Aproximación de Funciones

Módulo 4

Interpolación

Introducción

La interpolación se utiliza para proporcionar una estimación al valor de una función tabulada, en valores que no están disponibles en la tabla.

• **Ejemplo:** Cuál es el valor de sin(0.15)?

X	sin(x)
0	0.0000
0.1	0.0998
0.2	0.1987
0.3	0.2955
0.4	0.3894

Usando Interpolación lineal: $sin(0.15) \approx 0.1493$ Valor real (4 cifras decimales) sin(0.15) = 0.1494

El problema de interpolación

Dado un conjunto de n + 1 puntos,

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), ..., (x_n, f(x_n))$$

Encontrar un polinomio $f_n(x)$ de n-ésimo orden que pasa por todos los puntos, de forma que:

$$f_n(x_i) = f(x_i),$$
 para $i = 0,1,2,...,n$

Un experimento se usa para determinar la viscosidad de un líquido como una función de la temperatura. Se genera la siguiente tabla:

Problema: Estimar la viscosidad cuando la temperatura es de 8 grados.

Temperatura (grados)	Viscosidad
0	1.792
5	1.519
10	1.308
15	1.140

Problema de interpolación

Encontrar un polinomio que se ajuste exactamente a los puntos de datos.

$$V(T) = \sum_{k=0}^{n} a_k T^k$$

$$V_i = V(T_i)$$

V: Viscosidad

T: Temperatura

 a_k : Coeficientes del polinomio

Interpolación Lineal: V(T)=1.73-0.0422 T

$$V(8) = 1.3924$$

Existencia y unicidad

Dado un conjunto de n + 1 puntos: $(x_0, f(x_0)), (x_1, f(x_1)), ... (x_n, f(x_n))$

Suposición:
$$x_0, x_1, \dots, x_n$$
 son distintos

Teorema:

Hay un <u>único</u> polinomio $f_n(x)$ de orden $\leq n$ tal que: $f_n(x_i) = f(x_i)$, para i = 0,1,2,...,n

Ejemplos de interpolación polinómica

Interpolación Lineal

Dados dos puntos cualquiera, existe un polinomio de orden ≤ 1 que pasa por los dos puntos.

Interpolación Cuadrática

Dados tres puntos cualquiera, existe un polinomio de orden ≤ 2 que pasa por los tres puntos.

Interpolación lineal

Dados dos puntos, $(x_0, f(x_0)), (x_1, f(x_1))$

La línea que interpola los dos puntos es:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Interpolación lineal

Dados dos puntos, $(x_0, f(x_0)), (x_1, f(x_1))$

La línea que interpola los dos puntos es:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Ejemplo:

Encuentre el polinomio que interpola (1,2) y (2,4).

$$f_1(x) = 2 + \frac{4-2}{2-1}(x-1) = 2 + 2(x-1) = 2x$$

Interpolación Cuadrática

Dados tres puntos cualquiera: $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)).$

El polinomio que interpola los tres puntos es:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

donde:
$$b_0 = f(x_0)$$
; $b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$; $b_2 = f[x_0, x_1, x_2] = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$

Interpolación general de orden n

Dados n+1 puntos cualquiera: $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$ El polinomio que interpola todos los puntos es:

$$f_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0) \dots (x - x_{n-1})$$

```
donde:

b_0 = f(x_0)
b_1 = f[x_0, x_1]
\vdots
b_n = f[x_0, x_1, ..., x_n]
```

Diferencias divididas

$$f[x_k] = f(x_k) \text{ (D.D. Orden 0)}$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} \text{ (D.D. Orden 1)}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \text{ (D.D. Orden 2)}$$

$$\vdots$$

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$

Un polinomio de interpolación de orden n, se puede escribir en función de las diferencias divididas:

i	\boldsymbol{x}_i	$f(x_i)$	Primero	Segundo	Tercero
0	<i>x</i> ₀	$f(x_0)$	$f[x_1, x_0]$	$f[x_2,x_1,x_0]$	$f[x_3, x_2, x_1, x_0]$
1	x_1	$f(x_1)$	$\implies f[x_2, x_1]$	$ f[x_3, x_2, x_1] $	
2	<i>x</i> ₂	$f(x_2)$	$\implies f[x_3, x_2]$		
3	<i>x</i> ₃	$f(x_3)$			

$$f_n(x) = \sum_{i=0}^n \left\{ F[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j) \right\}$$

X	F[]	F[,]	F[, ,]
0	-5	2	-4
1	-3	6	
-1	-15		

Las entradas de la tabla de diferencias divididas se obtienen de la tabla de datos mediante operaciones simples.

