Лекция 4: Функции

Минко Марков

minkom@fmi.uni-sofia.bg

Факултет по Математика и Информатика Софийски Университет "Свети Климент Охридски"

3 януари 2025 г.

Основни определения

Определение 1 (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че за всяко $x\in X$ съществува не повече от едно $y\in Y$, такова че $(x,y)\in f$.

Определение 2 (Тотална функция)

Нека X и Y са множества. Тотална функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че за всяко $x\in X$ съществува точно едно $y\in Y$, такова че $(x,y)\in f$.

Определенията с изрази от предикатната логика

Определение (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f \subseteq X \times Y$, такава че

$$\forall x \in X ((\neg \exists y \in Y : (x, y) \in f) \lor ((\exists y \in Y : (x, y) \in f) \land (\forall w, z \in Y : (x, w) \in f \land (x, z) \in f \rightarrow w = z)))$$

Или по-просто

Определение (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че

$$\forall x \in X \ \forall w, z \in Y((x, w) \in f \land (x, z) \in f \rightarrow w = z)$$

Определенията с изрази от предикатната логика (2)

Определение (Тотална функция)

Нека X и Y са множества. Тотална функция с домейн X и кодомейн Y е всяка релация $f \subseteq X \times Y$, такава че

$$\forall x \in X ((\exists y \in Y : (x, y) \in f) \land (\forall w, z \in Y : (x, w) \in f \land (x, z) \in f \rightarrow w = z))$$

Частични функции и функции

Тоталните функции се срещат по-често в практиката, затова само "функция" е "тотална функция". При дадени X и Y, очевидно тоталните са строго подмножество на частичните. Следователно, само "функция" е частен случай на "частична функция": всяка функция е частична функция, но не всяка частична функция е функция.

Това води до противоречие с приетото разбиране за прилагателните, с които отделяме подмножества като в аксиомата за отделянето.

Частични функции и функции (2)

За формалните определения

На практика често казваме "изображение" (mapping) вместо "функция". Това обаче не е определение: а какво е "изображение"?

Предпочитаме да не въвеждаме "функция" като ново първично понятие, а да използваме вече изградени понятия и да дефинираме "функция" чрез тях.

И така, формално, функция е вид релация.

Типични записи на функции

Наместо $f \subseteq X \times Y$, пишем $f: X \to Y$. Чете се "f е функция с домейн X и кодомейн Y". Още може да се чете и като "f изобразява X в Y".

Наместо $(x,y) \in f$ или инфиксния запис x f y, в контекста на функциите ползваме добре известния запис f(x) = y. "x" е *променлива*. Променлива е нещо като кутийка, в която можем да слагаме неща (от домейна).

Функции на много променливи

Свикнали сме да мислим за функциите на много променливи като за обобщение на функциите на една променлива. Но всяка функция на k променливи в някакъв смисъл е функция на една променлива, която обаче е наредена k-орка.

Пример: някаква реална функция на две променливи. Типичен запис е g(x,y)=z, където x, y и z са реални. Тогава $g:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Можем да мислим за g като функция на една променлива, която не е реално число, а наредена двойка от реални числа. Формално правилният запис би бил g((x,y))=z, където $(x,y)\in\mathbb{R}\times\mathbb{R}$, но това не се ползва.

Забележка: множеството от реалните числа се бележи с ${\Bbb R}.$

Представяне на функция с диаграма

Нека $f: X \to Y$, като X и Y са крайни. Да кажем, $X = \{a, b, c, d\}$, $Y = \{1, 2, 3\}$. От всяка точка в елипсата, отговаряща на X, излиза точно една стрелка.

Представяне на частична функция с диаграма

Нека g е частична функция с домейн X и кодомейн Y. От всяка точка в елипсата, отговаряща на X, излиза не повече от една стрелка.

Диаграма на релация, която не е частична функция

Ако от поне една точка в елипсата, отговаряща на X, излиза повече от една стрелка, това не може да е диаграма на частична функция (оттам, и на тотална). Това е диаграма на релация φ с първи домейн X и втори домейн Y.

Инекции, сюрекции, биекции

Нека $f: X \to Y$. f е инекция, ако $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \to x_1 = x_2$.

Инекции, сюрекции, биекции Контрапример за инекция

Инекции, сюрекции, биекции Сюрекции

Нека $f: X \to Y$. f е *сюрекция*, ако $\forall y \in Y \exists x \in X : f(x) = y$. Неформално: кодомейнът да бъде "покрит" от изображението.

Инекции, сюрекции, биекции Контрапример за сюрекция

Инекции, сюрекции, биекции

Нека $f: X \to Y$. f е биекция, ако е инекция и сюрекция. Още се казва взаимно еднозначно изображение.

