### Имитостойкость шифров. Коды аутентификации и стратегии навязывания

Имитостойкость шифров. Алгебраическая и вероятностная модели кода аутентификации. Вычисление вероятностей имитации и подмены сообщения. Комбинаторные границы. Ортогональные матрицы. Оценка вероятностей имитации и навязывания через энтропию.

### 1. Имитостойкость шифров

Uмитостойкость шифра это способность шифра  $\Sigma_A$ =(X,K,Y,E,D) противостоять попыткам противника по имитации или подмене сообщения.

Под *имитацией* некоторого сообщения x понимается создание без знания ключа k зашифрования шифробозначения y, из которого расшифрованием на ключе k формируется это сообщение x:  $x=D_k(y)\in \in X$ .

Вероятность успешной имитации обозначим

$$p_{\text{\tiny HM}}(y) = p(D_k(y) \in X) = p(\exists k D_k(y) \in X) = \sum_{\{k \in K/D_k(y) \in X\}} p(k)$$
(3.1)

Под подменой некоторого сообщения x некоторым другим сообщением x понимается замена без знания ключа k шифробозначения  $y=E_k(x)$  шифробозначением y, из которого расшифрованием на ключе k формируется сообщение x: x:= $D_k(y$ ) $\in$   $\in X$ .

Вероятность успешного такого действия обозначим

$$P_{\text{подм}}(y',y)=p((D_k(y')\in X, y'\neq y)).$$

Имитостойкость шифра характеризуется следующими величинами:

- вероятностью имитации сообщения

$$p_{\text{им}} = \max_{y \in Y} p_{\text{им}}(y);$$

вероятностью подмены сообщения х.

$$p_{\text{подм}} = \max_{\substack{y,y' \in Y \\ y' \neq y}} p_{\text{подм}}(y',y) .$$

Обобщённой характеристикой является вероятность навязывания

$$p_{\scriptscriptstyle \rm H}$$
=max $(p_{\scriptscriptstyle \rm ИM},p_{\scriptscriptstyle \rm ПОДМ})$ .

**Утверждение 1.** Для шифра  $\Sigma_{\rm B}$  с равновероятными ключами имеет место достижимая оценка

$$p_{\text{\tiny MM}} \ge \frac{\mid X \mid}{\mid Y \mid}$$
.

Доказательство. Заметим, что множество ключей, позволяющих посредством данного шифробозначения  $y \in Y$  получить (имитировать) некоторую шифровеличину  $x \in X$ , есть

$$K(y) = \{k/k \in K, D_k(y) \in X\} = \{k/k \in K, \exists x E_k(x) = y\}.$$

Учитывая, что для каждой пары (x,k) найдется единственное значение y такое, что  $E_k$  (x)=y, и что разным шифр величинам при одинаковых ключах соответствуют разные шифр обозначения  $(x_1\neq x_2 \rightarrow E_k(x_1)\neq E_k(x_2))$  имеем  $\forall y|K(y)|=|T(y)|$ , где  $T(y)=\{(x,k)/E_k(x)=y\}$ . Отсюда

$$\sum_{y \in Y} |K(y)| = |X \parallel K|$$

и, следовательно,

$$\max_{y \in Y} |K(y)| \ge \frac{|K \parallel X|}{|Y|}.$$

При равновероятных ключах  $p_{\scriptscriptstyle {\rm HM}}(y) = p(D_k(y) \in X) = \frac{\mid K(y) \mid}{\mid K \mid}$ , откуда

$$p_{\text{им}} = \max_{y \in Y} p_{\text{им}}(y) =$$

$$= \max_{y \in Y} \frac{|K(y)|}{|K|} = \frac{\max_{y \in Y} |K(y)|}{|K|} \ge \frac{|K||X|}{|Y||K|} = \frac{|X|}{|Y|}.$$

Данная оценка достигается (то есть имеет место равенство  $p_{\text{им}} = \frac{\mid X \mid}{\mid Y \mid}$ ) для шифра  $\Sigma_{\text{В}}$ , при котором  $E_{k_1}(x_1) = E_{k_2}(x_2)$  тогда и только тогда, когда  $k_1 = k_2$  и  $x_1 = x_2$ . Для такого шифра посредством шифробозначения y можно имитировать единственную шифровеличину x: |Y| = |X||K|, |K(y)| = 1 и, следовательно,  $p_{\text{им}} = \frac{\mid K(y) \mid}{\mid K \mid} = \frac{1}{\mid K \mid} = \frac{\mid X \mid}{\mid Y \mid}$  выполняется для всех y (см. Рис. 1, где |X| = |K| = 2, |Y| = 4).



Как видно из доказанного утверждения, обеспечение имитостойкости возможно лишь при введении существенной избыточности при зашифровании сообщений.

Достижимая оценка вероятности подмены сообщения определяется следующим утверждением

**Утверждение 2.** Для шифра  $\Sigma_{\rm B}$  с равновероятными ключами имеет место достижимая оценка

$$p_{\text{подм}} \ge \frac{\mid X \mid -1}{\mid Y \mid -1}$$
.

