CHAPTER 1

Affine spaces

Contents

1.1	Affine spaces	1
1.2	Affine subspaces	3
1.3	Convexity	5
1.4	A characterization of affine spaces	6
1.5	Connections to reality	7

1.1 Affine spaces

Definition 1.1. Let **V** be a vector space over the field **K**. An *affine space over* **V** is a non-empty set **A**, whose elements are called *points* of **A**, together with a map

$$\mathbf{A} \times \mathbf{A} \to \mathbf{V} \tag{1.1}$$

that associates to every ordered pair $(P,Q) \in \mathbf{A} \times \mathbf{A}$ a vector in \mathbf{V} which is denoted \overrightarrow{PQ} , in such a way that the following two axioms are satisfied:

(AS1) For every point $P \in \mathbf{A}$ and every $\mathbf{v} \in \mathbf{V}$ there is a unique point $Q \in \mathbf{A}$ such that

$$\overrightarrow{PQ} = \mathbf{v}.$$

(AS2) For every triple of points $P, Q, R \in \mathbf{A}$ the following identity holds in \mathbf{V} :

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$
.

- We say that **V** is the vector space associated to the affine space **A** or that **A** is an *affine space with associated vector space* **V**.
- If $\mathbf{v} = \overrightarrow{PQ}$ we say that the vector \mathbf{v} is represented by the base point P and the end point Q, or, shorter, we say that the vector \mathbf{v} is represented by P and Q.
- If **K** is the field of real numbers \mathbb{R} , we call **A** a *real affine space*.
- If **K** is the field of complex numbers \mathbb{C} , we call **A** a *complex affine space*.
- The map in (1.1) is said to define on the set **A** *the structure of an affine space*, or, shorter, it defines an *affine structure* on **A**.

Definition 1.2. Let **A** be an affine space over the **K**-vector space **V**. The *dimension of the affine space* **A** is by definition the dimension $\dim(\mathbf{V})$ of **V**. We denote the dimension of **A** by $\dim(\mathbf{A})$.

Example 1.3. The Euclidean line E^1 , the Euclidean plane E^2 and the Euclidean space E^3 are examples of real affine spaces of dimension 1, 2 and 3 respectively. The map which defines an affine structure on E^2 is

$$\mathbf{E}^2 \times \mathbf{E}^2 \to \mathbf{V} \quad (A, B) \mapsto \overrightarrow{AB}$$

where \overrightarrow{AB} is the equipollence class of the pair (A,B) as in Lecture 2 and 3 of the Geometry course last semester (there you used the notation \overrightarrow{AB}). Thus affine spaces are generalizations of the ordinary line, plane and space.

Example 1.4. Let V be a finite dimensional vector space over K. The map

$$\mathbf{V} \times \mathbf{V} \to \mathbf{V}$$
 $(\mathbf{a}, \mathbf{b}) = \mathbf{b} - \mathbf{a}$

defines the structure of an affine space on V over itself. Thus, every vector space can be considered as an affine space over itself. If we want to view V as an affine space in this way, we denote it by V_a .

Example 1.5. A particular case of the previous example is $V = K^n$. The affine space K_a^n is sometimes called the *affine numerical n-space over* K. It is usually denoted by $A^n(K)$ or just A^n if K is clear from the context. Every vector space over the field K which has dimension n is isomorphic to K^n so one can show that any affine space over a vector space V is isomorphic to $A^n(K)$ for some integer n and some field K.

Definition 1.6. Let **A** be an affine space over the **K**-vector space **V**. An affine system of coordinates in the space **A** is given by a point $O \in A$ and a basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of **V**. We denote such a coordinate system by $O\mathbf{e}_1 \dots \mathbf{e}_n$.

For each point $P \in \mathbf{A}$ we have

$$\overrightarrow{OP} = a_1 \mathbf{e}_1 + \dots + a_n \mathbf{e}_n$$
 for unique $a_1, \dots, a_n \in \mathbf{K}$.

The scalars $a_1, ..., a_n$ are called *affine coordinates* (or just *coordinates*) of the point P with respect to the coordinate system $O\mathbf{e}_1...\mathbf{e}_n$. Given a coordinate system, we write $P(a_1,...,a_n)$ when we want to indicate the coordinates of the point P. The point O of the coordinate system $O\mathbf{e}_1...\mathbf{e}_n$ is called the *origin of the coordinate system* and has coordinates (0,0,...,0).

1.2 Affine subspaces

Definition 1.7. Let **A** be an affine space over the **K**-vector space **V**. Given a point Q and a vector subspace **W** of **V**, the *affine subspace of* **A** *passing through* Q *and parallel to* **W** is the subset $S \subseteq \mathbf{A}$ consisting of points $P \in \mathbf{A}$ with $\overrightarrow{QP} \in \mathbf{W}$.

