Technische Information

SMA und SunSpec Modbus®-Schnittstelle SUNNY BOY / SUNNY BOY STORAGE / SUNNY TRIPOWER

Rechtliche Bestimmungen

Die in diesen Unterlagen enthaltenen Informationen sind Eigentum der SMA Solar Technology AG. Die Veröffentlichung, ganz oder in Teilen, bedarf der schriftlichen Zustimmung der SMA Solar Technology AG. Eine innerbetriebliche Vervielfältigung, die zur Evaluierung des Produktes oder zum sachgemäßen Einsatz bestimmt ist, ist erlaubt und nicht genehmigungspflichtig.

SMA behält sich vor, die Implementierung von Kommunikationsschnittstellen und -protokollen jederzeit zu ändern, ohne dies dem Nutzer mitteilen zu müssen. Es obliegt dem Nutzer, sich in eigener Verantwortung über die Aktualität der von ihm heruntergeladenen Inhalte zu informieren und diese zu beachten. Jegliche Haftung von SMA für bei Nichtbeachtung möglicherweise erwachsende Schäden sowie jegliche Übernahme von Folgekosten durch SMA für Anpassungen in Kundensystemen ist ausgeschlossen.

Software-Lizenzen

Die Lizenzen für die eingesetzten Software-Module finden Sie im Internet unter www.SMA-Solar.com.

Warenzeichen

Alle Warenzeichen werden anerkannt, auch wenn diese nicht gesondert gekennzeichnet sind. Fehlende Kennzeichnung bedeutet nicht, eine Ware oder ein Zeichen seien frei.

SMA Solar Technology AG

Sonnenallee 1 34266 Niestetal

Deutschland

Tel. +49 561 9522-0 Fax +49 561 9522-100

www.SMA.de

E-Mail: info@SMA.de Stand: 17.05.2018

Copyright © 2018 SMA Solar Technology AG. Alle Rechte vorbehalten.

Inhaltsverzeichnis

1	Hin	weise zu diesem Dokument	4		
	1.1	Gültigkeitsbereich	4		
	1.2	Zielgruppe	4		
	1.3	Inhalt und Struktur des Dokuments			
	1.4	Warnhinweisstufen			
	1.5	Symbole im Dokument			
	1.6	Auszeichnungen im Dokument5			
	1.7	Weiterführende Informationen	5		
2	Sich	nerheit	6		
	2.1	Bestimmungsgemäße Verwendung			
	2.2	Sicherheitshinweise			
	2.3	SMA Grid Guard-Code			
3	Proc	duktübersicht	9		
	3.1	Modbus-Protokoll			
	3.2	SunSpec Modbus-Profil			
	3.3	SMA Modbus-Profil			
	3.4	Anlagentopologie			
	3.5	Adressierung und Datenübertragung			
		3.5.1 Unit IDs			
		3.5.2 Abfrage der Unit ID			
		3.5.3 Registeradresse, Registerbreite und Datenblock			
		3.5.4 Datenübertragung	10		
		3.5.5 Lesen und Schreiben von Daten	10		
		3.5.6 SunSpec Datentypen und NaN-Werte			
		3.5.7 SMA Datentypen und NaN-Werte			
		3.5.8 SMA Datenformate			
	0 /	3.5.9 SMA Firmware-Datenformate			
	3.6	Modbus-Ports			
	3.7	Datenverarbeitung und Zeitverhalten			
	3.8	Zahlencodes der Zeitzonen	16		
4		nfiguration			
	4.1	Konfiguration mit Benutzeroberfläche eines SMA Wechselrichters 20			
	4.2	Konfiguration mit Sunny Explorer	20		
5	Kon	ntakt	22		

1 Hinweise zu diesem Dokument

1.1 Gültigkeitsbereich

Dieses Dokument gilt für:

 SMA Wechselrichter mit integrierter Modbus-Schnittstelle und gerätespezifischer Register-HTML ("Modbus® Parameter und Messwerte")

1.2 Zielgruppe

Die in diesem Dokument beschriebenen Tätigkeiten dürfen nur Fachkräfte durchführen. Fachkräfte müssen über folgende Qualifikation verfügen:

- Detailkenntnisse der Netzsystemdienstleistungen
- Kenntnisse über IP-basierte Netzwerkprotokolle
- Kenntnisse der Modbus-Spezifikationen
- Kenntnisse der SunSpec Modbus-Spezifikationen
- Ausbildung f
 ür die Installation und Konfiguration von IT-Systemen
- Kenntnis und Beachtung dieses Dokuments mit allen Sicherheitshinweisen

1.3 Inhalt und Struktur des Dokuments

Dieses Dokument enthält keine Angaben zu den von SMA Produkten im Einzelnen bereitgestellten Modbus-Registern und welche Firmware-Version bei dem entsprechenden SMA Produkt mindestens installiert sein muss. Für Informationen zur Firmware-Version und den gerätespezifischen Modbus-Registern der SMA Produkte siehe Produktseiten oder Modbus-Seite auf www.SMA-Solar.com.

Dieses Dokument enthält keine Angaben zu Software, die mit der Modbus-Schnittstelle kommunizieren kann (siehe Anleitung des Software-Herstellers).

Dieses Dokument enthält eine allgemeine Beschreibung der in SMA Produkten integrierten Modbus-Schnittstelle.

1.4 Warnhinweisstufen

Die folgenden Warnhinweisstufen können im Umgang mit dem Produkt auftreten.

A GEFAHR

Kennzeichnet einen Warnhinweis, dessen Nichtbeachtung unmittelbar zum Tod oder zu schweren Verletzungen führt.

MARNUNG

Kennzeichnet einen Warnhinweis, dessen Nichtbeachtung zum Tod oder zu schweren Verletzungen führen kann.

