.73; S, 17.66

35 Compound II-24

40

[0328] mp.126-127°C

300MHz ¹H-NMR(CDC₁₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.20(each 3H, each s), 1.50-2.46(14H, m), 4.17(1H, m), 5.33-5.51(2H, m), 6.04(1H, d, J=8.4Hz), 6.51(1H, dd, J=1.5 and 3.3Hz), 7.13(1H, dd, J=2.7 and 3.3Hz), 7.22(1H, dd, J=7.8 and 9.0Hz), 7.73(1H, dd, J=1.5 and 2.1Hz), 7.91-7.96(2H, m).

IR(CHCl₃): 3513, 3449, 3144, 1733, 1709, 1651, 1592, 1507, 1496, 1385, 1181 cm⁻¹.

 $[\alpha]_D^{24}$ +36.2±0.8° (c=1.005, MeOH)

Elemental Analysis (C₂₇H₃₃FN₂O₅S)

Calcd.(%): C, 62.77; H, 6.44; N, 5.42; F, 3.68; S, 6.21

Found(%): C, 62.71; H, 6.49; N, 5.39; F, 3.69; S, 6.21 45

Compound II-25

[0329] mp.145-146°C

300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.20(each 3H, each s), 1.50-2.45(14H, m), 3.86(3H, s), 50 4.17(1H, m), 5.33-5.51(2H, m), 6.04(1H, d, J=8.4Hz), 6.48(1H, dd, J=1.5 and 3.3Hz), 6.98 and 7.85(each 2H, each d, each J=9.0Hz), 7.12(1H, dd, J=2.7 and 3.3Hz), 7.71(1H, dd, J=1.8 and 2.1Hz). IR(CHCl₃): 3513, 3449, 3413, 3143, 1733, 1709, 1649, 1596, 1576, 1499, 1379, 1266, 1189, 1167 cm⁻¹.

 $[\alpha]_D^{24} + 34.5 \pm 0.7^{\circ} \text{ (c=1.005, MeOH)}$ 55

Elemental Analysis (C₂₈H₃₆N₂O₆S)

Calcd.(%): C, 63.61; H, 6.86; N, 5.30; S, 6.07

Found(%): C, 63.54; H, 6.93; N, 5.18; S, 6.08

Compound II-26

5

20

35

55

[0330] 300MHz ¹H-NMR(CDCl₃) δ : 0.97(1H, d, J=10.5Hz), 1.12 and 1.23(each 3H, each s), 1.50-2.50(14H, m), 4.23 (1H, m), 5.39-5.51(2H, m), 6.09(1H, d, J=9.6Hz), 6.35(1H, dd, J=2.4 and 3.9Hz), 6.48(1H, dd, J=2.4 and 3.9Hz), 7.02 (1H, dd, J=3.6 and 4.8Hz), 7.18(1H, dd, J=0.6 and 4.8Hz), 7.41(1H, dd, J=0.6 and 3.6Hz), 10.92(1H, brs). IR(CHCl₃): 3506, 3447, 3220, 3164, 1704, 1617, 1537, 1508 cm⁻¹.

 $[\alpha]_D^{24}$ +50.7±0.9° (c=1.009, MeOH)

Elemental Analysis (C₂₅H₃₂N₂O₃S·0.2H₂O)

Calcd.(%): C, 67.59; H, 7.35; N, 6.31; S, 7.22

10 Found(%): C, 67.60; H, 7.23; N, 6.39; S, 7.34

Compound II-27

[0331] mp.138-139°C

300MHz 1 H-NMR(CDCl₃) δ: 0.97(1H, d, J=10.2Hz), 1.13 and 1.24(each 3H, each s), 1.50-2.47(14H, m), 4.24(1H, m), 5.36-5.52(2H, m), 6.06(1H, d, J=8.4Hz), 6.98(1H, d, J=3.9Hz), 6.99 and 7.05(each 1H, each d, each J=16.2Hz), 7.28-7.34(3H, m), 7.37(1H, d, J=3.9Hz).

IR(CHCl₃): 3518, 3449, 3431, 2665, 1708, 1642, 1538, 1519, 1500 cm⁻¹. [α]_D²⁴+49.1±0.9° (c=1.014, MeOH) Elemental Analysis ($C_{27}H_{33}NO_3S_2$)

Calcd.(%): C, 67.05; H, 6.88; N, 2.90; S, 13.26

Found(%): C, 67.94; H, 6.86; N, 2.99; S, 13.23

Compound II-28

[0332] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.07 and 1.22(each 3H, each s), 1.50-2.44(14H, m), 4.20 (1H, m), 5.30-5.51(2H, m), 5.97(1H, d, J=9.0Hz), 6.58(2H, s), 6.95(1H, d, J=3.9Hz), 7.02(1H, dd, J=1.5 and 4.8Hz), 7.25-7.31(2H, m), 7.31(1H, d, J=3.9Hz).

IR(CHCl₃): 3517, 3449, 3430, 2664, 1708, 1642, 1536, 1519, 1501 cm⁻¹.

 $[\alpha]_D^{24} + 38.6 \pm 0.8^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₇H₃₃NO₃S₂·0.2H₂O)

Calcd.(%): C, 66.55; H, 6.91; N, 2.87; S, 13.16

Found(%): C, 66.52; H, 6.81; N, 3.11; S, 12.93

Compound II-29

[0333] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.50-2.39(14H, m), 2.44 (3H, d, J=0.9Hz), 4.20(1H, m), 5.34-5.49(2H, m), 5.98(1H, d, J=8.7Hz), 6.70(1H, m), 7.06(1H, d, J=3.9Hz), 7,10(1H, d, J=1.8Hz), 7.30(1H, d, J=3.9Hz).

IR(CHCl₃): 3518, 3450, 3430, 3110, 2669, 1740, 1708, 1645, 1530, 1499, 1420 cm⁻¹.

 $[\alpha]_D^{24}+46.0\pm0.9^{\circ}$ (c=0.968, MeOH)

Elemental Analysis (C₂₆H₃₃NO₃S₃)

Calcd.(%): C, 61.99; H, 6.60; N, 2.78; S, 19.10

Found(%): C, 61.99; H, 6.61; N, 2.87; S, 19.18

45 Compound II-30

[0334] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s), 1.51-2.42(14H, m), 2.47 (3H, d, J=0.9Hz), 4.21(1H, m), 5.35-5.49(2H, m), 6.18(1H, d, J=8.7Hz), 7.04(1H, m), 7.36 and 7.60(each 1H, each d, each J=3.9Hz), 7.91(1H, d, J=1.5Hz).

⁵⁰ IR(CHCl₃): 3510, 3447, 3115, 2670, 1708, 1656, 1529, 1504, 1443, 1329, 1156, 1143 cm⁻¹.

 $[\alpha]_D^{24}$ +53.8±0.9° (c=1.008, MeOH)

Elemental Analysis (C₂₆H₃₃NO₅S₃)

Calcd.(%): C, 58.29; H, 6.21; N, 2.61; S, 17.96

Found(%): C, 58.07; H, 6.05; N, 2.69; S, 17.94

Compound II-31

[0335] mp.98-100°C

300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 4.13(2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 5.97(1H, d, J=8.4Hz), 6.77(1H, m), 7.21-7.35(6H, m).

IR(KBr): 3407, 2674, 1703, 1630, 1511 cm⁻¹.

 $[\alpha]_D^{24}+46.8\pm0.9^{\circ} (c=1.006, MeOH)$

Elemental Analysis (C₂₈H₃₅NO₃S) Calcd.(%): C, 72.22; H, 7.58; N, 3.01; S, 6.89

Found(%): C, 72.04; H, 7.36; N, 3.27; S, 6.91

Compound II-32

10

25

5

[0336] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.50-2.45(14H, m), 4.22 (1H, m), 5.35-5.49(2H, m), 6.04(1H, d, J=8.7Hz), 6.52 and 6.69(each 1H, each d, each J=12.0Hz), 6.99(1H, dd, J=3.6 and 5.1Hz), 7.07(1H, d, J=3.9Hz), 7.13(1H, d, J=3.9Hz), 7.27(1H, dd, J=0.9 and 5.1Hz), 7.36(1H, d, J=3.9Hz). IR(CHCl₃): 3510, 3449, 3430, 2664, 1708, 1643, 1536, 1501 cm⁻¹.

 $[\alpha]_D^{24} + 40.3 \pm 0.8^{\circ} \text{ (c=1.011, MeOH)}$

Elemental Analysis (C₂₇H₃₃NO₃S₂·0.3H₂O)

Calcd.(%): C, 66.31; H, 6.92; N, 2.86; S, 13.11

Found(%): C, 66.29; H, 6.81; N, 3.07; S, 13.13

20 Compound II-33

[0337] mp.117-118°C

300MHz 1 H-NMR(CDCl₃) δ : 0.97(1H, d, J=10.2Hz), 1.13 and 1.24(each 3H, each s), 1.50-2.47(14H, m), 4.24(1H, m), 5.36-5.52(2H, m), 6.06(1H, d, J=8.7Hz), 6.97 and 7.15(each 1H, each d, each J=15.9Hz), 6.98(1H, d, J=3.9Hz), 7.01 (1H, dd, J=3.3 and 4.8Hz), 7.09(1H, d, J=3.3Hz), 7.23(1H, d, J=4.8Hz), 7.36(1H, d, J=3.9Hz).

IR(CHCl₃): 3517, 3450, 2670, 1738, 1708, 1641, 1537, 1518, 1500 cm⁻¹.

 $[\alpha]_D^{24}+55.7\pm1.0^{\circ} \text{ (c=1.001, MeOH)}$

Elemental Analysis (C₂₇H₃₃NO₃S₂)

Calcd.(%): C, 67.05; H, 6.88; N, 2.90; S, 13.26

30 Found(%): C, 66.91; H, 6.83; N, 2.97; S, 13.13

Compound II-34

[0338] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.08 and 1.22(each 3H, each s), 1.50-2.41(14H, m), 2.39 (3H, d, J=0.6Hz), 4.21(1H, m), 5.35-5.48(2H, m), 5.99(1H, m), 6.15(1H, d, J=8.7Hz), 6.20(1H, t, J=3.3Hz), 7.18(1H, dd, J=1.8 and 3.3Hz), 7.31 and 7.54(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3511, 3446, 3150, 3101, 1708, 1658, 1529, 1504, 1375, 1183, 1160 cm⁻¹.

 $[\alpha]_D^{23}+50.3\pm0.9^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₂₆H₃₄N₂O₅S₂·0.2H₂O)

40 Calcd.(%): C, 59.79; H, 6.64; N, 5.36; S, 12.28

Found(%): C, 59.72; H, 6.61; N, 5.51; S, 12.37

Compound II-35

[0339] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.51-2.44(14H, m), 4.20 (1H, m), 5.34.5.50(2H, m), 6.22 and 6.23(total 1H, each d, J=8.1 and 8.7Hz), 7.12(1H, dd, J=3.9 and 5.1Hz), 7.44(2H, m), 7.60(1H, m), 7.69(1H, m).

IR(CHCl₃): 3509, 3447, 3092, 1708, 1653, 1530, 1503 cm⁻¹.

 $[\alpha]_D^{23}$ +49.3±0.9° (c=1.002, MeOH)

Elemental Analysis ($C_{25}H_{31}NO_4S_3\cdot0.4H_2O$)

Calcd.(%): C, 58.54; H, 6.25; N, 2.73; S, 18.75

Found(%): C, 58.62; H, 6.16; N, 2.88; S, 18.72

Compound II-36

55

[0340] 300MHz ¹H-NMR(CDCl₃) 6: 0.94(1H, d, J=10.2Hz), 1.09 and 1.10(total 3H, each s), 1.22 and 1.23(total 3H, each s), 1.51-2.44(14H, m), 2.52 and 2.53(total 3H, each d, J=0.6Hz), 4.20(1H, m), 5.35-5.50(2H, m), 6.23 and 6.24 (total 1H, each d, J=8.7 and 8.4Hz), 6.77(1H, m), 7.39-7.46(3H, m).

IR(CHCl₃): 3510, 3447, 3429, 3093, 2665, 1708, 1652, 1530, 1502, 1437 cm⁻¹. [α]_D²³+47.4±0.9° (c=1.008, MeOH) Elemental Analysis (C₂₆H₃₃NO₄S₃·0.3H₂O) Calcd.(%): C, 59.47; H, 6.45; N, 2.67; S, 18.32 Found(%): C, 59.59; H, 6.16; N, 2.76; S, 18.11

Compound II-37

5

10

15

20

[0341] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 3.84 (3H, s), 4.12(2H, s), 4.19(1H, m), 5.33-5.48(2H, m), 5.98(1H, d, J=9.0Hz), 6.77(1H, dt, J=0.9 and 3.9Hz), 6.88(1H, d, J=8.1Hz), 9.90(1H, m), 7.15(1H, m), 7.23(1H, m), 7.28(1H, d, J=3.9Hz).

IR(CHCl₃): 3509, 3450, 3431, 2664, 1739, 1708, 1639, 1544, 1506, 1464 cm⁻¹. $[\alpha]_D^{24}$ +40.4°±0.8° (c=1.003, MeOH) Elemental Analysis ($C_{29}H_{37}NO_4S\cdot0.1H_2O$)

Calcd.(%): C, 70.02; H, 7.53; N, 2.81; S, 6.45

Found(%): C, 69.92; H, 7.53; N, 2.96; S, 6.46

Compound II-38

[0342] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.47(14H, m), 4.13 (2H, s), 4.20(1H, m), 5.33-5.50(2H, m), 6.01(1H, d, J=9.0Hz), 6.80(1H, m), 6.82(1H, m), 6.86(1H, m), 7.15(1H, m), 7.31(1H, d, J=3.9Hz).

IR(CHCl₃): 3597, 3510, 3448, 3427, 3190, 1709, 1633, 1545, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{24}+41.8^{\circ}\pm0.8^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₂₆H₃₅NO₄S·0.3H₂O)

Calcd.(%): C, 69.11; H, 7.37; N, 2.88; S, 6.59

25 Found(%): C, 68.94; H, 7.42; N, 2.96; S, 6.73

Compound II-39

[0343] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.44(14H, m), 2.27 (3H, s), 4.05(2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 6.01(1H, d, J=8.7Hz), 6.71(1H, d, J=3.9Hz), 7.09(1H, dd, J=1.2 and 7.8Hz), 7.17-7.32(3H, m), 7.28(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3450, 3431, 2669, 1747, 1709, 1641, 1543, 1506, 1456, 1369 cm⁻¹.

 $[\alpha]_D^{24}+40.2^{\circ}\pm0.8^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₃₀H₃₇NO₅S·0.2H₂O)

35 Calcd.(%): C, 68.34; H, 7.15; N, 2.66; S, 6.08

Found(%): C, 68.33; H, 6.94; N, 2.83; S, 6.31

Compound II-40

[0344] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 4.20 (1H, m), 5.39-5.47(2H, m), 6.19(1H, d, J=8.4Hz), 7.35(1H, d, J=3.9Hz), 7.51-7.64(4H, m), 7.98(2H, m). IR(CHCl₃): 3516, 3446, 2667, 1709, 1657, 1529, 1504, 1327, 1157 cm⁻¹.

 $[\alpha]_D^{20}$ +55.6°±1.0° (c=1.004, MeOH)

Elemental Analysis (C₂₇H₃₃NO₅S·0.2H₂O)

45 Calcd.(%): C, 62.45; H, 6.48; N, 2.70; S, 12.35

Found(%): C, 62.46; H, 6.40; N, 2.75; S, 12.19

Compound II-41

[0345] 300MHz ¹H-NMR(CDCl₃) b: 0.95(1H, d, J=10,5Hz), 1.09 and 1.22(each 3H, each s), 1.50-2.44(14H, m), 2.31 (3H, s), 4.22(1H, m), 5.35-5.49(2H, m), 6.01(1H, d, J=8.7Hz), 7.03-7.21(4H, m), 7.38(1H, d, J=3.9Hz). IR(CHCl₃): 3516, 3448, 3429, 1739, 1709, 1647, 1529, 1500, 1473, 1421 cm⁻¹.

 $[\alpha]_D^{20}$ +46.2°±1.0° (c=1.003, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S₂·0.2H₂O)

55 Calcd.(%): C, 67.08; H, 7.12; N, 2.79; S, 12.79

Found(%): C, 67.12; H, 7.04; N, 2.94; S, 12.88

Compound II-42

[0346] mp.111.2-115°C

300MHz ¹H-NMR(CDCl₃) 6: 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.39(14H, m), 2.42(3H, s), 4.20(1H, m), 5.34-5.47(2H, m), 6.17(1H, d, J=8.7Hz), 7.34(1H, d, J=3.9Hz), 7.41(2H, m), 7.59(1H, d, J=3.9Hz), 7.78 (2H, m).

IR(CHCl₃): 3516, 3446, 1739, 1707, 1655, 1529, 1504, 1331, 1151 cm⁻¹.

 $[\alpha]_D^{20}+53.0^{\circ}\pm0.9^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₈H₃₆NO₅S₂·0.2H₂O)

10 Calcd.(%): C, 63.06; H, 6.69; N, 2.63; S, 12.02

Found(%): C, 63.07; H, 6.62; N, 2.73; S, 12.04

Compound II-43

[0347] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.50-2.44(14H, m), 3.77 (3H, s), 4.22(1H, m), 5.35-5.49(2H, m), 6.04(1H, d, J=8.7Hz), 6.74-6.89(3H, m), 7.17-7.23(2H, m), 7.40(1H, d, J=3.9Hz). IR(CHCl₃): 3514, 3448, 3431, 1739, 1707, 1649, 1529, 1500, 1477 cm⁻¹. [α]_D²⁰+45.8°±0.9° (c=1.011, MeOH) Elemental Analysis ($C_{28}H_{35}NO_{4}S_{2}\cdot0.3H_{2}O$)

Calcd.(%): C, 64.78; H, 6.91; N, 2.70; S, 12.35

20 Found(%): C, 64.62; H, 6.83; N, 2.85; S, 12.65

Compound II-44

[0348] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 3.86 (3H, s), 4.20(1H, m), 5.34-5.47(2H, m), 6.17(1H, d, J=8.7Hz), 7.12(1H, m), 7.35(1H, d, J=3.9Hz), 7.40-7.48(2H, m), 7.56(1H, m), 7.60(1H, d, J=3.9Hz).

IR(CHCl₃): 3514, 3446, 2667, 1707, 1657, 1599, 1529, 1504, 1481, 1329, 1252, 1151 cm⁻¹.

 $[\alpha]_D^{20}$ +52.6°±0.9° (c=1.011, MeOH)

Elemental Analysis (C₂₈H₃₅NO₆S₂·0.2H₂O)

30 Calcd.(%): C, 61.22; H, 6.50; N, 2.55; S, 11.67

Found(%): C, 61.10; H, 6.36; N, 2.65; S, 11.73

Compound II-45

[0349] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.5Hz), 1.07 and 1.20(each 3H, each s), 1.52-2.43(14H, m), 4.18 (1H, m), 5.33-5.50(2H, m), 6.42(1H, d, J=8.4Hz), 7.07(1H, m), 7.33-7.39(2H, m), 7.46-7.51(2H, m), 7.56(1H, d, J=3.9Hz). IR(CHCl₃): 3587, 3442, 3280, 1707, 1643, 1531, 1329, 1308, 1149 cm⁻¹. [α]_D²⁰+53.2°±0.9° (c=1.010, MeOH)

Elemental Analysis (C₂₇H₃₃NO₆S₂·0.4H₂O)

40 Calcd.(%): C, 60.18; H, 6.32; N, 2.60; S, 11.90

Found(%): C, 60.19; H, 6.06; N, 2.63; S, 11.99

Compound II-46

[0350] 300MHz ¹H-NMR(CDCl₃) δ : 0.91(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.45(14H, m), 4.20 (1H, m), 5.33-5.50(2H, m), 6.17(1H, d, J=8.7Hz), 6.72(2H, m), 6.79(1H, m), 7.11(2H, m), 7.38(1H, d, J=3.9Hz). IR(CHCl₃): 3342, 2669, 1707, 1622, 1583, 1535 cm⁻¹.

