CIS 471/571 (Fall 2020): Introduction Artificial Intelligence

Lecture 18: HMMs Particle Filters

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement

- •Class on Thursday, Dec 03rd
 - Exam review

Assignment Project Exam Help

- End-of-course Surveytps://tutorcs.com
 - Open until 06:00 PM vn Fri. Dec 04th

Thanh H. Nguyen 11/30/20

Today

- •HMMs
 - Particle filters

Assignment Project Exam Help

- Applications: https://tutorcs.com
 - Robot localization / mapping Wechat: cstutores

Recap: Reasoning Over Time

Markov models

WeChat: cstutorcs

Hidden Markov models

P(E|X)

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	8.0

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time Assignment Project Exam Help
- We start with $B_1(X)$ in the start with B_1

WeChat: cstutorcs

 \blacksquare As time passes, or we get observations, we update B(X)

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

Assignment Project Exam Help

- Induction: assuming we have current belief $B_t(X) = P(X_t|e_{1:t})$ Intermediate belief update: $B_{t+1}(X) = P(X_{t+1}|e_{1:t})$

WeChat: cstutorcs

$$P(X_{t+1}|e_{1:(t+1)}) \leftarrow P(X_{t+1}|e_{1:t}) \leftarrow P(X_t|e_{1:t})$$

update

Observation Passage of time update

Example: Weather HMM

$$B(+r) = 0.5$$

 $B(-r) = 0.5$

$$B(+r) = 0.818$$
 $B(+r) = 0.883$

$$B(+r) = 0.818$$
 $B(+r) = 0.883$ $B(-r) = 0.182$ https://butencis.com

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big the street Project Exam Help
 - E.g. X is continuous
- Solution: approximate inference de la communication de la commun

 - Track samples of X, not all values
 Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - Storing map from X to counts would defeat the point Assignment Project Exam Help

- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0 WeChat: cstutorcs
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \text{sample}(PAxsignment Project Exam Heip}$

(1,2)

Particles:

(3,3)(2,3)(3,3)

• This is like prior sampling _httpsiestutorcs.com (3,3)(3,3)frequencies reflect the transition probabilities (2,3)

 Here, most samples move clockwise, but some move in another direction or stay in place

Particles:

(3,2)(2,3)

(3,2)

(3,3)

(1,3)(2,3)

(3,2)

(2,2)

This captures the passage of time

 If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weightigg, ment Prigject Exam^(3,3)Help samples based on the evidence (2,3)

https://tutorcs.com (3,2) (2,2)

$$w(x) = P(e|x)$$

WeChat: cstutorcs

$$B(X) \propto P(e|X)B'(X)$$

■ As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles:

Particles:

(3,2) (2,3) (3,2)

(3,1)

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3.2) w=.9
- (2,2) w=.4

Particle Filtering: Resample

 Rather than tracking weighted samples, we Particles: (3,2) w=.9 resample (2,3) w=.2

(3,1) w=.4

- N times, we choose from our weighted

Assignment Project Examely

(3,2) w= .9 sample distribution (i.e. draw with (2,3) w=.2 replacement) (2.2) w=.4

WeChat: cstutorcs

 This is equivalent to renormalizing the distribution

 Now the update is complete for this time step, continue with the next one

(New) Particles: (3,2)(2,2)(3,2)(2,3)(3,3)

(3,2) w=.9

(3,2)(1,3)(2,3)(3,2)(3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution Weight Resample

Particles:	Particles:	Particles:	(New) Particles:
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,3)	(2,3) w=.2	(2,2)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(3,2)	(3,1)	(3,1) w=.4	(2,3)
(3,3)	(3,3)	(3,3) w=.4	(3,3)
(3,2)	(3,2)	(3,2) w=.9	(3,2)
(1,2)	(1,3)	(1,3) w=.1	(1,3)
(3,3)	(2,3)	(2,3) w=.2	(2,3)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,2)	(2,2) w=.4	(3,2)

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and reading Aski gypinally dentificate Exam Help (works basically like a very fine grid) and so we cannot store B(X) https://tutorcs.com
 - Particle filtering is a main technique

DIRECTORY

Particle Filter Localization (Sonar)

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

• We want to track multiple variables over time, using multiple sources of evidence

• Idea: Repeat a fixed Bayes net structure at each time Help

• Variables from time t can condition on those from t-1t=1 t=2 t=2 t=3

Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed Assignment Project Exam Help $e_{1:T}$

• Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G₁a △ (Signment) pject Exam Help
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2\sqrt{3})G_1^b = (6\sqrt{3})$
- Observe: Weight each *entire* sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(\mathbf{E_1}^a \mid \mathbf{G_1}^a) * P(\mathbf{E_1}^b \mid \mathbf{G_1}^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution:
 - Transitions:
 - Emissions:

WeChat: cstutorcs

• New query: most likely explanation:

 $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$

• New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum): cstutorcs Viterbi Algorithm (Max)

$$f_{t}[x_{t}] = P(x_{t}, e_{1:t})$$

$$m_{t}[x_{t}] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_{t}, e_{1:t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_{t}|x_{t}) \max_{x_{t-1}} P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$