

ANÁLISIS DEL RETO

Tomás Segura, t.segura@uniandes.edu.co, 202212567

Oliver Bohórquez, o.bohorquezg@uniandes.edu.co, 202212120

Felipe Chaves, f.chavesr@uniandes.edu.co, 202213637

Requerimiento <<1>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	Identificador de la estación origen (Código estación – Código bus) Identificador de estación destino Catalogo	
Salidas	 La distancia total que tomará el camino entre la estación origen y la estación destino El total de estaciones que contiene el camino solución. El total de transbordos de ruta que debe realizar el usuario Las estaciones que definen el camino resultante (incluyendo el origen y el destino) con la siguiente información: El identificador de la estación. La distancia a la siguiente estación en el camino 	
Implementado (Sí/No)	Felipe Chavez	

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Primero se recorre el grafo con Dijkstra y se	O(E+V log V)
encuentra el mejor camino Se Comprueba si un	
camino existe por medio de un if, en caso de existir se	
retorna una lista doblemente encadenada con un	
diccionario que contiene la secuencia de estaciones	
Paso 2: Se inicia el conteo para encontrar las	O(N)
estaciones de trasbordo marcadas en el catálogo con	
una	
TOTAL	O([E+V log V]+[N])

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (ms)
1165-H12 a 673-131	3699.091
1176-L80 a 961-60	3943.758
1165-46 a 1494-79	5141.1529

Tablas de datos

Distancia	Estaciones/Transbordos
8.08 KM	10 estaciones/7T
10.6 KM	11 estaciones/8T
1.12 KM	4 estaciones/ 3T

Graficas

Análisis

Se puede apreciar que el crecimiento en general coincide con la tasa de crecimiento del algoritmo dijktra, además de que hay un aumento de tiempo en la búsqueda cuando la ruta es corta, como se aprecia en el la prueba 3 donde solo hay 3 estaciones, pero aumenta considerablemente el tiempo de respuesta del algoritmo

Requerimiento <<2>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	Identificador de la estación origen
	Identificador de la estación destino
	Catalogo
Salidas	• La distancia total que tomará el camino entre la estación origen y
	la estación destino.
	• El total de estaciones que contiene el camino solución.
	• El total de transbordos de ruta que debe realizar el usuario.
	• Las estaciones que definen el camino resultante (incluyendo el
	origen y el destino) con la siguiente información:
	o El identificador de la estación.
	o La distancia a la siguiente estación en el camino.
Implementado (Sí/No)	Oliver Bohorquez

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Primero se recorre el grafo con el algoritmo	O(V + E)
BFS para encontrar un camino que este compuesto	
por la menor cantidad de nodos posibles, si se	
encuentra se retorna en una lista	
Paso 2: Se usa un for para reconocer cuales son las	O(N)
estaciones y acceder a ellas por medio del catalogo y	
agregarlas a una lista con las estaciones totales	
Paso 3: Se usa otro for para determinar la cantidad de	O(N)
estaciones de trasbordo en la lista construida	
previamente	
Paso 4: Se utiliza la función de calculo de distancia	O(2N)
para determinar la distancia total del camino dado	
por el algoritmo	
TOTAL	O([4N]+[V+E])

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (ms)
1165-H12 a 673-131	313.953

1176-L80 a 961-60	327.077
1165-46 a 1494-79	394.357

Tablas de datos

Distancia	Estaciones/Transbordos
10.27 KM	11 estaciones/5T
12.18 KM	12 estaciones/5T
1.12 KM	5 estaciones/ 2T

Graficas

Análisis

Se puede apreciar como en comparación al requerimiento anterior los tiempos de búsqueda en este fueron considerablemente más rápidos, además de que no se tuvo un pico significativo en la búsqueda de dos estaciones cercanas, además de que en general la cantidad de trasbordos fue menor a la del req anterior

Requerimiento <<3>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	Catalogo
Salidas	 El total de componentes conectados dentro del grafo. Mostrar los 5 componentes conectados más grandes (de mayor a menor número de estaciones en la componente fuertemente conectada): o El número de estaciones que pertenecen a dicho componente. o Los identificadores de las tres primeras y tres últimas estaciones pertenecientes al componente.
Implementado (Sí/No)	Tomas Segura Duarte