# 2. Алгебраическая и вероятностная модели кода аутентификации

Из утверждений 1,2 следует, что обеспечение целостности сообщений, передаваемых по каналу связи, связано с введением избыточности. Обеспечение целостности при использовании обеспечение симметричной криптосистемы конфиденциальности лве самостоятельны задачи криптографической зашиты. обе они предполагают использование секретного ключа. известного только отправителю и получателю. При обеспечении целостности только преобразования зашифрования используются случае преобразованиями (называемые данном аутентификации). Вместо алгебраической  $\Sigma_A = (X, K, Y, E, D)$  и  $\Sigma_{\rm R}=(X,K,Y,E,D,P(X),P(K))$ моделей вероятностной шифра используются алгебраическая и вероятностная модели кода аутентификации. Они определяются четвёркой (X, K, A, E)шестёркой (X,K,A,E,P(X),P(K)) соответственно, где

X — множество возможных исходных сообщений (шифрвеличин), K — множество ключей.

А – множество билетов аутентификации,

E — множество преобразований аутентификации, зависящих от ключа:  $E=\{e_k: X \rightarrow A, k \in K\}$ ,

P(X) – распределение вероятностей на множестве исходных сообщений.

P(K) – распределение вероятностей на множестве ключей.

Сообщение, отправляемое получателю, есть пара y=(x,a), Получаемое сообщение y'=(x',a') $a=E_{k}(x)$ . вмешательства третьей стороны может отличаться от (x,a). Предполагается, что отправителю и получателю известна алгебраическая модель и используемый ключ k. проверить, удовлетворяет позволяет получателю полученное им сообщение (x',a') равенству  $a' = e_k(x')$ . Эта проверка рассматривается как расшифрование: указанное равенство выполняется, сообшение получателем, принимается иначе оно отклоняется. Вероятность приема произвольного такого сообщения есть

$$p_{\text{HM}}(y) = p_{\text{HM}}(x, a) = p(\exists k e_k(x) = a) = \sum_{a = e_k(x)} p(k)$$
(3.1).

Передаваемое сообщение y=(x,a) принадлежит *множеству* сообщений  $M=X\times A$ . Распределения вероятностей P(X) и P(K) индуцируют распределение вероятностей P(M):

$$p(x,a)=p(x)\times p(a|x)=p(x)\times \sum_{a=e_k(x)}p(k)=p(x)\times p_{\text{\tiny HM}}(x,a).$$
 (3.2)

Предполагается также, что третьей стороне известна вероятностная модель кода аутентификации. Это позволяет ей сформировать сообщение (x,a), наиболее вероятно удовлетворяющее равенству  $a=e_k(x)$ , а если известно преданное сообщение (x,a), то заменить его сообщением (x',a') также наиболее вероятно удовлетворяющим равенству  $a'=e_k(x')$ . Тем самым достигается максимальная вероятность  $p_{\text{им}}$  имитации или  $p_{\text{подм}}$  подмены сообщения третьей стороной.

## 3. Вычисление вероятностей имитации и подмены сообщения

Рассмотрим алгебраическую модель  $\Sigma_A = (X, K, A, E)$  кода аутентификации, в которой  $X = A = Z_3$  и  $K = Z_3 \times Z_3$ , а преобразование аутентификации для ключа  $(i,j) \in K$  определятся соотношением  $e_{i,j}(x) = ix + j \mod 3$ .

Все значения  $e_{i,j}(x)$  удобно представить в виде матрицы M аутентификации размером  $|K| \times |X|$ . Её строки соответствуют ключам k, а столбцы — исходным сообщениям x. Элементы M(i,j) являются билетами аутентификации  $e_{i,j}(x)$ . Матрица аутентификации для рассматриваемого примера имеет вид

| Ключ  |   | X |   |
|-------|---|---|---|
| k     | 0 | 1 | 2 |
| (0,0) | 0 | 0 | 0 |
| (0,1) | 1 | 1 | 1 |
| (0,2) | 2 | 2 | 2 |
| (1,0) | 0 | 1 | 2 |
| (1,1) | 1 | 2 | 0 |
| (1,2) | 2 | 0 | 1 |
| (2,0) | 0 | 2 | 1 |
| (2,1) | 1 | 0 | 2 |
| (2,2) | 2 | 1 | 0 |

Допустим, что распределение вероятностей P(K) является равномерным, то есть для всех  $k \in K$  p(k)=1/9. Распределение вероятностей P(X) не рассматриваем, так как в данном случае оно несущественно.

Заметим, что для каждого конкретного ключа k попытка имитации окажется успешной, если для выбранного третьей стороной сообщения x будет выполнено равенство  $a=e_k(x)$ .