- The subspace $\mathbf{W} \subseteq V$ is called the *vector subspace associated to S*.
- A is an affine subspace of itself.
- An affine subspace *S* of **A** is called *proper* if $S \subseteq \mathbf{A}$.
- We define the *dimension* of *S* to be the dimension of **W** and denote it by dim(**W**).
- If dim(S) = 1 then S is said to be a *line* in A and W is called the *direction* of S. Any non-zero vector $\mathbf{a} \in W$ is called a *direction vector* for the line. It follows from the definition that

$$S = \{P \in \mathbf{A} : \text{ for which } \overrightarrow{QP} = t\mathbf{a} \text{ for some } t \in \mathbf{K}\}.$$

- If dim(S) = 2 then S is said to be a *plane* in **A**.
- If *S* is an affine subspace of the affine space **A** then $\dim(S) \leq \dim(\mathbf{A})$.
- If dim(S) = dim(A) then S = A.
- If $\dim(S) = \dim(\mathbf{A}) 1$ then S is said to be a hyperplane of A.

Example 1.8. The proper affine subspaces of E^1 are the points of E^1 . The proper affine subspaces of E^2 are the points and the lines in E^2 . The proper affine subspaces of E^3 are the points, the lines and the planes of E^3 .

Example 1.9. Let **V** be a non-zero finite dimensional **K**-vector space. Consider a vector subspace $\mathbf{W} \subseteq \mathbf{V}$ and a point $\mathbf{q} \in \mathbf{V}_a$. The affine subspace of \mathbf{V}_a passing through \mathbf{q} and parallel to \mathbf{W} is the set

$$q+W=\{q+w:w\in W\}.$$

In the particular case when $\mathbf{q} \in \mathbf{W}$ we have $\mathbf{q} + \mathbf{W} = \mathbf{W}$. Thus, any vector subspace of a vector space \mathbf{V} is an affine subspace of \mathbf{V}_a and every affine subspace of \mathbf{V}_a is of the form $\mathbf{q} + \mathbf{W}$ for some $\mathbf{q} \in \mathbf{V}_a$ and $\mathbf{W} \subseteq \mathbf{V}$. In other words, affine subspaces are *translates* of vector subspaces.

Definition 1.10. Given $n + 1 \ge 2$ points P_0, \ldots, P_n in an affine space \mathbf{A} , the affine subspace passing through P_0 and having associated vector subspace $\langle \overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \ldots, \overrightarrow{P_0P_n} \rangle$ is called the *subspace generated by* (or *span of*) P_0, P_1, \ldots, P_n . We denote it by $\langle P_0, P_1, \ldots, P_n \rangle$.

- By definition it follows that $\dim(P_0, P_1, \dots, P_n) \le n$.
- If $\dim\langle P_0, P_1, \dots, P_n \rangle = n$ we say that the points P_0, P_1, \dots, P_n are *independent*, otherwise we say that they are *dependent*. By definition, therefore, the points P_0, P_1, \dots, P_n are independent if and only if the vectors $\overrightarrow{P_0P_1}$, $\overrightarrow{P_0P_2}$,..., $\overrightarrow{P_0P_n}$ are linearly independent.
- If P_0, P_1, \dots, P_n are independent then $n \leq \dim(\mathbf{A})$.
- Two points $P_0, P_1 \in \mathbf{A}$ are independent if and only if they are distinct, in which case $\langle P_0, P_1 \rangle$ is a line.
- Three points $P_0, P_1, P_2 \in \mathbf{A}$ are independent if and only if they do not belong to a line, in which case $\langle P_0, P_1, P_2 \rangle$ is a plane
- The points $P_0, P_1, ..., P_n \in \mathbf{A}$ are said to be *collinear* if there is a line containing them, or equivalently if $\dim \langle P_0, P_1, ..., P_n \rangle \leq 1$.
- The points $P_0, P_1, ..., P_n \in \mathbf{A}$ are said to be *coplanar* if there is a plane containing them, or equivalently if $\dim(P_0, P_1, ..., P_n) \le 2$.

Proposition 1.11.

- 1. An affine subspace is determined by its associated vector subspace and any one of its points.
- 2. Let *S* be an affine subspace of **A** with associated vector subspace **W**. Associating to any pair of points $P, Q \in S$ the vector \overrightarrow{PQ} defines on *S* the structure of an affine space over **W**.

1.3 Convexity

In this section **A** will denote a *real* affine space.

Definition 1.12. Let P and Q be two points of A. The *line segment* (or simply *segment*) AB is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{PX} = t \overrightarrow{PQ} \text{ for some } t \in [0,1]\right\}.$$

Definition 1.13. A subset *S* of **A** is said to be *convex* if for every $A, B \in S$ the segment AB lies in *S*.

Example 1.14. It is easy to check that every affine subspace of a real affine space is convex.

