Calcul Numeric – Laborator #2

Ex.1 Să se construiască în Python procedura **CautaIntervale**(f, a, b, N), în baza căreia sunt calculate intervalele pe care funcția f admite rădăcină unică. [a, b] reprezintă intervalul maximal unde se caută rădăcinile, iar N reprezintă numărul de subdiviziuni al intervalului [a, b]. Procedura **CautaIntervale** va returna matricea **intervale** cu două linii, reprezentând capetele intervalelor, și tot atâtea coloane câte rădăcini admite funcția f.

Ex.2 Fie ecuația $x^3 - 7x^2 + 14x - 6 = 0$

- a. Să se construiască în Python o procedură cu sintaxa **Bisectie** (f, a, b, ε) , care implementează algoritmul metodei bisecției. Procedura **Bisectie** va returna, atât soluția aproximativă $[x_{aprox}]$ cât și numărul de iterații N necesar pentru obținerea soluției aproximatice cu eroarea ε .
- b. Să se construiască în Python graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0,4]. Să se calculeze toate rădăcinile de pe intervalul dat și să se construiască rădăcinile pe grafic.

Ex.3 Fie ecuația $x^3 - 7x^2 + 14x - 6 = 0$.

- a. Să se construiască în Python o procedură $\mathbf{NR}(f, df, x_0, \varepsilon)$ conform algoritmului metodei Newton-Raphson. Procedura \mathbf{NR} va returna, atât soluția aproximativă $[x_{aprox}]$ cât și numărul de iterații N necesar pentru obținerea soluției aproximative cu eroarea ε
- b. Să se construiască graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0, 4]. Alegeți din grafic trei valori inițiale x_0 corespunzătoare fiecărei rădăcini, astfel încât metoda Newton-Raphson să fie convergentă. Aflați cele trei soluții apelând procedura $\mathbf{N}\mathbf{R}$ cu eroarea de aproximare $\varepsilon = 10^{-3}$. Se va folosi criteriul de oprire $\frac{|x_k x_{k-1}|}{|x_{k-1}|} < \varepsilon$.
- **Ex.4** Fie ecuația $x^3 7x^2 + 14x 6 = 0$ pe intervalul [-1, 1.5]. Să se construiască în Python graficul funcției $N = N(\varepsilon)$ pe intervalul $\varepsilon \in [10^{-13}, 10^{-3}]$, folosind în paralel metodele bisecției și Newton-Raphson. Obs.: Pentru compararea graficelor se va folosi, atât pentru metoda bisecției, cât și pentru metoda Newton-Raphson același criteriu de oprire $(\frac{|x_k x_{k-1}|}{|x_{k-1}|} < \varepsilon)$. Valoarea inițială în cazul metodei NR se va considera capătul din stânga al intervalului dat.