(2,2) 2 1 0 В таблице аутентификации для сообщения x возможны три варианта билета аутентификации и каждый конкретный билет встречается в каждом столбце таблицы по три раза: он соответствует трем из девяти возможных ключей. Соответственно три из девяти способов выбора билета для данного сообщения соответствуют успеху

имитации. Отсюда следует, что вероятность успешной имитации  $p_{\scriptscriptstyle \mathrm{HM}}$  при использовании любого билета при любом выбранном сообщении равна 1/3.

Рассмотрим теперь задачу подмены. По известной информации (x,a), решая уравнение

$$a=ix+j \mod 3$$

относительно неизвестных i и j, получим три возможных решения, составляющих множество, которому принадлежит неизвестный третьей стороне ключ k, например если (x,a)=(0,0), то

$$k \in \{ (0,0), (1,0), (2,0) \}.$$

Только один из них, например, (0,0) используется легальным сторона, получателем, третья ввиду равновероятного ключей. оснований распределения не имеет предпочтение одному Успешная ΗИ ИЗ них. подмена шифровеличины х=0, например шифровеличиной 2 может быть ключа (0,0): если k=(0,0), выборе при  $e_k(2) = e_{(0,0)}(x) = 0$ , в то время как  $e_{(1,0)}(2) = 2$ ,  $e_{(2,0)}(2) = 1$ . Таким образом, из трёх возможных вариантов подмены  $((x',a') \in \{(2,0),(2,1),(2,2)\})$  только первый окажется успешным. Но третья сторона не имеет оснований отдать предпочтение ни одному из этих вариантов. Ввиду равномерного распределения вероятностей ключей вероятность успеха подмены сообщения  $p_{\text{подм}}$  равна 1/3.

Теперь посмотрим, как вычислить вероятность  $p_{\text{им}}$  успешной имитации и вероятность  $p_{\text{подм}}$  успешной подмены сообщения в общем виде. Как и раньше, мы обозначаем k ключ, используемый получателем. Нетрудно видеть (см. (3.1)), что

$$p_{\text{\tiny HM}}(x,a) = p(a = e_k(x)) = \sum_{\{k \in K/e_k(x) = a\}} p(k).$$

Таким образом, вероятность  $p_{\text{им}}(x,a)$  успеха имитации (x,a) легко подсчитать как сумму вероятностей ключей, соответствующих тем строкам таблицы аутентификации, которые в столбце x содержат значения a. Вероятность  $p_{\text{им}}$  успешной имитации можно определить как.

$$p_{\text{\tiny HM}} = \max_{x \in X, a \in A} p_{\text{\tiny HM}}(x, a).$$
 (3.3)

Обратим внимание, что эта вероятность не зависит от распределения вероятностей P(X) исходных сообщений.

Вероятность  $p_{\text{подм}}(x',a';x,a)$  подмены аутентифицированного сообщения (x,a) ложно аутентифицированным сообщением (x',a'),  $x'\neq x$  можно вычислить как

$$p_{\text{подм}}(x',a';x,a) = p(a' = e_k(x')|a = e_k(x)) =$$

$$= \frac{p((a'=e_k(x')) \wedge (a=e_k(x)))}{p(a=e_k(x))} = \frac{\sum_{(a'=e_k(x')) \wedge (a=e_k(x))}}{p_{u_M}(x,a)}.$$
 (3.4)

Для достижения максимальной вероятности успешной подмены данного сообщения (x,a) третья сторона вычислит

$$p_{\text{подм}}(x,a) = \max_{x' \in X, a' \in A} p_{\text{подм}}(x',a';x,a)$$

и выберет (x',a') из условия  $p_{\text{подм}}(x',a';x,a) = p_{\text{подм}}(x,a)$ . Таким образом, вероятность  $p_{\text{подм}}(x,a)$  есть вероятность успешной подмены известного аутентифицированного сообщения (x,a) некоторым ложно аутентифицированным сообщением (x',a').

Вероятность подмены  $p_{\text{подм}}$  определяется как средняя вероятность подмены данного сообщения из множества сообщений с распределением (3.2)вероятностей P(M):

$$p_{\text{подм}} = \sum_{(x,a) \in M} p(x,a) p_{no\partial M}(x,a).$$

Учитывая (3.2) и (3.4), это значение можно вычислить и более просто:

$$\begin{split} p_{\text{подм}} &= \sum_{(x,a) \in M} p(x,a) \, p_{no\partial_{M}}(x,a) = \\ &= \sum_{(x,a) \in M} p(x) \times p_{u_{M}}(x,a) \, \max_{x' \in X, a' \in A} \frac{\sum_{(a' = e_{k}(x')) \land (a = e_{k}(x))} p(k)}{p_{u_{M}}(x,a)} = \\ &= \sum_{(x,a) \in M} p(x) \times q_{(x,a)}, \end{split}$$

где 
$$q_{(x,a)=} \max_{x' \in X, a' \in A} \sum_{(a'=e_k(x')) \land (a=e_k(x))} p(k)$$
.

