Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Operaciones Aritméticas

Implementación de las operaciones aritméticas básicas:

- 1) Suma
- 2) Resta
- 3) Multiplicación
- 4) División

Divisores

División

Es la más compleja y que consume tiempo de las operaciones básicas.

El resultado tiene dos partes:

 Dados un dividendo X y un divisor D, el resultado de X/D consta de un cociente Q y un resto R, tales que:

$$X = Q \cdot D + R \quad con \quad 0 \le R < D.$$

División

- El producto de un número de n dígitos por un número de m dígitos da como máximo un resultado de m + n dígitos.
- La división de un número de n + m dígitos por un número de n dígitos da como máximo un cociente de m + 1 dígitos y un resto de n dígitos.

División b = 2

Si consideramos n = m

- Tenemos
 - Dividendo X de 2n bits.
 - Divisor D y resto R de n bits.
 - Cociente Q de n + 1 bits

• Si se trabaja con registros de n bits, que el cociente resulte de n+1 bits genera overflow.

Posibles errores

- División por cero
 - Debe ser D ≠ 0
- Overflow
 - D y Q enteros no signados positivos
 - El máximo valor posible en un registro de n bits es 2ⁿ − 1
 ∴ Q, D, R < 2ⁿ y R < D.

$$X = Q \cdot D + R < Q \cdot D + D \le (2^{n} - 1) D + D = 2^{n} D$$

- Por lo tanto, debe ser X < 2ⁿ · D
- La parte alta de X debe ser menor estricto que D.
- Esto también sirve para detectar división por cero.

División secuencial

- La multiplicación secuencial se resolvía con sumas sucesivas.
- La división secuencial se resuelve con restas sucesivas.
 - Pero requiere elegir o estimar el próximo dígito del cociente.
- La división es un proceso de prueba y error.

División secuencial X/D

- 1) Inicializar el resto parcial R⁽⁰⁾ en X
- 2) Restar sucesivamente q_{k-i} D desplazado.

División secuencial b = 2

- Asumiendo n bits para el dividendo X y k bits para el cociente Q.
- $R^{(0)} = X$
- Para j desde k 1 hasta 0
 - $R^{(k-j)} = R^{(k-j-1)} q_i 2^{j} D$
 - Donde $q_i \in \{0,1\}$ es tal que $0 \le R^{(k-j)} < D$
- Finalmente, $R^{(k)} = R$

División secuencial b = 2

- Cada resta está desplazada un bit con respecto a la anterior.
- Alternativa:
 - Fijar el desplazamiento de q_{k-i}D en 2^k
 - Desplazar sucesivamente el resto parcial un lugar a izquierda.

$$R^{(j)} = 2R^{(j-1)} - q_{k-j} 2^k D$$

 $R^{(0)} = X \quad y \quad R^{(k)} = 2^k R$

En base dos, los bits q_i pueden ser 0 o 1.

- La división con restauración (restoring division) encuentra los bits del cociente por prueba y error.
- Para cada bit q_i del cociente asume valor 1.
 Si no era la elección correcta porque la resta dio un resultado negativo, restaura el valor anterior y q_i debía valer 0.
- La restauración del valor puede hacerse:
 - Manteniendo registros separados para el resto de prueba y el resto real.
 - Con un único registro y realizando la suma para restaurar.

Hardware de división

 La división y la multiplicación pueden compartir parte del hardware

 Dado que los bits del cociente ingresan a medida que se desplaza el resto parcial, ambos pueden compartir los mismos registros.

- Calcular X/D
- En el registro A|MQ se carga con X y se completa con 0 a la izquierda.

Desplazar A|MQ un lugar a izquierda. (El MSB se almacena en un FF especial)

En cada ciclo *j*:

- 1) Calcular el resto de prueba 2 $R^{(j-1)} q_{k-j} 2^k D$
- 2) Si FF = 1 o la resta dio positivo ($C_{OUT} = 1$)
 - 1) El resto de prueba se carga en A
 - 2) $q_{k-i} = 1$
- 3) Cualquier otro caso, $q_{k-j} = 0$
- 4) Desplazar A \mid MQ a izquierda entrando q_{k-j} . En el último ciclo desplazar solamente MQ.

