Problema de valor de contorno

Um problema de valor de contorno (PVC) é aquele definido por uma equação diferencial que descreve um fenômeno em uma região do espaço delimitada por um contorno e condições que a solução geral da equação diferencial tem que satisfazer no contorno do domínio. Todo problema de valor de contorno é descrito da seguinte forma:

$$PVI: egin{cases} ED \ c.c.' \end{cases}$$

onde ED é uma equação diferencial e c.c é um conjunto de condições de contorno especificadas.

Vamos analisar dois exemplos de PVC:

Exemplo 1:

Problema de Valor de Contorno em domínio unidimensional (variável x descreve os pontos do domínio que faz parte do $\mathbb R$

$$PVC1: egin{cases} rac{d^2y(x)}{dx^2} - y(x) = 0 \ y(0) = 0 \ y(1) = 1. \end{cases}$$

Este PVC busca a função y(x) que é solução da ED descrita com as condições especificadas (y(0)=0 e y(1)=0). Neste exemplo, como estamos no universo unidimensional, a condição de contorno faz com que o domínio seja o intervalo $[0,1]\subset\mathbb{R}$.

Exemplo 2:

Problema de Valor de Contorno em um domínio bidimensional (variáveis x e y descrevem pontos no \mathbb{R}^2).

1 of 3 30/07/2024, 11:16

$$PVC2: egin{cases} rac{\partial^2 \mu(x,y)}{\partial x^2} + rac{\partial^2 \mu(x,y)}{\partial y^2} = f(x,y) \ \mu(x,0) = 0: ext{borda inferior} \ \mu(x,1) = 0: ext{borda superior} \ \mu(0,y) = 0: ext{borda esquerda} \ \mu(1,y) = 0: ext{borda direita} \end{cases}$$

Este PVC busca a função $\mu(x,y)$ que satisfaz a equação diferencial e as condições de contorno especificadas nas quatro bordas do domínio. Neste caso, um quadrado de lado 1 é formado: $[0,1] \times [0,1] \subset \mathbb{R}$

Soluções Aproximadas de um PVC

Podemos encontrar uma solução exata para um problema de PVC seguindo os métodos tradicionais, realizando as integrações e buscando a solução algébrica do problema. Aqui, estamos interessados de resolver numericamente e serão apresentados dois métodos para a obtenção dessas aproximações:

- Método das Diferenças Finitas: A solução é representada como uma sequência de valores em posições discretas.
- 2. Método dos Elementos Finitos: A solução é representada como uma função de interpolação que passa por valores aproximados da solução em posições discretas do domínio.

Método das Diferenças Finitas

Este método, como visto anteriormente, apresenta uma solução como valores discretos no domínio. Podemos descrever este método em uma sequência de quatro passos:

- Dividir o domínio em partes iguais e definir pontos discretos como os pontos de intersecção da fronteira dessa divisão (esses pontos são chamados de nós da grade);
- 2. Escrever uma versão discreta da equação diferencial do PVC;
- 3. Aplicar a versão discreta da ED em cada nó da grade onde a solução aproximada precisa ser encontrada (isso resulta em um sistema de equações);
- 4. Resolver o sistema de equações algébricas para enconrar os valores

2 of 3 30/07/2024, 11:16

aproximados nos nós da grade.

As aplicações podem ser vistas nas notas de aula, assim na tarefa 15.

3 of 3