(19)日本园特許庁 (JP)

(12) 公開特許公額(A)

(11) 特許出口公司番号 特開2002-104239 (P2002-104239A)

(43)公詞日 平成14年4月10日(2002.4.10)

(51) Int.CL."

B62D 25/04

凹別配号

FΙ

テーマコート*(②码)

B62D 25/04

B 3D003

容査部求 未部求 部求項の役10 OL (全 12 頁)

(21)出頭容号

特更2000-301605(P2000-301605)

(22)出口日

平成12年10月2日(2000.10.2)

(71)出頭人 000003137

マツダ株式会社

広岛県安芸都府中町新地3番1号

(72) 発明者 田口 知生

広島県安芸福府中町新地3巻1号 マツダ

株式会社内

(72)発明者 坂本 貸則

広島県安芸研府中町新地3登1号 マツダ

株式会社内

(74)代型人 100087747

弁型士 永田 良昭

昼災頁に渡く

(54) 【発明の名称】 卓页の(関部 卓体に)造

(57)【要約】

【課題】観音開き式サイドドアを採用しつつも、車体を モノコックボディ等の一般量産車の構造をそのまま維持 しつつ、車体閉性や強度の確保を図ることができる車両 の関部車体構造を提案することを目的とする。

【解決手段】サイドドアSDの車室内方には、側面開口部30の上縁部30aと下縁部30bを上下方向に伸びて連結する連結メンバー40が、フロントドア10とリアドア20の当接位置Rに略一致する場所に設置されている。この連結メンバー40は、通常のセンターピラーとは異なり、車体パネルとは別体の閉断面構造のメンバー部材で構成され、例えば、一本の金属管からハイドロフォーム加工により成形された中空角柱状のハイドロフォーム材で構成される。

号

(40) Production (+ 1

【特許請求の範囲】

【請求項1】車体側面に設けたサイドドアを、観音開き 式のフロントドアとリアドアで構成し、該フロントドア とリアドアに対応する関面開口部を車体に形成した車両 の個部車体構造において、前記サイドドアの車内側で上 下方向に伸びて、前記側面開口部の上級部と下級部を連 結固定する連結手段を設けた車両の側部車体構造。

【請求項2】前記傾面開口部の上級部と下級部に、それ ぞれ車両前後方向に延びる前後メンバー部材を設け、該 各前後メンバー部材に前記連結手段を連結固定した請求 10 項1記載の車両の側部車体構造。

【請求項3】前記連結手段の上端を、車体ルーフ部に沿 って車幅方向に延設し、左右の連結手段を繋いだ請求項 1又は2記載の車両の側部車体構造。

【請求項4】前記連結手段を、閉断面のメンバー部材で 構成した請求項1又は2、3記載の車両の側部車体構

【請求項5】前記メンバー部材をハイドロフォーム加工 によって形成した請求項4記載の車両の側部車体構造。

【請求項6】前記連結手段を、固定ブラケットを介して 20 生じる。 連結固定した請求項1又は2、3、4、5記載の車両の **似部車体構造。**

【請求項7】前記連結手段を、該連結手段の端部に形成 したフランジ部で連結固定した請求項1又は2、3、 4、5記載の車両の側部車体構造。

【請求項8】前記連結手段を、前記上級部と下級部に嵌 合して連結固定した請求項1又は2、3、4、5記載の 車両の関部車体構造。

【請求項9】前記サイドドアの前記連結手段に近接する 位置に、補強部材を連結手段に併設するように設けた請 30 求項1又は2、3、4、5、6、7、8記載の車両の側 部車体構造。

【請求項10】前記連結手段に、乗員が掴むグリップ部 を設けた、請求項1又は2、3、4、5、6、7、8、 9記載の車両の関部車体構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両側面のサイド ドアを観音開き式のフロントドアとリアドアで構成した 車両の側部車体構造に関する。

[0002]

【従来の技術】従来、車両関面のサイドドアで、乗員の 乗降性、特に後席への乗降性を向上するため、センター ピラーレスの観音開き式サイドドアが開発されている。 この観音開き式サイドドアは、車体関面に形成した大き な関面開口部に対して、前端ヒンジのフロントドアと後 端ヒンジのリアドアの、2つのドアを設定して、これら ドアを同時に開放することで、車体関面の大きな関面開 口部を開放し、乗員の乗降性を向上している。

【0003】しかし、この観音開き式サイドドアは、セ 50 【0013】請求項6記載の発明は、請求項1又は2、

ンターピラーをなくして車体関面の関面開口部を大きく 形成していることから、モノコックボディとして車体関 性や強度を確保することが困難であり、また、側面衝突 に対する安全性も低下するという問題がある。

