

WO 00/58342

1

PCT/FI00/00249

SEQUENCE LISTING

<110> Valtion teknillinen tutkimuskeskus

<120> Process for partitioning of molecules

<130> 31805

<140>

<141>

<160> 42

<170> PatentIn Ver. 2.2

<210> 1

<211> 428

<212> DNA

<213> Trichoderma reesei

<220>

<221> intron

<222> (167)...(236)

<220>

<221> intron

<222> (323)...(386)

<220>

<223> Coding sequence of hfbl

<400> 1

atgaagtct tcgccatcg cgcgtctttt gcccggctg ccgttgccca gcctctcgag 60
gaccgcagca acggcaacgg caatgtttgc cttccggcc tcttcagcaa cccccagtgc 120
tgtgccaccc aagtccctgg cctcatcgcc ctgtactgca aagtccgtaa gttgagccat 180
aacataagaa tccctttggc gaaatatgc cttctcactc cttaaccctt gaacagcrtc 240
ccagaacgtt tacgacggca cggacttccg caacgtctgc gccaaaaccg gcgcggcagcc 300
tctctgtgc gtggccccc ttgttaagttt atgccccagg tcaagctcca gtcttggca 360
aacccattct gacaccaga ctgcaggccg gccaggctct tctgtgccag accgcgtcg 420
gtgcttga 428

<210> 2

<211> 78

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 5' primer

<400> 2

tccggcacta cgtgccagta tagcaacgac tactactcg aatgccttgt tccgcgtggc 60
tcttagttctg gaaccgca 78

<210> 3
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 3
tcgtacggat cctcaaggcac cgacggcggt 30

<210> 4
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 4
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcagag caacggcaac 60
ggc 63

<210> 5
<211> 2211
<212> DNA
<213> *Trichoderma reesei*

<220>
<221> promoter
<222> (1)..(2211)
<223> *cbh1* promoter sequence

<400> 5
gaattctcac ggtgaatgt a ggccttttgt agggtaggaa ttgtcactca agcaccggca 60
acctccatta cgcctcccc atagagttcc caatcagtga gtcatggcac tggctcaaa 120
tagattgggg agaagttgac ttccggccag agctgaaggt cgccacaaccg catgatata 180
ggtcggcaac ggcaaaaaag cacgtggctc accgaaaagc aagatgttg cgtatctaaca 240
tccaggaacc tggatacatc catcatcagc cacgaccact ttgatctgtt ggtaaactcg 300
tattcgccct aaaccqaagt gctgtggtaaa tctacacgtt ggccttcc ggtataactgc 360
gtgtgtcttc tctaggtgca ttctttctt cctctagtgt tgaattgttt gtgttggag 420
tccgagctgt aactacctct gaatctctgg agaatgttgg actaacgact accgtgcacc 480
tgcatacatgt atataatagt gatcctgaga aggggggtt ggagcaatgt gggactttga 540
tggtcatcaa acaaagaacg aagacgcctc ttttgc当地 gctacggta 600
agaactggat acttgttgc当地 ttttgc当地 caacaagagg ccagagacaa 660
tctattcaaa caccaagctt gctcttttga gctacaagaa cctgtggggat atatatctag 720
agtgtgaag tcggtaatcc cgctgtatag taatacggat cgcatctaa tactccgaag 780
ctgctgc当地 cccggagaat cgagatgtgc tggaaagctt ctggcggcg gctaaattag 840
catgaaaggc tatgagaaaat tctggagacg gcttgc当地 tcatggcggtt ccattcttc当地 900
acaagcaag cgttccgtcg cagtagcagg cactcatcc cgaaaaactt cgagattcc 960
taatgtgc当地 tggaaaccgg当地 ataataat aggcaataca ttgagttgcc tggacgggtt 1020
caatgc当地 gtaactggat tggacataac tggctcgatccc当地 cttcaaccctt当地 1080
ggcggttcc当地 tgattcagcg tacccgtaca agtgc当地 atctatataacc cagactgacc 1140
ggacgtgttt tgcccttcat ttggagaaaat aatgtc当地 tggatgttgc当地 1200
tgaccgactg gggctgtcg aagcccgaaat gtggatgtt tattccgact ctgctcgat 1260
aggcatgtt gtaatctgtg tcggcagga caccgc当地 cgg当地 aggttccacgg caaggaaac 1320

caccgataggc agtgtctagt agcaacctgt aaagccgcaa tgcagcatca ctggaaaata 1380
caaaccaatg gctaaaagta cataagttaa tgccctaaaga agtcatatac cagccgctaa 1440
taattgtaca atcaagtggc taaacgtacc gtaatttgcc aacgcgttgtt ggggttgcag 1500
aagcaacggc aaagcccact tcccacgtt gtttcttcac tcagtc当地 ctcagcttgt 1560
gatcccccaa ttgggtcgct tgggttcc ggtgaagtga aagaagacag aggtaaagaat 1620
gtctgactcg gagcgttttgc catacaacca agggcagtga tggaaagacag tgaatgttg 1680
acattcaagg agtatttagc caggatgtc tgagtgtatc gtgtaaaggag gtttctgc 1740
cgatacgac aatactgtat agtacttct gatgaagtgg tccatatgaa aatgtaaagtc 1800
ggcactgaac aggcaaaaaga ttgagttgaa actgcctaaag atctcgccctc ctcgggcttc 1860
ggcttgggtt gtacatgtt tgctccggg caaatgaaa agtggtagg atcgacarac 1920
tgctgcctt accaaggcgc tgagggtatg tgataggaa atgttcaggg gccactgcat 1980
gtttcgaat agaaaagaaaa gcttagccaa gaacaatagc cgataaaagat agcctcatta 2040
aacgaaatga gctagtaggc aaagtcaagc aatgtgtata tataaaggtt cgaggtccgt 2100
gcctccctca tgctctcccc atctactcat caactcagat cctccaggag acttgtacac 2160
catctttga ggcacagaaaa cccaatagc aaccgcggac tgcgcatcat g' 2211