X_i	$f(x_i)$
0	-5
1	-3
-1	-15

Х	F[]	F[,]	F[,,]
0	-5	2	-4
1	-3	6	
-1	-15		

X_i	$f(x_i)$
0	-5
1	-3
-1	-15

Las dos primeras columnas de la tabla son las columnas de datos.

Tercera columna: diferencias de primer orden.

Cuarta columna: diferencias de segundo orden.

X_i	\mathcal{Y}_i
0	-5
1	-3
-1	-15

X_i	\mathcal{Y}_i
0	-5
1	-3
-1	-15

X_i	\mathcal{Y}_i
0	-5
1	-3
-1	-15

$$f_2(x) = F[x_0] + F[x_0, x_1](x - x_0) + F[x_0, x_1, x_2](x - x_0)(x - x_1)$$
 20

Dos ejemplos

Obtenga los polinomios de interpolación para los dos ejemplos:

X	У
1	0
2	3
3	8

X	У
2	3
1	0
3	8

¿Qué se puede observar?

Dos ejemplos

X	У		
1	0	3	1
2	3	5	
3	8		

X	У		
2	3	3	1
1	0	4	
3	8		

$$P_2(x) = 0 + 3(x - 1) + 1(x - 1)(x - 2)$$

= $x^2 - 1$

$$P_2(x) = 0 + 3(x - 1) + 1(x - 1)(x - 2) P_2(x) = 3 + 3(x - 2) + 1(x - 2)(x - 1)$$

= $x^2 - 1$ = $x^2 - 1$

El orden de los puntos no debería afectar al polinomio interpolador.

Propiedades de las diferencias divididas

Ordenar los puntos no debería afectar la diferencia dividida:

$$f[x_0,x_1,x_2]=f[x_1,x_2,x_0]=f[x_2,x_1,x_0]$$

Encuentra un polinomio para interpolar los datos.

X	f(x)
2	3
4	5
5	1
6	6
7	9

X	<i>DD0: f(x)</i>	DD1: f[,]	DD2: f[, ,]	DD3: f[, , ,]	DD4: f[, , , ,]
2	3	5-3 / 4-2 = 1			
4	5				
5	1				
6	6				
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1			
4	5	1-5 / 5-4 = -4			
5	1				
6	6				
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1			
4	5	-4			
5	1	6-1 / 6-5			
6	6				
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1			
4	5	-4			
5	1	5			
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	(-4-1)/(5-2)=-5/3		
4	5	-4			
5	1	5			
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667		
4	5	-4	(5-(-4))/6-4=9/2		
5	1	5			
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667		
4	5	-4	4.5		
5	1	5	3-5/7-5 = -1		
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667	1.5417	
4	5	-4	4.5		
5	1	5	-1		
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667	1.5417	
4	5	-4	4.5	-1.8333	
5	1	5	-1		
6	6	3			
7	9				

X	f(x)	DD1: f[,]	DD2: f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667	1.5417	-0.6750
4	5	-4	4.5	-1.8333	
5	1	5	-1		
6	6	3			
7	9				

X	f(x)	f[,]	f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667	1.5417	-0.6750
4	5	-4	4.5	-1.8333	
5	1	5	-1		
6	6	3			
7	9				

$$f_4 = 3 + 1(x - 2) - 1.6667(x - 2)(x - 4) + 1.5417(x - 2)(x - 4)(x - 5) - 0.6750(x - 2)(x - 4)(x - 5)(x - 6)$$

