-AULA 16 - COMPLEMENTO ORTOGONAL:

-Definição: Lejam V um espaço vetorial com produto interno e $S \subset V$ um subconjunto não-vazio. O complemento ortogonal de S é definido como $S = \{\vec{u} \in V : \langle \vec{u}, \vec{v} \rangle = 0 \ \forall \vec{v} \in S \}$ isto é, o conjunto dos vetores de V que rão ortogonais simultaneamente a todos os elimentos de S.

Note que mão estamos supondo que Sé subespaço!

Teorema 1: 5¹é subespaço de V.

-Dem.: Como $\langle \vec{0}, \vec{v} \rangle = 0$ $\forall \vec{v} \in V$, temos $\vec{0} \in S^{\perp}$. Se $\vec{U}_1, \vec{U}_2 \in S^{\perp}$, entro qualquer que seja $\vec{v} \in S$ teremos $\langle \vec{U}_1 + \vec{U}_2, \vec{v} \rangle = \langle \vec{U}_1, \vec{v} \rangle + \langle \vec{U}_2, \vec{v} \rangle = 0 + 0 = 0$, logo $\vec{U}_1 + \vec{U}_2 \in S^{\perp}$. Se $\vec{U} \in S^{\perp}$ e $\lambda \in \mathbb{R}$, entro qualquer que seja $\vec{v} \in S$ teremos $\langle \lambda \vec{U}, \vec{v} \rangle = \lambda \cdot \langle \vec{U}, \vec{v} \rangle = \lambda \cdot 0 = 0$, logo $\lambda \vec{U} \in S^{\perp}$.

-Scenplo: Considere $V=IR^3$ com o produto interno usual. Se $S=\{(1,0,1),(1,-1,1)\}$, calcule S^{\perp} .

-Solução: Le $(n_1y_1z) \in S^{\perp}$, então por definição temos $\langle (n_1y_1z), (1p_11) \rangle = 0$. Obtemos o sistema homogêneo $\begin{cases} n + z = 0 \\ n - y + z = 0 \end{cases} \Rightarrow \begin{cases} z = -n \\ y = 0 \end{cases}$. Laí, $(n_1y_1z) = (n_1o_1 - n) = n(1_1o_1 - 1)$, ou seja, $S^{\perp} = [(1_1o_1 - 1)]$.

Como ilustra o Exemplo acima, obter o complemento ortogonal de um conjunto finito equivale a resolver um sistema linear homogêneo. Se 5 for infinito, apenas nos interessa o caso de um subespaço de V, que é resolvido no Teorema a seguir.

-Teorema 2: Le W i um suberpaço de V e $\{\vec{v}_1,...,\vec{v}_k\}$ i um conjunto gerador de W, então $\vec{u} \in W^{\perp} \Leftrightarrow \langle \vec{u}, \vec{v}_1 \rangle = \cdots = \langle \vec{u}, \vec{v}_k \rangle = 0$.

Dem.: Se $\vec{u} \in W^{\perp}$, como $\vec{v}_{1},...,\vec{v}_{k} \in W$, é claro que $\langle \vec{u}_{1},\vec{v}_{1} \rangle = ... = \langle \vec{u}_{1},\vec{v}_{k} \rangle = 0$. Recipro-camente, se $\langle \vec{u}_{1},\vec{v}_{1} \rangle = ... = \langle \vec{u}_{1},\vec{v}_{k} \rangle = 0$, intao dado $\vec{v} \in W$ podemos escrever $\vec{v} = a_{1}\vec{v}_{1} + ... + a_{k}\vec{v}_{k}$, $\log_{\sigma} \langle \vec{u}_{1},\vec{v}_{2} \rangle = \langle \vec{u}_{1},a_{1}\vec{v}_{1} + ... + a_{k}\vec{v}_{k} \rangle = a_{1}\langle \vec{u}_{1}\vec{v}_{1} \rangle + ... + a_{k}\langle \vec{u}_{1},\vec{v}_{k} \rangle = 0$. Como $\vec{v} \in W$ foi qualquer, concluímos que $\vec{u} \in W^{\perp}$.