 $[\alpha]_D^{23}+45.6^{\circ}\pm0.9^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₂₇H₃₃NO₄S₂·0.2H₂O)

50 Calcd.(%): C, 64.44; H, 6.69; N, 2.78; S, 12.74

Found(%): C, 64.33; H, 6.59; N, 2.83; S, 13.07

Compound II-47

[0351] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 3.79 (3H, s), 4.10(2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 5.98(1H, d, J=8.7Hz), 6.76-6.85(4H, m), 7.24(1H, m), 7.32(1H, d, J=3.9Hz). IR(CHCl₃): 3516, 3450, 3431, 2669, 1738, 1709, 1641, 1600, 1437, 1261 cm⁻¹. [α]_D^{23.5}+42.8°±0.8° (c=1.005, MeOH)

Elemental Analysis (C₂₉H₃₇NO₄S) Calcd.(%): C, 70.27; H, 7.52; N, 2.83; S, 6.47 Found(%): C, 70.05; H, 7.55; N, 2.84; S, 6.45

5 Compound II-48

[0352] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.51-2.43(14H, m), 3.38 (3H, s), 4.18(1H, m), 5.33-5.50(2H, m), 5.83(1H, d, J=8.7Hz), 6.16(1H, d, J=3.9Hz), 7.14(1H, m), 7.21-7.27(4H, m), 7.33-7.39(2H, m).

¹⁰ IR(CHCl₃): 3514, 3450, 2661, 1739, 1709, 1628, 1597, 1495, 1479, 1415, 1132 cm⁻¹.

 $[\alpha]_D^{23.5}+50.8^{\circ}\pm0.9^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₂₈H₃₆N₂O₃S·0.2H₂O)

Calcd.(%): C, 69.45; H, 7.58; N, 5.78; S, 6.62

Found(%): C, 69.45; H, 7.39; N, 5.99; S, 6.65

15

20

Compound II-49

[0353] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=9.9Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 2.28 (3H, s), 4.12(2H, s), 4.20(1H, m), 5.33-5.48(2H, m), 5.98(1H, d, J=9.0Hz), 6.71(1H, d, J=3.6Hz), 7.17(4H, s), 7.30(1H, d, J=3.6Hz).

IR(CHCl₃): 3518, 3450, 3430, 1739, 1709, 1641, 1543, 1506, 1471, 1458 cm⁻¹.

 $[\alpha]_D^{22.5}+42.9^{\circ}\pm0.8^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₉H₃₇NO₃S)

Calcd.(%): C, 72.61; H, 7.77; N, 2.92; S, 6.68

²⁵ Found(%): C, 72.43; H, 7.78; N, 3.09; S, 6.62

Compound II-50

[0354] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.46(14H, m), 4.19 (1H, m), 5.33-5.50(2H, m), 6.03(1H, d, J=8.7Hz), 6.52(1H, dd, J=1.5 and 3.3Hz), 7.11(1H, dd, J=3.9 and 4.8Hz), 7.17 (1H, dd, J=2.1 and 3.3Hz), 7.70-7.72(2H, m), 7.74(1H, dd, J=1.2 and 3.9Hz). IR(CHCl₃): 3510, 3448, 3143, 2666, 1733, 1708, 1650, 1572, 1507, 1387, 1179 cm⁻¹.

 $[\alpha]_D^{24}$ +39.1°±0.8° (c=1.003, MeOH)

Elemental Analysis (C₂₅H₃₂N₂O₅S₂)

35 Calcd.(%): C, 59.50; H, 6.39; N, 5.55; S, 12.71

Found(%): C, 59.49; H, 6.46; N, 5.47; S, 12.70

Compound II-51

[0355] 300MHz ¹H-NMR(CDCl₃) δ: 0.94(1H, d, J=9.9Hz), 1.09 and 1.22(each 3H, each s),1.50-2.42(14H, m), 2.43 (3H, s), 4.20(1H, m), 4.24(2H, s), 5.34-5.49(2H, m), 5.99(1H, d, J=8.7Hz), 6.58(1H, m), 6.67(1H, d, J=3.3Hz), 6.83(1H, d, J=3.9Hz), 7.32(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3450, 3431, 2667, 1709, 1643, 1545, 1508, 1471, 1458 cm⁻¹.

 $[\alpha]_D^{22}+42.8\pm0.8^{\circ}$ (c=1.006, MeOH)

45 Elemental Analysis ($C_{27}H_{35}NO_3S_2$)

Calcd.(%): C, 66.77; H, 7.26; N, 2.88; S, 13.20

Found(%): C, 66.60; H, 7.23; N, 2.93; S, 13.19

Compound II-52

50

[0356] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s), 1.50-2.44(14H, m), 2.31 (3H, s), 4.21(1H, m), 4.25(2H, s), 5.34-5.49(2H, m), 6.01(1H, d, J=8.7Hz), 6.83(1H, d, J=3.9Hz), 7.03(1H, m), 7.11-7.20 (3H, m), 7.27(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3450, 3431, 2665, 1739, 1709, 1643, 1543, 1508, 1473 cm⁻¹.

 $[\alpha]_D^{22}+42.6\pm1.0^{\circ} \text{ (c=0.861, MeOH)}$

Elemental Analysis (C₂₉H₃₇NO₃S₂H₂O)

Calcd.(%): C, 67.59; H, 7.31; N, 2.72; S, 12.44

Found(%): C, 67.49; H, 7.27; N, 2.82; S, 12.35

Compound II-53

[0357] 300MHz ¹H-NMR(CDCl₃) δ: 0.93(1H, d, J=9.9Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 2.60 (3H, s), 4,20(1H, m), 5.34-5.48(2H, m), 6.18(1H, d, J=8.7Hz), 7.28(1H, d-like), 7.36(1H, d, J=3.9Hz), 7.40(1H, t-like), 7.51(1H, dt, J=1.2 and 7.2Hz), 7.61(1H, d, J=3.9Hz), 8.15(1H, dd, J=1.2 and 8.1Hz). IR(CHCl₃): 3512, 3446, 1739, 1709, 1655, 1529, 1504, 1325, 1157 cm⁻¹.

 $[\alpha]_D^{24}$ +51.1±0.9° (c=1.010, MeOH)

Elemental Analysis (C₂₈H₃₅NO₅S₂)

Calcd.(%): C, 63.49; H, 6.66; N, 2.64; S, 12.11

10 Found(%): C, 63.23; H, 6.53; N, 2.70; S, 12.17

Compound II-54

[0358] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.07 and 1.21(each 3H, each s), 1.50.2.40(14H, m), 2.42 (3H, s), 4.20(1H, m), 5.34-5.47(2H, m), 6.17(1H, d, J=8.7Hz), 7.32(1H, d-like), 7.34 and 7.57(each 1H, each d, each J=4.2Hz), 7.86(2H, d-like).

IR(CHCl₃): 3512, 3446, 1741, 1707, 1655, 1529, 1504, 1331, 1153 cm⁻¹.

 $[\alpha]_D^{24}$ +54.9±0.9° (c=1.008, MeOH)

Elemental Analysis (C₂₈H₃₅NO₅S₂)

20 Calcd.(%): C, 63.49; H, 6.66; N, 2.64; S, 12.11

Found(%): C, 63.16; H, 6.54; N, 2.70; S, 12.16

Compound II-55

[0359] $300 \text{MHz}^2 \text{H-NMR}(\text{CDCl}_3) \, \delta$: 0.95(1H, d, J=10.5Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.44(14H, m), 4.15 (2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 6.01(1H, d, J=9.3Hz), 6.13(1H, dd, J=0.6 and 3.0Hz), 6.32(1H, dd, J=1.8 and 3.0Hz), 6.84 and 7.22(each 1H, each d, each J=3.6Hz), 7.47(1H, dd, J=0.6 and 1.8Hz). IR(CHCl₃): 3518, 3450, 3431, 2669, 1739, 1709, 1643, 1545, 1506 cm⁻¹.

 $[\alpha]_D^{23}+45.8\pm0.9^{\circ}$ (c=1.003, MeOH)

30 Elemental Analysis (C₂₆H₃₃NO₄S·0.6H₂O)

Calcd.(%): C, 66.95; H, 7.39; N, 3.00; S, 6.87

Found(%): C, 67.04; H, 7.17; N, 3.11; S, 7.03

Compound II-56

35

55

[0360] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.5Hz), 1.10 and 1.22(each 3H, each s), 1.52-2.45(14H, m), 3.96 (2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 6.00(1H, d, J=8.7Hz), 6.30(1H, dd, J=0.9 and 1.8Hz), 6.81(1H, d, J=3.6Hz), 7.31-7.33(2H, m), 7.38(1H, t, J=1.8Hz).

IR(CHCl₃): 3516, 3450, 3431, 2663, 1739, 1709, 1643, 1545, 1506 cm⁻¹.

40 $[\alpha]_D^{21}+46.5\pm0.9^{\circ}$ (c=1.002, MeOH)

Elemental Analysis (C₂₆H₃₃NO₄S·0.1H₂O)

Calcd.(%): C, 68.27; H, 7.32; N, 3.06; S, 7.01

Found(%): C, 68.08; H, 7.14; N, 3.21; S, 7.19

45 Compound II-57

[0361] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 4.20 (1H, m), 4.41(2H, s), 5.33-5.49(2H, m), 6.01(1H, d, J=8.7Hz), 6.91(1H, d, J=3.6Hz), 7.11(1H, s), 7.27-7.35(3H, m), 7.68-7.77(2H, m).

⁵⁰ IR(CHCl₃): 3512, 3446, 3431, 1709, 1645, 1543, 1508 cm⁻¹.

 $[\alpha]_D^{24}$ +44.9±0.9° (c=1.002, MeOH)

Elemental Analysis (C₃₀H₃₅NO₃S₂·0.3H₂O)

Calcd.(%): C, 68.35; H, 6.81; N, 2.66; S, 12.17

Found(%): C, 68.17; H, 6.52; N, 2.68; S, 12.04

Compound II-58

[0362] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.41(14H, m), 4.19

(1H, m), 4.29(2H, s), 5.33-5.48(2H, m), 6.02(1H, d, J=8.4Hz), 6.51(1H, s), 6.91(1H, d, J=3.6Hz), 7.16-7.25(2H, m), 7.34(1H, d, J=3.6Hz), 7.42(1H, d, J=8.4Hz), 7.50(1H, m).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1643, 1545, 1508, 1454 cm⁻¹.

 $[\alpha]_D^{23}+42.3\pm0.8^{\circ}$ (c=1.001, MeOH)

5 Elemental Analysis (C₃₀H₃₅NO₄S·0.3H₂O)

Calcd.(%): C, 70.50; H, 7.02; N, 2.74; S, 6.27

Found(%): C, 70.36; H, 6.94; N, 2.70; S, 6.17

Compound II-59

10

[0363] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.20(each 3H, each s), 1.49-2.42(14H, m), 4.20 (1H, m), 4.19(2H, s), 5.33-5.48(2H, m), 5.99(1H, d, J=9.0Hz), 6.80(1H, d, J=3.6Hz), 7.22(1H, d, J=7.5Hz), 7.31-7.50 (7H, m), 7.57(2H, m).

IR(CHCl₃): 3518, 3450, 3431, 2671, 1739, 1709, 1643, 1543, 1506, 1471, 1456 cm⁻¹.

 $[\alpha]_D^{24} + 38.7 \pm 0.8^{\circ} \text{ (c=1.014, MeOH)}$

Elemental Analysis (C₃₄H₃₉NO₃S·0.2H₂O)

Calcd.(%): C, 74.88; H, 7.28; N, 2.57; S, 5.88

Found(%): C, 74.92; H, 7.30; N, 2.75; S, 5.99

20 Compound II-60

[0364] 300MHz ¹H-NMR(CDCl₃) δ : 0.97(1H, d, J=10.2Hz), 1.06 and 1.22(each 3H, each s),1.52-2.48(14H, m), 4.11 (2H, s), 4.31(1H, m), 5.34-5.51(2H, m), 6.15(1H, d, J=9.0Hz), 7.19-7.30(6H, m), 7.76(1H, d, J=8.1Hz), 7.83(1H, s), 8.15(1H, s) IR(CHCl₃): 3516, 3442, 2667, 1739, 1709, 1651, 1514, 1495, 1471, 1454, 1435 cm⁻¹.

 $[\alpha]_D^{24} + 42.8 \pm 0.8^{\circ} \text{ (c=1.011, MeOH)}$

Elemental Analysis (C₃₂H₃₇NO₃S)

Calcd.(%): C, 74.53; H, 7.23; N, 2.72; S, 6.22

Found(%): C, 74.25; H, 7.20; N, 2.97; S, 6.05

30 Compound II-61

[0365] 300MHz ¹H-NMR(CDCl₃) δ : 0.98(1H, d, J=10.2Hz), 1.10 and 1.23(each 3H, each s), 1.52-2.49(14H, m), 4.10 (2H, s), 4.32(1H, m), 5.35-5.53(2H, m), 6.17(1H, d, J=8.7Hz), 7.19-7.32(6H, m), 7.64(1H, d, J=0.9Hz), 7.76(1H, s), 8.21(1H, d, J=8.4Hz).

³⁵ IR(CHCl₃): 3518, 3442, 2671, 1739, 1707, 1651, 1514, 1493, 1469, 1454, 1404 cm⁻¹.

 $[\alpha]_D^{24}+47.1\pm0.9^{\circ}$ (c=1.001, MeOH)

Elemental Analysis (C₃₂H₃₇NO₃S·0.2H₂O)

Calcd.(%): C, 74.01; H, 7.26; N, 2.70; S, 6.17

Found(%): C, 73.89; H, 7.44; N, 2.93; S, 6.04

Compound II-62

40

[0366] mp.134-135°C

300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 0.98 and 1.15(each 3H, each s),1.48-2.43(14H, m), 4.20(1H, m), 4.40 and 4.54(each 1H, each d, J=16.5Hz), 5.33-5.50(2H, m), 6.04(1H, d, J=8.4Hz), 6.99-7.30(6H, m), 7.55(1H, s), 7.73(1H, d, J=8.4Hz).

IR(CHCl₃): 3518, 3437, 2669, 1741, 1709, 1653, 1510, 1471, 1454 cm⁻¹.

 $[\alpha]_D^{25}$ +54.2±0.9° (c=1.003, MeOH)

Elemental Analysis (C₃₂H₃₇NO₃S·0.1H₂O)

50 Calcd.(%): C, 74.27; H, 7.25; N, 2.71; S, 6.20

Found(%): C, 74.11; H, 7.16; N, 3.15; S, 6.25

Compound II-63

[0367] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s),1.49-2.43(14H, m), 3.94 (2H, s), 4.22(1H, m), 5.33-5.49(2H, m), 6.03(1H, d, J=8.7Hz), 7.04(1H, s), 7.17-7.33(6H, m). IR(CHCl₃): 3516, 3448, 3433, 2669, 1739, 1709, 1645, 1549, 1508, 1471, 1454 cm⁻¹. [α]_D²⁵+40.5±0.8° (c=1.003, MeOH)

Elemental Analysis (C₂₈H₃₅NO₃S·0.1H₂O) Calcd.(%): C, 71.95; H, 7.59; N, 3.00; S, 6.86 Found(%): C, 71.82; H, 7.49; N, 3.37; S, 6.83

5 Compound II-64

[0368] 300MHz ¹H-NMR(CDCl₃) δ : 0.98(1H, d, J=10.5Hz), 1.10 and 1.23(each 3H, each s),1.53-2.50(14H, m), 4.24 (2H, s), 4.33(1H, m), 5.35-5.54(2H, m), 6.18(1H, d, J=8.4Hz), 7.19-7.30(6H, m), 7.42(1H, t, J=7.8Hz), 7.78(1H, s), 8.18 (1H, d, J=7.8Hz).

¹⁰ IR(CHCl₃): 3514, 3442, 2671, 1709, 1651, 1516, 1495, 1471, 1454, cm⁻¹.

 $[\alpha]_D^{25}+53.6+0.9^{\circ}$ (c=1.003, MeOH),

Elemental Analysis (C₃₂H₃₇NO₃S·0.1H₂O)

Calcd.(%): C, 74.27; H, 7.25; N, 2.71; S, 6.20

Found(%): C, 74.18; H, 7.24; N, 2.90; S, 6.14

15

Compound II-65

[**0369**] mp.117-118°C

300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.09 and 1.21(each 3H, each s), 1.55-2.42(14H, m), 3.87(3H, s), 4.06(2H, s), 4.18(1H, m), 5.35-5.49(2H, m), 5,56(1H, brs), 5.89(1H, d, J=8.7Hz), 6.72-6.77(3H, m), 6.87(1H, d, J=8.1Hz), 7.31(1H, d, J=3.6Hz).

IR(Nujol): 3373, 3184, 2667, 1705, 1622, 1599, 1547, 1520, 1286 cm⁻¹.

 $[\alpha]_D^{23}+42.0\pm0.8^{\circ}$ (c=1.008, MeOH)

Elemental Analysis (C₂₉H₃₇NO₅S)

²⁵ Calcd.(%): C, 68.07; H, 7.29; N, 2.74; S, 6.27

Found(%): C, 67.84; H, 7.43; N, 2.71; S, 6.18

Compound II-66

[0370] 300MHz 1 H-NMR(CDCl₃) δ : 0.95(1H, d, J=9.9Hz), 1.10 and 1.23(each 3H, each s), 1.53-2.45(14H, m), 3.87 (3H, s), 2.96-3.01(2H, m), 3.10-3.16(2H, m), 4.22(1H, m), 5.34-5.50(2H, m), 6.01(1H, d, J=8.4Hz), 6.71(1H, d, J=3.9Hz), 7.16-7.32(6H, m).

 $IR(CHCl_3): 3518, 3450, 3431, 2671, 1739, 1709, 1641, 1545, 1508 \ cm^{-1}. \ [\alpha]_D^{22} + 44.3 \pm 0.8^{\circ} \ (c=1.006, MeOH) \\ Elemental Analysis (C_{29}H_{37}NO_3S\cdot 0.1H_2O)$

35 Calcd.(%): C, 72.34; H, 7.79; N, 2.91; S, 6.66

Found(%): C, 72.24; H, 7.68; N, 3.11; S, 6.73

Compound II-67

[0371] 300MHz 1 H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.10 and 1.23(each 3H, each s), 1.52-2.45(14H, m), 2.43 (3H, d, J=0.9Hz), 3.07-3.18(4H, m), 4.21(1H, m), 5.35-5.50(2H, m), 6.02(1H, d, J=8.4Hz), 6.53-6.57(2H, m), 6.76 and 7.30(each 1H, each d, each J=3.9Hz).

 $IR(CHCl_3): 3516, 3450, 3431, 2667, 1709, 1641, 1543, 1508 \ cm^{-1}. \ [\alpha]_D^{22} + 43.1 \pm 0.8^{\circ} \ (c=1.005, MeOH)$

Elemental Analysis (C₂₆H₃₇NO₃S₂·0.3H₂O)

45 Calcd.(%): C, 66.58; H, 7.50; N, 2.77; S, 12.70

Found(%): C, 66.47; H, 7.46; N, 2.99; S, 12.62

Compound II-68

[0372] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.10 and 1.23(each 3H, each s), 1.52-2.45(14H, m), 3.19 (4H, s), 4.21(1H, m), 5.34-5.50(2H, m), 6.01(1H, d, J=8.4Hz), 6.75(1H, d, J=3.9Hz), 6.79(1H, m), 6.91(1H, dd, J=3.6 and 5.1Hz), 7.13(1H, dd, J=0.9 and 5.1Hz), 7.29(1H, d, J=3.9Hz).

IR(CHCl₃): 3514, 3450, 3433, 2667,n 1739, 1709, 1641, 1545, 1508 cm⁻¹.