<210> 6
<211> 1588
<212> DNA
<213> *Trichoderma reesei*

<220>
<223> *T. reesei* egli cDNA

<400> 6
ccccctatc ttagtccttc ttgttgccttcc aaaatggcgc cctcagttac actgccgttg 60
accacggcca tcctggccat tgcggggtc gtcggccccc agcaacccggg taccagccccc 120
cccgagggtcc atcccaagtt gacaacctac aagtgtacaa agtccggggg gtgcgtggcc 180
caggacacctt cgggtgtct tgacttggaa taccgttggaa tgcacgcgc aaactacaac 240
tcgtgcaccc tcaacggcggg cgtcaacacc acgtctgtcc ctgacggggc gaccgtggc 300
agaactgtct tcatcgaggg cgtcgactac gcccgttggg gcgtcacac ctcgggcaggc 360
agcctcacca tgaaccagta catggccaggc agtctgggg gctacagcag cgtctctcc 420
cggctgtatc tcttggactc tgacggtagt tacgtgtatc tgaagctaa cggccaggag 480
ctgagcttcg acgtcgacact ctctgtctg ccgtgtgggg agaacggcgc gctctacctg 540
tctcagatgg acgagaacagg gggcccaac cagttataaca cggccgtgc caactacggg 600
agcggctact gcgatgtca gtgcggccgc cagacatggaa ggaacggcac cctcaacact 660
agccaccagg gtttctgtc caacggatg gatatcctgg agggcaactc gagggcaaat 720
gccttggccctt ctcacttctg cacggccacg gcctgtcgact ctgcccgggtt cggcttcaac 780
ccctatggca ggggtacaaa aagctactac ggccccgggg ataccgttga caccttcaag 840
accttcacca tcatcacccca gttcaacacg gacaacggct cggccctggg caaccttgg 900
agcatcaccc gcaagtatcca gcaaaacggc gtgcacatcc ccagcgccca gcccggcggc 960
gacaccatct cgtccctggcc gtcggccctca gcctacggcg gcctcgccac catggcaag 1020
gccttggccat gggcatgtt gtcgtgttc agcatgttggaa acgacaacacg ccagtacatg 1080
aactggctcg acagccggaa cggccggccccc tgcggccggc acggaggccaa cccatccaac 1140
atccctggcca acaaccccaa cacgcacgtc gtcttctccaa acatccgttgggg gggagac 1200
gggtctacta tgaactcgac tgcggccccc ccccccgtt cgtccagcac gacgtttcg 1260
actacacggg ggagctcgac gacttcgac agcccgagct gcacgcagac tcaactggggg 1320
cagtgccgtt gcatggggta cagccgggtgc aagacgtgc acgtccggccac tacgtggccag 1380
tatagcaacg actactactc gcaatgcctt tagacgttgtt acttgcctt ggtctgtcca 1440
gacggggca cgatagaatg cggccacgc gggagctgtt agacattggg cttatatat 1500
aagacatgtt atgttgcatac tacattagca aatgacaaac aatgaaaaaa gaacttatca 1560
agcaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 1588

<210> 7
<211> 745
<212> DNA
<213> *Trichoderma reesei*

<220>
<221> terminator
<222> (1)..(745)
<223> *T. reesei cbh1* terminator

<400> 7
ggaccttacc agtctcacta cggccagtgc ggcggatttgc gctacagcgg ccccacggtc 60
tgcggccagcg gcacaacttg ccagggtcctg aacccttact acttcagtg cctgtaaagc 120
tccgtgcga agcctgacgc accggtagat tcttggtgag cccgtatcat gacggcggcg 180
ggagctacat ggccccgggt gatttatttt ttttgtatct acttctgacc ctttcaaat 240
atacggtaaa ctcatctttc actggagatg cggcctgctt ggtattgcga tgggtcagc 300
ttggcaaatt gtggctttcg aaaacacaaa acgattcctt agtagccatg cattttaaaga 360
taacggaaata gaagaaagag gaaattaaaa aaaaaaaaaa aacaaacatc cggttcataa 420
cccgtagaat cggcgtctt cgtgtatccc agtaccacgt caaaggtatt catgatcggt 480
caatgttcat attgttccgc cagttatggct ccaccccat ctccgcgaat ctccctttct 540
cgaacgcggt agtggctgct gccaattggt aatgaccata gggagacaaa cagcataata 600
gcaacagtgg aaatttagtgg cgcaataatt gagaacacag tgagaccata gctggcggcc 660
tggaaagcac tggggagac caacttgtcc gttgcgaggc caacttgcatt tgctgtcaag 720
acgatgacaa cgtagccgag gaccc 745

<210> 8
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: annealed primer

<400> 8
taaccgcgggt

10

<210> 9
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: annealed primer

<400> 9
ctagaccgcg gttaat

16

<210> 10
<211> 1232
<212> DNA
<213> *Trichoderma reesei*

<220>
<221> promoter
<222> (1)..(1232)

<223> *T. reesei gpd1* promotor

<400> 10

gtcgacacga tatacaggcg cggtctatgtaa taatgtatgtat cgagcatgac ttgtatgtgt 60
atgtgacaat attgactgcg aggaaccatc aggtgtgtat ggatggaaatc atttctgttaac 120
caccagggtg catgtatcat aaggattctc ctcagctcac caacaacgaa cgatggccat 180
gttagtgaag gcaccgtat ggcaagatag aaccactatt gcatctgcgc ttcccacgca 240
cagtacgtca agtaacgtca aagccgcct cccgttaacct cggccgttgt tgctccc 300
gattgcctca atcacatgt acctacctat gcattatggg cggcctcaac ccacaaaaaaa 360
agattgagag ctacccatac tcaatatggc cagcacctct tcggcgatac atactcgcca 420
ccccagccgg cgcgattgtg tgtaacttaggt aggctcgatc tataccagca ggagaggtgc 480
tgcttggcaa tcgtgtctcg ctgttaggtt gtactttgtat ggtaacttgcgat 540
gcagttgtca aggtacctag ggagggttc aacgaggccct gcttcaatgcgatcc 600
taggatggcg gctgggggg cagaagctgg gaactcgcca acagtcataat gtaatagctc 660
aagttgtatc taccgttttgc ctagatttttgc tgcgagaagc agcatgaatg tcgctcatcc 720
gatggcgcat caccgttgcg tcaaaaaacga ccaagctaaatc aactaaggtaatcc 780
ccactatctc aggttaaccatc gtactaccatc ctaccctacc tgccgtgcctt accctgtttt 840
gtgttaatctt ttcacccctcc ctcttcataatc ttcttttttttcc ttttttttttt 900
cttccttcctc ttcttcataatc taacccattcc taacaacatc gacattttctt cctaatacc 960
agcctcgccaa atccctatgtt tgatgtacg tacgtactac aatcatcacc acgatcgcc 1020
gccccgacat gccccgttctg ttccgtctgcc cctcccttcataatc ctccgtccct tgacgagatc 1080
gccccggccat gacttcctgc cgtccaccaat ttttttccctt atttacccctt cctcccttcataatc 1140
tccctctctgt ttcttcataatc caaacaacca ccacccaaat ctctttggaa gctcacgact 1200
caccgcgatc aatttcgcaga tacaatctca ga 1232