Error en la interpolación polinómica

• Si se conoce el valor verdadero,

$$arepsilon_a = |f(x) - f_n(x)|$$

• Si no se conoce el valor real, se puede utilizar un punto $(x_{n+1}, f(x_{n+1}))$ adicional,

$$arepsilon_approx |f[x_{n+1},x_n,\dots,x_0](x-x_0)(x-x_1)\dots(x-x_n)|$$

Interpolación de Lagrange

El problema de interpolación

Dado un conjunto de n + 1 puntos,

$$(x_0, f(x_0)), (x_0, f(x_0)), ..., (x_n, f(x_n))$$

Encontrar un polinomio $f_n(x)$ de n-ésimo orden que pasa por todos los puntos, de forma que:

$$f_n(x_i) = f(x_i)$$
 para $i = 0,1,2,...,n$

Interpolación de Lagrange

Problema:

Dados

X _i	x_{O}	X ₁	 X _n
y _i	y_o	y ₁	 y _n

Encontrar el polinomio $f_n(x)$ de mínimo orden, tal que:

$$f_n(x_i) = f(x_i)$$
 para $i = 0,1,...,n$

Fórmula de interpolación de Lagrange:

$$f_n(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$$

$$L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

Ejemplo de interpolación de Lagrange

X	1/3	1/4	1
У	2	-1	7

$$P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$$

$$L_0(x) = \frac{(x - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} = \frac{\left(x - \frac{1}{4}\right)}{\left(\frac{1}{3} - \frac{1}{4}\right)} \frac{(x - 1)}{\left(\frac{1}{3} - 1\right)} = -18\left(x - \frac{1}{4}\right)(x - 1)$$

$$L_1(x) = \frac{(x - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} = \frac{\left(x - \frac{1}{3}\right)}{\left(\frac{1}{4} - \frac{1}{3}\right)} \frac{(x - 1)}{\left(\frac{1}{4} - 1\right)} = 16\left(x - \frac{1}{3}\right)(x - 1)$$

Ejemplo de interpolación de Lagrange

X	1/3	1/4	1
У	2	-1	7

$$P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$$

$$L_2(x) = \frac{(x - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_1)} = \frac{\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)}{\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)} = 2\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)$$

$$P_2(x) = 2\left\{-18\left(x - \frac{1}{4}\right)(x - 1)\right\} - 1\left\{16\left(x - \frac{1}{3}\right)(x - 1)\right\} + 7\left\{2\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)\right\}$$

Encuentre un polinomio para interpolar:

Tanto el método de interpolación de Newton como el método de interpolación de Lagrange deben dar la misma respuesta.

X	У
0	1
1	3
2	2
3	5
4	4

Método de interpolación de Newton

X_i	y_i	DD1	DD2	DD3	DD4
0	1	2	-3/2	7/6	-5/8
1	3	-1	2	-4/3	
2	2	3	-2		
3	5	-1			
4	4				

Interpolación polinómica

$$egin{aligned} f_4(x) &= 1 + 2(x) - rac{3}{2}x(x-1) + rac{7}{6}x(x-1)(x-2) \ &- rac{5}{8}x(x-1)(x-2)(x-3) \end{aligned}$$

$$f_4(x) = 1 + \frac{115}{12}x - \frac{95}{8}x^2 + \frac{59}{12}x^3 - \frac{5}{8}x^4$$

Interpolación con Pol. de Lagrange

$$f_4(x) = \sum_{i=0}^4 f(x_i) L_i = L_0 + 3L_1 + 2L_2 + 5L_3 + 4L_4$$
 $L_0 = \frac{(x-1)}{(0-1)} \frac{(x-2)}{(0-2)} \frac{(x-3)}{(0-3)} \frac{(x-4)}{(0-4)} = \frac{(x-1)(x-2)(x-3)(x-4)}{24}$
 $L_1 = \frac{(x-0)}{(1-0)} \frac{(x-2)}{(1-2)} \frac{(x-3)}{(1-3)} \frac{(x-4)}{(1-4)} = \frac{x(x-2)(x-3)(x-4)}{-6}$
 $L_2 = \frac{(x-0)}{(2-0)} \frac{(x-1)}{(2-1)} \frac{(x-3)}{(2-3)} \frac{(x-4)}{(2-4)} = \frac{x(x-1)(x-3)(x-4)}{4}$
 $L_3 = \frac{(x-0)}{(3-0)} \frac{(x-1)}{(3-1)} \frac{(x-2)}{(3-2)} \frac{(x-4)}{(3-4)} = \frac{x(x-1)(x-2)(x-4)}{-6}$
 $L_4 = \frac{(x-0)}{(4-0)} \frac{(x-1)}{(4-1)} \frac{(x-2)}{(4-2)} \frac{(x-3)}{(4-3)} = \frac{x(x-1)(x-2)(x-3)}{24}$

Interpolación Inversa

Interpolación inversa

Problema: Dada una tabla de valores, encontrar el valor de x tal que: f(x) = yk, donde y_k es conocido.