Инекции, сюрекции, биекции – пример

Сядането на хора в зала е частична функция с домейн хората и кодомейн столовете, ако никой не седи на повече от един стол; възможно е да има правостоящи.

Ако няма правостоящи, сядането е функция.

Ако на никой стол не седи повече от един човек, сядането е инекция.

Ако няма празни столове, сядането е сюрекция.

Ако всеки човек седи на отделен стол и няма празни столове, сядането е биекция. Очевидно броят на столовете е равен на броя на хората.

Инекции, сюрекции, биекции – ограничения за бройките

Все още не сме въвели формално "крайно множество" и "брой на елементи на крайно множество", но интуитивно всеки разбира за какво става дума.

Нека
$$X = \{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}.$$
 Нека $f: X \to Y$.

Необходимо условие f да е инекция е $m\leqslant n$. Необходимо условие f да е сюрекция е $m\geqslant n$. Необходимо условие f да е биекция е m=n.

Иначе казано, при m > n няма инекция, при m < n няма сюрекция, при $m \neq n$ няма биекция.

Обратна функция на биекция

Нека $f: X \to Y$ е биекция. Обратната функция на f се бележи с f^{-1} . Тя е с домейн Y и кодомейн X и се дефинира така:

$$\forall y \in Y: f^{-1}(y) = x$$
, където x е уникалният елемент на X , такъв че $f(x) = y$

Обратна функция на биекция – пример

Нека f е биекцията от слайд 17. Нейната обратна функция е следната:

Обратна функция на функция

Образно казано, обратната функция има диаграма с разменени домейн и кодомейн и обърнати посоки на стрелките.

Ако опитаме да "обърнем" функция, която не е инекция, ще получим обект, който дори не е функция. Ето какво ще получим, ако се опитаме да "обърнем" сюрекцията от слайд 15:

Обратна функция на функция (2)

Ако обърнем произволна инекция, ще получим частична функция, която не е непременно функция. Ето какво ще получим, ако се опитаме да "обърнем" инекцията от слайд 13:

Рестрикция на функция

Нека $f: X \to Y$ и $X' \subseteq X$. Рестрикцията на f върху X' е $f': X' \to Y$, където $\forall x \in X': f'(x) = f(x)$. Бележим рестрикцията така: $f|_{X'}$.

Алтернативна дефиниция e: $f|_{X'} = \{(x, y) \in f \mid x \in X'\}.$

Понятието "рестрикция" може да се обобщи и за частични функции по естествения начин.

Очевидно, всяка частична функция има рестрикция, която е функция — вземаме такова X', че всеки елемент от X' да има изображение. Това е в сила дори ако $f=\varnothing$; забележете, че $f|_{\varnothing}$ е винаги функция, независимо от това дали $f=\varnothing$ или $f \neq \varnothing$.

Пример за рестрикция на функция

Нека $f: X \to Y$ е следната функция (това е функцията от слайд 10). Ако $X' = \{b, c\}$, то рестрикцията $f' = f|_{X'}$ е тази:

Илюстрации на понятията с реални функции и графики

Pеална функция $f: \mathbb{R} \to \mathbb{R}$.

Нека е дадено уравнение на две реални променливи x и y. Дали то реализира частична функция f(x) = y? Да, ако и само ако издържа теста с вертикалната права. Мислено "влачим" вертикална права върху графиката:

- ако поне на едно място вертикалната права пресича графиката в повече от една точка, f не е дори частична функция,
- ако вертикалната права винаги пресича графиката в точно една точка, f е функция,
- ако вертикалната права винаги пресича графиката в не повече от една точка, f е частична функция.

Илюстрации на понятията с реални функции и графики Тестът с вертикалната права: пример за не-функция

Примерно, $x^2+y^2=1$ не задава функция и съответно не издържа теста с вертикалната права. Дори не е частична функция!

Илюстрации на понятията с реални функции и графики Тестът с вертикалната права: пример за функция

От друга страна,

$$f(x)=egin{cases} 0, & ext{ ако } x<-1 ext{ или } x>1 \ \sqrt{1-x^2}, & ext{ ако } -1\leqslant x\leqslant 1 \end{cases}$$

е функция (което означава, че е и частична функция).

Илюстрации на понятията с реални функции и графики Тестът с вертикалната права: пример за частична функция

От трета страна,

$$f(x) = egin{cases}$$
 недефинирана, ако $x < -1$ или $x > 1$ $\sqrt{1 - x^2}$, ако $-1 \leqslant x \leqslant 1$

е частична функция, но не е функция.