<210> 11

<211> 1129

<212> DNA

<213> *Trichoderma reesei*

<220>

<221> terminator

<222> (1)..(1129)

<223> *T. reesei gpd1* terminator

<400> 11

ggatccccgag cattgtctat gaatgcacaaac aaaaatagta aataaatatgtt aattctggcc 60
atgacgaata gagccaaatct gctccacttgc actatcttgc gactgtatcg tatgtcgaaac 120
ccttgactgc ccatttcaac aattgtaaaatggaaatgtt acaaggatgtt tctcacatgtt 180
gcgtgcgagc ccgtttgtac gtatgttgc gaaaggcgttgc ccacatgttgc tctcacatgtt 240
cttggcttac gatcatgtttt gcatgttgc gtaagaatc acagatgttgc gattatctcc 300
atcgcttcataatc tgatgttgc ctcagacaaatc acatgttgc gaaaggatgttgc atcgcatgtt 360
aggtcgttgc caatcatgttgc ctggacttgc gttatgttgc taagtcataatc tacccttcataatc 420
agaaggatgttgc gtagggatgttgc tccggatgttgc accatgttgc ctgcataatc aagaaacccc 480
ccaaaaggatgttgc tccggatgttgc accatgttgc acatgttgc aatgttgc aaaaaggatgttgc 540
agaatgttgc tccggatgttgc aatgttgc tccggatgttgc tccggatgttgc aatgttgc aaaaaggatgttgc 600
aacaatccatgttgc tccggatgttgc aatgttgc tccggatgttgc tccggatgttgc aatgttgc aaaaaggatgttgc 660
tgaggtgacc tgcgttttttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 720
ccggccctcg cctcttcataatc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 780
gaaggcggttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 840
atcaaaatccatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 900
accggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 960
gttccatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 1020
aggagagatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 1080
gaatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc tccggatgttgc 1129

<210> 12
<211> 5733
<212> DNA
<213> *Aspergillus nidulans*

<220>
<223> (1-5733) Sequence of plasmid pAN52-1

<220>
<221> promoter
<222> (1)..(2129)
<223> *A. nidulans gpdA* promoter

<220>
<221> gene
<222> (2130)..(2304)
<223> *A. nidulans gpdA* gene

<220>
<221> terminator
<222> (2305)..(3071)
<223> *A. nidulans trpC* terminator

<220>
<221> misc_feature
<222> (3072)..(5726)
<223> pUC18 from SalI to EcoRI

<400> 12
caattccctt gtatctctac acacaggctc aaatcaataa gaagaacgggt tcgtcttttt 60
cgtttatatac ttgcategtc ccaaagctat tggcgggata ttctgtttgc agttggctga 120
cttgaagtaa tctctgcaga tctttcgaca ctgaaatacg tcgagcctgc tccgcttgg 180
agcggcgagg agcctcgccc tgcacaact accaacatgg agtacgatgg gggccagttc 240
cgccagctca ttaagagccca gtcatgggc gttggcatga tggccgtcat gcatctgtac 300
ttcaagtaca ccaacgtctc tctgtatcccg tcgatcatcc gctgaaggcg ctttcgaatc 360
tggttaagat ccacgtcttc gggaaaggcccg cgactgggtg cctccagcgt ccctttaagg 420
ctgccaacag ctttctcagc caggcccgcc ccaagaccga caaggcctcc ctccagaacg 480
ccgagaagaa ctggagggggt ggtgtcaagg aggagaatgc tctttattga agtcggagga 540
cggagcgggtg tcaagaggat attttcgac tctgttattat agataagatg atgaggaatt 600
ggaggttagca tagcttcatt tgattttgtc ttccaggctg agactctagc ttggaggata 660
gagggtcctt tggctttcaa tattctcaag tatctcgagt ttgaacttat tccctgtgaa 720
ccttttatttc accaatgagc attggaaatga acatgaatct gaggactgca atcgccatga 780
ggttttcgaa atacatccgg atgtcgaagg cttggggcac ctgcgttgg tgaattttaga 840
acgtggcaact attgatcata cgatagctct gcaaaggcccg ttgcacaatg caagtcaaac 900
gttgcttagca gttccagggtg gaatgtttagt atgagcatgg tattaaatca ggagatata 960
catgatctct agttagctca ccacaaaatg cagacggcgt aaccaaaaatg cacacaacac 1020
aagctgttaag gatttcggca cggctacggg agacggagaa gccaccctca gtggactcga 1080
gtaccatttatttgc ttgttgcgt agacctaata cagccccctac aacgaccatc 1140
aaagtctgtat agctaccatg gaggaaagtgg actcaaatcg acttcagcaa catctcctgg 1200
ataaaacttta agcctaaact atacagaata agatagggtgg agagcttata ccgagctccc 1260
aaatctgtcc agatcatgtt tgacccggcgt ctggatcttc ctatagaatc atcttttattc 1320
gttgacccatg ctgattctgg agtgaccggcgt agggtcatga ctggatcttc aaatccggccg 1380
cctccaccatg ttgtagaaaa atgtgacgaa ctgcgtgacgt ctgtacatgg accgggtgact 1440
ctttctggca tgcggagaga cggacggacg cagagagaag ggctgagtaa taagccactg 1500
gccagacacg tctggccggcgt ctggatctgg ataaatccgg gacccggccgc 1560
ccctccggccg cgaagtggaa aggctgggtgt gcccctcggtt gaccaagaat ctattgcata 1620
atcggagaat atggagcttc atcgaatcac cggcagtaag cgaaggagaa tggtaagcc 1680
gggggtgtata gccgtcggcg aaatagcatg ccattaacct agtacagaa gtcacattgc 1740