X_i	X_{0}	X_1	••••	X_n
y_i	y_0	y_1	••••	\mathcal{Y}_n

Enfoque: Use la interpolación polinómica para obtener $f_n(x)$ para interpolar los datos, luego use el método de **Newton** para encontrar una solución para x.

$$f_n(x) = y_k$$

Interpolación inversa

Interpolación inversa:

- 1. Intercambiar los roles de x, y.
- 2. Realizar la interpolación polinomial sobre la nueva tabla.
- 3. Evaluar.

X_i	$X_{\mathcal{O}}$	X_1	 X_n
y_i	y_0	\mathcal{Y}_1	 \overline{y}_n

y_i	<i>y</i> ₀	<i>y</i> ₁		\mathcal{Y}_n
X_i	$X_{\mathcal{O}}$	X_1	••••	X_n

$$x = f_n(y_k)$$

Interpolación inversa

Pregunta:

¿Qué limitaciones tiene la interpolación inversa?

- La función original debe tener una inversa.
- $y_1, y_2, ..., y_n$ deben ser distintos.

X	1	2	3
У	3.2	2.0	1.6

X	1	2	3
y	3.2	2.0	1.6

3.2	1	
2.0	2	
1.6	3	

X	1	2	3
У	3.2	2.0	1.6

3.2	1	-0.8333	1.0417
2.0	2	-2.5	
1.6	3		

X	1	2	3
У	3.2	2.0	1.6

3.2	1	-0.8333	1.0417
2.0	2	-2.5	
1.6	3		

$$x = f_2(y) = 1 - 0.8333(y - 3.2) + 1.0417(y - 3.2)(y - 2)$$

 $x = f_2(2.5) = 1 - 0.8333(-0.7) + 1.0417(-0.7)(0.5) = 1.2187$

Algoritmos para el polinomio de interpolación

Algoritmo para la interpolación de Newton (Pseudocódigo)

```
(yint, Ea) = NewtInt(x, y, n, xint)
LOCAL fdd_{n,n}
                                                   xterm = 1:
DOFOR i = 0, n
                                                   yint_0 = fdd_{0,0};
   fdd_{i,i} = y_i;
                                                   DOFOR order = 1, n
END DO
DOFOR j = 1, n
                                                      xterm = xterm^*(x_{int} - x_{order-1})
                                                      yint2 = yint_{order-1} +
   DOFOR i = 0, n - j
      fdd_{i,i} = (fdd_{i+1,i-1} - fdd_{i,i-1})/(x_{i+1} - fdd_{i,i-1})
                                                   fdd<sub>0.order</sub>*xterm
                                                      Ea_{order-1} = yint2 - yint_{order-1}
X_i);
   END DO
                                                      yint order = yint2
END DO
                                                   FND DO
```

Utilice el algoritmo computacional de la diapositiva anterior y la siguiente información para evaluar $f(x) = \ln x$ en x = 2:

X	1	4	6	5	3	1.5	2.5	3.5
f(x)=In x	0	1.386294 4	1.791759 5	1.609437 9	1.098612 3	0.405464 1	0.916290 7	1.252763 0

Algoritmo para la interpolación de Lagrange (Pseudocódigo)

```
Lagrng = Lagrng(x, y, n, xint)
sum = 0
DOFOR i = 0, n
  product = y_i
  DOFOR j = 0, n
    IF i ≠ j THEN
       product = product*(xint - x_i)/(x_i - x_i)
     FND IF
  END DO
  sum = sum + product
END DO
Lagrng = sum
```

Utilice el algoritmo computacional de la diapositiva anterior y la siguiente información para evaluar $f(x) = \ln x$ en x = 2:

X	1	4	6	5	3	1.5	2.5	3.5	
f(x)=In x	0	1.386294 4	1.791759 5	1.609437 9	1.098612 3	0.405464 1	0.916290 7	1.252763 0	

Interpolación mediante trazadores (Splines)

Trazadores

- En lugar de buscar un polinomio de grado n que una n+1 puntos, se buscan varios polinomios de grado inferior para subconjuntos de datos.
- El objetivo es proporcionar una mejor aproximación al comportamiento de las funciones que tienen cambios locales y abruptos.