В рассмотренном примере  $p_{\text{им}}(x,a)=1/3$  для всех (x,a), поэтому  $p_{\text{им}}=1/3$ . Можно также проверить, что  $p_{\text{подм}}(x',a';x,a)=1/3$  для всех (x'a') и (x,a), следовательно  $p_{\text{подм}}=1/3$ 

при любых распределениях вероятностей P(X). В общем же случае  $p_{\text{полм}}$  зависит от P(X).

**Пример 3.1.** Рассмотрим код аутентификации  $(\{1,2,3,4\},\{1,2,3\},\{1,2\},E)$ , в котором множество преобразований аутентификации задаётся следующей матрицей аутентификации:

| Ключ | p(k) |   | Σ | ζ |   |
|------|------|---|---|---|---|
| k    |      | 1 | 2 | 3 | 4 |
| 1    | 1/2  | 1 | 1 | 1 | 2 |
| 2    | 1/4  | 2 | 2 | 1 | 2 |
| 3    | 1/4  | 1 | 2 | 2 | 1 |

Пусть распределение вероятностей P(X) равномерное, то есть  $p_X(1)=p_X(2)=p_X(3)=p_X(4)=1/4$ , а распределение P(K) ключей таково, что  $p_K(1)=1/2$ ,  $p_K(2)=p_K(3)=1/4$ .

Вероятности  $p_{\text{им}}(x,a)$  имитации представлены в правом столбце таблицы ниже.

Как видим,  $p_{\text{им}} = 3/4$ , и оптимальной стратегией имитации третьей стороны является навязывание одного из следующих сообщений: (1,1),(3,1) или (4,2).

Для вычисления вероятности  $p_{\text{подм}}$  и оптимальной стратегии подмены вычислим вероятности  $p(x',a';x,a) = \sum_{(a'=e_k(x')) \wedge (a=e_k(x))} p(k)$  ,

 $x' \neq x$ , и  $p_{\text{подм}}(x',a';x,a) = p(x',a';x,a)/p_{\text{вм}}(x,a)$ ,  $x' \neq x$ . Они представлены в следующих таблицах (строки соответствуют (x,a), столбцы соответствуют (x',a')).

| p(x',a',x,a) |       |       |       |       | (x',a') |       |       |       | $p_{\text{им}}$ $(x,a)$ |
|--------------|-------|-------|-------|-------|---------|-------|-------|-------|-------------------------|
| (x,a)        | (1,1) | (1,2) | (2,1) | (2,2) | (3,1)   | (3,2) | (4,1) | (4,2) |                         |
| (1,1)        |       |       | 1/2   | 1/4   | 1/2     | 1/4   | 1/4   | 1/2   | 3/4                     |
| (1,2)        |       |       | 0     | 1/4   | 1/4     | 0     | 0     | 1/4   | 1/4                     |
| (2,1)        | 1/2   | 0     |       |       | 1/2     | 0     | 0     | 1/2   | 1/2                     |
| (2,2)        | 1/4   | 1/4   |       |       | 1/4     | 1/4   | 1/4   | 1/4   | 1/2                     |
| (3,1)        | 1/2   | 1/4   | 1/2   | 1/4   |         |       | 0     | 3/4   | 3/4                     |
| (3,2)        | 1/4   | 0     | 0     | 1/4   |         |       | 1/4   | 0     | 1/4                     |
| (4,1)        | 1/4   | 0     | 0     | 1/4   | 0       | 1/4   |       |       | 1/4                     |
| (4,2)        | 1/2   | 1/4   | 1/2   | 1/4   | 3/4     | 0     |       |       | 3/4                     |

При равномерном распределении ключей получается следующая таблина

| $p_{\text{подм}}$<br>(x',a',x,a) |       |       |       | (x',a') |       |       |       |       | $p_{\scriptscriptstyle HM} \ (x,a)$ |
|----------------------------------|-------|-------|-------|---------|-------|-------|-------|-------|-------------------------------------|
| (x,a)                            | (1,1) | (1,2) | (2,1) | (2,2)   | (3,1) | (3,2) | (4,1) | (4,2) |                                     |
| (1,1)                            |       |       | 2/3   | 1/3     | 2/3   | 1/3   | 1/3   | 2/3   | 3/4                                 |

| (1,2) |     |     | 0   | 1   | 1   | 0   | 0   | 1   | 1/4 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (2,1) | 1   | 0   |     |     | 1   | 0   | 0   | 1   | 1/2 |
| (2,2) | 1/2 | 1/2 |     |     | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| (3,1) | 2/3 | 1/3 | 2/3 | 1/3 |     |     | 0   | 1   | 3/4 |
| (3,2) | 1   | 0   | 0   | 1   |     |     | 1   | 0   | 1/4 |
| (4,1) | 1   | 0   | 0   | 1   | 0   | 1   |     |     | 1/4 |
| (4,2) | 2/3 | 1/3 | 2/3 | 1/3 | 1   | 0   |     |     | 3/4 |