ttccgatctg gtaaaagatt cacgagatag taccttctcc gaagtaggta gagcggat 1800
ccggcggtga agctccctaa ttggcccatc cggcatctgt agggcgcca aataatcg 1860
ctctctctgt ttgccccgtg tatgaaaaccg gaaaggccgc tcaggagctg gccagcggcg 1920
cagaccggga acacaagctg gcagtcgacc catccggcgc tctgcactcg acctgctgag 1980
gtccctcagt ccctggtagg cagcttgcc ccgtctgtcc gcccgggtgt tcggcgggt 2040
tgacaagggtc gttgcgtcag tccaaacattt gttccatat tttctgtc tccccaccag 2100
ctgctctttt cttttctctt tctttccca tttcagttt attcatcttc ccattcaaga 2160
accttttattt cccctaagta agtacttgc tacatccata ctccatctt cccatccctt 2220
attcctttga acctttcagt tcgagcttcc caacttcata gcagcttgac taacagctac 2280
cccgctttagg cagacatcac catggatcca cttaaacgtta ctgaaatcat caaacagctt 2340
gacgaatctg gatataagat cggtgggtc gatgtcagct ccggaggatgaa gacaaatgg 2400
gttccaggatc tcgataagat acgttccatgtt gtcacccatgaa caaagagtgc cttctgtg 2460
ttaatagctt ccattgtcaac aagaataaaaa cgcgttttcg ggttacccctt tccagatac 2520
agctcatctg caatgttta atgcatttgac tgcaacccatgaa tttccatctt cgggtccgg 2580
cgaagagaag aatagcttag cagagatattt ttcattttcg ggagacgaga tcaacagat 2640
caacggcgta caagagacctt acgagactgaa ggaatccgcctt cttggctcca cggactata 2700
tatttgtctc taattgtact ttgacatgtt cctttctt actctgtatag cttgactatg 2760
aaaatccgtt caccagcncc tgggttcgca aagataattt catgtttttt ctttgaactc 2820
tcaaggcttac aggacacaca ttcatctgtt gtataaaacccat cggaaatccat tccactaag 2880
atggtataaca atgatcaaccat tgcatttttttgcgtt gtcatttttttgcgtt accaaatacg 2940
ccggccgaaa ctttttaca actcttcttat gatgttttttgcgtt cccagaatgc acaggtacac 3000
ttgttttagag gtaatccctt ttcttagaaag ttctctgttgcgtt gtcgttgcgtt gcccactcca 3060
catctccactt ccgttgcgttgcgtt gcatgcggc ttggacttgcgtt ccgttgcgtt acaacgtcg 3120
gactggggaaa accctggcgatc taccaactt aatccatcttgcgtt cggccatcc ccccttcg 3180
agctggcgta atgatcaaga ggcggccaccat gatgttttttgcgtt cccaaatggatg ggcggccgt 3240
aatggcgat ggcggccatgtt ggcggccatgtt ccccttcgtt atctgttgcgtt tatttcacac 3300
cgcatatgtt ccgttgcgttgcgtt gcatatgttgcgtt cccatccatcc cccatccatcc 3360
caccggccaa caccggccatgtt ccgttgcgttgcgtt cccatccatcc cccatccatcc 3420
agacaagctg tgaccgttcc cggggccatgttgcgtt gatgttgcgtt ggttttaccatgttgcgtt 3480
aaacggcgta gacgaaagggtt cccatccatcc cccatccatcc tataatgttgcgtt ggttttaccatgttgcgtt 3540
ataatggttt ctttagacgttcc aggtggcaactt tttccatccatcc tttccatccatcc tttccatccatcc 3600
tggtttatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 3660
atgcttcaat aatatttggaa aaggaaagatg atgatgttccatcc tttccatccatcc tttccatccatcc 3720
atcccccttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 3780
gtaaaagatg ctgaaatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 3840
agccgttcaaga tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 3900
aaagttctgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 3960
cgccgcataacttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4020
cttacggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4080
actccggccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4140
cacaacatggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4200
ataccggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4260
cttacggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4320
gcggatataatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4380
gataaaatctgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4440
ggtaagcccttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4500
cgaaaatggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4560
caagtttacttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4620
taggtgaaga tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4680
cactggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4740
ccgtatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4800
gatcaagatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4860
aatactgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4920
cctacatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 4980
tgtcttaccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 5040
acgggggggttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 5100
ctacaggatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 5160
ccgtatgttccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc tttccatccatcc 5220

tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgctg atttttgtga 5280
tgctcgta gggggccggag cctatggaaa aacgccagca acgcggcctt ttacggttc 5340
ctggcccttt gctggccctt tgctcacatg ttctttcctg cgttatcccc tgattctgtg 5400
gataaccgta ttaccgcctt tgagttagct gataccgctc gccgcagccg aacgaccgag 5460
cgcagcgaatc cagttagcgaa ggaagcgaa gagcgccaa tacgcaaacc gcctctcccc 5520
gcgcgttgcg cgttgcattt atgcagctgg caacgacagg ttcccgactg gaaagegggc 5580
agttagcgca acgcaattaa tggatgttag ctcaacttgg aggcacccca ggctttacac 5640
tttatgtttc cggctcgat gtgtgtgaa attgttagcg gataacaatt tcacacaggaa 5700
aacagctatg accatgatta cgaattgcgg ccg 5733

<210> 13
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 13
gtcaaccgcg gactgcgcattt catgaagttt ttcggccatc 39

<210> 14
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 14
tcttagcaagc ttggctcttag ttctggaacc gcaccaggcg gcagcaacgg caacggcaat 60
gtttgc 66

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 15
tcgtacaagc tttcaagcac cgacggcggt 30

<210> 16
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 16
tcttagctcta gaagcaacgg caacggcaat gtt 33

<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 17
tgcttagtcga cctgctagca gcaccgacgg cggtctg

37

<210> 18
<211> 4614
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<223> *S. cerevisiae* FLO1 coding sequence

