

آزمایشگاه سختافزار

گزارش میانی دوم نیمسال اول ۲-۰۱

موضوع پروژه:

ارتباط رایانه و بورد رزبریپای با ماژولهای 4/4.5/5G و مقایسه آنها با هم

شماره گروه: ۴

اعضای گروه:

عرشيا اخوان ٩٧١١٠۴٢٢

مهدی صادق شبیری ۹۷۱۱۰۱۴۴

غزل شناور ۹۷۱۰۱۸۹۷

۱ شرح پروژه

این پروژه، یک پروژه تحقیقاتی است که هدف اصلی آن، بررسی و مقایسه عملی میزان تاخیر و نرخ خرابی بستهها در بسترهای ارتباطی 3G و 4G است.

برای اجرای پروژه، از آردوینو و شیلد آردوینو SIM7000C استفاده کردیم. راهکار مورد استفاده ما، راهکار پیشنهادی دوم، یعنی ارسال از طریق برد به سرور و سپس دانلود اطلاعات از سرور به رایانه خواهد بود.

بررسی پروتکلها در دو لایه انجام خواهد شد. در لایه چهارم، UDP، TCP و QUIC و در لایه پنجم، پروتکلHTTP و را بررسی خواهیم کرد.

۲ توضیح برخی اصطلاحات

۲٫۱. پروتکل TCP

این پروتکل، یک پروتکل لایه چهارم (لایه انتقال) است. TCP اطلاعات را به ترتیب و با چک کردن برای خطا انتقال میدهد؛ از همین رو، پروتکل قابل اعتمادی است. این پروتکل، connection-oriented است و نیاز به برقراری ارتباط بین سرور و کلاینت توسط یک handshake سه مرحلهای دارد. این ویژگی پروتکل، امکان تشخیص و تصحیح خطا را فراهم می کند اما تاخیر را نسبت به روش UDP افزایش می دهد. از این پروتکل در email، انتقال فایل و بسیاری موارد دیگر استفاده می شود.

۲,۲. پروتکل UDP

این پروتکل، یک پروتکل لایه چهارم (لایه انتقال) است. UDP سرعت را به تصحیح خطا ترجیح می دهد. این پروتکل، نیازی به برقراری ارتباط اولیه میان سرور و کلاینت ندارد. این روش هیچ تضمینی درباره ترتیب داده و یا رسیدن آن به مقصد نمی دهد. این پروتکل در مواردی استفاده می شود که سرعت از تشخیص و تصحیح خطا مهمتر است و یا توسط بقیه اپلیکیشنها انجام می شود.

۲,۳ یروتکل QUIC

این پروتکل، یک پروتکل لایه چهارم (لایه انتقال) است. QUIC با هدف بهبود عملکرد اپلیکیشنهای QUIC است. این طراحی شده است و این کار را با برقراری چند ارتباط بر پایه UDP انجام میدهد. هدف دیگر این پروتکل کاهش تاخیر است. این پروتکل در 2021 توسط Firefox ،Edge ،Chrome و Safari پشتیبانی میشود.

۲٫۴. پروتکل HTTP

این پروتکل، یک پروتکل لایه پنجم (لایه اپلیکیشن) است. HTTP پایه دادهها در world wide web است. این روش، از مدل درخواست-پاسخ پیروی می کند.

۵٫۲. دستورهای AT

دستورهای AT مجموعه دستوراتی است برای کنترل کردن ارتباط با مودم (یا دکل). علت این نامگذاری این است که با دستورات AT قرار است attention مودم گرفته شود.

این دستورات ۴ نوع دارند:

۲٫۵٫۱. دستورات تست ۲٫۵٫۱

این دستورات برای بررسی پشتیبانی مودم از یک دستور است.

فرمت دستور به این شکل است:

AT<command name>=?

برای مثال

ATD=?

۲,۵,۲ دستورات خواندن Read command

این دستورات برای گرفتن تنظیمات گوشی یا مودم است

فرمت دستور به این شکل است:

AT<command name>?

برای مثال

AT+CBC?

۲٫۵٫۳ دستورات ست کردن ۲٫۵٫۳

این دستورات برای مقدار دهی تنظیمات گوشی یا مودم است.