- Se puede simplificar asumiendo
 - A de n + 1 bits y
 - ALU de n + 1 bits.

Desplazar A|MQ un lugar a izquierda En cada ciclo *j*:

- 1) Calcular el resto de prueba $2 R^{(j-1)} q_{k-j} 2^k D$
- 2) Si el resto de prueba es positivo o cero ($C_{OUT} = 1$),
 - 1) El resto de prueba se carga en A
 - 2) $q_{k-i} = 1$
- 3) Si el resto de prueba es negativo, $q_{k-j} = 0$
- 4) Desplazar A \mid MQ a izquierda entrando q_{k-j} . En el último ciclo desplazar solamente MQ.

División de enteros no signados

Ejemplo

X	=	26
D	=	4

X = 11010 D = 000100 -D = 111100

		_
	A	MQ
	000000	11010
1 ^{er} desplazamiento.	000001	1010-
-4	111100	
< 0	111101	
Restauro. Shift, $q_i = 0$	000011	010-0
-4	111100	
< 0	111111	
Restauro. Shift, $q_i = 0$	000110	10-00
-4	111100	
≥ 0	000010	
Shift, $q_i = 1$	000101	0-001
-4	111100	
≥ 0	000001	
Shift, $q_i = 1$	000010	-0011
-4	111100	
< 0	111110	
Restauro. Shift MQ, $q_i = 0$	000010	00110
	l R	\cap

Ejemplo

X	=	117
D	=	10

X = 1110101 D = 001010 -D = 110110

		_
	Α	MQ
	000011	10101
1 ^{er} desplazamiento.	000111	0101-
-10	110110	
< 0	111101	
Restauro. Shift, $q_i = 0$	001110	101-0
-10	110110	
> 0	000100	
Shift, $q_i = 1$	001001	01-01
-10	110110	
< 0	111111	
Restauro. Shift, $q_i = 0$	010010	1-010
-10	110110	
≥ 0	001000	
Shift, $q_i = 1$	010001	-0101
-10	110110	
≥ 0	000111	
Shift MQ, $q_i = 1$	000111	01011
4.0.0040	R	Q

- La implementación con restauración tienen problemas de temporizado.
- Cada ciclo de reloj debe ser lo suficientemente largo como para:
 - Desplazar registros
 - Propagar señales al sumador
 - Determinar y almacenar el próximo dígito del cociente
 - Eventualmente, almacenar el resto de prueba
- Además, los últimos eventos dependen de los primeros.

- La división sin restauración (nonrestoring division) busca evitar esos problemas de temporizado.
- Siempre asume que q_i = 1, resta y almacena el resto parcial aunque sea incorrecto.
 Se corrige en el próximo ciclo.

- Sea U el resto parcial ya desplazado.
- Si la resta $U 2^kD < 0$ hay dos opciones:
- 1) Restaurar el valor inicial de U, desplazar a izquierda nuevamente y volver a restar 2^kD para obtener: 2U 2^kD
- 2) Mantener el valor negativo, desplazar izquierda y sumar 2^kD : $2(U 2^kD) + 2^kD = 2U 2^kD$
- Si el resto final queda negativo, hay que corregir
 - R ← R + D
 No hay próximo paso para corregir.

