# Team - Project 2

Created: Nov 21, 2017 | Updated: Dec 12, 2017

# **Project Leader**

Alexander Fosdick Dec 12, 2017

NAME DATE

**Project team member** 

<u>Vihanga Bare</u> <u>Dec 12, 2017</u>

NAME DATE

**Project team member** 

Virag Gada Dec 12, 2017

NAME DATE

## **Topic:** Health Data logging and Storage system

#### **Software Architecture:**



### **Components:**

- 1. BeagleBone Green
- 2. Linux OS on BBG
- 3. TIVA Board
- 4. Free RTOS on TIVA
- 5. TIVA ware HAL library
- 6. Temperature Sensor (Sparkfun TMP 106)
- 7. Pedometer (Sparkfun LSM6DS3)
- 8. LwIP Sockets API
- 9. BSD Sockets API

<u>Description</u>: Health Monitoring application (like FitBit) which tracks footsteps and body temperature and sends this data using socket communication to log the data.

#### Tasks list on the TIVA Launchpad which runs on FREE RTOS:

- Pedometer task (Sparkfun LSM6DS3) retrieves data from pedometer sensor (I2C communication). A timer overflow event will send signal to the task using semaphore and cause the task to run and retrieve data.
- Temperature task (Sparkfun TMP106) retrieves data from temperature sensor (I2C communication). A timer overflow event will send a signal to the task using semaphore cause the task to run and retrieve data.
- Socket task to send above data values over TCP sockets which use Free RTOS TCP API and LWIP sockets library.
- Main task to create above tasks.
- Heartbeat task to monitor heartbeats from above task using semaphore signalling. If heartbeat not received this task kills above tasks.

### Task on the BeagleBone Green which runs Linux OS:

- Socket task to receive data over socket connections created using BSD sockets API.
- Logger task to log this data into log file depending on the log levels and request. We have also used colors in the log file to determine log levels.
- Decision task is used to analyze the data sent by the sensors and give a notification to the user based on the values. Decision task also taks care of shutting down the system. If the log packet received from TIVA has a system shutdown message, this shuts down the whole system.
- Main task create above tasks and to monitor them.

### **Functionality:**

### **Userspace Functions:**

- Sockets API for TCP sockets
- TIVA ware HAL library for interfacing with all sensors
- I2C libraries to define our own I2C communication API
- Pthreads API(mutex, condition variables) to synchronize communication between multiple thread tasks

#### **Kernel Functions:**

- Socket system calls (open, close, read, write)
- Semaphores to synchronize any kernel module data
- Led Character Driver to set led on or off using loadable kernel modules

#### Data structures overview:

```
typedef enum{
      LOG_DATA,
       HEARTBEAT,
       DECIDE,
       SYSTEM_SHUTDOWN
}reqCmds;
typedef struct logger
 uint8_t sourceId;
 uint8_t requestID;
 uint8_t level;
 float data;
 char timestamp[32];
char payload[100];
}LogMsg;
Functions or API:
BeagleBone:
void initialize_queue(char * qName, mqd_t *msgHandle);
mq_send (queue,(const char*)&loggerstruct, sizeof(LogMsg), 1);
mq_receive (queue,(const char*)&loggerstruct, sizeof(LogMsg), 1);
void create_interval_timer(float timer_val);
void sighandler_sigint(int signum);
void *SocketThread(void *);
void *LoggerThread(void *);
void *DecisionThread(void *args);
write_to_driver();
```

#### TIVA:

```
void setupLSM6DS3();
void setupI2C2();
void setupTMP102();
void readTMP102(double *digitalTemp);
void readStepCount(uint16_t *stepCount);
void temperatureTask(void *pvParameters);
void pedometerTask(void *pvParameters);
void loggerTask(void *pvParameters);
void socketTask(void *pvParameters);
void vTimerCallBack(void *);
echo_init();
lwIPInit(g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR_USE_DHCP);
tcp_write(tpcb,&logmsg,sizeof(LogMsg),1);
tcp_output(tpcb);
```