<400> 18
atgacaatgc ctcatcgcta tatgtttttg gcaagtcttta cacttctggc actaaactagt 60
gtggcctcag gagccacaga ggcgtgttta ccaggcggcc agaggaaaaag tgggatgaat 120
ataaaatttt accatgttccat attgaaagat tcctccacat attcgaatgc agcatatatg 180
gcttatggat atgcctcaaa aaccaaacta ggttctgtcg gaggacaaac tgatatctcg 240
attgattata atattccctg tggtagttca tcaggcacat ttccctgtcc tcaagaagat 300
tcctatggaa atggggatg caaaggaaatg ggtgcttgc ctaatagtca aggaattgca 360
tactggagta ctgatttatt tggttctat actaccccaa caaacgttaac cctagaaaatg 420
acaggttatt ttttaccacc acagacgggt tcttacacat tcaagttgc tacagttgac 480
gactctgcaa ttctatcagt agggttgtca accgcgttca actgttgtgc tcaacagcaa 540
ccgcccgtatca catcaacgaa ctttaccatt gacggatatac agccatgggg tggaaagttt 600
ccacctaata tcgaaggaac cgtctatatg tacgctgttgc actattatcc aatgaaggtt 660
gtttactcga acgctgttgc ttggggtaca cttccaattt gtgtgacact tccagatgg 720
accactgtaa gtgatgactt cgaagggtac gtctattctt ttgacgtga cctaaagtcaa 780
tctaactgta ctgtccctga cccttcaaat tatgctgtca gtaccactac aactacaacg 840
gaaccatgga cccgtacttt cacttctaca tctactgaaa tgaccacgt caccggtaacc 900
aacggcggttc caactgacga aaccgtcatt gtcatcagaa ctccaacaac tgcttagcacc 960
atcataacta caactgagcc atgaaacagc acttttacact ctacttctac cgaatttgacc 1020
acagtctgtc gcaccaatgg tgcacactt gacgaaacca tcattgtat cagaacacca 1080
acaacagccca ctactgccccat aactacaactt gacccatgga acagcacttt tacctctact 1140
tctaccgaaat tgaccacagt caccggtaacc aatggtttgc caactgtatga gaccatcatt 1200
gtcatcagaa caccaacaac agccactact gccatgacta caactcagcc atgaaacgac 1260
acttttacactt ctacatccac tgaatgacc accgtcaccc gtaaccaacgg tttgccaact 1320
gatgaaacca tcattgtcat cagaacacca acaacagccca ctactgctat gactacaact 1380
cagccatgga acgacacttt tacctctaca tccactgaaa tgaccacgt caccggtaacc 1440
aacggtttgc caactgatga aaccatcatt gtcatcagaa caccaacaac agccactact 1500
gccatgacta caactcagcc atgaaacgac acttttacactt ctacatccac tgaatgacc 1560
acggtcaccc gtaaccaatgg tttgccaact gatgagacca tcattgtcat cagaacacca 1620
acaacagccca ctactgccccat gactacaactt cagccatgga acgacacttt tacctctaca 1680
tccactgaaa tgaccacgt caccggtaacc aacggtttgc caactgtatga aaccatcatt 1740
gtcatcagaa caccaacaac agccactactt gccataacta caactgagcc atgaaacgac 1800
acttttacactt ctacttctac cgaatttgacc acagtccaccc gtaaccaatgg tttgccaact 1860
gatgagacca tcattgtcat cagaacacca acaacagccca ctactgccccat gactacaact 1920
cagccatgga acgacacttt tacctctaca tccactgaaa tgaccacgt caccggtaacc 1980
aacggtttgc caactgatga aaccatcatt gtcatcagaa caccaacaac agccactact 2040
gccatgacta caactcagcc atgaaacgac acttttacactt ctacatccac tgaatgacc 2100
acggtcaccc gtaaccaacgg tttgccaact gatgagacca tcattgtcat cagaacacca 2160

acaacagcca ctactgccat gactacaact cagccatgga acgacacttt tacctctaca 2220
tccactgaaa tgaccaccgt caccggtaacc aacggcggttc caactgacga aaccgtcatt 2280
gtcatcagaa ctccaaactag tgaagggtcta atcagcacca ccactgaacc atggactgg 2340
actttcacct ctacatccac tgagatgacc accgtcacccg gtactaacgg tcaaccact 2400
gacgaaaccg tgatgttat cagaactcca accagtgaag gtttggttac aaccaccact 2460
gaaccatgga ctggtaactt tacccatcata tctactgaaa tgaccaccat tactggaacc 2520
aacggcggttc caactgacga aaccgtcatt gtcatcagaa ctccaaaccag tgaagggtcta 2580
atcagcacca ccactgaacc atggactgg acttttactt ctacatctac taaaatgacc 2640
accattactg gaaccaatgg tcaaccaact gacgaaaccg ttattgttat cagaactcca 2700
actagtgaag gtctaatcag caccaccact gaaccatgga ctggtaactt cacttctaca 2760
tctactgaaa tgaccaccgt caccggtaacc aacggcggttc caactgacga aaccgtcatt 2820
gtcatcagaa ctccaaaccag tgaagggtcta atcagcacca ccactgaacc atggactggc 2880
actttcacct cgacttccac tgaggttacc accatcactg gaaccaacgg tcaaccaact 2940
gacgaaaccg tgatgttat cagaactcca accagtgaag gtctaatcag caccaccact 3000
gaaccatgga ctggtaactt cacttctaca tctgtgaaa tgaccaccgt caccggtaact 3060
aacggtaac caactgacga aaccgtgatt gttatcagaa ctccaaaccag tgaagggttg 3120
gttacaacca ccactgaacc atggactgg acttttactt cgacttccac taaaatgtct 3180
actgtcaactg gaaccaatgg ctgccaact gatgaaactg tcattgttgt caaaactcca 3240
actactgcca tctcatccag ttgtcatca tcatcttcag gacaaatcac cagctctatc 3300
acgtcttcgc gtccaaattat tacccttattc tacccttagca atgaaacttc tgtgatttct 3360
tccctcgtaa ttcttccttc agtcaacttct tctctatc tcccttcgtc agtcaatttct 3420
tccctcgtca ttcttccttc tacaacaacc tccacttctat tattttctga atcatctaaa 3480
tcatccgtca ttccaaaccag tagttccacc tctggttctt ctgagagcga aacgagttca 3540
gctggttctg tcttttcttc ctcttttattc tcttctgaat catcaaatac tccctacatat 3600
tcttcttcat cattaccact tgttaccgt ggcacaacaa ggcaggaaac tgcttcttca 3660
ttaccacctg ctaccactac aaaaacgagc gaacaaacca ctgggttac cgtgacatcc 3720
tgcgagtc tctgtgcac tgaatccatc tcccttcgtca ttgttccac agctactgtt 3780
actgttagc gcgtcacaac agagtatacc acatggtgcctt ctatttctac tacagagaca 3840
acaagaaaa ccaaagggac aacagagcaa acccagaaaa caacaaaaca aaccacggta 3900
gttacaattt ctcttcttca atctgacgtt tgctctaaga ctgcttcttc agccattgtt 3960
tctacaagca ctgctactat taacggcggtt actacagaat acacaacatg gtgtcctatt 4020
tccaccacag aatcgaggca acaaacaacg ctatgtactg ttacttctt cgaatctgg 4080
gtgtgttccg aaactgcttc acctgcccatt gtttcgacgg ccacggctac tttgtatgt 4140
gttggtaacgg tctatcctac atggaggccaa cagactgca atgaagatc tttgtatgt 4200
aaaatgaaca gtgttccgg tgagacaaca accaataactt tagctgtca aacgactacc 4260
aataactgttag ctgctgagac gattaccaat actggagctg ctgagacgaa aacagtagtc 4320
accttcttcgc ttcaagatc taatcacgtt gaaacacaga cggctccgc gaccgatgtg 4380
attggtcaca gcagtagtgtt tgtttcttca tccgaaactg gcaacaccaa gagtctaaca 4440
agttccgggt tgagtagtat gtgcacacg cctcgttagca caccacgaa cagcatggta 4500
ggatatagtt cagtttctt agaaatttca acgtatgtt gcagtgccaa cagttactg 4560
gccggtagt gtttaagtgtt ctccattgtcg tttttatgtt ttaa 4614