【0004】こうした問題に対して、特開平10-10 9662号公報には、車体全体及びドア自体を骨格部材 (フレーム部材)で構成することにより、車体側面に大 きな側面開口部を形成しても、車体関性や強度を確保で きる技術が提案されている。

[0005]

【発明の解決しようとする課題】確かに、当該技術のよ うに車体全体及びドア自体を骨格部材で構成すれば、車 体関性や強度を車体パネルで確保する必要がないため、 センターピラーレスの車体構造でも車体関性や強度を確 保できる。

【0006】しかし、車体やドアを全て骨格部材で構成 するとなると、車体重量が増加してしまい、また、生産 性も極めて悪化するという問題が生じ、当該技術を一般 量産車に採用することは極めて困難であると言う問題が

【0007】本発明は、こうした問題に鑑み発明された もので、観音開き式サイドドアを採用しつつも、車体を モノコックボディ等の一般量産車の构造をそのまま雄特 しつつ、車体関性や強度の確保を図ることができる車両 の個部車体構造を提案することを主な目的とする。

[8000]

【課題を解決するための手段】上記課題を解決するた め、本発明は以下のように構成される。請求項1記裁の 発明は、車体関面に設けたサイドドアを、観音開き式の フロントドアとリアドアで構成し、該フロントドアとリ アドアに対応する側面開口部を車体に形成した車両の側 部車体構造において、前記サイドドアの車内側で上下方 向に伸びて、前記側面開口部の上級部と下級部を連結固 定する連結手段を設けたものである。

【0009】請求項2記載の発明は、請求項1記載の車 両の側部車体構造において、前記側面開口部の上縁部と 下縁部に、それぞれ車両前後方向に延びる前後メンバー 部材を設け、該各前後メンバー部材に前記連結手段を連 結固定したものである。

【0010】請求項3記載の発明は、請求項1又は2記 載の車両の関部車体構造において、前記連結手段の上端 を、車体ルーフ部に沿って車幅方向に延設し、左右の連 結手段を繋いだものである。

【0011】請求項4記載の発明は、請求項1又は2、 3記載の車両の側部車体構造において、前記連結手段 を、閉断面のメンバー部材で構成したものである。

【0012】請求項5記載の発明は、請求項4記載の車 両の側部車体構造において、前記メンバー部材をハイド ロフォーム加工によって形成したものである。

3、4、5記載の車両の関部車体構造において、前記連 結手段を、固定ブラケットを介して連結固定したもので ある。

【0014】請求項7記裁の発明は、請求項1又は2、 3、4、5記裁の車両の関部車体構造において、前記連 結手段を、該連結手段の端部に形成したフランジ部で連 結固定したものである。

【0015】請求項8記載の発明は、請求項1又は2、 3、4、5記載の車両の関部車体構造において、前記連 結手段を、前記上縁部と下縁部に嵌合して連結固定した 10 ものである。

【0016】請求項9記載の発明は、請求項1又は2、3、4、5、6、7、8記載の車両の関部車体構造において、前記サイドドアの前記連結手段に近接する位置に、補強部材を連結手段に併設するように設けたものである。

【0017】請求項10記載の発明は、請求項1又は2、3、4、5、6、7、8、9記載の車両の側部車体構造において、前記連結手段に、乗員が捆むグリップ部を設けたものである。

[0018]

【作用及び効果】請求項1記載の車両の関部車体構造によれば、サイドドアを、観音開き式のフロントドアとリアドアで構成し、そのフロントドアとリアドアに対応する関面開口部を車体に形成した車両の関部車体構造において、サイドドアの車内関で上下方向に伸びて、関面開口部の上縁部と下縁部を連結固定する連結手段を設けたことにより、モノコックボディ等の一般量産車の車体構造であっても、車体関性・強度を充分に確保することができる。よって、観音開き式のサイドドアを採用し、関30面開口部を広く形成した車体であっても、量産性を確保しつつ、車体関性・強度を充分に得ることができる。

【0019】請求項2記載の車両の側部車体構造によれば、側面開口部の上縁部と下縁部に、それぞれ車両前後方向に延びる前後メンバー部材を設け、その各前後メンバー部材に連結手段を連結固定したことにより、車体のフレーム部を構成する前後メンバーに、直接連結手段を固定することになるため、連結手段は車体に強固に固定され、車体関性・強度をより確実に確保することができる。