 $[\alpha]_D^{24}+33.5\pm0.8^{\circ}$ (c=1.009, MeOH)

55 Elemental Analysis (C₂₇H₃₅NO₃S₂)

Calcd.(%): C, 66.77; H, 7.26; N, 2.88; S, 13.20

Found(%): C, 66.48; H, 7.31; N, 2.97; S, 13.22

Compound II-69

5

[0373] 300MHz ¹H-NMR(CDCl₃) δ : 0.97(1H, d, J=9.9Hz), 1.12 and 1.23(each 3H, each s), 1.53-2.47(14H, m), 3.00-3.06(2H, m), 3.12-3.17(2H, m), 4.27(1H, m), 5.34-5.51(2H, m), 6.24(1H, d, J=9.0Hz), 6.75(1H, m), 6.90(1H, dd, J=3.6 and 5.4Hz), 7.12(1H, dd, J=1.2 and 5.4Hz), 7.25 and 7.64(each 2H, each d-like). IR(CHCl₃): 3516, 3452, 2665, 1738, 1709, 1649, 1523, 1495 cm⁻¹.

 $[\alpha]_D^{24}+54.5\pm0.9^{\circ}$ (c=1.016, MeOH)

Elemental Analysis (C₂₉H₃₇NO₃S)

Calcd.(%): C, 72.61; H, 7.77; N, 2.92; S, 6.68

10 Found(%): C, 72.51; H, 7.69; N, 2.98; S, 6.62

Compound II-70

[0374] 300MHz 1 H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.10 and 1.23(each 3H, each s), 1.51-2.45(14H, m), 2.92-2.97(2H, m), 3.08-3.13(2H, m), 4.22(1H, m), 5.34-5.50(2H, m), 6.00(1H, d, J=8.7Hz), 6.69(1H, d, J=3.6Hz), 6.92-7.00(2H, m), 7.09-7.15(2H, m), 7.28(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1641, 1543, 1510, 1471 cm⁻¹. $[\alpha]_D^{23}$ +42.6±0.8° (c=1.014, MeOH) Elemental Analysis (C₂₉H₃₆FNO₃S)

Calcd.(%): C, 69.99; H, 7.29; N, 2.81; S, 6.44; F, 3.82

20 Found(%): C, 69.87; H, 7.29; N, 2.88; S, 6.50; F, 3.85

Compound II-71

[**0375**] mp.93-95°C

300MHz 1 H-NMR(CDCl₃) δ: 0.96(1H, d, J=10.2Hz), 1.13 and 1.23(each 3H, each s), 1.52-2.47(14H, m), 4.08(2H, s), 4.27(1H, m), 5.34-5.51(2H, m), 6.21(1H, d, J=8.7Hz), 7.18-7.32(6H, m), 7.61 and 7.66(each 1H, each s), 7.74(1H, d, J=8.4Hz).

IR(KBr): 3367, 1705, 1618, 1556, 1533, 1508 cm⁻¹.

 $[\alpha]_D^{23}+60.4\pm0.8^{\circ}$ (c=1.012, MeOH)

30 Elemental Analysis (C₃₂H₃₇NO₃S)

Calcd.(%): C, 74.53; H, 7.23; N, 2.72; S, 6.22

Found(%): C, 74.31; H, 7.37; N, 2.99; S, 6.10

Compound II-72

[0376] 300MHz 1 H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.06 and 1.19(each 3H, each s), 1.47-2.42(14H, m), 4.20 (1H, m), 4.28(2H, s), 5.32-5.47(2H, m), 5.98(1H, d, J=8.7Hz), 6.80(1H, d, J=3.3Hz), 7.32-7.36(2H, m), 7.41-7.50(2H, m), 7.68(1H, s), 7.77-7.83(3H, m).

IR(CHCl₃): 3518, 3450, 3431, 1739, 1709, 1641, 1545, 1508, 1471 cm⁻¹. $[\alpha]_D^{23}+42.7\pm0.8^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₃₂H₃₇NO₃S·0.2H₂O)

Calcd.(%): C, 74.01; H, 7.26; N, 2.70; S, 6.17

Found(%): C, 73.94; H, 7.30; N, 2.89; S, 6.15

Compound II-73

45

35

[0377] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.5Hz), 1.11 and 1.22(each 3H, each s), 1.51-2.45(14H, m), 2.94-3.00(2H, m), 3.06-3.12(2H, m), 3.83(3H, s), 4.22(1H, m), 5.34-5.50(2H, m), 6.00(1H, d, J=8.7Hz), 6.73(1H, d, J=3.6Hz), 6.84-6.89(2H, m), 7.09(1H, dd, J=1.5 and 7.8Hz), 7.20(1H, dt, J=1.5 and 7.8Hz), 7.30(1H, d, J=3.6Hz). IR(CHCl₃): 3518, 3450, 3431, 1741, 1709, 1639, 1545, 1506, 1496, 1466 cm⁻¹.

 $[\alpha]_D^{25}+41.3\pm0.8^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₀H₃₉FNO₄S)

Calcd.(%): C, 70.69; H, 7.71; N, 2.75; S, 6.29

Found(%): C, 70.42; H, 7.64; N, 2.78; S, 6.37

55 Compound II-74

[0378] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.10 and 1.22(each 3H, each s), 1.53-2.48(14H, m), 2.96-3.04(2H, m), 3.07-3.16(2H, m), 4.22(1H, m), 5.34-5.52(2H, m), 6.04(1H, d, J=8.7Hz), 6.74(1H, d, J=3.6Hz),

```
EP 1 176 139 A1
       6.77-6.85(2H, m), 7.05-7.11(2H, m), 7.31(1H, d, J=3.6Hz),
       IR(CHCl<sub>3</sub>): 359, 3510, 3429, 3190, 1709, 1636, 1545, 1508, 1456 cm<sup>-1</sup>.
      [\alpha]_D^{25}+42.7\pm0.8^{\circ} (c=1.009, MeOH)
       Elemental Analysis (C<sub>29</sub>H<sub>37</sub>NO<sub>4</sub>S·0.3H<sub>2</sub>O)
      Calcd.(%): C, 69.51; H, 7.56; N, 2.80; S, 6.40
       Found(%): C, 69.25; H, 7.43; N, 2.89; S, 6.43
       Compound II-75
10
      [0379] mp.91-92°C
       300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 0.95(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s),1.51-2.44(14H, m), 4.16(2H, s),
      4.20(1H, m), 5.34-5.49(2H, m), 5.99(1H, d, J=8.7Hz), 6.79(1H, d, J=3.9Hz), 6.96(1H, dd, J=1.2 and 4.8Hz), 7.05(1H,
       m), 7.28(1H, dd, J=3.0 and 4.8Hz), 7.32(1H, d, J=3.9Hz).
      IR(Nujol): 3408, 2677, 1703, 1626, 1541, 1514, 1246 cm<sup>-1</sup>.
      [\alpha]_D^{26}+43.8\pm0.8^{\circ} (c=1.005, MeOH)
       Elemental Analysis (C<sub>26</sub>H<sub>33</sub>NO<sub>3</sub>S<sub>2</sub>)
      Calcd.(%): C, 66.21; H, 7.05; N, 2.97; S, 13.60
       Found(%): C, 66.00; H, 7.81; N, 3.11; S, 13.69.
20
      Compound II-76
       [0380] mp.125-126°C
       300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 0.96(1H, d, J=10.2Hz), 1.13 and 1.23(each 3H, each s), 1.52-2.47(14H, m), 4.10(2H, s),
      4.27(1H, m), 5.34-5.51(2H, m), 6.20(1H, d, J=9.0Hz), 7.19-7.33(6H, m), 7.62 and 7.69(each 1H, each s), 7.73(1H, d,
      J=8.4Hz).
25
       IR(KBr): 3415, 3199, 1736, 1703, 1633, 1523 cm<sup>-1</sup>.
      [\alpha]_D^{25}+53.3\pm0.8^{\circ} (c=1.002, MeOH)
       Elemental Analysis (C<sub>32</sub>H<sub>37</sub>NO<sub>3</sub>S·0.1H<sub>2</sub>O)
      Calcd.(%): C, 74.27; H, 7.25; N, 2.71; S, 6.23
      Found(%): C, 74.19; H, 7.16; N, 2.81; S, 6.23
30
       Compound II-77
      [0381] mp.98-101°C
       300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 0.97(1H, d, J=10.5Hz), 1.14 and 1.24(each 3H, each s), 1.53-2.47(14H, m), 4.08(2H, s),
       4.27(1H, m), 5.35-5.51(2H, m), 6.21(1H, d, J=8.7Hz), 6.90(1H, dd, J=1.2 and 5.1Hz), 6.93(1H, m), 7.24-7.29(2H, m),
       7.63(1H, s), 7.75(1H, d, J=8.1Hz).
       IR(KBr): 3394, 3097, 1707, 1643, 1533, 1500 cm<sup>-1</sup>.
      [\alpha]_D^{25}+58.7\pm1.0^{\circ} (c=1.006, MeOH)
       Elemental Analysis (C<sub>30</sub>H<sub>35</sub>NO<sub>3</sub>S<sub>2</sub>·0.3H<sub>2</sub>O)
40
       Calcd.(%): C, 68.35; H, 6.81; N, 2.66; S, 12.17
       Found(%): C, 68.27; H, 6.76; N, 2.94; S, 12.17
       Compound II-78
45
       [0382] mp.106-109°C
       300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 0.97(1H, d, J=10.2Hz), 1.14 and 1.24(each 3H, each s), 1.53-2.47(14H, m), 4.26(2H, s),
       4.27(1H, m), 5.35-5.51(2H, m), 6.22(1H, d, J=8.7Hz), 6.82(1H, m), 6.93(1H, dd, J=3.6 and 5.1Hz), 7.16(1H, dd, J=1.2
       and 5.1Hz), 7.32(1H, dd, J=8.1 and 1.8Hz), 7.68(2H, m), 7.76(1H, d, J=8.1Hz).
      IR(KBr): 3396, 3070, 1707, 1645, 1535, 1500 cm<sup>-1</sup>.
50
      [\alpha]_D^{25}+59.9\pm1.0^{\circ} (c=1.005, MeOH)
       Elemental Analysis (C<sub>30</sub>H<sub>35</sub>NO<sub>3</sub>S<sub>2</sub>·0.2H<sub>2</sub>O)
```

Compound II-79

55

Calcd.(%): C, 68.59; H, 6.79; N, 2.67; S, 12.21

Found(%): C, 68.57; H, 6.62; N, 2.76; S, 12.17

5

35

300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.49-2.44(14H, m), 4.12

(2H, s), 4.23(1H, m), 5.34-5.49(2H, m), 6.09(1H, d, J=8.7Hz), 6.82 and 6.93(each 1H, each m), 7.13-7.17(2H, m), 7.34 (1H, d, J=1.5Hz).

IR(CHCl₃): 3512, 3448, 3431, 1739, 1709, 1645, 1550, 1508, 1471, 1456 cm⁻¹.

 $[\alpha]_D^{25}+43.3\pm0.8^{\circ}$ (c=1.007, MeOH)

⁵ Elemental Analysis (C₂₆H₃₅NO₃S₂·0.1H₂O)

Calcd.(%): C, 65.95; H, 7.07; N, 2.96; S, 13.54

Found(%): C, 66.12; H, 7.06; N, 3.04; S, 13.66

Compound II-80

10

[0384] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s), 1.49-2.44(14H, m), 3.95 (2H, s), 4.22(1H, m), 5.34-5.49(2H, m), 6.06(1H, d, J=8.7Hz), 6.92 and 6.96(each 1H, each m), 7.07(1H, d, J=1.5Hz), 7.28(1H, m), 7.30(1H, d, J=1.5Hz).

IR(CHCl₃): 3510, 3431, 1739, 1709, 1645, 1550, 1508, 1471 cm⁻¹.

 $[\alpha]_D^{25}+41.1\pm0.8^{\circ} \text{ (c=1.009, MeOH)}$

Elemental Analysis (C₂₆H₃₃NO₃S₂·0.2H₂O)

Calcd.(%): C, 65.70; H, 7.08; N, 2.95; S, 13.49

Found(%): C, 65.57; H, 6.97; N, 3.08; S, 13.63

20 Compound II-81

[0385] 300MHz 1 H-NMR(CDCl₃) δ : 0.98(1H, d, J=10.5Hz), 1.10 and 1.23(each 3H, each s),1.53-2.50(14H, m), 4.23 (2H, s), 4.33(1H, m), 5.35-5.54(2H, m), 6.18(1H, d, J=8.7Hz), 6.92(1H, dd, J=1.2 and 4.8Hz), 7.01(1H, m), 7.22(1H, d, J=7.8Hz), 7.24(1H, dd, J=3.0 and 4.8Hz), 7.42(1H, d, J=7.8 and 8.1Hz), 7.79(1H, s), 8.18(1H, d, J=8.1Hz).

²⁵ IR(CHCl₃): 3516, 3442, 2667, 1709, 1651, 1516, 1495, 1471 cm⁻¹.

 $[\alpha]_D^{26}$ +50.9±0.9° (c=1.009, MeOH),

Elemental Analysis (C₃₀H₃₅NO₃S₂·0.2H₂O)

Calcd.(%): C, 68.59; H, 6.79; N, 2.67; S, 12.21

Found(%): C, 68.51; H, 6.69; N, 2.73; S, 12.39

30

35

Compound II-82

[0386] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.10 and 1.22(each 3H, each s), 1.50-2.44(14H, m), 3.74 (2H, s), 4.23(1H, m), 5.34-5.50(2H, m), 6.07(1H, d, J=8.0Hz), 6.23(1H, s), 7.08(1H, d, J=1.5Hz), 7.36(1H, m).

IR(CHCl₃): 3510, 3448, 3431, 2663, 1709, 1645, 1550, 1508, 1471 cm⁻¹.

 $[\alpha]_D^{25}+44.2\pm0.8^{\circ}$ (c=1.001, MeOH)

Elemental Analysis (C₂₆H₃₃NO₄S·0.2H₂O)

Calcd.(%): C, 68.00; H, 7.33; N, 3.05; S, 6.98

40 Found(%): C, 68.00; H, 7.30; N, 3.15; S, 7.12

Compound II-83

[0387] 300MHz 1 H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.05 and 1.19(each 3H, each s), 1.48-2.40(14H, m), 4.17 (1H, m), 4.58(2H, s), 5.31-5.46(2H, m), 5.96(1H, d, J=8.7Hz), 6.72 and 7.26(each 1H, each d, each J=3.9Hz), 7.37-7.51 (4H, m), 7.79(1H, d, J=8.1Hz), 7.87 and 7.97(each 1H, each m).

IR(CHCl₃): 3516, 3450, 3431, 2667, 1739, 1709, 1641, 1543, 1508, 1471 cm⁻¹.

 $[\alpha]_D^{25.5}+41.9\pm0.8^{\circ}$ (c=1.011, MeOH)

Elemental Analysis (C₃₂H₃₇NO₃S·0.2H₂O)

50 Calcd.(%): C, 74.01; H, 7.26; N, 2.70; S, 6.17

Found(%): C, 74.10; H, 7.13; N, 2.99; S, 6.15

Compound II-84

[0388] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.05 and 1.20(each 3H, each s), 1.48-2.42(14H, m), 4.20 (1H, m), 4.39(2H, m), 5.31-5.46(2H, m), 6.00(1H, d, J=9.0Hz), 6.96(1H, s), 7.30-7.33(2H, m), 7.40-7.50(3H, m), 7.78 (1H, d, J=8.1Hz), 7.87 and 7.95(each 1H, each m).

IR(CHCl₃): 3518, 3448, 3431, 2665, 1738, 1709, 1645, 1549, 1508, 1471 cm⁻¹.

$$\begin{split} &[\alpha]_D^{24}\text{+}37.9\pm0.8^\circ\text{ (c=1.004, MeOH)} \\ &\text{Elemental Analysis (C}_{32}\text{H}_{37}\text{NO}_3\text{S-}0.1\text{H}_2\text{O}) \\ &\text{Calcd.(\%): C, 74.27; H, 7.25; N, 2.71; S, 6.20} \\ &\text{Found(\%): C, 74.13; H, 7.18; N, 2.87; S, 6.26} \end{split}$$

5

10

Compound II-85

[0389] 300MHz 1 H-NMR(CDCl $_{3}$) δ : 0.99(1H, d, J=10.2Hz), 1.11 and 1.24(each 3H, each s), 1.53-2.50(14H, m), 4.03 (2H, s), 4.34(1H, m), 5.36-5.54(2H, m), 6.20(1H, d, J=8.4Hz), 7.24(1H, d, J=8.4Hz), 7.24(1H, d, J=7.2Hz), 7.30(1H, m), 7.35(1H, t, J=1.8Hz), 7.42(1H, dd, J=7.2 and 8.1Hz), 7.81(1H, s), 8.19(1H, d, J=7.2Hz).

IR(CHCl₃): 3518, 3442, 1739, 1709, 1651, 1516, 1496, 1471 cm⁻¹.

 $[\alpha]_D^{25}$ +54.3±1.0° (c=1.002, MeOH)

Elemental Analysis (C₃₀H₃₅NO₄S·0.1H₂O)

Calcd.(%): C, 71.00; H, 6.99; N, 2.76; S, 6.32

15 Found(%): C, 70.95; H, 6.82; N, 2.74; S, 6.35

Compound II-86

[0390] 300MHz 1 H-NMR(CDCl₃) δ : 0.99(1H, d, J=10.5Hz), 1.16 and 1.24(each 3H, each s), 1.53-2.48(14H, m), 3.93 (2H, s), 4.32(1H, m), 5.34-5.52(2H, m), 6.35(1H, d, J=8.7Hz), 7.31-7.42(2H, m), 7.56(1H, d, J=6.9Hz), 7.71(1H, dd, J=1.5 and 8.1Hz), 7.78-7.83(2H, m), 7.92(1H, s).

IR(CHCl₃): 3516, 3452, 3026, 2667, 1738, 1709, 1649, 1641, 1514, 1481, 1469, 1454 cm⁻¹.

 $[\alpha]_D^{24}+67.5\pm1.1^{\circ}$ (c=1.005, MeOH)

Elemental Analysis (C₃₀H₃₅NO₃·0.1H₂O)

25 Calcd.(%): C, 78.43; H, 7.72; N, 3.05

Found(%): C, 78.36; H, 7.99; N, 3.24

Compound II-87

[0391] 300MHz ¹H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.2Hz), 1.14 and 1.25(each 3H, each s),1.53-2.47(14H, m), 4.25 (1H, m), 5.37-5.52(2H, m), 6.23(1H, d, J=8.7Hz), 7.16-7.22(2H, m), 7.36(1H, m), 7.46(1H, s), 7,45-7.49(1H, m). IR(CHCl₃): 3516, 3446, 3429, 1734, 1703, 1652, 1606, 1521, 1496, 1457, 1419 cm⁻¹. [α]_D²⁵+72.8°±1.1° (c=1.005, MeOH),

Elemental Analysis (C₂₈H₃₁NO₄S·0.3H₂O)

35 Calcd.(%): C, 69.63; H, 6.59; N, 2.90; S, 6.63

Found(%): C, 69.51; H, 6.72; N, 3.30; S, 6.56

Compound II-88

[0392] 300MHz 1 H-NMR(CDCl₃) δ : 0.97(1H, d, J=10.2Hz), 1.14 and 1.24(each 3H, each s),1.53-2.47(14H, m), 4.22 ((2H, s), 4.27(1H, m), 5.35-5.51(2H, m), 6.22(1H, d, J=8.7Hz), 6.94(1H, dd, J=1.2 and 4.8Hz), 7.05(1H, m), 7.21-7.26 (2H, m), 7.35(1H, dd, J=7.5 and 8.1Hz), 7.71(1H, d, J=7.5Hz), 7.75(1H, s).

IR(CHCl₃): 3512, 3448, 3427, 2665, 1709, 1649, 1539, 1504, 1469 cm⁻¹. $[\alpha]_D^{25}$ +46.1±0.9° (c=1.011, MeOH), Elemental Analysis (C₃₀H₃₅NO₃S₂)

45 Calcd.(%): C, 69.06; H, 6.76; N, 2.68; S, 12.29

Found(%): C, 68.77; H, 6.84; N, 2.78; S, 12.30

Compound II-89

[0393] 300MHz 1 H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.2Hz), 1.14 and 1.23(each 3H, each s),1.52-2.46(14H, m), 4.21 ((2H, s), 4.28(1H, m), 5.34-5.51(2H, m), 6.23(1H, d, J=9.0Hz), 6.94(1H, dd, J=1.2 and 4.8Hz), 7.05(1H, m), 7.21-7.26 (2H, m), 7.35(1H, dd, J=7.5 and 8.1Hz), 7.71(1H, d, J=7.5Hz), 7.75(1H, s).