<210> 19
<211> 5857
<212> DNA
<213> *Saccharomyces cerevisiae* and *E. coli*

<220>
<221> promoter
<222> (1)..(452)
<223> *S. cerevisiae* GAL1 promoter

<220>
<223> (476-495) *E. coli* T7 promoter/priming site

<220>
<223> (502-601) *E. coli* multiple cloning site

<220>
<223> (609-857) *S. cerevisiae CYC1* transcription terminator

<220>
<223> (1039-1712) *E. coli pMB1* (pUC-derived) origin

<220>
<221> gene
<222> (1857)..(2717)
<223> *E. coli* ampicillin resistance gene

<220>
<221> gene
<222> (2735)..(3842)
<223> *S. cerevisiae URA3* gene

<220>
<223> (3846-5317) *S. cerevisiae* 2 micron origin

<220>
<223> (5385-5840) *E. coli* f1 origin

<220>
<223> (1-5857) Sequence of pYES2

<400> 19

acggattaga agccgcccag cgggtgacag ccctccgaag gaagactctc ctccgtcggt 60
cctcgccctc accggtcgcg ttctgaaac gcagatgtgc ctgcgcgcg actgctccga 120
acaataaaga ttctacaata ctatcttttta tggttatgaa gaggaaaaat tggcagtaac 180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240
ttatgtttttt agccttattt ctgggttaat taatcagcga agcgtatgtt tttgtatctat 300
taacagatata ataaaatgcaa aaactgcatt aaccacttta actaataactt tcaacattti 360
cggtttgtat tacttcttat tcaaataatgtaa taaaatgtatc aacaaaaat tggtaatata 420
cctctataact ttaacgtcaa ggagaaaaaa ccccgatcg gactactagc agctgtataa 480
cgactcaacta tagggaaat taagtcttgtt accgagatcg gatccactag taacggccgc 540
cagtgtgctg gaattctgcgat gatatccatc acactggcgg cgctcgagc atgcatctag 600
aggggcccat catgtatattt gttatgtcact gttatcgatc acggccatccc cccacatccg 660
ctctaacgcgaa aaaggaagga gtttagacaat ctgaaatgtcta ggtccctatt tattttttta 720
tagttatgtt agtattaaaga acgttatttttatttcaat ttttttttttttttctgtaca 780
gacgcgtgtaa cgcgtatgaa attataactgaa aaaccttgct tgagaaggtt ttgggacgct 840
cgaaggctt aatttgcggc cctgcattaa tgaatcgccc aacgcgcggg gagaggcgg 900
ttgcgttattt ggcgttcccg cgcttcctcg ctcaactgact cgctgcgtc ggtcggttgg 960
ctgcggcggag cggatcatcgc tcactcaaag gcggtatcac ggttatccac agaatcagg 1020
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa agcccaggaa ccgtaaaaag 1080
ggccgcgttgc tggcgaaaaa ccataaggctc cgccccctgt acgagcatca caaaaatcga 1140
cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gttttccct 1200
ggaagctccc tcgtgcgtc tccgttcccg accctgcgcg ttaccggata cctgtccgc 1260
tttctccctt cgggaagctgtt ggcgtttctt catagctcac gctgttagta tctcagttcg 1320
gtgttaggtcg ttcgctccaa gctgggtctgt gtgcacgaaac ccccggtca gcccggaccgc 1380
tgcgccttat cccgttaacta tcgtcttgag tccaaacccgg taagacacga cttatcgcca 1440
ctggcagcag ccactggtaa caggattagc agagcgaggat atgttagggcg tgctacagag 1500
ttcttgaagt ggtggctaa ctacggctac actagaagggc cagtttttttgcgatcgct 1560
ctgctgtggc cagttacccctt cggaaaaaaga gttggtagctt cttgtatccgg caaacaacc 1620
accggctggta ggggtgggtt ttttttttgc aaggcggaga ttacgcgcag aaaaaaaaaaagga 1680
tctcaagaag atcccttgcgat cttttctacg ggggtctgacg ctcagtgaa cggaaaactca 1740
cggttaaggga tttttggcat gagattatca aaaaggatct tcaccttagat ccttttaaat 1800
taaaaaatgaa gttttaaatc aatctaaatgat atatatgat aaacttggtc tgacagttac 1860
caatgcttaa tcgtgaggc acctatctca gcgatctgc tatttcgttc atccatagtt 1920