Илюстрации на понятията с реални функции и графики Тестът с вертикалната права: друг пример за функция

От четвърта страна, ако $f:\{x\in\mathbb{R}\ |\ -1\leqslant x\leqslant 1\}\to\mathbb{R}$ и $f(x)=\sqrt{1-x^2}$, то f е функция, но не е реална функция по нашата дефиниция, понеже домейнът не е множеството от всички реални числа.

Илюстрации на понятията с реални функции и графики Тестът с хоризонталната права: инекции и не-инекции, сюрекции и не-сюрекции

Нека е дадена функция f със своята графика. Мислено "влачим" хоризонтална права върху графиката. f е инекция тстк правата не пресича никъде повече от една точка от графиката. f е сюрекция тстк правата навсякъде пресича поне една точка от графиката. Тогава f е биекция тстк правата навсякъде пресича точно една точка от графиката.

Илюстрации на понятията с реални функции и графики Тестът с хоризонталната права: не-инекция и не-сюрекция

Нека f е реална функция, такава че

$$f(x) = \begin{cases} -x, & \text{ako } x < 0 \\ 0, & \text{ako } x = 0 \\ x, & \text{ako } x > 0 \end{cases}$$

f не е нито е инекция, нито сюрекция.

Илюстрации на понятията с реални функции и графики Тестът с хоризонталната права: инекция, но не-сюрекция

Реалната функция arctan(x) "издържа" теста с хоризонталната права, така че е инекция, но не е сюрекция.

Графиката е генерирана с Maple(tm).

Илюстрации на понятията с реални функции и графики Тестът с хоризонталната права: сюрекция, но не-инекция

Нека f е следната реална функция.

$$f(x) = egin{cases} -x, & ext{ako } x < 0 \ x, & ext{ako } 0 \leqslant x \leqslant 1 \ 2 - x, & ext{ako } x > 1 \end{cases}$$

f е сюрекция, но не е инекция.

Илюстрации на понятията с реални функции и графики Тестът с хоризонталната права: инекция и сюрекция

Реалната функция f(x) = x е инекция и сюрекция; тоест, биекция.

Крайни множества Неправилна дефиниция

Дефиницията "множество е крайно, ако има краен брой елементи" не върши работа. На практика тя казва "множество е крайно, ако е крайно". Очевидно това е порочно зациклена дефиниция!

Крайни множества и кардиналност Правилна дефиниция

Дефинирането на "крайно множество" става чрез биекция между него и някое множество $\{1,2,\ldots,n\}$.

Определение 3 (крайно множество, кардиналност)

Множество А е крайно, ако

- или $A = \emptyset$, в който случай кардиналността на A е 0,
- или съществува $n \in \mathbb{N}^+$, такова че съществува биекция $f: A \to \{1, 2, ..., n\}$; тогава кардиналността на A е n.

Кардиналността на A е броят на елементите и се бележи с |A|. "Мощност на множество" е синоним на "кардиналност на множество". Множества са равномощни, или съизброими, тстк между тях съществува биекция. На английски се ползва "equinumerous".

Безкрайни множества

Определение 4 (безкрайно множество)

Множество е безкрайно, ако не е крайно.

Очевидно $\mathbb N$ не е крайно: колкото и голямо естествено число n да вземем, n+1 е по-голямо. Така че за всяко n е вярно, че $n+1\notin\{0,1,\ldots,n\}$.

Изброими множества

Определение 5 (изброимо безкрайно множество)

Множество A е изброимо безкрайно, ако е равномощно на \mathbb{N} .

Определение 6 (изброимо множество)

Множество A е изброимо, ако A е крайно или изброимо безкрайно.

Определение 7 (неизброимо множество)

Множество е неизброимо, ако не е изброимо.

Очевидно всяко неизброимо множество е безкрайно. Не е очевидно, че съществуват неизброими множества.

За безкрайните множества (1) Потенциална и актуална безкрайност

Естествените числа се генерират от процес, който започва от 0 с добавяне на единица:

$$0 + 1 = 1$$
 $1 + 1 = 2$
...
 $1000000 + 1 = 1000001$
...

Аристотел характеризира този процес като "потенциална безкрайност". Кулминацията на процеса, а именно множеството от всички естествени числа, е "пълна безкрайност", или "актуална безкрайност".

За безкрайните множества (2) Потенциална и актуална безкрайност

От Аристотелово време чак до 19 век мнозинството от мислителите отхвърлят актуалната безкрайност като нелегитимно понятие. Гаус (Carl Friedrich Gauss), най-великият математик на своето време, пише:

But concerning your proof, I protest above all against the use of an infinite quantity as a *completed* one, which in mathematics is never allowed. The infinite is only façon de parler, in which one properly speaks of limits.

