Příklad (1. General boundary condition for the parabolic equation)

Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain, T > 0 be given and denote $Q := (0, T) \times \Omega$. Assume that $A \in L^{\infty}(\Omega; \mathbb{R}^{d \times d}_{sym})$ be elliptic matrix and $f \in L^2(0, T; L^2(\Omega))$, $b \in L^2(0, T; L^{\infty}(\Omega))$ and $g \in L^2(0, T; L^2(\partial\Omega))$ be given. Consider the problem

$$\begin{split} \partial_t u - \operatorname{div}(\mathbb{A} \nabla u) + b u &= f & \text{in } Q, \\ u &= u_d & \text{on } \Gamma_1 := (0, T) \times \partial \Omega_1, \\ (\mathbb{A} \nabla u) \vec{\nu} &= g & \text{on } \Gamma_2 := (0, T) \times \partial \Omega_2, \\ u(0, x) &= u_0(x) & \text{in } \Omega, \end{split}$$

where $\partial\Omega_1$ and $\partial\Omega_2$ are mutually disjoint fulfilling $\overline{\partial\Omega_1\cup\partial\Omega_2}=\partial\Omega,\,u_0:\Omega\to\mathbb{R},\,u_d:Q\to\mathbb{R}$ and $g:(0,T)\times\partial\Omega\to\mathbb{R}$ are given.

Find proper (minimal) assumptions on u_d and u_0 for which you can define the notion of a weak solution and prove its existence and uniqueness.

Řešení (Definice slabého řešení)

Okrajová podmínka u_d nám dělá potíže. Tak se můžeme zkusit dívat ne na u, ale na $u-u_d$.

Zvolíme naše oblíbené $V:=W_0^{1,2}(\Omega)$, tedy $V^*:=(W_0^{1,2}(\Omega))^*$, a $H=L^2(\Omega)$, o čemž jsme už na přednášce dokázali, že V,H,V^* je Gelfandova trojice. V existenci budeme potřebovat $u-u_d \in L^2(0,T;V) \cap W^{1,2}(0,T;V^*)$, takže budeme chtít, aby z těchto prostorů bylo i u i u_d . To navíc znamená, že i u_0 je z L^2 , aby u(0) se mohlo rovnat u_0 . Nakonec chceme po řešení, aby

$$\langle \partial_t u, \varphi \rangle + \int_{\Omega} \mathbb{A} \nabla u \cdot \nabla \varphi - \int_{\partial \Omega_2} g \cdot u - \int_{\partial \Omega_1} (\mathbb{A} \nabla u) \vec{\nu} u_d + \int_{\Omega} b u \varphi = \langle f, \varphi \rangle_{V^*}.$$

Řešení (Existence)

Tím, že jsme zvolili $V=W_0^{1,2}$, máme Galerkinovu aproximaci: $\|P^Nu\|_V\leqslant c\|u\|_V$, $P^Nu\to u$ a $u^N:=P^Nu=u_d+\sum_{j=1}^N a_jw_j$, kde w_j je ortonormální báze V a $a_j=\int uw_j$. Počáteční podmínka nám říká, že $(u^N-u_d)(0)=P^N(u_0-u_d(0))$. Poté dostáváme soustavu rovnic dosazením do definice slabého řešení:

$$\int_{\Omega} (\partial_t u^N) \cdot w_j + \int_{\Omega} \mathbb{A}(\nabla u^N) \cdot \nabla w_j - \int_{\partial \Omega_2} g \cdot w_j + \int_{\Omega} b u^N w_j = \langle f, w_j \rangle.$$

Z definice u^N a z kolmosti $(\int w_i w_j = 0)$ máme

$$(\partial_t a_j) \int_{\Omega} w_j^2 + \int_{\Omega} (\partial_t u_d) w_j + \sum_{i=1}^N a_i \int_{\Omega} \mathbb{A} \nabla w_i \nabla w_j + \sum_{i=1}^N a_i \int_{\Omega} b w_i w_j = \int_{\partial \Omega_2} g \cdot w_j + \langle f, w_j \rangle.$$

Navíc $\int_{\Omega}w_{j}^{2}=1$ z ortonormálnosti. To znamená, že máme ODE:

$$\partial_t a_j + \sum_{i=1}^N a_i (BLA_1) = \int_{\Omega} (BLA_2) w_j,$$

kde $BLA_1 \in L^{\infty}(0,T)$, neboť A i b jsou L^{∞} a $BLA_2 \in L^2(0,T)$, neboť f, g i u_d jsou L^2 . (Proto také chceme, aby $u_d \in W^{1,2}\left(0,T;(W_0^{1,2}(\Omega))^*\right)$.)