A VORSICHT

Kennzeichnet einen Warnhinweis, dessen Nichtbeachtung zu leichten oder mittleren Verletzungen führen kann.

ACHTUNG

Kennzeichnet einen Warnhinweis, dessen Nichtbeachtung zu Sachschäden führen kann.

1.5 Symbole im Dokument

Symbol	Erklärung
i	Information, die für ein bestimmtes Thema oder Ziel wichtig, aber nicht sicherheitsrelevant ist
	Voraussetzung, die für ein bestimmtes Ziel gegeben sein muss
V	Erwünschtes Ergebnis
×	Möglicherweise auftretendes Problem

1.6 Auszeichnungen im Dokument

Auszeichnung	Verwendung	Beispiel
fett	 Meldungen Anschlüsse Elemente auf einer Benutzeroberfläche Elemente, die Sie auswählen sollen Elemente, die Sie eingeben soller 	 Adern an die Anschlussklemmen X703:1 bis X703:6 anschließen. Im Feld Minuten den Wert 10 eingeben.
>	 Verbindet mehrere Elemente, die Sie auswählen sollen 	 Einstellungen > Datum wählen.
[Schaltfläche] [Taste]	 Schaltfläche oder Taste, die Sie wählen oder drücken sollen 	• [Enter] wählen.

1.7 Weiterführende Informationen

Titel und Inhalt der Information	Art der Information
"Bestellformular für den SMA Grid Guard-Code"	Formular
"Modbus® Parameter und Messwerte" Technische Information	
Gerätespezifische Register-HTML	

2 Sicherheit

2.1 Bestimmungsgemäße Verwendung

Die Modbus-Schnittstelle der unterstützten SMA Produkte ist für den industriellen Gebrauch konzipiert und hat folgende Aufgaben:

- Fernsteuerung der Netzsystemdienstleistungen einer PV-Anlage
- Ferngesteuerte Abfrage von Messwerten einer PV-Anlage
- Ferngesteuerte Änderung von Parametern einer PV-Anlage

Die Modbus-Schnittstelle kann über das Protokoll Modbus TCP sowie über das Protokoll Modbus UDP verwendet werden. Bei Modbus UDP werden keine Antworten generiert.

Der erlaubte Betriebsbereich und die Installationsanforderungen aller Komponenten müssen jederzeit eingehalten werden.

Setzen Sie das Produkt ausschließlich nach den Angaben der beigefügten Dokumentationen und gemäß der vor Ort gültigen Normen und Richtlinien ein. Ein anderer Einsatz kann zu Personenoder Sachschäden führen.

Eingriffe in das Produkt, z. B. Veränderungen und Umbauten, sind nur mit ausdrücklicher schriftlicher Genehmigung von SMA Solar Technology AG gestattet. Nicht autorisierte Eingriffe führen zum Wegfall der Garantie- und Gewährleistungsansprüche sowie in der Regel zum Erlöschen der Betriebserlaubnis. Die Haftung von SMA Solar Technology AG für Schäden aufgrund solcher Eingriffe ist ausgeschlossen.

Jede andere Verwendung des Produkts als in der bestimmungsgemäßen Verwendung beschrieben gilt als nicht bestimmungsgemäß.

Die beigefügten Dokumentationen sind Bestandteil des Produkts. Die Dokumentationen müssen gelesen, beachtet und jederzeit zugänglich aufbewahrt werden.

2.2 Sicherheitshinweise

Dieses Kapitel beinhaltet Sicherheitshinweise, die bei allen Arbeiten an und mit dem Produkt immer beachtet werden müssen.

Um Personen- und Sachschäden zu vermeiden und einen dauerhaften Betrieb des Produkts zu gewährleisten, lesen Sie dieses Kapitel aufmerksam und befolgen Sie zu jedem Zeitpunkt alle Sicherheitshinweise.

ACHTUNG

Beschädigung von SMA Produkten durch zyklisches Ändern

Die mit schreibbaren Modbus-Registern (RW) änderbaren Parameter der SMA Produkte sind für die langfristige Speicherung von Geräteeinstellungen vorgesehen. Eine zyklische Änderung dieser Parameter führt zur Zerstörung der Flash-Speicher der SMA Produkte. Diese Parameter sind in der gerätespezifischen Register-HTML mit 🔔 gekennzeichnet.

Ausgenommen davon sind Parameter für Netzsystemdienstleistungen zur Steuerung und Begrenzung der Anlagenleistung. Solche Parameter können zyklisch geändert werden. Diese Parameter sind in der gerätespezifischen Register-HTML mit 🏂 gekennzeichnet.

- Geräteparameter nicht zyklisch ändern.
- Zur automatisierten Fernsteuerung der PV-Anlage die Parameter f
 ür Netzsystemdienstleistungen verwenden.
- Erläuterung der Symbole in der Legende in der gerätespezifischen Register-HTML beachten.

ACHTUNG

Manipulation von PV-Anlagendaten in Ethernet-Netzwerken

Sie können die unterstützten SMA Produkte mit dem Internet verbinden. Bei einer aktiven Internetverbindung besteht das Risiko, dass unberechtigte Nutzer auf die Daten Ihrer PV-Anlage zugreifen und diese manipulieren.

- Firewall einrichten.
- Nicht benötigte Netzwerk-Ports schließen.
- Wenn unbedingt erforderlich, Fernzugriff nur über ein Virtuelles Privates Netzwerk (VPN) ermöglichen.
- Keine Portweiterleitung auf den verwendeten Modbus-Ports einrichten.

i Zugriff auf Datenpunkte nach Aktivierung der Modbus-Schnittstelle

Nach Aktivierung der Modbus-Schnittstelle ist der lesende Zugriff auf alle Datenpunkte möglich. Der schreibende Zugriff ist auf alle Datenpunkte, die nicht durch den SMA Grid Guard-Code geschützt sind, ohne weitere Eingabe eines Passworts über Modbus möglich.