> Georg Cantor, His Mathematics and Philosophy of the Infinite, Dauben, pp. 120

Потенциална и актуална безкрайност – допълнителна илюстрация на разликата

Редът на Лайбниц е

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Ако гледаме на сумата вдясно като на процес, който апроксимира $\frac{\pi}{4}$ все по-добре с добавяне на все повече събираеми, имаме предвид потенциална безкрайност. Тогава $\frac{\pi}{4}$ е само граница, по израза на Гаус, към която клони сумата, без да я достига никога. Тук и дума не става за пълна безкрайност: на всеки етап от сумирането сме събрали краен брой събираеми.

Ако гледаме на сумата вдясно като на едно цяло нещо, което е точно равно на $\frac{\pi}{4}$, имаме предвид актуална безкрайност.

За безкрайните множества (4)

Проблем при безкрайните множества: цялото е "равно" на своя част. "Равно" има смисъл на "равномощно".

Примерно, множеството на естествените числа и множеството на четните числа $\mathbb{N}_e = \{0,2,\ldots\}$ са равномощни. Интуитивно, естествените са повече, защото има естествени нечетни числа. От друга страна, биекцията $f: \mathbb{N} \to \{0,2,\ldots\}$:

$$\forall n \in \mathbb{N} : f(n) = 2n$$

съчетава точно естествените и четните числа.

Оттук и мнението, че да се говори за "броя на всички числа" е безсмислица.

За безкрайните множества (5)

Георг Кантор (Georg Cantor) е първият математик, който разглежда сериозно безкрайните множества и създава кохерентна и задълбочена теория за тях. Той въвежда понятия, имащи смисъл на бройки на елементите на безкрайни множества, и работи с тези понятия.

Кантор показва, че множества като $\mathbb Q$ (рационалните числа) или множеството на алгебричните ирационални числа (като $\sqrt{2}$), които в днешната терминология са строги надмножества на $\mathbb N$, са равномощни с $\mathbb N$. След това показва, че $\mathbb R$ не е равномощно на $\mathbb N$.

За безкрайните множества (6)

Основен резултат на Кантор е, че има различни видове безкрайност. И естествените, и реалните числа са безброй много, но реалните са повече в смисъл, че няма биекция между тях и естествените.

Очевидно изброими безкрайни множества

 \mathbb{N}^+ е изброимо. Примерно, разглеждаме $f:\mathbb{N}^+\to\mathbb{N}$, където $\forall n\in\mathbb{N}^+:f(n)=n-1.$

 $\mathbb{N}_e=\{n\in\mathbb{N}\mid n$ е четно $\}$ е изброимо. Примерно, разглеждаме $f:\mathbb{N}_e o\mathbb{N}$, където $\forall n\in\mathbb{N}_e:f(n)=rac{n}{2}.$

 $M=\{n\in\mathbb{N}\mid n$ е точна степен на $2\}$ е изброимо. Примерно, разглеждаме $f:M\to\mathbb{N}$, където $\forall n\in M: f(n)=\log_2 n.$

 $\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$ е изброимо. Примерно, разглеждаме

$$f:\mathbb{Z} o\mathbb{N}$$
, където $orall n\in\mathbb{Z}:f(n)=egin{cases} 0,& ext{ako }n=0,\ 2n-1,& ext{ako }n>0,\ -2n,& ext{ako }n<0. \end{cases}$

Изброяването е f(0)=0, f(1)=1, f(-1)=2, f(2)=3, f(-2)=4, f(3)=5, f(-3)=6 и т. н. Ето наредбата:

$$0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \dots$$

Безкрайността е КОНТРАИНТУИТИВНА Хотелът на Hilbert

Хотел с безкрайно много стаи, номерирани с 1, 2, 3 и така нататък. Във всяка стая има гост.

Може ли хотелът да приюти нов гост? Колкото и да е контраинтуитивно, да: преместваме всеки от вече настанените в следващата стая.

Графиките са взети от Интернет от сайт без лицензи.

$\mathbb{N} \times \mathbb{N}$ е изброимо

Теорема 1

Съществува биекция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Доказателство: Твърди се, че има начин да бъдат изброени наредените двойки от естествени числа.

Разбиваме множеството $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ на подмножества S_0, S_1, S_2, \ldots по следния начин

$$\forall k \in \mathbb{N} : S_k = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b = k\}$$

$\mathbb{N} \times \mathbb{N}$ е изброимо (2)

Изброяването е следното: при i < j, наредените двойки от S_i преди наредените двойки от S_j , а вътре във всяко S_i нареждаме двойките по нарастващ втори елемент:

$$\underbrace{(0,0)}_{S_0} \ \underbrace{(1,0)}_{S_1} \ \underbrace{(2,0)}_{S_2} \ \underbrace{(1,1)}_{(0,2)} \ \underbrace{(3,0)}_{(2,1)} \ \underbrace{(2,1)}_{(1,2)} \ \underbrace{(0,3)}_{(0,3)} \ \cdots$$

$\mathbb{N} \times \mathbb{N}$ е изброимо (3)

Да си представим наредените двойки (a,b) от естествени числа в безкрайна таблица.