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Primero se recorre el grafo con el algoritmo	$O(V^2)$
de Kosajaru para identificar los componentes	
fuertemente conectados, una vez identificados va a	
crear una lista con diccionarios en los cuales la llave	
es el nodo y el valor el componente fuertemente	
conectado al que pertenece	
Paso 2: Empieza a llenar la lista de marcas con los	O(N)
nodos que están ligados a un componente	
fuertemente conectado, posteriormente se crea una	
lista "oficial" donde se busca en el mapa los	
componentes fuertemente conectados con listas de	
los nodos de cada componente, para posteriormente	
retornarla	
TOTAL	O([V^2])

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (ms)
Req 3	9992

Tablas de datos

Cantidad de estaciones	Ultimas estaciones
5559	['1829-104', '1008-62', '148-113']

98	['582-128', '321-118', '291-118']
6	['9-106', '8-106', '13-106']

Graficas

No hay razon de realizar una grafica

Análisis

Se pudo identificar que hay una componente masiva en comparación al resto, con la impresionante cantidad de 5559 componentes, además de que tiene que el tiempo de ejecución en general no fue tan largo como se esperaba

Requerimiento <<4>>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	 Localización geográfica origen (longitud y latitud) del usuario. Localización geográfica destino (longitud y latitud) del usuario Catalogo
Salidas	 Catalogo La distancia entre la localización de origen y la estación de bus más cercana. La distancia total que tomará el recorrido entre la estación origen y la estación destino. La distancia entre la estación destino más cercana y la localización destino. El total de estaciones que contiene el camino solución. El total de transbordos de ruta que debe realizar. Las estaciones que definen el camino resultante (incluyendo el origen y el destino) con la siguiente información:
	o El identificador de la estación. o La distancia a la siguiente estación en el camino.
Implementado (Sí/No)	Oliver Bohorquez

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Primero se organizan las coordenadas,	O(N)
longitud y latitud por medio del método Split y se usa	
haversine para comparar las estaciones con la	
distancia inicial, si la distancia es menor al valor de	

referencial, se reemplaza, haciendo con cada dato, una vez se procesan todos se tiene la estación más cercana, esto se hace con las coordenadas de inicio y las coordenadas de destino	
Paso 2: después se toma la estación inicial más cercana y se usa algoritmo de Dijkstra para ir a la estación final que se consigue por medio del cálculo de distancias	O (E+V log V)
Paso 3: después se recorre la lista que da el algoritmo para determinar los trasbordos y el camino a seguir en el grafo	O(N)
TOTAL	O(E+V log V)

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (ms)
2.183014,41.4059 , 2.178383,41.40238	856.297
2.137342,41.36589, 2.156883,41.37905	4379.24
2.133997,41.36393, 2.138156,41.41444	4304.20

Tablas de datos

Estación cercana inicio/ Final	Numero trasbordos/ Estaciones totales
1008-B24 , 1013-H10	1.0, 6
1170-L72, 2104-L95	3.0, 7
1176-V3, 892-131	9.0, 11

Graficas

Análisis

Se puede apreciar como la prueba inicial fue una considerablemente corta en comparación al resto de las pruebas, tal vez a razón de que son distancias geográficamente muy cercanas, especialmente por el numero bastante bajo de trasbordos y de estaciones totales en la ruta

Requerimiento <<5>>

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	 Identificador de la estación origen (corresponde al identificador único de una estación de la forma Code-IdBus). Número de conexiones permitidas desde la estación origen Catalogo
Salidas	 Un reporte consolidado que incluya la información de las estaciones "alcanzables" con el número de conexiones dado con la siguiente información: o El identificador de la estación. o La geolocalización de la estación (latitud y longitud) o Longitud del camino desde la estación origen a la estación alcanzada.
Implementado (Sí/No)	Tomas Segura Duarte

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: se hace un if para comprobar que la conexión	$O(N^*T^*W)$
no es 0 despues se usa la cota como i veces que se	
repetirá al algoritmo, relajándose en el inicial y	
tomando todos los adyacentes y asi sucesivamente,	
excluyendo el vertice inicial	
Paso 2: Toma todos los vértices de la ultima capa y	O (2N)
hace ingeneria inversa, recorriendo desde ahí hasta el	
vertice inicial, sumando todas las distancias	
TOTAL	O(<i>N*T*W</i>)

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (s)
1008-62, 3	19.129
1013-34, 20	18.853
1170-L87, 100	62.27

Tablas de datos

.