Důkaz (Pokračování existence)

To proženeme Caratheodorovou teorií jako na přednášce a dostaneme, že buď existují řešení $a \in AC(0,T)$ nebo $\exists \tilde{T}$, že existují řešení $a \in AC(0,\tilde{T})$ až do času \tilde{T} a $a(t) \stackrel{t \to \tilde{T}_-}{\longrightarrow} \infty$. Druhá možnost bude vyloučena, až uděláme odhady, které stejně potřebujeme pro konvergenci u^N .

Pro potřebné odhady vynásobíme rovnice a_j a sečteme podle j:

$$\int_{\Omega} (\partial_t u^N) \cdot (u^N - u_d) + \int_{\Omega} \mathbb{A}(\nabla u^N) \cdot \nabla (u^N - u_d) - \int_{\partial \Omega_2} g \cdot (u^N - u_d) + \int_{\Omega} b u^N (u^N - u_d) = \left\langle f, (u^N - u_d) \right\rangle.$$

Nyní potřebujeme v prvním členu místo u^N mít také u^N-u_d , tedy odečteme příslušné integrály:

$$\int_{\Omega} \left(\partial_t (u^N - u_d) \right) \cdot (u^N - u_d) + \int_{\Omega} \mathbb{A} \left(\nabla (u^N - u_d) \right) \cdot \nabla (u^N - u_d) - \int_{\partial \Omega_2} g \cdot (u^N - u_d) + \int_{\Omega} b(u^N - u_d) (u^N - u_d) =$$

$$= \left\langle f, (u^N - u_d) \right\rangle - \int_{\Omega} (\partial_t u_d) \cdot (u^N - u_d) - \int_{\Omega} \mathbb{A} \left(\nabla u_d \right) \cdot \nabla (u^N - u_d) - \int_{\Omega} b u_d (u^N - u_d).$$

Nyní stejně jako na přednášce:

$$\partial_t \|u^N - u_d\|_{L^2(0,T;V)} + \int_{\Omega} \mathbb{A}(\nabla u^N) \cdot \nabla(u^N - u_d) \leq c(b,\Omega) (\|f\|_{L^2(\Omega)}^2 + \|g\|_{L^2(\partial \omega)}^2 + \|u_0\|_{L^2(\Omega)}^2 + \|u^N(t)\|_{V}^2).$$

 \mathbb{A} je eliptická, tedy můžeme odhadnout $\int_{\Omega} \mathbb{A}(\nabla u^N) \cdot \nabla(u^N - u_d) \geqslant C_1 \|\nabla u^N\|_2^2 - C_2 \int_{\Omega} |\nabla u^N| \cdot |\nabla u_d|$. Tedy

$$\partial_t \|u^N - u_d\|_{L^2(0,T;V)} + C_1 \|\nabla u^N\|_2^2 \leq c(b,\Omega)(\ldots) + C_2 \int_{\Omega} |\nabla u^N| \cdot |\nabla u_d| \leq \ldots + C_2 \int_{\Omega} ((\nabla u^N)^2 + (\nabla u_d)^2) .$$

Nakonec z Gronwalla získáme

$$\sup_{t} \|u^{N} - u_{d}\|_{2}^{2} + \|\nabla u^{N}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} \leqslant K \cdot (1 + \|u_{0}\|_{2}^{2}),$$

což je nezávislé na N,tedy nám jako na přednášce vyjde, že slabé limity existují.