(0,6)		1	2	3	4	5	6	
a	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0.6)	
	(4.0)	(1.1)	(1,2)	(1.3)	(1, 4)	(1.5)	(1,6)	***
	(2,0)	(2.4)	(2,2)	(43)	(2,4)	(2,5)	(2,6)	
	(3,0)	(2 1)	(3.2)	(3.3)	(3,4)	(3,5	(3,6))
1	(4,0)	(4.1)	(4,2)	(4.3)	(4,4)	4.5	(4,6)
4	(4,0)	(4,1)		,	,		,	
5		-	,		,	١,	١	
6_	,	-	<u>'</u>	,		1	,	
	.	٠.	,	١.		•		
	1	ı	1		1	l	('	ı

$\mathbb{N} \times \mathbb{N}$ е изброимо (4)

Да групираме наредените двойки по диагонали. Тогава $diag_i$ съдържа точно елементите на S_i .

$\mathbb{N} \times \mathbb{N}$ е изброимо (5)

Ето визуализация на изброяването

			diag	0	diag 2	di	(a.9.3	egy dia	95
(a,b)	60	The s	K	3	14	5	6	3	
v.	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0.6)		
	(4.0)	(1.1)	(1.2)	(1,3)	(1,4)		(1,6)		
HAMANO	(2.0)	(2.4)	12.2	(2,3)	(2,4)	(2.5)	(2,6)		
5	(30)	(3.1)	(3,2)	(3,1)	(3,4)	(3,5)	(3,6))	
	(4,0)	(41)	(4,2)		(4,4)			***	
75	4,0	,	,	``	,	,	,		
	/-		,		1	١	. 1		
6_		-		,		١	,		
			,		•	*	•		

Да разгледаме следната функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$f((a,b)) = egin{cases} 0, & ext{ ако } (a,b) = (0,0) \ rac{(a+b)(a+b+1)}{2} + b, & ext{ в противен случай} \end{cases}$$

Това е формалното описание на функцията на изброяването, която въведохме на слайд 49 и илюстрирахме на слайд 52.

Ще докажем, че f е биекция.

$\mathbb{N} \times \mathbb{N}$ е изброимо (7)

Пояснения към функцията на изброяването (1)

Числата от вида $\frac{k(k+1)}{2}$ за $k \in \mathbb{N}$ се наричат *триъгълните числа*. В нарастващ ред на k, редицата от триъгълните числа започва така: $0,1,3,6,10,15,21,\ldots$ Следната визуализация за k>0 показва защо се наричат триъгълните числа .

Лесно се вижда, че триъгълните числа са точно сумите $\sum_{i=0}^k i$, за $k \in \mathbb{N}$.

В израза $\left\lfloor \frac{(a+b)(a+b+1)}{2} + b \right\rfloor$, събираемото $\frac{(a+b)(a+b+1)}{2}$ е точно броят на наредените двойки във всички диагонали преди диагонал номер a+b. То е триъгълното число

$$\frac{(a+b)(a+b+1)}{2} = 1 + 2 + \cdots + (a+b)$$

Събираемото b е броят на елементите **преди** (a,b) в диагонал номер a+b.

$\mathbb{N} \times \mathbb{N}$ е изброимо (9)

f е инекция (1)

Да допуснем, че f не е инекция. Тогава съществуват наредени двойки (a_1, b_1) и (a_2, b_2) , такива че $(a_1, b_1) \neq (a_2, b_2)$ и $f(a_1,b_1)=f(a_2,b_2)$. Нека $a_1+b_1=m_1$ и $a_2+b_2=m_2$. Случай 1: $m_1 \neq m_2$. БОО, нека $m_1 < m_2$. Тогава $\frac{m_1(m_1+1)}{2}$ и $\frac{m_2(m_2+1)}{2}$ са различни триъгълни числа, като $\frac{m_1(\bar{m_1}+1)}{2} < \frac{m_2(m_2+1)}{2}$. Ще докажем, че $\frac{m_1(m_1+1)}{2} + b_1 < \frac{m_2(m_2+1)}{2}$. Наистина, $\frac{m_1(m_1+1)}{2}+b_1<\frac{m_2(m_2+1)}{2}$ $b_1 < \frac{1}{2} \left(m_2^2 + m_2 - m_1^2 - m_1 \right) \iff$ $b_1 < \frac{1}{2} ((m_2 - m_1)(m_2 + m_1) + (m_2 - m_1)) \iff$ $b_1 < \frac{1}{2}(m_2 - m_1)(m_2 + m_1 + 1)$