Estación cercana inicio/ Final	Numero de estaciones alcanzables
1008-62	12
1013-34	11
1170-L87	21

Graficas

Análisis

Se puede apreciar como el incremento temporal entre estaciones tiende a ser lineal, por lo que entre mayor sea el numero de estaciones, de la misma forma mayor será la cantidad de tiempo que tardara, especialmente por la naturaleza del orden de crecimiento

Requerimiento <<6>>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	 dentificador de la estación origen (corresponde al identificador único de una estación de la forma Code-IdBus). El identificador del vecindario (Neighborhood) destino. Catalogo
Salidas	Un reporte consolidado que incluya la información de las estaciones "alcanzables" con el número de conexiones dado con la siguiente información: o El identificador de la estación. o La geolocalización de la estación (latitud y longitud) o Longitud del camino desde la estación origen a la estación alcanzada.
Implementado (Sí/No)	Tomas Segura Duarte

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Se recorre el grafo desde el origen con djisktra	O(E+V log V)
hasta el nodo con la marca del barrio que se puso por	
parametro	
Paso 2: Una vez se recorre el primer camino este es	O (N)
agregado a una lista y posteriormente se recorren y	
agregan todos los caminos a una lista, para ser	
agregados se compara la distancia con el costo del	
camino en si, y se selecciona el ultimo camino, ya que	
ese será el de menor costo	
Paso 3: Posteriormente la función barrios extrae los	O(N)
barrios de cada vertice	
Paso 4: finalmente cuenta la cantidad de trasbordos	O(N)
en el camino mas eficiente y devuelve los datos	
TOTAL	O(E+V log V)

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (s)

Tablas de datos

Las tablas con la recopilación de datos de las pruebas.

Graficas

Las gráficas con la representación de las pruebas realizadas.

Análisis

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Requerimiento <<7>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

Descripción

Breve descripción de como abordaron la implementación del requerimiento

Entrada	Identificador de la estación de origen (corresponde al
	identificador único de una estación de la forma Code-IdBus).
	Catalogo
Salidas	• La distancia total que tomará el recorrido del camino circular. La
	distancia total de desplazamiento debe ser mayor a 0.0.
	El total de estaciones que contiene el camino. El total de
	estaciones debe ser mayor a 1.
	El total de transbordos de ruta que deben realizarse.
	• El camino calculado entre las estaciones (incluyendo el origen y el
	destino) y para cada estación en el camino se debe mostrar la
	siguiente información:
	o El identificador de la estación.
	o La distancia a la siguiente estación en el camino.
Implementado (Sí/No)	Felipe Chavez

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1: Se usa un DFS para desde el vertice inicial	O([V + E] + N)
hacer una exploración a un vertice aleatorio a 3	
conexiones de distancia elegido al azar	
Paso 2: después se va a buscar una ruta desde el	O(V + E)
vertice final hasta el vertice inicial sin un limite de	
capas, por lo que cabe la posibilidad de que tanto	
tome el camino del algoritmo anterior como que	
tome un camino mucho mas largo y todas esas	
componentes sumadas estarían produciendo un ciclo	
de tamaño variable	
Paso 3: Path final busca finalmente en caso de que se	O(N)
tenga un trasbordo se extraen las coordenadas para	
realizar el resto de operaciones	
Paso 4: se hace el calculo de las distancias y rutas	
totales que se deben tomar, junto al camino	
TOTAL	O(V + E] + N)

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (s)

Tablas de datos

Las tablas con la recopilación de datos de las pruebas.

Graficas

Las gráficas con la representación de las pruebas realizadas.

Análisis

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.