 Sicherstellen, dass nach dem Zurücksetzen des SMA Produkts auf Werkseinstellungen die Modbus-Schnittstelle noch aktiv ist.

2.3 SMA Grid Guard-Code

Bestimmte Parameter sind durch den SMA Grid Guard-Code geschützt. Wenn Sie diese Parameter ändern möchten, müssen Sie die einzelnen SMA Wechselrichter vorher mit einem persönlichen SMA Grid Guard-Code freischalten. Durch die Freischaltung ändert der SMA Wechselrichter seinen Parametriermodus in den Grid Guard-Modus. Die Änderung von Parametern im Grid Guard-Modus wird vom SMA Wechselrichter protokolliert. Diese Parameter sind in der gerätespezifischen Register-HTML mit ** gekennzeichnet.

Mit einem SMA Grid Guard-Code kann sich jeweils nur eine Person, ein Kommunikationsgerät oder eine Software am SMA Produkt anmelden. Wenn Sie Parameter mit Ihrem Modbus-Client ändern möchten, die mit Grid Guard geschützt sind, dürfen Sie nicht gleichzeitig denselben SMA Grid Guard-Code mit Sunny Explorer, der Benutzeroberfläche eines SMA Wechselrichters oder mit einem SMA Datenlogger verwenden.

Sie erhalten den SMA Grid Guard-Code über den SMA Service oder über das "Bestellformular für den SMA Grid Guard-Code" unter www.SMA-Solar.com.

Der SMA Grid Guard-Code sowie der Code zum Abmelden vom Grid Guard-Modus wird in das Modbus-Register 43090 unter der Unit ID 3 geschrieben. Wird ein SMA Wechselrichter während des Grid Guard-Modus neu gestartet, muss der SMA Grid Guard-Code neu gesendet werden. Mit dem Code $\bf 0$ wird der Grid Guard-Modus beendet. Die Anmeldung mit dem Grid Guard-Code gilt nur für die bei der Anmeldung verwendete IP-Adresse.

Weitere Informationen zur Anmeldung an einem SMA Produkt mittels SMA Grid Guard-Code siehe Anleitung des SMA Produkts. Für Parameter die mit Grid Guard geschützt sind, siehe Produktseiten oder Modbus-Seite auf www.SMA-Solar.com.

3 Produktübersicht

3.1 Modbus-Protokoll

Das Modbus Application Protocol ist ein industrielles Kommunikationsprotokoll, das im Solarsektor derzeit hauptsächlich zur PV-Anlagenkommunikation eingesetzt wird. Das Modbus-Protokoll wurde dafür entwickelt, Daten aus fest definierten Datenbereichen zu lesen oder in diese zu schreiben. In der Modbus-Spezifikation ist nicht vorgeschrieben, welche Daten in welchem Datenbereich stehen. Die Datenbereiche müssen gerätespezifisch in sogenannten Modbus-Profilen definiert werden. Mit Kenntnis des gerätespezifischen Modbus-Profils kann ein Modbus-Client (z. B. SCADA-System) auf die Daten eines Modbus-Servers (z. B. SMA Produkt mit Modbus-Schnittstelle) zugreifen.

Für SMA Produkte wird das von SMA entwickelte SMA Modbus-Profil und das SunSpec Modbus-Profil eingesetzt.

3.2 SunSpec Modbus-Profil

Das SunSpec Modbus-Profil der SunSpec Alliance beinhaltet einen umfassenden Satz an Messwerten und Parametern für Energieerzeugungsgeräte in PV-Anlagen. SMA hat eine Abbildung der speziellen Datenpunkte der unterstützten SMA Produkte auf die von der SunSpec geforderten Datenpunkte durchgeführt. Die unterstützten SMA Produkte sind damit konform zum SunSpec Modbus-Profil der zugrunde liegenden Spezifikationsversion. Das SunSpec Modbus-Profil für SMA Produkte beginnt ab der Registernummer 40001.

3.3 SMA Modbus-Profil

Das SMA Modbus-Profil beinhaltet Definitionen für SMA Produkte. Für die Definition wurden alle verfügbaren Daten von SMA Produkten den entsprechenden Modbus-Registern zugeordnet. Nicht alle SMA Produkte unterstützen alle Modbus-Register des SMA Modbus-Profils.

Daher sind die zu einem SMA Produkt zugehörigen Modbus-Register separat verfügbar. Für Informationen zur Firmware-Version und den gerätespezifischen Modbus-Registern der SMA Produkte siehe Produktseiten oder Modbus-Seite auf www.SMA-Solar.com.

3.4 Anlagentopologie

Ein SMA Produkt mit Modbus-Schnittstelle wird über Ethernet mit dem SCADA-System des Energieversorgers oder des Netzbetreibers verbunden. Die Modbus-Schnittstelle ermöglicht dabei die Kommunikation über das Modbus-Protokoll. Aus Sicht des Modbus-Protokolls stellt ein SMA Produkt mit Modbus-Schnittstelle einen Modbus-Server dar, der das Modbus-Profil unterstützt.

3.5 Adressierung und Datenübertragung

3.5.1 Unit IDs

Die Unit ID ist eine übergeordnete Adressierungsart im Modbus-Protokoll. Die Unit IDs im SMA Modbus-Profil sind im Bereich von 3 bis 123 frei konfigurierbar. Der voreingestellte Wert ist 3.