Cirim, se W é subespaço de V, para determinar W^\perp basta obter todos os vetores simultaneamente ortogonais a um conjunto gerador de W, logo as contas são semelhantes às do caso de um conjunto finito.

-Exemplo: Em $V = \mathbb{R}^4$, com o produto interno usual, determine W^{\perp} , onde W = [(1,0,1,1),(0,1,2,1)].

-Solução: Pelo Teorema 2, $(n_1y_1z_1t) \in W^{\perp} \Leftrightarrow \langle (n_1y_1z_1t), (1_10_11_1) \rangle = 0$ e $\langle (n_1y_1z_1t), (0_11_2, -1) \rangle = 0$. Obtemos $\begin{cases} x + 3 + t = 0 \\ y + 2z - t = 0 \end{cases} \text{ logo } \begin{cases} x = -3 - t \\ y = -2z + t \end{cases} \text{ portanto } (n_1y_1z_1t) = (-3 - t_1 - 2z_1 + t_1z_1t) = z(-1_1 - 2_1_1_0) + t \cdot (-1_11_1_0_1_1) \cdot \theta ai,$ $W^{\perp} = \left[(-1_1z_1, 1_1_0), (-1_11_1_0_1_1) \right].$

Observe, no exemple acima, que remando as dimensões de We de W^\perp obtemes a dimensão de V. Isto sempre ocorre, como garante o Teorema a seguir.

- Teorema 3: Le W é subespaço de V, entato W⊕W¹=V.

Dem.: Temos duas coisas a provar: $W+W^{\perp}=V$ & $W \cap W^{\perp}=\{\vec{o}\}$. Commemos pula segunda, que é mais simples: se $\vec{u} \in W \cap W^{\perp}$, intão como $\vec{u} \in W^{\perp}$ temos que $\langle \vec{u}, \vec{v} \rangle = 0$ $\forall \vec{v} \in W$. Como $\vec{u} \in W$, segue que $\langle \vec{u}, \vec{u} \rangle = 0$, logo $\vec{u} = \vec{o}$, ou seja, o único vetor na interseção é o mulo, como queríamos.

Gera vejamos que $W+W^{\perp}=V$. Seja $C=\{\vec{w_1},...,\vec{w_K}\}$ uma base ortenormal de W. Dado $\vec{v}\in V$, defina $\vec{w}=\langle\vec{v},\vec{w_1}\rangle\vec{w_1}+...+\langle\vec{v},\vec{w_K}\rangle\vec{w_K}\in W$. Intão $\vec{v}-\vec{w}\in W^{\perp}$. Om efeito, o Teorema 2 afirma que basta mostrar que esse vetor é ortogonal a $\vec{w_1},...,\vec{w_K}$. Como $\langle\vec{v}-\vec{w},\vec{w_1}\rangle=\langle\vec{v}-\langle\vec{v},\vec{w_1}\rangle\vec{w_1}-...-\langle\vec{v},\vec{w_K}\rangle\vec{w_K},\vec{w_1}\rangle=\langle\vec{v},\vec{w_1}\rangle-\langle\vec{v},\vec{w_1}\rangle\vec{w_1}-...-\langle\vec{v},\vec{w_K}\rangle\vec{w_K},\vec{w_1}\rangle=\langle\vec{v},\vec{w_1}\rangle-\langle\vec{v},\vec{v_1}\rangle-\langle\vec{v},\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v},\vec{v}\rangle-\langle\vec{v},\vec{v}\rangle-$

Cossim, temos $\vec{v} = \vec{w} + (\vec{v} - \vec{w}) \in W + W^{\perp}$, mostrando que qualques vetos de V escreve-se como soma de um elemento de W com um de W^{\perp} , ou seja, $V = W + W^{\perp}$, e como ja sabe-mos que $W \cap W^{\perp} = \{\vec{o}\}$, essa soma é direta.

-Exemplo: Considere $V=\mathbb{R}^4$ com produto interno usual. Se W=[(1,0,1,1),(-1,-1,0,1)], obtenha uma base cottonormal para W^{\perp} .