Example 1.15. Consider a point $Q \in \mathbf{A}$ and a non-zero vector $\mathbf{a} \in \mathbf{V}$. The half line with origin Q and direction \mathbf{a} is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{PX} = t\mathbf{a} \text{ for some } t \in \mathbb{R} \text{ with } t \ge 0\right\}.$$

It is a convex set.

Example 1.16. Consider three points $A, B, C \in \mathbf{A}$ which are not collinear. The *triangle with vertices* A, B, C is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{AX} = s\overrightarrow{AB} + t\overrightarrow{AC} \text{ for some } s, t \in \mathbb{R} \text{ with } s, t \geq 0 \text{ and } s + t \leq 1\right\}.$$

A parallelogram with vertices A, B, C is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{AX} = s\overrightarrow{AB} + t\overrightarrow{AC} \text{ for some } s, t \in \mathbb{R} \text{ with } 0 \le s, t \le 1\right\}.$$

Notice that there are two more parallelograms determined by A, B, C and they have a similar description.

Example 1.17. Consider four points $A, B, C, D \in \mathbf{A}$ which are not coplanar. The *tetrahedron with vertices* A, B, C, D is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{AX} = s\overrightarrow{AB} + t\overrightarrow{AC} + u\overrightarrow{AD} \text{ for some } s, t, u \in \mathbb{R} \text{ with } s, t \geq 0 \text{ and } s + t + u \leq 1\right\}.$$

A parallelepiped with vertices A, B, C, D is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{AX} = s\overrightarrow{AB} + t\overrightarrow{AC} + u\overrightarrow{AD} \text{ for some } s, t, u \in \mathbb{R} \text{ with } 0 \le s, t, u \le 1\right\}.$$

Notice that there are three more parallelepipeds determined by *A*, *B*, *C*, *D* and they have a similar description.

Example 1.18. Consider k + 1 independent points $P_0, ..., P_k \in \mathbf{A}$. The k-simplex with vertices $P_0, ..., P_k$ is the set of points

$$\left\{X \in \mathbf{A} : \overrightarrow{P_0 X} = \sum_{i=1}^k t_i \, \overrightarrow{P_0 P_i} \text{ for some } t_i \in \mathbb{R} \text{ with } t_i \ge 0 \text{ and } \sum_{i=1}^k t_i \le 1\right\}.$$

Definition 1.19. Let *S* be a subset of **A**. The *convex hull* of *S* is defined to be the smallest convex set containing *S*. It is thus the intersection of all convex subsets containing *S*.

1.4 A characterization of affine spaces

Let A be an affine space with associated vector space V. Axiom AS1 defines a map

$$t: \mathbf{A} \times \mathbf{V} \to \mathbf{A}$$

that associates to each pair (A, \mathbf{a}) the point $B = t(A, \mathbf{a})$ with the property that $\overrightarrow{AB} = \mathbf{a}$. The map t has the following properties:

(AS1') For every $A, B \in \mathbf{A}$ there is a unique $\mathbf{a} \in \mathbf{V}$ such that

$$B = t(A, \mathbf{a}).$$

(AS2') For every $A \in \mathbf{A}$ and $\mathbf{a}, \mathbf{b} \in \mathbf{V}$ we have

$$t(t(A, \mathbf{a}), \mathbf{b}) = t(A, \mathbf{a} + \mathbf{b}).$$

Proposition 1.20. Let **V** be a vector space over **K**. A set **A** is an affine space if and only if there is a map $t: \mathbf{A} \times \mathbf{V} \to \mathbf{A}$ satisfying (AS1') and (AS2').

1.5 Connections to reality

Apparently there are people who believe that the Earth is flat. So, they are probably living in $A^2(\mathbb{R})$. Everybody else understands that the theories which we develop to understand the world around us need to be constantly refined. The 3-dimensional space $A^3(\mathbb{R})$ is a good model for the observed space, good enough to formulate classical mechanics, but even there it is customary to work with $A^n(\mathbb{R})$ in general. New theories use higher dimensional theoretical models to explain different physical phenomena.

But geometry is not only about the observed space. Sometimes you just have a lot of data and in order to make sense of it you think about it as points in $A^{10000}(\mathbb{R})$ or some higher dimensional space. This is common when doing machine learning for instance. In such situations, most of the time your data sits in a very high dimensional spaces and this gives everybody a headache. People call this 'the curse of dimensionality' and try to develope methods for 'dimensionality reduction'. When you are in a situation like this you need to have some understanding of what an n-dimensional affine space is.

Cryptography is another area where geometric intuition is useful. In this context one can view codes as points in the affine space $\mathbf{A}^n(\mathbb{F}_p)$ where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements. Some methods in cryptography use the geometric intuition that we have from curves in the Euclidean plane and work with curves in $\mathbf{A}^2(\mathbb{F}_p)$ (or a space that contains this 2-dimensional affine space).