Důkaz (Jednoznačnosti)

Jestliže u_1 a u_2 jsou (slabá) řešení problému výše, pak $v := u_1 - u_2$ je zřejmě (slabým) řešením problému

$$\begin{split} \partial_t v - \operatorname{div}(\mathbb{A} \nabla v) + b v &= 0 & \text{in } Q, \\ v &= 0 & \text{on } \Gamma_1 := (0, T) \times \partial \Omega_1, \\ (\mathbb{A} \nabla v) \vec{\nu} &= 0 & \text{on } \Gamma_2 := (0, T) \times \partial \Omega_2, \\ u(0, x) &= 0 & \text{in } \Omega, \end{split}$$

neboť je "vše lineární v u". Zároveň $v \in W_0^{1,2}(\Omega)$, tedy můžeme touto funkcí testovat:

$$0 = \int_{\Omega} 0 \cdot v = \int_{\Omega} (\partial_t v) \cdot v - \int_{\Omega} \operatorname{div}(\mathbb{A} \nabla v) v + \int_{\Omega} b v^2 =$$

$$= \frac{1}{2} \int_{\Omega} \partial_t v^2 + \left(\int_{\Omega} \mathbb{A} \nabla v \cdot \nabla v - \int_{\underbrace{\partial \Omega}} \mathbb{A} \nabla v \vec{v} v \right) + \int_{\partial U^2} b v^2$$

$$\left(I = \int_{\partial \Omega_1} \mathbb{A} \nabla v \vec{v} v + \int_{\partial \Omega_2} \mathbb{A} \nabla v \vec{v} v = \int_{\partial \Omega_1} \mathbb{A} \nabla v \vec{v} \cdot 0 + \int_{\partial \Omega_2} 0 \cdot v = 0 \right)$$

$$\left| \frac{1}{2} \partial_t \|v\|_2^2 \right| = \left| -\int_{\Omega} \mathbb{A} \nabla v \cdot \nabla v - \int_{\Omega} b v^2 \right| \leqslant \left| \int_{\Omega} \mathbb{A} \nabla v \cdot \nabla v \right| + \left| \int_{\partial U^2} b v^2 \right| \leqslant$$

$$\| \mathbb{A} \|_{\infty} \cdot \| \nabla v \|_2 + \| b \|_{\infty} \|v\|_2 \overset{\text{Poincar\'e}}{\leqslant} C(\| \mathbb{A} \|_{\infty}, \| b \|_{\infty}, C_{poinc}) \|v\|_2.$$

Tedy podle Gronwallova lemmatu $||v(t)||_2^2 \le e^{Ct} ||v(0)||_2^2 = e^{Ct} \cdot 0 = 0.$

Assume that $b \ge 0$, $f \in L^2_{loc}(0, \infty, L^2(\Omega))$, $b \in L^2_{loc}(0, \infty, L^{\infty}(\Omega))$, $g \in L^2_{loc}(0, \infty, L^2(\partial\Omega))$ and satisfies for some $\tau > 0$ that f, u_d and g are time τ -periodic. Show that there exists unique $u_0 \in L^2(\Omega)$, for which the weak solution u is τ -periodic.

Důkaz

Mějme dvě počáteční podmínky $u_{0,1}$ a $u_{0,2}$ a k nim odpovídající řešení u_1 a u_2 . Potom pro $v := u_1 - u_2$ platí totéž, co v jednoznačnosti, až na $v(0, x) = u_{0,1} - u_{0,2}$. Tedy

$$0 = \int_{\Omega} 0 \cdot v = \int_{\Omega} (\partial_t v) \cdot v - \int_{\Omega} \operatorname{div}(\mathbb{A} \nabla v) v + \int_{\Omega} \underbrace{bv^2}_{\geq 0} = \frac{1}{2} \int_{\Omega} \partial_t v^2 + \int_{\Omega} \mathbb{A} \nabla v \cdot \nabla v + \int bv^2.$$

Nyní vypustíme člen s b a nerovnici integrujeme v čase od 0 do τ :

$$0 = \int_0^\tau 0 \geqslant \frac{1}{2} \int_0^\tau \int_\Omega \partial_t v + \int_0^t \int_\Omega \mathbb{A} \nabla v \cdot \nabla v = \frac{1}{2} \|v(\tau)\|_2 - \frac{1}{2} \|v(0)\|_2 + \int_0^t \int_\Omega \mathbb{A} \nabla v \cdot \nabla v.$$

A je eliptická, tedy $\mathbb{A}\nabla v \cdot \nabla v \geqslant C_1 \|\nabla v\|^2$, tedy

$$||v(0)||_2^2 \ge ||v(\tau)||_2^2 + 2 \cdot C_1 \int_0^\tau ||\nabla v||_2^2 \ge ||v(\tau)||_2^2.$$

