ZAD. 3.

Show that if $|G| = pq^2$, where p, q are prime numbers, then G is solvable.

First of all, we need to know what the heck does it mean that G is solvable. Definition says that a group is solvable if it has a subnormal series whose quotient groups are all abelian. Basically, we have a series of subgroups

$$1 = G_0 < G_1 < ... < G_j < G_{j+1} < ... < G_k = G$$

such that for all $j G_i \triangleleft G_{i+1}$ and G_{i+1}/G_i is abelian.

.....

I guess we have to start from building such a chain of subgroups. Let G_1 be a p-subgroup of G. Then we know that G_1 is a normal subgroup in G and that G/G_1 has g^2 elements.

That means that $H = G/G_0$ is abelian, because every group of order p^k has nontrivial center, so $Z(H) \neq \{e\}$. So we have either |Z(H)| = q or $|Z(H)| = q^2$. The latter suits us so we need to rule out the first option. This means that Z(H) is a q-subgroup so their number must divide q^2 and be 1 mod q, meaning that we have just one such q-subgroup and it is normal.

We end up with such a magnificent subnormal series:

$$1 = G_0 < G_1 - p$$
-subgroup of $G < G$

ZAD. 4.

Show that if |G| = 200, then G is solvable.

$$200 = 2^3 \cdot 5^2$$

Let us check how many 5-subgroups there are in G. We know that n_5 must divide 8 and be 1 mod 5. We can only have $n_5 = 1$ so the unique 5-subgroup is the normal subgroup of G.

What about 2-subgroups? We know that n_2 must divide 5^2 and that $n_2 \equiv 1 \mod 2$. If we had 5 2-subgroups then we have $5 \cdot 2^3$ unique Sylow 2-subgroups and they can only have the trivial element as their intersection. But we also need a 5-subgroup as we shown before and it also has to have a trivial intersection with all 2-subgroups. So we cannot have 5 2-subgroups and the same goes for 25. So we are left with just one 2-subgroup which has order 2^3 .

Now let $G_0 = 1$ and $G_1 = 1$ the unique 2-subgroup of G. We have $|G/G_1| = 5^2$ which is abelian and because G_1 is unique then $G_1 \triangleleft G$. And this is the end of my misery.

ZAD. 5

Show that if |G| < 60 then G is solvable.

Liczb pierwszych które się mieszczą do 60 jest dużo za dużo, to zacznijmy od kwadratów. Wiem, że 8² = 64 i 7² = 49, czyli możemy mieć co najwyżej 7 w kwadracie w rozkładzie na czynniki pierwsze. Sześcianów jest jeszcze mniej, bo tylko 2, 3 nie wypierdala poza 60. No to lecimy od góry, I quess?

Dla $|G| = 3^3 \cdot 2 = 27 \cdot 2 = 54$) mamy n_3 dzieli 2 i jest 1 mod 3, czyli $n_3 = 1$. Mamy więc unikalną 3-grupę Sylowa, więc jest ona dzielnikiem normalnym całości i ma rząd 27, czyli $|G/G_1| = 2$ co jest grupą abelową. Więc śmiga.

Niech |G| = n. Jeśli 7 jest w rozkładzie n na czynniki pierwsze, to nie możemy mieć tam również liczby większej niż 7 (bo $7^2 = 49$ i już większej liczby pierwszej nie wepchniemy), a więc liczba liczba n_7 -podgrup musi dzielić liczbę co najwyżej 8 ($7 \cdot 8 = 56$) i być 1 mod 7. No i jeśli wymagamy dzielenia liczby mniejszej niż 8 to musimy mieć dokładnie jedną KURWA NO NIE BĘDĘ TEGO ROBIĆ NO

ZAD. 6

Infinity cuz Feit-Thomson theorem.

ZAD. 7.

How many elements of order 7 are in a simple group of order 168?

$$168 = 2^3 \cdot 3 \cdot 7$$

We know that G is simple so its only normal subgroups are a trivial group and G itself. So we cannot have only one p-subgroups.

Let us see how many of each p-subgroup can we have:

$$n_2 \in \{3, 7\}$$
 $n_3 \in \{4, 28\}$
 $n_7 \in \{8\}$

so we know that we have exactly 8 7-subgroups and all of them contain elements of order 7 or 1 - we have at least 48. And we do not have any more because all elements of order 7 must be in a subgroup of order 7 and the only such subgroups that we are considering are 7-subgroups.

ZAD. 8.

O co oni mnie kurwa pytają?

ZAD. 9.

Find a composition series of the group \mathbb{Z}_n

If n is a prime number then we kinda have G_0 and G. And that's it.

I guess it is gonna be easiest to start from the top? What is a normal subgroup in any \mathbb{Z}_n ? Cuz it is obvious that \mathbb{Z}_n is abelian. Let n = pk for some prime p and $k \in \mathbb{N}$. Subgroup $H = \langle p \rangle$ is a subgroup of \mathbb{Z}_n and we want that $H \triangleleft \mathbb{Z}_n$. So we take any $a \in \mathbb{Z}_n \setminus H$ and any $h \in H$. We know that $ah = ha \in Ha$ so aH = Ha and this is normal.