Die Unit ID im SunSpec Modbus-Profil für SMA Produkte ergibt sich aus der voreingestellten Unit ID im SMA Modbus-Profil + 123. Der voreingestellte Wert für die Unit ID im SunSpec Modbus-Profil ist somit 126.

3.5.2 Abfrage der Unit ID

Über das Modbus-Kommando Read Holding Registers auf die Registeradresse 42109 mit der Unit ID 1 wird die Unit ID der SMA Wechselrichter abgefragt. Eine solche Abfrage liefert folgende Gerätedaten:

- Physikalische Seriennummer (2 Register)
- Physikalische SusyID (1 Register)
- Unit ID (1 Register)

3.5.3 Registeradresse, Registerbreite und Datenblock

Ein Modbus-Register ist 16 Bit breit. Für breitere Daten werden zusammenhängende Modbus-Register verwendet und als Datenblock betrachtet. Die Adresse des ersten Modbus-Registers in einem Datenblock ist die Startadresse des Datenblocks. Die Anzahl der zusammenhängenden Modbus-Register ergibt sich aus dem Datentyp und dem Offset zwischen den Registeradressen. Mehrere Modbus-Register mit verschiedenen Startadressen, die nur als Datenblock verarbeitet werden können, sind besonders gekennzeichnet. Darüber hinaus können größere Datenblöcke gebildet werden.

i Offset der SunSpec Registeradressen

Zum Lesen und Schreiben der Modbus-Register verwenden Sie jeweils die um den Offset 1 verminderten Registeradressen.

Beispiel: Modbus-Registeradresse = Registeradresse im SunSpec Modbus-Profil - Offset = 40001 - 1 = 40000.

3.5.4 Datenübertragung

Entsprechend der Modbus-Spezifikation kann bei einer Datenübertragung nur eine bestimmte Menge an Daten in einer Simple Protocol Data Unit (PDU) transportiert werden. Die Daten beinhalten auch funktionsabhängige Parameter, wie z. B. Function-Code, Startadresse oder Anzahl der zu übertragenden Modbus-Register. Die Menge der Daten ist abhängig vom verwendeten Modbus-Kommando und muss bei der Datenübertragung berücksichtigt werden (siehe Kapitel 3.5.5, Seite 10).

Durch die Datenablage im Motorola-Format "Big-Endian" werden bei einer Datenübertragung erst das High-Byte und dann das Low-Byte der Modbus-Register übertragen.

3.5.5 Lesen und Schreiben von Daten

Die Modbus-Schnittstelle kann über das Protokoll Modbus TCP sowie über das Protokoll Modbus UDP verwendet werden. Über Modbus TCP kann lesend und schreibend auf die Modbus-Register zugegriffen werden. SMA Produkte mit Modbus-Schnittstelle verwenden standardmäßig Modbus TCP. Über Modbus UDP kann nur schreibend auf die Modbus-Register zugegriffen werden. Modbus UDP ist eine spezifische Erweiterung und wird verwendet um beispielsweise Anlagensteuerbefehle an alle Produkte in einer Anlage zu verteilen (Broadcast).

Zugriffsart	Erklärung
RO (Read-Only)	Nur Lesen (nicht UDP)

Zugriffsart	Erklärung
RW (Read-Write)	Lesen und Schreiben (nicht UDP). Alle RW-Register sind bei Modbus UDP nur schreibbar (WO-Register).
WO (Write-Only)	Nur Schreiben

Die folgenden Modbus-Kommandos werden von der implementierten Modbus-Schnittstelle unterstützt:

Modbus-Kommando	Hexadezimalwert	Datenmenge (Registeran- zahl)*
Read Holding Registers	0x03	1 bis 125
Read Input Registers	0x04	1 bis 125
Write Single Register	0x06	1
Write Multiple Registers	0x10	1 bis 123
Read Write Multiple Registers	0x17	Read: 1 bis 125, Write: 1 bis 121

^{*} Anzahl der pro Kommando als Datenblock übertragbaren Modbus-Register (16 Bit)

Fehlermeldungen beim Lesen oder Schreiben einzelner Modbus-Register

Wenn auf ein Modbus-Register zugegriffen wird, das nicht in einem Modbus-Profil enthalten ist oder wenn ein Modbus-Kommando fehlerhaft ist, wird eine Modbus-Exception generiert. Ebenso werden Modbus-Exceptions generiert, wenn auf ein nur lesbares Modbus-Register ein Schreibzugriff oder auf ein nur schreibbares Modbus-Register ein Lesezugriff erfolgt.

Lesen oder Schreiben von Datenblöcken

Um Inkonsistenzen zu verhindern, müssen Datenblöcke zusammengehörender Modbus-Register oder Modbus-Registerbereiche in einem Schritt gelesen oder geschrieben werden. Die 4 Bytes eines 64 Bit Modbus-Registers müssen zum Beispiel mit einer Operation in einen 64 Bit SMA Datentypen gelesen werden.

Lesen mehrerer Modbus-Register als Datenblock

Wird ein Datenblock gelesen und kann in dessen Datenbereich mindestens ein im Modbus-Profil definiertes Register ermittelt werden, so wird eine Antwort zurückgegeben. Enthält dieser Block außerdem Modbus-Register, die nicht im Modbus-Profil definiert sind, so wird für deren Abfragewerte jeweils NaN eingesetzt. Wenn keines der Modbus-Register im Datenbereich eines Datenblocks im Modbus-Profil definiert ist, so ist die Abfrage ungültig und es wird eine Modbus-Exception generiert.