Z Poincarého nerovnosti víme, že $\|\nabla v\|_2^2 \cdot C_2 \ge \|v\|_2^2$, navíc pokud stejný postup aplikujeme na libovolná t_1 a t_2 místo 0 a τ , dostaneme, že $\|v(t)\|_2^2$ je nerostoucí, tedy

$$2 \cdot C_1 \int_0^{\tau} \|\nabla v\|_2^2 \geqslant 2 \cdot C_1 \cdot \frac{1}{C_2} \cdot \int_0^{\tau} \|v\|_2^2 \geqslant 2 \cdot C_1 \cdot \frac{1}{C_2} \cdot \tau \cdot \|v(\tau)\|_2^2 \implies$$

$$\implies ||v(0)||_2^2 \geqslant (1 + C_3)||v(\tau)||_2^2.$$

Jelikož C_3 je kladná, tak zobrazení $F: L^2(\Omega) \to L^2(\Omega)$, $F(u_0) = u(\tau)$ je kontrakce a podle Banachovy věty o pevném bodě (L^2 je úplný) existuje právě jedno $F(u_0) = u_0$. Takže existuje jediné u_0 , že $u(0) = u(\tau)$. A naopak pokud $u(0) = u(\tau)$ a f, g a u_d jsou τ -periodické, tak můžeme řešit úlohu s časem posunutým o τ (2τ , 3τ) a vždy nám z jednoznačnosti musí vyjít totéž řešení, tedy u je také τ -periodické.

Assume that g = 0 and consider that there are numbers $c_1, c_2, c_3, c_4 \in \mathbb{R}$ such that

$$b \geqslant c_1 \geqslant 0$$
, $f \geqslant c_2$, $u_d \geqslant c_3$, $u_0 \geqslant c_4$ a. e. in Q.

Try to find an optimal (as large as possible) function D such that the unique weak solution satisfies

$$u(t,x) \ge D(t,c_1,c_2,c_3,c_4)$$
 a. e. in Q.

 $\v{R}e\v{s}eni$

Určitě potřebujeme aby $D(0,...) \leq c_4$, jinak by mohlo být $u(0,x) \leq D(0,...)$ na množině $x \in \tilde{\Omega} \subseteq \Omega$. Stejně tak $D \leq c_3$, protože jinak by se pro správné u_d mohlo rozbít $u \geq D$ na Γ_1 . Také si všimněme, že $b \geq 0$.

Podle nápovědy zvolíme testovací funkci $(u-D)_- \leq 0$ (předpokládáme, že alespoň $D \in W^{1,2}$ a z předpokladů na D nám pak vychází, že $(u-D)_- \in W_0^{1,2}$):

$$\int_{\Omega} (\partial_t u) \cdot (u - D)_- + \int_{\Omega} \mathbb{A} \nabla u \nabla ((u - D)_-) + \int_{\Omega} b u (u - D)_- = \int_{\Omega} f(u - D)_-$$

$$\int_{\Omega} (\partial (u - D)) \cdot (u - D)_{-} + \int_{\{u < D\}} \overbrace{\mathbb{A} \nabla u \nabla u}^{>0} = -\int_{\Omega} (\partial_{t} D + bu - f)(u - D)_{-}.$$

Podle nápovědy uvažujme, že integrand v pravé straně je nezáporný, tedy celá pravá strana je nekladná. Také pro spor předpokládejme, že $\{u < D\}$ je nenulové míry, tedy druhý integrál na levé straně je kladný a tedy

$$0 > \int_{\Omega} (\partial_t (u - D)) \cdot (u - D)_- = \int_{\Omega} (\partial_t ((u - D)_-)) \cdot (u - D)_- = \frac{1}{2} \int_{\Omega} \partial_t ((u - D)_-^2) =$$

$$= \|(u(\tau) - D(\tau))_-^2\|_2^2 - \|(u(0) - D(0))_-\|_2^2 \stackrel{\text{def}}{=} \|(u(\tau) - D(\tau))_-\|_2^2 \geqslant 0.$$