gcctgactcc ccgtcggtga gataactacg atacgggagc gcttaccatc tggccccagt 1980
gctgcaatga taccgcgaga cccacgctca cccgctccag atttatcagc aataaaaccag 2040
ccagccggaa gggccgagcg cagaagtggt cctgcaacctt tatccgcctc cattcagtt 2100
attaattgtt gccgggaagc tagagtaatg agtgcgcag ttaatagttt gcgaacgtt 2160
gttggcattt ctacaggcat cgtgggtgtca ctctcgctgt ttggatggc ttcatcagc 2220
tccgggttccc aacgatcaag gcgagttaca tgatccccaa tggtgtgcaa aaaagcggtt 2280
agtccttcg gtcctccgt cgttgcaga agtaagttgg ccgcagttt atcactcatg 2340
gttatggcag cactgcataa ttcttactt gtcatgccat ccgtaaatgtt cttttctgt 2400
actggtgatg actcaaccaa gtcatctgtaa gaatagtgtt tgccgcacc gagttgtct 2460
tgcccgccgt caatacggtt taatagtgtt tcacatagca gaattttaaatgtt 2520
attggaaaac gttttcggtt gcgaaaaactc tcaaggatctt taccgtgtt gagatccagt 2580
tcgatgtaac ccactcgatc acccaactga ttttcagcat cttttactttt caccagcggtt 2640
tctgggttagt caaaaacagg aaggcaaaat gcccggaaaaa aggaaataag ggcgacacgg 2700
aaatgttcaa tactcataact cttttttttt caatgggtaa taactgatataattttt 2760
aagctctaattt ttgtgatgtt agtatacatg cattttacttta taatacagttt tttttttttt 2820
gctggccgca tcttctcaaa tatgttttttcc accgtgtttt tctgttaacgt tcaccctcta 2880
cctttagcattt cttttttttt gcaaatagtc ctcttccaaac aataataatgt tcaagatctt 2940
tagagaccac atcatccacg gttttttttt gttttttttt tgccgtctccc ttgttcatctt 3000
aaccccacacc ggggtgttata atcaaccaat cgtaacccctt atcttcttcca cccatgtctt 3060
ttttagtataat aaagccgatata acaaaatctt tgccgtctt ccgtaaatgtt acagtaccctt 3120
tagtatattt tccagtagat aggaggccctt tgcatgacaa ttctgttaacatc atcaaaaggc 3180
ctcttaggtttt cttttttttt cttttttttt cttttttttt accgttttttccaa ataccttggc 3240
ccaccacacc gtgtgttccatc gtaatgttccatc tatttttttttccaa acacccgcag 3300
agtactgcaat tttttagtataat ttaccaatgtt cggaaatttt tctgttttttccaa aagagttttttt 3360
aattttttttt ggcggataat gcttttttttccaa gctttaactgtt gcccctccatg gaaaaatccatg 3420
tcaagatataatc cccatgtttaat tttagtataat tttagtataat tttagtataat tttagtataat 3480
ccagtttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 3540
gcatgatattt aaatagtttgc gcaacatccatc atgttttttttccaa ctttttttttccaa 3600
atgttagttt ccacatgtttaat tttagtataat tttagtataat tttagtataat tttagtataat 3660
ttaagaataatc tggggcaattttt catgttttttccaa ctttttttttccaa ctttttttttccaa 3720
taagtctgtt ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 3780
tttcaagaaaaa ccgaaatccatc aaaaaaagaat aaaaaaaaaaa tgatgttataat tttagtataat 3840
cttagtttttttccaa gatgttttttttccaa gatgttttttttccaa gatgttttttttccaa 3900
cttagtttttttccaa gatgttttttttccaa gatgttttttttccaa gatgttttttttccaa 3960
cttaccacccatc ttttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4020
ctatcttcgc gatgttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4080
acttttttttccaa tgggtgttccatc ttttttttttccaa ctttttttttccaa ctttttttttccaa 4140
tcgatgttttttccaa ttttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4200
tcgtacttgtt ttttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4260
agatgttataat ttgttcaatgtt ttttttttttccaa ctttttttttccaa ctttttttttccaa 4320
atgttatttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4380
atccccgggtt ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4440
agcatctgtt ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4500
aaagaatctt ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4560
acgaagaatccatc ttttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4620
tttcaaaacaa agaatctgtt ctttttttttccaa ctttttttttccaa ctttttttttccaa 4680
tttttcaaaacaa agaatctgtt ctttttttttccaa ctttttttttccaa ctttttttttccaa 4740
tatttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4800
gttcttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4860
tcttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4920
gaagctgttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 4980
ggatgtgttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5040
aattatgttccatc ttttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5100
ttcgtatttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5160
gtaatactgtt ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5220
cgaaagggttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5280
cttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa ctttttttttccaa 5340
tcagaaaaacatc cccaaaaacatc ggaagattgtt ataaacgttttccaa ctttttttttccaa 5400

tatTTTgtta aaattcgcgt taaatTTTtg ttAAATcAGC tcATTTTta acGAATAGCC 5460
cgAAATCGGc AAAATCCCTt atAAATCAAa agAAATAGACC gagATAGGGt tgAGTGTtGt 5520
tCCAGTTCC aacaAGAGTC cactATTAAa gaACGTGGAC tCCAACGTCA aAGGGCGAAA 5580
aAGGGTCTat cAGGGCGATG gCCCACtACg tGAACCATCA ccCTTAATCAA gTTTTTGGG 5640
gtcGAGGTGc CGTAAAGCAG tAAATCGGAA gGGTAAACGG ATGCCCCAT tTAGAGCTG 5700
acGGGGAAAG CGGGCGAACG TGGCGAGAAA gGAAGGGAAg AAAGCGAAAAG gAGCGGGGGC 5760
tagggcggtg ggaAGTGTAG gggTCACGCT gggCGTAACC accACACCCG CCGCGCTAA 5820
tggggcgcta cagggcgctg ggggatgata cactagt 5857

<210> 20
<211> 403
<212> DNA
<213> Trichoderma reesei

<220>
<223> (1-403) T. reesei hfb2 coding sequence

<220>
<221> intron
<222> (131)...(200)

<220>
<221> intron
<222> (287)...(358)

<400> 20
atgcagttct tcGCCGTCGC CCTTTGCCC accAGCGCCC tggCTGTGT ctGCCCTacc 60
ggcCTCTCT ccaACCCtCT gtGCTGTGCC accAAACGTCC tcGACCTCAT tggCGTTGAC 120
tgcaAGACCC gtATGTTGAA ttccaATCTC tggcATCTC gacATTGGAC gatacAGTTG 180
acttACACGA tgCTTTACAG ctACCATCGC cgtcGACACT ggCCCATCT tCCAGGCTCA 240
ctgtGCCAGC aAGGGCTCCA agcCTTTG ctgcgttGt cccgtggtaa gtagtGCTG 300
caatggcaAAa gaAGTAAAAA gacATTGGG cctgggatcg ctaACTCTG atATCAAGGC 360
cgaccAGGCT ctccTGTGCC agaAGGCCAT cggCACCTC taa 403

<210> 21
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 21
cgaggAGGCT cgacGACTTC gAGCAGCCCG agctgcACGC aggCTGTCTG ccCTACCGG 59

<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 22
tcattggatc cttagaAGGT gcccGATggc

<210> 23
<211> 679
<212> DNA
<213> *Schizophyllum commune*

<220>
<223> (1-679) SC3 coding sequence

<220>
<223> (1-92) 1st cDNA

<220>
<223> (146-183) 2nd cDNA

<220>
<223> (240-317) 3rd cDNA

<220>
<223> (374-469) 4th cDNA

<220>
<223> (524-586) 5th cDNA

<220>
<223> (635-679) 6th cDNA

<400> 23
atgttcgccc gtctccccgt cgtgttcctc tacgccttcg tcgcgttcgg cgccctcg 60
gctgcccctcc cagggtggcca cccgggcacg acgtacgtcg acctctcacc gtccctcta 120
gtcttgcgtga tgaagccccg tatagcacgc cgccgggtac gacgacggtg acggtgacca 180
cggtgagtag ctttctcgcc gtcgacgact cgaacgcatt ggctaatttt tgctctatgc 240
cgccctcgac gacgaccatc gecgcgggtg gcacgtgtac tacggggtcg ctctcttgct 300
gcaaccaggta tcaatcggtt cgtacatcaa agcgggcacga ccaggcatct cagctgacgg 360
ccacatcgta caggcgagca gcagccccgt taccggccctc ctcggccctgc tcggcattgt 420
cctcagcgcac ctcaacgttc tctgtggcat cagctgcctc cccctcaactg tgagatctt 480
ttgttcaactg tcccaattac tgcgcactga cagacttgc caggtcatacg gtgtcgagg 540
cagcggtgtt tcggcgcaga ccgtctgtg cggaaacacc caattcgat gtatacttgc 600
catgcgtgtc cttttctccg ctaatcatct gtagaacggg ctgatcaaca tcggttgcac 660
ccccatcaac atcctctga 679