فرمت دستور به این شکل است:

AT<command name>=value1, value2, ..., valueN

برای مثال

AT+CSCA="+9876543210", 120

۲,۵,۴ دستورات اجرا ۲,۵,۴

این دستورات برای اجرای یک عملیات است.

فرمت دستور به این شکل است:

AT<command name>=parameter1, parameter2, ..., parameterN

برای مثال

AT+CMSS=1,"+ 9876543210", 120

در جدول پایین تعدادی از این دستورات آمده است:

پروپوزال پروژه

Call control:

Command	Description
ATA	Answer command
ATD	Dial command
ATH	Hang up call
ATL	Monitor speaker loudness
ATM	Monitor speaker mode
ATO	Go on-line
ATP	Set pulse dial as default
ATT	Set tone dial as default
AT+CSTA	Select type of address
AT+CRC	Cellular result codes

Data card Control:

Command	Description
ATI	Identification
ATS	Select an S-register
ATZ	Recall stored profile
AT&F	Restore factory settings
AT&V	View active configuration
AT&W	Store parameters in given profile
AT&Y	Select Set as power up option
AT+CLCK	Facility lock command
AT+COLP	Connected line identification presentation
AT+GCAP	Request complete capabilities list
AT+GMI	Request manufacturer identification
AT+GMM	Request model identification
AT+GMR	Request revision identification
AT+GSN	Request product serial number identification (IMEI)

Phone control:

Filone Control.	
Command	Description
AT+CBC	Battery charge
AT+CGMI	Request manufacturer identification
AT+CGMM	Request model identification
AT+CGMR	Request revision identification
AT+CGSN	Request product serial number identification
AT+CMEE	Report mobile equipment error
AT+CPAS	Phone activity status
AT+CPBF	Find phone book entries
AT+CPBR	Read phone book entry
AT+CPBS	Select phone book memory storage
AT+CPBW	Write phone book entry
AT+CSCS	Select TE character set
AT+CSQ	Signal quality

پروپوزال پروژه

Computer data interface :

Command	Description
ATE	Command Echo
ATQ	Result code suppression
ATV	Define response format
ATX	Response range selection
AT&C	Define DCD usage
AT&D	Define DTR usage
AT&K	Select flow control
AT&Q	Define communications mode option
AT&S	Define DSR option
AT+ICF	DTE-DCE character framing
AT+IFC	DTE-DCE Local flow control
AT+IPR	Fixed DTE rate

Service:

Command	Description
AT+CLIP	Calling line identification presentation
AT+CR	Service reporting control
AT+DR	Data compression reporting
AT+ILRR	DTE-DCE local rate reporting

Network Communication parameter :

Command	Description
ATB	Communications standard option
AT+CBST	Select bearer service type
AT+CEER	Extended error report
AT+CRLP	Radio link protocol
AT+DS	Data compression

Miscellaneous:

Command	Description
A/	Re-execute command line
AT?	Command help
AT*C	Start SMS interpreter
AT*T	Enter SMS block mode protocol
AT*V	Activate V.25bis mode
AT*NOKIATEST	Test command
AT+CESP	Enter SMS block mode protocol

پروپوزال پروژه

SMS Text mode:

Command	Description
AT+CSMS	Select message service
AT+CPMS	Preferred message storage
AT+CMGF	Message format
AT+CSCA	Service centre address
AT+CSMP	Set text mode parameters
AT+CSDH	Show text mode parameters
AT+CSCB	Select cell broadcast message types
AT+CSAS	Save settings
AT+CRES	Restore settings
AT+CNMI	New message indications to TE
AT+CMGL	List messages
AT+CMGR	Read message
AT+CMGS	Send message
AT+CMSS	Send message from storage
AT+CMGW	Write message to memory
AT+CMGD	Delete message

SMS PDU mode:

Command	Description
AT+CMGL	List Messages
AT+CMGR	Read message
AT+CMGS	Send message
AT+CMGW	Write message to memory

Testing:

Command	Description
AT	Checking communication between the module and computer.

۲٫۶. نرخ خرابی

خرابی ٔ هنگامی رخ میدهد که بستههای داده در یک شبکه کامپیوتری به مقصد خود نمیرسند. این اتفاق به دلیل مشکلات موجود در سیستم، و یا ترافیک ٔ رخ می دهد. نرخ خرابی ٔ درصد بسته های از دست رفته به کل بسته های ارسالی است. نرخ خرابی تاثیر قابل توجهی بر تجربه کاربری دارد به نحوی که ۵ تا ۱۰ درصد نرخ خرابی به طرز قابل توجهی این تجربه را تحتالشعاع قرار میدهد.