IR(CHCl₃): 3510, 3448, 3427, 2665, 1709, 1649, 1539, 1504, 1469, 1454 cm⁻¹.

 $[\alpha]_D^{25}+47.4\pm0.9^{\circ}$ (c=1.005, MeOH),

55 Elemental Analysis (C₃₂H₃₇NO₃S·0.1H₂O)

Calcd.(%): C, 74.27; H, 7.25; N, 2.71; S, 6.20

Found(%): C, 74.15; H, 7.14; N, 2.89; S, 6.26

Compound II-90

[0394] 300MHz 1 H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.2Hz), 1.14 and 1.24(each 3H, each s),1.53-2.46(14H, m), 2.31 (3H, s), 4.17((2H, s), 4.28(1H, m), 5.34-5.51(2H, m), 6.22(1H, d, J=9.0Hz), 7.09 and 7.15(each 2H, each d, J=7.8Hz),

7.19(1H, d, J=7.2Hz), 7.34(1H, dd, J=7.2 and 7.8Hz), 7.70(1H, d, J=7.8Hz), 7.75(1H, s).

IR(CHCl₃): 3510, 3448, 3427, 2669, 1709, 1649, 1537, 1504, 1469 cm⁻¹.

 $[\alpha]_D^{25}+45.6\pm0.9^{\circ}$ (c=1.005, MeOH),

Elemental Analysis (C₃₃H₃₉NO₃S-0.1H₂O)

Calcd.(%): C, 74.57; H, 7.43; N, 2.64; S, 6.03

10 Found(%): C, 74.46; H, 7.48; N, 2.78; S, 6.15

Compound II-91

[0395] 300MHz ¹H-NMR(CDCl₃) δ: 0.97(1H, d, J=10.2Hz), 1.14 and 1.24(each 3H, each s), 1.53-2.47(14H, m), 2.31 (3H, s), 4.28(1H, m), 4.40((2H, s), 5.35-5.51(2H, m), 6.23(1H, d, J=8.7Hz), 6.92-6.94(2H, m), 7.16(1H, dd, J=1.5 and 5.1Hz), 7.28(1H, d, J=7.5Hz), 7.36(1H, t, J=7.5Hz), 7.72(1H, d, J=7.5Hz), 7.75(1H, s).

IR(CHCl₃): 3508, 3448, 3427, 2663, 1709, 1649, 1539, 1504, 1469 cm⁻¹.

 $[\alpha]_D^{25}+46.2\pm0.9^{\circ}$ (c=1.005, MeOH),

Elemental Analysis (C₃₀H₃₅NO₃S₂)

20 Calcd.(%): C, 69.06; H, 6.76; N, 2.68; S, 12.29

Found(%): C, 68.84; H, 6.86; N, 2.79; S, 12.28

Compound II-92

[0396] 300MHz ¹H-NMR(CDCl₃) δ: 0.94(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s), 1.51-2.42(14H, m), 4.09 (2H, s), 4.18(1H, m), 5.33-5.48(2H, m), 5.96(1H, d, J=9.3Hz), 6.54(1H, d, J=3.6Hz), 7.24-7.42(10H, m).

IR(CHCl₃): 3510, 3450, 3431, 1739, 1709, 1641, 1543, 1506, 1479, 1458 cm⁻¹.

 $[\alpha]_D^{24.5}+39.4\pm0.8^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₄H₃₉NO₃S·0.1H₂O)

30 Calcd.(%): C, 75.13; H, 7.27; N, 2.58; S, 5.90

Found(%): C, 75.05; H, 7.32; N, 2.69; S, 6.17

Compound II-93

[0397] 300MHz 1 H-NMR(CDC_{I3}) δ : 1.00(1H, d, J=10.2Hz), 1.15 and 1.26(each 3H, each s), 1.55-2.49(14H, m), 4.30 (1H, m), 5.37-5.53(2H, m), 6.38(1H, d, J=8.1Hz), 7.32(1H, m), 7.49-7.58(3H, m), 7.64-7.67(2H, m), 7.92(1H, s). IR(CHCI₃): 3514, 3446, 1714, 1655, 1618, 1514, 1469, 1446 cm⁻¹.

 $[\alpha]_D^{25}$ +66.7±1.1° (c=1.005, MeOH)

Elemental Analysis (C₃₀H₃₃NO₄·0.2H₂O)

40 Calcd.(%): C, 75.83; H, 7.08; N, 2.95

Found(%): C, 75.69; H, 7.05; N, 3.08

Compound II-94

45 **[0398]** mp.103-104°C

300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s),1.49-2.42(14H, m), 3.79(3H, s), 4.07((2H, s), 4.20(1H, m), 5.33-5.48(2H, m), 5.98(1H, d, J=8.7Hz), 6.75(1H, d, J=3.6Hz), 6.85 and 7.15(each 2H, each d, J=8.4Hz), 7.31(1H, d, J=3.6Hz).

IR(CHCl₃): 3519, 3450, 3431, 1741, 1709, 1641, 1612, 1543, 1510, 1464 cm⁻¹.

 $[\alpha]_D^{25}+43.8\pm0.8^{\circ}$ (c=1.009, MeOH)

Elemental Analysis (C₂₉H₃₇NO₄S)

Calcd.(%): C, 70.27; H, 7.52; N, 2.83; S, 6.47

Found(%): C, 70.33; H, 7.55; N, 3.05; S, 6.46

55 Compound II-95

[0399] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.07 and 1.21(each 3H, each s), 1.49-2.42(14H, m), 4.20 (1H, m), 4.37(2H, s), 5.33-5.48(2H, m), 5.99(1H, d, J=8.4Hz), 6.82(1H, d, J=3.6Hz), 7.21(1H, s), 7.30(1H, d, J=3.6Hz),

7.34-7.37(2H, m), 7.69(1H, m), 7.86(1H, m). IR(CHCl₃): 3512, 3450, 3431, 2671, 1739, 1709, 1643, 1543, 1508, 1471, 1460 cm⁻¹. [α]_D²⁵+40.2±0.8° (c=1.005, MeOH), Elemental Analysis (C₃₀H₃₅NO₃S₂·0.4H₂O) Calcd (%): C_68 12: H_6 82: N_2 64: S_12 12

5 Calcd.(%): C, 68.12; H, 6.82; N, 2.64; S, 12.12

Found(%): C, 68.05; H, 6.70; N, 2.87; S, 12.00

Compound II-96

[0400] 300MHz 1 H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.08 and 1.20(each 3H, each s), 1.50-2.43(14H, m), 4.04 (2H, s), 4.20(1H, m), 5.32-5.49(2H, m), 6.03(1H, d, J=9.0Hz), 6.75(1H, d, J=3.6Hz), 6.80 and 7.06(each 2H, each d, J=8.7Hz), 7.32(1H, d, J=3.6Hz).

IR(CHCl₃): 3446, 3510, 3182, 2673, 1709, 1635, 1614, 1545, 1512, 1471, 1458 cm⁻¹. $[\alpha]_D^{25}+43.8\pm0.8^{\circ}$ (c=1.000, MeOH),

15 Elemental Analysis (C₂₈H₃₅NO₄S)

Calcd.(%): C, 69.82; H, 7.32; N, 2.91; S, 6.66

Found(%): C, 69.57; H, 7.43; N, 3.00; S, 6.61

Compound II-97

20

[0401] 300MHz ¹H-NMR(CDCl₃) δ : 1.00(1H, d, J=10.5Hz), 1.17 and 1.25(each 3H, each s), 1.55.2.50(14H, m), 3.93 (2H, s), 4.32(1H, m), 5.35-5.49(2H, m), 6.37(1H, d, J=8.7Hz), 7.31-7.43(2H, m), 7.54-7.63(3H, m), 7.84(1H, d, J=7.2Hz), 8.16(1H, s).

IR(CHCl₃): 3514, 3450, 2667, 1709, 1651, 1572, 1514, 1481, 1452 cm⁻¹.

 $[\alpha]_D^{24}+58.3\pm1.0^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₃₀H₃₅NO₃·0.1H₂O)

Calcd.(%): C, 78.43; H, 7.72; N, 3.05

Found(%): C, 78.26; H, 7.73; N, 3.28

30 Compound II-98

[0402] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.52-2.42(14H, m), 4.16 (2H, s), 4.19(1H, m), 5.33-5.47(2H, m), 5.99(1H, d, J=9.3Hz), 6.78(1H, d, J=3.6Hz), 7.00-7.12(2H, m), 7.20-7.27(2H, m), 7.30(1H, d, J=3.6Hz).

35 IR(CHCl₃): 3510, 3450, 3431, 1741, 1709, 1643, 1543, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{24} + 38.0 \pm 0.8^{\circ} (c=1.03, CHCl_3)$

Elemental Analysis (C₂₈H₃₄FNO₃S-0.5H₂O)

Calcd.(%): C, 68.26; H, 7.16; N, 2.86; S, 6.51; F, 3.86

Found(%): C, 68.24; H, 7.08; N, 2.93; S, 6.50; F, 3.80

40

Compound II-99

[0403] mp.53-55°C

300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s),1.51-2.42(14H, m), 4.07(2H, s), 4.19(1H, m), 5.05(2H, s), 5.33-5.48(2H, m), 5.98(1H, d, J=9.0Hz), 6.76(1H, d, J=3.6Hz), 6.92 and 7.15(each 2H, each d, J=8.7Hz), 7.31(1H, d, J=3.6Hz), 7.32.-7.43(5H, m)

IR(CHCl₃): 3518, 3450, 3431, 1741, 1709, 1641, 1612, 1545, 1510, 1469, 1456 cm⁻¹.

 $[\alpha]_D^{24}$ +36.0±0.8° (c=1.005, MeOH),

Elemental Analysis (C₃₅H₄₁NO₄S·0.4H₂O)

50 Calcd.(%): C, 72.61; H, 7.28; N, 2.42; S, 5.54

Found(%): C, 72.58; H, 7.33; N, 2.65; S, 5.53

Compound II-100

55 [0404] 300MHz ¹H-NMR(CDCl₃) δ: 0.94(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s),1.51-2.42(14H, m), 4.07 (2H, s), 4.19(1H, m), 4.51-4.53(2H, m), 5.26-5.46(4H, m), 5.98(1H, d, J=8.7Hz), 6.05(1H, m), 6.76(1H, d, J=3.6Hz), 6.87 and 7.14(each 2H, each d, J=8.7Hz), 7.31(1H, d, J=3.6Hz). IR(CHCl₃): 3511, 3450, 3431, 1741, 1709, 1641, 1612, 1543, 1508, 1471, 1458 cm⁻¹.

```
\begin{split} &[\alpha]_D^{24} + 39.7 \pm 0.8^\circ \text{ (c=1.008, MeOH),} \\ &\text{Elemental Analysis (C}_{31} &H_{39} &\text{NO}_4 &\text{S} \cdot 0.2 \\ &\text{H}_2 &\text{O}) \\ &\text{Calcd.(\%): C, 70.88; H, 7.56; N, 2.67; S, 6.10} \\ &\text{Found(\%): C, 70.86; H, 7.60; N, 2.68; S, 6.17} \end{split}
```

5

10

Compound II-101

[0405] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 4.04 (2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 5.94(2H, s), 5.98(1H, d, J=8.7Hz), 6.68-6.78(4H, m), 7.31(1H, d, J=3.9Hz). IR(CHCl₃): 3518, 3450, 3431, 1739, 1709, 1641, 1543, 1504, 1489, 1444, 1250, 1041 cm⁻¹.

 $[\alpha]_D^{24}+42.\pm0.8^{\circ}$ (c=1.010, MeOH),

Elemental Analysis (C₂₉H₃₅NO₅S)

Calcd.(%): C, 68.34; H, 6.92; N, 2.75; S, 6.29

Found(%): C, 68.19; H, 6.88; N, 2.86; S, 6.20

15

Compound II-102

[0406] mp.76-80°C

300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.09 and 1.21(each 3H, each s),1.51-2.43(14H, m), 4.13(2H, s), 4.20(1H, m), 5.34.5.49(2H, m), 6.00(1H, d, J=8.4Hz), 6.78(1H, d, J=3.9Hz), 6.90-7.04(3H, m), 7.27(1H, m), 7.32(1H, d, J=3.9Hz).

IR(Nujol): 3408, 1703, 1631, 1514, 1250 cm⁻¹.

 $[\alpha]_D^{25}$ +51.0±0.9° (c=1.001, MeOH),

Elemental Analysis (C₂₈H₃₄FNO₃S)

²⁵ Calcd.(%): C, 69.54; H, 7.09; N, 2.90; S, 6.63; F,3.93

Found(%): C, 69.77; H, 7.23; N, 2.95; S, 6.55; F,3.93

Compound II-103

[0407] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s),1.51-2.44(14H, m), 4.19 (2H, s), 4.20(1H, m), 5.34-5.49(2H, m), 6.00(1H, d, J=8.4Hz), 6.78 and 7.32(each 1H, each d, each J=3.6Hz), 7.40-7.54 (4H, m).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1643, 1543, 1508, 1331, 1167, 1130 cm⁻¹. $[\alpha]_D^{25}$ +39.5±0.8° (c=1.012, MeOH),

Elemental Analysis (C₂₉H₃₄F₃NO₃S)

Calcd.(%): C, 65.27; H, 6.42; N, 2.62; S, 6.01; F,10.68

Found(%): C, 65.05; H, 6.46; N, 2.74; S, 6.02; F,10.63

Compound II-104

40

[0408] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.51-2.26(14H, m), 4.19 (1H, m), 4.26(2H, s), 5.33-5.49(2H, m), 6.00(1H, d, J=8.4Hz), 6.79(1H, d, J=3.9Hz), 7.20-7.25(3H, m), 7.30(1H, d, J=3.9Hz), 7.37-7.40(1H, m).

IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1643, 1543, 1508, 1471 cm⁻¹.

 $[\alpha]_D^{25} + 38.5 \pm 0.8^{\circ}$ (c=1.00, CHCl3)

Elemental Analysis (C₂₈H₃₄FNO₃S-0.5H₂O)

Calcd.(%): C, 66.06; H, 6.93; N, 2.75; S, 6.30; CI, 6.96

Found(%): C, 66.21; H, 6.87; N, 2.97; S, 6.24; Cl, 6.75

50 Compound II-105

[0409] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.07 and 1.20(each 3H, each s), 1.49-2.42(14H, m), 2.30 (6H, s), 4.15(2H, s), 4.19(1H, m), 5.33-5.48(2H, m), 5.97(1H, d, J=8.7Hz), 6.56(1H, d, J=3.9Hz), 7.03-7.13(3H, m), 7.26(1H, d, J=3.9Hz).

⁵⁵ IR(CHCl₃): 3518, 3450, 3431, 2671, 1739, 1709, 1641, 1543, 1506, 1471 cm⁻¹.

 $[\alpha]_D^{24}+43.7\pm0.8^{\circ}$ (c=1.004, MeOH)

Elemental Analysis (C₃₀H₃₉FNO₃S-0.1H₂O)

Calcd.(%): C, 72.72; H, 7.97; N, 2.83; S, 6.47

Found(%): C, 72.68; H, 7.95; N, 2.96; S, 6.48

Compound II-106

[0410] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.09 and 1.21(each 3H, each s), 1.53-2.50(14H, m), 4.19 (1H, m), 4.32(2H, s), 5.34-5.47(2H, m), 6.00(1H, d, J=8.7Hz), 6.76(1H, d, J=3.6Hz), 7.28-7.39(3H, m), 7.50(1H, m), 7.66(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 2669, 1741, 1709, 1643, 1543, 1508, 1456, 1315,

1163, 1126, 1059, 1038 cm⁻¹.

 $[\alpha]_D^{25} + 36.4 \pm 0.7^{\circ} \text{ (c=1.03, CHCl}_3)$

Elemental Analysis (C₂₉H₃₄F₃NO₃S)

Calcd.(%): C, 65.27; H, 6.42; N, 2.62; S, 6.01

Found(%): C, 65.34; H, 6.30; N, 2.82; S, 6.00

15 Compound II-107

[0411] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 3.21 (2H, t, J=8.7Hz), 4.02(2H, s), 4.20(1H, m), 4.59(2H, t, J=8.7Hz), 5.34-5.49(2H, m), 6.01(1H, d, J=8,7Hz), 6.80(1H, d, J=3.6Hz), 7.06(1H, d, J=1.8Hz), 7.19(1H, m), 7.30(1H, d, J=3.6Hz).

²⁰ IR(CHCl₃): 3512, 3450, 3431, 2667, 1739, 1709, 1641, 1543, 1508, 1460 cm⁻¹.

 $[\alpha]_D^{25}$ +35.7±0.8° (c=1.002, MeOH),

Elemental Analysis (C₃₀H₃₆BrNO₄S)

Calcd.(%): C, 61.43; H, 6.19; Br, 13.62; N, 2.39; S, 5.47

Found(%): C, 61.26; H, 6.11; Br, 13.54; N, 2.46; S, 5.47

25 Compound II-108

35

[0412] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.08 and 1.20(each 3H, each s),1.49-2.42(14H, m), 3.22 (2H, t, J=8.7Hz), 4.07(2H, s), 4.20(1H, m), 4.57(2H, t, J=8.7Hz), 5.33-5.48(2H, m), 5.99(1H, d, J=9.0Hz), 6.79(1H, t, 7.5Hz), 6.80(1H, d, J=3.6Hz), 6.95(1H, d, J=7.5Hz), 7.09(1H, d, J=7.5Hz), 7.30(1H, d, J=3.6Hz). IR(CHCl₃): 3514, 3450, 3431, 2667, 1739, 1709, 1641, 1545, 1506, 1458 cm⁻¹. [α]_D²⁵+42.0±0.8° (c=1.004, MeOH),

Elemental Analysis (C₃₀H₃₇NO₄S·0.1H₂O)

Calcd.(%): C, 70.72; H, 7.36; N, 2.75; S, 6.29

Found(%): C, 70.59; H, 7.39; N, 2.95; S, 6.31

Compound II-109

[0413] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.07 and 1.20(each 3H, each s),1.49-2.42(14H, m), 4.20 (1H, m), 4.27(2H, s), 5.32-5.48(2H, m), 5.99(1H, d, J=8.7Hz), 6.80(1H, d, J=3.6Hz), 7.24(1H, dd, J=1.5 and 8.1Hz), 7.31(1H, dd, J=0.6 and 5.4Hz), 7.33(1H, d, J=3.6Hz), 7.40(1H, d, J=5.4Hz), 7.73(1H, m), 7.77(1H, d, J=8.1Hz).

IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1641, 1543, 1508, 1469 cm⁻¹.

 $[\alpha]_D^{25}+41.5\pm0.8^{\circ}$ (c=1.002, MeOH),

Elemental Analysis (C₃₀H₃₅NO₃S₂·0.3H₂O)

Calcd.(%): C, 68.36; H, 6.81; N, 2.66; S, 12.17.