Ejemplo

X	=	117
D	=	10

X = 1110101 D = 001010 -D = 110110

	Α	MQ
	000011	10101
1 ^{er} desplazamiento.	000111	0101-
-10	110110	
< 0	111101	
Shift, $q_i = 0$	111010	101-0
+10	001010	
≥ 0	000100	
Shift, $q_i = 1$	001001	01-01
-10	110110	
< 0	111111	
Shift, $q_i = 0$	111110	1-010
+10	001010	
≥ 0	001000	
Shift, $q_i = 1$	010001	-0101
-10	110110	
≥ 0	000111	
Shift MQ, $q_i = 1$	000111	01011
	R	Q

División rápida

- Hay dos formas diferentes de lograr acelerar la división:
 - Con sumas/restas y desplazamientos O(n)
 - Con multiplicación O(log(n))

- Sea X y D el dividendo y el divisor.
- Se puede escribir como una fracción donde X es el numerador y D el denominador.

$$Q = \frac{X}{D} = \frac{X \cdot R_0 \cdot R_1 \cdots R_{m-1}}{D \cdot R_0 \cdot R_1 \cdots R_{m-1}} \rightarrow \frac{Q}{1}$$

- Se calcula solamente el cociente.
- Adecuado para división en punto flotante.

- Supongamos D una fracción normalizada 0.1•••
- $\frac{1}{2} \le D < 1$ y además D = 1 y donde $y \le \frac{1}{2}$.
- Si se selecciona R₀ = 1 + y
 - $D_1 = D R_0 = (1 y) (1 + y) = 1 y^2$
 - Como $y^2 \le \frac{1}{4}$, $D_1 = 0.11 \cdot \cdot \cdot \ge \frac{3}{4}$
- Si se selecciona $R_1 = 1 + y^2$
 - $D_2 = D_1 R_1 = (1 y^2) (1 + y^2) = 1 y^4$
 - Como $y^4 \le 1/16$, D₂ = 0.1111••• ≥ 15/16

Convergencia

- En general $D_i = 1 y^{2^i}$
- Como $y \le 2^{-1}$ entonces $y^{2^i} \le 2^{-2^i}$

$$y^{2^{i}} = 0.0...0...$$
 $D_{i} = 1 - y^{2^{i}} = 0.1...1...$
 $\lim_{i \to \infty} D_{i} = 1$

Cálculo del factor de multiplicación R_i

Para obtener R_i a partir de D_i

$$D_i = 1 - y^{2'}$$
 $R_i = 1 + y^{2'}$
 $R_i = 1 + 1 - D_i = 2 - D_i$

R_i es el complemento a 2 de D_i

Ejemplo

$$X = 0.1101$$
 $D = 0.11$

$$R_0 = 2 - D = 1.01$$

$$-D_1 = D \cdot R_0 = 0.1111$$

$$-X_1 = X \cdot R_0 = 0.1000001$$

$$R_1 = 2 - D_1 = 1.0001$$

$$- D_2 = D_1 \cdot R_1 = 0.11111111$$

$$-X_2 = X_1 \cdot R_1 = 0.1000101$$

$$R_2 = 2 - D_2 = 1.00000001$$

$$-X_3 = X_2 \cdot R_2 = 0.1000101010101$$

División SRT

- Acelera la división sin restauración.
- Para el cociente usa los dígitos {-1, 0, 1}
 - -1: sumar
 - 0: no operar
 - 1: restar
- Busca evitar sumar/restar cuando el resto parcial está entre [-D,D).
 - q_i = 0 y se desplaza el resto parcial a izquierda [-2D, 2D).

División SRT

 ¿Cómo se sabe que el resto parcial está entre [–D,D)?

Restando

- La solución se conoce como algoritmo SRT.
- Sweeney, Robertson y Tocher llegaron independientemente al mismo algoritmo.

Algoritmo

- X/D
- MQ ← X B ← D

- Si B tiene k ceros adelante, desplazar todos los registros k lugares a izquierda.
- Para i = 0...n-1
 - 1)Si los tres MSB de A son iguales: $q_i \leftarrow 0$ y desplazar A|MQ 1 bit a izquierda.
 - 2)Si los tres MSB de A no son iguales y A < 0: $q_i \leftarrow -1$, desplazar A|MQ 1 bit a izquierda y sumar B.
 - 3)Si no: $q_i \leftarrow 1$, desplazar A|MQ 1 bit a izquierda y restar B.
- Si el resto final es negativo, sumar B y restar 1 a Q.
- Desplazar el resto final k lugares a derecha.

