A STATE OF THE PROPERTY OF THE	- 1800 -	2000 - 20	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	一の工作を表示する場合を実施を ので、生きな、デリーを表示する場合を 一般があった。 他のである。 一般がある。 一般がある。 では、「かった」がある。 では、「かった。 では、 では、 では、 では、 では、 では、 では、 では、	小学等か 小型等が 小型を受け 小型を受け は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	一個的ない。 一個的ない。 12.6元の一 一個的ない。 一個的ない。 一個的ない。 一個的ない。 一個的ない。 一個的ない。 一個的ない。 一個的ない。		- 一個の主義を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
--	---	--	--------------------------------------	--	--	---	--	---	--------------------------------------	--

170-886.

20-CHARACTER MULTI-INTERFACE DOT MATRIX VFD MODULE

MODEL No. PVM3 - 35-05-20

PULSEVIEW's PVM3 – 35-05-20 Multi-Interface intelligent display module provides efficient vacuum fluorescent technology in a compact package which accepts a range of connections to the host system. M3 modules offer a choice of clocked serial, parallel or asynchronous serial (RS-232C) interface.

FEATURES:

- Selectable clocked serial, parallel or asynchronous serial (RS-232C) interface for simple and flexible connection to the host system data bus.
- Module requires only a single 5V supplyworking voltages are handled by the onboard DC/DC converter.
- A full 96-character ASCII set is provided along with 120 user-defined characters, and eight soft characters downloaded from the host system.
- Single high intensity brightness level.

李秋小学《公司·张子的中华》

High quality blue/green (505nm) vacuum fluorescent display provides an attractive and easily readable medium. Other col-

- ours can be achieved by simple wavelength filters.
- Module incorporates its own display driver, power supply and microprocessor which contains a multi-function operating system handling scanning of display grids and setting of dot patterns.
- Hard and soft characters are provided in an attractive 5x7 dot matrix format.
- Module status can be effectively monitored by the host system.

The PVM3-35-05-20 Multi-Interface module is part of PULSEVIEW's extensive range of advanced opto-electronic display systems. A detailed selection guide is given on the back page.

PUNCTION DESCRIPTIONS

PULSEVIEW vacuum fluorescent display modules have four basic operating functions:

1 COMMAND DATA WRITE IN

2 DISPLAY DATA WRITE IN 3 MODULE STATUS READ OUT 4 MODULE SELF TEST

Each function is described in detail below

COMMENDERSTORES

This function is obtained by using either single byte control codes or multiple byte control codes.

Single byte control codes handle the basic cursor functions. The table below gives the hexadecimal codes, the keyboard characters associated with them and their functions. (Note that the standard convention of using ^ to indicate a control character from the keyboard has been adopted throughout)

FUNCTION. BELL
HEXADECIMAL CODE: 07
KEYBOARD INPUT G
DESCRIPTION OF FUNCTION: Pin 4 of the interface plug (PL1) is set, then cleared after a preset period This can be gated with a suitable generator to give an audible tone

FUNCTION. BACKSPACE HEXADECIMAL CODE. 08

KEYBOARD INPUT: H
DESCRIPTION OF FUNCTION Destructive back-space. The cursor is moved one position to the left and the character above the cursor is overwritten with a space. If the cursor is in the home position (digit 1), the code is ignored

FUNCTION: LINEFEED (SCROLL UP)
HEXADECIMAL CODE. 0A
KEYBOARD INPUT J
DESCRIPTION OF FUNCTION The cursor position is

maintained and the display is cleared.

FUNCTION. RETURN
HEXADECIMAL CODE: 0D
KEYBOARD INPUT M
DESCRIPTION OF FUNCTION: Carriage return The cursor is returned to the start of the line and the display is cleared.