-Solução: Solumos que $(n_1y_1z_1t) \in W^{\perp} \Leftrightarrow \langle (n_1y_1z_1t), (1_10_11_1) \rangle = 0$ e $\langle (n_1y_1z_1t), (-1_1-1_10_1) \rangle = 0$, logo $\begin{cases} x + z + t = 0 \\ -n - y + t = 0 \end{cases} \Rightarrow \begin{cases} y = -n + t \\ z = -x - t \end{cases}$ portanto $(n_1y_1z_1t) = (n_1 - x + t_1 - n - t_1 t) = n(1_1 - 1_1_1) + t(0_11_1 - 1_1_1)$. Como $\langle (1_1 - 1_1 - 1_1_0), (0_11_1 - 1_1_1) \rangle = 0$, essa base é ortogonal, portanto $\{ (\frac{1}{13}, -\frac{1}{13}, -\frac{1}{13}, 0), (0_1\frac{1}{13}, -\frac{1}{13}, \frac{1}{13}) \}$ é uma base ortonormal de W^{\perp} .

- OPERADORES PROJEÇÃO ORTOGONAL E REFLEXÃO SOBRE UM SUBESPAÇO:

Sejam V um espaço vetorial com produto interno x W<V um suberpaço $n\tilde{a}\tilde{o}$ - trivial (isto x, W \pm { \vec{o} } x W \pm V). Vamos estudar dois tipos de operadores lineares em V que $n\tilde{a}\tilde{o}$ bem interessantes do ponto de vista geométrico.

OPERADOR PROJEÇÃO ORTOGONAL SOBRE W (P_N) : \mathcal{E} natural esperar que, ao projetarmos $\vec{W} \in W$ sobre W, obtenhamos \vec{W} , \vec{L} ao projetarmos $\vec{W} \in W^{\perp}$ sobre W, obtenhamos \vec{V} . Cursim, se $\{\vec{W}_1,...,\vec{W}_K\}$ i base de W i $\{\vec{U}_1,...,\vec{U}_m\}$ i base de W^{\perp} , tenhamos $P_W(\vec{W}_1) = \vec{W}_1$, $P_W(\vec{W}_2) = \vec{W}_2$, ..., $P_W(\vec{W}_K) = \vec{W}_K$ i $P_W(\vec{U}_1) = ... = P_W(\vec{U}_m) = \vec{O}$.

Como $W \oplus W^{\perp} = V$, ao unirmos as bases de $W = de W^{\perp} do -$ temos uma base de V, portanto definimos P_W em uma base de V, de modo que sabemos determinos sua fórmula.

Hado $\vec{v} \in V$, podemos escrever $\vec{v} = \alpha_1 \vec{w}_1 + ... + \alpha_K \vec{w}_K + b_1 \vec{u}_1 + ... + b_m \vec{u}_m$. Uplicando P_W , timos $P_W(\vec{v}) = \alpha_1 P_W(\vec{w}_1) + ... + \alpha_K P_W(\vec{w}_k) + b_1 P_W(\vec{u}_1) + ... + b_m P_W(\vec{u}_m) = \alpha_1 \vec{w}_1 + ... + \alpha_m \vec{w}_m$. Se $\{\vec{w}_1, ..., \vec{w}_m\}$ for uma base ortonormal de W, então usando os coeficientes de Fourier concluímos que $P_W(\vec{v}) = \langle \vec{v}, \vec{w}_1 \rangle \vec{w}_1 + ... + \langle \vec{v}, \vec{w}_K \rangle \vec{w}_K$, que é exatamente o vetor usado na demonstração do Teorema 3!

2 REFLEXÃO SOBRE W (Rw): Musse caso, se $\vec{w} \in W$, então $R_w(\vec{w}) = \vec{w}$ is se $\vec{u} \in W^{\perp}$, intão $R_w(\vec{w}) = -\vec{u}$. Usando as musmas

basis que usamos acima, dado $\vec{v} \in V$ teremos $R_{N}(\vec{v}) = a_{1}\vec{W}_{1} + a_{m}\vec{W}_{m} - b_{1}\vec{U}_{1} - ... - b_{m}\vec{U}_{m}$, mas isso pode ser reescrito como $R_{N}(\vec{v}) = 2P_{N}(\vec{v}) - \vec{v}$.