45 Found(%): C, 68.37; H, 6.73; N, 2.86; S, 12.21

Compound II-110

[0414] 300MHz 1 H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.5Hz), 1.07 and 1.19(each 3H, each s),1.47-2.41(14H, m), 4.20 (1H, m), 4.24(2H, s), 5.32-5.47(2H, m), 6.00(1H, d, J=8.7Hz), 6.78(1H, d, J=3.9Hz), 7.21(1H, dd, J=1.8 and 8.4Hz), 7.26(1H, d, J=5.7Hz), 7.33(1H, d, J=3.9Hz), 7.43(1H, d, J=5.7Hz), 7.67(1H, d, J=1.8Hz), 7.81(1H, d, J=8.4Hz). IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1641, 1545, 1458 cm⁻¹. [α]_D²⁵+40.9±0.8° (c=1.002, MeOH),

Elemental Analysis (C₃₀H₃₅NO₃S₂·0.3H₂O)

⁵⁵ Calcd.(%): C, 68.36; H, 6.81; N, 2.66; S, 12.17

Found(%): C, 68.30; H, 6.68; N, 2.94; S, 12.25

Compound II-111

5

30

35

[0415] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.06 and 1.19(each 3H, each s), 1.48-2.41(14H, m), 4.19 (1H, m), 4.39(2H, s), 5.32-5.47(2H, m), 5.99(1H, d, J=8.7Hz), 6.86(1H, d, J=3.6Hz), 7.21(1H, d, J=7.2Hz), 7.30(1H, d, J=3.6Hz), 7.35(1H, t, J=7.2Hz), 7.36(1H, d, J=5.4Hz), 7.42(1H, d, J=5.4Hz), 7.74(1H, d, J=7.2Hz).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1641, 1543, 1508, 1471, 1460 cm⁻¹.

 $[\alpha_D^{25}+42.0\pm0.8^{\circ} \text{ (c=1.001, MeOH)},$

Elemental Analysis (C₃₀H₃₆NO₃S₂·0.3H₂O)

Calcd.(%): C, 68.36; H, 6.81; N, 2.66; S, 12.17

10 Found(%): C, 68.63; H, 6.78; N, 2.84; S, 12.26

Compound II-112

[0416] 300MHz 1 H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.07 and 1.20(each 3H, each s),1.52-2.47(14H, m), 4.20 (1H, m), 4,23(2H, s), 5.32-5.51(2H, m), 6.08(1H, d, J=8.7Hz), 6.75(1H, d, J=3.6Hz), 6.95(1H, dd, J=2.4 and 9.0Hz), 7.10(1H, d, J=2.4Hz), 7.19(1H, s), 7.27(1H, d, J=3.6Hz), 7.66(1H, d, J=9.0Hz).

IR(CHCl₃): 3427, 3249, 1707, 1633, 1601, 1545, 1510, 1442 cm⁻¹.

 $[\alpha]_D^{25}+40.1\pm0.8^{\circ}$ (c=1.007, MeOH),

Elemental Analysis (C₃₀H₃₅NO₄S₂·0.3H₂O)

20 Calcd.(%): C, 66.34; H, 6.61; N, 2.58; S, 11.81

Found(%): C, 66.21; H, 6.70; N, 2.70; S, 11.75

Compound II-113

[0417] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.53-2.45(14H, m), 4.17 (1H, m), 4.24(2H, m), 4.69(2H, m), 5.35-5.47(2H, m), 6.02(1H, d, J=9.3Hz), 6.72(1H, d, J=3.9Hz), 7.23-7.31(4H, m), 7.40(1H, m).

IR(CHCl₃): 3516, 3450, 3431, 1709, 1641, 1527, 1508, 1456 cm⁻¹.

 $[\alpha]_D^{26} + 32.7 \pm 0.7^{\circ}$ (c=1.00, CHCl₃)

Compound II-114

[0418] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.54-2.48(18H, m), 3.20 (4H, m), 4.11-4.22(3H, m), 4.43(2H, s), 5.33-5.55(2H, m), 5.99(1H, d, J=8.4Hz), 6.67(1H, d, J=4.2Hz), 7.30.7.43(4H, m), 7.64(1H, d, J=4.2Hz).

IR(CHCl₃): 3514, 3448, 3420, 2555, 2459, 1711, 1643, 1543, 1508, 1456 cm⁻¹.

 $[\alpha]D^{26}+20.4\pm0.6^{\circ}$ (c=1.05, CHCl₃)

Elemental Analysis (C₃₃H₄₄N₂O₃S·1.1H₂O)

Calcd.(%): C, 69.71; H, 8.19; N, 4.93; S, 5.64

40 Found(%): C, 69.69; H, 8.08; N, 4.92; S, 5.54

Compound II-115

[0419] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.5Hz), 1.07 and 1.21(each 3H, each s), 1.53-2.46(14H, m), 2.49 (6H,s), 3.79(1H, d, J=10.8Hz), 3.84(1H, d, J=10.8Hz), 4.19(1H, m), 4.35(1H, d, J=20.1Hz), 4.37(1H, d, J=20.1Hz), 5.36-5.54 (2H, m), 5.94(1H, d, J=9.0Hz), 6.71(1H, d, J=3.6Hz), 7.25-7.43(5H, m).

IR(CHCl₃): 3516, 3448, 3429, 2553, 2459, 1711, 1643, 1545, 1506, 1471 cm⁻¹.

 $[\alpha]_D^{26} + 20.9 \pm 0.6^{\circ} (c=1.03, CHCl_3)$

Elemental Analysis (C₃₁H₄₂N₂O₃S·3.1H₂O)

50 Calcd.(%): C, 64.35; H, 8.40; N, 4.84; S, 5.54

Found(%): C, 64.36; H, 7.87; N, 4.63; S, 5.17

Compound II-116

[0420] 300MHz ¹H-NMR(CDCl₃) δ: 0.98(1H, d, J=10.5Hz), 1.13 and 1.24(each 3H, each s), 1.53-2.47(14H, m), 3.20-3.27(4H, m), 4.28(1H, m), 5.35-5.51(2H, m), 6.32(1H, d, J=8.4Hz), 7.24(1H, d, J=7.5Hz), 7.34 and 7.46(each 1H, each m), 7.55(1H, dd, J=1.8 and 8.4Hz), 7.67(1H, d, J=1.8Hz), 8.00-8.04(2H, m). IR(CHCl₃): 3518, 3448, 1709, 1649, 1597, 1514, 1294 cm⁻¹.

 $[\alpha]_D^{25}+58.8\pm1.0^\circ$ (c=1.001, MeOH) Elemental Analysis (C₃₂H₃₇NO₄·0.2H₂O) Calcd.(%): C, 76.37; H, 7.49; N, 2.78 Found(%): C, 76.33; H, 7.50; N, 2.88

5

10

Compound II-117

[0421] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.07 and 1.22(each 3H, each s), 1.51-2.43(14H, m), 3.97 (2H, s), 4.21(1H, m), 5.34-5.49(2H, m), 6.07(1H, d, J=3.3Hz), 6.38(1H, d, J=9.3Hz), 6.98-7.04(3H, m), 7.13-7.22(2H, m).

 $IR(CHCl_3)$: 3518, 3438, 1739, 1709, 1651, 1606, 1549, 1508 cm⁻¹. [α]_D²⁶+57.2±1.0° (c=1.016, MeOH)

Elemental Analysis (C₂₈H₃₄FNO₄·0.1H₂O)

Calcd.(%): C, 71.65; H, 7.34; N, 2.98; F, 4.05

Found(%): C, 71.57; H, 7.44; N, 3.14; F, 4.01

15

20

Compound II-118

[0422] 300MHz 1 H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.5Hz), 1.07 and 1.21(each 3H, each s), 1.52-2.43(14H, m), 4.00 (2H, s), 4.21(1H, m), 5.34-5.49(2H, m), 6.09(1H, d, J=3.3Hz), 6.40(1H, d, J=9.6Hz), 7.01(1H, d, J=3.3Hz), 7.22.7.36 (5H, m).

IR(CHCl₃) 3516, 3439, 2667, 1738, 1709, 1651, 1606, 1547, 1498 cm⁻¹.

 $[\alpha]_D^{24}+62.2\pm1.0^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₂₈H₃₅NO₄·0.2H₂O)

Calcd.(%): C, 74.21; H, 7.87; N, 3.09

25 Found(%): C, 74.14; H, 7.81; N, 3.25

Compound II-119

[0423] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.2Hz), 1.07 and 1.20(each 3H, each s),1.48-2.42(14H, m), 4.19 (1H, m), 4.42(2H, s), 5.32-5.47(2H, m), 5.98(1H, d, J=8.7Hz), 6.78(1H, d, J=2.1Hz), 6.84(1H, d, J=3.9Hz), 7.13(1H, dd, J=1.5 and 7.5Hz), 7.19(1H, t, J=7.5Hz), 7.30(1H, d, J=3.9Hz), 7.50(1H, dd, J=1.5 and 7.5Hz), 7.63(1H, d, 2.1Hz). IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1641, 1543, 1508, 1471, 1458, 1427 cm⁻¹. [α]_D²⁵+43.5±0.8° (c=1.010, MeOH),

Elemental Analysis (C₃₀H₃₅NO₄S·0.2H₂O)

35 Calcd.(%): C, 70.75; H, 7.01; N, 2.75; S, 6.30

Found(%): C, 70.80; H, 7.02; N, 2.96; S, 6.26

Compound II-120

[0424] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.55-2.41(14H, m), 2.95 (3H, s), 4.18-4.21(3H, m), 4.45(2H, s), 5.39-5.43(2H, m), 6.00(1H, d, J=8.7Hz), 6.63-6.71(4H, m), 7.16-7.26(6H, m), 7.32(1H, m).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1643, 1599, 1543, 1505, 1454 cm⁻¹. $[\alpha]_D^{26} + 32.2 \pm 0.7^{\circ}$ (c=1.00, CHCl₃)

Elemental Analysis ($C_{36}H_{44}N_2O_3S\cdot 0.6H_2O$)

Calcd.(%): C, 72.59; H, 7.65; N, 4.70; S, 5.38

Found(%): C, 72.68; H, 7.47; N, 4.74; S, 5.29

Compound II-121

50

[0425] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=9.9Hz), 1.07 and 1.20(each 3H, each s), 1.49-2.41(14H, m), 4.19 (1H, m), 4.30(2H, s), 5.32-5.48(2H, m), 5.99(1H, d, J=9.0Hz), 6.82(1H, d, J=3.6Hz), 7.24(1H, dd, J=1.5 and 8.1Hz), 7.30-7.36(2H, m), 7.41-7.47(2H, m), 7.55(1H, d, J=8.1Hz), 7.87-7.94(2H, m).

IR(CHCl₃): 3510, 3450, 3431, 2669, 1739, 1709, 1641, 1545, 1506, 1458, 1429 cm⁻¹.

 $[\alpha]_D^{24} + 39.4 \pm 0.8^{\circ} \text{ (c=1.002, MeOH)}$

Elemental Analysis (C₃₄H₃₇NO₄S·0.1H₂O)

Calcd.(%): C, 73.25; H, 6.73; N, 2.51; S, 5.75

Found(%): C, 73.13; H, 6.53; N, 2.69; S, 5.79

Compound II-122

5

[0426] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 3.79 and 3.86(each 3H, each s), 4.14(2H, s), 4.19(1H, m), 5.33-5.48(2H, m), 5.96(1H, d, J=8.4Hz), 6.78-6.85(3H, m), 7.00 (1H, t, J=8.1Hz), 7.30(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 2667, 1739, 1709, 1641, 1543, 1506, 1481, 1273, 1076 cm⁻¹.

 $[\alpha]_D^{26}$ +39.6±0.8° (c=1.007, MeOH)

Elemental Analysis (C₃₀H₃₉NO₅S-0.1H₂O)

Calcd.(%): C, 68.31; H, 7.49; N, 2.66; S, 6.08

10 Found(%): C, 68.17; H, 7.50; N, 2.76; S, 6.13

Compound II-123

[0427] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.51-2.45(14H, m), 2.39 (3H, s), 4.15(2H, s), 4.21(1H, m), 5.34-5.50(2H, m), 5.87(1H, s), 6.04(1H, d, J=8.7Hz), 6.86(1H, d, J=3.6Hz), 7.32(1H, d, J=3.6Hz).

IR(CHCl₃): 3514, 3450, 3431, 1709, 1645, 1608, 1545, 1508, 1471, 1456 cm⁻¹. $[\alpha]_D^{25}+47.0\pm0.9^{\circ}$ (c=1.017, MeOH),

Elemental Analysis (C₂₆H₃₄N₂O₄S·0.3H₂O)

20 Calcd.(%): C, 65.60; H, 7.33; N, 5.88; S, 6.74

Found(%): C, 65.49; H, 7.31; N, 6.00; S, 6.86

Compound II-124

[0428] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 2.33 (3H, s), 3.82(3H, s), 4.07(2H, s), 4.18(1H, m), 5.33-5.48(2H, m), 5.96(1H, d, J=8.7Hz), 6.69(1H, s), 6.74(1H, d, J=7.8Hz), 6.76(1H, d, J=3.6Hz), 7.03(1H, d, J=7.8Hz), 7.28(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1639, 1614, 1543, 1506, 1464 cm⁻¹.

 $[\alpha]_D^{24}+43.3\pm0.8^{\circ}$ (c=1.012, MeOH),

30 Elemental Analysis (C₃₀H₃₉NO₄S·0.1H₂O)

Calcd.(%): C, 70.45; H, 7.73; N, 2.74; S, 6.27

Found(%): C, 70.35; H, 7.78; N, 2.96; S, 6.20

Compound II-125

35

55

[0429] 300MHz 1 H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.07 and 1.21(each 3H, each s),1.49-2.43(14H, m), 3.84 (3H, s), 4.20(1H, m), 4.32(2H, s), 5.33-5.48(2H, m), 5.99(1H, d, J=8.4Hz), 6.83(1H, d, J=3.6Hz), 7.01(1H, dd, J=2.4 and 8.7Hz), 7.12(1H, d,J=2.4Hz), 7.21(1H, s), 7.31(1H, d, J=3.6Hz), 7.71(1H, d, J=8.7Hz).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1643, 1601, 1543, 1508, 1458, 1427 cm⁻¹.

40 $[\alpha]_D^{25}+38.5\pm0.8^{\circ}$ (c=1.004, MeOH),

Elemental Analysis (C₃₁H₃₇NO₄S₂·0.1H₂O)

Calcd.(%): C, 67.26; H, 6.72; N, 2.53; S, 11.58

Found(%): C, 67.24; H, 6.73; N, 2.77; S, 11.51

45 Compound II-126

[0430] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.07 and 1.20(each 3H, each s), 1.50-2.42(14H, m), 3.87 (2H, s), 4.18(1H, m), 4.20(2H, s), 5.32-5.48(2H, m), 5.98(1H, d, J=7.2Hz), 6.81(1H, d, J=3.6Hz), 7.23-7.41(5H, m), 7.53(1H, d, J=7.5Hz), 7.71-7.77(2H, m).

⁵⁰ IR(CHCl₃): 3514, 3450, 3431, 1739, 1709, 1641, 1545, 1506, 1469, 1456 cm⁻¹.

 $[\alpha]_D^{25} + 38.5 \pm 0.8^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₅H₃₉NO₃S·0.2H₂O)

Calcd.(%): C, 75.42; H, 7.13; N, 2.51; S, 5.75

Found(%): C, 75.36; H, 7.18; N, 2.79; S, 5.50

Compound II-127

[0431] 300MHz ¹H-NMR(CDCl₃) δ : 0.96(1H, d, J=10.2Hz), 1.10 and 1.21(each 3H, each s), 1.52-2.44(14H, m),

3.14-3.24(4H, m), 4.13(2H, s), 4.24(1H, m), 5.32-5.49(2H, m), 6.19(1H, d, J=9.0Hz), 7.06-7.18(4H, m), 7.22(1H, d, J=8.1Hz), 7.39(1H, dd, J=1.8 and 8.1Hz), 7.51(1H, d, J=1.8Hz).

IR(CHCl₃): 3516, 3452, 1738, 1709, 1649, 1570, 1518, 1491, 1471 cm⁻¹.

 $[\alpha]_D^{25}$ +54.4±0.9° (c=1.002, MeOH)

⁵ Elemental Analysis (C₃₂H₃₉NO₄·0.1H₂O)

Calcd.(%): C, 78.85; H, 8.11; N, 2.87

Found(%): C, 78.74; H, 8.14; N, 3.17

Compound II-128

10

[0432] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 3.83, 3.85 and 3.86(each 3H, each s), 4.07(2H, s), 4.19(1H, m), 5.33-5.49(2H, m), 5.97(1H, d, J=9.0Hz), 6.62(1H, d, J=8.7Hz), 6.76(1H, td, J=0.9 and 3.6Hz), 6.87(1H, d, J=8.7Hz), 7.30(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1641, 1603, 1543, 1495, 1469, 1277, 1259, 1097 cm⁻¹.

 $[\alpha]_D^{26} + 38.4 \pm 0.8^{\circ} \text{ (c=1.013, MeOH)}$

Elemental Analysis (C₃₁H₄₁NO₆S·0.2H₂O)

Calcd.(%): C, 66.57; H, 7.46; N, 2.50; S, 5.73

Found(%): C, 66.54; H, 7.42; N, 2.61; S, 5.71

20 Compound II-129

[0433] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.42(14H, m), 2.18 and 2.29(each 3H, each s), 4.14(2H, s), 4.19(1H, m), 5.33-5.49(2H, m), 5.96(1H, d, J=8.4Hz), 6.67(1H, td, J=0.9 and 3.6Hz), 7.02-7.12(3H, m), 7.29(1H, t, J=3.6Hz).

²⁵ IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1641, 1543, 1506, 1471 cm⁻¹.

 $[\alpha]_D^{26}+42.8\pm0.8^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₀H₃₉NO₃S)

Calcd.(%): C, 72.98; H, 7.96; N, 2.84; S, 6.50

Found(%): C, 72.67; H, 7.98; N, 2.94; S, 6.38

30

35

Compound II-130

[0434] 300MHz ¹H-NMR(CDCl₃) δ : 0.95(1H, d, J=10.2Hz), 1.09 and 1.22(each 3H, each s), 1.51-2.44(14H, m), 3.83 (3H, s), 3.84(6H, s), 4.07(2H, s), 4.20(1H, m), 5.34-5.49(2H, m), 6.00(1H, d, J=8.7Hz), 6.45(2H, s), 6.79 and 7.31(each 1H, each d, each J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 1741, 1709, 1641, 1593, 1543, 1506, 1464, 1421, 1331, 1240, 1130 cm⁻¹.

 $[\alpha]_D^{24} + 38.3 \pm 0.8^{\circ} \text{ (c=1.004, MeOH)}$

Elemental Analysis (C₃₁H₄₁NO₆S·0.2H₂O)

Calcd.(%): C, 66.57; H, 7.46; N, 2.50; S, 5.73

40 Found(%): C, 66.48; H, 7.37; N, 2.59; S, 5.63

Compound II-131

[0435] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 4.08 (2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 5.95(2H, s), 5.99(1H, d, J=8.7Hz), 6.68-6.82(4H, m), 7.30(1H, d, J=3.6Hz). IR(CHCl₃): 3512, 3450, 3431, 1739, 1709, 1641, 1545, 1506, 1460, 1252, 1063 cm⁻¹.

 $[\alpha]_D^{24}+41.8\pm0.8^{\circ} \text{ (c=1.007, MeOH)}$

Elemental Analysis (C₂₉H₃₅NO₅S)

Calcd.(%): C, 68.34; H, 6.92; N, 2.75; S, 6.29

50 Found(%): C, 68.04; H, 6.90; N, 2.79; S, 6.29

Compound II-132

[0436] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.5Hz), 1.09 and 1.21(each 3H, each s), 1.51-2.45(14H, m), 2.14 (3H, s), 4.08(2H, s), 4.18(1H, m), 5.32-5.50(2H, m), 6.08(1H, d, J=8.4Hz), 6.76(1H, d, J=3.6Hz), 6.97(1H, d, J=7.8Hz), 7.24(1H, t, J=8.4Hz), 7.30(1H, d, J=3.6Hz), 7.38-7.40(2H, m), 7.74(1H, br s). IR(CHCl₃): 3514, 3435, 3311, 1705, 1639, 1612, 1534, 1508, 1439 cm⁻¹. [α]_D²⁵+40.1±0.8° (c=1.008, MeOH)

Elemental Analysis (C₃₀H₃₈N₂O₄S·0.4H₂O) Calcd.(%): C, 68.00; H, 7.38; N, 5.29; S, 6.05 Found(%): C, 68.11; H, 7.17; N, 5.22; S, 5.93

5 Compound II-133

[0437] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.5Hz), 1.09 and 1.22(each 3H, each s), 1.53-2.50(14H, m), 2.99 (3H, s), 4.13(2H, s), 4.21(1H, m), 5.34-5.52(2H, m), 6.02(1H, d, J=9.3Hz), 6.80(1H, d, J=3.9Hz), 7.04-7.07(2H, m), 7.16(1H, m), 7.25-7.32(3H, m).

