

Available online at www.sciencedirect.com

PHYSICA (6

Physica C 388-389 (2003) 687-688

www.elsevier.com/locate/physc

Microwave absorption spectrum and reentrant phase in Bi2212 single crystal: microwave power dependence

G. Ahmad ^a, A. Hashizume ^a, S. Iwasaki ^a, K. Yoshii ^a, B.J. Reddy ^a, M. Shahabuddin ^b, S. Uthayakumar ^c, R. Jayavel ^c, T. Endo ^{a,*}

^a Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan
 ^b Department of Physics, University of Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
 ^c Crystal Growth Center, Anna University, Chennai 600025, India

Abstract

Microwave power $(P_{\rm m})$ dependence of microwave absorption (MA) was investigated on Bi₂Sr₂CaCu₂O_x crystals at liquid nitrogen temperature. At low $P_{\rm m}$ of 0.1 mW, MA spectrum shows only a sharp first peak near zero magnetic fields $(H_{\rm a})$, which corresponds to Meissner phase, for $H_{\rm a}\|c$ -axis. MA spectrum shows a dip and a broad second peak when $P_{\rm m}$ is increased. These dip and broad peak reflect reentrant liquid phase and solid phase. The broad peak shifts to lower fields with increasing $P_{\rm m}$. The real sample temperature is raised by 4 K with increasing $P_{\rm m}$ to 50 mW. © 2003 Elsevier Science B.V. All rights reserved.

PACS: 74.60.Ge; 74.25.Nf; 74.22.Hs

Keywords: Bi2212 single crystal; Reentrant phase; Microwave absorption; Microwave power; Temperature rise

1. Introduction

Demanding for tunable high temperature superconducting microwave filters is urgent to save spaces occupied by transmission base stations. The stacked superconducting/ferromagnetic thin films are employed as the tunable microwave filters. They are operated under magnetic fields [1–5]. Then it is important to study the microwave loss properties of superconducting materials such as $Bi_2Sr_2CaCu_2O_x$ (Bi2212) under the fields. Such a research under high microwave power is also necessary for high power components like antennas [6].

In this work, we investigated the microwave power dependence of microwave absorption (MA) in Bi2212 crystals. Combined with temperature dependence of the absorption spectrum in a solid state region of a reentrant phase [7], rises of sample temperature by the MA are estimated as a function of microwave power.

2. Experimental

Superconducting Bi2212 single crystals ($T_{\rm C}=86.5~{\rm K}$) were grown by self-flux method [7]. Non-resonant MA measurement was carried out on the samples employing "cavity perturbation method" [8–11]. The sample in a cryostat was put in dc magnetic field ($H_{\rm a}$) and a modulation field was superimposed on the dc field with an amplitude of 5 G at 100 kHz. The MA signals (S) were measured on the samples at around liquid nitrogen temperatures (T) as a function of $H_{\rm a}$. The microwave power ($P_{\rm m}$) was varied in a range of 0.1–50 mW. The dc field $H_{\rm a}$ was applied on the sample along its c-axis ($H_{\rm a}\|c$) [12].

3. Results and discussion

The MA spectra of the sample measured at various $P_{\rm m}$ at low T are shown in Fig. 1. At very low $P_{\rm m}$ of 0.1 mW, the MA spectrum shows only a sharp first peak at near zero field below 50 G. When $P_{\rm m}$ is increased to 10 mW, MA spectrum evolves to show the same first peak,

^{*}Corresponding author. Tel.: +81-59-231-9400; fax: +81-59-231-9471.

E-mail addresses: endo@elec.mie-u.ac.jp, endo@cm.elec. mie-u.ac.jp (T. Endo).

Fig. 1. MA spectra various $P_{\rm m}$.

followed by a dip and another new broad peak at 100–350 G. Henceforth, we call these peaks "first peak (P_1)" and "broad peak (P_b)". Beyond this power up to 50 mW, MA spectrum is always composed of three characteristic parts; the first peak, the dip and the broad peak. However, the field positions of these structures seem to be shifted with increasing P_m .