$\mathbb{N} \times \mathbb{N}$ е изброимо (10) f е инекция (2)

Но $m_2-m_1\geqslant 1$, понеже $m_2>m_1$ по допускане. Да разгледаме множителя m_2+m_1+1 . Но това е $a_2+b_2+a_1+b_1+1$. Очевидно $a_2+b_2>b_1$ в текущите допускания, а също така $b_1+1>b_1$. Тогава $a_2+b_2+a_1+b_1+1>2b_1$. Тогава

$$\frac{1}{2}(\underbrace{m_2-m_1}_{\geqslant 1})(\underbrace{m_2+m_1+1}_{>2b_1})>b_1.$$

Доказахме, че $b_1 < \frac{1}{2}(m_2 - m_1)(m_2 + m_1 + 1)$. Тогава $\frac{m_1(m_1+1)}{2} + b_1 < \frac{m_2(m_2+1)}{2}$. Но $\frac{m_1(m_1+1)}{2} + b_1 = f(a_1,b_1)$, а $\frac{m_2(m_2+1)}{2} \leqslant f(a_2,b_2)$. Показахме, че $f(a_1,b_1) < f(a_2,b_2)$.

Заключаваме, че допускането, че $f(a_1, b_1) = f(a_2, b_2)$, е погрешно в Случай 1. $\frac{1}{4}$

$\mathbb{N} \times \mathbb{N}$ е изброимо (11) f е инекция (3)

Случай 2: $m_1=m_2$. Тогава трябва b_1 да е различно от b_2 , иначе $a_1=a_2$, което влече $(a_1,b_1)=(a_2,b_2)$. Щом $b_1 \neq b_2$ и $m_1=m_2$, то $\frac{m_1(m_1+1)}{2}+b_1 \neq \frac{m_2(m_2+1)}{2}+b_2$. С други думи, $f(a_1,b_1) \neq f(a_2,b_2)$. Заключаваме, че допускането, че $f(a_1,b_1)=f(a_2,b_2)$, е погрешно в Случай 2. $\frac{1}{4}$

Тъй като Случай 1 и Случай 2 са изчерпателни, заключаваме, че допускането, че $f(a_1,b_1)=f(a_2,b_2)$ за някои естествени $a_1,\ b_1,\ a_2$ и b_2 , е погрешно. \checkmark

3аключаваме, че f е инекция.

Щом f е инекция, обратното и изображение е дефинирано и то е частична функция. Очевидно следният алгоритъм реализира въпросното обратно изображение. Това, че всяко естествено число е образ на някоя наредена двойка по отношение на изображението f доказва, че f е сюрекция (обратното изображение е **тотална** функция).

```
if (n == 0) {a = 0; b = 0;}
else {c = 1;
    while (c <= n) {n = n - c; c ++;}
    a = c - 1 - n; b = n;}
return (a, b);</pre>
```

Определение

Множеството от рационалните числа е

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \right\}$$

Забелязваме, че (изброимо безкрайно) множество обикновени дроби $\frac{p}{q}$ съответстват на едно и също число; примерно $\frac{1}{2}$, $\frac{-1}{-2}$, $\frac{2}{4}$, $\frac{1000\,001}{2000\,002}$ и така нататък съответстват на, или представляват, едно и също число. И така, рационалните числа нямат уникално представяне чрез обикновени дроби. Може да въведем релация на еквивалентност (каква?) върху множеството от дробите и да кажем, че нейните класове на еквивалентност са рационалните числа.

Множеството от рационалните числа е изброимо (2) Контраинтуитивно, рационалните числа са изброими

Да кажем, че $\mathbb{Q}^+=\left\{\frac{p}{q}:p\in\mathbb{N},q\in\mathbb{N}^+
ight\}$. Лесно следствие на Теорема 1 е това:

Следствие 1

Съществува биекция $f: \mathbb{Q}^+ \to \mathbb{N}$.

Забелязваме, че рационалните числа може да се записват като наредени двойки: дали ще напишем " $\frac{p}{q}$ " или "(p,q)" не е съществено.