【0020】請求項3記載の車両の側部車体構造によれば、連結手段の上端を、車体ルーフ部に沿って車幅方向に延設し、左右の連結手段を繋いだことにより、連結手段が、いわゆるロールバーのように車室を取り囲んで配置されることになるため、車体強度を個突や横広にも対応できる程度に高めることができる。

【0021】請求項4記載の車両の関部車体構造によれば、連結手段を、閉断面のメンバー部材で構成したことにより、連結手段自体の剛性・強度をさらに高めることができるため、車体関性・強度もより確実に確保でき

る。

【0022】請求項5記載の車両の側部車体構造によれば、連結手段のメンバー部材を、ハイドロフォーム加工によって形成したことにより、メンバー部材の形状を、関性を確保した上で自由にすることができるため、メンバー部材を設置場所に応じた適切な形状に、形成できる。

【0023】よって、車室空間や乗降空間を充分に確保 した上で、車体原性・強度を確保しうる形状の連結手段 とすることができる。

【0024】請求項6記載の車両の関部車体構造によれば、連結手段を、固定ブラケットを介して連結固定したことにより、車体関の連結固定位置がどのような形態であっても、確実に固定される。よって、連結手段の結合強度をより高めることができる。

【0025】請求項7記載の車両の関部車体構造によれば、連結手段を、その連結手段の端部に形成したフランジ部で連結固定したことにより、固定のための別部材を設定しなくてもよいため、部品点数の削減が図られ、組20 付け工数も削減できる。

【0026】請求項8記載の車両の関部車体構造によれば、連結手段を、開口部の上縁部と下縁部に嵌合して連結固定したことにより、連結手段は、車体に対してより強固に固定される。よって、連結手段は、通常のモノコックボディのセンターピラーと同程度の関性と強度を得ることができる。

【0027】請求項9記載の車両の関部車体構造によれば、連結手段に近接するサイドドアに、補強部材を連結 手段に併設するように設けたことにより、サイドドア閉 鎖時には、補強手段は連結手段と同様に車体関面の関性 を確保し、サイドドア開放時には、広い車両関面開口を 確保できるため、車体関性・強度を高めつつ、乗員の乗 降性も確保することができる。

【0028】請求項10記載の車両の関部車体構造によれば、連結手段に、乗員が掴むグリップ部を設けたことにより、乗降の際、掴み易い位置にグリップ部が設けられるため、乗員の乗降性を向上することができる。

[0029]

【実施例】本発明の実施例を、以下図面に基づいて詳細 に説明する。図1は本発明を採用した車両の全体斜視 図、図2はその車両の全体関面図、図3はフロントドア とリアドアを取り除いた状態の車両の全体関面図である。

【0030】本車両Vの車体関面には、図示するようにフロントドア10とリアドア20とで構成されるサイドドアSDが、フロントドア前端とリアドア後端に、それぞれフロントドアヒンジ11とリアドアヒンジ20が設けられた、観音開き式サイドドアとして設置される。

【0031】これらサイドドアSDを構成するフロント 50 ドア10とリアドア20は、それぞれ、ドアパネル1

2, 22とサッシュ13, 23とウインドガラス14. 24とで構成され、このうちドアパネル12,22内部 には車両前後方向に伸びるサイドインパクトバー15, 25が設けられる。

【0032】さらに、フロントドア10には、車外から フロントドア10の開閉操作を行うアウタドアハンドル 16と、車両後方を視認するドアミラー17が設けられ る。

【0033】サイドドアSDの車室内方側には、側面開 口部30の上級部30aと下級部30bを上下方向に伸 10 びて連結する連結メンバー40が、フロントドア10と リアドア20の閉鎖時の当接位置Rに略一致する場所 (ほぼ中央) に設置されている。

【0034】この連結メンバー40は、通常のセンター ピラーとは異なり、車体パネルとは別体の閉断面構造の メンバー部材で構成され、例えば、一本の金属管からハ イドロフォーム加工により成形された中空角柱状のハイ ドロフォーム材で構成される。

【0035】ハイドロフォーム加工により連結メンバー 自由な形状に連結メンバー40を成形することができ

【0036】なお、当然この連結メンバー40の成形方 法は、ハイドロフォーム加工以外の方法でもよい。

【0037】連結メンバー40は、中空角柱状に成形さ れた後、傾面開口部30の上級部30aと下級部30b に対して固定される。こうして連結メンバー40は、開 口面積の大きい似面開口部30の形状強度を向上して、 一般のモノコックボディに必要な車体関性や強度を確保 する.