Fehlermeldung beim Schreiben mehrerer Modbus-Register als Datenblock

Werden mehrere Register im Datenblock geschrieben (Modbus-Kommandos 0x10 und 0x17) und es tritt ein Fehler beim Schreiben auf, wird mit dem nächsten Register im Datenblock fortgefahren. Sind Daten voneinander abhängig oder schließen sie sich gegenseitig aus, werden die Daten nur verarbeitet, wenn der gesamte Datenblock gültig ist. Ansonsten wird der ganze Datenblock verworfen. Bei einem Fehler wird eine Modbus-Exception generiert.

Modbus-Exceptions

Modbus-Exceptions, siehe Spezifikation "Modbus Application Protocol Specification", unter http://www.modbus.org/specs.php.

3.5.6 SunSpec Datentypen und NaN-Werte

Die folgende Tabelle zeigt die im SunSpec Modbus-Profil verwendeten Datentypen und stellt diesen mögliche NaN-Werte gegenüber. Die SunSpec Datentypen werden in den Zuordnungstabellen in der Spalte **Typ** aufgeführt. Die SunSpec Datentypen beschreiben die Datenbreite der zugeordneten Werte.

0		
Тур	Erklärung	NaN-Wert
acc32	Akkumulierter Wert (32 Bit). Wird für alle fortlaufend steigenden Werte verwendet.	0x0000 0000
acc64	Akkumulierter Wert (64 Bit). Wird für alle fortlaufend steigenden Werte verwendet. Es sind nur positive Werte erlaubt. Der Überlauf des Zahlenbereichs erfolgt bei 0x7FFF FFFF FFFF FFFF.	0x0000 0000 0000 0000
bitfield 16	Bitfeld (16 Bit). Eine Zusammenstellung einzelner Bits. Wird für mehrwertige Alarmmeldungen oder Status verwendet. Wertebereich O bis Ox7FFF. Wenn das MSB in einem Bitfeld gesetzt ist, werden alle anderen Bits ignoriert.	OxFFFF
bitfield32	Bitfeld (32 Bit). Eine Zusammenstellung einzelner Bits. Wird für mehrwertige Alarmmeldungen oder Status verwendet. Wertebereich O bis Ox7FFF FFFF. Wenn das MSB in einem Bitfeld gesetzt ist, werden alle anderen Bits ignoriert.	Oxffff ffff
enum16	Zahlen-Code (16 Bit). Die Aufschlüsselung der möglichen Codes finden Sie jeweils direkt unter der Bezeichnung des Modbus-Registers in den Zuordnungstabellen.	OxFFFF
int16	Vorzeichenbehafteter Integer (16 Bit)	0x8000
int32	Vorzeichenbehafteter Integer (32 Bit)	0x8000 0000
string	Zeichenkette (Vielfaches von 2 Byte). Ein Null-terminierter Wert oder ein Wert fixer Länge.	-
sunssf	SunSpec-Skalierungsfaktor als vorzeichenbehafteter Integer (16 Bit). Skalierungsfaktoren werden als Exponent einer Zehnerpotenz verwendet. Negative Skalierungsfaktoren schieben den Dezimalpunkt auf die linke Seite, positive Skalierungsfaktoren auf die rechte Seite.	0x8000
uint16	Vorzeichenloser Integer (16 Bit)	OxFFFF

Тур	Erklärung	NaN-Wert
uint32	Vorzeichenloser Integer (32 Bit)	OxFFFF FFFF
uint64	Vorzeichenloser Integer (64 Bit)	OxFFFF FFFF FFFF FFFF

3.5.7 SMA Datentypen und NaN-Werte

Die folgende Tabelle zeigt die im SMA Modbus-Profil verwendeten Datentypen und stellt diesen mögliche NaN-Werte gegenüber. Die SMA Datentypen werden in den Zuordnungstabellen in der Spalte **Typ** aufgeführt. Die SMA Datentypen beschreiben die Datenbreite der zugeordneten Werte.

Тур	Erklärung	NaN-Wert
\$16	Vorzeichenbehaftetes Wort (16 Bit)	0x8000
S32	Vorzeichenbehaftetes Doppelwort (32 Bit)	0x8000 0000
STR32	32-Byte-Datenfeld, im Format UTF8	NULL
U16	Ein Wort (16 Bit)	OxFFFF
U32	Ein Doppelwort (32 Bit)	OxFFFF FFFF
U32	Für Statuswerte werden nur die unteren 24 Bit eines Dop- pelworts (32 Bit) verwendet	0xFFFF FD
U64	Ein Vierfachwort (64 Bit)	OxFFFF FFFF FFFF FFFF

3.5.8 SMA Datenformate

Die folgenden SMA Datenformate beschreiben, wie SMA Daten zu interpretieren sind. Die Datenformate spielen z. B. bei der Anzeige von Daten oder bei deren Weiterverarbeitung eine Rolle. Die SMA Datenformate werden in den Zuordnungstabellen in der Spalte **Format** aufgeführt.

Format	Erklärung
Dauer	Zeit in Sekunden, in Minuten oder in Stunden, je nach Modbus-Register
ENUM oder TAGLIST	Codierte Zahlenwerte. Die Aufschlüsselung der möglichen Codes finden Sie jeweils direkt unter der Bezeichnung des Modbus-Registers in den Zuordnungstabellen.
FIXO	Dezimalzahl, kaufmännisch gerundet, ohne Nachkommastelle
FIX1	Dezimalzahl, kaufmännisch gerundet, 1 Nachkommastelle
FIX2	Dezimalzahl, kaufmännisch gerundet, 2 Nachkommastellen
FIX3	Dezimalzahl, kaufmännisch gerundet, 3 Nachkommastellen
FIX4	Dezimalzahl, kaufmännisch gerundet, 4 Nachkommastellen

