Desenvolvimento de Sistemas Software

Aula Teórica 10

Modelação de comportamento / Máquinas de Estado II

v. 2017/18

Pseudoestados de História

Permitem modelar interrupções — actividade da máquina é retomada no estado em que se encontrava aquando da última saída

Pseudoestado de Escolha

- Ramificação condicional (dinâmica!) em função do valor de uma expressão.
- Decisão pode ser uma função de acções anteriores.
- Caso mais que uma guarda verdadeira, a escolha é não determinística.
- Se nenhuma guarda for verdadeira, o modelo está mal formado ([else]!)

v. 2017/18

Pseudoestado de Escolha

- Ramificação condicional (dinâmica!) em função do valor de uma expressão.
- Decisão pode ser uma função de acções anteriores.
- Caso mais que uma quarda verdadeira a escolha é não deterministic Escolha desliga Se nenhuma παι
 - formado ([els

Estados com concorrência...

- Um estado pode ser dividido em "regiões" ortogonais
- Cada região contém um sub-diagrama
- Os diagramas das regiões são executados de forma concorrente

José Creissac Campos/António Nestor Ribeiro Desenvolvimento de Sistemas Software

Pseudoestado de terminação

v. 2017/18

Pseudoestado de terminação

- Indica que a execução da máquina de estados termina.
- Não são executadas acções de saída a não ser as da transição para o pseudoestado de terminação

Pseudoestados fork e join

- · Permitem gerir concorrência.
- Fork divide uma transição de entrada em duas ou mais transições
 - Transições de saída têm que terminar em regiões ortogonais distintas

- Join funde duas ou mais transições de entrada numa só transição de saída
 - Transições de entrada têm que originar em regiões ortogonais distinta

v. 2017/18

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir de sub-estados levantam problemas...

v. 2017/18

Pseudoestados Ponto de entrada e Ponto de saída

- Ponto de entrada
 - Permite definir um ponto de entrada numa máquina de estados ou num estado composto
 - O ponto de entrada é identificado por nome
 - O ponto de entrada transita para um estado interno que poderá ser diferente do definido pelo estado inicial
- Ponto de saída
 - Permite definir um ponto de saída alternativo ao estado final
 - O ponto de saída é identificado por nome

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir de sub-estados levantam problemas...

v. 2017/18

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir de sub-estados levantam problemas...

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir de sub-estados levantam problemas...

v. 2017/18

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir de sub-estados levantam problemas...

Pseudo-estado de Junção

- Ramificação condicional (estática!) em função do valor de uma expressão.
- Caso mais que uma guarda verdadeira, a escolha é não determinística.
- Se nenhuma guarda for verdadeira, o modelo está mal formado ([else]!)
- Útil para simplificar diagramas, factorizando transições

v. 2017/18

Pseudo-estado de Junção

- Ramificação condicional (estática!) em função do valor de uma expressão.
- Caso mais que uma guarda verdadeira, a escolha é não

Útil para sin

Protocol State Machines

Especificam que operações podem ser invocadas em cada estado e em que condições - a sequências válidas de invocação das operações.

228

Diagramas de Estado (Statecharts)

Sumário

- Mais sobre transições
- Transições vs. actividades internas
- Regiões concorrentes
- Mais pseudoestados: História, Escolha, Fork, Join, Terminação, Pontos de Entrada e Saída, Junção