FUNCTION: SHIFT < HEXADECIMAL CODE 16 KEYBOARD INPUT V

DESCRIPTION OF FUNCTION: The character appearing over the cursor is deleted. The remaining characters on the line are shifted one place to the left, and a space is inserted at the right hand end of the display

FUNCTION: SHIFT > HEXADECIMAL CODE: 17
KEYBOARD INPUT'W
DESCRIPTION OF FUNCTION: Inserts a character in the line All characters to the right of the cursor are shifted one place to the right. The new character entered after this control code is inserted above the cursor If there is a character at the right hand end of the line, it will be lost

FUNCTION. < CURSOR LEFT HEXADECIMAL CODE: 1C

KEYBOARD INPUT: \\
DESCRIPTION OF FUNCTION. The cursor is moved one position to the left. If the cursor is at the left hand end, the command is ignored

FUNCTION. > CURSOR RIGHT
HEXADECIMAL CODE. 1D
KEYBOARD INPUT:]
DESCRIPTION OF FUNCTION. The cursor is moved one position to the right. If the cursor is at the right hand end, the command is ignored.

Multiple byte control codes are used to manage more complex display features. All such codes are preceded by the control code [ESCAPE] (Hex Code 1B) and are referred to as escape sequences. The table below shows the multiple hexadecimal codes, the keyboard characters associated with them and their functions.

FUNCTION. SELECT WRAP MODE
HEXADECIMAL CODE. 1B 31
KEYBOARD INPUT [ESC] 1
DESCRIPTION OF FUNCTION On receiving the 21st character to the display, the cursor wraps around to the home position and writes the next character there. (This function is a default when power is first applied to the module)

FUNCTION: SELECT SCROLL MODE
HEXADECIMAL CODE: 1B 32
KEYBOARD INPUT. [ESC] 2
DESCRIPTION OF FUNCTION. On receiving the 17th character, the cursor is suppressed All characters are shifted one place to the left, the next character is written into position 16, and the character at the left hand end is lost. In order to return to wrap mode, it is necessary to enter ESC 1 and perform carriage return

FUNCTION. CURSOR POSITIONING ADDRESS HEXADECIMAL CODE: 1B 3D (V) KEYBOARD INPUT [ESC] [=] (V) DESCRIPTION OF FUNCTION. The cursor is sent to the position corresponding to the value (V) which follows the code The value (V) is offset by a hexadecimal value of 19 (For example the display digit at position 1 = Hex value 20. Thus to position the cursor at character position 12, V = 12 + Hex 19 = 2B. The code sequence will therefore be 1B 3D 2B) If the value (V) is less than Hex 20 or greater than Hex 33 the code is ignored A table showing the cursor positioning values against their hexa-A table showing the cursor positioning values against their hexadecimal addresses is given opposite

FUNCTION SOFT CHARACTER DEFINITION HEXADECIMAL CODE: 1B 43 (5 byte soft character code)
KEYBOARD INPUT: [ESC] C (soft character code)
DESCRIPTION OF FUNCTION: Allows eight separate userdefined characters to be broading of a few absences of definition in host system A full explanation of soft character definition is given on page 4.

FUNCTION DELETE CURSOR HEXADECIMAL CODE: 1B 44
KEYBOARD INPUT. [ESC] D
DESCRIPTION OF FUNCTION. Deletes the cursor from the

display

FUNCTION ENABLE CURSOR

HEXADECIMAL CODE: 1B 45
KEYBOARD INPUT [ESC] E
DESCRIPTION OF FUNCTION: Reinstalls the cursor to the display.

FUNCTION. TOTAL SYSTEM RESET HEXADECIMAL CODE: 1B 52

KEYBOARD INPUT [ESC] R
DESCRIPTION OF FUNCTION: Resets the module, clearing the display and the input buffer. Default conditions are re-established and soft characters are not defined

Inch A. DALA WRITE IN

Data is downloaded to the input buffer in the form of 8-bit words from the host system in both clocked serial and parallel input modes. In asynchronous serial mode, the expected RS-232C format is 1 start bit, 8 data bits, no parity, 2 stop bits. Figures 1,2 and 3 give timing diagrams for the three data input modes. Figures 5 and 6 show recommended RS-232C connections using a transistor and an integrated circuit respectively