Из таблицы для  $p_{\text{подм}}$  (x,a,x,a) получаем, что  $p_{\text{подм}}$  (1,1)=2/3,  $p_{\text{подм}}$  (2,2)=1/2,  $p_{\text{подм}}$ (x,a)=1 при (x,a) $\notin$ {(1,1),(2,2)}. Отсюда, учитывая, что

$$p(x,a)=p(x)p_{\text{\tiny HM}}(x,a), p(x)=1/4,$$

вычислим  $p(x,a) \times p_{\text{полм}}(x,a)$ 

| (x,a)                         | (1,1) | (1,2) | (2,1) | (2,2) | (3,1) | (3,2) | (4,1) | (4,2) |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| p(x,a)                        | 3/16  | 1/16  | 1/8   | 1/8   | 3/16  | 1/16  | 1/16  | 3/16  |
| $p_{\text{подм}}(x,a)$        | 2/3   | 1     | 1     | 1/2   | 1     | 1     | 1     | 1     |
| p(x,a)                        | 1/8   | 1/16  | 1/8   | 3/16  | 3/16  | 1/16  | 1/16  | 3/16  |
| $\times p_{\text{подм}}(x,a)$ |       |       |       |       |       |       |       |       |

и получим  $p_{\text{полм}} = 2/8 + 10/16 = 7/8$ .

Оптимальная стратегия подмены третьей стороны, обеспечивающая  $p_{\text{полм}} = 7/8$ , представлена в следующей таблице

| () | (,a)   | (1,1) | (1,2) | (2,1) | (2,2) | (3,1) | (3,2) | (4,1) | (4,2) |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| (x | c',a') | (2,1) | (2,2) | (1,1) | (1,1) | (4,2) | (1,1) | (1,1) | (3,1) |

Как видим, в данном случае обобщённая характеристика — вероятность *навязывания* 

$$p_{\text{H}} = \max(p_{\text{им}}, p_{\text{подм}}) = \max(3/4, 7/8) = 7/8.$$

**Пример 3.2.** Пусть распределение вероятностей P(X) равномерное, то есть  $p_X(1)$ =  $p_X(2)$ =  $p_X(3)$ =  $p_X(4)$ =1/4, а распределение P(K) ключей таково, что  $p_K(1)$ =1,  $p_K(2)$ =  $p_K(3)$ =0. (третьей стороне известен ключ).

| Ключ | p(k) |   | Σ | ζ. |   |
|------|------|---|---|----|---|
| k    |      | 1 | 2 | 3  | 4 |
| 1    | 1    | 1 | 1 | 1  | 2 |
| 2    | 0    | 2 | 2 | 1  | 2 |
| 3    | 0    | 1 | 2 | 2  | 1 |

Вероятности  $p_{\text{им}}(x,a)$  имитации представлены в правом столбие таблицы ниже.

Как видим,  $p_{\text{им}} = 1$ , и оптимальной стратегией имитации третьей стороны является навязывание одного из следующих сообщений: (1,1),(2,1),(3,1) или (4,2).

Для вычисления вероятности  $p_{\text{подм}}$  и оптимальной стратегии подмены вычислим вероятности p(x',a';x,a),  $x'\neq x$ ,  $p_{\text{подм}}(x',a';x,a)$ ,  $x'\neq x$ . Они представлены в следующих таблицах (строки соответствуют (x,a), столбцы соответствуют (x',a')).

|       |       |       |       | (x',  | a')   |       |       |       | р <sub>им</sub><br>( x,a) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------|
| (x,a) | (1,1) | (1,2) | (2,1) | (2,2) | (3,1) | (3,2) | (4,1) | (4,2) |                           |
| (1,1) |       |       | 1     | 0     | 1     | 0     | 0     | 1     | 1                         |
| (1,2) |       |       | 0     | 0     | 0     | 0     | 0     | 0     | 0                         |
| (2,1) | 1     | 0     |       |       | 1     | 0     | 0     | 1     | 1                         |
| (2,2) | 0     | 0     |       |       | 0     | 0     | 0     | 0     | 0                         |
| (3,1) | 1     | 0     | 1     | 0     |       |       | 0     | 1     | 1                         |
| (3,2) | 0     | 0     | 0     | 0     |       |       | 0     | 0     | 0                         |
| (4,1) | 0     | 0     | 0     | 0     | 0     | 0     |       |       | 0                         |
| (4,2) | 1     | 0     | 1     | 0     | 1     | 0     |       |       | 1                         |