¹ Packet loss ² Congestion

³ Drop rate

۲٫۷. یهنای باند

پهنای باند به حداکثر نرخ انتقال داده بر روی یک مسیر اطلاق میشود. این ویژگی معمولا بر اساس تعداد bit های منتقل شده بر ثانیه اندازه گرفته میشود.

۲٫۸. تاخیر

تاخیر در شبکه، به زمانی اطلاق می شود که بسته در مسیر عبور از فرستنده به گیرنده قرار دارد. تاخیر نیز تاثیر قابل توجهی بر تجربه کاربری دارد.

٣ ليست آزمايشها

آزمایشهای ما شامل ۴ مورد میشوند:

- بررسی پروتکل TCP
- بررسی پروتکل UDP
- بررسی QUIC بر پایه •
- بررسی HTTP بر پایه •

برای هر یک از چهار آزمایش، سه متغیر نرخ خرابی، تاخیر و پهنای باند با انجام چند تست و سپس میانگین گیری میان نتایج محاسبه میشوند.

در این مرحله، تصمیم ما بر این شده است که از packet generator ها استفاده نکنیم؛ چرا که هیچکدام از آنها هر چهار آزمایش ما را پوشش نمیدهند و استفاده از چند ابزار مختلف میتواند باعث ایجاد ناهماهنگی در نتایج آزمایش شود.

۴ پیشنیازهای آزمایش

۴,۱. کتابخانههای مورد استفاده

۴,۱,۱ کتابخانهی Botletics-SIM7000

برای تست کردن این پروژه از کتابخانهی Botletics-SIM7000 استفاده شده است. (لینک به گیتهاب) این کتابخانه بر اساس کتابخانهی SIM7070 ،SIM7000 طراحی شده است و از ماژولهای SIM7070 ،SIM7000 ،و SIM7500 پشتیبانی می کند.

_

⁴ latency

شكل ۱: كتابخانه استفاده شده براى اتصال به اينترنت

۴,۲. تست کارکرد قطعه

برای تست کردن ماژول از مثال SIM7XXX_LTE_Demo از کتابخانهی گفته شده استفاده شده است. برای بارگذاری این کد باید از مسیر Examples <- File -> BotleticsSIM7000 <- Examples -- آن را انتخاب کرد.

سپس باید define های TX و RX را روی Λ و Υ قرار داد.

```
#define TX 8 // Microcontroller RX
#define RX 7 // Microcontroller TX
                      با توجه به اینکه ماژول ما SIM7000 است باید این مدل را انتخاب کرد و define ۴ دیگر را کامنت کرد.
// Define *one* of the following lines:
#define SIMCOM 7000
// #define SIMCOM 7070
// #define SIMCOM 7500
//#define SIMCOM 7600
                                                                              در نهایت باید APN مناسب با سیمکارت را انتخاب کرد
  // Configure a GPRS APN, username, and password.
  // You might need to do this to access your network's GPRS/data
  // network. Contact your provider for the exact APN, username,
 // and password values. Username and password are optional and
// can be removed, but APN is required.
//modem.setNetworkSettings(F("your APN"), F("your username"), F("your password"));
//modem.setNetworkSettings(F("m2m.com.attz")); // For AT&T IoT SIM card
//modem.setNetworkSettings(F("telstra.internet")); // For Telstra (Australia) SIM card - CAT-M1 (Band 28)
  modem.setNetworkSettings(F("RighTel")); // For Hologram SIM card
  // modem.setNetworkSettings(F("mcinet")); // For Hologram SIM card
// modem.setNetworkSettings(F("mtnirancell")); // For Hologram SIM card
  // Optionally configure HTTP gets to follow redirects over SSL
  // Default is not to follow SSL redirects, however if you uncomment 
// the following line then redirects over SSL will be followed.
  //modem.setHTTPSRedirect(true);
```

که برای رایتل RighTel، همراه اول mcinet ،و ایرانسل mtnirancell است.