División SRT

X	=	8
D	=	3

X = 1000D = 0011

D tiene 2 ceros adelante $D_{5bits} \leftarrow 01100$ $-D_{5bits} \leftarrow 10100$

	Α	MQ
	00000	1000
Shift A MQ 2 lugares a izq.	00010	0000
$[000]$ Shift, $q_i = 0$	00100	0000
$[001 \text{ y A} \ge 0] \text{ Shift, } q_i = 1$	01000	0001
_D	10100	
	11100	0001
[111] Shift, $q_i = 0$	11000	0010
[110 y A < 0] Shift, $q_i = -1$	10000	0101
+D	01100	
	11100	0101
Resto < 0. +D y Q	01100	
	01000	0110
Shift A 2 lugares a derecha	00010	Q_{DS}
	R	I

$$R = 0010$$

 $Q = 0100 - 0010 = 0010$

X/D = Q implica

$$X = D \cdot Q + R \quad (0 \le R < D)$$

• El resto parcial r_i (0 $\leq r_i < D$)

$$r_i = 2r_{i-1} - q_i \cdot D$$

La selección de los bits del cociente es:

$$q_i = \begin{cases} 1 & \text{if } 2r_{i-1} \ge D \\ 0 & \text{if } -D \le 2r_{i-1} < D \\ \bar{1} & \text{if } 2r_{i-1} < -D \end{cases}$$

• La dificultad está en comparar $2r_{i-1}$ con D o -D

 Si restringimos D a que sea una fracción normalizada

$$\frac{1}{2} \le |D| < 1$$

• Eso permite reducir la zona en la que $q_i = 0$ a:

$$-D \le -\frac{1}{2} \le 2 \ r_i < \frac{1}{2} \le D$$

$$-\frac{1}{4} \le r_i < \frac{1}{4}$$

$$1.110_2 \le r_i < 0.01_2$$

$$1.110_2 \le r_i \le 0.00111..._2$$

¡3 primeros bits iguales!

En vez de analizar los primeros 3 bits alcanza con los primeros 2 excluyendo el signo. Esto permite usar la ALU de *n* bits.

¿Si D es entero?

Para registros de n bits:

$$a = X/2^n$$
 $\frac{X}{D} = \frac{a}{b} = \frac{X/2^n}{D/2^n} = Q$ $r = R/2^n$ $a = b \cdot Q + r$

¿Si D no una fracción normalizada ($D \ge \frac{1}{2}$)?

- Si D no está normalizado, desplazar X y D k lugares a izquierda para normalizar D.
- Desplazar el resto k lugares a derecha para corregirlo.

Acelerar la división

- Para acelerar la multiplicación
 - Carry-save adder
 - Bases mayores a 2 (higher radix)
- En la división
 - Se necesita el signo de A para elegir el próximo dígito y la operación de la ALU.
 El CSA no alcanza.
 - Al procesar más de un bit cada dígito del cociente puede tomar varios valores (no solo 0 o 1).
- La solución a ambos es el uso de dígito signado.

Bibliografía

- <u>Capítulo 13 y 14.</u> Computer Arithmetic: Algorithms and Hardware Designs. Behrooz Parhami, Oxford University Press, New York, 2002.
- <u>Capítulo 3 y 8</u>. Computer Arithmetic Algorithms. Israel Koren, 2da Edición, A K Peters, Natick, MA, 2002.
 - Adapted from Koren, UMass. Copyright 2008 Koren, UMass and A.K. Peters.
- <u>Apéndice J</u>. J. Hennessy & D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers INC. 2011, 5ta Ed.

Suplementaria

- <u>Apéndice B.</u> David A. Patterson & John L. Hennessy.
 Computer Organization and Design. The Hardware/Software Interface. Elsevier. (5ta Ed. 2014)
- <u>Capítulo 43.</u> Editor Wai-Kai Chen. The VLSI Handbook. CRC Press. (2da Ed. 2007)