Tedy nám stačí (pak už bude $\{u < D\}$ nulové míry) zvolit D tak, aby $D(0) \leq c_4$, $D \leq c_3$ a buď $u \geq D$, nebo

$$\partial_t D + bu - f \leq 0.$$

Jelikož v druhém případě máme u < D, tak nám stačí

$$\partial_t D + bD - c_2 \leq 0.$$

Pokud D > 0 a u by tak mohlo být větší než nula, tak bychom mohli správnou volbou b dostat na to, že $\partial_t D = -\infty$. To však být nemůže, tedy musíme hledat $D \leq 0$. Pro to nám navíc stačí

$$\partial_t D + c_1 D - c_2 \leqslant 0$$

Jelikož vždy může být (hledáme $D \leq 0$) $\partial_t D$ libovolně záporná, tj. určitě se nemůže stát, že by D bylo takové, že splňuje v nějakém čase $D \leq \min(c_4, 0)$ a v nějakém dalším by nutně muselo tuto mez překročit. Takže pokud budeme mít $\partial_t D + c_1 D - c_2 = 0$ s počáteční podmínkou $D = \min(c_4, c_3, 0)$ ($D \leq c_3$ musíme splnit jen v čase 0) a v případě dosažení $D = \min(c_4, 0)$ mít dále D konstantní.

 $\partial_t D + c_1 D - c_2 = 0$ má řešení $K \cdot e^{-c_1 t} + c_2$, a v 0 tedy $K + c_2 = \min(c_3, c_4, 0)$, tj. $K = \min(c_3, c_4, 0) - c_2$. Takže

$$D(t, c_1, c_2, c_3, c_4) = \min \left(0, c_4, (\min(c_3, c_4, 0) - c_2) \cdot e^{-c_1 \cdot t} \right)$$

Reconsider first part with the weaker assumptions:

$$f\in L^1(0,T;L^2(\Omega)), \qquad b\in L^1(0,T;L^\infty(\Omega)), \qquad g\in L^{\frac{4}{3}}(0,T;L^2(\partial\Omega)).$$

Řešení TODO?

 $P\check{r}iklad$ (2. Finite speed of propagation of WS to linear hyperbolic equation of 2nd order) Let $\Omega \subset \mathbb{R}^d$ be an open set fulfilling $B_1(0) \subset \Omega$. Assume that $\mathbb{A} \in L^{\infty}(\Omega) \in L^{\infty}(\Omega; \mathbb{R}^{d \times d}_{sym})$ be elliptic and that u is weak solution to

$$\partial_{tt}u - \operatorname{div}(\mathbb{A}\nabla u) = 0$$
 in $Q := (0, T) \times \Omega$,

i. e.,

$$u \in L^{2}\left(0, T; W^{1,2}(\Omega)\right) \cap W^{1,2}\left(0, T; L^{2}(\Omega)\right) \cap W^{2,2}\left(0, T; \left(W_{0}^{1,2}(\Omega)\right)^{*}\right)$$

satisfies for almost all $t \in (0,T)$ and all $w \in W_0^{1,2}(\Omega)$

$$\langle \partial_{tt} u, w \rangle + \int_{\Omega} \mathbb{A} \nabla u \cdot \nabla w = 0.$$

Find proper/optimal relation between $\Omega_0 \subset B_1(0)$ and $Q_0 \subset Q$ such that

$$u(0) = \partial_t u(0) = 0 \text{ in } \Omega_0 \implies u = 0 \text{ in } Q_0.$$

Subgoal1: Show the result for constant matrix \mathbb{A} .

 $\check{R}e\check{s}en\acute{i}$ $(\Omega_0=B_1(0) \text{ pro } \mathbb{A}=\mathbb{I})$

Nechť je u nějaké řešení. ∂_{tt} neznáme nikde, tedy rovnost z definice zintegrujeme podle času (pro v čase konstantní $w \in W_0^{1,2}(\Omega)$):

$$0 = \int_0^{\tau} 0 = \int_0^{\tau} \langle \partial_{tt} u, w \rangle + \int_0^{\tau} \int_{\Omega} \mathbb{A} \nabla u \cdot \nabla w = \langle \partial_t u(\tau), w \rangle - \langle \partial_t u(0), w \rangle + \int_{\Omega} \left(\int_0^{\tau} \mathbb{A} \nabla u \right) \cdot \nabla w.$$

Teď bychom rádi funkcí $u(\tau)$ otestovali tuto rovnost. Ale $u(\tau)$ je sice z $W_0^{1,2}(\Omega)$, ale už nesplňuje, že by bylo v $W_0^{1,2}(\Omega)$. My ho ale můžeme vynásobit nezápornou Lipschitzovskou funkcí $h(\tau,x)$, která bude na $\partial\Omega$ nulová a později zvolíme další podmínky. Tak $u(\tau)\cdot h(\tau)\in W_0^{1,2}(\Omega)$ a máme

$$\langle \partial_t u(0), h(\tau) \cdot u(\tau) \rangle = \langle \partial_t u(\tau), h(\tau) \cdot u(\tau) \rangle + \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right) \cdot \nabla (h(\tau) \cdot u(\tau)).$$