【0038】また、連結メンバー40には、フロントド ア10やリヤドア20をロック係止するためのロック機 構や、車室間のシール性を確保するシール部材などが設 けられておらず、また、フロントドア10、リアドア2 0、いずれのドアも支持しないため、最低限、傾面開口 部30の形状強度を確保するだけの太さ(強度)に設定 されている。

【0039】よって、連結メンバー40を、通常のセン ターピラーより細く設定できるため、乗員の乗降性は、 さほど悪化しない。なお、連結メンバーは剛性が確保さ 40 れれば、プレート形状のメンバー部材で構成してもよ 41.

【0040】次に、この連結メンバー40の詳細構造に ついて、図4~図7で説明する。図4は、連結メンバー 40の車体への組付け構造を車室内方から見た斜視図で ある。連結メンバー40は、上端40aを餌面開口部上 録部30aである車両前後方向に伸びるルーフサイドメ ンバー31に、下端40bを側面開口部下縁部30bで ある車両前後方向に伸びるサイドシル32に、それぞれ 固定ボルト41、42を介して、固定される。

【0041】このように、車体のフレーム部分をなすル ーフサイドメンバー31やサイドシル32に、連結メン バー40を直接固定することにより、連結メンバー40 がセンターピラーのようなフレーム假能を果たすため、 モノコックボディで構成された車体の車体別性を、確実 に高めることができる。

【0042】連結メンバー40の車室側側面には、メン バートリムアッパー43とメンバートリムロア44を係 止固定するトリム係止孔40c, 40dが上下方向に複 数穿設され、このトリム係止孔40c,40 dに対し て、メンバートリムアッパー43とメンバートリムロア 44を係止固定することで、連結メンバー40には、メ ンバートリムアッパー43とメンバートリムロア44を 装着する。

【0043】 こうしてメンバートリムアッパー43とメ ンバートリムロア44が装着されることにより、連結メ ンバー40はその車室関関面が車室内に直接露出しない ように構成することができる。

【0044】また、連結メンバー40の車両後方関関面 40を成形することにより、強度を維持した上で、より 20 にも、アシストグリップ45を螺合固定するグリップ固 定孔40 e が穿設され、このグリップ固定孔40 e にア シストグリップ45を固定することにより、アシストグ リップ45が連結メンバー40の車両後方側側面に装着

> 【0045】こうして、アシストグリップ45が連結メ ンバー40に装着されることにより、アシストグリップ 45が掴み易い位置に設けられるため、後席乗員は、乗 降の際にアシストグリップ45を把持することで上体を 起こし、車両乗降を容易に行うことができる。

30 【0046】図5は、サイドドアSDのフロントドア1 0とリアドア20を閉鎖した状態の車室内方からの斜視 図である。この図に示すように、連結メンバー(図5に は図示せず) にメンバートリムアッパー43とメンバー トリムロア44を装着していることにより、フロントド アのドアトリム18からリアドアのドアトリム28まで 一体的、且つ滑らかに車室内壁面を構成することができ る。よって、車室内の見栄えを向上させることができ

【0047】図6は、図2のA-A断面を示したもの で、図7は、図2のB-B断面を示したものである。図 6は、フロントドア10とリアドア20のサッシュ1 3,23の当接位置を示した断面図である。

【0048】フロントドア10には、ウィンドガラス1 4と、そのウィンドガラスをクッション材50を介して 支持するサッシュ13と、サッシュ13の車室側面を装 うサッシュトリム51が具備される。

【0049】また、リアドア20にも、ウィンドガラス 24と、そのウィンドガラス24をクッション材52を 介して支持するサッシュ23が具備される。ただし、リ 50 アドアのサッシュ23は、フロントドアのサッシュ13 とは異なり、フロントドア10後端を支持するようにフロントドア10の車室側に入り込む受け部23aが形成されている。

【0050】受け部23aの先端には、車内外をシールするラバーシール53が装着され、このラバーシール53は、フロントドア10後端(サッシュ13)が当接することにより、シール假能を得るように相成されている。

【0051】リアドア20のサッシュ23の車室側には、連結メンバー40がメンバーアッパートリム43を 10装着して配置されている。

【0052】連結メンバー40は、リアドア20のサッシュ23の車室内方側に配置されることで、サッシュ23の車室内への露出を防止し、車室内の見栄えを向上することができる。さらに、側突時にも、フロントドア10、リアドア20いずれのドアが、車室内に侵入してきても、全て連結メンバー40で受け止めることができるため、ドア10、20の車室内への侵入を極力抑えることができる。

【0053】図7は、フロントドア10とリアドア20 20 のドアパネル12,22の当接位置を示した断面図で、特にドアロック部分も含めた断面図である。フロントドア10には、インナパネル12aとアウターパネル12 bからなるドアパネル12と、ドアパネル12の車室側に装着されるドアトリム18と、ドアパネル12内に配置されるサイドインパクトバー54と、リアドア20に設けられたストライカー55に係合するロック破積56が設けられている。