-Exemplo: Obtenha os operadores projeção ortogonal e reflexão sobre o subespaço W do Exemplo anterior.

 $\frac{\text{Cusim}, \ P_{W}(n_{1}y_{1}z_{1}t) = \frac{x+3+t}{3}(1_{1}0_{1}1_{1}t) + \frac{-x-y+t}{3}(-1_{1}-1_{1}0_{1}t) = \frac{1}{3}(2x+y+z, x+y-t, x+z+t, -y+z+2t) : . }{P_{W}(n_{1}y_{1}z_{1}t) = \left(\frac{2x+y+z}{3}, \frac{x+y-t}{3}, \frac{x+y+t}{3}, \frac{x+z+t}{3}, \frac{-y+z+2t}{3}\right)} .$

 $\begin{array}{ll}
\text{ Lien divso, } R_{W}(n_{1}y_{1}z_{1}t) = 2P_{W}(n_{1}y_{1}z_{1}t) - (n_{1}y_{1}z_{1}t) = \left(\frac{4n+2y+2z}{3}, \frac{2n+2y-2t}{3}, \frac{2n+2y-2t}{3}, \frac{2n+2z+2z}{3}, \frac{2n+2z+2z+2t}{3}\right) \\
-\left(\frac{3x}{3}, \frac{3y}{3}, \frac{3z}{3}, \frac{3t}{3}\right) \therefore R_{W}(n_{1}y_{1}z_{1}t) = \left(\frac{x+2y+2z}{3}, \frac{2n-y-2t}{3}, \frac{2n-z+2t}{3}, \frac{-2y+2z+t}{3}\right).
\end{array}$

- Exemplo: Obtenha os operadores projeção ortogenal e reflexão sobre o subespaço W = [(1,0,1),(1,-1,1)] de \mathbb{R}^3 , com o produto interno umal.

- <u>Stolycão</u>: Para facilitar as contas, começamos ortogonalizando uma base de W. Ponha $\overrightarrow{U}_1 = (1,0,1)$ e $\overrightarrow{U}_2 = (1,-1,1) - \frac{\langle (1,-1,1), (1,0,1) \rangle}{\langle (1,0,1), (1,0,1) \rangle} \cdot (1,0,1) = (1,-1,1) - \frac{2}{2} \cdot (1,0,1) = (0,-1,0)$. Daí, uma base ortogonal de W é $\{(1,0,1), (0,1,0)\}$.

Como vimos, $P_{W}(n_{1}y_{1}z) = a_{1}(1_{1}0_{1}1) + a_{2}(0_{1}1_{1}0)$, and $a_{1} = \frac{\langle (n_{1}y_{1}z)_{1}(1_{1}0_{1}1) \rangle}{\langle (1_{1}0_{1}1)_{1}, (1_{1}0_{1}1) \rangle} = \frac{n+3}{2} \cdot a_{2} = \langle (n_{1}y_{1}z)_{1}, (n_{1}y_{1}z)_{1} \rangle$ $(0_{1}1_{1}0) \rangle = y \cdot \text{Com intro}, P_{W}(n_{1}y_{1}z) = \frac{n+3}{2}(1_{1}0_{1}1) + y \cdot (0_{1}1_{1}0) = \rangle P_{W}(n_{1}y_{1}z) = (\frac{n+3}{2}y_{1}y_{1}, \frac{n+3}{2}). \quad \text{Dat},$ $R_{W}(n_{1}y_{1}z) = 2P_{W}(n_{1}y_{1}z) - (n_{1}y_{1}z) = (n_{1}y_{1}z) - (n_{1}y_{1}z) = (n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) = (n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) = (n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) = (n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) = (n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z) \cdot P_{W}(n_{1}y_{1}z$