Máme počáteční podmínku na $\partial_t u$:

$$\int_{x \in \Omega, \|x\| > 1} \partial_t u(0) \cdot h(\tau) \cdot u(\tau) = \frac{1}{2} \int_{\Omega} \left(\partial_t (u)^2 \right) \cdot h + \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right) \cdot \left((\nabla h) \cdot u + h \cdot (\nabla u) \right).$$

Řešení (Pokračování)

Když zvolíme h tak, že pro $||x|| \ge 1$ je h = 0, potom levá strana je nulová. V prvním integrálu na pravé straně bychom rádi dostali pryč derivaci u, takže použili per partes. Máme tam ale "špatný" integrál. Takže si přidáme ten "správný":

$$\frac{1}{2} \int_0^T \int_{\Omega} \left(\partial_t(u^2) \right) \cdot h \stackrel{perp.}{=} -\frac{1}{2} \int_0^T \int_{\Omega} u^2 \cdot \partial_t h + \frac{1}{2} \int_{\Omega} (u(T))^2 \cdot h(T) - \frac{1}{2} \int_{\Omega} (u(0)) \cdot h(0).$$

Když položíme i $h(T) \equiv 0$ a použijeme h = 0 pro $|x| \ge 1$ a u(0,x) = 0 pro |x| < 1 máme

$$\frac{1}{2} \int_0^T \int_{\Omega} \left(\partial_t(u^2) \right) \cdot h \stackrel{perp.}{=} -\frac{1}{2} \int_0^T \int_{\Omega} u^2 \cdot \partial_t h.$$

Spolu s předchozím máme

$$\frac{1}{2} \int_0^T \int_{\Omega} u^2 \cdot \partial_t h = \int_0^T \int_{\Omega} \left(\int_0^\tau \nabla u(t) dt \right) \cdot \left((\nabla h) \cdot u + h \cdot (\nabla u) \right).$$

Pravou stranu rozepíšeme z linearity a použijeme standardní trik z derivací (derivaci vezmeme použitím $\partial_t \int \dots dt = \dots$):

$$\dots = \int_0^T \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right) \cdot (\nabla h) \cdot u + \frac{1}{2} \int_0^T \int_{\Omega} \partial_t \left(\int_0^{\tau} \nabla u(t) dt \right)^2 \cdot h.$$

Derivace podle t před u (v druhém integrálu) bychom se zase rádi zbavili a tentokrát zde máme i "správný" integrál:

$$\begin{split} &\frac{1}{2} \int_0^T \int_\Omega \partial_t \left(\int_0^\tau \nabla u(t) dt \right)^2 \cdot h = -\frac{1}{2} \int_0^T \int_\Omega \left(\int_0^\tau \nabla u(t) dt \right)^2 \cdot \partial_t h + \\ &+ \frac{1}{2} \int_\Omega \left(\int_0^T \nabla u(t) dt \right)^2 \cdot h(T) + \frac{1}{2} \int_\Omega \left(\int_0^0 \nabla u(t) dt \right)^2 \cdot h(0). \end{split}$$

Zvolili jsme $h(T) \equiv 0$ a integrál přes prázdnou množinu (0,0) je nulový. Tedy druhá řádka je nulová.

Celkově všechno:

$$\frac{1}{2} \int_0^T \int_{\Omega} u^2 \cdot \partial_t h = \int_0^T \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right) \cdot (\nabla h) \cdot u - \frac{1}{2} \int_0^T \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right)^2 \cdot \partial_t h$$

$$\frac{1}{2} \int_0^T \int_{\Omega} \left(u^2 + \left(\int_0^{\tau} \nabla u(t) dt \right)^2 \right) \cdot \partial_t h = \int_0^T \int_{\Omega} \left(\int_0^{\tau} \nabla u(t) dt \right) \cdot (\nabla h) \cdot u$$

Řešení (Pokračování)

Nyní jsme se dostali k tomu, že už máme u^2 , které můžeme omezovat. Ještě bychom se rádi zbavili h. Nejlépe aby $\partial_t h \neq 0$ a $\nabla h \neq 0$ na "co největší množině", aby nám to "nenarušovalo" odhady. Pořád ale chceme h lipschitzovské, $h(T) \equiv 0$ a pro $||x|| \geq 1$ chceme h = 0.