1 31 11 11 11 The module status read out (Plug 1, Pin 3) will go to logical 1

whenever a byte of data is written to the module It will remain at logical 1 for a maximum of 900 micro-seconds

The module incorporates a self-test facility initiated by the serial in/self test input being taken low before powering up the module, or by writing [ESC] T to the module after power-up If the [ESC] T command is used, this can be cancelled by writing [ESC] R to the module, otherwise the module will have to be switched off and re-powered to cancel this facility

where the state of the contract of the state of the state

FIGURE 1 - Clocked serial interface timing diagram

Maximum data input speed is 1400 bytes per second

FIGURE 3 – Asynchronous serial interface timing diagram

FIGURE 5 - Example of asynchronous serial connection using a transitor

FIGURE 7 – 5×7 DOT Matrix patterns available

FIGURE 9 - General and electrical specifications

Display Format Character Format	20 characte 5×7 Dot		ow				
(see Figure 7) Characters Height (H) Character Width (W) Character pitch (P) Phosphor Colour Brightness Level	5 0mm 3 5mm 4 7mm Blue/Gree 100 Ft L	en (505nm Min	a) Typ	Max	Unit		
Character Configuration	ASCII				V. I. D.C.		
Supply Voltage (Vec) Host System Current Requi	rement	4 75	5 0 2 00	5 25 (Max 10m5)	Volt DC Amp DC		
Supply (urrent (Ice) High Level Input Voltage (\ High Level Input Current (I Low Level Input Voltage (\ I ow Level Input Current (I	IIH) /IL) IL)	20	0 55 5 0	0 85 5 25 20 0 8 -0 36	Amp DC Volt DC µAmp Volt DC µAmp		
High Level Output Voltage (VOH at -2 6mA) Low Level Output Voltage		2 40 0 25	3 40 0 4		Volt DC Volt DC		
Operating Temperature Storage Temperature	/	0 -20		+50 +70	°C		

FIGURE 4 - Pin connections

nection. To obtain clocked serial input remove Link 1 on the circuit board.)

FIGURE 6 – Example of asynchronous serial connection using SN75189 type integrated circuit

FIGURE 8 - Hexadecimal cursor positioning address values, with their corresponding display digit positions.

AAL

FIGURE 10 - Module dimensions

八、八十年前衛出行不行政政策以降人工政府都身際大學之間看到

SOFT CHARACTER DEFINITION

The following sequence gives step-by-step instructions for defining soft characters

- 1. Define the character pattern on a 5×7 matrix (Diagram 1)
- Redefine the matrix as 0's for unlit dots and 1's for lit dots (Diagram 2)
- 3. Draw up a 10×4 matrix, entering 0 in the first place, and 0's at the end of each line (Diagram 3). Write the 5×7 pattern of 0's and I's into the new matrix, entering the lines one after the other into the new pattern (Diagram 4).
- 4 Convert the BINARY number appearing vertically in each column into its decimal equivalent (Diagram 5).
- Convert each decimal number into its hexadecimal equivalent, arranged into two digit groups

26 1411 90 126 70 = 26 EB 90 C6 70

6 Reverse each two digit group to enable processing: 62 BE 09 6C 07

THIS IS THE FIVE BYTE SOFT CHARACTER DEFINITION

7 To program the character into the module, send the [ESC] C code, then the soft character definition number and finally the five byte character definition code.

For example, if the above character was to be loaded into the module as soft character number 6, the full code would read 1B 43 FD 62 BE 09 6C 07

8. To call the soft character to the display, send the appropriate ASCII code to the module. Soft characters 1 to 8 are summoned by ASCII codes F8 to FF

PULSEVIEW offers a wide range of vacuum fluorescent display modules in different sizes and styles to cover most standard applications in consumer goods, audio and video equipment, process and industrial control, laboratory and test equipment, point of sale terminals, data logging, computer terminals etc.