【0054】また、リアドア20にも、インナパネル22aとアウターパネル22bからなるドアパネル22と、ドアパネル22の車室側に装着されるドアトリム28と、ドアパネル22内に配置されるサイドインパクトバー57とが設けられ、さらに、ドアパネルの前端面22cには、ロック機構56に係合するストライカー55が設けられている。

【0055】また、リアドア20のドアパネル22前端には、フロントドア10の後端を支持するように、フロントドア10の車室関に入り込む受け部22dが形成されている。

【0056】そして、この受け部22dの先端には、車 40 内外をシールするラバーシール58が装着され、このラ バーシール58はフロントドア10後端が当接すること により、シール機能を得るように構成されている。

【0057】また、リアドア20の車室内方側には、前述の連結メンバー40がメンバーロアトリム44を装着して配置されている。

【0058】連結メンバー40の配置される位置は、ちょうどストライカー55が設けられた位置の車室内方側で、サイドインパクトバー54,57の取付ブラケット54a,57aに、ほぼ重合する位置に設定されてい

る。

【0059】このように連結メンバー40が配置されているため、フロントドア10やリアドア20が假突時に変形しても、ロック協構56とストライカー55の位置は変位しないため、ドアロック部分は変形しない。よって、假突後であってもフロントドア10やリアドア20の開閉操作の信頼性は確保される。

8

【0060】また、サイドインパクトバー54,57で受ける【例で一つでででは、個ででである。 では、では、では、では、では、できるため、では、では、できるため、では、できるでは、できるでは、できる。 では、では、できるでは、できる。

【0061】なお、フロントドアのドアトリム18とリアドアのドアトリム28は、メンバーロアトリム44と 喀面一致するように、ドアインナパネル12a, 22a から隆起して設定されている。

【0062】このため、連結メンバー40がドア10, 20の車室内方側に突出して配置されても、車室内では 突出しているようには見えないため、車室内の見栄えを 向上されることができる。以上のようにして、本実施例 では、連結メンバー40が、センターピラーレスの観音 開き式サイドドアの車両に設けられる。

【0063】次に、別実施例について説明する。図8~ 図10は、連結メンバーの車体への結合構造の別実施例 を示したものである。

【0064】なお、各図の(a)は関面開口部下級部のサイドシルとの結合構造、(b)は関面開口部上級部のルーフサイドメンバーとの結合構造を示したものである。

【0065】図8の実施例は、連結メンバー140の両30 端部に、別体の連結固定ブラケット60,61を設けた結合構造である。連結固定ブラケット60、61は、連結メンバー40の端部を嵌合固定する嵌合部60a,61aと、サイドシル32、ルーフサイドメンバー31に固定ボルト62,63を介して固定される固定フランジ60b,61bとから構成される。

【0066】下端の連結固定ブラケット60は、固定フランジ60bを、サイドシル32のインナパネル32aに、稜線を跨いで上面32a1と車室関面32a2にそれぞれ固定することで、上下及び車隔方向で強固に固定される。

【0067】また、上端の連結固定ブラケット61も、固定フランジ61bを、ルーフサイドメンバーのインナバネル31aに、稜線を跨いで下面31a1と車室側面31a2にそれぞれ固定することで、上下及び車隔方向で強固に固定される。

【0068】このように、上下の連結固定ブラケット6 0,61が固定されることにより、連結メンバー140 は、サイドシル32とルーフサイドメンバー31との間 隔を維持する梁のような機能(梁機能)を発揮すること 50 ができる。また、似実荷重を確実にサイドシル32とル

ーフサイドメンバー31に伝達する機能(荷重伝達機能)も発揮することができる。

Q

【0069】また、連結固定ブラケット60,61は、固定ボルト62,63によって爆合固定されることにより着脱自在となるため、モノコックボディの車体を組み上げた後から、容易に連結メンバー140を組付けることができる。

【0070】図9の実施例は、連結メンバー240の両端をT字管状に構成し、その管部分を潰してフランジ部240a,240bを形成し、このフランジ部240a,240bをサイドシル32とルーフサイドメンバー31に溶接固定した結合構造である。

【0071】この実施例は、固定ブラケットを設けた前 記実施例と異なり、連結メンバー両端のフランジ部24 0a,240bを連結メンバー240に一体に形成する ことで、部品点数を少なくできる。このためコストを低 減でき、組付け性も向上できる。