Trazadores Lineales

La unión más simple entre dos puntos es una línea recta. Se define el conjunto de funciones lineales:

$$f(x) = f(x_0) + m_0(x - x_0) \qquad x_0 \le x \le x_1$$

$$f(x) = f(x_1) + m_1(x - x_1) \qquad x_1 \le x \le x_2$$

$$\vdots \qquad \vdots$$

$$f(x) = f(x_{n-1}) + m_{n-1}(x - x_{n-1}) \qquad x_{n-1} \le x \le x_n$$

Donde
$$m_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Trazadores Cuadráticos

- El objetivo de los trazadores cuadráticos es obtener un polinomio de segundo grado para cada intervalo entre los datos.
- El polinomio de cada intervalo se representa así:

$$f_i(x) = a_i x^2 + b_i x + c_i$$

Trazadores cuadráticos

Hay n intervalos, por lo tanto hay n ecuaciones cuadráticas y 3n incógnitas (a,b,c). Para establecerlas se debe cumplir:

- 1. Los valores de la función de polinomios adyacentes deben ser iguales en los nodos interiores. 2*(n-1).
- La primera y la última función deben pasar a través de los puntos extremos.
 (2).
- 3. Las primeras derivadas en los nodos interiores deben ser iguales. (n-1).
- 4. La segunda derivada es cero en el primer punto. (1).

Trazadores cuadráticos

 Los valores de la función de polinomios adyacentes deben ser iguales en los nodos interiores.

$$a_{i-1}x_{i-1}^{2} + b_{i-1}x_{i-1} + c_{i-1} = f(x_{i-1})$$

$$a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = f(x_{i-1})$$

$$para i = 2, ..., n$$

La primera y la última función deben pasar a través de los puntos extremos.

$$a_1 x_0^2 + b_1 x_0 + c_1 = f(x_0)$$

$$a_n x_n^2 + b_n x_n + c_n = f(x_n)$$

Trazadores cuadráticos

Las primeras derivadas en los nodos interiores deben ser iguales.

$$2a_{i-1}x_{i-1} + b_{i-1} = 2a_ix_{i-1} + b_i$$
 para $i = 2, ..., n$

La segunda derivada es cero en el primer punto.

$$2a_1 = 0 \rightarrow a_1 = 0$$

Ajuste trazadores cuadráticos a los siguientes datos. Con los resultados estime el valor en x = 5.

i	X	f(x)
0	3.0	2.5
1	4.5	1.0
2	7.0	2.5
3	9.0	0.5

- Los valores de la función de polinomios adyacentes deben ser iguales en los nodos interiores. (4 ecuaciones).
- Nodo i = 1
 - $f_1(x) = a_1 x^2 + b_1 x + c_1, x_0 \le x \le x_1$
 - $f_2(x) = a_2 x^2 + b_2 x + c_2, x_1 \le x \le x_2$
 - $f_1(x_1) = a_1(x_1)^2 + b_1x_1 + c_1 = f(x_1) \rightarrow a_1(4.5)^2 + b_1(4.5) + c_1 = 1$
 - $f_2(x_1) = a_2(x_1)^2 + b_2x_1 + c_2 = f(x_1) \rightarrow a_2(4.5)^2 + b_2(4.5) + c_2 = 1$
 - $f_1'(x) = 2a_1x + b_1$
 - $f_2'(x) = 2a_2x + b_2$
 - $f_1'(x_1) = f_2'(x_1) \rightarrow 2a_1x_1 + b_1 = 2a_2x_1 + b_2 \rightarrow a_1(2 \times 4.5) + b_1 = a_2(2 \times 4.5) + b_2$