Из таблицы для  $p_{\text{подм}}$  (x',a',x,a) получаем, что  $p_{\text{подм}}$  (1,1)=  $p_{\text{подм}}$  (2,1)=  $p_{\text{подм}}$  (3,1)  $p_{\text{подм}}$  (4,2)==1,  $p_{\text{подм}}$  (1,2)=  $p_{\text{подм}}$  (3,2)= $p_{\text{подм}}$  (4,1)=0. Отсюда, учитывая, что

$$p(x,a)=p(x)p_{_{\rm MM}}(x,a), p(x)=1/4,$$

вычислим  $p(x,a) \times p_{\text{полм}}(x,a)$ 

| (x,a)                        | (1,1) | (1,2) | (2,1) | (2,2) | (3,1) | (3,2) | (4,1) | (4,2) |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| p(x,a)                       | 1     | 0     | 1     | 0     | 1     | 0     | 0     | 1     |
| $p_{\text{подм}}(x,a)$       | 1     | 0     | 1     | 0     | 1     | 0     | 0     | 1     |
| p(x,a)                       | 1     | 0     | 1     | 0     | 1     | 0     | 0     | 1     |
| $	imes p_{\text{подм}}(x,a)$ |       |       |       |       |       |       |       |       |

и получим  $p_{\text{полм}} = 1/4 \times 4 = 1$ .

Оптимальная стратегия подмены третьей стороны, обеспечивающая  $p_{\text{полм}} = 1$ , представлена в следующей таблице

| (x,a)   | (1,1) | (2,1) | (3,1) |  | (4,2) |
|---------|-------|-------|-------|--|-------|
| (x',a') | (2,1) | (1,1) | (1,1) |  | (1,1) |

Как видим, в данном случае обобщённая характеристика — вероятность *навязывания* 

$$p_{\text{н}} = \max(p_{\text{им}}, p_{\text{подм}}) = \max(1, 1) = 1.$$

### 4. Нижние оценки вероятностей имитации и подмены сообщений.

Оценим вероятности имитации и подмены сообщений, в зависимости от параметров кода аутентификации (X,K,A,E). Будем обозначать количество билетов |A|=n.

**Теорема 4.1.** Вероятность имитации  $p_{\text{им}}$  удовлетворяет неравенству  $p_{\text{им}} \geq \frac{1}{n}$ . При этом  $p_{\text{им}} = \frac{1}{n}$  тогда и только тогда,

когда при любых значениях  $x \in X$  и  $a \in A$ 

$$\sum_{e_k(x)=a} p(k) = \frac{1}{n}.$$
(3.5)

Доказательство. Для фиксированного исходного сообщения x имеем

$$\sum_{a \in A} p_{u_{M}}(x, a) = \sum_{a \in A} \sum_{e_{k}(x) = a} p(k) = \sum_{k \in K} p(k) = 1.$$

Следовательно, для всякого исходного сообщения x имеется билет a(x) такой, что

 $p_{\text{\tiny HM}}(x,a(x))$ ≥1/п. При этом  $p_{\text{\tiny HM}}(x,a(x))=\dfrac{1}{n}$  тогда и только тогда,

когда все слагаемые  $\sum_{e_k(x)=a} p(k)$  указанной суммы одинаковы,

то есть для всех  $a \in A$ 

$$\sum_{k \in K, e_k(x)=a} p(k) = \frac{1}{n}.$$

**Теорема 4.2.** Вероятность подмены  $p_{\text{подм}}$  удовлетворяет неравенству  $p_{\text{подм}} \geq \frac{1}{n}$ . При этом  $p_{\text{подм}} = \frac{1}{n}$ , тогда и только тогда, когда при любых значениях  $x,x'\in X$  и  $a,a'\in A$ 

$$\frac{\sum_{e_k(x)=a,e_k(x')=a'} p(k)}{\sum_{e_k(x)=a} p(k)} = \frac{1}{n}.$$
(3.6)

Доказательство. Для фиксированных x, a и  $x', x' \neq x$  имеем

$$\sum_{a' \in A} p_{\text{подм}}(x',a';x,a) = \sum_{a' \in A} \frac{\sum_{e_k(x) = a, e_k(x') = a'} p(k)}{\sum_{e_k(x) = a} p(k)} = \frac{\sum_{e_k(x) = a} p(k)}{\sum_{e_k(x) = a} p(k)} = 1.$$

Следовательно, для некоторого билета a'  $p_{\text{полм}}(x',a';x,a) \ge 1/n$ .

По определению,

$$p_{\text{подм}} = \sum_{(x,a) \in M} p(x,a) p_{\text{подм}}(x,a) \ge \sum_{(x,a) \in M} \frac{p(x,a)}{n} = \frac{1}{n}.$$

Равенство выполняется тогда и только тогда, когда p(x,a)=1/n при всех (x,a). Это, в свою очередь, означает, что  $p_{\text{подм}}(x',a';x,a)=\frac{1}{n}$  при всех (x,a).

**Теорема 4.3.** Вероятности имитации  $p_{\text{им}}$  и подмены  $p_{\text{подм}}$  равны 1/n тогда и только тогда, когда

$$\sum_{e_k(x)=a,e_k(x')=a'} p(k) = \frac{1}{n^2}.$$
 (3.7)

для любых  $x,x' \in X$ ,  $x' \neq x$ ,  $a,a' \in A$ .

Доказательство. Свойство (3.7.) следует из (3.5) и (3.6) и наоборот, (3.5) и (3.6) следуют из (3.7).