IR(CHCl₃): 3510, 3440, 3431, 3371, 1709, 1639, 1608, 1543, 1508, 1471, 1386, 1335, 1151 cm⁻¹. $[\alpha]_D^{24} + 38.3 \pm 0.8^{\circ}$ (c=1.006, MeOH)

Elemental Analysis (C₂₉H₃₈N₂O₅S₂·0.2H₂O)

Calcd.(%): C, 61.94; H, 6.88; N, 4.98; S, 11.40

Found(%): C, 61.99; H, 6.92; N, 4.95; S, 10.97

Compound II-134

15

20

[0438] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.09 and 1.21(each 3H, each s), 1.50-2.44(14H, m), 4.21 (1H, m), 4.32(2H, s), 5.34-5.50(2H, m), 6.01(1H, d, J=9.0Hz), 6.86, 6.88 and 7.14(each 1H, each d, each J=3.6Hz), 7.23-7.37(4H, m), 7.53-7.56(2H, m).

Compound II-135

[0439] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 4.08 (2H, s), 4.17-4.30(5H, m), 5.33-5.49(2H, m), 5.98(1H, d, J=8.4Hz), 6.71-6.80(4H, m), 7.28(1H, d, J=3.6Hz). IR(CHCl₃): 3516, 3450, 3431, 1739, 1709, 1639, 1602, 1543, 1506, 1475, 1456, 1284, 1090 cm⁻¹. [α]_D^{24.5}+40.2±0.8° (c=1.011, MeOH)

Elemental Analysis (C₃₀H₃₇NO₅S·0.2H₂O)

Calcd.(%): C, 68.34; H, 7.15; N, 2.66; S, 6.08

30 Found(%): C, 68.35; H, 7.03; N, 2.71; S, 6.17

Compound II-136

[0440] 300MHz 1 H-NMR(CDCl₃) δ : 0.94(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 2.31 and 3.70(each 3H, each s), 4.15(2H, s), 4.19(1H, m), 5.33-5.49(2H, m), 5.98(1H, d, J=8.7Hz), 6.77(1H, d, J=3.9Hz), 6.96-7.11(3H, m), 7.31(1H, d, J=3.9Hz).

IR(CHCl₃): 3516, 3450, 3431, 2669, 1738, 1709, 1641, 1545, 1506, 1471, 1259, 1011 cm⁻¹.

 $[\alpha]_D^{24}+41.2\pm0.8^{\circ}$ (c=1.003, MeOH)

Elemental Analysis (C₃₀H₃₉NO₄S)

40 Calcd.(%): C, 70.69; H, 7.71; N, 2.75; S, 6.29

Found(%): C, 70.41; H, 7.76; N, 2.97; S, 6.04

Compound II-137

[0441] 300MHz ¹H-NMR(CDCl₃) δ: 0.93(1H, d, J=10.2Hz), 1.08 and 1.21(each 3H, each s), 1.51-2.42(14H, m), 2.16 (3H, s), 4.09(2H, s), 4.18(1H, m), 5.32-5.50(2H, m), 6.01(1H, d, J=8.7Hz), 6.77(1H, d, J=3.6Hz), 7.17(2H, d, J=8.1Hz), 7.32(1H, d, J=3.6Hz), 7.43(1H, br s), 7.44(2H, d, J=8.1Hz).

IR(CHCl₃): 3514, 3435, 3311, 1705, 1639, 1541, 1513, 1410 cm⁻¹.

 $[\alpha]_D^{24.5}+40.8\pm0.8^{\circ}$ (c=1.000, MeOH)

Elemental Analysis ($C_{30}H_{38}N_2O_4S\cdot 0.4H_2O$)

Calcd.(%): C, 68.00; H, 7.38; N, 5.29; S, 6.05

Found(%): C, 68.06; H, 7.38; N, 5.28; S, 5.92

Compound II-138

55

[0442] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.09 and 1.21(each 3H, each s), 1.51-2.42(14H, m), 2.99 (3H, s), 4.11(2H, s), 4.20(1H, m), 5.33-5.49(2H, m), 6.01(1H, d, J=9.3Hz), 6.78(1H, d, J=3.6Hz), 6.86(1H, br s), 7.17-7.25(4H, m), 7.31(1H, d, J=3.6Hz).

```
IR(CHCl<sub>3</sub>): 3510, 3448, 3431, 3371, 1707, 1639, 1543, 1510, 1471, 1456, 1387, 1330, 1155 cm<sup>-1</sup>. [\alpha]<sub>D</sub><sup>24.5</sup>+37.6±0.8° (c=1.006, MeOH) Elemental Analysis (C<sub>29</sub>H<sub>38</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub>·0.3H<sub>2</sub>O) Calcd.(%): C, 61.74; H, 6.90; N, 4.97; S, 11.37 Found(%): C, 61.84; H, 6.93; N, 5.03; S, 11.14 Compound II-139 [0443] mp.149-150°C 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 0.92(1H, d, J=10.5Hz), 1.05 and 1.19(each 3H, each s), 1.47-2.40(14H, m), 4.18(1H, m), 4.40(2H, s), 5.31-5.46(2H, m), 5.98(1H, d, J=8.4Hz), 6.88(1H, d, J=3.9Hz), 7.30-7.35(2H, m), 7.42-7.48(3H, m), 7.58 (1H, m), 8.08(1H, d, J=6.6Hz), 8.14(1H, m). IR(CHCl<sub>3</sub>): 3514, 3450, 3431, 2667, 1738, 1707, 1643, 1543, 1508, 1471, 1458, 1444 cm<sup>-1</sup>. [\alpha]<sub>D</sub><sup>24.5</sup>+39.7±0.8° (c=1.008, MeOH) Elemental Analysis (C<sub>34</sub>H<sub>37</sub>NO<sub>3</sub>S<sub>2</sub>) Calcd.(%): C, 71.42; H, 6.52; N, 2.45; S, 11.22 Found(%): C, 71.21; H, 6.53; N, 2.51; S, 10.97
```

Compound II-140

20

5

10

[0444] 300MHz ¹H-NMR(CDCl₃) δ : 0.92(1H, d, J=10.5Hz), 1.06 and 1.19(each 3H, each s), 1.48-2.40(14H, m), 3.79 (2H, s), 4.18(1H, m), 4.26(2H, s), 5.21-5.47(2H, m), 5.96(1H, d, J=8.4Hz), 6.78(1H, d, J=3.6Hz), 7.18(1H, d, J=7.2Hz), 7.27-7.40(4H, m), 7.53(1H, d, J=7.2Hz), 7.72(1H, d, J=7.8Hz), 7.78(1H, d, J=6.9Hz). IR(CHCl₃): 3510, 3450, 3431, 2669, 1739, 1709, 1641, 1543, 1506, 1471, 1456 cm⁻¹.

 $[\alpha]_D^{24} + 36.6 \pm 0.8^{\circ} \text{ (c=1.006, MeOH)}$

Elemental Analysis (C₃₅H₃₉NO₃S·0.2H₂O)

Calcd.(%): C, 75.42; H, 7.13; N, 2.51; S, 5.75

Found(%): C, 75.46; H, 7.15; N, 2.73; S, 5.55

30 Compound II-141

[0445] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=9.9Hz), 1.08 and 1.21(each 3H, each s), 1.50-2.43(14H, m), 2.20, 2.45 and 3.67(each 3H, each s), 4.13(2H, s), 4.19(1H, m), 5.33-5.49(2H, m), 5.97(1H, d, J=8.4Hz), 6.77(1H, td, J=0.9 and 3.9Hz), 6.89 and 6.95(each 1H, each d, each J=7.8Hz), 7.31(1H, d, J=3.6Hz).

³⁵ IR(CHCl₃): 3516, 3450, 3431, 1738, 1709, 1641, 1545, 1506, 1458, 1263, 1084, 1009 cm⁻¹.

 $[\alpha_{1D}^{24}+39.8\pm0.8^{\circ} (c=1.006, MeOH)]$

Elemental Analysis (C₃₁H₄₁NO₄S)

Calcd.(%): C, 71.09; H, 7.89; N, 2.67; S, 6.12

Found(%): C, 70.80; H, 8.02; N, 2.92; S, 6.06

40

45

Compound II-142

[0446] 300MHz ¹H-NMR(CDCl₃) δ : 0.93(1H, d, J=10.2Hz), 1.06 and 1.19(each 3H, each s), 1.49-2.41(14H, m), 4.18 (1H, m), 4.50(2H, s), 5.32-5.47(2H, m), 5.98(1H, d, J=9.0Hz), 6.89(1H, d, J=3.9Hz), 7.29-7.38(4H, m), 7.47(1H, m), 7.59(1H, d, J=8.4Hz), 7.86(1H, m), 7.95(1H, d, J=7.8Hz).

IR(CHCl₃): 3510, 3450, 3431, 2669, 1739, 1709, 1641, 1545, 1508, 1471, 1450, 1423 cm⁻¹.

 $[\alpha]_D^{24}+40.3\pm0.8^{\circ}$ (c=1.007, MeOH)

Elemental Analysis (C₃₄H₃₇NO₄S·0.2H₂O)

Calcd.(%): C, 73.01; H, 6.74; N, 2.50; S, 5.73

50 Found(%): C, 72.91; H, 6.58; N, 2.59; S, 5.75

Compound II-143

[0447] 300MHz ¹H-NMR(CDCl₃) δ: 0.94(1H, d, J=10.5Hz), 1.08 and 1.21(each 3H, each s),1.18(3H, t, J=7.8Hz), 1.50-2.42(14H, m), 2.64(2H, q, J=7.8Hz), 4.15(2H, s), 4.19(1H, m), 5.33-5.48(2H, m), 5.96(1H, d, J=9.3Hz), 6.68(1H, d, J=3.6Hz), 7.16-7.25(4H, m), 7.29(1H, d, J=3.6Hz).

IR(CHCl₃): 3516, 3450, 3431, 2667, 1739, 1709, 1641, 1543, 1506, 1471, 1456 cm⁻¹.

 $[\alpha]_D^{21}+41.9\pm0.8^{\circ}$ (c=1.013, MeOH)

Elemental Analysis (C₃₀H₃₉NO₃S·0.1H₂O) Calcd.(%): C, 72.72; H, 7.97; N, 2.83; S, 6.47 Found(%): C, 72.55; H, 7.88; N, 3.19; S, 6.62

5 Compound III-1

[0448] 300MHz ¹H-NMR(CDCl₃) δ : 0.88(1H, d, J=10.2Hz), 1.07 and 1.23(each 3H, each s), 1.56-2.51(13H, m), 2.67 (1H, m), 4.41(1H, m), 5.29-5.41(2H, m), 6.07(1H, d, 1=8.1Hz), 6.34 and 7.16(each 2H, each t, each J=2.1Hz), 7.35 and 7.52(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3511, 3431, 3144, 3101, 2668, 1708, 1656, 1530, 1505, 1455, 1384, 1167 cm⁻¹. $[\alpha]_D^{24}$ +34.2±0.7° (c=1.007, MeOH)

Elemental Analysis ($C_{25}H_{32}N_2O_5S_2\cdot 0.5H_2O$)

Calcd.(%): C, 58.46; H, 6.48; N, 5.45; S, 12.48

Found(%): C, 58.77; H, 6.40; N, 5.65; S, 12.72

Compound III-2

15

20

[0449] 300MHz ¹H-NMR(CDCl₃) δ : 0.90(1H, d, J=9.9Hz), 1.06 and 1.23(each 3H, each s), 1.58-2.48(13H, m), 2.67 (1H, m), 4.41(1H, m), 5.29-5.42(2H, m), 6.27(1H, d, J=8.1Hz), 7.38-7.44(3H, m), 6.34(1H, d, J=3.9Hz), 8.14(1H, dd, J=1.5 and 3.0Hz).

IR(CHCl₃): 3517, 3431, 3361, 3114, 1708, 1654, 1530, 1504, 1332, 1151 cm⁻¹.

 $[\alpha]_D^{24}$ +33.7±0.7° (c=1.003, MeOH)

Elemental Analysis (C₂₅H₃₁NO₅S₃·0.2H₂O)

Calcd.(%): C, 57.16; H, 6.02; N, 2.67; S, 18.31

²⁵ Found(%): C, 57.09; H, 5.88; N, 2.76; S, 18.15

Compound III-3

[0450] 300MHz ¹H-NMR(CDCl₃) δ : 0.94(1H, d, J=9.9Hz), 1.07 and 1.23(each 3H, each s), 1.56-2.48(13H, m), 2.68 (1H, m), 4.42(1H, m), 5.29-5.42(2H, m), 6.16(1H, d, J=8.4Hz), 7.16(1H, dd, J=3.9 and 5.1Hz), 7.42 and 7.63(each 1H, each d, each J=3.9Hz), 7.70(1H, dd, J=1.5 and 5.1Hz), 7.76(1H, dd, J=1.5 and 3.9Hz). IR(CHCl₃): 3516, 3431, 3365, 3097, 1708, 1654, 1530, 1505, 1402, 1336, 1153 cm⁻¹.

 $[\alpha]_D^{24} + 34.5 \pm 0.7^{\circ} \text{ (c=1.010, MeOH)}$

Elemental Analysis (C₂₅H₃₁NO₅S₃·0.1H₂O)

35 Calcd.(%): C, 57.36; H, 6.01; N, 2.68; S, 18.38

Found(%): C, 57.16; H, 5.88; N, 2.76; S, 18.36

Compound III-4

[0451] 300MHz ¹H-NMR(CDCl₃) δ: 0.88(1H, d, J=9.9Hz), 1.07 and 1.23(each 3H, each s), 1.58-2.34(12H, m), 2.39 (3H, s), 2.44(1H, m), 2.68(1H, m), 4.41(1H, m), 5.29-5.42(2H, m), 5.99(1H, m), 6.08(1H, d, J=8.4Hz), 6.20(1H, t, J=3.3Hz), 7.19(1H, m), 7.38 and 7.55(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3510, 3431, 3150, 3100, 1708, 1656, 1530, 1505, 1375, 1161 cm⁻¹.

 $[\alpha]_D^{24} + 30.9 \pm 0.7^{\circ} \text{ (c=1.000, MeOH)}$

Elemental Analysis ($C_{26}H_{34}N_2O_5S_2\cdot 0.3H_2O$)

Calcd.(%): C, 59.58; H, 6.65; N, 5.35; S, 12.24

Found(%): C, 59.57; H, 6.48; N, 5.51; S, 12.22

Compound IV-1

50

[0452] 300MHz ¹H-NMR(CDCl₃) δ : 0.85 and 1.22(each 3H, each s), 1.44(1H, d, J=10.2Hz), 1.54-2.51(14H, m), 4.10 (1H, m), 5.31-5.41(2H, m), 6.21(1H, d, J=8.4Hz), 7.11(1H, dd, J=3.9 and 4.8Hz), 7.44 and 7.63(each 1H, each d, each J=3.9Hz), 7.70(1H, dd, J=1.2 and 4.8Hz), 7.75(1H, dd, J=1.2 and 3.9Hz). IR(CHCl₃): 3517, 3423, 3366, 3097, 2665, 1708, 1655, 1530, 1505, 1335, 1153 cm⁻¹.

 $[\alpha]_D^{23}$ -46.4±0.9° (c=1.010, MeOH)

Elemental Analysis (C₂₅H₃₁NO₅S₃·0.3H₂O)

Calcd.(%): C, 56.97; H, 6.04; N, 2.66; S, 18.25

Found(%): C, 57.10; H, 5.96; N, 2.70; S, 18.02

Compound IV-2

5

[0453] 300MHz ¹H-NMR(CDCl₃) δ : 0.84 and 1.22(each 3H, each s), 1.43(1H, d, J=10.5Hz), 1.53-2.50(14H, m), 4.09 (1H, m), 5.30-5.41(2H, m), 6.17(1H, d, J=8.7Hz), 6.33 and 7.16(each 2H, each t-like), 7.40 and 7.57(each 1H, each d, each J=3.9Hz).

IR(CHCl₃): 3514, 3432, 3144, 3102, 1708, 1657, 1531, 1506, 1456, 1384, 1167 cm⁻¹.

 $[\alpha]_D^{23}$ -45.4±0.9° (c=1.010, MeOH)

Elemental Analysis (C₂₅H₃₀N₂O₅S₂·0.3H₂O)

Calcd.(%): C, 59.10; H, 6.07; N, 5.51; S, 12.62

10 Found(%): C, 59.12; H, 5.83; N, 5.53; S, 12.41

Compound V-1

[0454] 300MHz 1 H-NMR(CDCl₃) δ : 1.24-2.13(13H, m), 2.22(1H, m), 2.32(2H, t, J=7.2Hz), 3.41(1H, m), 3.44(1H, m), 5.18-5.36(2H, m), 6.19(1H, m), 6.33 and 7.15(each 2H, each t, each J=2.4Hz), 7.28 and 7.55(each 2H, each t, each J=3.9Hz).

IR(CHCl₃): 3512, 3439, 3144, 3100, 1708, 1658, 1535, 1508, 1446, 1167 cm⁻¹. $[\alpha]_D^{26}$ +69.5±1.1° (c=1.012, MeOH)

Elemental Analysis (C₂₃H₂₈N₂O₅S·0.5H₂O)

20 Calcd.(%): C, 56.89; H, 6.02; N, 5.77; S, 13.21

Found(%): C, 56.91; H, 5.96; N, 5.91; S, 13.37

Compound V-2

[0455] 300MHz 1 H-NMR(CDCl₃) δ : 1.14-2.16(13H, m), 2.23(1H, m), 2.30-2.37(2H, m), 3.41(1H, m), 3.45(1H, m), 5.18-5.36(2H, m), 6.19(1H, m), 7.11(1H, dd, J=3.9 and 5.1Hz), 7.32 and 7.62(each 1H, each d, each J=3.9Hz), 7.39 (1H, dd, J=1.5 and 5.1Hz), 7.75(1H, dd, J=1.5 and 3.9Hz).

IR(CHCl₃): 3512, 3440, 3096, 1708, 1657, 1534, 1507, 1402, 1336, 1153 cm⁻¹.