The field position of the maximum of broad peak $(H_{\rm Pb})$ is plotted in Fig. 2 as a function of $P_{\rm m}$. $H_{\rm Pb}$ shifts to lower fields with increasing $P_{\rm m}$. The temperature dependence of H_{Pb} (H_{Pb} -T) has been already obtained by the previous work as shown in inset of Fig. 2 [7]. H_{Pb} also shifts to lower fields with increasing T. From the same tendencies of H_{Pb} - P_{m} obtained in this work and $H_{\rm Pb}-T$, it can be concluded that the real sample temperature T_{samp} must be raised with increasing P_{m} due to the larger MA, although the ambient temperature is almost the same. From these two data, we can obtain a new relation $T_{\text{samp}}-P_{\text{m}}$ which is plotted in Fig. 2. The result indicates that T_{samp} rises by about 4 K when P_{m} is increased from 0.1 to 50 mW. This temperature rise is a considerable amount which must be taken into account when the supercouducting materials are used for the high power microwave devices.

We need to explain why H_{Pb} is shifted to the lower fields with increasing T. According to T-dependence of MA spectrum reported by us [7], the three structures of MA should reflect the reentrant phase diagram [13,14] as

Fig. 2. H_{Pb} and estimated sample temperature T_{samp} as a function of P_{m} . The inset shows the previous result of H_{Pb} –T [7].

Fig. 3. Model reentrant phase diagram proposed by Fisher and Lee [13], and Nelson [14]. H_{C1} : lower critical field, H_{C2} : upper critical field, H_{m} : melting line.

shown in Fig. 3. The first peak and the broad peak reflect Meissner phase and vortex solid phase, respectively. While the dip reflects the reentrant liquid phase (L_1) lying just above Meissner phase. Because of "nose shape" of the solid phase, the fields of H_a passing in the solid state are shifted to the lower side with increasing T as $T_1 \rightarrow T_2 \rightarrow T_3$ as shown in Fig. 3. This is the reason why the broad peak and H_{Pb} are shifted to the lower side.

4. Conclusion

We investigated $P_{\rm m}$ -dependence of MA on Bi2212 at liquid nitrogen temperature. MA spectrum shows only the first peak at the low $P_{\rm m}$ while it shows the first peak, the dip and the broad peak at the higher $P_{\rm m}$. These are reflecting Meissner phase, L_1 phase and solid phase in the reentrant phase diagram. $H_{\rm Pb}$ shifts to the lower fields with increasing $P_{\rm m}$. With the combination of $H_{\rm Pb}-P_{\rm m}$ with $H_{\rm Pb}-T$, the real sample temperature is raised by 4 K with increasing $P_{\rm m}$ due to the larger MA.

References

- M. Hein, in: J. Kuhn et al. (Eds.), High-Temperature-Superconductor Thin Film at Microwave frequencies, Springer, New York, 1999.
- [2] Z.Y. Shen et al., IEEE Trans. Appl. Supercond. 7 (1997)
- [3] A. Lauder et al., Adv. Mater. 10 (1998) 1249.
- [4] S. Hontsu et al., Supercond. Sci. Technol. 12 (1999) 836.
- [5] J. Wosik et al., Appl. Phys. Lett. 74 (1999) 750.
- [6] D.W. Face et al., Physica C 357-360 (2001) 1488.
- [7] R.D. Kale et al., Physica C 378–381 (2002) 470.
 [8] T. Endo, H. Yan, in: A. Narlikar (Ed.), Studies of High Temperature Superconductors, vol. 14, Nova Science, New
- York, 1995, pp. 65–106. [9] T. Endo, H. Yan, Jpn. J. Appl. Phys. 33 (1994) 103.
- [10] V.V. Srinivasu et al., Singapore J. Phys. 15 (1999) 9.
- [11] V.V. Srinivasu et al., in: Proc. Crystal Growth Methods and Processes, Chennai, 2002, p. 228.
- [12] KI. Itoh et al., Physica C 357-360 (2001) 477.
- [13] M.P.A. Fisher, D.H. Lee, Phys. Rev. B 39 (1989) 2756.
- [14] D.R. Nelson, Phys. Rev. Lett. 60 (1988) 1973.