**Следствие 4.1.** При равновероятном выборе ключей вероятности имитации  $p_{\text{им}}$  и подмены  $p_{\text{подм}}$  равны 1/n тогда и только тогда, когда

$$/\{k|e_k(x)=a, e_k(x')=a'\}/=\frac{|K|}{n^2}.$$
 (3.8)

#### Ортогональные массивы

**Определение.** Ортогональным массивом  $OA(n,r,\lambda)$  называется матрица размером  $\lambda n^2 \times r$ , составленная из n символов такая, что в любых двух столбцах матрицы каждая из возможных  $n^2$  пар символов встречается ровно  $\lambda$  раз.

Пример 5.1. 
$$OA(3,3,1) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}.$$

Ортогональный массив определяет некоторый код аутентификации в соответствии со следующей теоремой.

**Теорема 5.1.** Для ортогонального массива  $OA(n,r,\lambda)$  существует код аутентификации (X,K,A,E), где |X|=r, |A|=n,  $|K|=\lambda n^2$  и вероятности имитации  $p_{\text{им}}$  и подмены  $p_{\text{подм}}$  равны 1/n.

Доказательство. Указанный код определяется ортогональной матрицей следующим образом. Множество исходных сообщений  $X=\{1,2,...,x,...,r\}$  соответствует множеству номеров столбцов матрицы. Множество  $K=\{1,2,...,k,...,\ \lambda n^2 \ \}$  номеров строк есть множество ключей. Строки описывают соответствующие ключам преобразования аутентификации  $e_k(x)$ , элементы OA(k,x) матрицы есть билеты  $e_k(x)$ , для исходных сообщений x. В данном случае выполняется соотношение (3.7), и по следствию 4.1 мы получаем, что код обладает указанным в формулировке теоремы свойством.

Построение ортогональных массивов. Построим код аутентификации на основе ортогонального массива  $OA_{(n,r,\lambda)}$ . Параметр п определяет число билетов и, следовательно, стойкость кода аутентификации. Параметр r определяет мощность источника исходных сообщений. Параметр  $\lambda$  влияет на число используемых ключей. Желательно, чтобы этот параметр был равен единице, так как желательно, чтобы стойкость 1/n достигалась при минимальном множестве ключевого пространства. Однако иногда необходимы значения  $\lambda$ , большие, чем 1.

Допустим, что требуется построить код аутентификации для заданного источника сообщений X и заданного уровня стойкости  $\varepsilon$  такого, чтобы вероятности имитации  $p_{\text{им}}$  и подмены  $p_{\text{подм}}$  не превышали  $\varepsilon$ . Подходящий ортогональный массив  $OM_{(\text{n.r.}\lambda)}$  должен удовлетворять условиям

- 1.  $n \ge 1/\varepsilon$ ,
- 2.  $r \ge |X|$
- 3. параметр λ должен быть наименьшим.

**Теорема 5.2.** Для всякого простого числа р существует ортогональный массив OA(p,p,1).

Доказательство. Строки этого  $p^2 \times p$  ортогонального массива соответствуют ключам k=(i,j) $\in Z_p \times Z_p$ , столбцы — исходным сообщениям  $x \in Z_p$ , элементы OA(k,x)=OA((i,j),x)=ix+ $j \mod p$ .

Пусть выбраны два разных столбца x и x и два символа a и a. Мы хотим найти строку (i,j), содержащую a и a в столбцах x и x. Пара (i,j) есть решение системы уравнений (в арифметике поля  $Z_n$ ).

```
a=ix+j.
a'=ix'+j.
```

Имеется единственное решение

(i,j),  $i=(a-a')(x-x')^{-1} \mod p$ ,  $j=a-ix \mod p$ .

Следовательно, имеем ортогональную матрицу OM(p,p,1).

**Следствие 5.1.** Для всякого простого числа p существует ортогональный массив OA(p,p+1,1).

Он получается добавлением сбалансированного столбца  $(0,...0,1,...,p-1,...,p-1)^T$ .

Пример **5.2.**  $OA(3,3,1) \Rightarrow OA(3,4,1)$ 

| 0 | 0 | 0 |   | 0 | 0 |   |   |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 |   | 0 | 1 | 1 | 1 |
| 2 | 2 | 2 |   | 0 | 2 | 2 | 2 |
| 0 | 1 | 2 |   | 1 | 0 | 1 | 2 |
| 1 | 2 |   | ⇒ | 1 | 1 | 2 | 0 |
| 2 | 0 | 1 | • | 1 |   |   | 1 |
| 0 | 2 | 1 |   | 2 | 0 | 2 | 1 |
| 1 | 0 | 2 |   | 2 | 1 | 0 | 2 |
| 2 | 1 | 0 |   | 2 | 2 | 1 | 0 |

#### 6. Оценки энтропии

Рассмотрим, как оценка стойкости кода аутентификации выражаются через энтропию его элементов.