چون TX و RX را پایه ۸ و ۷ قرار دادیم سوئیچ پاور را باید روی ۷ و ۸ تنظیم کنیم. مانند شکل زیر:

شكل ٢: تنظيمات سوييچ پاور

شیلد SIM7000 شامل یک آنتن برای اینترنت و یک آنتن برای GPS، یک منبع تغذیه (سیم سفید) ،و پورت سریال (سیم سیاه) است.

شکل ۳: شیلد به همراه آنتنها

بعد از اجرای کد ابتدا به مودم (دکل) وصل میشود که لاگهای آن در زیر مشاهده میشود.


```
17:54:07.925 -> modem> SIM7XXX Demo
17:54:23.231 -> Configuring to 9600 baud
17:54:24.195 -> Attempting to open comm with ATs
                     ---> AT
17:54:24.261 ->
17:54:24.261 ->
                     <--- OK
17:54:24.294 ->
                     ---> ATE0
17:54:24.328 ->
                     <--- OK
                     ---> ATE0
17:54:24.460 ->
                     <--- OK
17:54:24.460 ->
                     ---> AT+GMR
17:54:24.626 ->
17:54:25.158 ->
                     <--- Revision:1351B06SIM7000C
17:54:25.191 ->
17:54:25.191 -> OK
17:54:25.191 ->
                     ---> AT+CPMS="SM","SM","SM"
17:54:25.191 ->
17:54:25.257 ->
                     <--- +CPMS: 15,15,15,15,15
17:54:25.291 -> Modem is OK
17:54:25.291 -> Found SIM7000
17:54:25.324 -> ---> AT+GSN
17:54:25.324 -> <--- 8652326
                     <--- 865233030967534
17:54:25.357 -> Module IMEI: 865233030967534
17:54:25.390 -> ---> AT+CFUN=1
                    <--- OK
17:54:25.390 ->
                     ---> AT+CGDCONT=1,"IP","mtnirancell"
17:54:25.457 ->
17:54:25.490 -> <--- OK
17:54:25.523 -> ------
                                             سپس منوی زیر را مشاهده خواهد شد:
```

```
17:54:25.556 -> [?] Print this menu
17:54:25.589 -> [a] Read the ADC, 0V-VBAT for SIM7000
17:54:25.623 -> [b] Read supply voltage
17:54:25.656 -> [C] Read the SIM CCID
17:54:25.656 -> [U] Unlock SIM with PIN code
17:54:25.689 -> [i] Read signal strength (RSSI)
17:54:25.722 -> [n] Get network status
```



```
17:54:25.755 -> [c] Make phone Call
17:54:25.789 -> [A] Get call status
17:54:25.789 -> [h] Hang up phone
17:54:25.822 -> [p] Pick up phone
17:54:25.855 -> [N] Number of SMS's
17:54:25.855 -> [r] Read SMS #
17:54:25.888 -> [R] Read all SMS
17:54:25.888 -> [d] Delete SMS #
17:54:25.921 -> [D] Delete all SMS
17:54:25.955 -> [s] Send SMS
17:54:25.955 -> [y] Enable local time stamp
17:54:25.988 -> [Y] Enable NTP time sync
17:54:26.021 -> [t] Get network time
17:54:26.021 -> [G] Enable GPRS
17:54:26.054 -> [g] Disable GPRS
17:54:26.054 -> [1] Get connection info
17:54:26.087 -> [2] Post to dweet.io - LTE CAT-M / NB-IoT
17:54:26.154 -> [0] Turn GPS on)
17:54:26.154 -> [o] Turn GPS off
17:54:26.187 -> [L] Query GPS location
17:54:26.187 -> -----
17:54:26.253 ->
17:54:26.253 -> modem>
17:54:37.642 -> +CPIN: NOT READY
                        در صورتی که n یعنی Get network status را صدا بزنیم خروجی زیر را می دهد.
17:55:47.357 -> modem> n
17:55:47.855 ->
                            ---> AT+CGREG?
17:55:47.888 -> <--- +CGREG: 0,0
17:55:47.921 -> Network status 0: Not registered
17:55:47.955 -> modem>
علت رجیستر نشدن احتمالا رجیستر نشدن دستگاه و سیمکارت است. متاسفانه به خاطر دیر رجیستر شدن سیمکارت این قسمت
```

را به هفتهی بعد موکول کردیم. بعد از رجیستر شدن سیمکارت و دستگاه اتصال دستگاه به اینترنت امکان پذیر است.