Nabízí se, že $h=\|x\|+t-C$ tam, kde chceme nezáporné derivace a 0 jinde. Pro t=0 chceme, aby derivace byly nezáporné na co největší ploše, ale pro $\|x\|=1$ musí kvůli spojitosti (lipschitzovskosti) být h=0, tedy zvolíme C=1. Také chceme, aby pro t=T bylo " $\|x\|+t-C$ rovno nule", aby plynule navazovalo na $h(T)\equiv 0$, ale do té doby byly nezáporné derivace. Tedy h definujeme jako

$$h = \min\left(0, \|x\| + \frac{t}{T} - 1\right).$$

Dosadíme:

$$\frac{1}{2} \int_0^T \int_{\Omega} \left(u^2 + \left(\int_0^\tau \nabla u(t) dt \right)^2 \right) \cdot \chi_{h \neq 0} \cdot \frac{1}{T} = \int_0^T \int_{\Omega} \left(\int_0^\tau \nabla u(t) dt \right) \cdot \chi_{h \neq 0} \cdot u$$

Ještě potřebujeme upravit pravou stranu, protože chceme "normu", ne nějaký součin, tedy dle $0 \le (A+B)^2 = A^2 + B^2 + AB$ $(A=u, B=\int_0^\tau \nabla u(t)dt)$

$$\frac{1}{2} \int_0^T \int_{\Omega} \left(u^2 + \left(\int_0^\tau \nabla u(t) dt \right)^2 \right) \cdot \chi_{h \neq 0} \cdot \frac{1}{T} \leqslant \frac{1}{2} \int_0^T \int_{\Omega} \left(u^2 + \left(\int_0^\tau \nabla u(t) dt \right)^2 \right) \cdot \chi_{h \neq 0}$$

$$\left(\frac{1}{2T} - \frac{1}{2}\right) \cdot \int_0^T \int_{\Omega} \left(u^2 + \ldots + \right) \cdot \chi_{h \neq 0} \leqslant 0.$$

Nyní když zvolíme T < 1 libovolně tak $\int \int u^2 \cdot \chi_{h\neq 0} \leq 0$, tedy $u^2 = 0$ skoro všude tam, kde $h \neq 0$, což je pro všechna (t, x) taková, že $||x|| + \frac{t}{T} - 1 < 0$, tedy tam, kde ||x|| + t < 1.

 $\check{R}e\check{s}eni$ $(\Omega_0 = B_r(x_0) \text{ pro } \mathbb{A} = \mathbb{I})$

Nyní pokud funkce $v(t,x) = u(t/r,x-x_0)$ řeší problém pro $\Omega_0 = B_1(0)$, pak u(t,x) řeší problém pro $\Omega_0 = B_r(x_0)$, tedy $Q_0(B_r(x_0)) = \{(t,x) | (t/r,x-x_0) \in Q_0(B_1(0))\} = \{(t\cdot r,x+x_0) | (t,x) \in Q_0(B_1(0))\}.$

 $\check{R}e\check{s}eni$ (Ω_0 obecné pro $\mathbb{A}=\mathbb{I}$)

Nyní se můžeme na Ω_0 podívat jako mnoho kruhů $B_r(x_0)$, kde vždy $\lambda^n(B_r(x_0)\backslash\Omega_0)=0$ (na množině míry nula můžeme totiž u_0 předefinovat). Tedy $Q_0(\Omega_0)=\{(t,x)|\lambda^n(B_t(x)\backslash\Omega_0)=0\}$.

 $\check{R}e\check{s}eni$ (Ω_0 obecné pro obecné \mathbb{A})

Provedeme transformaci souřadnic (vynásobením maticí) tak, aby se nám rovnice transformovala do případu $\mathbb{A} = \mathbb{I}$ a máme to. Konkrétně vyjde $Q_0(\Omega_0) = \{(t, x) | \lambda^n(\mathbb{A} \cdot B_t(x) \setminus \Omega_0) = 0\}.$

Subgoal2: Show it for general \mathbb{A} . $\check{R}e\check{s}en\acute{i}$ TODO?