 Los valores de la función de polinomios adyacentes deben ser iguales en los nodos interiores. (4 ecuaciones).

$$egin{array}{l} 20.5a_1 + 4.5b_1 + c_1 &= 1.0 \ 20.5a_2 + 4.5b_2 + c_2 &= 1.0 \ 49.0a_2 + 7.0b_2 + c_2 &= 2.5 \ 49.0a_3 + 7.0b_3 + c_3 &= 2.5 \end{array}$$

La primera y la última función deben pasar a través de los puntos extremos.

$$9.0a_1 + 3.0b_1 + c_1 = 2.5$$

 $81.0a_n + 9.0b_n + c_n = 0.5$

Las primeras derivadas en los nodos interiores deben ser iguales.

$$egin{aligned} 9.0a_1+b_1&=9.0a_2+b_2\ 14.0a_2+b_2&=14.0a_3+b_3 \end{aligned}$$

- La segunda derivada es cero en el primer punto.
- $f_1''(x) = 2a_1 \rightarrow f_1''(x_0) = 2a_1$

$$2a_1=0\to a_1=0$$

El problema se reduce a la solución de ocho ecuaciones con ocho incógnitas

$\lceil 4.5 floor$	1	0	0	0	0	0	0	(b_1)	(1)	1
0	0	20.25	4.5	1	0	0	0		c_1		1	l
0	0	49	7	1	0	0	0	Ш	a_2		2.5	l
0	0	0	0	0	49	7	1	$ \ $	b_2	$\left(\begin{array}{c} - \end{array} \right)$	2.5	l
3	1	0	0	0	0	0	0	 	c_2	(-)	2.5	
0	0	0	0	0	81	9	1	$ \ $	a_3		0.5	l
1	0	-9	-1	0	0	0	0		b_3		0	l
0	0	14	1	0	-14	-1	0	($\langle c_3 angle$		0	

Las soluciones al sistema de ecuaciones son:

$$egin{array}{lll} a_1=0 & b_1=-1 & c_1=5.5 \ a_2=0.64 & b_2=-6.76 & c_2=18.46 \ a_3=-1.6 & b_3=24.6 & c_3=-91.3 \end{array}$$

El resultado de la interpolación es:

$$egin{aligned} f_1(x) &= -x + 5.5 & 3.0 \le x \le 4.5 \ f_2(x) &= 0.64x^2 - 6.76x + 18.46 & 4.5 \le x \le 7.0 \ f_3(x) &= -1.6x^2 + 24.6x - 91.3 & 7.0 \le x \le 9.0 \end{aligned}$$

Se usa $f_2(x)$ para estimar el valor de la función en x=5:

$$f_2(x) = 0.64(5)^2 - 6.76(5) + 18.46 = 0.66$$

- El trazador cúbico es la versión más común y útil en la práctica de la ingeniería.
- Garantiza que la primera y segunda derivadas sean continuas.
- Su objetivo es obtener un polinomio de tercer grado para cada intervalo entre los datos, así:

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

Hay *n* intervalos, por lo tanto hay *n* ecuaciones cúbicas y *4n* incógnitas *(a,b,c,d)*. Para establecerlas se debe cumplir:

- 1. Los valores de la función de polinomios adyacentes deben ser iguales en los nodos interiores. 2*(n-1) = 2n-2
- La primera y la última función deben pasar a través de los puntos extremos.
 (2)
- 3. Las primeras derivadas en los nodos interiores deben ser iguales. (n-1)
- 4. Las segundas derivadas en los nodos interiores deben ser iguales. (n-1)
- 5. La segunda derivada en los nodos externos es cero. (2)

Aplicando las condiciones de continuidad de la interpolación su primera y segunda derivadas, es posible encontrar la expresión analítica de cada trazador:

$$egin{aligned} f_i(x) = & rac{f_i''(x_{i-1})}{6(x_i - x_{i-1})} (x_i - x)^3 + rac{f_i''(x_i)}{6(x_i - x_{i-1})} (x - x_{i-1})^3 \ & + \left[rac{f(x_{i-1})}{x_i - x_{i-1}} - rac{f''(x_{i-1})(x_i - x_{i-1})}{6}
ight] (x_i - x) \ & + \left[rac{f(x_i)}{x_i - x_{i-1}} - rac{f''(x_i)(x_i - x_{i-1})}{6}
ight] (x - x_{i-1}) + \end{aligned}$$

