Step-1

If we consider a Pascal matrix, its determinant is always 1.

Consider

$$\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1$$

$$= 1$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix} = 1 \begin{vmatrix} 2 & 3 \\ 3 & 6 \end{vmatrix} - 1 \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix}$$

$$= 1(12 - 9) - 1(6 - 3) + 1(3 - 2)$$

$$= 3 - 3 + 1$$

$$= 1$$

Step-2

In any $n \times n$ Pascal matrix, the largest entry is a_{nm} . If we remove the n^{th} column and n^{th} row from an $n \times n$ Pascal matrix, the remaining matrix is also Pascal matrix of order $n-1 \times n-1$. Therefore, the determinant of the matrix, obtained by removing the n^{th} row and column from the $n \times n$ Pascal matrix is also 1.

Let the element in the last row be denoted by a_{n1} , a_{n2} , ..., a_{nm} . The cofactors of these elements be denoted by a_{n1} , a_{n2} , ..., a_{nm} .

Note that $\det(A_{nn}) = 1$.

Step-3

If A is the Pascal matrix of order n by n, we get

$$1 = \det(A)$$

$$= a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + a_{nn}A_{nn}$$

$$= a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + (a_{nn} - 1 + 1)A_{nn}$$

$$= a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + (a_{nn} - 1)A_{nn} + A_{nn}$$

But then $A_{nn} = 1$. Therefore,

$$1 = a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + (a_{nn} - 1)A_{nn} + A_{nn}$$

= $a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + (a_{nn} - 1)A_{nn} + 1$
$$0 = a_{n1}A_{n1} + a_{n2}A_{n2} + \dots + (a_{nn} - 1)A_{nn}$$

Step-4

Thus, if we make decrease the largest entry of the Pascal matrix by 1, the resultant matrix always has the determinant zero.