 $[\alpha]_D^{25}$ +69.2±1.1° (c=1.006, MeOH)

30 Elemental Analysis (C₂₃H₂₇NO₅S₃·0.1H₂O)

Calcd.(%): C, 55.57; H, 5.51; N, 2.83; S, 19.42

Found(%): C, 55.55; H, 5.32; N, 2.85; S, 19.21

Compound V-3

[0456] 300MHz ¹H-NMR(CDCl₃) δ : 1.16-2.14(13H, m), 2.23(1H, m), 2.28-2.36(2H, m), 3.54-3.46(2H, m), 5.17-5.37 (2H, m), 6.14(1H, m), 7.32(1H, d, J=3.9Hz), 7.38-7.44(2H, m), 7.61(1H, d, J=3.9Hz), 8.15(1H, dd, J=1.2 and 3.0Hz). IR(CHCl₃): 3508, 3431, 3114, 1708, 1656, 1534, 1508, 1331, 1152, 1102 cm⁻¹. [α]_D²⁴ +66.5±1.1° (c=1.003, MeOH)

Elemental Analysis (C₂₃H₂₇NO₅S₃·0.3H₂O)

Calcd.(%): C, 55.35; H, 5.57; N, 2.81; S, 19.28

Found(%): C, 55.29; H, 5.54; N, 2.85; S, 19.01

Compound V-4

45

35

[0457] 300MHz ¹H-NMR(CDCl₃) δ : 1.18-2.18(13H, m), 2.23(1H, m), 2.31-2.35(2H, m), 2.38(3H, s), 3.43(2H, m), 5.18-5.36(2H, m), 5.98(1H, m), 6.14(1H, m), 6.19(1H, t, J=3.3Hz), 7.17(1H, m), 7.29 and 7.53(each 1H, each d, each J=3.9Hz). IR(CHCl₃): 3512 3440, 3150, 3101, 1708, 1658, 1535, 1508, 1375, 1161 cm⁻¹. [α]_D²⁴+30.9±0.7° (c=1.000, MeOH)

Elemental Analysis ($C_{26}H_{34}N_2O_5S_2\cdot 0.3H_2O$)

Calcd.(%): C, 59.58; H, 6.65; N, 5.35; S, 12.24

Found(%): C, 59.57; H, 6.48; N, 5.51; S, 12.22

Compound V-5

55

[0458] 300MHz ¹H-NMR(CDCl₃) δ : 1.18-2.10(13H, m), 2.11(1H, m), 2.21-2.35(2H, m), 3.35(1H, m), 3,46(1H, m), 4.12(2H, s), 5.17-5.34(2H, m), 5.88(1H, m), 6.74(1H, d, J=3.9Hz), 7.21-7.38(6H, m). IR(CHCl₃): 3511, 3432, 3065, 1708, 1642, 1547, 1515, 1455 cm⁻¹.

```
[\alpha]_D^{23}+69.1\pm1.1^{\circ} (c=1.009, MeOH)
Elemental Analysis (C<sub>26</sub>H<sub>31</sub>NO<sub>3</sub>S·0.1H<sub>2</sub>O)
Calcd.(%): C, 71.07; H, 7.16; N, 3.19; S, 7.30
Found(%): C, 70.91; H, 7.18; N, 3.19; S, 7.34
Compound V-6
[0459] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.18-2.15(14H, m), 2.24-2.34(2H, m), 3.36(1H, m), 3.58(1H, m), 5.19-5.40(2H, m), 5.19-5.4
m), 6.07(1H, m), 7.28-7.42(3H, m), 7.51(1H, d, J=0.6Hz), 7.56-7.59(2H, m), 7.72(1H, d, J=0.6Hz).
IR(CHCl<sub>3</sub>): 3514, 3446, 1709, 1649, 1550, 1520, 1491 cm<sup>-1</sup>.
[\alpha]_D^{22}+79.4±1.2° (c=1.004, MeOH)
Elemental Analysis (C<sub>25</sub>H<sub>29</sub>NO<sub>3</sub>S·0.2H<sub>2</sub>O)
Calcd.(%): C, 70.29; H, 6.94; N, 3.28; S, 7.51
Found(%): C, 70.26; H, 6.68; N, 3.48; S, 7.44
Compound V-7
[0460] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.18-2.14(13H, m), 2.26(1H, m), 2.31-2.36(2H, m), 3.30(1H, m), 3.64(1H, m),
3.82(3H, s), 5.19-5.39(2H, m), 6.06(1H, m), 6.89-7.01(6H, m), 7.66(2H, d, J=8.1Hz).
IR(CHCl<sub>3</sub>): 3514, 3446, 1709, 1649, 1550, 1520, 1491 cm<sup>-1</sup>.
[\alpha]_D^{22}+76.3\pm1.2^{\circ} (c=1.009, MeOH)
Elemental Analysis (C<sub>28</sub>H<sub>33</sub>NO<sub>5</sub>·0.2H<sub>2</sub>O)
Calcd.(%): C, 71.99; H, 7.21; N, 3.00
Found(%): C, 72.05; H, 7.35; N, 2.93
Compound V-8
[0461] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.18-2.14(13H, m), 2.25(1H, m), 2.31-2.39(2H, m), 3.32(1H, m), 3.56(1H, m),
4.09(2H, d, J=0.3Hz), 5.18-5.38(2H, m), 5.89(1H, m), 6.68(1H, d, J=3.6Hz), 6.94(1H, dd, J=3.6 and 5.1Hz), 7.02(1H,
dd, J=1.5 and 3.6Hz), 7.23(1H, d, J=3.6Hz), 7.35(1H, dd, J=1.5 and 5.1Hz).
IR(CHCl<sub>3</sub>): 3514, 3433, 1709, 1645, 1545, 1516, 1458 cm<sup>-1</sup>.
[\alpha]_D^{23}+61.8\pm1.0^{\circ} (c=1.008, MeOH)
Elemental Analysis (C<sub>24</sub>H<sub>29</sub>NO<sub>3</sub>S<sub>3</sub>·0.2H<sub>2</sub>O)
Calcd.(%): C, 60.14; H, 6.18; N, 2.92; S, 20.07
Found(%): C, 60.08; H, 6.11; N, 2.90; S, 20.05
Compound V.9
[0462] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.06-2.15(13H, m), 2.23(1H, m), 2.28-2.38(2H, m), 3.35(1H, m), 3.54(1H, m),
5.20(2H, s), 5.19-5.37(2H, m), 5.95(1H, m), 6.94-7.04(4H, m), 7.27-7.35(3H, m).
IR(CHCl<sub>3</sub>): 3514, 3433, 1709, 1647, 1599, 1547, 1518, 1495 cm<sup>-1</sup>.
[\alpha]_D^{24} +67.8±1.1° (c=1.008, MeOH)
Elemental Analysis (C<sub>26</sub>H<sub>31</sub>NO<sub>4</sub>S·0.2H<sub>2</sub>O)
Calcd.(%): C, 68.30; H, 6.92; N, 3.06; S, 7.01
Found(%): C, 68.31; H, 6.84; N, 3.16; S, 7.11
Compound V-10
[0463] 300MHz <sup>1</sup>H-NMR(CDCl<sub>3</sub>) \delta: 1.06-2.14(13H, m), 2.24(1H, m), 2.30-2.37(2H, m), 3.31(1H, m), 3.53(1H, m),
4.50(2H, d, J=0.9Hz), 5.15-5.36(2H, m), 5.89(1H, m), 6.65-6.79(3H, m), 6.95(1H, d, J=3.9Hz), 7.15-7.21(2H, m), 7.33
(1H, d, J=3.9Hz).
IR(CHCl<sub>3</sub>): 3512, 3440, 1707, 1643, 1603, 1547, 1506 cm<sup>-1</sup>.
```

Elemental Analysis (C₂₆H₃₂N₂O₃S-0.3H₂O)

Calcd.(%): C, 68.18; H, 7.17; N, 6.20; S, 7.00

Found(%): C, 68.04; H, 7.09; N, 6.25; S, 7.02

 $[\alpha]_D^{22}+67.3\pm1.1^{\circ}$ (c=1.009, MeOH)

5

10

15

20

25

35

40

45

50

55

Compound V-11

[0464] 300MHz ¹H-NMR(CDCl₃) δ : 1.06-2.15(13H, m), 2.27(1H, m), 2.28-2.38(2H, m), 3.31(1H, m), 3.54(1H, m), 4.24(2H, d, J=0.6Hz), 5.17-5.36(2H, m), 5.87(1H, m), 6.78(1H, d, J=3.6Hz), 7.21-7.42(6H, m).

⁵ IR(CHCl₃): 3514, 3433, 3062, 2669, 1709, 1643, 1545, 1514 cm⁻¹.

 $[\alpha]_D^{22}+64.3\pm1.0^{\circ}$ (c=1.000, MeOH)

Elemental Analysis (C₂₆H₃₁NO₃S₂·0.5H₂O)

Calcd.(%): C, 65.24; H, 6.74; N, 2.93; S, 13.40

Found(%): C, 65.23; H, 6.55; N, 3.00; S, 13.46

Compound V-12

10

15

35

[0465] 300MHz ¹H-NMR(CDCl₃) δ : 1.18-1.81(7H, m), 1.85-1.94(2H, m), 2.01-2.13(2H, m), 2.22-2.33(3H, m), 3.41 (1H, m), 3.33(1H, m), 3.49(2H, s), 3.54(1H, m), 4.15(2H, s), 5.17-5.37(2H, m), 5.90(1H, m), 6.12(1H, dd, J=0.9 and 3.0Hz), 6.31(1H, dd, J=1.8 and 3.0Hz), 6.81 and 7.30(each 1H, each d, each J=3.6Hz), 7.34(1H, dd, J=0.9 and 1.8Hz). IR(CHCl₃): 3516, 3433, 1709, 1643, 1547, 1516 cm⁻¹.

 $[\alpha]_D^{23}$ +71.3±1.1° (c=1.004, MeOH)

Elemental Analysis (C₂₄H₂₉NO₄S·0.3H₂O)

Calcd.(%): C, 66.58; H, 6.89; N, 3.24; S, 7.41

20 Found(%): C, 66.55; H, 6.63; N, 3.37; S, 7.51

Compound VI-1

[0466] mp.105-106°C

300MHz ¹H-NMR(CDCl₃) δ: 1.06(1H, m), 1.19-1.29(2H, m), 1.42-1.47(2H, m), 1.58-1.78(4H, m), 2.00-2.19(5H, m), 2.35(2H, t, J=7.2Hz), 2.52(1H, m), 3.82(1H, m), 4.16(2H, s), 5.30-5.42(2H, m), 5.99(1H, d, J=7.5Hz), 6.79(1H, dt, J=0.9 and 3.9Hz), 6.96(1H, dd, J=1.5 and 4.8Hz), 7.05(1H, m), 7.28(1H, dd, J=3.0 and 4.8Hz), 7.37(1H. d, J=3.9Hz). IR(KBr): 3367, 2667, 1700, 1612, 1543, 1520, 1317, 1244 cm⁻¹. [α]_D²⁴ +70.2±1.1° (c=1.006, MeOH)

Elemental Analysis (C₂₄H₂₉NO₃S₂)

Calcd.(%): C, 64.98; H, 6.59; N, 3.16; S, 14.46

Found(%): C, 64.92; H, 6.52; N, 3.32; S, 14.48

[0467] The compounds prepared in Examples above were tested for determining the in vivo and in vitro activities according to the method as shown in Experimental examples below.

Experiment 1 Binding activity to PGD₂ Receptor

- (1) Preparation of Human Platelet Membrane Fraction
- [0468] Blood was collected using a plastic syringe containing 3.8 % sodium citrate from the vein of healthy volunteers (adult male and female), then put into a plastic test tube and mixed by slow-reversion. The sample was then centrifuged at 1800 rpm, for 10 min at room temperature, and the supernatant containing PRP (platelet-rich plasma) was collected. The PRP was recentrifuged at 2300 rpm, for 22 min at room temperature to obtain platelets. The platelets were homogenized using a homogenizer (Ultra-Turrax) followed by centrifugation 3 times at 20,000 rpm, 10 min at 4 °C to obtain a platelet membrane fraction. After protein determination, the membrane fraction was adjusted to 2 mg/ml and preserved in a refrigerator at -80 °C until using for the binding test.
 - (2) Binding to PGD2 Receptor
- [0469] To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 5 mM MgCl2) (0.2 ml) were added the human platelet membrane fraction (0.1 mg) and 5 nM [³H]PGD2 (115 Ci/mmol), and the mixture was reacted at 4 °C for 90 min. After the reaction, the mixture was filtered through a glass fiber filter paper and washed several times with cooled physiological saline, then the radioactivity retained on the filter paper was measured. The specific-binding ratio was calculated by subtracting the non-specific binding ratio which is the radioactivity similarly measured in the presence of 10 μM PGD₂ from the total binding. The inhibitory activity of each compound was expressed as the concentration required for 50 % inhibition (IC₅₀), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %.

Experiment 2 Binding activity to TXA2 Receptor

- (1) Preparation of Human Platelet Membrane Fraction
- 5 [0470] The human platelet membrane fraction was prepared in accordance with Experiment 1 (1).
 - (2) Binding to TXA₂ Receptor

[0471] To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 10 mM MgCl₂) (0.2 ml) were added the human platelet membrane fraction (0.05 mg) and 2 nM Sodium [3 H](+)-(5Z)-7-[3-endo-[(phenylsulfonyl)amino]bicyclo[2.2.1]hept-2-exo-yl]heptenoate (Japanese Patent Publication (Kokoku) No.79060/1993, hereinafter referred to as (+)-S-145 sodium salt) (26.4 Ci/mmol), and the mixture was reacted at room temperature for 90 min. After the reaction, the resultant mixture was filtered through a glass fiber filter paper and washed several times with cooled physiological saline, then the radioactivity retained on the filter paper was measured. The specific-binding ratio was calculated by subtracting the non-specific binding ratio (the radio activity similarly determined in the presence of 10 μ M (+)-S-145 sodium salt) from the total binding. The inhibitory activity of each compound was expressed as the concentration required for 50 % inhibition (IC₅₀), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %.

Experiment 3 Evaluation of Antagonistic Activity Against PGD₂ Receptor Using Human Platelet

[0472] Peripheral blood was collected from a healthy volunteer using a syringe in which 1/9 volume of a citric acid/ dextrose solution was previously added. The sample was subjected to centrifugation at 180 g for 10 min to obtain the supernatant (PRP: platelet rich plasma). The resultant PRP was washed 3 times with a washing buffer and the number of platelets was counted with a micro cell counter. A suspension adjusted to contain the platelets at a final concentration of 5 x 10^8 /ml was warmed at 37 °C, then subjected to the pre-treatment with 3-isobutyl-1-methylxanthine (0.5 mM) for 5 min. To the suspension was added a test compound diluted at various concentration, and 10 minutes later, 0.1 μ M PGD₂ was added to induce the reaction 2 minutes later, hydrochloric acid was added to terminate the reaction. The platelet was destroyed with an ultrasonic homogenizer. After centrifugation, the cAMP in the supernatant was determined by radioimmunoassay. PGD₂ receptor antagonism of a drug was evaluated as follows: the inhibition rate regarding cAMP increased by the addition of PGD₂ was determined at each concentration, and the concentration of the drug required for 50 % inhibition (IC₅₀) was calculated.

[0473] The results of Experiment 1-3 are shown below.

Table 31

40	
45	

10

15

25

30

35

55	

Compound No.	Binding activity to PGD ₂ receptor in human platelet membrane fraction IC ₅₀ (µM)	Binding activity to TXA ₂ receptor in human platelet membrane fraction IC ₅₀ (μM)	Inhibitory activity for the increase of cAMP caused by PGD ₂ in human platelet IC ₅₀ (µM)
l-1b	0.0043	0.003	0.0013
I-10	0.0016	0.092	0.0018
l-31	0.0082	0.130	0.0057
l-47	0.0041	0.0062	0.007
I- 5 9	0.00041	0.016	0.0046
l-66	0.0046	0.034	0.044
l-79	0.00042	0.015	0.024
I-80	0.0066	0.0052	0.039
I-82	0.032	0.0018	0.053
l-88	0.0076	0.078	0.0047
l-93	0.0070	0.072	0.0084
l-94	0.001	0.083	0.01

Table 31 (continued)

5	Compound No.	Binding activity to PGD ₂ receptor in human platelet membrane fraction IC ₅₀ (μM)	Binding activity to TXA ₂ receptor in human platelet membrane fraction IC ₅₀ (μΜ)	Inhibitory activity for the increase of cAMP caused by PGD ₂ in human platelet IC ₅₀ (µM)
	I-104	0.0001	0.039	0.0016
	I-106	0.013	0.013	0.0093
10	I-117	0.0091	0.0038	0.047
	I-128	0.020	0.048	0.01
	I-129	0.011	0.052	0.022
15	I-131	0.044	0.019	0.041
15	I-132	0.032	0.012	0.043
	I-136	0.023	0.016	0.015
	I-143	0.0027	0.028	0.0019
20	I-146	0.044	0.019	0.073
	I-160	0.028	0.02	0.085
	I-168	0.00046	0.034	0.029
25	I-169	0.00061	0.032	0.026
23	I-170	0.00092	0.027	0.017
	I-182	0.061	0.028	0.011

Table 32

Compound No.	Binding activity to PGD ₂ receptor in human platelet membrane fraction IC ₅₀ (μM)	Binding activity to TXA ₂ receptor in human platelet membrane fraction IC ₅₀ (μM)	Inhibitory activity for the increase of cAMP caused by PGD ₂ in Human Platelet IC ₅₀ (µM)
II-11	0.0079	0.030	0.0003
II-15	0.002	0.012	0.011
II-18	0.00096	0.0036	0.004
II-21	0.0001	0.014	0.024
II-30	0.072	0.0040	0.045
II-34	0.0015	0.0044	0.0039
II-37	0.0046	0.045	0.004
II-40	0.026	0.0043	0.035
II-45	0.022	0.0026	0.024
II-59	0.032	0.072	0.025

[0474] Experiments for comparing the present compound having a dual antagonistic activity against PGD₂/TXA₂ receptors (e.g., I-1b, I-1c) with a PGD₂ receptor antagonist (e.g., B-1, B-2) and a TXA₂ antagonist (e.g., A) are shown below.

Compound (I-1b)

$$O_{S} S_{S} N$$
 $O_{NH} O_{2}$
 $O_{NH} O_{$

Comparative Experiment 1

5

20

25

30

35

40

45

50

55

[0475] The experiments were carried out in accordance with the above Experiment 1-3 for the purpose of comparing the compound having a dual antagonistic activity against PGD₂/TXA₂ receptor with a PGD₂ receptor antagonist and a TXA₂ receptor antagonist.

Table 33

	Experiment 1	Experiment 2	Experiment 3
Compound	Antaginistic activity against PGD ₂ receptor IC ₅₀ (μΜ)	Antaginistic activity against TXA ₂ receptor IC ₅₀ (μΜ)	Antaginistic activity against PGD ₂ receptor IC ₅₀ (μΜ)
Compound (I-1b) .	0.0043	0.003	0.0013
TXA ₂ receptor antagonist (A)	>10	0.0038	>10
PGD ₂ receptor antagonist (B-1)	0.0082	3.8	0.041

Comparative Experiment 2

Antigen-induced bronchial hyperresponsiveness

[0476] Male Hartley guinea pigs were actively sensitized to ovalbumin (OVA) by inhalation of aerosolized solution of 1% ovalbumin twice at a week interval. One week after the second sensitization, the animals were treated with antihistamine, diphenhydramine (10 mg/kg, i.p.), and then challenged with 1% OVA aerosol for 5 min. Twenty four hours later, acetylcholine at doses at 3.13, 6.25, 12.5, 25, 50 and 100 micro g/kg was sequentially injected into the animals which were anesthetized with pentobarbital (30 mg/kg, i.p.). The bronchoconstriction induced by each dose of acetylcholine was monitored by the modified method of Konzett-Rössler technique, and made a dose-response curve of acetylcholine. Using the dose-response curve, the dose required for 200% increase in bronchoconstriction from baseline (PD₂₀₀) was calculated in each animal and used as an indication of bronchial responsiveness. Compounds were orally administered 1 hour before antigen challenge.**: P<0.01 vs Vehicle(Dunnett's test), ##: P<0.01 vs Vehicle(Student's t test).

Table 34

	Log PD ₂₀₀
Vehicle	1.14 ± 0.03

Table 34 (continued)

	Log PD ₂₀₀
Compound (I -1b) 1mg/kg	1.25 ± 0.05
Compound (I -1b) 10mg/kg	1.52 ± 0.06 **
Negative control	1.59 ± 0.08 ##

Table 35

	Log PD200
Vehicle	1.23 ± 0.06
Compound (B-2)10mg/kg	1.17 ± 0.05
Negative control	1.61 ± 0.06##

Table 36

	Log PD ₂₀₀
Vehicle	1.11 ± 0.06
Compound (A)1mg/kg	1.29 ± 0.04
Compound (A)10mg/kg	1.61 ± 0.09 **
Negative control	1.69 ± 0.06 # #

[0477] As shown in Table 34, 35 and 36, a PGD_2 receptor antagonist (B-2) did not inhibit the induction of bronchial hyperresponsiveness, but TXA_2 receptor antagonist (A) and PGD_2/TXA_2 dual receptor antagonist, (e.g., I-1b) suppressed it, indicating that TXA_2 receptor antagonism is necessary for improvement of bronchial hyperresponsiveness.

Comparative Experiment 3

5

10

15

20

25

30

35

40

45

50

55

Antigen-induced increase in the eosinophil number in bronchoalveolar lavage fluid.