Las incógnitas se evalúan aplicando la siguiente ecuación:

$$egin{aligned} &(x_i-x_{i-1})f''(x_{i-1}) + 2(x_{i+1}-x_{i-1})f''(x_i) + (x_{i+1}-x_i)f''(x_{i+1}) \ &= rac{6}{x_{i+1}-x_i}[f(x_{i+1})-f(x_i)] + rac{6}{x_i-x_{i-1}}[f(x_{i-1})-f(x_i)] \end{aligned}$$

Si se escribe esta ecuación para todos los nodos interiores, resultan n-1 ecuaciones simultáneas con n-1 incógnitas. (Las segundas derivadas en los nodos extremos son cero.)

El sistema de ecuaciones resultantes es:

$$egin{bmatrix} u_1 & h_1 & & & & & \ h_1 & u_2 & h_2 & & & & \ & h_2 & u_3 & h_3 & & & \ & \ddots & \ddots & \ddots & & \ & & h_{n-3} & u_{n-2} & h_{n-1} & u_{n-1} \end{bmatrix} egin{bmatrix} z_1 \ z_2 \ z_3 \ \vdots \ z_{n-2} \ z_{n-1} \end{bmatrix} egin{bmatrix} v_1 \ v_2 \ v_3 \ v_3 \ \vdots \ v_{n-2} \ v_{n-2} \ v_{n-1} \end{bmatrix} ext{ donde:} \ h_i = x_{i+1} - x_i \ h_i = x_i - x_i \ h_i = x_i - x_i - x_i \ h_i = x_i - x_i - x_i - x_i \ h_i = x_i - x_i -$$

Algoritmo para trazadores cúbicos (Pseudocódigo)

```
Input (n, x, y)

DOFOR i = 0, n-1

h_i = x_{i+1} - x_i

b_i = 6 (x_{i+1} - y_i)/h_i

END DO
```

$$u_1 = 2 (h_0 - h_1)$$

 $v_1 = b_1 - b_0$

DOFOR
$$i = 2, n-1$$

 $u_i = 2(h_i + h_{i-1}) - (h_{i-1})^2/u_{i-1};$
 $v_i = b_i - b_{i-1} - h_{i-1} v_{i-1}/u_{i-1}$
END DO

$$z_n = 0$$
; $z_0 = 0$
DOFOR $i = n-1$, 1
 $z_i = (v_i - h_i z_{i+1})/u_i$
END DO
Output (z)

Utilice el algoritmo computacional de la diapositiva anterior y la siguiente información para evaluar $f(x) = \ln x$ en x = 2:

X	1	4	6	5	3	1.5	2.5	3.5	
f(x)=In x	0	1.386294 4	1.791759 5	1.609437 9	1.098612 3	0.405464 1	0.916290 7	1.252763 0	

Algoritmo para Trazadores cúbicos (Matlab)

```
Sean \{x_i, y_i\} n puntos:
                                                    DOFOR i = 1, n-2
                                                              A_{i,i} = u_i
DOFOR i = 1, n-1
          h_i = (X_{i+1} - X_i)
                                                    END DO
                                                    DOFOR i = 2, n-2
END DO
                                                              A_{i,i-1} = h_i
DOFOR i = 1, n-2
          U_i = 2(x_{i+2} - x_i)
                                                    END DO
                                                    DOFOR i = 1, n-3
END DO
DOFOR i = 2, n-1
                                                              A_{i,i+1} = h_{i+1}
     V_{i-1}=(6/h_i)(y_{i+1}-y_i)+(6/h_{i-1})(y_{i-1}-y_i)
                                                    END DO
END DO
```

Continuación Algoritmo para Trazadores cúbicos (Matlab)

- Resolver: [A][z] =[v]
- Agregar ceros
 correspondientes a la segunda
 derivada: Z=[0;z;0]
- Resolver la interpolación correspondiente.

DOFOR i = 1, n-1 Ecuación de cada

intervalo

END DO