**Теорема 3.6.** Для кода аутентификации (X,K,A,E,P(X)P(K))

выполняется неравенство (оценка Симмонса)

$$\log p_{\text{\tiny HM}} \ge H(K/M) - H(K) = -I(M,K)^{1}.$$
 (3.8)

Доказательство. В соответствии с (3.1) имеем

$$p_{\scriptscriptstyle \mathsf{HM}} = \max_{x \in X, a \in A} \; p_{\scriptscriptstyle \mathsf{HM}} \; (x,\!a).$$

Поскольку максимум не может быть меньше среднего значения, получаем

$$p_{\scriptscriptstyle \mathsf{HM}} \! \geq \! \sum_{x \in X, a \in A} \! p \ (x,a) \ p_{\scriptscriptstyle \mathsf{HM}} (x,\!a).$$

Применяя известное свойство неравенств для вогнутых функций имеем

$$\log(p_{\text{HM}}) \ge \log(\sum_{x \in X, a \in A} p_{\text{HM}}(x, a)) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X, a \in A} p_{\text{HM}}(x, a) \ge \sum_{x \in X} p_{\text{HM}}(x, a) \ge \sum_{$$

$$\geq \sum_{x \in X, a \in A} p(x, a) \log(p_{\text{\tiny HM}}(x, a)).$$

Учитывая, что  $p(x,a)=p(x) \times p_{\text{им}}(x,a)$ , видим, что

$$log(p_{\scriptscriptstyle \mathsf{HM}}) \geq \sum_{X \in X, a \in A} p(x) \;\; p_{\scriptscriptstyle \mathsf{HM}} \; (x, a) \; log(p_{\scriptscriptstyle \mathsf{HM}} \; (x, a)).$$

Замечая, что  $p_{\scriptscriptstyle \rm HM}(x,a) = p(a|x)$  (вероятность того, что а является билетом-аутентификатором для заданного исходного сообщения x) по определению условной энтропии получаем

$$\log(p_{\scriptscriptstyle HM}) \geq \sum_{x \in X. a \in A} p(x) \ p \ (a|x) \log(p \ (a|x)). = - \ H(A|X).$$

Для завершения доказательства остаётся показать, что -H(A|X)=H(K|X)-H(K).

С одной стороны, в соответствии с известным свойством условной энтропии имеем

$$H(K,A,X)=H(K|A,X)+H(A|X)+H(X).$$

С другой стороны, можно вычислить H(K,A,X)=H(A|K,X)+H(K,X)=H(K)+H(X).

 $\square$  Здесь (I(M,K)=H(M,K) ( взаимная информация между случайными величинами M и K (мера информации, которую дает M относительно K).

(Мы использовали то обстоятельство, что ключ и исходное сообщение однозначно определяют билет и, следовательно, H(A|K,X)=0, а также то, что распределения вероятностей P(X) источника исходных сообщений и ключа P(K) независимы и, следовательно, H(K,X)=H(K)+H(X)).

Приравнивая два выражения для H(K,A,X), получаем -H(A|X)=H(K|A,X)-H(K).

Но сообщение m=(x,a) состоит из исходного сообщения x и билета a (то есть  $M=X\times A$ ). Отсюда H(K|A,X)=H(K|M). Доказательство завершено.

Равенство в (3.8) соответствовало бы условию совершенной имитостойкости. В общем случае не известно, при каких условиях существуют шифры, обеспечивающие совершенную имитостойкость, хотя и известны примеры таких шифров.

Из доказанной теоремы следует, что даже при совершенной имитостойкости вероятность навязывания мала лишь при большой величине I(M,K). То есть уменьшение этой вероятности связано с увеличением количества информации о ключе, которую дает открытая информация. Эта информация какой степени мера τογο, ключ используется есть В (расходуется) для обеспечения имитостойкости.

Теорема 3.7. Для кода аутентификации (X,K,A,E,P(X),P(K)) выполняется неравенство

 $log \ p_{\text{подм}} \ge H\{K/M^2\} - H(K/M).$ 

Здесь под  $M^2$  мы понимаем случайную величину, определяемую следующим образом. Пусть мы применяем к сообщениям исходным  $\mathbf{X}_1$ одинаковые И  $X_2$ преобразования аутентификации. Представим себе множество  $m_2$ ) $\in$ M×M, где пар  $(m_1 \times$  $m_1=(x_1,e_k(x_1)),$  $m_2 = (x_2, e_k(x_2))$ получаемых Распределение таким путём. вероятностей на ЭТОМ множестве индуцируется распределениями P(K) и P(X×X). При этом распределение вероятностей P(X×X) индуцируется распределением P(X) с тем дополнением, что принимается р(x,x)=0 (дублирования не допускаются). Доказательство см. [2].

Литература.

- .Алфёров А.П., Зубов А.Ю., Кузьмин А.С., Черёмуш-кин А.В. Основы криптографии. ( М.: "Гелиос-АРВ", 2002.
- 2. Stinson D.R. Cryptography. Theory and Practice. CRC Press, 1995.