Един начин да бъдат изброени елементите на \mathbb{Q}^+ е да вземем таблицата от слайд 52, да изтрием най-лявата колона (за да няма деление на нула) и след това да "вървим" в реда на онова изброяване, като прескачаме наредените двойки, които представляват числа, които вече са били изброени:

$$0, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, 4, \frac{3}{2}, \frac{2}{3}, \frac{1}{4}, 5, \frac{1}{5}, \dots$$

\mathbb{N}^k е изброимо

След като се убедихме, че $\mathbb{N} \times \mathbb{N}$ е изброимо, забелязваме, че $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ също е изброимо. Може да си представим тримерна безкрайна таблица от наредените тройки, да вземаме двумерни "разрези" от нея, състоящи се от тройките с една и съща сума, да наредим "разрезите" по сумите им, а в рамките на един "разрез" лесно може да наредим линейно тройките.

Може да обобщим така.

Теорема 2

 \mathcal{S}_a всяко цяло положително k, множеството \mathbb{N}^k е изброимо.

$2^{\mathbb{N}}$ не е изброимо (1)

Теорема 3

Не съществува биекция $f: 2^{\mathbb{N}} \to \mathbb{N}$.

Доказателство: В доказателството на Теорема 1 беше достатъчно да покажем само един начин за изброяване. Сега обаче не е достатъчно да покажем, че един определен начин за изброяване "не работи". Сега се иска да покажем, че **никой** начин за изброяване "не работи". Ще извършим доказателството с допускане на противното. Допускаме, че $2^{\mathbb{N}}$ е изброимо, тоест, съществува биекция $h: 2^{\mathbb{N}} \to \mathbb{N}$.

$2^{\mathbb{N}}$ не е изброимо (2)

Xарактеристична редица е безкрайна булева редица (a_0, a_1, a_2, \ldots) , която характеризира, или определя, дадено подмножество X на $\mathbb N$ по следното правило. За всяко $n \in \mathbb N$:

- ullet ако $a_n = 1$, то n се съдържа в X,
- ullet ако $a_n = 0$, то n не се съдържа в X.

Ето няколко примера за характеристични редици и подмножествата на \mathbb{N} , които определят:

- (0, 0, 0, ...) /*само нули*/ определя празното множество;
- (1, 1, 1, ...) /*(само единици)*/ определя самото \mathbb{N} ;
- (1, 0, 1, 0, 1, 0, ...) /*(повтаряне на 10)*/ определя четните числа;
- (0, 1, 1, 0, 0, ...) /*(само две единици)*/ определя {1, 2}.

$2^{\mathbb{N}}$ не е изброимо (3)

Нека $\mathcal A$ е множеството от характеристичните редици. Съществува очевидна биекция между $\mathcal A$ и $2^{\mathbb N}.$

Твърдението "подмножествата на $\mathbb N$ могат да бъдат изброени" става "елементите на $\mathcal A$ могат да бъдат изброени". Това е допускането, което ще опровергаем.

$2^{№}$ не е изброимо (4)

Допускаме изброяване на характеристичните редици: A_0 , A_1 , ..., като всяка характеристична редица се появява точно веднъж. Нека $A_0=(a_{0,0},a_{0,1},\ldots),\ A_1=(a_{1,0},a_{1,1},\ldots),$ и така нататък. Представяме си ги написани в безкрайна колона:

$$A_0 = (a_{0,0}, a_{0,1}, a_{0,2}, a_{0,3}, \dots)$$

$$A_1 = (a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, \dots)$$

$$A_2 = (a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, \dots)$$

$$A_3 = (a_{3,0}, a_{3,1}, a_{3,2}, a_{3,3}, \dots)$$

$$\dots$$

$2^{\mathbb{N}}$ не е изброимо (5)

Разглеждаме главния диагонал: редицата $X = (a_{0,0}, a_{1,1}, a_{2,2}, a_{3,3}, \dots)$.

$$A_0 = (a_{0,0}, a_{0,1}, a_{0,2}, a_{0,3}, \dots)$$

$$A_1 = (a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, \dots)$$

$$A_2 = (a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, \dots)$$

$$A_3 = (a_{3,0}, a_{3,1}, a_{3,2}, a_{3,3}, \dots)$$

$$\dots$$

Образуваме нейната "побитова инверсия", редицата $\overline{X} = (\overline{a_{0,0}}, \overline{a_{1,1}}, \overline{a_{2,2}}, \overline{a_{3,3}}, \ldots).$

За всяко $i,j, \ \overline{a_{i,j}} = 0$, ако $a_{i,j} = 1$, и обратно.

$2^{\mathbb{N}}$ не е изброимо (6)

Щом всяка булева числова редица се среща в изброяването (колоната), трябва и \overline{X} да се среща. Но \overline{X} не може да е A_0 , защото се различават в поне една позиция — нулевата. Ако $a_{0,0}=0$, то $\overline{a_{0,0}}=1$; ако $a_{0,0}=1$, то $\overline{a_{0,0}}=0$.

Аналогично, \overline{X} не може да е A_1 , защото се различават в първата позиция, \overline{X} не може да е A_2 , защото се различават във втората позиция, и така нататък.