【0072】また、この実施例は、フランジ部240 a,240bの固定位置が、前記実施例と同じ位置に設 定されているため、連結メンバー240に梁機能と荷重 20 伝達機能を得させることができる。

【0073】図10の実施例は、連結メンバー340の 両端を、それぞれサイドシル132とルーフサイドメン バー131に形成した嵌合部131a,132aに嵌め 込み溶接することにより、連結メンバー340を連結固 定した結合構造である。

【0074】連結メンバー340を嵌め込む嵌合部132a,131aは、それぞれサイドシルのインナパネル132bの一部と、ルーフサイドメンバーのインナパネル131bの一部を、車室内方側に突出させて成形する。この嵌合部132a,131aに、それぞれ連結メンバー340の両端を嵌め込み、溶接固定することにより、連結メンバー340はサイドシル132とルーフサイドメンバー131に強固に固定される。

【0075】このように強固に固定されることにより、連結メンバー340は、通常のモノコックボディのセンターピラーと同程度の関性と強度を得ることができ、センターピラーとほぼ同様の機能を果たすことが可能となる。

【0076】以上、結合メンバーの車体との結合構造に 40 ついて、いくつか説明したが、本発明はこれらの結合構造に限定されるものではない。

【0077】次に、図11~図13で、連結メンバーを、車体ルーフに沿って車隔方向に延長し、左右の連結メンバーを繋いで、いわゆる競技車両などで採用されるロールバーのような構成を採った実施例について説明する。

【0078】図11は、車両Vの全体斜視図である。この図に示すように連結メンバー440は、車両側面で上下方向に伸びる側部連結メンバー441と、車室内のル 50

10 ーフ400付近で車幅方向に伸びるルーフ部連結メンバ ー442とによって構成される。

【0079】これら関部連結メンバー441とルーフ部連結メンバー442は、前記実施例と同様、ハイドロフォーム加工により成形されたハイドロフォーム材で構成される。

【0080】この関部連結メンバー441とルーフ部連結メンバー442は、それぞれ端部が車体に固定されるため、車室形状を維持して、モノコックボディの車体関10性・強度をより向上している。

【0081】図12は、車両Vの車幅方向機断断面図である(左右一方側のみ)。この図に示すように、車室内では側部連結メンバー441とルーフ部連結メンバー442が一本のメンバー部材として車室を取り囲み、ロールバーのように配置されている。

【0082】これら関部連結メンバー441とルーフ部連結メンバー442は、それぞれ関部連結メンバー44 1の下端が、サイドシル232のインナパネル232a に固定ボルト242で固定され、関部連結メンバー44 1の上端とルーフ部連結メンバー442の一端が、ルーフサイドメンバー231のインナパネル231aに固定ボルト241で共締め固定されている。

【0083】このように関部連結メンバー441とルーフ部連結メンバー442が固定ボルト242,241によって車体に固定されることにより、モノコックボディの車体を組み上げた後から、容易に各メンバーを組付けることができる。

【0084】図13は、側部連結メンバー441とルーフ部連結メンバー442のルーフサイドメンバー231 30 への共締め固定構造を示した詳細斜視図である。ルーフ 400下面に溶接されたルーフサイドメンバー231の 内側には、固定ボルト241を螺合固定するナットプレート401が溶接されている。また、側部連結メンバー の上端441bとルーフ部連結メンバーの一端442b は、共に両者を固定した状態で、クランク状に組み合う 形に絞り成形され、そして、それぞれには、二つのボルト通し孔441c、442cが穿設されている。

【0085】このように構成された関部連結メンバー4 41とルーフ部連結メンバー442を、互い違いにクラ ンク状に組み合せて、二本の固定ボルト241によって ルーフサイドメンバー231に設けられたナットプレー ト401に共締め固定することで、関部連結メンバー4 41とルーフ部連結メンバー442はルーフサイドメン バー231に固定される。

【0086】このようにして側部連結メンバー441とルーフ部連結メンバー442が車体に固定されることにより、側部連結メンバー441とルーフ部連結メンバー442は一体的になり、一本のロールバーのように、車室周囲を取り囲む構成をとる。

50 【0087】従って、関部連結メンバー441とルーフ

部連結メンバー442とで連結メンバー440を構成し た本実施例では、車体関性・強度を、前述の実施例より さらに高められることができる。

11

【0088】例えば、車両個突時には、その側突荷重を 個突された側の側部連結メンバー441だけでなく、反 対側の側部連結メンバー(図示せず)でも受けることが できるため、餌突強度がさらに高められる。また、車両 横伝時には、 関部 道結メンバー 441とルーフ部連結メ ンバー442によって車室を保護するため、車室の安全 性が高められる。また、車体のフレーム部であるルーフ 10 サイドメンバー231に、 関部連結メンバー441とル ーフ部連結メンバー442を固定することにより、車体 のフレーム部自体の関性が高まり、車体全体の捩じれ関 性等を高めることができる。こうして、本実施例は前述 の実施例より、さらに車体別性・強度を高めることがで きる。

