HOMEWORK 5

- 1. Show that over any field there exist infinitely many non-associate irreducible polynomials.
- 2. Prove that the factor ring $\mathbb{Z}[i]/(1+i)\mathbb{Z}[i]$ is a field of two elements.
- 3. Let $f, g \in \mathbb{Q}[X]$ with $fg \in \mathbb{Z}[X]$. Prove that there is $a \in \mathbb{Q}^{\times}$ such that $af \in \mathbb{Z}[X]$ and $a^{-1}g \in \mathbb{Z}[X]$.
- **4.** Let F be a field. Prove that the set R of all polynomials in F[X] whose X-coefficient is equal to 0 is a subring of F[X] and that R is not a UFD. (Hint: Use $X^6 = (X^2)^3 = (X^3)^2$.)
- 5. Find all irreducible polynomials of degree ≤ 4 in $(\mathbb{Z}/2\mathbb{Z})[X]$.
- **6.** Let $f \in \mathbb{Z}[X]$, $a, b \in \mathbb{Z}$, $a \neq b$. Prove that a b divides f(a) f(b). (Hint: a b divides $a^n b^n$.)
- 7. Prove that $X^n + Y^n 1$ is irreducible in $\mathbb{Z}[X,Y]$ for every n > 0. (Hint: Use Eisenstein's Criterion.)
- 8. Let f be a monic polynomial in $\mathbb{Z}[X]$. Prove that if $a \in \mathbb{Q}$ is a root of f then $a \in \mathbb{Z}$.
- 9. Find all roots of $f = X^p X$ in $(\mathbb{Z}/p\mathbb{Z})[X]$ (p prime) and factor f into a product of irreducible polynomials. (Hint: Use Fermat's Little Theorem.)
- 10. Determine whether $X^4 + 4$ is irreducible in $\mathbb{Z}[X]$.