Тогава \overline{X} не се среща в колоната; иначе казано, подмножеството B на $\mathbb N$, съответстващо на \overline{X} , няма образ в хипотетичната биекция $h:2^\mathbb N\to\mathbb N$. \checkmark

Теорема 4

3а всяко множество A, не съществува сюрекция $g:A\to 2^A$.

Да допуснем противното. Тогава съществува A, такова че съществува сюрекция $g:A\to 2^A$. Разглеждаме множеството

$$S = \{ a \in A \mid a \notin g(a) \} \tag{1}$$

Ho $S \in 2^A$ и g е сюрекция, следователно $\exists x \in A : g(x) = S$. Дали $x \in S$?

- Ако $x \in S$, то $x \notin S$ съгласно (1).
- Ако $x \notin S$, то $x \in S$ съгласно (1).

Илюстрация на алтернативното доказателство

Множеството от реалните числа е неизброимо (1) Само числата от [0,1] са неизброимо много

 $[0,1] \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R} \,|\, 0 \leqslant x \leqslant 1\}$. Нека \mathcal{A} е множеството от всички характеристични редици, което вече дефинирахме на слайд 71. Съществува очевидна биекция $f:[0,1] \to \mathcal{A}$; разглеждаме числата от [0,1], записани като двоични дроби в двоична позиционна бройна система, без нулата вляво от двоичната точка, без самата точка, с безкрайно дълъг запис, евентуално попълнен с нули вдясно. Примено, числото една втора по принцип се пише като 0.1 в двоична система, но ние ще го запишем като $10000\ldots$

Маловажна особеност: някои числа имат по два записа.

- Една втора има два записа по традиционния начин 0.1 и 0.01111..., които по текущия начин на записване стават съответно 10000... и 01111111....
- Единицата има два записа по традиционния начин 1.0 и 0.11111..., които по текущия начин стават съответно 0000... и 11111....

Множеството от реалните числа е неизброимо (2) [0,1] и (0,1] са равномощни

 $(0,1]\stackrel{\mathrm{def}}{=}\{x\in\mathbb{R}\,|\,0< x\leqslant 1\}.$ Твърдим, че има биекция $f:[0,1]\to(0,1].$ Доказателството не може да използва функцията-идентитет g(x)=x, защото (0,1] не съдържа нулата, така че g(0) би било извън (0,1].

Но може да ползваме идеята на хотела на Hilbert: 0 се изобразява в $\frac{1}{2}$, $\frac{1}{2}$ се изобразява в $\frac{3}{4}$, $\frac{3}{4}$ се изобразява в $\frac{7}{8}$, и така нататък. Формално, $\forall n \in [0,1]$:

$$f(n) = egin{cases} rac{2^{k+1}-1}{2^{k+1}}, & ext{ ако съществува } k \in \mathbb{N}, ext{ такова че } n = rac{2^k-1}{2^k}, \\ n, & ext{в противен случай} \end{cases}$$

Аналогично се доказва, че [0,1] и (0,1) са равномощни. Вече видяхме, че [0,1] е неизброимо. Тогава и (0,1) е неизброимо.

Множеството от реалните числа е неизброимо (3) (0,1) и $\mathbb R$ са равномощни (1)

Нека $a,b,c,d\in\mathbb{R}$ и b>a и d>c. Това, че [a,b] и [c,d] са равномощни, е очевидно. Ако мислим за отсечки с различни дължини:

Всеки от интервалите може да е затворен, отворен или полузатворен, равномощността остава в сила.

Ще докажем нещо доста по-контраинтуитивно: кой да е интервал, да кажем (0,1), е равномощен с \mathbb{R} . Отсечка е равномощна с безкрайна права!

Множеството от реалните числа е неизброимо (4) (0,1) и \mathbb{R} са равномощни (2)

 $an\left(\pi\left(x-rac{1}{2}
ight)
ight)$ е биекция, изобразяваща (0,1) в $\mathbb{R}.$

Графиката е генерирана с Maple(tm).

Реалните числа са (безкрайно) повече от рационалните

Видяхме, че $\mathbb Q$ е изброимо, а $\mathbb R$ е неизброимо. В някакъв смисъл, реалните числа са повече от рационалните: не просто $\mathbb Q$ е строго подмножество на $\mathbb R$, но реалните числа са по-високо в йерархията на безкрайностите. Това е доста контраинтуитивно, понеже всеки отворен интервал в $\mathbb R$ съдържа безкрайно много рационални числа. Ерго, през колкото и силна "лупа" да разглеждаме реалната ос, няма да видим реален интервал, в който няма рационални числа.

КРАЙ