【0089】次に、図14~図16で、車体に設けた連 結メンバーのほかに、リアドア内に補強メンバーを設け た実施例について説明する。 図14は、車両Vの全体斜 視図である。この図にも示すように本実施例では、側面 20 開口部に設けた連結メンバー40のほかに、リアドア2 0内部の前端に上下方向に渡って伸びる補強メンバー7 0を設けている.

【0090】この補強メンバー70は、連結メンバー4 0と同様にハイドロフォーム加工により成形されたハイ ドロフォーム材で構成されている。

【0091】図15は、フロントドア10、リアドア2 0を閉鎖した状態でのサッシュ部分の断面図で、前述の 実施例の図6と同じ位置の断面図である。図6と同様の ものは符号を付して説明を省略する。また、図16は、 フロントドア10、リアドア20を閉鎖した状態でのド アパネルの断面図で、前述の実施例の図7と同じ位置の 断面図である。図16でも図7と同様のものは符号を付 して説明を省咯する。

【0092】本実施例では、リアドア20前端のサッシ ュ23内やドアパネル22内に、サッシュ形状やドアパ ネル形状に対応した形状に成形した補強メンバー70 を、配置することにより、リアドア20前端の関性、強 度を高めている。

【0093】このようにリアドア20前端の剛性、強度 40 を高めることにより、ドア閉鎖時には、補強メンバー7 0が連結メンバー40と相俟って、車体閉性や強度を高 めることができる。

【0094】特に、車両側突時には、補強メンバー70 を設けたことにより、通常のセンターピラーを設けたも のとほぼ同様、またはそれ以上の強度を発揮することが できる。

【0095】また、この補強メンバー70の関性を高め れば、連結メンバー40の関性が低くても、車体関性・ 強度をある程度高めることができるため、連結メンバー 50 たことにより、連結メンバー自体の関性・強度をさらに

40を細くすることが可能となり、車両の側面開口部を 広くすることができる。よって乗員の乗降性もさらに高 めることができる。

【0096】なお、図16に示すように、補強メンバー 70の車室側側面70aには、先端の係合部71aが連 結メンバー40の係止孔72に挿通された係合フック7 1が設けられている。

【0097】この係合フック71は、補強メンバーの車 外側側面70bの作業孔70cから車室側側面の内面に 固定された固定ナット73に対して、フック固定ボルト 74で固定することにより、補強メンバー70に固定さ

【0098】このように係合フック71を補強メンバー 70に設けることにより、車両衝突時には係合フック7 1が係止孔72に係合するため、サイドドアSDに変形 が生じても、補強メンバー70と連結メンバー40との 車両前後方向のズレは発生しない。

【0099】このため、フロントドア10やリアドア2 0の変形は極力抑えられ、衝突後のサイドドアSDの開 閉も容易に行うことができる。

【0100】以上のように構成されるため、これらの実 **施例は、次のような効果を奏する。**

【0101】まず、サイドドアSDの車室内方側で上下 方向に伸び、関面開口部30の上級部30aと下級部3 0bを連結固定する連結メンバー40,140,24 0,340,440を設けたことにより、モノコックボ ディ等の一般量産車の車体構造であっても、車体関性・ 強度を充分に確保することができる。

【0102】よって、観音開き式サイドドアを採用し、 関面開口部30を広く形成した車体であっても、 量産性 を確保しつつ、車体関性・強度を充分に得ることができ

【0103】また、その関面開口部30の上級部30a と下級部30bに、ルーフサイドメンバー31とサイド シル32を設け、そのルーフサイドメンバー31とサイ ドシル32に連結メンバー40、140、240、34 0,440を連結固定したことにより、車体のフレーム 部を構成するメンバー部材に、直接連結メンバー40, 140, 240, 340, 440を固定することになる ため、連結メンバー40, 140, 240, 340, 4 40は車体に強固に固定され、車体関性・強度をより確 実に確保することができる。

【0104】また、連結メンバー440が、側部連結メ ンバー441とルーフ部連結メンバー442とで構成さ れ、いわゆるロールバーのように車室を取り囲んで配置 されることにより、車体強度を、横伝等にも対応できる 程度に高めることができる。