Format	Erklärung
funktion_sec	Das im Modbus-Register gespeicherte Datum wird bei Änderung an eine Funktion übergeben und startet diese. Nach Ausführen der Funktion ist kein Statuswert mehr gesetzt. Vor Ausführen der Funktion sollte in der Client-Software eine Sicherheitsabfrage vorgesehen werden.
FW	Firmware-Version
HW	Hardware-Version z. B. 24
IP4	4-Byte-IP-Adresse (IPv4) der Form XXX.XXX.XXX
RAW	Text oder Zahl. Eine RAW-Zahl hat keine Nachkommastellen und keine Tausender- oder sonstigen Trennzeichen.
REV	Revisionsnummer der Form 2.3.4.5
TEMP	Temperaturwerte werden in speziellen Modbus-Registern in Grad Celsius (°C), in Grad Fahrenheit (°F) oder in Kelvin (K) gespeichert. Die Werte sind kaufmännisch gerundet, mit einer Nachkommastelle.
TM	UTC-Zeit, in Sekunden
UTF8	Daten im Format UTF8
DT	Datum/Uhrzeit, gemäß der Ländereinstellung (Übertragung in Sekunden seit 01.01.1970)

3.5.9 SMA Firmware-Datenformate

Aus dem gelieferten Doppelwort (DWORD) aus dem entsprechenden Modbus-Register werden vier Werte extrahiert. Die Werte "Major" und "Minor" sind in Byte 1 und 2 BCD-codiert enthalten. Byte 3 beinhaltet den Wert "Build" (nicht BCD-codiert). Byte 4 enthält den "Release-Typ" gemäß folgender Tabelle:

Release-Typ	Release-Typ-Codierung	Erklärung
0	N	Keine Revisionsnummer
1	Е	Experimentelles Release
2	A	Alpha-Release
3	В	Beta-Release
4	R	Release
5	S	Spezial-Release
> 5	Als Zahl	Keine spezielle Interpretation

Beispiel:

Firmware-Version des Produkts: 1.05.10.R

Werte aus Doppelwort (DWORD): Major: 1, Minor: 05, Build: 10, Release-Typ: 4 (Hex: 0x1

0x5 0xA 0x4)

3.6 Modbus-Ports

Die folgende Tabelle zeigt die Werkseinstellung der unterstützten Netzwerkprotokolle:

Netzwerkprotokoll	Modbus-Port
TCP	502
UDP	502

i Freie Ports verwenden

Wenn ein anderer Port als 502 verwendet werden soll, sollten Sie nur freie Ports verwenden. Generell steht der folgende Bereich zur Verfügung: 49152 bis 65535.

Weitere Informationen über belegte Ports finden Sie in der Datenbank "Service Name and Transport Protocol Port Number Registry" unter http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml.

i Änderung des Modbus-Ports

Wenn Sie einen der Modbus-Ports ändern, müssen Sie ebenso den entsprechenden Modbus-Port eines angeschlossenen Modbus-Client-Systems ändern. Anderenfalls kann das SMA Produkt nicht mehr über das Modbus-Protokoll erreicht werden

3.7 Datenverarbeitung und Zeitverhalten

In diesem Kapitel finden Sie typische Datenverarbeitungs- und Reaktionszeiten der Modbus-Schnittstelle sowie Zeitangaben zur Speicherung von Parametern in SMA Produkten.

Signallaufzeit durch das SMA Produkt mit Modbus-Schnittstelle

Die Signallaufzeit durch das SMA Produkt mit Modbus-Schnittstelle beträgt in der Regel 100 ms. Die Signallaufzeit ist die Zeit, die das SMA Produkt benötigt, um eingehende Modbus-Kommandos zu verarbeiten.

Datentransferintervall über das Modbus-Protokoll

Aus Gründen der Systemstabilität soll der zeitliche Abstand zwischen Datentransfers über das Modbus-Protokoll mindestens 10 Sekunden betragen. Dabei sollen gleichzeitig nicht mehr als 5 Parameter und Messwerte pro SMA Wechselrichter übertragen werden.

Datentransferintervall über das Modbus-Protokoll

Die physikalische Reaktionszeit von SMA Produkten beträgt in der Regel ca. 1 Sekunde. Die physikalische Reaktionszeit ist die Zeit zwischen der Änderung von Sollwerten in einem SMA Produkt bis zu deren physikalischer Umsetzung. Eine solche Änderung ist z. B. die Änderung des cos φ.

Reaktionszeit der Modbus-Schnittstelle

Die Reaktionszeit der Modbus-Schnittstelle beträgt 5 bis 10 Sekunden. Die Reaktionszeit der Modbus-Schnittstelle ist die Zeit zwischen dem Eintreffen von Parametervorgaben im SMA Produkt bis zur Bereitstellung der entsprechenden Messwerte an der Modbus-Schnittstelle. Aufgrund dieser Reaktionszeit können Parametervorgaben über ein Modbus-Client-System (z. B. einem SCADA-System) nur in einem entsprechend gleichen oder größeren Intervall angezeigt werden.

3.8 Zahlencodes der Zeitzonen

Die folgende Tabelle enthält die wichtigsten Zeitzonen und deren Zahlencodes im SMA Modbus-Profil. Bei bekanntem Ort können Sie damit den numerischen Schlüssel (Code) und die Zeitzone ermitteln. Bitte berücksichtigen Sie zusätzlich die örtlichen Regelungen zur Sommer- und Winterzeit.