<210> 24
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 24
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcaggg tggccacccg 60
ggc 63

<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 25
tcgtacggat cctcagagga tggatggg 30

<210> 26
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 26
gaaattccgc ggactgcgca tcatacgatt ctgcgcattt gcc 43

<210> 27
<211> 80
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 27
tgaattccat atgttaggtt ccacccgggc ccatgcgggt agaagttagaa gccccgggag 60
caccgacggc ggtctggcac 80

<210> 28
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 28
tgaattcgggt acccaggctt gctcaagcgt c 31

<210> 29
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 29
tgaattccat atgtcacagg cactgagagt agta 34

<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 30
gaattcggta ccctcgccc tcgcggtccc gccgaagtga acctggtg 48

<210> 31
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 31
tgaattccat atgctaacc cgtttcatct ccag 34

<210> 32
<211> 918
<212> DNA
<213> Trichoderma reesei

<220>
<221> terminator
<222> (1)..(918)
<223> T. reesei hfbl terminator

<400> 32
gatccccgcc cggggtaaag gtgtgcccgt gagaaaagccc acaaagtgtt gatgaggacc 60
atttccggta ctggaaagt tggctccacg tgtttggca gggttggca agtttgttag 120
atattccatt cgtacgcacat tcttattctc caatatttca gtacacttt cttcataaat 180
caaaaaagact gctattctt ttgtgacatg cccgaaggga acaattgttc ttggctcttg 240
ttatttgcaa ttaggatgg gagattcgcc tttagagaaag tagagaagct gtgcttgacc 300
gtggtgtgac tcgacgagga tggactgaga gtgttaggt taggtcaac gttgaagtgt 360
atacaggatc gtctggcaac ccacggatcc tatgacttga tgcaatgggt aagatgaatg 420
acagtgttaag aggaaaagga aatgtccgcc tttagctgtat atccacgccca atgatacagc 480
gatataccctc caatatctgt gggAACgaga catgacatcat ttgtggaaac aacttcaaac 540
agcgagccaa gacctcaata tgcacatcca aagccaaaca ttggcaagac gagagacagt 600
cacattgtcg tcgaaagatg gcatctgtacc caaatcatca gctctcatca tcgcctaaac 660
cacagattgtt ttgcgcgtccc ccaactccaa aacgttacta caaaagacat gggcaatgc 720
aaagacccatga aagcaaaccc ttttgcgac tcaattccct cctttgtcct cggaatgtatg 780
atcccttcacc aagtaaaaga aaaagaagat tgagataata catgaaaagc acaacggaaa 840
cgaaaagaacc aggaaaagaa taaatctatc acccaccttg tccccacact aaaagcaaca 900
gggggggtaa aatgaaat 918

<210> 33

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 5' primer

<400> 33

gacctcgatg cccggccggg gtcaag

26

<210> 34

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 3' primer

<400> 34

gtcgacattt cattttaccc ccctcg

26

<210> 35

<211> 1190

<212> DNA

<213> Trichoderma reesei

<220>

<221> promoter

<222> (1)..(1190)

<223> T. reesei hfb2 promoter

<400> 35

ctcgaggcgc tgaagcttgc atgcctgcat cttttgttag cgactgcac cattttgcac 60
acactgcgt cgacgtctct ctccgcacct tggccagctg gacaagcaac acaccaatga 120
cgctttgtat tattagatgtat tatgcaagtc tcaggactat cgactcaact ctacccaccg 180
aggacgatcg cggcacata cgccctcggt ctcattggcc caagcagacc aactgcccct 240
ggagacaatgc tcagccaaag ggagatggac ggcaggggcac gccaggcccc caccaccaag 300
ccactccctt tggccaaatc agtttgcatt tcaagagaca tcgagctgtg ccttgaaatt 360
actaacaacc agggatggaa aacgaaggct gcttttggaa agacaacaat gagagagaga 420
gagagagggaa gagagacaat gagtgccaca aacctggtag tgctccgcca atgcgtctga 480
aatgtcacat ccgagctttg gggcctctgt gagaatgtcc agagtaatac gtgtttgcg 540
aatagtcctc ttctttgttggagg actggatacc tacgataacc tttttggatgtt gatgcgggtgc 600
tttcgttggatgtt ttatctggag gatagaagac gtcttaggtaa ctacacaaaa ggcctataact 660
tttggggatgtt gcccaacgaa aggttaactcc tacggccctt tagagccgtc atagatccca 720
cagccctttg gagccgtcat agatcacatc tggtagagacc gacattctat gaataatcat 780
ctcatcatgg ccacatacta ctacatacgat gtctctgcct acctgacatg tagcagtggc 840
caagacacca aggccccagc atcaagccctc cttttccatgt tacagcggca 900
gagagattgc gatgaggccctt ctcccttaccc acagacggct gacaatgtcc gtataaccacc 960
agccaaacgtt atgaaaacaa ggacatgagg aacagccctgc gagagctgaa agatgaagag 1020
ggcccgaaaaaaa aaaagtataa agaagacctc gattcccgcc atccaacaaat ctttccatc 1080
ctcatcatgg cactcatcta caaccatcac cacattcaactt caactccctt ttctcaactc 1140
tccaaacaca aacattttt gttgaatacc aaccatcacc acctttcaag 1190

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 36
aagcttgcatttgcattcc

20

<210> 37
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 37
ccatggtgaa aggtgggtat ggttgg

26

<210> 38
<211> 13
<212> PRT
<213> Trichoderma reesei

<220>
<223> wild type *T. reesei* EGI peptide linker

<400> 38
Val Pro Arg Gly Ser Ser Ser Gly Thr Ala Pro Gly Gly
1 5 10

<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: modified CBHII linker

<400> 39
Gly Ser Ser Ser Gly Thr Ala Pro Gly Gly
1 5 10

<210> 40
<211> 19
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Met /Thrombin linker

<400> 40

Pro Gly Arg Pro Val Leu Thr Gly Pro Gly Met Gly Thr Ser Thr Ser
1 5 10 15

Ala Gly Pro

<210> 41

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Met-containing linker

<400> 41

Pro Gly Ala Ser Thr Ser Thr Gly Met Gly Pro Gly Gly
1 5 10

<210> 42

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: linker containing the thrombin cleavage site

<400> 42

Gly Thr Leu Val Pro Arg Gly Pro Ala Gly Val Asn Leu Val
1 5 10