```
In [162... import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt
from sklearn.model_selection \
import train_test_split
import seaborn as sns
```

Question#1. for every year (out of 5 years), compute the number of days with positive and negative returns.

```
In [163... data=pd.read csv("NVDA.csv")
       label=[]
       for i in range(len(data)):
           if data["Return"][i]<0:</pre>
               label.append("Negative")
           elif data["Return"][i]>0:
               label.append("Positive")
           else:
               label.append("Nan")
       data["label"]=label
       #print(data)
       print("Negative return data for NVDA",data.loc[data['label'] == "Negative"].grc
       print("Positive return data for NVDA",data.loc[data['label'] == "Positive"].grc
       Negative return data for NVDA Year
       2017
              112
       2018
               124
       2019 113
       2020 105
       2021
               115
       Name: label, dtype: int64
       Positive return data for NVDA Year
       2017
               138
       2018
              127
       2019 138
       2020 148
       2021
               135
       Name: label, dtype: int64
```

Question#2. for each year, compute the average of daily returns μ and compute the percentage of days with returns greater than μ and the proportion of days with returns less than μ . Are there more positive or negative return days? Does it change from year to year? Summarize your results for this question in a table for each year and discuss your findings. Your table should have the following format:

Out[164]:		Year	trading days	μ	days<μ	days>μ
	0	2017	251	0.002882	0.509960	0.490040
	1	2018	251	-0.000973	0.470120	0.529880
	2	2019	252	0.002595	0.484127	0.515873
	3	2020	253	0.003828	0.505929	0.494071

4 2021

Quetion#3. for every year, compute the mean and standard deviation of your daily returns. Compute the number of days that your (by absolute value) returns are more than 2 standard deviations from the mean. In other words, if $\mu = 5$ and $\sigma = 2$, compute the number of days that your (percent) daily returns are less than 1 (5 - 22) or more than 9 (5 + 22). The number of such days per year predicted by normal distribution is less than 5% (out of 252 trading days) - 2.5% below μ -2 σ and 2.5% above μ +2 σ .

251 0.003666 0.525896 0.474104

```
In [165... Q3 Nage=[]
       Q3 Posi=[]
       Q3 Na label=["Q3 Na label 2017", "Q3 Na label 2018", "Q3 Na label 2019", "Q3 Na
       Q3 Po label=["Q3 Po label 2017", "Q3 Po label 2018", "Q3 Po label 2019", "Q3 Po
       for i in range(len(year)):
           Q3 Nage.append(Q2 mu[i]-(Q3 std[i]*2))
           Q3_Posi.append(Q2_mu[i]+(Q3_std[i]*2))
       for i in range(len(year)):
           data[Q3 Po label[i]]=data.loc[data['Year'] == year[i]]["Return"].apply(lamk)
           data[Q3 Na label[i]]=data.loc[data['Year'] == year[i]]["Return"].apply(lamk)
       Q3 res nage=[]
       Q3 res posi=[]
       for i in range(len(year)):
           Q3 res nage.append(data.loc[data[Q3 Na label[i]]=="Nagetive"]["Year"].count
           Q3_res_posi.append(data.loc[data[Q3_Po_label[i]] == "Positive"]["Year"].count
       print(Q3 res nage,Q3 res posi)
       data.to csv("Q3.csv")
```

2022/10/25 13:58 Normaliy_of_returns

[0.027888446215139442, 0.0398406374501992, 0.023809523809523808, 0.02371541501 9762844, 0.0199203187250996] [0.01593625498007968, 0.01195219123505976, 0.0357 1428571428571, 0.015810276679841896, 0.027888446215139442]

Question#4. Summarize your findings in a table for each year and discuss your findings

Out[166]:		Year	trading days	μ	σ	days<μ–2σ	days>μ+2σ
	0	2017	251	0.002882	0.025267	0.027888	0.015936
	1	2018	251	-0.000973	0.030983	0.039841	0.011952
	2	2019	252	0.002595	0.025578	0.023810	0.035714
	3	2020	253	0.003828	0.036422	0.023715	0.015810
	4	2021	251	0.003666	0.028390	0.019920	0.027888