Stadt/Land	Code	Zeitzone
UTC-AUTO	9499	AUTO
Abu Dhabi, Muskat	9503	UTC+04:00
Adelaide	9513	UTC+09:30
Alaska	9501	UTC-09:00
Amman	9542	UTC+02:00
Amsterdam, Berlin, Bern, Rom, Stockholm, Wien	9578	UTC+01:00
Arizona	9574	UTC-07:00
Astana, Dhaka	9515	UTC+06:00
Asuncion	9594	UTC-04:00
Athen, Bukarest, Istanbul	9537	UTC+02:00
Atlantik (Kanada)	9505	UTC-04:00
Auckland, Wellington	9553	UTC+12:00
Azoren	9509	UTC-01:00
Bagdad, Istanbul	9504	UTC+03:00
Baku	9508	UTC+04:00
Bangkok, Hanoi, Jakarta	9566	UTC+07:00
Beirut	9546	UTC+02:00
Belgrad, Bratislava, Budapest, Ljubljana, Prag	951 <i>7</i>	UTC+01:00
Bogotá, Lima, Quito	9563	UTC-05:00
Brasilia	9527	UTC-03:00
Brisbane	9525	UTC+10:00
Brüssel, Kopenhagen, Madrid, Paris	9560	UTC+01:00

Stadt/Land	Code	Zeitzone
Buenos Aires	9562	UTC-03:00
Canberra, Melbourne, Sydney	9507	UTC+10:00
Caracas	9564	UTC-04:30
Casablanca	9585	UTC+00:00
Cayenne	9593	UTC-03:00
Chennai, Kolkata, Mumbai, Neu-Delhi	9539	UTC+05:30
Chicago, Dallas, Kansas City, Winnipeg	9583	UTC-06:00
Chihuahua, La Paz, Mazatlan	9587	UTC-07:00
Darwin	9506	UTC+09:30
Denver, Salt Lake City, Calgary	9547	UTC-07:00
Dublin, Edinburgh, Lissabon, London	9534	UTC+00:00
Eriwan	9512	UTC+04:00
Fidschi, Marshall-Inseln	9531	UTC+12:00
Georgetown, La Paz, San Juan	9591	UTC-04:00
Grönland	9535	UTC-03:00
Guadalajara, Mexiko-Stadt, Monterrey	9584	UTC-06:00
Guam, Port Moresby	9580	UTC+10:00
Harare, Prätoria	9567	UTC+02:00
Hawaii	9538	UTC-10:00
Helsinki, Kiew, Riga, Sofia, Tallinn, Wilna	9532	UTC+02:00
Hobart	9570	UTC+10:00
Indiana (Ost)	9573	UTC-05:00
Internationale Datumsgrenze (Westen)	9523	UTC-12:00
Irkutsk	9555	UTC+08:00
Islamabad, Karatschi	9579	UTC+05:00
Jakutsk	9581	UTC+09:00
Jekaterinburg	9530	UTC+05:00
Jerusalem	9541	UTC+02:00
Kabul	9500	UTC+04:30

Stadt/Land	Code	Zeitzone
Kairo	9529	UTC+02:00
Kapverdische Inseln	9511	UTC+05:45
Kaukasische Normalzeit	9582	UTC+04:00
Krasnojarsk	9556	UTC+07:00
Kuala Lumpur, Singapur	9544	UTC+08:00
Kuwait, Er Riad	9502	UTC+03:00
Magadan, Salomonen, Neukale-donien	9519	UTC+11:00
Manaus	9516	UTC-04:00
Midway-Inseln, Samoa	9565	UTC-11:00
Minsk	9526	UTC+02:00
Mittelatlantik	9545	UTC-02:00
Monrovia, Reykjavík	9536	UTC+00:00
Montevideo	9588	UTC-03:00
Moskau, St. Petersburg, Wolgograd	9561	UTC+03:00
Nairobi	9524	UTC+03:00
Neufundland	9554	UTC-03:30
New York, Miami, Atlanta, Detroit, Toronto	9528	UTC-05:00
Nowosibirsk	9550	UTC+06:00
Nuku'alofa	9572	UTC+13:00
Osaka, Sapporo, Tokio	9571	UTC+09:00
Pacific (USA, Kanada)	9558	UTC-08:00
Peking, Chongqing, Hongkong, Urumchi	9522	UTC+08:00
Perth	9576	UTC+08:00
Petropawlowsk-Kamtschatski	9595	UTC+12:00
Port Louis	9586	UTC+04:00
Santiago	9557	UTC-04:00
Sarajevo, Skopje, Warschau, Zagreb	9518	UTC+01:00
Saskatchewan	9510	UTC-06:00
Seoul	9543	UTC+09:00
Sri Jayawardenepura	9568	UTC+05:30

Stadt/Land	Code	Zeitzone
Taipeh	9569	UTC+08:00
Taschkent	9589	UTC+05:00
Teheran	9540	UTC+03:30
Tiflis	9533	UTC+04:00
Tijuana, Niederkalifornien (Mexiko)	9559	UTC-08:00
Ulan-Bator	9592	UTC+08:00
West-Zentralafrika	9577	UTC+01:00
Windhuk	9551	UTC+02:00
Wladiwostok	9575	UTC+10:00
Yangon (Rangun)	9549	UTC+06:30
Zentralamerika	9520	UTC-06:00

4 Konfiguration

Werksseitig sind die beiden Server Modbus TCP und Modbus UDP bei den unterstützten SMA Produkten deaktiviert. Sie müssen die Modbus-Server aktivieren, um diese zu verwenden. Sie können die Modbus-Ports der beiden Modbus-Protokolle nach Aktivierung der Server ändern.

i Zugriff auf Datenpunkte nach Aktivierung der Modbus-Schnittstelle

Nach Aktivierung der Modbus-Schnittstelle ist der lesende Zugriff auf alle Datenpunkte möglich. Der schreibende Zugriff ist auf alle Datenpunkte, die nicht durch den SMA Grid Guard-Code geschützt sind, ohne weitere Eingabe eines Passworts über Modbus möglich.