Dia. 1		*	*	*		Line 1	0	1	1	1	0
	*				*	Line 2	1	0	0	0	1
	*				*	Line 3	1	0	0	0	1
	*	*	*	*	*	Line 4	1	1	1	1	1

*				*	Line 2	1	0	0	0	1
*				*	Line 3	1	0	0	0	1
*	*	*	*	*	Line 4	1	1	1	1	1
*				*	Line 5	1	0	0	0	1
*				*	Line 6	1	0	0	0	1
*				*	Line 7	1	0	0	0	1

Market Branch Control of the Control

0	0	1	1	1	0	1	0	0	0
0	1	1	0	0	0	1	1	1	0
1	1	1	1	0	0	0	1	1	0
0	0	0	1	1	0	0	0	1	0
2	6	14	11	9	0	12	6	7	0

Designed to simplify the engineering of an effective display function, PULSEVIEW vf modules are built for total reliability in service. All products are extensively tested to the most exacting standards.

If your requirements are not met by the standard modules detailed below, please contact PULSEVIEW's Custom Design Division.

	Part No	Display Type	No of characters	No of segments	Height of characters	Width of characters	Length of display	Length of module	No of ASCII characters	No of soft characters	No of user characters	Operating voltage	Supply current	Brightness levels	Clocked serial	Parallel interface	Asynchronous serial
1	PV M1- 14-05-16	Alpha- Numeric	16	14	5 0mm	3 0mm	110 0mm	116 0mm	64	0	0	5 0 VDC	0.10 Amp	32	•		
	PV M1- 14-10-16.05	Alpha- Numeric	16	14	9.0mm	5 0mm	175 2mm	230 0mm	64	0	0	5 0 VDC	0 30 Amp	32	•		
4	PV M1- 14-10-16 12	Alpha- Numeric	16	14	9.0mm	5 0mm	175 2mm	230 0mm	64	0	0	12 0 VDC	0.30 Amp	32	•		
	PV Mt- 16-12-16	Alpha- Numeric	16	16	12 5mm	7 0mm	205 2mm	215 0mm	64	0	0	5 0 VDC	0 4 Amp	32	•		
	PV M2- 35-05-16	Dot Matrix	16	5x7	5 0mm	3 5mm	97 0mm	128 0mm	96	8	120	5.0 VDC	0 6 Amp	8	•	•	
	PV M2- 35-05-20	Dot Matrix	20	5x7	5 0mm	3 5mm	115 0mm	128 0mm	96	8	120	5 0 VDC	0 6 Amp	8	•	•	
	PV M2- 35-05-40	Dot Matrix	40	5x7	5 0mm	3 5mm	219.0mm	231 0mm	96	2	120	5 0 VDC	1.0 Amp	8	•	•	
	PV M2- 35-05-402	Dot Matrix	80 2 rows×40	5x7	5 0mm	3 5mm	220 0mm	250.0mm	96	0	120	5 0 VDC	1 3 Amp	1	•	•	
	PV M2- 35-15-16	Dot Matrix	16	5x7	15.0mm	7.9mm	205 0mm	220 0mm	96	8	120	5 0 VDC	0.96 Amp	8	•	•	
	PV M3- 35-05-16	Dot Matrix	16	5x7	5.0mm	3 5mm	97 0mm	128 0mm	96	8	120	5.0 VDC	0.6 Amp	ŧ	•	•	•
	PV M3- 35-05-20	Dot Matrix	20	5x7	5 0mm	3.5mm	115.0mm	128 0mm	96	8	120	5 0 VDC	0.6 Amp	i	•	•	•
		Dot Matrix	40	5x7	5 0mm	3 5mm 2	219 0mm :	231 0mm	96	8	120	5 0 VDC	1.0 Amp	1	•	•	
			80 2 rows×40	5x7	5 0mm .	3.5mm 2	220 0mm 2	250 0mm	96	2	120	5 0 VDC	1 3 Amp	1	•	•	•
		Dot Matrix	16	5x7	15.0mm	7 9mm 2	205.0mm 2	220.0mm	96	8	120	5 0 VDC	0 96 Amp	ı	•	•	•
																	,