【0105】また、連結メンバー40,140,24 0,340,440を、閉断面のメンバー部材で構成し 13

高めることができるため、車体関性・強度もより確実に 確保できる。

【0106】また、連結メンバー40,140,24 0,340,440を、ハイドロフォーム加工によって 形成したことにより、連結メンバーの形状を、関性を確 保した上で自由にすることができるため、連結メンバー 40,140,240,340,440を設置場所に応 じた適切な形状に形成できる。よって、車室空間や乗降 空間を充分に確保した上で、車体関性・強度を確保しう る連結メンバー40,140,240,340,440 10 とすることができる。

【0107】また、連結メンバー140を、連結固定ブラケット60,61を介して連結固定したことにより、車体側の連結固定位置がどのような形態であっても、確実に固定されるため、連結メンバー140の結合強度をより高めることができる。

【0108】また、連結メンバー240を、その連結メンバーの端部に形成したフランジ部240a,240b で連結固定したことにより、固定のための別部材を設けないため、部品点数の削減が図られ、組付け工数も削減20できる。

【0109】また、連結メンバー340を、ルーフサイドレール131とサイドシル132に嵌合して連結固定したことにより、連結メンバーは、車体に対してより強固に固定されるため、通常のモノコックボディのセンターピラーと同程度の関性と強度を得ることができる。

【0110】また、連結メンバー40に近接するリアドア20位置に、補強メンバー70を連結メンバー40に併設するように設けたことにより、リアドア20閉鎖時には、補強メンバー70は連結メンバー40と同様に車 30 体関面の関性を確保しつつ、リアドア20開放時には、広い関面開口を確保できるため、車体関性・強度を高めつつ、乗員の乗降性も確保することができる。

【0111】また、連結メンバー40に、乗員が掴むアシストグリップ45を設けたことにより、アシストグリップ45が掴み易い位置に設けられるため、乗員の乗降性を向上することができる。

【0112】以上、いくつかの実施例について説明したが、本発明は、これら実施例に限定されるものではなく、観音開き式サイドドアを採用して広い側面開口部を 40 形成した側部車体構造に、その側面開口部の上縁部と下縁部を連結する連結メンバーを設けたものであれば、全て包含するものである。

【0113】この他、本発明の趣旨を逸脱しない限りに

14

おいて、適宜詳細構造を変更してもよい。

【図面の簡単な説明】

【図1】本発明を採用した車両の全体斜視図。

【図2】車両の全体側面図。

【図3】フロントドアとリアドアを取り除いた状態の車 両の全体側面図。

【図4】連結メンバーの車体への組付け構造を車室内方から見た斜視図。

【図5】フロントドアとリアドアを閉鎖した状態の車室 内方からの斜視図。

【図6】図2のA-A断面図。

【図7】図2のB-B断面図。

【図8】連結メンバーの結合構造の別実施例を示した斜 期図

【図9】連結メンバーの結合構造の別実施例を示した斜 視図。

【図10】連結メンバーの結合構造の別実施例を示した 斜視図。

【図11】連結メンバーを車幅方向に延長した実施例の 車両の全体斜視図。

【図12】図11の実施例における車両の車幅方向横断

【図13】 関部連結メンバーとルーフ部連結メンバーの 固定構造を示した詳細斜視図。

【図14】サイドドア内に補強メンバーを設けた実施例 の車両の全体斜視図。

【図15】図14の実施例のサイドドアを閉鎖した状態 のサッシュ部分の断面図。

【図16】図14の実施例のサイドドアを閉鎖した状態 30 のドアパネル部分の断面図。

【符号の説明】

SD…サイドドア

10…フロントドア

20…リアドア

30…関面開口部

31, 131, 231…ルーフサイドメンバー

32, 132, 232…サイドシル

40, 140, 240, 340, 440…連結メンバー 45…アシストグリップ

0 60,61…連結固定ブラケット

70…補強メンバー

131a, 132a…嵌合部

240a, 240b…フランジ部

10… フロントFT 40 -- 連続メンバー 20… リアドア

【図10】

【図12】

231-- ルーフサイドメンバー 232 -- サイドシル

【図13】

231… ルーフサイドメンバー

10 - フロントドア 40 ··· 建原メンパー 20 - リアドア 70 ·· 補予メンパー

【図16】

10 -- フロントドア 40 ··· 連絡メンバー 20 ··· リアドア 70 ··· 補強メンバー

フロントページの続き

(72)発明者 福島 嘉男 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3D003 AA01 AA04 AA05 AA10 AA14 BB01 CA17 CA37 CA40 DA17