 Sicherstellen, dass nach dem Zurücksetzen des SMA Produkts auf Werkseinstellungen die Modbus-Schnittstelle noch aktiv ist.

4.1 Konfiguration mit Benutzeroberfläche eines SMA Wechselrichters

- 1. Verbindung zur Benutzeroberfläche aufbauen (siehe Anleitung des Wechselrichters).
- 2. An der Benutzeroberfläche als **Installateur** anmelden.
- 3. Die Registerkarte Geräteparameter wählen.
- 4. [Parameter bearbeiten] wählen.
- 5. Die Parametergruppe Externe Kommunikation wählen.
- 6. Um den TCP-Server einzuschalten, in der Gruppe Modbus > TCP-Server folgende Einstellungen vornehmen:
 - In der Dropdown-Liste **Eingeschaltet** den Eintrag **Ja** wählen.
 - Bei Bedarf im Feld **Port** den Port ändern (Werkseinstellung: 502).
- Um den UDP-Server einzuschalten, in der Gruppe Modbus > UDP-Server folgende Einstellungen vornehmen:
 - In der Dropdown-Liste **Eingeschaltet** den Eintrag **Ja** wählen.
 - Bei Bedarf im Feld **Port** den Port ändern (Werkseinstellung: 502).
- 8. [Alle speichern] wählen.

4.2 Konfiguration mit Sunny Explorer

- 1. Sunny Explorer auf dem Computer starten und eine Speedwire-Anlage anlegen (siehe Bedienungsanleitung des Sunny Explorer).
- 2. An der Speedwire-Anlage als Installateur anmelden.
- 3. Den zu konfigurierenden SMA Wechselrichter im Anlagenbaum auswählen.
- 4. Die Registerkarte Einstellungen wählen.
- 5. Die Parametergruppe **Externe Kommunikation** wählen.
- 6. [Bearbeiten] wählen.
- Um den TCP-Server einzuschalten, in der Gruppe Modbus > TCP-Server folgende Einstellungen vornehmen:
 - In der Dropdown-Liste **Eingeschaltet** den Eintrag **Ja** wählen.

- Bei Bedarf im Feld Port den Port ändern (Werkseinstellung: 502).
- 8. Um den UDP-Server einzuschalten, in der Gruppe **Modbus > UDP-Server** folgende Einstellungen vornehmen:
 - In der Dropdown-Liste **Eingeschaltet** den Eintrag **Ja** wählen.
 - Bei Bedarf im Feld **Port** den Port ändern (Werkseinstellung: 502).
- 9. [Speichern] wählen.

5 Kontakt

Sunny Tripower: +49 561 9522-1. Monitoring System (Kommunikationsp. +49 561 9522-2. Fuel Save Controll (PV-Diesel-Hybrids. +49 561 9522-3. Sunny Island, Sunnge, Sunny Backup. +49 561 9522-3. Sunny Central, Su. Storage: +49 561 9522-2. SMA Online Servi	Niestetal Sunny Boy, Sunny Mini Central, Sunny Tripower: +49 561 9522-1499 Monitoring Systems	Belgien Belgique België Luxemburg Luxembourg Nederland	SMA Benelux BVBA/SPRL Mechelen +32 15 286 730 SMA Online Service Center: www.SMA-Service.com
	+49 561 9522-2499 Fuel Save Controller (PV-Diesel-Hybridsysteme): +49 561 9522-3199 Sunny Island, Sunny Boy Stora-	Česko Magyarország Slovensko	SMA Service Partner TERMS a.s. +420 387 6 85 111 SMA Online Service Center: www.SMA-Service.com
	ge, Sunny Backup: +49 561 9522-399 Sunny Central, Sunny Central Storage: +49 561 9522-299 SMA Online Service Center: www.SMA-Service.com	Türkiye	SMA Service Partner DEKOM Ltd. Şti. +90 24 22430605 SMA Online Service Center: www.SMA-Service.com
France	SMA France S.A.S. Lyon +33 472 22 97 00 SMA Online Service Center : www.SMA-Service.com	Ελλάδα Κύπρος	SMA Service Partner AKTOR FM. Aθήva +30 210 8184550 SMA Online Service Center: www.SMA-Service.com
España Portugal	SMA Ibérica Tecnología Solar, S.L.U. Barcelona +34 935 63 50 99 SMA Online Service Center: www.SMA-Service.com	United King- dom	SMA Solar UK Ltd. Milton Keynes +44 1908 304899 SMA Online Service Center: www.SMA-Service.com
Italia	SMA Italia S.r.l. Milano +39 02 8934-7299 SMA Online Service Center: www.SMA-Service.com	Australia	SMA Australia Pty Ltd. Sydney Toll free for Australia: 1800 SMA AUS (1800 762 287) International: +61 2 9491 4200

United Arab Emirates	SMA Middle East LLC Abu Dhabi +971 2234 6177 SMA Online Service Center: www.SMA-Service.com	India	SMA Solar India Pvt. Ltd. Mumbai +91 22 61713888
ไทย	SMA Solar (Thailand) Co., Ltd. กรุงเทพฯ +66 2 670 6999	대한민국	SMA Technology Korea Co., Ltd. 서울 +82-2-520-2666
South Africa	SMA Solar Technology South Africa Pty Ltd. Cape Town 08600SUNNY (08600 78669) International: +27 (0)21 826 0699 SMA Online Service Center: www.SMA-Service.com	Brasil Chile	SMA South America SPA Santiago de Chile +562 2820 2101
Other countries	International SMA Service Line Niestetal 00800 SMA SERVICE (+800 762 7378423) SMA Online Service Center: www.SMA-Service.com		