[0478] As described above, the animals were sensitized and challenged with antigen, seventy-two hours later, bronchoalveolar lavage was performed with 10 mL of saline. After the number of total cells in the recovered fluid was counted, smear samples were made. The samples were stained with May Grünward-Giemsa Stain, and differential cell count was performed by counting 500 cells/each sample. The eosinophil number was calculated by the ratio of the number of eosinophils, macrophages, neutrophils and lymphocytes. Compounds were orally administered three times 1 hour before and 24 and 48 hours after the challenge. The results are shown as follows. *: P<0.05, **: P<0.01 vs Vehicle(Dunnett's test), ##: P<0.01 vs Vehicle(Student's t test). (): inhibition %.

Table 37

	Cell number (× 10 ⁶ cells/animal)	
	Total cells	Eosinophils
Vehicle	18.99 ± 1.69	6.06 ± 0.81
Compound (I-1c) 1mg/kg	12.40 ± 1.27 **(50%)	4.33 ± 0.45 (38%)
Compound (I-1c) 10mg/kg	8.27 ± 0.65 **(81%)	2.64 ± 0.16 **(75%)
Negative control	5.72 ± 0.36**	1.49 ± 0.09##

Table 38

	Cell number (× 10 ⁶ cells/animal)	
	Total cells	Eosinophils
Vehicle	18.47 ± 0.70	6.56 ± 0.60
Compound (B-2) 10mg/kg	13.01 ± 1.58 **(45%)	4.49 ± 0.63 *(43%)

Table 38 (continued)

	,	
	Cell number ($ imes$ 10 6 cells/animal)	
	Total cells	Eosinophils
Negative control	6.32 ± 0.31 ##	1.78 ± 0.18 ##

Table 39

	Cell number (× 10 ⁶ cells/animal)	
	Total cells	Eosinophils
Vehicle	12.10 ± 1.91	4.23 ± 0.75
Compound (A) 10mg/kg	13.78 ± 1.75 (-18%)	4.90 ± 0.73 (-18%)
Negative control	2.98 ± 0.28 ##	0.55 ± 0.13 # #

[0479] As shown in Table 37, 38 and 39, PGD₂ receptor antagonist (B-2) and PGD₂/TXA₂ dual receptor antagonist (I-1c) significantly suppressed the eosinophil infiltration. But a TXA₂ receptor antagonist (A) did not show any inhibitory actions. These results indicate that PGD₂ receptor antagonism is necessary for suppression of inflammatory cell infiltration.

Comparative Experiment 4

5

10

15

20

25

30

35

40

45

50

55

Antigen-induced bronchoconstriction

[0480] Male Hartley guinea pigs were passively sensitized by intravenous injection of anti-OVA serum (antibody titer: 1: 3200), and 48 hours later, the animals were challenged by intravenous injection of OVA (70 micro g / kg). The bronchoconstriction induced by antigen was continuously monitored by means of modified method of Konzett-Rössler technique. The peak value of bronchoconstriction in each animal was used for evaluation of compounds. Compound (I-1b) and compound (B-2) were orally administered 1 hour before, compound (A) 2 hours before antigen challenge. The results are shown as follows. * : P<0.05 vs Vehicle, ## : P<0. 01 vs Vehicle. () : inhibition %.

Table 40

	Peak bronchoconstriction (cm H ₂ O)
Vehicle	68.3 ± 9.2
Compound (I-1b) 1 mg/kg	47.4 ± 11.4 (31%)
Compound (I-1b) 10 mg/kg	28.4 ± 12.9 *(58%)

Table 41

	Peak bronchoconstriction (cm H ₂ O)
Vehicle	30.3 ± 7.4
Compound (B-2) 1 mg/kg	36.5 ± 18.2 (-20%)
Compound (B-2) 30 mg/kg	51.8 ± 16.3 (-71%)

Table 42

	Peak bronchoconstriction (cm H ₂ O)
Vehicle	59.2 ± 7.3
Compound (A) 3 mg/kg	55.3 ± 6.7 (7%)
Compound (A) 10 mg/kg	18.8 ± 3.3 **(68%)

[0481] As shown in Table 40, 41 and 42, PGD₂ receptor antagonist (B-2) did not suppress the antigen-induced bronchoconstriction in this model but TXA₂ receptor antagonist (A) and PGD₂/TXA₂ dual receptor antagonist (I-1b)

dramatically suppressed it. These results indicate that TXA₂ receptor antagonism is necessary for inhibition of bronchoconstrition.

Formulation Example

5

[0482] It is to be noted that the following Formulation Examples 1 to 8 are mere illustration, but not intended to limit the scope of the invention. The term "Active ingredient" means a compound of the present invention, the prodrug thereof, their pharmaceutically acceptable salt, or their hydrate.

10 Formulation Example 1

[0483] Hard gelatin capsules are prepared using the following ingredients:

15

	Dose (mg/capsule)
Active ingredient	250
Starch, dried	200
Magnesium stearate	10
Total	460 mg

20

Formulation Example 2

[0484] Tablet are prepared using the following ingredients:

25

	Dose (mg/tablet)
Active ingredient	250
Cellulose, microcrystals	400
Silicon dioxide, fumed	10
Stearic acid	5
Total	665 mg

30

[0485] The ingredients are blended and compressed to form tablets each weighing 665 Formulation Example 3 [0486] An aerosol solution is prepared containing the following components:

40

35

	Weight
Active ingredient	0.25
Ethanol	25.75
Propellant 22 (chlorodifluoromethane)	74.00
Total	100.00

45 to

[0487] The active ingredient is mixed with ethanol and the admixture added to a portion of the propellant 22, cooled to -30 oC and transferred to a filling device. The required amount is then fed to a stainless steel container and diluted with the reminder of the propellant. The valve units are then fitted to the container.

Formulation Example 4

[0488] Tablets, each containing 60 mg of active ingredient, are made as follows.

Active ingredient	60 mg
Starch	45 mg
Microcrystals cellulose	35 mg
Polyvinylpyrrolidone (as 10% solution in water)	4 mg
Sodium carboxymethyl starch	4.5 mg

55

(continued)

,	Magnesium stearate	0.5 mg
	Talc	1 mg
	Total	150 mg

[0489] The active ingredient, starch, and cellulose are passed through a No. 45 mesh U.S. sieve, and the mixed thoroughly. The aqueous solution containing polyvinylpyrrolidone is mixed with the resultant powder, and the admixture then is passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50°C and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through No. 60 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

Formulation Example 5

5

10

15

20

35

45

50

55

[0490] Capsules, each containing 80 mg of active ingredient, are made as follows:

Active ingredient	80 mg
Starch	59 mg
Microcrystals cellulose	59 mg
Magnesium stearate	2 mg
Total	200 mg

[0491] The active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 45 mesh U.S. sieve, and filled into hard gelatin capsules in 200 mg quantities.

Formulation Example 6

30 [0492] Suppositories, each containing 225 mg of active ingredient, are made as follows:

Active ingredient	225 mg
Saturated fatty acid glycerides	2000 mg
Total	2225 mg

[0493] The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2g capacity and allowed to cool.

Formulation Example 7

[0494] Suspensions, each containing 50 mg of active ingredient per 5 ml dose, are made as follows:

Active ingredient	50 mg
Sodium carboxymethyl cellulose	50 mg
Syrup	1.25 ml
Benzoic acid solution	0.10 ml
Flavor	q.v.
Color	q.v.
Purified water to total	5 ml

[0495] The active ingredient is passed through a No. 45 U.S. sieve, and mixed with the sodium carboxymethyl cellulose and syrup to form a smooth paste. The benzoic acid solution, flavor and color are diluted with a portion of the water and added, with stirring. Sufficient water is then added to produce the required volume.

Formulation Example 8

5

10

15

20

25

30

35

40

45

50

55

[0496] An intravenous formulation may be prepared as follows:

Active ingredient	100 mg
Isotonic saline	1000 ml

[0497] The solution of the above ingredients is generally administered intravenously to a subject at a rate of 1 ml per minute.

Industrial Applicability

[0498] The pharmacological effect of the compound of the present invention is compared with that of TXA₂ receptor antagonist and PGD₂ receptor antagonist in the following table.

Table 43

	TXA2 receptor antagonist	PGD2 receptor antagonist	Compound (I)
Bronchial asthma			
Eosinophilic infiltration Advance of respiratory	× ©	(a) ×	00
anaphylaxis			
Respiratory contraction	0	×	0

[0499] In bronchial asthma, a TXA₂ receptor antagonist itself can inhibit advance of respiratory anaphylaxis and respiratory contraction, but has no effect for eosinophilic infiltration. A PGD₂ receptor antagonist itself can inhibit eosinophilic infiltration, but has no effect for advance of respiratory anaphylaxis and respiratory contraction. On the other hand, a compound having a dual antagonistic activity against PGD₂/TXA₂ receptors like the compound (I) is efficient for all of eosinophilic infiltration, advance of respiratory anaphylaxis and respiratory contraction.

[0500] The compound having a dual antagonistic activity against PGD₂/TXA₂ receptors is useful for treating systemic mastocytosis and disorder of systemic mast cell activation as well as tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, itching, atopic dermatitis, alimentary allergy, ischemic reperfusion injury, cerebrovascular disorder, and inflammation, and effective for treating or improving condition of diseases such as arteriosclerosis, myocardial infarction, acute myocardial ischemia angina, cardiovascular shock or preventing unexpected death and the like, especially asthma or nasal blockage.

[0501] With a dual antagonistic activity against both a TXA₂ receptor and a PGD₂ receptor, the present compound can overcome some problems such as that due to the metabolic rate difference of each compound, which occur upon simultaneous administration of both a TXA₂ receptor antagonist and a PGD₂ receptor antagonist.

Claims

1. A pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors which comprises a compound of the formula (I):

wherein

5

10

is

15

20

25

R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOR² or -CH=CH-CH₂-CH₂-CH₂-COOR²;

R² is hydrogen or alkyl;

m is 0 or 1;

p is 0 or 1, provided that when p = 0, X^1 is not bonded to X^3 via X^4 ;

X¹ and X³ each is independently optionally substituted aryl or optionally substituted heteroaryl;

 X^2 is a bond, $-CH_2$ -, $-CH_2$ -CH₂-, -C(=O)-, -O-, -S-, -SO-, $-SO_2$ -, -NH-, $-N(CH_3)$ -, -C(=N-O-CH₃)-, -N=N-, -CH=CH-, -(C=O)-NH-, -NH-(C=O)-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -O-, -O-CH₂-, $-CH_2$ -S-, -S-CH₂-, $-SO_2$ -NH- or -NH-SO₂-;

 X^4 is $-CH_2$ -, $-CH_2$ -CH₂-, -C(=O)-, -SO-, -SO-, -SO-, -(C=O)-NH-, -NH-(C=O)-, -CH-NH-, -NH-CH₂-, -CH-O-, -CH-S-, -CH-S-, -CH-SO₂-, -CH-SO₂-, -SO-CH₂-, -SO-NH- or -NH-SO₂-, a prodrug, a pharmaceutically acceptable salt or a hydrate thereof.

30

2. The pharmaceutical composition having a dual antagonistic activity against PGD_2/TXA_2 receptors according to claim 1 wherein at least one of X^1 and X^3 is optionally substituted heteroaryl.

35

- 3. The pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors according to claim 1 or 2 wherein R¹ is -CH₂-CH₂-CH₂-CH₂-COOH, m is 0 and p is 0.
- 4. The pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors according to any one of claims 1 to 3 which is used for asthma.
 - 5. The pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors according to any one of claims 1 to 3 which is used for nasal blockage.
- 45 **6.** Use of the compound according to any one of claims 1 to 3 for manufacturing a pharmaceutical composition for asthma or nasal blockage.
 - 7. A method for treating asthma or nasal blockage which comprises administering the compound according to any one of claims 1 to 3.

50

8. A compound of the formula (I):

55

wherein

5

20

40

55

15

is

R¹ is -CH₂-CH=CH-CH₂-CH₂-COOR² or -CH=CH-CH₂-CH₂-COOR²; R² is hydrogen or alkyl;

m is 0 or 1;

p is 0 or 1, provided that when p = 0, X^1 is not bonded to X^3 via X^4 ; 35

X¹ and X³ each is independently optionally substituted aryl or optionally substituted heteroaryl;

 X^2 is a bond, $-CH_2$ -, $-CH_2$ - CH_2 -, -C(=O)-, -O-, -S-, -SO-, $-SO_2$ -, -NH-, $-N(CH_3)$ -, $-C(=N-O-CH_3)$ -, -N=N-, -N-, -CH=CH-, -(C=O)-NH-, -NH-(C=O)-, -CH₂-NH-, -NH-CH₂-, -CH₂-O-, -O-CH₂-, -CH₂-S-, -S-CH₂-, -CH₂-SO₂-, $-SO_2-CH_2-$, $-SO_2-NH-$ or $-NH-SO_2-$;

 X^4 is $-CH_2$ -, $-CH_2$ -CH₂-, -C(=O)-, -SO-, -SO-, -(C=O)-NH-, -NH-(C=O)-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -O-, $-CH_2$ -O-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -O-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -O-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -O-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -NH-, -NH-CH₂-, $-CH_2$ -NH-, -NH-CH₂-NH-, -NH-NH-, -NH-CH₂-NH-, -NH-NH-, -NH-O-CH₂-, -CH₂-S-, -S-CH₂-, -CH₂-SO₂-, -SO₂-CH₂-, -SO₂-NH- or -NH-SO₂-;

provided that when

45 50

İS

a compound wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-CH₂-COOR², R² is hydrogen or methyl, m is 0, p is 0, X¹ is phenyl optionally substituted with methoxy, X² is a bond, -O-, -CH₂-, -C(=O)-NH-, -S- or -N=N-, and X³ is phenyl optionally substituted with hydroxy, acetoxy or methoxy, and a compound wherein R¹ is -CH₂-CH=CH-CH₂-CH₂-COOH, m is 1, p is 0, X¹ is phenyl, X² is -N=N-, and X³ is phenyl, are excluded, and when

Y

is

30

35

25

5

10

15

20

 R^1 is $-CH_2$ - CH_2 - CH_2 - CH_2 - $COOR^2$, R^2 is hydrogen or methyl, m is 0, and p is 0, a compound wherein X^1 is phenyl optionally substituted with methyl or methoxy, X^2 is a bond, $-CH_2$ - CH_2 -, -C(=O)-, -NH-, -O-, -S-, -SO-, $-SO_2$ -, -CH=CH-, -N=N-, -C(=O)-NH- or -NH-C(=O)-, and X^3 is phenyl optionally substituted with methyl, hydroxy, acetoxy, methoxy, ethoxy, isopropoxy, dimethylamino, hydroxymethyl, methoxymethyl or carboxy, a compound wherein X^1 is phenyl, X^2 is a bond, $-CH_2$ - or -CH=CH-, and X^3 is imidazolyl, thienyl, pyridyl or tetrazolyl optionally substituted with methyl or phenyl, and a compound wherein X^1 is benzothienyl, isoxazolyl or thienyl optionally substituted with methyl, X^2 is a bond or -S-, and X^3 is phenyl optionally substituted with methoxy or methyl, are excluded, a prodrug, a pharmaceutically acceptable salt, a hydrate thereof.

40

55

- **9.** The compound according to claim 8 wherein at least one of X^1 and X^3 is optionally substituted heteroaryl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof.
- 10. The compound according to claim 8 wherein X¹ and X³ each is independently optionally substituted heteroaryl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof.
 - 11. The compound according to claim 8 wherein at least one of X^1 and X^3 is optionally substituted thienyl or optionally substituted benzothienyl, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof.
- 12. The compound according to any one of claims 8 to 11 wherein X² is a bond, -CH₂-, -S-, -SO₂-, -CH₂-O-, -O-CH₂-, -CH₂-S- or -S-CH₂-, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof.
 - **13.** The compound according to any one of claims 8 to 12 wherein R¹ is-CH₂-CH=CH-CH₂-CH₂-CH₂-COOH, m is 0, and p is 0, the prodrug, the pharmaceutically acceptable salt, the hydrate thereof.
 - 14. A pharmaceutical composition which comprises a compound according to any one of claims 8 to 13.
 - 15. A pharmaceutical composition having a dual antagonistic activity against PGD₂/TXA₂ receptors which comprises

a compound according to any one of claims 8 to 13.

16. The pharmaceutical composition comprising a compound according to claim 14 or 15, which is used for asthma. 17. The pharmaceutical composition comprising a compound according to claim 14 or 15, which is used for nasal blockage.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01223

			PC1/U1	700/01223
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07C233/85, 323/62, 311/21, 317/44, C07D409/12, 333/38, 295/02, 333/36, 417/00, 513/00, A61KA31/196, 31/381, 31/40, 31/404, 31/426, 31/4025, 31/435, 31/4155, 31/4164, 31/4188 According to International Patent Classification (IPC) or to both national classification and IPC				
		nonai ciassification ai	id if C	
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07C233/85, 323/62, 311/21, 317/44, C07D409/12, 333/38, 295/02, 333/36, 417/00, 513/00, A61KA31/196, 31/381, 31/40, 31/404, 31/426, 31/4025, 31/435, 31/4155, 31/4164, 31/4188				
Documentati	on searched other than minimum documentation to the	extent that such docu	ments are included	in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), MEDLINE (STN), EMBASE (STN)				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		,." IT A	
Category*	Citation of document, with indication, where ap	propriate, of the relev	ant passages	Relevant to claim No.
X	TATSUO Tsuri, et al., 'Bicyclo[Dimethylbicyclo[3.1.1]heptane Dactive, Potent, and Selective Prantagonists' J. med. Chem., 1997, Vol.40, No.22, pages 3504	2.2.1]heptan erivatives: (ostagrandin I	e and 6,6- Orally	1-6,8-17
Х	WO, 97/00853, A1 (SHIONOGI & CO., LTD.), 09 January, 1997 (09.01.97), whole document, & EP, 837052, A1		1-6,8-17	
P,X	WO, 99/15502, A1 (SHIONOGI & CC 01 April, 1999 (01.04.99), whol		No family)	1-6,8-17
Further	documents are listed in the continuation of Box C.	See patent fam	ily annex.	
"A" docume consider date "L" docume cited to special docume means "P" docume than the	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance locument but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later entity date claimed ectual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report		
שנו טכ	ay, 2000 (30.05.00)	13.06.00		
	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No.		Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01223

(Continuation of "Box II Observations where unity of invention is lacking")

Inventions as set forth in claims 14 to 17 relate to medicinal compositions antagonistic to both of PGD_2/TXA_2 receptors which contain as the active ingredient the compounds as described in any of claims 8 to 13.

Considering the contents of the description, specific compounds are excluded in claims 8 to 13 seemingly because, according to the applicant's assertion, these specific compounds excluded are publicly known compounds while others are novel compounds. Such being the case, there are two inventive concepts, i.e., "inventions of use of novel compounds" and "inventions of novel use of publicly known compounds" in the description of claims 1 to 6. As a result, inventions as set forth in claims 1 to 6 and inventions as set froth in claims 8 to 17 are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

Form PCT/ISA/210 (extra sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01223

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. A Claims Nos.: 7 because they relate to subject matter not required to be searched by this Authority, namely:
The subject matter of claim 7 relates to a method for treatment of the human body by therapy, which does not require an international search report by the International Search Authority in accordance with PCT Article 17(2)(a)(i) and Rule 39.1(iv).
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Inventions as set forth in claims 1 to 5 relate to medicinal compositions antagonistic to both of PGD ₂ /TXA ₂ receptors which contain as the active ingredient the benzoquinone derivatives represented by the general formula (I) as given in claim 1, hydroquinone derivatives thereof or pharmacologically acceptable salts thereof. Invention as set forth in claim 6 relates to use of the compounds as described in any of claims 1 to 3 in producing remedies for asthma or nasal obstruction. Inventions as set forth in claims 8 to 13 relate to the compounds having a bicyclo skeleton represented by the formula (I) as given in claim 8, prodrugs thereof, pharmaceutically acceptable salts thereof or hydrates thereof per se, though some compounds are excluded therefrom.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)